

Simplex Solver

Руководство пользователя

© 2009, Роман Цисык <r.tsisyck@gmail.com>.

Версия документа 1.0 от 25 мая 2009 г. для SimpleSolver версии 1.0.

SimplexSolver представляет собой свободное программное обеспечение. Вы можете свободно распространять и/или изменять программу при соблюдении условий лицензии GNU General Public License (версии 3 или более поздней), опубликованной Фондом свободного программного обеспечения. Данная программа распространяется в надежде, что она будет полезной, но без всякой гарантии, в том числе без связанной гарантии товарной пригодности или пригодности для частного использования.

Данная документация и логотип программы распространяется на условиях лицензии Creative Commons Attribution ShareAlike 3.0. Вы можете без ограничений распространять их, изменять и использовать в любых (в том числе коммерческих) целях при условии указания оригинального авторства и сохранения данной лицензии в производных работах.

Оглавление

1 Общая информация	4
2 Алгоритм работы программы	5
2.1 Выделение начального базиса	5
2.2 Нахождение оптимального опорного плана	5
2.3 Вычисление интервалов устойчивости двойственных оценок	6
3 Установка программы	7
3.1 Windows	7
3.2 Linux/X11	7
3.3 Сборка из исходных текстов	7
4 Использование программы	8
4.1 Ввод задачи	8
4.2 Вывод результата	9
5 Примеры решения задач	11
5.1 Пример I	11
5.1.1 Решение исходной ЗЛП	11
5.1.2 Решение двойственной ЗЛП	12
5.1.3 Решение исходной и двойственное ЗЛП в программе	14
5.2 Пример II	16
5.2.1 Решение исходной ЗЛП	16
5.2.2 Решение ЗЛП в программе	18
5.3 Пример III	19
5.3.1 Решение исходной ЗЛП	19
5.3.2 Нахождение целочисленных решений	19
5.3.3 Решение ЗЛП в программе	21

1 Общая информация

SimplexSolver решает задачу линейного программирования (ЗЛП). Задача линейного программирования заключается в нахождении максимума или минимума целевой функции при заданной системе линейных ограничений.

Основная задача линейного программирования может быть записана в следующем виде:

$$F(\vec{X}) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \to max$$
 (1)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & \leq b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & \leq b_m \end{cases}$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(8)$$

$$(8)$$

$$(9)$$

$$(9)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(20)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(22)$$

$$(23)$$

$$(23)$$

$$(24)$$

$$(25)$$

$$(27)$$

$$(27)$$

$$(28)$$

$$(28)$$

$$(28)$$

$$(28)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$($$

Знаки неравенств (2) могут быть как \leq и \geq , так и =. В последнем случае говорят, что задача представлена в каноническом виде.

Поскольку отрицательные значения x_{ij} как правило не имеют экономического смысла, то к системе ограничений (2) часто добавляют условие $x_i \geq 0$. Программа предназначена в первую очередь для учащишся экономических специальностей, поэтому имеет естественное ограничение на неотрицательность искомых переменных.

Часто нецелые значения x_{ij} также не имеют экономического смысла. Допустим эти переменные могут показывать количество единиц выпускаемой продукции и дробное значение не уместно в данном случае. Тогда к системе ограничений (2) добавляют также условие целочисленности переменных, что также предусмотрено в программе. В этом случае говорят, что это задача целочисленного линейного программирования.

Для простоты, условия ЗЛП часто записывают ввиде вектор-строки \vec{C} коэффициентов при целевой функции, матрицы коэфициентов в системе ограничений (2) и вектора \vec{B} свободных членов этой системы.

2 Алгоритм работы программы

2.1 Выделение начального базиса

Для решения ЗЛП исходную матрицу ограничений необходимо представить в каноническом виде и выделить в ней начальный базис. Программа пытается найти базисные вектора в исходной системе уравнений, а при отсутствии таковых, добавляет балансовые, и при необходимости искусственные переменные (используется метод искусственного базиса) в систему ограничений. Данные переменные представляют собой разницу между запасами ресурсов и их потреблением. Коэффициенты при искусственных переменных в исходной функции обозначаются буквой W. Подразумевается, что W бесконечно большой число, которое не повлияет на ход нахождения минимума функции.

Алгоритм программы сводит любую задачу к нахождению минимума. Для этого коэффициенты при целевой функции умножаются на -1, что позволяет заменить задачу максимизации задачей минимизации.

2.2 Нахождение оптимального опорного плана

После выделения начального плана, программа в поисках оптимального опорного плана начинает перемещение по вершинам симплекса. Для этого составляются промежуточные симплекс-таблицы.

В m+1 в столбце В находится текущее значение целевой функции. В m+2 строке в столбце B находится искусственная часть значения функции. В случае максимизации, данные значения записаны с противоположным знаком. В столбцах P_i m+1 строки находятся объективно-обусловленные оценки (решений двойственной задачи). Экономическая интерпретация данных оценок может быть различна, но как правило данные оценки показывают степень важности каждого из ресурсов.

В m+2 строке находится искуственная часть двойственных оценок, которая при успешном решении задачи обращается в ноль (это может означать, что все искусственные переменные исключены).

Выводимый из базиса компонент определяется по максимальному неотрицательному значению в m+2 строке. В случае обращения значений в неискусственных столбцах P_i строки m+2, выполняется поиск максимального значения в m+1 строке. В случае отсутствия положительных неискуственных элементов в m+2 строке и равенству нулю значения в столбце B, выполняется поиск максимального значения в m+1 строке над нулевыми элементами m+2. В противном случае задача не имеет решения. Отсутствие положительных элементов в m+1 наооборот говорит о нахождении оптимального опорного плана и соотвественно решения задачи. Следует учитывать, что выведенная из базиса искуственная переменная больше в базис не вводится.

По столбцу θ определятся компонент, вводимый в базис. Отсутствие в столбце положительных значений говорит о невозможности нахождения оптимального плана.

После нахождение оптимального опорного плана (а значит и решения задачи), программа проверяет условие целочисленности выбранных переменных. В случае нецелочисленности одной из указанных переменных, выполняется отсечение Гомори и смена базиса, после чего поиск оптимального целочисленного решения продолжается вновь.

2.3 Вычисление интервалов устойчивости двойственных оценок

Программа также умеет вычислять интервалы значений \vec{C} и \vec{B} , в которых двойственные оценки сохраняют свое значение. Для этого из симплекс таблица находится обратная матрица (она содержится в столбцах исходного опорного плана канонической задачи) и умножается на приращение Δb_i .

3 Установка программы

Программа поддерживает все основные платформы, в том числе Windows, Unix/X11 и MacOS. Для графического интерфейса используется библиотека Qt 4.5, поэтому данная библиотека должна быть установлена в системе.

3.1 Windows

Для установки программы следует использовать программу установки SimplexSolver.exe, находящуюся в дистрибутиве программы и далее следовать инструкция мастера установки.

При установке будет предложено установить также необходимую версию библиотеки Qt, которая включена в дистрибутив программы и данный файл документации.

3.2 Linux/X11

В дистрибутиве программы находятся скомпилированные для архитектур x86 и $x86_64$ бинарные версии программы для linux. Необходимо скомпировать данные файлы на компьютер и установить права на исполнения для файла SimplexSolver (chmod +x SimplexSolver). После этого программу следует запускать командой ./SimplexSolver.

3.3 Сборка из исходных текстов

Вместе с дистрибутивом программы предоставляются исходные тексты, из которых программа может быть скомпилирована под любую другую платформу, в том числе Mac OS X, OpenSolaris или FreeBSD.

Для сборки программы необходимо сгенерировать Makefile. Для этого следует использовать команду qmake (входит в состав Qt). После генерации Makefile программу можно собрать командой gmake (или nmake, зависит от платформы).

Вы можете использовать тексты программы в своих разработках при соблюдении лицензионного соглашения программы.

4 Использование программы

Главное окно программы состоит из двух вкладок: "Условия" и "Решение". В первой вкладке осуществляется ввод условий задачи. Во второй вкладке отображается ход решение и результат. Внешний вид и оформление программы могут отличаться в зависимости от платформы, на которой будет запущена программа.

4.1 Ввод задачи

Во вкладке "Условия" в первой строке необходимо задать целевую функцию (векторстрок \vec{C} и тип оптимизации. Во всех остальных строках, кроме последней — коэффициенты матрицы, знаки неравенств и значение свободных членов системы ограничений. В последней строке задаются ограничения целочисленности каждой из переменных.

Для добавления переменных и ограничений можно воспользоваться кнопками внизу таблицы или контекстным меню.

Рисунок 1 — Контекстное меню таблицы

Пример. Задача задана в следующем виде:

$$F(\vec{X}) = x_1 + x_2 \to max,\tag{3}$$

$$\begin{cases} x_1 + 5x_2 \le 10 \\ 7x_1 + 8x_2 \le 4 \\ x_i \ge 0. \end{cases}$$
 (4)

В окне программы это будет выглядеть следующим образом:

X_1	X_2		В
1	1	Максимум	
1	5	<=	10
7	8	<=	4
Дробное	Дробное		
	1 1 7	1 1 1 1 1 1 7 7 8 8	1 1 Максимум 1 5 <=

Рисунок 2 — Задание условий задачи в программе

4.2 Вывод результата

Во вкладке "Решение" отображается ход решения. В начале документа показана задача, приведенная к каноническому виду.

$$F(X) = -(-x_1 - x_2) -> max$$

 $x_1 + 5x_2 + x_3 = 10$
 $7x_1 + 8x_2 + x_4 = 4$
 $x >= 0$

Рисунок 3 — Задача в каноническом виде

Далее идут промежуточные симплекс-таблицы, которые могут быть полезны для понимания механизма работы алгоритма или более детального исследования задачи. Следует учитывать, что при нахождении максимума, оценки в m+1 и m+2 строках таблицы записаны с противоположными знаками. При отсутствии искусственных переменных m+2 строка не отображается.

i	базис	C;	В	Pi	P2	P ₃	P ₄	Θ
1	P ₃	0	9,4286	0	3,8571	1	-0,14286	10
2	Pi	-1	0,57143	1	1,1429	0	0,14286	0,57143
m+1			-0,57143	0	-0,14286	0	-0,14286	

Рисунок 4 — Симплекс-таблица

После таблиц отображается оптимальное значение функции $F(\vec{X})$ и значения соотвествующих переменных x_i ввиде компонентов вектора \vec{X} .

```
Оптимум найден:
F = 0,57143,
X = (0,57143;0;9,4286;0).
```

Рисунок 5 — Результат

В самом конце указаны интервалы устойчивости \vec{C} и \vec{B} , при которых двойственные оценки сохраняют свое значение.

Решение стабильно, если: $B_1 \in (-\infty \; ; \; 19,429]$ $B_2 \in [-62 \; ; \; 8]$ $C_1 \in [-1 \; ; \; -1]$ $C_2 \in (-\infty \; ; \; -0,85714]$

Рисунок 6 — Интервалы устойчивости

Вывод программы можно сохранить в файл. В данной версии поддерживается формат OpenDocument Text (.odt), который в свою очередь использует популярный офисный пакет OpenOffice.org, и формат HTML 4 (.html), который может быть открыт любым совместимым веб-браузером. Также предусмотрена возможность отправки вывода программы на печать.

5 Примеры решения задач

5.1 Пример I

Задана ЗЛП с целевой функцией:

$$F(\vec{X}) = x_1 + x_2 \to max. \tag{5}$$

Система ограничений имеет следующий вид:

$$\begin{cases} 20x_1 + 10x_2 \le 45\\ 2x_1 + 7x_2 \le 14\\ x_i \ge 0 \end{cases}$$
 (6)

.

5.1.1 Решение исходной ЗЛП

Введем балансовые переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1.

$$-F(\vec{X}) = -(-x_1 - x_2) \to max$$

$$\begin{cases} 20x_1 + 10x_2 + x_3 = 45\\ 2x_1 + 7x_2 + x_4 = 14\\ x_i, s_i \ge 0 \end{cases}$$
 (7)

Составим таблицу и решим задачу симплекс-методом.

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -1$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_3	0	45	20	10	1	0	2,25
2	P_4	0	14	2	7	0	1	7
m+1			0	1	1	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -1$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_1	-1	2,25	1	0,5	0,05	0	4,5
2	P_4	0	9,5	0	6	-0,1	1	1,583
m+1			-2,25	0	0,5	-0.05	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -1$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_1	-1	1,458	1	0	0,05833	-0,08333	4,5
2	P_2	-1	1,583	0	1	-0,01667	0,1667	1,583
m+1			-3,042	0	0	-0,04167	-0,08333	
m+1			3,042	0	0	0,04167	0,08333	

Получен оптимальный план: $X^{\text{опт}} = (1,458;1,583)$, и оптимальное значение целевой функции $F^{\text{опт}} = 3.04$.

Тогда оптимальный план и значение двойственной симметричной ЗЛП:

$$Y^{\text{опт}} = (0.042; 0.083), Z^{\text{опт}} = 3.04.$$

Рисунок 7 — Решение исходной ЗЛП графическим методом

5.1.2 Решение двойственной ЗЛП

Построим двойственную симметричную ЗЛП:

$$Z(\vec{Y}) = 45y_1 + 14y_2 \to min,$$
 (8)

$$\begin{cases} 20y_1 + 2y_2 \ge 1, \\ 10y_1 + 7y_2 \ge 1, \\ y_1, y_2 \ge 0. \end{cases}$$
(9)

Введем искусственные переменные и приведем к каноническому виду.

$$Z(\vec{Y}) = 45y_1 + 14y_2 + Wy_5 + Wy_6 \to min \tag{10}$$

$$\begin{cases}
20y_1 + 2y_2 - y_3 + s_5 = 1 \\
10y_1 + 7y_2 - y_4 + s_6 = 1 \\
y_i, s_i \ge 0
\end{cases}$$
(11)

i	Базис	B_i	С	$B_1 = 45$	$B_2 = 14$	$B_3 = 0$	$B_4 = 0$	$B_5 = W$	$B_6 = W$	Θ_i
1	P_5	W	1	20	2	-1	0	1	0	0,05
2	P_6	W	1	10	7	0	-1	0	1	0,1
m+1			0	-45	-14	0	0	0	0	
m+2			2W	30W	9W	-1W	-1W	0W	0W	

i	Базис	B_i	С	$B_1 = 45$	$B_2 = 14$	$B_3 = 0$	$B_4 = 0$	$B_5 = W$	$B_6 = W$	Θ_i
1	P_1	45	0,05	1	0,1	-0.05	0	0,05	0	0,5
2	P_6	W	0,5	0	6	0,5	-1	-0,5	1	0,08333
m+1			2,25	0	-9,5	-2,25	0	2,25	0	
m+2			0.5W	0W	6W	0,5W	-1W	-1,5W	0W	

i	Базис	B_i	С	$B_1 = 45$	$B_2 = 14$	$B_3 = 0$	$B_4 = 0$	$B_5 = W$	$B_6 = W$	Θ_i
1	P_1	45	0,04167	1	0	-0,05833	0,01667	0,05833	-0,01667	
2	P_2	14	0,08333	0	1	0,08333	-0,1667	-0,08333	0,1667	
			3,042	0	0	-1,458	-1,583	1,458	1,583	
			0W	0W	0W	0W	0W	-1W	-1W	

Получен оптимальный план: $Y^{\text{опт}} = (0.0417; 0.0833)$, и оптимальное значение целевой функции $Z^{\text{опт}} = 3.04$.

Рисунок 8 — Решение двойственной задачи графическим методом

5.1.3 Решение исходной и двойственное ЗЛП в программе

Введем исходную и двойственную ЗЛП в программу и сравним результаты.

	X_1	X_2		В
Функция	1	1	Максимум	
Ограничение 1	20	10	<=	45
Ограничение 2	2	7	<=	14
Число	Дробное	Дробное		

Рисунок 9 — Условие задачи в программе

```
Оптимум найден: F = 3,0417, \\ X = (1,4583;1,5833;0;0). Решение стабильно, если: B_1 \in [-50\;;\;70] B_2 \in [-3,5\;;\;23,5] C_1 \in [-1\;;\;-1] C_2 \in [-1\;;\;-1]
```

Рисунок 10 — Решение задачи в программе

	X_1	X_2		В
Функция	45	14	Минимум	
Ограничение 1	20	2	>=	1
Ограничение 2	10	7	>=	1
	Дробное	Дробное		

Рисунок 11 — Условие двойственной задачи в программе

Оптимум найден: F = 3,0417, X = (0,041667;0,083333;0;0;0;0). Решение стабильно, если: B₁ ∈ [0,28571; 2] B₂ ∈ [0,5; 3,5] C₁ ∈ [45; 45] C₂ ∈ [14; 14]

Рисунок 12 — Решение двойственной задачи в программе

5.2 Пример II

Задана ЗЛП:

$$F(\vec{X}) = 3x_1 + 3x_2 \to max, \tag{12}$$

$$\begin{cases} x_1 - 4x_2 \le 4 \\ 3x_1 + 2x_2 \le 6 \\ x_1 + 2x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}$$
 (13)

.

5.2.1 Решение исходной ЗЛП

Введем искусственные переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1.

$$-F(\vec{X}) = -(-3x_1 - 3x_2 + Wx_6) \to max$$

$$\begin{cases} x_1 - 4x_2 + x_3 = 4 \\ 3x_1 + 2x_2 + x_4 = 6 \\ x_1 + 2x_2 - x_5 + s_6 = 2 \\ x_i, s_i \ge 0 \end{cases}$$
 (14)

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	4	1	-4	1	0	0	0	_
2	P_4	0	6	3	2	0	1	0	0	3
3	P_6	W	2	1	2	0	0	-1	1	1
m+1			0	3	3	0	0	0	0	
m+2			2W	1W	2W	0W	0W	-1W	0W	

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	8	3	0	1	0	-2	2	2,667
2	P_4	0	4	2	0	0	1	1	-1	2
3	P_2	-3	1	0,5	1	0	0	-0.5	0,5	2
m+1			-3	1,5	0	0	0	1,5	-1,5	
m+2			0W	0W	0W	0W	0W	0W	-1W	

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	2	0	0	1	-1,5	-3,5	3,5	_
2	P_1	-3	2	1	0	0	0,5	0,5	-0,5	4
3	P_2	-3	0	0	1	0	-0,25	-0.75	0,75	_
m+1			-6	0	0	0	-0.75	0,75	-0.75	
m+2			0W	0W	0W	0W	0W	0W	-1W	

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	16	7	0	1	2	0	0	_
2	P_5	0	4	2	0	0	1	1	-1	4
3	P_2	-3	3	1,5	1	0	0,5	0	0	_
m+1			-9	-1,5	0	0	-1,5	0	0	
m+1			9	1,5	0	0	1,5	0	0	
m+2			0W	0W	0W	0W	0W	0W	-1W	

Получен оптимальный план: $X^{\text{опт}} = (0; 3)$, и оптимальное значение целевой функции $F^{\text{опт}} = 9$.

Рисунок 13 — Решение ЗЛП графическим методом

5.2.2 Решение ЗЛП в программе

Введем ЗЛП в программу и сравним результаты.

	X_1	X_2		В
Функция	3	3	Максимум	
Ограничение 1	1	-4	<=	4
Ограничение 2	3	2	<=	6
Ограничение 3	1	2	>=	2
Число	Дробное	Дробное		

Рисунок 14 — Условие задачи в программе

Оптимум найден: F = 9, X = (0;3;16;0;4;0). Решение стабильно, если: $B_1 \in (-\infty\;;\;20]$ $B_2 \in (-\infty\;;\;10]$ $B_3 \in [-2\;;\;\infty)$ $C_1 \in (-\infty\;;\;-1,5]$ $C_2 \in [-3\;;\;-3]$

Рисунок 15 — Решение задачи в программе

5.3 Пример III

Задана ЗЛП:

$$F(\vec{X}) = x_1 + 4x_2 \rightarrow max$$

$$\begin{cases} 2x_1 + 4x_2 \le 17 \\ 10x_1 + 3x_2 \le 15 \\ x_i \ge 0 \end{cases}$$
 (15)

5.3.1 Решение исходной ЗЛП

Введем искусственные переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1.

$$-F(\vec{X}) = -(-x_1 - 4x_2) \to max$$

$$\begin{cases} 2x_1 + 4x_2 + x_3 = 17\\ 10x_1 + 3x_2 + x_4 = 15\\ x_i, s_i \ge 0 \end{cases}$$
 (16)

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_3	0	17	2	4	1	0	4,25
2	P_4	0	15	10	3	0	1	5
m+1			0	1	4	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_2	-4	4,25	0,5	1	0,25	0	4,25
2	P_4	0	2,25	8,5	0	-0.75	1	5
m+1			-17	0	0	-1	0	

Получен оптимальный план: $X^{\text{опт}} = (0; 4, 25)$, и оптимальное значение целевой функции $F^{\text{опт}} = 17$.

5.3.2 Нахождение целочисленных решений

Компонент P_2 полученного плана не является целочисленным. Применим алгоритм Гомори. Первое отсечение:

$$-0.5x_1 - 0.25x_3 + U_1 = -0.25. (17)$$

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	Θ_i
1	P_2	-4	4,25	0,5	1	0,25	0	0	_
2	P_4	0	2,25	8,5	0	-0.75	1	0	_
3	P_5	0	-0,25	-0.5	0	-0,25	0	1	_
m+1			-17	0	0	0	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	Θ_i
1	P_2	-4	4	0	1	0	0	1	_
2	P_4	0	-2	0	0	-5	1	17	_
3	P_1	-1	0,5	1	0	0,5	0	-2	_
m+1			-17	0	0	0	0	0	

Второе отсечение:

$$-0.5x_3 + U_2 = -0.5. (18)$$

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = 0$	Θ_i
1	P_2	-4	4	0	1	0	0	1	0	_
2	P_4	0	-2	0	0	-5	1	17	0	_
3	P_1	-1	0,5	1	0	0,5	0	-2	0	_
4	P_6	0	-0,5	0	0	-0.5	0	0	1	_
m+1			-17	0	0	0	0	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = 0$	Θ_i
1	P_2	-4	4	0	1	0	0	1	0	_
2	P_4	0	3	0	0	0	1	17	-10	_
3	P_1	-1	0	1	0	0	0	-2	1	_
4	P_3	0	1	0	0	1	0	0	-2	_
m+1			-17	0	0	0	0	0	0	

Получен оптимальный план: $X^{\text{опт}}=(0;4),$ и оптимальное значение целевой функции $F^{\text{опт}}=16.$

5.3.3 Решение ЗЛП в программе

Введем ЗЛП в программу и сравним результаты.

	X_1	X_2		В
Функция	1	4	Максимум	
Ограничение 1	2	4	<=	17
Ограничение 2	10	3	<=	15
Число	Целое	Целое		

Рисунок 16 — Условие задачи в программе

Оптимум найден: F = 16, X = (0;4;1;3;0;0). Решение стабильно, если: $B_1 \in [14;34]$ $B_2 \in (-\infty;17,25]$ $C_1 \in (-\infty;0]$ $C_2 \in [-4;-4]$

Рисунок 17 — Решение задачи в программе