

Design and Analysis of Algorithms Approximation Algorithms

Si Wu

School of CSE, SCUT cswusi@scut.edu.cn

TA: 1684350406@qq.com

- Load Balancing
- Center Selection
- Weighted Vertex Cover: Pricing Method
- Weighted Vertex Cover: LP Rounding

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j .

- Job *j* must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i. The load of machine i is $L[i] = \sum_{j \in S[i]} t_j$.

Def. The makespan is the maximum load on any machine $L = max_i L[i]$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing on 2 Machines is NP-Hard

Claim. Load balancing is hard even if m=2 machines.

Load Balancing: List Scheduling

List-scheduling algorithm.

Consider n jobs in some fixed order.

Return S[1], S[2], ..., S[m].

Assign job j to machine i whose load is smallest so far.

```
List-Scheduling (m, n, t_1, ..., t_n)
For i = 1 to m
   L[i] = 0.
   S[i] \leftarrow \emptyset.
For j = 1 to n
   i \leftarrow argmin_k L[k].
   S[i] \leftarrow S[i] \cup \{j\}.
   L[i] \leftarrow L[i] + t_i.
```


Theorem. Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^* .

Lemma 1. The optimal makespan $L^* \ge max_jt_j$. Pf.

Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan $L^* \ge \frac{1}{m} \sum_j t_j$. Pf.

- The total processing time is $\sum_{i} t_{i}$.
- One of m machines must do at least a $\frac{1}{m}$ fraction of total work.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L[i] of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. Its load before assignment is $L[i] t_j \Rightarrow L[i] t_j \leq L[k]$ for all $1 \leq k \leq m$.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L[i] of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. Its load before assignment is $L[i] t_j \Rightarrow L[i] t_j \leq L[k]$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

$$L[i] - t_j \le \frac{1}{m} \sum_{k} L[k] = \frac{1}{m} \sum_{j} t_j \le L^*$$

• Now, $L = L[i] = (L[i] - t_j) + t_j \le 2L^*$.

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1, one job of length m.

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1, one job of length m.

Load Balancing: LPT Rule

Longest Processing Time (LPT). Sort n jobs in decreasing order of processing times; then run list scheduling algorithm.

```
LPT-List-Scheduling (m, n, t_1, ..., t_n)
```

Sort jobs and renumber so that $t_1 \ge t_2 \ge \cdots \ge t_n$.

```
For i = 1 to m

L[i] = 0.

S[i] \leftarrow \emptyset.
```

For
$$j = 1$$
 to n
 $i \leftarrow argmin_k L[k]$.
 $S[i] \leftarrow S[i] \cup \{j\}$.
 $L[i] \leftarrow L[i] + t_j$.

Return S[1], S[2], ..., S[m].

Load Balancing: LPT Rule

For
$$j = 1$$
 to n
 $i \leftarrow argmin_k L[k]$.
 $S[i] \leftarrow S[i] \cup \{j\}$.
 $L[i] \leftarrow L[i] + t_j$.

Return S[1], S[2], ..., S[m].

Load Balancing: LPT Rule

Ex.

THE TOTAL OF THE PARTY OF THE P

Load Balancing: LPT Rule

Observation. If bottleneck machine i has only 1 job, then optimal. Pf. Any solution must schedule that job.

Lemma 3. If there are more than m jobs, $L^* \ge 2t_{m+1}$. Pf.

- Consider processing times of first m+1 jobs $t_1 \ge t_2 \ge \cdots \ge t_{m+1}$.
- Each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so at least one machine gets two jobs.

Theorem. LPT rule is a 3/2-approximation algorithm.

Pf. [similar to proof for list scheduling]

- Consider load L[i] of bottleneck machine i.
- Let *j* be the last job scheduled on machine *i*.

$$L = L[i] = (L[i] - t_j) + t_j \le \frac{3}{2}L^*$$

Center Selection Problem

Input. Set of n sites $s_1, s_2, ..., s_n$ and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites $s_1, s_2, ..., s_n$ and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between sites x and y.
- $dist(s_i, C) = min_c dist(s_i, c) = distance from s_i$ to closest center.
- $r(C) = max_i dist(s_i, C) =$ smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

- dist(x, y) = 0 [identity]
- dist(x, y) = dist(y, x) [symmetry]
- $dist(x,y) \le dist(x,z) + dist(z,y)$ [triangle inequality]

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection: Greedy Algorithm

Repeatedly choose next center to be site farthest from any existing center.

```
Greedy-Center-Selection (k, n, s_1, ..., s_n)
C \leftarrow \emptyset.
Repeat k times
Select a site <math>s_i with maximum distance dist(s_i, C).
C \leftarrow C \cup s_i.
Return C.
```


Center Selection: Analysis of Greedy Algorithm

Lemma. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$. Pf. [by contradiction] Assume $r(C^*) \leq \frac{1}{2}r(C)$.

- For each site $c_i \in C$, consider ball of radius $\frac{1}{2}r(C)$ around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* .
- Consider any site s and its closest center $c_i^* \in C^*$.
- $dist(s,C) \leq dist(s,c_i) \leq dist(s,c_i^*) + dist(c_i^*,c_i) \leq 2r(C^*)$.
- Thus, $r(C) \leq 2r(C^*)$.

Center Selection

Lemma. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set of $S \subseteq V$ such that each edge in E has at least one end in S.

Weighted Vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

weight = 11

Pricing Method

Pricing method. Each edge must be covered by some vertex. Edge e = (i, j) pays price $p_e \ge 0$ to use both vertex i and j.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex $i: \sum_{e=(i,j)} p_e \le w_i$

Fairness lemma. For any vertex cover S and any fair prices

$$p_e$$
: $\sum_{e \in E} p_e \le w(S)$.

Pf.
$$\sum_{e \in E} p_e \le \sum_{i \in S} \sum_{e=(i,j)} p_e \le \sum_{i \in S} w_i = w(S)$$
.

Pricing Method

Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover (G, w)

$$S \leftarrow \emptyset$$
.
For each $e \in E$
 $p_e \leftarrow 0$.

$$\sum_{e=(i,j)} p_e = w_i$$

While (there exists an edge (i,j) such that neither i nor j is tight) Select such an edge e = (i,j).

Increase p_e as much as possible until i or j tight.

 $S \leftarrow \text{set of all tight nodes}$.

Return S.

Pricing Method Example

Ex.

Weighted-Vertex-Cover (*G*, *w*)

$$S \leftarrow \emptyset$$
.

For each $e \in E$ $p_e \leftarrow 0.$

While (there exists an edge (i,j) such that neither i nor j is tight) Select such an edge e=(i,j). Increase p_e as much as possible until i or j tight.

 $S \leftarrow \text{set of all tight nodes}$.

Return S.

Pricing Method Example

Ex.

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation for Weighted-Vertex-Cover.

Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of "while" loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge (i, j) is uncovered, then neither i or j is tight. But then "while" loop would not terminate.
- Let S^* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \le \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e$$

\$\leq 2w(S^*)\$

Weighted Vertex Cover: ILP Formulation

Given a graph G = (V, E) with vertex weights $w_i \ge 0$, find a minweight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

Integer Linear Programming (ILP) formulation.

• Model inclusion of each vertex i using a 0/1 variable x_i .

$$x_i = \begin{cases} 0, if \text{ vertex } i \text{ is not in vertex cover} \\ 1, if \text{ vertex } i \text{ is in vertex cover} \end{cases}$$

Vertex covers in 1-1 correspondence with 0/1 assignments: $S = \{i \in V: x_i = 1\}$.

- Objective function: minimize $\sum_i w_i x_i$.
- For every edge (i, j), take either vertex i or j (or both): $x_i + x_j \ge 1$.

Weighted Vertex Cover: ILP Formulation

Weighted vertex cover. Integer linear programming formulation.

(ILP)
$$\min \sum_{i \in V} w_i x_i$$

s. t. $x_i + x_j \ge 1$ $(i, j) \in E$
 $x_i \in \{0,1\}$ $i \in V$

Observation. If x^* is optimal solution on ILP, then $S = \{i \in V: x_i^* = 1\}$ is a min-weight vertex cover.

Integer Linear Programming

Given integers a_{ij} , b_i , and c_j , find integers x_j that satisfy:

$$\min c^{T} x$$

$$s.t. Ax \ge b$$

$$x \ge 0$$

$$x integral$$

$$\min \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \qquad 1 \le j \le n$$

$$x_i \quad integral \quad 1 \le j \le n$$

Linear Programming

Given integers a_{ij} , b_i , and c_j , find real numbers x_j that satisfy:

$$\min c^T x$$

$$s. t. Ax \ge b$$

$$x \ge 0$$

$$\min \sum_{j=1}^{n} c_j x_j$$
s. t.
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \qquad 1 \le j \le n$$

Linear. No x^2 , xy, $\operatorname{arccos}(x)$, x(1-x), etc.

Simplex algorithm. Can solve LP in practice.

Weighted Vertex Cover: LP Relaxation

Linear programming relaxation.

(LP)
$$\min \sum_{i \in V} w_i x_i$$

s. t. $x_i + x_j \ge 1$ $(i,j) \in E$
 $x_i \ge 0$ $i \in V$

Note. LP is not equivalent to weighted vertex cover.

- Q. How can solving LP help us find a low-weight vertex cover?
- A. Solve LP and round fractional values.

Weighted Vertex Cover: LP Rounding Algorithm

Lemma. If x^* is optimal solution to LP, then $S = \{i \in V : x_i^* \ge 1/2\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x_i^* + x_j^* \ge 1$, either $x_i^* \ge 1/2$ or $x_j^* \ge 1/2$ (or both) \Longrightarrow (i,j) covered.

Pf. [S has desired cost]

• Let $S^{\#}$ be optimal vertex cover. Then

$$\sum_{i \in S^{\#}} w_i \ge \sum_{i \in S} w_i x_i^* \ge \frac{1}{2} \sum_{i \in S} w_i$$

Theorem. The rounding algorithm is a 2-apprimation algorithm.