CoEvolution

Definition

- Interactive evolution

- External influences
 Can be more than one population
 One population influences the
 other
- Can deal with subjective fitness functions

Motivation

- In nature fitness of an organism depends on environmental niche A species and the area seen on the solution space depends on interaction with other species Types of interaction
- - Mutualism/symbiosis (positive species enhancement)
 - Predation/parasitism (negative effects of species)

Examples:

Ability of a rabbit to run at 30kph depends on the top speed of a fox that preys on it

Ability of a plant to pollinate depends bees to pick up and spread the pollen

Exercise: find out about the Iterated prisoner's dilemma used to evolve gamenlavine strategies

Evolutionary Computation Sep-06 G.M. Megson

Cooperative CoEvolution

- Set of different species
- Each represent part of the problem
- Must cooperate to solve a larger problem
- · Computational Examples
 - Job shop scheduling High-dimensional function optimisation
- Advantage
 - Allows function decomposition
 - But requires user to provide a partitioning of problem
- · Real world example
 - Endosymbiosis where two species physically linked
 - e.g. gut bacteria that has to live inside hosts body.

Computing

- A parts of a problem cannot be separated.
- Use linkage flags to show which solutions for different populations should stay together
- Genetic programming
 - Use the idea of automatically defined functions

 - GP can call functions which are themselves being evolved.

Evolutionary Computation Sep-06

G.M. Megson

Competitive CoEvolution

Model

- Populations compete against each other
- Grab fitness or parts of fitness landscape at the expense of each other
- · Iterated prisoner's dilemma
 - Simplest scheme 2 players Each decides whether to
 - cooperate or defect
 - Reward is decided by a payoff
 - Evolve a strategy where player can only see the last three strategies of opponent
 - Best strategy Tit-for-Tat

- Hillis Sorting networks
 - Used two species (population) Task to evolve the best sorting
 - networks Fitness determined by how
 - many examples were sorted correctly

 Found better networks than previously known

Pairing

- As population's evolve can
- pair up to cooperate
 If competition occurs in single
 pop use fitness and ranking to
 choose members
- Between populations requires competitive fitness evaluation

CoEvolution in constraint problems

- Here have a number of constraints
 - Each constraint must be satisfied to get high fitness
- Two populations
 - Can measure fitness of one by ability to solve problem
 - Can measure second by its ability to frustrate the first population
- Choice of populations
 - Pop 1: individuals try to satisfy the problem
 - Pop 2: are constraints

- Frustration
 - stration
 A candidate s in pop1
 frustrates a candidate c in pop2
 if it satisfies the constraint
 represented by c
 A candidate c if pop 2
 frustrates a candidate s in pop
 1 if constraint c makes s fail

Mutual frustration

- Taking repeated cycles evolve pop1 which has a high fitness in frustrating pop2 (i.e satisfies constraints) constraints)
- Pop2 remains static cannot evolve constraints (usually know at design-time)

Evolutionary Computation Sep-06

G.M. Megson

Evolutionary Computation Sep-06

G.M. Megson

Interactive Evolution

- Method
- Method

 User becomes part of evolutionary system

 Usually in determining the fitness of individuals

 Example: agricultural breeding

 Selective breeding by man

 Creates better cattle, faster horses, different types of dogs

 User's influence

 Subjective (user chooses best)
- - Subjective (user chooses best) Aesthetic (used in context of evolutionary art)
- Application
 - Situations where no clear fitness function exists
 - To improve search ability, when method gets stuck in area of search space
 To increase exploration and diversity of population
- Disadvantages

 - Slow compared with automated execution

 - automated execution

 Inconsistency: humans change their mind as to what is 'best'

 Limited coverage: humans only concentrate for a limited time or for small populations

Evolutionary Computation Sep-06

G.M. Megson