Ce document contient les solutions des exercices du contrôle 3 de PCDD 251, semaine du 7 Avril 2025. Les énoncés sont repris de la liste fournie et les solutions sont transcrites des notes manuscrites.

1 Exercice 1

Déterminer les points critiques de la fonction :

$$f(x,y) = x^3 + y^3 - 3xy$$
.

Pour chaque point critique déterminer sa nature à l'aide de la matrice hessienne.

Solution. La fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est de classe C^2 car c'est un polynôme. On cherche les points critiques en résolvant $\nabla f(x,y) = \vec{0}$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 - 3y$$
$$\frac{\partial f}{\partial y}(x,y) = 3y^2 - 3x$$

Le système à résoudre est donc :

$$\begin{cases} 3x^2 - 3y = 0 \\ 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases}$$

En substituant la première équation dans la seconde, on obtient $(x^2)^2 = x$, soit $x^4 - x = 0$.

$$x(x^3 - 1) = 0$$

$$x(x-1)(x^2 + x + 1) = 0$$

Les solutions réelles sont x = 0 ou x = 1. Si x = 0, alors $y = x^2 = 0^2 = 0$. Le point critique est (0,0). Si x = 1, alors $y = x^2 = 1^2 = 1$. Le point critique est (1,1). Les points critiques sont donc (0,0) et (1,1).

On détermine la nature de ces points critiques à l'aide de la matrice hessienne.

$$\frac{\partial^2 f}{\partial x^2}(x, y) = 6x$$
$$\frac{\partial^2 f}{\partial y^2}(x, y) = 6y$$
$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = -3$$

La matrice hessienne est:

$$H_f(x,y) = \begin{pmatrix} 6x & -3\\ -3 & 6y \end{pmatrix}$$

Pour le point (0,0):

$$H_f(0,0) = \begin{pmatrix} 0 & -3 \\ -3 & 0 \end{pmatrix}$$

Son déterminant est $\det(H_f(0,0)) = (0)(0) - (-3)(-3) = -9$. Comme le déterminant est négatif, le point (0,0) est un point col (ou point selle). Son polynôme caractéristique est $\lambda^2 - \text{Tr}(H_f(0,0))\lambda + \det(H_f(0,0)) = \lambda^2 - 0\lambda - 9 = \lambda^2 - 9$. Les racines sont $\lambda = 3$ et $\lambda = -3$. Les valeurs propres sont de signes opposés, confirmant que (0,0) est un point col.

Pour le point (1,1):

$$H_f(1,1) = \begin{pmatrix} 6 & -3 \\ -3 & 6 \end{pmatrix}$$

Son déterminant est $\det(H_f(1,1)) = (6)(6) - (-3)(-3) = 36 - 9 = 27$. Sa trace est $\operatorname{Tr}(H_f(1,1)) = 6 + 6 = 12$. Comme $\det(H_f(1,1)) = 27 > 0$ et $\operatorname{Tr}(H_f(1,1)) = 12 > 0$, la matrice hessienne est définie positive, et le point (1,1) est un minimum local.

2 Exercice 2

Déterminer les points critiques de la fonction :

$$f(x,y) = (x+y)^2 + (x-y)^3.$$

Pour chaque point critique déterminer sa nature à l'aide de la matrice hessienne.

Solution. La fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est de classe C^2 . On cherche les points critiques en résolvant $\nabla f(x,y) = \vec{0}$. $f(x,y) = x^2 + 2xy + y^2 + x^3 - 3x^2y + 3xy^2 - y^3$. (note: l'énoncé est $(x-y)^3$, pas $(x-y)^3$). Recalculons $f(x,y) = (x+y)^2 + (x-y)^3$.

$$\frac{\partial f}{\partial x}(x,y) = 2(x+y) + 3(x-y)^2$$
$$\frac{\partial f}{\partial y}(x,y) = 2(x+y) - 3(x-y)^2$$

On cherche $\nabla f(x,y) = \vec{0}$:

$$\begin{cases} 2(x+y) + 3(x-y)^2 = 0 & (E1) \\ 2(x+y) - 3(x-y)^2 = 0 & (E2) \end{cases}$$

Posons A = (x + y) et B = (x - y). Le système devient :

$$\begin{cases} 2A + 3B^2 = 0\\ 2A - 3B^2 = 0 \end{cases}$$

En additionnant (E1) et (E2): $4A = 0 \implies A = 0$. En soustrayant (E2) de (E1): $6B^2 = 0 \implies B = 0$. Donc, on doit avoir A = x + y = 0 et B = x - y = 0. De x + y = 0 et x - y = 0, on tire $2x = 0 \implies x = 0$, et $2y = 0 \implies y = 0$. Le seul point critique est (0,0).

Déterminons sa nature. On calcule la matrice hessienne $H_f(x,y)$.

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial}{\partial x}(2(x+y) + 3(x-y)^2) = 2 + 6(x-y)$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = \frac{\partial}{\partial y}(2(x+y) - 3(x-y)^2) = 2 + 6(x-y)(-1)(-1) = 2 + 6(x-y)$$

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial y}(2(x+y) + 3(x-y)^2) = 2 + 6(x-y)(-1) = 2 - 6(x-y)$$

Vérifions $\frac{\partial^2 f}{\partial y \partial x}$: $\frac{\partial}{\partial x} (2(x+y) - 3(x-y)^2) = 2 - 6(x-y)(1) = 2 - 6(x-y)$. C'est cohérent.

$$H_f(x,y) = \begin{pmatrix} 2 + 6(x - y) & 2 - 6(x - y) \\ 2 - 6(x - y) & 2 + 6(x - y) \end{pmatrix}$$

Au point critique (0,0):

$$H_f(0,0) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

Le déterminant est $det(H_f(0,0)) = (2)(2) - (2)(2) = 4 - 4 = 0$. Donc (0,0) est un point critique dégénéré. La matrice hessienne ne permet pas de conclure directement. (La note manuscrite s'arrête là concernant la nature du point).

3 Exercice 3

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} x^{-1}y^2 & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

1) Montrer que f est dérivable au point (0,0) dans toutes les directions. Indication : revenir à la définition en considérant la fonction $t \mapsto f(t\vec{v})$ pour un vecteur $\vec{v} \neq \vec{0}$ arbitraire. 2) Montrer que f n'est pas continue en (0,0). indication: on pourra trouver deux suites (u_n) et (v_n) de points dans \mathbb{R}^2 telles que $\lim u_n = \lim v_n = \lim v$ (0,0) mais $\lim f(u_n) \neq \lim f(v_n)$.

Solution. 1) Soit $\vec{v} = (a,b) \in \mathbb{R}^2$, $\vec{v} \neq (0,0)$. On étudie la dérivabilité en t=0 de la fonction $\phi(t) = f(t\vec{v}) = f(ta, tb)$. On veut calculer $\phi'(0) = \lim_{t\to 0} \frac{f(ta, tb) - f(0, 0)}{t}$. On a f(0, 0) = 0. Cas $1: a \neq 0$. Pour t suffisamment petit et non nul, $ta \neq 0$.

$$f(ta, tb) = (ta)^{-1}(tb)^2 = \frac{t^2b^2}{ta} = t\frac{b^2}{a}$$

Alors

$$\frac{f(ta,tb) - f(0,0)}{t} = \frac{t^{\frac{b^2}{a}} - 0}{t} = \frac{b^2}{a}$$

Donc $\lim_{t\to 0} \frac{f(ta,tb)-f(0,0)}{t} = \frac{b^2}{a}$. La limite existe. Cas 2: a=0. Puisque $\vec{v}\neq (0,0)$, on a $b\neq 0$. Alors $t\vec{v}=(0,tb)$. Pour $t\neq 0$, on a ta=0. Donc f(ta, tb) = f(0, tb) = 0. Alors

$$\frac{f(ta,tb) - f(0,0)}{t} = \frac{0-0}{t} = 0$$

Donc $\lim_{t\to 0} \frac{f(ta,tb)-f(0,0)}{t}=0$. La limite existe.

Dans les deux cas, la limite $\lim_{t\to 0} \frac{f(ta,tb)-f(0,0)}{t}$ existe. Donc f est dérivable en (0,0) dans la direction \vec{v} . Ceci étant vrai pour tout $\vec{v} \neq (0,0)$, f est dérivable en (0,0) dans toutes les directions.

2) Soit (x_n) la suite dans $(\mathbb{R}^2)^N$ définie par $x_n = (\frac{1}{n}, \frac{1}{\sqrt{n}})$ pour $n \in \mathbb{N}^*$. On a $\lim_{n \to \infty} x_n = (\frac{1}{n}, \frac{1}{\sqrt{n}})$ $(\lim \frac{1}{n}, \lim \frac{1}{\sqrt{n}}) = (0,0)$. Calculons $f(x_n)$ pour $n \ge 1$. Comme $x_n = 1/n \ne 0$.

$$f(x_n) = f(\frac{1}{n}, \frac{1}{\sqrt{n}}) = \left(\frac{1}{n}\right)^{-1} \left(\frac{1}{\sqrt{n}}\right)^2 = n \cdot \frac{1}{n} = 1$$

Donc $\lim_{n\to\infty} f(x_n) = 1$. Or f(0,0) = 0. Comme $\lim_{n\to\infty} x_n = (0,0)$ mais $\lim_{n\to\infty} f(x_n) = 1 \neq f(0,0)$, la fonction f n'est pas continue en (0,0) par la caractérisation séquentielle des applications continues.

4 Exercice 4

Etudier la continuité de la fonction

$$f(x,y) = \begin{cases} x^4 & \text{si } y > x^2, \\ y^2 & \text{si } y \le x^2. \end{cases}$$

Solution. Soit f(x,y). Sur $D_1 = \{(x,y) \in \mathbb{R}^2 \mid y > x^2\}$, $f(x,y) = x^4$. C'est une fonction polynomiale, donc continue sur D_1 . D_1 est un ouvert. Sur $D_2 = \{(x,y) \in \mathbb{R}^2 \mid y < x^2\}$, $f(x,y) = y^2$. C'est une fonction polynomiale, donc continue sur D_2 . D_2 est un ouvert.

Il reste à étudier la continuité sur la parabole $\mathcal{P} = \{(x,y) \in \mathbb{R}^2 \mid y = x^2\}$. Soit $(x_0, y_0) \in \mathcal{P}$, c'est-à-dire $y_0 = x_0^2$. On a $f(x_0, y_0) = y_0^2 = (x_0^2)^2 = x_0^4$. On cherche $\lim_{(x,y) \to (x_0, y_0)} f(x,y)$.

Considérons la limite pour $(x, y) \to (x_0, y_0)$ avec $(x, y) \in D_1$ (i.e., $y > x^2$).

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\y>x^2}} f(x,y) = \lim_{\substack{(x,y)\to(x_0,y_0)\\y>x^2}} x^4 = x_0^4.$$

Considérons la limite pour $(x, y) \to (x_0, y_0)$ avec $(x, y) \in D_2 \cup \mathcal{P}$ (i.e., $y \leq x^2$).

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\y\leq x^2}} f(x,y) = \lim_{\substack{(x,y)\to(x_0,y_0)\\y\leq x^2}} y^2 = y_0^2 = (x_0^2)^2 = x_0^4.$$

Dans les deux cas, la limite existe et vaut x_0^4 . De plus, $f(x_0, y_0) = y_0^2 = x_0^4$. Donc, pour tout $(x_0, y_0) \in \mathcal{P}$, $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$. La fonction f est donc continue sur \mathcal{P} .

Puisque f est continue sur D_1 , D_2 et \mathcal{P} , et que $D_1 \cup D_2 \cup \mathcal{P} = \mathbb{R}^2$, la fonction f est continue sur \mathbb{R}^2 . (Note: La note manuscrite mentionne $D_1 \cup D_2 = \mathbb{R}^2$ et cette union est disjointe? Non, $D_1 \cup D_2 \cup \{(x,y)|y=x^2\} = \mathbb{R}^2$. f est continue sur D_1 et D_2 . L'étude sur la frontière $y=x^2$ montre que la limite le long de $y>x^2$ est x_0^4 et le long de $y<x^2$ est y_0^2 . Comme $y_0=x_0^2$, ces limites coïncident avec la valeur $f(x_0,x_0^2)=(x_0^2)^2=x_0^4$. Donc f est continue sur \mathbb{R}^2 .)

5 Exercice 5

Soit $E=C([0,1];\mathbb{R})$ l'espace des fonctions réelles continues sur [0,1], muni de la norme $\|f\|_{\infty}=\sup_{x\in[0,1]}|f(x)|$. Soit

$$A = \{ f \in E : f(0) = 0 \text{ et } \int_0^1 f(x) dx \ge 1 \}.$$

1) Montrer que A est un fermé de $(E, \|\cdot\|_{\infty})$. Indication : on pourra étudier la continuité des applications de E dans R données par $f \mapsto f(0)$ et $f \mapsto \int_0^1 f(x) dx$. 2) Montrer que si $f \in A$ alors $\|f\|_{\infty} > 1$. Indication : $si \ f \in A$ et $\|f\|_{\infty} \le 1$ montrer que $\int_0^1 f(x) dx < 1$. En déduire que $\int_0^1 (1 - f(x)) dx = 0$ puis que f(x) = 1 pour tout $x \in [0; 1]$.

Solution. 1) Soit $E = C([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Posons les applications $\Phi: E \to \mathbb{R}$ définie par $\Phi(f) = f(0)$ et $\Psi: E \to \mathbb{R}$ définie par $\Psi(f) = \int_0^1 f(t)dt$. Montrons que Φ et Ψ sont continues. Pour la norme $\|\cdot\|_{\infty}$ sur E. $|\Phi(f)| = |f(0)| \le \sup_{t \in [0,1]} |f(t)| = \|f\|_{\infty}$. Donc $|\Phi(f)| \le 1 \cdot \|f\|_{\infty}$. Φ est une forme linéaire continue (bornée) sur E. $|\Psi(f)| = |\int_0^1 f(t)dt| \le \int_0^1 |f(t)|dt \le \int_0^1 \|f\|_{\infty}dt = \|f\|_{\infty}\int_0^1 dt = \|f\|_{\infty}$. Donc $|\Psi(f)| \le 1 \cdot \|f\|_{\infty}$. Ψ est une forme linéaire continue (bornée) sur E.

L'ensemble A peut s'écrire $A = \{f \in E \mid \Phi(f) = 0\} \cap \{f \in E \mid \Psi(f) \geq 1\}$. Posons $A_1 = \{f \in E \mid \Phi(f) = 0\} = \Phi^{-1}(\{0\})$. Posons $A_2 = \{f \in E \mid \Psi(f) \geq 1\} = \Psi^{-1}([1, +\infty))$. Comme Φ est continue et $\{0\}$ est un fermé de \mathbb{R} , A_1 est un fermé de E. Comme Ψ est continue et $\{0\}$ est un fermé de E. L'ensemble $A = A_1 \cap A_2$ est l'intersection finie de deux fermés, donc E est un fermé de E.

2) Soit $f \in A$. Supposons par l'absurde que $||f||_{\infty} \le 1$. On a: $\forall x \in [0,1], |f(x)| \le ||f||_{\infty} \le 1$. Alors $\int_0^1 f(x)dx \le \int_0^1 |f(x)|dx$. Comme $|f(x)| \le 1$ pour tout x, $\int_0^1 |f(x)|dx \le \int_0^1 1dx = 1$. Donc $\int_0^1 f(x)dx \le 1$. Or, $f \in A$, donc par définition $\int_0^1 f(x)dx \ge 1$. La seule possibilité est donc $\int_0^1 f(x)dx = 1$.

Considérons l'intégrale $I=\int_0^1 (1-f(x))dx$. $I=\int_0^1 1dx-\int_0^1 f(x)dx=1-1=0$. La fonction g(x)=1-f(x) est continue sur [0,1] car f est continue. De plus, comme $f(x)\leq |f(x)|\leq \|f\|_{\infty}\leq 1$, on a $1-f(x)\geq 0$ pour tout $x\in [0,1]$. Donc $g(x)\geq 0$ pour tout $x\in [0,1]$. On a une fonction g continue, positive, dont l'intégrale sur [0,1] est nulle. Par nullité de l'intégrale d'une fonction continue positive, cela implique que g(x)=0 pour tout $x\in [0,1]$. Donc 1-f(x)=0, soit f(x)=1 pour tout $x\in [0,1]$. Mais si f(x)=1 pour tout $x\in [0,1]$, alors f(0)=1. Or $f\in A$ impose f(0)=0. On obtient la contradiction 1=0. Donc l'hypothèse $\|f\|_{\infty}\leq 1$ est fausse. On conclut que si $f\in A$, alors $\|f\|_{\infty}>1$.

6 Exercice 6

Soit $l^1(\mathbb{N})$ l'espace vectoriel des suites réelles $a=(a_n)_{n\in\mathbb{N}}$ telle que la série $\sum_{n\in\mathbb{N}}|a_n|$ converge. On rappelle que $l^1(\mathbb{N})$ est muni de la norme

$$||a||_1 = \sum_{n=0}^{+\infty} |a_n|.$$

1a) Expliquer pourquoi si $a \in l^1(\mathbb{N})$ alors la série $\sum_{n \in \mathbb{N}} a_n$ est convergente. 1b) Montrer que l'application

$$\varphi: \begin{array}{ccc} l^1(\mathbb{N}) & \to & \mathbb{R} \\ a & \mapsto & \sum_{n=0}^{+\infty} a_n \end{array}$$

est une application linéaire et que $|\varphi(a)| \le ||a||_1$ pour tout $a \in l^1(\mathbb{N})$. 2) Soit $F = \{a \in l^1(\mathbb{N}) : \varphi(a) = 1\}$. F est-il ouvert? fermé? borné?

Solution. 1a) Soit $a=(a_n)_{n\in\mathbb{N}}\in l^1(\mathbb{N})$. Cela signifie que la série $\sum_{n=0}^\infty |a_n|$ converge. On cherche à montrer que la série $\sum_{n=0}^\infty a_n$ converge. Notons $S_n=\sum_{k=0}^n a_k$ la somme partielle de la série $\sum a_n$. Notons $A_n=\sum_{k=0}^n |a_k|$ la somme partielle de la série $\sum |a_n|$. Puisque $\sum |a_n|$ converge, la suite $(A_n)_{n\in\mathbb{N}}$ est convergente. Comme $l^1(\mathbb{N})$ est un espace de Banach (complet pour la norme $\|\cdot\|_1$), toute suite de Cauchy converge. \mathbb{R} est complet. Montrons que la suite (S_n) est de Cauchy dans \mathbb{R} . Soit $\epsilon>0$. Puisque la suite (A_n) converge, elle est de Cauchy. Donc $\exists N\in\mathbb{N}$ tel que $\forall m>n\geq N, |A_m-A_n|<\epsilon$. $|A_m-A_n|=\sum_{k=n+1}^m |a_k|$. Alors pour $m>n\geq N$, on a :

$$|S_m - S_n| = \left| \sum_{k=n+1}^m a_k \right| \le \sum_{k=n+1}^m |a_k| = |A_m - A_n| < \epsilon$$

Donc la suite (S_n) est de Cauchy dans \mathbb{R} . Comme \mathbb{R} est complet, la suite (S_n) converge. Cela signifie que la série $\sum_{n=0}^{\infty} a_n$ est convergente. (Alternativement : on dit qu'une série absolument convergente est convergente. C'est un théorème d'analyse.)

1b) Montrons que φ est linéaire. Soient $\lambda \in \mathbb{R}$, $a,b \in l^1(\mathbb{N})$. $a = (a_n)$, $b = (b_n)$. Alors $\lambda a + b = (\lambda a_n + b_n)$. Il faut d'abord vérifier que $\lambda a + b \in l^1(\mathbb{N})$. $\sum_{n=0}^{\infty} |\lambda a_n + b_n| \leq \sum_{n=0}^{\infty} (|\lambda a_n| + |b_n|) = \sum_{n=0}^{\infty} (|\lambda| |a_n| + |b_n|) = |\lambda| \sum_{n=0}^{\infty} |a_n| + \sum_{n=0}^{\infty} |b_n| = |\lambda| ||a||_1 + ||b||_1$. Comme $||a||_1$ et $||b||_1$ sont finis, la

série $\sum |\lambda a_n + b_n|$ converge, donc $\lambda a + b \in l^1(\mathbb{N})$. Maintenant, calculons $\varphi(\lambda a + b)$.

$$\varphi(\lambda a + b) = \sum_{n=0}^{\infty} (\lambda a_n + b_n)$$

$$= \sum_{n=0}^{\infty} \lambda a_n + \sum_{n=0}^{\infty} b_n \quad \text{(par linéarité des séries convergentes)}$$

$$= \lambda \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

$$= \lambda \varphi(a) + \varphi(b)$$

Donc φ est linéaire.

Montrons que $|\varphi(a)| \leq ||a||_1$.

$$|\varphi(a)| = \left|\sum_{n=0}^{\infty} a_n\right| \le \sum_{n=0}^{\infty} |a_n|$$
 (par inégalité triangulaire généralisée)

$$|\varphi(a)| \le ||a||_1$$

Cette inégalité montre aussi que φ est continue car elle est linéaire et bornée (sa norme d'opérateur est ≤ 1).

2) Étude de $F = \{a \in l^1(\mathbb{N}) : \varphi(a) = 1\}$. $F = \varphi^{-1}(\{1\})$.

F est-il fermé ? L'application $\varphi:(l^1(\mathbb{N}),\|\cdot\|_1)\to(\mathbb{R},|\cdot|)$ est linéaire et continue (montré en 1b)). L'ensemble $\{1\}$ est un fermé de \mathbb{R} . L'image réciproque d'un fermé par une application continue est un fermé. Donc $F=\varphi^{-1}(\{1\})$ est un fermé de $l^1(\mathbb{N})$.

F est-il ouvert ? Considérons la suite $a=(1,0,0,\ldots)$. On a $\varphi(a)=1$, donc $a\in F$. Considérons un voisinage $B(a,\delta)$ pour un $\delta>0$. Soit la suite $b_{\epsilon}=(1+\epsilon,0,0,\ldots)$ pour $\epsilon>0$. $\varphi(b_{\epsilon})=1+\epsilon\neq 1$. Donc $b_{\epsilon}\notin F$. La distance $\|b_{\epsilon}-a\|_1=\|(\epsilon,0,0,\ldots)\|_1=|\epsilon|=\epsilon$. Si on choisit $\epsilon<\delta$, alors $b_{\epsilon}\in B(a,\delta)$ mais $b_{\epsilon}\notin F$. Aucun voisinage de a n'est inclus dans F. Donc F n'est pas ouvert.

F est-il borné? Considérons la suite d'éléments de $l^1(\mathbb{N})$ définie par $a^{(p)}=(p+1,-p,0,0,\dots)$ pour $p\in\mathbb{N}$. Vérifions que $a^{(p)}\in l^1(\mathbb{N})$. $\|a^{(p)}\|_1=|p+1|+|-p|+0+\dots=p+1+p=2p+1$. C'est fini pour chaque p. Calculons $\varphi(a^{(p)})\colon \varphi(a^{(p)})=\sum_{n=0}^\infty a_n^{(p)}=(p+1)+(-p)+0+\dots=1$. Donc $a^{(p)}\in F$ pour tout $p\in\mathbb{N}$. La norme de ces éléments est $\|a^{(p)}\|_1=2p+1$. Lorsque $p\to\infty$, $\|a^{(p)}\|_1\to\infty$. L'ensemble F contient des éléments de norme arbitrairement grande. Donc F n'est pas borné. (Note: la suite utilisée dans la note manuscrite $(p+1,-p,0,\dots)$ est correcte pour montrer que F n'est pas borné).