Algebra de series de potencias

Si dos series de potencias $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ y $g(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ tienen radios de convergencia $0 < r \le R$, entonces

$$f(z) \pm g(z) = \sum_{n=0}^{\infty} (a_n \pm b_n)(z - z_0)^n$$

у

$$f(z)g(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

con

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Demostración de la multiplicación de las series.

Sea $f(z)g(z)=(f\cdot g)(z)=\sum_{n=0}^{\infty}\frac{(f\cdot g)^{(n)}(z_0)}{n!}z^n$ definida para todo z en el dominio

$$D = \{ z \quad / \quad |z| < r \},$$

entonces nótese que

$$(f \cdot g)^{(n)}(z) = \sum_{k=0}^{n} \binom{n}{k} f^{(n)}(z)g^{(n-k)}(z)$$

donde

$$\left(\begin{array}{c} n\\ k \end{array}\right) = \frac{n!}{k!(n-k)!}.$$

Nótese que

$$\frac{d^k f(z)}{dz^k} = \sum_{n=0}^{\infty} k! a_n (z - z_0)^{n-k}$$

para $z=z_0$

$$\frac{d^k f(z_0)}{dz^k} = f^{(k)}(z_0) = k! a_k.$$

Por tanto

$$\frac{(f \cdot g)^{(n)}(z_0)}{n!} = \sum_{k=0}^n \frac{f^{(n)}(z_0)g^{(n-k)}(z_0)}{k!(n-k)!} = \sum_{k=0}^n a_k b_{n-k}.$$

Si f(z) y g(z) convergen en D entonces su multiplicación también y su radio de convergencia será $\geq r$.

Ceros y singularidades

Acá usaremos la serie de Laurent para clasificar en términos generales el comportamiento de una función analítica cerca de sus ceros y singularidades aisladas.

Definición: El cero de una función f es el punto z_0 donde f es analítica y $f(z_0) = 0$.

Definición: Una singularidad aislada de f es un punto z_0 tal que f es analítica en la vecindad reducida $0 < |z - z_0| < R$ pero no analítica directamente en el punto z_0 .

Ejemplo: La función $\tan(\pi z/2)$ tiene un cero en todo número entero par y una singularidad aislada en todo numero entero impar.

Ceros

Definición: Un punto z_0 es llamado cero de orden m de una función f si f es analítica en z_0 y f y sus primeras m-1 derivadas se hacen cero en z_0 , pero $f(m)(z_0) \neq 0$.

En otras palabras

$$f(z_0) = f'(z_0) = f''(z_0) = \dots = f^{(m-1)}(z_0) = 0 \neq f^{(m)}(z_0)$$

En este caso la serie de Taylor para f alrededor de z_0 toma la forma

$$f(z) = a_m(z - z_0)^m + a_{m+1}(z - z_0)^{m+1} + a_{m+2}(z - z_0)^{m+2} + \dots$$

o también

$$f(z) = (z - z_0)^m [a_m + a_{m+1}(z - z_0) + a_{m+2}(z - z_0)^2 + \dots]$$

donde

$$a_m = \frac{f^{(m)}(z_0)}{m!} \neq 0.$$

Es claro que la serie factorizada (en los paréntesis cuadrados) converge cuando f(z) converge. Entonces

$$f(z) = (z - z_0)^m g(z)$$

donde g(z) es analítica en z_0 y $g(z_0) \neq 0$.

Un cero de orden 1 a veces es llamado cero simple. Por ejemplo los ceros de la función $\sin(z)$, que ocurre en multiplos enteros de π , son todos simples. Nótese que en estos puntos la primera derivada, $\cos(z)$ no es cero.

Si f es una función analítica tal que $f(z_0) = 0$, entonces f es ya sea identicamente cero en la vecindad de z_0 o hay una vecindad reducida (disco sin el punto z_0), $0 < |z - z_0| < R$, alrededor de z_0 en el cual f no tiene ceros.

Nótese que si f no es constante, es analítica, y tiene un cero en z_0 , el orden del cero debe ser número entero. Un contra ejemplo es la función $z^{1/2}$ que ciertamente tiene un cero de orden 1/2 en z=0 pero no es analítica en ese punto.

Singularidades aisladas

La expansión de Laurent alrededor de un punto aislado z_0 , como sabemos, esta dada por la expresión

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n},$$

la cual se puede resumir como

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k.$$

Recordando que la serie converge dentro de una vecindad reducida $0 < |z - z_0| < R$, entonces

- Si $a_k = 0$ para todo k < 0, se dice que z_0 es una singularidad removible de f.
- Si $a_{-m} \neq 0$ para algún entero positivo m pero $a_k = 0$ para todo k < -m, se dice que z_0 es un polo de orden m para f.
- Si $a_k \neq 0$ para un número infinito de valores negativos de k, se dice que z_0 es una singularidad esencial de f.

Estas singularidades aisladas se pueden distinguir a través de comportamiento cualitativo de f(z) cerca de la singularidad.

Cuando f tiene una singularidad removible en z_0 su serie de Laurent toma la forma

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

 $con 0 < |z - z_0| < R.$

Ejemplo

$$\frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right) = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots \qquad z_0 = 0$$

$$\frac{\cos z - 1}{z} = \frac{1}{z} \left[\left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots \right) - 1 \right] = -\frac{z}{2!} + \frac{z^3}{4!} - \dots \qquad z_0 = 0$$

$$\frac{z^2 - 1}{z - 1} = z + 1 = 2 + (z - 1) + 0 + 0 + \dots \qquad z_0 = 1$$

Excepto por el punto z_0 la función f(z) es igual a una función h(z), la cual es analítica en z_0 . Obviamente la función h(z) es analítica en z_0 y es acotada en una vecindad alrededor z_0 .

Lemma: Si f tiene una singularidad removible en z_0 entonces

- \bullet f(z)es acotada en una vecindad reducida.
- f(z) tiene un límite finito cuando $z \to z_0$.
- \bullet f(z) puede ser redefinido en z_0 tal que la nueva función en z_0 es analítica.

Conversamente, si una función es acotada en una vecindad reducida alrededor de una singularidad aislada, la singularidad es removible.

La serie de Laurent de una función con un polo de orden m luce como

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots \quad \text{con} \quad a_{-m} \neq 0$$

y es valida en una vecindad reducida alrededor z_0 .

Ejemplo

$$\frac{\sin z}{z^5} = \frac{1}{z^5} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right) = \frac{1}{z^4} - \frac{1}{3!z^2} + \frac{1}{5!} - \frac{z^2}{7!} + \dots \qquad z_0 = 0$$

tiene un polo de orden 4 en z=0

Un polo de orden 1 es llamado polo simple. Por ejemplo z=0 es un polo simple de la función $(\sin z)/z^2$.

Lemma: Si f tiene un polo de orden m en z_0 , entonces $|(z-z_0)^{\ell}f(z)| \to \infty$ cuando $z \to z_0 \ \forall \ell < m$, mientras $(z-z_0)^m f(z)$ tiene una singularidad removible en z_0 . En particular, $|f(z)| \to \infty$ cuando z se aproxima al polo.

Demostración: Sabemos que una función con polos es de la forma

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{m-1}} + \cdots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots \quad \text{con} \quad a_{-m} \neq 0$$

Por tanto

$$(z-z_0)^m f(z) = a_{-m} + a_{-m+1}(z-z_0) + \cdots$$

Como no hay potencias negativas en la última expresión, la singularidad de $(z-z_0)^m f(z)$ en z_0 es removible. Además $(z-z_0)^m f(z) \to a_{-m} \neq 0$ cuando $z \to z_0$. Esto implica que para cualquier entero $\ell < m$,

$$|(z-z_0)^m f(z)| = \left| \frac{1}{(z-z_0)^{m-\ell}} (z-z_0)^m f(z) \right| \to \infty \text{ cuando } z \to z_0,$$

porque $(z - z_0)^{m-\ell} \to 0 \text{ y } a_{-m} \neq 0.$

Lemma: Una función f tiene un polo de orden m en z_0 si y solo si en una vecindad reducida de z_0

$$f(z) = \frac{g(z)}{(z - z_0)^m},$$

donde g es analítica en z_0 y $g(z_0) \neq 0$.

Demostración: Si f tiene un polo de orden m en z_0 , se tiene que en una vecindad reducida $(z - z_0)^m f(z) = g(z)$, donde

$$g(z) = b_0 + b_1(z - z_0) + b_2(z - z_0)^2 + \cdots$$

con $b_0 \neq 0$. Entonces la serie de Laurent para f en la vecindad de z_0 debe ser

$$f(z) = \frac{g(z)}{(z-z_0)^m} = \frac{b_0}{(z-z_0)^m} + \frac{b_1}{(z-z_0)^{m-1}} + \cdots$$

Ya que $b_0 = g(z_0) \neq 0$, la expansión muestra el polo predicho para f.

Ejemplo: Clasifique la singularidad en z = 1 de la función $\sin z/(z^2 - 1)^2$.

Solución:

$$\frac{\sin z}{(z^2 - 1)^2} = \frac{\sin z/(z + 1)^2}{(z - 1)^2}$$

Nótes que el numerados es analítico y diferente de cero en z = 1. Entonces la función tiene un polo de orden 2.