CS1231 TUTORIAL 4

- **1.** T,T,F,T,T,T,F
- **2.** Yes. If $n \in B$, then n = 3j + 2, for some $j \in \mathbb{Z}$. But then n = 3(j + 1) 1, thus $n \in D$. Conversely, if $n \in D$, then n = 3j 1 for some $j \in \mathbb{Z}$. But then n = 3(j 1) + 2. Thus $n \in B$. So B = D.
- **3.** |A| = 5
- **4.** $\{a\}$ and $\{a, b, c\}$. Not equal.
- **5.** (a) Let $x \in T_{P \vee Q}$. Then $P(x) \vee Q(x)$ is true. Thus either P(x) is true or Q(x) is true. Hence $x \in T_P$ or $x \in T_Q$, i.e., $x \in T_P \cup T_Q$. The converse is similar and write it up yourself. The second part is also similar.
- (b) We only need to note that $P \to Q \equiv \neg P \lor Q$ and $T_{\neg P} = \overline{T_P}$.
- 6.

$$(A \times B) \times C = \{((1, u), m), ((1, u), n), ((1, v), m), ((1, v), n), ((2, u), m), ((2, u), n), ((2, v), m), ((2, v), n), ((3, u), m), ((3, u), n), ((3, v), m), ((3, v), n)\}.$$

$$A \times B \times C = \{(1, u, m), (1, u, n), (1, v, m), (1, v, n), (2, u, m), (2, u, n), (2, v, m), (2, v, n), (3, u, m), (3, v, m), (3, v, m), (3, v, n)\}.$$

Not Equal.

- **7.** $x \notin A$ or $x \notin B$ does not imply $x \notin A \cup B$. Counter example: $A = \{1\}, B = \{2\}, x = 1$.
- **8.** Suppose $\exists x \in (A-C) \cap (B-C) \cap (A-B)$. Then $x \in A-C$ and $x \in B-C$ and $x \in A-B$. $x \in B-C$ implies $x \in B$ and $x \in A-B$ implies $(x \notin B)$. That's a contradiction. Thus no such x exists, i.e., $(A-C) \cap (B-C) \cap (A-B) = \emptyset$.
- **9.** Suppose $\exists (x,y) \in (A \times B) \cap (C \times D)$. Then $(x,y) \in A \times B$ and $(x,y) \in C \times D$. Thus $x \in A$ and $x \in C$, i.e., $x \in A \cap C$, a contradiction. Thus no such x exists, i.e., $(A \times B) \cap (C \times D) = \emptyset$.
- **10.** (a) False. $A = \{1, 2, 3\}, B = \{3\}, C = \{2\}.$
- (b) False. Same counter example.

(c) True. By definition $A \cup B \subseteq U$. Thus we need to prove $U \subseteq A \cup B$.

Let $x \in U = A \cup \overline{A}$. If $x \in A$, then $x \in A \cup B$. If $x \in \overline{A}$, then $x \in B$. Thus $x \in A \cup B$. In both cases, we have $x \in A \cup B$. Thus $U \subseteq A \cup B$. Thus $A \cup B = U$.

(d) True. Let $X \in P(A \cap B)$. Then $X \subseteq A \cap B$. Therefore $X \subseteq A$ and $X \subseteq B$, i.e., $X \in P(A) \cap P(B)$. Thus we have proved that $P(A \cap B) \subseteq P(A) \cap P(B)$.

Now let $X \in P(A) \cap P(B)$. Then $X \subseteq A$ and $X \subseteq B$, i.e., $X \subseteq A \cap B$. Thus $X \in P(A \cap B)$. This proves $P(A \cap B) \subseteq P(A) \cap P(B)$ and the proof is complete.

11. (a) $\{1,2,7,8\}$. (b) Let $x \in A$. We have 2 cases: (i) $x \in C$. Then $x \notin A \oplus C$. If $x \notin B$, Then $x \in C - B$. Thus $x \in B \oplus C$, a contradiction. Thus $x \in B$. (ii) Direct proof: $x \notin C$. Then $x \in A - C$, and thus $x \in A \oplus C = B \oplus C = (B - C) \cup (C - B)$. $x \notin C$ implies $x \notin C - B$. Thus $x \in B - C$ and hence $x \in B$. In both cases, we have $x \in B$. Thus $A \subseteq B$.

Reversing the role of A and B, we have $B \subseteq A$. Thus A = B.

Contrapositive proof for (b): Suppose $A \neq B$. Then either (i) $\exists x \in A$ but $x \notin B$ or (ii) $\exists x \in B$ but $x \notin A$.

(i) If $x \in C$, then $x \notin A \oplus C$ and $x \in B \oplus C$. Thus $A \oplus C \neq B \oplus C$. If $x \notin C$, then $x \in A \oplus C$ and $x \notin B \oplus C$. Thus $A \oplus C \neq B \oplus C$.

Case (ii) is similar. Thus $A \oplus C \neq B \oplus C$ in both cases.