Заняття 2.

Точкові оцінки невідомих параметрів

Метод максимальної вірогідності. Емпірична функція розподілу. Порядкові статистики. Гістограма. Ядерні оцінки щільності.

Останній термін здачі завдання: 17.03.2017.

Оцінка за завдання обчислюється за формулою $\max(3 * \text{Кількість набраних балів}, 100)\%.$

1. (4 бали) За значеннями вибірки

1.1, 2.1, 1.3, 0.9, 2.7, 1.4, 1.6, 1.3, 1.4, 2.4

знайти а) вибіркове середнє, б) вибіркову дисперсію, в) варіаційний ряд. Побудуйте гістограму з трьома класами [0,1),[1,2) та [2,3].

- 2. (3 бали) Припустимо, що $X_1,...,X_n$ вибірка з рівномірного розподілу U(0,1). Нехай $[a,b]\subset [0,1]$. Покладемо $Y_k=1$, якщо $X_k\in [a,b]$, та $Y_k=0$ в супротивному випадку.
 - а) Знайти математичне сподівання ${\rm E}Y$.
 - б) Нехай $m \in \mathbb{N}$. Знайти середню кількість інтервалів з сукупності $[0, \frac{1}{m}), [\frac{1}{m}, \frac{2}{m}), \dots, [\frac{m-1}{m}, 1]$ в які не потрапило жодного зі спостережень X_1, \dots, X_n . Яким має бути m, щоб це число не перевищувало 0.02, якщо n = 1000?
- 3. (1 бал) Нехай $\{Y_n\}$ послідовність випадкових величин така, що

$$\lim_{n \to \infty} EY_n = a, \quad \lim_{n \to \infty} DY_n = 0.$$

Довести, що

$$\lim_{n \to \infty} E(Y_n - a)^2 = 0.$$

Зауважте, що з цього випливає збіжність послідовності $\{Y_n\}$ до a за ймовірністю при $n \to \infty$.

- 4. (4 бали) а) Знайти оцінку максимальної вірогідності θ^* невідомого параметру $\theta > 0$ рівномірного розподілу $U(\theta, 2\theta)$.
 - б) Знайти $E\theta^*, D\theta^*$.
 - в) Чи буде ця оцінка консистентною?
- 5. (1 бал) Знайти оцінку максимальної вірогідності a^*, b^* невідомих параметрів a, b рівномірного розподілу U(a, b).
- 6. (4 бали) Знайти оцінку максимальної вірогідності параметру $\alpha > 0$ для розподілу, що має густину а) $p(x|\alpha) = \alpha x^{\alpha-1}, \ x \in [0,1],$ б) $p(x|\alpha) = \frac{\alpha}{x^{\alpha+1}}, \ x \geq 1.$

Чи будуть ці оцінки консистентними?

- 7. (1 бал) Нехай $\{X_n\}$ послідовність незалежних однаково розподілених випадкових величин з щільністю p(x). Припустимо, що p(x) = 0, x < a та існує $\delta > 0$ таке, що $p(x) > 0, x \in [a, a + \delta]$. Довести, що $\min_{k=1,...,n} X_k$ прямує до a за ймовірністю при $n \to \infty$.
- 8. (4 бали) Знайти оцінку максимальної вірогідності параметрів $\alpha > 0$ та x_0 для розподілу, що має густину а) $p(x|\alpha, x_0) = \alpha e^{-\alpha(x-x_0)}, \ x \geq x_0$, б) $p(x|\alpha, x_0) = \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}}, \ x \geq x_0$.

Чи будуть ці оцінки консистентними?

9. (6 балів) Знайти оцінку максимальної вірогідності для невідомого параметру а) біноміального розподілу Bi(m,p) (m відоме, p невідоме), б) розподілу Пуассона $Pois(\lambda)$, в) геометричного розподілу G(p).

Чи будуть ці оцінки консистентними?

10. (4 бали) Знайти оцінку максимальної вірогідності α_n^* невідомого параметру для розподілу з задачі 2 домашнього завдання №1.

Знайти Е α_n^* , $D\alpha_n^*$. Чи буде ця оцінка консистентною?

11. (2 бали) Припустимо, що $X_1, ..., X_n$ – вибірка з розподілу, що має щільність $p(x|x_0,\gamma)=\frac{1}{\pi}\frac{\gamma}{(x-x_0)^2+\gamma^2}$ (розподіл Коші), Знайдіть консистентну оцінку для невідомих параметрів x_0,γ .

Підказка. Знайдіть медіану та нижній квартиль розподілу.

- 12. (1 бал) За значеннями вибірки 1, 2, 1, 5, 7, 8, 16, -3, -2, яку взято з розподілу з щільністю $p(x|a)=0.5e^{-|x-a|},\ x\in\mathbb{R},$ знайти оцінку максимальної вірогідності невідомого параметру a.
- 13. (2 бали) Припустимо, що $X_1,...,X_n$ вибірка з показникового розподілу $Exp(\alpha),\ Y_k=0.1[10X_k]$ округлення X_k вниз до першого десяткового знаку після коми (наприклад, якщо $X_k=0.1923$, то $Y_k=0.1$). Знайдіть консистентну оцінку для α .
- 14. (3 бали) Змоделюйте n спостережень із показникового розподілу Exp(1).
 - а) Побудуйте гістограми та порівняйте їх з щільністю розподілу для різної кількості класів m=5,10,20,30,50,70,100.
 - б) Побудуйте графіки відхилення оцінки максимальної вірогідності α_n^* від істинного параметру в залежності від n. Як ви думаєте, який порядок має швидкість спадання $O(1/n), O(1/n^2), O(1/2^n), O(1/\sqrt{n}), O(1/\ln n)$, і т.п.?

В цій задачі вимагається не строге математичне обґрунтування, а емпіричний аналіз графіку.

15. (4 бали) Нехай $X_1, ..., X_n$ – вибірка з рівномірного розподілу U(0,1), F(x) – функція розподілу X_k , $\hat{F}_n(x)$ – емпірична функція розподілу, $D_n = \sup_x |\hat{F}_n(x) - F(x)|$.

За допомогою моделювання знайдіть приблизно:

- а) математичне сподівання, дисперсію та графік щільності D_5 ;
- б) таке m, що $P(D_m > 0.1) \approx 0.05$.
- 16. (7 балів) Змоделюйте n спостережень із а) рівномірного розподілу U(0,1), б) нормального розподілу N(0,1).

Побудуйте графіки ядерних оцінок $\hat{p}_n(x) = \frac{1}{nh_n} \sum_{k=1}^n K(\frac{x-X_k}{h_n})$ для щільностей розподілу та порівняйте їх з істинними значеннями, якщо

n=10,100,1000. Візьміть а) $K(x)=\mathbf{1}_{|x|\leq 0.5},$ б) $K(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. Значення h_n оберіть самостійно.

Обчисліть (чисельно) $a_n = \max_x |p(x) - \hat{p}_n(x)|, b_n = \int_{-\infty}^{\infty} |p(x) - \hat{p}_n(x)| dx.$ Чи можна зробити $a_n < 0.2$ для рівномірного розподілу, для якогонебудь n і h_n , якщо $K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$?

17. (1 бал) Нехай U_1, U_2 — незалежні випадкові величини, що мають рівномірний розподіл U(0,1). Доведіть, що $(X_1, X_2) = (\sqrt{-2 \ln U_1} \cos(2\pi U_2), \sqrt{-2 \ln U_1} \sin(2\pi U_2))$ — незалежні випадкові величини, що мають нормальний розподіл N(0,1).