SVM for Classification of Spam Email Messages

EE5904/ME5404 Part II: Project 1 Report due on April 26, 2019

Manuel Del Rosario Jr mrdjr@u.nus.edu

Outline

- Project description
- Recap
- Task 1: Train
- Task 2: Test
- Task 3: Evaluate
- Important Notes

Project Description

Goal

Implement SVM to classify spam or no spam for the Spam Email Data Set¹

Spam Email Data Set is a collection of 4601 samples of email metadata taken from UC Irvine Machine Learning Repository

48 continuous real [0,100] attributes of type word_freq_WORD

= percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string.

6 continuous real [0,100] attributes of type char_freq_CHAR]

= percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in e-mail

1 continuous real [1,...] attribute of type capital_run_length_average

= average length of uninterrupted sequences of capital letters

1 continuous integer [1,...] attribute of type capital_non_length_torgoal

= length of longest uninterrupted sequence of capital letters

1 continuous integer [1, ...] attribute of type capital_nxt_length_total

* sum of length of uninterrupted sequences of capital fewers

= total number of capital letters in the e-mail

1 nominal (0.1) class attribute of type spam

= denotes whether the a-mail was considered spem (1) or not (0), i.e. unsoficial commercial e-mail

Project Description

- The data is divided into 3 sample groups
 - 1. Training set
 - 2. Test set
 - 3. Evaluation set (Not provided)

- Each dataset: (1) feature, (2) label
 - (1) 57 attributes / features:

0, 0.640, 0.640, 0, 0.320, 0, 0, 0, 0, 0, 0, 0.640, 0, 0, 0, 0.320, 0, 1.290, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.778, 0, 0, 3.756, 61.000, 278.000

(2) Label: +1 (spam), -1(non-spam)

48 continuous real (0.108) stributes of type word, fing_WORB = percentage of words in the e-mail final model WORD, Le 100 ** (number of times the WORD appears in the e-mail / round momber of words in e-mail / word in this case is any soring of alphanument; characters

6 continuous real [9,160] ethibutes of type that float CNAR. Let 100 * [number of CNAR pecurences] / total

1 continuous real [1...] attribute of type capital run_langth_average average length of uninterrupted sequences of capital fetters

1 continuous treger [1...] estitute of type capital nun_length_targets = length of langual uninterrupted sequence of capital letters

1 continuous integer | 1. | attribute of type capital zun length_listel = sum of langth of unincorrupted sequences of capital inters

A total number of capital letters in the e-mail

denotes whether the a-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail

Project Description

Train ____

Construction: For a given training set $S = \{(\mathbf{x}_1, d_1), \dots, (\mathbf{x}_N, d_N)\}$, find optimal hyperplane $(\mathbf{w}_{\circ}, b_{\circ})$ such that, for all $i \in \{1, 2, \dots, N\}$,

$$\mathbf{x}_i \qquad \mathbf{w}_{\circ}^T \mathbf{x}_i + b_{\circ} \qquad \mathbf{sgn}[g(\mathbf{x}_i)] \qquad \mathbf{y}_i = d_i$$

[1]: Compute Discriminant Functions using the specified kernels

Test ____

Testing: For a given test set $\bar{S} = \{(\bar{\mathbf{x}}_1, \bar{d}_1), \dots, (\bar{\mathbf{x}}_{\bar{N}}, \bar{d}_{\bar{N}})\}$, compute output \bar{y}_i of SVM (with \mathbf{w}_{\circ} and b_{\circ}) for all $i \in \{1, 2, \dots, \bar{N}\}$, and compare it against the known \bar{d}_i to evaluate performance of SVM

$$\xrightarrow{\bar{\mathbf{x}}_i} \mathbf{w}_{\circ}^T \bar{\mathbf{x}}_i + b_{\circ} \xrightarrow{g(\bar{\mathbf{x}}_i)} \operatorname{sgn}[g(\bar{\mathbf{x}}_i)] \xrightarrow{\bar{y}_i}$$

[2]: Classify the data sets (train and test) using the functions from [1] and measure the performance

Evaluate

Application: Given a SVM with hyperplane $(\mathbf{w}_{\circ}, b_{\circ})$, classify a data point \mathbf{x}_{new} that is not in $\Sigma = S \cup \bar{S}$:

[3]: Design your own SVM, train, and test the performance

Recap: Hard Margin

Primal problem

Given data set : $S = \{(\mathbf{x}_i, d_i)\}, i = 1, 2, ..., N$

Find: \mathbf{w} and b

Minimizing: $f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$

Subject to : $d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$

In primal problem

Known parameters: \mathbf{x}_i , d_i Unknown variables: \mathbf{w} , b

Solve

Optimal hyperplane

A hyperplane, denoted by (\mathbf{w},b) , can be expressed as

$$q(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$

Hyperplane classifies a given \mathbf{x}_i with

$$\operatorname{sgn}\left[g(\mathbf{x}_i)\right] = \begin{cases} +1 & \text{if} \quad g(\mathbf{x}_i) > 0\\ -1 & \text{if} \quad g(\mathbf{x}_i) < 0 \end{cases}$$

Recap: Hard Margin

Primal problem Lecture Slide 75

Given data set :
$$S = \{(\mathbf{x}_i, d_i)\}, i = 1, 2, \dots, N$$

Find: \mathbf{w} and b

 $\text{Minimizing}: \quad f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$

Subject to : $d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$

Alternative formulation using method of Lagrange multipliers

Given:
$$S = \{(\mathbf{x}_i, d_i)\}$$

Find : Lagrange multipliers $\{\alpha_i\}$

$$\text{Maximizing}: \quad Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \, \alpha_j \, d_i \, d_j \, \mathbf{x}_i^T \mathbf{x}_j$$

Subject to : (1)
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

(2)
$$\alpha_i \geq 0$$

Recap: Hard Margin

Primal problem Lecture Slide 75

Given data set : $S = \{(\mathbf{x}_i, d_i)\}, i = 1, 2, ..., N$

Find: \mathbf{w} and b

Minimizing : $f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$

Subject to : $d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$

Alternative formulation using method of Lagrange multipliers

Finding optimal hyperplane (dual problem) Lecture Slide 81

Given: $S = \{(\mathbf{x}_i, d_i)\}$

Find : Lagrange multipliers $\{\alpha_i\}$

 $\text{Maximizing}: \quad Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \, \alpha_j \, d_i \, d_j \, \mathbf{x}_i^T \mathbf{x}_j$

Only unknowns are α;

Subject to : (1) $\sum_{i=1}^{N} \alpha_i d_i = 0$

(2) $\alpha_i \geq 0$

Linear Kernel

For a support vector, $\alpha_i \neq 0$

Apply (Karush Kuhn-Tucker) KKT conditions

Recap: Soft Margin

Dealing with non-separable patterns

Lecture Slide 96

1. Find optimal hyperplane to minimize classification error

Dual problem (with soft margin)

Lecture Slide 102

Find: α_i

Maximize: $Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i (\mathbf{x}_i^T \mathbf{x}_j)$

Subject to : $\sum_{i=1}^N \alpha_i d_i = 0 \quad \text{and} \quad 0 \leq \alpha_i \leq C$

Lecture Slide 98

- Value of C>0 reflects cost of violating constraints
 - $\circ~$ A large C generally leads to smaller margin but also fewer misclassification of training data
 - $\circ~$ A small C generally leads to larger margin but more misclassification of training data
- ullet As a design parameter, value of C is set by user

Linear Kernel

Soft Margin

Recap: Soft Margin and Transformation

Dealing with non-separable patterns

Lecture Slide 96

2. Transform data into higher dimension space for separation

Lecture Slide 117

Dual problem with soft margin and transformation

Find: α_i

$$\text{Maximize}: \quad Q(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d(d_j \boldsymbol{\varphi}^T(\mathbf{x}_i) \boldsymbol{\varphi}(\mathbf{x}_j))$$

Subject to : $\sum_{i=1}^{N} \alpha_i d_i = 0, 0 \le \alpha_i \le C$

Recap: Summary

Lecture Slide 125

How to build a SVM: Summary

Given a training set $S = \{(\mathbf{x}_i, d_i)\}, i = 1, \dots, N$

Soft Margin

- 1 Find a suitable kernel
 Choose expression
 then check Mercer's
 condition
- 2 Choose a value for C
- 3 Solve for $\alpha_{o,i}$

4 Determine b_o in

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{o,i} d_i K(\mathbf{x}, \mathbf{x}_i) + b_o$$

using the fact that for a support vector $\mathbf{x}^{(s)}$

$$g(\mathbf{x}^{(s)}) = \pm 1 = d^{(s)}$$

Quadratic Programming

 $\begin{aligned} & \text{Maximize}: \quad Q(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{Subject to}: \quad \sum_{i=1}^N \alpha_i d_i = 0 \\ & 0 \leq \alpha_i \leq C \end{aligned}$

KKT conditions For a support vector, $\alpha_i \neq 0$

Kernel

Support vector machine:

$$\operatorname{sgn}[g(\mathbf{x})] \xrightarrow{y}$$

Hard Margin

Soft Margin

$$\alpha_i \geq 0$$

$$0 \le \alpha_i \le C$$

Task 1: Data

Training set (with 2000 samples)

Given: "train.mat"

- feature (57 x 2000)
- label (2000 x 1)

57 attributes

Feature of a sample:

Label: +1 (spam), -1(non-spam)

Task 1: Training set

- Import the training set (i.e. train.mat)
- Preprocess the "data" (various methods can be done e.g. Sample Scaling or Standardization [CHOOSE ONE!])^{a,b}
 - Scale the "data" : rescale individual sample x such that ||x|| = 1.
 - Standardize the "data": transform each <u>feature</u> by removing the <u>mean value</u> of each feature then dividing by each feature's <u>standard deviation</u>.
- ▶ Please ensure the "label" is mapped into the set of {-1, 1}.

a https://scikit-learn.org/stable/modules/preprocessing.html#

Task 1: Kernels

- Hard-margin SVM with the linear kernel $K(x_1, x_2) = x_1^T x_2$
- Hard-margin SVM with a polynomial kernel $K(x_1, x_2) = (x_1^T x_2 + 1)^p$
- Soft-margin SVM with a polynomial kernel $K(x_1, x_2) = (x_1^T x_2 + 1)^p$

Task 1: Hard and Soft Margins

- ▶ Hard Margin $\alpha_i \ge 0$
 - $C = +\infty$ (In theory)
 - C = Large value (In practice, e.g. 106)
- Soft Margin $0 \le \alpha_i \le C$
 - \circ C = 0.1, 0.6, 1.1, 2.1

Task 1: quadprog Quadratic programming

\blacktriangleright To solve for α_i

$$\underline{\text{Maximize}:} \quad Q(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Subject to : $\sum_{i=1}^{N} \alpha_i d_i = 0, \ 0 \le \alpha_i \le C$

Finds a minimum for a problem specified by

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

H, A, and Aeg are matrices, and f, b, beg, lb, ub, and x are vectors.

f, lb, and ub can be passed as vectors or matrices; see Matrix Arguments.

x = quadprog(H, f, A, b, Aeq, beq, 1b, ub, x0, options) solves the preceding problem using the optimization options specified in options. Use optimoptions to create options. If you do not want to give an initial point, set x0 = [].

Task 1: Quadratic programming

Subject to : $\sum_{i=1}^{N} \alpha_i d_i = 0$, $0 \le \alpha_i \le C$

Finds a minimum for a problem specified by

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub \end{cases}$$

H, A, and Aeg are matrices, and f, b, beg, lb, ub, and x are vectors.

f, lb, and ub can be passed as vectors or matrices; see Matrix Arguments.

Convert the problem from "Max" to "Min"

▶ Max Q(α) → Min –Q(α)

If f is to be maximized instead, such a maximization problem can be expressed as a minimization problem by the transformation

$$\max_{\mathbf{w}} f(\mathbf{w}) = -\min_{\mathbf{w}} \left[-f(\mathbf{w}) \right]$$

Lecture Slide 64

Task 1: Quadratic programming

Not in use

Maximize:
$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Subject to: $\sum_{i=1}^{N} \alpha_i d_i = 0$, $0 \le \alpha_i \le C$

Soft Margin

Finds a minimum for a problem specified by
$$A = [\];$$
 Maximize: $Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$
$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T H \mathbf{x} + f^T \mathbf{x} \text{ such that } \begin{cases} A \cdot \mathbf{x} \leq b, & \mathbf{b} = [\]; \\ Aeq \cdot \mathbf{x} = beq, \\ lb \leq \mathbf{x} \leq ub. \end{cases}$$
 Subject to:
$$\sum_{i=1}^{N} \alpha_i d_i = 0, \ 0 \leq \alpha_i \leq C$$

$$H, A, \text{ and } Aeq \text{ are matrices, and } f, b, beq, lb, ub, \text{ and } \mathbf{x} \text{ are vectors.}$$

f, lb, and ub can be passed as vectors or matrices; see Matrix Arguments.

$$\begin{array}{ll} \textit{Aeq} \cdot \textit{x} = \textit{beq}, & \{ \substack{\mathsf{Aeq} = (\mathsf{d}_1, \mathsf{d}_2, \dots, \mathsf{d}_\mathsf{N}) \\ \mathsf{beq} = 0} \\ \textit{lb} \leq \textit{x} \leq \textit{ub}. & \{ \substack{\mathsf{Ib} = (\mathsf{0}, \mathsf{0}, \dots, \mathsf{0})^\mathsf{T} \\ \mathsf{ub} = (\mathsf{C}, \mathsf{C}, \dots, \mathsf{C})^\mathsf{T}} \end{array} \right. \\ \begin{array}{ll} \min_{x} \frac{1}{2} \textit{x}^T \textit{Hx} + \textit{f}^T \textit{x} \cdot \{ \substack{\mathsf{H}_{ij} = \mathsf{d}_i \mathsf{d}_j \mathsf{K} \big(\mathsf{x}_i, \mathsf{x}_j \big) \\ \mathsf{f} = (-1, -1, \dots, -1)^\mathsf{T}} \end{array}$$

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

Task 1: Quadratic programming

```
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
```

Hard-margin SVM with the Linear kernel $K(x_1, x_2) = x_1^T x_2$

- $\bullet \ \mathsf{H}(i,j) = d_i d_j x_i^T x_j;$
- f = -ones(2000,1);
- Aeq = train_label';
- Beq = 0;
- ▶ Hard Margin $\alpha_i \ge 0$
 - \circ C = $+\infty$ (In theory)
 - \circ C = Large value (In practice, e.g. 10⁶)

- lb = zeros(2000,1);
- ub = ones(2000.1)*C:
- x0 = [];
- options = optimset('LargeScale','off', 'MaxIter', 1000);

Task 1:

Quadratic programming

```
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
```

Hard-margin SVM with the Polynomial kernel $K(x_1, x_2) = (x_1^T x_2 + 1)^p$

- $H(i,j) = d_i d_j (x_i^T x_j + 1)^p$;
- f = -ones(2000,1);
- Aeq = train_label';
- Beq = 0;
- ▶ Hard Margin $\alpha_i \ge 0$
 - \circ C = +∞ (In theory)
 - \circ C = Large value (In practice, e.g. 10⁶)

- lb = zeros(2000,1);
- ub = ones(2000,1)*C;
- x0 = [];
- options =
 optimset('LargeScale','off'
 , 'MaxIter',1000);

Task 1: Quadratic programming

```
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
```

Soft-margin SVM with the Polynomial kernel $K(x_1, x_2) = (x_1^T x_2 + 1)^p$

- $H(i,j) = d_i d_i (x_i^T x_i + 1)^p$;
- f = -ones(2000,1):
- Aeq = train_label';
- Beq = 0;
- ▶ Soft Margin $0 \le \alpha_i \le C$

$$\circ$$
 C = 0.1, 0.6, 1.1, 2.1

- lb = zeros(2000,1);
- ub = ones(2000,1)*C:
- x0 = [];
- options = optimset('LargeScale','off' , 'MaxIter', 1000);

Task 1: Selection of Support Vectors

Based on KKT conditions

For a support vector, $\alpha_i \neq 0$ (In theory)

However in practice, $\alpha_i \neq \text{small value}$

How to decide?

Choose an appropriate threshold (e.g.1e-4)
 to determine the support vectors

Task 1:Discriminant function g(x)

Hard Margin SVM with linear kernel

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j \qquad \qquad \text{Subject to} \qquad \frac{\sum_{i=1}^{N} \alpha_i d_i = 0}{\alpha_i \ge 0}$$

Subject to
$$\sum_{i=1}^{N} \alpha_i d_i = \frac{\sum_{i=1}^{N} \alpha_i d_i}{\alpha_i \ge 0}$$

After $\alpha_{\circ,i}$ is obtained, we can calculate \mathbf{w}_{\circ} and b_{\circ} as follows:

$$\mathbf{w}_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} d_{i} \mathbf{x}_{i}, \quad b_{\circ} = \frac{1}{d^{(s)}} - \mathbf{w}_{\circ}^{T} \mathbf{x}^{(s)}$$

Lecture Slide 87

where $\mathbf{x}^{(s)}$ is a support vector with label $d^{(s)}$

Task 1:Discriminant function g(x)

Soft Margin SVM with linear kernel

After $\alpha_{\circ,i}$ is obtained, we can calculate \mathbf{w}_{\circ} as follows:

$$\mathbf{w}_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} \, d_i \, \mathbf{x}_i$$

After \mathbf{w}_{\circ} is obtained, we can calculate b_{\circ} as follows:

① For each example \mathbf{x}_i with $0 < \alpha_i \le C$,

$$b_{\circ,i} = \frac{1}{d_i} - \mathbf{w}_{\circ}^T \mathbf{x}_i$$

Lecture Slide 106,107

2 Take b_{\circ} as the average of all such $b_{\circ,i}$

$$b_{\circ} = \frac{\sum_{i=1}^{m} b_{\circ,i}}{m}$$

where m is the total number of \mathbf{x}_i with $0 < \alpha_i \le C$.

Task 1:Discriminant function g(x)

Soft Margin SVM with nonlinear kernel

Determine b_{\circ} in

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{o,i} d_i K(\mathbf{x}, \mathbf{x}_i) + b_o$$

using the fact that for a support vector $\mathbf{x}^{(s)}$

$$g(\mathbf{x}^{(s)}) = \pm 1 = d^{(s)}$$

Take b_{\circ} as the average of all such $b_{\circ,i}$

$$b_{\circ} = \frac{\sum_{i=1}^{m} b_{\circ,i}}{m}$$

where m is the total number of \mathbf{x}_i with $0 < \alpha_i \le C$.

Task 2: Data

Test set (with 1536 samples)

Given: "test.mat"

- feature (57 x 1536)
- label (1536 x 1)

57 attributes

Feature of a sample:

Label: +1 (spam), -1(non-spam)

Task 2: Testing set

- Import the testing set (i.e. test.mat)
- Preprocess the "data" (various methods can be done e.g. Sample Scaling or Standardization [CHOOSE ONE!])^a
 - Scale the "data" : rescale individual sample x such that ||x|| = 1.
 - Standardize the "data": using the mean and variance of each feature from your training set. Transform each feature in the same manner with the training data.
- ▶ Please ensure the "label" is mapped into the set of {-1, 1}.

a https://scikit-learn.org/stable/modules/preprocessing.html#

Task 2: Test set

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^{T} \boldsymbol{\varphi}(\mathbf{x}) + b_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} d_{i} \underbrace{\boldsymbol{\varphi}^{T}(\mathbf{x}_{i}) \boldsymbol{\varphi}(\mathbf{x})}_{K(\mathbf{x}_{i},\mathbf{x})} + b_{\circ}$$

To classify a new data point x_{new}

$$d_{\text{new}} = \text{sgn}\left[g(\mathbf{x}_{\text{new}})\right]$$

$$g(\mathbf{x}_{test}) = \sum_{i=1}^{N} \alpha_{o,i} d_i K(\mathbf{x}_i, \mathbf{x}_{test}) + b_o$$

Task 2: Test set

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^{T} \boldsymbol{\varphi}(\mathbf{x}) + b_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} d_{i} \underbrace{\boldsymbol{\varphi}^{T}(\mathbf{x}_{i}) \boldsymbol{\varphi}(\mathbf{x})}_{K(\mathbf{x}_{i},\mathbf{x})} + b_{\circ}$$

To classify a new data point x_{new}

$$d_{\text{new}} = \text{sgn}\left[g(\mathbf{x}_{\text{new}})\right]$$

Type of SVM	Training accuracy				Test accuracy			
Hard margin with Linear kernel	?				?			
Hard margin with	p=2	p = 3	p=4	p = 5	p=2	p = 3	p=4	p = 5
polynomial kernel	?	?	?	?	?	?	?	?
Soft margin with								
polynomial kernel	C = 0.1	C = 0.6	C = 1.1	C = 2.1	C = 0.1	C = 0.6	C = 1.1	C = 2.1
p=2	?	?	?	?	?	?	?	?
p = 3	?	?	?	?	?	?	?	?
p=4	?	?	?	?	?	?	?	?
p = 5	?	?	?	?	?	?	?	?

Task 3: Data

Evaluation set (with 600 samples)

Not given: "eval.mat"

- feature: "eval_data" (57 x 600)
- label: "eval_label" (600 x 1)

Task 3: Evaluation

- Design a SVM of your own
 - Hard or Soft Margin ?
 - Linear or Polynomial Kernel ?
 - What are the p and C values ?

Not given: eval.mat eval_data (57 x 600) eval_label (600 x 1)

Output: A column vector (600 x 1) named "eval_predicted"

Produce the best performance

Task 3: Evaluation

- Hardcode the discriminant function g(x) in the file for evaluation
 - If necessary, store the required variables in a separate *.mat file
- Prepare the code so that it could handle the evaluation data set
 - Note: the eval_data is a (57x600) matrix
- Your code should be able to generate "eval_predicted" (600 x 1)

Task 3: Evaluation

- Please name your M file for Task 3 as "svm_main"
- Do <u>not</u> clear any variables in the "svm_main" script
- Before submitting your code, please ensure that it works by testing it with the training and test set

Preprocess your data

```
Sample Scaling / Mean Normalization / Standardization / Rescaling / etc. ?
```

- Use the training set statistics to preprocess the other data sets
- Check Mercer Condition

Procedure to build SVM

Choose a suitable Kernel

Linear/Nonlinear?

Choose C Hard/Soft Margin?

 \triangleright Solve α_i Quadratic Programming

 \triangleright Determine discriminant function g(x)

- Hard Margin
 - \circ C = +∞ (In theory)
 - C = Large value (In practice, e.g. 106)

- Selection of support vectors
 - Select an appropriate threshold (e.g. 1e-4) for choosing the support vectors

Important Notes: Submission

- Submit <u>all your codes</u> that you have implemented for the entire project
- Make sure your codes work without errors.
- All codes should be executable with the given data sets in the workspace without any additional inputs

Report due on April 26, 2019

Q & A

mrdjr@u.nus.edu