

MMA
2017

	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 2 czerwca 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ **NADZORUJĄCY** Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę dostosowania w zw. z dyskalkulią

Instrukcja dla zdającego

Więcej arkuszy znajdziesz na stronie: arkusze.pl

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błedne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 **1**P-173

Zadanie 1. (0-1)

Liczba |9-2|-|4-7| jest równa

A. 4

- **B.** 10
- **C.** -10
- **D.** -4

Zadanie 2. (0–1)

Iloczyn dodatnich liczb a i b jest równy 1350. Ponadto 15% liczby a jest równe 10% liczby b. Stąd wynika, że b jest równe

A. 9

- **B.** 18
- **C.** 45
- **D.** 50

Zadanie 3. (0-1)

Suma $16^{24} + 16^{24} + 16^{24} + 16^{24}$ jest równa

- **A.** 4^{24}
- **B.** 4^{25}
- 4^{48} C.
- 4^{49} D.

Zadanie 4. (0-1)

Liczba log, 27 – log, 1 jest równa

A. 0

- **B.** 1
- **C.** 2
- **D.** 3

Zadanie 5. (0–1)

Dla każdej liczby rzeczywistej x wyrażenie $x^6 - 2x^3 - 3$ jest równe

- **A.** $(x^3+1)(x^2-3)$ **B.** $(x^3-3)(x^3+1)$ **C.** $(x^2+3)(x^4-1)$ **D.** $(x^4+1)(x^2-3)$

Zadanie 6. (0–1)

Wartość wyrażenia $(b-a)^2$ dla $a=2\sqrt{3}$ i $b=\sqrt{75}$ jest równa

A. 9

- **B.** 27
- **C.** 63
- **D.** 147

MPO_1P Strona 3 z 24

Zadanie 7. (0-1)

Funkcja liniowa f jest określona wzorem $f(x) = 21 - \frac{7}{3}x$. Miejscem zerowym funkcji f jest

B.
$$-\frac{7}{3}$$

Zadanie 8. (0-1)

 $\begin{cases} x+y=1\\ x-y=b \end{cases}$ z niewiadomymi x i y jest para liczb dodatnich. Rozwiązaniem układu równań

Wynika stąd, że

A.
$$b < -1$$

B.
$$b = -1$$

B.
$$b = -1$$
 C. $-1 < b < 1$ **D.** $b \ge 1$

D.
$$b \ge 1$$

Zadanie 9. (0-1)

Funkcja kwadratowa f jest określona wzorem $f(x) = x^2 + bx + c$ oraz f(-1) = f(3) = 1. Współczynnik *b* jest równy

Zadanie 10. (0-1)

Równanie $x(x-3)(x^2+25) = 0$ ma dokładnie

A. cztery rozwiązania: x = 0, x = 3, x = 5, x = -5

B. trzy rozwiązania: x = 3, x = 5, x = -5

C. dwa rozwiązania: x = 0, x = 3

D. jedno rozwiązanie: x = 3

Zadanie 11. (0-1)

Funkcja kwadratowa f jest określona wzorem f(x) = (x-3)(7-x). Wierzchołek paraboli będącej wykresem funkcji f należy do prostej o równaniu

A.
$$y = -5$$

B.
$$y = 5$$

C.
$$y = -4$$

D.
$$y = 4$$

Strona 5 z 24

Zadanie 12. (0-1)

Punkt A = (2017,0) należy do wykresu funkcji f określonej wzorem

- **A.** $f(x) = (x + 2017)^2$
- **B.** $f(x) = x^2 2017$
- C. f(x) = (x+2017)(x-2017)
- **D.** $f(x) = x^2 + 2017$

Zadanie 13. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $2a_3 = a_2 + a_1 + 1$. Różnica r tego ciągu jest równa

A. 0

- **B.** $\frac{1}{3}$
- C. $\frac{1}{2}$
- **D.** 1

Zadanie 14. (0-1)

Dany jest ciąg geometryczny $(x, 2x^2, 4x^3, 8)$ o wyrazach nieujemnych. Wtedy

- $\mathbf{A.} \quad x = 0$
- **B.** x = 1
- **C.** x = 2
- **D.** x = 4

Zadanie 15. (0-1)

Kąt α jest ostry i $\operatorname{tg} \alpha = \frac{12}{5}$. Wówczas $\sin \alpha$ jest równy

- **A.** $\frac{5}{17}$
- **B.** $\frac{12}{17}$
- C. $\frac{5}{13}$
- **D.** $\frac{12}{13}$

Strona 7 z 24

Zadanie 16. (0-1)

W okręgu o środku O dany jest kąt wpisany ABC o mierze 20° (patrz rysunek).

Miara kąta CAO jest równa

- **A.** 85°
- **B.** 70°
- **C.** 80°
- **D.** 75°

Zadanie 17. (0-1)

Odcinek *BD* jest zawarty w dwusiecznej kąta ostrego *ABC* trójkąta prostokątnego, w którym przyprostokątne *AC* i *BC* mają długości odpowiednio 5 i 3.

Wówczas miara φ kąta DBC spełnia warunek

- **A.** $20^{\circ} < \varphi < 25^{\circ}$
- **B.** $25^{\circ} < \varphi < 30^{\circ}$
- C. $30^{\circ} < \varphi < 35^{\circ}$
- **D.** $35^{\circ} < \varphi < 40^{\circ}$

Strona 9 z 24

Zadanie 18. (0-1)

Prosta przechodząca przez punkt A = (-10,5) i początek układu współrzędnych jest prostopadła do prostej o równaniu

A.
$$y = -2x + 4$$

B.
$$y = \frac{1}{2}x$$

A.
$$y = -2x + 4$$
 B. $y = \frac{1}{2}x$ **C.** $y = -\frac{1}{2}x + 1$ **D.** $y = 2x - 4$

D.
$$y = 2x - 4$$

Zadanie 19. (0-1)

Punkty A = (-21, 11) i B = (3, 17) są końcami odcinka AB. Obrazem tego odcinka w symetrii względem osi Ox układu współrzędnych jest odcinek A'B'. Środkiem odcinka A'B' jest punkt o współrzędnych

A.
$$(-9, -14)$$
 B. $(-9, 14)$ **C.** $(9, -14)$ **D.** $(9, 14)$

B.
$$(-9, 14)$$

$$\mathbf{C}$$
. $(9, -14)$

Zadanie 20. (0-1)

Trójkąt ABC jest podobny do trójkąta A'B'C' w skali $\frac{5}{2}$, przy czym $|AB| = \frac{5}{2}|A'B'|$. Stosunek pola trójkąta ABC do pola trójkąta A'B'C' jest równy

A.
$$\frac{4}{25}$$

B.
$$\frac{2}{5}$$
 C. $\frac{5}{2}$

C.
$$\frac{5}{2}$$

D.
$$\frac{25}{4}$$

Zadanie 21. (0-1)

Pole koła opisanego na trójkącie równobocznym jest równe $\frac{1}{3}\pi^3$. Długość boku tego trójkąta jest równa

A.
$$\frac{\pi}{3}$$

C.
$$\sqrt{3}\pi$$

Zadanie 22. (0-1)

Pole trójkąta prostokątnego ABC, przedstawionego na rysunku, jest równe

- **A.** $\frac{32\sqrt{3}}{6}$
- **B.** $\frac{16\sqrt{3}}{6}$
- C. $\frac{8\sqrt{3}}{3}$
- **D.** $\frac{4\sqrt{3}}{3}$

Zadanie 23. (0-1)

Długość przekątnej sześcianu jest równa 6. Stąd wynika, że pole powierzchni całkowitej tego sześcianu jest równe

- **A.** 72
- **B.** 48
- **C.** 152
- **D.** 108

Zadanie 24. (0-1)

Pole powierzchni bocznej walca jest równe 16π , a promień jego podstawy ma długość 2. Wysokość tego walca jest równa

A. 4

- **B.** 8
- C. 4π
- **D.** 8π

Zadanie 25. (0-1)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania pary liczb, których iloczyn jest większy od 20, jest równe

A. $\frac{1}{6}$

- **B.** $\frac{5}{36}$
- **C.** $\frac{1}{9}$

D. $\frac{2}{9}$

Zadanie 26. (0-2)

Rozwiąż nierówność $\left(x-\frac{1}{2}\right)x > 3\left(x-\frac{1}{2}\right)\left(x+\frac{1}{3}\right)$.

Odpowiedź:

Zadanie 27. (0-2)

Kąt α jest ostry i spełniona jest równość $\sin \alpha + \cos \alpha = \frac{\sqrt{7}}{2}$. Oblicz wartość wyrażenia $(\sin \alpha - \cos \alpha)^2$.

Odpowiedź:....

Zadanie 28. (0-2)

Dwusieczna kąta ostrego ABC przecina przyprostokątną AC trójkąta prostokątnego ABC w punkcie D.

Udowodnij, że jeżeli |AD| = |BD|, to $|CD| = \frac{1}{2} \cdot |BD|$.

Zadanie 29. (0–2) Wykaż, że prawdziwa jest nierówność

$$(1,5)^{100} < 6^{25} .$$

Zadanie 30. (0-2)

Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest równa 30. Ponadto $a_{30}=30$. Oblicz różnicę tego ciągu.

Odpowiedź:

Strona 18 z 24 MMA_1P

Zadanie 31. (0-2)

Ze zbioru liczb $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$ losujemy bez zwracania dwa razy po jednej liczbie. Wylosowane liczby tworzą parę (a, b), gdzie a jest wynikiem pierwszego losowania, b jest wynikiem drugiego losowania. Oblicz, ile jest wszystkich par (a, b) takich, że iloczyn $a \cdot b$ jest liczbą parzystą.

Odpowiedź:

Zadanie 32. (0–4)

Ramię trapezu równoramiennego ABCD ma długość $\sqrt{26}$. Przekątne w tym trapezie są prostopadłe, a punkt ich przecięcia dzieli je w stosunku 2:3. Oblicz pole tego trapezu.

Odpowiedź:

Strona 20 z 24

Zadanie 33. (0-4)

Punkty A = (-2, -8) i B = (14, -8) są wierzchołkami trójkąta równoramiennego ABC, w którym |AB| = |AC|. Wysokość AD tego trójkąta jest zawarta w prostej o równaniu $y = \frac{1}{2}x - 7$. Oblicz współrzędne wierzchołka C tego trójkąta.

Odpowiedź:....

Zadanie 34. (0–5)

Podstawą graniastosłupa prostego ABCDA'B'C'D' jest romb ABCD. Przekątna AC' tego graniastosłupa ma długość 8 i jest nachylona do płaszczyzny podstawy pod kątem 30°, a przekątna BD' jest nachylona do tej płaszczyzny pod kątem 45°. Oblicz pole powierzchni całkowitej tego graniastosłupa.

Strona 22 z 24 MMA_1P

Odpowiedź:

Strona 24 z 24 MMA_1P