Mecanismo Eficiente de Localização Cooperativa para Veículos Autônomos Conectados

O1 Introdução O2
DUELAR

O3
Resultados

O4
Próximas
Passos

Introdução

Visão Geral

- Veículos Autônomos Conectados (Connected Autonomous Vehicle CAV)
- Níveis de Direção Autônoma SAE(Sociedade dos Engenheiros Automotivos).
- O funcionamento dos CAVs considera três camadas: Sensoriamento, Percepção e Decisão.

<u>Motivação</u>

- Dados dos sensores apresentam limitações, tais como: <u>Insegurança</u>, <u>Inviabilidade</u> e <u>Ineficiência</u>.
- Sensores, como GPS, apresentam falhas.
- Integração de dados provenientes de várias fontes.

Níveis de Automação SAE (Society of Automotive Engineers)

Componentes Fundamentais

- Câmeras
- LIDAR
- RADAR
- GPS
- Sensores ultrassónicos
- Algoritmos de Aprendizado de Máquina
- Comunicação (DSRC, LTE, etc.)

Pergunta de Pesquisa

• Como garantir os requisitos de localização das aplicações dos CAVs?

Application	Communication Type Rate (Hz)	Update	End-To-End Latency (ms)	Data Rate (kb/s)	Positioning (cm)
Emergency electronic		1–10	100	1–10	_
brake lights					
Pre-crash sensing		10	20	20–25,000	<50-100
Pre-collision brake assist		50	50	20–25,000	30
Emergency vehicle warning		10	100	≥10	=
Overtaking vehicle warning		2-10	100	10-5000	30
Lane change assistance	Periodic broadcast	2-10	100	10-5000	30
Cooperative glare reduction		2	100	≥10	2
Merging traffic turn collision risk warning		2–10	100	10–5000	5
Cooperative collision warning		10	100	≥10	30
Cooperative navigation		1–10	100	10-2000	<100
Adaptive cruise control		1-10	100	10-2000	<100
Highway platooning		≥2	<u>≤</u> 10	≥10	30
Emergency or slow vehicle warning		10	100	≥10	2
Wrong way driving warning		$\geq 1 \& \leq 10$	100	1-10	<100
Stationary vehicle warning		$\geq 1 \& \leq 10$	100	1–10	< 500
Traffic condition warning	Event-driven	1-10	100	1-10	< 500
Intersection warning		10	100	10	<100
Post-crash warning		10	100	≥10	<100
Cooperative adaptive cruise control		1-10	100-300	10-2000	30

Modelagem do GPS

• Atender requisitos das aplicações de CAVs

$$X_{GPS} = X + \eta$$
 $\eta \sim N(\lambda, \sigma^2)$

$$Y_{GPS} = Y + \eta$$
 $\eta \sim N(\lambda, \sigma^2)$

Tipo de Erro	Variação do Erro	
Relógios de Satélite	± 2 m	
Erro de Orbita	± 2.5 m	
Atraso Ionosférico	± 5 m	
Atraso Troposférico	± 0.5 m	
Ruído do Receptor	± 0.3 m	
Multipercurso	± l m	

Figura 2: Erro de 1 metro

Figura 4: Erro de 5~10 metros

Figura 3: Erro de 2~5 metros

Figura 5: Erro de 10~20 metros

- A localização robusta e precisa é fundamental e crucial para aplicações de CAVs.
- O GNSS(Como o GPS) tem algumas limitações:
 - o Bloqueio de sinal
 - Erros de órbita de satélite
 - Atrasos troposféricos e ionosféricos
- Tais problemas causam um erro de localização variando de 5 a 30 metros.
- Para reduzir o erro de localização é proposto um mecanismo de fusão de dados para localização veicular cooperativa.

Table 4. Localisation Techniques Adequate for Autonomous Vehicles.

Technique (Reference)	Sensors	Accuracy
Localising Ground Penetrating Radar [33]	LGPR, GPS, IMU	0.04m (RMSE)
LiDAR SLAM [35], [21], [36], [37], [38], [39]	LiDAR, GPS, IMU	0.017m, lat. 0.033m, long. (RMSE)
Camera localisation within LiDAR map [40]	Camera, IMU	0.14m, lat. 0.19m, long. (RMSE)
RF Infrastructure Localisation [64]	On-board UHF antenna	Up to 0.03m, lat.
5G-based Localisation [65]	5G communication device	99% below 0.2m at 100MHz

Table 2. Summary of V2V Localisation Methods.

Method (Reference)	Sensors	No. of vehicles	Accuracy	Advantages	Disadvantages
VANET Multilateration [53]	GPS, V2V communication	5	3.30m (Mean)	Low Cost Does not rely on all vehicles being able to communicate	High Error
V2V and on-board sensor localisation [52]	GPS, V2V communication, ranging sensors	1800 & 1200 vehicles per hour on 1km of road	0.60m (Mean)	Does not rely on all vehicles being able to communicate	Requires on-board ranging sensors
COVEL approach [54]	GPS, odometry, V2V communication	6	50% within 1.09m	Low Cost	Assumes all vehicles equipped with GPS and V2V
VANET supported by stationary vehicles [55]	GPS, V2V communication	20 & 900	Up to 3.14m	Low Cost	Battery use while stationary Dependent on number of parked cars nearby
Multilateration with shared position estimates in VANET [56]	GPS, gas and brake pedal and steering wheel sensors, V2V communication	5	0.52 – 1.65m (MSE)	Low Cost Increased information sharing	Relies on the number of connected vehicles
Weighted V2V localisation based on intervehicle distance [57]	GPS, V2V communication	10	2.38m (Mean)	Improved robustness and accuracy	Relies on connected vehicles
Weighted localisation based on intervehicle distance and SNR [58]	GPS, V2V communication	20 - 200	0.25m-0.85m (Mean), based on network size	Improved robustness and accuracy	Relies on connected vehicles

Table 1. Summary of On-board Sensor-based Localisation Techniques.

Technique (Reference)	Sensors	Accuracy	Advantages	Disadvantages
Pure GPS -	GPS	~10m	Low cost	Low accuracy Poor signal availability
GPS/IMU in ECEF coordinates [26]	GPS & IMU	7.2m (RMSE)	Low cost IMU provides positioning during GPS signal blockage	Low accuracy Cumulative errors
Two-stage vision-based SLAM [27]	Camera	0.75m (Mean)	Low cost	Susceptible to illumination and observation angle
Stereovision odometry [28]	Camera	Up to 20.5m cumulative error over 166m distance	Low Cost	Low accuracy Cumulative errors
Vision-based localisation with lane detection [29]	Camera, GPS, IMU	0.73m (Mean)	Low cost	Susceptible to illumination and observation angle
Vision-based localisation with road marker detection [30]	Camera, GPS, IMU	0.58m, lat. 1.43m, long. (Mean)	Low cost	Susceptible to illumination and observation angle
Aerial Image-based localisation [16]	Camera, GPS, IMU	80% within 1m	Low cost	High errors

Microwave-Radar SLAM [32]	Microwave Radar	10.5m (Mean)	Low power requirements Low cost	Low accuracy
Short Range Radar SLAM [31]	Radar, GPS, IMU	0.07m, lat. 0.38m, long. (RMSE)	Low power requirements Low cost High accuracy	Low robustness to dynamic environments
Localising Ground Penetrating Radar [33]	LGPR, GPS, IMU	0.04m (RMSE)	Very high accuracy Robust to weather and illumination conditions	Lack of testing Sensitivity (e.g. to frost heave, thaw settlement) uncertain
LiDAR SLAM [35], [21], [36], [37], [38], [39]	Lidar, GPS, IMU	0.017m, lat. 0.033m, long. (RMSE)	High accuracy Robust to changes in environment	High cost High power & processing requirements Sensitive to weather conditions
Camera localisation within LiDAR map [40]	Camera, IMU	0.14m, lat. 0.19m, long. (RMSE)	High accuracy Low cost	Requires environments to be mapped using a dedicated LiDAR vehicle Robustness
LRF based localisation [41]	GPS, IMU, LRF	3.098m (Mean)	Low cost	High errors
Ultrasonic SLAM [42]	Ultrasonic	(Not given)	Low power requirements Low cost	Low accuracy Long processing time

DUELAR

DUEL

Fusão utilizando Filtro de Kalman Sem Cheiro (Unscented Kalman Filter – UKF)

$$\bar{x} = \sum_{i=0}^{2n} W_i^m \gamma_i$$

$$\bar{P} = \sum_{i=0}^{2n} W_i^c (\gamma_i - \bar{x}) (\gamma_i - \bar{x})^T + Q$$

$$\mu_Z = \sum_{i=0}^{2n} W_i^m Z_i$$

DUEL

$$P_Z = \sum_{i=0}^{2n} W_i^c (Z_i - \mu_Z) (Z_i - \mu_Z)^T + R$$

$$K = \left[\sum_{i=0}^{2n} W_i^c (\gamma_i - \bar{x}) (Z_i - \mu_Z)^T \right] P_Z^{-1}$$

$$x = \bar{x} + K(z - \mu_Z)$$

$$P = \bar{P} - K P_Z K^T$$

Figura 6: Detecção do Bounding Box dos CAVs

Figura 7: Detecção da Faixa

Algoritmo 1: Distância mínima entre um ponto e uma linha

```
1 Entrada
 2 X_1,Y_1,X_2,Y_2 //Pontos que definem a faixa 3 X_3,Y_3 //Ponto estimado pelo UKF

4 Saída
5 X'<sub>3</sub>, Y'<sub>3</sub> //Novo ponto dentro da faixa

 6 início
           Px \leftarrow X_2 - X_1
           Py \leftarrow Y_2 - Y_1
           U \leftarrow ((X_3 - X_1) * Px + (Y_3 - Y_1) * Py)/(Px^2 + Py^2)
10
           se U > 1 então
             U ← 1
11
           senão
12
                   se u < \theta então
13
                         U \leftarrow 0
14
           X_3' \leftarrow X_1 + U * Px
Y_3' \leftarrow Y_1 + U * Py
15
16
           Dx \leftarrow X_3' - X_3Dy \leftarrow Y_3' - Y_3
17
           Dist \leftarrow \sqrt{(Dx^2 + Dy^2)}
```


Resultados

Figura 8: Topologia do Cenário Carla Town 3

Parâmetro	Valor	
Densidade de veículos	50 veículos	
Frequência do canal	5.89 GHz	
Potência de transmissão	2.2 mW	
Sensibilidade	-94 dBm	
Raio de comunicação	300 m	
Taxa de bits	6 Mbps	
Frequência de GPS	10 Hz	
Erro de GPS	5 - 10 m	
Tamanho do cenário	600 m X 600 m	
Tempo de simulação	200 s	
α, β, κ	0.001, 2, 0	

Tabela 1: Parâmetros de Simulação

Figura 9: GPS

Figura ll: CoVaLID

Figura 10: Filtro de Partículas

Figura 12: DUELAR

Avaliação de Desempenho (DUEL)

Métricas Avaliadas

- MAE (Mean Absolute Error)
- Comparação entre a localização estimada e a localização verdadeira.
- Mesmo peso para todos os erros.
- Um menor resultado significa melhor precisão.

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \widehat{y_j}|$$

Figura 13: Latitude (X)

Figura 141: Longitude (Y)

Figura 15: Ambos os eixos

Avaliação de Desempenho (DUEL)

Métricas Avaliadas

- RMSE (Root-Mean-Square Error)
- Comparação entre a <u>localização estimada</u> e a <u>localização verdadeira.</u>
- Atribui um peso alto a erros significativos.
- Um menor resultado significa melhor precisão.
- O valor de RMSE pode ser igual ou maior que o MAE.

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \widehat{y}_j)^2}$$

Figura 16: Latitude (X)

Figura 17: Longitude (Y)

Figura 18: Ambos os eixos

Próximos Passos

Figura 19: YOLO x SSD x Faster-RCNN

Figura 20: Acurácia X Velocidade de Resposta

Figura 21: Carla Frame 407

Figura 22: Carla Frame 407 + YOLO v3

Figura 23: Carla Frame 518

Figura 24: Carla Frame 518 + YOLO v3

Dead Reckoning

- Estimar as próximas posições de um objeto móvel de acordo com sua movimentação.
- O método funciona bem para objetos que se movem em velocidades baixas.

$$X_n = X_{n-1} + S_{n-1} \sin \theta_{n-1}$$

$$Y_n = Y_{n-1} + S_{n-1} \cos \theta_{n-1}$$

$$Y_n = Y_{n-1} + S_{n-1} \cos \theta_{n-1}$$

- Adaptar o filtro de histograma para o cenário
- Implementar diferentes sistemas de detecção de objetos
 - You Only Look Once (YOLO) v3
- Adicionar o Dead Reckoning para cenário de túnel
- Avaliar os resultados de localização em novos cenários

Figura 25: Extended Kalman

Filter

Figura 26: Particle Filter

Figura 27: Histogram Filter

Obrigado!

Dúvidas?

Wellington Viana Lobato Junior

wellington@lrc.ic.unicamp.br

http://www.lrc.ic.unicamp.br/~wellington/

