Fichas de Problemas de Termodinâmica e Física Estatística

Maria Inês Neves (e9831)

Professor José Luís Ribeiro - Universidade do Minho

Ficha 1

Exercício 1

Uma mole de um gás perfeito monoatómico, inicialmente a uma temperatura T_0 , sofre uma expansão de V_0 para $3V_0$. Calcule o trabalho associado à expansão e o calor absorvido pelo gás se:

- a) a expansão é isotérmica;
- b) a expansão é isobárica;
- c) a expansão é livre e adiabática.

Exercício 2

Considere um gás perfeito diatómico. Qual a fracção de calor fornecida ao gás é convertida em trabalho realizado sobre o exterior se:

- a) o processo for isotérmico;
- b) o processo for isobárico.

Exercício 3

Por definição, um gás ideal obdece à equação de estado para a pressão $PV = NK_BT$ e tem uma energia interna que é independente da pressão $(\frac{\partial U}{\partial p})_T = 0$.

- a) Prove, então, que $U \equiv U(T)$ apenas.
- **b)** Prove que, para um processo adiabática, $PV^{\gamma} = constante$, onde $\gamma = \frac{C_p}{C_v}$

Exercício 4

Considere uma mole de gás ideal.

- a) Calcule o trabalho realizado numa expansão isotérmica a T=0C de V_0 para $10V_0$
- **b)** Se $T_i = 0C$ qual a temperatura final do gás (T_f) se a mesma expansão $(V_0 \to 10V_0)$ for adiabática? (compare os casos do gás ser monoatómico ou diatómico.)

Exercício 5

O azoto tem um n^0 de massa 14. Um gás de N_2 está em condições de pressão e temperatura tais que o seu comportamento é o de um gás perfeito.

- a) Qual a quantidade de calor necessária para aumentar a temperatura de 1000g de N_2 de -20° C para 100° C a uma pressão constante?
- b) Qual o aumento da energia interna deste gás no processo?
- c) Qual o trabalho realizado?

Exercício 6

Dois sistemas com capacidades caloríficas C_1 e C_2 estão inicialmente a temperaturas T_1 e T_2 , respectivamente. Ambas estão isoladas adiabaticamente do exterior. Quando colocados em contacto térmico chegam a uma temperatura final de equilíbrio T_f . Exprima $T_2 \equiv T_2(T_1, T_f)$.

Exercício 7

Considere a função H = U + pV (entropia).

- a) Mostre que o calor específico a pressão constante pode ser expresso como $C_V = (\frac{\partial H}{\partial T})p$
- b) Verifique que para um gás ideal monoatómico $C_p = C_v + NK_B$.
- c) Por que razão $C_p > C_v$.

Exercício 8

Um tijolo de 1,5Kg de massa inicialmente a 180° C é mergulhado em 10Kg de água a 20° C. Admitindo que nenhuma água se evapora e não há transferência de calor para o exterior (e vice-versa), qual a temperatura final de equilíbrio?

$$(C_{tijolo} = 750J/(Kg.K); C_{\acute{a}qua} = 4184J/(Kg.K))$$

Exercício 9

A baixas temperaturas, a capacidade calorífica de um sólido é $C = AT^3$. Ignore a diferença entre C_v e C_p (Porquê?). Qual a quantidade de calor necessário para elevar a temperatura do sólido de T_1 para $T_2 > T_1$?

Exercício 10

- a) Mostre que o trabalho ao longo do ciclo da figura é não nulo. Este trabalho é exercido sobre o sistema ou realizado pelo sistema termodinâmico?
- **b)** Qual o trabalho realizado se o ciclo fosse relizado de $1 \to 2 \to 3 \to 1$ sendo o processo de $3 \to 1$ realizado ao longo do diagrama a tracejado na figura?
- c) Admita que o sistema é um gás ideal de N partículas. Calcule a transferência de energia por trocas térmicas em cada um dos passos do ciclo.

Exercício 11

Mostre que num processo adiabático de um gás ideal $TP^{\frac{1-\gamma}{\gamma}}=constante$.