

# DoS and DDoS resiliency of NDN/CCN architecture

Alexander Afanasyev (UCLA), Ilya Moiseenko (UCLA), Ersin Uzun (PARC), Priya Mahadevan (PARC)

### **NDN** vulnerabilities

#### • Interest flooding / PIT overloading

- target: NDN routers, network channels
- **action:** expressing a large number of Interests for (non-)existing Data from a specific namespace or a broad set of namespaces
- **effect:** resource (CPU, memory, bandwidth, etc.) exhaustion, PIT overloading

#### Cache poisoning

- target: NDN routers
- action: expressing a large number of Interests for unpopular Data
- **effect:** evicting popular Data from caches

#### Content poisoning

- target: consumers, NDN routers, network channels
- **action:** satisfying Interests with bogus (verifiable, but from bad publisher / non-verifiable) Data
- **effect:** wrong content may be cached on the way and reach consumer, which will need to re-express Interest with appropriate exclude filter

### Main research goals

#### Investigate resiliency of NDN architecture to Denial-of-Service (DoS) attacks

- applicability of existing IP-based attacks to NDN
- effect and potential of NDN-specific attacks
- quantify architectural resiliency of NDN to attacks

#### Investigate DoS detection techniques

- traffic pattern analysis
- time series analysis
- sequential change point detection

#### • Investigate DoS prevention/mitigation techniques

- bandwidth-delay-product (BDP) based interest limits
- dynamic per-face interest limiting
- dynamic per-face per prefix interest limiting
- PIT quotas and "replacement" policies
- pushing "bad" Interests to the edges of the network

## Scope of the work for Summer'12

#### Problem subset for the summer

- Only networking-level attacks specific to NDN architecture
  - no application-level or implementation-related attacks
  - code bugs (if any) are not inherent to NDN architecture
- Focus on interest flooding attacks
  - the most (in IP packet flooding form) prevalent type of attack on the existing Internet

#### • Research assumptions

- only static content in NDN network
- client nodes can be malicious or compromised
- no malicious or compromised routers

#### • Future directions

- explore attacks possible on network with dynamic content
- explore resiliency to colluding attackers
- understand relation between DDoS attacks and fairness (persource/per-prefix/per-face, etc.)

## Methodology

#### Analysis

- analyze existing DoS and DDoS detection solutions
- evaluate applicability of existing schemes to mitigate NDN-specific attacks
- explore NDN-specific DoS mitigation methods

#### Evaluation

#### • Simulation-based experimentation (ndnSIM)

- ndnSIM module for NS-3 simulator
- small-scale and complex large-scale (realistic) scenarios
- Emulation-based experimentation (DETER testbed)
  - small-scale scenarios (~20 nodes)
  - verify fidelity of the simulation results

#### Evaluation goal

- obtain metrics for analytics
  - number of satisfied/unsatisfied interests vs. time
  - ratio of satisfied/unsatisfied to incoming interests vs. time
  - per-face per-prefix stats
- evaluate extent and effects of NDN-specific DoS attacks
- evaluate DoS avoidance/mitigation methods
   adaptation of existing methods
  - NDN-specific methods

# **Evaluation details**

#### Topologies

- simple small-scale
  - linear
  - one-level binary tree
  - two-level binary tree
- complex large-scale
  - multi-level binary tree
    realistic large-scale (Internet and ISP)

#### Attack scenarios

- simple
  - one producer, 50% consumers good, 50% bad
- advanced
  - one producer, variable ratio good and bad consumers
  - multiple producers for the same prefix
  - multiple producers for different prefixes

#### • Metrics (statistics) generation

- multiple dimensions
  - time, prefix, interface (incoming, outgoing)

#### multiple granularities

- 5 sec, 30 sec, 60 sec (configurable)
- per-prefix per-interface
- per-prefix only, per-interface only

# Statistics generation module



### **Properties of the implemented statistics tree:**

- Child node statistics is periodically (every second) aggregated to the parent.
- Total statistics is aggregated at leaf nodes.
- Exponential decaying of stats data.
- Pruning zeroed nodes and branches.

# Work in progress

# ndnSIM: NS-3 based NDN simulator

#### Modular & extensible architecture

- C++ classes for every NDN component
  - Face
  - PIT
  - FIB
  - ContentStore
- Simulated basic NDN operations
- Pluggable modules
  - Forwarding strategy
  - PIT
  - Content Store
- Packet-level interoperability with CCNx implementation



# Linear topology erest stats for "/" Tx/Rx ra



### Simple tree topology

