Тема: Численные методы решения задачи Коши для ОДУ

 1^0 . Дифференциальная постановка задачи Коши для уравнения первого порядка. 2^0 . Базовые понятия сеточных методов на отрезке. Лемма об оценке сеточных функций. 3^0 . Метод Эйлера: расчетные формулы, геометрическая интерпретация. 4^0 . Оценка устойчивости метода Эйлера, порядок точности относительно шага сетки. 5^0 . Методы Рунге — Кутта: расчетные формулы, порядок точности (локальный и глобальный). Усовершенствованный метод Эйлера: расчетные формулы, аппроксимационные свойства. 6^0 . Методы Рунге — Кутта четвертого порядка точности.

 5^{0} . Первый порядок точности метода численного решения как, например, в методе Эйлера, считается малым для практических применений. В этой связи изобретено несколько способов построения численных решений задачи Коши, имеющих порядок точности относительно шага h выше первого.

Один из таких способов основан на использовании разложения решения в ряд по фор-

муле Тейлора. Однако на практике предпочитают методы, требующие фактического вычисления только значений правой части дифференциального уравнения, а не какихлибо производных этой правой части.

К этому классу численных методов относятся, в частности, методы Рунге-Кутта. Рассмотрим некоторые из них. 1. Метод Рунге-Кутта второго порядка точности (метод "предиктор-корректор").

Соответствующие расчетные формулы для вычисления сеточной функции имеют следующий вид:

$$egin{cases} y_0 = u_0, \ y_{j+1}^* = y_j + hf(x_j, y_j), \ y_{j+1} = y_j + hrac{f(x_j, y_j) + f(x_{j+1}, y_{j+1}^*)}{2}. \end{cases}$$

Первое из этих равенств предсказывает "грубые" значения y_{j+1}^* по методу Эйлера. Второе же из них уточняет (корректирует) значение приближенного решения в точке x_{j+1} .

Найдем порядок точности метода (RC_2) в предположении, что функция f(x,u) принадлежит классу $C^{(2)}(\overline{G})$.

Подставив первое уравнение метода во второе, получим

$$y_{j+1} = y_j + h \frac{f(x_j, y_j) + f(x_j + h, y_j + h f(x_j, y_j))}{2}$$

Функцию $f(x_j+h,y_j+hf(x_j,y_j))$ при фиксированных (x_j,y_j) условимся рассматривать как функцию переменной h. Тогда можем разложить ее в точке h=0 по формуле Тейлора.

При этом получим

$$f(x_j+h,y_j+hf(x_j,y_j))=f(x_j,y_j)+$$

$$+h(f'_x(x_j,y_j)+f'_u(x_j,y_j)f(x_j,y_j))+O(h^2).$$

Подставляя это равенство во второе из соотношений (RC_2), получаем

$$y_{j+1} = y_j + hf(x_j, y_j) + \frac{h^2}{2}f'_x(x_j, y_j) + \frac{h^2}{2}f'_u(x_j, y_j)f(x_j, y_j) + O(h^3).$$
 (1)

Пусть v=v(x) — это решение задачи Коши

$$v'=f(x,v), \quad v(x_j)=y_j.$$

Здесь номер j фиксирован. По условию f(x,u) принадлежит $C^{(2)}$. Следовательно, решение v(x) трижды непрерывно дифференцируема по x на интервале (x_j,x_{j+1}) .

Имеем для v(x) равенство v'(x) = f(x,v(x)) и далее, по формуле дифференцирования

сложной функции:

$$v''(x) = f_x'(x_j, v(x)) + f_u'(x_j, v(x))f(x_j, v(x)).$$

С учетом этих равенств по формуле Тей-лора получаем следующее выражение:

$$\begin{aligned} v_{j+1} &= v(x_j) + hv'(x_j) + \frac{h^2}{2}v''(x_j) + O(h^3) = \\ &= y_j + hf(x_j, y_j) + \frac{h^2}{2}f_x'(x_j, y_j) + \\ &+ \frac{h^2}{2}f_u'(x_j, y_j)f(x_j, y_j) + O(h^3). \end{aligned} \tag{2}$$

Здесь $v_{j+1} = v(x_{j+1})$. Отметим, что величины $O(h^3)$ в формулах (1) и (2) не тождественны.

Вычитая теперь из (2) равенство (1), заключаем, что разность $v_{j+1}-y_{j+1}$ — это величина $O(h^3)$.

Таким образом, локальная погрешность метода (RC_2) имеет третий порядок малости при стремлении шага h сетки к нулю.

Проведя рассуждения, аналогичные примененным при исследовании на устойчивость метода Эйлера, получаем, что глобальная погрешность метода (RC_2) — это величина $O(h^2)$:

$$||u-y||_h = O(h^2).$$

2. Усовершенствованный метод Эйлера задается расчетными формулами

$$egin{cases} y_0 = u_0, \ y_{j+rac{1}{2}} = y_j + rac{h}{2} f(x_j, y_j), \ y_{j+1} = y_j + h f(x_j + rac{h}{2}, y_{j+rac{1}{2}}). \end{cases}$$

Его локальная погрешность исследуется по той же схеме, что и локальная погрешность в методе (RC_2).

Глобальная погрешность (MEu) — это величина $O(h^2)$, то есть (MEu) — это метод второго порядка точности.

 6^0 . Метод Рунге-Кутта четвертого порядка точности реализуется посредством следующих расчетных формул для приближения ре-

шения в узлах сетки:

$$\begin{cases} y_0 = u_0, \\ y_{j+1} = y_j + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4). \end{cases}$$
 (RC₄)

Значения величин k_l , l=1,2,3,4, в правой части задаются равенствами

$$egin{cases} k_1 = hf(x_j, y_j), \ k_2 = hf(x_j + rac{h}{2}, y_j + rac{k_1}{2}), \ k_3 = hf(x_j + rac{h}{2}, y_j + rac{k_2}{2}), \ k_4 = hf(x_j + h, y_j + k_3). \end{cases} j = 0, 1, \ldots, N-1.$$

Если функция f(x,u) принадлежит классу $C^{(4)}$, то локальная погрешность метода (RC_4) равна $O(h^5)$, а глобальная погрешность — $O(h^4)$.

Тема: Метод Адамса. Правило Рунге

 1^0 . Расчетные формулы метода Адамса. Локальная и глобальная погрешность. Сравнение с методом Рунге — Кутта. 2^0 . Условия применимости правила Рунге. Формула Рунге. 3^0 . Признак практической применимости правила Рунге. 4^0 . Уточнение (экстраполяция) по Ричардсону. 5^0 . Правило Рунге и Ричардсона для вычисления определенного интеграла.

 1^0 . На отрезке $[x_0,x_0+L]$ числовой оси зададим равномерную сетку узлов

$$\omega_{m{h}} = \{x_{m{j}} \mid j = 0, 1, 2, \dots, N\};$$

где N — натуральное число. Шаг сетки определим соотношением $h=rac{L}{N}$. Тогда имеем

$$x_j = x_0 + jh, \quad j = 0, 1, 2, \dots, N.$$

Выделим среди всех узлов сетки (m+1) начальный узел, то есть точки $x_0, x_1, x_2, \ldots, x_m$, где 0 < m < N.

Рассмотрим задачу Коши

$$y' = f(x, y), \quad y(x_0) = u_0$$
 (CaP)

и предположим, что ее решение существует на всем отрезке $[x_0,x_0+L]$ и при этом единственно на этом отрезке.

Обозначим соответствующее единственное решение задачи (${\it CaP}$) через u=u(x) и пред-

положим, что значения функции u(x) приближенно известны в выделенных узлах:

$$u(x_0) \approx y_0, \quad u(x_1) \approx y_1, \quad \dots, u(x_m) \approx y_m.$$

Вектору (y_0,y_1,\ldots,y_m) сопоставим следующий вектор значений правой части уравнения:

$$f_0 = f(x_0, y_0), \quad f_1 = f(x_1, y_1), \dots, f_m = f(x_m, y_m).$$

Будем рассматривать векторы (x_0,x_1,\ldots,x_m) , (y_0,y_1,\ldots,y_m) и (f_0,f_1,\ldots,f_m) как входные данные для выполнения расчетов по формуле

$$y_{m+1}=y_m+\int\limits_{x_m}^{x_{m+1}}L_m(x)\,dx. \hspace{1.5cm} (AF)$$

Здесь $L_m(x)$ — интерполяционный полином Лагранжа степени m с узлами (x_0,x_1,\ldots,x_m) , удовлетворяющий в этих узлах условиям

$$L_m(x_j) = f_j, \quad j = 0, 1, 2, \dots, m.$$

Иными словами, $L_m(x)$ — это интерполяционный полином степени m для функции вида $f(x,\widetilde{u}(x))$, где

$$\widetilde{u}(x_j) = y_j \approx u(x_j), \quad j = 0, 1, 2, \dots, m.$$

Полином $L_m(x)$ от компонент $f_0, f_1, f_2, \dots, f_m$ зависит линейно и допускает представление

в следующем виде:

$$L_{m}(x) = \sum_{k=0}^{m} p_{mk}(x) f_{m-k}.$$
 (LP)

Здесь $p_{mk}(x)$ — это базисные полиномы, удовлетворяющие в узлах (x_0,x_1,x_2,\ldots,x_m) следующим условиям:

$$p_{mk}(x_{m-i}) = \delta_k^i, \quad i = 0, 1, 2, \dots, m.$$

Здесь δ_k^i — это символ Кронекера.

При этом справедливы равенства

$$egin{aligned} L_m(x_{m-i}) &= \sum_{k=0}^m p_{mk}(x_{m-i}) f_{m-k} = \ &= \sum_{k=0}^m \delta_k^i f_{m-k} = f_{m-i}. \end{aligned}$$

Подставляя разложение (LP) в равенство (AF),

получаем формулу вида

$$\left\{egin{aligned} y_{m+1} &= y_m + h \sum\limits_{i=0}^m lpha_{mi} f_{m-i}, \ lpha_{mi} &= rac{1}{h} \int\limits_{x_m}^{x_{m+1}} p_{mi}(x) \, dx. \end{aligned}
ight. \ \left(egin{aligned} DAF_0
ight)$$

Сделав в представляющем коэффициент $lpha_{mi}$ интеграле замену переменной $x=x_m+th$, по-

лучим равенство

$$lpha_{m{mi}} = \int\limits_0^1 p_{m{mi}}(x_{m{m}} + th) \, dt.$$

Далее заметим, что функция переменной t, определяемая равенством

$$Q_{i}(t) = p_{mi}(x_{m} + th),$$

представляет собой полином степени m по

переменной t, и при этом

$$Q_i(0) = 0, \quad Q_i(-1) = 0, \quad Q_i(-2) = 0, \dots,$$

$$Q_i(-i+1) = 0, \quad Q_i(-i) = 1, \quad Q_i(-i-1) = 0, \dots,$$

$$Q_{i}(-m+1) = 0, \quad Q_{i}(-m) = 0.$$

Следовательно, полином $Q_i(t)$ допускает следующее разложение на множители:

$$Q_i(t) = A_i t(t+1)(t+2) \dots (t+i-1)(t+i+1) \dots (t+m).$$

Учитывая, что $Q_{i}(-i)=1$, получаем

$$1 = A_i(-i)(-i+1)(-i+2)\dots(-1)1\dots(m-i) =$$

$$=A_{i}(-1)^{i}i!(m-i)!.$$

Следовательно, $A_i = \frac{(-1)^i}{i!(m-i)!}$ и далее

$$egin{aligned} lpha_{mi} &= \int\limits_0^1 Q_i(t)dt = \ &= A_i \int\limits_0^1 t(t+1)\dots(t+i-1)(t+i+1)\dots(t+m)dt. \ &= (AF_lpha) \end{aligned}$$

В частности, набор коэффициентов $lpha_{mi}$ в расчетных формулах (\emph{DAF}_0) не зависит от

шага h и каждый из них допускает интегральное представление (AF_{α}) .

В соответствии с представлением (AF_{α}) имеем следующие равенства:

$$m=0\Rightarrow \qquad lpha_{00}=1 \qquad ext{(метод Эйлера)};$$
 $m=1\Rightarrow \qquad lpha_{10}=rac{3}{2}, \qquad lpha_{11}=-rac{1}{2};$ $m=2\Rightarrow \qquad lpha_{20}=rac{23}{12}, \qquad lpha_{21}=-rac{4}{3}, \qquad lpha_{22}=rac{5}{12};$

$$m=3$$
 \Rightarrow $lpha_{30}=rac{55}{24},$ $lpha_{31}=-rac{59}{24},$ $lpha_{32}=rac{37}{24},$ $lpha_{33}=-rac{3}{8}.$

Отыскав значение y_{m+1} по формуле $({\it DAF}_0)$, найдем затем параметр

$$f_{m+1} = f(x_{m+1}, y_{m+1}).$$

Затем в качестве новых входных данных в формуле метода возьмем $(x_1,x_2,\dots,x_{m+1}),$ (f_1,f_2,\dots,f_{m+1}) и $(y_1,y_2,\dots,y_{m+1}).$

Применив уже к этому набору формулу (${\it DAF}_0$), получим

$$y_{m+2} = y_{m+1} + h \sum_{i=0}^{m} \alpha_{mi} f_{m+1-i}$$
. (DAF₁)

Действуя аналогичным образом, сможем рассчитать вектор значений

$$\{y_{m+1}, y_{m+2}, y_{m+3}, \dots, y_N\}.$$

Именно этот вектор и полагается приближе-

нием искомого решения u=u(x) в узлах

$$\{x_{m+1}, x_{m+2}, x_{m+3}, \dots, x_N\}$$

исходной сетки. Указанный алгоритм получил название **метода Адамса**:

$$y_{m+k+1} = y_{m+k} + h \sum_{i=0}^{m} \alpha_{mi} f_{m+k-i},$$
 (AM_k)

$$k = 0, 1, 2, \dots, N - m - 1.$$

Метод Адамса требует знание приближенного решения в **нескольких начальных точ-ках** (в m точках). На практике эти значения предварительно вычисляют методом Рунге-Кутта, а затем переходят к методу Адамса.

В процессе реализации формул (AM_k) шаг h сетки менять нельзя.

Теорема (глобальная погрешность метода Адамса). Пусть $f(x,u) \in C^{(m+1)}(\overline{G})$ и погрешность приближения значений $u(x_j) = u_j$ в точках $x_0, x_1, x_2, \ldots, x_m$ подчинена оценке

$$|u_j - y_j| \le Ch^{m+1}, \quad j = 0, 1, 2, \dots, m,$$

где C не зависит от h. Тогда глобальная погрешность метода Адамса на всей сетке является величиной $O(h^{m+1})$.

Сравним методы Рунге-Кутта и Адамса, обладающие четвертым порядком точности.

По методу (RC_4) на каждом его шаге требуется **четыре раза** вычислить значение функции f(x,y). Если f(x,y) достаточно сложная, то эти вычисления потребуют выполнения значительного количества действий на компьютере.

В методе же Адамса (при m=3) на каждом шаге вычисляется только одно новое значение f(x,y).

Однако метод (RC_4) независим: его реализацию можно провести, имея только начальное значение y_0 . Кроме того, в любой момент возможно изменить шаг h (уменьшить или увеличить), что в методе Адамса сделать невозможно.

 2^0 . В вычислительной математике нередко используется **процедура уточнения** того или иного приближенного решения. Сформулируем одно из такого рода правил, используемых на практике.

Пусть z — неизвестное точное значение некоторой (числовой) величины, а z_h — известное (найденное) приближенное значение z, зависящее от положительного параметра h,

который может принимать сколь угодно малые значения.

Предположим, что z и z_h связаны между собой соотношением вида

$$z = z_h + ch^k + O(h^{k+m}), \qquad (R_h)$$

где c — это постоянная, от h не зависит, числа k>0, m>0 заданы. Отметим, что величина c заранее может быть неизвестна.

Равенство (R_h) должно выполняться для всех достаточно малых положительных h. В частности, при $\frac{h}{2}$ имеем

$$z = z_{h/2} + c \left(\frac{h}{2}\right)^k + O(h^{k+m}).$$
 $(R_{h/2})$

Вычитая из равенства (R_h) равенство $(R_{h/2})$, находим

$$0 = z_h - z_{h/2} + c \left(\frac{h}{2}\right)^k (2^k - 1) + O(h^{k+m}).$$

Выражаем отсюда величину $c(\frac{h}{2})^k$ через все остальное:

$$c\left(\frac{h}{2}\right)^{k} = \frac{z_{h/2} - z_{h}}{2^{k} - 1} + O(h^{k+m}).$$
 (*)

Подставляя это соотношение в равенство $(R_{h/2})$, получаем асимптотическое соотношение

$$z-z_{h/2}=rac{z_{h/2}-z_{h}}{2^{k}-1}+O(h^{k+m}).$$

Таким образом, при достаточно малых h име- ем приближенное равенство

$$z - z_{h/2} pprox rac{z_{h/2} - z_h}{2^k - 1}.$$

В правой части здесь — известные (сосчитанные) величины. Вычисление искомой величины по приближенной формуле

$$z \approx z_{h/2} + \frac{z_{h/2} - z_h}{2^k - 1}$$
 (RL)

называется правилом Рунге.

Если $c \neq 0$, то второе слагаемое в правой части равенства (RL) в силу (\star) имеет при $h \to 0$ в точности порядок k относительно переменной h.

При этом в силу (⋆) величина

$$\frac{z_{h/2}-z_h}{2^k-1}$$

отличается от главной части погрешности, то есть от $c(\frac{h}{2})^k$, на величину порядка, боль-

шего k (в качестве таковой выступает слагаемое $O(h^{k+m})$, где m>0).

При малых h это означает, что приближение $z pprox z_{h/2}$ правилом Рунге действительно уточняется.

 3^0 . Подтверждением условия $c \neq 0$ на практике является выполнение при малых h сле-

дующего неравенства:

$$\left| 2^{k} \frac{z_{h} - z_{h}/2}{z_{2h} - z_{h}} - 1 \right| < 0.1.$$
 (CoRuL)

Правило Рунге рекомендуется применять лишь в случае, если справедлива эта оценка.

В левой ее части присутствуют три приближенных значения: $z_{h/2},\ z_h,\ z_{2h}.$

Поясним, как возникает величина под знаком модуля в оценке (CoRuL). Пусть $c \neq 0$, то есть главный член погрешности ch^k в формуле (R_h) и $c\big(\frac{h}{2}\big)^k$ в $(R_{h/2})$ не исчезает при h>0.

Пользуясь асимптотическим равенством (⋆), получаем

$$c\left(\frac{h}{2}\right)^{k} = \frac{z_{h/2} - z_{h}}{2^{k} - 1} + O(h^{k+m}).$$

Учитывая, что $c \neq 0$, имеем далее

$$c\left(\frac{h}{2}\right)^k = \frac{z_{h/2} - z_h}{2^k - 1}(1 + O(h^m)).$$
 (I)

Подставляя сюда вместо h значение шага 2h, получаем

$$ch^{k} = \frac{z_{h} - z_{2h}}{2^{k} - 1} (1 + O(h^{m})).$$
 (II)

Перепишем равенство (I) в эквивалентном виде

$$ch^{k} = 2^{k} \frac{z_{h/2} - z_{h}}{2^{k} - 1} (1 + O(h^{m})).$$
 (I')

Из равенств (I') и (II) находим

$$\frac{z_h - z_{2h}}{2^k - 1} = 2^k \frac{z_h / 2^{-z_h}}{2^k - 1} (1 + O(h^m)),$$

ИЛИ

$$2^k \frac{z_{h/2} - z_h}{z_h - z_{2h}} \approx 1.$$

Таким образом, если $c \neq 0$, то при достаточно малых h должно выполняться неравенство (CoRuL).

Оценка (CoRuL) может не выполняться по следующим причинам:

1. Шаг h велик и существенное влияние оказывает слагаемое $O(h^{k+m});$

2. Шаг h слишком мал, тогда возможно влияние округлений при вычислениях на реальном компьютере;

 $3.\ c=0$ или же c близко к нулю.

 4^{0} . Умножив на 2^{k} равенство $(R_{h/2})$ и вычтя затем из получившегося соотношения равенство (R_{h}) , получим

$$z(2^{k}-1)=2^{k}z_{h/2}-z_{h}+O(h^{k+m}).$$

Следовательно, справедливо равенство

$$z = \frac{2^k z_{h/2} - z_h}{2^k - 1} + O(h^{k+m}).$$
 (RF)

Определение. Число $z_h^* = \frac{2^k z_{h/2} - z_h}{2^k - 1}$ называется уточненным (или экстраполированным) по Ричардсону приближенным значением величины z.

Согласно (RF) имеем $z-z_h^*=O(h^{k+m}).$ В то же время, если $c\neq 0$, то $z-z_{h/2}$ при $h\to 0$ имеет в точности порядок k относительно шага h.

Таким образом, при выполнении исходного условия

$$z = z_h + ch^k + O(h^{k+m}), \quad c \neq 0,$$

можно, **во-первых**, приближенно оценить погрешность $z-z_{h/2}$ по правилу Рунге, и, **вовторых**, вычислить по формуле

$$z_h^* = rac{2^k z_{h/2} - z_h}{2^k - 1}$$

приближенное по Ричардсону значение, имеющее погрешность по h более высокого порядка, чем погрешность $z-z_{h/2}$ по правилу Рунге.

 5^0 . Пусть $I = \int\limits_a^b f(x) dx$, где функция f(x) принадлежит классу $C^{(k+2)}[a,b]$. Обозначим через I_h квадратурную сумму для приближения I, вычисленную по одной из формул: прямоугольников, трапеций или парабол.

Тогда, как уже было установлено, имеет место асимптотическое равенство

$$I = I_h + ch^k + O(h^{k+2}),$$
 (RI_h)

где c не зависит от $h,\ c \neq 0$, а параметр k=2 для квадратурных формул прямоугольников и трапеций. В случае же формулы Симпсона k=4.

Соотношение (RI_h) является равенством рассмотренного типа (R_h) . Применяя правило Рунге, получаем приближенную формулу

$$I \approx I_{h/2} + \frac{I_{h/2} - I_h}{2^k - 1}.$$

Уточненное по Ричардсону приближение имеет следующий вид:

$$I_h^* = rac{2^k I_{h/2} - I_h}{2^k - 1}, \quad I - I_h^* = O(h^{k+2}).$$

Вместо условия $c \neq 0$ следует проверить, что величина $2^k \frac{I_h - I_{h/2}}{I_{2h} - I_h}$ близка к единице.

Тема : Разностный метод. Основные понятия теории разностных схем

 ${f 1}^0$. Модельная краевая задача для обыкновенного дифференциального уравнения второго порядка на отрезке. Разбиение отрезка, узлы, сетка, шаг сетки. Пространства сеточных функций, нормы в этих пространствах. 2^{0} . Разностные операторы, примеры. Модельная разностная схема. Аппроксимация разностным оператором дифференциального, порядок аппроксимации. 3^{0} . Модельная разностная задача в виде, удобном для реализации решения методом прогонки. Достаточное условие применимости метода прогонки. ${f 4}^0$. Аппроксимация разностной схемой дифференциальной задачи. ${f 5}^0$. Понятие устойчивости разностной схемы. Теорема об устойчивости модельной разностной схемы. 6^{0} . Сходимость решения разностной схемы к решению дифференциальной задачи. Порядок точности разностной схемы. Основная теорема сходимости.

 1^0 . На отрезке [0,1] числовой оси рассмотрим краевую задачу для обыкновенного дифференциального уравнения второго порядка:

$$\begin{cases} u'' + p(x)u' - q(x)u = f(x), & 0 \le x \le 1, \\ u(0) = q_0, & u(1) = q_1. \end{cases}$$
 (BVP)

Здесь функции p(x), q(x) и f(x) заданы, причем $q(x) \geq 0$, а q_0 и q_1 — известные постоянные.

Если функции p(x), q(x) и f(x) принадлежат пространству $C^{(2)}[0,1]$, то задача (BVP) имеет единственное решение класса $C^{(4)}[0,1]$.

Для численного решения задачи (BVP) используем разностный метод.

Начнем с задания на [0,1] конечного множества равноотстоящих точек $\omega_h = \{x_j\}_{j=0}^N$, где

$$x_0 = 0 < x_1 = h < \dots < x_j = jh < \dots < x_N = 1.$$

Здесь N — натуральное число, Nh=1, $N\geq 2$.

Множество ω_h называется **сеткой**, а параметр h — **шагом** сетки.

Пусть $\omega_h' = \omega_h \setminus \{x_0, x_N\}$ — множество внутренних узлов сетки ω_h ; а $\omega_h^* = \{x_0, x_N\}$ — множество ее граничных узлов. Ясно, что

$$\omega_h = \omega_h' \cup \omega_h^*, \quad \omega_h' \cap \omega_h^* = \emptyset.$$

Функция с областью определения ω_h называется **сеточной**. Значение непрерывной функции y=y(x) в узле x_j принято обозначать как y_j , то есть $y_j=y(x_j)$.

Если есть функция q(x) непрерывной переменной x из [0,1], то q(x) естественным образом порождает сеточную функцию:

$$q_j=q(x_j)$$
 при $j=0,1,2,\ldots,N.$

Множества сеточных функций, определенных на сетках ω_h , ω_h' и ω_h^* условимся обозначать как \mathbb{Y}_h , \mathbb{Y}_h' и \mathbb{Y}_h^* соответственно.

Все эти три множества являются линейными пространствами. Зададим в этих линейных пространствах следующие нормы

$$\|y\|_h = \max_{0 \le j \le N} |y_j|, \quad \|y\|_h' = \max_{1 \le j \le N-1} |y_j|,$$
 $\|y\|_h^* = \max\{|y_0|, |y_1|\}.$