Customer Service Requests Analysis

#libraries imported

```
import numpy as np
import pandas as pd
import datetime as dt
from datetime import timedelta
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from scipy.integrate import quad
from scipy.stats import norm
```

#read path of dataset file

```
df_311 = pd.read_csv('C:\\Users\\SandipG\\Desktop\\Python
Programs\\311_Service_Requests_from_2010_to_Present.csv')

E:\Programs\Anaconda3\lib\site-
packages\IPython\core\interactiveshell.py:3058: DtypeWarning: Columns (48,49)
have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)
```

#check if the dataset file is accessed correctly

```
df_311.shape (300698, 53)
```

Data Ingestion to display all 53 columns

```
df = pd.read_csv("C:\\Users\\SandipG\\Desktop\\Python
Programs\\311_Service_Requests_from_2010_to_Present.csv")
```

```
pd.set_option('display.max_columns',None)
```

```
E:\Programs\Anaconda3\lib\site-
packages\IPython\core\interactiveshell.py:3058: DtypeWarning: Columns (48,49)
have mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)
```

Converting dates

```
df['Created Date'] = df['Created Date'].astype('datetime64[ns]')
df['Closed Date'] = df['Closed Date'].astype('datetime64[ns]')
df['Resolution Action Updated Date'] = df['Resolution Action Updated Date'].astype('datetime64[ns]')
#New feature created Request Closing Time
df['Request_Closing_Time']=df['Closed Date']-df['Created Date']
#New feature created Month &
count = 0
#Create an empty list called "month"
month=[]
# for all the rows in 'Created Date' (calculated by len(df)) extract month and append to "month"
list
while count < len(df):
  month.append(df['Created Date'][count].month)
  count = count + 1
# create a new month column
df['Month'] = month
#new feature created Minute
minutes=[]
# calculate duration by finding diffrenece between 'Closed Date' and Created Date
# Create new column called "Duration_Minutes"
df['Duration_Minutes'] = df['Closed Date'] - df['Created Date']
for x in df['Duration_Minutes']:
  minutes.append(x.seconds / 60)
df['Duration_Minutes'] = minutes
# Preparing Data
df['Agency'].value_counts()
```

NYPD 300698

Name: Agency, dtype: int64

Data Profiling of 'Agency Name' feature.

(df['Agency Name'].value_counts()).head().plot(kind = 'bar', figsize= (10,6), title='Types of Agency',color='green')

Please Note:

There are only 2 types of agency's viz New York Police Dept and Internal Affairs Bureau and # Majority of complaints come from New York Police Dept.

Data Profiling of 'Complaint Type' feature.

df['Complaint Type'].value_counts()
(df['Complaint Type'].value_counts()).head().plot(kind = 'bar', figsize= (10,6), title='Maximum Occuring
Complaints(top 5)',color='cyan')

Data Profiling of 'Agency Name' feature.

Please Note:

- # There are only 2 types of agency's viz New York Police Dept and Internal Affairs Bureau and
- # Majority of complaints come from New York Police Dept.
- # The major complaint type are Blocked Driveway, Illegal Parking, Noise Street/Sidewalk, Noise Commercial and Derelict Vehicle

 $\verb|<matplotlib.axes._subplots.AxesSubplot| at 0x270e0dd5e48>$

df['Complaint Type'].value_counts()

Blocked	Driveway	77044
Illegal	Parking	75361
Noise -	Street/Sidewalk	48612
Noise -	Commercial	35577

Derelict Vehicle	17718
Noise - Vehicle	17083
Animal Abuse	7778
Traffic	4498
Homeless Encampment	4416
Noise - Park	4042
Vending	3802
Drinking	1280
Noise - House of Worship	931
Posting Advertisement	650
Urinating in Public	592
Bike/Roller/Skate Chronic	427
Panhandling	307
Disorderly Youth	286
Illegal Fireworks	168
Graffiti	113
Agency Issues	6
Squeegee	4
Ferry Complaint	2
Animal in a Park	1
Name: Complaint Type, dtype:	int64

df.head()

	Uni que Ke y	Cr eat ed Da te	Clo sed Da te	Ag en cy	Age ncy Na me	Comp laint Type	Desc ripto r	Locat ion Type	Inc ide nt Zip	Incid ent Addr ess	Stree t Name	Cros s Stre et 1	Cros s Stre et 2	Inter secti on Stre et 1	Inter secti on Stre et 2	Add ress Typ e	City	Lan dma rk	Fa cili ty Ty pe
0	323 103 63	201 5- 12- 31 23: 59: 45	201 6- 01- 01 00: 55: 00	N YP D	New Yor k City Poli ce Dep artm ent	Noise - Street/ Sidew alk	Loud Musi c/Par ty	Street/ Sidew alk	100 34. 0	71 VER MIL YEA AVE NUE	VER MIL YEA AVE NUE	ACA DE MY STR EET	WE ST 204 STR EET	NaN	NaN	AD DR ESS	NEW YOR K	NaN	Pre cin ct
1	323 099 34	201 5- 12- 31	201 6- 01- 01	N YP D	New Yor k City	Block ed Drive way	No Acce ss	Street/ Sidew alk	111 05. 0	27-07 23 AVE NUE	23 AVE NUE	27 STR EET	28 STR EET	NaN	NaN	AD DR ESS	AST ORI A	NaN	Pre cin ct

	Uni que Ke y	Cr eat ed Da te	Clo sed Da te	Ag en cy	Age ncy Na me	Comp laint Type	Desc ripto r	Locat ion Type	Inc ide nt Zip	Incid ent Addr ess	Stree t Name	Cros s Stre et 1	Cros s Stre et 2	Inter secti on Stre et 1	Inter secti on Stre et 2	Add ress Typ e	City	Lan dma rk	Fa cili ty Ty pe
		23: 59: 44	01: 26: 00		Poli ce Dep artm ent														
2	323 2 091 59	201 5- 12- 31 23: 59: 29	201 6- 01- 01 04: 51: 00	N YP D	New Yor k City Poli ce Dep artm ent	Block ed Drive way	No Acce ss	Street/ Sidew alk	104 58. 0	2897 VAL ENTI NE AVE NUE	VAL ENTI NE AVE NUE	EAS T 198 STR EET	EAS T 199 STR EET	NaN	NaN	AD DR ESS	BRO NX	NaN	Pre cin ct
3	323 050 98	201 5- 12- 31 23: 57: 46	201 6- 01- 01 07: 43: 00	N YP D	New Yor k City Poli ce Dep artm ent	Illegal Parkin g	Com merc ial Over night Parki ng	Street/ Sidew alk	104 61. 0	2940 BAIS LEY AVE NUE	BAIS LEY AVE NUE	EDI SON AVE NUE	B STR EET	NaN	NaN	AD DR ESS	BRO NX	NaN	Pre cin ct
4	323 065 29	201 5- 12- 31 23: 56: 58	201 6- 01- 01 03: 24: 00	N YP D	New Yor k City Poli ce Dep artm ent	Illegal Parkin g	Bloc ked Side walk	Street/ Sidew alk	113 73. 0	87-14 57 ROA D	57 ROA D	SEA BUR Y STR EET	HOF FM AN DRI VE	NaN	NaN	AD DR ESS	ELM HUR ST	NaN	Pre cin ct

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 300698 entries, 0 to 300697 Data columns (total 56 columns): Unique Key 300698 non-null int64 Created Date 300698 non-null datetime64[ns] 298534 non-null datetime64[ns] Closed Date Agency 300698 non-null object Agency Name 300698 non-null object Complaint Type 300698 non-null object Descriptor 294784 non-null object Location Type 300567 non-null object 298083 non-null float64 Incident Zip Incident Address 256288 non-null object Street Name 256288 non-null object Cross Street 1 251419 non-null object Cross Street 2 250919 non-null object Intersection Street 1 43858 non-null object Intersection Street 2 43362 non-null object Address Type 297883 non-null object City 298084 non-null object Landmark 349 non-null object Facility Type 298527 non-null object 300698 non-null object Status Due Date 300695 non-null object Resolution Description 300698 non-null object 298511 non-null datetime64[ns] Resolution Action Updated Date Community Board 300698 non-null object Borough 300698 non-null object X Coordinate (State Plane) 297158 non-null float64 297158 non-null float64 Y Coordinate (State Plane) Park Facility Name 300698 non-null object 300698 non-null object Park Borough School Name 300698 non-null object School Number 300698 non-null object School Region 300697 non-null object School Code 300697 non-null object School Phone Number 300698 non-null object School Address 300698 non-null object School City 300698 non-null object School State 300698 non-null object School Zip 300697 non-null object School Not Found 300698 non-null object

School or Citywide Complaint

0 non-null float64

```
0 non-null float64
Vehicle Type
                                     0 non-null float64
Taxi Company Borough
Taxi Pick Up Location
                                     0 non-null float64
Bridge Highway Name
                                     243 non-null object
Bridge Highway Direction
                                     243 non-null object
Road Ramp
                                     213 non-null object
Bridge Highway Segment
                                     213 non-null object
Garage Lot Name
                                     0 non-null float64
Ferry Direction
                                     1 non-null object
Ferry Terminal Name
                                     2 non-null object
                                     297158 non-null float64
Latitude
                                     297158 non-null float64
Longitude
                                     297158 non-null object
Location
                                     298534 non-null timedelta64[ns]
Request Closing Time
                                     300698 non-null int64
Month
                                     298534 non-null float64
Duration Minutes
dtypes: datetime64[ns](3), float64(11), int64(2), object(39),
timedelta64[ns](1)
memory usage: 128.5+ MB
(df['Complaint Type'].value_counts()).tail().plot(kind = 'bar', figsize= (10,6), title='Minimum Occuring Complaints
(bottom 5)',color='green')
# Please Note:
# The occurrence of the following complaint type are less:
# Illegal Fireworks
                         168
# Graffiti
                         113
# Agency Issues
                           6
# Squeegee
# Ferry Complaint
# Animal in a Park
```

<matplotlib.axes. subplots.AxesSubplot at 0x270f4717a48>

Data Profiling of 'Descriptor' feature.

```
df['Descriptor'].value_counts()
```

(df['Descriptor'].value_counts()).head(15).plot(kind = 'bar', figsize= (10,6), title='Maximum occuring description of complaints (top 15)',color='red')

```
# Please Note:
```

Major complaint types are for the following description:

Loud Music/Party 61430

No Access 56976

Posted Parking Sign Violation 22440

Loud Talking 21584

Partial Access 20068

With License Plate 17718

Blocked Hydrant 16081

Commercial Overnight Parking 12189

Car/Truck Music 11273

Blocked Sidewalk 11121

Double Parked Blocking Traffic 5731

<matplotlib.axes._subplots.AxesSubplot at 0x270f46ff788>

df['Descriptor'].value_counts()

61430
56976
22440
21584
20068
17718
16081
12189
11273
11121
5731
4211
4189

Banging/Pounding	4165
Neglected	3787
Car/Truck Horn	3511
Congestion/Gridlock	2761
In Prohibited Area	2025
Other (complaint details)	1969
Unlicensed	1777
Overnight Commercial Storage	1757
Unauthorized Bus Layover	1367
Truck Route Violation	1014
In Public	932
Tortured	854
Vehicle	590
Chained	535
Detached Trailer	464
No Shelter	382
Chronic Stoplight Violation	280
Underage - Licensed Est	271
Chronic Speeding	268
In Car	251
Playing in Unsuitable Place	245
Drag Racing	175
Loud Television	93
Police Report Requested	90
After Hours - Licensed Est	77
Building	60
Nuisance/Truant	41
Police Report Not Requested	23
Language Access Complaint	6
Animal Waste	1
Homeless Issue	1
Disruptive Passenger	1
Name: Descriptor, dtype: int64	

(df['Descriptor'].value_counts()).tail(15).plot(kind = 'bar', figsize= (10,6), title='minimum occuring description of complaints (bottom 15)',color='green')

<matplotlib.axes._subplots.AxesSubplot at 0x270b5b87f88>

Location Type

Data Profiling of 'Location Type' feature.

```
df['Location Type'].value_counts()
(df['Location Type'].value_counts()).head(10).plot(kind = 'bar', figsize= (10,6), title='Types of Location (top 10)',color='magenta')
```

```
# Please Note:
```

Major complaints have come from the following location type:

Street/Sidewalk 249299

Store/Commercial 20381

Club/Bar/Restaurant 17360

Residential Building/House 6960

Park/Playground 4773#

<matplotlib.axes._subplots.AxesSubplot at 0x270e3e71b08>

df['Location Type'].value_counts()

Street/Sidewalk	249299
Store/Commercial	20381
Club/Bar/Restaurant	17360
Residential Building/House	6960
Park/Playground	4773
House of Worship	929
Residential Building	227
Highway	215
Parking Lot	117
House and Store	93
Vacant Lot	77
Commercial	62
Roadway Tunnel	35
Subway Station	34
Bridge	2
Ferry	1

Park 1
Terminal 1

Name: Location Type, dtype: int64

(df['Location Type'].value_counts()).tail(10).plot(kind = 'bar', figsize= (10,6), title='Types of Location (bottom 10)',color='turquoise')

<matplotlib.axes. subplots.AxesSubplot at 0x270e2819488>

Incident Zip

Data Profiling of 'Incident Zip' feature.

df['Incident Zip'].value_counts().head(20)

(df['Incident Zip'].value_counts()).head(10).plot(kind = 'bar', figsize= (10,6), title='Top 10 zip codes',color='brown')

Please Note:

a lot of complaints have come from the following zip code: 11385

followed by zip code: 11368tur

<matplotlib.axes._subplots.AxesSubplot at 0x270bb993088>

Incident Address

Data Profiling of 'Descriptor' feature.

(df['Incident Address'].value_counts()) .head (10) (df['Incident Address'].value_counts()).head(10).plot(kind = 'bar', figsize= (10,6), title='Most complaints from the following address (top 15)',color='cyan')

Please Note:

Repeated complaints have come from the following address.

1207 BEACH AVENUE 904

78-15 PARSONS BOULEVARD 505

89 MOORE STREET 480

177 LAREDO AVENUE 311

2117 3 AVENUE 295

514 WEST 44 STREET 287

1175 BEDFORD AVENUE 264

608 DEGRAW STREET 263

32-72 STEINWAY STREET 251

89-21 ELMHURST AVENUE 234

<matplotlib.axes. subplots.AxesSubplot at 0x270c7a34ac8>

Data Profiling of 'City' feature.

df['City'].value_counts()

(df['City'].value_counts()).head(10).plot(kind = 'bar', figsize= (10,6), title='City ',color='brown')

Please Note:

Major complaints have come from Brooklyn, New York and Bronx.

```
# BROOKLYN 98307
# NEW YORK 65994
# BRONX 40702
# STATEN ISLAND 12343
# JAMAICA 7296
```

<matplotlib.axes. subplots.AxesSubplot at 0x270c79f1208>

Status

df['Status'].value_counts()

- # Please Note:
- # 298471 complaints have been closed.
- # 1439 complaints are still open.
- # 786 complaints are assigned to other department.
- # 2 complaints are getting drafted.

Closed 298471 Open 1439 Assigned 786 Draft 2

Name: Status, dtype: int64

Data profiling for 'Request_Closing_Time' column.

df['Request_Closing_Time'].describe()

please Note:

#1) the minimum time taken to close a complaint or to (attend and close) is 1 hour.

#2) the maximum time taken to close a complaint or to (attend and close) is 24 days 16 hours and 52 minutes.

```
mean 0 days 04:18:51.832782

std 0 days 06:05:22.141833

min 0 days 00:01:00

25% 0 days 01:16:33

50% 0 days 02:42:55.500000

75% 0 days 05:21:00

max 24 days 16:52:22

Name: Request Closing Time, dtype: object
```

df['Request_Closing_Time']

 $df['Request_Closing_Time'].value_counts().head()$

(df['Request_Closing_Time'].value_counts()).head(10).plot(kind = 'bar', figsize= (10,6), title='City ',color='green')

it basically gives top 5 complaints which were closed in minimum time.

- # Please Note:
- # 492 complaints were closed in 36 minutes.
- # 473 complaints were closed in 44 minutes.
- # 472 complaints were closed in 51 minutes.
- # 468 complaints were closed in 53 minutes.
- # 467 complaints were closed in 1hr 10 minutes.

<matplotlib.axes. subplots.AxesSubplot at 0x270f3d49948>


```
df['Month'].value_counts()
(df['Month'].value_counts()).head(10).plot(kind = 'bar', figsize= (10,6), title='City ',color='blue')
```

Please Note:

Major complaints are in the months of May 2015. followed by sept 2015

In March the complaints are less because the data collected is from 29 March 2015, we do not have date for the entire month.

5 (May) 36437

#9 (Sept) 35427

6 (June) 35315

#8 (Aug) 34956

#7 (July) 34888

<matplotlib.axes. subplots.AxesSubplot at 0x270e0a5db08>

df['Duration_Minutes'].value_counts().head(20)

36.0 492

44.0 476

51.0 474

53.0 471

70.0 469

32.0 467

46.0 467

56.0 466

```
67.0
        463
38.0
        463
42.0
        462
35.0
        461
47.0
        459
39.0
        459
43.0
        458
55.0
        456
52.0
        456
40.0
        455
60.0
        454
54.0
        451
Name: Duration Minutes, dtype: int64
```

df[['Duration_Minutes','Request_Closing_Time']].describe()

Duration_Minutes Request_Closing_Time

		1g
count	298534.000000	298534
mean	235.763797	0 days 04:18:51.832782
std	231.619407	0 days 06:05:22.141833
min	0.000000	0 days 00:01:00
25%	76.000000	0 days 01:16:33
50%	161.300000	0 days 02:42:55.500000
75%	316.000000	0 days 05:21:00
max	1439.916667	24 days 16:52:22

these are the least occuring complaint types in the below mentioned months.

df.groupby("Month")['Complaint Type'].agg("min")

Month

- 3 Animal Abuse
- 4 Agency Issues
- 5 Agency Issues
- 6 Agency Issues

```
7 Agency Issues
8 Animal Abuse
9 Animal Abuse
10 Animal Abuse
11 Animal Abuse
12 Animal Abuse
Name: Complaint Type, dtype: object
```

these are the maximum occuring complaint types in the below mentioned months

```
df.groupby("Month")['Complaint Type'].agg("max")
Month
3
       Vending
4
       Vending
5
       Vending
6
       Vending
7
       Vending
8
       Vending
9
       Vending
10
      Vending
11
       Vending
12
       Vending
Name: Complaint Type, dtype: object
df.groupby('Location Type')['Complaint Type'].agg("count")
(df.groupby('Location Type')['Complaint Type'].agg("count")).head (20).plot(kind = 'bar', figsize= (10,6),
title='Group By Loc type-comp type ',color='green')
# Please Note
# A majority of complaints have come from location type 'Street/Sidewalk' (249299 complaints),
# followed by Store/commercial (20381 complaints)
<matplotlib.axes. subplots.AxesSubplot at 0x270f33a2908>
```


df.groupby('Location Type')['Complaint Type'].agg("max")

Please Note:

According to the location type these are the maximum occuring complaints received.

# Bridge	Homeless Encampment
# Club/Bar/Restaurant	Urinating in Public
# Commercial	Animal Abuse
# Ferry	Ferry Complaint
# Highway	Traffic
# House and Store	Animal Abuse
# House of Worship	Noise - House of Worship
# Park	Animal in a Park
# Park/Playground	Vending
# Parking Lot	Posting Advertisement
# Residential Building	Animal Abuse
# Residential Building/Ho	use Vending
# Roadway Tunnel	Traffic
# Store/Commercial	Vending

Street/Sidewalk Vending

Location Type

Bridge Homeless Encampment Club/Bar/Restaurant Urinating in Public Commercial Animal Abuse Ferry Ferry Complaint Highway Traffic Animal Abuse House and Store House of Worship Noise - House of Worship Animal in a Park Park Vending Park/Playground Parking Lot Posting Advertisement Residential Building Animal Abuse Residential Building/House Vending Roadway Tunnel Traffic Store/Commercial Vending Street/Sidewalk Vending Urinating in Public Subway Station Terminal Ferry Complaint Vacant Lot Derelict Vehicle

Name: Complaint Type, dtype: object

To Find out according to particular Month what is the least time taken to close the complaint. df.groupby("Month")['Request_Closing_Time'].agg("min")

(df.groupby("Month")['Request_Closing_Time'].agg("min")).head(10).plot(kind = 'bar', figsize= (10,6), title='Least time taken _ to close complaint according to month ',color='green')

Please Note:

In March 2015 the least time taken the close a given complaint is 4 hrs 48 min.

In April 2015 the least time taken the close a given complaint is 2hrs 37 min. and so on for other

<matplotlib.axes. subplots.AxesSubplot at 0x270ee8db488>

df.groupby("Month")['Request_Closing_Time'].agg("max")

```
Month
3
      2 days 08:23:14
     14 days 00:50:05
4
5
    24 days 16:52:22
6
     4 days 01:10:41
7
    4 days 09:50:00
8
     4 days 12:09:00
9
     3 days 23:37:21
10
   5 days 21:09:56
11
     7 days 01:06:48
     24 days 01:21:36
12
Name: Request_Closing_Time, dtype: timedelta64[ns]
```

#complaint types on the average "Request closing time in minutes".

Complaint Type
Agency Issues 623.000000
Animal Abuse 1439.133333
Animal in a Park 50.083333

df.groupby("Complaint Type")['Duration_Minutes'].agg("max")

```
Bike/Roller/Skate Chronic
                                 1079.916667
Blocked Driveway
                                 1439.883333
Derelict Vehicle
                                 1439.800000
Disorderly Youth
                                 1236.116667
Drinking
                                 1378.000000
Ferry Complaint
                                          NaN
Graffiti
                                 1344.000000
Homeless Encampment
                                 1411.000000
Illegal Fireworks
                                  915.000000
Illegal Parking
                                 1439.000000
Noise - Commercial
                                 1435.266667
Noise - House of Worship
                                 1294.000000
Noise - Park
                                 1398.000000
Noise - Street/Sidewalk
                                 1439.916667
Noise - Vehicle
                                 1437.000000
Panhandling
                                 1223.683333
Posting Advertisement
                                  934.000000
                                  407.200000
Squeegee
Traffic
                                 1386.033333
Urinating in Public
                                 1348.000000
                                 1430.000000
Vending
Name: Duration Minutes, dtype: float64
df.groupby("Complaint Type")['Duration_Minutes'].agg("mean")
(df.groupby("Complaint Type")['Duration Minutes'].agg(["mean"])).head(20).plot(kind = 'barh',figsize= (10,6),
title='complaint types based on the average Request_closing_time in minutes ',color='purple')
plt.ylabel('Complaint Type')
plt.xlabel('Minutes')
# Please Note:
# This tells us the "avg" time taken in minutes to close a particular complaint type.
# Agency Issues
                        315.619444
# Animal Abuse
                        277.573208
# Animal in a Park
                         50.083333
# Bike/Roller/Skate Chronic 212.402830
# Blocked Driveway
                          263.082093
# Derelict Vehicle
                        335.330298
# Disorderly Youth
                         208.480070
# Drinking
                      217.027621
```

Text(0.5, 0, 'Minutes')

max

df.groupby(["Location Type",'Complaint Type'])['Duration_Minutes'].agg(["mean",'max'])

mean

Location Type	Complaint Type		
Bridge	Homeless Encampment	229.158333	281.000000
	Drinking	241.187078	1378.000000
Club/Bar/Restaurant	Noise - Commercial	173.489104	1435.266667
	Urinating in Public	269.485714	1348.000000
Commercial	Animal Abuse	274.114516	1139.000000
Street/Sidewalk	Vending	227.460780	1430.000000
	Animal Abuse	182.136364	472.016667
Subway Station	Urinating in Public	69.127778	278.800000
	-		

mean max

		Complaint Type	Location Type	
NaN	NaN	Ferry Complaint	Terminal	
907.900000	242.721212	Derelict Vehicle	Vacant Lot	

71 rows x 2 columns

df.groupby(["Location Type",'Complaint Type'])['Duration_Minutes'].agg(["mean",'max'])

(df.groupby(["Location Type",'Complaint Type'])['Duration_Minutes'].agg(["mean"])).head
(20).plot(figsize=(10,6),color=['blue'])
(df.groupby(["Location Type",'Complaint Type'])['Duration_Minutes'].agg(["max"])).head
(20).plot(figsize=(10,6),color=['green'])

Please Note:

This table tells us the "AVG time and maximum time" taken to close a particular complaint type at particular location.

- # For e.g:
- # Under location type "Bridge" and complaint type " Homeless Encampment" the averge time taken to close the complaint is 229 min
- # maximum time taken is 281 minutes.
- # Complaint Type 'Graffiti' has highest average of 434 minutes to close the complaint for the location store/commercial.

<matplotlib.axes. subplots.AxesSubplot at 0x270e2732548>

(Bridge, Homeless Encampment) (Ferry, Ferry Comp(**biot**)se of Worship, Noise - House of Pal/ta/filiag/ground, Illegal Fireworks)

Location Type, Complaint Type

(Bridge, Homeless Encampment) (Ferry, Ferry Comp(**biot**)se of Worship, Noise - House of **Platain** ground, Illegal Fireworks)
Location Type, Complaint Type

df.groupby(['Complaint Type'])['Duration_Minutes'].agg(["mean"])

Please Note:

The average time taken to close a particular Complaint type is as follows:

agency Issues # 315.619444

Animal Abuse # 277.573208

Animal in a Park # 50.083333

Bike/Roller/Skate Chronic # 212.402830

Blocked Driveway # 263.082093

Derelict Vehicle # 335.330298

Disorderly Youth # 208.480070

Complaint Type	mean
Agency Issues	315.619444
Animal Abuse	277.573208
Animal in a Park	50.083333
Bike/Roller/Skate Chronic	212.402830
Blocked Driveway	263.082093
Derelict Vehicle	335.330298
Disorderly Youth	208.480070
Drinking	217.027621
Ferry Complaint	NaN
Graffiti	339.871534
Homeless Encampment	245.955948
Illegal Fireworks	157.096925
Illegal Parking	248.584628
Noise - Commercial	179.473576
Noise - House of Worship	177.647417
Noise - Park	195.335148
Noise - Street/Sidewalk	193.294691
Noise - Vehicle	202.573797

Complaint Type	mean				
Agency Issues	315.619444				
Animal Abuse	277.573208				
Panhandling	224.595574				
Posting Advertisement	116.325977				
Squeegee	242.737500				
Traffic	191.867486				
Urinating in Public	205.437697				
Vending	228.313382				
df.groupby(['Complain'magenta')	nt Type'])['Du	uration_Minutes'].agg([" <mark>mean</mark> "]).plc	ot (kind = 'bar', figsize = (10,6), c	color=
plt.xlabel('Complaint' plt.ylabel('Minutes') plt.title('Average Time		inutes) to Close a	a Complaint')		
Text(0.5, 1.0,	'Average	Time taken	(in minutes)	to Close a Complaint	')

df.groupby(['Month'])['Duration_Minutes'].agg(["mean"])

Please Note:

This tells us the average time taken (in minutes) to close a particular complaint in the particular months.

```
# 3
# 214.345828
# 4
# 207.810550
# 5
# 218.354513
# 6
```

233.716719

#7

238.769073

#8

245.543672

#9

247.157852

10

243.121011

11

241.428750

12

244.20099

Month mean

- 3 214.345828
- 4 207.810550
- 5 218.354513
- 6 233.716719
- 7 238.769073
- 8 245.543672
- 9 247.157852
- 10 243.121011
- 11 241.428750

```
Month mean
```

12 244.200998

(df.groupby(['Month'])['Duration_Minutes'].agg(["mean"])).plot(kind = 'bar',figsize = (10,5),color= 'purple')

plt.ylabel('mintues')

plt.title('Average time taken (in minutes) to close a complaint')

Text(0.5, 1.0, 'Average time taken (in minutes) to close a complaint')

df.groupby(['Month'])['Duration_Minutes'].agg(["max"])

Please Note:

The maximum time taken (in minutes) to complete a given complaint in the Month of March is 1409 minutes.

The maximum time taken (in minutes) to complete a given complaint in the Month of April is 1424 minutes and so on.

max	Month
1409.083333	3
1424.150000	4
1438.000000	5

```
Month
            max
       1439.883333
       1439.300000
       1439.916667
       1439.133333
       1438.850000
       1439.800000
   11
       1439.683333
#Question 1: whether the average response time across complaint types is similar or not (overall)
#Choosing the features for the above Problem.
#Complaint Type, Request Closing Time and Duration Minutes are the features choosen for solving the above
problem
# assigning the selected features to a new variable.
# dropping all the NaN values in the rows.
dfnew= df[['Complaint Type','Request_Closing_Time','Duration_Minutes']]
dfnew_after_drop=dfnew.dropna(axis=0, inplace=False)
dfnew_after_drop.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 298534 entries, 0 to 300697
Data columns (total 3 columns):
Complaint Type
                             298534 non-null object
Request Closing Time
                             298534 non-null timedelta64[ns]
Duration Minutes
                             298534 non-null float64
dtypes: float64(1), object(1), timedelta64[ns](1)
memory usage: 9.1+ MB
```

dfnew_after_drop.isna().sum()

Complaint Type

Request_Closing_Time 0
Duration_Minutes 0
dtype: int64

sns.set(rc={'figure.figsize':(10,5)})

sns.distplot(dfnew_after_drop['Duration_Minutes'],rug = False,hist=True,kde = True,color='green',bins = 15)

Please Note:

As this distribution is right skewed, there are lot of outliers.

majority of the data falls between 0 to 400 minutes.

<matplotlib.axes._subplots.AxesSubplot at 0x270854ac448>

dfnew_after_drop['Duration_Minutes'].hist(bins=5)

<matplotlib.axes._subplots.AxesSubplot at 0x270852e5508>

Please Note:

When we have factors with more than 2 levels we use '2 'T' TEST The features chosen for the '2t TEST' are 'Location Type' and 'Duration_Minutes' and 'Request_Closing_Time'

-Null Hypothesis (H0)-- the average response time across the complaint types is similar --H0 is accepted (Fail to reject Null Hypothesis)

-Alternate Hypothesis (H1) ---the average response time across the complaint types is NOT similar (different) ---H0(Null Hypothesis) is rejected

df['Complaint Type'].value_counts()

Blocked Driveway	77044
Illegal Parking	75361
Noise - Street/Sidewalk	48612
Noise - Commercial	35577
Derelict Vehicle	17718
Noise - Vehicle	17083
Animal Abuse	7778
Traffic	4498

Homeless Encampment	4416
Noise - Park	4042
Vending	3802
Drinking	1280
Noise - House of Worship	931
Posting Advertisement	650
Urinating in Public	592
Bike/Roller/Skate Chronic	427
Panhandling	307
Disorderly Youth	286
Illegal Fireworks	168
Graffiti	113
Agency Issues	6
Squeegee	4
Ferry Complaint	2
Animal in a Park	1
Name: Complaint Type, dtype:	int64

df[['Duration_Minutes' , 'Request_Closing_Time']].describe()

Duration_Minutes Request_Closing_Time

-	3 u1 u1 0 11 _ 1 / 1 1 1 u1 0 0	request_crossing_1ime
count	298534.000000	298534
mean	235.763797	0 days 04:18:51.832782
std	231.619407	0 days 06:05:22.141833
min	0.000000	0 days 00:01:00
25%	76.000000	0 days 01:16:33
50%	161.300000	0 days 02:42:55.500000
75%	316.000000	0 days 05:21:00
max	1439.916667	24 days 16:52:22

import statsmodels.api as sm
from statsmodels.formula.api import ols
sns.boxplot('Duration_Minutes',data= df,color='cyan')

Please Note:

There are lot of outliers

the mean of duration minutes is around 180 minutes

<matplotlib.axes. subplots.AxesSubplot at 0x270ee9939c8>

#dfnew_after_drop Request_Closing_Time Duration_Minutes Location Type

dfnew_after_drop [dfnew_after_drop['Complaint Type']=='Blocked Driveway'] [['Request_Closing_Time']].mean()

Request_Closing_Time 04:44:27.258638

dtype: timedelta64[ns]

#dfnew_after_drop Request_Closing_Time Duration_Minutes Location Type

dfnew_after_drop [dfnew_after_drop['Complaint Type']=='Illegal Parking'] [['Request_Closing_Time']].mean()

Request_Closing_Time 04:30:04.145454

dtype: timedelta64[ns]

from scipy import stats

dfnew_after_drop['Complaint Type'].value_counts()

Blocked	Driveway	76810
Illegal	Parking	74532
Noise -	Street/Sidewalk	48076
Noise -	Commercial	35247

Derelict Vehicle	17588
Noise - Vehicle	17033
Animal Abuse	7768
Traffic	4496
Homeless Encampment	4416
Noise - Park	4022
Vending	3795
Drinking	1275
Noise - House of Worship	929
Posting Advertisement	648
Urinating in Public	592
Bike/Roller/Skate Chronic	424
Panhandling	305
Disorderly Youth	286
Illegal Fireworks	168
Graffiti	113
Agency Issues	6
Squeegee	4
Animal in a Park	1
Name: Complaint Type, dtype:	int64

CREATE blocked_driveway_duration_minutes, illegal_parking_duration_minutes
'Blocked Driveway ',Illegal Parking and Noise - Street/Sidewalk are taken as these are the
most repeated complaint types.

blocked_driveway_duration_minutes = dfnew_after_drop[dfnew_after_drop['Complaint Type']=='Blocked Driveway']['Duration_Minutes']

illegal_parking_duration_minutes = dfnew_after_drop[dfnew_after_drop['Complaint Type']=='Illegal Parking']['Duration_Minutes']

noise_street_sidewalk_duration_minutes = dfnew_after_drop[dfnew_after_drop['Complaint Type']=='Noise - Street/Sidewalk']['Duration_Minutes']

 $stats.ttest_ind(blocked_driveway_duration_minutes, illegal_parking_duration_minutes)$

Ttest indResult(statistic=11.878368607446648, pvalue=1.5852726168784882e-32)

 $stats.ttest_ind (illegal_parking_duration_minutes, noise_street_sidewalk_duration_minutes)$

Ttest indResult(statistic=42.5796940247014, pvalue=0.0)

Please Note:

-The P value = 1.585272616878488e-32 i.e (10^-32). [blocked_driveway_duration_minutes, illegal_parking_duration_minutes] as the p-value is less than 0.05, the null hypothesis is rejected.-The average response time across the complaint types is NOT similar (it is different).it is distributed -blocked_driveway_duration_minutes, illegal_parking_duration_minutes

-The P value = 0.0 i.e (10^{-308}).

[illegal_parking_duration_minutes,noise_street_sidewalk_duration_minutes]

The p-value is less than 0.05, the null hypothesis is rejected, the average response time across the complaint types is NOT similar (different).it is distributed -

illegal_parking_duration_minutes,noise_street_sidewalk_duration_minutes

Question 2:

Are the type of complaint or service requested and location related?

-Null Hypothesis (H0)-- The type of complaint **or** service requested **and** locations are related to each other. -H0 **is** accepted (Fail to reject Null Hypothesis)

-Alternate Hypothesis (H1) --- The type of complaint or service requested and locations are NOT related to each other. -H0(Null Hypothesis) is rejected

#Preparing Data

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 300698 entries, 0 to 300697 Data columns (total 56 columns): Unique Key 300698 non-null int64 Created Date 300698 non-null datetime64[ns] 298534 non-null datetime64[ns] Closed Date 300698 non-null object Agency Agency Name 300698 non-null object Complaint Type 300698 non-null object Descriptor 294784 non-null object Location Type 300567 non-null object Incident Zip 298083 non-null float64 Incident Address 256288 non-null object Street Name 256288 non-null object 251419 non-null object Cross Street 1 Cross Street 2 250919 non-null object Intersection Street 1 43858 non-null object Intersection Street 2 43362 non-null object 297883 non-null object Address Type 298084 non-null object City Landmark 349 non-null object Facility Type 298527 non-null object Status 300698 non-null object Due Date 300695 non-null object Resolution Description 300698 non-null object Resolution Action Updated Date 298511 non-null datetime64[ns]

```
Community Board
                                  300698 non-null object
Borough
                                  300698 non-null object
X Coordinate (State Plane)
                                  297158 non-null float64
Y Coordinate (State Plane)
                                  297158 non-null float64
Park Facility Name
                                  300698 non-null object
Park Borough
                                  300698 non-null object
School Name
                                  300698 non-null object
School Number
                                  300698 non-null object
School Region
                                  300697 non-null object
School Code
                                  300697 non-null object
School Phone Number
                                  300698 non-null object
School Address
                                  300698 non-null object
School City
                                  300698 non-null object
School State
                                  300698 non-null object
School Zip
                                  300697 non-null object
School Not Found
                                  300698 non-null object
School or Citywide Complaint
                                 0 non-null float64
                                  0 non-null float64
Vehicle Type
                                  0 non-null float64
Taxi Company Borough
Taxi Pick Up Location
                                  0 non-null float64
Bridge Highway Name
                                  243 non-null object
Bridge Highway Direction
                                 243 non-null object
Road Ramp
                                  213 non-null object
Bridge Highway Segment
                                  213 non-null object
                                  0 non-null float64
Garage Lot Name
Ferry Direction
                                  1 non-null object
Ferry Terminal Name
                                  2 non-null object
                                  297158 non-null float64
Latitude
Longitude
                                  297158 non-null float64
                                  297158 non-null object
Location
Request Closing Time
                                  298534 non-null timedelta64[ns]
                                  300698 non-null int64
Month
                                  298534 non-null float64
Duration Minutes
dtypes: datetime64[ns](3), float64(11), int64(2), object(39),
timedelta64[ns](1)
memory usage: 128.5+ MB
dfnew_1= df[['Complaint Type','Latitude','Longitude']]
dfnew_1.isna().sum()
Complaint Type
                     0
Latitude
                  3540
                  3540
Longitude
dtype: int64
```

dfnew_after_drop_1=dfnew_1.dropna(axis=0, inplace=False)

A new feature is created 'Location' as its from a dataframe object type and cannot be converted to int or float

dfnew_after_drop_1['Location'] = list(zip(dfnew_after_drop_1.Latitude,dfnew_after_drop_1.Longitude))
E:\Programs\Anaconda3\lib\site-packages\ipykernel_launcher.py:2:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

dfnew_after_drop_1.head()

	Complaint Type	Latitude	Longitude	Location
0	Noise - Street/Sidewalk	40.865682	-73.923501	(40.86568154, -73.92350096)
1	Blocked Driveway	40.775945	-73.915094	(40.77594531, -73.91509394)
2	Blocked Driveway	40.870325	-73.888525	(40.87032452, -73.88852464)
3	Illegal Parking	40.835994	-73.828379	(40.83599405, -73.82837940000002)
4	Illegal Parking	40.733060	-73.874170	(40.73305962, -73.87416976)

dfnew_after_drop_1.isna().sum()

Complaint Type 0
Latitude 0
Longitude 0
Location 0

dtype: int64

dfnew_after_drop_1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 297158 entries, 0 to 300697

Data columns (total 4 columns):

Complaint Type 297158 non-null object
Latitude 297158 non-null float64
Longitude 297158 non-null float64

Location 297158 non-null object

dtypes: float64(2), object(2)

memory usage: 11.3+ MB

dfnew_after_drop_1['Complaint Type'].value_counts()

Blocked Driveway	76723
Illegal Parking	74066
Noise - Street/Sidewalk	47793
Noise - Commercial	35176
Derelict Vehicle	17519
Noise - Vehicle	16873
Animal Abuse	7747
Traffic	4475
Homeless Encampment	4367
Noise - Park	3929
Vending	3776
Drinking	1271
Noise - House of Worship	922
Posting Advertisement	649
Urinating in Public	592
Bike/Roller/Skate Chronic	414
Panhandling	301
Disorderly Youth	285
Illegal Fireworks	163
Graffiti	113
Squeegee	4
Name: Complaint Type, dtype:	int64

dfnew_after_drop_1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 297158 entries, 0 to 300697

Data columns (total 4 columns):

Complaint Type 297158 non-null object
Latitude 297158 non-null float64
Longitude 297158 non-null float64
Location 297158 non-null object

dtypes: float64(2), object(2)

memory usage: 11.3+ MB

On combining latitude and longitude results into object type & can't be converted to float hence 'location' variable is ignored

dfnew_after_drop_1['Complaint Type'].value_counts()

Blocked Driveway	76723
Illegal Parking	74066
Noise - Street/Sidewalk	47793
Noise - Commercial	35176
Derelict Vehicle	17519
Noise - Vehicle	16873
Animal Abuse	7747
Traffic	4475
Homeless Encampment	4367
Noise - Park	3929
Vending	3776
Drinking	1271
Noise - House of Worship	922
Posting Advertisement	649
Urinating in Public	592
Bike/Roller/Skate Chronic	414
Panhandling	301
Disorderly Youth	285
Illegal Fireworks	163
Graffiti	113
Squeegee	4
Name: Complaint Type, dtype:	int64

dfnew_after_drop_1[dfnew_after_drop_1['Complaint Type']=='Blocked Driveway'] [['Location']].mode()

Location

 $0\qquad (40.76150067, -73.81339940000001)$

dfnew_after_drop_1[dfnew_after_drop_1['Complaint Type']=='Blocked Driveway'] [['Location']].head()

Location

- 1 (40.77594531, -73.91509394)
- 2 (40.87032452, -73.88852464)
- 7 (40.83750263, -73.90290517)
- 9 (40.62379307, -73.9995389)
- 10 (40.75259967, -73.89336321)

```
# 'Blocked Driveway ',Illegal Parking and Noise - Street/Sidewalk. as taken as these are the most
repeated complaint types.
blocked_driveway = dfnew_after_drop_1[dfnew_after_drop_1['Complaint Type']=='Blocked
Driveway'][['Latitude','Longitude']]
illegal_parking = dfnew_after_drop_1[dfnew_after_drop_1['Complaint Type']=='Illegal
Parking'][['Latitude','Longitude']]
noise_street_sidewalk = dfnew_after_drop_1[dfnew_after_drop_1['Complaint Type']=='Noise -
Street/Sidewalk'][['Latitude','Longitude']]
stats.ttest ind(blocked driveway,illegal parking)
Ttest indResult(statistic=array([20.72505512, 71.36519054]),
pvalue=array([2.79800334e-95, 0.0000000e+00]))
stats.ttest_ind(illegal_parking,noise_street_sidewalk)
Ttest indResult(statistic=array([-117.76704045, 8.70740178]),
pvalue=array([0.00000000e+00, 3.14703712e-18]))
Please Note:
-The P value = ([2.79800334e-95, 0.00000000e+00])), i.e (10^-95, 0).
[blocked_driveway_location, illegal_parking_location]
the p-value is less than 0.05, the null hypothesis is rejected. The type of complaint or service
requested and locations are NOT related to each other. It is distributed -
blocked_driveway_location,illegal_parking_location.
```

```
-The P value = ([0.000000000e+00, 3.14703712e-18])), i.e (0, 10^{-18}).
```

[illegal parking location, noise street sidewalk location]

creating blocked driveway location, illegal parking location

-The p-value is less than 0.05, the null hypothesis is rejected. -The type of complaint or service requested and locations are NOT related to each other. It is distributed - illegal_parking_location,noise_street_sidewalk_location.

<End of document>