Билет 90

Автор1, ..., Aвтор<math>N

22 июня 2020 г.

Содержание

0.1	ьилет 90: дифференцируемость ооратного отооражения. Оораз ооласти при невы-	
	рожденном отображении	1

Билет 90 СОДЕРЖАНИЕ

0.1. Билет 90: Дифференцируемость обратного отображения. Образ области при невырожденном отображении

Напоминание теоремы об обратной функции:

Теорема 0.1.

 $f: D \to R^n, D \subset R^n$ открытое, $x_0 \in D, f$ непрерывно дифференцируема в окрестности $(\cdot)x_0$ и $y_0 = f(x_0)$, матрица $A := f'(x_0)$ обратима. Тогда существуют окрестности U точки x_0, V окрестность $(\cdot)y_0$, т.ч. $f: U \to V$ — обратима и $f^{-1}: V \to U$ — непрерывна.

Теорема 0.2 (Теорема о дифференцируемости обратного отображения). $f: D \to \mathbb{R}^n, D \subset \mathbb{R}^N$ открытое. f непрерывна. $a \in D, f(a) = b$. f дифференцируема в точке a, U – окрестность точки a, V – окрестность точки b, A := f'(a) – обратима, $f^{-1}: V \to U$ – непрерывна. Тогда $g := f^{-1}$ – дифференцируема в точке b.

Доказательство.

Определение дифференцируемости f в a:

$$f(a+h) = f(a) + Ah + \alpha(h) ||h||,$$
 где $\alpha(h) \to 0$ при $h \to 0$

Обозначим
$$K := f(a+h) - f(a) = Ah + \alpha(h) ||h||$$

Хотим (Храбров хочет) доказать, что если $K \to 0$, то $h \to 0$. Зачем - станет понятно позже

$$||h|| = ||A^{-1}Ah|| \le ||A^{-1}|| ||Ah|| \implies ||Ah|| \ge \frac{||h||}{||A^{-1}||}$$

Далее Храбров поломался немного, но потом починился.

Выпишем оценку на ||K||:

$$||K|| = ||Ah + \alpha(h)||h||| = ||Ah - (-\alpha(h)||h||)|| \geqslant ||Ah|| - ||-\alpha(h)||h||| = ||Ah|| - ||\alpha(h)||h|||$$

 $(\|a-b\|\geqslant \|\|a\|-\|b\|\|$ - свойство нормы, но с модулем, а выше выписали сразу без модуля, ведь $|a|\geqslant a)$

Продолжим оценивать:

$$||Ah|| - ||\alpha(h)||h||| \geqslant \frac{||h||}{||A^{-1}||} - ||\alpha(h)|||h|| = ||h|| \left(\frac{1}{||A^{-1}||} - ||\alpha(h)||\right)$$

(первый переход по доказанной чуть выше оценке снизу на ||Ah||)

Храбров, когда починился, решил рассматривать только такую маленькую окрестность точки a, в которой h — вектора до точек из окрестности — настолько мелкие, что $\alpha(h)$ достаточно маленькое ($\alpha(h) \to 0$ при $h \to 0$). Достаточно маленькое, чтобы $\frac{1}{\|A^{-1}\|} - \|\alpha(h)\| > 0$ было.

Тогда получаем, что если $\|K\| \to 0$, то и $\|h\| \to 0$: так как $\frac{1}{\|A^{-1}\|} - \|\alpha(h)\| > 0$, то

$$||h|| \left(\frac{1}{||A^{-1}||} - ||\alpha(h)|| \right) \ge ||h|| \frac{1}{||A^{-1}||}$$

 $\|h\|$ домножается на константу, так что теперь точно должно быть ясно, что она стремится к 0, если $\|K\|$ стремится.

В конце он вспомнил, что у нас есть непрерывность, и она всё упрощает, хотя я и не совсем осознал как.

Продолжим: мы хотим дифференцируемость g (он же f^{-1}), проверим (почти) определение:

$$g(b+K) - g(b) = g(f(a) + f(a+h) - f(a)) - g(f(a)) = a+h-a = h = A^{-1}K - A^{-1}(\alpha(h)||h||)$$

Билет 90 COДЕРЖАНИЕ

Пояснение: почему мы вообще куда-то K подставляем и почему это нам поможет? По определению дифференцируемости, нужно, чтобы $g(b+t)=g(b)+Mt+o(\|h\|)$ при $h\to 0$. У нас K=f(a+h)-f(a), притом f - непрерывна, так что $a+h\to a \Longrightarrow f(a+h)\to f(a)\Longrightarrow K\to 0$, так что K вполне подходит для проверки определения дифференцируемости: регулируя h (свободную переменную), мы можем устремить K к нулю.

(Абзац выше - мои домыслы, Храбров это не проговаривал)

Далее, откуда вылезло последнее равенство в проверке выше:

$$K = Ah + \alpha(h) \|h\| \implies Ah = K - \alpha(h) \|h\| \implies h = A^{-1}K - A^{-1}(\alpha(h) \|h\|)$$

Ого, почти то, что надо: A^{-1} - дифференциал, надо лишь сделать так, чтобы $A^{-1}(\alpha(h)\|h\|) = o(\|K\|)$. Сейчас докажем:

$$A^{-1}(\alpha(h)\|h\|) = o(\|K\|) \iff \frac{\|A^{-1}\alpha(h)\|h\|\|}{\|K\|} \underset{K \to 0}{\longrightarrow} 0$$

$$\frac{\|A^{-1}\alpha(h)\|h\|\|}{\|K\|} \leqslant \frac{\|A^{-1}\|\|\alpha(h)\|\|h\|}{\|K\|} \leqslant \frac{\|A^{-1}\|\|\alpha(h)\|\|h\|}{\|h\|\frac{1}{\|A^{-1}\|} - \|\alpha(h)\|} = \frac{\|A^{-1}\|\|\alpha(h)\|}{\frac{1}{\|A^{-1}\|} - \|\alpha(h)\|}$$

Первый переход: свойство нормы - $||AB|| \le ||A|| ||B||$

Второй переход: используем доказанную выше оценку снизу: $||K|| \geqslant ||h|| \left(\frac{1}{||A^{-1}||} - ||\alpha(h)||\right)$. Знаменатель уменьшим - дробь увеличится.

Что в итоге получили: в числителе константа, умноженная на $\alpha(h) \to 0$ при $h \to 0$. А в знаменатале - что-то большее 0 (доказано выше). Так что вся дробь к 0 стремится, что нам и хотелось. Ура!

Применим эту теорему в каждой точке - получим дифференцируемость в любой точке окрестности (области определения f^{-1}).

Отмечу отдельно что A^{-1} - дифференциал, при этом A=f'(x), то есть $(f^{-1}(y))'=A^{-1}=(f'(x))^{-1}$, где y=f(x). То есть в итоге $(f^{-1}(y))'=(f'(f^{-1}(y))^{-1}$ (подставили $x=f^{-1}(y)$)

Следствие Если в теореме выше f - непрерывно дифференцируема, то f^{-1} тоже непрерывно дифференцируема.

Из прошлой теоремы установили, что дифференцируема, теперь хочется непрерывность производной.

Там мы получили, что дифференциал f^{-1} - это A^{-1} .

При этом по условию этого следствия, f - непрерывно дифференцируемая, то есть f' непрерывная, то есть A - непрерывная, то есть её коэффициенты непрерывно зависят от точки (возможно, неочевидно, почему если коэффициенты непрерывны, то и матрица тоже? ?? вот здесь норма оценивается через коэффициенты)

Вспоминаем, как устроена обратная матрица: есть явная формула. Нам сама формула не важна (но если хочется - $A_{ij}^{-1} = \frac{(-1)^{i+j} M_{ji}}{\det(A)}$, вроде так), это миноры (многочлены от коэффициентов), делёный на определитель (тоже многочлен от коэффициентов, но не нулевой, так как матрица обратима), так что это у нас композиция непрерывных функций (многочлены непрерывны, в числителе не 0), которая сама является непрерывной функцией. А это нам и надо было.

Следствие. $f: D \to \mathbb{R}^d, D$ – открытое, f - непрерывно дифференцируема во всех точках D, f'(x) - обратима для всех $x \in D$. Тогда для любого открытого $G \subset D$ верно, что f(G) - открытое.

Билет 90 СОДЕРЖАНИЕ

Доказательство.

Возьмём точку $b \in f(G)$. Тогда $\exists a \in D : f(a) = b \ (a = f^{-1}(b))$.

Тогда применим теорему об обратной функции: сузим f на G - оно открытое, всё ок. И вот на этой суженной f и применим теорему:

 $\exists U \ni a,\, U \subset G$ - найдём окрестность вокруг точки a

Тогда f(U)=V - окрестность точки b, и при этом $V\subset f(G)$, так что $b\in f(U)=V\subset f(G)$, и в этой цепочке V - окрестность точки b, то есть открытый шар. То есть для b мы нашли искомый открытый шар, то есть b внутренняя, то есть любая точка f(G) внутренняя и потому оно открытое

(для не открытого бы не сработало, так как мы сужали функцию на G, а теорема требует, чтобы f действовало из открытого множества

Определение 0.1. $x \in \mathbb{R}^n, y \in \mathbb{R}^m$

Тогда (x,y) будет обозначаться вектор из $\mathbb{R}^{n+m}=\mathbb{R}^n\times\mathbb{R}^m$ ((x,y) – состоит из 2 частей: $x\in\mathbb{R}^n$ и $y\in\mathbb{R}^m)$

Теорема 0.3.

Пусть $A: \mathbb{R}^{n+m} \to \mathbb{R}^n$ - линейное отображение

Тогда если $(A(h, 0_m) = 0_n \implies h = 0_n)$, то уравнение A(x, y) = b имеет единственное решение

$$A(x,y) = b$$

$$A(x,y) = A(x,0) + A(0,y)$$
 (по линейности A)

$$A(x,0) = A(x,y) - A(0,y) = b - A(0,y)$$

Немного поизменяли формулу для удобства. Если решение существует и единственно для этой записи, то теорема верна.

Покажем единственность: пусть A(x,0)=b-A(0,y) и $A(\tilde{x},0)=b-A(0,y)$, то $A(x-\tilde{x},0)=0 \implies x-\tilde{x}=0 \implies x=\tilde{x}$

Покажем существование: A(x,0) - инъекция, так как ядро тривильно, т.е. $A(x,0)=0 \implies x=0$. При этом $A(x,0):\mathbb{R}^n\to\mathbb{R}^n$, то есть размерности совпадают, и потому это биекция, и потому решение есть.

Я так и не уверен, что такое "Образ области при невырожденном отображении" - то ли второе следствие, то ли эта теорема...