

Background

5.5 million

tons of avocados produced per year 40%

of food becomes consumer waste

Impact

identifying
proper ripeness
can inform
healthier
decisions and
quality
management

Hypothesis

The ResNet-50 model, trained on a large dataset of avocado images at different ripeness levels, will achieve statistically significant classification performance across the **five ripeness** stages, with p < 0.05 and significant stage-specific metrics such as precision, recall, and F1-score.

Research Question

Can the ripeness of a fruit be effectively predicted using an image classification model?

Modeling Approach

By training **ResNet-50** on a labeled dataset representing the five ripeness stages, it will learn to **distinguish** subtle visual **differences**. Its robust capabilities make it well-suited for this task, with potential applications in areas such as retail and agriculture.

Challenges to Analysis

Difficulties

- 1. Size of dataset and computing capabilities
- 2. Differing ripening periods from study due to temperatures
- 3. Pictures not previously annotated with ripeness classification

Solutions

- 1. Randomizing a smaller sample from the data
- 2. Taking random samples from each test group
- 3. Generated code to assign ripeness based on research findings and image file name

Bias and Uncertainty

Phase Imbalance

The dataset contains an unequal number of samples for each ripeness phase, leading the model to overfit to the majority class and perform poorly on underrepresented phases.

Labeling Errors

Ripeness labels may be inconsistently assigned due to subjective human judgment, introducing noise into the training data and reducing model accuracy.

Image Quality

The resizing of images to lower resolutions may obscure critical visual details needed for distinguishing between ripeness phases, particularly for subtle differences.

Results

Performace

Discovered bias toward majority stage

Cross-Validatio

Average accuracy (58.82%)

Accuracy

Highest ripeness classification was 66.48% accuracy

Statistical Test

Performance significantly better than random guessing (p-value of 0.0142)

- The null hypothesis proposed that the model's accuracy would not exceed random guessing (20% for 5 classes), while the alternative hypothesis suggested that the model would perform better than random.
 - The model achieved a cross-validation accuracy of 58.82% on average, with the highest accuracy reaching 66.48%, significantly outperforming random guessing as confirmed by a one-sample t-test (*p*<0.05).
- Precision, recall, and F1-scores demonstrated strong performance for the dominant class and moderate results for others, indicating the model's ability to classify ripeness stages effectively in many cases.
- Results highlight promising performance while underscoring opportunities to improve predictions for underrepresented ripeness stages.

Other forms of **Produce**

Using similar
methods, the
project could be
expanded to include
other forms of
produce

Larger Image Samples

The possibility of developing more a more accurate model is entirely achievable with more time and computing power

Prediction of days until

Using average ripeness windows and ripening periods, could predict time until produce goes bad

References

- [1] X. Jing, Y. Wang, D. Li, et al., "Melon ripeness detection by an improved object detection algorithm for resource constrained environments," *Plant Methods*, vol. 20, p. 127, Oct. 2024. Available: https://doi.org/10.1186/s13007-024-01259-3
- [2] C. Sun, Y. Chen, X. Qiu, R. Li, and L. You, "MRD-YOLO: A multispectral object detection algorithm for complex road scenes," *Sensors*, vol. 24, no. 10, p. 3222, May 2024. Available: https://doi.org/10.3390/s24103222
- [3] A. Zewe, "Forestalling food waste: Student-developed device predicts when an avocado will be ripe," *Harvard John A. Paulson School of Engineering and Applied Sciences*, Jul. 20, 2020.
- Available: https://seas.harvard.edu/news/2020/07/forestalling-food-waste
- [4] Xavier, Pedro; Rodrigues, Pedro; L. M. Silva, Cristina (2024), "Hass' Avocado Ripening Photographic Dataset", Mendeley Data, V1, doi: 10.17632/3xd9n945v8.1

