

Olimpiada de Fizică Etapa pe județ 15 ianuarie 2011 Subiecte

Pagina 1 din 2

Subiectul 1

A. Un tub subțire, închis la un capăt, conține gaz separat de exterior printr-o coloană de mercur (vezi figura). Presiunea atmosferică este $p_0 = 750$ torr iar $\ell = 50$ cm.

gaz mercur ℓ

Considerând temperatura constantă, determină lungimea coloanei de gaz dacă tubul:

- a) se așează vertical cu deschiderea în sus;
- b) se așează vertical cu deschiderea în jos.
- c) În situația de la punctul a) de câte ori trebuie să crească temperatura gazului pentru ca tubul să fie din nou plin?
- **B**. Un cilindru izolat adiabatic este împărțit în două compartimente printr-un perete termoizolator. Într-un compartiment se găsesc v_1 moli de gaz monoatomic ($C_{V1}=1,5$ R) iar în celălalt $v_2=1,2v_1$ moli de gaz diatomic ($C_{V2}=2,5$ R). Gazele se găsesc la temperaturi diferite $t_1=27$ °C, respectiv t_2 . Dacă cele două gaze ar urma transformări izoterme la temperaturile de mai sus, reprezentările grafice p=f(V) ar coincide.

Calculează:

- a) temperatura t_2 ;
- b) temperatura amestecului după ce se înlătură peretele dintre cele două compartimente.

Subiectul 2

A. O picătură sferică de apă având diametrul D=0,4 mm cade de la mare înălțime. Asupra sa se exercită din partea aerului o forță rezistentă a cărei expresie este dată de relația: $\vec{F} = -0.06\pi D^2 \rho_{aer} v \vec{v}$, unde ρ_{aer} reprezintă densitatea aerului iar v viteza picăturii.

Calculează variația temperaturii picăturii în timpul Δt =10s de cădere cu viteză constantă, dacă o fracțiune t=40% din căldura degajată prin frecare este folosită în procesul de încălzire a picăturii. Se cunoaște densitatea aerului $\rho_{aer} = 1.3 \text{kg/m}^3$, densitatea apei $\rho_{apă} = 1000 \text{kg/m}^3$, accelerația gravitațională g=10 m/s² și căldura specifică a apei c=4180 J/kgK. Se neglijează acțiunea forțelor arhimedice.

B. Un cilindru de masă M închis la ambele capete este despărțit în n compartimente egale prin intermediul a n-1 pistoane termoconductoare fiecare cu masa m. Fiecare compartiment conține o cantitate v dintr-un amestec de gaze monoatomice (C_{V1} =1,5

- R) și gaze diatomice (\tilde{C}_{V2} =2,5 R) având exponentul adiabatic γ =1,5. Cilindrul, așezat pe o suprafață orizontală lipsită de frecări, izolează adiabatic sistemul de mediul exterior iar frecările dintre pistoane și cilindru se neglijează. Volumul total ocupat de gaz este V iar masa gazului se neglijează în raport cu masa cilindrului și a pistonului.
- a) Calculează fracțiunea f de gaz monoatomic din fiecare incintă.
- b) Printr-un mic impuls i se imprimă cilindrului, aflat în repaus, viteza v în lungul acestuia. Stabilește expresia variației temperaturii gazului atunci când încetează mișcarea pistoanelor în raport cu cilindrul.
- c) La un moment dat gazul din primul compartiment al cilindrului, aflat în repaus, disociază în totalitate (restul gazului rămânând nedisociat). Stabilește expresia presiunii finale care se stabilește în sistem.
- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada de Fizică Etapa pe județ 15 ianuarie 2011 Subiecte

Pagina 2 din 2

Subiectul 3. Mecanică

O săniuță, de masă m_1 =2 kg, alunecă pe zăpadă (poți neglija frecările) cu viteza v_0 =10 m/s, pe suprafața orizontală AO (vezi figura). Ea ciocnește un opritor, de masă m_2 =6 kg, aflat în repaus în punctul O. Opritorul este legat de un perete fix printr-un resort de constantă elastică k=300 N/m. Coeficientul de frecare la alunecare dintre opritor și suprafața de mișcare are valoarea μ =0,5. Consideră corpurile punctiforme și g=10 m/s². Determină:

- a) vitezele corpurilor imediat după ciocnirea lor perfect elastică:
- b) distanța străbătută de opritor până la prima sa oprire;
- c) viteza maximă atinsă de opritor după prima sa oprire și locul în care atinge această viteză;
- d) forța cu care împinge săniuța în jgheabul semicircular AMB atunci când α =60°, dacă R=1 m; mișcarea pe jgheab se face fără frecare.
- e) raza minimă a jgheabului semicircular AMB pentru ca săniuța să poată să ajungă până în punctul B;
- f) în ce punct al suprafeței orizontale revine săniuța după trecerea prin punctul B, în condițiile subpunctului anterior.

Subiect propus de

prof. Seryl Talpalaru, prof. dr. Constantin Corega, prof. Ion Toma CNER – Iaşi CNER – Cluj-Napoca CNMV – Bucureşti

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subject, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.