Définition 15.1 - tribu

Pour un univers Ω au plus dénombrable, on appelle $tribu \ sur \ \Omega$ une partie $\mathcal{T} \subset \mathcal{P}(\Omega)$ tel que :

- 1. $\Omega \in \mathcal{T}$
- **2.** Pour tout $A \in \mathcal{T}, \overline{A} \in \mathcal{T}$
- **3.** Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de $\mathcal{T}, \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$

Les éléments de \mathcal{T} sont appelés évènements.

Définition 15.4 - espace probabilisable

Soit Ω un univers au plus dénombrable et \mathcal{T} une tribu sur Ω . Le couple (Ω, \mathcal{T}) est appelé espace probabilisable.

Définition 15.5 - système complet d'évènements

Soit (Ω, \mathcal{T}) un espace probabilisable associé à un univers Ω au plus dénombrable. On dit qu'une famille au plus dénombrable $(A_i)_{i \in I} \in \mathcal{T}^I$ d'évènements constitue un système complet d'évènements si :

$$\Omega = \bigsqcup_{i \in I} A_i$$

Définition 15.7 - probabilité sur un univers

Soit (Ω, \mathcal{T}) un espace probabilisable associé à un univers Ω au plus dénombrable. On appelle probabilité $sur(\Omega, \mathcal{T})$ une application $\mathbb{P}: \mathcal{T} \to [0; 1]$ telle que :

- 1. $\mathbb{P}(\Omega) = 1$
- 2. σ -additivité: Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'évènements deux à deux incompatibles, la série de terme général $\mathbb{P}(A_n)$ converge et:

$$\mathbb{P}\bigg(\bigsqcup_{n\in\mathbb{N}} A_n\bigg) = \sum_{n=0}^{+\infty} \mathbb{P}(A_n)$$

On dit alors que $(\Omega, \mathcal{T}, \mathbb{P})$ constitue un espace probabilisé.