Teoria analizy dużych zbiorów - sprawozdanie 1

 $Stanisław\ Wilczyński$

5 marca 2017

Zadanie1

Sprawdzimy czy zgodnie z teorią z wykładu zachodzą nierówności:

$$\frac{\phi(x) \cdot x}{x^2 + 1} \le 1 - \Phi(x) \le \frac{\phi(x)}{x}$$

oraz czy granice tych wyrażeń przy $x\to\infty$ są równe. Niech

$$g_1(x) = 1 - \Phi(x)$$

$$g_2(x) = \frac{\phi(x)}{x}$$

$$g_3(x) = \frac{\phi(x) \cdot x}{x^2 + 1}$$

Wtedy dostajemy

Nasze wyniki zgadzają się z teorią z wykładu - nierówności są zachowane oraz granice są równe. Możemy jednak zauważyć, że dla x = 2 wyrażenia $g_1(x)$ oraz $g_3(x)$ są już prawie równe natomiast funkcje $g_1(x)$ oraz $g_2(x)$ zbiżają się do siebie wolniej.

Zadanie 2

Niech

$$g_1(p,\alpha) = \Phi^{-1} \left(1 - \frac{\alpha}{2p} \right)$$
$$c(p) = \sqrt{2 \log p}$$
$$B(p,\alpha) = 2 \log \left(\frac{2p}{\alpha} \right) - \log(2\pi)$$
$$g_2(p,\alpha) = \sqrt{B \left(1 - \frac{\log B}{B} \right)}$$

Powyższe funkcje zostały przedstawione na wykresach poniżej razem z odpowiednimi ilorazami z treści zadania.

Wyniki, które możemy odczytać z wykresów potwierdzają teorię z wykładu, tzn. dla $p \to \infty$ mamy, że granice funkcji $g_1(p,\alpha)$, $g_2(p,\alpha)$ są równe, a zbieżność można zaobserwować już dla niewielkich wartości p takich jak

 $10^2, 10^3$ i to niezależnie od parametru α . Jeśli chodzi o funckje c(p) jest ona pewnym przybliżeniem $g_1(p)$, jednak dla pewnych wartości parametru α , np. 0.01 jest ona dość słabym przybliżeniem.

Zadanie 3

Niech Y_1,\ldots,Y_p dla $p=10^8$ będą i.i.d ~N(0,1). Niech $M(k)=\max_{j\in\{1,\ldots,k\}}|Y_j|$ oraz $g(k)=\sqrt{2\log k}$ dla $k\in\{10^1,10^2,\ldots,10^8\}$. Będziemy porównywać funckje M i g. Przetestujemy w ten sposón teorię mówiącą, że dla Z_1,\ldots,Z_n i.i.d zmiennych losowych z rozkładu N(0,1) mamy

$$\frac{\max_{i \in \{1, \dots, n\}} |Z_i|}{\sqrt{2 \log n}} \to^P 1$$

Możemy zauważyć, że rzeczywiście dla dużych wartości k (od około 10^5) funkcje M(k), g(k) zbliżają się do siebie, jednak nie jest to zbyt wyraźna i szybka zbieżność tak jak w przykładach w poprzednich zadaniach.

Zadanie 4

W tym zadaniu będziemy estymować moc testów Bonferroniego i Fishera. Niech p=5000. Zakładamy, że nasze zmienne pochodzą z rozkładu normalnego o wariancji 1. Dla $H_0: \mu_1, \ldots, \mu_p = 0$ będziemy testować alternatywy:

$$H_1: \mu_1 = 1.2\sqrt{2\log p}, \mu_2, \dots, \mu_p = 0$$

 $H_2: \mu_1, \dots, \mu_{1000} = 0.15\sqrt{2\log p}, \mu_{1001}, \dots, \mu_p = 0$

Aby oszacować moc, wygenerujemy zmienne z rozkładów przy hipotezie alternatywnej i sprawdzimy w jak wielu przypadkach hipoteza zerowa została odrzucona.

Niech $\hat{\gamma}_B, \hat{\gamma}_F, \hat{\gamma}_C$ oznaczją wy
estymowane przez nas moce testów odpowienio Bonferroniego "Fishera i chikwadrat. Przy testowaniu przeciwko H_1 otrzymujemy $\hat{\gamma}_B = 0.699, \hat{\gamma}_F = 0.071, \hat{\gamma}_C = 0.086$.

Przy testowaniu przeciwko H_2 otrzymujemy natomiast $\hat{\gamma}_B=0.11,\ \hat{\gamma}_F=0.98$ oraz $\hat{\gamma}_C=0.982$. Te wyniki potwierdzają przedstawione na wykładzie cechy tych testów. Otoż test Bonferroniego ma w pierwszym przypadku dużą moc, gdyż H_0 odrzucamy, gdy $\min(p_{value}) \leq \frac{\alpha}{p}$, służy, więc do wykrywania dużego odstępstwa od normy na jednej zmiennej. Z kolei test Fishera odrzuca H_0 dla dużych wartości statystyki $-2\sum\log p_{value}$, dlatego działa lepiej w drugim przypadku - kiedy wiele zmiennych odbiega od normy, ale niekoniecznie w znacznym stopniu którakolwiek z nich. Podobnie test chi-kwadrat - odrzuca on H_0 dla dużych wartości statystyki $\sum Y_i^2$, gdzie Y_i były naszą próba losową, dlatego działa lepiej w drugim przypadku.