Pompe à piston axial ★

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e\overrightarrow{i_1}$ et $\overrightarrow{BI} = R\overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t)\overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note *S* la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $R=10\,\mathrm{mm}$ ainsi que pour $e=20\,\mathrm{mm}$ et $R=5\,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t)=100\,\mathrm{rad\,s^{-1}}$, la section du piston est donnée par $S=1\,\mathrm{cm^2}$.

```
Indications:

1. .

2. e \sin \theta + R - \lambda(t) = 0.

3. \dot{\lambda}(t) = e \dot{\theta}(t) \cos \theta(t).
```

4. $q(t) = eS\dot{\theta}(t)\cos\theta(t)$.

5. .

Corrigé voir .

