

NOV 09, 2022

WORKS FOR ME

Scanning electron microscopy protocol

DOI

dx.doi.org/10.17504/protocols.io.j8nlkk796l5r/v1

Rene Flores Clavo¹, Francisco Breno S. Teófilo¹

¹Universidade Estadual de Campinas

Rene Flores Clavo: CENTRO DE INVESTIGACIÓN E INNOVACIÓN EN CIENCIAS ACTIVAS MULTIDISCIPLINARIAS Francisco Breno S. Teófilo: Electron Microscopy Laboratory - University of Campinas

RENE FLORES

Protocol Electronic Microscopic

Rene Flores Clavo
Universidade Estadual de Campinas, Centro de Investigación e...

COMMENTS 0

ABSTRACT

This protocol briefly summarizes the basic steps of a scanning electron microscopy processing. The methods adopted for fixation, post-fixation, dehydration, drying in a critical point chamber, sputter coating, and the visualization and acquisition of images are described here.

DOI

dx.doi.org/10.17504/protocols.io.j8nlkk796l5r/v1

PROTOCOL CITATION

Rene Flores Clavo, Francisco Breno S. Teófilo 2022. Scanning electron microscopy protocol . **protocols.io**

https://dx.doi.org/10.17504/protocols.io.j8nlkk796l5r/v1

KEYWORDS

Scanning electron, microscopy protocol, bacterial identification's, LBME, CIICAM

mprotocols.io

1

Citation: Rene Flores Clavo, Francisco Breno S. Teófilo Scanning electron microscopy protocolÃÂ https://dx.doi.org/10.17504/protocols.io.i8nlkk796l5r/v1

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons</u>

<u>Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Aug 16, 2022

LAST MODIFIED

Nov 09, 2022

PROTOCOL INTEGER ID

68749

MATERIALS TEXT

- 1. Sample;
- 2. Glutaraldehyde, 2,5%;
- 3. Sodium cacodylate buffer (pH 7.3) 0.1 M;
- 4. Osmium tetroxide, 1.0%;
- 5. Acetone;
- 6. CO2;
- 7. Aluminum stubs;
- 8. Balzers CPD-030 Critical Point Dryer;
- 9. Balzers SCD 050 Sputter-Coater;
- 10. Scanning Electron Microscope JEOL JSM 5800LV, at 10 kV;
- 11. SemAfore 5.21 software.

MATERIAL SELECTION 1 mm² samples were selected in the colony. 4h FIXATION 2 Samples were fixed in a solution of total 2.5 % volume Solution 10 x 10 ml ampoules Electron Microscopy Sciences Catalog #16220 and total 0.1 Molarity (M) Sodium cacodylate trihydrate Merck Millipore Sigma Catalog #C0250 buffer ⊕ 7.3 , at Room temperature for 0.4:00:00

2

Citation: Rene Flores Clavo, Francisco Breno S. Teófilo Scanning electron microscopy protocolÃÂ https://dx.doi.org/10.17504/protocols.io.j8nlkk796l5r/v1

mprotocols.io

3

SPUTTER-COATER

9 Samples was then coated with a layer of 30–40 nm gold using a Balzers SCD 050 sputter-coater.

OBSERVATIONS AND IMAGE ACQUISITION

Observations and photomicrograph aquisitions were obtained using a JEOL JSM 5800LV at 10 kV with SemAfore 5.21 software.