

STUDIES ON SEGMENTATION OF X-RAY IMAGES WITH DEEP NEURAL NETWORKS

Metehan Gelgi (s232839), Qingwen Zeng (s232892), Sina Rahimian (s232248), Fatemeh Siar (s236644) DTU Compute, Technical University of Denmark

INTRODUCTION

- X-ray imaging is pivotal in medical and interdisciplinary research.
- Manual segmentation poses challenges in terms of time and accuracy.
- Dataset of 500 images with 501*501 image size
- Deep Neural Networks (DNNs), with a specific focus on ResNeXt-UNet and VGGNet-UNet architectures.

METHODOLOGY

Data Augmentation

Reasons:

data

- limited dataset similar images
- push model to learn noised

Methods: rotation, shifting, flipping, translation, scaling and adding Gaussian noise, pixel saturation

Loss and Metrics

Dice Loss:

Metrics:

- F1 Score
- Accuracy
- IoU Score

Models VGG-Unet (20M parameters)

Encoder

STUDIES

3 - Test on Different Levels of Noised Images

50 / 100 / 300

1 - Training Models with

Smaller-Sized Images

4 - Training Models with Less Data

Gaussian Noise Flipped Shifted

Scaled Rotated Pixel Contrast and Saturation Changed

• and more.

RESULTS AND DISCUSSION

*Results are evaluated with Dice Loss, Accuracy, IoU Score and F1 Score. Only Accuracy Scores are included for explanation purposes

Table. Results for Different Image Sizes*

Model	Train Image Size	Training Time (Epoch) in secs	STUDY 1 Same Sized Images with Train (not Augmented)	STUDY 2 Testing with 512x512 Sized Images (not Augmented)	STUDY 3 Testing with 512x512 Sized Images (Augmented)
ResNeXt-UNet	32x32	7	85.42%	70.16%	71.67%
ResNeXt-UNet	64x64	8	91.08%	79.32%	71.01%
ResNeXt-UNet	128x128	8	95.44%	94.19%	89.49%
ResNeXt-UNet	256x256	11	98.50%	98.72%	98%
VGGNet-UNet	32x32	5	86.69%	79.83%	78.39%
VGGNet-UNet	64x64	5	94.10%	90.31%	87.13%
VGGNet-UNet	128x128	6	97.38%	96.85%	90.73%
VGGNet-UNet	256x256	10	98.70%	98.65%	98.36%

- Overall VGGNet-UNet outperformed ResNeXt-UNet in given scenarios even if it is less complex models. Less complex models should be selected for this kind of tasks.
- Training Image size is one of the main factors affects accuracy, it should be set according to requirements and Resources (time, computational power).
- Transfer learning proved crucial, enabling computationally lightweight models for testing on larger datasets.
- Models should be tested with noised data to evaluate performance of models correctly
- Train Dataset Size study demonstrated that this task can be handed in with less data which makes training faster and gets similar accuracy

Table. (STUDY 4) Results for Different Train Sizes*

Model	Train Size	Testing with 512x512 Sized Images (not Augmented)	Testing with 512x512 Sized Images (Augmented)
ResNeXt-UNet	50 (256x256)	90.32%	88.85%
ResNeXt-UNet	100 (256x256)	98.27%	97.34%
ResNeXt-UNet	300 (256x256)	98.65%	98%
VGGNet-UNet	50 (256x256)	91.55%	91.64%
VGGNet-UNet	100 (256x256)	98.67%	97.56%
VGGNet-UNet	300 (256x256)	98.72%	98.36%

References

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, "U-net: Convolutional networks for biomedical im- age segmentation," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th In-ternational Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp. 234–241. [2] Mohammad Shahjahan Majib, Md Mahbubur Rahman, TM Shahriar Sazzad, Nafiz Imtiaz Khan, and Samrat Kumar Dey, "Vgg-scnet: A vgg net-based deep learning framework for brain tumor detection on mri images," IEEE Access, vol. 9, pp. 116942–116952, 2021.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. [4] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herv´e J´egou, "Fixing the train-test resolution discrep- ancy," CoRR. vol. abs/1906.06423, 2019.

Acknowledgments

This work is done as a part of 02456 Deep Learning, DTU Compute. This project is supervised by Salvatore De Angelis, Peter Stanley Jørgensen and Luke Besley.