符号说明

为节省篇幅和简化排版,在不致引起混淆的情况下,采用以下省略符号:

 m, n, k, j, n_k 等表示自然数(不包括数 0), a, b, c, x, y 等表示实数, z, ω, ζ 等表示复数, $z = x + iy, \overline{z} = x - iy, i^2 = -1, |z| = \sqrt{x^2 + y^2}$, Rez = x, Imz = y, argz 为 z 的辐角主值, 即 $-\pi < argz \leq \pi$; [x] 表示不超过 x 的最大整数, $\{x\} = x - [x]$.

$$\sum a_k \, \bar{\xi} \, \bar{x} \, \sum_{k=1}^n a_k \, \bar{y} \, \sum_{k=1}^\infty a_k, \, \sum a_{jk} \, \bar{\xi} \, \bar{x} \, \sum_{j=1}^m \sum_{k=1}^n a_{jk} \, \bar{y} \, \sum_{j=1}^\infty \sum_{k=1}^\infty a_{jk}, \, \prod a_k \, \bar{\xi} \, \bar{x} \, \prod_{k=1}^n a_k \, \bar{y} \, \bar{y} \, \prod_{k=1}^\infty a_k, \, \bar{y} \, \bar$$

 $\exp x$ 表示 e^{x} , $\log x$ 表示 $\ln x$ (以 e 为底).

$$\log^+ \mid f(x) \mid = \begin{cases} \log \mid f(x) \mid , \ddot{A} \mid f(x) \mid \geqslant 1, \\ 0, & \ddot{A} \mid f(x) \mid < 1. \end{cases}$$
 x 的符号函数 $\operatorname{sgn} x = \begin{cases} 1, \, \ddot{A} \mid x > 0 \\ 0, \, \ddot{A} \mid x = 0 \end{cases}$ $\varphi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$ 表示 A 的特征函

数.

 $R^{n} = \{x = (x_{1}, \cdots, x_{n}): -\infty < x_{k} < \infty, 1 \leq k \leq n \}$ 表示 n 维欧氏空间,对于 x $= (x_{1}, \cdots, x_{n}) \in R^{n}. \|x\| = (\sum_{k=1}^{n} |x_{k}|^{2})^{1/2}. \alpha = (\alpha_{1}, \cdots, \alpha_{n})$ 为多重指标.其中 α_{k} (1 $\leq k \leq n$) 为非负整数, $\|\alpha\| = \sum_{k=1}^{n} \alpha_{k}, \alpha! = \prod_{k=1}^{n} \alpha_{k}!, D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}$ 表示微分算子. $\binom{\alpha}{k} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{k!} \qquad (\alpha \in R^{1}, k \in N), \binom{\alpha}{0} = 1, 特别当 \alpha = n$ 为自然数时,

$$\binom{n}{k} = C_n^k = \begin{cases} \frac{n!}{k!(n-k)!}, \stackrel{\text{\textit{id}}}{\neq} n \geqslant k, \\ 0, \stackrel{\text{\textit{id}}}{\neq} n < k. \end{cases}$$

 C^n 表示n 维酉空间. 即 $x = (x_1, \dots, x_n) \in C^n$ 时, x_1, \dots, x_n 均为复数, $y = (y_1, \dots, y_n) \in C^n$, $(x,y) = \sum_{k=1}^n x_k y_k$ 为x,y 的内积.

若无特别声明,本书出现的集E均为测度空间 (X,\sum,μ) 中可测集. $\mu(E)$ 表示集E

的测度, $f \in C(E)$ 表示 f 在E 上连续; $\int_E f(x) d\mu$ 或 $\int_{R^n} f(x) dx$,积分区域由上下文判别,当 f 是周期为 $T = 2\pi$ 的一元函数时, $\int_T f(x) dx$ 或 $\int_0^{2\pi} f(x) dx$ 。 $\int_0^{2\pi} f($

$$|| f ||_{X} = \begin{cases} || f ||_{C} = \sup\{|f(x)| : x \in E\}, & \text{ if } f \in C(E), \\ || f ||_{p} = (\int_{E} |f(x)|^{p} d\mu)^{1/p}, & \text{ if } f \in L^{p}(E), 1 \leqslant p < \infty, \end{cases}$$

 $\|f\|_{\infty} = \inf_{\mu(A)=0} \{\sup_{x \in E-A} |f(x)|\}, \|f\|_{p,\omega} = (\int_{E} |f(x)|^{p} \omega(x) \mathrm{d}\mu)^{1/p} \quad (1 \leq p < \infty),$ 其中 $\omega(x)$ 是 E 上非负权函数. 而 $\|f\|$ 表示泛函 f 的范数. $f \in BV[a,b]$ 表示 f 是 [a,b] 上有界变差函数, $f \in AC[a,b]$ 表示 f 是 [a,b] 上绝对连续函数. 数列 $a = (a_1, \cdots, a_n, \cdots) \in l^p (1 \leq p < \infty)$ 的加权范数记为 $\|a\|_{p,\omega} = \left(\sum |a_k|^p \omega_k\right)^{1/p}$, 式中 $\omega = (\omega_1, \cdots, \omega_n, \cdots,), \forall \omega_k > 0. |f > \alpha| = \{x \in E: f(x) > \alpha| \ \) f$ 的水平集, $\alpha \in R^1$.

题号"N.2-2-18"表示第二章第 2 节第 18 题, "N.3-28(1)"表示第 3 章第 28 题第 1 小题, 题号后"MC"表示数学竞赛试题(Mathematical Competition), 其中"MCM"表示中学生数学竞赛试题, "MCU"表示大学生数学竞赛试题或研究生人学试题, "IMO"表示数学奥林匹克试题, 算术几何平均不等式记为 AG 不等式.

引用期刊文献时,按期刊名 年份,卷号(期号):页码次序;外文期刊按国际标准缩写,例如[305]1986,93(6):466-468;表示"美国数学月刊",1986年第93卷第6期,第466-468页.