PROJEKTOWANIE ALGORYTMÓW I METOD SZTUCZNEJ INTELIGENCJI

IMIĘ I NAZWISKO	NUMER INDEKSU	TERMIN		
Kacper Połatajko	241603			
TEMAT: Projekt 3 – Grafy - Algorytmy Dijkstry i Bellmana-Forda				

1. Cel ćwiczenia

Zaimplementowanie grafu na liście sąsiedztwa oraz na macierzy sąsiedztwa. Napisanie algorytmów Dijkstry oraz Bellmana-Forda zarówno dla listy i macierzy sąsiedztwa.

2. Wynik działania algorytmów

a. Algorytm Dijkstry – lista sąsiedztwa

llość wierzchołków	Gęstość	Czas [µS]
10	0,25	163
10	0,5	158
10	0,75	140
10	1	112
50	0,25	202
50	0,5	203
50	0,75	240
50	1	249
100	0,25	435
100	0,5	507
100	0,75	604
100	1	598
500	0,25	3363
500	0,5	4384
500	0,75	6026
500	1	7535
1000	0,25	9328
1000	0,5	14354
1000	0,75	19543
1000	1	24578

b. Algorytm Bellmana-Forda – lista sąsiedztwa

llość wierzchołków	Gęstość	Czas [µS]
10	0,25	181
10	0,5	204
10	0,75	188
10	1	185
50	0,25	763
50	0,5	1710
50	0,75	2134
50	1	2906
100	0,25	5463
100	0,5	11168
100	0,75	16551
100	1	20889
500	0,25	596728
500	0,5	1186528
500	0,75	1775430
500	1	2368465
1000	0,25	4729698
1000	0,5	9474235
1000	0,75	14190071
1000	1	18937971

c. Algorytm Dijkstry – macierz sąsiedztwa

llość wierzchołków	Gęstość	Czas [μS]
10	0,25	155
10	0,5	154
10	0,75	164
10	1	166
50	0,25	379
50	0,5	228
50	0,75	239
50	1	215
100	0,25	499
100	0,5	574
100	0,75	606
100	1	576
500	0,25	5546
500	0,5	6849
500	0,75	6335
500	1	5645
1000	0,25	20293
1000	0,5	26868
1000	0,75	25637
1000	1	18246

d. Algorytm Bellmana-Forda – macierz sąsiedztwa

llość wierzchołków	Gęstość	Czas [μS]
10	0,25	191
10	0,5	211
10	0,75	250
10	1	210
50	0,25	1955
50	0,5	2522
50	0,75	3927
50	1	2488
100	0,25	10177
100	0,5	18891
100	0,75	28495
100	1	20096
500	0,25	1084732
500	0,5	2166452
500	0,75	3247448
500	1	2162381
1000	0,25	8651792
1000	0,5	17297145
1000	0,75	25969782
1000	1	17293497

3. Wnioski

- Algorytmy Dijkstry oraz Bellmana-Forda działały szybciej na liście sąsiedztwa niż na macierzy sąsiedztwa.
- Złożoność obliczeniowa algorytmu Djikstry jest mniejsza niż algorytmu Bellmana-Forda.
- Algorytm Dijkstry ma pewien błąd w kodzie. Czasami przy wyszukiwaniu najkrótszej drogi pomiędzy połączonymi wierzchołkami przyjmuje wartość tego połączenia jako najkrótszą trasę, ale gdy sprawdzimy połączenie w drugą stronę wtedy jest już wybrana krótsza, okrężna droga (np. jeśli sprawdzimy drogę od wierzchołka 0 do 3 to pokazuje wartość połączenia (przykładowo 300), ale gdy sprawdzimy najkrótszą drogę od wierzchołka 3 do 0 wtedy pokaże rzeczywistą, najkrótszą drogę (przykładowo 150)).