STAT2011- Lec 1- p1
STATISTICS COLLECTION ANALYSIS. A SCIENCE OF DATA PRESENTATION INTERPRETATION
ANALYSIS NON-INFORMATIVE
MODEL - LESS: COMPLICATED REPRESENTATION OF SOMETHING: THAT RETAINS ITS KEY FEATURES
SAMPLING: MOST DATA WE MEET WULL BE INTERPRETABLE
AS A SAMPLE FROM SOMS POPULATION
We are usually interested in ESTIMATING
certain numerical characteristics) of the POPULATION but to determine this directly is usually difficult."
We thus hope that we can (a) obtain a REPRÉSENTATIVE

Sample and (b) use it to ESTIMATE the PARAMETER (S)

STAT 2011 - Lec 1 - p2

STATISTICAL MODEL

A probabilistic/nathematical model for a data generating process.

- SAMPLE SPACE: Set of all possible datesets one could obtain in a given context.

- EACH SUBSET (of interest / TYPE OF SAMPLE)
i.e. EACH EVENT is assigned a PROBABILITY
(simply a number in [0,1]) in such a way

that the collection of all such numbes "behave like proportions"

- Such models allow us to

- describe what has (or might have) happened

predict an OR (with the aid of a computer)

- Singulate what might than so, in the

- Simulate what might happen in the future.

CLASSICAL PROBABILITY We shall use the term "classical probabily" to describe a scenario where we have a & Sample space with - a finite number of - EQUALLY LIKELY outcomes. there used to be some debate over what "equally Weely" means, but we assume this is Scample: Flop a coin 3 times in sequence. We can represent the sample space as 3 HHH, HRT, HTH, THH, HTT, THT, TTH, TTT

there are $8 = 2^3$ outcomes.

and the control of th

STAT2011- Lee 1- p3