

O que é uma ESTRUTURA DE DADOS?

ESTRUTURA DE DADOS

CONJUNTO DE DADOS

O que é uma estrutura de dados HOMOGÊNEA?

ESTRUTURA DE DADOS HOMOGÊNEA

CONJUNTO DE DADOS DO MESMO TIPO

Alunos

Rosa

Ana

Pedro

Joana

José

Ana

João

Conjunto de Alunos

Estrutura de dados homogênea

Estrutura de dados do tipo CARACTER

Conjunto de Idades

Estrutura de dados homogênea

Estrutura de dados do tipo INTEIRO

Problema

- Preciso de um software que armazene a idade, em anos, de quatro pessoas:
 - Maria
 - José
 - Pedro
 - Luiza;
- Neste caso, precisamos então criar quatro lugares (caixinhas) na memória para guardar, em cada uma, a idade de uma das pessoas.

Todas as variáveis guardam um conteúdo de mesmo significado e são do mesmo tipo de dados.

Vamos atribuir valores às variáveis criadas:

Variáveis:

- Idade_Maria ← 21
- Idade_Pedro ← 55
- Idade_Jose ← 42
- Idade_Luiza ← 10

Variável Idade Maria

Algoritmo

Início

```
Inteiro:Idade_Maria, Idade_Jose, Idade_Pedro, Idade_Luiza ro
Idade_Maria 21
Idade_Jose 42
Idade_Pedro 55
Idade_Luiza 10
escreva "Idade de Maria: ", Idade_Maria
escreva "Idade de José: ", Idade_Jose
escreva "Idade de Pedro: ", Idade_Pedro
escreva "Idade de Luiza: ", Idade_Pedro
escreva "Idade de Luiza: ", Idade_Luiza
fim
```


Pergunta

- Para guardar 100 idades de 100 pessoas distintas, o que precisamos fazer?
 - Até então, criar 100 variáveis. Uma para cada pessoa.
- E se tivermos que guardar as idades de 1000 pessoas?
- Será que não existe nada mais prático?

O que é estrutura de dados UNIDIMENSIONAL?

ESTRUTURA DE DADOS UNIDIMENSIONAL

CONJUNTO DE DADOS onde cada elemento é identificado por um único índice

ESTRUTURA DE DADOS UNIDIMENSIONAL

VETOR em Computação

Vetor

- Para situações como esta, apresentada anteriormente, foi criada uma estrutura conhecida como VETOR;
- Um vetor nada mais é do que UMA variável com diversas posições (caixinhas) numeradas. Onde pode-se guardar diversos valores (um em cada caixinha) do mesmo tipo.

Variável Idade (Vetor)

Associação

 Deve-se fazer, internamente, uma associação das posições de memória à cada pessoa;

Pessoa	Posição de Armazenagem
Maria	0
Jose	1
Pedro	2
Luiza	3

PSC – Professor Otaviano Silvério

Como isso funciona no Computador?

Como se faz isso no Algoritmo?

Faça um algoritmo para ler o nome e a idade de 7 Alunos.

```
Algoritmo ExemploEstruturaUnidimensional
N = 7; {Declaração da constante N com o valor 7}
Nomes: vetor [1..N] de Caracter; {Declaração do tipo TNomes}
Idades: vetor [1..N] de Inteiro; {Declaração do tipo Tidade}
i:Inteiro; {Declaração da variável contadora do laço para}
Início
Para i←1 até N faça {Laço para ler os 7 nomes e idades dos Alunos}
  Escreva ("Informe nome e idade do Aluno ", i);
  Leia (Nomes[i], Idades[i]);
Fim Para;
Escreva (Nomes[5], Idades[5]); {escreve o nome e idade do funcionário 5}
FIM.
```

Vetores em Java

- Declaração
 - int c[];
- Vetor em Java é um objeto, então deve ser instanciado

```
c = new int[10];
```

Declarando e criando

```
int c[] = new int [10];
```

Vetores em Java

Outros exemplos:

```
string nomes[] = new String [ 100 ];
double notas[] = new double [ 150 ];
```

Iniciando vetores com valores

Janeiro Fevereiro Dezembro

Vetores em Java

Lendo e imprimindo um vetor de tamanho 5:

```
Retorna o
public class Vetor {
                                   tamanho do vetor
  public static void main(String) arg
     int vet[] = new int[5];
     Scanner input = new Scant (System.in);
     for (int i = 0; i < \text{vet.length}; i++)
        System.out.format("Digite o elemento %d do vetor: ", i);
        vet[i] = input.nextInt();
     System.out.println("Imprimindo o vetor...");
     for (int i = 0; i < \text{vet.length}; i++)
        System.out.println(vet[i]);
```

Vetores

Ler um vetor de 5 posições, e em seguida, a soma de seus elementos:

```
public class Vetor {
  public static void main(String[] args) {
     int vet[] = new int[5];
     int soma = 0;
     Scanner input = new Scanner(System.in);
     for (int i = 0; i < \text{vet.length}; i++)
       System.out.format("Digite o elemento %d do vetor: ", i);
       vet[i] = input.nextInt();
        soma += vet[i];
     System.out.format("\nSoma dos elementos do vetor: %d\n", soma);
```

Exemplo

Ler um vetor de inteiros de 5 posições e imprimir este vetor em ordem inversa

```
public class Vetor {
  public static void main(String[] args) {
     int vet[] = new int[5];
     Scanner input = new Scanner(System.in);
     for (int i = 0; i < \text{vet.length}; i++)
        System.out.format("Digite o elemento %d do vetor: ", i);
        vet[i] = input.nextInt();
     System.out.println("Imprimindo o vetor em ordem inversa...");
     for (int i = \text{vet.length-1}; i \ge 0; i--)
         System.out.format("%d \t", vet[i]);
```


- Declaração de vetores
- Semântica:
 - São estruturas de dados homogêneas unidimensionais que permitem agrupar diversas informações dentro de uma variável.
 - Estas correspondem a um grupo de posições contínuas na memória que possuem o mesmo nome e o mesmo tipo de dado e são acessadas por um ÚNICO índice.
 - Seu tamanho é definido por constantes inteiras e positivas e a definição do seu nome segue as mesmas regras aplicadas para identificadores.

Note I

Os vetores **Nomes** e **Idades** têm 7 posições cada. Isto é, cada um equivale a 7 variáveis de mesmo nome, só distinguíveis pelos seus índices. Ou seja, os dois vetores juntos equivalem a criar 14 variáveis, só que é menos trabalhoso!

E se aumentar de 7 para 700 Alunos?

Algoritmo ExemploEstruturaUnidimensional

```
N = 700; {é só alterar o valor da constante, que N muda automaticamente!}

Nomes : vetor [N] de Caracter;

Idades : vetor [N] de Inteiro;

i:Inteiro;

Início

Para i←1 até N faça

Escreva ("Informe nome e idade do funcionário ", i);

Leia (Nomes[i], Idades[i]);

Fim Para;

Escreva (Nomes[5], Idades[5]);

FIM.
```


Note II

Resolver o problema anterior sem vetores implicaria o árduo trabalho de ter que declarar e manipular 700 variáveis!

Por isso, a solução de certos problemas só é viável usando estruturas de dados!

Note III

Não é possível operar com todos os elementos do vetor de uma só vez. Por isso, o correto é acessar cada um de seus elementos isoladamente.

Note IV

O acesso a cada elemento de um vetor é feito pela manipulação do seu índice entre [colchetes]!


```
EX: Algoritmo ExemploUsoDeVetor
    {Calcular a média de 10 idades e exibir aquelas acima da média}
    N = 10;
    Idade : vetor [N] de Inteiro;
    Inteiro: i, soma ; Real : media ;
    Inicio
    soma \leftarrow 0;
    Para i←1 até N faça
       Escreva ("informe a idade", i);
Leia (idade [ i ]);
soma ← soma + idade[ i ];

[Laço para ler e somar as N nota
                                            somar as N notas}
    Fim Para;
    media \leftarrow soma / n;
    Para i←1 até n faça
        Se (idade [ i ] > media) Então
                                            {Laço para exibir as notas que
                                               são maiores que a média}
          Escreva (idade[ i ]);
    Fim Para
```


O que é estrutura de dados MULTIDIMENSIONAL?

ESTRUTURA DE DADOS MULTIDIMENSIONAL

CONJUNTO DE DADOS onde cada elemento é identificado por MAIS de um índice

ESTRUTURA DE DADOS MULTIDIMENSIONAL

MATRIZ em Computação

Como isso funciona no Computador?

Memória RAM

Estrutura de Dados Notas

İndices Multidimensionais Índices Multidimensionais [3] [4] [5] [1] 8,0 7,5 5,0 8,5 9,0 [2] 6,5 8,5 8,0 10,0 7,0 [3] 8,5 4,5 8,0 7,0 7,0 9,0 6,5 8,5 9,0 9,0 [5] 9,0 8,5 9,0 10,0 8,0 [6] 5,0 7,5 6,5 9,0 8,5 9,5 8,0 [7] 10,0 9,0

notas[5,1] = 10,0

Como se faz isso no Algoritmo?

Faça um algoritmo para ler as notas de 7 alunos em 5 disciplinas Algoritmo ExemploEstruturaMultidimensional Alunos = 7; Disciplinas = 5; {Constantes alunos e disciplina} notas = matriz [1..Alunos, 1..Disciplinas] de Real; {Tipo TNotas} Inteiro: a, d; {Variáveis contadoras dos laços paras} Início Para a←1 até Alunos faça {Laço para percorrer o índice de alunos} Para d←1 até Disciplinas faça{Laço para percorrer o índice de disciplinas} Escreva ("Informe a nota do aluno ", a, " na disciplina ", d); Leia (notas[a,d]); Fim Para; Fim Para; Escreva (notas[5,1]); {escreve a nota do aluno 5 na disciplina 1} FIM.

- Declaração de Matrizes
- Sintaxe:

```
{declaração do tipo matriz}
<TIdentificador> = matriz [início1 .. fim1, . . . , inícioN .. fimN,] de <tipo
  primitivo>;
{declaração da variável do tipo matriz}
<TIdentificador>: <identificador1>, ..., <identificador1>;
ONDE:
Tldentificador = nome da variavel a ser criada.
matriz = palavra reservada para indicar que o tipo criado é uma matriz.
início/fim = índices iniciais e finais das dimensões da matriz.
```

Algoritmo Matriz

Exemplo:

Caractere: m[3][5];

Estrutura que se forma :

	0	1	2	3	4
0					
1			2 8		
2					

Para acessar cada elemento da matriz:

```
Leia (m[1][1]);

m[1][2] \leftarrow 'X';

escreva(m[1][3]);
```


- Declaração de Matrizes
- Semântica:
 - São estruturas de dados homogêneas multidimensionais que permitem agrupar diversas informações dentro de uma variável.
 - Estas correspondem a um grupo de posições contínuas na memória que possuem o mesmo nome e o mesmo tipo de dado e são acessadas por MAIS DE UM índice.
 - Seu tamanho é definido por constantes inteiras e positivas e a definição do seu nome segue as mesmas regras aplicadas para identificadores.

Note V

A matriz notas ocupa 35 posições de memória (notas de 7 alunos X 5 disciplinas = criar 35 variáveis).

Ressalta-se que a matriz nota não armazena nome de aluno ou disciplina.

Somente Notas!

E se aumentar de 7 para 700 alunos e de 5 para 50 disciplinas?


```
Algoritmo ExemploEstruturaMultidimensional
Alunos = 700; Disciplinas = 50; {é só alterar o valor de alunos e disciplinas!}
TNotas = matriz [1..Alunos, 1..Disciplinas] de Real;
Inteiro: a, d;
Início
Para a←1 até Alunos faça
  Para d←1 até Disciplinas faça
     Escreva ("Informe a nota do aluno ", a, " na disciplina ", d);
     Leia (notas[a,d]);
  Fim Para;
Fim Para;
Escreva (notas[5,1]);
```

FIM.

E se acrescentar uma nova dimensão?

Notas por 7 Alunos, 5 Disciplinas e 10 Cursos?


```
Algoritmo ExemploEstruturaMultidimensional
Alunos = 7; Disciplinas = 5; Cursos = 10;
TNotas = matriz [1..Alunos, 1..Disciplinas, 1.. Cursos] de Real;
Inteiro: a, d, C;
Início
Para a←1 até Alunos faça
 Para d←1 até Disciplinas faça
    Para c←1 até Cursos faça
      Escreva ("Informe a nota do aluno", a, "na disciplina", d, "no curso",c);
      Leia (notas[a,d,C]);
   Fim Para;
 Fim Para;
Fim Para;
FIM.
```


Note VI

Cada dimensão da matriz é manipulada por um laço exclusivo. Por isso, ao se adicionar uma nova dimensão, deve-se criar uma nova variável e um novo laço para manipulá-la.

Note VII

Análogo aos vetores, não é possível operar com todos os elementos da matriz de uma só vez.

Por isso, o correto é operar com cada um de seus elementos isoladamente.

Lembre-se: um laço para cada índice!

Note VIII

Por isso, semelhante aos vetores, o acesso a cada elemento de uma matriz é feito pela manipulação dos seus índices entre [colchetes]!


```
Exemplo
nomes [5,1,1] \leftarrow 10,0;
Escreva(notas a,d,c);
Para a ←1 até Alunos faça
 Para d←1 até Disciplinas faça
    Para c←1 até Cursos faça
         Leia (notas a,d,c);
    Fim Para;
 Fim Para;
Fim Para;
```


EX: Algoritmo ExemploUsoDeMatriz {Calcula a média de 10 notas (2 disciplinas) e exibe aquelas acima da média} N = 10; D = 2; {número de elementos da matriz} notaXdis: Matiz [1..N,1..D] de Real; Inteiro: i, j, soma; Real: média; Inicio soma \leftarrow 0; Para I←1 até n faça Fim Para; Fim Para; media \leftarrow soma / (N*D); Para I←1 até n faça Para j←1 até d faça Se (notaXdis [i, j] > média) Então Escreva(notaXdis [i, j]); {Laço para exibir as N notas X D disciplinas que são maiores D disciplinas que são maiores que a média} Fim Para; Fim Para;

Atividade 2

1) Dadas as matrizes A e B abaixo:

Matriz A

X	U	O	
X	D	A	
Е	A	T	
M	N	R	
P	S	Ι	
L	О	Z	
M	X	Е	

Matriz B								

qual será o conteúdo de B depois de executados os seguintes comandos:

```
Para I \leftarrow 1 até 4 faça

Para j \leftarrow 1 até 4 faça

B[j, i] \leftarrow A[i, j];

Fim Para

Fim Para

aux \leftarrow B[1,1];

B[1,1] \leftarrow B[3,7];

B[3,7] \leftarrow aux;

aux \leftarrow B[3,1];

B[3,1] \leftarrow B[1,7];

B[1,7] \leftarrow aux;

aux \leftarrow B[2,2];

B[2,2] \leftarrow B[2,5]

B[2,5] \leftarrow aux;
```


