Chapter 5: Comparing one or two means

5.1 a)
$$n = 49$$

 $\bar{x} = 0.918$
 $s = 0.071$
 $\mu_0 = 0.9$

5.1 b)
$$H_0$$
: $\mu_0 \le 0.9$ H_1 : $\mu_0 > 0.9$

5.1 c) Lower bound:
$$\bar{x} - z_{\alpha} \times SE_{\mu} = 0.918 - 1.645 \times \frac{0.071}{\sqrt{49}} = 0.901$$

- 5.1 d) The lower bound of the confidence interval for μ is higher than μ_0 . H_0 is rejected with 95% confidence. The PFAS level in town is significantly higher than 0.9 microgram/kg dry soil. There is a risk of 5% for a type-I error.
- 5.1 e) z-score: $\frac{\bar{x}-\mu}{s/\sqrt{n}} = \frac{0.918-0.9}{0.071/\sqrt{49}} = 1.775$
- 5.1 f) The critical z-value for 95% confidence is 1.645. The p-value (the probability that H_0 is true) is 0.05. For any z-value higher than 1.645 the p-value is lower than 0.05. Since for this test the (absolute of the) calculated z-score = 1.775 and this is higher than 1.645, this means that the p-value is lower than 0.05.

Note: For right sided tests the z-score is negative, but since the standard normal distribution is symmetric we can simply use the positive value for comparing it with the critical z-value.

- 5.1 g) The calculated z-score is more extreme (higher) than the critical z-value of 1.645. H_0 is rejected with 95% confidence. The PFAS level in town is significantly higher than 0.9 microgram/kg dry soil. There is a risk of 5% for a type-I error. The two methods produce the same answer. It cannot be different; the methods are equivalent.
- 5.1 h) t-score: $\frac{\bar{x}-\mu}{s/\sqrt{n}} = \frac{0.930-0.9}{0.070/\sqrt{16}} = 1.714$
- 5.1 i) The calculated t-score of 1.714 is lower than the critical t-value of 1.753. H_0 is not rejected. The PFAS level in town is significantly below the norm. There is a risk type-II error.
- 5.1 j) Lower bound: $\bar{x} t_{\alpha(df=15)} \times SE_{\mu} = 0.930 1.753 \times \frac{0.070}{\sqrt{16}} = 0.899$
- 5.1 k) Yes. The lower bound for the population mean μ is 0.899, it can therefore not be ruled out that the mean PFAS level is below 0.9.
- 5.1 I) The sample is so much smaller (16 vs. 49) that there is too much uncertainty in the result.

5.2 a) Result: 1.645

This is the z-value for a 95% one-sided confidence interval.

```
qnorm(p = 0.95, mean = 0, sd = 1, lower.tail = TRUE)
# Or because the standard normal distribution is the default simply use:
qnorm(0.95) # 1.645
```

5.2 b) Because for a two-sided interval you spread the risk over the two tails. There is 2.5% of risk on the left tail and 2.5% of risk on the right tail.

```
qnorm(p = 0.975) # 1.960
```

5.2 c) The pnorm() is the inverse of the qnorm() function: It returns the cumulative probability for a given value q in a specified normal distribution.

```
pnorm(q = 1.645, mean = 0, sd = 1) # 0.95
pnorm(1.960) # 0.975
```

 $5.2 \ d)$ The qt() function returns the t-value for a given cumulative probability p and given number of degrees of freedom df .

```
qt(p = 0.95, df = 15) # 1.753
```

5.2 e) The pt() is the inverse of the qt() function: It returns the cumulative probability for a given value q in a specified t-distribution.

```
pt(q = 1.753, df = 15) # 0.95
```

5.2 f) t_1 : -1.06 t_2 : -1.328 t_3 : 1.328

```
qt(p = 0.15, df = 19) # -1.06
qt(p = 0.10, df = 19) # -1.328
qt(p = 0.90, df = 19) # 1.328
qt(p = 0.10, df = 19, lower.tail = FALSE) # 1.328
```

5.2 g) p_1 : 0.081 p_2 : 0.929 p_2 : 0.015

```
pt(q = -1.5, df = 11) # 0.081
diff(pt(q = c(-2,2), df = 11)) # 0.929
pt(q = 2.5, df = 11, lower.tail = FALSE) # 0.015
```

5.2 h) Two tailed inequality test: 2.467 One-tailed right sided test: 2.153 One-tailed left sided test: -2.153

```
# Two-tailed inequality test
qt(p = 0.99, df = 28) # 2.467

# One-tailed right sided test
qt(p = 0.98, df = 28) # 2.153

# One-tailed left sided test
qt(p = 0.98, df = 28, lower.tail = FALSE) # -2.153
```

- 5.2 i) Two-tailed inequality test: H_0 rejected (2.6 > 2.476) One-tailed right sided test: H_0 rejected (-2.3 < -2.153) One-tailed left sided test: H_0 not rejected (1.6 < 2.153)
- 5.3 a) Because different men get the caffeine and the placebo. There are 18 unique test subjects. Everyone gets tested once and every measurement is therefore independent.
- 5.3 b) H_0 : $\mu_1 \leq \mu_2$ H_1 : $\mu_1 > \mu_2$

5.3 c)
$$_{p}^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1} + n_{2} - 2)} = \frac{(9-1)\times 5.61^{2} + (9-1)\times 7.70^{2}}{9 + 9 - 2} = 45.38$$

5.3 d)
$$t = \frac{(x_1 - x_2) - D_0}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{(94.22 - 100.56)}{\sqrt{45.38 \times (\frac{1}{9} + \frac{1}{9})}} = 1.995$$

5.3 e) The calculated t-score of 1.995 is more extreme (higher) than the critical value of 1.746. H_0 is rejected with 95% confidence. The mean placebo RER level is significantly higher than the mean caffeine RER level. There is a risk of 5% for type-I error.

5.3 f) placebo caffeine

Mean: 100.55 Mean: 94.22

Standard deviation: 7.699 Standard deviation: 5.607

```
# These are the values for the RER test data set
placebo <- c(105, 119, 100, 97, 96, 101, 94, 95, 98)
caffeine <- c(96, 99, 94, 89, 96, 93, 88, 105, 88)

mean(placebo) # Mean: 100.55
sd(placebo) # Standard deviation: 7.699

mean(caffeine) # Mean: 94.22
sd(caffeine) # Standard deviation: 5.607
```

5.3 g) The code runs an independent (not paired) samples t-test with a confidence of 95% for **placebo** and **caffeine**, with the alternative hypothesis H_1 that the difference in means is greater than 0. The variances are assumed equal.

```
t.test(x = placebo, y = caffeine, alternative = 'greater', mu = 0,
    paired = FALSE, var.equal = TRUE, conf.level = 0.95)
```

5.3 h) The Welch Two Sample t-test leads to a slightly different p-value of 0.03252, but the same conclusion: rejection of H_0 .

```
t.test(x = placebo, y = caffeine, alternative = 'greater', mu = 0,
    paired = FALSE, var.equal = FALSE, conf.level = 0.95)
```

- 5.3 i) You can use Hartley's F or Levene's test.
- 5.4 a) The observations are not independent because the same twelve people are tested twice. The two blood pressure measurements for one person are connected/dependent: a person with high blood pressure will have higher values in both experiments. That is why in a dependent t-test you look at the difference between the two measurements.

5.4 b) Mean standing: 140.83 Mean lying: 143.33 Mean difference: 2.5

```
# These are the values for the blood pressure data set standing <- c(132, 146, 135, 141, 139, 162, 128, 137, 145, 151, 131, 143) lying <- c(136, 145, 140, 147, 142, 160, 137, 136, 149, 158, 120, 150) mean(standing) # Mean standing: 140.83 mean(lying) # Mean lying: 143.33 differences <- lying - standing mean(differences) # Mean difference: 2.5
```

- 5.4 c) H_0 : $\mu_D \le 0$ H_1 : $\mu_D > 0$
- $5.4\ d)$ The test is done with **alternative = 'greater'**, which means that now R will test for standing greater than lying, which is quite improbable given the sample results.

```
t.test(x = standing, y = lying, alternative = 'greater', mu = 0,
    paired = TRUE, conf.level = 0.925)
```

5.4 e) The p-value for this sample outcome is 0.07189, which is below the limit of 0.075 (92.5% confidence). H_0 is rejected with 92.5% confidence. The blood pressure is significantly higher lying down than standing up. There is a risk of 7.5% for type-I error.