

Roll No:

				Pri	ntec	l Pa	ge: I	of 2
								310
_			 	 _				\Box

BTECH (SEM III) THEORY EXAMINATION 2023-24 DIGITAL ELECTRONICS

TIME: 3HRS

M.MAFKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTIO	N	A
--------	---	---

•	SECTION A		
_ <u>1.</u> e	Attempt all questions in brief.		
Q no.	Queerion	$2 \times 7 =$	14
fa.	What is the difference between binary, decimal, and hexadecimal	Marks	
b.	What is a don't-care condition in Karnaugh maps?	2	ī
c.	Explain the Granic Collection in Karnaugh maps?		
d.		2	1
	- Conchect	2	2
f.	Explain the concept of a ring counter.	2	3
-	What are the advantages of synchronous counters over asynchronous Differentiate between PAA	2	3
g.	Differentiate between RAM and ROM.	2	4
	and ROM.	2	5

SECTION R

,	2.	Attempt any three of at SECTION B		*
١	a.	Attempt any three of the following: Explain the SOP and POS forms in Boolean algebra. How are they Describe the control of the following:		Ç., .
ı		derived? derived? How are it I Boolean algebra. How are it	$7 \times 3 = 2$	ì
4	<u>b</u> .	Describe the operation of half and full adders. Provide truth tables and	30.1	I
ŀ		circuit diagrams. Provide truth tables and	7	
1	c.	Define storage elements and discuss the characteristics of latches and flip-flops.	_	2
ŀ	, 	imp-riops. The characteristics of latches and	7	₹ 1
	d.	Explain the concept of hazards in digital circuits and methods to		' \
ŀ		eliminate them.	7	\overline{A}
ł	e.	Compare and contrast different different different	. \	٦
Ĺ		Compare and contrast different digital logic families such as DTL, DCTL, TTL, ECL, and CMOS in terms of their characteristics.	7	5

SECTION C

_	3.	Attempt any one part of the following:		
_	a.	Minimize the Boolean function E(A B C D)	$7 \times 1 = 7$,
		Minimize the Boolean function $F(A, B, C, D) = \Sigma(0, 1, 2, 4, 6, 7, 9, 12, 14)$ using the Karnaugh map method.	7	\Box
١	b.	Implement the Boolean function $F = AB + AC + BC$ using only NAND gates.		1
L		gates. AB + AC + BC using only NAND	7	T

Attempt any one part of the following: Discuss the operation of BCD adders and their significance. $7 \times 1 = 7$ a. Implement a 4-to-1 multiplexer using basic logic gates. b.

_5.	Attempt any one part of the following:		
a.	Explain the concept of ripple counters and experiences	$7 \times 1 =$	7
b.	Convert a JK flip-flop to a T flip-flop and demonstrate its operation with	7	3
	characteristic equations.	7	3
		L	

150 (16) (16) (16) (16) (16) (16)

Printed Page: 2 of 2							į	
		Sub	ject	Cod	ie: I	BOE	310)

BTECH (SEM III) THEORY EXAMINATION 2023-24 DIGITAL ELECTRONICS

Roll No:

3HRS	M.MAI	RKS: 70
Attempt any one part of the following:	7 x 1 =	= 7
		4
	7	4
Attempt any one part of the following:	7 x 1 =	· 7
Describe the working principles of PLA and PAL and their applications.	7	5
Explain the concepts of fan-out, fan-in, and noise margin in digital circuits.	7	5
	Discuss the concept of race-free state assignment and how it is achieved. Attempt any one part of the following: Describe the working principles of PLA and PAL and their applications. Explain the concepts of fan-out, fan-in, and noise margin in digital	Attempt any one part of the following: Describe the process of state reduction and assignments in sequential 7 circuit design. Discuss the concept of race-free state assignment and how it is achieved. Attempt any one part of the following: Describe the working principles of PLA and PAL and their applications. Explain the concepts of fan-out, fan-in, and noise margin in digital 7