数字逻辑

丁贤庆

ahhfdxq@163.com

通知 实验安排

数字逻辑电路课程有16个学时的实验,初步安排: 具体安排参见公共邮箱中的word文档。

本周开始进行实验环节,实验结束后16周周日(6月16号)晚23点前,各班学委要提交实验报告的电子版给我的邮箱ahhfdxq@163.com。不用收纸质报告了。

实验地点:综合实验楼306房间

关于实验报告

- □ 8次实验中,自己选择4次写到实验报告中就 可以了。
- □ 补充的实验不需要写到实验报告中。

通知

- 1、下周还有实验。
- 2、实验空闲时间可以答疑。
- 3、第14周实验时可以带上另外一本课本《搭建你的数字积木——数字电路与逻辑设计(Verilog HDL&Vivado版)》,这本书中有些实践文档,可以作为参考。
- 4、第14周的周六下午的计算机2班的实验 调到第14周的周 五晚上19:00-20:50

第十一章

数字系统设计基础

算法状态机和ASM图

采用数据选择器来设计控制器

- □ 三级电路结构:
 - 决定寄存器次态的数据选择器组成
 - 保存现态的寄存器
 - 译码器,产生每个控制状态对应的输出
- □ 设计一个多路选择器型控制器,完成 左图的控制算法。
- □ 根据算法流程图,得到状态转移表

	现态		次	态	条件输出	
Q_2	Q_1	X	Q_2^{n+1}	Q ₁ n+1	Z_2	Z_1
0	0	0	1	0	1	1
0	0	1	1	1	0	1
0	1	Ø	0	0	0	0
1	0	Ø	0	0	0	0
1	1	Ø	0	0	0	0

采用数据选择器来设计控制器

	现态		次	态	条件	输出
Q_2	Q_1	X	Q_2^{n+1}	Q ₁ n+1	Z_2	Z_1
0	0	0	1	0	1	1
0	0	1	1	1	0	1
0	1	Ø	0	0	0	0
1	0	Ø	0	0	0	0
1	1	Ø	0	0	0	0

触发器的驱动方程:

$$Q_2^{n+1} = \overline{Q}_2 \overline{Q}_1 \longrightarrow F_2 = \overline{S}_1 \overline{S}_0$$

$$Q_1^{n+1} = \overline{Q}_2 \overline{Q}_1 X \longrightarrow F_1 = \overline{S}_1 \overline{S}_0 X$$

输出方程:

$$Z_2 = \overline{Q}_2 \overline{Q}_1 \overline{X}$$

$$Z_1 = \overline{Q}_2 \overline{Q}_1$$

(1) 4选1数据选择器工作原理及逻辑功能

真值表

选择	选择输入			
S_1	S_1 S_0			
0	0 0			
0	1	D_1		
1	0	D_2		
1	1	D_3		

$$Y = \overline{S_1} \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

采用数据选择器来设计控制器

	现态		次	态	条件输	
Q_2	Q_1	X	Q_2^{n+1}	Q ₁ n+1	Z_2	Z_1
0	0	0	1	0	1	1
0	0	1	1	1	0	1
0	1	Ø	0	0	0	0
1	0	Ø	0	0	0	0
1	1	Ø	0	0	0	0

$$Y = \overline{S_1} \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

$$F_2 = S1 S0 \longrightarrow D_0=1$$

$$D_1 = 0$$

$$D_2=0$$

$$D_3 = 0$$

$$F_1 = \overline{S1} \overline{S_0} X \longrightarrow D_0 = X D_1 = 0$$

$$D_0 = X$$

$$D_1=0$$

$$D_2 = 0$$

$$D_3 = 0$$

采用数据选择器来设计控制器

 Z_1

关键知识点回顾

(此部分内容来源于前面课堂教学的PPT)

1、N沟道增强型MOS管

N沟道增强型MOS管符号如图。

2、P沟道增强型MOS管

P沟道增强型MOS管符号如图。

3. CMOS反相器

逻辑真值表

V_{i}	V_0
0	1
1	0

4. CMOS 与非门

(b)工作原理

Α	В	$T_{N1}\;T_{P1}\;T_{N2}\;T_{P2}$	L
0	0	截止 导通 截止导通	1
0	1	截止 导通 导通截止	1
1	0	导通 截止 截止 导通	1
1	1	导通 截止导通 截止	0

5. CMOS 或非门

例:分析CMOS电路,说明其逻辑功能。

例:分析CMOS电路,说明其逻辑功能。

解法二:观察法(参照与非、或非)

只看PMOS管,并联对应与,串联对应与,串联对应或, 上下对称(NMOS与 PMOS)加个非。

6. 类NMOS与非门和或非门

上面PMOS管 的栅极接地。

上面PMOS管 的栅极固定接地。

 V_{DD} T_{P1} L T_{N1}

解法: 真值表法

A	В	L
0	0	
0	1	
1	0	
1	1	

A	В	L
0	0	
0	1	
1	0	
1	1	

3.4.2 BiCMOS门电路

解法: 真值表法

逻辑真值表

V _i	<i>V</i> ₀
0	1
1	0

一、同步时序逻辑电路分析举例

例1 试分析如图所示时序电路的逻辑功能。

解: (1)了解电路组成。

电路是由两个T触发器组成的同步时序电路。

(2) 根据电路列出三个方程组

输出方程组: $Y=AQ_1Q_0$

激励方程组:

$$T_0 = A$$

$$T_1 = AQ_0$$

将激励方程组代入T触发器的特性方程得 状态方程组 ___

$$Q^{n+1} = T \oplus Q^n = TQ^n + \overline{T}Q^n$$

$$Q_0^{n+1} = A \oplus Q_0^n$$

$$Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$$

(3) 根据状态方程组和输出方程列出状态表

$$Q_0^{n+1} = A \oplus Q_0^n$$

$$Q_0^{n+1} = A \oplus Q_0^n$$
 $Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$ $Y = AQ_1Q_0$

$$Y = A Q_1Q_0$$

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

$Q_1^{n+1}Q_0^{n+1}/Y$		
A=0	A=1	
	· ·	

(4) 画出状态图,找出闭合回路

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
~1~0	A=0	A=1	
0 0	00/0	01/0	
0 1	01/0	10/0	
10	10/0	11/0	
11	11/0	00/1	

(5) 画出时序图

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$			
2120	A=0	A=1		
0 0	00/0	01/0		
01	01/0	10/0		
10	10/0	11/0		
11	11/0	00/1		

(6) 逻辑功能分析

观察状态图和时序图可知,电路是一个由信号A控制的可控二进制计数器。当A=0时停止计数,电路状态保持不变;当A=1时,在CP上升沿到来后电路状态值加1,一旦计数到11状态,Y输出1,且电路状态将在下一个CP上升沿回到00。输出信号Y的下降沿可用于触发进位操作。

例2 试分析如图所示时序电路的逻辑功能。

解: 1.了解电路组成。

电路是由两个JK触发器组成的莫尔型同步时序电路。

2. 写出下列各逻辑方程式:

激励方程

$$J_1=K_1=1$$

$$J_2=K_2=X \oplus Q_1$$

输出方程

$$Y=Q_2Q_1$$

状态转换真值表

Q_2^n	Q_1^n	X	Q_2^{n+1}	Q_{l}^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

将激励方程代入JK触发器的特性方程得状态方程

整理得:

$$Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

3.列出其状态转换表,画出状态转换图和波形图

$$Q_1^{n+1} = Q_1^n$$

$$Q_1^{n+1} = Q_1^n \qquad Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

$$Y=Q_2Q_1$$

状态转换表

$Q_2^nQ_1^n$	$\mathbf{Q}_2^{n+1}\mathbf{Q}_1^{n+1}$	/ Y
	X =0	X=1
0 0		
0 1		
1 0		
1 1	<u> </u>	

状态转换真值表

Q_2^n	Q_1^n	X	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

画出状态图

$\mathbf{Q}_{2}^{n}\mathbf{Q}_{1}^{n}$	$\mathbf{Q}_2^{n+1}\mathbf{Q}_1^{n+1}/Y$		
Q_2Q_1	X=0	X=1	
0 0	0 1/0	1 1/0	
0 1	1 0/0	0 0/0	
1 0	1 1/0	0 1/0	
11	0 0/1	1 0/1	

根据状态转换表, 画出波形图。

Q ₂ "Q ₁ "	Q_2^{n+1}	Q_1^{n+1}	Y
	X=0	X=1	
0 0	01	11	0
01	10	0 0	0
10	11	01	0
11	0 0	10	1

 Q_2

Y___

状态转换图

4. 确定电路的逻辑功能.

•X=0时

也岭处小城山外级。

电路功能: 可逆计数器

Y可理解为进位或借位端。

二、74LVC161的功能表。

输入					功能		
CP				CET	说明	解释	
×	0	×	×	×	异步复位	$Q_3Q_2Q_1Q_0=0000$	
↑	1	0	×	×	同步置数	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1} = D_3D_2D_1D_0$	
×	1	1	0	1	但壮	On+1_On	保持
×	1	1	×	0	保持 $Q^{n+1}=Q^n$		保持
<u></u>	1	1	1	1	计数	加1计数	

- 1、反馈清零法:利用异步置零输入端CR,得到N进制计数器
- 2、反馈置数法:利用同步置数端PE,在M进制计数器的计数过程中, 跳过M-N个状态,得到N进制计数器

实例1: 用反馈清零法将74LVC161构成九进制加计数器。

(a) 反馈清零法:利用异步置零输入端,在M进制计数器的 计数过程中,跳过M-N个状态,得到N进制计数器的方法。

CP	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
•••			•••	
8	1	0	0	0
9	1	0	0	1
•••		•••		
15	1	1	1	1

$$CR = \overline{Q_0 \cdot Q_3} = 0$$

设法跳过16-9=7个状态

工作波形

状态图

实例2: 利用同步置数端构成九进制计数器

(b) 反馈置数法:利用同步置数端,在M进制计数器的计数过程中,跳过M-N个状态,得到N进制计数器的方法。

实例3: 采用后九种状态作为有效状态,用反馈置数法 构成九进制加计数器。

三、移位寄存器的Verilog建模

用行为级描述always描述一个 4 位双向移位寄存器,有异步清零、同步置数、左移、右移和保持。功能同74xx194。

其他单向移位寄存 器和锁存器都可以 类似的仿照着写。

S1	S0	功能
0	0	保持
0	1	低位往高位移动
1	0	高位往低位移动
1	1	并行置入

74HCT194 的功能表

1、移位寄存器的Verilog建模

用行为级描述always描述一个 4 位双向移位寄存器,有异步清零、同步置数、左移、右移和保持。功能同74xx194。

module shift74x194 (S1, S0, D, Dsl, Dsr, Q, CP, CR);

input S1, S0; //控制输入

input Dsl, Dsr; //串行输入

input CP, CR; //时钟及清零

input [3:0] D; //并行输入

output [3:0] Q; //寄存器输出

reg [3:0] Q;

1、移位寄存器的Verilog建模

```
always @ (posedge CP or negedge CR)
  if (\sim CR) Q <= 4'b0000;
  else
   case ({S1,S0})
                                      //保持
      2'b00: Q <= Q;
      2^b01: Q \le \{Q[2:0],Dsr\};
                                     //右移
      2^{\circ}b10: Q \leftarrow \{Dsl,Q[3:1]\};
                                      //左移
                                      //并行输入
      2'b11: Q <= D;
   endcase
```

endmodule

四、计数器的Verilog建模实例

用Verilog描述具有使能端、异步置零、同步置数、计数、保持的16进制计数器(仿照74LVC161芯片)。

6进制、30进制等 计数器都可以类似 的仿照着写。

芯片74LVC161

2、 计数器的Verilog建模实例

用Verilog描述具有使能端、异步置零、同步置数、计数、保持的16进制计数器

```
module counter74x161 beh (
input CEP, CET, PE, CP, CR, //输入端口声明
             //并行数据输入
input [3:0] D,
                  //进位输出
output TC,
output reg [3:0] Q //数据输出端口及变量的数据类
型声明
              //中间变量声明
wire CE;
```

2、 计数器的Verilog建模实例

endmodule

```
assign CE=CEP&CET; //CE=1时, 计数器计数
assign TC=CET&PE&(Q == 4'b1111); //产生进位输出信号
always @(posedge CP, negedge CR)
    if (~CR) Q<=4'b0000; //实现异步清零功能
    else if (~PE) Q<=D; //PE=0, 同步装入输入数据
    else if (CE) Q<=Q+1'b1; //加1计数
    else Q<=Q; //输出保持不变
```

五、有限状态机

有限状态机类型

摩尔型 (Moore)

米里型(Mealy)

摩尔型有限状态机的结构图

描述有限状态机中:

- * 至少包含一个状态信号,它们用来指定有限状态机的状态。
- * 包含状态转移指定和输出指定,它们对应于控制单元中与每个控制步骤有关的转移条件。
- * 包含时钟信号,它是用来同步的。
- * 包含同步或异步复位信号。

	描述方式		进程描述功能	所用进程数
	三进程描述方式		进程1: 描述次态逻辑	3
			进程2: 描述状态寄存器	
			进程3: 描述输出逻辑	
	双进程描述方式	形式1	进程1: 描述次态逻辑、状态寄存器	2
			进程2: 描述输出逻辑	
		形式2	进程1: 描述次态逻辑	2
			进程2: 描述状态寄存器、输出逻辑	
		形式3	进程1: 描述状态寄存器	2
			进程2: 描述次态逻辑、输出逻辑	
	单进程描述方式		进程1: 描述次态逻辑、状态寄存器和输出逻辑	1

3、 状态图的Verilog建模实例

用Verilog描述状态图非常方便,常用always或case语句

以后根据状态图设 计电路等都可以类 似的仿照着写。

3、 状态图的Verilog建模实例

```
module Mealy_sequence_detector (A, CP, CR, Y);
  input A, CP, CR;
  output Y;
  reg Y;
  reg [1:0] current_state, next_state;
  parameter S0=2'b00, S1=2'b01, S2=2'b11;
always @( negedge CP or negedge CR)
  begin
    if (~CR) current_state <= $0; //在CR下降沿设s0为初态
                                                                   0/0
             current_state <= next_state;</pre>
    else
  end
                                                                   00
                                                                        \sqrt{1/0}
```

6.7.3 状态图的Verilog建模实例

```
第二个always是将current_state和输入A作为敏感变量
  always @(current_state or A)
   begin
    case(current state)
       S0: begin Y \le 0; next_state=(A==1)? S1: S0; end
       S1: begin Y \le 0; next_state=(A==1)? S2: S0; end
       S2: if (A==1)
             begin Y<=0; next_state<=S2; end
          else
             begin Y=1; next_state<=S0; end
       default: begin Y<=0; next_state<=S0; end
    endcase
   end
  endmodule
```

现有256×4的存储芯片若干,试问要组成1K ×8的存储器需要芯片多少片?画出连线图。 字位都扩展

六、用555定时器组成施密特触发器

555芯片连接成施密特触发器时对应的应用

①波形变换

 V_{OL} v_{I} v_{I} v_{I} v_{I} v_{OH} v_{OH} v_{OH} v_{OH} v_{I} v_{\text

 v_{O1}

 V_{OH}

电路的频率可变?占空比可变?

如何改变占空比? 回差电压减小,占空比如何变化?

七、D/A转换器

D/A转换器:将数字量转换为与之成正比的模拟量。

$$v_{\rm O} = -KN_{\rm B}$$

D/A转换器的倒T形电阻网络

流入运放的总电流: $i_{\Sigma} = I_0 + I_1 + I_2 + I_3$

$$= \frac{V_{\text{REF}}}{R} \left(\frac{D_0}{2^4} + \frac{D_1}{2^3} + \frac{D_2}{2^2} + \frac{D_3}{2^1} \right)$$

输出模拟电压:

$$U_{\rm O} = -i_{\Sigma} R_{\rm f} = -\frac{R_{\rm f}}{R} \cdot \frac{V_{\rm REF}}{2^4} \sum_{i=0}^{3} (D_{\rm i} \cdot 2^{\rm i})$$

$$\nu_{\rm O} = -\frac{V_{\rm REF}}{2^{\rm n}} \cdot \frac{R_{\rm f}}{R} \left[\sum_{i=0}^{\rm n-1} (D_{\rm i} \cdot 2^{\rm i}) \right]$$

八、A/D 转换器

1. A/D转换器功能

A/D转换器能将模拟电压成正比地转换成对应的数字量。

2. A/D转换器分类

① 并联比较型

特点: 转换速度快,转换时间 10ns~1μs, 但电路复杂。

② 逐次逼近型

特点: 转换速度适中,转换时间 为几μs~100 μs, 转换精度高, 在转换速度和硬件复杂度之间达到一个很好的平衡。

③ 双积分型

特点: 转换速度慢,转换时间 几百μs ~几ms,但抗干扰能力最强。

A/D转换器一般要包括取样,保持,量化及编码4个过程。

2 并行比较型A/D转换器

1、电路组成 精密参考 电压 V_{REF} C_{01} $13V_{REF}/1$ $\mathbf{C_1}$ 5 **C1** $11V_{REF}/1$ > C1 5 输出数 Q o I3 1D D_0 (LSB 精密电阻 网络 **9V**_{REF}/15 优先编码器 > C1 \mathbb{C}_4 $7V_{REF}/15$ > C1 1D D_2 (MSB) **5V**_{REF}/15 > C1 1D $3V_{REF}/15$ > C1 1D $V_{REF}/15$ **C**1 $V_I = 8V_{REF}/15$ R/2 输入模拟 电压比较器 电压 CP

1、电路组成

1、电路组成 精密参考 电压 V_{REF} C_{01} $13V_{REF}/1$ **C1** $11V_{REF}/1$ > C1 输出数 Q o I3 1D D_0 (LSB 精密电阻 网络 **9V**_{REF}/15 优先编码器 > C1 **7V**_{REF}/15 > C1 1D D_2 (MSB) **5V**_{REF}/15 > C1 1D $3V_{REF}/15$ > C1 $V_{REF}/15$ > C1 R/2 电压比较器 输入模拟 UI 电压 CP

考试题型:

- □ 单选 20分
- □ 填空 20分
- □ 分析题和设计题 60分

- □ 说明:考试难度不会超过PPT和课后习题。
- □ 课本《搭建你的数字积木——数字电路与逻辑设计(Verilog HDL&Vivado版)》不作要求。

课本章节分数比例:

- □ 第一章 数字逻辑概论 10%
- □ 第二章 逻辑代数与硬件描述语言基础 10%
- □ 第三章 逻辑门电路 10%
- □ 第四章 组合逻辑电路 15%
- □ 第五章锁存器和触发器 10%
- □ 第六章 时序逻辑电路 30%
- □ 第七章 半导体存储器 10%
- □ 第八章 CPLD和FPGA 5%
- □ 第九章 脉冲波形的变换与产生 5%
- □ 第十章 数模与模数转换器 10%
- □ 第十一章 数字系统设计基础 5%

考试时间:5月28号周二晚上