INFO 7374 MACHINE LEARNING IN FINANCE

ASSIGNMENT I

- 1. What is the Kurtosis of the Standard Normal Distribution?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 2. What is the Skewness of the Standard Normal Distribution?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 3. If f(x) is a density function defined from the negative infinity to positive infinity, what is the value of $\int_{-\infty}^{+\infty} f(x)dx$?
 - A. 0
 - B. 1
 - C. 0.5
 - D. 2
- 4. Which of the follows is the mean of a uniform random variable $x \sim U[a, b]$?
 - A. $\frac{a+b}{2}$
 - B. b-a
 - C. $\frac{(b-a)^2}{6}$
 - D. $\frac{(b-a)^2}{12}$
- 5. Given $x \sim U[0, 1]$, which of the following gives $y \sim U[a, b]$?
 - A. y = a + bx
 - B. y = a bx
 - C. y = a + (b a)x
 - D. $y = a + (b a)^2 x$
- 6. Given $x \sim N(0, 1)$, which of the following gives $y \sim N(a, b)$?
 - A. y = a + bx
 - $B. \ y = a + b^2 x$
 - C. $y = a + \sqrt{b}x$
 - D. $y = a + (b a)^2 x$
- 7. Which of the following distributions is appropriate to model the stock price?

- A. Uniform
- B. Normal
- C. Log-normal
- D. Students-t
- 8. Which of the following distributions is appropriate to model a parameter distributed within a certain interval, say [0.2, 0.5]?
 - A. Exponential
 - B. Beta
 - C. Gamma
 - D. Weibull
- 9. Let $Y = \rho X + \sqrt{1 \rho^2} U$ where *X* and *U* are normally distributed ~ N(0,1). What is the correlation between *Y* and *X*?
 - Α. ρ
 - B. $\sqrt{1-\rho^2}$
 - C. $\dot{\rho}^2$
 - D. $1 \rho^2$
- 10. Given the following counter plot of a bivariate normal distribution, what could you infer from the graph about the correlation between the two variables?

- A. $\rho > 0$
- B. $\rho < 0$
- C. $\rho = 0$
- D. No sufficient information