Autonomous Mobile Systems

The Markov Decision Problem

Value Iteration and Policy Iteration

Cyrill Stachniss

Wolfram Burgard

What is the problem?

- Consider a non-perfect system.
- Actions are performed with a probability less then 1.
- What is the best action for an agent under this constraint?

Example: a mobile robot does not exactly perform the desired action.

Uncertainty about performing actions!

Example (1)

- Bumping to wall "reflects" to robot.
- Reward for free cells -0.04 (travel-cost).
- What is the best way to reach the cell labeled with +1 without moving to -1?

Example (2)

Deterministic Transition Model: move on the shortest path!

Example (3)

But now consider the non-deterministic transition model (N / E / S / W):

What is now the best way?

Example (4)

- Use a longer path with lower probability to move to the cell labeled with -1.
- This path has the highest overall utility!

Deterministic Transition Model

- In case of a deterministic transition model use the shortest path in a graph structure.
- Utility = 1 / distance to goal state.
- Simple and fast algorithms exists (e.g. A*-Algorithm, Dijsktra).
- Deterministic models assume a perfect world (which is often unrealistic).
- New techniques need for realistic, non-deterministic situations.

Utility and Policy

Compute for every state a utility: "What is the usage (utility) of this state for the overall task?"

A Policy is a complete mapping form states to actions ("In which state should I perform which action?").

 $policy: States \mapsto Actions$

Markov Decision Problem (MDP)

Compute the optimal policy in an accessible, stochastic environment with known transition model.

Markov Property:

The transition probabilities depend only the current state and not on the history of predecessor states.

Not every decision problem is a MDP.

The optimal Policy

$$policy^*(i) = \underset{a}{\operatorname{argmax}} \sum_{j} M_{ij}^a \cdot U(j)$$

$$M_{ij}^a = \underset{\text{form state } i \text{ with action } a.$$

$$U(j) = \text{Utility of state } j.$$

- If we know the utility we can easily compute the optimal policy.
- The problem is to compute the correct utilities for all states.

The Utility (1)

- To compute the utility of a state we have to consider a tree of states.
- The utility of a state depends on the utility of all successor states.

- Not all utility functions can be used.
- The utility function must have the property of separability.
- E.g. additive utility functions:

$$U([s_0, s_1, \dots s_n]) = R(s_0) + U([s_1, \dots s_n])$$

(R = reward function)

The Utility (2)

The utility can be expressed similar to the policy function:

$$U(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U(j)$$

■ The reward R(i) is the "utility" of the state itself (without considering the successors).

Dynamic Programming

- This Utility function is the basis for "dynamic programming".
- Fast solution to compute n-step decision problems.
- Naive solution: $O(|A|^n)$.
- Dynamic Programming: O(n|A||S|).
- But what is the correct value of n?
- lacksquare If the graph has loops: $n \to \infty$

Iterative Computation

Idea:

The Utility is computed iteratively:

$$U_{t+1}(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U_{t}(j)$$

- lacksquare Optimal utility: $U^* = \lim_{t \to \infty} U_t$
- Abort, if change in the utility is below a threshold.

The Value Iteration Algorithm

```
function VALUE-ITERATION(M,R) returns a utility function inputs: M, a transition model R, a reward function on states local variables: U, utility function, initially identical to R U', utility function, initially identical to R repeat U \leftarrow U'
```

```
repeat U \leftarrow U' for each state i do U'[i] \leftarrow R[i] + \max_a \sum_j M^a_{ij} U[j] end until Close-Enough(U, U') return U
```

Value Iteration Example

Calculate utility of the center cell

$$U_{t+1}(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U_{t}(j)$$

(desired action=North)

Transition Model

State Space (u=utility, r=reward)

Value Iteration Example

$$U_{t+1}(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U_{t}(j)$$

$$= reward + \max\{$$

$$0.1 \cdot 1 + 0.8 \cdot 5 + 0.1 \cdot 10 \quad (\leftarrow),$$

$$0.1 \cdot 5 + 0.8 \cdot 10 + 0.1 \cdot -8 \quad (\uparrow),$$

$$0.1 \cdot 10 + 0.8 \cdot -8 + 0.1 \cdot 1 \quad (\rightarrow),$$

$$0.1 \cdot -8 + 0.8 \cdot 1 + 0.1 \cdot 5 \quad (\downarrow)\}$$

$$= 1 + \max\{5.1(\leftarrow), 7.7(\uparrow),$$

$$-5.3(\rightarrow), 0.5(\downarrow)\}$$

$$= 1 + 7.7$$

$$= 8.7$$

From Utilities to Policies

- Computes the optimal utility function.
- Optimal Policy can easily be computed using the optimal utility values:

$$policy^*(i) = \underset{a}{\operatorname{argmax}} \sum_{j} M_{ij}^a \cdot U^*(j)$$

Value Iteration is an optimal solution to the Markov Decision Problem!

Convergence "close-enough"

- Different possibilities to detect convergence:
 - RMS error root mean square error
 - Policy Loss
 - ...

Convergence-Criteria: RMS

$$RMS = \frac{1}{|S|} \cdot \sqrt{\sum_{i=1}^{|S|} (U(i) - U'(i))^2}$$

■ CLOSE-ENOUGH(U,U') in the algorithm can be formulated by:

$$RMS(U,U')<\epsilon$$

Example: RMS-Convergence

1. The given environment.

0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388

- 1. The given environment. 2. Calculate Utilities.

0.812	0.868	0.912	+1
0.762		0.660	-
0.705	0.655	0.611	0.388

- 1. The given environment. 2. Calculate Utilities.

-	+	†	+1
+		†	–1
+	+	+	•

3. Extract optimal policy.

1. The given environment. 2. Calculate Utilities.

2. Calculate Utilities

3. Extract optimal policy.

4. Execute actions.

0.812	0.868	0.912	+1
0.762		0.660	T
0.705	0.655	0.611	0.388

The Utilities.

The optimal policy.

(3,2) has higher utility than (2,3). Why does the polity of (3,3) points to the left?

0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388

The Utilities.

The optimal policy.

- (3,2) has higher utility than (2,3). Why does the polity of (3,3) points to the left?
- Because the Policy is **not** the gradient!
 It is:

$$policy^*(i) = \underset{a}{\operatorname{argmax}} \sum_{j} M_{ij}^a \cdot U(j)$$

Convergence of Policy and Utilities

- In practice: policy converges faster than the utility values.
- After the relation between the utilities are correct, the policy often does not change anymore (because of the argmax).

Is there an algorithm to compute the optimal policy faster?

Policy Iteration

- Idea for faster convergence of the policy:
 - 1. Start with one policy.
 - Calculate utilities based on the current policy.
 - 3. Update policy based on policy formula.
 - 4. Repeat Step 2 and 3 until policy is stable.

The Policy Iteration Algorithm

```
R, a reward function on states
local variables: U, a utility function, initially identical to R
                   P, a policy, initially optimal with respect to U
repeat
    U \leftarrow \text{Value-Determination}(P, U, M, R)
    unchanged? ← true
  for each state i do
        if \max_a \sum_j M_{ij}^a U[j] > \sum_i M_{ij}^{P[i]} U[j] then
            P[i] \leftarrow \arg\max_{a} \sum_{i} M_{ij}^{a} U[j]
            unchanged? \leftarrow false
    end
until unchanged?
return P
```

function Policy-Iteration(M, R) returns a policy

inputs: M, a transition model

Value-Determination Function (1)

- 2 ways to realize the function VALUE-DETERMINATION.
- 1st way: use modified Value Iteration with:

$$U_{t+1}(i) = R(i) + \sum_{j} M_{ij}^{Policy(i)} \cdot U_t(j)$$

 Often needs a lot if iterations to converge (because policy starts more or less random).

Value-Determination Function (2)

2nd way: compute utilities directly. Given a fixed policy, the utilities obey the eqn:

$$\forall i \in S : U(i) = R(i) + \sum_{j} M_{ij}^{Policy(i)} \cdot U_t(j)$$

 Solving the set of equations is often the most efficient way for small state spaces.

Value-Determination Example

Policy

Transition Probabilities

$$U_{(1,3)} = 0.8U_{(1,2)} + 0.1U_{(1,3)} + 0.1U_{(2,3)}$$

 $U_{(1,2)} = 0.8U_{(1,1)} + 0.2U_{(1,2)}$

. . .

Value/Policy Iteration Example

Consider such a situation. How does the optimal policy look like?

Value/Policy Iteration Example

Consider such a situation. How does the optimal policy look like?

■ Try to move from (4,3) and (3,2) by bumping to the walls. Then entering (4,2) has probability 0.

What's next? POMDPs!

- Extension to MDPs.
- POMDP = MDP in not or only partly accessible environments.
- State of the system is not fully observable.
- "Partially Observable MDPs".
- POMDPs are extremely hard to compute.
- One must integrate over all possible states of the system.
- Approximations MUST be used.
- We will not focus on POMDPs in here.

Approximations to MDPs?

- For real-time applications even MDPs are hard to compute.
- Are there other way to get the a good (nearly optimal) policy?
- Consider a "nearly deterministic" situation. Can we use techniques like A*?

MDP-Approximation in Robotics

- A robot is assumed to be localized.
- Often the correct motion commands are executed (but no perfect world!).
- Often a robot has to compute a path based on an occupancy grid.

- Example for the path planning task:
 Goals:
 - Robot should not collide.
 - Robot should reach the goal fast.

Convolve the Map!

 Obstacles are assumed to be bigger than in reality.

Perform a A* search in such a map.

Robots keeps distance to obstacles and moves on a short path!

Map Convolution

Consider an occupancy map. Than the convolution is defined as:

$$P(occ_{x_{i},y}) = \frac{1}{4} \cdot P(occ_{x_{i-1},y}) + \frac{1}{2} \cdot P(occ_{x_{i},y}) + \frac{1}{4} \cdot P(occ_{x_{i+1},y})$$

$$P(occ_{x_{0},y}) = \frac{2}{3} \cdot P(occ_{x_{0},y}) + \frac{1}{3} \cdot P(occ_{x_{1},y})$$

$$P(occ_{x_{n-1},y}) = \frac{1}{3} \cdot P(occ_{x_{n-2},y}) + \frac{2}{3} \cdot P(occ_{x_{n-1},y})$$

This is done for each row and each column of the map.

Example: Map Convolution

■ 1-d environment, cells c₀, ..., c₅

Cells before and after 2 convolution runs.

A* in Convolved Maps

The costs are a product of path length and occupancy probability of the cells.

- Cells with higher probability (e.g. caused by convolution) are shunned by the robot.
- Thus, it keeps distance to obstacles.

This technique is fast and quite reliable.

Literature

This course is based on:
Russell & Norvig: AI – A Modern Approach
(Chapter 17, pages 498-)