Particle spectrograph

Wave operator and propagator

$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{-}}^{\#1}$ $\sigma_{1^{-}}^{\#2}$ $\tau_{1^{-}}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3-r_4)}$	$\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	$\frac{1}{r_3 - \frac{r_4}{2}} + \frac{3k^2}{t_2}$ $\frac{r_3 - \frac{r_4}{2}}{(1 + k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{k^2 (6r_3-3r_4)+2t_2}{(k+k^3)^2 (2r_3-r_4)t_2}$	$-\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{k^2 \left(2 r_3 \cdot r_4\right)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{i \sqrt{2}}{k (1 + k^2) (2 r_3 - r_4)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} {\dagger}^{\alpha}$	$\sigma_{1}^{\#2} {\dagger}^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

Quadratic (free) Lagrangian density $\frac{2}{3}t_2 \omega_{\kappa^{\lambda}}^{\ \ k} \omega_{\kappa^{\lambda}}^{\ \ \prime} + \frac{1}{3}t_2 \omega_{\kappa^{\lambda}}^{\ \ \prime} \omega_{\kappa^{\lambda}}^{\ \ \prime} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{\ \ \prime} + \frac{1}{3}t_2 \omega_{\kappa^{\lambda}}^{\ \ \prime} + f^{\alpha\beta} \tau_{\alpha\beta}^{\ \ \prime} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{\ \ \prime} + \frac{1}{3}t_2 \omega_{\kappa}^{\ \ \prime} + \frac{1}{3}t_2 \omega_{\kappa}^{\ \ \prime} + \frac{1}{6}t_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \prime} + \frac{1}{6}t_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \prime} + \frac{1}{6}t_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \prime} + \frac{1}{6}t_2 \partial_{\theta} \psi_{\alpha\beta}^{\ \ \ \ \prime} + \frac{1}{6}t_2 \partial_{\theta} \psi_{\alpha\beta}^{\ \ \ \ \ \prime} + \frac{1}{6}t_2 \partial_{\theta} \psi_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

$f_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$ f	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}$ \vec{l} k t_2	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_3 - r_4) + \frac{2t_2}{3}$		$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha \beta$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{-2k^2r_3 + 4k^2r_4}$	0	0	0
$\tau_{0^{+}}^{\#1} +$	0	0	0	0
$ au_{0^{+}}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	$-2k^2(r_3-2r_4)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0+}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\tau_{1^{-}}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3				
$\sigma_1^{\#2\alpha} == 0$	3				
$\sigma_{1}^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	5				
$\tau_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	27				

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{k^2 (-2r_3+r_4)}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$k^2 \left(-2 r_3 + r_4 \right)$	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

Massive and massless spectra

(No massless particles

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$