DATATHON

OPTIMIZACIÓN DE COSTOS Y COBRANZA A CLIENTES.

JACK IN THE CODE

Ana Lidia Arteaga Bretón Daniela Ortiz Blanco Fernanda Ojeda Tamayo René Cumplido Feregrino

NUEVA BASE DE DATOS

Consolidación multi-anual de datos

Todos los años la volvimos una sola base de datos.

A B A UNION B 1 3 2 4 3 5 3 4 5

Estandarización de columnas

Estandarizamos los nombres.

Integración relacional por claves

Concentramos toda la información relevante por cada intento de cobro.

Selección de variables predictivas

Eliminamos todo lo que hace ruido en nuestro modelo.

MINIMIZACIÓN DE COSTO POR COMISIONES Y OPTIMIZACIÓN DE ENVÍOS

QUE HACE NUESTRO MODELO

Realizamos un modelo de minimización con programación lineal usando PuLP.

- El objetivo fue seleccionar el intento de cobro más económico por crédito, entre múltiples opciones, minimizando el costo total de domiciliación.
- Se usaron variables binarias x[i] para decidir si un intento se selecciona o no.

```
[] # Modelo
    modelo = LpProblem("Minimizacion_Costos_Domiciliacion", LpMinimize)

# Variables binarias de decisión
    x = LpVariable.dicts("x", df_validos['var_id'], cat=LpBinary)

# Función objetivo: minimizar el costo total
    modelo += lpSum(x[i] * df_validos.loc[i, 'costo'] for i in df_validos['var_id']), "CostoTotal"

# Restricción: solo un intento por crédito
    for credito in df_validos['idcredito'].unique():
        indices = df_validos[df_validos['idcredito'] == credito]['var_id']
        modelo += lpSum(x[i] for i in indices) == 1, f"UnEnvio_{credito}"
```

modelo.solve()

∑₹

FUNCIÓN OBJETIVO

Σxi·costo

CREDIFIEL OUTPUT

El algoritmo implementado otorga dos distintos outputs:

- Un csv que otorga las estrategias consideradas como las más eficientes.
- Se imprimen en la consola las 5 estrategias que generar la menor cantidad de costos.

OTORGA

Una guía para el usuario sobre las estrategias cuya implementación permite minimizar los costos asociados a las comisiones.

Estrategias más eficientes:

	emisora	banco	tipoenvio	num_creditos	/
0	BANAMEX CUENTA	BANAMEX	CUENTA	452	
1	BANORTE CLABE TRADICIONAL	BANORTE	TRADICIONAL	7245	
2	BANORTE CLABE INTERBANCARIO	AZTECA	INTERBANCARIO	1	
3	BANORTE CLABE INTERBANCARIO	HSBC	INTERBANCARIO	4	
4	BBVA CLABE TRADICIONAL	BBVA MEXICO	TRADICIONAL	7646	

	costo_total	costo_promedio
9	791.0	1.75
1	18112.5	2.50
2	4.5	4.50
3	18.0	4.50
4	61168.0	8.00

MAXIMIZACIÓN DE COBRANZA A CLIENTES

CONTENIDO

Realizamos un modelo de maximización con programación lineal usando PuLP.

Preparación de datos

- Se eliminaron registros sin monto cobrado.
- Se creó un identificador único por intento (var_id).
- Se usaron variables binarias x[i] para decidir si un intento se selecciona o no.

```
# === 3. Crear el modelo ===
modelo = LpProblem("Maximizacion_Cobranza", LpMaximize)

# Variables binarias por intento
x = LpVariable.dicts("x", df['var_id'], cat=LpBinary)

# Función objetivo: Maximizamos la suma de lo cobrado
modelo += lpSum(x[i] * df.loc[i, 'montocobrado'] for i in df['var_id']), "TotalCobrado"

# Restricción: una sola selección por idcredito
for credito in df['idcredito'].unique():
    indices = df[df['idcredito'] == credito]['var_id']
    modelo += lpSum(x[i] for i in indices) <= 1, f"UnIntento_{credito}"</pre>
```

```
[ ] # === 4. Resolver ===
  modelo.solve()
```

→ 1

FUNCIÓN OBJETIVO

Σ monto_cobrado * x[i]

OUTPUT

El modelo otorga los resultados en dos formatos distintos:

- Un csv que cuenta con todas las estrategias prioritarias para cada crédito individual.
- Se imprime en la consola las 5 mejores estrategias con todos sus datos.

0	Estrategias óp	timas para max:	imizar la cobra	nza:		
	, PER 18	10		misora	banco	1
5		CIONAL	BANORTE			
12		NCARIA	BANORTE			
52	Bancomer Tradicional				BBVA MEXICO	
19		В	BVA CLABE TRADI	CIONAL	BBVA MEXICO	
55		UENTA	SANTANDER			
56	Santander Excepciones Cuenta				SANTANDER	
3		NTENTO	BANAMEX			
7			BBVA CLABE EN	LINEA	BBVA MEXICO	
54		SANTAN	DER CLABE TRADI	CIONAL	SANTANDER	
40	Banamex Reinte	ntos			BANAMEX	
	tipoenvio	num_creditos	total_cobrado	monto_p	oromedio	
5	TRADICIONAL	3723	3399358.24	913	3.069632	
12	INTERBANCARIO	3866	2094208.71	543	1.699097	
52	TRADICIONAL	3380	1997873.01	592	1.086689	
19	TRADICIONAL	1793	1723836.28	961	1.425700	
55	TRADICIONAL	2596	1522867.03	586	5.620582	
56	TRADICIONAL	2726	1331772.01	488	3.544391	
3	TRADICIONAL	2187	1331732.33	608	3.931107	
7	EN LINEA	1935	1308053.63	675	5.996708	
54	TRADICIONAL	1304	1185054.64	908	3.784233	
40	REINTENTO	3213	789537.42	245	5.732157	

PERMITE

Generar un plan de acción y dar claridad al operador de que estrategias priorizar para cada crédito.

SUGERENCIAS

- Les sugerimos considerar una extensión del modelo actual hacia un enfoque estocástico, que permita tomar decisiones considerando la incertidumbre en tiempos de respuesta o montos cobrados.
- Contar con una base que se alimente en tiempo real facilitaría la toma de decisiones y permitiría aplicar modelos más avanzados y adaptativos.
- Vimos varios errores que parecen venir de la carga manual, como IDs que no coinciden entre tablas o columnas con nombres largos y diferentes, lo que complica mucho el análisis.
- También observamos que la misma variable en diferentes datasets tenían distinto formato.

EGRACIAS!