Método Simplex

Conteúdo

• Método Simplex.

Forma aumentada

- O desenvolvimento dos cálculos do método Simplex é facilitado pela imposição de dois requisitos ao modelo PL:
 - Todas as restrições são equações com termos independentes não-negativos.
 - Todas as variáveis são não-negativas.

Conversão para a forma aumentada

- Conversão das desigualdades em equações com termos independentes nãonegativos.
 - Para converter uma desigualdade ≤ numa equação, uma variável de folga não-negativa é adicionada.

$$x_1 + x_2 \le 10 \qquad x_1 + x_2 + s_1 = 10$$

$$s_1 \ge 0$$

- A variável não negativa s_1 é a folga (ou montante não utilizado) do recurso.
- Para converter uma desigualdade ≥ numa equação, é efetuada a substração de uma variável de folga não-negativa.

$$x_1 + x_2 \ge 10$$
 $x_1 + x_2 - s_1 = 10$ $s_1 \ge 0$

- A quantidade de s_1 representa o excesso sobre o mínimo requerido (10).
- O requisito restante obriga a que os termos independentes sejam não-negativos.
 - Multiplicar ambos os lados da equação por -1.

Modelo de PL

$$\begin{aligned} \mathit{Max} \ Z &= & 2x_1 + 3x_2 \\ \mathit{s.a.} \ & 2x_1 + x_2 & \leq 4 \\ & x_1 + 2x_2 & \leq 5 \\ & x_1, x_2 & \geq 0 \end{aligned}$$

Espaço de soluções

 $\begin{array}{ll} \text{Max } Z = & 2x_1 + 3x_2 \\ & \text{s.a.} & 2x_1 + x_2 & \leq 4 \\ & x_1 + 2x_2 & \leq 5 \\ & x_1, x_2 & \geq 0 \end{array}$

• Algebricamente, o espaço de soluções é representado pelas seguintes $m \ (= \ 2)$ equações e $n \ (= \ 4)$ variáveis.

Soluções básicas

$$Max \ Z = 2x_1 + 3x_2$$

s.a. $2x_1 + x_2 \le 4$
 $x_1 + 2x_2 \le 5$
 $x_1, x_2 \ge 0$

- As soluções básicas são determinadas definindo n-m (4-2=2) variáveis iguais a zero e resolvendo para as restantes m (= 2) variáveis.
- O número (máximo) de CPS é $C_m^n = \frac{n!}{m!(n-m)!} (C_2^4 = \frac{4!}{2!(2)!} = 6).$

Por exemplo, se definirmos $x_1=0\ e\ x_2=0$, as equações fornecem a solução básica única $s_1=4$, $s_2=5$.

Variáveis básicas e não básicas

$$Max \ Z = 2x_1 + 3x_2$$
 s.a. $2x_1 + x_2 \le 4$ $x_1 + 2x_2 \le 5$ $x_1, x_2 \ge 0$

• Para completar a transição da solução gráfica para a algébrica, as n-m variáveis com valor 0 são conhecidas como **variáveis não-básicas**. As restantes m variáveis são chamadas **variáveis básicas**, e a sua solução (obtida através da resolução das m equações) é referida como **solução básica**.

Soluções

Max Z =	$2x_1 + 3x_2$	
	$2x_1 + x_2$	≤ 4
	$x_1 + 2x_2$	≤ 5
	x_1, x_2	≥ 0

Variáveis não-básicas	Variáveis básicas	Solução básica	Admissível	Z
(x_1,x_2)	(s_1, s_2)	(4, 5)	Sim	0
(x_1, s_1)	(x_2, s_2)	(4, -3)	Não	-
(x_1, s_2)	(x_2,s_1)	(2.5, 1.5)	Sim	7.5
(x_2, s_1)	(x_1, s_2)	(2, 3)	Sim	4
(x_2, s_2)	(x_1, s_1)	(5, -6)	Não	-
(s_1, s_2)	(x_1,x_2)	(1, 2)	Sim	8

Soluções

Max Z =	$2x_1 + 3x_2$	
	$2x_1 + x_2$	≤ 4
	$x_1 + 2x_2$	≤ 5
	x_1, x_2	≥ 0

Variáveis não-básicas	Variáveis básicas	Solução básica	Admissível	Z
(x_1, x_2)	(s_1, s_2)	(4, 5)	Sim	0
(x_1,s_1)	(x_2,s_2)	(4, -3)	Não	-
(x_1, s_2)	(x_2,s_1)	(2.5, 1.5)	Sim	7.5
(x_2, s_1)	(x_1, s_2)	(2, 3)	Sim	4
(x_2, s_2)	(x_1, s_1)	(5, -6)	Não	-
(s_1, s_2)	(x_1, x_2)	(1, 2)	Sim	8

Soluções

Max Z =	$2x_1 + 3x_2$	
	$2x_1 + x_2$	≤ 4
	$x_1 + 2x_2$	≤ 5
	x_1, x_2	≥ 0

Variáveis não-básicas	Variáveis básicas	Solução básica	Admissível	Z
(x_1,x_2)	(s_1, s_2)	(4, 5)	Sim	0
(x_1, s_1)	(x_2, s_2)	(4, -3)	Não	-
(x_1, s_2)	(x_2, s_1)	(2.5, 1.5)	Sim	7.5
(x_2,s_1)	(x_1, s_2)	(2, 3)	Sim	4
(x_2, s_2)	(x_1,s_1)	(5, -6)	Não	-
(s_1, s_2)	(x_1, x_2)	(1, 2)	Sim	8

Forma canónica

- A aplicação do algoritmo Simplex pressupõe que o problema num formato designado de forma canónica.
 - a) Variáveis não-negativas.
 - b) Termos independentes não-negativos.
 - c) Restrições na forma de igualdades.
 - d) Existência de uma variável única (variável básica inicial) com coeficiente 1 em cada restrição e que não é incluída em mais nenhuma equação do problema.

Forma canónica

- A aplicação do algoritmo Simplex pressupõe que o problema num formato designado de forma canónica.
 - a) Variáveis não-negativas.
 - b) Termos independentes não-negativos.
 - c) Restrições na forma de igualdades.
 - d) Existência de uma variável única (variável básica inicial) com coeficiente 1 em cada restrição e que não é incluída em mais nenhuma equação do problema.

$$Max \ Z = 2x_1 + 3x_2$$
 $Max \ Z = 2x_1 + 3x_2$ d) c)
s.a. $2x_1 + x_2 \le 4$ s.a. $2x_1 + x_2 + x_1 = 4$ b)
 $x_1 + 2x_2 \le 5$ $x_1 + 2x_2 + x_2 = 5$ b)
 $x_1, x_2 \ge 0$ $x_1, x_2, x_1, x_2 \ge 0$ a)

Quadro inicial do Simplex

$$Z - 2x_1 - 3x_2 = 0$$

$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + 2x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

	x_1	x_2	s_1	s_2	b_i
Z					
s_1					
S_2					

Quadro inicial do Simplex

$$Z - 2x_1 - 3x_2 = 0$$

$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + 2x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
s_1	2	1	1	0	4
s_2	1	2	0	1	5

Quadro inicial do Simplex

$$Z - 2x_1 - 3x_2 = 0$$

$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + 2x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

Método Simplex

Variáveis não-básicas	Variáveis básicas	Solução básica	Admissível	Z
(x_1,x_2)	(s_1, s_2)	(4, 5)	Sim	0
(x_1, s_1)	(x_2,s_2)	(4, -3)	Não	-
(x_1, s_2)	(x_2,s_1)	(2.5, 1.5)	Sim	7.5
(x_2,s_1)	(x_1, s_2)	(2, 3)	Sim	4
(x_2,s_2)	(x_1, s_1)	(5, -6)	Não	-
(s_1, s_2)	(x_1,x_2)	(1, 2)	Sim	8

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
s_1	2	1	1	0	4
s_2	1	2	0	1	5

Melhoria da solução

- A melhoria da solução passa pela entrada de uma variável não básica (ou seja nula) para a base.
- Depois de entrar será positiva e irá contribuir positivamente para a melhoria do valor da F.O.
- Uma das variáveis básicas terá de sair para dar lugar à variável não básica.

Passo 0: Achar uma solução admissível básica inicial.

Passo 1: Verificar se a solução atual é ótima. Se for, parar.

Passo 2: Determinar a variável não-básica que deve entrar na base.

Passo 3: Determinar a variável básica que deve sair da base.

Passo 4: Achar a nova solução admissível básica, e voltar ao Passo 1.

Regra de entrada

- Para problemas de maximização (/minimização), entra para a base a variável não básica que apresenta coeficiente negativo (/positivo) com maior valor em termos absolutos.
 - Entra x_2 pois |-2| < |-3|.

		.			
	x_1	x_2	s_1	s_2	b_i
Z	-2	-3 ¦	0	0	0
S_1	2	1	1	0	4
S_2	1	2	0	1	5

Regra de saída

- A variável que sai da base é sempre (independentemente de ser um problema de maximização ou minimização) aquela que apresenta um menor rácio b_i/a_{ik} com $a_{ik}>0$.
 - $min\left\{\frac{4}{1},\frac{5}{2}\right\} = min\left\{4,2.5\right\} = 2.5$ saí s_2 associado à 2ª restrição.

			.				
		x_1	x_2	s_1	s_2	b_i	b_{i}/a_{ik}
	Z	-2	-3	0	0	0	
	S_1	2	1	1	0	4	4
	<i>S</i> ₂	1	2	0	1	5	2.5

Condensação de Gauss

- Operações que têm por objetivo reparar o formato canónico da solução.
 - As variáveis básicas deve apresentar coeficiente 1 para a restrição associada e 0 para as outras restrições e F.O.

	x_1	x_2	s_1	s_2	b_i
Z		0	0		
S_1		0	1		
x_2		1	0		

b_i x_1 x_2 s_1 s_2 -3Z0 0 2 1 0 S_1 1 2 0 5 1 s_2

Condensação de Gauss

- 1º Multiplicar a 2ª restrição por $^1\!/_2$ de modo a tornar $a_{22}=1$.
 - Este elemento é chamado de elemento pivot inserido na linha pivot.

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
S_1	2	1	1	0	4
x_2	1/2	[1]	0	1/2	2.5

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
s_1	2	1	1	0	4
x_2	1/2	1	0	1/2	2.5

Condensação de Gauss

• 2º - Adicionar à 1ª restrição a linha pivot multiplicada por -1 de modo a tornar $a_{12}=0$.

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
s_1	3/ ₂ (-1/ ₂ +2)	0 (-1 + 1)	1 (0 + 1)	$-\frac{1}{2}$ $(-\frac{1}{2}+0)$	1.5 (-2.5 + 4)
x_2	1/2	1	0	1/2	2.5

b_i x_1 x_2 s_1 s_2 -2 -3 0 Z $^{3}/_{2}$ 1.5 0 s_1 $^{1}/_{2}$ $^{1}/_{2}$ 1 0 2.5 x_2

Condensação de Gauss

• 3º - Adicionar à linha da F.O. a linha pivot multiplicada por 3.

	x_1	x_2	s_1	s_2	b_i
Z	$\frac{-1}{2}$	0 (3 – 3)	0 (0 + 0)	$\frac{3}{2}$ $(\frac{3}{2} + 0)$	7.5 (7.5 + 0)
s_1	3/2	0	1	$-\frac{1}{2}$	1.5
x_2	1/2	1	0	1/2	2.5

Teste de otimalidade

- Verificação dos valores da linha de F.O.
 - Num problema de maximização, se todos os coeficientes da linha de F.O. forem nãonegativos estaremos perante a solução ótima.
 - Num problema de minimização, se todos os coeficientes da linha de F.O. forem nãopositivos estaremos perante a solução ótima.

	x_1	x_2	s_1	s_2	b_i
Z	$-1/_{2}$	0	0	3/2	7.5
s_1	$^{3}/_{2}$	0	1	$-\frac{1}{2}$	1.5
x_2	1/2	1	0	1/2	2.5

Método Simplex

Variáveis não-básicas	Variáveis básicas	Solução básica	Admissível	Z
(x_1,x_2)	(s_1, s_2)	(4, 5)	Sim	0 1
(x_1,s_1)	(x_2,s_2)	(4, -3)	Não	-
(x_1, s_2)	(x_2,s_1)	(2.5, 1.5)	Sim	7.5
(x_2,s_1)	(x_1, s_2)	(2, 3)	Sim	4
(x_2,s_2)	(x_1, s_1)	(5, -6)	Não	-
(s_1, s_2)	(x_1,x_2)	(1, 2)	Sim	8

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
s_1	2	1	1	0	4
s_2	1	2	0	1	5

	x_1	x_2	s_1	s_2	b_i
Z	-1/2	0	0	3/2	7.5
s_1	3/2	0	1	-1/2	1.5
x_2	1/2	1	0	1/2	2.5

Regra de entrada

- Entra para a base a variável não básica que apresenta coeficiente negativo com maior valor em termos absolutos.
- Como só temos um coeficiente negativo, $oldsymbol{x_1}$ entra para a base.

	.				
	x_1	x_2	s_1	s_2	b_i
Z	$-\frac{1}{2}$	0	0	3/2	7.5
s_1	3/2	0	1	$-\frac{1}{2}$	1.5
x_2	1/2	1	0	1/2	2.5

Regra de saída

- A variável que sai da base é aquela que apresenta um menor rácio $^{b_i}\!/_{a_{ik}}$ com $a_{ik}>0$.
 - $min\left\{\frac{1.5}{1.5}, \frac{2.5}{.5}\right\} = min\left\{1, 5\right\} = 1$ saí s_1 associado à 1ª restrição.

		.					_
		x_1	x_2	s_1	s_2	b_i	b_i/a_{il}
	Z	$-\frac{1}{2}$	0	0	3/2	7.5	
•	s_1	$\frac{3}{2}$	0	1	$-\frac{1}{2}$	1.5	1
	x_2	1/2	1	0	1/2	2.5	5

Condensação de Gauss

	x_1	x_2	s_1	s_2	b_i
Z	$-\frac{1}{2}$	0	0	$^{3}/_{2}$	7.5
x_1	3/2	0	1	$-\frac{1}{2}$	1.5
x_2	1/2	1	0	1/2	2.5

- 1º Multiplicar a linha pivot por $\frac{2}{3}$.
- 2º- Adicionar à 2ª restrição a linha pivot multiplicada $-\frac{1}{2}$.
- 3° Adicionar à linha da F.O. a linha pivot multiplicada $\frac{1}{2}$.

	x_1	x_2	s_1	s_2	b_i
Z	0	0	1/3	4/3	8
x_1	1	0	$^{2}/_{3}$	$-\frac{1}{3}$	1
x_2	0	1	$-\frac{1}{3}$	2/3	2

Teste de otimalidade

• Todos os coeficientes da linha de F.O. são não-negativos foi encontrada a solução ótima.

	x_1	x_2	s_1	s_2	b_i
Z	0	0	1/3	4/3	8
x_1	1	0	$^{2}/_{3}$	$-\frac{1}{3}$	1
x_2	0	1	$-\frac{1}{3}$	2/3	2

Método Simplex

Variáveis não-básicas	Variáveis básicas	Solução básica	Admissível	Z
(x_1,x_2)	(s_1, s_2)	(4, 5)	Sim	0 1
(x_1,s_1)	(x_2, s_2)	(4, -3)	Não	-
(x_1, s_2)	(x_2, s_1)	(2.5, 1.5)	Sim	7.5
(x_2,s_1)	(x_1, s_2)	(2, 3)	Sim	4
(x_2,s_2)	(x_1, s_1)	(5, -6)	Não	-
(s_1, s_2)	(x_1, x_2)	(1, 2)	Sim	

	x_1	x_2	s_1	s_2	b_i
Z	-2	-3	0	0	0
s_1	2	1	1	0	4
s_2	1	2	0	1	5

	x_1	x_2	s_1	s_2	b_i
Z	0	0	1/3	4/3	8
x_1	1	0	$^{2}/_{3}$	$-\frac{1}{3}$	1
x_2	0	1	$-1/_{3}$	2/3	2_

Problema

$$\begin{array}{ll} \mathit{Max} \ Z = & 2x_1 + x_2 \\ \text{s.a.} & x_1 + x_2 & \leq 10 \\ & 4x_1 - 2x_2 & \leq 20 \\ & x_1, x_2 & \geq 0 \end{array}$$

Forma canónica

$$\begin{array}{lll} \mathit{Max} \ Z = & 2x_1 + x_2 \\ & \mathrm{s.a.} & x_1 + x_2 & \leq 10 \\ & & 4x_1 - 2x_2 & \leq 20 \\ & & x_1, x_2 & \geq 0 \\ \\ & & & \\ \mathit{Max} \ Z = & 2x_1 + x_2 \\ & \mathrm{s.a.} & x_1 + x_2 + s_1 & = 10 \\ & & 4x_1 - 2x_2 + s_2 & = 20 \\ & & x_1, x_2, s_1, s_2 & \geq 0 \end{array}$$

Quadro inicial do Simplex

$$Z - 2x_1 - x_2 = 0$$

$$x_1 + x_2 + s_1 = 10$$

$$4x_1 - 2x_2 + s_2 = 20$$

$$x_1, x_2, s_1, s_2 \ge 0$$

	x_1	x_2	s_1	s_2	b_i
Z	-2	-1	0	0	0
s_1	1	1	1	0	10
S_2	4	-2	0	1	20

Regra de entrada

• Entra x_1 pois |-2| > |-1|

	,				
	x_1	x_2	s_1	s_2	b_i
Z	-2	-1	0	0	0
s_1	1	1	1	0	10
S_2	4	-2	0	1	20

Regra de saída

• $min\left\{\frac{10}{1},\frac{20}{4}\right\}=min\{10,5\}=5$ saí s_2 associado à 2ª restrição

		.					
		x_1	x_2	s_1	s_2	b_i	$^{b_i}/_{a_{ik}}$
	Z	-2	-1	0	0	0	
	s_1	1	1	1	0	10	10
•	<i>S</i> ₂	4	-2	0	1	20	5

	x_1	x_2	s_1	s_2	b_i
Z	-2	-1	0	0	0
s_1	1	1	1	0	10
$\overline{x_1}$	4	-2	0	1	20

Condensação de Gauss

• 1º - Multiplicar a 2ª restrição por $^1\!/_4$ de modo a tornar $a_{21}=1$.

Elemento pivot

	x_1	x_2	s_1	s_2	b_i
Z	-2	-1	0	0	0
s_1	1	1	1	0	10
x_1	1	-1/2	0	1/4	5
	<u> </u>				•

	x_1	x_2	s_1	s_2	b_i
Z	-2	-1	0	0	0
S_1	1	1	1	0	10
x_1	1	$-\frac{1}{2}$	0	1/4	5

Condensação de Gauss

• 2º - Adicionar a linha pivot multiplicada por -1 à 1ª restrição de modo a tornar $a_{11}=0$.

	x_1	x_2	s_1	s_2	b_i
Z	-2	-1	0	0	0
s_1	0 (-1 + 1)	$\frac{3}{2}$ $\binom{1}{2} + 1$	1 (0 + 1)	-1/4 $(-1/4+0)$	5 (-5 + 10)
x_1	1	$-\frac{1}{2}$	0	1/4	5

Condensação de Gauss

• 3º - Adicionar a linha pivot multiplicada por 2 à linha da F.O.

	x_1	x_2	s_1	s_2	b_i
Z	0 (2 – 2)	-2 (-1 - 1)	0 (0 + 0)	$\frac{1}{2}$ $\binom{1}{2} + 0$	10 (10 + 0)
s_1	0	$^{3}/_{2}$	1	$-\frac{1}{4}$	5
x_1	1	$-\frac{1}{2}$	0	1/4	5

Teste de otimalidade

• Como – $c_2 = -2$ (≤ 0) a solução não é ótima.

	x_1	x_2	s_1	s_2	b_i
Z	0	-2	0	1/2	10
s_1	0	$^{3}/_{2}$	1	$-\frac{1}{4}$	5
x_1	1	$-\frac{1}{2}$	0	1/4	5

Entrada

• Entra x_2 pois é a única variável com coeficiente negativo.

		.			
	x_1	x_2	s_1	s_2	$\boldsymbol{b_i}$
Z	0	-2	0	1/2	10
s_1	0	$^{3}/_{2}$	1	$-\frac{1}{4}$	5
x_1	1	$-\frac{1}{2}$	0	1/4	5

Saída

• Saí s_1 pois a_{22} é o único a_{ik} positivo.

			↓			
		x_1	x_2	s_1	s_2	b_i
	Z	0	-2	0	$^{1}/_{2}$	10
←	s_1	0	$\frac{3}{2}$	1	$-\frac{1}{4}$	5
	x_1	1	$-\frac{1}{2}$	0	1/4	5

Condensação de Gauss

	x_1	x_2	s_1	s_2	b_i
Z	0	-2	0	1/2	10
x_2	0	3/2	1	-1/4	5
x_1	1	$-\frac{1}{2}$	0	1/4	5

- 1º Multiplicação da linha pivot por $\frac{2}{3}$.
- 2º Adicionar a linha pivot multiplicada por $^1\!/_2$ à 2ª restrição.
- 3º Adicionar a linha pivot multiplicada por 2 à linha da F.O.

	x_1	x_2	s_1	s_2	b_i
Z	0	0	4/3	1/6	50/3
x_2	0	1	$^{2}/_{3}$	$-\frac{1}{6}$	10/3
x_1	1	0	1/3	1/6	20/3

Teste de otimalidade

• Como os coeficientes da F.O. são todos não-negativos, obtivemos a solução ótima.

	x_1	x_2	s_1	s_2	$\boldsymbol{b_i}$
Z	0	0	4/3	¹ / ₆	50/3
x_2	0	1	$^{2}/_{3}$	$-\frac{1}{6}$	10/3
x_1	1	0	1/3	1/6	20/3

Problema

$$\begin{array}{cccc} \mathit{Max} \ \mathit{Z} = & 3x_1 + 5x_2 \\ & \text{s.a.} & x_1 & \leq 4 \\ & 2x_2 & \leq 12 \\ & 3x_1 + 2x_2 & \leq 18 \\ & x_1, x_2 & \geq 0 \end{array}$$

Problema

$$Max Z = 3x_1 + 5x_2$$
 $Z - 3x_1 - 5x_2$
 $= 0$

 s.a. x_1
 ≤ 4
 $x_1 + s_1$
 $= 4$
 $2x_2$
 ≤ 12
 $= 12$
 $3x_1 + 2x_2$
 ≤ 18
 $3x_1 + 2x_2 + s_3$
 $= 18$
 x_1, x_2
 ≥ 0
 x_1, x_2, s_1, s_2, s_3
 ≥ 0

$$Z - 3x_1 - 5x_2 = 0$$

$$x_1 + s_1 = 4$$

$$2x_2 + s_2 = 12$$

$$3x_1 + 2x_2 + s_3 = 18$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

	x_1	x_2	s_1	s_2	s_3	b_i
Z	-3	-5	0	0	0	0
s_1	1	0	1	0	0	4
s_2	0	2	0	1	0	12
<i>S</i> ₃	3	2	0	0	1	18

 $^{12}/_{2}$

18/2

	x_1	x_2	s_1	s_2	s_3	b_i
Z	-3	0	0	5/2	0	30
s_1	1	0	1	0	0	4
x_2	0	1	0	1/2	0	6
s_3	3	0	0	-1	1	6

	x_1	x_2	s_1	s_2	s_3	b_i	$b_{i/a_{ik}}$
Z	-3	0	0	5/2	0	30	
S_1	1	0	1	0	0	4	4/1
x_2	0	1	0	1/2	0	6	
s_3	3	0	0	-1	1	6	6/3

	x_1	x_2	s_1	s_2	s_3	$\boldsymbol{b_i}$
Z	0	0	0	3/2	1	36
s_1	0	0	1	1/3	$-\frac{1}{3}$	2
x_2	0	1	0	1/2	0	6
x_1	1	0	0	- ¹ / ₃	1/3	2

Problema

$$\begin{array}{lll} \mathit{Min}\,Z = & 2x_1 - 3x_2 - 4x_3 \\ & \text{s.a.} & x_1 + 5x_2 - 3x_3 & \leq 15 \\ & x_1 + x_2 + x_3 & \leq 11 \\ & 5x_1 - 6x_2 + x_3 & \leq 4 \\ & x_1, x_2, x_3 & \geq 0 \end{array}$$

Problema

$$Z - 2x_1 + 3x_2 + 4x_3 = 0$$

$$x_1 + 5x_2 - 3x_3 + s_1 = 15$$

$$x_1 + x_2 + x_3 + s_2 = 11$$

$$5x_1 - 6x_2 + x_3 + s_3 = 4$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

	1		1	1	1	1	
	x_1	x_2	x_3	s_1	s_2	s_3	b_i
Z	-2	3	4	0	0	0	0
s_1	1	5	-3	1	0	0	15
s_2	1	1	1	0	1	0	11
S_3	5	-6	1	0	0	1	4

		x_1	x_2	x_3	s_1	s_2	s_3	b_i	$b_{i/a_{ik}}$
	Z	-2	3	4	0	0	0	0	
•	s_1	1	5	-3	1	0	0	15	
•	s_2	1	1	1	0	1	0	11	11/1
·	s_3	5	-6	1	0	0	1	4	⁴ / ₁

 1° - Multiplicar a linha pivot por -1 e adicionar à linha s_2 .

 2° - Multiplicar a linha pivot por 3 e adicionar à linha s_1 .

 3° - Multiplicar a linha pivot por -4 e adicionar à linha Z.

	x_1	x_2	x_3	$ s_1 $	s_2	s_3	b_i	$b_{i/a_{ik}}$
Z	-22	27	0	0	0	-4	-16	
$\overline{s_1}$	16	-13	0	1	0	3	27	
s_2	-4	7	0	0	1	-1	7	7/7
x_3	5	-6	1	0	0	1	4	

- 1° Multiplicar a linha pivot por $\frac{1}{7}$.
- 2^{o} Multiplicar a linha pivot por 6 e adicionar à linha x_{3} .
- 3° Multiplicar a linha pivot por 13 e adicionar à linha s_1 .
- 4° Multiplicar a linha pivot por 27 e adicionar à linha Z.

Solução ótima

$$x_1 = 0$$

$$s_1 = 40$$

$$x_2 = 1$$

$$s_2 = 0$$

$$x_3 = 10$$

$$s_3 = 0$$

Leitura recomendada

- [Capítulo 3, 7] Taha, H. A. (2017). Operations Research: An Introduction (10th ed.). Pearson. ISBN: 9780132555937
- [Capítulo 4, 5] Hillier, F., & Lieberman, G. (2015). Introduction to Operations Research (10th ed.). McGraw-Hill. ISBN: 9780073523453
- [Capítulo 5] Santos, M. M. dos, & Hill, M. M. (2015). Investigação Operacional Volume 1. Edições Sílabo. ISBN: 9789726188155

