Number Theory Modular Arithmetic Euclid's Algorithm Division

Chinese Remainder

Polynomial Roots Units & Totients

Exponentiation
Order of a Unit

Miller-Rabin Test

Quadratic Residues Gauss' Lemma

Quadratic Recip.

Carmichael

Multiplicative Möbius Inversion

Generators II
Cyclotomic

Heptadecagon Eisenstein

Gaussian Periods Roots of Unity

Quadratic Forms

Notes

Ben Lynn

Generators
Cyclic Groups

■ Division

Polynomial Roots ►

Suppose we wish to solve $x=2\pmod{5}$

The Chinese Remainder Theorem

 $x \equiv 2 \pmod{5}$ $x \equiv 3 \pmod{7}$

for x. If we have a solution y, then y+35 is also a solution. So we only need to look for solutions modulo 35. By brute force, we find the only solution is $x=17\pmod{35}$.

For any system of equations like this, the Chinese Remainder Theorem tells us there is always a unique solution up to a certain modulus, and describes how to find the solution efficiently.

Theorem: Let p,q be coprime. Then the system of equations

 $x = a \pmod{p}$

 $x=b\pmod{q}$

has a unique solution for x modulo pq.

The reverse direction is trivial: given $x\in\mathbb{Z}_{pq}$, we can reduce x modulo p and x modulo q to obtain two equations of the above form.

Proof: Let $p_1=p^{-1}\pmod q$ and $q_1=q^{-1}\pmod p$. These must exist since p,q are coprime. Then we claim that if y is an integer such that

$$y = aqq_1 + bpp_1 \pmod{pq}$$

then y satisfies both equations:

Modulo p, we have $y=aqq_1=a\pmod p$ since $qq_1=1\pmod p$. Similarly $y=b\pmod q$. Thus y is a solution for x.

It remains to show no other solutions exist modulo pq. If $z=a\pmod p$ then z-y is a multiple of p. If $z=b\pmod q$ as well, then z-y is also a multiple of q. Since p and q are coprime, this implies z-y is a multiple of pq, hence $z=y\pmod pq$.

This theorem implies we can represent an element of \mathbb{Z}_{pq} by one element of \mathbb{Z}_p and one element of \mathbb{Z}_q , and vice versa. In other words, we have a bijection between \mathbb{Z}_{pq} and $\mathbb{Z}_p \times \mathbb{Z}_q$.

Examples: We can write $17\in\mathbb{Z}_{35}$ as $(2,3)\in\mathbb{Z}_5 imes\mathbb{Z}_7.$ We can write $1\in\mathbb{Z}_{pq}$ as $(1,1)\in\mathbb{Z}_p imes\mathbb{Z}_q.$

In fact, this correspondence goes further than a simple relabelling. Suppose $x,y\in\mathbb{Z}_{pq}$ correspond to $(a,b),(c,d)\in\mathbb{Z}_p\times\mathbb{Z}_q$ respectively. Then a little thought shows x+y corresponds to (a+c,b+d), and similarly xy corresponds to (ac,bd).

A practical application: if we have many computations to perform on $x \in \mathbb{Z}_{pq}$ (e.g. RSA signing and decryption), we can convert x to $(a,b) \in \mathbb{Z}_p \times \mathbb{Z}_q$ and do all the computations on a and b instead before converting back. This is often cheaper because for many algorithms, doubling the size of the input more than doubles the running time.

Example: To compute $17 imes 17 \pmod{35}$, we can compute (2 imes 2, 3 imes 3) = (4, 2) in $\mathbb{Z}_5 imes \mathbb{Z}_7$, and then apply the Chinese Remainder Theorem to find that (4, 2) is $9 \pmod{35}$.

Let us restate the Chinese Remainder Theorem in the form it is usually presented.

For Several Equations

Theorem: Let m_1,\ldots,m_n be pairwise coprime (that is $\gcd(m_i,m_j)=1$ whenever i
eq j). Then the system of n equations

$$x=a_1\pmod{m_1}$$
 ...

 $x=a_n\pmod{m_n}$

has a unique solution for x modulo M where $M=m_1\dots m_n.$

Proof: This is an easy induction from the previous form of the theorem, or we can write down the solution directly.

Define $b_i=M/m_i$ (the product of all the moduli except for m_i) and $b_i'=b_i^{-1}\pmod{m_i}.$ Then by a similar argument to before,

$$x = \sum_{i=1}^n a_i b_i b_i' \pmod M$$

is the unique solution.■

Prime Powers First

An important consequence of the theorem is that when studying modular arithmetic in general, we can first study modular arithmetic a prime power and then appeal to the Chinese Remainder Theorem to generalize any results. For any integer n, we factorize n into primes $n=p_1^{k_1}\dots p_m^{k_m}$ and then use the Chinese Remainder Theorem to get

$$\mathbb{Z}_n = \mathbb{Z}_{p_1^{k_1}} { imes} \ldots { imes} \mathbb{Z}_{p_m^{k_m}}$$

To prove statements in \mathbb{Z}_{p^k} , one starts from \mathbb{Z}_p , and inductively works up to \mathbb{Z}_{p^k} . Thus the most important case to study is \mathbb{Z}_p .

✓ Division

Polynomial Roots

Ben Lynn *blynn@cs.stanford.edu*