Research on Best Model Via R Score Value

<u>1.MLR</u>

Inference:

Best Model is created with r score Value = **0.7894790349867009**

Proof:

2.SVMR

r score Value w/o			
HTP = -0.08338238593619329			
kernel	C	r score	
	Value		
linear	1000	0.7649311738597033	
	2000	0.7440418308108018	
	3000	0.7414236599249162	
poly	1000	0.856648767594656	
	2000	0.8605579258597715	
	3000	0.8598930084494385	
<u>rbf</u>	1000	0.8102064874808204	
	2000	0.8547766422240716	
	3000	0.8663393963090398	
sigmoid	1000	0.2874706948697654	
	2000	-0.5939509731283503	
	3000	-2.1244194786689863	

Inference:

Best model with r score value = 0.8663393963090398 is created for the H.T.P --- kernel = rbf, c= 3000.

Proof:

3.Decision Tree

r score Value	r score Value w/o HTP= 0.6966581868843034			
criterion	splitter	r score (w/o max features)	max_ features	r score (with max_ features)
	best	0.686215300008399	sqrt	0.6834198870363453
squared_error			log2	0.7025375319783884
	random	0.7066187403980948	sqrt log2	0.6953161555966039 0.6893398873680485
absolute error	best	0.6983683936823608	sqrt log2	0.6861931160079187 0.6911740381386748
_	random	0.6834749673466649	sqrt log2	0.6890368691000321 0.6908542771938115
friedman mse	best	0.6865081878698951	sqrt log2	0.7046724095212571 0.6814302611125168
, <u> </u>	random	0.7003007945640454	sqrt log2	0.68036570083318 0.681959664205278
poisson	best	0.7137637844731028	sqrt log2	0.6911692507256455 0.6899048836268635
	random	0.6894199406241438	sqrt log2	0.6900364781583089 0.6971256952095196

<u>Inference</u>:

Best model with r score Value = **0.7137637844731028** is created for the HTP --- criterion = poisson & splitter= best without max features

Proof:

4.Random Forest

criterion	n estimators	r score (w/o max features)	max_ features	r score (with max features)
squared error	50	0.8537074492312178	sqrt log2	0.8699196004695238
	100	0.8495860472309916	sqrt log2	0.8712882947395911
absolute_error	<mark>50</mark>	0.8533104199010396	sqrt log2	0.8725426987486276
	100	0.8522171666048011	sqrt log2	0.8714014632724219
friedman_mse	50	0.8498058213339406	sqrt log2	0.8698363819890867
	100	0.8540807721486975	sqrt log2	0.871314345410434
poisson	50	0.8491113222296434	sqrt log2	0.8635474039861692
	100	0.8526481325996583	sqrt log2	0.8681653187265531

Inference:

Best model with r score Value = 0.8725426987486276 is created for the HTP--- criterion = absolute error & n estimators = 50 with max features = sqrt & $\log 2$

Proof:

Summary

Algorithm	НТР	Best r score
MLR	-	0.7894790349867009
SVM	kernel = rbf, $c = 3000$	0.8663393963090398
DT	criterion = poisson & splitter = best	0.7137637844731028
RF	criterion = absolute error, n estimators = 50, max features = sqrt & log2	0.8725426987486276

Result Analysis:

For the given dataset RF algorithm for HTP criterion = absolute & n estimators = 50 suits the best with a maximum r score value = 0.8725426987486276 when compared to the models created by other algorithms.

Appendix:

Abbreviations	Expansion
MLR	Multiple Linear Regression
SVM	Support Vector Machine
DT	Decision Tree
RF	Random Forest
HTP	Hyper Tuning Parameters