Some Topics in Elementary Mathematics/Grade 12

Nguyễn Quản Bá Hồng 1

Ngày 27 tháng 8 năm 2022

Mục lục

	Đại Số & Giải Tích – Algebra & Analysis
1	Ứng Dụng Đạo Hàm Để Khảo Sát & Vẽ Đồ Thị của Hàm Số
	1.1 Tính Đơn Điệu của Hàm Số
	1.2 Cực Trị của Hàm Số
	1.2.1 Khái niệm cực trị của hàm số
	1.2.2 Diều kiện cần để hàm số đạt được cực trị
	1.2.3 Diều kiện đủ để hàm số đạt cực trị
	1.3 Giá Trị Lớn Nhất & Giá Trị Nhỏ Nhất của Hàm Số
	1.4 Đồ Thị của Hàm Số & Phép Tịnh Tiến Hệ Tọa Độ
	1.5 Đường Tiệm Cận của Đồ Thị Hàm Số
	1.6 Khảo Sát Sự Biến Thiên & Vẽ Đồ Thị của 1 Số Hàm Đa Thức
	1.7 Khảo Sát Sự Biến Thiên & Vẽ Đồ Thị của 1 Số Hàm Phân Thức Hữu Tỷ
	1.8 1 Số Bài Toán Thường Gặp về Đồ Thị
2	Hàm Số Lũy Thừa, Hàm Số Mũ, & Hàm Số Logarith
	2.1 Lũy Thừa với Số Mũ Hữu Tỷ
	2.2 Lũy Thừa với Số Mũ Thực
	2.3 Logarithm
	2.4 Số e & Logarith Tự Nhiên
	2.5 Hàm Số Mũ & Hàm Số Logarithm
	2.6 Hàm Số Lũy Thừa
	2.7 Phương Trình Mũ & Logarithm
	2.8 Hệ Phương Trình Mũ & Logarithm
	2.9 Bất Phương Trình Mũ & Logarithm
3	Nguyên Hàm, Tích Phân, & Ứng Dụng
	3.1 Nguyên Hàm
	3.2 1 Số Phương Pháp Tìm Nguyên Hàm
	3.3 Tích Phân
	3.4 1 Số Phương Pháp Tính Tích Phân
	3.5 Úng Dụng Tích Phân Để Tính Diện Tích Hình Phẳng
	3.6 Úng Dụng Tích Phân Để Tính Thể Tích Vật Thể
	Số Phức
	4.1 Số Phức
	4.2 Căn Bậc 2 của Số Phức & Phương Trình Bậc 2
	4.3 Dạng Lượng Giác của Số Phức & Ứng Dụng
Ι	Hình Học – Geometry
5	Khối Đa Diên & Thể Tích của Chúng
	5.1 Khái Niệm về Khối Đa Diện
	5.2 Phép Đối Xứng qua Mặt Phẳng & Sự Bằng Nhau của Các Khối Đa Diện
	5.3 Phép Vị Tự & Sự Đồng Dạng của Các Khối Đa Diện. Các Khối Đa Diện Đều
	5.4 Thể Tích của Khối Đa Diện

Sect. 0.0 Mục l	lų	10	С	
-----------------	----	----	---	--

0.1	á t Cầu, Mặt Trụ, Mặt Nón Mặt Cầu, Khối Cầu
	\cdot
6.2	Khái Niệm về Mặt Tròn Xoay
6.3	Mặt Trụ, Hình Trụ, & Khối Trụ
6.4	Mặt Nón, Hình Nón, & Khối Nón
Ph	ương Pháp Tọa Đô Trong Không Gian
	ương Pháp Tọa Độ Trong Không Gian Hệ Tọa Độ Trong Không Gian
7.1	
7.1 7.2	Phương Trình Mặt Phẳng

Phần I

Đại Số & Giải Tích – Algebra & Analysis

Ứng Dụng Đạo Hàm Để Khảo Sát & Vẽ Đồ Thị của Hàm Số

Nội dung. Ứng dụng đạo hàm \mathcal{E} giới hạn để xét 1 số tính chất quan trọng của hàm số \mathcal{E} đồ thị như: tính đơn điệu, cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số \mathcal{E} các đường tiệm cận của đồ thị; khảo sát sự biến thiên \mathcal{E} vẽ đồ thị của hàm số của 1 số hàm số đơn giản.

1.1 Tính Đơn Điệu của Hàm Số

Nội dung. Ứng dụng đạo hàm để xét tính đơn điệu (i.e., tính đồng biến & tính nghịch biến) của hàm số.

Định nghĩa 1.1.1 (Hàm số đồng/nghịch biến). Giả sử K là 1 khoảng, 1 đoạn hoặc 1 nửa khoảng \mathcal{E} f là hàm số xác định trên K. Hàm số f được gọi là đồng biến trên K nếu $\forall x_1, x_2 \in K$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. Hàm số f được gọi là nghịch biến trên K nếu $\forall x_1, x_2 \in K$, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$.

I.e., "nếu hàm số f xác định trên K thì hàm số f đồng biến trên K khi & chỉ khi với $x \in k$ tùy ý, ta có $\frac{f(x+\Delta x)-f(x)}{\Delta x} > 0$, $\forall \Delta x \neq 0$ mà $x + \Delta x \in K$; hàm số f nghịch biến trên K khi & chỉ khi với $x \in K$ tùy ý, ta có $\frac{f(x+\Delta x)-f(x)}{\Delta x} < 0$, $\forall \Delta x \neq 0$ mà $x + \Delta x \in K$." – Quỳnh et al., 2020, p. 4

Định lý 1.1.1. Giả sử hàm số f có đạo hàm trên khoảng I. (a) Nếu hàm số f đồng biến trên khoảng I thì $f'(x) \ge 0$, $\forall x \in I$. (b) Nếu hàm số f nghịch biến trên khoảng I thì $f'(x) \le 0$, $\forall x \in I$.

Đảo lại:

Định lý 1.1.2. Giả sử hàm số f có đạo hàm trên khoảng I. (a) Nếu f'(x) > 0, $\forall x \in I$ thì hàm số f đồng biến trên khoảng I. (b) Nếu f'(x) < 0, $\forall x \in I$ thì hàm số f nghịch biến trên khoảng I. (c) Nếu f'(x) = 0, $\forall x \in I$ thì hàm số f không đổi trên khoảng I.

Định lý trên cho ta 1 điều kiện đủ để hàm số đơn điệu trên 1 khoảng.

Lưu ý 1.1.1. Khoảng I trong định lý trên có thể được thay đổi bởi 1 đoạn hoặc 1 nửa khoảng. Khi đó phải bổ sung giả thiết "Hàm số liên tục trên đoạn hoặc nửa khoảng đó". E.g.:

Định lý 1.1.3. Nếu hàm số f liên tục trên đoạn [a;b] \mathcal{E} có đạo hàm f'(x) > 0 trên khoảng (a;b) thì hàm số f đồng biến trên đoạn [a;b].

Người ta thường diễn đạt khẳng định này qua bảng biến thiên như sau:

x	a		b
f'(x)		+	
f(x)	f(a)		f(b)

Sect. 1.2 Cực Trị của Hàm Số

"Việc tìm các khoảng đồng biến & nghịch biến của 1 hàm số còn được nói gọn là xét *chiều biến thiên của hàm số* đó. Qua định lý đã nêu, ta thấy việc xét chiều biến thiên của 1 hàm số có đạo hàm có thể chuyển về việc xét dấu đạo hàm của nó." – Quỳnh et al., 2020, p. 5

Có thể mở rộng định lý 1.1.2 như sau:

Định lý 1.1.4. Giả sử hàm số f có đạo hàm trên khoảng I. Nếu $f'(x) \ge 0$, $\forall x \in I$ (hoặc $f'(x) \le 0$, $\forall x \in I$) & f'(x) = 0 chỉ tại 1 số hữu hạn điểm của I thì hàm số f đồng biến (hoặc nghịch biến) trên I.

1.2 Cưc Tri của Hàm Số

Nội dung. Cực đại, cực tiểu của hàm số; quan hệ giữa cực đại, cực tiểu với dấu của đạo hàm cấp 1 & đạo hàm cấp 2 của hàm số.

1.2.1 Khái niệm cực trị của hàm số

Định nghĩa 1.2.1 (Cực trị). "Giả sử hàm số f xác định trên tập hợp $\mathcal{D} \subset \mathbb{R}$ & $x_0 \in \mathcal{D}$. (a) x_0 được gọi là 1 điểm cực đại của hàm số f nếu tồn tại 1 khoảng (a;b) chứa điểm x_0 sao cho $(a;b) \subset \mathcal{D}$ & $f(x) < f(x_0)$, $\forall x \in (a;b) \setminus \{x_0\}$. Khi đó $f(x_0)$ được gọi là giá trị cực đại của hàm số f. (b) x_0 được gọi là 1 điểm cực tiểu của hàm số f nếu tồn tại 1 khoảng (a;b) chứa điểm x_0 sao cho $(a;b) \subset \mathcal{D}$ & $f(x) > f(x_0)$, $\forall x \in (a;b) \setminus \{x_0\}$. Khi đó $f(x_0)$ được gọi là giá trị cực tiểu của hàm số f. Điểm cực đại & điểm cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại & giá trị cực tiểu được gọi chung là cực trị.

Nếu x_0 là 1 điểm cực trị của hàm số f thì người ta nói rằng hàm số f đạt cực trị tại điểm x_0 ." – Quỳnh et al., 2020, p. 10

Lưu \circ 1.2.1. (a) "Giá trị cực đại (cực tiểu) $f(x_0)$ của hàm số f nói chung không phải là giá trị lớn nhất (nhỏ nhất) của hàm số f trên tập hợp \mathcal{D} ; $f(x_0)$ chỉ là giá trị lớn nhất (nhỏ nhất) của hàm số f trên 1 khoảng (a;b) nào đó chứa điểm x_0 . (b) Hàm số f có thể đạt cực đại hoặc cực tiểu tại nhiều điểm trên tập hợp \mathcal{D} . Hàm số cũng có thể không có cực trị trên 1 tập hợp số thực cho trước. (c) Đôi khi người ta cũng nói đến điểm cực trị của đồ thị.

Nếu x_0 là 1 điểm cực trị của hàm số f thì điểm $(x_0; f(x_0))$ được gọi là điểm cực trị của đồ thị hàm số f." – Quỳnh et al., 2020, p. 11

1.2.2 Điều kiên cần để hàm số đạt được cực tri

"Quan sát đồ thị của hàm số y = f(x), ta thấy nếu hàm số f đạt cực trị tại điểm x_0 & nếu đồ thị của hàm số có tiếp tuyến tại điểm $(x_0; f(x_0))$ thì tiếp tuyến đó song song với trục hoành, i.e., $f'(x_0) = 0$.

Định lý 1.2.1. Giả sử hàm số f đạt cực trị tại điểm x_0 . Khi đó, nếu f có đạo hàm tại x_0 thì $f'(x_0) = 0$.

"Điều ngược lại có thể không đúng. Đạo hàm f' có thể bằng 0 tại điểm x_0 nhưng hàm số không đạt cực trị tại điểm x_0 . E.g., xét hàm số $f(x) = x^3$, ta có $f'(x) = 3x^2$ & f'(0) = 0. Tuy nhiên, hàm số f không đạt cực trị tại điểm x = 0. Thật vậy, vì f'(x) > 0, $\forall x \neq 0$ nên hàm số f đồng biến trên \mathbb{R} ." – Quỳnh et al., 2020, p. 11

Lưu ý 1.2.2. "Hàm số có thể đạt cực trị tại 1 điểm mà tại điểm đó hàm số không có đạo hàm. E.g., hàm số y = f(x) = |x| xác định trên \mathbb{R} . Vì f(0) = 0 & f(x) > 0, $\forall x \neq 0$ nên hàm số đạt cực tiểu tại điểm x = 0. Dễ thấy hàm số y = |x| không có đạo hàm tại điểm x = 0 (Fig. 1.1).

Hình 1.1: Đồ thị của hàm số y = f(x) = |x|.

Như vậy, 1 hàm số chỉ có thể đạt cực trị tại 1 điểm mà tại đó đạo hàm của hàm số bằng 0, hoặc tại đó hàm số không có đạo hàm." – Quỳnh et al., 2020, p. 11

1.2.3 Điều kiện đủ để hàm số đạt cực trị

"Đinh lý sau cho ta 1 điều kiện đủ để hàm số đạt cực tri.

Định lý 1.2.2. Giả sử hàm số f liên tục trên khoảng (a;b) chứa điểm x_0 & có đạo hàm trên các khoảng $(a;x_0)$ & $(x_0;b)$. Khi đó: (a) Nếu f'(x) < 0, $\forall x \in (a;x_0)$ & f'(x) > 0, $\forall x \in (x_0;b)$ thì hàm số f đạt cực tiểu tại điểm x_0 . (b) Nếu f'(x) > 0, $\forall x \in (a;x_0)$ & f'(x) < 0, $\forall x \in (x_0;b)$ thì hàm số f đạt cực đại tại điểm x_0 .

I.e., (a) Nếu f'(x) đổi dấu từ âm sang dương khi x qua điểm x_0 (theo chiều tăng) thì hàm số đạt cực tiểu tại điểm x_0 . (b) Nếu f'(x) đổi dấu từ dương sang âm khi x qua điểm x_0 (theo chiều tăng) thì hàm số đạt cực đại tại điểm x_0 .

Chứng minh. (a) Vì hàm số f liên tục trên nửa khoảng $(a;x_0]$ & f'(x) < 0, $\forall x \in (a;x_0)$ nên hàm số f nghịch biến trên $(a;x_0]$. Do đó, $f(x) > f(x_0)$, $\forall x \in (a;x_0)$. Tương tự, vì hàm số f liên tục trên nửa khoảng $[x_0;b)$ & f'(x) > 0, $\forall x \in (x_0;b)$ nên hàm số đồng biến trên $[x_0;b)$. Do đó $f(x) > f(x_0)$, $\forall x \in (x_0;b)$. Vậy $f(x) > f(x_0)$, $\forall x \in (a;b) \setminus \{x_0\}$, i.e., hàm số f đạt cực tiểu tại điểm x_0 . (b) Chứng minh tương tự.

Định lý 1.2.2 được viết gọn lại trong 2 bảng biến thiên sau:

x	a	x_0	b
f'(x)	_	-	+
f(x)		$f(x_0)$	

Từ đinh lý 1.2.2 ta có quy tắc tìm cực tri sau đây.

Quy tắc 1. 1. Tim f'(x). 2. Tim các điểm x_i tại đó đạo hàm của hàm số bằng 0 hoặc hàm số liên tục nhưng không có đạo hàm. 3. Xét dấu f'(x). Nếu f'(x) đổi dấu khi x qua điểm x_i thì hàm số đạt cực trị tại x_i ." – Quỳnh et al., 2020, pp. 11–14 "Có thể sử dụng đạo hàm cấp 2 để tìm cực trị của hàm số.

Định lý 1.2.3. Giả sử hàm số f có đạo hàm cấp 1 trên khoảng (a;b) chứa điểm x_0 , $f'(x_0) = 0$ & f có đạo hàm cấp 2 khác 0 tại điểm x_0 . (a) Nếu $f''(x_0) < 0$ thì hàm số f đạt cực đại tại điểm x_0 . (b) Nếu $f''(x_0) > 0$ thì hàm số f đạt cực tiểu tại điểm x_0 .

Từ định lý 1.2.3, ta có 1 quy tắc khác để tìm cực trị của hàm số (nếu hàm số có đạo hàm cấp 2).

Quy tắc 2. 1. Tìm f'(x). 2. Tìm các nghiệm x_i của phương trình f'(x) = 0. 3. Tìm f''(x) & tính $f''(x_i)$. Nếu $f''(x_i) < 0$ thì hàm số đạt cực đại tại điểm x_i . Nếu $f''(x_i) > 0$ thì hàm số đạt cực tiểu tại điểm x_i ." – Quỳnh et al., 2020, pp. 15–16

1.3 Giá Trị Lớn Nhất & Giá Trị Nhỏ Nhất của Hàm Số

Nội dung. Các bài toán dẫn đến việc tìm giá trị lớn nhất & giá trị nhỏ nhất của hàm số trên 1 tập hợp số thực cho trước, ứng dụng tính đơn điệu & cực trị của hàm số để tìm giá trị lớn nhất & giá trị nhỏ nhất của hàm số.

Định nghĩa 1.3.1 (Giá trị lớn/nhỏ nhất). "Giả sử hàm số f xác định trên tập hợp $\mathcal{D} \subset \mathbb{R}$. (a) Nếu tồn tại 1 điểm $x_0 \in \mathcal{D}$ sao cho $f(x) \leq f(x_0)$, $\forall x \in \mathcal{D}$ thì số $M = f(x_0)$ được gọi là giá trị lớn nhất của hàm số f trên \mathcal{D} , ký hiệu là $M := \max_{x \in \mathcal{D}} f(x)$. (b) Nếu tồn tại 1 điểm $x_0 \in \mathcal{D}$ sao cho $f(x) \geq f(x_0)$, $\forall x \in \mathcal{D}$ thì số $m = f(x_0)$ được gọi là giá trị nhỏ nhất của hàm số f trên \mathcal{D} , ký hiệu là $m = \min_{x \in \mathcal{D}} f(x)$.

Như vậy, muốn chứng tỏ rằng số M (hoặc m) là giá trị lớn nhất (hoặc giá trị nhỏ nhất) của hàm số f trên tập hợp \mathcal{D} cần chỉ rõ: (a) $f(x) \leq M$ (hoặc $f(x) \geq m$), $\forall x \in \mathcal{D}$. (b) Tồn tại ít nhất 1 điểm $x_0 \in \mathcal{D}$ sao cho $f(x_0) = M$ (hoặc $f(x_0) = m$). Ta quy ước rằng khi nói giá trị lớn nhất hay nhỏ nhất của hàm số f (mà không nói "trên tập \mathcal{D} ") thì ta hiểu đó là giá trị lớn nhất hay nhỏ nhất của f trên tập xác định của nó." – Quỳnh et al., 2020, p. 18

"Phương pháp thường được sử dụng để tìm giá trị lớn nhất & giá trị nhỏ nhất của hàm số trên 1 tập hợp là lập bảng biến thiên của hàm số trên tập hợp đó." – Quỳnh et al., 2020, p. 19

Nhận xét 1.3.1. "Người ta đã chứng minh được rằng hàm số liên tục trên 1 đoạn thì đạt được giá trị lớn nhất & nhỏ nhất trên đoạn đó. Trong nhiều trường hợp, có thể tìm giá trị lớn nhất & giá trị nhỏ nhất của hàm số trên 1 đoạn mà không cần lập bảng biến thiên của nó.

Giả sử hàm số f liên tục trên đoạn [a;b] & có đạo hàm trên khoảng (a;b), có thể trừ 1 số hữu hạn điểm. Nếu f'(x)=0 chỉ tại 1 số hữu hạn điểm thuộc (a;b) thì ta có quy tắc tìm giá trị lớn nhất & nhỏ nhất của hàm f trên đoạn [a;b] như sau:

Quy tắc 3. 1. Tìm các điểm $x_i \in (a;b)$, i = 1, ..., m, tại đó hàm số f có đạo hàm bằng 0 hoặc không có đạo hàm. 2. Tính $f(x_i)$, i = 1, ..., m, f(a), \mathcal{E} f(b). 3. So sánh các giá trị tìm được. Số lớn nhất trong các giá trị đó là giá trị lớn nhất của f trên đoạn [a;b], số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của f trên đoạn [a;b]." – Quỳnh et al., 2020, p. 21

- 1.4 Đồ Thị của Hàm Số & Phép Tịnh Tiến Hệ Tọa Độ
- 1.5 Đường Tiệm Cận của Đồ Thị Hàm Số
- 1.6 Khảo Sát Sự Biến Thiên & Vẽ Đồ Thị của 1 Số Hàm Đa Thức
- 1.7 Khảo Sát Sự Biến Thiên & Vẽ Đồ Thị của 1 Số Hàm Phân Thức Hữu Tỷ
- 1.8 1 Số Bài Toán Thường Gặp về Đồ Thị

Hàm Số Lũy Thừa, Hàm Số Mũ, & Hàm Số Logarith

- 2.1 Lũy Thừa với Số Mũ Hữu Tỷ
- 2.2 Lũy Thừa với Số Mũ Thực
- 2.3 Logarithm
- 2.4 Số e & Logarith Tự Nhiên
- 2.5 Hàm Số Mũ & Hàm Số Logarithm
- 2.6 Hàm Số Lũy Thừa
- 2.7 Phương Trình Mũ & Logarithm
- 2.8 Hệ Phương Trình Mũ & Logarithm
- 2.9 Bất Phương Trình Mũ & Logarithm

Nguyên Hàm, Tích Phân, & Ứng Dụng

- 3.1 Nguyên Hàm
- 3.2 1 Số Phương Pháp Tìm Nguyên Hàm
- 3.3 Tích Phân
- 3.4 1 Số Phương Pháp Tính Tích Phân
- 3.6 Ứng Dụng Tích Phân Để Tính Thể Tích Vật Thể

Số Phức

- 4.1 Số Phức
- 4.2~ Căn Bậc 2 của Số Phức & Phương Trình Bậc 2
- 4.3~ Dạng Lượng Giác của Số Phức & Ứng Dụng

$\begin{array}{c} {\rm Ph \grave{a} n} \; {\rm II} \\ \\ {\rm H\grave{n} h} \; {\rm H\acute{o} c} - {\rm Geometry} \end{array}$

Khối Đa Diện & Thể Tích của Chúng

- 5.1 Khái Niệm về Khối Đa Diện
- 5.2 Phép Đối Xứng qua Mặt Phẳng & Sự Bằng Nhau của Các Khối Đa Diện
- 5.3 Phép Vị Tự & Sự Đồng Dạng của Các Khối Đa Diện. Các Khối Đa Diện Đều
- 5.4 Thể Tích của Khối Đa Diện

Mặt Cầu, Mặt Trụ, Mặt Nón

- 6.1 Mặt Cầu, Khối Cầu
- 6.2 Khái Niệm về Mặt Tròn Xoay
- 6.3 Mặt Trụ, Hình Trụ, & Khối Trụ
- 6.4 Mặt Nón, Hình Nón, & Khối Nón

Phương Pháp Tọa Độ Trong Không Gian

- 7.1~ Hệ Tọa Độ Trong Không Gian
- 7.2 Phương Trình Mặt Phẳng
- 7.3 Phương Trình Đường Thẳng

Tài liệu tham khảo

Quỳnh, Đoàn et al. (2020). $Giải\ Tích\ 12\ nâng\ cao$. Tái bản lần thứ 12. Nhà Xuất Bản Giáo Dục Việt Nam, p. 231.