Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 184 421 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 06.03.2002 Bulletin 2002/10 (51) Int CI.7: **C08L 83/07**, C08K 3/22, G03G 15/20

(21) Application number: 01307202.0

(22) Date of filing: 24.08.2001

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 30.08.2000 JP 2000261431

(71) Applicant: Dow Corning Toray Silicone Co., Ltd. Tokyo (JP)

(72) Inventors:

 Tsuji, Yuichi, c/o Dow Corning Toray Silicone Co Ichihara-shi, Chiba Prefecture (JP) Yoshida, Hiroaki,
 Down Corning Tor

Down Corning Toray Silicone Co ichihara-shi, Chiba Prefecture (JP)

 Oka, Yutaka, c/o Dow Corning Toray Silicone Co Ltd ichihara-shi, Chiba Prefecture (JP)

(74) Representative: Kyle, Diana et al Elikington and Fife Prospect House 8 Pembroke Road Sevencaks, Kent TN13 1XR (GB)

(54) Thermoconductive liquid silicone rubber composition for fixing rolls and a fluororesin coated fixing roll

(57) A thermoconductive liquid silicone nubber composition is provided for fixing rolls. The composition is capable of producing silicone nubber of superior thermal conductivity and small compression set after curing. The thermoconductive liquid silicone nubber composition contains (A) a diorganopolysilloxane with at least two silicon bonded alkenyl groups per molecule, (B) an alumina powder with an average particle size not more than 10 µm and an ignition loss of not more than 0.15 weight percent. (c) an organohydrogenpolyalloxane having at least two silicon bonded hydrogen atoms per molecule, and (D) a platinum catalyst. Fluororeain coated fixing rolls can be fabricated by providing a fluororeain coated with the silicon the peripheral surface of a roll shaft, with the silicon tubber layer interposed between it and the surface.

Description

20

25

[0001] This invention relates to a thermoconductive liquid silicone rubber composition for fixing rolls, and to a fluor-ories in coated fixing roll. In particular, the fluorosein coated fixing roll and the thermoconductive liquid silicone rubber composition for fixing rolls, have small compression set and are suitable for fixing rolls used in copiers, printers, and fax machines.

[0002] Thermoconductive silicone rubber compositions mixed with an alumina powder have been described in Japanese Patent Application Publication (Kokal) No. Hel 09-012893, Japanese Patent Application (Vokal) No. Hel 10-039869, and in US 5,225,564. However, the allicone rubber obtained by curing such thermoconductive silicone rubber compositions has large compression set, and when it is used for the fluororesin coated fixing rolls of an electrophotographic copier, printer, or facsimile machine, is athibits inferior drusbility.

[0003] Thus, it is an object of the invention to provide thermoconductive silicone rubber compositions for fixing rolls capable of producing silicone rubbers of superior head conductivity and small compression set after curing. It is also an object to provide fluororesin coated fixing rolls prepared with such silicone rubbers.

[0004] These and other features of the invention will become apparent from a consideration of the detailed description.

[0005] The thermoconductive liquid silicone rubber composition for fixing rolls according to this invention comprises:

- (A) 100 parts by weight of a diorganopolysiloxane having at least two silicon bonded alkenyl groups per molecule and which is a liquid at room temperature;
- (B) 10-500 parts by weight of alumina powder with an average particle size of not more than 10 µm, and an ignition loss of not more than 0.15 weight percent measured according to Ignition Loss Test Method described in Japanese Industrial Standard (JIS) H 1901 at a temperature of 1100 °C and a heating time of one hour;
- (C) an organohydrogenpolysiloxane having at least two silicon bonded hydrogen atoms per molecule in an amount such that the molar number ratio between silicon bonded hydrogen atoms of component (C) and silicon bonded alkenyl groups of component (A) is 0.3:1 to 5:1; and
 - (D) a platinum catalyst in an amount such that there is 0.1-500 parts by weight of platinum metal atoms per 1,000,000 parts by weight of component (A); the thermoconductife flould silicone rubber composition having a coefficient of thermal conductivity of not less than 0.3 W/m-K) after curing.

[0006] A fluororesin coated fixing roll can be made by providing a fluororesin layer on the peripheral surface of a roll shaft using the cured product of the above thermoconductive liquid sillicone rubber composition, such that a silicone rubber layer is interposed between it and the surface.

[0007] Diorganopolysiloxane (A) has at least two silicon bonded alkenyl groups per molecule, and it is the primary ingredient used for crosslinking the composition of the invention to convert it to rubber. Such diorganopolysiloxanes are substantially linear organopolysiloxanes presented by the average unit formula, RSIQ_{enyl}, wherein R is a monovalent hydrocarbon group, among which are alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hasyr; alkenyl groups such as how a viryl, ellyl, propenyl, and heavyl; alkenyl groups such as phanyl and tolyl. R can also represent halogen substituted monovalent hydrocarbon groups such as 9,3,3-trifluoropropyl and chloropropyl. The n in the formula can be 1 9-2 1.

[0009] The content of alkenyl groups in R in such diorganopolysiloxanes is generally 0.01-5 mole percent, and the diorganopolysiloxanes should have a viscosily at 25 °C of 100-1,000,000 mPa-s. These diorganopolysiloxanes are exempfilled by dimethyloxyloxyloxes are of the content of the diorganopolysiloxane and sexempfilled by dimethyloxyloxyloxy groups, copolymers of methylophenyloxane and dimethyloxiloxane and blocked with dimethylvinylailoxy groups, copolymers of methylophenylsiloxane-methylvinylailoxane and blocked with dimethylvinylailoxy groups, copolymers of diphenylailoxane-methylvinylailoxane-dimethylailoxane and blocked with dimethylvinylailoxy groups, copolymers of diphenylailoxane-methylvinylailoxane-dimethylailoxane and blocked with dimethylvinylailoxy groups, copolymers of methylailoxane-methylvinylailoxane-dimethylailoxane and blocked with dimethylvinylailoxy groups, copolymers of methylailoxane-methylvinylailoxane-met

[0009] Alumina powder (B) is used to improve the coefficient of thermal conductivity of the silicone rubber obtained by curing the composition. To improve the merchanical strength of the silicone rubber obtained by curing the composition, and to prevent the separation and precipitation of the alumina powder during long-term storage of the composition, the alumina powder should have an average particle size of not more than 10 µm. In addition, its ignition loss measured by the Ignition Loss Test Method described in Japanese Industrial Standard (JIS) H 1901 should be not more than 0.15 weight percent. If the Ignition loss exceeds 0.15 weight percent, the compression set of the silicone rubber increases. There are no limitations on the shape of component (B), and spherical and irregular shapes can be used. To increase the disposition of component (B) in component (A), the surface of component (B) can be surface treated with an

organosilicon compound.

[0010] The amount of component (B) is 10-500 parts by weight, preferably 50-300 parts by weight, per 100 parts by weight of component (A). When the amount is less than 10 parts by weight, sufficient thermal conductivity cannot be imparted to the silicone rubber, and when it exceeds 500 parts by weight, the viscosity of the composition increases, the operating properties deteriorate, and the mechanical strength of the silicone rubber decreases.

[0011] Organohydrogenpolysiloxane (C) should have at least two silicon bonded hydrogen atoms per molecule. It functions as the crosslinking agent in the composition. These organohydrogenpolysiloxanes can be exemplified by methyllydrogenpolysiloxanes having both terminals ends blocked with trimethylsiloxy groups, copolymers of methyllydrogensiloxane and dimethylsiloxane having both terminals and blocked with trimethylsiloxy groups, copolymers of methyllydrogensiloxane and dimethylisioxane having both terminals and blocked with trimethyllydrogensiloxy groups, and letramethylistrahydrogen cyclolatrasiloxane. The amount of component (C) should be such that the mole ratio of silicon bonded hydrogen atoms in component (C) relative to alkenyl groups in component (B) to 3.5.0, preferably 0.4.3.0. If the mole ratio is loss than 0.3, the crosslinking density becomes too low, and the cured product does not become elastic. If the mole ratio is sost than 0.3, the crosslinking density becomes too low, and the cured product does not become elastic. If the mole ratio exceeds 5.0, form is generated as a result of a dehydrogenation reaction, or can decrease the heaf resistance of the material.

[0012] Piatinum catalyst (D) promotes the addition reaction of component (A) and component (C). Such platinum catalysts can be exemplified by platinum micropowder, platinum black, chloroplathic acid, alcohol modified chloroplatic incide, and complexes of chloroplatine acid, and and laterylationses. The amount of component (D) used should be 0.1-500 parts by weight per 1,000,000 parts by weight of component (A) collosis in complexes of compl

39 [0014] Equipment used for preparing compositions of the invention includes equipment typically used in production of silicone rubber compositions such as kneader-inkers, pressurizing kneaders, Ross mixers, and continuous kneading extruders.

[0015] When heat is used to cure the composition, it is converted to a silicone rubber possessing rubber elasticity. Temperatures which can be used are typically 80-220 °C. The coefficient of thermal conductivity of the cured silicone rubber should not be lass than 0.3 W/m/s/L.

[0016] After curing, the allicone rubber composition provides a useful silicone rubber for fabricating fixing rolls because it possesses a high thermal conductivity and a small compression set. In particular, the silicone rubber composition can be used for forming silicone rubber layers of fluororesin coated fixing rolls made by providing a layer of silicone rubber on the peripheral surface of a roll shaft, and then providing a layer of fluororesin over the silicone rubber

[0017] When the allicone rubber is used as a costing material for fixing rolls, it is applied to the Iron, aluminum, and stainless steel metal roll corn of the fixing roll. The fluororesin can be a fluororesin tube or a fluororesin coating agent. Some representative examples of fluororesin coating agents include tubes of polystratifucroethylene ine (PTFE), tetrafluorosthylene-perdujorately/sinylether copolymer resin (FFFE), fluorosthylene-propylene copolymer resin (FEFE), polysinylidene-propylene-propylene copolymer resin (FEFE), polysinylidene fluoride resin (PVDP), polysinylidene fluoridene resin (PVDP), polysinylidene resin (PVDP)

[0018] The invention is more fully explained by reference to the following application and consigned examples. The term 'parts' refers to parts by weight, parts' by refers to parts by weight, parts' parts' and the parts' parts

Ignition Loss of Alumina Powder

[0019] This value was measured in accordance with the Ignition Loss Test Method described in Japanese Industrial

Standard (JIS) H 1901 at a temperature of 1100 °C and a heating time of one hour. According to this test method, alumina powder was piaced in a crucible and weighed. It was placed in a heating furnace at 1100 °C for one hour, after which the crucible was removed from the furnace, and the weight of the alumina after heating was determined. The (antition loss was calculated using the formula:

Ignition Loss (weight %) = {(weight after heating - weight prior to heating) / weight prior to

heating \times 100.

Hardness of Silicone Rubber

10

24

[0020] After heating and curing the silicone rubber composition at 120 °C for 10 minutes under an elevated pressure, silicone rubber sheats with a thickness of 6 mm were fabricated by heat treating the product for 4 hours at 200 °C. The hardness of the silicone rubber sheets was determined using a Japanese Industrial Standard (JIS) Type A durometer in accordance with the procedure described in Japanese Industrial Standard (JIS) K 8249.

Compression Set of Silicone Rubber

20 [0021] After heating and curing the silicone rubber composition at 120 °C for 15 minutes under an elevated pressure, silicone rubber samples with a thickness of 12.7 mm for the compression set determination were fabricated by heat treating the product for 4 hours at 200 °C. The compression set of the silicone rubber samples was determined in accordance with the Compression Set Test Method described in Japanese Industrial Standard (JIS) K 6249. The test was carried out at a compression ratio of 25 percent, a heat treatment temperature of 180 °C, and heat treatment time of 25 hours.

Thermal Conductivity of Silicone Rubber

[0022] After heating and curing the sillcone rubber composition at 120 °C for 10 minutes under an elevated pressure, sillcone rubber sheets with a thickness of 12 mm were fabricated by heat treating the product for 4 hours at 200 °C. The thermal conductivity of the sillcone rubber sheets was measured using a thermal conductivity meter using hot wire methodology.

Application Example 1

[0023] Three parts of dry process silics with a BET specific surface area of 110 m²/₂g and a surface treated with dimethyldichloroslaine, and 120 parts of alumina powder with an average particle size of 3.0 µm and ignition loss of 0.14 weight percent, were added to 100 parts of a copolymer of methylwinysiloxane and dimethylsiloxane. The copolymer had a Viscosity of 40,000 m²Pa.s. both terminals of its molecular chain were end blocked with dimethylysiloxane groups, and it had a vinity group content of 0.14 weight percent. These ingredients were mixed to homogeneity. Alter mixing the ingredients for one hour at 180 °C, a silicone rubber operated by combining the cooled mixture to room temporature. A liquid silicone rubber composition was prepared by combining the cooled mixture with 1.5 parts of a copolymer of dimethylsiloxane and methyllydrogensiloxane with the average molecular formula Me₃SiO(Meti-SiO₂(Me₃SiO₃SiMe₃) in which Me represents the methyl group; 0.5 parts of a complex of chloroplatinic acid and 43 divinytertarrenthyldislioxane having a platinum content of 0.5 weight percent; and 0.04 parts of 1-athynyl-1-cyclohexanol as cure restraint. These ingredients were mixed to homogeneity. The hardness of the silicone rubber obtained by curing this composition was 23, and its composition set was 5 percent. It had a coefficient of thermal conductivity of 0.35 Wifm's).

[0024] A cylindrical iron roll core with a diameter of 10 mm and a surface treated with Dow Coming Toray Silicone Co., Ltd.'s commercially available primer DY39-051AP for allicone rubber; and a fluororesin tube of Identafluororeshylene-perfluorosalisy/hinyinether copolymer resin with a thickness of 50pm, whose inner surface had been treated with an alkali, and whose outside surface had been treated with Dow Coming Toray Silicone Co., Ltd.'s commercially available DY39-05P / Primer for silicone rubbers, were placed inside the cavity of a titing roll mod. The silicone rubber composition prepared above was charged into the cavity and cured by healing it a 100 °C for 30 minutes. The roll was removed from the mold, subjected to a post cure treatment in an oven at 200 °C for 4 hours, and yleided a fixing roll costed with silicone rubber and fluororesin, having a thickness of 3 mm. The fixing roll was installed in an electropholographic copier and used to make 100,000 continuous copies on A4-size copy paper. The image was clearly copied even after 100,000 continuous copies on A4-size copy paper. The image was clearly copied even after

Comparative Example I

[0025] A liquid silicone rubber composition was prepared as in Application Example 1 except that the alumina powder used in this Comparative Example 1 had an average particle size of 3.0 µm and an ignition loss of 0.20 weight percent. The hardness of the silicone rubber obtained by curing the composition was 22 and its compression set was 11 percent. The coefficient of thermal conductivity was 0.35 Wifm+N.

[0026] The liquid silicone rubber composition was used to fabricate a fluororesin-coated fixing roll as in Application Example 1. When the fixing roll was installed in an electrophotographic copier and set to make 100,000 continuous copies on A4-size copy paper, paper creasing and clogging was observed after it had produced about 70,000 copies.

Application Example 2

10

[0027] Three parts of dry process silica with a BET specific surface area of 110 m²/g and a surface treated with disnehyldichlorosilane, and 240 parts of attaining nowder with an exverage particle size of 2.5 µm and ignition loss of 0.05 weight percent, were added to 100 parts of a copolymer of methylvinylsiloxane and dimethylsiloxane. The copolymer had a viscosity of 40,000 m²s. a, both terminate of its melocular chain were end blocked with dimethylvinylsiloxy groups, and it had a vinyl group content of 0.13 weight percent. These ingredients were mixed to homogenelly. After mixing the ingredients for one hour at 180 °C, a silicone rubber base compound was obtained by cooling the mixture to room temperature. A liquid allicione rubber composition was prepared by combining the cooled mixture with 1.5 parts of a coopolymer of dimethyleiloxane and methylritydrogensiloxane with the average molecular formula Mag.SiQ(Med-150)(SiMeg.30)(SiMeg.1 mixture) had represents the methyl group; 0.5 parts of a complex of chloroplatinic acid and divinyltramethyldisiloxane having a platinum content of 0.5 weight percent; and 0.44 parts of 1 -ethynyl-1-cyclohexanol act curre retardant. These ingredients were mixed to homogenelly. The hardness of the silicone rubber orbitained by curing this composition was 42, and its compression set was 9 percent. It had a coefficient of thermal conductivity of 0.88 W/mx/L.

[0028] After treating a cylindrical iron roll core having a diameter of 10 mm with Dow Comling Toray Silicone Co., Litd's commercially available DY39-051 A/B primer for silicone rubber; the cylindrical roll shaft was piaced in the early of a fixing roll mold. The liquid silicone rubber composition prepared above was charged to the mold and cured at 120 °C for 30 minutes. The result was a cylindrical roll shaft coated with a 3.0 mm layer of silicone rubber. It was subjected to post cure treaten at 200° Cfor 4 hours. The sufface of the silicone rubber must be metated with Datin industries, Ltd. the Cult-103 SR primer for silicone rubber. The silicone rubber surface was uniformly spray coated with a fluororesin. The fluororesin was a fluororesin paint DALEL Latuax CLS-219 of Datin industries, Ltd. The coating of the fluororesin coated friding roll was allowed to bake at 350° Cfor 30 minutes. When the fixing roll was installed in an electrophotographic copier and used to make 100,000 continuous copies on A4-size copy paper, the image was clearly copied even after 100,000 copies.

Comparative Example 2

[0029] A liquid silicone rubber composition was prepared as in Application Example 2 except that the alumina powder used in this Comparative Example 2 had an average particle size of 2.5 µm and an inglinol nose of 0.1 be weight percent. The hardness of the silicone rubber obtained by curing the composition was 41, and its compression set was 15 percent. The coefficient of thermal conductivity was 0.8 W/m-K1.

[0330] The liquid silicone rubber composition was used to fabricate a fluororesin coated fixing roll as in Application Example 2. When the fixing roll was installed in an electrophotographic copier and used to make continuous copies on A4-size copy paper, irregularities in the copied image were observed after making about 70,000 copies.

[0031] Ahmenconductive disponse for single single representations for fixing rolls containing components (A)-(D), particularly almine power for the containing components (A)-(D), particularly almine power for the containing components (A)-(D), particularly almine power for the containing the present, produced the particularly almine power for the containing the present productivity and experience for the particular for the particular for flower for the particular for the particular for the particular for flower for the particular flower for the particular flower for the particular flower flower for the particular flower flowe

Cialms

50

1. A thermoconductive liquid silicone rubber composition for fixing rolls comprising:

(A) 100 parts by weight of a diorganopolysiloxane having at least two silicon bonded alkenyl groups per molecule, the diorganopolysiloxane being a liquid at room temperature.

(B) 10-500 parts by weight of an alumina powder having an average particle size of not more than 10µm and

FD 1 184 421 A1

5

10

35

44

50

55

an ignition loss of not more than 0.15 weight percent, the ignition loss being determined according to the ignition Loss Test Method of Japanese industrial Standard (JIS) H 1901 conducted at a temperature of 1100°C and using a heating time of one hour.

- (C) an organohydrogenpolysiloxane having at least two silicon bonded hydrogen atoms per molecule, the organohydrogenpolysiloxane being present in the composition in an amount such that the molar raito between silicon bonded hydrogen atoms in component (C) and silicon bonded alkenyl groups in component (A) is 0.3:
- 1 to 5:1; and (D) a platinum catalyst, the platinum catalyst being present in the composition in an amount such that there are 0.1-500 parts by weight of platinum metal atoms per 1,000,000 parts by weight of component (A); the thermoconductive liquid silicone rubber composition having a coefficient of thermal conductivity not less than 0.3 W/m/m X lart the composition has been cured.
- A thermoplastic liquid silicone rubber composition for fixing rolls according to claim 1 wherein the amount of component (B) present is 50-300 parts by weight, per 100 parts by weight of component (A).
- A thermoplastic liquid silicone rubber composition for fixing rolls according to claim 1 or 2 wherein the molar ratio between silicon bonded hydrogen atoms in component (C) and silicon-bonded alkenyl groups in component (A) is 0.4-11 to 3-1
- 4. Use of a thermoplastic liquid silicone rubber composition according to any one of claims 1 to 3 in a coated fixing roll, wherein said coated fixing roll comprises of a fluororesin layer disposed on the peripheral surface of a roll shaft, with said thermoplastic liquid silicone rubber composition interposed between the fluororesin layer and the inner surface of the roll shaft.
- 25 5. A coated fixing roll comprising a fluororesin layer disposed on the peripheral surface of a roll shaft, and a silicone rubber rayer interpose to between the fluororesin layer and the inner surface of the roll shaft, the silicone rubber layer being the cured product of the thermoconductive liquid silicone rubber compositions according to any one of claims 1 to 3.
- A coated fixing roll according to claim 5 wherein the thickness of the fluororesin layer applied over the silicone rubber layer is 0.1-50 um and the thickness of the silicone rubber layer is 0.1-30 mm.

EUROPEAN SEARCH REPORT

EP 01 30 7202

	DOCUMEN IS CONSID	ERED TO BE RELEVANT			
Category	Citation of document with in of relevant pass	rdication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)	
`	EP 0 763 568 A (DOW SILICONE) 19 March * claims 1-12; exam	1997 (1997-03-19)	1-6	C08L83/07 C08K3/22 G03G15/20	
(JP 11 158383 A (DOW CO LTD) 15 June 199 * claims 1,2; examp		1–6		
				TECHNICAL PIELDS SEARCHED (MCCLT) COBL COBK G036	
	The present search report has b				
Place of season MUNICH		3 December 2001	Hof	fmann, K	
X parti- Y parti- docu A techn	NTEGORY OF CITEO DOCUMENTS out any relevant if taken alone out any relevant if combined with anoth ment of the same ostegory neoglast background written disclosure mediate document	T : theory or principle	underlying the i ment, but public the application other reasons	nvertion shed on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 01 30 7202

This annex lists the patent tamily members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EEP file on The European Patent Office is in low yillable for these particulars which are merely given for the purpose of Information.

03-12-2001

Patent document cited in search rep		Publication date		Patent family member(s)	Publication date
EP 0763568	A	19-03-1997	JP EP US US	9077980 A 0763568 A2 6136447 A 6090887 A	25-03-1997 19-03-1997 24-10-2000 18-07-2000
JP 11158383	A	15-06-1999	NONE		

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82