Branch: CSE/IT

Batch: English

Discrete Mathematics Set Theory

DPP-11

[MSQ]

- 1. Which of the following is True?
 - (a) The union of any two sub groups of a group G is also a sub group of G.
 - (b) The intersection of any two sub groups of a groups of a group G is also a sub group of G.
 - (c) Let $G = \{0, \pm k, \pm 2k, \pm 3k, \pm 4k, \dots, \infty\}$ where k is any fixed integer is a group w.r.t. addition.
 - (d) Every sub group an abelian group is also an abelian group.

[MSQ]

- **2.** Which of the following is True?
 - (a) every cyclic group is an abelian group
 - (b) if 'a' is generator of a cyclic group then a⁻¹ is also a generator of G.
 - (c) The order of a cyclic group is equal to the order of its generating element.
 - (d) A sub group of a cyclic group need not be cyclic.

[NAT]

3. How many generators are there for the cyclic group $(\{1, 2, 3, 4, 5, 6\}, \oplus_7)$

[MCQ]

- **4.** Which of the following is false?
 - (a) A cyclic group with only one generator can have at most 2 elements.
 - (b) The order of a cyclic group is equal to the order of its generator.
 - (c) The group $(\{1, 2, 3, 4\}, \otimes_5)$ is cyclic
 - (d) A group of order 4 is cyclic.

[MCQ]

5. Let $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and * denotes multiplication modulo 8 that is

$$x * y = (xy) \bmod 8.$$

Which of the following is a group w.r.t *?

- (a) $\{0, 1\}$
- (b) $\{1, 4\}$
- (c) $\{1, 3\}$
- (d) $\{1, 6\}$

Answer Key

(b, c, d) 1.

(a, b, c)

3. (2) 4.

(d) (c) 5.

Hints and Solutions

1. (b, c, d)

 $G = \{1, 3, 5, 7\}$ is a group with respect to \otimes_8 .

$$H_1 = \{1, 3\}$$
 and $H_2 = \{1, 5\}$

$$H_1 \cup H_2 = \{1, 3, 5\}$$

Here, H₁ and H₂ are subgroup of G,

But $H_1 \cup H_2$ is not a subgroup of G.

(a, b, c)

Every sub group of a cycle group is cyclic (theorem)

3. (2)

Number of generator of $G = \phi(6)$

= Number of positive integers which are less than 6 and relatively prime to 6.

= 2

4. (d)

 $G = \{1, 3, 5, 7\}$ is a group with respect to \otimes_8 .

G is not cyclic, because the generating element does not exist.

5. (c)

- (a) {0, 1} is not a sub group, because inverse of 0 does not exist.
- (b) {1, 4} is not a sub group, because the set is not closed with respect to the given binary operation.
- (c) $\{1, 3\}$ is closed with respect to *.
 - \therefore {1, 3} is a group.
- (d) {1, 6} is not a sub group, because the set is not closed with respect to the given binary operation.

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

