

Economics of Coastal Blue Carbon

Linwood Pendleton
Director of Coastal and Ocean Policy
Nicholas Institute for Environmental Policy Solutions
Duke University

October 2012

Based on work by
Brian Murray¹, Linwood Pendleton¹,
David Gordon¹, Aaron Jenkins, Samantha Sifleet, and Britta Victor

1Nicholas Institute for Environmental Policy Solutions

The Blue Carbon Story

Soil Carbon Loss from Habitat Change

Habitat area
Habitat Loss
Carbon in top meter
Social Cost of Carbon (\$41/mt)

Ecosystem	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment + biomass, Mg CO ₂ ha ⁻¹)
Tidal Marsh	2.2 – 40 (5.1)	1.0 – 2.0 (1.5)	237 – 949 (593)
Mangroves	13.8 – 15.2 (14.5)	0.7 – 3.0 (1.9)	373 – 1492 (933)
Seagrass	17.7 – 60 (30)	0.4 – 2.6 (1.5)	131 – 522 (326)
Total	33.7 – 115.2 (48.9)		

Ecosystem	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)
Tidal Marsh	0.02 - 0.24 (0.06)	0.64 - 9.7 (2.6)
Mangroves	0.09 - 0.45 (0.24)	3.6 – 18.5 (9.8)
Seagrass	0.05 - 0.33 (0.15)	1.9 – 13.7 (6.1)
Total	0.15 – 1.02 (0.45)	6.1 – 41.9 (18.5)

Carbon Loss from Habitat Change

- 25-50% habitat loss over last 50 years (McLeod et al. 2011)
- 150m to 1 billion mt CO₂e /yr
- 4-20% annual emissions deforestation

Nicholas Institute for Environmental Policy Solutions Duke University

Price vs. Value

Social Cost of Carbon

Social Cost of Carbon

Discount Rate

Year		5%	3%	2.50%
	2010	5	21	35
	2015	6	24	38
	2020	7	26	42
	2025	8	30	46
	2030	10	33	50
	2035	11	36	54
	•••	• (•	
	2050	16	45	65

SOCIAL COST OF HABITAT DESTRUCTION =

\$US 6-42 billion/yr

Nowadays, people know the PRICE of everything, the value of nothing

Oscar Wilde, Picture of Dorian Gray

CO₂ Loss

Potential Credit Source	Time Period	Ecosystems
Avoided Loss of Sequestration Flux	Perpetuity*	Seagrasses Tidal Salt Marshes Mangroves
Avoided Emissions from Soil Carbon	Several Years to Decades	Seagrasses Tidal Salt Marshes Mangroves
Avoided Emissions from Biomass (REDD)	Immediate	Mangroves

^{*} Based on input from science team that blue carbon systems continue to sequester without saturation

...Coastal Habitat Protects Massive Amounts of Carbon

Potential Carbon-Credit Values

Source: Authors:

Gross Financial Returns

Source: Authors.

CREDIT?

Additionality

What Do You Have to Do to Protect Carbon

Nicholas Institute for Environmental Policy Solutions

Opportunity Cost

* Authors' rough approximations based on data from a range of sources. Can vary widely across and within countries.

Source: Authors.

Cost of Protection

Net Revenue of Blue Carbon: mangroves

Net Carbon Benefits of Blue Carbon: mangroves

Net Ecosystem Services Benefits of Blue Carbon: mangroves

Climate Mitigation vs Habitat Protection

Cost competitiveness

Stacking

Restoration vs. Protection Mitigation?

BC markets could catalyze other markets

Land-Based Impacts Upstream

Protected Blue Carbon in Estuary

Lost Blue Carbon
Due to Upstream
Sources (e.g.
pollutants,
nutrients)

Land-Based Threats

Will Environmental Markets Work for Coastal Carbon?

Regine Lheritier, Odon Wagner Gallery

Will Environmental Markets Work for Coastal Carbon?

- Sellers produce environmental services for compensation at an agreed upon price and quantity
- Buyers pay the seller for the environmental services.
 - Government traditional payment programs (e.g., Conservation Reserve Program, USDA)
 - Private parties
 - Voluntary/stewardship/philanthropy
 - Industry sustainability/supply chain standards
 - To meet compliance obligations

Markets for compliance obligation

- CAP
- TRADE
 - within the regulated sector
 - outside the regulated sector: offsets
- E.g. SO2/NOX trading, GHG cap-andtrade, nutrient trading,...
- Carbon (rich) ...offsets

Tropical Forest Offsets

Reduced

Emissions from

Deforestation

Degradation

+ Carbon stock enhancement

REDD+

Establishing Markets is Costly: REDD +

Planning and Institutional Capacity	\$1.6 billion
Pilots and Projects	\$234 million
Verified Emissions	~ \$97 million in credits
Reductions	sold

Voluntary Markets

Beyond Markets

Federal Regulations

- National Environmental Protection Act
- Clean Water Act (Mitigation)
- Endangered Species Act
- Natural Resources Damage Assessment

Take Home

- Societal value > financial value
- Payments of blue carbon conservation
- Polluters pay for habitat protection
- Value of protection >> Value of restoration
- Policy and financial challenges remain
- Upstream land impacts may be important

Nicholas Institute for Environmental Policy Solutions

Keep Up With Blue Carbon Policy

http://nicholasinstitute.duke.edu/oceans/bluecarbon