Correction du devoir surveillé 1.

Exercice 1

1°) a) Par somme, u est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$:

$$u'(x) = 2x + \frac{1}{x} = \frac{2x^2 + 1}{x} > 0 \text{ car } x > 0 \text{ et } 2x^2 + 1 > 0.$$

Donc u est strictement croissante sur \mathbb{R}_+^* .

Les limites en 0 et en $+\infty$ se trouvent par somme de limites :

b) u est continue sur \mathbb{R}_+^* qui est bien un intervalle, et elle y est strictement croissante. D'après le théorème de la bijection, u réalise une bijection de \mathbb{R}_+^* dans $\lim_{x\to 0} u(x)$, $\lim_{x\to +\infty} u(x)$, ie de \mathbb{R}_+^* dans $\lim_{x\to 0} u(x)$.

Comme $0 \in]-\infty, +\infty[$, 0 a un unique antécédent dans \mathbb{R}_+^* par u, i.e. :

il existe un unique réel strictement positif α tel que $u(\alpha) = 0$.

2°) Par somme et composition de fonctions dérivables, g est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$,

$$g'(x) = 2x + 2\frac{1}{x}\ln(x) = \frac{2x^2 + 2\ln(x)}{x} = \frac{2}{x}u(x),$$

et comme ici x > 0, g'(x) est du signe de u(x).

Comme u est strictement croissante sur \mathbb{R}_+^* et que $u(\alpha) = 0$:

x	0		α		$+\infty$
g'(x)		_	0	+	
g	$+\infty$		g(lpha)		$+\infty$

- **3°) a)** M a pour coordonnées $(x, \ln(x))$, donc $OM = \sqrt{x^2 + (\ln(x))^2}$
 - **b)** Soit $x \in \mathbb{R}_+^*$ et M le point de \mathcal{C} d'abscisse x.

On a $OM = \sqrt{g(x)}$, et comme la fonction racine est strictement croissante, $x \mapsto \sqrt{g(x)}$ et g atteignent leur minimum au même point, c'est-à-dire en α d'après la question précédente.

Ainsi, la valeur minimale de OM est $\sqrt{g(\alpha)} = \sqrt{\alpha^2 + (\ln(\alpha))^2}$

4°) Comme $\ln'(\alpha) = \frac{1}{\alpha}$ est la pente de la tangente T à \mathcal{C} en A, un vecteur directeur de T est $\overrightarrow{v} = \left(1, \frac{1}{\alpha}\right)$.

Un vecteur directeur de la droite (OA) est $\overrightarrow{OA} = (\alpha, \ln(\alpha))$. Calculons le produit scalaire de ces deux vecteurs :

$$\overrightarrow{v} \cdot \overrightarrow{OA} = 1 \times \alpha + \frac{1}{\alpha} \times \ln(\alpha) = \frac{\alpha^2 + \ln(\alpha)}{\alpha} = \frac{u(\alpha)}{\alpha} = 0.$$

Ainsi ces vecteurs sont orthogonaux, ce qui signifie que T et (OA) sont perpendiculaires

Exercice 2

- 1°) Soit $x \in I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Alors $\cos x > 0$ donc $\ln(\cos x)$ existe. Ainsi, f est bien définie.
- 2°) Soit $x \in I$. On a $-x \in I$ et $f(-x) = \ln(\cos(-x)) = \ln(\cos x)$ car cos est paire. Ce qui s'écrit : f(-x) = f(x). Ainsi, f est paire.
- 3°) f est dérivable sur I comme composée de fonctions dérivables et pour tout $x \in I$, $f'(x) = -\frac{\sin x}{\cos x} = -\tan x$.

Explication des limites:

$$\begin{cases} \cos x \xrightarrow[x \to \frac{\pi}{2}]{} & \text{donc } f(x) \xrightarrow[x \to \frac{\pi}{2}]{} & \text{donc } f(x) \xrightarrow[x \to \frac{\pi}{2}]{} -\infty. \text{ Par parité de } f \text{ on a la même limite à droite en } -\frac{\pi}{2}. \\ \ln X \xrightarrow[x \to 0]{} -\infty & x < \frac{\pi}{2} \end{cases}$$

- **4°)** Pour le tracé de la courbe, on précise les asymptotes verticales, ainsi que la tangente au point d'abscisse 0 ($f'(0) = -\tan(0) = 0$ d'où une tangente horizontale). c.f. dernière question
- 5°) a) Soit $x \in \mathbb{R}$.

$$\cos x + \sqrt{3}\sin x = 2\left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right)$$
$$= 2\left(\cos x\cos\left(\frac{\pi}{3}\right) + \sin x\sin\left(\frac{\pi}{3}\right)\right)$$
$$= 2\cos\left(x - \frac{\pi}{3}\right)$$

Donc a = 2 et $\varphi = \frac{\pi}{3}$ conviennent

b) Soit
$$x \in I' = \left] -\frac{\pi}{6}, \frac{5\pi}{6} \right[\text{ ie } -\frac{\pi}{6} < x < \frac{5\pi}{6}.$$

Alors $-\frac{\pi}{6} - \frac{\pi}{3} < x - \frac{\pi}{3} < \frac{5\pi}{6} - \frac{\pi}{3} \text{ ie } -\frac{\pi}{2} < x - \frac{\pi}{3} < \frac{\pi}{2}.$

Ainsi, $\cos x + \sqrt{3} \sin x = 2 \cos \left(x - \frac{\pi}{3} \right) > 0$. Donc, $g(x)$ existe.

 g est bien définie.

c) Soit $x \in I'$.

Alors
$$g(x) = \ln 2 + \ln \left(\cos \left(x - \frac{\pi}{3}\right)\right) = \left[\ln 2 + f\left(x - \frac{\pi}{3}\right)\right].$$

d) Soit $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Soit y un réel.

$$\begin{split} M(x,y) &\in \mathcal{C} \iff y = f(x) \\ &\iff y = f\left(x + \frac{\pi}{3} - \frac{\pi}{3}\right) \\ &\iff y = g\left(x + \frac{\pi}{3}\right) - \ln 2 \qquad \text{par la question précédente} \\ &\iff y + \ln 2 = g\left(x + \frac{\pi}{3}\right) \\ &\iff M'\left(x + \frac{\pi}{3}, y + \ln 2\right) \in \mathcal{C}' \end{split}$$

M' est l'image de M par la translation de vecteur $\overrightarrow{u}\left(\frac{\pi}{3}, \ln 2\right)$ et ceci pour tout $x \in I$. Ainsi, $\boxed{\mathcal{C}'}$ est l'image de \mathcal{C} par la translation de vecteur \overrightarrow{u} .

e) Tracés simultanés des deux courbes :

Exercice 3

1°) Notons $(I_1): \sqrt{x} - \sqrt{2-x} \ge 2$, pour $x \in \mathbb{R}$, (I_1) est bien définie si et seulement si $x \ge 0$ et $2-x \ge 0$ i.e. (I_1) est définie sur [0,2]. Soit $x \in [0,2]$.

$$(I_1) \iff \sqrt{x} \ge \sqrt{2-x} + 2$$

 $\iff x \ge 2 - x + 4 + 4\sqrt{2-x}$ $\operatorname{car} \sqrt{x} \ge 0 \text{ et } \sqrt{2-x} + 2 \ge 0$
 $\iff 2x - 6 \ge 4\sqrt{2-x}$

Or $x \le 2$ donc $2x - 6 \le -2 < 0$, tandis que $4\sqrt{2 - x} \ge 0$.

Ainsi, (I_1) n'est jamais vérifiée, l'ensemble des solutions de (I_1) est vide

2°) L'inéquation (I_2) : $\ln x - \frac{1}{\ln x} < \frac{3}{2}$ est définie pour les réels x vérifiant : $\begin{cases} x > 0 \\ \ln x \neq 0 \end{cases}$, donc elle est définie sur $\mathbb{R}_+^* \setminus \{1\}$. Soit $x \in \mathbb{R}_+^* \setminus \{1\}$.

$$\ln x - \frac{1}{\ln x} < \frac{3}{2} \Longleftrightarrow \ln x - \frac{1}{\ln x} - \frac{3}{2} < 0$$

$$\Longleftrightarrow \frac{(\ln x)^2 - \frac{3}{2} \ln x - 1}{\ln x} < 0$$

On cherche le signe de $(\ln x)^2 - \frac{3}{2} \ln x - 1$.

$$(\ln x)^2 - \frac{3}{2} \ln x - 1 > 0 \iff X^2 - \frac{3}{2} X - 1 > 0 \text{ avec } X = \ln x$$

Le discriminant de $X^2 - \frac{3}{2}X - 1$ est $\Delta = \frac{9}{4} + 4 = \frac{25}{4}$. Ses racines sont donc $\frac{\frac{3}{2} + \frac{5}{2}}{2} = 2$ et $\frac{\frac{3}{2} - \frac{5}{2}}{2} = -\frac{1}{2}$. Comme le coefficient de X^2 est positif :

$$(\ln x)^2 - \frac{3}{2} \ln x - 1 > 0 \Longleftrightarrow X < -\frac{1}{2} \text{ ou } X > 2$$

$$\iff \ln x < -\frac{1}{2} \text{ ou } \ln x > 2$$

$$\iff x < e^{-\frac{1}{2}} \text{ ou } x > e^2 \text{ car exp est strictement croissante}$$

On a aussi:

$$(\ln x)^2 - \frac{3}{2} \ln x - 1 = 0 \iff x = e^{-\frac{1}{2}} \text{ ou } x = e^2$$

Nous connaissons aussi le signe de l
n sur $\mathbb{R}_+^*,$ d'où le tableau de signe :

x	0		$e^{-\frac{1}{2}}$		1		e^2		$+\infty$
$\frac{(\ln x)^2 - \frac{3}{2} \ln x - 1}{\ln x - 1}$		+	0	_		_	0	+	
$\ln x$		_		_	0	+		+	
f(x)		_	0	+		_	0	+	

où
$$f(x) = \frac{(\ln x)^2 - \frac{3}{2} \ln x - 1}{\ln x}$$
.

Ainsi, l'ensemble des solutions est $]0, e^{-\frac{1}{2}}[\ \cup]1, e^2[.$

Exercice 4

 $\mathbf{1}^{\circ}$) Soit $x \in \mathbb{R}$.

$$(E_1) : \sin(x) + \sin(2x) + \sin(3x) = \cos(x) + \cos(2x) + \cos(3x)$$

$$\iff \sin(2x - x) + \sin(2x) + \sin(2x + x) = \cos(2x - x) + \cos(2x) + \cos(2x + x)$$

$$\iff \sin(2x)\cos(x) - \cos(2x)\sin(x) + \sin(2x) + \sin(2x)\cos(x) + \cos(2x)\sin(x)$$

$$= \cos(2x)\cos(x) + \sin(2x)\sin(x) + \cos(2x) + \cos(2x)\cos(x) - \sin(2x)\sin(x)$$

$$\iff \sin(2x) + 2\sin(2x)\cos(x) = \cos(2x) + 2\cos(2x)\cos(x)$$

$$\iff \sin(2x) + 2\sin(2x)\cos(x) = \cos(2x)(1 + 2\cos(x))$$

$$\iff \sin(2x)(1 + 2\cos(x)) = \cos(2x)(1 + 2\cos(x))$$

$$\iff \sin(2x) - \cos(2x)(1 + 2\cos(x)) = 0$$

$$\iff \sin(2x) - \cos(2x) = 0 \text{ ou } 1 + 2\cos(x) = 0$$

$$\iff \sin(2x) - \cos(2x) = 0 \text{ ou } 1 + 2\cos(x) = 0$$

$$\iff \sin(2x) - \frac{1}{\sqrt{2}} - \cos(2x) = 0 \text{ ou } \cos(x) = -\frac{1}{2}$$

$$\iff \sin(2x) - \frac{1}{\sqrt{2}} - \cos(2x) = 0 \text{ ou } \cos(x) = -\frac{1}{2}$$

$$\iff \sin(2x) - \frac{\pi}{4} = 0 \text{ ou } \exists k \in \mathbb{Z}, \ x = \frac{2\pi}{3} + 2k\pi \text{ ou } x = -\frac{2\pi}{3} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ 2x - \frac{\pi}{4} = k\pi \text{ ou } x = \frac{2\pi}{3} + 2k\pi \text{ ou } x = -\frac{2\pi}{3} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ x = \frac{\pi}{8} + k\frac{\pi}{2} \text{ ou } x = \frac{2\pi}{3} + 2k\pi \text{ ou } x = -\frac{2\pi}{3} + 2k\pi$$

L'ensemble des solutions de (E_1) est donc $\left\{\frac{\pi}{8} + k\frac{\pi}{2}, \frac{2\pi}{3} + 2k\pi, -\frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z}\right\}$

2°) L'équation (E_2) : $\sin x + \cos x = 1 + \tan x$ est définie sur $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi / k \in \mathbb{Z}\}$. Soit $x \in D$.

$$(E_2) \iff \sin x + \cos x = 1 + \frac{\sin x}{\cos x}$$

$$\iff \cos x (\sin x + \cos x) = \cos x + \sin x$$

$$\iff \cos x (\sin x + \cos x) - (\cos x + \sin x) = 0$$

$$\iff (\sin x + \cos x) (\cos x - 1) = 0$$

$$\iff \sin x + \cos x = 0 \text{ ou } \cos x = 1$$

$$\iff \frac{\sin x}{\cos x} + 1 = 0 \text{ ou } \exists k \in \mathbb{Z}, \ x = 2k\pi \text{ car } \cos x \neq 0$$

$$\iff \tan x = -1 \text{ ou } \exists k \in \mathbb{Z}, \ x = 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ x = -\frac{\pi}{4} + k\pi \text{ ou } \exists k \in \mathbb{Z}, \ x = 2k\pi$$

Toutes les valeurs obtenues sont bien dans D, donc l'ensemble des solutions est

$$\left[\left\{-\frac{\pi}{4} + k\pi, 2k\pi \ / \ k \in \mathbb{Z}\right\}\right].$$

Exercice 5

1°)
$$-\frac{1}{x} \xrightarrow[x \to 0^+]{-\infty} \text{ et } e^X \xrightarrow[x \to -\infty]{-\infty} 0.$$
Par composition de limites, $e^{-\frac{1}{x}} \xrightarrow[x \to 0^+]{-\infty} 0$, et par produit, $f(x) \xrightarrow[x \to 0^+]{-\infty} 0$.
Comme $0 = f(0)$, cela signifie que f est continue en f .

 2°) Par composition et produit de fonctions dérivables là où elles sont définies, f est dérivable sur \mathbb{R}_{+}^{*} Pour tout x > 0,

$$f'(x) = e^{-\frac{1}{x}} + (x+1)\frac{1}{x^2}e^{-\frac{1}{x}} = e^{-\frac{1}{x}}\left(1 + \frac{1}{x} + \frac{1}{x^2}\right)$$

3°) Déterminons le taux d'accroissement de f en 0 : pour tout x > 0,

$$\frac{f(x) - f(0)}{x - 0} = \frac{(x + 1)e^{-\frac{1}{x}}}{x} = e^{-\frac{1}{x}} + \frac{1}{x}e^{-\frac{1}{x}}$$

Comme $Xe^{-X} = \frac{X}{e^X} \underset{X \to +\infty}{\longrightarrow} 0$ et $\frac{1}{x} \underset{x \to 0^+}{\longrightarrow} +\infty$, on a $\frac{1}{x}e^{-\frac{1}{x}} \underset{x \to 0^+}{\longrightarrow} 0$.

Par ailleurs, $e^{-\frac{1}{x}} \longrightarrow 0$

Ainsi, $\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0^+]{} 0$, ce qui signifie que f'(0) = 0

4°) $\forall x > 0, f'(x) = e^{-\frac{1}{x}} \left(1 + \frac{1}{x} + \frac{1}{x^2} \right) > 0$ car $\exp > 0$ et x > 0. Limite en $+\infty: -\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$ et exp est continue en 0 donc $e^{-\frac{1}{x}} \underset{x \to +\infty}{\longrightarrow} \exp(0) = 1$. Par produit, $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

x	0	$+\infty$
f'(x)	0	+
f	0 -	\rightarrow $+\infty$

 5°) a) Pour tout x > 0,

$$x\left(e^{-\frac{1}{x}} - 1\right) = \frac{e^{-\frac{1}{x}} - 1}{\frac{1}{x}} = -\frac{e^{-\frac{1}{x}} - 1}{-\frac{1}{x}}$$

Or on sait que $-\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$ et que $\frac{e^X - 1}{X} \underset{X \to 0}{\longrightarrow} 1$. D'où :

$$x\left(e^{-\frac{1}{x}}-1\right) \xrightarrow[x\to+\infty]{} -1$$

b) Pour tout x > 0, $f(x) - x = (x+1)e^{-\frac{1}{x}} - x = x\left(e^{-\frac{1}{x}} - 1\right) + e^{-\frac{1}{x}}$.

On sait que $e^{-\frac{1}{x}} \xrightarrow[x \to +\infty]{} 1$.

Grâce à la question précédente, on peut donc affirmer que $f(x) - x \xrightarrow[x \to +\infty]{} 0$.

Cela signifie que la droite Δ d'équation y = x est asymptote à \mathcal{C} en $+\infty$.

c) Méthode 1 : D'après le cours, pour tout $u \in \mathbb{R}$, $1 + u \leq e^u$.

En multipliant cette inégalité par e^{-u} qui est bien positif, on obtient, pour tout $u \in \mathbb{R}_+$, $e^{-u}(1+u) \le 1.$

Méthode 2 : Posons, pour tout $u \in \mathbb{R}_+$, $g(u) = e^{-u}(1+u)$.

Par composition et produit, g est dérivable sur \mathbb{R}^+ , et pour tout $u \in \mathbb{R}^+$:

 $g'(u) = -e^{-u}(1+u) + e^{-u} = e^{-u}(-(1+u)+1) = -ue^{-u}.$

Comme exp est positive, pour tout $u \in \mathbb{R}^+$, $g'(u) \leq 0$, donc g est décroissante sur \mathbb{R}^+ .

Comme g(0) = 1, on a pour tout $u \in \mathbb{R}^+$, $e^{-u}(1+u) = g(u) \le 1$.

d) Pour tout x > 0,

$$f(x) - x = (1+x)e^{-\frac{1}{x}} - x$$

$$= x\left(\frac{1}{x} + 1\right)e^{-\frac{1}{x}} - x$$

$$= x\left[\left(\frac{1}{x} + 1\right)e^{-\frac{1}{x}} - 1\right]$$

$$= x\left[g\left(\frac{1}{x}\right) - 1\right]$$

Or, d'après la question précédente, comme $\frac{1}{x} \in \mathbb{R}^+$, $g\left(\frac{1}{x}\right) - 1 \le 0$, et finalement $f(x) - x \le 0$.

Ainsi, C est en dessous de Δ sur \mathbb{R}_+^* entier.

6°) Une équation de T_{α} est $y = f'(\alpha)(x - \alpha) + f(\alpha)$. $\alpha > 0$ donc $f'(\alpha) \neq 0$. Ainsi, T_{α} coupe bien l'axe des abscisses. L'abscisse x du point d'intersection vérifie : $0 = f'(\alpha)(x - \alpha) + f(\alpha)$. Ainsi,

$$x - \alpha = -\frac{f(\alpha)}{f'(\alpha)}$$

$$x = \alpha - \frac{f(\alpha)}{f'(\alpha)}$$

$$= \alpha - \frac{\alpha}{\frac{\alpha^2 + \alpha + 1}{\alpha^2}}$$

$$= \alpha - \frac{\alpha^2(\alpha + 1)}{\alpha^2 + \alpha + 1}$$

$$= \frac{\alpha(\alpha^2 + \alpha + 1) - \alpha^2(\alpha + 1)}{\alpha^2 + \alpha + 1}$$

$$= \frac{\alpha}{\alpha^2 + \alpha + 1}$$

Donc, T_{α} coupe l'axe des abscisses au point $\frac{\alpha}{\alpha^2 + \alpha + 1}$.

7°) a) Par produit et composition, f' est dérivable sur \mathbb{R}_+^* , ce qui signifie que f est deux fois dérivable sur \mathbb{R}_+^* .

On a, pour tout x > 0:

$$f''(x) = \frac{1}{x^2} e^{-\frac{1}{x}} \left(1 + \frac{1}{x} + \frac{1}{x^2} \right) + e^{-\frac{1}{x}} \left(-\frac{1}{x^2} - \frac{2x}{x^4} \right)$$

$$= e^{-\frac{1}{x}} \left(\frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4} - \frac{1}{x^2} - \frac{2}{x^3} \right)$$

$$= e^{-\frac{1}{x}} \left(\frac{1}{x^4} - \frac{1}{x^3} \right)$$

$$= e^{-\frac{1}{x}} \frac{1 - x}{x^4}$$

Le signe de f''(x) est celui de 1-x puisque $\frac{e^{-\frac{1}{x}}}{x^4} > 0$.

b) L'équation de T_1 est : y = f'(1)(x-1) + f(1) i.e. $y = 3e^{-1}(x-1) + 2e^{-1}$ i.e. $y = 3e^{-1}x - e^{-1}$. Ainsi on a $a = 3e^{-1}$ et $b = -e^{-1}$.

c) Posons, pour tout x>0, $h(x)=f(x)-3e^{-1}x+e^{-1}.$ Comme f est deux fois dérivable sur \mathbb{R}_{+}^{*} , h l'est aussi et, pour tout x > 0,

$$h'(x) = f'(x) - 3e^{-1}, h''(x) = f''(x) = e^{-\frac{1}{x}} \frac{1-x}{x^4}$$

On en déduit successivement le signe de h'', les variations de h', le signe de h', les variations de h puis finalement le signe de h.

On utilise les informations : h'(1) = h(1) = 0.

x	0	1	$+\infty$
h''(x)	+	0	_
h'		, 0	
Signe de $h'(x)$	_	0	_
h		_0	
Signe de $h(x)$	+	0	_

 $\forall x \in]0,1], \ h(x) \ge 0 \text{ i.e. } f(x) \ge ax+b \quad \text{ et } \quad \forall x \in [1,+\infty[,\ h(x) \le 0 \text{ i.e. } f(x) \le ax+b]$

On en déduit que [sur]0,1], \mathcal{C} est au-dessus de T_1 , et que $[\text{sur }[1,+\infty[$, \mathcal{C} est en-dessous de T_1

8°) On sait 2 < e < 3 donc $\frac{1}{3} < \frac{1}{e} < \frac{1}{2}$ (on a même, $\frac{5}{2} < e$ donc $\frac{1}{e} < \frac{2}{5} = \frac{4}{10} = 0, 4$).

La tangente au point d'abscisse 1 passe par le point (1, f(1)) et par le point $(\frac{1}{3}, 0)$.

 $f(1) = 2e^{-1} < 1.$

