

THIAGARAJAR COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SMART FARMER – IOT ENABLED SMART FARMING APPLICATION

TEAM-ID: PNT2022TMID21246

TEAM DETAILS

TEAM-ID: PNT2022TMID21246

TEAM MEMBERS

REG. NO.	IBM REG. NO.	NAME
19C001	917719C001	ABIRAMIPRIYA J
19C040	917719C040	KALAISELVI S
19C042	917719C042	KAVIYA D
19C048	917719C048	LAVANYA R

ABSTRACT

The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Agriculture is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. Modern agronomy, plant breeding, agrochemicals such as pesticides and fertilizers, and technological developments have sharply increased crop yields, but cause ecological and environmental damage. Agriculture is the backbone of Indian Economy. The improvement of agriculture sector provides enormous opportunities for common folks, business people. So, in order to improve the farming methods, we use technology (Iot applications) rather than modern technology. This helps in providing precise condition of the farms which include temperature, humidity, range, soil conditions. This information when known to famers beforehand or to owners in their remote location helps them to improve the field and the farming conditions. The improved farming method thus result in increase in output

Farming is a complex, unpredictable and individual business.

Content

CHAPTER	TITLE	PAGE NO
1	Introduction	1
2	Literature Survey	2
3	Ideation and proposed solution	4
4	Requirement analysis	10
5	Project design	11
3		11
6	Project planning and scheduling	18
7	Coding and solutioning	23
8	Testing	28
9	Results	29
10	Advantages and Disadvantages	30
11	Conclusion	32
12	Future scope	34
13	Appendix	38

1. INTRODUCTION

Fig.1.1. IoT based smart farming

1.1 Project Overview

The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Agriculture is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities.

Modern agronomy, plant breeding, agrochemicals such

as pesticides and fertilizers, and technological developments have sharply

increased crop yields, but cause ecological and environmental damage.

1.2 Purpose

Agriculture is the practice of cultivating natural resources to sustain human life and provide economic gain. It combines the creativity, imagination, and skill involved in planting crops and raising animals with modern production methods and new technologies.

Agriculture is also a business that provides the global economy with commodities: basic goods used in commerce, such as grain, livestock, dairy, fibre, and raw materials for fuel. Even though many modern approaches take place to make an effective agriculture practice. There are still problems that are faced by farmers in their daily life such as, unpredictable climate changes, adapting new technology, and monitoring each work about their agricultural land. Farming is a complex, unpredictable and individual business.

2. LITERATURE SURVEY

2.1 Existing problem

S.NO	PAPER	AUTHOR NAME	PUBLICA	RESULTS
	TITLE		TION	
			YEAR	
1.	Machine	MWP Maduranga,		To improve productivity of
	learning	Ruvan Abeysekera		agriculture through intelligent farm
	applications			management, the data analyzing must

	in IoT based			be well analyzed and processed.
	agriculture		2020	High-performance computing
	and smart			capability in ML opens up new
	farming			opportunities for data-intensive
				science as the amount of data
				collected increases; In this article we
				review existing approaches have been
				made to the smart agriculture and
				farming based on IoT and ML
				separately. Also, we propose novel
				concepts that how can ML-IoT can be
				blended in such applications.
2.	A Survey	Muhammad Shoaib		A sensor performs multiple tasks like
	on the Role	Farooq, Shamyla		soil sensing, temperature sensing,
	of IoT in	Riaz, Adnan Abid,		weather sensing, light sensing, and
	Agriculture	Kamran Abid,		moisture sensing. Similarly, devices
	for the	Muhammad Azhar		perform many control functions like,
	Implementa	Naeem	2019	node discovery, device identification
	tion of			and naming services etc. All these
	Smart			functions are performed by any
	Farming			device or sensor which is controlled
				through a microcontroller.
3.	Smart	Anand Nayyar,		The aim/objective of this paper is to
	farming:	Vikram Puri		propose a Novel Smart IoT based
	IoT based			Agriculture Stick assisting farmers in
	smart			getting Live Data (Temperature, Soil
	sensors		2016	Moisture) for efficient environment
	agriculture			monitoring which will enable them to
	stick for			do smart farming and increase their

	live			overall yield and quality of products.
	temperature			The product being proposed is tested
	and			on Live Agriculture Fields giving
	moisture			high accuracy over 98% in data
	monitoring			feeds.
	using			
	Arduino,			
	cloud			
	computing			
	& solar			
	technology			
4.	IoT based	Neha Kailash		A crop irrigation management system
	intelligent	Nawandar, Vishal		with sensor data fetch, transfer and
	irrigation	Satpute		operate functionalities is proposed to
	support		2019	meet the expectations. The system
	system for			comprises of sensing, data processing
	smart			and actuator sections, with a network
	farming			of ambient temperature and humidity
	applications			at a height and soil moisture sensor
				placed at the root zone of the subject.
				Results show that there is tolerable
				error in the reconstructed data and
				62.5% and 67.5% compression is
				achieved for ambient temperature,
				humidity and soil moisture
				respectively.
5.	IOT based	C Mageshkumar,		This project includes the various
	smart	KR Sugunamuki		features like soil moisture sensor,
	farming		2020	temperature sensor, humidity sensor

comparison and Athanasios research challenges of IoT Glaroudis, and Athanasios collection and management offered by IoT is based on several factors of the underlying communication network architecture and technology, one of the most important being the		G.			for facilitate the irrigation in proper way. Various sensor nodes are deployed at different locations in the farm to automate the irrigation anytime anywhere. This project will be more helpful for the farmer's welfare.
	6.	and research challenges of IoT application protocols for smart	Athanasios Iossifides, Periklis	2020	by IoT is based on several factors of the underlying communication network architecture and technology, one of the most important being the application-level protocol that is used among IoT nodes, gateways, and application servers. Furthermore, it provides a comparison among them, in terms of well-accepted key performance indicators and comments on their suitability in the framework of smart farming as well as the corresponding challenges that must be faced towards their efficient

Table 2.1. Existing solutions

2.2 References

- https://ieeexplore.ieee.org/Xplore/home.jsp
- https://link.springer.com/

2.3 Problem Statement Definition

Our problem statement is to reduce manual works of the farmer by monitoring and controlling the agricultural lands.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Fig 3.1. Empathy map

3.2 Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Selectthe Problem Statement
We have followed the first step of brainstorming; we have discussed as a team todecide a problem statement.

Fig 3.2. Brainstorming

As per the guideline the following is done

- Team gathering
- Collaboration
- Deciding the problem statement

Step-2: Brainstorm, Idea Listing and Grouping

TEAM MEMBER	MEMBERS	IDEAS
	OPNION	

KALAI SELVI S	MAY GIVE TRY	Collecting various sensor values and reporting to the farmer through website
LAVANYA R	GOOD	Collecting values from sensors and gives alarm through buzzers when the threshold is met.
KAVIYA D	BEST	Collecting various sensor values and reporting to the farmer through application
ABIRAMIPRIYA J	COSTLY	Automatic irrigation control (on and off) and other actions should be done automatically.

Table 3.1. Ideas of all the teammates

By grouping ideas,

- We have planned to use moisture sensor, humidity sensor for detection.
- The values when surpasses the threshold value will send a notification to farmer.
- The notification is also sent in case of emergencies.

Step-3: Idea Prioritization:

Prioritization Matrix

Fig 3.3. Prioritization matrix

- 1) Using sensors like humidity, moisture sensor in order to detect the nature of crops.
- 2) The sensors are connected to IOT application in order notify the farmers.
- 3) Use other sensors if required for the crops, like tea plantations.
- 4) Using automation without the knowledge of famers or human resource.

3.3 Proposed Solution

S.NO.	PARAMETER	DESCRIPTION	
1.	Problem Statement	Designing an IoT enabled smart farming application that is used for	
		automating agriculture and sending notifications to farmers when	
		the threshold level is met.	
2.	Idea /	Our solution for smart farming system includes	
	Solution	Our system includes a humidity sensor and moisture	
	description	sensor to detect the current soil conditions and to know	
		whether there are any deviations from the pre-determined	
		threshold.	
		If a particular threshold is met in the water level, then the	
		servo motor is automatically ON or OFF.	
		 Notifications regarding the soil conditions and the moisture 	
		level will be sent to the farmer using blink app.	
3.	Novelty /	Preceding system's objectives:	
	Uniqueness	> In the prior systems, the main objective is to switch onor off	
		the servo motor based on the pre-determined threshold.	
		> The farmer will not be able to know about what is	
		happening in the field.	
		Proposed system's objective:	
		> We will be designing a system in which the notifications	
		regarding the water level and the soil conditions will be sent	
		to the farmer directly using blink app.	

4. Social Impact / Customer

Social Impact:

Satisfaction

If there is no irrigation control, then the amount of water usage will increase and the water will be wasted for unnecessary purposes. Some crops will need less amount of water for their growth. In such cases if the irrigation control is not in the hands of the farmer, then the health of the crops will be spoilt.

> If the soil is not monitored continuously, the farmer willnot get profit in the yield.

Customer Satisfaction:

The main objectives of this proposed solution are

- User-friendly Easy access for the farmer with the helpof notifications.
- Flexible Check status of the water level and soil conditions under all the conditions.

5. Business Model (Revenue Model)

Fig 3.4. Technical architecture

	1	
		DESCRIPTION OF THE TECHNICAL ARCHITECTURE:
		 Sensors values can be viewed by the farmers using their mobile phones. Notifies the farmer when the random values cross the
		threshold value.
6.	Scalability of	❖ The solution can be easily expandable to larger fields by
	theSolution	deploying sensors wherever needed. The values would be
		read and based on the threshold, warnings and notifications
		could be given to the farmer.
		 By using GSM modules, the farmer gets notifications
		quickly and the automation can also be done without any
		manual interruption.
	·	Table 2.2 Droposed solution

Table 3.2. Proposed solution

3.4 Problem Solution fit

Fig 3.5. Problem fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story/Sub-Task)
	(Epic)	
FR – 1	Timely Updated with	The notifications shown to the farmers with respect to
	propernetwork	the information gathered from various sensors must be
	connection	an updated version with respect to time. The farmers will
		get information simultaneously after getting updated.
FR-2	User Understandable	The information displayed to the farmers must be
		understandable in terms of the words that are being used.
FR – 3	Distinct visibility	The information should be quite large for the users to
		read clearly. The sensor values and the words used
		must be of appropriate size, so that it will be clear to the
		farmers.

Table 4.1. Functional requirements

4.2 Non-Functional requirements

Following is the Non-Functional Requirements of the proposed solution

FR No.	Non-Functional Requirements	Description
NFR – 1	Reliability	The notifications of the sensor values should
		display correct and errorless information.

NFR – 2	Security	The information should be made secure so that it
		could not be manipulated by any other person.
NFR – 3	Usability	The information must be able to update whenever
		and wherever required
NFR – 4	Performance	The system should be able to update itself
		properly attimes of fatal conditions and provide
		necessary driving measures.
NFR – 5	Availability	The system must be made available 24/7 in order
		to provide uninterrupted service to the farmer.
NFR – 6	Scalability	The system should be compatible with the
		developed specifications and be open for future
		upgradations

Table 4.2. Non – functional requirements

5. PROJECT DESIGN

5.1 Data Flow Diagrams

Data flow process:

- The user logs in into the application using credentials used while registering, choose indashboard to access information about crops or experts' advice.
- The sensors placed in the soil send its data about the condition of the soil.
- Sensors send information about condition of humidity in air.
- Sensors send information about the condition of co2 level etc.
- The threshold value is present for the condition of crop, soils etc.

- The decision is on whether to display daily updates or alert as notification depends on the condition of thefarm.
- Notification is sent on both the occasions depending on the situation.
- If the condition of the farm far exceeds the threshold value, it alerts the user to take action.
- If not, the daily updates are displaced along with the suggestions if necessary.

Fig 5.1. Dataflow diagram

5.2 Solution & Technical Architecture

Solution Architecture:

• The smart fire management system includes a Gas sensor, Flamesensor and temperature sensors to detect any changes in the environment.

- Based on the temperature readings and if any Gases are present the exhaust fans are powered ON.
- If any flame is detected the sprinklers will be switched on automatically.
- Emergency alerts are notified to the authorities and Fire station.

Fig 5.2. Solution architecture

Technical stack:

Components	Description	Technology
User interface	User interface with the	HTML, CSS,
	equipment using mobileapp,	JavaScript /AngularJS/
	web UI	React JS
Appl cat on logic 1	Logic for detecting the status of the	python
	sensors	

Appl cat on logic 2	Logic for detecting the level of water	Arduino IDE
Appl cat on logic 3	Logic for controlling process of irrigation system	Raspberry pi
Cloud data base	Database Service on Cloud	IBM DB2, IBM Cloudant, IBMWatson, Node red service
File storage	File storage requirements	IBM Block Storage or OtherStorage Service or Local Filesystem

Table 5.1. Components and technologies

Characteristics	Description	Technology
Throughout	High Efficiency is	Using IOT
	achieved	
Scalability	To accommodate	Update can be made
	futurechanges in use	easily using mobile app
	and occupancy	

Table 5.2. Application Characteristics

5.3 User Stories

User	Functional	User	User Story /	Acceptance	Priority	Release
Туре	Requireme	Story	Task	criteria		
	nt (Epic)	Numbe				
		r				
Customer	Registration	USN-1	As a user, I can	I can access my	High	Sprint-1
(Farmer)			register for the	account / dashboard		

		application by			
		entering my email,			
		password, and			
		confirming my			
		password.			
	USN-2	As a user, I can	I can get necessary	Medium	Sprint-2
		register the type of	details about crop		
		crops in the farm			
	USN-3	As a user, I can	I can know about	High	Sprint-1
		obtain real time	constraints in ph of		
		updates of the	soil and health of		
		crops and soil	crop		
	USN-4	As a user, I can	I can act efficiently	High	Sprint-1
		receive emergency	in case of		
		notification in case	emergency		
		of emergency			
	USN-5	As a user, I can	Efficient output of	High	Sprint-1
		receive experts	crop		
		advise in time of			
		need			
Login	USN-6	As a user, I can use	I can log into	High	Spirint-2
		the applicationby	application		
		entering mail and			
		password			
Dashboard	USN-6	As a user, I can	I can select among the	Medium	Spirint-2
		choose among the	given expert and		
		experts for	crops		
		discussion and			
		information about			
		crops registered			

Custo	Generating	USN-7	As a user, I am	Better information	High	Spirint-1
mer	Data		able to get	about crop and		
(Appli			information about	experts from		
cation			the crops and get	application		
user)			experts advice			
			regarding the crops			
			condition			
	Notification	USN-8	As a user,I can	I can receive	High	Spirint-1
			get	notification		
			notification			
			updates of			
			crops			
			condition and			
			notification			
			incase of			
			emergency			
Customer	Efficient care	USN-9	As an executive, I	Efficient crop output	High	Spirint-2
Care	of crops		can help the			
Exec			farmers use the			
utive			application to			
			nourish the crops			
			better			
Administ	Administering	USN-10	As an admin, I can	Easy Administration	High	Spirint-2
rator	the cropdata		get through	of data when data is		
			the interface and	updated		
			administer thedata			
			functionality			
	Notification	USN-11		Timely notifications	High	Spirint-2
			timely updates of			
			crops and alert in			
			case of notification			

Table 5.3. User stories

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Product Backlog, Sprint Schedule, and Estimation:

Sprint	Functional	User	User Story / Task	Story	Priority
	Requirement	Story		Points	
	(Epic)	Number			
Sprint-1	Registration	USN-1	As a user, I can register for	5	High
			the application by entering		
			my email, password, and		
			confirming my password.		
Sprint-1		USN-2	As a user, I will receive	5	High
			confirmation email once I		
			have registered for the		
			application		
Sprint-1		USN-3	As a user, I can register for the	5	Medium
			application through Gmail		
Sprint-1	Login	USN-4	As a user, I can log into the	5	High
			application by entering email &		
			password		
Sprint-2	Dashboard	USN-5	As a user, I can see		High
			the status of the		
			temperature in the		
			dashboard.		

Sprint-2	Dashboard User	USN - 11	Administrator designing the	1	Medium
	Interface		user interface	0	
Sprint-3		USN-6	As a user I can see the status	1	High
			of the water level in the	0	
			irrigation system.		
Sprint-3		USN-7	As a user, I can log out my	1	Medium
			account in settings.	0	
Sprint-4		USN-8	As a user, I can see my	1	Medium
			daily updates in account	0	
			settings.		
Sprint-4	Mobile	USN-9	Solve issues brought up by		Medium
	application /		client	5	
	web				
	application				
Sprint-4		USN-10	Roll out updates and bug fixes	5	High

Table 6.1. Estimation chart

Project Tracker, Velocity & Burndown Chart:

Sprint	Total			Sprint	Story Points	Sprint
	Story	Duration	Sprint Start	End	Completed	Release
	Points		Date	Date	(as on	Date
				(Planne	Planned End	(Actual)
				d)	Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022

Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Table 6.2. Burndown chart

6.2 Sprint Delivery Schedule

TITLE	DESCRIPTION	DATE
Literature	Literature survey on theselected project &	19 SEPTEMBER 2022
Survey &	gathering information byreferring the,	
Information	technical papers, research publications etc.	
Gathering		
Prepare Empathy	Prepare Empathy Map Canvas to capture the	19 SEPTEMBER 2022
Map	userPains & Gains, Prepare listof problem	
	statements	
Ideation	List the by organizing the brainstorming	19 SEPTEMBER 2022
	session and prioritize the top 3 ideas based on	
	the feasibility & importance.	
Proposed Solution	Prepare the proposed solutiondocument, which	19 SEPTEMBER 2022
	includes the novelty, feasibility of idea, business	
	model, social impact, scalability of solution, etc.	
	Prepare problem - solution fitdocument.	19 SEPTEMBER 2022
Problem Solution	r repare problem - solution indocument.	
Fit		

	Prepare solution architecturedocument.	19 SEPTEMBER 2022
Solution		
Architecture		
Customer Journey	Prepare the customer journey maps to understand	3 OCTOBER 2022
	the user interactions & experiences with the	
	application (entry to exit).	
	Prepare the functional requirement document.	3 OCTOBER 2022
Functional		
Requirement		
Data Flow	Draw the data flow diagrams and submit for	3 OCTOBER 2022
Diagrams	review.	
	Prepare the technology architecture diagram.	3 OCTOBER 2022
Technology Stack		
	Prepare the milestones & activity list of the	1 NOVEMBER 2022
Prepare Milestone	project.	
& Activity List		
	Develop & submit the developed code by testing	19 NOVEMBER 2022
Project	it.	
Development -		
Delivery of Sprint-		
1, 2, 3 & 4		

Table 6.3. Sprint delivery schedule

6.3 Reports from JIRA

Fig 6.1. JIRA report

7.CODING AND SOLUTION:

The python code used in the project is as follows:

```
import time
import random
#import ibmiotf.application
import ibmiotf.device
import sys
config={
    "org":"5dxn3m",
    "type" :"abcd",
    "id":"123",
```

```
"auth-method":"token",
  "auth-token":"123456789"
}
client= ibmiotf.device.Client (config)
client.connect()
def myCommandCallback (cmd):
  a=cmd.data
  if len(a["command"])==0:
    pass
  else:
    print(a["command"])
def pub (data):
  client.publishEvent (event="status", msgFormat="json",data=data, qos=0)
  print("Published data Successfully: %s",data)
while True:
  s=random.randint(0,100)
  h=random.randint(0,100)
  t=random.randint(0,100)
  data={"sm":s,"hum":h,"temp":t}
  pub(data)
  time.sleep(5)
client.commandCallback = myCommandCallback
client.disconnect()
```

ON TESTING RESULTS:

```
Connected successfully: d:5dxn3m:abcd:123
```

Published data Successfully: %s {'sm': 46, 'hum': 13, 'temp': 92}

Published data Successfully: %s {'sm': 2, 'hum': 17, 'temp': 52}

Published data Successfully: %s {'sm': 98, 'hum': 3, 'temp': 54}

Published data Successfully: %s {'sm': 86, 'hum': 100, 'temp': 17}

Published data Successfully: %s {'sm': 40, 'hum': 37, 'temp': 85}

Published data Successfully: %s {'sm': 92, 'hum': 54, 'temp': 96}

Published data Successfully: %s {'sm': 92, 'hum': 92, 'temp': 80}

Published data Successfully: %s {'sm': 66, 'hum': 31, 'temp': 67}

Published data Successfully: %s {'sm': 57, 'hum': 0, 'temp': 43}

Published data Successfully: %s {'sm': 69, 'hum': 1, 'temp': 48}

Published data Successfully: %s {'sm': 45, 'hum': 56, 'temp': 25}

Published data Successfully: %s {'sm': 41, 'hum': 40, 'temp': 31}

Published data Successfully: %s {'sm': 94, 'hum': 77, 'temp': 69}

Published data Successfully: %s {'sm': 80, 'hum': 65, 'temp': 59}

Published data Successfully: %s {'sm': 57, 'hum': 78, 'temp': 22}

Published data Successfully: %s {'sm': 31, 'hum': 97, 'temp': 26}

Published data Successfully: %s {'sm': 80, 'hum': 57, 'temp': 54}

Published data Successfully: %s {'sm': 65, 'hum': 49, 'temp': 22}

Published data Successfully: %s {'sm': 71, 'hum': 32, 'temp': 81}

Published data Successfully: %s {'sm': 83, 'hum': 53, 'temp': 44}

Published data Successfully: %s {'sm': 55, 'hum': 25, 'temp': 32}

Published data Successfully: %s {'sm': 0, 'hum': 76, 'temp': 55}

Published data Successfully: %s {'sm': 27, 'hum': 65, 'temp': 3}

Published data Successfully: %s {'sm': 30, 'hum': 76, 'temp': 94}

Published data Successfully: %s {'sm': 35, 'hum': 89, 'temp': 3}

Published data Successfully: %s {'sm': 87, 'hum': 97, 'temp': 54}

Published data Successfully: %s {'sm': 73, 'hum': 71, 'temp': 41}

Published data Successfully: %s {'sm': 66, 'hum': 95, 'temp': 100}

Published data Successfully: %s {'sm': 16, 'hum': 70, 'temp': 72}

Published data Successfully: %s {'sm': 34, 'hum': 32, 'temp': 94}

Published data Successfully: %s {'sm': 46, 'hum': 81, 'temp': 28}

Published data Successfully: %s {'sm': 52, 'hum': 80, 'temp': 29}

FEATURES:

FEATURE 1: The first feature is the use of web application inoder to help farmer to have remote control over the field.

Fig. 7.1. Visual results in node red dashboard

Fig. 7.2. Coding results

FEATURE 2:

The other feature is to have the sensor information available anywhere when the farmer wishes to view it. (i.e) MOBILE APP

Fig. 7.3. Results in MIT App

8.TESTING AND USE CASES:

The python code generate the following ,when executed thus resulting as follows

TEST CASES:

Fig 8.1. Python code

MOTOR OFF: Published data Successfully: %s {'sm': 90, 'hum': 41, 'temp:26} Published data Successfully: %s {'sm': 18, 'hum': 4, 'temp': 86}

MOTOR ON: Published data Successfully: %s {'sm': 17, 'hum': 5, 'temp': 50}

Published data Successfully: %s {'sm': 29, 'hum': 47, 'temp': 32}

USE CASES:

Fig 8.2. Use cases of smart farming

The use case of the device is for farmers. It provides immense help in the following ways:

- 1) Remote monitoring
- 2) Alert with precise timing (APP)
- 3) Make alterations based on the condition proposed by the sensors
- 4) Improve the efficiency of the farming
- 5) Cost effective
- 6) Increase in output
- 7) Reduction of labour

9.RESULT:

The end result of the problem is a SMART FARMING APPLICATION (IOT DEVICE), the application which has its connection with Iot sensors.

Fig 9.1. Results of smart farming application

The performance metric in order to measure the device performance is done by following:

1)SERVICE VALUE: The service provided by the device and the availability of the service. The service value of the end product is EXCELLENT as the app always shows the farmer, condition of the land and crops

2)ACTIVE USERS: The active users of the product are the farmers or owners who wish to have remote knowledge of the condition in field.

3)VALUE OFFERED: The value offered to the world is the product of the above two values for the device.

PERFROMANCE = SERVICE VALUE * ACTIVE USERS

Hence the device performance is measured by the service or amount of time the device is up and the active users (farmers or owners) using the app as well as web application.

10.ADVANTAGES AND DISADVANTAGES:

Fig. 10.1. Agriculture advantages

The main advantage of the product is its functionality able to solve the problem faced by the farmers.

1) The smart iot based farming application helps farmers to know about the precise condition in the farm

- 2) To be able to control the field remotely.
- 3) To make necessary further improvements in the field by knowing the precise condition incase of humidity,temperature etc..
 - 4)To increase the output

Some disadvantages include:

- 1)Inorder to use to product farmers should have basic awareness about technology
- 2)Farmers awareness about device should to spread inorder to increase the active users

11.CONCLUSION:

The solution to reduce the labour work and to control some functionalities remotely, the best option available is to be able to use iot devices to control over the field.

The method used to solve the problem is to be able to have control through a web application connected through node red ,and have information access through the app. The sensors available in the field provide the information on field condition. Thus the farmers will be able to improve the efficiency of farming .In the owners point of view ,they might be able to know about the condition of thier land at any point of time.

12.FUTURE SCOPE:

Fig. 12.1. Future scope of smart farming

The future scope of the product is to improve the information provided by the app. The improvement also includes the application which can be monitored or controlled remotely.

Other ways to improve the active users, which include the increase in number of active users, the service value of the device. It can be used to improve the business scope in the agriculture sector.

If the performance metrics is very high, then it will create a new market area which results in the increase of business opportunities in the IoT field.

13.APPENDIX:

SOURCE CODE:

```
import time
import random
#import ibmiotf.application
import ibmiotf.device
import sys
config={
    "org": "5dxn3m",
    "type" : "abcd",
    "id":"123",
    "auth-method": "token",
    "auth-token": "123456789"
}
client= ibmiotf.device.Client (config)
client.connect()
def myCommandCallback (cmd):
    a=cmd.data
    if len(a["command"]) == 0:
        pass
    else:
        print(a["command"])
def pub (data):
    client.publishEvent (event="status", msgFormat="json",data=data,
qos=0)
    print("Published data Successfully: %s",data)
while True:
    s=random.randint(0,100)
    h=random.randint(0,100)
    t=random.randint(0,100)
    data={"sm":s,"hum":h,"temp":t}
    pub (data)
```

```
time.sleep(5)
client.commandCallback = myCommandCallback
client.disconnect()
```

PROJECT DEMO LINK:

https://drive.google.com/drive/folders/1-ZIt7EyEpPTw4u98vrlkN1Gjm4SqrF4n