ALGEBRA

VERANO 2021

TEMA 6:

DESIGUALDADES
E INECUACIONES

¿QUIÉN INVENTÓ LOS SÍMBOLOS DE LAS DESIGUALDADES >; < ?

Los símbolos < y > se introdujeron por primera vez por el matemático inglés Thomas Harriot (1560-1621) en su obra Artis Analyticae Praxis publicada en Londres en 1631. Se comenta que Harriot fue inspirado por un símbolo que había visto en el brazo de un nativo americano (ver Figura) para "inventar" los símbolos de las desigualdades.

Thomas Harriot

DESIGUALDADES

Es la comparación que se realiza entre dos números reales mediante los signos de desigualdades (>; < ; ≤ ; ≥)

Ley de tricotomia

Para dos números reales a y b solo se cumple una de las siguientes prelaciones:

$$a > b \quad \lor \quad a < b \quad \lor \quad a = b$$

Propiedades

1)
$$Si \quad a > b \quad y \quad b > c$$
 $\Rightarrow \quad a > b > c$

2)
$$Si \quad a > b \quad y \quad m \in \mathbb{R}$$
 $a + m > b + m$

$$a-m>b-m$$

3) Si
$$a > b$$
 y $m > 0$ \Longrightarrow $a \cdot m > b \cdot m$ $\frac{a}{m} > \frac{b}{m}$

4)
$$Si \quad a > b \quad y \quad m < 0 \implies a.m < b.m$$

$$\frac{a}{m} > \frac{b}{m}$$

Intervalos

Definición:

Es un subconjunto de los números reales, generalmente comprendido entre 2 valores extremos.

Ejemplo:

$$A = \{x \in \mathbb{R} / 2 \le x < 12 \}$$

$$B = \{x \in \mathbb{R} / -5 \le x \le 6\}$$

Clasificación

- Cerrado [a; b]
 Abierto (a; b)
 Semicerrado (a; b)

II. NO ACOTADOS

I. Intervalo acotado

INTERVALOS	Desigualdad	Notación de Intervalos	Representación Gráfica
1 Cerrado	$a \le x \le b$	$x \in [a;b]$	$-\infty$ a b $+\infty$
2 Abierto	a < x < b	$x \in \langle a; b \rangle$	$-\infty$ a b $+\infty$
3 Semiabierto	$a \le x < b$	$x \in [a;b\rangle$	$-\infty$ a b $+\infty$
	$a < x \le b$	$x \in \langle a; b]$	$-\infty$ a b $+\infty$

II. Intervalo no acotado

Desigualdad	Notación de Intervalos	Representación Gráfica
$x \leq b$	$x \in \langle -\infty; b]$	$b \rightarrow \infty$
x < b	$x \in \langle -\infty; b \rangle$	$b \rightarrow \infty$
$x \ge b$	$x \in [b; \infty)$	$-\infty$ b $+\infty$
x > b	$x \in \langle b; \infty \rangle$	$-\infty$ b $+\infty$

Sean $A = \langle 3; 10 \rangle y B = \langle 7; 12 \rangle$. Halle $A \cap B$

Rpta
$$A \cap B = \langle 7; 10 \rangle$$

Sabiendo que $M = [5; 10] y N = \langle 7; 12 \rangle$. Halle $M \cup N$

Si A = [-2; 5] y B = [2; 6]. Halle A - B

Rpta
$$A - B = [-2; 2)$$

Si $x \in [1; 4]$, indique el intervalo al cual pertenece 3x - 2

RESOLUCIÓN

Rpta [1; 10]

INECUACIONES

DEFINICIÓN

Es una desigualdad en la que hay una o más incógnitas; y que solo se verifica para un conjunto de valores de las incógnitas.

Ejemplos:

- *i*) 2x + 1 < 5 Inecuación lineal
- *ii*) $2x^2 3 > 13$ Inecuación cuadrática

Resolver una inecuación

Consiste en hallar el conjunto de valores que puede tomar la incógnita de modo que se cumpla la desigualdad.

INECUACIÓN DE PRIMER GRADO

$$ax + b < 0$$

$$ax + b \le 0$$

$$ax + b > 0$$

$$ax + b \ge 0$$

 $con \ a, b \in \mathbb{R} ; \quad a \neq 0$

Ejemplo: Resolver

$$4(x-3)-(x-1)<5+x$$

Resolución:

$$4x - 12 - x + 1 < 5 + x$$
 $3x - 11 < 5 + x$
 $3x - x < 5 + 11$
 $2x < 16$
 $x < 8$

$$C.S = \langle -\infty; 8 \rangle$$

INECUACIÓN DE SEGUNDO GRADO (factorizables)

Forma general

Siendo: a > 0

$$P(x) = a(x - x_1)(x - x_2)$$

$$\begin{cases} < 0 & > 0 \\ \le 0 & \ge 0 \end{cases}$$

Resolución de una inecuación de segundo grado

INECUACIÓN CUADRÁTICA	RESOLUCIÓN		
P(X)>0	X <menor v="" x="">MAYOR</menor>		
P(X)≥ 0	X≤MENOR v X≥MAYOR		
P(X)<0	MENOR < X < MAYOR		
P(X)≤ 0	$MENOR \le X \le MAYOR$		

PRÁCTICA PARA LA CLASE

- Si (2x − 3)∈[-5; 1), ¿a qué intervalo pertenece (4 − 5x)?
 - A) (-6; 9]

B) (-6; 10]

C) (-9; 6]

D) [-6; 9)

2. Si
$$-1 \le \frac{3x-2}{4} < 7$$
, determine el mayor valor de $(2-x)$.

A)
$$\frac{1}{3}$$

B)
$$\frac{2}{3}$$

C)
$$\frac{3}{2}$$

D)
$$\frac{4}{3}$$

RESOLUCIÓN

$$(2-x) \in <-8;\frac{8}{3}$$

MAYOR VALOR

Halle el mayor valor de

$$\frac{x-1}{2} + \frac{x-2}{3} \le \frac{x-3}{4} + \frac{x-4}{5}$$

RESOLUCIÓN

MCM(denominadores) = 60

A) 2
B) 1
C) -1
$$60(\frac{x-1}{2}) + 60(\frac{x-2}{3}) \le 60(\frac{x-3}{4}) + 60(\frac{x-4}{5})$$

$$30x - 30 + 20x - 40 \le 15x - 45 + 12x - 48$$

$$50x - 70 \le 27x - 93$$

$$23x \le -23 \qquad \Rightarrow \quad x \le -1$$

$$CS = < -\infty; \boxed{-1}$$

$$MAYOR$$

$$VALOR$$

Resuelva la siguiente inecuación:

$$\frac{a}{b}x + \frac{b}{a} \le \frac{b}{a}x + \frac{a}{b}$$

Considere a > b > 0.

$$\left(\frac{a}{b} - \frac{b}{a}\right)$$
: es positivo

$$\frac{a}{b}x + \frac{b}{a} \le \frac{b}{a}x + \frac{a}{b}$$

$$\frac{a}{b}x - \frac{b}{a}x \le \frac{a}{b} - \frac{b}{a}$$

$$\left(\frac{a}{b} - \frac{b}{a}\right)x \le 1\left(\frac{a}{b} - \frac{b}{a}\right)$$

$$\Rightarrow x \leq 1$$

$$CS = \langle -\infty; \mathbf{1}]$$

Resuelva la inecuación cuadrática

$$x^2 + 11x + 28 > 0$$

- A) $\langle -7; -4 \rangle$ B) $\langle -\infty; -7 \rangle \cup \langle -4; +\infty \rangle$
- C) $\langle 4; 7 \rangle$ D) $\langle -\infty; 4 \rangle \cup \langle 7; +\infty \rangle$

$$x^{2} + 11x + 28 > 0$$

$$(x + 7)(x + 4) > 0$$

$$-7 - 4$$

$$x < -7 \quad \lor \quad x > -4$$

$$CS = \langle -\infty; -7 \rangle \cup \langle -4; +\infty \rangle$$

Resuelve la siguiente inecuación:

$$(x-2)^2 \ge 25$$

A) (–3; 7]

B) $\langle -\infty; -7 \rangle \cup [3; +\infty \rangle$

C) (-7; 3)

D) $\langle -\infty; -3 \rangle \cup [7; +\infty \rangle$

$$(x-2)^2 \ge 25$$

$$x-2 \leq -5 \quad \lor \quad x-2 \geq 5$$

$$x \leq -3 \quad \lor \quad x \geq 7$$

$$CS = \langle -\infty; -3 \rangle \cup [7; +\infty \rangle$$

Luego de resolver la inecuación

$$(2x+1)(x-6) \le (x+4)(x-6)$$

¿cuántos valores enteros hay?

A) 3

B) 4

C) 5

D) 6

RESOLUCIÓN

$$(2x+1)(x-6) \le (x+4)(x-6)$$
$$(2x+1)(x-6) - (x+4)(x-6) \le 0$$

$$[(2x+1)-(x+4)](x-6) \le 0$$

$$(x-3)(x-6) \le 0$$

$$3 \le x \le 6$$

$$ENTEROS = 3; 4; 5; 6$$

4 enteros

Resuelva la inecuación en x

$$3x^{2}-(a+3b)x+ab<0; \quad a-3b) \in \mathbb{R}^{+}$$
A) $\langle b; a \rangle$
B) $\langle \frac{a}{3}, b \rangle$
C) $\langle b; \frac{a}{3} \rangle$
D) $\mathbb{R}/[b; \frac{a}{3}]$

$$a-3b>0$$

$$\frac{a}{3} > b$$

$$3x^{2} - (a+3b)x + ab < 0$$

$$3x - a$$

$$x - b$$

$$(3x - a)(x - b) < 0$$

$$\frac{a}{3}$$

$$b$$

$$b < x < \frac{a}{3}$$

$$CS = \left\{ b; \frac{a}{3} > \right\}$$

Resuelve

RESOLUCIÓN

$$x^2 - 5 \le 3x + 5 < x^2 + 5$$

$$x^2 - 5 \leq 3x + 5$$

$$x^2-3x-10\leq 0$$

$$(x-5)(x+2) \le 0$$

$$-2 \le x \le 5$$

$$3x + 5 < x^{2} + 5$$

$$0 < x^{2} - 3x$$

$$0 < x(x - 3)$$

$$(x - 0)(x - 3) > 0$$

$$x < 0 \quad \lor \quad x > 3$$

Intersectando

$$-2 \le x < 0 \quad \lor \quad 3 < x \le 5$$

$$CS = [-2; 0 > \cup < 3; 5]$$

Al resolver el sistema de inecuaciones

se obtiene como CS = $\langle a; b \rangle \cup \langle c; d \rangle$, halle el valor de a+b+c+d.

A) 5

B) 7

C) 8

D) -7

 $x < 1 \quad \lor \quad x > 3$

De (1):
$$x(x-3) - (x-3) > 0$$

 $(x-3)(x-1) > 0$
3

De (2):
$$x(x+1) - 5(x+1) < 0$$

 $(x+1)(x-5) < 0$
 -1 5

-1 < x < 5

Intersectando:

$$-1 < x < 1 \quad \forall \quad 3 < x < 5$$

$$CS = \langle -1; 1 \rangle \cup \langle 3; 5 \rangle$$

$$a+b+c+d=8$$