MA206 Reference Sheet

R Guide and Distribution Characteristics

Getting Help

?mean

Get help for a particular function.

help(mean)

Search the help files for a word or phrase.

Working Directory

getwd()

Find the current working directory.

setwd('C://file/path') Change the current working directory.

Tools-GlobalOptions-C:\\yourRdirectory-Apply Make your folder the working directory every time you start R-Studio.

Vectors						
c(2, 4, 6)	2 4 6	Join elements into a vector				
2:6	23456	An integer sequence				
seq(2,3,by=0.5)	2.0 2.5 3.0	A complex sequence				
rep(1:2, times=3)	121212	Repeat a vector				
rep(1:2, each=3)	111222	Repeat elements of a vector				

Statistics and Regression

Function Name	Arguments
t.test()	x, y(if needed), alternative, mu, paired, conf.level
lm()	y~x (simple) y~x1+x2+ (multiple)
summary()	object or model (This command summarizes the model or data set.)

Selecting Vector Elements

	By Position			
x[4]	The fourth element			
x[-4]	All but the fourth			
x[2:4]	2nd through 4th elements			
x[c(1, 5)]	1st and 5th element			
By Value				
x[x == 10]	Elements equal to 10			

x[x == 10]	Elements equal to 10
x[x < 0]	All elements less than zero

Function

function name <- function(var){ Do something }</pre>

Reading File

- 1. Save file as .csv.
- 2. Input command:
 - a. data=read.csv("filename.csv", header=T) (or F if no header)
 - b. data=read.csv(file.choose(),header=T) (uses a dialog box to select the file)
- 3. The data is now read in as a data frame.
- 4. You can index into sections of the data frame using the \$ operator (e.g., data\$column1).

Plotting

plot(x) Values of x in order. plot(x, y) Values of y against x. Histogram of x

Math Functions

log(x)	Natural Log	sum(x)	Sum
exp(x)	Exponential	mean(x)	Mean
max(x)	Largest Element	median(x)	Median
min(x)	Smallest Element	quantile(x)	Percentile or Quantile
round(x,n)	Round to n	var(x)	Variance
	Decimal Places	sd(x)	Standard Deviation
sig.fig(x, n)	Round to n Sig Figs	length(x)	# of Elements in Vector
cor(x, y)	Correlation	rank(x)	Rank of Elements

Probability Functions in R

Distribution Names	PMF/PDF	CDF	Percentile	Random Variates	Parameters
Binomial	dbinom	pbinom	qbinom	rbinom	size, prob
Poisson	dpois	ppois	qpois	rpois	lambda (same as Devore's μ)
Uniform	dunif	punif	qunif	runif	min, max
Normal	dnorm	pnorm	qnorm	rnorm	mean, sd
Exponential	dexp	рехр	qexp	rexp	rate (same as Devore's λ)
Gamma	dgamma	pgamma	qgamma	rgamma	shape, scale (same as Devore's α and β)
t	dt	pt	qt	rt	df
Chi-Square	dchisq	pchisq	qchisq	rchisq	df

Conditions	a == b	Are equal	a > b	Greater than	a >= b	Greater than or equal to	is.na(a)	Is missing
Conditions	a != b	Not equal	a < b	Less than	a <= b	Less than or equal to	is.null(a)	Is null

PMF Characteristics

Characteristic 1: The pmf must be greater than or equal to zero for all x. $p(x) \ge 0 \quad \forall x$

Characteristic 2: The sum of probabilities of x, p(x), over all possible values of x must be one. $\sum p(x) = 1$

Characteristic 3: For a discrete random variable X, the probability that X is equal to a specific value, c, is: P(X=c) = p(c)

Characteristic 4: Given the pmf p(x) for the random variable X, we define the cumulative distribution function (CDF) F(x) as follows: $F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$

Characteristic 5: Find the probability that X is between **a** and **b** using the PMF: $P(a \le X \le b) = \sum_{x:a \le x \le b} p(x)$

Characteristic 6: Find the probability that X is between **a** and **b** using the CDF: $P(a \le X \le b) = F(b) - F(a - b)$

Characteristic 7: The expected value of X: $E(X) = \mu_X = \sum x \cdot p(x)$

Characteristic 8: The variance of X: $V(X) = \sigma_X^2 = \sum (x - \mu_x)^2 \cdot p(x)$ or $E[X^2] - (E[X])^2$

Characteristic 9: The (100p)th percentile of the discrete random variable X is the min value of x such that $F(x) \ge p$.

PDF Characteristics

Characteristic 1: The pdf must be greater than or equal to zero for all x. $f(x) \ge 0 \quad \forall x$

Characteristic 2: The total area under f(x) must equal one. $\int_{-\infty}^{\infty} f(x)dx = 1$

Characteristic 3: For a continuous random variable X, the probability that X is equal to a specific value, c, is: P(X=c)=0

Characteristic 4: Given the pdf f(x) for the random variable X, we define the cumulative distribution function (CDF) F(x) as follows: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$

Characteristic 5: Find the probability that X is between **a** and **b** using the pdf: $P(a \le X \le b) = \int_a^b f(x) dx$

Characteristic 6: Find the probability that X is between **a** and **b** using the CDF: $P(a \le X \le b) = F(b) - F(a)$

Characteristic 7: The expected value of X: $E(X) = \mu_X = \int_{-\infty}^{\infty} x \cdot f(x) dx$

Characteristic 8: The variance of X: $V(X) = \sigma_X^2 = \int_0^\infty (x - \mu_X)^2 \cdot f(x) dx$

Characteristic 9: The (100p)th percentile of the continuous random variable X: $x^* = F^{-1}(p)$