Apprentissage automatique utilisant Scikit-Learn

Nesrine Ammar

26-02-2019

PROGRES

Introduction

Introduction

Définition

 Machine Learning is the science of programming computers so they can learn from data.

 ML is the field of study that gives computers the ability to learn without being explicity programmed.

[Arthur Samuel, 1959]

Introduction

Introduction

• Un bon modèle de machine learning, c'est un modèle qui généralise.

Qu'est-ce que c'est, déjà, la généralisation ?

- La **généralisation**, c'est la capacité d'un modèle à faire des prédictions non seulement sur les données que vous avez utilisées pour le construire, mais surtout sur **de nouvelles données** : c'est bien pour ça que l'on parle **d'apprentissage**
- L'objectif du machine learning est de **trouver un modèle** qui effectue une **approximation** de la réalité (le phénomène à l'origine des données), à l'aide de laquelle on va pouvoir effectuer des prédictions.

Apprentissage supervisé: La valeur exacte est donnée Les données sont labélisées

Problème de régression: Valeurs sont continues

Problème de classification: Valeurs sont discrètes

Apprentissage supervisé avec 2 attributs

Type de cellule Taux des globules Type de sang

• • •

2 types d'apprentissage supervisé: Régression vs classification

Les algorithmes les plus connus:

- K-Nearest Neighbors
- Linear regression
- Logistic regression
- Support vector machine
- Decision tree
- Random forest
- Neural networks

- Inférer des connaissances sur les données
- Les classes ne sont pas définies
- Exemples de tâches associées à l'apprentissage non-supervisé: Clustering (regroupement): construire de classes automatiquement en fonction des données disponibles

Problème d'apprentissage: estimation du prix d'une maison

Pour chaque exemple, le model retourne la valeur exacte

Problème de régression: Le modèle retourne une valeur continue

Problème d'apprentissage: Régression linaire

Surface(X)	Prix (Y)	Notation:
2000	480	 m nombre des exemples des données X attributs (valeurs d'entrées)
600	150	 Y sortie des données
500	128	 (x,y) est 1 exemple d'apprentissage
2965	576	La régression linéaire:
1678	321	S'appuie sur l'hypothèse que les données proviennent
		d'un phénomène qui à la forme d'une droite, c'est à dire qu'il existe une relation linéaire entre l'entrée (les
		observations) et la sortie (les prédictions).

Données d'apprentissage

Problème d'apprentissage: Régression linaire

Comment représenter h?

$$h_{\Theta}(x) = \theta_{0} + \theta_{1}x$$

Algorithme: Régression linaire avec un seul attribut

Problème d'apprentissage: Régression linaire

Comment choisir Theta?

$$h_{\mathbb{Q}}(x) = \theta_0 + \theta_1 x$$

Choisir les valeurs de theta pour que h soit très proche de y dans nos données d'apprentissage (x,y)

$$f(0,18) = \frac{1}{2} \mathcal{E} (9_0(x') - y')^2$$

minimize $f(0,18)$

Qu'est ce qu'un bon modèle d'apprentissage

- Qu'est ce que le sous-apprentissage et le sur-apprentissage?
- En apprentissage supervisé, le but est de produire des modèles qui généralisent, c'est-à-dire qui sont capables de faire de bonnes prédictions sur de nouvelles données
- De bonnes performances sur le jeu d'entraînement ne garantissent pas que le modèle sera capable de généraliser!
- On cherche à développer un modèle qui soit suffisamment complexe pour bien capturer la nature des données (et éviter ainsi le sous-apprentissage), mais suffisamment simple pour éviter le sur-apprentissage.

Un projet ML de bout en bout (Problème de régression)

- 1. Comprendre le problème
- 2. Obtenir les données
- 3. Analyser et visualiser les données
- 4. Préparer les données pour l'apprentissage
- 5. Choisir un algorithme d'apprentissage
- 6. Former le modèle
- 7. Régulariser les hyperparamètres du modèle
- 8. Tester le modèle obtenu

Télécharger les données

```
Import sklearn
Import pandas as pd
Import numpy as np
Import os
#load the data
Def load housing (housing path=path):
       csv_path = os.path.join(path, 'housing.csv')
       dataset = pd.read_csv(csv_path)
```

Télécharger les données

Name	[Housing units]	Occupied	Vacant [[Median value]	[Median rooms]	lU: 1 detached]	HU:1 attached]
Alabama	2,190,638	1,842,174	348,464	\$123,800	5.7	1,501,302	36,331
Alaska	307,820	251,678	56,142	\$246,300	4.7	193,912	23,411
American Samoa	10,963	9,688	1,275	\$68,200	4,5	8,443	604
Arizona	2,874,548	2,387,246	487,302	\$162,900	5.2	1,826,015	140,446
Arkansas	1,329,139	1,132,488	196,651	\$108,700	5.4	926,350	21,996
California	13,781,929	12,617,280	1,164,649	\$371,400	5.1	8,017,091	960,230
Colorado	2,238,624	1,998,314	240,310	\$239,400	5.7	1,408,086	155,702
Connecticut	1,490,381	1,356,206	134,175	\$274,500	5.7	882,955	79,922
Delaware	411,250	339,046	72,204	\$232,900	6.2	240,246	60,677
District of Columbia	300,798	267,415	33,383	\$454,500	4.2	35,925	76,489
Florida	9,051,851	7,217,508	1,834,343	\$156,200	5.1	4,902,074	568,390
Georgia	4,114,496	3,540,690	573,806	\$148,000	5.8	2,733,507	152,236
Guam	50,567	42,026	8,541	\$216,100	4.5	27,241	7,321
Hawaii	524,852	450,299	74,553	\$504,500	4.6	282,060	43,361
Idaho	675,421	585,259	90,162	\$160,500	5.7	493,472	19,506
Illinois	5,299,433	4,778,633	520,800	\$175,700	5.6	3,104,574	309,821
Indiana	2,811,617	2,492,183	319,434	\$122,700	5.7	2,043,948	102,693
lowa	1,348,151	1,232,228	115,923	\$126,300	5.9	996,023	50,174
Kansas	1,240,529	1,112,335	128,194	\$129,400	5.8	899,161	57,241

Visualiser les données

```
Import sklearn
Import pandas as pd
Import matplot.pyplot as plt
```

```
housing = load_housing()
housing.head()
→ Premiers 5 lignes
housing.info()
→ numéro des colonnes/lignes/les attributs...
housing['ocean proximity'].value_counts() → nombre d'exemples par catégorie de l'attribut housing.hist(bins=50, figsize=(20,15))
→ histogramme par chaque attribut
Plt.show()
```

Préparer les données de teste

```
Import sklearn
Import pandas as pd
Import numpy as np
Import matplot.pyplot as plt
Housing.shape()
train set, test set = housing[:400], housing[400:]
From sklearn.model selection import train test split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
```

Visualiser la corrélation

Import sklearn
Import pandas as pd
Import numpy as np
Import matplot.pyplot as plt


```
train_set.plot(kind='scatter', x='longitude', y='latitude')
train_set. plot(kind='scatter', x='longitude', y='latitude', alph=0.1)
```

```
corr_matrix= train_set.corr()
corr_matrix['rooms'].sort_values(ascending=False)
```

Apprentissage: LinearRegression

```
Import sklearn
Import pandas as pd
Import numpy as np
y_train= train_set['labels']
X train= train set.drop('labels', axis=1)
From sklearn.linear_model import LinearRegression
→ Select a linear model
Lin reg =LinearRegression()
→ Fit to our data
Lin reg.fit(X train, y train)
```

Apprentissage: LinearRegression

```
Import sklearn
Import pandas as pd
Import numpy as np
Some_data = X_train[:3]
Some labels = y train[:3]
Print ('predictions:', lin_reg.predict(some_data))
>> Predictions: [210,000 , 311,000, 210,000]
Print('labels:' list(some_labels))
>> Labels: [286,000, 340,000, 198,000]
```

Apprentissage: LinearRegression

Import sklearn
Import pandas as pd
Import numpy as np

From sklearn.metrics import mean_squared_error

→ Test on the train set using mean squareerror (make predictions on train set)

```
housing_predictions = lin_reg.predict(X_train)
Lin_mse = mean_squared_error(y_train, housing_predictions)
Print lin_mse
>> 68,000
```

Apprentissage: DecisionTree

```
Import sklearn
Import pandas as pd
Import numpy as np
From sklearn.linear_model import DecisionTree
dtree= DecisionTree()
dtree.fit(train set,train labels)
Housing predictions = dtree.predict(X train)
Lin mse = mean_squared_error(y_train, housing_predictions)
Print lin_mse
>> 0,0
```

Apprentissage: Validation croisée

La validation croisée va nous permettre d'utiliser l'intégralité de notre jeu de données pour l'entraînement et pour la validation

On découpe le jeu de données en k parties (folds en anglais) à peu près égales. Tour à tour, chacune des k parties est utilisée comme jeu de test. Le reste (autrement dit, l'union des k-1 autres parties) est utilisé pour l'entraînement.

Exemple: Une cross-validation à 5 folds : Chaque point appartient à 1 des 5 jeux de test (en blanc) et aux 4 autres jeux d'entraînements (en orange)

Apprentissage: Validation croisée

```
Import sklearn
Import pandas as pd
From sklearn.model_selection import cross_val_score

Scores = cross_val_score(dtree, y_X_train, y_train, scoring='neg_mean_square_error', cv=4)
Print scores
>> [68,000, 70,000, 67,000, 74,000]
Print scores.mean()
>>
```

Apprentissage: Méthodes

train test split(*arrays, **options)

fit(X, y)	Fit linear model.
<pre>get params([deep])</pre>	Get parameters for this estimator.
predict(X)	Predict using the linear model
score(X, y)	Returns the coefficient of determination R^2 of the prediction.
set params(**params)	Set the parameters of this estimator.

mean squared error(y, y_pred)

cross val score(estimator, X, y=None, groups=None, scoring=None, cv='warn')

Notes

- Il ne faut jamais évaluer un modèle sur des points qui ont été utilisés pour l'entraîner.
- On sépare donc les données entre un jeu d'entraînement, sur lequel on apprend le modèle, et un jeu de test, sur lequel on l'évalue.
- Pour utiliser l'intégralité de nos données pour entraîner et pour tester, et pour éviter un biais potentiel lié au fait de faire une évaluation unique, on préfère faire une validation croisée.
- Dans le cas d'un problème de classification, on fait attention à stratifier la validation croisée pour éviter d'introduire des biais

Hyperparamètres

- La plupart des algorithmes ont des hyperparamètres, comme le nombre de feuilles pour un algorithme d'arbre de décision, qu'il faut se fixer.
- Le choix de l'algorithme et les hyperparamètres permettent de construire le modèle le plus adapté à notre problème
- Exemple de hyperparamètres pour Decision Tree:

Min_samples_split	Nombre min qu'un nœud doit avoir avant de faire la division
Min_samples_leaf	Nombre min de feuilles qu'un nœud doit avoir
Max_leaf_nodes	Nombre maximum de feuilles par nœud
Max_features	Nombre max d'attributs utilisés par un nœud pour faire la division
Max_depth	La profondeur maximal d'un arbre

```
dtree= DecisionTree(max_depth=2)
dtree.fit(train_set,train_labels)
```

Evaluer sur les données de test

```
Import sklearn
Import pandas as pd
Import numpy as np
From sklearn.linear_model import DecisionTree
predictions = lin reg.predict(X test)
mae = np.mean(abs(predictions - y_test))
print('LinearRegression Performance on the test set: MAE = %0.4f' % mae)
```

Problème de classification

- Les données d'apprentissage composé d'image de chiffres
- 9 classes
- Classification multi classe, on utilise dans ce cas la technique (one vs all) consiste à entrainer un classificateur par classe, pour 9 classe nous aurons 9 classificateurs.
- One vs all: des classificateurs binaires

Classificateur binaire

```
Import sklearn
Import pandas as pd
dataset = pd.read csv(csv path)
y= dataset['labels']
X= dataset('labels', axis=1)
Print X.shape, y.shape
>> (70000, 784), (70000,)
X_{train}, X_{test}, y_{train}, y_{test} = X[:60000], X[60000:], y[:60000], y[60000:]
Y_train_5 = (y train ==5)
Y test 5 = (y \text{ test} == 5)
```

Classificateur binaire

From sklearn.linear_model import SGDClassifier Sgd_clf = SGDClassifier() Sgd clf.fit(X train, y train 5) Sgd clf.predict([un chiffre 5]) >> True From sklearn.model_selection import cross_val_score cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring=accuracy) >> [0.9502, 0.96565, 0.96495]

Multi classe

From sklearn.linear_model import SGDClassifier

```
Sgd_clf = SGDClassifier()
Sgd_clf.fit(X_train, y_train)
Sgd_clf.predict([un chiffre 5])
>> 5

Sgd_clf.predict_proba([un chiffre])
>> [0.1, 0, 0, 0.1, 0, 0.8, 0, 0, 0, 0]
```

Pandas

```
>>> import pandas as pd
```

>>> import numpy as np

>>> df = pd.read_csv('data/sample_data.csv', index_col=0)

>>> df

	state	color	food	age	height	score
Jane	NY	blue	Steak	30	165	4.6
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9.0
Penelope	AL	white	Apple	4	80	3.3
Dean	AK	gray	Cheese	32	180	1.8
Christina	TX	black	Melon	33	172	9.5
Cornelia	TX	red	Beans	69	150	2.2

```
>>> index = df.index
>>> columns = df.columns
>>> values = df.values
>>> index
Index(['Jane', 'Niko', 'Aaron', 'Penelope', 'Dean', 'Christina',
    'Cornelia'], dtype='object')
>>> columns
Index(['state', 'color', 'food', 'age', 'height', 'score'],
   dtype='object')
>>> values
array([['NY', 'blue', 'Steak', 30, 165, 4.6],
    ['TX', 'green', 'Lamb', 2, 70, 8.3],
    ['FL', 'red', 'Mango', 12, 120, 9.0],
    ['AL', 'white', 'Apple', 4, 80, 3.3],
    ['AK', 'gray', 'Cheese', 32, 180, 1.8],
    ['TX', 'black', 'Melon', 33, 172, 9.5],
    ['TX', 'red', 'Beans', 69, 150, 2.2]], dtype=object)
```

Pandas

>>> df['food']

>>> df[['color', 'food', 'score']]

df[['height', 'color']]

)
)
,
•
ı
;

	color	food	score
Jane	blue	Steak	4.6
Niko	green	Lamb	8.3
Aaron	red	Mango	9.0
Penelope	white	Apple	3.3
Dean	gray	Cheese	1.8
Christina	black	Melon	9.5
Cornelia	red	Beans	2.2

	height	color
Jane	165	blue
Niko	70	green
Aaron	120	red
Penelope	80	white
Dean	180	gray
Christina	172	black
Cornelia	150	red

>>> df.loc[['Niko', 'Penelope']]

	state	color	food	age	height	score
Niko	TX	green	Lamb	2	70	8.3
Penelope	AL	white	Apple	4	80	3.3

>>> df.loc['Niko':'Dean']

	state	color	food	age	height	score
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9.0
Penelope	AL	white	Apple	4	80	3.3
Dean	AK	gray	Cheese	32	180	1.8

>>> df.loc[:'Aaron']

	state	color	food	age	height	score
Jane	NY	blue	Steak	30	165	4.6
Niko	TX	green	Lamb	2	70	8.3
Aaron	FL	red	Mango	12	120	9.0

Pandas

>>> df.loc[['Dean', 'Cornelia'], ['age', 'state', 'score']]

	age	state	score
Dean	32	AK	1.8
Cornelia	69	TX	2.2

>>> df.loc['Jane':'Penelope', ['state', 'color']]

	state	color
Jane	NY	blue
Niko	TX	green
Aaron	FL	red
Penelope	AL	white

>>> df.loc[['Penelope','Cornelia'], :]

	state	color	food	age	height	score
Penelope	AL	white	Apple	4	80	3.3
Cornelia	TX	red	Beans	69	150	2.2