2/2

0/2

-1/2

2/2

2/2

2/2

2/2

2/2

2/2

-1/2

THLR Contrôle (35 questions), Septembre 2016

•	•
	entifiant (de haut en bas) :
EC HHOUST	
Milbert	
	0 @1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ⑥ » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [III] J'ai lu les instructions et mon sujet est complet: les 4 entêtes sont +120/1/xx+···+120/4/xx+.	
Q.2 La distance d'édition (avec les opérations lettre à lett dense est de :	re insertion et suppression) entre les mots danse et
Q.3 Pour $L_1 = \{ab\}^*, L_2 = \{a\}^* \{b\}^*$:	
	$L_1 = L_2 \qquad \qquad \boxtimes L_1 \stackrel{\not\subseteq}{\not\supseteq} L_2$
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?	
Q.5 Que vaut <i>Pref</i> ({ab, c}):	
$\square \{a,b,c\} \qquad \square \{b,\epsilon\} \qquad \square \{b,c,\epsilon\}$	
Q.6 Que vaut $(\{a\}\{b\}^*\{a\}^*) \cap (\{a\}^*\{b\}^*\{a\})$	
	$\{a\} \cup \{a\}\{b\}^*\{a\}$ \square $\{\varepsilon\} \cup \{a\}\{a\}\{a\}^*$
Q.7 Pour toute expression rationnelle e , on a $\emptyset e \equiv e \emptyset \equiv e$.	
_ ∪ vrai 🚮	faux
Q.8 Pour toutes expressions rationnelles e, f , on a $(e + f)^*$	
☐ faux	vrai
	7.14.1
Q.9 Pour $e = (ab)^*, f = (a + b)^*$:	
$L(e) \subseteq L(f) \qquad \qquad \Box \qquad L(e) = L(f) \qquad \qquad \Box$	$L(e) \supseteq L(f)$ \square $L(e) \nsubseteq_{\not\supseteq} L(f)$
Q.10 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.	

Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$

-1/2

P ne vérifie pas le lemme de pompage \square Il existe un ε -NFA qui reconnaisse \mathcal{P}

a, b

- Il existe un DFA qui reconnaisse P \square Il existe un NFA qui reconnaisse $\mathcal P$
- Quels états peuvent être fusionnés sans changer le langage reconnu.

2/2

- 3 avec 4
- 1 avec 2
- ☐ 1 avec 3
- □ 0 avec 1 et avec 2
- ☐ 2 avec 4
- ☐ Aucune de ces réponses n'est correcte.

a, b Q.34 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

2/2

2/2

Sur $\{a,b\}$, quel est le complémentaire de Q.35

Q.36

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$