Top-m identification for linear bandits

Motivated by drug repurposing, we propose a generic family of algorithms to tackle the identification of the $m \ge 1$ arms with largest means in a linear bandit model.

Clémence Réda, Émilie Kaufmann, Andrée Delahaye-Duriez

Fixed-confidence linear Top-*m* identification

The goal is to identify the m < K arms with the largest expected rewards, using fixed time-independent arm contexts. In a linear bandit model, the expected reward μ_a of each arm a is a linear function of context $x_a \in \mathbb{R}^N$

for any arm a, $\mu_a = \theta^T x_a$ for some vector $\theta \in \mathbb{R}^N$

A (ϵ , m, δ)-PAC (Probably Approximately Correct) algorithm for fixedconfidence linear Top-m returns a subset of m arms \hat{S}_{m}^{t} at round t s.t. if $\mu_{(m)}$ is the mth largest mean reward:

$$\text{Prob}(\hat{S}^t_{\text{m}} \subseteq S^{*\epsilon}) \ge 1-\delta$$
 where $S^{*\epsilon} = \{ a : \mu_a \ge \mu_{(m)} - \epsilon \}$

Contributions

GIFA (Gap-Index Focused Algorithm) family for Top-m

We propose a generic family of algorithms aimed at Top-m identification, which encompasses known algorithms for Top-m and best arm identification (LUCB¹, UGapE², LinGapE³, ...). These algorithms rely on good gap indices $B_{ii}(t)$ for any arm pair (i, j) s.t.

Prob { $\forall t > 0$, $\forall j \in (S^{*\epsilon})^c$, $\forall k \in S^{*0}$, $B_{ki}(t) \ge \mu_k - \mu_i$ } $\ge 1-\delta$

* Correctness for partially specified GIFA algorithms:

Theorem 1. If using good gap indices, (i) any GIFA algorithm with $b_t = \operatorname{argmax}_{i \in J(t)} \operatorname{max}_{i \in J(t)} B_{ij}(t)$ and the LUCB stopping rule, or (ii) any GIFA algorithm using b_t∈J(t) with the UGapE stopping rule, is (ε, m, δ) -PAC.

* Existence of good gap indices:

Lemma 3. Gap indices using confidence bounds for linear bandits in ⁴ are good gap indices.

Proposals for linear Top-*m* identification: *m*-LinGapE and LinGIFA

 $\mu_i(t)$ is the empirical mean for arm i at time t.

Algorithm	compute_Jt	compute_bt	selection	stopping at t
<i>m</i> -LinGapE	[<i>m</i>] argmax μ _j (t) j∈[K]	argmax max B _{ij} (t) j∈J(t) i∈(J(t)) ^c	greedy, optimized	$B_{ct bt}(t) \le \varepsilon$ (LUCB rule)
LinGIFA	[<i>m</i>] <i>m</i> argmin max B _{ij} (t) j∈[K] i≠j	<i>m</i> argmax max Bij(t) j∈J(t) i≠j	largest variance, greedy	m max max $B_{ij}(t) ≤ ε$ $j∈J(t)$ $i≠j$ (UGapE rule)

Tab. 1: New proposals for linear Top-*m* identication

where

Greedy³ $\operatorname{argmin}_{a \in [K]} (x_{ct} - x_{bt})^{\mathsf{T}} (V_{t-1} + x_a x_a^{\mathsf{T}})^{-1} (x_{ct} - x_{bt})$

 $\operatorname{argmax}_{a \in [K], \ w^*a(bt,ct)>0} \ n_a(t) \ ||w^*(b_t,c_t)||_1 \ / \ |w^*_a(b_t,c_t)|$ **Optimized**³

and $w^*(bt,ct) = argmin \{ ||w||_1 | w \in R^K : x_{bt} - x_{ct} = \sum_{a \in [K]} w_a x_a \}$

Largest variance² argmax_{$a \in \{ct, bt\}$} $x_a^TV_tX_a$

and $V_t = \lambda I_N + \sum_{a \in [K]} n_a(t) x_a x_a^T$, $n_a(t) : \# \text{ of times } a \text{ pulled until round } t$

Unified sample complexity analysis for LUCB-like GIFA algorithms

This subclass of algorithms comprises LUCB, LinGapE and *m*-LinGapE (same rules for estimating J(t), b_t and stopping). Analysis leads to upper bounds on stopping time of the form

$$C(H) = \inf_{u>0} \{ u > 1 + H \cdot D(\delta, u) + O(K)^* \}$$

* this term corresponds to an initialization phase where all arms are sampled once, $D(\delta,u)$ controls the width of the gap indices

Algorithm	Complexity constant H ^ε (μ)		
LUCB	$2~\Sigma_{a\in[K]}~max(\epsilon/2,~\Delta_a)^{-2}$ $\Delta_a=\mu_a\text{-}u_{(m+1)}~if~a\in S^{*0},~\mu_{(m)}\text{-}\mu_a~otherwise}$		
m-LinGapE (largest variance rule)	$4\sigma^2\Sigma_{a\in[K]}\max(\epsilon,\ (\epsilon+\Delta_a)/3)^{-2}$ σ is the variance on the noise model		
<i>m</i> -LinGapE (optimized rule)	$\sigma^2 \Sigma_{a \in [K]} \max_{i,j} w^*_{a}(i,j) (\epsilon + \max(\Delta_i, \Delta_j)/3)^{-2}$		

Tab. 2: Comparaison between upper bounds on stopping time for LUCB-like algorithms

Experimental study (across 500 simulations)

Simulated data: hard best arm (Top-1) identification instance⁵

and LinGIFA remain competitive even against asymptotically optimal (i.e., when $\delta \rightarrow 0$) such as LinGame. $(K=3, \mu_{(1)}-\mu_{(2)} = cos(0.1), N=3)$

Biological data: application to drug repurposing with m > 1

In a drug repurposing instance for epilepsy (m = 5), sample complexity is improved by a factor ½ compared to LUCB. $(K=10, \mu_{(m)}-\mu_{(m+1)} \sim 0.066, N=71)$

References

- ¹ Kalyanakrishnan, S., Tewari, A., Auer, P., & Stone, P. "Pac subset selection in stochastic multi-armed bandits" (2012). ICML
- ² Gabillon, V., Ghavamzadeh, M., & Lazaric, A. "Best arm identification: A unified approach to fixed budget and fixed confidence" (2012). NIPS.
- ³ Xu, L., Honda, J., & Sugiyama, M. "A fully adaptive algorithm for pure exploration in linear bandits" (2018). AISTATS.
- ⁴ Abbasi-Yadkori Y., Szepesvári C. & Pal D. "Improved algorithms for linear stochastic bandits" (2011) NIPS.
- ⁵ Soare M., Lazaric A., & Munos R. "Best-arm identification in linear bandits" (2014). NIPS.
- ⁶ Degenne, R., Ménard, P., Shang, X., & Valko, M. "Gamification of pure exploration for linear bandits" (2020). ICML.

