DISCRETE-MARGIN PRICING AT THE TWO: FAIR POINT-BUY VALUATION, ML VS. SPREAD, AND MIDDLING AROUND 2

RICHARD OLDHAM

ABSTRACT. We present a first-principles, integer-margin model for pricing NFL point spreads in the neighborhood of the two-point line and apply it to the Seattle Seahawks @ Arizona Cardinals game on Thursday, Sept. 25, 2025 (Week 4). Using a push-aware discrete framework, we (i) convert DraftKings market odds to implied probabilities with vig normalization, (ii) estimate the mass function of the final margin near {1,2} from historical distributions, (iii) compute fair prices for buying points at 2 (moves $-2 \rightarrow -1.5$ and $-2.5 \rightarrow -2$), (iv) derive an explicit moneyline-versus-2 decision rule and compare expected values numerically, and (v) quantify the break-even threshold for a classic -1.5/+2.5 middle. The analysis is fully push-adjusted and algebraically explicit, suitable as a building block for a backtestable betting dashboard. We include practical guidance for calibration, line-shopping, and bankroll sizing (Kelly).

1. Market snapshot and notation

For the Week 4 TNF matchup on 2025-09-25, multiple outlets reporting DraftKings lines list

$$SEA - 1.5$$
, $ML: SEA - 125$, $ARI + 105$, $Total 43.5$

see e.g. [?, ?, ?, ?].¹

Integer-margin model. Let the final margin be the integer-valued random variable

$$M \in \mathbb{Z}$$
, $M = (favorite score) - (underdog score).$

For a book line $s \in \mathbb{Z}$, the favorite -s ticket: wins if M > s, pushes if M = s, loses if M < s; the dog + s is complementary.

Write
$$p_k := \Pr[M = k]$$
 and define the tail and atom at the line
$$P_{>s} := \Pr[M > s] = \sum_{k \geq s+1} p_k, \qquad P_{=s} := p_s, \qquad P_{s} - P_{=s}.$$

A tractable parametric baseline is a discretized normal centered at the spread,

(1)
$$p_k \approx \Phi\left(\frac{k + 0.5 - \mu}{\sigma}\right) - \Phi\left(\frac{k - 0.5 - \mu}{\sigma}\right), \qquad \mu \approx s,$$

augmented by a small "endgame" mixture that inflates mass at small positive margins (e.g. {2,3,4,5}), reflecting late fouling/clock dynamics.²

2. Implied probabilities from American odds

For American odds -a (favorite) or +b (dog), the *implied* win probabilities (with book vig) are

$$\pi(-a) = \frac{a}{a+100}, \qquad \pi(+b) = \frac{100}{b+100}.$$

For SEA ML -125 and ARI ML +105.

$$\pi_{\text{SEA,ML}} = 0.556, \qquad \pi_{\text{ARI,ML}} = 0.488.$$

Removing vig by normalization ($\tilde{\pi}_i = \pi_i/(\pi_{\text{SEA}} + \pi_{\text{ARI}})$) gives the fair moneyline win probabilities $P(SEA wins) \approx 0.532$, $P(ARI wins) \approx 0.468.$

We denote $p_{\rm ML} := 0.532$ for SEA.

3. Near-line mass at 1 and 2 from history

Long-horizon NFL studies find (unconditional) margin-of-victory frequencies roughly

$$\Pr(|M| = 3) \approx 15\%, \quad \Pr(|M| = 7) \approx 8-9\%, \quad \Pr(|M| = 1) \approx 4\%, \quad \Pr(|M| = 2) \approx 4\%,$$

with modest regime shifts after the 2015 XP rule³ [?, ?, ?, ?]. Conditioning on SEA as a slight favorite, a neutral split allocates approximately half of the {1,2} outcomes to the favorite. We therefore adopt calibrated atoms

5. Fair pricing and point-buy valuation at the two

Let a unit stake pay net b on win (so $b = 100/110 \approx 0.909$ at -110). The push has zero net.

Fair odds for -2. Fair payoff b^* solves $b^*P_{>2} = P_{<2}$, i.e.

$$b^* = \frac{P_{<2}}{P_{>2}} = \frac{0.488}{0.492} = 0.992 \implies \text{American odds} \approx -101.$$

Hence an even-money quote for -2 is essentially fair given $p_1=p_2=0.02$ and $p_{\rm ML}=0.532$.

Value of buying on/off 2 (clean formulas). Let $p_2 = \Pr(M = 2)$. Only the M = 2 cell flips when you move across 2:

$$-2 \rightarrow -1.5$$
: push \rightarrow win, $\Delta EV = b p_2$;
 $-2.5 \rightarrow -2$: loss \rightarrow push, $\Delta EV = 1 \cdot p_2$.

Thus the full key move $-2.5 \rightarrow -1.5$ is worth $(1+b)p_2$. Numerically, with b=0.909 and $p_2=0.02$:

$$\underbrace{b\,p_2}_{-2\to -1.5} = 0.0182 \text{ (per 1 staked)}, \quad \underbrace{1\cdot p_2}_{-2.5\to -2} = 0.0200, \quad \underbrace{(1+b)p_2}_{-2.5\to -1.5} = 0.0382.$$

Interpret each as the fair premium (in units of stake) for the move.⁵

6. Moneyline versus -2: an EV comparison

Write $b_{\rm ML} = 100/125 = 0.8$. A unit-stake expected value is

$$EV(-2; b) = b P_{>2} - P_{<2}, \qquad EV(ML; b_{ML}) = b_{ML} p_{ML} - (1 - p_{ML}).$$

With the inputs above,

$$EV(-2; -110) = 0.909 \cdot 0.492 - 0.488 = -0.0407 (-4.07\%), \qquad EV(ML; -125) = 0.8 \cdot 0.532 - 0.468 = -0.0424.$$

Both wagers, at listed juice, are $\sim -4\%$ EV—as expected—with a negligible 0.17% edge to the spread in this snapshot. The *analytic* ML-vs-spread difference is

$$\Delta \text{EV} = (1 + b_{\text{ML}}) \underbrace{(p_1 + p_2)}_{\text{ML captures}} - \Big((1 + b) - (1 + b_{\text{ML}}) \Big) P_{>2} - p_2,$$

which, upon substitution, reproduces the numeric gap above. Intuition: ML pays for the $\{1, 2\}$ band that a -2 spread does not (it either pushes at 2 or loses at 1), but ML also carries different juice and forgoes push equity.

7. MIDDLING AROUND TWO (THE -1.5/+2.5 MIDDLE)

Stake one unit each on Favorite -1.5 at $-a_1$ ($b_1 = 100/a_1$) and Dog +2.5 at $-a_2$ ($b_2 = 100/a_2$). Outcomes:

- If M = 2: both win \Rightarrow profit $b_1 + b_2$.
- Otherwise exactly one wins \Rightarrow net loss $\ell := \min\{1 b_1, 1 b_2\}$ (with symmetric -110/-110, $\ell = 0.0909$).

Hence

EV =
$$(b_1 + b_2) p_2 - (1 - p_2) \ell$$
, $p_2^* = \frac{\ell}{b_1 + b_2 + \ell}$.

At -110/-110, $b_1 = b_2 = 0.909$, $\ell = 0.0909 \Rightarrow p_2^* \approx 0.0476$. Thus if $\Pr(M = 2) \gtrsim 4.8\%$, the middle is +EV; with sharper -105/-105, the threshold falls further.

 $^{^5}$ At -110, a "ten-cent" surcharge corresponds to $\approx 4.5\%$ of stake in EV terms for near-even events; see also empirical pricing discussions in [?, ?].

8. Calibration and backtesting guidance

- 1. Baseline fit: Estimate (μ, σ) of a continuous margin model conditional on closing spreads in a window around 2, then discretize as in (??).
- 2. **Endgame mixture:** Add a light component that inflates $\{2, 3, 4, 5\}$ proportional to situational features (pace, timeout inventory, coaching tendencies, two-point conversion rates).
- 3. **Posterior update:** Incorporate any private edge δ by setting $\mu = s + \delta$ and re-discretizing.
- 4. Validation: Backtest ML vs. small spreads, bought points around 2, and middles; compare realized frequencies of $M \in \{1, 2\}$ to model-implied.⁶
- 5. **Dashboard implementation:** Given a live book snapshot, compute (i) vig-removed $p_{\rm ML}$, (ii) spread-conditional p_1, p_2 , (iii) fair -2 odds and point-buy premia, (iv) ML vs. -2 EV comparison, (v) middle thresholds; highlight mispricings across books.

Bankroll Sizing (Kelly)

For net win b, loss 1, with push probability r and win/loss probabilities (q, ℓ) satisfying $q + \ell + r = 1$, the edge is $bq - \ell$ and the (fractional) Kelly stake is

$$f^{\star} = \frac{bq - \ell}{b}.$$

Apply to a spread (take $q = P_{>2}$, $\ell = P_{<2}$, $r = P_{=2}$) or to a middle by viewing the pair as a single two-point outcome instrument (double-win vs. split).

Conclusions

Around the two-point line, (i) the favorite's fair -2 price is essentially even money if p_1 and p_2 are each near 2%, (ii) the fair value of $-2 \rightarrow -1.5$ is $b p_2$ and of $-2.5 \rightarrow -2$ is p_2 , and (iii) a canonical -1.5/+2.5 middle requires $p_2 \gtrsim 4.8\%$ at -110/-110. With DK's Week 4 snapshot, ML and spread both carry $\sim -4\%$ EV at posted juice; choice should be driven by your calibrated $\{1,2\}$ mass, price differences across books, and portfolio considerations. The discrete, push-aware algebra here slots directly into a backtestable, production dashboard.

References

- [1] Action Network. Key numbers in nfl betting, explained (recent-era margin frequencies), 2024. Accessed 2025-09-25.
- [2] Action Network. Seahawks vs. cardinals: Prediction, pick, odds (week 4, tnf), 2025. Accessed 2025-09-25.
- [3] Boyd's Bets. Nfl key numbers: When to buy points to get on or off the most common margins of victory, 2023. Comprehensive long-horizon margin frequencies; accessed 2025-09-25.
- [4] DraftKings Network. Nfl best bets: Seahawks vs. cardinals week 4 (odds snapshot), 2025. Accessed 2025-09-25.
- [5] C. Hitter. Common nfl scores and key numbers, 2024. Accessed 2025-09-25.
- [6] Inpredictable. The distribution of nfl winning margins, 2023. Accessed 2025-09-25.
- [7] OddsShark. Seahawks vs. cardinals picks & odds (week 4, 2025), 2025. Accessed 2025-09-25.
- [8] SportsHandle. Seahawks vs. cardinals betting promos (week 4 tnf) odds snapshot, 2025. Accessed 2025-09-25.

⁶Public summaries of key numbers and their temporal drift are useful sanity checks [?, ?].