

Early Prediction of Parkinson's Detection

ML 695 Group Project – Presentation

Matthew Benvenuto George Marfo Anthony Mascaro

Parkinson's Disease Background and Early Screening

- Chronic neurologic condition first named in 1817 by Dr. James Parkinson
 - A slow progressive disease that causes nerve cell loss in brain leading to disfunction of motor symptoms
 - Loss of neurotransmitter dopamine
 - Resting Tremor, Bradykinesia (overall slowness), and Cogwheel Rigidity (limb stiffness)
 - Impact on speech: Dysarthria (sound articulation), Hypophonia (lowered volume), and Monotonicity (reduced pitch range)
 - Risk of Dementia is increased
 - Actor Michael J. Fox, prominent in the 1980's and 90's, has battled this for decades
 - No definitive lab test so detection can be challenging
 - Impacted speech can be an initial sign so patient audio tests are vital
 - Early detection can be improved by using Machine Learning to analyze audio data
 - Audio testing is incredibly non-invasive
 - Early detection can lead to faster treatment

Problem Statement and Objective

- Use a variety of Machine Learning Algorithms to detect Parkinson's Disease as a classification problem
- Existing research exists using both legacy audio features as well as more complex measurements
 - There is debate if existing audio analysis is sufficient with only legacy measurements
 - Existing audio tools also may not be sufficient to capture more recent complex measurements
- We will set out to combine both sets of features into our algorithms to achieve the best predictive model possible for patients
- Early screening and detection is vital to begin treatment as well as improve a very non-invasive audio test
- We will utilize the following ML techniques
 - Principal Component Analysis, Logistic Regression, Support Vector Machines, and a Random Forest

Description of Data

- 195 patient audio recordings with 23 features
- Input variables: 22 features of disease bio-indicators
 - Legacy audio measures and more complex nonlinear measures
- Predictor variables: 1 feature (presence of disease in patient)
- Pre-Processing and EDA
 - Created dictionary of features to more easily understand and discuss
 - Investigation of missing values (verification of no null values in data)
 - EDA led to balancing data given minority class of patient's without disease
 - Scaled features in order for model's to run
 - We reviewed pairplots of features for distribution and the correlations between them

Accuracy Precision Recall

20%	0.7435	0.82	0.82
30%	0.7457	0.88	0.79

Logistic Regression

- Normal scale of features to limit model iterations
 - Model could not perform with initial values
- Various logistic regressions were performed to achieve best results
- Initial regressions: 20% vs. 30% test data
 - 30% split showed slightly better results
 - Nearly identical accuracy with a significant improvement to precision but a slight decrease in recall

Logistic Regression Tuning

- Further regressions completed with different solver techniques and penalties
 - Newton-CG, Liblinear, and lbfgs at 30% test split
 - L2 Norm penalty used for regularization
 - Liblinear had a slightly better Precision than others
 - Liblinear using L1 vs. L2 for regularization conducted
 - Identical results with adjusting to L1 penalty
 - Ultimately the 30% split, Liblinear solver, and L1/L2 penalty performed the best
 - A 20% split was used for our ensemble algorithmin order to preserve model consistency

30%, L2	Precision	Recall
Newton-CG	0.88	0.79
Liblinear	0.90	0.79
Lbfgs	0.88	0.79

30%, Liblinear	Precision	Recall	
L1	0.9	0.79	
L2	0.90	0.79	

Principal Component Analysis

- A data dimensionality reduction technique that aims to maximize the variance in the data while minimizing the error in its principal components
- Correlation seemed to indicate redundancy among variables
- Leverage PCA to reduce the feature space accordingly

Support Vector Machine

- Supervised Machine learning model, mapping data to a high dimensional feature space for classification
- Accuracy: 0.91
- F1_score: 0.86
- AUC: 0.88

Support Vector Machine Tuning

- Gamma = 1; C = 1, Kernel = 'rbf'
- Gamma: Controls distance of influence points
- C: Defines the margin of the hyperplane
- Kernel: Perform the mapping
- Accuracy: 0.93
- F1 Score: 0.91
- AUC: 0.94

Random Forest

 Supervised Machine learning model, It is an ensemble method, meaning that a random forest model is made up of a large number of small decision trees, called estimators, which each produce their own predictions. The random forest model combines the predictions of the estimators to produce a more accurate prediction.

Accuracy: .897

• F1_score: 0.933

Random Forest -Tuning

- HyperTuning Parameters
 - criterion: 'entropy'
 - max_depth: 7
 - max_features: 'auto'
 - n_estimators: 50

Ensemble Learning: Voting Classifiers

- Logistic Regression Weight: 2
- RandomForestClassifier Weight: 2
- SVM Weight:.5

After GridSearching

- Hyper Tuning Parameters:
- voting: 'soft'
- weights': (1, 1, 1)

Cross Val Score: .9416

Comparison of Techniques

• From the plot, we can see that there is room to calibrate our models further.

Comparison of Techniques Continued

Conclusion