Population Games Game Theory

Vincent Knight

$$S = \{ \text{red}, \text{green} \}$$

If every player plays: $\sigma = .25, .75$ then: $\chi = (.25, .75)$.

$S = \{ red, green \}$

If every player plays: $\sigma = .25, .75$ then: $\chi = (.25, .75)$.

Alternatively: 25% of players play red $\Rightarrow \chi = (.25, .75)$.

$S = \{ red, green \}$

If every player plays: $\sigma = .25, .75$ then: $\chi = (.25, .75)$. **Alternatively:** 25% of players play red $\Rightarrow \chi = (.25, .75)$.

 χ is called a **population vector**

Utility of strategy $\sigma \in \Delta S$ in population χ :

$$u(\sigma,\chi) = \sum \sigma(s)u(s,\chi)$$

Utility of strategy $\sigma \in \Delta S$ in population χ :

$$u(\sigma,\chi) = \sum_{s,s} \sigma(s)u(s,\chi)$$

Interpretation: number of descendants of σ .

$$u(\operatorname{red},\chi)=3|\operatorname{red}|+1$$
 and $u(\operatorname{green},\chi)=2/3|\operatorname{green}|$

Assume initial population
$$\chi = (.1, .9)$$
 and

 $u(red, \chi) = 3|red| + 1$ and $u(green, \chi) = 2/3|green|$

Assume initial population
$$\chi = (.1, .9)$$
 and

 $u(red, \chi) = 3|red| + 1$ and $u(green, \chi) = 2/3|green|$

Assume initial population
$$\chi=(.1,.9)$$
 and: $u(\mathsf{red},\chi)=3|\mathsf{red}|+1$ and $u(\mathsf{green},\chi)=2/3|\mathsf{green}|$

Consider a population where all individuals initially play σ^* . If we assume that a small proportion ϵ start playing σ . The new population is called the post entry population and will be denoted by χ_{ϵ} .

Evolutionary Stable Strategy:

A strategy $\sigma^* \in \Delta S$ is called an **Evolutionary Stable Strategy** if $\exists \ 0 < \overline{\epsilon} < 1$ such that for every $0 < \epsilon < \overline{\epsilon}$ and every $\sigma \neq \sigma^*$:

$$u(\sigma^*,\chi) > u(\sigma,\chi)$$

