$$B_s^0$$

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

B_s^0 MASS

VALUE (MeV)	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
5366.89± 0.19 OUR FIT	•				
5366.84 ± 0.30 OUR AV	ERAGE	Error includes sca	ale fac	tor of 1	.2.
$5367.08 \pm 0.38 \pm 0.15$	128	¹ AAIJ			<i>pp</i> at 7, 8 TeV
$5366.90 \pm \ 0.28 \pm 0.23$		² AAIJ	12E	LHCB	pp at 7 TeV
5364.4 \pm 1.3 \pm 0.7		LOUVOT	09	BELL	$e^+e^- ightarrow~\gamma(5S)$
$5366.01 \pm 0.73 \pm 0.33$				CDF	<i>p</i> p at 1.96 TeV
$5369.9 \pm 2.3 \pm 1.3$	32	⁴ ABE	96 B	CDF	$p\overline{p}$ at 1.8 TeV
5374 ± 16 ± 2	3	ABREU	94 D	DLPH	$e^+e^- o Z$
5359 ± 19 ± 7	1	⁴ AKERS	94J	OPAL	$e^+e^- o Z$
$5368.6 \pm 5.6 \pm 1.5$	2	BUSKULIC	93 G	ALEP	$e^+e^- o Z$
\bullet \bullet We do not use the	followin	g data for average	s, fits,	limits, e	etc. • • •
5370 \pm 1 \pm 3		DRUTSKOY	07A	BELL	Repl. by LOUVOT 09
5370 ± 40	6	⁵ AKERS	94J	OPAL	$e^+e^- ightarrow Z$
$5383.3 \pm 4.5 \pm 5.0$	14	ABE	93F	CDF	Repl. by ABE 96B
¹ Uses $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$ decays, and observes 128 \pm 13 events of $B_s^0 \rightarrow J/\psi \phi \phi$.					
² Uses $B_s^0 o J/\psi \phi$ fu	ılly recor	structed decays.			
. 3			ining	a J/ψ $-$	$u^+ u^-$ decays.
3 Uses exclusively reconstructed final states containing a $J/\psi \to \mu^+\mu^-$ decays. 4 From the decay $B_s \to J/\psi(1S)\phi$.					
⁵ From the decay B_s –					
From the decay D_S	S	•			

$m_{B_s^0}-m_B$

 \emph{m}_{B} is the average of our B masses $(\emph{m}_{B^{\pm}}+\emph{m}_{B^{0}})/2.$

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
87.42±0.19 OUR FIT					
87.42 ± 0.24 OUR AVER	AGE				
$87.60 \pm 0.44 \pm 0.09$		¹ AAIJ	15 U	LHCB	<i>pp</i> at 7, 8 TeV
$87.42 \!\pm\! 0.30 \!\pm\! 0.09$		² AAIJ	12E	LHCB	pp at 7 TeV
$86.64 \pm 0.80 \pm 0.08$,	³ ACOSTA	06	CDF	<i>p</i> p at 1.96 TeV
• • • We use the follow	ing data for	averages but no	t for	fits. • •	•
89.7 ± 2.7 ± 1.2		ABE	96 B	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use the	following o	data for averages	s, fits,	limits, e	etc. • • •
80 to 130	68	LEE-FRANZIN	I 90	CSB2	$e^+e^- ightarrow ~ \varUpsilon(5S)$
$^{ m 1}$ The reported result is	$s m_{B_s^0} - m$	$n_{B^0} = 87.45 \pm 0$	0.44 =	± 0.09 N	leV. We convert it to the
mass difference with	respect to t	the average of $(n$	$n_{B^{\pm}}$	$+ m_{B^0})$	/2. Uses the mode $B_s^0 o$
$\psi(2S)K^-\pi^+$.			_	2	•

$m_{B_{sH}^0} - m_{B_{sL}^0}$

See the B^0_s - \overline{B}^0_s MIXING section near the end of these B^0_s Listings.

B_s^0 MEAN LIFE

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from the average of Γ_{B^0} .

$VALUE (10^{-12} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
1.505 ± 0.005 OUR EV					
• • • We do not use t	the followi	ng data for average	es, fit	s, limits,	etc. • • •
$1.518 \pm 0.041 \pm 0.027$		$^{ m 1}$ AALTONEN	11AP	CDF	$p\overline{p}$ at 1.96 TeV
$1.398 \pm 0.044 {}^{+ 0.028}_{- 0.025}$		² ABAZOV	06V	D0	$p\overline{p}$ at 1.96 TeV
$1.42 \ ^{+ 0.14}_{- 0.13} \ \pm 0.03$		³ ABREU	00Y	DLPH	$e^+e^- ightarrow Z$
$1.53 \ ^{+ 0.16}_{- 0.15} \ \pm 0.07$		⁴ ABREU,P	00 G	DLPH	$e^+e^- o Z$
$1.36 \ \pm 0.09 \ ^{+ 0.06}_{- 0.05}$		⁵ ABE	99 D	CDF	$p\overline{p}$ at 1.8 TeV
$1.72 \begin{array}{c} +0.20 \\ -0.19 \end{array} \begin{array}{c} +0.18 \\ -0.17 \end{array}$		⁶ ACKERSTAFF	98F	OPAL	$e^+e^- o Z$
$1.50 \ ^{+0.16}_{-0.15} \ \pm 0.04$		⁵ ACKERSTAFF	98G	OPAL	$e^+e^- o Z$
$1.47\ \pm0.14\ \pm0.08$		⁴ BARATE	98 C	ALEP	$e^+e^- \rightarrow Z$
1.51 ± 0.11		⁷ BARATE	98 C	ALEP	$e^+e^- o Z$
$1.56 \begin{array}{l} +0.29 \\ -0.26 \end{array} \begin{array}{l} +0.08 \\ -0.07 \end{array}$		⁵ ABREU	96F	DLPH	Repl. by ABREU 00Y
$1.65 \ ^{+ 0.34}_{- 0.31} \ \pm 0.12$		⁴ ABREU	96F	DLPH	Repl. by ABREU 00Y
$1.76 \ \pm 0.20 \ ^{+0.15}_{-0.10}$		⁸ ABREU	96F	DLPH	Repl. by ABREU 00Y
$1.60\ \pm0.26\ ^{+0.13}_{-0.15}$		⁹ ABREU	96F	DLPH	Repl. by ABREU,P 00G
$1.67\ \pm0.14$		¹⁰ ABREU	96F	DLPH	$e^+e^- \rightarrow Z$
$1.61 {}^{+ 0.30}_{- 0.29} {}^{+ 0.18}_{- 0.16}$	90	⁴ BUSKULIC	96E	ALEP	Repl. by BARATE 980
$1.54 \ ^{+ 0.14}_{- 0.13} \ \pm 0.04$		⁵ BUSKULIC	96м	ALEP	$e^+e^- \rightarrow Z$
$1.42 \ ^{+ 0.27}_{- 0.23} \ \pm 0.11$	76	⁵ ABE	95 R	CDF	Repl. by ABE 99D
$1.74 \ ^{+ 1.08}_{- 0.69} \ \pm 0.07$	8	¹¹ ABE	95 R	CDF	Sup. by ABE 96N
$1.54 \begin{array}{l} +0.25 \\ -0.21 \end{array} \pm 0.06$	79	⁵ AKERS	95 G	OPAL	Repl. by ACKER- STAFF 98G

 $^{^2}$ The reported result is $m_{B_s^0}-m_{B^+}=87.52\pm0.30\pm0.12$ MeV. We convert it to the mass difference with respect to the average of $(m_{B^\pm}+m_{B^0})/2$.

 $^{^3}$ The reported result is $m_{B_s^0}-m_{B^0}=86.38\pm0.90\pm0.06$ MeV. We convert it to the mass difference with respect to the average of $(m_{B^\pm}+m_{B^0})/2$.

$1.59 \ ^{+ 0.17}_{- 0.15} \ \pm 0.03$	134	⁵ BUSKULIC	950 ALEP	Sup. by BUSKULIC 96M
0.96 ± 0.37	41	¹² ABREU	94E DLPH	Sup. by ABREU 96F
$1.92 \ ^{+0.45}_{-0.35} \ \pm 0.04$	31	⁵ BUSKULIC	94C ALEP	Sup. by BUSKULIC 950
$1.13 \begin{array}{c} +0.35 \\ -0.26 \end{array} \pm 0.09$	22	⁵ ACTON	93н OPAL	Sup. by AKERS 95G

¹ AALTONEN 11AP combines the fully reconstructed $B_s^0 o D_s^- \pi^+$ decays and partially reconstructed $B_s^0 \rightarrow D_s X$ decays.

$\Gamma_{B_s^0}$

"OUR EVALUATION" is an average performed by the Heavy Flavor Averaging Group (HFLAV) as described in our "Review on $B-\overline{B}$ Mixing" in the B^0 section of these Listings. It includes the measurements of Γ_{B^0} and $\Delta\Gamma_{R^0}$ listed in this section, as well as constraints from effective lifetimes with pure CP modes and flavor-specific modes.

$VALUE (10^{12} \text{ s}^{-1})$	DOCUMENT ID	TECN	COMMENT				
0.6646±0.0020 OUR EVALUATION							
0.6657±0.0035 OUR AVER	AGE Error include	es scale factor	of 1.6. See the ideogram				
below.	_						
$0.675 \pm 0.003 \pm 0.003$	¹ AAD	16AP ATLS	<i>pp</i> at 7, 8 TeV				
$0.668 \pm 0.011 \pm 0.006$	² AAIJ	16AK LHCB	<i>pp</i> at 7, 8 TeV				
$0.6704 \pm 0.0043 \pm 0.0055$	¹ KHACHATRY.	16s CMS	pp at 8 TeV				
$0.6603 \pm 0.0027 \pm 0.0015$	³ AAIJ	15I LHCB	<i>pp</i> at 7, 8 TeV				
$0.654\ \pm0.008\ \pm0.004$	$^{ m 1}$ AALTONEN	12AJ CDF	$p\overline{p}$ at 1.96 TeV				
$0.693 \begin{array}{l} +0.018 \\ -0.017 \end{array}$	¹ ABAZOV	12D D0	$p\overline{p}$ at 1.96 TeV				
• • • We do not use the fol	lowing data for ave	erages, fits, lim	nits, etc. • • •				
$0.677\ \pm0.007\ \pm0.004$	$^{ m 1}$ AAD	14∪ ATLS	Repl. by AAD 16AP				
$0.661 \pm 0.004 \pm 0.006$	⁴ AAIJ	13AR LHCB	Repl. by AAIJ 151				
$0.677 \pm 0.007 \pm 0.004$	$^{ m 1}$ AAD	12CV ATLS	Repl. by AAD 14U				
$0.657 \pm 0.009 \pm 0.008$	$^{ m 1}$ AAIJ	12D LHCB	Repl. by AAIJ 13AR				
$0.654 \ \pm 0.011 \ \pm 0.005$	^{1,5} AALTONEN	12D CDF	Repl. by AALTONEN 12AJ				

² Measured using $D_s \mu^+$ vertices.

³Uses $D_s^-\ell^+$, and $\phi\ell^+$ vertices.

⁴ Measured using D_S hadron vertices.

⁵ Measured using $D_s^- \ell^+$ vertices.

 $^{^6}$ ACKERSTAFF 98F use fully reconstructed $D_s^- o \phi \pi^-$ and $D_s^- o K^{*0} K^-$ in the inclusive B_s^0 decay.

 $^{^7}$ Combined results from $D_{\it S}^-\ell^+$ and $D_{\it S}$ hadron.

 $^{^8}$ Measured using $\phi\ell$ vertices.

 $^{^9}$ Measured using inclusive $D_{\rm S}$ vertices.

 $^{^{10}}$ Combined result for the four ABREU 96F methods. 11 Exclusive reconstruction of $B_{\rm S} \to ~\psi\,\phi.$

 $^{^{12}}$ ABREU 94E uses the flight-distance distribution of $D_{
m S}$ vertices, ϕ -lepton vertices, and $D_{\mathbf{s}}\mu$ vertices.

$0.672\ \pm0.027\ \pm0.013$	¹ ABAZOV	09E D0	Repl. by ABAZOV 08AM
$0.658 \pm 0.017 \pm 0.009$	^{1,6} AALTONEN	08J CDF	Repl. by AALTONEN 12D
$0.658 \pm 0.022 \pm 0.004$	$^{ m 1}$ ABAZOV	08AM D0	Repl. by ABAZOV 12D
$0.658\ \pm0.035\ ^{+0.0130}_{-0.004}$	^{1,6} ABAZOV	07 D0	Repl. by ABAZOV 09E
$0.714 \begin{array}{c} +0.007 \\ -0.008 \end{array} \pm 0.010$	^{1,6} ACOSTA	05 CDF	Repl. by AALTONEN 08J

 $^{^1}$ Measured using a time-dependent angular analysis of $B_s^0 \to J/\psi \phi$ decays. 2 Measured using a time-dependent angular analysis of $B_s^0 \to \psi(2S) \phi$ decays. 3 Measured using a time-dependent angular analysis of $B_s^0 \to J/\psi \, K^+ \, K^-$ decays. 4 Measured using a combined time-dependent angular analysis of $B_s^0 \to J/\psi \, K^+ \, K^-$ and 2 $B_s^0 o J/\psi \pi^+ \pi^-$ decays.

 $^{^5}$ Assuming CPV phase $\phi_{\it S}=-0.04.$ 6 Assuming CPV phase $\phi_{\it S}=0.$

$\Delta \Gamma_{B^0}$

"OUR EVALUATION" is an average performed by the Heavy Flavor Averaging Group (HFLAV) as described in our "Review on $B-\overline{B}$ Mixing" in the B^0 section of these Listings. It includes the measurements of Γ_{B^0} and $\Delta\Gamma_{B^0}$ listed in this section, as well as constraints from effective lifetimes with pure CP modes and flavor-specific modes.

<i>VALUE</i> (10^{12} s^{-1})	DOCUMENT ID	TECN	COMMENT
0.086 ± 0.006 OUR EVAL	UATION		
0.084 ±0.007 OUR AVER	AGE		
$0.085 \pm 0.011 \pm 0.007$	$^{ m 1}$ AAD	16AP ATLS	<i>pp</i> at 7, 8 TeV
$0.066 {+ 0.041 \atop - 0.044} \pm 0.007$	² AAIJ	16AK LHCB	<i>pp</i> at 7, 8 TeV
$0.095\ \pm0.013\ \pm0.007$	¹ KHACHATRY.	16s CMS	pp at 8 TeV
$0.0805 \pm 0.0091 \pm 0.0032$	³ AAIJ	15ı LHCB	<i>pp</i> at 7, 8 TeV
$0.068 \pm 0.026 \pm 0.009$	$^{ m 1}$ AALTONEN	12AJ CDF	p₱ at 1.96 TeV
$0.163 \begin{array}{l} +0.065 \\ -0.064 \end{array}$	^{1,4} ABAZOV	12D D0	$p\overline{p}$ at 1.96 TeV
• • • We do not use the fol	lowing data for avera	iges, fits, limit	s, etc. • • •
$0.053\ \pm0.021\ \pm0.010$	$^{ m 1}$ AAD	14∪ ATLS	Repl. by AAD 16AP
$0.106\ \pm0.011\ \pm0.007$	⁵ AAIJ	13AR LHCB	Repl. by AAIJ 151
$0.053\ \pm0.021\ \pm0.010$	¹ AAD	12CV ATLS	Repl. by AAD 14∪
$0.123\ \pm0.029\ \pm0.011$	1 AAIJ	12D LHCB	Repl. by AAIJ 13AR
$0.075 \pm 0.035 \pm 0.006$	⁶ AALTONEN	12D CDF	Repl. by AALTONEN 12AJ
$0.085 \ ^{+0.072}_{-0.078} \ \pm 0.001$	⁷ ABAZOV	09E D0	Repl. by ABAZOV 08AM
$0.076 \ ^{+0.059}_{-0.063} \ \pm 0.006$	⁸ AALTONEN	08J CDF	Repl. by AALTONEN 12D
$\begin{array}{ccc} 0.19 & \pm 0.07 & +0.02 \\ -0.01 & \end{array}$	^{1,9} ABAZOV	08AM D0	Repl. by ABAZOV 12D
$0.12 \begin{array}{cc} +0.08 \\ -0.10 \end{array} \pm 0.02$	8,10 ABAZOV	07 D0	Repl. by ABAZOV 07N
0.13 ± 0.09	¹¹ ABAZOV	07N D0	Repl. by ABAZOV 09E
$0.47 {+0.19 \atop -0.24} \pm 0.01$	⁸ ACOSTA	05 CDF	Repl. by AALTONEN 08J

 $^{^1}$ Measured using the time-dependent angular analysis of $B_{_{m S}}^0
ightarrow \; J/\psi\,\phi$ decays.

 $^{^2}$ Measured using time-dependent angular analysis of $B_{\rm S}^0 \stackrel{\rm 3}{\to} \psi(2S) \phi$ decays.

 $^{^3}$ Measured using time-dependent angular analysis of $B_s^0 o J/\psi K^+ K^-$ decays.

 $^{^4}$ The error includes both statistical and systematic uncertainties. 5 AAIJ 13AR result comes from a combined fit to $B_s^0 \to J/\psi\, K^+\, K^-$ and $B_s^0 \to J/\psi\, \pi^+\, \pi^-$ data sets. Also reports $\Delta\Gamma_s=0.100\pm0.016\pm0.003~{\rm ps}^{-1}$ from a fit to $B_s^0 \rightarrow J/\psi K^+ K^-$ decays.

 $^{^6}$ Uses the time-dependent angular analysis of $B_s^0 o J/\psi \phi$ decays and assuming $\it CP$ violating angle $\beta_s(B^0 \to J/\psi \phi) = 0.02$.

 $^{^7}$ Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B_d^0\to~J/\psi\, K^{*0}$ and $B_s^0\to~J/\psi\, \phi.$

⁸ Measured using the time-dependent angular analysis of $B_s^0 o J/\psi \phi$ decays and assuming CP-violating phase $\phi_{s}=$ 0.

$\Delta\Gamma_{B_s^0}/\Gamma_{B_s^0}$

 $\Gamma_{B^0_s}$ and $\Delta\Gamma_{B^0_s}$ are the decay rate average and difference between two B^0_s CP eigenstates (light - heavy).

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from the averages of Γ_{B^0} and $\Delta\Gamma_{B^0}$ (and their correlation).

VALUE DOCUMENT ID TECN COMMENT

0.130 ± 0.009 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.090 \pm 0.009 \pm 0.023$		1 ESEN 2 AAIJ 3 AALTONEN 4 ABAZOV	13 12D 12D 12D	BELL LHCB CDF D0	$e^+e^- \rightarrow \Upsilon(5S)$ pp at 7 TeV $p\overline{p}$ at 1.96 TeV $p\overline{p}$ at 1.96 TeV
$0.147 ^{+ 0.036 + 0.042}_{- 0.030 - 0.041}$		¹ ESEN	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(5S)$
$0.072 \pm 0.021 \pm 0.022$		⁵ ABAZOV	091	D0	$p\overline{p}$ at 1.96 TeV
>0.012	95	⁵ AALTONEN	08F	CDF	$p\overline{p}$ at 1.96 TeV
$0.116^{+0.09}_{-0.10}~\pm 0.010$		⁶ AALTONEN	08J	CDF	Repl. by AALTONEN 12D
$0.079 {}^{+ 0.038}_{- 0.035} {}^{+ 0.031}_{- 0.035}$		⁵ ABAZOV	07Y	D0	Repl. by ABAZOV 091
$0.24 \begin{array}{c} +0.28 & +0.03 \\ -0.38 & -0.04 \end{array}$		6,7 ABAZOV	05W	D0	Repl. by ABAZOV 08AM
$0.65 \ ^{+0.25}_{-0.33} \ \pm 0.01$		⁶ ACOSTA	05	CDF	Repl. by AALTONEN 08J
< 0.46	95	⁸ ABREU	00Y	DLPH	$e^+e^- \rightarrow Z$
< 0.69	95	⁹ ABREU,P	00 G	DLPH	$e^+e^- ightarrow Z$
$0.25 \begin{array}{l} +0.21 \\ -0.14 \end{array}$		¹⁰ BARATE	00K	ALEP	$e^+e^- ightarrow Z$
< 0.83	95	¹¹ ABE	99 D	CDF	$p\overline{p}$ at 1.8 TeV
< 0.67	95	¹² ACCIARRI	985	L3	$e^+e^- \rightarrow Z$
4					

¹ Assumes *CP* violation is negligible.

 $^{^9\,\}text{Obtaines}$ 90% CL interval $-0.06~<\Delta\Gamma_{_S}<0.30.$

 $^{^{10}\,\}mathrm{ABAZOV}$ 07 reports $0.17\pm0.09\pm0.02$ with $\mathit{CP}\text{-violating phase}\;\phi_{\mathcal{S}}$ as a free parameter.

¹¹ Combines D^0 measurements of time-dependent angular distributions in $B^0_s \to J/\psi \phi$ and charge asymmetry in semileptonic decays. There is a 4-fold ambiguity in the solution.

² Measured using the time-dependent angular analysis of $B_s^0 \to J/\psi \phi$ decays.

³Uses the time-dependent angular analysis of $B_s^0 \to J/\psi \phi$ decays and assuming *CP*violating angle $\beta_s(B^0 \rightarrow J/\psi \phi) = 0.02$.

 $^{^4\,{\}rm Measured}$ using fully reconstructed $B_{\rm \textbf{S}} \to J/\psi\,\phi$ decays.

 $^{^5}$ Assumes 2 B($B_s^0 \to D_s^{(*)}D_s^{(*)}) \simeq \Delta \Gamma_s^{CP}/\Gamma_s$. 6 Measured using the time-dependent angular analysis of $B_s^0 \to J/\psi \phi$ decays.

 $^{^7\, \}text{Uses} \, \left| \text{A}_0 \right|^2 - \left| \text{A}_{||} \right|^2 \!\! = \!\! 0.355 \, \pm \, 0.066$ from ACOSTA 05.

⁸ Uses $D_{s}^{-}\ell^{+}$, and $\phi\ell^{+}$ vertices.

 $^{^9}$ Measured using D_s hadron vertices.

B_{sH} MEAN LIFE

 B_{sH}^0 is the heavy mass state of two B_s^0 *CP* eigenstates.

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from the averages of $\Gamma_{B^0_a}$ and $\Delta\Gamma_{B^0_a}$ (and their correlation).

$VALUE (10^{-12} \text{ s})$

DOCUMENT ID

1.609 ± 0.010 OUR EVALUATION

We do not use the following data for averages, fits, limits, etc.

$1.70~\pm 0.14~\pm 0.05$	$^{ m 1}$ ABAZOV	16c D0	$p\overline{p}$ at 1.96 TeV
$1.75 \pm 0.12 \pm 0.07$	² AAIJ	13AB LHCB	pp at 7 TeV
$1.652 \pm 0.024 \pm 0.024$	³ AAIJ	13AR LHCB	pp at 7 TeV
$1.700 \pm 0.040 \pm 0.026$	⁴ AAIJ	12AN LHCB	pp at 7 TeV
	⁵ AALTONEN	12D CDF	$p\overline{p}$ at 1.96 TeV
$1.70 \ ^{+0.12}_{-0.11} \ \pm 0.03$	⁴ AALTONEN	11AB CDF	$p\overline{p}$ at 1.96 TeV
$1.613^{igoplus 0.123}_{igoplus 0.113}$	6,7 AALTONEN	08J CDF	Repl. by AALTONEN 12D
$1.58 \begin{array}{l} +0.39 \\ -0.42 \end{array} \begin{array}{l} +0.01 \\ -0.02 \end{array}$	⁷ ABAZOV	05W D0	Repl. by ABAZOV 08AM
$2.07 \ ^{+0.58}_{-0.46} \ \pm 0.03$	⁷ ACOSTA	05 CDF	Repl. by AALTONEN 08J

 $^{^{1}}$ Measured using $J/\psi\,\pi^{+}\,\pi^{-}$ mode with 0.880 < $m(\pi\,\pi)$ < 1.080 GeV/c 2 , which is mostly $J/\psi\,f(0)(980)$ mode, a pure CP-odd final state.

 $^{^{10}\,\}mathrm{Uses}\;\phi\,\phi$ correlations from $B_s^0\to D_s^{(*)+}D_s^{(*)-}.$

 $^{^{11}\,\}mathrm{ABE}$ 99D assumes $\tau_{B_{\, \circ}^0} = 1.55\,\pm\,0.05$ ps.

 $^{^{12}}$ ACCIARRI 98S assumes $au_{B_c^0} = 1.49 \pm 0.06$ ps and PDG 98 values of b production fraction.

² Measured using a pure *CP*-odd final state $J/\psi K_S^0$ with the assumption that contributions

from penguin diagrams are small. 3 Measured using $B_{\rm S} \to J/\psi \pi^+ \pi^-$ decays which, in the limit of $\phi_{\rm S}=0$ and $|\lambda|=1$, correspond to B_{sH}^{0} decays.

⁴ Measured using a pure *CP*-odd final state $J/\psi f_0(980)$.

⁵ Uses the time-dependent angular analysis of $B_{\rm S}^0 \to J/\psi \, \phi$ decays assuming *CP*-violating angle $\beta_s(B^0 \to J/\psi \phi) = 0.02$.

 $^{^6\,\}mathrm{Obtained}$ from $\Delta\Gamma_s$ and Γ_s fit with a correlation of 0.6.

⁷ Measured using the time-dependent angular analysis of $B_s^0 \to J/\psi \phi$ decays.

B_{sL}^0 MEAN LIFE

 B_{SL}^0 is the light mass state of two B_S^0 CP eigenstates.

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from the averages of $\Gamma_{B_s^0}$ and $\Delta\Gamma_{B_s^0}$ (and their correlation).

 $VALUE (10^{-12} \text{ s})$ DOCUMENT ID TECN COMMENT 1.413 ± 0.006 OUR EVALUATION • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AAIJ 16AL LHCB pp at 7, 8 TeV $1.479 \pm 0.034 \pm 0.011$ ² AAIJ 14F LHCB pp at 7, 8 TeV $1.379 \pm 0.026 \pm 0.017$ ³ AAIJ 14R LHCB pp at 7 TeV $1.407 \pm 0.016 \pm 0.007$ 3 AAIJ 12 LHCB Repl. by AAIJ 14R $1.440 \pm 0.096 \pm 0.009$ ³ AAIJ $1.455 \pm 0.046 \pm 0.006$ 12R LHCB Repl. by AAIJ 14R ⁴ AALTONEN 12D CDF $p\overline{p}$ at 1.96 TeV $1.437 + 0.054 \\ -0.047$ ^{5,6} AALTONEN 08J CDF Repl. by AALTONEN 12D $1.24 \begin{array}{l} +0.14 \\ -0.11 \end{array} \begin{array}{l} +0.01 \\ -0.02 \end{array}$ ⁶ ABAZOV 05W D0 Repl. by ABAZOV 08AM $1.05 \ ^{+0.16}_{-0.13} \ \pm 0.02$ ⁶ ACOSTA 05 CDF Repl. by AALTONEN 08J ⁷ BARATE $1.27 \pm 0.33 \pm 0.08$ 00K ALEP $e^+e^- \rightarrow Z$ ¹ Measured using $B_c^0 \rightarrow J/\psi \eta$ decays. ² Measured using $B_s^0 \to D_s^- D_s^+$. The effective lifetime is translated into a decay width of $\Gamma_L=0.725\pm0.014\pm0.009~{\rm ps^{-1}}$. 3 Measured using $B_s^0\to K^+K^-$ decays. There may still be CPV in the decay. ⁴Uses the time-dependent angular analysis of $B_{S}^{0}
ightarrow J/\psi \phi$ decays and assuming *CP*violating angle $\beta_s(B^0 \to J/\psi \phi) = 0.02$. 5 Obtained from $\Delta\Gamma_s$ and Γ_s fit with a correlation of 0.6. 6 Measured using the time-dependent angular analysis of $B_s^0
ightarrow J/\psi \, \phi$ decays. ⁷ Uses $\phi \phi$ correlations from $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$.

B_s^0 MEAN LIFE (Flavor specific)

$VALUE (10^{-12} \text{ s})$	DOCUMENT ID	TECN	COMMENT
1.516±0.014 OUR EVALUATION	ON		
1.513 ± 0.019 OUR AVERAGE	Error includes scale	factor of 1.4	. See the ideogram below.
$1.479 \pm 0.010 \pm 0.021$	$^{ m 1}$ ABAZOV	15A D0	$p\overline{p}$ at 1.96 TeV
$1.535 \pm 0.015 \pm 0.014$	² AAIJ	14AX LHCB	pp at 7 TeV
$1.52\ \pm0.15\ \pm0.01$	³ AAIJ	14F LHCB	pp at 7, 8 TeV
$1.60\ \pm0.06\ \pm0.01$	⁴ AAIJ	14R LHCB	pp at 7 TeV
$1.518 \pm 0.041 \pm 0.027$	⁵ AALTONEN	11AP CDF	$p\overline{p}$ at 1.96 TeV

$1.42 \ ^{+0.14}_{-0.13} \ \pm 0.03$	⁶ ABREU	00Y	DLPH	$e^+e^- ightarrow Z$
$1.36\ \pm0.09\ ^{+0.06}_{-0.05}$	⁷ ABE	99 D	CDF	$p\overline{p}$ at 1.8 TeV
$1.50 \ ^{+ 0.16}_{- 0.15} \ \pm 0.04$	⁷ ACKERSTAFF	98G	OPAL	$e^+e^- ightarrow Z$
$1.54 \begin{array}{l} +0.14 \\ -0.13 \end{array} \pm 0.04$	⁷ BUSKULIC	96м	ALEP	$e^+e^- ightarrow Z$

• We do not use the following data for averages, fits, limits, etc. • • •

$$1.398 \pm 0.044 {+0.028 \atop -0.025}$$
 8 ABAZOV 06V D0 Repl. by ABAZOV 15A

⁸ Measured using $D_s^- \mu^+$ vertices.

 $^{^1}$ Measured using $B_s^0
ightarrow D_s^- \mu^+
u X$ decays.

² Measured using the $B_s^0 \rightarrow D_s^- \pi^+$ decays. ³ Measured using $B_s^0 \rightarrow D^+ D_s^-$. ⁴ Measured using $B_s^0 \rightarrow \pi^+ K^-$ decays.

 $^{^5}$ AALTONEN 11AP combines the fully reconstrcuted $B_s^0 o D_s^- \pi^+$ decays and partially reconstructed $B_s^0 \rightarrow D_s X$ decays.

⁶Uses $D_s^-\ell^+$, and $\phi\ell^+$ vertices.

⁷ Measured using $D_s^-\ell^+$ vertices.

B_s^0 MEAN LIFE $(B_S \rightarrow J/\psi \phi)$

<u>VALUE</u> (10^{-12} s)	DOCUMENT ID		TECN	COMMENT	
1.479 ± 0.012 OUR EVALUATION					
1.479 ± 0.012 OUR AVERAGE					
$1.480 \pm 0.011 \pm 0.005$	1 AAIJ	14E	LHCB	pp at 7 TeV	
$1.444 {+0.098\atop -0.090} \pm 0.020$	¹ ABAZOV	05 B	D0	$p\overline{p}$ at 1.96 TeV	
$1.34 \ ^{+ 0.23}_{- 0.19} \ \pm 0.05$	² ABE	98 B	CDF	$p\overline{p}$ at 1.8 TeV	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
$1.39 \begin{array}{l} +0.13 & +0.01 \\ -0.16 & -0.02 \end{array}$	² ABAZOV	05W	D0	$p\overline{p}$ at 1.96 TeV	
$1.34 \ ^{+0.23}_{-0.19} \ \pm 0.05$	³ ABE	96N	CDF	Repl. by ABE 98B	
1 Measured using fully reconstructed $B_{ extsf{S}} ightarrow J/\psi\phi$ decays.					
² Measured using the time-dependent angular analysis of $B_s^0 o J/\psi \phi$ decays.					
3 ABE 96N uses 58 \pm 12 exclusi					

B_s^0 DECAY MODES

These branching fractions all scale with B($\overline{b} \to B_s^0$).

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on " $B^0-\overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode		Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	D_s^- anything		(93 ±25) %	
	$\ell u_\ell X$		(9.6 \pm 0.8) %	
Γ_3	$e^+ u X^-$		($9.1~\pm~0.8$) %	
Γ_4	$\mu^+ \nu X^-$		(10.2 \pm 1.0) %	
Γ_5	$D_{s}^{-}\ell^{+} u_{\ell}$ anything	[a]] (8.1 ± 1.3) %	
Γ_6	$D_s^{*-}\ell^+ u_\ell$ anything		(5.4 ± 1.1) %	
Γ_7	$D_{s1}(2536)^- \mu^+ \nu_{\mu}$,		(2.6 ± 0.7) \times 1	0^{-3}
	$D_{s1}^- ightarrow \ D^{*-} K_S^0$			
Γ ₈	$D_{s1}(2536)^- X \mu^+ \nu$,		(4.4 ± 1.3) \times 1	0^{-3}
	$D_{s1}^- ightarrow \overline{D}{}^0 K^+$			
Γ_9	$D_{s2}(2573)^{-} X \mu^{+} \nu$,		(2.7 ± 1.0) \times 1	0.0^{-3}
-	$D_{s2}^- ightarrow \overline{D}{}^0 K^+$			
Γ ₁₀	$D_s^- \pi^+$		$(3.00\pm\ 0.23) \times 1$.0-3
HTT	P://PDG.LBL.GOV	Page 10	Created: 5/	/30/2017 17:23

Γ ₁₁ Γ ₁₂ Γ ₁₃	$D_{s}^{-} \rho^{+}$ $D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}$ $D_{s1}(2536)^{-} \pi^{+}$, $D_{s1}^{-} \rightarrow D_{s}^{-} \pi^{+} \pi^{-}$ $D_{s}^{\mp} K^{\pm}$	$(6.9 \pm 1.4) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(2.5 \pm 0.8) \times 10^{-5}$	
Γ_{14}	$D_s^{\mp} K^{\pm}$	$(2.27\pm\ 0.19)\times10^{-4}$	
Γ ₁₅	$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	$(3.2 \pm 0.6) \times 10^{-4}$	
	$D_s^+ D_s^-$	$(4.4 \pm 0.5) \times 10^{-3}$	
	$D_s^{\stackrel{s}{-}}D_+^{\stackrel{s}{+}}$	$(2.8 \pm 0.5) \times 10^{-4}$	
· 17	D^+D^-	$(2.2 \pm 0.6) \times 10^{-4}$	
Γ ₁₉		$(1.9 \pm 0.5) \times 10^{-4}$	
19	$D_{s_{-}}^{*-}\pi^{+}$	$(2.0 \pm 0.5) \times 10^{-3}$	
Γ ₂₁	$D^{*\mp}K^{\pm}$	$(1.33\pm 0.35) \times 10^{-4}$	
Γ22	$D_s^{*\mp}K^\pm \ D_s^{*-} ho^+$	$(9.6 \pm 2.1) \times 10^{-3}$	
Γ	$D_{*+}D_{-} + D_{*-}D_{+}$	(1.37± 0.16) %	
· 23 Год	$D_{s}^{*}D_{s}^{*} + D_{s}^{*}D_{s}^{*}$ $D_{s}^{(*)+}D_{s}^{(*)-}$ $D_{s}^{*0}\overline{K}^{0}$	(1.43± 0.19) %	S=1.1
' 24 	$D_{s}^{(*)+}D_{s}^{(*)-}$, ,	5-1.1
I 25	D*0 V 0	$(4.5 \pm 1.4)\%$	
I 26	$\frac{\overline{D}^0 \overline{K}^0}{\overline{D}^0 \overline{K}^0}$	$(2.8 \pm 1.1) \times 10^{-4}$ $(4.3 \pm 0.9) \times 10^{-4}$	
г 27 Гоо	$\frac{D}{D}$ $K^-\pi^+$	$(4.3 \pm 0.9) \times 10^{-3}$	
Γ ₂₉	$\overline{D}^{0} \overline{K}^{*} (892)^{0}$	$(4.4 \pm 0.6) \times 10^{-4}$	
Γ ₃₀	$\frac{D^0}{D^0} \frac{K^*(1410)}{K^*(1410)}$	$(3.9 \pm 3.5) \times 10^{-4}$	
Γ ₃₁	$\frac{D^0}{K_0^*}(1430)$	$(3.0 \pm 0.7) \times 10^{-4}$	
Γ ₃₂	$\overline{D}{}^{0}\overline{K}_{2}^{*}(1430)$	$(1.1 \pm 0.4) \times 10^{-4}$	
Γ ₃₃	$\overline{D}^0 \overline{K}^{2} (1680)$	$< 7.8 \times 10^{-5}$	CL=90%
Γ ₃₄	$\overline{D}^0 \overline{K}_0^* (1950)$	$< 1.1 \times 10^{-4}$	CL=90%
Γ ₃₅	$\overline{D}^0 \overline{K}_3^* (1780)$	$< 2.6 \times 10^{-5}$	CL=90%
Γ ₃₆	$\overline{D}{}^{0}\overline{K}_{4}^{*}(2045)$	$< 3.1 \times 10^{-5}$	CL=90%
Γ ₃₇	$\overline{D}{}^0 {\it K}^{\stackrel{\frown}{-}}\pi^+$ (non-	$(2.1 \pm 0.8) \times 10^{-4}$	
٥.	resonant)		
Γ ₃₈	$D_{s2}^*(2573)^-\pi^+$,	$(2.6 \pm 0.4) \times 10^{-4}$	
	$D_{s2}^* ightarrow \; \overline{D}{}^0 {\mathcal K}^-$		
Γ ₃₉	$D_{s1}^*(2700)^-\pi^+$,	(1.6 ± 0.8) $ imes 10^{-5}$	
	$D_{s1}^* \rightarrow \overline{D}{}^0 K^-$		
Γ_{40}	$D_{s1}^*(2860)^-\pi^+$,	$(5 \pm 4) \times 10^{-5}$	
. •	$D_{s1}^* \rightarrow \overline{D}{}^0 K^-$		
Γ_{41}	$D_{s3}^*(2860)^-\pi^+$,	$(2.2 \pm 0.6) \times 10^{-5}$	
	$D_{s3}^* \rightarrow \overline{D}{}^0 K^-$,	
Γ_{42}	$\overline{D}^0 K^+ K^-$	$(4.4 \pm 2.0) \times 10^{-5}$	
Γ_{43}	$\overline{D}^0 f_0(980)$	$< 3.1 \times 10^{-6}$	CL=90%
Γ_{AA}	$\overline{D}^0 \phi$	(3.0 \pm 0.8) $ imes$ 10 ⁻⁵	
Γ_{45}	$D^{*\mp}\pi^{\pm}$	$< 6.1 \times 10^{-6}$	CL=90%

Γ ₇₄ Γ ₇₅ Γ ₇₆ Γ ₇₇ Γ ₇₈ Γ ₈₀ Γ ₈₁ Γ ₈₂ Γ ₈₃ Γ ₈₄ Γ ₈₅	$J/\psi(1S)f'_{2}(1525)$ $J/\psi(1S)p\overline{p}$ $J/\psi(1S)\gamma$ $J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ $J/\psi(1S)f_{1}(1285)$ $\psi(2S)\eta$ $\psi(2S)\eta'$ $\psi(2S)\pi^{+}\pi^{-}$ $\psi(2S)K^{-}\pi^{+}$ $\psi(2S)\overline{K}^{*}(892)^{0}$ $\chi_{c1}\phi$ $\pi^{+}\pi^{-}$			10-6 10-5 10-5 10-4 10-4 10-5 10-4 10-5 10-5 10-4	CL=90% CL=90%
Γ ₈₆	$\pi^{0}\pi^{0}$		< 2.1 ×	10^{-4}	CL=90%
	$\eta \pi^0$			10^{-3}	CL=90%
Γ ₈₈	$\eta \eta$			10^{-3}	CL=90%
	$ ho^0 ho^0 $ $\eta' \eta'$		< 3.20 × (3.3 ± 0.7) ×	10^{-4}	CL=90%
Γ ₉₁	$\phi f_0(980), f_0(980) \rightarrow$		$(3.3 \pm 0.7) \times (1.12 \pm 0.21) \times$		
. 91	$\pi^{+}\pi^{-}$		(1.12± 0.21) ∧	10	
Γ ₉₂	$\phi f_2(1270), f_2(1270) \rightarrow \pi^+\pi^-$		($6.1 {+} {1.8}) imes$	10 ⁻⁷	
Γ_{93}	$\phi \rho^0$		($2.7~\pm~0.8$) $ imes$	10^{-7}	
Γ_{94}	$\phi\pi^+\pi^-$		($3.5~\pm~0.5$) $ imes$		
Γ ₉₅	$\phi\phi$		($1.87\pm~0.15$) $ imes$		
Γ ₉₆	$\pi^+ K^-$		(5.6 \pm 0.6) \times		
Γ_{97}	K^+K^-		($2.54\pm~0.16$) $ imes$		
Γ ₉₈	$K^0\overline{K}^0$		($2.0~\pm~0.6$) $ imes$		
Γ ₉₉	$K^{0}\pi^{+}\pi^{-}$		(1.5 \pm 0.4) $ imes$		
Γ ₁₀₀	$K^0 K^{\pm} \pi^{\mp}$		(7.7 \pm 1.0) \times		
I ₁₀₁	$K^*(892)^-\pi^+$		(3.3 ± 1.2) \times		
I ₁₀₂	$K^*(892)^{\pm}K^{\mp}$		(1.25± 0.26) ×		
I ₁₀₃	$K_S^0 \overline{K}^* (892)^0 + \text{c.c.}$		(1.6 \pm 0.4) \times		
I ₁₀₄	$K^0K^+K^-$			10^{-6}	CL=90%
I 105	$\overline{K}^*(892)^0 \rho^0$			10-4	CL=90%
l 106	$\overline{K}^*(892)^0 K^*(892)^0$		(1.11± 0.27) ×		
1 107	$\phi K^*(892)^0$		(1.14± 0.30) ×		
Γ ₁₀₈	p <u></u> p		($2.8 \ ^{+} \ 2.2 \) imes$	10 ⁻⁸	
Γ ₁₀₉	$\Lambda_c^- \Lambda \pi^+$		(3.6 ± 1.6) \times	10^{-4}	
	$\Lambda_c^- \Lambda_c^+$		< 8.0 ×	10^{-5}	CL=95%
Γ ₁₁₁		B1		10^{-6}	CL=90%
Γ ₁₁₂			(3.52± 0.34) ×		
			,		

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

- [a] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [b] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 $\rm GeV/c^2$ and 214.3 $\rm MeV/c^2$, respectively.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 10 branching ratios uses 18 measurements and one constraint to determine 7 parameters. The overall fit has a $\chi^2=21.8$ for 12 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

B_s BRANCHING RATIOS

$\Gamma(D_s^- \text{ anything})/\Gamma_{\text{total}}$

 Γ_1/Γ

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.93±0.25 OUR AVER	AGE				
$0.91\!\pm\!0.18\!\pm\!0.41$		$^{ m 1}$ DRUTSKOY	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.81\!\pm\!0.24\!\pm\!0.22$	90	² BUSKULIC	96E	ALEP	$e^+e^- ightarrow Z$
$1.56\!\pm\!0.58\!\pm\!0.44$	147	³ ACTON	92N	OPAL	$e^+e^- ightarrow Z$

HTTP://PDG.LBL.GOV

Page 14

¹ The extraction of this result takes into account the correlation between the measurements of B($\Upsilon(5S) \to D_S X$) and B($\Upsilon(5S) \to D^0 X$).

² BUSKULIC 96E separate $c\overline{c}$ and $b\overline{b}$ sources of D_s^+ mesons using a lifetime tag, subtract generic $\overline{b} \to W^+ \to D_s^+$ events, and obtain $B(\overline{b} \to B_s^0) \times B(B_s^0 \to D_s^-$ anything) = 0.088 \pm 0.020 \pm 0.020 assuming $B(D_s \to \phi\pi) = (3.5 \pm 0.4) \times 10^{-2}$ and PDG 1994 values for the relative partial widths to other D_s channels. We evaluate using our current values $B(\overline{b} \to B_s^0) = 0.107 \pm 0.014$ and $B(D_s \to \phi\pi) = 0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_s^0)$ and $B(D_s \to \phi\pi)$.

³ACTON 92N assume that excess of 147 \pm 48 D_s^0 events over that expected from B^0 , B^+ , and $c\overline{c}$ is all from B_s^0 decay. The product branching fraction is measured to be $B(\overline{b} \to B_s^0)B(B_s^0 \to D_s^-$ anything) $\times B(D_s^- \to \phi\pi^-) = (5.9 \pm 1.9 \pm 1.1) \times 10^{-3}$. We evaluate using our current values $B(\overline{b} \to B_s^0) = 0.107 \pm 0.014$ and $B(D_s \to \phi\pi) = 0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_s^0)$ and $B(D_s \to \phi\pi)$.

 $\Gamma(\ell\nu_{\ell}X)/\Gamma_{\mathsf{total}}$ Γ_2/Γ

$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT
9.6±0.8 OUR AVERAGE				
$9.6 \pm 0.4 \pm 0.7$	$^{ m 1}$ OSWALD	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(5S)$
9.5 + 2.5 + 1.1	² LEES	12A	BABR	e^+e^-

¹ The measurement corresponds to the average of the electron and muon branching fractions.

tions. 2 The measurement corresponds to a branching fraction where the lepton originates from bottom decay and is the average between the electron and muon branching fractions. LEES 12A uses the correlation of the production of ϕ mesons in association with a lepton in $e^+\,e^-$ data taken at center-of-mass energies between 10.54 and 11.2 GeV.

$\Gamma(e^+ u X^-)/\Gamma_{ m total}$					Γ_3/Γ
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
$9.1 \pm 0.5 \pm 0.6$	OSWALD	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(5S)$
$\Gamma(\mu^+ u X^-)/\Gamma_{ m total}$					Γ_4/Γ
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
10.2±0.6±0.8	OSWALD	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(5S)$

 $\Gamma(D_s^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$ The values and averages in this section serve only to show what values result if one

The values and averages in this section serve only to show what values result if one assumes our $B(\overline{b} \to B_s^0)$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(\overline{b} \to B_s^0)$ as described in the note on "Production and Decay of b-Flavored Hadrons."

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
8.1±1.3 OUR AVE	RAGE				
$8.2\!\pm\!0.2\!\pm\!1.5$		$^{ m 1}$ OSWALD	15	BELL	$e^+e^- ightarrow \Upsilon(5S)$
$7.6\!\pm\!1.2\!\pm\!2.1$	134	² BUSKULIC	950	ALEP	$e^+e^- ightarrow Z$
$10.7\!\pm\!4.3\!\pm\!2.9$		³ ABREU	92M	DLPH	$e^+e^- ightarrow Z$
$10.3\!\pm\!3.6\!\pm\!2.8$	18	⁴ ACTON	92N	OPAL	$e^+e^- ightarrow Z$
• • • We do not us	e the following	data for averages	s, fits,	limits, e	etc. • • •

13 ± 4 ± 4 27 SBUSKULIC 92E ALEP $e^+e^- \rightarrow Z$

- ¹ Obtains $B_s \to D_s X e \nu$, and $D_s X \mu \nu$ separately, then combines them by assuming systematic uncertainties are fully correlated, except for the one on lepton identification. The third uncertainty adds in quadrature systematic uncertainties from external sources (number of B_s events, and $D_s^{(*)}$ branching fractions). OSWALD 15 also measures the cross-section $\sigma(e^+e^- \to B_s^{(*)}\overline{B}_s^{(*)}) = 53.8 \pm 1.4 \pm 5.3$ pb at $\sqrt{s} = 10.86$ GeV.
- ² BUSKULIC 950 use $D_s\ell$ correlations. The measured product branching ratio is $B(\overline{b} \to B_s) \times B(B_s \to D_s^-\ell^+\nu_\ell)$ anything) = $(0.82 \pm 0.09^{+0.13}_{-0.14})$ % assuming $B(D_s \to \phi\pi)$ = $(3.5 \pm 0.4) \times 10^{-2}$ and PDG 1994 values for the relative partial widths to the six other D_s channels used in this analysis. Combined with results from $\Upsilon(4S)$ experiments this can be used to extract $B(\overline{b} \to B_s) = (11.0 \pm 1.2^{+2.5}_{-2.6})$ %. We evaluate using our current values $B(\overline{b} \to B_s^0) = 0.107 \pm 0.014$ and $B(D_s \to \phi\pi) = 0.036 \pm 0.009$. Our first error is their experiment's and our second error is that due to $B(\overline{b} \to B_s^0)$ and $B(D_s \to \phi\pi)$.
- ³ ABREU 92M measured muons only and obtained product branching ratio B($Z \to b$ or \overline{b}) \times B($\overline{b} \to B_s$) \times B($B_s \to D_s \mu^+ \nu_\mu$ anything) \times B($D_s \to \phi \pi$) = (18 \pm 8) \times 10⁻⁵. We evaluate using our current values B($\overline{b} \to B_s^0$) = 0.107 \pm 0.014 and B($D_s \to \phi \pi$) = 0.036 \pm 0.009. Our first error is their experiment's and our second error is that due to B($\overline{b} \to B_s^0$) and B($D_s \to \phi \pi$). We use B($Z \to b$ or \overline{b}) = 2B($Z \to b\overline{b}$) = 2 \times (0.2212 \pm 0.0019).
- ⁴ ACTON 92N is measured using $D_s \to \phi \pi^+$ and $K^*(892)^0 K^+$ events. The product branching fraction measured is measured to be B($\overline{b} \to B_s^0$)B($B_s^0 \to D_s^- \ell^+ \nu_\ell$ anything) \times B($D_s^- \to \phi \pi^-$) = (3.9 \pm 1.1 \pm 0.8) \times 10⁻⁴. We evaluate using our current values B($\overline{b} \to B_s^0$) = 0.107 \pm 0.014 and B($D_s \to \phi \pi$) = 0.036 \pm 0.009. Our first error is their experiment's and our second error is that due to B($\overline{b} \to B_s^0$) and B($D_s \to \phi \pi$).
- 5 BUSKULIC 92E is measured using $D_s \to \phi \pi^+$ and $K^*(892)^0 K^+$ events. They use $2.7 \pm 0.7\%$ for the $\phi \pi^+$ branching fraction. The average product branching fraction is measured to be ${\rm B}(\overline{b} \to B_s^0) {\rm B}(B_s^0 \to D_s^- \ell^+ \nu_\ell \, {\rm anything}) = 0.020 \pm 0.0055^{+0.005}_{-0.006}.$ We evaluate using our current values ${\rm B}(\overline{b} \to B_s^0) = 0.107 \pm 0.014$ and ${\rm B}(D_s \to \phi \pi) = 0.036 \pm 0.009.$ Our first error is their experiment's and our second error is that due to ${\rm B}(\overline{b} \to B_s^0)$ and ${\rm B}(D_s \to \phi \pi)$. Superseded by BUSKULIC 950.

$\Gamma(D_s^{*-}\ell^+\nu_\ell \, \text{anything})/\Gamma_{\text{total}}$

 Γ_6/Γ

Created: 5/30/2017 17:23

VALUE (units 10⁻²)
5.4±0.4±1.0

 $1 \frac{\textit{DOCUMENT ID}}{\textit{OSWALD}}$ 15 BELL $e^+e^-
ightarrow \varUpsilon(5S)$

 $^{^1}$ Obtains $B_s\to D_s^*X\,e\nu,$ and $D_s^*X\,\mu\nu$ separately, then combines them by assuming systematic uncertainties are fully correlated, except for the one on lepton identification. The third uncertainty adds in quadrature systematic uncertainties from external sources (number of B_s events, and $D_s^{(*)}$ branching fractions). OSWALD 15 also measures the cross-section $\sigma(e^+e^-\to B_s^{(*)}\overline{B}_s^{(*)})=53.8\pm1.4\pm5.3$ pb at $\sqrt{s}=10.86$ GeV.

```
\Gamma(D_{s1}(2536)^{-}\mu^{+}\nu_{\mu}, D_{s1}^{-} \to D^{*-}K_{s}^{0})/\Gamma_{total}
                                                                                                                                                                                                                                \Gamma_7/\Gamma
VALUE (units 10^{-3})
                                                                                             <sup>1</sup> ABAZOV
                                                                                                                                           09G D0
2.6 \pm 0.7 \pm 0.1
      <sup>1</sup> ABAZOV 09G reports [\Gamma(B_S^0 \rightarrow D_{s1}(2536)^-\mu^+\nu_{\mu}, D_{s1}^- \rightarrow D^{*-}K_S^0)/\Gamma_{total}] \times
          [{\sf B}(\overline{b} \to B^0_{\it s})] = (2.66 \pm 0.52 \pm 0.45) \times 10^{-4} which we divide by our best value {\sf B}(\overline{b} \to B^0_{\it s})
           B_s^0) = (10.3 \pm 0.5) \times 10^{-2}. Our first error is their experiment's error and our second
           error is the systematic error from using our best value.
\Gamma(D_{s1}(2536)^- X \mu^+ \nu, \ D_{s1}^- \to \overline{D}{}^0 K^+) / \Gamma(D_s^- \ell^+ \nu_\ell \text{ anything})
                                                                                                                                                                                                                            \Gamma_8/\Gamma_5
VALUE (units 10^{-2})
5.4 \pm 1.2 \pm 0.5
\Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \rightarrow \overline{D}{}^0 K^+) / \Gamma(D_s^- \ell^+ \nu_\ell \text{ anything})
                                                                                                                                                                                                                            \Gamma_9/\Gamma_5
                                                                                                  DOCUMENT ID TECN COMMENT
VALUE (units 10^{-2})
3.3\pm1.0\pm0.4
                                                                                                                                            11A LHCB pp at 7 TeV
\Gamma(D_{s1}(2536)^- X \mu^+ \nu, D_{s1}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \to \overline{D}{}^0 K^+) / \Gamma(D_{s2}(2573)^- X \mu^+ \nu, D_{s
\overline{D}^0K^+
                                                                                                                                                                                                                            \Gamma_8/\Gamma_9
                                                                                                  DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                             <sup>1</sup> AAIJ
                                                                                                                                           11A LHCB pp at 7 TeV
0.61 \pm 0.14 \pm 0.05
      <sup>1</sup> Not independent of other AAIJ 11A measurements.
\Gamma(D_s^-\pi^+)/\Gamma_{\text{total}}
                                                                                                                                                                                                                            \Gamma_{10}/\Gamma
VALUE (units 10^{-3})
                                                                                           DOCUMENT ID
                                                                                                                                                  TECN COMMENT
            3.00\pm0.23 OUR FIT
            2.99 \pm 0.24 OUR AVERAGE
            2.95\pm0.05+0.25
                                                                                       ^{1} AAIJ
                                                                                                                                     12AG LHCB pp at 7 TeV
                                                                                      <sup>2</sup> LOUVOT
                                                                                                                                                   BELL e^+e^- \rightarrow \Upsilon(5S)
            3.6 \pm 0.5 \pm 0.5
                                                                                      <sup>3</sup> ABULENCIA
            2.8 \pm 0.6 \pm 0.1
                                                                                                                                    07C CDF
                                                                                                                                                                         p\overline{p} at 1.96 TeV
      • • We do not use the following data for averages, fits, limits, etc. • • •
            6.8 \pm 2.2 \pm 1.6
                                                                                           DRUTSKOY
                                                                                                                                    07A BELL
                                                                                                                                                                        Repl. by LOUVOT 09
                                                                                       <sup>4</sup> ABULENCIA 06」 CDF
            3.3 \pm 1.1 \pm 0.2
                                                                                                                                                                        Repl. by ABULENCIA 07C
                                                                                      <sup>5</sup> AKERS
                                                                                                                                     94J OPAL e^+e^- \rightarrow Z
  <130
                                                                                                                                    93G ALEP e^+e^- \rightarrow Z
                                                                                           BUSKULIC
     ^1 AAIJ 12AG reports (2.95 \pm 0.05 \pm 0.17 ^{+0.18}_{-0.22})\times 10^{-3} where the last uncertainty comes from the semileptonic f_{\rm S}/f_{d} measurement. We combined the systematics in quadrature.
      <sup>2</sup>LOUVOT 09 reports (3.67 + 0.35 + 0.65) \times 10^{-3} from a measurement of [\Gamma(B_s^0 \rightarrow (*) - 0.33 - 0.645)] \times 10^{-3}
          D_s^-\pi^+)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\varUpsilon(10860) \to B_s^{(*)}\overline{B}_s^{(*)})] \text{ assuming } \mathsf{B}(\varUpsilon(10860) \to B_s^{(*)}\overline{B}_s^{(*)})
          = (19.5 \pm 2.6) \times 10^{-2}, which we rescale to our best value B(\Upsilon(10860) \rightarrow B_s^{(*)} \overline{B}_s^{(*)})
           =(20.1\pm3.1)\times10^{-2}. Our first error is their experiment's error and our second error
          is the systematic error from using our best value.
     <sup>3</sup>ABULENCIA 07C reports [\Gamma(B_s^0 \to D_s^- \pi^+)/\Gamma_{\rm total}] / [B(B^0 \to D^- \pi^+)] = 1.13 \pm 0.08 \pm 0.23 which we multiply by our best value B(B^0 \to D^- \pi^+) = (2.52 \pm 0.13) \times 10^{-10}
```

 10^{-3} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ⁴ ABULENCIA 06J reports $[\Gamma(B_s^0 \rightarrow D_s^- \pi^+)/\Gamma_{ ext{total}}] / [B(B^0 \rightarrow D^- \pi^+)] = 1.32 \pm 1.32$ 0.18 ± 0.38 which we multiply by our best value B($B^0 \rightarrow D^-\pi^+$) = (2.52 \pm 0.13) \times 10^{-3} . Our first error is their experiment's error and our second error is the systematic error from using our best value.
- 5 AKERS 94J sees $\,\leq 6$ events and measures the limit on the product branching fraction $f(\overline{b} \to B_s^0) \cdot \mathsf{B}(B_s^0 \to D_s^- \pi^+) < 1.3\%$ at $\mathsf{CL} = 90\%$. We divide by our current value $\mathsf{B}(\overline{b} \to B_s^0) = 0.105$.

 $\Gamma(D_s^-\rho^+)/\Gamma_{\text{total}}$

 Γ_{11}/Γ

VALUE (units 10^{-3})

 $6.9 \pm 1.3 \pm 0.5$

$$1 \frac{\textit{DOCUMENT ID}}{\textit{LOUVOT}}$$
 10 BELL $e^+e^-
ightarrow \gamma (5S)$

 $^{1}\,\text{LOUVOT 10 reports}\,[\Gamma\big(B_{\,\,\text{S}}^{\,0}\to\,D_{\,\,\text{S}}^{\,-}\,\rho^{+}\big)/\Gamma_{\text{total}}]\;/\,[B(B_{\,\,\text{S}}^{\,0}\to\,D_{\,\,\text{S}}^{\,-}\,\pi^{+})]=2.3\pm0.4\pm0.2$ which we multiply by our best value B($B_s^0 \to D_s^- \pi^+$) = (3.00 \pm 0.23) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_s^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$$

 Γ_{12}/Γ

VALUE (units 10^{-3})

DOCUMENT ID TECN COMMENT

6.1 ± 1.0 OUR FIT

 $6.3 \pm 1.5 \pm 0.7$

¹ ABULENCIA 07C CDF $p\overline{p}$ at 1.96 TeV

 $^{1} \text{ABULENCIA} \quad \text{O7C} \quad \text{reports} \quad [\Gamma(B^{0}_{s} \quad \rightarrow \quad \quad D^{-}_{s} \, \pi^{+} \, \pi^{+} \, \pi^{-}) / \Gamma_{\text{total}}] \quad / \quad [\text{B}(B^{0} \quad \rightarrow \quad D^{-}_{s} \, \pi^{+} \, \pi^{-}) / \Gamma_{\text{total}}]$ $D^-\pi^+\pi^+\pi^-)]=1.05\pm0.10\pm0.22$ which we multiply by our best value B($B^0\to$ $D^-\pi^+\pi^+\pi^-)=(6.0\pm0.7)\times10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma\big(D_{\boldsymbol{s}}^-\pi^+\pi^+\pi^-\big)/\Gamma\big(D_{\boldsymbol{s}}^-\pi^+\big)$$

 Γ_{12}/Γ_{10}

2.05 ± 0.34 OUR FIT

DOCUMENT ID TECN COMMENT

 $2.01\pm0.37\pm0.20$

11E LHCB pp at 7 TeV

$$\Gamma(D_{s1}(2536)^-\pi^+, D_{s1}^- \to D_{s}^-\pi^+\pi^-)/\Gamma(D_{s}^-\pi^+\pi^+\pi^-)$$

 Γ_{13}/Γ_{12}

VALUE (units 10^{-3})

 $4.0\pm1.0\pm0.4$

12AX LHCB pp at 7 TeV

 $\Gamma(D_s^{\mp}K^{\pm})/\Gamma_{\text{total}}$

 Γ_{14}/Γ

VALUE (units 10^{-4})

DOCUMENT ID TECN COMMENT

2.27 ± 0.19 OUR FIT

$$2.3 \begin{array}{c} +1.2 & +0.4 \\ -1.0 & -0.3 \end{array}$$

¹LOUVOT 09 BELL $e^+e^- \rightarrow \Upsilon(5S)$

Created: 5/30/2017 17:23

 $^1\text{LOUVOT}$ 09 reports (2.4 $^{+1.2}_{-1.0}$ \pm 0.42) \times 10 $^{-4}$ from a measurement of [Г(B 0_s $D_s^{\mp} K^{\pm})/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\varUpsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)})] \text{ assuming } \mathsf{B}(\varUpsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)})$ = $(19.5 \pm 2.6) \times 10^{-2}$, which we rescale to our best value B($\Upsilon(10860) \rightarrow B_c^{(*)} \overline{B}_c^{(*)}$) $= (20.1 \pm 3.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
\Gamma(D_{\epsilon}^{\mp}K^{\pm})/\Gamma(D_{\epsilon}^{-}\pi^{+})
                                                                                                            \Gamma_{14}/\Gamma_{10}
VALUE (units 10^{-2})
                                                                                        COMMENT
7.55 ± 0.24 OUR FIT
7.55\pm0.24 OUR AVERAGE
7.52 \pm 0.15 \pm 0.19
                                                 AAIJ
                                                                      15AC LHCB
                                                                                      pp at 7, 8 TeV
9.7 \pm 1.8 \pm 0.9
                                                 AALTONEN
                                                                      09AQ CDF
                                                                                        p\overline{p} at 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
6.46 \pm 0.43 \pm 0.25
                                                                      12AG LHCB Repl. by AAIJ 15AC
                                                 AAIJ
\Gamma(D_s^-K^+\pi^+\pi^-)/\Gamma(D_s^-\pi^+\pi^+\pi^-)
                                                                                                           \Gamma_{15}/\Gamma_{12}
VALUE (units 10^{-2})
                                                                             TECN COMMENT
5.2 \pm 0.5 \pm 0.3
                                                                      12AX LHCB pp at 7 TeV
\Gamma(D_{\epsilon}^+D_{\epsilon}^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{16}/\Gamma
VALUE (units 10^{-3})
                                             DOCUMENT ID
                                                                         TECN COMMENT
     4.4±0.5 OUR AVERAGE
                                           <sup>1</sup> AAIJ
                                                                  13AP LHCB pp at 7 TeV
    4.0 + 0.2 + 0.5
    5.8^{+1.1}_{-0.9}\pm1.3
                                           <sup>2</sup> FSFN
                                                                         BELL e^+e^- \rightarrow \Upsilon(5S)
                                           <sup>3</sup> AALTONEN
     5.2 \pm 0.8 \pm 0.6
                                                                  12C CDF
                                                                                    p\overline{p} at 1.96 TeV

    • We do not use the following data for averages, fits, limits, etc.
    • •

   10.3 + 3.9 + 2.6
                                          <sup>4</sup> ESEN
                                                                  10
                                                                         BELL
                                                                                   Repl. by ESEN 13
   10.4^{+3.5}_{-3.2}\pm1.1
                                          <sup>5</sup> AALTONEN
                                                                  08F CDF
                                                                                    Repl. by AALTONEN 120
                                             DRUTSKOY
                                                                 07A BELL Repl. by ESEN 10
   <sup>1</sup> Uses B(B^0 \to D^- D_s^+) = (7.2 \pm 0.8) \times 10^{-3}.
   <sup>2</sup> Use \Upsilon(5S) \rightarrow B_S^* \overline{B}_S^* decays assuming B(\Upsilon(5S) \rightarrow B_S^* \overline{B}_S^*) = (17.1 \pm 3.0)% and
   \Gamma(\Upsilon(5S) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(5S) \to B_s^{(*)} \overline{B}_s^{(*)}) = (87.0 \pm 1.7)\%.

3 AALTONEN 12C reports (f_s/f_d) (B(B_s^0 \to D_s^+ D_s^-) / B(B^0 \to D^- D_s^+)) = 0.183 \pm 1.00
     0.021 \pm 0.017. We multiply this result by our best value of B(B^0 \rightarrow D^- D_s^+) =
     (7.2 \pm 0.8) \times 10^{-3} and divide by our best value of f_s/f_d, where 1/2 f_s/f_d = 0.128 \pm 0.006.
     Our first quoted uncertainty is the combined experiment's uncertainty and our second is
     the systematic uncertainty from using out best values.
   <sup>4</sup> Uses \Upsilon(10860) \rightarrow B_s^* \overline{B}_s^* assuming B(\Upsilon(10860) \rightarrow B_s^{(*)} \overline{B}_s^{(*)}) = (19.3 ± 2.9)% and
     \Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%.
   <sup>5</sup> AALTONEN 08F reports [\Gamma(B_s^0 \rightarrow D_s^+ D_s^-)/\Gamma_{\mathsf{total}}] / [B(B^0 \rightarrow D^- D_s^+)] =
     1.44^{+0.48}_{-0.44} which we multiply by our best value B(B^0 \to D^- D_s^+) = (7.2 \pm 0.8) \times 10^{-3}.
     Our first error is their experiment's error and our second error is the systematic error from
     using our best value.
\Gamma(D_s^-D^+)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{17}/\Gamma
VALUE (units 10^{-4})
                                                                           TECN COMMENT
2.8\pm0.4\pm0.3
                                                                      14AA LHCB pp at 7 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                               <sup>2</sup> AAIJ
                                                                      13AP LHCB Repl. by AAIJ 14AA
3.6 \pm 0.6 \pm 0.5
```

 1 AAIJ 14AA reports [$\Gamma \big(B_s^0 \rightarrow \ D_s^- \ D^+ \big) / \Gamma_{total}] \ / \ [\mathrm{B} (B^0 \rightarrow \ D^- \ D_s^+)] = 0.038 \pm 0.004 \pm$ 0.003 which we multiply by our best value B($B^0 \rightarrow D^- D_s^+$) = (7.2 \pm 0.8) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value..

² Uses B($B^0 \to D^- D_s^+$) = $(7.2 \pm 0.8) \times 10^{-3}$.

 $\Gamma(D^+D^-)/\Gamma_{total}$

Γ10/Γ

· () //· total					. 10/ .
<i>VALUE</i> (units 10 ⁻⁴)	DOCUMENT I	D	TECN	COMMENT	
2.2±0.4±0.4	¹ AAIJ	13 AP	LHCB	pp at 7 TeV	
¹ Uses B($B^0 \rightarrow D^-D^+$) =	$= (2.11 \pm 0.31) \times 10^{-1}$	10^{-4} an	d B(<i>B</i> +	$\rightarrow \overline{D}^0 D_s^+) =$: (10.1 ±
$1.7) \times 10^{-3}$.					

 $\Gamma(D^0\overline{D}^0)/\Gamma_{\text{total}}$

 Γ_{19}/Γ

VALUE (units 10 ⁻⁴)	<u>DOCUMENT ID</u>		TECN	COMMENT
1.9±0.3±0.4	¹ AAIJ	13 AP	LHCB	pp at 7 TeV
¹ Uses B($B^0 \rightarrow D^-D^+$) =	$(2.11 \pm 0.31) \times 10^{-2}$	$^{-4}$ and	d B(<i>B</i> ⁺	$\rightarrow \overline{D}{}^0 D_s^+) = (10.1 \pm$
$1.7) \times 10^{-3}$.				-

 $\Gamma(D_{\rm s}^{*-}\pi^+)/\Gamma_{\rm total}$

 Γ_{20}/Γ

$$rac{DOCUMENT\ ID}{}$$
 TECN COMMENT $\frac{1}{}$ LOUVOT 10 BELL $e^+e^-
ightarrow \gamma(5S)$

 $^{1}\,\text{LOUVOT 10 reports}\,[\Gamma\big(B_{\,s}^{0}\to\,D_{\,s}^{*-}\,\pi^{+}\big)/\Gamma_{\text{total}}]\;/\;[\text{B}(B_{\,s}^{0}\to\,D_{\,s}^{-}\,\pi^{+})]=0.65^{\,+\,0.15}_{\,-\,0.13}\,\pm\,0.00$ 0.07 which we multiply by our best value B($B_s^0 \to D_s^- \pi^+$) = (3.00 \pm 0.23) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(D_s^{*\mp}K^{\pm})/\Gamma(D_s^{*-}\pi^+)$

 Γ_{21}/Γ_{20}

VALUL	
0.068	±0.005 +0.003 -0.002

15AD LHCB pp at 7, 8 TeV

 $\Gamma(D_{\rm c}^{*-}\rho^{+})/\Gamma_{\rm total}$

 Γ_{22}/Γ

TECN COMMENT

 $9.6\pm2.0^{+0.7}_{-0.8}$

¹ LOUVOT

10 BELL $e^+e^- \rightarrow \Upsilon(5S)$

 $^{1}\,\text{LOUVOT 10 reports}\,[\Gamma\big(B_{\,s}^{0}\rightarrow\ D_{\,s}^{*-}\,\rho^{+}\big)/\Gamma_{\text{total}}]\ /\ [\text{B}(B_{\,s}^{0}\rightarrow\ D_{\,s}^{-}\,\pi^{+})] = 3.2\pm0.6\pm0.3$ which we multiply by our best value B($B_s^0 \to D_s^- \pi^+$) = (3.00 \pm 0.23) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma\big(D_s^{*-}\rho^+\big)/\Gamma\big(D_s^-\rho^+\big)$

 Γ_{22}/Γ_{11}

DOCUMENT ID <u>TECN</u> <u>COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.4 \pm 0.3 \pm 0.1$

LOUVOT

10 BELL $e^+e^- \rightarrow \Upsilon(5S)$

$\left[\Gamma(D_s^{*+}D_s^-) + \Gamma(D_s^{*-}D_s^+)\right]/\Gamma_{\text{total}}$ VALUE (units 10⁻³)

 Γ_{23}/Γ

ALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
13.7±1.6 OUR AVER	AGE					
$13.6\!\pm\!1.0\!\pm\!1.4$		¹ AAIJ	16 P	LHCB	pp at 7 TeV	
$17.6^{+2.3}_{-2.2}\pm 4.0$		² ESEN	13	BELL	$e^+e^- ightarrow ~ $	
$12.0\pm1.6\pm1.4$		³ AALTONEN	12 C	CDF	$p\overline{p}$ at 1.96 TeV	
14/ 11		1	c·.	11 11		

• • We do not use the following data for averages, fits, limits, etc.

$$27.5^{+8.3}_{-7.1}\pm6.9$$
 4 ESEN 10 BELL Repl. by ESEN 13 <121 90 DRUTSKOY 07A BELL Repl. by ESEN 10

 $^{1}\,\mathsf{AAIJ}\;\mathsf{16P}\;\mathsf{reports}\;[\left[\Gamma\big(B_{s}^{0}\to\;D_{s}^{*+}\,D_{s}^{-}\big)+\Gamma\big(D_{s}^{*-}\,D_{s}^{+}\big)\right]/\Gamma_{\mathsf{total}}]\;/\;[\mathsf{B}(B^{0}\to\;D^{-}\,D_{s}^{+})]$ = 1.88 \pm 0.08 \pm 0.12 which we multiply by our best value B($B^0 \rightarrow D^-D_s^+$) = $(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Use $\Upsilon(5S) \to B_s^* \overline{B}_s^*$ decays assuming B($\Upsilon(5S) \to B_s^* \overline{B}_s^*$) = (17.1 \pm 3.0)% and $\Gamma(\Upsilon(5S) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(5S) \to B_s^{(*)} \overline{B}_s^{(*)}) = (87.0 \pm 1.7)\%.$ 3 AALTONEN 12C reports (f_s/f_d) $(B(B_s^0 \to D_s^{*+} D_s^- + D_s^{*-} D_s^+) / B(B^0 \to D_s^{*-} D_s^+)$

 $D^-D_{\mbox{\scriptsize c}}^+))$ = 0.424 \pm 0.046 \pm 0.035. We multiply this result by our best value of $B(B^0 \to D^- D_s^+) = (7.2 \pm 0.8) \times 10^{-3}$ and divide by our best value of f_s/f_d , where $1/2 \ f_s/f_d = 0.128 \pm 0.006$. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values. $4 \ \text{Uses} \ \Upsilon(10860) \to B_s^* \ \overline{B}_s^*$ assuming $B(\Upsilon(10860) \to B_s^{(*)} \ \overline{B}_s^{(*)}) = (19.3 \pm 2.9)\%$ and

 $\Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%$

$\Gamma(D_{s}^{*+}D_{s}^{*-})/\Gamma_{\text{total}}$

 Γ_{24}/Γ

Created: 5/30/2017 17:23

(5 5 // 1014			
$VALUE$ (units 10^{-3}) $CL\%$	DOCUMENT ID	TECN	COMMENT
14.3± 1.9 OUR AVERAG	E Error includes scale	factor of 1.1.	
$12.7 \pm 1.3 \pm 1.4$	¹ AAIJ	16P LHCB	pp at 7 TeV
$19.8 {+\atop -}\ {3.3 + 5.2} \ {3.1 - 5.0}$	² ESEN	13 BELL	$e^+e^- \rightarrow \gamma(5S)$
$18.5 \pm \ 2.7 \pm 2.1$	³ AALTONEN	12c CDF	$p\overline{p}$ at 1.96 TeV

We do not use the following data for averages, fits, limits, etc.

$$30.8^{+12.2+8.5}_{-10.4-8.6}$$
 4 ESEN 10 BELL Repl. by ESEN 13
 <257 90 DRUTSKOY 07A BELL Repl. by ESEN 10

- $^{1}\,\text{AAIJ 16P reports}\,[\Gamma\big(B_{s}^{0}\to\ D_{s}^{*+}\,D_{s}^{*-}\big)/\Gamma_{\text{total}}]\;/\;[\text{B}(B^{0}\to\ D^{-}\,D_{s}^{+})]=1.76\pm0.11\pm0.01$ 0.14 which we multiply by our best value B($B^0 \to D^- D_s^+$) = $(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- 2 Use $~ \varUpsilon(5S)
 ightarrow ~ B_{S}^* \overline{B}_{S}^*$ decays assuming B($\varUpsilon(5S)
 ightarrow ~ B_{S}^* \overline{B}_{S}^*) = (17.1 \pm 3.0)\%$ and
- $\Gamma(\Upsilon(5S) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(5S) \to B_s^{(*)} \overline{B}_s^{(*)}) = (87.0 \pm 1.7)\%.$ 3 AALTONEN 12C reports $(f_s/f_d) (B(B_s^0 \to D_s^{*+} D_s^{*-}) / B(B^0 \to D_s^{-} D_s^{+})) = 0.654 \pm 1.7$ 0.072 ± 0.065 . We multiply this result by our best value of B($B^0 \rightarrow D^- D_s^+$) = $(7.2\pm0.8)\times10^{-3}$ and divide by our best value of f_s/f_d , where $1/2 f_s/f_d = 0.128\pm0.006$.

Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.

⁴ Uses $\Upsilon(10860) \to B_s^* \overline{B}_s^*$ assuming $B(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (19.3 \pm 2.9)\%$ and $\Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%.$

 $\Gamma(D_s^{(*)+}D_s^{(*)-})/\Gamma_{total}$ Γ_{25}/Γ "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

TECN COMMENT

VALU	E (%)	CL%	
4.5	±1.4	OUR EVALUATION	١
3.4	+0.4	OUR AVERAGE	

$3.07 \pm 0.22 \pm 0.33$	¹ AAIJ	16 P	LHCB	pp at 7 TeV
$4.32 + 0.42 + 1.04 \\ -0.39 - 1.03$	² ESEN	13	BELL	$e^+e^- \rightarrow \gamma(5S)$
$3.6 \pm 0.4 \pm 0.4$	³ AALTONEN	12 C	CDF	$p\overline{p}$ at 1.96 TeV
$3.5 \pm 1.0 \pm 1.1$	⁴ ABAZOV	091	D0	p p at 1.96 TeV
$14 \pm 6 \pm 3$	^{5,6} BARATE	00K	ALEP	$e^+e^- ightarrow Z$

DOCUMENT ID

• • We do not use the following data for averages, fits, limits, etc. • • •

$$6.85 ^{+1.53}_{-1.30} ^{+1.79}_{-1.80}$$
 7,8 ESEN 10 BELL Repl. by ESEN 13 $3.9 ^{+1.9}_{-1.7} ^{+1.6}_{-1.5}$ 4 ABAZOV 07Y D0 Repl. by ABAZOV 09I <0.218 90 BARATE 98Q ALEP $e^+e^- \rightarrow Z$

¹ AAIJ 16P reports $[\Gamma(B_s^0 \to D_s^{(*)+}D_s^{(*)-})/\Gamma_{\text{total}}] / [B(B^0 \to D^-D_s^+)] = 4.24 \pm 0.00$ 0.14 ± 0.27 which we multiply by our best value B($B^0 \rightarrow D^- D_s^+$) = $(7.2 \pm 0.8) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value

 2 Use $\varUpsilon(5S)
ightarrow B_{S}^* \overline{B}_{S}^*$ decays assuming B($\varUpsilon(5S)
ightarrow B_{S}^* \overline{B}_{S}^*$) = (17.1 \pm 3.0)% and $\Gamma(\Upsilon(5S) \to B_S^* \overline{B}_S^*) / \Gamma(\Upsilon(5S) \to B_S^{(*)} \overline{B}_S^{(*)}) = (87.0 \pm 1.7)\%.$

³ AALTONEN 12C reports (f_s/f_d) $(B(B_s^0 \to D_s^{(*)+}D_s^{(*)-}) / B(B^0 \to D^-D_s^+)) =$ $1.261 \pm 0.095 \pm 0.112$. We multiply this result by our best value of B($B^0 \rightarrow D^- D_s^+$) = $(7.2\pm0.8)\times10^{-3}$ and divide by our best value of f_s/f_d , where 1/2 $f_s/f_d=0.128\pm0.006$. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.

⁴ Uses the final states where $D_s^+ \rightarrow \phi \pi^+$ and $D_s^- \rightarrow \phi \mu^- \overline{\nu}_{\mu}$.

⁵ Reports B(B_s^0 (short) $\rightarrow D_s^{(*)} D_s^{(*)}$) = (0.23 ± 0.10 ± 0.05) \cdot [0.17/B($D_s \rightarrow \phi \chi$)]² assuming B($B_s^0 \to B_s^0 \text{ (short)}) = 50\%$. We use our best value of B($D_s \to \phi \chi$) = 15.7 \pm 1.0% to obtain the quoted result.

⁶ Uses $\phi\phi$ correlations from B_s^0 (short) $\to D_s^{(*)+} D_s^{(*)-}$.

⁷ Sum of exclusive $B_s \to D_s^+ D_s^-$, $B_s \to D_s^{*\pm} D_s^{\mp}$ and $B_s \to D_s^{*+} D_s^{*-}$.

⁸ Uses $\Upsilon(10860) \to B_s^* \overline{B}_s^*$ assuming B($\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}$) = (19.3 ± 2.9)% and $\Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%$

 $\Gamma(\overline{D}^{*0}\overline{K}^{0})/\Gamma_{\text{total}}$ Γ_{26}/Γ VALUE (units 10^{-4}) 16C LHCB pp at 7, 8 TeV $2.8 \pm 1.0 \pm 0.5$ ¹ Measured and normalized to the $B_s^0 \to \overline{D}^{*0} K_S^0$ decay with $f_s/f_d = 0.259 \pm 0.015$. Signal significance is 4.4 standard deviations. $\Gamma(\overline{D}^0\overline{K}^0)/\Gamma_{\text{total}}$ Γ_{27}/Γ VALUE (units 10-4 TECN COMMENT 16C LHCB pp at 7, 8 TeV $4.3\pm0.5\pm0.7$ $\Gamma(\overline{D}{}^0K^-\pi^+)/\Gamma_{\text{total}}$ Γ_{28}/Γ VALUE (units 10^{-4}) TECN COMMENT ¹ AAIJ $10.4 \pm 1.1 \pm 0.5$ 13AQ LHCB pp at 7 TeV 1 AAIJ 13AQ reports $[\Gamma(B_s^0
ightarrow \ \overline{D}{}^0 \, K^- \, \pi^+)/\Gamma_{ ext{total}}] \ / \ [B(B^0
ightarrow \ \overline{D}{}^0 \, \pi^+ \, \pi^-)] = 1.18 \pm 1.00 \, \pm 1.0$ 0.05 ± 0.12 which we multiply by our best value B($B^0\to \overline{D}^0\pi^+\pi^-$) = $(8.8\pm0.5)\times$ 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\overline{D}^0\overline{K}^*(892)^0)/\Gamma_{\text{total}}$ Γ_{29}/Γ VALUE (units 10^{-4}) TECN 4.4 \pm 0.6 OUR AVERAGE 1 AALI $4.29 \pm 0.09 \pm 0.65$ 14BH LHCB pp at 7, 8 TeV ² AAIJ 11D LHCB pp at 7 TeV $4.7 \pm 1.2 \pm 0.3$ • • • We do not use the following data for averages, fits, limits, etc. • • • 3 AAIJ 13BX LHCB Repl. by AAIJ 14BH $3.5 \pm 0.4 \pm 0.4$ ¹Uses Dalitz plot analysis of $B_a^0 \to \overline{D}{}^0 K^- \pi^+$ decays. $^2\,\text{AAIJ 11D reports}\,[\Gamma(B_s^0\to\,\overline{D}^0\overline{K}^*(892)^0)/\Gamma_{total}]\,/\,[\text{B}(B^0\to\,\overline{D}^0\,\rho^0)]=1.48\pm0.34\pm0.34\pm0.34$ 0.19 which we multiply by our best value B($B^0 \to \overline{D}^0 \rho^0$) = $(3.21 \pm 0.21) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $^3 \text{ AAIJ 13BX reports } [\Gamma(B_s^0 \rightarrow \ \overline{D}{}^0 \overline{K}^* (892)^0) / \Gamma_{\text{total}}] \ / \ [\text{B}(B^0 \rightarrow \ \overline{D}{}^0 \, K^* (892)^0)] =$ $7.8 \pm 0.7 \pm 0.3 \pm 0.6$ which we multiply by our best value B($B^0 \rightarrow \overline{D}^0 K^*(892)^0$) = $(4.5 \pm 0.6) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\overline{D}^{0}\overline{K}^{*}(1410))/\Gamma_{\text{total}}$ Γ_{30}/Γ DOCUMENT ID TECN COMMENT *VALUE* (units 10^{-5}) 14BH LHCB pp at 7, 8 TeV $38.6 \pm 11.4 \pm 33.3$ ¹Uses Dalitz plot analysis of $B_c^0 \rightarrow \overline{D}{}^0 K^- \pi^+$ decays. $\Gamma(\overline{D}^0\overline{K}_0^*(1430))/\Gamma_{\text{total}}$ Γ_{31}/Γ VALUE (units 10^{-5}) 1_{AAII} 14BH LHCB pp at 7, 8 TeV $30.0 \pm 2.4 \pm 6.8$ 1 Uses Dalitz plot analysis of $B_s^0
ightarrow \overline{D}{}^0 \, K^- \, \pi^+$ decays. Corresponds to the resonant K_0^* (1430) part of LASS parametrization.

HTTP://PDG.LBL.GOV

Page 23

$\Gamma(\overline{D}^0\overline{K}_2^*(1430))/\Gamma_{\text{tota}}$	al				Γ_{32}/Γ
VALUE (units 10^{-5})		DOCUMENT ID	TECN	COMMENT	
VALUE (units 10 ⁻⁵) 11.1±1.8±3.8				<i>pp</i> at 7, 8 TeV	
$^{ m 1}$ Uses Dalitz plot analy	vsis of B_s^0	$\rightarrow \overline{D}^0 K^- \pi^+ c$	decays.		
$\Gamma(\overline{D}^0\overline{K}^*(1680))/\Gamma_{\text{total}}$					Г ₃₃ /Г
		DOCUMENT ID	TECN	COMMENT	' 33/ '
VALUE (units 10 ^{−5}) <7.8	00	1 AALL	1/DU UCD	nn at 7 9 TaV	
¹ Uses Dalitz plot analy	90 :	$\overline{D}_0 = -+$	Janua LIICD	pp at 1, 6 TeV	
	•	\rightarrow D'K π ' (iecays.		
$\Gamma(\overline{D}^0\overline{K}_0^*(1950))/\Gamma_{\text{tota}}$					Γ_{34}/Γ
<u>VALUE (units 10^{−5})</u> <11	CL%	DOCUMENT ID	TECN	COMMENT	
				<i>pp</i> at 7, 8 TeV	
$^{ m 1}$ Uses Dalitz plot analy	sis of B_s^0	$\rightarrow \overline{D}^0 K^- \pi^+ c$	decays.		
$\Gamma(\overline{D}^0\overline{K}_3^*(1780))/\Gamma_{\text{total}}$	al				Г ₃₅ /Г
		DOCUMENT ID	TECN	COMMENT	- 35/ -
<u>VALUE</u> (units 10 ^{−5}) <2.6	90	1 AALI	14RH I HCR	nn at 7 8 TeV	
¹ Uses Dalitz plot analy				pp at 1, o let	
		, D K K	accays.		
$\Gamma(\overline{D}{}^{0}\overline{K}_{4}^{*}(2045))/\Gamma_{\text{total}}$					Г ₃₆ /Г
<i>VALUE</i> (units 10 ^{−5}) <3.1	CL%	DOCUMENT ID	TECN	COMMENT	
<3.1	90	¹ AAIJ	14BH LHCB	<i>pp</i> at 7, 8 TeV	
$^{ m 1}$ Uses Dalitz plot analy					
	vsis of B_s^0	$\rightarrow \overline{D}^0 K^- \pi^+ c$			Г37/Г
$\Gamma(\overline{D}{}^0K^-\pi^+$ (non-reso	vsis of B_s^0 onant))/	$ ightarrow \; \overline{{\it D}}{}^0{\it K}^-\pi^+$ o ${\sf \Gamma}_{\sf total}$	decays.		Γ ₃₇ /Γ
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resonance to the first } 10^{-5})$	vsis of B_s^0 onant))/	$ ightarrow \; \overline{{\it D}}{}^0{\it K}^-\pi^+$ o ${\sf \Gamma}_{\sf total}$	decays.		Γ ₃₇ /Γ
$\Gamma(\overline{D}^0 K^- \pi^+ (non-resonance of the control $	vsis of B_s^0	$ ightarrow \overline{D}^0 K^- \pi^+ c$	decays. TECN 14BH LHCB	COMMENT pp at 7, 8 TeV	
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resonance to the first } 10^{-5})$	visis of B_s^0 onant))/ sis of B_s^0	$ ightarrow \overline{D}^0 K^- \pi^+ { m c}$ $ m \Gamma_{f total}$ $ m _{f D}$ $ m _{f AAIJ}$ $ m _{f D}$ $ m _{f D}$ $ m _{f K}$ $ m _{f \pi}$ $ m _{f d}$	decays. TECN 14BH LHCB	COMMENT pp at 7, 8 TeV	
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resolve)})$ 20.6±3.8±7.3 1 Uses Dalitz plot analyse part of the LASS para	vsis of B_s^0 onant))/ usis of B_s^0 ametrization	$ ightarrow \overline{D}^0 K^- \pi^+ { m c}$ $ ho_{ ext{total}}$ $ ho_{ ext{AAIJ}}$ $ ho_{ ext{AAIJ}}$ $ ho_{ ext{D}} \overline{D}^0 K^- \pi^+ { m d}$	decays. TECN 14BH LHCB	COMMENT pp at 7, 8 TeV	resonant
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resolution)})$ $20.6\pm3.8\pm7.3$ 1 Uses Dalitz plot analysis part of the LASS para $\Gamma(D_{s2}^*(2573)^- \pi^+, D_{s2}^*(2573)^+)$	vsis of B_s^0 conant))/ rsis of B_s^0 ametrization $a_{s2}^* \rightarrow \overline{D}^0$	$ ightarrow \overline{D}^0 K^- \pi^+ c$	decays. TECN 14BH LHCB ecays. Corresp	COMMENT pp at 7, 8 TeV ponds to the non-	
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resolution)})$ $20.6\pm3.8\pm7.3$ 1 Uses Dalitz plot analysis part of the LASS para $\Gamma(D_{s2}^*(2573)^- \pi^+, D_{s2}^*(2573)^+)$	vsis of B_s^0 conant))/ rsis of B_s^0 ametrization $a_{s2}^* \rightarrow \overline{D}^0$	$ ightarrow \overline{D}^0 K^- \pi^+ c$	decays. TECN 14BH LHCB ecays. Corresp	COMMENT pp at 7, 8 TeV ponds to the non-	resonant
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resolution of the LASS parameter)})$ 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS parameter of the LASS paramete	vsis of B_s^0 Donant)) / sis of B_s^0 emetrization	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB	COMMENT pp at 7, 8 TeV ponds to the non-	resonant
$\Gamma(\overline{D}^0 K^- \pi^+ \text{(non-resolution of the LASS parameter)})$ 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS parameter of the LASS paramete	vsis of B_s^0 conant))/ sis of B_s^0 ametrization *2 $\rightarrow \overline{D}^0$ vsis of B_s^0	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB	COMMENT pp at 7, 8 TeV ponds to the non-	resonant
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve) 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* (257±0.7±4.0 ¹ Uses Dalitz plot analysis D_{s1}^* (2700) $^-\pi^+$, D_{s2}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$	vsis of B_s^0 conant))/ rsis of B_s^0 ametrization $\mathbf{s_2} \to \overline{D}^0$ vsis of B_s^0 $\mathbf{s_3} \to \overline{D}^0$	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays.	COMMENT pp at 7, 8 TeV ponds to the non- COMMENT pp at 7, 8 TeV	resonant
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve) 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* (257±0.7±4.0 ¹ Uses Dalitz plot analysis D_{s1}^* (2700) $^-\pi^+$, D_{s2}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$	vsis of B_s^0 conant))/ rsis of B_s^0 ametrization $\mathbf{s_2} \to \overline{D}^0$ vsis of B_s^0 $\mathbf{s_3} \to \overline{D}^0$	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays.	COMMENT pp at 7, 8 TeV ponds to the non- COMMENT pp at 7, 8 TeV	resonant
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve VALUE (units 10^{-5}) 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* (2573±0.7±4.0 ¹ Uses Dalitz plot analysis Dalitz plot analysis $\Gamma(D_{s1}^*$ (2700) $^-\pi^+$, D_{s2}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$)	vsis of B_s^0 conant))/ rsis of B_s^0 rametrization *2 $\rightarrow \overline{D}^0$ vsis of B_s^0 rsis of B_s^0	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB	COMMENT pp at 7, 8 TeV ponds to the non- COMMENT pp at 7, 8 TeV	resonant
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve) 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* (257±0.7±4.0 ¹ Uses Dalitz plot analysis D_{s1}^* (2700) $^-\pi^+$, D_{s2}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$	vsis of B_s^0 conant))/ rsis of B_s^0 rametrization *2 $\rightarrow \overline{D}^0$ vsis of B_s^0 rsis of B_s^0	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB	COMMENT pp at 7, 8 TeV ponds to the non- COMMENT pp at 7, 8 TeV	resonant
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve VALUE (units 10^{-5}) 20.6±3.8±7.3 ¹ Uses Dalitz plot analyse part of the LASS para $\Gamma(D_{s2}^*(2573)^-\pi^+, D_{s2}^*(2574)^-\pi^+, D_{s2}^*(2574)^-\pi^+, D_{s3}^*(2700)^-\pi^+, D_{s3}^$	vsis of B_s^0 conant))/ sis of B_s^0 sametrization	Total DOCUMENT ID AAIJ $\rightarrow \overline{D}^0 K^- \pi^+ d$ on. $K^-)/\Gamma_{\text{total}}$ DOCUMENT ID AAIJ $\rightarrow \overline{D}^0 K^- \pi^+ d$ DOCUMENT ID AAIJ $\rightarrow \overline{D}^0 K^- \pi^+ d$ $\rightarrow \overline{D}^0 K^- \pi^+ d$	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB	COMMENT pp at 7, 8 TeV ponds to the non- COMMENT pp at 7, 8 TeV	resonant Γ ₃₈ /Γ Γ ₃₉ /Γ
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve VALUE (units 10^{-5}) 20.6±3.8±7.3 ¹ Uses Dalitz plot analysis part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* VALUE (units 10^{-5}) 25.7±0.7±4.0 ¹ Uses Dalitz plot analysis $\Gamma(D_{s1}^*$ (2700) $^-\pi^+$, D_{s2}^* VALUE (units 10^{-5}) 1.6±0.4±0.7 ¹ Uses Dalitz plot analysis $\Gamma(D_{s1}^*$ (2860) $^-\pi^+$, D_{s3}^*	vsis of B_s^0 conant))/ sis of B_s^0 sametrization	Total $ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB decays.	COMMENT pp at 7, 8 TeV conds to the non- COMMENT pp at 7, 8 TeV COMMENT pp at 7, 8 TeV	resonant
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve VALUE (units 10^{-5}) 20.6±3.8±7.3 ¹ Uses Dalitz plot analyse part of the LASS para $\Gamma(D_{s2}^*(2573)^-\pi^+, D_{s2}^*(2574)^-\pi^+, D_{s2}^*(2574)^-\pi^+, D_{s3}^*(2700)^-\pi^+, D_{s3}^$	vsis of B_s^0 conant))/ sis of B_s^0 sametrization	Total $ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB decays.	COMMENT pp at 7, 8 TeV conds to the non- COMMENT pp at 7, 8 TeV COMMENT pp at 7, 8 TeV	resonant Γ ₃₈ /Γ Γ ₃₉ /Γ
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve VALUE (units 10^{-5}) 20.6±3.8±7.3 ¹ Uses Dalitz plot analyse part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* (257±0.7±4.0 ¹ Uses Dalitz plot analyse $\Gamma(D_{s1}^*$ (2700) $^-\pi^+$, D_{s2}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$, D_{s3}^* (2700) $^-\pi^+$, D_{s3}^* (2860) $^-\pi^+$, D_{s3}^* (281) $^-$ (281) $^$	vsis of B_s^0 conant))/ sis of B_s^0 sametrization $\stackrel{*}{s_2} \rightarrow \overline{D}^0$ vsis of B_s^0 vsis of B_s^0 vsis of B_s^0 vsis of B_s^0	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB decays.	COMMENT pp at 7, 8 TeV ponds to the non- COMMENT pp at 7, 8 TeV	resonant Γ ₃₈ /Γ Γ ₃₉ /Γ
Γ(\overline{D}^0 $K^-\pi^+$ (non-resolve to the LOS) part of the LASS para Γ(D_{s2}^* (2573) $^-\pi^+$, D_{s2}^* (25740) $^-\pi^+$, D_{s2}^* (2700) $^-\pi^+$, D_{s2}^* (2860) $^-\pi^+$, D_{s2}^*	vsis of B_s^0 ponant))/ sis of B_s^0 sis of B_s^0 sametrization vsis of B_s^0	$ \begin{array}{c} $	TECN 14BH LHCB ecays. Corresp TECN 14BH LHCB decays. TECN 14BH LHCB decays. TECN 14BH LHCB decays.	COMMENT pp at 7, 8 TeV conds to the non- COMMENT pp at 7, 8 TeV COMMENT pp at 7, 8 TeV	resonant Γ ₃₈ /Γ Γ ₃₉ /Γ Γ ₄₀ /Γ

 $\Gamma(D_{s3}^*(2860)^-\pi^+,\ D_{s3}^* o \overline{D}{}^0K^-)/\Gamma_{\text{total}}$ Γ_{41}/Γ VALUE (units 10^{-5}) 14BH LHCB pp at 7, 8 TeV $2.2 \pm 0.1 \pm 0.6$ ¹Uses Dalitz plot analysis of $B_s^0 \to \overline{D}{}^0 K^- \pi^+$ decays. $\Gamma(\overline{D}^0 K^+ K^-)/\Gamma_{\text{total}}$ Γ_{42}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT 1,2 AALI 12AMLHCB pp at 7 TeV $4.4 \pm 1.7 \pm 1.1$ $^{1}\,\text{AAIJ 12AM reports}\; [\Gamma(B^{0}_{\,\text{S}}\rightarrow\;\overline{D}{}^{0}\,\text{K}^{+}\,\text{K}^{-})/\Gamma_{\text{total}}]\;/\;[\text{B}(B^{0}\rightarrow\;\overline{D}{}^{0}\,\text{K}^{+}\,\text{K}^{-})]=0.90\;\pm0.00$ 0.27 ± 0.20 which we multiply by our best value B($B^0 \rightarrow \overline{D}^0 K^+ K^-$) = $(4.9 \pm 1.2) \times$ 10^{-5} . Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Uses B($b \rightarrow B_s^0$)/B($b \rightarrow B^0$) = 0.267 $_{-0.020}^{+0.023}$ measured by the same authors. $\Gamma(\overline{D}^0 f_0(980))/\Gamma_{total}$ Γ_{43}/Γ DOCUMENT ID TECN COMMENT 15AG LHCB pp at 7, 8 TeV $\Gamma(\overline{D}{}^{0}\phi)/\Gamma(\overline{D}{}^{0}\overline{K}^{*}(892)^{0})$ Γ_{44}/Γ_{29} <u>TECN</u> <u>COMMENT</u> $0.069 \pm 0.013 \pm 0.007$ **AAIJ** 13BX LHCB pp at 7 TeV $\Gamma(D^{*\mp}\pi^{\pm})/\Gamma_{\text{total}}$ Γ_{45}/Γ DOCUMENT ID TECN COMMENT 13AL LHCB pp at 7 TeV $^{1}\, {\rm Uses}\; {\rm f}_{_{S}}/{\rm f}_{d} = 0.256 \pm 0.020\; {\rm and}\; {\rm B}({\it B}^{0}\, \rightarrow\,\, {\it D}^{*-}\, \pi^{+}) = (2.76 \pm 0.13) \times 10^{-3}.$ $\Gamma(J/\psi(1S)\phi)/\Gamma_{\text{total}}$ Γ_{46}/Γ VALUE (units 10^{-3}) TECN COMMENT 1.08 \pm 0.08 OUR FIT 1.10 ± 0.09 OUR AVERAGE ¹ AAIJ 13AN LHCB pp at 7 TeV $1.050 \pm 0.013 \pm 0.104$ ² THORNE $e^+e^- \rightarrow \Upsilon(5S)$ $1.25 \pm 0.07 \pm 0.23$ 13 BELL ³ ABE $1.4 \pm 0.5 \pm 0.1$ 96Q CDF • • We do not use the following data for averages, fits, limits, etc. • • ⁴ AKERS 94J OPAL $e^+e^- \rightarrow Z$ 93F CDF $p\overline{p}$ at 1.8 TeV seen ⁶ ACTON 92N OPAL Sup. by AKERS 94J ¹ Uses $f_s/f_d = 0.256 \pm 0.020$ and $B(B^+ \to J/\psi K^+) = (10.18 \pm 0.42) \times 10^{-4}$. ² Uses $f_s = (17.2 \pm 3.0)\%$ as the fraction of $\Upsilon(5S)$ decaying to $B_s^{(*)} \overline{B}_s^{(*)}$ $^3 \, \mathsf{ABE} \, \mathsf{96Q} \, \mathsf{reports} \, \big[\Gamma \big(B^0_{\mathcal{S}} \to \, J/\psi(1S) \, \phi \big) / \Gamma_{\mathsf{total}} \big] \times \big[\Gamma \big(\overline{b} \to \, B^0_{\mathcal{S}} \big) / \Big[\Gamma \big(\overline{b} \to \, B^+ \big) + \Gamma \big($ $B^0)$] = $(0.185 \pm 0.055 \pm 0.020) \times 10^{-3}$ which we divide by our best value $\Gamma(\overline{b} \rightarrow B_s^0)/10^{-3}$ $\left[\Gamma(\overline{b} \to B^+) + \Gamma(\overline{b} \to B^0)\right] = 0.128 \pm 0.006$. Our first error is their experiment's

Created: 5/30/2017 17:23

error and our second error is the systematic error from using our best value.

```
<sup>4</sup> AKERS 94J sees one event and measures the limit on the product branching fraction f(\overline{b}\to B_s^0)\cdot \mathrm{B}(B_s^0\to J/\psi(1S)\phi)<7\times10^{-4} at CL = 90%. We divide by \mathrm{B}(\overline{b}\to B_s^0)=0.112.
```

$\Gamma(J/\psi(1S)\phi\phi)/\Gamma(J/\psi(1S)\phi)$

 Γ_{47}/Γ_{46}

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.15 \pm 0.12 ^{+0.05}_{-0.09}$	128	¹ AAIJ	16 U	LHCB	<i>pp</i> at 7, 8 TeV	
1						0

¹ Uses $J/\psi \to \mu^+\mu^-$, $\phi \to K^+K^-$ decays, and observes 128 \pm 13 events of $B_s^0 \to J/\psi \phi \phi$.

$\Gamma(J/\psi(1S)\pi^0)/\Gamma_{\text{total}}$

 Γ_{48}/Γ

VALUE	CL%	DOCUMENT ID		TECN
$<1.2 \times 10^{-3}$	90	¹ ACCIARRI 9	97C	L3

 $^{^{1}}$ ACCIARRI 97C assumes B^{0} production fraction (39.5 \pm 4.0%) and B_{s} (12.0 \pm 3.0%).

$\Gamma(J/\psi(1S)\eta)/\Gamma_{\text{total}}$

 Γ_{49}/Γ

VALUE (units 10 ⁻⁴) CL%	DOCUMENT	ID	TECN	COMMENT
4.0 \pm 0.7 OUR AVERAGE	Error includes s	scale facto	or of 1.4	
$3.6 \begin{array}{c} +0.5 & +0.3 \\ -0.6 & -0.2 \end{array}$	¹ AAIJ	13A	LHCB	pp at 7 TeV
$5.10\pm0.50^{+1.17}_{-0.83}$	² LI	12	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

/38

90

³ ACCIARRI 97C

$\Gamma(J/\psi(1S)K_S^0)/\Gamma_{\text{total}}$

 Γ_{50}/Γ

`				
VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
1.88±0.15 OUR AVERAGE				
$1.88 \!\pm\! 0.14 \!\pm\! 0.07$	¹ AAIJ	15AL LHCE	<i>pp</i> at 7, 8 TeV	
$1.9 \pm 0.4 \pm 0.1$	² AALTONEN	11A CDF	$p\overline{p}$ at 1.96 TeV	
• • • We do not use the follow				
$1.91\!\pm\!0.15\!\pm\!0.12$	³ AAIJ	13AB LHCE	Repl. by AAIJ 15AL	
$1.91^{igoplus 0.25}_{-0.24}\!\pm\!0.12$	⁴ AAIJ	120 LHCE	Repl. by AAIJ 13AB	

⁵ ABE 93F measured using $J/\psi(1S) \rightarrow \mu^+\mu^-$ and $\phi \rightarrow K^+K^-$.

⁶ In ACTON 92N a limit on the product branching fraction is measured to be $f(\overline{b} \to B_s^0) \cdot \mathrm{B}(B_s^0 \to J/\psi(1S)\phi) \leq 0.22 \times 10^{-2}$.

 $^{^1}$ AAIJ 13A reports $[\Gamma(B_s^0\to J/\psi(1S)\eta)/\Gamma_{\rm total}]$ / $[{\sf B}(B^0\to J/\psi(1S)\rho^0)]=14.0\pm1.2^{+1.1}_{-1.5}^{+1.1}_{-1.0}$ which we multiply by our best value ${\sf B}(B^0\to J/\psi(1S)\rho^0)=(2.55^{+0.18}_{-0.16})\times10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

²Observed for the first time with significances over 10 σ . The second error are total systematic uncertainties including the error on $N(B_s^{(*)}\overline{B}_s^{(*)})$.

 $^{^3}$ ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_s (12.0 \pm 3.0%).

- ¹ AAIJ 15AL reports $[\Gamma(B_S^0 \to J/\psi(1S)K_S^0)/\Gamma_{total}]/[B(B^0 \to J/\psi(1S)K_S^0)] = (4.31 \pm 0.17 \pm 0.12 \pm 0.25) \times 10^{-2}$ which we multiply by our best value $B(B^0 \to J/\psi(1S)K_S^0) = (4.36 \pm 0.16) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- is the systematic error from using our best value. $^{2}\text{AALTONEN 11A reports } [\Gamma(B_{s}^{0} \rightarrow J/\psi(1S)K_{S}^{0})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow B_{s}^{0})] \ / \ [B(\overline{b} \rightarrow B^{0})] \ / \ [B(B^{0} \rightarrow J/\psi(1S)K_{S}^{0})] = (1.09 \pm 0.19 \pm 0.11) \times 10^{-2} \text{ which we multiply or divide by our best values } B(\overline{b} \rightarrow B_{s}^{0}) = (10.3 \pm 0.5) \times 10^{-2}, \ B(\overline{b} \rightarrow B^{0}) = (40.4 \pm 0.6) \times 10^{-2}, \ B(B^{0} \rightarrow J/\psi(1S)K_{S}^{0}) = 1/2 \times B(B^{0} \rightarrow J/\psi(1S)K^{0}) = 1/2 \times (8.73 \pm 0.32) \times 10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.
- 3 AAIJ 13AB reports $(1.97\pm0.14\pm0.07\pm0.15\pm0.08)\times10^{-5}$ from a measurement of $[\Gamma(B_s^0\to J/\psi(1S)K_S^0)/\Gamma_{\rm total}]/[B(B^0\to J/\psi(1S)K^0)]\times[\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B^0)]$ assuming $B(B^0\to J/\psi(1S)K^0)=(8.98\pm0.35)\times10^{-4},\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B^0)=0.256\pm0.020$, which we rescale to our best values $B(B^0\to J/\psi(1S)K^0)=(8.73\pm0.32)\times10^{-4},\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B_s^0)=0.256\pm0.013$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ⁴ AAIJ 120 reports $(1.83 \pm 0.21 \pm 0.10 \pm 0.14 \pm 0.07) \times 10^{-5}$ from a measurement of $[\Gamma(B_s^0 \to J/\psi(1S)K_S^0)/\Gamma_{\text{total}}] / [B(B^0 \to J/\psi(1S)K^0)] \times [\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0)]$ assuming $B(B^0 \to J/\psi(1S)K^0) = (8.71 \pm 0.32) \times 10^{-4}$, $\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0) = 0.267^{+0.021}_{-0.02}$, which we rescale to our best values $B(B^0 \to J/\psi(1S)K^0) = (8.73 \pm 0.32) \times 10^{-4}$, $\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0) = 0.256 \pm 0.013$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(J/\psi(1S)\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{51}/Γ

Created: 5/30/2017 17:23

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
4.14±0.18±0.35	¹ AAIJ	15AV LHCB	<i>pp</i> at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$4.4 \ ^{+0.5}_{-0.4} \ \pm 0.8$$
 2 AAIJ 12AP LHCB Repl. by AAIJ 15AV 3 AALTONEN 11A CDF $^p\overline{p}$ at 1.96 TeV

- ¹ AAIJ 15AV result combines two measurements with different normalizing modes of $B^0 \to J/\psi \, K^*(892)^0$ and $B^0_s \to J/\psi \, \phi$.
- ² AAIJ 12AP reports B($B_s^0 \to J/\psi(1S)\overline{K}^*(892)^0$)/B($B^0 \to J/\psi(1S)K^*(892)^0$) = $(3.43^{+0.34}_{-0.36} \pm 0.50) \times 10^{-2}$ and B($B^0 \to J/\psi(1S)K^*(892)^0$) = $(1.29 \pm 0.05 \pm 0.13) \times 10^{-3}$ after correcting for the contribution from $K\pi$ *S*-wave beneath the K^* peak.
- ³AALTONEN 11A reports $[\Gamma(B_s^0 \to J/\psi(1S)\overline{K}^*(892)^0)/\Gamma_{total}] \times [B(\overline{b} \to B_s^0)] / [B(\overline{b} \to B^0)] / [B(\overline{b} \to B^0)] / [B(B^0 \to J/\psi(1S)K^*(892)^0)] = 0.0168 \pm 0.0024 \pm 0.0068$ which we multiply or divide by our best values $B(\overline{b} \to B_s^0) = (10.3 \pm 0.5) \times 10^{-2}$, $B(\overline{b} \to B^0) = (40.4 \pm 0.6) \times 10^{-2}$, $B(B^0 \to J/\psi(1S)K^*(892)^0) = (1.28 \pm 0.05) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(J/\psi(1S)\eta')/\Gamma_{\text{total}}$

 Γ_{52}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT
3.3 \pm 0.4 OUR AVERAGE				
$3.2 \ ^{+0.4}_{-0.5} \ \pm 0.2$	¹ AAIJ	13A	LHCB	pp at 7 TeV
$3.71 \pm 0.61 {+0.85 \atop -0.60}$	2 LI	12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ AAIJ 13A reports $[\Gamma(B^0_s\to J/\psi(1S)\eta')/\Gamma_{\rm total}]$ / $[{\sf B}(B^0\to J/\psi(1S)\rho^0)]=12.7\pm1.1^{+0.5}_{-1.3}^{+1.0}_{-0.9}$ which we multiply by our best value ${\sf B}(B^0\to J/\psi(1S)\rho^0)=(2.55^{+0.18}_{-0.16})\times10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(J/\psi(1S)\eta')/\Gamma(J/\psi(1S)\eta)$

 Γ_{52}/Γ_{49}

VALUE	DOCUMENT ID		TECN	COMMENT
0.87 ± 0.06 OUR AVERAGE				
$0.902\!\pm\!0.072\!\pm\!0.045$	$^{ m 1}$ AAIJ	15 D	LHCB	<i>pp</i> at 7, 8 TeV
$0.90\ \pm0.09\ ^{+0.06}_{-0.02}$	² AAIJ	13A	LHCB	pp at 7 TeV
$0.73 \pm 0.14 \pm 0.02$	² LI	12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}\, {\}rm Uses}\,\, {\it J/\psi} \,\rightarrow\, \, \mu^{+}\, \mu^{-} \text{, } \eta' \,\rightarrow\, \, \rho^{0}\, \gamma \text{, and } \eta' \,\rightarrow\, \, \eta\, \pi^{+}\, \pi^{-} \,\, {\rm decays}.$

$\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(J/\psi(1S)\phi)$

 Γ_{53}/Γ_{46}

VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
19.8±0.5±0.5	¹ AAIJ	12AO LHCB	pp at 7 TeV

¹ AAIJ 12AO reports $(19.79 \pm 0.47 \pm 0.52) \times 10^{-2}$ from a measurement of $[\Gamma(B_s^0 \to J/\psi(1S)\pi^+\pi^-)/\Gamma(B_s^0 \to J/\psi(1S)\phi)]$ / $[B(\phi(1020) \to K^+K^-)]$ assuming $B(\phi(1020) \to K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$.

$\Gamma(J/\psi(1S)f_0(980), f_0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{56}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT
1.19 ± 0.22 OUR FIT	Error includes scale factor of 2.0.		
$1.16^{+0.31}_{-0.19}^{+0.30}_{-0.25}$	¹ LI 11	BELL	$e^+e^- ightarrow ~ \varUpsilon(5S)$

¹ The second error includes both the detector systematic and the uncertainty in the number of produced $Y(5S) \rightarrow B_s^{(*)} \overline{B}_s^{(*)}$ pairs.

$$\Gamma(J/\psi(1S) f_0(500), f_0 \to \pi^+\pi^-)/\Gamma(J/\psi(1S) f_0(980)_0, f_0 \to \pi^+\pi^-)$$
 Γ_{54}/Γ_{57}

VALUE

 $CL\%$
 $ODCUMENT ID$
 $ODCUMENT I$

² Observed for the first time with significances over 10 σ . The second error are total systematic uncertainties including the error on $N(B_{\epsilon}^{(*)}\overline{B}_{\epsilon}^{(*)})$.

² Strongly correlated with measurements of $\Gamma(J/\psi(1S)\eta)/\Gamma$ and $\Gamma(J/\psi(1S)\eta')/\Gamma$ reported in the same reference.

¹ Reported first of two solutions using the full Dalitz analysis.

	C1 %	DOCUMENT ID	TECNI	COMMENT
<u>VALUE</u> <0.017	<u> </u>	¹ AAIJ	14BR LHCB	pp at 7, 8 TeV
¹ Reported first of	two solutions			
$\Gamma(J/\psi(1S)f_0(980)$		_	-	Γ ₅₇ /Γ ₈₀
<u>VALUE</u>		DOCUMENT ID		0., 0.
$0.703 \pm 0.015 ^{+0.004}_{-0.051}$		¹ AAIJ	14BR LHCB	<i>pp</i> at 7, 8 TeV
¹ Reported first of	two solutions	s using the full Dal	litz analysis.	
$\Gamma(J/\psi(1S)f_2(1276))$	$0)_0, f_2 \rightarrow$	$\pi^+\pi^-)/\Gamma(\psi(25))$	$(5)\pi^{+}\pi^{-})$	Γ ₅₉ /Γ ₈₀
VALUE (%)		DOCUMENT ID 1 AAIJ	TECN	COMMENT COMMENT
$0.36\pm0.07\pm0.03$		_	_	<i>pp</i> at 7, 8 TeV
¹ Reported first of	two solutions	s using the full Da	litz analysis.	
$\Gamma(J/\psi(1S)f_2(1270))$	$0)_{\parallel}, f_2 \rightarrow$	$\pi^+\pi^-)/\Gamma(\psi(23))$	$S(\pi^+\pi^-)$	Γ ₆₀ /Γ ₈₀
VALUE (%)		DOCUMENT ID	TECN	COMMENT
$0.52 \pm 0.15 {+0.05 \atop -0.02}$		¹ AAIJ	14BR LHCB	<i>pp</i> at 7, 8 TeV
¹ Reported first of	two solutions	s using the full Dal	litz analysis.	
E(/ /1 C) C /107/	-> -			
1 (<i>J/\psi</i> (15) <i>f</i> 5(12/)	$0)_1$, $f_2 \rightarrow 0$	$\pi^+\pi^-)/\Gamma(\psi(2)$	$(S)\pi^{+}\pi^{-})$	Γ ₆₁ /Γ ₈₀
VALUE(%)	$0)_{\perp}, f_2 \rightarrow$	$\pi^+\pi^-)/\Gamma(\psi(2))$	-	Γ ₆₁ /Γ ₈₀
VALUE (%)	0) _⊥ , f ₂ →	,	<u>TECN</u>	0-, 0.
• • • • •	<u></u>	DOCUMENT ID 1 AAIJ	TECN 14BR LHCB	<u>COMMENT</u>
VALUE (%) 0.63±0.34+0.16 -0.08 1 Reported first of	two solutions	$rac{DOCUMENT\ ID}{1}$ AAIJ	TECN 14BR LHCB litz analysis.	COMMENT pp at 7, 8 TeV
VALUE (%) 0.63±0.34 ^{+0.16} -0.08	two solutions	$rac{DOCUMENT\ ID}{1}$ AAIJ	$\frac{TECN}{14BR LHCB}$ litz analysis. $14\pi^{+}\pi^{-}$	<u>COMMENT</u> pp at 7, 8 TeV Γ ₆₃ /Γ ₈₀
$VALUE (\%)$ 0.63±0.34+0.16 1 Reported first of $\Gamma(J/\psi(1S) f_0(150))$	two solutions 0), $f_0 \rightarrow \pi$	$\frac{DOCUMENT\ ID}{1}$ AAIJ s using the full Dale $(-+\pi^-)/\Gamma(\psi(25))$	$ \frac{TECN}{14BR LHCB} $ litz analysis. $ \frac{\pi^{+}\pi^{-}}{TECN} $	<u>COMMENT</u> pp at 7, 8 TeV Γ ₆₃ /Γ ₈₀
$VALUE (\%)$ 0.63±0.34+0.16 1 Reported first of $\Gamma(J/\psi(1S) f_0(1500))$ VALUE	two solutions 0), $f_0 \rightarrow \pi$	$\frac{DOCUMENT\ ID}{1}$ AAIJ s using the full Dal $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ AAIJ	$\frac{TECN}{14BR LHCB}$ $\frac{14BR LHCB}{14BR LHCB}$	COMMENT pp at 7, 8 TeV Γ63/Γ80 COMMENT
VALUE (%) 0.63 \pm 0.34 $^{+0.16}_{-0.08}$ 1 Reported first of T($J/\psi(1S)$ $f_0(1500)$ VALUE 0.101 \pm 0.008 $^{+0.011}_{-0.003}$ 1 Reported first of Temperature 1	two solutions 0), $f_0 \rightarrow \pi$ two solutions	DOCUMENT ID 1 AAIJ s using the full Dal 1 + π -)/Γ(ψ(25) DOCUMENT ID 1 AAIJ s using the full Dal	TECN 14BR LHCB litz analysis.)π+π-) TECN 14BR LHCB litz analysis.	COMMENT pp at 7, 8 TeV F63/F80 COMMENT pp at 7, 8 TeV
$VALUE$ (%) 0.63±0.34+0.16 1 Reported first of $\Gamma(J/\psi(1S) f_0(1500)$ $VALUE$ 0.101±0.008+0.011 -0.003	two solutions 0), $f_0 \rightarrow \pi$ two solutions	DOCUMENT ID 1 AAIJ s using the full Dal 1 + π -)/Γ(ψ(25) DOCUMENT ID 1 AAIJ s using the full Dal	14BR LHCB litz analysis. $ \frac{\pi^{+}\pi^{-}}{14BR} $ 14BR LHCB litz analysis. $ \frac{\pi^{+}\pi^{-}}{14BR} $ 25) $\pi^{+}\pi^{-}$	COMMENT $pp \text{ at } 7, 8 \text{ TeV}$
VALUE (%) 0.63 \pm 0.34 $^{+0.16}_{-0.08}$ 1 Reported first of T($J/\psi(1S)$ $f_0(1500)$ VALUE 0.101 \pm 0.008 $^{+0.011}_{-0.003}$ 1 Reported first of T($J/\psi(1S)$ $f_2'(152)$ VALUE (%)	two solutions 0), $f_0 \rightarrow \pi$ two solutions	DOCUMENT ID 1 AAIJ 1 Susing the full Dai 1 $\pi^+\pi^-$)/ $\Gamma(\psi(2S)$	14BR LHCB litz analysis. $(\pi^+\pi^-)$ 14BR LHCB 14BR LHCB litz analysis. $(2S)\pi^+\pi^-)$ TECN	COMMENT $pp \text{ at } 7, 8 \text{ TeV}$
VALUE (%) 0.63 ± 0.34 $^{+0.16}_{-0.08}$ 1 Reported first of $\Gamma(J/\psi(1S) f_0(1500))$ VALUE 0.101 ± 0.008 $^{+0.011}_{-0.003}$ 1 Reported first of $\Gamma(J/\psi(1S) f_2'(152))$	two solutions $0), f_0 \rightarrow \pi$ two solutions $25)_0, f'_2 \rightarrow$	DOCUMENT ID 1 AAIJ	14BR LHCB litz analysis.	COMMENT pp at 7, 8 TeV F63/F80 COMMENT pp at 7, 8 TeV F64/F80 COMMENT
VALUE (%) 0.63 \pm 0.34 $^{+}$ 0.16 1 Reported first of $T(J/\psi(1S)f_0(1500))$ VALUE 0.101 \pm 0.008 $^{+}$ 0.011 1 Reported first of $T(J/\psi(1S)f_2'(1520))$ VALUE (%) 0.51 \pm 0.09 $^{+}$ 0.05 1 Reported first of $T(J/\psi(1S)f_2'(1520))$	two solutions 10), $f_0 \rightarrow \pi$ 125)0, $f'_2 \rightarrow \pi$ 140 two solutions	DOCUMENT ID 1 AAIJ 1 AAIJ	TECN 14BR LHCB litz analysis.) $\pi^{+}\pi^{-}$) TECN 14BR LHCB litz analysis. 25) $\pi^{+}\pi^{-}$) TECN 14BR LHCB	COMMENT pp at 7, 8 TeV F63/F80 COMMENT pp at 7, 8 TeV F64/F80 COMMENT
VALUE (%) 0.63 \pm 0.34 $^{+0.16}_{-0.08}$ 1 Reported first of $\Gamma(J/\psi(1S) f_0(1500))$ VALUE 0.101 \pm 0.008 $^{+0.011}_{-0.003}$ 1 Reported first of $\Gamma(J/\psi(1S) f_2'(1520))$ VALUE (%) 0.51 \pm 0.09 $^{+0.05}_{-0.04}$	two solutions 10), $f_0 \rightarrow \pi$ 125)0, $f'_2 \rightarrow \pi$ 140 two solutions	DOCUMENT ID 1 AAIJ 1 AAIJ	14BR LHCB litz analysis.	COMMENT pp at 7, 8 TeV Γ63/Γ86 COMMENT pp at 7, 8 TeV Γ64/Γ86 COMMENT pp at 7, 8 TeV

 $^{^{1}\,\}mathrm{Reported}$ first of two solutions using the full Dalitz analysis.

$$\Gamma(J/\psi(1S)f_2'(1525)_{\perp}, f_2' \to \pi^+\pi^-)/\Gamma(\psi(2S)\pi^+\pi^-)$$
 Γ_{66}/Γ_{80} $\Gamma_{66}/\Gamma_{60}/\Gamma_{80}$ $\Gamma_{66}/\Gamma_{60}/\Gamma_{60}$ $\Gamma_{66}/\Gamma_{60}/\Gamma_{60}/\Gamma_{60}$ Γ_{66}/Γ_{60

$$\Gamma(J/\psi(1S) f_0(1790), f_0 \to \pi^+\pi^-)/\Gamma(\psi(2S)\pi^+\pi^-)$$
 Γ_{67}/Γ_{80} Γ_{67}/Γ

 $\Gamma(J/\psi(1S)f_0(980), f_0 \rightarrow \pi^+\pi^-)/\Gamma(J/\psi(1S)\phi)$ <u>VALUE</u>
DOCUMENT ID
TECN
COMMENT
0.110±0.019 OUR FIT Error includes scale factor of 2.7. Γ_{56}/Γ_{46}

 $0.110^{+0.020}_{-0.018}$ OUR AVERAGE Error includes scale factor of 2.5. See the ideogram

¹ KHACHATRY...16Q CMS $0.069 \pm 0.012 \pm 0.001$ pp at 7 TeV $0.139\!\pm\!0.006\!+\!0.025\\-0.012$ 2,3 AALL 12A0 LHCB pp at 7 TeV ⁴ ABAZOV 12C D0 $0.135 \pm 0.036 \pm 0.001$ $p\overline{p}$ at 1.96 TeV ⁵ AALTONEN 11AB CDF $p\overline{p}$ at 1.96 TeV $0.126 \pm 0.012 \pm 0.001$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$0.123^{+0.026}_{-0.022}\pm0.001$$
 6 AAIJ 11 LHCB Repl. by AAIJ 12AO

- 1 KHACHATRYAN 16Q reports $[\Gamma(B_s^0 \to J/\psi(1S)f_0(980), f_0 \to \pi^+\pi^-)/\Gamma(B_s^0 \to J/\psi(1S)f_0(980), f_0 \to \pi^+\pi^-)]$ $J/\psi(1S)\phi)$] / [B($\phi(1020) \rightarrow K^+K^-$)] = 0.140 \pm 0.008 \pm 0.023 which we multiply by our best value B($\phi(1020) \rightarrow K^+K^-$) = (48.9 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best
- 2 AAIJ 12AO reports (13.9 \pm 0.6 $^{+2.5}_{-1.2}$) imes 10 $^{-2}$ from a measurement of [$\Gamma(B_s^0
 ightarrow$ $J/\psi(1S) f_0(980), f_0 \to \pi^+\pi^-)/\Gamma(B_s^0 \to J/\psi(1S)\phi)] / [B(\phi(1020) \to K^+K^-)]$ assuming B($\phi(1020) \rightarrow K^+K^-$) = $(48.9 \pm 0.5) \times 10^{-2}$.
- 3 Measured in Dalitz plot like analysis of $B_s
 ightarrow \ J/\psi \, \pi^+ \, \pi^-$ decays.
- ⁴ ABAZOV 12C reports $[\Gamma(B_s^0 \rightarrow J/\psi(1S)f_0(980), f_0 \rightarrow \pi^+\pi^-)/\Gamma(B_s^0 \rightarrow J/\psi(1S)\phi)]$ $/\left[\mathsf{B}(\phi(1020)\to K^+K^-)\right]=0.275\pm0.041\pm0.061$ which we multiply by our best value $B(\phi(1020) \to K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁵ AALTONEN 11AB reports $[\Gamma(B_s^0 \to J/\psi(1S)f_0(980), f_0 \to \pi^+\pi^-)/\Gamma(B_s^0 \to J/\psi(1S)f_0(980))$
- $J/\psi(1S)\phi)$] / [B($\phi(1020) \rightarrow K^+K^-$)] = 0.257 \pm 0.020 \pm 0.014 which we multiply by our best value B($\phi(1020) \rightarrow K^+K^-$) = $(48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
- 6 AAIJ 11 reports $[\Gamma(B_s^0 \to J/\psi(1S)f_0(980), f_0 \to \pi^+\pi^-)/\Gamma(B_s^0 \to J/\psi(1S)\phi)]/[B(\phi(1020) \to K^+K^-)] = 0.252^{+0.046}_{-0.032}^{+0.046}_{-0.033}^{+0.027}$ which we multiply by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Reported first of two solutions using the full Dalitz analysis.

¹Reported first of two solutions using the full Dalitz analysis.

WEIGHTED AVERAGE 0.110+0.020-0.018 (Error scaled by 2.5)

$\Gamma(J/\psi(1S) f_0(1370), f_0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{62}/Γ

VALUE (units 10^{-4})

• • • We do not use the following data for averages, fits, limits, etc. • •

$$0.34 ^{\,+\, 0.11 \,+\, 0.085}_{\,-\, 0.14 \,-\, 0.054}$$

1
 LI

11 BELL
$$e^+e^- \rightarrow \Upsilon(5S)$$

$\frac{\Gamma(J/\psi(1S)f_0(1370), f_0 \to \pi^+\pi^-)/\Gamma(J/\psi(1S)\phi)}{\frac{DOCUMENT\ ID}{\frac{TECN}{\frac{COMMENT}{2}}}$

 Γ_{62}/Γ_{46}

12A0 LHCB pp at 7 TeV

 $4.2\pm0.5^{+0.1}_{-3.7}$

 1 AAIJ 12AO reports (4.19 \pm 0.53 $^{+0.12}_{-3.7}$) imes 10 $^{-2}$ from a measurement of [$\Gamma(B_s^0$ ightarrow $J/\psi(1S) f_0(1370), f_0 \rightarrow \pi^+\pi^-)/\Gamma(B_s^0 \rightarrow J/\psi(1S)\phi)] / [B(\phi(1020) \rightarrow K^+K^-)]$ assuming B($\phi(1020) \rightarrow K^+K^-$) = (48.9 \pm 0.5) \times 10⁻². ² Measured in Dalitz plot like analysis of $B_s \rightarrow J/\psi \pi^+\pi^-$ decays.

$$\Gamma(J/\psi(1S) f_2(1270), f_2 \rightarrow \pi^+\pi^-)/\Gamma(J/\psi(1S)\phi)$$

 Γ_{58}/Γ_{46}

<u>VALUE (units 10⁻⁴)</u>

DOCUMENT ID TECN COMMENT

Created: 5/30/2017 17:23

 $9.8\pm3.3^{+0.6}_{-1.5}$

1,2 AALI

12AO LHCB pp at 7 TeV

 $^{^{1}}$ The second error includes both the detector systematic and the uncertainty in the number of produced $Y(5S) \rightarrow B_s^{(*)} \overline{B}_s^{(*)}$ pairs.

 1 AAIJ 12AO reports (0.098 \pm 0.033 $^{+0.006}_{-0.015}) \times 10^{-2}$ from a measurement of [Γ(B 0_s $^ J/\psi(1S) f_2(1270), f_2 \rightarrow \pi^+\pi^-)/\Gamma(B_s^0 \rightarrow J/\psi(1S)\phi)] / [B(\phi(1020) \rightarrow K^+K^-)]$ assuming B($\phi(1020) \rightarrow K^+K^-$) = $(48.9 \pm 0.5) \times 10^{-2}$.

² Measured in Dalitz plot like analysis of $B_s \to J/\psi \pi^+ \pi^-$ decays for the f_2 helicity state

$\Gamma(J/\psi(1S)\pi^+\pi^- ({\sf nonresonant}))/\Gamma(J/\psi(1S)\phi)$

 Γ_{68}/Γ_{46}

VALUE (units 10^{-2})

DOCUMENT ID TECN COMMENT

 $1.66\pm0.31^{+0.96}_{-0.08}$

1,2 AALL

12AO LHCB pp at 7 TeV

 $^1\,\text{AAIJ}$ 12AO reports (1.66 \pm 0.31 $^{+\,0.96}_{-\,0.08})\times$ 10 $^{-2}$ from a measurement of [Г(B_s^0 \to $J/\psi(1S)\,\pi^+\,\pi^-\,({\sf nonresonant}))/\Gammaig(B^0_s\, o\,J/\psi(1S)\,\phiig)]\,/\,\,[{\sf B}(\phi(1020)\, o\,K^+\,K^-)]$ assuming B($\phi(1020) \rightarrow K^+K^-$) = $(48.9 \pm 0.5) \times 10^{-2}$.

² Measured in Dalitz plot like analysis of $B_{\rm S} \to J/\psi \pi^+ \pi^-$ decays.

 Γ_{69}/Γ

 $\frac{\Gamma(J/\psi(1S)\overline{K}^{0}\pi^{+}\pi^{-})/\Gamma_{\text{total}}}{\stackrel{CL\%}{<4.4 \times 10^{-5}}} \frac{CL\%}{90} \frac{DOCUMENT ID}{1 \text{ AAIJ}} \frac{TECN}{14L} \frac{COMMENT}{14L} + COMMENT$

DOCUMENT ID TECN COMMENT

 1 Measured with B(B $_s^0 \to J/\psi\, K_S^0\, \pi^+\, \pi^-)$ / B(B $^0 \to J/\psi\, K_S^0\, \pi^+\, \pi^-)$ using PDG 12 values for the involved branching fractions.

$\Gamma(J/\psi(1S)K^+K^-)/\Gamma_{\text{total}}$

 Γ_{70}/Γ

VALUE (units 10^{-4}) 7.9 ± 0.7 OUR AVERAGE

 $7.70\pm0.08\pm0.72$ $10.1 \pm 0.9 \pm 2.1$

¹ AAIJ

13AN LHCB pp at 7 TeV 13 BELL $e^+e^- \rightarrow \Upsilon(5S)$

² THORNE 1 Uses ${
m f}_{s}/{
m f}_{d}=$ 0.256 \pm 0.020 and B($B^{+}\to~J/\psi\,K^{+})=$ (10.18 \pm 0.42) imes 10 $^{-4}$.

² Uses $f_s = (17.2 \pm 3.0)\%$ as the fraction of $\Upsilon(5S)$ decaying to $B_s^{(*)} \overline{B}_s^{(*)}$.

$\Gamma(J/\psi(1S)K^0K^-\pi^+ + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{71}/Γ

VALUE (units 10^{-4}) $9.3 \pm 1.0 \pm 0.9$

¹ AAIJ

DOCUMENT IDTECNCOMMENTAAIJ14LLHCBp p at 7 TeV

 $^{1}\,\mathrm{AAIJ}\ \ 14\text{L}\ \ \mathrm{reports}\ \ \big[\Gamma\big(B_{\,\,s}^{\,0}\ \rightarrow\ \ J/\psi(1S)\,K^{\,0}\,K^{-}\,\pi^{+}+\ \mathrm{c.c.}\big)/\Gamma_{\mathrm{total}}\big]\ /\ \ \big[\mathrm{B}(B^{\,0}\ \rightarrow\ \ \mathrm{AAIJ})/\Gamma_{\mathrm{total}}\big]$ $J/\psi(1S)\,K^0\,\pi^+\,\pi^-)]=2.12\pm0.15\pm0.18$ which we multiply by our best value B($B^0\to$ $J/\psi(1S)\,K^0\,\pi^+\,\pi^-)=(4.4\pm0.4)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. This is an observation of $B^0_s \to J/\psi K^0_S K^\pm \pi^\mp$ with more than 10 standard deviations.

$\Gamma \left(J/\psi(1S) \overline{K}^0 K^+ K^- \right) / \Gamma_{\text{total}}$

 Γ_{72}/Γ

Created: 5/30/2017 17:23

DOCUMENT ID TECN COMMENT 14L LHCB pp at 7 TeV

 $^{^1}$ Measured with B(B $_s^0 \to J/\psi\, K_S^0\, K^+\, K^-)/{\rm B}(B^0 \to J/\psi\, K_S^0\, \pi^+\, \pi^-)$ using PDG 12 values for the involved branching fractions.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(J/\psi(1S)f_2'(1525))/\Gamma(J/\psi(1S)\phi)$ Γ_{73}/Γ_{46} VALUE (units 10^{-2}) 21 ±4 OUR AVERAGE ¹ THORNE BELL $e^+e^- \rightarrow \Upsilon(5S)$ $21.5 \pm 4.9 \pm 2.6$ ^{2,3} ABAZOV 21 ± 7 ± 1 • • • We do not use the following data for averages, fits, limits, etc. • • • ⁴ AAIJ 12S LHCB Repl. by AAIJ 13AN ¹ Uses B($f_2'(1525) \rightarrow K^+K^-$) = (44.4 ± 1.1)%. ²ABAZOV 12AF reports $[\Gamma(B_s^0 \rightarrow J/\psi(1S)f_2'(1525))/\Gamma(B_s^0 \rightarrow J/\psi(1S)\phi)] \times$ $B(f_2'(1525) \to K^+K^-) / B(\phi(1020) \to K^+K^-) = 0.19 \pm 0.05 \pm 0.04$ which we di-

vide and multiply by our best values B($f_2'(1525) \rightarrow K^+K^-$) = $\frac{1}{2}(88.7 \pm 2.2) \times 10^{-2}$, $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 3 ABAZOV 12AF fits the invariant masses of the ${\it K}^+{\it K}^-$ pair in the range 1.35 < $M(K^+K^-) < 2 \text{ GeV}.$

 4 AAIJ 12S reports [(26.4 \pm 2.7 \pm 2.4) imes 10 $^{-2}$ from a measurement of $\Gamma(B_s^0 \to$ $J/\psi(1S) f_2'(1525))/\Gamma(B_s^0 \to J/\psi(1S)\phi)] \times \mathsf{B}(f_2'(1525) \to K^+K^-) / \mathsf{B}(\phi(1020) \to K^+K^-)$ K^+K^-) assuming B($f_2'(1525) \rightarrow K^+K^-$) = (44.4 \pm 1.1) \times 10⁻², B(ϕ (1020) \rightarrow $K^+K^-)=(48.9\pm0.5)\times10^{-2}$, which we rescale to our best values B($f_2'(1525)\to$ K^+K^-) = $\frac{1}{2}$ (88.7 ± 2.2) × 10⁻², B(ϕ (1020) $\rightarrow K^+K^-$) = (48.9 ± 0.5) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(J/\psi(1S)f_2'(1525))/\Gamma_{\text{total}}$

 Γ_{73}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
$2.61\pm0.20^{+0.56}_{-0.50}$	1 AAIJ	13AN LHCB	pp at 7 TeV	
1				4

¹ Uses $f_s/f_d = 0.256 \pm 0.020$ and $B(B^+ \to J/\psi K^+) = (10.18 \pm 0.42) \times 10^{-4}$.

 $\Gamma(\psi(2S)\eta)/\Gamma(J/\psi(1S)\eta)$ VALUE

 Γ_{78}/Γ_{49}

 $0.83 \pm 0.14 \pm 0.12$ 13AA LHCB pp at 7 TeV

$\Gamma(\psi(2S)\eta')/\Gamma(J/\psi(1S)\eta')$

 Γ_{79}/Γ_{52}

$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT
38.7±9.0±1.6	¹ AAIJ	15 D	LHCB	<i>pp</i> at 7, 8 TeV
1 Uses $I/\psi \rightarrow \mu^+ \mu^-$, $\eta' \rightarrow$	$a^0 \sim \text{ and } n' \rightarrow n$	$_{\pi}+_{\pi}$	- decays	:

$\Gamma(J/\psi(1S) \rho \overline{\rho})/\Gamma_{\text{total}}$

 Γ_{74}/Γ

Created: 5/30/2017 17:23

13Z LHCB pp at 7 TeV ¹ Uses B($B_s^0 \to J/\psi(1S)\pi^+\pi^-$) = (1.98 ± 0.20) × 10⁻⁴.

¹ Assuming lepton universality for dimuon decay modes of J/ψ and $\psi(2S)$ mesons, the ratio B $(J/\psi \rightarrow \mu^+\mu^-)/B(\psi(2S) \rightarrow \mu^+\mu^-) = B(J/\psi \rightarrow e^+e^-)/B(\psi(2S) \rightarrow \mu^+\mu^-)$ $e^+e^-) = 7.69 \pm 0.19$ was used.

 $\Gamma(J/\psi(1S)\gamma)/\Gamma_{\text{total}}$ Γ_{75}/Γ 90 15BB LHCB pp at 7, 8 TeV ¹Branching fractions of normalization modes $B_s^0 \to J/\psi \gamma X$ taken from PDG 14. Uses $f_s/f_d = 0.259 \pm 0.015$. $\Gamma(J/\psi(1S)\pi^+\pi^-\pi^+\pi^-)/\Gamma(J/\psi(1S)\pi^+\pi^-)$ Γ_{76}/Γ_{53} 14Y LHCB pp at 7,8 TeV $0.371 \pm 0.015 \pm 0.022$ ¹ Excludes contributions from $\psi(2S)$ and X(3872) decaying to $J/\psi(1S)\pi^+\pi^-$. $\Gamma(J/\psi(1S)f_1(1285))/\Gamma_{\text{total}}$ Γ_{77}/Γ DOCUMENT ID TECN COMMENT

AAIJ 14Y LHCB pp at 7, 8 TeV *VALUE* (units 10^{-5}) $7.0 \pm 1.3 \pm 0.4$ 1 AAIJ 14Y reports (7.14 \pm 0.99 $^{+0.83}_{-0.91}$ \pm 0.41) \times 10 $^{-5}$ from a measurement of [Γ(B_s^0 \rightarrow $J/\psi(1S)\,f_1(1285))/\Gamma_{ ext{total}}] imes [B(f_1(1285) o 2\pi^+2\pi^-)] ext{ assuming } B(f_1(1285) o 2\pi^+2\pi^-) = 0.11^{+0.007}_{-0.006}$, which we rescale to our best value $B(f_1(1285) o 2\pi^+2\pi^-)$ $=(11.2^{+0.7}_{-0.6}) imes 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\psi(2S)\phi)/\Gamma_{\text{total}}$ Γ_{81}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • **BUSKULIC** 93G ALEP $e^+e^- \rightarrow Z$ seen $\Gamma(\psi(2S)\phi)/\Gamma(J/\psi(1S)\phi)$ Γ_{81}/Γ_{46} 0.501 ± 0.034 OUR AVERAGE 1,2 AAIJ $0.497 \pm 0.034 \pm 0.011$ 12L LHCB pp at 7 TeV $0.53 \pm 0.10 \pm 0.09$ **ABAZOV** 09Y D0 $p\overline{p}$ at 1.96 TeV ABULENCIA 06N CDF $p\overline{p}$ at 1.96 TeV $0.52 \pm 0.13 \pm 0.07$ 1 AAIJ 12L reports 0.489 \pm 0.026 \pm 0.021 \pm 0.012 from a measurement of [$\Gamma(B_s^0$ ightarrow $\psi(2S)\phi)/\Gamma(B_S^0 \rightarrow J/\psi(1S)\phi)] \times [B(J/\psi(1S) \rightarrow e^+e^-)] / [B(\psi(2S) \rightarrow e^+e^-)]$ assuming B($J/\psi(1S) \rightarrow e^+e^-$) = (5.94 ± 0.06) × 10⁻²,B($\psi(2S) \rightarrow e^+e^-$) = $(7.72 \pm 0.17) \times 10^{-3}$, which we rescale to our best values B $(J/\psi(1S) \rightarrow e^+e^-) =$ $(5.971 \pm 0.032) \times 10^{-2}$, B $(\psi(2S) \rightarrow e^+e^-) = (7.89 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. ² Assumes B($J/\psi \rightarrow \mu^+\mu^-$) / B($\psi(2S) \rightarrow \mu^+\mu^-$) = B($J/\psi \rightarrow e^+e^-$) / B($\psi(2S) \rightarrow \mu^+\mu^-$) e^+e^-) = 7.69 ± 0.19. $\Gamma(\psi(2S)K^-\pi^+)/\Gamma_{\text{total}}$ Γ_{82}/Γ 1 AAIJ 15U LHCB COMMENT pp at 7, 8 TeV *VALUE* (units 10^{-5}) $3.12 \pm 0.30 \pm 0.21$ $^{1}\,\mathrm{AAIJ}\,\,\mathrm{15U}\,\,\mathrm{reports}\,\,[\Gamma\big(B_{\,\mathrm{S}}^{\,0}\,\rightarrow\,\,\psi(2S)\,\mathrm{K}^{-}\,\pi^{+}\big)/\Gamma_{\mathrm{total}}]\,\,/\,\,[\mathrm{B}(B^{\,0}\,\rightarrow\,\,\psi(2S)\,\mathrm{K}^{+}\,\pi^{-})]\,=\,$ $(5.38 \pm 0.36 \pm 0.22 \pm 0.31) \times 10^{-2}$ which we multiply by our best value B($B^0 \rightarrow$

HTTP://PDG.LBL.GOV

Page 34

second error is the systematic error from using our best value.

 $\psi(2S)K^+\pi^-$) = $(5.8 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our

$\Gamma(\psi(2S)\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{83}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
$3.3\pm0.5^{+0.2}_{-0.3}$	¹ AAIJ	15∪ LHCB	<i>pp</i> at 7, 8 TeV	

 1 AAIJ 15U reports $[\Gamma(B_s^0 \to \psi(2S)\overline{K}^*(892)^0)/\Gamma_{total}]$ / $[B(B^0 \to \psi(2S)K^*(892)^0)]$ = $(5.58 \pm 0.57 \pm 0.40 \pm 0.32) \times 10^{-2}$ which we multiply by our best value $B(B^0 \to \psi(2S)K^*(892)^0)$ = $(5.9 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}\phi)/\Gamma(J/\psi(1S)\phi)$

 Γ_{84}/Γ_{46}

$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT	
18.9±1.8±1.5	¹ AAIJ	13AC LHCB	pp at 7 TeV	

¹ Uses B($\chi_{c1} \rightarrow J/\psi \gamma$) = (34.4 ± 1.5)%.

$\Gamma(\psi(2S)\pi^+\pi^-)/\Gamma(J/\psi(1S)\pi^+\pi^-)$

 Γ_{80}/Γ_{53}

VALUEDOCUMENT IDTECNCOMMENT $\mathbf{0.34 \pm 0.04 \pm 0.03}$ 1 AAIJ13AA LHCBpp at 7 TeV

 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{85}/Γ

Created: 5/30/2017 17:23

(// 1011						,
$VALUE$ (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT	
6.8±0.8 OUR A	VERAGE					
$7.0 \pm 0.8 \pm 0.4$					pp at 7 and 8 TeV	
$6.1\!\pm\!1.7\!\pm\!0.3$	2	² AALTONEN	12L	CDF	<i>p</i> p at 1.96 TeV	

• • We do not use the following data for averages, fits, limits, etc.

$10.0^{+2.3}_{-2.0}\pm0.6$		³ AAIJ	12AF	LHCB	Repl. by AAIJ 17G
< 120	90	⁴ PENG			$e^+e^- ightarrow ~ \varUpsilon(5S)$
< 12	90	⁵ AALTONEN	09 C	CDF	Repl. by AALTONEN 12L
< 17	90	⁶ ABULENCIA,A	06 D	CDF	Repl. by AALTONEN 09C
<2320	90	⁷ ABE	00 C	SLD	$e^+e^- \rightarrow Z$
<1700	90	⁸ BUSKULIC	96V	ALEP	$e^+e^- \rightarrow Z$

- 1 AAIJ 17G reports $[\Gamma(B_s^0\to\pi^+\pi^-)/\Gamma_{total}]$ / $[B(B^0\to\kappa^+\pi^-)]\times[\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B^0)]=(9.15\pm0.71\pm0.83)\times10^{-3}$ which we multiply or divide by our best values $B(B^0\to\kappa^+\pi^-)=(1.96\pm0.05)\times10^{-5},\ \Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B^0)=0.256\pm0.013.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ² AALTONEN 12L reports $[\Gamma(B_s^0 \to \pi^+\pi^-)/\Gamma_{total}]$ / $[B(B^0 \to K^+\pi^-)] \times [\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0)] = 0.008 \pm 0.002 \pm 0.001$ which we multiply or divide by our best values $B(B^0 \to K^+\pi^-) = (1.96 \pm 0.05) \times 10^{-5}$, $\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0) = 0.256 \pm 0.013$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ³ AAIJ 12AR reports $[\Gamma(B_s^0 \to \pi^+\pi^-)/\Gamma_{total}]$ / $[B(B^0 \to \pi^+\pi^-)] \times [\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0)] = 0.050^{+0.011}_{-0.009} \pm 0.004$ which we multiply or divide by our best values $B(B^0 \to \pi^+\pi^-) = (5.12 \pm 0.19) \times 10^{-6}$, $\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0) = 0.256 \pm 0.013$.

¹ Assuming lepton universality for dimuon decay modes of J/ψ and $\psi(2S)$ mesons, the ratio B($J/\psi \rightarrow \mu^+\mu^-$)/B($\psi(2S) \rightarrow \mu^+\mu^-$) = B($J/\psi \rightarrow e^+e^-$)/B($\psi(2S) \rightarrow e^+e^-$) = 7.69 \pm 0.19 was used.

Our first error is their experiment's error and our second error is the systematic error from using our best values.

⁴ Uses $\Upsilon(10860) \rightarrow B_s^* \overline{B}_s^*$ and assumes B($\Upsilon(10860) \rightarrow B_s^{(*)} \overline{B}_s^{(*)}$) = $(19.3 \pm 2.9)\%$ and $\Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%.$

⁵ Obtains this result from $(f_s/f_d) \cdot \mathsf{B}(B_s \to \pi^+\pi^-)/\mathsf{B}(B^0 \to K^+\pi^-) = 0.007 \pm 0.004 \pm 0.005$, assuming $f_s/f_d = 0.276 \pm 0.034$ and $\mathsf{B}(B^0 \to K^+\pi^-) = (19.4 \pm 0.005)$ $0.6) \times 10^{-6}$.

⁶ ABULENCIA,A 06D obtains this from B($B_s \to \pi^+\pi^-$) / B($B_s \to K^+K^-$) < 0.05 at 90% CL, assuming B($B_s \to K^+K^-$) = (33 ± 6 ± 7) × 10⁻⁶.
⁷ ABE 00C assumes B($Z \to b\overline{b}$)=(21.7 ± 0.1)% and the B fractions $f_{B^0} = f_{B^+} = f_{B^+} = f_{B^+}$

 $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

 8 BUSKULIC 96V assumes PDG 96 production fractions for B^{0} , B^{+} , B_{s} , b baryons.

$\Gamma \big(\pi^0\pi^0\big)/\Gamma_{\rm total}$ VALUE CL% DOCUMENT ID TECN COMMENT 1 ACCIARRI 95H assumes $f_{B^0}=$ 39.5 \pm 4.0 and $f_{B_s}=$ 12.0 \pm 3.0%.

 $\Gamma(\eta \pi^0)/\Gamma_{\text{total}}$ Γ_{87}/Γ $\frac{CL\%}{90}$ $\frac{DOCUMENT~ID}{1}$ $\frac{TECN}{e^+e^- \rightarrow Z}$ 1 ACCIARRI 95H assumes $f_{R0}=39.5\pm4.0$ and $f_{B_c}=12.0\pm3.0\%$.

 $\Gamma(\eta\eta)/\Gamma_{\text{total}}$ VALUE CL% DOCUMENT ID TECN COMMENT $<1.5 \times 10^{-3}$ 90 1 ACCIARRI 95H L3 $e^+e^- \rightarrow Z$ 1 ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_c}=12.0\pm3.0\%$.

$$\Gamma(\rho^0 \rho^0)/\Gamma_{\text{total}}$$

VALUE

CL%

90

1 ABE

00C SLD

 $e^+e^- \rightarrow Z$

 1 ABE 00C assumes B(Z \rightarrow $b\,\overline{b}){=}(21.7\,\pm\,0.1)\%$ and the B fractions $f_{B^0}{=}f_{B^+}{=}$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_2} = (10.5^{+1.8}_{-2.2})\%$.

$$\Gamma(\eta'\eta')/\Gamma_{\text{total}}$$

VALUE (units 10⁻⁵)

3.3±0.7±0.1

 $\frac{DOCUMENT\ ID}{1}$
 $\frac{DOCUMENT\ ID}{1}$

1 AAIJ

150 LHCB $\frac{COMMENT}{PP}$ at 7, 8 TeV

 $^{^1}$ AAIJ 150 reports [$\Gamma(B_s^0 \rightarrow~\eta^\prime \eta^\prime)/\Gamma_{total}]~/~[B(B^+ \rightarrow~\eta^\prime \, K^+)] = 0.47 \pm 0.09 \pm 0.04$ which we multiply by our best value B($B^+ \rightarrow \eta' K^+$) = (7.06 \pm 0.25) \times 10⁻⁵. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi\pi^+\pi^-)/\Gamma_{ m total}$					Г ₉₄ /Г	
VALUE (units 10 ⁻⁶)	DOCUMENT IE					
$3.48\pm0.23\pm0.39$	¹ AAIJ			pp at 7, 8 TeV		
$^{ m 1}$ Inclusive decays in mass ran	ge 400 $<$ m $(\pi^{+}\pi^{-})$	_) < 16	600 MeV	//c ² .		
$\Gammaig(\phi ho^0ig)/\Gamma_{total}$					Γ_{93}/Γ	
VALUE (units 10^{-7}) CL%	DOCUMENT IE)	TECN	COMMENT		
2.7±0.7±0.3 • • • We do not use the following	$^{ m 1}$ AAIJ ng data for averag			pp at 7, 8 TeV etc. • • •		
<6170 90	² ABE	00 C	SLD	$e^+e^- ightarrow Z$		
1 Signal evidence is 4 standard 2 ABE 00C assumes B($Z ightharpoonup (39.7 {+} 1.8 \atop -2.2)\%$ and $f_{B_{S}} = (10.1)$	$b\overline{b})=(21.7 \pm 0)$	0.1)% a	and the	B fractions f_B	$_0=f_{B^+}=$	
$\Gamma(\phi f_0(980), f_0(980) \rightarrow \pi^+$	$\pi^-)/\Gamma_{total}$				Γ ₉₁ /Γ	
VALUE (units 10^{-6})	DOCUMENT IE)	TECN	COMMENT		
$1.12 \pm 0.16 \pm 0.14$	¹ AAIJ	17A	LHCB	<i>pp</i> at 7, 8 TeV		
¹ Signal is observed with 8 sta	ndard deviations s	ignifica	nce.			
$\Gamma(\phi f_2(1270), f_2(1270) \rightarrow \tau$	$(\Gamma^+\pi^-)/\Gamma_{total}$				Γ_{92}/Γ	
VALUE (units 10 ⁻⁶)	DOCUMENT IE)	TECN	COMMENT		
$0.61 \pm 0.13 ^{+0.13}_{-0.08}$	¹ AAIJ	17A	LHCB	<i>pp</i> at 7, 8 TeV		
¹ Signal is observed with 5 sta	ndard deviations s	ignifica	nce.			
$\Gamma(\phi\phi)/\Gamma_{total}$					Γ_{95}/Γ	
	DOCUMENT ID	TEC	CN CO	MMENT		
18.7±1.5 OUR FIT 18.5±1.4±1.0	L AAIJ 1	FVC I H	CR nn	at 7, 8 TeV		
• • We do not use the following the fol						
_	² ACOSTA 0				E N 11an	
<1183 90	B ABE 0	0c SLI) e ⁺	$e^- o Z$		
¹ AAIJ 15AS reports $[\Gamma(B_s^0 \to \phi\phi)/\Gamma_{total}]$ / $[B(B^0 \to K^*(892)^0\phi)] = 1.84 \pm 0.05 \pm 0.13$ which we multiply by our best value $B(B^0 \to K^*(892)^0\phi) = (1.00 \pm 0.05) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Uses $B(B^0 \to J/\psi\phi) = (1.38 \pm 0.49) \times 10^{-3}$ and production cross-section ratio of						
$\sigma(B_s)/\sigma(B^0) = 0.26 \pm 0.04.$ $^3 \text{ ABE 00C assumes B}(Z \to b\overline{b}) = (21.7 \pm 0.1)\% \text{ and the } B \text{ fractions } f_{B^0} = f_{B^+} = (39.7 + \frac{1.8}{-2.2})\% \text{ and } f_{B_s} = (10.5 + \frac{1.8}{-2.2})\%.$						
$\Gammaig(\phi\phiig)/\Gammaig(J/\psi(1S)\phiig)$				1	Γ ₉₅ /Γ ₄₆	
VALUE (units 10^{-2})	DOCUMENT IL)	TECN	COMMENT		
1.73±0.16 OUR FIT 1.78±0.14±0.20	AALTONEN	11AN	CDF	<i>p p</i> at 1.96 Te√	,	
HTTP://PDG.LBL.GOV	Page 37		Creat	ed: 5/30/201	7 17:23	

$\Gamma(\pi^+K^-)/\Gamma_{\rm total}$

 Γ_{96}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
5.6±0.6 OUR A	WERAGE				
$5.7\!\pm\!0.6\!\pm\!0.3$		¹ AAIJ	12AR	LHCB	pp at 7 TeV
$5.5 \pm 0.9 \pm 0.3$		² AALTONEN	09 C	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use	e the followi	ng data for averag	es, fits	s, limits,	etc. • • •
< 26	90	³ PENG			$e^+e^- ightarrow \gamma(5S)$
< 5.6	90				Repl. by AALTONEN 09C
<261	90	⁵ ABE	00C	SLD	$e^+e^- \rightarrow Z$
<210	90	⁶ BUSKULIC	96V .	ALEP	$e^+e^- \rightarrow Z$
<260	90	⁷ AKERS	94L	OPAL	$e^+e^- \rightarrow Z$
¹ AAIJ 12AR repor	ts $[\Gamma(B_s^0 \to$	$\pi^+ K^-)/\Gamma_{\text{total}}]$	/ [B($B^0 \rightarrow$	$(K^+\pi^-)] \times [\Gamma(\overline{b} \to B_s^0)/$
					3
from using our b	est values.				
² AALTONEN 090	reports $[\Gamma($	$B_s^0 ightarrow \pi^+ K^-)/I$	total]	/ [B(<i>B</i>	$\mathbb{R}^0 \to K^+\pi^-)] \times [B(\overline{b} \to 0)]$
B_s^0)] / [B($\overline{b} \rightarrow$	B^0)] = 0.07	$1 \pm 0.010 \pm 0.00$	7 whic	h we mi	ultiply or divide by our best
second error is the	ne systemati	c error from using	our be	est value	es.
3 Uses $\gamma(10860)$ -	$\rightarrow B^* \overline{B}^*$ a	nd assumes B(γ (10860)	$A \rightarrow B^{(}$	$\overline{B}^{(*)}\overline{B}^{(*)}) = (19.3 \pm 2.9)\%$
	3 3		3	3	- 1. 0
⁴ ABULENCIA,A (06D obtains t	this from (f_s/f_d) ($B(B_s)$	$\rightarrow \pi^+$	$K^{-}) / B(B^{0} \rightarrow K^{+}\pi^{-}))$
< 0.08 at $90%$ C	L, assuming	$f_{\rm s}/f_{\rm d}=0.260\pm$	0.039	and B($B^0 \to K^+ \pi^-) = (18.9 \pm$
<260 1 AAIJ 12AR repor $\Gamma(\overline{b} \to B^0)] = B(B^0 \to K^+\pi^-)$ Our first error is from using our b 2 AALTONEN 090 $B_s^0)] / [B(\overline{b} \to Values B(B^0 \to B(\overline{b} \to B^0))] = 0$ second error is the second error is t	90 ts $[\Gamma(B_s^0 \rightarrow 0.074 \pm 0.074 \pm 0.074 \pm 0.074 \pm 0.074]$ their experience to values. The reports $[\Gamma(B_s^0)] = 0.077$ $[K_s^+ \pi^-) = 0.077$ $[K_s^+ \pi^-] = 0.077$ $[K_s^+ \pi^$	7 AKERS $\pi^+ K^-)/\Gamma_{ m total}]$ 06 ± 0.006 which 0.05×10^{-5} , $\Gamma(1.000) \times 10^{-5}$, $\Gamma(1.000) \times 10^{-5}$, $\Gamma(1.000) \times 10^{-2}$. Our first cerror from using and assumes B($\Gamma(1.000) \times 10^{-2}$) whis from $\Gamma(1.000) \to 10^{-5}$	94L we m $ \frac{b}{b} \rightarrow b $ our sectoral our sectoral our better our	OPAL $B^{0} \rightarrow$ ultiply of the econd ending in the econd ending is their est value of the econd ending is the econd ending is the econd ending is the econd ending is the econd econ	$e^+e^- \rightarrow Z$ $K^+\pi^-)] \times [\Gamma(\overline{b} \rightarrow B_s^0)/\Gamma(\overline{b} \rightarrow B_s^0)] \times [\Gamma(\overline{b} \rightarrow B_s^0)/\Gamma(\overline{b} \rightarrow B_s^0)] \times [\Gamma(\overline{b} $

 $^{0.7) \}times 10^{-6}$. 5 ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

$\Gamma(K^+K^-)/\Gamma_{total}$

 Γ_{97}/Γ

Created: 5/30/2017 17:23

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
25.4± 1.6 OUR /		DOCOMENT ID		TECH	COMMENT
$24.2 \pm 1.6 \pm 1.4$		¹ AAIJ	12AR	LHCB	pp at 7 TeV
$26.5 \pm \ 2.2 \pm 1.4$					$p\overline{p}$ at 1.96 TeV
38 $^{+10}_{-9}$ ± 7		³ PENG	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(5S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<310	90	DRUTSKOY 07A		
$33 \pm 6 \pm 7$		⁴ ABULENCIA,A 06D	CDF	Repl. by AALTONEN 11N
<283	90	⁵ ABE 00C	-	
< 59	90	⁶ BUSKULIC 96v	ALEP	$e^+e^- o Z$
<140	90	⁷ AKERS 94L	OPAL	$e^+e^- \rightarrow Z$

 $^{^1}$ AAIJ 12AR reports [$\Gamma(B_s^0\to K^+K^-)/\Gamma_{total}]$ / [B($B^0\to K^+\pi^-)$] \times [$\Gamma(\overline{b}\to B_s^0)/\Gamma(\overline{b}\to B^0)$] = 0.316 \pm 0.009 \pm 0.019 which we multiply or divide by our best values

⁶ BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

⁷ Assumes B($Z \rightarrow b\overline{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

B($B^0 \to K^+\pi^-$) = $(1.96 \pm 0.05) \times 10^{-5}$, $\Gamma(\overline{b} \to B^0_s)/\Gamma(\overline{b} \to B^0) = 0.256 \pm 0.013$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

² AALTONEN 11N reports (f_s/f_d) (B($B_s^0 \to K^+K^-$) / B($B^0 \to K^+\pi^-$)) = 0.347 \pm 0.020 \pm 0.021. We multiply this result by our best value of B($B^0 \to K^+\pi^-$) = (1.96 \pm 0.05) \times 10⁻⁵ and divide by our best value of f_s/f_d , where 1/2 f_s/f_d = 0.128 \pm 0.006. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best values.

³ Uses $\Upsilon(10860) \to B_s^* \overline{B}_s^*$ and assumes $B(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (19.3 \pm 2.9)\%$ and $\Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%$.

⁴ ABULENCIA,A 06D obtains this from (f_s/f_d) (B($B_s \to K^+K^-$) / B($B^0 \to K^+\pi^-$)) = 0.46 \pm 0.08 \pm 0.07, assuming $f_s/f_d =$ 0.260 \pm 0.039 and B($B^0 \to K^+\pi^-$) = (18.9 \pm 0.7) \times 10⁻⁶.

⁵ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

 6 BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

⁷ Assumes B($Z \rightarrow b\overline{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

$\Gamma(K^0\overline{K}^0)/\Gamma_{total}$

 Γ_{98}/Γ

VALUE (units 10^{-5})CL%DOCUMENT IDTECNCOMMENT $1.96 + 0.58 \pm 0.10 \pm 0.20$ 1 PAL16 BELL $e^+e^- \rightarrow \Upsilon(5S)$

² PENG

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 6.6 90

10 BELL Repl. by PAL 16

¹ Observed in $B^0_s \to K^0_S K^0_S$ with significance of 5.1 σ . The last uncertainty is due to the uncertainty of the total number of $B^0_s \overline{B}^0_s$ pairs.

² Uses $\Upsilon(10860) \to B_s^* \overline{B}_s^*$ and assumes $B(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (19.3 \pm 2.9)\%$ and $\Gamma(\Upsilon(10860) \to B_s^* \overline{B}_s^*) / \Gamma(\Upsilon(10860) \to B_s^{(*)} \overline{B}_s^{(*)}) = (90.1^{+3.8}_{-4.0})\%$.

$\Gamma(K^0\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{99}/Γ

VALUE (units 10^{-6})DOCUMENT IDTECNCOMMENT $15\pm4\pm1$ 1 AAIJ13BP LHCBpp at 7 TeV

 1 AAIJ 13BP reports $[\Gamma(B_s^0\to \ K^0\pi^+\pi^-)/\Gamma_{total}]\ /\ [B(B^0\to \ K^0\pi^+\pi^-)]=0.29\pm0.06\pm0.04$ which we multiply by our best value $B(B^0\to \ K^0\pi^+\pi^-)=(5.20\pm0.24)\times10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^*(892)^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{101}/Γ

Created: 5/30/2017 17:23

VALUE (units 10^{-6})DOCUMENT IDTECNCOMMENT3.3 \pm 1.2 \pm 0.31,2 AAIJ14BM LHCBpp at 7 TeV

 $^2\,\mathrm{Uses}\;\mathrm{f}_s/\mathrm{f}_d=$ 0.259 \pm 0.015.

¹ AAIJ 14BM reports $[\Gamma(B_s^0 \to K^*(892)^-\pi^+)/\Gamma_{total}] / [B(B^0 \to K^*(892)^+\pi^-)] = 0.39 \pm 0.13 \pm 0.05$ which we multiply by our best value $B(B^0 \to K^*(892)^+\pi^-) = (8.4 \pm 0.8) \times 10^{-6}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^0K^{\pm}\pi^{\mp})/\Gamma_{\text{total}}$ Γ_{100}/Γ VALUE (units 10^{-5}) TECN COMMENT

13BP LHCB pp at 7 TeV $7.7 \pm 1.0 \pm 0.4$ 1 AAIJ 13BP reports [$\Gamma(B_s^0 \to \ K^0 \, K^\pm \, \pi^\mp) / \Gamma_{total}] \ / \ [B(B^0 \to \ K^0 \, \pi^+ \, \pi^-)] = 1.48 \pm 1.00 \, m^{-2}$ 0.12 ± 0.14 which we multiply by our best value B($B^0 \rightarrow K^0 \pi^+ \pi^-$) = $(5.20 \pm 0.24) \times$ 10^{-5} . Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(K^*(892)^{\pm}K^{\mp})/\Gamma_{\text{total}}$ Γ_{102}/Γ VALUE (units 10^{-5}) 14BMLHCB pp at 7 TeV $1.25 \pm 0.24 \pm 0.11$ $^{1}\,\text{AAIJ 14BM reports}\;[\Gamma(B_{s}^{0}\rightarrow~K^{*}(892)^{\pm}\,K^{\mp})/\Gamma_{\text{total}}]\;/\;[\text{B}(B^{0}\rightarrow~K^{*}(892)^{+}\,\pi^{-})]=$ $1.49 \pm 0.22 \pm 0.18$ which we multiply by our best value B($B^0 \rightarrow K^*(892)^+\pi^-$) = $(8.4\pm0.8)\times10^{-6}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $^2\,\mathrm{Uses}\;\mathrm{f}_s/\mathrm{f}_d=$ 0.259 \pm 0.015. $\Gamma(K_S^0 \overline{K}^*(892)^0 + \text{c.c.})/\Gamma_{\text{total}}$ Γ_{103}/Γ
 TECN
 COMMENT

 16
 LHCB
 pp at 7 TeV
 VALUE (units 10^{-6}) $16.4 \pm 3.4 \pm 2.3$ 1 Measured relative to $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$ using the value of B($B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$) = $(4.96 \pm 0.2) \times 10^{-5}$. $\Gamma \big(K^0 \, K^+ \, K^- \big) / \Gamma_{total}$ Γ_{104}/Γ DOCUMENT ID TECN COMMENT

AAIJ 13BP LHCB pp at 7 TeV 1 AAIJ 13BP reports $[\Gamma(B_s^0\to~K^0\,K^+\,K^-)/\Gamma_{total}]~/~[B(B^0\to~K^0\,\pi^+\,\pi^-)]<~0.068$ which we multiply by our best value B($B^0 \to K^0 \pi^+ \pi^-$) = 5.20 × 10⁻⁵. $\Gamma(\overline{K}^*(892)^0 \rho^0)/\Gamma_{\text{total}}$ Γ_{105}/Γ 1 ABE 000 SLD $e^+e^-
ightarrow$ $< 7.67 \times 10^{-4}$ 1 ABE 00C assumes B(Z \rightarrow $b\overline{b}){=}(21.7~\pm~0.1)\%$ and the B fractions $f_{B^0}{=}f_{B^+}{=}$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_c} = (10.5^{+1.8}_{-2.2})\%$. $\Gamma(\overline{K}^*(892)^0 K^*(892)^0)/\Gamma_{\text{total}}$ Γ_{106}/Γ VALUE (units 10^{-5}) TECN COMMENT $1.11 \pm 0.26 \pm 0.06$ 15AF LHCB pp at 7 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • ² AAIJ $2.81 \pm 0.46 \pm 0.56$ 12F LHCB Repl. by AAIJ 15AF ³ ABE 90 00c SLD $e^+e^- \rightarrow Z$ $^{1}\, \text{AAIJ 15AF reports } [\Gamma(B^{0}_{s} \to \overline{K}^{*}(892)^{0}\, K^{*}(892)^{0})/\Gamma_{\mathsf{total}}] \,\,/\,\, [\mathsf{B}(B^{0} \to K^{*}(892)^{0}\, \phi)]$ $=1.11\pm0.22\pm0.12\pm0.06$ which we multiply by our best value B($B^0
ightarrow~K^*(892)^0\phi$) $= (1.00 \pm 0.05) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update 2 Uses $B^0 o J/\psi \, K^{*0}$ for normalization and assumes B($B^0 o J/\psi \, K^{*0}$) B($J/\psi o$ $\mu^+\mu^-)$ B($K^{*0}\to K^+\pi^-)=(1.33\pm0.06)\times10^{-3}$ and $f_s/f_d=0.253\pm0.031.$ The second quoted error is total uncertainty including the error of 0.34 on f_s/f_d . ³ABE 00C assumes B(Z \rightarrow $b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_c} = (10.5^{+1.8}_{-2.2})\%$. $\Gamma(\phi K^*(892)^0)/\Gamma_{\text{total}}$ Γ_{107}/Γ VALUE (units 10^{-6}) _____ CL% 13BW LHCB pp at 7 TeV • • • We do not use the following data for averages, fits, limits, etc. • ² ABF 00c SLD <1013 0.024 \pm 0.016 which we multiply by our best value B($B^0 \rightarrow K^*(892)^0 \phi$) = (1.00 \pm $0.05) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ²ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$. $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. *VALUE* (units 10^{-8}) DOCUMENT ID TECN COMMENT $2.84 ^{+2.03}_{-1.68} ^{+0.85}_{-0.18}$ ¹ AAIJ 13BQ LHCB pp at 7 TeV ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet² BUSKULIC 90 96V ALEP $e^+e^- \rightarrow Z$ ¹ Uses normalization mode B($B^0 \to K^+\pi^-$) = (19.55 \pm 0.54) \times 10⁻⁶ and B production ratio $f(\overline{b} \rightarrow B_s^0)/f(\overline{b} \rightarrow B_d^0) = 0.256 \pm 0.020$. ²BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons. Γ_{109}/Γ $rac{ extit{DOCUMENT ID}}{1 ext{SOLOVIEVA}} rac{ extit{TECN}}{13} rac{ extit{COMMENT}}{ ext{BELL}} rac{ extit{cOMMENT}}{e^+e^-
ightarrow again (4S)}$ $3.6 \pm 1.1 \pm 1.2$

 $\Gamma(\Lambda^- \Lambda \pi^+)/\Gamma_{\text{total}}$

VALUE (units 10^{-4})

Created: 5/30/2017 17:23

 $\Gamma(\Lambda_c^-\Lambda_c^+)/\Gamma_{\text{total}}$ Γ_{110}/Γ 14AA LHCB pp at 7 TeV ¹ Uses B($\overline{B}^0 \to D^+ D_s^-$) = (7.2 ± 0.8) × 10⁻³.

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ Γ_{111}/Γ

Test for $\Delta B{=}1$ weak neutral current.

VALUE (units 10^{-6}) DOCUMENT IDTECNCOMMENTDUTTA15BELL $e^+e^- \rightarrow \Upsilon(5S)$ CL% ¹ DUTTA < 3.1

 $^{^1}$ The second error is the total systematic uncertainty including the $arLambda_c$ absolute branching fractions and the normalizion number of B_s events.

• • We do not use the following data for averages, fits, limits, etc. • • •

< 8.7	90	² WICHT	08A BELL	Repl. by DUTTA 15
< 53	90	DRUTSKOY	07A BELL	Repl. by WICHT 08A
<148	90	³ ACCIARRI	95ı L3	$e^+e^- ightarrow Z$

¹ Assumes the fraction of $B_s^{(*)}\overline{B}_s^{(*)}$ in $b\overline{b}$ events is $f_s=(17.2\pm3.0)\%$.

 $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ Γ_{112}/Γ

Created: 5/30/2017 17:23

VALUE (units	10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
35.2±	3.4 OUR AV	ERAGE				
$36 \pm$	5 ± 7		¹ DUTTA	15	BELL	$e^+e^- ightarrow \Upsilon(5S)$
$35.1 \pm$	3.5 ± 1.2		² AAIJ	13	LHCB	pp at 7 TeV
• • • We	do not use th	e following	data for averages	, fits,	limits, e	etc. • • •
39 ±	5		³ AAIJ	12AE	LHCB	Repl. by AAIJ 13
$57 \begin{array}{c} +1 \\ -1 \end{array}$	$ \begin{array}{rrr} 8 & +12 \\ 5 & -11 \end{array} $		⁴ WICHT	08A	BELL	Repl. by DUTTA 15
< 390		90	DRUTSKOY	07A	BELL	$e^+e^- ightarrow \ \varUpsilon(5S)$
<120		90	ACOSTA	02G	CDF	$p\overline{p}$ at 1.8 TeV
<700		90	⁵ ADAM	96 D	DLPH	$e^+e^- ightarrow Z$

¹ Assumes the fraction of $B_s^{(*)}\overline{B}_s^{(*)}$ in $b\overline{b}$ events is $f_s=(17.2\pm3.0)\%$. The systematic uncertainty from f_s is 0.6×10^{-5} .

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_{113}/Γ

Test for $\Delta B=1$ weak neutral current.

TECN COMMENT CL% DOCUMENT ID

$2.4^{+0.9}_{-0.7}$ **OUR AVERAGE** Error includes scale factor of 1.5.

$$0.9^{+1.1}_{-0.8}$$
 1 AABOUD 16L ATLS pp at 7, 8 TeV $2.8^{+0.7}_{-0.6}$ 2 KHACHATRY...15BE LHC pp at 7, 8 TeV 3 AALTONEN 13F CDF $p\overline{p}$ at 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc.

$$3.2^{+1.4}_{-1.2} + 0.5 \\ 2.9^{+1.1}_{-1.0} + 0.1$$
 4 AAIJ 13B LHCB Repl. by AAIJ 13BA LHCB Repl. by KHACHATRYAN 15BE

² Assumes $\Upsilon(5S) \to B_s^* \overline{B}_s^* = (19.5 + \frac{3.0}{2.3})\%$.

 $^{^3}$ ACCIARRI 951 assumes $\mathit{f}_{B^0} = 39.5 \pm 4.0$ and $\mathit{f}_{B_s} = (12.0 \pm 3.0)\%$.

² AAIJ 13 reports $[\Gamma(B_s^0 \to \phi \gamma)/\Gamma_{total}] / [B(B^0 \to K^*(892)^0 \gamma)] = 0.81 \pm 0.04 \pm 0.07$ which we multiply by our best value B($B^0 \to K^*(892)^0 \gamma$) = $(4.33 \pm 0.15) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Measures B($B^0 \to K^{*0} \gamma$)/B($B_s \to \phi \gamma$) = 1.12 ± 0.08(stat) $^{+0.06}_{-0.04}$ (sys) $^{+0.09}_{-0.08}$ (f_s/f_d) and uses current world-average value of B($B^0 \to K^{*0} \gamma$) = (4.33 ± 0.15) × 10⁻⁵.

⁴ Assumes $\Upsilon(5S) \to B_s^* \overline{B}_s^* = (19.5 + 3.0)\%$.

⁵ ADAM 96D assumes $f_{R^0} = f_{R^-} = 0.39$ and $f_{B_c} = 0.12$.

```
<sup>6</sup> ABAZOV
<12
                         90
                                                    13C D0
                                                                   p\overline{p} at 1.96 TeV
   3.0^{+1.0}_{-0.9}
                                7 CHATRCHYAN 13AW CMS
                                                                   Repl. by KHACHA-
                                                                       TRYAN 15BE
                                <sup>8</sup> AAD
<19
                         90
                                                    12AE ATLS
                                                                   pp at 7 TeV
                                <sup>9</sup> AAIJ
< 12
                         90
                                                    12A LHCB
                                                                   Repl. by AAIJ 12W
                               <sup>10</sup> AAIJ
                         90
                                                                   Repl. by AAIJ 13B
< 3.8
                                                    12W LHCB
                               <sup>11</sup> CHATRCHYAN 12A CMS
< 6.4
                                                                   pp at 7 TeV
                               ^{12} AAIJ
                         90
<43
                                                    11B LHCB
                                                                   Repl. by AAIJ 12A
                               <sup>13</sup> AALTONEN
                         90
                                                    11AG CDF
                                                                   p\overline{p} at 1.96 TeV
<35
                               <sup>14</sup> CHATRCHYAN 11T CMS
<16
                                                                   Repl. by CHATRCHYAN 12A
                               <sup>15</sup> ABAZOV
                        90
                                                                   p\overline{p} at 1.96 TeV
<42
                                                    10s D0
```

 $^{^1\,\}mathrm{This}$ value corresponds to an upper limit of $<~3.0\times10^{-9}$ at 95% C.L. It uses $\mathit{f_s/f_d}=$

 $^{^2}$ Determined from the joint fit to CMS and LHCb data. Uncertainty includes both statistical and systematic component.

³ Uses normalization mode B($B^+ \to J/\psi K^+$) = (10.22 \pm 0.35) \times 10⁻⁴ and B production ratio f($\overline{b} \to B_s^0$)/f($\overline{b} \to B_d^0$) = 0.28 \pm 0.04.

⁴ Uses B production ratio $f(\overline{b} \to B_s^0)/f(\overline{b} \to B_d^0) = 0.256 \pm 0.020$ and two normalization modes: B(B⁺ \rightarrow J/ ψ K⁺ \rightarrow $\mu^+\mu^-$ K⁺) = (6.01 \pm 0.21) \times 10⁻⁵ and B(B⁰ \rightarrow K⁺ π^-) = (1.94 \pm 0.06) \times 10⁻⁵.

 $^{^5}$ Uses B production ratio f($\overline{b} \to \ B_s^0)/\mathrm{f}(\overline{b} \to \ B_d^0) = 0.259 \pm 0.015$ and normalization

modes $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$ and $B^0 \rightarrow K^+ \pi^-$. ⁶ Uses normalization mode B($B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10⁻⁵

and B production ratio $f(\overline{b} \to B_s^0)/f(\overline{b} \to B_d^0) = 0.263 \pm 0.017$.

7 Uses B production ratio $f(\overline{b} \to B_s^0)/f(\overline{b} \to B_d^0) = 0.256 \pm 0.020$ and $B(B^+ \to B_d^0)$

 $J/\psi \, K^+ \to \mu^+ \mu^- \, K^+) = (6.0 \pm 0.2) \times 10^{-5}$ for normalization. 8 Uses B production ratio f($\overline{b} \to B^+$)/f($\overline{b} \to B^0_s$) = 3.75 ± 0.29 and B($B^+ \to J/\psi \, K^+ \to B^0_s$) $\mu^{+}\mu^{-}K^{+}$) = $(6.0 \pm 0.2) \times 10^{-5}$.

⁹Uses B production ratio $f(\overline{b} \to B_s^0)/f(\overline{b} \to B_d^0) = 0.267 {+0.021 \atop -0.020}$ and three normalization modes B($B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$) = $(6.01 \pm 0.21) \times 10^{-5}$, B($B^0 \to K^+ \pi^-$) = $(1.94 \pm 0.06) \times 10^{-5}$, and B($B_s^0 \to J/\psi \phi \to \mu^+ \mu^- K^+ K^-$) = $(3.4 \pm 0.9) \times 10^{-5}$.

 $^{^{10}}$ Uses B production ratio f($\overline{b} \rightarrow \ B_s^0)/f(\overline{b} \rightarrow \ B_d^0) = 0.267 ^{+0.021}_{-0.020}$ and three normalization modes of $B^+ \to J/\psi K^+$, $B^0 \to K^+ \pi^-$, and $B_s^0 \to J/\psi \phi$. 11 Uses $f_s/f_u = 0.267 \pm 0.021$ and $B(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) = (6.0 \pm 0.2) \times 10^{-5}$.

¹² Uses B production ratio $f(\overline{b} \rightarrow B^+)/f(\overline{b} \rightarrow B^0_s) = 3.71 \pm 0.47$ and three normalization

¹³ Uses B production ratio $f(\overline{b} \to B^+)/f(\overline{b} \to B_S^0) = 3.55 \pm 0.47$ and $B(B^+ \to J/\psi K^+ \to B_S^0) = 3.55 \pm 0.47$ $\mu^{+}\mu^{-}K^{+}$) = (6.01 ± 0.21) × 10⁻⁵.

¹⁴ Uses B production ratio $f(\overline{b} \to B^+)/f(\overline{b} \to B_s^0) = 3.55 \pm 0.42$ and $B(B^+ \to J/\psi K^+ \to B_s^0) = 3.55 \pm 0.42$ $\mu^{+}\mu^{-}K^{+}) = (6.0 \pm 0.2) \times 10^{-5}$

¹⁵ Uses B production ratio $f(\overline{b} \to B^+)/f(\overline{b} \to B_s^0) = 3.86 \pm 0.59$, and the number of $B^+ \rightarrow J/\psi K^+$ decays.

```
\Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                                                                         \Gamma_{114}/\Gamma
            Test for \Delta B=1 weak neutral current.
 < 2.8 \times 10^{-7}
                                                90
                                                                     AALTONEN
                                                                                                  09P CDF
                                                                                                                           p\overline{p} at 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
 < 5.4 \times 10^{-5}
                                                                  <sup>1</sup> ACCIARRI
                                                                                                                           e^+e^- \rightarrow Z
                                                90
                                                                                                  97B L3
    <sup>1</sup> ACCIARRI 97B assume PDG 96 production fractions for B^+, B^0, B_s, and \Lambda_h.
                                                                                                                                                         \Gamma_{115}/\Gamma
                                                                                                        TECN COMMENT
 <1.2 \times 10^{-8}
                                                90
                                                                  <sup>1</sup> AAIJ
                                                                                                  13AW LHCB pp at 7 TeV
    ^{1} Also reports a limit of < 1.6 \times 10^{-8} at 95% CL.
\Gamma(SP, S \rightarrow \mu^{+}\mu^{-}, P \rightarrow \mu^{+}\mu^{-})/\Gamma_{\text{total}}
                                                                                                                                                         \Gamma_{116}/\Gamma
            Here S and P are the hypothetical scalar and pseudoscalar particles with masses of
           2.5 GeV/c^2 and 214.3 MeV/c^2, respectively.
                                                                                                       TECN COMMENT
                                                                     DOCUMENT ID
 <1.2 \times 10^{-8}
                                                                  <sup>1</sup> AAIJ
                                                                                                  13AW LHCB pp at 7 TeV
    ^{1} Also reports a limit of < 1.6 \times 10^{-8} at 95% CL.
\Gamma(\phi(1020)\mu^+\mu^-)/\Gamma_{\text{total}}
                                                                                                                                                         \Gamma_{117}/\Gamma
            Test for \Delta B \stackrel{\cdot}{=} 1 weak neutral current.
VALUE (units 10^{-7})
                                CL%
                                                                     DOCUMENT ID
                                                                                                            TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                 <sup>1</sup> ABAZOV
                                                90
                                                                                                  06G D0
                                                                                                                           p\overline{p} at 1.96 TeV
 < 4.7 \times 10^{2}
                                                90
                                                                     ACOSTA
                                                                                                  02D CDF
                                                                                                                           p\overline{p} at 1.8 TeV
    <sup>1</sup> Uses B(B_s^0 \to J/\psi \phi) = 9.3 × 10<sup>-4</sup>.
\Gamma(\phi(1020)\mu^+\mu^-)/\Gamma(J/\psi(1S)\phi)
                                                                                                                                                    \Gamma_{117}/\Gamma_{46}
VALUE (units 10^{-3})
                                      CL%
                                                               DOCUMENT ID
0.76 \pm0.09 OUR AVERAGE Error includes scale factor of 1.9.
0.741^{+0.042}_{-0.040}\pm0.029
                                                               AAIJ
                                                                                            15AQ LHCB pp at 7, 8 TeV
1.13 \ \pm 0.19 \ \pm 0.07
                                                               AALTONEN
                                                                                            11AI CDF
                                                                                                                      p\overline{p} at 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.674^{\,+\,0.061}_{\,-\,0.056}\,{\pm}\,0.016
                                                            <sup>1</sup> AAIJ
                                                                                            13X LHCB Repl. by AAIJ 15AQ
1.11 \pm 0.25 \pm 0.09
                                                                                                                      Repl. by AALTONEN 11AI
                                                               AALTONEN
                                                                                            11L CDF
< 2.3
                                          90
                                                               AALTONEN
                                                                                            09B CDF
                                                                                                                     Repl. by AALTONEN 11L
    <sup>1</sup>Replaced by AAIJ 15AQ.
\Gamma(\pi^+\pi^-\mu^+\mu^-)/\Gamma_{\text{total}}
                                                                                                                                                         \Gamma_{118}/\Gamma
VALUE (units 10^{-8})
8.4 \pm 1.6 \pm 0.3
                                                                                                  15S LHCB pp at 7, 8 TeV
    ^1AAIJ 15S reports (8.6 \pm 1.5 \pm 0.7 \pm 0.7) 	imes 10^{-8} from a measurement of
       [\Gamma(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)/\Gamma_{\rm total}] \ / \ [B(B^0 \to J/\psi(1S)K^*(892)^0)] \ {\rm assuming} \ B(B^0 \to J/\psi(1S)K^*(892)^0)
       J/\psi(1S)\,K^*(892)^0)=(1.3\pm0.1)\times10^{-3}, which we rescale to our best value B(B^0\to
       J/\psi(1S) \, K^*(892)^0 = (1.28 \pm 0.05) \times 10^{-3}. Our first error is their experiment's error
       and our second error is the systematic error from using our best value.
```

 $\Gamma(\phi\nu\overline{\nu})/\Gamma_{\text{total}}$ Γ_{119}/Γ

Test for $\Delta B = 1$ weak neutral current.

CL%

DOCUMENT ID

TECN

COMMENT

TECN

TE $< 5.4 \times 10^{-3}$

$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\rm total}$ Γ_{120}/Γ

Test of lepton family number conservation.

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMEN</u>	<u>TID TECN</u>	COMMENI	
$<1.1 \times 10^{-8}$	90	¹ AAIJ	13BM LHCB	pp at 7 TeV	
 • • We do not ι 	ise the follo	wing data for	averages, fits, limit	s, etc. • • •	

 $< 2.0 \times 10^{-7}$ 90 AALTONEN 09P CDF $p\overline{p}$ at 1.96 TeV $<\!6.1\times10^{-6}$ ABE 98V CDF Repl. by AALTONEN 09P 2 ACCIARRI 97B L3 $e^+e^- \rightarrow Z$ $< 4.1 \times 10^{-5}$

POLARIZATION IN B_s^0 DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L), or both are transverse and parallel (\parallel), or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases $\phi_{||}$ and ϕ_\perp . See the definitions in the note on "Polarization in B Decays" review in the B^0 Particle Listings.

Γ_L/Γ in $B_s^0 \to D_s^* \rho^+$

VALUE	DOCUMENT ID		TECN	COMMENT	
1.05 + 0.08 + 0.03 -0.10 - 0.04	LOUVOT	10	BELL	$e^+e^- ightarrow \ \varUpsilon(5S)$	

Γ_L/Γ in $B_a^0 \rightarrow J/\psi(1S)\phi$

· L/ · · · · · · · · · · · · · · · · · ·	$\gamma = 0$				
VALUE		DOCUMENT ID		TECN	COMMENT
0.523 ± 0.005	OUR AVERAGE		scale	factor of	1.1.
$0.522\ \pm0.003$	± 0.007	1 AAD	16 AP	ATLS	<i>pp</i> at 7, 8 TeV
$0.510\ \pm0.005$	± 0.011	KHACHATRY.	16 S	CMS	pp at 8 TeV
0.5241 ± 0.0034		AAIJ	15 I	LHCB	<i>pp</i> at 7, 8 TeV
$0.524\ \pm0.013$	± 0.015	² AALTONEN	12 D	CDF	$p\overline{p}$ at 1.96 TeV
$0.558 \begin{array}{l} +0.017 \\ -0.019 \end{array}$	2,	³ ABAZOV	12 D	D0	$p\overline{p}$ at 1.96 TeV
0.61 ± 0.14	± 0.02	⁴ AFFOLDER	00N	CDF	$p\overline{p}$ at 1.8 TeV
0.56 ± 0.21	$^{+0.02}_{-0.04}$	ABE	95Z	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do n	ot use the followi	ng data for avera	ges, fi	its, limits	s, etc. • • •
0.529 ± 0.006		¹ AAD	14 U	ATLS	Repl. by AAD 16AP
0.539 ± 0.014	± 0.016	² AAD	12CV	ATLS	Repl. by AAD 14∪
0.555 ± 0.027		⁵ ABAZOV	09E	D0	Repl. by ABAZOV 12D
$0.531\ \pm0.020$	± 0.007	² AALTONEN	08J	CDF	Repl. by AALTONEN 12D
0.62 ± 0.06	± 0.01	ACOSTA	05	CDF	Repl. by AALTONEN 08J

 $^{^{1}\,\}mathrm{ADAM}$ 96D assumes $f_{B^{0}}=f_{B^{-}}=0.39$ and $f_{B_{\mathrm{S}}}=0.12.$

 $^{^1}$ Uses normalization mode B($B^0
ightarrow \ K^+\pi^-$) = (19.4 \pm 0.6) imes 10 $^{-6}$ and B production ratio $f(\overline{b} \rightarrow B_s^0)/f(\overline{b} \rightarrow B_d^0) = 0.256 \pm 0.020$.

² ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_h .

sample of 89 pb $^{-1}$. The P-wave fraction is found to be 0.23 \pm 0.19 \pm 0.04. 5 Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B_d^0 \to J/\psi K^{*0}$ and $B_s^0 \to J/\psi \phi$.

Γ_L/Γ in $B_s^0 o D_s^{*+}D_s^{*-}$				
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
$0.06^{+0.18}_{-0.17} \pm 0.03$	ESEN	13	BELL	$e^+e^- ightarrow ~ \gamma(5S)$

$\Gamma_{\parallel}/\Gamma$ in $B_s^0 \to J/\psi(1S)\phi$

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
0.228±0.007 OUR AVERAGE			
$0.227 \pm 0.004 \pm 0.006$	$^{ m 1}$ AAD	16AP ATLS	<i>pp</i> at 7, 8 TeV
$0.231 \pm 0.014 \pm 0.015$	² AALTONEN	12D CDF	$p\overline{p}$ at 1.96 TeV
$0.231^{+0.024}_{-0.030}$	^{2,3} ABAZOV	12D D0	$p\overline{p}$ at 1.96 TeV

We do not use the following data for averages, fits, limits, etc.

$0.220\pm0.008\pm0.009$	¹ AAD	14U ATLS	Repl. by AAD 16AP
$0.224 \pm 0.010 \pm 0.009$	² AAD	12CV ATLS	Repl. by AAD 140
$0.244 \pm 0.032 \pm 0.014$	⁴ ABAZOV	09E D0	Repl. by ABAZOV 12D
$0.230 \pm 0.029 \pm 0.011$	² AALTONEN	08J CDF	Repl. by AALTONEN 12D
$0.260\pm0.084\pm0.013$	ACOSTA	05 CDF	Repl. by AALTONEN 08J

Γ_{\perp}/Γ in $B_s^0 \rightarrow J/\psi(1S)\phi$

VALUE	DOCUMENT ID	TECN	COMMENT
0.249 ±0.006 OUR AVERAGE			
$0.243 \pm 0.008 \pm 0.012$	KHACHATRY16S	CMS	pp at 8 TeV
$0.2504 \pm 0.0049 \pm 0.0036$	AAIJ 15I	LHCB	<i>pp</i> at 7, 8 TeV
ϕ_{\parallel} in $B_s^0 ightarrow \ J/\psi(1S)\phi$			

TECN COMMENT

Created: 5/30/2017 17:23

$3.19^{+0.08}_{-0.09}$ OUR AVERAGE

$3.15 \pm 0.10 \pm 0.05$	AAD	16 AP	ATLS	<i>pp</i> at 7, 8 TeV
$3.48^{igoplus 0.07}_{-0.09} \pm 0.68$	KHACHATRY.	16 S	CMS	pp at 8 TeV
$3.26^{+0.10+0.06}_{-0.17-0.07}$	AAIJ	151	LHCB	<i>pp</i> at 7, 8 TeV
3.15 ± 0.22	¹ ABAZOV	12 D	D0	$p\overline{p}$ at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$2.72 + 1.12 \pm 0.26$$
 ABAZOV 09E D0 Repl. by ABAZOV 12D

HTTP://PDG.LBL.GOV

Page 46

 $^{^1}$ Measured using the flavor tagged, time-dependent angular analysis of $B^0_s
ightarrow J/\psi \phi$

 $^{^2}$ Measured using the time-dependent angular analysis of $B_{\rm \textit{S}}^{0} \rightarrow ~J/\psi\,\phi$ decays.

 $^{^3}$ The error includes both statistical and systematic uncertainties. 4 AFFOLDER 00N measurements are based on 40 3 candidates obtained from a data

 $^{^1}$ Measured using a tagged, time-dependent angular analysis of $B_s^0\to J/\psi\phi$ decays. 2 Measured using the time-dependent angular analysis of $B_s^0\to J/\psi\phi$ decays.

 $^{^3}$ The error includes both statistical and systematic uncertainties. 4 Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B^0_d \to J/\psi \, K^{*0}$ and $B^0_s \to J/\psi \, \phi.$

$\phi_{\perp} \text{ in } B_{\boldsymbol{s}}^{\boldsymbol{0}} \rightarrow J/\psi(1S)\phi$				
VALUE (rad) 3.2 ±0.4 OUR AVERAGE	DOCUMENT ID	TE	<u>CN</u>	COMMENT
$4.15 \pm 0.32 \pm 0.16$				pp at 7, 8 TeV
$2.98 \pm 0.36 \pm 0.66$	KHACHATRY			
$3.08^{igoplus 0.14}_{-0.15} \!\pm\! 0.06$				<i>pp</i> at 7, 8 TeV
• • • We do not use the foll	lowing data for average	es, fits, lim	its, e	etc. • • •
$3.89 \pm 0.47 \pm 0.11$	$^{ m 1}$ AAD	14∪ AT	LS	Repl. by AAD 16AP
¹ Measured using a tagged	I, time-dependent angu	ılar analysi	s of	$B^0 o J/\psi \phi$ decays.
E /E:= 00				
$1 + /1 \text{ in } B_{\bullet}^{\bullet} \rightarrow \psi(25)\phi$				
$1_{\perp}/1$ in $B_s^0 \rightarrow \psi(25)\phi$		TE	<u>CN</u>	COMMENT
$0.264^{+0.024}_{-0.023} \pm 0.002$	DOCUMENT ID 1 AAIJ	16AK LH	lСВ	<i>pp</i> at 7, 8 TeV
VALUE 0.264 $^{+0.024}_{-0.023}\pm 0.002$ 1 Measured using time-dep ϕ_{\parallel} in $B^0_s \rightarrow \psi(2S)\phi$	<u>DOCUMENT ID</u> 1 AAIJ Dendent angular analysi	16AK LH is of B_s^0	ICB · ψ(pp at 7, 8 TeV $(2S)\phi$ decays.
VALUE 0.264 $^+$ 0.024 $^+$ 0.002 1 Measured using time-dep ϕ_{\parallel} in $B^0_s \rightarrow \psi(2S)\phi$ VALUE (rad)	DOCUMENT ID 1 AAIJ Dendent angular analysi DOCUMENT ID	16AK LH is of B_s^0 $=$ $\frac{TE}{2}$	ICB $\cdot \; \psi$ (pp at 7, 8 TeV $2S)\phi$ decays. ${\it COMMENT}$
VALUE 0.264 $^+$ 0.024 $^+$ 0.002 1 Measured using time-dep ϕ_{\parallel} in $B_s^0 \rightarrow \psi(2S)\phi$ VALUE (rad)	DOCUMENT ID 1 AAIJ Dendent angular analysi DOCUMENT ID	16AK LH is of B_s^0 $=$ $\frac{TE}{2}$	ICB $\cdot \; \psi$ (pp at 7, 8 TeV $(2S)\phi$ decays.
$0.264^{+0.024}_{-0.023}\pm0.002$	DOCUMENT ID 1 AAIJ Dendent angular analysi DOCUMENT ID 1 AAIJ	16 AK LH is of B_s^0 $\underline{\qquad}$	CN CB	pp at 7, 8 TeV $2S)\phi$ decays. ${COMMENT}$ pp at 7, 8 TeV
VALUE 0.264 $^{+0.024}_{-0.023} \pm 0.002$ 1 Measured using time-dep ϕ_{\parallel} in $B^0_s \rightarrow \psi(2S)\phi$ VALUE (rad) 3.67 $^{+0.13}_{-0.18} \pm 0.03$	DOCUMENT ID 1 AAIJ Dendent angular analysi DOCUMENT ID 1 AAIJ	16 AK LH is of B_s^0 $\underline{\qquad}$	CN CB	pp at 7, 8 TeV $2S)\phi$ decays. ${COMMENT}$ pp at 7, 8 TeV
VALUE 0.264 $^+$ 0.024 $^+$ 0.002 1 Measured using time-dep ϕ_{\parallel} in $B^0_s \rightarrow \psi(2S)\phi$ VALUE (rad) 3.67 $^+$ 0.13 $^+$ 0.03 1 Measured using time-dep ϕ_{\perp} in $B^0_s \rightarrow \psi(2S)\phi$	DOCUMENT ID 1 AAIJ Dendent angular analysi DOCUMENT ID 1 AAIJ	16AK LH is of B_s^0 $\overline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ 16AK LH is of B_s^0 $\underline{}$	ICB · ψ(<u>CN</u> ICB · ψ(pp at 7, 8 TeV $(2S)\phi$ decays. $(2S)\phi$ decays. $(2S)\phi$ at 7, 8 TeV $(2S)\phi$ decays.
VALUE 0.264 $^{+0.024}_{-0.023}\pm 0.002$ 1 Measured using time-dep ϕ_{\parallel} in $B^0_s \rightarrow \psi(2S)\phi$ VALUE (rad) 3.67 $^{+0.13}_{-0.18}\pm 0.03$ 1 Measured using time-dep	DOCUMENT ID 1 AAIJ DOCUMENT ID 1 AAIJ DOCUMENT ID 1 AAIJ Dendent angular analysi DOCUMENT ID	16AK LH is of B_s^0 TE 16AK LH is of B_s^0 TE	iCB · ψ(<u>CN</u> ICB · ψ(<u>CN</u>	pp at 7, 8 TeV $(2S)\phi$ decays. $(2S)\phi$ decays. $(2S)\phi$ at 7, 8 TeV $(2S)\phi$ decays.

VALUE	DOCUMENT	TID TECN COMMENT	_
$0.497 \pm 0.025 \pm 0.025$	AAIJ	15AV LHCB pp at 7, 8 TeV	
ullet $ullet$ We do not use the follow	ing data for ave	rages, fits, limits, etc. ● ●	
$0.50\ \pm0.08\ \pm0.02$	$^{ m 1}$ AAIJ	12AP LHCB Repl. by AAIJ 15AV	

 $^{^1}$ The non-resonant $K\pi$ background contributions are subtracted. Also reports an S-wave amplitude $|{\rm A}_S|^2=0.07^{+0.15}_{-0.07}.$

 Γ_{\parallel} / Γ for $B^0_s \to J/\psi(1S)\overline{K}^*(892)^0$ Parallel polarization fraction, equals to $1-f_L-f_\perp$ using notation of "Polarization" in B decays" review.

Created: 5/30/2017 17:23

DOCUMENT ID TECN COMMENT **VALUE** $0.179 \pm 0.027 \pm 0.013$ AAIJ 15AV LHCB pp at 7, 8 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • 1 AAIJ

 $0.19 \ {}^{+\, 0.10}_{-\, 0.08} \ \pm 0.02$ 12AP LHCB Repl. by AAIJ 15AV

HTTP://PDG.LBL.GOV Page 47

$\Gamma_{\parallel} / \Gamma$ of $K^*(892)^0$ in $B_s^0 \rightarrow \psi(2S) \overline{K}^*(892)^0$

<u>V</u> ALUE	DOCUMENT ID	TECN	COMMENT
$0.524 \pm 0.056 \pm 0.029$	AAIJ 1	.5u LHCB	pp at 7.8 TeV

Created: 5/30/2017 17:23

Γ_L/Γ in $B^0_s o \phi \phi$

VALUE	DOCUMENT ID	TECN	COMMENT
0.362 ± 0.014 OUR AVE	RAGE		
$0.364 \pm 0.012 \pm 0.009$	AAIJ	14AE LHCB	<i>pp</i> at 7, 8 TeV
$0.348 \pm 0.041 \pm 0.021$	AALTONEN	11AN CDF	$p\overline{p}$ at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.365 \pm 0.022 \pm 0.012$ **AAIJ** 12P LHCB Repl. by AAIJ 14AE

Γ_{\perp}/Γ in $B_s^0 \to \phi \phi$

VALUE	DOCUMENT ID	<u>TECN</u> <u>COMMENT</u>
0.309 ± 0.015 OUR AVERAGE	Error includes scale	factor of 1.1.
$0.305 \pm 0.013 \pm 0.005$	AAIJ	14AE LHCB pp at 7, 8 TeV
$0.365 \pm 0.044 \pm 0.027$	AALTONEN	11AN CDF $p\overline{p}$ at 1.96 TeV
• • • We do not use the follow	ing data for averages	s, fits, limits, etc. • • •
$0.291 \pm 0.024 \pm 0.010$	AAIJ	12P LHCB Repl. by AAIJ 14AE

ϕ_{\parallel} in $B^0_s \to \phi \phi$

VALUE (rad)	DOCUMENT ID		TECN	COMMENT
2.55±0.11 OUR AVERAGE				
$2.54 \pm 0.07 \pm 0.09$	¹ AAIJ	14 AE	LHCB	<i>pp</i> at 7, 8 TeV
$2.71^{+0.31}_{-0.36}{\pm}0.22$	² AALTONEN	11AN	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$2.57 \pm 0.15 \pm 0.06$	³ AAIJ	12 P	LHCB	Repl. by AAIJ 14AE

 $^{^1}$ AAIJ 14AE reports measurement of ϕ_\perp and $\phi_\perp-\phi_\parallel$, which we convert into ϕ_\parallel . Statistical uncertainty includes correlation between measured parameters, while systematic

uncertainties are assumed uncorrelated. ² AALTONEN 11AN quotes $\cos\phi_{\parallel}=-0.91^{+0.15}_{-0.13}\pm0.09$ which we convert to ϕ_{\parallel} taking

ϕ_{\perp} in $B_s^0 \rightarrow \phi \phi$

VALUE (rad)	DOCUMENT ID	TECN	COMMENT
2.67±0.23±0.07	AAIJ	14AE LHCB	pp at 7, 8 TeV

Γ_L/Γ in $B_s^0 \to K^{*0}\overline{K}^{*0}$

<u>VALUE</u>	DOCUMENT ID	TECN	<u>COMMENT</u>
$0.201 \pm 0.057 \pm 0.040$	¹ AAIJ	15AF LHCB	pp at 7 TeV
• • • We do not use the following	ng data for average	es, fits, limits,	etc. • • •

 $^{0.31 \}pm 0.12 \pm 0.04$ **AAIJ** 12F LHCB Repl. by AAIJ 15AF

 $^{^1}$ The non-resonant $K\pi$ background contributions are subtracted. Also reports an S-wave amplitude $|{\rm A}_S|^2=0.07^{+0.15}_{-0.07}.$

the smaller solution. 3 AAIJ 12P quotes $\cos\!\phi_{\parallel}=-0.844\pm0.068\pm0.029$ which we convert to ϕ_{\parallel} , taking the smaller solution.

 $^{^{}m 1}$ Measured in angular analysis, which takes into account \emph{S} -wave contributions.

Γ_{\perp}/Γ in $B^0_s o K^{*0}\overline{K}^{*0}$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.38±0.11±0.04	AAIJ			pp at 7 TeV
$\Gamma_{\parallel}/\Gamma$ in $B_s^0 \to K^*(892)^0 \overline{K}^*($	892)0			
VALUE (032) A (DOCUMENT ID		TECN	COMMENT
$0.215 \pm 0.046 \pm 0.015$				pp at 7 TeV
Φ_{\parallel} in $B_s^0 \rightarrow K^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^$	2)0			
VALUE	DOCUMENT ID		TFCN	COMMENT
5.31±0.24±0.14				pp at 7 TeV
F /F :- D0 / I Z*0				
Γ_L/Γ in $B^0_s o \phi \overline{K}^{*0}$	DOCUMENT ID		TECN	COMMENT
<u>VALUE</u> 0.51±0.15±0.07	<u>DOCUMENT ID</u> AAIJ			pp at 7 TeV
	70113	13000	LITED	pp at 1 TeV
Γ_{\parallel} / Γ in $B_s^0 o \phi \overline{K}^{*0}$				
VALUE	DOCUMENT ID			
$0.21 \pm 0.11 \pm 0.02$	AAIJ	13BW	LHCB	pp at 7 TeV
ϕ_{\parallel} in $B^0_s o \phi \overline{K}^{*0}$				
VALUE (rad)	DOCUMENT ID		TECN	COMMENT
$1.75 \pm 0.53 \pm 0.29$	¹ AAIJ	13 BW	LHCB	pp at 7 TeV
1 Measures $\cos(\phi_{ }) = -$ 0.18 \pm 0	$.52\pm0.29$, which	ı we co	nvert to	ϕ_{\parallel} by taking the smaller
solution.				"
$F_L(B_s^0 o \phi \mu^+ \mu^-)$ (0.10 <	$q^2 < 2.00 \text{ GeV}$	l^2/c^4)	
VALUE	DOCUMENT ID		TECN	COMMENT
			7201	COMMENT
$0.20^{+0.08}_{-0.09}\pm0.02$	AAIJ	15AQ		pp at 7, 8 TeV
0.20 ⁺ 0.08/ ₋ 0.09 ±0.02 • • • We do not use the following			LHCB	<i>pp</i> at 7, 8 TeV
0.05		s, fits,	LHCB limits, e	<i>pp</i> at 7, 8 TeV
• • • We do not use the following $0.37 {+0.19 \atop -0.17} \pm 0.07$	data for average	s, fits,	LHCB limits, e	<i>pp</i> at 7, 8 TeV
• • • We do not use the following $0.37^{+0.19}_{-0.17}\pm0.07$ $F_L(B^0_s\to\phi\mu^+\mu^-) \ (2.00<$	data for average: AAIJ $q^2 < 5.0 \text{ GeV}^2$	13x 2/ c ⁴)	LHCB limits, e LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B^0_s \rightarrow \phi \mu^+ \mu^-) (2.00 < \frac{VALUE}{2}$	AAIJ q ² < 5.0 GeV ³ DOCUMENT ID	13X 2/c ⁴)	LHCB limits, e LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \to \phi \mu^+ \mu^-) (2.00 < \frac{VALUE}{0.68^{+0.16}_{-0.13} \pm 0.03}$	data for average: AAIJ q ² < 5.0 GeV ² <u>DOCUMENT ID</u> AAIJ	13X 13X 2/c ⁴) 15AQ	LHCB limits, 6 LHCB <u>TECN</u> LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B^0_s \rightarrow \phi \mu^+ \mu^-) (2.00 < \frac{VALUE}{2}$	data for average: AAIJ q ² < 5.0 GeV ² <u>DOCUMENT ID</u> AAIJ	13X 13X 2/c ⁴) 15AQ	LHCB limits, 6 LHCB <u>TECN</u> LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \to \phi \mu^+ \mu^-) (2.00 < \frac{VALUE}{0.68^{+0.16}_{-0.13} \pm 0.03}$	data for average: AAIJ q ² < 5.0 GeV ² <u>DOCUMENT ID</u> AAIJ	13X 13X 2/c ⁴) 15AQ s, fits,	LHCB limits, 6 LHCB TECN LHCB limits, 6	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \rightarrow \phi \mu^+ \mu^-) (2.00 < \frac{VALUE}{0.68^{+0.16}_{-0.13} \pm 0.03}$ • • • We do not use the following	data for average: AAIJ q ² < 5.0 GeV ² <u>DOCUMENT ID</u> AAIJ data for average: 1 AAIJ	13X 13X 2/c ⁴) 15AQ s, fits,	LHCB limits, 6 LHCB TECN LHCB limits, 6	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • •
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B^0_s \to \phi \mu^+ \mu^-)$ (2.00 < NALUE 0.68 $^{+0.16}_{-0.13} \pm 0.03$ • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Ge	data for average: AAIJ $q^2 < 5.0 \text{ GeV}^2$ DOCUMENT ID AAIJ data for average: 1 AAIJ 2 V 2 /c 4 .	13X 13X 2/c ⁴) 15AQ s, fits, 13X	LHCB limits, 6 LHCB TECN LHCB limits, 6	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • •
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B^0_s \to \phi \mu^+ \mu^-) (2.00 < \frac{VALUE}{0.68^{+0.16}_{-0.13} \pm 0.03}$ • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$	AAIJ	13X 2/c ⁴) 15AQ s, fits, 13X	LHCB limits, e LHCB <u>TECN</u> LHCB limits, e	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B^0_s \to \phi \mu^+ \mu^-)$ (2.00 < NALUE 0.68 $^{+0.16}_{-0.13} \pm 0.03$ • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Geometric Fig. (3) $q^2 = 4.3$ Geometric Parameters $q^2 = 4.3$	AAIJ	13X 2/c ⁴) 15AQ s, fits, 13X	LHCB limits, 6 LHCB TECN LHCB limits, 6 LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • Repl. by AAIJ 15AQ
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B^0_s \rightarrow \phi \mu^+ \mu^-)$ (2.00 < NALUE $0.68^{+0.16}_{-0.13} \pm 0.03$ • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$) (5.0 < $q^2_s < 4.3$ Geometric F _L ($B^0_s \rightarrow \phi \mu^+ \mu^-$)	AAIJ q ² < 5.0 GeV DOCUMENT ID AAIJ data for average: 1 AAIJ eV ² /c ⁴ . 2 < 8.0 GeV ² / DOCUMENT ID AAIJ	13x 13x 15AQ 15AQ s, fits, 13x /c ⁴)	LHCB limits, e LHCB TECN LHCB TECN LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \to \phi \mu^+ \mu^-)$ (2.00 < $\frac{VALUE}{0.68^{+0.16}_{-0.13} \pm 0.03}$ • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < $	AAIJ data for average: AAIJ q² < 5.0 GeV DOCUMENT ID AAIJ data for average: 1 AAIJ eV²/c⁴. 2 < 8.0 GeV² DOCUMENT ID AAIJ data for average:	13X 2/c ⁴) 15AQ s, fits, 13X /c ⁴) 15AQ s, fits,	LHCB limits, e LHCB TECN LHCB TECN LHCB LHCB Imits, e	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • •
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \rightarrow \phi \mu^+ \mu^-)$ (2.00 < NALUE 0.68 + 0.16 \pm 0.03 • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Geometric Fig. (5.0 < quad NALUE) 0.54 + 0.10 \pm 0.02 • • • We do not use the following $0.81^{+0.10}_{-0.13} \pm 0.05$	data for average: AAIJ q ² < 5.0 GeV ⁴ DOCUMENT ID AAIJ data for average: 1 AAIJ 2 < 8.0 GeV ² DOCUMENT ID AAIJ data for average: 1 AAIJ data for average: 1 AAIJ	13X 2/c ⁴) 15AQ s, fits, 13X /c ⁴) 15AQ s, fits,	LHCB limits, e LHCB TECN LHCB TECN LHCB LHCB Imits, e	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \to \phi \mu^+ \mu^-)$ (2.00 < $\frac{VALUE}{0.68^{+0.16}_{-0.13} \pm 0.03}$ • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < 4.3$ Geometric F _L ($B_s^0 \to \phi \mu^+ \mu^-$) (5.0 < $q^2 < $	data for average: AAIJ q² < 5.0 GeV ² DOCUMENT ID AAIJ data for average: 1 AAIJ 2 < 8.0 GeV ² DOCUMENT ID AAIJ data for average: 1 AAIJ AAIJ data for average:	13X 2/c ⁴) 15AQ s, fits, 13X /c ⁴) 15AQ s, fits,	LHCB limits, e LHCB TECN LHCB TECN LHCB LHCB Imits, e	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • •
• • • We do not use the following $0.37^{+0.19}_{-0.17} \pm 0.07$ $F_L(B_s^0 \rightarrow \phi \mu^+ \mu^-)$ (2.00 < NALUE 0.68 + 0.16 \pm 0.03 • • • We do not use the following $0.53^{+0.25}_{-0.23} \pm 0.10$ 1 Measured in $2.0 < q^2 < 4.3$ Geometric Fig. (5.0 < quad NALUE) 0.54 + 0.10 \pm 0.02 • • • We do not use the following $0.81^{+0.10}_{-0.13} \pm 0.05$	data for average: AAIJ q² < 5.0 GeV ² DOCUMENT ID AAIJ data for average: 1 AAIJ 2 < 8.0 GeV ² DOCUMENT ID AAIJ data for average: 1 AAIJ AAIJ data for average:	13X 2/c ⁴) 15AQ s, fits, 13X /c ⁴) 15AQ s, fits,	LHCB limits, 6 LHCB TECN LHCB limits, 6 LHCB LHCB LHCB	pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 15AQ COMMENT pp at 7, 8 TeV etc. • • •

 $\mathsf{F}_L(\mathcal{B}^0_s o \phi \mu^+ \mu^-) \ (11.0 < \mathsf{q}^2 < 12.5 \ \mathsf{GeV}^2/\mathsf{c}^4)$ $0.29\pm0.11\pm0.04$ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. •

 $0.33^{+0.14}_{-0.12}\pm0.06$

¹ AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $\mathrm{F}_L(B_{\mathrm{s}}^0
ightarrow \phi \mu^+ \mu^-)$ (15.0< q 2 < 17.0 GeV $^2/\mathrm{c}^4$)

AAIJ 15AQ LHCB pp at 7, 8

 $0.23^{igoplus 0.09}_{-0.08} \pm 0.02$

15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.34^{+0.18}_{-0.17}\pm0.07$

 1 AALL

13X LHCB Repl. by AAIJ 15AQ

 $F_L(B_s^0 o \phi \mu^+ \mu^-)$ (17.0 < q² < 19.0 GeV²/c⁴)

VALUE

DOCUMENT ID

TECH
COMMENT

 $0.40^{f +0.13}_{f -0.15} \pm 0.02$

15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.16^{+0.17}_{-0.10}\pm0.07$

¹ AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $F_L(B_s^0 o \phi \mu^+ \mu^-)$ (1.00 < q² < 6.00 GeV²/c⁴)

 $0.63^{+0.09}_{-0.09}\pm0.03$

15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • •

 $0.56^{\,+\,0.17}_{\,-\,0.16}\,{\pm}\,0.09$

AAIJ

13X LHCB Repl. by AAIJ 15AQ

Created: 5/30/2017 17:23

$B_s^0 - \overline{B}_s^0$ MIXING

For a discussion of B^0_s \overline{B}^0_s mixing see the note on " B^0 \overline{B}^0 Mixing" in the B^0 Particle Listings above.

 χ_s is a measure of the time-integrated $B_s^0 - \overline{B}_s^0$ mixing probability that produced $B_s^0(\overline{B}_s^0)$ decays as a $\overline{B}_s^0(B_s^0)$. Mixing violates $\Delta B \neq 2$ rule.

$$\chi_{s} = \frac{x_{s}^2}{2(1+x_{s}^2)}$$

$$x_{s} = \frac{\Delta m_{B_{s}^{0}}}{\Gamma_{B_{s}^{0}}} = (m_{B_{sH}^{0}} - m_{B_{sL}^{0}}) \tau_{B_{s}^{0}},$$

where H, L stand for heavy and light states of two B_s^0 CP eigenstates and

$$\tau_{B_s^0} = \frac{1}{0.5(\Gamma_{B_s^0 H} + \Gamma_{B_s^0 L})}.$$

¹ Measured in $10.09 < q^2 < 12.90 \text{ GeV}^2/c^4$

 $^{^{1}}$ Measured in 14.18 $< q^{2} < 16 \text{ GeV}^{2}/c^{4}$

¹ Measured in $16.0 < q^2 < 19.0 \text{ GeV}^2/c^4$.

 $\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0}$ $\Delta m_{B_s^0} \text{ is a measure of } 2\pi \text{ times the } B_s^0 - \overline{B}_s^0 \text{ oscillation frequency in time-dependent}$ mixing experiments.

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV) by taking into account correlations between measurements.

<i>VALUE</i> $(10^{12} \ h \ s^{-1})$	L) <i>CL%</i>	DOCUMENT ID		TECN	COMMENT
17.757 ± 0.021					
17.756 ± 0.021		AGE			
$17.711 ^{+ 0.055}_{- 0.057}$	\pm 0.011	¹ AAIJ	151	LHCB	<i>pp</i> at 7, 8 TeV
17.768 ± 0.023	3 ± 0.006	² AAIJ	13 BI	LHCB	pp at 7 TeV
17.93 ± 0.22	±0.15	³ AAIJ	13 CF	LHCB	pp at 7 TeV
17.63 ± 0.11	± 0.02	⁴ AAIJ	121	LHCB	pp at 7 TeV
17.77 ± 0.10		⁵ ABULENCIA,A			$p\overline{p}$ at 1.96 TeV
• • • We do no	t use the follo	owing data for aver	ages,	fits, limi	ts, etc. • • •
17–21	90	⁶ ABAZOV	06 B	D0	$p\overline{p}$ at 1.96 TeV
$17.31 \begin{array}{c} +0.33 \\ -0.18 \end{array}$	± 0.07	⁷ ABULENCIA	06Q	CDF	Repl. by ABULEN- CIA,A 06G
> 8.0	95	⁸ ABDALLAH	04 J	DLPH	$e^+e^- ightarrow Z^0$
> 4.9	95	⁹ ABDALLAH	04 J	DLPH	$e^+e^- ightarrow Z^0$
> 8.5	95	¹⁰ ABDALLAH	04 J	DLPH	$e^+e^- ightarrow Z^0$
> 5.0	95	¹¹ ABDALLAH	03 B	DLPH	$e^+e^- o Z$
>10.3	95	¹² ABE	03	SLD	$e^+e^- o Z$
>10.9	95	¹³ HEISTER	03E	ALEP	$e^+e^- \rightarrow Z$
> 5.3	95	¹⁴ ABE	02V	SLD	$e^+e^- o Z$
> 1.0	95	¹⁵ ABBIENDI	01 D	OPAL	$e^+e^- \rightarrow Z$
> 7.4	95	¹⁶ ABREU	00Y	DLPH	Repl. by ABDALLAH 04J
> 4.0	95	¹⁷ ABREU,P	00 G	DLPH	$e^+e^- o Z$
> 5.2	95	¹⁸ ABBIENDI	99 S	OPAL	$e^+e^- o Z$
<96	95	¹⁹ ABE	99 D	CDF	$p\overline{p}$ at 1.8 TeV
> 5.8	95	²⁰ ABE	99J	CDF	$p\overline{p}$ at 1.8 TeV
> 9.6	95	²¹ BARATE	99J	ALEP	$e^+e^- o Z$
> 7.9	95	²² BARATE	98 C	ALEP	Repl. by BARATE 99J
> 3.1	95	²³ ACKERSTAFF		OPAL	Repl. by ABBIENDI 99S
> 2.2	95	²⁴ ACKERSTAFF			Repl. by ABBIENDI 99S
> 6.5	95	²⁵ ADAM	97	DLPH	Repl. by ABREU 00Y
> 6.6	95	²⁶ BUSKULIC		ALEP	Repl. by BARATE 980
> 2.2	95	²⁴ AKERS	95J	OPAL	Sup. by ACKERSTAFF 97V
> 5.7	95	²⁷ BUSKULIC	95J	ALEP	$e^+e^- \rightarrow Z$
> 1.8	95	²⁴ BUSKULIC	94 B	ALEP	$e^+e^- o Z$

^{1.0 95 -} BUSNULIC 948 ALEP $e^+e^- \rightarrow Z$ 1 Measured using time-dependent angular analysis of $B_s^0 \rightarrow J/\psi K^+ K^-$ decays.

2 Measured using $B_s^0 \rightarrow D_s^- \pi^+$ decays.

3 Measured using $B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu X$ decays.

4 Measured using $B_s^0 \rightarrow D_s^- \pi^+$ and $D_s^- \pi^+ \pi^- \pi^+$ decays.

5 Significance of oscillation signal is 5.4 σ . Also reports $|V_{td}|/|V_{ts}| = 0.2060 \pm 0.0007_{-0.0060}^{+0.0081}$.

- ⁶ A likelihood scan over the oscillation frequency, Δm_s , gives a most probable value of 19 ps⁻¹ and a range of 17< Δm_s <21 (ps⁻¹) at 90% C.L. assuming Gaussian uncertainties. Also excludes Δm_s <14.8 ps⁻¹ at 95% C.L
- 7 Significance of oscillation signal is 0.2%. Also reported the value $\left|V_{td} / V_{ts}\right| = 0.208 {+0.001 + 0.008 \atop -0.002 0.006}$
- ⁸ Uses leptons emitted with large momentum transverse to a jet and improved techniques for vertexing and flavor-tagging.
- 9 Updates of D_{s} -lepton analysis.
- $^{
 m 10}$ Combined results from all Delphi analyses.
- ¹¹ Events with a high transverse momentum lepton were removed and an inclusively reconstructed vertex was required.
- ¹² ABE 03 uses the novel "charge dipole" technique to reconstruct separate secondary and tertiary vertices originating from the $B \to D$ decay chain. The analysis excludes $\Delta m_S < 4.9 \, \mathrm{ps}^{-1}$ and $7.9 < \Delta m_S < 10.3 \, \mathrm{ps}^{-1}$.
- ¹³ Three analyses based on complementary event selections: (1) fully-reconstructed hadronic decays; (2) semileptonic decays with D_s exclusively reconstructed; (3) inclusive semileptonic decays.
- 14 ABE 02V uses exclusively reconstructed D_s^- mesons and excludes $\Delta m_s < \! 1.4 \, \mathrm{ps}^{-1}$ and $^{2.4} < \Delta m_s < \! 5.3 \, \mathrm{ps}^{-1}$ at 95%CL.
- ¹⁵ Uses fully or partially reconstructed $D_{\rm S}\ell$ vertices and a mixing tag as a flavor tagging.
- ¹⁶ Replaced by ABDALLAH 04A. Uses $D_s^-\ell^+$, and $\phi\ell^+$ vertices, and a multi-variable discriminant as a flavor tagging.
- 17 Uses inclusive D_s vertices and fully reconstructed B_s decays and a multi-variable discriminant as a flavor tagging.
- 18 Uses $\ell\text{-}Q_{ ext{hem}}$ and $\ell\text{-}\ell$.
- 19 ABE 99D assumes $au_{B^0}=1.55\pm0.05$ ps and $\Delta\Gamma/\Delta m=(5.6\pm2.6)\times10^{-3}$.
- 20 ABE 99J uses ϕ ℓ - ℓ correlation.
- $^{21}\,\mathrm{BARATE}$ 99J uses combination of an inclusive lepton and D_s^- -based analyses.
- ²²BARATE 98C combines results from $D_s h \ell/Q_{hem}$, $D_s h K$ in the same side, $D_s \ell \ell/Q_{hem}$ and $D_s \ell K$ in the same side.
- 23 Uses ℓ - Q_{hem} .
- 24 Uses ℓ - ℓ .
- 25 ADAM 97 combines results from $D_s \ell$ - Q_{hem} , ℓ - Q_{hem} , and ℓ - ℓ .
- 26 BUSKULIC 96M uses D_s lepton correlations and lepton, kaon, and jet charge tags.
- 27 BUSKULIC 95J uses $\ell\text{-}Q_{\text{hem}}$. They find $\Delta m_s>5.6$ [> 6.1] for f_s =10% [12%]. We interpolate to our central value f_s =10.5%.

$x_s = \Delta m_{B^0}/\Gamma_{B^0}$

This is derived by the Heavy Flavor Averaging Group (HFLAV) from the results on Δm_{B^0} and "OUR EVALUATION" of the B_s^0 mean lifetime.

<u>VALUE</u>

DOCUMENT ID

26.72±0.09 OUR EVALUATION

χ_{s}

This is a $B_s^0 - \overline{B}_s^0$ integrated mixing parameter derived from x_s above and OUR EVAL-UATION of $\Delta \Gamma_{B_s^0} / \Gamma_{B_s^0}$.

Created: 5/30/2017 17:23

VALUE

DOCUMENT ID

0.499304±0.000005 OUR EVALUATION

CP VIOLATION PARAMETERS in B_s^0

$\operatorname{Re}(\epsilon_{B_s^0}) \: / \: (1 + \big|\epsilon_{B_s^0}\big|^2)$

CP impurity in B_s^0 system.

"OUR EVALUATION" is an average obtained by the Heavy Flavor Averaging Group (HFLAV) and described at http://www.slac.stanford.edu/xorg/hflav/. It is the result of a fit to B_d and B_s CP asymmetries, which includes the B_s measurements listed below and the B_d measurements listed in the B_d section, and takes into account correlations between those measurements.

VALUE (units 10⁻³) DOCUMENT ID TECN COMMENT

-0.15 ± 0.70 OUR EVALUATION

0.0 \pm **1.1 OUR AVERAGE** Error includes scale factor of 1.6. See the ideogram below.

$0.98 \pm 0.65 \pm 0.5$	¹ AAIJ	16 G	LHCB	<i>pp</i> at 7, 8 TeV
-2.15 ± 1.85	² ABAZOV	14	D0	$p\overline{p}$ at 1.96 TeV
$-2.8 \pm 1.9 \pm 0.4$	³ ABAZOV	13	D0	$p\overline{p}$ at 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc.

$-0.15\!\pm\!1.25\!\pm\!0.90$	⁴ AAIJ	14D LHCB	Repl. by AAIJ 16G
-4.5 ± 2.7	⁵ ABAZOV	11U D0	Repl. by ABAZOV 14
$-0.4 \pm 2.3 \pm 0.4$	⁶ ABAZOV	10E D0	Repl. by ABAZOV 13
-3.6 ± 1.9	⁷ ABAZOV	10H D0	Repl. by ABAZOV 11U
$6.1\ \pm 4.8\ \pm 0.9$	⁸ ABAZOV	07A D0	Repl. by ABAZOV 10E

 $^{^1}$ AAIJ 16G reports a measurement of time-integrated flavor-specific asymmetry in $B_s^0\to \mu^+\,D_s^-\,X$ decays, $A_{SL}^s=$ (0.39 \pm 0.26 \pm 0.20)%, which is approximately equal to 4 \times Re($\epsilon_{B_s^0}$) / (1 + $|\epsilon_{B_s^0}|^2$).

²ABAZOV 14 uses the dimuon charge asymmetry with different impact parameters from which it reports $A_{SL}^s=(-0.86\pm0.74)\times10^{-2}$.

 $^{^3}$ ABAZOV 13 reports a measurement of time-integrated flavor-specific asymmetry in mixed semileptonic $B_s^0 \to \ \mu^+ \, D_s^- \, X$ decays $A_{SL}^s = (-1.12 \pm 0.74 \pm 0.17)\%$ which is approximately equal to $4 \times \, \mathrm{Re}(\epsilon_{B_s^0}) \, / \, (1 + |\epsilon_{B_s^0}|^2).$

 $^{^4}$ AAIJ 14D reports a measurement of time-integrated flavor-specific asymmetry in $B_s^0 \to \mu^+ \, D_s^- \, X$ decays, $A_{SL}^s = (-\,0.06 \pm 0.50 \pm 0.36)\%$, which is approximately equal to 4 \times Re($\epsilon_{B_s^0}$) / (1 + $|\epsilon_{B_s^0}|^2$).

 $^{^5}$ ABAZOV 11U uses the dimuon charge asymmetry with different impact parameters from which it reports $A^s_{SL}=(-18.1\pm10.6)\times10^{-3}.$

⁶ ABAZOV 10E reports a measurement of flavor-specific asymmetry in $B_{(s)}^0 \to \mu^+ D_{(s)}^{*-} X$ decays with a decay-time analysis including initial-state flavor tagging, $A_{SL}^s = (-1.7 \pm 9.1^{+1.4}_{-1.5}) \times 10^{-3}$ which is approximately equal to $4 \times \text{Re}(\epsilon_{B_c^0}) / (1 + |\epsilon_{B_c^0}|^2)$.

 $^{^7}$ ABAZOV 10H reports a measurement of like-sign dimuon charge asymmetry of $A^s_{SL}=(-9.57\pm2.51\pm1.46)\times10^{-3}$ in semileptonic b-hadron decays. Using the measured production ratio of B^0_d and B^0_s , and the asymmetry of B^0_d $A^s_{SL}=(-4.7\pm4.6)\times10^{-3}$ measured from B-factories, they obtain the asymmetry for B^0_s .

 8 The first direct measurement of the time integrated flavor untagged charge asymmetry in semileptonic B_s^0 decays is reported as $2 \times A_{SL}^s(\text{untagged}) = A_{SL}^s = (2.45 \pm 1.93 \pm 1.93$ $0.35) \times 10^{-2}$.

$$C_{KK}(B_s^0 \rightarrow K^+K^-)$$

 $0.14 \pm 0.11 \pm 0.03$

DOCUMENT ID TECN COMMENT **AAIJ** 13B0 LHCB pp at 7 TeV

Created: 5/30/2017 17:23

 $S_{KK}(B_s^0 \rightarrow K^+K^-)$

TECN COMMENT $0.30\pm0.12\pm0.04$ 13B0 LHCB pp at 7 TeV

For angle $\gamma(\phi_3)$ of the CKM unitarity triangle, see the review on "CP Violation" in the Reviews section.

VALUE (°)	DOCUMENT ID		TECN	COMMENT
65 ± 7 OUR AVERAGE				
$63.5 + 7.2 \\ - 6.7$	1,2 AAIJ	15 K	LHCB	<i>pp</i> at 7, 8 TeV
$\begin{array}{ccc} +28 \\ -43 \end{array}$	³ AAIJ	14 BF	LHCB	pp at 7 TeV

 $^{^1}$ Obtained by measuring time-dependent $\it CP$ asymmetry in $\it B^0_s \rightarrow \it K^+ \it K^-$ and using a U-spin relation between $\it B^0_s \rightarrow \it K^+ \it K^-$ and $\it B^0 \rightarrow \it \pi^+ \it \pi^-$.

² Results are also presented using additional inputs on $B^0 \to \pi^0 \pi^0$ and $B^+ \to \pi^+ \pi^0$ decays from other experiments and isospin symmetry assumptions. The dependence

of the results on the maximum allowed amount of U-spin breaking up to 50% is also

³ Measured in $B_s^0 \to D_s^\mp K^\pm$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s=0.01\pm0.07\pm0.0$ from AAIJ 13AR. The value is modulo 180° at 68% CL.

$$\delta_B(B_s^0 \to D_s^{\pm} K^{\mp})$$

DOCUMENT ID TECN COMMENT

1 AAIJ 14BF LHCB pp at 7 TeV 3^{+19}_{-20}

 $\mathbf{r}_B(B_s^0 \to D_s^\mp K^\pm)$ \mathbf{r}_B and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A(B_s^0 \to D_s^+ K^-)$ and $A(B_s^0 \to D_s^- K^+)$,

VALUE	DOCUMENT ID	TECN	COMMENT
$0.53^{+0.17}_{-0.16}$	¹ AAIJ	14BF LHCB	pp at 7 TeV

 $^{^1}$ Measured in $B_s^0\to D_s^\mp K^\pm$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s=0.01\pm0.07\pm0.0$ from AAIJ 13AR. At 68% CL.

CP Violation phase β_s

 $-2\beta_S$ is the weak phase difference between B_S^0 mixing amplitude and the $B_S^0 o J/\psi \phi$ decay amplitude driven by the $b \to c \overline{c} s$ transition (such as $B_s \to J/\psi \phi$, $J/\psi K^+ K^-$, $J/\psi \pi^+ \pi^-$, and $D_s^+ D_s^-$). The Standard Model value of β_s is $arg(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{sb}^*})$ if penguin contributions are neglected.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/scaling procedure takes into account correlation between the measurements.

$VALUE (10^{-2} \text{ rad})$	DOCUMENT ID	TECN	COMMENT
1.5 \pm 1.6 OUR EVA	LUATION		
$1.5~\pm~1.7~$ OUR AVE	RAGE		
$4.5 \pm 3.9 \pm 2.1$	¹ AAD	16AP ATLS	<i>pp</i> at 7, 8 TeV
$-11.5 \ {+14\atop -14.5} \ \pm 1$	² AAIJ	16AK LHCB	<i>pp</i> at 7, 8 TeV
$3.75 \pm 4.85 \pm 1.55$	³ KHACHATRY	16s CMS	pp at 8 TeV
$2.9 \pm 2.5 \pm 0.3$	⁴ AAIJ	15ı LHCB	<i>pp</i> at 7, 8 TeV
$-$ 1 \pm 9 \pm 1	⁵ AAIJ	14AY LHCB	<i>pp</i> at 7, 8 TeV
$-$ 3.5 \pm 3.4 \pm 0.4	⁶ AAIJ	14s LHCB	<i>pp</i> at 7, 8 TeV
	⁷ AALTONEN	12AJ CDF	$p\overline{p}$ at 1.96 TeV
$\begin{array}{cc} 28 & +18 \\ -19 \end{array}$	⁸ ABAZOV	12D D0	$p\overline{p}$ at 1.96 TeV
• • • We do not use the	following data for av	erages, fits, li	mits, etc. • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9,10 AAIJ	15K LHCB	<i>pp</i> at 7, 8 TeV
$-$ 6 ± 13 ± 3	¹¹ AAD	14∪ ATLS	Repl. by AAD 16AP
-17 ± 15 ± 3	¹² AAIJ	14AE LHCB	pp at 7, 8 TeV

HTTP://PDG.LBL.GOV

Page 55

 $^{^1}$ Measured in $B_s^0\to D_s^\mp K^\pm$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s=0.01\pm0.07\pm0.0$ from AAIJ 13AR. The value is modulo 180° at 68% CL.

```
13 AALL
- 0.5 \pm 3.5 \pm0.5
                                                     13AR LHCB Repl. by AAIJ 15I
                                <sup>14</sup> AAIJ
                                                     13AY LHCB
                                                                     pp at 7 TeV
                                <sup>15</sup> AAD
-11.0 \pm 20.5 \pm 5.0
                                                                     Repl. by AAD 14U
                                                     12CV ATLS
                                <sup>16</sup> AAIJ
        \pm 22
                 \pm 1
                                                     12B LHCB Repl. by AAIJ 12Q
                                <sup>17</sup> AAIJ
       \pm 9
                                                     12D LHCB Repl. by AAIJ 13AR
   0.95 { +\atop -} \begin{array}{l} 8.70 + 0.15 \\ 8.65 - 0.20 \end{array}
                                18 AALL
                                                     12Q LHCB Repl. by AAIJ 13AR
                                <sup>19</sup> AALTONEN
                                                     12D CDF
                                                                     Repl. by AALTONEN 12AJ
                                <sup>20</sup> AALTONEN
                                                     08G CDF
                                                                     Repl. by AALTONEN 12D
                              8,21 ABAZOV
                                                                     Repl. by ABAZOV 12D
                                                     08AM D0
                            22,23 ABAZOV
  39.5 \pm 28.0 \ \begin{array}{c} +0.5 \\ -7.0 \end{array}
                                                     07
                                                            D0
                                                                     Repl. by ABAZOV 07N
                            23,24 ABAZOV
                                                     07N D0
                                                                     Repl. by ABAZOV 08AM
```

- 1 AAD 16AP reports $\phi_S=-2$ $\beta_S=-0.090\pm0.078\pm0.041$ rad. that was measured using a time-dependent angular analysis of $B_s^0\to\ J/\psi\phi$ decays.
- ² AAIJ 16AK reports $\phi_s = -2$ $\beta_s = 0.23^{+0.29}_{-0.28} \pm 0.02$ rad. that was measured using a time-dependent angular analysis of $B_s^0 \rightarrow \psi(2S)\phi$ decays.
- 3 KHACHATRYAN 16S reports $\phi_s=-2$ $\beta_s=-0.075\pm0.097\pm0.031$ rad. that was measured using a time-dependent angular analysis of $B_s^0\to~J/\psi\,\phi$ decays.
- 4 AAIJ 15I reports $\phi_s=-2$ $\beta_{\rm S}=-0.058\pm0.049\pm0.006$ rad. that was measured using a time-dependent angular analysis of $B_{\rm S}^0\to J/\psi\,K^+\,K^-$ decays. It also combines this result with that of AAIJ 14S and quotes $\phi_s=-2$ $\beta_{\rm S}=-0.010\pm0.039$ rad.
- ⁵ AAIJ 14AY reports $\phi_{\rm S}=-2$ $\beta_{\rm S}=0.02\pm0.17\pm0.02$ rad. in a time-dependent fit to $B_{\rm S}^0\to D_{\rm S}^+D_{\rm S}^-$, while allowing CP violation in decay.
- ⁶ AAIJ 14S reports $\phi_{s}=-2$ $\beta_{s}=0.070\pm0.068\pm0.008$ rad. and $|\lambda|=0.89\pm0.05\pm0.01$, when direct CP violation is allowed. Measured using a time-dependent fit to $B_{s}^{0}\to J/\psi \pi^{+}\pi^{-}$ decays.
- ⁷ AALTONEN 12AJ reports $-\pi/2 < \beta_{\it S} < -1.51$ or $-0.06 < \beta_{\it S} < 0.30$, or $1.26 < \beta_{\it S} < \pi/2$ rad. at 68% CL. Measured using the time-dependent angular analysis of $B_{\it S}^0 \rightarrow J/\psi\,\phi$ decays.
- ⁸ ABAZOV 12D reports $\phi_s=-2$ $\beta_s=-0.55^{+0.38}_{-0.36}$ rad. that was measured using a time-dependent angular analysis of $B^0_s\to J/\psi\phi$ decays. A single error includes both statistical and systematic uncertainties.
- 9 AAIJ 15K reports $-2\beta_s=-0.12^{+0.14}_{-0.16}$ rad. The value was obtained by measuring time-dependent CP asymmetry in $B^0_s \to K^+K^-$ and using a U-spin relation between $B^0_s \to K^+K^-$ and $B^0_s \to \pi^+\pi^-$.
- 10 Results are also presented using additional inputs on $B^0\to\pi^0\pi^0$ and $B^+\to\pi^+\pi^0$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included
- ¹¹ AAD 14U reports $\phi_S=-2$ $\beta_S=0.12\pm0.25\pm0.05$ rad. that was measured using a time-dependent angular analysis of $B_S^0 \to J/\psi\,\phi$ decays.
- ¹² Measured in $B_s^0 \to \phi \phi$ decays. This is a $b \to s \overline{s} s$ transition with a decay amplitude phase different from that of $b \to c \overline{c} s$ transition.
- ¹³AAIJ 13AR reports $\phi_{\rm S}=-2\beta_{\rm S}=0.01\pm0.07\pm0.01$ rad. obtained from combined fit to $B_{\rm S}^0\to J/\psi\,K^+\,K^-$ and $B_{\rm S}^0\to J/\psi\,\pi^+\,\pi^-$ data sets. Also reports separate

- results of $\phi_{S}=0.07\pm0.09\pm0.01$ rad. from $B_{S}^{0}\to J/\psi\,K^{+}\,K^{-}$ decays and $\phi_{S}=0.05$ $-0.14^{+0.17}_{-0.16}\pm0.01$ rad. from $B_s^0
 ightarrow \ J/\psi\,\pi^+\,\pi^-$ decays.
- 14 AAIJ 13AY uses $B_s^0
 ightarrow \phi \phi$ mode, and reports the 68% CL interval of $\phi_{\it S}=-2~eta_{\it S}$ as [-2.46, -0.76] rad.
- 15 AAD 12CV reports $\phi_s=$ 2 $\beta_s=$ 0.22 \pm 0.41 \pm 0.10 rad. that was measured using a time-dependent angular analysis of $B^0_{\mathbf{s}} \to J/\psi \phi$ decays.
- 16 Reports $\phi_{m s}=-2$ $eta_{m s}=-0.44\pm0.44\pm0.02$ rad. that was measured using a timedependent fit to $B_s^0 \rightarrow J/\psi f_0(980)$ decays.
- 17 Reports $\phi_{_{m{S}}} = -2$ $eta_{_{m{S}}} = 0.15 \pm 0.18 \pm 0.06$ rad. that was measured using a time-
- dependent angular analysis of $B_s^0 \to J/\psi \phi$ decays. ¹⁸ Reports $\phi_s = -2$ $\beta_s = -0.019 {+0.173 +0.004 \atop -0.174 -0.003}$ rad. which was measured using a timedependent fit to $B_s^0 \to J/\psi \pi^+ \pi^-$ decays, with the $\pi^+ \pi^-$ mass within 775–1550 MeV. Searches for, but finds no evidence, for direct *CP* violation in $B_s^0 \to J/\psi \pi \pi$
- $^{19}\,\mathrm{Reports}$ 0.02 $<~\phi_{\mathrm{S}}<$ 0.52 or 1.08 $<~\phi_{\mathrm{S}}<$ 1.55 rad. at 68% C.L. confidence regions in the two-dimensional space of ϕ_s and $\Delta\Gamma_{B^0_s}$ from $B^0_s \to J/\psi \, \phi$ decays.
- $^{20}\,\mathrm{Reports}$ 0.32 < $2\beta_{\mathrm{\textbf{S}}}$ < 2.82 rad. at 68% C.L. and confidence regions in the twodimensional space of $2\beta_s$ and $\Delta\Gamma$ from the first measurement of $B_s^0 \to J/\psi \phi$ decays using flavor tagging. The probability of a deviation from SM prediction as large as the level of observed data is 15%.
- 21 Reports $\phi_{S}=-2$ β_{S} and obtains 90% CL interval -0.03 < β_{S} < 0.60 rad.
- ²²The first direct measurement of the *CP*-violating mixing phase is reported from the time-dependent analysis of flavor untagged $B_s^0 \to J/\psi \phi$ decays.
- ²³ Reports ϕ_s which equals to $-2\beta_s$.
- ²⁴ Combines D0 collaboration measurements of time-dependent angular distributions in $B_{\rm s}^0 o J/\psi \phi$ and charge asymmetry in semileptonic decays. There is a 4-fold ambiguity

$|\lambda| (B_s^0 \to J/\psi(1S)\phi)$

VALUE	<u>DOCUMENT ID</u>)	TECN	COMMENT	
$0.964 \pm 0.019 \pm 0.007$	AAIJ	151	LHCB	<i>pp</i> at 7, 8 TeV	
$ \lambda $					

DOCUMENT ID TECN COMMENT

Created: 5/30/2017 17:23

1.03 $^{+0.05}_{-0.04}$ OUR AVERAGE

$1.045 ^{+ 0.069}_{- 0.050} \pm 0.007$	¹ AAIJ	16AK LHCB	<i>pp</i> at 7, 8 TeV
$1.04 \pm 0.07 \pm 0.03$	² AAIJ	14AE LHCB	<i>pp</i> at 7, 8 TeV
$0.91 \ ^{+0.18}_{-0.15} \ \pm 0.02$	³ AAIJ	14AY LHCB	<i>pp</i> at 7, 8 TeV

 $^{^1}$ Measured using time-dependent angular analysis of $B_s^0
ightarrow ~\psi(2S)\phi$ decays.

 $^{^2}$ Measured in $B_s^0 o \phi \phi$ decays.

³ Measured in $B_s^0 \rightarrow D_s^+ D_s^-$ decays.

A, CP violation parameter

 $A = -2 \operatorname{Re}(\lambda) / (1 + |\lambda|^2)$

VALUEDOCUMENT IDTECNCOMMENT $0.49^{+0.77}_{-0.65} \pm 0.06$ 1 AAIJ15AL LHCBpp at 7, 8 TeV

¹ Measured in $B_s^0 \rightarrow J/\psi K_s^0$ decays.

C, CP violation parameter

 $C = (1 - |\lambda|^2) / (1 + |\lambda|^2)$

¹ Measured in $B_s^0 \to J/\psi K_s^0$ decays.

S, CP violation parameter

 $S = -2 \operatorname{Im}(\lambda) / (1 + |\lambda|^2)$

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 −0.08±0.40±0.08
 1 AAIJ
 15AL LHCB
 pp at 7, 8 TeV

 1 Measured in $B^0_{S}
ightarrow \ J/\psi \, K^0_{S}$ decays.

$A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **−0.048±0.057±0.020** AAIJ 15AV LHCB *pp* at 7, 8 TeV

$A_{CP}^{\parallel}(B_s \rightarrow J/\psi \overline{K}^*(892)^0)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.171±0.152±0.028** AAIJ 15AV LHCB pp at 7, 8 TeV

$A_{CP}^{\perp}(B_s \rightarrow J/\psi \overline{K}^*(892)^0)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **— 0.049±0.096±0.025** AAIJ 15AV LHCB *pp* at 7, 8 TeV

$A_{CP}(B_s \rightarrow \pi^+ K^-)$

 A_{CP} is defined as

$$\frac{B(\overline{B}_s^0 \to f) - B(B_s^0 \to \overline{f})}{B(\overline{B}_s^0 \to f) + B(B_s^0 \to \overline{f})},$$

the CP-violation asymmetry of exclusive B_s^0 and \overline{B}_s^0 decay.

VALUE DOCUMENT ID TECN COMMENT

0.26 ± 0.04 OUR AVERAGE

 $0.22\pm0.07\pm0.02$ AALTONEN 14P CDF $p\overline{p}$ at 1.96 TeV $0.27\pm0.04\pm0.01$ AAIJ 13AX LHCB pp at 7 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $0.27\pm0.08\pm0.02$ AAIJ 12V LHCB Repl. by AAIJ 13AX $0.39\pm0.15\pm0.08$ AALTONEN 11N CDF Repl. by AALTONEN 14P

$A_{CP}(B_s^0 \to [K^+K^-]_D \overline{K}^*(892)^0)$

DOCUMENT ID TECN COMMENT $-0.04\pm0.07\pm0.02$ 14BN LHCB pp at 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $0.04 \pm 0.16 \pm 0.01$

AAIJ

13L LHCB Repl. by AAIJ 14BN

$A_{CP}(B_s^0 \rightarrow [\pi^+ K^-]_D K^*(892)^0)$ VALUE DOC

 $-0.01\pm0.03\pm0.02$

DOCUMENT ID TECN COMMENT

14BN LHCB pp at 7, 8 TeV

$A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0)$

 $0.06 \pm 0.13 \pm 0.02$

DOCUMENT ID TECN COMMENT

14BN LHCB pp at 7, 8 TeV

$A^{\Delta}(B_s \rightarrow \phi \gamma)$

 $A^{\Delta}(B_{S} \to \phi \gamma)$ is the multiplicative coefficient of the sinh($\Delta \Gamma t/2$) term in the $B_{S} \to \Delta t$ $\phi\gamma$ decay rate time dependence.

 $-0.98^{+0.46}_{-0.52}^{+0.23}_{-0.20}$

DOCUMENT ID TECN COMMENT

 1 AALI

17B LHCB pp at 7, 8 TeV

Created: 5/30/2017 17:23

CPT VIOLATION PARAMETERS

In the B_s^0 mixing, propagating mass eigenstates can be written as

$$\begin{split} |B_{sL}\rangle &\propto \text{ p } \sqrt{1-\xi} \text{ } |B_s^0\rangle + \text{q } \sqrt{1+\xi} \text{ } |\overline{B}_s^0\rangle \\ |B_{sH}\rangle &\propto \text{ p } \sqrt{1+\xi} \text{ } |B_s^0\rangle - \text{q } \sqrt{1-\xi} \text{ } |\overline{B}_s^0\rangle \end{split}$$

where parameter ξ controls *CPT* violation. If ξ is zero, then *CPT* is conserved. The parameter ξ can be written as

$$\xi = \frac{2(M_{11} - M_{22}) - i(\Gamma_{11} - \Gamma_{22})}{-2\Delta m_s + i\Delta \Gamma_s} \approx \frac{-2\beta^{\mu} \Delta a_{\mu}}{2\Delta m_s - i\Delta \Gamma_s},$$

where M_{ii} , Γ_{ii} , $\Delta m_{\rm S}$, and $\Delta \Gamma_{\rm S}$ are parameters of Hamiltonian governing $B_{\rm S}$ oscillations, β^{μ} is the $B_{\rm S}^0$ meson velocity and Δa_{μ} characterizes Lorentz-invariance violation.

Δaι

 $^{^{}m 1}$ Measured in time dependent analysis without initial flavor tagging.

 $^{^{1}\,\}mathrm{Uses}~B_{\,\mathrm{s}}^{\,0}\,\rightarrow\,\,J/\psi\,\mathrm{K}^{+}\,\mathrm{K}^{-}\,\,\mathrm{decays}.$

 $^{^2}$ Measured in semileptonic $B_s^0 o D_s^- \mu^+ X$ decays. Also extracts limit on time and longitudinal components ($-0.8 < \Delta a_T - 0.396 \ \Delta a_Z < 3.9$) 10^{-13} GeV.

$VALUE (10^{-14} \text{ GeV})$	DOCUMENT ID		TECN	COMMENT
$-0.89 \pm 1.41 \pm 0.36$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
¹ Uses $B_s^0 \rightarrow J/\psi K^+ K^-$	decays.			

Δa_X

$VALUE (10^{-14} \text{ GeV})$	DOCUMENT ID		TECN	COMMENT
$+1.01\pm2.08\pm0.71$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
¹ Uses $B_s^0 \rightarrow J/\psi K^+ K^-$ of	lecays.			

Δa_Y

$VALUE (10^{-14} \text{ GeV})$	DOCUMENT ID	1	TECN	COMMENT	
$-3.83\pm2.09\pm0.71$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV	
¹ Uses $B_s^0 \rightarrow J/\psi K^+ K^-$ of	lecays.				

$Re(\xi)$

VALUE	DOCUMENT ID		TECN	COMMENT
$-0.022 \pm 0.033 \pm 0.003$	$^{ m 1}$ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
1 Uses $B_{s}^{0} \rightarrow J/\psi K^{+} K^{-}$	decays.			

$\text{Im}(\xi)$

VALUE	DOCUMENT ID		TECN	COMMENT	
$0.004 \pm 0.011 \pm 0.002$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV	
¹ Uses $B_s^0 \rightarrow J/\psi K^+ K^-$	lecays.				

PARTIAL BRANCHING FRACTIONS IN $B_s ightarrow \phi \ell^+ \ell^-$

$B(B_s \to \phi \ell^+ \ell^-) (0.1 < q^2 < 2.0 \text{ GeV}^2/c^4)$

VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
1.14 ± 0.16 OUR AVERAG	E		
$1.11 \ ^{+0.14}_{-0.13} \ \pm 0.09$	¹ AAIJ	15AQ LHCB	<i>pp</i> at 7, 8 TeV
$2.78 \pm 0.95 \pm 0.89$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the foll	owing data for a	verages, fits, l	imits, etc. • • •
$0.897^{+0.207}_{-0.186}{\pm}0.097$	¹ AAIJ	13X LHCB	Repl. by AAIJ 15AQ
¹ Measured in $B_s^0 \rightarrow \phi \mu^+$	$^-\mu^-$ decays.		

$B(B_s \to \phi \ell^+ \ell^-)$ (2.0 < q² < 5.0 GeV²/c⁴)

$VALUE$ (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
$0.77 \pm 0.12 \pm 0.06$	¹ AAIJ	-	<i>pp</i> at 7, 8 TeV
• • • We do not use the	following data for a	verages, fits, I	imits, etc. • • •
$0.529 {}^{\displaystyle +0.182}_{\displaystyle -0.159} \pm 0.057$	1,2 AAIJ	13X LHCB	Repl. by AAIJ 15AQ
$0.58 \pm 0.55 \pm 0.19$	² AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV
1 Measured in $B^0_{m{arepsilon}} ightarrow \phi$	$ ho \mu^+ \mu^-$ decays.		
1 Measured in 0 0 0 0 0 0 Measured in 2 <q<math>^{2} <4</q<math>	$1.3 \text{ GeV}^2/\text{c}^4$.		

HTTP://PDG.LBL.GOV

Page 60

$B(B_s \to \phi \ell^+ \ell^-)$ (5.0 < q² < 8.0 GeV²/c⁴)

DOCUMENT ID VALUE (units 10^{-7}) TECN <u>COMMENT</u> $0.96 \pm 0.13 \pm 0.08$ 15AQ LHCB pp at 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $1.38^{+0.25}_{-0.23}\pm0.14$

1,2 AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $1.34 \pm 0.83 \pm 0.43$

² AALTONEN 11al CDF

 $p\overline{p}$ at 1.96 TeV

¹ Measured in $B_s^0 \to \phi \mu^+ \mu^-$ decays.

$B(B_s \to \phi \ell^+ \ell^-)$ (11.0 < q² < 12.5 GeV²/c⁴)

VALUE (units 10^{-7}) $0.71 \pm 0.10 \pm 0.06$ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.18 {+0.22\atop -0.21} \!\pm\! 0.14$

 1,2 AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $2.98\!\pm\!0.95\!\pm\!0.95$

² AALTONEN 11ai CDF

 $p\overline{p}$ at 1.96 TeV

$B(B_s \to \phi \ell^+ \ell^-)$ (15.0 < q² < 17.0 GeV²/c⁴)

VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT $0.90 \pm 0.11 \pm 0.07$ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.760^{\,+\,0.189}_{\,-\,0.169}\,{\pm}\,0.087$

 1,2 AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $1.86 \pm 0.66 \pm 0.59$

² AALTONEN 11AI CDF

 $p\overline{p}$ at 1.96 TeV

$B(B_s \to \phi \ell^+ \ell^-)$ (17.0 < q^2 < 19.0 GeV²/c⁴)

DOCUMENT IDTECNCOMMENTAAIJ15AQ LHCBpp at 7, 8 TeV VALUE (units 10^{-7})

 $0.79\pm0.11\pm0.07$

• • We do not use the following data for averages, fits, limits, etc.

 $1.06^{\,+\,0.23}_{\,-\,0.21}\,{\pm}\,0.12$

 1,2 AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $2.32 \pm 0.76 \pm 0.74$

² AALTONEN

11ai CDF $p\overline{p}$ at 1.96 TeV

$B(B_s \to \phi \ell^+ \ell^-)$ (1.0 < q² < 6.0 GeV²/c⁴)

DOCUMENT ID TECN COMMENT *VALUE* (units 10^{-7})

1.28 ± 0.18 OUR AVERAGE

 $1.29 \pm 0.16 \pm 0.10$

15AQ LHCB pp at 7, 8 TeV

 $1.14 \pm 0.79 \pm 0.36$

AALTONEN

 $p\overline{p}$ at 1.96 TeV 11ai CDF

• • We do not use the following data for averages, fits, limits, etc.

 $1.14^{\,+\,0.25}_{\,-\,0.23}\,{\pm}\,0.13$

 1 AAIJ

13X LHCB Repl. by AAIJ 15AQ

 $^{^{2}}$ Measured in 4.3<g 2 <8.68 GeV 2 /c 4 .

 $^{^{1}\,\}mathrm{Measured}$ in $B_s^0\to\,\phi\,\mu^{+}\,\mu^{-}$ decays. $^{2}\,\mathrm{Measured}$ in $10.9{<}\mathrm{q}^2<\!12.86~\mathrm{GeV}^2/\mathrm{c}^4.$

 $^{^{1}\,\}mathrm{Measured}$ in $B_{s}^{0}\to~\phi\,\mu^{+}\,\mu^{-}$ decays. $^{2}\,\mathrm{Measured}$ in 14.18<q^2 <16 GeV^2/c^4.

 $^{^{1}}$ Measured in $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$ decays. 2 Measured in $16 < q^{2} < 19 \text{ GeV}^{2}/c^{4}$.

¹ Measured in $B_s^0 \rightarrow \phi \mu^+ \mu^-$ decays.

$B(B_s \to \phi \ell^+ \ell^-) (0.0 < q^2 < 4.3 \text{ GeV}^2/c^4)$

VALUE (units 10^{-7}) DOCUMENT ID

 $3.30 \pm 1.09 \pm 1.05$ 11AI CDF $p\overline{p}$ at 1.96 TeV **AALTONEN**

PRODUCTION ASYMMETRIES

$A_P(B_s^0)$

 $\mathsf{A}_P(B_s^0) = [\sigma(\overline{B}_s^0) - \sigma(B_s^0)] / [\sigma(\overline{B}_s^0) + \sigma(B_s^0)]$

 $\frac{\textit{DOCUMENT ID}}{1}$ $\frac{\textit{TECN}}{1}$ $\frac{\textit{COMMENT}}{\textit{Pp}}$ at 7 TeV

B_s^0 REFERENCES

AAIJ	17A	PR D95 012006	R. Aaij et al.		(LHCb	Collab.)
AAIJ	17B	PRL 118 021801	R. Aaij et al.			Collab.)
AAIJ	17G	PRL 118 081801	R. Aaij et al.			Collab.)
AABOUD	16L	EPJ C76 513	M. Aaboud e		(ATLAS	
AAD	16AP	JHEP 1608 147	G. Aad et al.		(ATLAS	
AAIJ	16	JHEP 1601 012	R. Aaij <i>et al.</i>		`	(
	-) <u>_</u> .	Collab.)
AAIJ		PL B762 253	R. Aaij <i>et al.</i>		` ` ` ` ` ` · · · · · · · · · · · · · ·	Collab.)
AAIJ		PL B762 484	R. Aaij <i>et al.</i>		` ·	Collab.)
AAIJ	16C	PRL 116 161802	R. Aaij et al.			Collab.)
AAIJ	16E	PRL 116 241601	R. Aaij <i>et al.</i>			Collab.)
AAIJ	16G	PRL 117 061803	R. Aaij <i>et al.</i>			Collab.)
AAIJ	16P	PR D93 092008	R. Aaij <i>et al.</i>		(LHCb	Collab.)
AAIJ	16U	JHEP 1603 040	R. Aaij <i>et al.</i>		(LHCb	Collab.)
ABAZOV	16C	PR D94 012001	V.M. Abazov	et al.	(D0	Collab.)
KHACHATRY	16Q	PL B756 84	V. Khachatrya	an <i>et al.</i>	(CMS	Collab.)
KHACHATRY	16S	PL B757 97	V. Khachatrya	an <i>et al.</i>	(CMS	Collab.)
PAL	16	PRL 116 161801	B. Pal et al.		(BELLE	- :
AAIJ	15AC	JHEP 1505 019	R. Aaij et al.		١	Collab.)
AAIJ		JHEP 1506 130	R. Aaij et al.		` ·	Collab.)
AAIJ		JHEP 1507 166	R. Aaij et al.		` ·	Collab.)
AAIJ		JHEP 1508 005	R. Aaij et al.		,	Collab.)
AAIJ		JHEP 1506 131	R. Aaji et al.		` ·	Collab.)
AAIJ		JHEP 1509 179	R. Aaji et al.		` ·	- :
AAIJ	15AQ		,		` ·	Collab.)
-		JHEP 1510 053	R. Aaij <i>et al.</i>		` .	Collab.)
AAIJ		JHEP 1511 082	R. Aaij <i>et al.</i>		` ·	Collab.)
AAIJ		PR D92 112002	R. Aaij <i>et al.</i>		` ·	Collab.)
AAIJ	15D	JHEP 1501 024	R. Aaij et al.		` ·	Collab.)
AAIJ	15l	PRL 114 041801	R. Aaij et al.			Collab.)
AAIJ	15K	PL B741 1	R. Aaij et al.			Collab.)
AAIJ	150	PRL 115 051801	R. Aaij <i>et al.</i>			Collab.)
AAIJ	15S	PL B743 46	R. Aaij <i>et al.</i>		(LHCb	Collab.)
AAIJ	15U	PL B747 484	R. Aaij <i>et al.</i>		(LHCb	Collab.)
ABAZOV	15A	PRL 114 062001	V.M. Abazov	et al.	(D0	Collab.)
ABAZOV	15L	PRL 115 161601	V.M. Abazov	et al.		Collab.)
DUTTA	15	PR D91 011101	D. Dutta et a	al.	(BELLE	Collab.)
KHACHATRY	15BE	NAT 522 68	V. Khachatrya	an <i>et al.</i>	(CMS and LHCb	Collab.)
OSWALD	15	PR D92 072013	C. Oswald et	al.	` (BELLE	Collab.)
AAD	14U	PR D90 052007	G. Aad et al.		(ATLAS	
AAIJ	14AA	PRL 112 202001	R. Aaij et al.			Collab.)
AAIJ		PR D90 052011	R. Aaij et al.			Collab.)
AAIJ		PRL 113 172001	R. Aaij et al.			Collab.)
AAIJ		PRL 113 211801	R. Aaij et al.			Collab.)
AAIJ		JHEP 1411 060	R. Aaij et al.			Collab.)
AAIJ		PR D90 072003	R. Aaij et al.		} <u>-</u> .	Collab.)
AAIJ		NJP 16 123001	R. Aaij et al.			
		PR D90 112002				Collab.)
AAIJ			R. Aaij <i>et al.</i>		` ·	Collab.)
AAIJ	1402	PL B739 218	R. Aaij <i>et al.</i>		(LHCb	Collab.)

 $^{^{1}}$ Based on time-dependent analysis of $B_{s}^{0} \rightarrow D_{s}^{-}\pi^{+}$ in kinematic range 4 $< p_{T} < 30$ GeV/c and 2.5 $< \eta <$ 4.5.

AAIJ				
	14BR	PR D89 092006	R. Aaij <i>et al.</i>	(LHCb Collab.)
A A I I			•	,
AAIJ	14D	PL B728 607	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14E	JHEP 1404 114	R. Aaij <i>et al.</i>	(LHCb Collab.)
) <u>-</u> (
AAIJ	14F	PRL 112 111802	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14L	JHEP 1407 140	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14R	PL B736 446	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14S	PL B736 186	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14Y	PRL 112 091802	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	14P	PRL 113 242001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	14	PR D89 012002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
				. `
AAIJ	13	NP B867 1	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13A	NP B867 547	R. Aaij <i>et al.</i>	(LHCb Collab.)
			3	
AAIJ	13AA	NP B871 403	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13 A R	NP B873 275	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AC	NP B874 663	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13 A I	PR D87 071101	R. Aaij et al.	(LHCb Collab.)
AAIJ	13AN	PR D87 072004	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13 A D	PR D87 092007	R. Aaij et al.	(LHCb Collab.)
AAIJ	13AQ	PR D87 112009	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AR	PR D87 112010	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AW	PRL 110 211801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 110 221601	R. Aaij <i>et al.</i>	
				(LHCb Collab.)
AAIJ	13AY	PRL 110 241802	R. Aaij <i>et al.</i>	(LHCb Collab.)
	13B			`` <u>-</u> (
AAIJ	130	PRL 110 021801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BA	PRL 111 101805	R. Aaij <i>et al.</i>	(LHCb Collab.)
				,
AAIJ	13DI	NJP 15 053021	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BM	PRL 111 141801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	1380	JHEP 1310 183	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BP	JHEP 1310 143	R. Aaij <i>et al.</i>	(LHCb Collab.)
				,
AAIJ	ISPA	JHEP 1310 005	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BW	JHEP 1311 092	R. Aaij <i>et al.</i>	(LHCb Collab.)
			-	
AAIJ	13BX	PL B727 403	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13CF	EPJ C73 2655	R. Aaij <i>et al.</i>	(LHCb Collab.)
) <u>-</u> (
AAIJ	13L	JHEP 1303 067	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13X	JHEP 1307 084	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13Z	JHEP 1309 006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	13F	PR D87 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	13	PRL 110 011801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	13C	PR D87 072006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	IJAVV	PRL 111 101804	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
ESEN	13	PR D87 031101	S. Esen <i>et al.</i>	(BELLE Collab.)
$\triangle C (V / V D)$		PR D87 072008	C. Oswald <i>et al.</i>	
OSWALD	13			(BELLE Collab.)
	13		C. Oswald et al.	· / · · - · · · · · ·
Also		PR D90 119901 (errat.)		(BELLE Collab.)
	13		E. Solovieva et al.	(BELLE Collab.) (BELLE Collab.)
Also SOLOVIEVA	13	PR D90 119901 (errat.) PL B726 206	E. Solovieva et al.	(BELLE Collab.) (BELLE Collab.)
Also SOLOVIEVA THORNE	13 13	PR D90 119901 (errat.) PL B726 206 PR D88 114006	E. Solovieva <i>et al.</i> F. Thorne <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
Also SOLOVIEVA THORNE AAD	13 13 12AE	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387	E. Solovieva <i>et al.</i> F. Thorne <i>et al.</i> G. Aad <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.)
Also SOLOVIEVA THORNE AAD	13 13 12AE	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387	E. Solovieva <i>et al.</i> F. Thorne <i>et al.</i> G. Aad <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.)
Also SOLOVIEVA THORNE AAD AAD	13 13 12AE 12CV	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072	E. Solovieva et al.F. Thorne et al.G. Aad et al.G. Aad et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ	13 13 12AE 12CV 12	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349	E. Solovieva et al.F. Thorne et al.G. Aad et al.G. Aad et al.R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD	13 13 12AE 12CV	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349	E. Solovieva et al.F. Thorne et al.G. Aad et al.G. Aad et al.R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ	13 13 12AE 12CV 12 12A	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al. R. Aaij et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.) (LHCB Collab.) (LHCB Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG 12AM	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG 12AM	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12AX	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12AX	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12B	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12B 12D	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12B 12D	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AR 12AZ 12B 12D 12E	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12AS 12D 12E 12F	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AR 12AZ 12B 12D 12E	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AX 12B 12D 12E 12F 12I	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AX 12B 12D 12E 12F 12I	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AX 12B 12D 12E 12F 12I	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12B 12D 12E 12F 12I 12L	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 172	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12B 12D 12E 12F 12I 12L 12O 12P	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 172 PL B713 369	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AG 12AM 12AN 12AO 12AP 12AR 12AX 12B 12D 12E 12F 12I 12L 12O 12P	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 172 PL B713 369	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AG 12AM 12AN 12AO 12AP 12AR 12B 12D 12E 12F 12I 12L 12O 12P 12Q	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 172 PL B713 369 PL B713 378	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AG 12AM 12AN 12AO 12AP 12AR 12B 12D 12E 12F 12I 12L 12D 12E 12I 12L 12O 12P 12Q 12P	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 369 PL B713 378 PL B716 393	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AG 12AM 12AN 12AO 12AP 12AR 12B 12D 12E 12F 12I 12L 12D 12E 12I 12L 12O 12P 12Q 12P	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 369 PL B713 378 PL B716 393	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12B 12D 12E 12F 12I 12L 12O 12P 12Q 12R 12Q	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 378 PL B713 378 PL B716 393 PRL 108 151801	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AS 12D 12E 12F 12I 12L 12O 12P 12Q 12R 12S 12V	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 378 PL B713 378 PL B716 393 PRL 108 151801 PRL 108 151801 PRL 108 151801 PRL 108 151801	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AN 12AO 12AP 12AR 12B 12D 12E 12F 12I 12L 12O 12P 12Q 12R 12Q	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 378 PL B713 378 PL B716 393 PRL 108 151801	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCB Collab.)
Also SOLOVIEVA THORNE AAD AAD AAIJ AAIJ AAIJ AAIJ AAIJ AAIJ A	13 13 12AE 12CV 12 12A 12AE 12AG 12AM 12AO 12AP 12AR 12AS 12D 12E 12F 12I 12L 12O 12P 12Q 12R 12S 12V	PR D90 119901 (errat.) PL B726 206 PR D88 114006 PL B713 387 JHEP 1212 072 PL B707 349 PL B708 55 PR D85 112013 JHEP 1206 115 PRL 109 131801 PRL 109 152002 PR D86 052006 PR D86 052006 PR D86 071102 JHEP 1210 037 PR D86 112005 PL B707 497 PRL 108 101803 PL B708 241 PL B709 50 PL B709 177 EPJ C72 2118 PL B713 378 PL B713 378 PL B716 393 PRL 108 151801 PRL 108 151801 PRL 108 151801 PRL 108 151801	E. Solovieva et al. F. Thorne et al. G. Aad et al. G. Aad et al. R. Aaij et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)

AALTONEN	12AJ	PRL 109 171802	T. Aaltonen et al.	(CDF Collab.)
	12C			
AALTONEN		PRL 108 201801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12D	PR D85 072002	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12L	PRL 108 211803	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	12AF	PR D86 092011	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	12C	PR D85 011103	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	12D	PR D85 032006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN	12A	JHEP 1204 033	S. Chatrchyan et al.	(CMS Collab.)
LEES	12A	PR D85 011101	J.P. Lees et al.	
				(BABAR Collab.)
LI	12	PRL 108 181808	J. Li et al.	(BELLE Collab.)
PDG	12	PR D86 010001	J. Beringer et al.	(PDG Collab.)
			_	
AAIJ	11	PL B698 115	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	11A	PL B698 14	R. Aaij et al.	(LHCb Collab.)
-			•	
AAIJ	11B	PL B699 330	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	11D	PL B706 32	R. Aaij	(LHCb Collab.)
AAIJ	11E	PR D84 092001	3	,
	TIL		R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PR D85 039904 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	11A	PR D83 052012 ` ´	T. Aaltonen et al.	`(CDF Collab.)
AALTONEN	11AB	PR D84 052012	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11AG	PRL 107 191801	T. Aaltonen et al.	(CDF Collab.)
	/			
Also		PRL 107 239903 (errat.)		(CDF Collab.)
AALTONEN	11AI	PRL 107 201802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11 A N	PRL 107 261802	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11AP	PRL 107 272001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11L	PRL 106 161801	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11N	PRL 106 181802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	11U	PR D84 052007	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN		PRL 107 191802	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
LI	11	PRL 106 121802	J. Li <i>et al.</i>	(BELLE Collab.)
ABAZOV	10E	PR D82 012003	V.M. Abazov et al.	` (D0 Collab.)
				· · · · · · · · · · · · · · · · · · ·
ABAZOV	10H	PRL 105 081801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also		PR D82 032001	V.M. Abazov et al.	(D0 Collab.)
	100			· · · · · · · · · · · · · · · · · · ·
ABAZOV	10S	PL B693 539	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ESEN	10	PRL 105 201802	S. Esen <i>et al.</i>	(BELLE Collab.)
LOUVOT	10	PRL 104 231801	R. LOUVOT et al.	(BELLE Collab.)
				· · · · · · · · · · · · · · · · · · ·
PENG	10	PR D82 072007	CC. Peng <i>et al.</i>	(BELLE Collab.)
AALTONEN	09AQ	PRL 103 191802	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	09B	PR D79 011104	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	09C	PRL 103 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09P	PRL 102 201801	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	09E	PRL 102 032001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09G	PRL 102 051801	V.M. Abazov et al.	(D0 Collab.)
	091		V.M. Abazov <i>et al.</i>) (
ABAZOV		PRL 102 091801		(D0 Collab.)
ABAZOV	09Y	PR D79 111102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
LOUVOT	09	PRL 102 021801	R. Louvot et al.	(BELLE Collab.)
AALTONEN	08F	PRL 100 021803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08G	PRL 100 161802	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	08J	PRL 100 121803	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	08AM	PRL 101 241801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
WICHT	08A	PRL 100 121801	J. Wicht et al.	(BELLE Collab.)
ABAZOV	07	PRL 98 121801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07A	PRL 98 151801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07N	PR D76 057101	V.M. Abazov et al.	(D0 Collab.)
) (
ABAZOV	07Y	PRL 99 241801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	07C	PRL 98 061802	A. Abulencia et al.	(CDF Collab.)
				(BELLE Collab.)
DRUTSKOY	07	PRL 98 052001	A. Drutskoy et al.	` '
DRUTSKOY	07A	PR D76 012002	A. Drutskoy et al.	(BELLE Collab.)
ABAZOV	06B	PRL 97 021802	V.M. Abazov et al.	` (D0 Collab.)
			V.M. Abazov et al.	
ABAZOV	06G	PR D74 031107		(D0 Collab.)
ABAZOV	06V	PRL 97 241801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	06J	PRL 96 191801	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06N	PRL 96 231801	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06Q	PRL 97 062003	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A	06D	PRL 97 211802	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A	06G	PRL 97 242003	A. Abulencia <i>et al.</i>	(CDF Collab.)
ACOSTA	06	PRL 96 202001	D. Acosta et al.	(CDF Collab.)
ABAZOV	05B	PRL 94 042001	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	05W	PRL 95 171801	V.M. Abazov et al.	(D0 Collab.)
ACOSTA	05	PRL 94 101803	D. Acosta et al.	(CDF Collab.)
ACOSTA	05J	PRL 95 031801	D. Acosta et al.	(CDF Collab.)
ABDALLAH	04A	PL B585 63	J. Abdallah et al.	(DELPHI Collab.)
			•	, , , , , , , , , , , , , , , , , , , ,

ABDALLAH ABBALLAH ABE HEISTER ABE ACOSTA ACOSTA ABBIENDI ABE ABREU ABREU,P AFFOLDER BARATE ABBIENDI ABE BARATE ALSO ABE ABE ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACKERSTAFF BARATE	04J 03B 03 03EV 02D 02D 01DC 000Y 000N 000K 999D 98B 988V 988F 988C 989 97D 97D 96BN 96P 96BN 96P 96BN 96P 96BN 96P 96BN 96P 96BN 96P 96BN 97B 97BN 97BN 97BN 97BN 97BN 97BN 97BN 97BN	EPJ C35 35 EPJ C28 155 PR D67 012006 EPJ C29 143 PR D66 032009 PR D65 111101 PR D66 112002 EPJ C19 241 PR D62 071101 EPJ C16 555 EPJ C18 229 PRL 85 4668 PL B486 286 EPJ C11 587 PR D59 032004 PRL 82 3576 EPJ C7 553 EPJ C12 181 (errat.) PR D57 5382 PRL 81 5742 PL B438 417 EPJ C2 407 PL B426 161 EPJ C4 367 EPJ C4 367 EPJ C4 387 EPJ C3 1 PL B391 474 PL B391 481 ZPHY C76 401 ZPHY C76 401 ZPHY C76 417 PL B414 382 PR D53 3496 PRL 77 1945 PR D54 6596 ZPHY C71 11 ZPHY C72 207 ZPHY C69 585 PL B377 205 PL B384 471 PR D54 1 PRL 74 4988 PRL 75 3068 PL B363 127 PL B363 137 PL B363 137 PL B363 127 PL B363 137 PL B363 137 PL B363 127 PL B364 107 PL B289 199 PL B337 196 PL B337 393 PL B322 441	J. Abdallah et al. J. Abdallah et al. K. Abe et al. A. Heister et al. K. Abe et al. D. Acosta et al. D. Acosta et al. G. Abbiendi et al. P. Abreu et al. P. Abreu et al. R. Barate et al. G. Abbiendi et al. F. Abe et al. F. Abe et al. R. Barate et al. R. Barate et al. R. Barate et al. R. Barate et al. R. Ackerstaff et al. R. Ackerstaff et al. K. Ackerstaff et al. K. Ackerstaff et al. R. Barate et al. R. Barate et al. R. Acciarri et al. K. Ackerstaff et al. R. Acciarri et al. M. Ackerstaff et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. R. Acciarri et al. R. Acciarri et al. R. Acciarri et al. R. Abe et al. P. Abe et al. P. Abe et al. P. Abe et al. P. Abe et al. R. Acciarri et al. R. M. Barnett et al. R. Acciarri et al. R. Acciarri et al. R. Akers et al. R. Akers et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (ALEPH Collab.) (SLD Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (ALEPH Collab.) (CDF Collab.)
Also AKERS AKERS	94J 94L	PL B289 199 PL B337 196 PL B337 393	P. Abreu <i>et al.</i> R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(DELPHI Collab.) (OPAL Collab.) (OPAL Collab.)
BUSKULIC	94C	PL B322 275	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
ABE	93F	PRL 71 1685	F. Abe <i>et al.</i>	(CDF Collab.)
ACTON	93H	PL B312 501	P.D. Acton <i>et al.</i> D. Buskulic <i>et al.</i> P. Abreu <i>et al.</i>	(OPAL Collab.)
BUSKULIC	93G	PL B311 425		(ALEPH Collab.)
ABREU	92M	PL B289 199		(DELPHI Collab.)
ACTON	92N	PL B295 357	P.D. Acton <i>et al.</i> D. Buskulic <i>et al.</i> J. Lee-Franzini <i>et al.</i>	(OPAL Collab.)
BUSKULIC	92E	PL B294 145		(ALEPH Collab.)
LEE-FRANZINI	90	PRL 65 2947		(CUSB II Collab.)