ROBERT DYRO

robert.dyro@gmail.com | (310) 694-1753 | https://robertdyro.com

I am interested in cutting-edge computational engineering research, like distributed computing for LLMs. My current focus is on high-level computational frameworks that accelerate research iteration and model development. I am passionate about exploring new, high-impact technologies. I thrive in environments that prioritize effective teamwork and a results-oriented approach.

EDUCATION Stanford University	Stanford, CA
PhD, Robotics, GPA 3.93	2020 - 2024
MS, Aeronautics & Astronautics Engineering, GPA 3.89	2018 - 2020
University of California, Los Angeles	Los Angeles, CA
BS, Aerospace Engineering, Minor in Philosophy, GPA 3.94, Summa Cum Laude	2014 - 2018
RELEVANT COURSEWORK	
Convex Optimization $\ \blacksquare$ Reinforcement Learning $\ \blacksquare$ Meta-Learning $\ \blacksquare$ Robot Autonomy $\ \blacksquare$ Large-so	cale Matrix Computations
Computer Architecture $\ lacktriangledown$ Optimal and Learning-based Control $\ lacktriangledown$ Decision-Making under Uncert	ainty Game Theory
Model Reduction \blacksquare ML with Graphs \blacksquare ML Theory \blacksquare Trustworthy & Explainable ML \blacksquare Ml	L under Distribution Shift
EXPERIENCE	
Software Engineer, JAX External at Google	Mountain View, CA
JAX framework development for external researchers and industry partners	2024 - present
Cutting-edge experience in multi-host multi-chip distributed computing with TPUs for LLMs	
Experience with state-of-the-art distributed computation and communication optimization	
Open-source outreach and education in newest research engineering technology for LLMs	
Open-source custom kernel development for TPUs and GPUs for maximal accelerated hardware utilization	tion
Graduate Student, Autonomous Systems Laboratory (ASL) at Stanford University	Stanford, CA
Stress Testing Autonomous Vehicles via Counterfactual Editing of Trained Behavior Models	2023
- Extracting learned behavior distribution for realistic counterfactual generation via efficient and scala	ble Hessian sketching
Optimization-based Online Intent Inference in Autonomous Driving	2022
- Developed a real-time, structured behavior inference method for online behavior identification in aut	onomous driving
Second-Order Sensitivity Analysis for Bilevel Optimization	2021
- 2nd order sensitivity analysis of optimization, enabling much faster optimization of bilevel/inverse/se	
Control under Arbitrary Uncertainty using Particle Model Predictive Control	2020
- Implemented and experimentally evaluated consensus control particle MPC for control under arbitra	
Convex Last-layer Meta-learning for Behavior & Physics-based Modeling	2019
- Incorporated constraints into the meta-learning model for structured learning to allow adding a prior	= = =
PhD Intern, Cruise	San Francisco, CA
Machine Learning Acceleration - Architecture Optimization - Zero-Shot Neural Architecture Search	June - December 2022
Research Intern, Toyota Research Institute	Los Altos, CA
ntelligent Driver Behavior Modeling using Human Interpretable Rules	June - September 2020
- Embedded human logic within path planning via Signal Temporal Logic (STL) to capture human-int	
Student Researcher, TANMS at UCLA	Los Angeles, CA
Multi-Physics Dynamics Simulation in Computational Multiferroic Systems	2017
TECHNICAL EXPERIENCE	

- Custom quadratic program (QP) solver in CUDA
- Fair and robust machine learning via local explainability enforcement exploiting the LIME technique
- Experimental dynamic graph autodifferentiation library for full sparse 1st & 2nd order matrix algebra differentiation
- Optimal driving and intersection collision avoidance via Monte Carlo Tree Search for partially observable planning

Software Skills:

Python, C++, C, Julia, Matlab JAX, PyTorch, TF, ROS embedded systems, Linux, HPC, Slurm, CUDA, Google Cloud

MISC

Philosophy Minor, UCLA LA Marathon Amateur Radio License PADI Assistant Instructor