Documentation for the SUNFLO crop model

Contents

Model structure	2
Modules	2
Variables	3
Inputs	3
Environment	3
Genetics	4
Crop potential growth	5
Phenology	5
LeafArea	6
Light interception	9
Biomass production	10
Crop performance	11
Environmental factors limiting crop production	11
Thermal stress	11
Water stress	13
Nitrogen stress	14
Radiation stress	14
References	14

Model structure

Modules

Variables

Inputs

Environment

Climate

label	description	unit
TemperatureAirMin	Minimum air temperature	$^{\circ}\mathrm{C}$
${\bf Temperature Air Max}$	Maximum air temperature	$^{\circ}\mathrm{C}$
Radiation	Global incident radiation	MJ.m-2
PET	Reference evapotranspiration	mm
Rainfall	Rainfall	mm

$\bf Soil$

label	description	value	unit	reference
RootingDepth	Potential rooting depth	1800.00	mm	(Lecoeur et a
WaterCapacity	Water content at field capacity (0-30 cm)	19.69	%	NA
WaterCapacity	Water content at wilting point (0-30cm)	9.69	%	NA
WaterCapacity	Water content at field capacity (30 cm-rooting depth)	19.69	%	NA

al., 20

label	description	value	unit	reference
WaterCapacity	Water content at wilting point (30 cm-rooting depth)	9.69	%	NA
SoilDensity	Soil bulk density (0-30cm)	1.50	g.cm-3	NA
SoilDensity	Soil bulk density (30 cm-rooting depth)	1.50	g.cm-3	NA
StoneContent	Stone content (0-rooting depth)	0.00	$[0\;;\;1]$	NA
${\bf Mineralization Rate}$	Potential nitrogen mineralization rate	0.50	kg/ha/day (normalized)	(Valé et al., 2007)

Management

label	description	value	unit	reference
SowingDate	Sowing date	NA	dd/mm	NA
HarvestDate	Harvest date	NA	dd/mm	NA
SowingDensity	Plant density	6.8	pnt/m2	NA
Fertilization	Fertilization (date 1)	NA	dd/mm	NA
Fertilization	Fertilization (amount 1)	0.0	kg/ha eq. mineral nitrogen	NA
Fertilization	Fertilization (date 2)	NA	dd/mm	NA
Fertilization	Fertilization (amount 2)	0.0	kg/ha eq. mineral nitrogen	NA
Irrigation	Irrigation (date 1)	NA	dd/mm	NA
Irrigation	Irrigation (amount 1)	0.0	mm	NA
Irrigation	Irrigation (date 2)	NA	dd/mm	NA
Irrigation	Irrigation (amount 2)	0.0	mm	NA
Irrigation	Irrigation (date 3)	NA	dd/mm	NA
Irrigation	Irrigation (amount 3)	0.0	mm	NA

Genetics

Species

Cultivar

label	description	value	unit	refere
ThermalTimeVegetative	Temperature sum to floral initiation	482.000	$^{\circ}\mathrm{Cd}$	(Leco
ThermalTimeFlowering	Temperature sum from emergence to the beginning of flowering	836.000	$^{\circ}\mathrm{Cd}$	(Leco
Thermal Time Senescence	Temperature sum from emergence to the beginning of grain filling	1083.000	$^{\circ}\mathrm{Cd}$	(Leco
Thermal Time Maturity	Temperature sum from emergence to seed physiological maturity	1673.000	$^{\circ}\mathrm{Cd}$	(Leco
${\bf Potential Leaf Number}$	Potential number of leaves at flowering	29.000	leaf	(Leco
PotentialLeafProfile	Potential rank of the largest leave of leaf profile at flowering	17.000	leaf	(Leco
PotentialLeafSize	Potential area of the largest leave of leaf profile at flowering	448.000	cm2	(Leco
ExtinctionCoefficient	Light extinction coefficient during vegetative growth	0.880	-	(Leco
WaterResponseExpansion	Threshold for leaf expansion response to water stress	-4.420	_	(Casa

label	description	value	unit	refere
WaterResponseConductance	Threshold for stomatal conductance response to water stress	-9.300	-	(Casa
${\bf Potential Harvest Index}$	Potential harvest index	0.398	-	(Casa
PotentialOilContent	Potential seed oil content	55.400	% dry matter	(Casa

Crop potential growth

Phenology

Inputs

label	description	value	unit	reference
ThermalTimeVegetative	Temperature sum to floral initiation	482.00	$^{\circ}\mathrm{Cd}$	(Lecoeur et al.,
ThermalTimeFlowering	Temperature sum from emergence to the beginning of flowering	836.00	$^{\circ}\mathrm{Cd}$	(Lecoeur et al.,
ThermalTimeSenescence	Temperature sum from emergence to the beginning of grain filling	1083.00	$^{\circ}\mathrm{Cd}$	(Lecoeur et al.,
Thermal Time Maturity	Temperature sum from emergence to seed physiological maturity	1673.00	$^{\circ}\mathrm{Cd}$	(Lecoeur et al.,
SowingDepth	Sowing depth	30.00	mm	NA
Germination	Temperature sum from sowing to germination	86.20	$^{\circ}\mathrm{Cd}$	(Villalobos et a
ElongationRate	Reciprocal of hypocotyl elongation rate	1.19	$^{\circ}\mathrm{Cd/mm}$	(Villalobos et a

Emergence

 $Emergence = Germination + Elongation Rate \cdot Sowing Depth$

with: Germination = 86, Thermal time for germination (°C.d) (Casadebaig et al., 2011); ElongationRate = 1.19, Hypocotyl elongation rate (°Cd/mm) (Villalobos et al., 1996); SowingDepth = 30, Sowing depth (mm).

ThermalTime

$$ThermalTime_d = \begin{cases} \int_0^d (T_m - T_b) \cdot (1 + WaterStressPhenology) \cdot dt & \text{if } T_m > T_b \\ 0 & \text{else} \end{cases}$$

with: T_m , Daily mean air temperature (°C); $T_b = 4.8$, Basal temperature (°C) see (Granier and Tardieu, 1998); ThermalStressPhenology Water stress effect on plant heating

PhenoStages

LeafArea

Inputs

label	description	value	unit	reference
PotentialLeafNumber	Potential number of leaves at flowering	29.00	leaf	(Lecoeur et al., 2011)
${\bf Potential Leaf Profile}$	Potential rank of the largest leave of leaf profile at flowering	17.00	leaf	(Lecoeur et al., 2011)
PotentialLeafSize	Potential area of the largest leave of leaf profile at flowering	448.00	cm2	(Lecoeur et al., 2011)
$Phyllotherm_1$	Phyllotherm (leaf ≤ 6)	71.43	${\rm ^{\circ}Cd}$	(Rey, 2003)
$Phyllotherm_7$	Phyllotherm (leaf > 7)	16.34	$^{\circ}\mathrm{Cd}$	(Rey, 2003)
${\bf Potential Leaf Duration}$	Thermal time between expansion and senescence	851.33	$^{\circ}\mathrm{Cd}$	(???)

$Leaf Initiation Time,\ Leaf Expansion Time,\ Leaf Senescence Time$

$$LeafInitiationTime_{i} = \begin{cases} i \cdot Phyllotherm_{1} & \text{if } i \leq 6\\ (i-5) \cdot Phyllotherm_{7} + a & \text{if } i \leq LeafNumber \end{cases}$$

with $Phyllotherm_1 = 76.43$ (°C.d), $Phyllotherm_7 = 16.34$ (°C.d) and a = 400 (°C.d)

 $LeafExpansionTime_i = LeafInitiation_i + 1/a$

with a = 0.01379.

 $Leaf Expansion Duration_i = a + Potential Leaf Duration \cdot exp^{\frac{-(i-Potential Leaf Profile)^2}{(c\cdot Potential Leaf Number)^2}}$

with PotentialLeafDuration = 851.3 (°C.d), a = 153 (°C.d), b = 0.78

 $Leaf Senescence Time_i = Leaf Expansion Time_i + Leaf Expansion Duration_i$

PotentialLeafArea

 $Potential Leaf Area_i = Potential Leaf Size \cdot exp^{a \cdot (\frac{i-Potential Leaf Profile}{Potential Leaf Profile-1})^2 + b \cdot (\frac{i-Potential Leaf Profile}{Potential Leaf Profile-1})^3}$

with a=-2.05 and b=0.049, shape parameters; PotentialLeafSize (cm2) and PotentialLeafProfile (node), genotypic parameters.

LeafGrowthRate, LeafSenescenceRate, LeafArea

$$LeafGrowthRate_{i} = (T_{m} - T_{b}) \cdot PotentialLeafArea_{i} \cdot a \cdot \frac{exp^{-a(ThermalTime-LeafExpansionTime_{i})}}{(1 + exp^{-a(ThermalTime-LeafExpansionTime_{i})})^{2}}$$

$$Leaf Senescence Rate_i = (T_m - T_b) \cdot Leaf Area_i \cdot a \cdot \frac{exp^{-a(ThermalTime-Leaf Senescence Time_i)}}{(1 + exp^{-a(ThermalTime-Leaf Senescence Time_i)})^2}$$

with $T_m = 25$, mean air temperature (°C); $T_b = 4.8$, base temperature (°C); a = 0.01379. The illustration uses i = 10 as values for $PotentialLeafArea_i$, $LeafExpansionTime_i$ and $LeafSenescenceTime_i$

$$LeafArea_i = \int LeafGrowthRate_i - \int LeafSenescenceRate_i$$

Light interception

LAI

$$LAI = \sum_{i=1}^{LeafNumber} LeafArea_i$$

RIE

$$RIE = 1 - exp^{(-ExtinctionCoefficient*LAI)}$$

Biomass production

\mathbf{RUE}

$$Potential RUE = \left\{ \begin{array}{l} r_0 \\ r_0 + 2 \cdot \frac{ThermalTime - 300}{ThermalTimeFlowering - 300} \\ r_{max} \\ a \cdot exp^{b \cdot (1 - \frac{ThermalTime - ThermalTimeMaturity}{ThermalTimeMaturity - ThermalTimeSenescence}}) \\ 0 \end{array} \right.$$

$$\label{eq:continuous_section} \begin{split} &\text{if } Thermal Time < 300 \\ &\text{if } 300 < Thermal Time < Thermal Time Flowering \\ &\text{if } Thermal Time Flowering < Thermal Time < Thermal Flowering < Thermal Time < Thermal Flowering < Thermal Time < Thermal Flowering < Thermal Flo$$

with $r_0 = 1$, vegetative RUE; $r_{max} = 3$, maximum RUE; a = 0.015, final RUE; b = 4.5, slope of RUE decrease in grain filling stage.

CropBiomass (Monteith, 1977)

 $dCropBiomass = 0.48 \cdot Radiation \cdot RIE \cdot RUE \cdot dt$

Crop performance

Environmental factors limiting crop production

Thermal stress

ThermalStressRUE (Villalobos et al., 1996)

$$ThermalStressRUE = \begin{cases} T_m \cdot \frac{1}{T_{ol} - T_b} - \frac{T_b}{T_{ol} - T_b} & \text{if } T_b < T_m < T_{ol} \\ 1 & \text{if } T_{ol} < T_m < T_{ou} \\ T_m \cdot \frac{1}{T_{ou} - tc} - \frac{tc}{T_{ou} - tc} & \text{if } T_{ou} < T_m < tc \\ 0 & \text{else} \end{cases}$$

with $T_b = 4.8$, base temperature (°C); $T_{ol} = 20$, optimal lower temperature (°C); $T_{ou} = 28$, optimal upper temperature (°C); $T_c = 37$, critical temperature (°C)

ThermalStressMineralization (Valé et al., 2007)

$$ThermalStressMineralization = \frac{T_c}{1 + (T_c - 1) \cdot exp^{(-0.119 \cdot (T_m - T_b))}}$$

with $T_b=15$, base temperature (°C); $T_c=36$, critical temperature (°C)

ThermalStressAllocation

Water stress

$Water Stress Expansion, \ Water Stress Conductance$

$$WaterStressProcess = -1 + \frac{2}{1 + exp^{(a \cdot WaterStress)}}$$

with $a \in [-15.6; -2.3]$, genotype-dependant response parameter

WaterStressPhenology

 $WaterStressPhenology = a \cdot (1 - WaterStressConductance)$

with a=0.1, scaling parameter for water-stress plant heating

WaterStressMineralization

 $WaterStressMineralization = 1 - (1 - y_0) \cdot (1 - RelativeWaterContent_{layer1})$

Nitrogen stress

Radiation stress

RadiationStressExpansion (Rey, 2003)

$$RadiationStressExpansion = s \cdot a + \frac{b}{1 + exp^{\left(\frac{c - IPAR/LAI}{d}\right)}}$$

with s = 2.5, scaling parameter for density effect; a = -0.14; b = 1.13; c = 4.13; d = 2.09

References

Casadebaig, P., Debaeke, P., Lecoeur, J., 2008. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. European Journal of Agronomy 28, 646–654.

Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L., Debaeke, P., 2011. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and Forest Meteorology 151, 163–178.

Granier, C., Tardieu, F., 1998. Is thermal time adequate for expressing the effects of temperature on sunflower leaf development? Plant, Cell & Environment 21, 695–703.

Lecoeur, J., Poiré-Lassus, R., Christophe, A., Pallas, B., Casadebaig, P., Debaeke, P., Vear, F., Guilioni, L., 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. SUNFLO: a model-based analysis. Functional Plant Biology 38, 246–259.

Monteith, J.L., 1977. Climate and the Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 281, 277–294.

Rey, H., 2003. Utilisation de la modélisation 3D pour l'analyse et la simulation du développement et de la croissance végétative d'une plante de tournesol en conditions environnementales fluctuantes (température et rayonnement). (PhD thesis). Ecole Nationale Supérieure Agronomique de Montpellier, spécialité sciences agronomiques, CIRAD-AMAP / INRA - LEPSE.

Valé, M., Mary, B., Justes, E., 2007. Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions. Biology and Fertility of Soils 43, 641–651.

 $\label{eq:condition} \begin{tabular}{ll} Villalobos, F., Hall, A., Ritchie, J., Orgaz, F., 1996. OILCROP-SUN: a development, growth and yield model of the sunflower crop. Agronomy Journal 88, 403–415. \end{tabular}$