Classical Mechanics III (8.09 & 8.309) Fall 2021 Assignment 8

Massachusetts Institute of Technology Physics Department Mon. November 15, 2021

Due Mon. November 22, 2021 6:00pm

Announcements

This week we will continue our study of fluids, now including viscosity.

• On this problem set, **8.09 students** should do six problems 1,3,4,5,6,7 and **8.309 students** should do all 7 problems. Problem 1 is carried out slightly differently for the two groups, as described below. Note that the last two problems are short but important examples of the application of dimensional analysis.

Reading Assignment

- For ideal fluids and sound waves, read sections 8.6–8.10, 8.13, and 8.14 from the Mechanics book by **Symon** (scanned and available on the website).
- For fluids with viscosity the readings are from Landau and Lifshitz, Fluid Mechanics, Chapter II, sections 15-17 and 19-20 (which is available on the website).
- Further reading on fluids, including lots of worked examples and plenty of problems, can be found in the book "A physical introduction to Fluid Mechanics" by Alexander Smits.

Problem Set 8

In these problems we explore both ideal and viscous fluids. The last two problems use dimensional analysis.

1. Flow Geometries [everyone: 12 points for 8.09, 6 points for 8.309]

8.09 students do (a),(b),(c) for 4 points each. 8.309 students should PICK ANY TWO of the three parts to do, for 3 points each.

The velocity potential for certain potential flows of an ideal fluid is given in cylindrical coordinates (r, θ, z) by a function $\phi = \phi(r, \theta)$. Find the geometry of a fixed surface that is consistent with each of these potential flows:

- (a) $\phi = Cr^2 \cos(2\theta)$
- (b) $\phi = Cr^4\cos(4\theta)$

(c)
$$\phi = Cr^{2/3}\cos\left(\frac{2\theta}{3}\right)$$

Identify any stagnation points at finite r, and roughly sketch a streamline near the surface for each case.

2. The Stream Function [8.309 ONLY, 6 points]

Consider an ideal incompressible fluid in two-dimensions (the x-y plane). The stream-function $\psi(x,y)$ is defined so that $v_x = \partial \psi/\partial y$ and $v_y = -\partial \psi/\partial x$, which guarantees that $\nabla \cdot \vec{v} = 0$.

- (a) [2 points] Show that lines of constant ψ are streamlines (hence ψ 's name).
- (b) [4 points] Show that if the flow is also irrotational that ψ satisfies Laplace's equation. For $\psi(r,\theta) = \frac{2}{3}r^{3/2}\sin(\frac{3}{2}\theta)$ with polar coordinates (r,θ) , what is the corresponding velocity potential $\phi(r,\theta)$?

3. Ideal Fluid Flow around a Cylinder [everyone, 16 points]

Consider an infinitely long solid cylinder of radius R with its axis along \hat{z} , which is immersed in an incompressible irrotational ideal fluid of density ρ . At $x = -\infty$ the fluid flows with a constant velocity $\vec{u} = u\hat{x}$.

- (a) [6 points] Using Laplace's equation find the steady potential flow around the cylinder. Solve for the velocity field \vec{v} . Be sure that you satisfy the boundary conditions.
- (b) [4 points] Derive a result for the pressure on the cylinder.
- (c) [6 points] Derive a differential equation for the streamlines for this flow. Show that $x^2 + y^2 = R^2/(1 K/y)$ is a solution of your equation, where K is an arbitrary constant.

4. A Spherical Sound Wave [10 points, everyone]

A sound wave is generated in air by a point source.

(a) [3 points] Show by direct computation that the spherical pressure wave

$$p = \frac{1}{r} f(r - c_s t)$$

satisfies the sound wave equation for any differentiable function f.

- (b) [4 points] Find the corresponding velocity field \vec{v} . To facilitate grouping the time dependence of your solution into the combination $r c_s t$, let $g(x) = \int_{-\infty}^{x} dx' f(x')$.
- (c) [3 points] Cross check your answer in (b) by verifying that your \vec{v} also satisfies the wave equation. Note that in spherical coordinates the Laplacian on a vector field $\nabla^2(\phi(r)\hat{r}) = [\nabla^2\phi(r)]\hat{r} \frac{2}{r^2}\phi(r)\hat{r}$.

5. Viscous Fluid Velocity between Coaxial Cylinders [10 points, everyone]

Two very long cylinders are coaxial with \hat{z} . The inner cylinder is held at rest and has a radius R_1 . The outer cylinder has radius R_2 and moves parallel to its axis with a constant velocity $u\hat{z}$. A viscous fluid between the two cylinders exhibits a steady flow, and there is no pressure gradient in the z direction. What is the velocity profile of the fluid? What is the friction force per unit length for each cylinder?

6. Vortex Shedding with Dimensional Analysis [6 points, everyone]

Wind blows over a cylindrical chimney and vortices are shed into the wake. The frequency of vortex shedding f depends on the chimney diameter D, its length L, the wind velocity V, and the kinematic viscosity of air ν .

- (a) [3 points] Use dimensional analysis to write down a general functional relation for f in terms of the other parameters.
- (b) [1 point] If on another day we observe a second chimney whose diameter and length are 1/2 those of the original one, then what must the velocity of the wind be for there to be a chance to use a similarity analysis for the two chimneys?
- (c) [2 points] Taking the velocity of wind for the second chimney as in (b), what is the frequency of vortex shedding for the second chimney relative to the first?

7. Golf Ball Drag with Dimensional Analysis [6 points, everyone]

The drag force F_D on a golf ball depends on its velocity V, its diameter D, its spin rate ω measured in radians/sec, the air density ρ and air viscosity η , and the speed of sound c_s .

(a) [3 points] Use dimensional analysis to find a general functional relation for F_D in terms of the other parameters.

(b) [3 points] Suppose that the speed of sound is not important. How does your result in (a) change? With this assumption, if an experiment is carried out with air in a wind tunnel at velocity 2V, what diameter and spin rate are needed for the results to be dynamically similar to those for the velocity V?