Isotopic incorporation and the temporal dynamics of foraging among individuals and within populations

Abstract.

Isotopic incorporation and the temporal dynamics of foraging among individuals and within populations2

1. Introduction

2. Time-dependent Ornstein-Uhlenbeck process

We can define the evolution of the concentration of a particular isotope in the predator tissue by the following Langevin equation,

$$dX(t) = -\lambda (X(t) - \mu(t)) dt + \lambda \sigma(t) dW$$
(1)

where, X is the isotope-concentration, λ is the tissue-dependent incorporation rate, $\mu(t)$ and $\sigma(t)$ are the time-dependent average and standard-deviations of isotope-concentration over the prey.

2.1. Expectation

We can find the expectation of X(t) as follows,

$$dX + \lambda (X(t) - \mu(t)) dt = \lambda \sigma(t) dW$$
 (2)

Multiplying throughout by the integrating factor, $e^{\lambda t}$ and integrating both sides w.r.t t, we get

$$\int_{t=0}^{t} d\left(e^{\lambda t} \left(X - \mu\right)\right) + \int_{t=0}^{t} e^{\lambda t'} \frac{d\mu}{dt'} dt' = \int_{t=0}^{t} \lambda e^{\lambda t'} \sigma(t') dW'$$
 (3)

Taking the expectation of both sides, the RHS reduces to zero as $\mathbb{E}(dW) = 0$ and we get,

$$\mathbb{E}(X(t)) = X_0 e^{-\lambda t} + \lambda e^{-\lambda t} \int_{t'=0}^{t} \mu(t') e^{\lambda t'} dt'$$
(4)

2.2. Variance

Similarly for the variance, we square Eq. (3), to get

$$\left(e^{\lambda t}X - X_0 - \lambda \int_0^t \mu e^{\lambda t'} dt'\right)^2 = \lambda^2 \int_0^t \int_0^t e^{\lambda(t'+t'')} \sigma(t') \sigma(t'') dW(t') dW(t'')$$
 (5)

Taking the expectation on both sides, in the RHS, using the property, $\mathbb{E}(dW(t')dW(t'')) = \delta(t'-t'')dt'dt''$, we get,

$$\mathbb{E}\left(e^{\lambda t}X - X_0 - \lambda \int_0^t \mu e^{\lambda t'} dt'\right)^2 = \lambda^2 \int_0^t e^{2\lambda t'} (\sigma(t'))^2 dt'$$
 (6)

Let us call the integrals $\int_0^t \mu(t')e^{\lambda t'}dt'$ and $\int_0^t e^{2\lambda t'}(\sigma(t'))^2dt'$ as \mathcal{U} and \mathcal{S}^2 and expanding the LHS, we get

$$e^{2\lambda t}\mathbb{E}(X^2) + X_0^2 + \lambda^2 \mathcal{U}^2 - 2X_0 \mathbb{E}(X)e^{\lambda t} - 2X_0 \lambda \mathcal{U} - 2\lambda e^{\lambda t}\mathbb{E}(X)\mathcal{U} = \lambda^2 \mathcal{S}^2$$
 (7)

Isotopic incorporation and the temporal dynamics of foraging among individuals and within populations3

And so the variance is given by,

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \lambda^2 e^{-2\lambda t} \mathcal{S}^2 - X_0^2 e^{-2\lambda t} - \lambda^2 e^{-2\lambda t} \mathcal{U}^2 + 2X_0 \mathbb{E}(X) e^{-\lambda t} + 2X_0 \lambda e^{-2\lambda t} \mathcal{U} + 2\lambda e^{-\lambda t} \mathbb{E}(X) \mathcal{U} - (\mathbb{E}(X))^2$$
(8)

$$\mathbb{V}(X) = \lambda^2 e^{-2\lambda t} \int_0^t e^{2\lambda t'} (\sigma(t'))^2 dt'$$
(9)

where, to go from Eq. (8) to Eq. (9) we used $\mathbb{E}(X)$ given by Eq. (4).

2.3. Sinusoidal input

Suppose the inputs $\mu(t)$ and $\sigma(t)$ to the system are sinusoidal, i.e,

$$\mu(t) = a_1 + b_1 \sin(\omega t) , \quad \sigma(t) = a_2 + b_2 \sin(\omega t)$$
(10)

Using Eq. (4) and Eq. (9), we get

$$\mathbb{E}(X) = X_0 e^{-\lambda t} + a_1 \left(1 - e^{-\lambda t} \right) + \frac{b_1 \omega \lambda}{\lambda^2 + \omega^2} e^{-\lambda t} + \frac{b_1 \lambda}{\sqrt{\lambda^2 + \omega^2}} \sin \left(\omega t + \tan^{-1} \left(\frac{\omega}{\lambda} \right) \right) \tag{11}$$

$$\mathbb{V}(X) = \frac{1}{4}\lambda \left(2a_2^2 + b_2^2\right) \left(1 - e^{-2\lambda t}\right) + e^{-2\lambda t}\lambda^2 \left(\frac{b_2^2\lambda}{4(\lambda^2 + \omega^2)} + \frac{2a_2b_2\omega}{4\lambda^2 + \omega^2}\right) + \frac{2a_2b_2\lambda^2}{\sqrt{4\lambda^2 + \omega^2}} \sin\left(\omega t + \tan^{-1}\left(\frac{\omega}{2\lambda}\right)\right) - \frac{b_2^2\lambda^2}{4\sqrt{\lambda^2 + \omega^2}} \sin\left(2\omega t + \tan^{-1}\left(\frac{\lambda}{\omega}\right)\right)$$
(12)

Getting rid of transients, we get,

$$\mathbb{E}(X) = a_1 + \frac{b_1 \lambda}{\sqrt{\lambda^2 + \omega^2}} \sin\left(\omega t + \tan^{-1}\left(\frac{\omega}{\lambda}\right)\right)$$
 (13)

$$\mathbb{V}(X) = \frac{1}{4}\lambda \left(2a_2^2 + b_2^2\right) + \frac{2a_2b_2\lambda^2}{\sqrt{4\lambda^2 + \omega^2}}\sin\left(\omega t + \tan^{-1}\left(\frac{\omega}{2\lambda}\right)\right) - \frac{b_2^2\lambda^2}{4\sqrt{\lambda^2 + \omega^2}}\sin\left(2\omega t + \tan^{-1}\left(\frac{\lambda}{\omega}\right)\right)$$
(14)

If we time-average over the oscillations, we get,

$$\langle \mathbb{E}(X) \rangle_t = a_1 , \quad \langle \mathbb{V}(X) \rangle_t = \frac{1}{4} \lambda \left(2a_2^2 + b_2^2 \right)$$
 (15)