Si

Name:	SOLUTIONS	
		and the same of th

Fri 21 Apr 2017

Exam 3: Transformations and line integrals (§13.7-14.5)

Exam Instructions: You have 50 minutes to complete this exam. Justification is required for all problems. No electronic devices (phones, iDevices, computers, etc) except for a basic scientific calculator. On story problems, round to one decimal place. If you finish early then you may leave, UNLESS there are less than 5 minutes of class left. To prevent disruption, if you finish with less than 5 minutes of class remaining then please stay seated and quiet.

aria quios.	
	In addition, please provide the following data:
	Drill Instructor:
	Drill Time:
ie Academic i	pelow indicates that you have read this page and agree to follow onesty Policies of the University of Arkansas.
gnature: (1 pt)	

Formulas you may need:

1. (16 pts) Compute the Jacobian, $J(\rho, \varphi, \theta)$, of the following transformation taking Cartesian to spherical coordinates:

$$x = \rho \sin \varphi \cos \theta$$
 $y = \rho \sin \varphi \sin \theta$ $z = \rho \cos \varphi$

You must show your work and simplify.

$$J(\rho, \phi, \theta) = \frac{D(x, y, z)}{D(\rho, \phi, \theta)} = \frac{Sin\phi cos\theta}{Sin\phi sin\theta} + \frac{g cos\phi cos\theta}{g cos\phi sin\theta} + \frac{g sin\phi cos\phi}{g cos\phi sin\theta}$$

= $p^2 sin^3 p cos^2 \theta + p^2 sin p cos^2 p cos^2 \theta$

$$+ g^{2} \sin^{3} \varphi \sin^{2} \theta + g^{2} \sin \varphi \cos^{2} \varphi \sin^{2} \theta$$

$$= g^{2} \sin \varphi \left(\sin^{2} \varphi \cos^{2} \theta + \cos^{2} \varphi \cos^{2} \theta + \sin^{2} \varphi \sin^{2} \theta + \cos^{2} \varphi \sin^{2} \theta \right)$$

$$= g^{2} \sin \varphi \left(\sin^{2} \varphi + \cos^{2} \varphi \right) \cos^{2} \theta + \left(\sin^{2} \varphi + \cos^{2} \varphi \right) \sin^{2} \theta$$

$$=g^2 sin \varphi \left(cos^2\theta + sin^2\theta\right) = g^2 sin \varphi$$

2. (16 pts) Use Green's Theorem to find the area inside an ellipse with major and minor axes of length 12 and 8, respectively. In case you need them, the half-angle formulas are $\cos^2 x = \frac{1 + \cos 2x}{2}$ and $\sin^2 x = \frac{1 - \cos 2x}{2}$.

Area =
$$\begin{cases} x dy = -6y dx = \frac{1}{2} \phi(x dy - y dx) \end{cases}$$

$$=96\left(\frac{1}{2}\left(t+\frac{1}{2}\sin 2t\right)\right)^{2\pi}$$
overishes

$$=96(\frac{1}{2})(2\pi)$$

3. The vector field $\mathbf{F} = \langle x, y^2 \rangle$, the circle C of radius 2 centered at the origin, and two points P = (-1, 1) and Q = (-1, -1), are given in the figure below.

(a) (5 pts) Without computing the divergence, does the graph suggest that the divergence is positive or negative at P and Q? Justify your answer.

positive @ P, since all arrows point outwerd; negative @ Q, since the longer arrows point inward

(b) (5 pts) Compute the divergence of F at P and Q to confirm your answer to part (a).

a). dNF=7.F=1+2y (P:1+2(1)=3>0 Q:1+2(-1)=-1<0

- (c) (3 pts) Label on the graph where the flux across C is outward.

 Shaded region —
- (d) (8 pts) Is the net outward flux across C positive or negative? You must justify your answer.

Parametrize (: F(t) = (2 cost, 2 sint) 0 \(\) t \(\) 2 \(\) net flux = \(\) divFdA (by Green's Theorem)

=\(\) \(\

Wheeler

Cal III Spring 2017 = $\left(\frac{r^2}{2} + \frac{2}{3}r^3 \sin\theta\right)$ of (of 6)

- 4. (pts) Let $\mathbf{F} = (8xyz, 4x^2z, 4x^2y)$.
 - (a) (8 pts) What is the curl of F?

(b) (10 pts) What is the circulation of \mathbf{F} along C, where C is the closed curve formed by the square whose corners are the points (1,1), (-1,1), (-1,-1), and (1,-1)?

-pretend there is a z-coordinate —

It does not matter because from part

(B), curlf=0 => f is conservative.

SF. dr = 0 | Chere r is any perametrization of c) 5. (16 pts) Evaluate the scalar line integral $\int_C (x^2 + y^3) ds$, where C is the line segment from (0,0) to (5,5).

Write
$$\dot{r}(t) = \langle t, t \rangle$$
 $0 \le t \le 5$
 $\Rightarrow \dot{r}'(t) = \langle 1, 1 \rangle$ and $|\dot{r}'(t)| = \int_{1^{2}+1^{2}}^{1^{2}+1^{2}} = \int_{2}^{2} (x^{2} + y^{3}) ds = \int_{0}^{5} (t^{2} + t^{3}) (t^{2}) dt$
 $= \int_{0}^{2} (\frac{t^{3}}{3} + \frac{t^{4}}{4}) |s|$
 $= \int_{0}^{3} \left[\frac{1}{3} + \frac{5}{4} \right]$
 $= \int_{12}^{3} \left[\frac{1}{3} + \frac{5}{4} \right]$
 $= 125\sqrt{2} \left(\frac{19}{12} \right)$
 $= \frac{2375\sqrt{2}}{12}$

6. (12 pts) Match vector fields (a)-(d) with graphs (A)-(D).

(a)
$$\mathbf{F} = \langle 0, x^2 \rangle \longrightarrow \mathcal{D}$$

(b)
$$\mathbf{F} = \langle x - y, x \rangle \longrightarrow \mathcal{C}$$

(c)
$$\mathbf{F} = \langle 2x, -y \rangle \longrightarrow \langle 2x, -y \rangle$$

(c)
$$\mathbf{F} = \langle 2x, -y \rangle \longrightarrow \beta$$

(d) $\mathbf{F} = \langle y, x \rangle \longrightarrow A$

