# 大学物理

# College Physics

主讲 华中科技大学 刘超飞

## ●多普勒效应

当观察者与波源之间有相对运动时,观察者所测得的 频率不同于波源频率,这种现象称为多普勒效应。

$$u_R = \frac{u - V_R}{u - V_S} \nu_S$$
 选取介质中波速u为正方向

1. 波源静止,观察者朝向(远离)波源运动

波源静止,则波长不变,为λ。

观察者向着波源运动,则观察者感到波的速度为:  $u+|V_R|$ 

$$\Rightarrow \nu_R = \frac{u \pm |V_R|}{\lambda} = \frac{u \pm |V_R|}{u} \nu_S \quad 频率变大(变小)$$



#### 2. 观察者静止,波源朝向(远离)观察者运动

「波源朝向观察者运动,则观察者感到波长变小,记为 $\lambda'$ 。

$$\begin{vmatrix} \lambda' = \lambda - |V_S| \cdot T \\ \lambda = u \cdot T \end{vmatrix} \Rightarrow \lambda' = \frac{u - |V_S|}{u} \lambda$$

观察者静止,感到波的速度不变,为 u

$$\nu_R = \frac{u}{\lambda'}$$

$$\Rightarrow \nu_R = \frac{u}{u - |V_S|} \nu_S$$

频率变大(变小)



### ●非共线情况

如果波源和观察者的运动不是沿它们连线方向(纵向),则以上公式中 $V_S$ , $V_R$ 应理解为波源和观察者在它们连线方向上的速度分量(即纵向分量)。

●如果V<sub>S</sub>>u: 音爆

$$\nu_R = \frac{u - V_R}{u - V_S} \nu_S$$

# 电磁振荡与电磁波

#### 一、电磁振荡

机械振动: 物体在某一位置附近做周期性运动。

电磁振荡: 电路中电量和电流的周期性变化。

振荡电路:

产生电磁振荡的导体回路。

1. LC无阻尼自由振荡(R=0)

无阻尼振荡电路:

电路无电阻、无辐射,产生的电磁振荡是无阻尼自由振荡。







q、I、 $\vec{E}$ 、 $\vec{B}$ 、 $W_e$ 、 $W_m$ 都作周期性变化,产生电磁振荡。

#### (2) 振荡方程

LC电路中,任意 t 时刻都有  $\varepsilon_L = V$ 

$$L$$
C 电路中,往息  $I$  的刻称  $\mathcal{E}_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$   $\Rightarrow -L \frac{\mathrm{d}I}{\mathrm{d}t} = \frac{q}{C}$   $I = \frac{\mathrm{d}q}{\mathrm{d}t}$ 



$$\Rightarrow \frac{d^2q}{dt^2} + \frac{1}{LC}q = 0 \qquad \diamondsuit : \omega = \sqrt{\frac{1}{LC}} \qquad \Rightarrow \frac{d^2q}{dt^2} + \omega^2 q = 0 \quad 振荡方程$$

解为:  $q = q_m \cos(\omega t + \phi)$ 

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} = -\omega q_m \sin(\omega t + \phi) = I_m \cos(\omega t + \phi + \frac{\pi}{2})$$

式中,  $q_m$ 、 $I_m$ 、 $\phi$ 是常量。

电磁振荡中,q、I、 $W_e$ 、 $W_m$ 都作周期性变化。

$$q = q_m \cos(\omega t + \phi)$$

$$I = I_m \cos(\omega t + \phi + \frac{\pi}{2})$$

$$\omega = \sqrt{\frac{1}{LC}}$$

可见:

- (1) 无阻尼自由振荡是简谐振荡, 电流的变化超前电量 $\frac{\pi}{2}$
- (2) 特征量求法与弹簧振子相同

设初始条件为:  $q_0, I_0$ 

$$\begin{cases} q_m = \sqrt{q_0^2 + (\frac{I_0}{\omega})^2} \\ \phi = \mathbf{tg}^{-1}(-\frac{I_0}{q_0\omega}) \end{cases}$$

$$\omega = \sqrt{\frac{1}{LC}}$$
 ——系统的固有频率

$$q = q_m \cos(\omega t + \phi)$$

$$I = I_m \cos(\omega t + \phi + \frac{\pi}{2})$$

$$\omega = \sqrt{\frac{1}{LC}}$$

2. LC振荡电路的能量

$$W_e = rac{q^2}{2C} = rac{1}{2C} q_m^2 \cos^2{(\omega t + \phi)}$$
  $\omega^2 = rac{1}{LC} \Rightarrow rac{1}{C} = L\omega^2$ 

$$W_{m} = \frac{1}{2}LI^{2}$$
 $I = -\omega q_{m} \sin(\omega t + \phi)$ 

$$\Rightarrow W_e = \frac{1}{2}L\omega^2 q_m^2 \cdot \cos^2(\omega t + \phi)$$

$$\Rightarrow W_m = \frac{1}{2}L\omega^2 q_m^2 \cdot \sin^2(\omega t + \phi)$$

$$\Rightarrow W_{\otimes} = W_m + W_e = \frac{1}{2}L\omega^2 q_m^2 \begin{cases} = \frac{1}{2}\frac{1}{C}q_m^2 & \text{电能极大值(常数)} \\ = \frac{1}{2}LI_m^2 & \text{磁能极大值(常数)} \end{cases}$$

注意: (1)  $W_{\text{A}} \propto q_m^2$ (电荷振幅)

(2) 能量变化的频率是振荡频率的 2 倍

$$(3) \ \overline{W}_e = \overline{W}_m = \frac{1}{2}W_{\text{A}}$$

# 电磁波



James Clerk Maxwell (1831–1879)



9

#### 二、电磁波

麦克斯韦于1862年预言电磁波的存在。

25年后,即1887年,赫兹首次用实验证实了电磁波的存在。



赫兹(1857-1894)



发射

将感应线圈电极产生的振荡 高压,接至带有铜球和锌板 的导体棒,两铜球之间产生 振荡火花,发射电磁波。

弯成圆弧形的铜线两端接有 铜球,调节铜球间的距离, 能产生诱发火花,表明接收 到电磁波。

# 电磁波波谱



#### 1. 电磁波产生的条件



#### 只要 波源 ——电磁振荡源

根据麦克斯韦理论:变化的磁场与变化的电场 互相激发形成电磁波



LC振荡电路理论上可以发射电磁波(实际上不能)。

原因:  $\left\{ \begin{array}{l}$  电场、磁场分别集中在电容器、自感线圈中平均能流密度  $I\propto \omega^4$  , $\omega$  太小,辐射功率很低



发射天线上电流在往复振荡,两端出现正、负交替等量异号电荷  $q=q_0\cos\omega t$ 

天线上存在振荡的电偶极子:  $p=ql=q_0l\cos\omega t$   $=p_0\cos\omega t$ 

发射天线 = 振荡的电偶极子(产生电磁振荡,发射电磁波)



#### 2. 振荡电偶极子辐射的电磁波



(电场线)

沿电偶极子方向辐射为零;

垂直于电偶极子方向辐射最强。



振荡电偶极子发射的电磁波

 $\bullet \vec{E}$  在子午面(-系列包 含极轴的平面)内。

● *H* 在与赤道面平行的平面内。

● 任意点的 Ĥ与 Ē
 相互垂直。

• 电磁波的传播方向  $\vec{F}$  沿  $\vec{E} \times \vec{H}$  的方向。



#### 3. 平面电磁波



波源

远离波源处的波面近似于平面



若  $\vec{E}$  在 Y 方向振动, $\vec{H}$  在 Z方向振动,则电磁波在 X 方向传播。

Ē×Ē 的方向就是 电磁波的 传播方向

 $\vec{u} / / \vec{E} \times \vec{H}$ 

波动表达式:  $E_y = E_{ym} \cos \omega (t - \frac{x}{u})$  其中:  $u^2 = \frac{1}{\varepsilon \mu}$  波速 方向?

#### 平面电磁波的性质:

- 1. 电磁波的速度:  $u=1/\sqrt{\varepsilon\mu}$ 
  - 电磁波在真空中的速度:  $u_0 = c = 1/\sqrt{\varepsilon_0 \mu_0} = 3 \times 10^8 \, \text{m} \cdot \text{s}^{-1}$
- 2.  $\vec{E}$  和  $\vec{H}$  的变化是同步的,位相相同,并有数值关系:

$$\begin{cases}
\sqrt{\varepsilon}E = \sqrt{\mu}H & \sqrt{\varepsilon}E_x \neq \sqrt{\mu}H_x \\
H = \frac{B}{\mu} \\
\Rightarrow E = \frac{B}{\sqrt{\varepsilon\mu}} = cB
\end{cases}$$

- 3.  $\vec{E} \perp \vec{H} \perp \vec{u}$   $\vec{E} \times \vec{H}$  的方向就是 $\vec{u}$ 的方向  $\vec{E} \vec{H}$  在各自的平面上振动,是横波。
- 4. 电磁波的频率,等于偶极子的振动频率。
- 5. 电磁波具有反射、折射、干涉、衍射、偏振等特性。

 $E_{y} = E_{ym} \cos \omega (t - \frac{x}{u})$   $H_{z} = H_{zm} \cos \omega (t - \frac{x}{u})$ 

#### 例: 已知真空中电磁波的电场表达式:

$$E_x = 0.5\cos[2\pi \times 10^8(t - \frac{z}{3 \times 10^8})]$$
 V/m  
 $E_y = 0$   $E_z = 0$ 



- 求:  $(1)\vec{E}$  的振幅、频率、波长、波速、传播方向?
  - (2)  $\vec{H}$ 的表达式?
- 解: (1)从电场表达式可以直接读出:

$$E_{\scriptscriptstyle m} = 0.5 \; ext{V/m}$$
  $\omega = 2\pi imes 10^8$   $u = 3 imes 10^8 ext{m/s} = c$  沿 $z$  正向传播

$$\nu = \frac{1}{T} = \frac{\omega}{2\pi} = 10^8 \text{Hz}$$

$$\lambda = \frac{c}{\nu} = 3m$$

$$E_x = 0.5\cos[2\pi \times 10^8(t - \frac{z}{3 \times 10^8})]$$
 V/m

#### (2) H的表达式

$$\therefore \vec{H}$$
 沿 y 轴振动:  $H_x = H_z = 0$ 

$$\begin{bmatrix} H_y = H_m \cos[2\pi \times 10^8 (t - \frac{z}{3 \times 10^8})] \\ \sqrt{\varepsilon_0} E_m = \sqrt{\mu_0} H_m \end{bmatrix}$$

$$\Rightarrow H_y = \sqrt{\frac{\varepsilon_0}{\mu_0}} E_m \cos[2\pi \times 10^8 (t - \frac{z}{3 \times 10^8})]$$

$$= 1 \cdot 32 \times 10^{-3} \cos[2\pi \times 10^{8}(t - \frac{z}{3 \times 10^{8}})] A / m$$

## 问: 若波沿 z 轴反方向传播, 方程如何写?

$$E = E_x = E_m \cos \omega (t + \frac{z}{u})$$

$$H = H_y = -H_m \cos \omega (t + \frac{z}{u})$$
?





#### 4. 电磁波的能量

1) 能量密度: 
$$w = w_e + w_m = \frac{1}{2}(\vec{D} \cdot \vec{E} + \vec{B} \cdot \vec{H})$$

总能量: 
$$W = \int_{V} w dV$$

2) 能流密度矢量(坡印廷矢量):

$$\begin{cases} \vec{S} = \vec{E} \times \vec{H} \\ E = E_m \cos \omega (t - \frac{r}{u}) \\ H = H_m \cos \omega (t - \frac{r}{u}) \end{cases}$$

单位时间内通过与传播方向垂直的单位面积的能量,指向能量传播的方向。

$$\longrightarrow$$
 平均能流密度:  $I = \overline{S} = \frac{1}{2} E_m H_m$ 

光强正比于振幅的平方

$$\therefore \sqrt{\varepsilon} E = \sqrt{\mu} H \quad \therefore \overline{S} \propto E_m^2 \quad \overline{S} \propto H_m^2$$



注: *S*不仅适用于变化的电磁场,也适用于稳恒场。 在稳恒场中,电磁能也是场传播的。

例: 直流电路中的能量传递。



负载:



结论:

- (1)电源的能量是通过电磁场 从电源的侧面传出。
- (2)电阻消耗的能量是通过电磁场从电阻的侧面传入。 导线起引导场能的作用。

- 例: 在地面上测得太阳光的平均能流密度约为1.4kW/m²。
  - (1) 求E和B的最大值;
  - (2) 从地球到太阳的距离约为1.5×10<sup>11</sup>m, 试求太阳的总辐射功率。

解: (1) 
$$\overline{S} = \frac{1}{2} E_m H_m$$

$$\Rightarrow \overline{S} = \frac{1}{2} E_m \cdot \sqrt{\frac{\varepsilon_0}{\mu_0}} E_m$$

$$\Rightarrow E_m = \sqrt{2\overline{S}\mu_0 / \varepsilon_0} = 1.03 \times 10^3 \text{ V/m}$$

$$H_m = \frac{B_m}{\mu_0}$$

$$\Rightarrow B_m = \sqrt{\varepsilon_0 \mu_0} E_m = E_m / c = 3.43 \times 10^{-6} \text{ T}$$
(2)  $P = \overline{S} \cdot 4\pi r^2 = 3.96 \times 10^{26} \text{ W}$  (一小时约1.42×10<sup>27</sup>度)

武汉市夏季日用电量峰值不到1.5亿千瓦时(1.5×108度)。

# 作业: 11—T23-T27

#### 作业要求

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 作业纸上每次都要写姓名以及学号(或学号末两位)。
- 4. 课代表收作业后按学号排序,并装入透明文件袋。
- 5. 每周二交上周的作业。迟交不改。
- 6. 作业缺交三分之一及以上者综合成绩按零分计。