Math446 Module Theory Assignment 1 10714647

Priscilla Yaa Nyarkoa Oppong

1. Let R be a commutative unitary ring and let M be and R-module. Let $r \in R$ be fixed and let

$$rM = \{rx : x \in M\} \text{ and } Mr = \{x \in M : rx = 0\}$$

(a) We want to show that rM and Mr are submodules of M. Considering rM, since M is module, we know that $0 \in M$ and so for our fixed r, we know that, 0 = r0 for $0 \in M$ and so $0 \in rM$, hence $rM \neq \emptyset$

Now since M is an R-module, we know that $\forall x \in M$ and $\forall r \in M$, $rx \in M$ and so by definition, $rM \subseteq M$.

Choose $a, b \in rM$ then $\exists x_1, x_2 \in M$ such that $a = rx_1, b = rx_2$. Now choose some $s \in R$. We want to show that $a + sb \in rM$

$$a+sb = rx_1 + s(rx_2) = rx_1 + (sr)x_2 = rx_1 + (rs)x_2 = rx_1 + r(sx_2) = r(x_1 + sx_2)$$

We know that $x_1 + sx_2 \in M$ since M is a module and so $r(x_1 + sx_2)r \in M$ so we have that $r \in M$ is a submodule of M.

Considering Mr, since M is a module, we know that $0 \in M$ and by the properties of the action of the ring R on the module M, we know that $\forall r \in R$, r0 = 0 and so $0 \in Mr$ i.e $M \neq \emptyset$. Now choose $x_1, x_2 \in Mr$ and choose $s \in R$. We want to show that $x_1 + sx_2 \in Mr$. We know that $x_1 + sx_2 \in M$ since M is a module $r(x_1 + sx_2) = r(x_1) + r(sx_2) = r(x_1) + rs(x_2) = 0 + s(rx_2) = 0 + 0 = 0$ since $x_1, x_2 \in Mr$ and R is a commutative ring. so we have that $x_1 + sx_2 \in Mr$ Hence Mr is a submodule of M

(b)Let $R=\mathbb{Z}, M=\mathbb{Z}/n\mathbb{Z}, n=rs$ where ra+sb=1 where rM=Ms i.e $\{rx:x\in\mathbb{Z}/n\mathbb{Z}\}=\{x\in\mathbb{Z}/n\mathbb{Z}:sx=0\}$

in other words $\forall rx \in rM, s(rx) = O_m$ consider $rx \in rM, rx \in \mathbb{Z}rs\ s(rx) = sr(x)$ which is an x multiple of sr in $\mathbb{Z}/n\mathbb{Z} = Om$ thus $rM \subseteq Ms$. consider $y \in Ms$ we have that $sy = O_m$ then $y = rx, rx \in \mathbb{Z}/n\mathbb{Z}$

thus $Ms \subseteq rM$

Hence rM = Ms.

- (c) Let $r \in R$ be forced and consider the R-module endomorphism $c\sigma_r(m) = r \cdot m.$
 - $\ker(\sigma_r) = \{m \in M | rm = 0\}$ which is exactly the definition of M_r . Thus $\ker(\sigma_r) = M_r$.
 - $M|M_r = \{x + m_r | m_r \in M_r\}$
 - $\sigma_r(m|m_r) = \{r(x+m_r)|m_r \in M_r\}$ $= \{rx + rm_r | m_r \in M_r\}$ $= \{rx\} = rM$ $\ker(\sigma_r) = \{o_m\} \subseteq$, thus (σ_r) is a bijection.
 - $(\sigma_r)(m_1 + m_2) = r(m_1 + m_2)$ $= r(x_1 + mr + x_2 + mr^2)$ $= r(x_1 + x_2 + mr^1 + mr^2)$ $= r(x_1 + mr^1) + r(x_2 + mr^2)$ $= r(m_1) + r(m_2)$ where $m_1, m_2 \in M | M_r$ thus σ is a bicycle homomorphism from $\in M|M_r\longrightarrow rM$ i.e $M|M_r \cong rM$.
- (d) Let $M = M_1 \oplus M_2$ show that $rM = rM_1 \oplus rM_1$ and $M_r = (M_1)_r \oplus (M_2)_r$ Let $M = M_1 \oplus M_2$ we know that $M_1 \cap M_2 = \{0\}$ and $\forall x \in M, \exists, x_1, x_2 \in M_1.M_2$ respectively such that $x = x_1 + x_2$ thus $\forall rx \in rM, rx = r(x_1 + x_2) = rx_1 + rx_2$ i.e $rM \subseteq rM_1 \bigoplus rM_2$. Conversely suppose we have $rx_1 + rx_2 \in rM_1 \bigoplus rM_2$. $rx_1 + rx_2 = r(x_1 + x_2)$

 $= r(x) (\text{since } M = M_1 \bigoplus M_2)$

Thus $rM_1 \bigoplus rM_2 \subseteq rM$

since $M = M_1 \bigoplus M_2$

 $\forall x \in M_r \exists ! x_1, X_2 \in M_1, M_2 : x = x_1 + x_2$

thus we know that $rx = r(x_1 + x_2)$

 $O = r(x_1 + x_2)$. Since M_r is a submodule, we have $x = x_1 + x_2 \in M_r \Leftrightarrow x_1, x_2 \in M_r$

Thus $rx_1, rx_2 = O$. Hence $M_r = M_1r + M_2r$

2. Let R be a ring

(a) Let M be an R-module. Suppose I is a two sided Ideal of R with the property that IM = 0. We want to show that the rule

$$\bar{r} * m = rm + Im$$

gives a well defined action of R/I on M

We see that * : $R/I \times M \longrightarrow M$. Also, suppose that $\bar{r}_1 = \bar{r}_2$ and that $m_1 = m_2$ we want to show that $\bar{r}_1 * m_1 = \bar{r}_2 * m_2$

 $\bar{r}_1*m_1=r_1m_1+Im_1=r_1m_1+0=r_1m_1$ but we know that $\bar{r}_1=\bar{r}_2$ and $m_1=m_2$ so $r_1m_1=r_2m_2=r_2m_2+0=r_2m_2+Im_2=\bar{r}_2*m_2$

i.e. \bar{r}_1*m_2 . Hence we have that * gives a well defined action of R/I on M.

We want to show that M is an R/I-module with the ring action *

We know that M is an R-module and so (M, +) is an abelian group.

We now show that the rest of the axioms of a module are satisfied.

Let $\bar{r}_1, \bar{r}_2 \in R/I$ and $m_1, m_2 \in M$

•
$$(\bar{r}_1 + \bar{r}_2) * m_1 = (r_1 + r_2)m_1 + Im_1$$

= $r_1m_1 + r_2m_1 + Im_1$
= $r_1m_1 + Im_1 + r_2m_1 + Im_1$
= $(\bar{r}_1 * m_1) + (\bar{r}_2 * m_1)$

•
$$(\bar{r}_1\bar{r}_2)*m_1 = (\bar{r}_1\bar{r}_2)m_1 + Im_1$$

= $r_1(r_1m_1) + Im_1$
= $r_1((r_2m_1) + Im_1) + Im_1$
= $\bar{r}_1*(\bar{r}_1*m_1)$

•
$$\bar{r}_1 * (m_1 + m_2) = r_1(m_1 + m_2) + I(m_1 + m_2)$$

= $r_1 m_1 n + r_1 m_2 + I m_1 + I m_2$
= $r_1 m_1 n + I m_1 + r_1 m_2 + I m_2$
= $(\bar{r}_1 * m_1) + (\bar{r}_1 * m_2)$

Hence we have that M is an R/I - module with the ring action *

(b) We want to show that every simple left R-module is a cyclic left left R-module Let M be a simple module. Then, the only submodules of M are the 0 submodule and M

itself. Suppose also that M is not cyclic, that is M is not generated by each non zero element in M will be a submodule of M but this contradicts our assumption that the M is simple. Hence M must be generated by at least one of its elements and so M is cyclic.

(c)Consider $f: M \to N$ an R-module homomorphism

$$ker(f) = \{ m \in M : f(m) = O_N \}$$

 $f(O_m) = O_N$ thus $O_m \in ker(f)$ and $m + rm_2 \forall r \in R$.

 $f(m_1 + m_2) = f(m_1) + rf(m_2)$

 $O_N + O_N = O_N$

Thus $m_1 + rm_2 \in ker(f)$ and the submodule criterion is satisfied.

 $lm(f) = \{ n \in \mathbb{N} | \exists m \in \mathbb{M}, f(m) = n \}$

 $O_N \in lm(f)$ since $f(O_m) = O_N$. Thus lm(f) is not empty. Consider $n_1, n_2 \in$

lm(f). and $n_1 + n_2 \forall r \in R$. $f(m_1) + rf(m_2) = f(m) + f(rm_2) = f(m_1 + m_2) = f(m_3)$ Thus $\exists m_3 = m_1 + rm_2 : f(m_3) = n_1 + m_2$ $xn_1 + rn_2 \in lm(f)$ and the submodule criterion is satisfied.

(d) Assume M and N are cyclic simple then $ker(f) = \{O_m\}, M$ $lm(f) = \{O_N\}, N$.

if $ker(f) = \{O_m\}$ and $lm(f) = \{O_N\}$ f is an isomorphism. if $ker(f) = \{O_m\}$ and lm(f) = Nf is an isomorph.

if ker(f) = M and $lm(f) = \{O_N\}$, f is the zero map.

if ker(f) = M and lm(f) = N then f is both injective and surjective so f is an isomorphism.

3. Suppose M is a finite abelian group. We know that then M is naturally a $\mathbb{Z}\text{-}\mathrm{module}.$

Claim:

This action cannot be extended to make M into a \mathbb{Q} -module

Proof:

Given any two unitary rings M, \mathbb{S} and an R-module M. If \exists a homomorphism $f: S \longrightarrow R$ then M is also an M-module with the action of S on M defined by $(s, m) \longrightarrow fm$ for $s \in S$, $m \in M$.

But no such homomorphism exists for $S = \mathbb{Q}$ and $R = \mathbb{Z}$. Hence the action of \mathbb{Z} on M cannot be extended to make M into a \mathbb{Q} -module.

4. Suppose that $A \leq B$, then $a \in A$ such that $a \in B$ and $b \in B$ (Since $A \subseteq B$).

Let A+C=B+C, then $a+c\in A+C$ and $b+c\in B+C$ for $a\in A,\ b\in B$ and $c\in C$

Let $A \cap C = B \cap C$, then a = c for some $a \in A$ and $c \in C$ and b = c for some $b \in B$ and $c \in C$.

Note that $A \subseteq A + C$ and $C \subseteq A + C$;

 $B\subseteq B+C$ and $C\subseteq B+C$

so we have that $A \cap C \subseteq A + C$ and $B \cap C \subseteq B + C$.

That is we have that $a \in A \cap C \subseteq A + C$ and $b \in B \cap C \subseteq B + C$.

Hence from (2) and (3), we have that

a = b.

```
Also, from (2) and (3), we have that A \cap C \subseteq B \cap C since A \leq B.
Thus a \in A \cap C such that a \in B \cap C.
So we can write that b = c = a
\implies b = a.
therefore A = B.
```