Effects of increasing crowds on the Millenium Bridge

Effects of increasing crowds on the Millenium Bridge

Mustapha Bousakla El Boujdaini Alfredo Crespo Otero

Master in Physics of Complex Systems

Effects of increasing crowds on the Millenium Bridge

What caused the bridge oscillations?

 Growing side to side oscillations were observed as the number of walkers increased.

Architectural explanation: innovative design of the bridge.

 Oscillations are controlled by fluid-viscous dampers and tuned mass dampers.

Belykh, I. et al. Nature Commun. https://doi.org/10.1038/s41467-021-27568-y (2021)

Introduction

Methods

110501105

Physical explanation:

Pedestrians: coupled biological oscillators

→ Kuramoto model (neurons, heart cells...)

Bridge: weakly damped and forced oscillator.

Introduction

Introduction

Methods Results

$$M\frac{d^2X}{dt^2} + B\frac{dX}{dt} + KX = G\sum_{i=1}^{N} \sin\theta_i$$
 (1)

$$\frac{d\theta_i}{dt} = \Omega_i + CA\sin(\Psi - \theta_i + \alpha), \qquad i = 1, \dots, N$$
 (2)

- (1) models the bridge as a weakly damped and driven oscillator: M is the mass, B the damping, K the stiffness and $G \sin \theta_i$ the external force of each of the N walkers.
- (2) models the effects of the bridge's oscillation on each pedestrian's steps.
- A, Ψ are defined such that $X = A\sin(\Psi)$ and $dX/dt = A\Omega_0\cos(\Psi)$, where $\Omega_0 = \sqrt{K/M}$.

$$\frac{d\theta_i}{dt} = \Omega_i + \frac{C}{N} \sum_{i=1}^{N} \sin(\theta_i - \theta_i)$$
 (3)

For that we define an average amplitude and phase A and Ψ in terms of the order parameter:

$$Ae^{i\Psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j} \tag{4}$$

If we multiply (4) by $e^{-i\theta_i}$, we take the imaginary part and we use (3), we recover equation (2):

$$\frac{d\theta_i}{dt} = \Omega_i + CA\sin(\Psi - \theta_i + \alpha), \qquad i = 1, \dots, N$$

Introductio

Methods

Effects of

Numerical integration

Methods

$$M\frac{d^2X}{dt^2} + B\frac{dX}{dt} + KX = G\sum_{i=1}^{N} \sin \theta_i$$

$$\frac{d\theta_i}{dt} = \Omega_i + CA\sin(\Psi - \theta_i + \alpha), \qquad i = 1, \dots, N$$

Use $\sin(\alpha_1 + \alpha_2)$ formula, $X = A\sin(\Psi)$, $dX/dt = \Omega_0 A\cos(\Psi)$:

$$\frac{dX}{dt} = Y$$

$$M\frac{dY}{dt} + BY + KX = G\sum_{i=1}^{N} \sin(\theta_i)$$

$$\frac{d\theta_i}{dt} = \Omega_i + CX\cos(\alpha - \theta_i) + \frac{C}{\Omega_0}Y\sin(\alpha - \theta_i)$$

Integration method: 4th order Runge-Kutta method, library deSolve, software R

Introduction

Methods

$$\frac{dX}{dt} = Y$$

$$M\frac{dY}{dt} + BY + KX = G\sum_{i=1}^{N} \sin(\theta_i)$$

$$\frac{d\theta_i}{dt} = \Omega_i + CX\cos(\alpha - \theta_i) + \frac{C}{\Omega_0}Y\sin(\alpha - \theta_i)$$

- Parameters: $M=1.13\times 10^5$ kg, $B=1.10\times 10^4$ kg/s, $K=4.73\times 10^6$ kg/s², G=30 kgm/s², C=16 m $^{-1}$ s $^{-1}$, $\alpha=\pi/2$.
- Ω_i are distributed according to a Gaussian with mean $\Omega_o = 6.47 \text{ rad/s}$ and $\sigma = 0.63 \text{ rad/s}$.
- Initially, θ_i are randomly chosen in $[0, 2\pi)$.

Theoretical critical crowd size

Introduction

Methods

Conclusion

Scale analysis and redefinition of the parameters:

$$au=\Omega_0 t$$
, $\Omega_0=\sqrt{K/M}$ bridge's resonant frequency $L_1=NG/K$, $L_2=\Omega_0/C$ spatial scales, $X=\sqrt{L_1L_2}x$ $\varepsilon=\sqrt{L_1/L_2}$ can be considered a small parameter

Additional assumptions:

The damping is small: $\zeta = B/\sqrt{4MK}$, $\zeta = \varepsilon b$ Stepping frequencies near Ω_0 , $\Omega_i/\Omega_0 = 1 + \varepsilon \omega_i$ Redefinition of phases: $\theta_i \to \theta_i - \tau$, $\Psi \to \Psi - \tau$

$$\begin{split} \frac{d^2x}{d\tau^2} + x &= \varepsilon \left[\left\langle \sin(\tau + \theta_i) \right\rangle - 2b \frac{dx}{d\tau} \right], \\ \frac{d\theta_i}{d\tau} &= \varepsilon \left[\omega_i + a \sin(\Psi - \theta_i + \alpha) \right], \qquad i = 1, \dots, N. \end{split}$$

increasing crowds on the Millenium Bridge

Methods

Effects of

Taking advantage of the Kuramoto model

Write $x=a\sin(\Psi+ au)$ and use the averaging method, T=arepsilon au

$$\frac{da}{dT} = -ba - \frac{1}{2} \langle \sin(\Psi - \theta_i) \rangle, \quad a \frac{d\Psi}{dT} = -\frac{1}{2} \langle \cos(\Psi - \theta_i) \rangle,$$
$$\frac{d\theta_i}{dT} = \omega_i + a \sin(\Psi - \theta_i + \alpha), \quad i = 1, \dots, N.$$

Look for stationary solutions with $\Psi=-\pi/2$, $\alpha=\pi/2$. Equivalence with Kuramoto model if $a=K\rho$, $2ab=\rho$ and $g(\omega)$ unimodal symmetric distribution centered at zero.

Two different solutions:

$$a=0$$

a = 0a > 0 solution of $2b = \int_{-\pi/2}^{\pi/2} \cos^2(\theta) g(a \sin \theta) d\theta$, only if

$$N > N_c = N_c = \frac{4\zeta}{\pi} \left(\frac{K}{GCP(\Omega_0)} \right)$$

• Realistic simulation: more and more people on the bridge

• Initial conditions for each crowd size? The final state for the previous one

Measure the wobbling amplitude and the order parameter

$$A(t) = \sqrt{X(t)^2 + \left(rac{1}{\Omega_0}rac{dX(t)}{dt}
ight)^2}, \ \ R(t) = rac{1}{N}\left|\sum_{i=1}^N \exp[i heta_j(t)]
ight|.$$

Introductio

Results

Effects of increasing crowds on the Millenium Bridge

Amplitude and order parameter (I)

Introduction

Results

Amplitude and order parameter (II)

Introductio

Results

Conclusion

Wobbling and synchrony are strongly related.

Observations:

- Other models that use a Cauchy distribution for Ω_i and the same mean Ω_o give $N_c=132$ and $N_c=142$ depending on the width of the distribution.
- Empirical law F = kV, where
 - F force exerted by pedestrians (prop. to R)
 - V velocity of bridge's vibrations (prop. to A)

Changing the coupling constant

Introduction

Results

Conclusion

Observations

- Supercritical bifurcation: zero solution loses stability
- Two different phases: ordered and disordered

Effects of increasing crowds on the Millenium Bridge

Changing the damping

Introduction

Results

Conclusion

Observations:

- Supercritical bifurcation: zero solution loses stability
- The divergence reflects the pure resonant behavior in absence of damping (B = 0)

Introduction

meroduction

Results

Conclusions

Strength of the model:

- Simplicity
- Interdisciplinary approach

Main findings:

- Wobbling and synchrony are related phenomena
- Realistic, despite its simplicity
 - It can be handled theoretically (Kuramoto model)
 - Rough estimation of the critical crowd size

