INTRO TO DATA SCIENCE LECTURE 13: DIMENSIONALITY REDUCTION

I. DIMENSIONALITY REDUCTION
II. PRINCIPAL COMPONENTS ANALYSIS
III. SINGULAR VALUE DECOMPOSITION
IV. OTHER METHODS

EXERCISE:

IV. DIMENSIONALITY REDUCTION IN SCIKIT-LEARN

Q: What is dimensionality reduction?

- Q: What is dimensionality reduction?
- A: A set of techniques for reducing the size (in terms of features, records, and/or bytes) of the dataset under examination.

- Q: What is dimensionality reduction?
- A: A set of techniques for reducing the size (in terms of features, records, and/or bytes) of the dataset under examination.

In general, the idea is to regard the dataset as a matrix and to decompose the matrix into simpler, meaningful pieces.

- Q: What is dimensionality reduction?
- A: A set of techniques for reducing the size (in terms of features, records, and/or bytes) of the dataset under examination.

In general, the idea is to regard the dataset as a matrix and to decompose the matrix into simpler, meaningful pieces.

Dimensionality reduction is frequently performed as a pre-processing step before another learning algorithm is applied.

Q: What are the goals of dimensionality reduction?

Q: What are the goals of dimensionality reduction?

- reduce computational expense
- reduce susceptibility to overfitting
- reduce noise in the dataset
- enhance our intuition

Q: How is dimensionality reduction performed?

- Q: How is dimensionality reduction performed?
- A: There are two approaches: feature selection and feature extraction.

- Q: How is dimensionality reduction performed?
- A: There are two approaches: feature selection and feature extraction.

feature selection — selecting a subset of features using an external criterion (filter) or the learning algo accuracy itself (wrapper)

feature extraction — mapping the features to a lower dimensional space

II. PRINCIPAL COMPONENT ANALYSIS

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a dimension reduction technique that can be used on a matrix of any dimensions.

Principal component analysis is a dimension reduction technique that can be used on a matrix of any dimensions.

This procedure produces a new basis, each of whose components retain as much variance from the original data as possible.

Principal component analysis is a dimension reduction technique that can be used on a matrix of any dimensions.

This procedure produces a new basis, each of whose components retain as much variance from the original data as possible.

The PCA of a matrix A boils down to the eigenvalue decomposition of the covariance matrix of A.

- Gives best axis to project
- Minimum RMS error
- Principal vectors are orthogonal

Sensors in Intel Berkeley Lab

Distance between a pair of sensors

PRINCIPAL COMPONENT ANALYSIS

- Given a 54x54 matrix of pairwise link qualities
- Do PCA
- Project down to 2 principal dimensions
- PCA discovered the map of the lab

ource: http://glowingpython.blogspot.it/2011/07/pca-and-image-compression-with-numpy.html

PCA algorithm:

- 1. X ← Create N x d data matrix, with one row vector
 x_n per data point
- 2. X subtract mean x from each row vector x_n in X
- 3. Σ ← covariance matrix of X
- Find eigenvectors and eigenvalues of Σ
- PC's the M eigenvectors with largest eigenvalues

- What if very large dimensional data?
 - e.g., Images (d ≥ 10⁴)
- Problem:
 - Covariance matrix Σ is size (d²)
 - $d=10_4 \rightarrow |\Sigma| = 10^8$

- Singular Value Decomposition (SVD)!
 - efficient algorithms available
 - some implementations find just top N eigenvectors

III. SINGULAR VALUE DECOMPOSITION

Singular Value Decomposition

Problem:

#1: Find concepts in text

#2: Reduce dimensionality

\mathbf{term}	data	information	retrieval	brain	lung
$\operatorname{document}$					
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
$\mathbf{MED}\text{-}\mathbf{TR2}$	0	0	0	3	3
MED-TR3	0	0	0	1	1

SVD - Definition

$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \Lambda_{[r \times r]} (\mathbf{V}_{[m \times r]})^{\top}$$

- **A**: *n* x *m* matrix (e.g., n documents, m terms)
- U: n x r matrix (n documents, r concepts)
- Λ: r x r diagonal matrix (strength of each 'concept') (r: rank of the matrix)
- V: m x r matrix (m terms, r concepts)

SVD - Properties

THEOREM [Press+92]: always possible to decompose matrix **A** into $\mathbf{A} = \mathbf{U} \wedge \mathbf{V}^{\mathsf{T}}$, where

- **U,** Λ, **V**: unique (*)
- U, V: column orthonormal (ie., columns are unit vectors, orthogonal to each other)
 - U^TU = I; V^TV = I (I: identity matrix)
- Λ: singular value are positive, and sorted in decreasing order

SVD - Interpretation

- 'documents', 'terms' and 'concepts':
- U: document-to-concept similarity matrix
- V: term-to-concept similarity matrix
- Λ: its diagonal elements: 'strength' of each concept

Projection:

 best axis to project on: ('best' = min sum of squares of projection errors)

A = **U** Λ **V**^T - example:

retrieval inf. lung

- A = U
$$\wedge$$
 V^T - example: doc-to-concept similarity matrix

retrieval inf. brain lung MD-concept

CS - concept MD-concept

CS - concept MD-concept

$$\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0.18 & 0 \\
0.36 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{bmatrix} \times \begin{bmatrix}
9.64 & 0 \\
0 & 5.29
\end{bmatrix} \times \begin{bmatrix}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0.71 & 0.71
\end{bmatrix}$$

• $A = U \wedge V^T$ - example:

A = **U** Λ **V**^T - example:

SVD – Dimensionality reduction

- Q: how exactly is dim. reduction done?
- A: set the smallest singular values to zero:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

SVD - Dimensionality reduction

$\begin{bmatrix} 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.30 \\ 0.18 \\ 0.90 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 9.64 \\ \end{bmatrix} \times \begin{bmatrix} 9.64 \\ \end{bmatrix} $		•
---	--	---

SVD - Dimensionality reduction

LSI (latent semantic indexing)

Q1: How to do queries with LSI?

A: map query vectors into 'concept space' – how?

LSI (latent semantic indexing)

Q: How to do queries with LSI?

A: map query vectors into 'concept space' – how?

A: inner product (cosine similarity) with each 'concept' vector v_i

term1

LSI (latent semantic indexing)

compactly, we have:

$$q_{concept} = q V$$

term-to-concept similarities

Multi-lingual IR (English query, on Spanish text?)

Q: multi-lingual IR (english query, on spanish text?)

- Problem:
 - given many documents, translated to both languages (eg., English and Spanish)
 - answer queries across languages

Little example

How would the document ('information', 'retrieval') handled by LSI? A: SAME:

term-to-concept similarities

Little example

Observation: document ('information', 'retrieval') will be retrieved by query ('data'), although it does not contain 'data'!!

Multi-lingual IR

Solution: ~ LSI

- Concatenate documents
- Do SVD on them
- Now when a new document comes project it into concept space
- Measure similarity in concept space