Full Name: Etrabeth Wv (S), Joanna Hvang (D), UTEID:

Camillo Diaz (C), Kristine Hernande (S)

Elizabeth Wilcensei (B)

Unit 1: Gases Discussion Worksheet #1, Stoichiometry and Pressure Show all work for credit. Your work and answers must fit in the boxes or diagrams provided for each question.

Part I:

1. 40.0 grams of A (60.0 g/mol) react with 35.0 grams of B (40.0 g/mol) to form C (37.0 g/mol) and D (75.0 g/mol) according to the following equation:

$$3 A + 2 B \rightarrow 5 C + 1 D$$

Which reactant is the limiting reactant? (Show the work used to make this determination in the box and then circle your answer.)

$$3A + 2B \rightarrow 5C + D$$

$$40g \land | \text{Imol } A | \text{Imol } D$$

$$60g \land | \text{3 mol } A | \text{Imol } D$$

$$15 \land A | \text{Imol } B | \text{Imol } D$$

$$15 \land A | \text{Imol } D | \text{Imol } D$$

$$15 \land A | \text{Imol } D | \text{Imol } D | \text{Imol } D$$

$$15 \land A | \text{Imol } D | \text{Imol }$$

2. For the reaction in #1, what is the maximum number of grams of D that can be produced? Again, show your work and put your final answer in the spaces in the lower right corner.

0.67mol A.
$$\frac{1 \text{ mol } D}{3 \text{ mol } A} \cdot \frac{759 \text{ D}}{1 \text{ mol } D} = 10.79 \text{ D}$$

Answer: $\underline{10.7} = 9 \text{ D}$

3. For the reaction in #1, how many grams of excess reactant are left over at the completion of the reaction? Again, show your work and put your final answer in the spaces in the lower corner.

0.67mol A.
$$\frac{2 \text{ mol B}}{3 \text{ mol A}} \cdot \frac{409 \text{ B}}{1 \text{ mol B}} = 17.89 \text{ B}$$
35.09 B - 17.89 B = 17.29 B

Answer: $\frac{17.2}{9} \text{ g of } \frac{6}{9}$

Part II:

On a table in front of you are two beakers, each containing 100.0 mL of a clear, colorless liquid. One beaker is labeled lead(II) nitrate and the other is labeled potassium iodide. You pour the contents of one beaker into the other, and immediately a solid yellow precipitate, PbI₂ forms. The other product is the soluble compound KNO₃.

1. Write the chemical formulas for the reactants, lead (II) nitrate and potassium iodide, in the scenario above.

Pb (NO3)2

- KI
- 2. Write names for the products, PbI₂ and KNO₃, in the scenario above.

[ead (11) todide

potassium nitrate

3. Write a balanced chemical equation for this reaction.

4. You separate the precipitate from the liquid. You dry the yellow precipitate and weigh it, and find that you have 9.22 grams of PbI₂. How many moles of PbI₂ is this?

9.229 Pb12.
$$\frac{1 \text{ mol Pbl}_2}{4 \text{ bol g Pbl}_2} = \frac{0.02 \text{ mol Pbl}_2}{0.02 \text{ mol Pbl}_2}$$

- 0.22 mol/L 0.56 mol/L
- 5. If the starting concentrations of your solutions were 0.22 M lead (II) nitrate and 0.56 M potassium iodide, what is the percent yield for the reaction, given the final mass of 9.22 PbI₂?

Part III:

Gas Sample A has a pressure of 735 torr at a temperature of 300 K:

- 1. What is the pressure of gas sample A as measured in bar?
- 2. If gas sample A is compressed at constant temperature, would the pressure increase or decrease? Why?

- 3. Which contains more moles of gas: the original sample or the compressed sample?
- 4. Which has a greater density (g/L): the original sample or the compressed sample?