The components of u may be eigenvalues of real symmetric matrices are real Complex numbers. u*: Complex conjugate of u. det A be a RSM. Let λ be the eigenvalue of A and let u be the eigenvector associated with 1xux is the complex conjugate of ru. Let i be complex $Au = \lambda u \Rightarrow Au^* = \lambda^* u^*$ > l= a+ib! Complex conjugate of $\lambda = a - \hat{i}b = \lambda^*$ $=(u^*)^T A = (u^*)^T \lambda^*$ λ*= a-ib.

det us look at the dot product of Au with u* $Au^* = \lambda^*u^*$ $(u^*)^T A = (u^*)^T \lambda^*$ $(u^*)^T A u = (u^*)^T \lambda^* u$ $\Rightarrow (u^*)^{\mathsf{T}} A u = (u^*)^{\mathsf{T}} \lambda u \cdot \rightarrow 0$ LHS of 1) and 2) are the same. Similarly we can look at ... we have $(\mathcal{U}^*)^T \underline{\lambda} \mathcal{U} = (\mathcal{U}^*)^T \underline{\lambda}^* \mathcal{U}$ $\lambda(u^*)^T u = \lambda^* (u^*)^T u$ $\Rightarrow (u^*)^T u = |u_1|^2 + |u_2|^2 + \cdots \Rightarrow \text{ Squared length } \neq 0$ $\Rightarrow \lambda = \lambda^*$ a+ib = a-ib $\Rightarrow b=0$

=> \(\lambda\) is real

The eigenvalues of a real Symmetric matrix are real. Consider A^{2×2} a real Symmetric matrix with distinct eigenvalues λ_1 , × λ_2 .

Let u be the eigenvector associated with λ_1 and v be that associated with λ_2 .

 $u \cdot v = 0$ (eigenvectors corresp to $\Rightarrow u^T v = 0$ distinct eigenvalues of a RSM are Orthogonal to each other).

P=[u v]	
$D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$	
AP=PD.	
Consider $u = (u_1)$	
Consider $u = (u_1)$ u_2 Scaling by its length we have a unit vector u	
have a unit vector u	

Similarly we can get a unit vector v by dividing v by its length.

$$u \cdot u = 1, \Rightarrow u^{T}u = 1$$

 $v \cdot v = 1 \Rightarrow v^{T}v = 1.$
 $u \cdot v = u^{T}v = v^{T}u = v \cdot u = 0$

$$\Rightarrow P = (u v) u, v : Unit vectors$$

⇒ Matrix P is an orthogonal matrix

tor an orthogonal matrix P, P-1 = PT. $u^{T}v$ = $\begin{bmatrix} 1 & 0 \\ 0 & \end{bmatrix}$ Recall that if A is a real

Symmetric matrix

For any diagonali
matrix A,

A = PDP (matrix A,

A = PDP ())

Let x be any vector in R2.

Ax = ? What does this

geometrically mean?

$$Ax = PDPTx$$

$$= \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u^T \\ v^T \end{bmatrix} x$$

$$= \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u^T x \\ v^T x \end{bmatrix}$$

$$= \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \lambda_1 & u^T x \\ \lambda_2 & v^T x \end{bmatrix}$$

$$= u\lambda_{1}u^{T}x + v\lambda_{2}v^{T}x$$

$$= \lambda_{1}uu^{T}x + \lambda_{2}v^{T}x$$

$$= (\lambda_{1}uu^{T} + \lambda_{2}v^{T})x$$

$$= (\lambda_{1}uu^{T} + \lambda_{2}v^{T})x$$

$$= (\lambda_{1}uu^{T} + \lambda_{2}v^{T})x$$

$$= (\lambda_{1}uu^{T}x + \lambda_{2}v^{T})x$$

$$= \lambda_{1}(uu^{T}x + \lambda_{2}v^{T}x)$$

$$= \lambda_{1}(uu^{T}x + \lambda_{2}v^{T}x)$$

Note that uut is a sank 1
utu

projection matrix that projects

any vector on to the

direction of u

VVT: Rank 1 matrix that

VTV projects any vector onto

the direction of vector

 $Ax = \lambda_1 \underbrace{uu^T}_{x} + \lambda_2 \underbrace{uv^T}_{x}.$

The action of a real Symmetric matrix $A \rightarrow Interpreted$ as a linear combination of projections onto the Orthogonal eigenvectors.

$$\lambda = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\lambda_1 = 3, \quad \mathcal{U} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

$$\lambda_2 = 1, \quad \mathcal{V} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

$$\begin{array}{lll}
A & \chi & = & \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \end{bmatrix} & \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} & = & \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\
\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} & \begin{bmatrix} 3 \\ 4 \end{bmatrix} & = & \begin{bmatrix} 10 \\ 11 \end{bmatrix} \\
A & \chi & = & \lambda_1 & \mu & \mu^T & \chi & + & \lambda_2 & \nu & \nu^T & \chi & - \\
& & 3 & (\frac{1}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{3}{\sqrt{2}}) & + & 1 & (\frac{1}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{3}{\sqrt{2}}) & (\frac{3}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{3}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{3}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{3}{\sqrt{2}}) & (\frac{1}{\sqrt{2}}) & (\frac{10}{\sqrt{2}}) & (\frac{10$$