# Special Numbers ITT9131 Konkreetne Matemaatika

#### Chapter Six

Stirling Numbers

**Eulerian Numbers** 

Harmonic Numbers

Harmonic Summation

Bernoulli Numbers

Fibonacci Numbers

Continuants



### Contents

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - Basic Stirling number identities, for integer  $n \ge 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



### Next section

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - Basic Stirling number identities, for integer  $n \ge 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



### Next subsection

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - lacksquare Basic Stirling number identities, for integer  $n\geqslant 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



#### Definition

The Stirling number of the second kind  $\binom{n}{k}$ , read "n subset k", is the number of ways to partition a set with n elements into k non-empty subsets.



#### Definition

The Stirling number of the second kind  $\binom{n}{k}$ , read "n subset k", is the number of ways to partition a set with n elements into k non-empty subsets.

#### Example: splitting a four-element set into two parts

Hence 
$$\begin{Bmatrix} 4 \\ 2 \end{Bmatrix} = 7$$



#### Definition

The Stirling number of the second kind  $\binom{n}{k}$ , read "n subset k", is the number of ways to partition a set with n elements into k non-empty subsets.

#### Some special cases: (1)

 $k=0\;\;{\rm We\;can\;partition\;a\;set\;into\;no}$  nonempty parts if and only if the set is empty.

That is: 
$$\begin{Bmatrix} n \\ 0 \end{Bmatrix} = [n = 0].$$

k=1 We can partition a set into one nonempty part if and only if the set is nonempty.

That is: 
$$\begin{Bmatrix} n \\ 1 \end{Bmatrix} = [n > 0].$$



#### Definition

The Stirling number of the second kind  $\binom{n}{k}$ , read "n subset k", is the number of ways to partition a set with n elements into k non-empty subsets.

#### Some special cases: (2)

- k = n If n > 0, the only way to partition a set with n elements into n nonempty parts, is to put every element by itself.
  - That is:  $\binom{n}{n} = 1$ . (This also matches the case n = 0.)
- k = n 1 Choosing a partition of a set with n elements into n 1 nonempty subsets, is the same as choosing the two elements that go together.

That is: 
$$\binom{n}{n-1} = \binom{n}{2}$$
.



#### Definition

The Stirling number of the second kind  $\binom{n}{k}$ , read "n subset k", is the number of ways to partition a set with n elements into k non-empty subsets.

#### Some special cases (3)

k=2 Let X be a set with two or more elements.

- Each partition of X into two subsets is identified by two ordered pairs  $(A, X \setminus A)$  for  $A \subseteq X$ .
- There are  $2^n$  such pairs, but  $(\emptyset, X)$  and  $(X, \emptyset)$  do not satisfy the nonemptiness condition

Then 
$$\binom{n}{2} = \frac{2^n - 2}{2} = 2^{n-1} - 1$$
 for  $n \ge 2$ .

In general, 
$$\begin{Bmatrix} n \\ 2 \end{Bmatrix} = (2^{n-1} - 1)[n \geqslant 1]$$



#### Definition

The Stirling number of the second kind  $\binom{n}{k}$ , read "n subset k", is the number of ways to partition a set with n elements into k non-empty subsets.

#### In the general case:

For  $n \ge 1$ , what are the options where to put the *n*th element?

- 1 Together with some other elements. To do so, we can first subdivide the other n-1 remaining objects into k nonempty groups, then decide which group to add the nth element to.
- 2 By itself. Then we are only left to decide how to make the remaining k-1 nonempty groups out of the remaining n-1 objects.

These two cases can be joined as the recurrent equation

$${n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1}, \quad \text{for } n > 0,$$

that yields the following triangle:



# Stirling's triangle for subsets

| п | $\binom{n}{0}$ | $\binom{n}{1}$ | $\binom{n}{2}$ | $\binom{n}{3}$ | $\binom{n}{4}$ | $\binom{n}{5}$ | ${n \brace 6}$ | $\binom{n}{7}$ | ${n \brace 8}$ | $\begin{Bmatrix} n \\ 9 \end{Bmatrix}$ |
|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------------------------------|
| 0 | 1              |                |                |                |                |                |                |                |                |                                        |
| 1 | 0              | 1              |                |                |                |                |                |                |                |                                        |
| 2 | 0              | 1              | 1              |                |                |                |                |                |                |                                        |
| 3 | 0              | 1              | 3              | 1              |                |                |                |                |                |                                        |
| 4 | 0              | 1              | 7              | 6              | 1              |                |                |                |                |                                        |
| 5 | 0              | 1              | 15             | 25             | 10             | 1              |                |                |                |                                        |
| 6 | 0              | 1              | 31             | 90             | 65             | 15             | 1              |                |                |                                        |
| 7 | 0              | 1              | 63             | 301            | 350            | 140            | 21             | 1              |                |                                        |
| 8 | 0              | 1              | 127            | 966            | 1701           | 1050           | 266            | 28             | 1              |                                        |
| 9 | 0              | 1              | 255            | 3025           | 7770           | 6951           | 2646           | 462            | 36             | 1                                      |



### Next subsection

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - Basic Stirling number identities, for integer  $n \ge 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



#### Definition

The Stirling number of the first kind  $\begin{bmatrix} n \\ k \end{bmatrix}$ , read "n cycle k", is the number of ways to partition of a set with n elements into k non-empty circles.

#### Circle is a cyclic arrangement



- $\blacksquare$  Circle can be written as [A, B, C, D];
- It means that [A,B,C,D] = [B,C,D,A] = [C,D,A,B] = [D,A,B,C];
- It is not same as [A, B, D, C] or [D, C, B, A].



#### Definition

The Stirling number of the first kind  $\begin{bmatrix} n \\ k \end{bmatrix}$ , read "n cycle k", is the number of

ways to partition of a set with n elements into k non-empty circles.

### Example: splitting a four-element set into two circles

- [1,2,3] [4] [1,2,4] [3]
- - [1,3,4] [2] [2,3,4] [1]

- [1,3,2] [4] [1,4,2] [3] [1,4,3] [2] [2,4,3] [1]

- [1,2] [3,4] [1,3] [2,4] [1,4] [2,3]

Hence 
$$\begin{vmatrix} 4\\2 \end{vmatrix} = 11$$



#### Definition

The Stirling number of the first kind  $\begin{bmatrix} n \\ k \end{bmatrix}$ , read "n cycle k", is the number of ways to partition of a set with n elements into k non-empty circles.

#### Some special cases (1):

k=1 To arrange one circle of n objects: choose the order, and forget which element was the first. That is:  $\begin{bmatrix} n \\ 1 \end{bmatrix} = n!/n = (n-1)!$ .









#### Definition

The Stirling number of the first kind  $\binom{n}{k}$ , read "n cycle k", is the number of ways to partition of a set with n elements into k non-empty circles.

#### Some special cases (2):

$$k=n$$
 Every circle is the singleton and there is just one partition into circles. That is,  $\begin{bmatrix} n \\ n \end{bmatrix} = 1$  for any  $n$ :

$$k = n - 1$$
 The partition into circles consists of  $n - 2$  singletons and one pair.  
So  $\begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}$ , the number of ways to choose a pair:

$$\begin{bmatrix} n-1 \end{bmatrix} = \binom{2}{2}$$
, the number of ways to choose a pair.



#### Definition

The Stirling number of the first kind  $\begin{bmatrix} n \\ k \end{bmatrix}$ , read "n cycle k", is the number of ways to partition of a set with n elements into k non-empty circles.

#### In the general case:

For  $n \ge 1$ , what are the options where to put the *n*th element?

- Together with some other elements. To do so, we can first subdivide the other n−1 remaining objects into k nonempty cycles, then decide which element to put the nth one after.
- 2 By itself. Then we are only left to decide how to make the remaining k-1 nonempty cycles out of the remaining n-1 objects.

These two cases can be joined as the recurrent equation

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, \quad \text{for } n > 0,$$

that yields the following triangle:



# Stirling's triangle for circles

| n | $\begin{bmatrix} n \\ 0 \end{bmatrix}$ | $\begin{bmatrix} n \\ 1 \end{bmatrix}$ | $\begin{bmatrix} n \\ 2 \end{bmatrix}$ | $\begin{bmatrix} n \\ 3 \end{bmatrix}$ | $\begin{bmatrix} n \\ 4 \end{bmatrix}$ | $\begin{bmatrix} n \\ 5 \end{bmatrix}$ | $\begin{bmatrix} n \\ 6 \end{bmatrix}$ | $\begin{bmatrix} n \\ 7 \end{bmatrix}$ | $\begin{bmatrix} n \\ 8 \end{bmatrix}$ | $\begin{bmatrix} n \\ 9 \end{bmatrix}$ |
|---|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| 0 | 1                                      |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |
| 1 | 0                                      | 1                                      |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |
| 2 | 0                                      | 1                                      | 1                                      |                                        |                                        |                                        |                                        |                                        |                                        |                                        |
| 3 | 0                                      | 2                                      | 3                                      | 1                                      |                                        |                                        |                                        |                                        |                                        |                                        |
| 4 | 0                                      | 6                                      | 11                                     | 6                                      | 1                                      |                                        |                                        |                                        |                                        |                                        |
| 5 | 0                                      | 24                                     | 50                                     | 35                                     | 10                                     | 1                                      |                                        |                                        |                                        |                                        |
| 6 | 0                                      | 120                                    | 274                                    | 225                                    | 85                                     | 15                                     | 1                                      |                                        |                                        |                                        |
| 7 | 0                                      | 720                                    | 1764                                   | 1624                                   | 735                                    | 175                                    | 21                                     | 1                                      |                                        |                                        |
| 8 | 0                                      | 5040                                   | 13068                                  | 13132                                  | 6769                                   | 1960                                   | 322                                    | 28                                     | 1                                      |                                        |
| 9 | 0                                      | 40320                                  | 109584                                 | 118124                                 | 67284                                  | 22449                                  | 4536                                   | 546                                    | 36                                     | 1                                      |



# Warmup: A closed formula for $\begin{bmatrix} n \\ 2 \end{bmatrix}$

#### Theorem

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1}[n \geqslant 1]$$



#### Theorem

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)! H_{n-1} [n \geqslant 1]$$

The formula is true for n=0 and n=1 ( $H_0=0$  as an empty sum) so let  $n \ge 2$ .

- For k = 1, ..., n-1 there are  $\binom{n}{k}$  ways of splitting n objects into a group of kand one of n-k. Each such way appears once for k, and once for n-k.
- To each splitting correspond  $\begin{bmatrix} k \\ 1 \end{bmatrix} \begin{bmatrix} n-k \\ 1 \end{bmatrix} = (k-1)!(n-k-1)!$  pairs of cycles.
- Then

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = \frac{1}{2} \sum_{k=1}^{n-1} {n \choose k} (k-1)! (n-k-1)!$$

$$= \frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}$$

$$= \frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{n} \left( \frac{1}{k} + \frac{1}{n-k} \right)$$

$$= (n-1)! H_{n-1}$$

### Next subsection

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - Basic Stirling number identities, for integer  $n \ge 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



### Basic Stirling number identities, for integer $n \ge 0$

#### Some identities and inequalities we have already observed:



## Basic Stirling number identities (2)

For any integer 
$$n \geqslant 0$$
,  $\sum_{k=0}^{n} {n \choose k} = n!$ 

Permutations define cyclic arrangement and vice versa, for example:



Thus the permutation  $\pi=384729156$  of  $\{1,2,3,4,5,6,7,8,9\}$  is equivalent to the circle arrangement

$$[1,3,4,7]$$
  $[2,8,5]$   $[6,9]$ 



# Basic Stirling number identities (2)

For any integer 
$$n \geqslant 0$$
,  $\sum_{k=0}^{n} {n \choose k} = n!$ 

Permutations define cyclic arrangement and vice versa, for example:



Thus the permutation  $\pi=384729156$  of  $\{1,2,3,4,5,6,7,8,9\}$  is equivalent to the circle arrangement

$$[1,3,4,7] \ [2,8,5] \ [6,9]$$



# Basic Stirling number identities (2)

For any integer  $n \geqslant 0$ ,  $\sum_{k=0}^{n} {n \choose k} = n!$ 

Permutations define cyclic arrangement and vice versa, for example:



Thus the permutation  $\pi=384729156$  of  $\{1,2,3,4,5,6,7,8,9\}$  is equivalent to the circle arrangement

$$[1,3,4,7] \ [2,8,5] \ [6,9]$$



# Basic Stirling number identities (3)

#### Observation

$$x^{0} = x^{\underline{0}}$$

$$x^{1} = x^{\underline{1}}$$

$$x^{2} = x^{\underline{1}} + x^{\underline{2}}$$

$$x^{3} = x^{\underline{1}} + 3x^{\underline{2}} + x^{\underline{3}}$$

$$x^{4} = x^{\underline{1}} + 7x^{\underline{2}} + 6x^{\underline{3}} + x^{\underline{4}}$$

| n                | $\binom{n}{0}$ | $\binom{n}{1}$ | $\binom{n}{2}$ | $\begin{Bmatrix} n \\ 3 \end{Bmatrix}$ | $\binom{n}{4}$ | $\binom{n}{5}$ |
|------------------|----------------|----------------|----------------|----------------------------------------|----------------|----------------|
| 0                | 1              |                |                |                                        |                |                |
| 1                | 0              | 1              |                |                                        |                |                |
| 2                | 0              | 1              | 1              |                                        |                |                |
| 1<br>2<br>3<br>4 | 0<br>0<br>0    | 1              | 3              | 1                                      |                |                |
|                  | 0              | 1              | 7              | 6                                      | 1              |                |
| 5                | 0              | 1              | 15             | 25                                     | 10             | 1              |

Does the following general formula hold?

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}$$



### Basic Stirling number identities (3a)

# Inductive proof of $x^n = \sum_k \begin{Bmatrix} n \\ k \end{Bmatrix} x^k$

- Considering that  $x^{k+1} = x^k (x^k)$  we obtain that  $x \cdot x^k = x^{k+1} + kx^k$
- Hence

$$\begin{split} x \cdot x^{n-1} &= x \sum_{k} \left\{ {n-1 \atop k} \right\} x^{\underline{k}} = \sum_{k} \left\{ {n-1 \atop k} \right\} x^{\underline{k+1}} + \sum_{k} \left\{ {n-1 \atop k} \right\} k x^{\underline{k}} \\ &= \sum_{k} \left\{ {n-1 \atop k-1} \right\} x^{\underline{k}} + \sum_{k} \left\{ {n-1 \atop k} \right\} k x^{\underline{k}} \\ &= \sum_{k} \left( \left\{ {n-1 \atop k-1} \right\} + k \left\{ {n-1 \atop k} \right\} \right) x^{\underline{k}} = \sum_{k} \left\{ {n \atop k} \right\} x^{\underline{k}} \end{split}$$

Q.E.D.



## Basic Stirling number identities (4)

#### Observation

$$x^{\overline{0}} = x^{0}$$

$$x^{\overline{1}} = x^{1}$$

$$x^{\overline{2}} = x^{1} + x^{2}$$

$$x^{\overline{3}} = 2x^{1} + 3x^{2} + x^{3}$$

$$x^{\overline{4}} = 6x^{1} + 11x^{2} + 6x^{3} + x^{4}$$
....

Generating function for Stirling cycle numbers:

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}, \quad \text{for } n \geqslant 0$$



### Basic Stirling number identities (4a)

#### Generating function of the Stirling numbers of the first kind

$$\sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} z^{k} = z^{\overline{n}} \ \forall n \geqslant 0$$

The formula is clearly true for n=0 and n=1. If it is true for n-1, then:

$$\begin{split} z^{\overline{n}} &= z^{\overline{n-1}}(z+n-1) \\ &= \left(\sum_{k} {n-1 \brack k} z^{k}\right)(z+n-1) \\ &= \sum_{k} {n-1 \brack k} z^{k+1} + (n-1) \sum_{k} {n-1 \brack k} z^{k} \\ &= \sum_{k} {n-1 \brack k-1} z^{k} + (n-1) \sum_{k} {n-1 \brack k} z^{k} \\ &= \sum_{k} \left((n-1) {n-1 \brack k} + {n-1 \brack k-1}\right) z^{k}, \end{split}$$



### Basic Stirling number identities (5)

#### Reversing the formulas for falling and rising factorials

For every  $n \geqslant 0$ ,

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}}$$
 and  $x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$ 



## Basic Stirling number identities (5)

#### Reversing the formulas for falling and rising factorials

For every  $n \ge 0$ ,

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}} \text{ and } x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$$

#### Proof

As  $x^{\underline{k}} = (-1)^{\underline{k}} (-x)^{\overline{k}}$ , we can rewrite the known equalities as:

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^k (-x)^{\overline{k}} \text{ and } (-1)^n (-x)^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

But clearly  $x^n = (-1)^n (-x)^n$ , so by replacing x with -x we get the thesis.



### Basic Stirling number identities (5)

#### Reversing the formulas for falling and rising factorials

For every  $n \ge 0$ ,

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}} \text{ and } x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$$

#### Corollary

$$\sum_{k} {n \brace k} {n \brack k} {k \brack m} (-1)^{n-k} = \sum_{k} {n \brack k} {k \brack m} (-1)^{n-k} = [m=n]$$

Indeed.

$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} \left( \sum_{m} \begin{bmatrix} k \\ m \end{bmatrix} x^{m} \right) = \sum_{m} \left( \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} \begin{bmatrix} k \\ m \end{bmatrix} (-1)^{n-k} \right) x^{m}$$

must hold for every x; the other equality is proved similarly.



### Stirling's inversion formula (cf. Exercise 6.12)

#### Statement

Let f and g be two functions defined on  $\mathbb N$  with values in  $\mathbb C$ .

The following are equivalent:

1 For every  $n \ge 0$ ,

$$g(n) = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{k} f(k).$$

2 For every  $n \geqslant 0$ ,

$$f(n) = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{k} g(k).$$



### Stirling's inversion formula (cf. Exercise 6.12)

#### Proof

If 
$$g(n) = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^k f(k)$$
 for every  $n \ge 0$ , then also for  $n \ge 0$ 

$$\sum_{k} {n \brack k} (-1)^{k} g(k) = \sum_{k} {n \brack k} (-1)^{k} \sum_{m} {k \brack m} (-1)^{m} f(m)$$

$$= \sum_{k,m} (-1)^{k+m} f(m) {n \brack k} {k \brack m}$$

$$= \sum_{k,m} (-1)^{2n-k-m} f(m) {n \brack k} {k \brack m}$$

$$= \sum_{m} (-1)^{n-m} f(m) \sum_{k} (-1)^{n-k} {n \brack k} {k \brack m}$$

$$= \sum_{m} (-1)^{n-m} f(m) [m=n]$$

$$= f(n).$$

The other implication is proved similarly.



### Next subsection

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - Basic Stirling number identities, for integer  $n \ge 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



### Stirling's triangles in tandem

Basic recurrences of Stirling numbers yield for every integers k, n a simple law:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{Bmatrix} -k \\ -n \end{Bmatrix} \quad \text{with } \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{Bmatrix} n \\ 0 \end{Bmatrix} = [n=0] \text{ and } \begin{bmatrix} 0 \\ k \end{bmatrix} = \begin{Bmatrix} 0 \\ k \end{Bmatrix} = [k=0]$$

| n  | $\begin{Bmatrix} n \\ -5 \end{Bmatrix}$ | $\binom{n}{-4}$ | $\begin{Bmatrix} n \\ -3 \end{Bmatrix}$ | $\binom{n}{-2}$ | $\binom{n}{-1}$ | $n \choose 0$ | $\binom{n}{1}$ | $\binom{n}{2}$ | $\binom{n}{3}$ | $\binom{n}{4}$ | $\binom{n}{5}$ |
|----|-----------------------------------------|-----------------|-----------------------------------------|-----------------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|
| -5 | 1                                       |                 |                                         |                 |                 |               |                |                |                |                |                |
| -4 | 10                                      | 1               |                                         |                 |                 |               |                |                |                |                |                |
| -3 | 35                                      | 6               | 1                                       |                 |                 |               |                |                |                |                |                |
| -2 | 50                                      | 11              | 3                                       | 1               |                 |               |                |                |                |                |                |
| -1 | 24                                      | 6               | 2                                       | 1               | 1               |               |                |                |                |                |                |
| 0  | 0                                       | 0               | 0                                       | 0               | 0               | 1             |                |                |                |                |                |
| 1  | 0                                       | 0               | 0                                       | 0               | 0               | 0             | 1              |                |                |                |                |
| 2  | 0                                       | 0               | 0                                       | 0               | 0               | 0             | 1              | 1              |                |                |                |
| 3  | 0                                       | 0               | 0                                       | 0               | 0               | 0             | 1              | 3              | 1              |                |                |
| 4  | 0                                       | 0               | 0                                       | 0               | 0               | 0             | 1              | 7              | 6              | 1              |                |
| 5  | 0                                       | 0               | 0                                       | 0               | 0               | 0             | 1              | 15             | 25             | 10             | 1              |



# Stirling numbers cheat sheet

• 
$${n \brace 0} = {n \brack 0} = [n = 0]$$
  
•  ${n \brack 1} = [n > 0]$  and  ${n \brack 1} = (n-1)![n > 0]$   
•  ${n \brack 2} = (2^{n-1}-1)[n > 0]$  and  ${n \brack 2} = (n-1)!H_{n-1}[n > 0]$   
•  ${n \brack n-1} = {n \brack n-1} = {n \brack 2} = \frac{n(n-1)}{2}$   
•  ${n \brack n} = {n \brack n} = {n \brack n} = 1$   
•  ${n \brack k} = {n \brack n} = {n \brack k} = 0$ , if  $k > n$  or  $k < 0$   
•  ${n \brack k} = k {n-1 \brack k} + {n-1 \brack k-1}$  and  ${n \brack k} = (n-1) {n-1 \brack k} + {n-1 \brack k-1}$   
•  $\sum_k {n \brack k} x^k = x^n$  and  $\sum_k {n \brack k} x^k = x^n$   
•  $\sum_k {n \brack k} = n!$   
•  $\sum_k {n \brack k} (-1)^{n-k} x^k = x^n$  and  $\sum_k {n \brack k} (-1)^{n-k} x^k = x^n$ 

### Next section

- 1 Stirling numbers
  - Stirling numbers of the second kind
  - Stirling numbers of the first kind
  - Basic Stirling number identities, for integer  $n \ge 0$
  - Extension of Stirling numbers
- 2 Fibonacci Numbers



### Fibonacci numbers: Idea

#### Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter *n* months? How many of them will be adult, and how many will be babies?



Leonardo Fibonacci (1175–1235)



### Fibonacci numbers: Idea

#### Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

### Solution (see Exercise 6.6)

- On the first month, the two baby rabbits will have become adults.
- On the second month, the two adult rabbits will have produced a pair of baby rabbits.
- On the third month, the two adult rabbits will have produced another pair of baby rabbits, while the other two baby rabbits will have become adults.
- And so on, and so on . . .



Leonardo Fibonacci (1175–1235)



## Fibonacci Numbers: Definition

|       |   |   |   |   |   |   |   |    |    |    | 10 |
|-------|---|---|---|---|---|---|---|----|----|----|----|
| $f_n$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |

#### Formulae for computing

- $f_n = f_{n-1} + f_{n-2}$ , where  $f_0 = 0$  and  $f_1 = 1$

#### The golden ratio

The constant  $\Phi = \frac{1+\sqrt{5}}{2} \approx 1.61803$  is called golden ratio

If a line segment a is divided into two sub-segments b and a-b so that a:b=b:(a-b), then

$$\frac{a}{b} = \Phi$$
 and  $\frac{b}{a} = -\hat{\Phi}$ 



## Fibonacci Numbers: Definition

| n     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 |
|-------|---|---|---|---|---|---|---|----|----|----|----|
| $f_n$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |

#### Formulae for computing:

- $f_n = f_{n-1} + f_{n-2}$ , where  $f_0 = 0$  and  $f_1 = 1$

### The golden ratio

The constant 
$$\Phi = \frac{1+\sqrt{5}}{2} \approx 1.61803$$
 is called golden ratio :

If a line segment a is divided into two sub-segments b and a-b so that a:b=b:(a-b), then

$$\frac{a}{b} = \Phi$$
 and  $\frac{b}{a} = -\hat{\Phi}$ 



$$F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + \cdots$$



$$F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + \cdots$$

$$\langle f_0, f_1, f_2, f_3, f_4, \cdots \rangle$$

$$\langle 0, 1, f_1 + f_0, f_2 + f_1, f_3 + f_2, \cdots \rangle$$

$$\leftrightarrow F(x)$$



$$F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + \cdots$$

$$\langle f_0, f_1, f_2, f_3, f_4, \cdots \rangle$$

$$\langle 0, f_1, f_1 + f_0, f_2 + f_1, f_3 + f_2, \cdots \rangle$$

$$\leftrightarrow F(x)$$

### Applying Addition to some known generating functions:



$$F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + \cdots$$

$$\langle f_0, f_1, f_2, f_3, f_4, \cdots \rangle$$

$$\langle 0, 1, f_1 + f_0, f_2 + f_1, f_3 + f_2, \cdots \rangle$$

$$\leftrightarrow F(x)$$

### Applying Addition to some known generating functions:

Closed form of the generating function:  $F(x) = \frac{x}{1-x-x^2}$ 



### Evaluation of Coefficients: Factorization

■ We know from the previous lecture that

$$\frac{1}{1-\alpha x} = 1 + \alpha x + \alpha^2 x^2 + \alpha^3 x^3 + \cdots$$

Let's try to represent a generating function in the form:

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$$
$$= A \sum_{n \ge 0} (\alpha x)^n + B \sum_{n \ge 0} (\beta x)^n$$
$$= \sum_{n \ge 0} (A\alpha^n + B\beta^n) x^n$$

lacksquare The task is to find such constants A,B,lpha,eta that

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x} = \frac{A - A\beta x + B - B\alpha x}{(1 - \alpha x)(1 - \beta x)}$$



### Evaluation of Coefficients: Factorization

■ We know from the previous lecture that

$$\frac{1}{1-\alpha x} = 1 + \alpha x + \alpha^2 x^2 + \alpha^3 x^3 + \cdots$$

Let's try to represent a generating function in the form:

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$$
$$= A \sum_{n \ge 0} (\alpha x)^n + B \sum_{n \ge 0} (\beta x)^n$$
$$= \sum_{n \ge 0} (A\alpha^n + B\beta^n) x^n$$

lacksquare The task is to find such constants A,B,lpha,eta that

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x} = \frac{A - A\beta x + B - B\alpha x}{(1 - \alpha x)(1 - \beta x)}$$



### Evaluation of Coefficients: Factorization

■ We know from the previous lecture that

$$\frac{1}{1-\alpha x} = 1 + \alpha x + \alpha^2 x^2 + \alpha^3 x^3 + \cdots$$

Let's try to represent a generating function in the form:

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$$
$$= A \sum_{n \ge 0} (\alpha x)^n + B \sum_{n \ge 0} (\beta x)^n$$
$$= \sum_{n \ge 0} (A\alpha^n + B\beta^n) x^n$$

■ The task is to find such constants  $A, B, \alpha, \beta$  that

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x} = \frac{A - A\beta x + B - B\alpha x}{(1 - \alpha x)(1 - \beta x)}$$



## Factorization for Fibonacci (2)

For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha x)(1-\beta x) &= 1-x-x^2\\ (A+B)-(A\beta+B\alpha)x &= x \end{cases}$$



# Factorization for Fibonacci (2)

For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha x)(1-\beta x) & = & 1-x-x^2 \\ (A+B)-(A\beta+B\alpha)x & = & x \end{cases}$$

### To factorize $1 - x - x^2$

Solve the equation  $w^2 - wx - x^2 = 0$  (i.e. w = 1 gives the special case  $1 - x - x^2 = 0$ ):

$$w_{1,2} = \frac{x \pm \sqrt{x^2 + 4x^2}}{2} = \frac{1 \pm \sqrt{5}}{2}x$$

Therefore

$$w^{2} - wx - x^{2} = \left(w - \frac{1 + \sqrt{5}}{2}x\right)\left(w - \frac{1 - \sqrt{5}}{2}x\right)$$

and

$$1 - x - x^2 = \left(1 - \frac{1 + \sqrt{5}}{2}x\right) \left(1 - \frac{1 - \sqrt{5}}{2}x\right)$$



# Factorization for Fibonacci (2)

For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha x)(1-\beta x) & = 1-x-x^2 \\ (A+B)-(A\beta+B\alpha)x & = x \end{cases}$$

#### A general trick

Let  $p(x) = \sum_{k=0}^{n} a_k x^k$  be a polynomial over  $\mathbb C$  of degree n such that  $a_0 = p(0) \neq 0$ .

- Then all the roots of p have a multiplicative inverse.
- Consider the "reverse" polynomial

$$p_R(x) = \sum_{k=0}^n a_k x^{n-k} = x^n p\left(\frac{1}{x}\right)$$

Then  $\alpha$  is a root of p if and only if  $1/\alpha$  is a root of  $p_R$ , because if  $p(x) = a_n(x - \alpha_1) \cdots (x - \alpha_n)$ , then  $p_R(x) = a_n(1 - \alpha_1 x) \cdots (1 - \alpha_n x)$ .



## Factorization for Fibonacci (3)

For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha x)(1-\beta x) & = 1-x-x^2 \\ (A+B)-(A\beta+B\alpha)x & = x \end{cases}$$

### Denote $\Phi = \frac{1+\sqrt{5}}{2}$ (golden ratio):

■ "phi hat" is

$$\widehat{\Phi} = 1 - \Phi = 1 - \frac{1 + \sqrt{5}}{2} = \frac{2 - 1 - \sqrt{5}}{2} = \frac{1 - \sqrt{5}}{2}$$

and we have

$$1 - x - x^2 = (1 - \Phi x) \left( 1 - \widehat{\Phi} x \right)$$



## Factorization for Fibonacci (3)

For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1-\alpha x)(1-\beta x) & = & 1-x-x^2 \\ (A+B)-(A\beta+B\alpha)x & = & x \end{cases}$$

### Denote $\Phi = \frac{1+\sqrt{5}}{2}$ (golden ratio):

■ "phi hat" is

$$\widehat{\Phi} = 1 - \Phi = 1 - \frac{1 + \sqrt{5}}{2} = \frac{2 - 1 - \sqrt{5}}{2} = \frac{1 - \sqrt{5}}{2}$$

and we have

$$1 - x - x^2 = (1 - \Phi x) \left( 1 - \widehat{\Phi} x \right)$$



# Factorization for Fibonacci (4)

For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1 - \Phi x)(1 - \widehat{\Phi} x) & = 1 - x - x^2 \\ (A + B) - (A\widehat{\Phi} + B\Phi)x & = x \end{cases}$$

#### To find A and B:

Solve

$$\begin{cases} A+B=0\\ A\widehat{\Phi}+B\Phi=-1 \end{cases}$$

This is  $A = 1/(\Phi - \widehat{\Phi})$ :

$$A = 1/(\Phi - \widehat{\Phi})$$

$$= 1/\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right)$$

$$= \frac{2}{1+\sqrt{5}-1+\sqrt{5}} = \frac{1}{\sqrt{5}}$$



# Factorization for Fibonacci (4)

 For the generating function of Fibonacci Numbers we need to solve the equations:

$$\begin{cases} (1 - \Phi x)(1 - \widehat{\Phi} x) &= 1 - x - x^2 \\ (A + B) - (A\widehat{\Phi} + B\Phi)x &= x \end{cases}$$

#### To find A and B:

Solve

$$\begin{cases} A+B=0\\ A\widehat{\Phi}+B\Phi=-1 \end{cases}$$

This is  $A = 1/(\Phi - \widehat{\Phi})$ :

$$A = 1/(\Phi - \widehat{\Phi})$$

$$= 1/\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right)$$

$$= \frac{2}{1+\sqrt{5}-1+\sqrt{5}} = \frac{1}{\sqrt{5}}$$



# Factorization for Fibonacci (5)

#### To conclude:

- We have  $\alpha = \Phi = (1 + \sqrt{5})/2$ ,  $\beta = \widehat{\Phi} = (1 \sqrt{5})/2$ ,  $A = 1/\sqrt{5}$  and  $B = -1/\sqrt{5}$
- Generating function

$$G(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$$
$$= \frac{1}{\sqrt{5}} \left( \frac{1}{1 - \Phi x} - \frac{1}{1 - \widehat{\Phi} x} \right)$$

 $\blacksquare$  Closed formula for  $f_n$ 

$$f_n = A\alpha^n + B\beta^n$$
$$= \frac{1}{\sqrt{5}} \left( \Phi^n - \widehat{\Phi}^n \right)$$

