Tema 1. Conjuntos y conjuntos numéricos: operaciones con números complejos

Ejercicio 1 *Escribe simbólicamente las afirmaciones siguientes:*

- (a) a es un elemento del conjunto A.
- (b) El conjunto A contiene al conjunto B.
- (c) Para cada x elemento de A existe al menos un elemento y de B que cumple que x e y son iguales.
- (d) La intersección de A con B no contiene al elemento b.

Ejercicio 2 Se consideran los conjuntos siguientes:

$$A = \{3k \in \mathbb{N} / k \in \mathbb{N}\}, B = \{15k \in \mathbb{N} / k \in \mathbb{N}\}, C = \{7k \in \mathbb{N} / k \in \mathbb{N}\},\$$

decide de forma razonada, cuáles de las siguientes afirmaciones son ciertas:

I) $12 \subset A$

III) $A \in B$

II) $A \cap C = \emptyset$

IV)
$$(45,35) \in (A \cap B) \times C$$

Ejercicio 3 Se consideran los conjuntos siguientes:

$$A = \{r, s, t, u, v, w\}, B = \{u, v, w, x, y, z\}, C = \{s, u, y, z\}, D = \{u, v\}, E = \{s, u\}, F = \{s\}.$$

Determina en cada caso, con las informaciones siguientes (puedes utilizar un diagrama de Venn) cuál de los conjuntos es X:

(a) $X \subset A \vee X \subset B$;

(c) $X \not\subset A \lor X \not\subset B$;

(b) $X \not\subset B$ y $X \subset C$;

(d) $X \subset A$ y $X \subset C$.

Ejercicio 4 Sea $U = \{a, b, c, d, e\}$ el conjunto universal y los subconjuntos $A = \{a, b, d\}$, $B = \{b, d, e\}$, $C = \{a, b, e\}$. Calcula:

(a) $A \bigcup B$,

(h) $A \cap U \setminus A$,

(b) $A \bigcup C$,

(i) $U \setminus (A \cup B \cup C)$,

(c) $A \cap A$,

(j) $B \setminus A$,

(d) $A \setminus B$,

(k) $U \setminus (A \setminus B)$,

(e) $U \setminus (A \cap B)$,

(1) $U \cup B$,

(g) $U \setminus (A \cup C)$,

(f) $(U \setminus A) \bigcup (U \setminus B)$,

(m) $U \cap B$,

Ejercicio 5 Sean A, B y C conjuntos que cumplen $A \subset B \subset C$. Se sabe que $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$ y $f \notin C$. ¿Cuáles de las siguientes afirmaciones son ciertas?

(a) $a \in C$,

(c) $c \notin A$,

(e) $e \notin A$,

(b) $b \in A$,

(d) $d \in B$,

(f) $f \notin A$.

Ejercicio 6 Se preguntó a 50 alumnos sobre los deportes que practicaban, obteniéndose los siguientes resultados: 20 practican sólo fútbol, 12 practican fútbol y natación y 10 no practican ninguno de estos deportes. Con estos datos averigua el número de alumnos que practican natación, el número de ellos que sólo practican natación y el de los que practican alguno de dichos deportes.

Ejercicio 7 Se consideran los conjuntos

$$A = \{1, 2, 3, 4\}, \quad B = \{a, b, c, d, e\}$$

¿Cuáles de las correspondencias siguientes son aplicaciones?

Ejercicio 8 Se consideran las aplicaciones siguientes: $f: \mathbb{N} \to \mathbb{Z}$ definida por f(n) = 1 - n, $y g: \mathbb{Z} \to \mathbb{Q}$ definida por $g(z) = \frac{z}{z^2 + 1}$. Decide si existen las aplicaciones $g \circ f$ ó $f \circ g$. En caso de que existan, calcula la composición.

Ejercicio 9 Se consideran las aplicaciones $p: \mathbb{N} \to \mathbb{Q}$, con $p(n) = \frac{n^2}{n+1}$, $y q: \mathbb{Z} \to \mathbb{N}$, con $q(z) = z^2$, señale qué aplicaciones se pueden definir: $p \circ q$, $q \circ p$, $q \circ (p \circ q)$, $p \circ (p \circ q)$.

Ejercicio 10 Se consideran las aplicaciones siguientes: $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = x - y, $g: \mathbb{C} \to \mathbb{R}^2$ definida por g(x+iy) = (y,x). Decide si son inyectivas, suprayectivas o biyectivas.

Ejercicio 11 *En el conjunto* \mathbb{Z} *se define la relación binaria:*

$$a\mathcal{R}b \Leftrightarrow b = ma$$
, $con \ m \in \mathbb{Z}$

¿Es de orden? Razona tu respuesta.

Ejercicio 12 Demuestra las siguientes propiedades relativas al producto cartesiano:

(a)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(b)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Ejercicio 13 Sobre el conjunto de los números enteros se define la relación siguietne:

$$x\mathcal{R}y \Leftrightarrow x-y=2n, n \in \mathbb{Z}$$

Probar que es una relación binaria de equivalencia y calcula el conjunto \mathbb{Z}/\mathcal{R} .

Ejercicio 14 *En* \mathbb{N} *se considera la relación binaria siguiente:*

$$n \prec m \Leftrightarrow \exists k \in \mathbb{N} / m = kn.$$

comparables y otros de elementos no comparables.

Ejercicio 15 *Encontrar todos los x* $\in \mathbb{R}$ *que cumplen:*

a)
$$|x-3| < 1$$

b)
$$|x+1| + |x-4| > 7$$
 c) $x^2 - |x-1| = 1$

c)
$$x^2 - |x - 1| = 1$$

Ejercicio 16 Hallar dos números reales x e y, tales que

$$43 + yi = (4 + 3i)(x - 5i)$$

Ejercicio 17 Hallar el valor de $\alpha \in \mathbb{R}$ para que la expresión $\frac{3-2\alpha i}{4-3i}$ sea real. Para el valor obtenido calcular el valor del cociente.

Ejercicio 18 Hallar dos números complejos z y w, tales que su suma sea (1+4i), su cociente sea imaginario puro y la parte real de uno de ellos sea -1.

Ejercicio 19 Determinar dos números complejos w_1 y w_2 tales que para $z_1 = 2 - i$ y $z_2 = 3 - 4i$, se verifica

a)
$$w_1 z_1 = 32 - i$$

$$b) \ \frac{w_2}{z_2} = -\frac{1}{25} + \frac{2}{25}i$$

Ejercicio 20 Representar en el plano complejo los siguientes conjuntos:

a)
$$A = \{z \in \mathbb{C} \mid |z-1+i| = 2\}$$

c)
$$C = \left\{ z \in \mathbb{C} \mid \operatorname{Real}\left(\frac{z+1}{z-1}\right) > 1 \right\}$$

b) $B = \{z \in \mathbb{C} \mid |z| < |2z+1| \}$

Ejercicio 21 Expresar en forma binómica los siguientes números complejos:

a)
$$\frac{1 - e^{\pi i/2}}{1 + e^{\pi i/2}}$$

b)
$$e^{\pi i} \left(1 - e^{-\pi i/3} \right)$$

c)
$$\frac{1-i^3}{(1+i)^3}$$

Ejercicio 22 *Dado los complejos:* z = 1 + i y $w = 1 - \sqrt{3}i$, *se pide:*

- a) Escribir z y w en forma módulo-argumento.
- b) Calcular z^4w^2 , en forma exponencial.
- c) Escribe el resultado en forma binómica

Ejercicio 23 Sea $z \in \mathbb{C} \setminus \{(1,0)\}$. Probar que $\frac{1+z}{1-z}$ es imaginario puro si, y sólo si, |z|=1.

Ejercicio 24 ¿Qué representa, geométricamente, multiplicar un número complejo z por i? ¿ y multiplicar por 2i?

Calcular el resultado de girar el número complejo 3+i un ángulo de $\frac{\pi}{4}$ en sentido antihorario.

Ejercicio 25 Determinar y representar gráficamente las soluciones de las ecuaciones siguientes:

a)
$$z^4 - 16 = 0$$

b)
$$z^2 - i = 0$$

Ejercicio 26 a) Calcular los números complejos z tales que $\bar{z} = z^2$.

- b) Hallar las raíces cúbicas de z = -8.
- c) Hallar las raíces quintas de $z = -1 + \sqrt{3} i$.