Lecture 7

WORD REPRESENTATION LEARNING

Contents

- Word Representation
 - Word Vectorization
 - Word Embedding
- Word2Vec
- Other models
 - GLoVE
 - FastText
 - ELMo
- Building a representation word model
- Application: Plagiarism Detection

Review - Text Document Vectorization Approaches

The meaning of a word

- Meaning:
 - the idea that is represented by a word, phrase, etc.
 - the idea that a person wants to express using words, phrases, etc.
 - the idea that is expressed in a work of writing, art, etc.
- Some commonest linguistic ways of thinking of meaning:

Discrete Vector Representation

- Bag-of-words model
- Co-occurrence matrix
- TF-IDF
- One-hot encoding vector

Bag-of-words Model

The picture can't be displayed.	

One-hot Vector

The picture can't be displayed.	

TF-IDF

The picture can't be displayed.	

Window-based co-occurrence matrix

- Window length = 1 (more common: 5-10)
- Symmetric (irrelevant whether left or right context)
- Example corpus:
 - I like deep learning
 - I like NLP
 - I enjoy flying

Problems with words as discrete vectors

- Example: search for the keywords "Seattle Motel" will result also "Seattle Hotel"

 The picture can't be displayed.
- However:
- These two vectors are orthogonal, without any notion of similarity for onehot vectors
- Solution: encode the similarity inside the word vector

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence Rohde et al. 2005

Word Vector Representation

Representing word by their context

- Distributional semantic: A word's meaning is given by the words that frequently appear close-by
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window)
- We will use the many contexts of w to build up a representation of w

Word vectors

- Each word is represented by a dense vector which is chosen so that it's similar to vectors of words that appear in similar contexts
- The similarity is measured by the vector dot (scalar) product

Word Embedding Model: word2vec

The main idea:

- Start with random vectors
- Iterate through each word position in the whole corpus
- Try to predict surrounding words using word vectors

 The picture can't be displayed.

 The picture can't be displayed.
- Learning: update vectors so they can predict actual surrounding words better
- The word embedding model try to learn word vectors that capture well word similarity and meaningful directions in a word space!

Word2vec maximizes objective function by putting similar words nearby in space

Two variant approaches for word2vec

Skip-gram vs. CBOW

- Skip-gram
 - Predict context ('outside') words (position independent) given center word
- CBOW
 - Predict center word from (bag of) context words

- Current word is used as input to a log-linear classififier
- Predict words within certain range before and after of this current word
- The normalization term is computationally expensive as:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$
 A big sum over words

- Current word is used as input to a log-linear classififier
- Predict words within certain range before and after of this current word
- The normalization term is computationally expensive as:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$
 A big sum over words

Skip gram model is typically implemented with "negative sampling"

Skip-gram with negative sampling

- Main idea: train binary logistic regression to differentiate a true pair (center word and a word in its context window) versus some "noise" pairs (the center word paired with a random word)
- Maximize the objective function:

 We take k negative samples, maximize the probability that real outside word appears, minimize the probability that random words appear around center word

CBOW (Continuous BOW) (1)

Predict a word using context

The picture can't be displayed.

CBOW (2)

- |V| is the size of the vocabulary corpus
- x_i represents the one-hot vector of the ith word
- y_i represents the one-hot vector of the expected word

CBOW (3)

- |V| is the size of the vocabulary corpus
- x_i represents the one-hot vector of the ith word
- y_i represents the one-hot vector of the expected word

CBOW (4)

Example from word2vec

GLoVe – Global vector for word representation

• Idea: Encoding meaning components in vector differences

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)		6.6×10^{-5}		1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- Consider the co-occurrence probabilities for target words ice and steam with various probe words from the vocabulary
 - ice co-occurs more frequently with solid than it does with gas
 - steam co-occurs more frequently with gas than it does with solid
 - Both words co-occur with their shared property water frequently, and both co-occur with the unrelated word fashion infrequently

GLoVe – Global vector for word representation

- 2 assumptions:
 - Global context (global matrix factorization)
 - Co-occurrence of words through documents
 - Local context
 - A pre-fixed size slide window
- Idea: Encoding meaning components in vector differences

A: Log-bilinear model:
$$w_i \cdot w_j = \log P(i|j)$$
 with vector differences $w_x \cdot (w_a - w_b) = \log \frac{P(x|a)}{P(x|b)}$

Loss:
$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

$$f \sim \begin{bmatrix} 0.8 \\ 0.6 \\ 0.4 \end{bmatrix}$$

- Fast training
- Scalable to huge corpora

Word2Vec vs. Glove

The picture can't be displayed.	

Pros and cons

• Pros:

- Fast training
- Well scaled on big corpus data
- Work well on small data
- Early stopping

• Cons

- Memory consuming
- Learning rate may affect the accuracy of the model

Fast Text

- An extension of Word2vec
- Facebook
- Multi-language support
- Sub-word
 - Based on n-grams model
 - Allow to short word learning
 - Allow to represent prefixes and postfixes of word
- Work well with rare-words

Word vector of Fast text

Pros and cons of Fast Text

- Capture rare-words thanks to sub-word representation
- Memory consuming for sub-word representations

ELMo – Embedding from Language Model

ELMo - Architecture

- Using character-level CNN to represent word (raw word vectors)
- Bi-directional LSTM
- Combine forward and backward directions to represent intermediate word vectors
- Second layer using intermediate word vectors as input with the same architecture as first layer
- Final word vector:
 - Combine first representation (raw word vector) and two outputs of two layers
 - ELMo vector

Pros and cons

Better capture the context of word than word2vec and Glove

- The same words may have the different representation depending on the context
- Rare-word representation (as Fast Text)
- Memory consuming

Building word vector model

- A large text corpus
 - Wikipedia
- Choose an appropriate model
- Training model
- Using the model to solve problems of NLP

Application - Plagiarism Detection

Problem of Plagiarism Detection

Document Corpus

Similarity Comparison

× The	picture can't be displayed.			
	Document A		Document B	

Challenges

- Comparing the similarity of different parts between two documents is much more difficult
- Long document
- Structure and vocabulary
- Focus on semantics and syntactics

Summary

- Text Vectorization
- Word Embedding
- Word Embedding models
 - Word2vec
 - Glove
 - Fast Text
 - EMLo
- Building a model for word representation