

Project Brief

Analyzing Rainfall Impact on Agricultural Productivity Using Power BI

Background and Context

Agriculture significantly depends on climatic conditions, particularly rainfall patterns. Variability in rainfall can drastically impact crop yield, profitability, and agricultural sustainability. Analyzing historical rainfall data and understanding its correlation with agricultural productivity can empower stakeholders to make informed, strategic decisions aimed at maximizing yields and managing climate-related risks effectively.

Project Objective

This project aims to empower learners to perform comprehensive data analytics and build an interactive Power BI dashboard that visualizes and interprets the relationship between rainfall patterns and agricultural productivity.

Detailed Data Description

Dataset: rain-agriculture.csv

The dataset (rain-agriculture.csv) contains comprehensive information combining agricultural productivity metrics and rainfall data across various Indian states and districts, covering multiple years (1966-2017). The dataset comprises the following key columns:

Column Name	Data Type	Description	Example Value
State Name	Categorical	Name of the Indian state	Andhra Pradesh
Year	Numeric	Year of observation	2017

Dist Code	Numeric	Numeric code identifying the district	368.78
State Code	Numeric	Numeric identifier for each state	9
RICE AREA (1000 ha)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		142.29
JUN, JUL, AUG, SEP		Monthly rainfall (in mm) recorded for June, July, August, September	JUN: 191.55, JUL: 304.36

Structured Tasks for Learners

Task 1: Data Exploration and Preparation

• Objective: Prepare data to ensure accuracy and consistency for analysis.

Activities:

- o Import the dataset into Power BI.
- o Identify key data fields and document data types.
- o Conduct data profiling to detect missing values, duplicates, or anomalies.
- Perform necessary data cleaning (e.g., handling missing values, standardizing formats).

Task 2: Data Modeling and Transformation

•	Objective:	Establish a	structured	data mode	el that sup	pports ana	lytical insights.
---	-------------------	-------------	------------	-----------	-------------	------------	-------------------

• Activities:

- o Define relationships between tables/dimensions (if applicable).
- o Develop calculated measures using DAX to compute:
 - Total and average rainfall.
 - Crop yield metrics (average, maximum, minimum yields).
- Apply transformations such as grouping, categorization, and time-intelligence analysis (monthly, quarterly, annually).

Task 3: Data Analysis - Rainfall and Agricultural Productivity

Objective: Examine rainfall patterns and their direct correlation with agricultural outcomes.

• Activities:

- o Analyze temporal trends of rainfall across different regions.
- Evaluate correlation between rainfall volumes and crop yields.
- o Identify and visualize seasonal or geographic variations in productivity.

Task 4: Dashboard Development

 Objective: Create an interactive, insightful, and visually appealing dashboard in Power BI.

Activities:

- Design key visuals including:
 - Line Charts for rainfall trends analysis over time.
 - Bar Charts comparing rainfall amounts to crop yields.
 - Scatter Plots showcasing correlations between rainfall and productivity.
 - Geographic Maps highlighting productivity variations by region.
- Incorporate interactive slicers for Region, Year, Season, and Crop Type to facilitate user exploration.

Task 5: Generating Insights and Recommendations

• **Objective:** Provide strategic insights and actionable recommendations derived from data analysis.

Activities:

- Summarize significant insights from the dashboard.
- Propose practical recommendations to agricultural stakeholders aimed at enhancing productivity.

 Clearly document these findings and recommendations within the dashboard narrative or a concise analytical report.

Project Deliverables

Learners are required to submit:

- An interactive and professionally developed Power BI dashboard (.pbix file).
- Artifacts generated need to be submitted in vLearn on or before the deadline.
- PBIX File Name:
 - o File name: firstname_lastname_CPDA_batch.pbix
 - E.g., Kartik_Mudaliar_CPDA_B1.pbix

Evaluation Criteria

Learners' submissions will be assessed based on:

Criteria	Weightag <mark>e</mark> (%)
Data Cleaning and Preparation	20%
Quality of Data Modeling and DAX Measures	20%
Depth and Relevance of Analysis	25%
Dashboard Design and Interactivity	25%
Clarity and Practicality of Recommendations	10%