Bayesian Learning Lecture 4 - Predictions and decisions

Bertil Wegmann

Department of Computer and Information Science Linköping University

Lecture overview

Prediction

- Normal model
- More complicated examples

Decision theory

- ► The elements of a decision problem
- The Bayesian way
- Point estimation as a decision problem

Prediction/Forecasting

Posterior predictive density for future \tilde{y} given observed y

$$p(\tilde{\mathbf{y}}|\mathbf{y}) = \int_{\theta} p(\tilde{\mathbf{y}}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$$

If $p(\tilde{y}|\theta,y)=p(\tilde{y}|\theta)$ [not true for time series], then

$$p(\tilde{\mathbf{y}}|\mathbf{y}) = \int_{\theta} p(\tilde{\mathbf{y}}|\theta) p(\theta|\mathbf{y}) d\theta$$

■ Parameter uncertainty in $p(\tilde{y}|y)$ by averaging over $p(\theta|y)$.

Prediction - Normal data, known variance

Under the uniform prior $p(heta) \propto c$, then

$$p(\tilde{y}|y) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|y) d\theta$$
$$\theta|y \sim N(\bar{y}, \sigma^{2}/n)$$
$$\tilde{y}|\theta \sim N(\theta, \sigma^{2})$$

Simulation algorithm:

- **I** Generate a **posterior draw** of θ ($\theta^{(1)}$) from $N(\bar{y}, \sigma^2/n)$
- **2** Generate a predictive draw of \tilde{y} ($\tilde{y}^{(1)}$) from $N(\theta^{(1)}, \sigma^2)$
- 3 Repeat Steps 1 and 2 N times to output:
 - ► Sequence of posterior draws: $\theta^{(1)},, \theta^{(N)}$
 - ▶ Sequence of predictive draws: $\tilde{y}^{(1)}$, ..., $\tilde{y}^{(N)}$.

Predictive distribution - Normal model

- lacksquare $heta^{(1)} = \bar{y} + \varepsilon^{(1)}$, where $\varepsilon^{(1)} \sim N(0, \sigma^2/n)$. (Step 1).
- $\tilde{y}^{(1)} = \theta^{(1)} + v^{(1)}$, where $v^{(1)} \sim N(0, \sigma^2)$. (Step 2).
- $\tilde{y}^{(1)} = \bar{y} + \varepsilon^{(1)} + v^{(1)}$.
- lacksquare $arepsilon^{(1)}$ and $v^{(1)}$ are independent.
- The sum of two independent normal random variables is normal, so

$$\begin{split} E(\tilde{y}|\mathbf{y}) &= \bar{y} \\ V(\tilde{y}|\mathbf{y}) &= \frac{\sigma^2}{n} + \sigma^2 = \sigma^2 \left(1 + \frac{1}{n} \right) \\ \tilde{y}|\mathbf{y} \sim N \left[\bar{y}, \sigma^2 \left(1 + \frac{1}{n} \right) \right] \end{split}$$

Predictive distribution - Normal model and prior

- lacksquare $heta^{(1)}=\mu_n+arepsilon^{(1)}, heta$ where $arepsilon^{(1)}\sim extsf{N}(0, au_n^2).$ (Step 1).
- $\tilde{y}^{(1)} = \theta^{(1)} + v^{(1)}$, where $v^{(1)} \sim N(0, \sigma^2)$. (Step 2).
- $\tilde{\mathbf{y}}^{(1)} = \mu_n + \varepsilon^{(1)} + v^{(1)}$.
- lacksquare $arepsilon^{(1)}$ and $v^{(1)}$ are independent.
- The sum of two independent normal random variables is normal, so

$$E(\tilde{y}|y) = \mu_n$$

$$V(\tilde{y}|y) = \tau_n^2 + \sigma^2$$

$$\tilde{y}|y \sim N\left[\mu_n, \tau_n^2 + \sigma^2\right]$$

Predictive distribution - Normal model and prior

The mean from the law of iterated expectations:

$$E(\tilde{y}|y) = E[E(\tilde{y}|\theta, y)|y] = E[\theta|y] = \mu_n$$

The variance from the law of total variance:

$$\begin{split} V(\tilde{y}|y) &= E[V(\tilde{y}|\theta,y)|y] + V[E(\tilde{y}|\theta,y)|y] \\ &= E\left[\sigma^2|y\right] + V\left[\theta|y\right] \\ &= \sigma^2 + \tau_n^2 \\ &= \text{(Population variance + Posterior variance of θ)}. \end{split}$$

In summary:

$$\tilde{y}|y \sim N(\mu_n, \sigma^2 + \tau_n^2).$$

Bayesian prediction for time series

Autoregressive process

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + ... + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

Simulation algorithm Repeat *N* times:

- Generate a **posterior draw** of $\theta^{(1)} = (\phi_1^{(1)}, ..., \phi_p^{(1)}, \mu^{(1)}, \sigma^{(1)})$ from $p(\phi_1, ..., \phi_p, \mu, \sigma|y_{1:T})$.
- 2 Generate a **predictive draw** of future time series by:
 - 1 $\tilde{y}_{T+1} \sim p(y_{T+1}|y_T, y_{T-1}, ..., y_{T-p}, \theta^{(1)})$
 - 2 $\tilde{y}_{T+2} \sim p(y_{T+2}|\tilde{y}_{T+1}, y_T, ..., y_{T-p}, \theta^{(1)})$
 - $\tilde{y}_{T+3} \sim p(y_{T+3}|\tilde{y}_{T+2},\tilde{y}_{T+1},y_T,...,y_{T-p},\theta^{(1)})$
 - 4

Predicting auction prices on eBay

- Problem: Predicting the auctioned price in eBay coin auctions.
- Data: Bid from 1000 auctions on eBay.
 - ▶ The highest bid is not observed.
 - ➤ The lowest bids are also not observed because of the seller's reservation price.
- Covariates: auction-specific, e.g. Book value from catalog, seller's reservation price, quality of sold object, rating of seller, powerseller, verified seller ID etc
- Buyers are strategic. Their bids does not fully reflect their valuation. Game theory. Very complicated likelihood.

Simulating auction prices on eBay

- Simulate from posterior predictive distibution of the price in a new auction:
- **I** Simulate a draw $\theta^{(i)}$ from the posterior $p(\theta|\text{historical bids})$
- **2** Simulate the number of bidders conditional on $\theta^{(i)}$ (Poisson)
- 3 Simulate the bidders' valuations, $v^{(i)}$
- 4 Simulate all bids, $b^{(i)}$, conditional on the valuations
- **5** For $b^{(i)}$, return the next to largest bid (proxy bidding).

Predicting auction prices on eBay

Decision Theory

- Let θ be an unknown quantity. State of nature. Examples: Future inflation, Global temperature, Disease.
- Let $a \in \mathcal{A}$ be an action. Ex: Interest rate, Energy tax, Surgery.
- Choosing action a when state of nature is θ gives utility

$$U(a, \theta)$$

Alternatively loss $L(a, \theta) = -U(a, \theta)$.

Example: Umbrella 20 10
No umbrella 50 0

Decision Theory, cont.

- lacksquare Example loss functions when both a and heta are continuous:
 - ▶ Linear: $L(a, \theta) = |a \theta|$
 - **Quadratic**: $L(a, \theta) = (a \theta)^2$
 - ► Lin-Lin

$$L(a,\theta) = \begin{cases} c_1 \cdot |a - \theta| & \text{if } a \le \theta \\ c_2 \cdot |a - \theta| & \text{if } a > \theta \end{cases}$$

- Example:
 - ightharpoonup heta is the number of items demanded of a product
 - a is the number of items in stock
 - Utility

$$U(a,\theta) = \begin{cases} p \cdot \theta - c_1(a - \theta) & \text{if } a > \theta \text{ [too much stock]} \\ p \cdot a - c_2(\theta - a)^2 & \text{if } a \leq \theta \text{ [too little stock]} \end{cases}$$

Optimal decision

- Ad hoc decision rules: *Minimax*. *Minimax regret* ...
- Bayesian theory: maximize the posterior expected utility:

$$a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|y)}[U(a, \theta)],$$

where $E_{p(\theta|y)}$ denotes the posterior expectation.

■ Using simulated draws $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ from $p(\theta|y)$:

$$E_{\rho(\theta|y)}[U(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} U(a,\theta^{(i)})$$

- Separation principle:
- I First do inference, $p(\theta|y)$
- 2 then form utility $U(a, \theta)$ and finally
- **3** choose action a that maximes $E_{p(\theta|y)}[U(a,\theta)]$.

Choosing a point estimate is a decision

- Choosing a point estimator is a decision problem.
- Which to choose: posterior median, mean or mode?
- It depends on your loss function:
 - ▶ Linear loss → Posterior median
 - ▶ Quadratic loss → Posterior mean
 - ► Zero-one loss → Posterior mode
 - **Lin-Lin loss** ightarrow $c_2/(c_1+c_2)$ quantile of the posterior