

Synthesis of Digital Systems Lab Lecture -1

Getting started with ZedBoard

Munish Jassi

Organisation and Laboratory Content

Desired Learning from this Lab

- Understanding of System Prototyping.
- Understanding HW/SW interfacing for SoCs.
- High Level Synthesis (HLS) and its usage for Hardware Accelerated systems.

Content of the Lab

- System prototyping on FPGA and associated software tool chain.
- Industry standard High Level Synthesis (HLS) tool chain.
- Implementation of video processing hardware System and software interface.
- Hardware Accelerator (HA) for performance improvement.

Organization

- Lab has four sections, 3 weeks for each section:
 - Lab A Introduction to ZedBoard
 - Lab B Introduction to HLS using Vivado_hls
 - Lab C Video processing on ZedBoard (SW only)
 - Lab D Hardware Accelerated video processing
- Submissions at the end of each lab according to the schedule,
 - Code submission.
 - Submission of the Questionaire.
 - Results submission (if any).

Grading

- Lab makes 50% of the SDS course.
- Final Grading:
 - Lab code submissions and reports (25% of the final grade)
 - Code submission (1/2 of points)
 - Reports (1/2 of points)
 - End semester exam (75% of the final grade):
 - 2/3 points on SDS Lectures.
 - 1/3 points on Lab-section.

Schedule

• Lab lectures:

Date	Topic
09.04.2014 (Room:2977)	Lab A – Getting started with ZedBoard
30.04.2014 (Room:2977)	Lab B – HLS using Vivado_hls
21.05.2014 (Room:2977)	Lab C – Video processing SoC, SW only implemention
11.06.2014 (Room:2977)	Lab D – Video processing SoC, HA implementation

• Submission deadlines:

Date	Topic
29.04.2014 (23:55hr)	Lab A Submissions
20.05.2014 (23:55hr)	Lab B Submissions
10.06.2014 (23:55hr)	Lab C Submissions
01.07.2014 (23:55hr)	Lab D Submissions

Lab Administration

- Presence in the Lab lectures is mandatory (Inform supervisor if not possible to attend in advance).
- Each group with 1 to 2 people.
- Work on your own schedule in Room 2902.
- Individual working directories are at this path, /usr/local/labs/SDS/current/<login>/
- Project material for each lab is available at,
 /usr/local/labs/SDS/current/<login>/project_documents/
- Code submission must be in this path,
 /usr/local/labs/SDS/current/<login>/Lab<>
- Tutor Hours: Wednesday, 16:45-18:15, Room 2902
 - Benjamin Bordes, benjamin.bordes@tum.de

Lab-A Getting Started with ZedBoard

Motivation

- Designer's productivity is not increasing proportional to SoC design complexity.
- IP-reuse to be more than 90% by 2020.
- Chips like Xilinx-Zynq, provides scope for integration of customized HW into SoC.

System On Chip – HW/SW Partitioning

- Main elements for hardware System,
 - CPU
 - Memories
 - Bus system
 - Peripherals
- Main elements for Software System,
 - Operating System,
 - HW drivers
 - Process Management
 - Power/Memory management
 - Applications (with/without OS)

System On Chip – HW System Architecture

FPGA – Field Programmable Gate Array

- Reconfigurable hardware via programmable interconnections.
- LUTs are basic blocks within each logic cell.
- Data flow is controlled by programmable MUXs.
- FPGA provides more flexibility than ASIC, on cost of higher power and lower performance.

ZedBoard

ZedBoard

- Zynq-7000 AP SoC XC7Z020-CLG484
- Memory
 512 MB DDR3, 256 Mb Quad-SPI Flash,
 SD card
- Communication
 USB-JTAG , Ethernet, USB OTG 2.0 and USB-UART
- Expansion connectors
 FMC-LPC, 5 Pmod™ headers
- Display
 HDMI, VGA output, OLED display
- General Purpose I/O

Ref.: www.zedboard.org

ZedBoard

- Clocking
 - 33.33333 MHz clock source for PS
 - 100 MHz oscillator for PL
- Display
 - HDMI output supporting 1080p60 with 16-bit
 - VGA output (12-bit resolution color)
 - 128x32 OLED display
- General Purpose I/O
 - 8 user LEDs
 - 7 push buttons
 - 8 DIP switches

ARM-Cortex A9

Architecture	ARMv7-A Cortex
Dhrystone Performance	2.50 DMIPS/MHz per core
Multicore	1-4 cores
ISA Support	 ARM Thumb-2/Thumb Jazelle DSP extension Advanced SIMD NEON unit Floating Point Unit

Ref.: www.altera.com

Xilinx Tool Chain for ZedBoard

Xilinx - PlanAhead

- Eclipse based GUI.
- Central tool for ZedBoard project.
- Define the Board configurations.
- Include the project Sources and Constraints.
- Top-level Netlist generation.
- Invoking other Tools.

Xilinx Platform Studio – XPS

- Hardware configuration of Embedded cores.
- Integration of peripheral HW IPs.
- Bus & Port connections.
- Address mapping.
- Clocks/Memory configuration.

Xilinx Platform Studio – XPS

- Integration of peripheral HW IPs.
- Configuration of Processing System.
- Clocks/Memory configuration.

Xilinx Software Development Kit – SDK

- Eclipse type GUI.
- ARM Cross compiler to compile C/C++ application code for ARM CPU.
- Board Support
 Package (BSP),
 provide the driver
 header files for
 System peripherals.
- Program the ZedBoard from SDK.

Xilinx Tools Chain

"Hello World" Exercise Getting familiar with Xilinx's Tool Chain

Get started with Xilinx Tools

- 1. PlanAhead, XPS and SDK: 14.7 version
- 2. Paths used in Lab manual,
 - <work dir> : Working directory provided to you for lab-work. /usr/local/labs/SDS/current/<your_Irz_account>/
 - - - count</pre
 - <\$dir > : Path to directory "dir".
 - <project name> : Name of the active Lab project.
- 3. To load environmental settings, \$\frac{\$module load xilinx/ise/14.7}{}
- 4. To start tool, PlanAhead: \$\square\$planAhead

ZedBoard – Hello World

- Project is already completed, and is to get familiar with Tool chain
- Copy the HelloWorld directory to <work dir> and start planAhead there.
- Load <u>HelloWorld.ppr</u> on planAhead.
- On *PlanAhead*, double-click <u>system_i system (system.xmp)</u> to open XPS.
- On *PlanAhead*, select *File> Export Hardware for SDK*.. and select *Launch SDK* to open SDK.
- Connect hardware and click <u>Program FPGA</u>.
- Click <u>Run configuration...</u> and set the appropriate paths for <u>system_stub.v</u> and <u>ps7_init.tcl</u> and click <u>Run</u> to execute the project.

Thank You for your participation