

Unsupervised classification / clustering

Unsupervised classification

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ **Output**: function $f: \mathbb{R}^d \to \{1, 2, \dots, k\} =: [k]$.
- ► Typical semantics: hidden subpopulation structure.

Unsupervised classification / clustering

Unsupervised classification

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ **Output**: function $f: \mathbb{R}^d \to \{1, 2, \dots, k\} =: [k]$.
- ► Typical semantics: hidden subpopulation structure.

Clustering

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: partitioning of x_1, x_2, \dots, x_n into k groups.
- Often done via unsupervised classification;
 "clustering" often synonymous with "unsupervised classification".
- Sometimes also have a "representative" $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the x_i in jth group) \longrightarrow quantization.

Unsupervised classification / clustering

Clustering

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: partitioning of $x_1, x_2, ..., x_n$ into k groups.
- ▶ Often done via unsupervised classification;
 ⇒ "clustering" often synonymous with "unsupervised classification".
- Sometimes also have a "representative" $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the x_i in jth group) \longrightarrow quantization.

Uses of clustering: feature representations

"One-hot" / "dummy variable" encoding of
$$f(x)$$

$$\phi(x) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(Often used together with other features.)
$$f(x) = \begin{cases} f(x) \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{cases}$$

Uses of clustering: feature representations

Histogram representation

- ▶ Cut up each $x_i \in \mathbb{R}^d$ into different parts $x_{i,1}, x_{i,2}, \ldots, x_{i,m} \in \mathbb{R}^p$ (e.g., small patches of an image) .
- ▶ Cluster all the parts $x_{i,j}$: get k representatives $c_1, c_2, \ldots, c_k \in \mathbb{R}^p$.
- ▶ Represent x_i by a histogram over $\{1, 2, ..., k\}$ based on assignments of x_i 's parts to representatives.

Uses of clustering: compression

Quantization

Replace each $oldsymbol{x}_i$ with its representative

$$oldsymbol{x}_i \; \mapsto \; oldsymbol{c}_{f(oldsymbol{x}_i)} \, .$$

Example: quantization at image patch level.

k-MEANS CLUSTERING

k-means clustering

Problem

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \| m{x}_i - m{c}_j \|_2^2$$
 .

k-means clustering

Problem

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- ▶ **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \|m{x}_i - m{c}_j\|_2^2$$
 .

Natural assignment function

$$f(x) := \arg \min_{j \in [k]} \|x - c_j\|_2^2.$$

k-means clustering

Problem

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- ▶ **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \|m{x}_i - m{c}_j\|_2^2$$
 .

Natural assignment function

$$f(x) := \underset{j \in [k]}{\operatorname{arg \, min}} \|x - c_j\|_2^2.$$

NP-hard, even if k=2 or d=2.

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \|oldsymbol{x}_i - oldsymbol{c}\|_2^2$$
 .

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \|oldsymbol{x}_i - oldsymbol{c}\|_2^2$$
 .

Solution: "bias/variance decomposition"

$$\frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i - \boldsymbol{c}\|_2^2 = \|\boldsymbol{\mu} - \boldsymbol{c}\|_2^2 + \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i - \boldsymbol{\mu}\|_2^2$$

where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$.

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \|\boldsymbol{x}_i - \boldsymbol{c}\|_2^2.$$

Solution: "bias/variance decomposition"

$$\frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i - \boldsymbol{c}\|_2^2 = \|\boldsymbol{\mu} - \boldsymbol{c}\|_2^2 + \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i - \boldsymbol{\mu}\|_2^2$$

where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$.

Therefore, optimal choice for c is μ .

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \|oldsymbol{x}_i - oldsymbol{c}\|_2^2$$
 .

Solution: "bias/variance decomposition"

$$\frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{c}\|_{2}^{2} = \|\boldsymbol{\mu} - \boldsymbol{c}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{\mu}\|_{2}^{2}$$

where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$.

Therefore, optimal choice for c is μ .

k-means clustering for d=1

Dynamic programming in time $O(n^2k)$.

Assignment variables

For each data point ${m x}_i$, let ${m \phi}_i \in \{0,1\}^k$ denote its "one-hot" representation:

$$\phi_{i,j} = \mathbb{1}\{x_i \text{ is assigned to cluster } j\}$$
 .

Assignment variables

For each data point ${m x}_i$, let ${m \phi}_i \in \{0,1\}^k$ denote its "one-hot" representation:

$$\phi_{i,j} = \mathbb{1}\{x_i \text{ is assigned to cluster } j\}$$
 .

Objective becomes (for optimal setting of ϕ_i s)

$$\sum_{i=1}^n \min_{j \in [k]} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 \ = \ \sum_{i=1}^n \left\{ \sum_{j=1}^k \phi_{i,j} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 \right\}.$$

Assignment variables

For each data point ${m x}_i$, let ${m \phi}_i \in \{0,1\}^k$ denote its "one-hot" representation:

$$\phi_{i,j} = \mathbb{1}\{x_i \text{ is assigned to cluster } j\}$$
 .

Objective becomes (for optimal setting of ϕ_i s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{k} \phi_{i,j} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 \right\}.$$

Lloyd's algorithm (sometimes called *the* k-means algorithm) Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

▶ Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi_1, \phi_2, \ldots, \phi_n$.

 $lackbox{lack}$ Holding $\phi_1,\phi_2,\ldots,\phi_n$ fixed, pick optimal c_1,c_2,\ldots,c_k .

Assignment variables

For each data point x_i , let $\phi_i \in \{0,1\}^k$ denote its "one-hot" representation:

$$\phi_{i,j} = \mathbb{1}\{x_i \text{ is assigned to cluster } j\}$$
 .

Objective becomes (for optimal setting of ϕ_i s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{k} \phi_{i,j} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 \right\}.$$

Lloyd's algorithm (sometimes called *the* k-means algorithm) Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

- ▶ Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi_1, \phi_2, \ldots, \phi_n$. Set ϕ_i so x_i is assigned to closest c_j .
- $lackbox{lack}$ Holding $oldsymbol{\phi}_1, oldsymbol{\phi}_2, \ldots, oldsymbol{\phi}_n$ fixed, pick optimal $oldsymbol{c}_1, oldsymbol{c}_2, \ldots, oldsymbol{c}_k$.

Assignment variables

For each data point x_i , let $\phi_i \in \{0,1\}^k$ denote its "one-hot" representation:

$$\phi_{i,j} = \mathbb{1}\{x_i \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of ϕ_i s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{k} \phi_{i,j} \|\boldsymbol{x}_i - \boldsymbol{c}_j\|_2^2 \right\}.$$

Lloyd's algorithm (sometimes called *the* k-means algorithm) Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

- ▶ Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi_1, \phi_2, \ldots, \phi_n$. Set ϕ_i so x_i is assigned to closest c_i .
- ► Holding $\phi_1, \phi_2, \dots, \phi_n$ fixed, pick optimal c_1, c_2, \dots, c_k . Set c_i to be the average of the x_i assigned to cluster j.

Arbitrary initialization of c_1 and c_2 .

Iteration 1 Optimize assignments ϕ_i .

Iteration 2 Optimize assignments ϕ_i .

Iteration 3 Optimize assignments ϕ_i .

Iteration 4 Optimize assignments ϕ_i .

Initializing Lloyd's algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For j = 1, 2, ..., k:

Pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \ldots, x_n farthest from previously chosen $c_1, c_2, \ldots, c_{j-1}$.

 $(c_1$ chosen arbitrarily.)

Initializing Lloyd's algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For j = 1, 2, ..., k:

Pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \ldots, x_n farthest from previously chosen $c_1, c_2, \ldots, c_{j-1}$.

 $(c_1$ chosen arbitrarily.)

But this can be thrown off by outliers...

Initializing Lloyd's algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For j = 1, 2, ..., k:

Pick
$$c_j \in \mathbb{R}^d$$
 from among x_1, x_2, \ldots, x_n farthest from previously chosen $c_1, c_2, \ldots, c_{j-1}$. (c_1 chosen arbitrarily.)

But this can be thrown off by outliers...

A better idea:

$$D^2$$
 sampling (a.k.a. "k-means++")

For j = 1, 2, ..., k:

Randomly pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \ldots, x_n according to distribution

$$P(\boldsymbol{x}_i) \propto \min_{\ell=1,2,\ldots,j-1} \|\boldsymbol{x}_i - \boldsymbol{c}_\ell\|_2^2.$$

(Uniform distribution when j = 1.)

Choosing k

 Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).

Choosing k

- Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).
- ▶ Heuristic: Find large gap between (k-1)-means cost and k-means cost.

Hierarchical clustering: encode clusterings for all values of k in a tree.

$$k = 2 \text{ or } k = 3?$$

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

$$k = 2 \text{ or } k = 3?$$

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

$$k = 2 \text{ or } k = 3?$$

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

Example: phylogenetic tree

Hierarchical clustering

Divisive (top-down) clustering

- Partition data into two groups (e.g., via k-means clustering with k=2).
- ► Recurse on each part.

Hierarchical clustering

Divisive (top-down) clustering

- ▶ Partition data into two groups (e.g., via k-means clustering with k=2).
- Recurse on each part.

Agglomerative (bottom-up) clustering

- ightharpoonup Start with every point x_i in its own cluster.
- ► Repeatedly merge "closest" pair of clusters.

Hierarchical clustering

Divisive (top-down) clustering

- ▶ Partition data into two groups (e.g., via k-means clustering with k=2).
- Recurse on each part.

Agglomerative (bottom-up) clustering

- ightharpoonup Start with every point x_i in its own cluster.
- ► Repeatedly merge "closest" pair of clusters.

Example: Ward's average linkage method

$$\operatorname{dist}(C, \tilde{C}) := \frac{|C| \cdot |\tilde{C}|}{|C| + |\tilde{C}|} \| \operatorname{mean}(C) - \operatorname{mean}(\tilde{C}) \|_{2}^{2}$$

(the increase in k-means cost caused by merging C and \tilde{C}).

Recap

- Uses of clustering:
 - Unsupervised classification ("hidden subpopulations").
 - Quantization
- ▶ k-means clustering: popular objective for clustering and quantization.
- Lloyd's algorithm: alternating optimization, needs good initialization.
- ▶ Hierarchical clustering: clustering at multiple levels of granularity.