The 1st Quiz of Calculus 0312

- 1. (50 %) Find the limit (if it exists).
- (a) $\lim_{x \to 0} \frac{\sqrt{x+3} \sqrt{3}}{x}$ (b) $\lim_{x \to 1} \frac{x^2 1}{|x 1|}$ (c) $\lim_{x \to 0} \frac{\sin x(1 \cos x)}{x^2}$
- (d) $\lim_{x \to 0} f(x)$, where $f(x) = \begin{cases} x^2, & \text{if } x \neq 0 \\ 2, & \text{if } x = 0 \end{cases}$ (e) $\lim_{x \to 1} \left(\frac{x^3 + x 2}{x^2 1} \right)^2$
- 2. (30 %) True or False? If it is true, explain why. If it is false, give a counterexample.
 - (1). If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, then $\lim_{x \to a} (f(x) + g(x))$ does not exist.
 - (2). Suppose that both $\lim_{x \to a} f(x)$ and $\lim_{x \to a} (f(x) \cdot g(x))$ exist, then $\lim_{x\to a} g(x)$ exist.
 - (3). If f(x) < g(x) for all $x \ne a$, then $\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$
- 3. (20 %) Find an equation of the tangent line of $f(x) = \frac{3x-1}{x^2+5x}$ at $(-3,\frac{5}{3})$.