

CPSC 359 – Digital Logic Tutorial #2 Multiplexing

Andrew Kuipers

CPSC 359

Decode the Address

- First, we need to decode the address to select the line
 - Input: n bit address
 - Output: 2ⁿ selector lines

I1	10	S0	S1	S2	S 3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Activate the Line

Use the output of the decoder to activate the correct line

CPSC 359

Activate the Line

- 4 to 1 multiplexer
 - 2bit address space
- What we have:
 - Four 1bit inputs
 - One 1bit output
- What we want:
 - Four 4bit inputs
 - One 4bit output

Exercise

Challenge Exercises

- 1. Combine the Multiplexer with the 4bit Full Adder
 - Use 4bit Full Adder circuit from lecture
 - Two 4bit 4-to-1 multiplexers to select each input to the adder
- 2. Create a 4bit 1-to-4 Demultiplexer
 - It's like a multiplexer, just in reverse!
 - One 2bit selector and one 4bit value input
 - Four 4bit value outputs