SPIKE PRIME LESSONS

By the Creators of EV3Lessons

DÉPLACEMENT DU GYROSCOPE EN LIGNE DROITE

BY SANJAY AND ARVIND SESHAN

OBJECTIFS DE LA LEÇON

- Apprenez à appliquer le contrôle proportionnel pour que votre robot se déplace en ligne droite
- Apprenez à appliquer un contrôle proportionnel au déplacement du capteur gyroscopique à un angle particulier

CONSEILS POUR RÉUSSIR

- Vous devez passer par la leçon sur le suiveur de ligne proportionnel avant de terminer cette leçon
- Vous devez également compléter la leçon de virage avec gyroscope

QU'EST-CE QUE LE GYROSCOPE SE DÉPLACE EN LIGNE DROITE ?

- Imaginez que vous vouliez rouler sur 200 cm d'affilée
- En voyageant, votre robot est heurté par quelque chose
- Un programme de déplacement droit du gyroscope aide le robot à se redresser, mais avec un décalage par rapport à la hauteur de la bosse.

COMMENT ÇA MARCHE?

- Un suiveur de ligne proportionnel et un code de déplacement droit gyroscopique partagent des propriétés similaires
- Pour écrire un programme de déplacement droit du gyroscope, vous devez d'abord réfléchir à l'erreur et à la correction à apporter

Application	Objectif	Erreur	Correction
Gyroscope qui se déplace en ligne droite	Faire en sorte que le robot ait un cap/angle constant	A quelle distance vous êtes de ce cap/angle	Tournez plus vite en fonction de la distance qui vous sépare de cet angle
Suiveur de ligne	Restez au bord de la ligne	Quelle est la distance entre nos relevés de lumière et ceux au bord de la ligne (lumière_actuelle – lumière_cible)	Tournez plus aigu en fonction de la distance de la ligne

PSEUDO-CODE

- Réglez les moteurs de mouvement
- Remettez votre YAW valeur à 0
- Dans une boucle, calculez l'erreur et appliquez la correction
 - ☐ Partie I : Erreur de calcul (à quelle distance de l'angle cible)
 - Pour se déplacer en ligne droite --> Angle YAW cible = 0 (Note: En supposant un placement horizontal du Hub, nous devons regarder la direction du YAW pour le décalage de l'angle. Cela peut être différent pour votre configuration)
 - La distance par rapport à l'angle de la cible correspond à l'angle YAW actuel
 - □ Partie 2 : Calculez une correction proportionnelle à l'erreur
 - Multipliez l'erreur de la partie I par une constante (que vous devez expérimenter et découvrir pour votre robot)
 - Insérez la valeur de la partie 2 dans un bloc de déplacement, chaque moteur étant réglé proportionnellement
- Sortez de la boucle selon les besoins en changeant de bloc de boucle

SOLUTION: LE GYROSCOPE SE DÉPLACE EN LIGNE DROITE

Bouclez pour que le robot continue à mettre à jour sa correction

l'éloignement du robot par rapport à sa cible

GUIDE DE DISCUSSION

- 1. Comparez le code proportionnel du suiveur de ligne avec le code proportionnel de déplacement en ligne droite. Quelles similitudes et différences voyez-vous ?
 - Réponse : le code est presque le même. La seule différence réside dans la manière dont l'erreur est calculée. L'erreur est calculée à l'aide du capteur gyroscopique. La correction est identique.
- I. Et si vous vouliez vous déplacer à un angle particulier (pas seulement en ligne droite) ?
 En quoi le code serait-il différent ?
 - Réponse : dans la partie I du code de solution, il n'y a pas de bloc de soustraction car nous soustrayons juste "0" puisque notre cap cible se déplace en ligne droite. Vous devez soustraire votre angle actuel de l'angle cible si vous voulez vous déplacer à un autre angle.

 Angle cible = 5 degrés

GÉNÉRIQUE

- Cette leçon a été créée par Sanjay Seshan et Arvind Seshan pour « SPIKE Prime Lessons »
- D'autres leçons sont disponibles à l'adresse suivante <u>www.primelessons.org</u>

Ce travail est autorisé dans le cadre d'une Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.