Determinazione dell'accelerazione di gravità mediante misure di moto uniformemente accelerato lungo un piano inclinato

Scopo dell'esperienza

determinare sperimentalmente l'accelerazione di gravità g mediante misure di tempi e spazi relativi al moto uniformemente accelerato di un corpo lungo un piano inclinato.

Materiali e strumenti utilizzati

- rotaia rettilinea (piano inclinato) di lunghezza L;
- treppiede con asta metallica verticale da infilare nell'aggancio della rotaia per inclinarla;
- carrello (macchinina) con respingente magnetico (e propulsore a molla);
- mascherina di plexiglas trasparente con tratti scuri variamente spaziati da fissare longitudinalmente sul carrello
- metro a nastro e scala graduata lungo il piano inclinato;
- Smart Timer;
- due traguardi a fotocellula da collegare allo Smart Timer;
- foglio di lavoro Excel (per annotare ed analizzare i dati)

FONDAMENTI TEORICI

Il moto senza attrito di un oggetto lungo un piano inclinato è uniformemente accelerato, secondo la legge oraria:

$$s(t) = s(t_0) + v(t_0)(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

L'accelerazione a è legata all'accelerazione di gravità dalla semplice relazione:

$$a = g \sin \alpha$$

dove α è l'angolo di cui è inclinato il piano. Nel nostro caso, e in riferimento alla figura, è $H = L \sin \alpha$, da cui: $a = g \frac{H}{L}$.

Nel caso specifico t_0 sarà relativo al primo sensore a fotocellula (indice 1) e t sarà relativo al secondo sensore a fotocellula (indice 2), da cui:

$$\Delta s = s_2 - s_1 = v_{01} \Delta t + \frac{1}{2} a (\Delta t)^2$$

avendo indicato con s_2 e s_1 le distanze dei 2 sensori a fotocellula dalla sommità della rotaia (s=0).

DESCRIZIONE DELL'ESPERIENZA

a) Determinare la posizione orizzontale della rotaia posizionando la rotaia stessa sul tavolo e posizionando il carrello al suo centro: se il carrello si muove, aggiustare la vite posta alla fine della rotaia finché il carrello non si muove più. Misurare l'altezza h_0 tra il tavolo e la rotaia (lato superiore).

b) Fissare il primo sensore a fotocellula a una ventina di cm dalla sommità (s=0) del piano inclinato (collegare il relativo cavo al canale 1 dello Smart Timer). Indicando con l'indice 1 tale sensore, la distanza del primo sensore dalla sommità sarà s_I . Valutare l'incertezza δs_I relativa alla misura di s_I .

- c) Accendere il sistema di acquisizione Smart Timer con l'interruttore posto sulla sinistra [I/O], premere il tasto 1 "Select Measurement" fino a scegliere la misura "TIME", premere il tasto 2 "Select Mode" fino a scegliere la modalità "Two Gates" (si misurerà l'intervallo di tempo che intercorre tra il passaggio dal 1° al 2° fototraguardo).
- d) Regolare l'inclinazione del piano, verificando con la bolla che non vi sia una pendenza laterale. Misurare l'altezza h_1 della rotaia all'estremità alta (distanza tavolo lato superiore della rotaia): l'altezza H da considerare sarà $H=h_1-h_0$ (scegliere un angolo di inclinazione non troppo grande). Valutare l'incertezza $\delta(H)$ relativa ad H.

e) Fissare il secondo sensore a una distanza Δs di qualche centimetro (ad es. 10 cm) dal primo. Indicando con l'indice 2 tale sensore, la distanza del secondo sensore dalla sommità sarà s_2 e quindi $\Delta s = s_2 - s_1$. Valutare l'incertezza δs_2 relativa alla misura di s_2 ; valutare l'incertezza $\delta (\Delta s)$ relativa a Δs .

- f) Ripetere le seguenti operazioni per almeno 10 volte, senza variare la distanza tra i sensori:
 - 1. Premere il tasto 3 "Start" dello smart timer (si sente un suono e compare un asterisco sulla seconda riga dello strumento): a questo punto lo smart timer è attivo e pronto a ricevere gli impulsi dai fototraguardi e a mostrare il tempo Δt impiegato a percorrere lo spazio Δs tra i due sensori.
 - 2. Disporre il carrello alla sommità della rotaia e lasciarlo libero di scendere, avendo cura di non imprimere alcuna forza alla partenza (controllare che al passaggio sui due fototraguardi si illumini una spia rossa).
 - 3. Segnare il tempo ∆t visualizzato (rimane visualizzato finché non si preme di nuovo "Start") e l'incertezza associata.
- g) Ripetere le operazioni (e)-(f) almeno 5 volte, TENENDO FISSA LA POSIZIONE DEL 1° SENSORE e cambiando quella del 2° in modo tale che la distanza Δs aumenti ogni volta (ad es. di 10 cm).
- h) Ripetere le misure del moto del carrello in discesa, secondo la procedura seguita in precedenza [operazioni (d)-(g)], per almeno 4 angoli di inclinazione α_i diversi (ossia per almeno 4 diversi valori di H_i).

ANALISI DATI

1. Per ogni valore di H_i (α_i) (almeno 4) e per ogni valore di Δs (almeno 5), calcolare il valor medio $\overline{\Delta t}$ dei tempi di percorrenza misurati e l'incertezza associata $\delta(\overline{\Delta t})$, stimata come deviazione standard della media. Si consiglia di organizzare i dati tramite tabelle del tipo:

	H=±δ(<i>H</i>)	$\Delta_{S}=\pm\delta(\Delta_{S})$
misure nr	Δt [s]	
1		
2		
3		
4		2(14)
5		$\overline{\Delta t} = \dots \delta(\overline{\Delta t}) = \dots$
6		
7		
8		

- 2. Per ogni valore di H_i (α_i):
 - a) costruire una tabella in cui si riportino i valori di $\overline{\Delta t}$ per ogni valore di Δs
 - b) riportare in un grafico $\overline{\Delta t}$ (ascissa) e Δs (ordinata) con le relative barre d'errore;
 - c) determinare l'accelerazione della macchinina durante il moto di discesa attraverso un fit parabolico $\Delta s = \frac{1}{2} a_1 \overline{\Delta t}^2 + v_{01} \overline{\Delta t}$ (linea di tendenza parabolica, ossia polinomiale di ordine 2: $y=A+Bx+Cx^2$);
 - d) ricavare i valori di a_i
- 3. Costruire una tabella in cui si riportino i valori dell'accelerazione a_i in funzione di H_i (α_i) e riportare tali valori in un grafico (H in ascissa ed accelerazione a in ordinata).
 - Poiché $a = g \sin \alpha = gH/L$, da un fit lineare (metodo dei minimi quadrati) ricavare g/L e la sua iincertezza $\delta(g/L)$ e, conoscendo l'errore sulla misura di L, ricavare g e la sua incertezza δg .

Grandezze utilizzate

- s_1 , s_2 : distanza del primo e secondo sensore dalla sommità del piano; δs_1 , δs_2 : incertezze nella misura di s_1 e s_2
- $\Delta s = s_2 s_1$: distanza tra i due sensori; $\delta(\Delta s)$: incertezza nella valutazione di Δs
- Δt_i : i-esima misura del tempo di percorrenza tra s₁ e s₂
- α_i : angolo di inclinazione del piano rispetto all'orizzontale
- H_i : altezza della rotaia all'estremità alta; $\delta(H)$: incertezza nella valutazione di H
- L: lunghezza rotaia; $\delta(L)$: incertezza nella misura di L
- $\delta(\overline{\Delta t})$: stima dell'incertezza su $\overline{\Delta t}$ come deviazione standard della media.

Formule relative al metodo minimi quadrati y=A+Bx:

$$A = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\sigma_{A}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \left(y_{i} - A - Bx_{i}\right)^{2} \frac{\sum_{i=1}^{n} x_{i}^{2}}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$B = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\sigma_{B}^{2} = \frac{n}{n-2} \sum_{i=1}^{n} \left(y_{i} - A - Bx_{i}\right)^{2} \frac{1}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

Note

- riportare <u>una sola</u> cifra significativa per le incertezze;
- quando si scrivono misure di grandezze <u>non</u> riportare più cifre significative di quelle coperte dall'incertezza e ricordarsi delle unità di misura;
- riportare le formule usate per calcolare i risultati e per determinare le incertezze;
- sforzarsi di fare osservazioni e commenti propri e, se si ritiene opportuno, sperimentare, motivando, anche cose diverse da quelle suggerite.