# 模块三 几何问题篇

## 第1节射影定理、几何计算(★★★)

#### 内容提要

1. 射影定理: 在  $\Delta ABC$  中,  $\begin{cases} a = b\cos C + c\cos B \\ b = a\cos C + c\cos A. \\ c = a\cos B + b\cos A \end{cases}$ 

提醒:大题不建议直接使用射影定理,可先证明再使用,下面给出 $a=b\cos C+c\cos B$ 的证明.

因为  $\sin A = \sin[\pi - (B+C)] = \sin(B+C) = \sin B \cos C + \cos B \sin C$ ,所以  $a = b \cos C + c \cos B$ .

上式的图形解释如下图,另外两个式子可类似证明,本节后续解答过程若用到此定理,不再证明.





$$a = CD - BD = b\cos C - (-c\cos B) = b\cos C + c\cos B$$

2. 几何计算:遇到不便于直接解的解三角形问题,往往可设长度或角度为参数,用设的参数表示目标,或通过分析图形的几何关系来建立方程,求解问题.

#### 典型例题

类型 1:射影定理的应用

【例 1】  $\Delta ABC$  的内角 A, B, C 的对边分别为 a, b, c,  $2b\cos B = a\cos C + c\cos A$ , 则 B =\_\_\_\_\_.

解法1: 所给等式每项都有齐次的边,可边化角分析,

因为 $2b\cos B = a\cos C + c\cos A$ ,所以 $2\sin B\cos B = \sin A\cos C + \sin C\cos A$ 

 $= \sin(A+C) = \sin(\pi-B) = \sin B \quad (1),$ 

又  $0 < B < \pi$  , 所以  $\sin B > 0$  , 故在式①中约去  $\sin B$  可得  $\cos B = \frac{1}{2}$  , 所以  $B = \frac{\pi}{3}$  .

解法 2: 看到所给等式中的  $a\cos C + c\cos A$ , 想到射影定理,

由射影定理,  $a\cos C + c\cos A = b$ , 代入  $2b\cos B = a\cos C + c\cos A$  可得  $2b\cos B = b$ ,

所以  $\cos B = \frac{1}{2}$ , 结合  $0 < B < \pi$  知  $B = \frac{\pi}{3}$ .

答案:  $\frac{\pi}{3}$ 

【反思】出现 $a\cos B + b\cos A$ , $a\cos C + c\cos A$ , $b\cos C + c\cos B$  这些结构,除了常规的边化角、角化边的处理方法外,还可以考虑用射影定理来速解.

【变式】在 $\Delta ABC$ 中,角A,B,C所对的边分别为a,b,c,且 $a=b\cos C+\sqrt{3}c\sin B$ ,则B=\_\_\_\_\_.

解法 1: 所给等式每一项都有齐次的边,可考虑边化角,

因为 $a = b\cos C + \sqrt{3}c\sin B$ ,所以 $\sin A = \sin B\cos C + \sqrt{3}\sin C\sin B$  ①,

注意到右侧有  $\sin B \cos C$ , 故拆左侧的  $\sin A$ , 可进一步化简,

 $\nabla \sin A = \sin[\pi - (B+C)] = \sin(B+C) = \sin B \cos C + \cos B \sin C$ 

代入式①得:  $\sin B \cos C + \cos B \sin C = \sin B \cos C + \sqrt{3} \sin C \sin B$ , 所以  $\cos B \sin C = \sqrt{3} \sin C \sin B$  ②,

因为 $0 < C < \pi$ ,所以 $\sin C > 0$ ,在式②中约去  $\sin C$  可得  $\cos B = \sqrt{3} \sin B$ ,故  $\tan B = \frac{\sqrt{3}}{2}$ ,

又 $0 < B < \pi$ ,所以 $B = \frac{\pi}{6}$ .

解法 2: 右侧有 $b\cos C$ ,若将左侧的 a 用射影定理代换掉,可抵消一部分,

由射影定理, $a = b\cos C + c\cos B$ ,代入题干所给等式可得 $b\cos C + c\cos B = b\cos C + \sqrt{3}c\sin B$ ,

所以
$$c\cos B = \sqrt{3}c\sin B$$
,故 $\tan B = \frac{\sqrt{3}}{3}$ ,又 $0 < B < \pi$ ,所以 $B = \frac{\pi}{6}$ .

答案:  $\frac{\pi}{6}$ 

【反思】不一定非要出现 $b\cos C + c\cos B$  这种整体结构才能用射影定理,有时看到 $b\cos C$  或 $c\cos B$  这种局 部结构,也能用射影定理速解问题.

类型II: 几何综合计算 (一类) 言 考 数 单 方 ( ) 方 法 )

【例 2】在  $\triangle ABC$  中,  $B = \frac{\pi}{4}$  , BC 边上的高等于  $\frac{1}{3}BC$  ,则  $\cos A = ($ 

(A) 
$$\frac{3\sqrt{10}}{10}$$
 (B)  $\frac{\sqrt{10}}{10}$  (C)  $-\frac{\sqrt{10}}{10}$  (D)  $-\frac{3\sqrt{10}}{10}$ 

(B) 
$$\frac{\sqrt{10}}{10}$$

(C) 
$$-\frac{\sqrt{10}}{10}$$

(D) 
$$-\frac{3\sqrt{10}}{10}$$

解析:题干涉及BC边上的高,先画出图形,分析几何关系,

如图, $B = \frac{\pi}{4} \Rightarrow \Delta ABD$  为等腰直角三角形  $\Rightarrow AD = BD$  ,又 BC 边上的高  $AD = \frac{1}{3}BC$  ,所以 CD = 2AD ,

分析图形可知所有线段的长都能用AD来表示,故将其设为x,

设 
$$AD = x$$
 , 则  $BD = x$  ,  $CD = 2x$  ,  $AB = \sqrt{2}x$  ,  $AC = \sqrt{AD^2 + CD^2} = \sqrt{5}x$  ,  $BC = 3x$  ,

由余弦定理推论, 
$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC} = \frac{2x^2 + 5x^2 - 9x^2}{2\sqrt{2}x \cdot \sqrt{5}x} = -\frac{\sqrt{10}}{10}$$
.

答案: C



【反思】对于几何计算问题,当出现未知长度或角度时,可以设出对应边长或者角度作为参数,再把其它 量用参数表示,最后利用几何关系算出要求的几何问题.

【变式】如图,半径为 1 的扇形 OPQ 的圆心角为 $\frac{\pi}{3}$ ,点 C 在劣弧 PQ 上运动,ABCD 是扇形的内接矩形,则矩形 ABCD 面积的最大值为 .



解析:矩形 ABCD 的面积由点 C 的位置决定,而点 C 的位置由  $\angle POC$  决定,故可引入  $\angle POC$  为变量,

设 
$$\angle POC = \alpha(0 < \alpha < \frac{\pi}{3})$$
,则  $BC = OC \cdot \sin \alpha = \sin \alpha$ ,  $AD = BC = \sin \alpha$ ,  $OB = OC \cdot \cos \alpha = \cos \alpha$ ,

$$OA = \frac{AD}{\tan \angle AOD} = \frac{\sin \alpha}{\tan \frac{\pi}{3}} = \frac{\sqrt{3}}{3} \sin \alpha , \quad \text{MUAB} = OB - OA = \cos \alpha - \frac{\sqrt{3}}{3} \sin \alpha ,$$

故矩形的面积 
$$S = AB \cdot BC = (\cos \alpha - \frac{\sqrt{3}}{3} \sin \alpha) \sin \alpha = \frac{1}{2} \sin 2\alpha - \frac{\sqrt{3}}{3} \cdot \frac{1 - \cos 2\alpha}{2} = \frac{\sqrt{3}}{3} \sin(2\alpha + \frac{\pi}{6}) - \frac{\sqrt{3}}{6}$$

因为
$$0 < \alpha < \frac{\pi}{3}$$
,所以 $\frac{\pi}{6} < 2\alpha + \frac{\pi}{6} < \frac{5\pi}{6}$ ,故当 $2\alpha + \frac{\pi}{6} = \frac{\pi}{2}$ 时, $S$  取最大值 $\frac{\sqrt{3}}{6}$ .

答案: 
$$\frac{\sqrt{3}}{6}$$

【**反思**】变量函数思想是求最值的基本思想之一,引入变量的方法不是唯一的,例如本题也可设 BC = x,但由此得出的面积表达式较复杂,不易求最值,所以我们在选取变量时,应预判计算量.

## 强化训练

1. (★) 在 
$$\triangle ABC$$
 中,角  $A$ ,  $B$ ,  $C$  所对的边分别为  $a$ ,  $b$ ,  $c$ , 已知  $b\cos C + c\cos B = 2b$  ,则  $\frac{a}{b} =$ \_\_\_\_\_.

2. (
$$\star\star$$
) 在 $\Delta ABC$ 中,已知 $b=\sqrt{3}$ ,(3-c) $\cos A=a\cos C$ ,则 $\cos A=$ \_\_\_\_.

3. (★★★) 已知 
$$\triangle ABC$$
 中, $AB = AC = 4$ , $BC = 2$ , $D$  为  $AB$  延长线上一点, $BD = 2$ ,连接  $CD$ ,则  $\triangle BDC$  的面积是\_\_\_\_, $\cos \angle BDC =$ \_\_\_\_.

- 4.  $(2022 \cdot 辽宁大连期末 \cdot \star \star \star \star)$  如图,小明同学为测量某建筑物 CD 的高度,在它的正东方向找到一 座建筑物 AB,高为 12m,在地面上的点 M(B, M, D) 三点共线)处测得楼顶 A、建筑物顶部 C 的仰角分 别为 $15^{\circ}$ 和 $60^{\circ}$ ,在楼顶 A 处测得建筑物顶部 C 的仰角为 $30^{\circ}$ ,则小明测得建筑物 CD 的高度为( 确到 1m,参考数据:  $\sqrt{2} \approx 1.414$ ,  $\sqrt{3} \approx 1.732$ )
  - (A) 42m
- (B) 45m (C) 51m
- (D) 57m



- 5. (★★★) 如图,在  $\triangle ABC$  中,D 是边 AC 上的点,且 AB = AD,  $2AB = \sqrt{3}BD$ , BC = 2BD ,则  $\sin C$  的 值为()
- (A)  $\frac{\sqrt{3}}{3}$  (B)  $\frac{\sqrt{3}}{6}$  (C)  $\frac{\sqrt{6}}{3}$  (D)  $\frac{\sqrt{6}}{6}$



- 6. (2023・全国模拟・★★★)如图,在平面四边形 ABCD 中,  $AB \perp AD$  ,  $\angle ABC = \frac{3\pi}{4}$  , AB = 1 .
- (1) 若 $\angle CAD = \frac{5\pi}{12}$ , 求AC;
- (2) 若CD = 4,  $\angle ADC = \frac{\pi}{6}$ ,求  $\tan \angle CAD$ .



7. (2023・河南郑州模拟・ $\star\star\star$ )如图,在  $\Delta ABC$  中,  $AB=AC=\frac{\sqrt{3}}{3}BC$ ,点 D 在 AB 延长线上,且

$$AD = \frac{5}{2}BD.$$

(2) 若  $\triangle ABC$  的面积为  $\sqrt{3}$ ,求 CD.

