13. 8. 29. IPython Notebook

```
In [3]: cd Desktop
         [Errno 2] No such file or directory: 'Desktop'
         /Users/jeongmingi/Desktop
In [8]: from sklearn.externals import joblib
         filename = "age my model 70.pkl"
         clf = joblib.load(filename)
In [32]:
        cd data
         /Users/jeonqmingi/Desktop/data
In [33]:
        import pickle
         uapp = pickle.load(file('user app.df'))
         import numpy as np
In [34]:
In [38]:
         cd DataMining/pickles
         /Users/jeongmingi/Desktop/DataMining/pickles
In [41]: EF table = pickle.load(file('entityid featureid.pkl'))
In [42]:
         def what ages(i):
             user = uapp .ix[(uapp ['user id'] == i)]
             #user_ = uapp_[uapp_.apply(lambda x: x['user_id'] == i, axis=1)]
             ######## pickle 'entityid featureid' uesed for translating ... ####
             X test = (0 , list(user .entity id))
             temp = []
             for ii in X test[1]:
               c i = str(ii)
               if(EF table.has key(c i) == True):
                   temp.append(EF table[c i])
               else:
                    pass
                   #print(i ,False)
             ######## vectorization... It will have 52,600 features and not ha
             ######## weight... ㅎㅎㅎ 그러나 0~1의 가중치를 줄 수 있지 안을까jQuery171
             n features = 49683 ##!!!!!!
             temp2 = np.zeros(n features, dtype = np.float64)
             for ii in range(n features):
                if((ii+1) in temp):
                    temp2[ii] = temp2[ii] + 1
                else:
                    temp2[ii] = 0
             X test = np.array([temp2])
             ages = clf.predict(X test)
             #print int(gender)
             #X_test = np.array([0, temp])
```

```
return i, int(ages)
```

```
In [44]: user = []
    ages = []
    user_id_ = user_id_[:1000]
    for i in user_id_:
        temp1, temp2 = what_ages(i)
        user.append(temp1)
        ages.append(temp2)
```

```
In [47]: uapp["ages"] = 0
```

```
In [48]: for i, uid in enumerate(user_id__):
    #print(i, uid)
    uapp.ix[ (uapp['user_id'] == uid), 'ages' ] = ages[i]
```

```
In [49]: t = uapp[25:35].copy()
t.pop('usage')
t
```

Out[49]:

	create_date	update_date	user_id	entity_id	is_deleted	ages
25	20130317015228	20130730090416	3023116	1599923	True	4
26	20130222103311	20130728184307	3246192	1693135	True	1
27	20130310141222	20130729230224	1758743	1793010	True	2
28	20130317015228	20130730090416	3023116	1541687	True	4
29	20130412063020	20130730090416	3023116	1777213	True	4
30	20130607151638	20130728193812	2115990	1854907	True	1
31	20130331040556	20130731075255	4305863	1612457	True	1
32	20130625120908	20130729230224	1758743	1864689	True	2
33	20130604154438	20130730054858	3611801	1841672	True	1
34	20130317015228	20130730090416	3023116	1779808	True	4

13. 8. 29. IPython Notebook

```
In [41]:
         ls
         558691 589646044379538 942129678 n-1.jpg
         DataMining/
         DataMining2/
         NPKI/
         Untitled0.ipynb
         Untitled1.ipynb
         Untitled2.ipynb
         Untitled3.ipynb
         adme analysis temp.ipynb
         age_my_model_70.pkl
         document classification.ipynb
         entityid_featureid.pkl
         my_model.pkl
         my model10000.pkl
         new clustering.ipynb
         predicted user apps.ipynb
         profiled_user_gender.pkl
         user_app_predicted.df
         user_gender 2.txt
         user gender 3.txt
         user gender 4.txt
         user gender 5.txt
         user gender.txt
         user_gender7_pred
In [51]:
         import pickle
         users= pickle.load(file('profiled user gender.pkl'))
In [52]:
         users["ages"] = 0
In [50]:
In [ ]:
         ##### SUMMARY OF DATAFRAME #####
In [ ]:
In [67]:
        for i, uid in enumerate(users['user']):
            #print(i, uid)
            temp, age = what ages(uid)
            users.ix[ (users['user'] == uid), 'ages' ] = age
         [2115990, 2485217, 3023116, 4305863, 3611801]
Out[67]:
In [ ]:
```

13. 8. 29. IPython Notebook

```
In [73]: users[10:20]
```

Out[73]:

	gender	user	ages
10	1	2115990	1
11	2	2485217	1
12	1	3023116	4
13	2	4305863	1
14	1	3611801	1
15	1	4828587	1
16	2	2086263	3
17	2	4851916	1
18	2	5100778	1
19	2	2686098	1

```
In [74]: import pickle
    filename="profiled_user_gender_ages.pkl"
    fout = file(filename, "w")
    pickle.dump(users, fout)
```

```
In [ ]:
```