

On Scheduling of Fuzzing Tests

Hongbo Zhang ANU

Supervisors: Steve Blackburn, Tony Hosking, Shane Magrath

Feb 13 2017 Sydney

Overview

- Problem
- Models
- Results
- Conclusion

Crash Models

Bernoulli Model

Crash Models

Bernoulli Model

- Infinite is impossible
- Probability to find a new unique crash should decrease.
- Follow the leader is optimal

Crash Models

Limited Crashes Model

- λ is decay parameter
- n is unique crashes triggered by a seed potentially
- p is much smaller than 1.
- All of them are unknown as a priori.

Result: Decay factor

- Smaller λ , early crash, more exploration
- n >> n*

Result: α-UCB1

To see "explore vs. exploit" more clearly

UCB1 : Mean + Variance

Exploit Explore

 α -UCB1: $\alpha \times$ Mean + Variance

Result: α-UCB1

$$n = 5$$

Conclusion

- Exploration vs. Exploitation
- Accurate crash modeling is essential in designing a scheduling policy.
- Questions
 - –Theory: multi-arm bandits with finite lift-time*
 - -Bug model

^{*} Chakrabarti D, Kumar R, Filip R, Eli U, Mortal Multi-Armed Bandits, in Advances in Neural Information Processing Systems 21, Curran Associates, Inc., pp. 2730280, 2009

THANKS

Hongbo Zhang u6170245@anu.edu.au

Appendix

• n*

$$\frac{a}{\lambda_0} \times \frac{\gamma^{n+1} - 1}{\gamma^{n+1} - \gamma^n} \approx m = t \times c \times w$$