STAT502 Homework #2

due Monday, 7/10

1. The following ANOVA table is partially summarized from a study involving four treatment groups. Find the missing values.

Source	SS	DF	MS	F	p-value
Between treatments	64.42			8.98	
Within treatments			2.39		
Total		20			

2. The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically. The following data have been collected:

Technique	Tensile strength						
1	3129	3000	2865	2890			
2	3200	3300	2975	3150			
3	2800	2900	2985	3050			
4	2600	2700	2600	2765			

Test the hypothesis that mixing techniques affect the strength of the cement. Use the one-way ANOVA model, assuming that the assumptions are met. Report the ANOVA table, including the p-value, and your conclusion with $\alpha = .05$.

3. (adapted from KNNL 17.9) The data in "CH16PR08.txt" are from an experiment investigating the effect of paper color on response rates for a questionnaire (1=blue, 2=green, 3=orange). The ANOVA model for this situation is

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

where μ_i is the population mean for the *i*th color, and ϵ_{ij} are iid $N(0, \sigma^2)$.

- (a) Find the estimates for μ_1 , μ_2 , and μ_3 . Also, find the estimate for σ^2 .
- (b) Find the corresponding standard errors for the estimates above.
- (c) Is there a difference between the green and orange group means? Answer with the appropriate hypothesis test. Use $\alpha = .05$.
- (d) Is there a difference between the orange group mean and the average of the blue and green group means? State the appropriate contrast for this test, and carry out the test with $\alpha = .05$.
- 4. The bioactivity of four different drugs for treating a particular illness was compared in a study. The treatment averages are as follows: $\overline{y}_{1.}=66.10, \ \overline{y}_{2.}=65.75, \ \overline{y}_{3.}=62.63, \ \overline{y}_{4.}=63.85.$ The sample size within each group was n=7. A partial ANOVA table is provided below:

Source	SS	df	MS	\mathbf{F}
Drug	56.10			
Error	62.12			
Total				

(a) From the ANOVA table, find the value of the F test statistic. Is this significant evidence that the population mean bioactivity levels are different among the four drugs.

- (b) We wish to make all pairwise comparisons between the four treatments. How many possible pairwise comparisons are there?
- (c) Without adjustment for multiplicity, what would the critical value be for an individual pairwise comparison? Use $\alpha = .05$.
- (d) If the desired FWER is 0.05, what would Tukey's critical value be in this situation? Also, find Bonferroni's and Scheffé's critical values.
- (e) Using each of the three approaches in (d) above, which pairs of means are significantly different? Hint: Since the sample sizes are equal, you don't have to compute the test statistic every time. Using the Tukey critical value as an example,
- (f) Comment on any differences in the results in parts (c), (d) and (e). Which is the most appropriate procedure in this case?