Workshop on Computer vision, graphics and Image processing

Optimization

Dr. Uma Mudenagudi

Professor, Department of E and C

BVBCET HUBLI

Class-33, 34 01-07-2010 10.00-1.15pm

Overview

- Motivation
- Optimization methods
- SR problem
- Different solutions to SR problems
- Conclusion

What is Optimization?

 Optimization is the mathematical discipline which is concerned with finding the maxima and minima of functions, possibly subject to constraints.

Uses of optimization

- Architecture
- Nutrition
- Electrical circuits
- Economics
- Transportation
- etc.

What do we optimize?

A real function of n variables

$$f(X_1, X_2, \ldots, X_n)$$

with or without constrains

Unconstrained optimization

min
$$f(x, y) = x^2 + 2y^2$$

Optimization with constraints

min
$$f(x, y) = x^{2} + 2y^{2}$$

 $x > 0$
Or
min $f(x, y) = x^{2} + 2y^{2}$
 $-2 < x < 5, y \ge 1$
Or
min $f(x, y) = x^{2} + 2y^{2}$
 $x + y = 2$

Lets Optimize

 Suppose we want to find the minimum of the function

Review max-min

 What is special about a local max or a local min of a function f (x)?

at local max or local min $\mathbf{f}'(x)=0$

 \mathbf{f} "(x) > 0 if local min

 \mathbf{f} "(x) < 0 if local max

Review max-min

Review max-min

- Second Derivative Test
- Local min, local max, saddle point
- Gradient of f vector (df/dx, df/dy, df/dz)

direction of fastest increase of **f**

Global min/max vs. local min/max

Gradient Descent Method, ex

Minimize function

$$f(x,y) = 0.5(\alpha x^{2} + y^{2})$$
$$-11 \le x, y \le 11$$

Minimize function

$$f(x,y) = \cos(x)\cos(y)$$
$$-4 \le x, y \le 4$$

Gradient Descent Method

- Use function gd(alpha,x0)
 - Does gd.m converge to a local min? Is there a difference if $\alpha > 0$ vs. $\alpha < 0$?
 - How many iterations does it take to converge to a local min? How do starting points x0 affect number of iterations?
- Use function gd2(x0)
 - Does gd2.m converge to a local min?
 - How do starting points x0 affect number of iterations and the location of a local minimum?

How good are the optimization methods?

- Starting point
- Convergence to global min/max.
- Classes of nice optimization problems Example: $f(x,y) = 0.5(\alpha x^2 + y^2)$, $\alpha > 0$ Every local min is global min.

The Super-Resolution Problem

$$\underline{Y}_k = \mathbf{DHF}_k \underline{X} + \underline{V}_k, \quad \underline{V}_k \sim \mathbf{N} \{0, \sigma_n^2\}$$

Given

 \underline{Y}_k – The measured images (noisy, blurry, down-sampled ..)

H – The blur can be extracted from the camera characteristics

D – The decimation is dictated by the required resolution ratio

 \mathbf{F}_{k} – The warp can be estimated using motion estimation

 σ_n – The noise can be extracted from the camera / image

Recover

X - HR image

For a given bandlimited image, the Nyquist sampling theorem states that if a uniform sampling is fine enough (≥**D**), perfect reconstruction is possible.

Due to our limited camera resolution, we sample using an insufficient 2D grid

However, if we take a second picture, shifting the camera 'slightly to the right' we obtain:

Similarly, by shifting down we get a third image:

And finally, by shifting down and to the right we get the fourth image:

It is trivial to see that interlacing the four images, we get that the desired resolution is obtained, and thus perfect reconstruction is guaranteed.

Rotation/Scale/Disp.

What if the camera displacement is Arbitrary? What if the camera rotates? Gets closer to the object (zoom)?

Rotation/Scale/Disp.

There is no sampling theorem covering this case

A Small Example

3:1 scale-up in each axis using 9 images, with pure global translation between them

Further Complications

- Complicated motion
 - perspective, local motion, ...
- Blur
 - sampling is not a point operation
 - Spatially variant blur
 - Temporally variant blur
- Noise
- Changes in the scene

Super-Resolution - Agenda

- The basic idea
- Image formation process
- Formulation and solution
- Special cases and related problems
- Limitations of Super-Resolution
- SR in time

Image Formation

Scene

Geometric transformation

Optical Blur

Sampling

Noise

HR

 \mathbf{F}_{k}

 \mathbf{H}_k

 \mathbf{D}_k

LR

Can we write these steps as linear operators?

$$LR = \mathbf{D}_{k} \mathbf{H}_{k} \mathbf{F}_{k} \cdot HR$$

Geometric Transformation

- Any appropriate motion model
- Every frame has different transformation
- Usually found by a separate registration algorithm

Geometric Transformation

Can be modeled as a linear operation $\mathbf{F}_k \underline{X}$

Optical Blur

Geometric transformation

Optical Blur

- Due to the lens PSF and pixel integration
- Usually $\mathbf{H}_k = \mathbf{H}$

H

Optical Blur

Can be modeled as a linear operation HX

32

Sampling

- Pixel operation consists of area integration followed by decimation
- D is the decimation only
- Usually $\mathbf{D}_{\nu} = \mathbf{\Gamma}$

Decimation

Can be modeled as a linear operation $\mathbf{D}\underline{X}$

Super-Resolution - Model

Simplified Model

The Super-Resolution Problem

$$\underline{Y}_k = \mathbf{DHF}_k \underline{X} + \underline{V}_k, \quad \underline{V}_k \sim \mathbf{N} \{0, \sigma_n^2\}$$

Given

 \underline{Y}_k – The measured images (noisy, blurry, down-sampled ..)

H – The blur can be extracted from the camera characteristics

D – The decimation is dictated by the required resolution ratio

 \mathbf{F}_{k} – The warp can be estimated using motion estimation

 σ_n – The noise can be extracted from the camera / image

Recover

X - HR image

The Model as One Equation

$$\underline{Y} = \begin{bmatrix} \underline{Y}_1 \\ \underline{Y}_2 \\ \vdots \\ \underline{Y}_N \end{bmatrix} = \begin{bmatrix} \mathbf{D}_1 \mathbf{H}_1 \mathbf{F}_1 \\ \mathbf{D}_2 \mathbf{H}_2 \mathbf{F}_2 \\ \vdots \\ \mathbf{D}_N \mathbf{H}_N \mathbf{F}_N \end{bmatrix} \underline{X} + \begin{bmatrix} \underline{V}_1 \\ \underline{V}_2 \\ \vdots \\ \underline{V}_N \end{bmatrix} = \mathbf{G} \underline{X} + \underline{V}$$

```
r = resolution factor = 4

MXM = size of the frames = 1000X1000

N = number of frames = 10
```

$$\underline{Y}$$
 of size $[NM^2 \times 1]$ = $[10M \times 1]$
 \mathbf{G} of size $[NM^2 \times r^2 M^2]$ = $[10M \times 16M]$
 $\underline{X}, \underline{V}$ of size $[r^2 M^2 \times 1]$ = $[16M \times 1]$

Linear algebra notation is intended only to develop algorithm

SR - Solutions

Maximum Likelihood (ML):

$$\underline{X} = \arg\min_{\underline{X}} \sum_{k=1}^{N} \| \mathbf{DHF}_{k} \underline{X} - \underline{Y}_{k} \|^{2}$$
Often ill posed problem!

Maximum Aposteriori Probability (MAP)

$$\underline{X} = \arg\min_{\underline{X}} \sum_{k=1}^{N} \| \mathbf{DHF}_{k} \underline{X} - \underline{Y}_{k} \|^{2} + \lambda A \{\underline{X}\}$$

Smoothness constraint regularization 9

ML Reconstruction (LS)

Minimize:

$$\varepsilon_{ML}^{2}(\underline{X}) = \sum_{k=1}^{N} \|\mathbf{DHF}_{k}\underline{X} - \underline{Y}_{k}\|^{2}$$

Thus, require:

$$\frac{\partial \varepsilon_{ML}^{2}(\underline{X})}{\partial \underline{X}} = 2\sum_{k=1}^{N} \mathbf{F}_{k}^{T} \mathbf{H}^{T} \mathbf{D}^{T} \Big(\mathbf{D} \mathbf{H} \mathbf{F}_{k} \underline{\hat{X}} - \underline{Y}_{k} \Big) = 0$$

$$\sum_{k=1}^{N} \mathbf{F}_{k}^{T} \mathbf{H}^{T} \mathbf{D}^{T} \mathbf{D} \mathbf{H} \mathbf{F}_{k} \cdot \underline{\hat{X}} = \sum_{k=1}^{N} \mathbf{F}_{k}^{T} \mathbf{H}^{T} \mathbf{D}^{T} \underline{Y}_{k}$$

$$\mathbf{A}\underline{\hat{X}} = \mathbf{B}$$

LS - Iterative Solution

Steepest descent

$$\frac{\hat{X}}{n+1} = \frac{\hat{X}}{n} - \beta \sum_{k=1}^{N} \mathbf{F}_{k}^{T} \mathbf{H}^{T} \mathbf{D}^{T} \left(\mathbf{D} \mathbf{H} \mathbf{F}_{k} \frac{\hat{X}}{X}_{n} - \underline{Y}_{k} \right)$$
Back Simulated error

There is no actual need to use the Matrix-Vector notations as shown here.

LS - Iterative Solution

• Steepest descent
$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \sum_{k=1}^N \mathbf{F}_k^T \mathbf{H}^T \mathbf{D}^T \Big(\mathbf{D} \mathbf{H} \mathbf{F}_k \underline{\hat{X}}_n - \underline{Y}_k \Big)$$

Robust Reconstruction

- Cases of measurements outlier:
 - Some of the images are irrelevant
 - Error in motion estimation
 - Error in the blur function
 - General model mismatch

Robust Reconstruction

Minimize:
$$\varepsilon^2(\underline{X})$$

$$\varepsilon^{2}(\underline{X}) = \sum_{k=1}^{N} \| \mathbf{DHF}_{k} \underline{X} - \underline{Y}_{k} \|_{1}$$

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \sum_{k=1}^N \mathbf{F}_k^T \mathbf{H}^T \mathbf{D}^T \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{F}_k \underline{\hat{X}}_n - \underline{Y}_k \right)$$

Robust Reconstruction

Steepest descent

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \sum_{k=1}^N \mathbf{F}_k^T \mathbf{H}^T \mathbf{D}^T \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{F}_k \underline{\hat{X}}_n - \underline{Y}_k \right)$$

Example - Registration Error

L₂ norm based

L₁ norm based

MAP Reconstruction

$$\varepsilon_{MAP}^{2}(\underline{X}) = \sum_{k=1}^{N} \| \mathbf{DHF}_{k} \underline{X} - \underline{Y}_{k} \|^{2} + \lambda A \{\underline{X}\}$$

- Regularization term:
 - Tikhonov cost function

$$A_{TV}\{\underline{X}\} = \|\nabla\underline{X}\|_{1}$$

 $A_{T}\{\underline{X}\} = \|\Gamma X\|^{2}$

$$A_{B}\{\underline{X}\} = \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \|\underline{X} - S_{x}^{l} S_{y}^{m} \underline{X}\|_{1}$$
 47

Robust Estimation + Regularization

$$\mathbf{Minimize:} \ \ \boldsymbol{\varepsilon}^{2}(\underline{X}) = \sum_{k=1}^{N} \left\| \ \mathbf{DHF}_{k} \, \underline{X} - \underline{Y}_{k} \right\|_{1} + \lambda \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \left\| \underline{X} - S_{x}^{l} S_{y}^{m} \, \underline{X} \right\|_{1}$$

$$\frac{\hat{X}_{n+1}}{l} = \frac{\hat{X}_{n}}{l} - \beta \left\{ \sum_{k=1}^{N} \mathbf{F}_{k}^{T} \mathbf{H}^{T} \mathbf{D}^{T} \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{F}_{k} \underline{\hat{X}}_{n} - \underline{Y}_{k} \right) + \lambda \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \left[I - S_{x}^{-l} S_{y}^{-m} \right] \operatorname{sign} \left(\underline{\hat{X}}_{n} - S_{x}^{l} S_{y}^{m} \underline{\hat{X}}_{n} \right) \right\}$$

Robust Estimation + Regularization

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \left\{ \sum_{k=1}^N \mathbf{F}_k^T \mathbf{H}^T \mathbf{D}^T \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{F}_k \underline{\hat{X}}_n - \underline{Y}_k \right) + \lambda \sum_{l=-P}^P \sum_{m=-P}^P \alpha^{|l|+|m|} \left[I - S_x^{-l} S_y^{-m} \right] \operatorname{sign} \left(\underline{\hat{X}}_n - S_x^{l} S_y^{m} \underline{\hat{X}}_n \right) \right\}$$

From Farisu at al. IEEE trans. On Image Processing, 04

Example

- 8 frames
- Resolution factor of 4

Conclusions

- Optimization is essential in many problems
- SR using different approaches
- Selection of the algorithm