INDIAN INSTITUTE OF TECHNOLOGY DELHI DEPARTMENT OF MATHEMATICS SEMESTER I 2023 - 24

MTL 104 (Linear Algebra and its Applications)
Minor

Date: 15/09/2023 Timing: 8 AM to 9:40 AM

Full Marks: 30

Question 1: (a) Find a basis and the dimension for each of the following vector spaces. Here \mathbb{R} and \mathbb{C} denote the set of real numbers and complex numbers respectively. [Justification is not needed. There are no partial marks in each of the portions]

- (i) The vector space \mathbb{C}^2 over the field \mathbb{R} . (1)
- (ii) The vector space of complex symmetric (3×3) matrices (entries from \mathbb{C}) over the field \mathbb{R} .
- (iii) The vector space of real skew-symmetric (4×4) matrices (entries from \mathbb{R}) over the field \mathbb{R} .
- (b) Is \mathbb{R}^2 a subspace of the complex vector space \mathbb{C}^2 (over the field \mathbb{C})? Justify. (2)
- (c) Prove that F^{∞} is infinite-dimensional. (2)

Question 2: Let $\mathcal{P}_n(x)$ be the vector space (over \mathbb{R}) which consists of all the real polynomials of degrees at most $n, n \in \mathbb{N}$. Prove or disprove: there exists a basis $p_0(x), p_1(x), p_2(x), p_3(x)$ of $\mathcal{P}_3(x)$ such that none of the polynomials $p_0(x), p_1(x), p_2(x), p_3(x)$ has degree 2. Find a basis for the quotient space $\mathcal{P}_6(x)/\mathcal{P}_3(x)$. Justify your answer. (3+2)

Question 3: Suppose V is a finite-dimensional vector space. Let U, W be subspaces of V. Prove that $(U+W)^0 = U^0 \cap W^0$ and $(U\cap W)^0 = U^0 + W^0$. (3+3)

Question 4: Consider \mathbb{R}^3 as a vector space over the field \mathbb{R} . Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be a linear map. Show that T has a one-dimensional invariant subspace. Will T have a two-dimensional invariant subspace? Justify your answer. (2+4)

Question 5: Suppose $T \in \mathcal{L}(\mathbb{R}^{10})$ is defined by $T(x_1, \dots, x_{10}) = (x_1 + \dots + x_{10}, \dots, x_1 + \dots + x_{10})$. Find all eigenvalues and eigenvectors of T. Discuss whether T is diagonalizable or not. (4+2)