MPhil Econometrics – Limited Dependent Variables and Selection

Francis J. DiTraglia

University of Oxford

Complied on 2020-02-03 at 15:13:07

Housekeeping

Lecturer: Francis J. DiTraglia

Email: francis.ditraglia@ox.ac.uk

Course Materials: http://ditraglia.com/teaching

Office: 2132 Manor Road Building

Meetings: after lecture on Wednesdays & Fridays or by appointment

References

- ▶ Wooldridge (2010) Econometric Analysis of Cross Section & Panel Data
- ► Cameron & Trivedi (2005) Microeconometrics: Methods and Applications
- ► Train (2009) Discrete Choice Methods with Simulation

Lecture #3 – Models for Binary Outcomes

Properties of Binary Outcome Models

Linear Probability Model

Index Models (e.g. Logit & Probit)

Partial Effects

Conditional MLE for Index Models

Pseudo R-squared

Models for Binary Outcomes

Example

- ightharpoonup Outcome: y = 1 if employed, 0 otherwise
- ▶ Predictors/Regressors: **x** = {age, sex, education, experience, ...}

Question

How does x_j affect our prediction of y holding the other regressors constant?

We'll consider three models:

- 1. Linear Probability Model (LPM)
- 2. Logistic Regression (Logit)
- 3. Probit Regression (Probit)

Properties of Binary Outcome Models: $y \in \{0,1\}$

Notation

$$p(\mathbf{x}) \equiv \mathbb{P}(y=1|\mathbf{x})$$

Conditional Mean

$$\mathbb{E}(y|\mathbf{x}) = p(\mathbf{x})$$

Conditional Variance

$$Var(y|\mathbf{x}) = p(\mathbf{x})[1 - p(\mathbf{x})]$$

$$\mathbb{E}(y|\mathbf{x}) = 0 \times \mathbb{P}(y = 0|\mathbf{x}) + 1 \times \mathbb{P}(y = 1|\mathbf{x})$$

= $\mathbb{P}(y = 1|\mathbf{x}) \equiv \rho(\mathbf{x})$

$$\mathbb{E}(y^2|\mathbf{x}) = \left\{0^2 \times [1 - p(\mathbf{x})] + 1^2 \times p(\mathbf{x})\right\}$$
$$= p(\mathbf{x})$$

$$Var(y|\mathbf{x}) = \mathbb{E}(y^2|\mathbf{x}) - \mathbb{E}(y|\mathbf{x})^2$$

$$= \{0^2 \times [1 - p(\mathbf{x})] + 1^2 \times p(\mathbf{x})\} - p(\mathbf{x})^2$$

$$= p(\mathbf{x})[1 - p(\mathbf{x})]$$

The Linear Probability Model: Assume $p(\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$

Conditional Mean & Variance

This is just Linear Regression!

$$y = \mathbf{x}'\boldsymbol{\beta} + u, \quad \mathbb{E}(u|\mathbf{x}) = 0$$

But *u* is Heteroskedastic

$$Var(u|\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}(1 - \mathbf{x}'\boldsymbol{\beta})$$

$$\mathbb{E}(u|\mathbf{x}) = \mathbb{E}(y - \mathbf{x}'\boldsymbol{\beta}|\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) - \mathbf{x}'\boldsymbol{\beta}$$
$$= \mathbf{x}'\boldsymbol{\beta} - \mathbf{x}'\boldsymbol{\beta} = 0$$

$$Var(u|\mathbf{x}) = \mathbb{E}\left[\left\{u - \mathbb{E}(u|\mathbf{x})\right\}^{2}|\mathbf{x}\right] = \mathbb{E}\left[u^{2}|\mathbf{x}\right]$$

$$= \mathbb{E}\left[\left(y - \mathbf{x}'\boldsymbol{\beta}\right)^{2}|\mathbf{x}\right]$$

$$= \mathbb{E}\left(y^{2}|\mathbf{x}\right) - 2\mathbb{E}\left(y|\mathbf{x}\right)\mathbf{x}'\boldsymbol{\beta} + \left(\mathbf{x}'\boldsymbol{\beta}\right)^{2}$$

$$= p(\mathbf{x}) - 2p(\mathbf{x})p(\mathbf{x}) + p(\mathbf{x})^{2}$$

$$= p(\mathbf{x})\left[1 - p(\mathbf{x})\right]$$

The Linear Probability Model: Assume $p(\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$

Estimation

Since $\mathbb{E}(u|\mathbf{x}) = 0$ OLS estimation of $y = \mathbf{x}'\boldsymbol{\beta} + u$ is unbiased and consistent.

Inference

Since u is heteroskedastic, tests and CIs should use robust standard errors.

Is the LPM actually reasonable?

- Assumes $p(\mathbf{x}) = \mathbf{x}'\beta \implies$ changing x_j by Δ changes $p(\mathbf{x})$ by $\beta_j\Delta$
- ▶ If **x** contains regressors without upper/lower bounds, $p(\mathbf{x})$ could be > 1 or < 0!
- ▶ LPM could be a reasonable approximation but cannot be *literally* true.

Index Models: Constrain $p(\mathbf{x})$ to lie in [0,1]

Index Model:
$$p(\mathbf{x}) = G(\mathbf{x}'\beta)$$

Assume \mathbf{x} includes a constant, $0 \leq G(\cdot) \leq 1$, G is differentiable and strictly increasing, $\lim_{z \to \infty} G(z) = 1$, and $\lim_{z \to -\infty} G(z) = 0$.

Terminology

We call $\mathbf{x}'\boldsymbol{\beta}$ the linear index and G the index function.

Partial Effects

Let
$$g(z) \equiv \frac{d}{dz}G(z)$$
. Then $\frac{\partial}{\partial x_j}p(\mathbf{x}) = g(\mathbf{x}'\boldsymbol{\beta})\beta_j$. Hence:

- \triangleright The partial effect of x_i depends on the value of \mathbf{x} at which we evaluate g.
- G strictly increasing $\implies g(\cdot) > 0 \implies$ sign of partial effect determined by β_j .

Possible Choices of Index Function

CDFs as Index Functions

G satisfies the index model assumptions (prev. slide) iff it is a continuous CDF.

We focus on two examples:

- 1. Logit: $G(z) = \Lambda(z) \equiv \exp(z)/[1 + \exp(z)]$
- 2. Probit: $G(z) = \Phi(z) \equiv \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-t^2/2) dt$

Notation:

- \triangleright Λ is the CDF of a "standard logistic" RV and Φ of a standard normal RV.
- \blacktriangleright λ is the density of a "standard logistic" RV and φ of a standard normal
- ▶ To treat Logit and Probit simultaneously, we'll write G as a placeholder.

Standard Logistic and Normal Densities and CDFs

MPhil 'Metrics, HT 2020

Partial Effects: $\partial p(\mathbf{x})/\partial x_i$

LPM

$$\frac{\partial}{\partial x_i} \mathbf{x}' \boldsymbol{\beta} = \beta_j$$

Logit
$$\frac{\partial}{\partial x_j} \Lambda(\mathbf{x}'\boldsymbol{\beta}) = \frac{\beta_j \exp(\mathbf{x}'\boldsymbol{\beta})}{\left[1 + \exp(\mathbf{x}'\boldsymbol{\beta})\right]^2}$$

$$\frac{\mathsf{Probit}}{\partial x_j} \Phi(\mathbf{x}'\beta) = \frac{\beta_j \exp\{-(\mathbf{x}'\beta)^2/2\}}{\sqrt{2\pi}}$$

$$\frac{\partial}{\partial x_i} G(\mathbf{x}'\boldsymbol{\beta}) = g(\mathbf{x}'\boldsymbol{\beta})\beta_j$$

$$\begin{split} \frac{d}{dz}\Lambda(z) &\equiv \lambda(z) = \frac{d}{dz}\left(\frac{e^z}{1+e^z}\right) = \frac{e^z(1+e^z) - e^z e^z}{(1+e^z)^2} \\ &= \frac{e^z}{(1+e^z)^2} \end{split}$$

$$\frac{d}{dz}\Phi(z) = \varphi(z) = \frac{\exp\left\{-z^2/2\right\}}{\sqrt{2\pi}}$$

Comparing Logit, Probit, and LPM Partial Effects

$$\frac{\partial}{\partial x_j}G(\mathbf{x}'\boldsymbol{\beta}) = g(\mathbf{x}'\boldsymbol{\beta})\beta_j, \quad \frac{d}{dz}\Lambda(z) \equiv \lambda(z) = \frac{e^z}{\left(1 + e^z\right)^2}, \quad \frac{d}{dz}\Phi(z) \equiv \varphi(z) = \frac{\exp\left\{-z^2/2\right\}}{\sqrt{2\pi}}$$

Maximum Partial Effects

 $ightharpoonup \lambda$ and φ are unimodal with mode at 0

Logit
$$\lambda(0) = 0.25$$

Probit $\varphi(0) = (2\pi)^{-1/2} \approx 0.4$

lacktriangle Maximum partial effect when ${f x}'m{eta}=0$

Logit
$$\beta_j \lambda(0) = 0.25 \beta_j$$

Probit $\beta_j \varphi(0) \approx 0.4 \beta_j$

▶ LPM has constant partial effects β_i

Relative Effects

$$\frac{\frac{\partial}{\partial x_j} p(\mathbf{x})}{\frac{\partial}{\partial x_h} p(\mathbf{x})} = \frac{\beta_j g(\mathbf{x}' \boldsymbol{\beta})}{\beta_h g(\mathbf{x}' \boldsymbol{\beta})} = \frac{\beta_j}{\beta_h}$$

Relative effects do not depend on x.

Average Partial Effects for Index Models

Partial Effect

$$\frac{\partial}{\partial x_j} G(\mathbf{x}'\boldsymbol{\beta}) = g(\mathbf{x}_i'\boldsymbol{\beta})\beta_j$$

Average Partial Effect

$$\mathbb{E}\left[\frac{\partial}{\partial x_j}G(\mathbf{x}'\boldsymbol{\beta})\right] = \mathbb{E}[g(\mathbf{x}_i'\boldsymbol{\beta})]\beta_j$$

Estimated Partial Effect

$$\frac{\partial}{\partial x_j} G(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}) = g(\mathbf{x}_i'\widehat{\boldsymbol{\beta}})\widehat{\beta}_j$$

Estimated Average Partial Effect

$$\left[\frac{1}{N}\sum_{i=1}^{N}g(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})\right]\widehat{\beta}_{j}$$

Warning:

APE \neq partial effect evaluated at the average value of **x** since $\mathbb{E}[f(Z)] \neq f(\mathbb{E}[Z])$.

Conditional MLE for Index Models: iid Observations

Conditional Likelihood

$$f(y_i|\mathbf{x}_i,oldsymbol{eta}) = \left\{egin{array}{ll} 1 - G(\mathbf{x}_i'oldsymbol{eta}) & ext{if } y_i = 0 \ G(\mathbf{x}_i'oldsymbol{eta}) & ext{if } y_i = 1 \end{array}
ight. \quad \Longleftrightarrow \quad f(y_i|\mathbf{x}_i,oldsymbol{eta}) = G(\mathbf{x}_i'oldsymbol{eta})^{y_i} \left[1 - G(\mathbf{x}_i'oldsymbol{eta})
ight]^{1-y_i}$$

Conditional Log-Likelihood

$$\ell_i(\boldsymbol{\beta}) \equiv \log f(y_i|\mathbf{x}_i,\boldsymbol{\beta}) = y_i \log \left[G(\mathbf{x}_i'\boldsymbol{\beta}) \right] + (1-y_i) \log \left[1 - G(\mathbf{x}_i'\boldsymbol{\beta}) \right]$$

Sample

Population

$$\widehat{eta} \equiv \operatorname*{arg\,max} rac{1}{N} \sum_{i=1}^N \ell_i(eta)$$
 $eta_o \equiv \operatorname*{arg\,max} \mathbb{E}\left[\ell(eta)
ight]$

Correct specification: $\mathbb{E}(y|\mathbf{x}) = p(\mathbf{x}) = G(\mathbf{x}'\beta_o)$. Otherwise $\beta_o = \mathsf{KL}$ -minimizer.

Asymptotic Variance Calculations for Index Models

Recall from last lecture.

Possibly Mis-specified Model

$$\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_o) o_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$$
 where $\mathbf{J}=-\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)
ight]$ and $\mathbf{K}=\mathbb{E}\left[\mathbf{s}_i(\boldsymbol{\beta}_o)\mathbf{s}_i(\boldsymbol{\beta}_o)'
ight]$

Correct Specification

$$\sqrt{N}(\widehat{m{eta}}-m{eta}_o) o_d \mathcal{N}(\mathbf{0},\mathbf{J}^{-1})$$
 where $\mathbf{J}=-\mathbb{E}\left[\mathbf{H}_i(m{eta}_o)
ight]$

Asymptotic variance calculations for index models are complicated, but there's a clever trick for computing J under correct specification.

$$\ell_i(\boldsymbol{\beta}) = y_i \log \{G(\mathbf{x}_i'\boldsymbol{\beta})\} + (1 - y_i) \log \{1 - G(\mathbf{x}_i'\boldsymbol{\beta})\}$$

Step 1: Calculate The Score Vector

$$\begin{split} \mathbf{s}_i &\equiv \frac{\partial}{\partial \boldsymbol{\beta}} \ell_i(\boldsymbol{\beta}) = \frac{y_i g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i}{G(\mathbf{x}_i' \boldsymbol{\beta})} - \frac{(1 - y_i) g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i}{1 - G(\mathbf{x}_i' \boldsymbol{\beta})} \\ &= \frac{g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i}{G(\mathbf{x}_i' \boldsymbol{\beta}) \left[1 - G(\mathbf{x}_i' \boldsymbol{\beta})\right]} \left\{ \left[1 - G(\mathbf{x}_i' \boldsymbol{\beta})\right] - G(\mathbf{x}_i' \boldsymbol{\beta})(1 - y_i) \right\} \\ &= \frac{g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i \left[y_i - G(\mathbf{x}_i' \boldsymbol{\beta})\right]}{G(\mathbf{x}_i' \boldsymbol{\beta}) \left[1 - G(\mathbf{x}_i' \boldsymbol{\beta})\right]} \end{split}$$

$$\mathbf{s}_{i} = \frac{g(\mathbf{x}_{i}'\beta)\mathbf{x}_{i}\left\{y_{i} - G(\mathbf{x}_{i}'\beta)\right\}}{G(\mathbf{x}_{i}'\beta)\left\{1 - G(\mathbf{x}_{i}'\beta)\right\}}$$

Step 2: Start Calculating the Hessian but give up because it's a nightmare.

$$\mathbf{H}_{i}(\boldsymbol{\beta}) \equiv \frac{\partial \mathbf{s}_{i}}{\partial \boldsymbol{\beta}'} = \frac{\partial}{\partial \boldsymbol{\beta}} \left([y_{i} - G(\mathbf{x}_{i}'\boldsymbol{\beta})] \left[\frac{g(\mathbf{x}_{i}'\boldsymbol{\beta})\mathbf{x}_{i}}{G(\mathbf{x}_{i}'\boldsymbol{\beta}) \left\{ 1 - G(\mathbf{x}_{i}'\boldsymbol{\beta}) \right\}} \right] \right)$$

$$=\frac{-g(\mathbf{x}_i'\boldsymbol{\beta})^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'\boldsymbol{\beta})\left\{1-G(\mathbf{x}_i'\boldsymbol{\beta})\right\}}+\left[y_i-G(\mathbf{x}_i'\boldsymbol{\beta})\right]\underbrace{\frac{\partial}{\partial\boldsymbol{\beta}'}\left\{\frac{g(\mathbf{x}_i'\boldsymbol{\beta})\mathbf{x}_i}{G(\mathbf{x}_i'\boldsymbol{\beta})\left[1-G(\mathbf{x}_i'\boldsymbol{\beta})\right]}\right\}}_{\text{a nasty awful mess: call it }\mathbf{M}(\mathbf{x}_i,\boldsymbol{\beta})}$$

$$\mathbf{H}_i(oldsymbol{eta}) = rac{-g(\mathbf{x}_i'oldsymbol{eta})^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'oldsymbol{eta})\left\{1 - G(\mathbf{x}_i'oldsymbol{eta})
ight\}} + \left[y_i - G(\mathbf{x}_i'oldsymbol{eta})
ight]\mathbf{M}(\mathbf{x}_i,oldsymbol{eta})$$

Step 3: Calculate the Conditional Expectation instead...

$$-\mathbb{E}\left[\mathsf{H}_{i}(\boldsymbol{\beta})|\mathsf{x}_{i}\right] = \frac{g(\mathsf{x}_{i}'\boldsymbol{\beta})^{2}\mathsf{x}_{i}\mathsf{x}_{i}'}{G(\mathsf{x}_{i}'\boldsymbol{\beta})\left\{1 - G(\mathsf{x}_{i}'\boldsymbol{\beta})\right\}} + \underbrace{\mathbb{E}\left[y_{i} - G(\mathsf{x}_{i}'\boldsymbol{\beta})|\mathsf{x}_{i}\right]}_{\text{equals zero under correct spec.}} \mathsf{M}(\mathsf{x}_{i},\boldsymbol{\beta})$$

$$= \frac{g(\mathsf{x}_{i}'\boldsymbol{\beta})^{2}\mathsf{x}_{i}\mathsf{x}_{i}'}{G(\mathsf{x}_{i}'\boldsymbol{\beta})\left\{1 - G(\mathsf{x}_{i}'\boldsymbol{\beta})\right\}}$$

Step 4: Iterated Expectations

$$\mathbf{J} = -\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)\right] = \mathbb{E}\left\{\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)|\mathbf{x}_i\right]\right\} = \mathbb{E}\left\{\frac{g(\mathbf{x}_i'\boldsymbol{\beta}_o)^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'\boldsymbol{\beta}_o)\left\{1 - G(\mathbf{x}_i'\boldsymbol{\beta}_o)\right\}}\right\}$$

Asymptotic Distribution

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_o) \rightarrow_d \mathcal{N}\left(\mathbf{0}, \mathbf{J}^{-1}\right), \quad \mathbf{J}^{-1} = \mathbb{E}\left\{\frac{g(\mathbf{x}_i'\boldsymbol{\beta}_o)^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'\boldsymbol{\beta}_o)\left\{1 - G(\mathbf{x}_i'\boldsymbol{\beta}_o)\right\}}\right\}$$

Consistent Estimator

$$\widehat{\mathbf{J}}^{-1} \equiv \left\{ rac{1}{N} \sum_{i=1}^{N} rac{g(\mathbf{x}_i'\widehat{oldsymbol{eta}})^2 \mathbf{x}_i \mathbf{x}_i'}{G(\mathbf{x}_i'\widehat{oldsymbol{eta}}) \left[1 - G(\mathbf{x}_i'\widehat{oldsymbol{eta}})
ight]}
ight\}^{-1}$$

Notes

- lacktriangle Assumes correct specification, i.e. $p({f x}) = \mathbb{E}(y|{f x}) = G({f x}'eta_o)$
- ▶ In contrast, robust variance matrix $J^{-1}KJ^{-1}$ is complicated, but R can do it.

McFadden (1974) – "Pseudo R-squared"

Model with Intercept Only

 $L(\bar{y}) \equiv \text{maximized sample Likelihood}$

 $\ell(\bar{y}) \equiv \mathsf{maximized}$ sample log-likelihood

Full Model

 $L(\hat{\beta}) \equiv \text{maximized sample Likelihood}$

 $\ell(\widehat{\beta}) \equiv \text{maximized sample log-likelihood}$

Pseudo R-squared

$$\widetilde{R}^2 \equiv 1 - \ell(\widehat{\beta})/\ell(\overline{y})$$

McFadden (1974) - "Pseudo R-squared"

Pseudo R-squared

$$\widetilde{R}^2 \equiv 1 - \ell(\widehat{eta})/\ell(\bar{y})$$

Always between 0 and 1

Show this on the problem set!

Health Warning

I don't recommend using pseudo- R^2 : it's arbitrary and can be misleading. Other people use it so I'm telling you what it is.

