UNIVERSIDAD DE SANTIAGO DE CHILE

Facultad de Ingeniería Departamento de Ingeniería Informática

Laboratorio Integrador Análisis Geoespacial Completo de una Comuna Chilena

Curso: Desarrollo de Aplicaciones Geoinformáticas

Prof. Francisco Parra O. francisco.parra.o@usach.cl

Fecha de entrega: 3 semanas desde la publicación

${\bf \acute{I}ndice}$

1. Introducción y Objetivos

1.1. Contexto

Este laboratorio integrador representa la culminación de las primeras 7 semanas del curso, donde aplicarán todos los conocimientos adquiridos en un proyecto geoespacial completo y realista. Trabajarán con una comuna chilena de su elección, desarrollando un análisis integral que combine tecnologías, métodos y herramientas aprendidas.

1.2. Objetivos de Aprendizaje

Al completar este laboratorio, serán capaces de:

- 1. Integrar múltiples fuentes de datos geoespaciales (vectoriales, raster, satelitales)
- 2. Implementar un pipeline completo desde la adquisición hasta la visualización
- 3. Aplicar técnicas de análisis espacial avanzado incluyendo geoestadística y ML
- 4. Desarrollar una aplicación web interactiva para presentar resultados
- 5. Trabajar colaborativamente usando control de versiones y buenas prácticas
- 6. Documentar técnicamente un proyecto geoespacial complejo

1.3. Modalidad de Trabajo

Trabajo en Parejas

- Formar grupos de exactamente 2 personas
- Ambos integrantes deben contribuir equitativamente (se revisará Git)
- División clara de responsabilidades pero integración conjunta
- Presentación oral conjunta del trabajo

2. Descripción del Proyecto

2.1. Visión General

Desarrollarán un **Sistema de Análisis Territorial Integral** para una comuna chilena, que incluya:

- 1. Caracterización territorial completa usando datos oficiales y satelitales
- 2. Análisis de patrones espaciales de variables socioeconómicas y ambientales
- 3. Modelo predictivo usando machine learning geoespacial
- 4. Aplicación web interactiva para exploración de resultados
- 5. Documentación y reproducibilidad completa del análisis

2.2. Selección de la Comuna

Criterios para elegir su comuna:

- Disponibilidad de datos: Verificar acceso a datos INE, municipales, etc.
- Diversidad territorial: Preferir comunas con variedad urbana/rural
- Problemática interesante: Identificar un desafío territorial real
- Tamaño manejable: Evitar comunas extremadamente grandes (ej: Putre) o densas (ej: Santiago Centro) para su primer análisis

Comunas sugeridas (pero no obligatorias):

- Región Metropolitana: La Florida, Maipú, Puente Alto, Quilicura
- Valparaíso: Viña del Mar, Quilpué, Villa Alemana
- Biobío: Talcahuano, Chiguayante, San Pedro de la Paz
- La Araucanía: Temuco, Padre Las Casas, Villarrica

3. Componentes Técnicos Requeridos

3.1. Parte 1: Preparación del Entorno (10%)

Entregable 1: Ambiente de Desarrollo

- Docker Compose configurado con todos los servicios
- PostGIS con extensiones espaciales activadas
- Jupyter Lab con kernel geoespacial
- Scripts de inicialización automatizados
- Documentación de instalación paso a paso

3.1.1. Configuración Docker

Deben crear un docker-compose.yml que incluya:

```
version: '3.8'

services:
   postgis:
   image: postgis/postgis:15-3.3
   environment:
     POSTGRES_DB: geodatabase
     POSTGRES_USER: geouser
     POSTGRES_PASSWORD: geopass
   volumes:
```

```
- postgres_data:/var/lib/postgresql/data
11
         - ./scripts/init.sql:/docker-entrypoint-initdb.d/init.sql
       ports:
         - "5432:5432"
14
     jupyter:
16
       build: ./docker/jupyter
       volumes:
18
         - ./notebooks:/home/jovyan/work
19
           ./data:/home/jovyan/data
20
       ports:
         - "8888:8888"
       environment:
23
         - JUPYTER_ENABLE_LAB=yes
24
       depends_on:
25
         - postgis
26
27
28
     webserver:
       build: ./docker/web
29
       volumes:
30
         - ./app:/app
31
       ports:
32
         - "5000:5000"
33
       depends_on:
34
         - postgis
35
36
  volumes:
37
     postgres_data:
38
```

Listing 1: Estructura Docker Compose

3.2. Parte 2: Adquisición y Procesamiento de Datos (20%)

Entregable 2: Dataset Integrado

- Datos vectoriales: Límites, manzanas censales, infraestructura
- Datos raster: DEM, imágenes satelitales (Sentinel-2/Landsat)
- Datos tabulares: Censo, socioeconómicos, ambientales
- Red vial: Desde OpenStreetMap usando OSMnx
- Base de datos espacial: Todo cargado en PostGIS

3.2.1. Fuentes de Datos Requeridas

Tipo de Dato	Fuente	Uso en el Proyecto
Límites administrativos	IDE Chile	Base cartográfica
Manzanas censales	INE	Unidad de análisis
DEM	ALOS PALSAR / SRTM	Análisis topográfico
Sentinel-2	Copernicus / GEE	Índices vegetacionales
Red vial	OpenStreetMap	Análisis de accesibilidad
Censo 2017	INE	Variables socioeconómicas
Uso del suelo	IDE Minyu	Planificación territorial

Tabla 1: Fuentes de datos mínimas requeridas

3.2.2. Script de Descarga Automatizada

Crear scripts/download_data.py:

```
import os
  import requests
  import geopandas as gpd
  import osmnx as ox
  import ee
  from pathlib import Path
  class DataDownloader:
8
       def __init__(self, comuna_name, output_dir='../data'):
9
           self.comuna = comuna_name
           self.output_dir = Path(output_dir)
           self.output_dir.mkdir(exist_ok=True)
12
13
       def download_administrative_boundaries(self):
14
           """Descarga l mites desde IDE Chile"""
           # Implementar descarga desde WFS
16
           pass
17
       def download_osm_network(self):
19
           """Descarga red vial desde OpenStreetMap"""
20
           G = ox.graph_from_place(f"{self.comuna},_Chile",
21
                                   network_type='all')
22
           ox.save_graph_geopackage(G,
                                    filepath=self.output_dir / '
                                       red_vial.gpkg')
       def download_sentinel2(self, start_date, end_date):
26
           """Descarga im genes Sentinel-2 desde Google Earth
27
              Engine"""
           ee.Initialize()
28
           # Implementar descarga GEE
29
           pass
30
```

```
def download_dem(self):
"""Descarga DEM de ALOS PALSAR"""

# Implementar descarga

pass
```

3.3. Parte 3: Análisis Espacial Exploratorio (20%)

Entregable 3: ESDA Completo

- Estadísticas descriptivas espaciales de todas las variables
- Mapas temáticos profesionales (mínimo 10)
- Análisis de autocorrelación (Moran's I global y local)
- Hot spots y clusters usando LISA
- Análisis multivariado de componentes principales espaciales

3.3.1. Notebook de Análisis Exploratorio

Crear notebooks/01_exploratory_analysis.ipynb:

```
# An lisis de Autocorrelaci n Espacial
  import pysal
  from pysal.explore import esda
  import splot
4
5
  # Crear matriz de pesos espaciales
6
  w = pysal.lib.weights.Queen.from_dataframe(gdf)
  w.transform = 'r' # Row standardization
Q
  # Moran's I Global
  mi = esda.Moran(gdf['variable'], w)
11
  print(f"Moran'suI:u{mi.I:.4f}")
12
  print(f"P-value:_{mi.p_norm:.4f}")
14
  # LISA - Local Moran
15
  lisa = esda.Moran_Local(gdf['variable'], w)
16
17
  # Visualizaci n
18
  fig, axes = plt.subplots(1, 2, figsize=(15, 6))
19
20
  # Moran Scatterplot
21
  splot.esda.moran_scatterplot(mi, ax=axes[0])
22
23
  # LISA Cluster Map
24
  splot.esda.lisa_cluster(lisa, gdf, ax=axes[1])
```

3.4. Parte 4: Geoestadística y Análisis Avanzado (15 %)

Entregable 4: Análisis Geoestadístico

- Semivariogramas de variables continuas principales
- Interpolación espacial (Kriging vs IDW comparación)
- Superficies de predicción con medidas de incertidumbre
- Validación cruzada de modelos de interpolación
- Análisis de anisotropía si aplica

3.4.1. Análisis de Semivariogramas

```
import skgstat as skg
  from pykrige.ordinary_kriging import OrdinaryKriging
3
  # Calcular semivariograma experimental
  coords = np.column_stack([gdf.geometry.x, gdf.geometry.y])
  values = gdf['variable'].values
  variogram = skg.Variogram(coords, values,
8
                              model='exponential',
9
                              lag_classes=15,
                              maxlag=0.3)
11
12
  # Ajustar modelo
13
  variogram.fit()
14
  # Par metros del modelo
  nugget = variogram.nugget
17
  sill = variogram.sill
18
  range_ = variogram.range
19
20
  # Kriging ordinario
21
  ok = OrdinaryKriging(coords[:, 0], coords[:, 1], values,
22
                         variogram_model='exponential',
23
                         variogram_parameters = { 'nugget': nugget,
24
                                              'sill': sill,
25
                                              'range': range_})
26
27
  # Crear grid de predicci n
28
  grid_x = np.linspace(coords[:, 0].min(), coords[:, 0].max(), 100)
29
  grid_y = np.linspace(coords[:, 1].min(), coords[:, 1].max(), 100)
  z_pred, var_pred = ok.execute('grid', grid_x, grid_y)
```

3.5. Parte 5: Machine Learning Geoespacial (20%)

Entregable 5: Modelo Predictivo

- Definición clara del problema a resolver con ML
- Feature engineering espacial completo
- Comparación de algoritmos (RF, XGBoost, SVM espacial)
- Validación espacial apropiada (no random split!)
- Mapas de predicción y medidas de incertidumbre
- Interpretación del modelo (SHAP values, feature importance)

3.5.1. Ejemplo: Predicción de Valores de Suelo

```
from sklearn.ensemble import RandomForestRegressor
  from sklearn.model_selection import GroupKFold
  import shap
  # Feature Engineering Espacial
  def create_spatial_features(gdf):
      features = pd.DataFrame()
      # Coordenadas
9
      features['x'] = gdf.geometry.x
       features['y'] = gdf.geometry.y
      # Distancias a puntos de inter s
       features['dist_centro'] = gdf.geometry.distance(centro_point)
14
       features['dist_metro'] = gdf.geometry.apply(
           lambda x: metro_stations.distance(x).min()
16
       )
17
18
      # Densidades en buffer
19
       for radius in [500, 1000, 2000]:
20
           buffer = gdf.geometry.buffer(radius)
21
           features[f'density_{radius}m'] = buffer.apply(
22
               lambda x: gdf[gdf.within(x)].shape[0]
23
24
25
                  de vegetaci n desde Sentinel-2
26
       features['ndvi_mean'] = extract_zonal_stats(gdf, ndvi_raster,
27
           'mean')
28
      # Variables topogr ficas
       features['elevation'] = extract_zonal_stats(gdf, dem, 'mean')
30
       features['slope'] = extract_zonal_stats(gdf, slope_raster, '
31
         mean')
```

```
return features
33
34
  # Validaci n Espacial
35
  spatial_cv = GroupKFold(n_splits=5)
36
  groups = gdf['zona_id'] # Agrupar por zonas geogr ficas
37
  # Entrenamiento
39
  rf_model = RandomForestRegressor(n_estimators=200,
40
                                     max_depth=10,
41
                                     min_samples_leaf = 5)
42
  scores = cross_val_score(rf_model, X, y,
44
                            cv=spatial_cv,
45
                            groups=groups,
46
                            scoring='r2')
47
48
  print(f"R2UScoreU(SpatialUCV):U{scores.mean():.3f}U(+/-U{scores.
49
      std():.3f})")
  # Interpretaci n con SHAP
51
  explainer = shap.TreeExplainer(rf_model)
52
  shap_values = explainer.shap_values(X_test)
53
  shap.summary_plot(shap_values, X_test)
```

3.6. Parte 6: Aplicación Web Interactiva (15 %)

Entregable 6: Dashboard Web

- Mapa interactivo con capas temáticas
- Gráficos dinámicos de estadísticas espaciales
- Panel de control para modelos predictivos
- Descarga de resultados en formatos estándar
- Documentación de usuario incluida

3.6.1. Estructura de la Aplicación Streamlit

Crear app/main.py:

```
page = st.sidebar.selectbox("Seleccioneuunausecci n:",
                                 ["Inicio", "Datos", "An lisis u
                                   Espacial",
                                 "Modelos ML", "Resultados"])
14
  if page == "Inicio":
       st.title(f"SistemaudeuAn lisisuTerritorialu-u{COMUNA_NAME}")
16
       st.markdown("""
17
       ## Bienvenido al Dashboard de An lisis Geoespacial
18
19
      Este sistema integra m ltiples fuentes de datos y t cnicas
       de an lisis para proporcionar insights territoriales.
       """)
22
23
       # Mapa general
24
       m = folium.Map(location=[lat_center, lon_center], zoom_start
25
          =12)
26
       # Agregar capas
27
       folium.GeoJson(comuna_boundary).add_to(m)
28
       # Agregar controles
30
       folium.LayerControl().add_to(m)
31
32
       folium_static(m)
33
34
  elif page == "An lisis_Espacial":
35
       st.header("An lisis_de_Autocorrelaci n_Espacial")
36
       col1, col2 = st.columns(2)
38
39
       with col1:
40
           st.subheader("Moran's_I_Global")
41
           # Mostrar estad stico y p-value
42
           st.metric(" ndice udeuMoran", f"{moran_i:.4f}")
43
           st.metric("P-value", f"{p_value:.4f}")
44
45
       with col2:
46
           st.subheader("Distribuci nuLISA")
47
           # Gr fico de distribuci n de clusters
48
           fig = px.pie(values=lisa_counts.values(),
49
                         names=lisa_counts.keys(),
50
                         title="TiposudeuClustersuLISA")
           st.plotly_chart(fig)
  elif page == "Modelos⊔ML":
54
       st.header("Predicciones_de_Machine_Learning")
55
56
       # Selector de modelo
57
       model_type = st.selectbox("Seleccione_modelo:",
58
                                   ["Random_Forest", "XGBoost", "
```

```
Neural_Network"])
       # Par metros interactivos
61
       if st.button("Ejecutar □ Predicci n"):
62
           with st.spinner("Calculando..."):
63
               predictions = run_model(model_type, parameters)
           # Mostrar resultados
66
           st.success("Predicci nucompletada!")
67
68
           # Mapa de predicciones
           fig = px.choropleth_mapbox(gdf,
                                        geojson=gdf.geometry,
71
                                        locations=gdf.index,
72
                                        color='prediction',
                                        mapbox_style="open-street-map"
74
                                        zoom=11,
                                        center={"lat": lat_center,
76
                                                "lon": lon_center})
77
           st.plotly_chart(fig)
```

4. Estructura del Proyecto

4.1. Organización de Archivos

Es obligatorio seguir esta estructura de carpetas para facilitar la evaluación:

```
laboratorio_integrador/
                                             # Documentaci n principal
             README.md
             requirements.txt
                                             # Dependencias Python
             docker-compose.yml
                                           # Configuraci n Docker
4
                                           # Variables de entorno (no
      subir!)
                                           # Archivos a ignorar en Git
             .gitignore
             docker/
                                           # Configuraciones Docker
                    jupyter/
9
                          Dockerfile
10
                    postgis/
                          init.sql
12
                    web/
                        Dockerfile
14
15
             data/
                                           # Datos (incluir sample
16
      data)
                                             # Datos originales
                    raw/
                    processed/
                                             # Datos procesados
18
```

```
README.md
                                              # Descripci n de los
19
      datos
20
              notebooks/
                                             # An lisis en Jupyter
21
                    01_data_acquisition.ipynb
22
                    02_exploratory_analysis.ipynb
23
                    03_geostatistics.ipynb
24
                    04_machine_learning.ipynb
                    05_results_synthesis.ipynb
26
27
                                             # Scripts Python
              scripts/
                    download_data.py
29
                    process_data.py
30
                    spatial_analysis.py
31
                    utils.py
32
33
                                             # Aplicaci n web
              app/
34
35
                    main.py
                    pages/
36
                    components/
37
                    static/
38
39
                                             # Resultados
              outputs/
40
                    figures/
                                              # Gr ficos y mapas
41
                    models/
                                              # Modelos entrenados
42
                    reports/
                                              # Informes generados
43
44
              docs/
                                             # Documentaci n
45
                  guia_usuario.md
46
                  arquitectura.md
47
                  api_reference.md
48
```

Listing 2: Estructura de carpetas requerida

5. Criterios de Evaluación

5.1. Rúbrica de Evaluación

Componente	Peso	Criterios	
Configuración del entorno	10 %	[leftmargin=*,topsep=0pt,itemsep funcional (3%) PostGIS configurado (3%) Jupyter con librerías (2%) Documentación clara (2%)	=0pt]Docker
Adquisición de datos	20 %	[leftmargin=*,topsep=0pt,itemsep de fuentes (5%) Calidad del procesamiento (5%) Integración en PostGIS (5%) Automatización (5%)	=0pt]Variedad
Análisis espacial	20 %	[leftmargin=*,topsep=0pt,itemsep completo (5%) Autocorrelación espacial (5%) Visualizaciones (5%) Interpretación (5%)	=0pt]ESDA
Geoestadística	15 %	[leftmargin=*,topsep=0pt,itemsep (5%) Interpolación (5%) Validación (5%)	=0pt]Semivariogran
Machine Learning	20 %	[leftmargin=*,topsep=0pt,itemsep engineering (5%) Modelos apropiados (5%) Validación espacial (5%) Interpretabilidad (5%)	=0pt]Feature
Aplicación web	15 %	[leftmargin=*,topsep=0pt,itemsep (5%) Interfaz (5%) Interactividad (5%)	=0pt]Funcionalidad

Tabla 2: Distribución de puntajes por componente

5.2. Criterios de Excelencia

Para optar a nota máxima (7.0), además de cumplir todos los requisitos, deben incluir **al menos 3** de los siguientes elementos:

- **1** Deep Learning: Implementar CNN para clasificación de imágenes satelitales
- 2. Series temporales: Análisis de cambios usando múltiples fechas de imágenes
- 3. Optimización espacial: Problema de localización óptima resuelto

- 4. API REST: Endpoints para acceder a los modelos y datos
- 5. Visualización 3D: Incorporar visualizaciones 3D del terreno
- 6. Análisis de redes: Análisis avanzado de la red vial (centralidad, accesibilidad)
- 7. Validación externa: Comparar con datos de terreno o fuentes independientes

6. Entregables y Plazos

6.1. Hitos del Proyecto

Semana	Hito	Entregable
1	Formación y Setup	[leftmargin=*,topsep=0pt,itemsep=0pt]Grupos formados Comuna selec- cionada Ambiente Docker funcionando Repositorio Git creado
2	Datos y Análisis	[leftmargin=*,topsep=0pt,itemsep=0pt]Todos los datos descarga- dos ESDA completado Primeros modelos ML
3	Finalización	[leftmargin=*,topsep=0pt,itemsep=0pt]Aplicación web funcional Documentación completa Video de presentación (5 min) Código en repositorio

6.2. Formato de Entrega

Entrega vía Moodle antes de las 23:59 del día límite:

- Link al repositorio GitHub (público o con acceso al profesor)
- ZIP con snapshot del código (backup)
- Link al video de YouTube (no listado)
- Informe PDF de máximo 10 páginas

6.3. Presentación del Proyecto

Video de presentación (5 minutos):

- 1. Introducción y problemática (30 seg)
- 2. Demo del ambiente y datos (1 min)
- 3. Resultados del análisis espacial (1 min)
- 4. Modelos de ML y predicciones (1 min)
- 5. Demo de la aplicación web (1 min)
- 6. Conclusiones y aprendizajes (30 seg)

7. Recursos y Soporte

7.1. Recursos Recomendados

7.1.1. Documentación Técnica

- GeoPandas: https://geopandas.org
- PySAL: https://pysal.org
- OSMnx: https://osmnx.readthedocs.io
- Rasterio: https://rasterio.readthedocs.io
- Streamlit: https://docs.streamlit.io

7.1.2. Fuentes de Datos

- IDE Chile: https://www.ide.cl
- INE: https://www.ine.cl
- Google Earth Engine: https://earthengine.google.com
- OpenStreetMap: https://www.openstreetmap.org
- Copernicus Hub: https://scihub.copernicus.eu

7.2. Soporte y Consultas

Canales de Comunicación

- Horario de consultas: Martes y Jueves 15:00-17:00
- Foro Moodle: Para dudas generales
- Email: francisco.parra.o@usach.cl (solo urgencias)
- Discord del curso: Canal #laboratorio-integrador

8. Anexo: Código de Inicio Rápido

8.1. Script de Configuración Inicial

Crear archivo setup.sh:

```
#!/bin/bash
  # Script de configuraci n inicial del proyecto
3
  echo "Configuraci nuLaboratoriouIntegrador"
  # Crear estructura de directorios
  mkdir -p data/{raw,processed}
9
  mkdir -p notebooks
10
  mkdir -p scripts
  mkdir -p app/{pages,components,static}
12
  mkdir -p outputs/{figures, models, reports}
13
  mkdir -p docker/{jupyter,postgis,web}
14
  # Crear archivo de ambiente
16
  cat > .env << EOF
17
  POSTGRES_DB=geodatabase
18
  POSTGRES_USER=geouser
19
  POSTGRES_PASSWORD=geopass
20
  JUPYTER_TOKEN = your_token_here
21
  COMUNA_NAME=your_comuna_here
  EOF
23
24
  # Crear requirements.txt
25
  cat > requirements.txt << EOF</pre>
26
27
  # Geospatial
  geopandas == 0.14.0
28
  shapely == 2.0.2
  pyproj == 3.6.1
30
  rasterio == 1.3.9
31
  fiona == 1.9.5
32
  osmnx == 1.7.1
33
```

```
# Data Science
   pandas == 2.1.3
36
  numpy == 1.24.3
37
  scikit-learn==1.3.2
38
  xgboost == 2.0.2
39
  # Spatial Analysis
41
  pysal == 2.9.3
42
  esda == 2.5.1
43
   splot == 1.1.5
44
  scikit-gstat==1.0.15
  pykrige == 1.7.0
46
47
  # Visualization
48
  matplotlib == 3.8.1
49
  seaborn == 0.13.0
50
  plotly == 5.18.0
51
  folium == 0.15.0
52
53 | streamlit == 1.28.2
  streamlit-folium == 0.15.0
54
55
  # Database
56
  psycopg2-binary==2.9.9
  sqlalchemy == 2.0.23
58
  geoalchemy2 == 0.14.2
59
60
  # Web
61
  fastapi == 0.104.1
62
  uvicorn==0.24.0
63
64
  # Utils
65
  python-dotenv==1.0.0
66
  tqdm == 4.66.1
67
   click == 8.1.7
68
  EOF
70
  # Crear .gitignore
71
cat > .gitignore << EOF
  # Python
73
   __pycache__/
74
  *.py[cod]
  *$py.class
76
  *.so
77
  .Python
78
  env/
79
  venv/
  .env
81
82
  # Jupyter
83
84 .ipynb_checkpoints
  */.ipynb_checkpoints/*
```

```
# Data
87
   data/raw/*
88
   data/processed/*
89
   *.tif
90
   *.shp
   *.gpkg
92
   !data/raw/sample*
93
   !data/processed/sample*
94
95
   # Models
   *.pkl
   *.h5
98
   *.pt
99
100
   # OS
101
   .DS_Store
   Thumbs.db
103
104
   # IDE
105
   .vscode/
106
   .idea/
107
   *.swp
   *.swo
109
   EOF
110
echo "Configuraci n⊔completada!"
  echo "Siguiente⊔paso:⊔docker-compose⊔up⊔-d"
113
```

8.2. Notebook de Ejemplo

Crear notebooks/00_template.ipynb:

```
# Celda 1: Configuraci n inicial
  import warnings
  warnings.filterwarnings('ignore')
  import sys
  sys.path.append('../scripts')
6
  from pathlib import Path
  import pandas as pd
9
  import geopandas as gpd
10
  import numpy as np
11
12
  import matplotlib.pyplot as plt
  import seaborn as sns
13
14
  # Configuraci n de visualizaci n
15
  plt.style.use('seaborn-v0_8-darkgrid')
16
  sns.set_palette("husl")
17
18
```

```
# Paths
19
  DATA_DIR = Path('../data')
20
  RAW_DATA = DATA_DIR / 'raw'
21
  PROCESSED_DATA = DATA_DIR / 'processed'
22
  OUTPUT_DIR = Path('../outputs')
23
  print(f"Ambiente_configurado_correctamente!")
25
  print(f"Comuna_de_an lisis:_{os.getenv('COMUNA_NAME')}")
26
27
  # Celda 2: Conexi n a PostGIS
28
  from sqlalchemy import create_engine
  from geoalchemy2 import Geometry
30
31
  # Crear conexi n
32
  engine = create_engine(
      f"postgresql://geouser:geopass@postgis:5432/geodatabase"
34
35
36
  # Test de conexi n
37
  with engine.connect() as conn:
38
       result = conn.execute("SELECT_PostGIS_Version();")
       print(f"PostGIS Version: [result.fetchone()[0]]")
40
41
  # Celda 3: Funciones auxiliares
42
  def load_geodata(table_name):
43
       """Carga datos geoespaciales desde PostGIS"""
44
       return gpd.read_postgis(
45
           f "SELECT : * FROM { table name} ",
46
47
           engine,
           geom_col='geometry'
48
       )
49
  def save_map(fig, name):
       """Guarda figuras en alta resoluci n"""
       fig.savefig(OUTPUT_DIR / 'figures' / f'{name}.png',
                   dpi=300, bbox_inches='tight')
54
       print(f"Mapauguardado:u{name}.png")
56
  # Celda 4: Carga de datos inicial
  comuna_boundary = load_geodata('comuna_boundary')
58
  print(f" rea udeulaucomuna:u{comuna_boundary.area[0]u/u1e6:.2f}u
      k m ")
  print(f"Sistemaudeucoordenadas:u{comuna_boundary.crs}")
```

9. Conclusión

Este laboratorio integrador representa una oportunidad única para aplicar todo lo aprendido en un proyecto real y complejo. El éxito dependerá de:

1. **Planificación**: Dividir tareas y gestionar tiempo

2. Colaboración: Trabajo efectivo en equipo

3. Documentación: Código y procesos claros

4. Creatividad: Soluciones innovadoras a problemas reales

5. Rigurosidad: Métodos apropiados y validación correcta

¡Éxito en su proyecto!

Recuerden que este trabajo es una excelente pieza para su portafolio profesional. Háganlo con dedicación y será una carta de presentación valiosa en su carrera.