Mistura de Normais com Variância Contaminada

Caio Gabriel Barreto Balieiro Taiguara Melo Tupinambás Walmir dos Reis Miranda Filho

Programa de Pós-Graduação em Estatística Departamento de Estatística - UFMG

02 de dezembro de 2019

Sumário

- Introdução
- Método de Quadratura de Riemann
- Reamostragem por importância sequêncial(SIR)
- Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- Introdução
- 2 Método de Quadratura de Riemann
- 3 Reamostragem por importância sequêncial(SIR)
- 4 Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- O presente trabalho tem como objetivo obter, dada uma densidade a posteriori conjunta dos parâmetros de um modelo probabilístico para uma amostra previamente observada, as densidades a posteriori marginais de cada parâmetro.
- Obter as estatísticas de média; variância; assimetria e curtose associadas as densidades a posteriori marginais de cada parâmetro, a partir da implementação de três métodos numéricos.
- Sendo eles: (i) integração via quadratura de Riemann; (ii) reamostragem por importância sequencial (em inglês, Sequential Importance Resampling, ou SIR);
 e (iii) integração via Monte Carlo em cadeias de Markov (em inglês, Markov Chain Monte Carlo, ou MCMC) com inovações dadas pelo algoritmo de Metropolis-Hastings (MH).

• Sejam X_1, \ldots, X_n amostras aleatórias independentes, condicionalmente a um vetor de parâmetros $\boldsymbol{\theta} = (\mu, \sigma^2, \nu)$, e identicamente distribuídas com função densidade dada por

$$f(x|\mu, \sigma^2, \nu) = \nu \phi(x|\mu, 100\sigma^2) + (1 - \nu)\phi(x|\mu, \sigma^2), \ x \in \mathbb{R},$$
 (1)

onde $\phi(x|\mu,\sigma^2)=(2\pi\sigma^2)^{-1}\exp[-(x-\mu)^2/(2\sigma^2)]$ denota a função densidade da distribuição normal com média μ e variância σ^2 avaliada no ponto x. Para o suporte de cada parâmetro, tem-se que $\mu\in\mathbb{R},\sigma^2\in\mathbb{R}_+$ e $\nu\in(0,1)$.

• Para os parâmetros μ , σ^2 e ν , será pressuposto que cada um segue uma distribuição a priori: $\mu | \sigma^2 \sim N(m, V \sigma^2)$, onde $N(\cdot)$ denota a distribuição normal com média $m \in \mathbb{R}$ e variância $V \sigma^2$, V > 0; $\sigma^2 \sim GI(a,d)$, onde $GI(\cdot)$ denota a distribuição gama inversa com parâmetros de forma a > 0 e de taxa d > 0 (inverso da escala); e $\nu \sim U(0,1)$, a distribuição uniforme contínua padrão.

 E então, propôs-se independência entre as prioris, portanto assumem a forma dada por

$$p(\theta) = p(\mu|\sigma^2)p(\sigma^2)p(\nu). \tag{2}$$

 Para gerar uma amostra aleatória do modelo em (1), foi utilizada uma representação hierárquica (Lachos et al., 2013) tal que

$$X_i|\mu,\sigma^2, U_i = u_i \sim N(\mu,\sigma^2 u_i^{-1}), \quad U_i|\mu \sim p_d(1,100) : P(U_i = 100) = \nu, \quad (3)$$

onde $p_d(a, b)$ denota uma função de probabilidade (discreta) que atribui massa probabilística apenas aos pontos $a \in b$.

Com isto, nossa posteriori será defina da seguinte forma

$$p(\mu, \sigma^{2}, \nu | \mathbf{x}) = \frac{f(\mathbf{x} | \mu, \sigma^{2}, \nu) \times p(\mu, \sigma^{2}, \nu)}{f(\mathbf{x})} \propto \prod_{i=1}^{n} f(x_{i}) \times p(\mu | \sigma^{2}) \times p(\sigma^{2}) \times p(\nu)$$

$$\propto \prod_{i=1}^{n} \left[\nu \phi(x_{i} | \mu, 100\sigma^{2}) + (1 - \nu) \phi(x_{i} | \mu, \sigma^{2}) \right] \times$$

$$\times \phi(\mu | m, V\sigma^{2}) \times \frac{d^{a}}{\Gamma(a)} \left(\frac{1}{\sigma^{2}} \right)^{a+1} \exp\left(-\frac{d}{\sigma^{2}} \right)$$

$$\propto \left(\frac{1}{\sigma^{2}} \right)^{(n+1)/2+a+1} \exp\left\{ -\frac{\left[(\mu - m)^{2}/(2V) + d \right]}{\sigma^{2}} \right\} \times A(\mathbf{x} | \mu, \sigma^{2}, \nu),$$

$$(4)$$

onde

$$\mathrm{A}(\mathbf{x}|\mu,\sigma^2,\nu) = \prod_{i=1}^n \left\{ \frac{\nu}{10} \exp\left[-\frac{(x_i-\mu)^2}{200\sigma^2}\right] + (1-\nu) \exp\left[-\frac{(x_i-\mu)^2}{2\sigma^2}\right] \right\}.$$

- Para o presente trabalho, foram considerados uma amostra de tamanho n=500, da mistura finita de normais com variância contaminada parametrizada de tal forma que $\mu=11$; $\sigma^2=0.64$ e $\nu=0.2$.
- Os valores escolhidos para os hiperparâmetros são m = 11; V = 1; a = 7 e
 d = 4 nas distribuições a priori.
- Como não se tem uma expressão fechada para $p(\mu, \sigma^2, \nu | \mathbf{x})$, mas apenas de seu núcleo, para obter as densidades *a posteriori* marginais de μ , σ^2 e ν dado \mathbf{x} , bem como as estatísticas associadas a cada uma delas, é necessário aproximálas por algum método numérico.

Figura 1: Histograma da amostra gerada do modelo

(a)
$$I_{\mu} = (10.85, 11.13)$$
, dados $\sigma^2 = 0.64$, $\nu = 0.2$

Figura 2: Intervalos de massa probabilística para cada parâmetro (variável aleatória) do núcleo de $p(\mu, \sigma^2, \nu | x)$

Figura 3: Intervalos de massa probabilística para cada parâmetro (variável aleatória) do núcleo de $p(\mu,\sigma^2,\nu|\mathbf{x})$

- Introdução
- 2 Método de Quadratura de Riemann
- 3 Reamostragem por importância sequêncial(SIR)
- 4 Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- Antes de aproximar as densidades a posteriori marginais de cada parâmetro, é necessário aproximar o inverso da constante de proporcionalidade.
- Dados três parâmetros $(\alpha_1, \alpha_2, \alpha_3)$ e uma amostra dos dados **y**, quaisquer, suponha que se deseja aproximar a densidade *a posteriori* marginal de α_3 dados os pontos r_i, s_j, t_k da grade formada por todos os subintervalos de integração, $i, j, k \in \{1, \dots, L\}$. Temos pela quadratura de Riemann que

$$p(\alpha_{3}|\mathbf{y}) = \iint p(\alpha_{1}, \alpha_{2}, \alpha_{3}|\mathbf{y}) d\alpha_{1} d\alpha_{2}$$

$$\Rightarrow p(t_{k}|\mathbf{y}) = \iint p(\alpha_{1}, \alpha_{2}, t_{k}|\mathbf{y}) d\alpha_{1} d\alpha_{2} \approx \sum_{i=1}^{L} \sum_{j=1}^{L} p(r_{i}, s_{j}, t_{k}|\mathbf{y}) \Delta_{i} \Delta_{j}$$

$$= \sum_{i=1}^{L} \sum_{j=1}^{L} c \cdot h(r_{i}, s_{j}, t_{k}|\mathbf{y}) \Delta_{i} \Delta_{j}.$$
(5)

- Como c, a constante de proporcionalidade, é dada pelo inverso da densidade a priori preditiva $f(\mathbf{y})$, a qual é obtida integrando-se em todo o espaço paramétrico o produto entre a função de verossimilhança $f(\mathbf{y}|\alpha_1,\alpha_2,\alpha_3)$ e as densidades (ou funções de probabilidade) a priori para α_1 , α_2 e α_3 , também é possível aproximar c pela quadratura de Riemann
- Neste caso, $c^{-1} \approx \sum_{i=1}^{L} \sum_{j=1}^{L} \sum_{k=1}^{L} h(r_i, s_j, t_k | \mathbf{y}) \Delta_i \Delta_j \Delta_k$. Com o valor aproximado para c, é possível calcular (5) nos limites superior e inferior de todos os subintervalos de um dado parâmetro e enfim obter uma aproximação da densidade a posteriori marginal deste mesmo parâmetro através de uma curva gráfica que liga todos os valores calculados

(a) Densidade a posteriori de μ

Figura 4: Densidades a posteriori marginais pela quadratura de Riemann com L=15

(a) Densidade a posteriori de μ

Figura 5: Densidades a posteriori marginais pela quadratura de Riemann com L=50

(a) Densidade a posteriori de μ

Figura 6: Densidades a posteriori marginais pela quadratura de Riemann com L=100

Tabela 1: Estatísticas a posteriori para (μ, σ^2, ν) pela quadratura de Riemann

Cenário	Parâmetro	Média	Variância	Assimetria	Curtose
L = 15	μ	10.9847	0.0017	0.0022	2.9603
	σ^2	0.6222	0.0022	0.2230	2.9984
	ν	0.1918	0.0004	0.1572	2.9348
<i>L</i> = 50	μ	10.9848	0.0017	0.0056	2.9346
	σ^2	0.6222	0.0021	0.2149	2.9625
	ν	0.1918	0.0004	0.1523	2.8995
<i>L</i> = 100	μ	10.9848	0.0017	0.0064	2.9284
	σ^2	0.6222	0.0021	0.2131	2.9542
	ν	0.1918	0.0004	0.1512	2.8913

- Introdução
- 2 Método de Quadratura de Riemann
- 3 Reamostragem por importância sequêncial(SIR)
- 4 Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- Proposto por Gordon et al. (1993), o método SIR utiliza uma função de amostragem por importância g para aproximar (sem perda de generalidade) uma densidade de interesse p.
- Sejam $\theta_1, \ldots, \theta_t$ uma amostra aleatória de g e $\mathbf{y} = (y_1, \ldots, y_n)$ uma amostra do modelo para os dados observados. Para cada ponto θ_j , $j = 1, \ldots, t$, os pesos são dados por

$$w_j(\theta_j) = \frac{p(\theta_j|\mathbf{y})/g(\theta_j)}{\sum_{j=1}^k p(\theta_j|\mathbf{y})/g(\theta_j)}.$$
 (6)

em que g é uma densidade conhecida e da qual se sabe gerar uma amostra aleatória.

• Como feito em muitos trabalhos, para g será escolhida uma densidade normal trivariada $N_3(\mu, \Sigma)$, cujas componentes têm, cada uma, suporte em toda a reta real.

- Note que para 2 parâmetros, σ^2 e ν , o respectivo espaço paramétrico não é a reta real ($\Theta_{\sigma^2}=\mathbb{R}_+$ e $\Theta_{\nu}=[0,1]$, respectivamente). logo será feita uma reparametrização.
- Para a reparametrização, consideram-se as transformações $\theta_1=\mu,\theta_2=\log(\sigma^2)$ e $\theta_3=\log[\nu/(1-\nu)]$. Logo, a expressão do núcleo reparametrizado é dada por

$$\rho(\theta_{1}, \theta_{2}, \theta_{3} | \mathbf{x}) = \rho(\theta_{1} = \mu, \theta_{2} = \log(\sigma^{2}), \theta_{3} = \log[\nu/(1-\nu)] | \mathbf{x})$$

$$= \rho(\mu = \theta_{1}, \sigma^{2} = \exp(\theta_{2}), \nu = 1/[1 + \exp(-\theta_{3})] | \mathbf{x}) \times |J(\theta_{1}, \theta_{2}, \theta_{3})|$$

$$\propto [\exp(\theta_{2})]^{-[(n+1)/2+a+1]} \times \exp\left\{-\frac{[(\theta_{1} - m)^{2}/(2V) + d]}{\exp(\theta_{2})}\right\}$$

$$\times A^{*}(\mathbf{x}|\theta_{1}, \theta_{2}, \theta_{3}) \times \frac{\exp(\theta_{2}) \exp(\theta_{3})}{[1 + \exp(-\theta_{3})]^{-2}}$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{n+1}{2+a+1}} \times \exp\left\{-\frac{[(\mu - m)^{2}/(2V) + d]}{\sigma^{2}}\right\} \times A(\mathbf{x}|\mu, \sigma^{2}, \nu)$$

$$\times \sigma^{2}\nu^{3}(1 - \nu)^{-1}, \qquad (7)$$

- em que $|J(\theta_1, \theta_2, \theta_3)|$ é o determinante da matriz jacobiana das derivadas parciais de (μ, σ^2, ν) com respeito a $(\theta_1, \theta_2, \theta_3)$.
- Para as médias das componentes desta distribuição, será fixado $\mu=(\theta_1,\theta_2,\theta_3)=$ $(\mu, \log(\sigma^2), \log[\nu/(1-\nu)]) = (11, \log(0.64), \log[0.2/0.8]).$
- \bullet Para a matriz de covariância Σ , cada elemento da diagonal principal será dado pelo quadrado de 1/6 do intervalo de massa probabilística do parâmetro correspondente.
- Esta escolha se justifica pelo fato de que as distribuições mostradas de 2a a 3b têm comportamento próximo à normalidade.
- Foram escolhidos três valores para k = (500, 5000, 50000) e uma razão constante $\frac{k}{t} = \frac{1}{10}$

Figura 7: Histograma das densidades a posteriori marginais pela método SIR com k = 500

Figura 8: Histograma das densidades a posteriori marginais pela método SIR com k=5000

Figura 9: Histograma das densidades a posteriori marginais pela método SIR com k=50000

Tabela 2: Estatísticas a posteriori para (μ, σ^2, ν) pelo método SIR

Cenário	Parâmetro	Média	Variância	Assimetria	Curtose
k = 500	μ	11.0003	0.0023	-0.0610	3.0351
	σ^2	0.6422	0.0026	0.1261	3.1453
	ν	0.2028	0.0006	0.3510	3.5475
k = 5000	μ	11.0006	0.0022	0.0216	3.0234
	σ^2	0.6418	0.0027	0.2349	3.0118
	ν	0.2013	0.0005	0.2485	3.1646
k = 50000	μ	11.0002	0.0022	-0.0081	3.0451
	σ^2	0.6420	0.0027	0.2353	3.1153
	ν	0.2009	0.0005	0.2608	3.0849

- Introdução
- 2 Método de Quadratura de Riemann
- 3 Reamostragem por importância sequêncial(SIR)
- Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- Neste trabalho, será usado o algoritmo de Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970), aqui abreviado por MH.
- Assim como o método SIR, o algoritmo MH também é baseado no uso de uma distribuição auxiliar ou proposta, aqui denotada por q(y, z). Assumindo-se que na interação j, $j = 1, \ldots, k$ a cadeia está no estado $y^{(j)}$, a posição da mesma na iteração j+1, denotada por $y^{(j+1)}$, será dada após:
- Propor uma transição ou movimento para y*, onde y* é gerada de q(y^(j),·), a
 distribuição proposta, e, o valor inicial da cadeia y⁽¹⁾;
- Aceitar a transição proposta com probabilidade

$$\rho(\mathbf{y}^{(j)}, \mathbf{y}^*) = \min\left(1, \frac{\rho(\mathbf{y}^*)/q(\mathbf{y}^{(j)}, \mathbf{y}^*)}{\rho(\mathbf{y}^{(j)})/q(\mathbf{y}^*, \mathbf{y}^{(j)})}\right)$$
(8)

e neste caso atribuir $\mathbf{y}^{(j+1)} = \mathbf{y}^*$ ou rejeitar a transição proposta e atribuir $\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)}$, com probabilidade $1 - \rho(\mathbf{y}^{(j)}, \mathbf{y}^*)$.

- Para decidir sobre a aceitação ou não de y* quando amostrada a cada passo j, gere uma amostra u1,..., uk, onde k é o total de iterações prefixadas, da distribuição uniforme padrão U(0,1), independentemente de y*.
- Se a probabilidade de aceitação $\rho(\mathbf{y}^{(j)}, \mathbf{y}^*)$ for maior do que ou igual a u_j , então a transição proposta é aceita. Do contrário, ela é rejeitada.
- Para a distribuição proposta $q(\cdot)$ também será escolhida uma normal trivariada $N_3(\mu, \Sigma)$, com valores do vetor de médias, e será reutilizado a reparametrização $\mu = (\mu, \log(\sigma^2), \log[\nu/(1-\nu)]) = (11, \log(0.64), \log[0.2/0.8])$ e da matriz de covariância $\Sigma = \mathrm{diag}\{0.0022, 0.0065, 0.0203\}$.
- É necessário definir um estado inicial da cadeia, em geral com densidade conjunta muito baixa, escolheu-se o ponto $y^{(1)} = (10.86, \log(0.50), \log(0.14/0.86))$.

Figura 10: Histograma das densidades *a posteriori* marginais pelo método MCMC-MH, k=500

Figura 11: Histograma das densidades *a posteriori* marginais pela método MCMC-MH, k=5000

Figura 12: Histograma das densidades *a posteriori* marginais pela método MCMC-MH, k=50000

Tabela 3: Estatísticas a posteriori para (μ, σ^2, ν) pelo método MCMC–MH

Cenário	Parâmetro	Média	Variância	Assimetria	Curtose
k = 500	μ	10.9672	0.0018	-0.3768	3.2193
	σ^2	0.6226	0.0020	-0.0684	2.6117
	ν	0.1957	0.0006	-0.3313	3.2991
k = 5000	μ	10.9818	0.0019	-0.2466	2.9894
	σ^2	0.6197	0.0023	0.2372	3.0057
	ν	0.1977	0.0005	0.3878	3.2038
k = 50000	μ	10.9852	0.0017	-0.0272	2.9451
	σ^2	0.6188	0.0021	0.2472	3.1088
	ν	0.1978	0.0005	0.1331	2.8971

Figura 13: Traço e autocorrelação da cadeia de μ , $k = \{500, 5000, 50000\}$, respectivamente

Figura 14: Traço e autocorrelação da cadeia de σ^2 , $k = \{500, 5000, 50000\}$, respectivamente

Figura 15: Traço e autocorrelação da cadeia de ν^2 , $k = \{500, 5000, 50000\}$, respectivamente

- Introdução
- 2 Método de Quadratura de Riemann
- 3 Reamostragem por importância sequêncial(SIR)
- Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- Neste trabalho, as densidades marginais a posteriori dos parâmetros de interesse (μ, σ^2, ν) foram aproximadas por três métodos numéricos, para uma amostra observada de tamanho 500.
- Para os três métodos implementados, foram desenvolvidos 3 cenários diferentes,
 para análise de convergência e complexidade computacional.
- No primeiro caso, do método de quadratura, três quantidades diferentes de intervalos de integração L foram escolhidos: 15, 50 e 100. O primeiro resultado não é muito satisfatório, apesar de aproximar bem os dois primeiros momentos.
- Para 50 e 100 subintervalos, a aproximação é bem melhor, às custas de um custo computacional maior, crescendo exponencialmente em relação a dimensão do espaço paramétrico $(O(L^n))$, com n igual a 3.

- Para os métodos estocásticos SIR e MCMC, foram considerados, respectivamente, quantidade de iterações k iguais a 500, 5000 e 50000.
- Em ambos os casos, para k igual a 500, as distribuições a posteriori aproximadas não foram muito satisfatórias, apresentando muitos outliers e modas locais.
- Para o SIR, a partir de 5000 amostras, as distribuições são bem mais suaves, sendo possível observar o comportamentos de momentos de ordem superior.
- No MCMC, ainda se observa uma melhoria considerável de k igual a 5000 para k igual a 50000 passos de integração, quando o método parece convergir.
- Por fim, podemos concluir que, para o modelo probabilístico estudado, todos os três métodos desempenham bem a tarefa de aproximar a distribuição a posteriori, se escolhidos hiperparâmetros de convergência adequados.