Глава 19

Собствени вектори и инвариантни подпространства на линеен оператор.

Определение 19.1. Характеристичният полином на квадратна матрица $A \in M_{n \times n}(F)$ от ред n е

$$f_A(x) = \det(A - xE_n) = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ & & & & \ddots & \ddots \\ a_{n1} & & a_{n2} & \dots & a_{nn} - x \end{vmatrix} =$$

$$= (-1)^n x^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) x^{n-1} + \dots + \det(A).$$

Корените на $f_A(x) = 0$ се наричат характеристични корени на A.

Да забележим, че характеристичноте корени на $A \in M_{n \times n}(F)$ не са обезателно от F. Например,

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in M_{2 \times 2}(\mathbb{R})$$

има характеристичен полином

$$f_A(x) = \det(A - xE_2) = \begin{vmatrix} -x & 1 \\ -1 & -x \end{vmatrix} = x^2 + 1 \in \mathbb{R}[x]$$

и характеристични корени $\pm \sqrt{-1} = \pm i \in \mathbb{C} \setminus \mathbb{R}$.

ЛЕМА 19.2. Ако $A \in M_{n \times n}(F)$ и $B = T^{-1}AT \in M_{n \times n}(F)$ са подобни матрици, то характеристичните полиноми $f_A(x) = f_B(x)$ на A и B съвпадат.

Доказателство. Вземайки предвид $xE_n = x(T^{-1}E_nT) = T^{-1}(xE_n)T$, пресмятаме

$$f_B(x) = \det(B - xE_n) = \det[T^{-1}AT - T^{-1}(xE_n)T] =$$

$$= \det[T^{-1}(A - xE_n)T] = \det(T^{-1})\det(A - xE_n)\det(T) =$$

$$= \det(T^{-1}T)\det(A - xE_n) = \det(E_n)f_A(x) = f_A(x).$$

Да напомним, че матриците на линеен оператор $\varphi:V\to V$ в крайномерно пространство V спрямо различни базиси са подобни помежду си. Това дава основание за следното

17 . 17 u

Определение 19.3. Нека $\varphi: V \to V$ е линеен оператор в крайномерно пространство V над поле F. Характеристичният полином на матрицата на φ спрямо един, а оттам и всеки един базис на V се нарича характеристичен полином на φ и се бележи с $f_{\varphi}(x)$.

Характеристичните корени на φ са корените на $f_{\varphi}(x)$.

Определение 19.4. Собствен вектор на линеен оператор $\varphi: V \to V$ е ненулев вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ с $\varphi(v) = \lambda v$ за някое $\lambda \in F$. Казваме, че λ е собствена стойност на φ , отговаряща на собствения вектор v.

С други думи, собствените вектори на $\varphi:V\to V$ са точно онези ненулеви вектори v от V, върху които φ действа като хомотетия с коефициент съответната собствена стойност $\lambda\in F$.

ТВЪРДЕНИЕ 19.5. Нека $\varphi: V \to V$ е линеен оператор в крайномерно линейно пространство V над поле F. Тогава собствените стойности на φ съвпадат с характеристичните корени на φ от F.

Доказателство. Да забележим, че хомогенна система линейни уравнения $Mx = \mathbb{O}_{n \times 1}$ с квадратна матрица от коефициенти $M \in M_{n \times n}(F)$ има ненулево решение тогава и само тогава, когато размерността на пространството от решения е $n - \operatorname{rk}(M) > 0$. Последното е равносилно на $\operatorname{rk}(M) < n$ и е изпълнено точно когато $\det(M) = 0$.

Нека $e=(e_1,\ldots,e_n)$ е базис на V и $A\in M_{n\times n}(F)$ е матрицата на φ спрямо базиса e на V. Произволен ненулев вектор $v\in V\setminus\{\overrightarrow{\mathcal{O}}_V\}$ с координати $x\in M_{n\times 1}(F)\setminus\{\mathbb{O}_{n\times 1}\}$ спрямо базиса e се изобразява във вектора $\varphi(v)=\varphi(ex)=\varphi(e)x=(eA)x=e(Ax)$, съгласно Лема 16.1 - Матрична форма на лиинейността на изображение и определението за A. Следователно v е собствен вектор на φ , отговарящ на собствена стойност $\lambda\in F$ тогава и само тогава

$$e(Ax) = \varphi(v) = \lambda v = \lambda(ex) = e(\lambda x),$$

съгласно свойствата на умножението на две матрици със скалар. По Лема 16.4 (ii) и свойствата на единичната матрица $E_n \in M_{n \times n}(F)$, горното е еквивалентно на $Ax = \lambda x = \lambda(E_n x) = (\lambda E_n) x$ и е в сила точно когато хомогенната система линейни уравнения $(A - \lambda E_n) x = Ax - (\lambda E_n) x = \mathbb{O}_{n \times 1}$ има ненулево решение $x \in M_{n \times 1}(F) \setminus \{\mathbb{O}_{n \times 1}\}$. Последното условие е равносилно на анулирането $0 = \det(A - \lambda E_n) = f_A(\lambda)$ на детерминантата на матрицата от коефициенти $A - \lambda E_n \in M_{n \times n}(F)$, която съвпада със стойността $f_{\varphi}(\lambda) = f_A(\lambda) = 0$ на характеристичния полином $f_{\varphi}(x)$ на φ в $\lambda \in F$. По този начин установихме, че $\lambda \in F$ е собствена стойност на φ тогава и само тогава, когато λ е характеристичен корен на φ , който принадлежи на F.

ТВЪРДЕНИЕ 19.6. Нека $\lambda_1, \ldots, \lambda_n$ са различни собствени стойности на линеен оператор $\varphi: V \to V$ в пространство V над поле F. За всяко $1 \le i \le n$ да предположим, че $v_{i,1}, \ldots, v_{i,k_i} \in V$ са линейно независими собствени вектори на φ , отговарящи на собствената стойност λ_i . Тогава системата вектори

$$\{v_{i,j} \mid 1 \le j \le k_i, 1 \le i \le n\}$$

е линейно независима.

В частност, ако v_1, \ldots, v_n са собствени вектори на φ , отговарящи на различни собствени стойности $\lambda_1, \ldots, \lambda_n$, то v_1, \ldots, v_n са линейно независими, защото всеки от тези собствени вектори е ненулев, а оттам и линейно независим.

Доказателство. С индукция по броя n на разглежданите собствени стойности $\lambda_1,\dots,\lambda_n$ на φ , за n=1 няма какво да се доказва. В общия случай да разгледаме линейна комбинация

$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} \mu_{i,j} v_{i,j} = \overrightarrow{\mathcal{O}}_V$$
 (19.1)

на дадените вектори, равна на нулевия вектор на V. Действието на φ върху (19.1) дава

$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} \mu_{i,j} \lambda_i v_{i,j} = \overrightarrow{\mathcal{O}}_V$$
(19.2)

съгласно $\varphi(v_{i,j}) = \lambda_i v_{i,j}$ и $\varphi(\overrightarrow{\mathcal{O}}_V) = \overrightarrow{\mathcal{O}}_V$. За да елиминираме $v_{n,1}, \dots, v_{n,k_n}$ от (19.1) и (19.2), умножаваме (19.1) с $-\lambda_n$ и прибавяме към (19.2). Получаваме

$$\overrightarrow{\mathcal{O}}_{V} = \sum_{i=1}^{n} \sum_{j=1}^{k_{i}} \mu_{i,j} (\lambda_{i} - \lambda_{n}) v_{i,j} = \sum_{i=1}^{n-1} \sum_{j=1}^{k_{i}} \mu_{i,j} (\lambda_{i} - \lambda_{n}) v_{i,j}.$$

По индукционно предположение, системата $\{v_{i,j} \mid 1 \leq i \leq n-1, 1 \leq j \leq k_i\}$ е линейно независима, така че

$$\mu_{i,j}(\lambda_i - \lambda_n) = 0$$
 за всички $1 \le i \le n-1$ и $1 \le j \le k_i$.

Съгласно $\lambda_i - \lambda_n \neq 0$ за $1 \leq i \leq n-1$, стигаме до извода, че $\mu_{i,j} = 0$ за всички $1 \leq i \leq n-1$ и $1 \leq j \leq k_i$. Сега (19.1) приема вида

$$\sum_{j=1}^{k_n} \mu_{n,j} v_{n,j} = \overrightarrow{\mathcal{O}}_V.$$

Съгласно линейната независимост на $v_{n,1},\dots,v_{n,k_n}$, коефициентите $\mu_{n,j}=0$ се анулират за всички $1\leq j\leq k_n$. Това доказва линейната независимост на

$$\{v_{i,j} \mid 1 \le i \le n, \ 1 \le j \le k_i\}.$$

Определение 19.7. (i) Спектърът на матрица $A \in M_{n \times n}(F)$ е множеството на характеристичните корени на A от основното поле F. Ако A има n различни характеристични корена от F, то казваме, че A има прост спектър.

(ii) Спектърът на линеен оператор $\varphi: V \to V$ в п-мерно пространство V над поле F е множеството на характеристичните корени на φ от F или, еквивалентно, множеството на собствените стойности на φ . Ако φ има п различни характеристични корена от F, то казваме, че φ има прост спектър.

Твърдение 19.8. (i) Нека $\varphi: V \to V$ е линеен оператор с прост спектор в n-мерно пространство V над поле F. Тогава съществува базис v_1, \ldots, v_n на V, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

на φ е диагонална. Еквивалентно, съществува базис на V, съставен от собствени вектори за φ .

(ii) Нека $A \in M_{n \times n}(F)$ е матрица с прост спектър. Тогава съществува обратима матрица $T \in M_{n \times n}(F)$, така че $D = T^{-1}AT$ е диагонална.

Доказателство. (i) По определение, φ е оператор с прост спектър, ако има n различни характеристични корена $\lambda_1, \ldots, \lambda_n$ от F. Съгласно Твърдение 19.5, $\lambda_1, \ldots, \lambda_n$ са собствени стойности на φ . Ако v_i са собствени вектори на $\varphi: V \to V$, отговарящи на собствените стойности λ_i , то v_1, \ldots, v_n са линейно независими по Твърдение 19.6. Прилагаме Твърдение 5.12 към линйено независимите вектори v_1, \ldots, v_n от n-мерното пространство V и получаваме, че v_1, \ldots, v_n е базис на V. Съгласно

$$\varphi(v_i) = \lambda_i v_i = 0.v_1 + \ldots + 0.v_{i-1} + \lambda_i . v_i + 0.v_{i+1} + \ldots + 0.v_n$$
) за всяко $1 \le i \le n$,

матрицата на φ в базиса v_1, \dots, v_n е диагонална и диагоналните и елементи са равни на съответните собствени стойности,

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
 (19.3)

и диагоналните елементи са равни на съответните собствени стойности.

Да забележим, че ако операторът φ има диагонална матрица (19.3) спрямо базис v_1, \ldots, v_n на V, то $\varphi(v_i) = \lambda_i v_i$ за всяко $1 \le i \le n$ и v_1, \ldots, v_n са собствени вектори на φ , отговарящи на собствени стойности $\lambda_1, \ldots, \lambda_n$.

(ii) Нека $e=(e_1,\ldots,e_n)$ е базис на n-мерно пространство V над F, а $\varphi:V\to V$ е линейният оператор с матрица $A\in M_{n\times n}(F)$ спрямо базиса e. Тогава φ има прост спектър и съгласно (i) съществува базис $v=(v_1,\ldots,v_n)$ на V, в който матрицата на φ е диагонална,

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Матрицата на прехода $T \in M_{n \times n}(F)$ от базиса e към базиса v = eT е обратима и

$$D = T^{-1}AT.$$

За някои линейни оператори в крайномерно пространство не съществува базис от собствени вектори. Например, операторът $\varphi_o:V\to V$ в 2-мерно пространство V над поле F с матрица

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

спрямо някакъв базис $e=(e_1,e_2)$ на V не може да се представи чрез диагонална матрица спрямо базис $f=(f_1,f_2)$ на V. В противен случай, съществува обратима матрица

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 с обратна $T^{-1} = \frac{1}{\det(T)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$,

така че

$$D = T^{-1}AT = \frac{1}{\det(T)} \begin{pmatrix} \det(T) + cd & d^2 \\ -c^2 & \det(T) - cd \end{pmatrix}$$

е диагонална. Следователно c=d=0 и $\det(T)=ad-bc=0$. Това противоречи на обратимостта на T и доказва несъществуването на базис $f=(f_1,f_2)$ на V, в който матрицата на $\varphi_o:V\to V$ е диагонална. Еквивалентно, матрицата $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ не е подобна на диагонална.

ОПРЕДЕЛЕНИЕ 19.9. Подпространство W на линейно пространство V е инвариантно относно линеен оператор $\varphi: V \to V$, ако $\varphi(W) \subseteq W$.

ПРИМЕР 19.10. Ако $\varphi:V\to V$ е линеен оператор в пространство V над поле F, то ядрото $\ker\varphi$ и образът $\operatorname{im}(\varphi)$ са φ -инвариантни подпространства на V.

Доказателство. За произволен вектори $u \in \ker(\varphi)$ е в сила $\varphi(u) = \mathcal{O}_V \in \ker(\varphi)$, защото подпространството $\ker \varphi$ на V съдържа нулевия вектор \mathcal{O}_V . Това доказва φ -инвариантността на ядрото $\ker(\varphi)$.

Ако $\varphi(v) \in \operatorname{im}(\varphi)$ за някой вектор $v \in V$, то $\varphi(\varphi(v)) \in \operatorname{im}(\varphi)$, така че подпространството $\operatorname{im}(\varphi)$ е φ -инвариантно.

ЛЕМА 19.11. Нека $\varphi:V\to V$ е линеен оператор в линейно пространство V над поле F.

- (i) За всяко $\lambda \in F$ множеството $U_{\lambda} = \{v \in V | \varphi(v) = \lambda v\}$ е φ -инвариантно подпространство на V. Ако λ е собствена стойност на φ , то U_{λ} е обединението на собствените вектори на φ , отговарящи на собствената стойност λ и нулевия вектор на V. Ако λ не е собствена стойност на φ , то $U_{\lambda} = \{\overrightarrow{\mathcal{O}}\}$ е нулевото подпространство.
- (ii) Ненулев вектор $v \in V \setminus \{ \overline{\mathcal{O}}_V \}$ поражда 1-мерно φ -инвариантно подпространство l(v) на V тогава и само тогава, когато v е собствен вектор на оператора φ .

ДОКАЗАТЕЛСТВО. (i) Подмножеството $U_{\lambda} = \{v \in V \mid \varphi(v) = \lambda v\}$ на V е подпространство на V, защото за произволни $u_1, u_2 \in U_{\lambda}$ и $\mu \in F$ е в сила $u_1 + u_2, \mu u_1 \in U_{\lambda}$, съгласно

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2) = \lambda u_1 + \lambda u_2 = \lambda(u_1 + u_2)$$
 и

$$\varphi(\mu u_1) = \mu \varphi(u_1) = \mu(\lambda u_1) = (\mu \lambda)u_1 = (\lambda \mu)u_1 = \lambda(\mu u_1).$$

Подпространството U_{λ} на V е φ -инвариантно, защото за произволен вектор $u\in U_{\lambda}$ е изпълнено $\varphi(u)=\lambda u\in U_{\lambda}.$

(ii) Ако 1-мерното подпространство l(v) на V е φ -инвариантно, то ненулевият вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ се изобразява в $\varphi(v) \in l(v)$, така че $\varphi(v) = \lambda v$ за някое $\lambda \in F$ и v е собствен вектор на φ , отговарящ на собствена стойност λ .

Обратно, ако $v \in V \setminus \{\overline{\mathcal{O}}_V\}$ е собствен вектор на φ , отговарящ на собствена стойност λ , то произволен вектор $\mu v \in l(v)$ се изобразява в $\varphi(\mu v) = \mu \varphi(v) = \mu(\lambda v) = (\mu \lambda)v \in l(v)$ и 1-мерното подпространство l(v) на V е φ -инвариантно.

Приемаме без доказателство следната

ТЕОРЕМА 19.12. (Основна Теорема на алгебрата:) Всички корени на непостоянен полином $f(x) \in \mathbb{C}[x] \setminus \mathbb{C}$ с комплексни коефициенти са комплексни числа $\alpha \in \mathbb{C}$.

В частност, всеки линеен оператор $\varphi:V\to V$ в крайномерно пространство V над $\mathbb C$ има комплексен характеристичен корен $\lambda\in\mathbb C$. Съгласно Твърдение 19.5, λ е собствена стойност на φ и съществува собствен вектор $v\in V\setminus\{\overrightarrow{\mathcal O}\}$ на φ , отговарящ на собствената стойност λ . В резултат, l(v) е 1-мерно φ -инвариантно подпространство на V. Това доказва следното

Твърдение 19.13. Всеки линеен оператор $\varphi: V \to V$ в крайномерно линейно пространство V над полето $\mathbb C$ на комплексните числа има 1-мерно φ -инвариантно подпространство.

Твърдение 19.14. Всеки линеен оператор $\varphi: V \to V$ в крайномерно пространство V над полето на реалните числа $\mathbb R$ има 1-мерно или 2-мерно φ -инвариантно подпространство.

Доказателство. Избираме базис $f=(f_1,\ldots,f_n)$ на V и разглеждаме матрицата $A\in M_{n\times n}(\mathbb{R})$ на φ спрямо f.

Ако A има реален характеристичен корен $\lambda \in \mathbb{R}$, то λ е собствена стойност на φ и произволен собствен вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ на φ , отговарящ на собствената стойност λ поражда 1-мерно φ -инвариантно подпространство l(v) на V.

Отсега нататък ще предполагаме, че всички характеристични корени на φ и на A са комплексни нереални числа и ще докажем, че тогава φ има 2-мерно φ -инвариантно подпространство.

За целта разглеждаме координатния изоморфизъм $C:V\to M_{n\times 1}(\mathbb{R})$, съпоставящ на вектор $fx\in V$ координатния му стълб C(fx)=x спрямо f. Това е линейният изоморфизъм, трансформиращ векторите f_i от избрания базис на V във вкторите

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i})$$

от стандартния базис на $M_{n\times 1}(\mathbb{R})$. Нека $\varphi_o: M_{n\times 1}(\mathbb{R}) \to M_{n\times 1}(\mathbb{R})$ е линейният оператор с матрица A спрямо стандартния базис $e=(e_1,\ldots,e_n)$. Тогава φ_o действа по правилото $\varphi_o(x)=Ax$ за всяко $x\in M_{n\times 1}(\mathbb{R})$. В диаграмата

$$V \xrightarrow{C} M_{n \times 1}(\mathbb{R})$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi_o}$$

$$V \xrightarrow{C} M_{n \times 1}(\mathbb{R})$$

имаме $C\varphi = \varphi_o C$, съгласно

$$C\varphi(fx) = C(\varphi(f)x) = C((fA)x) = C(f(Ax)) = Ax = \varphi_o(x) = \varphi_o(fx).$$

Влагаме наредените n-торки реални числа $M_{n\times 1}(\mathbb{R})$ в наредените n-торки комплексни числа $M_{n\times 1}(\mathbb{C})$ като елементите с нулеви имагинерни части на компонентите. Линейният оператор $\varphi_o^{\mathbb{C}}: M_{n\times 1}(\mathbb{C}) \to M_{n\times 1}(\mathbb{C})$ с матрица A спрямо стандартния базис $e=(e_1,\ldots,e_n)$ на $M_{n\times 1}(\mathbb{C})$ се ограничава до $\varphi_o^{\mathbb{C}}|_{M_{n\times 1}(\mathbb{R})}=\varphi_o$ и двата пътя от горния ляв ъгъл до долния десен ъгъл в диаграмата

$$M_{n\times 1}(\mathbb{R}) \longrightarrow M_{n\times 1}(\mathbb{C})$$

$$\downarrow^{\varphi_o} \qquad \qquad \downarrow^{\varphi_o^{\mathbb{C}}}$$

$$M_{n\times 1}(\mathbb{R}) \longrightarrow M_{n\times 1}(\mathbb{C})$$

действат по един и същи начин.

Линейният оператор $\varphi_{\mathbb{C}}^{\mathbb{C}}$ в n-мерното пространство $M_{n\times 1}(\mathbb{C})$ над \mathbb{C} има комплексен характеристичен корен $\lambda\in\mathbb{C}$, който е характеристичен корен на A, а оттам и на φ . Следователно $\lambda=a+bi\in\mathbb{C}\setminus\mathbb{R}$ с $a,b\in\mathbb{R},\,b\neq 0$ е комплексно нереално число и съществува собствен вектор $w\in M_{n\times 1}(\mathbb{C})\setminus\{\mathbb{O}_{n\times 1}\}$ на $\varphi_{o}^{\mathbb{C}}$, отговарящ на собствената стойност λ . Полагаме w=u+iv за $u,v\in M_{n\times 1}(\mathbb{R})$ и сравняваме реалните и имагинерните части в равенствата

$$Au+iAv=A(u+iv)=Aw=\varphi_o^{\mathbb{C}}(w)=\lambda w=(a+bi)(u+iv)=(au-bv)+i(bu+av),$$
 за да изведем

$$\varphi_o(u) = Au = au - bv,$$

$$\varphi_o(v) = Av = bu + av.$$
(19.4)

Оттук, линейната обвивка l(u,v) е φ_o -инвариантно подпространство на $M_{n\times 1}(\mathbb{R})$ и l(fu,fv) е φ -инвариантно подпространство на V, съгласно

$$\varphi(fu)=\varphi(f)u=(fA)u=f(Au)=f(au-bv)=a(fu)-b(fv)\in l(fu,fv),$$

$$\varphi(fv)=\varphi(f)v=(fA)v=f(Av)=f(bu+av)=b(fu)+a(fv)\in l(fu,fv),$$

откъдето $\varphi(\alpha(fu) + \beta(fv)) = \alpha\varphi(fu) + \beta\varphi(fv) \in l(fu, fv)$ за $\forall \alpha, \beta \in \mathbb{R}$.

Остава да докажем линейната независимост на u,v, за да получим, че l(fu,fv) е 2-мерно φ -инвариантно подпространство на V и да докажем твърдението. Да допуснем, че $u,v\in M_{n\times 1}(\mathbb{R})$ са линейно зависими и съществуват реални числа $p,q\in\mathbb{R},\,(p,q)\neq(0,0)$ с

$$\mathbb{O}_{n\times 1} = pu + qv. \tag{19.5}$$

Действайки с φ_o върху (19.5) получаваме

$$\mathbb{O}_{n\times 1} = \varphi_o(\mathbb{O}_{n\times 1}) = \varphi_o(pu + qv) =$$

$$= p\varphi_o(u) + q\varphi_o(v) = p(au - bv) + q(bu + av) = (pa + qb)u + (qa - pb)v.$$
(19.6)

За да елиминираме v от (19.5) и (19.6), умножаваме почленно (19.5) с $qa-pb \in \mathbb{R}$, (19.6) с $-q \in \mathbb{R}$ и събираме. Това дава

$$\mathbb{O}_{n \times 1} = [p(qa - pb) - q(pa + qb)]u = (-p^2b - q^2b)u = -(p^2 + q^2)bu.$$
 (19.7)

От $p,q\in\mathbb{R},\,(p,q)\neq(0,0)$ следва, че $p^2+q^2\in\mathbb{R}^{>0}$ е строго положително реално число. По предположение, $\lambda=a+bi\in\mathbb{C}\setminus\mathbb{R}$ е комплексно нереално число, така че $b\neq0$. Затова $-(p^2+q^2)b\neq0$ е ненулево реално число и (19.7) изисква $u=\mathbb{O}_{n\times1}$. Сега от действието на φ_o върху u получаваме, че

$$\mathbb{O}_{n\times 1} = \varphi_o(\mathbb{O}_{n\times 1}) = \varphi_o(u) = Au = au - bv = -bv,$$

използвайки (19.4). Поради $-b \neq 0$, оттук следва $v = \mathbb{O}_{n \times 1}$ и стигаме до извода, че собственият вектор $w = u + iv = \mathbb{O}_{n \times 1} \in M_{n \times 1}(\mathbb{C})$ на $\varphi_o^{\mathbb{C}}$ е нулев. Противоречието установява линейната независимост на $u,v \in M_{n \times 1}(\mathbb{R})$ и доказва твърдението.