规范化

主要考点:

- 1.1NF (第一范式)
- 2.2NF (第二范式)
- 3.3NF (第三范式)
- 4. BCNF (第巴克斯范式)
- 5.4NF (第四范式)

1NF(第一范式)

• 定义:若关系模式R的每一个分量是不可再分的数据项,则关系模式R属于第一范式。记为RE1NF。 例: 学生(学号,姓名,学院编号,学院名称,课程号,成绩)

F={学号→姓名, 学号→学院编号, 学院编号→学院名称,(学号,课程号)→成绩}

- 存在的问题:
- (1) 数据冗余。
- (2) 更新异常(修改操作后数据不一致)。
- (3)插入异常。
- (4) 删除异常。

学号	姓名	学院 编号	学院名称	课程 号	成绩
1001	王芳	D20	经济学院	C001	76
1001	王芳	D20	经济学院	C002	85
1001	王芳	D20	经济学院	C003	63
1002	李明	D12	计算机学院	C001	92
1002	李明	D12	计算机学院	C002	89
1003	赵晗	D12	计算机学院	C002	78
1003	赵晗	D12	计算机学院	C003	86
1004	刘晓	D25	管理学院	C002	90

紫依

2NF(第二范式)

- 定义: 若关系模式R∈1NF, 且每一个非主属性完全依赖于码, 则关系模式R∈2NF。
- 换句话说: 当1NF消除了非主属性对码的部分函数依赖,则称为2NF。

例: 学生(学号,姓名,学院编号,学院名称,课程号,成绩)

F={学号→姓名, 学号→学院编号, 学院编号→学院名称,(学号,课程号)→成绩}

将学生关系分解为:

· 学生₁(学号, 姓名, 学院编号, 学院名称) ∈ 2NF

• 学生。(学号, 课程号, 成绩) ∈2NF

• 判断的方法: 关系模式中是否有非主属性 对候选码的部分函数依赖?

①有: 不是2NF, 是1NF

②没有: 是2NF

• 2NF仍然有数据冗余, 更新, 插入和删除异常。

		1.丁1	
学号	姓名	学院 编号	学院名称
1001	王芳	D20	经济学院
1002	李明	D12	计算机学院
1003	赵晗	D12	计算机学院
1004	刘晓	D25	管理学院

学生2 学号 课程号 成绩

	5552	
1001	C002	85
1001	C003	63
1002	C001	92
1002	C002	89
1003	C002	78
1003	C003	86
1004	C002	90

3NF(第三范式)

- 定义:若关系模式R(U,F)中不存在这样的码X,属性组Y及非主属性Z(Z⊈Y)使得X→Y,(Y→X)Y→Z成立,则关系模式R∈3NF。
- 即: 当2NF消除了非主属性对码的传递函数依赖,则称为3NF。
- 例: 学生₁(<u>学号</u>, 姓名, 学院编号, 学院名称) \in 2NF,但 \notin 3NF。 将学生₁分解为:
- 学生₁₁(<u>学号</u>, 姓名, 学院编号) ∈3NF
- 学生₁₂(<u>学院编号</u>, 学院名称) ∈3NF
- 判断的方法: 关系模式中是否有非主属性对候选码的

传递函数依赖?

- ①有: 不是3NF
- ②没有: 是3NF
- 3NF仍然有数据冗余, 更新, 插入和删除异常。

学生11				
学号	姓名	学院 编号		
1001	王芳	D20		
1002	李明	D12		
1003	赵晗	D12		
1004	刘晓	D25		

学生12		
学院 编号	学院名称	
D20	经济学院	
D12	计算机学院	
D25	管理学院	

紫依

搜索: 步进 5 秒(关键帧) / 00:24:50(41%)

BCNF(巴克斯范式)

- 定义:关系模式R∈1NF,若X→Y且Y⊈X时,X必含有码,则关系模式R∈BCNF。
- 也就是说, 当3NF消除了主属性对码的部分函数依赖和传递函数依赖, 则称为BCNF。
- 判断的方法:关系模式中是否有主属性对候选码的部分函数依赖或传递函数依赖?
 - ①有:不是BCNF
 - ②没有: 是BCNF
- 结论: 一个满足BCNF的关系模式, 应有如下性质:
- (1) 所有非主属性对每一个码都是完全函数依赖;
 - (2) 所有主属性对每一个不包含它的码, 也是完全函数依赖;
 - (3) 没有任何属性完全函数依赖于非码的任何一组属性。
- BCNF没有数据冗余,更新、插入和删除异常。

紫依

4NF(第四范式)

- 定义:关系模式R∈1NF,若对于R的每个非平凡多值依赖X→→Y且Y⊈X时,X必含有码,则关系模式R(U,F)∈4NF。
- 4NF是限制关系模式的属性间不允许有非平凡且非函数依赖的多值依赖。
- 注意:如果只考虑函数依赖,关系模式最高的规范化程度是BCNF,如果考虑多值依赖,关系模式最高的规范化程度是4NF。
- 判断方法: 是否有非平凡且非函数依赖的多值依赖(嵌入式的多值依赖)?
- 有: 不是4NF。
- 没有: 是4NF。

紫依