Exercise 3

Exercise

Suppose $\{p_{\alpha}(\theta) : \alpha \in H\}$ is a conjugate family for some generator family $\{p(x|\theta) : \theta \in \Theta\}$. Let $g(\theta)$ be a nonnegative function, and define

$$z(\alpha) = \int p_{\alpha}(\theta)g(\theta)d\theta.$$

Show that if $0 < z(\alpha) < \infty$ for all $\alpha \in H$, then

$$\{p_{\alpha}(\theta)g(\theta)/z(\alpha): \alpha \in H\}$$

is also a conjugate family.

Solution

For $\alpha \in H$, define the p.d.f.

$$\frac{(\varpi)z}{(\theta)\delta(\theta)^{\varpi}d} = (\theta)^{\varpi} u$$

Consider data x_1,\ldots,x_n . Since $\{p_\alpha:\alpha\in H\}$ is a conjugate prior family, then for any $\alpha\in H$, there is an $\alpha'\in H$ such that $p(x_1:n|\theta)p_\alpha(\theta)\propto p_{\alpha'}(\theta)$. Thus, using $\pi_\alpha(\theta)$ as the prior results in the posterior

$$(\theta)_{\alpha}\pi(\theta|_{n:1}x)q \propto (n:1x|\theta)q$$

$$(\theta)_{\alpha}(\theta)_{\alpha}(\theta)_{\alpha}(\theta)_{\alpha}q \propto \frac{(\theta)_{\alpha}(\theta)_{\alpha}(\theta)_{\alpha}}{(\theta)_{\alpha}(\theta)_{\alpha}}q \propto q$$

$$(\theta)_{\alpha}(\theta)_{\alpha}(\theta)_{\alpha}q \propto q$$

$$(\theta)_{\alpha}(\theta)_{\alpha}q \propto q$$

$$(\theta)_{\alpha}(\theta)_{\alpha}q \propto q$$

Therefore, $\{\pi_\alpha:\alpha\in H\}$ is a conjugate prior family.