计算机组成原理实践

数学与计算机科学学院 林嘉雯 ljw@fzu.edu.cn

TEC-8 概述

- 由电源模块、数字逻辑实验区、模型计算机 三个部分组成。
- 实验系统机器模型的字长为8位。指令系统 采用4位操作码。
- 使用双端口存储器,采用数据总线和指令总 线双总线体制,并实现指令流水功能。
- 控制器采用微程序控制器、硬连线控制器和独立控制三类。
- 控制台功能丰富

TEC-8 概述

模型计算机主要由以下几个部分组成:

- 运算器
- 存储器
- 控制器
- 时序电路
- 数据输入开关
- 结果显示灯

操作控制台

TEC-8模型计算机框图 INS7-INSO M ABUS SO D7L-D0L D7R-D0R 51 MBUS LDC_ ALU 双端口RAM MEMW 53 LDZ _ CIN T2 T3. A端口 B端口 A7L-A0L A7R-AOR B7-B0 AR7-ARO PC7-PC0 RSO T R_D0 4选1 4选1 RS1 RD1 CLR# 选择器B CLR# 选择器A PCADD LAR LRO LPC RD1 AR PC ARINC LR1 PCINC **T3** RDO T3 LR2 47 LR3 DB IRS RO LR3 IRE LRO LR2 DRW DRW DRW DRW R2 LIAR T3 T3 LIR IABUS IAR IR T3 DBUS PC7-PC0 控制信号 SBUS SWD 控制转换 控制信号切换电路 RD1 RSO 数据开关 A组控制信号 B组控制信号 SD7—SD0 SELCTL 2选1选择器 微程序控制器 硬连线控制器 SEL3-SEL0 W3-W1 时序发生器 IR7—IR4 IR3-IR0 **IRBUS** SHORT DING swc-swa

□时序发生器模块

TEC-8模型机执行一条微指令(一个机器周期)需要3个节拍脉冲T1、T2、T3,采用不定长机器周期,绝大多数指令采用2个周期W1、W2,少数指令需要一个机器周期W1或者3个机器周期W1、W2、W3。

控制台由若干拨动开关、按钮开关和指示灯组成指示灯

1. 与运算器相关的指示灯

信号名称	信号灯符号
数据总线指示灯	D7~D0
运算器A端口数据指示灯	A7~A0
运算器B端口数据指示灯	B7∼ B0
进位信号指示灯	С
结果为0信号指示灯	Z

2. 与存储器相关的指示灯

信号名称	信号灯符号
程序计数器指示灯	PC7~PC0
地址寄存器指示灯	AR7~AR0
指令寄存器指示灯	IR7~IR0
双端口存储器右端口指示灯	INS7~INS0

信号名称	信号灯符号
后继微地址指示灯	NuA5~NuA0
判别位指示灯	P4∼ P0
当前微地址	uA5~uA0

4. 其他指示灯

信号名称	信号灯作用
硬连线指示灯(红)	表明控制器为硬连线方式
独立指示灯(黄)	表明控制器为独立方式
微程序指示灯(绿)	表明控制器为微程序方式
SELCTL控制器2选1选择 器指示灯	表明系统处于实验状态(1) 或运行程序状态(0)
+5V指示灯	指示+5V电源正常

按钮开关

- 1. 启动按钮QD
 - •按一次QD,产生一正一负两个脉冲。其中正脉冲启动产生节拍脉冲信号T1、T2、T3.
- 2. 复位信号CLR
 - 按一次CLR,产生一正一负两个脉冲。其中正脉冲使模型机复位,处于初始状态。
- 3. 中断按钮PULSE
 - 按一次PULSE,产生一正一负两个脉冲。其中正脉冲 向模型机发出中断请求。

拨动开关:

- 1. 数据开关SW7-SW0
 - 接到数据通路中的数据总线DBUS上,依次对应DBUS的最高位至最低位
- 2. 模拟数据通路控制信号开关K15-K0
 - 模拟数据通路中所需的电平控制信号。
- 3. 单微指令开关DP
 - DP=1表示单微指令运行方式(单拍),按1次QD,产生一组T1~T3;
 - DP=0表示连续运行方式,按1次QD,连续产生T1~T3, 直到按下CLR按钮;
- 4. 控制器转换开关
 - 上拨:硬连线控制器,中间:独立状态,下拨:微程序 控制器。

时序电路

• MF: 时钟信号

• CLR#: 复位信号

• QD: 时钟启动控制信号

• STOP: 时钟停止信号

• DP: 单拍控制信号, DP=1, 为单拍状态。

DP=0时,按一次QD键,产生连续节拍脉冲

DP=1时,按一次QD键,产生一组节拍脉冲

- 5. 控制台操作开关SWC、SWB、SWA
 - 按下CLR#, TEC-8复位, 根据SWC、SWB、SWA状态选择工作方式

SWC	SWB	SWA	操作	
0	0	0	启动程序(PR)	
0	0	1	写存储器(WRM)	
0	1	0	读存储器(RRM)	
0	1	1	写寄存器(WRF)	
1	0	0	读寄存器(RRF)	

6. 编程开关

• 下拨: 正常工作状态,上拨: 编程状态。

□ 运算器模块

□ 运算器模块

运算器模块包括ALU、双端口通用寄存器组2个部分。

ALU

- 包含了2片74LS181构成,在M和S0-S3的控制下,可以对A端口、B端口送来的8位二进制数进行各种算术、逻辑运算,产生8位数据结果、进位标志C和结果为0的标志Z;
- 包含了一个三态门,ABUS=1时,将运算结果送到数据总线DBUS上;
- 包含了一个双D型触发器,当LDC=1,LDZ=1时,在T3 的上升沿将C、Z的值打入触发器保存。

注意: 进位输入CIN反映运算器最低位的进位输入信号。

CIN=1时,代表无进位;

CIN=0时,代表有进位;

□ 运算器模块

- 双端口通用寄存器组
 - 共有4个8位寄存器(R0-R3),2个读端口(A、B), 1个写端口
 - 对于任意一个寄存器Ri,当寄存器使能信号LRi=1,写控制信号DRW=1时,在T3的上升沿,将数据总线上送来的数据写入寄存器Ri
 - 包含一个2-4译码器,在RD1,RD0信号的控制下,产 生寄存器使能信号LR0-LR3.
 - 包含4选1选择器A,对应选择信号: RD1、RD0;
 - 包含4选1选择器B,对应选择信号: RS1、RS0

注意: 当要往寄存器存入(写入)数据时,注意选择公共数据总线上的数据来源

□ 存储器模块

□ 存储器模块

存储器模块包括双端口存储器RAM、地址寄存器AR和程序计数器PC。

RAM

- 双端口SRAM(1片IDT7132),总容量2048B,本实验系统实际使用256字节。
- TEC-8中,SRAM的右端口接IBUS,只读;左端口接 DBUS、可读可写,由MEMW和MBUS控制
 - ▶ MEMW=1, 在T2上升沿, 左端口将DBUS上的数据 写入指定存储单元;
 - ▶ MEMW=0, MBUS=1时, 左端口将指定存储单元的内容读出送到DBUS上。

注意: MBUS不可与SBUS和ABUS同时有效

□ 存储器模块

- 地址寄存器AR和程序计数器PC
 - AR提供左端口地址,PC提供右端口地址
 - 均具有地址锁存(LAR, LPC)和加1(ARING,PCING)功能。此外,还具有加偏移量(PCADD)功能。
 - ① LAR (LPC)=1, ARING (PCING)=0时,在T3上升沿,AR(PC)将来自DUBS上送来的地址锁存起来;
 - ② LAR (LPC)=0, ARING (PCING)=1时,在T3上升沿,AR (PC)地址加1

注意: LAR (LPC) 和ARING (PCING) 不能同时有效

TEC-8指令系统

根据SWC、SWB、SWA状态选择工作方式

1、控制台指令

SWC	SWB	SWA	操作	
0	0	0	启动程序(PR)	
0	0	1	写存储器(WRM)	
0	1	0	读存储器(RRM)	
0	1	1	写寄存器(WRF)	
1	0	0	读寄存器(RRF)	

2、用户指令

名称	助记符	功能	指令格式	
			IR7 IR6 IR5 IR4 IR3	IR2 IR1 IR0
加法	ADD Rd, Rs	Rd+Rs→Rd	0 0 0 1 Rdl	RdO Rs1 Rs0
减法	SUB Rd, Rs	Rd-Rs→Rd	0 0 1 0 Rdl	RdO Rs1 Rs0
逻辑与	AND Rd, Rs	Rd & Rs→Rd	0 0 1 1 Rdl	RdO Rs1 Rs0
加 1	INC Rd	Rd+1→Rd	0 1 0 0 Rdl	RdO × ×
取数	LD Rd, [Rs]	[Rs] →Rd	0 1 0 1 Rdl	RdO Rs1 Rs0
存数	ST Rs, [Rd]	Rs→[Rd]	0 1 1 0 Rdl	RdO Rs1 Rs0
C条件转移	JC addr	若C=1,则	0 1 1 1 offs	set
		@+offset→PC		
Z条件转移	JZ addr	若Z=1 ,则	1 0 0 0 offs	set
		@+offset→PC		
无条件转移	JMP [Rd]	Rd→PC	1 0 0 1 Rdl F	Rado × ×
输出	OUT Rs	Rs→DBUS	1 0 1 0 ×	× RS1 RS0
中断返回	IRET	返回断点	1 0 1 1 ×	\times \times \times
关中断	DI	禁止中断	1 1 0 0 ×	\times \times \times
开中断	EI	允许中断	1 1 0 1 ×	\times \times \times
停机	STOP	暂停执行	1 1 1 0 ×	\times \times \times