0.1 $(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}) = (225, 0)$ (ATLAS_CONF_2013_091)

• Process: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to (W^{\pm} \tilde{\chi}_1^0)(Z \tilde{\chi}_1^0)$.

• Mass: $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0} = 225$ GeV, $m_{\tilde{\chi}_1^0} = 0$ GeV.

• The number of events: $5 \cdot 10^4$.

• Event Generator: Herwig++ 2.5.2.

#	cut name	$\epsilon_{ m Exp}$	$\epsilon_{ ext{Atom}}$	Atom Exp	(Exp-Atom) Error	#/?	R_{Exp}	$R_{ m Atom}$	Atom Exp	(Exp-Atom) Error
0	MET > 50	100.0	100.0							
1	>= 2 central jets	76.28 ± 0.39	71.48 ± 0.93	0.94	-4.77	0	0.76 ± 0.0	0.71 ± 0.01	0.94	-4.77
2	2 leading jets central	73.12 ± 0.38	68.63 ± 0.91	0.94	-4.54	1	0.96 ± 0.01	0.96 ± 0.01	1.0	0.11
3	4th leading jet veto $(p_T > 25)$	61.53 ± 0.35	56.18 ± 0.83	0.91	-5.91	2	0.84 ± 0.0	0.82 ± 0.01	0.97	-1.75
4	baseline lepton veto	60.51 ± 0.35	51.9 ± 0.8	0.86	-9.83	3	0.98 ± 0.01	0.92 ± 0.01	0.94	-3.88
5	$m_{jj} > 50$	57.56 ± 0.34	48.34 ± 0.78	0.84	-10.86	4	0.95 ± 0.01	0.93 ± 0.01	0.98	-1.24
6	$m_T > 40$	50.87 ± 0.32	41.76 ± 0.73	0.82	-11.48	5	0.88 ± 0.01	0.86 ± 0.02	0.98	-1.24
7	$m_{CT} > 160$	8.74 ± 0.13	6.66 ± 0.3	0.76	-6.36	6	0.17 ± 0.0	0.16 ± 0.01	0.93	-1.6
8	exactly 2 leading bjets	7.57 ± 0.12	5.99 ± 0.28	0.79	-5.13	7	0.87 ± 0.01	0.9 ± 0.04	1.04	0.72
9	exactly 2 leading bjets	2.32 ± 0.07	1.85 ± 0.16	0.8	-2.75	8	0.31 ± 0.01	0.31 ± 0.03	1.01	0.08
10	SRA: $100 < m_T < 130$	0.42 ± 0.03	0.31 ± 0.06	0.73	-1.61	9	0.18 ± 0.01	0.17 ± 0.03	0.92	-0.41
_11	SRB: $m_T > 130$	0.95 ± 0.04	0.67 ± 0.1	0.71	-2.59	10	2.23 ± 0.1	2.17 ± 0.31	0.98	-0.17

Table 1: The cut-flow table for $(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}) = (225, 0).$