512 páginas -> 2^9 512 palabras x página -> 2^9

Dirección virtual - 18 bits

Nº de página (9 bits)	Nº de palabra (9 bits)
-----------------------	------------------------

Tabla de páginas -> Contiene 512 entradas (2^9) de 4 bits cada una. Ya que el contenido es el nº de frame y cada frame tiene 4 bits.

0	nº de frame
511	

Dirección física - 13 bits

N° de frame (4 bits)	Nº de palabra (9 bits)
----------------------	------------------------

Una dirección está compuesta por el nº de frame y el desplazamiento a la palabra. Las direcciones van desde el 0 hasta el 8192 (2^13).

La memoria física está particionada en 16 bloques.

[0, 512)	Bloque 0
[512, 1024)	Bloque 1
[1024, 1536)	Bloque 2
[1536, 2048)	Bloque 3
[2048, 2560)	Bloque 4
[2560, 3072)	Bloque 5
[3072, 3584)	Bloque 6
[3584, 4096)	Bloque 7
[4096, 4608)	Bloque 8
[4608, 5120)	Bloque 9
[5120, 5632)	Bloque 10
[5632, 6144)	Bloque 11
[6144, 6656)	Bloque 12
[6656, 7168)	Bloque 13
[7168, 7680)	Bloque 14
[7680, 8192)	Bloque 15

a. Entonces, el contenido de la tabla de páginas es el siguiente

Tabla de páginas (Nº de página - Contenido - Bit de validez)

9	4	1
10	9	1
34	3	1
65	7	1

b.

Tabla de páginas (Nº de página - Contenido - Bit de validez)

<u> </u>	•	<u>, </u>
9	4	1
10	9	1
12	3	1
34	3	0
65	7	1
49	0	1

C.

4608

4608 en binario es 100100000000 (13 bits)

000001001000000000 (completo y tengo los 18 bits)

-> 000001001|000000000 (Divido en número de página y número de palabra)

Entonces me queda número de página = 9 y el número de palabra (desplazamiento) = 0

Se busca en la tabla de páginas y hasta este momento la página 9 contiene el número "4"

Entonces como la dirección física tiene 13 bits

0100 | 000000000 (el offset o sea, el número de palabra pasa a ser el mismo)

Entonces la dirección física que le corresponde es la 010000000000 -> 2048

• 5119

000001001 | 111111111

Página=9 | Palabra=511

En la página 9 está almacenado el marco número "4"

Entonces, la dirección física es:

0100 | 111111111 = 2559

• 5120

000001010 | 000000000

Pagina=10 Palabra=0

En la página 10 está almacenado el marco número "9"

Entonces, la dirección física es:

1001 | 000000000 = 4608

• 33300

001000001 | 000010100 (33300 en binario, dividido en nº de página y nº de palabra)

Página=65 Palabra=20

La página 65 contiene el número "7"

7 en binario es 0111

Entonces, la dirección física que le corresponde es la:

0111 | 000010100 -> 3604

d. Cuando la dirección 33000 es referenciada ocurre un fallo de página, ya que la página no se encuentra en memoria.