## WHAT IS CLAIMED IS:

| 1   | 1. A micromachined device for receiving and retaining a liquid                        |
|-----|---------------------------------------------------------------------------------------|
| 2   | droplet at a desired site, the device comprising:                                     |
| 3   | a substrate having an upper surface; and                                              |
| 4   | a three-dimensional, thin film well patterned at the upper surface of                 |
| 5   | the substrate wherein the well is capable of receiving and retaining a known quantity |
| 6   | of liquid at the desired site through surface tension.                                |
|     |                                                                                       |
| . 1 | 2. A micromachined/device for receiving and retaining at least                        |
| 2   | one liquid droplet at a desired site, the device comprising:                          |
| 3   | a substrate having an upper surface;                                                  |
| 4   | a first three-dimensional, thin film well patterned at the upper surface              |
| 5   | of the substrate wherein the first well is capable of receiving and retaining a first |
| 6   | known quantity of liquid at the desired site through surface tension; and             |
| 7   | a second three-dimensional, thin film well patterned at the upper                     |
| 8   | surface of the substrate wherein the second well is patterned outside and concentric  |
| 9   | to the first well wherein the second well is capable of receiving and retaining a     |
| 10  | second known quantity of liquid at the desired site through surface tension.          |
|     |                                                                                       |
| i   | 3. A micromachined device for receiving and retaining a plurality                     |
| 2   | of separate liquid droplers at desired sites, the device comprising:                  |
| 3   | a substrate having an upper surface; and                                              |
| 4   | an array of three-dimensional, thin film wells patterned at the upper                 |
| 5   | surface of the substrate wherein each of the wells is capable of receiving and        |
| 6   | retaining a known quantity of liquid at one of the desired sites through surface      |
| 7   | tension.                                                                              |
|     |                                                                                       |
| 1   | 4. A micromachined device for receiving and retaining a plurality                     |
| 2   | of separate liquid droplets at desired sites, the device comprising:                  |
| 3   | a substrate having an upper surface;                                                  |
| 4   | a first array of three-dimensional, thin film wells patterned at the                  |
| 5   | upper surface of the substrate wherein each of the wells is capable of receiving and  |

|               | 6   | retaining a known qu    | uantity of liquid at one of the desired sites through surface     |
|---------------|-----|-------------------------|-------------------------------------------------------------------|
|               | 7   | tension; and            |                                                                   |
|               | 8   | a secoi                 | nd array of three-dimensional, thin film wells patterned at the   |
|               | 9   | upper surface of the    | substrate wherein each well of the second array of wells is       |
|               | 10  | patterned outside and   | concentric to one well of the first array of wells to receive and |
|               | 11  | retain a second know    | n quantity of liquid at the desired site through surface tension. |
|               |     |                         |                                                                   |
|               | 1   | 5.                      | The device as claimed in claim 3 wherein each of the wells is     |
|               | 2.  | a ring.                 |                                                                   |
| ı             |     |                         |                                                                   |
| 11 D          | ,1  | 6.                      | The device as claimed in claim 3 wherein the device is a          |
|               | 0/2 | microsensor and whe     | rein each of the desired sites is a sensing site.                 |
| 2(Y           | 7   |                         | . /                                                               |
| 1<br>1<br>1   | / / | 7.                      | The device/as claimed in claim 6 wherein the microsensor is       |
| ī             | /2  | a solid-state, liquid c | hemical sersor.                                                   |
| ¥<br><b>D</b> | /   |                         |                                                                   |
|               | 1   | 8.                      | The device as claimed in claim 6 wherein the microsensor is       |
|               | 2   | a gas sensor.           |                                                                   |
|               |     |                         |                                                                   |
| Li<br>—       | 1   | 9.                      | The device as claimed in claim 6 wherein the microsensor is       |
| 7             | 2   | an optical sensor.      |                                                                   |
| <b>.</b>      |     |                         |                                                                   |
|               | 1   | 10.                     | The device as claimed in claim 3 wherein the device is a          |
|               | 2   | biomedical test plate   | . /                                                               |
|               |     |                         | <i></i>                                                           |
|               | 1   | 11.                     | The device as claimed in claim 3 wherein each of the wells is     |
|               | 2   | made of a photo-part    | ernable material.                                                 |
|               |     | /                       |                                                                   |
|               | 1   | 12.                     | The device as claimed in claim 11 wherein the photo-              |
|               | 2   | patternable material    | is a negative photo-patternable material.                         |
|               |     |                         |                                                                   |
|               | 1   | 1\$.                    | The device as claimed in claim 12 wherein the negative photo-     |
|               | 2   | patternable material    | is a polymer.                                                     |

|               | 1    | 14. The device as claimed in claim 13 wherein the polymer is a                          |
|---------------|------|-----------------------------------------------------------------------------------------|
|               | 2    | polyimide.                                                                              |
|               |      |                                                                                         |
|               | 1    | 15. The device as claimed in claim 12 wherein the negative photo-                       |
|               | 2    | patternable material is an epoxy.                                                       |
|               |      |                                                                                         |
|               | 1    | 16. The device as claimed in claim 15 wherein the epoxy is SU8.                         |
| A             |      |                                                                                         |
| $\mathcal{L}$ | 1    | 17. The device as claimed in claim 3 wherein the substrate is a                         |
| 200           | 2    | semiconductor substrate.                                                                |
| 'b            | \Y / |                                                                                         |
| gV            | 1/   | 18. The device as claimed in claim 17 wherein the semiconductor                         |
|               | þ    | substrate includes a silicon wafer.                                                     |
| (3)<br>(3)    |      |                                                                                         |
|               | 1    | 19. The device as claimed in claim 18 wherein the semiconductor                         |
|               | 2    | substrate further includes a layer of insulating material on which the wells are        |
| Timety        | 3    | patterned.                                                                              |
| <b>13</b>     |      |                                                                                         |
|               | 1    | 20. The device as claimed in claim 3 wherein the substrate is made                      |
|               | 2    | of a material other than a semiconductor material.                                      |
| <b>⇒</b> 4    |      |                                                                                         |
|               | 1    | 21. The device as claimed in claim 3 wherein the device is a                            |
|               | 2    | potentiometric liquid chemical sensor and wherein each desired site is a sensing site.  |
|               |      |                                                                                         |
|               | 1    | 22. The device as claimed in claim 3 wherein the device is an                           |
|               | 2    | integrated ion sensor and wherein each desired site is a sensing site.                  |
|               |      |                                                                                         |
|               | 1    | 23. The device as claimed in claim 3 wherein each of the wells                          |
|               | 2    | includes a side wall having an outside corner with a small radius to prevent its liquid |
|               | 3    | droplet from flowing down outside the side wall.                                        |
|               | -    |                                                                                         |

1



1

2

1 2

24. A method of making a micromachined device which is capable of receiving and retaining at least one liquid droplet, the method comprising:

providing a substrate having a layer of radiation-sensitive material thereon; and

patterning at least one three-dimensional, thin film well from the layer of material wherein the at least one well is capable of receiving and retaining a known quantity of liquid through/surface tension.

- 25. The method as claimed in claim 24 further comprising patterning a three-dimensional, thin film well from the layer of material outside and concentric to the at least one well at the same time as patterning the at least one well.
- 26. The method as claimed in claim 24 wherein the layer of material is photo-patternable.
- 27. A method of using the device as claimed in claim 1, the nethod comprising:

dispensing a membrane solution droplet into the well.

- 28. The method as claimed in claim 27 wherein the membrane solution is a polymeric membrane solution.
- 29. The method as claimed in claim 27 wherein the membrane solution is an aqueous solution.
- 30. The method as claimed in claim 27 wherein the membrane solution is a solvent-based solution.
- 31. The method as claimed in claim 27 wherein the membrane is an optical membrane.
- 1 32. A method of using the device as claimed in claim 2, the method comprising:

| 3  | dispensing a first membrane solution droplet into the first well; and           |
|----|---------------------------------------------------------------------------------|
| 4  | dispensing a second membrane solution droplet over the first                    |
| 5  | membrane solution droplet and into the second well.                             |
| 1  | 33. The method as claimed in claim 32 wherein the first membrane                |
| 2  | solution is an internal filling solution.                                       |
| 1  | 34. The method as claimed in claim 32 wherein the second                        |
| 2  | membrane solution is an external binding layer.                                 |
| 1  | 35. The method as claimed in claim 32 wherein the second                        |
| 2  | membrane solution has enzymes, antibodies or functional groups trapped therein. |
| 1  | 36. A method of using the device as claimed in claim 3, the                     |
| 2  | method comprising:                                                              |
| 3  | dispensing a membrane solution droplet into each of the array of                |
| 4. | wells.                                                                          |
|    | are A 1 1 C 1 1 de la lacia de claimed in claim 4 the                           |
| 1  | 37. A method of using the device as claimed in claim 4, the                     |
| 2  | method comprising:                                                              |
| 3  | dispensing a first membrane solution droplet into each of the first             |
| 4  | array of wells; and                                                             |
| 5  | dispensing a second membrane solution droplet over each of the first            |
| 6  | membrane solution droplets and into each of the second array of wells.          |

