ПЕРСОНАЛЬНАЯ ЭВМ ПК-01 «ЛЬВОВ». РУКОВОДСТВО ПРОГРАММИСТУ

589.0196339 00001-01 35 01 Приложение 3

ПЕРСОНАЛЬНАЯ ЭВМ ПК-01 "ЛЬВОВ" РУКОВОДСТВО ПРОГРАММИСТУ

1. Архитектура ПК-01

1.1 Общие особенности.

Домашняя микро-ЭВМ ПК-01 "Львов" построена на микропроцессоре (МП) KP580BM80A (Intel 8080), который работает с тактовой частотой 2.5 МГц, что обеспечивает быстродействие 500 тысяч коротких операций регистр-регистр в секунду. Особенностями этого микрокомпьютера являются страничная организация ОЗУ и полное отсутствие системы прерываний (в стандартной конфигурации). Архитектурные особенности ПК-01 обусловливают его несовместимость (без соответствующих эмуляторов) с микро-ЭВМ линии РАДИО-86РК/ОРИОН-128, построенных на том же МП. Объем ПЗУ (ROM) ПК-01, выполненного на 8 УФ-РПЗУ К573РФ2 составляет 16К. Общий объем ОЗУ (RAM), выполненного на МС К565РУ5 составляет 64К, причем 16К из них предназначены для хранения изображения (Video - RAM) и не входят в обычном режиме в основное адресное пространство. Формирование изображения и регенерация динамического ОЗУ осуществляются специальными контроллерами, построенными на ИМС средней степени интеграции серий 155 и 555. Интерфейс с устройствами ввода-вывода, управление палитрой изображения и распределением адресного пространства ОЗУ (подключение Video-RAM к шинам МП) осуществляются с помощью двух БИС параллельных программируемых адаптеров (ППА) КР580ВВ55.

1.2 Распределение адресного пространства.

FFFFH		T	65535
G000H	ROM 16K	Драйверы устройств, системные под- программы, знакогенератор, BASIC	40150
C000H BFFFH			13102
	SYSTEM RAM 4K	Системная область	
B000H			
	RAM	Буфер символьных переменных BASIC, стек, свободная область	43033
8000H 7FFFH			32768
	RAM/Video 16K	Свободная область/Экран	32767
4000H			
3FFFH	RAM 10K	Свободная область	16383
1723H 1722H			05923 05922
1722H	RAM 6K	Интерпретатор BASIC	00022
0006H 0005H			00006 00005
	RAM	Свободная область	
0000H			00000

Распределение адресного пространства в системной области ОЗУ

BFFFH		49151
	Таблица переходов на драйверы устройств	
BFEBH		49131
BFEAH		49130
	Системные переменные	
BE00H		48640
BDFFH		48639
	Свободная область	
В800Н		47104
B7FFH		47103
	Знакогенератор: CHR 128-255	
B400H		46080
B3FFH		46079
	Знакогенератор: CHR 000-127	
В000Н		45056

1.3 Перезапуск системы.

При нажатии клавиши [СБР] происходит формирование сигнала RESET для МП и его перезапуск. Дальнейшие действия системы определяются клавишей, нажатой одновременно со [СБР]. Возможны следующие варианты :

[СУ]+[СБР] : Выполняется тестовая подпрограмма, размещенная в ПЗУ. При неисправности выдается звуковой сигнал, при нормальном завершении происходит "холодный" рестарт системы (аналогично [СБР]).

[T/T]+[CBP]: Производится подсчет КС ПЗУ по отдельным корпусам К573РФ2 и в целом, после чего запуск системы не происходит. При нажатии [РУС], [Ф] выдается информация о разработчике содержимого ПЗУ.

Вероятные значения КС ПЗУ (в ПК разного времени

выпуска они отличаются) следующие : 03

0380DD 037E80 03F6A3 042870 039C0B

046594 038D67

1DE200

[С/Ц]+[СБР] : Выполняется "теплый" рестарт системы: обнуляется область системного ОЗУ ВОООН-ООООН, перезагружаются из ПЗУ знакогенератор (СНК 000-127), системные переменные, таблица переходов на драйверы устройств ввода-вывода, после чего происходит переход по адресу, размещенному в ячейках памяти (ЯП) ВFEC/BFED. После "холодного" старта там находится адрес старта BASIC- системы D7D9, но пользователь может изменить это значение, обеспечив запуск по [С/Ц]+[СБР] любой другой программы.

При "горячем" перезапуске содержимое всех прочих областей ОЗУ не изменяется.

При нажатии [СБР] с любой другой клавишей или в одиночку происходит "холодный" перезапуск системы. Кроме действий "горячего" перезапуска выполняются также востановление стандартного значения ВFEC/BFED, обнуление области 0000H-0000H, перезагрузка BASIC из ПЗУ в ОЗУ, формирование заставки (при этом используется область 8000H-0000H) и запуск BASIC- системы.

1.4 Порты ввода-вывода, клавиатура.

Для обеспечения обмена информацией с внешними устройствами в компьютере предусмотрена БИС ППА КР580ВВ55 (D30), которая содержит три 8-разрядных порта ввода-вывода A, B, C. Они выведены на разъем "ВНЕШ - 2" (распайку см. в "Руководстве по эксплуатации"). Программно к каждому из портов можно обратиться по адресам :

```
Порт A ( только на вывод ) - СОН ( 192 )
Порт В ( ввод или вывод ) - С1Н ( 193 )
Порт С ( ввод и вывод ) - С2Н ( 194 )
Регистр управляющего слова - С3Н ( 195 )
```

Порт А предназначен только для вывода информации (стандартно- на принтер) и буферирован. Порт В предназначен для формирования палитры изображения, но может быть использован и для обмена с внешними устройствами (при этом будет происходить "мелькание" палитры изображения). Порт С в компьютере задействован для управления принтером, обмена с магнитофоном и управлением картой памяти (подключение / отключение экранного ОЗУ). Стандартно порты A, B и C(0-3) запрограммированы на вывод, C(4-7) – на ввод.

Для подключения клавиатуры в ПК также применена БИС ${\tt KP580BB55}$ (${\tt D1}$). Ee agpeca :

```
Порт A ( только на вывод ) - D0H ( 208 )
Порт В ( только на ввод ) - D1H ( 209 )
Порт С ( ввод и вывод ) - D2H ( 210 )
Регистр управляющего слова - D3H ( 211 )
```

Подключение портов к клавиатуре ПК-01 показано на рисунке. Принцип опроса клавиатуры заключается в следующем : последовательной подачей логического "0" на каждый из разрядов портов А и C(0-3) разрешается опрос соответствующего полуряда клавиатуры. Результат опроса содержат порты В и C(4-7) для основной и функциональной клавиатуры соответственно.

_	порт	_			Порт D0H (208) - выбор полуряда (вывод)													
	7	¦ 6	¦ 5	¦ 4	; 3	; 2	1	¦ 0	BIT	опр								
 	7FH	+ BFH	+ ¦ DFH +	¦ EFH	•	¦ FBH	¦ FDH	+ FEH +			уряда вод)							
1	127	¦ 191	'	¦ 239	247	¦ 251	¦ 253	¦ 254	DEC									
ا ا ا	HP	¦ ;		CTP	¦ ПРБ	¦ R	¦ G	¦ 6 +	254	¦ FEH	0							
ד ו ו		¦ РУС	 	¦ (G)	¦ В	¦ 0	¦ [253	¦ FDH	1 1							
 		¦СУ		(B)	¦ @	¦ L]	¦ 8 +	251	¦ FBH	2							
ד ו ו	X	P	N	¦ 5		¦ 3Б	¦ BK	¦ ГТ	247		3							
 	Т	¦ A	¦ E	¦ 4	•	! ! •	¦ПС	¦ TAB		•								
ד ו ו	I	¦ W	K	¦ 3	¦ ЛАТ ¦	\	: :		223	¦ DFH	 5							
 -	M	¦ Y		; 2	/	¦ V	¦ Н		191	¦ BFH								
 	S	¦ F	¦ C	1	! ,	¦ D	¦ Z	 9 	127	¦ 7FH	7							
- 1	,									 -								

Функциональная клавиатура

Порт D2 (210)										
; 3	: 2	1	¦ 0	•						
¦ ПРА	¦ ДИА	¦ п/д	¦ПЧ	 4						
; BPX	¦ F5	¦ FO	¦ CD							
¦ ЛЕВ	¦ F4	¦ F1	¦ ДИН							
ENH ¦	•	¦ F2	(R)	7						

Значения, выводимые и вводимые с портов представлены для случая нажатия только одной клавиши. Подачей "0" одновременно на несколько разрядов портов A или C(0-3) можно разрешить опрос нескольких полурядов, но различить полуряды в таком случае невозможно.

При необходимости взаимодействия с большим количеством нестандартных внешних устройств в ПК-01 имеется возможность подключения двух дополнительных ППА КР580ВВ55 по адресам E0/E1/E2/E3 и F0/F1/F2/F3 соответственно. Необходимые для этого сигналы выведены на разъем "ВНЕШ - 1".

1.5 Подключение принтера.

В компьютере предусмотрено стандартное подключение EPSON -

совместимого принтера по интерфейсу "ИРПР" или "CENTRONIX" (ИРПР-М). Распайка разъема "ВНЕШ – 2 " для подключения принтера "ROBOTRON CM 6329.01М" по "ИРПР" приведена на рисунке. При подключении принтера следует помнить о том, что длина соединительного кабеля для "ИРПР" не должна превышать $15\,$ м. и каждая сигнальная жила кабеля (С) должна быть переплетена со своей "земляной" (З) (для плоского кабеля – 3СЗС....СЗСЗ), причем "земляные" жилы должны быть подключены к 0V с обоих концов кабеля.

	ПРИНТЕР							-2	
		-T			-		-T-		
1	1	ŀ	GND			0V	1		-
1	2	I	SC	\ <	ПЕЧАТЬ	C2	1	6	-
1	3	I	AC		TOTOB>	С6	1	21	-
I	4	I		1			- {		-
I	5	I	D0		;	A0	1	39	1
1	6	I	D1		;	A1	1	37	1
1	7	I	D2		;	A2	1	35	1
1	8	I	D3		:	A3	-	33	-
1	9	I	D4			A4	1	31	-
1	10	I	D5			Α5	1	29	-
1	11	I	D6		:	Α6	-	27	-
1	12	I	D7		;	Α7	1	25	-
1	13	I		1			1		-
L-		-+-			I		-+-		

Вывод информации осуществляется следующим образом: компьютер опрашивает сигнал "ГОТОВ" от принтера; если этот сигнал не равен "0", то компьютер ожидает. Как только "ГОТОВ" становится равным "0", компьютер выдает на порт А символ в коде КОИ-7 (КОИ-8) в инверсном (прямом) виде, а затем переводит сигнал "ПЕЧАТЬ" в "0", что является для принтера командой к приему и печати символа. Принтер переводит "ГОТОВ" в "1", а компьютер, приняв этот сигнал переводит "ПЕЧАТЬ" в "1", после чего цикл повторяется.

1.6 Видеоконтроллер.

Для обеспечения отображения информации на экране видеомонитора (телевизора) в компьютере имеется видеоконтроллер, который осуществляет периодическое считывание информации из экранного ОЗУ и формирование видеосигнала.

В обычном режиме экранное ОЗУ отключено от шин МП и программный доступ к нему невозможен. Для работы МП с этой областью ОЗУ она может быть подключена вместо участка основного ОЗУ по адресам 4000H-7FFFH (16384-32767) с помощью бита 1 порта С2H (194) (0 - Open Video RAM, 1 - Close Video RAM). Однако следует помнить, что при таком переключении от шин МП отключается область основного ОЗУ 0000H-7FFFH (00000-32767), поэтому процедуры, работающие при открытой видеопамяти нельзя размещать ниже 8000H (32768). Все основные подпрограммы ПЗУ, работающие с экраном "не забывают" закрыть видеопамять перед возвратом и с ними такой проблемы не возникает.

Формирование видеосигнала в ПК-01 выполняется так, что один байт экранного ОЗУ кодирует цвета четырех соседних пикселов по горизонтали. Принцип кодировки цветов показан на рисунке :

Наличие "1" в битах 7-4 задает логический цвет 1 для соответствующих пикселов, в битах 3-0 - цвет 2, в паре битов (7-3, 6-2, 5-1, 4-0) - цвет 3, иначе соответствующие пикселы имеют цвет фона (0). Соответствие логических цветов 0,1,2,3 реальным (1,2,3)0 гоределяется состоянием порта (1,2,3)1.

2. Системные подпрограммы ПЗУ.

2.1 Таблица переходов

Основная таблица переходов на подпрограммы, реализующие важнейшие системные функции и образующие Базовую Систему Ввода-Вывода (БСВВ или ВІОЅ или МОНИТОР) расположена в ПЗУ по адресам F800H-F838H (63488-63544) и в ОЗУ по адресам BFEBH-BFFDH (49131-49149) и имеет следующий вид :

	ROM -			RAM -		Name
E00011	TMD	DEEDII	DEEDII	TMD	D7D011	DACTC
F800H	JMP	BFEBH	BFEBH	JMP	D7D9H	BASIC
F803H	JMP	BFEEH	BFEEH	JMP	E800H	KEY
F806H	JMP	BFF1H	BFF1H	JMP	E843H	KY*
F809H	JMP	BFF4H	BFF4H	JMP	DF68H	TTY
F80CH	JMP	BFF7H	BFF7H	JMP	E236H	PRN
F80FH	JMP	BFFAH	BFFAH	JMP	E222H	LST
F812H	JMP	BFFDH	BFFDH	JMP	E888H	STK
F815H	JMP	FF90H				CHECKSUM
F818H	JMP	F067H				VADDR
F81BH	JMP	DEBFH				BEEP
F81EH	JMP	DE94H				SOUND
F821H	JMP	F048H				PSET
F824H	JMP	F112H				LINE
F827H	JMP	F1A5H				BOX
F82AH	JMP	F1DAH				FIL_BOX
F82DH	JMP	DF02H				LOCATE
F830H	JMP	E774H				PAINT
F833H	JMP	DE3CH				COLOR
F836H	JMP	EBD0H				CLS

Приведенные здесь условные названия системных подпрограмм не следует отождествлять с одноименными операторами BASIC 2.0, хотя операторы BASIC и представляют собой обращения к этим подпрограммам.

Таким образом, используя размещенную в ОЗУ часть таблицы,

пользователь может переопределить основные системные процедуры ввода-вывода, подключив драйверы нестандартных внешних устройств, например драйвер, позволяющий использовать в качестве текстового принтера телетайп или электрическую печатающую машинку (типа CONSUL).

Стандартная BASIC - система всегда работает с устройством вывода LST.

Более подробное описание системных подпрограмм ПЗУ приводится ниже. Следует также отметить, что лишь некоторые из системных подпрограмм ПК-01 совпадают по адресам вызовов с аналогичными в микрокомпьютерах линии "РАДИО-86РК/ОРИОН-128".

2.2 Ввод-вывод символов.

2.2.1 Ввод символа с клавиатуры с отработкой специальных функций (КЕҮ).

Точка входа F803H – BFEEH – E800H (63491 – 49134 – 59392). Подпрограмма ожидает нажатия символьной клавиши и возвращает код символа в KOM-7 в регистре A MП. Введенный символ на устройства вывода не передается. Используются системные переменные KYB MODE (BE1DH (48669)) и KYB BEEP (BE1EH (48670)).

Под системной переменной здесь и далее понимается зарезервированная ячейка (ячейки) системного ОЗУ, значение которой является входным, выходным, либо промежуточным параметром при работе одной из системных подпрограмм.

Структура системной переменной KYB_MODE приведена на рисунке:

Признаки ВР, НР и СУ не фиксируются, а РУС/ЛАТ -фиксируется. Системная переменная КҮВ_ВЕЕР определяет наличие звукового сигнала нажатия клавиши (00 - откл., FFH (255) - вкл., возможны промежутчные значения). Тональность сигнала зависит от установленных параметров записи на МЛ.

Коды функциональных клавиш, вводимые подпрограммами КЕҮ и KY^\star :

```
00H(0)-(G) 01H(1)-(B) 02H(2)-(R) 03H(3)- K_{\rm Л\_}ЗВУК 04H(4)- CD 05H(5)- ПЧ 06H(6)- П/Д 07H(7)- FO 08H(8)- ДИАГ 09H(9)- ГТ 0AH(10)- ПС 0BH(11)- 0CH(12)- 0DH(13)- ВК 0EH(14)- 0FH(15)- 10H(16)- 11H(17)- 12H(18)- F2 13H(19)- F5 14H(20)- F4 15H(21)- F1 16H(22)- F3 17H(23)- 18H(24)- ТАВ 19H(25)- ПРАВ 1AH(26)- ДЕВ 1BH(27)- 1CH(28)- ВЕРХ 1DH(29)- HИЗ 1EH(30)- 1FH(31)-
```

Остальные коды (20H - 7FH (32 -127)) - стандартные для КОИ-7. Следует отметить, что коды, соответствующие функциональным клавишам, при выводе подпрограммами TTY, PRN, LST могут отрабатывать иные функции, чем при вводе. Подпрограмма КЕУ отрабатывает следующие специальные функции :

```
СТР
        - очистка экрана ( обращение к \pi/\pi CLS );
(G)
        - то же, но с обнулением рамки ( BORDER );
         и установкой COLOR 0,0,0;
        - то же, но COLOR 1,0,6;
(B)
        - то же, но COLOR 0,7,3;
(R)
КЛ ЗВУК - вкл./выкл. звукового сигнала клавиатуры ( инверсия
          системной переменной КҮВ ВЕЕР );
CD
        - вкл./выкл. постраничного вывода текста на экран
          ( инверсия системной переменной SCRL LOCK );
ПЧ
        - вкл./выкл. вывода текста на принтер подпрграммой
          LST ( переключение системной переменной PRN OUT );
          Признак активации вывода на принтер - символ "*"
          внизу экрана;
П/Д
        -вкл./выкл. вывода текста на экран подпрограммой LST
         ( инверсия системной переменной DISP OUT );
СУ+ПЧ
        -функция СОРУ ( копирование экрана на EPSON- совме-
         стимом принтере в графическом режиме ( режим графики
         SINGLE DENSITY ( ESC "K" )).
```

2.2.2 Ввод символа без отработки специальных функций (КҮ*).

Точка входа F806H - BFF1H - E843H (63494 - 49137 - 59459). Работает аналогично подпрограмме КЕҮ, но без отработки специальных функций, описанных выше.

2.2.3 Статус клавиатуры (STK).

Точка входа F812H - BFFDH - E888H (63506 - 49149 - 59528). Подпрограмма определяет, нажата ли какая-либо клавиша и завершается вне зависимости от результата проверки. Результат находится во флагах МП Z(нуль), S(знак), C(перенос) и регистре A.

	T-		-T-		-Т-		-Т-		
¦ Состояние		Per.	1		I		I		1
¦ клавиатуры	I	A	1	Z	I	S	I	С	1
+	+-		-+-		-+-		-+-		+
¦ Нажата	ŀ	FFH	1	0	I	1	I	1	1
¦ Не нажата	1	00H	1	1	I	0	I	0	1
L	+-		-+-		-+-		-+-		

2.2.4 Вывод символа на экран (ТТҮ).

Точка входа F809H - BFF4H - DF68H (63497 - 49140 - 57192). Подпрограмма выводит в текущую позицию экрана символ с кодом, равным содержимому регистра С МП. После заполнения 24 строк происходит сдвиг экрана вверх в соответствии со значением системной переменной SCRL LOCK (00H (00) (по умолчанию) - самопроизвольно, FFH (255)- с приостановкой до нажатия любой клавиши). При работе используются также системные переменные TXT COLOR и CURSOR.

Системная переменная TXT COLOR определяет цвет выводимого

```
FFH (2\overline{5}5) - COLOR 0;
на экран текста:
                       00H (000) - COLOR 1;
                       01H (001) - COLOR 2;
                       02H (002) - COLOR 3 и т.д. циклически.
```

Вывод символов производится всегда только на "нулевом" фоне.

Системная переменная CURSOR определяет видимость курсора (00H (00) (по умолчанию) - видим, FFH (255) - невидим).

Для пользователя могут представлять интерес также системные переменные COL# и ROW#, в которых после отработки π/π находятся соответственно номер столбца и номер строки следующей текущей позиции экрана. Это выходные параметры π/π TTY и они не могут использоваться для позиционирования курсора.

Существенный интерес прадставляет также системная переменная ТХТ_ADDR, являющаяся "входной" для п/п ТТҮ. Из нее п/п берет экранный адрес текущей позиции вывода и задавая "принудительно" ее значение перед началом вывода, пользователь может организовать вывод текста в любом "необычном" месте экрана (и даже вне экрана! Такой "вывод" невидим, но при неосторожном использовании вполне может "запортить" содержимое ОЗУ и привести к непредсказуемым последствиям, поэтому в качестве псевдо-экрана для "невидимой" печати лучше использовать адреса области ПЗУ.). Следует также отметить, что "неестественные" адреса вывода актуальны только до ближайшего обращения к подпрограмме CLS или LOCATE.

Для кодов 20H-7FH (32-127) выводятся стандартные символы KOM-7. Символы 80H-FFH (128-255) по умолчанию выводятся как пробелы, т.к. соответствующая область системного ОЗУ заполнена нулями, но их изображения могут быть закодированы пользователем.

Принцип кодировки изображений символов в области знакогенератора иллюстрируется следующим примером:

жж.	A	100010XX	128+8	=136
ЖЖЖ.	A+1	011100XX	64+32+16	=112
. ЖЖЖЖЖ	A+2	111110XX	128+64+32+1	16+8=248
.ж.ж.ж	A+3	101010XX	128+32+8	=168
. ЖЖЖЖЖ	A+4	111110XX	128+64+32+1	16+8=248
жж.	A+5	100010XX	128+8	=136
ЖЖЖ.	A+6	011100XX	64+32+16	=112
	A+7	XXXXXXXX		

Биты и байт, помеченные символом X, в стандартном знакогенераторе $\Pi K-01$ не задействованы и их содержимое не влияет на изображение символа. Таким образом для хранения изображения каждого из символов в ОЗУ знакогенератора отводится по 8 байт и, следовательно, адрес A может быть вычислен по формуле:

A=45056+K*8 , где K- код ASCII, соответствующий символу.

Модифицированное пользователем содержимое ОЗУ знакогенератора сохраняется только до ближайшего перезапуска системы (см.выше).

Из специальных символов подпрограммой ТТУ обрабатываются только ОАН (10), ОDH (13) и 7FH (127) – ПС, ВК и 3Б соответственно. Все остальные символы с кодами до 1EH (30) включительно отрабатываются так же, как и символы 80H-FFH (128-255). Символ с кодом 1FH (31) – изображение курсора.

?????? 2.2.5 Вывод символа на принтер (PRN).

Точка входа F80CH - BFF7H - E236H (63500 - 49143 - 57910). Производится вывод на стандартно (см. выше) подключенный принтер символа с кодом, равным содержимомурегистра С МП. Режим вывода задается системной переменной 7/8_BIT (B8H (184) (по умолчанию) - вывод в 7-разрядном коде с инверсией, 00H (00) - вы-

ыод в 8-разрядном коде без инверсии с перекодировкой символов кириллицы) .

2.2.6 Вывод символа на экран и/или принтер (LST).

Точка входа F80FH - BFFAH - E222H (63503-49146-57890). Производится вывод символа из регистра С МП на экран и/или принтер в зависимости от значения системных переменных PRN_OUT и DISP OUT по следующей схеме:

			-т-			т-		-т-		
	PRN_	_OUT	-	DISI	P_OUT	-	Принтер	-	Экран	
			•			+-		-+-		-+
	80H					ŀ	ON	-	ON	l
-	80H	128	-	FFH	255	1	ON		OFF	1
1	00H	0	1	00H	0		OFF	1	ON	1
1	00H	0	1	FFH	255		OFF	1	ON	1
Τ			-+-			+-		-+-		

2.2.7 Вывод на экран текстового сообщения (ТЕХТ).

Точка входа E4A4H (58532). Перед обращением к подпрограмме адрес начала текстового сообщения необходимо занести в регистровую пару HL.

Haпример: BAS: LXI H,E067 CALL E4A4 RET

После обращения к подпрогамме BAS на экране появится текст BASIC 2.0 ПК-01 "ЛЬВІВ"

Текст размещается в памяти от младших адресов к старшим в кодах ASCII. Признаком конца текста служит код 00. Эта подпрограмма использует подпрограмму TTY.

2.2.8 Вывод на экран содержимого регистра А в шестнадцатеричном виде (HEX(A)).

Точка входа FFD6H (65494). Использует подпрограмму ТТҮ.

2.2.9 Вывод на экран содержимого регистровой пары HL в шестнадцатеричном виде (HEX(HL)).

Точка входа FFD1H (65489). Использует подпрограмму НЕХ(A).

2.2.10 Вывод на экран контрольной суммы блока (CHECKSUM).

Точка входа F815H - FF90H (63509 - 65424). Входные параметры : HL - начальный адрес блока; DE - конечный адрес блока.

В ПК-01 контрольная сумма вычисляется просто как сумма значений всех байт, входящих в блок (в отличие от ПК линии РАДИО-86РК/ОРИОН-128). Вычисленную контрольную сумму подпрог-

рамма выводит на экран в шестнадцатеричной форме. Используются подпрограммы HEX(A), HEX(HL).

2.2.11 Позиционирование курсора (LOCATE).

Точка входа F82DH - DF02H (63533 - 57090). Подпрограмма устанавливает текущую позицию вывода на экран и видимость курсора в соответствии со значениями системных переменных:

LOC_COL : (00H-1FH) (0-31) - Номер позиции в строке; LOC ROW : (00H-17H) (0-23) - Номер строки;

CURSOR* : 00H (0) - ON, FFH (255) -OFF.

Содержимое системной переменной CURSOR* копируется в CURSOR, устанавливаются соответствующие значения системных переменных COL#, ROW# и TXT ADDR.

2.3 Графика

Все стандартные подпрограммы поддержки графики, описанные в этом разделе расчитаны на работу в пределах основной области экрана размером 200x225 пикселов, ограниченной рамкой (BORDER) и имеют общую систему координат с началом (0,0) в левом верхнем углу основной областиэкрана. Значения координат должны находиться в пределах: X = (00H-C7H) = (0-199); Y = (00H-E0H) = (0-224).

При выходе за левую или верхнюю границу основной области происходит генерация сообщения об ошибке (обращение к подпрограмме обработки ошибок BASIC 065CH (1628)). При выходе за правую (нижнюю) границу подпрограммы работают корректно вплоть до достижения позиции (0,0) (экран как бы "закольцован" в этих направлениях), после чего генерируется сообщение об ошибке.

В качестве входных параметров подпрограммы графики используют системные переменные $X1,Y1,X2,Y2,GRF_COLOR,BRD_COLOR,BORDER.$

2.3.1 Очистка экрана (CLS).

Точка входа F836H - EBD0H (63542 - 60368). Входной параметр: BORDER.

Подпрограмма заполняет экранное ОЗУ кодом из системной переменной BORDER, затем заполняет основную область экрана кодом 00, а также устанавливает текущие графическую и текстовую позиции вывода в (0,0).

2.3.2 Вывод на экран точки (PSET).

Точка входа F821H - F048H (63521 - 61512). Входные параметры: X1 : Координата X;

Y1 : Координата Y;

GRF COLOR: (0-3) - Цвет точки.

```
Точка входа F020H ( 61472 ).
Действие аналогично подпрограмме PSET при GRF COLOR=0.
            2.3.4 Вывод на экран линии ( LINE ).
  Точка входа F824H - F112H ( 63524 - 61714 ).
                        : Х начальной точки;
Входные параметры: X1
                  Y1
                           : У начальной точки;
                           : X конечной точки;
                  X2
                  Y2
                           : У конечной точки;
                  GRF COLOR : Цвет линии.
     2.3.5 Вывод на экран прямоугольника ( LINE .. В ).
  Точка входа F827H - F1A5H ( 63527 - 61861 ).
Входные параметры: Х1 : Х начальной точки;
                  Y1
                          : У начальной точки;
                          : Х конечной точки;
                  X2
                       : Ү конечной точки;
                  GRF COLOR : Цвет.
  Выводится прямоугольник со сторонами, параллельными рамке,
заданный диагональю (X1, Y1) - (X2, Y2).
   2.3.6 Вывод закрашенного прямоугольника ( LINE .. BF ).
  Точка входа F82AH - F1DAH ( 63530 - 61914 ).
Входные параметры: Х1 : Х начальной точки;
                           : Ү начальной точки;
                  Y1
                     : X конечной точки;
: Y конечной точки;
                  X2
                  Y2
                  GRF COLOR : Цвет.
  Выводится закрашенный прямоугольник со сторонами, парал-
лельными рамке, заданный диагональю (X1,Y1)-(X2,Y2).
         2.3.7 Закраска замкнутой фигуры ( PAINT ).
  Точка входа F830H - E774H ( 63536 - 59252 ).
GRF COLOR : Цвет закраски;
                  BRD COLOR : Цвет границы.
  Выполняется закраска замкнутой фигуры цвета BRD COLOR цветом
GRF COLOR. Если фигура не замкнута, будет закрашен весь экран.
         2.3.8 Установка цветовой палитры ( COLOR ).
   Точка входа F833H - DE3CH ( 63539 - 56892 ).
Входные параметры: PALETTE : Палитра (0-6); GROUND : Цвет фона (0-7).
  Выполняется установка заданной палитры и фона путем вывода
```

2.3.3 Стирание точки (PRESET).

в порт C1 (193) (Канал В ППА D30) соответствующего кода.

2.3.9 Копирование экрана на принтере (СОРУ).

Точка входа Е627Н (58919).

Производится вывод содержимого экранного ОЗУ на стандартно подключенный EPSON- совместимый принтер в графическом режиме SINGLE DENSITY (ESC "K") с перекодировкой цветного изображения в черно-белое по принципу "все, что не фон, то цвет" и "съеданием" каждой восьмой горизонтальной линии точек (для улучшения пропорциональности изображений на экране и на печати вследствие неквадратности пиксела в $\Pi K-01$).

Прервать выполнение этой подпрограммы можно нажатием клавиши "СТРЕЛКА ВНИЗ".

2.4 Подпрограммы вывода на МЛ.

В ПК-01 "Львов" (версия 2.0) для кодирования бит аналоговым сигналом при обмене с МЛ применен метод частотной модуляции, известный как метод FSK (Frequency Shift Keying) или метод "Kansas City", аналогичный применявшемуся в микро-ЭВМ линии YAMAHA-MSX. По этому методу "0" кодируется одним периодом прямоугольного сигнала (меандра), а "1" — двумя периодами сигнала удвоенной частоты. Прием такого сигнала сводится к подсчету числа периодов сигнала на интервале времени, соответствующем биту.

Следует отметить, что в ПК-01 версии 1.0 (мало кто о нем знает, но тем не менее он существовал и был даже РАДИО-86РК-совместимым) применялся принципиально иной метод кодирования бит (фазовый), аналогичный формату РАДИО-подобных ПК. Именно для загрузки файлов в таком формате (если вы их где-то все же отыщете) ипредназначены оператор BASIC 2.0 SLOAD и подпрограмма XXXXH (XXXXX). Подпрограммы записи в формате 1-й версии в ПЗУ версии 2.0 нет.

2.4.1 Передача бита "0" (WR 0).

Точка входа Е2ВЕН (58046).

Происходит выдача на порт С2H (194) (бит 0) длинного периода меандра, задаваемого значением системной переменной WROPERIOD.

2.4.2 Передача бита "1" (WR_1).

Точка входа Е2С5Н (58053).

Происходит выдача на порт С2H (194) (бит 0) двух корот-ких периодов меандра, задаваемого значением системной переменной WR1PERIOD.

2.4.3 Передача периода меандра.

Точка входа E2D5H (58069).

Происходит выдача на порт С2Н (194) (бит 0) периода меандра с длительностью, задаваемой значением регистровой

2.4.4 Передача пилот-сигнала (WR PILOT).

Точка входа Е42ВН (58411).

Происходит формирование пилот-сигнала с длительностью, задаваемой значением системной переменной PILOT_DUR. При A=0 формируется пилот обычной, а при A<>0 - четырехкратной длительности. Пилот-сигнал представляет собой меандр с коротким периодом, аналогичный серии битов "1".

2.4.5 Передача байта (WR BYTE).

Точка входа Е437Н (58423).

Выполняется передача на МЛ байта из регистра A. Формат представления байта имеет вид :

```
00 X0 X1 X2 X3 X4 X5 X6 X7 01 01

LT- L------ L-T--

СТАРТ.1бит--- Информационные биты L---- СТОП.2бита
```

Таким образом, каждый байт в ПК-01 передается в старт-стопном режиме (в отличие от других ПК), что несколько ухудшает эффективность обмена (на каждый байт передается не 8, а 11 бит), но существенно повышает надежность. Если какой-либо байт будет искажен при чтении (пропуск или ложный прием бита), то следующие за ним байты сохранят правильное значение (при непрерывном же режиме передачи искажены будут и все последующие байты). Стартстопный режим записи допускает также некоторые "вольности" при загрузке, например, динамическое изменение адреса загрузки т.к. интервал времени между приемами байт не регламентирован.

Подпрограмма выполняет сохранение и восстановление содержимого используемых регистров.

2.4.6 Передача слова (WR WORD).

Точка входа DD86H (56710).

Выполняется передача на МЛ слова из регистровой пары HL.

Подпрограмма выполняет сохранение и восстановление содержимого используемых регистров.

2.4.7 Передача заголовка файла (WR HEAD).

Точка входа ЕЗЕ4Н (58340).

Выполняется передача на МЛ заголовка файла, имеющего следующую структуру:

```
Пилот 4х длительности Т Т Т Т Т Т Т Т Т Т Т Т Т Б L N A M E L------ L------- 10 байт 6 байт
```

```
где T - идентификатор типа файла : D0 - BSAVE/BLOAD ( хранится в системной D3 - CSAVE/CLOAD переменной FILE_TYPE ) EA - SAVE/LOAD/MERGE
```

FLNAME - имя файла (6 символов ASCII из системной переменной SAVE NAME).

Входные параметры - SAVE_NAME, FILE_TYPE. Состояние регистра A определяет длительность пилота (см. выше).

2.4.8 Передача кодового файла (BSAVE).

Точка входа DD31H (56625).

Выполняется передача на МЛ файла в формате BSAVE, имеющего следующую структуру :

```
где Заг. - заголовок файла ( см. выше )
АО - начальный адрес ( CODFL_ORG )
АЕ - конечный адрес ( CODFL_END )
АЅ - адрес запуска ( CODFL RUN )
```

Входными параметрами подпрограммы являются CODFL_ORG, CODFL_END, CODFL_RUN, SAVE_NAME. После выполнения передачи на экран с новой строки выдаются адреса файла (подпрограмма FFD1H (65489)) и его КС (подпрограмма CHECKSUM) в шестнадцатеричном виде. Прерывание работы подпрограммы BSAVE не предусмотрено.

2.5 Подпрограммы ввода с МЛ.

Внимание! Во все стандартные подпрограммы ввода с МЛ включена подпрограмма E3DCH (58332), выполняющая опрос клавиши "СТРЕЛКА ВНИЗ" и устанавливающая флаг переноса С в "1" при ее нажатии. Эта подпрограмма используется для прерывания процедур ввода. При прерывании или аварийном завершении процедур ввода с МЛ выдается сообщение об ошибке и производится переход на E52BH (58667), откуда управление передается на ВЕF0H (48880). После холодного перезапуска здесь размещены коды С3H FDH 02H (JMP 02FDH (00756)), т.е. управление будет передано в BASIC. Изменив значение системной переменной LOAD_ERR, пользователь может назначить нестандартную процедуру обработки ошибок ввода.

2.5.1 Прием пилот-сигнала (RD PILOT).

Точка входа E4D0H (58576).

Выполняется многократная проверка стабильности периода пилотсигнала. Если длительность периода выходит за допустимые пределы (меньше 4 или больше DEH (222)) или разница между предыдущим и текущим периодом больше 3, то прием пилота начинается заново. Если проверка прошла успешно, то производится 256-кратное измерение периода пилота (результат накапливается в HL). На основе измерений вычисляются значения параметров считывания BE85H (48773) и BE86H (48774).

Подпрограмма RD_PILOT использует для измерения периода меандра подпрограмму E3C9H (58313), а она, в свою очередь использует п/п E3B4H (58292) для измерения длины одной полуволны (при E=00H - отрицательной, при E=FFH - положительной). Ре-

зультат помещается в С.

Подпрограмма выполняет сохранение и восстановление содержимого используемых регистров.

2.5.2 Прием байта (RD BYTE).

Точка входа Е4ВЕН (58558).

Выполняется прием с МЛ байта в регистр A в старт-стопном режиме (см. выше). В основу считывания бит положено определение количества полупериодов сигнала на заданном интервале времени (в бите) оно выполняется подпрограммой E390H (58256) (отрицательных или положительных взависимости от E (см. выше). Результат помещается в A и C. Если количество полупериодов больше 3, фиксируется ошибка и подпрограмма завершается с флагом C=1. Если результат равен 2 или 3, считается, что принят бит "1", а если меньше 2 – бит "0". Накопление байта происходит в D.

Подпрограмма выполняет сохранение и восстановление содержимого используемых регистров.

2.5.3 Прием слова (RD WORD).

Точка входа DDCAH (56778).

Выполняется прием с МЛ слова в регистровую пару HL.

Подпрограмма выполняет сохранение и восстановление содержимого используемых регистров.

2.5.4 Прием заголовка файла (RD HEAD).

Точка входа Е443Н (58435).

Выполняется проверка стабильности и вычисление скорости по пилоту (см. выше) затем 10 раз считывается и сравнивается с ожидаемым идентификатор типа файла (при несовпадении процесс приема заголовка начинается заново), считывается имя файла (6 байт) в системную переменную LOAD_NAME, выполняется его сравнение с заданным (SAVE_NAME). При несовпадении на экран выдается сообщение "ИМЯ:?", принятое имя и прием заголовка начинается заново. Если же принятое имя совпадает с заданным (или вместо заданного – только пробелы), то вадается сообщение "ФАЙЛ:", содержимое LOAD_NAME и подпрограмма завершается.

Входные параметры - SAVE NAME, FILE TYPE.

2.5.5 Прием блока (RD BLOCK).

Точка входа DDBCH (56764).

Входные параметры: НL : Начальный адрес;

DE : Конечный адрес.

Выполняется прием блока данных (тела файла) в указанные адреса ОЗУ. Завершение загрузки - аналогично подпрограмме BLOAD (cm. huxe).

2.5.6 Прием кодового файла (BLOAD).

Точка входа DD94H (56724).

Выполняется прием заголовка файла (см. выше), затем прием второго пилота, адресов начала, конца, запуска файла (они помещаются в системные переменные CODFL_ORG, CODFL_END и CODFL RUN соответственно) и наконец основного тела файла.

Значение системной переменной OFFSET определяет смещение адреса начала загрузки относительно принятого с MЛ адреса начала файла (CODFL ORG).

После выполнения загрузки на экран с новой строки выдаются адреса файла и его КС (подпрограмма DD61H (56673)) в шестнадцатеричном виде.

Если была задана загрузка с автозапуском, (в системной переменной AUTOSTART находится ASCII-код буквы "R" (без автозапуска – зачение 00)), производится передача управления на адрес, находящийся в CODFL RUN.

 ${\tt Bxoдhыmu}$ параметрами подпрограммы являются OFFSET, AUTOSTART, SAVE NAME.

2.6 Прочие

2.6.1 Короткий звуковой сигнал (ВЕЕР).

Точка входа F81BH - DEBFH (63515 - 57023).

Выдается короткий звуковой сигнал, аналогичный сигналу нажатия клавиши.

2.6.2 Управляемый звуковой сигнал (SOUND).

Точка входа F81EH - DE94H (63518 - 56980).

Входные параметры: L : Код частоты (период);

D : Код длительности.

Выдается звуковой сигнал с заданным периодом и длительностью. Кодировку нот см. в "Описании языка BASIC ", табл. 2.

2.6.3 Вычисление экранного адреса по координатам (VADDR).

Точка входа F818Н (63512).

Входные параметры: С : Координата X (< С8 H (200));

A : Координата Y (< DEH (222));

Вычисляет абсолютный адрес байта в ОЗУ по экранным координатам. Результат - в регистровой паре ${\tt HL}$.

2.6.4 Заполнение экранного ОЗУ кодом.

Точка входа ЕВВСН (60348).

Входной параметр: BORDER: Код заполнения.

Выполняется заполнение экранного ОЗУ указанным кодом.

2.6.5 Очистка основной области экрана.

Точка входа ЕВА5Н (60325).

Выполняется заполнение основной области экранного ОЗУ кодом 00.

2.6.6 Курсор в начало экрана.

Точка входа ЕВЕ4Н (60388).

Выполняется установка текущей текстовой позиции вывода в (0,0). Видимость курсора определяется системной переменной CURSOR.

Внимание !

Перед обращением к подпрограммам 2.6.4, 2.6.5 и 2.6.6 необходимо подключить экранное ОЗУ к шинам МП (см. выше), после обращения, - отключить.

2.6.7 Перемещение массивов (MOVE).

Точка входа E11FH (57631).

Входные параметры: HL : Адрес, куда копировать;

DE : Начальный адрес копируемого массива;

ВС : Длина массива.

Выполняется копирование содержимого одной области ОЗУ в другую.

2.6.8 Заполнеие области ОЗУ кодом (FILL).

Точка входа Е12АН (57642).

Входные параметры: НL: Начальный адрес заполнения;

ВС : Длина массива; Е : Код заполнения.

Выполняется заполнение заданной области ОЗУ указанным кодом.

2.6.9 Перевод полубайта из НЕХ в DEC.

Точка входа FFBDH (65469).

Входной параметр: A: Полубайт в шестнадцатеричной системе. Выполняется перевод полубайта из шестнадцатеричной системы счисления в десятичную. Результат - в регистре C.

2.6.10 Вывод на экран полубайта в НЕХ.

Точка входа FFDFH (65503).

Входной параметр: А: Полубайт в шестнадцатеричной системе. Выполняется перевод полубайта из шестнадцатеричной системы счисления в десятичную. Результат выводится на экран.

2.6.11 Умножение DE на A (сложение A раз).

```
Точка входа FF24H ( 65316 ). Входные параметры: DE : Слагаемое ( множимое ); A : Количество сложений ( множитель ). Выполняется многократное ( A раз ) сложение содержимого регистровой пары DE. Результат - в регистровой паре HL.
```

2.6.12 Проверка условия DE=HL.

Точка входа ${\rm E425H}$ (${\rm 58405}$). Входные параметры: DE ; HL .

Выполняется сравнение содержимого регистровых пар DE и HL. Результат - состояние флага Z (Z=1 - равны, Z=0 - неравны).

2.6.13 Заполнение пробелами.

Точка входа DB63H (56163). Входные параметры: В : Количество пробелов; DE : Адрес начала заполнения.

Выполняется заполнение области ОЗУ с начальным адресом DE и длиной В кодом 20H (32) - ASCII-кодом символа "пробел".

3. Сводная таблица системных подпрограмм.

```
0107-0207H - Экранный буфер BASIC
0243/0244H - Адрес начала BASIC-программы ( 1723H )
0245/0246H - Адрес конца BASIC-программы ( начало обл. переменных )
0247/0248H - Адрес конца переменных BASIC-программы ( начало обл. массивов )
0249/024AH - Адрес начала свободной области ОЗУ
```

AFC1H - Вершина стека BASIC AF00H - Вершина стека GOSUB

4. Сводная таблица системных переменных. 4.1 Системные переменные BIOS.

Hex	Dec	TT Name	Comment ;
+ ! BE10	¦ 48656	KEYCODE	 ¦ код нажатой клавиши ¦
BE14	48660	KEYSTAT	состояние клавиатуры
BE1B	48667	DISP OUT	вкл./выкл. принтера ¦
BE1D	48669	KYB MODE	режим клавиатуры ¦
BE1E	48670	KYB BEEP	¦ вкл./выкл. звук клав. ¦
BE30/BE31	48688/48689	TXT ADDR	¦ адрес вывода символа ¦
BE32	48690	COL#	X след.поз.выв. текста
; BE33	48691	ROW#	¦ У след.поз.выв. текста ¦
; BE36	48694	TXT COLOR	цвет текста :
; BE38	48697	BORDER	¦ байт заполнения рамки ¦
; BE39	48698	SCRL LOCK	скроллинг авт./ожид.
BE3C	48700	CURSOR	видимость курсора
BE3D	48701	CURSOR*	¦ уст. видимость курсора ¦
BE3E	48702	LOC COL	VCT. X BUB. TEKCTA
BE3F	48703	LOC ROW	уст. Y выв. текста :
BE40	48704	PRN SHIFT	¦ смещение букв кирилл. ¦
BE41	48705	PRN XOR	выв.на PRN норм./инвер.
BE50	48720	X1	: ! X начальной точки :
; ==55 ; BE51	48721	Y1	Y начальной точки ¦
; BE52	48722	GRF COLOR	¦ цвет графич. объекта ¦
BE57	48727	X2 -	¦ X конечной точки ¦
BE58	48728	Y2	¦ Y конечной точки ¦
BE80/BE81	48768/48769	WROPERIOD	длит.периода сигн."0"
BE82/BE83	48770/48771	WR1PERIOD	длит.периода сигн."1" ¦
BE84	48772	PILOT DUR	; ; длительность пилота ;
BE85	48773	_	¦ – параметры чтения МЛ ¦
BE86	48774		L (опред. автоматич.) ¦
BE87	48775	; FILE TYPE	: идентификат.типа файла
BE88/BE89	48776/48777	BASFL ORG	начало BASIC-файла ¦
BE8A/BE8B	48778/48779	BASFL END	конец BASIC-файла ¦
BE8C-BE91	48780-48785	SAVE NAME	- имя файла запись/эталон
BE92-BE97	48786-48791	LOAD NAME	¦ считанное имя файла ¦
BEA3	48803	AUTOSTART	¦ признак автостарта ¦
BEA4/BEA5	48804/48805	CODFL ORG	- ¦ начало СОDE-файла ¦
BEA6/BEA7	48806/48807	CODFL END	- ¦ конец СОDE-файла ¦
BEA9/BEAA	48809/48810	CODFL RUN	¦ старт СОDE-файла ¦
BEAB/BEAC	48811/48812	OFFSET	¦ смещение СОDE-файла ¦
BECO	48832	PALETTE	¦ палитра ¦
BEC1	48833	GROUND	¦ цвет фона ¦
BEF1/BEF2	48881/48882	LOAD_ERR	¦ адр.перех. по ОШИБ.В/В ¦
BEF3	¦ 48883	PRN_OUT	¦ вкл./выкл. дисплея ¦

-		1			1
L	4.2	1	+ переменные	+ интерпретатора	BASIC.
			_	T	

¦ +	Hex	Dec	Name	Comment	¦ -+
-	0245/0246 0247/0248		BAS_PROG BAS_VARS BAS_ARRS BAS_FREE	адр.нач. BAS-программы адр.нач. BAS-переменн. адр.нач. BAS-массивов адр.нач. свободн. ОЗУ	

E6AA - Вывод на принтер ESC+chr\$(C)

E6A3 - Вывод на принтер chr\$(C)