Block Diagram

Describe operation

一開始先把 coefficient 透過 axi-lite 傳到 fir 再傳到 sram 存取, axi-lite 的 protocol 主要有 5 個 channel,分別是 AW、AR、W、R 和 B,主要是用前面 4 個 channel,每個 channel 都有 valid ready 來做 handshake,再透過 SRAM 的 EN 和 WE 搭配上 tvalid 和 tready 去控制讀寫。Xn 的部分是透過 axi-stream 傳送 input data 送進 fir 運作,在 testbench 是由 task ss 來負責傳輸 input。在 fir 裡面用 fsm 控制整個系統的運作。最後計算出來的結果再透過 axi-stream 送到 testbench 由 task sm 來做驗證。

• Resource usage: including FF, LUT, BRAM

+	+		+		+	-+	
Site Type	U	sed	F	ixed	Prohibited	į	Available Util%
Slice LUTs*	† 	77	+ 	0	0	-+ 	53200 0.14
LUT as Logic		77		0	0		53200 0.14
LUT as Memory		0		0	0	-	17400 0.00
Slice Registers		247	1	0	0	1	106400 0.23
Register as Flip Flop		247	1	0	0	1	106400 0.23
Register as Latch		0	1	0	0	Ī	106400 0.00
F7 Muxes		0	1	0	0	Ī	26600 0.00
F8 Muxes	Ī	0	Ī	0	0	ĺ	13300 0.00
+	+		+		+	-+	+

2. Memory					
+	+	+		+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
+	+	+		+	++
Block RAM Tile	0	0	0	140	0.00
RAMB36/FIFO*	0	0	0	140	0.00
RAMB18	0	0	0	280	0.00
+	+	+		+	++

Timing Report

■ Slack

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	6.101 ns	Worst Hold Slack (WHS):	0.137 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	402	Total Number of Endpoints:	402	Total Number of Endpoints:	248	

Timing Summary

Max delay path

- Simulation Waveform, show
 - Coefficient program

■ Coefficient read back

Data-in stream-in

■ Data-out stream-out

■ Tap RAM access control

Data RAM access control

■ FSM

