Homework 4 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 15, 2024

1. Since B_x are bounded on \mathbb{R}^n , B_x is compact for all $x \in A$. Thus, B is pointwise compact.

And since \mathbb{R}^n is complete, *B* is complete, too. Thus, *B* is closed.

Then, by Arzela-Ascoli Theorem, B is compact. Therefore, B is sequentially compact.

2. First, we want to show that B is closed. For any sequence $f_k \in B$ which converges to f, since $f_k(0) = 0$ for all k, we can get f(0) = 0. Then, assume there exists an $x_0, x_1 \in (0,1)$ s.t. $\frac{|f(x_0) - f(x_1)|}{|x_0 - x_1|} = \alpha > 1$. Take $\varepsilon = \frac{\alpha - 1}{3}$, there exists $N \in \mathbb{N}$ s.t. $|f(x) - f_k(x)| < \varepsilon$ for all x and k > N. Thus, $|\frac{f_k(x_0) - f_k(x_1)}{x_0 - x_1}| = \frac{|f_k(x_0) - f(x_0) + f(x_0) - f(x_1) + f(x_1) - f_k(x_1)|}{|x_0 - x_1|} > \alpha - \frac{2\varepsilon}{|x_0 - x_1|} > 1$ which causes contradiction to $|f'_k(x)| \le 1$ for all $x \in (0, 1)$. Thus, $\frac{|f(x_0) - f(x_1)|}{|x_0 - x_1|} \le 1 \implies f \in B$. Hence, B is closed.

Then, since $|f'(x)| \le 1$ for all $f \in B$ and $x \in (0,1)$. For any $\varepsilon > 0$, we take $\delta < \varepsilon$, for any $x,y \in [0,1]$ s.t. $|x-y| < \varepsilon$, $|f(x)-f(y)| \le 1 \cdot |x-y| = \delta < \varepsilon$. Thus, B is equicontinuous.

Last, for any $x \in [0,1]$, we want to proof B_x is compact. For x = 0, $B_0 = \{0\}$ obviously compact. For x > 0, since $|f'| \le 1$, we can easily get $B_x = [-x,x]$ by f(x) = ax for all $|a| \le 1$. Thus, B is pointwise compact.

Therefore, by Arzela-Ascoli Theorem, *B* is compact.

3. For any $\varepsilon > 0$, we can find $\delta > 0$ s.t. $|x-y| < \delta \implies |f(x)-f(y)| < \varepsilon$ for all f and $x,y \in K$. Since K is compact, we can find a sequence $\{x_k\}_{k=1}^n$ s.t. $K \subset D(x_k,\delta)$. Then, we can find a $N \in \mathbb{N}$ s.t. $|f_k(x_1) - f(x_1)| < \varepsilon$ for all k > N. Thus, for any $y \in K$,