Question	Mark Scheme		Mark	KS
1. (a)	$\sum m = 150 \; ; \sum m^2 = 5500$			
	$\sum t = 71.6 ; \sum t^2 = 930 ; \sum mt = 2147$	5500 & 2147 seen	B1	
	$S_{mt} = 2147 - \frac{150 \times 71.6}{6} = \underline{357}$	Accept $\frac{357}{60} = 59.5$	M1 A1	
	$S_{mm} = 5500 - \frac{150^2}{6} = \underline{1750}$ No working shown SR: B1 B1 only	Accept 291.6	A1	(4)
(b)	$b = \frac{357}{1750} = \underline{0.204}$		M1	
	$a = \frac{71.6}{6} - 0.204 \times \frac{150}{6} = \underline{6.83}$		M1	
	$\therefore t = 6.83 + 0.204 \text{m}$ No working seen SR: $t = 6.83 + 0.204 \text{m B1}$ only	(Accept $6.8\overset{\circ}{3}$, 6.83 , $6.8\overset{\circ}{6}$ %)	A1	(3)
(c)	$7.35 \Rightarrow m = 35$			
	$\therefore t = 6.83 + 0.204 \times 35 = \underline{13.973}$	14.0 AWRT	M1 A1	(2)
(d) (i)	$9.00 \Rightarrow m = 120$			
	No; outside range of data (after 7.50 am)		B1; B1	
(ii)	No; No evidence model will apply one month later		B1; B1	(4)

Question	Mark Scheme	Marks	
2. (a)	Symmetrical (about the mean μ)		
	Mode = mean = median		
	Horizontal axis asymptotic to curve		B1;B1;B1 (3)
	Distribution is 'bell shaped' – accept sketch		Any 3 sensible
	95% of data lies within 2 sd's of the mean	properties	
(b)	$X \sim N(27,10^2)$		
	$\therefore P(26 < x < 28) = P\left(\frac{26 - 27}{10} < Z < \frac{28 - 27}{10}\right)$	Standardising with $\mu = 27$, $\sigma = 10 \text{ or } \sqrt{10}$ One correct (seen)	M1 A1
	= P(-0.1 < Z < 0.1)	-0.1 or 0.1	A1
	$= \Phi (0.1) - \{1 - \Phi (0.1)\}$ or 2 x \{\Phi(0.1) - 0.5\}		
	= 0.0796	0.0796 or 0.0797	A1 (4)

Question	Mark Scheme		Mark	
3. (a)	$P(1 < X \le 3) = P(X = 2) + P(X = 3)$		M1	
	$= \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6}$	$\frac{2}{12}$; $\frac{1}{6}$; 0.167; 0.166; 0.16	A1 ((2)
(b)	$F(2.6) = P(X \le 2) = 1 - P(X = 3) = 1 - \frac{1}{12} = \frac{11}{12}$	$\frac{11}{12}$; 0.917; 0.916	B1 ((1)
	(or: $P(X \le 2) = \frac{1}{3} + \frac{1}{2} + \frac{1}{12} = \frac{11}{12}$)			
(c)	E (X) = $\left(0 \times \frac{1}{3}\right) + \dots + \left(3 \times \frac{1}{12}\right) = \frac{11}{12}$	Use of $\Sigma x P(X = x)$ $\frac{11}{12}$; AWRT 0.917	M1 A1	(2)
(d)	E(2X-3) = 2E(X)-3	Use of E (ax + b)	M1	
	$=2\times\frac{11}{12}-3=-\frac{14}{12}=-\frac{7}{6}$	$-\frac{7}{6}$; $-1\frac{1}{6}$; AWRT -1.17	A1 ((2)
(e)	Var (X) = $1^2 \times \frac{1}{2} + + 3^2 \times \frac{1}{12} - \left(\frac{11}{12}\right)^2$	Use of $E(X^2) - \{E(X)\}^2$ Correct substitution	M1 A∜	
	$=\frac{107}{144}$	107 144; AWRT 0.743	A1 ((3)

Question	Mark Scheme	Marks
4. (a) (i)	$P(A \cap B') = P(A/B') P(B') = \frac{4}{5} \times \frac{1}{2} = \frac{4}{10} = \frac{2}{5}$ Use of $P(A/B')P(B')$	M1 A1
(ii)	$P(A \cap B) = P(A) - P(A \cap B')$	M1
	$=\frac{2}{5}-\frac{2}{5}$	
	$=\underline{0}$	A1
(iii)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1
	$= \frac{2}{5} + \frac{1}{2} - 0$	
	$=\frac{9}{10}$	A Ô
(iv)	$P(A/B) = P\frac{(A \cap B)}{P(B)} = 0$	₽ ∕î (7)
(b) (i)	since $P(A \cap B) = 0$ seen A and B are mutually exclusive	B1 B1 (2)
(ii)	Since $P(A/B) \neq P(A)$ or equivalent A and B are NOT independent	B1 B1 (2)

Question	Mark Scheme			Marks			
5. (a)	Sales	No. of days	Class width	Frequency	density	Frequency	
	1-200	166	200	0.83	30	densities	M1
	201-400	100	200	0.50	00		A1
	401-700	59	300	0.19	97	Graph	
	701-1000	30	300	0.10	00	(3)	(5)
	1001-1500	5	500	0.01	0		(5)
(b)	•		an be scored on $\frac{66}{2} \times 200 = 22$		228/229/230	M1 A1	
	$Q_1 = 0.5$	$+\frac{90}{166}\times200$	= <u>108.933</u> ···		109 AWRT	A1	
		3)	$\frac{266)}{\times 300} \times 300 = \underline{42}$	20.838	AWRT 421/425	A1	
	,	$75 \Rightarrow Q_3 = 42$ 20.83010	4.6525) 08.933 = <u>311</u>	<u>.905</u>		√B̂1	(5)
(c)	$\sum fx = 11$	10980 ; Σ	$fx^2 = 5810589$	0	Attempt at Σfx or Σfy	M1	
	$\sum fy = 74$	$48; \sum fy^2 = 3$	943.5 where <i>y</i>	$=\frac{x-100.5}{100}$	Attempt at Σfx^2 or Σfy^2	M1	
	$\mu = 30$	08.2777			308 AWRT	M1 A1	
		57.6238			258 AWRT	M1 A1	(6)
	No worki	ng shown: SR	B1 B1 only for	μ , σ .			(*)

Question	Mark Scheme	Marks	
(d)	Median & IQR	B1	
	Sensible reason e.g. Assuming other years are skewed.	B1 dep (2)	

Question	Mark Scheme		Marks	
6. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tree with correct number of branches $\frac{2}{3}, \frac{1}{3}$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{4}, \frac{3}{4}, \dots \frac{3}{4}$	M1 A1 A1	(4)
(b)	P (All 3 Keys) = $\frac{2}{3} \times \frac{1}{2} \times \frac{1}{4} = \frac{2}{24} = \frac{1}{12}$	$\frac{1}{12}$; 0.08 $\overset{\bullet}{3}$; 0.0833	M1 A1	(2)
(c)	P(exactly 1 key)= $\left(\frac{2}{3} \times \frac{1}{2} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac$	$\left(\frac{1}{2} \times \frac{1}{4}\right)$ 3 triples added	M1	
	$=\frac{10}{24}=\frac{5}{12}$ $P(K) = 24 + 10 + 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$	Each correct $\frac{10}{24}$; $\frac{5}{12}$; 0.416; 0.417	A1 A1 A1 A1	(5)
(d)	P (Keys not collected on at least 2 successive stages) $= \left(\frac{2}{3} \times \frac{1}{2} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{3}{4}\right)$	3 triples added Each correct	M1 A1 A1 A1	
	$=\frac{10}{24} = \frac{5}{12}$	$\frac{10}{24}; \frac{5}{12}; \\ 0.416; 0.417$	A1	(5)

Question	Mark Scheme	Marks
6. (d)	Alternative:	
	1 – P (Keys collected on at least 2 successive stages)	M1
	$= 1 - \left\{ \left(\frac{2}{3} \times \frac{1}{2} \times \frac{1}{4} \right) + \left(\frac{2}{3} \times \frac{1}{2} \times \frac{3}{4} \right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{4} \right) \right\}$	A1 A1 A1
	$=\frac{5}{8}$	A1 (5)