

# 인공지능 기초

머신러닝

인공지능\_ Day07

## CONTENTS



| 하이퍼파라미터 튜닝                               | 01 |
|------------------------------------------|----|
| 그리드서치 (GridSearchCV)<br>아웃라이어 (Outliers) |    |
| 배깅 (Bagging)                             | 02 |
| 보팅 (voting)                              | 03 |
| 실습                                       | 04 |



# 아이퍼파라미터 튜닝

### 



- 하이퍼파라미터 튜닝 : 임의의 값들을 넣어 더 나은 결과를 찾는 방식
  - → 수정 및 재시도하는 단순 작업의 반복
- 그리드 서치 : 수백 가지 하이퍼파라미터값을 한번에 적용 가능
- 그리드 서치의 원리: 입력할 하이퍼파라미터 후보들을 입력한 후, 각 조합에 대해 모두 모델링해보고 최적의 결과가 나오는 하이퍼파라미터 조합을 확인

예) max\_depth = [3, 5, 10] Learning\_rate = [0.01, 0.05, 0.1]

|      | max_depth | learning_rate |
|------|-----------|---------------|
| 조합 1 | 3         | 0.01          |
| 조합 2 | 5         | 0.01          |
| 조합3  | 10        | 0.01          |
| 조합 4 | 3         | 0.05          |
| 조합 5 | 5         | 0.05          |
| 조합 6 | 10        | 0.05          |
| 조합 7 | 3         | 0.1           |
| 조합8  | 5         | 0.1           |
| 조합 9 | 10        | 0.1           |

### ユミニハオI (GridSearchCV)



### 1. XGBoost 모델의 parmeters

참조 공식문서 https://xgboost.readthedocs.io/en/stable/parameter.html

```
'n_estimators': [100,200,300,400,500,1000]} #default 100 / 1~inf(무한대) / 정수
```

'learning\_rate' : [0.1, 0.2, 0.3, 0.5, 1, 0.01, 0.001] #default 0.3/ 0~1 / learning\_rate는 eta라고 해도 적용됨

'max\_depth': [None, 2,3,4,5,6,7,8,9,10] #default 3/0~inf(무한대) / 정수 => 소수점은 정수로 변환하여 적용해야 함

'gamma': [0,1,2,3,4,5,7,10,100] #default 0 / 0~inf

'min\_child\_weight': [0,0.01,0.01,0.1,0.5,1,5,10,100] #default 1 / 0~inf

'subsample' : [0,0.1,0.2,0.3,0.5,0.7,1] #default 1 / 0~1

'colsample\_bytree' : [0,0.1,0.2,0.3,0.5,0.7,1] #default 1 / 0~1

'colsample\_bylevel' : [0,0.1,0.2,0.3,0.5,0.7,1] #default 1 / 0~1

'colsample\_bynode' : [0,0.1,0.2,0.3,0.5,0.7,1] #default 1 / 0~1

'reg\_alpha' : [0, 0.1,0.01,0.001,1,2,10] #default 0 / 0~inf / L1 절대값 가중치 규제 / 그냥 alpha도 적용됨

'reg\_lambda': [0, 0.1,0.01,0.001,1,2,10] #default 1 / 0~inf / L2 제곱 가중치 규제 / 그냥 lambda도 적용됨

### ユミニハオI (GridSearchCV)



#### 2. LightGBM 모델의 parmeters

참조 공식문서 https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html

대체로 XGBoost와 하이퍼 파라미터들이 비슷하지만 leaf-wise 방식의 하이퍼 파라미터가 존재함

num\_leaves : 하나의 트리가 가질 수 있는 최대 리프 개수

min\_data\_in\_leaf: 오버피팅을 방지할 수 있는 파라미터, 큰 데이터셋에서는 100이나 1000 정도로 설정

feature\_fraction : 트리를 학습할 때마다 선택하는 feature의 비율

n\_estimators : 결정 트리 개수

learning\_rate : 학습률

reg\_lambda : L2 규제

reg\_alpha : L1규제

max\_depth : 트리 개수 제한

### ユミニハオI (GridSearchCV)



#### 3. Catboost 모델의 parmeters

참조 공식문서 https://catboost.ai/en/docs/concepts/python-reference\_catboost\_grid\_search

CatBoost 평가 지표 최적화에 가장 큰 영향을 미치는 하이퍼파라미터는 learning\_rate, depth, l2\_leaf\_reg 및 random\_strength

learning\_rate: 학습률

depth: 각 트리의 최대 깊이로 과적합을 제어

I2\_leaf\_reg: L2 정규화(regularization) 강도로, 과적합을 제어

colsample\_bylevel: 각 트리 레벨에서의 피처 샘플링 비율

n\_estimators: 생성할 트리의 개수

subsample: 각 트리를 학습할 때 사용할 샘플링 비율

border\_count: 수치형 특성 처리 방법

ctr\_border\_count: 범주형 특성 처리 방법

### 아웃라이어 (Outliers)





출처 https://hellojaehoon.tistory.com/149

Figure 1. Interquartile Range(IOR) Outliers

- IQR은 사분위 값의 편차를 이용하여 이상치를 걸러내는 방법
- 전체 데이터를 정렬하여 이를 4등분하여 Q1(25%), Q2(50%), Q3(75%),
   Q4(100%) 중 IQR는 Q3 Q1 가 됨

# 배김 (Bagging)

## 배김 (Bagging)





출처 swallow.github.io

Figure 2. 배깅 Bagging

- Bagging은 Bootstrap
   Aggregation의 약자
- 배깅은 샘플을 여러 번 뽑아
   (Bootstrap) 각 모델을 학습시켜
   결과물을 집계 (Aggregration)
   하는 방법
- 즉, 데이터로부터 부트스트랩 한 데 이터로 모델을 학습시키고 학습된 모델의 결과를 집계하여 최종 결과 값을 도출

## 배김 (Bagging)



#### 참조 코드

```
#2. 모델
from sklearn.ensemble import BaggingRegressor
from xgboost import XGBRegressor
model = BaggingRegressor(XGBRegressor(),
                         n_estimators=100,
                         n_jobs=-1,
                         random_state=72
```

# 보팅 (Voting)

## 보팅 (Voting)





출처 https://nicola-ml.tistory.com/95

Figure 3. 보팅 Voting

- Voting은 일반적으로 서로 다른 알고리즘을 가진 분류기를 결합하는 것 (참고: 배깅의 경우 각각의 분류기가 모두 같은 유형의알고리즘을 기반으로함)
- 하드 보팅: 각 분류기의 예측 결과를 단순 히 다수결(majority voting)로 결정
- 소프트 보팅: 각 분류기의 예측 확<del>률을</del> 평 균하여 예측을 수행

## 보팅 (Voting)



#### 참조 코드

```
#2. 모델
Ir = LogisticRegression()
knn = KNeighborsClassifier(n_neighbors=8)
rfc = RandomForestClassifier()
xgb = XGBClassifier()
model = VotingClassifier(
   estimators=[('LR', Ir), ('KNN', knn), ('RFC', rfc), ('XGB', xgb)],
   voting='soft',
   n_jobs=-1
```



## 실 습



- 1. 그리드서치
- 2. 배깅
- 3. 보팅
- 4. 아웃라이어
- 5. 데이터 전처리

# 수고하셨습니다.