

Joint Service
Placement and
Request Routing in
Multi-cell Mobile Edge
Computing Networks

Konstantinos Poularakis, Jaime Llorca

Team:009

The Role of Mobile Edge Computing in Reducing Latency

Exploring MEC's impact on 5G and low-latency services

Optimizing Service Placement and Request Routing in MEC Networks

Addressing storage constraints and asymmetric communication in multi-cell environments

Current studies focus on computing resources efficiency.

Most research emphasizes efficient resource allocation, neglecting critical aspects of storage and communication.

Significant storage constraints exist in MEC.

Modern services like AR require extensive local data storage, which is often limited at Base Stations (BSs).

Asymmetric communication needs remain unaddressed.

Different bandwidth requirements for uplink and downlink are not thoroughly explored in existing literature.

This project aims to fill the literature gap.

It addresses joint optimization of service placement and request routing under multi-dimensional constraints.

Joint Service Placement and Request Routing in Mobile Edge Computing

Exploring solutions to optimize service placement at Base Stations and request routing

Optimizing Service Placement

Determining which services to place at each Base Station (BS) to maximize limited storage efficiency.

Efficient Request Routing

Routing user requests to BSs while respecting computation and bandwidth limitations to enhance performance.

Joint Decision Optimization

Simultaneously optimizing service placement and routing to increase the number of requests served at the edge.

Minimizing Cloud Reliance

Reducing dependence on high-latency centralized cloud services by maximizing edge computing utilization.

Holistic Approach in Multi-cell

Considering the interplay of storage, computation, and communication in multi-cell environments with overlapping coverage.

Optimizing Edge Computing with JSPRR and Randomized Rounding

A comprehensive overview of the JSPRR problem and the innovative Randomized Rounding solution for request routing.

JSPRR Problem

The Joint Service Placement and Request Routing (JSPRR) aims to minimize centralized cloud load by maximizing edge BS service requests.

User Request Routing

Each user request must be directed to a nearby BS or the cloud, adhering to service availability constraints.

Resource Constraints

Constraints include BS capacity limits for storage, computation, and bandwidth for both uplink and downlink operations.

NP-Hard Complexity

The JSPRR problem is NP-Hard, making traditional optimization methods inadequate to find optimal solutions efficiently.

Linear Relaxation

Relaxing the integer constraints allows for a fractional solution, solvable in polynomial time using linear programming.

Randomized Rounding

A novel approach where fractional solutions are rounded to integers, ensuring service placement and request routing are probabilistic.

Architecture for Simulation in Multicell MEC Networks

Illustrating the integration of cloud resources and edge computing nodes for efficient service placement and request routing.

Phased Project Plan for Cloud Resource Management

A detailed overview of Simulation, Evaluation, Analysis, and Reporting phases in the project

3

Simulation Execution

Person 3 will run extensive simulations based on the scenarios outlined in the paper's evaluation, testing parameters like storage, computation, and bandwidth capacities.

Debugging Process

Persons 1 & 2 are tasked with debugging the integrated model and troubleshooting any issues that arise during the largescale simulations to ensure accuracy.

Results Collection

Person 4 will gather results from all implemented algorithms, including Randomized Rounding, Greedy, and Linear Relaxation, to facilitate comparative analysis.

Performance Visualization

Person 4 will create plots and charts that compare the performance of different algorithms to visualize the cloud load against capacity, reflecting the original paper's figures.

Resource Utilization Analysis

Person 3 will analyze resource utilization data to evaluate how the proposed algorithm manages multidimensional constraints effectively in cloud environments.

Final Reporting

Persons 1 & 2 will co-author the final project report and presentation, detailing the methodology, results, and conclusions derived from replicating the paper's findings.

Optimizing Resource Management in MEC Networks

Exploring outcomes and conclusions of the JSPRR problem in 5G environments.

Simulation of the JSPRR problem

A successful simulation of the **Joint Service Placement and Request Routing** (JSPRR) problem within a **multi-cell Mobile Edge Computing** (MEC) environment has been achieved.

Performance of Randomized Rounding

The **Randomized Rounding algorithm** has been shown to significantly outperform the **Greedy baseline**, particularly when resource capacities are variable, highlighting its effectiveness in dynamic environments.

Proximity to optimal lower bound

The performance of the Randomized Rounding algorithm closely aligns with the **optimal lower bound** established by the **Linear Relaxation solution**, indicating high efficiency and effectiveness in resource allocation.

Joint optimization benefits

Insights reveal how **joint optimization** of storage, computation, and bandwidth resources effectively minimizes latency and reduces the load on the central cloud in MEC networks.

Relevance to 5G and mobile computing

This project addresses a crucial and complex problem at the forefront of **5G** and **mobile computing**, providing a foundational method for future enhancements in application responsiveness.

Join us in advancing resource management strategies through Randomized Rounding.

To enhance resource management and service delivery, we propose a comprehensive implementation strategy for the Randomized Rounding algorithm, emphasizing real-world testing within Multi-cell Mobile Edge Computing networks to optimize operational effectiveness.

