数学分析笔记整理

BigfufuOuO

2022年5月27日

目录

1	常微分方程初步			
	1.1	一阶常	常微分方程	2
		1.1.1	可分离变量型方程	2
		1.1.2	齐次方程	3
		1.1.3	一阶线性微分方程	4
		1.1.4	Bernoulli(伯努利) 方程	4
	1.2	可降阶	↑微分方程	5
		1.2.1	不显含未知函数 y 的二阶微分方程 \dots	5
		1.2.2	不显含自变量 x 的二阶微分方程	6
	1.3	二阶线	性微分方程	6
		1.3.1	解的结构	6
		1.3.2	用 Liouville 刘维尔公式求齐次方程的基本解组	8
		1.3.3	用常数变易法求特解	9
	1.4	特殊的	1一类: 二阶常系数微分方程	10

Chapter 1

常微分方程初步

既然是初步,则要求不会太多. 提供几种常见的常微分方程. 此处常微分方程是指,只有一个自变量的未知函数 $F(x,y',y'',\cdots,y^{(n)})=0$.

1.1 一阶常微分方程

1.1.1 可分离变量型方程

对于形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x) \cdot h(y)$$

的自变量与因变量可分离的方程:

 $1^{\circ} h(y) \neq 0$ 时,方程改写为

$$\frac{1}{h(y)} \mathrm{d}y = g(x) \mathrm{d}x$$

两边积分得 H(y) = F(x) + C. 其中 C 是任意常数 (一般统一将常数写在右边). H(y), F(x) 分别是 1/h(y), g(x) 的原函数.

此时 H(y) = F(x) + C 为隐式解. 形如 y = f(x) 的为显式解.

 $2^{\circ} h(y) = 0$ 时,若 $\exists y_0$ 使得 $h(y_0) = 0$,则 $y = y_0$ 是一个特解.

例 1.1.1. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = y \ln x$.

解. $(1)y \neq 0$,则 $1/y dy = \ln x dx \Rightarrow \ln |y| = x \ln x - x + C$.

故
$$|y| = e^{x \ln x - x} \cdot e^C \Rightarrow y = \pm e^C \cdot e^{x \ln x - x}$$
.

记
$$C = \pm e^C (\neq 0)$$
,则解为 $y = C \cdot e^{x \ln x - x} (C \neq 0)$.

或者有 $\ln |y| + \ln |C| = x \ln x - x$ 同样可得 $C \neq 0$. 这是一个容易犯错的地方.

(2)y=0 时,可知显然成立. 故 y=0 是方程的解,将其代人 (1) 的通解得 C=0. 故方程的解为 $y=C\cdot e^{x\ln x-x}(C\in\mathbb{R})$.

1.1.2 齐次方程

对于形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

的方程. f 满足一定范围内的 x,y,t,均有 $f(tx,ty) = t^n f(x,y)$,则称之为 n **次齐次函数**. 对于形如

$$P(x,y)dx + Q(x,y)dy = 0$$

的微分方程,如果 $\frac{P(x,y)}{Q(x,y)}$ 是 0 次齐次函数,则称它为齐次微分方程。此时 $f(x,y) = -\frac{P(x,y)}{Q(x,y)} = \varphi(\frac{x}{y})$. 于是令 $u = y/x(x \neq 0)$,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{u\mathrm{d}x + x\mathrm{d}u}{dx} = u + x\frac{\mathrm{d}u}{\mathrm{d}x}$. 或 x = 0(注意! 不要漏解). 所以原方程转化为 $x\frac{\mathrm{d}u}{\mathrm{d}x} + u = \varphi(u)$,分离变量得 $\frac{\mathrm{d}u}{\varphi(u) - u} = \frac{\mathrm{d}x}{x}$ 或 $\varphi(u) - u = 0$ (注意! 不要漏解). 注意,这里 x = 0 与 $\varphi(u) - u = 0$ 不等价,因为后者是在 $x \neq 0$ 时成立的.

例 1.1.2. 解微分方程 $(y^2 - 2xy)dx + x^2dy = 0$.

解. 令 u = y/x,转化为方程 $x \frac{\mathrm{d}u}{\mathrm{d}x} = u - u^2$.

 $(1)u - u^2 \neq 0$,即 $u \neq 0, 1$ 时,分离变量得 $\frac{\mathrm{d}u}{u - u^2} = \frac{\mathrm{d}x}{x} \Rightarrow \ln|u| - \ln|1 - u| = \ln|x| + \ln|C|$. 化简得 $\frac{y}{x - y} = Cx(C \in \mathbb{R})$.

(2)u = 0,1 时,得 y = 0 或 y = x.

 $2^{\circ} x = 0$ 代入原方程成立.

故解为
$$\frac{y}{x-y} = Cx(C \in \mathbb{R}), y = 0, y = x, x = 0.$$

例 1.1.3. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x + y \tan \frac{x}{y}}$.

解 (**简要**). 化简得 $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{x}{y} + \tan\frac{x}{y}$. 注意此时 x 在分子,故令 u = x/y,其余做法与例1.1.2类似.

例 1.1.4. 解微分方程 $\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$, 其中 $a_i, b_i, c_i (i = 1, 2)$ 为常数.

 \mathbf{m} (简要). 由于 c_1, c_2 的存在, RHS^1 无法齐次化 (即同除以 x 或 y). 但可以配凑系数使得 c_1, c_2 消失. 即令

$$c_1 = a_1 h + b_1 k$$
$$c_2 = a_2 h + b_2 k$$

代入原式得
$$\frac{\mathrm{d}(y+k)}{\mathrm{d}(x+h)} = \frac{a_1(x+h) + b_1(y+k)}{a_2(x+h) + b_2(y+k)}$$
. 令 $u = \frac{y+k}{x+h}$ 即可. 然后再解出 h,k 代入.

¹右式. LHS 表示左式.

1.1.3 一阶线性微分方程

最好的办法:记公式.

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)\mathrm{d}x = Q(x)$$

的方程称为**一阶线性齐次微分方程**. 为方便起见,今后用 y' 表示 $\frac{\mathrm{d}y}{\mathrm{d}x}$,用 y'' 表示 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$. 对于方程

$$y' + P(x)y = 0 (1.1.1)$$

$$y' + P(x)y = Q(x) (1.1.2)$$

方程1.1.1的解为 $y = Ce^{\int -P(x)\mathrm{d}x}(C \in \mathbb{R})$. 方程1.1.2的解为 $y = e^{-\int P(x)\mathrm{d}x}\left(\int Q(x)e^{P(x)\mathrm{d}x}\mathrm{d}x + C\right)$. $(C \in \mathbb{R})$ \mathbb{R}).

若 y_1, y_2 是方程1.1.1的解,则 $y_1 - y_2$ 是方程1.1.2的解.

例 1.1.5. 解微分方程 $xy' - 2y = 2x^4$.

解. 当 $x \neq 0$ 时,化为标准形式为 $y' - \frac{2}{x}y = 2x^3$.

使用公式得
$$y = e^{\int \frac{2}{x} dx} \left(\int 2x^3 e^{\int \frac{-2}{x} dx} dx + C \right) = x^2 (x^2 + C). (C \in \mathbb{R}).$$
 当 $x = 0$ 时, $y = 0$,可并入上通解.

例 1.1.6. 解微分方程 $y \ln y dx + (x - \ln y) dy = 0$

解 (**简要**). 将 y 看作自变量, x 看作未知函数 x = x(y), 则原方程转化为

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\ln y - x}{y \ln y} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{1}{y \ln y}x = \frac{1}{y}$$

然后使用公式即可.

例 1.1.7. 解微分方程 $xe^y - xy' = 2$.

解. 这里出现了 e^y ,想办法将其消去. 故使两边同时乘以 e^{-y} ,得 $x-xe^{-y}y'=2e^{-y}$. 换元化简,令 $z=e^{-y}$,则 $y'=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}x}=-\frac{1}{z}z'$. 所以原式写为 x+xz'=2z. 若 $x\neq 0$,套公式得 $z=x^2(1/x+C)$,即 $e^{-y}=x+Cx^2$.

若 x = 0,不符合原方程,因而 $x \neq 0$ 不是解.

1.1.4 Bernoulli(伯努利) 方程

其实是一种特殊的一阶方程转化为线性方程的方法. 对于方程

$$y' + P(x)y = Q(x)y^n$$

先将方程两边同时除以 y^n 得到

$$y^{-n}y' + P(x)y^{1-n} = Q(x)$$

作代换 $u = y^{1-n}$ 得

$$u' + (1 - n)P(x) = (1 - n)Q(x)$$

注意: 若 1-n 是小于 0 的整数, 表明 y 做分母 $(y \neq 0)$, **不要忘了考虑** y = 0 **的特解**.

例 1.1.8. 解微分方程 $y' = xy + x^3y^3$

解. 作变量代换 $u=y^{-2}$ 得 $u'+2ux=-2x^3$. 求得通解 $u=1-x^2+Ce^{-x^2}(C\in\mathbb{R})$. 故通解为 $1/y^2 = 1 - x^2 + Ce^{-x^2}$. 以及特解 y = 0.

1.2 可降阶微分方程

一般二阶微分方程的形式为 F(x,y,y',y'')=0, 以下是其中特殊的两种形式.

1.2.1 不显含未知函数 y 的二阶微分方程

即方程少了 y, 变为 F(x,y',y'') - 0. 令 p = y', 则 y'' = p'. 所以方程转化为 F(x,p,p') = 0, 即转化 为一个一阶方程了.

例 1.2.1. 解微分方程 $xy'' + (x^2 - 1)(y' - 1) = 0$

解. 今 p = y',方程转化为 $xp' = (1 - x^2)(p - 1)$.

(1) 若 $p \neq 1$, 注意 x = 0 不是原方程的解 (因为x = 0则y' = 1, 所以y = x + C = C, 这与y' = 1矛盾), 则 分离变量得 $\frac{\mathrm{d}p}{p-1} = \frac{1-x^2}{x} \mathrm{d}x$. 两边积分即得 $y' = p = C_1 x e^{-\frac{1}{2}x^2} + 1$. 故 $y = -C_1 e^{-\frac{x^2}{2}} + x + C_2 \cdot (C_1 \neq 0)$ (2)p = 1 是方程的解,可以并入上述通解. 故通解为 $y = -C_1 e^{-\frac{x^2}{2}} + x + C_2 \cdot (C_1 \neq 0, C_2 \in \mathbb{R})$

故通解为
$$y = -C_1 e^{-\frac{x^2}{2}} + x + C_2 \cdot (C_1 \neq 0, C_2 \in \mathbb{R})$$

例 1.2.2. 解微分方程 $xy'' = y' \ln \frac{y'}{x}$.

解. 令 p = y',方程转化为 $p' = \frac{p}{x} \ln \frac{p}{x}$. 可以看出,这是一个齐次方程.

于是令 $u=\frac{p}{x}$,题目已经要求了 $x\neq 0$,所以方程转化为 $xu'=u(\ln u-1)$. 分离变量,当 $\ln u-1\neq 0$ 时,得 $u=e^{C_1x+1}(C_1\neq 0)$. 而 $\ln u-1=0$ 也是解,此时 $C_1=0$ 并入通 解中. 故 $u = e^{C_1 x + 1}$.

所以 $y' = xe^{C_1x+1}$. 注意,直接积分无法得出.采用分部积分法.有

$$y = \int xe^{C_1x+1} dx + C_2 = \int \frac{1}{C_1} x d(e^{C_1x+1}) = \frac{1}{C_1} (xe^{C_1x+1} - \frac{1}{C_1} e^{C_1x+1}) + C_2(C_1 \neq 0)$$

而当 $C_1 = 0$ 时, $y = \frac{1}{2}ex^2 + C_2$.

综上,
$$y = \begin{cases} \frac{1}{C_1} (xe^{C_1x+1} - \frac{1}{C_1}e^{C_1x+1}) + C_2, & C_1 \neq 0\\ \frac{1}{2}ex^2 + C_2, & C_1 = 0 \end{cases}$$
.

1.2.2 不显含自变量 x 的二阶微分方程

即方程少了 x, 变为 F(y,y',y'')=0. 此时令 p=y', 则 $y''=\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{\mathrm{d}p}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}=p\frac{\mathrm{d}p}{\mathrm{d}y}=0$. 方程变为 $F(y,p,p\frac{\mathrm{d}p}{\mathrm{d}y})=0$, 可以看成一阶方程.

此时,当 $x=x_0$ 时, $y'(x_0)=p(x_0)$. 因而当 $y(x_0)=a_1,y'(x_0)=a_2$ 时,有 $p(x_0)=a_2$. 这里 a_1,a_2 是特定的函数值.

例 1.2.3. 解微分方程的特解
$$\begin{cases} yy'' + (y')^2 = 0 \\ y(0) = 1, y'(0) = \sqrt{3} \end{cases}$$

解. 令
$$y' = p$$
,则 $y'' = p \frac{\mathrm{d}p}{\mathrm{d}y}$
原方程化为 $\frac{p\mathrm{d}p}{-p^2-1} = \frac{1}{y}\mathrm{d}y$.

积分得
$$-\frac{1}{2}\ln(p^2+1) = \ln|y| + C_1$$
. 由 $y=1$ 时, $p=-\sqrt{3}$ 可得 $p=\frac{-\sqrt{4-y^2}}{y}$. 再代入 $p=y'$,得 $-\frac{y}{\sqrt{4-y^2}}$ d $y=dx$. 积分得 $\sqrt{4-y^2}=x+C$. 又 $y(0)=1$,故 $C=\sqrt{3}$. 综上,方程的特解为 $\sqrt{4-y^2}=x+\sqrt{3}$. 它是一个圆,方程为 $(x+\sqrt{3})^2+y^2=4(x\geqslant -\sqrt{3})$.

1.3 二阶线性微分方程

二阶微分方程的一般形式和相应的齐次方程分别为

$$y'' + p(x)y' + q(x)y = f(x)$$
(1.3.1)

$$y'' + p(x)y' + q(x)y = 0 (1.3.2)$$

1.3.1 解的结构

这里只是给出一些定理和定义,可自行跳过.

定理 1.3.1 (初值问题的存在唯一性). 若给定初值条件使得 $\begin{cases} y'' + p(x)y' + q(x)y = f(x) \\ y(x_0) = \alpha, y'(x_0) = \beta \end{cases}$, 则在 x_0 的 邻域存在唯一的解. 若 $\alpha = \beta = 0$,则这个唯一解是 y(x) = 0,恒为 0.

上述定理的证明较为繁琐且超出所学知识,这里不证明.

定理 1.3.2 (解的线性性). 若 $y_1(x), y_2(x)$ 是方程1.3.2的解,则其线性组合

$$y = C_1 y_1 + C_2 y_2$$

也是方程1.3.2的解. 其中 C_1, C_2 是任意常数.

定理 1.3.3 (解的叠加性). 以下两个表述等价:

1° 若 y_1, y_2 是一般方程1.3.1的解,则 $y_1 - y_2$ 是齐次方程1.3.2的解.

 2° 若 $y_0(x)$ 是一般方程1.3.1的解, y(x) 是齐次方程1.3.2的解, 则 $y + y_0$ 是一般方程1.3.1的解.

上述定理不证明.

下面给出几个定义:

定义 1.3.1 (线性相关和线性无关). 对于定义在区间 I 上的函数 $y_1(x), y_2(x)$,对 $\forall C_1, C_2$ 及 $\forall x \in I$,均 有 $C_1y_1 + C_2y_2 = 0$,则称其线性无关.

定义 1.3.2 (Wronski 行列式). 对于定义在区间 I 上的可导函数 y_1, y_2 , Wronski 行列式为

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

关于 wronski 行列式的一些定理:

定理 1.3.4 (解的关系: Liouville(刘维尔) 公式). 设 y_1, y_2 是齐次方程 1.3.2 的两个解,则两个解的 Wronski 行列式表示为 Liouville(刘维尔) 公式:

$$W(x) = W(x_0)e^{-\int_{x_0}^x p(t)dt}$$

其中 x_0 是区间 I 内任意一点.

定理 1.3.5 (解的讨论). 以下是关于解的讨论. 设 y_1, y_2 是齐次方程 1.3.2 的两个解.

- 1°两个解线性相关⇔Wronski 行列式恒为 0.
- 2°两个解线性无关⇔Wronski 行列式处处不为 0.
- 3° 两个解线性无关,对 $\forall C_1, C_2$,该方程的解可以表示为

$$y = C_1 y_1 + C_2 y_2$$

定义 1.3.3 (基本解组). 齐次方程1.3.2的一组线性无关的解称为基本解组.

关于基本解组,有以下定理:

定理 1.3.6 (基本解组的一定存在性). 齐次方程1.3.2的基本解组一定存在.

证明. 取两组数 α_1,β_1 和 α_2,β_2 使得 $\begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} \neq 0$. 下面两个初值问题:

$$\begin{cases} y'' + p(x)y' + q(x)y = 0 \\ y(x_0) = \alpha_1, y'(x_0) = \beta_1 \end{cases}$$
$$\begin{cases} y'' + p(x)y' + q(x)y = 0 \\ y(x_0) = \alpha_2, y'(x_0) = \beta_2 \end{cases}$$

则由定理1.3.1,它们各自有唯一解 y_1, y_2 . 而所得唯一解 y_1, y_2 在 x_0 处的 Wronski 行列式不为 0,所以它们是线性无关的. 即它们构成了一组基本解组.

1.3.2 用 Liouville 刘维尔公式求齐次方程的基本解组

以下是比较有用的球基本解组的常用方法:如果已经知道了齐次方程1.3.2的一个解 y_1 ,则由定理1.3.4得

$$y_2(x) = y_1(x) \int \frac{1}{y_1^2(x)} e^{-\int p(x) dx} dx$$

可以得到另一个线性无关的解. 于是就可以把通解写出.

一般的一个通解都比较容易看得出来,可以是简单的基本函数.或者可以待定系数求出.

例 1.3.1. 求方程 xy'' - y' = 0 的通解.

解. 得知 $y_1 = 1$ 是一个解. 由于方程可以表示为 $y'' - \frac{1}{x} = 0$,记 $p(x) = -\frac{1}{x}$. 则

$$y_2 = \int e^{-\int \frac{1}{x} dx} dx = \int x dx = \frac{1}{2}x^2$$

所以通解为 $y = C_1 + C \cdot \frac{1}{2}x^2 = C_1 + C_2x^2$.

例 1.3.2. 求 (1-x)y'' + xy' - y = 0 的通解.

解. 观察一波. 可知 y = x 是一个解, 套公式得 $y_2 = e^x$.

这里想要说明齐次的问题:可以发现,若要使左式等于 0,则 x 都尽可能消去.因而最后得到的 x 幂次需要一致.因为 y' 前多了一个 x,可以考虑 $y = ax^n + b$ 使 xy' 和 y 的幂次一致,又要使 (1-x)y'' 与 xy' 的幂次一致,则只有 n=1.然后代入待定系数得解.

例 1.3.3. 求 (x-1)y'' - (x+1)y' + 2y = 0 的通解.

解. 注意到 y'', y', y' 前面的系数加在一起是 (x-1) - (x+1) + 2 = 0 正好. 所以要让 y = y' = y'',这样的函数就是 $y = e^x$.

所以 $y_1 = e^x$ 是一个解, 另一个解套公式得 $y_2 = x^2 - 1$.

所以通解为 $y = C_1 e^x + C_2(x^2 - 1)$.

注意: 通解中的 $C_2(x^2-1)$ 如果拆开成 $C_2x^2-C_2$,然后由 C_2 的任意性写成其余常数,即通解写为 $y=C_1e^x+C_2x^2+C_3$. 这样是错的,因为它是一个整体,就算是常数,也是有关联的.

1.3.3 用常数变易法求特解

如果已知对应齐次方程的特解通解为 $y = C_1 y_1(x) + C_2 y_2(x)$. 还差一个特解. 设一般方程1.3.1的特解为 $y_0(x)$. 现在求之.

假设一般方程也有形如

$$y_0(x) = C_1(x)y_1(x) + C_2(x)y_2(x)$$

的特解. 就是把上面的常数变成了函数,即 $C_1(x)$, $C_2(x)$ 不是常数,而是待定函数. $y_1(x)$, $y_2(x)$ 与上对应. 主要思路: 对 y_0 求一阶导数,由于是特解,并为了避免出现 $C_1(x)$, $C_2(x)$ 的高阶导数 (即使 y_0 的导数与 $C_1(x)$, $C_2(x)$ 是常数时的形式相同),可以令

$$C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0$$

再对 $y_0(x)$ 求二阶导数,得出 y_0',y_0'' 的表达式.代入一般方程得

$$C_1'(x)y_1'(x) + C_2'(x)y_2'(x) = f(x)$$

于是联立这两个方程,由 Cramer 法则得

$$C_1'(x) = \frac{\begin{vmatrix} 0 & y_2(x) \\ f(x) & y_2'(x) \end{vmatrix}}{\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}} = \frac{-y_2(x)f(x)}{W(x)}, C_2'(x) = \frac{\begin{vmatrix} y_1(x) & 0 \\ y_1'(x) & f(x) \end{vmatrix}}{\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}} = \frac{y_1(x)f(x)}{W(x)}$$

其中 W(x) 是 $y_1(x), y_2(x)$ 的 Wronski 行列式.

所以积分后得

$$y_0 = y_1(x) \int_{x_0}^x \frac{-y_2(t)f(t)}{W(t)} dt + y_2(x) \int_{x_0}^x \frac{y_1(t)f(t)}{W(t)} dt$$

为一个特解.

例 1.3.4. 求非齐次方程 $y'' + y = \frac{1}{\cos x}$ 的特解.

解. 先求齐次方程 y'' + y = 0 的通解. 这是一个二阶线性微分方程,可得 $y = C_1 \cos x + C_2 \sin x$. 常数变易法,转化为特解 $y_0 = C_1(x) \cos x + C_2(x) \sin x$. 满足:

$$C_1'(x)\cos x + C_2'(x)\sin x = 0$$
$$C_1'(x) - \sin x + C_2'(x)\cos x = \frac{1}{\cos x}$$

解得 $C_1'(x) = -\tan x$, $C_2'(x) = 1$, 积分得 $C_1(x) = \ln|\cos x|$, $C_2(x) = x$. 所以特解为 $y_0 = \cos x \ln|\cos x| + x \sin x$.

例 1.3.5. 已知 $y_1 = 1, y_2 = x, y_3 = x^3$ 是某个二阶线性微分方程的三个特解,求这个微分方程和它的通

解.

解. 由定理1.3.3,可得 $y_2 - y_1 = x - 1, y_3 - y_1 = x^3 - 1$ 是其齐次方程的两个解,且线性无关.只加上一 个特解就是其通解了.

故通解为 $y = C_1(x-1) + C_2(x^3-1) + 1$ (其中 1 是特解).

现求微分方程. 实际上是把
$$C_1, C_2$$
 换掉. 求导得 $y' = C_1 + 3C_2x^2, y'' = 6C_2x$.
所以 $C_1 = y' - \frac{x}{2}y'', C_2 = \frac{y''}{6x}$,代入通解即得方程.

1.4 特殊的一类: 二阶常系数微分方程

与前面的讨论类似,不过这里的系数是常数.即形如

$$y'' + py' + qy = 0$$

的方程. 这就比较好办了,因为幂次都一样,那么只要令 $y = e^{\lambda x}$ 代入即得特征方程

$$\lambda^2 + p\lambda + q = 0$$

现在讨论这个方程.

(1) 方程有两个不同的实根 λ_1, λ_2 .

则 $y_1(x) = e^{\lambda_1 x}, y_2(x) = e^{\lambda_2 x}$, 计算得 Wronski 行列式不为 0. 所以通解为

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

其中 C_1, C_2 是常数.

(2) 方程有两个不同的复根 $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$. 由欧拉公式得

$$e^{(\alpha+i\beta)x} = e^{\alpha x}(\cos\beta x + i\sin\beta x), e^{(\alpha-i\beta)x} = e^{\alpha x}(\cos\beta x - i\sin\beta x)$$

做变换
$$e^{\alpha x}\cos\beta x = \frac{e^{\lambda_1 x} + e^{\lambda_2 x}}{2}e^{\alpha x}, e^{\alpha x}\sin\beta x = \frac{e^{\lambda_1 x} - e^{\lambda_2 x}}{2i}e^{\alpha x}$$
 得

$$y(x) = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

(3) **方程有一实重根** λ . 则有一解 $y=e^{\lambda x}$. 注意到此时特征方程可以改写为 $(\lambda+\frac{p}{2})^2=0$. 此时方程有一 个特解 $y_1 = e^{-\frac{p}{2}x}$.

由 Liouville 公式求另一个解得 $y_2 = e^{\lambda x} \int \frac{1}{(e^{\lambda x})^2} e^{\int -p dx} dx = x e^{\lambda x}$.

故方程的通解为 $y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x} = (C_1 + C_2 x) e^{\lambda x}$.

将其推广到 n 元: 对方程 $y^n + p_{n-1}y^{n-1} + \cdots + p_0y = 0$,其特征方程为 $\lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_0 = 0$. 设它的实根为 $\lambda_1, \lambda_2, \cdots, \lambda_m$. 对于某一个 λ_i ,若它有 k 重实根,则该方程的一部分解为

$$e^{\lambda_i x}, x e^{\lambda_i x}, \cdots, x^{k-1} e^{\lambda_i x}$$

每个解类似的形式构成的所有解就是实数部分的解.

同理,设它一个虚根为 $\alpha_i \pm \beta_i$,且是 r 重虚根.则

$$e^{\alpha_i x}\cos\beta_i x, e^{\alpha_i x}\sin\beta_i x, xe^{\alpha_i x}\cos\beta_i x, xe^{\alpha_i x}\sin\beta_i x, \cdots, x^{r-1}e^{\alpha_i x}\cos\beta_i x, x^{r-1}e^{\alpha_i x}\sin\beta_i x$$

是它的一部分解.

特别情形: 记 f(x) = y'' + py' + qy, $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ 是一个系数已知的多项式.

- 1. **方程** $f(x) = P_n(x)$.
 - (1) $\lambda=0$ 不是齐次方程 f(x)=0 的特征根. 则其特解为 $y=Q_n(x)$. 其中 $Q_n(x)=\sum_{k=0}^n b_k x^k$ 是一个系数未知的多项式,须代入方程中解出.
 - (2) $\lambda = 0$ 是一重特征根. 则 q = 0,特解为 $y = xQ_n(x)$.
 - (3) $\lambda = 0$ 是二重重根. 则 p = q = 0,特解为 $y = x^2 Q_n(x)$.
- 2. **方程** $f(x) = e^{ax} P_n(x)$. 易知其一个特解为 $y = e^{ax} Q_n(x)$. 代人得 $Q''_n(x) + (2a+p)Q'_n(x) + (a^2+pa+q)Q_n(x) = P_n(x)$.
 - (1) $\lambda = a$ 不是特征根. 则特解为 $y = e^{ax}Q_n(x)$.
 - (2) $\lambda = a$ 是一重特征根. 则 $Q_n(x)$ 前的系数为 0,特解为 $y = xe^{ax}Q_n(x)$.
 - (3) $\lambda = a$ 是二重特征根. 则 $Q_n(x), Q'_n(x)$ 前的系数为 0,特解为 $y = x^2 e^{ax} Q_n(x)$.
- 3. **方程** $f(x) = e^{\alpha x} \cos(\beta x) P_n(x)$ **或** $e^{\alpha x} \sin(\beta x) P_n(x)$. 相当于情形 2 按虚根处理,即方程变为 $f(x) = e^{(\alpha+i\beta)x} P_n(x)$,特解为 $y = e^{(\alpha+i\beta)x} Q_n(x)$,然后按照实部虚部分别相等对比即可. 因此同上理,有
 - (1) $\lambda = \alpha \pm \beta$ 不特征根,则特解为 $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) Q_n(x)$.
 - (2) $\lambda = \alpha \pm \beta$ 是特征根,则特解为 $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) x Q_n(x)$.

注意,由虚根成对定理知二阶方程只有以上两种情况.

例 1.4.1. 解微分方程 $y'' - 6y' + 9y = (x+1)e^{2x} + e^{3x}$.

解. 把它分解为

$$y'' - 6y' + 9y = 0 \tag{求通解}$$

$$y'' - 6y' + 9y = (x+1)e^{2x}$$
 (求特解)

$$y'' - 6y' + 9y = e^{3x} (\bar{x} + \bar{y})$$

然后解之. 对于第一个齐次方程, 其通解为 $y = (C_1 + C_2 x)e^{3x}$.

对于第二个方程,设一个通解为 $y = e^{2x}(ax + b)$,代入得 a = 2, b = 1/2.

对于第三个方程,由于 x=3 是二重根,所以特解为 $y=x^2e^{3x}\cdot Q_0(x)$,这里是 0 次多项式,则为常数,需要带入解出常数的值. 最后得 C=1/2.

所以解为
$$y = (C_1 + C_2 x)e^{3x} + (1/2x^2 + 2x + 1/2)e^{3x} = (C_1 + C_2 x + 1/2x^2)e^{3x}$$
.

下面介绍一种非线性转化为线性方程的办法. 对于 $x^2y''+pxy'+qy=f(x)$, $x\neq 0$ 时,转换为 $y''+\frac{p}{x}y'+\frac{q}{x^2}y=\frac{1}{r^2}f(x)$. 想办法将其中的 $1/x,1/x^2$ 消去. 可以令 $x=e^t$,则 $t=\ln x$. 于是

$$y'(x) = y'(t) \cdot t'(x) = \frac{1}{x}y'(t)$$
$$y''(x) = \frac{1}{x^2}(y''(t) - y'(t))$$