Sec.10.3 一般级数的审敛法 一.交错级数及其审敛法 二. 绝对收敛与条件收敛

上页 下页 返

例1.判断级数的敛散性.

(1).
$$\sum \frac{\sin nx}{2^n}$$
; (2). $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$;

$$(3).1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

解 (1).随着x取不同的值,级数
$$\sum_{n=1}^{\infty}$$
显

示其并不是一个正项级数,但是显然

有
$$\left| \frac{\sin nx}{2^n} \right| \leq \frac{1}{2^n}$$
,由 $Cauchy$ 收敛准则可知

级数
$$\sum \frac{\sin nx}{2^n}$$
收敛, $\forall x \in (-\infty, +\infty)$.

$$\forall \varepsilon > 0, \exists N \geq \frac{1}{\varepsilon}, \forall n > N, \forall m \in \mathbb{Z}^+, \dagger$$

$$\frac{1}{\varepsilon} \forall \varepsilon > 0, \exists N \geq \frac{1}{\varepsilon}, \forall n > N, \forall m \in \mathbb{Z}^+, \hat{\eta}$$

$$\left| \sum_{n+1}^{n+m} \frac{\sin kx}{2^k} \right| \leq \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+m}}$$

$$= \frac{1}{2^n} - \frac{1}{2^{n+m}} < \frac{1}{2^n} < \frac{1}{n} < \frac{1}{N} \leq \frac{1}{1/\varepsilon} = \varepsilon,$$

$$\pm Cauchy 收敛准则知级数 \sum_{n=1}^{\infty} \frac{\sin nx}{2^n} \psi$$

$$=\frac{1}{2^n}-\frac{1}{2^{n+m}}<\frac{1}{2^n}<\frac{1}{n}<\frac{1}{N}\leq\frac{1}{1/\varepsilon}=\varepsilon$$

$$\forall x \in (-\infty, +\infty).$$

$$(2).\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{n};$$

$$(2).\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n};$$
 $(3).\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n};$
 $(3).\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n};$
 $(4).\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n};$
 $(5).\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n};$

$$\frac{1}{n+1} - \left(\frac{1}{n+2} - \frac{1}{n+3} + \dots + \frac{1}{n+m-1} - \frac{1}{n+m}\right) < \frac{1}{n+1} < \frac{1}{n}, m$$
 \Rightarrow $\frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{n+3} + \dots + \frac{1}{n-1} - \frac{1}{n+m}\right) - \frac{1}{n+1} < \frac{1}{n}, m$

$$\frac{1}{n+1} - \left(\frac{1}{n+2} - \frac{1}{n+3} + \dots + \frac{1}{n+m-2} - \frac{1}{n+m-1}\right) - \frac{1}{n+m} < \frac{1}{n}, m$$

2).
$$\forall \varepsilon > 0, \exists N \geq \frac{1}{\varepsilon}, \forall n > N, \forall m \in \mathbb{Z}^+, \forall n \geq N, \forall m \in \mathbb{Z}^+$$

| 于
$$|S_{n+m} - S_n| = \left| \frac{(-1)^n}{n+1} + \dots + \frac{(-1)^{n+m-1}}{n+m} \right|$$

$$\frac{1}{1} - \frac{1}{n+2} + \frac{1}{n+3} - \frac{1}{n+4} + \dots + \frac{(-1)^{m-1}}{n+m} =$$

$$1 \le \frac{1}{1} = \varepsilon$$
,即 $|S_{n+m} - S_n| < \varepsilon$,∴原级数收敛.

$$(3).1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} u_n, u_n = ?$$

收敛\发散,有何感觉?

对无限多个数的和运算我们不熟悉,考虑部分和

$$S_{3n} = 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{1}{3n-2} + \frac{1}{3n-1} - \frac{1}{3n}$$

$$> 1 + \frac{1}{4} + \dots + \frac{1}{3n-2} > \frac{1}{3} + \frac{1}{6} + \dots + \frac{1}{3n} = \frac{1}{3} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$

我们知道调和级数
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
发散, $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{n}\right) = +\infty$

由极限的保序性知 $\lim_{n\to\infty} S_{3n} = +\infty$,而 $\{S_{3n}\}$ 是 $\{S_n\}$ 的子列,

由"数列收敛⇔数列的任意非平凡子列均收敛"知

 $\lim_{n\to\infty} S_n$ 不存在,故原级数发散.

-. 交错级数及其审敛法

1.交错级数.

若
$$u_n > 0$$
,则称 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 为交错级数.

定理12.7(Leibniz).若交错级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$

满足条件(1).
$$u_n \ge u_{n+1}, n \in \mathbb{Z}^+, (2)$$
. $\lim_{n \to \infty} u_n = 0$.

则该级数收敛,且其余项 $|R_n| \le u_{n+1}$.

证明 $: u_{n-1} - u_n \geq 0$,

$$S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \cdots + (u_{2n-1} - u_{2n})$$

证明
$$: u_{n-1} - u_n \ge 0$$
,
 $: S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n})$
 $: 数列 \{S_{2n}\}$ 是单调增加的.又
 $S_{2n} = u_1 - (u_2 - u_3) - \dots - (u_{2n-2} - u_{2n-1}) - u_{2n} \le u_1$
数列 $\{S_{2n}\}$ 是有上界的.
 $: \lim_{n \to \infty} S_{2n} = S \le u_1 \cdot \lim_{n \to \infty} u_{2n+1} = 0$,
 $: \lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} (S_{2n} + u_{2n+1}) = S$,
 $: :$ 级数的和为 S ,且 $S \le u_1$.
 $\Leftrightarrow \overline{m} |R| = u_1 - u_2 + \dots = |R| \le u_n$.

$$\therefore \lim_{n\to\infty} S_{2n} = S \le u_1 \cdot \because \lim_{n\to\infty} u_{2n+1} = 0,$$

$$\therefore \lim_{n\to\infty} S_{2n+1} = \lim_{n\to\infty} \left(S_{2n} + u_{2n+1} \right) = S,$$

余项
$$|R_n| = u_{n+1} - u_{n+2} + \cdots$$
,: $|R_n| \le u_{n+1}$.

例2.判断交错级数
$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{3}$$
的敛散性.

解 $: u_n = \frac{1}{n} > \frac{1}{n+1} = u_{n+1}$
 $(n=1,2,\cdots),$
又 $\lim_{n\to\infty} u_n = 0,$
∴由Leibniz Th .知级数收敛.

若记
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = S$$
,

那么 $1 - \frac{1}{2} < S < 1$,

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} < S < 1 - \frac{1}{2} + \frac{1}{3}$,

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} < S$
 $< 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \dots$

若记 $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=S$,

$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1}$$
的敛散性.

$$\stackrel{+}{=} \stackrel{+}{=} \frac{1}{x-1} = \frac{-(1+x)}{2\sqrt{x}(x-1)^2} < 0, (x \ge 2)$$

 $\frac{1}{x}$ 故函数 $\frac{\sqrt{x}}{x-1}$ 单调递减, $u_n > u_{n+1}$,

故函数
$$\frac{1}{x-1}$$
 單调速源,∴ $u_n > u_{n+1}$,
$$2 \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{\sqrt{n}}{n-1} = 0, 原级数收敛.$$

说明:

1.定理12.7一Leibniz判别法,是判定交错级数收敛的充分而非必要条件.

→ Leibniz判别法的条件之一不满足,

那结果如何呢?

2.判定 $u_{n+1} < u_n$ 的方法:

$$(1).u_{n+1}-u_n<0;$$

$$(2).\frac{u_{n+1}}{u_n} < 1 ;$$

(3).相应函数的单调性.

Ex.1.试判断级数的敛散性

$$\frac{(\sqrt{3}-1)(\sqrt{3}+1)}{(\sqrt{n}-1)(\sqrt{n}+1)} + \frac{2}{(\sqrt{n}+1-1)(\sqrt{n}+1+1)} + \cdots$$

解:
$$\left(\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1}\right) + \left(\frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1}\right) + \cdots$$

$$+ \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}}\right) + \left(\frac{1}{\sqrt{n+1}-1} - \frac{1}{\sqrt{n+1}+1}\right) + \cdots$$

$$= \frac{2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)} + \frac{2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)} + \cdots$$

$$+ \frac{2}{\left(\sqrt{n-1}\right)\left(\sqrt{n+1}\right)} + \frac{2}{\left(\sqrt{n+1}-1\right)\left(\sqrt{n+1}+1\right)} + \cdots$$

$$= 2\left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} + \frac{1}{n} + \cdots\right),$$
由于调和级数发散,由级数性质4: 若级数加括号后发散,则原级数发散.再由性质1: 级数乘上非零数, 级数的敛散性不变.故此原级数发散.

下页

返回

- 二. 绝对收敛与条件收敛 2. 绝对收敛和条件收敛: 定义: 正项和负项任意出现的级数称为 任意项级数.
 - 任意项级数的各项取绝对值

任意项级数

正项级数

问题: 如何研究任意项级数的敛散性?

任意项级数的敛散性:

$$1.\sum_{n=1}^{\infty}u_n$$
绝对收敛: $\sum_{n=1}^{\infty}|u_n|$ 收敛;

$$2.\sum u_n$$
条件收敛:

$$\sum_{n=1}^{\infty} |u_n| 发散, \sum_{n=1}^{\infty} u_n 收敛;$$

$$3.\sum_{n=0}^{\infty}u_{n}$$
发散.

定理12.8.若 $\sum |u_n|$ 收敛,则 $\sum u_n$ 收敛.

显然 $v_n \geq 0$,且 $v_n \leq |u_n|$,

:: 由正项级数的比较判别法

$$\sum_{n=1}^{\infty} |u_n| 收敛 \Rightarrow \sum_{n=1}^{\infty} v_n 收敛,$$

又 ::
$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} (2v_n - |u_n|)$$
,由收敛

级数的线性运算性质知 $\sum u_n$ 收敛.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{2^n}$$
 收敛,

例3.(2).试问级数
$$\sum_{1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
是

否收敛?若收敛,是绝对/条件收敛?

$$|u_n| = \frac{n}{n^2 + 1} \ge \frac{n}{n^2 + n} = \frac{1}{n+1},$$

而
$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
发散,所以 $\sum_{n=1}^{\infty} |u_n|$ 发散,

从而
$$\sum_{1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
非绝对收敛.

$$\sum_{1}^{\infty} \frac{(-1)^{n-1}n}{n^2+1}, \because \lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n}{n^2+1} = 0,$$

$$Tx \ge 1 时 f'(x) = \frac{1 - x^2}{\left(1 + x^2\right)^2} \le 0,$$

$$f(x)$$
在 $[1,+\infty)$ 上单调递减,:: $u_n \ge u_{n+1}$.

自由Leibniz定理, $\sum_{1}^{\infty} \frac{(-1)^{n-1}n}{n^2+1}$ 收敛即条件收敛.

如何判定正数列
$$\left\{\frac{n}{n^2+1}\right\}$$
的单调性:

(1).作差法:
$$\frac{n}{n^2+1} - \frac{n+1}{(n+1)^2+1} > 0$$
?

(3).导数法:设
$$f(x) = \frac{x}{1+x^2} (x \ge 1)$$
, 则 在 $[1,+\infty)$ 上 $f'(x) \le 0$?

例4.判断级数 $\sum_{n=1}^{\infty} \frac{n\sin\frac{n\pi}{9}}{3^n}$ 的敛散性.

解 注意, $\sin \frac{n\pi}{9}$ 是干扰项.

由根值法,
$$\lim_{n\to\infty} \sqrt[n]{\frac{n}{3^n}} = \frac{\lim_{n\to\infty} \sqrt[n]{n}}{3} = \frac{1}{3} < 1$$
,

- ∴正项级数 $\sum_{n=1}^{\infty} \frac{n}{3^n}$ 收敛,
- ::原级数绝对收敛.

 $n \cdot 3$ " 解题不能不管不顾地一上来就通项取绝对值.

$$\left|\frac{2^{n}\cos n}{n\cdot 3^{n}}\right| < \frac{2^{n}}{n\cdot 3^{n}}, \lim_{n\to\infty} \sqrt[n]{\frac{2^{n}}{n\cdot 3^{n}}} = \frac{2}{3}\lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = \frac{2}{3} < 1,$$

$$\sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n}$$
绝对收敛,故
$$\sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n}$$
收敛

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n \cdot 3^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
是交错级数,满足Leibniz定理条件,

例4.(2).判断级数
$$\sum_{n=1}^{\infty} \frac{2^n \cos n + (-3)^n}{n \cdot 3^n}$$
的敛散性.

解注意,解题不能不管不顾地一上来就通项取绝对值
$$\left| \frac{2^n \cos n}{n \cdot 3^n} \right| < \frac{2^n}{n \cdot 3^n}, \lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n \cdot 3^n}} = \frac{2}{3} \lim_{n \to \infty} \frac{1}{\sqrt{n}} = \frac{2}{3} < 1,$$

$$\sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n} \text{ dearty} \text{ dear$$

例4.(2).判断级数
$$\sum_{n=1}^{\infty} \frac{2^n \cos n + (-3)^n}{n \cdot 3^n}$$
的敛散性.

注意,解题不能不管不顾地一上来就通项取绝对值.

倘若你作 $\left| \frac{2^n \cos n + (-3)^n}{n \cdot 3^n} \right| \le \left| \frac{2^n \cos n}{n \cdot 3^n} \right| + \left| \frac{(-3)^n}{n \cdot 3^n} \right| < \frac{2^n}{n \cdot 3^n} + \frac{1}{n}$,

 $\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 3^n}$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n}$ 绝对收敛,故 $\sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n}$ 收敛 .

但是, $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,你就得不到有用的信息了.

$$\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 3^n}$$
收敛 $\Rightarrow \sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n}$ 绝对收敛,故 $\sum_{n=1}^{\infty} \frac{2^n \cos n}{n \cdot 3^n}$ 收敛.

$$(1).\sum_{n=0}^{\infty}\frac{x^n}{n!}; \quad (2).\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}; \quad (3).\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^n}{n}.$$

例5.判断下列级数的敛散性.
$$(1).\sum_{n=0}^{\infty} \frac{x^{n}}{n!}; (2).\sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}; (3).\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}.$$

$$f(1). \text{ if } x = 0 \text{ or } x \text{$$

$$\begin{array}{l}
\exists (2).\sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \\
\exists x = 0 \text{时显然级数收敛.而当} x \neq 0 \text{时,} \\
\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_{n}} \right| = \lim_{n \to \infty} \frac{(2n)!}{(2n+2)!} |x|^{2} \\
= \lim_{n \to \infty} \frac{|x|^{2}}{(2n+2)(2n+1)} = 0, \\
\therefore 对任一确定的x \in \mathbb{R}, 级数绝对收敛.

\[
\text{\sqrt{\text{$$

$$\exists x = 0$$
时显然级数收敛.而当 $x \neq 0$ 时,

$$\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=\lim_{n\to\infty}\frac{(2n)!}{(2n+2)!}|x$$

$$= \lim_{n\to\infty} \frac{|x|}{(2n+2)(2n+1)} = 0$$

:: 对任一确定的
$$x \in \mathbb{R}$$
,级数绝对收敛.

$$(3).\sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
, 当 $x = 0$ 时级数显然收敛.

而
$$x \neq 0$$
时, $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} |x| = |x|$,

$$|x| < 1$$
时级数绝对收敛,

|x| > 1 时级数发散;(?)

而
$$|x|=1$$
时, $x=1$, $\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}$ 是级数,

此时级数收敛一条件收敛;

$$x = -1, 级数为 \sum_{n=1}^{\infty} \frac{-1}{n}, 显然级数发散.$$

若
$$\lim_{n\to\infty} \sqrt[n]{|u_n|} = r$$
或 $\lim_{n\to\infty} \frac{|u_{n+1}|}{|u_n|} = r$,那么

$$\frac{1}{1} \qquad (2) \cdot r > 1, \sum_{n=1}^{\infty} u_n$$

$$\frac{1}{1} \qquad (2) \cdot r > 1 \Rightarrow \lim_{n \to \infty} u_n = \infty$$

思考练习:判断级数敛散性.

(1).
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^2}};$$
 (2). $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n}\right);$

(3).
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
; (4). $\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{3^n} + \frac{1}{2n+1} \right]$.

现在再来做这样的题目就觉得十分简单了吧!

3. 绝对收敛级数的一个重要性质**

→级数的重排.

定义:把正整数列 $\{1,2,\dots,n\dots\}$ 到它自身的一一映射 $f:n\to k(n)$ 称为正整数列的重排,相应地对于数列 $\{u_n\}$ 按映射

 $F: u_n \to u_{k(n)}$ 所得到的数列 $\{u_{k(n)}\}$ 称为

原数列的重排,那么相应地称 $\sum_{n=1}^{\infty} u_{k(n)}$ 为

原级数 $\sum u_n$ 的重排。

定理12.9.*若级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛,其和等于

S,则级数重排后的新级数也绝对收敛于S. 注意:条件收敛的级数重排后得到的新级

数,可以发散可以收敛.即使收敛,在作适 当的重排后,新级数可以收敛于任一事先 指定的数.

结论:级数绝对收敛时级数的加法满足加 法交换律.级数条件收敛时级数的加法不 满足加法交换律.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = A,$$

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots = \frac{3}{2}A,$$

容易看出, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 条件收敛.记 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = A,$ 可以按某一规则得到 $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots = \frac{3}{2}A$ 甚至可以重排该级数的项的次序, 使得
级数收敛于任何的有限值, 甚或发散.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = A,$$

$$\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \dots = \frac{1}{2}A,$$

$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \dots = A,$$

$$0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + 0 + \frac{1}{10} + 0 - \frac{1}{12} + 0 + \frac{1}{14} + \dots = \frac{1}{2}A,$$

$$\Rightarrow 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots + \dots = \frac{3}{2}A$$

在概率论中,一个离散型随机变量的数学期望的定义需要无穷级数的绝对收敛,就是要期望值不随随机变量的分布律中的取值次序的改变而有什么变化.

定义:设离散型随机变量X的分布律为

$$P(X = x_k) = p_k, k = 1, 2, 3, \cdots$$

若 $\sum_{k=1}^{\infty} |x_k| p_k$ 收敛,则称 $\sum_{k=1}^{\infty} x_k p_k$ 为随机变量X的数学

期望(mathematical expectation)或平均值(mean),

简称 期望或均值记为E(X)或M(X).

4.级数的乘积

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots = A \qquad (1)$$

$$\sum_{n=0}^{\infty} v_n = v_1 + v_2 + \dots + v_n + \dots = B$$
 (2)

 $\sum_{n=1}^{\overline{n-1}} v_n = v_1 + v_2 + \dots + v_n + \dots = B$ (2) 为收敛级数,将(1)与(2)中每一个所有可能的乘积列成

下表:

$$u_{1}v_{1}$$
 $u_{1}v_{2}$ $u_{1}v_{3}$... $u_{1}v_{n}$... $u_{2}v_{1}$ $u_{2}v_{2}$ $u_{2}v_{3}$... $u_{2}v_{n}$... $u_{3}v_{1}$ $u_{3}v_{2}$ $u_{3}v_{3}$... $u_{3}v_{n}$... $u_{n}v_{n}$... $u_{n}v_{n}$... $u_{n}v_{n}$...

这些乘积 *u_iv_j* 可以按各种方法排成不同的级数,常用的有按正方形顺序或按对角线顺序依次相加,于是分别有:

 $u_1v_1 + u_1v_2 + u_2v_2 + u_2v_1 + u_1v_3 + u_2v_3 + u_3v_3 + \cdots$ $\pi \quad u_1v_1 + u_1v_2 + u_2v_1 + u_1v_3 + u_2v_2 + u_3v_1 + \cdots$

定理12.10(Cauchy定理)若级数(1),(2)都绝对收敛,则对(3)中所有乘积 u_iv_j 按任意顺序排列所得到的级数 $\sum_{i=1}^{\infty} w_i$ 也绝对收敛,且其和等于AB.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
对任意的实数 x 绝对收敛,

$$x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, 则有S(x)S(y) = S(x+y).$$

译
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, S(y) = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
,则有 $S(x)S(y) = S(x+y)$.

$$MR S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $S(y) = \sum_{n=0}^{\infty} \frac{y^n}{n!}$,
$$S(x)S(y) = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{y^n}{n!}\right) \frac{\text{用Cauchy}}{\text{对角线法排列}} \sum_{n=0}^{\infty} w_n$$

$$w_n = \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k! \cdot (n-k)!} x^k$$

$$= \frac{1}{n!} \sum_{k=0}^{n} C_n^k x^k y^{n-k} = \frac{(x+y)^n}{n!}$$
,
$$\therefore S(x)S(y) = S(x+y), \forall x, y \in \mathbb{R}.$$

$$w_{n} = \sum_{k=0}^{n} \frac{x^{k}}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k! \cdot (n-k)!} x^{k} \cdot y^{n-k}$$

$$= \frac{1}{n!} \sum_{k=0}^{n} C_{n}^{k} x^{k} y^{n-k} = \frac{\left(x+y\right)^{n}}{n!}$$

$$S(x)S(y) = S(x+y), \forall x, y \in \mathbb{R}$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, S(y) = \sum_{n=0}^{\infty} \frac{y^n}{n!},$$

$$S(x)S(y) = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{y^n}{n!}\right)^{\text{\parallel Cauchy πn}} \sum_{n=0}^{\infty} w_n$$

$$\therefore S(x)S(y) = S(x+y)$$

S(x)S(y) = S(x+y),

就是指数函数的一个基本特征

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \div (-\infty,\infty) 上绝对收敛,$$

記
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = C(x),$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = S(x),$$

试证明:
$$\forall x, y \in (-\infty, +\infty)$$
有

$$=S(x+y).$$

思考题

判断级数
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n+(-1)^n}}$$
是否收敛?

若收敛是条件收敛还是绝对收敛?

思考题解答

$$|u_n| = \frac{1}{\sqrt{n + (-1)^n}} > \frac{1}{\sqrt{2n}} \overline{m} \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n}} \xi \psi,$$

$$\therefore \sum_{n=1}^{\infty} |u_n|$$
发散.

下面判断是否条件收敛,首先认定是交错级数,但因不满足 $u_{n+1} \leq u_n$,所以莱布尼兹判定法无效.此处可用定义证明.

$$\vdots S_{2n} = \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{4}}\right) + \dots + \left(\frac{1}{\sqrt{2n+1}} - \frac{1}{\sqrt{2n}}\right),$$

$$\overrightarrow{y} S_{2n} = -\frac{1}{\sqrt{2}} + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}}\right)$$

$$+ \dots + \left(\frac{1}{\sqrt{2n-1}} - \frac{1}{\sqrt{2n}}\right) + \frac{1}{\sqrt{2n+1}},$$

$$\therefore S_{2n}$$

$$\overrightarrow{y} \overrightarrow{y} = S,$$

$$\vdots \lim_{n \to \infty} S_{2n} = S,$$

$$\vdots \lim_{n \to \infty} S_{2n} = S,$$

$$\vdots \lim_{n \to \infty} S_{n} = S,$$

$$\overrightarrow{y} \overrightarrow{y} = S,$$

$$\vdots \underbrace{y} \xrightarrow{y} = S,$$

$$\vdots \underbrace{y} = S,$$

$$\underbrace{y} = S,$$

$$\underbrace{$$

$$_{n} = -\frac{1}{\sqrt{2}} + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}}\right)$$

$$+\cdots+$$
 $\left(\sqrt{2n-1}-\sqrt{2n}\right)+\sqrt{2n+1}$
· S 为的调减小有下思粉剂

从而
$$\lim S_{2n} = S$$
,:: $\lim u_{2n+1} = 0$,:: $\lim S_{2n+1} = S$,

$$\therefore \lim S_n = S$$
,原级数收敛.

$$: 级数\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n+(-1)^n}}$$
条件收敛.

小结

	正项级数	任意项级数
	$1.$ 当 $n \to \infty$, $u_n \not\to 0$, 则级数发散;	
审敛法	$2. 若 S_n \rightarrow S$,则级数收敛;	
	4.充要条件5.比较法:不等式或极限形式6.比值法/根值法	4.绝对收敛 5.交错级数 (莱布尼茨定理)

练习题

1.判别下列级数是否收敛?若是收敛,试问是绝对收敛还是条件收敛?

$$(1).\sum_{n=1}^{\infty}(-1)^{n-1}\frac{n}{3^{n-1}};$$

(2).
$$\frac{1}{\ln 2} - \frac{1}{\ln 3} + \frac{1}{\ln 4} - \frac{1}{\ln 5} + \cdots;$$

$$(3).\sum_{n=2}^{\infty}\frac{(-1)^n}{n-\ln n}.$$

$$2.$$
若 $\lim_{n\to\infty} n^2 u_n$ 存在,求证级数 $\sum u_n$ 收敛.

Ex.2.若 $\lim_{n\to\infty} n^2 u_n$ 存在,求证级数 $\sum_{n=1}^{\infty} u_n$ 收敛.

证明 :
$$\lim_{n\to\infty} n^2 u_n = a$$
存在,

$$\therefore \lim_{n\to\infty} n^2 |u_n| = |a| \longleftrightarrow \lim_{n\to\infty} \frac{|u_n|}{\frac{1}{n^2}} = |a|,$$

由正项级数的比较判别法的极限形式:

由级数
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
收敛 \Rightarrow 级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛.

级数
$$\sum_{n=1}^{\infty} u_n$$
绝对收敛 \Rightarrow 级数 $\sum_{n=1}^{\infty} u_n$ 收敛.

$$Add.1.\frac{1}{3} - \frac{3}{10} + \frac{1}{3^2} - \frac{3}{10^2} + \frac{1}{3^3} - \frac{3}{10^3} + \cdots$$

$$Add.1.\frac{1}{3} - \frac{3}{10} + \frac{1}{3^2} - \frac{3}{10^2} + \cdots + \frac{1}{3^n} - \frac{3}{10^n}$$

$$= \left(\frac{1}{3} + \frac{1}{3^2} + \cdots + \frac{1}{3^n}\right) - \left(\frac{3}{10} + \frac{3}{10^2} + \cdots + \frac{3}{10^n}\right)$$

$$= \frac{\frac{1}{3} - \frac{1}{3^{n+1}}}{1 - \frac{1}{3}} - \frac{\frac{3}{10} - \frac{3}{10^{n+1}}}{1 - \frac{1}{10}}$$

 $\overline{3^n}$

 $\overline{10^n}$

Add.1. $\frac{1}{3} - \frac{3}{10} + \frac{1}{3^2} - \frac{3}{10^2} + \frac{1}{3^3} -$

 $= \frac{1}{3} - \frac{3}{10} + \frac{1}{3^2} - \frac{3}{10^2} + \dots +$

$$\therefore \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} \left(\frac{\frac{1}{3} - \frac{1}{3^{n+1}}}{1 - \frac{1}{3}} - \frac{\frac{3}{10} - \frac{3}{10^{n+1}}}{1 - \frac{1}{10}} \right)$$

$$=\frac{\frac{1}{3}}{1-\frac{1}{3}}-\frac{\frac{3}{10}}{1-\frac{1}{10}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6},$$

$$\mathbb{X} \lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} \left(S_{2n} + \frac{1}{3^{n+1}} \right) = \frac{1}{6},$$

$$\lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} S_{2n+1} = \frac{1}{6} \Rightarrow \lim_{n \to \infty} S_n = \frac{1}{6},$$

