

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

ANOTAÇÕES E RESUMOS DE ÁLGEBRA LINEAR

Renan Wenzel - 11169472

16 de agosto de 2022

Conteúdo

1	Introdução	3
2	Espaços Vetoriais	4
	2.1 Corpos e Espaços Vetoriais	4
	2.2 Bases	5

1 Introdução

A álgebra linear se preocupa em generalizar alguns conceitos fundamentais da matemática. Durante o ensino médio e no primeiro semestre, o estudante aprendeu sobre a estrutura dos números inteiros, reais, racionais e, talvez, sobre os complexos. Agora, vamos ver o que tem de mais profundo por trás deles, estudando, por exemplo, questões da dimensão, de operações e dos objetos que sofrem delas.

Na segunda parte do curso, o estudante costuma aprender sobre funcionais e transformações lineares, que relacionam dois espaços vetoriais (ou um corpo) e satisfazem algumas condições. Um exemplo já visto de uma transformação linear é a derivada, que serve de motivação para uma construção futura chamada Espaço Tangente.

Saber manipular e trabalhar com esses conceitos é essencial na carreira de matemático, porque muitos conceitos futuros tomam como base o que será visto aqui, em todas as áreas da matemática e, para isso, espero que essas notas sirvam como um guia para quem necessita de uma luz nesse curso.

2 Espaços Vetoriais

Para falar sobre espaços vetoriais, é preciso antes falar sobre corpos, pois espaços vetoriais são definidos com base nessas estruturas, que serão "onde os vetores irão morar". Para exemplificar, um espaço vetorial sobre $\mathbb R$ terá como vetores números reais, e um espaço vetorial sobre $\mathbb C$ terá como vetores números complexos. O que faremos a seguir é definir mais precisamente cada um destes conceitos, desde corpos a vetores.

2.1 Corpos e Espaços Vetoriais

Definição. Diremos que um conjunto \mathbb{K} é um corpo se ele satisfaz as seguintes propriedades:

- A1) $x + y = y + x, \forall x, y \in \mathbb{K}$
- A2) $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{K}$
- A3) Existe um elemento 0 tal que $x + 0 = 0 + x = x, \forall x \in \mathbb{K}$
- A4) Para todo x, existe um elemento -x tal que $x + (-x) = -x + x = 0, \forall x \in \mathbb{K}$.
- $M1) \ x \cdot y = y \cdot x, \forall x, y \in \mathbb{K}$
- *M2)* $(x \cdot y) \cdot z = x(y \cdot z), \forall x, y, z \in \mathbb{K}$
- M3) Existe um elemento 1 tal que $x \cdot 1 = 1 \cdot x = x, \forall x \in \mathbb{K}$
- M4) Para todo x, existe um elemento x^{-1} tal que $x^{-1} \cdot x = x \cdot x^{-1} = 1, \forall x \in \mathbb{K}$
- D1) $x \cdot (y+z) = x \cdot y + x \cdot z$
- D2) $(x + y) \cdot z = x \cdot z + y \cdot z$

Faremos algumas convenções com relação a essa definição. Ao invés de escrevermos \mathbf{x} + (- \mathbf{x}), $x \cdot y, x^{-1}$, faremos:

$$x - x := x + (-x), \quad x \cdot y := xy, \quad x^{-1} := \frac{1}{x}.$$

Exemplos básicos de corpos são o corpo dos números reais, dos números racoinais e dos números complexos. Um bom exercício para se acostumar com esses conceitos é provar que eles são realmente corpos e mostrar que os números inteiros não formam um corpo.

Agora que temos uma ideia sobre corpos, podemos definir um espaço vetorial:

<u>Definição</u>. Dizemos que um conjunto V é um espaço vetorial se seus elementos, chamados vetores, satisfazem os axiomas abaixo:

- *V1*) $u + v = v + u, v, u \in V$;
- $V2) u + (v + w) = (u + v) + w, v, u, w \in V;$
- *V3*) Existe $0 \in V$ tal que v + 0 = v, $v \in V$;
- V4) Para todo $v \in V$, existe $-v \in V$ tal que v v = 0;
- E1) Dado $v \in V, 1v = v;$
- E2) Dados $\alpha, \beta \in \mathbb{K}, (\alpha\beta)v = \alpha(\beta v), v \in V;$
- $DV1) \ \alpha(u+v) = \alpha u + \alpha v;$
- DV2) $(\alpha + \beta)v = \alpha v + \beta v$.

Vamos ver um exemplo de espaço vetorial:

Exemplo: 2.1. Considere o corpo \mathbb{R}^2 . Vamos mostrar que \mathbb{R} é um espaço vetorial sobre \mathbb{R}^2 . Esse tipo de demonstração é, em geral, sempre igual. Tome dois elementos $v, u \in \mathbb{R}$ e dois escalares $\mathbf{k_1}, \mathbf{k_2} \in \mathbb{R}^2$.

Segue das propriedades dos números reais que existe um elemento neutro da adição, o 0 usual, um inverso aditivo (dado $x \in \mathbb{R}, -x \in \mathbb{R}$) e as propriedades usuais de soma, isto é, comutatividade e associatividade. Agora, coloque $\mathbf{k_1} = (\alpha_1, \beta_1), \mathbf{k_2} = (\alpha_2, \beta_2)$ e 1 = (1, 0). Com isto, temos:

$$1.x = (1,0).x = (1.x,0.x) = (x,0) = x,$$

 $(\mathbf{k_1k_2})x = ((\alpha_1\alpha_2, \beta_1\beta_2))(x, 0) = ((\alpha_1\alpha_2)x, \beta_1\beta_20) == (\alpha_1(\alpha_2x), 0) = (\alpha_1, \beta_1)((\alpha_2, \beta_2)(x, 0)) = k_1(k_2x).$ Resta mostrar a distributiva. Note que

$$(\mathbf{k_1} + \mathbf{k_2})x = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)x = (\alpha_1 x + \alpha_2 x, 0) = (\alpha_1, \beta_1)x + (\alpha_2, \beta_2)x.$$

e

$$(x+y)\mathbf{k_1} = ((x,0)+(y,0))(\alpha_1,\beta_1) = (x+y,0)(\alpha_1,\beta_1) = (x\alpha_1+y\alpha_1,0) = x\mathbf{k_1} + y\mathbf{k_1}.$$

Agora que temos uma noção básica de espaços vetoriais, aprofundaremos na teoria.

2.2 Bases

Sabe como todo número real pode ser escrito como 1.x? Vamos buscar uma forma análoga para um espaço vetorial qualquer. Para isso, será introduzido o conceito da combinação linear e independência linear de vetores quaisquer.

<u>Definição</u>. Dado um espaço vetorial V sobre \mathbb{K} , diremos que um conjunto de vetores $\mathcal{B}: v_1, \dots, v_n$ gera V se qualquer elemento $v \in V$ puder ser escrito como:

$$v = \sum_{i=1}^{n} \alpha_i v_i,$$

 $com \ \alpha_i \in \mathbb{K} \ para \ cada \ i.$

Há, porém, um problema com isso. Vamos ilustrar isso no exemplo a seguir:

Exemplo: 2.2 (NB). Considerando \mathbb{C}^2 como um espaço vetorial sobre \mathbb{C} , o conjunto de vetores $\mathcal{B}: (1,0), (0,i), (i,0), (0,1)$ $gera \mathbb{C}^2$.

De fato, visto que um elemento (a,b)=(x+iy,z+iw), em que $a,b\in\mathbb{C},x,y,z,w\in\mathbb{R}$, pode ser escrito como:

$$(a,b) = x(1,0) + y(i,0) + z(0,1) + w(0,i)$$

No entanto, observe que se (a,b) = (0,0), então

$$(0,0) = 1(1,0) + i(i,0) + 0(0,1) + 0(0,i).$$

Assim, o elemento (0,0) pode ser escrito de duas formas diferentes! Sendo a outra:

$$(0,0) = 0(1,0) + 0(i,0) + 0(0,1) + 0(0,i).$$

Explicitamente, queremos representar **de maneira única** cada elemento de V. É para isso que surge a noção de independência linear e de base, isto é,

<u>Definição</u>. Dado um espaço vetorial V sobre \mathbb{K} , diremos que um conjunto de vetores $\mathcal{B}: v_1, \cdots, v_n$ gera V se:

$$\sum_{i=1}^{n} \alpha_i v_i = 0 \Leftrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0,$$

 $com \ \alpha_i \in \mathbb{K} \ para \ cada \ i.$

Definição. Dado um espaço vetorial V sobre \mathbb{K} , diremos que um conjunto de vetores $\mathcal{B}: v_1, \dots, v_n$ é uma base de V \mathcal{B} gera V e é linearmente independente.

Conclui-se que o conjunto apresentado no exemplo 2.2 não é uma base! (por que?). Com base nisso, você consegue encontrar uma base para o espaço vetorial do exemplo? E para o exemplo 2.1?