Anomaly Detection and Recommender Systems

Sidharth Baskaran

June 2021

Anomaly detection problem

- Decide if a example is an anomaly to dataset
- Build model for p(x) which is probability of feature being anomalous
 - $-p(x) < \epsilon \implies$ anomaly and $p(x) \ge \epsilon$ is fine
 - Ex: fraud detection where $x^{(i)}$ is features of user i

Gaussian/Normal Distribution

- If $x \in \mathbb{R}$, then if x is a distributed Gaussian with mean μ and variance σ^2
 - $-x^{\sim}\mathcal{R}(\mu,\sigma^2)$
 - Formula is $p(x; \mu, \sigma^2)$
- Density formula is $p=\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$ Distribution is centered at μ and σ determines width
- Area under curve is always 1, so $\sigma \propto \text{height}^-$
- Parameter estimation

 - arameter estimation $-\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \\ -\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} \mu)^2 \\ -\text{Tend to use } \frac{1}{m} \text{ instead of } \frac{1}{m-1}, \text{ both work equally well}$

Anomaly detection algorithm

- Model probability of each feature vector as $p(x) = p(x_1; \mu_1, \sigma_1^2) p(x_2; \mu_2, \sigma_2^2) \dots p(x_n; \mu_n, \sigma_n^2) =$ $\prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2)$
 - Assumes features are independent

$$p(x) = \prod_{j=1}^{n} p\left(x_j; \mu_j, \sigma_j^2\right) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{\left(x_j - \mu_j\right)^2}{2\sigma_j^2}\right)$$

• Is anomaly if $p(x) < \epsilon$

Developing and Evaluating an Anomaly Detection System

- Importance of real-number evaluation
 - Assume labeled data exists, anomalous and non-anomalous
 - Training set $x^{(i)}, \dots, x^{(m)} \to \text{assume normal examples that are not anomalous}$
 - Define a cross validation and test set
- Fit model p(x) on training set $\{x^{(i)}, \dots, x^{(m)}\}$
- On cross validation/test set example x, predict

$$y = \begin{cases} 1 \text{ if } p(x) < \epsilon \text{ (anomaly)} \\ 0 \text{ if } p(x) \ge \epsilon \text{ (normal)} \end{cases}$$

- Evaluation metrics
 - True positive, false positive, false negative, true negative
 - Precision/recall
 - $-F_1$ score (if skewed)
 - Classification accuracy is not a good metric due to skewedness
- Can also use the CV set to choose ϵ

Anomaly Detection vs. Supervised Learning

- Anomaly Detection
 - Very small number of positive examples
 - Large number of negative examples
 - Many different types of anomalies \rightarrow cannot discern what anomalies look like from small positive examples
- Supervised learning
 - Large number of positive and negative examples
 - Enough positive examples for algorithm to discern a positive example
 - * Later positive examples are similar to those in training set

Choosing Features

- Plot a histogram of data to check normality
 - If skewed, can apply transform $x_i \to \log(x_i + c)$
 - * Can also use polynomial transformations
 - Constant can be varied to make data more Gaussian
- Error analysis for anomalies
 - -p(x) large for normal examples and small for anomalous examples
 - Problem $\rightarrow p(x)$ comparable for normal and anomalous
 - Can add features which are magnified \rightarrow easier to capture anomalies

Multivariate Gaussian Distribution

- Allows for plotting multiple features and their probabilities
 - Peak is μ and height is p(x)
- Let $x \in \mathbb{R}^n$, and the multivariate function outputs p(x)
- Parameters are $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$, the covariance matrix $-p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$
 - Where $|\Sigma|$ is determinant of Σ
- Covariance matrix Σ and μ
 - Decreasing diagonal values in Σ narrows distribution and increasing it widens (less height since $\sum p(x^{(i)}) = 1$
 - Changing individual values of diagonals makes the contour plot ellipsoid affecting distributions of
 - Changing off-diagonal entries allow for "rotating" the contour plot in direction of sign of the entries (i.e +ve = CW and -ve = CCW)
 - Changing μ shifts the peak

Anomaly Detection using Multivariate Gaussian Distribution

- Recall parameter fitting $-\mu = \frac{1}{m} \sum_{i=1}^m x^{(i)} \\ -\Sigma = \frac{1}{m} \sum_{i=1}^m (x^{(i)} \mu) (x^{(i)} \mu)^T$ Given a new example x, compute p(x), and flag an anomaly if $p(x) < \epsilon$
- Relationship to original model

$$p(x) = \prod_{i=1}^{n} = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)) \text{ if } \Sigma = \begin{bmatrix} \sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

- Original model
 - Manually create features from those that have unusual combinations of values to capture anomalies
 - Computationally cheaper
 - Fine if m < n
- Multivariate Gaussian
 - Automatically captures correlations between features
 - Computationally expensive (e.g. inverse matrix of Σ must be calculated)
 - Must have m > n, or Σ is singular
 - * Singularity implies linearly dependent features

Predicting Movie Ratings

- Notation
 - $-r(i,j) \in \{0,1\}$ represents whether or not user j has rated movie i
 - $-y^{(i,j)}$ is the user's rating if r(i,j)=1
 - n_u is number of users and n_m is number of movies
 - $-\theta^{(j)}$ is parameter vector for user j and $x^{(i)}$ is feature vector for movie i
- For each user j, learn a parameter vector $\theta^{(j)} \in \mathbb{R}^3$, and predict user j as rating movie j with $(\theta^{(j)})^T x^{(i)}$
- i: r(i,j) = 1 means all values of i such that user has given a rating

Learn $\theta^{(j)}$

$$\min_{\boldsymbol{\theta}^{(j)}} \underbrace{\frac{1}{2} \sum_{i: r(i,j)=1} \left((\boldsymbol{\theta}^{j})^{T} x^{(i)} - y^{(i,j)} \right)^{2} + \frac{\lambda}{2} \sum_{k=1}^{n} (\boldsymbol{\theta}_{k}^{(j)})^{2}}_{J(\boldsymbol{\theta}^{(j)})}$$

Learn $\theta^{(1)}, \dots, \theta^{(n_u)}$

$$\min_{theta^{(1)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^j)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Gradient descent update routine

$$\begin{aligned} \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} (\text{ for } k = 0) \\ \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \underbrace{\left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right)}_{\frac{\partial}{\partial \theta_k^{(j)}} J(\theta^{(1)}, \dots, \theta^{(j)})} (\text{ for } k \neq 0) \end{aligned}$$