# WaveNet a generative model for raw audio

Пономарев Евгений, БПМИ211

### План

- Хранение аудиоволны на компьютере
- Спектрограмма и Mel-спектрограмма
- Text-to-speech problem. Компоненты синтеза речи
- Архитектура WaveNet
- Conditional WaveNet
- Эксперименты
- Заключение

# Хранение аудиоволны на компьютере

- Дискретизация
- Квантование
- Кодирование



# Параметры записанной аудиодорожки

- Sample rate частота дискретизации (8kHz, 44.1kHz, 48kHz, 96kHz...)
- Sample size количество бит на один сэмпл
- Количество каналов

### Частотный спектр сигнала





#### Теорема Котельникова:

Любой непрерывный сигнал, содержащий частоты до f, можно без потерь передать используя частоту дискретизации не меньше 2f

# Спектрограмма и Mel-scale





#### Hann's window:



- Человеческое ухо распознает разницу в низких частотах лучше, чем в высоких
- Для человека:
   500 Hz << 600 Hz</li>
   но 5000 Hz ~ 5100 Hz

$$m(f) = 2959 \log_{10}(1 + \frac{f}{700})$$



# Text-to-speech problem



- Hidden Markov Model (HMM)
- LSTM

### **WaveNet**

- Работает напрямую с сырым аудиосигналом, не переходя в частотный диапазон
- Позволяет обрабатывать очень длинные последовательности с помощью Dilated Causal Convolutions
- Показывает SOTA результаты для 2016 года в генерации речи и TTS
- Применима для генерации музыки

### **Causal Convolutions**

 На каждом слое предсказания для момента времени t зависят только от от 1, ..., t - 1 предсказаний предыдущего слоя



# Разница с обычными свертками

#### Standart convolitions



#### Causal convolutions



### **Dilated causal convolution**

• Увеличили receptive field



### **SoftMax distribution**

Хотим предсказывать вероятность сэмпла в момент времени t, обусловленного на все предыдущие предсказания

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1})$$

Квантованный 16 битный сигнал требует моделирования 65536 вероятностей для каждого значения амплитуды.

С помощью  $\mu$ -law сэмплы сжимаются до 256 возможных значений вероятности

$$f(x_t) = \text{sign}(x_t) \frac{\ln(1 + \mu |x_t|)}{\ln(1 + \mu)},$$

### **Gated activation units**

$$\mathbf{z} = \tanh (W_{f,k} * \mathbf{x}) \odot \sigma (W_{g,k} * \mathbf{x})$$

 $W_{f,k}, W_{g,k}$  - обучаемые матрицы

- ⊙ операция поэлементного умножения
- \* операция свертки

Функция активации, используемая вместо ReLU между слоями dilated causal convolutions

### Архитектура WaveNet



### **Conditional WaveNet**

Можно добавлять дополнительную информацию к последовательности сэмплов

$$p\left(\mathbf{x} \mid \mathbf{h}\right) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}, \mathbf{h}\right).$$

Например:

- ID спикера в задаче генерации речи
- текст в задаче Text-to-speech
- различные лингвистические характеристики текста

### Существуют два способа обусловить генерацию:

Global conditioning

$$\mathbf{z} = \tanh \left( W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} \right) \odot \sigma \left( W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} \right).$$

Local conditioning

$$\mathbf{z} = \tanh (W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y}) \odot \sigma (W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y}),$$

Где у - последовательность условий размера, равного размеру генерируемой последовательности сэмплов

# **Multi-Speaker Speech Generation**

- Датасет: 44 часа аудио от 109 различных спикеров
- Модель обуславливалась только на ID говорящего
- ID кодировался в форме one-hot вектора
- Результат: модель научилась генерировать несуществующие слова, по звучанию похожие на человеческую речь.
- Причина: модель не обусловлена на сам текст



### Text-to-speech

- Данные: 24.6 часов английской речи и 34.8 северокитайской
- Все модели, обученные для сравнительного анализа, обуславливались на лингвистических особенностях текста и фундаментальных частотах
- Метрика MOS

| Speech samples                                             | Subjective 5-scale MOS in naturalness                    |                                                                   |
|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|
|                                                            | North American English                                   | Mandarin Chinese                                                  |
| LSTM-RNN parametric HMM-driven concatenative WaveNet (L+F) | $3.67 \pm 0.098$<br>$3.86 \pm 0.137$<br>$4.21 \pm 0.081$ | $3.79 \pm 0.084$<br>$3.47 \pm 0.108$<br>$\textbf{4.08} \pm 0.085$ |
| Natural (8-bit μ-law) Natural (16-bit linear PCM)          | $4.46 \pm 0.067$<br>$4.55 \pm 0.075$                     | $4.25 \pm 0.082$<br>$4.21 \pm 0.071$                              |

# Примеры сгенерированной речи

**English Mandarin** 





# Генерация музыки

- Необходимы большие значения рецептивного поля
- Модель постоянно меняет стиль музыки, состав инструментов, громкость
- Тем не менее, генерируемые фрагменты звучат музыкально
- Сложно объективно оценить качество модели





# Распознавание речи

- Добавлен mean-pooling слой после сверток, который аггрегирует информацию о небольших фрагментах аудио длиной в 10ms
- Две функции потерь
  - Loss для предсказания следующего сэмпла
  - Loss для классификации фрагмента
- Получили 18.8 PER, что являлось лучшим результатом на датасете TIMIT для моделей, работающих с сырым аудио