(n)

max element

" pseudo-code"

=, <, >, for, while, return functions

Invariant:

When i=k,

max = A[i] +1

Max is the maximum of

A[a] A[a] A[a]

A[0] ... A[K-1].

output max. +1

Suppose max is the max. f ACN... A(u-1).

Consider kth iteration.

Sps A[k] > max. of A(o)... A(u-1)

we update max to A[u]

Let us count # elementary operations:

 $1 + 2n + (n-1) + f + 1 \in ascumption, all elementary open take 1 unit of the.$

0 < f < n-1

$$= 2n + 1 + (f) \leq 3n + 1 + n - 1$$

$$= 4n = O(n)$$

$$O(n^{2})$$

$$O(n^{2})$$

- All dementary opns take I wint
- Look of the worst case.
- Only worry about larger, and ignore 100000 2

$$\frac{1000}{10}$$
 n : came about longer value of n.

 $n = 10,000 = 10^9$ $\simeq 10^7$

$$\frac{1}{100}n^{2} + 100n \approx \frac{1}{100}n^{2} \approx \text{scales as } n^{2}$$

$$= O(n^{2})$$
Big "O" notation.

Definition: (Big "O" notation).

Ne cay that
$$f(n) = O(g(n))$$
 if
there exist constants c, No such that

$$f(n) \leqslant c \cdot g(n)$$
 for all $n \geqslant N_0$

"f grows slowly the g"

$$2 f(n) = O(g(n))?$$

$$f(n) = 5n^{2} + 10n + 7, g(n) = n^{2}$$

$$f(n) \le 30 g(n) \qquad n > 1.$$

$$c > 30, N = 1.$$

(3)
$$f(n) = n$$
 $g(n) = n^2$
 $f(n) \le 1. g(n), n > 1$
 $C = 1, N = 1$

4)
$$f(n)=n$$
 $g(n)=0$ if n is even χ n if n is odd.

$$f(n) \leqslant c \cdot g(n) \quad n > N_0$$

(5)
$$f(n) = n$$
, $g(n) = 0$ if $n \le 1000$
 $g(n) = 0$ if $n > 1600$

$$4n + 5 = O(n)$$

$$= O(n^{2})$$

$$= O(n^{3})$$

$$= O(2^{n})$$

Def
$$(\Omega^{-})$$
 $f(n)$, $g(n)$ are two non-negative function of N .

We say that $f(n) = \Omega(g(n))$ if

there exist C , No such that

eg: (1)
$$f(n) = n^2$$
, $g(n) = 10n$
 $n^2 \ge 10n$ $\forall n \ge 10$

If
$$f(n) = O(g(n))$$
 then $g(n) = \Omega(f(n))$

return TRUE

return PALSE

But
$$O(1)$$

Wort $O(n)$.

$$I_1, I_2, ..., I_K$$

max $(T_1, ..., T_K) \geqslant cn$

Exampl:
$$f(n) = m^2$$

$$f(n) = Q(n^{2})$$

$$Q(n)$$

$$Q(n\log_{2})$$

$$Q(\sqrt{2}n)$$

Is it possible that
$$f(n) = O(g(n)) \text{ and } f(n) = 12(g(n)) ?$$

$$f(n) = n^2 \qquad g(n) = 3n^2 + 10n$$

$$2^{\sqrt{\log_2 n}}$$
 n f(n) $9(n)$

Is
$$f(n) = o(g(n))$$
 ?

$$a^{\sqrt{\log n}} \leq 2^{\log n} = n$$

$$\log_2 n = O(\log_{10} n) ?$$

$$\log_2 n = \log_2 b \log_2 n$$

$$n \log_2 n$$

$$n \log_2 n$$

$$n \log_2 n = O(n) ?$$

$$\log_2 n, n, n \log_2 n, n^2$$

$$\sum_{i=0}^{2} \log_{i+1} n = O(n) ?$$

$$A[o] ... A[i] \text{ is soled}$$

$$A[o] ... A[o] A[o] \text{ is soled}$$

$$A[o] ... A[o] A[o] \text{ is soled}$$

$$A[o] ... A[o] ... A[o] ... A[o]$$

$$\sum_{i=0}^{n-2} (6i+i) = c \cdot n^2 + c'n + c''$$

$$= O(n^2)$$

 $\Omega(n^2)$?

Worst cone running time is $\theta(n^2)$.

Python Programming (Chapters 1, 2).

ABSTRACT DATA TYPE

ARRAY: store an ordered segmente of elemento Access ith element and modify it O(1)

A [i]

int A LIOOJ

Lecture 4

Crelit Card

T Abstraction.

Python List

[;]A

1. 0

$$\begin{array}{ccc}
 & & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

Lecture 5

$$\rightarrow$$
 10 + 20 + .. + 10 K
= 10 k² = $n^2/10$

$$1+2+4+...+2^{k-1} \le 2^k \le 2N$$

$$0(N)$$

$$2^{k-1} \le N < 2^k$$

Total time = 3N

on an average, each operation takes 3 units of the O(1).

k h g

,,

ζ

Last In First Out

Recursive Functions

Factorial (n):

if n=1 rehum 1

eloe

return no Factorial (n-i).

0 (n)

X=1

fer (=1 · · · N

x = x * i

Lecture 7: Stacks.

17.

10.1

•

XLJ: XLIJ price on day i S[i] = 4 S[i]: # days we have to go back to find the first day when the prices are above X(i) Obvious Alg: x[0] = 0 x[1],..., x[n] for c=1...n ← n itns /# to compute SCi) **/ j=i-1; S[i]=1 while (X[j] < X[i]) s[i]++ $\mathcal{O}(n^2)$. $\rightarrow \mathcal{O}(n)$? $\Omega(n^2)$? all days here have pria < x[i] < x[i] Compare X (i) and X (k).

ARRAY

Stack

Queue

Ν

Enquer (o)

Dequer ()

F++

return o

Lecture 8

(N+r-f) mod N

V Enquew (x)

$$A[r] = X \qquad \text{if } r \neq N-1$$

$$0(1) \cdot \qquad r = (r+1) \mod N \qquad \text{else } r = 0$$

of $(f = -r) \times 0 = A [f]$ of $(f = -r) \times f = (f + 1) \text{ mod } N$

Condition for Q to be full := f = (r+1) mod N

Queue is empty: f = rfær

0(1)

_head · _ head. next

def _ insortlast (self, element):

(i) Find the last mode:

cla: seef._tail= seef,_head = a.

lef_remove last (); \(\Omega(n)\) \(\sigma\)

class Stack:

