Basic Electronic Circuits (IEC-103)

Lecture-17

Small Signal Analysis

Linear Analog Amplifier

BJT Circuit Analysis

□ DC Analysis: To fix DC operating point (Q point). Also called biasing of transistor.

- ☐ Small Signal Analysis: Analyze BJT circuits for signals being amplified. Small signal model is used for analysis.
- ☐ The transistor is biased such a way to operate it in active region if used in amplifier circuit.

Large Signal DC Analysis (Active Region)

Notation in Transistor Analysis

S. No	Variable	Instantaneous AC	DC	Total
1	Emitter Current	i_e	I_E	i_E
2	Collector Current	i_c	I_C	i_C
3	Base Current	i_b	I_B	i_B
4	Collector-emitter Voltage	v_{ce}	V_{CE}	v_{CE}
5	Emitter-base Voltage	v_{eb}	$oxed{V_{EB}}$	v_{EB}

Basic Characteristics of an Amplifier

- □ Amplifier Gain: $A_v = \frac{v_o}{v_c}$
- □ Output Resistance: $R_o = \frac{v_o}{i_o} \Big|_{v_s = 0 \text{ (a short circuit)}, \ R_L = \infty \text{ (an open circuit)}}$

Basic Common Emitter Amplifier

Graphical Analysis of BJT Amplifier

Graphical Analysis of BJT Amplifier

Function of each component:

Function of each component:

Capacitors: Acting as an open circuit for a dc operation but a short circuit for an ac operation (If $f = 10 \text{ kHz} \& C = 10 \mu\text{F}$, then $|Z_C| = (2 \pi f C)^{-1} = 8 \Omega$, which is usually smaller than $R_{TH} = R_1//R_2$)

Function of each component:

- Capacitors: Acting as an open circuit for a dc operation but a short circuit for an ac operation (If $f = 10 \text{ kHz} \& C = 10 \mu\text{F}$, then $|Z_C| = (2 \pi f C)^{-1} = 8 \Omega$, which is usually smaller than $R_{TH} = R_1//R_2$)
- \square R_1 , R_2 , R_C & R_E : Setting dc biasing Q-point

Function of each component:

- Capacitors: Acting as an open circuit for a dc operation but a short circuit for an ac operation (If $f = 10 \text{ kHz} \& C = 10 \mu\text{F}$, then $|Z_C| = (2 \pi f C)^{-1} = 8 \Omega$, which is usually smaller than $R_{TH} = R_1 //R_2$)
- \square R_1 , R_2 , R_C & R_E : Setting dc biasing Q-point
- \square R_C : Converting i_c variation into v_{ce} (or v_o) variation (signal conversion)

DC Analysis and Equivalent Circuits

DC Analysis and Equivalent Circuits

- ☐ To determine the dc biasing Q-point
 - Reduce all signal sources to zero
 - Open all capacitors
 - Draw & analyze the dc equivalent circuit

DC Analysis and Equivalent Circuits

- ☐ To determine the dc biasing Q-point
 - Reduce all signal sources to zero
 - Open all capacitors
 - Draw & analyze the dc equivalent circuit

AC Analysis and Equivalent Circuits

AC Analysis and Equivalent Circuits

- ☐ To determine the ac characteristics (e.g., small-signal voltage gain, input & output impedances, frequency response, etc.)
 - Reduce all dc voltage sources to zero
 - Short all capacitors
 - > Draw & analyze the ac equivalent circuit

AC Analysis and Equivalent Circuits

- ☐ To determine the ac characteristics (e.g., small-signal voltage gain, input & output impedances, frequency response, etc.)
 - > Reduce all dc voltage sources to zero
 - Short all capacitors
 - > Draw & analyze the ac equivalent circuit

BJT as a small-signal, two-port network

Small-signal hybrid-π equivalent circuit

BJT as a small-signal, two-port network

Small-signal hybrid-π equivalent circuit

- $\square \beta = i_c / i_b = I_c / I_b =$ common-emitter current gain
- $r_{\pi} = v_{be} / i_b = V_{be} / I_b = V_T / I_{BQ} = \beta V_T / I_{CQ} = \text{small-signal resistance},$ where $V_T = kT / e = \text{thermal voltage}$

- $\square g_m = \beta / r_\pi = I_{CQ} / V_T = \text{transconductance}$
- \Box i_c is assumed to be independent of v_{ce} , which is not the case in practice & the assumption will be released later to include the "Early Effect".

$$V_{\pi} = V_{be} = V_{s} \left(\frac{r_{\pi}}{r_{\pi} + R_{B}} \right)$$

$$V_o = V_{ce} = -(g_m V_\pi) R_C = -(g_m V_{be}) R_C$$

$$V_{\pi} = V_{be} = V_{s} \left(\frac{r_{\pi}}{r_{\pi} + R_{B}} \right)$$

$$V_{o} = V_{ce} = -(g_{m}V_{\pi})R_{C} = -(g_{m}V_{be})R_{C}$$
Small-signal voltage gain:
$$A_{v} = \frac{V_{o}}{V_{s}} = -(g_{m}R_{C}) \left(\frac{r_{\pi}}{r_{\pi} + R_{B}} \right)$$