Арифметика остатков

С++. Введение в теорию чисел. Арифметика остатков

Арифметика остатков

Деление целого числа a на целое число b (b>0) с остатком — это представление a в виде $b\cdot q+r$, где r и q — целые числа, $0\le r< b$. Число q называется неполным частным при делении a на b, а r — остатком при делении a на b.

Например:

a	b	a=b*q+r
37	5	37 = 5*7+2
-12	5	-12 = 5*(-3) + 3

В языках программирования операция взятия остатка при делении a на b, как правило, обозначается знаком %. Операция нахождения неполного частного при делении a на b — это целочисленное деление, оно может обозначаться поразному для различных языков. Используя эти две операции, мы можем выполнять деление с остатком при написании программ.

Важно отметить, что если для целого числа $a \geq 0$ операции деления с остатком на целое число b > 0 в языках программирования выполняются в

точности с данным выше определением, то в случае когда a<0, ситуация сложнее. Например, в языке Python эти операции выполняются в соответствии с нашим определением, а в языке C++ нет. В Python выражение -12%5 равно числу 3, а в C++ это же выражение будет равно числу -2. Чтобы остаток от деления всегда соответствовал данному выше определению, можно отдельно разбирать случай при a<0 или писать выражение для нахождения остатка в виде (a%b+b)%b. А чтобы найти неполное частное, можно вычитать найденный остаток из числа a и после этого результат делить на b.

При этом, в языках программирования разрешено выполнять операции деления с остатком и для b < 0. Но мы не рекомендуем производить деление с остатком на отрицательное число. Всегда можно преобразовать формулы в решении задачи таким образом, чтобы использовать деление с остатком только на положительное целое число.

Пусть дано целое число m>1. Говорят, что a сравнимо с b по модулю m, и пишут $a\equiv b\pmod m$, если $(a-b)\stackrel{.}{:} m$ (a-b) делится нацело на m).

Например:

- $37 \equiv 2 \pmod{5}$
- $37 \equiv 7 \pmod{5}$
- $37 \equiv -3 \pmod{5}$

Для сравнений верны следующие свойства:

- $a \equiv a \pmod{m}$ (рефлексивность)
- $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$ (симметричность)
- ullet $a\equiv b\pmod{m}, b\equiv c\pmod{m} \Rightarrow a\equiv c\pmod{m}$ (транзитивность)

Пусть $a_1 \equiv b_1 \pmod{m}$ и $a_2 \equiv b_2 \pmod{m}$, тогда верны следующие сравнения:

- $\bullet \ a_1 \pm a_2 \equiv b_1 \pm b_2 \ (\mathrm{mod} \ m)$
- $a_1a_2 \equiv b_1b_2 \pmod{m}$
- ullet $a_1^n\equiv b_1^n\pmod m$, где n натуральное число

Рассмотрим некоторое целое число m>1. Любое целое число даёт какой-то остаток при делении на m. В рамках данного подхода будем считать, что числа,

которые дают одинаковый остаток при делении на m,- одинаковы. Тогда получается, что есть лишь конечное число различных чисел. Например, в качестве такого конечного набора остатков можно выбрать целые числа от 0 до m-1. Множество остатков по модулю m в математике принято обозначать через \mathbb{Z}_m . Так как остатков по модулю m конечное число, можно постороить таблицу сложения и умножения для всех возможных пар чисел из \mathbb{Z}_m .

Например, таблица сложения для \mathbb{Z}_4 :

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Или таблица умножения для \mathbb{Z}_5 :

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Из данных таблиц можно сделать вывод о существовании в \mathbb{Z}_m некоторых особых чисел:

- ullet 0 такой элемент, что при прибавлении к нему любого числа результат равен этому числу $0+x\equiv x\pmod m$
- ullet 1 такой элемент, что при умножении его на любое число результат равен этому числу $1 \cdot x \equiv x \pmod{m}$

Обратное число в \mathbb{Z}_m для числа a — такое число a^{-1} , что $a\cdot a^{-1}\equiv 1\pmod m$.

Например:

- $1^{-1} \equiv 1 \pmod{5}$
- $\bullet \ 2^{-1} \equiv 3 \ (\bmod \ 5)$
- $\bullet \ 3^{-1} \equiv 2 \ (\bmod \ 5)$
- $\bullet \ 4^{-1} \equiv 4 \ (\bmod \ 5)$

Если m — простое число, то у любого числа в \mathbb{Z}_m , кроме числа 0, существует обратное.