OpAmp-Circuits

Functional Block Diagram of AD633 Division by $10\ V$ (scaling) inhibits overflow. Additional summing input Z is omitted. Negative inputs of X- and Y-amplifiers are connected to ground.

Amplifier/Adder

$$\begin{split} &\frac{inp.\,v}{R_{inp}} + \frac{out.\,v}{R_{out}} = 0\\ &-out.\,v = k \cdot inp.\,v\\ &k = \frac{R_{out}}{R_{inp}} \end{split}$$

It is possible to add several inputs.

Integrator

$$\begin{split} &\frac{inp.\,v}{R_{inp}} + C_{out} \cdot \frac{d\ out.\,v}{dt} = 0 \\ &-out.\,v = v_0 + \frac{1}{\tau} \cdot \int\limits_0^t inp.\,v \cdot dt \\ &\tau = R_{inp} \cdot C_{out} \end{split}$$

It is possible to integrate the sum of several inputs.

1_Lorenz System

http://en.wikipedia.org/wiki/Lorenz attractor

Developed 1963 by Edward Lorenz to model atmospheric convection.

x is proportional to the rate of convection, y to the horizontal temperature variation and z to the vertical temperature variation. σ depicts the Prandtl number, ρ the Rayleigh number and β the physical dimensions.

The original parameters were:
$$\sigma=10, \rho=28, \beta=\frac{8}{3}$$

$$\frac{dx}{dt}=\sigma\cdot(y-x)$$

$$\frac{dy}{dt}=x\cdot(\rho-z)-y$$

$$\frac{dz}{dt}=x\cdot y-\beta\cdot z$$

 $\beta = \frac{1}{3}$ leads to a periodic solution.

For an implementation as an electronic circuit, the equations have to be scaled to keep the variables within the desired range. This can be compared with calculating per-unit values by dividing by reference values:

$$x' = \frac{x}{k_x}$$
$$y' = \frac{y}{k_y}$$
$$z' = \frac{z}{k_z}$$
$$t' = \frac{z}{\tau}$$

We also have to take into account that the analog multiplier divides by E_R to avoid overflow of the output. After that, none of the computing block should encounter an overflow.

This leads to the following set of equations:

$$\begin{split} &\frac{1}{\tau} \cdot \frac{dx'}{dt'} = -\sigma \cdot x' + \sigma \cdot \frac{k_y}{k_x} \cdot y' \\ &\frac{1}{\tau} \cdot \frac{dy'}{dt'} = \rho \cdot \frac{k_x}{k_y} \cdot x' - y' - \frac{k_x \cdot k_z \cdot V_S}{k_y} \cdot \frac{x' \cdot z'}{V_S} \\ &\frac{1}{\tau} \cdot \frac{dz'}{dt'} = \frac{k_x \cdot k_y \cdot V_S}{k_z} \cdot \frac{x' \cdot y'}{V_S} - \beta \cdot z' \end{split}$$

These equations can easily get implemented as blocks or as an electronic circuit.

2_Chua's Circuit

https://link.springer.com/book/10.1007/978-3-319-05900-6 (1.1)

https://nonlinear.eecs.berkeley.edu/chaos/chaos.html# Working With Chaos Simulation

$$L \cdot \frac{di_L}{dt} = v_2 - R_L \cdot i_L$$

$$C_2 \cdot \frac{dv_2}{dt} = -i_L - \frac{v_2 - v_1}{R}$$

$$C_1 \cdot \frac{dv_1}{dt} = -i_{NL} + \frac{v_2 - v_1}{R}$$

$$-i_{NL}(v_1) = \begin{cases} -\infty < v_1 < -V_e \to G_b \cdot (v_1 + V_e) - G_a \cdot V_e \\ -V_e < v_1 < +V_e \to G_a \cdot v_1 \\ +V_e < v_1 < +\infty \to G_b \cdot (v_1 - V_e) + G_a \cdot V_e \end{cases}$$

$$-\frac{i_{NL}}{v_1} = \begin{cases} -\infty < v_1 < -V_e \to G_b - (G_a - G_b) \cdot \frac{V_e}{v_1} \\ -V_e < v_1 < +V_e \to G_a \\ +V_e < v_1 < +\infty \to G_b + (G_a - G_b) \cdot \frac{V_e}{v_1} \end{cases}$$

$$-\frac{di_{NL}}{dv_1} = \begin{cases} -\infty < v_1 < -V_e \to G_b \\ -V_e < v_1 < +V_e \to G_a \\ +V_e < v_1 < +V_e \to G_a \end{cases}$$

$$+V_e < v_1 < +V_e \to G_b$$

$$\begin{split} \tau_L \cdot \dot{v}_{RL} &= v_2 - v_{RL} \\ \tau_2 \cdot \dot{v}_2 &= +v_1 - v_2 - \frac{R}{R_L} \cdot v_{RL} \\ \tau_1 \cdot \dot{v}_1 &= -v_1 + v_2 + R \cdot g \cdot v_1 \\ g(v_1) &= \begin{cases} |v_1| > V_e \to G_b + (G_a - G_b) \cdot \frac{V_e}{|v_1|} \\ |v_1| < V_e \to G_a \end{cases} \end{split}$$

parameter SI.Resistance R=1.9e3 "Resistor";
parameter SI.Inductance L=18e-3 "Inductor";
parameter SI.Resistance RL=14 "Resistance of Inductor";
parameter SI.Capacitance C1=10.e-9 "Capacitor 1";
parameter SI.Capacitance C2=100e-9 "Capacitor 2";
//parameter of Chua's diode
parameter Real k0=15000.0 "No-load amplification ";
parameter SI.Voltage Vs=9 "Supply voltage of opAmps";
parameter SI.Resistance R12=220 "R1 and R2";
parameter SI.Resistance R3=2200 "R3";
parameter SI.Resistance R45=22e3 "R4 and R5";
parameter SI.Resistance R6=3300 "R6";

Chua's Circuit: Inductor Replacement

$$R_7 = 100 \Omega$$

$$R_8 = 1 k\Omega$$

$$R_9 = 1 k\Omega$$

$$R_{10} = 1.8 k\Omega$$

$$C_9 = 100 nF$$

$$R_7 \cdot i + R_8 \cdot (i + i_{OA4}) = 0$$

$$R_9 \cdot (i + i_{OA4}) + v_{C9} = 0$$

$$i + i_{OA4} + i_{OA3} = i_{C9}$$

$$i_{C9} = C_9 \cdot \frac{dv_{C9}}{dt}$$

$$v = R_{10} \cdot i_{C9}$$

$$(i + i_{OA4}) = -\frac{R_7}{R_8} \cdot i$$

$$v_{c9} = \frac{R_7 \cdot R_9}{R_8} \cdot i$$

$$i_{C9} = C_9 \cdot \frac{R_7 \cdot R_9}{R_8} \cdot \frac{di}{dt}$$

$$v = C_9 \cdot \frac{R_7 \cdot R_9 \cdot R_{10}}{R_8} \cdot \frac{di}{dt}$$

$$L = C_9 \cdot \frac{R_7 \cdot R_9 \cdot R_{10}}{R_8} = 18 \text{ mH}$$

$$L = C_9 \cdot \frac{R_7 \cdot R_9 \cdot R_{10}}{R_8} = 18 \, mF$$

3_Chaotic Diode Circuit

https://www.researchgate.net/publication/309351711 A simple chaotic circuit with a light-emitting diode

$$C \cdot \frac{dv_1}{dt} = -\frac{v_2}{R}$$

$$C \cdot \frac{dv_2}{dt} = -\frac{v_3}{R}$$

$$C \cdot \frac{dv_3}{dt} = -\frac{v_1}{R} - \frac{v_3}{R_b} - \frac{v_4}{R}$$

$$\frac{v_4}{R_a} = -I_{ds} \cdot \left(e^{\frac{v_2}{nV_t}} - 1\right)$$

$$\tau = R \cdot C$$

$$\tau \cdot \frac{dv_1}{dt} = -v_2$$

$$\tau \cdot \frac{dv_2}{dt} = -v_3$$

$$\tau \cdot \frac{dv_3}{dt} = -v_1 - \frac{R}{R_h} \cdot v_3 + R_a \cdot I_{ds} \cdot \left(e^{\frac{v_2}{nV_t}} - 1\right)$$

$$a = \frac{R_a \cdot I_{ds}}{nV_t}$$

$$b = \frac{R}{R_b}$$

$$\tau \cdot \dot{x}_1 = -x_2$$

$$\tau \cdot \dot{x}_2 = -x_3$$

$$\tau \cdot \dot{x}_3 = -x_1 + a \cdot (e^{x_2} - 1) - b \cdot x_3$$

4_Chaotic Oscillator

https://www.researchgate.net/publication/230925506_A_simple_chaotic_oscillator_for_educational_purposes
https://www.researchgate.net/publication/259216097_NUMERICAL_TREATMENT_OF_EDUCATIONAL_CHAOS_OSCILLATOR

$$\begin{split} i_L &= C \cdot \frac{dv_C}{dt} \\ L \cdot \frac{di_L}{dt} &= \left(k - 1 - \frac{R_L}{R}\right) \cdot R \cdot i_L - v_C - v_{C^*} \\ k &= 1 + \frac{R_2}{R_1} \\ C^* \cdot \frac{dv_{C^*}}{dt} &= I_0 + i_L - I_{DS} \cdot \left(e^{\frac{v_{C^*}}{nV_t}} - 1\right) \\ I_0 &\approx \frac{V_b}{R_0} \end{split}$$

$$\tau = \sqrt{L \cdot C}$$

$$Z = \sqrt{\frac{L}{C}}$$

$$a = \left(k - 1 - \frac{R_L}{R}\right) \cdot \frac{R}{Z}$$

$$b = \frac{Z \cdot I_0}{nV_t}$$

$$c = \frac{Z \cdot I_{DS}}{nV_t}$$

$$e = \frac{C^*}{C}$$

$$\begin{split} \tau \cdot \frac{\dot{v}_C}{nV_t} &= \frac{Z \cdot i_L}{nV_t} \\ \tau \cdot \frac{Z \cdot i_L}{nV_t} &= \left(k - 1 - \frac{R_L}{R}\right) \cdot \frac{R}{Z} \cdot \frac{Z \cdot i_L}{nV_t} - \frac{v_C}{nV_t} - \frac{v_{C^*}}{nV_t} \\ \tau \cdot e \cdot \frac{\dot{v}_{C^*}}{nV_t} &= \frac{Z \cdot I_0}{nV_t} + \frac{Z \cdot i_L}{nV_t} - \frac{Z \cdot I_{DS}}{nV_t} \cdot \left(e^{\frac{v_{C^*}}{nV_t}} - 1\right) \end{split}$$

5_Colpitts Oscillator

https://link.springer.com/book/10.1007/978-3-319-05900-6 (1.3)

https://ieeexplore.ieee.org/document/331536

$$C_1 \cdot \frac{dv_1}{dt} = i_L - \beta \cdot i_B$$

$$C_2 \cdot \frac{dv_2}{dt} = -\frac{V_{s-} + v_2}{R_2} - i_L - i_B$$

$$L \cdot \frac{di_L}{dt} = V_{s+} - v_1 + v_2 - R_L \cdot i_L$$

$$i_B = \begin{cases} v_2 = v_{BE} \le V_{th} \to & 0 \\ v_2 = v_{BE} > V_{th} \to & \frac{v_2 - V_{th}}{R_{on}} \end{cases}$$

parameter SI.Resistance RL=35. "Resistance of L";
parameter SI.Inductance L=98.5e-6 "Inductor";
parameter SI.Resistance R2=1000 "Resistor 2";
parameter SI.Capacitance C1=54.e-9 "Capacitor 1";
parameter SI.Capacitance C2=54.e-9 "Capacitor 2";
parameter SI.Voltage Vs=5 "Source Voltage";

parameter SI.Voltage Vth=0.75 "Transistor threshold voltage";
parameter SI.Resistance Ron=100
 "Small-signal on-resistance of base-emitter junction";
parameter Real beta=200 "Transistor forward current gain";

6_Shinriki Oscillator

https://pawn.physik.uni-wuerzburg.de/~slueck/PhyAmSa09/Home_files/Examensarbeit_Lueck.pdf https://ieeexplore.ieee.org/abstract/document/1456241

$$\begin{split} i_z &= \begin{cases} |v_z| < V_{bt} & 0 \\ |v_z| \ge V_{bt} & sign(v_z) \cdot [a \cdot (|v_z| - V_{bt}) + b \cdot (|v_z| - V_{bt})^3 + c \cdot (|v_z| - V_{bt})^5] \\ & C_1 \cdot \frac{dv_1}{dt} = -i_{NIC} - \frac{v_1}{R_1} - i_z \\ & C_2 \cdot \frac{dv_2}{dt} = i_z - i_L \\ & v_2 = L \cdot \frac{di_L}{dt} + R_L \cdot i_L \\ & g_{NIC} = \frac{di_{NIC}}{dv_{NIC}} = \begin{cases} |v_{NIC}| > V_{Lim} & G_+ \\ |v_{NIC}| \le V_{Lim} & G_- \end{cases} \end{split}$$

Characteristic of negative impedance converter

Characteristic of Zener diode pair

parameter SI.Inductance L=320e-3 "Inductor";
parameter SI.Resistance RL=100. "Resistor of L";
parameter SI.Resistance R1=60e3 "Resistor 1";
parameter SI.Resistance R2=20e3 "Resistor 2";
parameter SI.Capacitance C1=10.e-9 "Capacitor 1";
parameter SI.Capacitance C2=100e-9 "Capacitor 2";

$$a = 1,0862 \frac{mA}{V}$$

$$b = -0,1615 \frac{mA}{V^3}$$

$$c = 0,3021 \frac{mA}{V^5}$$

$$V_{Lim} = 8,870565 V$$

$$G_+ = 0,212766 mS$$

$$G_- = -0,147018 mS$$