SARS-CoV-2, analysis using sqlite3

Saravana.M

ower By Mentorness

Brief overview of the presentation agenda.

Brief
description of
the COVID-19
dataset used.

Source of the dataset

Explanation of the variables included in the dataset (e.g., date, cases, deaths, location)

Clarifying with Question & Answer

PURPOSE OF THE ANALYSIS: UNDERSTANDING COVID-19 TRENDS USING A DATASET.

INTENTION

Analyzing Trends and Understanding Implications

1 INSTALL SQLITE:

If you haven't already, install SQLite on your system. You can download it from the official website or use a package manager for your operating system.

2 OPEN SQLITE

Command-Line Interface (CLI): Open your command-line interface or terminal.

3 SQLITE DATABASE LOCATION

Use the **cd** command to navigate to the directory where your SQLite database is located.

4 IMPORT CSV DATASET

Use the SQLite .import command to import the CSV data into a new or existing table.

5 VERIFY DATA IMPORT

Check if the data was imported successfully by running a simple **SELECT** query.

Data Exploration

Use SQL queries to explore the imported data. For example:

Display 5 row in Dataset using

SELECT *FROM`Corona Virus
Dataset` LIMIT 5;

Display import csv file

SELECT * FROM Corona Virus Dataset;

Checking Null Value

SELECT *FROM `Corona Virus Dataset`WHERE Confirmed IS NULL;

Executing Successful without Errors

If NULL values are present, update them with zeros for all columns.

UPDATE `Corona Virus Dataset` SET

Confirmed = COALESCE(Confirmed, 0),

Deaths = COALESCE(Deaths, 0),

Recovered = COALESCE(Recovered, 0);

SELECT *FROM `Corona Virus Dataset`;

Execution Finished without Errors

check total number of rows

SELECT COUNT(*)FROM "Corona virus Dataset";

Q4. Check what is start_date and end_date

SELECT MIN('2020-01-22') AS start_date, MAX('2021-06-13') AS end_date FROM "Corona Virus Dataset";

Display start_date and end_date

Number of month present in dataset SELECT COUNT(DISTINCT SUBSTR(Date, 5)) AS Number _Month FROM `Corona Virus Dataset`:

SELECT SUBSTR(Date, 7, 5) AS Year,
Min(Confirmed) AS Min_Confirmed,
Min(Deaths) AS Min_Deaths,
Min(Recovered) AS Min_Recovered
FROM `Corona Virus Dataset` GROUP BY
SUBSTR(Date, 7, 5);

SELECT SUBSTR(Date. 7. 5) AS year.
Max(Confirmed) AS Max_Confirmed.
Max(Deaths) AS Max_Deaths.
Max(Recovered) AMax_Recovered
FROM `Corona Virus Dataset`
GROUP BY SUBSTR(Date. 7. 5);

The total number of case of confirmed, deaths, recovered each month

SELECT SUBSTR(Date ,4) AS Month,
SUM(Confirmed) AS Total_Confirmed,
SUM(Deaths) AS Total_Deaths,
SUM(Recovered) AS
Total_RecoveredFROM
`CoronaVirusDataset`
GROUP BY SUBSTR(Date , 4);

Showing Total Comfirmed Cases in The DataSet

Check how corona virus spread out with respect to confirmed case

SELECT

avg(Confirmed) AS

Total_Confirmed_Cases

FROM

`Corona Virus Dataset`;

Check how corona virus spread out with respect to confirmed case

SELECT
SUM((Confirmed Mean_Confirmed) * (Confirmed Mean_Confirmed)) / COUNT(*) AS
Variance_Confirmed_Cases
FROM
`Corona Virus Dataset`,

Check how corona virus spread out with respect to death case per month

Showing Total Death

Function

Syntax:
SELECT SUBSTR(Date, 2) AS Month,

(sum(Confirmed * Confirmed) / COUNT(*))
(SUM(Confirmed) * SUM(Confirmed) /

COUNT(*) / COUNT(*)) AS

Variance_Recovered_Cases

FROM

Corona Virus Dataset

GROUP BY

SUBSTR(Date, 4):

13. Check how corona virus spread out with respect to recovered case

> Syntax:-SELECT SUBSTR(Date, 2) AS Month, SUM(Recovered) AS Total_Recoverd_Cases FROM `Corona Virus Dataset` GROUP BY SUBSTR(Date.4);

Function

`Corona Virus Dataset`;

Showing Highest Confirmed Cases in The DataSet By Max Function

Find Country having lowest number of the death case

> SELECT "Country/Region" AS Country, Min(Deaths) AS lowest_Deaths_Cases FROM `Corona Virus Dataset`;

Function

SELECT "Country/Region" AS
Country, SUM(Recovered) AS
Total_Recovered_Cases FROM
Corona Virus Dataset`
GROUP BY "Country/Region" ORDER
BY Total_Recovered_Cases DESC
LIMIT 5:

Showing Top 5 Highest Recovery Country in The

Conclusion:-

Reflection on the significance of using SQLite for COVID-19 data analysis.

Potential areas for future research or analysis.

Summary of key findings from the analysis.

References:-

Acknowledgment of any libraries or tools utilized (e.g., SQLite).

List of data sources, references, and resources used in the presentation.

Connect with us.

Github

https//github.com/saravanaayyapa28

Social Media

www.linkedin.com/in/saravana28

