In [2]: import pandas as pd
In [3]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [4]: data.describe()

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [5]: data.head(10)

Out[5]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
	0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
	1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
	2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
	3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
	4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
	5	6	pop	74	3623	70225	1	45.000702	7.682270	7900
	6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
	7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
	8	9	sport	73	4049	76000	1	45.548000	11.549470	5600
	9	10	sport	51	3653	89000	1	45.438301	10.991700	6000

In [6]: datal=data.drop(['lat','ID'],axis=1)

akhi - Jupyter Notebook

Out[9]: (1538, 9)

In [7]:	data1	_						
Out[7]:		model	engine_power	age_in_days	km	previous_owners	lon	price
	0	lounge	51	882	25000	1	8.611560	8900
	1	pop	51	1186	32500	1	12.241890	8800
	2	sport	74	4658	142228	1	11.417840	4200
	3	lounge	51	2739	160000	1	17.634609	6000
	4	pop	73	3074	106880	1	12.495650	5700
	1533	sport	51	3712	115280	1	7.704920	5200
	1534	lounge	74	3835	112000	1	8.666870	4600
	1535	pop	51	2223	60457	1	9.413480	7500
	1536	lounge	51	2557	80750	1	7.682270	5990
	1537	pop	51	1766	54276	1	17.568270	7900
	1538 r	ows × 7	columns					
In [8]:	data1	=pd.ge	et_dummies(d	data1)				
In [9]:	data1	shape	e					

In [10]: data1

Out[10]:

: 	engine_power	age_in_days	km	previous_owners	lon	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8.611560	8900	1	0	0
1	51	1186	32500	1	12.241890	8800	0	1	0
2	74	4658	142228	1	11.417840	4200	0	0	1
3	51	2739	160000	1	17.634609	6000	1	0	0
4	73	3074	106880	1	12.495650	5700	0	1	0
1533	51	3712	115280	1	7.704920	5200	0	0	1
1534	74	3835	112000	1	8.666870	4600	1	0	0
1535	51	2223	60457	1	9.413480	7500	0	1	0
1536	51	2557	80750	1	7.682270	5990	1	0	0
1537	51	1766	54276	1	17.568270	7900	0	1	0

1538 rows × 9 columns

```
In [11]: y=data1['price']
```

```
In [12]: x=data1.drop('price',axis=1)
```

```
In [13]: y
Out[13]: 0
                   8900
                   8800
                   4200
          2
          3
                  6000
          4
                   5700
                   . . .
          1533
                   5200
          1534
                  4600
          1535
                   7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [14]: #!pip3 install scikit learn
In [15]: from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [16]: from sklearn.model selection import GridSearchCV
In [17]: | from sklearn.linear_model import Ridge
In [18]: x_train.head(5)
Out[18]:
               engine_power age_in_days
                                                              Ion model_lounge model_pop model_sport
                                        km previous owners
           527
                        51
                                  425 13111
                                                           7.58602
                                                                            1
                                                                                      0
                                                                                                 0
                                 1127 21400
           129
                        51
                                                           7.54592
                                                                            1
                                                                                      0
                                                                                                 0
           602
                        51
                                 2039 57039
                                                        1 14.52835
                                                                            0
                                                                                      1
                                                                                                 0
                                 1155 40700
                                                                            1
                                                                                      0
           331
                        51
                                                        1 12.54016
                                                                                                 0
           323
                        51
                                  425 16783
                                                        1 12.49565
                                                                            1
                                                                                      0
                                                                                                 0
```

```
In [19]: y_test.head(10)
Out[19]: 481
                  7900
         76
                  7900
         1502
                  9400
         669
                  8500
         1409
                  9700
         1414
                  9900
         1089
                  9900
         1507
                  9950
         970
                 10700
         1198
                  8999
         Name: price, dtype: int64
```

```
In [20]:
         alpha=[1e-15,1e-10,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
         ridge = Ridge()
         parameters = {'alpha':alpha}
         ridge regressor = GridSearchCV(ridge,parameters)
         ridge regressor.fit(x train,y train)
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.35498e-26): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=8.73659e-26): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=6.91502e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.08137e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.01088e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.5803e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.24144e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=6.91502e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.08137e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.01088e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.5803e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
```

```
/home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.24144e-23): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=6.92757e-21): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.09091e-21): result may not be accurate.
           return linalq.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.02113e-21): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.57413e-21): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.23284e-21): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=6.92769e-17): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.09098e-17): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.02123e-17): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.57406e-17): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ ridge.py:216: LinAlgWarning: I
         ll-conditioned matrix (rcond=7.23274e-17): result may not be accurate.
           return linalg.solve(A, Xy, assume a="pos", overwrite a=True).T
Out[20]: GridSearchCV(estimator=Ridge(),
                      param grid={'alpha': [1e-15, 1e-10, 1e-10, 1e-08, 0.0001, 0.001,
                                            0.01, 1, 5, 10, 20, 30
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [21]: ridge_regressor.best_params_
Out[21]: {'alpha': 30}
In [22]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred_ridge=ridge.predict(x_test)

In [23]: from sklearn.metrics import mean_squared_error
    Ridge_Error=mean_squared_error(y_pred_ridge,y_test)
    Ridge_Error
Out[23]: 575383.1771434229

In [24]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_ridge)
Out[24]: 0.8433238795940019
```

```
In [25]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

Out[25]:

	index	price	predicted	ID
0	481	7900	5747.926902	0
1	76	7900	7208.382565	1
2	1502	9400	9818.102659	2
3	669	8500	9769.459155	3
4	1409	9700	10067.159538	4
5	1414	9900	9637.878391	5
6	1089	9900	9645.621130	6
7	1507	9950	10153.777414	7
8	970	10700	9844.599721	8
9	1198	8999	9305.396258	9
10	1088	9890	10479.065427	10
11	576	7990	7772.362188	11
12	965	7380	7666.138173	12
13	1488	6800	6523.634742	13
14	1432	8900	9616.023410	14

```
In [26]: #extract column syntax.
data2=x.loc[:,"model_lounge"]
```

```
In [27]: data2
Out[27]: 0
                 0
         2
                 0
         3
                 0
         1533
                 0
         1534
                 1
         1535
                 0
         1536
                 1
         1537
                 0
         Name: model_lounge, Length: 1538, dtype: uint8
In [28]: data2=pd.get_dummies(data2)
```

In [29]: data2

Out[29]:

	0	1
0	0	1
1	1	0
2	1	0
3	0	1
4	1	0
1533	1	0
1534	0	1
1535	1	0

1536 0 1 **1537** 1 0

1538 rows × 2 columns

```
In [30]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[30]: []

In []:	