HW #5 (due at Canvas midnight on Wednesday, September 27, ET)

(There are 6 questions. The hints are available on the second page of this pdf file.)

- 1. Let Y_1, \ldots, Y_n be an iid random sample from a population with unknown mean θ and a finite variance $\sigma^2 > 0$. In the problem of estimating $\theta \in \Omega = \mathbb{R}^1$ (real numbers) with $D = \mathbb{R}^1$ and $L(\theta, d) = (\theta d)^2$ (squared error loss), consider a general statistical procedure of the form $\delta_{a,b} = a\bar{Y} + b$, where a and b are general constants.
 - (a) Calculate the risk function of $\delta_{a,b} = a\bar{Y} + b$.

Answer: The risk function is

$$R_{\delta_{a,b}}(\theta) = \mathbf{E}_{\theta}(\theta - \delta_{a,b})^{2}$$

$$= \mathbf{E}_{\theta}(\delta_{a,b} - \theta)^{2} \quad (\text{since } (-x)^{2} = x^{2})$$

$$= \mathbf{E}_{\theta}(a\bar{Y} + b - \theta)^{2}$$

$$= (a\mathbf{E}_{\theta}\bar{Y} + b - \theta)^{2} + a^{2}\operatorname{Var}_{\theta}(\bar{Y})$$

$$= \left[(a-1)\theta + b \right]^{2} + \frac{a^{2}\sigma^{2}}{n}.$$

(b) Show that $a\bar{Y} + b$ is **inadmissible** whenever (i) a > 1; or (ii) a < 0; or (iii) $a = 1, b \neq 0$.

Answer: (i) If a > 1, then by part (a),

$$R_{\delta_{a,b}}(\theta) \ge \frac{a^2 \sigma^2}{n} > \frac{\sigma^2}{n} = R_{\delta_{1,0}}(\theta) = R_{\bar{Y}}(\theta),$$

so that \bar{Y} is better than $\delta_{a,b}$, and thus $\delta_{a,b}$ is inadmissible when a > 1.

(ii) If a < 0, then 1 - a > 0 and $(1 - a)^2 > 1$. Hence

$$R_{\delta_{a,b}}(\theta) \geq \left[(a-1)\theta + b \right]^2 = \left[(1-a)\theta - b \right]^2$$

$$= (1-a)^2 \left[\theta - \frac{b}{1-a} \right]^2$$

$$> \left[\theta - \frac{b}{1-a} \right]^2$$

$$= R_{\delta_{0,b/(1-a)}}(\theta).$$

In other words, the constant estimator $\delta_{0,b/(1-a)} \equiv \frac{b}{1-a}$ will be better than $\delta_{a,b}$ when a < 0.

(iii) In this case, $a = 1, b \neq 0$, we have

$$R_{\delta_{a,b}}(\theta) = b^2 + \frac{\sigma^2}{n} > \frac{\sigma^2}{n} = R_{\delta_{1,0}}(\theta) = R_{\bar{Y}}(\theta),$$

and thus $\delta_{a,b}$ is also dominated by \bar{Y} .

2. In Problem 1, assume further that $Y_i \sim N(\theta, \sigma^2)$, where $\sigma^2 > 0$ is known. Show that $a\bar{Y} + b$ is **admissible** if $0 \le a < 1$.

Remark: Combining problem 1 and problem 2 studies the admissibility of $a\bar{Y} + b$ for the normal distribution for all cases except \bar{Y} itself which will be shown to be admissible in class. Therefore, under the normality assumption, the procedure $\delta_{a,b} = a\bar{Y} + b$ is **admissible** if and only if (i) $0 \le a < 1$ or (ii) a = 1, b = 0.]

Answer: Here we need to consider two subcases separately: (i) 0 < a < 1 and (ii) a = 0. For the case of 0 < a < 1, recall that the unique Bayes procedure with respect to the prior distribution $\theta \sim N(\mu, \tau^2)$ is

$$\frac{n/\sigma^2}{n/\sigma^2 + 1/\tau^2} \bar{Y} + \frac{1/\tau^2}{n/\sigma^2 + 1/\tau^2} \mu.$$

It is clear that for given σ^2 , 0 < a < 1 and any b, we can always choose μ and τ so that

$$\frac{n/\sigma^2}{n/\sigma^2 + 1/\tau^2} = a$$
 and $\frac{1/\tau^2}{n/\sigma^2 + 1/\tau^2}\mu = b$

In fact, a simply calculation shows that

$$\tau^2 = \frac{a}{1-a} \frac{\sigma^2}{n}$$
 and $\mu = \frac{b}{1-a}$.

In other words, as long as 0 < a < 1, $\delta_{a,b} = a\bar{Y} + b$ is the unique Bayes procedure with respect to a well-defined prior distribution, as the variance $\tau^2 > 0$ is well-defined. Since any unique Bayes procedure is admissible, we can conclude that $a\bar{Y} + b$ is admissible if 0 < a < 1. Meanwhile, for the case of a = 0, the above argument does not work, since $\tau^2 = 0$ cannot be the variance of a normal distribution. In this case, $\delta_{a,b} = a\bar{Y} + b = b$ is the constant estimator, which has **zero** risk at $\theta = b$. We did a similar problem in part (h) of HW#1, and see the solution there for the detailed arguments!

3. In Problem 1, assume further that $Y_i \sim Bernoulli(\theta)$, i.e., $\mathbf{P}_{\theta}(Y_i = 1) = 1 - \mathbf{P}_{\theta}(Y_i = 0) = \theta$. Assume that the statistician decides to restrict consideration to procedures of the form $\delta_{a,b} = a\bar{Y} + b$, and want to always yield only decisions in D = [0,1] regardless of the observed value $\mathbf{Y} = (Y_1, \dots, Y_n)$. Show that the pair (a,b) has to be chosen to satisfy $0 \le b \le 1$ and $-b \le a \le 1 - b$.

Answer: Observe that the term ay + b is a linear function of y, and thus it is minimized/maximized at the end points. Since \bar{y} takes the values between 01 and 1, it suffices that $ay + b \in [0, 1]$ for y = 0 and 1. This implies that

$$0 \le b \le 1$$
 and $0 \le a + b \le 1$,

or equivalently,

$$0 < b < 1$$
 and $-b < a < 1 - b$.

4. In Problem 3 for Bernoulli distribution, when 0 < b < 1 and -b < a < 0, is the procedure $\delta_{a,b} = a\bar{Y} + b$ admissible? Note that the variance $\sigma^2 = \theta(1 - \theta)$ depends on θ here.

Answer: The answer is "No." To see this, denote the risk function of $\delta_{a,b}(X) = a\bar{Y} + b$ by

$$\rho(a,b) = R_{\delta_{a,b}}(\theta) = \mathbf{E}_{\theta}(a\bar{Y} + b - \theta)^2 = ((a-1)\theta + b)^2 + a^2\theta(1-\theta)/n.$$

If a < 0, then $(a - 1)^2 > 1$ and hence

$$\rho(a,b) \geq ((a-1)\theta + b)^2 \qquad \text{(since the second term } a^2\theta(1-\theta)/n \geq 0)$$

$$= (a-1)^2 \left(\theta - \frac{b}{1-a}\right)^2$$

$$> \left(\theta - \frac{b}{1-a}\right)^2 = \rho(\frac{b}{1-a}, 0).$$

Thus, $a\bar{Y} + b$ is dominated by the constant estimator $\delta \equiv b/(1-a)$.

Remark: In general, let Y_1, \dots, Y_n be i.i.d. with mean θ and finite variance. Then in the problem of estimating θ under squared error loss, $a\bar{Y}+b$ is an inadmissible procedure whenever a<0.

5. In Problem 3 for Bernoulli distribution, show that when 0 < b < 1 and $0 \le a < 1 - b$, the procedure $\delta_{a,b} = a\bar{Y} + b$ is admissible.

Remark: For the purpose of completeness, for Bernoulli distribution, it can be shown that $a\overline{Y}+b$ is admissible in the closed triangle $\{(a,b): a \geq 0, b \geq 0, a+b \leq 1\}$, and it is inadmissible for the remaining values of a and b.

Answer: Here we need to prove it in two separate cases: (i) 0 < a < 1 and (ii) ba = 0. First, let us consider the case when 0 < a < 1 - b and 0 < b < 1. Recall that the Bayes procedure for the prior distribution is $Beta(\alpha, \beta)$ (this prior is well-defined if and only if $\alpha > 0$ and $\beta > 0$) is

$$\delta_{\pi}^* = \frac{\alpha + \sum_i nY_i}{\alpha + \beta + n} = \frac{n}{\alpha + \beta + n} \bar{Y} + \frac{\alpha}{\alpha + \beta + n}.$$

Set

$$\frac{n}{\alpha + \beta + n} = a$$
 and $\frac{\alpha}{\alpha + \beta + n} = b$,

we have

$$\alpha = \frac{b}{a}n$$
 and $\beta = \frac{1-a-b}{a}n$.

The key observation is that in the above equation, $\alpha > 0$ and $\beta > 0$ when 0 < a < 1 - a and 0 < b < 1. That is, $\delta_{a,b}$ is the unique Bayes procedure relative to a well-defined prior $Beta(\alpha = \frac{b}{a}n, \beta = \frac{1-a-b}{a}n)$ when 0 < a < 1 and $0 \le b < 1-a$. Thus it is admissible.

Meanwhile, in the case of a=0, the above argument does not work, since $\alpha=\beta=\infty$. In this case, $\delta_{a,b}=a\bar{Y}+b=b$ is the constant estimator, which has **zero** risk at $\theta=b$ when 0 < b < 1. The remaining proof will be similar to those in HW#1. Below is the detailed arguments.

Assume that the constant estimator $\delta_{a=0,b} = b$ with 0 < b < 1 were inadmissible and there existed a procedure δ' which were better than $\delta_{0,b} = b$. Then

$$R_{\delta'}(\theta) \le R_{\delta_{0,b}}(\theta) = (\theta - b)^2$$
 for all $0 \le \theta \le 1$,

$$R_{\delta'}(\theta_0) \le R_{\delta_0 b}(\theta_0) = (\theta - b)^2$$
 for at least one $0 \le \theta_0 \le 1$.

Since

$$R_{\delta'}(\theta) = \mathbf{E}_{\theta} L(\theta, \delta') = \mathbf{E}_{\theta} (\delta' - \theta)^{2}$$

$$= \sum_{a_{1}=0}^{1} \cdots \sum_{a_{n}=0}^{1} (\delta'(a_{1}, \cdots, a_{n}) - \theta)^{2} \mathbf{P}_{\theta} (Y_{1} = a_{1}, \cdots, Y_{n} = a_{n})$$

$$= \sum_{a_{1}=0}^{1} \cdots \sum_{a_{n}=0}^{1} (\delta'(a_{1}, \cdots, a_{n}) - \theta)^{2} \theta^{\sum_{i}^{n} a_{i}} (1 - \theta)^{n - \sum_{i}^{n} a_{i}},$$

we have that for any $0 \le \theta \le 1$.

$$\sum_{a_1=0}^{1} \cdots \sum_{a_n=0}^{1} (\delta'(a_1, \cdots, a_n) - \theta)^2 \theta^{\sum_{i=1}^{n} a_i} (1-\theta)^{n-\sum_{i=1}^{n} a_i} \leq (\theta - b)^2.$$

Letting $\theta = b$ both sides yields that

$$\sum_{a_1=0}^{1} \cdots \sum_{a_n=0}^{1} (\delta'(a_1, \cdots, a_n) - b)^2 b^{\sum_{i=1}^{n} a_i} (1-b)^{n-\sum_{i=1}^{n} a_i} \le 0.$$

Since all terms on the left-hand side are non-negative and 0 < b < 1, we have $\delta'(a_1, \dots, a_n) = b$ for all $a_1, \dots, a_n = 0, 1$ and this implies that $\delta'(Y_1, \dots, Y_n) = b$ and $R_{\delta'}(\theta) = (\theta - b)^2$ for all $0 \le \theta \le 1$. This is a contradiction with our assumption that the procedure δ' is better than $\delta_{0,b} = b!$ So $\delta_{0,b} \equiv b$ is admissible when 0 < b < 1. This completes the proof.

- 6. Let Y_1, \dots, Y_n be i.i.d. according to a $N(0, \sigma^2)$ density, and let $S^2 = \sum_{i=1}^n Y_i^2$. We are interested in estimating $\theta = \sigma^2$ under the squared error loss $L(\theta, d) = (\theta d)^2 = (\sigma^2 d)^2$ using linear estimator $\delta_{a,b} = aS^2 + b$, where a and b are constants. **Show that**
 - (a) The risk of $\delta_{a,b}$ is given by

$$R_{\delta_{a,b}}(\sigma^2) = \mathbf{E}_{\sigma} (\sigma^2 - (aS^2 + b))^2 = 2na^2\sigma^4 + [(an - 1)\sigma^2 + b]^2.$$

(b) The constant estimator $\delta_{a=0,b=0} = 0$ is inadmissible.

Remark: this exercise illustrates the fact the constants are not necessarily admissible.

Answer: (a) Let $Y_i = \sigma Z_i$, where $Z_i \sim N(0,1)$. For the standard normal distributions, we have

$$\mathbf{E}(Z_i) = 0, \mathbf{E}(Z_i^2) = 1, \mathbf{E}(Z_i^3) = 0, \mathbf{E}(Z_i^4) = 3.$$

From this, let us now find the mean and variance of $W_i = Y_i^2$, which becomes $\sigma^2 Z_i^2$ under $\mathbf{P}_{\theta=\sigma^2}$.

$$\mathbf{E}_{\theta}(W_i) = \mathbf{E}(\sigma^2 Z_i^2) = \sigma^2 \mathbf{E}(Z_i^2) = \sigma^2;$$

$$Var_{\theta}(W_i) = \mathbf{E}_{\theta}(W_i^2) - [\mathbf{E}_{\theta}(W_i)]^2 = \mathbf{E}(\sigma^4 Z_i^4) - [\sigma^2]^2$$

$$= \sigma^4 \mathbf{E}(Z_i^4) - \sigma^4 = 3\sigma^4 - \sigma^4$$

$$= 2\sigma^4.$$

Thus under the squared error loss, the risk function of $\delta_{a,b} = a \sum_{i=1}^{n} W_i + b$ when estimating $\theta = \sigma^2$ is

$$R_{\delta_{a,b}}(\theta) = \mathbf{E}_{\theta}(\theta - \delta_{a,b})^{2}$$

$$= \mathbf{E}_{\theta}(\delta_{a,b} - \theta)^{2}$$

$$= \mathbf{E}_{\theta}(a\sum_{i}^{n}W_{i} + b - \theta)^{2}$$

$$= (a\sum_{i}^{n}\mathbf{E}_{\theta}W_{i} + b - \theta)^{2} + a^{2}\sum_{i}^{n}\operatorname{Var}_{\theta}(W_{i})$$

$$= (an\sigma^{2} - \sigma^{2} + b)^{2} + a^{2}n(2\sigma^{4})$$

$$= [(an - 1)\sigma^{2} + b]^{2} + 2na^{2}\sigma^{4}.$$

(b) By (a), when b=0, let us now consider the estimator of the form $\delta_{a,b=0}=a\sum_{i=0}^{n}Y_{i}^{2}$, and its risk function is

$$R_{\delta_{a,b=0}}(\theta) = [(an-1)^2 + 2na^2]\sigma^4 = [(n^2 + 2n)a^2 - (2n)a + 1]\sigma^4$$
$$= [(n^2 + 2n)(a - \frac{1}{n+2})^2 + \frac{2}{n+2}]\sigma^4,$$

which reaches the minimum value of $\frac{2}{n+2}\sigma^4$ when $a=\frac{1}{n+2}$. In particular,

$$R_{\delta_{a=0,b=0}}(\theta) = \sigma^4 > \frac{2}{n+2}\sigma^4 = R_{\delta_{a=\frac{1}{n+2},b=0}}(\theta)$$

for all $\sigma^2 > 0$. Thus the procedure $\delta_{a=0,b=0}$ is inadmissible.

Hints for problem 1 (b) Find a better procedure than $\delta_{a,b} = a\bar{Y} + b$: try $\delta_{1,0} = \bar{Y}$ for case (i) (a > 1) or case (iii) (a = 1) and $b \neq 0$; and try some constant estimators for case (ii) (a < 0). In particular, when a < 0, we have 1 - a > 1, and thus

$$\left[(a-1)\theta + b \right]^2 = \left[(1-a)\theta - b \right]^2 = (1-a)^2 \left[\theta - \frac{b}{1-a} \right]^2 \ge \left[\theta - \frac{b}{1-a} \right]^2.$$

From this, can you guess the desired constant estimator?

Hints for problem 2 Show that $\delta_{a,b}$ is a Bayes procedure if 0 < a < 1, and can you find μ, τ^2 (in term of a, b) so that $\delta_{a,b}$ is Bayes with respect to the prior distribution $\theta \sim N(\mu, \tau^2)$? Meanwhile, when a = 0, note that $\delta_{a=0,b}$ is the only estimator with zero risk at $\theta = b$, and have we done similar questions in part (h) of HW#1?

Hints for problem 3 it suffices to make sure that $\delta_{a,b} \in [0,1]$ when $(Y_1, \dots, Y_n) = (0, \dots, 0)$ or $(1, \dots, 1)$, why? Hints: where does the linear function achieve the minimum or maximum values?

Hints for problem 4 Here the variance $\sigma^2 = \theta(1-\theta)$, and it is a special case of problem #1(b).

<u>Hints for problem 5</u> If a = 0, what is risk at $\theta = b$? If 0 < a < 1 - b, what is the Bayes solution relative to the prior distribution $\pi(\theta) = \text{Beta}(\alpha, \beta)$ with $\alpha > 0$ and $\beta > 0$?

<u>Hints for problem 6</u> in part (a), let $Y_i = \sigma Z_i$, where $Z_i \sim N(0,1)$. For the standard normal distributions, we have

$$\mathbf{E}(Z_i) = 0, \mathbf{E}(Z_i^2) = 1, \mathbf{E}(Z_i^3) = 0, \mathbf{E}(Z_i^4) = 3.$$

From this, can you find the mean and variance of $W_i = Y_i^2$? The question can be reduced to the linear estimator of $\delta_{a,b} = a \sum_{i=1}^n W_i + b$ when estimating $\theta = \mathbf{E}_{\theta}(W_i) = \sigma^2$ under the squared error loss function.

In part (b), let b = 0, find a that minimizes the risk function, and such a will yield a better procedure.