6 Points

A permutation of a set S is a bijection from S to S. Given a function $f:S\longrightarrow S$, the associated relation R_f on S is $R_f=\{(x,y)\in S\times S\mid f(x)=y\}$. Note that the transitive closure R_f^+ of the relation R_f is the following relation.

$$R_f^+=\{(x,y)\in S imes S\mid \exists m\in \mathbb{N}\ \exists z_0,\dots,z_m\in S ext{ such that }$$
 $x=z_0,\,z_m=y,\, ext{and}\ orall i\,z_i=f(z_{i-1})\},$

or equivalently,

$$R_f^+ = \{(x,y) \in S imes S \mid \exists m \in \mathbb{N} \ y = f^m(x)\},$$

where f^m denotes the function f composed m times. Henceforward, we assume that f is a permutation of a finite set S with |S|=n. We wish to prove that R_f^+ is an equivalence relation. It is transitive, by definition, already.

Q1.1

3 Points

Prove that R_f^+ is reflexive.

Let us consider any element $x\in S$. We claim that $\exists m\leq n$, where n=|S| such that $f^m(x)=x$. Suppose such an m does not exist, i.e. $f^m(x)\neq x\ \forall m\leq n$.

Note that since f is a bijection, each element of S is mapped to by exactly one element of S under f. Under the above contrapositve assumption we make the following claim: $f^k(x) \neq f^m(x) \ \forall k < m \leq n$. The base case m=2 is trivial to check. Suppose it is true for some m. Then for m+1, suppose $f(f^m(x))=y$. If $y=f^k(x)$ for some k < m, then by bijectivity of f, $f^m(x)=f^{k-1}(x)$ which violates the inductive hypothesis. Hence the claim is true.

Now since $f^k(x) \neq f^m(x) \ \forall k < m \leq n$, after n applications of f on x we must get an element distinct from all the previous elements.

But this means |S|=n+1, which is not possible. Hence our assumption is false and so $\exists m\leq n$, where n=|S| such that $f^m(x)=x$. Thus, R_f^+ is reflexive.

Q1.2

3 Points

Prove that R_f^+ is symmetric.

Suppose $(x,y)\in R_f^+$, i.e. exists $m_1\in\mathbb{N}$ such that $f^{m_1}(x)=y$. There may exist more than one m_1 but by WOP we choose the smallest such m_1 . Now, since f is a bijection, f^{-1} exists and so $(f^{-1})^{m_1}(y)=x$.

By the previous claim, we know that there exists $m_2\in\mathbb{N}$ such that $f^{m_2}(y)=y$. Apply f^{-1} on both sides of the equation m_1 times to get, $f^{m_2-m_1}(y)=(f^{-1})^{m_1}(y)=x$, while noting that $m_2>m_1$ because otherwise the minimality of m_1 is contradicted. So, $\exists m=m_2-m_1$ such that $f^m(y)=x$, and so R_f^+ is symmetric.

Q₂

4 Points

Next, we want to count the number of permutations f of a set of a given size such that R_f^+ has a given number of equivalence classes. Let Q_k^n denote the set of permutations f of the set $\{1,\ldots,n\}$ such that R_f^+ has exactly k equivalence classes. Let $b(n,k)=|Q_k^n|$. We will now derive the following recurrence for the numbers b(n,k).

$$b(n,k) = b(n-1,k-1) + (n-1) \cdot b(n-1,k).$$

Q2.1

1 Point

Prove that b(n-1,k-1), the first term on the right-hand-side, is exactly the number of permutations $f\in Q^n_k$, such that f(n)=n.

Suppose we have f(n)=n, then the equivalence class of $[n]_R=\{n\}$, since $f^m(n)=n\ \forall\ n\in\mathbb{N}$. We need to create k-1 equivalence classes of the remaining n-1 elements of the set and so b(n-1,k-1) is exactly the number of permutations $f\in Q_k^n$ with f(n)=n.

Q2.2

3 Points

Prove that $(n-1)\cdot b(n-1,k)$, the second term on the right-hand-side, is exactly the number of permutations $f\in Q^n_k$, such that $f(n)\neq n$.

Suppose we have $f(n) \neq n$. Then we should create k equivalence classes from the remaining n-1 elements

Quiz 3	• GRADED
STUDENT Viraj Agashe	
TOTAL POINTS 8 / 10 pts	
QUESTION 1	
(no title)	6 / 6 pts
1.1 — (no title)	3 / 3 pts
1.2 (no title)	3 / 3 pts
QUESTION 2	
(no title)	2 / 4 pts
2.1 (no title)	1 / 1 pt
2.2 (no title)	1 / 3 pts