9.3.2 对坐标的曲面积分

- 1.有向曲面及曲面元素的投影
- 2. 对坐标的曲面积分的概念和性质
- 3. 对坐标的曲面积分的计算法
 - 9.3.3 两类曲面积分之间的联系

有向曲面及曲面元素的投影

• 曲面分类

双侧曲面

单侧曲面

双侧曲面有内侧和外侧, 左侧和右侧, 上侧和下侧, 前侧和后侧之分

莫比乌斯带

(单侧曲面的典型)

• 指定了侧的曲面叫有向曲面, 其方向用法向量指向表示

方向余弦	$\cos \gamma$	$\cos \alpha$	$\cos \beta$	封闭曲面
侧的规定		>0 为前侧 <0 为后侧	>0 为右侧 <0 为左侧	外侧内侧

如 Σ 取定了侧,则一 Σ 或 Σ ⁻表示取相反的侧。

例如, Σ : x+2y+3z=6与坐标平面所围立体的边界曲面,取外侧。

则 Σ_1 取下侧, Σ_2 取后侧。

 Σ_3 取左侧 Σ_4 取上侧 (前、右)

例如,球面 $x^2 + y^2 + z^2 = R^2$ 上 $x \ge 0$ 、 $y \ge 0$ 的部分,取球面外侧。

分别取上侧、下侧

$$x = \sqrt{R^2 - y^2 - z^2}$$
,取前侧。

$$y = \sqrt{R^2 - x^2 - z^2}$$
,取右侧。

设 Σ 为有向曲面,取 Σ 上一小块曲面 ΔS ,投影到xoy

平面上得一投影区域,其面积记为 $(\Delta\sigma)_{xy} \geq 0$.

假定 $\triangle S$ 上各处的法向量与Z轴的夹角 γ 的余弦 cos γ 有相同的符号,若不然,要先对 $\triangle S$ 分块

规定 ΔS 在 xoy 平面上的有向投影 $(\Delta S)_{xy}$ 为:

$$(\Delta S)_{xy} = \begin{cases} (\Delta \sigma)_{xy}, & \exists \cos \gamma > 0 \text{ b} \\ -(\Delta \sigma)_{xy}, & \exists \cos \gamma < 0 \text{ b} \\ 0, & \exists \cos \gamma \equiv 0 \text{ b} \end{cases}$$

 $\triangle S$ 在xOy面上的投影 $(\Delta S)_{xv}$: $\triangle S$ 在xOy

面上的投影区域的面积 (Δσ) χγ 附以一定的正负号。ς

 $(\Delta\sigma)_{xy}$: ΔS 在xOy平面投影区域的面积

$$(\Delta S)_{xy}$$
: ΔS 在 xOy 平面的有向投影_z

$$(\Delta S)_{xy} = \begin{cases} (\Delta \sigma)_{xy}, & \exists \cos \gamma \ge 0 \text{ if} \\ -(\Delta \sigma)_{xy}, & \exists \cos \gamma < 0 \text{ if} \end{cases}$$

设 ΔS 为有向平面 Σ 的一小块曲面,面积为 ΔS :

$$(\Delta \sigma)_{xy} = (\Delta S) \cdot |\cos \gamma| \ge 0$$

$$(\Delta S)_{xy} = (\Delta S) \cdot \cos \gamma$$

取上侧:
$$(\Delta S)_{xy} = (\Delta \sigma)_{xy}$$
 下侧: $(\Delta S)_{xy} = -(\Delta \sigma)_{xy}$

类似地可以定义 $\triangle S$ 在yOz面及zOx上的投影 $(\Delta S)_{vz}$ 和 $(\Delta S)_{zx}$

 $(\Delta\sigma)_{xy}$

第二类曲面积分的引例

设稳定流动的不可压缩流体的速度场为

$$\overrightarrow{v} = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

求单位时间通过有向曲面 Σ 的流量 Φ (设体密度为1)。

分析 若 Σ 是面积为S 的平面,

法向量 $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)$

流速为常向量 \vec{v} ,与 \vec{n} 的夹角为 θ

流速为常向量 \vec{v} , 与 \vec{n} 的夹角为 θ

则通过闭区域A 流向 n 所指一侧的流量就为斜柱体体积(因为体密度为1)

$$\Phi = S \cdot |\vec{v}| \cos \theta = S \vec{v} \cdot \vec{n}$$

对一般的有向曲面Σ, 设稳定流动的不可压缩流体的

速度场
$$\overrightarrow{v} = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

用"大化小,常代变,近似和,取极限"

进行分析可得
$$\Phi = \lim_{\lambda \to 0} \sum_{i=1}^{N} \overrightarrow{v_i} \cdot \overrightarrow{n_i} \Delta S_i$$

设
$$\vec{n}_i = (\cos \alpha_i, \cos \beta_i, \cos \gamma_i)$$
,则

$$\Phi = \lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i, \zeta_i) \cos \alpha_i + Q(\xi_i, \eta_i, \zeta_i) \cos \beta_i \right]$$

$$+R(\xi_i,\eta_i,\zeta_i)\cos\gamma_i$$
 ΔS_i

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{zx} \right]$$

$$+R(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{xy}$$

定义9.3.2 设 Σ 为光滑的有向曲面,在 Σ 上定义了一个

向量场 $\overrightarrow{A} = (P(x, y, z), Q(x, y, z), R(x, y, z))$,若对Σ的任

意分割和在局部面元上任意取点,下列极限都存在

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{zx} + R(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{xy} \right]$$

则称此极限为向量场 并 在有向曲面上对坐标的曲面积

分,或第二类曲面积分。记作

$$\iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y$$

P, Q, R 叫做被积函数; Σ 叫做积分曲面。

$$\iint_{\Sigma} P \, \mathrm{d} y \, \mathrm{d} z$$

称为P在有向曲面 Σ 上对坐标y, z的曲面积分;

$$\iint_{\Sigma} Q \, \mathrm{d}z \, \mathrm{d}x$$

称为Q在有向曲面 Σ 上对坐标Z,x的曲面积分;

$$\iint_{\Sigma} R \, \mathrm{d} x \, \mathrm{d} y$$

称为R在有向曲面 Σ 上对坐标 x,y的曲面积分.

引例中,流过有向曲面 Σ 的流体的流量为

$$\Phi = \iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + \iint_{\Sigma} Q \, \mathrm{d}z \, \mathrm{d}x + \iint_{\Sigma} R \, \mathrm{d}x \, \mathrm{d}y$$
$$= \iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y$$

性质

(1) 若 $\Sigma = \bigcup_{i=1}^k \Sigma_i$, 且 Σ_i 同侧,之间无公共内点,则

$$\iint_{\Sigma} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y$$

$$= \sum_{i=1}^{k} \iint_{\Sigma_i} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y$$

(2) 用 Σ 表示 Σ 的反向曲面,则

$$\iint_{\Sigma^{-}} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y = -\iint_{\Sigma} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y$$

对坐标的曲面积分的计算法

定理 设光滑曲面 Σ : $z = z(x,y), (x,y) \in D_{xy}$ 取上侧, R(x,y,z)是 Σ 上的连续函数,则

$$\iint_{\Sigma} R(x, y, z) \, \mathrm{d}x \, \mathrm{d}y = \iint_{D_{xy}} R(x, y, \mathbf{z}(x, y)) \, \mathrm{d}x \, \mathrm{d}y \quad (1)$$

证
$$\iint_{\Sigma} R(x, y, z) \, dx \, dy = \lim_{\lambda \to 0} \sum_{i=1}^{n} R(\xi_{i}, \eta_{i}, \zeta_{i}) (\Delta S_{i})_{xy}$$

$$\downarrow \Sigma$$
 取上侧,
$$\therefore (\Delta S_{i})_{xy} = (\Delta \sigma_{i})_{xy}$$

$$\zeta_{i} = z(\xi_{i}, \eta_{i})$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} R(\xi_i, \eta_i, z(\xi_i, \eta_i)) (\Delta \sigma_i)_{xy}$$

$$= \iint_{D_{xx}} R(x, y, z(x, y)) dx dy$$

说明 如果积分曲面 Σ 取下侧,则 $(\Delta S_i)_{xy} = -(\Delta \sigma_i)_{xy}$

$$\iint_{\Sigma} R(x, y, z) \, \mathrm{d}x \, \mathrm{d}y = -\iint_{D_{xy}} R(x, y, z(x, y)) \, \mathrm{d}x \, \mathrm{d}y \quad (1')$$

计算方法可概括为: "一代、二投影、三定向"

"一代" 曲面方程代入被积函数;

"二投影" 给出Σ在相应坐标平面上的投影 区域:

"三定向" 根据曲面的侧选取正负号。

 $\cos \gamma > 0$ $\cos \gamma < 0$

注意: 计算时要保证曲面为同一侧, 否则应分片计算。

计算
$$\iint_{\Sigma} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy$$
$$= \iint_{\Sigma} P \, dy \, dz + \iint_{\Sigma} Q \, dz \, dx + \iint_{\Sigma} R \, dx \, dy$$

(1)
$$\sum z = z(x,y), (x,y) \in D_{xy}$$
 (上正下负)
$$\iint_{\Sigma} R(x,y,z) \, \mathrm{d}x \, \mathrm{d}y = \pm \iint_{D_{xy}} R(x,y,z(x,y)) \, \mathrm{d}x \, \mathrm{d}y$$

(2)
$$\Sigma: x = x(y,z), (y,z) \in D_{yz}$$
, (前正后负)

$$\iint_{\Sigma} P(x, y, z) \, \mathrm{d} y \, \mathrm{d} z = \pm \iint_{D_{yz}} P(x(y, z), y, z) \, \mathrm{d} y \, \mathrm{d} z$$

(3)
$$\Sigma: y = y(z,x), (z,x) \in D_{zx}$$
, (右正左负)

$$\iint_{\Sigma} Q(x, y, z) dz dx = \pm \iint_{D_{zx}} Q(x, y(z, x), \mathbf{z}) dz dx$$

特别地,在 S 上恒有:

- (1) $\cos \alpha \equiv 0$, 即 S 平行于 x 轴, 则 $\iint_S P \, dy dz = 0$;
- (2) $\cos \beta \equiv 0$, 即 S 平行于 y 轴, $\iint_S Q \, dz dx = 0$;
- (3) $\cos \gamma \equiv 0$, 即S平行于z轴, $\iint_S R \, dx dy = 0$.

计算曲面积分 $\iint x^2 dy dz + y^2 dz dx + z^2 dx dy$, 例1

其中 Σ 是长方体 Ω 的整个表面的外侧, $\{ (x, y, z) \mid 0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c \}$

\mathbf{M} 把有向曲面 Σ 分成以下六部分:

$$\Sigma_1$$
: $z=c(0 \le x \le a, 0 \le y \le b)$ 的上侧;

$$\Sigma_2$$
: $z=0$ (0 $\leq x\leq a$, 0 $\leq y\leq b$) 的下侧;

$$\Sigma_3$$
: $x=a(0 \le y \le b, 0 \le z \le c)$ 的前侧; $x \le a(0 \le y \le b, 0 \le z \le c)$

$$\Sigma_4$$
: $x=0$ (0 $\leq y\leq b$, 0 $\leq z\leq c$) 的后侧;

$$\Sigma_5$$
: $y=b(0 \le x \le a, 0 \le z \le c)$ 的右侧; $\iint x^2 dy dz = ?$

$$\Sigma_6$$
: $y=0$ (0 $\leq x\leq a$, 0 $\leq z\leq c$) 的左侧; Σ

除 Σ_3 、 Σ_4 外,其余四片曲面在yOz面上的投影为零,因此

$$\iint_{\Sigma} x^{2} dy dz = \iint_{\Sigma_{3}} x^{2} dy dz + \iint_{\Sigma_{4}} x^{2} dy dz$$

 Σ_3 : $x=a(0 \leq y \leq b, 0 \leq z \leq c)$ 的前侧;

 Σ_4 : x=0 (0 $\leq y\leq b$, 0 $\leq z\leq c$)的后侧;

$$\iint\limits_{\Sigma} x^2 dy dz = \iint\limits_{D_{yz}} a^2 dy dz - \iint\limits_{D_{yz}} 0^2 dy dz = a^2 bc$$

类似地可得 $\iint_{\Sigma} y^2 dz dx = b^2 ac, \iint_{\Sigma} z^2 dx dy = c^2 ab.$

于是所求曲面积分为(a+b+c)abc。

例2 计算曲面积分 $\iint_{\Sigma} xyz \, dx \, dy$,其中 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 在第一和第五卦限部分,取外侧

根据对称性
$$\iint_{\Sigma} xyz \, dx \, dy \neq 0$$

解: 曲面 Σ 对于平面xOy不同侧,要先把曲面分为上下两部分

$$\sum_{1} : z = \sqrt{1 - x^{2} - y^{2}}$$

$$\sum_{2} : z = -\sqrt{1 - x^{2} - y^{2}}$$

 $(x,y) \in D_{xy}: \begin{cases} x^2 + y^2 \le 1 & \text{往 } xOy$ 平面作有向投影 $x \ge 0, y \ge 0 \end{cases}$

求对坐标x,y的积分,要先 把曲面表示为z=z(x,y),再 往 xOy 平面作有向投影

$$\begin{cases} \sum_{1} : z = \sqrt{1 - x^{2} - y^{2}} \\ \sum_{2} : z = -\sqrt{1 - x^{2} - y^{2}} \end{cases} (x, y) \in D_{xy} : \begin{cases} x^{2} + y^{2} \le 1 \\ x \ge 0, y \ge 0 \end{cases}$$

$$\therefore \iint_{\Sigma} xyz \, dx \, dy = \iint_{\Sigma_1} xyz \, dx \, dy + \iint_{\Sigma_2} xyz \, dx \, dy$$

$$= \iint_{D_{xy}} xy\sqrt{1-x^2-y^2} \, dx \, dy$$

$$-\iint_{D_{xy}} xy \ (-\sqrt{1-x^2-y^2}) \ dx dy$$

$$=2\iint_{D_{xy}} xy\sqrt{1-x^2-y^2} \, dx \, dy$$

$$=\cdots = \frac{2}{15}$$

说明 对坐标的曲面积分由于有Σ的取向在内, 所以具有和定积分,重积分,第一类曲线积分, 第一类曲面积分在对称性问题上不同的结论。

计算第二类曲线积分,第二类曲面积分时 慎用**对称性**解题

经验证,特殊情况下,轮换对称性仍成立:

设S 是球面
$$x^2 + y^2 + z^2 = 1$$
 的外侧 ,则
$$\iint_{S} \frac{\mathrm{d} y \, \mathrm{d} z}{x \cos^2 x} = \iint_{S} \frac{\mathrm{d} x \, \mathrm{d} y}{z \cos^2 z}$$

9.3.3 两类曲面积分之间的联系

1. 设有向曲面 Σ 由方程z = z (x, y)给出, Σ 在x0y面上的投影区域为 D_{xy} ,函数z = z (x, y) 在 D_{xy} 上具有一阶连续偏导数,R(x, y, z) 在 Σ 上连续。如果 Σ 取上侧,则

$$\iint\limits_{\Sigma} R(x,y,z)dxdy = \iint\limits_{D_{xy}} R[x,y,z(x,y)]dxdy.$$

另一方面,因上述有向曲面 2 的法向量

$$\vec{n} = \{-z_x, -z_y, 1\} \qquad \cos \gamma = \frac{1}{\sqrt{1 + z_x^2 + z_y^2}}.$$

$$\Sigma$$
: $z = z(x, y)$ 取上侧

$$\cos \gamma = \frac{1}{\sqrt{1 + z_x^2 + z_y^2}}$$
 $dS = \sqrt{1 + z_x^2 + z_y^2} dx dy$

$$\iint R(x,y,z)\cos\gamma\,d\,S$$

$$= \iint_{D_{xy}} R[x, y, z(x, y)] \frac{1}{\sqrt{1 + z_x^2 + z_y^2}} \sqrt{1 + z_x^2 + z_y^2} dxdy$$

$$= \iint\limits_{D_{xy}} R[x, y, z(x, y)] dx dy = \iint\limits_{\Sigma} R(x, y, z) dx dy$$

$$\iint_{\Sigma} R(x, y, z) \cos \gamma \, dS = \iint_{\Sigma} R(x, y, z) dx dy \tag{2}$$

$$\iint\limits_{\Sigma} R(x,y,z)dxdy = -\iint\limits_{D_{xy}} R[x,y,z(x,y)]dxdy.$$

但此时
$$\cos \gamma = \frac{-1}{\sqrt{1+z_x^2+z_y^2}},$$

$$\iint_{\Sigma} R(x,y,z) \cos \gamma dS$$

$$= \iint_{D_{xy}} R[x, y, z(x, y)] \frac{-1}{\sqrt{1 + z_x^2 + z_y^2}} \sqrt{1 + z_x^2 + z_y^2} dxdy$$

$$= -\iint_{D_{xy}} R[x, y, z(x, y)] dxdy.$$

类似可推得

$$\iint_{\Sigma} P(x, y, z) dy dz = \iint_{\Sigma} P(x, y, z) \cos \alpha dS.$$
(3)
$$\iint_{\Sigma} Q(x, y, z) dz dx = \iint_{\Sigma} Q(x, y, z) \cos \beta dS$$
(4)

合并(2)、(3)、(4)三式,得两类曲面积分之间的如下关系:

$$\iint\limits_{\Sigma} Pdydz + Qdzdx + Rdxdy$$

$$= \iint (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS \qquad (5)$$

其中 $\cos \alpha \cdot \cos \beta \cdot \cos \gamma$ 是有向曲面 Σ 上点 (x, y, z) 处的法向量的方向余弦。

$$\iint_{\Sigma} \{P, Q, R\} \cdot \{ dydz, dzdx, dxdy \}$$

$$= \iint_{\Sigma} \{P, Q, R\} \cdot \{ \cos \alpha, \cos \beta, \cos \gamma \} dS$$

$$d\vec{S} = \vec{n} dS$$

 $\{dydz, dzdx, dxdy\} = \{\cos\alpha, \cos\beta, \cos\gamma\}dS$

投影:
$$d\sigma = |\cos \gamma| dS$$

有向投影 $(dS)_{xy} = \cos \gamma dS$

 $dxdy = \cos \gamma dS$

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy
= \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS$$
向量形式
$$\iint_{\Sigma} \{P, Q, R\} \cdot \{dy dz, dz dx, dx dy\}
= \iint_{\Sigma} \{P, Q, R\} \cdot \{\cos \alpha, \cos \beta, \cos \gamma\} dS$$

$$\Leftrightarrow \overrightarrow{A} = \{P, Q, R\}, \quad \overrightarrow{n} = \{\cos \alpha, \cos \beta, \cos \gamma\}
d\overrightarrow{S} = \overrightarrow{n} dS = \{dy dz, dz dx, dx dy\}$$
有向曲面元
$$\iint_{\Sigma} \overrightarrow{A} \cdot d\overrightarrow{S} = \iint_{\Sigma} \overrightarrow{A} \cdot \overrightarrow{n} dS$$

例5 把对坐标的曲面积分 $\iint_{\Sigma} P dy dz + Q dz dx + R dx dy$ 化成对面积的曲面积分,其中 Σ 是 $Z = 8 - (x^2 + y^2)$ 在x O y 面上方部分的上侧。

$$\overrightarrow{n^o} = \{\cos\alpha, \cos\beta, \cos\gamma\}$$

$$= \{ \frac{2x}{\sqrt{1+4x^2+4y^2}}, \frac{2y}{\sqrt{1+4x^2+4y^2}}, \frac{1}{\sqrt{1+4x^2+4y^2}} \}$$

所以
$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iint_{\Sigma} \frac{2xP + 2yQ + R}{\sqrt{1 + 4x^2 + 4y^2}} dS$$

内容小结

1. 两类曲面积分及其联系

定义 •
$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{zx} + R(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{xy} \right]$$

性质
$$\iint_{\Sigma^{-}} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y$$

$$= -\iint_{\Sigma} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y$$

联系:
$$\iint_{\Sigma} \{P, Q, R\} \cdot \{dydz, dzdx, dxdy\}$$

$$= \iint_{\Sigma} \{P, Q, R\} \cdot \{\cos \alpha, \cos \beta, \cos \gamma\} dS$$
可以认为:
$$\{dydz, dzdx, dxdy\}$$

$$= \{\cos \alpha dS, \cos \beta dS, \cos \gamma dS\}$$

$$dxdy = \cos \gamma dS \quad dydz = \cos \alpha dS = \frac{\cos \alpha}{\cos \gamma} dxdy$$

$$dzdx = \cos \beta dS = \frac{\cos \beta}{\cos \gamma} dxdy$$

$$\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy$$

$$= \iint_{\Sigma} [P\frac{\cos \alpha}{\cos \gamma} + Q\frac{\cos \beta}{\cos \gamma} + R]dxdy$$
30

2. 常用计算公式及方法

面积分 第一类 (对面积) 转化 二重积分第二类 (对坐标)

- (1) 统一积分变量——代入曲面方程 (方程不同,不同侧时要分片积分)
- (2) 积分元素投影 第一类: 面积投影 第二类: 有向投影
- (4) 确定积分域——把曲面积分域投影到相关坐标面
- 注: 二重积分是第一类曲面积分的特殊情况.

当
$$\Sigma$$
: $z = z(x, y), (x, y) \in D_{xy}$ 时,

$$\iint\limits_{\Sigma} f(x, y, z) \, \mathrm{d}S = \iint\limits_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} \, \mathrm{d}x \, \mathrm{d}y$$

$$\iint_{\Sigma} R(x, y, z) dx dy = \pm \iint_{D_{xy}} R(x, y, z(x, y)) dx dy$$

(上侧取"+", 下侧取"-")

类似可考虑在yoz面及zox 面上的二重积分转化公式