```
In [23]:
          import pandas as pd
In [24]:
          df = pd.read csv('cardio sample dataset.csv')
In [25]:
          df.head()
Out[25]:
                          height
                                   weight
                                           SBP
                                               DBP
                                                     cholesterol glucose smoking alcohol physical_active cardio
            age gender
                            (cm)
                                      (kg)
                                                                                                   0
                                                                                                          0
         0
             48
                             156
                                      56.0
                                           100
                                                 60
                                                             1
                                                                     1
                                                                             0
                                                                                     0
                                                             2
                                                                     2
                                                                             0
                                                                                                   0
          1
             60
                             151
                                      67.0
                                           120
                                                 80
                                                                                     0
                                                                                                          0
                                                             3
         2
                             157
                                                                             0
                                                                                                   1
                                                                                                          0
             61
                                      93.0
                                           130
                                                 80
                                                                     1
                                                                                     0
         3
                             158
                                                 70
                                                             1
                                                                     1
                                                                                     0
                                                                                                   1
                                                                                                          0
             48
                                      71.0
                                           110
                                                                                     0
                                                                                                   0
                                                                                                          0
          4
             54
                      1
                             164
                                      68.0
                                          110
                                                 60
                                                             1
                                                                     1
                                                                             0
In [26]:
          df.shape
          (3000, 12)
Out[26]:
In [27]:
          df.isnull().sum()
                              0
         age
Out[27]:
         gender
                              0
         height (cm)
                              0
         weight (kg)
                              0
                              0
         SBP
         DBP
                              0
         cholesterol
         glucose
                              0
         smoking
         alcohol
         physical active
                              0
         cardio
         dtype: int64
In [28]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3000 entries, 0 to 2999
         Data columns (total 12 columns):
                                 Non-Null Count Dtype
          #
               Column
         ___
               _____
                                  -----
                                                   ----
          0
               age
                                  3000 non-null
                                                    int64
          1
               gender
                                  3000 non-null
                                                    int64
          2
               height (cm)
                                  3000 non-null
                                                    int64
          3
               weight (kg)
                                  3000 non-null
                                                    float64
          4
               SBP
                                  3000 non-null
                                                    int64
          5
               DBP
                                  3000 non-null
                                                    int64
          6
                                  3000 non-null
                                                   int64
               cholesterol
          7
              glucose
                                 3000 non-null
                                                   int64
          8
                                  3000 non-null
               smoking
                                                    int64
               alcohol
                                  3000 non-null
                                                    int64
```

int64

int64

10

11

cardio

physical active 3000 non-null

3000 non-null

dtypes: float64(1), int64(11)

memory usage: 281.4 KB

In [50]:

df.describe()

0	ut	[5	0]	:	

	age	gender	height (cm)	weight (kg)	SBP	DBP	cholesterol	glucose	- 1
count	3000.000000	3000.000000	3000.000000	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	300
mean	53.231000	1.500000	165.714333	75.171600	127.09200	97.481667	1.363333	1.226667	
std	6.899578	0.500083	8.122934	14.890697	26.97986	211.475497	0.682748	0.571604	
min	39.000000	1.000000	76.000000	40.000000	11.00000	0.000000	1.000000	1.000000	
25%	48.000000	1.000000	160.000000	65.000000	120.00000	80.000000	1.000000	1.000000	
50%	54.000000	1.500000	166.000000	73.000000	120.00000	80.000000	1.000000	1.000000	
75%	58.000000	2.000000	170.000000	84.000000	140.00000	90.000000	1.000000	1.000000	
max	65.000000	2.000000	198.000000	200.000000	906.00000	10000.000000	3.000000	3.000000	

In [29]:

X = df.drop(['cardio'],axis='columns')

y = df.cardio

In [30]:

Χ

Ο	4	[20]	
υu	L	30	

	age	gender	height (cm)	weight (kg)	SBP	DBP	cholesterol	glucose	smoking	alcohol	physical_active
0	48	1	156	56.0	100	60	1	1	0	0	0
1	60	1	151	67.0	120	80	2	2	0	0	0
2	61	1	157	93.0	130	80	3	1	0	0	1
3	48	1	158	71.0	110	70	1	1	0	0	1
4	54	1	164	68.0	110	60	1	1	0	0	0
•••											
2995	40	2	171	111.0	130	90	1	1	0	0	0
2996	52	2	172	88.0	160	90	1	1	0	0	1
2997	62	2	175	73.0	146	89	2	2	0	0	1
2998	52	2	175	94.0	170	110	3	3	1	0	0
2999	54	2	175	97.0	160	100	2	1	0	0	1

3000 rows × 11 columns

In [31]:

Out[31]:

0

0

3

0

0

2995

```
2996
        2997
               1
        2998
               1
        2999
        Name: cardio, Length: 3000, dtype: int64
In [34]:
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X)
         X scaled
        array([[-0.75828873, -1.
                                        , -1.19611373, ..., -0.36635434,
Out[34]:
                -0.2694026 , -1.99584286],
                [0.98123808, -1., -1.81175749, ..., -0.36635434,
                -0.2694026 , -1.99584286],
                [ 1.12619864, -1.
                                        , -1.07298498, ..., -0.36635434,
                -0.2694026 , 0.50104145],
                [ 1.27115921, 1.
                                        , 1.14333254, ..., -0.36635434,
                -0.2694026 , 0.50104145],
                [-0.17844646, 1.
                                  , 1.14333254, ..., 2.72959781,
                -0.2694026 , -1.99584286],
                [ 0.11147468, 1.
                                        , 1.14333254, ..., -0.36635434,
                -0.2694026 , 0.50104145]])
In [35]:
         from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
In [37]:
         X train.shape
         (2400, 11)
Out[37]:
In [38]:
         X test.shape
         (600, 11)
Out[38]:
In [49]:
         from sklearn.tree import DecisionTreeClassifier
         DT = DecisionTreeClassifier()
         DTC = DT.fit(X train, y train)
         DTC.score(X test,y test)
        0.6333333333333333
Out[49]:
In [39]:
         from sklearn.model selection import cross val score
         scores = cross val score(DecisionTreeClassifier(), X, y, cv=5)
         print(scores)
         scores.mean()
         [0.67666667 0.64666667 0.64 0.63166667 0.64
                                                               1
        0.647
Out[39]:
In [42]:
         from sklearn import svm
         S = svm.SVC()
         support = S.fit(X train, y train)
         support.score(X test,y test)
```

```
Out[42]: 0.70833333333333333
In [43]:
         scores = cross_val_score(svm.SVC(),X,y,cv=5)
         print(scores)
         scores.mean()
        [0.72166667 0.705 0.69666667 0.69666667 0.715
                                                               ]
        0.7070000000000001
Out[43]:
In [44]:
         from sklearn.naive bayes import GaussianNB
         GNB = GaussianNB()
         nb = GNB.fit(X_train,y_train)
         nb.score(X_test,y_test)
        0.6016666666666667
Out[44]:
In [45]:
         scores = cross_val_score(GaussianNB(), X, y, cv=5)
         print(scores)
         scores.mean()
         [0.615
                   0.585
                            0.57 0.60333333 0.565
                                                               ]
        0.5876666666666667
Out[45]:
```