Suma de Vectores por Método analítico o de componentes

Funciones Trigonométricas Básicas

Signos de las Funciones Trigonométricas

Cuadrante II	Cuadrante I
$\sin \theta$:+	$\sin \theta$:+
$\cos \theta$: –	$\cos\theta$:+
$\tan \theta$: –	tan θ:+
Cuadrante III	Cuadrante IV
$\sin \theta$: –	$\sin \theta$: –
$\cos \theta$: –	$\cos\theta$:+
$\tan \theta$: +	$\tan \theta$: –

Componentes de un vector

Componente Horizontal $A_{x}=\left|A\right|\cos\theta$ Componente Vertical $A_{y}=\left|A\right|sen\,\theta$

Dirección del vector
$$\theta = tg^{-1} \left[\frac{A_y}{A_x} \right]$$

VECTORES COMPONENTES DE UN VECTOR

Ejemplo 2: Calcular las componentes de los vectores de la figura:

Ejemplo 1

Obtener las componentes de cada uno de los vectores indicados y expresar cada vector en notación de componentes unitarios.

Magnitud del vector	Dirección en sentido antihorario	Componente Horizontal $A_x = A \cos \theta$	Componente Vertical $A_y = A sen heta$	Vector en notación de vector unitario $A = Ax_i + Ay_j$
	(respecto eje X +)			
A=10N	o°	10N	<mark>0N</mark>	$A = 10N_i + 0N_j$
B=12N	60°	6N	10.39N	$B = 6N_i + 10.39N_j$
C=6N	180°	-6N	<u>on</u>	$C = -6N_i + 0N_j$
D=8N	220°	-6.12N	-5.14N	$D = -6.12N_i - 5.14N_j$
E=9N	270°	<u>on</u>	-9N	$E = 0N_i - 9N_j$

Componentes de un vector en base al cuadrante en que se encuentre (Signos)

Cuadrante	Componente horizontal	Componente vertical
	(V_x)	(V_y)
1er	(+)	(+)
2°	(-)	(+)
3er	(-)	(-)
4°	(+)	(-)

Ejemplo 2

Obtener las componentes de cada uno de los vectores indicados y expresar cada vector en notación de componentes unitarios; obtener la fuerza resultante de la suma de los 4 vectores indicados, utilizando el método de componentes rectangulares.

Magnitud del vector	Dirección en sentido	Componente horizontal	Componente vertical	Vector en notación de vector unitario
	antihorario (respecto eje X +)	$A_{x} = A \cos \theta$	$A_{y} = A sen \theta$	$A = Ax_i + Ay_j$
A=150N	62°	70.42N	132.44N	$A = 70.42N_i + 132.44N_j$
B=125N	205°	-113.28N	-52.82N	$B = -113.28N_i - 52.82N_j$
C=130N	270°	<u>on</u>	-130N	$C = 0N_i - 130N_j$
D=180N	337°	165.69N	-70.33N	$D = 165.69N_i - 70.33N_j$
		$\Sigma F_{x} = 122.83N$	$\Sigma F_{y} = -120.71$	$NR = 122.83N_i - 120.71N_j$
				Cuarto Cuadrante la R

Cálculo de Magnitud de la fuerza resultante y dirección y sentido

Cabe mencionar que como las componentes del vector resultante la $\Sigma F_x = R_x$ es positiva y la $\Sigma F_y = R_y$ es negativa, entonces se encuentra en cuarto cuadrante y esta resultante sustituye a las cuatro vectores originales.

$$|R| = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} \qquad \theta = tg^{-1} \left[\frac{\Sigma F_y}{\Sigma F_x} \right]$$

$$|R| = \sqrt{(122.83N)^2 + (-120.71N)^2} \qquad \theta = tg^{-1} \left[\frac{120.71N}{122.83N} \right]$$

$$|R| = \sqrt{29658.113N^2}$$

$$|R| = 172.21N$$

$$\theta = 44.501^\circ$$

El vector reultante queda trazado de la siguiente manera como linea punteada; el angulo con respecto al eje x(+) y en sentido antihorario es: $\theta = 44.501^{\circ}\theta$

$$R=172,21N,\theta=44.501^{\circ}...y...\alpha_{antihorario}=315.5^{\circ}$$

Ejemplo 3

Obtener las componentes de cada uno de los vectores FUERZA indicados y expresar cada vector en notación de componentes unitarios; obtener la fuerza resultante de la suma de los 4 vectores indicados, utilizando el método de componentes rectangulares.

Magnitud del vector	Dirección en sentido antihorario (respecto eje X +)	Componente horizontal $A_x = A \cos \theta$	Componente vertical $A_{y} = A sen \theta$	Vector en notación de vector unitario $A = Ax_i + Ay_j$
F ₁ =150N	<i>30</i> °	129.90N	75N	$F_1 = 129.9N_i + 75N_j$
F ₂ =80N	110°	-27.36N	75.18N	$F_2 = -27.36N_i + 75.18N_j$
F ₃ =110N	270°	<mark>0N</mark>	-110N	$F_3 = 0N_i - 110N_j$
F₄=100N	345°	96.59N	-25.88N	$F_4 = 96.59N_i - 25.88N_j$
		$\Sigma F_{x} = 199.13N$	$\Sigma F_y = 14.3N$	$R = 199.13N_i + 14.3N_j$
				Primer Cuadrante la R

Cálculo de Magnitud de la fuerza resultante y dirección y sentido

Cabe mencionar que como las componentes del vector resultante la $\Sigma F_x = R_x$ es positiva y la $\Sigma F_y = R_y$ es positiva, entonces se encuentra en el primer cuadrante y esta resultante sustituye a las cuatro fuerzas originales.

$$|R| = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} \qquad \theta = tg^{-1} \left[\frac{\Sigma F_y}{\Sigma F_x} \right]$$

$$|R| = \sqrt{(199.13N)^2 + (14.3N)^2}$$

$$|R| = \sqrt{39857.25N^2}$$

$$|R| = 199.64N$$

$$\theta = tg^{-1} \left[\frac{14.3N}{199.13N} \right]$$

$$\theta = 4.1^\circ$$

El vector reultante queda trazado de la siguiente manera como linea punteada en color negro

 $R = 199.64N, \theta = 4.1^{\circ}$ Resultante en primer cuadrante

Ejemplo 4

Obtener las componentes de cada uno de los vectores FUERZA indicados y expresar cada vector en notación de componentes unitarios; obtener la fuerza resultante de la suma de los 4 vectores indicados, utilizando el método de componentes rectangulares.

Magnitud del vector	Dirección en sentido antihorario (respecto eje X +)	Componente horizontal $A_x = A \cos \theta$	Componente vertical $A_{y} = A sen \theta$	Vector en notación de vector unitario $A = Ax_i + Ay_j$
F ₁ =1200N	143°	-958.36N	722.17N	$F_1 = -958.36N_i + 722.17N_j$
F ₂ =900N	110°	-307.82N	845.72N	$F_2 = -307.82N_i + 845.72N_j$
F ₃ =750N	60°	375N	649.52N	$F_3 = 375N_i + 649.52N_j$
F ₄ =520N	22.6°	480.06N	199.83N	$F_4 = 480.06N_i + 199.83N_j$
		$\Sigma F_x = -411.12$	$N\Sigma F_{y} = 2417.24$	$NR = -411.12N_i + 2417.24N_j$
				Segundo Cuadrante la R

Cálculo de Magnitud de la fuerza resultante y dirección y sentido

Cabe mencionar que como las componentes del vector resultante la $\Sigma F_x = R_x$ es negativa y la $\Sigma F_y = R_y$ es positiva, entonces se encuentra en el segundo cuadrante y esta resultante sustituye a las cuatro fuerzas originales.

$$|R| = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} \qquad \theta = tg^{-1} \left[\frac{\Sigma F_y}{\Sigma F_x} \right]$$

$$|R| = \sqrt{(-411.12N)^2 + (2417.24N)^2} \qquad \theta = tg^{-1} \left[\frac{2417.24N}{411.12N} \right]$$

$$|R| = \sqrt{6012068.872N^2} \qquad \theta = 80.34^\circ$$

El vector reultante queda trazado de la siguiente manera como linea punteada azul

Ejercicio 5 y 6

Ejercicio 5

Obtener las componentes de cada uno de los vectores FUERZA indicados y expresar cada vector en notación de componentes unitarios; obtener la fuerza resultante de la suma de los 4 vectores indicados, utilizando el método de componentes rectangulares. (Calcular previamente los sentidos de las fuerzas en sentido antihorario de las manecillas del reloj)

Ángulos para $25N, \theta = 18^{\circ}$, para $10N, \theta = 68^{\circ}$ y $30N, \theta = 40^{\circ}$

Magnitud del vector	Dirección en sentido	Componente horizontal	Componente vertical	Vector en notación de vector unitario
	antihorario (respecto eje X +)	$A_{x} = A \cos \theta$	$A_{y} = A sen \theta$	$A = Ax_i + Ay_j$
F₁=40N	0°	40N	<u>on</u>	$F_1 = 40N_i + 0N_j$
F ₂ =25N	162°	-23.77N	7.72N	$F_2 = -23.77N_i + 7.72N_j$
F ₃ =10N	248°	-3.75N	-9.27N	$F_3 = -3.75N_i - 9.27N_j$
F ₄ =30N	320°	22.98N	-19.28N	$F_4 = 22.98N_i - 19.28N_j$
		$\Sigma F_{x} = 35.46N$	$\Sigma F_{y} = -20.83N$	$R = 35.46N_i - 20.83N_j$
				Cuarto Cuadrante la R

Cálculo de Magnitud de la fuerza resultante y dirección y sentido

Cabe mencionar que como las componentes del vector resultante la $\Sigma F_x = R_x$ es positiva y la $\Sigma F_y = R_y$ es negativa, entonces se encuentra en el cuarto cuadrante y esta resultante sustituye a las cuatro fuerzas originales.

$$|R| = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} \qquad \theta = tg^{-1} \left[\frac{\Sigma F_y}{\Sigma F_x} \right]$$

$$|R| = \sqrt{(35.46N)^2 + (-20.83N)^2}$$

$$|R| = \sqrt{1691.30N^2}$$

$$|R| = 41.12N$$

$$\theta = tg^{-1} \left[\frac{20.83N}{35.46N} \right]$$

$$\theta = 30.43^\circ$$

El vector reultante queda trazado de la siguiente manera como linea punteada azul y sustituye a los cuatro vectores iniciales.

Ejercicio 6 Punto extra para entregar en classroom donde indica participación extra

Magnitud del vector	Dirección en sentido antihorario (respecto eje X +)	Componente horizontal $A_x = A \cos \theta$	Componente vertical $A_y = A sen \theta$	Vector en notación de vector unitario $A = Ax_i + Ay_j$
F ₁ =150N	o° ,	150N	<mark>0N</mark>	$F_1 = 150N_i + 0N_j$
F ₂ =50N	40°	38.30N	32.13N	$F_2 = 38.30N_i + 32.13N_j$
F₃=250N	70°	85.50N	234.92N	$F_3 = 85.50N_i + 234.92N_j$
F ₄ =125N	130°	-80.34N	95.75N	$F_4 = -80.34N_i + 95.75N_j$
		$\Sigma F_{x} = 193.46N$	$\Sigma F_{y} = 362.8N$	$R = 193.46N_i + 362.8N_j$
				Primer Cuadrante la R

Cálculo de Magnitud de la fuerza resultante y dirección y sentido

Cabe mencionar que como las componentes del vector resultante la $\Sigma F_x = R_x$ es positiva y la $\Sigma F_y = R_y$ es positiva, entonces se encuentra en el primer cuadrante y esta resultante sustituye a las cuatro fuerzas originales.

$$|R| = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} \qquad \theta = tg^{-1} \left[\frac{\Sigma F_y}{\Sigma F_x} \right]$$

$$|R| = \sqrt{(193.46N)^2 + (362.80N)^2} \qquad \theta = tg^{-1} \left[\frac{362.8N}{193.46N} \right]$$

$$|R| = \sqrt{169050.611N^2} \qquad \theta = 61.93^\circ$$

$$|R| = 411.15N$$

El vector reultante queda trazado de la siguiente manera como linea punteada azul y sustituye a los cuatro vectores iniciales.

Ejemplo 7 Para entregar Actividad 5 de Classroom

Realizar la suma de los siguientes vectores por medio del método analítico o de componentes, considerando que las direcciones se miden en sentido antihorario (medido con respecto eje X positivo)

Magnitud del vector	Dirección en sentido antihorario	Componente horizontal	Componente vertical	Vector en notación de vector unitario
	(respecto eje X +)	$A_{x} = A \cos \theta$	$A_{y} = A sen \theta$	$A = Ax_i + Ay_j$
F ₁ =8N	0°	8N	<mark>0N</mark>	$F_1 = 8N_i + 0N_j$
F ₂ =6N	40°	4.596N	3.856N	$F_2 = 4.596N_i + 3.856N_j$
F₃=3N	210°	-2.598N	-1.5N	$F_3 = -2.598N_i - 1.5N_j$
F₄=5N	90°	<u>on</u>	5N	$F_4 = 0.N_i + 5N_j$
		$\Sigma F_{x} = 9.998N$	$\Sigma F_y = 7.356N$	$R = 9.998N_i + 7.356N_j$
				Primer Cuadrante la R

Cálculo de Magnitud de la fuerza resultante y dirección y sentido

Cabe mencionar que como las componentes del vector resultante la $\Sigma F_x = R_x$ es positiva y la $\Sigma F_y = R_y$ es positiva, entonces se encuentra en el primer cuadrante y esta resultante sustituye a las cuatro fuerzas originales.

$$|R| = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} \qquad \theta = tg^{-1} \left[\frac{\Sigma F_y}{\Sigma F_x} \right]$$

$$|R| = \sqrt{(9.998N)^2 + (7.356N)^2} \qquad \theta = tg^{-1} \left[\frac{7.356N}{9.998N} \right]$$

$$|R| = \sqrt{154.07074N^2} \qquad \theta = 36.34^\circ$$

$$|R| = 12.41N$$

El vector resultante se marca con línea punteada en negro $R = 12.41N, \theta = 36.34^{\circ}$

Ejemplo 8 McGraw Hill Boueche

Realizar la suma de los siguientes vectores por medio del método analítico o de componentes, considerando que las direcciones se miden en sentido antihorario (medido con respecto eje X positivo).

Ejercicio3 – 2b	Ejercicio3 – 1b
$F_1 = 19.N, \theta = 0^{\circ}$ $F_2 = 15N, \theta = 60^{\circ}$ $F_3 = 16N, \theta = 135^{\circ}$ $F_4 = 11N, \theta = 210^{\circ}$ $F_5 = 22N, \theta = 270^{\circ}$	$F_1 = 80.N, \theta = 0^{\circ}$ $F_2 = 100N, \theta = 45^{\circ}$ $F_3 = 110N, \theta = 150^{\circ}$ $F_4 = 160N, \theta = 200^{\circ}$
Re sultado $ R = 6.5^{\circ}, \theta = 331^{\circ}$	Re sultado. $ R = 119^{\circ}, \theta = 143$

Clasificación de los vectores

Colineales	Concurrentes	Coplanares	Paralelos	Perpendiculares
1	X		11	
Están contenidos en una misma recta.	Se intersecan en un único punto.	Están contenidos en un mismo plano.	Tienen direcciones paralelas.	Tienen direcciones perpendiculares.