Universidade do Minho Escola de Engenharia

Processamento Digital de Sinal

Relatório Projeto

Diminuição da Frequência de amostragem de um sinal por meios Digitais – Modelo de Decimação

<u>Curso:</u> Engenharia Eletrónica Industrial e Computadores

<u>Unidade Curricular:</u> Processamento Digital de Sinal

Docente: Carlos Manuel Gregório Santos Lima

Realizado por: César Gonçalo Macedo Melo

Filtro utilizado: Janela de Kaiser

Universidade do Minho Escola de Engenharia

Índice

Introdução	3
Fundamentos Teóricos	4
Implementação	7
Conclusão:	12

* 〇

Processamento Digital de Sinal

Universidade do Minho Escola de Engenharia

Introdução

Este trabalho foi proposto no âmbito da Unidade Curricular de Processamento Digital de Sinal, sob a orientação do professor Carlos Lima, com a finalidade da implementação de um módulo capaz de diminuir a frequência de amostragem por meios digitais, evitando, desta forma, a ocorrência do fenómeno de Aliasing.

De forma a combater este acontecimento prejudicial, recorreu-se à técnica designada por "Downsampling" ou modelo de decimação, com a eliminação de zeros, ao reduzir a taxa de amostragem do sinal gerado.

Para isso, foi utilizado um filtro FIR, mais detalhadamente a Janela de Kaiser, de forma de resolução do problema proposto.

※ ○

Processamento Digital de Sinal

Universidade do Minho Escola de Engenharia

Fundamentos Teóricos

Filtro Passa Baixo

Os filtros passa-baixo permitem a passagem de sinais de baixas frequências, atenuando ou reduzindo sinais com amplitude superior à frequência de corte.

São constituídos por três bandas de frequência distintas: Banda Passante, Banda de Transição e Banda de Corte:

- → Banda Passante Ou PassBand, corresponde às frequências do sinal de entrada, que passam para a saída sem atenuação ou com ligeira atenuação;
- → Banda de Corte Ou StopBand, corresponde à gama de frequências do sinal de entrada que são rejeitadas pelo filtro;
- → Banda de Transição Zona intermédia entre as dias bandas anteriores, sendo que, nesta zona, o comportamento do filtro varia entre a atenuação ligeira e a rejeição do sinal de entrada.

De forma a garantir que os filtros apresentem uma característica bem definida na banda de transição, é comum a utilização de filtros de ordem elevada.

☆ 〇

Processamento Digital de Sinal

Universidade do Minho Escola de Engenharia

Filtros Digitais

A filtragem de sinais pode ser efetuada de forma digital, conforme é mostrado na figura abaixo:

O bloco conversor A/D converte um determinado sinal contínuo de entrada x(t), numa sequência x[n].

No próximo passo, esta função discreta é processada digitalmente por um filtro, dando origem a uma outra sequência y[n], representando a função inicial x[n], na forma digital correspondente.

Mais tarde, esta nova sequência é convertida novamente para um sinal contínuo, através de um conversor D/A e, finalmente, reconstruída através de um filtro passa-baixo, cuja saída final é o sinal y(t), que representa a versão filtrada do sinal inicial x(t).

<u>Filtro Fir</u>

Também designado por filtro de resposta ao impulso finito, sendo que, ao contrário dos filtros IIR (de resposta infinita), é um tipo de filtro digital cuja resposta ao impulso é tornada nula após um certo tempo finito.

Este filtro apresenta a função de transferência discreta:

$$\frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} a_k z^{(M-k)}}{z^M}$$

※ ○

Processamento Digital de Sinal

Universidade do Minho Escola de Engenharia

Filtro Janela de Kaiser

O filtro utilizado no desenvolvimento deste trabalho foi o de Janela de Kaiser, definido pela expressão:

$$w(n) = \begin{cases} \frac{I_0 \left(\beta \sqrt{1 - \left(\frac{n-\alpha}{\alpha}\right)^2}\right)}{I_0(\beta)} & 0 \le n \le L - 1\\ 0 & n < 0 \text{ ou } n \ge L, \end{cases}$$

Sendo o parâmetro L o comprimento da resposta impulsiva do filtro que se pretende projetar.

A função lo é a função de Bessel modificada de primeira espécie de ordem zero, cuja série de Taylor é representada:

$$I_0(x) = 1 + \sum_{k=1}^{\infty} \left[\frac{\left(\frac{x}{2}\right)^k}{k!} \right]^2.$$

Modelo de Decimação

Em processamento digital de sinal, a decimação (ou DownSampling), é um processo de redução da frequência de amostragem de um sinal, de acordo com um fator de decimação D (inteiro).

Se um sinal x[n] for simplesmente amostrado, iria dar origem a uma forte distorção, sendo então necessário, primeiramente, remover com um filtro passa-baixo a banda superior do sinal, a π/D .

Abaixo encontra-se um exemplo de um sinal original, bem como, o mesmo, sujeito ao processo de decimação, com a redução do número de amostras retiradas.

O processo de "DownSampling", por si só, faz com que sinais de alta frequência sejam sobrepostos por outras informações (fenómeno de Aliasing). De forma a combater este problema, é precisamente aplicado, neste caso, o Filtro de Kaiser, que funciona como filtro anti-aliasing.

Implementação

Numa primeira fase, é feita uma gravação áudio durante 3 segundos, de forma a ser gerado um sinal de entrada que, mais tarde, vai ser sujeito ao processo de decimação.

Universidade do Minho Escola de Engenharia

Processamento Digital de Sinal

```
gravacao = audiorecorder (8000,8,1); % 8000 Hz, 8-bit, 1-channel
disp('Inicio da gravacao.')
recordblocking(gravacao, 3);
disp('Fim da gravacao.');
audio_gravado = getaudiodata(gravacao);
plot (audio_gravado);
```

De seguida, são definidos os parâmetros a serem utilizados, de maneira a originar o filtro com as especificações pedidas no enunciado. Os limites da banda de transição utilizados foram de 2000Hz e de 2400Hz, correspondendo a uma largura da banda de transição de 20% da Banda Passante.

```
% Parametros para inserir no kaiserord
Sampling_Frequency = 8000; % frequencia de amostragem
Limites_Banda_transicao=[Sampling_Frequency/4 1.2*Sampling_Frequency/4]; % 20% banda passante
mags = [1 0]; % Filtro Passa Baixo
devs = [0.01 0.001]; % Ripple passa banda e atenuação na banda de rejeicao
```

Em último processo, é criado o filtro kaiser com os parâmetros definidos acima, aplicando este ao sinal de áudio gerado no início do programa.

Foi criado um ciclo 'for', de forma a atribuir diferentes valores à Banda Passante e, gerar o DownSampling do sinal original, sendo que, à medida que o valor de 'i' aumenta, são recolhidas cada vez menos amostras do sinal original, já filtrado, dando cada vez mais um áudio irreconhecível, pois há sempre perdas de informação.

Universidade do Minho

Escola de Enn

```
□ for i=1:5
  [n,Wn,beta,ftype] = kaiserord(Limites_Banda_transicao/i ,mags ,devs ,Sampling_Frequency);
  filtro = fir1(n, Wn, ftype, kaiser(n+1, beta), 'noscale');
 figure (1);
 audio filtrado = filter(filtro,1,audio gravado);
 audio compactado = downsample(audio filtrado, i);
 freqz (filtro);
 disp('N=');
     disp(i);
      figure (3)
      plot(audio_gravado,'r')
     hold on
     plot(audio_compactado,'g')
     title ('Sinais original e filtrado no tempo')
     legend('Original','Filtrado');
     hplayer = audioplayer(audio_compactado, 8000);
      play(hplayer);
      pause(5); % esperar pelo fim do som gravado
  end
```

Testes experimentais

Depois de realizada uma gravação áudio, os resultados obtidos foram:

Utilizando N=1:

Universidade do Minho Escola de Engenharia

Utilizando N=2:

Utilizando N=3

Universidade do Minho

Utilizando N=4

Escola de Engenharia

Utilizando N=5

Universidade do Minho Escola de Engenharia

Conclusão:

Com a realização deste trabalho foi possível aplicar grande parte dos conceitos e procedimentos adquiridos ao longo do semestre até ao momento, relativamente à UC de Processamento de Sinal.

Com a realização dos testes experimentais ilustrados acima, é possível perceber de uma maneira mais objetiva e prática, da forma como funcionam os filtros e como eles conseguem ser cruciais nos dias de hoje.