

## Automatic Generation of Dominance Breaking Nogoods for Constraint Optimisation

Jimmy H.M. Lee and Allen Z. Zhong
Department of Computer Science and Engineering
The Chinese University of Hong Kong

## Constraint Optimisation Problems (COPs)

- Example: 0-1 Knapsack
  - Variables:  $x_1, x_2, x_3, x_4$
  - Domains:  $x_i \in \{0,1\}$  for i = 1,...,4
  - Constraint:  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$
  - Objective: maximize  $3x_1 + x_2 + 6x_3 + 4x_4$



- Goal: find an assignment of values to variables such that
  - all constraints are satisfied, and
  - the objective is optimized

Branch and bound:



maximize  $3x_1 + x_2 + 6x_3 + 4x_4$ 

Dominance breaking is a technique to prune suboptimal assignments.



maximize 
$$3x_1 + x_2 + 6x_3 + 4x_4$$
  
s.t.  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$   
 $x_i \in \{0,1\}$  for  $i = 1,...,4$ 

• Dominance breaking is a technique to prune suboptimal assignments.



maximize 
$$3x_1 + x_2 + 6x_3 + 4x_4$$
  
s.t.  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$   
 $x_i \in \{0,1\}$  for  $i = 1,...,4$ 

#### Observation:

Any assignment selecting item 2 but not item 1 must be suboptimal.

Dominance breaking is a technique to prune suboptimal assignments.



maximize 
$$3x_1 + x_2 + 6x_3 + 4x_4$$
  
s.t.  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$   
 $x_i \in \{0,1\}$  for  $i = 1,...,4$   
 $x_2 \le x_1, x_4 \le x_3$ 

Dominance breaking constraints

Branch and bound:



maximize  $3x_1 + x_2 + 6x_3 + 4x_4$ s.t.  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$  $x_i \in \{0,1\}$  for i = 1,...,4



 $x_2 \le x_1, x_4 \le x_3$ 

Dominance breaking constraints

Branch and bound:



maximize  $3x_1 + x_2 + 6x_3 + 4x_4$ 

s.t.  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$ 

Preliminarily results using the Chuffed solver



- Dominance breaking has been applied successfully in solving many COPs
  - Knapsack problem (Poirriez et al. 2009)
  - Packing problems: rectangle packing (Korf 2004), multicontainer packing (Fukunaga and Korf 2007)
  - Sequencing problems: talent scheduling (Qin et al. 2016, Garcia de la Banda et al. 2011), travelling salesman with time window (Baldacci et al. 2012), minimisation of open stack (Chu et al. 2009)
  - Scheduling problems: balanced academic curriculum problem (Monette et al. 2007), engineer service delivery (Ilankaikone et al. 2021)

#### Motivation



Problem Model



Model with dominance breaking

Different problems,
Different dominance breaking constraints

#### Our Approach

- Focus on nogood constraints
- Full automation
- Solver independence
- More dominance breaking constraints than human
- More efficient than manual methods



- A formal framework for automatic dominance breaking for a class of constraint optimisation problems
  - Automatic Dominance Breaking for a Class of Constraint Optimization Problems. Jimmy H.M. Lee and Allen Z. Zhong, IJCAI-PRICAI 2020
- More efficient generation of dominance breaking nogoods
  - Towards More Practical and Efficient Automatic Dominance Breaking. Jimmy H.M. Lee and Allen Z.
     Zhong, AAAI 2021
- Handling more complex and flexible problems
  - Exploiting Functional Constraints in Generating Dominance Breaking Nogoods for Constraint Optimization. Jimmy H.M. Lee and Allen Z. Zhong, CP 2022

#### Automation Pipeline

(Lee and Zhong 2020)



## Dominance Relations Over Full Assignments

(Chu and Stuckey 2012)

 $\bar{\theta}$  dominates  $\bar{\theta}'$  (  $\bar{\theta} < \bar{\theta}'$ ):

•  $\bar{\theta}$  solution,  $\bar{\theta}'$  non-solution



$$\bar{\theta} = \{x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1\}$$

<

$$\bar{\theta}' = \{x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1\}$$

solution

non-solution

## Dominance Relations Over Full Assignments

(Chu and Stuckey 2012)

$$\bar{\theta}$$
 dominates  $\bar{\theta}'$  (  $\bar{\theta} < \bar{\theta}'$  ):

- $\bar{\theta}$  solution,  $\bar{\theta}'$  non-solution
- both solutions/non-solutions,  $f(\bar{\theta})$  is better than  $f(\bar{\theta}')$



$$\bar{\theta} = \{x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1\}$$

solution 
$$f(\bar{\theta}) = 7$$

$$\bar{\theta}' = \{x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1\}$$

$$f(\bar{\theta}') = 4$$
 solution

## Dominance Relations Over Full Assignments

(Chu and Stuckey 2012)

if  $\theta'$  is dominated (by some  $\theta$ ), we can safely remove  $\bar{\theta}'$ 



$$\bar{\theta} = \{x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1\}$$

$$\bar{\theta}' = \{x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1\}$$

non-solution 
$$f(\bar{\theta}) = 10$$

$$f(\bar{\theta}') = 8$$

 $f(\theta') = 8$  non-solution

## Dominance Relations Over Partial Assignments



(Lee and Zhong 2020)



**Generation Problems:** 

find pairs  $(\theta, \theta')$  such that:

(1) 
$$\theta < \theta'$$

Want to show  $\forall \bar{\theta}' \; \exists \bar{\theta} \; \text{s.t.} \; \bar{\theta} \prec \bar{\theta}'$ 

(Lee and Zhong 2020)



Generation Problems:

find pairs  $(\theta, \theta')$  such that:

(1) 
$$\theta < \theta'$$

Want to show  $\forall \bar{\theta}' \exists \bar{\theta} \text{ s.t. } \bar{\theta} \prec \bar{\theta}'$ 

(Lee and Zhong 2020)



**Generation Problems:** 

find pairs  $(\theta, \theta')$  such that:

(1) 
$$\theta < \theta'$$

Want to show  $\forall \bar{\theta}' \exists \bar{\theta} \text{ s.t. } \bar{\theta} \prec \bar{\theta}'$ 

(Lee and Zhong 2020)



Generation Problems:

find pairs  $(\theta, \theta')$  such that:

(1) 
$$\theta < \theta'$$

Want to show  $\forall \bar{\theta}' \exists \bar{\theta} \text{ s.t. } \bar{\theta} \prec \bar{\theta}'$ 

(Lee and Zhong 2020)



Generation Problems:

find pairs  $(\theta, \theta')$  such that:

(1) 
$$\theta < \theta'$$

(2) 
$$var(\theta) = var(\theta')$$

Want to show  $\forall \bar{\theta}' \; \exists \bar{\theta} \; \text{s.t.} \; \bar{\theta} \prec \bar{\theta}'$ Suffice to show  $\forall \bar{\theta}' \; , \; \mu(\bar{\theta}') \prec \bar{\theta}'$ 

#### Mutation Mapping

(Lee and Zhong 2020)



Mutation mapping:  $\mu(\theta')$  extends  $\theta$  in the same way  $\bar{\theta}'$  extends  $\theta'$ 



Example: Suppose  $a, b, c, d \in \{0,1\}$ 

$$\theta' = \{x_1 = a, x_2 = b\}$$
  $\theta = \{x_1 = c, x_2 = d\}$ 

$$\theta = \{x_1 = c, x_2 = d\}$$

| <b>x1</b> | <b>x2</b> x3 |   | <b>x4</b> |  |
|-----------|--------------|---|-----------|--|
| a         | d            | 0 | 0         |  |
| a         | b            | 0 | 1         |  |
| а         | Q            | 1 | 0         |  |
| a         | b            | 1 | 1         |  |

|               | XI |
|---------------|----|
| $\rightarrow$ | С  |
| $\rightarrow$ | С  |
| $\rightarrow$ | С  |
|               |    |

| <b>x1</b> | <b>x2</b> | <b>x3</b> | <b>x4</b> |  |
|-----------|-----------|-----------|-----------|--|
| С         | d         | 0         | 0         |  |
| С         | р         | 0         | 1         |  |
| С         | d         | 1         | 0         |  |
| С         | d         | 1         | 1         |  |

(Lee and Zhong 2020)



Mutation mapping:  $\mu(\bar{\theta}')$  extends  $\theta$  in the same way  $\bar{\theta}'$  extends  $\theta'$ 

Theorem:  $\theta \prec \theta'$  if

- Not equal:  $\theta \neq \theta'$
- Betterment:  $\forall \bar{\theta}', f(\mu(\bar{\theta}')) \text{ is better than } f(\bar{\theta}')$
- Implied satisfaction:  $\forall \bar{\theta}', \bar{\theta}' \text{ solution } \Rightarrow \mu(\bar{\theta}') \text{ solution}$

Constraints over  $(\theta, \theta')$ !

(Lee and Zhong 2020)

Automatic dominance breaking is enabled for a class of COPs.

| Efficiently Checkable Objectives                                         | Efficiently Checkable Constraints                                                                                                                           |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul><li>Separable objectives</li><li>Submodular set objectives</li></ul> | <ul> <li>Domain constraints</li> <li>Boolean disjunction constraints</li> <li>Linear inequality constraints</li> <li>Counting family constraints</li> </ul> |  |  |  |

(Lee and Zhong 2020)

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
array [1..n] of var 0..1: x;
% constraint
constraint sum (i in 1..n) (w[i]*x[i]) \leftarrow W;
% objective
solve maximize sum (i in 1..n) (v[i]*x[i]);
```

```
int: n; % number of items
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
int: k; % size of partial assignments
```

COP MiniZinc Model

Generation CSP MiniZinc Model

(Lee and Zhong 2020)

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
array [1..n] of var 0..1: x;
% constraint
constraint sum (i in 1..n) (w[i]*x[i]) \leq W;
% objective
solve maximize sum (i in 1..n) (v[i]*x[i]);
```

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
int: k; % size of partial assignments
array [1..k] of var 1..n: F; % indices for fixed variable
array [1..k] of var 0..1: v1; % fixed value for \theta
array [1..k] of var 0..1: v2; % fixed value for \theta'
constraint increasing(F); % symmetry breaking
constraint lex_less(v1,v2); % compatibility and not equal
```

(Lee and Zhong 2020)

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
array [1..n] of var 0..1: x;
% constraint
|constraint sum (i in 1..n) (w[i]*x[i]) <= W; -
% objective
solve maximize sum (i in 1..n) (v[i]*x[i]);
```

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
int: k; % size of partial assignments
array [1..k] of var 1..n: F; % indices for fixed variable
array [1..k] of var 0..1: v1; % fixed value for \theta
array [1..k] of var 0..1: v2; % fixed value for \theta'
constraint increasing(F); % symmetry breaking
constraint lex_less(v1,v2); % compatibility and not equal
% constraint for implied satisfaction
constraint sum(t in 1..k)( w[F[t]] * v1[t] )
           \leq sum(t in 1..k)(w[F[t]] * v2[t]);
```

(Lee and Zhong 2020)

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
array [1..n] of var 0..1: x;
% constraint
constraint sum (i in 1..n) (w[i]*x[i]) \leq W;
% objective
solve maximize sum (i in 1..n) (v[i]*x[i]);
```

```
% number of items
int: n;
int: W; % knapsack capacity
array [1..n] of int: w; % weight of each item
array [1..n] of int: v; % value of each item
int: k; % size of partial assignments
array [1..k] of var 1..n: F; % indices for fixed variable
array [1..k] of var 0..1: v1; % fixed value for \theta
array [1..k] of var 0..1: v2; % fixed value for \theta'
constraint increasing(F); % symmetry breaking
constraint lex_less(v1,v2); % compatibility and not equal
% constraint for implied satisfaction
constraint sum(t in 1..k)( w[F[t]] * v1[t] )
           \leq sum(t in 1..k)(w[F[t]] * v2[t]);
% constraint for betterment
constraint sum(t in 1..k)(v[F[t]] * v1[t])
           >= sum(t in 1..k)(v[F[t]] * v2[t]);
```

COP MiniZinc Model

Generation CSP MiniZinc Model

### Common Assignment Elimination

(Lee and Zhong 2021)

Automatic dominance breaking is not efficient enough.



### Common Assignment Elimination

(Lee and Zhong 2021)



Avoid generating  $c_1$  by common assignment elimination

maximize 
$$x_1 + 2x_2 + 4x_3 + 10x_4$$
  
s.t.  $x_1 + 2x_2 + 3x_3 + 4x_4 \le 5$   
 $x_i \in \{0,1\}$  for  $i = 1,...,4$   
 $c_1 \equiv (x_2 \neq 1 \lor x_4 \neq 0 \lor x_3 \neq 1)$   
 $c_2 \equiv (x_2 \neq 1 \lor x_4 \neq 0)$   
 $c_2 \Rightarrow c_1$ 

 $c_1$  is also propagation redundant!

#### Exploiting Functional Constraints

(Lee and Zhong 2022)

Automatic dominance breaking is enabled only for a class of COPs.

| Efficiently Checkable Objectives                                         | Efficiently Checkable Constraints                                                                                                                           |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul><li>Separable objectives</li><li>Submodular set objectives</li></ul> | <ul> <li>Domain constraints</li> <li>Boolean disjunction constraints</li> <li>Linear inequality constraints</li> <li>Counting family constraints</li> </ul> |  |  |  |

Impractical restriction on efficiently checkable objectives and constraints.

#### Exploiting Functional Constraints

(Lee and Zhong 2022)

- Automatic dominance breaking is enabled only for a class of COPs.
- Constraint programming provides a flexible modelling language which can form various objectives and constraints.
  - Example:

minimize 
$$\max(x_1, x_2) + 4x_3$$
  
s.t.  $2x_1 - 3x_2 * x_3 \le 5$   
 $x_i \in \{0,1\}$  for  $i = 1,2,3$ 

Not efficiently checkable!

Unknown constraints for betterment and implied satisfaction in generation CSPs

#### Exploiting Functional Constraints

(Lee and Zhong 2022)

- COPs specified in a modelling language are normalised/flattened into a form with only standard constraints from the underlying solver.
  - Example:

minimize 
$$\max(x_1, x_2) + 4x_3$$
  
s.t.  $2x_1 - 3x_2 * x_3 \le 5$   
 $x_i \in \{0,1\}$  for  $i = 1,2,3$ 

Functional constraints minimize obj

s.t. 
$$obj = y_1 + 4x_3, \ y_1 = \max(x_1, x_2)$$

normalised
 $y_2 \le 5, \ y_2 = 2x_1 - 3y_3, \ y_3 = x_2 * x_3$ 
 $x_i \in \{0,1\} \text{ for } i = 1,2,3$ 

Auxiliary variables  $y_1, y_2, y_3, obj \in \mathbb{Z}$ 

• Motivation: exploit standard functional constraints from CP solvers

#### Experimental Settings

- Modify the compiler for the MiniZinc modelling language
  - Available online: https://github.com/AllenZzw/auto-dom
- Experiment on talent scheduling, maximum coverage, sensor placement
  - Chuffed for problem-solving, Geas for nogood generation
  - 20 random instances for each problem size
  - 2 hours total timeout; reserve 1 hour for nogood generation.

#### Experimental Evaluation

• Geometric mean of time (seconds) for problem of different sizes:

| Problem     | Daois   | 2-dom   |         | 3-d     | om      | 4-dom   |         |
|-------------|---------|---------|---------|---------|---------|---------|---------|
|             | Basic   | Solving | Total   | Solving | Total   | Solving | Total   |
| Team-6-5    | 24.48   | 10.57   | 12.49   | 9.70    | 32.00   | 8.88    | 427.73  |
| Team-7-5    | 276.84  | 138.88  | 146.15  | 130.71  | 225.19  | 150.83  | 1745.96 |
| Team-8-5    | 1983.53 | 819.58  | 829.05  | 767.52  | 1024.43 | 724.63  | 5191.70 |
| MaxCover-45 | 75.91   | 53.47   | 53.79   | 5.07    | 9.96    | 0.27    | 83.93   |
| MaxCover-50 | 615.04  | 464.81  | 465.53  | 26.31   | 34.92   | 1.12    | 134.99  |
| MaxCover-55 | 3576.98 | 2859.60 | 2860.27 | 78.37   | 91.53   | 2.54    | 199.11  |
| Sensor-50   | 156.84  | 138.65  | 139.44  | 94.05   | 108.99  | 57.34   | 297.18  |
| Sensor-60   | 595.46  | 404.27  | 405.52  | 269.61  | 296.56  | 172.43  | 709.37  |
| Sensor-70   | 1615.18 | 1144.17 | 1145.83 | 810.01  | 854.61  | 651.72  | 1724.70 |

#### Concluding Remarks

- Automatic dominance breaking
  - Generating dominance breaking nogoods as constraint satisfaction
  - Automatically derive sufficient conditions in generation CSPs
- Future work
  - Nogood generation from constraint models alone
  - Dynamic generation of dominance breaking nogoods

# Thanks!

#### Experimental Evaluation

• Geometric mean of time (seconds) for problem of different sizes:

| Problem Basic | Daaia   | Manual  | 2-dom   |         | 3-dom   |         | 4-dom   |         |
|---------------|---------|---------|---------|---------|---------|---------|---------|---------|
|               | Manual  | Solving | Total   | Solving | Total   | Solving | Total   |         |
| Talent-16     | 187.79  | 5929.75 | 189.95  | 192.16  | 130.78  | 148.91  | 256.46  | 1988.75 |
| Talent-18     | 1575.51 | 7200.0  | 1565.89 | 1568.29 | 672.26  | 713.55  | 1864.68 | 5760.68 |
| Talent-20     | 5013.10 | 7200.0  | 4936.18 | 4960.54 | 2856.33 | 2960.09 | 3268.72 | 7006.10 |
| Warehouse-35  | 7200.0  | N/A     | 10.29   | 52.11   | 8.53    | 2442.71 | 8.51    | 3619.87 |
| Warehouse-40  | 7200.0  | N/A     | 46.08   | 111.43  | 32.93   | 3652.15 | 32.55   | 3657.33 |
| Warehouse-45  | 7200.0  | N/A     | 69.41   | 140.92  | 45.45   | 3690.84 | 46.19   | 3694.63 |
| Team-6-5      | 24.48   | N/A     | 10.57   | 12.49   | 9.70    | 32.00   | 8.88    | 427.73  |
| Team-7-5      | 276.84  | N/A     | 138.88  | 146.15  | 130.71  | 225.19  | 150.83  | 1745.96 |
| Team-8-5      | 1983.53 | N/A     | 819.58  | 829.05  | 767.52  | 1024.43 | 724.63  | 5191.70 |

#### Experimental Evaluation

• Geometric mean of time (seconds) for problem of different sizes:

| Problem Ba      | Daaia   | Manual | 2-dom   |         | 3-dom   |        | 4-dom   |         |
|-----------------|---------|--------|---------|---------|---------|--------|---------|---------|
|                 | Basic   | Manual | Solving | Total   | Solving | Total  | Solving | Total   |
| MaxCover-45     | 75.91   | N/A    | 53.47   | 53.79   | 5.07    | 9.96   | 0.27    | 83.93   |
| MaxCover-50     | 615.04  | N/A    | 464.81  | 465.53  | 26.31   | 34.92  | 1.12    | 134.99  |
| MaxCover-55     | 3576.98 | N/A    | 2859.60 | 2860.27 | 78.37   | 91.53  | 2.54    | 199.11  |
| PartialCover-45 | 2383.2  | N/A    | 366.17  | 368.03  | 59.44   | 70.64  | 2.49    | 90.25   |
| PartialCover-50 | 3769.26 | N/A    | 780.80  | 781.73  | 74.86   | 88.45  | 6.86    | 153.90  |
| PartialCover-55 | 4640.06 | N/A    | 1769.31 | 1770.42 | 211.83  | 234.41 | 15.23   | 240.68  |
| Sensor-50       | 156.84  | N/A    | 138.65  | 139.44  | 94.05   | 108.99 | 57.34   | 297.18  |
| Sensor-60       | 595.46  | N/A    | 404.27  | 405.52  | 269.61  | 296.56 | 172.43  | 709.37  |
| Sensor-70       | 1615.18 | N/A    | 1144.17 | 1145.83 | 810.01  | 854.61 | 651.72  | 1724.70 |