

I COURSE COMPONENTS

the idea

Block I

- Introduction to Urban and Regional Economics and Course Overview
- Topic I: Regional and urban concentration forces
- Topic II: The empirics of agglomeration
- Topic III: Costs and benefits of agglomeration

■ Block 2

- Topic IV: Monocentric city I (household location choice)
- Topic V: Monocentric city II (household location choice)
- Topic VI: Firm location choice
- Topic VII: The urban economy in general equilibrium

Block 3

- Topic VIII: The vertical dimension of cities
- Topic IX: Suburbanization and gentrification
- Topic X: Spatial inequalities

INTRODUCTION

the idea

- Last time: *Theory* of agglomeration
 - Spatial concentration in regions
 - C-P Model
 - Spatial concentration in cities
 - Urbanization economies
 - Within sectors
 - Localization economies
 - Between sectors
 - Marshallian externalities
 - Shared inputs
 - Pooled labour markets
 - Knowledge spillovers

I INTRODUCTION

the idea

- This time: *Empirics* of agglomeration
 - 1) Determinants of agglomeration
 - Which sectors
 - At what spatial level
 - Correlation with proxies for MAR externalities?
 - 2) The Spatial scale of agglomeration effects
 - How far to spillover effects travel?
 - 3) The effects of agglomeration
 - Productivity effects in agglomerations
 - 4) Urbanization vs. localization effects
 - What matters for urban growth (implications for RE markets)

determinants of agglomeration

I Introduction

- Rosenthal and Strange (2001) use a measure of spatial concentration to understand which industries agglomerate and (likely) why?
- Need a spatial concentration measure
 - Captures the extent to which one industry is more concentrated in space than overall employment (the counterfactual) [γ >0 captures the degree of relative spatial concentration]

Ellison-Glaeser (1997) index

$$\gamma = \frac{G - (1 - \sum_{i} x_{i}^{2})H}{(1 - \sum_{i} x_{i}^{2})(1 - H)} H = \sum_{j} z_{j}^{2}$$
Industry concentration (Herfendahl), with z being the share of industry j at all industries (larger values => selected industries are important)

selected industries are important)

$$G \equiv \sum_{i} (x_i - s_i)^2$$

Spatial concentration (Gini), with x being the share of location $G \equiv \sum_{i} (x_i - s_i)^2$ i at employment across all locations and s being the same for specific industry (larger values => selected industries concentrated in few locations)

II WHICH INDUSTRIES AGGLOMERATE?

determinants of agglomeration

SIC	Definition	State γ	County γ	Zip code γ
20	Food and kindred products	0.00347	0.00119	0.00029
21	Tobacco manufactures	0.19457	0.13002	0.03989
22	Textile mill products	0.09410	0.00601	0.00177
23	Apparel and related products	0.01159	0.00653	0.00184
24	Lumber and wood products, except furniture	0.01168	0.00284	0.00034
25	Furniture and fixtures	0.01212	0.00297	0.00074
26	Paper and allied products	0.00844	0.00213	0.00035
27	Printing, publishing, and allied products	0.00527	0.00264	0.00039
28	Chemicals and allied products	0.01047	0.00369	0.00062
29	Petroleum refining and related products	0.03605	0.01040	0.00428
30	Rubber and miscellaneous plastics products	0.00385	0.00102	0.00023
31	Leather and leather products	0.01513	0.00640	0.00298
32	Stone, clay, glass, and concrete products	0.00357	0.00209	0.00052
33	Primary metal products	0.01438	0.00202	0.00041
34	Fabricated metal products, except machinery			
	and transportation equipment	0.00447	0.00095	0.00021
35	Machinery, except electrical	0.00170	0.00112	0.00029
36	Electrical and electronic machinery,			
	equipment, and supplies	0.00869	0.00352	0.00050
37	Transportation equipment	0.02203	0.00462	0.00084
38	Scientific and professional instruments;			
	photographic and optical goods; watches	0.01453	0.00429	0.00018
39	Miscellaneous manufactured commodities	0.00666	0.00306	0.00055

All industries concentrated (with positive EG-indices)

Highest level of concentration at state (regional) level

II WHICH INDUSTRIES AGGLOERATE?

determinants of agglomeration

The 10 Most Agglomerated Manufacturing Industries at the SIC 4-Digit Level

Zipcode level			County level			State level		
SIC	SIC description	γ	SIC	SIC description	γ	SIC	SIC description	γ
2371	Fur goods	0.352	2371	Fur goods	0.372	2397	Schiffli machine embroideries	0.499
3761	Guided missiles & space vehicles, parts	0.260	2397	Schiffli machine embroideries	0.251	3761	Guided missiles & space vehicles, parts	0.434
3579	Office machines & parts	0.145	3761	Guided missiles & space vehicles, parts	0.239	2284	Thread and handwork yarns	0.413
2087	Flavoring extracts & syrups	0.142	2874	Phosphatic fertilizers	0.215	2371	Fur goods	0.408
3149	Footwear, except rubber, n.e.c.	0.139	3861	Photographic equipment and supplies	0.191	2273	Carpets and rugs	0.406
2335	Womens' and misses' dresses	0.118	2111	Cigarettes	0.191	2084	Wines, brandy, and brandy spirits	0.372
2381	Fabric dress and work gloves	0.114	3149	Footwear, except rubber, n.e.c.	0.185	2251	Womens' hosiery, except socks	0.371
3764	Missile and rocket engines	0.111	2043	Cereal breakfast foods	0.180	3533	Oil & gas field equipment & parts	0.339
3676	Electronic resistors	0.086	2335	Women's, misses', and juniors'	0.178	2436	Softwood veneer and plywood	0.328
3844	X-ray apparatus, tubes, & parts	0.084	2841	Soap & detergents	0.167	2141	Manufactured tobacco	0.305

Role for location fundamentals?

Role for agglomeration externalities?

II IDENTIFYING ORIGINS OF AGGLOMERATION

determinants of agglomeration

- How to understand the origins of industry-specific agglomeration?
- Find industry-specific proxies for relevance of
 - Location fundamentals
 - Importance of energy, natural resources and water as inputs
 - Transport costs
 - Ratio of value of end-of-year inventories over value of shipments: low inventories => perishable products => proxy for transport cost
 - Input sharing
 - Ratio of value of manufactured and services inputs over sales
 - Labour market pooling
 - Productivity per worker, ratio of management over production workers, share of high-skilled (bachelor degree and above)
 - Knowledge spillovers
 - Ratio of # of innovations over value of sales

II IDENTIFYING ORIGINS OF AGGLOMERATION

determinants of agglomeration

- Straightforward empirical strategy
 - Regress industry-specific agglomeration against industry-level proxies

$$\gamma_{j,m} = \beta_j X_m + \varepsilon_{j,m}$$

- *j* is the spatial level (state, county, zipcode)
- m is the industry
- X a vector of proxy variables for various determinants of agglomeration
- β is a vector of parameters capturing the marginal effects of X on γ
- The unit of analysis is industry

A positive $oldsymbol{eta}$ indicates that at a spatial level $oldsymbol{j}$ a proxy $oldsymbol{X}$ explains agglomeration

To understand the relative importance of X at different spatial layers, run separate regression using the γ computed at the state/county/zipcode levels

II RESULTS

determinants of agglomeration

Location fundamentals, transport cost, and input sharing matter at the *regional* level Labour market pooling matters at *all* levels

Knowledge spillovers matter at the local level – Q: Is this surprising?

III PRODUCTIVITY EFFECTS OF AGGLOMERATION

productivity effects of agglomeration

- This time: *Empirics* of agglomeration
 - 1) Determinants of agglomeration
 - Which sectors
 - At what spatial level
 - Correlation with proxies for MAR externalities?
 - 2) The Spatial scale of agglomeration effects
 - How far to spillover effects travel?
 - 3) The effects of agglomeration
 - Productivity effects in agglomerations
 - 4) Urbanization vs. localization effects
 - What matters for urban growth (implications for RE markets)

III LOCALIZATION OF KNOWLEDGE SPILLOVERS

determinants of agglomeration

"Tacit knowledge, is vague, difficult to codify and often only serendipitously recognized.

Geographic proximity matters because knowledge is difficult to write down and exchange and tacit knowledge is inherently non-rival in nature (usually possible to adapt ideas to different applications)"

Jane Jacobs, 1969

"Knowledge spillovers so important that they do not decay in space"

Paul Krugman, 1991

III LOCALIZATION OF KNOWLEDGE SPILLOVERS

determinants of agglomeration

- Convincing evidence for spatial concentration of knowledge spillovers
- There is a positive effect of clustering on "innovative activities"
 - Patents (Jaffe et. al, 1993)
 - Defines property rights for "innovations"
 - Spatial concentration of citations of patents explained by location of research => patents are being cited cited within clusters!
 - Product innovations (Acs, Audretsch, Feldman, 1992)
 - US small Business Innovation Research Programme Awards (Black. 2003)
 - See Audretsch and Feldman (2004) for an extensive summary

Bar talks

Prohibition interrupts social interaction and innovative activity
 (Andrews, 2020)
 Jane Jacobs 1 : Paul Krugman 0

III SPATIAL SCOPE OF AGGLOMERATION EFFECTS

productivity effects of agglomeration

- In practice, the spatial scope likely depends on concentration force
 - Knowledge spillovers operate at neighbourhood level
 - High spatial decay, impact within walking distance
 - Evidence on productivity effects from within-city studies Ahlfeldt & Wendland (2013), Ahlfeldt, Redding, Sturm, Wolf (2015), Arzaghi & Henderson (2014), Rosenthal & Strange (2008)
 - Labour markets matter at city level since (commuting) less localized
 - Workers can commute in from all locations in the city
 - Commuting probability decay by about 8% of minute of travel time (Ahlfeldt, Redding, Sturm, Wolf, 2015)
 - Transport costs matter at regional level
 - NEG market potential effects over 100+km, e.g. Hanson (2005)

Consistent with analysis of determinants of agglomeration pointing to role of knowledge spillovers at zipcode level and labour market pooling at all levels

III PRODUCTIVITY EFFECTS OF AGGLOMERATION

productivity effects of agglomeration

- This time: *Empirics* of agglomeration
 - 1) Determinants of agglomeration
 - Which sectors
 - At what spatial level
 - Correlation with proxies for MAR externalities?
 - 2) The Spatial scale of agglomeration effects
 - How far to spillover effects travel?
 - 3) The effects of agglomeration
 - Productivity effects in agglomerations
 - 4) Urbanization vs. localization effects
 - What matters for urban growth (implications for RE markets)

III DENSITY ELASTICITY OF PRODUCTIVITY

productivity effects of agglomeration

- Density elasticity of productivity of 0.06
 - Ciccone & Hall, 1996, AER
 - Doubling density increases produtivity by 4.2%
 - Not by 6% as reported in the paper

$$\frac{dln(y_i)}{dln(D_c)} = \frac{\frac{\Delta y_i}{y_i}}{\frac{\Delta D_c}{D_c}} = 0.06$$

$$2^{0.06} - 1 = 4.2\%$$

Cities (higher density places) are more productive

Q: Are there challenges to identification?

III CITY-LEVEL vs. INDIVIDUAL-LEVEL ESTIMATES

productivity effects of agglomeration

■ Imagine the individual-level wage *y* of individual *i* in area *c* is described as follows:

$$y_{i,c} = u_i + \gamma Z_c + \theta X_i + \epsilon_{i,c}$$

- u_i is an individual unobserved fixed effect
- \blacksquare Z_c is area-level density
- $\blacksquare X_i$ is an observed individual-level attribute (education)
- Simplified version of equation (6) in Combes & Gobillon (2005)
- Aggregated to the area-level, this equation becomes

$$\bar{y}_c = \gamma Z_c + \theta \bar{X}_c + \varepsilon_c$$

lacktriangle where $arepsilon_c=\overline{\epsilon}_c+\overline{u}_c$ and upper bars denote area-level averages

III CITY-LEVEL ESTIMATES

productivity effects of agglomeration

Many studies estimate

$$\bar{y}_c = \gamma Z_c + \theta \bar{X}_c + \varepsilon_c \qquad [\varepsilon_c = \bar{\epsilon}_c + \bar{u}_c]$$

Unobserved individual effects are a concern since most likely

$$cov(\bar{u}_c, Z_c) > 0$$

- People with unobserved abilities (e.g. REEF graduates) sort into large and dense cities to benefit from job & business opportunities
- Most studies provide elasticity estimates $\hat{\gamma}$ in the range of 0.04 to 0.07

Need to interpret such estimate as "association", NOT as causal effect of density

Still interesting! If we double density we still increase productivity in the area by 4.2%, however, this is because we are attracting smart people from elsewhere!

III INDIVIDUAL-LEVEL ESTIMATES

productivity effects of agglomeration

■ With individual data (from surveys) we can estimate

$$y_{i,c} = u_i + \gamma Z_c + \theta X_i + \epsilon_{i,c}$$

- By adding individual fixed effects, we control for unobserved individual characteristics
- The identification comes from "movers", i.e. from a comparison of wages of the same individual, realized at different areas
- Controlling for fixed effects, the density elasticity of productivity drops to about $\hat{\gamma} \approx 0.02$!

Now closer to a "causal" effect of density, since it controls for sorting

Relevant for welfare calculations: What is the "pure" effect from density without "stealing" smart people from other places

From a policy-perspective it depends on whether you care about one area or all

III CITY-LEVEL ESTIMATES WITH IV

productivity effects of agglomeration

Another problem concernes unobserved location effect

$$y_{i,c} = u_i + \gamma Z_c + \theta X_i + \epsilon_{i,c}$$
 $\epsilon_{i,c} = \mu_c + \epsilon_{i,c}$

- Imagine a location fundamental μ_c with $cov(\mu_c, Z_c) \neq 0$
 - Individual fixed effects for u will <u>not</u> solve the problem
- Can use an "instrumental variable" *V* in 2 stage least squares

• First stage:
$$Z_c = \varphi V_c + \theta X_i + u_i + \omega_{ic}$$

■ Second stage:
$$y_{i,c} = u_i + \gamma \hat{Z}_c + \theta X_i + \epsilon_{i,c}$$

values from first stage in second stage

Use predicted

■ Requires that $cov(V_C, Z_C) \neq 0$, $cov(V_C, \mu_C) = 0$

earn how to do it" in GY458 computer classes (Stata "ivreg" command)

III GOOD IVS

productivity effects of agglomeration

- Good instrumental variables need to be
 - Relevant: explain the instrumented variable
 - $\blacksquare cov(V_c, Z_c) \neq 0$

Need a good argument, statistical tests do not help really

Valid: be uncorrelated with the unobserved factor

$$-cov(V_c,\mu_c)=0$$

- Good instruments are usually difficult to find!
 - Good instruments are usually exogenous
- Ciccone and Hall (1996) use
 - has a railroad in 1860
 - State population 1850 and 1880
 - Distance from eastern seaboard

Q: Are these good instruments?

LSE © Gabriel M Ahlfeldt

III CHANGE IN EFFECTIVE DENSITY

productivity effects of agglomeration

 Use the time time dimension to remove unobserved factor (Donaldson & Hornbeck, 2016, Ahlfeldt & Feddersen, 2018)

$$y_{i,c,t} = u_i + \gamma^{MP} \tilde{Z}_{ct} + \theta X_i + \rho_t + \epsilon_{i,c,t} \qquad \epsilon_{i,c,t} = \mu_c + \epsilon_{i,c,t}$$

- \blacksquare \tilde{Z}_c is measure of "economic mass" (e.g. GDP or employment) within a certain <u>travel time</u> (or a market potential measure)
- If transport infrastructure hanges, we can take time differences

Unobserved fundamental factor is removed!

Ahlfeldt & Feddersen (2018) find an elasticity of productivity with respect to effective density of 2-3%

III AGGLOMERATION ELASTICITY AND MEASUREMENT

productivity effects of agglomeration

- Estimates of the agglomeration elasticity depend on measurement
 - 1% change in population ≠ 1% change in density
 - 1% change in density ≠ 1% in market potential
- Can convert a "city size" elasticity θ into a density elasticity γ :

 $\gamma = \frac{\theta}{\alpha}$, where $\alpha \approx 0.4$ (Ahlfeldt & Pietrostefani (2019) is the elasticity of density with respect to city size

■ Can rescale market potential elasticity γ^{MP} to density elasticity γ

 $\gamma = \frac{\gamma^{MP}}{\beta}$, where $\beta = \frac{\rho_{\gamma^{MP}}}{\rho_{\gamma}} \approx 3$ (Ahlfeldt & Federsen (2018) is the ratio of standard deviations in log market potential and log density

I Introduction

IV URBANIZATION VS. LOCALIZATION EFFECTS

what matters for productivity and growth

- This time: *Empirics* of agglomeration
 - 1) Determinants of agglomeration
 - Which sectors
 - At what spatial level
 - Correlation with proxies for MAR externalities?
 - 2) The Spatial scale of agglomeration effects
 - How far to spillover effects travel?
 - 3) The effects of agglomeration
 - Productivity effects in agglomerations
 - 4) Urbanization vs. localization effects
 - What matters for urban growth (implications for RE markets)

IV LOCALISATION ECONOMIES

urbanisation vs localisation economies

- Localization economies
 - Spillovers between firms in an industry
- MAR: Marshall (1890)—Arrow (1962)—Romer(1986)
 - Focus: Specialization
 - Examples: Computer chips in Silicon Valley, film industry in LA
 - Implication: Governments should welcome local monopolies since they lead to innovation (internalize externalities)
- Porter (1990)
 - Focus: Specialization & competition
 - Examples: Italian ceramics and gold industry
 - Implication: Governments should encourage geographically localized competitive industries

IV URBANIZATION ECONOMIES

urbanisation vs localisation economies

- Urbanization economies
 - Spillovers from outside the industry
- Jacobs (1969)
 - Focus: Diversity
 - Examples:
 - Equipment leasing industry was innovated by a San Francisco food processor company
 - Gasoline engine firms in Detroit supplied ship builders and later car makers
 - Implication: Governments should encourage a variety and diversity of geographically proximate industries

IV WHAT MATTERS?

determinants of agglomeration

P: Which one is empirically most relevant?

Marshall (1890)–Arrow (1962)–Romer(1986)
Specialization!

LSE © Gabriel M Ahlfeldt

IV EMPIRICAL FINDING: HENDERSON (1988)

urbanisation vs localisation economies

Multivariate regression

$$q_{ij} = \beta_0 + \beta_1 Q_{ij} + \beta_2 N_j + X_{ij} b + \varepsilon_{ij}$$

- q_{ij} output per worker in industry i in city j
- Q_{ij} total industry *i* output in city *j* (proxies localization)
- N_i total population/employment in city j (proxies urbanization)
- \blacksquare X_{ij} vector of industry-city controls (capital per worker, education)
- $\hat{\beta}_1$ depends strongly on industry.
 - Electrical machinery 0.05 (10% increase in total industry output increases output per worker by 0.5%); Min 0.02 (pulp and paper)
 –Max 0.11 (petroleum)
- Localization, not urbanization econ. good for productivity Supports MAR, not Jacobs (predates Porter)

IV EMPIRICAL FINDING: GLAESER ET AL (1992)

urbanisation vs localisation economies

■ Regress long-run (1956-1987) city-industry-level employment growth against measures of

```
Specialization = \frac{\frac{industry \text{ employment in } city}{total \text{ employment in } US}}{\frac{industry \text{ employment in } US}{total \text{ employment in } US}}
```

```
Competition = \frac{\frac{firms \text{ in } city - \text{industry}}{workers \text{ in } city - \text{industry}}}{\frac{firms \text{ in } US \text{ industry}}{workers \text{ in } US \text{ industry}}}
```

- controlling for wage levels, intitial industry size
- Competition has positive effect on growth
- Specialization has negative effect on growth
- Also find that small industries grow if large industries grow

Competition good for economic growth

Urbanization, not localization, promote economic growth

Supports Porter and Jocobs, but not MAR

IV EMPIRICAL FINDING: HENDERSON ET AL (1995)

urbanisation vs localisation economies

- Regress (1987) (log) city-industry-level employment against
 - Log 1970 employment (captures persistency vs. convergence)
 - 1970 Industry emplyoment / city employment (proxies specialization)
 - 1970 Hirschman-Herfindahl index $H = \sum_{j} z_{j}^{2}$ (inversely related to urbanization)

z is the share of industry jat all industries

- Separate anlysis by type of industry
 - Mature: (electrical) machinery, primary metals, trasportation, instruments
 - High-tech: Electronic components, medical equipment, computers

Mature industries:

Localization, not urbanization economies promote employment
Supports MAR

High-tech industries:

Localization, AND urbanization economies promote employment Supports MAR and Jacobs

IV EMPIRICAL FINDING: DURANTON & PUGA 2001

urbanisation vs localisation economies

Nursery cities

- New products are developed in diversified cites
- Try prototypes using *processes borrowed from different activities*

Specialised cities

- Once ideal producition process is found, firms/establishments relocate
- Mass prodution in specialied cities where production cost are lower
 - Lower property prices

Evidence support theory

- 72% of relocations from diversified to specialised areas
- 93% / 88% / 82% in R&D / pharma / IT sectors (France 1993-1996)

Mature industries: Localization, MAR

High-tech industries: Urbanization, Jacobs

IV RESULTS SUMMARY

urbanisation vs localisation economies

	Localization	Local competition	Urbanization			
	MAR	Porter	Jacobs			
Productivity						
Growth: All industries						
Growth: Mature industries						
Growth: High-tech industries						
Own summary of Henderson et al. (1988), Glaeser et al. (1992), Henderson et al. (1995)						
	No or weak evi					
	Not tested					

Urbanizaiton economies and localizaiton economies are both empirically relevant Localization relevant for productivity levels (capturing "fundamentals"?)

Urbanization important for growth, especially of innovative high-tech industries

Rationalizes why often small spcialized cities are quite *productive* (high wages), but, large diverse cities tend to by more *dynamic*

SUMMARY

Conclusion

Determinants of agglomeration

- Input sharing
- Labour market pooling
- Knowledge spillovers

Productivity effects of higher agglomeration

- Doubling density increases area productivity by about 4%
- Doubling density increases individual productivity by about 2%

Localization vs. urbanization economies

- Localization economies matter for distribution of productivity levels
- Urbanization economies matter for growth

Next: Benefits vs. costs of agglomeration

Broader range of agglomeration effects and effects on city size

READING

Core readings:

- Combes & Gobillon (2015), in Duranton, Henderson, and Strange, (eds.) Handbook in Regional and Urban Economics.
- Glaeser, E., D. Kallal, J. Scheinkman and A. Shleifer. 1992. Growth in Cities. Journal of Political Economy 100, 1126-52.
- Rosenthal & Strange (2001), "The Determinants of Agglomeration," Journal of Urban Economics 50: 191-229
- Complementary readings and references:
 - Acs, Z.J., Audretsch, D.B., Feldman, M.P. (1992). "Real effects of academic research". American Economic Review 82, 363–367.
 - Ahlfeldt, G. M., Feddersen (2017): From periphery to core: measuring agglomeration effects using high-speed rail. Journal of Economic Geography 18 (2), 355-390
 - Ahlfeldt G. M., Pietrostefani, E. (2019): The economic effects of density: A synthesis. Journal of Urban Economics 111, 93-107
 - Andrews, M. (2019). Bar talk: Informal social interactions, alcohol prohibition, and innovation. Working paper
 - Arzaghi M., Henderson V. (2006): Networking off Madison Avenue, The Review of Economic Studies, Volume 75, Issue 4, 1 October 2008, Pages 1011–1038
 - Audretsch and Feldman, (2004) Knowledge Spillovers and the Geography of Innovation, in Henderson J.V. and J.F. Thisse (eds.)
 Handbook of Urban and Regional Economics, Vol.4, pp.2713-2739. Elsevier, Amsterdam)
 - Black, G. (2003). The Geography of Small Firm Innovation. Kluwer Academic, Dordrecht.
 - Ciccone and Hall (1996): American Economic Review, 1996, vol. 86, issue 1, 54-70
 - Donaldson and Hornbeck (2016): Railroads and American Economic Growth: A "Market Access" Approach. Quarterly Journal of Economics, 131(2).
 - Duranton and Puga (2001): Nursery cities: Urban diversity, process innovation, and the life cycle of products. American Economic Review, 2001, 91(5)
 - Ellison, and Glaeser, E. (1997): Geographic concentration in U.S. manufacturing industries: A dartboard approach, Journal of Political Economy, 105, 889-927
 - Krugman, P. (1991). Geography and Trade. MIT Press, Cambridge, MA.
 - Jacobs, J. (1969). The Economy of Cities. Random House, New York.
 - Jaffe, A.B. (1989). "Real effects of academic research". American Economic Review 79 (5), 957–970.
 - Rosenthal, Stuart S. and Strange, William C. The attenuation of human capital spillovers. Journal of Urban Economics, 64(2):373{389, 2008
 - Hanson, G. (2005) Market potential, increasing returns, and geographic concentration. Journal of International Economics, 67(1):1{24,
 - Henderson, J. Vernon. 1988. Urban Development: Theory, Fact, and Illusion. London: Oxford University Press.
 - Henderson V., A. Kuncoro and M. Turner, 1995, "Industrial Development in Cities", Journal of Political Economy 103, 1067-1090.
 - Porter (1990). The comparative advantage of nations. Harvard Business Review. March & April.

APPENDIX: DENSTY EFFECT VS. CITY SIZE EFFECT

productivity effects of agglomeration

- Agglomeration effects are attributed to <u>density</u> or <u>city size</u>
- Not easy to separately identify the effects
 - Density and city size are co-determined because there are limits to horizontal expansion (Ahlfeldt & Pietrostefani, 2019)
 - Workers cannot commute "forever"
 - Larger cities are more expensive, which increases density
- Most studies do not separately identify density and city size effects

In most cases, it is sensible to assume that if one measure changes, the other changes, too

■ Can convert a "city size" elasticity θ into a density elasticity γ :

 $\gamma = \frac{\theta}{\alpha}$, where α is the elasticity of density with respect to city size

APPENDIX: ELASTICITY OF DENSITY WITH RESPECT TO SIZE

productivity effects of agglomeration

Non-US panel shows the partial correlation controlling for country effects.

A functional urban area (FUA) is labelled if the population is among the 10 largest or if is an o Outliers are below the 10th/5th or above the 90th/95th percentile in the US/Non-US residual c *** indicates significance at the 1% level.

- A_i is the respective land area
- μ_c is a country fixed effect
- IV for P: Rank in country distribution