

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding & IMFs Energy Changes of Salts

Energy Changes of Salts

Which	statement helps to explain why calcium and chlorine form ${ m CaCl}_2$ rather than ${ m CaCl}$?
	More energy is released in forming chloride ions from chlorine molecules in the formation of $CaCl_2(s)$ than in the formation of $CaCl(s)$.
	When $CaCl(s)$ is formed from its elements, more energy is released than when $CaCl_2(s)$ is formed from its elements.
	Less energy is required to remove one electron from the calcium atom than to remove two electrons.
	The lattice energy of $\operatorname{CaCl}(s)$ is less exothermic than that of $\operatorname{CaCl}_2(s)$.

Part B Enthalpy of solution of magnesium chloride

The lattice enthalpy of magnesium chloride is $+2493\,\mathrm{kJ}\ \mathrm{mo1}^{-1}$. The hydration enthalpy of the magnesium ion is $-1920\,\mathrm{kJ}\ \mathrm{mo1}^{-1}$ and that of the chloride ion is $-364\,\mathrm{kJ}\ \mathrm{mo1}^{-1}$.

The enthalpy of solution (in $kJ\ mo1^{-1}$) of magnesium chloride in water is given by:

- $+2493 + 1920 (2 \times 364)$
- -2493 1920 364
- $+2493-1920-(2\times364)$
- +2493-1920-364
- $-2493 + 1920 + (2 \times 364)$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 7; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 1, Question 9

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Periodic Table Decomposition of Salts

Decomposition of Salts

Part A	Calcium	sulfate	and o	carbonate
--------	---------	---------	-------	-----------

On strong heating, $CaSO_4$ decomposes into CaO and SO_3 . The compound $CaCO_3$ decomposes at a lower temperature than $CaSO_4$.

Which factor best explains the greater thermal stability of ${\rm CaSO_4}$?

CO_2 is a smaller molecule than SO_3 .
${ m CaCO_3}$ has a higher lattice energy than ${ m CaSO_4}.$
The charge density of $\mathrm{CO_3}^{2-}$ is greater than that of $\mathrm{SO_4}^{2-}$
$\mathrm{CO_3}^{2-}$ ions are more easily polarised than $\mathrm{SO_4}^{2-}.$

Part B Group 2 carbonates

The graph shows the decomposition temperature for the Group 2 carbonates of magnesium, calcium and strontium.

Figure 1: Decomposition temperatures of Group 2 carbonates

Which factor makes $MgCO_3$ the least thermally stable?

- a small cation polarising a small anion
- a small cation polarising a large anion
- a large cation polarising a small anion
- a large cation polarising a large anion

Part A adapted with permission from OCR, A-Level Chemistry, June 1999, Paper 3, Question 14; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 3, Question 13

Home Gameboard Chemistry Inorganic Bonding & IMFs Intermolecular Forces

Intermolecular Forces

Part A	Liquid	hydrogen	halides
--------	--------	----------	---------

quantity would best indicate the relative strengths of the hydrogen bond between the les in liquid hydrogen halides?
bond dissociation energies
enthalpy changes of formation
enthalpy changes of vaporisation
enthalpy changes of solution

Part B Propanone and hexane

vvnicn	statement helps to account for this?
	A hydrogen bond forms between the hydrogen of the CH_3 group in propanone and the oxygen of a water molecule
	A hydrogen bond forms between the oxygen of the $C=O$ group in propanone and the hydrogen of a water molecule
	A hydrogen bond forms between the oxygen of the $C=O$ group in propanone and the oxygen of a water molecule
	A hydrogen bond forms between the hydrogen of the CH_3 group in propanone and the hydrogen of a water molecule

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 6; Part B created for Isaac Physics by R. Less

Home Gameboard

Chemistry

Inorganic Periodic

Periodic Table Ionisation Energy and Radii

Ionisation Energy and Radii

Part A lonisation energy

The elements radon (Rn), francium (Fr) and radium (Ra) have consecutive proton numbers in the Periodic Table.

What is the order of their first ionisation energies?

	least endothermic	\longrightarrow	most endothermic
Α	Fr	Ra	Rn
В	${ m Fr}$	Rn	Ra
С	Ra	\mathbf{Fr}	Rn
D	Rn	Ra	${ m Fr}$

	Α

() B

() C

() D

Part B Radii

The following species contain the same number of electrons.

In which order do their radii increase?

	smallest radius	\longrightarrow	largest radius
Α	Ar	K^{+}	Ca^{2+}
В	Ca^{2+}	Ar	\mathbf{K}^{+}
С	Ca^{2+}	K^{+}	Ar
D	K^{+}	Ca^{2+}	Ar

(1	
(- /	~

Part A adapted with permission from UCLES, A-Level Chemistry, November 1999, Paper 3, Question 4; Part B adapted with permission from UCLES, A-Level Chemistry, November 1999, Paper 3, Question 13

Home Gameboard Chemistry Inorganic Periodic Table More Periodic Trends

More Periodic Trends

The graphs below show how a property of the elements ${\rm Na}$ to ${\rm Cl}$ varies with proton number.

What is the property of each trend?

Part A Trend 1

Figure 1: Trend 1 of the elements Na to Cl with proton number

What is the property?

- ionic radius
- electronegativity
- first ionisation energy
- melting point

Part B Trend 2

Figure 2: Trend 2 of the elements ${\rm Na}$ to ${\rm Cl}$ with proton number

What is the property?

- ionic radius
- melting point
- first ionisation energy
- electronegativity

Part C Trend 3

Figure 3: Trend 3 of the elements Na to Cl with proton number

- melting point
- first ionisation energy
- ionic radius
- electronegativity

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 12; Parts B, C created for Isaac Physics by R. Less

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Periodic Table Groups 1 and 2

Groups 1 and 2

Part A Lithium compounds
Lithium resembles magnesium in its chemical properties.
Which property of lithium compounds is unlikely to be correct?
Lithium oxide in water produces a solution with pH greater than 7.
Lithium nitrate gives oxygen as the only gas on being heated.
Lithium sulfate is soluble in water.
Lithium carbonate decomposes to give carbon dioxide on being heated.
Part B Group 2 trends
On descending Group 2 from magnesium to barium, which statement correctly describes the trend in properties?
The first ionisation energy increases.
The ionic radius decreases.
The solubility of the sulfate increases.
igcup The enthalpy change of hydration of the $+2$ ion becomes less negative.

Home Gameboard Chemistry Inorganic Periodic Table Group 2 Salts

Group 2 Salts

Part A Silver nitrate and barium chloride

An **excess** of aqueous silver nitrate is added to aqueous barium chloride, and the precipitate is removed by filtration.

What are the main ions in the filtrate?

- $\ \ Ba^{2+} \text{ and } NO_3^- \text{ only}$
- $\ \ \, {\rm Ag}^{+} \text{ and } {\rm NO_{3}}^{-} \text{ only} \\$
- $\ \ \, \boxed{ \ \ \, Ba^{2+},\,NO_3^{\,-} \text{ and } Cl^-}$
- $\ \ \, {\rm Ag^+,\,Ba^{2+}} \ \hbox{and} \ {\rm NO_3}^- \\$

Part B Salts with dilute hydrochloric acid

colourless gas is evolved and some, but not all, of the mixture dissolves.		
Which mixture could be F ?		
$igcup { m Ca(OH)_2}$ and ${ m MgCO_3}$		
$igcup ext{CaCO}_3$ and $ ext{MgSO}_4$		
$igcup { m Ba(NO_3)_2}$ and ${ m Ca(OH)_2}$		
$igcup BaSO_4$ and $CaCO_3$		

When a mixture of white solids, F, is treated with an excess of dilute hydrochloric acid, a

Part A adapted with permission from OCR, A-Level Chemistry, June 1999, Paper 3, Question 17; Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 12

Home Gameboard Chemistry Inorganic Periodic Table Halogen Trends

Halogen Trends

Part A Periodic trends

Which statements about the trends in the properties of the halogens are correct?

- **1**. The electronegativity decreases on descending the group.
- 2. The volatility decreases on descending the group.
- 3. Their reactivity as oxidising agents decreases on descending the group.

1, 2 and 3 are correct
1 and 2 only are correct
2 and 3 only are correct
1 only is correct
3 only is correct

Part B Oxidation and reduction

Aqueous chlorine is added to aqueous sodium bromide and the mixture is shaken with an equal volume of trichloroethane.

Which observation would be made?

Figure 1: Possible observations of aqueous chlorine with aqueous sodium bromide and an equal volume of trichloroethane

() (

<u>Home</u> <u>Gameboard</u> Chemistry

Inorganic

Periodic Table Halides Oxidation and Reduction

Halides Oxidation and Reduction

Part A R	eactions of chlorine
	n compound reacts with chlorine to give two products in which chlorine has different tion numbers?
	sodium hydroxide
	potassium iodate(V)
	ethene
	potassium iodide

Part B Weedkiller from bleach

A weedkiller can be prepared by heating a bleach solution.

$$3 \operatorname{NaClO} \xrightarrow{\operatorname{heat}} 2 \operatorname{NaCl} + \operatorname{NaClO}_3$$
weedkiller

What are the oxidation numbers of chlorine in these three compounds?

	NaClO	NaCl	NaClO_3
Α	-1	-1	+5
В	+1	-1	+5
С	+1	-1	+7
D	+2	+1	+7

(- 1	
(-)	А

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 15; Part B adapted with permission from UCLES, A-Level Chemistry, November 1999, Paper 3, Question 17

Home Gameboard Chemistry Inorganic Redox Oxidation Numbers

Oxidation Numbers

Part A Sodium with ammonia

Sodium reacts with ammonia to give hydrogen and sodamide which is ionic.

$$2\,\mathrm{Na} + 2\,\mathrm{NH_3} \longrightarrow 2\,\mathrm{NaNH_2} + \mathrm{H_2}$$

Which changes in oxidation number of the three elements involved occur?

- **1**. -3 to -2
- $\textbf{2}.\ 0\ \text{to}\ +1$
- $\mathbf{3}$. +1 to 0
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part B Titanium

Titanium is manufactured from ilmenite which is a mixture of iron(II) titanate, $FeTiO_3$, and iron(III) titanate, $Fe_2(TiO_3)_3$.

What is the oxidation number of titanium in each of these compounds?

	${ m FeTiO_3}$	$\mathrm{Fe_2}(\mathrm{TiO_3})_3$
Α	+2	+3
В	+4	+2
С	+4	+3
D	+4	+4

/	1	
(- /	м

Part A adapted with permission from UCLES, A-Level Chemistry, June 1999, Paper 3, Question 33; Part B adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 13