18 de outubro de 2016

Fórmulas FNC e FND

Uma fórmula FNC F sobre as variáveis x_1, \ldots, x_n é a conjunção de disjunções de literais (uma das variáveis ou a tua negação).

$$F=\mathit{C}_1\wedge\cdots\wedge\mathit{C}_s$$

Onde cada cláusula C_i é a disjunção de literais e s é o tamanho de F. Se cada clásula tem no máximo k literais então dizemos que F tem largura k e dizemos que F é uma k-FNC.

Fórmulas FNC e FND

Uma fórmula FND F por outro lado é a disjunção de conjuções de literais.

$$F = T_1 \vee \cdots \vee T_s$$

Onde cada termo T_i é a conjunção de literais e s é o tamanho de F. De novo, se cada termo tem no máximo k literais então F tem largura k e F é uma k-FND.

Uma árvore de decisão é algo como a imagem abaixo:

- ► Cada nodo leva o label de uma das variáveis.
- Começando do nodo mais alto, o algoritmo ramifica para a direita ou à esquerda dependendo do valor da variável lida.
- ▶ As folhas guardam o valor da função em cada entrada que chega nela.

Denotamos a sáida de uma árvore de decisão T sobre a entrada x por T(x). Se f é tal que f(x) = T(x) para todos os x então dizemos que T computa a função f.

Por exemplo, a árvore de decisão do slide anterior computa a função que Majority₃, que é 1 se e somente se o número de 1s na entrada é pelo menos 2.

O tamanho de T é o número de folhas e tua profundidade é o maior camnho do nodo mais alto até uma das folhas.

A árvore do slide anterior tem tamanho 6 e profundidade 3.

É importante notar que árvores de decisão são mais fracas do que fórmulas FNC (FND).

- ▶ Se T é uma árvore de decisão de tamanho s e profundidade d então existe uma fórmula FND (FNC) F tal que F(x) = T(x), para todos x, de tamanho $\leq s$ e largura $\leq d$.
 - FND: Cada caminho P da árvore tal que T(P) = 1 define uma cláusula.
 - ► FNC: Cada caminho P da árvore tal que T(P) = 0 define um termo.

 $\acute{\rm E}$ importante notar que árvores de decisão são mais fracas do que fórmulas FNC (FND).

$$F = (\overline{x}_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x}_2 \wedge x_3) \vee (x_1 \wedge x_2)$$

 $\acute{\rm E}$ importante notar que árvores de decisão são mais fracas do que fórmulas FNC (FND).

$$F = (x_1 \lor x_2) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3)$$

Circuitos

Um circuito Booleano é composto de portas lógicas computando uma das funções em $\{\land,\lor,\lnot\}$ e fios ligando estas portas lógicas como mosta a figura abaixo:

Este circuitos tem 4 variáveis de entrada (sem contar a negação de cada variável). Todos circuitos tem uma única porta lógica no nível mais alto, o valor desta porta lógica é a saída do circuito.

Circuitos

Nós dizemos que um circuito C com n variáveis de entrada computa $f: \{0,1\}^n \to \{0,1\}$ se C(x) = f(x), para todos $x \in \{0,1\}^n$.

- O circuito do slide anterior computa a função Parity₄.
 - ▶ Parity₄(x) = 1 se e somente se $x_1 + x_2 + x_3 + x_4 \equiv 1 \pmod{2}$.

O tamanho de um circuito é o número de portas lógicas e a tua profundidade é o tamanho do maior caminho de uma variável de entrada até a porda de saída.

- ▶ O nosso circuito para *Parity*⁴ tem tamanho 11 e profundidade 4.
- ▶ Em geral, Parity_n tem um circuito de tamanho $\mathcal{O}(n)$ e profundidade $\mathcal{O}(\log n)$.

Circuitos

Pela lei de De Morgan nós podemos empurrar as portas \neg para as variáveis de entrada.

• Se o circuito original tinha tamanho S então o circuito resultante tem tamanho < 2S.

O circuito acima também computa Parity₄ e tem tamanho 15.

Complexidade de circuitos

Dada uma função $f:\{0,1\}^n \to \{0,1\}$ nós queremos saber qual é o menor circuito que computa f.

- ▶ Seja \mathscr{C} o conjunto de circuitos que computam f.
- $\blacktriangleright \mathsf{Size}(f) = \mathsf{min}_{C \in \mathscr{C}}\{|C|\}.$

Se $f:\{0,1\}^* \to \{0,1\}$ então temos que definir uma sequência de circuitos $\{C_n\}_{n\geq 1}$ onde cada C_n computa f restrita à strings de tamanho n.

- ▶ Size(f) = $\mathcal{O}(g)$ se existem constantes c e n_0 tal que $|C_n| \leq cg(n)$, para todos $n \geq n_0$.
- ▶ Como já comentamos, Size(Parity) = $\mathcal{O}(n)$.

Complexidade de circuitos: P/poly

Algumas classes de complexidade de circuitos:

- ▶ P/poly : circuitos de tamanho polinomial.
 - Contém toda a classe P.
 - Contém todas as linguagens unárias.
 - Logo contém alguns problemas indecidíveis.
 - A tua versão (P-)uniforme (ou logspace-uniforme) coincide com a classe P.

Complexidade de circuitos: P/poly

- ▶ Problema em aberto: $NP \subseteq P/poly$?
 - ▶ NP $\not\subseteq$ P/poly implicaria em P \neq NP.
 - ▶ Teorema de Karp-Lipton: $NP \subseteq P/poly \Rightarrow PH = \Sigma_2^p$.
- ▶ Problema em aberto: Existe, para todo $k \ge 1$, uma linguagem em P que não admite circuitos de tamanho n^k ?
 - Suponha que P ≠ NP, isto é verdade porque a classe NP não admite circuitos pequenos ou é porque circuitos para problemas em P são pequenos demais?

Complexidade de circuitos: NC e AC

Algumas classes de complexidade de circuitos:

- ▶ NCⁱ: circuitos de tamanho polinomial e profundidade logⁱ n.
- $ightharpoonup NC = \bigcup_{i>0} NC^i$.
 - Exemplo: computar a determinante de uma matriz está em NC.
- ACⁱ: circuitos de tamanho polinomial, profundidade logⁱ n e fan-in arbitrário.
- ightharpoonup $AC = \bigcup_{i>0} AC^i$.
- ▶ $NC^0 \subseteq AC^0 \subseteq NC^1 \subseteq AC^1 \subseteq \cdots \Rightarrow NC = AC$.

Complexidade de circuitos: NC e AC

Um circuito AC^0 é qualquer circuito com fn-in arbitrário e que alterna portas \lor e portas \land .

▶ Por exemplo, o seguite circuito é um circuito AC⁰ para Parity₄.

► Todas fórmulas FNC e FND são circuitos AC⁰.

Tribes

A função Tribes $_{w,s}:\{0,1\}^{ws} \to \{0,1\}$ é definida da seguinte forma:

$$\mathsf{Tribes}_{w,s}(x) = \bigvee_{i=1}^s (x_{1,i} \wedge x_{2,i} \wedge \cdots \wedge x_{w,i}).$$

Onde as variáveis são indexadas por $(i,j) \in [w] \times [s]$.

- ▶ Tribes $_{w,s}$ é trivialmente computável por um circuito FND de tamanho s+1.
- ► Toda árvore de decisão que computa Tribes_{w,s} tem que ter profundidade ws — Tribes_{w,s} é evasiva.

Tribes_n

Nós estamos mais interessados na seguinte escolha de parâmetros:

▶ Para cada $w \ge 1$, escolhemos s o maior inteiro tal que

$$(1-2^{-w})^s = \Pr[\mathsf{Tribes}_{w,s}(x) = 0] \ge 1/2.$$

 \triangleright n = ws.

Desta forma temos que Tribes, é uma função "imparcial", os valores 1 e 0 aparece com basicamente a mesma probabilidade. Também temos que

- $s = \Theta(\frac{n}{\log n})$.
- $\mathbf{v} = \log n \log \log n o(1).$

Na verdade, $s \approx 2^w \ln(2)$ e portanto $(1-2^{-w})^s \to 1/2$ com $w \to \infty$.

Teorema de Baker-Gill-Solovay

O teorema de Baker-Gill-Solovay diz que existem oráculos A e B tais que

- $P^A = NP^A$.
- $ightharpoonup P^B \neq NP^B$.

Nós podemos provar que existe B tal que $P^B \neq NP^B$ (a parte não-trivial do teorema) usando o fato que a função Tribes_n é evasiva.

Seja M uma máquina de Turing de tempo polinomial que tem uma fita de oráculo e $x \in \{0,1\}^*$. Nós consideramos o seguinte:

- \mathcal{X} um subconjunto finito de $\{0,1\}^*$.
- $\qquad \qquad \blacktriangle \subseteq \{0,1\}^* \setminus \mathcal{X} \text{ um oráculo.}$
- T_{MA,x} uma árvore de decisão que recebe a string característica de um oráculo subconjunto de X.
 - A string característica de $B \subseteq \mathcal{X}$ é a string x_B que é 1 no i-ésimo bit se a i-ésima string em \mathcal{X} (sobre alguma enumeração das strings binárias) está em B.
- $T_{M^A,x}^{\mathcal{X}}(x_B) = 1 \iff M^{A \cup B}(x) = 1.$

Se M é uma máquina de Turing de tempo polinomial e $x \in \{0,1\}^*$.

No caso especial em que $\mathcal{X} = \{0,1\}^n$, n = |x|.

- ▶ $T_{M^{A},x}^{\{0,1\}^{n}}$ tem profundidade polilogarítmica (o que é $\ll n$).
- ▶ Pois se M roda em tempo $\leq n^c$ então M faz no máximo n^c consultas ao oráculo.
- $ightharpoonup n^c = \operatorname{polylog}(2^n).$

Nós consideramos a seguinte linguagem.

$$L(B) = \{1^n | \mathsf{Tribes}_{n_w}(x_{B^{-n}}) = 1\}$$

- $ightharpoonup n_w$ satisfaz $2^{n-1} < n_w \le 2^n$ (tal n_w é unico).
- ▶ $B^{=n} = B \cap \{0,1\}^n$.
- ▶ Como o tamanho da string $x_{B^{-n}}$ pode ser menor do que 2^n a entrada da função Tribes_{n_w} é na verdade a string $x_{B^{-n}}$ truncada.

Para todos $A \subseteq \{0,1\}^*$, $L(A) \in NP^A$.

- ▶ Dado um índice i que é múltiplo de s (o número de tribos) verifica se as strings $x^{(i+1)}, \ldots, x^{(i+w-1)}$ estão em A com $\Theta(\frac{n}{\log n})$ consultas.
 - \triangleright $x^{(i)}$ é a *i*-ésima string de tamanho n na ordem lexicográfica.

 M_1, M_2, \ldots uma enumeração de máquinas de Turing de tempo polinomial e p_1, p_2, \ldots seus tempos de execução. Escolha n_1 de forma que $p_1(n_1) < 2^{n_1}$ e $B(0) = \emptyset$.

- Primeiro estágio:
 - ▶ Defina B' de forma que $T_{M^{B(0)},1^{n_1}}^{\{0,1\}^{n_1}}(x_{B'}) \neq \text{Tribes}_{n_w}(x_{B'})$ (as funções Tribes são evasivas).
 - ▶ Faça $B(1) = B(0) \cup B'$.
- ▶ *i*-ésimo estágio:
 - ▶ Escolha n_i tal que $p_i(n_i) < 2^{n_i}$ e $n_i > n_{i-1}$.
 - ▶ B' tal que $T_{M^{B(i-1)},1^{n_i}}^{\{0,1\}^{n_i}}(x_{B'}) \neq \mathsf{Tribes}_{n_w}(x_{B'})$
 - Faça $B(i) = B(i-1) \cup B'$.
- ▶ Por fim nós fazemos $B = \bigcup_{i>1} B(i)$.

Então podemos argumentar que $P^B \neq NP^B$.

- Nós definimos cada B(i) de forma que a máquina M_i falha em decidir L(B) corretamente na entrada 1^{n_i} quando M_i tem acesso a B(i).
- Como B(i) é consistente com B, M_i deve falhar em decidir L(B) corretamente na entrada 1^{n_i} com acesso a B.

$P \neq NP$ para oráculos aleatórios

Além de Tribes $_n$ ser evasiva, ela nem mesmo pode ser aproximada por árvores de decisão com profundidade polilogarítmica.

Nós dizemos que a árvore de decisão T aproxima uma função f se T(x) = f(x) para quase todas as entradas.

Teorema

Seja A qualquer algoritmo de consulta com complexidade de consulta $o(\frac{n}{logn})$, então:

$$\Pr_{x \sim \{0,1\}^n}[A(x) = \textit{Tribes}_n(x)] < 0,51$$

$P \neq NP$ para oráculos aleatórios

Bastar provar que qualquer árvore de consulta que faz consultas à somente uma fração constante das tribos não consegue aproximar Tribes $_n$.

- ▶ $g(x) = 1 \iff$ pelo menos uma das primeiros $\frac{1}{100}$ das tribos é unanimamente 1.
- ▶ Temos que $\Pr[\mathsf{Tribes}_n(x) \neq g(x)] = \mathsf{E}[(\mathsf{Tribes}_n(x) g(x))^2].$
- ▶ Como Tribes $_n(x) \ge g(x)$:
 - ▶ $Pr[Tribes_n(x) \neq g(x)] = E[Tribes_n(x) g(x)].$

$P \neq NP$ para oráculos aleatórios

Então temos que

$$\begin{aligned} \Pr[\mathsf{Tribes}_n \neq g(x)] &= \mathsf{E}[\mathsf{Tribes}_n(x) - g(x)] \\ &= \mathsf{E}[\mathsf{Tribes}_n(x)] - \mathsf{E}[g(x)] \\ &= \mathsf{Pr}[\mathsf{Tribes}_n(x) = 1] - \mathsf{Pr}[g(x) = 1] \\ &= 1 - (1 - 2^{-w})^s - 1 + (1 - 2^{-w})^{\frac{1}{100}} s \\ &= (1 - 2^{-w})^{\frac{1}{100}s} - (1 - 2^{-w})^s. \end{aligned}$$

Com w tendendo ao infinito isso é maior do que

$$2^{-1/100} - 1/2 - 0,001 > 0,492.$$

Portanto,

$$Pr[Tribes_n(x) = g(x)] < 1 - 0,492 = 0,508 < 0,51.$$

$P \neq NP$ para oráculos aleatórios - Lei 0-1 de Kolmogorov

- Para uma sequência X₁, X₂,... de variáveis aleatórias mutualmente independentes:
 - ► $G_n = \sigma\left(\bigcup_{i=n}^{\infty} X_i\right)$ é a menor σ -álgebra para qual cada X_i , $i \ge n$, é mensurável.
 - $\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{G}_n$ é a σ -álgebra caudal de X_1, X_2, \ldots

Teorema

Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias independentes e $\mathcal T$ a σ -álgebra caudal destes eventos. Então todo evento $E \in \mathcal T$ satisfaz $\Pr[E] \in \{0,1\}.$

Para provar o teorema de Baker-Gill-Solovay nós utilizamos os seguintes passos:

- ▶ Máquina de Turing com acesso a um oráculo e uma string:
 - Árvore de decisão de profundidade polilogarítmica.
- ▶ Para cada oráculo $B \subseteq \{0,1\}^*$ nós definimos a linguagem unária L(B) que está em \mathbb{NP}^B .
 - ▶ Cada L(B) está "estruturada" da mesma forma usando as funções Tribes_n.

Para provar o teorema de Baker-Gill-Solovay nós utilizamos os seguintes passos (continuando):

- Nós definimos uma sequência n_1, n_2, \ldots , com $1 \le n_1 < n_2 < \ldots$
- Árvores de decisão de profundidade polilogarítmica não são capazes de computar as funções Tribes_n:
 - Um oráculo B(i) em que a i-ésima máquina de Turing de tempo polinomial falha em decidir L(B(i)) para a string 1^{n_i} relativo a B(i).
- ▶ E como último passo nós fazemos $B = \bigcup_{i>1} B(i)$.

Agora vamos considerar \mathcal{C}_1 e \mathcal{C}_2 classe de complexidades quaisquer e queremos provar que existe um oráculo $B\subseteq\{0,1\}^*$ tal que $\mathcal{C}_1^B\neq\mathcal{C}_2^B$.

- ▶ Um predicado P para uma linguagem em C_1 e uma string x:
 - ightharpoonup Representados por alguma classe $\mathcal D$ de "dispositivos computacionais".
 - ▶ Ou seja, $P(B,x) = 1 \iff D_x(B) = 1$, onde $D_x \in \mathcal{D}$.
- lacktriangle Para cada oráculo $B\subseteq\{0,1\}^*$ nós definimos a linguagem unária

$$L(B) = \{1^n | f(x_B) = 1\},\$$

para alguma função f que não pode ser computada em \mathcal{D} e tal que $L(B) \in \mathcal{C}_2^B$.

Agora vamos considerar \mathcal{C}_1 e \mathcal{C}_2 classe de complexidades quaisquer e queremos provar que existe um oráculo $B\subseteq\{0,1\}^*$ tal que $\mathcal{C}_1^B\neq\mathcal{C}_2^B$ (continuando).

 Daí podemos repetir o mesmo argumento que usamos para a prova do Teorema de Baker-Gill-Solovay.

Ou seja, podemos generalizar a prova do teorema de Baker-Gill-Solovay para provar outras separações por oráculo.

Lembrando a classe PH:

▶ Para todo $k \ge 1$, uma linguagem L está em Σ_k^p se e somente se

$$x \in L \iff \exists x_1 \forall \dots Q_k x_k M(x, x_1, \dots, x_k = 1,$$

onde M é uma máquina de Turing que roda em tempo p(n) e Q_k é \exists se k é ímpar e \forall se k é par.

- ▶ Cada x_i tem tamanho no máximo p(|x|).
- ightharpoonup PH = $\bigcup_{i>1} \Sigma_k^p$.
- ▶ Vamos denotar a classe Σ_k^p com acesso à oráculo B por $\Sigma_k^{p,B}$.
- $\blacktriangleright \mathsf{PH}^B = \bigcup_{i \geq 1} \Sigma_k^{p,B}.$

Nós já sabemos que PH \subseteq PSPACE. É verdade que existe $B\subseteq\{0,1\}^*$ tal que PH^B $\not\supseteq$ PSPACE^B?

• Um predicado $P_{k,i}$ em \sum_{k}^{p} é

$$P_{k,i}(x) \iff \exists x_1 \forall \dots Q_k x_k M_i(x, x_1, \dots, x_k) = 1,$$

onde M_i é a i-ésima máquina de Turing de tempo polinomial e Q_k é \exists ou \forall dependendo de k ser ímpar ou par, respectivamente.

- ▶ Podemos então enumerar todos os predicados *Pi* em PH.
- ▶ Para $x \in \{0,1\}^*$ e $B \subseteq \{0,1\}^*$:

$$P_{i,x}(B) = 1 \iff P_i^B(x) = 1,$$

onde P_i^B é o predicado P_i com acesso ao oráculo B.

O primeiro passo para provar que existe um oráculo B tal que $PH^B \neq PSPACE^B$ é mostrar que $P_{i,x}$ pode ser representado por um circuito AC^0 .

▶ Um predicado PH P_i é da forma

$$P_i(X) \iff \exists x_1 \forall x_2 \dots Q_k x_k M_i(x, x_1, \dots, x_k) = 1.$$

- ▶ Cada quantificador $\exists \Rightarrow$ uma camada de portas \lor .
- ▶ Cada quantificador $\forall \Rightarrow$ uma camada de portas \land .
- ▶ Representamos $P_{i,x} \equiv P_{k,i,x}$, para algum $k \ge 1$, por um circuito AC⁰ de profundidade k+1.

Cada árvore de decisão representa a computação de M_i com a entrada x e todas as possíveis escolhas de x_1, x_2, \ldots, x_k .

Cada árvore de decisão representa a computação de M_i com a entrada x e todas as possíveis escolhas de x_1, x_2, \ldots, x_k .

Para um predicado $P_{i,x}$ nós temos um circuito $C_{P_i,x}$ com $N=2^{\text{poly}(|x|)}$ entradas que satisfaz:

- ▶ Tamanho $\Theta(2^k N)$ e profundidade k+1.
- ▶ Fan-in $\mathcal{O}(\log N)$ nas portas lógicas no nível mais baixo e fan-in $\mathcal{O}(N)$ nas demais portas.

Consideramos a seguinte linguagem para cada $B \subseteq \{0,1\}^*$:

$$L(B) = \{1^n | \mathsf{Parity}(B^{=n}) = 1\}$$

Nós temos que $L(B) \in \mathsf{PSPACE}^B$. Nós temos o seguinte teorema:

Teorema

Seja d>0 um inteiro. Para n suficientemente grande temos que qualquer circuito de profundidade d com fan-in $\operatorname{polylog}(n)$ no teu primeiro nível e tamanho $< 2^{\mathcal{O}\left(n^{\frac{1}{d-1}}\right)}$ não pode computar a função paridade de n variáveis corretamente em todas as entradas.

Teorema

Seja d>0 um inteiro. Para n suficientemente grande temos que qualquer circuito de profundidade d com fan-in $\operatorname{polylog}(n)$ no teu primeiro nível e tamanho $<2^{\mathcal{O}\left(n^{\frac{1}{d-1}}\right)}$ não pode computar a função paridade de n variáveis corretamente em todas as entradas.

▶ Como haviamos discutidos, isto prova que existe um oráculo $B \subseteq \{0,1\}^*$ tal que $\mathsf{PH}^B \neq \mathsf{PSPACE}^B$.

Para separar a hierarquia polinomia relativo a algum oráculo nós temos que mostar que existe um oráculo $B\subseteq\{0,1\}^*$ tal que para todo $k\geq 1$

$$\sum_{k=1}^{p,B} \neq \sum_{k}^{p,B}$$

- Nós temos que mostrar que um único oráculo separa várias classes.
- O nosso framework funciona para este caso?

Para cada $B\subseteq\{0,1\}^*$ e k>1 temos a seguinte linguagem:

$$L(B, k) = \{1^n | f^{k+1, N}(B^{=n}) = 1\}$$

Onde $N = (\sqrt{2/(k+1)}2^n)^{\frac{1}{k}}$ e $f^{k,n}$ são as funções de Sipser:

Definição

A função de Sipser f^{k,n} é definida da seguinte forma:

$$\bigvee_{i_k=1}^{\sqrt{\frac{n}{\log n}}} \bigwedge_{i_k-1=1}^{n} \cdots \bigwedge_{i_2=1}^{n} \bigvee_{i_1=1}^{\sqrt{\frac{1}{2}dn \log n}} x_{i_1,i_2,\dots,i_k}, \text{ se } k \text{ \'e par.}$$
 (1)

е

$$\bigvee_{i_{k}=1}^{\sqrt{\frac{n}{\log n}}} \bigwedge_{i_{k-1}=1}^{n} \cdots \bigvee_{i_{2}=1}^{n} \bigwedge_{i_{1}=1}^{\sqrt{\frac{1}{2}dn \log n}} x_{i_{1},i_{2},...,i_{k}}, \text{ se } k \text{ } \acute{e} \text{ } \acute{impar}. \tag{2}$$

E nós podemos ver que as funções $f^{k,d}$ têm profundidade k e tamanho

$$1 + \sum_{i=0}^{k-2} n^i \sqrt{\frac{n}{\log n}} = 1 + \left(\frac{n^{k-1} - 1}{n-1}\right) \sqrt{\frac{n}{\log n}}$$

O número de variáveis de entrada de $f^{k,n}$ é

$$m = n^{k-2} \sqrt{\frac{n}{\log n}} \sqrt{\frac{1}{2} k n \log n} = n^{k-1} \sqrt{k/2}.$$

E daí vemos que o circuito para $f^{k,n}$ tem tamanho linear.

Nós também temos um limitante inferior para as funçõs $f^{k,n}$:

Teorema

Seja k>2 e n suficientemente grande, qualquer circuito de tamanho $<2^{\Theta\left(\sqrt{\frac{n}{k\log n}}\right)}$ e profundidade k-1 não computa a função $f^{k,n}$ corretamente em todas as entradas.

- ▶ Seja P_1, P_2, \ldots uma enumeração de todos os predicados PH tal que cada i é em particular um predicado $\sum_{k_i}^p$, para algum $k_i \ge 1$.
- ▶ Seja n_1, n_2, \ldots uma sequência de inteiros tal que:
 - 1. $C_{P_i,1^{n_i}}$ tem tamanho polinomial e fan-in no nível mais baixo polilogarítmico.
 - 2. $1 < n_1 < n_2 < \dots$
- ▶ Para cada *i* nós podemos fazer P_i falhar em computar $L(B, k_i + 1)$ na entrada 1^{n_i} graças ao limitante inferior para as funções de Sipser.
- ▶ Isto é suficiente para construir um oráculo *B* que faz a hierarquia polinomial ser infinita.