

Traffic Engineering (TE) & Multiprotocol Label Switching (MPLS)

Redes de Comunicações II

Licenciatura em Engenharia de Computadores e Informática

Prof. Amaro de Sousa (asou@ua.pt)
DETI-UA, 2024/2025

Traffic supported by a Network

- A **traffic flow** from a sender host A to a receiver host B is the sequence of IP packets sent by host A to host B during time
 - The **throughput** is the rate, in bits/second, of the traffic flow
- Example: host A downloads a file of 5 GBytes file from host B through TCP at an average download rate of 5000 IP packets/second.
 - Average download throughput of the file download:

Assuming that each IP download packet has 20 Bytes (IP header) + 20 Bytes (TCP header) + 1460 Bytes (Data) = 1500×8 bits, then, the download throughput is $1500 \times 8 \times 5000 = 60000000$ bps = 60 Mbps (Megabits/sec)

Average upload throughput of the file download:

Assuming that each 2 download TCP segments generate one upload TCP segment (to acknowledge the received data) in an IP packet with 20 Bytes (IP header) + 20 Bytes (TCP header) = 40×8 bits, then, the upload throughput is $40 \times 8 \times 2500 = 800000$ bps = 800 Kbps (Kilobits/sec)

– File download time:

The file size 5 GBytes is segmented in = $5 \times 1024^3 / 1460 \approx 3677$ TCP segments. So, the download time is around 3677 / 5000 = 0.74 seconds

Traffic supported by a Network

- An **aggregated flow** from one network element A to another element B is the set of traffic flows from A to B.
 - The **throughput** of an aggregated flow is the total rate, in bits/second, of all its traffic flows
- The **traffic throughput of a service** supported by a network is defined (in its simplest version) by the average throughput over time of the aggregated flows between all node pairs running the service.

N1	N2	N1→N2	N2→N1
A	В	2.5 Gbps	3.1 Gbps
A	C	1.3 Gbps	1.7 Gbps
•••	•••		
D	E	1.4 Gbps	8.7 Gbps
		193.1	165.64.0/20

Network Dimensioning vs. Traffic Engineering

- Network Dimensioning is the process of determining the required capacity on each element of the network to be able to carry the traffic throughput of all supported services
 - Network elements are links, routers, switches, etc...
 - Traffic throughputs are hard to predict!
- **Traffic Engineering** is the process selecting the routing paths to best fit the traffic of all supported services in the capacity resources of the network
 - Ensure the most desirable/appropriate routing paths for each aggregated flow of each service.
 - The aim is to use efficiently the capacity resources of the network.
 - For example, to prevent over-utilized (congested) links whilst other links are under-utilized.

Life Cycle of a Network

- A network life cycle is composed by two management phases:
 - A network dimensioning phase
 - The operator estimates the traffic throughput of the services the network must support in a given future time (for example, in the next year).
 - Then, it determines the required capacity of the network elements to carry the estimated traffic throughputs.
 - The aim is to minimize the investment cost.
 - Finally, the operator upgrades the network.
 - A traffic engineering phase
 - The operator changes the routing of the network in accordance with the traffic changes of the supported services.
 - This phase continues while network resources are enough to support all services
 - An efficient traffic engineering allows this phase to last for a longer time (minimizing the need for a new investment cost).
 - A new network dimensioning phase is required when the network capacity resources are no longer enough to support all services due to:
 - (i) throughput grow of the existing aggregated flows, (ii) new aggregated flows of the initial services and/or (iii) the introduction of new services.

Traffic Engineering with IGP Routing Protocols

- Traffic engineering is not ideal when using standard IGP protocols (as RIP or OSPF)
- With RIP, all flows are routed in C to next-hop D
 - There is a huge overflow (i.e., a drop) of 10 Gbps in link C-D
- With OSPF, and assigning appropriate OSPF port costs:
 - All flows can be routed in C through next-hop F
 - overflow of 1 Gbps in link C-F
 - All flows cab be routed in C through next-hops D and C (with ECMP)
 - overflow of 4.5 Gbps in link C-D

N1	N2	N1→N2	N2→N1
A	Е	1.0 Gbps	-
В	E	5.0 Gbps	-
C	Е	5.0 Gbps	-

— 10 Gbps link

— 1 Gbps link

Traffic Engineering with IGP Routing Protocols

• In order to fit the traffic flow throughputs in the capacity resources of the network, we need to route each traffic flow through:

$$A - E: A \rightarrow C \rightarrow D \rightarrow E$$

$$B-E: B \to C \to F \to G \to E$$

$$C - E: C \rightarrow F \rightarrow G \rightarrow E$$

N1	N2	N1→N2	N2→N1
A	E	1.0 Gbps	-
В	E	5.0 Gbps	-
C	Е	5.0 Gbps	-

- Note that:
 - this solution requires C to route flows based not only on the destination but also on the source
 - IGP protocols (as RIP or OSPF)
 are destination-based routing
 protocols

Multiprotocol Label Switching (MPLS)

- MPLS is a routing technique that forwards packets from one router to the next router based on labels rather than on network addresses.
 - While network addresses identify endpoints, labels identify established routing paths between endpoints.
 - MPLS can encapsulate packets of different protocols (IPv4 and IPv6),
 hence the 'multiprotocol' component of the name.
- In an MPLS domain, there are Edge Routers and Core Routers.

Multiprotocol Label Switching (MPLS)

- Packets are labelled at the entry Edge Router with a label of the first hop.
- Each Core Router forwards the packet based on its incoming label and swaps the label to the one of the next hop.
- The exit Edge Router removes the label.
- Advantages:
 - Simplification of the packet routing process on routers.
 - Full traffic engineering capability.
 - Simplification of the network management (a single protocol layer).

MPLS Switching Illustration

MPLS Fundamentals

- As a packet enters an MPLS domain, it is assigned a label based on its **Forwarding Equivalence Class (FEC)** defined at the entry **Edge Router**.
- FECs are groups of packet flows forwarded through the same Label Switched Path (LSP) by Label Switching Routers (LSR).
 - Need a mechanism to assign and distribute labels to establish LSP paths.
- In **Core Routers**, routing is based on label-swapping and forwarding.
- MPLS works in two planes:
 - Control Plane responsible for setup label swapping tables among LSRs.
 - Forwarding Plane uses the label carried by each incoming packet and the label swapping table of the LSR to forward the packet.

MPLS Labels

- Label is a 20-bit field that carries the value of the Label.
 - TTL field is IP independent Similar purpose.
- On some Data Link (Layer 2) old technologies, label is given by the appropriate fields of their header.
 - ATM: VPI (Virtual Path ID) and VCI (Virtual Channel ID) fields.
 - Frame Relay: DLCI (Data Link Connection Identifier) field.
- On other Data Link technologies (Point-to-Point, Ethernet), the label is inserted between Layer 2 and Layer 3 headers.

MPLS Label Stacking

- Labels can be used in stacks to support more efficiently multiple services:
 - Outer (last) label (first received) is used to switch the packets between
 Edge Routers in the MPLS core.
 - Inner labels are used to designate services, FECs, etc.
- S (Bottom of Stack) bit is set to one for the last entry in the label stack (i.e., for the bottom of the stack), and zero for all other labels.

MPLS Forwarding via Label Swapping

- Swapping is the process of changing the label of an incoming packet in the outgoing packet.
 - Labels are short and based on fixed-length fields.
 - Forwarding based on labels is much more efficient than forwarding based on IP routing tables.
 - Throughput capacity of MPLS routers is much higher than throughput capacity of IP routers.

MPLS Pushing Labels

• Pushing is the process of adding a label to an incoming packet in the outgoing interface.

MPLS Popping Labels

• Popping is the process of removing a label from an incoming packet in the outgoing interface.

A Label Switched Path (LSP)

• An LSP is often referred to as a MPLS tunnel, as payload headers are not inspected inside of an LSP

Label Switched Router (LSR)

Forwarding Equivalence Class (FEC)

- Packets IP1 and IP2 are in the same FEC: they are forwarded in the same way.
 - IP layer headers are not inspected inside an MPLS LSP.
 - This means that inside of the tunnel, the LSRs do not need full IP forwarding tables.

Merging LSPs

• Two FECs to the same exit Edge Router with a common part in the two routing paths:

• The common part can be merged to reduce the size of the Label Swapping tables:

Penultimate Hop Popping (PHP)

An LSP from an entry Edge Router to an exit Edge Router:

- PHP is the process of label popping in the last Core Router before the packet reaches its exit Edge Router
 - it reduces the Edge Router load (usually, Edge Routers have more processing tasks than Core Routers)

LSP Hierarchy via Label Stacking

• The blue and the green LSPs are supported over the orange LSP in the central part of the MPLS network