NAME:	
STUDENT NUMBER:	
DATE:	

EXAM DIAC 20.01.2022

Q1:

Design a symmetrical OTA with **casocodes at the output**, PMOS transistors at the input and a single ended output. The load of the OTA is a capacitor of 1pF. Ensure that the rising and falling Slew-rate are at least 40V/us and the low frequency gain should be at least 60dB.

- Use a B-factor of 2
- What is the GBW that you obtain with the above specifications?
- Also calculate the non-dominant pole and pole-zero doublet
- Draw the bode-plot of your designed OTA.
- What is the phase margin of your OTA for unity feedback?

NAME:

STUDENT NUMBER:

DATE:

Q2:

For the circuit below: derive the expression for gain, bandwidth, GBW, SR and non-dominant pole.

Also calculate these values for: VDD=3.3V, IB1=50uA, IB2=10uA, CL=1pF,

W1=3um, L1=1um, W2=3um, L2=1um, the resistor at the source of M1 has a value of $10k\Omega$

NAME:

STUDENT NUMBER:

DATE:

Q3

- 1. Amplifier A must have a DC input and output voltage of 0.5 V and a maximum input-referred thermal noise voltage of 5 nV/VHz. Determine its minimum current consumption.
- 2. Determine the minimum current consumption of amplifier B for the same specifications as amplifier A. Explain the difference between both current consumptions.
- 3. Determine the transistor sizes in amplifier B for a noise corner frequency at 1 MHz.

V_{DD}	1 V
Т	300 K
L _{min}	65 nm
K _n '	440 μA/V ²
K _p ′	140 μA/V²
V _T	0.3 V
C _{ox}	12 fF/μm²
V _E	5 V/μm
KF _{F,n}	4 x 10 ⁻³⁹ C ² /μm ²
$KF_{F,p}$	10 ⁻³⁹ C²/μm²