Лекция 5.

Движение твердого тела вокруг неподвижной точки

Пусть O – начало подвижного (O, $\overrightarrow{e_{\xi}}$, $\overrightarrow{e_{\eta}}$, $\overrightarrow{e_{\zeta}}$) и неподвижного (O, \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k}) репера. Из формулы связи

координат:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} \\ p_{2,1} & p_{2,2} & p_{2,3} \\ p_{3,1} & p_{3,2} & p_{3,3} \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} \qquad \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \begin{pmatrix} p_{1,1} & p_{2,1} & p_{3,1} \\ p_{1,2} & p_{2,2} & p_{3,2} \\ p_{1,3} & p_{2,3} & p_{3,3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Можно выразить $p_{i,j}$ через углы Эйлера (которые известны из курса геометрии):

$$p_{1,1} = (\overrightarrow{e_\xi}, \overrightarrow{t}) = \cos \psi \cos \phi - \sin \psi \cos \theta \sin \phi,$$

 $p_{2,1} = (\overrightarrow{e_\xi}, \overrightarrow{f}) = -\cos \psi \sin \phi - \sin \psi \cos \theta \cos \phi,$
 $p_{3,1} = (\overrightarrow{e_\xi}, \overrightarrow{k}) = \sin \psi \sin \theta,$
 $p_{1,2} = (\overrightarrow{e_\eta}, \overrightarrow{t}) = \sin \psi \cos \phi + \cos \psi \cos \theta \sin \phi,$
 $p_{2,2} = (\overrightarrow{e_\eta}, \overrightarrow{f}) = -\sin \psi \sin \phi + \cos \psi \cos \theta \cos \phi,$
 $p_{3,2} = (\overrightarrow{e_\eta}, \overrightarrow{k}) = -\cos \psi \sin \theta,$

$$p_{1,3} = (\overrightarrow{e_{\zeta}}, \overrightarrow{i}) = \sin\phi\sin\theta,$$

$$p_{2,3} = (\overrightarrow{e_{\zeta}}, \overrightarrow{j}) = \cos \varphi \sin \theta,$$

$$p_{3,3} = (\overrightarrow{e_{\zeta}}, \overrightarrow{k}) = \cos\theta.$$

Теорема: Если
$$P = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} \\ p_{2,1} & p_{2,2} & p_{2,3} \\ p_{3,1} & p_{3,2} & p_{3,3} \end{pmatrix}$$
, $P_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$, $P_1(\theta) = \begin{pmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Тогда $P = P_3(\psi)P_1(\theta)P_3(\phi)$.

Нулевое перемещение тела - начальное и конечное положения каждой точки этого тела совпадают.

Теорема Эйлера — **Даламбера:** Для любого ненулевого перемещения П твердого тела вокруг неподвижной точки существует единственная прямая I (ось вращения) такая, что перемещение П можно представить как перемещение в результате поворота этого тела вокруг этой оси на некоторый угол α .

При существовании $\overrightarrow{\omega} = \lim_{\Delta t \to 0} (\overrightarrow{\Delta \varphi}/\Delta t)$, то прямая, проходяющая через неподвижную точку О (вокруг которой движется точка M), параллельная этому вектору — мгновенная угловая скорость тела в момент t, а $\overrightarrow{\omega}$ - мгновенной угловой скоростью в момент t ($\overrightarrow{\Delta \varphi}$ — угол перемещения от начального состояния до конечного). Геометрическое место мгновенных осей вращения в неподвижном и подвижном реперах - неподвижный аксоид и подвижный аксоид.

Теорема (Пуансо): При движении твердого тела, имеющего неподвижную точку, подвижный аксоид катится без скольжения по неподвижному.

Проекции угловой скорости тела с неподвижной точкой:

$$\omega_{x} = \dot{\psi} \sin\phi \sin\theta + \dot{\theta} \cos\phi,$$
 $\omega_{\xi} = \dot{\phi} \sin\psi \sin\theta + \dot{\theta} \cos\psi,$ $\omega_{y} = \dot{\psi} \cos\phi \sin\theta - \dot{\theta} \sin\phi,$ $\omega_{\eta} = -\dot{\phi} \cos\psi \sin\theta + \dot{\theta} \sin\psi,$ $\omega_{z} = \dot{\psi} \cos\theta + \dot{\phi}.$ $\omega_{\zeta} = \dot{\phi} \cos\theta + \psi.$

Ускорение точек тела, имеющего неподвижную точку:

Продифференцируем формулу Эйлера: $\vec{w} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times \vec{v} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$, где $\vec{\varepsilon} = \vec{\omega}$. Векторы $\vec{\varepsilon}$, $\overrightarrow{w_1} = \vec{\varepsilon} \times \vec{r}$, $\overrightarrow{w_2} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$ - угловое, вращательное и осестремительное ускорения тела соответственно. Далее моно получить следующие формулы: $\vec{w} = \vec{w_1} + \vec{w_2}$, $\vec{w_1} = \vec{\varepsilon} \times \vec{r}$, $\vec{w_2} = -\omega^2 \vec{\rho}$

Скорость точек твердого тела в общем случае

Пусть $(O', \vec{l}, \vec{j}, \vec{k})$ – подвижный репер, $(O, \overrightarrow{e_{\xi}}, \overrightarrow{e_{\eta}}, \overrightarrow{e_{\zeta}})$ – неподвижный репер, (ξ_0, η_0, ζ_0) — координаты точки

O' в неподвижном репере. Связь координат в разных реперах: $\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \begin{pmatrix} \xi_0 \\ \eta_0 \\ \zeta_0 \end{pmatrix} + \begin{pmatrix} p_{1,1} & p_{2,1} & p_{3,1} \\ p_{1,2} & p_{2,2} & p_{3,2} \\ p_{1,3} & p_{2,3} & p_{3,3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$

Перемещение точки М $\Delta \vec{r} = \Delta \overrightarrow{r_{o'}} + \Delta (\vec{r} - \overrightarrow{r_{o'}})$, $\Delta \overrightarrow{r_{o'}} = \overrightarrow{v_{o'}} \Delta t + \vec{o}(\Delta t)$ при $\Delta t \to 0$ и $\Delta (\vec{r} - \overrightarrow{r_{o'}}) = \overrightarrow{\phi_{o'}} \times (\vec{r} - \overrightarrow{r_{o'}})$ при $\Delta t \to 0$. Далее делим на Δt и переходим к пределу: $\vec{v} = \overrightarrow{v_{o'}} + \overrightarrow{\omega_{o'}} \times (\vec{r} - \overrightarrow{r_{o'}})$, где $\overrightarrow{\omega_{o'}} = \lim_{\Delta t \to 0} (\overrightarrow{\phi_{o'}}/\Delta t)$ - мгновенная угловая скорость вращения тела вокруг точки O', а \vec{v} и $\overrightarrow{v_{o'}}$ — скорости точек М и O'.

Теорема: Вектор $\overrightarrow{\omega_{O'}}$ не зависит от выбора полюса — точки О'. (Отсюда вектор $\overrightarrow{\omega_{O'}}$ можно обозначить $\overrightarrow{\omega}$ - угловая скорость твердого тела в общем случае. Получим формулу $\overrightarrow{v}=\overrightarrow{v_{O'}}+\overrightarrow{\omega}\times(\overrightarrow{r}-\overrightarrow{r_{O'}})$ – формула Эйлера в общем случае)

Следствие: Проекции скоростей любых двух различных точек абсолютно твердого тела на направление соединяющего их отрезка равны между собой.

Ускорение точек твердого тела в общем случае

Продифференцируем формулу Эйлера: $\overrightarrow{w} = \overrightarrow{w_{0'}} + \overrightarrow{\varepsilon} \times (\overrightarrow{r} - \overrightarrow{r_{0'}}) + \overrightarrow{\omega} \times (\overrightarrow{v} - \overrightarrow{v_{0'}})$, где $\overrightarrow{\varepsilon} = \dot{\overrightarrow{\omega}}$ - угловое ускорение твердого тела $\overrightarrow{r_{0'}}$ - радиус-вектор точки O' (полюс); $\overrightarrow{v_{0'}}$, $\overrightarrow{w_{0'}}$ - скорость и ускорение полюса. Представим $(\overrightarrow{r} - \overrightarrow{r_{0'}}) = \overrightarrow{h} + \overrightarrow{\rho}$, где $\overrightarrow{h} = h\overrightarrow{\varepsilon_{\omega}}$, $h = (\overrightarrow{r} - \overrightarrow{r_{0'}})\overrightarrow{\varepsilon_{\omega}}$, $\overrightarrow{\varepsilon_{\omega}} = \overrightarrow{\omega}\omega^{-1}$, а $\overrightarrow{\rho}$ - векторное удаление мгновенной оси вращения до точки М. По формуле Эйлера получаем: $\overrightarrow{v} - \overrightarrow{v_{0'}} = \overrightarrow{\omega} \times (\overrightarrow{r} - \overrightarrow{r_{0'}}) = \overrightarrow{\omega} \times \overrightarrow{\rho}$. Вспоминая, что $\overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{\rho}) = -\omega^2 \overrightarrow{\rho}$, получаем $\overrightarrow{w} = \overrightarrow{w_{0'}} + \overrightarrow{\varepsilon} \times (\overrightarrow{r} - \overrightarrow{r_{0'}}) + (-\omega^2 \overrightarrow{\rho})$. $\overrightarrow{w_{0'}}$ - ускорение полюса, $\overrightarrow{w_{0'}} + \overrightarrow{\varepsilon} \times (\overrightarrow{r} - \overrightarrow{r_{0'}})$ - вращательным ускорением, $-\omega^2 \overrightarrow{\rho}$ - осестремительным ускорением.