8.1 Radians

- 1. Do Now: Given circle O with $m \angle ACB = 40^{\circ}$.
 - (a) Find the \widehat{mAB} .
 - (b) Write down the $m \angle AOB$.

- 2. Do Now: A unit circle with a radius r=1 is divided in quarters. One sector, AOB, is shaded as shown.
 - (a) Find the circumference in terms of π . $(C = 2\pi r)$
 - (b) Write down $m \angle AOB$ in degrees.
 - (c) Find the *length* of the arc \widehat{AB} in terms of π .

Group order: shortest first name to longest			
(a)	Group members:	Fruit	
(b)	On the left write down your favorite fruit and condiment.	Condiment	
(c)	Write the group consensus favorite fruit and condiment.	Condinient	

3. Groupwork warmup: Write the names of the people in your group and fill in the table

(condiments are ketchup, mustard, salt, sugar, honey, whipped cream, etc.)

4. Groupwork challenge: Each member picks a different color and Greek letter, writing it in the upper left quadrant.

Display screen and copy/paste each team member's letter into a different quadrant.

Example Greek letters are π , θ , α , Δ , β

Group order: longest last name to shortest

5. Lesson: The length of the arc of a unit circle is a measure of the central angle called radians. The circumference of the full circle is $2\pi = 360^{\circ}$.

Mark each angle with its radian measure.

(a) One half of a circle 180°

(c) One eighth of the circle 45°

(d) One third of a circle 120°

6. Lesson: Algebra view of radians to degrees using the formula $2\pi=360^\circ$ or $\pi=180^\circ$. Apply the appropriate formula.

$$r = d \times \frac{\pi}{180}$$

(a) $60^{\circ} = ?$ radians

(b) $30^{\circ} = ? \text{ radians}$

$$d=r\times\frac{180}{\pi}$$

(c)
$$\frac{\pi}{4} = ?$$
 degrees

(d)
$$\frac{\pi}{8} = ?$$
 degrees

- 7. Right $\triangle ABC$ is drawn in standard position with vertex A on the origin and right $\angle C$ on the x-axis, as shown.
 - (a) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)
- B(5, 8)6 5 3 2 2

1

(b) Find the slope of the line segment \overline{AB} as a decimal.