Planche TD 2

Ivan Lejeune

15 mars 2024

Exercice 2. Soit X un espace topologique et A, B deux parties de X.

- 1. Vérifier que $A \subset B$ implique $\overline{A} \subset \overline{B}$ et $\mathring{A} \subset \mathring{B}$.
- 2. Etablir les égalités

$$C_X(\overline{A}) = \overbrace{C_X(A)}^{\circ},$$

$$C_X(\mathring{A}) = \overline{C_X(A)},$$

$$\overline{A \cup B} = \overline{A} \cup \overline{B},$$

$$\widehat{A \cap B} = \mathring{A} \cap \mathring{B}.$$

3. Etablir les inclusions

$$\overline{A \cap B} \subset \overline{A} \cap \overline{B},$$

$$\mathring{A} \cup \mathring{B} \subset \overbrace{A \cup B}.$$

Puis construire des exemples où ces inclusions sont strictes.

Exercice 3. Dans un espace métrique X, notons B la boule ouverte de centre a et de rayon r et B' la boule fermée correspondante.

- 1. Rappeler pourquoi on a toujours $\mathring{B} = B$ et $\overline{B'} = B'$.
- 2. Montrer que $B \subset \mathring{B'}$ et $\overline{B} \subset B'$. Trouver un espace métrique où ces inclusions sont strictes.
- 3. Montrer que si X est un espace normé, les inclusions ci-dessus sont toujours des égalités.

Solution.

- 1. La première égalité est vraie car les boules ouvertes sont des ouverts.
 - La deuxieme est vraie care les boules fermées sont fermées
- 2. La première égalité est vraie car B est un ouvert contenu dans B' donc par définition de $\mathring{B'}$ on a $B \subset \mathring{B'}$

La deuxième est vraie car $\overline{B} \subset B'$, B' est un fermé et $B \subset B'$ donc par définition de \overline{B} , on a $\overline{B} \subset B'$.

Un espace topologique où les inclusions sont strictes serait le suivant :

Soit $X = \{a, b\}$ et d la distance discrète. Alors

$$B(a, 1[= \{a\}])$$

$$B(a, 1[= \{a\}]) = \{a\}$$

$$B(a, 1] = X = \{a, b\}$$

$$B(a, 1] = X = \{a, b\}$$

3. Soit $x \in B(a, r]$.

Soit V un voisinage de x et $\rho > 0$ tel que

$$x \in B(x, \rho[\subset V$$

On peut supposer p < r. Alors en posant

$$\lambda\coloneqq 1-\frac{\rho}{2r}$$

on a

$$a + \lambda(x - a) \in B(a, r[\cap B(x, \rho[$$

Donc $V \cap B(a, r[\neq \emptyset.$

On veut choisir $\lambda < 1$ tel que

$$\frac{\|x - (a + \lambda(x - a))\|}{(1 - \lambda)(x - a)} < \rho$$

Alors $x \in \overline{B(a,r[}$ car

$$x = \lim_{n \to +\infty} \left(a + \left(1 - \frac{1}{n} \right) (x - a) \right)$$

et cet element appartient à B(a,r] puisque il est < r.

Solution 4. Il faut montrer que

$$|d_A(x) - d_A(y)| \le k \cdot d(x, y)$$

Cela ressemble fort à la seconde inégalité triangulaire qui nous dit :

$$|d(x,a) - d(a,y)| \le d(x,y)$$

Si $A = \{a\}$, ceci dit que d_A est 1-lipschitzienne. Aurait-on dans le cas général

$$|d_A(x) - d_A(y)| \le d(x, y)$$
?

Cela revient à prouver

$$-d(x,y) \le d_A(x) - d_A(y) \le d(x,y)$$

Soit $a \in A$, alors

$$d(x,a) - d(y,a) \le d(x,y)$$

et donc

$$d(x,a) \le d(x,y) + d(y,a)$$

d'où

$$d_A(x) - d(x, y) \le d(y, a)$$

pour tout $a \in A$ et donc la fonction est 1-lipschitzienne.

Dans des espaces métriques, f est continue en $x \in X$ si et seulement si pour toute suite (x_n) de points de X qui convergent vers $x \in X$, on a $f(x_n) \to f(x)$.

Exercice 5. Un espace topologique est dit **séparable** s'il possède une partie au-plus dénombrable partout dense. Montrer qu'un espace métrique est séparable si et seulement si il possède une base d'ouverts au plus dénombrable. Etablir que \mathbb{R}^n est séparable et exhiber une base d'ouverts dénombrables.

Exercice 6. Deux espaces métriques (X,d) et (Y,δ) étant donnés, définissons :

$$D_1((x,y),(x',y')) = d(x,x') + \delta(y,y')$$
; $D_{\infty}((x,y),(x',y')) = \max\{d(x,x'),\delta(y,y')\}$

Montrer que D_1 et D_{∞} .