

Kinematic Synthesis of Planar Mechanisms

(Mechanisms Synthesis)

Dr. S. S. Roy

Professor

Department of Mechanical Engineering

1

Analysis vs. Synthesis

Analysis

Input Motions

Output Motions

Given Mechanism & its Configuration, dimensions

In Kinematic Analysis one is given a mechanism & the task is to determine the various relative motion that can take place in that mechanism.

Synthesis

- > decision -making process
- > Innovative or creative process
- > process of creating new mechanism
- > Selecting optimum/best configuration from no. of existing mechanism
- Determination of optimum dimensions of the elements of the mechanism on the basis of analysis

In Kinematic Synthesis one has to be come up with a design of mechanism to generate prescribed motion characteristic.

Clasiification of Dimensional Synthesis Problems

Depending on the required kinematic characteristics to be satisfied by the designed mechanism or linkage, dimensional synthesis problems can be broadly classified as given below:

Motion generation /Body Guidance

In this general class of synthesis problem, the linkage has to be so designed that a rigid body (i.e., one link of the mechanism, for example the coupler of a 4R linkage) can be guided in a prescribed manner.

The guidance may or may not be coordinated with the input motion

Path generation

If a point on the floating link (i.e. link not connected to the frame , like coupler) of a mechanism has to be guided along a prescribed path, then such a problem is classified as a path-generation problem .

This refers to a problem in which a coupler point is to generate a path having a prescribed shape

The generation of a prescribed path may or may not be coordinated with the input motion

Function generation

In this class of problem, the motion parameters (displacement, velocity, acceleration etc.) of the output & input links are to be coordinated so as to satisfy a prescribed functional relationship. The output & input motion characteristics have to maintain a specified functional relationship

Chebyshev's Spacing of Accuracy Points

Let y=f(x) be the function desired to be generated in an interval $x_0 \le x \le x_{n+1}$:

Let the mechanism generated function be $F(x,\,R_1,\,R_2,....$, $R_k)$ where $R_1,\,R_2$,.... R_k are design parameters

Structural Error

$$E(x)=f(x)-F(x, R_1, R_2,, R_k)$$

The best choice for the spacing of accuracy points will be that which gives the min. value of E(x) between any two adjacent points:

However, Chebyshev's spacing of accuracy points can always be taken as a first approximation

A very good trial for the spacing of these precision positions is called Chebyshev Spacing

11

Chebyshev's Spacing of Accuracy Points

For 'n' precision positions in the range $x_0 \le x \le x_{n+1}$, the Chebyshev's spacing is

$$x_j = \left(\frac{x_{n+1} + x_0}{2}\right) - \left(\frac{x_{n+1} - x_0}{2}\right) G_1 \left\{\frac{(2j-1)\pi}{2n}\right\}$$
 where $j=1,2,...n$.

Determine the three accuracy points with Chebyshev's spacing for a 4 bar linkage to generate the function $y=x^{0.8}$ in the interval $1 \le x \le 3$,

6

Determine the three accuracy points with Chebyshev's spacing for a 4 bar linkage to generate the function $y=x^{0.8}$ in the interval $1 \le x \le 3$,

Here
$$n=3$$
; $\chi_0 = 1$; $\chi_{2+1} = \chi_4 = 3$
 $\chi_1 = \left(\frac{\chi_{1+1} + \chi_0}{2}\right) - \left(\frac{\chi_{1+1} - \chi_0}{2}\right) 65 \begin{cases} \left(\frac{2j-1}{2}\right) \pi \end{cases}$ Where $j=1,2,3$
 $\chi_1 = \left(\frac{\chi_{1+1} + \chi_0}{2}\right) - \left(\frac{\chi_{1-1} + \chi_0}{2}\right) 65 \begin{cases} \left(\frac{2j-1}{2}\right) \pi \end{cases}$ $\chi_1 = \left(\frac{3+1}{2}\right) - \left(\frac{3-1}{2}\right) 65 \begin{cases} \left(\frac{2-1}{2}\right) \pi \end{cases} = 2 - 65 \frac{\pi}{1} = 2$
 $\chi_2 = \left(\frac{3+1}{2}\right) - \left(\frac{3-1}{2}\right) 65 \begin{cases} \left(\frac{4-1}{2}\right) \pi \end{cases} = 2 - 65 \frac{\pi}{1} = 2$

$$\chi_3 = \left(\frac{3+1}{2}\right) - \left(\frac{3-1}{2}\right) 65 \begin{cases} \left(\frac{4-1}{2}\right) \pi \end{cases} = 2 - 65 \frac{\pi}{1} = 2$$

$$\chi_3 = \left(\frac{3+1}{2}\right) - \left(\frac{3-1}{2}\right) 65 \begin{cases} \left(\frac{4-1}{2}\right) \pi \end{cases} = 2 - 65 \frac{\pi}{1} = 2 - 65 \frac{\pi}{1}$$

The corresponding values of y' to be

$$y_1 = x^{0.6} = (1.134)^{0.6} = 1.106$$

 $y_2 = (2)^{0.6} = 1.741$
 $y_3 = (2.666)^{0.6} = 2.322$

12

Function generation problem

In function generation, rectation (or translation) motion of input and output links must be corpelated. The kinematic hypothesis took may be to design a linkage to commetate input and output Such that one the input moves by x', the output makes by y=f(x) for the range x xxx xxxx

Fig. 1 Function-generated mechanism (4) extension view, (b) schematic of the mechanism inside.

(i.e. four-tian linkage function generator)

In the case of rotang input and output, the angles of rotation of the are the linear analogs of x and y respectively.

14

