Mérték, integrál, ...

13. Előadás

1. Emlékeztető. Az $X, Y \neq \emptyset$ halmazok esetén tekintsük a szigma-véges $(X, \Omega, \mu), (Y, \Theta, \nu)$ mértéktereket, és vegyük az

$$(X \times Y, \Omega \otimes \Theta, \mu \otimes \nu)$$

szorzatukat. Itt

$$\Omega \otimes \Theta := \Omega(\{U \times V \in \mathcal{P}(X \times Y) : U \in \Omega, V \in \Theta\}),$$

míg

$$\mu \otimes \nu(A) := \int f_A d\mu = \int f^A d\nu \qquad (A \in \Omega \otimes \Theta)$$

az

$$f_A(x) := \nu(A_x) \quad (x \in X), \ f^A(y) := \mu(A^y) \quad (y \in Y)$$

függvényekkel és az

$$A_x := \{z \in Y : (x, z) \in A\} \in \Theta, A^y := \{v \in X : (v, y) \in A\} \in \Omega$$

(metszet)halmazokkal.

Ekkor tetszőleges $f \in L(\mu \otimes \nu)$ függvényre (Fubini-tétel)

$$\int f(x,y) d\mu \otimes \nu(x,y) = \int \left(\int f(x,y) d\nu(y) \right) d\mu(x) =$$
$$\int \left(\int f(x,y) d\mu(x) \right) d\nu(y).$$

Az itt szereplő "belső" integrálok m.m. (x, ill. y) értelemben léteznek, míg speciálisan $f \in L^+(\mu \otimes \nu)$ esetén minden pontban (Tonelli-tétel).

2. Borel² – Cantelli³-lemma.

Ezen a néven ismert (pl. a valószínűségszámításban) az alábbi, két részből álló állítás. Legyen ehhez adott az (X,Ω,μ) mértéktér, $A_n\in\Omega$ $(n\in\mathbf{N})$ és

$$A := \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

 $^{^1}$ Szorgalmi feladat: ha a fentiekben mindkét szigma-algebra a számegyenes Borelmérhető halmazainak a rendszere, akkor mit mondhatunk az $\Omega \otimes \Theta$ szorzatuk és a síkbeli Borel-mérhető halmazok rendszerének a viszonyáról? Mi a helyzet akkor, ha ebben a kérdésben a "Borel-mérhető" kitételt "Lebesgue-mérhető"-re cseréljük?

²Félix Edouard Justin Émile Borel (1871 – 1956).

³Francesco Paolo Cantelli (1875 – 1966).

Ekkor

$$\sum_{k=0}^{\infty} \mu(A_k) < +\infty \implies \mu(A) = 0.$$

Valóban, mivel minden $n \in \mathbb{N}$ mellett $A \subset \bigcup_{k=n}^{\infty} A_k$, ezért

$$\mu(A) \le \mu\left(\bigcup_{k=n}^{\infty} A_k\right) \le \sum_{k=n}^{\infty} \mu(A_k) \to 0 \qquad (n \to \infty).$$

Azt mondjuk továbbá, hogy a fenti A_n $(n \in \mathbb{N})$ halmazok függetlenek, ha bármilyen $\emptyset \neq \mathcal{N} \subset \mathbb{N}$ véges halmaz esetén

$$\mu\Big(\bigcap_{k\in\mathcal{N}}A_k\Big)=\prod_{k\in\mathcal{N}}\mu(A_k).$$

Független halmazokra – az előbbi állítás mintegy ellenpontjaként – igaz a következő: ha $\mu(X)=1$ és 4

$$\sum_{k=0}^{\infty} \mu(A_k) = +\infty,$$

akkor $\mu(A) = 1$.

Ugyanis $\mu(A) = 1$ akkor és csak akkor teljesül, ha

$$\mu(X \setminus A) = \mu\Big(\bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} (X \setminus A_k)\Big) = 0,$$

ami nyilván következik a

$$\mu\Big(\bigcap_{k=n}^{\infty}(X\setminus A_k)\Big)=0 \qquad (n\in\mathbf{N})$$

állításból. Ez utóbbi igazolásaként elegendő hivatkoznunk a minden $m \geq n$ $(m,n \in \mathbf{N})$ esetén fennálló

 $^{^4}$ Könnyű meggyőződni arról, hogy ekkor tetszőleges A_k $(k\in \mathbf{N})$ halmazt az $(X\setminus A_k)$ komplementerére kicserélve, az így kapott halmazok is függetlenek. Mindez adódik az alábbi meggondolásból: legyen $A,B\in\Omega$ és $\mu(A\cap B)=\mu(A)\mu(B)$. Ekkor $\mu(A\cap (X\setminus B))=\mu(A\setminus B)=\mu(A\setminus (A\cap B))=\mu(A)-\mu(A\cap B)=\mu(A)(1-\mu(B))=\mu(A)\mu(X\setminus B)$. Speciálisan, az $X\setminus A_k$ $(k\in \mathbf{N})$ halmazok is függetlenek.

$$\mu\Big(\bigcap_{k=n}^{\infty} (X \setminus A_k)\Big) \le \mu\Big(\bigcap_{k=n}^{m} (X \setminus A_k)\Big) = \prod_{k=n}^{m} \Big(1 - \mu(A_k)\Big) < e^{-\sum_{k=n}^{m} \mu(A_k)} \to 0 \qquad (m \to \infty)$$

becslésre.⁵

A valószínűségszámítás nyelvén megfogalmazva tehát a Borel–Cantellilemma jelentése a következő: legyen $\mu(X)=1$, azaz az (X,Ω,μ) egy valószínűségi mértéktér (vagy más néven Kolmogorov-mező), az $A_n\in\Omega$ $(n\in\mathbf{N})$ pedig független események sorozata. Az A_n esemény $bekövetkezésének a valószínűsége a <math>\mu(A_n)$ nemnegatív szám. Ezzel a terminológiával élve a

$$\mu\Big(\bigcap_{n=0}^{\infty}\bigcup_{k=n}^{\infty}A_k\Big)$$

annak a valószínűsége, hogy az A_n -ek közül végtelen sok bekövetkezik. Ez a valószínűség tehát vagy nulla, vagy pedig egy, pontosan akkor, ha a

$$\sum_{k=0}^{\infty} \mu(A_k)$$

összeg véges vagy sem.

3. Markov⁶ – Csebisev⁷-egyenlőtlenség.

Legyen $X \neq \emptyset$, ekkor tetszőleges (X, Ω, μ) mértéktér és

$$f: X \to \overline{\mathbf{R}}$$

mérhető függvény esetén

$$\mu\Big(\{|f| \ge y\}\Big) \le \frac{1}{y^p} \cdot \int |f|^p d\mu \qquad (p, y > 0).$$

Ez az ún. Markov-egyenlőtlenség egyszerűen következik az

$$y^{-p} \cdot |f|^p \ge \chi_{\{|f| \ge y\}}$$

 $^{^5 1 -} x \le e^{-x} \quad (x \in \mathbf{R}).$

⁶Andrej Andrejevics Markov (1856 – 1922).

⁷Pafnutyij Lvovics Csebisev(1821 – 1894).

becslésből. Ha itt valamilyen $0 "kitevővel" <math>\|f\|_p < +\infty$, akkor minden y > 0 esetén nyilván

$$\mu(\{|f| > y\}) < +\infty.$$

A Markov-egyenlőtlenség egyik fontos következménye a Csebisev-egyenlőtlenség. Legyen ehhez az eddigi (X, Ω, μ) mértéktér esetén $f \in L(\mu)$, és tegyük fel, hogy az

$$F(x) := f(x) - \int f \, d\mu \qquad (x \in X)$$

függvényre

$$0 < ||F||_2 < +\infty$$

teljesül. Ekkor bármilyen $\lambda > 0$ számmal a p = 2-re felírt

$$\mu(\{|f| \ge y\}) \le \frac{1}{y^2} \cdot \int |f|^2 d\mu = \frac{\|f\|_2^2}{y^2} \qquad (y > 0)$$

Markov-egyenlőtlenségből az f helyett F-et, az y helyett pedig $\lambda \cdot \|F\|_2$ -t írva

$$\mu(\{|F| \ge \lambda \cdot ||F||_2\}) \le \frac{1}{\lambda^2}.$$

Ha $\mu(X)=1$, azaz az (X,Ω,μ) Kolmogorov-mező, akkor valószínű-ségszámítási terminológiával élve az f egy ún. $valószínűségi változó, <math>\int f \, d\mu$ az f várható értéke, $\|F\|_2$ pedig az f szórása, ahol tehát

$$||F||_2 = \sqrt{\int \left| f - \int f \, d\mu \right|^2 d\mu}.$$

4. Martingálok.

a) Emlékeztető: legyen az (X,Ω,μ) egy valószínűségi mértéktér (Kolmogorov-mező), azaz $\mu(X)=1$, az $\Omega_0\subset\Omega$ pedig egy rész-szigma-algebra. Ha $f\in L^1$, akkor (ld. Radon–Nikodym-tétel) egyértelműen létezik olyan, az Ω_0 szigma-algebrára nézve mérhető $f_0\in L^1$ függvény⁸, hogy tetszőleges $A\in\Omega_0$ halmazra igaz a következő egyenlőség:

$$\int_A f \, d\mu = \int_A f_0 \, d\mu.$$

 $^{^8{\}rm Azaz}$ bármely $A\subset \overline{\bf R}$ Borel-halmazra $f_0^{-1}[A]\in \Omega_0.$

Az

$$E_{\Omega_0}f := f_0$$

függvényt az f-nek az Ω_0 -ra vonatkozó feltételes várható értékének, az E_{Ω_0} leképezést pedig az Ω_0 -ra vonatkozó feltételes várható érték operátornak nevezzük.

Speciálisan, ha $\Omega_0 = \Omega$, akkor $f_0 = f$ μ -m.m., ha pedig $\Omega_0 := \{\emptyset, X\}$, akkor az f_0 konstansfüggvény és

$$f_0 = \int f_0 \, d\mu = \int f \, d\mu.$$

b) Legyen az a)-beli valószínűségi mértéktér esetén az

$$\mathcal{A}_n \subset \Omega \qquad (n \in \mathbf{N})$$

szigma algebráknak egy olyan sorozata, amelyre

$$\mathcal{A}_n \subset \mathcal{A}_{n+1} \qquad (n \in \mathbf{N})$$

és

$$\Omega = \bigcup_{n=0}^{\infty} \mathcal{A}_n$$

teljesül. Jelöljük E_n -nel $(n \in \mathbf{N})$ az \mathcal{A}_n szigma algebrára vonatkozó feltételes várható érték operátort:

$$E_n := E_{\mathcal{A}_n} \qquad (n \in \mathbf{N}).$$

Ekkor az

$$f_n \in L^1 \qquad (n \in \mathbf{N})$$

függvényekből álló f sorozat egy martingál, ha az f_n mérhető az \mathcal{A}_n -re nézve 9 és

$$E_n(f_{n+1}) = f_n \qquad (n \in \mathbf{N}).$$

Legyen

$$\mathbf{M}(f) := \sup_{n} |f_n|$$

(az (f_n) martingál maximálfüggvénye) és

$$||f||_p := \sup_n ||f_n||_p \qquad (1 \le p \le +\infty).$$

⁹Más szóval bármely $B \subset \overline{\mathbf{R}}$ Borel-halmazra $f_n^{-1}[B] \in \mathcal{A}_n$.

Ekkor alkalmas C>0 és (csak a p-től függő) $C_p>0$ konstansokkal igaz a $Doob^{10}$ - egyenlőtlenség:

$$\mu(\{\mathbf{M}(f) > y\}) \le \frac{C}{y} \cdot ||f||_1 \qquad (y > 0),$$

ill.

$$\|\mathbf{M}(f)\|_p \le C_p \cdot \|f\|_p \qquad (1$$

Belátható, hogy ha $1 és <math>||f||_p < +\infty$, akkor (a μ mérték szerinti értelemben) m.m. is és $||.||_p$ -normában is az $(f_n, n \in \mathbf{N})$ sorozat konvergens, az

$$F(x) := \lim_{n \to \infty} f_n(x)$$
 (m.m. $x \in X$)

határértékre pedig $F \in L^p$, továbbá

$$f_n = E_n(F) \qquad (n \in \mathbf{N})$$

igaz.¹¹

Világos, hogy tetszőleges $f \in L^1$ esetén az

$$f_n := E_n(f) \qquad (n \in \mathbf{N})$$

módon értelmezett f_n -ek martingált alkotnak.

c) A diadikus analízis alapjai: legyen az

$$r: \mathbf{R} \to \mathbf{R}$$

a következő, 1 szerint periodikus függvény:

$$r(x) := \begin{cases} 1 & (0 \le x < 1/2) \\ -1 & (1/2 \le x < 1), \end{cases}$$

az r_n $(n \in \mathbf{N})$ függvények pedig:

$$r_n(x) := r(2^n x)$$
 $(x \in [0, 1]).$

На

$$n = \sum_{k=0}^{\infty} n_k 2^k$$
 $(n_k \in \{0, 1\}, k \in \mathbf{N})$

¹⁰Joseph Leo Doob (1910 – 2004).

 $^{^{11}}$ Ha p=1, akkor az előbbiekből a m.m. értelemben vett konvergencia megmarad.

és

$$x = \sum_{k=0}^{\infty} x_k 2^{-k-1}$$
 $(x_k \in \{0, 1\}, k \in \mathbf{N})$

az $x \in [0,1)$ szám diadikus kifejtése, akkor legyen

$$w_n(x) := \prod_{k=0}^{\infty} r_k^{n_k}(x) = \prod_{k=0}^{\infty} (-1)^{n_k x_k} = (-1)^{\sum_{k=0}^{\infty} n_k x_k}.$$

Az így értelmezett (r_n) függvényrendszert $Rademacher^{12}$ -rendszernek, a (w_n) rendszert pedig $Walsh^{13}$ - $Paley^{14}$ -rendszernek nevezzük.

 $A\ [0,1]$ -beli Lebesgue-mértékre nézve a Walsh–Paley-rendszer ortonormált:

$$\int_0^1 w_n(x) \cdot w_m(x) \, dx = \begin{cases} 0 & (n \neq m) \\ 1 & (n = m) \end{cases} \quad (n, m \in \mathbf{N}).$$

Ha $f \in L^1[0,1]$, akkor az

$$\widehat{f}(k) := \int_0^1 f(x) w_k(x) \, dx \qquad (k \in \mathbf{N})$$

számok az f Walsh-Fourier-együtthatói, az

$$S_n(f) := \sum_{k=0}^{n-1} \widehat{f}(k) w_k \qquad (n \in \mathbf{N})$$

összegek pedig az f Walsh-Fourier-részletösszegei.

Tekintsük az alábbi intervallumokat:

$$I_{nk} := [k2^{-n}, (k+1)2^{-n})$$
 $(n \in \mathbb{N}, k = 0, ..., 2^n - 1),$

és adott $n \in \mathbb{N}$ mellett legyen az Ω_n az I_{nk} -k által generált legszűkebb szigma-algebra (a [0,1] intervallum Lebesgue-mérhető halmazainak a szigma-algebrájára vonatkozóan). Ekkor $f \in L^1[0,1]$ esetén az f-nek az Ω_n -re vonatkozó feltételes várható értéke az

$$S_{2^n}(f) = \sum_{k=0}^{2^n - 1} \widehat{f}(k) w_k$$

 $^{^{12}}$ Hans Rademacher (1892 – 1969).

 $^{^{13}}$ Joseph Leonard Walsh (1895 – 1973).

¹⁴Raymond Edward Alan Christopher Paley (1907 – 1933).

Walsh-Fourier-részletősszeg. Továbbá

$$S_{2^n}(f)(x) = 2^n \cdot \int_{I_{nk}} f(t) dt$$
 $(n \in \mathbf{N}, x \in I_{nk} \ (k = 0, ..., 2^n - 1)).$

A valószínűségszámítás nyelvén megfogalmazva az $(S_{2^n}(f))$ sorozat egy (diadikus) martingál, azaz fennáll az

$$E_{\Omega_n} = S_{2^n} \qquad (n \in \mathbf{N})$$

egyenlőség.

Ha tehát

$$\mathbf{M}_d(f) := \sup_{n} |S_{2^n}(f)| \qquad (f \in L^1[0,1]),$$

akkor alkalmas C>0 és (csak a p-től függő) $C_p>0$ konstansokkal igaz a

$$\widehat{\mu}_1\left(\{\mathbf{M}_d(f) > y\}\right) \le \frac{C}{y} \cdot ||f||_1 \qquad (f \in L^1[0, 1], y > 0),$$

ill. a

$$\|\mathbf{M}_d(f)\|_p \le C_p \cdot \|f\|_p \qquad (f \in L^p[0,1], \ 1$$

becslés.

d) Legyen egy [a, b] kompakt intervallummal

$$\mathcal{I} := \{ I \subset [a, b] : \text{ az } I \text{ nyı́lt intervallum} \},$$

és egy Lebesgue-mérhető

$$f:[a,b]\to\mathbf{R}$$

függvény esetén

$$M(f)(x) := \sup \left\{ \frac{1}{|I|} \int_{I} |f| \, d\widehat{\mu}_{1} : x \in I \in \mathcal{I} \right\} \qquad (x \in (a, b))$$

 $(Hardy^{15}-Littlewood^{16}-maximálfüggvény)$. Nyilván

$$\mathbf{M}_d(f) \le M(f) \qquad (f \in L^1[0,1]).$$

Az M leképezésre (maximáloperátorra) igaz, hogy 0 esetén van olyan, csak a <math>p-től függő $C_p > 0$ konstans, hogy minden Lebesgue-mérhető

$$f:[a,b]\to\mathbf{R}$$

¹⁵Godfrey Harold Hardy (1877 – 1947).

 $^{^{16}}$ John Edensor Littlewood (1885 – 1977).

függvényre

$$\widehat{\mu}_1(\{Mf > q\}) \le \frac{C_1}{q} \cdot \|f\|_1 \qquad (q > 0)$$

és

$$||Mf||_p \le C_p \cdot ||f||_p \qquad (1$$

valamint

$$\int_{a}^{b} M(f) \, d\widehat{\mu}_{1} \leq 2(b-a) + C_{1} \int_{a}^{b} |f| \log^{+} \circ |f| \, d\widehat{\mu}_{1},$$

továbbá

$$\left(\int_{a}^{b} (M(f))^{p} d\widehat{\mu}_{1} \right)^{1/p} \leq (b - a + C_{p})^{1/p} \cdot ||f||_{1} \qquad (0$$

e) A XX. századi matematika egyik legnagyobb hatású eredménye a Carleson¹⁷-Hunt¹⁸-tétel (ami egy akkor mintegy 50 éves nyitott problémára, az ún. Luzin¹⁹-sejtésre adott választ). Ennek a megfogalmazásához legyen a T_n $(n \in \mathbb{N})$ az n-edik trigonometrikus Fourier-részletösszeg-operátor.²⁰ Ekkor van olyan C>0 abszolút konstans, hogy minden $1< p<+\infty$ "kitevőre" és $f \in L^p[0,2\pi]$ függvényre²¹

$$\|\sup_{n} |T_n(f)|\|_p \le \frac{Cp^4}{(p-1)^3} \cdot \|f\|_p,$$

ill. (ebből következően) tetszőleges

$$f \in L^q[0, 2\pi] \qquad (1 < q \le +\infty)$$

mellett fennáll a

$$\lim_{n \to \infty} T_n(f)(x) = f(x) \qquad \text{(m.m. } x \in [0, 2\pi]\text{)}$$

pontonkénti konvergencia.

Megjegyezzük, hogy mintegy ellenpontként jóval a Carleson-tétel előtt már híressé vált a Kolmogorov-tétel, miszerint van olyan $f \in L^1[0, 2\pi]$ függvény, hogy λ -m.m. $x \in [0,2\pi]$ esetén az $(T_n f(x))$ sorozat (azaz az f

¹⁷Lennart Axel Edvard Carleson (1928 –).

¹⁸Richard Allen Hunt (1937 - 2009).

¹⁹Nyikolaj Nyikolajevics Luzin (1883 – 1950). ²⁰Más szóval $T_n(f)(x) := a_0 + \sum_{k=1}^{n} (a_k \cdot \cos(kx) + b_k \cdot \sin(kx)) \quad (x \in \mathbf{R})$, amikor is $a_0 := 1/(2\pi) \int_0^{2\pi} f(x) \, dx, \quad a_k := 1/\pi \int_0^{2\pi} f(x) \cdot \cos(nx) \, dx, \quad b_k := 1/\pi \int_0^{2\pi} f(x) \cdot \sin(kx) \, dx$ $(f \in L^1[0, 2\pi])$.

²¹L. Carleson (1966), ha p = 2 és R. Hunt (1967), ha p > 1.

trigonometrikus Fourier-sora az x pontban) divergens (1923), sőt, hogy a $(T_n f(x))$ sorozat minden egyes $x \in [0, 2\pi]$ helyen divergens (1926). Máig nyitott az a kérdés, hogy az

$$\bigcup_{p>1} L^p[0,2\pi]$$

függvényosztály és (a nála bővebb) $L^1[0,2\pi]$ tér között hol húzódik az a "határ", ami az $L^1[0,2\pi]$ -ben elválasztja egymástól azokat a függvényeket, amelyeknek a trigonometrikus Fourier-sora m.m. konvergens, ill. nem.

f) A Walsh–Fourier-sorokra a fentiek analogonjai: minden 1 esetén egy csak a <math>p-től függő C_p konstanssal^22

$$\|\sup_{n} |S_n(f)|\|_p \le C_p \cdot \|f\|_p \qquad (f \in L^p[0,1]),$$

valamint bármely $1 < q \leq +\infty$ kitevőre és $f \in L^q[0,1]$ függvényre igaz, hogy

$$\lim_{n \to \infty} S_n(f)(x) = f(x) \qquad \text{(m.m. } x \in [0, 1]\text{)}.$$

Ugyanakkor megadható olyan $f \in L^1[0,1]$ függvény, amellyel az $(S_n f(x))$ sorozat (azaz az f Walsh-Fourier-sora az x pontban) minden egyes $x \in [0,1]$ helyen divergens.²³

²²P. Billard (1966-67), ha p = 2, és P. Sjölin (1969), ha p > 1.

²³ A részleteket illetően ld. pl. az F. Schipp-W. R. Wade-P. Simon: Walsh series. An Introduction to Dyadic Harmonic Analysis. Akadémiai Kiadó, Budapest – Adam Hilger, Bristol and New York, 1990. monográfiát.