Prof: Khammour. Khalil Année Scolaire: 2013/2014

Série n°10: **Fonction Logarithme** 4^{ème} Info

Tél: 27509639

Exercice n°1:

Calculer les limites suivantes :

1)
$$\lim_{x \to +\infty} \frac{Ln^3x}{x}$$

2)
$$\lim_{x\to+\infty} \frac{x^3}{\ln x}$$

3)
$$\lim_{x\to 3} \frac{\ln x - \ln 3}{x-3}$$

4)
$$\lim_{x\to e} \frac{\ln x - \ln e}{x-e}$$

1)
$$\lim_{x \to +\infty} \frac{\ln^3 x}{x}$$
 2) $\lim_{x \to +\infty} \frac{x^3}{\ln x}$ 3) $\lim_{x \to 3} \frac{\ln x - \ln 3}{x - 3}$ 4) $\lim_{x \to e} \frac{\ln x - \ln e}{x - e}$
5) $\lim_{x \to 0} \frac{\ln(\cos x)}{x}$ 6) $\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$ 7) $\lim_{x \to 0^+} x^2 \ln x$ 8) $\lim_{x \to 0^+} \sqrt{x} \ln x$

6)
$$\lim_{x\to 0} \frac{\ln(1+\sin x)}{x}$$

$$7) \lim_{x \to 0^+} x^2 \ln x$$

8)
$$\lim_{x\to 0^+} \sqrt{x} \ln x$$

Exercice n°2:

On considère la fonction f définie sur]0,+∞[dont on donne la représentation graphique C_f dans le repère ci-dessous.

On admet que:

- Le point A de coordonnées (1 ;1) appartient à la courbe C_f.
- La tangente (T) en A à la courbe C_f passe par le point de coordonnées (2 ;0).
- La courbe C_f admet une tangente horizontale au point d'abscisse 2.
- L'axe des ordonnées est asymptote à la courbe de la fonction f.

Mr:Khammour.Khalil Tél:27509639

Partie A:

- 1) Donner ,par lecture graphique ou en utilisant les données de l'énoncé, les valeurs de f(1), f'(1) et f'(2), où f' est la dérivée de f sur $]0,+\infty[$.
- 2) On admet que l'expression de f(x) sur $]0,+\infty[$ est : $f(x) = ax + b + c \ln x$ où a ,b et c sont des nombres réels.
 - a) Calculer f'(x) en fonction de x et de a, b et c.
 - b) Démontrer que les réels a ,b et c vérifient le système : $\begin{cases} a+b=1\\ a+c=-1\\ 2a+c=0 \end{cases}$
 - c) Déduire de la question précédente les valeurs de a ,b et c, puis l'expression de f (x).

Dans cette partie ,on admet que la fonction f représentée ci-dessus est définie pour tout réel x appartenant à $]0,+\infty[$ par : $f(x) = x - 2 \ln x$

Partie B:

- 1) Justifier que l'axe des ordonnées est asymptote à la courbe C_f.
- 2) Soit F la fonction définie pour tout réel $x \in]0,+\infty[$ par : $F(x) = \frac{1}{2}x^2 + 2x 2x \ln x$
 - a) Montrer que F est une primitive de la fonction f sur $]0,+\infty[$.
 - b) Calculer F(1).

Exercice n°3:

- A) Soit g la fonction définie par : $g(x) = x \ln x$
- 1) Déterminer le tableau de variation de g.
- 2) En déduire que pour tout $x \in]0,+\infty[$, $g(x) \ge 1$.
- B) On considère la fonction f définie sur IR par : $\begin{cases} f(x) = x^2 2x \ln(x) & \text{si } x > 0 \\ f(0) = 0 & \text{et soit C sa courbe représentative dans un repère orthonormé } (O, \vec{t}, \vec{j}). \end{cases}$
- 1) a) Montrer que f est continue à droite en 0.
 - b)Etudier la dérivabilité de f à droite en 0.
- 2) a) Montrer que pour tout $x \in]0,+\infty[$, f'(x)=2(g(x)-1).
 - b) Dresser le tableau de variation de f.
 - c) Tracer C

Exercice n°4:

Partie A

On considère la fonction f définie sur l'intervalle $]0,+\infty[$ par : $f(x)=\frac{1-\ln x}{x}$.

On note C la courbe représentative de f dans un repère orthogonal $(0, \vec{i}, \vec{j})$.

Mr:Khammour.Khalil Tél:27509639

- 1) Déterminer la limite de f en 0. Interpréter graphiquement le résultat.
- 2) En remarquant que, pour tout nombre réel x appartenant à l'intervalle $]0,+\infty[$ on a : $f(x) = \frac{1}{x} \frac{\ln x}{x}$, déterminer la limite de f en $+\infty$ et interpréter graphiquement le résultat.
- 3) a) Calculer f '(x) pour tout x appartenant à]0,+∞[.
 b)Etudier le signe de -2 + ln x sur]0,+∞[.En déduire le signe de f '(x) sur]0,+∞[.
 - c) Dresser le tableau de variation de f.
- 4) On note le point I le point d'intersection entre la courbe (C) et l'axe des abscisses, déterminer les coordonnées de point I.
- 5) On note (T) la tangente à (C) au point d'abscisse 1. Déterminer une équation de (T).
- 6) Tracer la courbe (C) et la tangente (T).
- 7) On considère la fonction g définie sur l'intervalle $]0,+\infty[$ par $:g(x)=(\ln x)^2.$
 - a) Calculer g '(x) pour tout $x \in]0,+\infty[$.
 - b) En déduire une primitive de la fonction $\frac{\ln x}{x}$ sur $]0,+\infty[$.

Exercice n°5:

- 1) Soit g la fonction définie sur l'intervalle]-1,+ ∞ [par :g(x) = x² + 2x + ln(x + 1).
 - a) Déterminer $\lim_{x\to -1^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
 - b) Dresser le tableau de variation de g.
 - c) Calculer g (0). En déduire le signe de g (x) sur l'intervalle $]-1,+\infty[$.
- 2) On désigne par f la fonction définie sur l'intervalle]-1,+ ∞ [par :f(x) = $\frac{\ln(x+1)}{x+1}$ x et soit (C_f) sa courbe représentative de f dans un repère orthogonal $(0, \vec{l}, \vec{j})$.
 - a) Montrer que pour tout $x \in]-1, +\infty[f'(x) = -\frac{g(x)}{(x+1)^2}]$
 - b) Dresser le tableau de variation de f.
- 3) a) Montrer que la droite Δ d'équation y=-x est une asymptote oblique à (C_f) au voisinage de+∞
 - b) Etudier la position relative de (C_f) par rapport à Δ .
 - c) Tracer la courbe (C_f).
- 4) Soit h la fonction définie sur l'intervalle]-1,+ ∞ [par :h(x) = [ln(x + 1)]².
 - a) Calculer h '(x).
 - b) En déduire une primitive de f sur l'intervalle]-1,+∞[.

Mr:Khammour.Khalil Tél:27509639