Azzolini Riccardo 2018-09-25

Inclusione, insieme delle parti e operazioni tra insiemi

1 Negazione dell'inclusione

Dati due insiemi qualsiasi A e B, $A \nsubseteq B$ significa "non è vero che $A \subseteq B$ ", cioè "non è vero che per ogni $x \in A$, si ha $x \in B$.

In altre parole, esiste almeno un elemento di A che non appartiene a B.

1.1 Proprietà universali ed esistenziali

- La proprietà di *inclusione* è **universale**, cioè bisogna verificarla **per ogni** (\forall) elemento.
- La proprietà di *non inclusione* è **esistenziale**, cioè bisogna verificare che **esista** (∃) un elemento.
- La negazione di una proprietà universale è esistenziale, e viceversa.

2 Insiemi contenenti altri insiemi

Un insieme può avere altri insiemi come elementi.

Esempio:

$$A = \{a,b,\{1,2\}\}$$

$$|A| = 3$$

 $|\{1, 2\}| = 2$

$$a \in A$$

$$b \in A$$

$$\{1,2\} \in A$$
$$1 \notin A$$
$$2 \notin A$$

$$\{a,b\} \subseteq A$$

 $\{a,\{1,2\}\} \subseteq A$

3 Insieme delle parti

L'insieme di tutti i sottoinsiemi di un insieme A si chiama **insieme delle parti** e si denota $\mathcal{P}(A)$.

3.1 Cardinalità dell'insieme delle parti

Se l'insieme A ha n elementi

$$|A| = n$$

allora ha 2^n sottoinsiemi

$$|\mathcal{P}(A)| = 2^n$$

3.2 Esempi

$$A = \{a, b\}$$

$$\mathcal{P}(A) = \{\{\}, \{a\}, \{b\}, \{a, b\}\}\}$$

$$A = \{a, \{1\}\}\}$$

$$\mathcal{P}(A) = \{\{\}, \{a\}, \{\{1\}\}, \{a, \{1\}\}\}\}$$

$$B = \{a, 1, *\}$$

$$\mathcal{P}(B) = \{\{\}, \{a\}, \{1\}, \{*\}, \{a, 1\}, \{1, *\}, \{a, *\}, \{a, 1, *\}\}\}$$

$$B = \{a, 1, \{b, c\}\}$$

$$\mathcal{P}(B) = \{\{\}, \{a\}, \{1\}, \{\{b, c\}\}, \{a, 1\}, \{1, \{b, c\}\}, \{a, \{b, c\}\}, \{a, 1, \{b, c\}\}\}\}$$

$$B = \{\{a,1\},b,\{*\}\}$$

$$\mathcal{P}(B) = \{\{\},\{\{a,1\}\},\{b\},\{\{*\}\},\{\{a,1\},b\},\{b,\{*\}\},\{\{a,1\},\{*\}\},\{\{a,1\},b,\{*\}\}\}$$

4 Operazioni tra insiemi

Se A e B sono insiemi, allora

• la loro **unione** è l'insieme degli elementi che appartengono ad A oppure a B:

$$A \cup B = \{x \mid x \in A \text{ oppure } x \in B\}$$

• la loro **intersezione** è l'insieme degli elementi che appartengono sia ad A che a B:

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

• il loro **complemento (relativo)**, o **differenza**, è l'insieme degli elementi che appartengono ad A ma non a B:

$$A \setminus B = A - B = \{x \mid x \in A \text{ e } x \notin B\} = \{x \in A \mid x \notin B\}$$
$$A - B \neq B - A$$

4.1 Insiemi disgiunti

Dati due insiemi A e B, se essi non hanno elementi in comune, cioè $A \cap B = \{\}$, allora A e B si dicono **disgiunti**.

4.2 Principio di inclusione-esclusione (o di addizione e sottrazione)

Se A e B sono insiemi finiti, allora

$$|A \cup B| = |A| + |B| - |A \cap B|$$

4.3 Proprietà

- $A \cup \{\} = A$
- $\bullet \ A\cap \{\}=\{\}$
- $A \cup A = A$
- $A \cap A = A$
- proprietà commutativa:
 - $-A \cup B = B \cup A$
 - $-A \cap B = B \cap A$
- $A (A \cap B) = A B$