DEFINIZIONI E TEOREMI ESAME ANALISI 1

Isabella Mauri

(**Prof. Placido Longo – a.a. 2021/2022**)

Nota: le pagine accanto ad alcuni teoremi fanno riferimento alle pagine del Giusti

FUNZIONE

Una funzione è una relazione tra due insiemi, chiamati dominio e codominio della funzione, che associa a ogni elemento del dominio uno e un solo elemento del codominio.

$$\forall a \in A \exists ! b \in B : f : a \longrightarrow b$$

IMMAGINE

Data una funzione f di dominio X e codominio Y, comunque scelto un elemento x del dominio, si chiama immagine di x il corrispondente elemento del codominio, indicato con f(x).

L'insieme

$$\{y \in Y | \exists x \in X : y = f(x)\}$$

degli elementi y del codominio per i quali esiste almeno un x nel dominio che ha y come immagine è detto immagine di f e si denota con Im(f).

DOMINIO

Il dominio di una funzione è l'insieme su cui è definita la funzione, ossia l'insieme sui cui elementi ha senso valutare la funzione.

CODOMINIO

Il codominio di una funzione è l'insieme in cui sono contenute le immagini della funzione.

FUNZIONE INIETTIVA

Una funzione $f: X \to Y$ si dice iniettiva (o invertibile) se associa, ad elementi distinti del dominio, elementi distinti del codominio, cioè se:

$$\forall x_1, x_2 \ di \ X \ con \ x_1 \neq x_2 \ risulta \ f(x_1) \neq f(x_2)$$

FUNZIONE SURIETTIVA

Una funzione $f: X \to Y$ si dice suriettiva quando ogni elemento del codominio è immagine di almeno un elemento del dominio, cioè se:

$$\forall y \in Y \ \exists x \in X : f(x) = y$$

FUNZIONE BIIETTIVA (o BIUNIVOCA)

Una funzione $f: X \to Y$ si dice biiettiva se è sia iniettiva che suriettiva e dunque anche invertibile, cioè se:

y = f(x) ha una e una sola soluzione $\forall y \in Y$

FUNZIONE INVERSA

Una funzione $f: X \to Y$ *si dice invertibile se esiste una funzione* $g: Y \to X$ *tale che*:

$$g(f(x)) = x \text{ per ogni } x \in X$$

$$f(g(y)) = y \text{ per ogni } y \in Y$$

TEOREMA DEI VALORI INTERMEDI (o di BOLZANO-WEIRSTRASS) (p.232)

Sia $I \subset \mathbb{R}$ un intervallo e sia f(x) una funzione continua in I.

f(x) assume tutti i valori compresi tra quelli assunti in due punti arbitrari del dominio $x_1, x_2 con x_1 < x_2$ (Una f. continua in I assume tutti i valori compresi tra inf_If e sup_If)

Dimostrazione

Sia c un valore compreso tra $\inf_I f \in \sup_I f$: $\inf_I f < c < \sup_I f$ Essendo $c > \inf_I f$, c non è un minorante. Dunque $\exists a \in I : f(a) < c$ Essendo $c < \sup_I f$, c non è un maggiorante. Dunque $\exists b \in I : f(b) > c$ La funzione continua g(x) = f(x) - c sarà allora positiva in b e negativa in a. Per il th degli zeri (p.8) ci sarà un punto x_0 compreso tra a e b in cui g(x) = 0 cioè in cui $f(x_0) = c$

FUNZIONE CRESCENTE (strettamente crescente se $f(x_1) < f(x_2) \Rightarrow$ iniettiva)

 $Sia\ A \subset \mathbb{R}$.

Una funzione $f: A \to \mathbb{R}$ *si dice crescente se* $\forall x_1, x_2 \in A$ *con* $x_1 < x_2$, *si ha* $f(x_1) \leq f(x_2)$

N. B: Una funzione f è crescente se e solo se il rapporto incrementale $\frac{f(x_1) - f(x_2)}{x_1 - x_2} \ge 0$

FUNZIONE DECRESCENTE (strettamente decrescente se $f(x_1) > f(x_2) \Rightarrow$ iniettiva)

 $Sia\ A \subset \mathbb{R}$.

Una funzione $f: A \to \mathbb{R}$ si dice decrescente se $\forall x_1, x_2 \in A$ con $x_1 < x_2$, si ha $f(x_1) \ge f(x_2)$

N. B: Una funzione f è decrescente se e solo se il rapp. incrementale $\frac{f(x_1) - f(x_2)}{x_1 - x_2} \le 0$

MASSIMO DI UN INSIEME (può esistere)

 $Sia\ M\subseteq\mathbb{R}$, $x_0\in\mathbb{R}$.

 x_0 è detto massimo di M se verifica le seguenti proprietà:

- 1) $x_0 \in M$
- 2) $x_0 \ge x \ \forall x \in M \ (ovvero \ x_0 \ e \ un \ maggiorante \ di \ M)$

MINIMO DI UN INSIEME (<u>può</u> esistere)

 $Sia\ M \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$.

 x_0 è detto minimo di M se verifica le seguenti proprietà:

- 1) $x_0 \in M$
- 2) $x_0 \le x \ \forall x \in M \ (ovvero \ x_0 \ e \ un \ minorante \ di \ M)$

N.B: Maggioranti e minoranti sono infiniti.

INSIEME LIMITATO SUPERIORMENTE

Un insieme $M \subseteq \mathbb{R}$ *si dice limitato superiormente se* $\exists k \in \mathbb{R}$: $x \leq k \ \forall x \in M$ (ovvero se M possiede almeno un maggiorante)

INSIEME LIMITATO INFERIORMENTE

Un insieme $M \subseteq \mathbb{R}$ *si dice limitato inferiormente se* $\exists h \in \mathbb{R}: x \geq h \ \forall x \in M$ (ovvero se M possiede almeno un minorante)

Se un insieme è limitato sia superiormente che inferiormente si dirà limitato $(\exists k \in \mathbb{R}: -k \le x \le k \ \forall x \in M)$

ESTREMO SUPERIORE (esiste sempre, ammesso che l'insieme non sia vuoto)

Sia $A \subseteq \mathbb{R}$ *limitato superiormente.*

Allora $\Lambda \in \mathbb{R}$ sarà detto estremo superiore (supA) di A se è il min. dei suoi maggioranti, cioè se:

- 1) $a \leq \Lambda \forall a \in A$
- 2) $\forall \varepsilon > 0 \quad \exists \overline{a} \in A: \overline{a} > \Lambda \varepsilon$

ESTREMO INFERIORE (esiste sempre, ammesso che l'insieme non sia vuoto)

Sia $A \subseteq \mathbb{R}$ limitato inferiormente.

Allora $\lambda \in \mathbb{R}$ sarà detto estremo inferiore (inf A) di A se è il max. dei suoi minoranti, cioè se:

- 1) $\lambda \leq a \ \forall a \in A$
- 2) $\forall \varepsilon > 0 \quad \exists \overline{a} \in A: \overline{a} < \lambda \varepsilon$

N.B: $\bar{a} = valore \ specifico \ di \ a; \ \epsilon = 0^+$

DISUGUAGLIANZA TRIANGOLARE

 $\forall a, b \in \mathbb{R} \text{ si } ha | a + b | \leq |a| + |b|$

DISUGUAGLIANZA DI BERNOULLI

Per ogni intero $n \ge 0$ e ogni numero reale x > -1 si ha $(1+x)^n \ge 1 + nx$

PRINCIPIO DI LOCALIZZAZIONE (o PRINCIPIO DI CANTOR)

Data una successione di intervalli chiusi e limitati(decresc.rispetto alla relazione di inclusione)

$$I_0 = [a_0, b_0] \supseteq I_1 = [a_1, b_1] \supseteq \cdots \supseteq I_n = [a_n, b_n] \supseteq \cdots$$

Tale che

$$\forall \mathbf{M} \in \mathbb{N} \quad \exists n \in \mathbb{N} \colon \quad b_n - a_n < 10^{-M}$$

Esiste un unico numero reale x^* verificante

$$x^* \in I_n \quad \forall n \in \mathbb{N}$$

Risulta inoltre $x^* = \sup\{a_n\} = \inf\{b_n\}$

SUCCESSIONE $(f: \mathbb{N} \to \mathbb{R})$

Una successione è una particolare funzione f(x) definita solo per valori interi di x, ovvero nell'insieme $\mathbb N$ dei numeri naturali $(Dom(f(x)) = \mathbb N)$

- a_n si dirà crescente se $n \le m \implies a_n \le a_m \forall n, m \in \mathbb{N}$
- a_n si dirà decrescente se $n \le m \implies a_n \ge a_m \forall n, m \in \mathbb{N}$
- a_n si dirà convergente ad L se $\forall \varepsilon > 0$ $\exists v \in \mathbb{N}$: $\forall n > v$ $L \varepsilon < a_n < L + \varepsilon$ (se è convergente, è anche limitata) cioè se $\exists l \in \mathbb{R}$: $\lim_{n \to \infty} a_n = L$
- a_n si dirà **limitata** se $\exists k > 0 \in \mathbb{R}$: $|a_n| \le k \ (-k \le a_n \le k) \ \forall n \in \mathbb{N}$
- $a_n \ si \ dir \ a \ divergente \ ad + \infty \ se \quad \forall \varepsilon > 0 \quad \exists \nu : \ \forall n > \nu \quad a_n > \varepsilon$
- a_n si dirà divergente $ad \infty$ se $\forall \varepsilon > 0$ $\exists v: \forall n > v$ $a_n < -\varepsilon$
- a_n si dirà divergente se $\lim_{n\to\infty} a_n = \pm \infty$
- a_n si dirà oscillante se non è nè convergente nè divergente
- a_n si dirà **infinitesima** se $\lim_{n\to\infty} a_n = 0$
- Una restrizione della successione a_n a un sottoinsieme infinito K di $\mathbb N$ si dirà sottosuccessione

TEOREMA DELLA PERMANENZA DEL SEGNO (p.143)

Se la funz. g(x) ha limite M positivo $(\lim_{x \to x_0} g(x) = M > 0)$, allora esiste un $\delta > 0$ tale che $\forall x \ con \ 0 < |x - x_0| < \delta \ si \ ha \ g(x) > \frac{M}{2}$ e dunque in particolare g(x) > 0

Dimostrazione

Dato che M > 0, si può prendere $\varepsilon \leq \frac{M}{2}$.

Allora
$$\exists \delta > 0$$
: $\forall x con \ 0 < |x - x_0| < \delta$ si ha $|g(x) - M| < \epsilon \le \frac{M}{2}$ dunque $\frac{M}{2} < g(x) < \frac{3}{2}M$ e in particolare $g(x) > \frac{M}{2}$

TEOREMA DEL CONFRONTO (o DEI CARABINIERI) (p.147)

Siano f(x), g(x) e h(x) tre funzioni, e supponiamo che risulti $f(x) \le g(x) \le h(x)$ in un intorno bucato di x_0 (cioè escluso x_0) e

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$$

Allora si ha anche:

$$\lim_{x \to x_0} g(x) = L$$

<u>Dimostrazione</u>

Sia $\varepsilon > 0$.

Poichè $f(x) \to L$ $\exists \delta_1 > 0$: $\forall x \ con \ 0 < |x - x_0| < \delta_1$ risulta $L - \varepsilon < f(x) < L + \varepsilon$ e dunque in particolare $f(x) > L - \varepsilon$.

Dato che $h(x) \to L$ $\exists \delta_2 > 0$: $\forall x \ con \ 0 < |x - x_0| < \delta_2$ risulta $L - \varepsilon < h(x) < L + \varepsilon$ e dunque in particolare $h(x) < L + \varepsilon$.

In fine $\exists \delta_3$: se $0 < |x - x_0| < \delta_3$ si ha $f(x) \le g(x) \le h(x)$

Se si prende δ uguale al minimo tra δ_1 , δ_2 , δ_3 , tutte queste disuguaglianze varranno

simultaneamente $\forall x \text{ con } 0 < |x - x_0| < \delta$. Pertanto per questi x si avrà $L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$ e quindi $L - \varepsilon < g(x) < L + \varepsilon$ da cui segue la tesi.

TEOREMA DEL CONFRONTO (per successioni)

Siano $\{a_n\},\{b_n\},\{c_n\}$ tre successioni, e supponiamo che risulti $a_n \leq b_n \leq c_n$ e

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$$

Allora si ha anche:

$$\lim_{n\to\infty}b_n=L$$

CRITERIO DI CAUCHY (o CONDIZIONE DI CAUCHY) (p.190)

TH: Una successione a_n è convergente se e solo se è di Cauchy

Dunque CNS perchè la successione a_n sia convergente è che sia di Cauchy, ovvero che:

Def.
$$\forall \varepsilon > 0 \ \exists \nu : \forall n, m > \nu \ |a_n - a_m| < \varepsilon$$

Dimostrazione

1) Una successione convergente è di Cauchy

Supponiamo che la successione a_n sia convergente a un numero reale L. Allora

$$\forall \varepsilon > 0 \quad \exists \nu: \ \forall n > \nu \ risulta \ |a_n - L| < \frac{\varepsilon}{2}.$$

Se anche m > v si avrà $|a_m - L| < \frac{\varepsilon}{2}$ e dunque

$$|a_n - a_m| \le |a_n - L| + |a_m - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

cosicchè la successione a_n è di Cauchy.

2) Una successione di Cauchy è convergente

Innanzitutto è necessario provare che una successione di Cauchy è limitata. Se nella definizione di successione di Cauchy prendiamo $\varepsilon = 1$, concludiamo che

$$\exists v : \forall n, m > v \quad |a_n - a_m| < \varepsilon$$

In particolare si può prendere m = v + 1. Si ha allora, per n > v:

$$|a_n| \le |a_{\nu+1}| + |a_n - a_{\nu+1}| < |a_{\nu+1}| + 1$$

D'altra parte per $n \le v$ risulta

$$|a_n| < |a_1| + |a_2| + \dots + |a_{\nu}|$$

e quindi in ogni caso si avrà

$$|a_n| < |a_1| + |a_2| + \dots + |a_{\nu}| + |a_{\nu+1}| + 1 = M$$

e quindi a_n è limitata.

Poichè a_n è limitata, possiamo estrarre una sottosuccessione a_{k_n} convergente a un numero reale L. Allora

$$\forall \varepsilon > 0 \quad \exists v_1: per \quad n > v_1 \quad si \ ha \quad |a_n - a_{k_n}| < \varepsilon$$

Dobbiamo ora provare che tutta la successione a_n tende a L. Per la definizione di successione di Cauchy

$$\exists v_2: \forall n, m > v_2 \quad risulta \quad |a_n - a_m| < \varepsilon$$

In particulare, dato che $k_n \ge n$, se $n > v_2$ si ha $|a_n - a_{k_n}| < \varepsilon$

Se ora si prende v uguale al massimo tra v_1 e v_2 , si avrà per ogni n > v:

$$|a_n - L| \le |a_n - a_{k_n}| + |a_{k_n} - L| < \varepsilon + \varepsilon = 2\varepsilon$$

e quindi la successione a_n tende ad L.

LIMITE FINITO AL FINITO (limite finito di una funzione per $x \rightarrow x_0$)

$$Sia \lim_{x \to x_0} f(x) = L$$

$$Def. 1 \quad \forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x \in Dom(f) \quad 0 < |x - x_0| < \delta \quad \Longrightarrow \quad |f(x) - L| < \varepsilon$$

Def. 2 (tramite successioni, si usa per dimostrare che il limite ∄)

$$\forall \{x_n\} \lim_{n \to +\infty} x_n = x_0 \quad con \, x_n \neq x_0 \implies \lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} y_n = L$$

LIMITE INFINITO AL FINITO (limite infinito di una funzione per $x \rightarrow x_0$)

$$Sia \lim_{x \to x_0} f(x) = + \infty$$

Def.
$$\forall M > 0 \quad \exists \delta > 0: \quad \forall x \in Dom(f) \quad 0 < |x - x_0| < \delta \implies f(x) > M$$

$$Sia \lim_{x \to x_0} f(x) = -\infty$$

Def.
$$\forall M > 0 \quad \exists \delta > 0$$
: $\forall x \in Dom(f) \quad 0 < |x - x_0| < \delta \implies f(x) < -M$

LIMITE FINITO ALL' INFINITO (limite infinito di una funzione per $x \to \pm \infty$)

$$Sia \lim_{x \to +\infty} f(x) = L \quad con \ L \in \mathbb{R}$$

Def.
$$\forall \varepsilon > 0 \quad \exists M > 0: \quad \forall x \in Dom(f) \quad x > M \implies |f(x) - L| < \varepsilon$$

$$Sia \lim_{x \to -\infty} f(x) = L \quad con \ L \in \mathbb{R}$$

Def.
$$\forall \varepsilon > 0 \quad \exists M > 0$$
: $\forall x \in Dom(f) \quad x < -M \implies |f(x) - L| < \varepsilon$

LIMITE INFINITO ALL'INFINITO (limite infinito di una funzione per $x \to \pm \infty$)

Sia f(x) una funzione con dominio illimitato superiormente, si dice che:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Se:
$$\forall M > 0$$
 $\exists k_M > 0$: $x > k_M \implies f(x) > M$

Sia f(x) una funzione con dominio illimitato inferiormente, si dice che:

$$\lim_{x \to -\infty} f(x) = +\infty$$

Se:
$$\forall M > 0$$
 $\exists k_M > 0$: $x < -k_M \Rightarrow f(x) > M$

Sia f(x) una funzione con dominio illimitato superiormente, si dice che:

$$\lim_{x \to +\infty} f(x) = -\infty$$

Se:
$$\forall M > 0$$
 $\exists k_M > 0$: $x > k_M \Rightarrow f(x) < -M$

Sia f(x) una funzione con dominio illimitato inferiormente, si dice che:

$$\lim_{x\to-\infty}f(x)=-\infty$$

Se:
$$\forall M > 0$$
 $\exists k_M > 0$: $x < -k_M \Rightarrow f(x) < -M$

LIMITE DESTRO

Diremo che la funzione f(x), definita in un insieme $D \subset \mathbb{R}$, ha limite L per $x \to x_0$ da destra $\left(\lim_{x \to x_0^+} f(x) = L\right)$ se:

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x \in D \quad con \ 0 < x - x_0 < \delta \quad si \ ha \ |f(x) - L| < \varepsilon$$

LIMITE SINISTRO

Diremo che la funzione f(x), definita in un insieme $D \subset \mathbb{R}$,

ha limite l per $x \to x_0$ da sinistra $\left(\lim_{x \to x_0^-} f(x) = l\right)$ se: $\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad \forall x \in D \ con - \delta < x - x_0 < 0 \quad si \ ha \ |f(x) - l| < \varepsilon$

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x \in D \ con - \delta < x - x_0 < 0 \quad si \ ha \ |f(x) - l| < \varepsilon$$

Sia una funzione f(x) definita in un insieme $D \subset \mathbb{R}$, e supponiamo che risulti

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$$

Allora la funzione f(x) ha limite per $x \to x_0$ e si ha

$$\lim_{x \to x_0} f(x) = L$$

N.B: Se una funzione f(x) ha limite, avrà anche i limiti destro e sinistro, che coincideranno con il limite (e viceversa). Dunque se i limiti destro e sinistro di una funzione f(x) sono diversi, si potrà concludere che il limite non esiste.

Le funzioni monotone hanno SEMPRE limiti destro e sinistro. Si ha infatti il seguente teorema:

Sia una funzione f(x) crescente nell'intervallo (a,b) e sia x_0 un punto di (a,b].

Si ha allora:

$$\lim_{x \to x_0^-} f(x) = \sup_{a < x < x_0} f(x)$$

Sia una funzione f(x) decrescente nell'intervallo (a,b) e sia x_0 un punto di (a,b]. Si ha allora:

$$\lim_{x \to x_0^-} f(x) = \inf_{a < x < x_0} f(x)$$

In maniera simile si dimostra il limite destro e la funzione crescente/decrescente in $(a, +\infty)$ o crescente/decrescente in $(-\infty, b)$. [NEL DETTAGLIO P.166-167 del GIUSTI]

FUNZIONE PARI (es. tutte le potenze pari, la funzione coseno)

$$f: \mathbb{R} \to \mathbb{R}$$
 $f \in pari se f(-x) = f(x)$

FUNZIONE DISPARI (es. tutte le potenze dispari, la funzione seno)

$$f: \mathbb{R} \to \mathbb{R}$$
 $f \in disparise f(-x) = -f(x)$

O GRANDE

Diremo che f(x) è un 0 – grande di g(x) per $x \to x_0$ se e solo se il limite per $x \to x_0$ del rapporto tra f(x) e g(x) esiste ed è finito:

$$f(x) = O(g(x)) per x \rightarrow x_0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = l \in \mathbb{R}$$

f(x) = O(g(x)) significa che f(x) e g(x) sono infinitesimi dello stesso ordine

O PICCOLO

Diremo che f(x) è un o – piccolo di g(x) per $x \to x_0$ se e solo se il limite per $x \to x_0$ del rapporto tra f(x) e g(x) è uguale a zero:

$$f(x) = o(g(x)) per x \rightarrow x_0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \in \mathbb{R}$$

f(x) = o(g(x)) significa che f(x) è un infinitesimo di ordine superiore rispetto a g(x)

RETTA TANGENTE AL GRAFICO IN $(x_0, f(x_0))$

$$y = f'(x_0) \cdot x + f(x_0) - f'(x_0) \cdot x_0$$

NUMERI COMPLESSI

I numeri complessi consentono di risolvere equazioni di secondo grado $x^2 + 2px + q = 0$ con Δ negativo. In tal caso le soluzioni avranno forma $x = -p \pm i\sqrt{q - p^2}$.

- z = a + ib = n. complesso in forma algebrica (utile per le somme)
- $\mathbf{z} = \boldsymbol{\rho}(\cos\theta + i\sin\theta) = n$. complesso in forma trigonom. (utile per i prodotti)
- $a = \rho \cos\theta = parte\ reale$
- $b = \rho \sin \theta = coefficiente parte immaginaria$
- ib = parte immaginaria
- $\rho = modulo = \sqrt{a^2 + b^2}$
- $\theta = argomento = arctg(\frac{b}{a})$
- Unità immaginaria $i^2 = -1$
- *Opposto*: -a ib
- Inverso (o reciproco): $\frac{a-ib}{a^2+b^2}$
- *Modulo*: $|\alpha| = \sqrt{a^2 + b^2}$
- Coniugato: $\bar{\alpha} = a ib$
- **Somma**: (a + ib) + (c + id) = a + c + i(b + d)
- **Prodotto**: $(a + ib) \cdot (c + id) = ac bd + i(ad + bc)$
- *Elemento neutro somma*: 0 + i0
- Elemento neutro prodotto: 1 + i0
- I num. complessi soddisfano le proprietà commutativa e associativa
- Non si usano le disequazioni (non si possono ordinare i complessi). Le disequazioni si possono fare solo con il modulo.
- Formula di Eulero: $e^{ix} = cosx + isinx \quad con \ x \in \mathbb{R}$
- Formula di De Moivre: $z^n = \rho^n(\cos(n\theta) + i\sin(n\theta)) \cos n \in \mathbb{N}$ o $n \in \mathbb{Z}$

TEOREMA FONDAMENTALE DELL'ALGEBRA

(dimostrazione basata sullo sviluppo in serie di Taylor)

Ogni polinomio a coefficienti complessi, di grado ≥ 1 , del tipo:

$$p(z) = \sum_{k=0}^{n} a_k z^k \quad a_k, z \in \mathbb{C} \quad a_n \neq 0 \quad n \ge 1$$

ammette almeno una radice ($a \in \mathbb{C}$ è una radice di p(x) se p(a) = 0) complessa.

FUNZIONE CONTINUA IN UN PUNTO

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad |x - y| < \delta \quad \Longrightarrow \quad |f(x) - f(y)| < \varepsilon$$

FUNZIONE CONTINUA (δ dipende sia da ϵ che da y)

f è continua se f è continua in $x_0 \ \forall x_0 \in Dom(f)$, cioè se:

 $\forall y \in Dom(f), \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in Dom(f) \ per \ cui \ |x - y| < \delta \ risulta \ |f(x) - f(y)| < \varepsilon$

<u>N.B</u>: Se una funzione è continua in un intervallo chiuso e limitato ed è invertibile, allora è anche strettamente monotona.

FUNZIONE UNIFORMEMENTE CONTINUA (δ dipende da ϵ , ma non da y)

f è uniformemente continua se:

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x, y \in Dom(f) \quad per \ cui \quad |x - y| < \delta \quad risulta \quad |f(x) - f(y)| < \varepsilon$$

FUNZIONE DI DIRICHLET

$$f(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

f(x) è discontinua $\forall x \in \mathbb{R}$ e non integrabile (secondo Reinmann)

TEOREMA DEGLI ZERI (per le funzioni continue o TEOREMA DI BOLZANO) (p.231)

Consideriamo una funzione $f:Dom(f) \subseteq \mathbb{R} \to \mathbb{R}$ e supponiamo che sia continua nell'intervallo $[a,b] \subseteq Dom(f)$.

 $Supponiamo\ inoltre\ che\ f\ assuma\ agli\ estremi\ dell'intervallo, valori\ discordi,\ cio è\ che:$

Allora esiste almeno un punto $x_0 \in]a, b[$ tale che $f(x_0) = 0$. In simboli:

 $Sia\ f\colon [a,b] \to \mathbb{R}\ continua \ \ e\ sia \ \ f(a)f(b)<0 \ \ allora \ \ \exists x_0\in]a,b[:\ f(x_0)=0$ Dimostrazione

Dividiamo l'intervallo [a, b] in due parti mediante il suo punto di mezzo $c = \frac{a+b}{2}$.

Se f(c) > 0 poniamo $a_1 = a$ e $b_1 = c$; altrimenti $a_1 = c$ e $b_1 = b$.

Ripetendo il procedimento con $[a_1,b_1]$ otteniamo un secondo intervallo $[a_2,b_2]$ e poi via via una successione di intervalli dimezzati $[a_k,b_k]$ tali che $f(a_k) \leq 0$ e $f(b_k) > 0$. Per l'assiomadi continuità, esiste uno e un solo punto x_0 contenuto in tutti gli intervalli, cioè tale che $a_k \leq x_0 \leq b_k$ per ogni k. Le successioni a_k e b_k tendono ambedue a x_0 . Siccome f è continua in x_0 si avrà (per il th che lega continuità e successioni p.225)

$$\lim_{k \to \infty} f(a_k) = \lim_{k \to \infty} f(b_k) = \lim_{k \to \infty} f(x_0)$$

D'altra parte per costruzione risulta $f(a_k) \le 0$ e dunque anche il primo limite sarà ≤ 0 e dunque $f(x_0) \le 0$.

Analogamente, dato che $f(b_k) > 0$, risulterà $f(x_0) \ge 0$ e in conclusione $f(x_0) = 0$.

PRINCIPIO DI SOSTITUZIONE DEGLI INFINITESIMI

Siano f, g, h tre infinitesimi simultanei per $x \to x_0$ e supponiamo che f sia di ordine superiore rispetto a g. Allora:

$$\lim_{x \to x_0} \frac{f(x) + g(x)}{h(x)} = \lim_{x \to x_0} \frac{g(x)}{h(x)}$$

MASSIMO DI UNA FUNZIONE (ASSOLUTO E RELATIVO)

Si dice che una funzione $f: D \to \mathbb{R}$ ha in un punto x_0 (punto di massimo) del proprio dominio D un **massimo** globale (o **assoluto**) se assume un valore maggiore o uguale a quello che assume negli altri punti di D, cioè se: $f(x_0) \ge f(x) \ \forall x \in D$ Si dice che una funzione ha un punto di **massimo** locale (o **relativo**) se: $\exists \delta > 0: f(x_0) \ge f(x) \ \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$

MINIMO DI UNA FUNZIONE (ASSOLUTO E RELATIVO)

Si dice che una funzione $f: D \to \mathbb{R}$ ha in un punto x_0 (punto di minimo) del proprio dominio D un **minimo** globale (o **assoluto**) se assume un valore minore o uguale a quello che assume negli altri punti di D, cioè se: $f(x_0) \le f(x) \ \forall x \in D$ Si dice che una funzione ha un punto di **minimo** locale (o **relativo**) se: $\exists \delta > 0: f(x_0) \le f(x) \ \forall x \in]x_0 - \delta, x_0 + \delta[\cap D$

Una funzione continua in un intervallo chiuso e limitato non vuoto ammette almeno un punto di massimo assoluto e un punto di minimo assoluto nell'intervallo.

TEOREMA DI ROLLE (p.275)

Sia f(x) una funzione continua in un intervallo chiuso e limitato [a, b], derivabile in]a, b[tale che f(a) = f(b).

Allora esiste un punto compreso tra a e b in cui la derivata si annulla:

$$\exists x_0 \in]a,b[$$
 tale che $f'(x_0) = 0$

Dimostrazione

Per il th di Weirstrass, la funzione f ha massimo e minimo in [a, b].

Siano x_M un punto di massimo e x_m un punto di minimo. Si possono distinguere due casi:

- 1. Sia x_M che x_m cadono agli estremi dell'intervallo [a,b]. Poichè la funzione assume lo stesso valore in questi due punti, il massimo della funzione coinciderà col minimo, e dunque f sarà costante e la derivata sarà sempre nulla.
- 2. Uno almeno dei due punti x_M o x_m cade all'interno dell'intervallo [a,b]. Ma allora, per il th di Fermat, la derivata in questo punto è zero.

In ogni caso la derivata si annulla in almeno un punto interno.

TEOREMA DI LAGRANGE (o DEL VALOR MEDIO) (p.276)

Sia f(x) una funzione continua in un intervallo chiuso e limitato [a,b] e derivabile in [a,b]

Allora:

$$\exists \xi \in [a,b[\text{ tale che } f(b) - f(a) = f'(\xi)(b-a)$$

Dimostrazione

La funzione

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

è continua in [a, b], e derivabile in]a, b[.

Inoltre si ha g(a) = g(b) = 0 e quindi, per il th di Rolle

$$\exists \xi \in]a,b[$$
 in cui $g'(\xi)=0$

da cui

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} = pendenza media$$

TEOREMA DI CAUCHY (p.277)

Siano f(x) e g(x) due funzioni continue in un intervallo chiuso [a,b], e derivabili in]a,b[Allora:

$$\exists \xi \in [a, b] \quad tale \ che \quad [g(b) - g(a)]f'(\xi) = [f(b) - f(a)]g'(\xi)$$

Dimostrazione

La funzione

$$h(x) = [g(b) - g(a)]f(x) - [f(b) - f(a)]g(x)$$

verifica tutte le ipotesi del teorema di Rolle.

Infatti essa è continua in [a,b]e derivabile in [a,b].

Inoltre si ha

$$h(a) = [g(b) - g(a)]f(a) - [f(b) - f(a)]g(a) = g(b)f(a) - f(b)g(a)$$

$$h(b) = [g(b) - g(a)]f(b) - [f(b) - f(a)]g(b) = -g(a)f(b) + f(a)g(b) = h(a)$$

Di conseguenza

$$\exists \xi \in]a,b[$$
 in cui $h'(\xi)=0$

TEOREMA DI FERMAT

Sia f(x) una funzione con dominio $Dom(f) \subseteq \mathbb{R}$. Se $x_0 \in Dom(f)$ è un punto di massimo o minimo locale interno al dominio $(N.B: un\ pto\ si\ dice\ interno\ al\ dominio\ se\ \exists \delta\colon \forall x\in]x_0-\delta, x_0+\delta[\subseteq D)$ e la funzione è derivabile in quel punto allora si ha che:

$$f'(x_0) = 0$$

Dimostrazione

Supponiamo che x_0 sia un pto di massimo locale:

$$\exists \delta > 0: f(x_0) \ge f(x) \ \forall x \in [x_0 - \delta, x_0 + \delta] \cap D$$

Pertanto $\forall h \in [0, \delta]$ si ha

$$\frac{f(x_0+h)-f(x_0)}{h} \le 0$$

Poichè

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

si può concludere per la perm. del segno che $f'(x_0) \leq 0$

Invece $\forall h \in]-\delta,0[$ si ha

$$\frac{f(x_0+h)-f(x_0)}{h} \ge 0$$

Poichè

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

si può concludere per la perm. del segno che $f'(x_0) \ge 0$

Combinando i risultati si può concludere che $f'(x_0) = 0$.

DERIVATA

La derivata di f(x) in x_0 è definita come il numero $f'(x_0)$ uguale al **limite del rapporto** incrementale al tendere a 0 dell'incremento, sotto l'ipotesi che tale limite esista e sia finito. In modo esplicito, detto h l'incremento, una funzione f definita in un intorno di x_0 si dice

derivabile nel punto
$$x_0$$
 se: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = L \in \mathbb{R}$

TEOREMI SULLE DERIVATE

Se f è costante in [a, b] allora $f'(x) = 0 \ \forall x \in [a, b]$

Se f è crescente in [a, b] allora $f'(x) \ge 0 \ \forall x \in [a, b]$

Dimostrazione

$$\lim_{x \to 0^+} \frac{f(x_0) - f(x_0)}{x - x_0} = f'(x_0) \qquad \begin{cases} f(x_0) > f(x_0) \\ x > x_0 \end{cases} \implies (Per\ la\ perm.\ del\ segno)\ f'(x_0) \ge 0$$

$$\lim_{x \to 0^{-}} \frac{f(x_0) - f(x_0)}{x - x_0} = f'(x_0)$$

$$\lim_{x \to 0^{-}} \frac{f(x_0) - f(x_0)}{x - x_0} = f'(x_0) \qquad \begin{cases} f(x_0) < f(x_0) \\ x < x_0 \end{cases} \implies (Per\ la\ perm.\ del\ segno)\ f'(x_0) \le 0$$

FUNZIONE LIPSCHITZIANA

Una funzione f: $A \rightarrow \mathbb{R}$ *si dirà lipschitziana se*:

$$\exists L \ge 0$$
: $\left| \frac{f(x) - f(y)}{x - y} \right| \le L \quad \forall x, y \in Dom(f) \ con \ x \ne y$

Se f è lipschitziana di costante L ed è derivabile (anche solo in un punto singolo) si ha che:

$$|f'(x_0)| \le L$$

Dunque, se f è lipschitziana, la sua derivata prima è limitata dall'alto.

FORMULA DI TAYLOR (CON RESTO DI PEANO E DI LAGRANGE)

Sia f(x) una funzione derivabile n volte in un intervallo I, e siano x e x_0 due punti di I. Allora, definito il **polinomio di Taylor** di grado n come:

$$P_n = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Si ha che:

$$f(x) = P_n + R_n$$

Dove R_n è un o – piccolo di $(x - x_0)^n$ in quanto:

$$\lim_{x \to x_0} \frac{R_n}{(x - x_0)^n} = 0$$

Dunque:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)(x - x_0)^k}{k!} + o(x - x_0)^n$$

Dove $o(x - x_0)^n$ è chiamato **resto di Peano**.

La formula di Taylor può essere espressa anche con il **resto** nella forma **di Lagrange**. Il resto nella forma di Lagrange afferma che, se la funzione è derivabile n volte in un intorno di x_0 , allora $\exists \xi \in [x_0, x[$ (esiste ξ compreso tra x_0 e x) tale che:

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Nel caso di $x_0 = 0$, la formula di Taylor prende il nome di formula di Mac Laurin.

FUNZIONE CONVESSA

Diremo che la funzione f(x) è convessa nell'intervallo a, b se comunque si prendano i punti a, b se a, b se

Una funzione f(x) *con derivata seconda* ≥ 0 *in*]a,b[\grave{e} *convessa (es. l'esponenziale).*

FUNZIONE CONCAVA

Diremo che la funzione f(x) è concava nell'intervallo a, b se comunque si prendano i punti a, b al a, b in a, b, il grafico della funzione a, b compreso tra i punti a, b se tutto al di sopra del segmento di estremi a, b ci grafico di a, b sotto ogni sua tangente).

Una funzione f(x) *con derivata seconda* ≤ 0 *in* a, b b *concava (es. il logaritmo).*

SERIE (somme di infiniti termini)

Sia $\sum_{k=0}^{\infty} a_k$ una serie di termine generico a_k e sia

$$s_n = a_0 + a_1 + \dots + a_n = \sum_{k=0}^n a_k$$

la successione delle sue somme parziali.

Allora:

- Se la successione s_n ha limite finito s diremo che la serie converge e chiameremo somma della serie il numero $\sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} s_n = s$
- Se la successione s_n ha limite $\pm \infty$ diremo che la serie diverge a $\pm \infty$
- Se la successione s_n non ha limite, diremo che la serie è indeterminata

 $\pmb{N}.\pmb{B}:$ Condizione $\pmb{necessaria},$ ma \pmb{non} $\pmb{sufficiente}$ affinchè la serie $\sum_{k=0}^{\infty}a_k$ converga

è che il termine generico tenda a 0: $\lim_{k} a_k = 0$

<u>Dimostrazione</u>

Sia
$$s_n = a_0 + a_1 + \dots + a_n = \sum_{k=0}^{n} a_k$$

Sappiamo per ip. che la serie converge e per la definizione di serie convergente si ha:

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} s_{n-1} = S$$

Poichè $a_n = s_n - s_{n-1}$ passando al limite entrambi i membri si ottiene:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{n-1} = S - S = 0$$

SERIE GEOMETRICA

Sia c un numero reale, e consideriamo la progressione di ragione c, iniziando dall'unità $(1,c,c^2,c^3\dots)$

La serie $\sum_{k=0}^{\infty} c^k$ di termine generico $a_k = c^k$, si chiama **serie geometrica** di ragione c.

- Se $c \ge 1$ la serie diverge $a + \infty$

SERIE TELESCOPICA (o SERIE DI MENGOLI)

Si dice telescopica una serie $\sum_{k=1}^{\infty} a_k$ i cui termini appaiono nella forma $a_k = b_k - b_{k-1}$.

Un tipico esempio è la **serie di Mengoli** $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$

La serie di Mengoli converge a 1.

SERIE A TERMINI POSITIVI

Una serie a termini positivi è una serie $\sum a_k$ con $a_k \ge 0$. Per queste serie la successione delle somme parziali è crescente e quindi ha sempre limite. Si tratta solo di stabilire se questo **limite** è **finito** (la serie **converge** e le somme parziali sono delle approssimazioni per difetto della somma: $s_n \le s$) $o + \infty$ (la serie **diverge**).

Un risultato analogo vale per le serie a termini negativi, che possono convergere o divergere $a-\infty$.

In questo caso le somme parziali forniscono approssimazioni per eccesso: $s_n \geq s$.

 $TH: Sia \sum a_k$ una serie a termini positivi, e sia s_n la successione delle somme parziali. Se s_n è limitata superiormente, la serie converge (al suo sup), altrimenti diverge $a+\infty$.

SERIE ARMONICA

Con questo nome si indica la serie $\sum_{k=1}^{\infty} \frac{1}{k}$ che diverge molto lentamente $a+\infty$

(è una serie a termini positivi).

La serie $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ è detta serie armonica generalizzata.

Diverge per $\alpha < 1$ e converge per $\alpha > 1$.

SERIE ESPONENZIALE

La serie $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ è convergente per qualunque ragione di x diversa da zero.

La serie $\sum_{n=0}^{\infty} \frac{1}{n!}$ converge ad e.

CRITERI DI CONVERGENZA (PER SERIE A TERMINI POSITIVI)

1) CRITERIO DEL CONFRONTO (p.205)

Siano $\sum a_k\ e\ \sum b_k\ due\ serie, e\ supponiamo\ che\ per\ ogni\ intero\ n\ si\ abbia$

$$0 \le a_n \le b_n$$

Allora, se la serie $\sum b_k$ converge, allora converge anche la serie $\sum a_k$, e si ha

$$\sum_{k=0}^{\infty} a_k \le \sum_{k=0}^{\infty} b_k$$

Viceversa, se la serie $\sum a_k$ diverge, allora diverge anche la serie $\sum b_k$.

In altre parole, se converge la serie più grande, converge anche la più piccola, mentre se diverge la serie più piccola, diverge anche la più grande.

Dimostrazione

Se indichiamo con $s_n e \ t_n$ le somme parziali delle due serie

$$s_n = \sum_{k=1}^n a_k$$
, $t_n = \sum_{k=1}^n b_k$

si ha ovviamente $s_n \leq t_n$.

Se ora la serie $\sum b_k$ è convergente, le somme parziali t_n saranno minori della sua somma t:

$$t_n = \sum_{k=0}^{n} b_k \le \sum_{k=0}^{\infty} b_k = t$$

Poichè $s_n \le t_n$, saranno minori di t anche le somme parziali della serie $\sum a_k$, che essendo a termini positivi, risulterà pertanto convergente.

Siccome poi tutte le somme parziali s_n sono minori di t, anche il loro limite sarà minore di t e quindi

$$\sum_{k=0}^{\infty} a_k \le \sum_{k=0}^{\infty} b_k$$

Se invece la serie $\sum a_k$ diverge, deve divergere anche la serie $\sum b_k$, perchè se questa convergesse, per quanto abbiamo appena dimostrato dovrebbe convergere anche $\sum a_k$.

2) CRITERIO DEL CONFRONTO ASINTOTICO (p.208)

Siano $\sum a_n \ e \ \sum b_n$ due serie a termini positivi, e supponiamo che si abbia

$$\lim_{n\to\infty} \frac{a_n}{b_n} = L < +\infty$$

Allora, se la serie $\sum b_n$ converge, convergerà anche la serie $\sum a_n$.

<u>Dimostrazione</u>

Dalla definizione di limite si ha che

$$\forall \varepsilon > 0 \ \exists N: \forall n > N \ si \ ha \ L - \varepsilon < \frac{a_n}{b_n} < L + \varepsilon$$

In particolare, si può prendere $\varepsilon=1$ e usare solo la seconda disuguaglianza, allora

$$\exists N \colon \forall n > N \quad \frac{a_n}{b_n} < L + 1$$

Per questi n si ha allora

$$0 < a_n < (L+1)b_n$$

e poichè la serie $\sum (L+1)b_n=(L+1)\sum b_n$ converge, convergerà anche la serie $\sum a_n$

3) CRITERIO DELLA RADICE (o di CAUCHY) (p.210)

 $Sia\sum a_k$ una serie a termini positivi, e supponiamo che risulti

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L$$

Se L < 1 la serie $\sum a_k$ converge, mentre se L > 1 diverge positivamente.

Dimostrazione

Supponiamo dapprima che sia L < 1.

Preso
$$\varepsilon = \frac{1-L}{2}$$
, $\exists N: \forall n > N \text{ si ha } \sqrt[n]{a_n} < L + \varepsilon = \frac{1+L}{2}$

Di qui segue che per n > N si ha $a_n < \left(\frac{1+L}{2}\right)^n$

La serie a secondo membro è una serie geometrica di ragione $\frac{1+L}{2} < 1$ quindi converge ; per il criterio del confronto convergerà anche $\sum a_n$.

Se invece L > 1, prendendo $\varepsilon = \frac{L-1}{2}$ si ha da un certo N in poi $\sqrt[n]{a_n} > L - \varepsilon = \frac{1+L}{2}$ e quindi $a_n > \left(\frac{1+L}{2}\right)^n > 1$.

In particolare, la successione a_n non tende a zero, e pertanto la serie $\sum a_n$ diverge.

4) CRITERIO DEL RAPPORTO (o di D'ALAMBERT) (p.210)

 $Sia\sum a_k$ una serie a termini positivi, e supponiamo che risulti

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

Se L < 1 la serie $\sum a_k$ converge, mentre se L > 1 diverge positivamente.

Dimostrazione

Supponiamo dapprima che sia L < 1.

$$Preso\ \varepsilon = \frac{1-L}{2}\ , \qquad \exists N \colon \forall k \geq N \ si\ ha\ \frac{a_{k+1}}{a_k} < L + \varepsilon = \frac{1+L}{2}$$

In particulare, posto per semplicità $\frac{1+L}{2}=p$, si ha $a_{k+1}< pa_k \ \forall k\geq N$

Preso allora n > N, si ha

$$a_n < pa_{n-1} < p^2 a_{n-2} < \dots < p^{n-N} a_N$$

ovvero

$$a_n < \frac{a_N}{p^N} p^n$$

Poichè p < 1, la serie geometrica a secondo membro converge, e di conseguenza converge anche la serie $\sum a_n$.

Se invece si ha L > 1, preso $\varepsilon = \frac{L-1}{2}$, risulta da un certo N in poi $\frac{a_{n+1}}{a_n} > \frac{L+1}{2} > 1$ e dunque $a_{n+1} > a_n$. Ne segue che per n > N la successione positiva a_n è crescente e dunque non può tendere a zero.

Non è dunque verificata la condizione necessaria e quindi la serie $\sum a_n$ diverge.

CRITERI DI CONVERGENZA (PER SERIE A TERMINI DI SEGNO VARIABILE)

1) TEOREMA DELL'ASSOLUTA CONVERGENZA (p.213)

Sia $\sum a_k$ una serie qualsiasi, e supponiamo che la serie $\sum |a_k|$ dei valori assoluti sia convergente. Allora converge anche la serie $\sum a_k$ di partenza, e si ha

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

N.B: Una serie $\sum a_k$ per la quale converge la serie dei valori assoluti $\sum |a_k|$ si dice assolutamente convergente.

<u>Dimostrazione</u>

Consideriamo due nuove successioni b_k e c_k così definite:

$$b_k = \begin{cases} a_k, & a_k \ge 0 \\ 0, & a_k < 0 \end{cases}$$

$$c_k = \begin{cases} 0, & a_k \ge 0 \\ -a_k, & a_k < 0 \end{cases}$$

Le successioni b_k e c_k sono ambedue positive; si ha inoltre

$$b_k - c_k = a_k$$
; $b_k + c_k = |a_k|$

In particolare, si ha

$$b_k \le b_k + c_k = |a_k| e c_k \le b_k + c_k = |a_k|$$

Possiamo ora applicare il th del confronto; poichè per ipotesi la serie $\sum |a_k|$ converge, convergeranno anche le serie $\sum b_k$ e $\sum c_k$.

Ma allora convergerà anche la serie $\sum a_k$, differenza di queste due.

Infine si ha

$$\left| \sum_{k=1}^{n} a_k \right| = \left| \sum_{k=1}^{n} b_k - \sum_{k=1}^{n} c_k \right| \le \sum_{k=1}^{n} b_k + \sum_{k=1}^{n} c_k = \sum_{k=1}^{n} |a_k|$$

Da cui segue $\left|\sum_{k=1}^{\infty} a_k\right| \le \sum_{k=1}^{\infty} |a_k|$ facendo tendere n all'infinito.

2) CRITERIO DI LEIBNIZ (p.215)

Supponiamo che la successione positiva a_k sia decrescente e infinitesima (cioè che abbia limite zero). Allora la serie $\sum_{k=1}^{\infty} (-1)^k a_k$ converge.

Dimostrazione

Faremo vedere che la successione s_n delle somme parziali è di Cauchy. Si ha

$$s_{n+p} - s_n = \sum_{i=n+1}^{n+p} (-1)^i a_i = (-1)^{n+1} (a_{n+1} - a_{n+2} + a_{n+3} - a_{n+4} + \dots + (-1)^{p-1} a_{n+p})$$

 $Valutiamo\ ora\ il\ termine\ tra\ parentesi, che\ per\ brevità\ chiameremo\ Q.$

Siccome la successione a_n è decrescente, ogni termine è maggiore del successivo; se allora ne sommiamo due per volta: $a_{n+1} - a_{n+2}$, $a_{n+3} - a_{n+4}$ eccettera, otteniamo tutti termini positivi.

Se p è pari, si esauriscono così tutti i termini; se invece p è dispari, resta l'ultimo, a_{n+p} , anch'esso positivo perchè in questo caso $(-1)^{p-1} = 1$. Si ha dunque Q > 0.

Per trovare una maggiorazione, sommiamo i vari termini sempre a coppie, ma stavolta a partire dal secondo. Otterremo tutti risultati negativi, e resterà escluso il solo primo termine se p è dispari, e il primo e l'ultimo se p è pari.

Nel primo caso si ha $Q < a_{n+1}$, nel secondo $Q < a_{n+1} - a_{n+p} < a_{n+1}$.

In conclusione, si ha in ogni caso $0 < Q < a_{n+1}$ e quindi

$$\left| s_{n+p} - s_n \right| = Q < a_{n+1}$$

e siccome per ipotesi a_{n+1} tende a zero, la successione s_n delle somme parziali è di Cauchy, dunque convergente.

Se indichiamo con s la somma della serie, e se nella relazione precedente facciamo tendere p all'infinito, otteniamo

$$|s - s_n| \le a_{n+1}$$

e il th è dimostrato.

3) CRITERIO DI ABEL

Consideriamo $\sum_{n=1}^{\infty} a_n b_n$ una serie con con b_n successione positiva, infinitesima e decrescente

(stessi requisiti del criterio di Leibniz) e con a_n successione tale che risulti limitata

la successione delle sue somme parziali (ovvero la serie $\sum_{k=1}^{\infty} a_k$).

Allora, la serie numerica $\sum_{n=1}^{\infty} a_n b_n$ converge (non necessariamente "assolutamente").

$$extbf{\textit{N}}. extbf{\textit{B}}: extit{Date due serie} \sum_{n=1}^{\infty} a_n \ e \ \sum_{n=1}^{\infty} b_n$$
 , la serie prodotto è

$$c_n = \sum_{k=1}^{n-1} a_k b_{n-k}$$

- Se $\sum a_n$ converge ad S, $\sum b_n$ converge a T e $\sum c_n$ converge $\Rightarrow \sum c_n$ converge a ST
- Se $\sum a_n$ converge e $\sum b_n$ converge non è detto che $\sum c_n$ converga
- Se almeno una delle due serie converge assolutamente $\Rightarrow \sum c_n$ converge a ST (TH DI MERTENS)
- Se entrambe le serie sono assolutamente convergenti $\Rightarrow \sum c_n$ ass. convergente

FUNZIONE ANALITICA

Una funzione f è analitica in $]x_0 - \delta, x_0 + \delta[$ se $\forall x \in]x_0 - \delta, x_0 + \delta[$ la serie di Taylor di f con centro x_0 converge a $f(x_0)$.

SERIE DI POTENZE

Una serie di potenze è una serie che si presenta nella forma

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

dove a_n può assumere valori reali o complessi e x_0 è detto centro.

Si definisce **raggio di convergenza** della serie di potenze il valore reale:

$$R = \sup\{|x - x_0| : \sum_{n=0}^{\infty} a_n (x - x_0)^n \ converge\}$$

Sia $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ una serie di potenze il cui raggio di convergenza è R.

Allora:

- 1. Se R = 0 la serie converge solo in x_0
- 2. Se R è finito non nullo, allora la serie converge assolutamente in $]x_0 R, x_0 + R[$ nulla potendosi dire sul comportamento agli estremi
- 3. $R = +\infty$ allora la serie converge su tutto \mathbb{R}

Il raggio di convergenza si può calcolare tramite il **criterio del rapporto**, il **criterio della radice** o il **criterio di Hadamard**.

Per il criterio della radice o del rapporto $R = \begin{cases} \frac{1}{L}, & L \in \mathbb{R}, L \neq 0 \\ +\infty, & L = 0 \\ 0 & L = +\infty \end{cases}$

INTEGRALE (secondo REINMANN)

 $Sia\ f:[a,b] \to \mathbb{R}\ limitata\ (\exists M:|f(x)| \le M\ \forall x \in [a,b])$

Consideriamo la partizione in sottointervalli di [a, b]

$$a = t_0 < t_1 < \dots < t_n = b$$

e definiamo la somma inferiore

$$\sigma_{\pi} = \sum_{i=0}^{n-1} (t_{i+1} - t_i) \inf_{[t_i, t_{i+1}]} f$$

e la somma superiore

$$\Sigma_{\pi} = \sum_{0}^{n-1} (t_{i+1} - t_i) \sup_{[t_i, t_{i+1}]} f$$

Definiamo ora l'integrale superiore

$$\int_{a}^{b} f = \inf_{\pi} \Sigma_{\pi}$$

e l'integrale inferiore

$$\int_{a}^{b} f = \sup_{\pi} \sigma_{\pi}$$

Allora f si dice integrabile in [a,b] se $\int_a^b f = \int_a^b f$ e il loro valore si definisce $\int_a^b f$.

PRIMITIVA

Data una funzione $f: I \to \mathbb{R}$, definita su un intervallo $I \subset \mathbb{R}$, si definisce primitiva una funzione $F: I \to \mathbb{R}$ tale che:

$$F'(x) = f(x) \quad \forall x \in I$$

Se F è una primitiva di f, tutte e sole le primitive di f sono nella forma F(x) + C, dove C è una costante arbitraria reale.

L'integrale indefinito di f è l'insieme di tutte le sue primitive.

Esso si denota con il simbolo $\int f(x)dx$

INTEGRALE IMPROPRIO

Sia
$$f: [a, +\infty[\to \mathbb{R} \ continua. \ Allora: \int_{a}^{+\infty} f(x) dx = \lim_{c \to \infty} \int_{a}^{c} f(x) dx$$

$$Sia\ f:]-\infty, b] \to \mathbb{R}\ continua.\ Allora: \int_{-\infty}^{b} f(x)dx = \lim_{c \to \infty} \int_{c}^{b} f(x)dx$$

CRITERI DI INTEGRABILITÀ

CNS perchè f sia integrabile su [a,b] è che $\forall \varepsilon > 0 \quad \exists \pi : \Sigma_{\pi} - \sigma_{\pi} < \varepsilon$

1) $Sia\ f:[a,b] \to \mathbb{R}$ crescente, allora è integrabile (tutte le f. monotone sono integrabili)

<u>Dimostrazione</u>

Fissata una partizione arbitraria di [a, b] si ha che

$$\sigma_{\pi} = \sum_{0}^{n-1} (t_{i+1} - t_i) \inf_{[t_i, t_{i+1}]} f = \sum_{0}^{n-1} (t_{i+1} - t_i) f(t_i) \qquad dove f(t_i) \ge l' \inf f \operatorname{su} [t_i, t_{i+1}]$$

$$\Sigma_{\pi} = \sum_{0}^{n-1} (t_{i+1} - t_i) \sup_{[t_i, t_{i+1}]} f = \sum_{0}^{n-1} (t_{i+1} - t_i) f(t_{i+1}) \quad dove \ f(t_{i+1}) \ \grave{e} \ il \ \sup \ f \ su \ [t_i, t_{i+1}]$$

Consideriamo ora una partizione equispaziale π , dove ogni parte è uguale a $\frac{b-a}{n}$

$$\pi = \{a, \dots, a + i \frac{b-a}{n}, \dots, b\}$$

Quindi si ha che

$$\Sigma_{\pi} - \sigma_{\pi} = \sum_{0}^{n-1} \frac{b - a}{n} \left[f(t_{i+1}) - f(t_{i}) \right] =$$

$$= \frac{b - a}{n} \left[f(t_{1}) - f(t_{0}) + f(t_{2}) - f(t_{1}) + \dots + f(t_{n}) - f(t_{n-1}) \right] =$$

$$= \frac{b - a}{n} \left[f(b) - f(a) \right]$$

$$\lim_{n \to \infty} \frac{b - a}{n} \left[f(b) - f(a) \right] = 0$$

$$perchè(b-a)e[f(b)-f(a)]$$
 sono fissi, mentre $n \to \infty$

Se
$$\frac{b-a}{n}[f(b)-f(a)] < \varepsilon \implies n > \frac{b-a}{\varepsilon}[f(b)-f(a)]$$

2) Se f è lipshitziana in [a, b], allora è integrabile in [a, b]

Dimostrazione

Sia $\pi=\{t_0 < t_1 < \cdots < t_n\}$ con ampiezza max degli intervalli max $|t_{i+1}-t_i|=\delta \geq 0$ con $i=0\dots n-1$

$$N.B: \delta = \frac{\varepsilon}{2}$$

$$\sigma_{\pi} = \sum_{i=0}^{n-1} (t_{i+1} - t_i) \inf_{[t_i, t_{i+1}]} f = \sum_{i=0}^{n-1} (t_{i+1} - t_i) f(x_i) \qquad dove \ f(x_i) \ \grave{e} \ il \ \min \ f \ su \ [t_i, t_{i+1}]$$

$$\Sigma_{\pi} = \sum_{i=0}^{n-1} (t_{i+1} - t_i) \sup_{[t_i, t_{i+1}]} f = \sum_{i=0}^{n-1} (t_{i+1} - t_i) f(y_i) \quad dove f(y_i) \in il \max f \ su [t_i, t_{i+1}]$$

$$\Sigma_{\pi} - \sigma_{\pi} = \sum_{0}^{n-1} (t_{i+1} - t_i) [f(y_i) - f(x_i)] \le \sum_{0}^{n-1} (t_{i+1} - t_i) L \delta =$$

$$= L \delta \sum_{0}^{n-1} (t_{i+1} - t_i) =$$

$$= L \delta (b - a) < \varepsilon \implies \delta < \frac{\varepsilon}{L(b - a)}$$

3) Se f è continua su [a, b], allora è integrabile

Dimostrazione

La stima precedente di $f(y_i) - f(x_i)$ viene ottenuta dal th di Heine — Cantor.

PROPRIETÀ DEGLI INTEGRALI

POSITIVITÀ

Se f è integrabile su [a,b] ed $f \ge 0$ allora $\int_a^b f \ge 0$

<u>Dimostrazione</u>

Se $f \ge 0 \sup_{[t_i, t_{i+1}]} f e \inf_{[t_i, t_{i+1}]} f sono \ge 0$

$$Di\ conseguenza\ anche\ \sigma_{\pi} = \sum_{0}^{n-1} (\ t_{i+1} - t_i) \inf_{[t_i, t_{i+1}]} f \geq 0\ poich\`e\ (t_{i+1} - t_i) \geq 0$$

Quindi anche l'integrale inferiore $\int_a^b f = \sup_{\pi} \sigma_{\pi} \ge 0$ e poichè f è integrabile

$$\int_{a}^{b} f = \int_{a}^{b} f$$

ADDITIVITÀ

Siano [a,b] un intervallo chiuso e limitato e $c \in]a,b[$. Allora f è integrabile su [a,b] se e solo se essa è integrabile su [a,c] e su [c,b]. In tal caso avremo:

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Dunque l'area dell'unione (senza intersezioni) è la somma delle aree.

Dimostrazione

$$\pi$$
: $\Sigma_{\pi} - \sigma_{\pi} < \varepsilon$

$$Aggiungendo\ a\ \pi\ il\ punto\ c\ ottengo\ \sum\nolimits_{[t_i,t_{i+1}]\subseteq[a,c]}\ + \sum\nolimits_{[t_i,t_{i+1}]\subseteq[c.b]}$$

LINEARITÀ

1) L'integrale della somma di funzioni continue in un intervallo [a, b] è la somma degli integrali delle singole funzioni:

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$$

2) L'integrale del prodotto di una funzione continua in un intervallo [a, b] per una costante è uguale al prodotto tra la costante e l'integrale della funzione:

$$\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx$$

Dimostrazione

Somma di Cauchy per f + somma di Cauchy per g = Somma di Cauchy per f + g

$$\sum_{0}^{n-1} (t_{i+1} - t_i) f(x_i) + \sum_{0}^{n-1} (t_{i+1} - t_i) g(x_i) = \sum_{0}^{n-1} (t_{i+1} - t_i) [(f+g)(x_i)]$$

$$\sum_{0}^{n-1} (t_{i+1} - t_i) (cf)(x_i) = c \sum_{0}^{n-1} (t_{i+1} - t_i) f(x_i)$$

dove
$$\sum_{i=0}^{n-1} (t_{i+1} - t_i) f(x_i) = \int_a^b f(t_i) f(x_i) dx_i$$

TEOREMI DELLA MEDIA (INTEGRALE)

Si definisce media (integrale) in [a,b] il numero $\frac{1}{b-a}\int_a^b f$

1) Sia f integrabile su [a, b].

Allora
$$\exists \lambda \in [\inf f, \sup f]$$
 tale che $\int_a^b f = \lambda(b-a)$

<u>Dimostrazione</u>

$$\pi = \{t_0, t_1\} = \{a, b\}$$

$$(b-a)\inf_{[a,b]} f \le \int_a^b f \le (b-a)\sup_{[a,b]} f$$

$$\inf_{[a,b]} f \le \frac{\int_a^b f}{b-a} \le \sup_{[a,b]} f$$

$$dove \frac{\int_a^b f}{b-a} = media integrale \approx \lambda$$

2) Sia f continua su [a, b] (cioè integrabile).

Allora
$$\exists \xi \in [a, b]$$
 tale che $\frac{1}{b-a} \int_a^b f = f(\xi)$

Dimostrazione

Si usa il th dei valori intermedi applicato al λ precedente, ad f e all'intervallo[a, b].

TH FONDAMENTALE DEL CALCOLO INTEGRALE (TORRICELLI-BARROW) (p.319)

Sia f(x) una funzione continua in [a, b].

Allora:

1) La funzione $F(x) = \int_a^x f(t)dt$ è derivabile in ogni punto di]a, b[e inoltre $F'(x) \equiv f(x)$ $\forall x \in]a,b[$

N. B: F(x) è una primitiva di f su a,b: $(F(x) + cost)' \equiv F'(x) \equiv f(x)$

2) Se G(x) è derivabile e $G'(x) \equiv f(x)$ su a, b allora

$$F(x) = G(x) - G(x_0) = \int_{x_0}^{x} f(t)dt$$

Dimostrazione

Per quanto riguarda la prima parte del th, si ha

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t)dt = f(\xi)$$

dove ξ è un punto compreso tra x e x + h.

Quando h tende a 0, il punto ξ , compreso tra x e x + h, tenderà a x.

Per la continuità della funzione f, $f(\xi)$ tenderà a f(x) e quindi

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

La funzione integrale F(x)è dunque derivabile, e la sua derivata è f(x).

La prima parte del th è così dimostrata.

Quanto alla seconda parte, sia G(x)una funzione che verifica la relazione G'(x) = f(x). Si ha allora G'(x) - F'(x) = f(x) - f(x) = 0, cioè la differenza G(x) - F(x)ha derivata nulla in [a, b].

Ma allora G(x) - F(x)è costante ed è uguale al suo valore nel punto x_0 , dove vale $G(x_0)$, dato che

$$F(x_0) = \int_{x_0}^{x_0} f(t)dt = 0$$

Si ha dunque $G(x) - F(x) = G(x_0)$, ovvero $F(x) = G(x) - G(x_0)$.

EQUAZIONE DIFFERENZIALE ORDINARIA DI GRADO n

Un'equazione differenziale è un'equazione che lega una funzione incognita alle sue derivate. Si chiama equazione differenziale ordinaria di grado $n \ (1 \le n \in \mathbb{N})$ un'equazione del tipo:

$$u^{(n)} = f(t, u(t), u'(t), \dots, u^{(n-1)}(t), u^{(n)}(t)) = 0$$

dove $u^{(n)}$ indica la derivata n-esima, mentre $f:\mathbb{R}^{n+1}\to\mathbb{R}$ è una funzione continua. L'incognita in questo caso è la funzione $u:\mathbb{R}\to\mathbb{R}$ (funzione reale di variabile reale) che dipende dalla variabile t.

Si chiama **ordine** (o grado) dell'equazione l'ordine massimo di derivazione che compare nell'equazione.

PROBLEMA DI CAUCHY

Si chiama problema di Cauchy l'insieme di un'equazione differenziale di grado n e di n condizioni iniziali:

$$\begin{cases} u^{(n)} = f\left(t, u(t), u'(t), \dots, u^{(n-1)}(t), u^{(n)}(t)\right) = 0 \\ u(t_0) = u_0 \\ u'(t_0) = u_1 \\ \dots \\ \dots \\ u^{(n-1)}(t_0) = u_{n-1} \end{cases}$$

Il punto $t_0 \in \mathbb{R}$ viene chiamato punto iniziale, mentre le $u_i \in \mathbb{R}$, i valori iniziali, sono valori di u(x), e di tutte le sue derivate fino al grado n-1, nel punto t_0 .

N.B:Il problema di Cauchy ammette soluzione unica, almeno in un intorno del punto t_0 .

Es. Problema di Cauchy (problema ai valori iniziali) con eq. di grado 1

$$\begin{cases} u' = f(t, u(t)) \\ u(t_0) = u_0 \end{cases}$$

EQUAZIONI DIFFERENZIALI A VARIABILI SEPARABILI

Le equazioni differenziali a variabili separabili sono equazioni differenziali del primo ordine, del tipo:

$$u'(t) = a(t) \cdot f(u(t))$$

Per risolverla dividiamo entrambi i membri per f(u(t)) e integriamo, ottenendo:

$$\int \frac{u'(t)}{f(u(t))} dt = \int a(t) dt$$

Il primo membro è nella forma adatta a un'integrazione per sostituzione, poniamo quindi v=u(t):

$$\int \frac{dv}{f(v)} = \int a(t)dt$$

Posto

$$Z(v) = \int \frac{dv}{f(v)}$$
 $A(t) = \int a(t)dt$

la soluzione dell'equazione diventa:

$$Z(u(t)) = A(t) + c$$

EQUAZIONI DIFFERENZIALI LINEARI DI GRADO 1

Le equazioni differenziali lineari sono equazioni del tipo:

$$u'(t) = a(t)u(t) + b(t)$$

EQUAZIONI DIFFERENZIALI LINEARI DI GRADO 1 OMOGENEE

Le equazioni differenziali lineari sono equazioni del tipo:

$$u'(t) = a(t)u(t) + b(t)$$

In cui b(t) = 0. In questo caso l'equazione si riduce a un'equazione a variabili separabili.

EQUAZIONI DIFFERENZIALI LINEARI DI GRADO 1 NON OMOGENEE (COMPLETE)

Le equazioni differenziali lineari sono equazioni del tipo:

$$u'(t) = a(t)u(t) + b(t)$$

In cui $b(t) \neq 0$.

Se si indica con A(t) una primitiva della funzione a(t) si ha:

$$\log |u(t)| = A(t) + p$$

e quindi

$$|u(t)| = \begin{cases} ce^{A(t)}, & u > 0\\ -ce^{A(t)}, & u < 0 \end{cases}$$

dove $c = e^p$ è una costante arbitraria.

EQUAZIONI DIFFERENZIALI LINEARI DI GRADO 2 A COEFF.COSTANTI

OMOGENEE

Sono equazioni del tipo:

$$u'' + au' + bu = 0$$

In cui a e b sono due costanti e f(t) è una funzione data.

Polinomio caratteristico	Soluzione associata all'equazione differenziale
$\lambda^2 + a_1\lambda + a_0 = 0$	$y''(t) + a_1y'(t) + a_0y(t) = 0$ $\cos a_1, a_0 \in \mathbb{R}$
$\Delta>0$ Due radici reali e distinte λ_1,λ_2	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ $c_1, c_2 \in \mathbb{R}$
$\Delta=0$ Due radici reali e coincidenti λ_0	$y(t) = c_1 e^{\lambda_0 t} + t c_2 e^{\lambda_0 t}$ $c_1, c_2 \in \mathbb{R}$
$\begin{array}{c} \Delta < 0 \\ \text{Due radici complesse e coniugate} \\ \alpha + i\beta \\ \alpha - i\beta \end{array}$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t)$ $c_1, c_2 \in \mathbb{R}$

Le equazioni di questo tipo godono della proprietà che una qualsiasi combinazione lineare di due soluzioni $u_1(t)$ e $u_2(t)$ è ancora una soluzione.

In altre parole, **l'insieme delle soluzioni** di un'equazione omogenea è **uno spazio vettoriale** che ha dimensione pari all'ordine dell'equazione.

Questo significa che una volta trovate due soluzioni particolari dell'equazione, tutte le altre soluzioni si ottengono semplicemente prendendo una loro arbitraria combinazione lineare.

• NON OMOGENEE (COMPLETE)

Sono equazioni del tipo:

$$u'' + au' + bu = f(t)$$

La cui soluzione si troverà sommando una soluzione particolare alla soluzione generale dell'equazione omogenea associata.

Sia $f(t)^{\mu t}$, se μ è soluzione dell'equazione caratteristica si parla di **RISONANZA** e il secondo membro è detto **RISONANTE**.

COEFFICIENTE BINOMIALE

Il coefficiente binomiale $\binom{n}{k}$ è un numero intero non negativo definito dalla formula:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \quad con \, n, k \in \mathbb{N}, \quad 0 \le k \le n$$

Può essere calcolato anche facendo ricorso al triangolo di Tartaglia. Esso fornisce il numero delle combinazioni semplici di n elementi di classe k.