NATURAL LANGUAGE FOR COMMUNICATION

"Artificial Intelligence: A Modern Approach", Chapter 23

Context Free Grammar

A context-free grammar (CFG) is a 4-tuple $G = (N, \Sigma, R, S)$ where:

- N is a finite set of non-terminal symbols.
- \bullet Σ is a finite set of terminal symbols.
- R is a finite set of rules of the form $X \to Y_1 Y_2 \dots Y_n$, where $X \in N, n \ge 0$, and $Y_i \in (N \cup \Sigma)$ for $i = 1 \dots n$.
- $S \in N$ is a distinguished start symbol.

A Simple CFG - Example

```
\begin{split} N &= \{\text{S, NP, VP, PP, DT, Vi, Vt, NN, IN}\} \\ S &= \text{S} \\ \Sigma &= \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in} \} \end{split}
```

R =

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\longrightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\longrightarrow	sleeps
Vt	\longrightarrow	saw
NN	\rightarrow	man
NN	\longrightarrow	woman
NN	\rightarrow	telescope
NN	\longrightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

N contains a basic set of syntactic categories: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition. The set Σ is the set of possible words in the language.

Left-Most Derivation (Parse Tree)

Given a context-free grammar G, a left-most derivation is a sequence of strings $s_1 \dots s_n$ where

- $s_1 = S$. i.e., s_1 consists of a single element, the start symbol.
- $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only (we write Σ^* to denote the set of all possible strings made up of sequences of words taken from Σ .)
- Each s_i for $i=2\ldots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R.

A string $s \in \Sigma^*$ is said to be in the *language* defined by the CFG, if there is at least one derivation whose yield is s.

Parse Tree - Example

- $s_1 = S$.
- $s_2 = NP$ VP. (We have taken the left-most non-terminal in s_1 , namely S, and chosen the rule S \rightarrow NP VP, thereby replacing S by NP followed by VP.)
- $s_3 = \text{DT}$ NN VP. (We have used the rule NP \rightarrow DT NN to expand the left-most non-terminal, namely NP.)
- $s_4 =$ the NN VP. (We have used the rule DT \rightarrow the.)
- $s_5 =$ the man VP. (We have used the rule NN \rightarrow man.)
- ullet $s_6=$ the man Vi. (We have used the rule VP o Vi.)
- ullet $s_7 = ext{the man sleeps.}$ (We have used the rule Vi o sleeps.)

Ambiguity

Probabilistic Context-Free Grammars

- \mathcal{T}_G is the set of all possible left-most derivations (parse trees) under the grammar G. When the grammar G is clear from context we will often write this as simply \mathcal{T} .
- For any derivation $t \in \mathcal{T}_G$, we write yield(t) to denote the string $s \in \Sigma^*$ that is the yield of t (i.e., yield(t) is the sequence of words in t).
- For a given sentence $s \in \Sigma^*$, we write $\mathcal{T}_G(s)$ to refer to the set

$$\{t: t \in \mathcal{T}_G, \mathsf{yield}(t) = s\}$$

That is, $\mathcal{T}_G(s)$ is the set of possible parse trees for s.

- We say that a sentence s is *ambiguous* if it has more than one parse tree, i.e., $|\mathcal{T}_G(s)| > 1$.
- We say that a sentence s is grammatical if it has at least one parse tree, i.e., $|\mathcal{T}_G(s)| > 0$.

Probabilistic Context-Free Grammars

The key idea in probabilistic context-free grammars is to extend our definition to give a probability distribution over possible derivations. That is, we will find a way to define a distribution over parse trees, p(t), such that for any $t \in \mathcal{T}_G$,

$$p(t) \ge 0$$

and in addition such that

$$\sum_{t \in \mathcal{T}_G} p(t) = 1$$

Probabilistic Context-Free Grammars

Why is this a useful problem? A crucial idea is that once we have a function p(t), we have a ranking over possible parses for any sentence in order of probability. In particular, given a sentence s, we can return

$$rg \max_{t \in \mathcal{T}_G(s)} p(t)$$

as the output from our parser—this is the most likely parse tree for s under the model. Thus if our distribution p(t) is a good model for the probability of different parse trees in our language, we will have an effective way of dealing with ambiguity.

PCFG (Definition)

- 1. A context-free grammar $G = (N, \Sigma, S, R)$.
- 2. A parameter

$$q(\alpha \rightarrow \beta)$$

for each rule $\alpha \to \beta \in R$. The parameter $q(\alpha \to \beta)$ can be interpreted as the conditional probabilty of choosing rule $\alpha \to \beta$ in a left-most derivation, given that the non-terminal being expanded is α . For any $X \in N$, we have the constraint

$$\sum_{\alpha \to \beta \in R: \alpha = X} q(\alpha \to \beta) = 1$$

In addition we have $q(\alpha \to \beta) \ge 0$ for any $\alpha \to \beta \in R$.

Given a parse-tree $t \in T_G$ containing rules $\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$, the probability of t under the PCFG is

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

PCFG- Example

 $N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$

S = S

 $\Sigma = \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in}\}\$

R, q	q =
------	-----

S	\rightarrow	NP	VP	1.0
VP	\rightarrow	Vi		0.3
VP	\rightarrow	Vt	NP	0.5
VP	\longrightarrow	VP	PP	0.2
NP	\rightarrow	DT	NN	0.8
NP	\longrightarrow	NP	PP	0.2
PP	\rightarrow	IN	NP	1.0

Vi	\rightarrow	sleeps	1.0
Vt	\longrightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\longrightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\longrightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4

$$\sum_{\alpha \to \beta \in R: \alpha = \text{VP}} q(\alpha \to \beta) = q(\text{VP} \to \text{Vi}) + q(\text{VP} \to \text{Vt NP}) + q(\text{VP} \to \text{VP PP})$$

$$= 0.3 + 0.5 + 0.2$$

$$= 1.0$$

PCFG- Example

$$\begin{array}{ll} p(t) &=& q(\mathtt{S} \to \mathtt{NP} \ \mathtt{VP}) \times q(\mathtt{NP} \to \mathtt{DT} \ \mathtt{NN}) \times q(\mathtt{DT} \to \mathtt{the}) \times q(\mathtt{NN} \to \mathtt{dog}) \times \\ & & q(\mathtt{VP} \to \mathtt{Vi}) \times q(\mathtt{Vi} \to \mathtt{sleeps}) \end{array}$$

PCFG - Generate Parse Trees

Intuitively, PCFGs make the assumption that parse trees are generated stochastically, according to the following process:

- Define $s_1 = S, i = 1$.
- While s_i contains at least one non-terminal:
 - Find the left-most non-terminal in s_i , call this X.
 - Choose one of the rules of the form $X \to \beta$ from the distribution $q(X \to \beta)$.
 - Create s_{i+1} by replacing the left-most X in s_i by β .
 - Set i = i + 1.

Deriving a PCFG from a Corpus

Having defined PCFGs, the next question is the following: how do we derive a PCFG from a corpus? We will assume a set of training data, which is simply a set of parse trees t_1, t_2, \ldots, t_m . As before, we will write $yield(t_i)$ to be the yield for the *i*'th parse tree in the sentence, i.e., $yield(t_i)$ is the *i*'th sentence in the corpus.

Each parse tree t_i is a sequence of context-free rules: we assume that every parse tree in our corpus has the same symbol, S, at its root. We can then define a PCFG (N, Σ, S, R, q) as follows:

Deriving a PCFG from a Corpus

- N is the set of all non-terminals seen in the trees $t_1 \dots t_m$.
- Σ is the set of all words seen in the trees $t_1 \dots t_m$.
- The start symbol S is taken to be S.
- The set of rules R is taken to be the set of all rules $\alpha \to \beta$ seen in the trees $t_1 \dots t_m$.
- The maximum-likelihood parameter estimates are

$$q_{ML}(\alpha \to \beta) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

where $\operatorname{Count}(\alpha \to \beta)$ is the number of times that the rule $\alpha \to \beta$ is seen in the trees $t_1 \dots t_m$, and $\operatorname{Count}(\alpha)$ is the number of times the non-terminal α is seen in the trees $t_1 \dots t_m$.

Parsing with PCFGs

A crucial question is the following: given a sentence s, how do we find the highest scoring parse tree for s, or more explicitly, how do we find

$$\operatorname{arg} \max_{t \in \mathcal{T}(s)} p(t)$$
?

Definition 2 (Chomsky Normal Form) A context-free grammar $G = (N, \Sigma, R, S)$ is in Chomsky form if each rule $\alpha \to \beta \in R$ takes one of the two following forms:

- $X \to Y_1Y_2$ where $X \in N, Y_1 \in N, Y_2 \in N$.
- $X \rightarrow Y$ where $X \in N$, $Y \in \Sigma$.

Hence each rule in the grammar either consists of a non-terminal X rewriting as exactly two non-terminal symbols, Y_1Y_2 ; or a non-terminal X rewriting as exactly one terminal symbol Y. \square

- For a given sentence $x_1
 ldots x_n$, define T(i, j, X) for any $X \in N$, for any (i, j) such that $1 \le i \le j \le n$, to be the set of all parse trees for words $x_i
 ldots x_j$ such that non-terminal X is at the root of the tree.
- Define

$$\pi(i, j, X) = \max_{t \in \mathcal{T}(i, j, X)} p(t)$$

(we define $\pi(i, j, X) = 0$ if $\mathcal{T}(i, j, X)$ is the empty set).

The key observation in the CKY algorithm is that we can use a recursive definition of the π values, which allows a simple bottom-up dynamic programming algorithm. The algorithm is "bottom-up", in the sense that it will first fill in $\pi(i, j, X)$ values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all $i=1\ldots n$, for all $X\in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

$$X$$
 \downarrow
 x_i

The recursive definition is as follows: for all (i, j) such that $1 \le i < j \le n$, for all $X \in N$,

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$
(1)

the man sleeps

$$x_1$$
 x_2 x_3

$$\pi(1,3,S) = \max\{q(S \to NP \ VP) \times \pi(1,1,NP) \times \pi(2,3,VP) \\ q(S \to NP \ VP) \times \pi(1,2,NP) \times \pi(3,3,VP)\}$$

$$\pi(1,1,NP) = q(NP \to the) = 0$$

$$\pi(3,3,VP) = q(VP \to sleeps) = 0.2$$

$$\begin{split} N &= \{\text{S, NP, VP, PP, DT, Vi, Vt, NN, IN}\} \\ S &= \text{S} \\ \Sigma &= \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in} \} \end{split}$$

$$R, q = \begin{bmatrix} S & \rightarrow & \text{NP} & \text{VP} & 1.0 \\ \hline VP & \rightarrow & \text{Vt} & \text{NP} & 0.6 \\ VP & \rightarrow & \text{VP} & \text{PP} & 0.2 \\ \hline NP & \rightarrow & \text{DT} & \text{NN} & 0.8 \\ NP & \rightarrow & \text{NP} & \text{PP} & 0.2 \\ \hline PP & \rightarrow & \text{IN} & \text{NP} & 1.0 \\ \end{bmatrix}$$

$$\pi(1,2,NP) = \max\{q(NP \to DT \ NN) \times \pi(1,1,DT) \times \pi(2,2,NN) \\ q(NP \to NP \ PP) \times \pi(1,1,NP) \times \pi(2,2,PP)\}$$

$$\pi(1,1,DT) = q(DT \to the) = 1$$

$$\pi(2,2,NN) = q(NN \to man) = 0.1 \qquad \pi(1,2,NP) = q(NP \to DT \ NN) \times \pi(1,1,DT) \times \pi(2,2,NN)$$

$$= 0.8 \times 1 \times 0.1 = 0.08$$

 $\pi(1,3,S) = q(S \to NP VP) \times \pi(1,2,NP) \times \pi(3,3,VP) = 1 \times 0.08 \times 0.2 = 0.016$

$$\pi(2,2,PP) = q(PP \rightarrow man) = 0$$

 $\pi(1,1,NP) = q(NP \to the) = 0$

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$.

Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$x_1 x_2 x_3 x_4 \dots x_{n-2} x_{n-1} x_n$$

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

$$x_1 x_2 x_3 x_4 \dots x_{n-2} x_{n-1} x_n$$

 $x_1 x_2 x_3 x_4 \dots x_{n-2} x_{n-1} x_n$

Algorithm:

• For
$$l = 1 \dots (n-1)$$

- For
$$i = 1 \dots (n - l)$$

- * Set j = i + l
- * For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

and

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

Output: Return $\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$, and backpointers bp which allow recovery of $\arg \max_{t \in \mathcal{T}(s)} p(t)$.

Weaknesses of PCFGs as Parsing Models

- Lack of Sensitivity to Lexical Information
 - The PCFGs we have described essentially generate lexical items as an afterthought, conditioned only on the Part Of Speech directly above them in the tree. This is a very strong independence assumption, which leads to non-optimal decisions being made by the parser in many important cases of ambiguity.
- Lack of Sensitivity to Structural Preferences
 - For two trees with the same set of rules, the PCFG assigns identical probabilities to them, because it can not capture the bias towards close-attachment in this case.

Lack of Sensitivity to Lexical Information

Rules
$S \rightarrow NP VP$
$NP \to NNS$
$\mathbf{VP} \rightarrow \mathbf{VP} \ \mathbf{PP}$
$VP \rightarrow VBD NP$
$NP \to NNS$
$PP \rightarrow IN NP$
$NP \to DT \; NN$
$NNS \rightarrow workers$
$VBD \rightarrow dumped$
$NNS \rightarrow sacks$
$IN \rightarrow into$
$DT \rightarrow a$
$NN \rightarrow bin$

(a)

```
S \rightarrow NP VP
        NP \rightarrow NNS
        NP \rightarrow NP PP
         VP \rightarrow VBD NP
        NP \rightarrow NNS
        PP \rightarrow IN NP
(b)
        NP \rightarrow DT \ NN
        NNS \rightarrow workers
         VBD \rightarrow dumped
        NNS \rightarrow sacks
        IN \rightarrow into
        DT \rightarrow a
        NN \rightarrow bin
```

Rules

when choosing between the two parse trees, will pick tree (a) if

$$q(\text{VP} \rightarrow \text{VP PP}) > q(\text{NP} \rightarrow \text{NP PP})$$

and will pick tree (b) if

$$q(NP \rightarrow NP PP) > q(VP \rightarrow VP PP)$$

Lack of Sensitivity to Lexical Information

If we look at the preposition, *into*, alone, we find that PPs with *into* as the preposition are almost nine times more likely to attach to a VP rather than an NP (this statistic is taken from the Penn treebank data).

Lack of Sensitivity to Structural Preferences

close attachment

Lexicalization of a Treebank

Lexicalization of a Treebank

- head of the rule
 - the "center" or the most important child of the rule
 - $S \rightarrow NP VP$ h = 2 (corresponding to the VP)
 - NP \rightarrow NP PP PP PP h = 1 (corresponding to the NP)
 - PP \rightarrow IN NP h = 1 (corresponding to the IN)
- Once the head of each context-free rule has been identified, lexical information can be propagated bottom-up through parse trees in the treebank.
 - Researchers have generally used a simple set of rules to automatically identify the head of each context-free rule.

Identify the Head of a Rule

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

Figure 6: Example of a set of rules that identifies the head of any rule whose left-hand-side is an NP.

Lexicalized PCFGs in Chomsky Normal Form

Definition 1 (Lexicalized PCFGs in Chomsky Normal Form) A lexicalized PCFG in Chomsky normal form is a 6-tuple $G = (N, \Sigma, R, S, q, \gamma)$ where:

- N is a finite set of non-terminals in the grammar.
- Σ is a finite set of lexical items in the grammar.
- R is a set of rules. Each rule takes one of the following three forms:
 - 1. $X(h) \to_1 Y_1(h) Y_2(m)$ where $X, Y_1, Y_2 \in N$, $h, m \in \Sigma$.
 - 2. $X(h) \to_2 Y_1(m) Y_2(h)$ where $X, Y_1, Y_2 \in N$, $h, m \in \Sigma$.
 - 3. $X(h) \rightarrow h$ where $X \in N$, $h \in \Sigma$.

Lexicalized PCFGs in Chomsky Normal Form

• For each rule $r \in R$ there is an associated parameter

The parameters satisfy $q(r) \geq 0$, and for any $X \in N, h \in \Sigma$,

$$\sum_{r \in R: LHS(r) = X(h)} q(r) = 1$$

where we use LHS(r) to refer to the left hand side of any rule r.

• For each $X \in N$, $h \in \Sigma$, there is a parameter $\gamma(X, h)$. We have $\gamma(X, h) \ge 0$, and $\sum_{X \in N, h \in \Sigma} \gamma(X, h) = 1$.

Given a left-most derivation $r_1, r_2, \dots r_N$ under the grammar, where each r_i is a member of R, the probability of the derivation is

$$\gamma(LHS(r_1)) imes \prod_{i=1}^N q(r_i)$$

Example

```
\begin{split} &S(\text{questioned}) \rightarrow_2 \text{NP}(\text{lawyer}) \ \text{VP}(\text{questioned}) \\ &\text{NP}(\text{lawyer}) \rightarrow_2 \text{DT}(\text{the}) \ \text{NN}(\text{lawyer}) \\ &\text{DT}(\text{the}) \rightarrow \text{the} \\ &\text{NN}(\text{lawyer}) \rightarrow \text{lawyer} \\ &\text{VP}(\text{questioned}) \rightarrow_1 \text{Vt}(\text{questioned}) \ \text{NP}(\text{witness}) \\ &\text{NP}(\text{witness}) \rightarrow_2 \text{DT}(\text{the}) \ \text{NN}(\text{witness}) \\ &\text{DT}(\text{the}) \rightarrow \text{the} \\ &\text{NN}(\text{witness}) \rightarrow \text{witness} \end{split}
```


First, for a given rule of the form

$$X(h) \rightarrow_1 Y_1(h) Y_2(m)$$

or

$$X(h) \rightarrow_2 Y_1(m) Y_2(h)$$

define the following variables: X is the non-terminal on the left-hand side of the rule; H is the head-word of that non-terminal; R is the rule used, either of the form $X \to_1 Y_1 Y_2$ or $X \to_2 Y_1 Y_2$; M is the modifier word.

For example, for the rule

$$S(examined) \rightarrow_2 NP(lawyer) VP(examined)$$

we have

$$X = S$$
 $H = \text{examined}$
 $R = S \rightarrow_2 \text{NP VP}$
 $M = \text{lawyer}$

$$q(S(examined) \rightarrow_2 NP(lawyer) VP(examined))$$

= $P(R = S \rightarrow_2 NP VP, M = lawyer | X = S, H = examined)$

The first step in deriving an estimate of $q(S(examined) \rightarrow_2 NP(lawyer) VP(examined))$ will be to use the chain rule to decompose the above expression into two terms:

$$P(R = S \rightarrow_2 NP VP, M = lawyer | X = S, H = examined)$$

= $P(R = S \rightarrow_2 NP VP | X = S, H = examined)$ (3)
 $\times P(M = lawyer | R = S \rightarrow_2 NP VP, X = S, H = examined)$ (4)

$$P(R = S \rightarrow_2 NP VP | X = S, H = examined)$$

is then defined as

$$\lambda_1 \times q_{ML}(S \rightarrow_2 NP VP|S, examined) + (1 - \lambda_1) \times q_{ML}(S \rightarrow_2 NP VP|S)$$

$$q_{ML}(S \rightarrow_2 NP VP|S, examined) = \frac{\text{count}(R = S \rightarrow_2 NP VP, X = S, H = examined)}{\text{count}(X = S, H = examined)}$$

$$q_{ML}(S \rightarrow_2 NP VP|S) = \frac{\text{count}(R = S \rightarrow_2 NP VP, X = S)}{\text{count}(X = S)}$$

The estimate of

$$P(M = \text{lawyer}|R = S \rightarrow_2 \text{NP VP}, X = S, H = \text{examined})$$

is then

$$\lambda_2 \times q_{ML}(\text{lawyer}|S \rightarrow_2 \text{NP VP, examined}) + (1 - \lambda_2) \times q_{ML}(\text{lawyer}|S \rightarrow_2 \text{NP VP})$$

$$q_{ML}(\text{lawyer}|\mathbf{S} \rightarrow_2 \text{NP VP, examined}) = \frac{\text{count}(M = \text{lawyer}, R = \mathbf{S} \rightarrow_2 \text{NP VP}, H = \text{examined})}{\text{count}(R = \mathbf{S} \rightarrow_2 \text{NP VP}, H = \text{examined})}$$

$$q_{ML}(\text{lawyer}|\mathbf{S} \rightarrow_2 \text{NP VP}) = \frac{\text{count}(M = \text{lawyer}, R = \mathbf{S} \rightarrow_2 \text{NP VP}, H = \text{examined})}{\text{count}(R = \mathbf{S} \rightarrow_2 \text{NP VP})}$$

```
q(S(\text{examined}) \rightarrow_2 \text{NP}(\text{lawyer}) \text{ VP}(\text{examined}))
= (\lambda_1 \times q_{ML}(S \rightarrow_2 \text{NP VP}|S, \text{examined}) + (1 - \lambda_1) \times q_{ML}(S \rightarrow_2 \text{NP VP}|S))
\times (\lambda_2 \times q_{ML}(\text{lawyer}|S \rightarrow_2 \text{NP VP}, \text{examined}) + (1 - \lambda_2) \times q_{ML}(\text{lawyer}|S \rightarrow_2 \text{NP VP}))
```

Parsing with Lexicalized PCFGs

- 1. $\pi(i, j, h, X) = 0$
- 2. For $s = h \dots (j-1)$, for $m = (s+1) \dots j$, for $X(x_h) \rightarrow_1 Y(x_h) Z(x_m) \in R$,
 - (a) $p = q(X(x_h) \to_1 Y(x_h)Z(x_m)) \times \pi(i, s, h, Y) \times \pi(s+1, j, m, Z)$
 - (b) If $p > \pi(i, j, h, X)$,

$$\pi(i, j, h, X) = p$$

$$bp(i, j, h, X) = \langle s, m, Y, Z \rangle$$

- 3. For $s = i \dots (h-1)$, for $m = i \dots s$, for $X(x_h) \rightarrow_2 Y(x_m)Z(x_h) \in R$,
 - (a) $p = q(X(x_h) \to_2 Y(x_m)Z(x_h)) \times \pi(i, s, m, Y) \times \pi(s+1, j, h, Z)$
 - (b) If $p > \pi(i, j, h, X)$,

$$\pi(i, j, h, X) = p$$

$$bp(i, j, h, X) = \langle s, m, Y, Z \rangle$$

Parsing with Lexicalized PCFGs

Input: a sentence $s = x_1 \dots x_n$, a lexicalized PCFG $G = (N, \Sigma, S, R, q, \gamma)$.

Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i, i, i, X) = \begin{cases} q(X(x_i) \to x_i) & \text{if } X(x_i) \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- For $l = 1 \dots (n-1)$
 - For $i = 1 \dots (n l)$
 - * Set j = i + l
 - * For all $X \in N$, $h \in \{i \dots j\}$, calculate $\pi(i, j, h, X)$ using the algorithm in figure 8.

Output:

$$(X^*, h^*) = \arg \max_{S \in N, h \in \{1...n\}} \gamma(X, h) \times \pi(1, n, h, X)$$

Use backpointers starting at $bp(1, n, h^*, X^*)$ to obtain the highest probability tree.