

Université Henri Poincaré , Nancy 1 Licence EEAR Semestre 4- Cours d'algèbre linéaire Diagonalisation, trigonalisation

Sandrine Marchal

Dans tout ce chapitre, la lettre K désigne l'ensemble des réels $\mathbb R$ ou l'ensemble des complexes $\mathbb C.$

1 Diagonalisation

1.1 Introduction

Soit $A \in M_n(K)$ une matrice carrée de taille n.

On associe à A une application linéaire ϕ_A de $M_{n,1}(K)$ dans $M_{n,1}(K)$, définie par $\phi_A(X) = AX$ (X est un vecteur-colonne de $M_{n,1}(K)$).

La matrice de ϕ_A dans la base canonique de $M_{n,1}(K)$ est A.

Diagonaliser A, c'est trouver une base \mathcal{B} de $M_{n,1}(K)$ telle que la matrice de ϕ_A dans \mathcal{B} soit diagonale.

1.2 Polynôme caractéristique d'une matrice carrée

Définition 1 Soit $A \in M_n(K)$. On appelle polynôme caractéristique de A le polynôme $P(X) = \det(A - X.I_n)$. On note ce polynôme $\chi_A(X)$.

Remarques :
$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 est la matrice identité de taille n .

$$X.I_n = \begin{pmatrix} X & 0 & \cdots & 0 \\ 0 & X & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & X \end{pmatrix}$$

Le déterminant de la matrice $A - X I_n$ est un polynôme en X.

Exemples :

$$\mathbf{1})A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R}).$$

Calculer
$$\chi_A(X)$$
.

On forme la matrice
$$A - X.I_2 : A - X.I_2 = \begin{pmatrix} -X & 1 \\ 1 & -X \end{pmatrix}$$
.

$$\det(A - X \cdot I_2) = X^2 - 1 = (X - 1)(X + 1)$$

donc $\chi_A(X) = (X-1)(X+1)$.

$$\mathbf{2})B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

$$B - X.I_3 = \begin{pmatrix} -1 - X & 1 & 1\\ 1 & -1 - X & 1\\ 1 & 1 & -1 - X \end{pmatrix}$$

donc
$$\chi_A(X) = (X - 1)(X + 1)$$
.

$$2)B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

$$B - X.I_3 = \begin{pmatrix} -1 - X & 1 & 1 \\ 1 & -1 - X & 1 \\ 1 & 1 & -1 - X \end{pmatrix}.$$

$$\det(B - X.I_3) = \begin{vmatrix} -1 - X & 1 & 1 \\ 1 & -1 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix}.$$
On fait $L_1 < -L_1 + L_2 + L_3$:
$$\det(B - X.I_3) = \begin{vmatrix} 1 - X & 1 - X & 1 - X \\ 1 & -1 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix}.$$
Le déterminant est linéaire par rapport à la pre

On fait
$$L_1 < -L_1' + L_2 + L_3$$
:

$$\det(B - X.I_3) = \begin{vmatrix} 1 - X & 1 - X & 1 - X \\ 1 & -1 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix}$$

Le déterminant est linéaire par rapport à la première ligne, d'où :

$$\det(B - X.I_3) = (1 - X). \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - X & 1 \\ 1 & 1 & -1 - X \end{vmatrix}.$$
On fait $L_3 < -L_3 - L_1$:

$$\det(B - X.I_3) = (1 - X). \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - X & 1 \\ 0 & 0 & -2 - X \end{vmatrix}.$$

On développe par rapport à la dernière ligne qui contient deux zéros :

$$\det(B - X.I_3) = (1 - X).(-1)^{3+3}(-2 - X) \begin{vmatrix} 1 & 1 \\ 1 & 1 - X \end{vmatrix}.$$

$$\det(B - X \cdot I_3) = (X - 1)(X + 2)(-1 - X - 1).$$

$$\det(B - X.I_3) = -(X - 1)(X + 2)^2.$$

donc
$$\chi_B(X) = -(X-1)(X+2)^2$$
.

Valeurs propres et vecteurs propres d'une matrice 1.3

Définition 2 Soit $A \in M_n(K)$.

Un scalaire $\lambda \in K$ est une valeur propre de A si et seulement si il existe un vecteur-colonne $X \in M_{n,1}(K)$, non nul, tel que $AX = \lambda X$.

L'ensemble des valeurs propres de A se note Spec(A) (il est encore appelé le spectre de A).

Définition 3 Soit $A \in M_n(K)$, soit $\lambda \in \text{Spec}(A)$.

On appelle vecteur propre de A associé a la valeur propre λ tout vecteurcolonne $X \in M_{n,1}(K)$ non nul vérifiant $AX = \lambda . X$.

Proposition 1 Soit $A \in M_n(K)$.

Les valeurs propres de A sont exactement les racines de son polynôme caractéristique χ_A .

Définition 4 Soit $A \in M_n(K)$, soit $\lambda \in \text{Spec}(A)$.

On appelle ordre de multiplicité de λ le plus grand entier $m \in \mathbb{N}$ tel que l'on puisse écrire $\chi_A(X) = (X - \lambda)^m Q(X)$ où Q(X) est un polynôme.

Exemples

$$\mathbf{1)} A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

1) $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\chi_A(X) = (X - 1)(X + 1)$. On a donc Spec $(A) = \{-1, 1\}$.

2)
$$B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

 $\chi_B(X) = -(X-1)(X+1)^2$. On a donc Spec $(B) = \{-1, 1\}$.

1.4 Sous-espaces propres d'une matrice

Définition 5 Soit $A \in M_n(K)$. Soit $\lambda \in \text{Spec}(A)$.

La réunion de l'ensemble des vecteurs propres de A pour la valeur propre λ et du vecteur nul est notée $SEP(A, \lambda)$.

On a SEP
$$(A, \lambda) = \{V \in M_{n,1}(K)/AV = \lambda.V\}$$

Proposition 2 Soit $A \in M_n(K)$. Soit $\lambda \in \text{Spec}(A)$.

 $SEP(A, \lambda)$ est un sous-espace vectoriel de $M_{n,1}(K)$.

Proposition 3 Soit $A \in M_n(K)$. Soit $\lambda \in \text{Spec}(A)$.

On note m l'ordre de multiplicité de λ dans $\chi_A(X)$.

Alors $1 \leq \dim(\operatorname{SEP}(A, \lambda)) \leq m$.

Exemples:

$$\mathbf{1)} \ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

$$\chi_A(X) = (X - 1)(X + 1)$$
. Spec $(A) = \{-1, 1\}$.

Déterminer les sous-espaces propres de A.

a) Sous-espace propre associé à la valeur propre -1.

On cherche tous les $V \in M_{2,1}(K)$ tels que AV = -V.

On résout l'équation AV = -V.

$$AV = -V \Leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} -v_1 \\ -v_2 \end{pmatrix}$$
$$AV = -V \Leftrightarrow \begin{pmatrix} v_2 \\ v_1 \end{pmatrix} = \begin{pmatrix} -v_1 \\ -v_2 \end{pmatrix} \Leftrightarrow \{v_2 = -v_1\}$$

L'équation matricielle AV = -V est équivalente à un système d'1 équation indépendante à 2 inconnues : SEP(A, -1) est donc un sous-espace vectoriel de dimension 2-1=1 de $M_{2,1}(\mathbb{R})$. On trouve une base de ce sous-espace en donnant une valeur non nulle à v_1 ou v_2 : par exemple $v_1 = 1$ d'où $v_2 = -1$.

On a alors SEP
$$(A, -1) = \{\lambda. \begin{pmatrix} 1 \\ -1 \end{pmatrix} / \lambda \in \mathbb{R}\}.$$

b) Sous-espace propre associé à la valeur propre 1.

On cherche tous les $V \in M_{2,1}(K)$ tels que AV = V.

On résout l'équation AV = V.

$$AV = V \Leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
$$AV = V \Leftrightarrow \begin{pmatrix} v_2 \\ v_1 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Leftrightarrow \{v_2 = v_1\}$$

L'équation matricielle AV = V est équivalente à un système d'1 équation indépendante à 2 inconnues : SEP(A, 1) est donc un sous-espace vectoriel de dimension 2-1=1 de $M_{2,1}(\mathbb{R})$. On trouve une base de ce sous-espace en donnant une valeur non nulle à v_1 ou v_2 : par exemple $v_1 = 1$ d'où $v_2 = 1$.

On a alors SEP $(A, 1) = \{\lambda, \begin{pmatrix} 1 \\ 1 \end{pmatrix} / \lambda \in \mathbb{R}\}.$

2)
$$B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

 $\chi_B(X) = -(X-1)(X+2)^2$. Spec $(B) = \{-2, 1\}$.

Déterminer les sous-espaces propres de B.

a) Sous-espace propre associé à la valeur propre 1.

On cherche tous les $V \in M_{3,1}(K)$ tels que BV = V.

On résout l'équation BV =

On resolut 1 equation
$$BV = V$$
.
$$BV = V \Leftrightarrow \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$BV = V \Leftrightarrow \begin{pmatrix} -v_1 + v_2 + v_3 \\ v_1 - v_2 + v_3 \\ v_1 + v_2 - v_3 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \Leftrightarrow \begin{cases} v_2 + v_3 = 2v_1 \\ v_1 + v_3 = 2v_2 \\ v_1 + v_2 = 2v_3 \end{cases}$$

$$\Leftrightarrow \begin{cases} v_1 = v_2 \\ v_2 = v_3 \end{cases}$$

L'équation matricielle BV = V est équivalente à un système de 2 équations indépendantes à 3 inconnues : SEP(B,1) est donc un sous-espace vectoriel

de dimension 3-2=1 de $M_{3,1}(\mathbb{R})$. On trouve une base de ce sous-espace en donnant une valeur non nulle à v_1 : par exemple $v_1=1$ d'où $v_2=v_3=1$.

On a alors SEP
$$(B,1) = \{\lambda, \begin{pmatrix} 1\\1\\1 \end{pmatrix} / \lambda \in \mathbb{R}\}.$$

b) Sous-espace propre associé à la valeur propre -2.

On cherche tous les $V \in M_{3,1}(K)$ tels que BV = -2V.

On résout l'équation BV = -2V.

$$BV = -2V \Leftrightarrow \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} -2v_1 \\ -2v_2 \\ -2v_3 \end{pmatrix}$$

$$BV = -2V \Leftrightarrow \begin{pmatrix} -v_1 + v_2 + v_3 \\ v_1 - v_2 + v_3 \\ v_1 + v_2 - v_3 \end{pmatrix} = \begin{pmatrix} -2v_1 \\ -2v_2 \\ -2v_3 \end{pmatrix} \Leftrightarrow \{v_1 + v_2 + v_3 = 0\}$$

L'équation matricielle BV = -V est équivalente à un système de 1 équations indépendantes à 3 inconnues : SEP(B, -2) est donc un sous-espace vectoriel de dimension 3 - 1 = 2 de $M_{3,1}(\mathbb{R})$. On trouve une base en cherchant deux vecteurs indépendants vérifiant $v_1 + v_2 + v_3 = 0$, par exemple $\{(1, 0, -1), (0, 1, -1)\}$.

On a alors SEP
$$(B, -2) = \{\lambda. \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu. \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} / \lambda, \mu \in \mathbb{R}\}.$$

1.5 Diagonalisation d'une matrice

Définition 6 Soit $A \in M_n(K)$.

On dit que A est diagonalisable si et seulement si il existe une matrice inversible $P \in GL_n(K)$ et une matrice diagonale $D \in M_n(K)$ telles que $A = PDP^{-1}$.

Remarque : Diagonaliser A, c'est trouver P inversible et D diagonale telles que $A = PDP^{-1}$.

Proposition 4 Soit $A \in M_n(K)$.

A est diagonalisable si et seulement si

$$\sum_{\lambda \in \operatorname{Spec}(A)} \dim(\operatorname{SEP}(A, \lambda)) = n$$

Proposition 5 Soit $A \in M_n(K)$.

A est diagonalisable si et seulement si il existe une base de $M_{n,1}(K)$ formée de vecteurs propres de A.

$$1) A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

$$\chi_A(X) = (X - 1)(X + 1)$$

$$Spec(A) = \{-1, 1\}$$

$$SEP(A, -1) = \{\lambda. {\binom{-1}{1}}/\lambda \in \mathbb{R}\}.$$

$$SEP(A, 1) = \{\lambda. \begin{pmatrix} 1 \\ 1 \end{pmatrix} / \lambda \in \mathbb{R}\}.$$

$$\dim(\text{SEP}(A, -1)) + \dim(\text{SEP}(A, 1)) = 1 + 1 = 2.$$

Donc par la propriété ci-dessus, A est diagonalisable.

Pour diagonaliser A, on cherche une base de vecteurs propres. On en obtient une en réunissant des bases de chaque sous-espace propre : par exemple

$$\mathcal{B} = \{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$$
 est une base de $M_{2,1}(\mathbb{R})$ formée de vecteurs propres de A .

La matrice de passage de la base canonique à \mathcal{B} est $P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$.

La matrice D dans cette base de l'application linéaire de $M_{2,1}(K)$ dans $M_{2,1}(K)$ définie par A ($\phi_A(X) = AX$) est diagonale :

Comme $\binom{-1}{1}$) est un vecteur propre pour -1 et $\binom{1}{1}$) un vecteur propre

pour 1, on a
$$\phi_A\begin{pmatrix} -1\\1 \end{pmatrix}$$
 = (-1) . $\begin{pmatrix} -1\\1 \end{pmatrix}$ et $\phi_A\begin{pmatrix} 1\\1 \end{pmatrix}$ = 1. $\begin{pmatrix} 1\\1 \end{pmatrix}$, d'où la ma-

trice
$$D: D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

La relation de changement de base s'écrit $A = PDP^{-1}$.

$$2) \ C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$C - X.I2 = \begin{pmatrix} 1 - X & 1 \\ 0 & 1 - X \end{pmatrix}.$$

$$C - X.I2 = \begin{pmatrix} 1 - X & 1 \\ 0 & 1 - X \end{pmatrix}.$$

$$\chi_C(X) = \det(C - X.I_2) = (1 - X)^2 = (X - 1)^2.$$

donc $\operatorname{Spec}(C) = \{1\}.$

Sous-espace propre associé à C: on résout l'équation $CX = X \Leftrightarrow \begin{cases} x_1 + x_2 = x_1 \\ x_2 = x_2 \end{cases} \Leftrightarrow$

$$\{x_2 = 0$$

L'équation équivaut à une équation indépendante, l'ensemble des solutions est donc de dimension 1 (droite), dont un vecteur directeur est par exemple

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.

$$\sum_{\lambda \in \operatorname{Spec}(C)} \dim(\operatorname{SEP}(C, \lambda)) = \dim(\operatorname{SEP}(C, 1)) = 1 \neq 2.$$

Donc C n'est pas diagonalisable (la somme des dimensions des sous-espaces propres est strictement inférieure à 2).

3)
$$B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

$$\chi_B(X) = -(X-1)(X+2)^2. \text{ Spec}(B) = \{-2, 1\}.$$

$$\text{SEP}(B,1) = \{\lambda. \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} / \lambda \in \mathbb{R}\}.$$

$$\text{SEP}(B,-2) = \{\lambda. \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu. \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} / \lambda, \mu \in \mathbb{R}\}.$$

$$\sum_{\lambda \in \text{Spec}(B)} \dim(\text{SEP}(B,\lambda)) = \dim(\text{SEP}(B,1)) + \dim(\text{SEP}(B,-2)) = 1 + 2 = 3.$$
Denomber B set diagonalizable

Donc B est diagonalisable.

Une base de vecteurs propres est, par exemple :
$$\mathcal{B}' = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$
.

Dans cette base, la matrice de
$$\phi_B$$
 est $D' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

Dans cette base, la matrice de
$$\phi_B$$
 est $D' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

La matrice de passage de B_0 à \mathcal{B}' est : $P' = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$.

La relation de changement de base s'écrit : $B = P'D'P'^{-1}$.

Trigonalisation 2

2.1 Matrices triangulaires

Définition 7 On appelle matrice triangulaire supérieure (resp. inférieure) une matrice dont tous les éléments situés strictement au-dessous (resp. strictement au-dessus) de la diagonale principale sont nuls.

Remarque: Une matrice diagonale est à la fois triangulaire supérieure et triangulaire inférieure.

2.2 Trigonalisation

Définition 8 On dit qu'une matrice $A \in M_n(K)$ est trigonalisable si et seulement si il existe une matrice inversible $P \in GL_n(K)$ tel que $P^{-1}AP$ soit triangulaire supérieure.

Théorème 1 Toute matrice de $M_n(\mathbb{C})$ est trigonalisable.

3 Réduction de Jordan

Définition 9 On appelle bloc de Jordan une matrice de la forme $\begin{pmatrix} \lambda & 1 & 0 & \cdots & \cdots \\ 0 & \lambda & 1 & 0 & \cdots \\ \cdots & \ddots & \ddots & \ddots & 0 \\ \cdots & \cdots & 0 & \lambda & 1 \\ \cdots & \cdots & \cdots & 0 & \lambda \end{pmatrix},$

où λ est un réel quelconque. La diagonale principale contient des λ , on trouve des 1 au-dessus de cette diagonale, les autres éléments de la matrice sont nuls. Le bloc de Jordan de taille $n \geq 1$ et dont l'élément sur la diagonale principale est λ est noté $J_n(\lambda)$.

Exemples de blocs de Jordan :
$$J_4(3) = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}, J_2(-1) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}, J_1(8) = (8).$$

Définition 10 On appelle matrice diagonale par blocs une matrice formée d'une diagonale de matrices carrées, non nécessairement de même taille. Les éléments non situés dans ces matrices sont nuls. On note diag (A_1, A_2, \cdot, A_p) la matrice dont les blocs diagonaux sont A_1, A_2, \cdots, A_p .

$$\text{Exemples} : A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 6 & 8 \end{pmatrix} = diag(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}), B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & -1 & -2 \\ 0 & -3 & -4 & -5 \end{pmatrix} = diag((1), \begin{pmatrix} 3 & 2 & 1 \\ 0 & -1 & -2 \\ -3 & -4 & -5 \end{pmatrix}), C = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} = diag((3), \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}).$$

Définition 11 On appelle matrice de Jordan une matrice diagonale par blocs dont les blocs sont des blocs de Jordan.

Définition 12 Soit $A \in M_n(K)$.

On appelle réduite de Jordan de A toute matrice de Jordan J telle qu'il existe $P \in GL_n(K)$ telle que $A = PJP^{-1}$.

Théorème 2 (Réduction de Jordan) Soit $A \in M_n(K)$.

Soient $\lambda_1, \lambda_2, \cdots, \lambda_p$ les valeurs propres de A.

On note μ_i l'ordre de multiplicité de λ_i dans χ_A .

A admet une réduite de Jordan J et une seule (à l'ordre des blocs près).

Tout bloc de la réduite de Jordan de A est de la forme $J_k(\lambda_i)$ avec $\lambda_i \in$ $\operatorname{Spec}(A)$ et $1 \leq k \leq \mu_i$.

Sur la diagonale principale de la réduite de Jordan, on trouve les valeurs propres de A comptées avec leur multiplicité : λ_i apparaît μ_i fois.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

- 1) Montrer que A n'est pas diagonalisable.
- 2)Donner la réduite de Jordan de A.
- 1)Il faut déterminer les sous-espaces propres de A.

$$\chi_A(X) = \det(A - X.I_4) = \begin{vmatrix}
1 - X & 0 & 0 & 0 \\
-1 & 4 - X & 1 & -2 \\
2 & 1 & 2 - X & -1 \\
1 & 2 & 1 & -X
\end{vmatrix}.$$

$$= (1 - X) \begin{vmatrix}
4 - X & 1 & -2 \\
1 & 2 - X & -1 \\
2 & 1 & -X
\end{vmatrix}$$

$$= (1 - X)[(4 - X)|2 - X - 1 & 1 - X| - \begin{vmatrix}
1 & -1 \\
2 & -X
\end{vmatrix} - 2 \begin{vmatrix}
1 & 2 - X \\
2 & 1
\end{vmatrix}$$

$$= (1 - X)[(4 - X)(-2X + X^2 + 1) + X - 2 - 2(1 - 4 + 2X)]$$

$$= (1 - X) \begin{vmatrix} 4 - X & 1 & -2 \\ 1 & 2 - X & -1 \\ 2 & 1 & -X \end{vmatrix}$$

$$= (1 - X)[(4 - X)|2 - X - 1 1 - X| - \begin{vmatrix} 1 & -1 \\ 2 & -X \end{vmatrix} - 2\begin{vmatrix} 1 & 2 - X \\ 2 & 1 \end{vmatrix}$$

$$= (1-X)[(4-X)(-2X+X^2+1)+X-2-2(1-4+2X)]$$

$$= (1 - X)[-X^{3} + 6X^{2} - 9X + 4 + X - 2 + 6 - 4X]$$

$$= (1 - X)[-X^3 + 6X^2 - 12X + 8]$$

$$= (X-1)(X^3 - 6X^2 + 12X - 8)$$

2 est racine évidente :

$$= (X-1)(X-2)(X^2-4X+4)$$

$$=(X-1)(X-2)^{3}.$$

Donc Spec $(A) = \{1, 2\}.$

1 est valeur propre simple, donc $\dim(SEP(A, 1)) = 1$.

2 est valeur propre triple, donc dim(SEP(A, 2)) $\in \{1, 2, 3\}$.

A est diagonalisable si et seulement si $\dim(SEP(A, 2)) = 3$.

On détermine les sous-espaces propres :

1) Sous-espace propre associé à 1 :
$$AX = X \Leftrightarrow \begin{cases} x_1 = x_1 \\ -x_1 + 3x_2 + x_3 - 2x_4 = 0 \\ 2x_1 + x_2 + x_3 - x_4 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$
.

$$\Leftrightarrow \begin{cases} x_1 - 3x_2 - x_3 + 2x_4 = 0 \\ 7x_2 + 3x_3 - 5x_4 = 0 \\ 5x_2 + 2x_3 - 3x_4 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 - 3x_2 - x_3 + 2x_4 = 0 \\ 7x_2 + 3x_3 - 5x_4 = 0 \\ \frac{-1}{7}x_3 + \frac{4}{7}x_4 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 - 3x_2 - x_3 + 2x_4 = 0 \\ 7x_2 + 3x_3 - 5x_4 = 0 \\ -x_3 + 4x_4 = 0 \end{cases}$$

On obtient trois équations indépendantes, le sous-espace propre est bien de dimension 1, une base s'obtient en posant par exemple $x_4 = 1$, d'où : $x_3 = 4$, $x_2 = -1$, $x_1 = -1$.

On a donc SEP
$$(A, 1) = \{\lambda, \begin{pmatrix} -1 \\ -1 \\ 4 \\ 1 \end{pmatrix} / \lambda \in \mathbb{R} \}.$$

1) Sous-espace propre associé à 3 :
$$AX = 3X \Leftrightarrow \begin{cases} -x_1 = 0 \\ -x_1 + 2x_2 + x_3 - 2x_4 = 0 \\ 2x_1 + x_2 - x_4 = 0 \\ x_1 + 2x_2 + x_3 - 2x_4 = 0 \end{cases}$$
.

$$\Leftrightarrow \begin{cases} x_1 = 0 \\ 2x_2 + x_3 - 2x_4 = 0 \\ x_2 - x_4 = 0 \\ 2x_2 + x_3 - 2x_4 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = x_4 \\ x_3 = 0 \end{cases}$$

On obtient trois équations indépendantes, le sous-espace propre est donc de dimension 1, une base s'obtient en posant par exemple $x_4=1$, d'où : $x_3=0,\,x_2=1,\,x_1=0$.

On a donc SEP
$$(A, 2) = \{\lambda, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} / \lambda \in \mathbb{R} \}.$$

On $\operatorname{adim}(\operatorname{SEP}(A,2)) + \operatorname{dim}(\operatorname{SEP}(A,1)) = 1 + 1 = 2 < 4$, A n'est donc pas

diagonalisable.

2) Réduite de Jordan de A

On regarde quels sont les blocs de Jordan possibles pour la réduite de Jordan de A.

On sait qu'ils sont de la forme $J_k(\lambda)$, où λ est une valeur propre de A, et k un entier compris entre 1 et l'ordre multiplicité m de λ dans χ_A . $(1 \le k \le m)$. La valeur propre 1 est d'ordre de multiplicité 1, le seul bloc de Jordan possible est donc $J_1(1) = (1)$.

La valeur propre 2 est d'ordre de multiplicité 3, on a donc trois blocs de

Jordan possibles,
$$J_1(2) = (2)$$
, $J_2(2) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, $J_3(2) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Sur la diagonale de la réduite de Jordan, on doit trouver les valeurs propres comptées avec multiplicité, on doit donc avoir une fois 1 et trois fois 2.

Les réduites de Jordan possibles sont donc : $J_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$, $J_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, J_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Si J_1 était la réduite de Jordan de A, comme J_1 est diagonale, A serait diagonalisable, ce qui est faux. J_1 n'est donc pas la réduite de Jordan de A. Si J_2 était la réduite de Jordan de A, on aurait $A = PJ_2P^{-1}$, avec P une

matrice inversible. Dans la base $\{e_1, e_2, e_3, e_4\}$ de $M_{4,1}(\mathbb{R})$ définie par P, la matrice de ϕ_A est J_2 , donc $\phi_A(e_2) = 2e_2$ et $\phi_2(e_3) = 2e_3$. On aurait donc deux vecteurs propres pour 2 e_2 et e_3 indépendants. Ce n'est pas possible car SEP(A, 2) est de dimension 1: tous les vecteurs de cet espace sont colinéaires. La réduite de Jordan de A est donc J_3 .

Il reste à trouver $P \in GL_n(K)$ tel que $A = PJ_3P^{-1}$.

Si $P \in GL_n(K)$ est telle que $A = PJ_3P^{-1}$, alors si on note $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ la base de $M_{4,1}(\mathbb{R})$ formée des vecteurs-colonnes de P,par la relation de changement de base la matrice de ϕ_A dans \mathcal{B} est J_3 , on a donc $\phi_A(e_1) = e_1$, $\phi_A(e_2) = 2e_2$, $\phi_A(e_3) = 2e_3 + e_2$, $\phi_A(e_4) = 2e_4 + e_3$.

Réciproquement, si on trouve une base $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ de $M_{4,1}(\mathbb{R})$ vérifiant les quatre égalités précédentes, et si on note P la matrice de passage de B_0 à \mathcal{B} , on aura $A = PJ_3P^{-1}$.

On résout donc les quatre équations $\phi_A(e_1) = e_1$, $\phi_A(e_2) = 2e_2$, $\phi_A(e_3) = 2e_3 + e_2$, $\phi_A(e_4) = 2e_4 + e_3$.

 e_1 et e_2 sont donnés par des vecteurs propres pour 1 et 2 : par exemple

$$e_1 = \begin{pmatrix} -1 \\ -1 \\ 4 \\ 1 \end{pmatrix} \text{ et } e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

On résout
$$Ae_3 = 2e_3 + e_2$$
: $Ae_3 = 2e_3 + e_2 \Leftrightarrow \begin{cases} -x_1 = 0\\ -x_1 + 2x_2 + x_3 - 2x_4 = 1\\ 2x_1 + x_2 - x_4 = 0\\ x_1 + 2x_2 + x_3 - 2x_4 = 1 \end{cases}$.

$$\Leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = x_4 \\ x_3 = 1 \end{cases}$$

Un exemple d'un tel vecteur e_3 est $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$.

On résout
$$Ae_4 = 2e_4 + e_3$$
: $Ae_4 = 2e_4 + e_3 \Leftrightarrow \begin{cases} -x_1 = 0\\ -x_1 + 2x_2 + x_3 - 2x_4 = 0\\ 2x_1 + x_2 - x_4 = 1\\ x_1 + 2x_2 + x_3 - 2x_4 = 0 \end{cases}$.

$$\Leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = x_4 + 1 \\ x_3 = -2 \end{cases}$$

Un exemple d'un tel vecteur e_4 est $\begin{pmatrix} 0\\1\\-2\\0 \end{pmatrix}$.

Conclusion: on a
$$A = PJP^{-1}$$
, avec $J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 4 & 0 & 1 & -2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$.