Devoir à la maison n° 19

À rendre le 9 mai

I. Parties aléatoires de $\{1,\ldots,n\}$

On fixe un entier $n \ge 2$ et on note $E = \{1, ..., n\}$. On considère n variables aléatoires $X_1, ..., X_n$ indépendantes et identiquement distribuées selon la loi de Bernoulli symétrique :

$$P(X_1 = 0) = P(X_1 = 1) = \frac{1}{2}.$$

On note A l'ensemble des $j \in E$ tels que $X_j = 1$: $A = \{ j \in E \mid X_j = 1 \}$. L'ensemble A est donc un sous-ensemble aléatoire de E.

Pour un ensemble fini X, on note |X| son cardinal.

- 1) Combien de valeurs différentes A peut-il prendre? Déterminer la loi de A.
- 2) Déterminer la loi de |A|.
- 3) Soit B une variable aléatoire de même loi que A et indépendante de A. On pourra considérer que B est construite sur des variables de Bernoulli X'_1, \ldots, X'_n indépendantes entre elles et des X_1, \ldots, X_n , identiquement distribuées selon la loi de Bernoulli symétrique (question bonus : pourquoi?).

Déterminer la loi de $|A \cap B|$ et en déduire son espérance, $E(|A \cap B|)$.

4) Calculer la probabilité $P(A \subset B)$.

II. Parties aléatoires de $\{1,\ldots,K\}$

Soit K et n deux entiers strictements positifs, X_0, X_1, \ldots, X_n des variables aléatoires indépendantes et identiquement distribuées selon une loi uniforme sur l'ensemble $\{1, \ldots, K\}$.

- 1) Soit $S \subset \{1, \dots, K\}$. Donner la valeur de $P(X_0 \in S)$ en fonction de Card S.
- 2) Soit $z \in \{1, \dots, K\}$. Calculer $P(X_1 \neq z, \dots, X_n \neq z)$.
- 3) Déterminer E [Card $\{X_1, \ldots, X_n\}$]. Indice: on pourra calculer $P(X_0 \notin \{X_1, \ldots, X_n\})$ de deux manières, en conditionnant selon X_0 ou $\{X_1, \ldots, X_n\}$, pour en déduire une expression de E [Card $\{X_1, \ldots, X_n\}$].
- 4) Déterminer un équivalent de $E[\operatorname{Card}\{X_1,\ldots,X_n\}]$ lorsque :
 - a) K est fixe et $n \to +\infty$;
 - **b)** n est fixe et $K \to +\infty$;
 - c) $n = K \to +\infty$.