Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра ОБЩей физики Лабораторная работа №4.3.1

Изучение дифракции света

Студент Маил МАМЕДОВ группа Б01-006

Преподаватель Владимир Юрьевич Стожков

Цель работы: исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

1. Дифракция Френеля на щели

Схема установки для наблюдения дифракции Френеля представлена на рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π .

Рис. 1: Схема установки для наблюдения дифракции Френеля

Щель S2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На щель S_1 сфокусировано изображение спектральной линии, выделенной из спектра ртутной лампы Π при помощи простого монохроматора C, в котором используется призма прямого зрения.

Распределение интенсивности света в плоскости наблюдения Π проще всего рассчитывать с помощью зон Френеля (для щели их иногда называют зонами Шустера). При освещении щели S_2 параллельным пучком лучей (плоская волна) зоны Френеля представляют собой полоски, параллельные краям щели. Результирующая амплитуда в точке наблюдения определяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина n зон Френеля ξ_n определяется соотношением:

$$\xi_n = \sqrt{an\lambda},$$

где а – расстояние от щели до плоскости наблюдения (рис. 1), а λ – длина волны.

Измерим значение расстояний при изменении количества темных полос:

ица 1. Зависимость расстояния от количества п												
m	5	4	3	2	1							
n	6	5	4	3	2							
ξ_n , mkm	0.8	1.1	1.4	1.8	2.6							
$2\xi_n$, mkm	323.8	346.6	349.7	343.4	337.0							
δx , см	0.05	0.05	0.05	0.05	0.1							
ϵx	0.06	0.05	0.04	0.03	0.04							
$\delta \xi$, mkm	20.2	15.7	12.4	9.5	12.9							

Таблица 1: Зависимость расстояния от количества полос

Построим график зависимости $2\xi_n(n)$:

Рис. 2: График зависимости $2\xi_n(n)$

2. Дифракция Фраунгофера на щели

Картина дифракции резко упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля.

Это условие всегда выполняется при достаточно большом расстоянии а от щели до плоскости наблюдения. Дифракционную картину, наблюдаемую в этом случае, принято называть дифракцией Фраунгофера. Исследование такой дифракционной картины заметно облегчается, потому что упрощаются фазовые соотношения.

Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке (рис. 1). Однако при обычных размерах установки дифракция Фраунгофера возникает только при очень узких щелях. Например, при $a\approx 20-40$ см и $\lambda\approx 5\cdot 10^{-5}$ см получаем

 $D \ll 0.3$ мм. Поскольку работать с такими тонкими щелями неудобно, для наблюдения дифракции Фраунгофера к схеме, изображённой на рис. 1 добавляется объектив O_2 (рис. 3).

Рис. 3: Схема установки для наблюдения дифракции Фраунгофера на щели

Дифракционная картина наблюдается здесь в фокальной плоскости объектива O_2 .

Начальные данные:

$$f_1 = 11 \, \, \mathrm{cm}$$
 $f_2 = 12.5 \, \, \mathrm{cm}$

Таблица 2: Координаты дифракционных минимумов

7	m	-4	-3	-2	-1	0	1	2	3	4
x_m	, мм	0.62	0.85	1.03	1.25	1.5	1.68	1.88	2.1	2.32

Построим график зависимости $x_m(m)$:

Рис. 4: Зависимость $x_m(m)$

$$b = \frac{f_2 \lambda}{k} = 0.32$$
 мм

3. Дифракция Фраунгофера на двух щелях

Рис. 5: Схема установки для наблюдения дифракции Фраунгофера на двух щелях

Для наблюдения дифракции Фраунгофера на двух щелях в установке (рис. 3) следует заменить щель S_2 экраном Э с двумя щелями (рис. 5). При этом для оценки влияния ширины входной щели на чёткость ди- фракционной картины вместо входной щели S_1 следует поставить щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых образовано лучами, прошедшими через левую, а другое — через правую щели, накладываются друг на друга.

Если входная щель достаточно узка, то дифракционная картина в плоскости П (рис. 3) подобна той, что получалась при дифракции на одной щели (рис. 5), однако теперь вся картина испещрена рядом дополнительных узких полос. Наличие этих полос объясняется суперпозицией световых волн, приходящих в плоскость наблюдения через разные щели экрана Э.

1. Определим координаты x_1, x_2 самых удаленных друг от друга темных полос внутри первого максимума, а также координату центра максимума:

$$x_1 = 1.38 \text{ mm}$$

$$x_2 = 1.74 \text{ mm}$$

Всего в первом максимуме обнаружено n=5 светлых полос, поэтому расстояние между ними равно:

$$\delta x = \frac{x_2 - x_1}{n} = \frac{0.36}{5} = 0.072 \text{ mm}$$

Теперь можно найти расстояние между щелями:

$$d = \frac{f_2 \lambda}{\delta x} = 0.9 \text{ mm}$$

2. Исследуем влияние пространственной когерентности на видность картины.

$$b_0 = \frac{f_1 \lambda}{d} = 67 \text{ MKM}$$

Экспериментально:

$$b_{0$$
эксп = 110 мкм

4. Влияние дифракции на разрешающую способность оптического инструмента

Установка, представленная на рис. 6, позволяет исследовать влияние дифракции на разрешающую способность оптических инструментов. Как уже было выяснено, линзы O_1 и O_2 в отсутствие щели S_2 создают в плоскости Π изображение щели S_1 , и это изображение рассматривается в микроскоп M. Таким образом, нашу установку можно рассматривать как оптический инструмент, предназначенный для получения изображения предмета. При этом коллиматор (щель S_1 и объектив O_1) является моделью далёкого предмета, а объектив O_2 и микроскоп M составляют зрительную трубу, наведённую на этот предмет.

Если перед объективом O_2 зрительной трубы расположить щель S_2 , то изображение объекта будет искажено дифракцией на щели S_2 . Чем меньше ширина D_0 этой щели, тем сильнее искажение. Качественной характеристикой этих искажений может служить минимальное угловое расстояние ϕ_{min} между объектами (источниками), которые ещё воспринимаются как раздельные.

Рис. 6: Схема установки для исследования разрешающей способности оптического инструмента

1. При помощи микроскопа измерим расстояние между щелями:

$$d = 0.31 - 0.17 \text{ mm} = 0.8 \text{ mm}$$

2. Найдем ширину D_0 щели S_2 при которой пропадают различия между изображениями двух щелей:

$$D_0=rac{f_1\lambda}{d}=0.75$$
 mm

3. Теперь подберем экспериментально ширину D_0 щели S_2 такой, чтобы два изображения видимые в микроскоп были максимально размыты, но при этом еще видимы:

$$D_{0 ext{9KCII}} = 0.8 \text{ mm}$$

5. Вывод

Мы исследовали явления дифракции Френеля и Фраунгофера на щели, посчитали ширину щели теоретически и экспериментально.