Analysis of Image Tranforms for Sketch-based Retrieval Diploma Thesis

Felix Stürmer

Technische Universität Berlin Fakultät IV - Elektrotechnik und Informatik Computer Graphics

02.11.2012

Outline

Introduction and Background

Motivation and Challenges of CBIR

Prior Work

Anatomy of a CBIR System

Proposed Solution

Proposed Retrieval Pipelines

Acquisition

The Curvelet Transform

Feature Extraction

Ranking

Results

Cross-Domain Benchmark Intra-Domain Benchmark

Conclusions

Motivation

foo

Challenges of CBIR

The Semantic Gap

"The semantic gap is the **lack of coincidence** between the information that one can extract from the **visual data** and the **interpretation** that the same data have for a user in a given situation." – Smeulders et al.

The Sensory Gap

"The sensory gap is the gap between the **object in the** world and the information in a (computational) description derived from a **recording of that scene**." – Smeulders et al.

Prior Work on Human Recognition

Figure: "Face recognition using curvelet based PCA.", T. Mandal and Q. M.J Wu, ICPR 2008

Prior Work on Human Recognition

Figure: "Histograms of oriented gradients for human detection", Dalal and Triggs, CVPR 2005

Prior Work on Visual Codebooks

Results

Figure: "Video Google: A text retrieval approach to object matching in videos", Sivic and Zisserman, ICCV 2003

Prior Work on Scene Classification

Figure: "Spatial pyramid matching", Lazebnik et al., 2009

Anatomy of a CBIR System

Figure: Global Descriptors

Figure: Local Descriptors

Proposed Retrieval Pipelines (Global)

Proposed Retrieval Pipelines (Local)

Introduction and Background

Figure: Original Image

Figure: Luma Conversion

Introduction and Background

Figure: Original Image

Figure: Canny Operator

Introduction and Background

Figure: Original Image

Figure: Sobel Operator

Introduction and Background

Figure: Original Image

Figure: gPb-owt-ucm Transform

Properties of the Curvelet Transform

- An extension of the wavelet transform
- Localized in position, scale and orientation
- ► Curvelets obey parabolic scaling: $width \approx length^2$
- ▶ Approximation error along edges using m largest coefficients decays with $\frac{log(m)^3}{m^2}$ (compare $\frac{1}{m}$ for wavelets)
- Defined in frequency domain using

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Example Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

Global Feature Extraction

Figure: Curvelet coefficients at a specific scale and angle

Figure: Mean values on an 8×8 grid

Local Feature Extraction (Sampling)

PMEAN Collect $(n-m+1)^2$ sample vectors of length $N_s \cdot N_{\theta_s} \cdot m^2$ by concatenating across scales and angles

PMEAN2 Collect $N_s \cdot (n-m+1)^2$ sample vectors of length $N_{\theta_a} \cdot m^2$ by concatenating across angles

Figure: 8×8 mean coefficient grid sampled using 3×3 window

n image width and height

- m window width and height
- N_s Number of scales
- N_{θ} . Number of angles at scale s

Local Feature Extraction (Clustering)

- k-means clustering
- ▶ Codebook size k = 1000
- ▶ Each sample vector is assigned to the cluster S_i , i = 1, ..., k the center of which it is closest to

Proposed Solution

Image signature is the number of occurences of each "visual word" in the image:

$$\tilde{I} = [|S_1|, |S_2|, \dots, |S_k|]$$

Distance Metrics

$$L_2 \ d_{EUCL}(p,q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

Cosine
$$d_{COS}(p,q) = 1 - \frac{p \cdot q}{\|p\| \|q\|}$$

Histogram Intersection (HI)
$$d_{HI}(P,Q) = 1 - \frac{\sum_{i=1}^{n} \min(p_i,q_i)}{\sum_{i=1}^{n} q_i}$$

Earth Mover's Distance (EMD)
$$d_{EMD}(P,Q) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} d_{i,j} f_{i,j}}{\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i,j}}$$

TF-IDF Weighting

Term t_i occurs $tc_{i,j}$ times in document $d_j \in D$ with length n_j and is present in m_i documents overall.

Term Frequency
$$tf_{i,j} = \frac{tc_{i,j}}{n_j}$$

Inverse Document Frequency $idf_i = \log \frac{|D|}{m_i}$

Total Term Weight
$$w_{i,j} = tf_{i,j} \cdot idf_i = \frac{tc_{i,j}}{n_j} \cdot \log \frac{|D|}{m_i}$$

Cross-Domain Dataset

Figure: Example images from "Sketch-based image retrieval: benchmark and bag-of-features descriptors", Eitz et al., 2011

Cross-Domain Benchmark

- ▶ 31 user study-based ground-truth rankings of 40 images with corresponding query sketches (Eitz et al., 2011)
- ▶ Kendall rank correlation coefficient $-1 \le \tau_B \le 1$
- τ_B is based on the number of similarly ordered pairs of measurements between two distributions
- $au_B=1$ means same ordering, $au_B=-1$ means inverted ordering
- independent of the scaling differences between the two distributions

Cross-Domain Results

Preproc.	Sampling	G	P	σ	Metric	Mean $ au_B$ correlation coefficient
CANNY CANNY CANNY LUMA SOBEL SOBEL	PMEAN PMEAN2 MEAN MEAN		3		COS HI COS COS COS HIB	0.188 0.22 0.19 0.191 0.2 0.187 0 0.1 \$\infty\$ 0.2 \$\infty\$ 0.3 0.4

Table: Best performing pipeline configurations

Cross-Domain Distribution

Query Images

Intra-Domain Dataset

Figure: Example sketches from four categories from "How do humans sketch objects?", Eitz et al., 2012

Intra-Domain Benchmark

Intra-Domain Benchmark

- ▶ 50 categories with 80 hand-drawn sketches each (Eitz et al., 2012)
- Precision-recall statistics

$$\begin{split} recall &= \frac{\text{number of correct positive results}}{\text{total number of positives}} \\ precision &= \frac{\text{number of correct positive results}}{\text{total number of results}} \end{split}$$

no edge-detecting preprocessing

Intra-Domain Results

Discussion and Conclusions

- Retrieval performance comparable to other descriptors
- For cross-domain retrieval, local LUMA+CANNY+HI performs best
- For intra-domain retrieval, global descriptors work better
- Large performance differences between queries
- ⇒ Possibly much better results for narrower problem statements and specialized applications