

FCC RADIO TEST REPORT

Product: TENS&PMS

Trade Name: N/A

Model Name: SM9187

Serial Model: SM9185, SM9180, SM9187A, SM9187B

Report No.: POCE17062932SRF

Prepared for

Hong Qiangxing(Shenzhen) electronics Limited
4F, Jingcheng Building, Xicheng Industrial Zone, Xixiang Road,
Bao'an District, Shenzhen City, Guangdong Province, China,
518126

Prepared by

Shenzhen POCE Technology Co.,Ltd.
Room 502, Bldg. 1, Xinghua Garden, Baoan Road Xixiang,
Baoan District,Shenzhen, China

TEST RESULT CERTIFICATION

Manufacture's Name Hong Qiangxing(Shenzhen) electronics Limited Address	
Product description	
• • • • • • • • • • • • • • • • • • •	
Product nameTENS&PMS	
Model and/or type reference SM9187, SM9185, SM9180, SM9187A, SM9187B	
Trade Name N/A	
Standards FCC Part15.247, KDB558074 D01 DTS Meas Guidance v03r03	
Test procedure ANSI C63.10: 2013	
This device described above has been tested by POCE, and the test results show that the equipme under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.	nt
This report shall not be reproduced except in full, without the written approval of POCE, this document	ent
may be altered or revised by POCE, personal only, and shall be noted in the revision of the docume	nt.
Date of Test	
Date (s) of performance of tests 29 June 2017 ~ 10 July 2017	
Date of Issue 10 July 2017	
Test Result Pass	

Technical Manager : (Ken Li)

(Ken Li)

(Jimmy Yao)

Testing Engineer

Authorized Signatory:

Table of Contents

	Page
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3 . EMC EMISSION TEST	13
3. EWIC EMISSION TEST 3.1 CONDUCTED EMISSION MEASUREMENT	13
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
3.1.2 TEST PROCEDURE	14
3.1.3 DEVIATION FROM TEST STANDARD	14
3.1.4 TEST SETUP	14
3.1.5 EUT OPERATING CONDITIONS	14
3.1.6 TEST RESULTS	15
3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS	17 17
3.2.2 TEST PROCEDURE	18
3.2.3 DEVIATION FROM TEST STANDARD	18
3.2.4 TEST SETUP	19
3.2.5 EUT OPERATING CONDITIONS	20
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	21
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ) 3.2.8 TEST RESULTS (ABOVE 1000 MHZ)	22 24
· ·	
4 . POWER SPECTRAL DENSITY TEST	26
4.1 APPLIED PROCEDURES / LIMIT	26
4.1.1 TEST PROCEDURE 4.1.2 DEVIATION FROM STANDARD	26 26
4.1.2 DEVIATION FROM STANDARD 4.1.3 TEST SETUP	26
4.1.4 EUT OPERATION CONDITIONS	26
4.1.5 TEST RESULTS	27
5 . BANDWIDTH TEST	29
5.1 APPLIED PROCEDURES / LIMIT	29
5.1.1 TEST PROCEDURE	29
5.1.2 DEVIATION FROM STANDARD	29

Table of Contents

	Page
5.1.3 TEST SETUP	29
5.1.4 EUT OPERATION CONDITIONS	29
5.1.5 TEST RESULTS	30
6 . PEAK OUTPUT POWER TEST	32
6.1 APPLIED PROCEDURES / LIMIT	32
6.1.1 TEST PROCEDURE	32
6.1.2 DEVIATION FROM STANDARD	32
6.1.3 TEST SETUP	32
6.1.4 EUT OPERATION CONDITIONS	32
6.1.5 TEST RESULTS	33
7 . ANTENNA REQUIREMENT	35
7.1 STANDARD REQUIREMENT	35
7.2 EUT ANTENNA	35
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C KDB558074 D01 DTS Meas Guidance v03r05						
Standard Section	l est item					
15.207(a)	AC Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3) 15.31(e)	Peak Output Power	PASS				
15.247 (d) 15.205	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247(d), 15.205	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen POCE Technology Co.,Ltd.

Add.: Room 502, Bldg. 1, Xinghua Garden, Baoan Road Xixiang, Baoan District, Shenzhen,

China

FCC-Registration No.: 222278

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}_{\tau}$ where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}_{\tau}$ providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	TENS&PMS				
Trade Name	N/A				
Model Name	SM9187				
Serial Model	SM9185, SM9180, SI	M9187A, SM9187B			
Model Difference	All the same,Only mo	del name is different.			
Product Description	The EUT is a TENS&PMS Operation				
Channel List	Please refer to the Note 2.				
Adapter	AC Power Input: 100-240V~, 50/60Hz Output: DC 5.0V, 0.3A				
Battery	DC3.7V				
Connecting I/O Port(s)	Please refer to the Us	ser's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: POCE17062932SRF

2.

is a second of the second of t							
			Chann	el List			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

3

Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
Α	N/A	N/A	PCB antenna	N/A	0	N/A

2.2 DESCRIPTION OF TEST MODES

Mode 4

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Link Mode

Report No.: POCE17062932SRF

operation mode(s) or t	lest configuration mode(s) mentioned above was evaluated respe
Pretest Mode	Description
Mode 1	TX 2402
Mode 2	TX 2440
Mode 3	TX 2480

	For Conducted Emission
Final Test Mode	Description
Mode 4	N/A

For Radiated Emission				
Final Test Mode	Description			
Mode 1	TX 2402			
Mode 2	TX 2440			
Mode 3	TX 2480			
Mode 4	Link Mode			

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission Test

Radiated Spurious Emission Test

E-1 EUT

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	TENS&PMS	N/A	SM9187	SM9185, SM9180, SM9187A, SM9187B	EUT
E-2	Adapter	N/A	YST-503	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.6M	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Spectrum Analyzer	Agilent	E4407B	MY4510804 0	2016.09.06	2017.09.05	1 year
2	Test Receiver	R&S	ESPI	101318	2016.09.07	2017.09.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2016.09.06	2017.09.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 6	2016.09.07	2017.09.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2016.09.07	2017.09.06	1 year
6	Horn Antenna	EM	EM-AH-101 80	2011071402	2016.09.06	2017.09.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.09.06	2017.09.05	1 year
8	Amplifier	EM	EM-30180	060538	2016.12.22	2017.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2016.09.08	2017.09.07	1 year

Conduction Test equipment

Item	Kind of Equipment	Manufactu rer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2016.09.06	2017.09.05	1 year
2	LISN	R&S	ENV216	101313	2016.08.24	2017.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2016.08.24	2017.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.09.07	2017.09.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2016.09.07	2017.09.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2016.09.08	2017.09.07	1 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A	Class A (dBuV)		Class B (dBuV)	
FREQUENCY (WITZ)	Quasi-peak	Average	Quasi-peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. BothofLISNs(AMN)are80cmfromEUTandatleast80from otherunitsandothermetalplanes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

EUT:	TENS&PMS	Model Name. :	SM9187
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 4

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Detector Type
0.634	38.91	10.13	49.04	56	-6.96	QP
0.634	21.32	10.13	31.45	46	-14.55	AVG
0.854	34.19	10.15	44.34	56	-11.66	QP
0.854	15.29	10.15	25.44	46	-20.56	AVG
1.414	34.07	10.17	44.24	56	-11.76	QP
1.414	14.31	10.17	24.48	46	-21.52	AVG
1.954	33.29	10.18	43.47	56	-12.53	QP
1.954	12.67	10.18	22.85	46	-23.15	AVG
2.946	13.67	10.19	23.86	46	-22.14	AVG
2.9539	31.82	10.19	42.01	56	-13.99	QP
10.626	39.5	10.13	49.63	60	-10.37	QP

^{1.}All readings are Quasi-Peak and Average values. 2.Factor = Insertion Loss + Cable Loss.

EUT:	TENS&PMS	Model Name.:	SM9187
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage:	AC120V/60Hz	Test Mode:	Mode 4

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Detector Type
0.634	40.77	10.13	50.9	56	-5.1	QP
0.634	27.31	10.13	37.44	46	-8.56	AVG
1.386	34.13	10.17	44.3	56	-11.7	QP
1.386	20.69	10.17	30.86	46	-15.14	AVG
1.842	33.83	10.18	44.01	56	-11.99	QP
1.842	21.01	10.18	31.19	46	-14.81	AVG
2.366	33.44	10.18	43.62	56	-12.38	QP
2.366	21.26	10.18	31.44	46	-14.56	AVG
10.162	40.7	10.12	50.82	60	-9.18	QP
10.162	29.22	10.12	39.34	50	-10.66	AVG
12.226	38.04	10.13	48.17	60	-11.83	QP
12.226	26.84	10.13	36.97	50	-13.03	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Above 1GHz

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		
band)			

Below 1GHz

Receiver Parameter	Setting			
Attenuation	Auto			
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP			
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP			

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 20 of 36 Report No.: POCE17062932SRF

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

EUT:	TENS&PMS	Model Name. :	SM9187
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V
Test Mode:	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

EUT:	TENS&PMS	Model Name :	SM9187				
Temperature:	20 ℃	Relative Humidity:	48%				
Pressure:	1010 hPa	Test Voltage :	AC 120V				
Test Mode: Mode 2							

Chamber #1 Polarization: Horizontal Temperature: 25

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		30.6379	29.44	-5.86	23.58	40.00	-16.42	QP			
2		56.5929	43.43	-20.29	23.14	40.00	-16.86	QP			
3	*	69.3568	50.36	-19.96	30.40	40.00	-9.60	QP			
4		136.9391	37.07	-14.56	22.51	43.50	-20.99	QP			
5		159.7844	37.98	-14.72	23.26	43.50	-20.24	QP			
6		935.5463	24.27	-0.34	23.93	46.00	-22.07	QP			

EUT:	TENS&PMS	Model Name :	SM9187					
Temperature:	20 ℃	Relative Humidity:	48%					
Pressure:	1010 hPa	Test Voltage :	AC 120V					
Test Mode: Mode	Test Mode: Mode 2							

No.											
NO.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1 '	*	40.7016	49.56	-15.54	34.02	40.00	-5.98	QP			
2		67.9129	53.20	-20.29	32.91	40.00	-7.09	QP			
3		79.8003	43.35	-20.38	22.97	40.00	-17.03	QP			
4		90.5374	39.59	-18.71	20.88	43.50	-22.62	QP			
5		158.6677	37.51	-14.60	22.91	43.50	-20.59	QP			
6		935.5463	24.41	-0.94	23.47	46.00	-22.53	QP			

3.2.8 TEST RESULTS (1 GHZ-25GHZ)

EUT:	TENS&PMS	Model Name :	SM9187
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V

Report No.: POCE17062932SRF

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	Commone				
Low Channel (2402 MHz)											
1126.2	68.45	-19.14	49.31	74	-24.69	peak	Vertical				
1595.8	61.43	-16.43	45	74	-29.00	peak	Vertical				
3040.4	60.22	-11.63	48.59	74	-25.41	peak	Vertical				
4804.4	54.65	-3.64	51.01	74	-22.99	peak	Vertical				
1127.3	70.87	-19.14	51.73	74	-22.27	peak	Horizontal				
1595.4	67.65	-16.43	51.22	74	-22.78	peak	Horizontal				
3041.5	58.36	-11.63	46.73	74	-27.27	peak	Horizontal				
4804.4	50.28	-3.64	46.64	74	-27.36	peak	Horizontal				
		M	lid Channel (2441 M	lHz)							
1341.5	65.51	-17.48	48.03	74	-25.97	peak	Vertical				
2022.6	59.53	-12.92	46.61	74	-27.39	peak	Vertical				
2826.9	57.73	-11.73	46	74	-28.00	peak	Vertical				
4882.1	53.58	-3.68	49.9	74	-24.1	peak	Vertical				
1127.5	66.52	-19.14	47.38	74	-26.62	peak	Horizontal				
1635.4	61.38	-16.06	45.32	74	-28.68	peak	Horizontal				
2486.3	56.42	-12.77	43.65	74	-30.35	peak	Horizontal				
4882.1	51.73	-3.68	48.05	74	-25.95	peak	Horizontal				
		Hi	gh Channel (2480 N	ИHz)							
1170.2	63.64	-18.54	45.1	74	-28.9	peak	Vertical				
2273.5	64.37	-12.87	51.5	74	-22.5	peak	Vertical				
3125.3	55.62	-11.43	44.19	74	-29.81	peak	Vertical				
4960.4	51.59	-3.59	48	74	-26.01	peak	Vertical				
1126.6	70.74	-19.14	51.6	74	-22.4	peak	Horizontal				
1338.2	67.45	-17.48	49.97	74	-24.03	peak	Horizontal				
1852.7	65.47	-14.64	50.83	74	-23.17	peak	Horizontal				
4960.4	53.63	-3.59	50.04	74	-23.96	peak	Horizontal				

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

⁽²⁾ Emission Level= Reading Level+Probe Factor +Cable Loss.

⁽³⁾All other emissions more than 20dB below the limit.

EUT: TENS&PMS Model Name : SM9187

Temperature: 20 °C Relative Humidity: 48%

Pressure: 1010 hPa Test Voltage : AC 120V

Report No.: POCE17062932SRF

Frequency (MHz)	Meter Reading (dBμV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dB _µ V/m)	Margin (dB)	Detector Type	Comment
			1Mbps				
2329.29	62.43	-13.06	49.37	74	-24.63	Pk	Vertical
2329.29	56.57	-13.06	43.51	54	-10.49	AV	Vertical
2400	65.61	-13.06	52.55	74	-21.45	Pk	Vertical
2400	56.08	-13.06	43.02	54	-10.98	AV	Vertical
2380.8	62.31	-13.06	49.25	74	-24.75	Pk	Horizontal
2380.8	57.46	-13.06	44.4	54	-9.6	AV	Horizontal
2400	66.06	-13.06	53	74	-21	Pk	Horizontal
2400	56.89	-13.06	43.83	54	-10.17	AV	Horizontal
2483.5	63.14	-12.78	50.36	74	-23.64	Pk	Vertical
2483.5	62.66	-12.78	49.88	54	-4.12	AV	Vertical
2483.5	62.86	-12.78	50.08	74	-23.92	Pk	Horizontal
2483.5	62.52	-12.78	49.74	54	-4.26	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

4. POWER SPECTRAL DENSITY TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS				

4.1.1 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

EUT:	TENS&PMS	Model Name :	SM9187			
Temperature:	25 ℃	Relative Humidity:	60%			
Pressure:	1015 hPa	Test Voltage :	AC 120V			
Test Mode:	TX Mode /CH00, CH19, CH39					

Frequency	Power Density (dBm)	Limit (dBm)	Result
2402 MHz	-21.78	8	PASS
2440 MHz	-21.25	8	PASS
2480 MHz	-21.32	8	PASS

5. BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range Result (MHz)				
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

5.1.1 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 30 of 36 Report No.: POCE17062932SRF

5.1.5 TEST RESULTS

EUT:	TENS&PMS	Model Name :	SM9187
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	AC 120V
Test Mode:	TX Mode/CH00, CH19, CH39		

Frequency	6dB Bandwidth (kHz)	Channel Separation (MHz)	Result
2402 MHz	681.816	>=500KHz	PASS
2440 MHz	706.845	>=500KHz	PASS
2480 MHz	668.542	>=500KHz	PASS

of 36 Report No.: POCE17062932SRF

6. PEAK OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

6.1.1 TEST PROCEDURE

a. The EUT was directly connected to spectrum analyzer

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS

EUT:	TENS&PMS	Model Name :	SM9187
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	AC 120V
Test Mode :	TX Mode /CH00, CH19, CH39		

Test Channe	Frequency	Maximum Peak Conducted Output Power	LIMIT
	(MHz)	(dBm)	dBm
CH00	2402	-6.23	30
CH19	2440	-5.69	30
CH39	2480	-5.65	30

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2 EUT ANTENNA

The EUT antenna is PCB antenna. It comply with the standard requirement.

8. EUT TEST PHOTO

