

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR

Házi Feladat

Áramkörtervezés (BMEVIAUA037)

Készítette:

Pál Patrik, Vígh Soma AIQTQW, OCJ2KH

BUDAPEST, 2024

Tartalomjegyzék

1.	Feladat ismertetése	2
2.	Áramköri specifikációk	2
3.	Be- és Kimenetek	2
4.	Áramköri rajz	3
5.	IC rövid bemutatása	3
6.	Huzalozás során felhasznált szempontok	4
7.	Alkatrészek kiválasztása	4
8.	Továbbfejlesztési ötletek	4
9.	Példák gyakorlati alkalmazásra	4
10.	Források	4

1. Feladat ismertetése

A feladatunk egy Arduino Motor shield tervezése volt, amelynek alapját az L298 meghajtó IC adta. Ez a shield lehetővé teszi DC motorok és léptetőmotorok vezérlését, biztosítva a kétirányú forgást és a sebesség szabályozását. A tervezés során figyelembe vettük az áramkör helyes hűtését, az áramvédelemet, valamint a könnyű csatlakoztathatóságot. Az elkészült shield kompatibilis az Arduino alaplapokkal, és egyszerűen integrálható különböző robotikai és automatizálási projektekbe

2. Áramköri specifikációk

Symbol	Parameter	Value	Unit
V_s	Power Supply	50	V
V_{ss}	Logic Supply Voltage	7	V
V_l, V_{en}	Input and Enable Voltage	-0,3 to 7	V
I_O	Peak Output Current (each Channel)	3, 2,5, 2	A
V_{sens}	Sensing Voltage	-1 to 2,3	A
P_{tot}	Total Power Dissipation $(T_{case} = 75^{\circ})$	25	W
T_{op}	Junction Operating Temperature	-25 to 130	°C
T_{stg}, T_j	Storage and Junction Temperature	-40 to 150	$^{\circ}\mathrm{C}$

1. táblázat. Áramköri specifikációk [1]

3. Be- és Kimenetek

- Tápbemenet (12 V)
- Motor vezérlésére alkalmas csatlakozó amire az Arduino csatlakozható
- Motorra csatlakoztatható vezérlő Kimenete
- Tápellátást szemléltető LED

4. Áramköri rajz

1. ábra. Az áramköri rajz

5. IC rövid bemutatása

Az L298 egy motorvezérlő integrált áramkör, amelyet H-híd konfigurációval DC motorok és léptetőmotorok vezérlésére terveztek. Két független H-hidat tartalmaz, amelyek csatornánként legfeljebb 2 A folyamatos áramot tudnak biztosítani, rövid ideig pedig akár 3 A-t, megfelelő hűtés mellett. Az IC működési feszültségtartománya 4,5 V-tól 46 V-ig terjed, így különféle motorokkal kompatibilis. Az L298 TTL-kompatibilis bemenetekkel rendelkezik, amelyek egyszerű interfészt biztosítanak mikrokontrollerekkel.

Fő funkicói:

- Magas áram és feszültségtűrés
- Beépített Hő- és rövidzárlati védelem
- Két független H-híd, amelyek kettő motor irányának és sebességének a vezérlését teszik lehetővé

2. ábra. L298 blokk diagramja [1]

6. Huzalozás során felhasznált szempontok

- A huzalozás során igyekeztünk minimális kábelhosszúságokat használni, az elektromágneses zajok elkerülésének érdekében, illetve megfelelő keresztmetszetű vezetékeket használtunk
- Gondoskodtunk a motor megfelelő, stabil tápellátásáról
- Az nagyfrekvenciás zajok csökkentésére kondenzátorokat helyeztünk a logikai táp közelébe
- Diódákat használtunk, hogy elvezessék a motor által indukált magas feszültségértékeket
- Földkiöntést alkalmaztunk a nyomtatott áramkörön, hogy minimalizáljuk a földhurkokat és tovább növeljük az elektromágneses kompatibilitást.

7. Alkatrészek kiválasztása

Az alábbi szempontok alapján választottuk ki az alkatrészeinket:

- Kis darabszámban is rendelhető (1/10)
- Gazdaságos
- Teljesítmény megfelelő
- Van raktáron
- %-os hiba alacsony

8. Továbbfejlesztési ötletek

- Opcionálisan egy hűtőborda elhelyezhető a túlmelegedés elkerülésének érdekében a feszültségszabályozóra
- A vezetékezése tovább optimalizálható a rendszernek

9. Példák gyakorlati alkalmazásra

Az alábbi videó alapján az általunk tervezett áramkör is felhasználható, bemeneti és kimeneti lábai a videóban található áramkörével megegyeznek.

• Videó link [2]

10. Források

- [1]: L298 adatlapja: https://www.sparkfun.com/datasheets/Robotics/L298 H Bridge.pdf
- [2]: Videó link: https://www.youtube.com/watch?v=E2sTbpFsvXI