

Summary

Introduction to Deep Learning (Technische Universität München)

Scan to open on Studocu

Summary Deep Learning

Contents

1	Mac	chine Learning Basics	2
	1.1	Machine Learning	2
	1.2	A simple classifier	2
	1.3	Linear Regression	
	1.4	Logistic Regression	
	1.5	9 9	5
	1.6	Regularization	
			•
2	Neu	ral Networks	6
	2.1	Basics	6
	2.2	Backpropagation	7
	2.3	Computational Graphs and Neural Networks	8
	2.4	Optimization in Neural Networks	C
		2.4.1 Vanilla Gradient descent	
		2.4.2 Stochastic Gradient Descent (SGD)	2
		2.4.3 Gradient Descent with Momentum	
		2.4.4 Nesterov's Momentum	
		2.4.5 Root Mean Squared Prop (RMSProp)	
		2.4.6 Adaptive Moment Estimation (Adam)	
		2.4.7 Different strategies	
		2.4.8 Conclusion	
	2.5	Learning Rate, Training and Learning	
	2.0	2.5.1 Importance of Learning Rate	
		2.5.2 Learning Rate Decay	
		2.5.3 Training, Learning and Datasets	
		2.5.4 Hyperparameters and Hyperparameter tuning	
		2.5.5 Basic recipe for machine learning	
	2.6	Loss, output and activation functions	
	2.0	2.6.1 Going deep in Neural Networks	
		2.6.2 Output Functions	
		2.6.3 Loss Functions	
	0.7		
	2.7	Weight initialization	
	2.8	Regularization	
		2.8.1 Weight decay	
		2.8.2 Data augmentation	
		2.8.3 Early stopping	
		2.8.4 Bagging and ensemble methods	
		2.8.5 Dropout	
	2.9	Transfer Learning	4
3	Con	volutional Neural Network (CNN)	5
J	3.1	Processing images with FC layers	
	$\frac{3.1}{3.2}$	Convolutions	
	$\frac{3.2}{3.3}$		
		Convolutional Layer	
	3.4	Pooling	
	3.5	Fully convolutional network	
	3.6	Architectures	
		3.6.1 LeNet	y

		3.6.2 AlexNet 2 3.6.3 VGGNet 3 3.6.4 ResNet 3 3.6.5 GoogLeNet 3	0 80
1	Reci	rrent Neural Network (RNN)	2
	4.1	Context and Structure	2
	4.2	Basic RNN	3
	4.3	Long Short Term Memory	4

1 Machine Learning Basics

1.1 Machine Learning

Unsupervised vs. Supervised learning

- Unsupervised learning
 - No label or target class
 - Find out properties of the structure of the data
 - e.g. Clustering (k-means, PCA)
- Supervised learning: Labels or target classes
- Reinforcement learning: Agent learns by reward

1.2 A simple classifier

- k-NN classifier that looks at distance of k neighbors
 - Hyperparameters: Distance (e.g. L1, L2) and k (number of neighbors)
 - Use cross validation to tune hyperparameters: Different split of training data into train and validation set for different test runs

Find your hyperparameters

• 1-NN classifier is perfect for training data, but classifier that includes more neighbors generalizes better

1.3 Linear Regression

Linear regression basics

- Supervised learning
- Goal: find a linear model that explains a target y given the inputs X

• Training and Testing:

Linear prediction

• Form of a linear model:

$$\hat{y}_i = \sum_{j=1}^d x_{ij}\theta_j = x_{i1}\theta_1 + x_{i2}\theta_2 + \dots + x_{id}\theta_d$$

with input dimension d, input data x_{ij} and weights θ

- First term $x_{i1}1$ is usually set to 1 and θ_1 is called bias
- Matrix notation: $\hat{y} = X\theta$

How to obtain the model?

- Loss function: measures how good my estimation/model is and tells the optimization method how to make it better
- Optimization: changes the model in order to improve the loss function (i.e. the model)

Linear regression: loss function - least square estimate

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Optimization: Linear least squares

• Goal: Minimize Loss function:

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \theta - y_i)^2$$

• Matrix notation:

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})$$

- Convex problem: there exists a closed-form solution
- Calculate derivative and set it equal to 0:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} - 2\boldsymbol{X}^T \boldsymbol{y} = 0$$

$$\boldsymbol{\theta} = (\boldsymbol{X^TX})^{-1}\boldsymbol{X^Ty}$$

• There are also other optimizations available

Optimization: Maximum Likelihood Estimate

- A method of estimating the parameters of a statistical model given observations by finding the parameter values that maximize the likelihood of making the observations given the parameters
- Approach

$$m{ heta}_{ML} = arg \max_{m{ heta}} \prod_{i=1}^{n} p_{model}(y_i | m{x_i}, m{ heta})$$

• We can replace the product by applying the logarithmic property $log_c(ab) = log_c(a) + log_c(b)$:

$$\boldsymbol{\theta}_{ML} = arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p_{model}(y_i | \boldsymbol{x_i}, \boldsymbol{\theta})$$

• Assuming Gaussian distribution, we get the same result for the optimization as for Linear least squares

$$\boldsymbol{\theta} = (\boldsymbol{X^TX})^{-1}\boldsymbol{X^Ty}$$

1.4 Logistic Regression

Regression vs. Classification

- Regression: predict a continuous output value (e.g. temperature of a room)
- Classification: predict a discrete value
 - Binary classification: output is either 0 or 1 (e.g. logistic regression)
 - Multi-class classification: set of N classes

Sigmoid function for binary predictions

• Can be interpreted as a probability

• Formula:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic regression basics

• Probability of a binary output (with Bernoulli trial):

$$p(y|X, \theta) = \hat{y} = \prod_{i=1}^{n} \hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1-y_{i})}$$

Loss and cost function

• Loss function (basic expression for one sample): cross-entropy loss

$$\mathcal{L}(\hat{y}_i, y_i) = y_i \log \hat{y}_i + (1 - y_i) \log(1 - y_i)$$

• Cost function (covering all samples):

$$C(\theta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \hat{y}_i + (1 - y_i) \log(1 - y_i)$$

• There is no closed form solution for optimization. We therefore use gradient descent

1.5 Gradient descent

Basics

- To minimize the function we want to follow the slope of the derivative
- We therefore step in the direction of the negative gradient:

$$x' = x - \epsilon \nabla_x f(x)$$

- ϵ is called learning rate and defines the step size
- With gradient descent, we might not find the global optimum but end in a local optimum (depends e.g. on initialization)
- Local optima might be good enough to solve our problem

Gradient descent for least squares

• easy to calculate, because we have an analytic solution for the gradient

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \left(2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} - 2 \boldsymbol{X}^T \boldsymbol{y} \right)$$

• convex and therefore always converges to the same solution

Gradient descent for logistic regression

- Harder, because there is no analytical solution
- Solved with computational graphs and backpropagation of gradients

1.6 Regularization

Basic idea

• Add a regularization term $\lambda R(\theta)$ to the loss (example for linear least squares):

$$J(\boldsymbol{\theta}) = (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}) + \lambda R(\boldsymbol{\theta})$$

• Goal: Make the model work better for test data by preventing overfitting (better generalization of the model by increasing training error and decreasing validation error)

L1 regularization

- Focus the attention to a few key features
- Formula:

$$R(\boldsymbol{\theta}) = \sum_{i=1}^{n} |\theta_i|$$

L2 regularization

- Take all information into account to make decisions
- Formula:

$$R(\boldsymbol{\theta}) = \sum_{i=1}^{n} \theta_i^2$$

2 Neural Networks

2.1 Basics

Neural Network

- Linear score function f = Wx
- Functions are nested and combined with non-linearity:
 - 2-layers: $f = W_2 \max(0, W_1 x)$
 - 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 - **-** ..
- Non-linearity allows to learn more complex functions ("more powerful")
- Short summary of a Neural Network:
 - Given a dataset with ground truth training pairs $[x_i, y_i]$
 - Find optimal weights W using stochastic gradient descent, such that the loss function is minimized:
 - * Compute gradients with backpropagation
 - * Iterate many times over training set

Neurons

• Linear function: Wx + b

• Non-linearity: f(x)

• Every neuron computes f(Wx + b)

Activation Functions

2.2 Backpropagation

- Calculate gradients numerically if function becomes too complex for analytical solutions
- Analytically solutions would at least partly be possible, but can't e.g. be parallelized
- Possible problems and solution:
 - Solution for multiple outputs in a compute node: take average
 - Solution for loops: No loops in computational graphs
 - Values of forward pass required for backward pass: Cache results of forward pass to reach faster runtime in backward pass
- Computational graph for Linear activation with hinge loss and regularization:

- If input and output values of a function are vectors:
 - Gradients also become vectors
 - We need to calculate the derivative of every output element w.r.t. every input element
 - Hence, we receive a Jacobian Matrix
 - Example:

2.3 Computational Graphs and Neural Networks

Computational Graphs

- Directed graph where nodes correspond to operations or variables
- Neural networks can be interpreted as a computational graph
- To compute output we can do a forward pass:

• To compute the gradients we can do a backward pass:

Compute Graphs to Neural Networks - Notation

- x_k input variables
- $w_{l,m,n}$ network weights
 - \boldsymbol{l} denotes the layer
 - -m the neuron within the layer
 - -n denotes weights in neuron
- y_i computed output
- \bullet t_i ground truth targets
- ullet L is loss function

Neural Network as compute graph - Example

• The example uses an L2 loss function. Therefore we subtract t_0 and finally square the output x.

• Formula for L2 loss:

$$L_i = (y_i - t_i)^2, L = \sum_i L_i$$

• To optimize our net, we need to compute gradients w.r.t. to all weights w and biases b:

$$\frac{\partial L}{\partial w_{i,k}} = \frac{\partial L}{\partial y_i} * \frac{\partial y_i}{\partial w_{i,k}}$$

2.4 Optimization in Neural Networks

2.4.1 Vanilla Gradient descent

Calculate gradients for gradient descent

- Given training pair x, t
- We want to update all weights: Calculate derivatives w.r.t to all weights (and biases)
- Gradient:

$$\nabla_{w} f_{x,t}(w) = \begin{bmatrix} \frac{\partial f}{\partial w_{0,0,0}} \\ \dots \\ \frac{\partial f}{\partial w_{l,m,n}} \\ \dots \\ \frac{\partial f}{\partial b_{l,m}} \end{bmatrix}$$

• Gradient step:

$$w' = w - \epsilon \nabla_w f_{x,t}(w)$$

• Example:

Backpropagation $\frac{\partial L}{\partial w_{1,i,j}} = \frac{\partial L}{\partial y_i} \cdot \frac{\partial y_i}{\partial w_{1,i,j}}$ $\frac{\partial L}{\partial w_{0,j,k}} = \frac{\partial L}{\partial y_i} \cdot \frac{\partial y_i}{\partial h_j} \cdot \frac{\partial h_j}{\partial w_{0,j,k}}$ $\frac{\partial L_i}{\partial y_i} = 2(y_i - t_i) \qquad \dots$ $\frac{\partial y_i}{\partial w_{1,i,j}} = h_j \quad \text{if > 0, else 0}$

- with
$$A(x) = max(0, x)$$
 (ReLu)

- Amount of unknown weights:
 - * Output layer: 2*4+2=10 (current-neurons * neurons-prev-layer + biases-current-layer)
 - * Hidden layer: 4 * 3 + 4 = 16
- MAYBE ADD: DERIVATIVES OF CROSS ENTROPY

Convergence of Gradient Descent

- Neural networks are non-convex
- There are different local minima
- No practical way to look for the global optimum (local optima might be good enough)
- Small learning rate yields small steps towards the minimum, big learning rates large steps

Gradient descent for multiple training samples

- Given:
 - Loss function \boldsymbol{L}
 - -n training samples (x_i, y_i)
- Goal: Find best model parameters $\theta = (w, b)$

$$\theta = arg \min L$$

• Cost $(\frac{1}{n}$ can be left out and just means rescaling the learning rate):

$$L = \frac{1}{n} \sum_{i=1}^{n} L_i(\theta, x_i, y_i)$$

• For a gradient step we get:

$$\theta^{k+1} = \theta^k - \alpha \nabla_{\theta} L\left(\theta^k, x_{(1..n)}, y_{(1..n)}\right)$$

$$\nabla_{\theta} L\left(\theta^{k}, x_{(1..n)}, y_{(1..n)}\right) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L_{i}\left(\theta^{k}, x_{i}, y_{i}\right)$$

• We get the gradient $\nabla_{\theta} L_i\left(\theta^k, x_i, y_i\right)$ from backpropagation

Boundaries of vanilla Gradient Descent

- Gradient is very expensive to compute for large networks
- Assume a dimension \mathbb{R}^{4096} for input x and output z for a neuron
- Dimension of Jacobian $dim(J) = 4096 \times 4096$
- That will lead to 64 MB for one Jacobian and for a mini-batch of 16 we will get $dim(J) = (16 * 4096) \times (16 * 4096) = 4295$ mio. and therefore about 16GB of memory

2.4.2 Stochastic Gradient Descent (SGD)

Difference to Gradient Descent

- Instead of using all n training samples for one update pass, we only use a smaller number of samples (Minibatch) to approximate the gradient
- ullet We choose a subset of the trainset containing m << n samples as a Minibatch
- The size of the Minibatches is a Hyperparameter (Usually power of 2)
- Epoch: complete pass through training set
- \bullet For a gradient step, we now only need to calculate gradients for m samples:

$$\theta^{k+1} = \theta^k - \alpha \nabla_{\theta} L\left(\theta^k, x_{(1..m)}, y_{(1..m)}\right)$$
$$\nabla_{\theta} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L_i$$

Strategies for learning rate

- Start high and reduce over time
- Reduce every iteration or have fixed training schedule
- There are many decreasing strategies for learning rate

Problems of SGD

- Gradient is scaled equally across all dimension
- Gradient therefore cannot independently scale directions
- min learning rate needs to be conservative to avoid divergence
- Slower than 'necessary'

2.4.3 Gradient Descent with Momentum

- ullet We accumulate Gradients over time and take a velocity $oldsymbol{v}$ with same dimension as gradient into account
- Formula:

$$v^{k+1} = \beta * v^k + \nabla_{\theta} L(\theta^k)$$
$$\theta^{k+1} = \theta^k - \alpha * v^{k+1}$$

- α and β (often set to 0.9) are hyperparameters
- Step will be largest when a sequence of gradients all point in the same direction

2.4.4 Nesterov's Momentum

• Look-ahead momentum: Compute gradient 1 step in the future

$$\hat{\theta}^{k+1} = \theta^k + v_k$$

$$v^{k+1} = \beta * v^k + \nabla_{\theta} L(\hat{\theta}^{k+1})$$

$$\theta^{k+1} = \theta^k - \alpha * v^{k+1}$$

2.4.5 Root Mean Squared Prop (RMSProp)

- Utilizes second momentum by using the variance of gradients
- Divide the learning rate by an exponentially-decaying average of squared gradients

$$s^{k+1} = \beta * s^k + (1 - \beta)[\nabla_{\theta} L \circ \nabla_{\theta} L]$$

$$\theta^{k+1} = \theta^k - \alpha * \frac{\nabla_{\theta} L}{\sqrt{s^{k+1}} + \epsilon}$$

- Element-wise multiplication for gradients $\nabla_{\theta}L$ to calculate s^{k+1}
- Hyperparameters: α (needs tuning), β (usually 0.9) and ϵ (usually 10^{-8})
- RMSProp dampens the oscillations for high-variance directions
- Therefore it's possible to use higher learning rate because it is less likely to diverge

2.4.6 Adaptive Moment Estimation (Adam)

- Combines Momentum and RMSProp
- First momentum: mean of gradients

$$m^{k+1} = \beta_1 * m^k + (1 - \beta_1) \nabla_{\theta} L(\theta^k)$$

• Second momentum: variance of gradients

$$v^{k+1} = \beta_2 * v^k + (1 - \beta_2) [\nabla_{\theta} L(\theta^k) \circ \nabla_{\theta} L(\theta^k)]$$

• Weight update:

$$\theta^{k+1} = \theta^k - \alpha * \frac{m^{k+1}}{\sqrt{v^{k+1}} + \epsilon}$$

- m^{k+1} and v^{k+1} are initialized with 0
- Typically, bias-corrected moment updates:

$$\hat{m}^{k+1} = \frac{m^k}{1 - \beta_1}$$

$$\hat{v}^{k+1} = \frac{v^k}{1 - \beta_2}$$

• This leads to following weight updates:

$$\theta^{k+1} = \theta^k - \alpha * \frac{\hat{m}^{k+1}}{\sqrt{\hat{v}^{k+1}} + \epsilon}$$

2.4.7 Different strategies

Shape of derivatives

• Derivative: $f: \mathbb{R} \to \mathbb{R}$ $\frac{df(x)}{dx}$

• Gradient: $f: \mathbb{R}^m \mapsto \mathbb{R}$ $\nabla_x f(x)$

• Jacobian: $f: \mathbb{R}^m \mapsto \mathbb{R}^n$ $J \in \mathbb{R}^{n \times m}$

• Hessian: $f: \mathbb{R}^m \mapsto \mathbb{R}$ $H \in \mathbb{R}^{m \times m}$ (Second derivative)

Newton's method

• Exploits the curvature to take a more direct route to the minimum

• Approximate our function by a second-order Taylor series expansion

• Differentiate and equate to zero

• Problems:

- Number of parameters of Hessian is k^2 for k network parameters

- Computational complexity of inversion of Hessian $\mathcal{O}(k^3)$

BFGS and L-BFGS

• Belongs to family of quasi-Newton methods

• Uses an approximation of the inverse of the Hessian

• Limited complexity $(\mathcal{O}(n^2))$

• Limited memory for L-BFGS $(\mathcal{O}(n))$

Gauss-Newton

• Approximate the Hessian with the Jacobian $H_f \approx 2J_F^T J_F$

Levenberg

• "damped" version of Gauss-Newton

• additional damping factor λ that is adjusted each iteration

• "interpolation" between Gauss-Newton (small λ) and Gradient Descent (large λ)

Levenberg-Marquardt

• Instead of a plain Gradient Descent for large λ scale each component of the gradient according to the curvature

• Avoids slow convergence in components with a small gradient

2.4.8 Conclusion

Which method to use for Neural Networks?

• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN and LM only if you can do full batch updates, because it doesn't work well for minibatches

General approach

- Linear Systems:
 - LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.
 - GD or SGD not for linear systems, as Gradient is only a constant!
- Non-linear Systems (gradient-based):
 - second order: Newton, Gauss-Newton, LM, (L-)BFGS (Faster, when applicable)
 - first order: Gradient Descent SGD (Work well for minibatches)
- Others
 - Genetic algorithms, MCMC, Metropolis-Hastings, ...
 - Constrained and convex solvers

2.5 Learning Rate, Training and Learning

2.5.1 Importance of Learning Rate

2.5.2 Learning Rate Decay

- We need a high learning rate when far away from minimum
- We need a low learning rate when close

- Possible variants:
 - $\ \alpha = \frac{1}{1 + decayrate*epoch} * a_0 \ (a_0 \ initial \ LR)$
 - Step decay (with rate t): $\alpha = \alpha t * \alpha$
 - Exponential decay $\alpha = t^{epoch} * \alpha_0$
 - $-\alpha = \frac{t}{\sqrt{epoch}} * \alpha_0$
- It's also possible to manually set the learning rate every n-epochs

2.5.3 Training, Learning and Datasets

Training Given ground dataset with ground labels

- x_i, y_i as training pair
- \bullet Take network f and its parameters w,b
- ullet Use SGD and variations to find optimal parameters w,b

Training graph:

Validation graph:

Learning

- Generalization to unknown dataset
- Assumption: Optimized parameters will give similar results on different data (i.e. test data)

Over- and Underfitting

- Overfitting: function resembles training data to closely and doesn't generalize well (Variance)
- Underfitting: function doesn't describe the data well (Bias)

Datasets

- Training set: Used for training (60 80%)
- Validiation set: for hyperparameter optimization and checking of generalization (10-20%)
- Test set: Only for the final test at the very end (10-20%)

2.5.4 Hyperparameters and Hyperparameter tuning

Hyperparameters

- Network architecture
- Number of iterations
- Learning rate(s)
- Regularization
- Batch size
- ...

Hyperparameter Tuning

- Manual search: most common
- Grid search: Define ranges for all parameter spaces and select points. Iterate over all possible configurations
- Random search: Pick points at random in the predefined ranges

Cross Validation

- Used when data set is extremely small and/or method of choice has low training times
- Partition data into k subsets, train on k-1 and evaluate performance on the remaining subset
 - Example: k=5

2.5.5 Basic recipe for machine learning

2.6 Loss, output and activation functions

2.6.1 Going deep in Neural Networks

Approach

- Start simple: Overfit to a single and then to several training samples
- Always try a small architecture first to verify that you are learning something
- Estimate timings (how long takes one epoch?)
- Try to optimize data loading

Problem of going deeper

- Vanishing gradients: Multiplication of already small gradients will eventually lead to very small or 0 gradients
- Impact of small decisions (architecture, activation functions, ...)

2.6.2 Output Functions

Sigmoid

- For binary predictions
- Formula:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Result can be interpreted as a probability

Softmax

- For predicting multiple classes
- Formula:

$$p(y_i|x,\theta) = \frac{e^{x\theta_i}}{\sum_{k=1}^n e^{x\theta_k}}$$

2.6.3 Loss Functions

L1 loss

- Sum of absolute differences
- Costly to compute
- Optimum is the median
- Formula:

$$L^{1} = \sum_{i=1}^{n} |y_{i} - f(x_{i})|$$

L2 loss

- Sum of squared differences
- Compute efficient
- Prune to outliers
- Optimum is the mean
- Formula:

$$L^{2} = \sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2}$$

Cross-Entropy loss (Softmax loss)

• Formula:

$$L_i = -\ln\left(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}}\right)$$

- score function $s = f(x_i, W)$, e.g. $f(x_i, W) = W * [x_o, x_1, ..., x_N]^T$
- Calculate final loss:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

• Softmax Loss always wants to improve no matter how small the loss is

Hinge Loss (SVM Loss)

• Formula:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- \bullet score function s like for Softmax loss
- Calculate final loss:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

• Hinge Loss saturates. Small losses become 0.

Loss, Compute graphs and regularization

- The final loss is calculated based on data loss and regularization loss
- Regularization loss:

-
$$L^1$$
-reg: $R^1(W) = \sum_{i=1}^{N} |w_i|$

$$-L^{2}$$
-reg: $R^{2}(W) = \sum_{i=1}^{N} w_{i}^{2}$

- Full loss: $L = \frac{1}{N} \sum_{i=1}^{N} L_i + R^{1|2}(W)$
- Usually, L^2 reg is used for weight regularization
- Loss in a compute graph:

2.6.4 Activation Functions

Sigmoid

- Sigmoid can be used as an activation function (Formula: see above)
- Problems:
 - Vanishing gradients: Saturated neurons kill the gradient flow
 - This can be overcome by good initialization which is very hard for big networks
 - Output is always positive
- Problem of positive output:
 - Shrinks down the gradient space
 - We can't go in any direction that would lead to a minimum faster
 - \rightarrow It is not zero-centered

tanh

- Simply calculate with tanh function: $\sigma(x) = tanh(x)$
- Zero-centered
- Problem: Still saturates
- Used for recurrent neural networks

Rectified Linear Units (ReLU)

- $\sigma(x) = \max(0, x)$
- Fast convergence
- Does not saturate

- Large and consistent gradients
- Problem: Neurons with negative input don't contribute \rightarrow die out over time
- By initializing ReLU neurons with slightly positive biases (0.1) makes it likely that they stay active for most inputs
- Standard choice for neural networks

Leaky ReLU

- $\bullet \ \sigma(x) = \max(0.01x, x)$
- Does not die

Parametric ReLU

- $\sigma(x) = \max(\alpha x, x)$
- α additional parameter to backprop
- Does not die

Maxout units

• Pick maximal output:

$$Maxout = \max(w_1^T x + b_1, w_2^T x + b_2)$$

- Generalization of ReLUs
- Does not die, does not saturate
- Problem: Increases the number of parameters

Data pre-processing

For images, subtract the mean image (AlexNet) or per-channel mean (VGG-Net)

2.7 Weight initialization

All weights to zero

- Set all weights to 0
- Problems:
 - Hidden units are all going to compute the same function, gradients are all going to be the same
 - \rightarrow All layers predict the same features

Small random numbers

- Gaussian with zero mean and standard deviation 0.01
- Problem: Gradients vanish

Big random numbers

- Gaussian with zero mean and standard deviation 0.01
- Problem: Saturates fast

Xavier initialization

- Ensure that input variance is equal to output variance
- Calculate Variance of score function:

$$Var(s) = \dots = (nVar(w))Var(x)$$

• Var(x) should be 1:

$$Var(w) = \frac{1}{n}$$

- Problem with ReLU: Kills half of the data
- We can mitigate that effect with Xavier/2 initialization:

$$Var(w) = \frac{2}{n}$$

• But: Doesn't scale for very high number of layers, as output layers are killed at some point

Batchnorm

- Goal: Activations should not die out
- Solution: Unit Gaussian activations
- Batchnorm can be included in Neural networks as separate layer:
 - Insert after fully connected layer
 - but before non-linear activation
- Approach:
 - 1. Normalize mean and variance of the inputs to 0 and 1, respectively:

$$\hat{x}^{(k)} = \frac{x^k - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

2. Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

• The network can learn to undo the normalization:

$$\gamma^{(k)} = \sqrt{Var[x^{(k)}]}$$
$$\beta^{(k)} = E[x^{(k)}]$$

- It's empirically shown that treating the dimensions separately still leads to faster convergence
- Biases before BN layers can all be set to 0 as they will be canceled out by BN
- Problem for test time: We might only process one input, so we can't compute a meaningful mean and variance
 - \rightarrow Compute a mean (μ_{test}) and variance (σ_{test}^2) by running an exponentially weighted average across training mini-batches
- Benefits of BN:
 - Makes very deep nets easier to train due to more stable gradients
 - A much larger range of hyperparameters works similarly
- Drawback: Doesn't work well for small batch sizes (about < 16)

2.8 Regularization

- Any strategy that aims to:
 - Lower validation error
 - Increase training error

2.8.1 Weight decay

• L^2 regularization:

$$\theta_{k+1} = \theta_k - \epsilon \nabla_{\theta} L(\theta_k, x^i, y^i) - \lambda \theta_k^T \theta_k$$

- Note: This is directly subtracted during the update step (unlike L^2 regularization loss)
- Penalizes large weights and improves generalization

2.8.2 Data augmentation

- A classifier has to be invariant to a wide variety of transformations
- We can help the classifier by generating fake data simulating plausible transformations
- Examples for images:
 - Flip augmentation: Flip images
 - Crop augmentation: Only use sections of images
 - Random brightness and contrast changes
- Data augmentation should be considered as a part of the network design
 - → Use same augmentation when comparing two networks

2.8.3 Early stopping

- Take model with lowest validation error (before overfitting sets in)
 - \rightarrow Optimize training time as a hyperparameter

2.8.4 Bagging and ensemble methods

Ensemble

- Train three models and average their results
- Change a different algorithm of change the objective function
- If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging

• Use k different datasets to train the different models

2.8.5 Dropout

• Disable a random set of neurons (typically 50%):

- Intuition: Using half the network = half capacity
 - Disable redundant representations
 - Base scores on more features
 - "Two models in one" \rightarrow can be considered as model ensemble
- Dropout is not used during test time
 - Different conditions at train and test time
 - We need to scale the weights during training accordingly: Weight scaling inference rule

$$\frac{1}{p}(Wx+b)$$

- Summary:
 - Efficient bagging method with parameter sharping
 - Use dropout!
 - Dropout reduces the effective capacity of a model
 - \rightarrow larger models, more training time

2.9 Transfer Learning

- Use what have been learned on a task P1 for another setting P2
 - \rightarrow Train on large dataset, apply on smaller dataset
- Intuition: Convolutional layers extract features and final decision layers (e.g. FC for classification) can use those to make decisions → only need to train the possibly adapted decision layer (Finetuning)
- Allows usage of pretrained models, e.g. ImageNet for images
- When Transfer learning makes sense:
 - When tasks have the same input (e.g. an RGB image)
 - When you have more data for task P1 than for task P2
 - When low-level features of task P1 could be useful to learn P2

3 Convolutional Neural Network (CNN)

3.1 Processing images with FC layers

- Small images already result in a lot of parameters: e.g. $5 \times 5 \times 3$ image that is processed by a layer with 3 neurons
 - $\rightarrow 5*5*3=75$ weights per neuron, 75*3=225 weights for the layer
- Larger images impractical: An image with dimension 1000 * 1000 * 3 and a layer with 1000 neurons would already have 3 billion weights
- Approach:
 - We need a layer with structure
 - Weight sharing
 - \rightarrow using same weights for different parts of the image

3.2 Convolutions

- Convolutions vs. Fully-Connected:
 - Convolutions restrict the degrees of freedom
 - * FC is somewhat brute force
 - * Convolutions are structured
 - Sliding window with the same filter parameters to extract image features
 - * Concept of weight sharing
 - * Extract same features independent of location
- Types of convolutions:
 - Valid convolution: Using no padding
 - Same convolution: output size equal to input size (either with padding or 1×1 convolution)
- Idea: Apply a filter (called kernel) to a function
- Slide the filter kernel through the image
- Example:

Convolutions on RGB Images

• Depth dimension (channels) of input image ($width \times height \times depth$) and Kernel must match: $32 \times 32 \times 3$ input image $\rightarrow 5 \times 5 \times 3$ filter

• Can be simply calculated with a dot product (with x_i *i*-th chunk of the image):

$$z_i = w^T x_i + b$$

- For the above example, we would have $5 \times 5 \times 3 = 75$ weights and input values and therefore 75 operations (+ operations for the bias)
- The result of applying one filter is an activation map (also: feature map) with depth 1

3.3 Convolutional Layer

- Instead of applying only one filter, we can apply multiple Filters
- A basic layer is defined by:
 - Filter width and height (depth is implicitly given by the input image)
 - Number of different filter banks (#weight sets)
 - Each filter captures a different image characteristic

Dimensions of a Convolutional Layer

- Parameters:
 - Input: $W_{in} \times H_{in} \times D_{in}$ - Number of Filters: K
 - Filter: $F \times F$

- Stride: S
- Padding P
- Output Dimension:

$$\left(\frac{W_{in} + 2 * P - F}{S} + 1\right) \times \left(\frac{H_{in} + 2 * P - F}{S} + 1\right) \times K$$

 \rightarrow Depth of the output when applying one filter is always 1 (in general: equal to the number of filters)

• Amount of weights per Filter:

$$F \times F \times D_{in}$$

• Total amount of weights: $(F \times F \times D_{in}) * K$ weights + K biases

Padding

- Reasons for padding:
 - Sizes get small too quickly
 - Corner pixels are only used once
- Padding size:

$$P = \frac{F - 1}{2}$$

• Usually, zero padding is used

Receptive field

- Spatial extent of the connectivity of a convolutional filter
- Synonymous to filter/kernel size
- Each output pixel is connected to following amount of input pixels:

$$F \times F \times D_i n$$

• Equal to the weights of each Filter!

1×1 convolutions

- Kernel size of 1×1
- Output size: Equal to input size (channels adapted according to number of filters)
- The input is just scaled with a number
- Usage:
 - Use it to shrink the number of channels
 - Further adds a non-linearity
 - \rightarrow allows to learn more complex functions

3.4 Pooling

- Used to downsample images
- Types:
 - Max Pooling: Apply max operation on specified kernel size

- Average Pooling: Apply average operation on specified kernel size

- Convolution vs. Pooling:
 - Conv Layer: Feature extraction
 - \rightarrow computes a feature in a given region
 - Pooling Layer: Feature selection
 - \rightarrow Pick strongest activation in a region

Dimensions of a Pooling Layer

- Parameters:
 - Input: $W_{in} \times H_{in} \times D_{in}$
 - Filter: $F \times F$
 - Stride: S
- Output Dimension:

$$\left(\frac{W_{in} - F}{S} + 1\right) \times \left(\frac{H_{in} - F}{S} + 1\right) \times D_{in}$$

• Pooling is a fixed function and doesn't contain parameters

3.5 Fully convolutional network

- Fully connected layers are converted to convolutional layers
- A final upsampling layer resizes the output image to the required size
- E.g. used for semantic segmentation: pixelwise prediction of images

Upsampling

- Interpolation
 - Nearest neighbor interpolation
 - bilinear interpolation
 - bicubic interpolation
- Transposed conv
 - Unpooling
 - Convolution filter (learned)
 - Also called: up-convolution
- Autoencoders are a cascade of unpooling + conv operations

3.6 Architectures

3.6.1 LeNet

- Digit recognition: 10 classes
- Uses average pool (today: usually max pool) and tanh/sigmoid (today: ReLu)
- General approach: Width and height decrease with the number of layers, number of filters increases
- 60k parameters

3.6.2 AlexNet

- First filter with stride 4 to reduce size significantly
- Higher number of filters
- Uses ReLU instead of tanh/sigmoid, max pool instead of average pool
- 60 million parameters

3.6.3 VGGNet

- Strives for simplicity
- 138 million parameters

3.6.4 ResNet

Problem of Depth

- Training becomes harder with more and more layers
- Vanishing and exploding gradients

Residual block

- Introduces skip connection ("alternative path")
- Skip one or several layers during training
- Example:

Properties of ResNet

- Xavier/2 initialization
- SGD Momentum
- Learning rate 0.1, divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout

Why do ResNets work?

- Same values are kept and a non-lineartiy is added \rightarrow Identity function
- The identity is easy to learn for the residual block
- Guaranteed to not hurt the performance
 → can only improve performance

3.6.5 GoogLeNet

Inception layer

- Combines usage of several filters
- max pooling with stride 1

- They output includes the concatenation of all the individual filters
- Example:

• Computational cost:

- Reduce number of multiplications by adding same convolution layer in the middle:

Architecture

4 Recurrent Neural Network (RNN)

4.1 Context and Structure

- Allows to predict time series
- Different shapes of RNNs:

- one to one: Classic Neural Networks for image classification (no RNN)

- one to many: image captioning

- many to one: Language recognition

- many to many: Machine translation

- many to many: Event classification

• Structure of a Multi-layer RNN:

4.2 Basic RNN

Output calculation

• New hidden state h_t is updated based on the previous hidden state h_{t-1} and the input x_t :

$$h_t = \tanh\left(\theta_c h_{t-1} + \theta_x x_t + b\right)$$

• Output is calculated based on the hidden state:

$$y = \theta_y h_t$$

- Weights θ_c , θ_x and θ_y are parameters to be learned \rightarrow Same for each time step (generalization)
- Example of a Network and it's "internals":

 \rightarrow Hidden states A are the same

Problems of RNNs

- With RNNs, we also want to model long-term dependencies
- If we just look at the step of updating the hidden state:

$$h_t = \theta^t h_0$$

- Same weights are multiplied over and over again
 - → Vanishing or exploding gradients
 - Vanishing gradients: If magnitude of eigenvalues of θ is smaller than one
 - \rightarrow Can be (partially) solved with LSTMs
 - Exploding gradients: If magnitude of eigenvalues of θ is bigger than one
 - \rightarrow Can be solved with gradient clipping
- Gradients will also vanish due to tanh, because it's derivative outputs a value smaller or equal to 1

4.3 Long Short Term Memory

Structure of LSTM

• Repeating module of LSTMs contains four interacting layers

• Legend:

Individual components of LSTM repeating modules

- Basic building blocks:
 - Cell state that transports information and gates to add or remove information to/from the cell state:

- Gates use sigmoid function to determine the output: zero means "let nothing through (forget)", 1 means "let everything through (keep)"
- Individual steps:
 - Forget gate f_t : Decide what information to throw away from the cell state

$$f_t = \sigma(\theta_{xf}x_t + \theta_{hf}h_{t-1} + b_f)$$

– Input gate i_t : Decides which values will be updated and cell update \tilde{C} :

$$i_t = \sigma(\theta_{xi}x_t + \theta_{hi}h_{t-1} + b_i)$$

$$\tilde{C} = \tanh\left(\theta_{xg}x_t + \theta_{hg}h_{t-1} + b_g\right)$$

- Update cell state C_{t-1} to new cell state C_t :

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}$$

- Output gate o_t : Decides which values to output and final output calculation

$$o_t = \sigma \left(\theta_{xo} x_t + \theta_{ho} h_{t-1} + b_o \right)$$

$$h_t = o_t * \tanh(C_t)$$

- Further information:
 - All weight parameters θ are learned through backpropagation
 - Dimensions of input and hidden state need same dimension
 - How do LSTMs solve vanishing gradients?
 - * they create a connection between the forget gate activations and the gradients computation
 - \ast this connection creates a path for information flow through the forget gate for information the LSTM should not forget