Коваленко Артём ИУ5-64 Лабораторная № 3

Цель лабораторной работы

Изучение способов предварительной обработки данных для дальнейшего формирования моделей

Задание

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
 - обработку пропусков в данных;
 - кодирование категориальных признаков;
 - масштабирование данных.

Ход выполнения лабораторной работы

Подключим необхоимые библиотеки и загрузим набор данных

In [1]:

```
import pandas as pd
import seaborn as sns
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler
%matplotlib inline
# Устанавливаем тип графиков
sns.set(style="ticks")
# Для лучшего качествоа графиков
from IPython.display import set_matplotlib_formats
set_matplotlib_formats("retina")
# Устанавливаем ширину экрана для отчета
pd.set_option("display.width", 70)
# Загружаем данные
data = pd.read_csv('googleplaystore.csv')
data.head()
```

Out[1]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone

file:///C:/Users/aremm/Downloads/lab3.html

In [2]:

```
data.shape
```

Out[2]:

(10841, 13)

1. Обработка пропусков в данных

In [3]:

```
# проверим есть ли пропущенные значения data.isnull().sum()
```

Out[3]:

0 1474 0 0
0
•
0
0
1
0
1
0
0
8
3

In [4]:

data.dtypes

Out[4]:

Арр	object
Category	object
Rating	float64
Reviews	object
Size	object
Installs	object
Туре	object
Price	object
Content Rating	object
Genres	object
Last Updated	object
Current Ver	object
Android Ver	object
dtype: object	

In [5]:

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)
```

Out[5]:

```
((10841, 13), (10841, 8))
```

In [6]:

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

Out[6]:

```
((10841, 13), (9360, 13))
```

Будем работать с колонкой Rating

In [7]:

```
sns.distplot(data["Rating"]);
```


Самый простой способ - это заполнить нулями

In [8]:

```
sns.distplot(data["Rating"].fillna(0));
```


Видно, что в данной ситуации это приводит к выбросам. Будем приложениям без рейтинга присваивать средний рейтинг

In [9]:

```
mean_imp = SimpleImputer(strategy="mean")
mean_rating = mean_imp.fit_transform(data[["Rating"]])
sns.distplot(mean_rating);
```


Попробуем заполнение медианой и самым частым значением

In [10]:

```
median_imp = SimpleImputer(strategy="median")
median_rating = median_imp.fit_transform(data[["Rating"]])
sns.distplot(median_rating);
```


In [11]:

```
most_freq_imp = SimpleImputer(strategy="most_frequent")
most_freq_rating = most_freq_imp.fit_transform(data[["Rating"]])
sns.distplot(most_freq_rating);
```


Будем использовать среднее значение

In [12]:

```
data["Rating"] = mean_rating
data["Rating"].isnull().sum()
```

Out[12]:

0

Как видим, у колонки Rating больше нет пропущенных значений

2. Кодирование категориальных признаков

Рассмотрим колонку Category

In [13]:

```
categories = data["Category"].dropna().astype(str)
categories.value_counts()
```

Out[13]:

FAMILY	1972		
GAME	1144		
TOOLS	843		
MEDICAL	463		
BUSINESS	460		
PRODUCTIVITY	424		
PERSONALIZATION	392		
COMMUNICATION	387		
SPORTS	384		
LIFESTYLE	382		
FINANCE	366		
HEALTH_AND_FITNESS	341		
PHOTOGRAPHY	335		
SOCIAL	295		
NEWS_AND_MAGAZINES	283		
SHOPPING	260		
TRAVEL_AND_LOCAL	258		
DATING	234		
BOOKS_AND_REFERENCE	231		
VIDEO_PLAYERS	175		
EDUCATION	156		
ENTERTAINMENT	149		
MAPS_AND_NAVIGATION	137		
FOOD_AND_DRINK	127		
HOUSE_AND_HOME	88		
LIBRARIES_AND_DEMO	85		
AUTO_AND_VEHICLES	85		
WEATHER	82		
ART_AND_DESIGN	65		
EVENTS	64		
PARENTING	60		
COMICS	60		
BEAUTY	53		
1.9	1		
Name: Category, dtype:	int64		

In [14]:

```
le = LabelEncoder()
category_le = le.fit_transform(categories)
print(np.unique(category_le))
le.inverse_transform(np.unique(category_le))
```

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33]

Out[14]:

In [15]:

data.head()

Out[15]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone
4									•

3. Масштабирование данных

Min-Max масштабирование

In [16]:

```
sns.distplot(data[["Rating"]]);
```


In [17]:

```
mm = MinMaxScaler()
sns.distplot(mm.fit_transform(data[["Rating"]]));
```


На основе Z-оценки

In [18]:

```
ss = StandardScaler()
sns.distplot(ss.fit_transform(data[["Rating"]]));
```

