$a,\sigma\in\Sigma$ ולכל $a,\sigma\in\Sigma$ ולכל לכל $a,\sigma\in\Omega$ לכל לכל לכל לכל לכל מעברים מסומנת מעברים מסומנת מעברים מסומנת מעברים מסומנת שלמה: $i\in[2n]\cap\mathbb{N}_{\mathrm{odd}}$ לכל $(
ho_i,
ho_{i+1},
ho_{i+2})\in\Delta$ המקיימת lpha המקיימת לול: תהא lpha מערכת מעברים מסומנת אזי $ho\in Q imes(\Sigma imes Q)^n$ לכל המקיימת $p\in Q^{n+1}$ ריצה אזי $ho\in Q imes (\Sigma imes Q)^n$ המקיימת מעברים מסומנת תהא Δ מערכת מעברים: תהא $i \in [n+1]$ לכל $p_i = \rho_{2i-1}$ $p_i=
ho_{2i}$ המקיימת $p\in \Sigma^n$ ריצה אזי $ho\in Q imes (\Sigma imes Q)^n$ הטלה של ריצה על האלפבית: תהא Δ מערכת מעברים מסומנת ותהא $i \in [n]$ לכל w אזי ריצה α עבורה ההטלה של α מערכת מעברים מסומנת ותהא $w\in \Sigma^*$ אזי ריצה α מערכת מעברים מסומנת ותהא (Q,Σ,Δ,S,F) אזי אזי און ותהיינה אוטומט אוטיבי. מעברים מעברים מעברים מעברים מעברים אזי אוטומט אומנת מעברים מסומנת אויינה Δ $ho_{\mathrm{len}(
ho)}\in F_{\mathcal{A}}$ וכן $ho_1\in S_{\mathcal{A}}$ המקיימת $\Delta_{\mathcal{A}}$ של ho של אזי ריצה מתקבלת על ידי אוטומט סופי: יהי A אוטומט סופי אזי ריצה מתקבלת על ידי אוטומט סופי מתקבלת. אי אוטומט אוטיי יהי א אוטומט אויי יהי א אוטומט אוטיי יהי א אוטומט חופי יהי אוטומט חופי אוטומט חופי יהי אוטומט חופי יהי אוטומט חופי .Lan $(\mathcal{A})=\{w\in\Sigma_A\mid\mathcal{A}$ ידי \mathcal{A} אוטומט סופי אזי $w\}$ מתקבלת על ידי \mathcal{A} אוטומט סופי יהי \mathcal{A} $\operatorname{Lan}\left(\mathcal{A}
ight)=\operatorname{Lan}\left(\mathcal{B}
ight)$ המקיימים \mathcal{A},\mathcal{B} האוטומטיים שקולים: אוטומטיים אוטומטיים סופיים אוטומט אופי דטרמיניסטי (אס"ד/DFA): אוטומט אופי $|S_A|=1$ וכן בער דטרמיניסטית. . אינו דטרמיניסטי אינו דטרמיניסטי (אסל"ד/NFA): אוטומט אינו דטרמיניסטי אינו אוטומט אוטומט אינו דטרמיניסטי N מסוג M מסוג M עבורם לכל שפה א מחוג M.(Lan (\mathcal{N}) = L עבורו **טענה**: אסל"ד ואס"ד הינם מודלים שקולים. משפט: יהי $n\in\mathbb{N}$ אזי קיימת שפה L המקיימת .Lan $(\mathcal{N})=L$ מצבים עבורו $\mathcal{O}\left(n\right)$ בעל \mathcal{N} דיים אסל"ד \bullet . מעבים $\Omega\left(2^{n}\right)$ בעל כי מתקיים מתקיים המקיים \mathcal{D} מעבים \mathcal{D} מעבים לכל אס"ד $\operatorname{Lan}\left(\mathcal{A}\right)=L$ שפה רגולרית: שפה L עבורה קיים אוטומט סופי . רגולרית אזי $L_1 \cup L_2$ אפות רגולריות אזי L_1, L_2 רגולרית שפט: . רגולרית שפות $L_1\cap L_2$ אזי שפות רגולריות שפות L_1,L_2 האיינה . יהיו Σ_1,Σ_2 אלפביתים תהא Σ_2 אדי $f:\Sigma_1 o \Sigma_2$ ותהא Σ_1,Σ_2 שפה רגולרית מעל Σ_1,Σ_2 יהיו יהיו רגולריות. $\pi_1\left(L\right),\pi_2\left(L\right)$ אזי $\Sigma_1 imes\Sigma_2$ איזי שפה רגולרית שפה L אלפביתים ותהא Σ_1,Σ_2 יהיו רגולרית מזי coL שפה רגולרית שפה Lמשפט: ullet קיים אלגוריתם A עבורו לכל אוטומטים סופיים \mathcal{A},\mathcal{B} מתקיים כי עבורו לכל אוטומט סופי וכן . וכן $|Q_{\mathcal{A}}|+|Q_{\mathcal{B}}|$ בעלת בעלת $A\left(\mathcal{A},\mathcal{B}\right)$ וכן Lan $\left(A\left(\mathcal{A},\mathcal{B}\right)\right)=$ Lan $\left(\mathcal{A}\right)\cup$ Lan $\left(\mathcal{B}\right)$ אוטומט סופי כל אוטומט פוכן אוטומט פוכן אוטומט פוכן אוטומט פוכן פון אוטומט אוטומט אוטומט פוכן . וכן $|Q_{\mathcal{A}}|\cdot |Q_{\mathcal{B}}|$ בעלת בעלת בעלת וכך $A\left(\mathcal{A},\mathcal{B}\right)$ וכך Lan $\left(A\left(\mathcal{A},\mathcal{B}\right)\right)=$ Lan $\left(\mathcal{A}\right)\cap$ Lan $\left(\mathcal{B}\right)$ $A\left(\mathcal{A}
ight)$ אזי מעל ביתים תהא Σ_1 אלפביתים תהא לגוריתם A אזי קיים אלגוריתם $f:\Sigma_1 o\Sigma_2$ מתקיים כי Σ_1,Σ_2 אלפביתים הייו $\operatorname{Lan}\left(A\left(\mathcal{A}\right)\right)=\operatorname{Lan}\left(f\left(\mathcal{A}\right)\right)$ וכן Σ_{2} וכן סופי מעל

. Lan $(A\left(\mathcal{A}\right))=$ Lan $(\operatorname{co}\mathcal{A})$ אוטומט סופי וכן $A\left(\mathcal{A}\right)$ מתקיים כי פיים אלגוריתם א עבורו לכל אוטומט סופי \mathcal{A}

לכל $p_i=
ho_{2i-1}$ המקיימת $p\in Q^\omega$ המלה של הירצה מעברים מסומנת מעברים מעברים מעברים המצבים: תהא מערכת לקבוצת המצבים: תהא

. מצבים. $2^{\min\{|Q_{\mathcal{B}}||\mathrm{Lan}(\mathcal{B})=L\}}$ עבורה לכל אוטומט סופי \mathcal{A} באשר באשר $2^{\min\{|Q_{\mathcal{B}}||\mathrm{Lan}(\mathcal{B})=L\}}$ מצבים.

 $i\in\mathbb{N}_{\mathrm{odd}}$ לכל ($ho_{2i-1},
ho_{i+1},
ho_{i+2})\in\Delta$ המקיימת $ho\in\left(Q imes\Sigma
ight)^{\omega}$ לכל מערכת מעברים מסומנת אזי

 $i \in \mathbb{N}_{+}$

.LabelledGraph $(V)=\{(G,f)\mid (G\in \operatorname{Graph}(V))\land (f:E(G) o\Sigma)\}$ גרפים מסומנים: יהי Σ אלפבית ותהא V קבוצה אזי $\Psi(G,f)=\{(v,f(v,u),u)\mid (v,u)\in E(G)\}$ כענה: יהי Σ אלפבית תהא V קבוצה ונגדיר LabelledGraph V

 $Q_{\Delta}=\{u\in V\mid \exists \delta\in\Delta.\, (\delta_1=u)\lor (\delta_3=u)\}$ מצבים של מערכת מעברים מסומנת: תהא Δ מערכת מעברים מסומנת אזי

 $v \in \Omega$ ולכל $v \in Q$ לכל אכל $\left|\left\{u \in Q \mid v \stackrel{\sigma}{ o} u
ight\}
ight| \leq 1$ מערכת מעברים מסומנת דטרמיניסטית: מערכת מעברים מסומנת מעברים מסומנת המעברים מסומנת מעברים מסומנת מעברים מסומנת אוני

 $\Delta \subset V imes \Sigma imes V$ מערכת מעברים מסומנת (LTS): יהי לאפבית ותהא אי

 $v\stackrel{\sigma}{\to}u$ אזי אזי $(v,\sigma,u)\in\Delta$ אים מסומנת ויהי Δ מערכת מעברים מסומנת ויהי Σ אלפבית תהא

הערה: מכאן והלאה נניח כי הקבוצה עליה מערכת מעברים מסומנת מוגדרת היא קבוצת המצבים שלה.

```
p_i=
ho_{2i} המקיימת p_i=
ho_{2i} לכל p_i=
ho_{2i} המקיימת ל האלפבית: תהא p_i=
ho_{2i} לכל מערכת מעברים מסומנת ותהא
                       w\in \Sigma^* אזי \omega עבורה ההטלה של \alpha מערכת מעברים מסומנת ותהא שזי \omega\in \Sigma^* אזי \omegaריצה על מחרוזת: תהא \alpha
              (Q,\Sigma,\Delta,S,F) אזי אוי איז אוי אוינה אזי אוייינה מעברים מסומנת מעברים מעברים מסומנת אזי אוייינה אזי יהי S,F\subseteq Q איזי יהי :Büchi אוטומט
                                            וכן 
ho_1\in S_{\mathcal A} המקיימת \Delta_{\mathcal A} של 
ho של אזי שיריצה Büchi יהי: Büchi יהי: אוטומט: Büchi יהי הא אוטומט:
                                                                                                                                                                                                                                 |\{i \in \mathbb{N}_+ \mid \rho_i \in F_{\mathcal{A}}\}| = \aleph_0
         באשר 
ho עבורו קיימת \omegaריצה 
ho עבורו אוטומט Büchi יהי אוטומט: ויהי Büchi מחרוזת מתקבלת על ידי אוטומט יהי אוטומט:
                                                                     \operatorname{Lan}(\mathcal{A}) = \operatorname{Lan}(\mathcal{B}) המקיימים \mathcal{A}, \mathcal{B} Büchi אוטומטיי אוטומטיי Büchi אוטומטיי
                                                                           אוטומט אוכן דירמיניסטי (DBA): אוטומט אוטומט דירמיניסטי אוטומט אוטומט דירמיניסטי (DBA) אוטומט אוטומ
                                                                                                   . באשר \mathcal A אינו דטרמיניסטי (NBA) אוטומט Büchi אוטומט אוטומט אינו דטרמיניסטי
                                                                                                                                                                         L_{\text{fin},a} = \left\{ w \in \{a,b\}^{\omega} \mid |w^{-1}[\{a\}]| < \aleph_0 \right\} הגדרה:
                                                                                                                                                                                    .Lan (\mathcal{N})=L_{\mathrm{fin},a} טענה: קיים אבל"ד \mathcal{N} המקיים
                                                                                                                                                                                 .Lan (\mathcal{D}) = L_{\mathrm{fin},a} טענה: לא קיים אב"ד \mathcal{D} המקיים
אזי \mathfrak{J}\subseteq 2^{Q_A} ותהא אוטומט ותהא אוטומט מעברים מעברים מעברים אלפבית \Sigma יהי אומושר יהי אוטומט אוטומט
                                                                                                                                                                                                                                                               (Q, \Sigma, \Delta, S, \mathfrak{J})
                                                                               . Inf (
ho)=\left\{q\in Q_{\mathcal{A}}\mid \left|
ho^{-1}\left[\{q\}
ight]
ight|=\aleph_0
ight\} הגדרה: יהי \mathcal{A} אוטומט Muller ותהא הגדרה: יהי
        \mathrm{Inf}(
ho)\in\mathfrak{J}_{\mathcal{A}} וכן 
ho_1\in S_{\mathcal{A}} המקיימת של איזי \Delta המקיימת אוטומט \Delta וכן \Delta וכן \Delta המיימת של המקיימת אוטומט יהי\omega
    על א באשר \rho על איז p עבורו קיימת \omegaריצה על אזי אוטומט Muller אזי אוטומט: Muller מחרוזת מתקבלת אוטומט: אוטומט שווים מחרוזת מתקבלת אוטומט
                                                                \mathrm{Lan}\left(\mathcal{A}\right)=\left\{w\in\Sigma_{A}^{\omega}\mid\mathcal{A} יהי \mathcal{A} אוטומט Muller אזי w מתקבלת על ידי: w
                                                                                                            \operatorname{Lan}(\mathcal{A}) = \operatorname{Lan}(\mathcal{B}) המקיימים \mathcal{A}, \mathcal{B} Muller אוטומטיי Muller אוטומטיי
                                                                     אטומט אוטומט דטרמיניסטי (DMA): אוטומט אוטומט דטרמיניסטי (DMA) דטרמיניסטית. אוטומט אוטומט אוטומט דטרמיניסטי
                                                                                              אינו דטרמיניסטי (NMA): אוטומט \mathcal{A} Muller אוטומט אוטומט אינו דטרמיניסטי (אדטרמיניסטי
                                                                                                                                   .Emp = \{ \langle \mathcal{A} \rangle \mid (\mathsf{B\ddot{u}chi} \; \mathsf{b\ddot{u}chi} \; \mathsf{h}) \wedge (\mathsf{Lan}\,(\mathcal{A}) = \varnothing) \} בעיית הריקנות:
                                                  .poly (n) וסיבוכיות מקום poly (n) בעל סיבוכיות בעל בmp את המכריע את דטרמיניסטי המכריע אלגוריתם בעל היים אלגוריתם את המכריע את
                             \mathcal{O}\left(\log^2\left(n
ight)
ight) וסיבוכיות מקום poly (n) בעל סיבוכיות בעל המכריע את בער המכריע המכריע את המכריע את אלגוריתם לא־דטרמיניסטי
                   s(i) = s(i+p) המקיימים p, N \in \mathbb{N} מחרוזת מחזורית מחרוזת מחזורית מודית מודית
              s\in \mathrm{Lan}\left(\mathcal{A}
ight) איי קיימת אוטומט מחארית החל ממקום באשר באשר אי הוער החל s\in \Sigma^\omega איי קיימת באשר Büchi משפט: יהי
                                                                                                                   .Uni = \{\langle \mathcal{A} \rangle \mid (\text{Büchi אוטומט } \mathcal{A}) \wedge (\text{Lan}(\mathcal{A}) = \Sigma^{\omega})\} בעיית האוניברסיליות:
                                                                                                           \mathsf{A}, \mathcal{B} = \{ \langle \mathcal{A}, \mathcal{B} \rangle \mid (\mathsf{B\"uchi} \; \mathsf{Notato} \; \mathcal{A}, \mathcal{B}) \wedge (\mathsf{Lan} \, (\mathcal{A}) \subseteq \mathsf{Lan} \, (\mathcal{B})) \} בעיית ההכלה:
                                                                                                                                                                                                                 משפט: Uni, Inc הינן PSPACE משפט:
ותהא s\in Q_\Delta יהי היו \Sigma יהי שלמה ודטרמיניסטית מעברים מסומנת מעברים תהא אלפביתים תהא אלפביתים מהא אלפביתים מעברים מסומנת שלמה אלפביתים הא
                                                                                                                                                                                                            .(Q_{\Delta},\Sigma,\Pi,\Delta,s,O) אזי O:\Delta 	o \Pi
 q 	o q 	o q אזי O(q,a,p) = b אאי O(q,a,p) = b ויהי b \in \Pi ויהי q 	o q באשר a \in \Sigma יהי q,p \in Q_\Delta יהי מתמר יהיו Q_\Delta מתמר יהיו
                                                                                                                                                                                                   |\Delta_T| < leph_0 מתמר סופי: מתמר מתמר מתמר מתמר
כך f:\Sigma^\omega_T	o\Pi^\omega_T אזי נגדיר 
ho_1=s_T אזי על w\in\Sigma^\omega_T ותהא וותהא w\in\Sigma^\omega_T מתמר: יהי T מתמר: ממתמר: ממתמר: אזי מתמר וותהא אוותהא
                                                                                                                                                                              n \in \mathbb{N}_+ לכל (f(w))_n = O_T(\rho_{2n-1}, \rho_{2n}, \rho_{2n+1})
                                                                                   T בתור T מתמר ותהא f:\Sigma^\omega_T 	o \Pi^\omega_T הפונקציה המושרית מ־T אזי נסמן את הערה: יהי
                                         ממת g:\Sigma^*	o\Pi אלפבתים איז f:\Sigma^\omega	o\Pi^\omega אלפבתים איז היון המקיימת: יהיו המיימת: יהיו המיימת מלפבתים איז הייו
                                                                                                                                                                              t \in \mathbb{N}_+ ולכל a \in \Sigma^{\omega} לכל (f(a)), = g(a_1 \dots a_t)
                                                                   פונקציה סיבתית ממש: יהיו g:\Sigma^*	o\Pi אלפבתים אזי f:\Sigma^\omega	o\Pi^\omega אלפבתים אזי אלפבתים היימת בורה היימת
                                                                                                                                                                        t \in \mathbb{N}_+ ולכל a \in \Sigma^{\omega} לכל (f(a))_t = g(a_1 \dots a_{t-1})
                                                                                                                                                                                                                    . טענה: יהי T מתמר אזי T סיבתית
                                                                                                                                                                                                 |Q_T|=1 מתמר מתמר מתמר מתמר נקודתי: מתמר
                                                                              T=f מתמר מחשב פונקציה: יהיו \Sigma,\Pi אלפבתים ותהא אוי מתמר f:\Sigma_T^\omega 	o \Pi_T^\omega אלפבתים אלפבתים מתמר מחשב בונקציה:
```

.Delay $^b\left(w
ight)=bw$ כך Delay $^b:\Sigma^\omega o\Sigma^\omega$ אזי נגדיר אזי נגדיר $b\in\Sigma$ אלפבית ויהי אלפבית $b\in\Sigma$

. טענה: יהי Σ אלפבית ויהי $b\in\Sigma$ אזי Delay פונקציה סיבתית ממש

טענה: יהי Σ אלפבית ויהי $b\in \Sigma$ אזי חשיבה על ידי מתמר סופי. Σ

 $b\in\Pi$ מתקיים כי מענה: יהיו Ξ^ω אלפבתים ותהא Ξ^ω סיבתית אזי $(f:\Sigma^\omega)$ סיבתית ותהא אלפבתים ותהא Σ^ω אלפבתים ותהא $U^\omega_{i=1}$ ($(a_1\dots a_i)\mid (f(a))_i=b\}$

 C_{i} טענה: $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמר אזי ($T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ אזי $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$ מתמרים באשר $T_{i}: \Sigma_{i}^{\omega} \to \Sigma_{i+1}$

סענה: יהיו Ξ,Π אלפבתים ותהא של מתמרים המורכבת f אזי ווא לובתים ותהא בתים ותהא לובתים המורכבת f אזי ווא לובתים בתוחשבת של מתמרים ממתמרים בקודתיים ו־Delay המחשבת את f).

 $\mathfrak{J}_{\mathrm{Rabin}}=\{P\subseteq Q\mid\exists i\in[n]\,.\,(P\cap F_i
eq\varnothing)\land (P\cap G_i=\varnothing)\}$ אזי נגדיר אזי נגדיר $F_1\ldots F_n,G_1\ldots G_n\subseteq Q$ ההיינה והרינה: Rabin אוטומט: יהי Σ אלפבית תהא Σ מערכת מעברים מסומנת באשר $|\Delta|<\aleph_0$ ותהיינה Σ אזי $(Q,\Sigma,\Delta,S,\mathfrak{J}_{\mathrm{Rabin}})$ Muller אוטומט

. דטרמיניסטית בטרמיניסטית אוטומט באר דטרמיניסטי אוטומט (DRA) אוטומט או

. באשר $\mathcal A$ אינו דטרמיניסטי (NRA) אוטומט אינו דטרמיניסטי Rabin אוטומט

 $\mathfrak{J}_{\mathsf{Street}} = \{P \subseteq Q \mid \forall i \in [n] \,.\, (P \cap F_i = \varnothing) \lor (P \cap G_i \neq \varnothing)\}$ אזי נגדיר $F_1 \ldots F_n, G_1 \ldots G_n \subseteq Q$ ההיינה Street: יהי Σ אלפבית תהא Σ מערכת מעברים מסומנת באשר אוטומט: Street: יהי Σ אלפבית תהא Σ מערכת מעברים מסומנת באשר Σ ותהיינה Σ אזי Σ אוטומט: Σ

. אוטומט אוטומט דטרמיניסטי (DSA) אוטומט דטרמיניסטי אוטומט אוטומט אוטומט אוטומט דטרמיניסטי אוטומט א

. אינו דטרמיניסטי אינו אינו אינו אינו אוטומט אינו אינו אינו אינו אינו אוטומט אינו אוטומט אינו אינו אינו אינו אוטומט Street אוטומט

 $\operatorname{Cyl}_B(S) = S imes B$ אזי אזי איזי רבוצות ותהא א קבוצות ההיינה Cylindrification: גליליזציה

- . NBA אזי מתקבלת על מתקבלת על אזי אוא NBA המתקבלות על אפות שפות שפות המתקבלות על ידי L_1, L_2
- . NBA ידי שפה $\pi_1\left(L\right),\pi_2\left(L\right)$ אזי אוי NBA המתקבלת על ידי שפה מעל ביתים ותהא שפה מעל ביתים המעל ביתים המעל ידי המתקבלת אזי Σ_1,Σ_2

משפט: NBA, NRA, NSA, NMA הינם מודלים שקולים.

למה קונינג: יהי T עץ מכוון באשר $|V\left(T
ight)|=leph_{0}$ אזי אחד מהבאים מתקיים

- $\deg^{+}(v)=\infty$ המקיים $v\in V\left(T
 ight)$
- $i \in \mathbb{N}_{+}$ לכל $(\rho_{i}, \rho_{i+1}) \in E\left(T\right)$ המקיים $\rho \in V\left(T\right)^{\omega}$ לכל

 $n\in\mathbb{N}_+$ לכל $Q_{n+1}=\{q\in Q\mid\exists p\in Q_n.\,(p,\alpha_{n+1},q)\in\Delta\}$ וכן $Q_0=S$ אזי $\alpha\in\Sigma^\omega_{\mathcal{A}}$ אוהי NBA הגדרה: יהי הי NBA אויר $Q_0=S$ אויר

•••

.NBA מתקבלת על ידי משפט coL אזי אוי שפה המתקבלת על ידי שפה המתקבלת על ידי Büchi משפט

 $n^{\mathcal{O}(n)}$ בעל NBA מתקבלת על ידי NBA משפט ספרא: n משבים אזי NBA משפט ספרא: n שפה המתקבלת על ידי

. מצבים ת $\mathrm{co}L$ את המקבל את המקבל עבורה על מצבים בעל חצבים בעל את המתקבלת על ידי אות המתקבלת שפה n