

Sequence Labeling

Phạm Quang Nhật Minh

Aimesoft JSC minhpham0902@gmail.com

Lecture outline

- POS Tagging and Named Entity Recognition (NER)
- Hidden Markov Models for Part-of-Speech Tagging
- Conditional Random Fields
- Evaluation of Named Entity Recognition

Lecture outline

- Sequence Labeling Problems
- Hidden Markov Models for Part-of-Speech Tagging
- Conditional Random Fields
- Evaluation of Named Entity Recognition

Part-of-Speech Tagging

- Assigning a part-of-speech to each word in a text.
- Words often have more than one POS.
- book:
 - VERB: (Book that flight)
 - NOUN: (Hand me that book).

Part-of-Speech Tagging

- INPUT:
 - ☐ Jane will back the bill
- OUTPUT:
 - ☐ Jane/NOUN will/AUX back/VERB the/DET bill/NOUN

Why POS Tagging?

- Can be useful for other NLP tasks
 - ☐ Parsing: POS tagging can improve syntactic parsing
 - ☐ MT: reordering of adjectives and nouns (say from Spanish to English)
 - □ Sentiment or affective tasks: may want to distinguish adjectives or other POS
 - □ Text-to-speech (how do we pronounce "lead" or "object"?)

Challenges in POS tagging

- Words have more than one possible POS
 - □ book that flight
 - □ hand me that book
- Simple solution with dictionary look-up does not work in practice
 - One needs to determine the POS tag for an instance of a word from its context

Define a tagset

- We must agree on a standard inventory of word classes
 - □ Taggers are trained on a labeled corpora
 - The tagset needs to capture semantically or syntactically important distinctions that can easily be made by trained human annotators

Public tagsets in NLP

- Brown corpus Francis and Kucera 1961
 - □ 87 tags
- 45-tag Penn Treebank tagset - Marcus et al. 1993
 - ☐ Hand-annotated corpus of Wall Street Journal, 1M words
 - ☐ 45 tags, a simplified version of Brown tag set
 - Standard for English now
 - Most statistical POS taggers are trained on this Tagset

Penn Treebank tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating conjunction	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg present	eat
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/ subordin-conj	of, in, by	RBR	comparative adverb	faster	WRB	wh-adverb	how, where
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%,&	"	left quote	or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	. ! ?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	

Named Entities

- Named entity, in its core usage, means anything that can be referred to with a proper name. Most common 4 tags:
 - □ PER (Person): "Marie Curie"
 - □ LOC (Location): "New York City"
 - □ ORG (Organization): "Stanford University"
 - ☐ GPE (Geo-Political Entity): "Boulder, Colorado"
- Often multi-word phrases
- But the term is also extended to things that aren't entities:
 - ☐ dates, times, prices

Named Entity Tagging

- The task of named entity recognition (NER):
 - ☐ find spans of text that constitute proper names
 - □ tag the type of the entity.

NER Output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER?

- Sentiment analysis: consumer's sentiment toward a particular company or person?
- Question Answering: answer questions about an entity?
- Information Extraction: Extracting facts about entities from text.

Why NER is hard

- Segmentation
 - □ In POS tagging, no segmentation problem since each word gets one tag.
 - □ In NER we have to find and segment the entities!
- Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO Tagging

- Define many new tags
 - □ B-PERS, B-DATE,...: beginning of a mention of a person/date...
 - □ I-PERS, I-DATE,...: inside of a mention of a person/date...
 - □ O: outside of any mention of a named entity

```
[PERS Pierre Vinken] , 61 years old , will join [ORG IBM] 's board as a nonexecutive director [DATE Nov. 2] .
```



```
Pierre_B-PERS Vinken_I-PERS ,_O 61_O years_O old_O ,_O will_O join_O IBM_B-ORG 's_O board_O as_O a_O nonexecutive_O director_O Nov._B-DATE 29_I-DATE ._O
```


BIO Tagging variants: IO and BIOES

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	0	0	0
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	0	0	0
the	0	0	0
Chicago	I-LOC	B-LOC	S-LOC
route	0	O	0
•	0	0	O

Standard algorithms for NER

Supervised Machine Learning given a human-labeled training set of text annotated with tags

- Hidden Markov Models
- Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

Word Segmentation as Sequence Labeling

Chiều 28/2, Hà Nội đã tổ chức họp trực tuyến về việc phòng chống dịch Covid-19 do ông Nguyễn Đức Chung - Chủ tịch UBND TP Hà Nội chủ trì.

Chiều 28/2, Hà_Nội đã tổ_chức họp trực_tuyến về việc phòng_chống dịch Covid-19 do ông Nguyễn_Đức_Chung - Chủ_tịch UBND TP Hà_Nội chủ_trì.

BI Tagging

Chiều 28/2, Hà Nội đã tổ chức họp trực tuyến về việc phòng chống dịch Covid-19 do ông Nguyễn Đức Chung - Chủ tịch UBND TP Hà Nội chủ trì.

Chiều/B 28/2/B ,/B Hà/B Nội/I đã/B tổ/B chức/I họp/B trực/B tuyến/I về/B việc/B phòng/B chống/I dịch/B Covid-19/B do/B ông/B Nguyễn/B Đức/I Chung/I -/B Chủ/B tịch/I UBND/B TP/B Hà/B Nội/I chủ/B trì/I ./B

Lecture outline

- Sequence Labeling Problems
- Hidden Markov Models for Part-of-Speech Tagging
- Conditional Random Fields
- Evaluation of Named Entity Recognition

Sequence Labeling

- Sequence Labeling
 - \square Input: a word (token) sequence $x_1 \dots x_n$
 - \square Output: a tag sequence $y_1 \dots y_n$

- In the supervised setting, we have a list of training examples $(x^{(i)}, y^{(i)})$ for i = 1 ... m where
 - \square $x^{(i)}$ is a sentence $x_1^{(i)}$... $x_{n_i}^{(i)}$ and $y^{(i)}$ is a tag sequence $y_1^{(i)}$... $y_{n_i}^{(i)}$
 - □ We learn a mapping from a word sequence to a tag sequence

Supervised Learning Problem

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./. 3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

•••

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

From the training set, induce a function/algorithm that maps new sentences to their tag sequences.

Hidden Markov Models (HMM) for Tagging

- We have an input sentence $x = x_1, x_2, ..., x_n$ □ (x_i is the i'th word in the sentence)
- We have a tag sequence $y = y_1, y_2, ..., y_n$ $\Box (y_i \text{ is the } i'\text{th tag in the sentence})$
- We'll use an HMM to define

$$p(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n)$$

for any sentence $x_1x_2 \dots x_n$ and tag sequence $y_1y_2 \dots y_n$ of the same length.

HMM tagger

 \blacksquare The most likely tag sequence for x is

$$\arg \max_{y_1...y_n} p(x_1 ... x_n, y_1 ... y_n)
= \arg \max_{y_1...y_n} p(x_1 ... x_n | y_1 ... y_n)
= \arg \max_{y_1...y_n} p(x_1 ... x_n | y_1 ... y_n)$$

How can we decompose the equation into simpler terms?

Assumptions in first-order HMMs

Markov Assumption: The probability of a hidden state depends only on its previous hidden state.

$$P(y_i|y_1 ... y_{i-1}) = P(y_i|y_{i-1})$$

Observation Independence Assumption: The probability of an observation depends only on its associated hidden state.

$$P(x_i|x_1...x_i...x_n, y_1...y_i...y_n) = P(x_i|y_i)$$

First-order (bigram) Hidden Markov Models

For any sentence $x = x_1 \dots x_n$ where $x_i \in V$ for $x = i = 1 \dots n$, and any tag sequence $y = y_1 \dots y_n$ where $y_i \in S$ for $i = 1 \dots n$, and $y_{n+1} = </s>$, the joint probability of the sentence and tag sequence is

$$p(x_1 ... x_n, y_1 ... y_{n+1})$$

$$\approx \prod_{i=1}^{n+1} P_T(y_i | y_{i-1}) \prod_{i=1}^{n} P_E(x_i | y_i)$$

Transition probabilities Emission probabilities

Hidden Markov Models for POS Tagging

POS → POS transition probabilities

$$P(Y) \approx \prod_{i=1}^{n+1} P_T(y_i|y_{i-1})$$

■ POS → Word emission probabilities

$$P(X|Y) \approx \prod_{i=1}^{n} P_E(x_i|y_i)$$

 $P_T(JJ|<s>) * P_T(NN|JJ)*P_T(NN|NN) ...$

 $P_{E}(\text{natural}|\text{JJ}) * P_{E}(\text{language}|\text{NN}) * P_{E}(\text{processing}|\text{NN})$...

An Example

If we have $n=3, x_1 \dots x_3$ equal to the sentence the dog laughs and $y_1 \dots y_4$ equal to the tag sequence D N V </s>, then

$$P(x_1 ... x_n, y_1 ... y_{n+1})$$

$$\approx P_T(D|~~) \times P_T(N|D) \times P_T(V|N) \times P(~~|V) \times P_E(the|D) \times P_E(dog|N) \times P_E(laughs|V)$$

Hidden Markov Models

Definition

$Q=q_1q_2\dots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A, each a_{ij} representing the probability
	of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Learning Hidden Markov Models (with tags)

Count the number of occurrences in the corpus and

Divide by context to get probability

$$P_T(LRB|NN) = c(NN LRB)/c(NN) = 1/3$$

 $P_E(language|NN) = c(NN \rightarrow language)/c(NN) = 1/3$

Learning Hidden Markov Models (with tags)

Transition probabilities

$$P_T(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

Emission probabilities

$$P_E(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

Note: Smoothing

HMM transition probabilities: there are not many tags, so smoothing may not be necessary

$$P(t_i|t_{i-1}) = \lambda_1 \frac{C(t_{i-1},t_i)}{C(t_{i-1})} + (1-\lambda_1) \frac{C(t_i)}{C(1-t_i)}$$

HMM emission probabilities: smooth for unknown words

$$P_E(w_i|t_i) = \lambda \frac{C(t_i,w_i)}{C(t_i)} + (1-\lambda) \frac{1}{N}$$

Training algorithm

```
# Input data format is "natural language ..."
make a map emit, transition, context
for each line in file
  previous = "<s>"
                                    # Make the sentence start
  context[previous]++
  split line into wordtags with " "
  for each wordtag in wordtags
     split wordtag into word, tag with "_"
     transition[previous+" "+tag]++ # Count the transition
     context[tag]++
                                   # Count the context
     emit[tag+" "+word]++
                                    # Count the emission
     previous = tag
  transition[previous+" </s>"]++
# Print the transition probabilities
for each key, value in transition
  split key into previous, word with " "
  print "T", key, value/context[previous]
# Do the same thing for emission probabilities with "E"
```


HMM tagging as decoding

Given as input HMM $\lambda = (A, B)$, and a sequence of observation $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 ... q_T$

HMM decoding in POS tagging

- Input: a sequence of n words $w_1 ... w_n$
- Output: most probable tag sequence $t_1 \dots t_n$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

HMM decoding

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

Applying Bayesion Rule

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1...w_n|t_1...t_n)P(t_1...t_n)}{P(w_1...w_n)}$$

Dropping denominator

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1|\ldots w_n|t_1\ldots t_n) P(t_1\ldots t_n)$$

HMM decoding

Observation independence

$$P(w_1 \dots w_n | t_1 \dots t_n) \approx \prod_{i=1}^n P(w_i | t_i)$$

Markov (bigram) assumption

$$P(t_1 \ldots t_n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n|w_1...w_n) \approx \underset{t_1...t_n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{P(w_i|t_i)}_{P(t_i|t_{i-1})}$$

Finding POS tags with Markov Models

Finding POS Tags with Markov Models

The best path is our POS sequence

Viterbi algorithm

■ At each cell, $v_t(j)$ represents the highest probability for any sequence $q_1 \dots q_t$ ending at the state j

$$v_t(j) = \max_{q_1, \dots, q_{t-1}} P(q_1 \dots q_{t-1}, o_1, o_2, \dots o_t, q_t = j | \lambda)$$

 $\square \lambda$ represents the HMM model

Viterbi algorithm

Dynamic programming

$$v_t(j) = \max_i v_{t-1}(i) a_{ij} b_j(o_t)$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

Viterbi algorithm

Dynamic programming

$$v_t(j) = \max_i v_{t-1}(i)a_{ij}b_j(o_t)$$

- In implementation, we will use negative logarithm to avoid underflow problem
- The score of the best path upto the step t and ends with the state j is denoted by $v_t'(j) = -\log v_t(j)$

$$v'_{t}(j)$$

$$= \min_{i} \left[-\log v_{t-1}(i) + -\log a_{ij} + -\log b_{j}(o_{t}) \right]$$

$$= \min_{i} \left[v'_{t-1}(i) + -\log a_{ij} + -\log b_{j}(o_{t}) \right]$$

Viterbi Algorithm Steps

- Forward step, calculate the best path to a node
 - ☐ Find the path to each node with the lowest negative log probability
- Backward step, reproduce the path

Forward Step: Part 1

First, calculate transition from <S> and emission of the first word for every POS

```
natural
► 1:NN best_score["1 NN"] = -log P<sub>T</sub>(NN|<S>) + -log P<sub>E</sub>(natural | NN)
  1:JJ best_score["1 JJ"] = -log P_T(JJ|<S>) + -log P_E(natural | JJ)
  1:VB best_score["1 VB"] = -log P_T(VB|<S>) + -log P_E(natural | VB)
 1:LRB best_score["1 LRB"] = -log P<sub>T</sub>(LRB|<S>) + -log P<sub>E</sub>(natural | LRB)
1:RRB best_score["1 RRB"] = -log P<sub>T</sub>(RRB|<S>) + -log P<sub>E</sub>(natural | RRB)
```


Forward Step: Middle Parts

For middle words, calculate the minimum score for all possible previous POS tags

```
natural
             language
                          best score["2 NN"] = min(
 1:NN
               2:NN
                          best score["1 NN"] + -\log P_T (NN|NN) + -\log P_F (language | NN),
                          best score["1 JJ"] + -\log P_T (NN|JJ) + -\log P_E (language | NN),
                          best score["1 VB"] + -\log P_T(NN|VB) + -\log P_E(language | NN),
               2:JJ
  1:JJ
                          best score["1 LRB"] + -\log P_T(NN|LRB) + -\log P_E(language | NN),
                          best score["1 RRB"] + -log P<sub>T</sub> (NN|RRB) + -log P<sub>F</sub> (language | NN),
 1:VB
 1:LRB
               2:LRB
                          best score["2 JJ"] = min(
                          best score["1 NN"] + -\log P_T(JJ|NN) + -\log P_F(language | JJ),
                          best score["1 JJ"] + -\log P_T(JJ|JJ) + -\log P_E(language | JJ),
 1:RRB
                          best score["1 VB"] + -\log P_T(JJ|VB) + -\log P_F(language | JJ),
```


Forward Step: Final Part

Finish up the sentence with the sentence final symbol

```
science
                            best score["/+1 "] = min(
 I:NN
             I+1:
                              best_score["/NN"] + -log P_T(|NN),
                              best_score["/ JJ"] + -log P_T(|JJ),
  I:JJ
                              best score["/VB"] + -\log P_T(|VB),
                              best_score["/ LRB"] + -log P_T(|LRB),
                              best score["/NN"] + -log P_{\tau}(|RRB),
 I:VB
```


Implementation: Model Loading

```
make a map for transition, emission, possible tags
for each line in model file
     split line into type, context, word, prob
     possible tags[context] = 1 # We use this to
                                 # enumerate all tags
     if type = "T"
            transition["context word"] = prob
     else
            emission["context word"] = prob
```


Implementation: Forward Step

```
split line into words
I = length(words)
make maps best score, best edge
best score["0 < s >"] = 0 # Start with < s >
best_edge["0 <s>"] = NULL
for i in 0 ... l-1:
  for each prev in keys of possible tags
   for each next in keys of possible tags
      if best score["i prev"] and transition["prev next"] exist
       score = best score["i prev"] +
                 -log P<sub>T</sub>(next|prev) + -log P<sub>F</sub>(word[i]|next)
       if best score["i+1 next"] is new or > score
          bes\overline{t} score["i+1 next"] = score
          best edge["i+1 next"] = "i prev"
# Finally, do the same for </s>
```


Implementation: Backward Step

Lecture outline

- Sequence Labeling Problems
- Hidden Markov Models for Part-of-Speech Tagging
- Conditional Random Fields
- Evaluation of Named Entity Recognition

Problems of HMM tagger

- Unknown words
 - □ Proper names and accronyms
 - New common verbs and nouns
- Difficult to incoporate attribiary features to HMM

Conditional Random Fields (CRF)

 A discriminative sequence model based on log-linear models

Given $X = x_1^n = x_1 \dots x_n$. We want to compute sequence of output tags $Y = y_1^n = y_1 \dots y_n$

■ CRF computes posterior probability P(Y|X) directly $\hat{Y} = \arg\max_{Y} P(Y|X)$

Conditional Random Fields

 \blacksquare CRF models P(Y|X) by using feature functions f

$$p(Y|X) = \frac{\exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)}{\sum_{Y' \in \mathscr{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)}$$

- We call $F_k(X, Y)$ global features
 - \square Each one is a property of the entire input sequence X and output sequence Y

Global Features

Decompose global features into a sum of local features for each position i in Y

$$F_k(X,Y) = \sum_{i=1}^n f_k(y_{i-1}, y_i, X, i)$$

Features in a CRF POS Tagger

■ Each local feature depends on any information from (y_{i-1}, y_i, X, i)

- $\square I(x_i = the, y_i = DET)$
- $\square I(y_i = PROPN, x_{i+1} = Street, y_{i-1} = NUM)$
- $\square I(y_i = VERB, y_{i-1} = AUX)$
- $\square I\{x\}$ is an indicator function
 - 1 if *x* is true, 0 otherwise

Features in a CRF POS Tagger

Feature templates

$$\square \langle y_i, x_i \rangle, \langle y_i, y_{i-1} \rangle, \langle y_i, x_{i-1}, x_{i+2} \rangle$$

- Features generated for the example Janet/NNP will/MD back/VB the/DT bill/NN when x_i is the word back
 - \Box f_{2341} : y_i = VB and x_i = back
 - $\Box f_{100}$: y_i = VB and y_{i-1} = MD
 - $\Box f_{99451}$: y_i = VB and x_{i-1} = will and x_{i+2} = bill

Features in CRF POS Tagger

- Features that help with unknown words
 - ☐ Word shape features
 - ☐ Prefix and suffix features
- E.g., features for the word Hà_Nội

```
prefix(x_i) = H

prefix(x_i) = Hà

suffix(x_i) = ội

suffix(x_i) = i

word-shape(x_i) = Xx_Xxx

short-word-shape(x_i) = Xx Xx
```


Features for CRF Named Entity Recognzers

Features are very similar features to a POS tagger

identity of w_i , identity of neighboring words embeddings for w_i , embeddings for neighboring words part of speech of w_i , part of speech of neighboring words presence of w_i in a gazetteer w_i contains a particular prefix (from all prefixes of length 4) w_i contains a particular suffix (from all suffixes of length 4) word shape of w_i , word shape of neighboring words short word shape of w_i , short word shape of neighboring words gazetteer features

Features for CRF Named Entity Recognzers

E.g., features for entity token L'Occitane

```
\operatorname{prefix}(x_i) = \operatorname{L} \operatorname{suffix}(x_i) = \operatorname{tane} \operatorname{prefix}(x_i) = \operatorname{L'} \operatorname{suffix}(x_i) = \operatorname{ane} \operatorname{prefix}(x_i) = \operatorname{L'O} \operatorname{suffix}(x_i) = \operatorname{ne} \operatorname{prefix}(x_i) = \operatorname{L'Oc} \operatorname{suffix}(x_i) = \operatorname{e} \operatorname{word-shape}(x_i) = \operatorname{X'Xxxxxxx} \operatorname{short-word-shape}(x_i) = \operatorname{X'Xx}
```


Inference and Training for CRFs

$$\hat{Y} = \underset{Y \in \mathscr{Y}}{\operatorname{argmax}} P(Y|X)$$

$$= \underset{Y \in \mathscr{Y}}{\operatorname{argmax}} \frac{1}{Z(X)} \exp\left(\sum_{k=1}^{K} w_k F_k(X,Y)\right)$$

$$= \underset{Y \in \mathscr{Y}}{\operatorname{argmax}} \exp\left(\sum_{k=1}^{K} w_k \sum_{i=1}^{n} f_k(y_{i-1}, y_i, X, i)\right)$$

$$= \underset{Y \in \mathscr{Y}}{\operatorname{argmax}} \sum_{k=1}^{K} w_k \sum_{i=1}^{n} f_k(y_{i-1}, y_i, X, i)$$

$$= \underset{Y \in \mathscr{Y}}{\operatorname{argmax}} \sum_{i=1}^{K} \sum_{k=1}^{K} w_k f_k(y_{i-1}, y_i, X, i)$$

Viterbi equation for CRFs

Use Viterbi algorithm in decoding

$$v_t(j) = \max_{i=1...N} v_{t-1}(i) \sum_{k=1}^K w_k f_k(y_{t-1}, y_t, X, t)$$

$$1 \le j \le N, 1 < t \le T$$

Learning in CRFs relies on the same supervised learning algorithm presented in logistic regression

Stochastic Gradient Descent

Libraries that implement CRFs

- C++
 - ☐ CRF++
 - □ CRFSuite
- Mallet
- Python Wrappers
 - □ sklearn-crfsuite
 - python-crfsuite
 - ☐ Python wrapper in CRF++

Lecture outline

- Sequence Labeling Problems
- Hidden Markov Models for Part-of-Speech Tagging
- Conditional Random Fields
- Evaluation of Named Entity Recognition

Evaluation

- Part-of-Speech tagging is evaluated by accuracy
 - ☐ Ratio of correct labeled tags to total tags
- Named Entity Recognition is evaluated by Precision, Recall, F1
 - □ Recall is the ratio of the number of correctly labeled responses to the total that should have been labeled;
 - □ Precision is the ratio of the number of correctly labeled responses to the total labeled;
 - ☐ F -measure is the harmonic mean of the two.
- We often use <u>sequence</u> for evaluating sequence labeling tasks