1)
$$x^2 + 3y^2 = c$$
 is an ellipse when c>0,
the point (0,0) when c=0,
 φ when c<0.

The graph of f is a paraboloid (with elliptic cross-sections).

2)
$$\sqrt{x^2+3y^2} = c$$
 y

$$\Rightarrow x^2+3y^2=c^2$$

$$\sqrt{x^{2}+3y^{2}} = C \qquad \text{if } C < 0, \quad \emptyset; \\
\Rightarrow x^{2}+3y^{2}=c^{2} \qquad \text{if } C = 0, \quad (x,y) = (0,0); \\
\text{if } C > 0, \quad \text{get an ellipse}.$$

These are the same cross-sections in (1), but they correspond to different values of c, i.e. different heights in the graph.

3) graph(f):

 \Rightarrow $\times = \pm 4$ The level set corresponding to c=7is the pair of points -4, 4.

4)
$$x^{2} + 2y^{2} + 5z^{2} - 3 = c$$

 $\Rightarrow x^{2} + 2y^{2} + 5z^{2} = c + 3$.

if
$$c+3 > 0$$
, this is an ellipsoid
-. $c+3=0$, --- the point $(x,y,z)=(0,0,0)$
-. $c+3<0$, --- \emptyset

The graph is 3+1=4-dimensional.

5)
$$x^2 - y^2 + 10 = c$$

 $\Rightarrow x^2 - y^2 = c - 10$

if C-10=0, this is the pair of lines
$$y=x$$
 & $y=-x$

The graph of f is a hyperbolic paraboloid.

6,7) Think about these a bit; we'll answer them in the next couple of weeks ...