Algèbre linéaire 1

1 Applications linéaires :

1.1 Rang de f^2 :

E est un **K**-espace vectoriel de dimension finie n. Soit $f \in \mathcal{L}(E)$

- 1- Montrer que $\operatorname{rg}(f^2) = \operatorname{rg} f \dim(\ker f \cap \operatorname{Im} f)$
- 2- En déduire que $\dim(\ker f^2) \le 2\dim(\ker f)$

SOLUTION:

1- Introduisons \widetilde{f} la restriction de f à $\mathrm{Im} f$. $\widetilde{f}: \mathrm{Im}(f) \longrightarrow E$ $x \mapsto f(x)$

Alors $\operatorname{Im}(\widetilde{f}) = f(\operatorname{Im}(f)) = \operatorname{Im}(f^2)$ et $\ker(\widetilde{f}) = \ker f \cap \operatorname{Im} f$ Le théorème du rang appliqué à $\operatorname{Im} f$ domne :

 $\dim(\operatorname{Im} f) = \dim(\operatorname{Im}(\widetilde{f})) + \dim(\ker(\widetilde{f}))$

soit : $\operatorname{rg}(f) = \operatorname{rg}(f^2) + \dim(\ker f \cap \operatorname{Im} f)$, ce qui donne bien la formule demandée.

2- Par le théorème du rang,

 $\begin{array}{l} n-\dim(\ker f)=n-\dim(\ker f^2)+\dim(\ker f\cap\operatorname{Im} f)\\ \text{et donc }\dim(\ker f^2)=\dim(\ker f)+\dim(\ker f\cap\operatorname{Im} f)\\ \text{enfin }\dim(\ker f\cap\operatorname{Im} f)\leq\dim(\ker f)\ \text{ puisque }\ker f\cap\operatorname{Im} f\subset\ker f\\ \text{donc }\dim(\ker f^2)\leq 2\dim(\ker f) \end{array}$

1.2 Dimension de l'image d'un sous espace :

E et F sont deux **K**-espaces vectoriels de dimensions finies.

Soit $f \in \mathcal{L}(E, F)$ et G un sous espace de E.

Montrer que $\dim(f(G)) = \dim(G) - \dim(\ker f \cap G)$

SOLUTION:

Introduisons \widetilde{f} la restriction de f à G. $\widetilde{f}: G \longrightarrow E$ $x \mapsto f(x)$

Alors $\operatorname{Im}(\widetilde{f}) = f(G)$ et $\ker(\widetilde{f}) = \ker f \cap G$

Le théorème du rang appliqué à ${\rm Im} f$ donne :

 $\dim(G) = \dim(\operatorname{Im}(\widetilde{f})) + \dim(\ker(\widetilde{f}))$

soit : $\dim(G) = \dim(f(G)) + \dim(\ker f \cap G)$ ce qui est bien la relation demandée.

1.3 Dimension de l'image réciproque :

Soient E et F deux espaces vectoriels sur le même corps K, $f \in L(E,F)$ et G un sous espace vectoriel de F.

- a) Montrer que $f^{-1}(G)$ est un sous espace vectoriel de E.
- b) Montrer que $\dim(f^{-1}(G)) = \dim(G \cap \operatorname{Im}(f) + \dim(\ker f)$

SOLUTION:

a) $f(0_E) = 0_F \in G$ donc $0_E \in f^{-1}(G)$ et $f^{-1}(G)$ n'est pas vide. $\forall x, y \in f^{-1}(G), \forall \lambda \in \mathbf{K}, f(x + \lambda y) = \underbrace{f(x)}_{\in G} + \lambda \underbrace{f(y)}_{\in G} \in G$ donc $x + \lambda y \in f^{-1}(G)$

 $f^{-1}(G)$ est donc un sous espace vectoriel de E.

b) Soit \widetilde{f} la restriction de f à $f^{-1}(G):\quad f^{-1}(G)\xrightarrow{\ \widetilde{f}\ } F$

- $\ker(f) \subset f^{-1}(G)$ donc $\ker(\widetilde{f}) = f^{-1}(G) \cap \ker(f) = \ker(f)$
- Soit $y \in \operatorname{Im}(\widetilde{f})$, $\exists x \in f^{-1}(G)$, $y = \widetilde{f}(x) = f(x)$ donc $y \in G_{\bigcap} \operatorname{Im}(f)$ d'où il résulte que $\operatorname{Im}(\widetilde{f}) \subset G_{\bigcap} \operatorname{Im}(f)$

Réciproquement, soit $y \in G_{\bigcap} \operatorname{Im}(f)$ alors $y \in G$ et $\exists x \in E, y = f(x)$

puisque $y = f(x) \in G$, $x \in f^{-1}(G)$ et donc $y = f(x) = f(x) \in \text{Im}(f)$

d'où il résulte l'inclusion réciproque et finalement l'égalité $\operatorname{Im}(\widetilde{f}) = G_{\bigcap} \operatorname{Im}(f)$

La formule du rang appliquée à \widetilde{f} nous donne alors :

$$\dim(f^{-1}(G)) = \dim(G \cap \operatorname{Im}(f) + \dim(\ker f)$$

Somme de deux projecteurs : 1.4

Soient p et q deux projecteurs d'un espace vectoriel E sur le corps K.

1- Montrer que les propositions suivantes sont équivalentes :

- a) p + q est un projecteur.
- b) $p_{o}q + q_{o}p = 0$
- c) $p_o q = q_o p = 0$
- 2- On suppose que p + q est un projecteur.
 - a) Montrer que $\operatorname{Im}(p) \cap \operatorname{Im}(q) = \{0\}$ et que $\ker p + \ker q = E$.
 - b) Préciser les caractéristiques du projecteur p+q

SOLUTION:

1- p et q sont des projecteurs, donc $p_o p = p$ et $q_o q = q$

- p + q est un projecteur $\iff (p + q)^2 = p + q$ $\iff \underbrace{p_o p}_{=p} + p_o q + q_o p + \underbrace{q_o q}_{=q} = p + q$ $\iff p_o q + q_o p = 0$

On a ainsi montré que $a \iff b$

• Il est clair que $c \implies b$

Réciproquement, $b \implies p_0 q + q_0 p = 0$

$$\implies p_o p_o q + p_o q_o p = 0 \quad \text{(en composant à gauche par } p)$$
$$\implies p_o q + p_o q_o p = 0 \quad (*)$$

et en composant à droite par p, $p_o q_o p + q_o p_o p = 0$

$$\implies p_o q_o p + q_o p = 0$$
 (*)

par différence des deux (*), $p_oq - q_op = 0$ donc $p_oq = q_op = 0$ puisque leur somme est nulle. On a ainsi montré que $b \iff c$ et les trois propositions a), b) et c) sont équivalents.

- 2- a) On suppose que p + q est un projecteur.
 - Soit $x \in \text{Im}(p) \cap \text{Im}(q)$. $\exists t \in E, \exists z \in E, x = p(t) = q(z)$ alors $p(x) = p_o p(t) = p(t) = x = p_o q(z) = 0$ car $p_o q = 0$

donc $\operatorname{Im}(p) \cap \operatorname{Im}(q) = \{0\}$

$$\bullet \ \forall x \in E, \ x = p(x) + (x - p(x))$$

$$q(p(x)) = q_o p(x) = 0$$
 car $q_o p = 0$ donc $p(x) \in \ker q$

 $p(x - p(x)) = p(x) - p_o p(x) = 0$ car p est un projecteur, donc $x - p(x) \in \ker p$

Donc $E \subset \ker p + \ker q$, l'inclusion réciproque étant toujours vraie, il y a égalité.

- 2- b) $\operatorname{Im}(p+q) \subset \operatorname{Im}(p) + \operatorname{Im}(q)$ (immédiat)
 - Or $\dim(\operatorname{Im}(p+q)) = \operatorname{rg}(p+q) = \operatorname{tr}(p+q)$ (car p + q est un projecteur) $= \operatorname{tr}(p) + \operatorname{tr}(q)$ (la trace est linéaire)

 $= \operatorname{rg}(p) + \operatorname{rg}(q)$ (car p et q sont des projecteurs)

(formule de Grassmann) et $\dim(\operatorname{Im}(p) + \operatorname{Im}(q)) = \dim(\operatorname{Im}(p)) + \dim(\operatorname{Im}(q)) - \dim(\operatorname{Im}(p) - \operatorname{Im}(q))$ et puisque $\operatorname{Im}(p) \cap \operatorname{Im}(q) = \{0\}$ (la somme est directe)

 $\dim(\operatorname{Im}(p) + \operatorname{Im}(q)) = \dim(\operatorname{Im}(p)) + \dim(\operatorname{Im}(q))$

L'inclusion et l'égalité des dimensions entraînent que [Im(p+q) = Im(p) + Im(q)]

• Il est clair que $\ker p \cap \ker q \subset \ker(p+q)$

réciproquement, si $x \in \ker(p+q)$ alors p(x) = -q(x)

or $p(x) \in \text{Im} p$ et $q(x) \in \text{Im} q$ donc $p(x) \in \text{Im} p \cap \text{Im} q = \{0\}$ donc p(x) = 0 et q(x) = 0et $x \in \ker p \cap \ker q$

Par double inclusion, on a montré que $\ker(p+q) = \ker p \cap \ker q$

Donc p+q est le projecteur sur $\mathrm{Im}(p)+\mathrm{Im}(q)$ parallèlement à $\ker p\cap\ker q$

Projecteurs 1.5

Soit f un endomorphisme d'un espace vectoriel de dimension finie n.

On suppose que $rg(f) + rg(Id_E - f) \le n$. Montrer que f est un projecteur de E.

SOLUTION:

Pour tout $x \in E$, $x = f(x) + (Id_E - f)(x)$

donc $E \subset \text{Im}(f) + \text{Im}(Id_E - f)$. L'inclusion inverse étant vraie, il y a égalité.

D'après la formule de Grassmann,

$$\underbrace{\dim\left(\operatorname{Im}(f) + \operatorname{Im}(Id_E - f)\right)}_{=n} = \underbrace{\dim(\operatorname{Im}f) + \dim(\operatorname{Im}(Id_E - f))}_{\leq n \ par \ hypothese} - \underbrace{\dim\left(\operatorname{Im}(f) \cap \operatorname{Im}(Id_E - f)\right)}_{\geq 0}$$

Donc $\dim(\text{Im}(f) + \dim(\text{Im}(Id_E - f)) = n$ et $\text{Im}(f) \cap \text{Im}(Id_E - f) = \{0\}$ Pour tout $x \in E$, $f^2(x) - f(x) = f(f(x) - x) = (Id_E - f)(-f(x)) \in \text{Im}(f) \cap \text{Im}(Id_E - f) = \{0\}$ donc $f^2(x) = f(x)$ et f est un projecteur.

1.6 $rg(f) = rg(f^2)$

Soit f un endomorphisme d'un espace vectoriel de dimension finie n.

 $\operatorname{rg}(f) = \operatorname{rg}(f^2) \iff \ker(f) \oplus \operatorname{Im}(f) = E$

SOLUTION:

Dans tous les cas $\operatorname{Im} f^2 \subset \operatorname{Im} f$ et $\ker f \subset \ker f^2$ (immédiat)

• Supposons que $\ker(f) \oplus \operatorname{Im}(f) = E$

 $\operatorname{Im} f$ est stable par f. Soit \tilde{f} l'endomorphisme induit par f sur $\operatorname{Im} f$

 $\ker \tilde{f} = \operatorname{Im} f \cap \ker f = \{0\} \text{ , donc } \tilde{f} \text{ est injective.}$ $\forall x \in \operatorname{Im} f^2, \ \exists t \in E, \ x = f^2(t) = f(\underbrace{f(t)}_{\in Im(f)}) = \tilde{f}(f(t)) \text{ , donc } \tilde{f} \text{ est surjective.}$

 \tilde{f} est une bijection linéaire de Im f sur Im f^2 (isomorphisme), donc Im f et Im f^2 ont même dimension et $\operatorname{rg}(f) = f^2$ $\operatorname{rg}(f^2)$

• Réciproquement, supposons que $rg(f) = rg(f^2)$.

Par le théorème du rang, $\dim(\ker f) = \dim(\ker f^2)$

et par l'inclusion $\ker f \subset \ker f^2$, $\ker f = \ker f^2$

Soit $x \in \ker(f) \cap \operatorname{Im}(f)$.

 $\exists t \in E, \ x = f(t) \text{ et } f(x) = 0 \quad \text{donc} \quad f^2(t) = f(x) = 0.$

 $t \in \ker f^2$ donc $t \in \ker f$ puisque $\ker f = \ker f^2$. Donc f(t) = 0 = x

Ainsi $\ker(f) \cap \operatorname{Im}(f) = \{0\}$, la somme $\ker(f) \oplus \operatorname{Im}(f)$ est directe.

Alors, $\dim(\ker(f) \oplus \operatorname{Im}(f)) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)) = \dim E$ (théorème du rang)

et l'inclusion $\ker(f) \oplus \operatorname{Im}(f) \subset E$ permet de conclure que $\ker(f) \oplus \operatorname{Im}(f) = E$

Rang d'une somme

Soient f et g deux endomophismes d'un espace vectoriel E de dimension finie n sur le corps K.

$$\text{Montrer que} \quad : \quad \operatorname{rg}(f+g) = \operatorname{rg}(f) + \operatorname{rg}(g) \quad \Longleftrightarrow \quad \left\{ \begin{array}{c} \operatorname{Im} f \cap \operatorname{Im} g = \{0\} \\ \operatorname{et} \ \ker f + \ker g = E \end{array} \right.$$

DLUTION:
$$\forall y \in \text{Im}(f+g), \quad \exists x \in E, \quad y = (f+g)(x) = \underbrace{f(x)}_{\in \text{Im}f} + \underbrace{g(x)}_{\in \text{Im}g}$$

Donc
$$\operatorname{Im}(f+g)$$
 \subset $\operatorname{Im} f + \operatorname{Im} g$
d'où $\operatorname{rg}(f+g) = \dim(\operatorname{Im}(f+g))$ \leq $\dim(\operatorname{Im} f + \operatorname{Im} g) = \operatorname{rg}(f) + \operatorname{rg}(g) - \dim(\operatorname{Im} f \cap \operatorname{Im} g)$

Il y a égalité entre rg(f+g) et rg(f)+rg(g) si et seulement si l'inégalité (1'), c'est à dire l'inclusion (1) est une égalité et si $\dim(\operatorname{Im} f \cap \operatorname{Im} g) = 0$

$$\text{Donc} \quad \operatorname{rg}(f+g) = \operatorname{rg}(f) + \operatorname{rg}(g) \quad \Longleftrightarrow \quad \left\{ \begin{array}{c} \operatorname{Im}(f+g) = \operatorname{Im} f + \operatorname{Im} g \\ \text{et } \operatorname{Im} f \cap \operatorname{Im} g = \{0\} \end{array} \right.$$

- \clubsuit Supposons que rg(f+g) = rg(f) + rg(g)
 - alors on vient de voir que $\operatorname{Im} f \cap \operatorname{Im} g = \{0\}$
 - $\dim(\ker f + \ker g) = \dim(\ker f) + \dim(\ker g) \dim(\ker f \cap \ker g)$ (Grassmann)

$$= n - \operatorname{rg} f + n - \operatorname{rg} g - \dim(\ker f \cap \ker g) \quad \text{(formule du rang)}$$

= $2n - \operatorname{rg}(f + g) - \dim(\ker f \cap \ker g)$

Montrons que $\ker f \cap \ker g = \ker(f+g)$

l'inclusion $\ker f \cap \ker g \subset \ker(f+g)$ est immédiate.

réciproquement soit $x \in \ker(f+g)$:

et donc
$$f(x) = g(x) = 0$$
 puisque $\lim_{t \to -\infty} f(x) = g(x)$ et donc $\lim_{t \to -\infty} f(x) = g(x) = 0$ puisque $\lim_{t \to -\infty} f(x) = f(x) = f(x)$

ce qui montre bien que $x \in \ker f \cap \ker g$ et termine la démonstration.

On peut alors écrire :

$$\dim(\ker f + \ker g) = 2n - \operatorname{rg}(f+g) - \dim(\ker(f+g)) = 2n - n = n$$
 (à nouveau th. du rang appliqué à $f+g$)

L'inclusion $\ker f + \ker g \subset E$ et l'égalité des dimensions permettent alors de conclure à l'égalité :

$$\ker f + \ker g = E$$

 \clubsuit Supposons maintenant que $\operatorname{Im} f \cap \operatorname{Im} g = \{0\}$ et $\ker f + \ker g = E$

D'après le résultat préliminaire, il suffit de montrer que : Im(f+g) = Imf + Img

- L'inclusion $\operatorname{Im}(f+q) \subset \operatorname{Im} f + \operatorname{Im} q$ ayant déja été montrée, il suffit de prouver que $\operatorname{Im} f + \operatorname{Im} q \subset \operatorname{Im}(f+q)$
- $\exists x, y \in E \text{ tels que } z = f(x) + g(y)$ - soit $z \in \text{Im} f + \text{Im} g$.
- Puisque $\ker f + \ker g = E$, il existe $a \in \ker f$ et $b \in \ker g$ tels que x = a + b

et il existe $c \in \ker f$ et $d \in \ker g$ tels que y = c + d

et il existe
$$c \in \ker f$$
 et $d \in \ker g$ tels que $y = c + d$ alors $(f+g)(b+c) = f(b) + \underbrace{f(c)}_{0} + \underbrace{g(b)}_{0} + g(c)$ et $z = f(x) + g(y) = f(a+b) + g(c+d) = \underbrace{f(a)}_{0} + f(b) + g(c) + \underbrace{g(d)}_{0} = f(b) + g(c)$

on a ainsi montré que $z = (f+g)(b+c) \in \text{Im}(f+g)$ et finalement que $\operatorname{Im}(f+g) = \operatorname{Im} f + \operatorname{Im} g$

1.8 Rang d'une composée :

Soient E, F et G des espaces vectoriels sur le même corps K. Soient $f \in L(E, F)$ et $g \in L(F, G)$:

$$E \xrightarrow{f} F \xrightarrow{g} G$$
a) Montrer que : $\operatorname{rg}(g_o f) = \operatorname{rg}(f) - \dim(\ker g \cap \operatorname{Im} f)$

- b) Montrer que : $rg(g_o f) = rg(g) + dim(ker g + Im f) dim F$
- c) En déduire à quelle condition $rg(g_o f) = rg(f)$ et à quelle condition $rg(g_o f) = rg(g)$

SOLUTION:

a) Soit \widetilde{g} la restriction de g à $\mathrm{Im}(f): \mathrm{Im}(f) \xrightarrow{\widetilde{g}} G$ $x \longmapsto g(x)$

$$x \mapsto g(x)$$

 $\operatorname{Im}(g_o f) = g(\operatorname{Im}(f)) = \operatorname{Im}(\widetilde{g})$

$$\ker(\widetilde{g}) = \operatorname{Im}(f) \cap \ker g$$

En appliquant le théorème du rang à \widetilde{g} , on obtient : $\dim(\operatorname{Im} f) = \dim(\operatorname{Im} \widetilde{g}) + \dim(\ker \widetilde{g})$

soit: $\operatorname{rg} f = \operatorname{rg}(g_o f) + \dim(\operatorname{Im}(f) \cap \ker g)$

b) D'après la formule de Grassmann puis le théorème du rang,

$$\begin{aligned} \dim(\operatorname{Im}(f) + \ker(g)) &= \dim(\operatorname{Im} f) + \dim(\ker g) - \dim(\operatorname{Im} f \bigcap \ker g) \\ &= \operatorname{rg} f + \dim(F) - \operatorname{rg} g - \dim(\operatorname{Im} f \bigcap \ker g) \end{aligned}$$

En reportant dans la formule de la question précédente, on obtient :

$$rg(g_o f) = rgf - \dim(\operatorname{Im}(f) \cap \ker g)$$

$$= rgf + \dim(\operatorname{Im}(f) + \ker(g)) - rgf - \dim(F) + rgg$$
soit $rg(g_o f) = rgg\dim(\operatorname{Im} f + \ker g) - \dim(F)$

c) • De la formule a) : $rgf = rg(g_o f) + dim(Im f \cap ker g)$

on déduit que $\operatorname{rg}(g_o f) = \operatorname{rg} f \iff \operatorname{Im} f \cap \ker g = \{0\}$ • De la formule b) : $\operatorname{rg}(g_o f) = \operatorname{rg} g + \dim(\operatorname{Im} f + \ker g) - \dim(F)$

on déduit que $\operatorname{rg}(g_o f) = \operatorname{rg} g \iff \dim(\operatorname{Im} f + \ker g) = \dim(F)$

 \iff Im $f + \ker g = F$ (compte tenu de l'inclusion Im $f + \ker g \subset F$)

1.9 Noyau et image d'une composée

Soient E, F et G des espaces vectoriels sur le même corps K. Soient $f \in L(E, F)$ et $g \in L(F, G)$.

- a) Montrer que : $\operatorname{Im}(g_o f) = \operatorname{Im}(g) \iff \ker g + \operatorname{Im}(f) = F$
- b) Montrer que : $\ker(g_o f) = \ker(f) \iff \operatorname{Im}(f) \cap \ker g = \{0\}$

SOLUTION:

$$E \xrightarrow{f} F \xrightarrow{g} G$$

- a) On a toujours $\operatorname{Im}(g_o f) \subset \operatorname{Im}(g)$
- Supposons que $\operatorname{Im}(g_o f) = \operatorname{Im}(g)$

Soit $x \in F$. Alors $g(x) \in \text{Im}(g) = \text{Im}(g_o f)$ donc $\exists t \in E, \ g(x) = g_o f(t)$

On peut alors écrire x = f(t) + (x - f(t)) avec $f(t) \in \text{Im}(f)$ et $x - f(t) \in \ker g$

 $(\text{car } g(x - f(t)) = g(x) - g_o f(t) = 0)$

On a ainsi montré que $F \subset \ker g + \operatorname{Im}(f)$ et il y a égalité car $\ker g$ et $\operatorname{Im}(f)$ sont des sous-espaces de F.

• Réciproquement, supposons que $\ker g + \operatorname{Im}(f) = F$

Soit $y \in \text{Im}(g)$. $\exists x \in F, y = g(x)$.

Mais puisque $\ker g + \operatorname{Im}(f) = F$, $\exists a \in \ker g$, $\exists b \in \operatorname{Im}(f)$, x = a + b et $\exists c \in E$, b = f(c) alors $y = g(x) = g(a + b) = \underbrace{g(a)}_{b = a} + g(b) = g(f(c)) \in \operatorname{Im}(g_o f)$

Donc $\operatorname{Im}(g) \subset \operatorname{Im}(g_o f)$ et il y a égalité.

- b) On a toujours $\ker(f) \subset \ker(g_o f)$
- Supposons que $\ker(f) = \ker(g_o f)$.

Soit $y \in \text{Im}(f) \cap \ker g$: $\exists x \in E, \ y = f(x) \text{ et } g(y) = 0 \text{ donc } g(f(x)) = 0 \text{ et } x \in \ker(g_o f) = \ker(f)$ d'où f(x) = 0 et y = f(x) = 0

Donc $\operatorname{Im}(f) \cap \ker g = \{0\}$

• Réciproquement, supposons que $\text{Im}(f) \cap \ker g = \{0\}.$

Soit $x \in \ker(g_o f)$ alors $g_o f(x) = 0$ donc $f(x) \in \operatorname{Im}(f) \cap \ker g = \{0\}$ donc f(x) = 0 et $x \in \ker f$ On a ainsi montré que $\ker(f) \subset \ker(g_o f)$

1.10 Sous-espace de $\mathcal{L}(E, F)$:

E et F sont deux **K**-espaces vectoriels de dimensions finies et G est un sous espace de E. On considère $W = \{u \in \mathcal{L}(E, F), G \subset \ker u\}$

- 1- Montrer que W est un sous espace vectoriel de $\mathscr{L}(E,F)$
- 2- Calculer sa dimension en fonction de celles de E, F et G

SOLUTION:

- 1- Notons ω l'application nulle de E dans F.
 - Puisque $\ker(\omega) = E$, on a bien $G \subset \ker \omega$ de sorte que $\omega \in G$ et W n'est pas vide.
 - \bullet Soient u et $v \in W$ et $\lambda \in \mathbf{K}$.

u et v sont deux applications liéaires de E dans F telles que $G \subset \ker u$ et $G \subset \ker v$

 $\forall x \in G, \ u(x) = v(x) = 0 \ \text{donc} \ \forall x \in G, \ (u + \lambda v)(x) = 0 \ \text{et} \ G \subset \ker(u + \lambda v)$

il en résulte que $u + \lambda v \in W$

W est donc un sous espace vectoriel de $\mathscr{L}(E,F)$

2- Soient $n = \dim(E)$, $p = \dim(F)$ et $m = \dim(G)$

G admet un sous espace supplémentaire H dans $E:\ G\oplus H=E$

• Soit $u \in \mathcal{L}(E, F)$.

Notons $u_{|_G}$ et $u_{|_H}$ les restrictions respectives de u à G et à H.

$$\forall x \in E, \ \exists x_1 \in G, \ \exists x_2 \in H, \ x = x_1 + x_2$$

$$u(x) = u(x_1 + x_2) = u(x_1) + u(x_2) = u_{|G}(x_1) + u_{|H}(x_2)$$

$$u \in W \iff G \subset \ker u \iff \forall x_1 \in G, u(x_1) = 0 \iff \forall x_1 \in G, u_{|G}(x_1) = 0 \iff u_{|G} = \omega$$

• Considérons alors l'application Φ de $\mathcal{L}(E,F)$ dans $\mathcal{L}(G,F)$ qui à $u\in\mathcal{L}(E,F)$ fait correspondre $u_{|_{G}}$:

$$\Phi : \mathscr{L}(E,F) \longrightarrow \mathscr{L}(G,F)$$

$$u \mapsto u_{|_G}$$
 :

L'équivalence $u \in W \iff u_{|_G} = \omega \iff \Phi(u) = \omega \mod W = \ker \Phi$

Par le théorème du rang, on peut écrire :

$$\dim(\mathscr{L}(E,F)) = \dim(\ker \Phi) + \dim(\operatorname{Im}\Phi)$$

soit $\dim(W) = \dim(\mathcal{L}(E, F)) - \dim(\operatorname{Im}\Phi)$

Il reste enfin à montrer que Φ est surjective : Pour tout application linéaire $v \in \mathcal{L}(G, F)$, considérons l'application $w \in \mathcal{L}(E,F)$ qui coïncide avec v sur G et qui est nulle sur H. Une telle application existe bien puisque $E = G \oplus H$. Alors $\Phi(w) = w_{|_G} = v$, ce qui montre que Φ est surjective, c'est à dire que $\operatorname{Im}(\Phi) = \mathscr{L}(G, F)$

Finalement,

$$\dim(W) = \dim(\mathcal{L}(E, F)) - \dim(\operatorname{Im}\Phi) = \dim(\mathcal{L}(E, F)) - \dim(\mathcal{L}(G, F))$$
$$= \dim(E)\dim(F) - \dim(G)\dim(F)$$
$$\dim(W) = \dim(F).(\dim(E) - \dim(G))$$

1.11Endomorphisme commutant avec tous les autres

Soit E un espace vectoriel sur le corps \mathbf{K} et $f \in L(E)$

- a) Montrer que si $\forall x \in E, f(x)$ est colinéaire à x alors f est une homothétie.
- b) Montrer que si $f \in L(E)$ commute avec tous les endomorphismes de E, alors f est une homothétie.
- c) Déterminer les matrices $M \in M_n(\mathbf{K})$ qui commutent avec toutes les matrices inversibles.

$$(\forall N \in GL_n(\mathbf{K}), M.N = N.M)$$

SOLUTION:

a) Par hypothèse, $\forall x \in E, \exists \lambda_x \in \mathbf{K}, f(x) = \lambda_x.x$ Si $x \neq 0, \lambda_x$ est unique car $\lambda_1.x = \lambda_2.x \implies (\lambda_1 - \lambda_2).x = 0$ $\implies \lambda_1 = \lambda_2 \quad \text{car} \quad x \neq 0.$

Soient x et y non nuls.

• Si x et y sont liés, $\exists \mu \in \mathbf{K}, \ y = \mu x$ $f(y) = \lambda_y \cdot y = f(\mu \cdot x) = \mu \cdot f(x) = \mu \cdot \lambda_x \cdot x = \lambda_x \mu \cdot x = \lambda_x \cdot y$ donc $(\lambda_x - \lambda_y).y = 0$ et $\lambda_x = \lambda_y$

• Si (x,y) est libre, $f(x+y) = \lambda_{x+y} \cdot (x+y) = f(x) + f(y) = \lambda_x \cdot x + \lambda_y \cdot y$ donc $(\lambda_{x+y} - \lambda_x).x + (\lambda_{x+y} - \lambda_y).y = 0$ \implies $\lambda_{x+y} = \lambda_x$ et $\lambda_{x+y} = \lambda_y$ puisque (x,y) est libre. donc $\lambda_x = \lambda_y$

Ainsi, $\exists \lambda \in \mathbf{K}, \ \forall x \in \mathbf{K}, \ f(x) = \lambda . x \text{ et donc } \boxed{f = \lambda . Id_E}$.

b) Soit $f \in L(E)$ qui commute avec tous les endomorphismes de E.

Soit x un vecteur quelconque non nul de E.

Considérons alors la projection p sur la droite Vect(x) parallèlement à un hyperplan H supplémentaire de cette droite.

Par hypothèse sur f, $f_o p = p_o f$

donc $f(x) \in Im(p) = Vect(x)$ et $\exists \lambda \in \mathbf{K}, f(x) = \lambda_x . x$

Il s'ensuit alors d'après a) que f est une homothétie.

c) Soit $M \in M_n(\mathbf{K})$ qui commute avec toutes les matrices de $GL_n(\mathbf{K})$.

 $\forall (i,j) \in \{1,2,...,n\}^2, I_n + E_{i,j} \in GL_n(\mathbf{K}), \text{ donc } M.(I_n + E_{i,j}) = (I_n + E_{i,j}).M$

 $\implies M + M.E_{i,j} = M + E_{i,j}.M$

 $\implies M.E_{i,j} = E_{i,j}.M$ et par linéarité, M commute avec toutes les matrices de $M_n(\mathbf{K})$.

Alors, d'aprés a) appliqué aux matrices, $\exists \lambda \in \mathbf{K}, M = \lambda I_n$

* Rangs de f^k ; indice de nilpotence

Soit E un espace vectoriel de dimension finie sur le corps K et $f \in L(E)$

Pour tout $k \in \mathbb{N}$, soient $r_k = \operatorname{rg}(f^k)$ et $\delta_k = r_k - r_{k+1}$ (on convient que $f^0 = Id_E$) 1-a) Montrer que $\delta_k = \dim(\ker f \cap \operatorname{Im} f^{k+1})$

(on pourra considérer la restriction \widetilde{f}_k de f à $\mathrm{Im} f^k$)

En déduire que (δ_k) est une suite décroissante.

Montrer que pour tout $k, \, \delta_k \leq \frac{n}{k+1}$. En déduire que la suite (δ_k) est nulle à partir d'un certain rang.

b) Soit p le plus petit entier tel que $\delta_p = 0$ (donc $\delta_{p-1} \neq 0$) Montrer que - si k < p, $\operatorname{Im}(f^{k+1}) \subsetneq \operatorname{Im}(f^k)$

et que $-\operatorname{si} k \ge p$, $\operatorname{Im}(f^k) = \operatorname{Im}(f^p)$

2-a) On suppose que f est nilpotente d'ordre 2. $(f \neq 0 \text{ et } f^2 = 0)$

Montrer que $rg(f) \leq \frac{n}{2}$

b) Plus généralement, on suppose que f est nilpotent d'ordre p. $(f^{p-1} \neq 0 \text{ et } f^p = 0)$

Montrer que $rg(f) \le \frac{p-1}{n}n$

SOLUTION:

1-a) Soit $k \in \mathbb{N}$ et \widetilde{f}_k la restriction de f à $\mathrm{Im} f^k$:

$$\operatorname{Im} f^k \xrightarrow{\tilde{f}_k} E \\
x \longrightarrow f(x)$$

Recherchons noyau et image de \widetilde{f}_k :

 $\bullet \forall x \in \operatorname{Im} f^k, \ x \in \ker(\widetilde{f}_k) \iff \widetilde{f}_k(x) = 0$ $\iff f(x) = 0$

donc $\ker(\widetilde{f}_k) = \operatorname{Im} f^k \cap \ker f$

 $\bullet \forall y \in E, \ y \in \operatorname{Im}(\widetilde{f}_k) \iff \exists x \in \operatorname{Im} f^k, \ y = \widetilde{f}_k(x) = f(x)$ $\iff \exists t \in E, \ y = f(f^k(t))$ $\iff y \in \operatorname{Im} f^{k+1}$ $\operatorname{donc} \operatorname{Im}(\widetilde{f}_k) = \operatorname{Im} f^{k+1}$

Le théorème du rang appliqué à \widetilde{f}_k permet d'écrire : $\dim(\operatorname{Im} f^k) = \dim(\operatorname{Im} f^{k+1}) + \dim(\operatorname{Im} f^k \cap \ker f)$

soit aussi : $r_k = r_{k+1} + \dim(\operatorname{Im} f^k \cap \ker f)$ et par différence, $\delta_k = r_k - r_{k+1} = \dim(\operatorname{Im} f^k \cap \ker f)$

• Si $x \in \text{Im} f^{k+1}$, alors $\exists t \in E, \ x = f^{k+1}(t) = f^k(f(t))$ donc $x \in \text{Im} f^k$.

d'où $\operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$

 $\operatorname{Im} f^{k+1} \cap \ker f \subset \operatorname{Im} f^k \cap \ker f$, et en passant aux dimensions, $\delta_{k+1} \leq \delta_k$ La suite (δ_k) est donc décroissante (au sens large)

Remarque: Cette décroissance de δ s'écrit aussi $\delta_{k+1} = r_{k+1} - r_{k+2} \le \delta_k = r_k - r_{k+1}$,

ou encore $r_{k+1} \le \frac{r_k + r_{k+2}}{2}$

On dit alors, par analogie aux fonctions, que la suite (r_k) est convexe.

• $\delta_0 = r_0 - r_1 = n - r_1$

 $\delta_1 = r_1 - r_2$

 $\delta_2 = r_2 - r_3$

 $\delta_k = r_k - r_{k+1}$

En additionnant membre à membre,

En additionnant membre a membre,
$$\underbrace{\delta_0 + \delta_1 + \ldots + \delta_k}_{\geq (k+1)\delta_k} = \underbrace{n - r_{k+1}}_{\leq n} \quad \text{donc} \quad (k+1)\delta_k \leq n \quad \text{d'où} \quad \underbrace{\delta_k \leq \frac{n}{k+1}}_{\leq k+1}$$
• L'inégalité $0 \leq \delta_k \leq \frac{n}{k+1}$ montre que $\lim_{k \to +\infty} \delta_k = 0$

Mais comme (δ_k) est une suite d'entiers naturels, puisqu'elle est de limite nulle, elle est nulle à partir d'un certain rang (prendre $\varepsilon = \frac{1}{2}$ dans la définition de la limite)

b)• Si p est le plus petit entier tel que $\delta_p=0$, la suite (δ_k) étant décroissante,

 $\forall k < p, \ \delta_k = r_k - r_{k+1} \ge 1 \ \text{donc} \ r_k = \operatorname{rg}(f^k) > r_{k+1} = \operatorname{rg}(f^{k+1})$ L'inclusion $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$ est donc **stricte**.

• La suite (δ_k) étant stationnaire nulle à partir du rang $p, \forall k \geq p, \, \delta_k = r_k - r_{k+1} = 0,$

l'inclusion $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$ à laquelle s'ajoute l'égalité des dimensions entraîne alors l'égalité

 $\operatorname{Im}(f^{k+1}) = \operatorname{Im}(f^k)$

La suite des images itérées, $(\operatorname{Im} f^k)$ est donc strictement décroissante jusqu'au rang p, puis stationnaire à partir de ce rang p.

2-a) Si $f_o f = 0$ alors $\operatorname{Im} f \subset \ker f$ et donc $\dim(\operatorname{Im} f) \leq \dim(\ker f)$

or, par le théorème du rang, $\dim(\operatorname{Im} f) + \dim(\ker f) = n$ d'où $2\dim(\operatorname{Im} f) \leq n$ et $\lceil \operatorname{rg}(f) \leq \frac{n}{2} \rceil$

2-b) Supposons que f soit nilpotente d'ordre p. Alors $\text{Im} f^p = \{0\}$ donc $r_p = 0$ et $\delta_p = 0$.

Le même calcul de sommation fait en 1-a) montre que :

$$\delta_0 + \delta_1 + \dots + \delta_{p-1} = n - r_p = n$$

La suite
$$(\delta_k)$$
 étant décroissante, $n = \delta_0 + \delta_1 + \ldots + \delta_{p-1} \le p.\delta_0 = p(n-r_1)$
donc $p.r_1 \le (p-1)n$ et finalement, $r_1 = \operatorname{rg}(f) \le \frac{p-1}{p}n$

Note: Ce résultat généralise celui de la question précédente:

Si f est nilpotente d'ordre 3, alors $rg(f) \leq \frac{2}{3}n$

2 Matrices et applications linéaires

Produit de matrices rectangulaires :

Soient
$$A \in M_{3,2}(\mathbb{R})$$
 et $B \in M_{2,3}(\mathbb{R})$ telles que $A.B = \begin{pmatrix} -1 & 2 & 2 \\ -2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix}$

Montrer que $BA = I_2$ (on pourra d'abord calculer $(AB)^2$ puis déterminer rg(AB), rg(A), rg(B), rg(BA)...)

SOLUTION:

- $(AB)^2 = A.B.$ Si on note C_1, C_2, C_3 les colonnes de A.B., on constate que $C_3 = 2(C_1 + C_2)$, que C_1 et C_2 ne sont pas proportionnelles donc sont linéairement indépendantes. Donc rg(AB) = 2
 - $\operatorname{rg}(A) \leq 2$ car $A \in M_{3,2}(\mathbb{R})$ et pour une raison analogue, $\operatorname{rg}(B) \leq 2$

Or
$$2 = \operatorname{rg}(A.B) \le \operatorname{rg}(A) \le 2$$
 donc $\operatorname{rg}(A) = 2$

Pour la même raison, rg(B) = 2

 $\operatorname{rg}(B.A) \leq 2 \operatorname{car} B.A \in M_2(\mathbb{R})$

• $\operatorname{rg}(A.(B.A).B) = \operatorname{rg}(A.B) = 2 \le \operatorname{rg}(B.A)$ donc $\operatorname{rg}(B.A) \ge 2$ donc $\operatorname{rg}(B.A) = 2$

 $B.A \in M_2(\mathbb{R})$, est de rang 2, donc est inversible.

alors $(AB)^2 = A.B \implies B.(A.B.A.B).A = B.(A.B).A$ et en multipliant deux fois par $(B.A)^{-1}$, on obtient $B.A = I_2$

Matrice d'une application linéaire :

On note considère l'application f de \mathbb{R}^3 dans lui-même qui au vecteur (x,y,z) fait correspondre le vecteur (x',y',z')

tel que :
$$\begin{cases} x' = x - y \\ y' = -x + z \\ z' = 3x - 2y - z \end{cases}$$

- a) Montrer que f est un endomorphisme de \mathbb{R}^3 et calculer sa matrice A dans la base canonique de \mathbb{R}^3 Déterminer le noyau et l'image de f. Donner une équation de cette image.
- b) Calculer la matrice de l'endomorphisme f^2 .

Sans aucun autre calcul, en déduire une base de $\text{Im}(f^2)$ et montrer que l'endomorphisme f est nilpotent en précisant son ordre de nilpotence.

SOLUTION:

a) f est une application de \mathbb{R}^3 dans \mathbb{R}^3 , linéaire (immédiat); c'est un endomorphisme de \mathbb{R}^3 . Notons $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1),$ la base canonique de \mathbb{R}^3 .

Pour
$$e_1$$
, $(x, y, z) = (1, 0, 0)$ et $(x', y', z') = (1, -1, 3)$ donc $f(e_1) = e_1 - e_2 + 3e_3$, ce qui donne $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ pour

première colonne de A.

Calcul analogue pour les autres colonnes, ce qui donne :

$$A = \begin{pmatrix} 3 & 1 & -1 & 0 \\ -1 & 0 & 1 \\ 3 & -2 & -1 \end{pmatrix}$$

$$\bullet (x, y, z) \in \ker(f) \iff \begin{cases} x - y = 0 \\ -x + z = 0 \\ 3x - 2y - z = 0 \end{cases} \iff \begin{cases} x = y \\ x = z \end{cases} \iff (x, y, z) = x.(1, 1, 1)$$
Ainsi, $\ker(f)$ est donc la droite vectorielle engendrée par le vecteur $u = (1, 1, 1)$

Ainsi, $\ker(f)$ est donc la droite vectorielle engendrée par le vecteur u=(1,1,1)

Le théorème Durand nous permet alors d'en déduire que Im(f) a pour dimension 3-1=2

• Im(f) est engendré par les images des vecteurs d'une base de \mathbb{R}^3 , donc par $f(e_1), f(e_2), f(e_3)$

Sachant que c'est un plan, on peut en prendre pour base tout sous ensemble de deux de ces trois vecteurs, qui soit libre, par exemple les 2^e et 3^e colonnes (pour un peu plus de simplicité).

Ainsi, Im(f) a pour base (1,0,2), (0,1,-1)

Un vecteur
$$(x, y, z) \in \mathbb{R}^3$$
 appartient à $\operatorname{Im}(f) \iff ((1, 0, 2), (0, 1, -1), (x, y, z))$ est lié $\iff \det((1, 0, 2), (0, 1, -1), (x, y, z)) = 0$

$$\iff \begin{vmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 2 & -1 & z \end{vmatrix} = 0 \iff -2x + y + z = 0$$

Finalement, $\operatorname{Im}(f)$ est le plan d'équation -2x + y + z

b)
$$A^2 = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$
 (calcul immédiat)

 A^2 est une matrice de rang 1, puisque chacune de ses colonnes est multiple de $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

 $\operatorname{Im}(f^2)$ est donc la droite vectorielle engendrée par le vecteur u=(1,1,1)

On remarque ainsi que $Im(f^2) = ker(f)$

Dès lors, $\forall X \in \mathbb{R}^3, \ f^2(X) \in \ker(f) \ \operatorname{donc} \ f[f^2(X)] = 0$

Il s'ensuit que f est un endomorphisme nilpotent d'ordre f (puisque f = 0 et f f f = 0)

Réduction 2.3Mines

Soit A une matrice carrée réelle d'ordre 3, non nulle telle que $A^3 = -A$

Montrer que
$$A$$
 est semblable à $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

SOLUTION:

Soit $A \in M_3(\mathbf{R})$ non nulle telle que $A^3 = -A$

$$\det(A^3) = (\det A)^3 = \det(-A) = (-1)^3 \det(A) = -\det(A)$$

donc $\det(A)((\det A)^2 + 1) = 0$ donc $\det(A) = 0$, la matrice A n'est pas inversible.

Soit (e_1, e_2, e_3) la base canonique de ${f R}^3$ et f l'endomorphisme canoniquement associé à A.

 $f^3 + f = 0$ et $\ker(f) \neq \{0\}$

- \clubsuit Montrons que $\ker(f) \oplus \ker(f^2 + Id_{\mathbf{R}^3}) = E$
- c'est immédiat si on dispose du th. de décomposition des noyaux, car les polynômes X et $X^2 + 1$ étant premiers entre eux, la relation $f(f^2 + I) = \omega$ entraine alors :

$$\ker(f) \oplus \ker(f^2 + I) = \ker \omega = E$$
 (\omega endomorphisme nul)

- ce théorème ne figurant pas au programme, démontrons le résultat annoncé :

soit
$$x \in \ker(f) \cap \ker(f^2 + I)$$
: $f(x) = 0$ et $f(\underline{f(x)}) = -x$

donc x = 0, la somme $\ker(f) \oplus \ker(f^2 + I)$ est directe.

soit
$$x \in \mathbf{R}^3$$
, posons $a = f^2(x) + x$ et $b = -f^2(x)$

$$f(a) = f^3(x) + f(x) = 0$$
 donc $a \in \ker f$

$$f(a) = f'(x) + f(x) = 0 \text{ donc } a \in \text{ker } f'(x) = f(x) + f(x) = -f(0) = 0 \text{ donc } b \in \text{ker}(f^2 + I)$$

$$\text{Comme } x = a + b, \text{ ker}(f) \oplus \text{ker}(f^2 + I) = \mathbf{R}^3$$

 $\clubsuit \ker(f) \neq \mathbf{R}^3$, sinon f serait nul, donc $\ker(f^2 + I) \neq \{0\}$

Soit y une vecteur non nul de $\ker(f^2 + I)$, $f^2(y) = -y$. Montrons que (y, f(y)) est libre.

Soient λ et μ réels tels que $\lambda y + \mu f(y) = 0$, alors $\lambda f(y) + \mu f^2(y) = \lambda f(y) - \mu y = 0$

En multipliant la première égalité par λ , la deuxième par $-\mu$ et en ajoutant, on obtient :

$$(\lambda^2 + \mu^2) \cdot y = 0 \qquad \Rightarrow \qquad \lambda^2 + \mu^2 = 0 \qquad \Rightarrow \qquad \lambda = \mu = 0$$

Donc le système (y, f(y)) est libre et $\dim(\ker(f^2 + I)) \geq 2$

Puisque dim(ker f) ≥ 1 (ker(f) $\neq \{0\}$), nécessairement,

$$\dim(\ker(f^2+I)) = 2$$
 et $\dim(\ker f) = 1$

Soit alors a une base de ker f, y un vecteur non nul de $\ker(f^2+I)$ de sorte que (y, f(y)) est une base de $\ker(f^2+I)$. Alors (a, y, f(y)) est une base de \mathbf{R}^3 car $\ker(f) \oplus \ker(f^2 + I) = \mathbf{R}^3$

et puisque f(f(y)) = -y la matrice de f dans la base (a, y, f(y)) est m Montrer que A est semblable à B

$$\left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & -1 \ 0 & 1 & 0 \end{array}
ight)$$

A et B étant les matrices de f dans deux bases distinctes, elles sont semblables.

2.4 * Matrices de trace nulle

Soit $M \in M_n(\mathbf{K})$.

Montrer que : $tr(M) = 0 \iff M$ est semblable à une matrice dont tous les éléments diagonaux sont nuls.

SOLUTION:

- Si M est semblable à une matrice N dont tous les éléments diagonaux sont nuls, alors $\operatorname{tr}(M) = \operatorname{tr}(N) = 0$.
- ullet Montrons l'implication réciproque, pour les endomorphismes d'un espace vectoriel de dimension n, par récurrence sur n.
 - Pour $n = \dim(E) = 1$, $\max(f) = (\lambda)$, donc $\operatorname{tr}(f) = \lambda = 0$ et $\operatorname{mat}(f) = 0$, la propriété est vérifiée.
- Supposons que tout endomorphisme de trace nulle d'un espace de dimension n-1 admette une base dans laquelle les éléments diagonaux de sa matrice soient tous nuls.

Soit alors $f \in L(E)$, E espace vectoriel de dimension n, tel que tr(f) = 0.

- si $f = \lambda . Id_E$ est une homothétie, alors $\mathrm{tr}(f) = \lambda . n = 0$ donc $\lambda = 0$ et f = 0 vérifie bien la propriété demandée.
- si f n'est pas une homothétie, alors il existe $x_1 \in E$ tel que $(x_1, f(x_1))$ soit un système libre.

(cf. exercice précédent)

Prenons alors $x_2 = f(x_1)$ et complétons le système libre (x_1, x_2) en une base $(x_1, x_2, x_3, ..., x_n)$ de E.

$$\operatorname{Mat}_{(x_{1},...,x_{n})} f = \begin{pmatrix} f(x_{1}) & f(x_{2}) & \dots & f(x_{n}) \\ 0 & a_{1,2} & \dots & a_{1,n} \\ 1 & a_{2,2} & \dots & a_{2,n} \\ 0 & a_{3,2} & \dots & a_{3,n} \\ 0 & \vdots & \dots & \vdots \\ 0 & a_{n,2} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} x_{1} & & & & \\ x_{2} & & & \\ x_{3} & & & \\ \vdots & & & B \\ 0 & & & & \end{pmatrix} \text{ avec } B = \begin{pmatrix} a_{2,2} & \dots & a_{2,n} \\ a_{3,2} & \dots & a_{3,n} \\ \vdots & \dots & \vdots \\ a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Considérons ensuite p le projecteur sur l'hyperplan $H = \text{Vect}(x_2, x_3, ..., x_n)$ parallèlement à la droite $\text{Vect}(x_1)$ et g la restriction de $p_o f$ à H.

g est un endomorphisme de H, dont la matrice dans la base $(x_2,...,x_n)$ est :

$$\operatorname{Mat}_{(x_{2},...,x_{n})}g = \begin{pmatrix} a_{2,2} & \dots & a_{2,n} \\ a_{3,2} & \dots & a_{3,n} \\ \vdots & \dots & \vdots \\ a_{n,2} & \dots & a_{n,n} \end{pmatrix} = B$$

alors $tr(g) = tr(B) = a_{2,2} + ... + a_{n,n} = tr(f) = 0$

On peut donc appliquer à g l'hypothèse de récurrence : il existe une base $(y_2,...,y_n)$ de H dans laquelle la matrice

de
$$g$$
 possède une diagonale nulle :
$$\text{Mat}_{(y_2, \dots, y_n)} g = C = \begin{pmatrix} 0 & c_{2,3} & \dots & c_{2,n} \\ c_{3,2} & 0 & \dots & c_{3,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,2} & \dots & c_{n,n-1} & 0 \end{pmatrix}_{n-1}$$

Alors, la matrice de f dans la base $(x_1, y_2, ..., y_n)$ est :

$$\operatorname{Mat}_{(x_{1},y_{2},...,y_{n})}f = A' = \begin{pmatrix} 0 & \times & \times & \times & \times \\ \times & 0 & c_{2,3} & ... & c_{2,n} \\ \times & c_{3,2} & 0 & ... & c_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \times & c_{n,2} & ... & c_{n,n-1} & 0 \end{pmatrix}$$
 (les × représentent des éléments quelconques de **K**)

On a ainsi construit une base de E dans laquelle les éléments diagonaux de la matrice de f sont nuls.

2.5 * Groupe multiplicatif de matrices

Soit $\mathbf{K} = \mathbb{R}$ ou \mathbb{C} et $G = \{M_1, M_2, ..., M_p\}$ un sous ensemble fini de matrices de $M_n(K)$ formant un groupe pour la multiplication \times .

- a) Donner un exemple d'un tel sous ensemble G.
- G est il nécessairement un sous groupe de $(GL_n(\mathbf{K}), \times)$?
- b) Montrer que toutes les matrices de G ont même rang.
- c) Montrer que $P = \frac{1}{n} \sum_{k=1}^{p} M_k$ est une matrice de projection.

SOLUTION:

a) Prenons
$$M_k = \left(\begin{array}{c|c} R_\theta & 0 \\ \hline 0 & 0 \end{array}\right)^k = \left(\begin{array}{c|c} R_\theta^k & 0 \\ \hline 0 & 0 \end{array}\right) \in M_n(\mathbb{R})$$
 où $\theta = \frac{2\pi}{p}$ et $M_k = \left(\begin{array}{c|c} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right) \in M_2(\mathbb{R})$ Alors $M_k.M_j = \left(\begin{array}{c|c} R_\theta^{k+j} & 0 \\ \hline 0 & 0 \end{array}\right) = M_{(k+j)}\,_{[p]}$ et $M_p = \left(\begin{array}{c|c} I_2 & 0 \\ \hline 0 & 0 \end{array}\right)$ est élément neutre de G pour la multiplication.

Autre exemple :

• Si
$$\mathbf{K} = \mathbb{C}$$
: Soit G l'ensemble des matrices de la forme
$$\begin{pmatrix} \alpha_1 & 0 & \dots & \dots & 0 & 0 \\ 0 & \alpha_2 & \dots & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ 0 & \dots & \dots & \alpha_m & \dots & 0 \\ 0 & \vdots & \vdots & \vdots & 0 & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$
 où α_1 est une racine

primitive p_1 -ème de l'unité, α_2 une racine p_2 -ème de l'unité,..., α_m une racine p_2 -ème de l'unité,...

G est un groupe pour la loi \times , de cardinal $p_1.p_2....p_m$.

- Si $\mathbf{K} = \mathbb{R}$: Soit G l'ensemble des matrices de la forme précédente, avec $\alpha_i = \pm 1$ G est un groupe pour la loi \times , de cardinal 2^m .
- Ces exemples montrent que G n'est pas nécessairement un sous groupe de $(GL_n(\mathbf{K}), \times)$
- b) Soient M_1 et M_2 deux matrices de G. Soit J l'élément neutre du groupe (G, \times) (qui n'est pas forcément la matrice unité I_n)

strice unité
$$I_n$$
)
Soit M_2^{-1} le symétrique de M_2 dans G pour cette loi \times .
Alors, $M_1 = (M_2 \times M_2^{-1}) \times M_1 = M_2 \times (M_2^{-1} \times M_1)$, ce qui montre que $\operatorname{rg}(M_1) \leq \operatorname{rg}(M_2)$

$$(\operatorname{car} \operatorname{rg}(A \times B) \leq \operatorname{rg}(A))$$

Pour un raison analogue, $rg(M_2) \le rg(M_1)$ et donc $rg(M_1) = rg(M_2)$

c) Pour tout $k \in \{1, 2, ..., n\}$, l'application $f_k : M \longrightarrow M_k.M$ est une bijection de G dans G:

c) Four tout
$$k \in \{1, 2, ..., n\}$$
, rapplication $f_k : M \longrightarrow M_k.M$ est the bijection de G dans - elle est injective : $\forall M, N \in G$, $f_k(M) = f_k(N) \Longrightarrow M_k.M = M_k.N$ $\Longrightarrow M_k^{-1}(M_k.M) = M_k^{-1}(M_k.N) \Longrightarrow M = N$ (M_k^{-1} désigne l'inverse de M_k dans le groupe (G, \times)) - elle est surjective : $\forall M \in G$, $M = M_k.(M_k^{-1}.M) = f_k(M_k^{-1}.M)$ Donc quand M décrit G , $M_k.M$ décrit G aussi.

Donc quand
$$M$$
 decrit G , $M_k.M$ decrit G aussi.
$$P^2 = \frac{1}{n^2} \left(\sum_{k=1}^p M_k \right) \cdot \left(\sum_{j=1}^p M_j \right) = \frac{1}{n^2} \sum_{k=1}^p \left(\sum_{j=1}^p M_k \cdot M_j \right) = \frac{1}{n^2} \sum_{k=1}^p \underbrace{\left(M_1 + M_2 + \dots + M_p \right)}_{independent \ de \ k}$$

$$P^2 = \frac{1}{n^2} n \left(M_1 + M_2 + \dots + M_p \right) = \frac{1}{n} (M_1 + M_2 + \dots + M_p) = P$$

Donc P est une matrice de projection.

$\mathbf{3}$ Systèmes linéaires

Matrice inversible:

Soit $A \in GL_n(K)$, $L \in \mathcal{M}_{1,n}(K)$, $C \in \mathcal{M}_{n,1}(K)$, $b \in K$ et B la matrice de $\mathcal{M}_{n+1}(K)$ définie par blocs comme suit :

$$B = \begin{pmatrix} A & C \\ \hline L & b \end{pmatrix}$$

Montrer que B est inversible si et seulement si $b \neq LA^{-1}C$.

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ x_{n+1} \end{pmatrix} \in \mathbb{C}^{n+1}$$

$$\forall X \in \mathbb{C}^{n+1}$$
, $B.X = 0 \implies X = 0$

$$\forall X \in \mathbb{C}^{n+1}, \ B.X = 0 \iff \begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n + c_1x_{n+1} = 0 \\ a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n + c_2x_{n+1} = 0 \\ \ldots \\ a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,n}x_n + c_nx_{n+1} = 0 \\ l_1x_1 + l_2x_2 + \ldots + l_nx_n + bx_{n+1} = 0 \end{cases}$$

$$\iff \begin{cases} A.X' + x_{n+1}C = 0 \\ L.X' + bx_{n+1} = 0 \\ \ldots \\ X' = -x_{n+1}A^{-1}C \text{ (puisque A est inversible)} \\ -x_{n+1}L.A^{-1}.C + bx_{n+1} = 0 \\ \ldots \\ X' = -x_{n+1}A^{-1}C \text{ (1)} \\ (-L.A^{-1}.C + b)x_{n+1} = 0 \text{ (2)} \end{cases}$$

$$\bullet \text{ Si } -L.A^{-1}.C + b \neq 0 \text{ alors } (2) \Longrightarrow x_{n+1} = 0 \text{ et } (1) \Longrightarrow X' = 0 \text{ et final}$$

• Si $-L.A^{-1}.C + b \neq 0$ alors (2) $\Longrightarrow x_{n+1} = 0$ et (1) $\Longrightarrow X' = 0$ et finalement X = 0.

Dans ce cas la matrice B est inversible.

• Si $-L.A^{-1}.C + b \neq 0$ alors (2) admet des solutions non nulles, par exemple $x_{n+1} = 1$ et en prenant $X' = A^{-1}C$ on obtient une matrice colonne X non nulle telle que B.X = 0.

Dans ce cas la matrice B n'est pas inversible.

Finalement, B est inversible si et seulement si $b \neq LA^{-1}C$

Polygone de milieux de cotés donnés : 3.2

Le plan est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ et on considère n points $A_1, A_2, A_3, ..., A_n$ d'affixes respectives $a_1, a_2, a_3, ..., a_n$.

Existe-t-il un polygone $M_1, M_2, M_3, ..., M_n$ tel que :

- A_1 soit le milieu de (M_1, M_2) ,
- A_2 soit le milieu de (M_2, M_3) , ...
- A_{n-1} soit le milieu de (M_{n-1}, M_n)
- et A_n le milieu de (M_n, M_1)

(On pourra dans certains cas donner une condition portant sur les points I et J, barycentres respectifs de A_1, A_3, A_5, \ldots d'une part et de A_2, A_4, A_6, \ldots d'autre part).

SOLUTION:

Soient $z_1, z_2, z_3, ..., z_n$ les affixes respectives des points $M_1, M_2, M_3, ..., M_n$.

- A_1 soit le milieu de (M_1, M_2) ,
- A_2 soit le milieu de (M_2, M_3) , ...
- A_{n-1} soit le milieu de (M_{n-1}, M_n)
- A_n le milieu de (M_n, M_1)

se traduisent par les égalités :
$$\begin{cases} &\frac{z_1+z_2}{2}=a_1\\ &\frac{z_2+z_3}{2}=a_2\\ &\dots\\ &\frac{z_{n-1}+z_n}{2}=a_{n-1}\\ &\frac{z_n+z_1}{2}=a_n \end{cases}$$
 Le problème a des solutions si et seulement si le syste

Le problème a des solutions si et seulement si le système :

from the a desirations of et seutement of le système :
$$\begin{cases} z_1+z_2 &= 2a_1\\ z_2+z_3 &= 2a_2\\ &\dots &\text{possède des solutions.}\\ z_{n-1}+z_n=2a_{n-1}\\ z_1+&z_n=2a_n \end{cases}$$

C'est un système linéaire de n équations aux n inconnues $z_1, z_2, z_3, ..., z_n$.

Le déterminant de ce système est :

$$\Delta_{n} = \begin{vmatrix} 1 & 1 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & \dots \\ 0 & 0 & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 1 & 1 \\ 1 & \dots & \dots & 1 & 1 \\ 0 & \dots & \dots & 1 & 1 \end{vmatrix}_{n} = \begin{vmatrix} 1 & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 0 & \ddots & 1 & 1 \\ 0 & \dots & 0 & 1 \end{vmatrix}_{n-1} + (-1)^{n+1} \begin{vmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \dots & \dots & \dots & 1 & 1 \end{vmatrix}_{n-1}$$

$$\Delta_{n} = 1 + (-1)^{n+1}$$

- Si n est impair, alors $\Delta_n = 2 \neq 0$, le système est de Cramer. Il admet alors une solution unique $(z_1, z_2, z_3, ..., z_n)$ et il existe un et un seule polygone répondant aux conditions posées.
- Si n est pair, alors $\Delta_n = 0$, le système n'est pas de Cramer. Il est de rang n-1 car le premier déterminant d'ordre n-1 qui intervient dans le calcul précédent est un déterminant extrait d'ordre n-1 non nul.

Pour que le système soit compatible, il faut que

 $(z_1+z_2)-(z_2+z_3)+(z_3+z_4)-(z_4+z_5)+\ldots+(z_{n-1}+z_2)-(z_n+z_1)=0=2(a_1-a_2+a_3-a_4+\ldots+a_{n-1}+a_n)=0$ c'est à dire que $a_1 + a_3 + a_5 + \dots = a_2 + a_4 + a_6 + \dots$ ou encore que I=J

Si $I \neq J$ alors le problème n'a pas de solutions,

Si I = J alors le système admet une infinité de solutions.

Formes linéaires

Formes linéaires sur $M_n(\mathbb{C})$

On note E l'espace vectoriel $M_n(\mathbb{C})$ et E^* son dual.

- a) Montrer que $\forall f \in E^*, \exists A \in E, \text{ unique}, \forall X \in M_n(\mathbb{C}), f(X) = \operatorname{tr}(A.X)$
- b) Trouver toutes les formes linéaires $f \in E^*$ telles que $\forall X, Y \in M_n(\mathbb{C}), f(X,Y) = f(Y,X)$
- c) Trouver toutes les formes linéaires $f \in E^*$ telles que $\forall X, Y \in M_n(\mathbb{C}), f(X,Y) = f(X).f(Y)$

SOLUTION:

a) Soit $f \in E^*$.

Analyse: Soit $A \in E$, telle que, $\forall X \in M_n(\mathbb{C}), f(X) = \operatorname{tr}(A.X)$

En particulier, pour tout $(i,j) \in \{1,2,...,n\}, f(E_{i,j}) = \operatorname{tr}(A.E_{i,j})$

Or
$$(A.E_{i,j})_{h,k} = \sum_{l=1}^{n} a_{h,l}(E_{i,j})_{l,k} = a_{h,i}\delta_{j,k}$$

donc
$$f(E_{i,j}) = \operatorname{tr}(A.E_{i,j}) = \sum_{h=1}^{n} (A.E_{i,j})_{h,h} = \sum_{h=1}^{n} a_{h,i} \delta_{j,h} = a_{j,i}$$

Ainsi, pour tout $(i,j) \in \{1,2,...,n\}$, $a_{j,i} = f(E_{i,j})$, ce qui montre l'unicité d'une eventuelle matrice A solution et donne une formule pour définir les coefficients de cette matrice.

Synthèse: Soit $A \in M_n(\mathbb{C})$, définie par :

$$\forall (i,j) \in \{1,2,...,n\}, \ a_{j,i} = f(E_{i,j})$$

Le calcul précédent montre que pour tout (i, j), $\operatorname{tr}(A.E_{i,j}) = a_{j,i} = f(E_{i,j})$

Par linéarité, en décomposant toute matrice $X \in M_n(\mathbb{C})$ sur la base $(E_{i,j})_{i=1...n,j=1...n}$,

on obtient : $\forall X \in M_n(\mathbb{C}), \operatorname{tr}(A.X) = f(X)$

b) Soit $f \in E^*$ telles que $\forall X, Y \in M_n(\mathbb{C}), f(X.Y) = f(Y.X)$

alors, $\forall (i,j), (h,k) \in \{1,2,...,n\}, f(E_{i,j}.E_{h,k}) = f(E_{h,k}.E_{i,j})$

- si $i \neq j$, $f(E_{i,j}) = f(E_{i,j}.E_{j,j}) = f(E_{j,j}.E_{i,j}) = f(\delta_{j,i}E_{j,j}) = f(0) = 0$

• pour tous i et j, $f(E_{i,i}) = f(E_{i,j}.E_{j,i}) = f(E_{j,i}.E_{i,j}) = f(E_{j,j})$ En notant λ la valeur commune aux $f(E_{i,i})$, i = 1, ..., n, on obtient:

$$\forall X = (x_{i,j}) \in M_n(\mathbb{C}), \ f(X) = f\left(\sum_{(i,j)} x_{i,j} E_{i,j}\right) = \sum_{(i,j)} x_{i,j} f(E_{i,j})$$
$$= \sum_{i=1}^n x_{i,i} f(E_{i,i}) = \lambda \sum_{i=1}^n x_{i,i} = \lambda . \operatorname{tr}(X)$$

Donc $f = \lambda$.tr et on vérifie réciproquement que toute forme linéaire colinéaire à la trace est solution.

Egalité des noyaux de formes linéaires

Soient φ_1 et φ_2 deux formes linéaires non nulles sur un espace vectoriel de dimension finie E.

Montrer que : $\ker \varphi_1 = \ker \varphi_2 \iff (\varphi_1, \varphi_2)$ est un système lié.

SOLUTION:

• Si (φ_1, φ_2) est un système lié, alors il existe un scalaire λ tel que $\varphi_1 = \lambda \varphi_2$ $\forall x \in \ker \varphi_2, \ \varphi_1(x) = \lambda \underbrace{\varphi_2(x)}_{} = 0 \ \operatorname{donc} \ \ker \varphi_2 \subset \ker \varphi_1$

 λ est non nul (sinon, $\varphi_1=0$) donc $\varphi_2=\frac{1}{\lambda}\varphi_1$ et par le même raisonnement, $\ker\varphi_1\subset\ker\varphi_2$ Ainsi, (φ_1, φ_2) est lié $\implies \ker \varphi_1 = \ker \varphi_2$

• Réciproquement, supposons que $\ker \varphi_1 = \ker \varphi_2$

Soit $(e_1, e_2, ..., e_{n-1})$ une base de l'hyperplan $\ker \varphi_1 = \ker \varphi_2$ (le noyau d'une forme linéaire non nulle est un hyperplan)

Complètons ce système libre en une base $(e_1,e_2,...,e_{n-1},e_n)$ de E. (théorème de la base incompléte)

(sinon, $e_n \in \ker \varphi_1$ et $\ker \varphi_1 = \operatorname{Vect}(e_1, e_2, ..., e_{n-1}, e_n) = E$, ce qui est en contradiction $\varphi_1(e_n)$ n'est pas nul. avec l'hypothèse $\varphi_1 \neq 0$)

Alors,
$$\forall k \in \{1, 2, ..., n\}$$
, $\varphi_2(e_k) = \frac{\varphi_2(e_n)}{\varphi_1(e_n)} \varphi_1(e_k)$ (cette égalité s'écrit $0 = 0$ pour tout $\forall k \in \{1, 2, ..., n-1\}$ et $\varphi_2(e_n) = \frac{\varphi_2(e_n)}{\varphi_1(e_n)} \varphi_1(e_n)$ pour $k = n$)

L'égalité $\varphi_2(x) = \frac{\varphi_2(e_n)}{\varphi_1(e_n)} \varphi_1(x)$ est vérifiée sur tous les vecteurs d'une base de E. Elle est donc vraie par linéarité

Donc
$$\varphi_2 = \underbrace{\frac{\varphi_2(e_n)}{\varphi_1(e_n)}}_{\in \mathbf{K}} \varphi_1$$
 et le système (φ_1, φ_2) est lié.

Dimension d'une intersection d'hyperplans 4.3

Soient $\varphi_1, \varphi_2, ..., \varphi_p, \psi$, p+1 formes linéaires sur un espace vectoriel E de dimension finie n.

 ψ est combinaison linéaire de $(\varphi_1,\varphi_2,...,\varphi_p) \quad \Longleftrightarrow \quad \bigcap_{i=1}^r \ker \varphi_i \subset \ker \psi$ a) Montrer que :

b) Montrer que :
$$\dim \left(\bigcap_{i=1}^{p} \ker \varphi_i\right) = n - \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$$

SOLUTION:

a) • Si ψ est combinaison linéaire de $(\varphi_1, \varphi_2, ..., \varphi_p)$, alors, $\exists (\lambda_1, \lambda_2, ..., \lambda_p) \in \mathbf{K}^p$, $\psi = \sum_{i=1}^p \lambda_i \varphi_i$

Pour tout
$$x \in \bigcap_{i=1}^{p} \ker \varphi_{i}$$
, $\psi(x) = \sum_{i=1}^{p} \lambda_{i} \underbrace{\varphi_{i}(x)}_{0} = 0 \implies x \in \ker \psi$
donc $\bigcap_{i=1}^{p} \ker \varphi_{i} \subset \ker \psi$
• Réciproquement, supposons que $\bigcap_{i=1}^{p} \ker \varphi_{i} \subset \ker \psi$

o Supposons d'abord que $(\varphi_1, \varphi_2, ..., \varphi_p)$ est un système libre de E^* . On peut alors le compléter en une base $(\varphi_1, \varphi_2, ..., \varphi_p, \varphi_{p+1}, ..., \varphi_n)$ de E^* . Considérons la base préduale $(e_1, e_2, ..., e_n)$ de $(\varphi_1, \varphi_2, ..., \varphi_n)$ dans E. $(\forall i, j, \varphi_i(e_j) = \delta_{i,j})$

$$\psi$$
 se décompose dans la base $(\varphi_1, \varphi_2, ..., \varphi_n)$ de E^* : $\psi = \sum_{i=1}^n \lambda_i \varphi_i$

Montrons que pour $j > p, \ \lambda_j = 0$

$$\forall j>p, \ \psi(e_j)=\sum_{i=1}^n \lambda_i \underbrace{\varphi_i(e_j)}_{=\delta_{i,j}}=\lambda_j$$
 Mais puisque $j>p$, pour tout $i\in\{1,2,...,p\}, \ \varphi_i(e_j)=0 \quad (\operatorname{car}\ i\neq j\)$

donc
$$e_j \in \bigcap_{i=1}^p \ker \varphi_i \subset \ker \psi$$
 et $\psi(e_j) = 0$ et donc $\lambda_j = 0$

Les termes d'indices >p étant nuls, il reste $\psi=\sum^p\lambda_i\varphi_i$, qui montre que ψ est combinaison linéaire de $(\varphi_1,\varphi_2,...,\varphi_p)$.

 \circ En considérant maintenant un système $(\varphi_1, \varphi_2, ..., \varphi_p)$ quelconque de E^* , on en extrait un système libre maximal, qu'on suppose être $(\varphi_1, \varphi_2, ..., \varphi_q), \ q \leq p$, quitte à renuméroter éventuellement les φ_i .

Ainsi, $\operatorname{Vect}(\varphi_1, \varphi_2, ..., \varphi_p) = \operatorname{Vect}(\varphi_1, \varphi_2, ..., \varphi_q)$ chaque $\varphi_j, \ j > q$, est combinaison linéaire de $(\varphi_1, \varphi_2, ..., \varphi_q)$ par le caractère maximal de ce système.

donc $\forall j>q,\ \bigcap_{i=1}\ker\varphi_i\subset\ker\varphi_j$, d'après la premiére implication déja établie.

Il en résulte par double inclusion que $\bigcap_{i=1}^p \ker \varphi_i = \bigcap_{i=1}^q \ker \varphi_i$

 $\text{De l'hypothèse} \bigcap_{i=1}^{p} \ker \varphi_{i} = \bigcap_{i=1}^{q} \ker \varphi_{i} \subset \ker \psi \text{ on d\'eduit par l'\'etude pr\'ec\'edente que} \boxed{\psi \text{ est combinaison lin\'eaire}}$ $\text{de } (\varphi_{1}, \varphi_{2}, ..., \varphi_{q}) \text{ et donc} \boxed{\frac{\text{de } (\varphi_{1}, \varphi_{2}, ..., \varphi_{p})}{\text{de } (\varphi_{1}, \varphi_{2}, ..., \varphi_{p})}}$

b) Soit, comme précédemment, $(\varphi_1, \varphi_2, ..., \varphi_q)$ un système libre maximal extrait de $(\varphi_1, \varphi_2, ..., \varphi_q)$, de sorte que $\bigcap_{i=1}^p \ker \varphi_i = \bigcap_{i=1}^q \ker \varphi_i$ et $q = \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$.

On complète $(\varphi_1, \varphi_2, ..., \varphi_q)$ en une base $(\varphi_1, \varphi_2, ..., \varphi_p, \psi_{p+1}, ..., \psi_n)$ de E^* et on considére la base préduale

 $(e_1, e_2, ..., e_n)$ dans E.

Matrices magiques:

Sur l'espace vectoriel $E = M_n(\mathbf{K})$ on définit les formes linéaires $L_1, ..., L_n, C_1, ..., C_n, D_1, D_2$ suivantes:

$$\forall M=(m_{i,j})\in M_n(\mathbf{K}),\ L_i(M)=\sum_{j=1}^n m_{i,j},\quad C_j(M)=\sum_{i=1}^n m_{i,j},$$

$$D_1(M)=\sum_{i=1}^n m_{i,i},\quad D_2(M)=\sum_{i=1}^n m_{n+1-i,i}$$
 Une matrice de $M_n(\mathbf{K})$ est dite **magique** si: $\forall i,j,k,\ L_i(M)=C_j(M)=D_k(M)$

G désigne l'ensemble des matrices magiques.

 G_0 désigne l'ensemble des matrices telles que $\forall i,j,k,\ L_i(M)=C_j(M)=D_k(M)=0$

On admet que si $\varphi_1, \varphi_2, ..., \varphi_p$ sont des formes linéaires sur un espace vectoriel E de dimension n, alors

$$\dim\left(\bigcap_{i=1}^{p} \ker \varphi_i\right) = n - \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$$

1- a) Montrer que G est un espace vectoriel sur K et que G_0 est un sous espace vectoriel de G.

b) Soit J la matrice dont tous les coefficients valent $1: J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$ Montrer que G_0 et Vect(I) sont donn

Montrer que G_0 et Vect(J) sont deux sous espaces supplémentaires de G

2- a) Montrer que $(L_1, L_2, ..., L_n)$ est un système libre de l'espace dual E^* .

b) Le système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_n)$ est-il un système libre ? (une remarque très simple permet de répondre à la question)

Quel est le rang du système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_n)$?

c) Déterminer le rang du système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_n, D_1, D_2)$?

En déduire la dimension de G.

Donner une base de G lorque n=3

SOLUTION:

1- a) pas de difficulté.

b) procéder par analyse-synthèse pour décomposer une matrice de G en somme d'une matrice de G_0 et d'une matrice λJ

2- a) Soit $(\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbf{K}^n$ tel que $\lambda_1 L_1 + \lambda_2 L_2 + ... + \lambda_n L_n = 0$

En appliquant cette égalité, pour tout indice i quelconque, à la matrice élémentaire $E_{i,1}$ dont seul le terme d'indice (i,1) est non nul et vaut 1, on obtient :

$$\lambda_1 \underbrace{L_1(E_{i,1})}_{=0} + \lambda_2 \underbrace{L_2(E_{i,1})}_{=0} + \ldots + \lambda_i \underbrace{L_i(E_{i,1})}_{=1} + \ldots + \lambda_n \underbrace{L_n(E_{i,1})}_{=0} = 0$$
 Donc pour tout $i, \lambda_i = 0$ et le système (L_1, L_2, \ldots, L_n) est un système libre.

b) Pour toute matrice M, la somme de toutes les colonnes est égale à la somme de toutes les lignes, donc Le système $L_1 + L_2 + ... + L_n = C_1 + C_2 + ... + C_n$ et le système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_n)$ est lié.

Montrons que le système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_{n-1})$ est libre. Soit $(\lambda_1, \lambda_2, ..., \lambda_n, \mu_1, \mu_2, ..., \mu_{n-1}) \in \mathbf{K}^{2n-1}$ tel que $\lambda_1 L_1 + \lambda_2 L_2 + ... + \lambda_n L_n + \mu_1 C_1 + \mu_2 C_2 + ... + \mu_{n-1} C_{n-1} = 0$ En appliquant cette égalité pour un indice i quelconque à la matrice élémentaire $E_{i,n}$, on obtient :

En appliquant cette egalite pour un indice
$$i$$
 quelconque à la matrice elementaire $E_{i,n}$, on obtient :
$$\lambda_1 \underbrace{L_1(E_{i,n})}_{=0} + \ldots + \lambda_i \underbrace{L_i(E_{i,n})}_{=1} + \ldots + \lambda_n \underbrace{L_n(E_{i,n})}_{=0} + \mu_1 \underbrace{C_1(E_{i,n})}_{=0} + \mu_2 \underbrace{C_2(E_{i,n})}_{=0} + \ldots + \mu_{n-1} \underbrace{C_{n-1}(E_{i,n})}_{=0} = 0$$
 et donc $\lambda_i = 0$ pour tout $i = 1 \ldots n$

Reste l'égalité $\mu_1 C_1 + \mu_2 C_2 + ... + \mu_{n-1} C_{n-1} = 0$ qui donne $\mu_j = 0$ en l'appliquant à la matrice élémentaire $E_{1,j}$ pour j = 1...n - 1

Le système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_{n-1})$ est donc libre. Et puisque le système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_{n-1}, C_n)$ est lié, on en conclut que $[rg(L_1, L_2, ..., L_n, C_1, C_2, ..., C_{n-1}, C_n) = 2n - 1]$

- c) Soit $(\lambda_1, \lambda_2, ..., \lambda_n, \mu_1, \mu_2, ..., \mu_{n-1}, \nu_1, \nu_2) \in \mathbf{K}^{2n-1}$ tel que $\lambda_1 L_1 + \lambda_2 L_2 + ... + \lambda_n L_n + \mu_1 C_1 + \mu_2 C_2 + ... + \mu_{n-1} C_{n-1} + \nu_1 D_1 + \nu_2 D_2 = 0$
 - si n > 3, en appliquant l'égalité ci-dessus à la matrice $\begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & & \dots & & 0 \end{pmatrix}, \text{ on obtient } \nu_1 = 0 \text{ puisque}$

cette matrice annule toutes les formes linéaires considérées, sauf D_1 .

- en appliquant l'égalité ci-dessus à la matrice $\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 1 & -1 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \end{pmatrix}, \text{ on obtient } \nu_2 = 0 \text{ puisque cette}$

matrice annule toutes les formes linéaires considérées, sauf D_2 .

on est alors ramenée à l'égalité $\lambda_1 L_1 + \lambda_2 L_2 + ... + \lambda_n L_n + \mu_1 C_1 + \mu_2 C_2 + ... + \mu_{n-1} C_{n-1} = 0$ déjà traitée à la question b), et tous les scalaires sont nuls.

Le système $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_{n-1}, D_1, D_2)$ est donc libre et $(L_1, L_2, ..., L_n, C_1, C_2, ..., C_{n-1}, C_n, D_1, D_2)$ a pour rang 2n+1

 \bullet si n=3 l'étude précédente n'est pas valabl

En considérant les matrices $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ et $\begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}$ on obtient respectivement $\nu_1 = 0$ et $\nu_2 = 0$

et la démonstration se termine comme précédemment. La formule précédente est encore vraie.

En appliquant la formule rappelée, $\dim \left(\bigcap^p \ker \varphi_i\right) = n - \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$, aux formes linéaires

$$(L_1, L_2, ..., L_n, C_1, C_2, ..., C_n, D_1, D_2)$$
, on en déduit que :

$$\dim(G_0) = \dim(M_n(K)) - \operatorname{rg}(L_1, ..., L_n, C_1, ..., C_n, D_1, D_2)$$

$$= n^2 - (2n+1) = n^2 - 2n - 1$$

Et puisque $G = G_0 \oplus \operatorname{Vect}(J)$, dim $G = n^2 - 2n$

• Dans le cas où n=3, $\dim(G_0)=2$,

une base de G_0 est formée des matrices $M_1 = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ et $M_2 = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$

une base de G est formée des matrices M_1, M_2 et J.

Toute matrice magique d'ordre 3 est combinaison linéaire des matrices M_1, M_2 et J.

* Polynômes d'interpolation de Lagrange et de Hermite :

E est un espace vectoriel de dimension n sur le corps \mathbf{K} , et $\varphi_1, \varphi_2, ..., \varphi_p$ sont p formes linéaires sur E.

1- On considère l'application Φ de E dans $\mathbf{K}^p: x \xrightarrow{\Phi} (\varphi_1(x), \varphi_2(x), ..., \varphi_p(x))$

A quelle condition Φ est elle injective? surjective?

2- Application : polynômes d'interpolation de Lagrange et de Hermite.

a) a étant un élément de K donné, l'application qui à $P \in \mathbf{K}_n[X]$ fait correspondre P(a) est une forme linéaire sur $\mathbf{K}_n[X]$, qu'on notera φ_a .

Des éléments $a_1, a_2, ..., a_p$ distincts ou non de **K** étant donnés, à quelle condition le système $(\varphi_{a_1}, \varphi_{a_2}, ..., \varphi_{a_p})$ est

b) On se donne $x_1, x_2, ..., x_n$ deux à deux distincts dans \mathbf{K} et $y_1, y_2, ..., y_n$ dans \mathbf{K} distincts ou non.

En considérant l'application $\Phi: \mathbf{K}_{n-1}[X] \xrightarrow{\Phi} \mathbf{K}^n$

$$P \longrightarrow (\varphi_{a_1}(P), \varphi_{a_2}(P), ..., \varphi_{a_n}(P)) = (P(a_1), P(a_2), ..., P(a_n))$$

montrer qu'il existe un et un seul polynôme $P \in \mathbf{K}_{n-1}[X]$ tel que $\forall k \in \{1, 2, ..., n\}, P(x_k) = y_k$ Donner une expression de ce polynôme P.

(on pourra introduire les polynômes
$$L_k(X) = \frac{(X - x_1)...(X - x_{k-1})(X - x_{k+1})...(X - x_n)}{(x_k - x_1)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)} = \prod_{i=1...n}^{i \neq k} \frac{X - x_i}{x_k - x_i}$$

c) Par une méthode analogue, n scalaires deux à deux distincts $x_1, x_2, ..., x_n$ et 2n scalaires quelconques $y_1,y_2,...,y_n,z_1,z_2,...,z_n$ étant donnés, montrer qu'il existe un et un seul polynôme $H\in \mathbf{K}_{n-1}[X]$ tel que :

$$\forall k \in \{1, 2, ..., n\}, \ H(x_k) = y_k \ \text{et} \ H'(x_k) = z_k$$

$$\forall k \in \{1, 2, ..., n\}, \ H(x_k) = y_k \ \text{ et } \ H'(x_k) = z_k$$

Vérifier que $H(X) = \sum_{k=1}^n \frac{Q_k^2(X)}{Q_k^2(x_k)} \left(\left(1 - 2(X - x_k) \frac{Q_k'(x_k)}{Q_k(x_k)} \right) y_k + (X - x_k) z_k \right)$

où
$$Q_k(X) = (X - x_1)...(X - x_{k-1})(X - x_{k+1})...(X - x_n) = \prod_{i=1..n}^{i \neq k} (X - x_i)$$

SOLUTION:

1- On utilisera le résultat de l'exercice précédent, qui affirme que
$$\dim \left(\bigcap_{i=1}^p \ker \varphi_i\right) = n - \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$$

$$\ker \Phi = \bigcap_{i=1}^p \ker \varphi_i \text{ , donc } \operatorname{rg}(\Phi) = n - \dim(\ker \Phi) = n - \dim\left(\bigcap_{i=1}^p \ker \varphi_i\right) = n - \left(n - \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)\right)$$

$$\operatorname{rg}(\Phi) = \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$$

•
$$\Phi$$
 est injective $\iff \ker \Phi = \{0\} \iff n - \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p) = 0$
 $\iff \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p) = n = \dim E^*$

$$\iff (\varphi_1, \varphi_2, ..., \varphi_p)$$
 est un système générateur de E^* .

•
$$\Phi$$
 est surjective \iff $\operatorname{rg}\Phi = p \iff$ $\operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p) = p \iff (\varphi_1, \varphi_2, ..., \varphi_p)$ est un système libre de E^* .

$$\Phi$$
 est injective \iff $(\varphi_1, \varphi_2, ..., \varphi_p)$ est un système générateur de E^* .
 Φ est surjective \iff $(\varphi_1, \varphi_2, ..., \varphi_p)$ est un système libre de E^* .
 $\operatorname{rg}(\Phi) = \operatorname{rg}(\varphi_1, \varphi_2, ..., \varphi_p)$

- 2- a) Si deux des scalaires a_i et a_j sont égaux, alors $\varphi_{a_i} = \varphi_{a_j}$ et le système $(\varphi_{a_1}, \varphi_{a_2}, ..., \varphi_{a_p})$ est lié. si $p > n+1 = \dim \mathbf{K}_n[X]$, le système $(\varphi_{a_1}, \varphi_{a_2}, ..., \varphi_{a_p})$ ayant plus d'éléments que la dimension de l'espace dual $(\mathbf{K}_n[X])^*$ qui le contient est encore lié.
 - enfin, supposons que $p \leq n+1$ et que $a_1, a_2, ..., a_p$ sont deux à deux distincts.

soient
$$\lambda_1,\lambda_2,...,\lambda_p \in K$$
 tels que $\sum_{i=1}^p \lambda_i \, \varphi_{a_i} = 0$

alors
$$\forall P \in \mathbf{K}_{n-1}[X], \sum_{i=1}^{p} \lambda_i \varphi_{a_i}(P) = \sum_{i=1}^{p} \lambda_i P(a_i) = 0$$

prenons pour P(X) le polynôme $Q_j(X) = \prod_{h=1...n}^{n-1} (X - a_h)$ qui appartient bien à $\mathbf{K}_{n-1}[X]$.

$$(j \in \{1, 2, ..., n\} \text{ quelconque})$$

$$\sum_{i=1}^{p} \lambda_i \, \varphi_{a_i}(Q_j) = \sum_{i=1}^{p} \lambda_i \, Q_j(a_i) = \lambda_j \, Q_j(a_j) = \lambda_j \underbrace{\prod_{h=1\dots n}^{h\neq j} (a_j - a_h)}_{\neq 0} = 0 \text{ donc } \lambda_j = 0$$

On a ainsi montré que le le système $(\varphi_{a_1}, \varphi_{a_2}, ..., \varphi_{a_p})$ est libre.

En conclusion, $(\varphi_{a_1}, \varphi_{a_2}, ..., \varphi_{a_p})$ est libre $\iff p \le n+1$ et les a_i sont deux à deux distincts.

b) Soient $x_1, x_2, ..., x_n$ deux à deux distincts dans \mathbf{K} et $y_1, y_2, ..., y_n$ quelconques dans \mathbf{K} .

Considérons l'application $\Phi: \mathbf{K}_{n-1}[X] \xrightarrow{\Phi} \mathbf{K}^n$

$$P \longrightarrow (\varphi_{x_1}(P), \varphi_{x_2}(P), ..., \varphi_{x_n}(P)) = (P(x_1), P(x_2), ..., P(x_n))$$

Trouver un polynôme P tel que $\forall k \in \{1,2,...,n\}, P(x_k) = y_k$ équivaut à trouver un polynôme P tel que $\Phi(P) = (y_1, y_2, ..., y_n)$

Pour qu'il y ait existence et unicité d'un tel polynôme il suffit que Φ soit surjective (existence) et injective (unicité). Or, d'après 2-a), puisque $x_1, x_2, ..., x_n$ sont deux à deux distincts et en nombre $\leq n = \dim(\mathbf{K}_{n-1}[X])$, le système $(\varphi_{x_1}, \varphi_{x_2}, ..., \varphi_{x_n})$ est libre. D'après 1) Φ est alors surjective.

Mais $(\varphi_{x_1}, \varphi_{x_2}, ..., \varphi_{x_n})$ est un système libre de $(\mathbf{K}_{n-1}[X])^*$, c'en est donc une base puisque $\dim(\mathbf{K}_{n-1}[X]) = n$ D'après 1), $(\varphi_{x_1},\varphi_{x_2},..,\varphi_{x_n})$ étant générateur, Φ est surjective.

 Φ est bijective. Il existe donc un et un seulement $P \in \mathbf{K}_{n-1}[X]$ tel que $\Phi(P) = (y_1, y_2, ..., y_n)$.

$$P(X) = \sum_{i=1}^{n} y_i L_i(X) = \sum_{i=1}^{n} y_i \left(\prod_{h=1..n}^{h \neq i} \frac{X - x_h}{x_i - x_h} \right)$$
 est ce polynôme.

(polynôme d'interpolation de Lagrange)

c) Soient $x_1, x_2, ..., x_n$ n scalaires deux à deux distincts et $y_1, y_2, ..., y_n, z_1, z_2, ..., z_n$ 2n scalaires quelconques. φ_a est la forme linéaire qui à $P \in \mathbf{K}_{2n-1}[X]$ fait correspondre P(a).

Notons φ'_a est la forme linéaire qui à $P \in \mathbf{K}_{2n-1}[X]$ fait correspondre P'(a).

• Soient
$$\lambda_1, \lambda_2, ..., \lambda_n, \lambda'_1, \lambda'_2, ..., \lambda'_n \in K$$
 tels que
$$\lambda_1 \varphi_{x_1} + \lambda_2 \varphi_{x_2} + ... + \lambda_n \varphi_{x_n} + \lambda'_1 \varphi'_{x_1} + \lambda'_2 \varphi'_{x_2} + ... + \lambda'_n \varphi'_{x_n} = 0$$

En prenant l'image du polynôme $R_j(X) = \prod_{i=1}^{N-1} (X - x_i)^2 (X - x_j)$, qui vérifie :

 $\forall h,\ R_j(x_h)=0\ \text{et}\ \forall h\neq j,\ R'_j(x_h)=0,\ \text{on obtient}\ \lambda'_j=0,\ \text{ceci pour tout}\ j.$ Il reste alors $\lambda_1\,\varphi_{x_1}+\lambda_2\,\varphi_{x_2}+\ldots+\lambda_n\,\varphi_{x_n}=0$ et on montre que $\forall j,\ \lambda_j=0$ comme précédemment. Le système $(\varphi_{x_1},\varphi_{x_2},\ldots,\varphi_{x_n},\varphi'_{x_1},\varphi'_{x_2},\ldots,\varphi'_{x_n})$ est donc libre dans $(\mathbf{K}_{2n-1}[X])^*$

• Considérons l'application $\Psi: \mathbf{K}_{2n-1}[X] \xrightarrow{\Psi} \mathbf{K}^{2n}$, qui au polynôme P associe :

$$\begin{split} \Psi(P) &= (\varphi_{x_1}(P), \varphi_{x_2}(P), ..., \varphi_{x_n}(P), \varphi'_{x_1}(P), \varphi'_{x_2}(P), ..., \varphi'_{x_n}(P)) \\ &= (P(x_1), P(x_2), ..., P(x_n), P'(x_1), P'(x_2), ..., P'(x_n)) \end{split}$$

D'après la question 1), $(\varphi_{x_1}, \varphi_{x_2}, ..., \varphi_{x_n}, \varphi'_{x_1}, \varphi'_{x_2}, ..., \varphi'_{x_n})$ étant un système libre, Ψ est surjective. Mais $(\varphi_{x_1}, \varphi_{x_2}, ..., \varphi_{x_n}, \varphi'_{x_1}, \varphi'_{x_2}, ..., \varphi'_{x_n})$ système libre de 2n éléments dans un espace de diemension 2n, en est une base et est donc un système générateur de l'espace dual $(\mathbf{K}_{2n-1}[X])^*$. Et d'après la question 1), Ψ est injective.

Le 2n - uplet $(y_1,y_2,...,y_n,z_1,z_2,...,z_n) \in \mathbf{K}^{2n}$ étant donné, il admet un unique antécédent par Ψ :

Il existe $H \in \mathbf{K}_{2n-1}[X]$, unique tel que :

$$\forall i \in \{1, 2, ..., n\}, \ H(x_i) = y_i \ \text{et} \ H'(x_i) = z_i$$

• Vérifions que le polynôme $S(X) = \sum_{k=1}^{n} \frac{Q_k^2(X)}{Q_k^2(x_k)} \left(\left(1 - 2(X - x_k) \frac{Q_k'(x_k)}{Q_k(x_k)} \right) y_k + (X - x_k) z_k \right)$ satisfait ces relations :

$$> S(x_i) = \sum_{k=1}^n \frac{\overbrace{Q_k^2(x_i)}^2}{Q_k^2(x_k)} \left(\left(1 - 2(x_i - x_k) \frac{Q_k'(x_k)}{Q_k(x_k)} \right) y_k + (x_i - x_k) z_k \right)$$

$$S(x_i) = \left(1 - 2(x_i - x_i) \frac{Q_i'(x_i)}{Q_i(x_i)} \right) y_i + (x_i - x_i) z_i = y_i$$

$$> S'(X) = 2 \sum_{k=1}^n \frac{Q_k(X) Q_k'(X)}{Q_k^2(x_k)} \left(\left(1 - 2(X - x_k) \frac{Q_k'(x_k)}{Q_k(x_k)} \right) y_k + (X - x_k) z_k \right) + \sum_{k=1}^n \frac{Q_k^2(X)}{Q_k^2(x_k)} \left(- 2 \frac{Q_k'(x_k)}{Q_k(x_k)} y_k + z_k \right)$$

$$S'(x_i) = 2 \frac{Q_i'(x_i)}{Q_i(x_i)} y_i + \frac{Q_i^2(x_i)}{Q_i^2(x_i)} \left(- 2 \frac{Q_i'(x_i)}{Q_i(x_i)} y_i + z_i \right) = z_i$$
 L'unicité ayant été établie précédemment,

le polynôme
$$H(X) = \sum_{k=1}^{n} \frac{Q_k^2(X)}{Q_k^2(x_k)} \left(\left(1 - 2(X - x_k) \frac{Q_k'(x_k)}{Q_k(x_k)} \right) y_k + (X - x_k) z_k \right)$$

$$\forall i \in \{1, 2, ..., n\}, \ H(x_i) = y_i \ \text{ et } \ H'(x_i) = z_i$$

On l'appelle polynôme d'interpolation de Hermite, relativement aux scalaires $x_i, y_i, z_i, i = 1...n$.

4.6 Ex. 33

Solution:

$$\forall r \in]-1, 1[, \int_0^{2\pi} f(r\cos(\theta), r\sin(\theta)) d\theta = 2\pi f(0, 0)$$

$$A \stackrel{n\to\infty}{\sim} B$$

$$A \stackrel{x \to b}{\sim} B$$

$$x \xrightarrow[n \to +\infty]{b} y$$

Chantier: 5

S

6 Déterminants

6.1Matrice inversible

Soient A et B deux matrices de $M_n(\mathbf{K})$. A quelle condition la matrice $M=\left(\begin{array}{cc}A+B&A-B\\A-B&A+B\end{array}\right)$ est elle inversible .

Solution:

En ajoutant à une colonne une combinaison linéaire d'autres colonnes, on ne change pas le rang d'une matrice.

$$M = \begin{pmatrix} A+B & A-B \\ A-B & A+B \end{pmatrix} \longrightarrow \begin{pmatrix} A+B & 2A \\ A-B & 2A \end{pmatrix} \text{ a même rang que } \begin{pmatrix} A+B & A \\ A-B & A \end{pmatrix}$$

$$\left(\begin{array}{cc} A+B & A \\ A-B & A \end{array}\right) \longrightarrow \left(\begin{array}{cc} B & A \\ -B & A \end{array}\right)$$

En ajoutant à une colonne une combinaison linéaire d'autres colonnes, on ne change pas le rang d'une matrice. Ajoutons à la
$$n+1$$
 ième colonne de M la première, à la $(n+2)^e$ la deuxième, ..., à la $(n+k)^e$ colonne la k^e :
$$M = \begin{pmatrix} A+B & A-B \\ A-B & A+B \end{pmatrix} \longrightarrow \begin{pmatrix} A+B & 2A \\ A-B & 2A \end{pmatrix} \text{ a même rang que } \begin{pmatrix} A+B & A \\ A-B & A \end{pmatrix}$$
 Soustrayons la $(n+k)^e$ colonne à la k^e :
$$\begin{pmatrix} A+B & A \\ A-B & A \end{pmatrix} \longrightarrow \begin{pmatrix} B & A \\ -B & A \end{pmatrix}$$
 Ajoutons la k^e ligne à la $(n+k)^e$:
$$\begin{pmatrix} B & A \\ -B & A \end{pmatrix} \longrightarrow \begin{pmatrix} B & A \\ 0 & 2A \end{pmatrix} \text{ a même rang que } \begin{pmatrix} B & \frac{1}{2}A \\ 0 & A \end{pmatrix}$$

$$\det \begin{pmatrix} B & \frac{1}{2}A \\ 0 & A \end{pmatrix} = \det(A).\det(B)$$
 Donc M est inversible si et seulement si A et B le sont.

Donc M est inversible si et seulement si A et B le sont.

6.2Calcul de déterminant :

Calculer le déterminant d'ordre
$$n$$
 : $\Delta_n = \left| \begin{array}{ccc} a+b & & & \\ & \ddots & & \\ & & & \\ (a) & & & \\ & & & a+b \end{array} \right|$

Solution:
$$\Delta_n = a\Delta_{n-1} + b^n$$

par récurrence, $\Delta_n = \sum_{k=0}^n a^k b^{n-k} = \frac{a^n - b^n}{a - b}$ si $a \neq b$

7 Réserve

7.1 Projecteurs Ensi

Soient f et g deux endomorphisme de l'espace vectoriel E de dimension finie.

Si $f_o g$ est un projecteur, montrer que $rg(g_o f) \ge rg(f_o g)$

Solution:

 $f_o g$ est un projecteur, donc $f_o g_o f_o g = f_o g$

Or on sait que $rg(u_o v) \le rg(u)$ et $rg(u_o v) \le rg(v)$, donc :

 $\operatorname{rg}(f_o g) = \operatorname{rg}(f_o(g_o f)_o g) \le \operatorname{rg}(f_o(g_o f)) \le \operatorname{rg}(g_o f)$

7.2 Rang d'une composée (2)

Soient E, F et G des espaces vectoriels sur le même corps K. Soient $f \in L(E, F)$ et $g \in L(F, G)$.

a) Montrer qu'on a toujours : $rg(g_o f) \le rg(g)$

et que : $rg(g_o f) = rg(g) \iff ker g + Im(f) = F$

b) Montrer qu'on a toujours : $rg(g_o f) \leq rg f$

et que : $rg(g_o f) = rgf \iff Im(f) \cap \ker g = \{0\}$

Solution:

- a) On a toujours $\operatorname{Im}(g_o f) \subset \operatorname{Im}(g)$ et donc $\operatorname{rg}(g_o f) \leq \operatorname{rg}(g)$
 - Supposons que $\operatorname{rg}(g_of)=\operatorname{rg}(g)$, alors l'inclusion et l'égalité des dimensions entraı̂nent que $\operatorname{Im}(g_of)=\operatorname{Im}(g)$

Soit $x \in F$. Alors $g(x) \in \text{Im}(g) = \text{Im}(g_o f)$ donc $\exists t \in E, \ g(x) = g_o f(t)$

On peut alors écrire x = f(t) + (x - f(t)) avec $f(t) \in \text{Im}(f)$ et $x - f(t) \in \ker g$

(car $g(x - f(t)) = g(x) - g_o f(t) = 0$)

On a ainsi montré que $F \subset \ker g + \operatorname{Im}(f)$ et il y a égalité car $\ker g$ et $\operatorname{Im}(f)$ sont des sous-espaces de F.

• Réciproquement, supposons que $\ker g + \operatorname{Im}(f) = F$

Soit $y \in \text{Im}(g)$. $\exists x \in F, y = g(x)$.

Mais puisque $\ker g + \operatorname{Im}(f) = F$, $\exists a \in \ker g$, $\exists b \in \operatorname{Im}(f)$, x = a + b et $\exists c \in E$, b = f(c)

alors $y = g(x) = g(a+b) = \underbrace{g(a)}_{0} + g(b) = g(f(c)) \in \operatorname{Im}(g_{o}f)$

Donc $\operatorname{Im}(g) \subset \operatorname{Im}(g_o f)$ et il y a égalité.

b) Soit \widetilde{g} la restriction de g à $\mathrm{Im}(f): \quad \mathrm{Im}(f) \stackrel{\widetilde{g}}{\longrightarrow} G$ $x \quad \longrightarrow \quad g(x)$

 $\operatorname{Im}(g_o f) = g(\operatorname{Im}(f)) = \operatorname{Im}(\widetilde{g})$

 $\ker(\widetilde{g}) = \operatorname{Im}(f) \cap \ker g$

En appliquant le théorème du rang à \widetilde{g} , on obtient : $\dim(\operatorname{Im} f) = \dim(\operatorname{Im} \widetilde{g}) + \dim(\ker \widetilde{g})$

soit: $\operatorname{rg} f = \operatorname{rg}(g_o f) + \operatorname{dim}(\operatorname{Im}(f) \cap \ker g)$

On en déduit que $\operatorname{rg}(g_o f) \leq \operatorname{rg}(f)$ et que : $\operatorname{rg}(g_o f) = \operatorname{rg} f \iff \operatorname{Im}(f) \cap \ker g = \{0\}$