This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 390 567 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 09.06.1999 Bulletin 1999/23
- (51) Int CL⁶: **H04L 29/06**, H04L 12/40

- (21) Application number: 90303375.1
- (22) Date of filing: 29.03.1990
- (54) Eletronic device with exclusive control type communication function and its communication system

Elektronische Vorrichtung mit Kommunikationsfähigkeit vom Typ einer ausschliesslichen Steuerung und deren Kommunikationssystem

Dispositif électronique avec fonction de communication du type à commande exclusive et son système de communication

- (84) Designated Contracting States: DE FR GB NL
- (30) Priority: 31.03.1989 JP 8341889
- (43) Date of publication of application: 03.10.1990 Bulletin 1990/40
- (73) Proprietor MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
 Kadoma-shi, Osaka-fu, 571 (JP)
- (72) Inventor: Ikezaki, Masao Neyagawa-shi (JP)

- (74) Representative: Smith, Norman Ian et al 1J CLEVELAND 40-43 Chancery Lane London WC2A 1JQ (GB)
- (56) References cited: EP-A- 0 234 191
 - PATENT ABSTRACTS OF JAPAN vol. 009, no. 150 (E-324)25 June 1985 & JP-A-60 031 337 (NIPPON DENKI KK) 18 February 1985

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

BACKGROUND OF THE INVENTION

[0001] The present invention relates to an electronic device having a communication function to be used as audio video apparatus and home use information apparatus connected to a common signal transmission line wherein wherein operation control signals are transmitted/received as a message.

[0002] Conventionally, as a mutual communication between audio video apparatus connected to a common signal transmission line, there is known a Domestic Digital Bus (D2B) (IEC 84 (Secretariat) 86 I, II: Draft-Domestic Digital Bus (D²B)). There is well known a system construction wherein audio video apparatus having a built-in communication section with a communication function are connected onto the bus as shown in Fig. 6. [0003] When the control section (SDb-1) 13 of an electronic device B 5 shown in Fig. 5 communicates with the control section (SDa-3) 12 of an electronic device A. 4, a message as shown in Fig. 7 and a communication procedure as shown in Fig. 9 have been used conventionally. In Fig. 7, a symbol S 57 represents a start bit MB 17 a mode bit, MA 58 a master address, SA 60 a slave address, CB 62 a control bit, P 59 a parity bit, A 61 a acknowledging bit, E 64 a end-of-data bit and Data data bits. Fig. 11 shows the logical structure of a logical interconnection of communication between the electronic devices B 5 and A 4. When the control section (SDb-1) 13 of the electronic device B 5 shown in Fig. 11 sends to a communication section (Db) 8 a request for communicating with the control section (SDa-3) 12 of the electronic device A 4, the communication section 8 assembles a frame A 68 as shown in Fig. 9 in accordance with the format shown in Fig. 7, and sends the frame to the electronic device A 4 via a signal transmission line 1 shown in Fig. 11. In this case, a slave status read code with a lock designation (CB field) b3b2b1b0 = "0010" shown in Fig. 8 is set in CB 62 of a CB frame 20 shown in Fig. 7 of the frame A 68. Upon transmission of the frame A 68 shown in Fig. 9, the communication section 8 of the electronic device B 5 knows that the destination electronic device A 4 is not communicating with another electronic device and in an unlock state. Since the communication section 8 of the electronic device B 5 has designated a lock by the transmitted frame A 68, the electronic device A 4 is caused by the electronic device B 5 to enter a lock state where the logical communication channel is occupied by the devices A 4 and B 5, when the acknowledge normal response in an acknowledging bit field (A) 61 in the CB field 20 shown in Fig. 7 is received. The connection state in this logically occupied state is shown by a primary logical communication channel 2 shown in Fig. 11. When the communication section 8 of the electronic device B 5 receives the slave status shown in Fig. 10 and provided at the communication section 7 of the electronic device A 4, in the

data filed (DF) of the frame A 68 shown in Fig. 9, the communication section 8 can know on the basis of the value of bit b3 in the slave status shown in Fig. 10 whether or not the electronic device A 4 has been already locked by another electronic device. Upon reception of the frame A 68 shown in Fig. 9, the primary logical communication channel 2 shown in Fig. 11 is established and the electronic device A 4 enters a lock state occupied by the electronic device B 5. After entering the lock state, the electronic devices B 5 and A 4 communicate with each other via the primary logical communication channel 2 shown in Fig. 11 under the lock state. Lastly, the electronic device B 5 sends to the electronic device A 4 the frame C 69 shown in Fig. 9 by setting in CB 20 shown in Fig. 7 a slave status read code (CB value) b3b2b1b0 = "0110" with an unlock designation. The occupied state of the electronic device A4 thereby changes from the lock state to the unlock state, and thereafter the lock designation by another electronic device is allowed. Further, under the condition that the electronic devices B 5 and A 4 are communicating with each other under the lock state shown in Fig. 9, if the electronic device A 4 receives from the electronic device C 6 a frame B 70 indicating a slave status read code with a lock designation, the electronic device A 4 responds to the flame B 70 by making the bit b2 of the slave status shown in Fig. 10 in the clock state, because the electronic device A 4 has been already occupied by the electronic device B 5 and is communicating therewith.

[0004] In a conventional electronic device with a communication function or in a conventional communication method, there is established only one primary logical communication channel for mutual communication between the communication sections of different electronic devices under the logically occupied state of the primary logical communication channel. Therefore, in the case where each electronic device has a plurality of control sections which are controlled via the primary logical communication channel, i.e., in the case where a control section of an electronic device controls one or more control sections of another electronic device via the primary logical communication channel, a control section different from the control section of the first-mentioned electronic device is allowed at the same time to control via the primary logical communication channel the one or more control sections of the other electronic device. As a result, a plurality of different control sections of the first-mentioned electronic device controls at the same time the control section of the other electronic device, so that it is not possible to carry out an exclusive control between control sections.

[0005] Furthermore, the operation of the control section of the other electronic device under control by the control section of the first-mentioned electronic device cannot be ensured.

[0006] Still further, a control section of an electronic device cannot carry out a broadcast communication relative to a plurality of specified control sections of another

electronic device. The control section of the electronic device is allowed to transmit a message only to all, or a specified one of, the control sections of the other electronic device, without the provision of a function to transmit a message to a plurality of specified control sections.

[0007] Further, if a primary logical communication channel is established between one or some control sections of a first electronic device upon request from a control section of a second electronic device, a control section of a third electronic device is not allowed at the same time to communicate with a not-occupied control section excepting the one or some control sections of the first electronic device.

SUMMARY OF THE INVENTION

[0008] It is an object of the present invention to provide a communication method and an electronic device or system having a communication function for performing the communication method, capable of carrying out an exclusive control between control sections by providing a simple communication procedure and a logical communication channel defined by the communication procedure.

[0009] In order to achieve the above object, according to the first embodiment of this invention, an exclusive control between control sections is realized by providing means for transferring a message in a communication section and in a control section of each electronic device connected to a common signal transmission line, providing in the control section means for establishing a secondary logical communication channel on a primary logical communication channel established between the communication sections of two electronic devices, between the control sections connected to corresponding communication sections, and providing a predefined communication procedure used between the communication sections or the communication section and control sections within the same electronic device.

[0010] With the construction described above, when a control section of an electronic device requests an establishment of a secondary logical communication channel to the communication section of the same electronic device, by using the communication procedure predefined between the control section and communication section, via means provided in the control section and in the communication section for transferring a message therebetween, a primary logical communication channel is established between the communication section and another communication section of a communication destination electronic device, and the other communication section notifies, another control section of the communication destination electronic device, of the fact that a secondary logical communication channel is to be established between the control section and other control section, via means provided in the other communication section and in the other control section for transferring a message therebetween, and when the

other control section returns an establishment response of the secondary logical communication channel back to the communication originating electronic device via the other communication section, the communication section of the secondary logical communication channel establishment requesting electronic device notifies the control section of the confirmation of the secondary logical communication channel establishment via the primary logical communication channel established between the communication section and other communication section, thereby realizing an exclusive control between control sections of different electronic devices. [0011] In order to achieve the above object, according to the second embodiment of this invention, an exclusive control between control sections is realized by providing means for transferring a message in a communication section and in a control section of each electronic device connected to a common signal transmission line, providing in the control section means for establishing a secondary logical communication channel between the control sections connected to corresponding communication sections, and providing a predefined communication procedure used between the communication sections or the communication section and control sections within the same electronic device.

[0012] With the construction described above, when a control section of an electronic device requests an establishment of a secondary logical communication channel to the communication section of the same electronic device, by using the communication procedure predefined between the control section and communication section, via means provided in the control section and in the communication section for transferring a message therebetween, another communication section of a communication destination electronic device notifies, another control section of the communication destination electronic device, of the fact that a secondary logical communication channel is directly established between the control section and other control section, via means provided in the other communication section and in the other control section for transferring a message therebetween, and when the other control section returns an establishment response of the secondary logical communication channel back to the communication section, the communication section of the secondary logical communication channel establishment requesting electronic device notifies the control section of the confirmation of the secondary logical communication channel establishment, thereby realizing an exclusive control between control sections of different electronic devices on the control section unit basis.

BRIEF DESCRIPTION OF THE DRAWINGS

55 [0013]

35

Fig. 1 shows the logical structure of a logical communication system according to the first embodi-

ment of this invention,

Fig. 2 is the message format according to the first embodiment of this invention,

Fig. 3 is the transmission/reception sequence of a message to be transferred between electronic devices according to the first embodiment of this invention.

Fig. 4 is a flow chart showing the transmission procedure by the control section requesting the establishment of a logical communication channel according to the first embodiment of this invention,

Fig. 5 is a flow chart showing the reception procedure by the control section which was requested to establish a logical communication channel,

Fig. 6 shows the system construction according to the first and second embodiments of this invention and a prior art,

Fig. 7 shows the format of a message used in common with the first and second embodiments of this invention and a prior art,

Fig. 8 is a diagram showing the definition of the control bits shown in Fig. 7 and used in common with the first and second embodiments of this invention and a prior art,

Fig. 9 shows a conventional communication procedure.

Fig. 10 shows the definition of the slave status used in common with the first and second embodiments of this invention and a prior art,

Fig. 11 shows the logical structure of a logical communication system according to a prior art,

Fig. 12 shows the logical structure of a logical communication system of electronic devices using a secondary logical communication channel according to the second embodiment of this invention,

Fig. 13 shows the communication procedure illustrating the transmission/reception sequence of a message to be transferred between control sections according to the second embodiment of this invention.

Fig. 14 shows the transmission procedure by the control section and communication section of an electronic device requesting the establishment of a secondary logical communication channel according to the second embodiment of this invention,

Fig. 15 shows the reception procedure by the control section and communication section which was requested to establish the secondary logical communication channel according to the second embodiment of this invention,

Fig. 16 shows the definition of control bit values in the control bit (CB) field according to the second embodiment of this invention,

Fig. 17 shows the format of a message to be transferred via the signal transmission line according to the second embodiment of this invention, and

Fig. 18 shows transmission/reception timings of a secondary logical communication establishment er-

ror according to the second embodiment of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

1st Embodiment

[0014] Fig. 1 shows the logical structure of a logical communication system of electronic devices according to the first embodiment of this invention, using a primary logical communication channel and a secondary logical. communication channel, Fig. 2 shows the format of a message to be transferred via the signal transmission line of this embodiment, Fig. 3 shows the communication procedure illustrating the transmission/reception sequence of a message between the control section and communication section of an electronic device, and between the communication sections of different electronic devices, according to this embodiment, Fig. 4 shows the transmission procedure by the control section and communication section of the electronic device which requests to establish the secondary logical communication channel, according to this embodiment, Fig. 5 shows the reception procedure by the control unit and communication section of the electronic device which is requested to establish the secondary logical communication channel, according to this embodiment, and Fig. 6 shows the system construction according to this embodiment and a prior art.

[0015] The present invention is not limited to the embodiment shown by the logical structure of Fig. 1, the message format of Fig. 2, the communication procedure of Fig. 4, the transmission procedure of Fig. 4, the reception procedure of Fig. 5, and the system construction of Fig. 6.

[0016] Referring to Fig. 1, reference numeral 1 represents a signal transmission line made of transmission medium along which a message is transmitted. Reference numerals 2 and 3 represent a primary logical communication channel established on the signal transmission line 1. Reference numerals 2.1, 2.2. 2.3 and 2.4 represent a secondary logical communication channel established on the primary logical communication channel between control sections. Reference numerals 4, 5 and 6 represent an electronic device which is connected to the common signal transmission line 1. Reference numerals 7, 8 and 9 represent a communication section provided in the electronic device for transferring a message between electronic devices by establishing the primary logical communication channel 2 or 3 on the signal transmission line 1. Reference numerals 10, 11, 12, 13, 14, 15 and 16 represent a control section. Each control section within the electronic device performs a service or function specific to the control section. In other words, each control section has at least one specific function of an inner-device basis (such as a video monitor function, audio amplifier function, VTR fuction, camera function, CD-ROM function and other functions). The control section processes and executes the information contents (data or command) described in the data field within the frame of a message.

[0017] The communication section executes the communication control for sending and receiving a message on an inter-device basis.

[0018] The control section has a communication control function to establish or release a secondary logical communication channel for transferring a message between the electronic devices via the secondary logical communication channel newly established on the primary communication channel established between the communication sections.

[0019] Referring to Fig. 2, a mode bit (MB) field 17 is 15 used in determining the transmission rate of the fields following this field 17, and in determining the transmission priority order by using a collision detection procedure when messages are transmitted to the signal transmission line from a plurality of electronic devices at the same time. A master address (MA) field 18 has therein. a predetermined value of an originating device. A slave address (SA) field 19 has therein a predetermined value of a terminating device. A control bit (CB) field 20 has therein a value as defined in Table shown in Fig. 8 to instruct a lock or unlock for the establishment or release of the primary logical communication channel. A data field (DF) 21 has therein a secondary logical communication channel establishment request/response message (SLRQ/SLRP) 34, secondary logical communication channel transfer message (SLTF) 35, or secondary logical communication channel release/release-response message (SLRL/SLRR). A field 22 has therein an LCM discriminator indicating an establishment of the secondary logical communication channel, or an LRP discriminator indicating an establishment response of the secondary logical communication channel. A field 23 has therein a length indicator (LIN) indicating the octet length of a secondary logical information field 24 and transferring message content field 25. The secondary logical information field 24 has therein the identification name, number or the like of the control section which intends to establish the secondary logical communication channel. The transferring message content field 25 is an optional field which is added if the secondary logical communication channel establishment request/response message includes an information data to be transferred via the secondary logical communication channel. A field 26 has therein an LES discriminator indicating a data transfer via the secondary logical communication channel. A field 27 has therein a length indicator (LIN) indicating the octet length of the secondary logical information field 28 and transferring message content field 29. The field 28 has therein the same definition as that of the secondary logical information field 24. A field 29 has therein the same definition as that of the transferring message content field 25. This field 29 is added essentially by all means. A field 30 has therein

a ULC discriminator representative of a secondary logical communication channel release or a URP discriminator representative of a secondary logical communication channel release response. A field 31 has therein an LIN having the same definition as that of LIN field 23. A field 32 is a secondary logical information field having the same definition as that of the secondary logical information field 24. A field 33 is a transferring message content field having the same definition as that of the transferring message content field 25.

[0020] Referring to Fig. 3, at an establishment request 37, the control section (SDb-1) of the electronic device B 5 transmits to its communication section (Db) an additional parameter information necessary for the establishment of the secondary logical communication channel. By using the parameter information given by the establishment request 37, the secondary logical communication channel establishment request message (SLRQ) shown in Fig. 2 representative of the first and second logical communication channel establishment is formed and transmitted to the destination electronic device A 4. At an establishment notice 39, the communication section (Da) of the electronic device A 4 notifies, by using the acknowledgement bit (A) 61 shown in Fig. 7 of CB field 20 shown in Fig. 2, the electronic device B 5 of the fact that SLRQ 38 has been received from the signal transmission line and acknowledged and that the primary logical communication channel has been established in accordance with the lock request indicated by the control bit field of SLRQ 38, and the communication section (Da) requests the control section (SDa-3) of the electronic device A 4 shown in Fig. 3 and designated by the secondary logical information field 24 shown in Fig. 2 of SLRQ 38 to establish the secondary logical communication channel between the control section (SDb-1) of the electronic device B 5. At an establishment response 40, in order to respond to the electronic device B 5 the control section (SDa-3) informs the communication section (Da) of the fact that the establishment notice 39 has been received and processed normally by the control section (SDa-3) and the designated and requested secondary logical communication channel has been established. Reference numeral 41 represents an SLRP indicating a secondary logical communication channel establishment response message obtained by designating an LRP in the field 22 shown in Fig. 2 in accordance with the response parameter given by the establishment response 40 and by editing the secondary logical information field 24. At an establishment confirmation 42, the communication section of the electronic device B 5 received the SLRP 41 notifies the control section (SDb-1) of the fact that the secondary logical communication channel has been acknowledged to be established at the control section (SDa-3) of the electronic device A 4 on the primary logical communication channel already established by SLRQ 38. At transfer requests 43 and 46, the control section (SDb-1) of the electronic device B 5 notifies the communication section (Db) of the transfer request when the former knows the fact that the secondary logical communication channel has been established at the control section (SDa-3) of the electronic device A 4 upon reception of the establishment confirmation 42, and assumes that the secondary logical communication channel can be used. The transfer request includes the information that one message is transferred or a plurality of messages are transferred divisionally, together with the message contents and the parameters identifying the secondary logical communication channel. In accordance with the parameters given at the transfer request from the control section (SDb-1), SLTF messages 44 and 46 of the format shown in Fig. 2 each are transferred to the communication section (Da) of the destination electronic device A 4. In the SLTF message, LES 26 and LIN 27 are designated in the data field (DF) 21 as the secondary logical communication channel transfer message 35, and the parameter identifying the secondary logical communication channel is set in the secondary logical information field 28 by using the previously determined description. At transfer notices 45 and 48, the communication section (Da) received SLTFs 44 and 47 refers to the lock designation in the CB field 20 and the secondary logical information field in the data field (DF) 21 of the message shown in Fig. 2, discriminates the destination control section (SDa-3) having the established secondary logical communication channel designated by the secondary logical information field 28, and thereafter transfers to the control section (SDa-3) of the electronic device A 4 the contents of the transferring message content field 29 and a part or all of the contents of the secondary logical information field 28. At a release request 49, the control section (SDb-1) supplies to the communication section (Db) the parameters necessary for forming a message SLRL 50 which indicates an establishment release of the secondary logical communication channel used between the control section (SDb-1) of the electronic device B 5 and the control section (SDa-3) of the destination electronic device A 4, when it becomes unnecessary to transfer a further message between the control sections using the secondary logical communication channel. The message SLRL 50 includes an unlock designation in the CB field 20 of the message shown in Fig. 2, and ULC 30, LIN 31 and the secondary logical information field 32 for designating the secondary logical communication channel to be released, as the secondary logical communication channel release message 36, in the data field (DF) 21. The acknowledging bit (A) 61 shown in Fig. 7 in the CB field 20 of the SLRL message indicates that the primary logical communication channel between the communication channels (Db and Da) has been completely and correctly released. At a release notice 51, by using as the parameter the designation information, included in the contents of the secondary logical information field 32 shown in Fig. 2 and transmitted by SLRL 50, for designating the control sections of the electronic devices A 4 and B 5 at opposite ends of the secondary logical communication channel, the communication section (Da) of the electronic device A 4 with the primary logical communication channel already released upon reception of SLRL 50, requests the control section (SDa-3) to release the secondary logical communication channel, and to return the release result. At a release response 52, the communication section (Da) of the electronic device A 4 is supplied as the parameters with the fact that the release completion result of the secondary logical communication channel by the release notice is to be responded to the control section (SDb-1) of the electronic device B 5. An SLRR message 53 is a secondary logical communication channel release response message of the data field (DF) 21 shown in Fig. 2 formed at the communication section (Da) by using the parameters given at the release response 52. At a release confirmation 54, the communication section (Db) of the electronic device B 5 informs, the control section (SDb-1) of the electronic device B 5 identified by the secondary logical information field 32 shown in Fig. 2 of SLRR 53, of the fact that the secondary logical communication channel release completion response has been received from the destination device. At an establishment request 55, a message is sent from the control section (SDc-1) of the electronic device C 6 to the electronic device A 4 via the communication section (Dc). An SLRQ message 56 is the secondary logical communication channel establishment message in the format as shown in Fig. 2 which is sent from the communication section (Dc) of the electronic device C 6 to the communication section (Da) of the electronic device A 4.

[0021] The communication procedure of the system constructed as above will be described below.

[0022] With reference to Fig. 1 showing the logical communication interconnection of the electronic device system shown in Fig. 6, the establishment procedure or release procedure of the secondary logical communication channel by the control section (SDb-1) of the electronic device B 5 relative to the control section (SDa-3) of the electronic device A 4 by using the messages shown in Fig. 2 is shown in Fig. 4 as the transmission procedure by the control section (SDb-1) which requests the establishment of the secondary logical communication channel, and in Fig. 5 as the reception procedure by the control section (SDa-3) which is notified of the establishment of the secondary logical communication channel. The flow of the procedure shown in Figs. 4 and 5 will be described below.

[0023] Fig. 4 shows the procedure executed by the control section requesting the establishment of the secondary logical communication channel wherein the secondary logical communication channel is established on the primary logical communication channel to be established for example between the control section of the electronic device B 5 having the logical structure as shown in Fig. 1 and the control section of the electronic device A 4, a message transfer between the control sec-

tions is requested via the secondary logical communication channel, and after the transfer the secondary logical communication channel is requested to be released. Fig. 3 shows a communication sequence wherein the transmission procedure shown in Fig. 4 is applied to the electronic device B 5.

[0024] SLRQ 56 shown in Fig. 3 indicates that the flow of the transmission procedure shown in Fig. 4 is applied to the control section (SDc-1) 15 of the electronic device C 6. Before the reception of the secondary logical communication channel establishment request by the control section (SDa-3) of the electronic device A 4 shown in Fig. 1, the primary logical communication channel 2 has been established between the electronic device A 4 having the communication section (Da) 7 and the electronic device B 5. Therefore, the establishment request for the primary logical communication channel 3 which is to be established for the establishment of the secondary logical communication between the electronic device A 4 and the electronic device C 6, is rejected as the request for locking is not accepted.

[0025] Fig. 5 shows the procedure executed by the control section to which the secondary logical communication channel is notified to be released, wherein the control section of the electronic device A 4 for example having the logical structure as shown in Fig. 1 is requested to establish the secondary logical communication channel on the primary logical channel to be established relative to the control section of the electronic device B 5, returns the establishment response, receives via the secondary logical communication channel a notice of a message transfer from the control section of the electronic device B 5 as many times as necessary, after the reception of the necessary number of message transfers, completely releases the secondary logical communication channel upon reception of the release notice of the presently used secondary logical communication channel by the electronic device A 4, and returns the release completion result to the control section of which requested the release of the secondary logical communication channel.

[0026] By using the procedure by the transmission side control section and the procedure by the reception side control section respectively shown in Figs. 4 and 5, and by using the various types and formats of messages shown in Fig. 2, there is provided a communication system having two types of secondary logical communication channels as shown in Fig. 1. Namely, there are provided a case A where the establishment/transfer/release of the secondary logical communication channel is conducted between one control section and another control section in one-to-one correspondence, and a case B where the establishment/transfer/release of the secondary communication channel is conducted between one control section and a plurality of other control sections in one-to-multiple correspondence.

[0027] In the case A, there is one control section which requests the establishment/release of the sec-

ondary logical communication channel and another control section which is requested to establish/release the secondary logical communication channel. A one-to-one communication on the secondary logical communication channel is effected by describing and designating the secondary logical information fields 24, 28 or 32 shown in Fig. 2 in accordance with the definition which defines the discrimination information for the requesting and requested control sections, and by applying the procedures shown in Figs. 4 and 5 to the corresponding control sections.

[0028] The communication sequence shown in Fig. 3 corresponds to the case A wherein a one-to-one communication on the secondary logical communication channel is effected between the control section (SDb-1) 13 and the control section (SDa-3) 12.

[0029] In the case B, there is one control section which requests the establishment/release of the secondary logical communication channel, and at least two or more control sections which are requested to establish/release the secondary logical communication channel. Namely, the one-to-multiple communication on the secondary logical communication channel is effected by describing and designating the secondary logical information fields 24, 28 or 32 shown in Fig. 2 in accordance with the definition which defines the discrimination information for the one requesting control section and the at least two or more requested control sections, and by applying the transmission and reception procedures shown in Figs. 4 and 5 to the one requesting control section and the at least two or more requested control sections. As the case B, for example, the secondary logical communication channel is established on the first logical communication channel established between the communication section (Db) 8 of the electronic device B 5 and the communication section (Db) 7 of the electronic device A 4 respectively shown in Fig. 1, between one control section (SDb-2) 14 of the electronic device B 5 and two control sections (SDa-1) 10 and (SDa-2) 11 of the electronic device A 4. In this case, the secondary logical communication channel 2.1 at the electronic device B 5 and the secondary logical communication channel 2.4 at the electronic device A 4 respectively shown at opposite ends of the primary logical communication channel 2 are constructed of the same single secondary logical communication channel. By using the established single secondary logical communication channel, and in accordance with the combination of destination control sections described by the secondary logical information field 28 of the secondary logical communication channel transfer message (SLTF) 35 shown in Fig. 2, a message is transferred in a one-to-one communication between the control section (SDb-2) 14 and the control section (SDa-1) 10 or between the control section (SDb-2) 14 and the control section (SDa-2) 11, or alternatively a message is transferred in a one-to-multiple communication between the control section (SDb-2) 14 and the control sections (SDa-1) 10 and (SDa-2) 11, by describing the contents of the broadcast message in the transferring message content field 29 using the single SLTF 35, and by describing the designation of the destination control sections in the secondary information field 28. By using the case A or B and establishing the secondary logical communication channel between control sections of one and another electronic devices, communication between control sections can be exclusively carried out.

[0030] As described above, there are provided, in the control section, communication means between a communication section and a control section, and means for establishing a secondary logical communication channel on a primary logical communication channel on a primary logical communication channel established between communication sections, the secondary logical communication channel being used between the control sections of different electronic devices. Therefore, exclusive communication control becomes possible for message transfer between control sections by using an efficient and simple communication sequence.

2nd Embodiment

[0031] Fig. 12 shows the logical structure of a logical communication system of electronic devices using a secondary logical communication channel according to the second embodiment of this invention, Fig. 17 shows the format of a message transferred via a signal transmission line of this embodiment, Fig. 13 shows the communication procedure illustrating a transmission/reception sequence of a message transferred between the control section and communication section of an electronic device, and between the control sections of different electronic devices via the communication sections, Fig. 18 shows the transmission/reception sequence and transmission/reception timings of a message when there is an error of the establishment request for the secondary logical communication channel which is used as a logical communication channel between the control sections of electronic devices according to this embodiment, Fig. 14 shows the transmission procedure by the control section and communication section of an electronic device requesting the establishment of the secondary logical communication channel according to this embodiment, Fig. 15 shows the reception procedure by the control section and communication section of an electronic device which is requested to establish the secondary logical communication channel according to this embodiment, Fig. 6 shows the system construction used in common with this embodiment and a prior art, Fig. 7 shows the format of a message used in common with this embodiment and a prior art, and Fig. 16 shows the definition of control bit (CB) values in the control bit (CB) field used in this embodiment.

[0032] The invention is not limited to this embodiment shown by the logical structure of Fig. 12, the message format of Fig. 17, the communication procedure of Fig. 13, the transmission procedure of Fig. 14, the reception

procedure of Fig. 15, the system construction of Fig. 6, the message format of Fig. 7, the definition of the control bits of Fig. 16, and the transmission/reception timings with a secondary logical communication channel establishment error of Fig. 18.

[0033] The elements not identical to those of the first embodiment will be described below.

[0034] Referring to Fig. 12, reference numerals 2.5 and 2.6 represent a secondary logical communication channel established on a signal transmission line 1 between the control sections of different electronic devices. Reference numeral 2.7 represents a secondary logical communication channel which was not established between the control sections of different electronic devices. Reference numerals 7, 8 and 9 represent a communication section which performs a communication control for the transmission/reception of a message via at least the signal transmission line 1 between a control section of one electronic device and a control section of another electronic device, the message including the contents of the data field (DF) shown in Fig. 17 and having the format as shown in Fig. 7. Reference numerals 10, 11, 12, 13, 14, 15 and 16 represent a control section provided in each electronic device for giving a service or function specific thereto and performing communication relative to one or more designated control sections of another electronic device by establishing a secondary logical communication channel.

[0035] Referring to Fig. 17, a control bit (CB) field 20 has therein the value defined by Table shown in Fig. 16. Reference numeral 21 represents a data field (DF) for describing therein a request/response/rejection message (SLRQ/SLRP/SLRJ) 118 for the secondary logical communication channel established between the control sections of different electronic devices, a secondary 35 logical communication channel transfer message (SLTF) 35, or a secondary logical communication channel release/release-response message (SLRUSLAR) 36. Reference numeral 119 represents a field for describing therein an LCM discriminator indicative of the secondary logical communication channel establishment, an LRP discriminator indicative of the secondary logical communication channel establishment response, or an LRJ discriminator indicative of the secondary logical communication channel establishment rejection.

[0036] Referring to Fig. 13, reference numerals 71, 72, ..., 79, 80 represent a series of communication sequences including the sequences starting from generating an establishment request 71 for requesting to establish a first secondary logical communication channel between a control section SDb-2 (control section 14) of an electronic device 8 5 shown in Fig. 12 and two control sections [SDa-3 (control section 12) and SDa-3 (control section 11)] of another electronic device A 4 via the respective communication sections 8 (Db) and 7 (Da), and to receiving the establishment confirmation 77 and 80 for confirming that the first secondary logical communi-

cation channel has been correctly established. Reference numerals 81, 82 and 83 represent a series of communication sequences for transferring data, commands and the like via the established first secondary logical communication channel from SDb-2 (control section 14) to SDa-3 (control section 12). Reference numerals 84, 85 and 86 represent a series of communication sequences for transferring data, commands and the like via the established first secondary logical communication channel from SDb-2 (control section 14) to SDa-2 (control section 11). Reference numerals 105, 106 and 107 represent a series of communication sequences for transferring data, commands and the like via the established first secondary logical communication channel from SDb-2 (control section 14) to SDa-2 (control section 11). Reference numerals 108, 109, ..., 116, 117 represent a series of communication sequences starting from the release request to release confirmation for use in releasing the first secondary logical communication channel established by the series of communication sequences 71, 72, ..., 79, 80. Reference numerals 87,. 88, ..., 92 represent a series of communication sequences including the sequences starting from generating an establishment request 87 for requesting to establish a second secondary logical communication channel between a control section SDc-1 (control section 15) of an electronic device C 6 shown in Fig. 12 and a control section SDa-1 (control section 10) of another electronic device A 4 via the respective communication sections 9 (Dc) and 7 (Da), and to receiving the establishment confirmation 92 for confirming that the second secondary logical communication channel has been correctly established. Reference numerals 93, 94, 95 and 96, 97, 98 represent a series of communication sequences for transferring data, commands and the like via the established second secondary logical communication channel from SDc-1 (control section 15) to SDa-1 (control section 10). Reference numerals 99, 100, 101, 102, 103, 104 represent a series of communication sequences starting from the release request to release confirmation for use in releasing the second secondary logical communication channel established by the series of communication sequences 87, 88, ..., 92.

[0037] Referring to Fig. 16, the CB value b3b2b1b0 = "1100" indicates writing command (WC) with no lock designation, and the CB value b3b2b1b0 = "1101" indicates writing data with no lock designation.

[0038] Referring to Fig. 18, Reference 71, 72, ..., 85, 86, and 105, 106, ..., 116, 117 represent the same definitions as in Fig. 13. Reference numerals 120, 121 and 122 represent a series of communication sequences whereby a control section SDc-1 (control section 15) generates an establishment request 87 for the establishment of a third secondary logical communication channel 2.7 shown in Fig. 12 between the control section SDc-1 (control section 15) of the electronic device C 6 shown in Fig. 12 and a control section SDa-2 (control section 11) of the electronic device A 4 via the respective

communication sections 9 (Dc) and 7 (Da), thereafter a secondary logical communication channel establishment message (SLRQ 121) is transmitted from the communication section 9 (Dc) to the communication section 7 (Da), and an establishment notice 122 for notifying the third secondary logical communication channel establishment is transmitted from the communication section 7 (Da) to the control section SDa-2 (control section 11). Reference numeral 123 represents an establishment rejection notified from the control section SDa-2 (control section 11) to the communication section 7 (Da), the establishment rejection indicating that since the control section SDa-2 (control section 11) is now occupied by the first secondary logical communication channel shown in Fig. 13 by the control section 14 (SDb-2) of the electronic device shown in Fig. 12, the establishment of the third secondary logical communication channel by the control section of another electronic device is to be rejected. Reference numeral 124 represents a secondary logical communication channel establishment rejection message (SLRJ) to the control section SDc-1 (control section 15) generated by the communication section 7 (Da) in response to the establishment rejection 123. Reference numeral 125 represents an establishment error indicating the secondary logical communication channel establishment rejection, which is sent from the communication section 9 (Dc) received SLRJ 124 to the control section SDc-1 (control section 15) requested the establishment of the third secondary logical communication channel. Reference numerals 126, 127, ..., 131 represent a series of communication sequences whereby including the sequences starting from generating an establishment request 126 for requesting to establish a third secondary logical communication channel between a control section SDc-1 (control section 15) of the 35 electronic device C 6 shown in Fig. 12 and the control section SDa-2 (control section 11) of another electronic device A 4 via the respective communication sections 9 (Dc) and 7 (Da), and to receiving the establishment confirmation 131 for confirming that the third secondary logical communication channel has been correctly established. Reference numerals 132, 133 and 134 represent a series of communication sequences for transferring data, commands and the like via the established third secondary logical communication channel from SDc-1 (control section 15) to SDa-2 (control section 11). Reference numerals 135, 136, ..., 139, 140 represent a series of communication sequences starting from the release request to release confirmation for use in releasing the third secondary logical communication channel established by the series of communication sequences 126, 127, ..., 131.

[0039] The communication procedure of the system constructed as above will be described below.

[0040] With reference to Fig. 12 showing the logical communication interconnection of the electronic device system shown in Fig. 6, the establishment procedure of the secondary logical communication channel by the control section SDc-2 (control section 15) of the electronic device C 6 relative to the control section SDa-1 (control section 10) of the electronic device A 4 by using the messages shown in Fig. 17 is shown in Fig. 14 as the message transmission procedure by the control section which requests the establishment of the secondary logical communication channel, and in Fig. 15 as the message reception procedure by the control section which is notified of the establishment of the secondary logical communication channel. The flow of the procedure shown in Figs. 14 and 15 will be described below. [0041] Fig. 14 shows the procedure executed by the control section requesting the establishment of the secondary logical communication channel wherein the control section of the electronic device C 6 for example shown in Fig. 12 issues an establishment request to another control section of the electronic device a 4, a message is transferred via the established secondary logical communication channel between the control sections of the different electronic devices, and after transferring the message, the secondary logical communication. channel is requested to be released. Fig. 13 shows the communication sequences wherein the transmission procedure shown in Fig. 14 is applied to the electronic devices B 5 and C 6. The CB values newly adopted as shown in Fig. 16 are used in the CB field 20 in a message shown in Fig. 17. A writing command (WC) with no lock designation of b3b2b1b0 = "1100" is applied to SLRQ, SLRP and SLRJ, a wirting command (WC) with no lock designation of b3b2b1b0 = "1100" or a writing data (WD) with no lock designation is applied to SLTF, and a writing command (WC) with no lock designation of b3b2b1b0 = "1100" is applied to SLRL and SLRP.

[0042] Fig. 15 shows the procedure executed by the control section which is notified of the secondary logical communication channel release, wherein a control section of the electronic device A 4 for example shown in Fig. 12 is requested by a control section of another electronic device C 6 to establish a secondary logical communication channel, after sending back the corresponding establishment response the control section logically coupled via the secondary logical communication channel to the control section of the electronic device A 4 which was requested to establish the channel receives via the secondary logical communication channel, receives a notice of a message transfer as many times as necessary from the control section of the electronic device C 6, after the reception of the necessary numbers of messages the secondary logical communication channel is completely released at the control section of the electronic device A 4 which received a release notice via the secondary logical communication channel from the control section of the electronic device C 6 which requested the establishment, and the release completion result is sent back as SLRR 103 to the control section which requested to release the secondary logical communication channel.

[0043] In the communication sequences shown in Fig.

13, by using the transmission procedure shown in Fig. 14 and the reception procedure shown in Fig. 15, first, the control section SDb-2 (control section 14) of the electronic device B 5 issues an establishment request 71, SLRQ 72 is notified via the communication sections 8 (Db) and 7 (Da) to the control sections SDa-3 (control section 12) and SDa-2 (control section 11) as the establishment notices 73 and 74 respectively, the corresponding establishment responses 75 and 78 are transmitted to the communication section 8 (Db) by using SLRP 76 and SLRP 79 respectively, and the control section SDb-2 (control section 14) is notified by using the establishment confirmation 77 and 80 of the fact that the secondary logical communication channel 2.6 shown in Fig. 12 has been established. Next, under the condition that the secondary logical communication channel 2.6 shown in Fig. 12 has been established, the control section SDc-1 (control section 15) of the electronic device C 6 different from the electronic device B 5 issues the establishment request 87 to the control section SDa-1 (control section 10) of the electronic device A 4 at which the secondary logical communication channel has not been established, the secondary logical communication channel 2.5 is established between the control sections SDc-1 (control section 15) and SDa-2 (control section 10) by executing a series of communication sequences shown in Fig. 13, and after transferring a necessary message, the control section SDc-1 (control section 15) issues a release request for the established secondary logical communication channel 2.5 and receives the release confirmation 104 indicating a reception of SLRR 103 representative of the release completion. Thereafter, the control section SDb-2 (control section 14) transfers a necessary message via the established secondary logical communication channel 2.6 to the control section SDa-2 (control section 11) or SDa-3 (control section 12), and the control section SDb-2 (control section 14) issues the release request 105 to release the secondary logical communication channel 2.6 by using the communication sequences from the release request 108 to the release confirmation 117 shown in Fig. 13. [0044] In the communication sequences shown in Fig. 18 using the transmission procedure of Fig. 14 and the reception procedure of Fig. 15, under the condition that the first secondary logical communication channel 2.6 has been established between the control section SDb-2 (control section 14) of the electronic device B 5 and the control sections SDa-2 (control section 11) and SDa-3 (control section 12) of the electronic device A 4 upon issuance of the establishment request 71 by the control section SDb-2 (control section 14), i.e., under the condition that a message can be transferred as SLTF 82 and 85, the control section SDc-1 (control section 15) of the electronic device C 6 issues to the control section SDa-2 (control section 11) of the electronic device A 4 the establishment request 120 for requesting to establish the second secondary logical communication channel 2.7, and transfers SLRQ 121 to the electronic device

A 4 to thereby transmit the establishment notice 122 to the control section SDa-2 (control section 11). In this case, since the control section SDa-2 (control section 11) has established the first secondary logical communication channel 2.6 relative to the control section SDb-2 (control section 14) of the electronic device B 5 different from the electronic device C 6, it judges that the establishment request for the secondary logical communication channel from the other control section cannot be allowed. Therefore, the control section SDa-2 (control section 11) sends back the establishment rejection 123 as SLRJ 124 to the electronic device C 6 which requested the establishment, and notifies the control section SDc-1 (control section 15) of the establishment error 125. The control section SDc-1 (control section 15) which rejected to establish the second secondary logical communication channel is thereafter notified by the establishment confirmation 131, in accordance with the predetermined establishment error recovery procedure and after the communication sequence for releasing the first secondary logical communication channel 2.6 is ex-. ecuted upon issuance of a release request from the control section SDb-2 (control section 14) of the electronic device B 5, i.e., the control request 105 for SDa-2 (control section 11) and the control request 108 for SDa-3 (control section 12), of the fact that the establishment request 126 was issued again and the control section SDa-2 (control section 11) has allowed to establish the second secondary logical communication channel. Thereafter, the transfer sequence of a message is carried out as many times as necessary between SDc-1 (control section 15) and SDa-2 (control section 11), and the release sequence for the established second secondary logical communication channel is carried out. In releasing the second secondary logical communication channel 2.6 which interconnects SDb-2 (control section 14) and the two control sections SDa-2 (control section 11) and SDa-3 (control section 12) of the electronic device A 4, a desired one of the two control sections may be disconnected from the second secondary logical communication channel 2.6. Namely, SDb-2 (control section 14) of the electronic device B 5 issues the release request for the second secondary logical communication channel 2.6 only to the SDb-2 (control section 11) of the electronic device A 4 with which SDc-1 (control section 15) of the electronic device C 6 intends to communicate, to thereby make only SDa-2 (control section 11) unoccupied. The unoccupied SDa-2 (control section 11) is made thereafter allowable to receive the establishment request for the secondary logical communication channel in one-to-one correspondence with SDc-1 (control section 15) of the electronic device C 6 whose establishment request was once rejected.

[0045] As described above, in the second embodiment there is provided, in a control section, communication means for the communication between a control section and a communication section and means for establishing or releasing the secondary logical communi-

cation channel used between the control section of different electronic devices. Therefore, communication can be efficiently carried out between control sections, and in addition exclusive communication control for a message transmission/reception between control sections can be realized using a simple communication sequence.

10 Claims

15

 An electronic device (4, 5, 6) having an exclusive control type of communication function in a communication system having at least two electronic devices connected to a predefined signal transmission line (1), comprising:

a communication section (7, 8, 9) for transmitting or receiving a message, said communication section having a communication control function to establish or release a primary logical communication channel (2, 3) between communication sections of respective electronic devices at transmission side and reception side; and

control sections (10-16) of respective sub-devices included in said electronic device, each of said control sections having a function to process and execute the contents of information described in data fields of said message, and each of said control sections having a communication control function to establish or release a secondary logical communication channel (2.1-2.4) between control sections of respective electronic devices at transmission side and reception side;

wherein said communication section and control section each including means for transferring substantially all or a part of said message between said communication section and control section within the same electronic device.

- An electronic device of claim 1, wherein any one of said control sections of a first electronic device which requests for an establishment of said secondary logical channel is adapted to designate, in a single establishment request, a plurality of control sections of second electronic devices to be connected to the same secondary logical channel.
 - 3. An electronic device of claim 1, wherein said communication section of said electronic device which was requested to establish said secondary logical communication channel is adapted to have, as the information on said electronic device which requested to establish said secondary logical communication channel on said primary logical communication channel established via said communication

section, the discrimination information on said electronic device, discrimination information (such as address on said signal transmission line) on said communication section, discrimination information (logical number or logical address) on said control section, and as the establishment completion information at said electronic device which was requested to establish said secondary logical communication channel, the discrimination information (logical number or logical address) on one or more of said control sections occupied by said control section of another electronic device.

- An electronic device of claim 1, wherein said communication section of said electronic device which 15 was requested to establish said secondary logical communication channel is adapted to supervise and hold, as the information on said electronic device which requested to establish said secondary logical communication channel on said primary logical communication channel established via said. communication section, the discrimination information on said electronic device, discrimination information (such as address on said signal transmission line) on said communication section, discrimi- 25 nation information (logical number or logical address) on said control section, and each of said control sections of said electronic device which was requested to establish said secondary logical communication channel is adapted to supervise and hold, 30 as the establishment completion information at said electronic device which was requested to establish said secondary logical communication channel, the information on whether there is any control section which is occupied by said control section of another 35 electronic device.
- A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 1, and connected in a common signal transmission line.
- A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 2, and connected in a common signal transmission line.
- A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 3, and connected in a common signal transmission line.
- A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 4, and connected in a common signal transmission line.
- 9. An electronic device (4, 5, 6) having an exclusive

control type of communication function in a communication system having at least two electronic devices connected to a predefined signal transmission line (1), wherein:

each of said electronic device comprises

a communication section (7-9) of a device level

for transmitting/receiving a message, and a control section (10-16) of a sub-device level having a function to process and execute the contents of information described in a data field of a frame of said message, and said communication section and control section each including means for transferring substantially all or a part of said message between said communication section and control section within the same electronic device; and wherein for transferring said message from said electronic device at the transmission side to said electronic device at the reception side by establishing a logical communication channel therebetween,

each of said control section is adapted to have a communication control function to establish or release a secondary logical communication channel (2.5-2.7) at sub-device level between said control sections of said transmission side electronic device and said reception side electronic device, without establishing a primary logical communication channel between said communication sections of said transmission side electronic device and said reception side electronic device; whereby

the establishment/release of said secondary logical communication channel is executed to transfer data or commands between said control sections, and when said communication section is adapted to repeat the contents of said message transferred via said signal transmission line from said control section connected to said communication section, said communication section is adapted to transparently transfer said contents of said message without imposing any restriction on the contents of a data field of said message.

- 10. An electronic device of claim 9, wherein if said control section of said electronic device which was requested to establish said secondary logical communication channel is adapted to have already another secondary logical communication channel established, an establishment rejection response is sent back to said control section of said electronic device which requested to establish said secondary logical communication channel.
- An electronic device of claim 9, wherein when one of said control sections of a first electronic device

50

which is adapted to request the establishment of said secondary logical communication channel designates a plurality of control sections of a second electronic device which is requested to establish said secondary logical communication channel, said one of said control sections is adapted to describe and designate said plurality of control sections at the same time when a single establishment request is issued by said one of said control sections.

- 12. An electronic device of claim 9, wherein if said control section of said electronic device which was requested to establish said secondary logical communication channel is adapted to have already another secondary logical communication channel established, said communication section connected to said control section which received said establishment request is adapted to determine whether or not an establishment rejection response is sent back to said control section of said electronic device, which requested to establish said secondary logical communication channel.
- 13. An electronic device of claim 9, wherein if said con- 25 trol section of said electronic device which was requested to establish said secondary logical communication channel is adapted to have already another secondary logical communication channel established, said communication section connected to said control section which received said establishment request is adapted to hold the establishment information (establishment completion/not-established) on each of said control sections at said secondary logical communication channel necessary for determining whether or not an establishment rejection response is sent back to said control section of said electronic device which requested to establish said secondary logical communication channel, or in the case where said other secondary logical communication channel is not still established, is adapted to hold the additional information on said electronic device together with said establishment information.
- 14. A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 9, and connected in a common signal transmission line.
- 15. A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 10, and connected in a common signal transmission line.
- A communication system having a plurality of said electronic devices having an exclusive control type

- of communication function according to claim 11, and connected in a common signal transmission line.
- 17. A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 12, and connected in a common signal transmission line.
 - 18. A communication system having a plurality of said electronic devices having an exclusive control type of communication function according to claim 13, and connected in a common signal transmission line.

Patentansprüche

 Elektronisches Gerät (4, 5, 6) mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung in einem Kommunikationssystem mit zumindest zwei mit einer vordefinierten Signalübertragungsleitung (1) verbundenen elektronischen Geräten, mit:

einem Kommunikationsabschnitt (7, 8, 9) zum Senden oder Empfangen einer Nachricht, der eine Kommunikationssteuerfunktion zum Herstellen oder Auflösen eines primären logischen Kommunikationskanals (2, 3) zwischen Kommunikationsabschnitten entsprechender elektronischer Geräte auf der Sendeseite und der Empfangsseite aufweist; und

Steuerabschnitten (10-16) entsprechender in dem elektronischen Gerät enthaltener Sub-Geräte, wobei jeder Steuerabschnitt eine Funktion zum Verarbeiten und Ausführen des in Datenfeldern der Nachricht enthaltenen Informationsinhalts aufweist und jeder Steuerabschnitt eine Kommunikationssteuerfunktion zum Herstellen und Auflösen eines sekundären logischen Kommunikationskanals (2.1-2.4) zwischen Steuerabschnitten entsprechender elektronischer Geräte auf der Sendeseite und der Empfangsseite aufweist;

wobei der Kommunikationsabschnitt und der Steuerabschnitt jeweils eine Einrichtung zum Übertragen im wesentlichen der ganzen oder eines Teils der Nachricht zwischen dem Kommunikationsabschnitt und dem Steuerabschnitt innerhalb desselben elektronischen Geräts aufweisen.

 Elektronisches Gerät nach Anspruch 1, bei dem ein beliebiger der Steuerabschnitte eines ersten elek-

55

45

20

tronischen Geräts, der zur Herstellung des sekundären logischen Kanals anfragt, ausgelegt ist zum in einer einzigen Herstellungsanfrage Bezeichnen einer Mehrzahl von Steuerabschnitten zweiter elektronischer Geräte, die mit dem gleichen sekundären logischen Kanal verbunden werden sollen.

- 3. Elektronisches Gerät nach Anspruch 1, bei dem der Kommunikationsabschnitt des elektronischen Geräts, das zur Herstellung des sekundären logischen Kommunikationskanals angefragt worden ist, ausgelegt ist, als Information über das elektronische Gerät, das die Herstellung des sekundären logischen Kommunikationskanals auf dem über den Kommunikationsabschnitt hergestellten primären logischen Kommunikationskanal angefragt hat, die Unterscheidungsinformation über das elektronische Gerät, Unterscheidungsinformation (etwa Adresse an der Signalübertragungsleitung) über den Kommunikationsabschnitt, Unterscheidungsinformation (logische Nummer oder logische Adresse) über den Steuerabschnitt und als Herstellungsabschlußinformation an dem elektronischen Gerät, das zur Herstellung des sekundären logischen Kommunikationskanals angefragt worden ist, die Unterscheidungsinformation (logische Nummer oder logische Adresse) über einen oder mehrere der durch den Steuerabschnitt eines anderen elektronischen Geräts besetzten Steuerabschnitte zu enthalten.
- 4. Elektronisches Gerät nach Anspruch 1, bei dem der Kommunikationsabschnitt des elektronischen Geräts, das zur Herstellung des sekundären logischen Kommunikationskanals angefragt worden ist, ausgelegt ist, als Information über das elektronische Gerät, das zur Herstellung des sekundären logischen Kommunikationskanals auf dem über den Kommunikationsabschnitt hergestellten primären logischen Kommunikationskanal angefragt - worden ist, die Unterscheidungsinformation über das elektronische Gerät, Unterscheidungsinformation (etwa Adresse an der Signalübertragungsleitung) über den Kommunikationsabschnitt, Unterscheidungsinformation (logische Nummer oder logisch Adresse) über den Steuerabschnitt zu überwachen und zu halten, und jeder der Steuerabschnitte des elektronischen Geräts, das zur Herstellung des sekundären logischen Kommunikationskanals angefragt worden ist, ausgelegt ist, als Herstellungsabschlußinformation an dem elektronischen Gerät, das zur Herstellung des sekundaren logischen Kommunikationskanals angefragt worden ist, die Information darüber zu überwachen und zu halten, ob es irgend einen durch den Steuerabschnitt eines anderen elektronischen Geräts besetzten Steuerabschnitt gibt.

- Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 1, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 2, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 3, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 4, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- Elektronisches Gerät (4, 5, 6) mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung in einem Kommunikationssystem mit zumindest zwei mit einer vordefinierten Signalübertragungsleitung (1) verbundenen elektronischen Geräten, wobei: jedes der elektronischen Geräte aufweist

einen Kommunikationsabschnitt (7-9) auf Gerätniveau zum Senden/Empfangen einer Nachricht und

einen Steuerabschnitt (10-16) auf Sub-Gerätniveau mit einer Funktion zum Verarbeiten und Ausführen des in einem Datenfeld eines Datenpakets der Nachricht beschriebenen Informationsinhalts, und

wobei der Kommunikationsabschnitt und der Steuerabschnitt jeweils eine Einrichtung zum Übertragen im wesentlichen der ganzen oder eines Teils der Nachricht zwischen dem Kommunikationsabschnitt und dem Steuerabschnitt innerhalb desselben elektronischen Geräts aufweisen; und wobei

zum Übertragen der Nachricht von dem elektronischen Gerät auf der Sendeseite zu dem elektronischen Gerät auf der Empfangsseite durch Herstellen eines logischen Kommunikationskanals dazwischen

jeder der Steuerabschnitte ausgelegt ist, eine Kommunikationssteuerfunktion zum Herstellen

25

oder Auflösen eines sekundären logischen Kommunikationskanals (2.5-2.7) auf Sub-Gerätniveau zwischen den Steuerabschnitten des sendeseitigen elektronischen Geräts und des empfangsseitigen elektronischen Geräts, ohne Herstellung eines primären logischen Kommunikationskanals zwischen den Kommunikationsabschnitten des sendeseitigen elektronischen Geräts und des empfangsseitigen elektronischen Geräts, aufzuweisen; wodurch

die Herstellung/das Auflösen des sekundären logischen Kommunikationskanals durchgeführt wird zum Übertragen von Daten oder Befehlen zwischen den Steuerabschnitten, und 15 wenn der Kommunikationsabschnitt ausgelegt ist zum Wiederholen des Inhalts der über die Signalübertragungsleitung von dem mit dem Kommunikationsabschnitt verbundenen Steuerabschnitt aus übertragenen Nachricht, der Kommunikationsabschnitt ausgelegt ist zum, transparenten Übertragen des Inhalts der Nachricht ohne Auferlegen einer Einschränkung bezüglich des Inhalts eines Datenfeldes der Nachricht.

- 10. Elektronisches Gerät nach Anspruch 9, bei dem, wenn der Steuerabschnitt des elektronischen Geräts, das zur Herstellung des sekundären logischen Kommunikationskanals angefragt worden ist, dazu ausgelegt ist, bereits einen weiteren sekundaren logischen Kommunikationskanal hergestellt zu haben, eine Herstellungszurückweisungsantwort zu dem Steuerabschnitt des elektronischen Geräts. das die Herstellung des sekundären logischen 35 Kommunikationskanals angefragt hat, zurückgeschickt wird.
- 11. Elektronisches Gerät nach Anspruch 9, bei dem, wenn einer der Steuerabschnitte eines ersten elektronischen Geräts, das ausgelegt ist zum Anfragen der Herstellung des sekundären logischen Kommunikationskanals, eine Mehrzahl von Steuerabschnitten eines zweiten elektronischen Geräts, das zur Herstellung des sekundären logischen Kommu- 45 nikationskanals angefragt wird, bezeichnet, der eine der Steuerabschnitte ausgelegt ist zum Beschreiben und Bezeichnen der Mehrzahl von Steuerabschnitten gleichzeitig mit der Herausgabe einer einzigen Herstellungsanfrage durch den einen der Steuerabschnitte.
- 12. Elektronisches Gerät nach Anspruch 9, bei dem, wenn der Steuerabschnitt des elektronischen Geräts, das die Herstellung des sekundären logischen Kommunikationskanals angefragt hat, ausgelegt ist, noch einen weiteren sekundären logischen Kommunikationskanal herzustellen, der mit dem

Steuerabschnitt, der die Herstellungsanfrage empfängt, verbundene Kommunikationsabschnitt ausgelegt ist zum Bestimmen, ob zu dem Steuerabschnitt des elektronischen Geräts, das die Herstellung des sekundären logischen Kommunikationskanals angefragt hat, eine Herstellungszurückweisungsantwort zurückgeschickt wird oder nicht.

13. Elektronisches Gerät nach Anspruch 9, bei dem, wenn der Steuerabschnitt des elektronischen Geräts, das zur Herstellung des sekundären logischen Kommunikationskanals angefragt worden ist, ausgelegt ist, bereits einen weiteren sekundären logischen Kommunikationskanal hergestellt zu haben, der mit dem Steuerabschnitt, der die Herstellungsanfrage empfangen hat,

> verbundene Kommunikationsabschnitt ausgelegt ist zum Halten der Herstellungsinformation (Herstellungsabschluß/Nicht-Herstellung) über jeden der Steuerabschnitte an dem sekundären logischen Kommunikationskanal, die erforderlich ist zum Bestimmen, ob eine Herstellungszurückweisungsantwort zu dem Steuerabschnitt des elektronischen Geräts, das die Herstellung des

> sekundären logischen Kommunikationskanals angefragt hat, zurückgeschickt wird oder nicht, oder in dem Fall, daß der weitere sekundäre logische Kommunikationskanal nicht mehr hergestellt ist, ausgelegt ist zum Halten der zusätzlichen Information über das elektronische Gerät zusammen mit der Herstellungsinforma-

- 14. Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 9, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- 15. Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 10, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- 16. Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 11, die mit einer gemeinsamen Signalübertragungsleitung verbunden sind.
- 17. Kommunikationssystem mit einer Mehrzahl der elektronischen Geräte mit einer Kommunikationsfunktion vom Typ mit ausschließlicher Steuerung gemäß Anspruch 12, die mit einer gemeinsamen Si-

50

gnalübertragungsleitung verbunden sind.

18. Kommunikationssystem mit einer Mehrzahl der elektronischen Ger\u00e4te mit einer Kommunikationsfunktion vom Typ mit ausschlie\u00dflicher Steuerung gem\u00e4\u00dfl Anspruch 13, die mit einer gemeinsamen Signal\u00fcbertragungsleitung verbunden sind.

Revendications

 Dispositif électronique (4, 5, 6) comportant un type de commande exclusive d'une fonction de communication dans un système de communication ayant au moins deux dispositifs électroniques connectés à une ligne de transmission de signal prédéfinie (1), comprenant:

> une section de communication (7, 8, 9) pour émettre ou recevoir un message, ladite section 20 de communication comportant une fonction de commande de communication pour établir ou libérer un canal de communication logique primaire (2, 3) entre des sections de communication des dispositifs électroniques respectifs au 25 côté émission et au côté réception; et des sections de commande (10 à 16) de sousdispositifs respectifs inclus dans ledit dispositif électronique, chacune desdites sections de commande comportant une fonction pour traiter et exécuter les contenus des informations décrites dans des zones de données dudit message et chacune desdites sections de commande comportant une fonction de commande de communication pour établir ou libérer un ca- 35 nal de communication logique secondaire (2.1 à 2.4) entre des sections de commande des dispositifs électroniques respectifs au côté émission et au côté réception; dans lequel ladite section de communication et 40 ladite section de commande incluent chacune un moyen pour transférer sensiblement la totalité ou une partie dudit message entre ladite section de communication et ladite section de commande à l'intérieur du même dispositif 45 électronique.

2. Dispositif électronique selon la revendication 1, dans lequel l'une quelconque desdites sections de commande d'un premier dispositif électronique qui demande un établissement dudit canal de communication logique secondaire est conçue pour désigner, dans une seule demande d'établissement, une pluralité de sections de commande des seconds dispositifs électroniques qui doivent être connectées au même canal de communication logique secondaire.

- Dispositif électronique selon la revendication 1, dans lequel ladite section de communication dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire est conçu pour avoir comme informations sur ledit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire sur ledit canal de communication logique primaire établi via ladite section de communication, des informations de discrimination concemant ledit dispositif électronique, des informations de discrimination (telles qu'adresse sur ladite ligne de transmission de signal) concernant ladite section de communication, des informations de discrimination (numéro logique ou adresse logique) concernant ladite section de commande et comme informations d'achèvement d'établissement au niveau dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire, des informations de discrimination (numéro logique ou adresse logique) concernant une ou plusieurs desdites sections de commande occupées par ladite section de commande d'un autre dispositif électronique.
- 4. Dispositif électronique selon la revendication 1, dans lequel ladite section de communication dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire est conçu pour superviser et conserver, comme informations concernant ledit dispositif électronique auguel qui on a demandé d'établir ledit canal de communication logique secondaire sur ledit canal de communication logique primaire établi via ladite section de communication, des informations de discrimination concernant ledit dispositif électronique, des informations de discrimination (telles qu'adresse sur ladite ligne de transmission de signal) concernant ladite section de communication, des informations de discrimination (numéro logique ou adresse logique) concernant ladite section de commande et chacune desdites sections de commande, dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire est conçu pour superviser et conserver, comme informations d'achèvement d'établissement au niveau dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire, des informations concernant le fait qu'il existe une section de commande quelconque qui est occupée par ladite section de commande d'un autre dispositif électronique.
- 5. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 1, et connectés à une ligne de transmission de signal commune.

55

- 6. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 2, et connectés à une ligne de transmission de signal commune.
- 7. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 3 et connectés à une ligne de transmission de signal commune.
- 8. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 4, et connectés à une ligne de transmission de signal commune.
- 9. Dispositif électronique (4, 5, 6) comportant un type de commande exclusive de fonction de communication dans un système de communication ayant au moins deux dispositifs électroniques connectés à une ligne de transmission de signal prédéfinie (1), dans lequel :

chacun desdits dispositifs électroniques comprend

une section de communication (7 à 9) de niveau dispositif pour émettre/recevoir un message, et une section de commande (10 à 16) de niveau sous-dispositif ayant une fonction pour traiter et exécuter les contenus des informations décrites dans une zone de données d'une trame dudit message, et

ladite section de communication et ladite section, de commande incluant chacune un moyen pour transférer sensiblement la totalité ou une partie dudit message entre ladite section de communication et ladite section de commande à l'intérieur du même dispositif électronique ; et dans lequel

pour transférer ledit message à partir dudit dispositif électronique au côté émission audit dispositif électronique au côté réception en établissant un canal de communication logique entre ceux-ci,

chaque dite section de commande est conçue pour avoir une fonction de commande de communication pour établir ou libérer un canal de communication logique secondaire (2.5 à 2.7) au niveau sous-dispositif entre lesdites sections de commande dudit dispositif électronique côté émission et dudit dispositif électronique côté réception, sans établir un canal de communication logique primaire entre lesdites sections de communication dudit dispositif électronique côté émission et dudit dispositif électronique côté réception; d'où il résulte que

l'établissement/libération dudit canal de communication logique secondaire est exécuté pour transférer des données ou des ordres entre desdites sections de commande, et lorsque ladite section de communication est conçue pour répéter les contenus dudit message transféré via ladite ligne de transmission de signal à partir de la section de commande connectée à ladite section de communication, ladite section de communication est conçue pour transférer de manière transparente lesdits contenus des messages sans imposer aucune restriction sur les contenus d'une zone de données dudit message.

- 10. Dispositif électronique selon la revendication 9, dans lequel si ladite section de commande dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire est conçue pour avoir déjà un autre canal de communication logique secondaire établi, une réponse de réjection d'établissement est renvoyée à ladite section de commande dudit dispositif électronique qui a demandé d'établir ledit canal de communication logique secondaire.
- 11. Dispositif électronique selon la revendication 9, dans lequel lorsqu'une desdites sections de commande d'un premier dispositif électronique qui est conçue pour demander l'établissement dudit canal de communication logique secondaire désigne une pluralité de sections de commande d'un second dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire, ladite section parmi lesdites sections de commande est conçue pour décrire et désigner ladite pluralité de sections de commande au même instant lorsqu'une seule demande d'établissement est sortie par ladite section parmi lesdites sections de commande.
- 12. Dispositif électronique selon la revendication 9, dans lequel si ladite section de commande dudit dispositif électronique auquel on a demandé d'établir ledit canal de communication logique secondaire est conçue pour avoir déjà un autre canal de communication logique secondaire établi, ladite section de communication connectée à ladite section de commande qui a reçu ladite demande d'établissement est conçue pour déterminer si oui ou non une réponse de réjection d'établissement est renvoyée à ladite section de commande dudit dispositif électronique qui a demandé d'établir ledit canal de communication logique secondaire.
- Dispositif électronique selon la revendication 9, dans lequel si ladite section de commande dudit dispositif électronique auquel on a demandé d'éta-

blir ledit canal de communication logique secondaire est conçue pour avoir déjà un autre canal de communication logique secondaire établi, ladite section de communication connectée à ladite section de commande qui a reçu ladite demande d'établissement est conçue pour conserver les informations d'établissement (achèvement d'établissement/non-établi) concernant chacune desdites sections de commande au niveau dudit canal de communication logique secondaire nécessaire pour déterminer si oui ou non une réponse de réjection d'établissement est renvoyée à ladite section de commande dudit dispositif électronique qui a demandé d'établir ledit canal de communication logique secondaire, ou dans le cas où ledit autre canal de communication logique secondaire n'est pas encore établi, est conçue pour conserver les informations supplémentaires concernant ledit dispositif électronique associées auxdites informations d'établissement.

14. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 9, et connectés à 25 une ligne de transmission de signal commune.

15. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de com- 30 munication selon la revendication 10, et connectés à une ligne de transmission de signal commune.

16. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un 35 type de commande exclusive de fonction de communication selon la revendication 11, et connectés à une ligne de transmission de signal commune.

17. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 12, et connectés à une ligne de transmission de signal commune.

18. Système de communication comportant une pluralité dedits dispositifs électroniques comportant un type de commande exclusive de fonction de communication selon la revendication 13, et connectés à une ligne de transmission de signal commune.

F I G. 4 A

TRANSMISSION PROCEDURE

START

A CONTROL SECTION OF A TRANSMISSION SIDE ELECTRONIC DEVICE REQUESTS ITS COMMUNICATION SECTION TO ESTABLISH A SECONDARY LOGICAL COMMUNICATION CHANNEL TO ONE OR MORE CONTROL SECTIONS OF A RECEPTION SIDE ELECTRONIC DEVICE VIA THE COMMUNICATION SECTION OF THE RECEPTION SIDE ELECTRONIC DEVICE.

THE COMMUNICATION SECTION OF THE TRANSMISSION SIDE ELECTRONIC DEVICE DESCRIBES THE INFORMATION ON THE COMMUNICATION SECTION AND ONE OR MORE CONTROL SECTIONS OF THE RECEPTION SIDE ELECTRONIC DEVICE TO BE DESIGNATED BY THE ESTABLISHMENT REQUEST, AND STORED IT IN THE SECONDARY LOGICAL INFORMATION FIELD OF A TRANSMISSION FRAME.

AFTER ASSEMBLING A SECONDARY LOGICAL COMMUNICATION CHANNEL ESTABLISHMENT MESSAGE (SLRQ) AND DESIGNATING "WRITING CIMMAND WITH A LOCK DESIGNATION" IN CB FIELD. THE MESSAGE IS TRANSMITTED WHILE DESIGNATING THE COMMUNICATION SECTION OF THE RECEPTION SIDE ELECTRONIC DEVICE AND SETTING SA FIELD.

FIG. 4B

AT THE TRANSFER REQUEST. THE CONTROL SECTION SENDS A TRANSFERING MESSAGE CONTENT TO THE COMMUNICATION SECTION. AND A SECONDARY LOGICAL COMMUNICATION CHANNEL TRANSFER MESSAGE (SLTF) IS SENT TO ONE OR MORE CONTROL SECTIONS OF THE RECEPTION SIDE ELECTRONIC DEVICE VIA THE ESTABLISHED SECONDARY LOGICAL COMMUNICATION AND THE COMMUNICATION SECTION OF THE RECEPTION SIDE ELECTRONIC DEVICE. THE INFORMATION DESIGNATING THE CONTROL SECTIONS OF THE RECEPTION SIDE ELECTRONIC DEVICE AND ONE OR MORE CONTROL SECTIONS OF THE RECEPTION SIDE ELECTRONIC DEVICE(I.E., CONTROL SECTIONS AT OPPOSITE ENDS OF THE ESTABLISHED SECONDARY LOGICAL COMMUNICATION CHANNEL) IS DESCRIBED IN THE SECONDARY LOGICAL FIELD OF SLTF.

REQUEST FROM THE CONTROL SECTION IS PRESENT ?

PRESENT

ABSENT

THE CONTROL SECTION REQUESTS THE COMMUNICATION SECTION TO RELEASE THE SECONDARY LOGICAL COMMUNICATION CHANNEL.

THE COMMUNICATION SECTION DESCRIBES THE INFORMATION DESIGNATING THE CONTROL SECTION AND ONE OR MORE CONTROL SECTIONS BETWEEN WHICH THE SECONDARY LOGICAL COMMUNICATION CHANNEL WAS ESTABLISHED AND IS NOW REQUESTED TO BE RELEASED.

F | G . 4 C

FIG. 5 A START TRANSMISSION) PROCEDURE

UPON RECEPTION OF AN ESTABLISHMENT NOTICE BY A CONTROL SECTION. THE ESTABLISHMENT NOTICE IS ABORTED IF THE SECONDARY LOGICAL COMMUNICATION CHANNEL HAS ALREADY BEEN ESTABLISHED AT THE CONTROL SECTION. OR IF NOT AN ESTABLISHMENT RESPONESE IS RETURNED. THE INFORMATION ON ANOTHER CONTROL SECTION WHICH REQUESTED TO ESTABLISH THE SECONDARY LOGICAL COMMUNICATION CHANNEL DESIGNATED BY THE ESTABLISHMENT NOTICE IS TEMPORARILY STORED IN BOTH CASES. AND IN THE LATTER CASE THE SECONDARY LOGICAL COMMUNICATION CHANNEL IS ESTABLISHED.

THE INFORMATION ON THE CONTROL SECTION AND OTHER CONTROL SECTION DESIGNATED BY THE ESTABLISHMENT NOTICE IS DESCRIBED BY THE CONTROL SECTION AT THE SECONDARY LOGICAL INFORMATION FIELD TO ASSEMBLE A SECONDARY LOGICAL COMMUNICATION CHANNEL ESTABLISHMENT RESPONSE MESSAGE (SLRP) WHICH IS PASSED TO THE COMMUNICATION SECTION. AND AFTER DESIGNATING "WRITING COMMAND WITH A LOCK DESIGNATION" AT CB FIELD. THE MESSAGE IS TRANSMITTED TO THE OTHER COMMUNICATION SECTION.

THE CONTROL SECTION ENTERS IN A STATE CAPABLE OF RECE-IVING A TRANSFER NOTICE OR RELEASE NOTICE FROM THE COMMUNICATION SECTION.

Α

FIG. 5B

F | G. 5 C

UPON RECEPTION OF THE RELEASE NOTICE BY THE CONTROL SECTION, IF THE PRESENTLY ESTABLISHED SECONDARY LOGICAL COMMUNICATION CHANNEL IS BEING DESIGNATED IN THE DESIGNATED SECONDARY LOGICAL INFORMATION FIELD. THE CONTROL SECTION CLEARS THE INFORMATION ON THE ESTABLISHED SECONDARY LOGICAL COMMUNICATION CHANNEL TEMPORARILY STORED THEREIN AND RELEASES THE SECONDARY LOGICAL COMMUNICATION CHANNEL.

THE CONTROL SECTION SENDS TO THE COMMUNICATION SECTION A RELEASE RESPONSE FOR NOTIFYING ANOTHER CONTROL SECTION OF THE TRANSMISSION SIDE ELECTRONIC DEVICE OF A NORMAL RECEPTION OF THE RELEASE NOTICE, WHILE DESIGNATING THE INFORMATION ON THE RELEASED SECONDARY LOGICAL COMMUNICATION CHANNEL.

THE COMMUNICATION SECTION ASSEMBLES A SECONDARY LOGIC-AL COMMUNICATION CHANNEL RELEASE RESPONSE MESSAGE (SLRP) AND SENDS IT BACK TO THE TRANSMISSION SIDE ELECTRONIC DEVICE, WHILE DESCRIBING THE INFORMATION ON THE RELEASED SECONDARY LOGICAL COMMUNICATION CHANNEL AT THE SECONDARY LOGICAL INFORMATION FIELD OF SLRP.

П О.

F 1 G. 8

ABBREV!ATED SYMBOL	RSS - RSS+1 RD+1 - - RSS+u1 RSS+u1	- WC+ & WD+ & WC+ u & WD+ u & WD+ u &
LOCKING	NO LOCK LOCK LOCK NO LOCK NO LOCK LOCK RELEASE LOCK RELEASE	LOCK LOCK LOCK LOCK LOCK LOCK LOCK RELEASE LOCK RELEASE
OPERATION CONTENTS	READ SLAVE STATUS reserved READ SLAVE STATUS READ DATA READ LOCK ADDRESS (H) READ LOCK STATUS READ SLAVE STATUS READ DATA	WRITE MEMORY ADDRESS reserved WRITE DATA reserved reserved WRITE COMMAND
MESSAGE DATA DIRECTION	READ	WRITE V
CB VALUE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

F I G. 9

RSS+L : READ SLAVE STATUS+LOCK

RSS+UL: READ SLAVE STATUS+UNLOCK

F I G. 10

35

F I G. 14A

F I G. 14C

F I G. 15A

F I G. 15B

F | G. 15C

П . G. 1 в

] = 1		
ABBREV!ATED SYMBOL	RSS - RSS+E RD+E - - RSS+uE RD+uE	WC+u g WC+u g WC+u g
LOCKING	NO LOCK LOCK LOCK NO LOCK NO LOCK LOCK LOCK LOCK LOCK RELEASE	LOCK LOCK LOCK NO LOCK NO LOCK LOCK LOCK LOCK RELEASE
OPERATION CONTENTS	READ SLAVE STATUS reserved READ SLAVE STATUS READ DATA READ LOCK ADDRESS (M) READ LOCK STATUS READ SLAVE STATUS	WRITE MEMORY ADDRESS reserved WRITE COMMAND WRITE DATA reserved WRITE COMMAND
MESSAGE DATA DIRECTION	READ	ARITE AND
CB VALUE b3 b2 b1 b0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

44

