MA3202

Algebra II

Spring 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	Rin	gs	1
		Basic definitions	
	1.2	Subrings	3
		Ideals	
	1.4	Integral domains	4
	1.5	Simple rings	5
		ngs asic definitions	

Definition 1.1. A ring is a set R equipped with two binary operations, namely addition and multiplication, such that

- 1. (R, +) is an abelian group.
 - (a) $a + b \in R$ for all $a, b \in R$.
 - (b) (a+b)+c=a+(b+c) for all $a,b,c \in R$.
 - (c) a+b=b+a for all $a,b \in R$.
 - (d) There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
 - (e) For each $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.
- 2. (R, \cdot) is a semi-group.
 - (a) $a \cdot b \in R$ for all $a, b \in R$.
 - (b) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
- 3. Multiplication distributes over addition.
 - (a) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$.
 - (b) $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$.

Remark. The following properties follow immediately,

- 1. $0 \cdot a = 0$ for all $a \in R$.
- 2. $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$ for all $a, b \in R$.
- 3. $(na) \cdot b = n(a \cdot b) = a \cdot (nb)$ for all $a, b \in R$.

Example. The integers \mathbb{Z} form a ring, under the usual addition and multiplication.

Example. All fields, for instance the rational numbers \mathbb{Q} or the real numbers \mathbb{R} , are rings.

Example. The integers modulo n, namely $\mathbb{Z}/n\mathbb{Z}$, form a ring.

Example. If R is a ring, then the algebra of polynomials R[X] with coefficients from R form a ring.

Example. If R is a ring, then the $n \times n$ matrices $M_n(R)$ with entries from R form a ring.

Definition 1.2. If R is a ring and (R, \cdot) is a monoid i.e. has an identity, then this identity is unique and called the unity of the ring R. Such a ring R is called a unit ring. Note that we typically demand that this identity is distinct from the zero element.

Example. The even integers $2\mathbb{Z}$ form a ring, but do not contain the identity.

Example. The trivial ring $\{0\}$ is typically not considered to be a unit ring, since must serve as the additive identity as well as the multiplicative identity.

Definition 1.3. If R is a ring and (R, \cdot) is commutative, then R is called a commutative ring.

Definition 1.4. Let R be a unit ring. An element $a \in R$ is called a unit if there exists $b \in R$ such that $a \cdot b = 1 = b \cdot a$. This $b \in R$ is unique, and denoted by a^{-1} .

Example. The units in \mathbb{Z} are $\{1, -1\}$.

1.2 Subrings

Definition 1.5. Let R be a ring, and let $S \subseteq R$. We say S is a subring of R if the structure $(S, +, \cdot)$ is a ring, with addition and multiplication inherited from R.

Example. The rings $n\mathbb{Z}$ for $n \in \mathbb{N}$ are all subrings of \mathbb{Z} .

Example. Consider the rings $2\mathbb{Z} \subset \mathbb{Z}$. Here, \mathbb{Z} is a unit ring but $2\mathbb{Z}$ is not.

Example. Consider the rings $4\mathbb{Z}/12\mathbb{Z} \subset 2\mathbb{Z}/12\mathbb{Z}$. Here, $2\mathbb{Z}/12\mathbb{Z}$ is not a unit ring but $4\mathbb{Z}/12\mathbb{Z}$ is.

Lemma 1.1. Let S be a subring of R. Since (R, +) is an abelian group, (S, +) is a normal subgroup of (R, +). Thus, we can make sense of the quotient group (R/S, +).

Lemma 1.2. Let S be a subring of R. Then, the quotient $(R/S, +, \cdot)$ is a ring with multiplication $(a+S) \cdot (b+S) = ab+S$ if and only if $ab-xy \in S$ for all $a,b,x,y \in R$ such that the cosets a+S=x+S, b+S=y+S.

Example. Consider the ring \mathbb{Z} and the subring $n\mathbb{Z}$. Then, the quotient $\mathbb{Z}/n\mathbb{Z}$ is indeed a ring.

Example. Consider the ring \mathbb{Q} and the subring \mathbb{Z} . It call be shown that \mathbb{Q}/\mathbb{Z} is not a ring under the 'natural' multiplication.

1.3 Ideals

Definition 1.6. Let R be a ring and let I be a subset of R. We say that I is an ideal of R if (I, +) is a subgroup of (R, +), and $rx, xr \in I$ for all $r \in R$, $x \in I$.

Example. Consider the ring \mathbb{Z} , and the subring $n\mathbb{Z}$. This is an ideal of \mathbb{Z} , since $m(n\mathbb{Z}) \subseteq n\mathbb{Z}$. Indeed, every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$. This will follow from Euclid's Division Lemma.

Example. The subsets $\{0\}$ and R of any ring R are trivial ideals.

Lemma 1.3. Let R be a ring, and I be an ideal of R. Then, the quotient R/I is a ring.

Proof. Note that whenever $a - x \in I$, $b - y \in I$, we demand that $ab - xy \in I$. This can be rewritten as $(a - x)b + x(b - y) \in I$, which is clearly true by the properties of the ideal I. \square

Definition 1.7. An ideal $I \subset R$ is called finitely generated if there exist $x_1, x_2, \ldots, x_n \in I$ such that every element of I can be written as a finite linear combination

$$x = r_1 x_1 + \dots + r_n x_n,$$

where $r_i \in R$. We denote $I = (x_1, x_2, \dots, x_n)$.

Definition 1.8. An ideal generated by a single element is called a principal ideal.

Example. Every ideal of \mathbb{Z} is a principal ideal.

Lemma 1.4. Let R be a unit ring, and $I \subseteq R$ be an ideal. Then, I = R if and only if I contains a unit.

1.4 Integral domains

Definition 1.9. Let R be a ring and $a, b \in R$, $a, b \neq 0$. If ab = 0, we call a a left zero divisor and b a right zero divisor.

Example. Consider $2, 3 \in \mathbb{Z}/6\mathbb{Z}$; then $2 \cdot 3 = 6 \equiv 0$.

Definition 1.10. A commutative ring R is called an integral domain if it has no zero divisors.

Example. When p is prime, the rings $\mathbb{Z}/p\mathbb{Z}$ are integral domains. Note that this set is a group under both + and \cdot .

Lemma 1.5. Every field is an integral domain.

Theorem 1.6. Every finite integral domain is a field.

Proof. Let $R = \{x_1, \ldots, x_n\}$ be a finite integral domain. We first show that R contains an identity 1. Pick $x \neq 0$, and note that xx_1, xx_2, \ldots, xx_n must all be distinct: otherwise $xx_i = xx_j$ would force $x(x_i - x_j) = 0$. This forces $x = xx_k$ for some $x_k \neq 0$. Now, we claim that x_k is our identity. Indeed, given any $y \neq 0$, we write $y = xx_l$ for some $x_l \neq 0$, hence $yx_k = xx_lx_k = x_l(xx_k) = x_lx = y$.

Next, we show that every non-zero $x \in R$ has an inverse. Indeed, $1 = x_k$ must be one of the xx_1, \ldots, xx_n , hence $1 = xx_m$ for some non-zero x_m . This means that $x_m = x^{-1}$.

Definition 1.11. Let R be a ring. The characteristic of R is the smallest positive integer n such that nx = 0 for all $x \in R$. If no such number n exists, we say that the characteristic of R is zero. We denote the characteristic of R by ch(R).

Example. We have $\operatorname{ch}(\mathbb{Z}) = 0$, $\operatorname{ch}(\mathbb{Z}/n\mathbb{Z}) = n$.

Lemma 1.7. Let R be a unit ring. Then, ch(R) is the smallest positive integer n such that $n \cdot 1 = 0$; if no such n exists, then ch(R) is zero.

Theorem 1.8. Let R be an integral domain. Then, ch(R) is either zero or a prime.

Proof. Let R be an integral domain such that $\operatorname{ch}(R) = n \neq 0$. If n is not a prime, write $n = n_1 n_2$ for $n_1, n_1 < n$. Then for any non-zero $x \in R$, write $0 = n(x^2) = (n_1 x)(n_2 x)$. This forces one of $n_1 x, n_2 x = 0$; say $n_1 x = 0$. Now for any $y \in R$, we have $x(n_1 y) = (n_1 x)y = 0$. Since $x \neq 0$, we have $n_1 y = 0$ for all $y \in R$, contradicting the minimality of n.

1.5 Simple rings

Definition 1.12. A simple ring is one which has no non-trivial ideals. We typically demand that multiplication in R is non-trivial.

Lemma 1.9. Every field is a simple ring.

Proof. If R is a field and $I \subset R$ is an ideal with non-zero $a \in I$, then $a^{-1} \in R$ hence $a^{-1}a = 1 \in I$. This immediately forces I = R.

Lemma 1.10. If R is a commutative, simple, unit ring, then R is a field.

Proof. Pick non-zero $a \in R$, and set I = (a). Since R is simple, I = R, hence $1 \in I = (a)$. In other words, 1 = ab for some $b \in R$.