SPIT: Linear Algebra Jan-Apr 2022 (SEComp / SEIT)

Syllabus for Linear Algebra

(Theory Component)

Prerequisites:

Basic concepts of set theory, Number systems, Elementary algebra of sets of natural numbers, integers, rational numbers, real and complex numbers. Fields and Examples.

Topics:

No.	Topics	Hrs.
1.	Systems of linear equations Gauss elimination process, Pivot elements, Elementary row operations, Eliminating variables, Solutions space of a homogeneous system. Row-equivalent systems, Description of the solution set of a system (particular + homogeneous), Gauss-Jordan method.	6 hrs
2.	Vectors and Matrices Sum and dot product of vectors in <i>n</i> -space, scalar multiplication. Matrix operations – Sums, Scalar multiplication and Matrix multiplication. Properties, Invertible matrices, Examples. Coefficient and Augmented matrix of a system of linear equations. Elementary row operations on matrices, row-equivalence on matrices, Echelon and reduced echelon forms. Elementary matrices.	8 hrs
3.	Vector spaces Definition and Examples, Subspaces, Examples. Generating systems and Linear Independence, Examples Bases and Dimension Dimension of solution space of system of homogeneous liner equations.	6 hrs
4.	Linear maps Definition and Examples, Homomorphisms and Isomorphisms, Examples. Rank space and Null space, Rank-Nullity theorem. Representing linear maps with matrices and Linear maps defined by matrices. Rank of matrices.	8 hrs