	Projektowanie algorytmów i metody sztucznej inteligencji	Data ćwiczenia: 20.04.2017 Data sprawozdania: 22.04.2017
Politechnika Wrocławska	Badanie czasu algorytmu sortowania przez scalanie	Rafał Borysionek, 226262 Automatyka i Robotyka Wydział Elektroniki
Prowadzący: Mgr inż. Andrzej Wytyczak-Partyka		Grupa: E02-18o

1. Cel ćwiczenia

Celem ćwiczenia jest zbadanie złożoności obliczeniowej algorytmu sortowania przez scalanie pod kątem danych wejściowych do sortowania.

2. Sposób badania

Zaimplementowany algorytm badano dla różnych danych wejściowych, którymi były:

- -tablica wypełniona losowymi liczbami z przedziału 0-wielkość tablicy,
- -tablica posortowana rosnąco,
- -tablica posortowana malejąco.

W celu kontroli błędów w algorytmie, zastosowano pętlę sprawdzającą poprawność mierzonego sortowania, co przedłużyło czas, lecz nie zmieniło złożoności obliczeniowej (sprawdzenie to O(n) a sam algorytm ma złożoność O(n log n)). Wykonano po 20 pomiarów dla każdego N i wyciągnięto średnią arytmetyczną.

3. Wyniki pomiarów

N- liczba elementów w tablicy Popełniany błąd pomiaru programowego wynosi ±1 mikrosekunda Czas jest podawany w mikrosekundach

Ilość elementów	Tablica losowa	Tablica rosnąca	Tablica malejąca
10	3	3	3
100	70	59	55
1000	494	657	528
10000	4896	4285	4196
100000	55042	44530	43992

4. Wykres

5. Wnioski

- 1. Z wykresu można odczytać, że algorytm ma złożoność obliczeniową O(nlog(n)). Asymptotyczna różnicę algorytmu przy początkowych wartościach (od 10 do 1000) można uzasadnić tym, że podczas badania czasu procesor był obciążony bardziej wymagającymi programami które wykonywał w tle. Jest możliwe że to właśnie dlatego otrzymana charakterystyka nie jest idealnie asymptotyczna z wykreśloną funkcją nlog(n).
- 2. W porównaniu do algorytmu sortowania szybkiego, sortowanie przez scalanie jest niewrażliwe na dane wejściowe. Otrzymana charakterystyka wskazuje na to, że badany algorytm sortuje zawsze ze złożonością obliczeniową O(nlog(n)). Złożoność ta jest niezależna od wejściowych danych: czy to posortowanych rosnąco, malejąco czy nie posortowanych w ogóle. Różnica jedynie polega na nieco większym czasie sortowania przy losowo ułożonych wartościach. Dodaje to składowe stałe, lecz nie zmienia złożoności.