18.04 Recitation 3

that u and v are C^2 i.e. all partial derivatives of u and v of order up to (and including) 2 exist, and are continuous. Show that $f' = \frac{df}{dz} : \mathbb{C} \to \mathbb{C}$ is also analytic, $\mathcal{U}_{XX} = \mathcal{V}_{XX} = \mathcal{V}_{XX}$

2.1. Show that $\int \bar{z} dz$ is not path independent in \mathbb{C} . Why does this not contradict the fundamental theorem for complex $\frac{1}{2}z^2$. damental theorem for complex line integrals? $\int_{\gamma} \bar{z} dz = \int_{\gamma}^{\gamma} e^{i\theta} d\theta = \ln z + \theta$ 2.2. For each $n \in \mathbb{Z}$, compute $\int_{\gamma} z^n dz$, where γ is the unit circle centered at the origin. Are

- your answers consistent with the fundamental theorem?
- 2.3. Do any of the answers in 2.2. change if γ is a circle such that the disk bounded by the circle does not contain the origin? $n=1 \Rightarrow 0$
- 3. Recall from Recitation 2 that cos(z) = cos(x) cosh(y) i sin(x) sinh(y).
- 3.1. Consider the region $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : 0 < x < \pi\}$. What are the images of horizontal and vertical lines in \mathbb{R} ? Is the mapping $z \mapsto \cos(z)$ restricted to \mathbb{R} a one-to-one mapping?
- 3.2. To \mathcal{R} , add the half lines $x = 0, y \ge 0$ and $x = \pi, y > 0$ to produce a new region \mathcal{R}_1 . What is the image of \mathcal{R}_1 under the map $z \mapsto \cos(z)$? Is the map still one-to-one on \mathcal{R}_1 ?
- 3.3. Note that \mathcal{R}_1 gives a branch of the multi-valued function $\cos^{-1}(z)$. What are the branch cuts in the domain of $\cos^{-1}(z)$ for this branch?

MIT OpenCourseWare https://ocw.mit.edu

18.04 Complex Variables with Applications Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.