姓名: _____

学号**:**

学院(系):_____

____ 级___ 班

教师:_____

大 连 理 工 大 学

课程名称: <u>工科数学分析基础</u>(一) 试卷: <u>A</u> 考试形式: <u>闭卷</u> 授课院(系): <u>数学科学学院</u> 考试日期: <u>2014年1月6日</u> 试卷共<u>6</u>页

	1		111	四	五	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

得 分

一、填空题 (每题 6 分,共 30 分)

1.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right) = \underline{\qquad}, \quad \lim_{x\to+\infty} \frac{x^{100} + 3x^2 + 2}{e^x + 8} (2 + \cos x) = \underline{\qquad}.$$

- 2. 曲线 sin(xy)+ln(y-x)=x 在 (0,1) 处切线斜率是_____, 切线方程是_____。
- 3. 设 $f(x) = x^2 e^{x^2}$,则 $f''(0) = _____, f^{(2013)}(0) = _____$
- 4. $\lim_{n\to\infty} \frac{1}{n} \left(\arctan \frac{1}{n} + \arctan \frac{2}{n} + \dots + \arctan \frac{n}{n} \right) = \underline{\hspace{1cm}}$,

曲线 $y = \int_0^x \tan t dt (0 \le x \le \frac{\pi}{4})$ 的弧长 s =______。

5.
$$\int_0^2 x \sqrt{2x - x^2} \, dx = \underline{\hspace{1cm}}_{\circ}$$

得 分 二、单项选择题 (每题4分,共20分)

[1. 函数
$$f(x) = \frac{\ln|x|}{|x-1|} \sin x$$
,则 $f(x)$ 有(

- (A) 一个可去和一个跳跃间断点;
- (B) 一个可去和一个无穷间断点;

(C) 两个跳跃间断点;

(D) 两个无穷间断点。

- 2. 设 $a_n > 0$ (n = 1,2,...), $S_n = a_1 + a_2 + ... + a_n$,则数列 $\{S_n\}$ 有界是数列 $\{a_n\}$ 收敛的()
 - (A) 充分必要条件

(B) 充分非必要条件

- (C) 必要非充分条件
- (D) 即非充分也非必要条件
- 3. 下列结论中正确的是(
- (A) $\int_{1}^{+\infty} \frac{1}{x(1+x)} dx = \int_{0}^{1} \frac{1}{x(1+x)} dx$ 都收敛; (B) $\int_{1}^{+\infty} \frac{1}{x(1+x)} dx = \int_{0}^{1} \frac{1}{x(1+x)} dx$ 都发散;
- (C) $\int_{1}^{+\infty} \frac{1}{x(1+x)} dx$ 收敛, $\int_{0}^{1} \frac{1}{x(1+x)} dx$ 发散; (D) $\int_{1}^{+\infty} \frac{1}{x(1+x)} dx$ 发散, $\int_{0}^{1} \frac{1}{x(1+x)} dx$ 收敛。
- 4. 设 $I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \sin x dx$, $I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \cos x dx$, $I_3 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \cot x dx$, 则有(

 - (A) $I_1 < I_2 < I_3$ (B) $I_3 < I_2 < I_1$ (C) $I_2 < I_3 < I_1$ (D) $I_2 < I_1 < I_3$
- 5. 设函数 f(x) 在 x=0 处连续,下列命题"①若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0)=0;②若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f'(0)存在; ③若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则 f(0)=0;④若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则 f'(0)存在"中 正确的是(
 - (A) 1)2 (B) 1)23 (C) 1)24 (D) 1)2(3)4)

得 分

三、(10分) 求极限 $\lim_{x\to 0} \left(1+\int_0^{\sin x} \sin(t^2) dt\right)^{\frac{1}{x^3+\ln(1+x^4)}}$

四、(10 分) 设函数 y = y(x)(x > 0) 满足微分方程: $xy' = xe^x - y$,且 $y(1) = \int_0^\pi \sqrt{1 - \sin x} dx$,

求函数 y = y(x)。

得 分

五、(10 分)一容器的内侧是由曲线 $x^2+y^2=a^2(y\leq \frac{a}{2})$ 绕 y 轴旋转一周而成的曲面 (a>0) ,

1、求容器的容积; 2、若将容器内盛满的水从容器中全部抽出,至少需做多少功? (长度单位: m,重力加速度 $g(m/s^2)$,水的密度 $\rho(kg/m^3)$)

得 分

六、(10 分) 设函数 f(x) 在区间 $(-\infty, +\infty)$ 上连续,且 $F(x) = \int_0^x (x-2t)f(t)dt$ 。证明:

1、对任意的 a,b(a < b), $\int_a^b f(x) dx = f(\xi)(b-a), \xi \in (a,b)$; 2、若 f(x) 是偶函数,则 F(x) 也是偶函数; 3、若 f(x) 在 $(0,+\infty)$ 内单调增加,则 F(x) 在 $(0,+\infty)$ 内单调减少。

得分 七、(10分)设函数 f(x) 在[0, 1]上连续,在(0,1)内可导, $f(\frac{1}{2})=1$, $\lim_{x\to 1^-} \frac{f(x)}{x-1}=0$, $\int_0^{\frac{1}{2}} (f(x)-x)dx=0 \text{ , } \text{ 证 明 : } 1 \text{ , } \text{ 存 在 } \eta \in \left(\frac{1}{2},\ 1\right) \text{ , } \text{ 使 } f(\eta)=\eta \text{ ; } 2 \text{ , } \text{ 存 在 } \xi \in \left(0,\ \eta\right) \text{ , } \text{ 使 } f'(\xi)(f(\xi)-\xi)+f'(\xi)=1 \text{ .}$

姓名: _____

学号:

大 连 理 工 大 学

学院(系):

____ 级___ 班

教师:_____

课程名称: <u>工科数学分析基础</u> 1 试卷: <u>A</u> 考试形式: <u>闭卷</u> 授课院(系): 数学科学学院 考试日期: 2015 年 1 月 12 日 试卷共 6 页

	_	=	三	四	五	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

装

- 一、填空题 (每题 6 分,共 30 分)
- 1. 设方程 $e^{y} + xy = x + 1$ 确定隐函数 y = y(x),则 $y'|_{x=0} =$ _____, $y''|_{x=0} =$ _____。
- 2. 曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点 (-1,0),则 $a = ______$, $b = ______$ 。
- i. 数列极限 $\lim_{n\to\infty}\frac{1}{n^2}\left(\sqrt{n^2-1^2}+\sqrt{n^2-2^2}+\cdots+\sqrt{n^2-n^2}\right)=$ ______; 微分方程

$$\int_{-\infty}^{1} \frac{1}{x^2 + 2x + 5} dx = ____; \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^5 + \sin^2 x) \cos^2 x dx = ____.$$

5. 设 f(x) 是周期为 4 的可导的奇函数, $f'(x) = 2(x-1), x \in [0,2]$,则 f(7) =_____;

! 曲线 $y = \frac{x^2 + x}{x^2 - 1}$ 的铅直渐近线是_____。

- . :二、单项选择题 (每题 4 分,共 20 分)
- [1. 设函数 $f(x) = \frac{1}{e^{\frac{x}{x-1}} 1}$,则(
 - (A) x = 0, x = 1都是 f(x) 的第一类间断点;
 - (B) x = 0, x = 1都是 f(x)的第二类间断点;
 - (C) x=0 是 f(x) 的第二类间断点, x=1 是 f(x) 的第一类间断点;
 - (D) x=0 是 f(x) 的第一类间断点, x=1 是 f(x) 的第二类间断点。

- 2. 设函数 $f(x) = x^2(x-1)(x-2)$,则 f'(x)的零点个数为(
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- 3. 设函数 f(x) 在 x = 0 处可导,且 f(0) = 0,则 $\lim_{x \to 0} \frac{x^2 f(x) 2 f(x^3)}{x^3} = ($
 - (A) -2f'(0);
- (B) -f'(0); (C) f'(0); (D) 0.
- 4. 设 $\{x_n\}$ (n=1,2,...)是数列,则下列结论中**不正确**的是()
 - (A) 若 $\lim_{n \to \infty} x_n = a$, 则 $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n-1} = a$;
 - (B) 若 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n-1} = a$,则 $\lim_{n\to\infty} x_n = a$;
 - (C) 若 $\lim_{n\to\infty} x_n = a$, 则 $\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n-1} = a$;
 - (D) 若 $\lim_{n \to \infty} x_{3n} = \lim_{n \to \infty} x_{3n-1} = a$,则 $\lim_{n \to \infty} x_n = a$ 。
- 5. 设函数 f(x) 连续, f'(0) > 0 , 则存在 $\delta > 0$, 使得()
 - (A) 对任意的 $x \in (0, \delta)$ 有 f(x) > f(0); (B) 对任意的 $x \in (-\delta, 0) \cup (0, \delta)$ 有 f(x) > f(0);
 - (C) f(x)在 $(0,\delta)$ 内单调增加;
- (D) f(x)在($-\delta$,0) \cup (0, δ)内单调增加。
- 三、(10分) 求极限 $\lim_{x\to 0} \frac{1}{x(e^x-1)} \ln \frac{\sin x}{x}$ 。

四、(10分) 求微分方程 $xy'-y=-xe^xy^2$ 的通解。

五、(10分) 过点(0,1)作曲线 $L: y = \ln x$ 的切线,切点为 A,又L = x 轴交于 B点,L = L 与直线 AB 围成的平面图形为D。1、求切线方程。2、求D的面积。

六、(10 分) 设 f(x), g(x) 在 [-a,a] 上连续, g(x) 为偶函数, f(x) 满足条件: f(x)+f(-x)=A(A 为常数), 1、证明 $\int_{-a}^{a} f(x)g(x)dx = A\int_{0}^{a} g(x)dx$; 2、计算定积分 $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4}x$ • arctan $e^{x}dx$ 。

七、 $(10 \, f)$ 设函数 f(x) 在 [0,2] 二阶可导,且 $|f(x)| \le 1$, $|f''(x)| \le 1$,c 是 (0,2) 内任意一点。1、写出 f(x) 在点 x = c 处的带拉格朗日型余项的一阶泰勒公式;2、证明 $|f'(c)| \le 2$ 。

姓名:	
学号:	
学院 (系):	
级	班
教师:	

连理工大学

工科数学分析基础 1 试卷: <u>A</u> 考试形式: <u>闭卷</u>

授课院(系): 数学科学学院 考试日期: 2016年1月11日 试卷共6页

	_		1=1	四	五.	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

装

一、填空题 (每题 6 分,共 30 分)

1. 设函数
$$y = y(x)$$
 由参数方程 $\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$ 确定,则 $\frac{dy}{dx} = \frac{1}{1}$ 。

在点(0,1)处的切线方程为_

[3. 数列极限
$$\lim_{n\to\infty} \frac{1}{n^2} (\sin\frac{1}{n} + 2\sin\frac{2}{n} + 3\sin\frac{3}{n} + ... + n\sin\frac{n}{n}) = ______;$$
 微分方程 $y' - y = e^{2x}$ 满足条件 $y(0) = 1$ 的特解 $y = _______$ 。

5. 设函数
$$f(x) = x^2 \sin x$$
,则 $f''(0) = ______, f^{(2015)}(0) = ______。$

二、单项选择题 (每题 4 分,共 20 分)

$$[1.$$
 设函数 $f(x) = \frac{e^x - e}{x(x-1)}$,则 $f(x)$ 有(

- I(A) 一个可去和一个跳跃间断点; (B) 一个可去和一个无穷间断点;
- (C) 两个跳跃间断点;
- (D) 两个无穷间断点。

$$\frac{1}{2}$$
. 已知 a 为常数,且 $\lim_{x\to\infty} \left(\frac{x+a}{x-a}\right)^x = e^2$,则 $a = ($

- (A) 1; (B) -1; (C) 2; (D) -2.

- 3. 设函数 f(x) 在 x = a 的某邻域内有定义,则 $\lim_{h \to 0} \frac{f(a+2h) f(a+h)}{h}$ 存在是 f(x) 在 x = a 处可导的
- 一个 ()
 - (A) 充分条件;
- (B) 必要条件;
- (C) 充要条件;
- (D) 即非充分也非必要条件。
- 4. 下列结论中正确的是()
- (A) $\int_{-\infty}^{0} \frac{1}{x^{2}} e^{\frac{1}{x}} dx$ 与 $\int_{0}^{+\infty} \frac{1}{x^{2}} e^{\frac{1}{x}} dx$ 都收敛; (B) $\int_{-\infty}^{0} \frac{1}{x^{2}} e^{\frac{1}{x}} dx$ 与 $\int_{0}^{+\infty} \frac{1}{x^{2}} e^{\frac{1}{x}} dx$ 都发散;
- (C) $\int_{-\infty}^{0} \frac{1}{x^2} e^{\frac{1}{x}} dx$ 收敛, $\int_{0}^{+\infty} \frac{1}{x^2} e^{\frac{1}{x}} dx$ 发散; (D) $\int_{-\infty}^{0} \frac{1}{x^2} e^{\frac{1}{x}} dx$ 发散, $\int_{0}^{+\infty} \frac{1}{x^2} e^{\frac{1}{x}} dx$ 收敛。
- 5. 设函数 f(x) 的导数在 x = a 处连续,又 $\lim_{x \to a} \frac{f'(x)}{x a} = -1$,则()
 - (A) f(a) 是 f(x) 的一个极大值;
 - (B) f(a) 是 f(x) 的一个极小值;
 - (C) 点(a, f(a)) 是曲线 y = f(x) 的拐点;
 - (D) f(a) 不是 f(x) 的极值, (a, f(a)) 不是曲线 y = f(x) 的拐点。
- 三、(10分) 求极限 $\lim_{x\to 0} (\frac{\tan x}{x})^{\frac{1}{1-\cos x}}$ 。

四、(10 分) 求微分方程 $xy \frac{dy}{dx} = x^2 + y^2$ 满足 y(1) = 0 的特解。

五、(10 分) 设函数 f(x) 在[0,1]连续,证明 $\int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$,并求 $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$ 。

六、(10 分) 设圆周 $L_1: y = \sqrt{1-x^2} (0 \le x \le 1)$ 和星形线 $L_2: \begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} (0 \le t \le \frac{\pi}{2})$ 围成的平面图形为 D 。

1、求D的面积; 2、求D绕x轴旋转一周所得旋转体的体积。

七、 $(10 \, \text{分})$ 设函数 f(x) 在[0,3] 上连续,在(0,3) 内二阶可导,且 $2f(0) = \int_0^2 f(x) dx = f(2) + f(3)$ 。 1、证明:存在点 $\eta \in (0,2)$,使得 $f(\eta) = f(0)$; 2、证明:存在点 $\xi \in (0,3)$,使得 $f''(\xi) = 0$ 。

姓名:	· · · · · · · · · · · · · · · · · · ·
学号:	
学院(系):
	班
3X	

教师:

大 连 理 工 大 学

课程名称: <u>工科数学分析基础</u> 1 试卷: <u>A</u> 考试形式: <u>闭卷</u> 授课院(系): 数学科学学院 考试日期: 2017年1月9日 试卷共 6 页

			111	四	五	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

装

- 一、填空题 (每题 6 分,共 30 分)
- 1. 设函数 y = y(x) 由方程 $xy + e^y = e$ 所确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ ______,曲线 y = y(x)

在点(0,1)处的切线方程为____。

[3. 数列极限
$$\lim_{n\to\infty} (\frac{n}{n^2+1} + \frac{n}{n^2+2} + \frac{n}{n^2+3} + \dots + \frac{n}{n^2+n}) = ____;$$
数列极限

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \dots + \frac{n}{n^2 + n^2} \right) = \underline{\hspace{1cm}}$$

[5. 积分
$$\int_{-1}^{1} (|x| + x)e^{|x|} dx = ______;$$
 积分 $\int_{0}^{1} (1 - x^2)^{\frac{3}{2}} dx = _______.$

二、单项选择题 (每题 4 分,共 20 分)

[1. 设函数
$$f(x) = \frac{x^2 + x}{x^2 - 1}$$
,则 $f(x)$ 有(

- . i(A) 一个可去和一个无穷间断点; (B) 一个可去和一个跳跃间断点;
- (C)一个跳跃和一个无穷间断点;(D)两个无穷间断点。
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. 若函数 f(x) 的导函数是 $\sin x$,则 f(x) 的一个原函数是 ()

$$i(A) 1 + \sin x; (B) 1 - \sin x; (C) 1 + \cos x; (D) 1 - \cos x.$$

- 3. 下列反常积分中收敛的是()
- (A) $\int_{-2}^{2} \frac{1}{x} dx$; (B) $\int_{2}^{+\infty} \frac{1}{x} dx$; (C) $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$; (D) $\int_{2}^{+\infty} \frac{x}{e^{x}} dx$.
- 4. 设函数 $p_3(x) = a + bx + cx^2 + dx^3$ 。当 $x \to 0$ 时,若 $p_3(x) \sin x$ 是比 x^3 高阶的无穷小量,则下列选项中**错误**的是()
 - (A) a = 0; (B) b = 1; (C) c = 0; (D) d = -1.
- 5. 设函数 f(x) 在 x = 0 处连续,又 $\lim_{x \to 0} \frac{f(x^2)}{x^2} = 1$,则()
 - (A) f(0) = 0 且 f'(0) 存在; (B) f(0) = 1 且 f'(0) 存在;
 - (C) f(0) = 0 且 f'(0) 存在; (D) f(0) = 0 且 f'(0) 存在。
- 三、(10分) 求极限 $\lim_{x\to 0} \frac{\int_0^x t \ln(1+t\sin t)dt}{1-\cos x^2}$ 。

四、(10分) 求微分方程 $(y+x\cot x)dx-\cot xdy=0$ 的通解。

五、(10 分) 求函数 $f(x) = \int_1^{x^2} (x^2 - t) e^{-t^2} dt$ 的单调区间与极值。

六、 $(10\ eta)$ **设常数** A>0,D 是由曲线段 $y=A\sin x (0\leq x\leq \frac{\pi}{2})$ 及直线 $y=0, x=\frac{\pi}{2}$ 所围成的平面图形, V_1,V_2 分别表示 D 绕 x 轴与 y 轴旋转所成旋转体的体积。 1、求 V_1 和 V_2 ; 2、若 $V_1=V_2$,求 A 的值。

七、 $(10 \, \text{分})$ 函数 f(x) 在[0,1]上连续,在(0,1)上二阶可导,f(1)>0, $\lim_{x\to 0^+} \frac{f(x)}{x} < 0$ 。证明:1、至少 $\exists \eta \in (0,1)$,使: $f(\eta)=0$;

2、至少 $\exists \xi_1, \xi_2 \in (0,1), \xi_1 \neq \xi_2$,使: $f(\xi_1)f''(\xi_1) + (f'(\xi_1))^2 = f(\xi_2)f''(\xi_2) + (f'(\xi_2))^2 = 0$ 。

大 连 理 工 大 学

学号:

学院 (系): _____

___级____班

教师:_____

课程名称: _工科数学分析基础 1 _ 试卷: __A __ 考试形式: 闭卷 授课院(系): 数学科学学院 考试日期: 2018年1月8日 试卷共6页

	_		111	四	五	六	七	总分
标准分	30	20	10	10	10	10	10	100
得 分								

一、填空题 (共30分,每填对一个空得3分)

1.
$$\lim_{x\to 0} (1+\sin 2x)^{\frac{1}{x}} =$$
______; $\lim_{x\to +\infty} \frac{x^2 + \arctan x}{2^x + \cos x} =$ ______.

2、若
$$\lim_{x \to +\infty} (5x - \sqrt{ax^2 + bx + 1}) = 1$$
,则常数 $a =$ _______, $b =$ ________.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \underline{\hspace{1cm}}.$$

4.
$$\int \frac{1}{x^2(x+1)} dx = \underline{\hspace{1cm}} + c;$$

$$\int \cos^3 x \, \mathrm{d}x = \underline{\qquad} + c.$$

5.
$$\int_0^{6\pi} \sin^6 x \, dx =$$
______; $\lim_{n \to +\infty} \int_0^1 \ln(1+x^n) \, dx =$ ______.

二、单选题(共20分,每小题4分)

- 1、 当 $x \to 0$ 时, $e^x e^{\sin x}$ 的等价无穷小是().
 - A. 0;

- B. -2x;
- C. $\frac{1}{2}x^2$; D. $\frac{1}{6}x^3$.
- 2. $abla I_1 = \int_{-1}^1 \ln \frac{2+x}{2-x} dx$, $I_2 = \int_{-1}^1 \sqrt{1-x^2} dx$, $I_3 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_3 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_3 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_3 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_3 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_4 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_4 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x + \cos^{2017} x} dx$, $abla I_4 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_4 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$, $abla I_5 = \int_0^{\frac{\pi}{2}} \frac{\sin^{2017} x}{\sin^{2017} x} dx$

 - A. $I_1 > I_2 > I_3$; B. $I_2 > I_3 > I_1$;
 - C. $I_3 > I_2 > I_1$; D. $I_2 > I_1 > I_3$.
- 3、函数 $f(x) = \frac{x x^3}{\sin \pi x}$ 的可去间断点的个数为().
 - A. 1;

B. 2;

C. 3:

- D. 无穷多个.
- 4、设函数 $f(x) = \begin{cases} \frac{e^{x^2} 1}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 则 f(x) 在 x = 0 处 () .
 - A. 极限不存在;
- C. 连续但不可导; D. 可导.
- 5、设函数 $f(x) = (x-1)^2(x-2)^3(x-3)^4$,则().
 - A. f(2) 是 f(x) 的一个极值, 点(2,0) 是曲线 y = f(x) 的一个拐点;
 - B. f(2) 是 f(x) 的一个极值,点(2,0) 不是曲线 y = f(x) 的一个拐点;
 - C. f(2) 不是 f(x) 的一个极值, 点 (2,0) 是曲线 y = f(x) 的一个拐点;
 - D. f(2) 不是 f(x) 的一个极值, 点 (2,0) 不是曲线 y = f(x) 的一个拐点.

三、(10 分) 求微分方程初值问题 $\begin{cases} xy' + y = 4xe^{2x} \\ y(\frac{1}{2}) = 2 \end{cases}$ 的解.

伊分

四、(10 分) 设函数 f(x) 连续,且 $\int_0^x t f(x-t) dt = 1 - \cos x$,求 $\int_0^{\frac{\pi}{2}} f(x) dx$.

五、(10 分)(1) 求曲线 $L_1:2y=-1+xy^3$ 在点 P(1,-1) 处的切线 L_2 的方程;

- (2) 已知曲线 $L_3: y = x^2 + ax + b$ 在点P(1,-1) 处与 L_1 相切,求常数a 和b;
- (3) 求由 L_2 、 L_3 及 y 轴围成的平面图形 D 绕 y 轴旋转所成旋转体的体积.

六、(10 分) 设 $x_0=1$, $x_n=1+\frac{x_{n-1}}{1+x_{n-1}}$ $(n=1,2,\cdots)$. 证明:数列 $\{x_n\}$ 收敛并求其极限.

七、(8分) 设函数 f(x) 在[0,1]上二阶可导, $\lim_{x\to 0^+} \frac{f(x)}{x} = 0$, $\lim_{x\to 1^-} \frac{f(x)-1}{x-1} = 1$.

证明:存在 $\xi \in (0,1)$,使得 $f''(\xi) = f(\xi)$.

姓名: _____

学号: _____

学院(系): _____

____ 级___ 班

教师:_____

大 连 理 工 大 学

课程名称: <u>工科数学分析基础</u> 1 试卷: A 考试形式: <u>闭卷</u> 授课院(系): 数学科学学院 考试日期: 2019 年 1 月 7 日 试卷共 6 页

	_	1]	111	四	五.	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

得 分

- 一、填空题 (每题 6 分,共 30 分)
- 1、设函数 y = y(x) 由方程 $x^2 y + 1 = e^y$ 确定,则 $y''(0) = ______$,曲线 y = y(x) 在点 (0,0) 处切线方程是: _______。

- 5、极限 $\lim_{n\to\infty} \left(\frac{1}{1 \bullet 2} + \frac{1}{2 \bullet 3} + \dots + \frac{1}{n(n+1)}\right)^n = _____;$

曲线 $y = xe^{\frac{1}{x^2}}$ 的斜渐近线是_____。

分

二、单项选择题 (每题 4 分,共 20 分)

- 1、设函数 $f(x) = \frac{x^2 1}{x^2 3x + 2}$,则 f(x)有(
 - (A) 一个可去和一个跳跃间断点; (B) 一个跳跃和一个无穷间断点;
 - (C) 一个可去和一个无穷间断点; (D) 两个无穷间断点。
- 2、下列反常积分中发散的是(

(A)
$$\int_0^{+\infty} x e^{-x} dx$$
; (B) $\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx$; (C) $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$; (D) $\int_0^1 \frac{\ln x}{x} dx$.

- 3、若方程 $y' + p(x) \bullet y = 0$ 的一个特解是 $y = \cos 2x$,则满足初始条件 y(0) = 2 的特解 y = 0
 - (A) $2\cos x$;
- (B) $2\cos 2x$; (C) $\cos 2x + 1$; (D) $\sin 2x + 2$

4、极限
$$\lim_{n\to\infty} \ln \sqrt[n]{(1+\frac{1}{n})^2(1+\frac{2}{n})^2...(1+\frac{n}{n})^2} = ($$

(A)
$$2\int_{1}^{2} \ln x dx$$
; (B) $\int_{1}^{2} \ln^{2} x dx$; (C) $2\int_{1}^{2} \ln(1+x) dx$; (D) $\int_{1}^{2} \ln^{2}(1+x) dx$

- 5、"对任意给定的 $\varepsilon \in (0,1)$,总存在正整数 N ,当 $n \geq N$ 时,恒有 $\left|x_n a\right| \leq 2\varepsilon$ " 是数列 $\left\{x_n\right\}$ 收敛于 a的(
 - (A) 充分条件但非必要条件; (B) 必要条件但非充分条件;
 - (C) 充分必要条件;
- (D) 即非充分条件又非必要条件。

 Ξ 、(10分) 求极限 $\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2}\right)$ 。

得分

四、(10分) 求微分方程 $x^2y' + xy = y^2$, y(1) = 1 的特解。

五、(10分)设直线 y = ax(0 < a < 1) 与曲线 $y = x^2$ 所围成的图形面积为 S_1 ,它们与直线 x = 1

所围成的图形面积为 S_2 。

- 1、求a, 使 $S_1 + S_2$ 最小,并求最小值;
- 2、求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积。

六、(10分) 1、设函数 f(t) 是以T 为周期的连续函数,证明:对任意实数a,都有:

$$\int_{a}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt \circ$$

2、求定积分 $\int_0^{2018 \pi} (\sin x + \cos^2 x) \cos^2 x dx$ 。

七、(10 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 上有界且导数连续。

- 1、设a < b, 且f(a) = f(b) = 0, 证明至少 $\exists \xi \in (a,b)$, 使 $f(\xi) + f'(\xi) = 0$;
- 2、若对任何实数x,都有 $|f(x)+f'(x)|\le 1$,证明 $|f(x)|\le 1$ 。

公共数学教学与研究中心试题册

保密★启用前

2019-2020 学年第一学期期末考试 《工科数学分析基础 1》 A 卷

考生注意事项

- 1. 答题前,考生须在试题册指定位置上填写考生学号和考生姓名;在答题卡指定位置上填写考试科目、考生姓名和考生学号,并涂写考生学号信息。
- 2. 第一、二、三题的答案必须涂写在答题卡相应题号的选项上,其它题的答案必须书写在答题卡指定位置的边框区域内。超出答题区域书写的答案 无效:在草稿纸、试题册上答题无效。
- 3. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用 2B 铅笔填涂。
- 4. 考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)

考生学号					
考生姓名					

公共数学教学与研究中心试题册

一、选择题:每小题 3 分,共 24 分,下列每题给出的三个选项中,只 有一个选项是符合题目要求的,请将答案涂写在答题卡上。

1.
$$\lim_{x\to 0} (1+\sin 3x)^{\frac{1}{x}} = ($$
).

A. e^3 . B. $e^{\frac{1}{3}}$.

C. 1.

$$2 \cdot \lim_{n \to \infty} \frac{1^5 + 2^5 + \dots + n^5}{n^6} = () .$$

A. 0.

B. $\frac{1}{\epsilon}$.

C. $\frac{1}{5}$.

3、设
$$f(x) = xe^{-x}$$
,则 $f^{(2019)}(0) = ($).

A. 2019. B. $\frac{1}{2019}$.

C. 0.

4、设
$$f(x) = \begin{cases} \frac{1-\cos x}{x}, & x < 0 \\ 0, & x = 0, \text{ 则在点} x = 0 处 (). \\ \frac{\sqrt{1+x^2}-1}{x}, & x > 0 \end{cases}$$

A. $f'(0) = \frac{1}{2}$. B. $f'(0) = -\frac{1}{2}$. C. f(x)不可导.

5、设
$$\begin{cases} x = \tan t \\ y = \sec t \end{cases}$$
 (0 < t < $\frac{\pi}{2}$),则 $\frac{d^2y}{dx^2}$ = ().

A. $\cos t$.

B. $\cos^2 t$.

 $\mathsf{C.} \; \cos^3 t \; .$

6、定积分
$$\int_0^{2\pi} \sin^4 x \cdot \cos^2 x \, \mathrm{d}x = () .$$

A. $\frac{\pi}{32}$. B. $\frac{\pi}{16}$.

C. $\frac{\pi}{8}$.

7、以下三个反常积分中,发散的是().

A. $\int_{1}^{+\infty} \frac{\ln x}{x^2} dx$.

B. $\int_{-\infty}^{+\infty} x \, dx$. C. $\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx$.

8、方程
$$x^5+x-1=0$$
, ().

A. 只有一个实根. B. 只有三个实根. C. 有五个实根.

二、选择题:每小题 4 分,共 16 分,下列每题给出的三个选项中,只有一个选项是符合题目要求的,请将答案涂写在答题卡上.						
1、函数 $f(x)$ 满足 $f(0) = 0$, $f'(0) > 0$, 则 $\lim_{x \to 0} x^{f(x)} = ($).						
A. 0. B. 1. C. 2. D. 不存在.						
2、 $\forall \varepsilon > 0$, $\exists \delta > 0$,当 $0 \le x - x_0 < \delta$ 时,恒有 $ f(x) - a < \varepsilon$,则().						
A. $\lim_{x \to x_0} f(x) = a$. B. $\lim_{x \to x_0^+} f(x) = a$.						
C. $\lim_{x \to x_0^-} f(x) = a$. D. $f(x)$ 在 x_0 点处连续.						
3、设存在常数 $L>0$,使得 $ f(x_2)-f(x_1) \le L x_2-x_1 ^2 (\forall x_1, x_2 \in (a,b))$,则().						
A. $f(x)$ 在 (a,b) 内有间断点.						
B. $f(x)$ 在 (a,b) 内连续,但有不可导点.						
C. $f(x)$ 在 (a,b) 内可导, $f'(x) \neq 0$.						
D. $f(x)$ 在 (a,b) 内可导, $f'(x) \equiv 0$.						
4、以下四个函数中,在指定的区间上不一致连续的是().						
A. $f(x) = \sin x$ 在 $(-\infty, +\infty)$ 上.						
B. $f(x) = \sin \frac{1}{x}$ 在(0,1)上.						
C. $f(x) = \arctan x$ 在 $(-\infty, +\infty)$ 上.						
D. $f(x) = \ln x 在 (1,2)$ 上.						
三、判断题(每小题 2 分, 共 10 分)(正确的涂 T, 错误的涂 F)						
1、设 $f(x)$ 可积,则 $\Phi(x) = \int_a^x f(x) dx$ 必为 $f(x)$ 的一个原函数. ()						
2、设非负函数 $f(x)$ 有连续的导数,由曲线 $y = f(x)$ $(a \le x \le b)$ 绕 x 轴旋转一周所						
形成的旋转曲面的面积微元为: $dS = 2\pi f(x) dx$. ()						
3、设 $f(x)$ 是以 T 为周期的可导函数,则 $f'(x)$ 仍以 T 为周期. ()						

4、设 $x \to a$ 时,f(x)与g(x)分别是x-a的n阶与m阶无穷小,n < m,那么

$$f(x)+g(x)$$
是 $x-a$ 的 n 阶无穷小. ()

5、设
$$x_n \le z_n \le y_n$$
,且 $\lim_{n \to \infty} (y_n - x_n) = 0$,则 $\lim_{n \to \infty} z_n = 0$.

四、(10 分) 求极限 $\lim_{x\to 0} \frac{x^2 - x \ln(1+x)}{\sqrt{1+\tan x} - \sqrt{1+\sin x}}$.

五、(10 分) 求解微分方程初值问题 $\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} - xy = x^3 \\ y(0) = -1 \end{cases} .$

六、(10 分) 设函数 f(x) 在[a,b] 连续,1、证明 $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$;

$$2. \Re \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin^2 x}{x(\pi - 2x)} \mathrm{d}x .$$

七、(10 分) 已知摆线: $x = a(t - \sin t), y = a(1 - \cos t) (0 \le t \le 2\pi)$, 常数 a > 0.

求: 1、摆线的弧长; 2、摆线和 x 轴围成图形的面积.

八、(10 分) 设函数 f(x) 在($-\infty$, $+\infty$) 上二阶可导, f'(x) > 0 , f''(x) > 0 ,又 a < b 且 f(a) = 0 ,若曲线 y = f(x) 在点(b, f(b)) 处的切线与 x 轴相交于(x_0 , 0) 点,证明 $a < x_0 < b$.

保密★启用前

2020-2021 学年第一学期期末考试 《工科数学分析基础 1》 A 卷

考生注意事项

- 1. 答题前,考生须在试题册指定位置上填写考生学号和考生姓名。
- 2. 在<u>答题卡</u>指定位置上填写考试科目、考生姓名和考生学号,并涂写考生 学号信息。

特别提醒 由于<u>答题卡</u>上学号只设了九位空格,所以请 <u>2020 级学生</u>在 答题卡上填涂学号时,去掉最前面的"20".例如,如果学号为 20201234567,则填涂 201234567。其它年级的同学填涂完整的学号。

- 3. 第一题的答案必须涂写在答题卡相应题号的选项上,其它题的答案必须 书写在答题卡指定位置的边框区域内。超出答题区域书写的答案无效: 在草稿纸、试题册上答题无效。
- 4. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用 2B 铅笔填涂。
- 5. 考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)

考生学号						
考生姓名						

一、选择题 每小题 项是符合题目要求的,			选项中,只有一个选		
1、点 $x = 0$ 是函数 f	$F(x) = \frac{1}{1 + e^{\frac{1}{x}}} \text{ in } ($)			
(A) 可去间断点. (C) 无穷间断点.		(B) 跳跃间断点. (D) 振荡间断点.			
2、设 f(x) 为不恒等于	于零的奇函数, 且	<i>f</i> ′(0) 存在,则函数	$g(x) = \frac{f(x)}{x} \ ()$		
		(B) 有跳跃间断点 (D) 有可去间断点			
3 、设 $f(x) = \lim_{t \to \infty} x \Big(1$	• /				
$(A) (1+2x)e^{2x}.$	(B) $(1+x)e^x$	(C) xe^{2x} .	(D) 1 .		
$4、函数 f(x) = \cos\frac{1}{x}$					
(A) $(0,1)$.	(B) (1,2).	(C) [2,3].	(D) $(3,+\infty)$.		
5、设函数 $y = y(x)$ 自					
		(C) -1.			
6、设 $\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$	t),其中 $f(t)$ 有二	阶连续导数,且 f "(t	$)\neq0$,则 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=$ ()		
(A) $f''(t) + tf'''(t)$. (B) 1.	(C) $\frac{t}{f''(t)}$.	(D) $\frac{1}{f''(t)}$.		
7、设函数 $f(x) = xe$					
(A) 2019 .	(B) 2020 .	(C) 2021 .	(D) 0 .		
8、设周期为4的函数	$f(x)$ 在 $(-\infty,+\infty)$	\circ) 内可导,且 $\lim_{x\to 0} \frac{f(x)}{x}$	$\frac{1)-f(1-x)}{2x} = -1$,则曲		
线 $y = f(x)$ 在点 $(5,$					
(A) 1.	(B) − 1 .	(C) 2 .	(D) -2.		
9、函数 $f(x) = \int_0^x \frac{2t-1}{t^2-t+1} dt$ 在 $[-1,1]$ 上的最大值为(
(A) $\ln \frac{3}{4}$.	(B) $\ln \frac{3}{2}$.	(C) 0 .	(D) ln3 .		

$10、定积分 \int_0^{\pi} 2e^x \sin x dx = $ ()						
(A) $-e^{\pi} + 1$.	(B) $-e^{\pi}-1$.	(C) $e^{\pi} + 1$.	(D) $e^{\pi} - 1$.			
11、定积分 ∫ _π ^{2π} sin ⁴ z	x dx = (
(A) $\frac{\pi}{2}$.	(B) $\frac{3\pi}{8}$.	(C) $\frac{\pi}{4}$.	(D) $\frac{\pi}{8}$.			
12 、定积分 $\int_0^4 \frac{x}{\sqrt{2x+1}}$	dx = ()					
(A) $\frac{5}{3}$.	(B) $\frac{10}{3}$.	(C) 5 .	(D) $\frac{20}{3}$.			
13 、心形线 $r=1+\cos\theta$ (极坐标系下的方程)所围平面图形的面积为(
$(A) \frac{3\pi}{8}.$	(B) $\frac{3\pi}{4}$.	(C) $\frac{3\pi}{2}$.	(D) 3π.			
$14、函数 f(x) = \ln x$	$-\frac{x}{2}+1$ 在 $(0,+\infty)$	内的零点个数为()			
(A) 0.	C	(C) 2.	(D) 3.			
15、微分方程	os x · csc y 的通解)	为()				

(A)
$$\sin x + \cos y = c$$
.

(B)
$$\sin x - \cos y = c$$
.

)

(C)
$$\cos x - \sin y = c$$
.

(D)
$$\cos x + \sin y = c$$
.

二、(15 分) 求解微分方程初值问题
$$\begin{cases} \frac{dy}{dx} = \frac{2xy}{2x^2 + y^2} \\ y(0) = 1 \end{cases}$$

三、(15分) 求极限
$$\lim_{x\to 0} \frac{\ln{(1+x^2)}-\ln{(1+\sin^2{x})}}{(e^x-1)\sin^3{x}}$$
.

四、(15分)设函数f(x)在[$-\pi$, π]上连续.

(1) 证明:
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

(2) 当
$$f(x) = \frac{x}{1+\cos^2 x} + \int_{-\pi}^{\pi} f(x) \sin x dx$$
 时,利用(1)的结论求 $f(x)$.

五、(10 分) 设函数f(x)在[0,1]上二阶可导,且 $|f''(x)| \le 1$. 已知f(x)在(0,1)内取到最大值 $\frac{1}{4}$. 证明: $|f(0)| + |f(1)| \le 1$.

A 卷

一、选择题(共45分,每小题3分)

1、设
$$f(x) = \frac{\tan x}{|x|} \arctan \frac{1}{x}$$
,则(C)

- (A) x=0 是振荡间断点.
- (B) x = 0 是无穷间断点.
- (C) x = 0 是可去间断点.
- (D) x = 0 是跳跃间断点.

2.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{e^x - 1} \right) = ($$
 A)

- (A) $\frac{1}{2}$. (B) $-\frac{1}{2}$. (C) 0. (D) ∞ .

3、设 $\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 2} - ax - b) = 0$,则常数(A)

- (A) a=1, b=1.
- **(B)** a = 1, b = -1.
- (C) a = -1, b = 1.
- **(D)** a = -1, b = -1.

4、设函数 y = y(x) 由参数方程 $\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,则 $\frac{d^2 y}{dx^2} = ($ **B**)

- (A) 6t + 5.
- **(B)** $\frac{(6t+5)(1+t)}{t}$.
- (C) $(6t+2)(1+t)^2$.
- **(D)** $-(6t+2)(1+t)^2$.

5、设函数 y = y(x) 由方程 $x^3 - ax^2y^2 + by^3 = 0$ 所确定, y(1) = 1, x = 1 是 y = y(x) 的 驻点,则常数(C)

- **(A)** a = 3, b = 2. **(B)** $a = \frac{5}{2}$, $b = \frac{3}{2}$.
- (C) $a = \frac{3}{2}$, $b = \frac{1}{2}$. (D) a = -2, b = -3.

6、设 $f(x) = \begin{cases} x^2, & x \to 4 \text{ 有理数} \end{cases}$,则(C)

- (A) f(x) 在点 x = 0 处不连续.
- (B) f(x) 在点 x = 0 处连续,但不可导.
- (C) f(x) 仅在点x=0 处可导.
- **(D)** f(x) **处处可导,**且 $f'(x) = \begin{cases} 2x, & x \to 4 \\ 0, & x \to 4 \end{cases}$

7、设 <i>f</i> (<i>x</i>) 在点 <i>x</i>	。的某邻域内有三阶	连续导数,且 f'	$(x_0) = 0$, $f''(x_0) = 0$,		
$f'''(x_0) > 0$,则(\mathbf{D})					
(A) $f(x_0)$ 是 f	f(x)的一个极大值.				
(B) $f(x_0)$ 是 f	f(x)的一个极小值.				
(C) f'(x ₀)是	f'(x)的一个极大值.				
(D) $(x_0, f(x_0))$) 是曲线 y = f(x) 的·	一个拐点.			
8、设 $f(x) = \cos^4$	$x + \sin^4 x$, $\iint f^{(2020)}$	$(0) = (\mathbf{B})$			
(A) 4^{2018} .	(B) 4^{2019} .	(C) 4^{2020} .	(D) 4^{2021} .		
9、定积分 $\int_0^1 \frac{1}{(1+x)^2}$	$\frac{1-x}{x(1+x^2)} dx = (\mathbf{D})$)			
(A) $\ln 2 + \frac{\pi}{4}$.	(B) $\ln 2 - \frac{\pi}{4}$.	(C) 0.	(D) $\frac{1}{2} \ln 2$.		
10 、定积分 $\int_0^{\frac{\pi}{4}} \frac{1}{\cos \theta}$	$\frac{1}{s^4 x} dx = (D)$				
(A) $\frac{1}{3}$.	(B) $\frac{\pi}{3}$.	(C) $\frac{2\sqrt{2}}{3}$.	(D) $\frac{4}{3}$.		
11、定积分∫ ₀ ¹arcs	$\sin x \mathrm{d}x = (\mathbf{D})$				
(A) $\frac{\pi}{3} - 1$.	(B) $1-\frac{\pi}{4}$.	(C) $\frac{\pi}{2} - \frac{1}{2}$.	(D) $\frac{\pi}{2} - 1$.		
12、定积分 $\int_0^{6\pi} (\sin x + \sin^2 x) \cos^4 x \mathrm{d}x = (\mathbf{D})$					
(A) $\frac{3}{2}$.	$(B) \frac{3\pi}{4}.$	(C) $\frac{3}{4}$.	(D) $\frac{3\pi}{8}$.		
13、设 D 是由抛物线 $y = x(1-x)$ ($0 \le x \le 1$) 与 x 轴围成的平面图形,则 D 绕 y 轴					
旋转一周所形	成的旋转体的体积	V = (A)			
(A) $\frac{\pi}{6}$.	(B) $\frac{\pi}{4}$.	(C) $\frac{\pi}{3}$.	(D) $\frac{\pi}{2}$.		
14、设曲线 y = y((x)在其上任一点(x,	,y)处的切线斜率	是 $-\frac{2x}{y}$ ($y \neq 0$ 时),则		
此曲线是(C)				

(C) 椭圆.

(B) 抛物线.

(A) 摆线.

(D) 双曲线.

- 15、(工数)以下命题中错误的是(B)
 - (A) 若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上一致连续.
 - (B) 若 f(x) 在 (a,b) 内连续且有界,则 f(x) 在 (a,b) 内一致连续.
 - (C) 若 f(x) 在 (a,b) 内连续,且 $\lim_{x \to a^+} f(x)$ 和 $\lim_{x \to b^-} f(x)$ 都存在,则 f(x) 在 (a,b) 内 一致连续.
 - (D) 若 f(x) 在 (a,b) 内可导,且 f'(x) 有界,则 f(x) 在 (a,b) 内一致连续.

15、(高数、微积分)

设 f(x) 连续、单调增加, f(0) = 0 , $F(x) = \int_0^x x f(x-t) dt$, 则(**B**)

- (A) F(x)在 $[0,+\infty)$ 上单调减少.
- (B) F(x)在 $[0,+\infty)$ 上单调增加.

(C) $F'(x) \equiv 0$.

(D) F'(x)在 $[0,+\infty)$ 上变号.

二、(高数、微积分)(15分)

求二阶常系数非齐次线性微分方程 $y'' + y' - 2y = 3e^x$ 的通解.

解 特征方程 $r^2+r-2=0$,特征根 $r_1=1, r_2=-2$.

对应的齐次方程的通解 $y = c_1 e^x + c_2 e^{-2x}$.

设原方程特解 $y^* = Axe^x$,则 $y^{*'} = A(x+1)e^x$, $y^{*''} = A(x+2)e^x$,

代入原方程,得 $A(x+2)e^x + A(x+1)e^x - 2Axe^x = 3e^x$,解得 A=1,所以 $y^* = xe^x$.

原方程的通解为 $y = c_1 e^x + c_2 e^{-2x} + x e^x$.

二、(工数) (15 分) 求伯努利方程 $y' = \frac{y^2 + x^3}{2xy}$ (x > 0) 的通解.

解
$$y' - \frac{1}{2x}y = \frac{x^2}{2}y^{-1}$$
, 变形 $yy' - \frac{1}{2x}y^2 = \frac{x^2}{2}$.

$$\Rightarrow z = y^2$$
, $\text{MI} \frac{1}{2}z' - \frac{1}{2x}z = \frac{x^2}{2}$, $\text{EP } z' - \frac{1}{x}z = x^2$.

$$z = e^{\int \frac{1}{x} dx} \left(\int x^2 e^{-\int \frac{1}{x} dx} dx + c \right) = x \left(\int x^2 \frac{1}{x} dx + c \right) = \frac{x^3}{2} + cx.$$

原方程的通解为 $y^2 = \frac{x^3}{2} + cx$.

三、(15分) 求
$$\lim_{x\to 0} \left(\frac{1+x}{1+\sin x}\right)^{\frac{1}{x^2\ln(1+2x)}}$$
.

$$\lim_{x \to 0} \frac{1}{x^2 \ln(1+2x)} \ln\left(\frac{1+x}{1+\sin x}\right) = \lim_{x \to 0} \frac{1}{2x^3} \ln\left(1 + \frac{x-\sin x}{1+\sin x}\right)$$

$$= \lim_{x \to 0} \left(\frac{1}{2x^3} \cdot \frac{x-\sin x}{1+\sin x}\right) = \lim_{x \to 0} \left(\frac{x-\sin x}{2x^3}\right)$$

$$= \lim_{x \to 0} \frac{1-\cos x}{6x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{6x^2} = \frac{1}{12},$$

原极限= $e^{\frac{1}{12}}$.

四、(15 分)设 f(x)在 [a,b]上连续,证明 $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$,并由此计算 $\int_0^\pi \frac{x}{2+\sin x} dx$.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(a+b-t) dt = \int_{a}^{b} f(a+b-t) dt = \int_{a}^{b} f(a+b-t) dx$$

所以
$$\int_0^\pi \frac{x}{2+\sin x} dx = \int_0^\pi \frac{(\pi-x)}{2+\sin(\pi-x)} dx = \int_0^\pi \frac{\pi-x}{2+\sin x} dx = \frac{\pi}{2} \int_0^\pi \frac{1}{2+\sin x} dx$$
.

再令
$$u = \tan \frac{x}{2}$$
, 则 $\sin x = \frac{2u}{1+u^2}$, d $x = \frac{2}{1+u^2}$ d u ,

$$\frac{\pi}{2} \int_0^{\pi} \frac{1}{2 + \sin x} dx = \frac{\pi}{2} \int_0^{+\infty} \frac{1}{2 + \frac{2u}{1 + u^2}} \cdot \frac{2}{1 + u^2} du = \frac{\pi}{2} \int_0^{+\infty} \frac{1}{1 + u^2 + u} du$$

$$= \frac{\pi}{2} \int_0^{+\infty} \frac{1}{\left(u + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} du = \frac{\pi}{\sqrt{3}} \arctan \frac{u + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \bigg|_0^{+\infty} = \frac{\pi}{\sqrt{3}} \left(\frac{\pi}{2} - \frac{\pi}{6}\right) = \frac{\pi^2}{3\sqrt{3}}.$$

五、(10 分) 设函数 f(x) 在[0,1] 上连续,在(0,1) 内二阶可导,且 $\lim_{x\to 0^+} \frac{f(x)}{x} = 1$, $\lim_{x\to 1^-} \frac{f(x)}{x-1} = 2$. 证明:

- (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 0$.
- (2) 存在 $\xi_1, \xi_2 \in (0,1)$, $\xi_1 \neq \xi_2$, 使得 $f'(\xi_1) f(\xi_1) = f'(\xi_2) f(\xi_2) = 0$.

(3) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) - 3f'(\eta) + 2f(\eta) = 0$.

证 由 $\lim_{x \to 0^+} \frac{f(x)}{x} = 1$,知 f(0) = 0, f'(0) = 1;由 $\lim_{x \to 1^-} \frac{f(x)}{x - 1} = 2$,知 f(1) = 0, f'(1) = 2.

(1) $\lim_{x\to 0^+} \frac{f(x)}{x} > 0$,由极限的局部保号性,知存在 $a \in (0, \frac{1}{2})$,使得f(a) > 0;

同理,由 $\lim_{x\to \Gamma} \frac{f(x)}{x-1} > 0$,知存在 $b \in (\frac{1}{2},1)$,使得 f(b) < 0.

由连续函数的零点定理,存在 $\xi \in (a,b) \subset (0,1)$,使得 $f(\xi) = 0$.

- (2) 令 $g(x) = e^{-x} f(x)$ ($x \in [0,1]$),则 g(x) 在[0,1]上连续,在(0,1)内可导,且 $g(0) = g(\xi) = g(1) = 0$,所以由 Rolle 定理,存在 $\xi_1 \in (0,\xi)$, $\xi_2 \in (\xi,1)$,使得 $g'(\xi_1) = g'(\xi_2) = 0$, $f'(\xi_1) f(\xi_1) = f'(\xi_2) f(\xi_2) = 0$.
- (3) 令 $h(x) = e^{-2x} (f'(x) f(x)) (x \in [\xi_1, \xi_2])$,则 h(x) 在 $[\xi_1, \xi_2]$ 上可导,且 $h(\xi_1) = h(\xi_2) = 0$,所以由 Rolle 定理,存在 $\eta \in (\xi_1, \xi_2) \subset (0,1)$,使得 $h'(\eta) = 0$, $f''(\eta) 3f'(\eta) + 2f(\eta) = 0$.

B卷

—, 1A; 2A; 3C; 4C; 5C; 6B; 7B; 8D; 9D; 10D; 11D; 12D; 13B; 14A; 15C.

- 二、同A三
- 三、同A四
- 四、同A二
- 五、同A五

一、(共40分)

- 1. 设函数 f(x) 在区间[-1,1]上连续,则 x = 0 是函数 $g(x) = \frac{\int_0^x f(t) dt}{x}$ 的(B)
- A. 跳跃间断点.

B. 可去间断点.

C. 无穷间断点.

- D. 振荡间断点.
- 2. 设函数 $f(x) = x \cos x$,则 $f^{(2021)}(0) = (A)$
- **A.** 2021.

B. −2021.

C. 2021!.

- **D.** -(2021!).
- 3. 微分方程 $\frac{dy}{dx} = \frac{y}{x} \cot \frac{y}{x}$ 的通解是(A)
- $\mathbf{A.} \quad \cos \frac{y}{x} = Cx.$
- $\mathbf{B.} \quad \cos\frac{x}{y} = Cx.$
- C. $\cos \frac{y}{x} = \frac{C}{x}$.

- **D.** $\cos \frac{x}{v} = \frac{C}{x}$.
- **4.** 当 $x \to 0$ 时, $\sqrt{1+x^2} 1 \frac{x^2}{2}$ 的等价无穷小是(D)
- **A.** 0.

B. $-\frac{x^2}{4}$.

C. $\frac{x^3}{6}$.

- **D.** $-\frac{x^4}{8}$.
- 5. 设函数 f(x) 连续,且 $f(x) = \frac{x}{\sqrt{1+x^2}} + x \int_0^1 f(t) dt$,则 $\int_0^1 f(t) dt = (D)$
- **A.** $\ln(1+\sqrt{2})$.

B. $2 \ln(1 + \sqrt{2})$.

C. $\sqrt{2} - 1$.

- **D.** $2\sqrt{2}-2$.
- 6. 设函数 $f(x) = \begin{cases} \frac{1 \cos x}{x}, & x < 0 \\ e^x 1, & x \ge 0 \end{cases}$, 则 f(x) 在点 x = 0 处 (B)
- A. 不连续.

- B. 连续,不可导.
- C. 可导,且 $f'(0) = \frac{1}{2}$.
- **D**. 可导,且 f'(0) = 1.

7. 设函数 y = y(x) 由方程 $e^{y} + 6xy + x^{2} - 1 = 0$ 所确定,则 y''(0) = (A)

A. -2.

B. 2.

C. −3.

8. $\lim_{x\to 0} (1+\ln(1+x))^{\frac{2}{x}} = (C)$

A. ∞ .

C. e^2 .

D. e^{-2} .

9. 设函数 $f(x) = x^{\frac{5}{3}}$,则(C)

- **A.** 函数 f(x) 有极值点 x = 0, 曲线 y = f(x) 有拐点 (0,0).
- B. 函数 f(x) 有极值点 x = 0, 曲线 y = f(x) 没有拐点.
- C. 函数 f(x) 没有极值点,曲线 y = f(x) 有拐点 (0,0).
- **D**. 函数 f(x) 没有极值点,曲线 y = f(x) 没有拐点.
- 10. 下列各定积分不等于零的是(C)
- **A.** $\int_{-1}^{1} \cos x \ln \frac{2-x}{2+x} dx$. **B.** $\int_{-1}^{1} \frac{x \cos^3 x}{x^4 + 3x^2 + 2} dx$.

- C. $\int_0^{9\pi} \sin^9 x \, dx$. D. $\int_{-1}^1 \frac{e^x e^{-x}}{e^x + e^{-x}} \, dx$.

A 卷第二题, B 卷第三题(14分)

计算
$$\lim_{x\to 0} \frac{\int_0^{\sin x} \sin t^2 dt}{(\sqrt[3]{1+\sin^3 x}-1)(3+\sin x)}$$
.

解 原式=
$$\lim_{x\to 0} \frac{\int_0^{\sin x} \sin t^2 dt}{\frac{\sin^3 x}{3} \cdot 3} = \lim_{x\to 0} \frac{\int_0^{\sin x} \sin t^2 dt}{x^3}$$

$$=\lim_{x\to 0}\frac{\sin(\sin x)^2\cdot\cos x}{3x^2}=\frac{1}{3}.$$

A 卷第三题, B 卷第二题(14分)

(工数) 求微分方程
$$\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{e^x \cos x}{1+x^2}$$
 的通解.

$$\mathbf{FF} \quad y = e^{-\int \frac{2x}{1+x^2} dx} \left(\int \frac{e^x \cos x}{1+x^2} e^{\int \frac{2x}{1+x^2} dx} dx + C \right)
= \frac{1}{1+x^2} \left(\int \frac{e^x \cos x}{1+x^2} (1+x^2) dx + C \right)
= \frac{1}{1+x^2} \left(\int e^x \cos x dx + C \right)
= \frac{1}{1+x^2} \left(\frac{1}{2} e^x (\cos x + \sin x) + C \right).$$

A 卷第三题, B 卷第二题(14分)

(高数, 微积分) 求微分方程 $y'' + y' - 6y = (x+1)e^{2x}$ 的通解.

解 特征方程 $\lambda^2 + \lambda - 6 = 0$, 特征根 $\lambda_1 = 2$, $\lambda_2 = -3$,

对应的齐次方程的通解 $y = c_1 e^{2x} + c_2 e^{-3x}$.

设原方程的特解 $y^* = x(ax+b)e^{2x} = (ax^2+bx)e^{2x}$, 则

$$y^{*'} = (2ax^2 + (2a + 2b)x + b)e^{2x}$$
, $y^{*''} = (4ax^2 + (8a + 4b)x + (2a + 4b))e^{2x}$,

代入原方程整理,得 10ax + (2a + 5b) = x + 1,

所以
$$a = \frac{1}{10}, b = \frac{4}{25}$$
,

特解
$$y^* = \left(\frac{1}{10}x^2 + \frac{4}{25}x\right)e^{2x}$$
,

原方程通解
$$y = \left(\frac{1}{10}x^2 + \frac{4}{25}x\right)e^{2x} + c_1e^{2x} + c_2e^{-3x}$$
.

A 卷第四题, B 卷第五题(12分)

四、(12 分) 设由曲线 $y = x^2 - 2x(1 \le x \le 2)$,直线 y = 0 及 x = 1 所围成的平面图形为 D_1 ;由曲线 $y = x^2 - 2x(2 \le x \le 3)$,直线 y = 0 及 x = 3 所围成的平面图形为 D_2 . (1) 求 D_1 的面积 A.

(2) 求 D_2 绕y轴旋转一周所形成的旋转体的体积V.

$$A = \int_{1}^{2} (2x - x^{2}) dx = \left(x^{2} - \frac{1}{3} x^{3} \right) \Big|_{1}^{2} = \frac{2}{3}.$$

(2)
$$V = \int_{2}^{3} 2\pi x (x^{2} - 2x) dx = 2\pi \left(\frac{1}{4}x^{4} - \frac{2}{3}x^{3}\right)\Big|_{2}^{3} = \frac{43}{6}\pi$$
. (柱壳法)

或
$$V = 27\pi - \int_0^3 \pi \left(1 + \sqrt{1 + y}\right)^2 dx = \frac{43}{6}\pi$$
. (截面法)

A 卷第五题, B 卷第四题(12分)

五、(12分)设a为实数,讨论方程 $\ln^4 x - 4 \ln x + 4x - a = 0$ 的实根个数.

解 令 $f(x) = \ln^4 x - 4 \ln x + 4x - a$, $x \in (0, +\infty)$, 则 f(x) 可导,且

$$f'(x) = \frac{4\ln^3 x}{x} - \frac{4}{x} + 4 = 4 \cdot \frac{\ln^3 x - 1 + x}{x},$$

$$f'(1) = 0$$
,

 $x \in (0,1)$ 时, f'(x) < 0 , f(x) 单调减少;

 $x \in (1, +\infty)$ 时, f'(x) > 0 , f(x) 单调增加;

f(1) = 4 - a 为 f(x) 的极小值.

又注意到 $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to +\infty} f(x) = +\infty$, 所以

- (1) 当 $^{4-a<0}$, 即 $^{a>4}$ 时, 方程有两个实根;
- (2) 当4-a=0, 即a=4时, 方程有唯一实根;
- (3) 当4-a>0,即a<4时,方程没有实根.

A 卷第六题, B 卷第六题 (8 分)

六、(8分) 设函数
$$f(x)$$
 可导,且 $f'(x) = \arcsin(x-1)^2$, $f(0) = 0$,求 $I = \int_0^1 f(x) \, dx$.

解 $f(x) = f(0) + \int_0^x f'(t) \, dt = \int_0^x \arcsin(t-1)^2 \, dt$,
$$I = \int_0^1 f(x) \, dx = x f(x) \Big|_0^1 - \int_0^1 x f'(x) \, dx = f(1) - \int_0^1 x \arcsin(x-1)^2 \, dx$$

$$= \int_0^1 (1-x) \arcsin(x-1)^2 \, dx = \int_0^1 t \arcsin t^2 \, dt \quad (t=1-x)$$

$$= \frac{1}{2} \int_0^1 \arcsin u \, du \quad (u=t^2)$$

$$= \frac{1}{2} \left(u \arcsin u \Big|_0^1 - \int_0^1 \frac{u}{\sqrt{1-u^2}} \, du \right)$$

$$= \frac{1}{2} \left(\frac{\pi}{2} - 1 \right) = \frac{\pi}{4} - \frac{1}{2} \, .$$

191 级队工科数学第一次模拟测试

(测试时间 120 分钟,解答题需有必要的文字说明)

一. 填空题 (每题 6 分, 共 30 分)

1. 已知下列数列: (1)
$$x_n = 2 + \frac{1}{n^2}$$
; (2) $x_n = \frac{2^n - 1}{3^n}$; (3) $x_n = n(-1)^n$; (4) $x_n = n - \frac{1}{n}$;

(5) $x_n = [(-1)^n + 1] \frac{n+1}{n}$, 当 $n \to \infty$ 时,是收敛数列的有_____,其中较小的极限 值为____。

二阶导数 ν'' =

4.
$$\lim_{x \to \infty} (\sin^2 \frac{1}{x} + \cos \frac{1}{x})^{x^2} = _____;$$
 已知 $\lim_{x \to 0} \frac{\sqrt{1 + f(x)\sin 2x} - 1}{e^{3x^2} - 1} = 2$, 则 $\lim_{x \to 0} \frac{f(x)}{x} = _____$

5.
$$\forall y = y(x)$$
 满足 $y'' + (x-1)y' + x^2y = e^x$ 且 $y(0) = 0, y'(0) = 1$, 则

二. 选择题(每题4分, 共20分)

1. 已知: $e^x = \frac{1}{2}x^2 + x + 1 + o(x^2)$, 当 $x \to 0$ 时,若 $e^x - (ax^2 + bx + 1)$ 是比 x^2 高 阶的无穷小,则a.b的值为()

A.
$$\frac{1}{2}$$
, 1 B. 1, 1 C. $-\frac{1}{2}$, 1 D. -1, 1

A. 存在 δ > 0及X > 0, f(x)在(0, δ)内有界, 在(X, + ∞)内无界

B. 存在 $\delta > 0$ 及X > 0,f(x)在 $(0, \delta)$ 内无界,在 $(X + \infty)$ 内有界

C. 对任意X > 0,f(x)在(0,X)内有界,在 $(X, +\infty)$ 内无界

- D. f(x)在(0,+∞)内有界
- 3. 下列说法正确的是()
- A. 函数在某点有极限,则函数必有界
- B. 若数列有界,则数列必有极限

- C. 若 $\lim_{h\to 0} \frac{f(2h)-f(-2h)}{h} = 2$, 则函数在 0 处必有界
- D. 函数在 x_0 处可导,则在 x_0 处必连续
- 4. 函数f(x)在[a,b]上有定义,在(a,b)内可导,则()
- A. 当 $f(a) \bullet f(b) < 0$ 时,存在 $\xi \in (a,b)$,使 $f(\xi) = 0$
- B. 对任何 $\xi \in (a,b)$,有 $\lim_{x \to \xi} [f(x) f(\xi)] = 0$
- D. 存在 $\xi \in (a, b)$, $(b-a) = f'(\xi)(b-a)$
- 5. 下列命题:
- (1)设|f(x)|在 $x = x_0$ 连续,则f(x)在 $x = x_0$ 必连续
- (2)设 $\lim_{h\to 0} [f(x_0+h)-f(x_0-h)]=0$,则f(x)在 $x=x_0$ 必连续
- (3)设f(x)在 $x=x_0$ 连续,g(x)在 $x=x_0$ 不连续,则f(x)g(x)在 $x=x_0$ 必不连续
- (4)设f(x)与g(x)在 $x = x_0$ 都不连续,则f(x) + g(x)在 $x = x_0$ 必不连续其中正确的命题个数为()
- A. 0
- B. 1
- C. 2
- D. 3
- 三. (10 分) (1) 用极限的定义证明: $\lim_{x\to\infty} \frac{1+x^3}{2x^3} = \frac{1}{2}$.
- (2) 证明: $\lim_{n \to \infty} n \cdot (\frac{1}{n^2 + \Pi} + \frac{1}{n^2 + 2\Pi} + \dots + \frac{1}{n^2 + n\Pi}) = 1$

- 四.(10分)近似计算下列数的值(精确到小数点后4位).
- $(1) \sqrt[3]{1.02}$
- (2) ln 1.002

五. 已知常数 $x > 0, b \neq 0$,且 $\lim_{x \to 0} \frac{\sqrt{1+ax} + \sqrt[3]{1+bx} - 2}{x^2} = -\frac{3}{2}$,求a与b的值.

六. $(10 \, \text{分})$ (1) 证明方程 $x^5 + x - 1 = 0$ 只有一个正根. (2) 证明当x > 1时, $e^x > e \bullet x$.

七. (10分) 求下列极限值.

$$(1) \lim_{x \to 0} \frac{e^{\tan x} - e^x}{x - \sin x}$$

$$(2)\lim_{x\to 0}\frac{1}{x^3}\left[\left(\frac{2+\cos x}{3}\right)^x-1\right]$$