测定空气比热容比

2013599 田佳业 3.28

实验目的

- 1. 学习测定空气比定压热容与比定容热容之比的克列曼和迭索尔姆(Clement--Desormes)方法
- 2. 观察热力学过程中状态变化及基本物理规律
- 3. 学习用传感器精确测定气体压强和温度的原理与方法

实验原理

利用绝热过程中满足泊松公式,等温过程满足玻意耳定律,测定两过程中的压强与温度,求解比热容比 $\gamma = \frac{p_1'}{p_1' - p_2'}$

 p_1' 表示 p_1 与 p_a 的压力差, p_2' 表示 p_2 与 p_a 的压力差, 该公式使用了近似 $\ln x \approx x-1$

实验仪器

FD-NCD-II空气比热容比测定仪,由机箱、储气瓶、传感器等组成。压力传感器配合三位半数字电压表,温度传感器配合四位半数字电压表。

实验步骤

- 连接线路, 测定环境气压 p_a 及环境温度 T_e , 开启电子仪器部分的电源, 预热 20 分 钟, 调节表 1 至 omV。
- 通过挤压血压计平稳地向储气瓶内压入适量气体后关闭进气活塞"A"(压入 120mV左右),待系统与外界达到热平衡 (表1指示稳定)后,记录表1示数1及表2 指示 T_1
- 迅速打开放气活塞 "B",待喷气声音停止后立刻关闭;待表 1 指示稳定后,再记录 p_2' 及 T_2 。

• 在 p_1' 数值大致相同的条件下重复实验 10 次,分别代入式 $\gamma = \frac{p_1'}{p_1' - p_2'}$ 求出 γ_i 及 其算 数平均值。

数据处理

 $T_e = 1449.0 mV, p_a = 0.0 mV$

i	p_1'/mV	T_{1i}/mV	p_2'/mV	T_{2i}/mV	$(p_1^\prime - p_2^\prime)/mV$	γ
1	116	1449.9	27.8	1449.1	88.2	1.3152
2	118.8	1449.8	30.3	1449.2	88.5	1.3424
3	119.5	1450	30.4	1449.2	89.1	1.3412
4	117.9	1450.2	29.5	1449.3	88.4	1.3337
5	117.4	1450.3	28.5	1449.3	88.9	1.3206
6	117.5	1450.2	28.2	1449.5	89.3	1.3158
7	118.6	1450.4	29.7	1449.6	88.9	1.3341
8	119.2	1450.5	30.4	1449.6	88.8	1.3423
9	118.6	1450.5	29.4	1449.6	89.2	1.3296
10	115.3	1450.4	27.4	1449.5	87.9	1.3117

平均: 1.329

$$\delta = \frac{|1.402 - 1.329|}{1.402} = 0.052$$

考查题

1.如果从停止打气到读取 p'_1 ,以及从停止放气到读取 p'_2 的时间都很短,那么它们分别对测量结果产生什么影响?若时间都很长,对测量结果有影响吗?为什么?

从停止打气到读取 p_1' 的时间很短会使 p_1' 偏大,测得比热容比比实际偏小。从停止放气到读取 p_2' 的时间很短会使 p_2' 偏小,同样会使测得比热容比比实际偏小。如果时间都很长,理论上不会造成什么影响,但如果实验环境非严格密封,会使实验的误差较大。

2.现已假定 V_1 , V_2 分别代表绝热膨张前、后空气的比容,在此假定下,本实验所考察的热力学系统是什么?若重新假定绝热膨胀后仍留在V中的那部分空气作为我们所考察的热力学系统,对实验有影响吗?在后一种假定下, V_2 及 V_1 ,将等于什么?(设容器体积为V)

考察的是绝热膨胀前的所有气体以及容器。因为膨胀时间短,近似的认为是绝热的。根据理想气体状态方程,可以分别采用 $\frac{T_e}{p_a}$ 和 $\frac{T_2}{p_1}$ 来反映 V_1 , V_2 的大小关系。在后一种假设下 $V_2=V$,则 $V_1=\frac{T_ep_1}{T_2p_2}V_2$ 。

注意事项

- 1. 注意系统密封性, 检查是否漏气;
- 2. 旋转活塞时不可动作过猛,以防活塞折断;
- 3. 压入气体时要平稳,不要使表1超量程;
- 4. 严格掌握放气活塞从打开到关闭的时间,否则会给实验结果带来较大的不确定度;
- 5. 注意掌握实验进程, 防止因实验周期过长、环境温度过大变化对实验造成的影响;
- 6. 实验完毕后将仪器整理复原,并注意将放气活塞"B"打开,使容器与大气相通;
- 7. 关闭活塞"B"用听声音的方法更可靠一些。