Data Structures and Algorithms

(ESO207)

Lecture 38

An interesting problem:

shortest path from a source to destination

SHORTEST PATHS IN A GRAPH

A fundamental problem

Notations and Terminologies

A directed graph G = (V, E)

- $\omega: E \to R^+$
- Represented as Adjacency lists or Adjacency matrix
- n = |V| , m = |E|

Question: what is a path in **G**?

Answer: A sequence $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$.

Length of a path $P = \sum_{e \in P} \omega(e)$

Notations and Terminologies

Definition:

The path from u to v of minimum length is called the shortest path from u to v

Definition: **Distance** from u to v is the <u>length</u> of the shortest path from u to v.

Notations:

 $\delta(u, v)$: distance from u to v.

P(u, v): The shortest path from u to v.

Problem Definition

Input: A directed graph G = (V, E) with $\omega : E \to R^+$ and a source vertex $s \in V$

Aim:

- Compute $\delta(s, v)$ for all $v \in V \setminus \{s\}$
- Compute P(s, v) for all $v \in V \setminus \{s\}$

Problem Definition

Input: A directed graph G = (V, E) with $\omega : E \to R^+$ and a source vertex $s \in V$

Aim:

- Compute $\delta(s, v)$ for all $v \in V \setminus \{s\}$
- Compute P(s, v) for all $v \in V \setminus \{s\}$

First algorithm: by Edsger Dijkstra in 1956

And still the best ...

I am sure you will be able to re-invent it yourself if you are asked right questions © So get ready!

Inference:

The distance to any vertex <u>depends</u> upon <u>global</u> parameters.

Question: Is there any vertex in this picture for which you are certain about

the distance from s?

Answer: vertex **u**.

Give reasons.

 \rightarrow The shortest path to vertex u is edge (s,u).

Designing a greedy algorithm for shortest paths

1. Establish a relation between

and ${f shortest\ paths\ in\ }{m G}'$

Question: Can you remove vertex u without affecting the distance from s?

How to compute instance G'

Let (s,u) be the **least weight edge** from s in G=(V,E).

Transform G into G' as follows.

- 1. For each edge $(u,x) \in E$, add edge (s,x); $\omega(s,x) \leftarrow \omega(s,u) + \omega(u,x)$;
- 2. In case of two edges from s to any vertex x
- 3. Remove vertex u.

Theorem: For each
$$v \in V \setminus \{s, u\}$$
, $\delta_G(s, v) = \delta_{G'}(s, v)$

→ an algorithm for distances from s

Shortcomings of the algorithm

• **No insight** into the (beautiful) structure of shortest paths.

• Just convinces that we can solve the shortest paths problem in polynomial time.

• **Very few options** to improve the time complexity.

We shall now design a very insightful algorithm based on properties of shortest paths.

PROPERTY OF A SHORTEST PATH

Optimal subpath property

Lemma 1: Every **subpath** of a shortest path is also a shortest path.

NOTE: Does the lemma use the fact that the edge weights are positive? If yes, can you locate the exact place where it used it?

Exploiting the positive weight on edges

Consider once again a shortest path P(s, v).

→ The first nearest vertex of s must be its neighbor.

More insights ...

Let **s**_i:

 $s_0 = s$.

Consider the shortest path $P(s, s_i)$.

x must be s_i for some j < i.

Lemma 2: $P(s, s_i)$ must be of the form

What picture captures all shortest paths from s?

Complete picture of all shortest paths?

Designing the algorithm ...

Lemma 2:
$$P(s, s_i)$$
 must be of the form $s \rightsquigarrow s_j \rightarrow s_i$ for some $j < i$.

Question: Can we use Lemma 2 to design an algorithm?

Incremental way to compute shortest paths.

Ponder over it before going to the next slide ©

Designing the algorithm ...

Lemma 2:
$$P(s, s_i)$$
 must be of the form $s \rightsquigarrow s_j \rightarrow s_i$ for some $j < i$.

Question: Can we use Lemma 2 to design an algorithm?

Incremental way to compute shortest paths.

The next slide explains it precisely.

If shortest paths to s_i , j < i is known, we can compute s_i .

But how?

All we know is that

But which neighbor?

Hint:

For each neighbor, compute some *label* based on Lemma 2 s.t. s_i is the neighbour with least label.

Suppose we have computed s_1 , s_2 ,..., s_{i-1} .

We can compute s_i as follows.

For each
$$v \in V \setminus \{s_1, s_2, ..., s_{i-1}\}$$

$$L(v) = \min_{\substack{((s_j, v) \in E)}} \left(\delta(s, s_j) + \omega(s_j, v)\right)$$

 s_i is the vertex with **minimum** value of L.

```
Dijkstra-algo(s,G)
\{ U \leftarrow V \setminus \{s\} ;
  S \leftarrow \{s\};
For i = 1 to n - 1 do
        For each v \in U do
             L(v) \leftarrow \infty;
                   For each (x, v) \in E with x \in S do
                    L(v) \leftarrow \min(L(v), \delta(s, x) + \omega(x, v))
        y \leftarrow vertex from U with minimum value of L;
        \delta(s,y) \leftarrow L(y);
        move y from U to S;
```

In this algorithm, we first compute L(v) for each $v \in U$ and then find the vertex with the least L value.

Try to rearrange its statements so that in the beginning of each iteration, we have L values **computed already**.

This rearrangement will be helpful for improving the running time.

So please try it on your own first before viewing the next slide.

```
Dijkstra-algo(s,G)
\{ U \leftarrow V; L(v) \leftarrow \infty \text{ for all } v \in U; \}
  L(s) \leftarrow 0;
  For i = 0 to n - 1 do
       y \leftarrow vertex from U with minimum value of L;
       \delta(s,y) \leftarrow L(y);
       move y from U to S;
       For each v \in U do
                   L(v) \leftarrow \infty;
                   For each (x, v) \in E with x \in S do
                                                                                a lot of re-computation
                    L(v) \leftarrow \min(L(v), \delta(s,x) + \omega(x,v))
```

```
Dijkstra-algo(s,G)
\{ U \leftarrow V; L(v) \leftarrow \infty \text{ for all } v \in U; \}
                                                                        Only <u>neighbors</u> of y
  L(s) \leftarrow 0;
  For i = 0 to n - 1 do
       y \leftarrow vertex from U with minimum value of L;
       \delta(s,y) \leftarrow L(y);
       move y from U to S;
       For each v \in U do
                                                                           What are the vertices
                                                                           whose L value may change
                   For each (x, v) \in E with x \in S do
                                                                           in this iteration?
                    L(v) \leftarrow \min(L(v), \delta(s,x) + \omega(x,v))
```

```
Dijkstra-algo(s,G)
\{ U \leftarrow V; L(v) \leftarrow \infty \text{ for all } v \in U; 
 L(s) \leftarrow 0;
  For i = 0 to n - 1 do
                                                                           1 extract-min
      y \leftarrow vertex from U with minimum value of L;
                                                                             operation
       \delta(s,y) \leftarrow L(y);
       move y from U to S;
       For each (y, v) \in E with v \in U do
                                                                         deg(y) Decrease-key
                                                                               operations
               L(v) \leftarrow \min(L(v), \delta(s, y) + \omega(y, v))
```

Time complexity of Dijkstra's algorithm

Total number of **extract-min** operation : n

Total **Decrease-key** operations : m

Using **Binary heap** to maintain the set U, the time complexity: $O(m \log n)$

Theorem: Given a directed graph with <u>positive weights</u> on edges, we can compute all shortest paths from a given vertex in $O(m \log n)$ time.

Fibonacci heap supports **Decrease-key** in O(1) time and **extract-min** in $O(\log n)$.

 \rightarrow Total time complexity using Fibonacci heap: $O(m + n \log n)$