Лабораторная работа N $^{\circ}2$

Продвинутые методы

https://github.com/GooddiLK/AllEDa

Пластинин Алексей М3237 t.me/plstnn Малков Александр М3237 $t.me/AlexM_37$ Кинзябулатов Эдуард М3237 t.me/Eduard 7000Кулебакин Дмитрий М3237 $t.me/SinDat_tg$

Сравнить эффективность работы различных методов поиска минимума в

Цель работы:

зависимости от вида функций. Используемые методы:

• Градиентный спуск с постоянным шагом, экспоненциальным затуханием,

- условиями Армихо и Вольфе. Метод Ньютона с постоянным шагом и поиском шага по условию Вольфе.
- Newton-CG & BFGS из scipy.optimize.
- Реализация BFGS • Задается начальная точка х_0. Инициализируется начальная аппроксимация

- матрицы Гессе H_0 . Вычисляется градиент функции в точке $x_0 : \nabla f(x_0)$ • На каждой итерации алгоритм вычисляет направление движения: $d_k = -H_k \nabla f(x_k)$
 - Для поиска шага используется backtracking line search для нахождения подходящего шага α_k , удовлетворяющего условию Армихо:

 $f(x_k + \alpha_k d_k) \le f(x_k) + c_1 \alpha_k \nabla f(x_k)^T d_k, (c_1 \in (0, 1))$

Обновление точки: $x_{k+1} = x_k + \alpha_k d_k$

Обновление матрицы H_k : $\begin{aligned} H_{k+1} &= \left(I - \rho_k s_k y_k^T\right) H_k \left(I - \rho_k y_k s_k^T\right) + \rho_k s_k s_k^T \\ \left(s_k = x_{k+1} - x_k, \ y_k = \nabla f(x_{k+1}) - \nabla f(x_k), \ \rho_k = \frac{1}{y_k^T s_k}\right) \end{aligned}$

Реализация метода Ньютона На каждой итерации он вычисляет значение, производную и гессиан в точке. Далее с помощью формулы вычисляем $\mathbf{p} = - \left(\nabla^2 f(x_k) \right)^{-1} \nabla f(x_k)$ а в направлении $- \nabla m(x_k)$

вычисляем минимум внутри доверительного региона, где m – аппроксимированная

модель нашей функции до 2 члена ряда. После этого мы находим пересечение линии от найденного минимума до р с границой региона доверия - это и будет наш кандидат на x_{k+1} . Чтобы понять, насколько хорошо мы аппроксимировали нашей моделью f внутри доверительного региона считаем result $-f(x_{k+1})$

 $\text{result} - m(x_{k+1} - x_k)$ – это показатель того, насколько хорошо мы аппроксимировали функцию в deltaокрестности - нашем регионе доверия.

Исследование: Рассматриваемые функции:

• $F_1 = x^2 + y^2$

0,41

1.02

0.98

0.01

1.6e-4

0.49

1.6e-7

0.27

1.9e-5

• $F_2=3x^2-4xy+10y^2$ • $F_3=\left(x^2+y-11\right)^2+\left(x+y^2-7\right)^2$ – Функция Химмельблау • $F_4=20+\left(x^2-10\cos(2\pi x)\right)+\left(y^2-10\cos(2\pi y)\right)$ – Функция Растригина

Начальная точка – (100, -200).

В следующих 2 таблицах содержатся лучшие значения гиперпараметров, подобранные с помощью optuna. Nan в первой таблице в строке соответствующей

которых метод бы сошелся. Константный шаг, Экспоненциальный, критерии Армихо и Вольфе

0.49 | 0.05 | 8.4e-7

функции Химмельблау означает, что optuna не удалось подобрать параметры, при

 c_1 2.1e-8

2.1

1.1

7.89

4.59

0.01

2.1e-3

0.002

2.3e-3

5.7e-4

-	α_0	ε	c	q		- α	0	ε	c_2	c_1		Δ	$\Delta_{ m max}$	Δ_{\min}	η	γ
BFGS, Newton с критерием Вольфе																
F_{z}	0.03	3 -	0.21	1.4e-3	-	0.51	0.09	1.26	e-3	5.7e-4	-	4	2.7e-7	3.26	-4 1	l.8e-8
F_{5}	' Nai	1 -	Nan	Nan	-	0.05	0.57	2.9e-9		1.7e-3	-	1.93	1.5e-9	1.4ϵ	1.4e-4 4	
	2	-								•					_	

0.31

0.02

0.66184.4e-05 0.062 0.0001 0.016

0.15

1.1e-6

1.2e-6

7.6e-5

3e-10

4.7e-8

 $0.04 \mid 3.6e-5$

0.06

3.80

0.07

1,00

5.7

9.2

0.05

Итерации

13

2

2

4

3

6

2

4

3

| - | 0.18 | 0.82 | 2.4e-6 | 6.2e-4 | - | 0.77 | 1.4e-10 | 5.7e-6 | 2.5e-6

5.8e-3

0.57

0.5

0.755

0.53

0.07

0.03

0.074

0.02

12

6

2

4

3

Обозначения гиперпараметров для метода Ньютона: $\Delta_{\rm max}$ - trust_upper_bound - верхняя граница того, как хорошо предсказывает наша модель функции (если выше неё, значит можем расширить диапазон доверия);

0.04

0.01

2.1e-4 | 6.8e-4 | 0.47

0.35 | 1.4e-6 | 3.2e-5 | 4.5e-3

 Δ_{\min} - trust_lower_bound - минимальное значение достоверности модели (если ниже неё, то диапазон доверия уменьшается); η - trust_no_trust_bound - минимальное значение достоверности модели для принятие результата как удовлетворяющего (если ниже, то приходится пересчитывать шаг с уменьшенным доверительным радиусом); γ - trust_changing_multiply_value - множитель для изменения радиуса доверительной области.

Экспоненциальный (5.5e-9, -1.1e-8)0 76 (2.2e-10, -4.4e-10)7 7 6 Армихо 6 Вольфе (-8.4e-10, 1.7e-9)6 6 **BFGS** (7.2e-9, -1.4e-8)8 9 7

В следующей таблице представлены результаты исследования, т.е. результаты

Point

(8.2e-8, -1.6e-7)

(-2.1e-14, 2.8e-14)

(0, 0)(0, 0)

(0, 0)

запусков указанных методов на 4 исследуемых функциях.

 $oldsymbol{F_1}$

Постоянный

scipy BFGS

scipy Newton-CG

Newton Вольфе

Newton Эксп

	Newton Конст	(0, 0)	3	3	3	
	F_2	-	-	-	_	
	Постоянный	(-3.3e-8, 3.3e-7)	44	0	43	
	Экспоненциальный	(-3.0e-8, 1.4e-7)	32	0	31	
	Армихо	(9.8e-8, -3.7e-7)	69	341	68	
	Вольфе	(1.2e-7, 1.7e-8)	17	51	51	
	BFGS	(-4.0e-9, -1.4e-9)	10	12	9	
	scipy BFGS	(2.2e-16, -2.2e-16)	5	10	10	
	scipy Newton-CG	(0, 0)	7	7	7	
	Newton Вольфе	(0, 0)	4	4	4	
	Newton Эксп	(0, 0)	3	3	3	
	Newton Конст	(0, 0)	3	3	3	
	F_3	-	-	-	_	
	Постоянный	Nan	-	-	-	
	Экспоненциальный	Nan	-	-	_	
	Армихо	(-3.78, -3.28)	21	129	20	
	Вольфе	(3.58, -1.84)	35	278	278	
	BFGS	(60.4, 32.8)	4	10	3	
	scipy BFGS	(-2.80, 3.13)	34	44	44	
	scipy Newton-CG	(3.58, -1.84)	17	18	18	
	Newton Вольфе	(2.999, 2)	16	27	16	
	Newton Эксп	(2.999, 1.999)	107	169	107	
	Newton Конст	(2.999, 1.999)	93	113	93	
	$oldsymbol{F_4}$	-	-	-	-	
	Постоянный	(-4.17, -1.34)	5001	0	5000	
	Экспоненциальный	(2.5e-7, 2.5e-7)	2738	0	2737	
	Армихо	(-1.98, 3.98)	31	89	30	
	Вольфе	(-1.98, 5.97)	30	250	250	
	BFGS	(-2.98, 1.00)	12	51	11	
	scipy BFGS	(-21.9, 19.0)	12	22	22	
	scipy Newton-CG	(-5.96, -1.99)	12	30	30	
	Newton Вольфе	(9.948, 7.95)	4	5	4	
	Newton Эксп	(9.95, 7.96)	7	8	7	
	Newton Конст	(9.95, 7.96)	4	5	4	
	ице, как и в предыду вских методах количе й.		_			Ы
Выводы	ı:					
минимума з	х функциях методь а несколько итераци не методы тоже работ	й.			эстигая	[

В Ньютонов вызовов производной Bыводb

Для функции Химмельблау: Градиентные методы с постоянным/экспоненциальным шагом не сошлись. Методы с условиями Армихо и Вольфе нашли минимум с разной степенью

Градиентные методы часто застревают в локальных минимумах.

эффективности. Newton-CG и BFGS из scipy показали хорошие результаты. Для собственной

реализации Ньютона от значения гиперпараметров зависит сходимость или расходимость метода. Особенно хорошо это заметно на методе Ньютона с планированием шага. BFGS не сошёлся. Для функции Растригина:

Методы Ньютона сходятся быстро, но застревают в локальном минимуме.

Экспоненциальный шаг сходится не к локальному, а к глобальному минимуму – фиксированная длина шага не позволяет ему застрять в локальном минимуме.