Midterm Exam

March 21, 8:00 am - 12:00 pm, LW-844

Midterm Review

- 1. Represent the system shown below as an ABG.
- 2. Generate Zone with the main trajectory a(h5)a(h6)a(h7)a(h8). Use grammars of Trajectories and Zones, show the generations with <u>important</u> values of the functions and sets including

DOCK, med_i , $lmed_i$, SUM, ST_k, MOVE, $next_i$, $f, h_i^o, h_i, g, \underline{v}, \underline{w}$, TIME, and NEXTTIME.

3. Show your understanding of Translations. Show a translation table (analogous to table in handout No. 14) for the main variation (your choice) assuming that Black moves first. Include only the most important trajectories.

Note. On the exam it is going to be a meaningful ABG (which may include non-chess-like pieces). It will be stated as a gaming problem so that generating a zone and moving in it would allow you to solve this ABG.

Class of Problems

Abstract Board Game

is the following eight-tuple

$$\langle X, P, R_p, \{ON\}, v, S_i, S_t, TR \rangle$$

 $X = \{x_i\}$ is a finite set of *points*;

 $P = \{p_i\}$ is a finite set of *elements*; $P = P_1 \cup P_2$, $P_1 \cap P_2 = \emptyset$;

 $\mathbf{R}_{\mathbf{p}}(\mathbf{x}, \mathbf{y})$ is a family of binary relations of *reachability* in X $(\mathbf{x} \in X, \mathbf{y} \in X, \mathbf{p} \in P)$; y is *reachable* from x for p;

ON(p)=x is a partial function of *placement* of elements P into X;

 $\mathbf{v} > 0$ is a real function, $\mathbf{v}(\mathbf{p_i})$ are the *values* of elements;

 S_i is a set of *initial* states of the system, a certain set of formulas $\{ON(p_i) = x_i\}$;

 S_t is a set *target* states of the system (as S_i);

TR is a set of operators TRANSITION(p, x, y) for transition of the system from one state to another described as follows

precondition: $ON(p) = x \wedge R_p(x, y)$ **delete**: ON(p) = x, ON(q) = y**add**: ON(p) = y


```
Q_1 S(u, v, w) \rightarrow A(u, v, w)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          two
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Ø
                                    Q_2 = A(u, v, w) \rightarrow t(h_i^0(u), l_0+1)
                                                                                                                                                                                                                                                                                                           TIME(z) = DIST(z, h_i^0(u))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Ø
                                                                                                        A((0, 0, 0), g(h_{i}^{0}(u), w), zero)
                                    Q_3 \quad A(u, v, w) \rightarrow A(f(u, v), v, w)
                                                                                                                                                                                                                                                                                                           NEXTTIME(z) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       four
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            5
                                                                                                                                                                                                                                                                                                           init(u, NEXTTIME(z))
                               Q_4 A(u, v, w) \rightarrow t(h_i(u), TIME(y)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3
                                                                                                                                                                                                                                                                                                           NEXTTIME(z) =
                                                                                                                                             A(u, v, g(h_j(u), w))
                                                                                                                                                                                                                                                                                                           ALPHA(z, h_j(u), TIME(y) - l_j+1)
                                  Q_{5} A(u, v, w) \rightarrow A((0, 0, 0), w, zero)
                                                                                                                                                                                                                                                                                                          TIME(z) = NEXTTIME(z)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6
                                    Q_6 \quad A(u, v, w) \rightarrow e
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Ø
   Q_1(u) = (ON(p_0) = x) \land (MAP_{X,p_0}(y) \le l \le l_0) \land (\exists q ((ON(q) = y) \land (OPPOSE(p_0, q))))
  \begin{aligned} \boldsymbol{Q}_{2}(u) &= T \; ; & \boldsymbol{Q}_{3}(u) &= \; (\mathbf{x} \neq \mathbf{n}) \lor (\mathbf{y} \neq \mathbf{n}) & \boldsymbol{Q}_{5}(w) &= \; (w \neq zero) \; ; & \boldsymbol{Q}_{6} &= T \; ; \\ \boldsymbol{Q}_{4}(u) &= \exists \mathbf{p} \; ((\mathrm{ON}(\mathbf{p}) = \mathbf{x}) \land (l > 0) \land (\mathbf{x} \neq \mathbf{x}_{0}) \land (\mathbf{x} \neq \mathbf{y}_{0})) \land [(\neg \mathrm{OPPOSE}(\mathbf{p}_{0}, \mathbf{p}) \land (\mathrm{MAP}_{\mathbf{X}, \mathbf{p}}(\mathbf{y}) = 1)) \end{aligned}
                                                                                                                                                                                                                                                                                                           \vee (OPPOSE(p_0, p) \wedge (MAP_{X, p}(y) \leq l)]

init(u,r) = \begin{cases} 2n, & \text{if } u = (0,0,0), \\ r, & \text{if } u \neq (0,0,0). \end{cases} 

f(u, v) = \begin{cases} (x+1,y,l), & \text{if } (x \neq n) \land (l > 0)) \lor ((y = n) \land (l > 0)) \land (y \neq n) \land (l > 0) \land (y \neq n) \land (y \neq 
                                                                                                                                                                                                                                                                                                                   (f(x \neq n) \land (l \geq 0)) \lor ((y = n) \land (l \leq 0))
```

Let
$$t_0 \in \mathbf{L_t}^{I_0}(S)$$
, $t_0 = a(z_0)a(z_1)...a(z_m)$, $t_0 \in t_{p_0}(z_0, z_m, m)$;
If $((z_m = y_0) \land (p = p_0) \land (\exists \ k \ (1 \le k \le m) \land (x = z_k))) \lor$
 $(((z_m \ne y_0) \lor (p \ne p_0)) \land (\exists \ k \ (1 \le k \le m - 1) \land (x = z_k)))$
then $DIST(x, p_0, t_0) = k+1$ else $DIST(x, p_0, t_0) = 2n$

$$\textit{ALPHA}(x, p_0, t_0, k) = \begin{cases} \textit{max} \left(\textit{NEXTTIME}(x), k \right), & \text{if} \left(\textit{DIST}(x, p_0, t_0) \neq 2 \, n \right) \\ & \wedge \left(\textit{NEXTTIME}(x) \neq 2 \, n \right); \\ k, & \textit{DIST}(x, p_0, t_0) \neq 2 \, n \right) \\ & \wedge \left(\textit{NEXTTIME}(x) = 2 \, n \right); \\ \textit{NEXTTIME}(x), & \textit{iDIST}(x, p_0, t_0) = 2 \, n \right). \end{cases}$$

$$\mathbf{g_r}(\mathbf{p_o}, \mathbf{t_o}, w) = \begin{cases}
1, & \text{if } \mathbf{DIST}(\mathbf{r}, \mathbf{p_o}, \mathbf{t_o}) < 2n, \\
w_r, & \text{if } \mathbf{DIST}(\mathbf{r}, \mathbf{p_o}, \mathbf{t_o}) = 2n.
\end{cases}$$

$$\mathsf{TRACKS}_{p_0} = \{\mathbf{p_o}\} \times (\bigcup L[\mathbf{G_t^{(2)}}(\mathbf{x}, \mathbf{y}, \mathbf{k}, \mathbf{p_o})]$$

$$\mathsf{If } \mathsf{TRACKS}_{p_0} = e$$

$$\mathsf{then } \mathbf{h_i^o}(u) = e$$

$$\textbf{else} \ \ \text{TRACKS}_{p_o} = \{(p_o, t_1), (p_o, t_2), \dots, (p_o, t_b)\}, (b \leq M) \ \ \textbf{and} \ \ \textbf{\textit{h}}_i^o(u) = \begin{cases} (p_o, t_i), & \text{if } i \leq b, \\ (p_o, t_b), & \text{if } i > b. \end{cases}$$

$$\textbf{else} \ \ \text{TRACKS} = \{(p_1, t_1), (p_1, t_2), \dots, (p_m, t_m)\}, \ \ (m \leq M) \ \ \textbf{and} \ \ \ \textbf{\textit{h}}_i(u) = \begin{cases} (p_i, t_i), & \text{if } i \leq m, \\ (p_m, t_m), & \text{if } i > m. \end{cases}$$

At the beginning:
$$u = (x_0, y_0, l_0)$$
, $w = zero$, $v = zero$, $x_0 \in X$, $y_0 \in X$, $l_0 \in \mathbb{Z}_+$, $p_0 \in P$, and TIME(z) = 2n, NEXTTIME(z) = 2n for all z from X.

Grammar G_t⁽²⁾ of shortest and admissible trajectories.

Q	Kernel, π_k π_i	r_T	F_{F}
Q_1	$S(x,y,l) \rightarrow A(x,y,l)$	two	Ø
Q_2	$A(x,y,l) \rightarrow A(x, med_i(x, y, l), lmed_i(x, y, l))$ $A(med_i(x, y, l), y, l-lmed_i(x, y, l))$	three	three
<i>Q</i> ₃	$A(x,y,l) \rightarrow a(x)A(next_j(x,l),y,f(l))$	three	4
<i>Q</i> ₄	$A(x,y,l) \rightarrow a(y)$	three	5
Q_5	$A(x,y,l) \rightarrow e$	three	Ø
	Q ₁ Q ₂ Q ₃ Q ₄	$Q_{1} \qquad S(x,y,l) -> A(x,y,l)$ $Q_{2} \qquad A(x,y,l) -> A(x, med_{i}(x,y,l), lmed_{i}(x,y,l))$ $A(med_{i}(x,y,l), y, l-lmed_{i}(x,y,l))$ $Q_{3} \qquad A(x,y,l) -> a(x)A(next_{j}(x,l), y, f(l))$ $Q_{4} \qquad A(x,y,l) -> a(y)$	Q_1 $S(x,y,l) \rightarrow A(x,y,l)$ two Q_2 $A(x,y,l) \rightarrow A(x, med_i(x,y,l), lmed_i(x,y,l))$ $three$ $A(med_i(x,y,l), y, l - lmed_i(x,y,l))$ $lmed_i(x,y,l)$ Q_3 $A(x,y,l) \rightarrow a(x)A(next_j(x,l), y, f(l))$ $lmed_i(x,y,l)$ Q_4 $A(x,y,l) \rightarrow a(y)$ $lmed_i(x,y,l)$

$$V_{T} = \{a\},$$

$$V_{N} = \{S, A\},$$

$$V_{PR}$$

$$Pred = \{Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\}$$

$$Q_{1}(x, y, l) = (MAP_{X,p}(y) \le l < 2MAP_{X,p}(y)) \land (l < 2n)$$

$$Q_{2}(x, y, l) = (MAP_{X,p}(y) \ne l)$$

$$Q_{3}(x, y, l) = (MAP_{X,p}(y) = l) \land (l \ge 1)$$

$$Q_{4}(y) = (y = y_{0})$$

$$Q_{5}(y) = (y \ne y_{0})$$

$$Var = \{x, y, l\};$$

$$Con = \{x_{0}, y_{0}, l_{0}, p\};$$

$$Func = Fcon \cup Fvar;$$

$$Fcon = \{f, next_{1}, ..., next_{n}, med_{1}, ..., med_{n}, lmed_{1}, ..., lmed_{n}\} \quad (n = |X|),$$

functions $next_i$, med_i and $lmed_i$ are defined below.

$$Fvar = \{x_0, y_0, l_0, p\}$$

 $E = \mathbb{Z}_{+} \cup X \cup P$ is the subject domain;

$$Parm: S \rightarrow Var, A \rightarrow Var, a \rightarrow \{x\};$$

$$L=\{1,4\} \cup two \cup three, two = \{2_1,2_2,...,2_n\}, three = \{3_1,3_2,...,3_n\}$$

 $f(l) = l-1, D(f) = \mathbb{Z}_{+} \setminus \{0\}$

At the beginning of derivation: $x = x_0$, $y = y_0$, $l = l_0$, $x_0 \in X$, $y_0 \in X$, $l_0 \in \mathbb{Z}_+$, $p \in P$.

Definition of functions med, lmed, next

med; is defined as follows:

$$\begin{split} &D(med_i) = \mathbf{X} \times \mathbf{X} \times \mathbf{Z}_+ \times \mathbf{P} \\ &\mathrm{DOCK} = \{\mathbf{v} \mid \mathbf{v} \text{ from } \mathbf{X}, \mathrm{MAP}_{\mathbf{Xo},\mathbf{p}}(\mathbf{v}) + \mathrm{MAP}_{\mathbf{yo},\mathbf{p}}(\mathbf{v}) = l\}, \\ &\mathrm{If} \\ &\mathrm{DOCK}_l(\mathbf{x}) = \{v_1, v_2, ..., v_m\} \neq \emptyset \\ &\mathrm{then} \\ &med_l(\mathbf{x}, \mathbf{y}, l) = v_l \text{ for } 1 \leq i \leq m \text{ and} \\ &med_l(\mathbf{x}, \mathbf{y}, l) = v_m \text{ for } m < i \leq n, \\ &\mathrm{otherwise} \\ &med_l(\mathbf{x}, \mathbf{y}, l) = \mathbf{x}. \end{split}$$

lmed; is defined as follows:

$$D(med_i) = X \times X \times \mathbf{Z}_+ \times P$$
$$lmed_i(x, y, l) = MAP_{X,p}(med_i(x, y, l))$$

next; is defined as follows:

$$\begin{split} &D(\textit{next}_i) = \mathbf{X} \times \mathbf{Z}_+ \times \mathbf{X}^2 \times \mathbf{Z}_+ \times \mathbf{P} \\ &\mathbf{SUM} = \{\mathbf{v} \mid \mathbf{v} \text{ from } \mathbf{X}, \mathbf{MAP}_{\mathbf{X}_0,\mathbf{p}}(\mathbf{v}) + \mathbf{MAP}_{\mathbf{y}_0,\mathbf{p}}(\mathbf{v}) = l_0\}, \\ &\mathbf{ST}_{\mathbf{k}}(\mathbf{x}) = \{\mathbf{v} \mid \mathbf{v} \text{ from } \mathbf{X}, \mathbf{MAP}_{\mathbf{X},\mathbf{p}}(\mathbf{v}) = \mathbf{k}\}, \\ &\mathbf{MOVE}_{\textit{l}}(\mathbf{x}) \text{ is an intersection of the following sets:} \\ &\mathbf{ST}_1(\mathbf{x}), \mathbf{ST}_{l_0-l+1}(\mathbf{x}_0) \text{ and } \mathbf{SUM}. \\ &\mathbf{If} \\ &\mathbf{MOVE}_{\textit{l}}(\mathbf{x}) = \{m_1, m_2, ..., m_r\} \neq \emptyset \\ &\mathbf{then} \\ &\textit{next}_{\textit{l}}(\mathbf{x}, \textit{l}) = m_{\textit{l}} \text{ for } \textit{i} \leq \textit{r} \text{ and} \\ &\textit{next}_{\textit{l}}(\mathbf{x}, \textit{l}) = m_{\textit{r}} \text{ for } \textit{r} < \textit{i} \leq \textit{n}, \\ &\mathbf{otherwise} \\ &\textit{next}_{\textit{l}}(\mathbf{x}, \textit{l}) = \mathbf{x}. \end{split}$$