ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE ODSEK ZA SIGNALE I SISTEME

- 1. Nacrtati strujno-naponsku zavisnost kola koje se sastoji od dve Zener diode sa probojnim naponima V_{Z1} i V_{Z2} , pri čemu je $V_{Z1} < V_{Z2}$, koje su vezane:
- a) [5] redno (anoda D_{Z1} je vezana na katodu D_{Z2});
- b) [5] paralelno (anoda D_{Z1} je vezana na anodu D_{Z2} , katoda D_{Z1} je vezana na katodu D_{Z2}).
- 2. Na slici 2 je prikazan pojačavač u sprezi sa zajedničkim sorsom. Parametri tranzistora su: $B = 500 \,\mu\text{A/V}^2$, $V_T = 1 \,\text{V}$ i $\lambda \rightarrow 0$, dok je: $V_{DD} = 12 \,\text{V}$, $R_1 = 1 \,\text{M}\Omega$, $R_2 = 1,5 \,\text{M}\Omega$, $R_{S1} = 5 \,\text{k}\Omega$, $R_{S2} = 1 \,\text{k}\Omega$, $R_D = 12 \,\text{k}\Omega$ i $R_D = 100 \,\text{k}\Omega$.
- a) [3] Odrediti jednosmerne vrednosti napona na gejtu, sorsu i drejnu.
- b) [3] Ako je $v_u(t) = V_m \sin(2\pi f t)$, $V_m = 50 \text{ mV}$ i f = 1 kHz, odrediti i nacrtati vremenske dijagrame napona na gejtu, sorsu, drejnu i potrošaču.
- c) [1] Odrediti otpornost R_i koju vidi potrošač R_p .
- d) [3] Odrediti maksimalnu amplitudu simetričnog neizobličenog napona na potrošaču $V_{pm\,{
 m max}}$.
- 3. a) [3] Nacrtati instrumentacioni pojačavač sa tri operaciona pojačavača.
- b) [2] Odrediti odnose otpornika u ulaznom pojačavačkom stepenu tako da diferencijalno pojačanje ulaznog pojačavačkog stepena bude jednako 10.
- c) [2] Odrediti odnose otpornika u izlaznom pojačavačkom stepenu tako da diferencijalno pojačanje izlaznog pojačavačkog stepena bude 10.
- d) [3] Nacrtati vremenske dijagrame na izlazima sva tri operaciona pojačavača za ulazne napone $v_1(t) = 0.1 \text{V} + 0.1 \text{V} \cdot \sin \omega t$ i $v_1(t) = 0.1 \text{V} 0.1 \text{V} \cdot \sin \omega t$, ako je napajanje operacionih pojačavača $V_{CC} = -V_{EE} = 15 \text{V}$.
- **4.** Za stabilizator sa slike 4 je poznato: $V_{BE} = 0.6 \text{ V}$, $\beta_{F1} = 100$, $\beta_{F2} = \beta_{F3} \rightarrow \infty$, $V_u = 15 \text{ V}$, $R_1 = 2 \text{ k}\Omega$, $R_2 = 6 \text{ k}\Omega$, $R_Y = 3 \text{ k}\Omega$, $V_Z = 2.4 \text{ V}$, struja inverzne polarizacije Zener diode $I_Z \ge 2 \text{ mA}$, a maksimalna dozvoljena snaga disipacije rednog tranzistora $P_{DO1\,\text{max}} = 9.46 \text{ W}$.
- a) [1] Odrediti otponost R_X tako da se na izlazu dobija stabilisani napon $V_P = 9 \text{ V}$.
- b) [3] Odrediti i nacrtati karakteristiku stabilizatora $v_P(i_P)$.
- c) [4] Kolika je maksimalna struja koju stabilizator može dati na izlazu, imajući u vidu dozvoljenu disipaciju rednog tranzistora? Odrediti otpornost R_S u tom slučaju.
- d) [2] Kolika je maksimalna otpornost $R_{0\text{max}}$ za koju stabilizator ispravno radi u celom opsegu izlaznih struja?

Slika 2

Slika 4