

Overview

- Background
 - Soft bias?
 - Fricative context impacts vowel perception; source?
 - Coarticulation?
 - Listener sensitivity to interactions in the acoustics?
- Modeling prior work
 - Consequent predictions
- > Future directions

Background

Soft biases on phonotactics

- Absolute (hard) biases
 - *FRICATIVES
 (Barlow, 1997; Barlow & Gierut, 1999)
- "Soft" biases
 (White, 2013, 2014; White & Sundara, 2014)
 - Phonological markedness as ease of learnability
 - Initial dispreference for a phonological pattern which can be overcome with more exposure

Soft biases on *fricative-vowel* phonotactics

- Sibilant place contrasts in [_i] context:
 - lapanese (Vance, 2008)
 - [[u-su]

VS.

[[i-*si]

- Mandarin Chinese (Li, 2021)
 - Avoidance of 3-way contrast:
 - [sa-sa-sa]

VS.

[*si-gi-*si]

- Acoma (Kersan); Chakobo (Panoan); Telugu (Dravidian) (Lee-Kim, 2014)
 - 3-way place distinction reduced to 2-way:
 - [s-s-s] or $[s-s] \rightarrow [si-si]$,

[si-ſi],

or

[si-si]

Do such contrasts arise, at least in part, from perceptual biases?

Anticipatory effects in perception (/sV/, /ʃV/)

- Listeners can anticipate the category of the vowel during aperiodic energy of the fricative, even before hearing the periodic energy of the vowel (Yeni-Komshian & Soli, 1981; Galle et al., 2019)
- Fricative noise *influences* vowel categorization (Whalen, 1989)
- Vowel F2 also influences fricative categorization (Kunisaki & Fujisaki, 1977; Mann & Repp, 1980; Whalen, 1981)
- Probably due to coarticulation

Coarticulation

- Articulation of vowel begins during the fricative
 - at some point, fricative and vowel are articulated simultaneously
- Can be observed in the acoustics
- Cues listeners to both the fricative and vowel simultaneously

*X-ray tracings adapted from Straka, 1965, p. 38, 59

Coarticulation

- /s/:
 - more anterior constriction
 - SHORTER front cavity
 HIGHER frication noise
 - LONGER back cavity
 LOWER F2
- /ʃ/:
 - more posterior constriction
 - LONGER front cavity
 LOWER frication noise
 - SHORTER back cavity
 HIGHER F2

*X-ray tracings adapted from Straka, 1965, p. 38, 59

But is coarticulation all we need?

- Anticipation is a domain-general cognitive ability
- Perceptual informativity of coarticulation is well established
- Still not clear whether it accounts for the totality of the anticipation effects
- Listeners might have processing biases that contribute to anticipation, independent of what is present in the speech signal

Whalen (1989): Experiment 2

- "Fricative noise can *influence* vowel categorization"
- Naturally produced fricative (/s/, /ʃ/) noise
- Vowels synthesized along a continuum between /u/ & /i/.
- Fricatives were excised from /si/, /su/, /ʃi/ and /ʃu/ recordings
 - Fricative acoustics contained coarticulation for the vowel context
 - Participants had to judge category of ambiguous vowel as /i/ or /u/

Whalen (1989): Key takeaways

 fricatives excised from /u/ contexts condition more /u/ responses than those excised from /i/ contexts

The higher frequencies
 associated with /s/ condition
 more /u/ responses (lower F2)
 than the lower frequencies
 associated with /ʃ/

And what can DFT do for us now?

- What might we expect to see if we could observe similar patterns of discrimination along a continuum, rather than discrete categories?
- Modeling these results with DFT can give us some ideas

Our model

Deriving Whalen (1989) results in DFT

Remember:

 Fricative spectral peak frequencies ← size of cavity in front of the constriction during generation of aperiodic energy

- F2 at the onset of voicing ← resonance of the back cavity;
 - periodic energy might correspond with spectral peak in preceding fricative turbulence

Deriving Whalen (1989) results in DFT

 Evidence that distinct neural populations process aperiodic and periodic energy in speech sounds
 (Yrttiaho et al., 2011)

- Suppose this is the case...*
- Our model:
 coupled DNFs independently detecting aperiodic and periodic energy

Simulation results: F2 peak following /s/

Simulation results: F2 peak following /ʃ/

Model prediction: "Attraction effect"

- A preceding /s/ conditions
 lowered perception of F2
- A preceding /∫/ conditions
 higher perception of F2

Summary

 Prior work has demonstrated contextual effects on fricative-vowel perception

We used a DFT model to **derive** these attested contextual effects
 & make new predictions

- Future work can empirically test these predictions
 - Which is underway! :)

Appendix: Model parameters

	/s _(u) /	/s _(i) /	/ʃ _(u) /	/ʃ _(i) /
preshape_p	100	100	115	115
preshape_w	4	6	5	6
preshape_a	4	4	4	4

Across simulations:

-
$$F2 w = 8$$

-
$$F2_a = 6$$

$$T = 10$$

$$h = -5$$

$$\beta = 4$$

$$sigmaExc = 10$$

$$ampExc = 10$$

$$ampInh = 5$$