Lecture 14

Full Posterior Pred & Covariance Functions

Colin Rundel 03/06/2017


```
## model{
##
     v ~ dmnorm(mu, inverse(Sigma))
##
     for (i in 1:N) {
##
##
       mu[i] = beta[1] + beta[2] * x[i] + beta[3] * x[i]^2
##
##
##
     for (i in 1:(N-1)) {
       for (j in (i+1):N) {
##
##
         Sigma[i,j] = sigma2 * exp(-pow(l*d[i,j],2))
         Sigma[j,i] = Sigma[i,j]
##
##
##
     }
##
     for (k in 1:N) {
##
##
       Sigma[k,k] = sigma2 + sigma2 w
##
##
##
     for (i in 1:3) {
##
       beta[i] ~ dt(0, 2.5, 1)
##
     sigma2 w ~ dnorm(10, 1/25) T(0,)
##
     sigma2 ~ dnorm(10, 1/25) T(0,)
##
##
       \sim dt(0, 2.5, 1) T(0,)
## }
```

Posterior

param	post_mean	post_med	post_lower	post_upper
beta[1]	9.2136151	11.4359371	-0.4309078	15.2615892
beta[2]	-0.0361357	-0.0551308	-0.1012205	0.0849476
beta[3]	0.0001007	0.0001367	-0.0001924	0.0002552
l	0.8787410	0.0698553	0.0065124	7.0905582
sigma2	8.4807746	7.8609848	1.5342164	18.6524860
sigma2_w	9.7527513	10.4646243	2.2091857	14.8425142

Predicting

```
l = post %>% filter(param == 'l') %>% select(post med) %>% unlist()
sigma2 = post %>% filter(param == 'sigma2') %>% select(post med) %>% unlist()
sigma2 w = post %>% filter(param == 'sigma2 w') %>% select(post med) %>% unlist()
beta0 = post %>% filter(param == 'beta[1]') %>% select(post med) %>% unlist()
beta1 = post %>% filter(param == 'beta[2]') %>% select(post med) %>% unlist()
beta2 = post %>% filter(param == 'beta[3]') %>% select(post med) %>% unlist()
reps=1000
x = pm25$day
v = pm25$pm25
x \text{ pred} = 1:365 + \text{rnorm}(365, 0.01)
mu = heta0 + heta1*x + heta2*x^2
mu pred = beta0 + beta1*x pred + beta2*x pred^2
dist o = rdist(x)
dist p = rdist(x pred)
dist op = rdist(x, x pred)
dist po = t(dist op)
cov o = sg exp cov(dist o, sigma2 = sigma2, l = l) + nugget cov(dist o, sigma2 = sigma2 w)
cov p = sq exp cov(dist p, sigma2 = sigma2, l = l) + nugget cov(dist p, sigma2 = sigma2 w)
cov op = sg exp cov(dist op. sigma2 = sigma2. l = l) + nugget cov(dist op. sigma2 = sigma2 w)
cov po = sg exp cov(dist po. sigma2 = sigma2. l = l) + nugget cov(dist po. sigma2 = sigma2 w)
cond cov = cov p - cov po %*% solve(cov o) %*% cov op
cond mu = mu pred + cov po %*% solve(cov o) %*% (v - mu)
pred = cond mu %*% matrix(1, ncol=reps) + t(chol(cond cov)) %*% matrix(rnorm(length(x pred)*reps), ncol=reps)
pred df = pred %>% t() %>% post summary() %>% mutate(day=x pred)
```

Predictions

Our posterior consists of samples from

$$l, \sigma^2, \sigma_w^2, \beta_0, \beta_1, \beta_2 \mid \mathbf{y}$$

and for the purposes of generating the posterior predictions we sampled

$$y_{pred} \mid l^{(m)}, \sigma^{2^{(m)}}, \sigma_w^{2^{(m)}}, \beta_0^{(m)}, \beta_1^{(m)}, \beta_2^{(m)}, y$$

where $l^{(m)}$, etc. are the posterior median of that parameter.

8

Our posterior consists of samples from

$$l, \sigma^2, \sigma_w^2, \beta_0, \beta_1, \beta_2 \mid \mathbf{y}$$

and for the purposes of generating the posterior predictions we sampled

$$\mathbf{y}_{pred} \mid l^{(m)}, \sigma^{2^{(m)}}, \sigma_{w}^{2^{(m)}}, \beta_{0}^{(m)}, \beta_{1}^{(m)}, \beta_{2}^{(m)}, \mathbf{y}$$

where $l^{(m)}$, etc. are the posterior median of that parameter.

In practice we should instead be sampling

$$\mathbf{y}_{pred}^{(i)} \mid l^{(i)}, \sigma^{2(i)}, \sigma_{w}^{2(i)}, \beta_{0}^{(i)}, \beta_{1}^{(i)}, \beta_{2}^{(i)}, \mathbf{y}$$

since this takes into account the additional uncertainty in the model parameters.

8

```
if (!file.exists("gp pred.Rdata"))
  x = pm25$dav: v = pm25$pm25
  n post samp = nrow(param)
  x \text{ pred} = 1:365 + \text{rnorm}(365, 0.01)
  v pred = matrix(NA, nrow=n post samp, ncol=length(x pred))
  colnames(v pred) = paste0("Y pred[", round(x pred,0), "]")
  for(i in 1:n post samp)
   l = param[i,'l']
    sigma2 = param[i,'sigma2']
    sigma2 w = param[i,'sigma2 w']
    beta0 = betas[i,"beta[1]"]
    beta1 = betas[i."beta[2]"]
    beta2 = betas[i,"beta[3]"]
   mu = beta0 + beta1*x + beta2*x^2
   mu pred = beta0 + beta1*x pred + beta2*x pred^2
    dist o = rdist(x)
    dist p = rdist(x pred)
    dist op = rdist(x, x pred)
    dist po = t(dist op)
    cov o = sq exp cov(dist o, sigma2 = sigma2, l = l) + nugget cov(dist o, sigma2 = sigma2 w)
    cov p = sq exp cov(dist p, sigma2 = sigma2, l = l) + nugget cov(dist p, sigma2 = sigma2 w)
    cov op = sg exp cov(dist op. sigma2 = sigma2, l = l) + nugget cov(dist op. sigma2 = sigma2 w)
    cov po = sq exp cov(dist po, sigma2 = sigma2, l = l) + nugget cov(dist po, sigma2 = sigma2 w)
    cond cov = cov p - cov po %*% solve(cov o) %*% cov op
    cond mu = mu pred + cov po %*% solve(cov o) %*% (y - mu)
   v pred[i,] = cond mu + t(chol(cond cov)) %*% matrix(rnorm(length(x pred)), ncol=1)
```


Full Posterior Predictive Distribution - Mean + CI

More on Covariance Functions

Nugget Covariance

$$Cov(y_{t_i}, y_{t_j}) = Cov(h = |t_i - t_j|) = \sigma^2 \mathbb{1}_{\{h=0\}}$$

(- / Power / Square) Exponential Covariance

$$Cov(y_{t_i}, y_{t_j}) = Cov(h = |t_i - t_j|) = \sigma^2 \exp(-(h \, l)^p)$$

Matern Covariance

$$\operatorname{Cov}(y_{t_i}, y_{t_j}) = \operatorname{Cov}(h = |t_i - t_j|) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \, h \cdot l \right)^{\nu} \, \, \mathsf{K}_{\nu} \left(\sqrt{2\nu} \, h \cdot l \right)$$

Rational Quadratic Covariance

$$Cov(y_{t_i}, y_{t_j}) = Cov(h = |t_i - t_j|) = \sigma^2 \left(1 + \frac{h^2 l^2}{\alpha}\right)^{-\alpha}$$

Some properties

· Matern Covariance

- A Gaussian process with Matérn covariance has sample functions that are $\lceil \nu 1 \rceil$ times differentiable.
- When $\nu=1/2+p$ for $p\in\mathbb{N}^+$ then the Matern has a simplified form (product of an exponential and a polynomial of order p).
- When $\nu = 1/2$ the Matern is equivalent to the exponential covariance.
- As $u
 ightarrow \infty$ the Matern converges to the square exponential covariance.

· Rational Quadratic Covariance

- is a scale mixture (infinite sum) of squared exponential covariance functions with different characteristic length-scales (!).
- As $\alpha \to \infty$ the rational quadratic converges to the square exponential covariance.
- Has sample functions that are infinitely differentiable for any value of lpha

Spherical Covariance

$$Cov(y_{t_i}, y_{t_j}) = Cov(h = |t_i - t_j|) = \begin{cases} \sigma^2 \left(1 - \frac{3}{2}h \cdot l + \frac{1}{2}(h \cdot l)^3\right) \right) & \text{if } 0 < h < 1/l \\ 0 & \text{otherwise} \end{cases}$$

Periodic Covariance

$$Cov(y_{t_i}, y_{t_j}) = Cov(h = |t_i - t_j|) = \sigma^2 \exp\left(-2 l^2 \sin^2\left(\pi \frac{h}{p}\right)\right)$$

Linear Covariance

$$Cov(y_{t_i}, y_{t_j}) = \sigma_b^2 + \sigma_v^2 (t_i - c)(t_j - c)$$

Combining Covariances

If we definite two valid covariance functions, $Cov_a(y_{t_i}, y_{t_j})$ and $Cov_b(y_{t_i}, y_{t_j})$ then the following are also valid covariance functions,

$$Cov_a(y_{t_i}, y_{t_j}) + Cov_b(y_{t_i}, y_{t_j})$$

$$Cov_a(y_{t_i}, y_{t_j}) \times Cov_b(y_{t_i}, y_{t_j})$$

Linear \times Linear \rightarrow Quadratic

$$Cov_a(y_{t_i}, y_{t_j}) = 1 + 2 (t_i \times t_j)$$

 $Cov_b(y_{t_i}, y_{t_j}) = 2 + 1 (t_i \times t_j)$

Linear × Periodic

$$Cov_a(y_{t_i}, y_{t_j}) = 1 + 1 (t_i \times t_j)$$

 $Cov_b(y_{t_i}, y_{t_j}) = Cov(h = |t_i - t_j|) = \exp(-2 \sin^2(2\pi h))$

Linear + Periodic

$$Cov_a(y_{t_i}, y_{t_j}) = 1 + 1 (t_i \times t_j)$$

$$Cov_b(h = |t_i - t_j|) = \exp(-2 \sin^2(2\pi h))$$

$\mathsf{Sq}\:\mathsf{Exp} imes \mathsf{Periodic} o \mathsf{Locally}\:\mathsf{Periodic}$

$$Cov_a(h = |t_i - t_j|) = exp(-(1/3)h^2)$$

 $Cov_b(h = |t_i - t_j|) = exp(-2 sin^2(\pi h))$

Sq Exp (short) + Sq Exp (long)

$$Cov_a(h = |t_i - t_j|) = (1/4) \exp(-4\sqrt{3}h^2)$$

 $Cov_b(h = |t_i - t_j|) = \exp(-(\sqrt{3}/2)h^2)$

Sq Exp (short) + Sq Exp (long) (Seen another way)

BDA3 example

Births (one year)

- 1. Smooth long term trend (sq exp cov)
- 2. Seven day periodic trend with decay ($periodic \times sq \ exp \ cov$)
- 3. Constant mean
- 4. Student t observation model

Births (multiple years)

- 1. slowly changing trend (sq exp cov)
- 2. small time scale correlating noise (sq exp cov)
- 3. 7 day periodical component capturing day of week effect ($periodic \times sq \ exp \ cov$)
- 4. 365.25 day periodical component capturing day of year effect (periodic \times sq exp cov)
- component to take into account the special days and interaction with weekends (linear cov)
- 6. independent Gaussian noise (nugget cov)
- 7. constant mean 31