Contents

C	Contents		i
1	1 Normed Vector Spaces		1
	1.1 Vector Spaces		1
	1.2 Normed Spaces		5
	1.3 Inner Product Spaces		
2	2 Metric Spaces	1	2
	2.1 Introduction	1	2

Last update: 2025 January 28

Chapter 1

Normed Vector Spaces

§ 1.1. Vector Spaces

Definition 1.1.1. A *vector space* over a field F is a nonempty set V equipped with two operations:

$$V \times V \xrightarrow{+} V$$
 defined by $(v, w) \mapsto v + w$
 $F \times V \to V$ defined by $(\alpha, v) \mapsto \alpha v$

satisfying:

- (1) (V, +) is an abelian group;
- (2) $\alpha(v + w) = \alpha v + \alpha w$ for all $\alpha \in F$, $v, w \in V$;
- (3) $\alpha(\beta \nu) = (\alpha \beta) \nu$ for all $\alpha, \beta \in F, \nu \in V$;
- (4) $1_{\mathsf{F}} v = v$ for all $v \in V$.

Definition 1.1.2. Let V be a vector spaces over F. A *subspace* is a nonempty set $W \subseteq V$ satisfying $w_1 + \alpha w_2 \in W$ for all $w_1, w_2 \in W$ and $\alpha \in F$.

Exercise 1.1.1. If $\{W_i\}_{i\in I}$ is a family of subspaces of V, then $\bigcap_{i\in I} W_i$ is a subspace of V.

Exercise 1.1.2. If $W_1, W_2 \subseteq V$ are subspaces such that $W_1 \cup W_2$ is a subspace, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Definition 1.1.3. Let $S \subseteq V$ be any subset of a vector space V. Then:

$$span(S) = \left\{ \sum_{j=1}^{n} \alpha_{j} \nu_{j} \mid \alpha_{j} \in F, \nu_{j} \in S \right\}.$$

Note 1.1.1.

- (1) $\operatorname{span}(S) \subseteq V$ is a subspace.
- (2) $\operatorname{span}(S) = \bigcap W$, where $S \subseteq W$ and $W \subseteq V$ is a subspace. So $\operatorname{span}(S)$ is the "smallest" subspace containing S, or equivalently the subspace generated by S.

Proposition 1.1.1 (Quotient Spaces). Let V be a vector space and let $W \subseteq V$ be a subspace. Define $u \sim_W v$ if and only if $u - v \in W$.

- (1) \sim_W is an equivalent relation.
- (2) If $[v]_W$ denotes the equivalence classes of v, then $[v]_W = v + W = \{v + w \mid w \in W\}$.
- (3) V/W := $\{[v]_W \mid v \in V\}$ is a vector space with $[v_1]_W + [v_2]_W = [v_1 + v_2]_W$ and $\alpha[v]_W = [\alpha v]_W$.

Proof. Exercise.

Definition 1.1.4. Let V be a vector space and $S \subseteq V$ be a subset.

- (1) S is said to span V if span(S) = V.
- (2) S is linearly independent if, for all $\alpha_j \in F$ and $\nu_j \in V$, $\sum_{j=1}^n \alpha_j \nu_j = 0_V$ implies $\alpha_j = 0_V$ for all j.
- (3) S is a *basis* for V if S is linearly independent and spans V.

Proposition 1.1.2. Every vector space admits a basis. Moreover, if $B_0 \subseteq V$ is a linearly independent set, there exists $B \subseteq V$ such that B is a basis and $B_0 \subseteq B$.

Proof. Let $X = \{D \mid B_0 \subseteq D \subseteq V, D \text{ linearly independent}\}$. Define an ordering on X as follows: given $D, E \in X$, we have $D \le E$ if and only if $D \subseteq E$. We will show that X admits a maximal element.

Note that X is nonempty because $B_0 \in X$. Let $\{D_i\}_{i \in I}$ be a family of linearly indepedent sets satisfying $D_i \subseteq V$ for all i. Suppose $Y = (\{D_i\}_{i \in I}, \leqslant)$ is a totally ordered set. Consider $D = \bigcup_{i \in I} D_i$. Clearly $B_0 \subseteq D \subseteq V$. If $\sum_{j=1}^n \alpha_j \nu_j = 0_V$ with $\nu_1, ..., \nu_n \in D$, then since Y is totally ordered, there exists D_K with $\nu_1, ..., \nu_n \in D_k$. Since D_k is linearly independent, we have that $\alpha_1 = ... = \alpha_n = 0$. Thus D is linearly independent, whence $D \in X$. Furthermore, D is clearly an uppoerbound of Y. By Zorn's Lemma, X has a maximal element B.

Claim: B is a basis for V. Suppose towards contradiction its not, that is, there exists $v \in V$ with $v \notin \text{span}(B)$. Consider $B' = B \cup \{v\}$. Let $\sum_{j=1}^{n} \alpha_j v_j + \alpha v = 0_V$ with $v_1, ..., v_n \in B$. We proceed by cases.

Case 1: $\alpha \neq 0$. Then $\sum_{j=1}^{n} \alpha_j v_j = -\alpha v$, meaning $v \in \text{span}(B)$. \perp

Case 2: $\alpha = 0$. Then $\alpha_1 = ... = \alpha_n = 0$. This gives that B' is a linearly independent set, with B' \in X and B \subseteq B'. \perp This contradicts the maximality of B.

Thus span(B) = V, giving B as a basis for V.

Example 1.1.1 (Examples of Vector Spaces).

- (1) The set of n-dimensional vectors; $F^n = \{(x_1, ..., x_n) \mid x_i \in F\}$ is a vector space by defining addition and scalar multiplication componentwise.
- (2) The set of $m \times n$ matrices over a field; $M_{n,m}(F) = \{(a_{ij}) \mid a_{ij} \in F\}$ is a vector space by the usual matrix addition and scalar multiplication.
- (3) The set of functions with domain Ω ; $\mathcal{F}(\Omega, F) = \{f \mid f : \Omega \to f\}$ is a vector space by defining addition and scalar multiplication pointwise.
- (4) The set of bounded functions with domain Ω ; $\ell_{\infty}(\Omega, F) = \{f \in \mathcal{F}(\Omega, F) \mid ||f||_{\mathfrak{u}} < \infty\}$ is a vector space by defining addition and scalar multiplication componentwise.

Exercise 1.1.3. Show that $(\ell_{\infty}, ||\cdot||_{\mathfrak{U}})$ forms a metric space.

(5) Continuous functions on a bounded domain: $C([a,b],F) = \{f : [a,b] \rightarrow F \mid f \text{ continuous}\}\$ by defining addition and scalar multiplication componentwise.

Exercise 1.1.4. *Show that* $C([a,b],F) \subseteq \ell_{\infty}([a,b],F)$ *is a subspace.*

(6) Let $f : [a, b] \to \mathbb{R}$ be any function. Let $\mathcal{P} = \{a = x_0 < x_1 < ... < x_{n-1} < x_n = b\}$ be a partition of [a, b]. The *variation of* f *on* \mathcal{P} is defined as:

$$Var(f; \mathcal{P}) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|.$$

We say f is a bounded variation if:

$$Var(f) := \sup_{\mathcal{P}} Var(f; \mathcal{P}) < \infty.$$

The set of all functions of bounded variation is defined:

$$BV([a,b]) = \{f : [a,b] \rightarrow \mathbb{R} \mid Var(f) < \infty\}.$$

This is a vector space by defining addition and scalar multiplication componentwise.

Exercise 1.1.5. *Show that* $BV([a,b]) \subseteq \ell_{\infty}([a,b], \mathbb{R})$ *is a subspace.*

(7) A subset $K \subseteq V$ of a vector space is *convex* if, for all $v, w \in K$ and $t \in [0,1]$, then $(1-t)v + tw \in K$. A function $f: K \to \mathbb{R}$ is affine if, for all $v, w \in K$ and $t \in [0,1]$, then f((1-t)v + tw) = (1-t)f(v) + tf(w). The set of all affine functions over a convex subset $Aff(K) = \{f: K \to \mathbb{R} \mid f \text{ affine}\}$ is a vector space by defining addition and scalar multiplication componentwise.

Exercise 1.1.6. *Show that* $Aff(K) \subseteq \mathfrak{F}(K, \mathbb{R})$ *is a subspace.*

(8) By (3), the set of all sequences $\mathcal{F}(\mathbb{N}, \mathbb{F}) = \{(a_k)_k \mid a_k \in \mathbb{F}\}\$ is a vector space. Define:

$$\begin{split} c_{00} &= \{(\alpha_k)_k \mid supp((\alpha_k)_k) < \infty\} \\ c_0 &= \{(\alpha_k)_k \mid (\alpha_k)_k \rightarrow 0\} \\ c &= \{(\alpha_k)_k \mid (\alpha_k)_k \text{ converges}\} \\ \ell_{\infty}(\mathbb{N}, \mathsf{F}) &= \{(\alpha_k)_k \mid \|(\alpha_k)_k\|_{\mathfrak{u}} < \infty\} \\ \ell_1(\mathbb{N}, \mathsf{F}) &= \left\{(\alpha_k)_k \mid \sum_{k=1}^{\infty} |\alpha_k| < \infty\right\}. \end{split}$$

These are similarly vector spaces with addition and scalar mutliplication defined componentwise.

Exercise 1.1.7. *Show that the above vector spaces are subspaces of* $\mathfrak{F}(\mathbb{N}, \mathbb{F})$ *.*

- (9) Recall that a function $f : \mathbb{R} \to F$ is *compactly supported* if there exists $[a, b] \subseteq \mathbb{R}$ such that $x \notin [a, b]$ implies f(x) = 0. Then $C_c(\mathbb{R}) := \{f : \mathbb{R} \to F \mid f \text{ compactly supported }\}$ is a vector space with addition and scalar multiplication defined pointwise.
- (10) The set of functions which vanish at infinity; $C_0(\mathbb{R}) = \{f : \mathbb{R} \to F \mid f \text{ continuous, } \lim_{x \to \pm \infty} f = 0\} \text{ is a vector space with addition and scalar multiplication defined pointwise.}$

Exercise 1.1.8. *Show that* $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ *are subspaces.*

(11) Let Γ be a nonempty set. The free vector space $\mathbb{F}(\Gamma) = \{f : \Gamma \to \Gamma \mid \text{supp}(f) < \infty\}$ is a vector space with addition and scalar multiplication defined pointwise.

Fix $t \in \Gamma$. Recall that $\delta_t : \Gamma \to F$ is defined by:

$$\delta_{\mathsf{t}}(\mathsf{s}) = \begin{cases} 1, & \mathsf{s} = \mathsf{t} \\ 0, & \mathsf{s} \neq \mathsf{t} \end{cases}.$$

We have that $\delta_t \in \mathcal{F}(\Gamma, F)$, and furthermore $supp(\delta_t) = \{t\}$. If $f \in \mathcal{F}(\Gamma, F)$ has finite support, then $supp(f) = \{t_1, ..., t_n\}$ for some $t_i \in F$. If $f(t_i) \neq 0$ for all $1 \leq i \leq n$, then we can write $f = \sum_{j=1}^n f(t_j) \delta_{t_j}$.

Define $\iota : \Gamma \to \mathbb{F}(\Gamma)$ by $\iota(x) = \delta_x$. We have the following universal property: if W is any vector space and $t : \Gamma \to W$ is a map of sets, there is a unique $T \in \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}(\Gamma), W)$ such that T(x) = t(x) for every $x \in \Gamma$; i.e., the following diagram commutes:

Exercise 1.1.9.

- (1) Show that $\mathbb{F}(\Gamma) \subseteq \mathfrak{F}(\Gamma, F)$ is a subspace.
- (2) Show that $\{\delta_t\}_{t\in\Gamma}$ is a basis for $\mathbb{F}(\Gamma)$.
- (3) Prove the above universal property.
- (4) Suppose V is a vector space over F with basis B. Show that $\mathbb{F}(B) \cong V$.

§ 1.2. Normed Spaces

Definition 1.2.1. A *norm* on a vector space V is a map:

$$\|\cdot\|: V \to \mathbb{R}^+$$
 defined by $v \mapsto \|v\| \geqslant 0$.

satisfying:

- (1) $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in F$, $v \in V$ (homogeneity);
- (2) $\|v + w\| \le \|v\| + \|w\|$ for all $v, w \in V$ (triangle inequality);
- (3) If $\|v\| = 0$, then $v = 0_V$ (positive definiteness).

If $\|\cdot\|$ satisfies only (1) and (2), then we say it is a *seminorm*. The pair $(V, \|\cdot\|)$ is called a *normed space*.

Definition 1.2.2. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are called *equivalent* if there exists $\alpha, \beta \ge 0$ satisfying:

$$\|\nu\|_1 \leqslant \alpha \|\nu\|_2$$
$$\|\nu\|_2 \leqslant \beta \|\nu\|_1$$

for all $v \in V$.

Note 1.2.1. On \mathbb{R}^n , all norms are equivalent.

Exercise 1.2.1. Let $v, w \in V$. If p is any seminorm on V, then $|p(v) - p(w)| \le p(v - w)$.

Definition 1.2.3. Let V be any normed space.

- (1) The open ball of radius r is denoted $U_V = \{ v \in V \mid ||v|| < r \}$.
- (2) The closed ball of radius r is denoted $B_V = \{v \in V \mid ||v|| \le r\}$.

Example 1.2.1 (Examples of Norms). Given $V = F^n$ and $x = (x_1, ..., x_n)$, we have the following norms:

(1)
$$\|\mathbf{x}\|_1 = \sum_{j=1}^n |\mathbf{x}_j|;$$

(2) $\|x\|_{\infty} = \max_{1 \le j \le n} |x_j|;$

(3)
$$\|x\|_2 = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}$$
.

Exercise 1.2.2. *Show that* $\|\cdot\|_1$ *and* $\|\cdot\|_{\infty}$ *are norms.*

Lemma 1.2.1. Let $p,q \in [1,\infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let $f:[0,\infty) \to \mathbb{R}$ be defined by $f(t) = \frac{1}{p}t^p - t + \frac{1}{q}$. Then $f(t) \ge 0$ for $t \ge 0$.

Proof. Note that $f'(t) = t^{p-1} - 1$. Since:

$$f'(1) = 0$$

 $f'(t) > 0$ for $t > 1$
 $f'(t) < 0$ for $0 \le t < 1$,

we can see that $f(t) \ge 0$ for all $t \ge 0$.

Lemma 1.2.2. Let p, $q \in [0, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. If $x, y \ge 0$, then $xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$.

Proof. By Lemma 1.2.1, $t \leq \frac{1}{p}t^p + \frac{1}{q}$. Multiplying both sides by y^q gives:

$$ty^q \leqslant \frac{1}{p}t^py^q + \frac{1}{q}y^q.$$

Let $t = xy^{1-q}$. Then:

$$xy^{1-q}y^{q} \le \frac{1}{p}x^{p}y^{p-p}qy^{q} + \frac{1}{q}y^{q}.$$

Since $\frac{1}{p} + \frac{1}{q} = 1$, we have that p - pq = -q. Whence:

$$xy \leqslant \frac{1}{p}x^p + \frac{1}{q}y^q.$$

Definition 1.2.4. Let $V = F^n$, $x = (x_1, ..., x_n)$, and $p \ge 1$. We define:

$$\|x\|_p := \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}.$$

Lemma 1.2.3 (Hölders Inequality). Let $p, q \in [0, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then for $x, y \in F^n$:

$$\left|\sum_{j=1}^n x_j y_j\right| \leqslant \|x\|_p \|y\|_q.$$

Proof. We proceed by cases.

Case 1: p = 1. Then:

$$\left| \sum_{j=1}^{n} x_j y_j \right| \leq \sum_{j=1}^{n} |x_j| |y_j|$$

$$\leq \sum_{j=1}^{n} |x_j| ||y||_{\infty}$$

$$= ||x||_1 ||y||_{\infty}.$$

Case 2: $p = \infty$. This follows similarly to Case 1.

Case 3: 1 ||x||_p = ||y||_q = 1. Then:

$$\left| \sum_{j=1}^{n} x_{j} y_{j} \right| \leq \sum_{j=1}^{n} |x_{j}| |y_{j}|$$

$$\leq \sum_{j=1}^{n} \left(\frac{1}{p} |x_{j}|^{p} + \frac{1}{q} |y_{j}|^{q} \right)$$

$$= \frac{1}{p} \left(\sum_{j=1}^{n} |x_{j}|^{p} \right) + \frac{1}{q} \left(\sum_{j=1}^{n} |y_{j}|^{q} \right)$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

Whence the inequality holds. Now suppose $\|v\|_p = 0$ or $\|y\|_q = 0$. Then $x = 0_{F^n}$ or $y = 0_{F^n}$, whence the inequality holds. Suppose $\|x\|_p \neq 0$ and $\|y\|_p \neq 0$. Set:

$$x' = \frac{x}{\|x\|_p}$$
$$y' = \frac{y}{\|y\|_p}.$$

Then $||x'||_p = 1 = ||y'||_p$. Observe that:

$$1 \geqslant \left| \sum_{j=1}^{n} x_{j}' y_{j}' \right|$$
$$= \left| \sum_{j=1}^{n} \frac{x}{\|x\|_{p}} \frac{y}{\|y\|_{p}} \right|.$$

Multiplying both sides by $\|x\|_p \|y\|_q$ gives the desired result.

Lemma 1.2.4 (Minkowski's Inequality). Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. For $x, y \in F^n$:

$$||x + y||_p \le ||x||_p + ||y||_p$$
.

Proof. The only nontrivial case is for 1 . Observe that:

$$\begin{split} \left(\left\|x+y\right\|_{p}\right)^{p} &= \sum_{j=1}^{n} |x_{j}+y_{j}|^{p} \\ &= \sum_{j=1}^{n} |x_{j}+y_{j}| |x_{j}+y_{j}|^{p-1} \\ &\leqslant \sum_{j=1}^{n} |x_{j}| |x_{j}+y_{j}|^{p-1} + |y_{j}| |x_{j}+y_{j}|^{p-1} \\ &\leqslant \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{(p-1)q}\right)^{\frac{1}{q}} \\ &= \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{p-1\left(\frac{p}{p-1}\right)}\right)^{1-\frac{1}{p}} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{p-1\left(\frac{p}{p-1}\right)}\right)^{1-\frac{1}{p}} \\ &= \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{p}\right)^{1-\frac{1}{p}} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{p}\right)^{1-\frac{1}{p}} \\ &= (\|x\|_{p} + \|y\|_{p}) \frac{\|x+y\|_{p}^{p}}{\|x+y\|_{p}}. \end{split}$$

Multiplying boths sides by $\frac{\|x+y\|_p}{\|x+y\|_p^p}$ gives the desired inequality.

Theorem 1.2.5. Let $V = F^n$. Then $(F^n, \|\cdot\|_p)$ is a normed space. In particular, $\|\cdot\|_p$ is a norm.

Proof. Let $x = (x_1, ..., x_n) \in F^n$ and $\alpha \in F$. Observe that:

$$\|\alpha x\|_{p} = \left(\sum_{j=1}^{n} |\alpha x_{j}|^{p}\right)^{\frac{1}{p}}$$
$$= \left(\sum_{j=1}^{n} |\alpha|^{p} |x_{j}|^{p}\right)^{\frac{1}{p}}$$
$$= |\alpha| \|x\|_{p}.$$

This satisfies homogeneity. Moreover, Minkowski's Inequality satisfies the triangle inequality. It remains to show that $\|\cdot\|_p$ is positive-definite. If $\|x\|_p = 0$, then $x_j = 0$ for all $1 \le j \le n$. Thus $x = 0_{F^n}$.

Example 1.2.2 (Examples of Normed Spaces).

- (1) $(\ell_{\infty}(\Omega, F), \|\cdot\|_{\mathfrak{u}})$ is a normed space. Moreover, subspaces of $\ell_{\infty}(\Omega, F)$ inherit the norm, such as $C([\mathfrak{a}, \mathfrak{b}], F)$.
- (2) Let $f \in C([a, b])$. Define:

$$||f||_1 = \int_a^b |f(x)| dx.$$

Then $(C([a,b]), \|\cdot\|_1)$ is a normed space.

(3) Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces. Given $T \in Hom_F(V, W)$, define:

$$\|T\|_{\text{op}} := \sup_{\|\nu\|_{V} \le 1} \|T(\nu)\|_{W}.$$

Informally, this measures the maximum factor by which T "lengthens" a vector. If $\|T\|_{op} < \infty$, we say it is a *bounded linear operator*. The space of bounded linear operators is denoted:

$$B_F(V, W) = \{T \in Hom_F(V, W) \mid ||T||_{op} < \infty\}.$$

Then $(B_F(V, W), \|\cdot\|_{op})$ is a normed space.

Exercise 1.2.3. Show that $\operatorname{Hom}_F(\mathsf{F}^n,\mathsf{F}^m)=\mathsf{B}_F(\ell_2^n,\ell_2^m).$

§ 1.3. Inner Product Spaces

Definition 1.3.1. Let V be a vector space over F and $\varphi : V \times V \to F$ a map.

- (1) The map φ is said to be a *bilinear form* if is is linear in the first and second variable seperately; i.e., for all $v_1, v_2, v \in V$ and $c \in F$ we have:
 - (i) $\varphi(cv_1 + v_2, v) = c\varphi(v_1, v) + \varphi(v_2, v)$
 - (ii) $\varphi(v, cv_1 + v_2) = \varphi(v, v_1) + c\varphi(v, v_2)$.
- (2) The map φ is said to be a *sesquilinear form* if it is linear in the first variable and conjugate linear in the second variable; i.e., for all $v_1, v_2, v \in V$ and $c \in F$ we have:
 - (i) $\varphi(cv_1 + v_2, v) = c\varphi(v_1, v) + \varphi(v_2, v)$
 - (ii) $\varphi(v, cv_1 + v_2) = \overline{c}\varphi(v, v_1) + \varphi(v, v_2)$.

If we wish to keep track of a bilinear form on V we write (V, φ) .

Definition 1.3.2. Let V be a vector space over F.

(1) A bilinear form φ on V is said to be *symmetric* if $\varphi(v, w) = \varphi(w, v)$ for all $v, w \in V$.

(2) A sesquilinear form φ on V is said to be *Hermitian* if $\varphi(v, w) = \overline{\varphi(w, v)}$ for all $v, w \in V$.

Definition 1.3.3. Let (V, φ) be a vector space over F such that if φ is symmetric, then $\mathbb{Q} \subset F \subset \mathbb{R}$ <u>or</u> if φ is Hermitian, then $\mathbb{Q} \subset F \subset \mathbb{C}$. We say φ is *positive definite* if $\varphi(v, v) > 0$ for all nonzero $v \in V$.

Definition 1.3.4. Let (V, φ) be a vector space over \mathbb{R} with φ a positive-definite symmetric bilinear form $\underline{\mathbf{or}} \mathbb{C}$ with φ a positive-definite Hermitian sesquilinear form. Then we say φ is an *inner product* on V and write φ as $\langle \cdot, \cdot \rangle$. We say $(V, \langle \cdot, \cdot \rangle)$ is an *inner product space*.

Proposition 1.3.1. Every inner product space is a normed vector space, with its canonical norm defined as:

$$\|v\| := \sqrt{\langle v, v \rangle}.$$

In particular, for all $v, w \in V$ and $\alpha \in F$ we have:

- (1) $\|\alpha v\| = |\alpha| \|v\|$;
- (2) $|\langle v, w \rangle| \leq ||v|| ||w||$ (Cauchy-Schwartz Inequality);
- (3) $\|v + w\| \le \|v\| + \|w\|$;
- (4) if ||v|| = 0 then $v = 0_V$.

Proof.

Example 1.3.1.

(1) Note that $\ell_2^n = F^n$. Then $\langle \cdot, \cdot \rangle : \ell_2^n \times \ell_2^n \to F$ given by

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}$$

is an inner product.

(2) Recall that $\ell_2 = \{(\alpha_j)_j \in F^{\mathbb{N}} \mid \sum_{j=1}^{\infty} |\alpha_j|^2 < \infty\}$. Consider $\langle \cdot, \cdot \rangle : \ell_2 \times \ell_2 \to F$ given by:

$$\langle (a_j)_j, (b_j)_j \rangle = \sum_{j=1}^{\infty} a_j \overline{b_j}.$$

For finite n, the Cauchy-Schwartz inequality gives:

$$\left| \sum_{j=1}^{n} \alpha_j \overline{b_j} \right| \leq \left(\sum_{j=1}^{n} \alpha_j \overline{a_j} \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} b_j \overline{b_j} \right)^{\frac{1}{2}}$$

$$= \left(\sum_{j=1}^{n} |\alpha_j|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |b_j|^2 \right)^{\frac{1}{2}}.$$

Taking the limit as n approaches infinity yields:

$$\left| \sum_{j=1}^{\infty} \alpha_j \overline{b_j} \right| \leq \left(\sum_{j=1}^{\infty} |\alpha_j|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{\infty} |b_j|^2 \right)^{\frac{1}{2}}$$

Thus $\langle (a_j)_j, (b_j)_j \rangle$ is always convergent.

Chapter 2

Metric Spaces

§ 2.1. Introduction

Definition 2.1.1. Let X be a nonempty set. A *metric* on X is a map:

$$d: X \times X \to \mathbb{R}^+$$

satisfying for all $x, y, z \in X$:

- (1) d(x,y) = d(y,x);
- (2) $d(x,z) \le d(x,y) + d(y,z);$
- (3) d(x, x) = 0;
- (4) If d(x, y) = 0, then x = y.

If d only satisfies (1), (2), and (3), then d is called a *semi-metric*. We call the pair (X, d) a *metric space* (or *semi-metric space*).

Definition 2.1.2. Two metrics d, ρ on X are called *equivalent* if there exists $c_1, c_2 \ge 0$ such that, for all $x, y \in X$:

$$d(x,y)\leqslant c_1\rho(x,y);$$

$$\rho(x,y) \leqslant c_2 d(x,y).$$