Efficient Automatic Punctuation Restoration Using Bidirectional Transformers with Robust Inference

Maury Courtland, Adam Faulkner, Gayle McElvain

Capital One, Vision and Language Technologies

Introduction

Results

Introduction

Results

Background: ASR + NLP Is Powerful

Medical dictation transcription and analysis

Real-time spoken language translation

Digital personal assistants

Background: ASR + Humans Is Important Too

Automatic video captioning

Automatic message transcription

Problem: ASR Outputs Just Tokens

Models

- For downstream NLP models, the lack of clausal boundaries can significantly decrease accuracy (e.g. a 4.6% BLEU decrease in NMT)¹
- Probably because of the mismatch between training corpora and ASR output

Humans

- No punctuation can be as detrimental as 15-20% WER²
- Reading comprehension is also significantly slowed³
- Likely due to the removal of phrasing cues we rely on

¹Vandeghinste et al., 2018. A Comparison of Different Punctuation Prediction Approaches in a Translation Context.

²Tündik et al., 2018. User-centric Evaluation of Automatic Punctuation in ASR Closed Captioning.

³Jones et al., 2003. Measuring the readability of automatic speech-to-text transcripts.

Design Philosophy

As implementing practitioners, we don't always have:

- Control over the ASR model (vendor / different team)
- Budget for task-specific training data (leverage transfer learning?)
- The time to squeeze performance out of optimizations in order to run at scale

Solution: Automatic Punctuation

Our solution leverages (relatively novelly):

- 1. Bidirectional transformer architecture (i.e. BERT & Co.)
- 2. Pre-trained LMs at its core
- 3. State of the art optimizers

We also introduce (a.k.a. *necessity* + *running* = ...):

- 4. Simultaneous predictions for all words in an input window
- 5. Prediction aggregation across multiple context windows

Introduction

Results

Technical Details: Architecture

Technical Details: Training & Inference

Training

- Gradient descent on cross-entropy of 4-class classification
 - Classes: 85.7% no punctuation, 7.53% comma, 6.3% period, 0.47% question mark
 - Optimization performed by LookAhead optimizer with RAdam as base optimizer
 - Training performed on individual window predictions (*no* aggregation)
- 1st stage keeps pre-trained LM frozen, 2nd stage fine-tunes entire network

<u>Inference</u>

Pool individual predictions from different overlapping windows

NOTE: Our network's hyperparameters have <u>not</u> been rigorously tuned in any principled way (e.g. grid search, bayesian optimization)

Result 1: Better Accuracy

48.7% relative improvement (overall F1, 15.3 absolute), likely due to:

- 1. More powerful architecture (transformers' self-attention)
- 2. Direct connections between long-distance dependencies (e.g. "wh" words)
- 3. Self-ensemble effect of aggregating across multiple context windows

	Comma				Period		(Question		Overall		L
Models	P	R	F1	P	R	F1	P	R	F1	P	R	F1
DNN-A (Che et al., 2016)	48.6	42.4	45.3	59.7	68.3	63.7	-	-	-	54.8	53.6	54.2
CNN-2A (Che et al., 2016)	48.1	44.5	46.2	57.6	69.0	62.8				53.4	55.0	54.2
T-LSTM (Tilk and Alumäe, 2015)	49.6	41.4	45.1	60.2	53.4	56.6	57.1	43.5	49.4	55.0	47.2	50.8
T-BRNN (Tilk and Alumäe, 2016)	64.4	45.2	53.1	72.3	71.5	71.9	67.5	58.7	62.8	68.9	58.1	63.1
T-BRNN-pre (Tilk and Alumäe, 2016)	65.5	47.1	54.8	73.3	72.5	72.9	70.7	63.0	66.7	70.0	59.7	64.4
Single-BiRNN (Pahuja et al., 2017)	62.2	47.7	54.0	74.6	72.1	73.4	67.5	52.9	59.3	69.2	59.8	64.2
Corr-BiRNN (Pahuja et al., 2017)	60.9	52.4	56.4	75.3	70.8	73.0	70.7	56.9	63.0	68.6	61.6	64.9
DRNN-LWMA (Kim, 2019)	63.4	55.7	59.3	76.0	73.5	74.7	75.0	71.7	73.3	70.0	64.6	67.2
DRNN-LWMA-pre (Kim, 2019)	62.9	60.8	61.9	77.3	73.7	75.5	69.6	69.6	69.6	69.9	67.2	68.6
RoBERTa _{base} (Ours)	76.9	75.4	76.2	86.1	89.3	87.7	88.9	87.0	87.9	84.0	83.9	83.9

Result 2: Faster Inference

1.2x CPU speedup, 78.8x GPU speedup¹

Likely due to:

- 1. Non-recurrent network computations allow for huge parallelization
- 2. Simultaneous token prediction saves lots of computations
- 3. Multiple aggregated predictions are independent (i.e. also parallelizable)

¹Single predictions per token compared with most recent open source SOTA (best # predictions is 41.5x GPU speedup):

Result 3: Faster Training

SOTA model in ~1 hour on 3.16xlarge = ~\$24

- 1. Leverages massive pre-training corpus (~33B words)
- 2. Allows SOTA training on just TED corpus (2.1M words -- IWSLT 2012 challenge)
- 3. Richer training signal given simultaneous token prediction

Introduction

Results

Ablation: Inference Parallelism

Same input, advancing window by 1 and predict for each word in sequence

Without ensembling, our network is:

• 15x faster, **but** 2.2% worse

With ensembling, our network is:

4x faster, and 5.4% better

Sequence distributions

Linear Classifier Layer

Normalized sequence vector

Batch Norm and Dropout

Hidden sequence vector

Concatenate

Hidden token vectors

Linear Layer

Vocabulary distributions (before Fine-Tuning)

Pre-trained LM

Vocab IDs

Ablation: Speed/accuracy tradeoff

Predictions	F1	CPU	GPU		
per token	Overall	Runtime	Runtime		
1	76.3	1x	1x		
2	79.4	1.8x	1.1x		
3	81.8	2.6x	1.2x		
6	83.2	5.2x	1.5x		
9	83.9	7.7x	1.9x		
Droggger		18x Intel Xeon	8x Tesla V100		
Processor		(c5.18xlarge)	(p3.16xlarge)		

Ablation: Pre-train Trained LM

- RoBERTa_{lg} not better → RoBERTa_{base} is adequately parameterized
- Several SOTA pre-trained models are slightly worse (XLNet, T5, BERT)
 - RoBERTa > BERT likely due to training corpus size
- Sacrificing parameters sacrifices performance (ALBERT & DistilRoBERTa)

		Comma	ì	Period		Question			Overall			
Models	P	R	F1	P	R	F1	P	R	F1	P	R	F1
RoBERTa _{base}	76.9	75.4	76.2	86.1	89.3	87.7	88.9	87.0	87.9	84.0	83.9	83.9
RoBERTa _{large}	74.3	76.9	75.5	85.8	91.6	88.6	83.7	89.1	86.3	81.3	85.9	83.5
XLNet _{base}	76.6	74.9	75.8	84.6	90.6	87.5	82.0	89.1	85.4	81.1	84.9	82.9
T5 _{base}	70.5	77.2	73.7	85.6	85.5	85.6	83.7	89.1	86.3	79.9	84.0	81.9
BERT _{base}	72.8	70.8	71.8	81.9	86.6	84.2	80.8	91.3	85.7	78.5	82.9	80.6
ALBERT _{base}	69.4	69.3	69.4	80.9	84.5	82.7	76.7	71.7	74.2	75.7	75.2	75.4
DistilRoBERTa	70.0	64.5	67.1	78.2	83.5	80.8	75.0	71.7	73.3	74.4	73.2	73.7

Ablation: Optimizer + Loss Function

Optimizer	Overall F1 Change
LookAhead + RAdam	0%
LookAhead + Adam	-1.5%
RAdam alone	-1.6%
Adam alone	-2.9%

Class imbalance "fixes"	Overall F1 Change				
Cross-entropy class weighting	-7.3%				
Focal loss	-3.9%				
Class weighting + Focal loss	-7.3%				

Conclusion

Our approach:

- Is <u>40x faster</u> for inference (on GPUs)
- Achieves a <u>48.7% relative improvement</u> (overall F1)
- Can be <u>trained in ~1 hour</u> for \$24 (on AWS p3.16xlarge)

Next steps:

- Obtain in-domain human agreement metric (i.e. competitiveness w/ humans)
- Rigorous hyperparameter tuning
- Perform linguistic analyses (e.g. long-distance dependencies)
- Measure our model's benefits on downstream users and systems