# Predicting West Nile Virus in Chicago Team A

Dora, HJ, Kenny



## Agenda

- Background
- Problem Statement
- EDA
- Feature Engineering
- Modeling
- Cost Benefit Analysis
- Conclusion

## Background

Who are We?

DATA SCIENCE, consultants engaged by Department of Public Health (DOPH)

What happened?

Epidemic of West Nile Virus in Chicago

What are we doing?

DOPH set up a surveillance and control system.

We collect data of the mosquito population, species, WNV, weather conditions

#### **Problem Statement**

Should we perform aerial spraying?

WHEN and WHERE to conduct aerial spraying?

## Mosquito surveillance





Photo: The Atlanta Journal-Constitution

## **Trap Locations**





## **Mosquito Species and WNV**



## WNV species over the months



## **Mosquitoes Thrive in Warmer Weather**



## Feature Engineering - Collinear Features

- Merged train/test data with weather dataset
- Weather features highly collinear
- Dropped **tmin**, **tmax**, **depart** 
  - Engineered temperature range feature
- Dropped wetbulb
- Dropped **heat and cool**
- Dropped sunset
  - Engineered daylight hours feature



## Feature Engineering - Low Correlation

- Dropped features with low correlation to presence of WNV
  - All CODESUM features
    - Key weather information, i.e., temperature, precipitation, wind, already captured
  - UNSPECIFIED CULEX species feature
    - No correlation with presence of WNV
    - CULEX PIPIENS, CULEX RESTUANS are carriers of WNV

### Feature Engineering - New Features

- **Relative humidity** feature
  - Mosquitos breed better in humid areas
  - Calculated by applying a formula using average temperature and dewpoint features
- Added **time lag** element to weather features to investigate the effect of previous weather patterns on WNV
  - Mosquito larvae take 10 to 14 days to develop to adult mosquito
  - Weather features with time lag of 7, 10 and 14 days added

#### **Classification Models**

- Issue of unbalanced classes
  - SMOTE
- Classification model to predict if WNV is present
  - Logistic Regression
  - K Nearest Neighbors
  - Random Forest
  - Gradient Boosting
  - XGBoost

0.0 0.946077
1.0 0.053923
Name: wnv\_pres,

# Best Model: XGBoost

ROC AUC score = 0.83

Shows that the model is well capable of differentiating classes (WNV present and WNV not present)



#### **Best Model: XGBoost**

|            |         | Predicted WNV absent | Predicted WNV | present |
|------------|---------|----------------------|---------------|---------|
| Actual WNV | absent  | 1939                 |               | 66      |
| Actual WNV | present | 88                   |               | 26      |

TN: 1939

FP: 66

FN: 88

TP: 26

Lowest number of False Positives and False Negatives

- Low FP: Minimise wastage of resources by not spraying at areas falsely predicted to have WNV
- Low FN: Reduce human cost of WNV by accurately predicting areas where WNV is present (avoid Type II errors)

#### **Feature Importance**

Top features affecting prediction of WNV

Time: Week, Month

- Weather 7, 10 and 14 days ago

- Daylight hours: sunrise

- Temperature
- Precipitation, humidity



## **Predictions Map**

 Red spots are predicted areas with high concentrations of the WNV



## Case Study: Sacramento (2005)

- 163 cases reported
- 2 types of WNV:
  - Cost to treat WN Fever: USD8,000
  - Cost to treat WN Neuroinvasive: USD33,000

- Cost of the WNV: USD2.3 million
  - Cost of treatment
  - Cost of productivity loss
- Cost of Vector Control:

USD700,000

## Sacramento County vs City of Chicago

- Sacramento:
  - Population: 1.5 million
  - Area: 2574 km<sup>2</sup>
  - Population Density: 583 per km<sup>2</sup>

- Chicago:
  - Population: 2.7 million
  - Area: 606 km<sup>2</sup>
  - Population Density: 4455
     per km<sup>2</sup>

## Proceed with with Aerial Spraying

- It takes 15 neuroinvasive cases to **breakeven** on the cost of aerial spraying
- The cost of the virus (USD2.3 million) vs cost of vector control (USD700,000)
- When we scale the population density, the cost decreases while the benefits per km² increases

#### **Recommendations and Conclusions**

- Proceed with aerial spraying
- WHEN:
  - Sunrise, where the mosquitos are most active
  - 1-2 weeks before the onset of warmer and humid months
- WHERE:
  - Focus on areas with high populations of CULEX RESTUANS and CULEX PIPIENS
  - Areas predicted to have high concentration of WNV present, according to predictions map

## **Next Steps**

- Education is key
  - Stagnant water to be removed
  - Stay indoors outside of daylight hours in those months, when mosquitos are most active
- More data
  - Bird population data

# **THANK YOU**