The Inverse Sine (or Arcsine) Function

Let us define a function $\sin x$ (note the capital letter) to be $\sin x$, restricted so that its domain is the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$:

The restricted function Sin x

$$\sin x = \sin x \qquad \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2}. \quad \text{Sin: } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \left[-1,1\right]$$

The Inverse Sine (or Arcsine) Function

The Inverse Sine (or Arcsine) Function

The inverse sine function $\sin^{-1} x$ or $\arcsin x$

$$y = \sin^{-1} x \iff x = \sin y$$
 $\iff x = \sin y \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$

The Inverse Sine (or Arcsine) Function

The inverse sine function $\sin^{-1} x$ or $\arcsin x$

$$y = \sin^{-1} x \iff x = \sin y$$

$$\iff$$
 $x = \sin y$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

The Inverse Sine (or Arcsine) Function

The cancellation identities for Sin and sin-

$$\sin^{-1}(\operatorname{Sin} x) = \arcsin(\operatorname{Sin} x) = x$$
 for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 $\operatorname{Sin}(\sin^{-1} x) = \operatorname{Sin}(\arcsin x) = x$ for $-1 \le x \le 1$

The Inverse Sine (or Arcsine) Function

The cancellation identities for Sin and sin-

$$\sin^{-1}(\operatorname{Sin} x) = \arcsin(\operatorname{Sin} x) = x \qquad \text{for } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$\operatorname{Sin}(\sin^{-1} x) = \operatorname{Sin}(\arcsin x) = x \qquad \text{for } -1 \le x \le 1$$

EXAMPLE

Find (a) $\sin \left(\sin^{-1} 0.7\right)$, (b) $\sin^{-1} \left(\sin 0.3\right)$, (c) $\sin^{-1} \left(\sin \frac{4\pi}{5}\right)$, and (d) $\cos \left(\sin^{-1} 0.6\right)$.

The Inverse Sine (or Arcsine) Function

The cancellation identities for Sin and sin-

$$\sin^{-1}(\operatorname{Sin} x) = \arcsin(\operatorname{Sin} x) = x \qquad \text{for } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$\operatorname{Sin}(\sin^{-1} x) = \operatorname{Sin}(\arcsin x) = x \qquad \text{for } -1 \le x \le 1$$

Find (a) $\sin \left(\sin^{-1} 0.7\right)$, (b) $\sin^{-1} \left(\sin 0.3\right)$, (c) $\sin^{-1} \left(\sin \frac{4\pi}{5}\right)$, and (d) $\cos \left(\sin^{-1} 0.6\right)$.

EXAMPLE

Simplify the expression $tan(sin^{-1} x)$.

The Inverse Tangent (or Arctangent) Function

The restricted function Tan x

$$\operatorname{Tan} x = \tan x$$
 if $-$

Tan
$$x = \tan x$$
 if $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Tan: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$

The Inverse Tangent (or Arctangent) Function

The inverse tangent function $tan^{-1} x$ or arctan x

$$y = \tan^{-1} x \iff x = \operatorname{Tan} y$$

 $\iff x = \tan y \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}$

The Inverse Tangent (or Arctangent) Function

The inverse tangent function $tan^{-1} x$ or arctan x

$$y = \tan^{-1} x \iff x = \operatorname{Tan} y$$
 $\iff x = \tan y \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}$

The Inverse Tangent (or Arctangent) Function

The cancellation identities for Tan and tan-1

$$\tan^{-1}(\operatorname{Tan} x) = \arctan(\operatorname{Tan} x) = x$$
 for $-\frac{\pi}{2} < x < \frac{\pi}{2}$
 $\operatorname{Tan}(\tan^{-1} x) = \operatorname{Tan}(\arctan x) = x$ for $-\infty < x < \infty$

Other Inverse Trigonometric Functions

The function $\cos x$ is one-to-one on the interval $[0, \pi]$.

$$y = \cos^{-1} x \iff x = \cos y \text{ and } 0 \le y \le \pi.$$

Other Inverse Trigonometric Functions

The function $\cos x$ is one-to-one on the interval $[0, \pi]$.

$$y = \cos^{-1} x \iff x = \cos y \text{ and } 0 \le y \le \pi.$$

$$y = \cos^{-1} x \iff x = \sin\left(\frac{\pi}{2} - y\right) \iff \sin^{-1} x = \frac{\pi}{2} - y = \frac{\pi}{2} - \cos^{-1} x.$$

Other Inverse Trigonometric Functions

The function $\cos x$ is one-to-one on the interval $[0, \pi]$.

$$y = \cos^{-1} x \iff x = \cos y \text{ and } 0 \le y \le \pi.$$

$$y = \cos^{-1} x \iff x = \sin\left(\frac{\pi}{2} - y\right) \iff \sin^{-1} x = \frac{\pi}{2} - y = \frac{\pi}{2} - \cos^{-1} x.$$

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \qquad \text{for } -1 \le x \le 1.$$

Other Inverse Trigonometric Functions

The cancellation identities for cos-1

$$\cos^{-1}(\cos x) = \arccos(\cos x) = x$$
 for $0 \le x \le \pi$
 $\cos(\cos^{-1} x) = \cos(\arccos x) = x$ for $-1 \le x \le 1$

Other Inverse Trigonometric Functions

The cancellation identities for cos-1

$$\cos^{-1}(\cos x) = \arccos(\cos x) = x$$
 for $0 \le x \le \pi$
 $\cos(\cos^{-1} x) = \cos(\arccos x) = x$ for $-1 \le x \le 1$

Other Inverse Trigonometric Functions

The inverse secant function $\sec^{-1} x$ (or $\operatorname{arcsec} x$)

$$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right)$$
 for $|x| \ge 1$.

Other Inverse Trigonometric Functions

The inverse cosecant and inverse cotangent functions

$$\csc^{-1} x = \sin^{-1} \left(\frac{1}{x} \right), \quad (|x| \ge 1); \qquad \cot^{-1} x = \tan^{-1} \left(\frac{1}{x} \right), \quad (x \ne 0)$$

The hyperbolic cosine and hyperbolic sine functions

For any real x the **hyperbolic cosine**, $\cosh x$, and the **hyperbolic sine**, $\sinh x$, are defined by

$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}.$$

Other hyperbolic functions

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \text{sech } x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \qquad \text{csch } x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$