

ЭТИКЕТКА

УП3.487.365 ЭТ

Микросхема интегральная 564 ТВ1В Функциональное назначение — Два триггера — J-K

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход Q1	9	Уст. «1»
2	Выход $\overline{Q}1$	10	Вход Ј2
3	Счетный вход	11	Вход К2
4	Уст. «0»	12	Уст. «0»
5	Вход К1	13	Счетный вход
6	Вход Ј1	14	Выход $\overline{\mathrm{Q}}2$
7	Уст. «1»	15	Выход Q2
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Taomia 1	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \text{ B}, 10 \text{ B}$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, В, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	U _{ОН}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IL}=3,0~B,~U_{IH}=7,0~B$	U _{OL max}	- -	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IL}=3,0~B,~U_{IH}=7,0~B$	$U_{ m OHmin}$	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IL}	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I _{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC}=5~B,~U_O=0,5~B$ $U_{CC}=10~B,~U_O=0,5~B$	I_{OL}	0,5 1,0	- -
8. Выходной ток высокого уровня, мА, при: $U_{CC}=5~B,~U_O=4,5~B$ $U_{CC}=10~B,~U_O=9,5~B$	I_{OH}	/-0,5/ /-1,0/	- -

Продолжение таблицы 1				
1	2	3	4	
9. Ток потребления, мкА, при:				
$U_{CC} = 5 B$	т		1,0	
$U_{CC} = 10 B$	I_{CC}	-	1,0 2,0	
$U_{CC} = 15 B$		ı	4,0	
О. Время задержки распространения сигнала при включении, нС, при:				
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$				
по счетному входу	$t_{ m PHL}$	-	600	
по входам «уст.1» и «уст.0»		-	600	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$				
по счетному входу и по входам «уст.1» и «уст.0»		ı	250	
11. Время задержки распространения сигнала при выключении, нС, при:				
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$				
по счетному входу	t _{PLH}	-	600	
по входам «уст.1» и «уст.0»		-	600	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$				
по счетному входу и по входам «уст.1» и «уст.0»		-	250	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото серебро Г. золото г/мм на 16 выводах, длиной MM

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

в том числе:

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В 11 0398 – 2000 и ТУ, при температуре окружающей среды (температуре эксплуатации) не более 65 °C - не менее 100000 ч., а в облегченных режимах, которые приводят в ТУ, при $U_{CC} = 5B \pm 10\%$ - не менее 120000 ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ТВ1В соответствуют техническим условиям бК0.347.064 ТУ 14 и признаны годными для эксплуатации.

Приняты по	от	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка	произведена	ı	» (дата)
Приняты по (извещение, акт и др.)	от	(дата)	_
Место для штампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.