ESERCIZI RACCOLTI DI ALGEBRA

Ho voluto raccogliere gli esercizi teorici più carini / difficili che ho trovato in vari libri. Le stelle \star (da 1 a 3) indicano la difficoltà dei problemi, mentre le psi dorate Ψ indicano la bellezza.

TEORIA DEI GRUPPI

Nel seguito G indica un qualsiasi gruppo, viene indicata con e l'unità del gruppo. La notazione usata è quella moltiplicativa. $H \sqsubseteq G$ indica che H è sottogruppo di G (eventualmente coincidente). $H \lhd G$ indica che H è un sottogruppo normale di G.

- 1. Se G è un gruppo nel quale $\forall a,b \in G \quad (ab)^i = a^ib^i$ per tre interi i consecutivi. Allora G è abeliano. Trovare inoltre un controesempio all'abelianità di G nel caso in cui la relazione sussista solo per due interi consecutivi.
- 2. Se G è un gruppo tale che $\forall a \in G \quad a^2 = e$, allora G è abeliano.
- 3. Sia G tale che l'intersezione di tutti i sottogruppi diversi da (e) è un sottogruppo diverso da (e). Dimostrare che ogni elemento di G ha ordine finito e con un esempio mostrare che G non è necessariamente finito.
- 4. Se $H \subseteq G \implies H = (e)$ dimostrare che G è finito ed ha ordine primo.
- 5. Sia $H \subseteq G$ t.c. $Ha \neq Hb \implies aH \neq bH$. Dimostrare che $\forall g \in G \quad gHg^{-1} \subseteq H$.
- 6. Ψ $H, K \sqsubseteq G$ entrambi di indice finito ($\mathbf{i}_G H = a, \mathbf{i}_G K = b$ e non è detto che G sia finito). Dimostrare che $H \cap K$ ha indice finito e vale $\mathbf{i}_G(H \cap K) \le \mathbf{i}_G(H)\mathbf{i}_G(K)$. Trovare un esempio dove valga l'uguale ed uno dove valga il minore stretto.
- 7. $H \sqsubseteq G$, $i_G H$ finito. Dimostrare che esistono solo un numero finito di sottogruppi della forma aHa^{-1} per $a \in G$.
- 8. * Sia G finito tale che $3 \nmid$ ord G e supponiamo che valga $\forall a, b \in G \quad (ab)^3 = a^3b^3$. Dimostrare che G è abeliano.
- 9. \star Sia G abeliano e supponiamo che $\exists x,y \in G$ t.c. ord x=m, ord y=n. Dimostrare che $\exists z \in G$ t.c. ord z=m.c.m. (m,n).
- 10. Ψ Supponiamo $\exists a, b \in G, a \neq e, b \neq e \text{ t.c. } a^5 = e, aba^{-1} = b^2$. Trovare ord b.
- 11. * Ancora da controllare Sia G abeliano e finito tale che il numero delle soluzioni dell'equazione $x^n=e$ è al più n per ogni intero positivo n. Dimostrare che G è ciclico e produrre un controesempio alla tesi nel caso in cui non si supponga G finito.
- 12. * Sia G finito e $A \subseteq G$ t.c. $\forall x$ ord (AxA) = k. Dimostrare che $\forall g \in G$ $gAg^{-1} = A$.
- 13. Sia $H \sqsubseteq G$ tale che $\mathbf{i}_G H = 2$. Dimostrare che $H \lhd G$
- 14. Supponiamo $N, M \triangleleft G, N \cap M = (e)$. Dimostrare allora che $\forall n \in N, m \in M$ nm = mn
- 15. Trovare un gruppo non abeliano nel quale tutti i sottogruppi siano normali.
- 16. Dare un esempio di gruppo $G, H \sqsubseteq G$ ed $a \in G$ tali che $aHa^{-1} \subsetneq H$.
- 17. Dare un esempio di tre sottogruppi $E \subseteq F \subseteq G$ con $E \triangleleft F, F \triangleleft G$ ma $E \not \triangleleft G$.
- 18. $\star \star$ Sia G finito, e supponiamo che l'automorfismo T sia tale che $T(x)=x \Leftrightarrow x=e$. Inoltre $T^2=I$. Dimostrare che G è abeliano.
- 19. $\star \star$ Sia G finito, e supponiamo che l'automorfismo T mandi più di tre quarti degli elementi di G nel proprio inverso. Dimostrare allora che $T(x)=x^{-1}$ e che G è abeliano.

- 20. $\star \Psi$ Sia G un gruppo di ordine 2n. Supponiamo che la metà degli elementi di G siano di ordine 2n e che l'altra metà formi un sottogruppo H di ordine n. Dimostrare che H ha ordine dispari ed è un sottogruppo abeliano di G.
- 21. \star Sia G tale che ord $G=p^2$ con $p\in\mathbb{P}$. Mostrare che allora G è abeliano. (Traccia della soluzione: dimostrare che G ha un sottogruppo normale di ordine p e che questo è contenuto nel centro di G. Poi dire che G è abeliano poiché G/Z(G) è ciclico)
- 22. * Sia G tale che ord (G) = pq, con p, q primi distinti. E supponiamo esistano $H, K \triangleleft G$, con ord H = p, ord K = q. Dimostrare che G è ciclico.

DA DOVE HO PRESO GLI ESERCIZI

• Algebra, I. N. Herstein