

Hirschbergův algoritmus

Programování v bioinformatice

MPC – PRG 2021/2022

Vyučující: Ing. Kateřina Jurečková(garant) Ing. et Ing. Jana Schwarzerová, MSc

Opakování

□ Co je to algoritmus?

(určovat jeho výpočetní náročnost, podle čeho se hodnotí apod.)

□ Co je to rekurze?

(rozdíl mezi rekurzí a iterací)

⇒Hirschbergův algoritmus

http://users.monash.edu/~lloyd/tildeAlgDS/Dynamic/Hirsch/

Hirschbergův algoritmus

· Daniel S. Hirschberg

- □ Dynamický programovací algoritmus (DPA)
 - obecně použitelný pro optimální zarovnání sekvencí
- □Účel: nalézt optimální zarovnání sekvence mezi dvěma řetězci

Hirschbergův algoritmus

□ Hirschbergův algoritmus je jednoduše popsán jako prostorově efektivnější verze algoritmu Needleman – Wunsch

- □ Praktické využití výpočetní biologie
 - slouží k nalezení maximálního globálního zarovnání sekvencí DNA a proteinů

Měli byste vědět co je N-W algoritmus a rozdíl mezi globálním a lokálním zarovnáním [viz ABIN – Bioinformatika, bakalářský program]

Vsuvka – Needleman-Wunsch Algoritmus

- □Saul B. Needleman & Christian D. Wunsch
- □ Algoritmus dynamického programování s cílem provést globální zarovnání sekvencí

```
H(i, j) = hodnota pole v matici na souřadnicích i, j
```

d = sankce za vložení mezery (záporné číslo, nebo 0)

F(i, j) = hodnota skóre za shodu/neshodu znaků v matici na souřadnicích i, j

$Nw(Sek1,Sek2,\,match,\,mismatch,\,gap)$

Vsuvka – Needleman-Wunsch Algoritmus

- 1) Inicializace nuly do horního rohu matice
- 2) Do každého dalšího pole:

$$\max \begin{cases} H(i-1, j) + d \\ H(i, j-1) + d \\ H(i-1, j-1) + F(i, j) \end{cases}$$

3) Po zapsání všech hodnot do matice nalezneme zpětnou cestu

-	-	A	T	С	G	A	С
-	0 _	→ -4 –	> -8 -	> -12 -	> -16 -		> -24
C	-4 [*]	-3 -	> -7	-3	→ -7 -	> -11	> -15
A	-8	1 -	→ -3 −	→ -7 [↓]	-6	-2 -	→ -6
T	-12	-3 ×	6 -	→ 2 -	→ -2 ⁻	→ -6	-5
A	-16	-7	2	3 -	→ -1	3 -	→ -1
С	-20 ¹	-11 [*]	-2	-1 ^V	0	-1	8

Vsuvka

□ABIN – N-W algoritmus ✓

■MPC-PRG – Cvičení 2 – náročnost algoritmu ✓

 \check{C} asová náročnost algoritmu – O(M*N)Prostorová náročnost algoritmu – O(M*N)

=> N-W není moc efektivní ... Co tak použít nějakou rekurzi?

□MPC-PRG – Cvičení 4 – Rekurze ✓

Hirschbergův algoritmus

Příklad (z přednášky)

Zadání:

```
X = AGTACGCA
Y = TATGC
match = 2; mismatch = -1; gap = -2
```

Příklad

Hirschberg(AGTACGCA, TATGC)

Hirschbergův algoritmus – souhrn

 \square Máme sadu řetězců označených jako x, y a jejich sub-sekvenci u.

Def. problém: hledáme nejdelší společnou sub-sekvenci $u = u_1 \dots u_k$, danou řetězci $x = x_1 x_2 \dots x_M$, $y = y_1 y_2 \dots y_N$,

□Algoritmus:

$$F(i, j) = \max \begin{cases} F(i - 1, j) \\ F(i, j - 1) \\ F(i - 1, j - 1) + [1 - kdy\check{z} x_i = y_j; \\ 0 - cokoli jin\acute{e}ho] \end{cases}$$

Ptr(i, j) = stejné jako N-W algoritmus

Ukončení: trasa zpět z Ptr(M, N), a přiřazení \boldsymbol{u} kdykoli, když Ptr(i, j) = DIAG and F(i-1, j-1) < F(i, j)

Souhrn úkolů pro cvičení 4

- 1) Pochopit Hirschbergův algoritmus
- 2) Projít si ZNOVU příklady
 - z přednášky –pdf viz týden 3
 - ze cvičení viz týden 4 (doptat se k věcem, které mi nejsou jasné)
- 3) Zkontrolovat zda jsem NEPODCENIL/A bod 1 + 2 !!!
- 4) Implementovat Hirschbergův algoritmus do libovolného programovacího jazyk (**R** doporučeno / Matlab / Python etc.)

[Nápověda – https://en.wikipedia.org/wiki/Hirschberg%27s algorithm]

V časovém rozmezí cvik byste ovšem měli být MINIMÁLNĚ schopni vyřešit aspoň subproblémy:

dělit sekvence + najít další bod dělení

Každým rokem je největší problém se správným předáváním proměnných! Takže bacha na to, jaké proměnné si voláte a jaké zadáváte!

Kdo by si chtěl celkově věci z bioinformatiky propojit a pochopit doporučuji

https://slideplayer.com/slide/4837166/

