Dynamic Robotic Leg

Joseph Byrnes | Kanyon Edvall | Ahsan Qureshi

ECE 445 Senior Design: Team 1

ILLINOIS

Electrical & Computer Engineering

COLLEGE OF ENGINEERING

Problem Statement

- Lack of open-source, low cost legged robotics projects
 - Long development time for new research
 - High cost of development
 - High technical barrier for entry

Our Solution

- Open-Source Robotic Leg & Test Frame
 - Research and educational platform
 - Three degree of freedom system
 - Two actuated joints
 - Brushless motors
 - High torque & high efficiency
 - Comprised of 3D-printed and consumer-off-the-shelf parts

Our Solution

 Lowers the barrier for legged robotics algorithm development by providing an open source and functionally abstracted robotic leg

Downloadable 3D Printing Files

Open Source Software

```
void implement discrete_ff(steptraj_t *traj, float step, float *qd, float *qd_dot, float *qd_dot) {
    int i = 0;
    traj->xk[0] = step;
    traj->yk[0] = traj->b[0]*traj->xk[0];
    for (i = l:i*traj->size;!*+) {
        traj->yk[0] = traj->yk[0] + traj->b[i]*traj->xk[i] - traj->a[i]*traj->yk[i];
    }
    for (i = (traj->zize-1);i>0;i--) {
        traj->xk[i] = traj->xk[i-1];
        traj->xk[i] = traj->yk[i];
}

*qd = traj->yk[0];
*qd_dot = (*qd - traj->qd old)*1000; //0.001 sample period
*qd_dot = (*qd - traj->qd old)*1000;
traj->qd old = *qd;
traj->qd old = *qd;
traj->qd_dot_old = *qd_dot;
}
```

Open Source Electronics

Existing Projects and Research

https://spectrum.ieee.org/automaton/robotics/robotics-hardware/goat-robot-leg-demonstrates-explosive-jumping

https://ieeexplore.ieee.org/document/8202172

Project Highlights

- Low Cost
- Fully Open-Source
- High Torque Density
- Simple 2 Degree of Freedom actuation

Simulation in MATLAB

Code Shared on GitHub

Includes a Simulink Block Breakdown of Entire System

 User can edit as needed, adding parts or changing controller as desired

Inverse Kinematics

$$q2 = -\cos^{-1}\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2 * a_1 * a_2}\right)$$

$$q_1 = atan2(y, x) + atan2(a_2 * sin(q_2), a_1 + a_2cos(q_2)) - q_2$$

q_1	Hip Motor Angle
q_2	Knee Motor Angle
a_1	Upper Leg Link Length
a_2	Lower Leg Link Length
X	Horizontal Position Set Point
У	Vertical Position Set Point

Simulink Block Diagram

Simulink Block Diagram

Hip Joint Controller

SimScape Multi-Body Simulation

Design

Subsystems

- Control Logic & Sensing
- Motor Control
- Power Delivery

- Control Logic & Sensing
 - Texas Instruments F28335 DSP
 - Python scripts for control over USB
- Communication
 - Serial Interface
 - JTAG Debugging Port

- Motor Power Delivery
 - Two 750w 12v Power Supplies
 - 60A Circuit Breaker
- Logic Power Delivery
 - 24v to 5v Switching Regulator

- Motor Control

- 0.16 Nm/A BLDC Motors
- 2000 CPR Magnetic Encoders
- ODrive Motor Controller

JoeDrive - Overview

- Motor Controller Based on ODrive v3.5
- Controls Torque, position, and velocity of single BLDC Motor
- 2-layer PCB
- 46 mm tall, 32 mm wide
- Costs under \$30 to produce

JoeDrive - Layout

 Far more compact than the standard ODrive

- Connections:
 - Encoder/Hall Sensors
 - Two CAN Ports
 - Programming and GPIO
 - USB

Logic Circuit

Power Circuit

Bottom

JoeDrive - Schematic

Gate Driver:

Based on ODrive v3.5

Current Sensing

Power Delivery for STM32

JoeDrive - Schematic

Power Stage:

- 45 A continuous current MOSFETs
- Two Shunt resistors for FOC and Current Control

JoeDrive - Hardware

- Hardware Issues
 - Brake resistor MOSFET
 - DRV 3.3V output
 - Current Sensing resistors
 - Analog VCC shorted to GND
- Hardware problems fixed in JoeDrive v1.1

F28335 DSP Breakout Board

- Provides conversion from TI 14 pin JTAG to SEGGER 20 pin JTAG debugger port
- Provides connections to necessary GPIO
- Regulates power supply voltage down to 4.9 V to 5.5 V using switching regulator

F28335 DSP Breakout Board

24 V to 5 V Switching Regulator

BLDC Motors

- Choosing motors with sufficient torque and power rating was vital to the success of our project
- Important Specifications
 - 0.16 Nm/A Torque constant
 - 2450 watt power rating
 - Diameter of 63 mm, Length of 55 mm
 - 3 mm Keyed output shaft
 - WYE coil termination
 - 558 grams

Magnetic Encoders

- AS5047D Magnetic encoders
 - small form factor
 - low price
 - Allow for both quadrature and absolute outputs
 - Simple installation
 - 2000 counts per revolution

Development Stand

Compatible with multiple wall outlet types

 5 types of safety features including multiple E-Stops, circuit breaker, and switches

Development Stand

- Power Supplies
 - Two 12V supplies in series. Produces 1500W at 24V.
 - Two PSUs modified for floating ground. Allows boosting to 24V
 - Relays control power supply output

Motor Control

- PID Tuning
 - Position control tracks angle setpoint
 - PID tuned for strong disturbance rejection and minimal vibration
 - Allows for accurate position tracking

ODrive Interface

- Python Interface for ODrive
 - Allows for trajectory tracking of predefined paths
 - Uses an inverse kinematics controller
 - Plots current / position of motors
 - Variety of control options

```
Command Prompt - py Leg_Demo.py
                                                                           Init done
Welcome to the Dynamic Robotic Leq Motor Control Interface
Enter X: 0
Enter Y: 200
Using X: 0.0, Y: 200.0
Generated q2: -1.9635307131572455, q1: 2.5525616833735194
Knee setpoint: -3906.320236396626
Hip setpoint: -2404.588362598667
Continue? Y / N: y
Enter X: 0
Enter Y: 360
Using X: 0.0, Y: 360.0
Generated q2: -0.0, q1: 1.5707963267948966
Knee setpoint: 0.0
Hip setpoint: -18.181818181847
Continue? Y / N: Y
Enter X:
```

Trajectory Tracking

Tracking Error During Walking Gait

Foot Position Step Response

Motor Current Usage

Conclusion

- Future work
 - Inverse dynamics task space controller
 - Open sourcing the project files and creating documentation/tutorials
 - Improving the JoeDrive
 - Extending development
 platform to multiple legs

Acknowledgements

We would like to extend special thanks to:

- David Hanley
- Chuanzheng (Chad) Li