Задача А. Найдите отличия

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны два массива целых чисел a и b — оба длины n. Известно, что в массиве a выбрали число u и заменили его на число $v \neq u$, затем массив a перемешали, и так получился массив b.

По заданным массивам a и b определите и выведите два числа u и v. Обратите внимание, что нужно вывести значения чисел u и v, а не их индексы в массивах.

Формат входных данных

В первой строке входных данных содержится целое число n $(1 \le n \le 10^5)$ — длина массивов a и b. Во второй строке содержится n целых чисел — массив a $(-10^9 \le a_i \le 10^9)$. В третьей строке содержится n целых чисел — массив b $(-10^9 \le b_i \le 10^9)$.

Формат выходных данных

Выведите через пробел два целых числа — значения чисел u и v.

стандартный ввод	стандартный вывод
5	2 6
1 2 3 4 5	
4 3 6 1 5	
4	1 2
1 1 2 2	
2 1 2 2	
6	11 12
-5 2 10 11 12 20	
20 -5 12 12 2 10	

Задача В. Мне повезет

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вы играете в игру на отчисление. Или в игру на «зачёт»: у вас имеется n баллов, для получения «зачёта» необходимо набрать m баллов.

Вы начинаете игру со ставки в 1 балл, затем с равной вероятностью 1/2 вы или теряете балл, или получаете, затем ставка увеличивается на 1 балл, и так далее до тех пор, пока игра не закончится (каждый раунд ставка повышается на 1 балл, при этом ставка может быть больше ваших баллов).

Игра заканчивается при двух условиях:

- 1. Если в какой-то момент вы набираете не менее m баллов тогда вы получаете «зачёт»;
- 2. Если в какой-то момент у вас оказывается меньше нуля баллов тогда вас отчисляют.

Определите вероятность того, что вы получите «зачёт», если сыграете в эту игру.

Формат входных данных

В единственной строке входных данных содержатся два целых числа $n, m \ (0 \le n < m \le 55)$ — начальное количество баллов у вас и количество баллов, необходимое для «зачёта».

Формат выходных данных

Выведите единственное число — вероятность того, что вы получите «зачёт» с точностью не менее 10^{-9} .

стандартный ввод	стандартный вывод
1 3	0.5000000000000000
0 55	0.026584374625156282
9 10	0.893554687500000000

Задача С. Выпуклость лепестка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Для визуализации некоторого множества значений параметров, которых можно привести к одной шкале, могут использоваться лепестковые диаграммы. В этой задаче количество параметров постоянно и равно 6, поэтому формально лепестковая диаграмма описывается так:

из некоторой точки D на двухмерной плоскости исходят 6 лучей так, что угол между парой соседних при обходе в любом направлении равен 60°. На каждом из 6 лучей, начиная с некоторого и следуя далее по направлению часовой стрелки, отмечают точку: на i-ом луче точку отметили на расстоянии a_i от точки D. Далее, так же следуя по направлению часовой стрелки, соединили все точки на соседних лучах и получили ограниченную отрезками область — лепестковую диаграмму.

Иллюстрация к трем тестовым примерам

Определите по заданным числам a_i , отмеченным на лучах, является ли построенный многоугольник лепестковой диаграммы выпуклым.

Формат входных данных

В единственной строке содержатся 6 целых чисел a ($1 \le a_i \le 10^9$) — расстояния от точки D, на котором отметили точки, начиная с некоторого луча и следуя далее по направлению часовой стрелки.

Формат выходных данных

Если построенный многоугольник является выпуклым, выведите «Convex»; иначе выведите «Non-convex».

стандартный ввод	стандартный вывод
3 3 4 5 2 6	Non-convex
6 1 5 5 1 5	Non-convex
3 2 2 3 6 6	Convex

Задача D. Три фитиля

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У вас есть 3 фитиля с целочисленными длинами a, b, c. Фитили можно поджигать и тушить. Каждый фитиль горит равномерно, причем фитиль длины x при поджигании его с одного конца сгорает полностью за x секунд, а при поджигании с двух концов — за x/2 секунд.

Вы хотите с помощью зажигалки и имеющихся фитилей отмерить ровно t секунд. Определите, возможно ли это.

Процесс замера t секунд формально описывается следующими условиями:

- 1. Процессы поджигания фитилей зажигалкой и их тушения происходят моментально;
- 2. Отсчет времени начинается с момента первого поджигания одного из фитилей (вы можете поджечь сразу несколько) после первого поджигания фитиля вы должны через ровно t секунд определить, что прошло t секунд;
- 3. После начала отсчета времени вы не можете поджигать или тушить фитили в произвольный момент времени: отныне поджигать и тушить фитили можно только в моменты времени когда какой-либо фитиль сгорел полностью;
- 4. Любой фитиль можно поджигать как с одной стороны, так и с двух. То же самое касается процесса тушения.

Формат входных данных

В первой строке входных данных содержатся три целых числа a, b, c ($1 \le a, b, c \le 1000$) — длины фитилей. Во второй строке входных данных содержится целое число t ($1 \le t \le 3000$) — время, которое вам нужно отмерить.

Формат выходных данных

Выведите «Yes», если с помощью фитилей можно отмерить t секунд, иначе выведите «No».

Примеры

стандартный ввод	стандартный вывод
1 3 5	Yes
2	
8 3 15	No
6	
6 4 12	Yes
13	

Замечание

В первом примере одновременно поджигаем фитиль длины 1 и длины 3, через 1 секунду фитиль с длиной 1 сгорает, а от фитиля первоначальной длины 3 остается фитиль длины 2, далее поджигаем фитиль длины 2 с двух сторон и он сгорает через еще одну секунду. Итого мы отмерили 2 секунды. Фитиль длины 5 остался нетронутым.

Во втором примере нельзя отмерить 6 секунд.

В третьем примере одновременно поджигаем все три фитиля с одного конца, через 4 секунды фитиль с длиной 4 сгорает — в этот момент мы тушим фитиль с первоначальной длиной 12 (от него осталась длина 8) и поджигаем с двух сторон фитиль с первоначальной длиной 6 (в этот момент его длина равна 2), через 1 секунду (и 5 секунд с отсчета времени) фитиль с длиной 2 сгорает, в этот момент поджигаем фитиль с длиной 8 с одного конца, через 8 секунд он сгорает и мы отсчитали ровно 13 секунд.

Задача Е. Операции с массивом

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Задан массив целых положительных чисел a, состоящий из n элементов. С этим массивом можно сколько угодно раз выполнять операцию V, которая описывается следующим образом:

$$V(a): a_i = a_i - 1 \text{ for } i = min(j: a_j = max(a))$$

По простому: выбирается такой минимальный индекс массива i, что элемент a_i равен максимуму в массиве a, затем элемент a_i уменьшается на единицу. Определите, какое минимальное количество раз нужно применить операцию V, чтобы в массиве a стало ровно k нулей.

Формат входных данных

В первой строке входных данных содержатся два целых числа $n, k \ (1 \le k \le n \le 2 \times 10^5)$ — количество элементов в массиве a и количество нулей, которое нужно получить. Во второй строке содержатся n целых положительных чисел $a \ (1 \le a_i \le 10^9)$.

Формат выходных данных

Выведите единственное целое число — минимальное количество применений операции V, чтобы в массиве a стало ровно k нулей. Гарантируется, что ответ всегда существует.

стандартный ввод	стандартный вывод
3 1	1
1 1 1	
4 2	10
4 1 5 2	

Задача F. Покрытие вершин дерева

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Дано корневое дерево на n вершинах с корнем в вершине 1. У каждой вершины дерева есть вес — вес i-ой вершины равен w_i . Обратите внимание, что вес может быть неположительным.

Заданы m особых различных вершин в дереве, которые требуется $no\kappa pыmb$. Вы можете любое число раз выполнять следующую операцию:

• Выбрать некоторую вершину дерева u и *покрыть* все вершины в поддереве[†] вершины u. Каждая вершина может быть покрыта лишь единожды.

Определите, какую минимальную сумму весов всех покрытых вершин можно получить, используя описанную операцию любое число раз, чтобы все m особых вершин были покрыты.

Формат входных данных

В первой строке входных данных содержится целое число n ($1 \le n \le 10^5$) — количество вершин в дереве. Во второй строке содержатся n целых чисел p, где $p_1 = 1$ и p_i — родительская вершина для вершины i при i > 1. В третьей строке содержатся n целых чисел w ($-10^9 \le w_i \le 10^9$) — веса для каждой вершины дерева.

В четвертой строке содержится целое число m ($1 \le m \le n$) — количество особых вершин в дереве, которые необходимо покрыть. В пятой строке содержатся m различных целых чисел d ($1 \le d_i \le n$) — особые вершины дерева.

Формат выходных данных

Выведите единственное целое число — минимальную возможную сумму весов всех покрытых вершин дерева, при условии, что все m особых вершин так же покрыты.

Примеры

стандартный вывод
2
6
6

Замечание

 $^{^{\}dagger}$ Вершинами в поддереве некоторой вершины u является сама вершина u, а также все вершины, достижимые из u при переходе по ребрам вниз по дереву (в направлении увеличения расстояния до корневой вершины).

Задача G. КНБ

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В игре «камень-ножницы-бумага» камень побеждает ножницы, ножницы побеждают бумагу, а бумага побеждает камень. У вас есть список из n элементов, каждый из которых или камень, или ножницы, или бумага.

За один ход вы можете выбрать два **различных по типу** элемента и провести между ними игру, по итогу игры проигравший элемент заменяется на победивший. Определите минимальное число ходов, чтобы получить список из n одинаковых элементов.

Формат входных данных

В первой строке входных данных содержится целое число n ($1 \le n \le 10^5$). Во второй строке через пробел содержится список s из n элементов ($s_i \in R, S, P$), где «R» — камень, «S» — ножницы, «P» — бумага.

Формат выходных данных

Выведите единственное целое число — минимальное число ходов, чтобы в списке s все элементы стали одинаковыми.

стандартный ввод	стандартный вывод
5	4
RPSSP	
7	5
PSRRPRR	
3	0
SSS	

Задача Н. Таблица умножения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Представьте себе бесконечную по размеру таблицу умножения: на пересечении i-го столбца и j-й строки в ней содержится число $i \cdot j$. Определите, сколько чисел в этой таблице строго меньше заданного числа n.

Формат входных данных

В единственной строке входных данных содержится целое число $n\ (1\leqslant n\leqslant 10^{12}).$

Формат выходных данных

Выведите единственное целое число — количество чисел в бесконечной таблице умножения строго меньших n.

стандартный ввод	стандартный вывод
1	0
5	8
10	23

Задача І. Вставки в очереди

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

В очереди за мороженным стоит один человек — Aaron, познакомьтесь! Затем поочередно по одному приходят новые люди и встают в очередь перед кем-то или за кем-то, кто уже стоит в очереди.

Вам нужно обработать q запросов, запросы бывают 3 типов:

- 1. <name1> before <name2> приходит человек с именем <name1> и встает в очереди **перед** человеком с именем <name2>;
- 2. <name1> after <name2> приходит человек с именем <name1> и встает в очереди после человека с именем <name2>;
- 3. leave <name> человек с именем <name1> покидает очередь, а все люди после него сдвигаются на одну позицию ближе к началу очереди.

Вам нужно обработать все q запросов и определить, как будет выглядеть очередь после выполнения всех запросов.

Гарантируется, что:

- 1. Для запросов первых двух типов человек с соответствующим именем <name2> есть в очереди, а с именем <name1> нет в очереди;
- 2. Для запроса третьего типа человек с соответствующим именем <name> есть в очереди;
- 3. Не бывает двух различных людей с одним именем, но человек с один именем может уходить из очереди, а затем вставать в нее, и делать так произвольное число раз.

Формат входных данных

В первой строке входных данных содержится целое число q ($1 \le q \le 2 \times 10^5$) — количество запросов. Далее следуют q строк, каждая строка является командой одного из трех типов. Все используемые в задаче имена состоят только из букв латинского алфавита и имеют длину от 1 до 10 символов.

Формат выходных данных

Выведите имена всех людей в очереди после выполнения всех запросов в том порядке, в котором они находятся в очереди (первое имя — имя первого человека в очереди, второе — второго в очереди и т.д.). Выводите каждое имя в отдельной строке. Если очередь пустая, ничего не выводите.

стандартный ввод	стандартный вывод
4	Boris
Din before Aaron	Aaron
Jacob after Aaron	Jacob
Boris after Din	
leave Din	
6	DJgold
Vova after Aaron	Fedor
DJgold before Vova	Rick
leave Aaron	Aaron
Fedor after DJgold	Vova
Rick before Vova	
Aaron after Rick	
9	Masha
Roma after Aaron	voenkomat
Dima after Roma	
Masha before Aaron	
Anton after Roma	
voenkomat after Anton	
leave Anton	
leave Aaron	
leave Dima	
leave Roma	

Задача Ј. Запросы на кувшинах

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Есть n кувшинов, вместимость i-го кувшина равна v_i .

Поступает q запросов, каждый i-ый запрос описывается единственным числом d_i . Требуется для каждого i-го запроса сказать, какое минимальное количество кувшинов нужно взять, чтобы их суммарная вместимость была не менее d_i .

Формат входных данных

В первой строке входных данных содержится целое число n ($1 \le n \le 2 \times 10^5$). Во второй строке содержится n целых чисел v ($1 \le v_i \le 10^9$) — вместимости кувшинов.

В третьей строке содержится целое число q $(1 \le q \le 2 \times 10^5)$ — количество запросов. Затем следуют q строк, в i-й содержится целое число d_i $(1 \le d_i \le sum(v))$ — необходимая суммарная вместимость кувшинов в i-ом запросе.

Формат выходных данных

Для каждого i-го запроса в отдельной строке в том же порядке выведите одно целое число — какое минимальное количество кувшинов нужно взять, чтобы их суммарная вместимость была не менее d_i .

стандартный ввод	стандартный вывод
5	2
1 1 3 2 4	1
3	4
7	
4	
10	
8	5
10 2 8 9 14 12 9 5	2
4	3
50	4
18	
31	
40	

Задача К. Они чередуются!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам дана бинарная строка s длины n. Требуется определить длину ее самой большой чередующейся † подстроки.

[†] Чередующейся подстрокой в бинарной строке s назовем любую последовательность подряд идущих символов с l по r, что $s_l \neq s_{l+1} \neq s_{l+2} \neq ... \neq s_r$.

Формат входных данных

В первой строке входных данных содержится целое число n ($1 \le n \le 5 \times 10^5$) — длина строки s. Во второй строке входных данных содержится сама строка s длины n. Каждый символ строки или «0», или «1».

Формат выходных данных

Выведите единственное целое число — максимальную длину чередующейся подстроки в строке s.

стандартный ввод	стандартный вывод
5	3
10010	
4	1
0000	
9	6
011010100	

Задача L. Заготовка камня

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Фараон приказал вам заготовить n блоков камня для последующей постройки пирамиды. На задачу у вас есть d дней, если вы не успеваете за d дней заготовить n блоков камня, то вас отправят в ссылку в Сибирь.

Сами вы не заготавливаете камень, а лишь управляете процессом, в частности: нанимаете рабочих. На местной бирже труда есть m рабочих, каждый i-ый рабочий описывается двумя числами a_i и b_i , означающими, что при наеме рабочего i вы отдадите a_i золотых рублей, затем через b_i дней рабочий заготовит один блок камня и покинет место работы. Вы можете нанимать одного рабочего повторно сколько угодно раз, каждый раз отдавая соответствующую плату.

Вам нужно определить такое **минимальное** число золотых рублей, при котором вы можете нанять рабочих для изготовления n блоков камня не более чем за d дней.

Формат входных данных

В первой строке входных данных содержатся два целых числа $n, d \ (1 \le n, d \le 10^9)$ — количество блоков камня для заготовки и количество дней, за которое нужно успеть заготовить блоки. Во второй строке содержится целое число $m \ (1 \le m \le 10^5)$ — количество рабочих на бирже. Затем следуют m строк, каждая i-ая строка содержит два целых числа $a_i, b_i \ (1 \le a_i, b_i \le 10^9)$ — стоимость в золотых рублях наема рабочего i и срок заготовки одного блока камня рабочим i соответственно.

Формат выходных данных

Выведите единственное целое число — **минимальное** число золотых рублей, при котором вы можете нанять рабочих для изготовления n блоков камня не более чем за d дней. Если же ни при каких условиях невозможно за d дней заготовить n блоков камня — выведите «-1» и собирайте чемоданы.

Примеры

стандартный ввод	стандартный вывод
4 10	11
3	
4 5	
2 8	
1 7	
10 5	34
4	
1 2	
4 1	
2 2	
8 4	
12 4	-1
2	
4 1	
2 2	

Замечание

Обратите внимание, что «готовый» блок камня i-й рабочий получает через b_i дней, недоделанные блоки не считаются, т.е. вы должны сделать n «готовых» блоков не более чем за d дней. Так же над одним блоком камня не могут работать несколько разных рабочих.

Задача М. Чипи-чипи Чапа-чапа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Два друга улитки Чипи-чипи и Чапа-чапа договорились встретиться в баре у Старого Пня. Они договорились встретиться ровно в полдень, но часы каждой улитки могут ошибаться, из-за чего каждая улитка может как приползти раньше, так и позже (или же ровно в полдень, если часы не ошибаются).

Каждая улитка не знает, что ее часы могут ошибаться, но ориентируется на них и приползает в бар ровно в 12:00 по своим часам. Вам известно спешат или опаздывают часы каждой улитки и на сколько минут. Определите, какая улитка приползет к бару раньше и сколько минут она будет ждать своего друга.

Формат входных данных

В первой строке входных данных содержится описание часов Чипи-чипа в таком формате:

- Если часы показывают точное время, в строке содержится единственное слово «accurately»;
- Если часы спешат на n > 0 минут, то в строке содержится слово «hurry», а затем целое число n;
- ullet Если часы опаздывают на n>0 минут, то в строке содержится слово «late», а затем целое число n.

Во второй строке по таким же правилам задано описание часов Чапа-чапы. Гарантируется, что часы каждой улитки ошибаются не более чем на 10 минут.

Формат выходных данных

Если улитки приползут в бар одновременно, выведите «together». Иначе выведите имя улитки, которая приползет в бар раньше: если это будет Чипи-чипи — выведите «Chipy-chipy», если же Чапа-чапа — выведите «Chapa-chapa»; после имени улитки через пробел нужно вывести одно целое положительное число — сколько минут улитка будет ждать прибытие своего друга.

стандартный ввод	стандартный вывод
accurately	Chapa-chapa 4
hurry 4	
late 10	together
late 10	
hurry 8	Chipy-chipy 13
late 5	