

FIGURE 6. Experimentally motivated Plomp-Levelt consonance curve for f = 440 Hz, N = M = 6.

$$w_c(f, N, A, t) = \sum_{n=1}^{N} a_n w(nf, t),$$

The next lemma shows that the denominators present in the cosine similarity formula play little role in our considerations under appropriate assumptions on f and N.

Lemma 2. Let $a_n \in [0,1]$ for n = 1, ..., N. We have

$$\left| \int_0^T w_c(f, N, A, t)^2 dt - \frac{NT}{2} \right| \le \frac{N^2}{2\pi f}$$

Proof. We are looking for a bound on the integral of w_c^2 , that is the following expression

$$\sum_{n=1}^{N} \sum_{m=1}^{N} \int_{0}^{T} a_{n} a_{m} w(nf, t) w(mf, t) dt$$

We obtain the desired bound by looking at the diagonal (i.e. those, where n=m) and the non-diagonal entries in the summation, and applying the first and second part of the earlier lemma. For the diagonal entries, we have

$$\frac{NT}{2} - \frac{N}{8\pi f} \le \sum_{n=1}^{N} \int_{0}^{T} a_{n}^{2} w^{2}(nf, t) dt \le \frac{NT}{2} + \frac{N}{8\pi f}$$