

| Nome:                                                                                                                                                                                        |                                     | Turma: IME-ITA |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|
| Unidade:                                                                                                                                                                                     | Professor:                          | Data:          |
| <ul> <li>Instruções:</li> <li>Faça sua avaliação à caneta.</li> <li>Resoluções a lápis não serão c</li> <li>Questões discursivas sem dese</li> <li>Não serão fornecidas folhas pa</li> </ul> | nvolvimento não serão consideradas. | Nota:          |

# QUÍMICA

#### **Dados**

- Constante de Avogadro,  $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$
- Carga elementar,  $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck,  $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água,  $K_{\rm w} = 1 \cdot 10^{-14}$
- Constante de Faraday,  $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases,  $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg,  $\mathcal{R} = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo,  $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

## **Definições**

- Composição do ar atmosférico: 79%  $N_2$ e 21%  $O_2$ 

## **Aproximações Numéricas**

- $\sqrt{2} = 1.4$

- $\sqrt{3} = 1.7$   $\sqrt{5} = 2.2$   $\log 2 = 0.3$   $\log 3 = 0.5$   $\ln 10 = 2.3$

### Tabela Periódica

| 1                | 6        | 7          | 8        | 11    | 12    | 16                | 17    |
|------------------|----------|------------|----------|-------|-------|-------------------|-------|
| <b>H</b><br>1.01 | <b>C</b> | N<br>1/ 01 | <b>0</b> | Na    | Mg    | <b>S</b><br>32,06 | Cl    |
| 1,01             | 12,01    | 14,01      | 10,00    | 22,99 | 24,31 | 32,00             | 35,45 |



Quando  $0.36\,\mathrm{g}$  de pentano,  $C_5H_{12}$ , queimam em excesso de oxigênio em um calorímetro com capacidade calorífica  $220\,\mathrm{J\,K^{-1}}$ , sob pressão constante, a temperatura do calorímetro aumenta em  $80\,\mathrm{^{\circ}C}$ .

Determine a entalpia de combustão do pentano.

#### Questão 2

Considere as reações:

$$\begin{array}{ll} 2\,\mathrm{Al}(\mathrm{s}) + 6\,\mathrm{HBr}(\mathrm{aq}) &\longrightarrow 2\,\mathrm{AlBr}_3(\mathrm{aq}) + 3\,\mathrm{H}_2(\mathrm{g}) & \Delta H_\mathrm{r}^\circ = -1060\,\frac{\mathrm{kJ}}{\mathrm{mol}} \\ & \mathrm{HBr}(\mathrm{g}) &\longrightarrow \mathrm{HBr}(\mathrm{aq}) & \Delta H_\mathrm{r}^\circ = -81\,\frac{\mathrm{kJ}}{\mathrm{mol}} \\ & \mathrm{H}_2(\mathrm{g}) + \mathrm{Br}_2(\mathrm{l}) &\longrightarrow 2\,\mathrm{HBr}(\mathrm{g}) & \Delta H_\mathrm{r}^\circ = -73\,\frac{\mathrm{kJ}}{\mathrm{mol}} \\ & \mathrm{AlBr}_3(\mathrm{s}) &\longrightarrow \mathrm{AlBr}_3(\mathrm{aq}) & \Delta H_\mathrm{r}^\circ = -368\,\frac{\mathrm{kJ}}{\mathrm{mol}} \end{array}$$

 $\begin{tabular}{ll} \bf Determine \ a \ entalpia \ de \ formação \ do \ brometo \ de \ alumínio \ anidro, \ AlBr_3. \end{tabular}$ 



 $\bf Determine$ a entalpia padrão de combustão da ureia,  $\rm CO(NH_2)_2, \, em \,\, 25\,^{\circ}C.$ 

| Dados em 25 °C                                                                                | $\mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right)$ | $CO_2(g)$ | $CO(NH_2)_2(s)$ |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|-----------------|
| Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$ | -286                                              | -394      | -334            |

## Questão 4

Considere as reações.

1. 
$$H_2(g) + I_2(s) \longrightarrow 2 HI(g)$$

$$2. \ 2\operatorname{Ag}(s) + \operatorname{Br}_2(l) \longrightarrow 2\operatorname{AgBr}(s)$$

3. 
$$O_2(g) \longrightarrow O_2(aq)$$

4. 
$$2 \operatorname{NO}_2(g) \longrightarrow \operatorname{N}_2\operatorname{O}_4(g)$$

 ${\bf Determine}$ o sinal da entropia padrão de cada reação.



Considere a reação de decomposição do carbonato de magnésio.

$$MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$$

Suponha que  $\Delta H_{\rm r}^{\circ}$  e  $\Delta S_{\rm r}^{\circ}$  são independentes da temperatura.

Determine a faixa de temperatura em que a decomposição do carbonato de magnésio é espontânea.

| Dados em $25^{\circ}\mathrm{C}$                                                               | $MgCO_3(s)$ | $CO_2(g)$ | MgO(s) |
|-----------------------------------------------------------------------------------------------|-------------|-----------|--------|
| Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$ | -1100       | -394      | -602   |
| Entropia padrão molar, $S_{\rm m}^{\circ}/\frac{\rm J}{\rm Kmol}$                             | 65,7        | 214       | 26,9   |

## Questão 6

Considere os compostos:

- $1.\ \ 2,2,4\text{-trimetil pentano}$
- 2. 1,2,3,4-tetrametilcicloeptano
- 3. 1-isopropil-2-metilciclobutano.

Apresente a estrutura de cada composto.



Considere os compostos:

- $1. \ \, 3\hbox{-isopropil-}2, 4\hbox{-dimetil pent-}2\hbox{-eno}$
- 2. 4-etil-2-metilex-2-eno
- 3. 1,2-dimetilciclobuteno

Apresente a estrutura de cada composto.

## Questão 8

Considere os compostos.

 ${\bf Identifique}$  as funções orgânicas de cada composto.



O estradiol é o principal hormônio sexual feminino, importante na regulação do ciclo estral e do ciclo menstrual.

Apresente a fórmula molecular do estradiol.

## Questão 10

O ácido ascórbico ou vitamina C é uma molécula com papel importante em várias reações bioquímicas celulares.

Classifique todos os átomos de carbono da vitamina C quanto a sua hibridização.