

#### **NUMBER SYSTEMS**

**Binary Arithmetic Addition and Subtraction** 

# Convert binary 1101 to a decimal (unsigned).

A 11

**B** 12

**c** | 13

**D** 14

**E** 15





#### **Binary - Decimal**

$$= 1^* 2^3 + 1^* 2^2 + 0^* 2^1 + 1^* 2^0$$

## Convert decimal number 5 to a 4-bit unsigned binary number

**A** 0100

**B** 0101

**C** 0110

**D** 0111

**E** 1001





#### **Decimal - Binary**

Multiples of 2 in 4-bit are....8 - 4 - 2 - 1

- How many multiples of 8 in 5?
- How many multiples of 4 in 5?
- 5-4=1
- How many multiples of 2 in 1?
- How many multiples of 1 in 1?

So answer is 0101



#### Convert decimal 132 to 8-bit binary

**A** 1000 0110

**B** 0100 0110

**c** 0100 0010

**D** 1000 0111

**E** 1000 0010





#### **Decimal - Binary**

Multiples of 2 in 8 bit - 128-64-32-16-8-4-2-1

- How many multiples of 128 in 132?
   1 (132-128 = 4)
- How many multiples of 64 in 4?
- How many multiples of 32 in 4?
- How many multiples of 16 in 4?
- How many multiples of 8 in 4?
- How many multiples of 4 in 4? 1 (4-4=0)
- How many multiples of 2 in 0?
- How many multiples of 1 in 0?
- So answer is 1000 0100



- Remember the binary system has only two symbols - 0 and 1
- if we add 0 + 0 we get 0
- if we add 0 + 1 we get 1
- if we add 1 + 0 we get 1
- if we add 1 + 1 we get "2" or 10 in binary (0 carry the 1)
- This is similar to 9 + 1 in decimal we get 10 (0 carry the 1)





| <ul> <li>Examp</li> </ul> | ole Check in de | ecimal |
|---------------------------|-----------------|--------|
| • 1100                    | 12              |        |
| + 0011                    | 3               |        |
| • 1111                    | 15              |        |



- Example
- 0010 0010 0001 1100
   + 0001 1100 1010 0000

•





- Example
- 0010 0010 0001 1100
   + 0001 1100 1010 0000
- •





- Example
- 0010 0010 0001 1100
   + 0001 1100 1010 0000
- 100





- Example
- 0010 0010 0001 1100
   + 0001 1100 1010 0000
- 0011 1110 1011 1100

- Double check in decimal
- 8732 + 7328 = 16060





• Example 2

```
    0101 1110
    + 0100 1111
```

•



```
• Example 2
```

• 1

0101 1110
 + 0100 1111

• 0.



- Example 2
- 1 1
- 0101 1110
   + 0100 1111
- 101



- Example 2
- 0101 1110 + 0100 1111
- 1010 1101
- Double check in decimal
- 94 + 79 = 173



#### **Binary Subtraction**

- First we need to think about expression num1 - num2
- This is the same as num1 + (-num2)
- This is how we do binary subtraction we take negative of second number and add it to first
- We know binary addition. So we just need to learn how to find negative of binary number



## Finding the Negative of a Binary Number

- First we need to know that binary numbers use the very first digit of the number to indicate positive (0) or negative (1)
- So 0000 0001 is a positive number while 1000 0001 is a negative number
- This is based on first digit of the number so that digit can no longer be used as part of the number.





### **One's Complement**

- This is a special term which means that you take a binary number and basically change all it's 0 digits to 1's and all it's 1 digits to 0's.
- For example
- 0100 1100 0011 has a one's complement of 1011 0011 1100





#### **Two's Complement**

- This is a special term which means that you take the one's complement of a binary number and add 1 to it.
- For example
- 0100 1100 0011 has a one's complement of 1011 0011 1100 and two's complement of 1011 0011 1101





#### **Back to Subtraction**

- The negative of a binary number is it's two's complement
- So if we wanted to subtract using binary arithmetic decimal 1680 - 1219, we first convert both to binary
- 0110 1001 0000 0100 1100 0011
- We then find the one's complement of second number (1219) as 1011 0011 1100
- We then find the two's complement by adding 1 to get 1011 0011 1101



#### **Example continued**

- 0110 1001 0000 (which in decimal was 1680)
   +1011 0011 1101 (two's complement of 1219)
- 10001 1100 1101
- Notice the extra 1 on the beginning of the answer...we have to drop this
- So our answer is 0001 1100 1101 which indeed is decimal 461





### Why do we learn this?

 Because this is how computer actually does the arithmetic we perform in our programs.



#### **Summary**

- We have seen how to do binary addition and
- binary subtraction by taking two's complement of second number (ie its negative) and adding it to the first number.



