Computer Architecture

Assignment #1: ARM Instructions Analysis

Binary number

Binary number represents any number with 0 and 1

How to convert Decimal to Binary?

$$7392 = 7 \times 103 + 3 \times 102 + 9 \times 101 + 2 \times 100$$

How to convert binary to Decimal?

$$(11010)2 = 1 \times 24 + 1 \times 23 + 0 \times 22 + 1 \times 21 + 0 \times 20 = (26)10$$

```
210 = 1Kilo
```

$$220 = 1 Mega$$

$$230 = 1 \text{Giga}$$

Convert to binary

• Ex 1-1) Convert decimal 41 to binary.

	Integer		Remainder	Coefficient	Integer	Remainder
	Quotient				41	
41/2 =	20	+	1/2	a0 = 1	20	1 4
20/2 =	10	+	0	a1 = 0	10	
10/2 =	5	+	0	a2 = 0	10	
5/2 =	2	+	1/2	a3 = 1	5	0
2/2 =	1	+	0	a4=0	2	1
1/2 =	0	+	1/2	a5 = 1	1	0
					0	1
						Answer

answer: $(41)_{10} = (a5a4a3a2a1a0)2 = (101001)2$

=101001

Octal and Hexadecimal

- (r-1)'s complement of N is (rn-1) N
 - · n is equal to N's digit
- r=10, r-1=9, the 9's complements of N is (10n 1) N
 - Ex) the 9's complements of 546700 is 999999 (= 1000000 1) -546700 = 453299 the 9's complements of 012398 is 999999-012398 = 987601

- In the case of binary, r=2, r-1=1
 1's complement of N is (2n 1) N
 - Ex) the 1's complements of 1011000 is (10000000 1) 1011000 = 1111111 1011000 = 0100111

the 1's complements of 0101101 is 1010010

- rn-N = [(rn-1)-N] + 1
 - r's complements is equal to (r-1)'s complements + 1

Ex) the 2's complements of 1011000 is 0100111 + 1 = 0101000 the 2's complements of 0101101 is 1010010 + 1 = 1010011

• Ex1-7) X=1010100, Y=1000011, (a) X-Y, (b) Y-X

$$X = 1010100$$
2's complement of $Y = +0111101$

$$Sum = 10010001$$
Discard end carry $27 = -10000000$

$$Answer: X-Y = 0010001$$
 $Y = 1000011$
2's complement of $X = +0101100$

$$Sum = 1101111$$

There is no carry.

The answer is Y-X = -(2's complement of 1101111)=-0010001

• Ex) X=1010100, Y=1010100, X-Y

$$X = 1010100$$
2's complement of $Y = +0101100$

$$Sum = 10000000$$
Discard end carry $27 = -10000000$
Answer: $X-Y = 0000000$

The answer is X-Y=0

Shift operation in binary

$$(11010)2 = 1 \times 24 + 1 \times 23 + 0 \times 22 + 1 \times 21 + 0 \times 20 = (26)10$$

Shift Left 2
 $(1101000)2 = 1 \times 26 + 1 \times 25 + 0 \times 24 + 1 \times 23 + 0 \times 22 + 0 \times 21 + 0 \times 20 = (104)10 = (26)10 \times 4$

$$(110100)2 = 1 \times 25 + 1 \times 24 + 0 \times 23 + 1 \times 22 + 0 \times 21 + 0 \times 20 = (52)10$$

Shift Right 2
 $(1101)2 = 1 \times 23 + 1 \times 22 + 0 \times 21 + 1 \times 20 = (13)10 = (52)10 / 4$

inst_data.mif

Byte Address

0 4 8 12...20 24 28 36 40

Word

EA000006

Instruction

Example

EA000006

Change instructions to binary format

1110 **101**0 0000 0000 0000 0000 0000 0110 (2)

Translate the binary instructions to assembly codes by referring to the reference

file

B # (= 0000 0000 0000 0000 0000 0110);

Describe what instruction means

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits

0000 0000 0000 0000 0000 0110 -> **00 0000** 0000 0000 0000 0000 0110

2. Shifting the result left two bits to form a 32-bit value

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ 10$ Adding this to the contents of the PC, which contains the address of the branch

instruction plus 8 bytes.

Make '32' by adding the current instruction address (0*4)+8' and '24'

Divide '32' into 4 so that it branches at first among the word-unit instructions: 32 /

4 = 8

Next instruction will be E59F2EC8 at the address 008

Example

EAFFFFFE

Change instructions to binary format

Translate the binary instructions to assembly codes by referring to the reference file

```
B#2 (= 1111 1111 1111 1111 1110);
```

(= 2's complement of 0000 0000 0000 0000 0000 0010)

Describe what instruction means

- 1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits 1111 1111 1111 1111 1111 1110 -> **11 1111** 1111 1111 1111 1111 1110
- 2. Shifting the result left two bits to form a 32-bit value

```
1111 1111 1111 1111 1111 1111 1111 1000 = -210 * 4 = -810
```

Adding this to the contents of the PC, which contains the address of the branch instruction plus 8 bytes.

```
Make '4' by adding the current instruction address '(1*4)+8' and '-8'
```

Divide '4' into 4 so that it branches at first among the word-unit instructions : 4/4 = 1

• Because it branches to the same instruction, the same instruction repeats indefinitely