Pgs, Pts. HOÀNG TÙNG

SỐ TAY ĐỊNH MỰC TIỆU HAO VẬT LIỆU VÀ NĂNG LƯỢNG ĐIỆN TRONG

PGS. PTS HOÀNG TÙNG

Số tay ĐịNH MỰC TIÊU HAO VẬT LIỆU và NĂNG LƯỢNG ĐIỆN TRONG HÀN

NHÀ XUẤT BẢN KHOA HỌC VÀ KÝ THUẬT HÀ NOI - 1999

Tác giá: PGS. PTS. Hoàng Tùng

Chiu trách nhiệm xuất bản:

PGS. PTS. TO DANG HAI

Biển tập và sửa chế bản:

NGUYỄN DIỆU THỦY

Trình bày và chế bản:

TRÂN VÂN CÂM

Vẽ bịa:

HUONG LAN

LỜI NÓI ĐẦU

Định mức kỹ thuật tiêu hao nguyên vật liệu là xác định số lượng nhỏ nhất vật liệu cần thiết cho việc chế tạo một sản phẩm đạt được các điều kiện kỹ thuật. Đó là mục tiêu đi tới tiết kiệm nguyên vật liệu trong công nghiệp; đồng thời cũng là biện pháp tích cực thực hiện sự nghiệp Công nghiệp hóa - Hiện đại hóa đất nước.

Tính toán kỹ thuật định mức tiêu hao vật liệu HÀN được xây dựng trên cơ sở các bản vẽ thiết kế các chỉ tiết, các kết cấu hàn, qui trình công nghệ hàn và số tay về hàn và vật liệu hàn, đồng thời có kết hợp với kinh nghiệm thực tế, điều kiện sản xuất v.v... vì vậy trong các công thức tính toán có chứa các hệ số thực nghiệm.

Việc tính toán theo các công thức sẽ gây rất nhiều khó khăn cho công nhãn, cán bộ kỹ thuật, cán bộ chỉ đạo sản xuất; kỹ sư ... vì vậy cuốn sách "Số tay định mức tiêu hao vật liệu và năng lượng điện trong HAN" sẽ giúp đỡ và tạo điều kiện thuận lợi cho các bạn khi thực hiện thiết kế, lập qui trình công nghệ và định mức vật liệu cho các kết cấu hàn.

Chúng tôi xin chân thành cảm ơn sự đóng góp ý kiến quí báu của các bạn đồng nghiệp trong Bộ môn Hàn - công nghệ kim loại, Trường Đại học Bách khoa Hà Nội trong quá trình biên soạn. Chúng tôi cũng mong muốn được bạn đọc phê bình và đóng góp ý kiến xây dựng thêm tế cuốn sách được tốt hơn trong lần xuất bản sau.

Các ý kiến xin gửi về Nhà xuất bản Khoa học và Kỹ thuật, 70 Trần Hưng Đạo - Hà Nội.

Tác giả

Chuang I

KHÁI NIỆM CƠ BẢN VỀ HÀN VÀ NGUỒN NHIỆT HÀN

I. THỰC CHẤT, ĐẶC ĐIỂM VÀ PHÂN LOẠI HÀN

1. Thực chất

Hàn là một phương pháp công nghệ nhằm đạt được mối liên kết bền, không tháo gỗ được bằng cách dùng một nguồn nhiệt nung nóng vật liệu chỗ liên kết đến trạng thái chây hoặc đèo, sau đó vật liệu đồng đặc hoặc nhỏ lực ép mối liên kết được hình thành, gọi là mối hàn.

Công nghệ hàn xuất hiện từ khi mối liên kết hàn đầu tiên vào năm 1981 do nhà bác học người Nga N.N. Bernardos đã sử dụng nguồn nhiệt hồ quang điện để thực hiện hàn. Sau họn một thế kỷ, công nghệ hàn đã phát triển rất nhanh và đạt được nhiều thành quả về khoa học, công nghệ và hiệu quả kinh tế trong mọi ngành công nghiệp.

2. Đặc điểm

Công nghệ hàn phát triển nhanh và được ứng dụng rộng rãi nhờ các đặc điểm sau:

- Tiết kiệm vật liệu. Ví dụ, các kết cấu kim loại, nếu thực hiện bằng cổng nghệ hàn sẽ tiết kiệm từ $10 \div 25\%$ khối lượng kim loại so với công nghệ nối ghép bằng bulông hoặc tán đinh rivê. So với công nghệ đúc sẽ tiết kiệm đến 50% khối lượng kết cấu. Với ưu điểm này, công nghệ hàn sẽ tiếp tục phát triển theo hướng tiết kiệm các kim loại và vật liệu quí hiểm.
- Hàn có thể tạo được các liên kết từ những vật liệu có tính chất khác nhau. Ví dụ, kim loại đen với kim loại màu; kim loại với vật liệu phi kim loại v.v...
- Tạo được các chi tiết máy, các kết cấu phức tạp mà các phương pháp công nghệ khác không làm được hoặc gặp nhiều khó khăn.
 - Tạo được liên kết có đô bên và độ kin cao.

- Hàn là phương pháp công nghệ dễ thực hiện cơ giới hóa, tự động hóa để cho năng suất 30.

3 Phân loại các phương pháp hàn

Hiện nay công nghệ hàn đã có hàng trăm phương pháp khác nhau.

- a) Căn cứ theo trạng thái hàn sau khi nung nóng người ta chia các phương pháp hàn làm hai nhóm:
- Hàn nóng chấy. Chỗ hàn và que hàn bổ sung được nung đến trạng thái nóng chấy. Ví dụ, hàn lade, hàn hồ quang plasma, hàn chùm tia điện tử, hàn hồ quang điện, hàn điện xỉ, hàn khí cháy, hàn nhiệt nhôm, hàn tự động và bán tự động dưới lớp thuốc, hàn MAG, MIG, TIG...
- Hàn áp lực. Chỗ liên kết được nung nóng đến trạng thái dèo, sau đó phải dùng lực ép để tạo ra liên kết hàn bền vũng. Ví dụ, hàn siêu âm, hàn nổ, hàn nguội, hàn điện tiếp xúc, hàn ma sát, hàn khuyếch tán, hàn cao tàn, hàn rên v.v...
- b) Căn cứ theo nguồn nhiệt (dạng năng lượng sử dụng) để nung nóng khi hàn, hàn có các phương pháp sau [1]:
- Hàn cơ năng. Sử dụng với các kim loại hoặc hợp kim có tính dèo cao, ở đây cơ năng sẽ làm biến dạng kim loại tại vùng hàn và tạo nên mối hàn. Ví dụ, phương pháp hàn nguội, hàn siêu âm... Tuy nhiên ở phương pháp hàn ma sát, người ta cũng dùng cơ năng để hàn; nhưng ở đây một phần cơ năng đã chuyển thành nhiệt năng để tham gia vào sự hình thành liên kết hàn bên vững.
- Hàn điện năng trên cơ sở biến điện năng thành nhiệt năng dưới tác dụng của hò quang điện. Ở đây nhiệt năng được giải phóng do kết quả của sự chuyển động năng của các điện từ thành nhiệt năng. Ví dụ, hàn hò quang điện, hàn tự động dưới lớp thuốc, hàn TIG, MIG, MAG...
- Hàn hóa năng đặc trưng bởi nhiệt năng sinh ra do quá trình xẩy ra các phản ứng ôxyt hóa mãnh liệt các chất khí hoặc các phản ứng ôxyt hóa kim loại. Ví dụ, phương pháp hàn khí cháy, hàn nhiệt nhôm v.v...
- Hàn cơ điện dựa trên nguyên lí chuyển động năng thành nhiệt năng để nung nóng chỗ hàn đến trạng thái hàn (trạng thái dẻo), sau đó dùng lực ép tác dụng lên kim loại đã được nung nóng. Ví dụ, hàn điện tiếp xúc điểm,

đường và giáp mối v.v...

- Hàn cơ hóa. Phương pháp này dựa trên nguyên lí chuyển hóa năng sang nhiệt năng để nung nóng chỗ hàn đến trạng thái hàn, sau đó dùng cơ năng (lực ép) để tạo nên mối hàn. Ví dụ ,phương pháp hàn khí áp lực.
- Các phương pháp hàn đặc biệt. Ví dụ, hàn chùm tia điện tử, hàn plasma, hàn siêu âm v.v...

II. NGUỒN NHIỆT HÀN

1. Yêu cầu chung của nguồn nhiệt

Nguồn nhiệt phải bảo đảm cung cấp đủ nhiệt để nung nóng vật liệu đến trạng thái hàn (chảy hoặc dèo). Nhiệt nung nóng cần thiết phụ thuộc vào vật biệu chỉ tiết hàn, vật liệu bố sung và phương pháp hàn.

Trong các phương pháp hàn áp lực, nhiệt độ hàn được xác định bằng mức độ dèo và khả năng khuếch tán của vật liệu hàn. Còn đối với các phương pháp hàn nóng chảy thì mối hàn chỉ thực hiện hoàn hảo khi nhiệt độ nguồn nhiệt lớn hơn nhiệt độ nóng chảy của vật liệu hàn.

Yêu cầu của ngườn nhiệt được biểu thị bằng các thông số sau [2]:

- Hiệu suất của nguồn nhiệt (η).

$$\eta = \frac{Q_1}{Q} \tag{1}$$

trong đó: Q1 - nhiệt lương hữu ích dùng cho quá trình hàn [kcal]

- Q nhiệt lượng toàn phần của nguồn nhiệt (ví dụ, của ngọn lửa hàn) [kcal].
- Hiệu suất nhiệt hiệu dụng (η_{T})

$$\eta_{\rm T} = \frac{Q_{\rm M}}{Q_{\rm C}} \tag{2}$$

trong đó: Q_M - nhiệt lượng dùng làm nóng chảy (hoặc dẻo) vật liệu hàn [kcal] Q_C - nhiệt lượng tiêu tốn toàn phần khi hàn [kcal]

Như vậy $Q > Q_C và Q_M = Q_1$

Ví dụ biểu đồ nhiệt của ngọn lửa hàn được biểu thị trên hình 1.

Ta có:
$$Q_C = Q_0 + Q_1 = Q_0 + Q_M$$
 (3).

Hình t. Biểu đồ nhiệt của ngọn lửa

$$Q_{C} = C. m. T_{C}$$

$$Q_{M} = C. m. T_{M}$$

$$Do do \eta_{T} = \frac{Q_{M}}{Q_{C}} = \frac{Q_{C} - Q_{O}}{Q_{C}} = \frac{1 - \frac{Q_{O}}{Q_{C}}}{C. m} = \frac{1 - \frac{C. m}{C. m}}{\frac{T_{M}}{T_{C}}}$$

$$\eta_{T} = 1 - \frac{T_{M}}{T_{C}} \qquad (4)$$

trong đó: C - nhiệt dung [cal/g°C]

m - khối lượng [g]

T_M - nhiệt độ nung nóng cần thiết [°C]

T_C - nhiệt độ làm nóng chảy vật liệu [°C]

Từ đây có thể thấy nguồn nhiệt hàn sẽ được sử dụng hoàn thiện hơn nếu nhiệt độ nung nóng cần thiết $T_{\rm M}$ càng nhỏ và nhiệt độ làm nóng chảy vật liệu $T_{\rm C}$ càng lớn.

- Hiệu suất truyền nhiệt thực tế của ngườn nhiệt η_1 .

$$\eta_{\rm f} = \eta_{\rm T}, \, \eta_{\rm t} = 1 - \frac{T_{\rm o}}{T_{\rm C}}$$
(5)

trong đó: To- nhiệt độ nguồn nhiệt (ví dụ, nhiệt độ ngọn lửa) [°C]

T_C- nhiệt độ làm nóng chảy kim loại [°C]

Điều đó có nghĩa là: khi nhiệt độ nguồn nhiệt càng cao thì cường độ dẫn nhiệt vào vật hàn càng lón, sự nung nóng càng hiệu quả.

2. Các loại nguồn nhiệt

Theo [3] nguồn nhiệt hàn để thực hiện cho một phương pháp công nghệ hàn càn có công suất đủ lớn để đảm bảo nung nóng cục bộ vật liệu hàn với nhiệt độ nóng chảy cao. Hiện nay đang sử dụng các nguồn nhiệt sau đây trong công nghệ hàn: nguồn nhiệt khí cháy; nguồn nhiệt hồ quang; nguồn nhiệt điện xĩ; nguồn nhiệt cảm ứng; nguồn nhiệt điện trở; nguồn nhiệt ma sát v.v....

Chuong II

HÀN HỒ QUANG

Năm 1803 nhà vật lí người Nga V.V. Petrov đã tiên đoán về khả năng sử dụng dòng điện để làm chảy vật liệu. Ý tưởng này đã trở thành tiền đề cho sự ra đời và phát triển công nghệ hàn hồ quang.

Năm 1881 mối hàn hò quang điện đàu tiên đã được nhà bác học Nga -N.N. Benardos thực hiện. Đến nay hò quang điện đã được sử dụng trong rất nhiều phương pháp công nghệ hàn: hàn hò quang tay; hàn hò quang tự động dưới lớp thuốc; hàn hò quang trong môi trường khí bảo vệ v.v...

A. NGUỒN NHIỆT HÒ QUANG

1. Hò quang

Hò quang là hiện tượng phóng điện ổn định qua một khoảng môi trường khí đã được ion hóa giữa hai điện cực: cực âm (catod) và cực đương (anod).

Sự ion hóa các phần tử khí đạt được do sự tách các điện tử và để thực hiện điều đó cần sản ra một công gọi là công ion hóa được đo bằng electron volt. Công này bằng thể năng ion hóa tính theo Volt.

Quá trình ion hóa chất khí của môi trường khí giữa hai điện cực có thể bao gồm các dạng sau:

- Ion hóa bằng va đập (bán phá).
- Ion hóa do tác động của các lượng tử (quang học).
- Ion hóa khi nhiệt độ tăng (nhiệt năng).
- a) Để thực hiện ion hóa bằng va đặp, các điện từ phải chuyển động thỏa mãn điều kiện [3]:

$$\frac{m_e V^2}{2} \ge eu \tag{6}$$

trong đó: m_e- khối lượng điện từ [g/cm³] cu - công ion hóa [J] V - vận tốc điện từ [cm/s]

do do
$$V_{min} = \sqrt{\frac{2eu}{m_a}} [cm/s]$$
 (7)

Ví dụ: tốc độ điện từ sắt (Fe) nhỏ nhất để thực hiện công va đặp là $1,66.10^8$ cm/s hoặc 5950.000 km/h.

b) Năng lượng của các tia sóng để đạt sư ion hóa phải thỏa mãn điều kiện [1]

$$\mu \gamma \ge eu$$
 (8)

trong đó: μ - hàng số Plank $\rightarrow \mu = 6.62.10^{-27}$ [eV/s].

$$\mu$$
 - tàn số ánh sáng $\rightarrow \gamma = \frac{C}{\lambda} [g/cm^3]$

C - tốc độ ánh sáng
$$C = 3.10^{10} [cm/s]$$

Chiều dài bước sóng ánh sáng để thực hiện ion hóa chất khí:

$$\lambda_{\text{max}} = \frac{\mu C}{e \mu} \tag{9}$$

Ví dụ, chiều dài bước sóng ánh sáng cần thiết để ion hóa các phân từ khí nito (N_2) :

$$\lambda_{\text{max}} = \frac{6.62.10^{-27} \cdot 3.10^{10}}{1.59.10^{-12} \cdot 14.5} = 0.85.0^{-15} \text{ cm} = 850 \text{ Å}.$$

Bảng 1 cho chiều dài các bước sóng ánh sáng đủ để ion hóa các khí.

Bång 1

Các nguyên tố	К	Na	Са	Fe	O ₂	. Ar
λ (Å)	2870	2420	2030	- 1575	915	785

c) Điều kiện để thực hiện ion hóa chất khí bằng nhiệt năng phải đảm bảo điều kiện [3]:

$$\frac{3}{2} \text{ KT} \ge \text{eu} \tag{10}$$

trong đó: $K_{\tilde{s}}$ hàng số Bozman $\rightarrow K = 1,36.10^{-16} \text{ (eV/}^{\circ}\text{K)}$

T - nhiệt độ tuyệt đối [OK]

Khi nhiệt độ tăng, số phân tử va đập vào nhau cũng tặng sẽ làm khả năng ion hóa tăng. Do vậy điều kiện nhiệt độ để có khả năng ion hóa là:

$$T \ge \frac{2eu}{3K} \rightarrow T_{min} = \frac{2eu}{3K}$$
 (11)

Nhưng nếu chỉ dùng năng lượng nhiệt để ion hóa hoàn toàn các phân từ khí thì phải nung nóng chúng tối nhiệt độ rất cao.

Ví dụ, đối với nito (N_2) , để ion hóa hoàn toàn phải nung tới nhiệt độ $113000^{\rm O}$ K, điều này hoàn toàn không thực tế đối với các điều kiện kỹ thuật và công nghệ hiện nay.

Lý thuyết và thực tiễn đã cho thấy sự ion hóa các phần tử khí được đặc trưng bởi hệ số cân bằng hóa học, phụ thuộc vào nhiệt độ và áp suất:

$$K_{p} = \frac{C_{i} \cdot C_{e}}{C_{\Lambda}}.$$
 (12)

trong đó: Ci - thành phần % ion trong thành phần khí

Ce - thành phần % điện tử trong thành phần khí

 C_A - thành phần ${\mathcal H}$ các nguyên từ trung hòa trong thành phần khí.

Giả sử gọi x là mức độ ion hóa và n là số nguyên tử ban đầu. Ta có $n_1 = xn$; $n_e = xn$ và $n_A = n - nx = n(1 - x)$

Khi đó:
$$C_i = \frac{n_i}{n_i + n_e + n_A} = \frac{x}{x + 1}$$

$$C_e = \frac{n_e}{n_i + n_e + n_A} = \frac{x}{x + 1}$$

$$C_A = \frac{n_A}{n_i + n_e + n_A} = \frac{1 - x}{1 + x}$$
do vây
$$K_p = \frac{x^n}{1 + x^2} \rightarrow x = \sqrt{\frac{K_p}{1 + K_p}}$$

Theo [4] coi hò quang như một plasma đẳng nhiệt và để xác định mức độ ion hóa ở t°, p cho trước, sẽ được đặc trưng bởi phương trình Saga:

$$\frac{x^2}{1-x^2}. p = 2,4.10^{-4}. a^2 T^{5/2}.e^{\frac{eu}{KT}}$$
 (13)

trong đó: p - áp suất (mm Hg)

u - diện thế ion hóa (V)

T - nhiệt độ [OK]

Phương trình này chi đúng với giá trị x khá nhỏ.

Theo [5] ngoài 3 dạng tạo ra sự ion hóa, sự phóng điện còn do một số tác dung phu sau:

- Sư phóng điện dưới tác dụng của điện trường ngoài:

$$j = joe^{\frac{439^{\sqrt{E}}}{T}}$$
 (14)

trong đó; E - cường độ điện trường (V/cm).

jo - dòng diện tử ban đầu được phóng ra khi không có tác dụng của điện trường ngoài (eV).

Do vậy khi nhiệt độ tăng sẽ làm giá trị trung bình của sự phóng điện đưới tác dụng của điện trường ngoài E bị ành hưởng đáng kể; đặc biệt khi cường độ điện trường lớn ($E=10^6 \div 10^7 \text{ V/cm}$).

- Sự phóng điện do kết quả của sự bắn phá catod.

Nhiều tác giả [6] cho rằng: quá trình này đóng vai trò chính trong sự hình thành hồ quang hàn. Do kết quả của sự phóng điện mạnh từ catod và sự ion hóa môi trường giữa hai điện cực, sẽ tạo ra một yệt sáng ổn định liên tục giữa các điện cực gòi là hồ quang điện.

Khi hò quang cháy các vệt sáng trắng ngay sát các diện cực gọi là các vệt catod hay anôd và trên các cực nhĩn rõ những vùng sáng tương ứng là vùng anôd và vùng catod (hình 2).

Kích thước vùng anôd và vùng catod rất nhỏ so với chiều dài cột hồ quang, mặt khác giữa các phần của hồ quang có sự giảm hiệu điện thế định tính.

Diện thế hồ quang được xác định:

$$u_h = u_k + u_s + u_a \tag{15}$$

$$hoāc P_h = Iu_h = Iu_s + Iu_s + Iu_a (16)$$

$$= P_{\rm b} + P_{\rm s} + P_{\rm u} \tag{17}$$

trong đó: I - đòng điện chạy qua hồ quang.

Hình 2. Các phần của hồ quang điện.
1- diện cực; 2- hồ quang; 3- vật liệu cơ bản; u_k - điện thế rơi catôd; u_s- điện thế rơi trên cột hồ quang; u_a- điện thế rơi trên anôd; u_h- điện thế hồ quang; l_a-chiều dài phần anôd; l_k- chiều dài cột hồ quang; l_s- chiều dài cột hồ quang; l_h- chiều dài hồ quang; r_s- bán kính cột hồ quang.

Nếu gọi f là tỷ số giữa dòng điện tử (I_e) và dòng điện (I): $f = \frac{I_e}{I}$, thì sự phân bố năng lượng trên các phần hồ quang như sau:

2. Sự phân bố năng lượng trong vệt catod

Chiều dài cột catod

$$l_k = 10^{-6} \div 10^{-7} (m)$$

Dòng ion bắn phá catod có năng lượng là:

$$P_1 = I(1 - f)u_k (18)$$

Sau khi bắn phá, các ion sẽ thu hoặc mất điện tử để thành các nguyên tử trung hòa và giải phóng một năng lượng bằng năng lượng ion hóa:

$$P_2 = I(1 - f)(u_i - \varphi) \tag{19}$$

Dòng điện tử phóng từ catod ra có năng lượng:

$$P_3 = flu_e (20)$$

Như vậy P_1 , P_2 là năng lượng catod nhận và P_3 là năng lượng truyền ra. Gọi W_k là năng lượng làm nóng chảy catod, R_k là năng lượng bức xạ; \mathbf{u}_c là diện thế phát xạ của các điện tử trên bề mặt catod, ta có phương trình cân bằng năng lượng:

$$P_1 + P_2 = P_3 + W_k + R_k \tag{21}$$

$$I(1-1).(u_k + u_j - u_e) = I I u_e + W_k + R_k$$
 (22)

3. Sự phân bố năng lượng trong cột hồ quang

Ta thấy cột hồ quang luôn có dạng hình trụ lọc từ hướng catod đến anod. Sự dẫn điện trong cột hồ quang là do có mặt của các điện từ và các điện tích. Chúng tồn tại do kết quả của sự ion hóa.

Theo [7] nhiệt độ cột hồ quang:

$$t_c = 800.u_i - 273$$
 [°C]

trong đó u_i- điện thế ion hóa của các phân tử (bảng 2).

Bảng 2. Năng lượng ion hóa các phân tử

Năng	g lượng	phân l	của c	ác phá	in tử	(eV)					
H ₂	02	N ₂	CO	C ₂	F ₂					,	
4.48	5,08	7.37	9.7	6.2	1.6					9 .	
Nāng	lượng	ion hó	a cua o	ac ng	uyên tê	(eV)	Ţ				
Cs	K	Na	Ca	Fe	. н	0 ,	N	Ar	F.	Ne	He
3.9	4.3	5.1	6.08	7.8	13.5	13,6	14.5	15.7	18.6	21.5	24.5
Năng	lượng	phát h	anh (e)	/ } .					,		
Αl	Ва	· C	Cu.	Fe	Ni .	K	Na	W			
	,2.1	2.2	4.3	4.5	5.0	2.2	2.3	4.5			

Đường kinh của cột hò quang

$$r_{s} = \frac{1.E_{s}}{2\pi \beta.\sigma.r.} [m]$$
 (23)

Ò đây:

I - dòng điện hàn [A]

 E_s - dien the gradien cot ho quang [V.m⁻¹], thường $E_b = 10 \div 40 \text{ Vm}^{-1}$

 σ - hang số Stefan - Bolzman ($\sigma = 5.67.10^{-8} \text{ W.mK}^4$)

 β - hệ số cháy của hỗ quang ($\beta = 0.5 \pm 0.7$)

Thực tế nhiệt độ của hộ quang không đồng đều, thường cao nhất ở giữa và giảm đặn ra phía ngoài. Khi hàn hồ quang tay, nhiệt độ hồ quang thực tế phân bố từ $4200 \div 5700^{\circ}$ C. Khi hàn dưới lớp thuốc là $6200 \div 7600^{\circ}$ C; trong môi trường khí bảo vệ TIG là từ $6200 \div 7800^{\circ}$ C. Khi hàn MIG và MAG trong vùng plasma nhiệt độ đạt tới $12000 \div 15.000^{\circ}$ C. Hàn MAG (CO₂) đạt 10.000° C.

Năng lượng trong cột hồ quảng bao gồm:

- Năng lượng đồng điện tử
$$P_1 = flu_k$$
 (24)

- Năng lượng cột hồ quang
$$P_2 = Iu_s$$
 (25)

Cột điện tử trước khi chuyển dịch vào anôd được gia tốc với năng lượng

$$P_3 = (1 - f)lu_i \tag{26}$$

Ngoài ra còn tồn tại năng lượng nhiệt của cột hỗ quang W_s và năng lượng do bức xạ R_s , do vậy:

$$P_1 + P_2 = P_3 + W_s + R_s \rightarrow I(fu_k + u_s) = (1 - f)Iu_i + w_s + R_s$$
 (27)

4. Sự phân bố năng lượng trên anod

Vùng anód có chiều dài $l_a=10^{-5}\pm10^{-6}$ m, năng lượng nhiệt ở vùng này cao hơn vùng catod.

Năng lượng phân bố trên anôd:

$$flu_a + flu_e$$
, thong thường $f = 1 \rightarrow l(u_a + u_e) = W_a + R_a$

trong đó: Wa - năng lượng làm nóng chảy ảnôd [W]

Ra - năng lượng bức xạ ở anôd [W]

Năng lượng trên vùng anôd:

$$P_a = (u_a + u_c)I [J.s^{-1}; W]$$
 (28)

Điện thẻ roi trên anôd: $u_a = 4 \div 8V$ và nhiệt độ ở đây bao giờ cũng cao hơn ở vùng catod (500 \div 600°C).

Công suất nhiệt toàn phần hữu ích của hồ quang:

$$P = J(u_k + u_s + u_a)\eta.k \quad [J.s^{-1}; W]$$
 (29)

Ó đây

- η hiệu suất của hồ quang (hiệu suất sử dụng nhiệt của hồ quang).
- * Khi hàn hỗ quang tay bằng que hàn $\eta = 0.75 \div 0.85$; Hàn tự động đười lớp thuốc $\eta = 0.8 \div 0.95$

Hàn TIG $\eta = 0.5 \div 0.65$; Hàn MIG; MAG $\eta = 0.8 \div 0.9$.

k - hệ số tính đến ảnh hưởng sai lệch các đường công điện áp và dòng điện tối công suất hồ quang: dòng điện 1 chiều k=1. dòng điện xoay chiều $k=0,7 \div 0,9$.

Với bản chất của hồ quang và năng lượng nhiệt của nó sinh ra làm cho quá trình dịch chuyển kim loại từ que hàn vào vũng hàn rất phức tap. Giọt kim loại phải chịu một hệ lực tác dụng (hình 3).

Áp lực hướng kính của từ trường hồ quang - (hiệu ứng pinch) [53]

$$pr = \frac{\mu I^2}{4\pi R^2} \cdot \left(1 - \frac{r^2}{R^2}\right) [Pa]$$
 (30)

Ò đây:

r, R- kích thước của giọt kim loại (mm)

 μ - độ căng của kim loại: kim loại lỏng $\mu = \mu_0 = 4\pi.10^{-7}$ [N.m⁻¹].

Hình 3. Lực tác dựng vào giọt kim loại trong hồ quang hàn.

 điện cực (que hàn); 2- giới hạn vùng chảy của giọt kim loại; 3- kim loại nóng chảy;
 giới hạn bề mặt catod; 5- cột hồ quang;

6- bề mặt anôd;-7- tiết diện thắt: a- lực tự trọng; b- lực tác dựng theo phương hướng kính của từ trường điện; c- sức căng bề mặt; d- hướng lực diện từ; e- lực phân tán của kim loại; f- độ nhớt của kim loại chây; g- lực tác động của dòng plasma;

Lực hướng kính tác động vào nơi tiết diện nhỏ nhất của giọt kim loại, có tác dụng tách giọt kim loại ra khỏi điện cực và chuyển vào bể hàn. Trong khi đó lực dọc trục (lực Loren) tiếp tục tác động thúc đẩy để giọt kim loại dịch chuyển vào bể hàn theo giá trị:

$$P_{Lo} = \frac{\mu I^2}{4\pi} \left(\frac{3}{4} + \ln \frac{R_e}{R_{Eo}} \right) [N]$$

Giá trị R, R_{Fo} xem trên hình 3.

Các dạng dịch chuyển kim loại trong hò quang với các phương pháp hàn khác nhau được thể hiện ở bảng 3.

Trong công nghệ hàn, chiều dài hỗ quang được điều chính bằng quan hệ giữa hiệu điện thế giữa hai cực và cường độ dòng điện hàn.

Mặt khác, người ta thiết lập các đường đặc tuyến tĩnh Vol - Amper tức

là các đường cong biểu thị mối quan hệ giữa hiệu điện thế và **cường độ dòng điện** của hờ quang hàn (hình 4).

Khi tăng cường độ dòng điện hàn ở các giá trị nhỏ, chúng không làm thay đổi cột hờ quang, nhưng hiệu điện thế sẽ giảm.

Ngược lại, nếu tăng chiều dài cột hò quang, khi dòng điện hàn không đối sẽ làm tăng hiệu điện thế hò quang.

Hình 4. Đặc tính tính của hồ quang hàn và nguồn hàn.

 a) Đặc tính tỉnh của hồ quang khi thay đổi chiều dài hồ quang.

 b) Đặc tính động của nguồn hàn;
 1, 2, 3- đặc tính động phăng thích hợp cho hàn MAG; MIG; 4, 5- đặc tính đốc dùng cho hàn tay.

tính đốc dùng cho hàn tay.

c) Sư ổn định của hồ quang điện.
6- đặc tính động của nguồn hàn (khi hàn hồ quang tay với que hàn);
7- đặc tính đốc của nguồn (khi hàn TIG); 8- đặc tính tỉnh của hồ quang; P- điểm làm việc.

Bảng 3. Các dạng dịch chuyển kim loại hàn bằng hồ quang điện

Phương pháp dịch chuyển	Sơ đồ dịch chuyển	Đặc điểm	
Giọt ngắt quãng		Chiều dài và mật độ dòng của hồ quang trung bình	-
Dịch chuyển liên tục		Chiều dài và mật độ dòng của hồ quang dài và cao	
Quá trình bám dinh		Mật độ dòng cao, hồ quang ngắn	
	1 0 0 0 0 0		
Quá trình xung	t _i t _p 3 2 4 5 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mật độ dòng nhỏ không có ngắn mạch	

4			
Tổng số giọt,	Thông	số hàn	Linh vực ứng dụng
ngắn mạch (S ⁻¹)	U _h (V)	Į (A)	Emil voc ung aquig
5 ÷ 40	24 + 28	200 ÷ 300	- Hàn ở mọi vị trí và chiều dày tấm lớn - Hàn hồ quang tay với que hàn thép hợp kim thấp.
≥ 200	28 ÷ 40	200 ÷ 500	- Chiều dày lớn, hàn ở vị trí ngang. - Cho thép hợp kim cao, Hàn Al; Cu trong môi trường Ar
		•	Tấm hàn mỏng và hàn mọi vị trí
50 ÷ 200	14 ÷ 22	50 ÷ 200	khi hàn trong môi trường A _r , CO ₂
50 ÷ 100	12 ÷ 20	20 ÷ 180	Tấm hàn mỏng, hàn ở mọi vị trí. Hàn thép hợp kim cao. Hàn Al trong mới trường Â _r .

Sự phụ thuộc giữa điện thế hỗ quang, dòng điện và chiều dài hỗ quang có thể biểu thị bằng quan hệ:

$$U_h = a + bl_h + \frac{c + dl_h}{I}$$
 [V] (32)

Với dòng hàn đủ lớn thì điện thế hồ quang được tính:

$$U_h = a + bl_h \cdot [V] \tag{33}$$

trong đó: Uh - điện thế hồ quang [V]

1 - chiều dài hồ quang [mm]

I - dòng điện hàn [A]

a, b, c, d - các hệ số phụ thuộc vào vật liệu điện cực, môi trường bảo vệ, áp lực môi trường v.v...

B- CÁC PHƯƠNG PHÁP HÀN HÒ QUANG

Hồ quang được dùng trong công nghệ hàn tay, hàn tự động dưới lớp thuốc hàn, hàn trong môi trường khí bảo vệ, hàn plasma, hàn điện xi.

I. HÀN HÒI QUANG TAY VỚI QUE HÀN

Phương pháp công nghệ hàn này được sử dụng rộng rãi nhất hiện nay. Mặc dù đã có những phương pháp mối có năng suất, chất lượng cao; nhưng phương pháp hàn hò quang tay vẫn không thể thiếu trong dạng sản xuất sửa chữa, sản xuất loạt nhỏ, đặc biệt ở những qui trình công nghệ hàn không thể tiến hành có khí hóa và tự động hóa.

Các đặc trưng co bản của phương pháp hàn hồ quang tay:

- Vị trí hàn : Có thể hàn ở mọi vị trí không gian

- Loại vật liệu kết cấu hàn : thép cacbon, thép hợp kim thấp;

thép hợp kim cao, niken, đồng, nhôm v.v...

- Chiều dây tấm hàn : $(2 \div 100)$ [mm]

- Dong điện hàn : $(50 \div 450)$ [A]

- Diện thế hồ quang : (15 ÷ 40) [V]

- Loại nguồn hàn : dòng xoay chiều và một chiều

Dường kính que hàn : (2 ÷ 6) [mm]
Đặc tính động của máy hàn : dốc liên tục.

Có hai phương pháp hàn điện hồ quang tay: phương pháp hàn bằng điện cực không chảy (than, grafit hoặc vônfram) vấ phương pháp hàn bằng điện cực kim loại chảy (que hàn).

Hình 5a là sơ đò phương pháp hàn bằng điện cực không chảy. Điện cực thường dùng là điện cực than. Hàn được tiến hành bằng dòng điện một chiều, điện cực không chảy nối với âm cực còn vật hàn thì nối với dương cực của máy hàn.

Hình 5b cho sơ đồ phương pháp hàn bằng điện cực kim loại chảy. Phương pháp này rất phổ biến trong các ngành chế tạo máy, xây dựng cũng nhữ trong các công việc tu bổ, sửa chữa.

Hình 5. Sơ đồ hàn điện hồ quang tay.

a) Hàn bằng điện cực không chảy; b) Hàn bằng điện cực kim loại chảy; 1. điện cực;

2. kìm hàn; 3. vật được hàn; 4. hồ quang điện; 5. dây dẫn; 6. que hàn.

Hò quang điện khi hàn kim loại có thể là hò quang trực tiếp hay giấn tiếp. Hồ quang trực tiếp cháy giữa điện cực và vật hàn. Hồ quang gián tiếp cháy giữa hai điện cực than và để gần chi tiết được hàn, kim loại được đốt nóng dưới tác động gián tiếp của hồ quang.

1. Điện cực và que hàn để hàn hồ quang tay

Diện cực dùng để hàn hồ quang tay chia thành hai loại:

Diện cực không chảy gồm có điện cực than, điện cực grafit và điện cực vonfram. Điện cực than và điện cực grafit chỉ dùng khi hàn với dòng điện

một chiều. Điện cực vonfram dùng khi hàn với dòng điện một chiều hay dòng điện xoay chiều.

Điện cực để hàn hỏ quang tay (hàn thép, gang, nhôm, v.v.) thường dùng là điện cực nóng chảy (gọi là que hàn). Trong quá trình hàn, que hàn làm nhiệm vụ gây hỏ quang và bổ sung kim loại cho mối hàn.

Que hàn gồm có lỗi kim loại, là những đoạn dây kim loại có chiều dài khoảng $(250 \div 450)$ mm và đường kính khoảng $(1 \div 12)$ mm.

Bọc ngoài lõi kim loại là lớp thuốc hàn. Đó là hỗn hợp các hóa chất, các khoáng chất, các ferô hợp kim và chất đính kết.

Thuốc bọc que hàn cần thỏa mãn các yêu cầu sau:

- Phải có tính ổn định và ion hóa tốt để đảm bảo cho hò quang cháy ổn định trong quá trình hàn (thường dùng các nguyên tố của nhóm kim loại kiềm).
- Bảo vệ cho mối hàn không tác dụng với ôxy và nito của môi trường xung quanh.
- Có khả năng tạo xì, xi lỏng đều và phủ đều trên bề mặt kim loại mối hàn để bảo vệ mối hàn và giảm tốc độ nguội của mối hàn. Đồng thời xi phải để bong.
 - Có khả năng khử ôxy trong quá trình hàn.
 - Có khả năng hợp kim hóa mối hàn để nâng cao có tính của mối hàn.
- Bảo đảm độ bám chắc của thuốc lên lõi que, nhưng không gây ra các khí độc hai khi hàn.

Que hàn điện thường dùng có hai loại: que hàn không thuốc bọc (que hàn trần) và que hàn có thuốc bọc (hình 6).

Lớp thuốc bọc que hàn điện có loại mỏng (khối lượng lớp thuốc bọc chiếm khoảng $1 \div 5\%$ khối lượng lõi que). Lớp thuốc bọc loại này dùng để làm tăng tính ổn định của hồ quang. Thành phần của nó gồm có đá vôi, fenpat, bột tan... ($80 \div 85\%$ khối lượng) và thủy tinh lỏng (15 - 20% khối lượng). Lớp thuốc bọc loại này dùng để hàn các cấu trúc không quan trọng. Mối hàn bằng loại que hàn này có cơ tính kém.

Lớp thuốc bọc loại dày dùng để làm tặng tính ổn định của hồ quang và

tạo quanh hỏ quang một lớp khí và xỉ bảo vệ kim loại khỏi bị ôxy hóa và khỏi bị tác dụng của khí nito. Trong trường hợp cần thiết người ta cho thêm vào lớp thuốc bọc những thành phần hợp kim (các pherô hợp kim), những thành phần này sẽ tham gia trong thành phần của mối hàn và nâng cao cơ tính của mối hàn. Thành phần của lớp bọc này gồm có các chất ion hóa (phấn), chất tạo xỉ (cao lanh), chất tạo khí (tinh bột), chất khử ôxy (nhôm, ferô mangan...), các chất hợp kim và chất dính.

Hình s. Cấu tạo que hàn. 1. Lõi que, 2. Thuốc bọc.

Hiện nay ở nước ta sử dụng rất nhiều loại que hàn của các nước khác nhau.

Các bảng 4 ÷ 31 giới thiệu que hàn của một số nước.

Que hàn hò quang tay có nhiều loại. Tùy theo loại vật liệu làm lõi que mà ta có que hàn thép, que hàn gang, que hàn đồng v.v.

Que hàn thép có thể chia làm ba nhóm chính:

- + Que hàn để hàn các loại thép cacbon thấp và thép hợp kim thấp. Nhóm này thường được dùng các loại lõi dây C_B 08; C_B 08A; C_B 10A để chế tạo ra các que hàn loại 934; 942; 9-46; 900
 - + Que hàn để hàn các loại thép cacbon cao, thép hợp kim. Nhóm này

thường dùng các loại dây C_B - $08\Gamma C$; C_B - $18X\Gamma CA...$ để chế tạo các loại que như: УОНИ-13/65; Э60; Э85 $\Gamma...$

+ Que hàn để hàn các loại thép hợp kim cao, thép không gi. Loại này thường dùng các loại lõi thép hợp kim cao như: C_B -13X25 Γ ; C_B -40X19H9... v.v.

Bảng 4 giới thiệu các đặc tính của các loại que hàn để hàn thép.

Căn cứ vào tính chất vật liệu hàn và yêu cầu kỹ thuật của mối hàn để lựa chọn que hàn thích họp. Do vậy tính chất của kim loại mối hàn khi sử dụng các que hàn khác nhau để hàn hồ quang các kết cấu cũng khác nhau (bảng 5).

Bảng 4. Tính chất cơ bọc của mối hàn khi hàn hồ quang bằng que hàn để hàn kết cấu thép

	Kim loại	mối hàn	Góc uốn của mối hàn với que hàn < 3 mm)
Loạique hàn	Độ dặn dài tương đối (%)	Độ dai va dập kGm/cm²	(d0)
E38	14	3	60
E42	18	8	150
E46	18	8	150
E50	16	7	120
E42A	22	15	180
E46A	22	14	180
E50A	20	13	150
E55	20	12	150
Ė60	18	10	. 120

Bảng 5. Các đặc tính của que hàn theo FOCT-9467-75 dùng hàn thép hợp kim thấp

Buou Gur	Thời gian	(bunt)	09	99	9	09	8	` .	9	9	*****	40	6	8	8		09	99			90	9		9	
Chế độ nung nóng	Nhiệt độ	(2)	180-200	180-200	180-200	<u>5</u>	350-370		300-350	190-200		190-200	Č	25	320		350-400	300-350			400	370		300-320	
Hệ số đắp	(g/Ah)		=	8,5	8,5	ð	8,5	9,5		8,5	4,	8,3		D	Ð		ᄗ	9,5			o	9,5		Ç	
Vi tri	hàn		Tất cả	במכ אל ווו			Tất cả	các vị trí	=	=		z		*	=	Một chiều và	xoay chiều	Ngang, đúng			Tất cả các vị trí	= .		•	
Nguồn hàn	và nổi cực		Dòng một chiều	noac xoay cneu	=		Dòng một chiều	và diện cực (+)	=	Dòng một chiều	và xoay chiều	=	Dòng một chiều	diện cực (+)	=	Dòng một chiều	và xoay chiều	Dòng một chiều	diện cực (+);	dòng xoay chiều	=	Dòng một chiều,	diện cực (+)	Dòng một chiều	và xoay chiều
Mác dây hàn	GOST-2246-70		C _B -08;C _B -08A	=	=				2	C08; C08A	<u>.</u>	=			•	=		-=			C ₂ -08;C ₂ -08A	, _F			
Mác	dne hàn		AHO-5	AHO-6	AHO-1	OMA-2	YOHN-13/45		CM-11	AHO-3		AHO-4	YOHM-13/55	,	AHO-11	AHO-12		YOHM-13/55Y	-		YOHM-13/65	YOHN-13/85		YOHI1-13/85Y	
Loai	que han		E42				E42A	į		E46	!		E50A					E55			E60A	E85			

Bảng 6. Que hàn để hàn thép kết cấu hợp kim và thép hợp kim thấp.

Loại que hàn	Ký hiệu	Loại que hàn	Ký hiệu
360A	YOHИ-13/55 (CB08, CB-08A)	Э-МХ	ЦЛ-14 (CB-08; CB-08A)
360A	ВПТИ-12/70 (СВ-10ГСМТ)	э-мх	ГЛ-14 (CB-10XM)
Э70	48H-1 (CB-08XH2M)	э-хмф	ЦЛ-20A (CB-08A)
370	ЛК3-70 (СВ-08; СВ-08А)	э-хмф	IIЛ-20Б (СВ-08ХМФ А)
385	YOHи-13/85 (CB-08; CB-08A)	э-хмфБ	ЦЛ-27A (CB-08; CB-08A)
385	YOHИ-13/85Y(CB-08; CB-08A)	э-хмфБ	ЦЛ-27Б (CB-08XMФБ)
Э100	ВИ-10-6 (СВ-18ХМА)	э-х2МфБ	ЦЛ-26M (CB-08A)
Э100	YOHИ-13/В (СВ-08)	э-хьмф.	ЦЛ-17 (CB-10X5M)
385	ЦЛ-18 (CB-18XГCA)	-	
∋85	НИАТ-3M (CB-08A)		
3100	Y-340/105 (CB-08; CB-08A)		
Э100	ЦЛ-19 (CB-18XMA).		
3145	ниат-з (СВ-18ХМА)		
3145	НИАТ-5 (CB-10X16H25M6)		

Bảng 7. Que hàn để hàn thép chịu nhiệt

Loai que hàn	Ký hiệu que hàn	Loại que hàn	Ký hiệu que hàn
э-мх	ЦЛ-14 (СВ-08; СВ-08А)	Э-ХМФБ	цл-27A (CB-08; CB-08A)
э-мх	ГЛ-14 (СВ-10ХМ)	Э-ХМФБ	цл-27Б (CB-08XMФБ)
Э-ХМФ	ЦЛ-20А (СВ-08А)	Э-Х2МФБ	ЦЛ-26М (СВ-08А)
Э-ХМФ	ЦЛ-20E (СВ-08XМФА)	Э-Х5МФ	ЦЛ-17 (CB-10X5M)

Bảng 8. Que hàn để hàn thép bền nhiệt, thép không gi

Loai que hàn	Ký hiệu que hàn	Loại que hàn	Ký hiệu que hàn
ЭA-1	ОЗЛ-14	ЭA-2	ЦЛ-25
	(CB-O2X19H9)	1	(CB-06X25H12TIO)
ЭA-1a	озл-8	ЭA-2	ЗИО-8
	(CB-04X19H9)		(CB-07X25H13)
ЭA-1a	л-39	ЭА-2Б	цл-9
	(CB-04X19H9)	il .	(CB-07X25H13)
ЭA-1Б	· ILUI-11	ЭА-1Г6	ЦЛ- 16
	(CB-08X19H10E)	· .	(CB-08X20H9[7T)
ЭA-1Б] JI-38M	3A-2	03Л-6
_	(CB-08X19H10E)		(CB-07X25H13)
ЭA-16	03Л-7	ЭA-2	ЦЛ-25
	(CB-02X19H9)		(CB-07X25H13)
ЭА-1Ба	зио-3	9A-2	O3Л-4 °.
	(CB-08X19H10B)		(CB-10X20H15)
ЭА- 1 М2	ЭНТҮ-ЗМ	ЭА-2C2	03Л-5
	(CB-04X19H11M3)		(CB-10X20H15)
ЭА-112Ба	HЖ-13	ЭА-1Б	ЦТ-15-1
ЭФ-Х13	(CB-04X19H11M3)		(CB-08X19H10E)
	YOHИ-10X13	ЭА-1Ба	ЦТ-15
Э ФХ13	(CB-10X13)	1	(CB-08X19H10E)
	ЛМЗ-1	ЭА-1В2Б	ЦТ-16-1
ЭФ-Х13	(CB-10X13)		(CB-08X19H10E)
	YOHИ/10X17T	ЭА-1В2Ба	ЦТ-16
ЭФ-Х17	(CB-10X17T)		(CB-08X19H10E)
	11/1-33	ЭА-1М2ФД	IIT-7
ЭАФ-1	(CB-04X19H9)		(CB-08X19H12M3)/
	ЭA-606/10	ЭФ-Х12ВМНФ	КТИ-10
Э А- 2	(CB-05X19H948C2)	li	(CB-10X11BMФH)
,	СЛ-25	il	
	(CB-07X15H12T)		

Bảng 9. Que hàn để hàn đắp

Loại que hàn	Ký hiệu que hàn	Loại que hàn	Ký hiệu que hàn
ЭН-15Г3-25	O3H-300 (CB-08; CB-08A)	ЭН -70Х11НЗ-25	ҮОНИ-13/НЖ (2X13TY-141-60)
ЭН-18Г4-35	O3H-350 (CB-08; CB-08A)	ЭH-70X11-25	ОМГ-Н (CB-0643A)
ЭН-20Г4-40	O3H-400 (CB-08; CB-08A)	ЭН-80В18Х4Ф-60	ОМГ (CB-08)
ЭН-15Г3-25	Y340/ (CB-08; CB-08A)	ЭН-80В18Х4Ф-60	ЦИ-1M (CB-08)
ЭН-14Г2Х-30	K-2-55 (CB-08; CB-08A)	ЭН-Ү30Х25РС2Г-60	ИТ-10 (P-18)
ЭН-80Х4СГ-55	ЭH-60M (CB-08; CB-08A)	ЭН-ҮЗОХ2ЗР2С2ТГ-55	T-590 (CB-08; CB-08A)
ЭН-25Х12-40	13КН/ЛИВТ (СВ-08; СВ-08А)	ЭН-Ү10Г5Х7С-25	12АН/ЛИВТ (СВ-08; СВ-08А)

Bảng 10. Que hàn để hàn gang và kim loại màu

Ký hiệu kỹ thuật	Ký hiệu que hàn	Ký hiệu tối que
TY 1034-62	мнч-1	имжмн
TY 1033-62	034-1	Dây đồng
TY-1035-62	ЦЧ-4	CB-08; CB-08A
ТҮ-ЦНИИТМАШ	цч-з	CB-08H50
TY-1036-62	03A-1	CB-AI
ТҰ-НИИХИММАШ	АФ-4аКр	CB-AL
TY-1037-62	03A-2	CB-AK5
TY-1079-64	K-100	Dây đồng

Mặt khác có thể căn cứ vào tính chất của lớp thuốc bọc que hàn để lựa chọn que hàn theo kết quả mong muốn.

- Que hàn loại "rutin" là loại que hàn thường gặp cho phép tạo được những mối hàn đẹp ở mọi vị trí, xỉ được làm sạch để dàng.
- Que hàn loại "kiềm tính" là loại có thể hàn ở mọi vị trí, mối hàn ít bị nút. Loại que hàn này thường dùng cho các kết cấu đòi hỏi có tính an toàn cao, cho các chi tiết hàn có chiều dày lốn, có độ cứng vững (cầu, bình chịu áp suất cao, v.v.). Tuy nhiên khi sử dụng loại này yêu cầu người thợ hàn phải có kinh nghiệm và có tay nghề cao vì hồ quang hàn rất ngắn.
- Que hàn loại "xenlulô" là loại que hàn mà vỏ bọc chứa nhiều thành phân hữu cơ để tạo ra khí bảo vệ. Loại que hàn này được dùng để hàn các ống dẫn trong ngành thủy lợi, dầu khí... Thành phần của thuốc bọc que hàn rất đa dạng.

Khoảng 100 loại nguyên liệu dang bột được sử dụng làm thuốc bọc: bao gồm các ôxyt, cacbonat, silicat, hợp chất hữu có, florit và hợp kim sắt; hỗn hợp trợ dung chứa các chất này theo những thành phần xác định. Nguyên liệu dạng bột thường dùng nhất và các chức năng của chúng được liệt kê trong bảng 11. Các que hàn có thể được phân loại theo nguyên liệu được trộn trong hỗn hợp thuốc. Tên các thành phần chính trong hỗn hợp thuốc được sử dụng để nhận biết kiểu que hàn (loại trừ kiểu hydrô thấp), ví dụ, kiểu ilmenite, kiểu vôi titan, các kiểu xellulo cao và kiểu ôxyt titan cao. Bàng 12 là các ví dụ về các tỷ lệ hòa trộn nguyên liệu bột và các kiểu que hàn tiêu biểu dùng cho thép trung bình (que hàn Nhật Bản theo tiêu chuẩn JISZ 3211).

Tính công nghệ, tính hàn, hiệu suất của que hàn được đặc trưng bởi hỗn hợp thuốc bọc. Đối với các que hàn đặc biệt dùng cho thép độ bền kéo cao, thép hợp kim thấp, thép không gi, hàn đấp bề mặt, gang, hợp kim màu cần chú ý đến tính hàn, tức là để tránh các vết nút hàn, đạt thành phần hóa học và các tính chất cơ học hơn là chú ý đến tính công nghệ (bằng 13, 14).

a) Que hàn kiểu ilmenite (D4301)

Kiểu que hàn này được chế tạo với 1/3 khối lượng chất phụ gia là quặng ilmenite (của Nhật). Kiểu điện cực này cho hồ quang mạnh, kết quả là độ

ngấu cao, xỉ lỏng, để hàn ở mọi tư thế. Kiểu que hàn này cũng cho mối hàn đẹp, chống nứt cao, tính công nghệ, tính hàn và hiệu suất tốt. Loại que hàn này có thể dùng để hàn với chiều dày mỏng, khi hàn ít tạo khói.

b) Kiểu vôi - titan (D4303)

Kiểu que hàn này có thuốc bọc chủ yếu chứa ôxyt titan (quặng nhẹ) và dá vôi. Loại này có tính công nghệ cao hơn loại ilmenite và có tính khử xi tốt trong các mối hàn rãnh hẹp so với các que hàn khác. Vết nút phía dưới ít xảy ra khi hàn đứng hoặc hàn ngửa. Kim loại kết tinh có độ sít chặt cao, độ xuyên thấu tia X họi thấp hơn so với kiểu ilmenite. Do đó cần đặc biệt chú ý khi hàn và phải kiểm tra bằng tia X.

c) Kiểu xelllulo cao (D4311)

Que hàn loại này có lớp bọc mỏng và chất phụ gia chứa 20 - 30% hợp chất hữu cơ. Các hợp chất hữu cơ bị chấy do nhiệt tăng trong quá trình hàn và tạo ra nhiều khí, khí này bảo vệ được mối hàn. Que hàn này còn được gọi là que hàn bảo vệ. Khi hàn bằng que này hàn dễ bị bắn tóc và mối hàn không đẹp, do đó ít được ưa chuộng và thường được thay thế bằng que hàn ilmenite. Nhưng loại que này tạo ít xì, hàn đứng hướng xuống hoặc dốc nghiêng bất kỳ đều có thể thực hiện tương đối dễ và dùng máy hàn với dòng một chiều (DC) để hàn các đường ống.

d) Kiểu ôxyt titan (D4313)

Kiểu que hàn này được bọc chất phụ gia chứa 30 -40% oxyt titan, tạo hò quang ổn định, ít bị bắn tóc, tính công nghệ tốt, độ ngấu mối hàn thấp, mối hàn có bề mặt đẹp, do đó thích họp để hàn thép tấm mỏng. Tính dèo kim loại hàn tương đối thấp, do đó không thích họp để hàn các cấu trúc chịu lực cao và các tấm dày.

e) Kiểu bột sắt - ôxyt titan (D4324)

Kiểu que hàn này chứa khoảng 50% bột sắt trong hỗn hợp thuốc bọc của loại D4313. Do đó tính công nghệ và tính hàn của nó gần tương tự với kiểu D4313, nhưng có tốc độ mối hàn cao hơn, bề mặt mối hàn tốt, tuy vậy chi thích hợp cho vị trí hàn phẳng, hàn ngang.

Báng 11. Hỗn hợp trợ dụng hàn cơ bản và các đặc tính

uốc năng ngan ngan	Dộ ôn định hồ quang o	Sy tao xi	Phản ứng khủ	Phán ứng ôxy hóa	Sự tạo khí	Bổ sung nguyên tố hợp kim	Bổ sung Lớp bọc Độ liện kết nguyên tố dùng độ bền của lớp bọc hợp kim o	Dộ liện kết của lớp bọc
Cát silic Silicat kai	a •	• 0						•
Silicat natri	•	o	,					

h chứ . - Chức năng chính; 'o - Chức năng phụ

Bảng 12. Một số tỷ lệ hốn hợp chất phụ gia bọc que hàn cho thép trung binh

Kiểu que hàn			Tỳ lệ hỗn hợp	Tỳ lệ hỗn hợp các thành phần phụ gia (%)	ı gıa (%)		5 .	
D4301 (Ilmenite)	Ilmenite 35	Đá với 6	Fero mangan cacbon trung binh	MnO ₂	Cát silic 10	Feldspar kali	Tinh bột 5	Talc 8
D4303 (või-titan)	Butil 34	Dôlômite 32	Cát silic 10	Feldspar 10	Mica	Fero mangan Tinh bột 10 4	Tinh bột 4	
D4311 (Xellulo)	Xetulo 21	Oxyt titan	Amiant 11	Fro mangan cacbon trung bình 8	Talc 10			
D4313 (6xyt titan cao)	Rutii 45	Fero mangan cactron trung binh 13	Tinh bột	Talc 12	Xellulose 5	Feldspar 20	Đá với 4	
D4316 (hydro thấp)	Đá vôi 50	Fluorite 20	Fero silic	Fero mangan cacbon trung blnh	Bột sắt 10	Mica 7		
D4327 (bột sắt và bột ôxyt sắt)	Xeltulo 3	Talc 10 /	Fero mangan cacbon trung binh	Feldspar kali 10	Cát siác 20	Quáng sát 30	Bột sất 50	. ,

Bang 13. Que han de han thep cacbon trung binh (JIS Z3211-86).

Xiêu Que		** .		; =	Tính chất cơ học của kim loại lãng	của kim loạ	ilăng
	Vô bọc	Vị trí hàn (1)	Dòng diện (2)	Dô bền kéo kG/mm²	Giới hạn chảy kG/mm² (N/mm²)	Độ dân đài (%)	Dô dai va dập kGm/cm²
				(N/mm ²)			
D4301	Imenite	FVOH	AC hay DC(±)	≥43	≥35	>22	≥4.8
				(420)	(340)		(47)
D4303 V8	Vôi-titan	F.V.O.H		> 43	×35	≥22	>28
				(420)	(340)		. (27)
D4311 Xe	Chille X	F.V.O.H	,	× 43	×35	> 22	≥2.8
		,		(420)	(340)		(27)
D4313 Öx	Oxyt titan cao	FVOH	AC hay DC(-)	>43	.> 35	≥17	•
				(420)	(340)		
D4316 HV	Hydro thầo	F.V.O.H	AC hay DC (+)	> 43	×35	>25	≥4.8
	1			(420)	(340)		(42)
D4324 Rô	Bôt sắt + ôx vị tiệan	I	AC hay DC (±)	>43	\ 35	≥17	,
			•	(420)	(340)		-
D4320 Bô	Bột sắt, hydrô thấp	I,	AC hay DC(+)	>43	1835	> 25	≥4.8
				(450)	(340)		(47)
DA227 BA	Rôt cất hột ôxyt cất	H	AC hav DC (+)	>43	×35	>25	> 2.8
				(420)	(340)		(27)
D4340 D5	năc biêt	F.V.O.H hav	AC hay DC (±)	>43	>35	>22	> 2.8
		vị trí bất kỳ	•	(450)	(340)		(27)

Ghi chứ (1) kỳ hiệu cho vị trí hàn

F: hàn phắng; V: hàn đứng; O: hàn trần; H: hàn ngang.

Vị trí hàn trong báng được ấp đụng cho que hàn đường kính nhỏ hơn 5 mm.

(2) Y nghĩa kỳ hiệu dòng diện

Bảng 14. Chất lượng que hàn để hàn thép trung bình (JIS Z3211-86)

Kiểu diện	Ť	Hiệu quả (1)	£		8	Cd tính.	Ē	 돈 또	Thành phần hóa học %	5 %	Tính chất chung
9	Ţ	Tính	Hiệu	Giới hạn Độ bền	ueq ¢G∵	θĠ	Đŷ	O	Ş	Ŝ	
	công nghệ	hàn	suất	chảy (kG/mm²)	chảy kéo (kG/mm²) (kg/mm²)	dẫn dài (%)	va dập (kGm/mm²)				
D4301	۷	⊲	•	42	47	32	ð	600	0,45	60'0	Chất lượng cân bằng tốt
D4303	•	0	0	42	46	33	F	0.08	0.35	0.11	Dộ ổn định tia X hơi thấp hơn so với loại D4301
D4313	•	<	<	44	20	28	7	80'0	0.35	0.27	Đối với các tấm thép móng, hàn thầng dứng kéo xuống có thể thực hiện được với một số kiểu que hàn
D4316	0	•		48	55	33	55	0.08	0,85	0,55	Đổi với thép đặc biệt và các tấm thép dày, hàn một phía và hàn thẳng dúng kéo xuống có thể thực hiện được với một số kiểu que hàn.
D4327	•	0	•	43	49	32	O.	80'0	0.70	0.35	Hàn ngang hiệu quả cao, có thể thực hiện kết hợp với khuôn dẫn hướng (dẫn hướng kiệu trọng lực, dẫn hướng tiếp xức dàn hồi)

Ghi chu (1) Tính cóng nghệ: chất lượng hàn tính đến độ ồn định hồ quang. khử xi, biều hiện mối hàn. v.v. Tính hàn: để dạng trong quy trình hàn, vết nưt mối hàn, kiệm tra bằng X quang v..v.

Hiệu suất: tốc độ tăng trong khi hàn Tuyệt hảo
 Tốt
 A Rất tốt
 A Chẩ

A Cháp nhận được

34

2. Một số tiêu chuẩn que hàn ở các nước

	•	hiệu que hà	n theo ISO	9 .		
Tí	nh chất cơ ho	oc .		Đặc đi	ểm thuốc bọc	
Ký hiệu	Độ bền kéo (1) N/mm²	Độ dẫn dài L = 5d %		AR = 8		
E43.0 E43.1 E43.2 E43.3 E43.4 E43.5	430 ÷ 510 430 ÷ 510 430 ÷ 510 430 ÷ 510 430 ÷ 510 430 ÷ 510	20 24 24 24 24		O = 6 R = 1 RR = 1	exentulô control por local por loca	
E510 E511	510 ÷ 610 510 ÷ 610	- 18			ác lớp vỏ bọc ຶຶ່ hác	
• • • • •] .			
1) Sai số trun Ví dụ: Que hản % kim loại th	E 51 3	B 160	2 0 H		oại que hàn chúa hydrô thấp	buộc
Vị trí	mối hàn	/-	Ký hi ệ u	Nối cực que hàn	Điện thế không tải nhỏ nhất (~)[V]	g bắt
vị trí dúng l 3. Mối hàn gi mối hàn gó hàn ngang. 4. Mối hàn gó mối hàn gó 5. Cũng như	c vị trí hàn tr nàn trên xuốn iáp mối phẳng ốc phẳng; mối iáp mối phẳng	g g: J. vi	0* 1 2 3 4 5 6 7 8	+ + hoặc - - + + hoặc - - + +	50 50 50 70 70 70 90 90	Số liệu không bắt

^{*} Ký hiệu cho các que hàn loại một chiều

b. Ký hiệu que hàn theo tiêu chuẩn Đức DIN 1913

			Phân	loại que hàn
Mã số	Loai vở bọc	Mã số	Chiều dày vỏ	Phạm vi sử dụng
Tt	Rutin		boc	
Es	Quặng ôxyt	1	d	Chỉ hàn thép kết cấu
0	Ôxyt	HI .	(mỏng)	
Kb	Cơ bản	V		
Zb	Xentulo	VII	m	Hàn các bình, các ống,
So	Đặc biệt	VIIIa VIIIb	(trung bình)	các kết cấu thép, cabi xe.
		X XI XII XIIV	S (dày)	Hàn thép có độ hạt nh cần có độ bền mối hàn tốt.
	E Kb IX S Dặc tính ký hiệu	4 4	5 Theo ISO	2 6 //DR - 178
mã	Lớp học	L		
d	Mong	Đặc	tinh que	hàn theo mã.
	d _n ≤ 1.2d _{ct}			ớp vỏ Kb để
m	Trung bình d _n =1,2 ÷ 1,55d _{ct}	ngh	ich hoặc d	một chiều nối lòng xoay
1	Dày	chiề mọi	ukhiU _o : vitrihan	≥ 70V(6) ở (2) với tính
S	d _n ≥ 1.55d _{ct}	chấ		của kim loại S)∨ớiσ _h ≥ 52

d_{ot} - đường kính lõi que hàn

c) Ký hiệu que hàn theo tiêu chuẩn Mỹ AWS/ASTM

d) Ký hiệu que hàn thép cacbon thấp theo tiêu chuẩn Nhật Bản (JIS.Z3211-86)

e) Ký hiệu tiêu chuẩn que hàn Việt Nam. TCVN 3734-89

Ký hiệu	Со	tính mối l	hàn					Nhóm	thuốc bọ
que hàn	σ _B (N/mm²)	a _k (MJ/m²)	<i>ბ</i> % L ₅ d(%)					A .	Axit
N42	410	8,0	18					В	Baso
N46	450	0.8	18				-	Т	Titan
N50	490	0,7	16						
N42-6B	410	1,5	22						
N46-6B	450	1,4	22						
	/í dụ: N T	4 6 -	- 6 В Т Т.						
ie hàn để	nối —			Các	h ofi	diân (6	- nối ng	ahich)	

3. Một số loại que hàn của các nước để hàn thép cacbon và thép hợp kim thấp

a) Que hàn của hãng Kobe Steel (Nhật Bản) giới thiệu trong bảng 15 Bảng 15.

Mác	Theo	Thàn	Thành phần hóa học của kim loại hàn [%] Tính ch						
que	JIS	С	Mn	Si	s	P		Kiiri loại na	
					Không	lớn hơn	kG/mm ² kG/mm ²		8%
B-17	D4301	0,08	0,47	0,08	0,012	0,018	43	47	28
B-14	D4301	0,07	0,40	0,12	0,015	0,019	40	46	30
B-10	D4301	0,09	0,40	0,10	0,014	0,021	42	47	28
TB-24	D4303	0,07	0,38	0,10	0,013	0,016	44	48	28
TB-32	D4303	0,07	0,37	0,13	0,013	0,016	45	49	27
TB-62	D4312	0,10	0,45	0,26	0,014	0,017	48	55	22
LB-26	D4316	0,06	0,88	0,43	0,011	0,015	47	55	33
B-25	D4320	0,06	0,29	0.10	0,017	0,019	41	47	29

b) Que hàn của hãng CEM-Pháp được giới thiệu trong bảng 16 Bảng 16.

	Tiêu ah ể	Tint	Tính chất cơ học của kim loại hàn							
Mác que hàn	Tiêu chuẩn AFNOR	σ _τ kG/mm²	σ _B kG/mm²	δ%	a _K kGm/cm²					
1020	E343-R12	40-46	48-52	27-32	9-10					
Perroquet	E343-R22	42-47	48-53	27-31	9-11					
Hirondelie-10	E343-R22	42-48	47-53	26-31	9-11					
Perroquet-BA	E343-R22	43-47	48-52	26-30	9-11					
Kangourou	E243-R25	36-42	44-48	29-33	9-12					
Perroquet-56	E432-R22	47-52	54-61	22-26	8-10					
Mouette	E345-B29	43-47	48-54	28-33	14-17					
Marsouin	E345-B26	42-48	48-55	28-34	15-18					
Espadon	E534 B29	50-55	57-63	23-28	12-15					
Espadon-46	E245 B26	36-44	45-53	28-32	15-19					

c) Que hàn để hàn thép cacbon thấp và thép hợp kim thấp hãng ESAB (Thụy Điển) được giới thiệu trong bảng 17 và 18

Bảng 17.

Loại que hàn (1)	Tiêu chuẩn AWS A5.1-78 (2)	Tiêu chuẩn DIN 1913-1976 (3)	
Que hàn thuốc bọc hệ xeniulô		·	
OK 22.45	E6010	E43 43C4	
OK 22.46	E7010-A1		
OK 22.47	E8010		
OK 22.65	E6011	E4343C4	
Que hàn hệ thuốc rutin			
OK 43.32	E6013	E5121RR6	
OK 46.00	E6013	E4332R (C)3	
OK 46.16	E7014	E4332RR (C)3	

1	2	3
Que hàn hệ thuốc bazo		
OK 48.00	E7018	E5153B10
OK 48.04	E7018	E5153B10
OK 48.15	E7018	E5143B10
OK 48.68	E7018-1	E5153B10
OK 53.05	E7016-1	E5155B10
OK 53.35	E7048	E5153B9
OK 53.68	E7016-1	E5155B10
OK 55	E7018-1	E5155B10
₹		
Que hàn hệ thuốc axit		
OK 50.10	E6013	E4342A5
OK 50.40	E6013	E4342AR1

Bảng 18.

V.: E:à	Th 412.		Thành phần hóa học %				Tính chất cơ học của kim loại hàn				
Ký hiệu que hàn	Theo tiêu chuẩn AFNOR	c	Mn	Si	S	Р	σ _T kG/mm²	υ _b kG/mm²	δ%	a _K kGm/cm ²	
					không	lớn hơn					
OK 43-32	E 433R 32	0.10	0.50	0,40	0.03	0,03	43-53	51-61	22-30	9-12	
OK 46-12	E 333R 22	0.10	0.60	0,30	0.03	0.03	39-49	47-57	22-34	9-12	
OK 46-32	E 432R 22	0.10	0.60	0,30	0.03	0,03	43-54	51-60	22-32	7-12	
OK 48-00	E 345B 20	0.10	0,60	0,50	0.03	0,03	38-46	47-57	26-34	14-20	
OK 48-10	E345 B20	0,10	0,60	0,50	0.03	0,03	38-46	47-57	26-34	15-21	
OK 48-12	E145 B20	0.10	0.20	0.50	0,03	0,03	30-38	41-51	26	13	
OK 48-36	E445 B26	0.10	0,65	0,70	0,03	0.03	43-53	51-61	28-34	14-20	
OK-50-30	E333 A25	0.10	0.60	0.40	0,03	0,03	42-50	47-57	22-29	9-12	

d) Que hàn hãng LINCOLN (Mỹ) được giới thiệu trong bằng 19. Bảng 19.

	Theo tiêu	Tính chất cơ học của kim loại hàn							
Mác que hàn	chuẩn AWS/ASTM	σ _T kG/mm ²	σ _b kG/mm²	δ,%	a _K kGm/cm²				
FW-57	E6013	40-48	48-52	22-28	9-12				
F-20	E6013	40-45	48-56	22-28	8-11				
F-25	E6013	40-44	48-54	26-30	10-13				
F-35	E6013	41-49	49-57	26-30	8-11				
Nuweld-1	E7016		50-55	31-36	-				
Sevenweld	E6012	-	47-52	22-27					
Multiweld	E6013	-	47-54	25-29	-				
Multiweld 0.V	E6013	- .	47-54	25-29	-				
Arcweld	E6013	•	49-55	25-29	-				
LH-481	E6015	40-48	48-56	26-32	15-19				

e) Que hàn thứp cuchon và thép hợp kim hãng ZAZ Tiệp Khắc được giới thiệu trong bảng 20.

Bảng 20.

Ký hi					Kim	loại hàr					
ti ê u c	nuan	Th	ành phần	hóa học	%		Tính chất cơ học				
	1	С	Mn	Si	s	Р					
CSN	TPC-ZAZ				Không	lớn hơn	σ _b kG/mm²	σ _t kG/mm²	ð,%.	a _k kGm/cn	
E42-11	E-113	0.08	0.45	0.25	0,04	0,05	42-52	30-40	18-23	6-13	
E42-16	E-117	0.08	0.55	0,25	0,04	0,05	42-50	30-42	22-28	6-13	
E44-28	E-K106	0.10	0,80	0,10	0,04	0,05	44-50	30-40	22-26	8-11	
E44-72	E-K103	0,10	0,60	0,15	0,04	0,05	44-51	30-42	22-28	8-13	
E44-83	E-B121	0.08	0,7-0,8	0,45	0,045	0,045	44-52	32-42	22-32	13-18	
E48-72	-	0.10	0.7	0,15	0,04	0.05	48-55	36-44	22-28	8-12	
E44-33	-	0.08	0.7	0,40	0,03	0.04	44-52	32-42 /	22-32	13-18	
E48-83		0.08	0.8-1.45	0,25-0,55	0.02	0,04	44-52	32-42	22-32	14-20	
E52-33	E-B125	0.09	1.4	0.6	0,02	0,03	52-60	38-48	22-30	13-18	
E62-33	-	0.10	18	0.6	0.03	0.03	62-72	45-55	18-24	13-18	

g) Que hàn theo tiêu chuẩn Úc AS 1553-1 để hàn thép cacbon thấp, AS 1586 hàn thếp hợp kim thấp, tiêu chuẩn Mỹ AWS: A5.1 hàn thép cacbon thấp; A5-hàn thép hợp kim thấp và tiêu chuẩn Anh BS 639-1976 giới thiệu trong bảng 21.

Bảng 21.

Vật liệu	Que hàn	Hệ thuốc	Ký hiệu	Nối điện	Đặc tính
Thép mềm	JETWELD-1	Bột sắt	E4824, E7024 E5111RR	AC; DC±	Thích hợp để sản xuất các mối hàn phẳng ngang.
illeiti	FLEETWELD 37	Rutil	E4112; E6012 E4333R	ACDC	Hàn mọi vị trí và thích hợp hàn mối hàn đúng đị xuống
	FLEETWELD 5p	Xeniulo •	E4110: E6010 E4343C	DC+	Hàn mọi vị trí
Thép hợp kim thấp	JETWELD LH-70	Hydrô thấp	E4818; E7018 E5154B	DC ⁺ , AC	Hàn mọi vị trí và cho độ bền cao
và thép độ bền cao	JETWELD LH-3800	Hydrô thấp	E4828; E7028 E5132B	AC; DC ⁺	Dễ sử dụng; cho tính chất cơ học cao, chỉ hàn đúng đi xuống
	SHIELD-Arc HYP	Xenlulo	E4810; E7010 E5122C	DC+	Để hàn đúng đi xuống của các ống chịu áp lực cao; sử dụng để
Thép không gi	Stainweld 308L-16		E308L-16	DC ⁺ : AC	Để hàn loại thép không gi 18.8 và 20.2.
9'	stainweld 310-16	•	E310-16	ĎC ⁺ ; AC	Để hàn thép không gi 24-1 và 25-20
Gang	sottweed		ENi	DC [±] ;AC	Để hàn gang que hàn phải có nồng độ niken cao.
Đấp bề mặt	Mangjet		1210A4	DC [±] ; AC	Hợp kim hóa từ 11÷14% Mr để tạo lớp làm việc có độ cúng cao.
oo maa	JETLH-BU90		1125A4	DC [±] ; AC	Que hàn với bột gang cao để tạo lớp làm việc có độ cúng cao.

h) Que hàn hồ quang tay của hãng SAF (Pháp)được giới thiệu trong bảng 22

Bảng 22.

Ký hiệu que hàn		Vật liệu cơ bản	Phạm vi ứng d ựn g
SAFER	G48N G47N GTI	Thép cacbon thấp	Hàn các kết cấu kim loại, tôn, đồ dùng gia đình, máy móc công nghiệp nồi hơi.
SAFER	NF510 NF510A NF58	Thép cacbon thấp Thép cacbon trung bình và thép cacbon cao	Nồi hơi áp lực cao, ống và thiết bị chiu lực, công nghiệp dầu khí, chi tiết chiu lực.
SAFER	ND65 ND70 ND80	Thép có giới hạn dàn hồi cao	Máy móc cho công nghiệp xây dựng
SAFINOX	RCN 308L RCND 316L	Thép không gi	Nồi hơi bằng thép không gi, đồ dùng gia đình bằng thép không gi, công nghiệp dầu khí hóa học, thực phẩm, giấy và trang trí
SAFONTE	DOUCE Ni	Gang	Trong sửa chữa, phục hồi máy nông nghiệp, vật đúc, trong xây dựng.
SAFBRONZ SAFINEL	ALU BNCu7	Hợp kim đồng	Lò sưới, hệ thống nước nóng, công nghiệp đường, xử lí nước, ống dẫn dưới biển, vòi nước.
SAFER	GF130S GF 160 NF 52 NF 52N	Thép cacbon thấp, trung bình và cao	Phục hồi các chỉ tiết trong ngành khai thác mỏ

i) Que hàn hệ rutil, axit, xenlulo và bazơ hãng SAF (Pháp) được giới thiệu ở bảng 23

Báng 2.3.

		Thành I	Thành phần hóa học %	học %	රි	Độ bên cơ học	8	Tiêu chuẩn	huẩn	
He due	Ký hiệu	၁	Mn	୍ଦ	o _T .N/mm²	or ob N/mm² N/mm²	هه 5ط	NF (A81:309)	ISO (2560)	AWS (A5-1)
Rutil, axit	SAFERG48N	0,07	90	0,45	440	520	83	E43 2/2R12	E43.2912	E6013
và xellulo	SAFER.G47N	80'0	90	0.5	480	540	88	E43 3/28R22	E43.3FR22	E6013
	SAFERHSO	80'0	90	0,5	480	250	22	E512/2 RR22	E512RR22	E6013
	SAFERL51	20'0	2'0	0,5	480	98	27	E512/2 R12	E512R52	E6013
	SAFERICLEO	0,12	90	0,2	0.4	480	8	E43 4/3 C50	E4333C4	E6010
Bazd	SAFER.N48	20'0	9.0	90	460	550	88	E51 4/3B24H	E514B24	E7016
	SAFERN49	90'0	5	90	410	210	82	E514/3B26H	E514826H	E7016
	SAFERNF51	20'0	5	0.7	470	550	88	E515/4B120	E515B12026H	E7018
	SAFERMDS6	0,05	60	4,0	260	640	ĸ			E8018G

j) Que hàn thép không gi hãng SAF (Pháp) giới thiệu trong bảng 24. Bảng 24.

Tên	Ký hiệu	Tiêu chuẩn AWS	Đặc diễm
SAFINOX	BCN 308(α~7)	E308-15	Hệ bazơ, hàn các vị trí
SAFINOX	RCN 308L(a-8)	E308L16	Chẩy lỏng tốt trên các vị trí hàn
SUPERSAFINOX	20.10.3(~~16)	E308-Mo16	Mối hàn rất tốt, đẹp, hàn với dòng DC và AC
SAFINOX	RCN25.20(;·)	E310-16	Que hàn hệ rutil, bazơ và hàn ở mọi vị trí

k) Que hàn thép cacbon và thép hợp kim thấp TCVN 3223-89 được giới thiệu trong bằng 25.

Bảng 25.

V. Lie.	Cơ tín	h mối hà	n		Th	ành ph	ần hóa	học m	ối hàn	[%]		
Ký hiệu que hàn		a _K (MJ/m²)	δ 1.5α(%)	С	Si	Mn		Ρ ≤			S≤	
	(14)11311	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L 304 '01				Ą	В	T	Α	В	Т
N42	410	8,0	18	0.12	0.25	0,38	0.05	0.045	0.04	0.045	0.04	0.03
N46	450	0.8	18	0.12	0,25	0.40	0.045	0.04	0.035	0.045	0.04	0.035
N50	490	0,7	16	0.12	0.25	0.40	0.045	0.04	0.035	0.045	0.04	0,03
N42-6B	410	1.5	22	0.12	0.30	0.50	0.03	0.03	0.03	0.03	0.03	0.03
N46-6B	450	14	22	0.12	0.30	0.60	0.03	0.03	0.03	0.03	0.03	0,03
N50-6B	490	1.3	20	0,12	0.35	0.70	0.03	0,03	0.03	0.03	0.03	0.03
N55-6B	540	1,2	20	0.15	0.50	1,00	0.03	0.03	0.03	0.03	0.03	0.03
N60-6B	590	10	18	0,15	0.60	1.00	0.03	0.03	.0.03	0.03	0.03	0,03

Ghi chú: A: axit; B: bazo; T: titan.

4. Các loại que hàn đặc biệt của các nước

a) Que hàn OK (Thụy Điển)

Que hàn OK (Thụy Điển) tương ứng với các tiêu chuẩn AWS; DIN; ISO giới thiệu trong bảng 26.

Bảng 26. Que hàn thép cacbon (háng ESAB)

Loại que hàn OK	AWS	DIN	ISO
(1)	(2)	(3)	(4)
OK 43.32	E6013	E5121RR6	E512RR32
46.00	E6013	E4332R(C)3	E433R12
46.16	E7014	E4332RR(C)3	E433RR12
48.00	E7018	E5153B10	* E515B120 20H
48.04	E7018	E5153B10	E515B120 26H
48.15	E7018	E5143B10	E514B120 26H
48.68	E7018-1	E5153B10	E516B120 26H
50.10	E6013	E4342A5	E434AR 24
50.40	E6013	E4342AR1	E434AR25
53.05	E7016-1	E5155B10	E515B10
53.35	(E7048)	E5153B9	E514B56H
53.68	E70 16 -1	E5155B10	E515810
55.00	E7018-1	E5155B10	E515B10
Que cho thép			
không gi		· '	
OK 6130	E308L-16	E199nCR23	19-9NbR
6133	E308L-16	E199nCR 26	
61.41	E308L-15	E199nCR 30+150	
6181	E347-16	E199Nb26	
62.33	E316L-16		
63.30	E316L-16	E19123nCR23 110	19.12.3L.R
63.32		E19123MPR 26 170	19.12.3R.MP
63.35	E316-15	E19123B20+120	19.12.3B
63.41	E316L-16	E19123nCR 30+150	19.12.3L.R
64.30	E317L-16	(E19134NCR 23110)	19.13.4L.R
67.15	E310-15	E2520B20+110	25.208
67.15		E188Mn6B20+110	
67.52		E188Mn6MPB36160	4

Bảng 26 (tiếp)

1	2	3	4	
67.62	(E309-16)	E2212MPR36160	23.12RMP	
67.70	E309Mo-16	E22122nCR23 120	23.12R	
67:75	E309-15 -	E2212B20+120	(23.12B)	
68.81	E312-16			
68.82	E312-16			
Que hàn cho			-	
thép hợp kim thấp	,			
OK 73.08	E8018-G			
73.68	E8018-C1			
74.78	E9018-D1			
75.65	E10018-G	*		
75.75	E11018-M			
76.18	E8018-B2			
76.28	E9018-B3		1	
78.16	E9018-G			

Các loại que hàn của hãng ESAB (Thụy Điển) dùng cho:

- 1) Những mối hàn bền, trên những loại thép khó hàn.
- 2) Các liên kết kim loại từ những loại thép có thành phần hóa học khác nhau; các loại thép hợp kim thấp và thép hợp kim cao.
 - 3) Các mối hàn vết nứt trong khuôn kim loại.
 - 4) Các lớp phủ có độ cứng cao, có tính chống gi.
 - 5) Những thép làm việc ở nhiệt độ thấp.
 - 6) Các họp kim niken; niken-đồng.
 - 7) Đồng và hợp kim của đồng.
 - 8) Hợp kim nhôm.
 - Cắt và vát mép các thép, các loại hợp kim không chứa sắt, vật đúc.
 Các loại que hàn này xem trong bảng 27.

Bảng 27a. Các loại que hàn hãng ESAB (Thuy Điển)

Linh vực sử dụng	Loại hợp kim que hàn	Độ cứng	Loại que hàn OK
Que hàn cho mối hàn bền trên các	19Cr9Ni 6Mn	190HV	67.45
loại thép khó hàn và các loại kết	19Cr 9Ni 6Mn	190HV	67.52
cấu kìm loại có thành phần khác	29Cr 9Ni	240HV	68.81
nhau	29Cr 9Ni	240HV	68.82
Que hàn để đấp và phủ trên thép:			
+ Không bị tối	3.5Cr ₉ 0.1C	33HRC	83.28
	3.5Ct ₂ 0.01C	33HRC	83.29
+ Tự tôi trong không khí	6Cr. 0.6Mo: 0.4C	55HRC	83.50
	4Si.2Cr.0.7C	60HRC	83.65
	13Cr.0.1C	45HRC	84.42
	13Cr.0.25C	55HRC	84.52
	10.5Cr.0.7C	57HRC	84.58
	33Cr.4.5C	60HRC	84.78
	22Cr.3.5C.10Nb	60HRC	84.79
	1Cr.2.5W.0.6C	62HRC	85.38
+ Tự tôi (kháng ram)	33Cr.4.5C	60HRC	84.78
	22Cr 3.5C 10Nb	60HRC	84.79
Que hàn để hàn	Niken	170HV	92.18
Khuôn đúc kim loại	Niken-sắt	170HV	92.58
	Monel	150HV	92.78
Que hàn để hàn các kim loại không	Monel-metal	150HV	92.35
có sắt và để phủ các kim loại	bronze. Zn	100HV	92.86
không có sắt bên thép	Silicon bronze	150HV	94.25
	Al-Mn	Ì	96.10
*	Silumin		96.20
Que hàn cắt và vát mép hàn	Cho chuẩn bị liên kết		2103
•	Cho việc cắt		23.50

Que hàn đặc biệt của hãng ESAB (Thuy Diễn) để hàn thép cacbon và thép hợp kim thấp giới thiệu trong bảng 27b.

Bảng 27b. Que hàn đặc biệt hàn thép cacbon (hẳng ESAB)

		F	Thành phần hóa học [%]	àn hóa	hoc [%	-	8	Co tính của kim loại này	n loạii nà		
Mác	tiêu chuẩn	O	돌	ίδ	တ	Q.	0	σ _b	% 0	a _K	Phạm vi sử dụng
que nan	A S	٠.			Không lớn hơn	5. 8	E (5)			5	
OK 22-40	E233 C16	000	0,09 0,35	-	•		35-44	45-54	24-28		Hàn các đường ống dẫn
OK 43-32	E433R32	× 0,1	0,5	0,4	0,03	0,03	43-53	51-61	22-30	ß	Hàn thép tấm mỏng
OK 46-00	E332R12	≥0,1	9'0	0,3	0,03	0,03	39-49	47-57	22-28	8	Hàn các đường ống dẫn
OK 46-06	E445B15	≥0,1	9'0	0,3	0,03	0,03	38-47	47-57	22-26	64	Hàn với chiều sâu ngấu lớn
OK 53-35	E333R12	90'0	10	9,0	003	0,03	41-49	51-61	8	2	Hàn đường ống dẫn ở vị
											trí dúng, sáp
OK 46-44	E332R22	≥0,1	0,5	6,0	0,03	0,03	35-43	47.57	22-26	9	Hàn các đường ống dẫn
		_		_							

Que hàn để hàn thép độ bèn cao của hãng ESAB (Thuy Diễn) cho trong bảng 28. Bảng 28.

				Thành	Pare C	hóa học	Thành phần hóa học kim loại hàn [%]	han [<u>%</u>			Cd time	Cd tính kim loại hàn	ığıı
Mác	ineo tiêu chuẩn	ပ	¥	க்	نن	ž	옻	> .	v	۵	Ot Chan 2	90 10/01/2	8,6	ak Kem/cm²
due han	AWS/ASIM			- 1					Không	Không lớn hơn			,	
OK 48-30	E-7018	90'0	9	0,5	•				60,0	50,03	47-56	55-65	32	55 85
OK 73-35	E-8018-C3 0,05	0,05	2	0,3	•	0.75-10		•	0,03	800	46-55	55-65	26-32	2 4-57
OKSP-252	E-8015	90'0	2	6,0	'	13-16	0,3+0,4	•	_	,	25	88	24-30	ħ
OKSP-109	E-10018-C2 0,10	0,10	5	0,3	•	3,5		•	•	•	56-79	78-87	₹ 85	10-14
OK 74-45	E-8018-D1	0,04	2	6,0	•	•	4,0	•	0,03	0,03	46-55	35.65	26-32	13-19 0
OK 74-75	E-9018-D1	2,	र	0.5	,	•	0,5	•	•		ارا الا	8	8	F
OK 75-65	E-10018-G	60'0	0,85	40	•	46	0,7	0,25			67-73	74-82	15-20	œ
OK 75-75	E-11018-G	90'0	ਹੈ,	0,35	දි	85	0,45	•	,	•	73-77	78-82	₽.	≠
		_	- _	-	-	-	- .	~	-	_	-	•		

Que hàn của hãng Hobart (Mỹ) cho trong bảng 29.

Bang 29.

Mác	Tiểu chuẩn	L	Thành	Phi h	5a học r	Thành phần hóa học mới hàn %	8		Cd tính c	Cơ tính của kim loại hàn	hần
dne nan	AWS/ASIM		M.	T	Ö	Ž	Wo	σ _T kG/mm²	o _b kG/mm²	%'\$	Thép hàn (theo ASTM)
LH-718-Mo	E-7018-AI	90'0	0,75	0,56		·	0,53	48	83	31	A155-63T. Gr 1Cr
LH-818-CM	E-8018-B2	0,05	99'0	90	124		0,49	99	29	24	A155-63T, Gr 1Cr
LH-818-N2	E-8018-C2	90'0	0,84	0,37	•	3,3	•	88	8	25	A203-61
LH-818-N3	E-8018-C3	0,05	90,	0,35		40	•	52	8	8	A94-62T
LH-918-M	E-9018-B3	900	ŧ	0,32		172	0,28	99	99	27	A148-60. Gr90-60
, LH-1018	E.10018-D2	90'0	177	0,68	,		0,44	۲	74	~23	A148-60Gr. 105-85
LH-#18	E.tOO18-M	90'0	147	0,32	•	<u>\$</u>	0,39	72	8	N	A148-60, Gr 120-95
LH-1218	EHO18-M	90'0	63	0,25	6,85	8	5,0	84	85	8	A237-63T.GrF
LH-918-CM	E-12018-M	90,0	0,75	0,65	2,5		105	89.	8	22	A237-63T- Gr.C.D
LH-4130	•	9	₹.	5	5,0	钇	40	100	60	검	A148-60.Gr.150-126

Que hàn để hàn thếp độ bèn cao của hãng Kobe-steel (Nhật Bản) cho trong báng 30

	Tiêu		Thành	ohần hóa	học kin	Thành phần hóa học kim loại hàn %	86		0	Cơ tính mối hàn	ân
Mác que hàn	chuân	ρ	Ā	க	Ž	W _O	ω.	a	ο _Τ	0B 10,071	40° 84
							Không lớn hơn	hơn	, , , , , , , , , , , , , , , , , , ,		`
LB-34	D5016	200	96'0	29'0		,	600'0	0,013	49	25	32
LB-52	D2016	20'0	, 6	0,5	. ,	•	6000	9,0,0	.84	8	8
LB-52-18	D5016	90'0	ē	0,65	,:		0,012	0,013	92	28	35
LB-52-28	D5026	90'0	96'0	0,75		•	0,012	0,017	8	8	ж
LB-52R	DSO16	200	1,02	9,76			0,012	0,014	47	8	35
LB-52U	D5016	90'0	0,87	0,75	4.	,	0,013	9,00	64	29	8
LB-57	D5516	20'0	60	0,75	4. j	61,0	800'0	0,015	83	62	83
LB-76	D5516	90'0	128	0,63	1.7		600'0	9,0,0	83	9	35
LB-62	Deoile	90'0	96'0	0,75	0,54	0,23	00	0,013	22	8	8

Bảng 30.

Que hàn đặc biệt của hãng Kobe-Steel (Nhật Bản) cho trong bảng 31.

Que han dác biệt của hang Kobe-S Bảng 31.

Tính chất cơ học kim loại hàn	5, % Phạm vi sử dụng		- 22	26 Hàn đường ống dẫn	20 Hàn đúng, sấp	- 78	8	27 Hàn chiều sâu ngấu lớn	· · · · · · · · · · · · · · · · · · ·
Tinh o	d _D 2	EE/53	48	47	2 2	46	49	84	
	ο _T	EE/5x	£3	42	84	6	. 4	42	
	a .	Không lớn hơn	9,04	3,0,0	9100	0,020	0,024	0,017	
% oou	တ	Không	0,012	0,017	810,0	0,015	0,017	0,015	
lần hóa	ಶ		0,12	4,0	0,38	0,17	0,15	0,17	
Thành phần hóa học %	Ę		0,35	0,35	0,56	0,40	0,49	0,64	
	O		90'0	, 0,07	80'0	90'0	80'0	20'0	
Tiêu chuẩn	SIS		. 4303	4311	4313	4327	4327	4302P	
Mác	que hàn		TB1-24	HC-24	RB-26	TB-25	<u>7</u>	P8-5	

5. Bảo quản que hàn

Do que hàn có xu hướng hấp thụ hơi ẩm, nên để đảm bảo chất lượng mối hàn que hàn cần được bảo quản thích hợp và có thể phải sáy lại trước khi sử dụng.

a) Sự hấp thụ ẩm của que hàn

Các kiểu que hàn có thành phần thuốc bọc bên ngoài khác nhau và cũng có các nhiệt độ sấy khác nhau trong quá trình sản xuất. Điện cực kiểu hyđro thấp được sấy ở 400-450°C và các kiểu không phải hyđro (kiểu ilmenite, kiểu vôi - titan...) được sấy ở nhiệt độ thấp hơn khoảng 150°C. Khi các que hàn này được bảo quản trong cùng môi trường, chúng có các đặc tính hấp thụ độ ẩm khác nhau, xem trên hình 7. Khi que hàn được lưu trữ ở nhiệt độ và độ ẩm cao, sự hấp thụ họi ẩm tăng nhanh (hình 8).

nình 7. Sự hấp thụ ẩm của que hàn ở môi trường 30°C, độ ẩm 80%

Nếu dùng que hàn bị ẩm, các khuyết tật hàn sẽ nhiều hơn, làm giảm mạnh chất lượng mối hàn. Do đó, giới hạn hấp thụ ẩm phải được thiết lập để đạt hiệu suất hàn cao. Giới hạn này được xác định theo các yếu tố sau:

- 0,5% khi tính đến lượng hydro trong mối hàn dùng que hàn kiểu hydro thấp để giới hạn lượng hydro trong mối hàn (dưới 5ml/100g - có tính đến tính hàn).

- 2 ÷ 3% khi tính đến tính công nghệ, chống nút, chống tạo bọt khí, cho các kiểu điện cực không phải loại hydrô thấp.

b) Sấy que hàn

Que hàn dược lưu trữ trong thời gian dài sau khi sản xuất, khi que hàn được đưa ra dùng ở ngoài trời, đã hấp thụ lượng ẩm nào đó. Mức hấp thụ ẩm này tùy thuộc vào kiểu que hàn. Ngay cả nếu một lượng nhỏ độ ẩm được hấp thụ vào que hàn loại hydrô thấp, loại thường dùng để hàn thép dày hoặc thép hợp kim thấp, cũng có xu hướng gây nút mối hàn. Do đó phải sấy trước khi sử dụng. Trong trường hợp các que hàn không phải hydrô thấp (loại trừ que hàn kiểu xenlulo), cũng phải sấy trước khi hàn.

Để sáy càn phải xác định cần thận nhiệt độ, thời gian và số chu kỳ sấy. Nhiệt độ sáy quá cao hoặc quá thấp có thể gây ra các vấn đề. Nhiệt độ sấy quá cao có thể làm giảm tác nhân tạo khí và chất khủ ôxy hóa trong hỗn hợp thuốc bọc, đưa đến tạo ra các bọt khí trong mối hàn, làm giảm độ bền và độ dai va đập. Nếu nhiệt độ sấy quá thấp, sẽ không loại hết lượng ẩm đã bị hấp thụ.

Hình s. Sự hấp thụ trong những điều kiện môi trường khác nhau.

Bàng 32 nêu ra các điều kiện sấy tối ưu tùy thuộc vào nhãn hiệu que hàn. Nói chung, sấy có thể được lặp lại ba lần theo công việc hàn.

Bảng 32. Điều kiện sấy tối ưu cho que hàn

Kiểu que hàn	Kiểu lớp bọc	Lượng ẩm hấp thụ (%)	Nhiệt độ (°C)	Thời gian (phứt)
Thép trung bình	ilemenite	> 3	70-100	30-60
	xenlulo (1)	· · > 6,	70-100	30-60
•	vôi-titan	> 2	70-100	30-60
	oxyt titan cao	> 3	70-100	30-60
	hydro thấp	> 0.5	300-350	30-60
		> 0.5	350-400	60
	bột sắt	> 2	70-100	30-60
	đặc biệt	> 15	200-250	30-60
		> 3	70-100	30-60
		> 5	70-100	30-60
Thép độ bền cao	ilemenite	> 3	70-100	30-60
	vôi-titan	> 15	200-250	30-60
•		> 2	70-100	30-60
	hydro thấp	> 0.5	300-350	30-60
] - ⁻	•	350-400	60
Thép hợp kim thấp	ilemenite	> 2	70-100	30-60
	oxyt titan cao	> 3	70-100	30-60
	hydro thấp	> 0.5	300-350	30-60
		> 0.5	325-375	60
(2)	vôi-titan	>1	300-350	30-60
Thép không gi (3)	vôi	>1	300-350	30-60
	vôi-titan	> 1	150-200	30-60

Bảng 32. (tiếp)

Kiểu que hàn	Kiểu lớp bọc	Lượng ẩm hấp thụ (%)	Nhiệt độ (°C)	Thời gian (phút)
Hàn đấp bề mặt	oxyt titan cao	> 3	70-100	30-60
	vôi-titan	> 1	150-200	30-60
	vôi	> 0.5	300-350	30-60
	graphit	> 1	150-200	30-60
		> 1	150-200	30-60
Hàn gang đức	vôi	> 2	70-100	30-60
		> 0.5	300-350	30-60
٠.	graphit	> 15	70-100	30-60
	vôi-titan	> 3	150-200	30-60
Hàn hợp kim Cu và hợp kim Ni	vôi và vôi đặc biệt	1	200-250	30-60

Ghi chứ

- (I)- ngoại trừ một số loại xenlulo cao.
- (2)- thép không gi Cr
- (3)- thép không gi Cr-Ni.

Que hàn sẽ không thay đổi đặc tính nếu sấy đến 5 lần liên tiếp, nhưng nếu sấy quá nhiều lần, sự liên kết của lớp bọc có thể bị hư hại và bị rã trong khi hàn. Do dó cần phải xác định được trước số lượng que hàn được sử dụng trong ngày và chỉ sấy lượng que hàn cần dùng. Số que hàn bị dư ra có thể dùng cho ngày hôm sau nhưng sấy lại.

Hơn nữa, lượng ẩm được hấp thụ còn phụ thuộc vào cách cất giữ que hàn trong kho (hình 9). Trong trường hợp hàn ở ngoài trời que hàn sẽ không hấp thụ độ ẩm quá nhiều, nếu được đặt trong hộp kín khi chuyển đến hiện trường.

Khi que hàn hấp thụ ẩm, các vấn đề sau đây có thể xảy ra ảnh hưởng tối tính công nghệ và tính hàn:

- Hò quang trở nên mạnh hơn và không ổn định.
- Sự bấn tóc nhiều hơn và hạt kim loại văng ra lớn hơn.

- Độ ngấu mối hàu trở nên sâu hơn, có thể gây nút ở đáy.
- Lốp xi phủ mặt không đều trong khi hàn, do đó mặt bị thô hơn.
- Khử lớp xi khó khăn hơn.
- Có thể xảy ra nút.
- Có thể tạo nhiều bọi khí.
- Gây ra sự dòn hydrô do tăng lượng hydrô trong mối hàn.

Tốc độ hấp thụ ẩm của que hàn ở môi trường ổn định 25°C, độ ẩm 90%

k giữ que hàn

pe hàn hấp thụ ẩm, chất lượng ban đầu sẽ được phục hỏi bằng cách y nhiên, điều quan trọng là lưu giữ que hàn trong khu vực thích dụng các que hàn cũ trước.

i ý cần được thực hiện khi lưu giữ que hàn.

ữ que hàn trong khu vực thông gió tốt, để que hàn cách xa nền à.

ngày tiếp nhận và sắp xếp trật tự sao cho que hàn cũ được dùng

- Ghi rõ kiểu loại, đường kính que hàn.
- Không xếp các que hàn chồng đồng lên nhau.

II. HÀN HÒ QUANG TỰ ĐỘNG DƯỚI LỚP THUỐC HÀN

Phương pháp hàn này sử dung hồ quang cháy giữa điện cực (dây hàn) và vật liệu cơ bản, được tạo nên dưới một lớp thuốc hàn chảy lỏng. O đây, bể hàn và toàn bộ cột hò quang được bảo vệ khỏi sự tác động của môi trường không khí. Sơ đờ nguyên lí của phương pháp này được biểu thị trên hình 10.

Các đặc trưng của hàn hồ quang tự động dưới lớp thuốc:

Hình 10. Hàn tự động dưới lớp thuốc hàn.

1- hồ quang hàn; 2- bể hàn; 3- kim loại hàn; 4- vật liệu cơ sở; 5- xí; 6- thuốc hàn; 7- phẫu thuốc; 8- phẫu hút thuốc thừa; 9- nguồn hàn; 10- dầu mô hàn dân diện vào dây; 11- con lặn truyền dây; 12- động cơ kéo dây; 13- tạng dây hàn.

- Vị trí hàn: hàn bằng (hàn sấp)
- Chiều dài đường hàn: 1000mm
- Vật liệu chi tiết hàn: tất cả các loại thép kết cấu, thép hợp kim cao; hợp kim của niken; đồng; nhôm...
 - Chiều dày tấm hàn: (3 + 100)mm và lớn hơn.
 - Dòng hàn: $(200 \div 2000)(A)$
 - Diện thế hờ quang: (20 ÷ 50)(V)
 - Tốc độ hàn: $(15 \div 200)$ $(m.h^{-1})$

- Loại dòng hàn: một chiều và xoay chiều
- Đường kính dây hàn: (2 ÷ 8) mm

Hàn hờ quang tự động dưới lớp thuốc cho năng suất cao gấp $(2 \div 5)$ lần so với hàn hờ quang tay; điều kiện lao động tốt; chất lượng hàn cao. Tuy nhiên chất lượng đó phụ thuộc vào sự lựa chọn chế độ hàn; độ chính xác của chi tiết chuẩn bị trước khi hàn và các yếu tố khác.

Hướng phát triển để nâng cao năng suất hàn và chất lượng hàn của hàn hò quang tự động dưới lớp thuốc được biểu thị trên hình 11.

Hình 11. a) hàn nhiều đầu hàn;

- b) hàn với dây phụ
- c) hàn với mép hàn hẹp, hồ quang ở giữa mép hàn.
- d) hàn với mép hàn hẹp hồ quang dao động.

III. HÀN HÒ QUANG TRONG MÔI TRƯỜNG KHÍ BẢO VỆ

Hàn hỏ quang trong môi trường khí bảo vệ là phương pháp thích ứng với mọi kết cấu hàn và cho năng suất và chất lượng hàn cao. Phương pháp công nghệ này có thể phân loại thành các phương pháp sau (hình 12):

Ở các phương pháp hàn này, bể hàn được bảo vệ khỏi sự tác dụng của môi trường bên ngoài (chủ yếu là ôxy và nito). Môi trường bảo vệ có thể là khí hoạt tính hoặc khí tro. Môi trường khí tro không có phản ứng hóa học với bể hàn. Môi trường khí hoạt tính có phản ứng hóa học với bể hàn; những

tác động xấu đó lại được khắc phục bằng thành phần hóa học thích hợp của vật liệu hàn (dây hàn).

Hình 12. Phân loại hàn trong môi trường bảo vệ.

Các khí bảo vệ thường dùng cho trong bảng 33.

Bảng 33. Khí bảo vệ dùng cho hàn TIG, MIG, MAG

Loại khí và hỗn hợp khí 🦠	Phạm vi sử dụng
Ar	Hàm TiG; MiG, hàn kim loại màu, thép hợp
co,	kim cao MAG, hàn thép cacbon thấp.
Ar + 0,5%O ₂	Hàn nhôm và hợp kim của nhôm.
Ar + 1,0%O,	Hàn thép không gí; thép chịu nhiệt, đồng và
Ar + 3,0%O ₂	thép hợp kim thấp, thép cachon cao
Ar + 5,0%O ₂	A Maria Salar Sala
Ar + (15 ÷ 20)%CO ₂	The second secon
Ar + (5 ÷ 10)%H,	Hàn thép hợp kim cao; cho hàn tụ động.
Ar + 0,2N ₂	Hàn hợp kim nhôm không chứa mangan.
Ar + (5 ÷ 7)%H ₂	Hàn plazma, Cu, Ni thép hợp kim cao.

1. Hàn trong môi trường khí trư với điện cực volfram (TIG)

Phương pháp hàn này ký hiệu là TIG (Tungsten Inert Gas). Phương pháp hàn TIG là phương pháp hàn van năng: có thể hàn bằng tay hoặc hàn tự động cũng như hàn đấp. Công nghệ này phù hợp cho hàn nhôm và hợp kim nhôm, thép không gi, thép hợp kim cao, gang, đồng.

Hình 14 là sơ đò hàn tự động TIG. Ở đây bế hàn được bảo vệ bởi môi trường argon, khí này được bao quanh điện cực volfram. HÒ quang được chảy giữa điện cực volfram và vật liệu cơ sở; chiều đài hò quang được điều chỉnh qua điện thế hờ quang. Vật liệu bố sung được cơ cấu cơ khí dịch chuyển vào vùng hò quang.

Hình 18. Số đồ hàn tự động TiG. ầu mỏ hàn TiG; 2- có cấu điều chính chiều đài hồ quang (chuyển động bằng ịhí); 3- mộtơ; 4- bàn dịch chuyển đọc; 5- vật liệu bổ sung; 6- mộtơ đưa đây 7- đầu đấn đây hàn; 8- tạng cuốn dây; 9- vật liệu cơ số; 10- bộ phận điều i điện thế hồ quang; 11- bộ phận điều chính dòng hàn; 12- bộ phận điều chính tốc độ dây; 13- chương trình hàn.

1 TIG được dùng nhiều để hàn các kết cấu nhà máy điện nguyên tử; y bay; thiết bị vũ trụ... Trong dạng sản xuất loạt nhỏ, trong lấp ráp dùng hàn TIG bằng tay; khi đó vật liệu bổ sung (que hàn hoặc các im loại) được đưa vào hồ quang bằng tay.

trung của hàn TIG:

rí hàn: mọi vị trí hàn.

- Chiều dày tấm hàn: (0,5 ÷ 10) mm
- Loại vật liệu chi tiết hàn: tất cả các loại thép; thép hợp kim; gang; Ni; Cu; Al, Ti, Ag, Zr
 - Dòng hàn: (10 ÷ 400) A
- Loại nguồn hàn: dòng xoay chiều dùng hàn nhôm và hợp kim nhôm. Dòng một chiều dùng hàn các vật liệu còn lại (điện cực nối âm cực)
 - Đường kính dây: (1 ÷ 8) mm.
- Làm nguội mô hàn: dòng 150 A làm nguội bằng khí. Trên 150 A làm nguội bằng nước.
 - Đặc tính của ngườn hàn: đốc giảm dần.
 - Khí bảo vệ: khí Ar; He và hỗn họp của chúng.

2. Hàn trong môi trường khí bảo vệ với điện cực nóng chảy (MIG; MAG)

Phương pháp công nghệ hàn này được gọi là MAG (Motal Activ Gas), khi sử dụng khí hoạt tính CO2 hoặc hốn hợp khí; gọi là MIG (Metal Inert Gas) khi sử dụng khí tro (Ar; He). Các phương pháp này đều có hồ quang cháy giữa đầy hàn và vật liệu chi tiết hàn (hình 14).

Hình 14. Hàn MiG. 1- chai khí bảo vệ; 2- tang cuốn dây; 3- hệ dẫn dây hàn; 4- dầu hàn (súng hàn); 5- nguồn hàn một chiều; 6- bộ phận điều chính điện thế hồ quang; 7- bộ điều chính dòng, khí bảo vệ, bộ điều chính tốc độ dây.

Đặc tính của hàn MIG, MAG:

- Vị trí hàn: hàn mọi vị trí

- Chiều dày hàn: (0,8 ÷ 40) mm
- Loại vật liệu chi tiết: cho hàn MAG là thép cacbon, thép hợp kim thấp. Cho hàn MIG là thép hợp kim cao, Al, Ni, Cu.
 - Dòng hàn: $(100 \div 400) \text{ A/mm}^2$
 - Loại dòng hàn: dòng một chiều (điện cực nối vào dương cực)
 - Đường kính dây hàn: (0,8 ÷ 2,6) mm.

IV. HÀN HÒ QUANG PLAZMA

1. Nguồn nhiệt Plazma

Plazma là một khái niệm vật lí về một trạng thái đặc biệt của khí được đưa ra vào năm 1923. Trọng trạng thái này, các khí sẽ trở nên dẫn điện do kết quả sự ion hóa của các nguyên tử khí. Do đó nó được biểu thị tương ủng với trạng thái thứ 4 của vật chất.

Để đưa đến trạng thái ion hóa của các khí, cần phải có một nguồn năng lượng thích hợp nhất đó là nhiệt của hồ quang điện.

Bởi vậy có thể coi plasma là một dạng hò quang đặc biệt mà nhiệt độ của nó được nâng cao rất nhiều. Trong kỹ thuật người ta còn gọi nó là hò quang khuếch đại (tăng cường). Với hò quang plasma sẽ đáp ứng được các mục đích kỹ thuật, đặc biệt trong hàn, cắt kim loại.

Nhiệt độ của plasma phụ thuộc vào khí đưa vào vùng trạng thái plasma. Các khí này có các tính chất vật lý khác nhau, điện thế ion hóa khác nhau. Hiện nay người ta dùng các loại khí sau:

- Khí hydrô → plasma hydro → đạt được nhiệt độ 8000°K
- Khi nito → plasma nito → đạt được nhiệt độ 7500°K
- Khí argon → plasma argon → dat được nhiệt độ 15.000°K
- Khí heli → plasma heli → đạt được nhiệt độ 20.000°K

Điện thế ion hóa của nguyên tử và phân tử các khí được cho trong bảng 34.

Bảng 34. Điện thế ion hóa của các khí

Khí	Diện thế ion hóa (eV)		
He	24,6	54,4	
Ne	21,6	410	
Ar	15,7	27,6	
Χe	12,1	212	
′ н]	13,6	The state of the s	
N	14,5	29,6	
0	13,6	35,1	

Mặt khác để phân ly một phân tử khí cũng cần phải có điện thế đủ lớn. Điện thế để phân ly phân tử H_2 , O_2 , N_2 , C_0 , H_2O cho trong bảng 35.

Bảng 35. Điện thế phân li các phân tử khí

Phân tử khí	H ₂	02	N ₂	СО	H ₂ O
Điện thế phân li (ev)	4,46	5,11	9,76	9,60	5,00

Khi sử lớn hóa thực hiện hoàn toàn sẽ đạt được nhiệt độ cao đến $100000^{\rm o}$ K, mặt khác khi xẩy ra sự va chạm mạnh của các phân tử khí thì nhiệt độ có thể đạt đến $10.000.000^{\rm o}$ K lúc đó người ta gọi là phản ứng hạt nhân.

Hò quang plasma có thể tạo nên bằng phương pháp trực tiếp hoặc gián tiếp (hình 15). Tạo hò quang plasma gián tiếp thường dùng cho trường họp

Hình 18. Nguyên lý tạo plasma a) Plasma trực tiếp, b) Plasma gián tiếp 1- nguồn hàn; 2- nguồn tần số cao; 3- biến trở hồ quang; 4- chi tiết hàn; 5- diện cực volfram; 6- khí plasma; 7- plasma. vật liệu chi tiết hàn không dẫn điện hoặc cho các kết cấu hàn có chiều dày mỏng.

Khi hàn hỏ quang plasma càn phải bảo đảm sự cháy ổn định của plasma, do vậy cần bảo đảm tốc độ, lưu lượng dòng khí plasma cũng phải ổn định, để bể hàn không xẩy ra bắn tóe.

Sự khác nhau của hàn plasma với hàn TIG là: trong hàn plasma người ta sử dụng mỏ hàn với điện cực (catôt) có đường kính lỗ rất nhỏ, vì vậy hồ quang plasma sẽ rất hẹp và tạo sự tập trung năng lượng nhiệt trên một diện tích bề mặt hàn tương đối nhỏ. Với sự tập trung cao nhiệt lượng và nhiệt độ của plasma cao bảo đảm cho sự chảy ngấu của vật liệu có bản và tạo hình dáng tiết diện hàn hẹp, vùng ảnh hưởng nhiệt nhỏ (hình 16a, b).

Nhinh 16. Quan hệ giữa điện thế và dòng điện.

a) Quan hệ phụ thuộc U và I của hồ quang TiG và plasma.

b) Vùng ảnh hưởng nhiệt và vũng hàn của các phương pháp hàn

1 hàn chùm tia điện tử; 2- hồ quang plasma, 3- TiG.

Bộ phận quan trọng của trang thiết bị hàn plasma là mỏ hàn (hình 17). Mỏ hàn này phải bảo đảm các nhiệm vụ sau:

- Dẫn điện cho điện cực (điện cực W, W-Th).
- Dẫn khí bảo vệ, khí plasma.
- Hình thành hò quang plasma.
- Hướng 🏗 quang plasma tới vị trí hàn.

- Bảo đảm vi trí chính xác của các điện cực (đồng tâm với lỗ cực catôt).

Mỏ hàn phải được làm mát bằng nước và cực catôt phải được cách điện khỏi các bộ phận của mỏ hàn.

Trong hàn plasma chỉ khoảng $10 \div 30\%$ phần khí plasma tham gia tạo trạng thái plasma, khí còn lại vẫn tòn tại ốn định. Các khí hoặc hỗn hợp khí thường dùng cho hàn plasma là Ar; Ar + H_2 hoặc Ar + H_2 . Sự tiêu hao các khí thường như sau: khí plasma từ 0.5 - 7 lít/phút; khí bảo vệ $2 \div 16$ lít/phút và khí định hình plasma từ 3-12 lít/phút.

2. Đặc tính của dòng plasma

Hạt nhân của dòng plasma phát quang rõ nét với vật liệu cơ bản, chúng có kích thước nhỏ hơn so với kích thước lỗ mỏ hàn. Chiều dài của dòng plasma được xác định theo công suất của hò quang, kích thước của mỏ phun và sự tiêu hao khí plasma.

Nhiệt độ của hò quang plasma và của dòng plasma được phân bố khác

nhau theo đường kính và chiều dài (hình 18). Nhiệt độ cao nhất đạt được ở tâm của dòng plasma. Ở gần vị trí catôd nhiệt độ của khí đạt tối $24.000 \div 32.000$ °C.

Thực tế người ta thường xác định nhiệt độ trung bình tại tiết diện mỏ phun của dòng plasma và được xác định theo entalpi của khí tạo plasma (H):

$$H = \frac{q}{G} \tag{34}$$

 ở đây: q- công suất hữu ích của dòng plasma tại tiết diện mỏ phu n [cal/s];

G- tiêu hão khí tạo plasma [g/s].

Hình 18. Sự phân bố nhiệt độ của dòng plasma.

a) trong hỗ quang plasma:

- I- Sư phóng hỗ quang không có dòng khí plasma trong hàn hỗ quang argon với dòng hàn 200A, điện thế hỗ quang 14,5V.
- li- Sự phóng hồ quang trong khe của ngọn lửa plasma và dòng argon chạy qua giữa điện cực volfram (anôd) và tấm đồng (catôd) với dường kính. rānh 4,9mm; tiêu hao khí argon là 1,08 m³/h; dòng hàn 200A, điện thế hồ quang 29V; b) dòng plasma.

Nhiệt độ trung bình thông thường của dòng plasma (T) và công suất của dòng plasma (q) tại mặt cát của vòi phun có thể xác định theo công thức sau:

$$T = \frac{0.24EI}{\pi d_c \alpha_k} \left[1 - \exp\left(\frac{\pi d_c \alpha_k l}{C_p G}\right) \right]$$
 (35)

$$q = C_pGT (36)$$

ở dây: I- cương độ dòng điện [A] E- gradien điện thế hở quang [V/cm] d_c - đường kính với phun [cm]. α_k - hệ số dẫn nhiệt [cal/cm².s°C] I- chiều dài hở quang [cm] C_p - nhiệt dung của khí [cal/g °C] G- lượng tiêu hao khí [g/s]

V. HÀN ĐIỆN XỈ

1. Khái niệm

of c

Công nghệ hàn điện xi là phát minh của các nhà khoa học thuộc Viện Hàn mang tên E.O. Paton ở thành phố Kiep của nước cộng hòa Ukraina (Liên xô cũ).

Hàn điện xi rất phù hợp với hàn nối các tấm vật liệu có chiều dày lốn (≥ 50mm). Với các tấm dày như vậy, đối với công nghệ hàn điện hồ quang tay, bán tư động, tự động đều phải vát mép mối hàn trước khi hàn dạng chữ Ư hoặc ƯƯ (ở hai phía) nhưng quá trình hàn vẫn gặp nhiều khó khăn và năng suất thấp. Với tấm hàn dày 200 mm khi phải vát mép chữ ƯƯ, khi hàn hồ quang tay phải hàn khoảng 110 lớp hàn và hàn tự động dưới lớp thước phải hàn 72 lớp; nhưng nếu hàn điện xi thì chỉ phải hàn một lớp và không cần phải vát mép hàn mà chỉ cần để 1 khoảng cách giữa hai tấm hàn từ 25 ÷ 35 mm.

So đồ nguyên lý của hàn điện xi được biểu thị trên hình 19.

Bản chất của phương pháp hàn điện xi là dùng nguồn nhiệt của bể xi hàn nóng chảy để cung cấp nhiệt cho quá trình hàn.

Các dây hàn ở đây thường có dạng tấm; có thể dùng một hoặc nhiều dây hàn một lúc, tùy theo chiều dày cơ bản, tức là lượng kim loại cần cung cấp cho mối hàn.

Bể xi hàn có nhiệm vụ bảo vệ mối hàn khỏi bị tác động của môi trường.

Trong quá trình hàn, tấm đồng lót (con trượt) sẽ chuyển động dần từ dưới lên trên tùy theo tốc độ đồng đặc của kim loại hàn.

2. Nguyên li sinh nhiệt và sự phân bố nhiệt

Khi dòng điện hàn chạy qua bể xỉ lỏng sẽ tạo ra một năng lượng nhiệt lốn: $Q = I^2 rt$.

Nếu tốc độ nóng chảy của dây bằng tốc độ cung cấp dây hàn thì khoảng cách giữa đầu dây hàn và kim loại lỏng sẽ không đối trong suốt quá trình hàn.

Nhiệt cần thiết cho sự nóng chảy dây hàn và kim loại co bản xuất hiện khi dòng hàn chạy qua bể xi lỏng có tính dẫn điện nhỏ. Khi đó nguồn nhiệt lớn được tạo ra và nung nóng các thành phần (dây, xi) tối nhiệt độ 1800 ÷ 2000°C. Trong quá trình hình thành nhiệt này không xuất hiện hờ quang. Từ bế xi dòng hàn được chuyển từ dây hàn vào kim loại có bắn. Với một chế độ hàn ổn định (diện thế hàn, cường độ

Hình 19. Nguyên lị hàn điện xi.
1- vật liệu chi tiết hàn; 2- mối hàn
đã hình thành; 3- tấm đồng lót định
hành; 4 thu đần đần hàn tự động;
5- kep lót; 6- kim loại hàn kết tình;
7- bể hàn kim loại lỏng; 8- bể xi
lỏng; 9- đây hàn; v_s- tốc độ hàn.

dòng hàn) thì điện trở điện toàn phần của bể hàn sẽ định một lượng nhiệt xuất hiện trong một đơn vị thời gian.

Người ta có thể tính được nhiệt lượng cung cấp cho quá trình hàn phụ thuộc vào điện trở bể xi lỏng. Điện trở này phụ thuộc vào đường kính dây hàn, khoảng cách các dây hàn bị nhúng vào bể hàn và một số điều kiện công nghệ khác.

Diện trở này có thể tính theo biểu thức:

$$R = \frac{\rho_x}{2\pi L} \left(\ln \frac{4L}{d} - 1 \right) . \varepsilon. m \tag{37}$$

trong đó: $\rho_{x^{-}}$ điện trở suất của xi ở nhiệt độ trung bình của bế, hàn (Ω cm).

L- chiều dài điện cực trong bế xi (cm).

d- đường kính điện cực (mm)

 ε - hệ số tính đến sự thay đổi của điện trở phụ thuộc vào a

* $\varepsilon = 1 \cdot e^{-23(H_X - L)}$, trong đó $H_x = L + a$

a- khoảng cách từ đầu dây hàn và kim loại lỏng.
m- hê số điều chỉnh phu thuộc vào L.

Công suất nhiệt của nguồn điện khi hàn điện xi, có nghĩa là lượng nhiệt xuất hiện trong công nghệ hàn này, có thể biểu thị bằng biểu thức:

$$P = UI[KJ.s^{-1}; W]$$
 (38)

ở đây: U- điện thế hàn [V].

I- cường độ dòng hàn [A].

Nguồn nhiệt xuất hiện trong bể xi hàn không chỉ cung cấp cho dây hàn và kim loại cơ bản mà còn truyền vào các thành phần khác (hình 20).

Hình 20. Sự phân bố nhiệt trong hàn diện xí.

1- nhiệt cần cho sự làm chảy kim loại dây hàn
(23,6%); 2- nhiệt truyền vào chi tiết hàn (58,2%);
3- nhiệt qua xí đến nung nóng bề mặt chi tiết hàn
(1,3%); 4- nhiệt mất mát từ bể xí vào đệm đồng
(2,6%); 5- mất mát nhiệt vào môi trường (1,2%);
6- nhiệt cần để làm chảy vật liệu có số (47,8%);
7- mật mật mát nhiệt tổng cộng trên độm đồng
(5,2%); 8- mất mát nhiệt tổng cộng trên độm đồng
(7,8%); 9- nhiệt cần tối sự nung nóng bể hàn (10,5%).

VI. VẬT LIỆU HÀN DÙNG CHO HÀN TỰ ĐỘNG VÀ BÁN TƯ ĐỘNG

in the same price of the same of the same

1. Dây hàn

Trong hàn tự động (dưới lớp thuốc, trong môi trường khí bảo vệ, hàn diện xi) cũng như hàn bán tự động, dây hàn là phần kim loại bổ sung vào mối hàn đồng thời đóng vai trò điện cực để gây hồ quang và duy trì sự cháy hồ quang.

Theo tiêu chuẩn FOCT 2246-60 (Liên bang Nga), các dây hàn kéo nguội dùng để hàn có đường kính (0,3 - 12) mm. Chúng được quấn lại thành cuộn có đường kính trong (100-200) mm tương ứng với khối lượng (5-80) kg.

Các cuộn dây hàn được bảo quản, bao gói kỹ để chống gi và được tráng dầu mỗ.

Bảng 36 cho kích thước và khối lượng các cuộn dây hàn.

Bàng 36.

Đường kính dây (mm)	Đường kính trong cuộn dây (mm)	Khối lượng của cuộn dây (kg)			
		Thép cacbon	Thép hợp kim	Thép hợp kim cao	
0,3-0,5	150-300	2	2	15	
8,0	200-350	5	- 5	3	
1 ÷ 1,2	200-400	15	15	10	
1,4	300-600	25	15	10	
1,6-2,0	300-600	30	20	15	
2,5-3,0	400-600		•	-	
4-10	500-750	40	30	20	
12	500-800	-			

a) Dây hàn để hàn trong môi trường khí bảo vệ

Khi hàn trong môi trường khí bảo vệ, sự hợp kim hóa kim loại mối hàn cũng như các tính chất yêu cầu của mối hàn thực hiện chỉ thông qua dây hàn. Do vậy những đặc tính của quá trình công nghệ hàn phụ thuộc rất nhiều vào tình trạng và chất lượng của dây. Khi hàn trong môi trường khí bảo vệ CO_2 thường sử dụng dây có đường kính $0.8 \div 2$ mm.

Sự ốn định của quá trình hàn cũng như chất lượng của liên kết hàn phụ thuộc nhiều vào tình trạng bề mặt dây hàn. Ở những địa điểm lấp rấp xây dựng thường không thể nhận được dây hàn với bề mặt sạch hoàn toàn. Để đảm bảo các yêu cầu kinh tế, kỹ thuật cho công việc hàn, người ta chú ý nhiều đến phương pháp làm sạch dây. Một trong những cách để giải quyết là sử dụng dây có bọc lốp mạ đồng.

Dây được mạ đồng sẽ nâng cao chất lượng bề mặt và khả năng chống gi, đồng thời nâng cao tính ổn định quá trình hàn.

b) Dây để hàn dưới lớp thuốc hàn

Chất lượng của mối liên kết hàn dưới lớp thuốc được xác định bằng tổng hợp sự cân bằng của dây hàn và thuốc hàn. Các yếu tố dây và thuốc được lựa chọn trên cơ sở trạng thái ban đầu của thép hàn, các yêu cầu đối vối mối hàn về cơ lý tính cũng như yêu cầu làm việc của nó.

Dày hàn dùng để hàn thép cacbon thấp và một số loại thép hợp kim thấp khi hàn dưới lớp thuốc là các loại CB-08; CB-08A hoặc dây mangan như CB-08G; CB-10G2... Thành phần cacbon trong các dây này không quá 0,12%. Nếu hàm lượng cacbon cao, dễ làm giảm tính dẻo và tăng khả năng gây nứt trong mối hàn.

Đường kính dây dùng hàn dưới lớp thuốc thường 1,6 ÷ 5 mm.

c) Dây hàn trần để hàn hồ quang hỏ

Phương pháp hàn hỏ quang hỏ bằng dây hàn trần được dùng nhiều trong ngành xây dựng vào những năm gần đây.

Để thực hiện những phương pháp này, người ta phải sử dụng loại dây đặc biệt, trong dây này có chứa một số nguyên tố như Si, Ti, Al, Cr, Zr. Những nguyên tố này có ái lực mạnh với ôxy và nito trong không khí.

Các dây dùng cho phương pháp hàn này có đường kính 1; 1,2; 1,6; 2 và 2,5 mm và các mác dây là CB-20 Γ CTЮA (Э Π -245) và CB-15 Γ CTЮA (Э Π -439).

Bảng 37 và 38 giới thiệu các loại dây hàn của Nga.

Bảng 37. Dây điện cực cho hàn tự động và bán tự động

Ký hiệu dây	Thép hàn	Ký hiệu dây	Thép hàn
CB-08	MCT.1 - MCT.4; 10, 15; KCT-3; thép hợp kim thấp được hàn với thuốc hàn mangan cao OCII-45; AH-348A và ΦII-9.	CB-04X19H9	X18H9; X18H10T .
CB-08A	MCT-1: MCT-4; 10; 15; KCT-3 và một số thép hợp kim thấp được hàm với thuốc hàn mangan cao. ОСЦ-45; АН-348A và ФЦ-9.	CB-06X19H9T	X18H9; X18H10T
CB-10Г2	như trên và thuốc hàn A-H-51	CB-08X20H9CH	X18H9; X18H10T
CB-12[°C	MCT-1 ÷ MCT-4 với tốc độ hàn cao 100 m/h và hàn thép hợp kim thấp	CB-04X19H9C2	X18H9; X18H10T với thuốc hàn AH-20 và AH-26.
CB-18XMA	20XMA; 30XMA; 20XGCA; 25XICA; 30XICA và các thép : , có độ bền cao.		

Bảng 38. Dây hàn dùng để hàn trong môi trường khí bảo vệ

	to the contract of the contrac
Ký hiệu dây	Ký hiệu dấy
CB-081°C	CB-06X19M9T
CB-08Г2C	CB-08FCMT
CB-08X3I ² CM	CB-10XIT2CMA
CB-18XTC	CB-07X19H10I6
CB-18XMA	· · · · ·
1	

d) Một số dây hàn của một số nước khác (bảng 39 ÷ 45)

Bảng 39. Dây hàn thép cacbon thấp và hợp kim thấp hãng ESAB (Thụy Điển)

Loại d	. •	Loại hợp kim dây hàn	Tiêu chuẩn DIN 8557	Tiêu chuẩn AWS	Phương pháp công nghệ hàn
Autrod	12.10	Không có hợp kim	S1	A5.17 £L12	Hàn hồ quang dưới lớp thuốc
	12.20	1% Mn `	S2	A5.17:(EM12K)	-nt-
	12.22	Mn-Si	S2Si	A5.17:EM12K	-nt-
	12.24	Mn-Mo	S2Mo	A5.23:(EA1)	-nt-
-	12.32	1,5Mn	S3	. 1	-nt-
	1234	1,5MmMo	S3Mo	A523:(EA2)	-nt-
-	12.40	2Mn	S4	A5.17£H14	-nt-
•	12.51	Mn-Si	SG2	A5.18 ER70\$-6	MAG-CO ₂ hoặc 80% Ar + 20%CO ₂
Tigrod	12.60	Mn-Si	SG1	A5.18£R70S-6	TIG
Autrod	12.64	Mn-St	SG3	A5.18.ER70S-6	MAG CO2 hoặc -nt-
-	13.09	Mn-Mo-Si	SGMo		MAG 80%Ar + 20% CO2
Tigrod	13.09	Mn-Mo-Si	SGMo		TIG
Autrod	13.12	Cr-Mo	SGCrMo1	(A5.28:ER80S-B2)	MAG 80% Ar + 20% CO2
Tigrod.	13.12	Cr-Mo	SGCrMo1	(A5.28ER80S-B2)	TIG
Autrod		Cr-Ni			MAG CO ₂ hoặc 80% Ar + 20% CO ₂
Autrod	13.36	Cr-Ni			Hàn hồ quang dưới lớp thuốc

Ghi chú: MAG: (Metal Active Gas) hàn hỗ quang trong môi trường khí bảo vệ hoạt tính CO₂.

MIG: (Metal Inert Gas) bàn hồ quang trong môi trường khí bảo vệ khí trơ Ar, He.

TIG: (Tungsten Inert Gas) hàn hồ quang trong môi trường khí trơ diên cực volfram.

Bảng 40. Dây hàn dùng hàn thép cacbon và thép hợp kim hãng ESAB

Loạidây OK	Loại hợp kim	DIN 8557	AWS	Phương pháp công nghệ hàn
Tubrod 14.18 - 15.00 - 15.14 - 15.16 - 15.18		SGB1	A5.79£70T-4 A5.20-79£70T-5 A5.20-79£71T-1 A5.20-79£70T-1 A5.20-79£70T-1	MAG CO ₂ hoặc 80% Ar [*] + 20% CO ₂ MAG CO ₂

Bảng 41. Dây và lối để hàn đồng và hợp kim của đồng háng ESAB

Loaf OK	Loại hợp kim	DIN	AWS	Phương pháp hàn
Autrod 19.12	Đồng Ti	S-CuSn	ER Cu	MIG
Autrod 19.40	Đồng Al	S-CuAl	ER Cu Al-Al	MIG

Bảng 42. Dây và lối dùng để phù, đắp (háng ESAB)

Loại	Loại hợp kim diện	Tiêu chuẩn	Tiêu chuẩn	Phương pháp
OK		DIN8559	AWS	c ông nghệ hàn
Tubrodur 14.70 - 14.71 - 14.91 - 15.40 - 15-42 - 15-50 - 15-70 - 15-73	3,8C; 30Cr 18Cr; 8Ni; 6Mn Gang Hợp kim Mn-Cr Hợp kim Cr-Mo-Ni Hợp kimMn-Cr-Mo 13Cr; Ferit 0,06C 13Cr; 0,3C Mactenxit	SG10-55 SG8-200 SG1-350 SG1-400 SG6-500 UP5 SG6-50	A5.9-81ER410 A5.9-81ER420	Hồ quang hỏ Hồ quang hỏ Hồ quang hỏ Hàn duới lớp thuốc và MAG -nt- nt- Hàn duới lớp thuốc Hàn hồ quang dưới lớp thuốc và MAG 80% Ar + 20% CO。

Bảng 43. Dây và lối cho hàn thép không gi hãng ESAB

Loại OK _	Loại hợp kim dây hàn	Tiêu chuẩn DiN8556	Tiểu chuẩn AWS	Phương pháp công nghệ hàn
Autrod 16-10	20Cr.10Ni	UPx2CrNi199	A5.9-81ER308L	Hàn hồ quang dưới lớp thuốc
Tigrod 16.10	20Cr.10Ni		-	TIG
Autrod 16-11	19Cr.9Ni,Nb	SGx5GNiNb	A5.9-81ER347	Hàn hồ quang
				dưới lớp thuốc
Tigrod 16.11	19Cr.9Ni,Nb		-	TIG
Autrod 16-12	20Cr.10Ni	SgxCrNi199	A5.9-81ER308L	MIG argon
Autrod 16-30	18Cr 12Ni 2,7Mo	UPx2CrNiMo	A5.9-81ER318L	Hàn hồ quang
			1 (13)	dưới lớp thuốc
Tigrod 16-30	18Cr.12Ni, 1,7Mo		-	TIG
Autrod 16-31	19Cr.11Ni 2,7Mo, Nb	UPx5CrNiMo	A5.9-81£R318	Hàn hồ quang
				dưới lớp thước
Tigrod 16-31	19Cr.11Ni. 2,7Ma, Nb			TIG
Autrod 16-32	18Cr.12Ni 2,7Mo	SGx2CrNiMo	A5.9-81ER316L	MIG argon
Autrod 16-34	19Cr.14Ni 3,3Mo	SGx2CrNiMo	A5.9-81ER317L	MIG và hàn hồ
-		į ·		quang dưới lớp
			• '	thuốc
Tigrod 16-34	24Cr.13Ni	-	-	TIG .
Autrod 16-52	124Cr.13Ni	SGx2Cr Ni24	A5.9-81ER309Si	MIG a good .

Bảng 44. Dây và lối cho hàn nhôm và hợp kim nhôm hãng ESAB

Loại OK	Loại hợp kim	Tiêu chuẩn	Tiêu chuẩn	Phương pháp hàn
	dây hàn	DIN -	AWS	
Autrod 18.01	99,5% Al	S-Al. 99,5	ER1100	MIG
Tigrod 18.01	99,5% AI	S-Al 99,5	ER1100	TIG
Autrod 18.04	AlSi5	S-AISi5	ER4043	MIG
Tigrod 18.04	AISi5	S-AISi5	ER4043	TIG
Autrod 18.13	AlMg5	S-AIMg3	ER5554	MIG
Autrod 18.15	AlMg5	S-AMg5	ER5356	MIG
Tigrod 18.15	,	S-AlMg5	ER5356	TIG

Bảng 45. Các loại dây hàn trong môi trường khí bảo vệ theo tiêu chuẩn AWS E7018-1

3000 3005 5055 6061	Loại vật liệu	Loai dâv hân			
			inch	(mm)	
		ER1100 hoặc ER4043	0030	80	50-175
	3003, 3004	ER1100 hoặc ER5356	3/64	54	90-250
	5052, 5454	ER5554 hoặc ER5356	1/16	16	160-350
_	5083, 5086, 5455	ER5556 hoặc #R5356	3/32	24	225-400
╀	606t 6063	ER4043 hoặc ER5356	1/8	32	350-475
Hop kim manhe AZ10	AZ10A	ERAZ61A, ERAZ92A	900	10	150-300
AZ3	AZ31B; AZ61A		90,0	2	150-300
AZ80A	VO.	ERAZGIA, ERAZ92A	3/64	감	160-320
ZE10A	Y	ERAZ61A	1/16	16	210-400
Đồng và hợp Silico	Silicon Bronze	ERCuSi-A			
	Hop kim Cu-Ni	EROUN	0,045	24	200-400
Dong	Dong nhôm	ERCu Al-Al; Az;A3	1/16	1,6	250-450
SUQQ .	Dong phot pho	ERCu Sn-A	3/32	24	350-550
Niken và hợp Hợp	Hop kim Monel 400	ERNICU-7	0,03	80	
kim niken Hop	Hop kim incanel 600	ERNI C. Fe-5	0,035	60	100-160
Thép không gi Loại 201	201	ER380	0,02	92	
-	Loai 301; 302;304;	ER380	0,03	0.80	75-150
308	308 Loại 304L	ER380L	0,035	60	100-160
Loại 310	310	ER310	0,045	7	140-310
Thép Thép	Thép cacbon có dô	ER80S-D2	0.035	60	60-280
Dèn cao	cao		0,045	23	125-380

2. Dây hàn bột

Dây hàn bột được cấu tạo bởi một lớp vỏ kim loại bọc, trong nó là mọ hỗn hợp gồm bột kim loại và một số thành phần liên kết khác. Hỗn hợp trong dây vừa làm nhiệm vụ bổ sung kim loại, hợp kim hóa đồng thời còn có tác dụng bảo vệ cho kim loại nóng chảy khỏi bị tác dụng của môi trường, làm hỏ quang cháy ổn định v.v...

Theo ΓΟCT 9467-75 (Liên bang Nga), dây hàn bột chia tương ứng như các loại que E42; E42A; E46; E50A. Căn cứ théo tính chất công việc hàn, dây hàn bột được dùng dưới hai hình thức sau:

- Với chức năng tự bảo vệ (để dùng trong hàn hỏ quang hỏ).
- Với chức năng được bảo vệ bằng môi trường bổ sung khác (hàn trong môi trường khí CO₂).

Theo thành phần của hỗn hợp bột trong dây, dây hàn bột được chia thành 4 nhóm: rutil - hữu cơ; rutil; cacbônat - fluori; rutil - fluori.

Hình 21 biểu thị các dạng kết cấu của dây hàn bột và bảng 46 biểu thị các đặc tính của chúng.

Theo mức độ cơ khí hóa quá trình hàn, dây hàn bột chia thành dây để hàn tự động; dây để hàn bán tự động và dây đùng cho cả hai loại hàn trên.

Theo vị trí của mối hàn: mối hàn đứng dùng dây CΠ-1; mối hàn ngang dùng dây ΠΠ-AH5.

Dây hàn bột dùng để hàn các loại kết cấu khác nhau có thể chia thành hai nhóm:

- + Nhóm dây vạn năng.
- + Nhóm dây để hàn các trường hợp riêng biệt (hàn các kết cấu kim loại mỏng, các ống dẫn, vỏ tàu thủy v.v.)

Dây $\Pi\Pi$ -AHM-1 dùng để hàn thép cacbon thấp dạng tấm có chiều dày $\delta = 1-3$ mm.

Dây ΠBC-1; ΠBC-1C; ΠBC-3 để hàn đối đầu các ống dẫn.

Dây 3IIC-15/2 để hàn bán tự động thép cacbon thấp và thép hợp kim thấp; dây này cũng có thể dùng hàn các kết cấu cốt thép bẻ tông.

Dây ΠΠ-AH3 (dây có kết cấu hai lớp) dùng để hàn tự động và bán tự động các kết cấu từ thép cacbon thấp và thép hợp kim thấp (thép 09Γ2C; 14Γ2C; 10Γ2CД; 10ХСНД .v.v).

Dây hàn $\Pi\Pi$ -AH5 dùng riêng cho hàn tự động trong môi trường khí bảo vệ CO_2 khi hàn các mối hàn đứng có dùng các biện pháp tạo dáng mối hàn

cưỡng bức.

Dây hàn IIII-AH10 dùng để hàn các kết cấu đòi hỏi chất lượng đặc biệt, làm việc trong các điều kiện tải trọng và nhiệt độ thấp.

Trong công nghệ phục hồi các bề mặt chi tiết máy mòn bằng hàn tự động và bán tự động thường dùng dây hàn đấp rieng. Theo tiêu chuẩn ΓΟCT 2246-70 các dây có kí hiệu Hn.30; Hn.50; Hn-30X; Hn-2X14... được cho phép chế tạo có thành phần cacbon cao hơn so với đây hàn thường.

Ngoài dây hàn thép cũng có các loại màu như dây nhôm, dây đồng và đây họp kim của nó.

Hình 21. Các dạng kết cấu dây hàn bột

Bảng 46. Các đặc tính của dây hàn bột

Loại dây	Mác kim	Đường kính	C	hế độ h	nàn	Hệ số	Vị trí mối hàn	Tầm với
hàn	loại đấp	(mm)	- lh (A)	U (V)	Vh (m/h)	đấp (G/Ah)	Vy III // Ca Fred	(mm) CM
пп-АН1	342	2,8	200-350	24-28	tới 170	12,5	Sấp và nghiêng	15-25
пп-АНМ1	1,8 2 2,2	1,8 2 2,2	140-150 160-180 200-210	18-20 20-22 23-25	-	14	Sấp và dúng	-
пп-1дск	350	1,8 2,5	210-260 260-340	22-26 25-28	170-190 200-240	11,5	Tất cả các vị trí trù mối hàn trần	
ПВС-1С	Э46	1,6	140-180	22-25		13,5	Sấp và nghiêng	-
ПВС-1П ПВС-3	Э5 0	2	150-200	24-27		13,5	Sấp và nghiêng.	-
ПП-АНЗ	350A	2,8	290-500	23-30		15,5	Sấp	40-50
•]]	3	360-560	24-32	142-435	16,5		
пп-АНЗС		3	400-450	24-27	•	·-	Ngang	
ПП-АН7		2 2,3	130-300 150-320	19-25 20-26			Tất cả các vị trí trữ mối hàn trắn	15-40
ЭПС-15/2 ЭПС-15/М		2,5 2,1	250-580 100-250	25-32 20-27	210-580 100-190	20	Sấp và nghiêng Ngang	40-60 10-15
ППОДСК		2,35	240-400	22-32	188-435	18,5	Tất cả, trù mối hàn trần	40-60
ПП-АН6		2,8	350-490	23-28	-	-	Sấp	15-45
пп-зпск		2,5	240-400	23-29	152-337		Sấp và ngang	30-40
СП-1		1,35	80-200	18-24	88-582	22	Ngang và đứng	15-30
ПП-АН4	3 6 0A	2,25 2,5	230-370 300-650	25-29 25-38	210-337 265-382	18 18	Sấp và nghiêng	30-40
ПП-АН9	*	2,2 2,5	240-440 330-530	25-35 26-36	298-500 265-435		Sấp và nghiêng	-

Bảng 47. Tính chất cơ học của kim loại hàn bằng dây hàn bột

NACE HAVE		Tính chất cơ học	
Mác dây	σ _B (kG/mm²)	δ [%]	a _K (kGm/cm ²)
ПП-АН1	50	21	10
ГІП-АНМ-1	42	. 18	8
ПВ-1	49	22	12
ПВС-3	53	21	12
ПП-АНЗ	56	28	20
ПП-АН7	52	28	18
ПП-АН11	56	26	. 19
пп-АН9	54	29	17
IIII-AH8	53	28	16
IIII-AHIO	54	28	16

3. Thuốc hàn

a) Yêu cầu chung

Thuốc hàn dùng để bọc que hàn tay hay dùng để hàn tự động và hàn bán tự động có các yêu cầu riêng song chúng có cùng một số đặc tính có bản sau:

- Có khả năng ion hóa mạnh để dễ gây hỏ quang trong quá trình hàn.
- Bảo vệ kim loại lỏng mối hàn không tác dụng với ôxy và nito của không khí xung quanh để cơ tính mối hàn cao.
- Tạo xi tốt, xi nổi phủ đều trên bề mặt mối hàn để chống khí xâm nhập và giúp cho mối hàn nguội chậm, xi phải để tách khỏi mối hàn.
- Có tác dụng hợp kim hóa kim loại mối hàn để nâng cao có tính của mối hàn.
- Có chất dính kết tốt để đảm bảo độ bền sau khi bọc vào lõi que hay tạo hạt thuốc hàn tự động.

Đối với thuốc bọc que hàn có thêm yêu cầu: nhiệt độ chảy của hỗn hợp phải cao hơn nhiệt độ chảy của lỗi que để khi hàn thuốc bọc tạo thành hình phễu, hướng kim loại nóng chảy đi vào vũng hàn.

Đối với thuốc hàn tự động và bán tự động còn phải yêu cầu có nhiệt độ chảy thấp họn so với kim loại hàn, để giảm hao phí nhiệt và giảm hao phí dây hàn vì bị cháy và bắn tốc và để tăng hệ số đấp.

b) Phân toại

Theo công dụng thuốc hàn tự động và bán tự động có 3 loại:

- Thuốc để hàn thép cacbon thấp và thép hợp kim thấp.
- Thuốc để hàn thép hợp kim cao.
- Thuốc để hàn kim loại và họp kim màu.

Còn có loại có tính chất chung vừa để hàn thép hợp kim cao vừa để hàn kim loại màu, ví du, thuốc hàn AH-20 của Liên bang Nga.

Hàn thép cacbon và thép hợp kim thấp thường dùng loại thuốc có hàm lượng Si và Mn cao như loại AH-348. Khi hàn thép hợp kim cao, người ta dùng thuốc hàn có tính chất trung tính. Nó là hợp chất các fluorua hay clorua canxi, natri, v.v.. như thuốc hàn AHΦ-5; AHΦ-6.

Theo tiêu chuẩn thuốc hàn của Liên bang Nga - ГОСТ 9087-69 thuốc hàn nóng chảy dùng cho hàn tự động và bán tự động có các mác sau: -AH-348A; AH.348-AM; AH-8; AH-20CM; AH-20П; AH-26CП.

Ngoài các loại trên thép còn được hàn với các loại thuốc sản xuất theo các tiêu chuẩn của các cơ sở khác nhau (ví dụ, ở Nga có thuốc vủa viện PATON và Viện ЦНИИТМАШ v.v.)

Phạm vi sử dụng các loại thuốc để hàn thép được chi dẫn theo bảng 48.

Bảng 48. Lĩnh vực sử dụng thuốc hàn thép cacbon và thép hợp kim thấp (Liên Bang Nga)

Thuốc hàn	Thép hàn	Linh vực sử dụng
AH-348A	Tất cả thép cacbon 16ΓC; 14ΧΓC; 14Γ2, 10Γ2; 25ΧΓC; 10Γ2ΑΦ	Hàn tự động các kết cấu
AH-348AM	7ГС; 15ГСТЮ; 15ХСНД; 10ХСНД; 12Г2СМФ.	Hàn bán tự động các kết cấu
OCII-45	Tất cả thép cacbon	
ОСЦ-45М	10ХСНД, 15ХСНД, 09Г2С; 14Г2; 18Г2; 16ГС; 10Г2СД; 17ГС	Hàn tự động các kết cấu
AHK-30	10XCH; 15CHII; 15FC; 14FC; 17FC; 10F2CJI	Sử dụng cho những mối
	Tất cả thép cacbon thấp	hàn được thực hiện với
		loại thuốc này.

- c) Thuốc hàn, dây hàn của một số nước.
- Thuốc hàn, dây hàn của Thụy Điển
- + Thuốc hàn cho hàn hồ quang dưới lớp thuốc (hãng ESAB) cho trong bảng 49.

Bảng 49.

Thuốc•OK	Loại	Tính chất	Khả năng hợp kim hóa	Chứ thích
10.16	Thiêu kết	bazđ	Không	Tẩy rửa lớp phủ
10.40	Nấu chảy	axit	Hợp kim hóa Mn	
10.61	Thiêu kết	bazo cao	Không	
10.52	Thiêu kết	bazd cao	Không	
10.70	Thiêu kết	bazo	Hợp kim hóa Mn	
10.71	Thiêu kết	bazo	Không	
10.80	Thiếu kết	trung tính	Hợp kim hóa Mn	
10.81	Thiêu kết	axit	Hợp kim hóa Mn	
10.91	Thiêu kết	axit	Hợp kim hóa Cr	ĺ
10.92	Thiêu kết	trung tinh	Hợp kim hóa Cr	
10.96	Thieu két	axit	Hợp kim hóa Cr	

- + Các chi tiêu kỹ thuật của mối hàn (dùng thuốc hàn và dây hàn của ESAB) xem trong bảng 50.
- + Thành phần hóa học và tính chất cơ học của kim loại hàn khi dùng đây hàn và thuốc hàn của hãng ESAB xem trong bảng 51.
- + Vật liệu bố sung của ESAB (Thuy Điển) cho hàn MIG, hàn hỗ quang dưới lớp thuốc để hàn thép không gi tương ứng với các tiêu chuẩn JIS; AFNOR; AISI, BS và DIN được giới thiệu trong bằng 52.
- Dây hàn và thuốc hàn hãng Loncoln (Mỹ) dùng cho hàn đấp dưới lớp thuốc và hàn tự động giới thiệu trong bảng 53 và 54.

Bảng 50. Đặc trưng ký thuật mối hàn

Letai thuốc hàn	Dây hàn	T.	Thành phần hóa học mối hàn %	hóah "%"	8	Tinh chất kim loại h	Tính chất cơ học của kim loại hàn kG/mm²	Tiêu hao thuốc và dây hàn
va cong dung		ပ	iS	Mn	9 ₹	Độ bần uốn	Dộ bền kéo	Kg/Kg
-	2	, ε	4	ω	စ	7	60	o o
OK 10.40	OK Autrod							
(AWS: F6A2-EL12)	12-10	2	90	13		8	84	Diện thế hàn 30V : fkg/lkg
DIN 32522FMS198AC								
	12-20	5	2,0	1,6		¥	53	Diện thể hàn 40V : 2kg/1kg
Thuốc nóng chây hợp				-				
kim Min dùng cho hàn								•
hồ quang dưới lớp thuốc		_				a.		
OK 10.61	OK Autrod		,					d = 4mm; l = 500A
(AWS F6A4-EM12)							·	,
DIN 32522:BFB165DC7	12-10	800	Ć,	9,0		88	8	$U = 24V \rightarrow 0.7kg/kg$
Thuốc thiêu kết	12-22	80'0	6,0	3		4	25	U = 36V + 14kg/kg
unh bazo cao (2,8)	12-24	800	6,0	2	0,4	52	92	d = 6mm; I = 800A
dùng cho hàn hồ						•		
quang dưới lớp thuốc								$U = 30V \rightarrow 0.7kg/kg$
cho thép có độ bền cao								U = 38V + 1.3ka/1ka

(tiếp bảng 50)

σ		U = 30V + 0,7 + 0,75 kg/1kg U = 34V + 0,9 + 0,95 kg/1kg U = 38V + 1,2 + 1,3 kg/1kg	U = 30V + 0,7 kg/1kg U = 35V + 1 kg/1kg U = 35V + 1,3 kg/1kg
80	55 56 66	52 69	
7	44 51 47 59 57	44 5	
9	0.4		(Mo)
10	0, 1,0 1,5 1,5 1,9	1,6	<u>\$</u> 55 i
4	0,25 0,15 0,25 0,25 0,15	0,4	9 គ្ន
m	29999	70,0	0,3 ft ft (C)
01	OK Autrod 12.22 12.24 12.32 12.34 12.40	OK Autrod 12:10 12:30	OK Autrod 16.10 16.30 15.73
	OK 10.62 (AWS: F6A4-EM12) (DIN 32522-BFB155AC8) Thuốc thiều kết tính bazd chất lượng cao (3,4) dùng cho hàn hồ quang dưới lớp thuốc dề mối hàn có độ dai va đặp cao	OK 10.70 (AWS: F7A4-EL12) (DIN 32522: BAB179AC8) Thuốc thiệu kết có tính bazơ (17) và hợp kim hóa bằng Mn	OK 40-91 (DIN 3252: BCS571545AC) OK Autrod Thuốc thiêu kết 16.10 tính bazó (10) dùng 16.30 hàn thếp crồm cao 15.73

Bảng 51. Có tính và thành phần hóa học mối hàn

Loại thuốc C Si Mn Mo C Si Mn Mo OK Autrod 12.10 0,1 ≤0,02 0,5 7 8 9 OK thuốc 10.40 0,1 ≤0,02 0,5 7 8 9 OK thuốc 10.40 0,1 ≤0,02 0,5 1,3 0,6 1,3 10,71 10,71 10,71 0,6 0,9 1,4 1,6 10,80 10,27 0,2 0,9 0,1 0,5 1,4	Mn Mo	Dộ bền uốn Độ bền kéo 10 11 35 48 35 48
rod 12.10 0,1 ≤0,02 0,5 6 6 7 8 8 100 100 12.10 0,1 ≤0,02 0,5 6 1,3 10.70 10.71 0,6 1,4 16 10.80 10.10 10.10	8 Et 80	
thuốc 10.40 0,1 ≤0,02 0,5 0,1 0,6 0,1 0,6 0,1 0,00 0,1 0,00 0,00		
10.40 0,1 0,6 10.61 10.61 10.70 10.70 10.71 10.71 10.71 10.71 10.72 10.2		
0,08 0,1 0,07 0,4 0,07 0,2 0,1 0,5		
0,07 0,4	_	
0,07 0,2 0,1 0,5		
0,1 0,5		36 46
_		
0,1		
Autrod 12.20 0,1 0,1 1,0		
2'0		
10.50		
0,07 0,5		
10.71		40 50
0,1 0,6		
0,1		53 62

(tiếp bảng 51)

			-									ļ ·					
	#		45	52	ফ	. 22		9	92	29	09		55	57 ·		88 83	>
	Q.		• 06	6	44	9		35	52	ू. य	20		47	6		දී ති	_
	6		•			÷ ,										0, 0, 4, 4	_
	80		5	유	5	E		2	≎	유	<u>5</u>		τī	91		t	_
			0,0	6,0	0,25	60,		0,2	0'3	0,15	6,0		0,25	4,0		0,25	
	မ		0,13	90'0	<u>-</u>	80'0	-	0	90'0	0,1	80'0]	, ,	80'0		0.0	_
,	ľD.														0,5		_
	4	5		÷			5,					1,6			1,5		_
	3	0,25					0,1					0,2			20.		_
	2	0,					9					0,12			0,12		-
	·	10.22	10.50	10.61	10.62	10.71	12.24	10.50	10.61	10.62	10.71	12.32	10.62	10.71	12.34	10.62	_
	,	Autrod	Thuốc				Autrod	Thuốc			,	Autrod	Thuốc		Autrod	Thu6c	

Bảng 52. Vật liệu hàn để hàn MIG cho thép không gi

*Thép		Hàn	Hàn hồ quang đưới	Theo	các tiều	Theo các tiêu chuẩn khác	
theo	Loại thép	OK Autrod	OK Thuốc + OK Autrod	AFNOR	AISI	BS1449	N
2301	13% Ferit-Mactenxit	16.32	10.91 hoặc 10.92+16.30	Z 6C13	410 S	(410 S 21)	14001
2302	13% Ferit-Mactenxit	16.32	10.91 - 10.92+16.30	Z12C13	410	410 S21	14006
2303	13% Ferit-Mactenxit	16.32	10.91 - 10.92+16.30	Z20C13	420	420\$37	1.4021
2320	17% Cr Ferit	16.32	10.91 - 10.92+16.30	Z8C77	430	430S15	1.4016
3330	IBCr 8Ni Austenit	16.12	10.91 - 10.92+16.10	Z12CN18-09	305	302825	1,4300
2332	19Cr 10Ni Austenit	16.12	10.91 - 10.92+16.10	Z6CN18-09			
2333	19Cr 10Ni Austenit	6.12	10.91 - 10.92+16.10	Z6CN18-09	304	304S15	14301
2337	18Cr 11Ni Austenit	16.11	10.97 - 10.92+16.11	Z6CNT18-#	321	321\$12	14541
2338	18Cr 11Ni Austenit	16.11	10.97 - 10.92+16.11	Z6CNNb18-11	347	347512	14550
2341	18Cr 11Ni1,7Mo Austenit	16.32	10.91 - 10.92+16.30				
2343	18Cr 12Ni2,8Mo Austenit	16.31	10.91 - 10.92+16.30	Z6CND17-12	316	316516	1.4436
2344	18Cr 12Ni2,8Mo Austenit	16.31	10.91 - 10.92+16.30	Z8CNDT17-13	1	320\$17	14573
2347	18Cr 12Ni2,3Mo	16.32	10.91 - 10.92+16.30	Z6CND17-11	316	316316	14401
2352	19Cr 11Ni2,8MoELC	16.32	10.97 10.92+16.30	Z2CND17-13	3161	316512	14435
2361	25Cr 20Ni						
2366	19Cr 13Ni3,5Mo	16.34	10.91 10.92+16.34		317		14311
2367	19Cr 13Ni3,5MoL	16.34	10.91 - 10.92+16.34		3171		14429
	_	_	_	-	_		

Bảng 53. Dây và thuốc hàn dùng bàn đấp (Lincoln, Mỹ)

Dây hàn	Thuốc	Độ cúng kim loại hàr [HRC]
Jet-LH BV-90	-	23-28
Lincore 30	801	29-32
Lincore 40	801	39-42
L-60	J535	34-46
L-60	A-100	30-32
L-60	A 965	52-54
L-60	H 550	32-60
Lincore 55		56-62
L-60	H 560	56-61

Bảng 54. Dây và thuốc hàn tự động (Lincoln)

Dây hàn	Thuốc hàn	Công dụng
L -50; L-60	760; 76t, 780; 78t, 790	Hàn thép cacbon thấp
L-6t L-70	860; 880; 882; 890	và thép hợp kim thấp
LC-72		`
L-60; L-61		1
L-70		
LAC Ni2	880; 882	7 - 1
LAC M2	880	Hàn thép hợp kim
LAC B2	800	,

4. Các loại vật liệu khác

- a) Khí bảo vệ. Các khí trở (hêli, argon, v.v.) không có khả năng thàm gia vào các phản ứng hóa học. Trong lĩnh vực hàn người ta chỉ sử dụng khí argon và hêli (bảng 55, 56).
- Khí argon (Ar) là một loại khí không màu, không mùi, nặng hon không khí khoảng 25%. Argon lỏng không màu, không mùi và sôi ở nhiệt độ 185,5°C dưới áp suất thường.

Argon được sản xuất ra ở dạng lỏng và dạng khí. Theo tiêu chuẩn ΓΟCT

10157-73 có 3 loại, tùy theo thành phần tạp chất.

- Hêli (He) là chất cũng không có mầu, không mùi, cỏ tỷ trọng riêng nhỏ hơn argon khoảng 10 lần.
- Khí cacbonic (CO_2) được sử dụng rọng rãi trong hàn để làm khí bảo vệ. Ở áp suất cao CO_2 chuyển sang dạng lỏng, còn khi được làm lạnh ở áp suất thường nó chuyển sang trạng thái rấn (nước đá khỏ).

Trọng lượng 1 lít CO_2 lỏng ở nhiệt độ $+20^{\circ}C$ là 0,77 kG còn ở nhiệt độ $-11^{\circ}C$ hoặc thấp hơn, nó trở nên nặng hơn nước; vì vậy người ta mua bán khí CO_2 theo trọng lượng, không theo thể tích.

Khí CO_2 được nên ở áp suất cao, chia làm bốn dạng (theo FOCT 8050-64): CO_2 hàn loại 1 và 2; CO_2 thực phẩm và CO_2 kỹ thuật. Ba dạng dầu được dùng cho hàn; còn CO_2 kỹ thuật chi được dùng cho hàn sau khi nó đã được làm sạch tạp chất.

- Nito (N). Loại khí này ít được sử dụng để hàn như là một loại khí bảo vệ độc lập (dùng trong trường hợp hàn đồng).

Bảng 55.	Khí	và	tính	chất	vật	lý	của	chúng	
----------	-----	----	------	------	-----	----	-----	-------	--

Loại khí	Khối lượng riêng (kg/m ³)	Thể tích khí (m ³) trong bình 40l	Loại khí	Kh ối lượng riêng (kg/dm ³)	T hể tích khí (m ³) trong bình 40l
Argon Hêli	1,7833 0,17847	6,0 6,0	Hydrô Khí CO,	0,090 1,97686	6.0 12,67
Nito	1,25	6,0	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Ghi chú:

- 1) Trong bình tiêu chuẩn 401 chứa 25kg khí CO2 lỏng.
- 1kg khí CO₂ lỏng ở môi trường 0°C và áp suất 1 atm cho 506,8 lít khí.

Bảng 56. Khí dùng để hàn và cắt kim loại

Loại khí	Độ tinh khiết không nhỏ hơn (%)	Số lượng khí	Loại khí	Độ tinh khiết không nhỏ hơn (%)	Số lượng khí
Argon sach			Khí nito		
Loại A	99,99 \	1 m ⁸	Sạch:	99,9	100 m ³
Loại B	99,96	1 m ³	Loại I	99,5	100 m ³
Loại C	99,90	1 m ³	Loại II	99,0	100 m ³
Argon kỹ thuật	84 ÷ 88	1 m ³	Khí CO ₂ : + Dùng để hàn		
Hêly		.	- Loai !	99,5	1 m ³
+ Độ sạch cao	99,985	1 m ³	- Loai II	99,0	1 m ³
+ Kỹ thuật	99,8	1 m ³			
•			+ Dùng cho	98,5	1 m ³
Hydrô kỹ thuật			thực phẩm	•	
Loại A	99,7	1000 m ³		1	
Loại B	98,0	1000 m ³			,
Loại C	97,5	1000 m ³			

b) Điện cực không nóng chảy

Hiện nay người ta dùng một số loại điện cực không nóng chảy, chế tạo từ một số vật liệu khác nhau như than, graphit, vonfram, đồng để hàn.

- Diện cực than dẫn điện kém, có diện trở suất lốn gấp 4 lần điện trở suất của graphit. Đôi khi điện cực than được bọc đồng ở bên ngoài để tăng độ bèn của nó khi tăng mật độ dòng điện.
- Diện cực graphit được chế tạo từ than có tăng thêm một lượng graphit (bằng cách giữ lâu ở nhiệt độ 2500°C). Đôi khi người ta cũng dùng những điện cực graphit thừa trong công nghiệp nấu thép. Trong trường hợp này, người ta xẻ thành các thanh có tiết diện ngang vuông hoặc chữ nhật và sau đó làm nhọn đầu.

Trong công nghệ hàn người ta hay dùng điện cực bằng vonfram hơn là điện cực than hoặc điện cực graphit.

Tuy nhiên điện cực than và điện cực graphit có những ưu điểm sau:

+ Hồ quang cháy ổn định ngay cả khi dòng điện nhỏ (3-5 A) và chiều dài

hò quang lớn (tới 50 mm).

- + Điện cực mòn chậm, dễ thao tác, có thể hàn được những chiều dày nhỏ (1-3 mm) với tốc độ rất lớn (tối 50 70 m/h).
- Diện cực vonfram là loại điện cực được dùng rộng rãi trong số các điện cực không nóng chảy. Ưu điểm của loại điện cực này là dễ gây hồ quang và hồ quang cháy ổn định. Quá trình hàn bằng điện cực vonfram dễ tự động hóa. Nó được sử dụng để hàn cho nhiều loại thép khác nhau với chiều dày khác nhau và trong tắt cả các vị trí không gian hàn khác nhau. Đồng thời nó luôn cho chất lượng kim loại hàn đạt chất lượng cao.

Đặc tính của một số điện cực vonfram cho ở bảng 57.

Bảng 57. Đặc tính của một số loại điện cực vonfram

Mác	Dường kính	•		Thành phần %		
điện cực	(mm) '	Vonfram	Ôxyt tori	Ôxyt lantan	Ôxyf itria	Tantan
-VL-10	1-10	98,36-99	-	1-1,9	- 1	-
VL-20	2-10	97,86-98,5	-	1,5-2,0		-
VT-7	0,2-10	99-99,3	0,7-1,0	,-	-	-
VT-10	0,2-10	98,4-99	1-1,5	-	-	-
VT-15	0,2-10	97,85-98,5	15-2	a syte as is	. 1 •	-
VT-2	1-10	-	• •	-	1,6-2	0,01
VT-3	1-10	96,75-97,5		- 1	1,25-3,1	0,01

Chương III HÀN KHÍ VÀ HẢN VẢY

I. NGUỒN NHIỆT NGỌN LỦA KHÍ CHÁY

Ngọn lửa khí cháy được dùng cho phương pháp công nghệ hàn nóng chảy thường được gọi là công nghệ hàn khí cháy (hàn hơi).

Hàn hơi là một trong những phương pháp hàn hóa năng, trong đó dùng nhiệt lượng phản ứng cháy của khí cháy trong ôxy để nung nóng chảy vật liệu hàn và vật liệu bổ sung để tạo nên mối hàn.

Phương pháp hàn hơi đã được áp dụng rộng rãi trong sản xuất từ đầu thế kỷ 20. Lúc đầu, khi phương pháp hàn hỏ quang còn chưa hoàn hảo, hàn hơi là phương pháp hàn có bản dùng trong gia công kim loại và cho các mối hàn có độ bên cao.

Hiện nay phương pháp hàn hơi được dùng rộng rãi để hàn các tấm, các kết cấu kim loại có thành mỏng và các kim loại và hợp kim màu.

Các khí dùng cho hàn hơi có 2 loại: khí ôxy dùng để giúp cho sự cháy tồn tại và các khí cháy như axêtylen (C_2H_2) , hydrô (H_2) , mêtan, khí xăng dầu v.v... Trong thực tế, khí đốt chủ yếu dùng để hàn là khí axêtylen, vì khí này khi cháy trong ôxy tỏa ra nhiệt lượng có ích cao nhất (11470 Cal/m^3) và đưa nhiệt độ ngọn lửa lên mức cao nhất (3150°C) .

Ngọn lửa cháy của khí axêtylen và ôxy cho nhiệt độ cao nhất. Với tỷ lệ thích ứng $\beta=\frac{O_2}{C_2H_2}$ sẽ cho những ngọn lửa có những đặc điểm về năng lượng khác nhau.

1. Ngọn lửa trung hòa

Khi tỷ 86 $\beta = 1.0 \div 1.2$, ngọn lửa có tên là ngọn lửa trung hòa (hình 22). Ngọn lửa này được dùng nhiều trong hàn thép, đồng, bạc, kẽm.

Ngọn lửa chia thành 3 vùng: vùng hạt nhân, vùng giữa và vùng đười ngọn lửa.

- Vùng hạt nhân có chiều dài ngắn, xuất hiện ở dầu mở hàn, có màu sáng trắng, nhiệt độ ở đây không cao. Trong vùng này là hỗn hợp của khí C_2H_2 + O_2 và xuất hiện sự phân ly của khí C_2H_2 .
- Vùng cháy không hoàn toàn (vũng giữa ngọn lửa), tại đây xẩy ra phản ứng cháy đầu tiên (pha thứ nhất):

$$C_2H_2 + O_2 \rightarrow 2CO + H_2 + 21 \text{ [MJ. m}^{-3}\text{]}$$

Ở vùng này các sản phẩm hóa học bao gồm 61% CO; 22% H₂; 17% H. Quá trình cháy làm cho nhiệt độ vùng này tăng mạnh, đặc biệt ở điểm cách đầu nhân ngọn lửa khoảng $2 \div 3$ mm cho nhiệt độ caơ nhất (3150° C). Do sự cháy mạnh mà vùng này có màu xanh sáng. Ở điểm cuối của vùng này (cách đầu của hạt nhân ngọn lửa khoảng 10mm) đã có biểu hiện của khu vực cacbua hóa.

- Vùng cacbua hóa (vùng cháy hoàn toàn hoặc vùng đuôi ngọn lửa). Vùng này có màu vàng lẫn màu đỏ, và tại đây xảy ra pha thứ hai của sự cháy. Từ các sản phẩm của pha này đều được kết hợp với ôxy của môi trường không khí théo phản ứng:

$$C_2H_2 + H_2 + 1,5O_2 \rightarrow 2CO_2 + H_2O + 27$$
 [MJm⁻³].

Trong vùng này chứa đựng các sản phẩm gây ra sự ôxyt hóa bao gồm CO_2 ; H_2O ; O_2 và có cả H_2 .

2. Ngọn lửa ôxyt hóa:

Khi tỷ số $\beta = \frac{O_2}{C_2H_2} > 1.2$, ngọn lửa có tên là ngọn lửa thừa ôxy hay ngọn lửa ôxy hóa.

Đặc điểm của ngọn lửa này là hạt nhân của ngọn lửa ngắn hơn so với ngọn lửa trung hòa; mặt khác do trong ngọn lửa thừa ôxy có trong vùng xung quanh cung hàn do vậy gây ra sự ôxy hóa các nguyên tố hợp kim của vùng hàn. Ngọn lửa này có màu xanh.

Ngọn lửa này thường dùng để hàn hợp kim đồng (đồng thau, đồng thanh) hoặc dùng để tôi bề mặt thép, ít dùng để hàn đồng đó hoặc các kim loại nhẹ.

3. Ngọn lửa cacbon hóa

Ngọn lửa cacbon hóa (còn gọi là ngọn lửa thừa cacbon).

$$\dot{O}$$
 đây tỷ số $\beta = \frac{O_2}{C_2H_2}$ < 1. Ngọn lửa này có phần hạt nhân bị kéo dài

hơn và có mẫu đỏ sáng (tức là màu vàng trên nền đỏ). Thường dùng ngọn lửa này cho việc hàn vẩy các hợp kim nhôm và hàn gang.

Công suất nhiệt của ngọn lửa hàn khí được điều chỉnh bởi lưu lượng khí

dốt đưa vào hòn hợp cháy trong một đơn vị thời gian, bằng cách dùng các van điều chỉnh trên mỏ hàn để thực hiện. Hình 22 và hình 23 biểu thị ngọn lửa hàn khí $C_2H_2+O_2$ với sự phân bố nhiệt độ theo các vùng và kích thước hạt nhân ngọn lửa phụ thuộc vào lưu lượng khí C_2H_2 và đường kính lỗ mỏ hàn.

Hình 23. Kích thước của hạt nhân ngọn lửa với đường kính mô hàn và lưu lượng khí C₂H₂ khác nhau.
1- Thép 0,22 %C; 2- Thép 0,08%C.

Đối với ngọn lửa hyđrô và ôxy dùng cho công nghệ hàn cũng có quá trình diễn ra giống với ngọn lửa $C_2H_2+O_2$; nhưng ngọn lửa H_2+O_2 không có hạt nhân ngọn lửa và nhiệt độ của ngọn lửa này đạt được thấp hơn (2800°C).

Trong công nghệ hàn khí, khi ngọn lửa khí tiếp xúc với bề mặt vật hàn, chúng sẽ truyền nhiệt cho vật hàn theo một đường. Gọi là vệt nung nóng. Trong vệt này, cường độ cấp nhiệt trong các phần khác nhau của vệt sẽ khác nhau.

Hình 24 cho thấy cường độ cấp nhiệt thay đổi theo hướng chùm ngọn lửa.

Giả sử gọi:

 q_{max} - dòng nhiệt cấp cực đại ở tâm vật nung;

K - hệ số tập trung nhiệt phụ thuộc vào kích thước và sự phân bố nhiệt cho ngọn lửa.

 ρ - bán kính vật nung ở điểm xét.

Hình 24. Mô hình chùm nhiệt của ngọn lủa.

q_n- cường độ đòng cấp nhiệt.

Khi đó ta có

$$q_n = q_{\text{max}} e^{-k_p^2} \tag{39}$$

Mặt khác sự cấp nhiệt này còn phụ thuộc vào lượng khí C_2H_2 tiêu hảo (bảng 58)

Bảng 58. Lượng nhiệt cung cấp phụ thuộc lượng tiêu hào khí C2H2.

Vị trí điều	Tiêu hao	Lượng cấp nhiệt hữu ích q qmax		2.		
chính van mỏ hàn	C ₂ H ₂ [I/h]	cal/s	KJ/s	(cal/cm ² .s)	K [1/cm ²]	
1	150	380	1,59	47	0,39	
2	250	600	2,51	67	0,35	
3	400	720	3.03	72	0,31	
4	600	920	3,75	82'	0,28	
5 .	1000	1270	5, 3 1	93	0,23	
6	1700	1750	7,32 -	111	0,20	
· 7	2600	2250	9,40	122	0.17	

II. VẬT LIỆU HÀN KHÍ CHÁY

- 1. Ôxy. Ôxy được chứa trong chai có áp suất $150 kG/cm^2$ hoặc được lấy từ hệ thống ống dẫn của trạm điều chế ôxy. Bản thân ôxy không cháy nhưng là chất không thể thiếu trong quá trình cháy. Nói chung khí ôxy ít nguy hiểm.
- 2. Cachit canxi (đất đèn) là chất có mầu tro dưới dạng cục rấn. Kích thước các cục cachit canxi và ký hiệu qui ước của chúng cho trong bảng 59.

Bảng 59. Ký hiệu và kích thước các cục cacbit canxi

Kích thước các cục cacbit canxi (mm)	2-8	8-15	15-25	25-80
Ký hiệu qui ước	2/8	8/15	15/25	25/80

Khi phân loại rồi, cacbit canxi không được chứa hơn 2-5% số cục có kích thước khác loại. Cacbit canxi được chứa trong các thùng sắt kín. Cacbit canxi dùng để chế khi axètylen.

3. Axêtylen là chất khí không màu và có mùi hỏi đặc trưng, nó để cháy và dễ gây nổ. Nếu hít phải khí này trong một thời gian dài sẽ bị chóng mặt, buồn nôn và có thể bị nhiễm độc. Trong kỹ thuật hàn, khí axêtylen được điều chế từ cacbit canxi (bằng 60).

Bảng 60. Điều chế khí axêtylen từ cacbit canxi

Chi số	Kích thước cục (mm)							Kích thước hỗn hợp		
	25	/80	15/	25	8/	/15	2/8		Loại 2	
Thể tích axêtylen khô điều chế từ	1	H	1	. 1	, 1	II	Ī	#	1	H
1 kg cacbit canxi [lít]	285	265	275	255	265	245	255	235	275	255

Để một thể tích axétylen cháy hoàn toàn, cần có 2,5 lần thể tích ôxy lồn hon. Khi cháy trong hỗn hợp với ôxy sạch axétylen cho ngọn lửa có nhiệt độ lên tới 3150°C.

4. Chất xốp và axêtôn. Để giữ được axêtylen trong bình chứa (chai đựng), người ta hòa tan axêtylen vào axêtôn và chất xốp để tạo điều kiện cho hỗn hợp hòa tan này có diện tích bề mặt tiếp xúc lớn.

Một thể tích axêtôn ở điều kiện tiêu chuẩn có thể hòa tan 23 lần thể tích axêtylen. Khi nhiệt độ môi trường tăng thì mức độ hòa tan axêtylen trong axêtôn giảm và ngược lại.

5. Các loại khí thay thế khí axêtylen. Đó là khí thiên nhiên, khí nén hồn hợp prôpan - butan. Để 1 m³ prôpan cháy, cần có 5 m³ ôxy, với butan sẽ là · 6,5 m³ ôxy.

Prôpan - butan nặng hơn không khí. Nhiệt độ của ngọn lửa do hỗn hợp khí này cháy đạt 2500 - 2750°C.

Ngoài propan - butan, để cát kim loại, người ta còn dùng khí thiên nhiên. Nhiệt độ ngọn lửa cháy của khí thiên nhiên đạt tối 2750°C - 2850°C.

Để cất kim loại cũng có thể dùng dầu hỏa. Hơi của dầu hỏa dễ cháy nổ. Nhiệt độ ngọn lửa cháy đạt tới 2200 - 2400°C khi hơi của nó cháy trong ôxy.

6. Xăng. Xăng là chất để bốc hơi, trong không khí để bắt lửa. Hơi xăng nặng hơn không khí, do đó để gia công không nên dùng xăng nguyên chất. Nên dùng hỗn hợp 65-50% dầu hỏa và 35-50% xăng.

Bảng 61 và 62 cho các loại khí cháy dùng cho hàn và cắt.

Bảng 61. Các loại khi cháy dùng để hàn và cắt [4]

Loại khí	Nhiệt độ ngọn	Tỷ lệ hỗn hợp	Giới hạn gây nổ của hỗn hợp với		
,	lửa với O ₂ (°C)	O ₂ /khí cháy	Không khí [%]	ôxy [%]	
Axêtylen (C ₂ H ₂)	2700 ÷ 3150	10 - 1,2	2,2 - 82	2,8 - 93	
Hydrô (H ₂) Hỗn hợp propan và butan	2100 ÷ 2800	0,25 - 0,35	4,1 - 75	3,0 - 95	
$(C_3H_3 + C_4H_{10})$	2100 ÷ 2800	2,5 - 3	2,3 - 9,5	2,0 - 60	
Mêtan (CH ₄)	1700 ÷ 2500	1,0 - 1,4	4,5 - 15	4,5 - 60	

Bảng 62. Các loại khí thay thế khí axêtylen

Khí thay thể	Khối lượng riêng	Hệ số thay th	Tỷ lệ tương		
	(kg/m³)	Khi hàn vẩy	Khi cắt ôxy	úng giữa ôxy và khí thay thế	
Hydrô	0,0898	·, •	1,2	1:4	
Propan kỹ thuật	1,867	· -	0,6	1:3	
.Khí dầu mỏ	0,776- 1,357	•	-	1:3	
Khí cốc	0,490	3,2	3,2	1:3	
Khí thiện nhiên	-		-	1:3	
Khí dầu hỏa		1,35	-		
Axêtylen	1,091		_	1:2,5	

III. HÀN VẨY

1. Khái niệm

Công nghệ hàn vấy là một phương pháp hàn cổ điển đã được dùng ở thời kỳ 3200 năm trước công nguyên. Hiện nay hàn vấy được sử dụng rộng rãi trong nhiều ngành công nghiệp và trong nhiều dạng kết cấu (hình 25).

Thực chất của hàn vây là phương pháp nối các chi tiết kim loại hoặc hợp kim ở trạng thái rấn nhờ một kim loại trung gian gọi là vẩy hàn. Vây hàn có nhiệt độ nóng chảy thấp hơn kim loại chi tiết hàn. Sự hình thành mối hàn ở đây chủ yếu dựa vào quá trình hòa tan và khuếch tán của vẩy hàn vào kim loại vật hàn ở mối nối. Vì thế trong quá trình hàn chỉ có vẩy hàn bị nóng chảy, do vậy có khả năng hòa tan vào mép hàn của chi tiết hàn và tiếp theo là quá trình khuếch tán khi mối hàn đông đặc.

Đặc trưng của hàn vẩy.

- Do không gây ra sự thay đổi thành phần hóa học của kim loại vật hàn, vùng ảnh hưởng nhiệt không tòn tại do vậy vật hàn không bị biến dạng.
- Có thể hàn được các loại kết cấu phức tạp mà các phương pháp hàn khác khó thực hiện được.
 - Có khả năng hàn các loại vật liệu khác nhau.
 - Năng suất hàn cao và không đòi hỏi công nhân bậc cao.
 - Hiệu quả kinh tế cao.

2. Nhiệt độ hàn

Nhiệt độ hàn vấy chọn theo loại vấy hàn sử dụng. Đối với loại vẩy hàn mao dẫn người ta chọn nhiệt độ trên nhiệt độ chảy của vẩy khoảng $(20 \div 100)^{\circ}$ C. Đối với loại vẩy bời đấp thì nhiệt độ thấp nhất của vẩy hàn phải bằng nhiệt độ đính bám (thấm ướt).

Căn cứ vào nhiệt độ chảy của vảy, người ta chia vấy hàn thành 2 loại:

- Vấy hàn mềm là loại vấy có nhiệt độ chảy thấp hơn 450°C.
- Vẩy hàn cứng là loại vấy có nhiệt độ chảy cao hơn 450°C.

3. Sự thấm đính của vẩy hàn

Yếu tố quan trọng khi hàn vấy là vẩy hàn phải có sức căng bề mặt ở bề mặt tiếp xúc giữa vật liệu rấn, vấy hàn lỏng và môi trường khí bảo vệ (hoặc thuốc hàn).

Độ thấm dính bị ảnh hưởng bởi độ chảy lỏng; độ mao dẫn.

Độ lớn của sức căng bề mặt của kim loại lỏng phụ thuộc vào cấu trúc của giọt kim loại; nhiệt độ, thành phần thuốc hàn; môi trường và một số yếu tổ về thành phần hóa học của vấy hàn.

Độ thấm dính là khả năng của vấy khi chảy dính bám vào bề mặt sạch của vật liệu cơ sở ở nhiệt độ làm việc. Khi đó hình dạng của giọt vấy hàn chảy lỏng sẽ có năng lượng hệ thống giữa 3 pha (vật liệu cơ sở - vẩy hàn - thuốc hàn) là nhỏ nhất và lúc đó sẽ xẩy ra liên kết nguyên tử.

Hình 26 cho thấy ở vị trí tiếp xúc của giọt vấy hàn có 3 thành phần lực:

- Lực F₁ là lực tương tác giữa các nguyên tử của lớp bề mặt của pha rấn và pha lỏng.
- Lực F2 là lực tương tác giữa các nguyên tử trong pha lỏng
- Lực F₃ là lực tương tác giữa các nguyên tử của pha khí.

Trên cơ sở sự tương tác của các thành phần lực đó có thể xẩy ra 2 trường hợp:

- Sự thẩm dính hoàn toàn: khi lực F_2 nhỏ hơn lực F_1 .
- Không thẩm dính, khi lực F_2 lớn hơn lực F_1 rất nhiều. Nếu gọi góc α là góc thẩm dính thì ta có phương trình:

$$\sigma_{12} + \sigma_{23} \cos \alpha - \sigma_{13} = 0 \tag{40}$$

Do vậy góc thấm đính sẽ là:

$$\cos\alpha = \frac{\sigma_{13} - \sigma_{12}}{\sigma_{23}} = \frac{\sigma_{H}}{\sigma_{23}} \tag{41}$$

ỏ đây $\sigma_{
m H}$ là ứng suất đính bám

Sự thấm dính sẽ xẩy ra khi $\sigma_{13} > \sigma_{12}$, $\cos \alpha > 0$, khi đó $0 < \alpha < 90^{\circ}$ (bảng 63).

Bảng 63. Độ lớn của góc thấm dính α

a^{0}	Mức độ thấm dính	Phạm vi sử dụng
0 đến 15°	Thẩm dính hoàn toàn	Sử dụng đối với loại hàn mạo dẫr
15 đến 75°	Thấm dính tốt	Hàn vấy đắp
75 đến 90°	Thấm định bình thường	Chí dùng cho hàn vấy đẩp
> 90°	Không thấm dính	Không dùng

Sự giảm ứng suất bề mặt σ_{23} và ứng suất σ_{12} và sự nâng cao ứng suất σ_{13} sẽ ảnh hưởng có lợi tới độ thấm dính. Với sự lựa chọn giá trị nhiệt độ, loại thuốc hàn và các thành phần hợp kim trong vấy hàn sẽ có ảnh hưởng đến giá trị của các ứng suất trên.

Đối với các vật liệu có tính dẫn nhiệt cao như Cu, Al v.v..., nhiệt độ của bề mặt hàn vấy trước khi có sự tiếp xúc với vấy hàn nóng chảy phải bằng nhiệt độ kết tinh của vẩy hàn. Đối với các vật liệu có tính dẫn nhiệt kém, nhiệt độ thấp nhất của bề mặt hàn phải thấp hơn khoảng 25% so với nhiệt độ kết tinh của vẩy hàn.

Độ thấm dính của vẩy hàn và sự chảy loang ra của vẩy hàn có thể nâng cao hơn khi giảm bốt lượng các nguyên tố đưa vào vẩy là: Pd, Li, Ni, Si, Mn, Be, V, B, P.

4. Tính mao dấn của vấy hàn

Đó là khả năng của vấy hàn chảy lỏng được điền đầy vào khe hỏ của mối nối ở nhiệt độ hàn bằng lực tác động mao dẫn.

Độ lớn của lực mao dẫn được xác định theo định luật thủy lực. Các kết quả thực tế đã cho thấy đối với loại vẩy hàn cứng sẽ đạt tính mao dẫn cao,

khi ứng suất dính bám $\sigma_{\rm H} \geq 500~{\rm MN.m}^{-1}$; đối với trường họp hàn vấy cứng trong môi trường ôxyt hóa thì $\sigma_{\rm H} \geq 1000~{\rm MN.m}^{-1}$. Mặt khác độ lớn của áp lực mao dẫn và mức độ mao dẫn cũng phụ thuộc vào dạng khe hỏ của mối nối.

5. Vảy hàn

Các yêu cầu cơ bản đối với vẩy hàn để bảo đảm các tính chất của mối hàn và công nghệ hàn gồm:

- Không hình thành các pha chuyển hóa cúng.
- Sự khác nhau về điện thế của vật liệu hàn và vẩy hàn phải nhỏ.
- Các kim loại nguyên chất phải có tính hàn tốt (độ thẩm đính; độ chảy loang; độ mao dẫn) cho các tính chất có lý của mối hàn tốt.
 - Các loại vẩy hàn cùng tinh cho tính hàn vày tốt và cho các tính chất có học của mối hàn tốt.

Các loại vẩy hàn mềm là các hợp kim chữa Sn; Pb; Cd; Bi

Hình 25. Các dạng liên kết hàn vảy
1- liên kết chồng; 2, 3 - liên kết giáp mối; 4 - liên kết
giáp mối nghiêng; 5- liên kết giáp mối có đệm;
6, 7, 8- các dạng liên kết chồng đồng tâm; 9- liên kết
chủ T; 10- liên kết ghép mí; 11, 12, 13- các liên kết ống.

và có nhiệt độ khi làm việc từ 190 ÷ 350°C. Các loại vẩy này thường dùng cho các mối nối có tính chất cơ học và chịu nhiệt nhỏ. Độ bền đạt được từ 20 ÷ 40 MPa. Các loại vẩy này thông thường có trên cơ sở Sn-Pb.

Các loại vẩy hàn mềm đặc biệt để bảo đảm các yêu cầu đặc

Hình 26. Sơ đồ biểu thị sự thấm dính α - góc thấm; σ_{12} - ứng suất căng bề mặt giữa vật liệu cơ sở và giọt chất lỏng; σ_{13} - ứng suất bề mặt giữa vật liệu cơ sở và môi trường; σ_{23} - ứng suất bề mặt giữa giọt kim loại lỏng và môi trường.

biệt. Loại này thường gồm nhiều thành phần hợp kim (ngoài thành phần Sn, Pb) như Cu, Zn hoặc các nguyên tố hợp kim như Ag; Sb; Bi... Để hàn hợp kim nhôm thưỡng dùng loại vấy hàn chứa phần lớn Zn, vì vẩy này sẽ tạo với nhôm liên kết khuếch tán và tạo ra dung dịch đặc. Khi hàn hợp kim nhôm với vẩy thiếc tinh khiết thì liên kết chỉ là liên kết đính bám.

Vẩy hàn cứng dùng cho các liên kết yếu cầu các tính chất cơ học và chịu nhiệt cao. Các loại vẩy này thích hợp cho các kim loại và hợp kim với nhiệt độ chảy trên 1000°C.

Theo thành phần hóa học và mục đích sử dụng, có thể chia vấy hàn cứng trên cơ sở sau:

- + Cu Zn dùng cho kim loại đen và kim loại màu có nhiệt độ chảy trên 1000°C. Ví dụ, các vấy đồng, đồng thau có thể hàn với khe hỏ nhỏ hon 0,02 mm. Vẩy hàn đồng thau (đồng vàng) có thể hàn cho mọi phương pháp hàn, trừ trưởng hợp hàn trong môi trưởng ôxyt hóa hoặc trong chân không.
- + Vẩy Ag dùng hàn kim loại đen và kim loại màu (vẩy này có Zn và Cd) thường làm việc ở nhiệt độ từ $630 \div 800$ °C.
- + Vẩy Ni dùng hàn các loại thép chịu nhiệt hoặc các thép hợp kim chịu nhiệt.
- + Vẩy Pd dùng hàn các chi tiết của tuabin khí, máy bay và trong lĩnh vực điện tử.

+ Khi hàn trong chân không (độ chân không $10^{-1} \div 10^{-4}$ Pa) người ta dùng các loại vẩy trên cơ sở Ag; Cu, Au; Ge; Ni; Pt, Pd.

Bảng 64 ÷ 67 giới thiệu các loại vảy hàn của Liên bang Nga.

6. Thuốc hàn

Thuốc hàn có các yêu cầu co bản sau:

- Tạo điều kiện thấm dính tốt nhất giữa vẩy hàn với kim loại cơ sở.
- Làm chảy lỏng nhanh các ôxyt bề mặt và trong diện rộng trước khi hàn.
- Nhiệt độ phản ứng xẩy ra phải thấp hơn nhiệt độ chảy của vẩy khoảng $50 \div 150^{\circ}$ C.
- Khoảng nhiệt độ chảy của thuốc phải thấp hơn nhiệt độ kết tinh 50° C và cao hơn nhiệt độ chảy lỏng 50° C.
 - Dễ làm sạch sau khi hàn và không tạo các khí có hại.

Thuốc hàn cho vẩy hàn mềm thường dùng là ZnCl₂.

Thuốc hàn dùng cho hàn vẩy cứng gồm:

- Borāc (Na₂B₄O₇ 10H₂))
- Acit boric (H₃BO₃)

Bảng 64. Vấy hàn đồng - kếm

Ký hiệu vấy hàn	Khối lượng riêng (g/cm ³)	Nhiệt độ chảy (°C)	Phạm vi sử dụng
ПМЦ-36	7,7	823	Hàn các chi tiết kim loại khi không yêu cầu có độ bền cao.
ПМЦ-42	8,1	849	Hàn vày đồng thau với nồng độ 68% Cu và hàn đồng thanh
ПМЦ-47	8,2	960	Hàn vày đồng thau Л62
ПМЦ-52	8,3	885	Hàn vày đồng thanh Л68; thép Л80
Л62	8,4	905	Hàn vảy thép

Bảng 65. Vấy hàn thiếc - chì

ITOC-61 8,5 190 Ma và hàn vẩy trong thiết bị diện to các dụng cụ gá lấp ITOC-40 9,3 238 Ma và hàn vẩy các thiết bị diện các chi tiết máy. ITOC-10 10,8 299 Mạ, hàn vẩy các bề mặt tiếp xúc của thiết bị diện, rdle, dụng cụ do. ITOC-61M 8,5 192 Ma hàn vảy dây dấn dồng, cáp trong công nghiệp ITOKC 50-18 8,8 145 Hàn váy các chi tiết máy, các bình ngung tư, hàn các chi tiết keranic. ITOCCY 61-05 8,5 189 Ma và hàn vảy các thiết bị diện, máy diện, diện tử. ITOCCY 50-05 8,9 216 Ma và hàn vảy các máy diện, các dường ống và các chi tiết của máy lạnh. ITOCCY 40-0,5 9,3 235 Ma, hàn vảy các chi tiết trong lĩnh vực diện, hàn cáp ITOCCY 35-05 9,5 245 Ma và hàn vảy các chi tiết trong lĩnh vực diện, hàn cáp ITOCCY 95-5 7,3 240 Hàn vẩy dùng trong công nghiệp diên; hàn các duỳng ống làm việc ở nhiệt độ cao. ITOCCY 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. ITOCCY 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	Ký hiệu vẩy hàn	Khối lượng riêng (g/cm ³)	Nhiệt độ chảy (°C)	Phạm vi sử dụng
Các dụng cụ gá lấp Mạ và hàn vấy các thiết bị điện các chi tiết máy. TIOC-10 10,8 299 Mạ, hàn vấy các bề mặt tiếp xức của thiết bị điện, role, dụng cụ do. TIOC-61M 8,5 192 Mạ, hàn vấy dấy dấn dồng, cáp trong công nghiệp TIOKC 50-18 8,8 145 Hàn váy các chi tiết máy, các bình ngung tư, hàn các chi tiết keranic. TIOCCy 61-05 8,5 189 Mạ và hàn vây các thiết bị điện, máy điện, điện tử. TIOCCy 50-05 8,9 216 Mạ và hàn vây các kết cấu trong ngành hàng không. TIOCCy 40-0,5 9,3 235 Mạ, hàn vây các chi tiết của máy lạnh. TIOCCy 35-05 9,5 245 Mạ và hàn vây các chi tiết trong lĩnh vực điện, hàn cáp TIOCCy 30-05 9,7 255 Mạ và hàn vây các tấm kẽm. TIOCCy 95-5 7,3 240 Hàn vấy dùng trong công nghiệp điện, hàn các đường ống làm việc ở nhiệt độ cao. TIOCCy 18-2 10,1 270 Hàn vấy trong công nghiệp ôtô. TIOCCy 5-1 112 308 Mặ và hàn vấy các chi tiết làm việc	HOC-90	7,6	220	trong của dụng cụ gia đình và thiết
chi tiết máy. Ma, hàn vấy các bề mặt tiếp xức của thiết bị diện, rơle, dụng cụ do. Ma, hàn vấy các bề mặt tiếp xức của thiết bị diện, rơle, dụng cụ do. Ma, hàn vấy dây dẫn dồng, cáp trong công nghiệp FIOKC 50-18 8,8 145 Hàn váy các chi tiết máy, các bình ngưng tự, hàn các chi tiết keranic. Ma và hàn vảy các thiết bị diện, máy diện, diện tử. FIOCCy 50-05 8,9 216 Ma và hàn vảy các kết cấu trong ngành hàng không. FIOCCy 40-0,5 9,3 235 Ma, hàn vảy các máy diện, các dường ống và các chi tiết của máy lạnh. Ma và hàn vảy các chi tiết của máy lạnh. FIOCCy 35-05 9,7 255 Ma và hàn vảy các tấm kẽm. FIOCCy 95-5 7,3 240 Hàn vẩy dùng trong công nghiệp diện; hàn các dường ống làm việc ở nhiệt độ cao. FIOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	ΠOC-61	8,5	190	Mạ và hàn vẩy trong thiết bị điện tủ các dụng cụ gá lắp
Của thiết bị điện, roie, dụng cụ đo. Ma, hàn vấy dây dẫn đồng, cáp trong công nghiệp FIOKC 50-18 8,8 145 Hàn vây các chi tiết máy, các bình ngung tự hàn các chi tiết keranic. Ma và hàn vây các thiết bị điện, máy điện, diện tử. FIOCCy 50-05 8,9 216 Ma và hàn vày các kết cấu trong ngành hàng không. FIOCCy 40-0,5 9,3 235 Ma, hàn vày các máy điện, các đường ống và các chi tiết của máy lạnh. FIOCCy 35-05 9,5 245 Ma và hàn vày các chi tiết trong lĩnh vực điện, hàn cáp Ma và hàn vày các tấm kẽm. FIOCCy 95-5 7,3 240 Hàn vấy dùng trong công nghiệp điện; hàn các đường ống làm việc ở nhiệt độ cao. FIOCCy 5-1 112 308 Ma và hàn vây các chi tiết làm việc	ПОС-40	9,3	238	Mạ và hàn vẩy các thiết bị điện các chi tiết máy.
trong công nghiệp Hàn vây các chi tiết máy, các bình ngưng tự, hàn các chi tiết keranic. HOCCy 61-05 8,5 189 Ma và hàn vây các thiết bị điện, máy điện, điện tử. HOCCy 50-05 8,9 216 Ma và hàn vây các kết cấu trong ngành hàng không. HOCCy 40-0,5 9,3 235 Ma, hàn vây các máy điện, các đường ống và các chi tiết của máy lạnh. HOCCy 35-05 9,5 245 Ma và hàn vây các chi tiết trong lĩnh vực điện, hàn cáp HOCCy 30-05 9,7 255 Ma và hàn vây các tấm kẽm. HOCCy 95-5 7,3 240 Hàn vẩy dùng trong công nghiệp điện; hàn các đường ống làm việc ở nhiệt độ cao. HOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. HOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	ΓΙΟC-10	10,8	299	
ngưng tự hàn các chi tiết keranic. Mạ và hàn vày các thiết bị điện, máy diện, diện tử. Ma và hàn vày các kết cấu trong ngành hàng không. IIOCCy 40-0,5 9,3 235 Ma, hàn vày các máy diện, các dường ống và các chi tiết của máy lạnh. IIOCCy 35-05 9,5 245 Ma và hàn vày các chi tiết trong lĩnh vực diện, hàn cáp IIOCCy 30-05 7,3 240 Hàn vẩy dùng trong công nghiệp diện; hàn các dường ống làm việc ở nhiệt độ cao. IIOCCy 5-1 112 308 Ma và hàn vảy các chi tiết làm việc	ITOC-61M	8,5	192	The second secon
máy diện, diện tử. Ma và hàn vày các kết cấu trong ngành hàng không. IIOCCy 40-0,5 9,3 235 Ma, hàn vày các máy diện, các dường ống và các chi tiết của máy lạnh. IIOCCy 35-05 9,5 245 Ma và hàn vảy các chi tiết trong lĩnh vực diện, hàn cáp IIOCCy 30-05 9,7 255 Ma và hàn vày các tấm kẽm. IIOCCy 95-5 7,3 240 Hàn vẩy dùng trong công nghiệp diện; hàn các dường ống làm việc ở nhiệt độ cao. IIOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. IIOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	FIOKC 50-18	8,8	145	,
ngành hàng không. ITOCCy 40-0,5 9,3 235 Ma, hàn vây các máy diện, các dường ống và các chi tiết của máy lạnh. ITOCCy 35-05 9,5 245 Ma và hàn vây các chi tiết trong lĩnh vực diện, hàn cáp ITOCCy 30-05 9,7 255 Ma và hàn vây các tấm kẽm. ITOCCy 95-5 7,3 240 Hàn vẩy dùng trong công nghiệp diện; hàn các dường ống làm việc ở nhiệt độ cao. ITOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. ITOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	ПОССу 6105	8,5	189	1
dường ống và các chi tiết của máy lạnh. FIOCCy 35-05 9,5 245 Mạ và hàn vây các chi tiết trong lĩnh vực diện, hàn cáp FIOCCy 30-05 9,7 255 Ma và hàn vây các tấm kẽm. Hàn vẩy dùng trong công nghiệp diện; hàn các dường ống làm việc ở nhiệt độ cao. FIOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. FIOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	ПОССу 50-05	8,9	216	-
ITOCCy 30-05 9,7 255 Ma và hàn vày các tấm kẽm. Hàn vẩy dùng trong công nghiệp điện; hàn các đường ống làm việc ở nhiệt độ cao. ITOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. ITOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	ПОССу 40-0,5	9,3	235	đường ống và các chi tiết của máy
TIOCCy 95-5 7,3 240 Hàn vẩy dùng trong công nghiệp diện; hàn các dường ống làm việc ở nhiệt độ cao. TIOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. TIOCCy 5-1 112 308 Ma và hàn vẩy các chi tiết làm việc	ПОССу 35-05	9,5	245	•
diện; hàn các dường ống làm việc ở nhiệt độ cao. ITOCCy 18-2 10,1 270 Hàn vẩy trong công nghiệp ôtô. ITOCCy 5-1 112 308 Mạ và hàn vẩy các chi tiết làm việc	I1OCCy 30-05	9,7	255	Mạ và hàn vảy các tấm kērm.
ITOCCy 5-1 11.2 308 Ma và hàn vẩy các chi tiết làm việc	ПОССу 95-5	7,3	240	điện; hàn các đường ống làm việc ở
	ПОССу 18-2	10,1	270	Hàn vẩy trong công nghiệp ôtô.
ט מוש וויין מין שליין אין מין מין מין מין מין מין מין מין מין מ	ПОССу 5-1	11,2	308	Mạ và hàn vẩy các chi tiết làm việc ở điều kiện nhiệt độ cao.

Bảng 66. Vây bạc

	Khối	Nhiệt (độ (°C)	Ký hiệu vẩy hàn	Khối	Nhiệt	độ (°C)
Ký hiệu vầy hàn	lượng riêng (g/cm ³)	Bắt đầu chảy	Chảy hoàn toàn		lu ợ ng riêng (g/cm ³)	Bắt đầu chảy	Chảy hoàn toàn
ПС _р .72	9,9	779	779	ПС _р 40	8,4	595	605
11C ₀ .50	9,3	779	850	ПС _р 37,5	8,9	725	810
ПС ₀ .70	9,8	730	755	ПС ₀ 65			-
ПС _р .62	9,7	660	700	ПС 25	8,5	650	710
ПС ₀ .45	9,1	660	725	ITC _p 15	8,3	635	810
ПС 25	8,7	745	725	пС з	8,7	300	325
ITC _p .12M	8,5	780	825	IIC 3	11,3	300	305
FIC _p .10	8,4	815	850	ПС 2,5	11,0	295	305
TIC ₀ .71	9,8	750	795	IIC _p 2	9,6	225	235
ПС _р .50	9,3	635	650	ПС 1,5	10,4	265	270
IIC ₀ .44	8,9	650	800	_			

Bảng 67. Vấy nhôm để hàn vấy nhôm và hợp kim nhôm

Ký hiệu vẩy hàn	Khối lượng riêng (g/cm ³)	Nhiệt độ chảy (°C)	Ký hiệu vấy hàn	Khối lượng riêng (g/cm ³)	Nhiệt độ chảy (°C)
П590A	2,89	590	34-1	3,33	525
П575A	3,08	575	ПА-124	-	550
П550A	3,41	550	B-62	3,80	500

Chương IV HÀN ĐIỆN TIẾP XÚC

I. KHÁI NIỆM CHUNG

Hàn điện tiếp xúc là một phương pháp công nghệ tạo nên liên kết nối không thể tháo rồi do kết quả nung nóng kim loại khi dòng điện chạy qua chỗ tiếp xúc nối và sư biến dạng đẻo của vùng được nung nóng dưới tác dụng của lực ép. Hàn điện tiếp xúc bao gồm một nhóm các phương pháp khác

Hình 27. a) Hàn giáp mối đối đầu; b) Hàn giáp mối ống (cao tần); c) Hàn điểm; d) Hàn đường.

- 1- Chi tiết hàn; 2, 3- cực hàn; 4- nguồn thứ cấp; 5- con lăn hàn;
- 6- nguồn cao tần: 7- mối hàn. F- lực ép; l- dòng điện hàn;
 S- sự dịch chuyển của chi tiết.

nhau nhưng đều có đặc điểm chung là: cho liên kết bền vững, khả năng cơ khí hóa, tự động hóa cao, có năng suất cao và là những phương pháp có điều kiện sản xuất tốt.

Hàn điện tiếp xúc được sử dụng rộng rãi trong công nghiệp. Theo thống kê, hàn điện tiếp xúc chiếm 30% tổng số các kết cấu, chi tiết hàn.

Các phương pháp hàn điện tiếp xúc được biểu thị trên hình 27.

II. NGUỒN NHIỆT HÀN

Sự nung nóng chi tiết hàn trong hàn điện tiếp xúc được thực hiện bởi nguồn nhiệt do dòng điện chạy qua bề mặt tiếp xúc của chi tiết-hàn trong một thời gian ngắn.

Lượng nhiệt sinh ra trên phần kim loại giữa 2 điện cực trong thời gian t_h được xác định theo định luật Jun-Lenxo.

$$Q = \int_{0}^{t_{h}} I^{2}Rdt$$

Diện trở toàn phần được xác định theo so đồ hình 28.

Hình 28. Điện trở điện tiếp xúc khi hàn điểm (a)
 (a); hàn giáp mối (b); Sơ đồ lưới điện trở c)
 I- dòng điện hàn; S- chiều dày tấm hàn; d_k- đường kính điện cực.

$$R = R_{tx} + 2R_{det} + R'_{et} + R''_{et}$$
 (43)

trong đó: Rix- điện trở tiếp xúc của chi tiết với chi tiết.

R_{det}- điện trở tiếp xúc giữa điện cực và chi tiết.

R'ct; R"ct- điện trở riêng của các chi tiết hàn.

Khi hàn các chi tiết dày bằng nhau (hoặc tiết diện bằng nhau) thì $R'_{ct} = R''_{ct} = R_{ct}$.

Điện trở R_{tx} , R_{dct} phụ thuộc vào điện trở tiếp xúc giữa chúng và số lượng điểm tiếp xúc, chúng được xác định bằng trạng thái bề mặt tiếp xúc và giá trị lực ép. Ví dụ; điện trở R khi ép 2 tấm bằng thép cacbon thấp có chiều dày (3+3)mm với lực ép 200 kG khi hàn điểm và bề mặt hàn được làm sạch thì điện trở trên điểm ép là 100 μ KΩ; Khi bề mặt được gia công bằng cắt gọt thì $R=1200~\mu$ KΩ; khi bề mặt bẩn có vày ôxyt thì $R=80.000~\mu$ KΩ.

Giá trị Q cũng có thể tính gần đúng theo điều kiện trạng thái nhiệt của vật liêu.

$$Q = Q_1 + Q_2 + Q_3 \tag{44}$$

 \mathring{O} đây Q_1 , Q_2 , Q_3 lần lượt là lượng nhiệt cần thiết để làm kim loại chảy; nhiệt lượng nung nóng ở vùng ảnh hưởng nhiệt khi hàn và nhiệt nung nóng điện cực hàn.

Từ Q ta có thể xác định được dòng hàn theo công thức:

$$1 = \sqrt{\frac{Q}{0.24 \text{ k R}_{\text{otc}} t_{\text{h}}}}$$
 [A]

 \dot{O} dây: R_{ctc} - diện trở của chi tiết ở giải đoạn cuối quá trình nung nóng. Ω . k - hệ số kể đến sự thay đổi điện trở trong quá trình hàn. t_{h} - thời gian hàn (s).

Chuang V

ĐỊNH MỰC TIÊU HAO VẬT LIỆU HÀN HỒ QUANG

I. TÍNH TOÁN ĐỊNH MỰC TIỀU HAO VẬT LIỆU HÀN (que hàn, dây hàn cho hàn hò quang điện, hàn điện xi và hàn đấp).

Định mức tiêu hao $\dot{H_E}$ (kg) của que hàn và dây hàn cho chi tiết hàn được xác định theo chiều dài mối hàn l_h (m) và định mức tiêu hao đơn vị G_E (trên 1 mét mối hàn) được xác định bằng công thức:

$$H_{E} = G_{e} l_{h} \tag{46}$$

Trong đó định mức tiêu hao đơn vị được tính theo công thức sau: [3,12]

$$G_{e} = k_{p} \cdot m_{H} \tag{47}$$

$$m_{\rm H} = \rho.F_{\rm H}.10^{-3}$$
 (48a)

 \dot{O} đây: m_H - khối lượng kim loại nông chảy tính toán (kg/m);

k_p- hệ số tổn thất;

ρ- khối lượng riêng của kim loạ, nóng chảy (g/cm³);

F_H - diện tích tiết diện của kim loại nóng chảy của mối hàn (mm²) (bảng 68).

Khi hàn que hàn có thiếc bọc mỏng thường dùng $\rho=7.5~\rm g/cm^3$; que hàn với lớp thuốc bọc dày $\rho=7.8~\rm g/cm^3$. Dien tích F_H có thể lấy bằng tổng các phần hình học chia nhỏ (bảng 68).

Với hàn hỏ quang điện, kích thước của các mối hàn trên chi tiết hàn sẽ căn cứ vào các tiêu chuẩn hoặc theo các bản vẽ thiết kế, ví dụ, đối với hàn điện xi các bộ phận kết cấu cơ bản của liên kết hàn được lấy theo chi dẫn tiêu chuẩn.

Hệ số tiêu hao khi hàn bằng que hàn:

$$k_{p} = k_{o}k_{y}k_{n} \tag{48b}$$

 \mathring{O} đây: k_o - hệ số mất mát tính toán của que hàn trên phần kẹp, phần chấy phân tán (bảng 69).

kn- hệ số khối lượng tính toán của thuốc bọc.

$$k_{n} = 1 + 0.9 k \tag{49}$$

$$k = \frac{m_E - m_{cm}}{m \cdot l_o} \tag{50}$$

trong đó: k - hệ số khối lượng thuốc bọc (bảng 83 ÷ 87)

mE- khối lượng que hàn (g);

m_{cm}- khối lượng lỗi que trên toàn bộ chiều dài (g);

lo - chiều dài của phần kẹp (cm);

m - khối lượng 1cm dây hàn (g/cm) (bảng 70-71);

 \mathbf{k}_{V} - hệ số tổn thất tính toán của kim loại que hàn.

$$k_{y} = \frac{1}{1 - \psi} \tag{51}$$

Ở đây: ψ - hệ số mất mát: đặc trưng sự mất mát kim loại que hàn do sự cháy, bắn tóc và ôxyt hóa. Giá trị của hệ số mất mát này được tính toán theo công thức (48b) cho các loại que hàn sản xuất theo ngành, cơ sở và được tham khảo trong các bảng (83 ÷ 87).

Hệ số tiêu hao k_p khi hàn dưới lớp thuốc hoặc hàn điện xi được tính toán theo mất mát vật liệu điện cực (đây, tám); ở phần đầu máy và phần kẹp trên máy v.v... Khi tính cho hàn tự động và hàn điện xi hệ số k_p được lấy là 1,02 và cho hàn bán tự động là 1,03 [12] (bảng 72a - hệ số k_p cho hàn trong môi trường khí bảo vệ).

Bảng 68. Diện tích tiết diện hàn F₄

Tiết diện ngang mối hàn	Ký hiệu liên kết	Công thức
45° e	Cl	$F_{H} = sb_{p} + 2eg \cdot 2g^{2}$
\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$	C2	$F_{H} = sb_{p} + eg - g^{2} + \frac{1}{2}k(s_{1} - s)$
55° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8°	СЗ	$F_{H} = sb_{p} + eg - g^{2}$
45° e	y1	$F_{H} = sb_{p} + eg - g^{2} + \frac{1}{2}kk_{1}$

,		
Tiết diện ngang mối hàn	Ký hiệu liên kết	Công thức
DP.	Y2	$F_{H} = 1.4 lsb_{p} - \frac{1}{2}b_{p}^{2} + \frac{1}{2}k^{2}$
45° e	Y3	$F_{H} = sb_{p} + eg - g^{2}$
45° e	Y4	$F_{H} = sb_{p} + eg - g^{2} + 0.29k^{2}$
50 J	T1	$F_{H} = sb_{p} + kk_{1}$

Tiết diện ngang mối hàn	Ký hiệu liên kết	 Công thức
bp Sn	Т2	F _H = sb _p + k ² - 0,42k
K Y	T3	$F_{H} = sb_{p} + \frac{1}{2}kk_{1}$
<u>b</u> ,		

Bảng 69. Hệ số ko cho que hàn có chiều dài chuẩn [8]

Chieu c	lài (mm)	le le	Chiều dài (mm)		l-
Que hàn l _E	Phần chảy của que lc	$k_0 = \frac{E}{l_p}$	Que hàn i _E	Phần chảy của que lo	$k_0 = \frac{E}{l_p}$
225	175	1,28	350	300	117 ,
250	200	1,25	400	350	1,14
300 .	250	1,20	450	400	1,12

Ghi chứ: Khi xác định ko chiều dài thường lấy bằng 50 mm

Bảng 70. Khối lượng 1 cm dây thép điện cực (g) [8]

Dường kính dây (mm)	m	Đường kính dây (mm)	m
1.0	0,06	4,0	0,99
1,2	0,09	5,0	1,54
1,6 =	0,16	6,0	2,22
2,0	0,25	8,0	3,95
2,5	0,38	10,0	6,17
3,0	0,55	12,0	8,88

Bảng 71. Khối lượng lỗi thép [8]

	ᄗ	0,12		•		310,3-302	354,4-347,8	399-391	400-390	
	10	-0,10		,	•	216-211	158-154 246,2-240,3 354,4-347,8	177,5-173 277-270,2	278-273	
	æ	Q ,		,	•	138-134,5	158-154	177,5-173	177,5-173	
Duờng kính lới và sai lệch theo dường kính (mm)	9			•	•	77,6-75,5	88,8-86,5	99,8-97,2	100-97	
ch theo duò	5	90'0				54-524	617-59,9	69,3-67,2	69.4-67,3	
Õivàsail∯k	4		•		29,6-28,4	34,5-33,1	39,43-37,9	44,4-42,6		
Duờng kính	က		12,47-11,97	13,85-13,3	16,62-15,87	13,47-12,83 19,4-18,6	,			
	2,5	90'0-	5,56-5,25 8,67-8,27 12,47-11,97	9,64-9,2	11,52-11	13,47-12,83	•	. •	•	
	2	ợ	5,56-5,25	6,17-5,82	7,3-6,88	•			•	
	1,6		3,55-3,3	3,94-3,65	•	•	•		•	
رج الإ	lõi (mm)		225	250	300	320	9	40.	650	

Bảng 72a. Hệ số kp khi hàn trong môi trường khí bảo vệ

Phương pháp hàn	k _p
Hàn điện cực không nóng chảy trong môi trường khí trở với kim loại bổ	
sung: - bằng tay	1,1
tự động	102
Hàn tư động và bán tự động điện cực nóng chảy trong mỗi trưởng khí trơ, trong hỗn hợp khí trơ và khí hoạt tính (75% Ar + 25% CO ₂)	1,05
Hàn tự động và bán tự động trong môi trường khí cacbon; hàn tự động trong hỗn hợp (50% Ar + 50% CO ₂)	1,15
Hàn thép không gi tấm mỏng với hỗn hợp khí (50% Ar + 50% $\rm CO_2$) hàn thép tấm mỏng ($\delta > 30$ mm) trong khí $\rm CO_2$	1,05

Định mức tiêu hao thuốc cho sản phẩm hàn H_{th} được xác định theo tiêu hao dây hàn trên sản phẩm $H_{\rm E}$.

$$H_{th} = k_{th} \cdot H_E \tag{52}$$

 \dot{O} đây: k_{th} - hệ số phụ thuộc tỷ lệ khối lượng thuốc chảy và khối lượng dây hàn; chúng phụ thuộc vào loại mối hàn và phương pháp hàn (bảng 72b).

Giá trị k_{th} cho liên kết hàn diện hỏ quang là 2,7 \pm 3 và khi hàn điện xì là 0,05 \pm 0,1.

Bảng 72b. Hệ số k_{th} khi hàn dưới lớp thuốc và hàn điện xi [12]

B	Mối hàn của liên kế	Mối hàn của liên kết	
Phương pháp hàn	Không vát mép	Có vát mép	có và không có vát mép
Tự động	1,3	1,2	1,1
Bán tự động	1,4	1,3	1,2

III. KHÍ BẢO VỆ ĐỂ HÀN HÒ QUANG TRONG MÔI TRƯỜNG KHÍ BẢO VỀ

Định mức tiêu hao khí bảo vệ cho sản phẩm $H_g(l)$ được xác định theo công thức sau [3]:

$$H_g = Q_g I_h + Q_{ph} (53)$$

Ò đây: Qg- định mức tiêu hao trên 1m mối hàn (lít);

lh- chiều dài mối hàn (m);

Q_{ph}- tiêu hao phụ của khí trong các nguyên công chuẩn bị, kết thúc như: điều chỉnh trước khi hàn, khí bảo vệ điện cực volfram khỏi sự ôxyt hóa khi hàn...

Định mức tiêu hao khí được xác định theo công thức:

$$Q_g = q_g t_0 \tag{54}$$

trong đó: q_g- tiêu hao tối ưu khí bảo vệ (chỉ trên đồng hồ đo) (l/phút) t_o- thời gian máy khi hàn cho một mét chiều dài (phút).

Thời gian cơ bản khi hàn điện cực nóng chảy có thể xác định theo công thúc sau [11]:

$$t_{o} = \frac{m_{H}60.10^{3}}{\alpha_{d}.I_{h}}$$
 (55)

O đây: m_H- khối lượng kim loại đấp (kg/m) của mối hàn (xem công thức 48a);

 α_{d} - hệ số đấp (g/Ah) bảng 73;

Ih- dòng điện hàn (A).

Thời gian cơ bản khi hàn điện cực không nóng chảy có thể xác định theo công thức sau [3]:

$$t_o = \frac{60}{V_h} \tag{56}$$

Giá trị tối ưu của q_g ; I_h ; V_h được chọn theo chế độ hàn của qui trình công nghệ đã biết. Đối với giá trị t_o có thể tính toán theo định mức thời gian khi hàn trong môi trường khí bảo vệ.

Tiêu hao phụ của khí hàn Q_{ph} (l) cho các nguyên công chuẩn bị, kết thúc

v.v... không phụ thuộc vào tốc độ hàn.

$$Q_{ph} = \iota_{n} \cdot q_{g} \tag{57}$$

 \dot{O} đây: t_n - thời gian cho các nguyên công chuẩn bị, kết thúc (phút). Khi hàn điện cực không nóng chảy $t_n\approx 0.2$ ph; khi hàn que hàn $t_n\approx 0.05$ phút.

Định mức tiêu hao khí bảo vệ được tính theo công thức (53). Cho mối hàn ngắn (nhỏ hơn 50mm) và cho các đường kính nhỏ hơn 20mm, cần phải tăng tiêu hao khí bảo vệ lên 20%.

Khi hàn các mối hàn phía ngược lại cũng bằng phương pháp hàn trong môi trường khí bảo vệ thì sự tiêu hao khí cũng được xác định theo công thức (54) với hệ số là $1.3 \div 1.5$.

Bảng 73. Hệ số đắp α_d (g/Ah) khi hàn trong môi trường CO_2 và nối nghịch [5]

լ _ը (A)	Đường kính que hàn (mm)		I _n (A)	Đường	kính que ha	àn (mm)	
'h ''''	16 20 25		1,6	2,0	2.5		
200	14,2	12,2	-	450	24,1	19,0	15.6
250	15,1	12,6	-	500	28.3	22,3	17.8
300	16.5	13,5	11,1	550		-	20.5
350	18.6	14,8	12.4	600			24.2
400	211	16.8	13,9				

Bảng 74a. Định mức tiêu hao ôxy và axêtylen trên 1m mối hàn (1)

Kim loại hàn	Ôxy tinh khiết 99%	axêtylen
Thép (mối hàn góc bên trong, vòng)	14S ²	117.S2
Thép (mối hàn giáp mối)	10S ²	8,3S ²
Thép (mối hàn góc phía ngoài)	7,6\$ ²	6,26\$ ²
Đồng vàng	10S ²	8,3S ²
Nhôm	3S ²	2,5S ²

Ghi chui: S là chiều dày kim loại hàn (mm)

IV. VẬT LIỀU CHO HÀN VÀ CẮT BẰNG KHÍ

Các hệ số cho việc định mức tiêu hao ôxy phụ thuộc vào độ tinh khiết của ôxy (bảng 74b)

Bảng 74b. Bảng định mức tiêu hao ôxy

Ôxy tinh khiết	99,5%	99%	98,5%	98%
Hệ số sủa đổi	0,9	1,0	1,1	124

Chú thích: Đề xác định mức tiêu hao khí thay thế khí axêtylen cần phải định mức tiêu hao khí theo axetylen và tính đến hệ số thay thế tương ứng cho loại khí thay thế đó (bảng 62).

Tiêu hao dây bổ sung có thể xác định theo khối lượng kim loại nóng chảy và bổ sung thêm phần tổn thất (do cháy, bắn tốc...) 7-15% khối lượng kim loại chảy:

$$H_{np} = kS^2 + (0.07 \div 0.15)kS^2$$
 (58)

O đây: H_{np}- tiêu hao dây bổ sung (g/m);

k- hệ số phụ thuộc vào góc vát mép mối hàn. Khi góc là 45°; 40°; 35° k tương ứng là 10; 9; 8 và khi các tấm mỏng không vát mép k = 12. [12].

Dịnh mức tiêu hao ôxy trên 1 m cắt khi cắt bằng khí bao gồm có định mức tiêu hao đón vị cho việc cắt; nung nóng; cũng như các mất mát khác (như không sử dụng hết ôxy còn trong bình chứa ôxy 2,56%, điều chính ngọn lửa; tổn thất qua các cửa van; nung nóng mỏ cắt, phân hủy 4,5%) (bảng 74a)

Công thức tổng quát tính toán định mức tiêu hao ôxy (1/h)có dạng:

$$H_{k} = 1.07(H_{pk} + H_{nk}) \tag{59}$$

O đây: H_{pk} và H_{nk} - định mức tiêu hao ôxy tương ứng khi cắt và nung nóng (1/h), chúng được xác định theo công thức : [4]

$$H_{pk} = Q_{pk} \cdot t_o = (2.7 + \frac{3.4}{S})bSV_{pe}t_o$$
 (60)

$$t_{o} = \frac{l_{pe}}{V_{pe}} \tag{61}$$

Khi
$$l_{pe} = 1 \text{ m th} i$$
 $H_{pk*} = (2.7 + \frac{3.4}{S}).bS$ (62)

Ở đây: Qpk- tiêu hao ôxy cất [l/h];

t_o- thời gian cơ bản cần thiết để cắt 1m với tốc độ cắt đã chọn (h).

S- chiều đày kim loại cắt (mm);

b- chiều rộng cắt (mm);

lpe- chiều dài cắt (m);

V_{pe}- tốc độ cắt (m/h).

Bảng 75a. Chiều rộng cắt và thời gian giữ nhiệt phụ thuộc vào chiều dày kim loại [8]

Thông số		C	hiều dày k	im loại (m	n)	
mong so	5-15	15-30	30-60	60-100	100-150	150-200
Chiều rộng cắt (mm)	2-2,5	2,3-3	3-3,5	3,5-4,5	4,5-5,5	5,5-6,5
Thời gian t _n (s)	5-10	10-15	15-25	25-35	35-45	45-60

Bảng 75b. Công suất ngọn lửa ôxy-axêtylen

Chiều dày tấm thép (mm)	3-25	25-50	50-100	100-200	200-300
Công suất ngọn lủa (I/h)	300-550	550-750	750-1000	1000-1200	1200-1300

$$H_{nk} = Q_{nk}t_n; Q_{nk} = 1,2Q_a; H_{nk} = 1,2Q_at_n$$
 (63)

O đây: Q_{nk}- tiêu hao ôxy cho việc nung nóng (l/h);

Qa- tiêu hao axêtylen (l/h) (công suất ngọn lửa);

t_n- thời gian nung nóng (h) (bảng 75a).

Giá trị công suất ngọn lửa ôxy - axêtylen cho nung nóng biểu thị trong bảng 75b.

V. VẬT LIỆU ĐỂ HÀN VẤY

Định mức tiêu hao (g) vấy hàn cho sản phẩm được xác định theo công thức cho hàn vẩy:

$$H_n = V_n \rho k_n \tag{64}$$

De han vay thiec:
$$H_n = V_n \rho k_n k_v$$
 (65)

O dây: V_n- thể tích vấy hàn cần thiết cho liên kết, điền đầy khe hỏ và tạo ra cạnh hàn (cm³) (bảng 77);

 ρ - khối lượng riêng vẩy hàn (g/cm³);

k_n- hệ số tính đến mất mát công nghệ (như: cháy; bắn tóe; chảy; điền đầy các nhấp nhô...) bảng 76;

k_y- hệ số tính đến sự tăng tiêu hao vẩy hàn do sự phức tạp của kết cấu chi tiết hoặc hàn vẩy thiếc tinh khiết (bảng 79).

Khi tính toán định mức tiêu hao vấy hàn cần có sự so sánh với các kết quả trong thực tế, trong phòng thí nghiệm. Định mức tiêu hao vấy hàn cho chi tiết hàn được xác định theo kích thước danh nghĩa trên bản vẽ và theo các giá trị dung sai nhỏ nhất.

Khối lượng riêng vấy hàn xác định theo con đường thực nghiệm hoặc theo công thức sau [4]:

$$\rho = \frac{100}{\frac{a}{\rho_a} + \frac{b}{\rho_b} + \frac{c}{\rho_c}}$$

$$(66)$$

Ó đây: a, b, c là phần trăm các kim loại tương ứng trong vấy hàn; $\rho_{\rm a}, \rho_{\rm b}, \rho_{\rm c}$ - khối lượng riêng của các kim loại (bảng 64 ÷ 67)

Bảng 76. Hệ số kn

Hàn vấy	k _n
- Vấy hàn mềm	
+ Khi nhưng và dùng mỏ hàn trên bàn nguội	1,05
+ Khi hàn với mỏ hàn ở vị trí khó khăn	1,15
+ ma thiếc nóng	1,05
- Vấy hàn cứng	
+ Hợp kim đồng-kẽm	1,10
. + Hợp kim nhôm	105
+ Đồng 🐟	1,05
	1 1 1 1 1 1 1 1 1

Bảng 77. Công thức tính toán vẩy hàn cần thiết cho hàn vẩy [9]

Kiểu liên kết (1)	Hàn vấy (2)	Công thức tính toán (3)
5 S ₁	Một phía a) Không dính sơ bộ b) Có dính sơ bộ	$V_n = (sa + 0.5k^2)i$ $V_n = (2s_1\delta + sa + 0.5k^2)i_h$
	Hai phía a) Không dính sơ bộ b) Có dính sơ bộ	$V_n = (sa + k^2)I_h$ $V_n = (2s_1\delta + sa + k^2)I_h$
	Trong "các ổ" (các sản phẩm từ sắt)	V _n = 0.5k ² l _h
	Sau khi lắp (lớp liên kết)	V _n = πdas

(tiếp bảng 77)

(1)	(2)	(3)
3	Giáp mối không khe hỏ	$V_n = sal_n$
	Giáp mối có khe hỏ	V _n = 0,78d ² a
	Vát nghiêng	$V_n = 143 \text{sal}_n \text{ v\'oi } \alpha = 45^\circ$

Chú thích: Kích thước tính bằng mm:

- S- Chiều rộng của vầy hoặc chiều dày của chi tiết hàn vầy;
- S_I chiều rộng của bề mặt bám vầy;
- a- khe hở giữa các chi tiết hàn vầy (bảng 78);
- δ- chiều dày lớp phủ khi ép;
- h- chiều dài mối hàn vầy,
- k- cạnh hàn;
- d- dường kính chi tiết.

Bảng 78. Khe hỏ (mm) khi hàn vấy cho các kim loại [10]

Vấy hàn	Đồng	Hợp kim đồng	Thép cacbon	Thép không gi	Nhôm và hợp kim nhôm	Nimonik	Titan
Đồng	-	-	0,00-0,05	0,025-0,075	-	-	-
Đồng -	1	}					
kem	0,075-0,37	0,075-0,37	0,05-0,25	0,075-0,375	-	0,075-0,375	-
Đồng -							
phốtpho	0,02-0,10	0,025-0,12	-	•	٠	-	÷
Bạc	0,05-0,37	0,050-0,37	0,025-0,15	0,075-0,375	0,125-0,25	0,075-0,375	-
Nhôm ·	-	-	-	-	-	-	0,05-0,25
Niken-crôm	-	-	0,050-0,125	0,075-0,25	-	0,075-0,25	-
Bạc-mangan	-	-	0,075-0,125	0,075-0,125	-	0,075-0,125	0,05-0,07
Bạc-mangan	-	-	0,025-0,125	0,025-0,125		0,013-0,05	-
. 7				-· .			

Bảng 79. Hệ số ky

Đặc tính bề mặt	k _y
Bề mặt không bị gấp (tấm đệm, các dải)	1,0
Bề mặt bị uốn hoặc uốn vuông góc	1,2
Các bề mặt bị uốn với rãnh hẹp	1,4 .
Các bề mặt phúc tạp với các rãnh sâu và hẹp	1,6

Định mức tiêu hào thuốc cho hàn vảy có thể xác định theo công thức sau:

- Cho hàn thiếc:
$$H_{th} = F_l Q_{th} k_n$$
 (67)

- Cho hàn vày khác:
$$H_{th} = h_h.Q_{th}.k_n$$
 (68)

O dây: F_l- diện tích hàn thiếc (cm²);

lh- chiều dài mối hàn vấy (m);

Q_{th}- tiêu hao thuốc cho một đơn vị diện tích bè mặt (khi mạ thiếc) hoặc trên 1 m mối hàn khi hàn vảy;

 k_{n} - hệ số tính đến mất mát thuốc do sự bắn tóc; phân lì, bốc hơi...

Sự tiêu hao thuốc đầy đủ phải được xác định bằng con đường thực nghiệm hoặc tính toán theo kích thước, tiết diện mối hàn trên bản vẽ sản phẩm.

Độ lớn của diện tích bề mặt thuốc tiếp xúc phụ thuộc vào công nghệ phủ

thuốc trên chi tiết, do vậy có thể tăng cao diện tích cho công việc hàn vẩy hoặc mạ thiếc. Hệ số mất mát theo thực tế là 1,1.

VI. ĐỊNH MỰC TIỆU HAO VẬT LIỆU CHO HÀN, CẮT VÀ HÀN VẨY

Độ lớn của diện tích tiết diện ngang của kim loại chảy của mối hàn F_H được tính toán có xét đến dung sai kích thước của các phần tử kết cấu của mối hàn. Trong các bảng $80 \div 82$ cho các giá trị trung bình.

Khi hàn trong môi trường khí bảo vệ, sai lệch diện tích so với diện tích danh nghĩa F_H được tính toán bằng hệ số tăng cường k_v .

Xác định khối lượng kim loại nóng chảy m_H vối khối lượng riêng cho thép là 7,8 g/cm³ (bảng $80 \div 82$; bảng $89 \div 92$) cho nhôm là 2,7 g/cm³ (bảng 93), với hợp kim titan là 4,5 g/cm³ (bảng 95).

Đối với các kim loại có khối lượng riêng $\rho_1 \neq \rho$ của việc định mức tiêu hao thì phải kể đến hệ số tương ứng với $\frac{\rho_1}{\rho}$.

1. Que hàn để hàn tay

Dịnh mức tiêu hao que hàn để hàn tay trong các vị trí trong bảng được xác định theo công thức 47; trong đó khối lượng kim loại chảy m_H xem bảng $80 \div 82$ và hệ số tiêu hao que hàn của loại que hàn xem bảng $83 \div 87$. Giá trị hệ số tiêu hao que hàn được định mức cho loại que hàn có chiều dài 450mm. Trong các trường hợp với các chiều dài khác, cần phải đưa vào hệ số tính toán (bảng 88). Định mức đơn vị cần phải tăng lên: khi hàn không liên tục phải tăng 15%; khi hàn ở vị trí đứng và ngang tăng 5%; khi hàn mối hàn trần tăng 10%.

Dịnh mức tiêu hao que hàn được tính theo bảng $80 \div 82$ có thể dùng cho quá trình sản xuất các kết cấu hàn.

Một nhược điểm chính của hàn hỗ quang tay với que hàn là sự mất mất đáng kể que hàn (do cháy, bấn tóc, bỏ duôi que), nhiều khi chiếm đến 50%. Sự mất mát này phụ thuộc chủ yếu vào việc lựa chọn chế độ hàn, kết cấu, trình độ thọ hàn, tính chất công nghệ của que hàn.

Các điều kiện quan trọng chống hao phí que hàn là: sự tính toán nghiêm khác về sự cấp phát và chi phí que hàn tương ứng với định mức tiêu hao đã định, các điều kiện kỹ thuật trong sản xuất, các công việc hàn (như kiểm tra

chế độ hàn, chuẩn bị và gá lấp trước khi hàn), năng cao tính ổn định về chất lượng của các thợ hàn.

Bảng 80. Mối hàn của liên kết giáp mối khi hàn tay

Kích thước (mm)			Giá trị tính toán		
s	b	e	g	F _H (mm ²)	m _H (kg/m
1,0				1,25	0,010
1,5	0+0.5	2s ⁺²	0,5	1,67	0,013
2,0		·		2,12	0,016
3,0	0+1,5	2s ⁺³	1	5,62	0,044

$$F_{H} = bs + 0.75eg$$

	Kích thước (mm)			Giá trị t	ính toán
s	b	e	g	F _H (mm ²)	m _H (kg/m)
1	0+0,5	5 ⁺¹ ₋₂	1±0,5	4,19	0,033
2	1±1	6+1		9,30	0,072
. 3		7+1	1,5±1	11,43	0,089
4	a+1		0.4	22,87	0,179
5 6	2+1,5	9+1	2±1	25,12 27,37	0, 19 6 0,214

 $F_{H} = bs + 0.75eg$

	Kích thuớc (mm)				tinh toán
S	þ	е	g	F _H (mm²)	m _H (kg/m)
1,0 1,5	0+0,5	5+1	1±0,5	4,19 4,31	0,033 0,034
2,0 3,0	1±1	6-2	1,5±1	9,30 10,30	0,072 0,080
4,0 5,0 6,0	2+1	8+1	2±1	21,30 23,60 25,80	0,166 0,184 0,201

 $F_{H} = bs + 15eg$

	Kích thước (mm)			Giá trị t	ính toán
s	b	е	g	F _H (mm²)	m _H (kg/m)
2	2±1	7+1	,	20,87 22,87	0,163 . 0,179
4 5		8+1	1,5±1	27,10 29,10	0,211 0,227
6 7 8	2+1,5	9+1	2±1	41,25 43,50 45,75	0,322 0,339 0,357

$$F_{H} = sb + \frac{(s - c)^{2}}{2} tg\alpha + 0.75ec$$

Kích thước (mm)			Guá trị t	inh toán	
s	·c	0	9	F _H (mm ²)	m _{H.} (kg/m
4		12		17,5	0,136
6	1±1	16	0,5+1	32,6	0,254
8		18].	55,6	0,434
10		22		90,1	0,703
12		24		121,2	0.945
14		28		161,3	1,258
16	2+1	30	0.5 + 2	2011	1,560
18	2	34	0.5-0.5	250,0	1,960
20	,	36	1	301,7	2,346
22	ļ '	40		361,5	2,820
24		42		423,8	3,300
26		44		491,7	3,840

$$\dot{\alpha} = 50^{\circ} \le 5^{\circ}$$

$$F_{H} = sb + \frac{(s - c)^{2}}{2} tg\alpha + 0,75eg$$

ь	е	9	F _H (mann ²)	m _M (kg/m)
				44 4, 40, 11, 14
المسما	14	0=+1	21,7	0,169
3 ±1	16	U,5_0,5	44,5	0,347
4±1	20		76,7	0.598
	3±1 4±1	3±1 16	3±1 16 0,5_0,5	3±1 16 0.5_0,5 44,5

$$\alpha = 50^{\circ} \pm 5^{\circ}$$

	Kích thước (mm)					Giá trị tính toán		
8	С	ь	8	g	F _H (mm²)	m _H (kg/m)		
10			22		117;0	0,912		
12		4±1	.24		1531	1,194		
14			28	1	195,0	1,522		
16	1 4		32	4.0	259,0	2,020		
18	2+1		36	0,5+2	315,0	2,455		
20		5 ⁺¹	40		375,0	2,927		
22		5-2	42		440,0	3,431		
24 ~			. 46		511,0	3,990		
26			48		586,0	4,577		

$$\alpha = 50^{\circ} \pm 5^{\circ}$$

$$F_{H} = b(s - n) + \frac{(s - n)^2}{2} tg\alpha + 0.75eg$$

1110	Kí	ch thước (m	m)		Giá trị	tính toán
8	n	Ь	•	g	F _H (mm²)	m _H (kg/m)
6 8	2+2	3±1	16 18	0,5 ⁺¹ _{-0,5}	23,3 40,0	0,181 0,312
10 12 14		.4±1	24 26 28		68,0 94,5 125,8	0,530 0,737 0,981
16 18 20	3 ⁺²		34 34 42	0,5 ⁺² _{0,5}	177,5 28,5 271,4	1,384 1,704 2,116
22 24 26	140.0	5±1	42 46 46		322,4 381,0 441,0	2,514 2,971 3,439
28 30		**	ु । 50 ∄	• • • •	514,0 579,0	4,009 4,516
32 34			54 54	0,5+3	677,0 75 6 ,0	5,280 5,896

$$s_1 = s - h_{1-\alpha} = 50^{\circ} \pm 5^{\circ}$$

$$F_{H} = sb + \frac{(s - c)^{2}}{2} tg\alpha + 0.75(e + e_{1})g$$

	Kíd	h thước (m	m) ,		Giá trị tính toán	
s	c = b	е	е,	ġ	F _H (mm²)	m _H (kg/m)
4		12			20.3	0,158
6	1±1	16	8+1	0,5+1	34,1	0,265
8		18			51,6	0,402
10 12	1	22		1	94.0	0,733
12	1.5	24	Ì		119	0,928
14]	28	· 		157	1224
16	1 . 1	30	,,,	1	195	1,521
18	2+1	34	10+1	0,5+2	239	1864
20	-	36	-	, ,,,	286	2,230
22		40			340	2,652
24 26	k	42	ļ		397	3,096
26	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44		1	458	3,572

$$\alpha = 50^{\circ} \pm 5^{\circ}$$

$$F_H = 0.785R^2 + bc + \frac{1}{2}(s - R - c)^2 x$$

 $\times tg\alpha + R(s - R - c) + 0.75(e + e_1)g$

-	Kich thước	(mm)	Giá trị tính toán		
s	е	e,	g	F _H (mm²)	m _H (kg/m)
15	18		7	117	0,912
16	18	10 + 1	0,5+2	126	0,982
18	19	, -	"	147	1,146

$$c = 2 + 1.5 = 7 + 1.5 = 7 + 1 = 7 + 1 = 18^0 + 2^0$$

(tiếp bảng 80)

	Kích thướ	c (mm)		Gilá trị t	inh toán
. s	e - không lớn hơn	e ₁	g	F _H (mm²)	m _H (kg/m
20	19		>	168	1,310
22	20	10+1	0,5+1	191	1,489
24	20	10-2	0,0_0,5	225	1,755
26	22			243	1,895
28	22		'	294	2,293
30	24			314	2,449
32	- 24			344	2,683
34	26			377	2,940
36	26			409	3,190
38	28			446	3,478
40	28			481	3,751
42	29			517	4,032
44	29			554	4,321
46	30	12+1	0,5+2	F^-	4,578
48	30	·2	0,3_0,5	627	4.890
50	31			680	5,304
52	. 31			723	5,639
54	32		•	769	5,998
56	32)814	6,349
58	34			865	6,747
60	34		•	914	7,129

 $c = 2^{+1.5}_{-0.5}$; $b = 2 \pm 1$; $R = 7^{+1}$; $\alpha = 18^{\circ} + 2^{\circ}$.

$$F_{H} = sb + (s - h_{1})(h_{1} - c)tg \alpha_{2} + \frac{1}{2}(s - h_{1})^{2}tg \alpha_{1} + \frac{1}{2}(h_{1} - c)^{2}tg \alpha_{2} + 0.75(e + e_{1})g$$

,	Kí	ch thước (m	m)		Giá trị t	inh toán
S	c = b	е	8,	9	F _H (mm²)	m _H (kg/m)
15		20	1	<u> </u>	123	0,959
16		20			134	1,045
18		20	1		156	1,216
20		22			180	1,404
22	7±1	1 22 22	10-1	0,5+1	204	1,591
24]		1 -	0,5	230	1,794
26		24			258	2,012
28		24			287	2,238
30		24	· ·]	317	2,472
32		29			411	3,205
34		29			447	3,486
36		29			484	3,775
38		31.	1		525	4,095
40	1 1	31	<u> </u>		566	4,414
42		31			607	4,734
44		33			652	5,085
46	9±1	33	12+1	0,5+1	696	5,428
48	1 1	33	_	, ,,,	742	5,787
50		35	ł		792	6,177
52		35.			841	6,559
54	,	35	į.		890	6,942
56		37			943	7,355
58		37			995	7,761
60		37			10.48	8,174

 $^{{}^{\}bullet}\mathrm{c} \, = 2^{+1.5}_{-0.5}; \mathrm{b} \, = 2 \, \pm \, 1; \, \alpha_1 \, = 18^{\circ} \, + 2^{\circ}; \, \alpha_2 \, = 50^{\circ} \, \pm \, 5^{\circ}.$

$$F_{H} = sb + \frac{1}{4} (s - c)^{2} t g \alpha + 15eg$$

	Kích thước (mn	n) -	Giá trị t	inh toán
s	е	` g	F _H (mm²)	m _H (kg/m)
12	18		94	0,733
. 14	. 18		112	0,873
. 16	20	· .	136	1,060
18	20		159	1,240
20	- 22	+2	188	1,467
. 22	22	∴ - 0,5 ⁺² _{-0,5}	216	1,685
24	26		253	1924
26	26		286	2,230
28	28	· .	325	2,535
30	28		362	2,820
32	32		434	3,390
34	32		476	3,710
36	34		525	4,100
38	34		572	4,470
- 40	38		632	4,930
42	S 38		684	5,345
44	40		743 ^	5,800
- 46	40	0,5+3	799	6,240
48	44	, 0,0	868	6,770
50	. 44		930	7,250
52	46		999	7,800
54	46		1064	8,300
56	48		1138	8,880
58	48		1242	9,685
60	50		1288	10,046

 $b = 2 \pm 1$; $c = 1 \pm 1$; $\alpha = 50^{\circ} \pm 5^{\circ}$

$$F_{h} = sb + \frac{1}{2}\pi R^{2} + 2R(\frac{1-s}{2} - R) + \frac{1-s}{2} - R^{2} + R^{2}$$

) (12			
	Kích thước (mm)		Giá trị tín	h toán
s	е	9	F _H (mm²)	m _H (kg/m)
30	17		272	2,121
32	17		295	2,301
34	18		320	2,496
36	18		344	2,683
38	19	4	371	2,893
40	19		396	3,088
42	20		424	β,307
44	20	n=+2	451	3,517
46	21	0,5 ⁺² _{-0,5}	480	3,744
48	21	·	508	3,962
50	22		539	4,204
52	22	- T T.	569	4,438
54	23		600	4,680
56	23		631	4,921
58	24		665	5,187
60	24		696	5.428
62	25		749	5,842
64	25		785	6,123
66	26		821	6,403
68	. 26		855	6,669
70	27		894	6,973
72	27		930	7,254
74	28	١,,	970	7,566
76	28	0,5+3	1008	7,862
78	29		1039	8,104
82	29	•	1091	8,509
. 84	30		1133	8,837
90	31	· .	1298	10,124
94	31		1386	10,810
96	32		1434	11,185
100	32		1527	11,910
	†			

^{*} $b = 2^{+1}_{-2}$; $c = 2^{+1.5}_{-0.5}$; $R = 7^{+1}$; $\alpha = 18^{0} + 2^{0}$.

$$F_{H} = sb + \frac{1}{2}(s - h - c)^{2} tg\alpha + \frac{1}{2}h^{2}tg\alpha + 1.5(e + e_{1})g$$

		Kích thước (n	n m)	٠,	Giá trị 1	tính toán
s	h	0	e ₁	9	F _H (mm²)	m _H (kg/m)
12 14	8 9	22	14		124 141	0.967 1.099
16 18	10 †1	24	16	· .	173 195	1,349
20 22	13 14	28	18	0,5 ⁺²	238 265	1,856 2,067
24 26	16 17	32	20		315 346	2,457 2, 698
28 30	18 19	36	22	_	392 428	3,057 3,338
32 34	20 22	40	24	<u> </u>	526 579	4,102 4,516
36 38	23 25	44	26		637 697	4,968 5,436
40 42	26 28	48	27		759 827	5,920 6,450
44 46	29 30	50	28	0,5+3	887 943	6,918
48 50	31 32	54	30	0,3	1046 1107	7,355 8,158 8,634
52 54	34 35	58	32		1172	9,141 9,640
56 58	36 38	62	34		1321 1412	10,303 11,013
60	40	64	36		1518	11,840

 $b = 2^{+1}_{-2}$; $c = 1 \pm 1$; $\alpha = 50^{\circ} \pm 5^{\circ}$.

$$F_{H} = hb + \frac{1}{2}h^{2}tg\alpha + \frac{1}{8}\pi f^{2} + fh_{1} - \frac{1}{2}f^{2} + 0.75(e + e_{1})g$$

			Kích thu	Kích thước (mm)						
s	h	h ₁	8	€1	· g		F _H (mm²)	m _H (kg/m)		
8 10	6 7	4 5	-18	13	0,5+1	6 8	67 8 2	0,522 0,639		
12 14	8 10	6 7	20	15		4-		10	132 136	1,029 1,060
16 18	11 13	7 8	24				184 226	1,435 1,762		
20 22	14 15	9 10	28		0,5+2	,	273 304	2,129 2,371		
24 26	16 18	10 11	32	18		12	327 383	2,550 2,987		
28 30	19 21	11 12	36				410 472	3,198 3,681		
32 34	22 24	12 13	40				541 612	4,129 4,773		
36 38	25 27	13 14	44	20	0,5+3	14	649 728	5,062 5,678		
40	28	15	46				774	6,037		

 $^{^{\}bullet}$ b = 2^{+1}_{-2} ; $\alpha = 50^{\circ} \pm 2^{\circ}$.

 $F_{H} = sb + (s - c)^{2}tg \alpha + 0,75eg$

	Kích thu	Jớc (mm)		Giá trị t	inh toán
s	c = b	е _	g	F _H (mm²)	m _H (kg/m)
3 4	1±1	10		12,5 16,1	0,097 1,125
- 6 8	121	14	$0,5^{+1.5}_{-0.5}$	29,2 43,5	0,227 0,339
10 12		20		55,8 89	0,435 0,694
14 16		24		123 153	0,959 1, 19 3
18 20	2003.	30	0,5 ⁺²	194 232	1, 51 3 1, 8 09
22 24		34	0,5_0.5	279 326	2,176 2,542
26 28	-+1	38		374 435	2,917 3,393
30 32	2+1	44		516 579	4,024 4,516
34 36	• ,	48	0,5+3	652 731	5,085 5,701
38 40		54		806 886	6,286 6,910
42 ′44	,	58		975 1059	7,605 8,260
46 48	1	62	-	1160 1253	9,048 9,773
50		66	i .	1361	10.615

 $[\]alpha = 27^{\circ} \pm 3^{\circ}.$

 $F_{H} = sb + (s - c)^{2}tg \alpha + 0.75eg$

	Kích thu	Jóc (mm)		Giá trị t	inh toán
s	е	e ₁ .	9	F _H (mm²)	m _H (kg/m)
6		18-		70	0,546
12	8±1			136	1060
. 14.		22	٦	165	1,287
20			0,5+2	250	1,950
22		28	7	376	2,932
24	_			427	3,330
26	-	30	1	461	3,595
28	Ì		, <u></u>	505	3,939
- 30		32		565	4,407
34		02	1	660	5,148
36		34	0,5 ⁺³	724	5,647
40				- 819	6,388
42	-	36		877	6,840
46			0,5 -0,5	992	7,737
. 48		- 40	1	1055	8,229
52				1179	9,196
54		42	7	1247	9,726
58	12±1	72		1380	10,764
60	14. <u>.</u> .	44	1	1469	11,458
.64				1611	12,565
66		46]	1689	13,174
70	1	1		1839	14,344
72	. •	.50	7	1925	15,015
76				2087	16,278
78		52	0,5+4	2172	16,941
82		<u> </u>	0,5-0,5	2343	18,275
84		56	7	2441	19.039
88		~~] -	2620	20,436
90		58	1 .	2715	21,177
94				2804	21,871
96		62	7 .	3009	23,470
100		02		3208	25,022

 $c = 1 \pm 1, \alpha = 10^{\circ} \pm 2^{\circ}.$

 $F_{H} = b(s - n) + (s - n)^{2}tg\alpha + 0.75eg$

		Giá trị tính toán				
3	n	ь		g	F _H (mm²)	m _H (kg/m
6	2+2	3±1	12	n=+2	20,0	0,156
8	-	3.21	14	0,5+2	35,6	0,277
10			18		59,5	0,464
. 12	İ	4±1	20		83,3	0,404
14			24		113,5	0,885
16		·	30		173	1,349
18						,
20	3 ⁺² 6±		34	$0.5^{+3}_{-0.5}$	212	1653
				0,0	258	2012
22		6±1	38	,	306	2,386
24			_ ~		359	2,800
26				414	3.229	
28			44		478	3,728
_ 30			•		541	4,219
32			48	0,5+4	631	4,921
34					701	5,467

 $s_1 = s - n; \alpha = 27^{\circ} \pm 3^{\circ}.$

 $F_{H} = sb + (s - c)^{2}tg\alpha + 0.75(e + e_{1})g$

Kích thước (mm)					Giá trị tính toán	
s	c = b .	е	e ₁	g	F _H (mm²)	m _H (kg/m)
3 4	1±1	10	8+1	0,5+1,5	18,1 21,7	0,141 0,169
6 8	,_,	14			34,8 49,1	0,271 0,3 8 2
10 12		20		0.5 ⁺² _{-0.5}	89,5 101,7	0,698 0,793
14 16		24			132 162	1,029 1,263
18 20		30	10+1		203 241	1,583 1,879
2 2 24		34			288 335	2,246 2,613
26 28		38			389 444	3,034 3,463
30 32	2+1	44	12+1	0,5+3	532 595	4,149 4,641
34 36		48			667 739	5,202 5,764
38 40		54			82 0 - 901	6,396 7,027
42 44		58].		990 1074	7,722 8,377
46 48		62			1175 1268	9, 165 9,890
50		- 66	1 .		1377	10,740

 $[\]alpha = 27^{\circ} \pm 3^{\circ}$.

$$F_H = 1.57R^2 + bc + 2R(s - R - c) + (s - R - c)^2 tg\alpha + 0.75(e + e_1)g$$

	Kich thu	Giá trị t	tinh toán		
s	е	e ₁	9	F _H (mm²)	m _H (kg/m)
15	26	10+1	0,5+2	188	1,466
16	<u> </u>			204	1,591
18	28			238	1,856
20	<u> </u>			272	2,121
22 ⁻ 24	30	-		309 346	2,410
26			1	386	2,698 3,010
28	32		1 1	426	3,322
30	24		-	488	3,806
34	34			576	4,492
36	36		1	625	4.875
40	30		· '	722	5,631
42	38 🤲	12+1	0.5+3	. ,776	6,052
46 .		2	0,0_0,5	882	6,879
48	40			940	7,332
52			1	1055	8,229
54	44			1122	8,751
58				1247	9,726
60 . 64	46			1339	10,444
				1472	11,481
66 70	48			1547 1690	12,066 13,182
72				1768	13.790
76	50	+1		1921	14.983
78				2006	15,646
82	54	14+1	0,5+4	2170	16,926
84	56		0,5-0,5	2257	17,604
88	30	.~		2429	18,946
90	60			2522	19.671
94	00			2739	21,364
96 100	62			2803	21,863
100	-			2992	23,337

 $c = 2^{+1.5}_{-0.5}$; $b = 2^{+1}_{-2}$; $R = 6^{+1}$; $\alpha = 10^{0} + 2^{0}$.

$$F_{H} = sb + 2(s - h_{1})(h_{1} - c) tg \alpha_{2} + + (s - h_{1})^{2} tg \alpha_{1} + (h_{1} - c)^{2} tg \alpha_{2} + + 0.75(e + e_{1})g$$

Kich thước (mm)					Giá trị tính toán	
8	h ₁	e	e ₁	g	F _H (mm²)	m _H (kg/m)
15		22	10+1	0,5+2	116	0,904
18 · · · 20	1				147 168	1,146
24	8±1	24			222	1,310
26		26			251	1,957
30	} .	20			312	2,433
		32	12+1	0,5+3	422	3,291
32 36 38 42 44	1				501	3,907
38		-34			545	4,251
42	ł				635	4,953
44	1	36			683	5,327
18 .					781	6,091
50 54	ļ	40			837	6,528
6	j.,	<u> </u>			944	7,363
))		44			1005 1121	7,839 8,743
			14+1	0,5+4	1209	9,430
	12+1	. 46			1335	10,413
3	¹² −2	48			1401	10,927
2		. 46			1538	11,996
	1	50			1611	12,565
3 " "	ľ	,50			1755	13,689
0		52			1832	14,289
4					1989	15,514
6]	54			2072	16,161
0	1				2235	17,433
2		56			2320	18,096
6	ļ				2494	19,453
8		60			2587	20,178
100 ::	.[ı	1	2677	20,880

 $c = 2^{-1}_{+-2}$; $b = 2^{+1}_{-2}$; $\alpha_1 = 10^0 + 2^0$; $\alpha_2 = 27^0 \pm 3^0$.

$$F_{H} = sb + \frac{1}{2}(s - c)^{2}tg \alpha + 1.5eg$$

	Kích thước (m	Giá trị tính toán		
8	, е	g	F _H (mm²)	m _H (kg/m)
- 12	16	7 ,	85	0,663
14	, ro		101	0,787
16	18		123	0,959
18	ю		143	1,115
20	22	0,5+2	173	1349
22	22	0,5~0,5	197	1,536
24	24	7	228	1,778
26	24	ĺ	256	1,996
28	26		291	2,269
30	- 20		323	2,519
32	28		382	2,979
34	20	j	419	3,268
36 →	30		464	3,619
38		ŀ	506	3, 94 6
40	32		552	4,305
42	32		596	4,648
.44	34		648	5,054
4 6	1.	0.5+3	6 97	5,436
48	36		752	5,865
. 50			806	6,286
52	38	7 :	867	6,762
54			924	7,207
56	40	7	987	7,698
58			1049	8,182
60	42	_	1117	8,712

 $b = 2 \pm 1; c = 1 \pm 1; \alpha = 27^{\circ} \pm 3^{\circ}.$

$$F_H = sb + \pi R^2 + 4R(\frac{s-c}{2} - R) + \frac{s-c}{2} + 2(\frac{s-c}{2} - R)^2 tgx + 15eg$$

	Kich thước (min	1)		inn toán
s	е	g.	F _H (mm ²)	m _H (kg/m)
30	24		424	3:307
32			459	3,580
34	25		496	3,868
36			533	4,157
38	26	7	562	4,383
40			610	4,758
42	27	0.5 + 2	650	5,070
44	·		689	5,374
46	28		732	5,709
48			. 773	6,029
50	29		816	6,364
52			859	6,700
54	30		904	7,051
56		<u>'</u>	948	7,394
58	. 31	· -''	995	7,761
60			1041	8,119
62	32		1114	8,689
64	J.		1161	9,055
66	33		1211	9,445
68			1259	9,820
70	34		1312	10,013
72			1363	10.631
74	35	0.5 +3	1417	11,052
76		0,3-0,5	1469	11,458
78	36		1523	11879
82			1631	12,721
84	37	-	1738	13,556
88			1801	14,047
90	38		1862	14,523
94			1979	15,436
96	39		1941	15,139
100	30		2163	16,871

^{*} $b = 2^{+1}_{-2}$; $c = 3 \pm 1$; $R = 6^{+1}$; $\alpha = 10^{\circ} \pm 2^{\circ}$.

$$F_{H} = sb + 2h_{1}^{2}tg\alpha_{1} + 2(h - h_{1})^{2}tg \alpha_{2} +$$

$$+ 4h_{1}(h - h_{1})tg \alpha_{2} + 15eg$$

Kich thước (mm)			,	Giá trị t	inh toán
s	h	h _t	е	9	F _H (mm²)	m _H (kg/m
30	14		22		239	1,864
34	16				305	2.379
36	17	·	24		346	2,698
40	19				424	3,307
42	20	8±1	25	0.5+2	470	3,666
46	22	4		0,5	561	4,375
48-: :	23		27	İ	.612	4,773
52 -	25				717	5.592
54	26		28		774	6,037
58	28	1 1			890	6,942
60	29		29		933	7,277
64	31				1060	8,268
66	32		31		1132	8,829
70	34				1172	9,141
72	35		33		1352	10,545
76	37				1504	11,731
78	38	12±1	34	0,5+3	1585	12,363
82	40				1752	13,665
84	41		36		1840	14,352
88	43				2019	15,748
90	44		37		2113	16,481
94	46	:	L		2304	17,971
96	47		39		2407	18,774
100	49		00		2608	20,342

 $b = 2^{+1}_{-2}$; $c = 3 \pm 1$; $\alpha_1 = 10^0 \pm 2^0$; $\alpha_2 = 27^0 \pm 3^0$.

 $F_{H} = sb + h^{2}tg_{\ell\ell} + (s - h - c)^{2}tg_{\ell\ell} + 0.75(e + e_{\dagger})g_{\ell\ell}$

Kich thuć	lc (mm)	<u>"</u>			Giá trị t	inh toán
s	h	e	e ₁	g	F _H (mm²)	m _H (kg/m)
12 14	8	18	13		90 106	0,702 0,826
16 18	10 11	20	14	f ·	129 150	1,006 1,170
20 22	13 14	24	15	0.5+2	181 206	1,411 1,606
24 26	16 17	28	16		244 272	1,903 2,121
28 30	18 19	30	18		310 343	2, 418 2,675
32 34	20 22	34	20		381 428	2,971 3,338
36 38	23 25	36	-21		468 521	3,650 4,063
40 42	26 28	38	23		567 627	4,422 4,890
44 46	29 30	42	25	0.5+3	680 729	5,304 5,686
48 50	31 32	46	26		783 834	6,107 6,505
52 54	34 35	48	.28		912 969	7,113 7,558
56 58	36 38	52	. 29		1032 1112	8,049 8,673
60	40	54	30		1198	9,344

 $b = 2 \pm 1; c = 1 \pm 1; \alpha = 27^{\circ} \pm 3^{\circ}.$

$$F_{H} = hb + h^{2}tg \cdot u + \frac{1}{8}\pi f^{2} + fh_{1} - \frac{1}{2}f^{2} + 0.75(e + e_{1})g$$

		- K	lich thướ	c (mm)			Giá trị t	ính toán
s	h	h,	f		6 1	g	F _H (mm ^a)	min (leg/m)
8	6	4	6	16	13	0,5+1	67	0.522
10	7	5	8	10	5	0,5-0.5	88	0.686
12	8	6		10			128	0.998
14	10	7		18	4.		157	1.224
. 16	11	7	9		15		173	1,349
18	13	8		22			211	1,645
20	14	9				0,5,+2	259	2.020
22	15	10		24		0,5-0,5	288	2.245
24	16	10					309	2.416
26	18	11	12	28	18		350	2.808
28	19	11	÷				385	3.003
30	21	12		32			442	3,447
32	22	12					504	3.931
34	24	13		34			569	4.438
36	25	13			20	0.5 + 3	601	4.687
38	27	14	14	38	20	0,5	672	5.241
40	28	14		40			· .	
	1		1	40			719	5,608

 $b = 2 \pm 1$; $\alpha = 27^{\circ} \pm 3^{\circ}$.

Bảng 81. Mối hàn tiên kết góc khi hàn tay

F_H = bs + 0.75eg

:	Kich the	Jớc (mm)		Giá trị 1	inh toán
S .	b	.0	g	F _H (mm²)	m _H (kg/m)
1 2	0+1	25+2	0.5	1.25 2.87	0,009 0,022
3 4	0+2	25+3	10	8.62 11,12	0.067 0,086

$$F_{H} = \frac{1}{2}(s_1 + b)m_1 + b(s - m_1) + 0.75eg$$

	Kich th	Giá trị t	tính toán		
s = s ₁	b	e	g	F _H (mm²)	m _H (kg/m
1.0				3,71	0,028
1,5	0+0.5	6±3	$0.5^{+1}_{-0.5}$	3.96	0:030
2,0			5,5	8.15 `	0,063
3,0				9,75	0,076
4.0	2	8±4	0.5 + 1.5	11,50	0.089
5,0	0+2	-		13,50	0,105
6.0		10±4	0,5+2,5	21,25	0,165

 $m_i = \Theta \div 0.5 \text{ s.}$

$$F_{H} = \frac{1}{2}(s_1 + b)m_1 + b(s - m_1) + \frac{k^2}{2} + 1.05k$$

	Kích th	Jớc (mm)		Giá trị t	inh toán
s = s ₁	.b	е	9	F _H (mm²)	m _H (kg/m)
2.0 2.5	0+1	6±3	0.5 + 1	8,58 8,97	0,066 0,069
3.0 4.5		8±4	0.5+1.5	11,40 14,12	0,088 0,110
5.0 6.0	0+2	10 ± 4	0.5 + 2.5	15.15 17.40	0,118 0,135
7,0 8.0		12±4	0,5-0,5	19,90 22.65	0,155 0,177

$$m_1 = 0 \div 0.5 s$$
; $k = 3$.

$$F_{H} = bs + \frac{k^2}{2} + 1,05k$$

Kích thư	ớc (mm)	Giá trị t	in h toán	Kich thu	lớc (mm)	Giá trị t	inh toán
s	b	F _H (mm ²)	m _H (kg/m)	s	b	F _H (mm ²)	m _H (kg/m)
2	0+1	3.47	0,27	16		96,60	0,753
4 -		10,64	0,082	18		118,70	0,925
6		19,32	0,150	20 22	- 0+2	142,70	1,113
8	0+2	30,30	0,236	24	"	198,90	
10		43,40	0,338	_			1,551
12		58,90	0,459	26		230,00	1,794
14		76,60	0,597	28		299,00	2,332

^{*} $s_1 \stackrel{\bullet}{\geq} 0.7s$; $m_1 = 0.5 s \div s$; $k = 0.5 s \div s$.

$$F_{H} = bs + \frac{k^{2}}{2} + \frac{k_{1}^{2}}{2} + 1.05(k + k_{1})$$

Giá trị tính	Giá trị t	inh toán	Giá trị tính			
s	F _H (mm ²)	m _H (kg/m)	s	F _H (mm ²)	m _H (kg/m)	
2	11,9	0.092	18	126,3	0,985	
4	18,3	0.142	20	150,4	1,173	
6	27.0	0.210	22	178,5	1322	
8	37,9	0.295	24	206,5	1,610	
10	511	0,398	26	237.6	1,853	
12	66,6	0.519	28	2710	2,113	
14	84.3	0.657	30	306,8	2,393	
16	104.2	0.812		1		

Kích thước (mm): $b = 0^{+2}$; $s_1 \ge 0.7$ s; k = 0.56 ÷ s; $k_1 = 3$.

$$F_{H} = sb + \frac{1}{2}(s - c)^{2}tg\alpha + 0.75eg$$

	Kích thu	rớc (mm)		Giá tr	ri tính
s	b = c	е	g	F _H (mm ²)	m _H (kg/m)
4	1±1	12 16	0.5 + 1	19,3 39,0	0,150 0,304
8	,	18		62.5	0,487
10 12 14 16 18 20 22 24	2 ⁺¹ ₋₂	22 24 28 30 34 36 40 42	0.5 + 2 ,5	104,6 145,5 197,0 252,0 319,0 392,0 471,0 560,0 655,0	0,815 1,134 1,536 1,965 2,488 3,057 3,673 4,368 5,109

$$F_H = bs + \frac{1}{2}(s - c)^2 tga + \frac{k^2}{2} + 105k + 0.75eg$$

	Kich thuốc (mm) S				Giá trị tính		
s	b = c		g	F _H (mm ²)	m _H (kg/m)		
- 6	1±1		0,5 ⁺¹ _{-0,5}	27 46	0,210 0,363		
8		18		70	0,546		
.10		22		112	0,873		
12				153	1,193		
		28		204	1,591		
16	-+1		·	259	2.020		
18	2-2	3,4	0.5_6 5	326	2.542		
20		36		399	3,112		
22	1	40 ′		478	3.728		
24	1	42		567	4.422		
26		44		662	5.163		

^{*} k = 3; $\alpha = 50^{\circ} \pm 5^{\circ}$.

$$F_{H} = sb + \frac{1}{4}(s - c)^{2}tg \alpha + 1.5eg$$

	Kích thước (mm)			Giá trị tính		
s	е	9	F _H (mm²)	m _H (kg/m)		
12 14	18	0,5 ⁺² _{-0,5}	88 105	0,686 0,819		

 $b = 2^{+1}_{-2}$; $c = 1 \pm 1$; $\alpha = 50^{\circ} \pm 5^{\circ}$.

(tiếp bảng 81).

Kích thước (mm)			Giá trị tính		
s	e	9	F _H (mm ²)	m _H (kg/m)	
16	20		128	0,998	
18	20		150	1,170	
20	00	-	178	1,388	
22	22	0.5+2	205	1,599	
24	26	0.0-0.5	242	1,887	
26	26		274	2,137	
28	200	1	311	2,425	
30	26		347	2,706	
32			446	3,260	
34	32		459	3,580	
36	34		507	3,954	
38	34		563	4,313	
40	38	1	612	4,773	
42	36		663	5,171	
44	42		721	5,623	
46	42	0.5+3	776	6,052	
48	44	1	844	6,583	
50		· .	905	7,059	
52	46	1 .	973	7,589	
54	***	-	1037	880,8	
56	48		1110	8,658	
58	40		1213	9,461	
60	50		1258	9,812	

^{*} b = 2^{+1}_{-2} ; c = 1 ± 1; α = 50° ± 5°

 $F_H = sb + (s - c)^2 tg\alpha + 0.75eg$

Kích thu	lớc (mm)	Giá 1	trj tính
s	е	F _H (mm²)	m _H (kg/m
12	20	94	0.733
14	22	121	0,943
16	20	157	1,224
18	28	192	1,497
20	32	234	1825
22	32	277	2,160
24	36	328	2.558
26	30	379	2.956
28	42	. 439	3.424
30		498	3.884
32	46	522	4,071
34	40	629	4,906
36	52	710	5,538
38	, 52	786	6,130
40	56	867	6,762
42	30	951	7,417
44	60	1042	8.127
46	00	1135	8,853
48	64	1232	9,609
50	04	1335	10,413

 $b = c = 2^{+1}_{-2}; g = 0.5^{+2.0}_{-0.5}; \alpha = 27^{\circ} \pm 3^{\circ}$

$$F_H = sb + (s \cdot c)^2 tg\alpha + 0.75eg + \frac{k^2}{2} + 1.05k$$

Kích thu	łớc (mm)	Giá trị t	ính toán	Kich thu	lớc (mm)	Giá trị t	inh toán
. \$	е	F _H (mm²)	m _H (kg/m)	s	е	F _H (mm ²)	m _H (kg/m)
12 14	22	101 128	0,787 0,998	32 34	46	529 636	4,126 4,960
16 18	28	164 199	1,279 1,552	36 38	52	717 793	5,592 6,185
20 22	32	241 284	1,879 2,215	40 42	56	874 958	6,817 7,472
24 26	36	335 386	2,613 3,010	44 46	60	1049 1142	8,182 8,907
28 30	42	446 505	3.478 3,939	48 50	64	1239 1342	9,664 10,467

^{*} b = c = 2^{+1}_{-2} ; g = $0.5^{+2.0}_{-0.5}$; α = 27° ± 3° ; k = 3.

Bảng 82. Liên kết chữ T khi hàn tay

$$F_{H}=\frac{k^2}{2}+105k$$

•	Kích thước (mm)			ri tính
s	k	ь	F _H (mm²)	m _H (kg/m)
2-2,5 3-4,5	3+2	0+1	12,2	0,095
5-6 7-9 10-15	4+2 5+2 5-1 6+2	0+2	14,7 20,9 27,9	0,#4 0.163 0.217
16-21 22-30 •	7±2 8±2	0+3	31.8 40.4	0.248 0.315

$$F_{H} = sb + \frac{1}{2}(s - c)^{2}tg \alpha + 0.75eg$$

	Kich thu	Ciá e	ri tính		
	ARCH THE	Gia t	11 mai		
, s	b = c	е	g	F _H (mm²)	m _H (kg/m)
4	1±1	10 14	3+1	27,6 51,0	0,215 0,397
8 10		16 20	V-3	76,5 114	0,596 0,889
12 14 16		22 26 28	4±3	192 249 308	1497 1942
18 20	2+1	32 34		407 485	2,402 3,174 3,783
22 24		38 40	5±3	575 671	4,485 5,233
26		42		771	8.018

$$F_{H} = \text{sb} + \frac{1}{2}(\text{s} - \text{c})^{2}\text{tg } \alpha + 0.75\text{eg} + \frac{\text{k}^{2}}{2} + 1.05\text{k}$$

	Kich thu	Giá trị tính			
s	b = c	•	g	FH (mm²)	m _H (kg/m)
4	1±1	10	 	35,0	0,273
6	<u>'</u> -'	14	3+1	58.6	0,457
8		16	3-a	84,0	0,655
10		20	1	122	0,951
12		22		199	1552
14		26	4±3	256	1996
16	2+1	28		315	2,457
18	2	32		414	3,229
20	i l	34		492	3,837
22	1 !	38	5±3	582	4,539
24		40		678	5,288
26		42	1	778	6.068

$$c = 50^{\circ} \pm 5^{\circ}; k = 3.$$

$$F_{H} = 0.785R^{2} + bc + \frac{1}{2}(s - R - c)^{2}tg\alpha +$$

$$+ R(s - R - c) + 0.75eg + \frac{k^{2}}{2} + t.05k$$

	Kích thước (mm)			ri tính
s	e	g	F _H (mm²)	m _H (kg/m)
15 16	16		170 180	1.326 1.404
1 8 20	17	6 ± 3	20 4 225	1,591 1,755
22 24	18		257 277	2,004 2,160
26 28	20		311 347	2,425 2.706
30 32	22		408 437	3.182 3.408
34 36	24	8 ± 3	480 512	3,744 3,993
3 8 ≘ 40	26		558 593	4.352 4.625
42 44	27		676 714	5.272 5.569
46 48	28	1	760 800	5.928 6.240
50 52	29	10 ± 3	849 898	6.622 6.965
54 56	30		945 9 8 0	7.371 7,644
58 60	31		1045 1094	8,1 5 1 8,533

^{*} $c = 2^{+1}_{\pm 2}$; $b = 2 \pm 1$; $R = 7^{+1}$; k = 3; $\alpha = 18^0 + 2^0$.

$$F_{H} = sb + \frac{1}{4}(s - c)^{2}tg\alpha + 1,5eg$$

Kích thước (mm)			Giá trị tính	
s	9	g	F _H (mm²)	m _H (kg/m)
12 14	16	3 ± 3	126 143	0.983 1115
16 18	18	3 ± 3	172 194	1,340 1,513
20 22	20	F . 2	2 8 7 314	2,235 2,450
24 26	24	5 ± 3	373 405	2,910 3,160
2 8 30	26	6 ± 3	493 529	3,740 4,125
32 34	30		604 645	4,710 5,030
36 38	32		849 895	6.625 6,972
40 42	36	9 ± 3	997 1048	7,780 8,175
44 46	38		1128 1183	8,800 9,230
48 50	42		1422 1483	11,100 11,570
52 54	44	11 ± 3	1577 1641	12,300 12,800
56 58	46	13 ± 3	1880 1983	14,670 15,470
60		1	2063	16,100

 $^{^{\}circ}$ c = 1,± 1; b = 2 $^{+2}_{-2}$; α = 50 $^{\circ}$ + 5 $^{\circ}$.

$$F_{H} = sb + \frac{1}{2}h^{2}tg \alpha + \frac{1}{2}(s - h - c)^{2}tg \alpha + 1.5eg$$

Kích thước (mm)			Giá trị tính		
s	e	9	F _H (mm²)	m _H (kg/m)	
12	16		115	0,897	
16		3 ± 3	138	1,076	
18	20	7 0-0	169	1,318	
22			201	1.568	
24	22		292	2,278	
28		5 ± 3	328	2,559	
30	26		374	2,918	
34			420	3.279	
36	28		495	3,860	
40		6 ± 3	. 548	4.270	
42	30	0 0	586	4,570	
46			648	5,060	
48	34		706	5.506	
52			925	7.220	
54	36	9 ± 3	979	7,630	
58			1054	8,225	
60	40	!	1136	8,857	
64			1228	9,580	
66	42		1410	10,998	
70		1	1492	11,637	
72	46	11 ± 3	1588	12,386	
76		1	1683	13,127	
78	48		1749	13,642	
82			1853	14,453	
84	52	,	2112	16,473	
88			2223	17,339	
90	54		2301	17,947	
92		13 ± 3	2341	18,259	
96	58		. 2536	19,780	
98		1	2581	20,131	
100	60		2702	21,075	

 $b = 2 \pm 1; \alpha = 50^{\circ} \pm 5^{\circ}.$

(tiếp bằng 82).

$$F_{H} = sb + \frac{1}{2}\pi R^{2} + 2R(\frac{s-c}{2} - R)$$

+ $(\frac{s-c}{2} - R)^{2}tg\alpha + t5eg$

Kich thuốc (mm)			Giá trị tính		
s	е	9	F _H (mm²)	m _H (kg/m	
30	15		390	3,042	
32	lŞ.		414	3.229	
34	16	7	447	3,468	
36	Ĺ		472	3,681	
38	17	6 ± 3	507	3,954	
40		0 - 0	533	4,157	
42	18		569	4,438	
44	L		597	4,656	
46	19		634	4,945	
48		_]	664	5,179	
50	20		763	5.951	
52			793	6,185	
54	21		836	6,520	
56		- 8 ± 3	868	6.770	
58	22		913	7,121	
50			945	7,371	
62	23		990	7,722	
64			1027	8,016	
66	24		1146	8,938	
68			1181	9,211	
70	25		1243	9.695	
72			1270	9.906	
74	26		1323	10,319	
76			1362	10,623	
78	27		1417	11052	
82		10 ± 3	1463	11,395	
84	28		1516	11,824	
88			1638	12,776	
90	29		1697	13,236	
94			1787	13,938	
96	30	·	1848	14,414	
100			1943	15,155	

^{*} b = 2 \pm 1; c = 2 $\frac{+1.5}{-0.5}$; $\alpha = 18^{\circ} + 2^{\circ}$; R = 7⁺¹.

Bảng 83. Hệ số tiêu hao que hàn khi hàn thép kết cấu cacbon và thép hợp kim thấp

Loại que hàn	Mác que hàn	Hệ số			
	Tride que man	Khối lượng phủ k	Ψ	Tiêu nao	
334	AH-1	0,02-0,04	0,20-0,25	150	
Э34	Me	0,02-0,04	0,20-0,25	1,50	
Э42 [°]	OMM-5	0,30-0,40	0,15-0,20	1,76	
Э42	CM-5	-		180	
34 2	ЦМ-7	0,38-0,42	0,10	1,71	
942	КП3-32р		_	160	
342	ҮНЛ-1		. •	1,80	
342	ЦМ-7с	0,50-0,60	0,05-0,10	1,80	
342	M3Z-0,4	0.35-040	0,15-0,25	1,86	
342	AHO-5			1,60	
342	AHO-6	0.36	0;17	170	
342	AHO-1			1,50	
342	OMA-2		-	150	
342	ВСП-1			1,60	
342 `	ЦМ-8	0,35-0,40	0,08	1,62	
342A	YOHИ-13/45	0,30-0,40	0,15	1,73	
342	ЦНИЛСС-ҮКД	0,36-0,40	0.09	1,65	
342	ВСЦ-2		-	1,80	
Э42A	CM-11		<u>.</u> .	145	
342A	ҮП-1/45	-	-	1,80	
942A	YII-2/45		- *,	1,60	
342A	O3C-2		-	1,60	
Э46	AHO-3	_	-	1,60	
946	AHO-4	_	:	170	
346	MP-1	1	, - ·	1,60	
346	MP-3		-	1,70	
346	O3C-4		·. <u>-</u>	170	
346	O3C-6	-	-	160	
946	РБҮ-4		`\ .	168	
946	РБҮ-5		. •	1,50	
346	3PC-2	·	_	1,60	
346	O3C-3			1,60	
346	3PC-1			1,60	
346A	3138/45H		<u>.</u> .	1,70	
350 *	ВСЦ-3			1,40	

(tiếp bảng 83).

Logi que bàs	Mán nun hàs	Hệ số			
Loại que hàn	Mác que hàn	Khối lượng phủ k	Ψ	Tiêu hao	
350	BCH-3	. •	-	1.60	
350A	YOHИ-13/55	0,30-0.40	0.13	1.70	
350A	ДСК-50		-	1.40	
Э 5 0А	YII-1/55	-	-	1,60	
350A	Yf1-2/55	-	-	1,60	
Э50A	K-5A		- `	1,70	
Э50A	YΠ-2/55y	0.30-0,35	0.05-0.07	1,53	
Э50A	Y-340/55	0,35-0,45	0,18-0.2	1,88	
Э 5 0А	ЦҮ-1	0,28-0,32	0,034	1,47	
350A	ЦҮ-1сх	0,28-0,32	0,02	1,46	
Э 5 0А	ЦҮ-2сх	0,28-0,32	0.06	1,50	
350	K-51	0,25-0,30	0.07	1,50	
350	K-52	0,25-0,30	0,07	1,50	
Э 5 0А	3-138/50H		-	170	
Э 5 0А	AH-X7			1,70	
955	ҮОНИ-13/55 у	0,30-0,40	0,02-0,08	1,530	
Э 6 0А	YOHИ-13/65	0,30-0,40	0,13	0,680	
√360A	Y-340/65	0,35-0,45	0,13	1,75	
370	ЛК3-70	-		1,50	
970	K-70	0,25-0,30	0,15	164	
Э85	YOHИ-13/85	0,30-0,40	0,10-0,12	165	
Э85	ҮОНИ-13/85 у	0,30-0,40	0,02-0,07	1,53	
Э85	ниат-зм	0,38-0,47	0,01-0,02	1,78	
Э85	ШЛ-18 ✓	0,28-0,32	0,13	1,64	
385	<u>ЦЛ-18-Мо</u>	0,2840,32	0,11	1,58	
Э100	Y-340/105	0,30-0,40	0,05-0,15	1,62	
Э100	ЦЛ- 19	0,28-0,32	0,10	1,58	

Bang~84. Hệ số tiêu hao que hàn khi hàn thép hợp kim cao với tính chất đặc biệt

Loại que hàn	Mác que hàn	•	· Hệ số					
roại que nan	iviac que nan	. k	Ψ	Tiêu had				
ЭA-1a	ОЗЛ-8	0,33-0,37	0,03-0,07	1,53				
ЭA-1 Б	ОЗЛ-7	0,35-0,39	0,04-0,07	1,55				
ЭA-1Б	ЦЛ-11	0,31-0,33	0,05-0,10	1,54				
TY-OC3	∐T-15	0,32-0,36	0,05-0,10	1,55				
TY OC3	Л-40М	0,30-0,32	0,05-0,1	1,53				
TY OC3	ЭНТҮ-ЗБ	0,34-0,38	0,03-0,07	1,54				
TY1078-64	НИАТ-1	0,18-0,32	0,05-0,10	1,46				
TY 0C3	IIT-1	0,50-0,60	0,05-Q.10	1,78				
TY 151-60	НИС-13	0,32-0,36	0,03-0,07	1,52				
TY 151-60	ОЗЛ-4	0,35-0,39	0,00-0,05	1.51				
ЭA-2	ОЗЛ-6	0,35-0,39	0,03-0,07	1.55				
Э А- 2	ОЗЛ -6 р	0,35-0,39	0, 10- 0,15	1,69				
TY OC3	ОЗЛ-9-1	0,35-0,39	0,0-0,05	1,51				
TY OC3	ОЗЛ-9А	0.35-0,39	0,05-0,10	1,59				
ЭA-2C2	ОЗЛ-5	0,35-0,39	0,03-0,07	1,55				
ЭA-3M6	НИАТ-5	0.30-0.40	0,02-0,04	1,51				
TY 1068-63	АЖ-13-18	0,29-0,31	0,02-0,05	1,47				
ЭФ-X13	УОНИ-13/НЖ	0,34-0,38	0,05-0,10	1,58				
ЭA-2Б	цл-9	0,44-0.47	0,07	1,69				
:∋A-1	ОЗЛ-14		•	1,60				
A-1a	∫I-39	-	-	1,60				
ЭA-1Б	JI-38M	-	-	1,70				
3A-15a	ЗИО-3			1,55				
3A-1M2	ЭA-400/10y	-	-	1,80				
3A-1M2	ЭНТҮ-ЗМ	-	. 4 ** *	1,65				
∋A- 1 M2	ПЛ-4	-	-	1,50				
ЭA- 1 M2Б	ЭA-902/14	-		1,80				
ЭА-1М2Б	ЦЛ-28	-	-	1,60				
ЭА- 1М2 Б	НЖ-13	•	-	1,75				
ЭА-1М2Б	ЭA-400/13		-	1,80				
ЭА-1Ф2	ЭA-606/11	-	-	1,80				
ЭΑ-1Φ2	ГЛ-2	-	-	1,60				
ЭФ-Х13	YОНИ-10X13	· -	-	1,60				
ЭФ-Х17	YOHИ/10X17T	-	-	1,60				
•	03Л-3	-	-	1,50				
<u>.</u>	15M	-	= :	1,60				
-	ОЗЛ-11	-	-	1,60				

Bảng 85. Hệ số tiêu hao que hàn khi hàn thép hợp kim bên nhiệt

Loạique hàn	Mác que hàn	. H a	số	
Loai que nair	Wac que nan	Ψ	Tiêu hao	
Э-ХМФ-Ф	Цл-20А	0,02-0,05	1,49	
Э-ХМФ-Ф	11Л-20Б	0,02-0,05	1,49	
TY 1119-65	цл-20М	0,02-0,05	1,49	
Э-ХМФБ-Ф	ЦЛ-27A	0,02-0,05	1,49	
Э-ХМФБ-Ф	шт-27Б	0,02-0,05	1,49	
Э-Х2МФБ-Ф	ЦЛ-26М	0,02-0,05	1,49	
Э-Х5МФ-Ф	Щ1-17	0,04-0,08	1,53	
Э-МХ-Р	цл:4	-	1,60	
Э-МХ-Ф	ГЛ-14	•	1,50	
Э-ХМ-Ф	ЦЛ-30-63	·	1,60	
Э-ХМФ-Ф	LUI-20-63	•	1,60	
Э-Х2МФБ-Ф	11Л-26М-63	· •	1,60	
Э-Х5МФ-Ф	ЦЛ-17-63		1,60	
ЭА-1Г6	СЛ-16	-	1,60	
ЭΦ-X13	ЛМЗ-1	•	170	

Chú thích: hệ số khối lượng thuốc bọc cho các mác que hàn $k = 0.3 \pm 0.35$

Bảng 86. Hệ số tiêu hao que hàn khi đấp bề mặt cho các tính chất đặc biệt

Loại que hàn	Mác que hàn	He ed				
Logi Que Hair	Mac que man	k	Ψ.	Tiêu hao		
ЭH-60X2CM-50	ЭH-60M	0,48-0,58	0,0-0,10	1,73		
ЭН-80В18Х4Ф-60	ОЗИ-1	1,10-1,25	-0,40	1,75		
- '	03И-2	1,10-1,25	-0,40	. 1,45		
ЭН- ҮЗ ОХ25ПС2Г-60	T-590	165	-1,0÷-115	140		
ЭH-Y30X23-PC2TT-55	T-620	1,65	-10÷-15	1,3		

Bảng 87. Hệ số tiêu hao que hàn khi hnà hợp kim màu và gang

Lasi que bàs	Mác que hàn	Hệ số				
Loại que hàn	Mac Que nan	k	Ψ	Tiêu hac		
TY 1033-62	03Ч-1	0,30-0,35	(0,0)÷(-0,05)			
TY 1034-62	мнч-1	-	0,0-0,05	-		
TY 1035-62	ЦЧ-4	0,58-0,62	0,0-0,05	1,76		
ТУ ЦНИИТМАШ и ОСЗ	ЦЧ-ЗА	0,30-0,32	0,0-0,05	1,46		
TY 1036-62	03A-1	-	0.15-0.20	2,3		
TY 1037-62	O3A-2	_	0.15-0.20	2,3		
TY 1079-64		0.20	0.05-0.15	1,4		

Bảng 88. Hiệu số điều chính cho định mức tiêu hao que hàn

Chiều dài que hàn		Chiều dài	que hàn sử	dung (mm)	,
arrow and quarrant	450	400	350	300	250
450	1,0	1,02	1,04	107	1,12
350	0,96	0,98	1,0	1,03	1,07
250	0,89	0,91	0,93	0,96	1,0

2. Dây hàn và thuốc hàn để hàn tự động và bán tự động

Kích thước kết cấu của liên kết hàn, công thức tính toán diện tích tiết diện ngang của mối hàn, định mức tiêu hao dây và thước cho liên kết hàn cho trong các bằng $89 \div 92$.

Định mức tiêu hao dây được tính theo công thức (47). Giá trị hệ số tiêu hao dây cho hàn tự động là 1,02, cho hàn bán tự động là 1,03.

Dịnh mức tiêu hao thuốc tính theo công thức (52). Giá trị hệ số tiêu hao thuốc:

- 1) Đối với các mối hàn giáp mối, hàn góc không vát mép khi hàn tự động là 1,3; hàn bán tự động là 1,4; khi có vát mép tương ứng là 1,2 và 1,3.
- 2) Cho các mối hàn của liên kéy chữ T có và không vát mép: đối với hàn tự động là 1,1; hàn bán tự động là 1,2.
 - 3) Cho liên kết hàn định chốt trong giới hạn $2,7 \div 3$.

Sự tiêu hão dây hàn có thể giảm bốt khí:

- a) Dùng dây theo đúng tiêu chuẩn đã định cho các liên kết hàn.
- b) Sử dụng các thiết bị hàn với bộ phận truyền dẫn dây trực tiếp.
- c) Dùng các máy hàn có các cơ cấu bán tự động truyền dẫn dây để giảm bốt tầm với của dây hàn.
 - d) Hoàn thiên chế đô hàn để bảo đảm tổn thất là nhỏ nhất.
 - e) Hàn không có vát mép chi tiết hàn.

Thuốc hàn được di chuyển từ thùng thuốc đến vùng hàn bằng hình thức tự động hoặc bán tự động. Chúng bị chẩy tạo xỉ do hò quang nung nóng; một phần bám vào xỉ, phần khác vẫn giữ trạng thái ban đầu. Các phần thuốc không nóng chảy sẽ được thu lại bằng thiết bị chuyển dùng hoặc bằng tay để dùng lại.

Khi thu lại bằng tay, mất mát thuốc có thể đến 20%. Nếu sử dụng các thiết bị chuyên dùng để thu lại thuốc, có thể đạt đến 90% số thuốc thu lại là dùng được.

Bảng 89. Mối hàn liên kết giáp mối

$$F_{H} = s + 0.75eg$$

	Kid	ch thước (mm)	, P.y.
s	1,5	2,0	2,5	3,0
е	2,5 ⁺¹	2,5+2	2,5+3	
g	0	,5		1
				· · · · · · · · · · · · · · · · · · ·

*
$$b = 0^{+1} mm$$

	Giá t	Giá trị tính Hàn tự động				Hàn bán tự động		
S (mm)	F _H (mm²) m _H (kg/m)		Tiêu hao (kg/m) mối hàn					
			dây	thuốc	dây	thuốc		
1,5	1,87	0,014	0,0142	0,0186	0,0144	0,0202		
2,0	2,31	0,018	0.0183	0,0238	0.0185	0,0259		
2,5 🔭	4,25	0,033	0,0336	0,0439	0.0340	0,0476		
3,0	4,49	0,035	0,0357	0,0464	0,0361	0,0506		
			-		1 .			

				F _H ≖	sb + 1	5eg				
				Kích t	hước (i	mm)				
s	2	3 -	4	5	6	7	8	9	10-14	16-20
g	1,5	± 1		2 ± 1			2+1.5 2-1.0		2,5±1,5	25 ⁺² _{1,5}
е	7±1,5	8±2	10±2	12±2	-	16	±3		20±3	22±4
b	0+0.3	0+0.5	0+0.8				0+1			

	Giá t	Giá trị tính		ự động	Hàn bán tự động			
s (mm)	F _H (mm²)	m _H (kg/m)	Tiêu hao (kg/m) mối hàn					
) H (() H ()	"H (ng/III)	dây	thuốc	dây	thuốc		
2	18,3	0,142	0,145	0,188	0,146	0,204		
. 3	21,7	0,169	0,172	0,224	0,174	0,243		
4	34,6	0,270	0,275	0,358	0,278	0,388		
5	41,5	0,324	0,330	0,429	0,334	0,466		
6	55,5	0,433	0,442	0,574	0,446	0,623		
. 7	63,1	0,492	0,502	0,652	0,507	0,709		
8	63,6	0,496	0,506	0,657	0,511	0,714		
9	64,1	0,500	0,510	0,662	0,515	0,720		
10	86,7	0,626	0,638	0,828	0,645	0,901		
12	87,7	0,684	0,968	0,907	0,705	0,986		
14	88,7	0,692	0,706	0,917	0,713	0,997		
16	109,2	0,850	0,867	1,127	0,876	1,224		
18	110,2	0,860	0,877	1,140	0,886	1,240		
20	111,2	0,867	0,884	1,150	0,892	1,250		

				F _H	= sb -	1,500	,					
-/				Kíc	h thước	(mm)					_
s	2	3	4-5	6	7-9	10	12-14	16-20	22	30	40	50
g	1,5	± 1		2 :	± 1,5		2,5 ± 1,5		2,5 ⁺² ,	5	. 3.	2
9	7±1,5	8±2	10±2	16	±3	2	20±3	22:	±4	30±4	40±4	45±4
Ь	0+1		1±1				2±2			6±1	8±1	8±2

-	Giá t	ri tính	Hàn tu	į dộng		Giát	rj tính	Hàn tu	ı d ộ ng
s (mm)	F _H (mm²)	m _H (kg/m)	Tiểu hao mối hàn (kg/m)		s (mm)	F _H (mm²)	m _H (kg/m)	mố	hao ihàn g/m)
-			dây	thuốc				dây	thuốc
2	19,07	0,148	0,151	0,196	12	105,7	0,824	0,840	1,093
- 3	24,0	0,187	0,191	0,248	14	109,7	0,855	0,872	1,134
4	38,5	0,300	0,306	0,398	16	133,2	1040	1,060	1,376
5	39,5	0,308	0,314	0,408	18	137,2	1,080	1,102	1,430
. 6	60,75	0,474	0,483	0,628	20	141,2	1,102	1,124	1,460
7	68,75	0,536	0,547	0,710	22	155,0	1,210	1,234	1,603
8	70,75	0,552	0,563	0,732	30	332,0	2,590	2,640	3,430
9	72,75	0,567	0,579	0,752	40	544,5	4,250	4,340	5,630
10	86,7	0,677	0,691	0,897	50	755,0	5,880	_6,000	7,790

 $F_{H} = sb + 0.75eg$ $F_{H} = 0.75e_{1}g_{1}$ (cho hàn tay)

·		ch thước (
S	2	3	4	5
b	0,5 ± 0,5		2 ± 1	
9	1,5 :	± 1	2	± 1
е	7 ± 1,5	8 ± 2	10 ± 2	12 ± 2
e,		8 ± 2		10 ± 2

 $F_{H_1} = 9.7 \text{ m/m}^2$; $m_{H_1} = 0.075 \text{ kg/m}^2$

(tiế p bảng 89).

	Giá trị tính		Hàn	tự động	Hàn bá	in tự động
s (mm)	F _H (mm²)	m _µ (kg/m)	Tiêu hao ((kg/m) mối hàn	
) H ()	witi (kg/m/)	dāv	thuốc	dây	thuốc
1	10,0	0,078 .	0,0796	0,103	0,0804	1,125
3	13,5	0,105	0,107	0,139	0,108	0,151
4	20,0	0,156	0,159	0,206	0,161	0,225
5	24,5	0,190	0,194	0,252	0,196	0,274

F_H = cb + 0,75eg

	Kíc	h thước (n	nm)		
S	2	3	4	5	
b	0 + 0,3	0 + 0,5	0 + 0,8	0 + 1,0	
g	1,5	+1	2 ± 1		
e	7 ± 15	8 ± 2	10 ± 2	12 ± 2	

	Giá trị tính		· Hàn	tự động	Hàn bá	n tự động
s (mm)	F _H (mm²)	F _H (mm²) m _H (kg/m)		Tiêu hao (k		n
	' H (''''') ' ''H		dây	thuốc	dây	thuốc
1	9,3	0,072	0,073	0,095	0,074	1,104
3	11,2	0,087	0,088	0,115	0,089	0,125
4	18,1	0,141	0,144	0,187	0,145	0,203
5	22,0	0,172	0,175	0,228	. 0,177	0,248

$$F_{H} = sb + 0.75(eg + e_{1}g_{1})$$

			(ích thu	iớc (mm	n)		
\$	2	3	4	5	6	7	8-10
. p	0+1	1:	<u>+</u> 1	1,5±1		2±1,5	
е	10:	±2	14	±2	±3	22±4	
g	1,5	±1			2±1,5		
91	1:	±1	1,5±1				±1
	1		·				

*e₄ = 4 ± 2 mm

	Giá t	ri tính	. Hàn ti	Į dộng		Giá trị t		Hàn t	i dộng
s (mm)	F _H (mm²)	m _H (kg/m)	Tiêu mới (kg	hàn	s (mm)		m _H (kg/m)	Tiêu hao mối hàn (kg/m)	
			dây	thuốc				dây	thuốc
2	18,2	0,142	0,145	0,188	7	51,8	0,404	0,412	0,535
3	20,2	0,157	0,160	0,208	8	60,9	0,475	0,484	0,630
4	33,2	0,259	0,264	0,343	. 9	62,9	0,490	0,500	0,649
5	36,7	0,286	0,292	0,379	10	64,9 -	0,507	0,517	0,672
6	45,2	0,353	0,360	0,468] .				

 $F_{H} = sb + 0.75eg (eg + c_1g_1)$

	Kích	thước (n	uw)		
s ·	4	5	6	7	8-10
b	1+0,5	15+	0,5	1	2+1
е	14 ±	±2 ॄ	18	±3	22±4
91		1,5±1		2	2±1

 $e_1 = 4\pm 2 \text{ mm}; g = 2\pm 1,5 \text{ mm}$

(tiếp bảng 89).

	Giá t	ri tính	Hàn t	ự động	
s (mm)	mm) F _H m _H (mm²) (kg/m)	m _H	Tiêu hao (kg/m) mối hà		
,		dây	thuốc		
4 .	34,2	0,267	0,272	0,354	
5	39,2	0,306	0,312	0,405	
6	48,2	0,376	0,384	0,498	
7	55,3	0,432	0,441	0,573	
8	64,9	0,506	.0,516	0,670	
9	67,4	0,526	0,536	0,697	
10	70,0	0,546	0,557	0,723	

 $F_{H} = sb + 0,75eg$

	Kích thước (mm)								
s	2	3	4	5	6	7	8	9-10	
b	1,5	±1	2:	±1		3±1,5		4±1,5	
g.	1,5	±1			2:	±1,5		_l_	
е	10	±2	14:	± ₂ 2	18	±3	2	2±4	

_	Giá t	rî tính	Hàn t	ļ dộng	Hàn bán	tự động
s (mm)	F _H	m _H		Tiêu hao (kg	g/m) mối hàn	
(mm) F _H (mm ²)	(kg/m)	dây	thuốc	dây	thuốc	
2	15,6	0,122	0,1245	0,161	0,1256	0,175
3	17,2	0,134	0,1368	0,177	0,1380	0,193
4	50,9	0,397	0,405	0.526	0,409	0,572
5	52,9	0,412	0,420	0,547	0,425	0,594
6	73,6	0,574	0,586	0,760	0,592	0,827
.7	76,7	0,597	0,609	0,791	0,614	0,859
8	91,8	0,716	0,730	0,948	0,737	1,030
9	103,8	0,810	0,826	1,074	0,835	1,167
10	107,8	0,840	0,857	1,114	0.865	1210

$$F_{H} = sb + \frac{(s-c)^2}{2}tg\alpha + 1,5eg$$

	- Kích thước (mm)								
S	14	16	18	.20					
С	6±	1	7:	±1					
g	18:	:3	22	±4					
. е	2,5± 1,5		2,5+2						

* b =
$$0^{+1}$$
 mm; $\alpha = 40^{\circ} \pm 5^{\circ}$

S .,	Giá t	ri tính	Hàn tự	dộng
(mm)	F _{H2}	F _H m _H (mm ²) (kg/m)		m) mối hàn
	(mm_) [°]	(kg/m)	dây	thuốc
14	108,4	0,845	0,862	1,103
16	134,6	1,050	1,070	1,285
18	163,7	t275	1,300	1,560
- 20	185,4	t275 1445	1,474	1,770

$$F_{H} = sb + \frac{(s-c)^{2}}{2}tg\alpha + 0.75(eg + e_{1}g_{1})$$

	Kích thước (mm)							
s	8-9	10	12-14	16-20				
•	18±3	20±4	22±4	24±4				
9	2±	1,5	2,5± 1,5	2,5+2				

$$\star$$
 b = 2 ± 1 mm; α = 40° ± 5°; e_1 = 4 ± 2 mm; g_1 = 2 ± 1,5 mm

	s	Giá t	ri tinh	Hàn t	ự động
. ((mm)	F _H .	m _H	Tiêu hao (k	g/m) mối hàn
		(mm²)	(kg/m)	dây	thuốc
	8	71,2	0,556	0,572	0,686
	10	912	0,710	0,731	0,877
	12	122,3	0,953	0,981	1,177
	14	145,3	1133	1,166	1399
	16	180,8	1,410	1,452	1742
	18	210,5	1,640	1,689	2,026
	20 *	243,7	1,895	1,951	2,341

$$F_{H} = sb + \frac{(s-c)^{2}}{2} tg\alpha + 0.75eg$$

					Kich thướ	ic (mm)	_				
s	8	9	10	12	14	16	18	20	22-24	26-30	
b			2±1		3:	3±1,5		4±1,5		5±1,5	
e	18	±3	20±3	. 22	2±4	24±4		26±4	30±4		
g		2±1,5	-	2,5	±15	±1,5 2 ⁺² _{-1,5}		y . 		2,5 1,5	

$$^{\bullet}$$
 c = 1.5 ± 1 α = 30° ± 5°

	Giá t	rj tính	Hàn t	ų dộng	Hàn bár	tự động		
s (mm)	F _H _	m _H	Tiêu hao (kg/m) mối hàn					
. ,	F _H (mm²)	(kg/m)	dây	thuốc	dây	thuốc		
8	57,1	0,445	0,453	0,543	0,458	0,595		
9	63,3	0,494	0,503	0,603	0,508	0,660		
10	75,5	0,588	0,599	0,718	0.605	0,786		
12	103,2	0,805	0,821	0.985	0.829	1,077		
14	134,8	1,050	1071	1,285	1081	1,405		
16	155,7	1,215	1,229	1,474	1,251	1,626		
18	198,9	1,551	1,582	1898	1,597	2,076		
20	2274	1770	1,805	2,166	1823	2,369		
22	300.2	2,400	2,448	2,937	2,472	3,213		
24	335,1	2,610	2,662	3,194	2,688	3,494		
26	380,4	2,970	3,029	3,634	3,059	3,976		
28	420,4	3,300	3,366	4,039	3,389	4,405		
30 *	462,9	3,610	3,682	4,418	3,708	4,820		

$$F_{H} = sb + (s - c)^{2}tg \frac{\alpha}{2} + 1,5eg$$

		Kích	thước	(mm)		
s	14	16	18	20	22	24
е	18±3		22	±4	24±4	
g	2±1,5		2,5+2		2,5+2,	
C.	6±1		7±1		8	±1

$$\star b = 0^{+1} \text{ mm}; \ \alpha = 60^{\circ} \pm 5^{\circ}$$

	Giá t	ri tính	Hàn t	ự động	Hàn bán	tự động			
s (mm)	FH	m _H	Tiêu hao (kg/m) mối hàn						
,	(mm²)	(kg/m)	dây	thuốc	dây	thuốc			
14	105,8	0,825	0,842	1,010	0,850	1,105			
16	149,4	1,165	1,188	1,425	1,200	1,560			
18	181.6	1.415	1,444	1,734	1,458	1,890			
20	210,4	1.640	1,672	2,010	1,690	2,200			
22	245,7	1.915	1,954	2,340	1,974	2,560			
24	281,5	2,195	2,238	2,680	2,260	2.940			

$$F_H = (s - h)b + 0.75eg;$$

 $F_1 = hb + h^2 tg \frac{\alpha}{2} + 0.75e_1g_1$

		K	ich thu	lớc (m	m)					
s	5-6	7	8	9	10	12	14			
h	3±1		4	4±1			8±1			
e	1	17±3			20±4					
e _{1.}	12:	±2	13	±2	14±2		16±2			
g	2±1			1,5 1,0	' ']	2,5	±1,5			

* b = 2 ± 1 mm;
$$g_1$$
 = 1,5 ± 1 mm; α = 60° ± 5°;

(tiếp bảng 89).

	Giá t	Giá trị tính		ự động	Hàn bán tự động				
s . (mm)	F _H	m _H (kg/m)	Tiệu hao (kg/m) mối hàn						
,	F _H (mm²)		Dây	Thuốc	Dây	Thuốc			
5	32,7	0,255	0.260	0,338	0,263	0,367			
6	34.7	0,271	0.276	0.359	0,279	0,390			
7	40.5	0,316	0,322	0.418	0.326	0,455			
8	40.5	0.316	0.322	0,418	0,326	0.455			
9	48,5	0,378	0,385	0,500	0,389	0,545			
10	48,5	0,378	0,385	0,500	0,389	0,545			
12	57.0	0,445	0,454	0,590	0,458	0,641			
14	55.0	0,428	0,437	0,567	0,442	0,616			
		iá trị tính		-	Giá trị	tính			

	Giá 1	ritính i	s (mm)	Giá trị tính		
s (mm)	F _H (mm²)	m _H (kg/m)		F _H (mm²)	m _H (kg/m)	
5	28,05	0.219	9	35,3	0,275	
6	28.05	0,219	10	43,7	0,341	
7	28,05	0,219	12	43,7	0,341	
- 8	35,3	0,275	14	74,7	0,583	

$$F_{H} = b(s - h) + (s - c)^{2} t g \frac{\alpha}{2} - (h - c)^{2} t g \frac{\alpha}{2} + 0,75 e g;$$

$$F_{H_{1}} = bh + (h - c)^{2} t g \frac{\alpha}{2} + 0,75 e_{1}g_{1}$$

		Kíct	n thước (r	nm)		
S	14	16	18-20	22	24	26-30
е	20:	20±4		30±6		37±7
g	2±1,5		2,5+2		2,	5+2

 $[\]overline{*b} = 2 \pm 2$ mm; $g_1 = 0^{+3}$ mm; $e_1 = 9$ mm; $h_1 = 60^{-3}$ mm; $h_2 = 60^{-3}$ mm; $h_3 = 60^{-3}$ mm; $h_4 = 60^{-3$

(tiếp bảng 89).

	Giá trị tính		Hàn t	ự động	Hàn bán tự động				
s (mm)	F _H	m _H	Tiêu hao (kg/m) mối hàn						
	F _H (mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc			
14	117	0,912	0,930	1,115	0,940	1220			
16	163	1,271	1,297	1,560	1,311	1,702			
18	213	1,660	1,693	2,025	1,710	2,223			
20	257:	2,015	2,043	2,453	2,075	2,695			
22	329	2,565	2,615	3,140	2,640	3,430			
24	382	2,980	-3,040	3,650	3,070	3,990			
2 6	458	3,580	3,640	4,370	3,690	4,800			
28	520	4,060	4,140	4,970	4,180	5,430			
30	586	4,570	4,660	5,580	4,710	6,120			

		Kíc	h thước	c (mm)				
s	8-9	10	12	14	16-20	22-24		
¢		3±1		4±1				
е	18±3	20±3	22	±4 24±4.		26±5		
g	2±1,5 2		2,5:	±1,5	2,5+2	25-15		

* b = 2 ± 1 mm;
$$e_1$$
 = 4±2 mm; g_1 = 2±1,5 mm; α = 50° ± 5°.

	Giá trị tính		Hàn tự động			Giá trị tính		Hàn tự động	
s (mm)	F _H (mm²)	m _H (kg/m)	Tiểu hao (kg/m) mối hàn		s (mm)	F _H (mm²)	m _H	Tiêu hao (kg/m mối hàn	
		(r.g/m)	Dây	Thuốc	-	(11811)	(kg/m)	Dây	Thuốc
8	67,2	0,525	0,535	0,643	16	163,6	1,275	1,300	1,560
9	74,4	0,581	0,593	0,711	18	192,0	1,498	1,528	1,834
10	8 5,6	0,667	0,680	0,817	20	224,3	1,750	1,785	2,140
12	117,0	0,912	0,930	1,118	22	271,1	2,115	2,156	2,590
14	130,0	1,015	1,035	1242	24	309,8	2,420	2:468	2,960

$$F_{H} = sb + (s - c)^{2}tg\frac{\alpha}{2} + 0.75eg$$

				1	Kích thước	(mm)			
s	8-9	10	12	14	16	18	20	22-24	26-30
b		2±1		3	±1,5 4±1,5		1,5	5±1,5	
e	18±3	20±3	22	2±4		24±4		26±4	30±4

 $^{^{\}circ}$ g = .2 ± 1,5 mm; c = 1,5 ± 1 mm; $\alpha = 30^{\circ} \pm 5^{\circ}$.

	Giá t	ri tính	Hàn t	ự động	′ Hàn bán	tự động			
s (mm)	F _{H2}	m _H		Tiêu hạo (kg/m) mối hàn					
	(mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc			
8	58,4	0,456	0,465	0,557	0,469	0,611			
9	64,2	0,501	0,512	0,613	0,516	0,672			
10	73,8	0,576	0,588	0,705	0,594	0,772			
12	91,8	0,717	0,732	0,877	0,738	0,960			
14	122,2	0,953	0,972	1,168	0,982	1,278			
16	145,7	1,137	1,160	1,392	1,170	1,523			
18	186,3	1,454	1,484	1,780	1,498	1,950			
20	213,1	1,663	1,695	2,038	1,712	2,230			
22	267,0	2,084	2,135	2,565	2,156	2,808			
24	300,0	2,340	2,390	2,866	2,412	3,140			
26	340,8	2,660	2,712	3,260	2,740	3,565			
28	377,9	2,950	3,010	3,610	3,040	3,955			
3 0	417,4	3,255	3,320	3,980	3,350	4,360			

$$F_{H} = (s - R - c)^{2} tg\alpha + bs + 2(s - R - c)R + \frac{\pi R^{2}}{2} + 0.75(eg + e_{1}g_{1})$$

									Kí	ch t	huớc	(m	m)				A.			•	, .	
s ·	30	32	34	36	38	40	42	45	48	50	55	60	65	70	80	90	100	110	115	120	125	130
, e	35	36	37	38	39	40	41	42	44	45	47	54	56	55	59	63	68	65	67	69	70	72
e ₁	15	+ 4		: .	16	+ 4	l				18+4		<u> </u>				- :	20+				
c					7 7 7	··· ,	5±1		·	•	·						-	8±1			-	•
R	: Car					5±1	•			•					-		8±1					
9			2,5	⊢2,5 −1,5	. ,		<u> </u>							3	+3 -2						-	
α	- 1	,		•		130	±	2°				÷			12°	± 2°	,		10)°±	2°	
	Ì							•						l				1				

^{*} b = 0^{+1} mm; $g_1 = 2.5 \pm 2$ mm.

	Giá t	ri tính	Hàn t	ų dộng	
s (mm)	FH	, m _H	Tiêu hao (kg/m) mối ha		
(,,,,	F _H (mm²)	(kg/m)	Dây	Thuốc	
30	469	3,658	3,731	4,477	
32	512	3,883	3,960	4,752	
34	559	4,360	4,447	5,236	
36	605	4,719	4,813	5,775	
38	653	5,093	5,194	6,232	
40	703	5,483	5,592	6,710	
42	756	5,896	6,013	7,215	
45	852	6,645	6,777	8,132	
48	946	7,378	7,525	9,030	
50	1003	7,823	7,979	9,574	
55	1160	9,048	9,228	11,073	
60	1588	12,386	12,633	15,159	
65	1789	13,954	14,233	17,069	
70	1821	14,203	14,487	17,384	
80	2250	17,450	17,799	21,358	
90	2720	21,216	21,640	25,968	
100	3235	25,233	25,737	30,884	
110	3439	25,824	26,340	31,608	
115	3696	28,828	29,404	25,284	
120	3963	30,910	31,528	37,833	
125	4425	34,515	35,205	42,246	
130	4520	35,256	35,961	43,153	

$$F_H = 1.57R^2 + bs + (s - R - c)^2 tg\alpha +$$

+ $2R(s - R - c) + 0.75eg$

Kích thước (mm)									
s	16	20	25	30	35	40	45	50	
е	25	28	31	29	32	34	36	39	
g				3.	+8				
α	1	8°±2	0	13°±2°					

* b = 0^{+2} fmm; c = 1 ± 0,5 mm; R = 5 ± 1 mm

(tiếp bảng 89).

	Giá t	tri tính	Hàn tự động Tiêu hao (kg/m) mối hài			
s (mm)	F _H	m _H				
	(mm²)	(kg/m)	Dây	Thuốc		
16	242,5	1,893	1,930	2,320		
20	322,6	2,515	2,567	3,080		
25	434,6	3,390	3,450	4,150		
30	494,6	3,855	3,930	4,720		
35	613,8	4,790	4,880	5,870		
40	7413	5,780	5,890	7,075		
45	8913	6,950	7,080	8,500		
50	1245,0	9,715	9,900	11,900		

$$\mathsf{F}_{\mathsf{H}} = \mathsf{sb} + \frac{(\mathsf{s} - \mathsf{c})^2}{2} \mathsf{tg}\alpha + \mathsf{1,5eg}$$

Kích thước (mm)								
s	20-24	26-28	30					
е	20±3	24±4	28±4					

* b = 0⁺¹ mm;
$$g = 2.5^{+2.5}_{-1.5}$$
 mm; $c = 6 \pm 1$ mm; $\alpha = 40^{\circ} \pm 5^{\circ}$

	Giá trị tính	Hàn	tự động
s (mm)	F _H	m _H Tiêu hao (kg/m) mối hàn
	(mm²) (k	g/m) Dây	Thuốc
20	152,0 1,18	6 1,209	1,450
- 22	166,0 1,25	95 1,320	1,584
24	181,6 1.4	1,443	1,731
26	219,6 1,71	1744	1,981
28	238,0 1,89	55 1,892	2,270
30 💂	277,0 2,1	60 2,203	2,643

$F_{H} = sb + \frac{(s-c)^{2}}{2} tg\frac{\alpha}{2} + 1,5e$
--

_			K	ich thước (i	mm)			
s	20-22	24	26-28	30-36	38	40-42	• 44-50	52-60
g		•	2,5 ^{+2,5}				3+3	
е	20:	±3	22±3	22±4		5±4	28±4	32±4
С	6±2		3±1	<u> </u>		6±1		•
α		60° ± 5	50	α		50° ± 5°)	

_	Giá t	ri tính	Hàn t	tự động
s (mm)	FH2	m _H	Tiêu hao (k	g/m) mối hàr
- 145	(mm²)	(kg/m)	Dây	Thuốc
20	166	1,294	1,319	1,582
22	184	1,435	1,463	1,755
24	185	1,443	1,471	1,765
26	215	1,677	1,710	2,052
28	238	1,856	1,893	2,271
30	270	2,106	2,148	2,577
32	294	2,293	2,338	2,805
34	321	2,503	2,553	3,063
36	349	2,722	2,776	3,331
38	388	3,026	3,086	3,703
40	442	3,447	3,515	4,218
42	476	3,712	3,786	4,543
44	522	4,071	4,152	4,982
46	559	4,360	4,447	5,336
48	599	4,672	4,665	5,598
50	639	4,984	5,083	6,099
52	704	5,491	5,600	6,720
54	749	5,742	5,855	7,026
56	795	6,201	6,325	7,590
58	845	6,591	6,722	8,066
60 ≈	894	6,973	7,112	8,534

$$F_{H} = sb + \frac{(s-c)^{2}}{2}tg_{\frac{\alpha}{2}}^{\alpha} + 15eg$$

	. Kich	thước (m	m)	
s	24-28	30-38	40-48	50-60
е	30±5	35±5	40±5	45±5
g	2,5	2,5 1,5	3	-3
α	60° ± 5°		50° ± 5°	

* $b = 0^{+4}$ mm; $c = 6 \pm 1$ mm

_	Giá t	ri tính	Hàn	tự động	
s (mm)	FHa	m _H	Tiêu hao (kg/m) mối hài		
	(mm²)	(kg/m)	Dây	Thuốc	
24	272	2,120	2,162	2,594	
26	318	2,480	2,529	3,034	
28	345	2,691	2,744	3,292	
30 :	367	2,892	2,919	3,502	
32	395	3,081	3,142	3,770	
34	424	3,307	3,373	4,047	
36	455	3,549	3,619	4,342	
38	488	3,806	3,882	4,658	
40	579	4,406	4,491	5,389	
42 .	616	4,804	4,900	5,880	
44	655	5,109	5,211	6,253	
46	695	5,421	5,529	6,634	
48	722	5,631	5,743	6,891	
50	807	6,294	6,419	7,702	
52	854	6,661	6,794	8,152	
54	902	7,035	7,175	8,610	
56	951	7,417	7,565	9,078	
58	1003	7,823	7,979	9,574	
60	1056	8,236	8,400	9,980	

$$F_{H} = (s - h)b + (s - h - c)^{2}tg\frac{\alpha}{2} + 0.75eg$$

$$F_{H_{4}} = hb + \frac{h^{2}}{2}tg\frac{\alpha_{1}}{2} + 0.75e_{1}g_{1}$$

				Kích thư	ớc (mm)				
s	16-20	22-26	28-32	34-36	38	40-44	46-50	52-56	58-60
b			2±1				3:	±1	
ħ.	8:	±1	9:	±1			10±1		
9			2,5 ^{+2,5}		1		3	+3 -2	•
е	18±3	22±4	26±4	28	3±5	34±5	40±5	45±5	32±5
•e ₁	16:	±2	17:	±2	19±2		20	±2	
α			50° ± 5°)	<u>, </u>	45°	± 4°	40°	± 3°

$$g_1 = 1.5 \pm 1 \text{ mm}; \alpha_1 = 60^\circ \pm 5^\circ \div; c = 1.5 \pm 1 \text{ mm}$$

	Giá trị tính		Hàn t	ự động	Hàn bár	tự động
· s (mm)	F _H	m _H		Tiêu hao (kg	j/m) mối hàn	
. ,	F _H (mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc
16	84	0,655	0,668	0,801	0,674	0,876
18	102	0,795	0,810	0,972	0,818	1,063
20 -	125	0,975	0,994	1,191	1,004	1,305

tiếp bảng 89

	Giá t	ri tính	Hàn t	ự động	Hàn bár	tự động	
s (mm)	F _H (mm²)	.m _H		Tiêu hao (ko	g/m) mối hàn	/m) mối hàn	
	(mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc	
22	161	1,255	1,280	1,536	1,292	1,679	
24	190	1,482	1,511	1,813	1,526	1,983	
26	224	1,747	1,781	2,137	1,799	2,337	
28	250	1,950	1,989	2,386	2,008	2,610	
30	289	2,254	2,299	2,758	2,321	3,017	
32	332	2,589	2,640	3,168	2,666	3,465	
34	384	2,995	3,054	3,664	3,084	4,009	
36	437	3,408	3,476	4,171	3,510	4,563	
38	461	3,595	3,666	4,399	3,702	4,812	
40	528	4,118	4,200	5,040	4,241	5,513	
42	583	4,547	4,637	5,564	4,683	6,087	
44	641	5,099	5,200	6,240	5,251	6,826	
46	718	5,700	5,814	6,975	5,871	7,632	
48	782	6,199	6,322	7,585	6,384	8,199	
50	849	6,722	6,856	8,226	6,923	8,899	
52	851	6,737	6,871	8,244	6,939	8,920	
54	917	7,252	7,397	8,875	7,469	9,709	
56	985	7,794	7,949	9,537	8,027	10,435	
58	1069	8,338	8,504	10,204	8,588	11,164	
60	1145	8,931	9,109	10,930	9,198	11,957	
	 \$		-	Giá trị tính			
(mm)		F _H (mm²)		m _{H1} (kg/m)		/m)	
16	- 26		55,8		0,435		
	- 36		64,0		0,500	+	
	- 60		85,0		0,663		

$$F_{H} = \frac{k^2}{2} + 1,05gk$$

Kích thước (mm)										
s	s 3 4-5 6-9 10 12-16 18-40									
k _{min}		3	4		5	6				
·g	0	+1	0+	2	0	+3				

		Giá, t	rì t í nh	Hàn t	ự động	Hàn bár	tự động
k s (mm)	F., (mm²)	m. (kg/m)	•	Tiêu hao (kg/m) mối hàn			
	F _H (mm²) m _H (kg/m)		Dây	Thuốc	Dây	Thuốc	
3	3-5	3,8	0,029	0.0295	0.0324	0,0298	0.0357
4	6-1	6,1	0.047	0.0479	0,0526	0,0484	0.0580
5	12-16	8,8	0.067	0.0683	0,0751	0,0690	0.0828
6	18-40	15,3	0,119	0,1213	0,1334	0,1225	0,1470

$$F_{H} = (s - c)b + \frac{(s - c)^{2}}{2} tg\alpha + \frac{1}{2} [(s - c)tg\alpha + b] m;$$

$$F_{H_{1}} = \frac{k_{1}^{2}}{2} + 1,05gk_{1}$$

	Kích thước (mm)								
s	10-12	14	16-18	20	22-24				
m		5	. (5	7				
k,	6	7 .	8	9	10				

* b = 2 ± 2 mm; c = 2 ± 1 mm;

$$g = 0^{+1}$$
 mm; $\alpha = 50^{\circ}$ ± 5°

(tiếp bảng 90).

	Giá trị tính		Hàn t	ų dộng	Hàn bár	tự động			
s (mm)	F _H (mm ²)	m _H	Tiêu hao (kg/m) mối hàn						
	(mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc			
10	89	0,694	0,707	0,777	0,714	0,855			
12	121	0,943	0,961	1,057	0,971	1,164			
14	158	1,232	1,256	1,381	1,268	1,521			
16	210	1,638	1,670	1,837	1687	2,024			
18	258	2,012	2,052	2,257	2072	2,486			
20	311	2,425	2,473	2,667	2,497	2,996			
22	382	2,979	3,038	3,341	3,068	3,681			
24	446	3,478	3,547	4,001	3,582	4,298			

s	Giá trị tính		s	Giá t	Giá trị tính		
(mm)	F _{H1} (mm ²)	m _{H1 (kg/m)}	(mm)	F _{H₁ (mm²)}	m _{H1} (kg/m)		
10	21,1	0,165	18	36,2	0,282		
12	21,1	0,165	20	45,2	0,353		
14 .	28,1	0,219	22	55,2	0,431		
16	36,2	0,282	24	55,2	0,431		

$$F_{H} = \frac{(s-c)^{2}}{2} tg\alpha + sb +$$

$$+ \left[\left(\frac{s-b}{2} \right) tg\alpha + b \right] m;$$

		Kích	thước (i	mm)		
S	16-18	20-22	24-26	28-30	32-36	38-40
m	4	5	6	7.	8	9

* b = 0^{+1.5} mm; c = 4 ± 1 mm;

$$\alpha$$
 = 50° ± 5°.

(tiếp bảng 90).

_	Giá t	ri tính	Hàn t	ự động	Hàn bán	tự động
s (mm) F _H	m _H	Tiêu hao (kg/m) mối hàn				
(,	(mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc
16	97,4	0,759	0,774	0,851	0,781	0,937
18	119	0,928	0,946	1,040	0,955	1,146
20	157	1,224	1,248	1372	1260	1,512
22	185	1,443	1,471	1,618	1486	1783
24	230	1,794	1829	2,011	1847	2,126
26	266	2,074	2,115	2,326	2.136	2,563
28	320	2,496	2,545	2799	2,570	3.084
30	361	2,815	2871	3,158	2,899	3,478
32	424	3,297	3,362	3,698	3,395	4,074
34	471	3,663	3,736	4,109	3,772	4,526
36	519	4,038	4,118	4,529	4,159	4,990
38	594	4,623	4,715	5,186	4,761	6,223
40	650	5,070	5,171	5,688	5,222	6,266

$$F_{H} = (s - h)b + \frac{(s - h - c)^{2}}{2} tg \alpha + \frac{1}{2} [(s - h - c)tg \alpha + b]m;$$

$$F_{H_{1}} = hb + \frac{h^{2}}{2} tg \alpha + (htg \alpha + b)m_{1}$$

	Kích thước (mm)								
S	20	22-24	26-28	30-34	35-40				
ħ	7±1		8±1	10±1	12±1				
m	6	7 .	8	10	12				
m ₁	3		4		5				

*
$$b = 1.5 \pm 1.5 \text{ mm}$$
; $c = 1.5 \pm 1.5 \text{ mm}$; $\alpha = 50^{\circ} \pm 5^{\circ}$

_	Giá t	Giá trị tính		ự động	Hàn bán	tự động	
s (mm)	FH	m _H	Tiêu hao (kg/m) mối hàn				
(,	(mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc	
20	179	1,396	1,423	1,565	1,437	1,724	
22	234	1825	1861	2047	1,879	2,254	
24	284	2,215	2.259	2,484	2.281	2.737	
26	323	2,519	2,568	2.825	2,594	3,112	
28	383	2,987	3,046	3.350	3,076	3,691	
30	409	3,190	3.253	3.578	3.285	3.942	
32	475	3,705	3.779	4,156	3,892	4,670	
34	547	4,266	4.351	4.786	4,481	5,377	
36	578	4,508	4,598	5,057	4.735	5,682	
38	656	5,116	5.218	5.739	5.374	6,448	
40	740	5,772	5,887	6,475	6.063	7,275	

(tiếp bảng 90).

s	Giá t	ri tính	s	Giá t	Giá trị tính		
(mm)	F _{H1} (mm ²)	m _{H1} (kg/m)	(mm)	F _{H1} (mm ²)	m _{H1} (kg/m)		
20	36,3	0,283	32	71,3	0,556		
22	36,3	0,283	34	71,3	0,556		
24	36,3	0,283	36	90,3	0,705		
26	48,5	0,378	38	90,3	0,705		
28	48,5	0,378	40	90,3	0,705		
30	71,3	0,556					

b/ Mối hàn liên kết góc

	bs + 6,75eg	
К	ích thước (mr	n)
\$. 1-2	2,5-3
9	0,5	1
* b = 0+	1 mm; e = 2	s ⁺³ mm.

, ,	Giá t	Giá trị tính		i động	Hàn bán	tự động
s (mm) F _H (mm²)	F _H	m _H	Tiêu hao (kg/m) mối hàn			
	(kg/m)	Dây	Thuốc	Dây	Thuốc	
1,0	1,8	0,014	0,0143	0,0185	0,0144	0,0201
1,5	2,4	0,018	0,0183	0,0237	0,0185	0,0259
2,0	3,0	0,023	0,0234	0,0304	0,0236	0,0330
2,5	6,1	0,047	0,0479	0,0622	0,0484	0,0677
3,0	7,1	0,055	0,0561	0,0729	0,566	0,0792

$$F_{H} = \frac{k^{2}}{2} + 105gk;$$
 $H_{1} = \frac{k_{1}^{2}}{2} + 105g_{1}k_{1}$

Kích thước (mm)				
s	6-9	10-14		
k	3	4 ·		

*
$$g = 0^{+1}$$
mm; $g_1 = 0^{+1}$ mm; $k_1 = 3$ mm.

Bảng 91.

Giá t	ri tính	Hàn tự	dộng	Hàn bán	tự động		
(mm) F _H (mm²)	Fu	m _H	Tiêu hao (kg/m) mối hàn				
	(kg/m)	Dây	Thuốc	Dây	Thuốc		
6	3,82	0,0297	0,0302	0,0392	0,0305	0,0427	
7	3,82	0,0297	0,0302	0,0392	0,0305	0,0427	
8	3,82	0.0297	0,0302	0,0392	0.0305	0,0427	
9	3,82	0,0297	0,0302	0,0392	0,0305	0,0427	
10	6,10	0.0475	0,0484	0,0629	0,0489	0,0684	
12	6,10	0,0475	0,0484	0,0629	0,0489	0.0684	
14	6.10	0.0475	0,0484	0.0629	0,0489	0.0684	

Chú thích: Đối với hàn tay $F_{H_1} = 6$ mm, $m_{H_1} = 0.0468$ kg/m; $s = 6 \div 14$ mm

$$F_{N} = +\frac{1}{2} S^{2} tg\alpha + bs = + 0.75eg;$$

$$F_{H_1} = \frac{k^2}{2} + 1.05g_1$$

	Kích thước (mm)							
\$	10-12	14	16-20					
k		6						
e	15±3	20±3	25±4					
5 1 2	1 ,	1	•					

* b = 2 ± 2 mm; c = 2 + 1 mm; $g = 2 \pm 1$ mm; $g_1 = 0^{+1}$ mm; $\alpha = 40^{\circ} \pm 5^{\circ}$.

	ri tính	Hàn t	ự động	Hàn bár	tự động	
s (mm) F _H	m _H	Tiêu hao (kg/m) mối hàn				
(,,,,,	nm) F _H (mm²)	(kg/m)	Dây	Thuốc	Dây	Thuốc
10 .	87,2	0,680	0,693	0,831	0,700	0,910
12	111	0,865	0,882	1,058	0,890	1,157
14	143	1,115	1,137	1,364	1,148	1,492
16	181	1,411	1,439	1,726	1,453	1,887
18	214	1,669	1,702	2,042	1,719	2,234
20	250	1,950	1,989	2,386	2,008	2,610

Chá thích: Đối với hàn tay: $F_{H_1} = 15, \text{Imm}^2$; $m_{H_1} = 0.118 \text{ kg/m}$; $s = 10 \div 14 \text{ mm}$; $F_{H_1} = 21, \text{Imm}^2$, $m_{H_1} = 0.164 \text{ kg/m}$; $s = 16 \div 20 \text{ mm}$.

$$F_{H} = (s - h)b + \frac{[s - (h + c)]^{2}}{2}tg\alpha + 0,75eg;$$

$$F_{H_{1}} = hb + \frac{h^{2}}{2}tg\alpha + \frac{1}{2}m_{1}htg\alpha$$

	Kích t	hước (mm)	
s	20-24	26-28	30-34	36-40
h	7±1	8±1	. 10±1	12±1
m ₁	3±2	4±2	5:	-2
е .	20±3	25±4	30±4	40±4

* b = 2 ± 2 mm; g = 2 ± 1 mm; c = 2 ± 1 mm; α = 50° ± 5°.

	Giá trị tính		Hàn t	ự động	Hàn bán	tự động
s (mm)	F	m _H		Tiêu hao (kg	/m) mối hàn	
,,	F _H (mm ²)	(kg/m)	Dây	Thuốc	Dây	Thuốc
20	140	1,092	1,113	1,335	1,124	1461
22	173	1,349	1,375	1,650	1,389	1805
24	212	1,653	1,686	2,023	1,702	2,212
26	242	1,887	1,924	2,308	1,943	2,525
28	288	2,246	2,290	2,748	2,313	3,006
30	296	2,307	2,353	2,823	2,376	3.088
32	347	2,706	2,760	3,312	2,787	3,623
34	402	3,135	3,197	3,836	3,229	4,197
36	418	3,260	3,325	3,990	3,357	4,364
38	475	3,705	3,779	4,534	3,816	4,960
40	537	4,188	4,271	5,125	4,313	5,606

	8	Giát	Giá trị tính		Giác trị tính	
~	(mm)	F _{H1 (mm} ²)	m _{H((kg/m)}	(mm)	F _{H1} (mm ²)	m _{H1} (kg/m)
-	20-24	63,3	0,494	30-34	119,7	0,933
.•	26-28	80,4	0,627	36-40	153,0	1,193

Bảng 92. Mối hàn liên kết chốt

$$V_{H} = \frac{\pi d^{2}}{4} 0.75g + \pi \left(\frac{D}{2}\right)^{2} s$$

	, Kích thước (mm)								
s	3-6 7-10 12-14 16-20 22-24 26-40								
D	12	18	20	22	25	30			
d	12±2	26±2	32±3	36±3	40±3	44±3			
9		2:	±1		3:	±1			

	Giá t	ri tính	Hàn bán tự động		
s (mm)	V _H	m _H	Tiêu hao (kg) trên chốt		
	(cm³)	(kg/m)	Dây	Thuốc	
4	0,428	0,0033	0,0034	0,0102	
6	0,541	0,0042	0,0043	0,0129	
8	1,879	0,0135	0,0139	0,0417	
10	2,135	0,0166	0,0171	0,0513	
12	3,215	0,0250	0,0257	0,0771	
14	3,525	0,0274	0,0282	0,0846	
16	4,701	0,0366	0,0376	0,1128	
18	5,088	0,0396	0,0407	0,1221	
20	5,463	0,0426	0,0438	0,1314	
22	7,988	0,0623	0.0641	0,1923	
24	8,457	0,0659	0,0678	0,2034	
26	12,275	0.0957	0.0985	0,2955	
28	12,995	0,1013	0,1043	0,3129	
30	13,715	0,1069	0,1001	0,3003	
32	14,390	0,1122	0,1155	0,3465	
. 34	14,610	0,1139	0,1173	0,3519	
36	15,830	0,1234	0,1271	0,3813	
38	16,005	0,1248	0,1285	0,3855	
40	17,225	0,1343	0,1383	0,4149	

Kích thước (mm)								
s	1,5	2	3	4				
d	13±2	15±2	19±3	21±3				

 $g = 2 \pm 15 \text{ mm}.$

_	Giá	trj tính	Hàn bán tự động		
s (mm)	V _H	m _H	Tiêu hao (kg	g) trên chốt	
, ,	(cm ³)	(kg/m)	Dây	Thuốc	
1,5	0,249	0,0019	0,00196	0,00529	
2,0	0,322	0,0025	0,00257	0,00693	
3,0	0,535	0,0041	0,00422	0,01139	
4,0	0,640	0.0048	0,00494	0,01333	

Kích thước (mm)								
s	2	3	4	5	6			
đ	6 ⁺¹	7+3	7+4	8+3	8+3			

t = 2d mm

	Giá	trj tính	Hàn bán tự động Tiêu hao (kG) trên chốt		
s (mm)	V _H	m _H			
	(cm³)	(kg/mm)	Dây	Thuốc	
2	0,073	0,0005	0,00052	0,00140	
3	0,171	0,0013	0,00134	0,00361	
4	0,220	0,0017	0,00175	0,00470	
5	0,242	0,0018	0,00185	0,00499	
6 💂	0,242	0,0018	0,00185	0,00499	

3. Vật liệu để hàn trong môi trường khí bảo vệ và cắt bằng hồ quang

Tiêu hao dây hàn được xác định bằng lượng kim loại chảy trên 1 m mối hàn và được tính với hệ số tăng cường của mối hàn k_y và hệ số tiêu hao k_p (bảng 72a).

Tiêu hao khí bảo vệ được tính toán trên 1m mối hàn (một lần hàn). Khi hàn nhiều lớp, tiêu hao khí được tăng tương ứng với số lần hàn. Tiêu hao khí hêli được xác định như tiêu hao khí argon với hệ số tương ứng là 1,3.

Trong việc định mức tiêu hao vật liệu khi hàn hợp kim titan, tiêu hao argon để bảo vệ mối hàn được lấy bằng $0.5q_g$; tiêu hao argon được bảo vệ kim loại mối hàn được lấy bằng $0.75q_g$. Khi hàn hợp kim titan trong buồng chân không thì tiêu hao argon đối với sản phẩm sẽ bằng 1.5 thể tích của buồng.

Tiêu hao điện cực volfram được tính cho $100\,\mathrm{m}$ chiều dài mối hàn. Trong đó tính toán tổn thất điện cực volfram khi cắt được lấy bằng 30% tiêu hao điện cực volfram khi hàn. Bảng $93\div111$ giới thiệu định mức tiêu hao vật liệu khi hàn trong mỗi trường khi bảo vệ và cắt kim loại.

Bảng 93. Định mức tiêu hao dây bàn khi hàn hợp kim nhóm trong môi trường khi bảo vệ

Mối hàn giáo mối không vát mép hàn hai phía

	Kíc	h thước (mm)	_	Tiêu hao dây trên 1 m m Hàn bằng điện c			
_				F _H (mm²)	m _H (kg/m)	Không n	óng chảy	Nóng chảy
	s		g	·		Bằng tay	Tự động	Tự động và bán tự động
	3	7	1	11,16	0,039	0,043	0,040	-
	4	9	1	14,42	0,050	0,055	0,055	0,053
	5	9	1,5	21,13	0,074	0,081	0,076	0,078

T		Kích thu	oc (mm)	
	s	b	e	g
	2	0,3	5	1 .
	3	0,3	7	1
	4	0,5	9	1:
r	5	0,5	10	1,5
ŀ	6	0,5 ,	10	1,5

Mối hàn giáp mối không vát mép hàn một phía và có tấm lớt

· S ,	Hàn c	tấm lới	Hàn không lớ	
(mm) ;	91	91	. е ₁	91
≤3	4	0,5	6	4
>3	6	1	1	

Tiêu hao dây trên 1 m mối hàn (kg). Hàn bằng điện cực: Không nóng chảy Nóng chảy (kg/m) (mm)Từ động và Bằng tay Tự động bán tự động 2 5,43 0.019 0,021 0.0194 3 7.11 0.025 0.028 0.0255 0.047 0,0438 4 12,35 0.043 0.045 5 16,99 0.060 0,066 0.0612 0,063 17,49 0,061 0.0622 0,064 0,067

Ghi chứ: $k_y=1.3$ khi hàn toàn bộ, tiêu hao dây hàn khoảng 0,058 kg (hàn tay); 0,054 kg (hàn tự động) với $s \le 3$ mm và khoảng 0,048 kg (hàn tay); 0,044 kg (hàn tự động); 0,046 kg (hàn tự động và bán tự động) với s>3 mm. Khi hàn liên kết kín tiêu hao dây hàn thấp hơn, tương ứng khoảng 0,006 kg; 0,005 kg khi $s \le 3$ mm và 0,015 kg; 0,0147 kg khi s>3 mm.

dum	17/17/17	Kích	thước	(mm)	s	Hàn	có đệm	Hàn l dệr	không n
4////	77777	s	b	е	(mm)	et	91	e ₁	g1
-	<u>e1</u> 65	2	0,3	7	2-3,5	4	0,5	6	4
Mối hàn giáp	_	3	0,3	8			***		
vát mép một	phía có đệm	3,5	0,5	9	· g	= 1 r	nm.		
a (mm)	E (mm²)		/1	- ()	Tiêu hao dây hàn cho 1 m mối hàn (kg)				
s (mm)	F _H (mm²)	}	m _H (k	(g/m)	Hàn	điện cu	ic không	nóng	chảy
.* -	ļ.:	.			Bà	ng tay	,	Tự độ	ng
2	5,87	1	0,0)21	- (0,023		0,021	4
3	6,73		0,0	24	(0,026		0,024	5
3.5	8,14		0,0	28		0.031		0.028	6

Chú thích: $k_y = 1.3$. Khi hàn tay tiêu hao dây hàn khoảng 0.058 kg (bằng tay): 0.054 kg (hàn tự động)

8	Hàn c	dêm	Hàn không đệ		
(mm)	e ₁	91	e ₁	g1	
4-20	6	1	6	4	

 $\alpha = 70^{\circ}$

				Tiêu hao dây hàn cho 1 m mối hàn (kg). Hàn điện cực:						
s (mm)	F _H (mm ²)	k _y	m _H (kg/m)	Không no	ing chảy	Nóng chảy				
				Bằng tay	Tự động	Tự động và bán tự động				
4	20,8	1,4	0,078	0,086	0,080	-				
5	27,2	1,4	0,103	0,113	0,105	-				
6	35,6	1,4	0,134	0,147	0,137	-				
- 7	42,2	1,4	0,159	0,175	0,162	0,166				
8	47,4	14	0,179	0,197	0,182	0,188				
10	74,5	1,4	0,281	0,309	0,287	0,295				
12	110,2	1,4	0,416	0,458	0,424	0,437				
14	147,2	1,3	0,516	0,568	0,526	0,542				
16	189,1	1,3	0,664	. 0,730	0,677	0,697				
18	237,6	1,3	0,824	-	-	0,865				
20	291,6	1,3	1,024	-	-	1,075				

Ghi chú: Khi hàn tay, tiêu hao dây hàn khoảng 0,048 kg (bằng tay); 0,044 kg (tự động); 0,046 kg (bản tự động); khi hàn liên kết khung tiêu hao dây hàn khoảng 0,017; 0,015; 0,016 kg

Mối hàn giáp mối chữ X có vát mép hai phía

Tiếp bảng 93.

Kích thư	ớc (mm)				Tiêu hao dây hàn trên
s	e	F _H (mm²)	k _y	mH (kg/m)	1 m mối hàn (kg) khi hàn tự động và bán tự động điện cực nóng chảy
15	13	110,6	1,4	0,421	0,442
16	14	123,2	1,3	0,432	0,455
18	15	149,4	1,3	0,523	0,549
20	17	180,3	1,3	0,633	0,665
22	18	211,7	1,3	0,743	0,780
24	19	245,4	1,3	0,861	0,904
26	21	285.6	1,3	1,002	1,052
28	22	325,3	1,3	1,142	1,199
30	24	370,6	1,3	1,301	1,366

 $b = 1 \text{ mm}; c = 2 \text{ mm}; g = 2 \text{ mm}; \alpha = 70^{\circ}.$

 $g = 1 \text{ m/m}; \qquad k = 2 \div 4 \text{ m/m}; \qquad g = 1,5 \text{ m/m}; \qquad k = 5 \div 16 \text{ m/m};$

Mối hàn góc không vát mép

t.	_		_	'	o dây hàn cho ı (kg). Hàn điện	
k (mm)	F _H (mm ²)	k _y	m _H (kg/m)	Không nó	óng chảy	Nóng chảy
		ļ		Bằng tay	Tự động	Tự động và bán tự động
2	-4,10	2	0,022	0,024	0,022	
3	7,26	2	0,039	0,043	0,040	
4	11,79	2	0,064	0,070	0,065	0,067
5	17,33	1,5	0,070	0,077	0,071	0,074
6	26,80	1,4	0,101	0,111	0,103	0,106
. 7	34,85	1,4	0,132	0,145	0,135	0,139
. 8	43,38	1,3	0,152	0,167	0,155	0,160
. 10	64,49	1,3	0,226	0,249	0,231	0,237
. 12	89,50	1,3	0,314			0,330
14	118,70	1,3	0,417	-	-	0,438
16	151,30	1,2	0,490		-	0.514

Mối hàn góc có vát mép 2 phía

	Kich thu	ớc (mm	1)				Tiêu hao dây hàn trên
s	С	k	е	F _H (mm²)	k _y ,	(kg/m)	1 m mối hàn (kg) khi hàn tự động và bán tự động diện cực nóng chảy
10	2	3	6,5	59,8	1,3	0,210	0,221
12	2	3	7,5	78,1	1,3	0,274	0,288
14	2	4	9	108,2	1,3	0,380	0,399
16	2	4	10	132,4	1,3	0,464	0,487
18	2	4	11	159,2	1,3	0,559	0,587
20	2	5	13	202,2	1,3	0,709	0,744
22	2,5	5	13,5	224,9	1,2	0,729	0,765
24	2,5	6	15	276,1	1,2	0,894	0,939
26	2,5	6	16	313,7	1,2	1,016	1,067
28	2,5	7	18	372,5	1,2	1,207	1,267
30	2,5	7	19	416,6	1,2	1,350	1,417

 $b = 1 \text{ mm}; g = 1.5 \text{ mm}; \alpha = 60^{\circ}$

Bảng 94. Định mức tiêu hao argon khi hàn tự động và hàn tay cho hợp kim nhôm bằng điện cực không nóng cháy

s	q _g (I/ph)	Tiêu I	hao ar	gon ti	ên 1π	n mối	hàn (I)	khi v _h	(m/h).	Tiêu hao bổ sung
(mm)	Tối ưu	4	6	10	15	20	25	30	35	argon cho các nguyên công chuẩn bị (I)
-1	9	-	-	54	36	27	21,6	18	15,5	1,8
2	10	- ;	-	60	40	30	24,0	20	17,0	2,0
3	11	-	110	66	44	33	26,4	22	18,7	2,2
4	12	180	120	72	48	36	28,8	24	20,4	2,4
5	13	195	130	78	52	39	31,2	26	22,1	26
6	14	210	140	84	56	42	33,6	28	23,8	2,8
>6	15.	225	150	90	60	45	36,0	30	25,5	3,0

Tiếp bảng 94.

			Hàn	tự đội	ng và	bán t	i động	diện	cực n	óng cl	nảy			
s	qg	(l/h)		Tiêu hao argon trên 1m mối hàn (I) khi v _h (m/h)										
(mm) .	(12-		Hà	Hàn bán tự động					Hà	n tự đ	ộng			
tự tự	1.4	4	6	10	15	10	15	20	25	30	35	40		
3-5	15	15	225	150	90	60	90	90	45	36	. 30	25,5	22,5	
6-8	20	25	375	250	150	100	120	80	60	48	40	34,0	30,0	
10 vàlớn hơn	22	30	450	300	160	120	132	88	66	52,8	44	37,4	33,0	

Ghi chú: Tiêu hào phụ cho các nguyên công chuẩn bị thường là 1 lít khi hàn tự động: $1 \div 1.5$ lít khi hàn bán tự động.

Bảng 95. Định mức tiêu hao dây hàn khi hàn hợp kim titan trong môi trường khi tro

Kích thước (mm)

.	1- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s	P		e	9
	111/11/11	1,5	0,3	3 .	- 7	1
/X////2		2,0	0,	3	10	. 1
9	1 8	3,0	0,	5 -	12	1
_	p mối không		Hản c	ó đệm	Hàn	không đ ộ m
	một phía m đêm		e ₁	g1	e1	g1
co ta	m aem	1,5-3	6	1	6	3
s (mm)	F _H (mm²)	m _H (kg/	m)	Tiêu	hao dây	hàn
S ((1811)	H (((iii))	III (KB)	''''	Bằng ta	у	Tự động
		Hàn có c	fêm :	,		
1,5	9,42	0,051	1	0,056		0,052
2,0	11,64	0,063		0,069		0,064
3,0 *	13,90	0.075		0,082	İ	0.076

Tiếp bảng 95.

s	F _H	m _H	Tiêu hao	dây hàn
(mm)	(mm²)	(kg/m)	Bằng tay	Tự động
		Hàn không đệm		
1,5	14,20	0,077	0,085	0,078
2,0	18,5	0,100	0,110	0,102
3,0	22,2	0,120	0,132	0,122

* Trên 1m mối hàn với điện cực không nóng chảy lấy $k_{\rm v}=1.2.$

	, е						Kíc	h thước (m	m)	- 1
0,	×]		7	-	b	C	g		9 ·
7///			3						$\alpha = 70^{\circ}$	12 = 90°
			3	T	3	0,5	0,5	1	6,5	8,5
////		111/1111	7	۱ ،	1	0,5	1,0	1,5	8,0	9.5
	· 2 -	67		!	5	0,5	1,0	1,5	9,0	11,5
	e ₁	4		(3	0,5	10	1,5	10,0	13.5
Mối h	àn giáp m	ối vát méj	,	8	3	1,0	1,5	1,5	.13,0	17,0
	V một ph			1	0	1,0	1,5	1,5	16,0	210
				1	2	1,0	2,0	1,5	18,0	24,0
				_	s		Hàn c	ó d ệm	Hàn khố	ing dêm
				(1	m)		e ₁	91	e ₁	91
				;	3-12	1	6	1	6	3
. , , ,,,	F _H (r	nm²)	n	n _H (l	(g/m)		1	ao dây hà khi hàn điệ		
s (mm)							Bà	ng tay	ŲΤ	động
	$\alpha = 70^{\circ}$	$\alpha = 90^{\circ}$	α = 1	70°	α =	90°	$\alpha = 70$	o α = 90°	$\alpha = 70^{\circ}$	$\alpha = 90^{\circ}$
3	14,35	17,7	0,07	8	0,09	96	0,086	0,106	0,080	0,098
4	20,8	24,9	0,11	2	0,13	34	0,123	0,147	0,114	0,137
5	27,2	34,6	0,14		0,16		0,162	0,206	0,150	0,191
6	35,6	46,1	0,19	2	0,24		0,211	0,274	0,196	0,254
В	55,1	71,9	0.29		0,38		0,327	0,427	0.303	0,396
10	81,8	108,1	0,44		0,58		0,486	0,642	0,451	0,596
12	110,2	149,3	0,59	5	0,80) 6	0,655	0,887	0,607	0,822

Ghi chú: $k_y = 1.2$ khi hàn không đệm, tiêu hao dây hàn khoảng 0.050kg (bằng tay); 0.045 kg (tự động).

Mối hàn góc không vát mép

Mối hàn góc không vát mép

 $g = 1 \, \text{mm}$; $k \leq 5 \, \text{mm}$;

k (mm) F _H (me	F _H (mm²)	k _y	m _H (kg/m)	Tiêu hao dây hàn trên 1 m mối hàn (kg) khi hàn diện cự không nóng chảy		
				Bằng tay	Tự động	
2	4,10	· 2,0	0,037	0,041	0,038	
3	7.26	2,0	0,065	0,072	0,066	
4	11,79	1,4	0,074	0,081	0,075	
5	17,33	1,4	0,109	0,120	0,111	
6	26,80	1,4	0,169	0,186	0,172	
7	34,85	1,4	0,219	0,241	0,223	
8	43,38	1,3	0,254	0,279	0,259	
10	64,49	1,3	0.377	0.415	0,385	

g = 15mm;

Bảng 96. Định mức tiêu hao argon khi hàn tự động hợp kim titan với điện cực không nóng chảy

S (mm)	q _g (l/ph)			Argon 1 n (I) khi v	Tiêu hao phụ argon cho các nguyên		
(mm)	(vpn)	15	20	25	30	35	công chuẩn bị (I)
				Mối hàn	doc		
0,5-1	15,8	63	47,3	37,9	31,5	26,8	3,1
1,5	20,3	81	60,8	48,6	40,5	34,4	4,0
2,0	23,0	92	69,0	55,2	46,0	39,1	4,6
3,0	27,0	108	81,0	64,8	54,0	45,9	5,4
4 và lớn	31,5	126	94,5	75,6	63,0	53,5	6,3
hơn '	-						

Tiếp bảng 96.

s (mm)	q _g (I/ph)		Tiêu hao mối hàn		Tiêu hao phụ argon cho các nguyên công		
(11111)	[(//Þ///	15	20	25	30	35	chuẩn bị (I)
			М	ối hàn	vòng		
0,5-1	17,5	70	52,5	42	35	29,8	3,5
1,5	2,5	90	67,5	54	45	38,8	4,5
2,0	25,0	100	75,0 ·	60	50	42,5	5,0
3,0	30,0	120	90,0	72	60	51,0	6,0
4 và lớn hơn	35,0	140	105,0	84	70	59,5	7,0

Ghi chứ: qk (giá trị tối ưu) tính toán tiêu hao argon khi bể hàn được bảo vệ

Bảng 97. Định mức tiêu hào argon khi hàn tay cho hợp kim titan với điện cực không nóng chảy

S (mm)	q _g	q _g Tiêu hao Argon trên 1 m mối hàn (I) khi v _h (m/h)		Tiêu hao phụ argon cho các nguyên công		
(mm) -	(1/2/1)	3	6	10	15	chuẩn bị (I)
0,5-1	10,5	-	-	63	42	2,1
1,5	13,5	-	١.	81	54	2,1
2,0	15,0		150	90	60	3,0
3,0	18,0	270	180	108	. 72	3,6
4 và lớn hơn	210	315	210	126	84	4.2

Ghi chứ: qk (giá trị tối du) tính toán tiêu hao argon khi bể hàn được bảo vệ

Bảng 98. Định mức tiêu hao điện cực volfram khi hàn hồ quang - argon cho hợp kim nhôm

s (mm)	s Đường kính (mm) điện cực (mm)		Tiêu hạo điện cực trên 100m mối hàn (g) khi hàn		
(11111)	dian coc (min)	Bằng tay	Tự động		
1	1,5	8,3	3,9		
15-2	2,0	23,4	10,9		
3-4	3,0	83,3	39,0		
5-6	4,0	132,2	125,0		
7 và lớn hơn	5,0	165,0	156,0		

Bảng 99. Định mức tiêu hao điện cực volfram khi hàn hồ quang-argon cho hợp kim nhôm

s (mm)	s Đường kính (mm) điện cực (mm)		Tiêu hao điện cực trên 100m mối hàn (g) khi hàn		
(11111)	Cien coc (min)	Bằng tay	Tự động		
0,5	1,0	6,0	2,8		
0,8-1,0	1,5	8,3	3,9		
12-1,5	1,5	8,3	3,9		
2,0	2,0	23,4	10,9		
3,0	3,0	83, 3	39,0		
4,0	4,0	132,2	125,0		
5 và lớn hơn	5,0	165,0	156,0		

Bảng 100. Định mức tiêu hao dây hàn khi hàn thép trong môi trường

				Kích thu	ớc (mm)	
	e ou		s	b	е	g
		1	1,0	0,2	2,5	0,5
(////		2/2 7	1,5	0,2	3,5	0,5
	-11 <u>p</u>	7	2,0	0,3	4,5	1,0
			2,5	0,3	5,5	1,0
Mối há	àn giáp mối gấ	p mép	3,0	0,3	6,5	1,0
s (mm)	F _H (mm²)	F _H m _H (kg/m)		-	ên 1 m mối không nóng	
,,		(1.3,11.4)	Bằng	tay ·	. Tự c	động
1,0	1,0"	0,009	0,010		0,009	2
1,5	1,5	0,014	0,015		0,0143	3
2,0	3,7	0,034	0,037		0,035	
2,5	4,5	0,042	0,046		0,043	
3,0	5,4	0,051	0,056		0,052	

Mối hàn giáp mối không vát mép hàn hai phía

Kíc	Kích thước mm			m _H	Tiểu hao dây hàn trên 1 m mối hài (kg) khi hàn điện cực không nóng ch	
s	b	g	(mm²)	(kg/m)	Bằng tay	Tự động
3 4 5 6	7 9 10 10	1,0 1,0 1,5 1,5	11,2 14,4 23,2 23,7	0,105 0,135 0,217 0,222	0,115 0,148 0,239 0,244	0,107 0,138 0,221 0,226

* b = 0.5 mm; $k_v = 1.2$.

Mối hàn giáp mối không vát mép hàn một phía có đệm

Kíc	h thước r	nm	F _H	m _H	Tiêu hao dây hàn trên 1 m mối hàn (kg) khi hàn diện cực không nóng chá	
s	b	e	(mm²)	(kg/m)	Bằng tay	Tự động
2	0,3	5.	8,2	0,076	0,084	0,0775
. 3	0,3	7	9,9	0,093	0,102	0,095
4	0,5	9	12,4	0,116	0,128	0,118

Ghi chú: $k_y = 1.2$ khi hàn có đệm, tiêu hao dây là 0.042 kg (hàn tay) và 0.039 kg (tự động)

21	e a	13112
		200
O)	b e	6

Mối hàn giáp mối vát mép chữ V hàn 2 phía

		Kích thướ	c (mm)	
s		b c	· · · · · · · · · · · · · · · · · · ·	e
5			$\alpha = 50^{\circ}$	$\alpha = 70^{\circ}$
4	0,5	1	6,0	8,0
5 6	0,5 0,5 0,5 1,0 1,0	1	6,0 7,0	9,0
6	0,5	1	8,0	10,5
7	1,0	2	8,5	11,0
8	1,0	2	9.5	12.5
10	1,0	2 2 2 2	8,0 8,5 9,5 11,5	8,0 9,0 10,5 11,0 12,5 15,0 18,0
12	1,0	2	13,5	18,0
* g =	1.5 mm			·

Tiếp bảng 100

s	F _H (mm²)		m _H (kg/m)		Tiêu hao dây hàn trên 1 m mối hàn (kg) khi hàn điện cực không chảy			
(mm)	500	700	F00	$= 50^{\circ} \alpha = 70^{\circ}$		tay	Tực	fộng
	$\alpha = 50^{\circ}$	$\alpha = 70^{\circ}$	$\alpha = 50^{\circ}$	$\alpha = 70^{\circ}$	$\alpha = 50^{\circ}$	$\alpha = 70^{\circ}$	$\alpha = 50^{\circ}$	$\alpha = 70^{\circ}$
3	18.6	23,1	0,174	0,216	0,191	0,238	0,177	0,220
4	23,4	29,5	0,219	0,276	0,241	0,304	0,223	0,282
5	28,7	37.9	0,268	0,355	0,296	0,391	0,274	0,362
6	33,7	46,5	0,315	0,435	0,347	0,479	0,321	0,444
8	40,8	51,7	0.382	0,484	0,420	0,532	0,390	0,494
10	57,4	76,8	0,542	0,719	0,596	0,791	0,553	0,733
12	78,6	112,5	0,736	1,053	0.810	1,158	0,751	1,074

Ghi chú: 1) $k_y=1.2$; 2) Đối với hàn tay $e_1=6$ mm; $g_1=1.5$ mm với $s=4\div12$ mm. Khi hàn các liên kết khung tiêu hào dây bố sung giảm khoảng 0.065kg cho hàn tay và 0.059kg cho hàn tự động

Mố	ihàn góc khô	ng vát mép	Mối hàn g	óc
g ≔ 1mm	k.≤ 5mm:	g = 1.5mm	k > 5mm;	e = 141k

k . (mm)	F _H (mm ²)) k _y m _H (kg/m)		Tiểu hao đầ 1 m mối hả hàn điện c nóng	àn (kg) khi
				Bằng tay	Tự động
1	1,54	4	0,048	0,053	0,049
2	4,10	2	0,064	0,070	0,065
3	7,26	2	0,113	0,124	0,115
4	11,79	1,4	0,129	0,142	0,132
5 .	17,33	1,4	0.243	0,267	0,248
6	26,80	1,4	0,293	0,322	0,299
7	34,85	1.4	0.381	0,419	0.389
8	43,38	13	0.440	0.484	0,449
10 *	64,49	1.3	0,654	0,719	0,667

Mối hàn giáp mối không vát mép hàn hai phía

K	ích thước n	nm	F _H (mm²)	m _H (kg/m)	Tiêu hao dây hàn trên 1 m hàn (kg) khi hàn diện cụ không nóng chảy	
s	. b	е	7		Bằng tay	Tự động
6	0,5	10	23,7	0,240	0,252	0,276
7	1,0	10	27,7	0,281	0,295	0,323
8	1,0	12	32,8	0,332	0,349	0,401
9	1,0	12	33,8	0,342	0,359	0,413
10	1,0	14	39,0	0,395	0,415	0,477

Mối hàn giáp mối không vát mép một phía có đệm

Kích thước (mm)									
s	b.	е	g						
2,5	0,3	5.	1						
3,0	0,5	7	1						
4.0	0,5	9	1						
5,0	0,5	10	1,5						

s (mm)	s F _H m (mm) (mm ²) (kg		Tiêu hao dây hàn trên 1 m môi hàn (kg) khi hàn điện cực không nóng chảy				
(11111)	(1111) (1111) (19)	(,,,,,,,	Argon	Khí CO ₂			
2,5	10,4	0,105	0.110	0,121			
3,0	12,6	0,128	0,134	0,147			
4,0	14,4	0,146	0, 15 3	0,168			
5,0	19,0	0,193	0,203	0,222			

*
$$e_1 = 6mm$$
; $g_1 = 1mm$; $k_y = 1.3$.

Mối hàn giáp mối vát mép chữ \	/
hàn một phía có đệm	

	Kich thu	ớc (mm)	
s	b	С	е
4	0,5	1,0	8,0
5	0,5	1,0	9,0
6	0,5	1,0	10,5
7	1.0	1,5	11,5
8	1,0	2,0	12,5
9	1,0	2,0	14,0
10	1,0	2,0	15,0
12	1,0	2,0	18,0

• g = 1.5 mm; $g_1 = 1.5 \text{ mm}$; $e_1 = 6 \text{mm}$; $\alpha = 70^\circ$.

k	F _H	m _H	Tiêu hao dây hàn trên 1 m mố hàn (kg) khi hàn diện cực chảy			
(mm)	(mm²) (kg/m)		Bằng tay	Tự động		
4	23,1	0,234	0,246	0,269		
5	29,1	0,299	0,314	0,344		
6	37,9	0,384	0,403	0,442		
7	46,5	0,472	0,496	0,570		
8	51,7	0,524	0,550	0,603		
9	64,0	0,649	0,681	. 0,746		
10	76,8	0,779	0,818	0,896		
12	112,5	1141	1198	1,378		

Chú thích: k_y = 1,3 khi hàn các liên kết khung, tiêu hao dây giảm khoảng 0,066kg cho hàn argon và 0,072kg khi hàn bằng khí CO₂

Mối hàn giáp mối vát mép chữ X hàn hai phía

Kích thước (mm)									
S	b	c	е	g					
8	1,0	3	7,0	1,5					
10 ·	1,0	3	8,0	1,5					
12	1,0	3	9,0	1,5					
14	1,5	4	10,5	2,0					
16	1,5	4	11,5	2,0					
18	2,0	4	13,0	2,0 2,0 2,0 2,0					
20	2,0	4	14,0	2,0					
ŀ		1.5.	-						

 $* \alpha = 60^{\circ}$

S F _H	F _H (mm²)		m _H	Tiêu hao dây hàn trên 1 m mối hàn (kg) khi hàn điện cực chảy		
((()))	n) (mm²) ^y (kg/m)	Bằng tay	Tự động			
8	36,0	1,3	0.365	0,383	0,420	
10	49,0	1,3	0.497	0,522	0,572	
12	64,4	1,3	0,653	0.686	0,751	
14	94,2	1,2	0.881	0.925	1,013	
16	115.4	1.2	1080	1134	1242	
18	153.6	1,2	1.438	1,510	1736	
20	180,4	1.2	1.688	1772	1941	

Mối hàn góc không vát mép

Mối hàn góc

g = 1.5mm; e = 1,41

k (mm)	F _H (mm²)	k _y		F _H k _v m _H					hàn trên 1 m mối àn điện cực chảy		
(1711/1)	(11811-)		'	(kg/m)		Bằng ta	у	Tự động			
2	5,1	5,	5,0		9	0,209		0,229			
3	8,6	4,	,0]	0,2	68	0,281		0.30	8		
4	14,0] 3,	0	0,3	27	0,343		0,37	6		
5	20,0	2,	,0	0,3	12	0,328		0,359			
6	26,8	1,	1,4		92	0,307	- 1	0,336			
7	34,9	1,	1,4		81	0,400		0.438			
8	43,4	1,	з	0.440		0,462		0,506			
10	64,5	1,	3	0,6	56	0,686		0,752			
<u> </u>	=	1	Kích thước (mm) Kích th				Cích thu	thước (mm)			
		s	С	· k	е	s	С	k	е		
× C	2	10 12 14 16 18	3 3 3 4	3 3 4 4 4	6 7 8,5 9,5 10,0	20 22 24 26	4 4 4 5	5 5 6	11,6 13,0 14,0 15,0		
Mối hàn gó	c vát mép			• • • • • • • • • • • • • • • • • • • •							

* b = 1mm; g = 1.5mm; $\alpha = 50^{\circ}$

hàn hai phía

S (mm)	, n		m _H (kg/m)	Tiêu hao dây mối hàn (kg) cực	khi hàn điện
				Bằng tay	Tự động
10	52,7	1,3	0,534	0,561	0,614
12	69,7	1,3 ,	0,707	0,742	0,833
14	96,9	1,3	0,983	1,032	1,187
16	120,8	1,3	1,225	1,286	1,479
-18	135,1	1,3	1,370	1,438	1,654
20	173,6	1,3	1,760	1,848	2,125
22	205,1	1,3	1,919	2,015	2,317
24	250,3	1,2	2,340	2,457	2,826
26	270,9	1,2	2,536	2.663	3,062

Bảng 101. Định mức tiêu bao argon khi hàn tay, tự động để hàp thép

	Ti€	u hao	argon	trên 1m	mối há	àn (I) kh	i v _n (m	1/h)	Tiêu hao phụ
q _g (I/ph)	1 .	6	10	15	20	25	30	35	argon cho các nguyên công chuẩn bị (I)
•		•	Điệ	n cực	không :	chảy	•		
6	-	-	36	24	18	14,4	12	_ :	12
7	-	-	42	28	21	16,8	14	- !	1,4
9	-	90	- 54	36	27	21,6	18	-	1,8
11	165*	ŤΙΟ	66	44	33	26,4	22	- 1	2,2
12	180	120	72	48	36	28,8	24	-	^ 2,4
14	210	140	84	5 6	42	33,6	28	-	2,8
	•	ı	ì	Điện c	ực chả	y .	' , .		
8	120	80	48	32	24	19,2	16	13,6	0,4
9	135	90	54	36	27	21,6	18	15,3	0,5
10	150	100	60	40	30	24,0	20	17,0	0,5 -
13	195	130	78	52	39	31,2	26	22,1	0,7
15	225	150	90	60	45	36,0	30	25,5	0,8
	6 7 9 11 12 14 8 9 10 13	9 1 1 65° 12 180 14 210 8 120 9 135 10 150 13 195	Q ₀ (l/ph)	Q _g	Q _Q (I/ph) 1 6 10 15 Diện cực 6 - - 36 24 7 - - 42 28 9 - 90 54 36 11 165° 110 66 44 12 180 120 72 48 14 210 140 84 56 Diện c 8 120 80 48 32 9 135 90 54 36 10 150 100 60 40 13 195 130 78 52	Q _(l/ph)	Qg (I/ph) 1 6 10 15 20 25 Diện cực không chảy 6 - - 36 24 18 14,4 7 - - 42 28 21 16,8 9 - 90 54 36 27 21,6 11 165° 110 66 44 33 26,4 12 180 120 72 48 36 28,8 14 210 140 84 56 42 33,6 Diện cực chảy 8 120 80 48 32 24 19,2 9 135 90 54 36 27 21,6 10 150 100 60 40 30 24,0 13 195 130 78 52 39 31,2	Q _g (l/ph) 1 6 10 15 20 25 30 30 30 30 30 30 30 3	Diện cực không chảy 6

Bảng 102. Định mức tiêu hao khí ${
m CO}_2$ khi hàn tự động và bán tự động với điện cực chảy để hàn thép

		Tiêu	hao ki	hí cacl	oonic t	rên îm	mối h	àn (I) I	chi v _h (i	m/h)	Tiêu hao phụ	
S (mm)	q _g (I/ph)	4	6	10	15	20	25	30	35	40	argon cho các nguyên công chuẩn bị (I)	
3	12		-	72	48	36	28,8	24	20,4	18	0,6	
4-5	14	-	140	84	56	42	33,6	28	23,8	21	0,7	
6-8.	16	240	160	96	64	48	38,4	32	27,2	24	0,8	
10-12	18	270	180	108	72	54	43,2	36	30,6	27	0,9	
14-16	20	300	200	120	80	60	48,0	40	34,0	30	1,0	
18-20	-22	330	220	132	88	66	52,8	44	37,4	33.	1,1	
và hơn						[i				

Bảng 103. Định mức tiêu hao điện cực volfram khi hàn hồ quang-argon diện cực không chảy để hàn thép

s (mm)	Đường kính diện cực (mm)	trên 100n	điện cực n mối hàn g)	s (mm)	Đường kính điện cực (mm)	trên 100n	điện cực n mối hà n g)
e de la companya de l	COC (HRII)	Hàn tay	Tự động		ege (mm)	Hàn tay	Tự động
0,5	1,0	6.0	2,8	3,0	3,0	83,3	9,0
0,8-1,0	1,5	8,3	3,9	4,0	4,0	. 132,2	125,0
1,2-1,5	1,5	8,3	3,9	5,0	5,0	165,0	156,0
2,0	2,0	23,4	10,9	và lớn hơn			

Bảng 104. Chế độ cắt kim loại màu bằng hỗn hợp argon - hyđrô (dòng một chiều)

Các thông số	Phương	pháp cắt
- Cac mong so	Phương Bằng tay 70-80 30-20 300-350	Cơ khí hóa
Thành phần hỗn hợp (%) Argon Hydrô Dòng định mức (A)	30-20	65 35 350-400

^{*} Tiêu hao tổng cộng các khí là $(1.5 \div 2)$ m³/h

Bảng 105. Tieu hao vật tiệu khi cắt nhôm (đồng một chiều)

	Chiều	Tốc đô		Tiêu hao	trên 1m cắt	
Phương pháp cắt	dày tấm (mm)	cắt (mm/ph)	Ar (1)	H (I)	Công suất điện (KWh)	W (g)
	6	2000 、	7,5	4,0	0,32	0,02
,	10	1600	11,0	6,0	0,43	0,025
-	15	1100	18,0	10,0	0,63	0,036
Bằng tay	20	700	31,0	17,0	1,06	0,057
	25	550	43,5	23,5	135	0,073
	30	500	50,0	26,0	1,59	0,080
	35	400	65,0	34,0	1,98	0,100
	6	7600	2,0	1,1	0,096	0,005
	10	4600	4,0	2,5	0,170	0,009
	15	3100	6,5	4,0	0,254	0,013
	20	2000	11,0	7,0	0,425	0,020
	25	1500	15,5	9,5	0,57	0,027
Cơ khí hóa	30	800	31,5	19,0	Công suất điện (KWh) 0,32 0,43 0,63 1,06 1,35 1,59 1,98 0,096 0,170 0,254 0,425 0,57 1,14 1,30 1,65 2,10 2,50	0,050
	35	700	43,0	22,5	1,30	0,057
	40	600	58,0	28,0	165	0,067
	50	500	90,0	40,0	2,10	0,080
	⊴60	450	118,0	63 ,0	2,50	0,090
	70	400	165,0	92,0	3,00	0,100

Ghi chú: Tiêu hao vật liệu khi cắt các đường cong thay đổi theo tốc độ tương ứng ít hơn so với giá trị trong bằng $30 \div 40\%$.

Bảng 106. Tiêu hao khí (l/ph) khi cắt nhôm bằng hỗn hợp Ar + H (đông xoay chiều, I=220A, $d_v=5mm$)

Chiều dày cắt (mm)	Aŗ	H ₂
4-8	15-20	6-7
8-16	20-27	7-9
16-24	27-29	9-12

Bảng 107. Tiêu hao khí (l/h) khi cắt thép CHBN.9T (đông một chiều; I = 350-400A)

Chiều dày kim loại (mm)	N	H ₂
4-20	6000-1000	-
20-50	1000	1000

Bảng 108. Tiêu bao vật liệu khi cắt nhôm (đông xoay chiều; hyđrô trong hốn hợp là 25-27%)

Chiều	Tốc độ	Tiểu hao trên 1 m cất					
dày kim loại (mm)	cắt (mm/ph)	Ar (1)	H ₂ (I)	W (g)			
4 .	1750	8,5	3,5	0,06			
8	1000	20	7,0	0,10			
12	750	35	10,5	0,13			
16	500	55	18,0	0,20			
20	380	74	26,5	0,27			
24	350	83	31,5	0,29			

Bảng 109. Tiêu hao vật liệu khi cắt thép Cr18N; 9T (dòng một chiều)

Chiều	Tốc đô	Tiêu hao trên 1 m cắt							
dày kim loại (mm)	cắt (mm/ph)	N (1)	H ₂ (1)	Năng lượng (KWh)	W (g				
4	4800	26	-	0,12	0,009				
6	3500	28		0,17	0,012				
10	1300	55		0,46	0,031				
16	500	85		1,30	0,080				
20	450	62	-	1,80	0,120				
30	600	28	22	2,30	0.080				

4. Vật liệu cho hàn khí

Định mức tiêu hao đây bổ sung cho hàn khí được xác định bằng kết qủa của khối lượng kim loại chảy; mất mát do bắn tóc và cháy... Tổn thất thường lấy bằng 10% khối tượng kim loại chảy. Định mức tiêu hao thuốc cho hàn khí được định theo thực nghiệm và có tính đến sự mất mát vật liệu khi chế tạo thuốc khoảng 10%.

Bang~110. Định mức tiêu hao vật liệu trên $1~\mathrm{m}$ mối hàn khi hàn đồng thau bằng hàn khí

Chiều đày	Dây bổ	_				_ [Hỗn hợp t	huốc
kim loại (mm)	sung (g)	Ôxy (I)	(I)	CaC ₂ (g)	Thuốc (g)	Borăc (g)	Axit boric (g)	Clorua natr
			·	lối hàn gi	áp mối			
	1 .	l	ı	· · · · ·	1	1		1
10	27	10	8,3	33	7	5,5	0,8	1,5
15	30	22	19	75	8	6,2	0,9	1,8
2,0	48	40	33	132	. 12	9,4	1,3	2,6
2,5	62	62	52	208	16	12,5	1,8	3,5
3,0	79	90	75	300	20	16,0	2,2	4,4
3,5 4,0	85 117	122	102	408	25 35	19,5	2,8 3,9	5,5
5,0	270	250	208	532 832	86	27,0 66,0	9,5	7,7 19,0
5,0 6,0	348	360	300	1200	120	96,0	13,0	26,0
7,0	435	490	408	1632	150	115,0	16,5	33,0
8,0	532	640	533	2132	180	140,0	20,0	40,0
9,0	653	810	670	2680	230	177,0	25,0	50,0
10,0	765	1000	833	3330	270	210,0	30.0	59,0
11,0	894	1210	1010	4040 ·	310	240,0	34,0	68,0
12,0	1030	1440	1200	4800	360	280,0	40,0	79,0
	1	l	1	1.	l (l '	ı	1
			Mối hà	n góc, má	ối hàn ch	ðng		
	Ι .				ŀ	ı	1 .	1
1,0	15	10	8,3	33	3,9	3,1	0,44	0,83
1,5	26	22	19	75	7,0	5,4	0,78	1,6
2,0	40	40	33	132	10,0	7,8	1,10	2,2
2,5	57	62	52	208	15,0	12,0	1,70	3,2
3,0	75 96	90 122	75 102	300	19,0	15,0	2,10	4,2
3,5 4,0	120	160	133	408 532	28,0	22,0 28,0	3,20 4,00	6,2 7,9
₩,∪	120	IOU	133	532	36,0	20,0	4,00	/,9

Ghi chú: Định mức tiêu hao ôxy chỉ được định với loại tinh khiết 99%.

. Bảng 111. Định mức tiêu hao vật liệu trên 1 m mối hàn khi hàn thép bằng hàn khí

Chi ều dày		Mối hàn	Mốihàn giáp Ahối		Сас ш	Các mối hàn góc phía trong, mối hàn chồng	ic phía tr chởng	ong, mới	Các	Các mối hàn góc phía ngơài	góc phía	ngơài
kim loại (mm)	Oxy e	Axêtylen (l)	CaC ₂	Dây bố sung (g)	Ôxy ©	C ₂ H ₂	CaC ₂	Dây bổ sung (g)	Ôxy ©	C ₂ H ₂	CaC ₂	Dây bổ sung g)
0,5	2,5	2,1	8,5	के 2	3,5		1,6	6	189	153	6,26	6,0 40,0
당 원	22.5 25.5	න වැ ර	33,0	2, 2,	34.5		4 0	2 E	9.4	5,53 9,23 9,63	22 C)	25,3
2,0	40,0	33,0	132	45	56,0		88 3	38 G	583	25,0	Φ	38,5
3,5	625 90.0	52,0	8 8	88 2	8 23	730	282 420	다 96 유	1,74	39,4	157	550
3,5	122	102	408	75	172		572	32), 'A	200,2) §	0.20
0,4	9	133	532	103	8		748	8	350	20 0	3	n in
5,0	260	208 208	835	238	•	•		ı	1210	5	\$	o 0
6,0 7,0	8 8 8	300 408	£30 1632	307								
0 60	640	533	2132	489	•	•	•					
0'6	810	670	2680	575	•	•		•		,		•
0.01	000	833	3330	675	•			,				. (
110	1210	0,01	4040	788	•	•		,	•		•	•
12,0	440	1200	4800	910	•	•	,		•		•	•
										,		
												; , f
		_										,

Chú thích: Định mức tiêu thụ dây hàn bỏ sung cho mối hàn giáp mối chiều dày đến 4 mm không vất mép và khi chiều đây hơn 4 mm có vất mệp chữ V.

Bảng 112. Định mức tiêu hao vật liệu trên 1 m mối hàu khi hàn nhôm bằng hàu khí

Chiều	Dây		T	<u></u>			Thành ph	ần thuốc	
dày kim loại (mm)	bổ sung (g)	Ôxy (I)	(I)	CaC ₂ (g)	Thuốc (g)	Clorua natri (g)	Clorua litri (g)	Clorua ka∦ (g)	Fluo natri (g)
			1	Mối hà	n giáp m	mối			
1,0	8,5	3	2,5	10,0	10	3,1	1,5	5,5	0,9
1,5	9,0	8	5,6	22,5	11	3,4	1,7	6	1,0
2,0	14,5	12	10,0	40,0	16	5,0	2,5	9	1,4
2,5	19,0	19	16,0	64,0	22	6,8	3,5	12	1,9
3,0	24,0	27	22,5	90,0	27	8,3	4,0	15	2,4
3,5	26,0	37	31,0	124	34	10,5	5,3	19	3,0
4,0	36,0	48	40,0	160	48	15,0	7,0	26	4,0
5,0	82,0	75	62,5	241	118	36,0	18	65	10
6,0	106	108	90,0	360	165	51,0	26	91	14
7,0	132	147	122	488	205	63,0	32	113	18
8,0	161	192	160	640	245	76,0	38 .	135	21
9,0	198	243	203	812	315	97,0	49	173	28
10,0	232	300	250	1000	370	114	57	204	33
11,0	272	363	303	1210	425	131	66	234	37
12,0	314	426	360	1440	490	151	65	270	. 43
·		N	lối hàn g	góc, mối	hàn ch	ồng một p	ohía .	· .	
10	, 5.	3	2,5	10	5,9	1,8	0,89	13,2	0,53
1,5	8	8	5,6	22,5	9,8	3,0	1,5	5,3	0,90
2,0	12	12	10,0	40	13,6	4,2	2,1	7,1	1,16
2,5	17,5	19	16,0	64	20,0	6,3	3,2	11,0	175
3,0	24	27	22,5	90	27,0	8,3	4,0	15,0	2,40
3,5	29	37	31,0	124	38,0	11,8	5,8	21,0	3,36
4,0	· 36	48	40,0	164	48,0	15,0	7,0	26,0	4.00

5. Vật liệu để cắt thép bằng ngọn lửa và ôxy

Định mức tiêu hao cho việc cắt các loại thép tấm và các loại thép cán định hình như sau:

Định mức tiêu hao ôxy (cho ôxy tinh khiết 99%) để cắt bằng ngọn lửa được tính toán với các mất mát khác do phải nung nóng mỏ cắt; phải vát mép; cho sự cháy của ngọn lửa (chưa kể đến ôxy cắt) lượng ôxy tồn tại trong chai ôxy; cần phải nung nóng chỗ cắt đến trạng thái cắt và do phải khoét lỗ ban đầu để cắt các chi tiết nằm ở phía trong các bề mặt v.v... (bằng 113-123).

Bảng 113. Tiêu hao vật liệu khi cắt thép cacbon bằng hốn hợp khí ôxy (cắt bằng tay)

Chiều dày kim	Nº ,	Áp lực ôxy	Chiều rộng cắt	Tốc độ cắt	l .	trên 1m cắt (I)
loại (mm)	. mỏ cắt	(atm)	(mm)	(mm/ph)	Оху	Khí cháy
4	011	3-3,5	3,5	510	80	12
5	110	3-3,5	3,5	495	96	14
6	0П	3-3,5	3,5	485	110	17
8	011	3-3,5	3,5	470	140	22
10	110	3-3,5	3,5	460	170	26
12	1Π	3,5-4	4,0	445	198	31
15	1∏	3,5-4	4,0	405	240	36
16	1Π	3,5-4	4,0	400	255	. 39
18	1∏	3,5-4	4,0	395	290	44
20	1П	3,5-4	4,0	370	315	48
22	1[]	3,5-4	4,0	350	340	- 51
24	. 1П	3,5-4	4,0	335	370	55
- 26	2Π	4-5	4,5	330	400	61
28	2Π	4-5	4,5	320	430	65
30	211	4-5	4,5	300	460	69
35	211	4-5	4,5	280	540	77.
40	211	4-5	4,5	255	617	84
45	2[]	4-5	4,5	220	690	90
50	3П	5-7	5,5	200	760	99
60	3П	5-7	5,5	160	870	108
70	3П	5-7	5,5	137	1100	126
80	3П	5-7	5,5	122	1290	140
90	311	5-7	5,5	106	1460	154
100	4Π	7-10	7,0	100	1620	170
120	4Π	7-10	7,0	97	2180	196
130	4Π	7-10	7,0	93	2440	207
140	4П	7-10	7,0	91	2700	216
150	4Π	7-10	7,0	90	2970	224
160	4П	7-10	7.0	88	3200	235
180	4Π	7-10	7,0	82	3750	250
200	5Π	10-13	9,0	76	4240	267
220	511	10-13	9,0	69	4800	290
250 🕠	5П	10-13	9,0	61	5700	315
280	5∏	10-13	9,0	52	6900	345
300	511	10-13	9,0	46	7700	385

Bảng 114. Định mức tiêu hao vật liệu trên một lượt cắt để cắt thép góc đều bằng cắt khí (cắt bằng tay)

Thé	o hình	Cắt b	àng ôxy -ax	êtylen	Cắt bằng	ôxy-xăng
N _o	Chiều dày (mm)	Оху (I)	axêtylen (I)	CaC ₂ (g)	Оху (I)	Xăng (g)
5	5	9,5	1,7	7,2	9,7	2,0
	6	11,2	1,9	7,6	11,3	2,2
6	5	11,5	2,1	8,4	11,7	2,4
	6	13,7	2,3	9,2	13,7	2,7
	7	15,0	2,5	10,0	15,2	2,8
	8	16,2	2,6	10,4	16,8	3,0
6,5	6	14,9	2,5	10,0	14,9	2,9
	7	16,3	2,7	10,8	16,6	3,0
	8	17,7	2,8	11,2	18,3	3,2
	9	19,3	3,0	12,0	20,4	3,4
	10	21,0	3,1	12,4	22,2	3,6
7,5	6 7 8 9 10 11,	17,3 19,0 20,6 22,6 24,5 26,4 27,6	2,9 3,1 3,3 3,5 3,6 3,8 4,0	11,6 12,4 13,2 14,0 14,5 15,0	17,3 19,3 21,3 23,7 26,0 27,8 29,7	3,3 3,5 3,7 4,0 4,2 • 4,5 4,6
8	6	18,5	3,1	12,4	18,5	3,6
	7	20,0	3,4	13,6	20,6	3,8
	8	22,0	3,5	14,0	22,8	4,0
	. 9	24,2	3,7	14,8	25,2	4,3
	10	26,3	3,9	15,6	27,8	4,5
9	8	24,9	4,0	16,0	25,8	4,4
	9	27,4	4,3	17,2	28,8	4,8
	10	29,7	4,4	17,6	31,5	5,1
	11	32,1	4,7	18,8	33,8	5,4
	12	33,6	4,9	19,6	36,1	5,6
	13	36,0	5,2	20,8	38,4	5,9
	14	38,2	5,5	22,0	40,7	6,2

Tiếp bảng 114.

Thé	p hình	Cắt	bằng ôxy -ax	êtylen	Cắt bằng	Cắt bằng ôxy-benzin		
Nº	Chiều dày (mm)	Ôxy (I)	Axêtylen (I)	CaC ₂	Ôxy (I)	Benzin (g)		
	8	27,8	4,4	17,6	28,8	5,0		
	9	30,6	4,7	18,8	32,1	5,4		
	10	33,3	4,9	19,6	35,2	5,7		
	11	36,0	5,2	21,0	37,8	6,0		
10	12	37,6	5,4	21,6	40,4	6,2		
	13	- 40,2	5,8	23,2	43,0	6,6		
	14	42,8	6,1	24,5	45,6	6,9		
	15	44,4	6,3	25,2	48,1	7,2		
	16	46,0	6,4	25,6	51,2	7,6		
	10	40,2	6,0	24,0	42,6	6,9		
	11	43,5	6,3	25,2	45,8	7,2		
	12	45,6	6,6	26,4	49,0	7,5		
	13	48,8	7,0	28,0	52,2	8,0		
12	14	52,0	7,5	30,0	55,5	8,4		
	15	54,0	7,6	30,4	58,5	8,8		
	16	56,0	7,8	31,2	62,3	9,2		
	17	59,0	8,1	32,5	65,6	9,4.		
	18	61,0	8,4	33,6	68,8	9,8		
	10	43,7	6,5	26,0	46,3	7,5		
	11	47,3	6.9	27,6	49,8	7,9		
	12	49,6	7,2	28,8	53,4	8,2		
13	13	53,1	7,7	30,8	56,8	8,7		
	14	56,6	8,1	32,4	60,4	9,1		
	15	58,8	8,3	33,2	63,6	9,6		
	16	61,0	8,5	34,0	67,9	10,0		
	12	57,6	8,3	33,2	62,0	9,5		
	13	61,7	8,9	35,6	66,0	10,1		
	14	65,0	9,5	38,0	70,3	10,6		
	15	68,4	9,7	38,8	74,1	11,1		
15	16	710	9,9	39,6	78,9	11,6		
	17	75	10,3	41,2	83,1	12,0		
	18	78	10,7	42,8	87,4	12,4		
	19	82	11,2	44,8	91,3	12,9		
	20	85	11,5	46,0	95,2	13,5		

Bảng 115. Định mức tiêu hao vật liệu cho một lần cắt bằng tay để cắt thép góc không đều

Thép	hình	Cắt	bằng ôxy -ax	êtylen	Cắt bằng	Cắt bằng ôxy-benzin		
Nº .	Chiều dày (mm)	Ôxy (I)	Axêtylen (I)	CaC ₂ (g)	Ôxy (I)	Benzin (g)		
6/4	5	9,5	1,7	7,0	9,7	2,0		
0/4	6 8	11,3 13,3	1,8 2,0	7,2 8,0	11,3 13,8	2,2 2,4		
	5	12,0	2,2	8,8	12,3	2,3		
7,5/5	6	14,3	2,4	9,6	14,3	2,8		
1,0,0	8	17,0	2,7	10,8	17,6	3,1		
	10	20,0	3,0	12,0	21,3	3,5		
	6	15,5	2,6	10,4	15,5	3,0		
8/5	8	18,4	2,9	11,6	19,1	3,3		
-	10	21,9	3,2	12,8	23,1	3,8		
	6	17,3	2,8	11,2	17.3	3,3		
9/6	8	20,6	3,2	12,8	21,3	3,7		
	10	24;5	3,6	14,4	25,9	4,2		
	8	24,2	3,8	15,2	26,1	4,4		
10/7,5	10	29,0	4,3	17,2	30,6	5,0		
	12	32,6	4,7	18,8	35,0	5,4		
	8	27,8	4,4	17,6	28,8	5,0		
12/8	10	33,2	4,9	19,6	35,2	5,7		
`	12	37,6	5,4	21,6	40,5	6,3		
	10	36,8	5,5	22,0	38,8	6,2		
13/9	12	41,6	6,0	22,8	44,8	6,9		
• • •	14	45,0	6,4	24,4	50,5	7,6		
	12	47,6	6,9	27,6	51,6	7,9		
15/10	14	54,3	7,7	30,8	57,9	8,7		
	16	58,5	8,2	32,8	65,0	9,6		
	12	57,6	8,3	33,2	62,0	9,5		
18/12	14	65,8	9,2	36,8	70,0	10,6		
	16	71,0	9,9	39,6	79,0	11,6		
	12	61,6	8,8	35,2	66,3	10,2		
20/12	14	70,4	10,0	40,0	75.0	11,3		
	16	76,0	10,6	42,4	84,5	12,4		
	16	83,5	11,7	46,8	93,0	13,7		
20/15	18	91,0	12,6	50,4	103,0	(14,6		
	20	101,0	13,5	54	112,0	15,8		

Bảng 116. Định mức tiêu hao vật liệu cho một lần cắt khi cắt bằng tay để cắt thép hình

	Cá	t ôxy - axêt	ylen	Cắt ôxy	- Benzin
N ^o Th é p hì n h	Оху	Axêtylen	CaC ₂	Оху	Benzin
	(1)	(1)	(g)	(1)	(g)·
5	13,2	2,3	9,2	13,5	2,5
6,5	16,6	2,8	11,0	17,4	3,1
8	19,0	3,1	12.4	20,0	3.6
10	24,0	4,0	16,0	25,0	4,5
12	29,0	4,7	19,0	29,0	5,2
14 a	35,0	5,4	21,5	36,0	6,2
, р	38,5	5,9	23,6	40,0	6,7
16 a .	41,0	6,4	25,6	42,0	7,1
b	45,0	7,0	28,0	48,0	8,0
18 a	45,5	7,3	29,0	48,5	8,5
b	50,0	7,7	31,0	54,0	8,8
20 a	51,0	8,0	32,0	54,0	9,0
b	57,0	9,0	36,0	60,0	10
22 a	56,5	8,8	35,0	59,0	9,8
· b	63,0	9,5	38,0	66,0	11,0
24 a	61,0	9,3	37,0	63,0	10,5
b	67,0	10,0	40,0	710	11,5
С	74.0	10,5	42,0	79,0	12,5
27 a	68,0	10,2	41,0	72,0	12,0
b	75,0	11,1	44,5	80,0	13,0
C	83,0	12,0	48,0	90,0	14,0
30 a	76,0	11,4	46,0	80,0	13,0
b	86,0	12,5	50,0	90,0	14,5
С	93,0	13,2	53,0	100	15,5
33 a	- 86	12,7	51	89	14,5
b	96	13.8	55	100	16,0
C	103	14,8	59	110	17,0
36 a	101	14.5	58	108	17,0
b	112	15,6	63	121	19,0
C	121	17,0	68	131	20,0
40 a	124	17,5	70	133	20,0
ь	134	19,0	76	145	22,0
, C	145	21,0	84	157	24,0

Bảng 117. Định mức tiêu hao vật liệu cho một lần cắt khi cắt thép tấm hoặc thanh

Chi ð u		The	p vuôn	ġ.			TI	nép tròn	1	
dày hoặc đường kinh	Cất	ôxy-axet	ylen		ất cenzin	Cát	ôxy-axet	ylen	1	át benzin
(mm)	ôxy (I)	axêtylen (I)	CaC ₂	ôxy (I)	benzin (g)	ôxy (I)	axêtylen (I)	CaC ₂	ôxy (I)	benzin (g)
20	6,1	0,8	3,5	7	1	4,8	0,6	2,5	6	0,8
30	13,2	1,5	6,0	15	2	10,4	1,2	5,0	12	1,6
40	23	2,6	10,5	26.	3	18	2,0	8,0	21	2,5
50	36	3,8	15	40	5	28	3,0	12,0	32	4,0
60	53	5,3	21	60	8	42	4,2	17,0	48	6,4
. 70	74	7,2	29	80	10	58	5,6	22,5	64	8
80	98	9,4	38	109	14	77	7,4	30	87	10
90	127	12,0	48	138	18	100	9,5	38	110	14
100	164	14,5	58	174	22	129	11,5	46	139	17
120	260	21	84	274	33	204	16,5	66	219	26
130	316	25	100	333	40	248	19,5	78	266	32
140	380	28	112	396	45	298	22	88	317	36
150	455	33	132	465	56	356	26	104	372	45
160	525	37	148	545	65	413	29	116	435	52
170	605	42	168	628	81	475	33	132	502	65
180	700	• 47	188	713	97	550.	37	148	570	77
200	835	58	232	-		670	50	200	-	-
220	1130	70	280	-	-	910	60	240	-	-
250	1460	- 85	340	-	-	1170	70	280	-	-
280	1830	100	400	-) -	1460	85	340	-	-
300	2100	115	460	-	-	1680	. 105	420	-	-
	1	1 .			1				ί	

Bảng 118. Định mức tiêu hao vật liệu cho một làn cắt khi cắt khí bằng tay để cắt thép hình

	, с	ăt ôxy - axêt	ylen	Cắt ôxy	/ - benzin
Nº Thép hình	Оху	Axêtylen	CaC ₂	Оху	Benzin
	(1)	(1)	(g)	(1)	, (a)
10	28	5,0	20	29	5,5
12	35	5,5	22	34	6,5
14	42	6,5	26	40,5	7,5
16	45	7,0	28	50	8,5
18	60	7.5	30	58	9,5
20 a	63	8,0	32	66	11,0
b	70	10,0	40	72	12,0
22 a	74	11,5	48	77	12,5
b	79	12,0	50	85	13,0
24 a	83	12,8	51	86	14,0
b <u>'</u>	90	13,2	53	94	15,0
27 a	100	14,0	56	97	15,5
b	105	15,0	60	107	16,5
30 a	108	16,0	64	109	17,5
b ,	115	16,6	67	119	18,5
· c	125	18,0	. 72	128	19,5
33 a	120	16,6	67	121	19,0
b	123	17,7	70	131	20,0
c	130	· 19,0	76	141	21,0
36 a	125	18,0	72	136	21,0
b	135	19,5	78	147	22,0
C	146	21,0	84	158	24,0
40 a	150	21,5	86	153	23,5
b	165	23,5	94	165	25,0
С	170	24,0	96	177	26,0
45 a	165	23.5	94	180	27,0
b	183	25.5	103	193	29,0
C	188	26,0	104	207	30,0
50 a	198	26,5	106	207	30,0
b ·	208	29,0	116	221	33,0
С	213	29,5	118	238	35,0
55 a	211	29,5	118	232	34,0
, b	226	31,0	124	248	36,0
; Ĉ C	235	33.0	132	266	38,0

Bảng 119. Tiêu hao vật liệu khi cắt ôxy - khí thiên nhiên để cắt thép tấm

Chi ề u dày	N°	Áp lực	Chiều	Tốc độ cắt	Tiêu hao	trên 1 m cắt (!)
kim loại (mm)	mó cắt	ôxy (atm)	rộng cắt (mm)	(mm/ph)	Ôху	Khí thiên nhiên
4	ОΠ.	3.3,5	-3.5	630	66	10
5	оп	3-3,5	3,5	610	79	12
6	ОП	3-3,5	3,5	600	93	14
8	OIT	3-3,5	3,5	570	119	18
10	ОΠ	3-3,5	3,5	560	144	- 22
12	111	3,5-4	4,0	540	170	26
15	1Π	. 3,5-4	4,0	515.	200	30
16	1171	3,5-4	4,0	505	210	32
18	117	3,5-4	4,0	490	240	36
20	1177	3,5-4	4,0	470	260	39
22	1Π	3,5-4	4,0	455	280	42
24	1П	3,5-4	4,0 ·	435	305	46
26	2Π	4-5	4,5	420	330	. 50
28	2П	4-5	4,5	400	355	54
30	2П	4-5	4,5	385	380	58
. 3 5	2Π	4-5	4,5	345	445	62
40	2Π	4-5	4,5	315	510	69
45	2Π	4-5	4,5	280	570	76
50	311	5-7	5,5	250	630	82
60	311	5-7	5,5	210	770	92
70	311	5-7	5,5	170	910	100
80	311	5-7	5,5	150	1060	116
90	3П	5-7	5,5	130	1210	127
100	4Π	7-10	7,0	125	1350	135
120	411	7-10	7,0	120	1800	162
130	4П	7-10	7,0	117	2010	171
140	411	7-10	7,0	. 115	2230	178
150	411	7-10	7,0	112	2450	184
160	4П	7-10	7,0	110	2660	193
180	4П	7-10	7,0	102	3080	205
200	511	10-13	9,0	95	3500	220
220	511	10-13	9,0	88	. 3980	238
250	5П	10-13	9,0	76	4700	258
280	511	10-13	9,0	64	5690	295
300	511	10-13	9,0	57	6350	320

Bảng 120. Tiêu hao vật liệu khi cắt ôxy - axetylen để cắt thép tấm

Chiều dày	N°	Áp lực ôxy	Chiều rộng cắt	Tốc độ cắt	Tiêu hao	trên 1 m cắt (1)
kim loại (mm)	mô cắt	(atm)	(mm)	(mm/ph)	Оху	Khí thiên nhiên
4	1	3-4	3,5	545	74	#
6	1 1	3-4	3,5	520	102	13
8	1	3-4	3,5	505	130	20
10	-1	3-4	3,5	490	158	24
12	1	3-4	3,5	475	184	29
15	1	3-4	3,5	435	224	34
18	1 .	3-4	3,5	420	270	41
20	1	3-4	3,5	395	292	45
22	1	3-4	3,5	375	316	48
24	1 .	3-4	3,5	360	345	51
26	2	4-5	4,5	350	370	57
28	2	4-5	4,5	340	400	60
30	2	4-5	4,5	320	430	64
35	2	4-5	4,5	300	500	71
- 40	- 2	4-5	4,5	273	570	78
45	2	4-5	4,5	235	640	84
- 50	3	5-7	5,5	215	710	92
60	3	5-7	5,5	170	810	100
70	3	5-7	5,5	147	1020	118
80	-3	5-7	5,5	130	1200	130
90	3	5-7	5,5	118	1360	144
100	4	7-10	7,0	107	1500	158
120	4	7-10	7,0	104	2030	182
130	4	7-10	7,0	100	2260	192
140	4	7-10	7,0	97	2500	200
150	4	7-10	7,0	96	2750	208
160	4	7-10	7,0	94	2970	220
180	4	7-10	7,0	- 88	3500	233
200	5	10-13	9,0	81	3950	248
220	5	10-13	9,0	- 74	4460	270
250	5 5	10-13	9,0	65	5300	292
280	5	10-13	9,0	- 56	6400	320
300	5	10-13	9,0	49	7150	356

Bảng 121. Tiêu hao vật liệu khi cắt thép bằng tay với ngọn lửa ôxy - benzin để cắt thép tấm

Chiều dày kim	N ^o mô	mỏ lực rộng		Tốc độ cắt (mm/ph)	Tiều hao trên 1 m cắt (I)		Tiểu hao khi nung nóng mỏ cắt	
loai (mm)	cắt	(atm)	(mm)	(Himpin)	Ôxy (I)	Benzin (g)	Ôxy (f)	Benzin (g)
4	1	4-5	3,5	425	92	14	15,0	12
6	. 1	4-5	3,5	410	126	20	15,0	12
8	1	4-5	3,5	400	160	25	15,0	: 1 2
10	1	4-5	3,5	390	196	30	15,0	12
†2 .	. 1	- 4-5	3,5	377	227	35 '	15,0	12
- 16	1	4-5	3,5	340	293	45	15,0	12
18	1	4-5	3,5	335	334	51	15,0	12
20	. 1	4-5	3,5	314	363	55	15,0	12
24	1	4-5	3,5	285	425	63	15,0	12
26	2	5-6	4,5	280	460	70	18,7	15
28	2	5-6	4,5	: 272	495	75	18,7	15
30	2	5-6	4,5	255	530	79	18,7	15
35 [′]	2	5-6	4,5	238	620	89	18,7	15
40	2	5-6	4,5	217	710	96	18,7	15
45	.2	5-6	4,5	187	795	104	18,7	15
50	. 3	6-9	5,5	170	870	114	. 22,5	18
60	3	6-9	5,5	136	1000	124	22,5	18
70	. 3	6-9	5,5	116	1260	145	22,5	18
80	3	6-9	5,5	104	1480	150	22,5	18
90	3	6-9	5,5	90	1680	177	22,5	18
100	. 4	9-14	6,5	85	1960	195	27,5	22
120	4	9-14	6,5	83	2500	225	27,5	22
130	4	9-14	6,5	79	2800	237	27,5	22
140	. 4	9-14	6,5	77	3100	250	27,5	22
150	4	9-14	6,5	76	3400	257	27,5	22
180	4	9-14	6,5	70	4300	290	27,5	22
200	4	9-14	6,5	65	4850	307	27,5	22

Bảng 122. Tiêu hao vật liệu khi cắt thép cacbon bằng ngọn lửa ôxy-benzin (cắt tự động)

Chi ề u dày kim	Nº mỏ cắt	Áp lực ôxy	Tốc độ cắt	m	o tr ê n 1 cắt (1)		naokhi g mo
loại (mm)	Cat	(atm) (mm/ph)	ðху (I)	Benzin (g)	ôxy (I)	Benzin (g)	
4	1	4-5	590	75	Ħ	15	12
6	1	4.5	570	91	14	15	12
. 8	1	4-5	538	137	21	15	12
10	1 -	4-5	480	230	34	15	12
. 16	1	4-5	472	242	37	15	12
18	1	4-5	460	276	4.1	15	∽ 12
20	1 .	4-5	440	300	45	15	12
22	1 .	4-5	425	322	^ 48	15	12
24	1	4-5	407	352	53	15	12
- 26	2	5-6	- 390	380	57	18,7	15
28	2	5-6	375	408	62	18,7	15
30	2	5-6	360	437	· 67	18,7	15
. 35	2	5-6	323	- 512	72	18,7	15
40	2 2	546	284	586	79	18,7	15
-45	2	5-6	262	655	88	18,7	15
50	3	6-9	234	725	95	18,7	18
60	3	6-9	196	885	106	22,5	18
70	3 [6-9	· 160	1050	115	22,5	18
80	3	6-9	140	1220	134	22,5	22
90	3	6-9	122	. 1390	146	27,5	22
100	4	9-14	116	1550	155	27,5	22
120	- 4	9-14	-112	2070	196	27,5	22
130	. 4	9-14	109	2320	199	27,5	22
140	4	9-14	107	2570	205	27,5	22
150	4	9-14	104	2620	212	27,5	22
160	4	9-14	103	3060	222	27,5	22
160	4	9-14	95	3540	235	27,5	22
200	4	9-14	89	4020	252	27,5	22

Chú thích: Đối với chiều dày kim loại tù, 4-24 mm thì chiều rộng rãnh cắt trung bình là 3 mm.

Bảng 123. Tiêu hao vật liệu khi cắt thép cacbon bằng ngọn lửa ôxy-axêtylen (cắt tự động)

Chiều dày kim	Nº mỏ cắt	Áp suất ôxy	Chiều rộng cắt	Tốc độ cắt	Tiêu hao	trên 1 m c ắt (I)
loại (mm)		(atm)	· (mm)	(mm/ph)	Ôху	Axêtylen
4	1	3-4	3,5	695	61	9
6	1 .	3-4	3,5	660	83	13
8	1	3-4	3,5	633	111	17
10	1	3-4	3,5	615	134	20
12	1	3-4	3,5	595	158	24
15	1	3-4	3,5	655	195	30
18	1.	3-4	3,5	540	223	34
20	1	3-4	3,5	517	242	36
22	1	3-4	3,5	500	260.	39
24	1	3-4	3,5	480	284	43
26	2	4-5	4.0	460	307	46
28	2	4-5	4.0	440	330	50
30	2	4-5	4.0	423	354	54
35	2	4-5	4,0	380	415	58
. 40	2	4-5	4,0	346	475	64
45	2 2 2 2 2 2 3 3 3 3 3 3	4-5	4.0	308	530	71
50	3	5-7	5,0	275	587	76
60	3	5-7	5.0	231	715	85
70	3	5-7	5,0	176	845	93
80	3	5-7	5,0	165	985 '	105
90	3	5-7	5,0	143	1125	118 .
100	4	7-10	6,0	137	1255	126
120	4	7-10	6,0	132	1675	150
130	4	7-10	6,0	129	1870	160
140	4	7-10	6,0	126	2070	166
150	4	7-10	6,0	123	2280	170
160	4.	7-10	6,0	121	2470	180
180	4	7-10	6,0	112	2860	190
200	5	10-13	7,5	105	3250	205
220	5	10-13	7,5	97	3700	220
250	5	10-13	7,5	84	4370	240-
280	5 5 5 5	10-13	7,5	70	5300	265
300	5	10-13	7,5	63	5900	300

Bảng 124. Tiêu hao vật liệu trên 1 cm² bề mặt cắt khi cắt các bavia, hệ thống rót vật đúc từ thép cacbon

Chiều dày	Cắt ôx	y-axêtylen	Cát ôxy - Benzin		
hoặc dường kính rót (mm)	Öxy (I)	Axêtylen (I)	Öxy (I)	benzin (g)	
đến 15	3,1	0,48	3,9	0,60	
15-30	32	0.48	4,0	0,55	
31-50	3,5	0.40	4,1	0,50	
51-100	3,5	0,38	4,4	0,47	
101-200	3,7	0.31	4,6	0,38	
201-300	3,9	0.24	4,9	0,30	

6. Vấy hàn và thuốc hàn

Các bảng 125 + 138 giới thiệu định mức tiêu hao vấy hàn được tính toán với sự chú ý đến tổn thất trong quá trình hàn vấy. Định mức tiêu hao thuốc hàn vấy được xác định bằng phương pháp sản xuất - thực nghiệm. Các định mức tiêu hao vấy hàn cho biết với trường hợp hàn vấy bằng tay được tính với tiêu hao cho lớp liên kết, tạo góc; lượng chảy; lượng cháy và lượng bắn tóc v.v... Các bảng trên ứng với các loại liên kết hàn, các kết cấu... với các loại vẩy hàn riêng biệt.

Bảng 125. Định mức tiêu hao vật liệu trên 1 m mối hàn (g) cho hàn vảy với vảy hàn mềm (mối hàn giáp mối)

		Lo	ại vầy t	nàn				Thuố		
s (mm)	пос	пос	пос	пос	пос	(Gốc axi	d	Gốc nh	nựa thông
97 207	18	30	40	61M	90	Clorua kem	Acid	Clorua amôn	Nhựa thông	Cồn nước (ml)
0,5	2,7	2,6	2,5	2,3	2,0	0,15	0,4	0,5	0,4	1,2
0,8	4,2	4,0	3,8	3,4	3,0	0,20	0,5	0,7	0,5	1,5
1,0	5,2	5,0	4,8	4,4	4,0	0,25	0,75	1,0	0,7	2,1
10 125	6,6	6.3	6,0	5,6	5,0	0,30	0,9	1,3	0,8	2,4
14	7,5	7,0	6,7	6,1	5,5	0,35	1,1	1,4	0,9	2,7
1,5	8,0	7,5	7,0	6,4	6,0	0,35	1,1	1,5	1,0	3,0
16	8,5	8,0	7,5	6,9	6,5	0,40	1,2	1,6	1,1	3,3
1,8	9,5	9,0	8,5	8,0	7,0	0,45	1,3	1,8	1,2	3,6
2,0	10,5	10,0	9,5	8,7	8,0	0,5	1,7	2,2	1,5	4,5
2,5	13,0	12,5	12,0	11,4	10,0	0,6	2,0	2.7	1,8	5,4
3,0	16,0	15,0	14,0	13,0	11,5	0,7	2,3	3,1	2,1	6,3
3,5	19,0	18,0	17,0	16,0	14,0	9,0	2,7	3,6	2,4	7,2
4,0	22,0	20,0	19,0	17,4	16,0	1,1	3,3	4,5	3,0	9,0
4,5	24,0	22,0	21,0	18,5	18,0	1,3	3,8	5,0	3,5	10,0

Bảng 126. Định mức tiêu hao vật liệu trên, 1 m mối hàn (g) để hàn vấy (vấy hàn mềm) - mối hàn ghép mí

		Lo	ại vấy h	àn	-	Thuốc					
\$	1100	1700	100 1100	пос	HOC HOC		aốc axi	d	Gốc nhựa thông		
(mm)	nm) NOC Clorua kem	Acid	Ciorua amôn	Nhựa thông	Cồn nước (mi)						
0,25	4,2	4,0	3,9	3,5	3,0	0,2	0,6	0,8	0,6	1,8	
0,32	5,2	5,0	4,8	4,4	4,0	0,3	0,7	1,0	0,7	2,1	
0,40	7,3	7,0	6,7	6,1	5,5	0,4	1,1	1,4	1,0	3,0	
0,50	9,3	9,0	8,7	8,1	7,0	0,5	1,3	1,8	1,2	3,6	
0,63	12.5	12,0	11,5	10,5	9,5	0,6	1,8	2,3	1,6	4,8	
0,70	14,5	14,0	13,5	12,5	11,0	0,7	2,1	2,8	1,9	5,7	
0,80	16,5	16,0	15,5	14,5	13,0	0,8	2,4	3,2	2,2	8,6	
0,90	18,0	17,5	17,0	16,0	14,0	0,9	2,6	3,5	2,4	7,2	
100	21,0	20,0	19,0	17,4	16,0	1,0	3,0	4,0	2,7	8,1	
1,25	26,0	25,0	24,0	22,0	20,0	1,2	3,7	5,0	3,4	10,2	
1,40	28,0	27,0	26,0	24,0	21,0	1,3	4,0	5,4	3,6	10,8	
1,50	30,0	29,0	28,0	26,0	23,0	1,4	4,3	5,8	3,9	11,7	
1,60	32,0	31,0	30,0	28,0	25,0	1,5	4,7	6,2	4,2	12,6	
1,80	36,0	35,0	34,0	31,0	28,0	1,7	5,3	7,0	4,8	14,4	
2,00	41,0	39,0	37,0	34,0	31,0	1,9	6,0	8,0	5,5	16,5	

Ghi chú: 1) Khi chi tiết hàn vẩy có chuẩn bị bề mặt định mức tiêu hao vẩy hàn có thể có thêm hệ số bằng 0.8.

2) Khi hàn vấy chi tiết có ép sơ bộ định mức tiêu hao vẩy hàn lấy hệ số là 0.5.

Bảng 127. Định mức tiêu hao trên 1 m mối hàn (g) để hàn vấy hàn cứng (mối hàn giáp mối)

	L	oại vấy hả	àn	Thu	iốc		L	oại vây hà	ก	Thu	ięc
s (mm)	ПМЦ 36	Tù ПМЦ42 ÷ ПМЦ54	Л62 ÷ Л68	Borăc _.	axit boric	.s (mm)	ПМЦ 36	Тù ПМЦ42 ÷ ПМЦ54	Л62 ÷ Л68	Borăc	axit boric
0,5 0,8 1,0 1,25 1,4 1,5 1,6	2,0 3,0 4,0 5,0 5,5 6,0 6,5 *	2,2 3,2 4,3 5,5 6,0 6,5 7,0	2,3 3,3 4,5 5,7 6,2 6,8 7,3	0,6 0,8 1,1 1,4 1,6 1,7 1,8	0.6 0.7 0.9 12 13 14	1,8 2,0 2,5 3,0 3,5 4,0 4,5	7,0 8,0 10,0 12,0 14,0 16,0	7,5 8,6 11,0 13,0 15,0 17,0	8,0 9,0 11,5 13,5 15,5 18,5 20,5	2,0 2,5 3,1 3,6 4,0 4,6 5,7	1,6 2,1 2,5 2,9 3,2 3,6 4,0

Bảng 128. Định mức tiêu hao vật liệu trên 1 m mối hàn (g) để hàn vẩy hàn cứng (mối hàn...)

	L	oại vấy hà	ເກ	Thu	ıốc		L	oại vấy hà	n.	Thu	1QC
s (mm)	ПМЦ 36	Тù ПМЦ42 ÷ ПМЦ54	Л62 ÷ Л68	Borāc	axit boric	s (mm)	ПМЦ 36	Тù ПМЦ42 ÷ ПМЦ54	Л62 ÷ Л68	Borăc	axit boric
0,25 0,3 0,4 0,5 0,6 0,7 0,8 0,9	3,1 4.0 5,5 7,0 9,5 11,0 13,0	3,3 4,3 6,0 7,7 10,3 12,0 14,0 15,0	3,5 4,5 6,2 8,0 10,6 12,3 14,0 15,6	0,9 1,1 1,5 2,0 2,5 3,1 3,6 4,0	08 09 12 16 17 15 29 3	1,0 1,25 1,4 1,5 1,6 1,8 2,0	16,0 20,0 21,0 23,0 25,0 28,0 31,0	17,5 20,0 23,0 25,0 27,0 30,0 33,0	18,0 21,0 23,5 26,0 28,0 31,5 35,0	4,6 5,3 6,0 6,5 7,0 8,0 9,0	3,7 4,5 5,0 5,3 5,7 6,5 7,3

Bảng 129. Định mức tiêu hao vấy hàn bạc để điền đầy khe hỏ hàn (g/cm²)

Khe hỏ (mm)	ПСр 10	ПСр 12	ПСр 25	ПСр 45	ПСр 65	ПСр 70
0,01	0,0089	0,0088	0,0093	0,0097	0,0100	0,0102
0,05	0,0447	0.0442	0,0463	0,0484	0,0499	0,0510
0,10	0,0894	0,0884	0,0926	0,0967	0,0998	0,1019
0,15	0,1342	0,1326	0,1388	0,1451	0,1498	0,1529
0,20	0,1789	0,1768	0,1851	0,1934	0,1997	0,2038
0,25	0,2236	0,2210	0,2314	0,2418	0,2496	0,2548

Bảng 130. Định mức tiêu hao vấy hàn bạc để hình thành lớp phủ (g/cm)

Chiếu dày chi tiết hàn (mm)	Kích thước k (mm)	ПСр 10	ПСр 12	ПСр 25	ПСр 45	ПСр 65	ПСр 70
≥ 0,2	0,2x0,2	0,0018	0,0018	0,0018	0,0019	0,0020	0,0020
≥ 0,3	0,3x0,3	0,0040	0,0040	0,0042	0,0044	0,0045	0,0046
≥ 0,4	0,4x0,4	0,0072	0,0071	0,0074	0,0077	0,0080	0,0082
≥ 0,5	0,5x0,5	0,0107	0,0106	0,0111	0,0116	0,0120	0,0122
≥ 0,6	0,6x0,6	0,0161	0,0159	0,0167	0,0174	0,0180	0,0183
≥ 0,7	0,65x0,65	0,0188	0,0286	0,0194	0,0203	0,0210	0,0214
≥ 0,8	0,7x0,7	0,0214	0,0212	0,0222	0,0232	0,0240	0,0244
≥ 0,9	0,75x0,75	0,0250	0,0248	0,0259	0,0271	0,0279	0,0285
≥ 1.0	0,8x0,8	0,0286	0,0283	0,0296	0,0309	0,0319	0,0326

Bảng 131. Định mức tiêu hao vẩy hàn mềm trên một dính kết dây dẫn (g)

Đường kính (mm)	ПОС 40	ПОС 30	Đường kính (mm)	ПОС 40	пос 30
0,5	0,080	0,083	2,0	1,680	1,750
0,8	0,160	0,166	2,5	2,480	2,580
1,0	0,330	0,332	3,0	4,420	4,600
1,5	0,710	0,780	4,0	10,400	10,600

Ghi chú: Khi dính kết nhiều dây dẫn thì tiêu hao vấy hàn tăng 1,2 lần.

Bảng 132. Định mức tiêu hao vấy hàn mềm trên một phía dây dẫn (g)

Đường kính (mm)	ПОС 40	пос 30	Đường kính (mm)	ПОС 40	пос 30
0,5	0,039	0,040	2,0	0,800	0,840
0,8	0,077	0,080	2,5	1,640	1,700
1,0	0,152	0,160]] 3,0	2,740	2,880
1,5	0,354	0,371	4,0	5,300	6,400

Bảng 133. Định mức tiêu hao vẩy hàn mềm trên một chỗ hàn dây dẫn với vỏ bọc (g)

Tiết diện dây dẫn (mm²)	ПОС 18	ПОС 30	ПОС 40	Tiết diện dây dẫn (mm2)	ПОС 18	ПОС 30	ПОС 40
0,05	0,011	0,0104	0,010	150	0.330	0,312	0,300
0,07	0,0154	0,015	0,014	2,00	0,440	0,416	0,400
0,10	0,022	0,021	0,020	2,50	0,550	0,520	0,500
0,20	0,044	0,042	0,040	4,00	0.880	0.833	0,800
0,35	0,077	0,073	0,070	6,00	1,320	1,249	1,200
0,50	0,110	0,104	0,100	10,00	2200	2,082	2,000
0,75	0,165	0,156	0,150	16,00	3,520	2,332	3,200
1,00	0,220	0,208	0,200		, ,		

Bảng 133. Định mức tiêu hao vấy hàn mềm trên một chỗ hàn dây dẫn với đầu bịt kín (g)

Đường kính lới dây dẫn (mm)	Tiết diện dẫn (mm²)	пос 61М	ПОС 40	пос зо
đến 0,5	d ế n 0,19	0,140	0,155	0,162
0,51-1,0	0,2-0,78	0,170	0,188	0,196
1,01-1,5	0,79-1,76	0,200	0,222	0,231
1,51-2,0	1,77-3,14	0,230	0,254	0,265
2,01-2,5	3,15-4,9	0,250	0,277	0,289
2,51-3,0	4,91-7,06	0,270	0,299	0,312
3,01-4,0	7,07-12,56	0,290	0,321	0.335
4,01-5,0	12,57-19,63	0,320	0,354	0,370

Bảng 134. Định mức tiêu hao vấy hàn mềm trên một vành hàn vẩy (g/cm^2)

Chiều dầy dây (mm)	ПОС 30	ПОС 40	пос ы
đến 1,5	0,328	0,315	0,228
trên 1,5	0,437	0,420	

Bảng 135. Định mức tiêu hao vấy hàn mềm trên 1 m mối hàn khi hàn vấy đường dây dẫn với chi tiết (g)

Đường kính dây dẫn (mm)	ПОС 40	пос 30	Đường kính dây dẫn (mm)	По¢ 40	ПОС 30
0,5	0,005	0,012	2,0	0,180	0,187
0,8	0,030	0,0314	2,5	0,290	0,303
10	0,0465	0,0485	[[3,0	0,420	0,436
1,5	0,195	0,109	4.0	0,750	0,780

Bảng 136. Định mức tiêu hao vấy hàn mềm khi mạ nóng các dây dẫn bằng phương pháp phun vấy hàn (g)

Đường kính	Chiều dài	пос 30	ПОС 40	пос 61М
dây dẫn	phần hàn với	1100.30	1100.40	HOC OBM
(mm)	chi tiết (mm)			L
0,10	10	0,00080	0,00080	0,00080
0,20	10	0,00175	0,00174	0,00173
0,30	10	0,00252	0,00253	0,00249
0,35	10	0,002943	0,002955	0,00291
0,40	10	0,00340	0,00340	0,00320
0,45	10	0,00380	0,00380	0,00370
0,50	10	0,004223	0,00422	0,00417
0,60	10	0,00508	0,00511	0,00502
0,70	1994 (1994) 1 10	0,00594	0,00596	0,00587
0,80	10	0.00681	0,00683	0,00673
0,90	10	0,00768	0,00771	0,00759
1,00	10	0,00855	0.00854	0,00846
1,10	10	0.00943	0,00946	0,00932
1,20	10	0,01031	0.010351	0,01019
1,30	10	0,01120	0,01124	0,01110
1,40	10	0.01210	0,01214	0,01194
1,60	10	0,01390	0,01393	0,01372
1,80	10	0,01494	0,01570	0,01550
2,00	10	0.01752	0,01750	0,01731
2,20	10	0,01940	0,01943	0,01920
0,50	15	0,00635	0,00633	0,00623
0,80	15	0,01014	0,01020	0,01000
1,00	15	0,01270	0,01280	0,01260
1,60	15	0,02060	0,02063	0,02031
2,00	15	0.02585	0,02590	0,02554
2,20	15	0,02850	0,02864	0,02820
2,50	15	0,03260	0,03270	0,03070
2,80	15	0,03670	0,03680	0,03450
3,00	15	0,03940	0,03960	0,03890
3,60	15	0,04590	0,04610	0,04540
4,00	15	0,05340	0,05360	0,05280

Bảng 137. Định mức tiêu hao thuốc khi hàn vấy mềm

Thuốc	Định mức tiêu hao (g/cm²)	Thuốc	Định mức tiêu hao (g/cm²)
Clorua kēm nấu chảy	0,12	втс	0,15
Prima	0,12	Nhựa thông	0,13
Bột nhão 15-85 ФИМ	0,15 0,11	KЭ LTN	0,10 0,15

Bảng 138. Định mức tiêu hao vẩy hàn khi phủ

Loai	Định mức tiêu hao trên 1 m²	
vây hàn	bề mặt hàn (g)	~
ПОС 40	511	
ПОС 30	678	
ПОССу 4-6	759	

Chú thích: chiều dày trung bình của lớp phủ $0.07 \text{ mm k}_{y} = 1$

Chuang VI

TÍNH TOÁN VÀ XÁC ĐỊNH TIÊU HAO NĂNG LƯỢNG ĐIỆN

I. HÀN HỒ QUANG ĐIỆN

Tiêu hao năng lượng điện cho 1kg kim loại nóng chảy được xác định theo công thức gần đúng sau [2]:

$$Q_{E} = \frac{u_{h}}{\alpha_{d} \eta k_{u}} \tag{69}$$

Ò đây:

uh - điện thế hồ quang (V);

 α_d - hệ số đấp của que hàn (g/A.h);

 η - hệ số hữu ích của máy,

 k_u - hệ số tính đến thời gian hồ quang cháy (chế độ làm việc của thiết bị hàn).

Diện thế hỏ quang được xác định theo công nghệ hàn. Giá trị hệ số nóng chảy khi hàn hỏ quang được cho trong điều kiện kỹ thuật của que hàn trên biểu mã, hệ số hữu ích của máy cũng được cho trong thuyết minh của máy.

Bảng 142. Biểu thị tiêu hao điện năng khi hàn hồ quang và hàn điện xi.

Bùng 139. Hệ số đấp khi hàn tự động dưới lớp thuốc hàn với dây thép cachon thấp

I _n [A] u _n [V]	11. TV1	Hé	số đển (g/A	A _n) khi duờng	kính dây (m	m)
ıµ l∪î	η (v).	3	4	. 5	6	8
350	27-30	11,5	10,9			-
400	27-30	12,3	11,5		ļ: -	-
450	27-30	13,0	12,1	-		-
500	27-30	13,8	12,6	13,3		-
550	27-30	14,6	13,2	13,7	1 - 1	
600	32-35	15,4	13,8	14,0		
650	32-35	16,2	14,4	14,4	13,6	
700	32-35	17,0	14,8	14,8	13,8	
750	32-35	17,7	15,5	15,1	14,1	
800	36-38	18,5	16,0	15,6	14,3	-
850	36-38	-•	j -	15,9	14,5	
900	36-38	-	1 -	× 16,3	14,8	14,4
950	36-38	-	-	16,7	15,0	14,5
1000	37-40	-		17,1	15,2	14,8
1100	37-40	•		-	15,7	14,9
1200	38-45	-		~	16,1	15,1
1300	38-45	-		-	16,7	15,3
1400	38-45	-	[17,3	15,6

Bảng 140. Hệ số đấp khi hàn bán tự động dưới lớp thuốc hàn với dòng xoay chiều (đường kính dây hàn 2 mm; tầm với điện cực 25-35 mm)

In (A)	ս _ի (V)	Hệ số dắp (g/A _h)	• 1 _h (A)	и _н (V)	Hệ số đắp (g/A _h)
200	32-34	13,4	430	36-40	17,0
210	32-34	13,6	440	36-40	17,1
220	32-34	13.8	450	36-40	17,3
230	32-34	13,9	460	36-40	17,5
240	32-34	14,0	470	36-40	17,7
250	32-34	14,2	480	36-40	18,0
260	32-34	14,4	490	36-40	18,2
270	32-34	14,6	500	36-40	16,5
280	34-38	14,7	510	38-42	18,8
290	34-38	14,9	520	38-42	19,1
300	34-38	15,0	530	38-42	19,4

Tiếp bảng 140.

I _h (A)	u _h (V)	Hệ số đấp (g/A _h)	I _n (A)	u _h (V)	Hệ số đấp (g/A _h)
310	34-38	15,2	540	38-42	19,8
320	34-38	15,4	550	38-42	20,1
330	34-38	15,6	560	38-42	20,4
340	34-38	15,8	570	38-42	20,7
350	36-40	15,9	580	38-42	21,0
360	36-40	16,0	590	38-42	21,3
370	36-40	16,1	600	38-42	21,6
380	36-40	16,2	610	40-44	219
390	36-40	16,3	620	40-44	22,3
400	36-40	16,4	630	40-44	22,7
410	36-40	16,6	640	40-44	23,1
420	36-40	16.8	650	40-44	23,5

Bảng 141. Hệ số tính đến thời gian cháy của hồ quang khi hàn với các phương pháp hàn và dạng sản xuất khác nhau

Phương pháp hàn	k _u
1/ Hàn hỗ quang tay	
+ Sản xuất loạt lớn và hàng khối.	0,60 ÷ .0,75
+ Sản xuất đơn chiếc và loạt nhỏ.	0,35 - 0,55
2/ Hàn tự động dưới lớp thuốc hàn	
+ Sản xuất đơn chiếc và loạt nhỏ.	0,25 ÷ 0,45
3/ Hàn bán tự động dưới lớp thuốc hàn 🐇	
+ Sản xuất loạt lớn và hàng khối	0,5 ÷ 0,70
+ Sản xuất đơn chiếc và loạt nhỏ	0,35 ÷ 0,55
4/ Hàn tay điện cực không nóng chảy (hồ quang - argon)	
+ Sản xuất loạt lớn và hàng khối	0,5 ÷ 0,6
+ Sản xuất đơn chiếc loạt nhỏ	0,35 ÷ 0,45
5/ Hàn tự động và bán tự động hồ quang - argon	1
+ diện cực nóng chảy	0,25 ÷ 0,75
+ điện cực không chảy	0,3 ÷ 0,45
6/ Hàn bán tự động trong môi trường khí cacbonic	0,55 ÷ 0,7
7/Hàn điện xỉ	
+ mối hàn dài	0,15 ÷ 0,25
+ mối hàn ngắn, chi tiết lắp ghép phúc tạp	0,1 ÷ 0,15

II. ĐỊNH MỰC TIÊU HAO HÀN ĐIỂN TIẾP XÚC

Tiêu hao năng lượng điện khi hàn giáp mối tiếp xúc nóng chảy được xác định theo công thức sau [2]:

$$Q_E = k_m.F_{H.lch} \tag{70}$$

Ò đây:

F_H - diện tích tiết diện hàn (cm²);

lch - lượng dư toàn bộ để làm chảy (cm);

 k_m - hệ số (0,012 - 0,016). Giá trị hệ số lớn dùng khi sự chảy xẩy ra với tốc độ chậm (công suất nhỏ), giá trị đó có thể lớn hơn khi hàn các chi tiết có tiết diện tròn, vuông.

Tiêu hao năng lượng điện khi hàn điểm (được tính theo kWh/100 điểm) được tính theo công thức gần đúng sau [2]:

$$Q_{E} = \frac{N\cos\varphi.u_{h}^{2}}{36u_{dm}^{2}}t_{o}$$
 (71)

Ò đây:

N - công suất định mức của máy hàn (kW);

uh - điện thế thứ cấp dùng khi hàn (V);

udm- điện thế thứ cấp khi không tải (V);

cosφ- hệ số công suất của máy, vối các máy với dòng xoay chiều (ví dụ, loại ΜΤΠ) có thể lấy trong phạm vi 0,45 ÷ 0,55; các máy khác (ví dụ, loại ΜΤΠ lấy từ 0,75 ÷ 0,85;

to- thời gian máy làm việc, khi hàn 100 điểm.

Khi hàn tiếp xúc đường tiêu hao năng lượng điện Q_E (kWh/m mối hàn) có thể xác định theo công thức gần đúng sau: [2] (bảng $143 \div 145$).

$$Q_{E} = \frac{N\cos\varphi u_{h}^{2}}{60v_{h}.u_{dm}} k_{u}$$
 (72)

Ò đây:

Cho các loại máy Mu Π có thể lấy $\cos \varphi = 0.6 \div 0.7$; k_u - hệ số, cho hàn thép cacbon, thường lấy = 0.5; v_h - tốc độ khi hàn (m/h).

Bảng 142. Tiêu hao năng lượng điện khi hàn hồ quang và hàn điện xi

Phương pháp hàn	Q _E (kWh/kg) kim loại chảy
Hàn tự động dưới lớp thuốc dòng xoay chiều (xe hàn)	3 ÷ 4
Hàn tự động và bán tự động dòng xoay chiều	3,5 ÷ 4
Hàn tự động và bán tự động dòng một chiều	5 ÷ 6
Hàn tự động 3 pha dưới lớp thuốc	2 ÷ 2,5
Hàn điện xí với dòng một chiều	2.5
Hàn điện xí với dòng xoay chiều	14
Hàn tay dòng xoay chiều	3,5 ÷ 4
Hàn tay với máy hàn tự phát bằng diezen	6 ÷ 7
Hàn tay dòng một chiều với máy hàn nhiều đầu hàn	10 ÷ 11
Hàn khi nguồn hàn là chính lưu.	4 ÷ 4,5

Bảng 143. Tiêu hao năng tượng điện khi hàn giáp mối bằng phương pháp hàn điện tiếp xúc nóng chảy

Q _E (kWh) cho 1 chi tiết hàn	. F _H (mm²)	Q _E (kWh) cho 1 chi tiết hàn
0,006	1000	0,400
0,024	1500	0,825
0,060	2000	1,275
0,125	2500	1725
	tiết hàn 0,006 0,024 0,060	0,006 1000 0,024 1500 0,060 2000

Bảng 144. Tiêu hao năng lượng điện khi hàn điểm

Tổng chiều dày tấm hàn (mm)	Q _E (kWh) trên 100 điểm hàn	Tổng chiều dày tấm hàn (mm)	Q _E (kWh) trên 100 diểm hàn
2	0,4 - 0,12	5	0,12 - 0,45
3	0,06 - 0,20	6	0,17 - 0,60
4	0,10 - 0,27	. 8	0.23 - 100

Bảng 145. Tiêu hao năng lượng điện khi hàn thép bằng phương pháp hàn áp lực tiếp xúc đường

Tổng chiều dày tấm hàn (mm)	Q _E (kWh) trên 1 m mối hàn	Tổng chiều dày tấm hàn (mm)	Q _E (kWh) trên 1 m mối hàn
0,5	0,04 - 0,08	2	0,12 - 0,24
ų	0,08 - 0,14	3	0,25 - 0,50
1,5	0,1 - 0,2	4	0,5 - 1,0

TÀI LIỆU THAM KHẢO

- J. Kuncipál Teorie Svarováni Praha, 1986.
- Сварка в машиностроении Справочник том 1, Москва - Маш- 1978
- L.L. Richard Welding and Welding technology New Delhi, 1989
- ESAB.
 Welding handbook
 Third edition. Geteborg, 1992
- 5. Lincoln
 Electrodes and Fluxes. Sydney, 1990
- Herbert. Fritz
 Fertigung stechnik.
 VDI. Verlag. 1994
- 7. Jahrbuch Schweißtechnik. 1998; 1999 Verlag. GmbH., Düsseldorf 1998-1999.
- Klaus. WihKe-Uwe Füssel Kombinierte Fügeverbindungen Springer - Verlarg Berlin 1996
- Hoàng Tùng, Nguyễn Thúc Hà, Ngô Lê Thông, Chu Văn Khang, Cấm nang hàn
 Nhà xuất bản khoa học và kỹ thuật, Hà Nội, 1998
- 10. Hoàng Tùng và tập thể: Gó khí đại cương Nhà xuất bản khoa học và kỹ thuật, Hà Nội, 1998

11. Hoàng Tùng và tập thể Chế tạo phỏi Trường đại học Bách khoa - Hà Nội, 1992

12. ВП. ЮРЬЕВ:

Справочное пособие по Нормированию Материалов. Москва - Маш., 1992

13. Probst Herold:

Kompendium der. Schweißtechnik. Band 1, 2, 3, 4 Verlag. GmbH, Düsseldorf, 1997

14. Quarterly journal of the Japan Welding Society No1 ÷ 4, 1997.

MÚC LỰC

	Trang
Lời nói đầu	3
Chương I: Khái niệm co bản về hàn nà nguồn nhiệt hàn	5
I. Thực chất, đặc điểm và phân loại hàn	5
1. Thực chất	5
2. Đặc diểm	5
3. Phân loại	6
II. Nguồn nhiệt hàn	7
1. Yêu cầu chung của nguồn nhiệt	7
2. Các loại nguồn nhiệt	8
Chutong II. Hàn hồ quang	9
A. Nguồn nhiệt hồ quang	9
1. Hò quang	. 9
2. Sự phân bố năng lượng trong vệt hỏ quang	13
3. Sự phân bố năng lượng trong cột hờ quang	14
4. Sự phân bố năng lượng trên anôt	15
B. Các phương pháp hàn hồ quang	20
 Hàn hồ quang tay với que hàn 	20
1. Điện cực và que hàn để hàn điện hồ quang	21
2. Một số tiêu chuẩn que hàn của các nước	35
3. Một số loại que hàn của các nước để hàn thép cacbon v	à
thép hợp kim thấp	38
4. Các loại que hàn đặc biệt của các nước	46
5. Bảo quản que hàn	54
II. Hàn hỏ quang tự động dưới lớp thuốc hàn	59
III. Hàn hò quang trong môi trường khí bảo vệ	60
* 1. Hàn trong môi trường khí tro với điện cực volfram (TIG	G) 61

2. Han trong môi trường khí bả	o vệ với điện cực nóng chảy	
(MIG, MAG)		63
IV. Hàn hò quang plasma		64
1. Nguồn nhiệt plasma		64
Dāc tính của dòng plasma		67
V. Hàn điện xi		69
1. Khái niệm		69
2. Nguyên li sinh nhiệt và sự ph	an bố nhiệt	70
VI. Vật liệu hàn dùng cho hàn tự d	lộng và bán tự động	71
1. Dây hàn		71
2. Dây hàn bột	1 11 1911	78
3. Thuốc hàn		81
4. Các loại vật liệu khác		89
Chương III. Hàn khí và hàn vảy		93
I. Nguồn nhiệt ngọn lửa khí cháy		93
1. Ngọn lửa trung hòa		93
2. Ngọn lửa ôxyt hóa	And the second second	95
3. Ngọn lửa cacbon hóa		95
II. Vật liệu hàn khí cháy		98
1. Ôxy		98
2. Cacbit can xi		98
3. Axêtylen		98
4. Chất xốp và axêtôn		99
Các loại khí thay thể khí axê	tylen	99
6. Xăng		99
III. Hàn vảy		100
1. Khái niệm	•	100
2. Nhiệt độ hàn		101
3. Sự thấm đính của vảy hàn		101
4. Tính mao dẫn của vảy hàn		102
5. Vảy hàn		103
6. Thuốc hàn	•	105
Chương IV. Hàn điện tiếp xúc		108
l. Khái niệm chung	•	108

II. Nguồn nhiệt hàn	109
Chương V. Định mức tiêu hao vật liệu hàn hỏ quang	111
I. Tính toán định mức tiêu hao vật liệu hàn	111
II. Thuốc hàn để hàn hỏ quang, hàn điện xi và hàn đấp	117
III. Khí bảo vệ để hàn hỏ quang trong môi trường khí bảo vệ	118
IV. Vật liệu cho hàn và cát bằng khí	120
V. Vật liệu để hàn vảy	121
VI. Định mức tiêu hao vật liệu cho hàn, cất và hàn vảy	126
1. Que hàn để hàn tay	126
2. Dây hàn và thuốc hàn để hàn tự động và bán tự động	165
3. Vật liệu để hàn trong môi trường khí bảo vệ và cắt bằng	
hờ quang không khí	193
4. Vật liệu cho hàn khí	212
5. Vật liệu để cất thép bằng ngọn lửa và ôxy	215
6. Vấy hàn và thuốc hàn	228
Chương VI. Tính toán và xác định tiêu hao năng lượng điện	235
I. Hàn hò quang điện	235
II. Định mức tiêu hao hàn điện tiếp xúc	238
Tài liệu tham khảo	240