

Open System Interconnection (OSI) Reference Model

- Developed by the International Organization for Standardization (ISO).
- Has become the standard model for classifying communication functions.
- Has seven layers.
- It is a "theoretical" system delivered too late!
- It has NOT dominated. TCP/IP is the de facto standard.
- Several reasons:
 - TCP/IP appeared earlier
 - Internet "won" the game
 - OSI has a "complex" structure that could result in "heavy processing"

-4

TCP/IP Protocol Architecture

- No official model but a working one.
- Has 5 layers (OSI has 7 layers)
- Funded by DARPA (USA).
- Initially developed as a US military research effort funded by the Department of Defense
- It has dominated.
- It is the "heart" of Internet.

1-7

7

TCP/IP Protocol Architecture (2)

Application Layer

Host-to-Host

or Transport Layer

Internet Layer

Network Access Layer

Physical Layer

1-8

Ω

Physical Layer

- concerned with physical interface between computer and network
- concerned with issues like:
 - characteristics of transmission medium
 - signal levels
 - data rates
 - other related matters

1-9

9

Network Access Layer

- exchange of data between an end system and attached network
- concerned with issues like :
 - destination address provision
 - invoking specific services like priority
 - access to & routing data across a network link between two attached systems
- allows layers above to ignore link specifics

1-10

Internet Layer (IP)

- routing functions across multiple networks
- for systems attached to different networks
- using IP protocol
- implemented in end systems and routers
- routers connect two networks and relay data between them

1-11

11

Host-to-host / Transport Layer

- common layer shared by all applications
- provides reliable delivery of data
- in same order as sent
- commonly uses TCP

1-12

Application Layer

- Provides support for user applications
- Needs a separate module for each type of application

1-13

13

TCP/IP Protocol Architecture

Contains the logic needed to support user applications (ftp, telnet, http etc.) Each application requires different module.
Concerned with the reliability of transmission/reception (error control, sequencing, flow control)
Provides routing functions across multiple networks. It is implemented in <u>end-systems</u> and routers
Concerned with the exchange of data between communicating entities. Depends on network type.
Covers the physical interface between device (computer and transmission medium or network - medium, signals, data rates)

1-14

	TCP/IP	versus OSI	
	Application	Application Layer	
	Layer	Presentation Layer	
	•	Session Layer	
	Host-to-Host	Transport Layer	
or Transport Laver	or Transport Laver	1	•
	Internet Layer	Network Layer	
	Network Access		
Layer	Data Link Layer		
	Physical Layer	Physical Layer	
			1-16

OSI Pros and Cons

- Bad timing (too much detailed concept before actual applications)
 - It tries to design the "perfect world", which is either difficult or impractical.
 - Technology and human understanding of how things work (or should work) changes.
- More modular but more processing intensive.
- Provides a good architecture for detailed modeling of processes

1-17

17

Internet Protocol (IP) Versions

- IPv1-3 defined and replaced
- IPv4 1st widely deployed version (incl. commercial internet)
- IPv5 stream protocol
 - a connection-oriented internet-layer protocol
 - MPLS provides connection-oriented capability.
- IPv6 replacement for IP v4
 - During development it was called IPng (IP next generation)

1-19

19

IPv4

-20

Internet Protocol (IP) v4

- defined in RFC 791
- part of TCP/IP suite
- two parts
 - specification of interface with a higher layer (e.g. TCP)
 - specification of actual protocol format and mechanisms
- is gradually replaced by IPv6

1-21

21

IP Options

- Security
 - Allows a security label to be attached to a datagram
- Source routing
 - A sequenced list of router addresses that specifies the route to be followed.
 - 1) Strict (only identified routers may be visited)
 - 2) Loose (other intermediate routers may be visited).
- Route recording
 - A field is allocated to record the sequence of routers visited by the datagram
- Stream identification
 - Names reserved resources used for stream service.
 - This service provides special handling for volatile periodic traffic (e.g., voice).
- Timestamping
 - The source IP entity and (some or all) intermediate routers add a timestamp (precision to milliseconds) to the data unit as it goes by.

1-26

Data Field

- carries user data from next layer up
- integer multiple of 8 bits long (octet)
- max length of datagram (header plus data) is 65,535 octets

1-27

27

Fragmentation and Reassembly (F&R)

1-28

Fragmentation and Reassembly: Why?

- Protocol exchanges data between two entities
- Lower-level protocols may need to break data up into smaller blocks, the action called fragmentation
- Why fragmentation? For various reasons
 - network only accepts blocks of a certain size, or it has a minimum and maximum limit for the allowed size of data blocks (e.g.
 - ATM: 53 bytes cell size (48 payload + 5 control)
 - Ethernet frames: minimum size = 72 bytes; maximum size = 1526 bytes
 - more efficient error control & smaller retransmission units
 - fairer access to shared facilities
 - · Less waiting times of packets of higher priority in queues
 - · smaller buffers
- Disadvantages
 - more bandwidth wasted in overhead related data
 - more interrupts & processing time

1-33

33

F&R: Why and how?

• Problem:

- Different networks have different Maximum Transmission Unit (MTU) sizes.
- Within Internet, a data block might pass through several different networks before reaching the destination.
- What if a packet reaches a network and it exceeds the network's MTU?

• Solution:

- Use *fragmentation* to split large packets into smaller ones.
- Use reassembly at the destination and/or intermediate nodes to put the fragments together and build the original packet.

1-34

Fragmentation and Re-assembly

- Where to re-assemble?
 - At destination
 - Results in packets getting smaller as data traverses internet
 - Intermediate re-assembly
 - · Need large buffers at routers
 - Buffers may fill with fragments
 - All fragments must go through same router
 - · Inhibits dynamic routing

1-35

35

IP Fragmentation

- IP re-assembles at destination only!
- Uses fields in header
 - Data Unit Identifier (ID)
 - Identifies end system originated datagram using:
 - · Source and destination address
 - Protocol layer generating data (e.g. TCP)
 - Identification supplied by that layer
 - Data length
 - · Length of user data in octets
 - Offset
 - Position of fragment of user data in original datagram
 - In multiples of 64 bits (8 octets)
 - More flag
 - · Indicates that this is not the last fragment

1-36

IPv6

1-37

37

Why Change IP?

- Address space exhaustion
 - two-level addressing (network and host) wastes space
 - network addresses used even if not connected
 - you have to wait for a while, to get more info, in order to understand these two statements
 - growth of networks and the Internet
 - extended use of TCP/IP
 - single address per host
- requirements for new types of service

1-38

IPv6 Flow Label

- Flow: a sequence of packets sent from a particular source to a particular destination for which the source desires special handling by the intervening routers.
- Flow is identified by src addr & dest addr + flow label
- router treats flow as sharing attributes
 - e.g. path, resource allocation, discard requirements, accounting, security
- may treat flows differently
 - buffer sizes, different forwarding precedence, different quality of service
- alternative to including **all info** in **every header**
- Router has requirements on flow label processing

1-41

41

IPv6 Enhancements (1)

- Expanded IP address: 128 bit address space
 - increase of address space by a factor of 296
 - allows (on the order of) $\underline{6} \times 10^{23}$ unique addresses per square meter of the surface of the earth, which seems inexhaustible.
- Improved (flexible) option mechanism
 - options are placed in separate optional headers (between IPv6 header & transport-layer header).
 - most optional headers are not examined/processed by any internet router on the packet's path.
 - <u>simplifies</u> and <u>speeds up</u> IPv6 (vs. IPv4) packet routing processing.
 - Easier to add additional options.

-44

IPv6 Enhancements (2)

- dynamic address assignment (using address auto-configuration)
- Increased <u>addressing flexibility</u>
 - includes anycast & multicast
 - <u>anycast:</u> packet is <u>delivered to just one of a set of nodes</u>.
 - <u>scalability</u> of multicast routing is <u>improved</u> by <u>adding scope field</u> to multicast addresses.
- Support for resource allocation
 - labeled packet flows
 - distinguishes different flows coming from the same (IP address) source (e.g. can identify a Video over IP or Voice over IP session (having real-time constraints) from a file transfer or web browsing session (which are fine with best effort treatment).

1-45

45

IPv6 Addresses

- 128 bits long
- assigned to interface
- single interface may have multiple unicast addresses
- three types of addresses:
 - unicast single interface address
 - anycast one of a set of interface addresses
 - multicast all of a set of interfaces

1-46

For reference: IPv6 RFCs

- RFC 1752 Recommendations for the IP Next Generation Protocol
 - requirements
 - PDU formats
 - addressing, routing security issues
- RFC 2460 overall specification
- RFC 2373 addressing structure
- Plenty of additional material

1-47

47

Hop-by-Hop Options/1

- Must be examined by every router
 - if unknown discard/forward handling is specified
- Next header (8 bits)
- Header extension length (8 bits):
 - length = #x64-bit unit
- Options: variable length; consists "definitions"

- Each definition is formed by 3 subfields:
 - option type (8 bits); identifies the option
 - length (8 bits); specifies the length of option's data field in bytes.
 - option data; has variable length

1-49

49

Hop-by-Hop Options/2 Must be examined by every router One or more options · if unknown discard/forward handling is specified Next header (8 bis) Header extension length (8 bits): (a) Hop-by-hop options header; length = #x64-bit unit Options: variable length; consists of 1 or more "definitions" Each definition is formed by 3 subfields: option type (8 bits); identifies the option 5 least significant bits specify type 2 most significant bits specify treatment: "00" – skip this option and continue processing header "01" – discard packet • "10" - discard packet and send "ICMP parameter problem" message to source pointing to unrecognized option type "11" – discard packet and proceed sending message to source as indicated above only if the destinations address in not multicast address. 3rd most significant bit: if "o" option data field should not be changed by any node; if "1" can be changed. • length (8 bits); specifies the length of option's data field in bytes. • option data; has variable length

Hop-by-Hop Options/3

- Four (4) hop-by-hop options have been specified:
 - Pad1: used to insert 1 byte of padding into "options area of header
 - PadN: used to insert N bytes of padding into "options area of header (N>1)
 - Padding options ensure option is multiple of 8 bytes in lenght
 - Jumbo payload: used to indicate sending packet with payload longer than 65,535 bytes.
 - Option data field is 32 bits; specifies packet in octets (excluding IPv6 header).
 - Payload field of IPv6 header is set to zero; no "fragment header" can be placed
 - Router alert: informs router that contents of packet is of interest to router (e.g. passing of control data, e.g. traffic control).
 - Provides efficient support for variety of protocols (e.g. RSVP).
 - If "router alert" absent, packet is routed without further parsing.

1-51

51

Fragmentation Header/1

- fragmentation only allowed at source
- no fragmentation at intermediate routers
- node must perform path discovery to find smallest MTU of intermediate networks
- set source fragments to match MTU
- otherwise limit to 1280 octets
- header includes
 - fragment offset
 - more fragments bit
 - identification

1-52

Fragmentation Header/2

Fragment header consists of:

- Next header (8 bits): identifies type of immediately following header.
- Reserved (8 bits): for future use.
- Fragment offset (13 bits): indicates location of packet's data within original payload.
- Res (2 bits): reserved for future use.
- M flag (1 bit): "1" → more fragments; "o" → last fragment
- Identification (32 bits): uniquely identifies original packet.

Identification
(b) Fragment header

1-53

53

Routing Header/1

- Contains list of one or more intermediate nodes to visit. It includes:
 - Next Header: identifies type of next header
 - Header extension length: measured in 64-bit units (not including first 64 bits).
 - Routing type: identifies a particular routing header variant.
 - If variant unknown to router, router drops packet.
 - Segments left: # of route segments remaining (# of explicitly listed intermediate nodes still to be visited).

1-54

Destination Options Header • carries optional info for (and examined only by) destination node • format same as hop-by-hop header One or more options (a) Hop-by-hop options header; destination options header

Address Resolution Protocol (ARP)

• Basic idea

- host-1 wants to send a message to host-2 (in the same Ethernet); host-1 knows about the IP address, IP-a, of host-2
- host-1 outputs a broadcast packet onto the Ethernet asking "who owns IP-a?"
- every machine will receive this packet and only host-2 (that owns IP-a) will respond with its Ethernet address

ARP messages

- request from source asking for hardware address
- reply from destination carrying hardware address

1-61

61

Internet Control Message Protocol (ICMP)

- RFC 792
- transfer of (control) messages from routers and hosts to hosts
- feedback about problems
 - e.g. time to live expired
- encapsulated in IP datagram
 - hence not reliable

1-63

63

Common ICMP Messages

- destination unreachable
- time exceeded
- parameter problem
- source quench
- redirect
- echo & echo reply
- timestamp & timestamp reply
- address mask request & reply

1-64

From: System Administrator Sent: March 23, 2021 3:31 PM To: Dimitrios Makrakis Subject: Undeliverable: Midterm Review Your message did not reach some or all of the intended recipients. Subject: RE: Midterm Review Sent: 2021-03-23 3:31 PM The following recipient(s) cannot be reached: 'Navid Khalili' on 2021-03-23 3:31 PM None of your email accounts could send to this recipient.

Transport Protocols

- Provide end-to-end data transfer service
- Shield upper layers from network details
- Reliable, connection oriented
 - has greater complexity
 - e.g. TCP
- best effort, connectionless
 - datagram
 - e.g. UDP

1-68

Jser Datagram Protocol (UDP)

- Connectionless service for application level procedures specified in RFC 768
 - unreliable
 - delivery & duplication control not guaranteed
- Reduced overhead
- Weakest service to be expected at higher layers
- Uses:
 - inward data collection (e.g. periodic sampling of data sources such as sensors, automatic self-test reports from security equipment, network components)
 - outward data dissemination (e.g. broadcast messages to network users, announcement of a new node, change of address of a service, distribution of real-time clock values).
 - request-response (e.g. a transaction service provided by a common server to a number of distributed users, and for which a single request-response sequence is typical).
 - real time application2 (e.g. voice, telemetry involving a degree of redundancy, a real-time transmission requirement).

1-71

71

Transmission Control Protocol (TCP)

1-72

Services TCP Provides

- Connection-oriented service
- Establishes point-to-point communication
- Full-duplex communication
- Addressing, Multiplexing and Demultiplexing
- Complete reliability
- Reliable connection startup and shutdown
- Flow Control
- Congestion Control

1-76

Unreliable Network Service

- TCP/IP is assuming unreliable service.
- Consequences:
 - segments may get lost
 - segments may arrive out of order
- Issues:
 - ordered delivery,
 - retransmission strategy,
 - duplication detection,
 - flow control,
 - connection establishment & termination,
 - crash recovery

1-77

77

Ordered Delivery

- Segments may arrive out of order
- Solution: TCP numbers each byte (NOT segment) sequentially
- A segment is assigned as sequence number the number that has been assigned to the first octet contained in this segment

1-78

Flow Control in TCP

- Needs flow control because receiving side might not be able to keep up, resulting in buffer overflowing
- Issues:
 - longer transmission delay between transport entities compared with actual transmission time (considerable queuing and processing delays)
 - Transmission delay is variable; makes difficult to set timeouts

1-79

79

TCP uses "Credit Scheme"

- Decouples flow control from ACK
- Each byte has its own sequence number
- Parameters:
 - sequence number (SN)
 - acknowledgement number (AN)
 - window size (W)
- Segment's sequence number is the SN of the first octet in the segment
- ACK includes (AN=i, W=j) which means:
 - all bytes through SN=i-1 are acknowledged, "I" want byte i next
 - (receiving) station can accommodate and is ready to receive (can accommodate) up to W=j new bytes (bytes "i" to "i+j-1") even without new ACK been sent. Bytes can come in a single segment or in multiple segments.
 - Transmitting size segment size is decoupled from W (determined by congestion avoidance algorithm) but must be < or = to (W=)j.

-80

Retransmission Strategy

- Retransmission of segment needed because:
 - segment damaged in transit
 - segment fails to arrive
- Transmitter does not know of failure
- Receiver must acknowledge successful receipt (positive acknowledgment)
 - can use cumulative acknowledgement for higher efficiency (less load in return channel)
- Segment should be ACK before the timer (that is starting counting down when the segment is passed down to IP layer) expires.
- If timer expires without the sender receiving ACK, retransmission is triggered.

1-82

TCP Timer Management

How long should the retransmission timer value be?

 More difficult than in data link layer, since the round-trip travel time variance is greater

- Too short: unnecessary retransmissions will clog network.
- Too long: performance reduction due to long delay before retransmission.
- Value should be a bit longer from Round Trip Time (RTT).

1-83

83

Timer value updating

Estimates round trip time (RTT) adaptively

- Problems exist: Example:
 - routers at forward and return path lightly loaded → queuing delay at return path small These are the conditions at To
 - estimated RTT=X+Y (forward end-to-end=X, return end-to-end=Y)
 - At T₁, a router of the forward path gets suddenly significantly higher traffic volume → queuing delay increases from X to (W>>X, W>>Y); however, router is not yet congested.
 - New RTT =W+Y >> X +Y
 - peer transport entity may not ACK segment immediately
 - counter might time out, triggering re-transmission of segments.
 - this might result in retransmission of many segments that are still on transit.
 - 1) Duplicate ACKs will be occurring. (Sender cannot distinguish between original and retransmitted segment)
 - 2) Waist of network resource, since obsolete segments will be consuming resources.
 - 3) TCP flow might slow down, assuming heavy congestion, which is not the case.

1-84

RTT Estimation

- RFC 1122: Requirements for Internet hosts
- Retransmission timer management
- Estimate round trip delay by observing pattern of delay
- Set time to value somewhat greater than estimate
- Estimation Methods:
 - Simple average
 - Exponential average
 - RTT Variance Estimation (Jacobson's algorithm)

1-85

85

Simple Average

- *ARTT*(*K*): round trip time observed for the first *K* segments.
- *RTT*(*i*): round trip delay observed for the *i*th segment used in the estimation.

$$ARTT(K+1) = \frac{1}{K+1} \sum_{i=1}^{K+1} RTT(i)$$

• Recursive calculation:

$$ARTT(K+1) = \frac{K}{K+1}ARTT(K) + \frac{1}{K+1}RTT(K+1)$$

1-86

Exponential Average

- SRTT(K): smoothed RTT estimate
- SRTT(0)=0
- α : constant $(0 < \alpha < 1)$.
- Value of α affects speed of algorithm's convergence and its stability behaviour.

$$SRTT(K+1) = \alpha \times SRTT(K) + (1-\alpha) \times RTT(K+1)$$

• The more distant a past observation is from the "present", the less weight has on the value of the estimate.

$$SRTT(K+1) = (1-\alpha) \times \left[\sum_{i=1}^{K+1} \alpha^{K+1-i} \times RTT(i)\right]$$

1-87

87

Use of exponential algorithm/1

- RFC 793 uses exponential algorithm
- *RTO(K)*: value of retransmission counter after K observations have been used.
- ∆: constant

$$RTO(K+1) = SRTT(K+1) + \Delta$$

- When $\Delta \ll SRTT(K)$, fluctuations in SRTT(K) will be controlling value of RTO(K), generating unnecessary retransmissions.
- When $\Delta >> SRTT(K)$, Δ will be controlling the value of RTO(K), causing unnecessary delays in retransmitting lost segments.

1-89

89

Use of exponential algorithm/2

 To address these extreme cases, RFC 793 proposes the following approach:

 $RTO(K + 1) = MINIMUM \{UBOUNT, MAXIMUM[LBOUND, \beta \times SRTT(K + 1)]\}$

or equivalently

$$RTO(K+1) = \begin{cases} UBOUND & for \quad \beta \times SRTT(K+1) \ge UBOUND \\ \beta \times SRTT(K+1) & for \quad UBOUND \ge \beta \times SRTT(K+1) \ge LBOUND \\ LBOUND & for \quad \beta \times SRTT(K+1) \le LBOUND \end{cases}$$

- *UBOUND*, *LBOUND* are pre-chosen upper and lower bounds (constant) and β is constant
- *RTO(K)* is proportional to *SRTT(K)* within the [*LBOUND*, *UBOUND*] interval.

1-90

TCP Timer Management

How long should the retransmission timer value be?

 More difficult than in data link layer, since the round-trip travel time variance is greater

- Too short: unnecessary retransmissions will clog network.
- Too long: performance reduction due to long delay before retransmission.
- Value should be a bit longer from Round Trip Time (RTT).

1-91

91

RTT Variance Estimation (Jacobson's Algorithm)

- Previous approach encounters problems when RTT exhibits high variance (large deviations).
- The degree of deviations is taken into consideration.

$$SRTT(K+1) = (1-g) \times SRTT(K) + g \times RTT(K+1)$$

$$SERR(K+1) = RTT(K+1) - SRTT(K)$$

$$SDEV(K+1) = (1-h) \times SDEV(K) + h \times |SERR(K+1)|$$

$$RTO(K+1) = SRTT(K+1) + f \times SDEV(K+1)$$

- Suggested values: *g*=1/8; *h*=1/4; *f*=2
- When large deviations occur, RTO provides larger offset from exponential average value (waits longer before expiring)

1-92

Congestion

- Caused by too much traffic going through a network; more than the network can handle.
- Results in Routers dropping packets.
- Causes time-outs: equally likely from lost messages due to unreliable transmission media, as from congestion.
- Simply retransmitting a lost message makes congestion worst.
 - Why?
- There needs to be a way to control congestion.

1-95

95

Congestion Control

- Flow control used for congestion control
 - recognize increased transit times & dropped packets
 - react by reducing flow of data
- RFC's 1122 & 2581 detail extensions
 - Tahoe, Reno & New Reno implementations
- Two categories of extensions:
 - retransmission timer management
 - window management

-96

Exponential RTO Backoff

- Timeout probably due to congestion
 - dropped packet or long round-trip time
- Maintaining RTO value is not good idea (else, many retransmissions will be generated, increasing congestion further)
- Better to increase RTO each time a segment is re-transmitted
 - RTO = q*RTO
 - commonly q=2 (binary exponential backoff)
 - as in Ethernet (CSMA/CD)

1-97

97

Karn's Algorithm

- If segment is re-transmitted, ACK may be for:
 - first copy of the segment (longer RTT than expected)
 - second copy
- No way to tell
- Don't measure RTT for re-transmitted segments (i.e. don't use them for updating RTO)
- Calculate backoff when re-transmission occurs
- Use backoff RTO until ACK arrives for segment that has not been re-transmitted

1-98

Window Management/1

- Slow start
 - larger windows cause problem on connection created
 - at start limit TCP to 1 segment
 - increase when data ACK, exponential growth
- Dynamic windows sizing on congestion
 - when a timeout occurs perhaps due to congestion
 - set slow start threshold to half current congestion window
 - set window to 1 and slow start until threshold
 - beyond threshold, increase window by 1 for each RTT
- In all cases, the window size should not be exceeding the credit

1-100

Window Management/2

- awnd = MIN[credit, cwnd]
- Slow start
 - Start connection with cwnd=1
 - Increment cwnd (double) with ACK, to some threshold
 - Increment cwnd by 1 with ACK after the threshold
- Dynamic windows sizing on congestion
 - When a timeout occurs
 - Set slow start threshold to half current window
 - ssthresh=cwnd/2
 - Set cwnd = 1 and slow start until cwnd=ssthresh
 - Increasing cwnd by 1 for every ACK
 - For cwnd >=ssthresh, increase cwnd by 1 for each RTT

1-10

101

Fast Retransmit - Fast Recovery

- Retransmit timer rather longer than RTT
- If segment lost TCP slow to retransmit
- Fast retransmit
 - if receive 4 ACKs for same segment then immediately retransmit since likely lost
- Fast recovery
 - lost segment means some congestion
 - halve window then increase linearly
 - avoids slow-start

-102

Why wait for 4 identical Acks? Why

use fast recovery

- If receiving TS receives a segment out of order, must immediately issue Ack for last in order received segment.
- It will continue repeating this with each incoming segment, until the missing one arrives; then receiving TS sends a cumulative Ack for all in order segments received.
 - 1st Ack: segment following the last confirmed (indicated as the one the receiving TS is waiting for) might have been delayed or lost or a latter sent segment arrived.
 - 2nd Ack: a segment sent latter from the one receiving TS is waiting for arrived. Also traffic still goes through (congestion is not extreme)
 - 3rd and 4th Acks: segments sent after the one receiving TS is waiting for arrived without the one requested having arrived.
 - Chances are segment has been lost; retransmit it.
 - Since congestion appears to be not extreme, go through fast recovery, i.e. reduce your window but do not close to cwnd=1.

1-103

103

TCP Header Fields

- Source and destination ports: 16 bit address of local port (socket).
- Sequence and acknowledgment numbers:
 - Every byte is numbered in a TCP stream.
 - Acknowledgment number is next byte number expected.
 - 32 bits each.
- Data Offset:
 - Needed because options field can vary in length.
 - Number of 32 bits words in header.
- URG: set to 1 if urgent pointer in use
 - Meaning that the receiving program should be notified of its arrival as soon as possible.
 - Pointer indicates offset from current sequence number at which urgent data ends.

-106

TCP Header Fields (cont'd)

- CWR: Congestion window reduced (used for explicit congestion notification)
- ECE: ECN-Echo: (used for explicit congestion notification)
- ACK: Set to 1 to indicate acknowledgment number is valid
 - If no, no acknowledgment in this segment.
- PSH: Set to 1 to indicate pushed data.
 - Force delivery of bytes currently in the stream without waiting for buffer to fill.
- RST: Set to 1 to indicate reset.
 - Host has become confused due to crash or for other reason.
 - Also used to reject a connection or refuse an invalid segment.
- SYN: used to establish connections.
 - SYN = 1, ACK = 0 in connection request.
 - SYN = 1, ACK = 1 in connection acceptance.
- FIN: set to 1 to indicate end of user data.
 - Used to close connection.
 - May continue to receive data.

1-107

107

IP Addressing

1-109

109

IP Address

- Each IP address is divided into a prefix and a suffix
 - prefix identifies the network to which computer is attached
 - suffix identifies the computer within that network
 - we allocate some bits for prefix, some for suffix (total of 32 bits)
 - · large prefix, small suffix many networks, few hosts per network
 - small prefix, large suffix few networks, many hosts per network
- Network numbers are unique
 - assignment of network numbers must be coordinated globally; assignment of host addresses can be managed locally

1-110

Addressing Mechanisms

- Popular mechanisms for addressing networks are:
 - Classful addressing (older style of addressing).
 - Subnetting (A better way to distribute addresses).
 - Variable-length subnetting (Even more refined than subnetting).
 - Supernetting and Classless interdomain routing (CIDR). (An efficient way to advertise addresses)
 - Private addressing and Network Address Translation (NAT). (A way to get more addresses)
 - Dynamic addressing (An easy way to get addresses)

1-111

111

Characteristics of major Classes

Address Class	No. of Networks	No. of Hosts	Comments
A	127	16777214	Very Large Networks
В	16383	65534	Medium Size Netw.
С	2097151	254	Large number of
			small networks

1-118

Subnet Mask Calculation				
Subnet Class C	Binary Representation	Dotted Decimal		
IP address	11000000.11100100.00010001 .00111001	192.228.17.57		
Subnet mask	11111111.111111111.11111111 .11100000	255.255.255.224		
Bitwise AND of address and mask (resultant network/subnet number)	11000000.11100100.00010001 .00100000	192.228.17.32		
Subnet number	11000000.11100100.00010001 .001	1		
Host number	00000000.000000000.00000000 .00011001	25		
		1-120		

Subnet Mask Calculation				
Class C	Binary Representation	Dotted Decimal		
IP address	11000000.11100100.00010001 .00111001	192.228.17.57		
Subnet mask	11111111.111111111.11111111 .11100000	255.255.255.224		
Bitwise AND of address and mask (resultant network/subnet number)	11000000.11100100.00010001 .00100000	192.228.17.32		
Subnet number	11000000.11100100.00010001 .001	1		
Host number	00000000.000000000.00000000 .00011001	25		
		1-123		

Subnets and Subnet Masks

- Each LAN is assigned subnet number.
- <u>Host portion</u> of address partitioned further into <u>subnet</u> number and host number.
- Local routers route within subnetted network.
- Subnet mask indicates which bits are subnet number and which are host number by doing a bitwise AND.

Subnet Mask	255.255.240.000	11111111.111111111.1111 <mark>0000</mark> 000000000
IP Address	150.215.017.009	10010110.11010111.0001 <mark>0001 00001001</mark>
Subnet Address	150.215.016.000	10010110.11010111.0001 <mark>0000</mark> 000000000

124

Subnetting

- Allows a classful network address to be segmented into smaller sections by using part of the device address to create another level of hierarchy.
- Basically, it takes address space away from the devices and gives it to the network.
- Improves routing speed.
- Allows establishment of addressing individual networks, using addressing from classes having too many users assigned to the same classful network address.

1-125

125

Advantages of Subnetting

- Traffic problems from jabbering devices and broadcast/multicast storms can be reduced by separating the network into subnets connected by routers.
- Routers terminate the link and physical layers thus stopping problems in one subnet from affecting other subnets.
- Subnet masks are only recognized within that network. The hierarchy is not revealed to the outside world.

-126

Subnets & Subnet masks/3

- Router <129.99.1.1> has to keep track of
 [(63-1) + (254-63)]x(254-1)=63504 IP addresses
 (stored in its routing table; 1 IP address per
 node).
- Should the class B network was fully utilized, the router would have to keep track of as much as [65534 1] =65533 address (stored in its routing table; 1 IP address per node).

1-133

133

Subnets & Subnet masks/12

- Router identifies the subnet the packet has to be sent to by determining the subnet number (in the example <129.99.2.0> for Ethernet subnet, <192.99.2.64> for Token Ring> subnet.
- Any packet having subnet value different from either of the above is either sent to Router <129.99.1.1> or is dropped (if it arrived from that router).
- Nodes identify if the packet belongs to them by determining the host number part of the packet and comparing it to their own.
- Maintaining list of IP address of all nodes of the connecting subnets is avoided. Scalability is maintained.

1-142

Variable-length Subnetting

- Subnetting divides the network into a number of equal-sized subnets which is often inefficient.
- *Variable-length subnetting* is subnetting in which variable length subnet masks are used.

1-143

143

Supernetting

- Millions of Class C addresses can be allocated in lieu of Class A & B.
 - The result is that too many Class C address groups need to be allocated to an organization and advertised among all the Internet routers.
 - The number of routes would grow exponentially such that some experts had predicted that the Internet would collapse by 1995.
 - Obviously this did not happen, because the concept of supernetting was invented.

1-144

What if? Supernetting

- It is more common to allocate Class C addresses than A or B. (millions of Class C can be allocated).
- A company needs to support 10,000 devices.
 - A class C supports up to 254 devices, so 40 class C networks are needed.
 - How are we to advertise these 40 class C addresses?
- Supernetting
 - Supernetting is the concept of aggregating network addresses by changing the network mask to decrease the number of bits recognized as the network.

1-146

Supernetting

- If we take a set of 16 contiguous addresses from a Class C address like 192.92.240.0 we can see that in this case the first 4 digits of the subnet octet do not change. This range of values can be represented as 192.92.240.0 with a subnet mask of 255.255.240.0 where the last 4 bits in the third octet are ignored.
- This then can be used to advertise a group of addresses. i.e. 192.92.240.0/20 = 192.92.240.0 -> 192.92.255.0
- This removed the need for class boundaries and brought into effect the classless interdomain routing (CIDR).

1-147

147

CIDR

- Addresses must be assigned in contiguous blocks following logical topology.
 - The number of addresses in a CIDR block are powers of 2.
- Used in conjunction with classless routing protocols (e. g. EIGRP, OSPF)
- Network prefix is transmitted along with address
 - Example 192.92.240/22 advertises 4 networks (240, 241, 242, & 243 because the last 2 bits in the subnet can be ignored.
- Use any length prefix, not just 8,16,24
 - For example 200.1.128.0/17 is equivalent to a range of 27, or 128 networks from 200.1.128.0 -> 200.1.255.0

1-148

Route Summarization

- How to tell if a block of subnets can be summarized:
 - Number of subnets is a power of 2
 - Relevant octet of <u>first</u> address in block is a multiple of number of subnets.
 - The first address of the block needs to be evenly divisible by the number of subnets.
 - 192.92.240.0 (The 240 is evenly divisible by 1,2,4,8, &16 and therefore can be summarized by /24, /23, /22, /21, & /20

1-152

Route Summarization Example

- 1. Number of networks is 8, which is a power of 2, so first rule is met
- 2. The third octet is the relevant octet. The first relevant octet is 48, which is a multiple of 8 (the number of networks in rule #1)

So this block of addresses <u>can</u> be aggregated

10.108.48.0 10.108.49.0 10.108.50.0 10.108.51.0 10.108.52.0 10.108.53.0 10.108.54.0

1-153

153

Private Addresses

- Private IP Addresses are reserved addresses that <u>can't</u> <u>be forwarded</u> to the Internet
- 10.0.0.0 -> 10.255.255.255 (10/8 prefix)
- 172.16.0.0 -> 172.31.255.255 (172.16/12 prefix)
- 192.168.0.0 -> 192.168.255.255 (192.168/16 prefix)

1-154

Network Address Translation (NAT)

- Translates private <-> public addresses
 - A binding is created between the addresses that lasts a period of time.
- Can be implemented in:
 - Router
 - Firewall
 - Specialized device
- Assigned pool of public address
 - 1 to 1 private-public binding known as *static NAT* generally used for a server
 - 1 to many bindings are *dynamic NAT* generally used for devices.
 - Port address translation known as *Network Address Port Translation* (NAPT). Commonly used in corporations or for HTTP.

1-155

155

NAT Servers

- May use static assignments for Web servers, etc.
- NAT gateway must handle all internal/external traffic, may have to:
 - Translate addresses within packet (for example Session Initiation Protocol SIP packets)
 - Recalculate header checksums
- Should have fast processor to achieve low delay and high throughput

-156

Dynamic Addressing

- Domain assigns to a user an IP address temporarily.
- Makes use of Dynamic Addressing
- Use of Dynamic Name Server (DNS)
- Use of address auto-configuration (check IPv6)

1-157

157

