Statistics

2022 Lectures Part 8 - Point Estimation

Institute of Economic Studies Faculty of Social Sciences Charles University

Statistical inference and data

- What can we say about specific aspects of the stochastic mechanisms that govern the occurrence of our data?
- Whatever inference we make from the actual data, it is subject of error. This error (not mistake!) is the central concept of statistics.
- Using terminology of decision theory, we are in one of the situations labeled as "world θ_1 " ... "world θ_n " and we do not know at which one and assume that there is one action appropriate for each "world". To find out at which "world θ_j " we are, we conduct experiments.
- Let X be symbol for the results of such experiments and we assume that X follows distribution that depends on θ_i .
- Most often the outcome of X is possible under several θ_j 's (with different probabilities depending on θ_i).
- From now on: data are observations collected via simple random sampling method.

Estimation

- Estimation is a process of extracting information about the value of a certain population parameter θ .
- Estimator of θ is then a rule that allows us to calculate an approximation of θ based on sample X_1, \ldots, X_n .
- There may be more then one estimator of the same parameter.
- We observe independent rv's $X_1, \ldots X_n$ sampled from distribution depending on θ which can have values from a parameter space Θ
- E.g. X_1, \ldots, X_n are normally distributed with an unknown mean θ and known standard deviation.
- In simple scenarios θ is a single number, so Θ is a subset of the real line, but in general, Θ may be a set from a multidimensional space.

From now on, unless stated otherwise, θ is scalar; Θ is an interval of the real line.

Estimators

Definition 39: A statistics is called an estimator if it is used to estimate θ . The value of an estimator, obtained from a particular sample, is called an estimate of θ .

Example 82: Let $X_1, \ldots, X_n \sim U[0, \theta]$. Estimate θ !

- $T_1 = X_{n:n}$... the largest value should always satisfy $X_{n:n} \le \theta$
- $T_2 = \frac{n+1}{n} T_1 \dots X_1, \dots X_n$ divides $[0, \theta]$ into n+1 intervals of "even" length
- $T_3 = (n+1)X_{1:n}$
- $T_4 = 2\bar{X}$... average should be close to midpoint
- and the list could go on

Desired properties of estimators

Definition 40: Let $T_n = T_n(X_1, \ldots, X_n)$ be the estimator. Then it is called (weakly) consistent if $T_n \stackrel{P}{\longrightarrow} \theta$. It is called strongly consistent if $T_n \stackrel{a.s.}{\longrightarrow} \theta$.

 "one gets closer to the true value of the parameter by increasing sample size"

Definition 41: Let $T_n = T_n(X_1, \ldots, X_n)$ be the estimator. Then it is called unbiased if $E_{\theta}(T_n) = \theta$ for every n. Otherwise it is called biased. The difference $B_{\theta}(T_n) = E_{\theta}(T_n) - \theta$ is called bias of T_n . It is called asymptotically unbiased if $\lim_{n \to \infty} E_{\theta}(T_n) = \theta$.

- "if we repeat sampling then the estimate is on average the true value"
- we can require many other properties, e.g. we may be interested in estimator with the lowest variance ("highest precision")

Example cont.

Example 82 cont.:

ullet $P(T_1 \leq t) = P(X_1 \leq t, \dots, X_n \leq t) = \left(rac{t}{ heta}
ight)^n$ and thus

$$P(|T_1 - \theta| < \varepsilon) = 1 - \left(\frac{\theta - \varepsilon}{\theta}\right)^n \to 1$$

and so T_1 is consistent.

- $T_2 = \frac{n+1}{n}T_1$ and so $T_2 \stackrel{P}{\longrightarrow} \theta$. Also T_2 is consistent.
- $P(|T_3 \theta| < \varepsilon) = P\left(X_{1:n} < \frac{\theta + \varepsilon}{n+1}\right) P\left(X_{1:n} < \frac{\theta \varepsilon}{n+1}\right) =$ $= \left(1 \frac{\theta \varepsilon}{\theta(n+1)}\right)^n \left(1 \frac{\theta + \varepsilon}{\theta(n+1)}\right)^n \rightarrow e^{-\frac{\theta \varepsilon}{\theta}} e^{-\frac{\theta + \varepsilon}{\theta}} < 1$ Thus T_3 is not consistent estimator of θ .
- By LLN $2\bar{X} \xrightarrow{P} 2E(X) = 2\frac{\theta}{2} = \theta$.

Mean square error

Definition 42: Let T be an estimator of θ . Then

$$MSE_{\theta}(T) = E_{\theta}[(T(X_1,\ldots,X_n) - \theta)^2]$$

is called a mean squared error of T.

Theorem 57: For any estimator T of parameter θ we have

$$MSE_{\theta}(T) = Var_{\theta}T + (B_{\theta}(T))^{2}.$$

Example 82 cont.:

$$\begin{split} E(T_1) &= \frac{n}{n+1}\theta \neq \theta, \ E(T_2) = E(T_3) = E(T_4) = \theta, \\ Var(X_{1:n}) &= Var(X_{n:n}) = \frac{n\theta^2}{(n+1)^2(n+2)}. \\ MSE_{\theta}(T_1) &= \frac{2\theta^2}{(n+1)(n+2)} \\ MSE_{\theta}(T_2) &= \frac{\theta^2}{n(n+2)} \\ MSE_{\theta}(T_3) &= \frac{n\theta^2}{n+2} \\ MSE_{\theta}(T_4) &= \frac{\theta^2}{3n} \end{split}$$

Why $T = \bar{X}_n$ as estimate of the mean?

Assume that the observations X_1, X_2, \ldots are iid random variables, with $E(X_i) = \theta$ and $Var(X_i) = \sigma^2 < \infty$, σ assumed known.

- T is an unbiased estimate. Moreover, it is consistent and $MSE_{\theta}(T) = \frac{\sigma^2}{n}$.
- $MSE_{\theta}(T)$ for a fixed n does not depend on the parameter θ .
- It decreases only in proportion to $\frac{1}{n}$! Decrease in proportion to $\frac{1}{n^2}$ is more desirable. However, the first case is much more common.
- T is linear!

Test of consistency

Test of consistency (based on Chebyschev inequality)

- check whether the estimator T is unbiased or not
- calculate VarT and B(T), the bias of T
- an unbiased estimator is consistent if $VarT \rightarrow 0$ as $n \rightarrow \infty$
- a biased estimator is consistent if both $VarT \to 0$ and $B(T) \to 0$ as $n \to \infty$

Example 83: Let X_1, \ldots, X_n be a random sample with true mean μ and finite variance. Then, the sample mean \bar{X} is a consistent estimator of the population mean μ .

Fisher information

Assume X_1, X_2, \ldots with distribution such that the set of points at which $f(x,\theta)>0$ does not depend on θ . Hence no single observation can rule out some values of θ . (This excludes the situation in the previous example!). We call this regularity assumption. What is the amount of information about θ in the event $\{X=x\}$?

Definition 43: Let X be a random variable with twice differentiable function $f(x,\theta)$ determining the distribution of X such that the set of x with $f(x,\theta)>0$ is the same for all θ . Then the Fisher information about θ in a single observation X is defined by

$$I(\theta) = E_{\theta}[(J(X, \theta))^2], \text{ where } J(X, \theta) = \frac{\partial}{\partial \theta} \log f(X, \theta)$$

provided the expectation exists.

Examples

Example 84: $X \sim N(\theta, \sigma^2)$

$$J(X,\theta) = \frac{\partial}{\partial \theta} \left(-\log \sigma \sqrt{2\pi} - \frac{(X-\theta)^2}{2\sigma^2} \right) = \frac{X-\theta}{\sigma^2}$$
$$I(\theta) = \frac{1}{\sigma^4} E[(X-\theta)^2] = \frac{1}{\sigma^2}.$$

Example 85: Bernoulli trial with probability θ

$$P(X = 1|\theta) = \theta, P(X = 0|\theta) = 1 - \theta$$

 $f(x, \theta) = \theta^{x} (1 - \theta)^{1 - x}, x = 0, 1$

$$J(X,\theta) = \begin{cases} -\frac{1}{1-\theta} & X = 0; \\ \frac{1}{\theta} & X = 1; \end{cases} I(\theta) = \frac{1}{\theta(1-\theta)}.$$

So $I(\theta)$ has minimal value 4 at $\theta = \frac{1}{2}$ and for θ approaching 0 or 1 the information goes to infinity.

Properties of Fisher information

Theorem 58: Under regularity assumptions,

- a) $E_{\theta}(J(X,\theta)) = 0$;
- b) $Var_{\theta}J(X,\theta) = I(\theta);$
- c) $I(\theta) = -E_{\theta}\left(\frac{\partial}{\partial \theta}J(X,\theta)\right);$
- d) The information $I_n(\theta)$ in a random sample of n observations is

$$I_n(\theta) = nI(\theta).$$

Theorem 59: (Rao - Cramér)

Under regularity assumptions, for any unbiased estimator T_n of a parametric function $m(\theta)$ we have

$$Var_{\theta}T_n \geq \frac{(m'(\theta))^2}{nI(\theta)}.$$

For $m(\theta) = \theta$, i.e. T_n unbiased estimator of θ , $Var_{\theta}T_n \geq \frac{1}{nI(\theta)}$.

Efficiency of estimators

Definition 44: Any unbiased estimator T that satisfies the regularity assumption and whose variance attains the Rao-Cramér bound is called **efficient**. The ratio

$$\frac{\left(\frac{1}{nI(\theta)}\right)}{Var_{\theta}T_n} \le 1$$

is called efficiency.

If \tilde{T}_n and \hat{T}_m are two unbiased estimators of θ ,

$$\frac{Var_{\theta}\tilde{T}_{n}}{Var_{\theta}\hat{T}_{m}}$$

is called relative efficiency of \hat{T}_m with respect to \tilde{T}_n .

Method of Moments Estimators

- a method of estimation of population parameters such as mean, variance, median, etc. (which need not be moments), by equating sample moments with unobservable population moments
- estimator is then found as a solution of the resulting equation with respect to the (unknown) parameter
- suitable for estimating also several parameters at once
- advantages: quickly and easily computable by hand
- disadvantages: non-unique based on chosen equations
- simple rule: take moments of the lowest orders

Method of Moments Estimators

Example 86: $X_1, \ldots, X_n \sim EXP(\theta)$

then $E(X_i) = \frac{1}{\theta}$ and since its sample counterpart is \bar{X}_n then logically the estimator is

$$T_1=\frac{1}{\bar{X}_n}.$$

or $E(X_i^2) = \frac{2}{\theta^2}$ and since its sample counterpart is $\frac{1}{n} \sum_{i=1}^n X_i^2$ then the estimator can also be

$$T_2 = \sqrt{\frac{2n}{\sum_{i=1}^n X_i^2}}.$$

If we want to estimate, e.g., $p=P(X\geq 3)=e^{-3\theta}$ we can use either $p_1=\exp\left\{-\frac{3}{X_n}\right\}$ or $p_2=\exp\left\{-3\cdot\sqrt{\frac{2n}{\sum X_i^2}}\right\}$.

Method of Moments Estimators

Example 87: In general, consider $\theta = (\mu, \sigma^2)^{\top}$ (both paramaters are unknown). Let X_1, \dots, X_n be random sample with $E(X) = \mu$ and $VarX = \sigma^2$.

Since $E(X) = \mu$ and $E(X^2) = \sigma^2 + \mu^2$ then we have to solve

$$\bar{X} = \hat{\mu}$$

$$\frac{1}{n} \sum X_i^2 = \hat{\sigma}^2 + \hat{\mu}^2$$

which leads to $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$.

- moment estimators are consistent under mild assumptions: if parameter θ is a continuous function of moments (usually it is so)
- often they coincide with maximum likelihood estimator or they are inferior to them

Maximum Likelihood Estimators

If $X_1 = x_1, \dots, X_n = x_n$ then $f(x_1, \theta) \cdots f(x_n, \theta)$, the probability of this sample or joint density of the random sample, regarded as a function of θ , can be understood as the likelihood function of the sample:

$$L(\theta, x) = \prod_{i=1}^{n} f(x_i, \theta).$$

Definition 45: Given the sample $x = (x_1, \ldots, x_n)$, the value $\hat{\theta}(x)$ maximizing $L(\theta, x)$, is called the maximum likelihood estimate (MLE) of θ .

• We often define $\ell(\theta, x) = \log L(\theta, x)$ and maximize $\ell(\theta, x)$ instead $L(\theta, x)$.

Maximum Likelihood Estimators

Example 88: Suppose we observed three successes and two failures in five Bernoulli trials with probability of success θ . We have $f(x,\theta) = \theta^x (1-\theta)^{1-x}$ where x=0 represents failure and x=1 success

$$L(\theta,x) = \theta^3 (1-\theta)^2$$
 for $0 \le \theta \le 1$ and L attains maximum at $\hat{\theta} = 3/5$.

Example 89: Suppose two observations $x_1 = 3, x_2 = -2$ from a $N(0, \theta^2)$ distribution

$$\ell(\theta,x) = -\log 2\pi - 2\log \theta - rac{13}{2 heta^2}$$
 and $\hat{ heta}_{MLE} = \sqrt{rac{13}{2}}.$

Maximum Likelihood Estimators

- likelihood function can be regarded as random function (randomness from the sample)
- Invariance principle: If $\hat{\theta}$ is the MLE of parameter θ , then $h(\hat{\theta})$ is the MLE of parameter $h(\theta)$.
- application: if $\hat{\theta}$ is the MLE of the variance σ^2 then $\sqrt{\hat{\theta}}$ is the MLE of the standard deviation σ .
- Likelihood principle: Consider two sets of data sampled from the same population. If $L_1(\theta,x)/L_2(\theta,y)$ does not depend on θ , then both data sets contain the same information about θ and should provide the same estimate of θ .

Least Squares Estimators

- now a slightly different setup: data are independent but possibly not from the same distribution
- we observe Y and U and assume that

$$Y = Q(u) + \varepsilon$$

called regression of Y on u, where u are the observations of U, Q(u) is some function of u and ε is a random "error" such that $E(\varepsilon) = 0$, $Var \varepsilon = \sigma^2$.

- sometimes we can have several observations of Y for a given value u, in some cases we have exactly one
- function Q is usually called the regression of Y on u
- in general $Q(u) = \varphi(u, \theta_1, \dots, \theta_r)$, often linear in θ , e.g. $Q(u) = \alpha + \beta u$. In such a case we speak of linear regression model

Least Squares Estimators

• the method of least squares is based on finding values $\hat{\theta}_1, \dots, \hat{\theta}_n$, called least squares estimate (LSE), minimizing

$$S(\theta_1,\ldots,\theta_r)=\sum_{i=1}^k\sum_{j=1}^{n_i}(y_{ij}-\varphi(u_i,\theta_1,\ldots,\theta_r))^2,$$

where y_{ij} is the *j*th observation of *Y* for the value u_i of *U*.

• usual way to find LS-estimators of $\theta_1, \ldots, \theta_r$ is by solving the set of so called normal equations

$$\frac{\partial S}{\partial \theta_i} = 0, \ i = 1, \dots, r.$$

