Curso de Ciência da Computação Disciplina: Pesquisa Operacional

Professor(a): Warley Gramacho
Aluno: Lucas Carvalho da Luz Moura

Matrícula:2020111618

Relatório sobre "O Problema do Fluxo de Petróleo na Refinaria."

Introdução

O problema de otimização do fluxo de petróleo em uma refinaria envolve a determinação da melhor maneira de processar dois tipos de óleo cru (I e II) através de vários centros de processamento para maximizar o lucro total. O modelo utiliza Programação Linear (PL) para encontrar a solução ótima, considerando as capacidades de produção, custos operacionais, preços de venda, e várias restrições operacionais.

Descrição do Problema

A refinaria processa dois tipos de óleo, I e II, passando por quatro centros de processamento. O objetivo é otimizar a produção para maximizar o lucro. Os fluxos normais e alternativos de processamento são considerados para ambos os tipos de óleo.

Variáveis de Decisão

As variáveis de decisão representam a quantidade de óleo processada em cada centro:

xi: Número de litros de óleo tipo I processados diariamente.

xij: Número de litros de óleo tipo I ou II processados no centro j.

Esquema de Produção

A produção é distribuída entre quatro centros. Cada centro tem uma capacidade máxima de produção por hora e um percentual de recuperação do óleo bruto. Os centros operam em horários diferentes: os Centros 1 e 4 operam 16 horas por dia, enquanto os Centros 2 e 3 operam 12 horas por dia.

Tabelas de Dados

Tabela 2.8: Custos e Capacidades de Produção

Produto	Centro	Capacidade I/h	% de Recuperação	Custo \$/h	
1	1	300	90	150	
	2	450	95	200	
	4	250	85	180	
	2	400	80	220	
	3	350	75	250	
//	1	500	90	300	
	3	480	85	250	
	4	400	80	240	

Tabela 2.9: Custos/Preços dos Produtos

Produto	Custo da Matéria-prima (\$/I)	Preço de Venda (\$/I)	Venda Diária Máxima (I)
1	5	20	1.700
	6	18	1.500

Restrições

Capacidade de Processamento dos Centros:

Cada centro tem uma capacidade máxima de processamento por hora.

Centros 1 e 4 operam 16 horas por dia: x1≤16×Capacidade_1

Centros 2 e 3 operam 12 horas por dia: x2≤12×Capacidade 2

Recuperação e Perda de Óleo:

Percentual de recuperação varia por centro.

Perdas são acumuladas em cada etapa de processamento.

Limites de Transporte e Venda:

Capacidade de transporte limitada a 2500 l/dia.

Limite diário de venda para óleo tipo I é 1700 l, e para tipo II é 1500 l.

Não Negatividade:

As variáveis de decisão não podem ser negativas: xi≥0

Função Objetivo

O objetivo é maximizar o lucro, que é a receita menos os custos de matéria-prima e operacionais.

Código referente a Receita:

```
20 * a N * x N[1] + 20 * a A * x A[1] + 18 * b * x[2]
```

Código referente a Despesa:

```
(5 * x[1] + 5 * x_A[1] + 6 * x[2])
```

Exemplo de Modelagem

Para modelar este problema em um solver como o GLPK, utilizamos um arquivo de modelo (refinaria.mod) e um arquivo de dados (refinaria.dat), e foi utilizado o GLPK nativo para Linux, utilizando assim o Fedora 39 como sistema principal.

Abaixo temos os parâmetros utilizados para a execução do código:

```
# Parâmetros
param Capacidade{1..4}; # Capacidades dos 4 centros de processamento
param Custo_sh{1..4, 1..2}; # Custos de processamento por hora para cada centro e tipo de óleo
param Recuperacao{1..4, 1..2}; # Taxa de recuperação para cada centro e tipo de óleo
param Custo_materia_prima{1..2}; # Custo da matéria-prima para cada tipo de óleo
param Preco_venda{1..2}; # Preço de venda de cada tipo de óleo
param Venda_diaria_maxima{1..2}; # Quantidade máxima que pode ser vendida diariamente de cada tipo de óleo
param Horas_operacao{1..4}; # Horas de operação diárias para cada centro
param Capacidade_transporte; # Capacidade máxima de transporte diária
```

Abaixo temos as variáveis de decisão e coeficiente de rendimentos utilizados para a execução do código:

```
# Variáveis de decisão
var x{1..2} >= 0;  # Litros de óleo processados diariamente (x[1] para óleo tipo I, x[2] para óleo tipo II)
var x_N{1..2} >= 0;  # Litros de óleo tipo I processados no fluxo normal
var x_A{1..2} >= 0;  # Litros de óleo tipo I processados no fluxo alternativo

# Coeficientes de rendimento
param a_N := 0.9 * 0.95 * 0.85 * 0.8;  # Rendimento acumulado para o óleo tipo I no fluxo normal
param a_A := 0.9 * 0.95 * 0.85 * 0.75;  # Rendimento acumulado para o óleo tipo I no fluxo alternativo
param b := 0.9 * 0.85 * 0.80;  # Rendimento acumulado para o óleo tipo II
```

Abaixo temos a Função Objetivo de maximizar o Lucro de venda utilizados para a execução do código:

```
# Funcion objectivo: Maximizar o lucro
maximize tucro:
20 * ___# * x,N[1] + 20 * _a,A * x,A[1] + 18 * b * x[2]  # Receita
20 * ___# * x,N[1] + 5 * x,A[1] + 6 * x[2]  # Desposa com materia-prima
20 * ___# * x,N[1] + 5 * x,A[1] + 6 * x[2]  # Desposa com materia-prima
20 * ___# * x,N[1] / Capacidade[1] + 150 * x,A[1] / Capacidade[1] + 300 * x,N[2] / Capacidade[1]) # Custos operacionais do Centro 1
20 * ___# * x,N[1] / Capacidade[2] + 200 * 0.9 * x,A[1] / Capacidade[2] + 220 * 0.9 * 0.95 * x,N[1] / Capacidade[2] # Custos operacionais do Centro 2
20 * ___# * x,N[1] / Capacidade[2] * ___# * 200 * 0.9 * x,A[1] / Capacidade[2] + 230 * 0.9 * 0.95 * x,N[1] / Capacidade[3]) # Custos operacionais do Centro 3
20 * ___# * x,N[1] / Capacidade de processamento
21 * ____# * Restrições de capacidade de processamento
22 * ____# * x,N[1] / Capacidade[1] * x,A[1] / Capacidade[1] * x,N[2] / Capacidade[1] * x,N[2] / Capacidade[2] * x,N[1] / Capacidade[2]
```

Abaixo temos o resultado gerado pelo código:

Y DAIA	o temos o re	Juit	auo gerauo j	ocio couigo.			
Proble	m: refinar	ia					
Rows:	11						
Column	s: 5						
Non-ze:	ros: 25						
Status	: OPTIMAL						
			82.8655 (MAXim	um)			
No.	Row name	St	Activity	Lower bound	Upper bound	Marginal	
			28782.9				
2	Capacidade1	В	9.74659		16		
3	Capacidade2	В	11.4035		12		
	Capacidade3				12	1037.08	
5	Capacidade4	В	6.09375		16		
	Transporte				2500		
7	Venda1	NU	1700		1700	9.61051	
8	Venda2	В	340		1500		
	NaoNegativid	lade1					
		В	0	-0			
10 NaoNegatividade2							
		В		-0			
11	NaoNegativid	lade3					
		В	0	-0			
No.	Column name	St	Activity	Lower bound	Upper bound	Marginal	
1	x[2]	В	555.556	0			
	x[1]			0		-5	
			2923.98	0			
4	x_N[2]	NL	0	0		-1	
	x_A[1]	NL	0	0		-4.29925	

Conclusão

Este relatório detalha o problema de otimização do fluxo de petróleo na refinaria, apresentando as variáveis de decisão, restrições e função objetivo. Com a modelagem adequada em GLPK, é possível determinar a solução ótima que maximiza o lucro, considerando todas as restrições operacionais e econômicas.