Primo compitino del 19 febbraio 2019

Esercizio 1

Si consideri un sistema LTI causale descritto dalla seguente equazione alle differenze

$$y(n) = \frac{1}{3}x(n-1) + \frac{2}{3}x(n-2) - \frac{4}{3}y(n-1) + \frac{11}{9}y(n-2) - \frac{2}{9}y(n-3)$$

- (a) (4 punti) Trovare la funzione di trasferimento H(z) del sistema, la posizione dei poli e degli zeri e la regione di convergenza. Determinare se il sistema è stabile, giustificando la risposta.
- (b) (2 punti) Trovare la risposta all'impulso del sistema.
- (c) (2 punti) Se avete risolto correttamente la domanda (a) avete trovato che la H(z) del sistema si semplifica. Scrivere l'equazione alle differenze che corrisponde alla H(z) semplificata e disegnare il grafo di flusso in forma diretta I.

Soluzione dell'Esercizio 1

Risposta (a)

$$y(n) + \frac{4}{3}y(n-1) - \frac{11}{9}y(n-2) + \frac{2}{9}y(n-3) = \frac{1}{3}x(n-1) + \frac{2}{3}x(n-2)$$

$$Y(z) \left(1 + \frac{4}{3}z^{-1} - \frac{11}{9}z^{-2} + \frac{2}{9}z^{-3}\right) = X(z) \left(\frac{1}{3}z^{-1} + \frac{2}{3}z^{-2}\right)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\left(\frac{1}{3}z^{-1} + \frac{2}{3}z^{-2}\right)}{\left(1 + \frac{4}{3}z^{-1} - \frac{11}{9}z^{-2} + \frac{2}{9}z^{-3}\right)} = \frac{\frac{1}{3}z^{-1} \left(1 + 2z^{-1}\right)}{\left(1 - \frac{1}{3}z^{-1}\right)^{2} \left(1 + 2z^{-1}\right)} = \frac{\frac{1}{3}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)^{2}}$$

Il sistema ha un polo doppio in z = 1/3. Poichè è causale la regione di convergenza è |z| > 1/3. Poichè la regione di convergenza include il circolo unitario il sistema è stabile.

Risposta (b)

$$h(n) = n \left(\frac{1}{3}\right)^n u(n)$$

Risposta (c)

$$H(z) = \frac{\frac{1}{3}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)^{2}} = \frac{\frac{1}{3}z^{-1}}{1 - \frac{2}{3}z^{-1} + \frac{1}{9}z^{-2}}$$

$$y(n) = \frac{1}{3}x(n-1) + \frac{2}{3}y(n-1) - \frac{1}{9}y(n-2)$$

$$x(n)$$

$$z^{-1}$$

$$y(n)$$

$$z^{-1}$$

$$z^{-1}$$

$$z^{-1}$$

Esercizio 2

Sia data la sequenza

$$x(n) = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{altrove} \end{cases}$$
 N intero positivo minore di un milione

- (a) (2 punti) La sequenza x(n) entra in un sistema LTI avente risposta all'impulso h(n) = u(n), essendo u(n) la sequenza gradino unitario. Trovare l'uscita y(n) del sistema (utilizzate le trasformate z).
- (b) (1 punti) Sia X(k) la DFT calcolata su N punti della sequenza x(n). Sia poi $X_1(k) = X^2(k)$. Calcolare $x_1(n)$, IDFT (DFT inversa) su N punti di $X_1(k)$.
- (c) (1 punti) Sia $X_2(k)$ la DFT calcolata su (2N-1) punti di x(n) e $X_3(k) = X_2^2(k)$. Chiamando $x_3(n)$ la IDFT su (2N-1) punti di $X_3(k)$ indicare i valori di $x_3(0)$ e $x_3(1)$.
- (d) (1 punti) Sia $X_4(k)$ la DFT calcolata su 3N punti di x(n) e $X_5(k) = X_4^2(k)$. Chiamando $x_5(n)$ la IDFT su 3N punti di $X_5(k)$ indicare i valori di $x_5(0)$ e $x_5(1)$.
- (e) (1 punti) Sia X(k) la DFT calcolata su N punti della sequenza x(n). Sia poi $X_6(k) = X(k)$ per $0 \le k \le 2$ e zero altrove. Assumendo N > 2 calcolare $x_6(n)$, IDFT su N punti di $X_6(k)$.
- (f) (2 punti) Sia x(n) la risposta all'impulso di un filtro LTI. Il filtro che ne risulta ha fase lineare? Ha fase lineare generalizzata?

Soluzione dell'Esercizio 2

Risposta (a)

$$X(z) = \frac{1 - z^{-N}}{1 - z^{-1}} \qquad \qquad H(z) = \frac{1}{1 - z^{-1}} \qquad \qquad Y(z) = X(z) H(z) = \frac{1 - z^{-N}}{(1 - z^{-1})^2} = \frac{1}{(1 - z^{-1})^2} - \frac{z^{-N}}{(1 - z^{-1})^2}$$

$$Y(z) = z \frac{z^{-1}}{(1-z^{-1})^2} - z^{-N+1} \frac{z^{-1}}{(1-z^{-1})^2}$$

$$y(n) = (n+1)u(n+1) - (n-N+1)u(n-N+1)$$

Risposta (b)

Soluzione 1: Poichè $X^2(k) = X(k) \cdot X(k)$ e il prodotto in frequenza corrisponde, per una DFT, alla convoluzione circolare nel tempo, si ottiene

$$x_1(n) = \begin{cases} N & 0 \le n \le N - 1 \\ 0 & \text{altrove} \end{cases}$$

Soluzione 2: la DFT della sequenza rettangolare vale (vedi dispense, esempio 4.3)

$$X(k) = \begin{cases} N & k = 0 \\ 0 & \text{altrove} \end{cases}$$

Quindi $X_1(k)$ vale N^2 per k=0 e zero altrove e la sua IDFT $x_1(n)$ è quella scritta sopra.

Risposta (c)

La sequenza $x_3(n)$ corrisponde alla convoluzione lineare di x(n) con se stessa. Quindi $x_3(0) = 1$ e $x_3(1) = 2$.

Risposta (d) La sequenza $x_5(n)$ corrisponde ancora alla convoluzione lineare di x(n) con se stessa. Quindi $x_5(0) = 1$ e $x_5(1) = 2$.

Risposta (e)

Visto quanto vale X(k), si ha che $X_6(k) = X(k)$ e $x_6(n) = x(n)$.

Risposta (f)

Il filtro risultante è ovviamente causale e FIR. La sua risposta all'impulso è simmetrica: h(n) = h(N - 1 - n), quindi se M = N - 1 è pari (N dispari) il filtro è un FIR a fase lineare (generalizzata) di tipo I, se M = N - 1 è dispari (N pari) il filtro è un FIR a fase lineare di tipo II,

$$H(e^{j\omega}) = \sum_{n=0}^{N-1} e^{-j\omega n} = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = \frac{\sin(\omega N/2)}{\sin(\omega/2)} e^{-j\omega(N-1)/2} = A(\omega)e^{-j\alpha\omega + j\beta}$$

Dove β è zero ma $A(\omega)$ assume valori sia positivi che negativi. Quindi si ha fase lineare generalizzata ma non fase lineare.

Esercizio 3

Sia dato il sistema LTI causale descritto dal grafo di flusso in figura con la condizione che sia inizialmente a riposo.

I rami senza nulla marcato hanno guadagno unitario. I valori dei parametri sono:

$$a = \frac{1}{2}$$
 $b = \frac{1}{3}$ $c = 2$ $d = \frac{1}{4}$

- (a) (6 punti) Trovare la funzione di trasferimento H(z) del sistema, la posizione dei poli e degli zeri e la regione di convergenza. Il sistema è stabile? Giustificare la risposta.
- **(b) (2 punti)** Scrivere la risposta all'impulso del sistema.

Soluzione dell'Esercizio 3

Risposta (a)

y(n) = ax(n) + adcx(n-1) + aby(n-1) + cay(n-1) = ax(n) + adcx(n-1) + (ab + ac)y(n-1)

$$Y(z) \left[1 - (ab + ac)z^{-1} \right] = X(z) \left(a + adcz^{-1} \right)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{a + adcz^{-1}}{1 - (ab + ac)z^{-1}} = \frac{\frac{1}{2} + \frac{1}{4}z^{-1}}{1 - \frac{7}{6}z^{-1}} = \frac{1}{2} \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{7}{6}z^{-1}}$$

Un polo in z = 7/6 ed uno zero in z = -1/2. Siccome il sistema è causale la ROC è |z| > 7/6. Siccome la ROC non contiene il circolo unitario il sistema non è stabile.

Risposta (b)

$$H(z) = \frac{1}{2} \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{7}{6}z^{-1}} = \frac{1}{2} \frac{1}{1 - \frac{7}{6}z^{-1}} + \frac{1}{4} \frac{z^{-1}}{1 - \frac{7}{6}z^{-1}}$$
$$h(n) = \frac{1}{2} \left(\frac{7}{6}\right)^n u(n) + \frac{1}{4} \left(\frac{7}{6}\right)^{n-1} u(n-1)$$

Esercizio 4

Sia dato il sistema in figura, dove sono mostrate anche le funzioni $X_c(j\Omega)$ e $H(e^{j\omega})$.

 $|X_c(j\Omega)|$ è un triangolo alto A con base da $\Omega = -2\pi \cdot 6 \cdot 10^4$ a $\Omega = 2\pi \cdot 6 \cdot 10^4$.

 $H(e^{j\omega})$ è un rettangolo alto B con base da $\omega=-\omega_c$ a $\omega=\omega_c$. Il secondo blocco esegue un sottocampionamento con fattore 2.

- (a) (4 punti) Calcolare i valori di ω_c e B affinchè il sistema sia equivalente ad un filtro passa-basso con frequenza di taglio $\Omega_c = 6\pi 10^4$ e guadagno unitario, ovvero che $Y_c(j\Omega)$ abbia il modulo in figura, posto che $1/T_1 = 24 \cdot 10^4$ Hz e $1/T_2 = 12 \cdot 10^4$ Hz. Accuratamente disegnare i grafici di $|X(e^{j\omega})|$, $|X_1(e^{j\omega})|$ e $|Y(e^{j\omega})|$ che descrivano il ragionamento seguito.
- (b) (4 punti) Calcolare i valori di T_1 e B affinchè il sistema sia equivalente ad un filtro passa-basso con frequenza di taglio $\Omega_c = 6\pi 10^4$ e guadagno unitario, ovvero che $Y_c(j\Omega)$ abbia il modulo in figura, posto che $\omega_c = \pi/4$ e $1/T_2 = 24 \cdot 10^4$ Hz. Accuratamente disegnare i grafici di $|X(e^{j\omega})|$, $|X_1(e^{j\omega})|$ e $|Y(e^{j\omega})|$ che descrivano il ragionamento seguito.

Soluzione dell'Esercizio 4

Risposta (a)

 $\omega_c = \pi/2$ e $B = 2T_1/T_2 = 1$. Infatti

Risposta (b)

 $1/T_1 = 48 \cdot 10^4 \text{ e } B = 2T_1/T_2 = 1. \text{ Infatti}$

Nota: la soluzione si può semplificare considerando che i primi due blocchi dello schema possono essere uniti a formare un solo blocco come segue:

