NOTE ON AWFS

KEISUKE HOSHINO

Notation 0.1. We employ the following notations.

1. Orthogonal factorisation systems

Let **C** be a category.

Definition 1.1. A functorial factorisation on \mathbb{C} is a factorisation of the canonical natural transformation $dom \implies cod: \mathbb{C}^2 \longrightarrow \mathbb{C}$. In other words, a functorial factorisation $F = (E, \eta, \varepsilon)$ consists of the following data.

- A functor $E \colon \mathbf{C}^2 \longrightarrow \mathbf{C}$.
- Two natural transformations dom $\stackrel{\eta}{\Longrightarrow} E \stackrel{\varepsilon}{\Longrightarrow}$ cod whose composite is the canonical natural transformation dom \Longrightarrow cod.

Definition 1.2. A *(strict) double category* \mathbb{S} is a category internal to **Cat**. In particular, \mathbb{S} consists of the following data.

$$\mathbf{H}_1 \, \mathbb{S} \,_{\mathsf{bs}} \times_{\mathsf{ts}} \mathbf{H}_1 \, \mathbb{S} \xrightarrow{\underline{-\, \mathfrak{z}}} \mathbf{H}_1 \, \mathbb{S} \xrightarrow{\overset{\mathsf{bs}}{\leftarrow} \, \mathsf{id} \, -} \mathbf{H} \, \mathbb{S}$$

A (strict) double functor $F: \mathbb{S} \longrightarrow \mathbb{S}'$ is a pair of functors $\mathbf{H} F: \mathbf{H} \mathbb{S} \longrightarrow \mathbf{H} \mathbb{S}'$ and $\mathbf{H}_1 F: \mathbf{H}_1 \mathbb{S} \longrightarrow \mathbf{H} \mathbb{S}'$ making the obvious diagram commute. We write **SDbl** for the category of double categories and double functors.

A horizontally full subdouble category of $\mathbb S$ is a double category equipped with a double functor F towards $\mathbb S$ such that both $\mathbf H$ F and $\mathbf H_1$ F are full subcategory inclusions. A horizontally full subdoble category is called **wide** if $\mathbf H$ F is an identitity and $\mathbf H_1$ F is a replete subcategory inclusion. We write $\mathbf HFSub(\mathbb S)$ for the poset of horizontally full subdouble categories, and $\mathbf WHFSub(\mathbb S)$ for its subposet consisting of wide ones.

Example 1.3. (Nerves of) simplices ([2], [1], [0]) form a category object in $\mathbf{Cat}^{\mathsf{op}}$, and hence the internal hom functor $(-2)^{(-1)} \colon \mathbf{Cat}^{\mathsf{op}} \times \mathbf{Cat} \longrightarrow \mathbf{Cat}$ induces a functor $\mathbb{S}q \colon \mathbf{Cat} \longrightarrow \mathbf{SDbl}$ since $\mathbf{C}^{(-)} \colon \mathbf{Cat}^{\mathsf{op}} \longrightarrow \mathbf{Cat}$ preserves limits for each $\mathbf{C} \in \mathbf{Cat}$.

For each $C \in Cat$, vertical arrows and horizontal arrows in $\mathbb{S}q(C)$ are morphisms in C, while a (unique) cell exists for a square in $\mathbb{S}q(C)$ if and only if it is a commutative square in C.

Proposition 1.4 (Subcategory axiom). There is an isomorphism of posets

$$Sub(C) \cong HFSub(\mathbb{S}q(C)),$$

where Sub(C) is the poset of subcategories of C. Moreover, it restricts to another isomorphism

$$WSub(C) \cong WHFSub(Sq(C)),$$

where $\mathbf{WSub}(\mathbf{C})$ is the poset of wide subcategories.

Definition 1.5. A *wide subcategory* **W** of **C** is a replete subcategory of **C** whose inclusion $\mathbf{W} \hookrightarrow \mathbf{C}$ is (essentially) surjective.

References

Email address: hoshinok@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY

Date: May 2, 2024.