Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 10

Tutoriumsaufgabe 10.1

Die vier Probleme A, B, C, D sind Entscheidungsprobleme, über die folgendes bekannt ist: $A \leq_p \mathrm{SAT} \leq_p B$, und $A \leq_p C$, und $B \leq_p \mathrm{SAT} \leq_p D$. Markieren Sie in der folgenden Tabelle die Aussagen, die wir mit Sicherheit wissen (unabhängig davon, ob P=NP oder $P \neq NP$ gilt):

	in NP	NP-vollständig	NP-schwer
A			
В			
С			
D			

Tutoriumsaufgabe 10.2

Zeigen Sie für das BIN PACKING PROBLEM (BPP), dass, falls die Entscheidungsvariante in P ist, so kann auch die Optimierungsvariante in polynomialer Zeit gelöst werden.

Tutoriumsaufgabe 10.3

Wir betrachten folgendes Entscheidungsproblem.

INDEPENDENT SET

Eingabe: Ein Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es unabhänige Knotenmenge $I \subseteq V$ mit $|I| \ge k$, d.h. für alle $u, v \in I$ gilt $\{u, v\} \notin E$.

- (a) Zeigen Sie, dass Independent Set in NP liegt.
- (b) Zeigen Sie, dass CLIQUE \leq_p INEPENDENT SET. Wie bald in der Vorlesung gezeigt wird, gilt SAT \leq_p CLIQUE. Was folgt daraus für INEPENDENT SET?

Hausaufgabe 10.1 (3 Punkte)

Zeigen Sie für das Traveling Salesman Problem (TSP), dass, falls die Entscheidungsvariante in P ist, so kann auch die Optimierungsvariante in polynomialer Zeit gelöst werden.

Hausaufgabe 10.2 (1+4 Punkte)

Eine Knotenmenge $R \subseteq V$ spannt eine Kante $\{u, v\} \in E$ auf, falls $u \in R$ und $v \in R$. Wir betrachten folgendes Entscheidungsproblem.

KANTEN AUFSPANNEN

Eingabe: Ein Graph G = (V, E); zwei Zahlen r und s.

Frage: Gibt es eine Menge $R \subseteq V$ mit |R| = r, die mindestens s Kanten aufspannt?

- (a) Zeigen Sie, dass Kanten Aufspannen in NP liegt.
- (b) Zeigen Sie, dass CLIQUE \leq_p KANTEN AUFSPANNEN. Wie bald in der Vorlesung gezeigt wird, gilt SAT \leq_p CLIQUE. Was folgt daraus für KANTEN AUFSPANNEN?

Hausaufgabe 10.3 (1+4 Punkte)

Für Vektoren $c, d \in \mathbb{Z}^k$ sei $c \geq d$ falls für alle $i \in \{1, ..., k\}$ gilt, dass $c_i \geq d_i$. Wir betrachten folgendes Entscheidungsproblem:

 $\{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING

Eingabe: Eine Matrix $A \in \{-1, 0, 1\}^{m \times n}$ und ein Vektor $b \in \{-1, 0, 1\}^m$.

Frage: Gibt es einen Vektor $x \in \{0,1\}^n$ mit $Ax \ge b$?

- (a) Zeigen Sie, dass $\{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING in NP liegt.
- (b) Zeigen Sie, dass $\{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING NP-schwer ist.

Hinweis: Es bietet sich eine Reduktion von SAT an. Außerdem ist hilfreich als Zwischenschritt auch Gleichungen der Art c + d = 1 zu erlauben. Daraufhin kann man sich überlegen, wie man eine solche Gleichung in Ungleichungen übersetzten kann.