Homework 4

Honor Code: ...

All homework is to be done individually. You are only authorized to receive help from an instructor.

Forward Kinematics

Create a Jupyter notebook and this at the top.

```
%matplotlib inline
from __future__ import division, print_function
from matplotlib import pylab
```

1. Write a function that takes in the DH parameters (θ, α, d, a) and returns the homogeneous matrix for it.

```
def homogeniousMatrix(theta, alpha, d, a):
    """
    This calculates a homogenious matrix for the given parameters
    """
    ...
    return matrix
```

- 2. Using this function, find the homogenious matrix if:
 - 1. α is x
 - 2. θ is x
 - 3. d is x
 - 4. a is x
- 3. Given an array of DH parameters for a robot arm, write a function which takes this and returns a homogenious matrix for the robot arm. Where the array would look like

```
arm = [
    [theta, alpha, d, a],
    [theta, alpha, d, a],
    [theta, alpha, d, a],
    ...
]

def forward(params):
    """
    Given the params, it returns the forward kinematics equations
    """
    ...
    return eqns
```

4. Using the previous function, determine the equation for the robot arm with the following DH parameters. Hint: your answer should be

i	$ heta_i$	α_i	d_i	a_i
1	1	2	3	4
2	1	2	3	4
3	1	2	3	4
4	1	2	3	4