Project on K Nearest Neighbors:

Welcome to the KNN Project! This will be a beginner level project to understand the basic functionalities of KNN Classification.

KNN is a non-parametric supervised classification method which is used to make predictions about classifying a data point to a particular classe/group by proximity.

Import Libraries like pandas, seaborn, and other specific libraries needed for performing KNN analysis.

```
In [10]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
```

Get the Data

Read the 'KNN_Project_Data csv file into a dataframe

```
# Sample dataset used to just explain how KNN works
In [83]:
           df=pd.read csv("KNN Project Data")
                        # *Check the head of the dataframe.**
In [84]:
          df.head()
Out[84]:
                  XVPM
                               GWYH
                                            TRAT
                                                        TLLZ
                                                                    IGGA
                                                                                HYKR
                                                                                             EDFS
                                                                                                        GU
             1636.670614
                           817.988525 2565.995189 358.347163
                                                               550.417491
                                                                          1618.870897
                                                                                       2147.641254
                                                                                                   330.7278
             1013.402760
                           577.587332 2644.141273 280.428203
                                                              1161.873391
                                                                          2084.107872
                                                                                        853.404981 447.1576
            1300.035501
                           820.518697 2025.854469
                                                 525.562292
                                                               922.206261
                                                                          2552.355407
                                                                                        818.676686 845.4914
                         1066.866418
             1059.347542
                                       612.000041 480.827789
                                                               419.467495
                                                                           685.666983
                                                                                        852.867810 341.6647
             1018.340526 1313.679056
                                       950.622661 724.742174
                                                                          1370.554164
                                                                                        905.469453 658.1182
                                                               843.065903
```

Exploratory Data Analysis:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	XVPM	1000 non-null	float64
1	GWYH	1000 non-null	float64
2	TRAT	1000 non-null	float64
3	TLLZ	1000 non-null	float64
4	IGGA	1000 non-null	float64
5	HYKR	1000 non-null	float64
6	EDFS	1000 non-null	float64
7	GUUB	1000 non-null	float64
8	MGJM	1000 non-null	float64
9	JHZC	1000 non-null	float64
10	TARGET CLASS	1000 non-null	int64
1.0	67 164/40		

dtypes: float64(10), int64(1)

memory usage: 86.1 KB

In [89]: df.describe()

Out[89]:

	XVPM	GWYH	TRAT	TLLZ	IGGA	HYKR	EDFS	
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	10
mean	1055.071157	991.851567	1529.373525	495.107156	940.590072	1550.637455	1561.003252	5
std	370.980193	392.278890	640.286092	142.789188	345.923136	493.491988	598.608517	2
min	21.170000	21.720000	31.800000	8.450000	17.930000	27.930000	31.960000	
25%	767.413366	694.859326	1062.600806	401.788135	700.763295	1219.267077	1132.097865	3
50%	1045.904805	978.355081	1522.507269	500.197421	939.348662	1564.996551	1565.882879	5
75%	1326.065178	1275.528770	1991.128626	600.525709	1182.578166	1891.937040	1981.739411	7
max	2117.000000	2172.000000	3180.000000	845.000000	1793.000000	2793.000000	3196.000000	13

In [91]: #Transpose of a dataset to view the Summary Statistics columnwise
df.describe().T

Out[91]:

•		count	mean	std	min	25%	50%	75%	max
	XVPM	1000.0	1055.071157	370.980193	21.17	767.413366	1045.904805	1326.065178	2117.0
	GWYH	1000.0	991.851567	392.278890	21.72	694.859326	978.355081	1275.528770	2172.0
	TRAT	1000.0	1529.373525	640.286092	31.80	1062.600806	1522.507269	1991.128626	3180.0
	TLLZ	1000.0	495.107156	142.789188	8.45	401.788135	500.197421	600.525709	845.0
	IGGA	1000.0	940.590072	345.923136	17.93	700.763295	939.348662	1182.578166	1793.0
	HYKR	1000.0	1550.637455	493.491988	27.93	1219.267077	1564.996551	1891.937040	2793.0
	EDFS	1000.0	1561.003252	598.608517	31.96	1132.097865	1565.882879	1981.739411	3196.0
	GUUB	1000.0	561.346117	247.357552	13.52	381.704293	540.420379	725.762027	1352.0
	MGJM	1000.0	1089.067338	402.666953	23.21	801.849802	1099.087954	1369.923665	2321.0
	JHZC	1000.0	1452.521629	568.132005	30.89	1059.499689	1441.554053	1864.405512	3089.0
	TARGET CLASS	1000.0	0.500000	0.500250	0.00	0.000000	0.500000	1.000000	1.0

We'll just do a large pairplot with seaborn to check for the distribution of attributes with respect to the target class variable.

Use seaborn on the dataframe to create a pairplot with the hue indicated by the TARGET CLASS column.

```
In [103... sns.pairplot(df,hue='TARGET CLASS',diag_kind='hist')
```

Out[103]: <seaborn.axisgrid.PairGrid at 0x1c1cb62a490>

Standardize the Variables

Time to standardize the variables.

Import StandardScaler from Scikit learn.

```
scaled feat=scaler.transform(df.drop('TARGET CLASS',axis=1))
         scaled feat
         array([[ 1.56852168, -0.44343461, 1.61980773, ..., -0.93279392,
Out[73]:
                  1.00831307, -1.06962723],
                [-0.11237594, -1.05657361, 1.7419175, ..., -0.46186435,
                  0.25832069, -1.04154625],
                [0.66064691, -0.43698145, 0.77579285, ..., 1.14929806,
                  2.1847836 , 0.34281129],
                [-0.35889496, -0.97901454, 0.83771499, ..., -1.51472604,
                 -0.27512225, 0.86428656],
                [0.27507999, -0.99239881, 0.0303711, ..., -0.03623294,
                  0.43668516, -0.21245586],
                [0.62589594, 0.79510909, 1.12180047, ..., -1.25156478,
                 -0.60352946, -0.87985868]])
In [75]: #Convert the scaled features to a dataframe and check the head of this dataframe to ma
         df1=pd.DataFrame(scaled_feat,columns=df.columns[:-1])
         df1.head()
         df1.columns
         Index(['XVPM', 'GWYH', 'TRAT', 'TLLZ', 'IGGA', 'HYKR', 'EDFS', 'GUUB', 'MGJM',
Out[75]:
                 'JHZC'],
               dtype='object')
```

Train Test Split

Use train_test_split to split your data into a training set and a testing set.

```
In [32]: from sklearn.model_selection import train_test_split
In [35]: X_train, X_test, y_train, y_test = train_test_split(scaled_feat,df['TARGET CLASS'], telline in the content of the conte
```

Using KNN

Import KNeighborsClassifier from scikit learn.

Predictions and Evaluations¶

```
#Use the predict method to predict values using your KNN model and X test.
In [79]:
          pred=knn.predict(X test)
         #** Create a confusion matrix and classification report.**
In [44]:
          from sklearn.metrics import classification report,confusion matrix
          print(confusion matrix(y test,pred))
         [[120 47]
          [ 29 104]]
         print(classification_report(y_test,pred))
In [46]:
                                     recall f1-score
                        precision
                                                        support
                     0
                             0.81
                                       0.72
                                                 0.76
                                                            167
                             0.69
                                       0.78
                                                 0.73
                                                            133
                     1
             accuracy
                                                 0.75
                                                            300
                             0.75
                                       0.75
                                                 0.75
                                                            300
            macro avg
         weighted avg
                             0.75
                                       0.75
                                                 0.75
                                                            300
```

Choosing a K Value

Let's go ahead and use the elbow method to pick a good K Value!

** Create a for loop that trains various KNN models with different k values, then keep track of the error_rate for each of these models with a list.

Choosing K Value by plotting K Value Vs Error rate

Retrain with new K Value

Retrain your model with the best K value (up to you to decide what you want) and re-do the classification report and the confusion matrix.

```
In [70]: knn=KNeighborsClassifier(n_neighbors=28)
knn.fit(X_train,y_train)
pred=knn.predict(X_test)
print("With K=28")
print("\n")
print("Confusion Matrix:")
print(confusion_matrix(y_test,pred))

With K=28
```

Confusion Matrix:

[[135 32] [14 119]]				
	precision	recall	f1-score	support
0	0.91	0.81	0.85	167
1	0.79	0.89	0.84	133
accuracy			0.85	300
macro avg	0.85	0.85	0.85	300
weighted avg	0.85	0.85	0.85	300

Inference:

Higher the K Value, lesser the error rate here and hence,we were able to squeeze some more performance out of our model by tuning to a better K value!

Hope this project gives a basic idea on KNN Classification