WEI HAO WANG ABB MECHANICAL INTERNSHIP WORK EXAMPLES

Self-Introduction

- Case Western Reserve University, Cleveland, Ohio
- Master of Science in Mechanical Engineering
- Research Experience: Loop Heat Pipe, Detonation Modeling

Projects

- 1. Testing for Liquid Cooling of Motors with Expanded Tube
- 2. Thermal simulation for E-Drive with ANSYS FLUENT

— Testing for Liquid Cool

Testing for Liquid Cooling of Motors

Motivation:

- Improve the power density by utilizing lamination corner vents

Application:

- To increase cooling capacity for competitive product

Approach:

- To study the reduction of thermal contact conductance
- Perform testing of liquid cooling for expanded and unexpanded copper tube
- Test repeatability with another set of expanded copper tube

1-D Calculation vs. FEA

	1-D Calculation	FEA
HTC (W/ m^2-K)	4456	4456
Fluid Temperature (C)	25	25
Contact Conductance(W/m^2-K)	5000	5000
Heating Block Temperature (C)	50	47.814

Working Fluid Selection - Water vs. Water Ethylene Glycol

Advantage of choosing water:

- Lower pressure drop and flow rate
- Convenient for testing leakage
- Accessibility

Original & Actual Design Flowmeter (0 to 2 GPM) Needle Valve Lamination Pump and Heating Block Reservoir (5GPM @ 10 (max 150W x2) (2 Gallon) Feet of Heat) Radiator Lamination Heating Block Load Cell Pump Flow Heating Needle meter Valve Part

Determine the Clamping Force

mV	lb f	KN
2.3	2875	12.78863

Testing System Parameters

Testing System Parameters and Settings				
Working Fluid	Water	Power Supply Voltage (V)	60	
Total Pipe Length (ft)	10	Power Supply Current (A)	1.3	
Ambient Temperature (C)	21	Heat Load (W)	78	
Lamination		Copper Pipe in Lamination	on	
Length (in)	4.125	Length (in)	10.7	
Width (in)	3	Inner Diameter (in)	0.3125	
Height (in)	1.25	Outer Diameter (in)	0.375	
Reservoir		Pump		
Volume (Gallon)	2	Flow rate (GPM)	0 ~ 0.7	
Heating Cylinder				
Heating Cylinder #	2	Parallel/Series	Parallel	
Current (A)	1.3	Voltage (V)	120	

Expanded Copper Tube vs. Unexpanded Copper Tube

Estimate of Contact Conductance (W/ m^2-K) of Unexpanded Copper Tube		
Expanded Copper Tube	Unexpanded Copper Tube	
2000 - 8000	750 - 1050	

$$\Delta R = \frac{1}{h_1 A} - \frac{1}{h_2 A}$$

Test Repeatability

Air Cooling vs. Water Cooling

Expanded Copper Tube Air Cooling		
Air Speed (m/s)	0.700	
Total Thermal Resistance(K/W)	0.793	

Expanded Copper Tube Water Cooling							
Flow Rate (GPM)	0.700	0.600	0.500	0.400	0.300	0.200	0.100
Total Thermal Resistance (K/W)	0.168	0.173	0.177	0.180	0.195	0.206	0.220

$$R = \frac{\Delta T}{Q} = \frac{1}{hA}$$

Future Work: Verify Thermal Contact Conductance

Apply the heat load and measure the temperature difference between hole and pipe inner surface

$$R = \frac{\Delta T}{O} = \frac{1}{hA}$$
 $h = \frac{Q}{A * \Delta T}$

- Check the difference between simulation and experiments
- If they are close to each other, we could
 - 1. Extrapolate the flow rate where we didn't conduct testing
 - 2. Extrapolate the simulation to different working fluid (i.e. 50/50 Water Ethylene Glycol)

FEA vs. Experimental Data (Expanded Tube)

FEA vs. Experimental Data (Unexpanded Tube)

Thermal simulation for E -Drive with ANSYS FLUENT

Motivation:

- To understand hairpin winding thermal behavior at end region

Application:

- To provide the first cut HTC estimation for early design

Approach:

- Investigate winding HTC and frame inner HTC through ANSYS FLUENT
- Save computational effort using Periodic Boundary Condition method

Donut -Like Winding

Geometry Improvement and Meshing Improvement

Original Model vs. Meshing & Geometry Improvement

	Original	New
Time (s)	11400	445
Iteration	600	200
1 st Layer HTC	44.94	44.87
2 nd Layer HTC	11.19	13.41
3 rd Layer HTC	6.14	7.9
4 th Layer HTC	1.73	2.01
5 th Layer HTC	4.4	4.58
6 th Layer HTC	6.31	4.98
Avg Winding HTC	13.06	13.58

HTC at Different Angular Velocity

Simulation Results of	1/48 slice F	PBC without	Wafte	er Blade	
Angular Velocity (rpm)	1500	2500	3500	4500	5500
1 st Layer HTC	20.15	28.95	37.25	44.87	53.41
2 nd Layer HTC	4.10	7.18	10.38	13.41	18.13
3 rd Layer HTC	3.14	4.81	6.46	7.9	10.30
4 th Layer HTC	1.27	1.61	1.92	2.01	2.01
5 th Layer HTC	2.10	3.20	3.95	4.58	4.87
6 th Layer HTC	2.13	3.47	4.24	4.98	4.79
Avg Winding HTC	5.80	8.63	11.22	13.58	16.29

Constant Heat Gen vs. Constant Winding Temperature

	Constant Heat Generation	Constant Winding Temperature
Angular Velocity (rpm)	4500	4500
Time (s)	600	210
1 st Layer HTC	44.87	43.95
2 nd Layer HTC	13.41	15.36
3 rd Layer HTC	7.9	8.61
4 th Layer HTC	2.01	3.42
5 th Layer HTC	4.58	6.92
6 th Layer HTC	4.98	9.86
Avg Winding HTC	13.58	15.18

Welding End vs. Turning End (Adding Wafter Blade)

Welding End vs. Turning End

Convergence

Effect of Blade Geometry

Winding Avg HTC

Effect of Blade Geometry

Torque on the Blade

