Package 'porce'

October 26, 2023

Title Photosynthesis, allocation, Organic matter dynamics and RadioCarbon Exchange (Porce) model
Version 0.0.1
Description Set of functions, classes and methods to model carbon and radiocarbon dynamics in ecosystems
License MIT + file LICENSE
Encoding UTF-8
Imports methods, expm
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3.9000
NeedsCompilation no
Author Carlos A. Sierra [aut, cre] (https://orcid.org/0000-0003-0009-4169)
Maintainer Carlos A. Sierra <csierra@bgc-jena.mpg.de></csierra@bgc-jena.mpg.de>
Depends R (>= 3.5.0)
R topics documented:
convolutionfun EmanuelModel equilibriumOutflux equilibriumStock erf inputGPP irf lam-class makeB modpars
modpuls

Index

2 EmanuelModel

	-			_	
convo	П	ut:	ıс	nt	un

Convolution function

Description

Computes the convolution function between two functions f and g. Instead of returning a numerical value, this function returns a function.

Usage

```
convolutionfun(t, t0 = 0, f, g)
```

Arguments

t a vector of time points

t0 initial time

f a function to convolve g a function to convolve

Value

a convolution function between f and g

Examples

```
tms<-seq(0,10, by=0.1)
cosconvfun<-convolutionfun(f=cos, g=cos) # convolve cosine function with itself
solfun<-function(t){ (t*cos(t) + sin(t))/2} # analytical solution (Braun 1993, Dif Eq and App, Springer, p. 254)
x1<-sapply(X=tms, FUN=cosconvfun)
x2<-sapply(X=tms, FUN=solfun)
plot(tms, x1, type="1")</pre>
```

EmanuelModel

lines(tms, x2, col=2)

Terrestrial carbon model of Emanuel

Description

This function returns the model of Emanuel as an object of class lam. It is mostly a constructor of the model to be used for further analysis.

Usage

```
EmanuelModel()
```

Value

a model of class lam

equilibriumOutflux 3

Examples

EmanuelModel()

equilibriumOutflux

Equilibrium output flux for a linear autonomous model

Description

Equilibrium output flux for a linear autonomous model

Usage

```
equilibriumOutflux(model)
```

Arguments

mode1

an object of class lam, a linear autonomous model

Value

a vector with the output fluxes for all compartments

equilibriumStock

Equilibrium stocks for a linear autonomous model

Description

Equilibrium stocks for a linear autonomous model

Usage

```
equilibriumStock(model)
```

Arguments

model

an object of class lam, a linear autonomous model

Value

a vector with the equilibrium stocks for all compartments

4 inputGPP

erf

Equilibrium response function

Description

Builds an equilibrium response function from a model object of class lam

Usage

```
erf(model)
```

Arguments

model

A model of class lam

Value

A function that takes time as main argument

Examples

```
EmanuelERF<-erf(model=EmanuelModel())
tms<-seq(0,100)
em<-sapply(tms, EmanuelERF)
plot(tms, em, type="1")</pre>
```

inputGPP

Input vector from a scalar gpp value

Description

Input vector from a scalar gpp value

Usage

```
inputGPP(gpp, npools = 7)
```

Arguments

gpp a scalar value of gross primary production npools integer. Number of pools in the system

Value

a vector of npool elements with GPP as first argument

Examples

```
inputGPP(25, 7)
```

irf 5

irf

Impulse response function

Description

Builds an impulse response function from a model object of class lam

Usage

```
irf(model)
```

Arguments

model

A model of class lam

Value

A function that takes time as main argument

Examples

```
EmanuelIRF<-irf(model=EmanuelModel())
tms<-seq(0,100)
em<-sapply(tms, EmanuelIRF)
plot(tms, em, type="1")</pre>
```

lam-class

Linear autonomous model

Description

Linear autonomous model

Value

An object of lam class

Slots

```
input numeric vector with inputs for each compartment.
matrix a compartmental matrix with dimension equal to length of input.
```

Examples

```
toyModel < -lam(input = c(1,2,3), \ matrix = diag(-1,3,3))
```

6 modpars

makeB

Compartmental matrix from a set of prior parameters of Porce model

Description

This function builds a compartmental matrix of seven pools using a set of 16 parameter values. It is mostly used to build a matrix from the parameter values stored in the modpars dataset.

Usage

```
makeB(pars)
```

Arguments

pars

a numeric vector of 16 parameter values

Value

A compartmental matrix of dimension 7

Examples

```
makeB(pars=modpars[1,])
```

modpars

Model parameters for Porce

Description

A dataset of model parameters that can be used as prior information for the Porce model. The dataset corresponds to a seven pool model developed for the Porce region of Colombia.

Usage

```
data(modpars)
```

Format

An object of class matrix (inherits from array) with 1000 rows and 16 columns.

References

Sierra et al. (2021). Journal of Ecology 109(8): 2845–2855.

Index

```
* datasets

modpars, 6

convolutionfun, 2

EmanuelModel, 2

equilibriumOutflux, 3

equilibriumStock, 3

erf, 4

inputGPP, 4

irf, 5

lam (lam-class), 5

lam-class, 5

makeB, 6

modpars, 6
```