CPSC 455 / MATH 452 CHAOS AND DYNAMICAL SYSTEMS

PROBLEM SET 2, DUE WEDNESDAY, FEBRUARY 2

DIRECTIONS: In order to receive full credit for correct answers it is necessary to follow instructions, show your clear organized work, and/or provide a well-reasoned explanation. Proper mathematical notation is expected.

Please note that unless indicated otherwise, Parts I & II should be completed by all students.

Part I. Exercises for Chapter 4: Graphical Analysis

- 1. Consider the map $F(x) = x^2 1.1$.
 - (a) Find the fixed points of F
 - (b) Use part (a) to find the a 2-cycle for F.
- 2. Perform a complete orbit analysis for:
 - (a) $F(x) = x \sin x$
 - (b) F(x) = 1/x.
 - (c) $F(x) = e^x$.
 - (d) $F(x) = x^2 + 1$.
- **3**. (BONUS PTS) Recall that Newton's Method associated with a function F is $N(x) = x \frac{F(x)}{F'(x)}$. Prove that p is a fixed point of N if and only if p is a zero of F.

Part II. Computer Exercise

If p is an attracting fixed point, then the set of all initial conditions x_0 with the property that the sequence $\{F^n(x_0)\}$ converges to p is called the **basin of attraction** of p. It can be shown that every fixed point of Newton's Method is attracting. Consider the map

$$F(x) = x(x^2 - 4).$$

- C-1: Adapt your Newton's method code to find the basin of attraction of each fixed point of F.
- C-2: What does the structure of the basin of attraction imply for Newton's Method.
- C-3: Describe the set of initial values in the domain of F for which Newton's Method will fail. Explain graphically why it fails in these cases.