一百零五學年度 0311 微積分 (二) 期中考 The 105th academic year course 0311 Calculus(2) midterm examination

		date	: May 5, 2017
Student ID No.		Name	
學號 :		· · · · · · · · · · · · · · · · · · ·	
說明 Description:			
Before answer	檢查所取得之試卷與答案卷 ring questions, please che you get are correct.		rs and answer
Testing time	分鐘。試卷加答案卷、答案 is 110 minutes. Test pap pages in total.		s, and answer
將不做爲微積 The test pap total score of	題與填充題,總分共計 100 責分獎給獎依據。 er includes choices and f 100 points, accounting for result will not be consid	fill-in-the-blanks, ε r 20% of the semest	and there is a ser grade. The
不予計分。 Be sure to fill cards. When	案卡與答案卷填入相關個人 related personal informat answering questions, ple ber, or, no score.	tion in answer shee	ets and answer
P.S. 難易度提示 D	ifficulty hint: easy <norr <math="">\star \star \star \star \star \star \star</norr>		
	Questions start from th	e next page	

- ◎ 單選擇題 (單選十題, 每題五分, 共五十分, 答錯不倒扣。) Single-choice (10 questions, each 5 points, 50 points in total, no penalty for wrong answers.)
 - 1. Find the **space curve** with the parametric equation:

**

§13.2

- 2. Find the tangent line to the curve $\mathbf{r}(t) = \langle e^t, t, \ln t \rangle$ at the point (e, 1, 0).

(A)
$$x = e, y - 1 = z.$$
 (B) $\frac{x - e}{e} = z, y = 1.$
(C) $\frac{x - e}{e} = y - 1, z = 0.$ (D) $\boxed{\frac{x - e}{e} = y - 1 = z.}$

Solution:
$$\mathbf{r}(t) = \langle e, 1, 0 \rangle, \ t = 1. \ \mathbf{r}'(t) = \langle e^t, 1, \frac{1}{t} \rangle, \ \mathbf{r}'(1) = \langle e, 1, 1 \rangle,$$

 $x = e + es, \ y = 1 + s, \ z = 0 + s = s. \ \frac{x - e}{e} = y - 1 = z(=s).$

- 3. Find the arc length of the curve $(3 \sin t, 4t, 3 \cos t)$, $0 \le t \le 1$. $\star \S 13.3$
 - (A) $\sqrt{7}$. (B) 3. (C) 4. **(D)** 5.

Solution: $\mathbf{r}'(t) = \langle 3\cos t, 4, -3\sin t \rangle$, (Ex 13.3.15) $|\mathbf{r}'(t)| = \sqrt{(3\cos t)^2 + 4^2 + (-3\sin t)^2} = 5$, $L = \int_0^1 |\mathbf{r}'(t)| \ dt = \int_0^1 5 \ dt = 5t \Big|_0^1 = 5$.

4. Find the **graph** of $z = (x - y)^2$. (Ex 14.1.32) $\star \S 14.1$

- 5. Find the limit $\lim_{(x,y,z)\to(0,0,0)} \frac{xyz+y^2z+x^2z}{x^2+y^2+z^4}$. $\star \S 14.2$
 - (A) $\boxed{\mathbf{0}}$. (B) 1. (C) $\frac{1}{3}$. (D) does not exist.

Solution: $x = r \cos \theta$, $y = r \sin \theta$, $\frac{xyz + y^2z + x^2z}{x^2 + y^2 + z^4} = \frac{r^2z(\sin\theta\cos\theta + 1)}{r^2 + z^4},$ $(x, y, z) \to (0, 0, 0) \iff (r, z) \to (0, 0).$ $\therefore 0 \le \frac{r^2}{r^2 + z^4} \le 1 \text{ when } (r, z) \ne (0, 0),$ $\text{and } -\sqrt{2} \le \sin\theta\cos\theta \le \sqrt{2} \text{ for all } \theta \in \mathbb{R},$ $(1 - \sqrt{2})|z| \le \frac{r^2z(\sin\theta\cos\theta + 1)}{r^2 + z^4} \le (1 + \sqrt{2})|z|,$ $\text{and } \lim_{(r,z)\to(0,0)} (1 - \sqrt{2})|z| = \lim_{(r,z)\to(0,0)} (1 + \sqrt{2})|z| = 0.$ $\therefore \lim_{(x,y,z)\to(0,0,0)} \frac{xyz + y^2z + x^2z}{x^2 + y^2 + z^4} \stackrel{S.T.}{=} \lim_{(r,z)\to(0,0)} \frac{r^2z(\sin\theta\cos\theta + 1)}{r^2 + z^4} = 0.$ $[\text{Sol 2] } xy \le \max\{x^2, y^2\} \le x^2 + y^2 \le x^2 + y^2 + z^4,$ $-3|z| \le \frac{xyz + y^2z + x^2z}{x^2 + y^2 + z^4} \le 3|z|.$

6. Let
$$F(x,y) = \int_y^x \sqrt[3]{t^2 - 1} dt$$
. Find $F_x(3,0) - F_y(3,0)$. $\star \S 14.3$
(A) 0. (B) 1. (C) 2. (D) 3.

Solution: Let
$$G(u) = \int_0^u \sqrt[3]{t^2 - 1} dt$$
. (Ex 14.3.30)

$$F = \int_y^x \sqrt[3]{t^2 - 1} dt = \int_0^x \sqrt[3]{t^2 - 1} dt - \int_0^y \sqrt[3]{t^2 - 1} dt = G(x) - G(y),$$

$$F_x = \sqrt[3]{x^2 - 1}, F_y = -\sqrt[3]{y^2 - 1},$$

$$F_x(3, 0) - F_y(3, 0) = \sqrt[3]{3^2 - 1} - (-\sqrt[3]{0^2 - 1}) = 2 - 1 = 1.$$

- 7. Find the total differential dz of $z = xe^{xy}$. ★ §14.4
 - (A) $x^2 e^{xy} dx + (1 + xy)e^{xy} dy$. (B) $(x^3 + xy^2 + y)e^{xy}$. (C) $(xy + 1)e^{xy} dx + x^2 e^{xy} dy$. (D) $(2x^2y + x)e^{xy}$.

Solution:
$$f_x = 1 \cdot e^{xy} + xe^{xy} \cdot y = (xy+1)e^{xy}, f_y = xe^{xy} \cdot x = x^2e^{xy},$$

 $dz = f_x(x,y) \frac{dx}{dx} + f_y(x,y) \frac{dy}{dy} = (xy+1)e^{xy} \frac{dx}{dx} + x^2ye^{xy} \frac{dy}{dx}.$

8. Let
$$yz + x \ln y = z^2$$
. Find $\left\langle \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \right\rangle$ when $x = y = z = 1$.

(A) $\langle 0, 0 \rangle$. (B) $\overline{\langle 0, 2 \rangle}$. (C) $\langle 2, 0 \rangle$. (D) $\langle 1, 1 \rangle$.

Solution:
$$\frac{\partial}{\partial x}$$
: $yz_x + \ln y = 2zz_x$, (Ex 14.5.34)
$$z_x = \frac{\ln y}{2z - y} = \frac{\ln 1}{2 \cdot 1 - 1} = 0 \text{ or } 1 \cdot z_x + \ln 1 = 2 \cdot 1 \cdot z_x, z_x = 0.$$

$$\frac{\partial}{\partial y}$$
: $z + yz_y + \frac{x}{y} = 2zz_y$.
$$z_y = \frac{z + x/y}{2z - y} = \frac{1 + 1/1}{2 \cdot 1 - 1} = 2 \text{ or } 1 + 1 \cdot z_y + 1/1 = 2 \cdot 1 \cdot z_y, z_y = 2.$$

$$\langle z_x, z_y \rangle = \langle 0, 2 \rangle.$$

box whose diagonal(對用線) of length 1.

(A)
$$\frac{1}{2}$$
. (B) $\frac{1}{6}$. (C) $\frac{\sqrt{2}}{8}$. (D) $\frac{\sqrt{3}}{9}$.

Solution: Let
$$V = xyz$$
. (Ex 14.7.53)

Find max V with $x^{2} + y^{2} + z^{2} = 1$ and x, y, z > 0.

[Sol 1] Let
$$W = V^2 = x^2 y^2 (1 - x^2 - y^2)$$
, max $W \iff \max V$.

$$W_x = 2xy^2(1 - 2x^2 - y^2) = 0$$
 when $x = 0$ or $y = 0$ or $2x^2 + y^2 = 1$.

Similarly,
$$W_y = 0$$
 when $x = 0$ or $y = 0$ or $x^2 + 2y^2 = 1$.

So
$$x^2 = y^2$$
, $x^2 + 2x^2 = 3x^2 = 1$, $x = \frac{1}{\sqrt{3}}$. (negative fails.)

critical points:
$$(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), z = \frac{1}{\sqrt{3}}, V = (\frac{1}{\sqrt{3}})^3 = \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{9}.$$

[Sol 2] Let
$$V = xyz$$
 and let $D = x^2 + y^2 + z^2$.
$$\begin{cases}
\nabla V = \lambda \nabla D \\
D = 1
\end{cases} \implies \begin{cases}
yz = \lambda 2x & \cdots (1) \\
xz = \lambda 2y & \cdots (2) \\
xy = \lambda 2z & \cdots (3) \\
1 = x^2 + y^2 + z^2 & \cdots (4)
\end{cases}$$

$$\begin{pmatrix}
1 = x^2 + y^2 + z^2 & \cdots & (4) \\
(1) \times x = (2) \times y = (3) \times z : \lambda x^2 = \lambda y^2 = \lambda z^2 : \because \lambda \neq 0, \ x^2 = y^2 = z^2. \\
\text{take (4): } x^2 + y^2 + z^2 = 3x^2 = 1, \ x = y = z = \frac{1}{\sqrt{3}}. \text{ (negative fails.)}$$

$$V = \left(\frac{1}{\sqrt{3}}\right)^3 = \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{9}.$$

10. Find the maximum value of
$$z = xy$$
 subject to $x^2 + 2y^2 = 1$. $\star\star$ §14.8

(A)
$$\frac{1}{4}$$
. (B) $\sqrt{\frac{2}{4}}$. (C) $\frac{1}{2}$. (D) $\frac{\sqrt{2}}{2}$.

Solution: Let
$$F = xy$$
 and let $G = x^2 + 2y^2$.
$$\begin{cases}
\nabla F = \lambda \nabla G \\
G = 1
\end{cases} \implies \begin{cases}
y = \lambda 2x & \cdots (1) \\
x = \lambda 4y & \cdots (2) \\
1 = x^2 + 2y^2 & \cdots (3)
\end{cases}$$
When $x = 0$ or $y = 0$ or $\lambda = 0$, no solution.
When $x \neq 0$ and $y \neq 0$, $(2) \div (1)$: $\frac{x}{y} = 2\frac{y}{x} \implies x^2 = 2y^2$, take (3) : $2y^2 + 2y^2 = 1 \implies y^2 = \frac{1}{4}$, $\implies y = \pm \frac{1}{2}$, $x = \pm \frac{1}{\sqrt{2}}$.
$$xy = \pm \frac{1}{2\sqrt{2}} = \pm \frac{\sqrt{2}}{4}$$
, max/min.

◎ 多選擇題 (多選五題, 每題五分, 共二十五分。錯一個選項扣兩分, 錯兩個選項以上不給分, 分數不倒扣。)

Multiple-choice (5 questions, each 5 points, 25 points in total. One wrong option deducts 2 points, more than one wrong option gets no points, and no penalty for wrong answers.)

- 11. Find the **vector function** representing the curve of the intersection(交集) of the circular cylinder $x^2 + z^2 = 1$ and the plane x + y = 0.
 - (A) $\langle \sin t, -\sin t, \cos t \rangle$.
 - (B) $\langle \sin t, -\cos t, \sin t \rangle$.
 - (C) $|\langle \cos t, -\cos t, \sin t \rangle$.
 - (D) $\langle \cos t, -\sin t, \cos \overline{t} \rangle$.
- 12. Let $f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$

Which of the following statements is **correct**.

- (A) $|f(x,y) \rightarrow 0$ as $(x,y) \rightarrow (0,0)$ along x = y.
- $\lim_{(x,y)\to(0,0)} f(x,y) = 0. \quad (C) \quad \mathbf{f_x(0,0)} = \mathbf{0.} \quad (D) \quad f_y(0,0) = 0.$

Solution: (A)
$$\lim_{(x,y)\to(0,0)} f(x,y) \stackrel{x=y}{=} \lim_{y\to 0} \frac{y^2-y^2}{y^2+y^2} = \lim_{y\to 0} \frac{0}{2y^2} = 0.$$

(B)
$$\lim_{(x,y)\to(0,0)} f(x,y) \stackrel{y=0}{=} \lim_{x\to 0} \frac{x^2 - 0^2}{x^2 + 0^2} = \lim_{x\to 0} \frac{x^2}{x^2} = 1 \ (\neq 0 \text{ along } x = y)$$
 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

(C)
$$f_{\mathbf{x}}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^2 - 0^2}{h^2 + 0^2} - 1}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$

(D)
$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{\frac{0^2 - k^2}{k^2 + 0^2} - 1}{k} = \lim_{k \to 0} \frac{-2}{k}$$
 does not exist.

- 13. Which statement for a function f of two variables is always true?
- ** $\S 14.4$
- (A) If f has partial derivatives, then f is differentiable.
- (B) If f is differentiable, then f is continuous.
- (C) If f is continuous, then f has partial derivatives.
- (D) If f is continuous, then f is differentiable.

Solution: (A)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
 has $f_x(0,0) = f_y(0,0) = 0$, but no limit at $(0,0) \implies$ discontinuous

 \implies not differentiable.

(B) differentiable \implies continuous.

(C,D) f(x,y) = |x+y| at (0,0) is continuous but not differentiable, and $f_x(0,0)$ and $f_y(0,0)$ do not exist.

14. Let
$$f(x,y) = \begin{cases} \frac{xy^2 - x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

14.4

What about f at (0,0) is **correct**

- (A) f has a limit. (B) |f| has partial derivatives.
- f is continuous. (D) f is differentiable.

Solution: $-|x| - |y| \le f(x, y) \le |x| + |y|$, by Squeeze Theorem, $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0),$

 $\implies f$ has limit 0 and is continuous at (0,0).

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - 0}{h} = 0, \ f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - 0}{k} = 0.$$

If f is differentiable, then $f(x,y) = f(0,0) + f_x(0,0)x + f_y(0,0)y + f_y(0$ $\varepsilon_1 x + \varepsilon_2 y$ where $\varepsilon_1, \varepsilon_2 \to 0$ as $(x, y) \to (0, 0)$.

When $y = x \neq 0$, $0 = \varepsilon_1 x + \varepsilon_2 x$, $\varepsilon_1 + \varepsilon_2 = 0$; when $y = -x \neq 0$, $x = \varepsilon_1 x - \varepsilon_2 x$, $\varepsilon_1 - \varepsilon_2 = 1$; $\Longrightarrow \varepsilon_1 = \frac{1}{2} \not\to 0$, $\varepsilon_2 = -\frac{1}{2} \not\to 0$.

14.3 +

14.4

What about f at (0,0) is **correct**

(A) f has a limit.

- (B) f has partial derivatives.
- (D) f is differentiable. (C) f is continuous.

Solution: $f(x,y) \to 1$ along x = 0 and y = 0 along x = y.

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{(h-0)^2}{h^2 + 0^2} - 1}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{\frac{(0-k)^2}{0^2 + k^2} - 1}{k} = \lim_{k \to 0} 0 = 0.$$
differentiable $\frac{4}{h^2}$ continuous $\frac{4}{h^2}$ limits

- ◎ 填空題 (五題, 每題五分, 共二十五分, 答錯不倒扣。) Fill-in-the-blank (5 questions, each worth 5 points, 25 points in total, no penalty for wrong answers.)
- 16. Find the **directional derivative** of $f(x,y) = \frac{y^2}{x}$ at (1,1) in the direction of $\mathbf{v} = 5\mathbf{i} + 10\mathbf{j}$. (Hint: $\mathbf{D}_{\mathbf{u}}f = \nabla f \bullet \mathbf{u}$.)

Solution:
$$\frac{3}{\sqrt{5}}$$
 or $\frac{3\sqrt{5}}{5}$.

$$\mathbf{u} = \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle, \ \nabla f(x,y) = \langle -\frac{y^2}{x^2}, \frac{2y}{x} \rangle, \ \nabla f(1,1) = \langle -1, 2 \rangle,$$

$$\mathbf{D}_{\mathbf{u}} f(1,1) = \nabla f(1,1) \bullet \mathbf{u} = (-1) \frac{1}{\sqrt{5}} + 2 \frac{2}{\sqrt{5}} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}.$$

17. Find all the saddle points of $z = y \sin \frac{1}{x}$. (Hint: $(?,?),\cdots$.) $\star \S14.7$

Solution:
$$\left(\frac{1}{n\pi},0\right)$$
, $n \in \mathbb{Z} \setminus \{0\}$.

$$f_x = -\frac{y}{x^2}\cos\frac{1}{x} = 0 \text{ when } y = 0 \text{ or } x = \frac{2}{(2n-1)\pi}, n \in \mathbb{Z}.$$

$$f_y = \sin\frac{1}{x} = 0 \text{ when } x = \frac{1}{n\pi}, n \in \mathbb{Z} \setminus \{0\}.$$
critical points: $(x,y) = (\frac{1}{n\pi},0), n \in \mathbb{Z} \setminus \{0\}.$

$$f_{xy} = f_{yx} = -\frac{1}{x^2}\cos\frac{1}{x}, f_{yy} = 0, D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = -\frac{1}{x^4}\cos^2\frac{1}{x},$$

$$D(\frac{1}{n\pi},0) = -n^4\pi^2 < 0, \text{ all are saddle points.}$$

18. Let
$$\mathbf{r} = \int_0^{\pi/2} (3\sin^2 u \cos u \, \mathbf{i} + 3\sin u \cos^2 u \, \mathbf{j} + 2\sin u \cos u \, \mathbf{k}) \, du$$
.
Find the **unit vector** in the direction of \mathbf{r} . (Hint: $\langle ?, ?, ? \rangle$ or $?\mathbf{i} + ?\mathbf{j} + ?\mathbf{k}$.) $\overset{\star}{\star}_{\star\star}$ §13.2

Solution:
$$\left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$$
 or $\frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}$. (Ex 13.2.37)

$$\mathbf{r} = \left\langle \sin^3 t, 1 - \cos^3 t, \sin^2 t \right\rangle \Big|_0^{\pi/2} = \left\langle 1, 1, 1 \right\rangle = \mathbf{i} + \mathbf{j} + \mathbf{k},$$

$$\frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\left\langle 1, 1, 1 \right\rangle}{\sqrt{1^2 + 1^2 + 1^2}} = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle = \frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}.$$

19. Find the tangent plane to the surface
$$z = f(x, y) = x^2 + 3xy - y^2$$
 at the point $(1, 2)$.

Solution:
$$z - 3 = 8(x - 1) - (y - 2)$$
 or $8x - y - z = 3$.

$$f(1,2) = (1)^2 + 3(1)(2) - (2)^2 = 1 + 6 - 4 = 3,$$

$$f_x = 2x + 3y, f_x(1,2) = 2(1) + 3(2) = 8,$$

$$f_y = 3x - 2y, f_y(1,2) = 3(1) - 2(2) = -1,$$
tangent plane: $z - 3 = 8(x - 1) - (y - 2)$ or $8x - y - z = 3$.

20. Let
$$f(x,y) = e^{xy} \cos y$$
. Find $f_{xy}(0,0)$. $\star\star$ §14.3

```
Solution: 1. (Ex 14.3.60)

f_{x} = ye^{xy} \cos y,
f_{xy} = e^{xy} \cos y + xye^{xy} \cos y + ye^{xy}(-\sin y)
= e^{xy}(\cos y + xy \cos y - y \sin y),
f_{xy}(0,0) = e^{0.0}(\cos 0 + 0.0 \cos 0 - 0.0 \sin 0) = 1(1+0-0) = 1.
```

⊕ 加分題 (共十五分。總分超過100分以100分計。)

Bonus (15 points in total. The total score more than 100 points will only get 100 points.)

Let
$$g(t) = \begin{cases} \frac{\sin t}{t} & \text{if } t \neq 0 \\ 1 & \text{if } t = 0 \end{cases}$$
, and $f(x, y) = g(x)g(y)$.
(Hint: $\cos t \leq \frac{\sin t}{t} \leq 1$.)

(Command: When the answer does not exist, answer "does not exist".)

(a). [1 pts]
$$\lim_{(x,y)\to(0,0)} f(x,y) = \dots$$
 1

(b). [1 pts]
$$f_x(0,0) = \dots 0$$

(c). [1 pts]
$$f_y(0,0) = \dots 0$$

(d). [1 pts] Is
$$f$$
 continuous at $(0,0)$? (Yes/No) Yes

(e). [1 pts] Is
$$f$$
 differentiable at $(0,0)$? (Yes/No) Yes

(f). [2 pts] Find the **tangent plane** to z = f(x, y) at (0, 0).

Solution: z = 1.

(g). [2 pts] Find the **linearization** L(x,y) of f(x,y) at (0,0).

Solution: L(x,y) = 1.

(h). [2 pts] When
$$\mathbf{x} = \mathbf{0} \neq \mathbf{y}$$
, $f_x(x, y) = \dots$

(i). [2 pts] When
$$x \neq 0 = y$$
, $f_x(x, y) = \dots$ $\frac{x \cos x - \sin x}{x^2}$

(j). [2 pts] When
$$xy \neq 0$$
, $f_x(x,y) = \dots \frac{x \cos x - \sin x}{x^2} \frac{\sin y}{y}$

Solution:
$$\because \sin t \le t \le \tan t \iff \cos t \le \frac{\sin t}{t} \le 1$$
, $\cos x \cos y \le f(x,y) \le 1$, and $\lim_{(x,y)\to(0,0)} \cos x \cos y = \lim_{(x,y)\to(0,0)} 1 = 1$, $\therefore \lim_{(x,y)\to(0,0)} f(x,y) \stackrel{S.T.}{=} 1 = f(0,0), f \text{ is continuous at } (0,0).$

$$f_x(0,0) = \lim_{h\to 0} \frac{f(h,0)-f(0,0)}{h} = \lim_{h\to 0} \frac{\frac{\sinh h}{h}\cdot 1-1}{h} = \lim_{h\to 0} \frac{\sin h-h}{h^2}$$

$$\lim_{h\to 0} \frac{\cos h-1}{2h} \stackrel{t'H}{=} \lim_{h\to 0} \frac{-\sin h}{2} = 0; \text{ similarly, } f_y(0,0) = 0.$$
When $x=0$ and $y\neq 0$, $f(x,y)=g(y)$ and $f_x(x,y)=0=f_x(0,0);$ when $x\neq 0$, $\lim_{(x,y)\to(0,0)} f_x(x,y)=\lim_{(x,y)\to(0,0)} \left[\frac{d}{dx}\left(\frac{\sin x}{x}\right)\cdot g(y)\right]$

$$\lim_{(x,y)\to(0,0)} \left(\frac{x\cos x-\sin x}{x^2}g(y)\right) = \lim_{x\to 0} \frac{x\cos x-\sin x}{x^2}\lim_{y\to 0} \frac{\sin y}{y}$$

$$\lim_{x\to 0} \frac{-x\sin x}{2x}\cdot 1 = \lim_{x\to 0} \frac{-\sin x}{2} = 0 = f_x(0,0).$$
So f_x and similarly f_y are continuous $\implies f$ is differentiable at $(0,0)$.
$$z=f(0,0)+f_x(0,0)(x-0)+f_y(0,0)(y-0)=1:=L(x,y).$$
When $x=0\neq y$, $f(x,y)=\frac{\sin y}{x}$, $f_x=0$.

When $x\neq 0=y$, $f(x,y)=\frac{\sin x}{x}$, $f_x=\frac{x\cos x-\sin x}{x^2}$.
When $x\neq 0$, $f(x,y)=\frac{\sin x}{x}$, $f_x=\frac{x\cos x-\sin x}{x^2}$.

◈ 挑戰題 (共十分。總分超過100分以100分計。)

Challenge (10 points in total. The total score more than 100 points will only get 100 points.)

Let
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
 and $\mathbf{u} = \langle a, b \rangle$ be a unit vector.

(α). [3 pts] Express the directional derivative $\mathbf{D}_{\mathbf{u}}f(0,0)$ of f at (0,0) in the direction of \mathbf{u} as a function F(a,b). (Hint: by definition.)

Solution: ab^2 .

$$\begin{aligned} & \boldsymbol{D}_{\mathbf{u}}f(0,0) = \lim_{h \to 0} \frac{f(0+ah,0+bh) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{ab^2h^3}{a^2h^2 + b^2h^2} - 0}{h} \\ & = \lim_{h \to 0} ab^2 = ab^2. \end{aligned}$$

(β). [3 pts] Find the **maximum value** of F(a,b) subject to $a^2 + b^2 = 1$.

Solution: $\frac{2}{3\sqrt{3}}$ or $\frac{2\sqrt{3}}{9}$.

.....

[Sol 1]
$$F(a,b) = ab^2 = a(1-a^2) = a - a^3 = h(a)$$
,

$$h'(a) = 1 - 3a^2 = 0$$
 and $h''(a) = -6a \le 0$ when $a = \pm \frac{1}{\sqrt{3}}$,

$$h(\frac{1}{\sqrt{3}}) = \frac{1}{\sqrt{3}}(1 - \frac{1}{3}) = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}.$$

 $\begin{cases} \nabla F = \lambda \nabla G \\ G = 1 \end{cases} \implies \begin{cases} b^2 = \lambda 2a & \cdots (1) \\ 2ab = \lambda 2b & \cdots (2) \\ 1 = a^2 + b^2 & \cdots (3) \end{cases}$ When a = 0 or b = 0 or $\lambda = 0$, $\implies a = b = \lambda = 0$, no solution. When $a, b, \lambda \neq 0$, $(1) \div (2)$: $\frac{b}{2a} = \frac{a}{b} \implies b^2 = 2a^2$, take (3): $a^2 + 2a^2 = 1 \implies a^2 = \frac{1}{3}$, $\implies a = \pm \frac{1}{\sqrt{3}} \& b = \pm \frac{\sqrt{2}}{\sqrt{3}}$. $F(\pm \frac{1}{\sqrt{3}}, \pm \frac{\sqrt{2}}{\sqrt{3}}) = F(\pm \frac{1}{\sqrt{3}}, \mp \frac{\sqrt{2}}{\sqrt{3}}) = \pm \frac{2}{3\sqrt{3}} = \pm \frac{2\sqrt{3}}{9}, \max/\min.$

 (γ) . [4 pts] Find all **u** such that the maximum value of $\mathbf{D}_{\mathbf{u}}f(0,0)$ occurs. \bigstar

Solution: $\left\langle \frac{1}{\sqrt{3}}, \pm \frac{\sqrt{2}}{\sqrt{3}} \right\rangle$, or $\left\langle \frac{1}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right\rangle$ and $\left\langle \frac{1}{\sqrt{3}}, -\frac{\sqrt{2}}{\sqrt{3}} \right\rangle$. [Sol 1] $a = \frac{1}{\sqrt{3}}$, $b = \pm \sqrt{1 - a^2} = \pm \frac{\sqrt{2}}{\sqrt{3}}$. [Sol 2] $F(\frac{1}{\sqrt{3}}, \pm \frac{\sqrt{2}}{\sqrt{3}}) = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$.