## M12-L1-P1

December 4, 2023

#### 1 M12-L1 Problem 1

This problem is intended to demonstrate PCA on a small 2D dataset. This will emphasize how PCs are computed and what they mean.

#### 1.1 Computing the Principal Components

First, compute the principal components of the dataset by following these steps: 1. Compute M  $(1 \times 2)$ , the mean of each dimension in X 2. Compute S  $(2 \times 2)$ , the covariance matrix of X (see np.cov) 3. Report w, the 2 eigenvalues of S (see np.linalg.eig) 4. Get e1 and e2, the eigenvectors corresponding to the elements of w

The principal components in this problem are then e1 and e2.

```
[]: print('X:\n', X)

M = np.mean(X, axis=0)
print('\nMean of each dimension:\n', M)

S = np.cov(X.T)
print('\nCovariance Matrix:\n', S)

w = np.linalg.eig(S)[0]
print('\nEigenvalues of covariance matrix:\n',w)

e1,e2 = np.linalg.eig(S)[1]
print('\nPrincipal Components:')
print('e1:',e1)
print('e2:',e2)
```

X: [[2.5 2.4]

```
[0.5 \ 0.7]
 [2.2 \ 2.9]
 [1.9 \ 2.2]
 [3.1 3.]
 [2.3 \ 2.7]
 [2. 1.6]
 [1. 1.1]
 [1.5 \ 1.6]
 [1.1 0.9]]
Mean of each dimension:
 [1.81 1.91]
Covariance Matrix:
 [[0.61655556 0.61544444]]
 [0.61544444 0.71655556]]
Eigenvalues of covariance matrix:
 [0.0490834 1.28402771]
Principal Components:
e1: [-0.73517866 -0.6778734 ]
e2: [ 0.6778734 -0.73517866]
```

#### 1.2 Plotting data with principal components

Complete the code below to plot the original data with principal components represented as unit vector arrows.



### 1.3 Plotting transformed data

Now, transform the data with the formula  $a_i = (x - \mu) \bullet e_i$ .

Print the transformed data matrix columns a1 and a2.

Then plot the transformed data on  $e_1 - e_2$  axes.

- $a_2 = \begin{bmatrix} -0.82797019 & 1.77758033 & -0.99219749 & -0.27421042 & -1.67580142 & -0.9129491 \\ 0.09910944 & 1.14457216 & 0.43804614 & 1.22382056 \end{bmatrix}$

# Transformed data

