Отчет по лабораторной работе N_21

Гусаров Евгений, Шиманская Маргарита ${\rm M3237}$

27 марта 2021 г.

1 Постановка задачи

Вариант №3

$$f(x) = x \cdot \sin(x) + 2 \cdot \cos(x)$$

Найти минимум данной функции на отрезке [-6; -4], реализовав алгоритмы одномерной минимизации функции:

- метод дихтомии
- метод золотого сечения
- метод Фиббоначи
- метод парабол
- комбинированный метод Брента

Сравнить результат работы с аналитическим решением данной задачи, сделать выводы.

2 Аналитическое решение

Рис. 1: График функции

$$f(x) = x \cdot \sin(x) + 2 \cdot \cos(x)$$

$$f'(x) = x \cdot \cos(x) + \sin(x) - 2 \cdot \sin(x)$$

$$f'(x) = 0 \quad <=> \quad x \cdot \cos(x) - \sin(x) = 0$$

$$x = \tan(x)$$

На данном отрезке один корень: $x_1 \approx -4.4934$ $f(x_1) \approx -4.8206$

Функция достигает минимума в этой точке. потому что на интервале $(x_1 - \epsilon; x_1)$ функция убывает(производная < 0), а на $(x_1; x_1 + \epsilon)$ возрастает(производная > 0)

3 Результаты исследований методов

3.1 Метод дихотомии

$N_{\overline{0}}$	left	right	length	x	f(x)
1	-6,00000000	-4,00000000	2,00000000	-5,00000050	-4,22729581
2	-6,00000000	-4,00000000	2,00000000	-4,99999950	-4,22729819
3	-5,00000050	-4,00000000	1,00000050	-4,50000075	-4,82047711
4	-5,00000050	-4,00000000	1,00000050	-4,49999975	-4,82047714
5	-4,50000075	-4,00000000	0,50000075	-4,25000087	-4,69588063
6	-4,50000075	-4,00000000	0,50000075	-4,24999987	-4,69587963
7	-4,50000075	-4,24999987	0,25000087	-4,37500081	-4,79039632
8	-4,50000075	-4,24999987	0,25000087	-4,37499981	-4,79039581
9	-4,50000075	-4,37499981	0,12500094	-4,43750078	-4,81377593
10	-4,50000075	-4,37499981	0,12500094	-4,43749978	-4,81377569
11	-4,50000075	-4,43749978	0,06250097	-4,46875077	-4,81924393
12	-4,50000075	-4,43749978	0,06250097	-4,46874977	-4,81924382
13	-4,50000075	-4,46874977	0,03125098	-4,48437576	-4,82039375
14	-4,50000075	-4,46874977	0,03125098	-4,48437476	-4,82039371
15	-4,50000075	-4,48437476	0,01562599	-4,49218825	-4,82056921
16	-4,50000075	-4,48437476	0,01562599	-4,49218725	-4,82056920
17	-4,50000075	-4,49218725	0,00781350	-4,49609450	-4,82055666
18	-4,50000075	-4,49218725	0,00781350	-4,49609350	-4,82055667
19	-4,49609450	-4,49218725	0,00390725	-4,49414138	-4,82057130
20	-4,49609450	-4,49218725	0,00390725	-4,49414038	-4,82057131
21	-4,49414138	-4,49218725	0,00195412	-4,49316482	-4,82057235
22	-4,49414138	-4,49218725	0,00195412	-4,49316382	-4,82057234
23	-4,49414138	-4,49316382	0,00097756	-4,49365310	-4,82057235
24	-4,49414138	-4,49316382	0,00097756	-4,49365210	-4,82057235
25	-4,49365310	-4,49316382	0,00048928	-4,49340896	-4,82057248
26	-4,49365310	-4,49316382	0,00048928	-4,49340796	-4,82057248

$N_{\overline{0}}$	left	right	length	x	f(x)
27	-4,49365310	-4,49340796	0,00024514	-4,49353103	-4,82057244
28	-4,49365310	-4,49340796	0,00024514	-4,49353003	-4,82057245
29	-4,49353103	-4,49340796	0,00012307	-4,49346999	-4,82057247
30	-4,49353103	-4,49340796	0,00012307	-4,49346899	-4,82057247
31	-4,49346999	-4,49340796	0,00006204	-4,49343947	-4,82057247
32	-4,49346999	-4,49340796	0,00006204	-4,49343847	-4,82057248
33	-4,49343947	-4,49340796	0,00003152	-4,49342422	-4,82057248
34	-4,49343947	-4,49340796	0,00003152	-4,49342322	-4,82057248

3.1.1 Вывод

Из графика №2 видно, что количество вычислений функции для метода дихотомии линейно зависит от $\log \epsilon$.

Плюсы данного метода:

- 1. Простота в написании.
- 2. При уменьшении Δ повышается скорость сходимости.

Минусы данного метода:

- 1. На каждой итерации вычисляется значение функции в двух точках, что негативно отражается на скорости.
- 2. При чрезмерно малом Δ сравнение точек становится затруднительным.

3.2 Метод золотого сечения

$N_{\overline{0}}$	left	right	length	x	f(x)
1	-6,00000000	-4,00000000	2,00000000	-5,23606798	-3,53421890
2	-6,00000000	-4,00000000	2,00000000	-4,76393202	-4,65456484
3	-5,23606798	-4,00000000	1,23606798	-4,47213595	-4,81958315
4	-4,76393202	-4,00000000	0,76393202	-4,29179607	-4,73435675
5	-4,76393202	-4,29179607	0,47213595	-4,58359214	-4,80250900
6	-4,58359214	-4,29179607	0,29179607	-4,40325225	-4,80299576
7	-4,58359214	-4,40325225	0,18033989	-4,51470843	-4,81957450
8	-4,51470843	-4,40325225	0,11145618	-4,44582472	-4,81564263
9	-4,51470843	-4,44582472	0,06888371	-4,48839719	-4,82051742
10	-4,51470843	-4,47213595	0,04257247	-4,49844719	-4,82051678
11	-4,49844719	-4,47213595	0,02631123	-4,48218595	-4,82029669
12	-4,49844719	-4,48218595	0,01626124	-4,49223595	-4,82056946
13	-4,49844719	-4,48839719	0,01005000	-4,49460843	-4,82056932
14	-4,49460843	-4,48839719	0,00621124	-4,49076968	-4,82055720
15	-4,49460843	-4,49076968	0,00383876	-4,49314216	-4,82057232
16	-4,49460843	-4,49223595	0,00237248	-4,49370222	-4,82057229
17	-4,49370222	-4,49223595	0,00146627	-4,49279602	-4,82057165
18	-4,49370222	-4,49279602	0,00090621	-4,49335608	-4,82057247
19	-4,49370222	-4,49314216	0,00056007	-4,49348830	-4,82057246
20	-4,49348830	-4,49314216	0,00034614	-4,49327437	-4,82057244
21	-4,49348830	-4,49327437	0,00021393	-4,49340659	-4,82057248
22	-4,49348830	-4,49335608	0,00013221	-4,49343780	-4,82057248
23	-4,49343780	-4,49335608	0,00008171	-4,49338730	-4,82057248
24	-4,49343780	-4,49338730	0,00005050	-4,49341851	-4,82057248
25	-4,49341851	-4,49338730	0,00003121	-4,49339922	-4,82057248
26	-4,49341851	-4,49339922	0,00001929	-4,49341114	-4,82057248

3.2.1 Вывод

Из графика №2 видно, что количество вычислений функции для метода золотого сечения линейно зависит от $\log \epsilon$.

Плюсы данного метода:

- 1. Требует меньшего числа вычислений функции, чем метод дихотомии, потому что на каждом промежутке вычисляется только одно новое значение x и f(x).
- 2. Не вычисляются значения в крайних точках.

Минусы данного метода:

1. Быстро накапливается погрешность из-за того, что константа $\phi = \frac{\sqrt{5}-1}{2}$ представляется в ЭВМ неточно.

Стоит отметить, что результат алгоритма с уменьшением количества итераций почти не меняется относительно ε .

3.3 Метод Фибоначчи

$N_{\overline{0}}$	left	right	length	x	f(x)
1	-6,00000000	-4,00000000	2,00000000	-5,23606798	-3,53421890
2	-6,00000000	-4,00000000	2,00000000	-4,76393202	-4,65456484
3	-5,23606798	-4,00000000	1,23606798	-4,47213596	-4,81958315
4	-4,76393202	-4,00000000	0,76393202	-4,29179607	-4,73435675
5	-4,76393202	-4,29179607	0,47213596	-4,58359213	-4,80250900
6	-4,58359213	-4,29179607	0,29179607	-4,40325225	-4,80299576
7	-4,58359213	-4,40325225	0,18033989	-4,51470843	-4,81957450
8	-4,51470843	-4,40325225	0,11145618	-4,44582472	-4,81564263
9	-4,51470843	-4,44582472	0,06888371	-4,48839719	-4,82051742
10	-4,51470843	-4,47213596	0,04257247	-4,49844719	-4,82051678
11	-4,49844719	-4,47213596	0,02631124	-4,48218595	-4,82029669
12	-4,49844719	-4,48218595	0,01626124	-4,49223595	-4,82056946
13	-4,49844719	-4,48839719	0,01005000	-4,49460843	-4,82056932
14	-4,49460843	-4,48839719	0,00621124	-4,49076967	-4,82055720
15	-4,49460843	-4,49076967	0,00383876	-4,49314215	-4,82057232
16	-4,49460843	-4,49223595	0,00237248	-4,49370223	-4,82057229
17	-4,49370223	-4,49223595	0,00146628	-4,49279603	-4,82057165
18	-4,49370223	-4,49279603	0,00090620	-4,49335611	-4,82057247
19	-4,49370223	-4,49314215	0,00056008	-4,49348827	-4,82057246
20	-4,49348827	-4,49314215	0,00034612	-4,49327430	-4,82057244
21	-4,49348827	-4,49327430	0,00021396	-4,49340646	-4,82057248
22	-4,49348827	-4,49335611	0,00013215	-4,49343792	-4,82057248
23	-4,49343792	-4,49335611	0,00008181	-4,49338758	-4,82057248
24	-4,49343792	-4,49338758	0,00005034	-4,49341904	-4,82057248
25	-4,49341904	-4,49338758	0,00003147	-4,49340017	-4,82057248
26	-4,49341904	-4,49340017	0,00001888	-4,49341275	-4,82057248
27	-4,49341275	-4,49340017	0,00001259	-4,49340646	-4,82057248

3.3.1 Вывод

Из графика №2 видно, что количество вычислений функции для метода Фибоначчи линейно зависит от $\log \epsilon$.

Плюсы данного метода:

- 1. Не вычисляются значения в крайних точках.
- 2. Коэффициент сокращения интервала меняется от итерации к итерации.

В связи с этим метод Фибоначчи является более эффективным, чем метод золотого сечения

Стоит отметить, что количество итераций n фиксировано, их нужно выбирать исходя из точности и начальной длины промежутка.

3.4 Метод парабол

$N_{\overline{0}}$	left	right	length	x	f(x)
1	-6,00000000	-4,00000000	2,00000000	-6,00000000	0,24384758
2	-6,00000000	-4,00000000	2,00000000	-5,00000000	-4,22729700
3	-6,00000000	-4,00000000	2,00000000	-4,00000000	-4,33449722
4	-6,00000000	-4,00000000	2,00000000	-4,47543502	-4,81986585
5	-5,00000000	-4,00000000	1,00000000	-4,47507589	-4,81983737
6	-5,00000000	-4,47507589	0,52492411	-4,49247153	-4,82057055
7	-5,00000000	-4,47543502	0,52456498	-4,49291712	-4,82057195
8	-5,00000000	-4,49247153	0,50752847	-4,49337272	-4,82057247
9	-5,00000000	-4,49291712	0,50708288	-4,49339587	-4,82057248
10	-5,00000000	-4,49337272	0,50662728	-4,49340817	-4,82057248
11	-5,00000000	-4,49339587	0,50660413	-4,49340908	-4,82057248

3.4.1 Вывод

Из графика №2 видно, что количество вычислений функции для метода парабол линейно зависит от $\log \epsilon$.

Плюсы данного метода:

- 1. В общем случае метод парабол обладает суперлинейной скоростью сходимости.
- 2. Меньше итераций по сравнению с предыдущими методами.

Минусы данного метода:

- 1. Требует вычисления значений в крайних точках функции и нахождения промежуточной точки, удовлетворяющей неравенству на первой итерации.
- 2. Высокая скорость сходимости гарантируется только в малой окрестности точки минимума.

3.5 Метод Брента

$N_{\overline{0}}$	left	right	length	x	f(x)
1	-6,00000000	-4,00000000	2,00000000	-5,23606798	-3,53421890
2	-6,00000000	-4,00000000	2,00000000	-4,76393202	-4,65456484
3	-5,23606798	-4,00000000	1,23606798	-4,47213595	-4,81958315
4	-4,76393202	-4,00000000	0,76393202	-4,49851910	-4,82051518
5	-4,76393202	-4,47213595	0,29179607	-4,49312987	-4,82057231
6	-4,49851910	-4,47213595	0,02638314	-4,49340165	-4,82057248
7	-4,49851910	-4,49312987	0,00538922	-4,49340935	-4,82057248
8	-4,49851910	-4,49340165	0,00511745	-4,49341273	-4,82057248
9	-4,49341273	-4,49340165	0,00001108	-4,49340597	-4,82057248

3.5.1 Вывод

Из графика №2 видно, что количество вычислений функции для комбинированного метода Брента линейно зависит от $\log \epsilon$.

Плюсы данного метода:

- 1. Эффективно комбинирует метод золотого сечения и метод парабол.
- 2. Меньше всего вычислений функции. (Возможно, нам повезло с функцией)

Минусы данного метода:

1. Сложность реализации по сравнению с остальными методами.

Рис. 2: Зависимость количества итераций от $\log \epsilon$

4 Тестирование алгоритмов на многомодальной функции

Приведённые алгоритмы работают при поиске минимума унимодальной функции. Оценим результаты их работы на многомодальной функции, например, вида $f(x) = -x^{\cos(x)} \exp(\sin(x))$ на отрезке. x = [0, 20]

Рис. 3: График функции

Для теста был выбран $\varepsilon = 0.00000001$. Аналитическим решением получили точку минимума: $x \approx 19.1916598$.

Ниже приведены результаты работы алгоритмов на данной функции.

Метод	Число итераций	результат
Дихотомия	60	12.964333547131023
Золотое сечение	46	12.964333604846322
Фибоначчи	46	12.964333592016619
Метод Парабол	17	6.82151365682379
Метод Брента	14	12.964333590155599

Как видно все методы нашли точки локального минимума $x \approx 6.82151365682379$ и $x \approx 12.964333590155599$. Ни один метод не смог найти точку глобального минимума. Эти результаты показывают, что данные методы не могут гарантировать корректный результат на многомодальных функциях.

5 Результаты исследования

В ходе работы нами были реализованы и протестированны пять алгоритмов поиска минимума унимодальной функции. Метод Брента оказался наиболее устойчивым. Также методу Брента потребовалось меньше всего итераций и вычислений функции для нахождения ответа.

Кроме того мы протестировали алгоритмы на многомодальных функциях. Все методы выдали точки локальных минимумов, а не глобального. Исходя из этого можно понять, что лучше не стоит применять данные алгоритмы для поиска минимума в многомодальных функциях.