# Assignment 01

```
library(tinytex)
indata <- read.csv("D:/RStudio/File/STATS413/vwjetta_gas.csv")
indata$mileage[indata$mileage == 999999] <- NA
indata$vehage[indata$vehage == 999] <- NA
indata$mpg[indata$mpg == 99] <- NA

indata$congrade <- factor(indata$congrade)
levels(indata$congrade) <- c("rough", "average", "clean", "excellent")</pre>
```

# Question a

```
options(width = 300)
summary(indata)
```

| ## | resratio       | mileage        | vehage         | mpg           | congrade      | modelyr      |
|----|----------------|----------------|----------------|---------------|---------------|--------------|
| ## | Min. :0.0388   | Min. : 1266    | Min. : 1.00    | Min. :22.00   | rough :578    | Min. :1997   |
| ## | 1st Qu.:0.1982 | 1st Qu.: 30578 | 1st Qu.: 32.00 | 1st Qu.:23.00 | average :378  | 1st Qu.:2003 |
| ## | Median :0.3425 | Median : 63744 | Median : 64.00 | Median :25.00 | clean :209    | Median :2005 |
| ## | Mean :0.4224   | Mean : 64398   | Mean : 65.88   | Mean :24.06   | excellent: 31 | Mean :2005   |
| ## | 3rd Qu.:0.6378 | 3rd Qu.: 95131 | 3rd Qu.: 97.00 | 3rd Qu.:25.00 |               | 3rd Qu.:2008 |
| ## | Max. :1.0535   | Max. :149769   | Max. :164.00   | Max. :27.00   |               | Max. :2011   |
| ## |                | NA'a ·5        | NA's ·8        | NA's .6       |               |              |

- 5 values are missing in **mileage**
- 8 values are missing in **vehage**
- 6 values are missing in mpg

#### Question b

```
##
## rough average clean excellent
## 578 378 209 31

plot(indata$congrade)
```



# Question c

```
knitr::opts_chunk$set(fig.width = 6, fig.height = 4)
pairs(indata[,c("resratio", "mileage", "vehage")])
```



# Question d

```
options(width = 300)
rough_vehicles <- indata[indata$congrade == "rough",]
average_vehicles <- indata[indata$congrade == "average",]
clean_vehicles <- indata[indata$congrade == "clean",]
excellent_vehicles <- indata[indata$congrade == "excellent",]
knitr::opts_chunk$set(fig.width = 6, fig.height = 4)
boxplot(rough_vehicles$resratio, average_vehicles$resratio, clean_vehicles$resratio, excellent_vehicles$re</pre>
```



```
mean_resratio_rough <- mean(rough_vehicles$resratio)
mean_resratio_average <- mean(average_vehicles$resratio)
mean_resratio_clean <- mean(clean_vehicles$resratio)
mean_resratio_excellent <- mean(excellent_vehicles$resratio)
cat("mean resratio of rough: ", mean_resratio_rough)

## mean resratio of rough: 0.2722137

cat("mean resratio of average: ", mean_resratio_average)

## mean resratio of average: 0.4774244

cat("mean resratio of clean: ", mean_resratio_clean)

## mean resratio of clean: 0.6732804

cat("mean resratio of excellent: ", mean_resratio_excellent)

## mean resratio of excellent: 0.8596422</pre>
```

#### Question e

```
options(width = 300)
mileage_limit <- indata[indata$mileage > 100000,]
resratio_mileage <- mileage_limit$resratio
par(mfrow = c(1,2))
knitr::opts_chunk$set(fig.width = 6, fig.height = 4)
hist(resratio_mileage, main = "resratio for vehicles with mileage greater than 100,000", xlab = "resratio"
plot(density(resratio_mileage,na.rm = TRUE), main = "kernel density plot of resratio for vehicles with mileage</pre>
```

#### for vehicles with mileage greaterof resratio for vehicles with milea





```
print("The distribution is close to normal distribution")
```

## [1] "The distribution is close to normal distribution"

```
mean_resratio <- mean(resratio_mileage, na.rm = TRUE)
cat("mean of resratio for vehicles with mileage greater than 100,000 is:", mean_resratio)</pre>
```

## mean of resratio for vehicles with mileage greater than 100,000 is: 0.1593309

```
std_resratio <- sd(resratio_mileage, na.rm = TRUE)
cat("standard deviation of resratio for vehicles with mileage greater than 100,000 is:", std_resratio)</pre>
```

## standard deviation of resratio for vehicles with mileage greater than 100,000 is: 0.04841774

#### Question f

```
options(width = 300)
indata$mile15 <- indata$mileage/150000
ave_vehicle <- indata[indata$congrade == "average",]
mean_average_resratio_edit <- mean(ave_vehicle$resratio)
sd_average_resratio_edit <- sd(ave_vehicle$resratio)
cat("the mean for resratio is:", mean_average_resratio_edit)</pre>
```

```
## the mean for resratio is: 0.4774244
```

```
cat("the standard deviation for resratio is:", sd_average_resratio_edit)
```

## the standard deviation for resratio is: 0.2266965

```
mean_average_mile15_edit <- mean(ave_vehicle$mile15, na.rm = TRUE)
sd_average_mile15_edit <- sd(ave_vehicle$mile15, na.rm = TRUE)
cat("the mean for resratio is:", mean_average_mile15_edit)</pre>
```

## the mean for resratio is: 0.3651413

```
cat("the standard deviation for resratio is:", sd_average_mile15_edit)

## the standard deviation for resratio is: 0.2220556

mean_average_vehage_edit <- mean(ave_vehicle$vehage, na.rm = TRUE)
sd_average_vehage_edit <- sd(ave_vehicle$vehage, na.rm = TRUE)
cat("the mean for resratio is:", mean_average_vehage_edit)

## the mean for resratio is: 58.17772

cat("the standard deviation for resratio is:", sd_average_vehage_edit)

## the standard deviation for resratio is: 34.79075</pre>
```