# Mesures en hyperfréquences







Analyseur de réseau vectoriel

Franck Daout fdaout@parisnanterre.fr

https://cva-geii.parisnanterre.fr/

CFD - Bourges

### Mise en œuvre d'une mesure :





- ✓ Quelle grandeur veut-on mesurer ?
- ✓ Quel format sera le plus approprié?
- ✓ Quelles sont les conditions de la mesure?
- ✓ Quel calibrage utiliser?

#### Mise en œuvre d'une mesure:

Exemple: Recette d'un atténuateur mini-circuit UNAT-1



| FREQ.<br>RANGE<br>(MHz)        | ATTENUATION * (dB) Flatness ** |          |           |           |          | VSWR<br>(:1) |      |           |      |           | MAX.<br>INPUT<br>POWER |
|--------------------------------|--------------------------------|----------|-----------|-----------|----------|--------------|------|-----------|------|-----------|------------------------|
|                                |                                | DC-3 GHz | 3-4.5 GHz | 4.5-6 GHz | DC-6 GHz | DC-3 GHz     |      | 3-4.5 GHz |      | 4.5-6 GHz | (W)                    |
| f <sub>L</sub> -f <sub>U</sub> | Nom.                           | Тур.     | Тур.      | Typ.      | Typ.     | Тур.         | Max. | Тур.      | Max. | Тур.      |                        |
| DC-6000                        | 1±0.3                          | 0.20     | 0.15      | 0.10      | 0.45     | 1.05         | 1.20 | 1.10      | 1.43 | 1.40      | 1.0                    |

#### Mise en œuvre d'une mesure :





- ✓ Quelle grandeur veut-on mesurer ?
- ✓ Quel format sera-t-il le plus approprié?
- ✓ Quelles sont les conditions de la mesure?
- ✓ Quel calibrage utiliser?

### Mesure des paramètres S



#### Mise en œuvre d'une mesure :





- ✓ Quelle grandeur veut-on mesurer ?
- ✓ Quel format sera-t-il le plus approprié?
- ✓ Quelles sont les conditions de la mesure?
- ✓ Quel calibrage utiliser?

### réglage du synthétiseur

Stimulus:

**Fstart** 

Fstop

Power

N points

#### Mise en œuvre d'une mesure :





- ✓ Quelle grandeur veut-on mesurer ?
- ✓ Quel format sera-t-il le plus approprié?
- ✓ Quelles sont les conditions de la mesure?
- ✓ Quel calibrage utiliser?

#### Le choix du calibrage

#### RESPONSE





- Transmission
- rapide
- Corrige l'erreur de dissymétrie des voies

#### 1-PORT





- Réflexion
- Corrige les erreurs:

   Directivité
   Désadaptation
   Dissymétrie des voies

#### **FULL 2-PORT**





thru

Corrige toutes les erreurs

#### Mise en œuvre d'une mesure :

Les réglages successifs à faire :

- ✓ Réglage du synthétiseur :
- ✓ Choix de l'étalonnage :
- ✓ Sélection du paramètre désiré :
- ✓ Sélection du format de la représentation:



### ANALYSEUR DE RESEAUX Vectoriel Network Analyzer, VNA

- Structure
- Étalonnage

Corriger les erreurs de :

Directivité

Désadaptation

Dissymétrie des voies



# Structure de l'analyseur



# Mesure du paramètre S<sub>11</sub>



# Mesure du paramètre S<sub>11</sub>

Représentez sur le synoptique :

- en rouge, le chemin de l'onde sur la voie référence R1,
- En bleu, le chemin de l'onde sur la voie mesure A

Exprimez la tension  $\overline{V}_{_{\!A}}$  en fonction du signal  $\overline{V}_{_{\!\overline{\mathrm{syn}}}}$  issu du synthétiseur

Exprimez la tension  $\overline{V}_{R1}$  en fonction de  $\overline{V}_{\overline{syn}}$ 

En déduire  $\overline{S}_{11}$ .

# Mesure du S<sub>11</sub> d'une charge purement réactive



Quels sont les origines :

• de la variation de la phase?

• Du rapport des amplitudes ?

Relevé d'écran avant étalonnage.

# Mesure du S<sub>11</sub> d'une charge purement réactive

Quelle étape de mesure proposez-vous afin de réaliser la mesure de  $\overline{5}_{11}$ ?

Quel étalon peut-on utiliser?

Comparez à la procédure de mesure utilisée pour la mesure du paramètre  $\overline{S}_{11}$  à 100 MHz. Cet étalonnage à l'aide d'un seul étalon et supprimant l'erreur de dissymétrie est appelé « RESPONSE » ou « NORMALISATION ».



Résultat après calibrage «response»:

Concluez sur l'allure de de la courbe: Quels problèmes observez-vous?

# Mesure du S<sub>11</sub>

Effet des erreurs sur l'allure des courbes



### Erreur de directivité du coupleur



Représenter le chemin de la tension liée à l'erreur de directivité ?

### Erreur de désadaptation de la voie de mesure



Représenter le chemin de la tension liée à la désadaptation de la voie de mesure ?

## Mesure du S<sub>11</sub>

L'étalonnage complet d'un port à l'aide de trois étalons (court-circuit, circuit ouvert et charge adaptée) et supprimant les trois erreurs est appelé « One Port».

Résultat après calibrage « One Port »:

Conclusion:



## Mesure du S<sub>21</sub>



## Mesure du S<sub>21</sub>

- Représentez sur le synoptique :
  - Le chemin de l'onde sur la voie référence R1
  - · Le chemin de l'onde sur la voie mesure B
- En déduire la nécessité d'un étalonnage. Quel est l'étalon utilisé?
- A quoi sont dues les erreurs à corriger ?

## Mesure du S<sub>21</sub>



# Étalonnage & mesure

- L'étalonnage et la mesure sont étroitement liés :
  - Les conditions relatives à la source (fréquence, puissance..)
     lors de l'étalonnage sont conservées pour la mesure
  - Les étalons doivent avoir des accès identiques à ceux de l'objet à mesurer.
- Les étalons doivent être
  - Parfaitement connus
  - Reproductibles

La précision de la mesure dépend de la qualité de l'étalonnage

## Type de calibration

#### Thru Reflect Line (TRL)

- ✓ Initialement développé pour environnements non coaxiaux (lignes, guides...)
- ✓ Étalons : facile à fabriquer, n'ont pas à être caractérisés
- ✓ Bonne précision



#### Open Short Thru Load (OSTL)

- ✓Mise en œuvre simple
- ✓ Large bande
- ✓ Nécessite une bonne caractérisation des étalons
- ✓ Performance dégradées aux hautes fréquences



### Procédure de mesures

#### Stimulus : réglage du synthétiseur

Power

**Fstart** 

**Fstop** 

N points

Choix du type calibrage

#### Mesures en réflexion

Choix du Kit cal

1) Cal Response (1 étalon à présenter) Erreur corrigée :

2) Cal S11 one port (3 étalons à présenter) Erreur corrigée :

#### Mesures en transmission

Choix du Kit cal

1) Cal Response « thru ». (1 transmission) Erreur corrigée :

2)Cal full Two ports:

3 étalons à présenter sur chaque port

1 liaison directe

Erreur corrigée :

## Notation sur la face avant des analyseurs de réseaux

