Lecture 8 Hashing

Announcements

Announcements

Great job on the first midterm!

• Max: 100

Median: 63

• Std. Dev: 16

Note: we will curve grades up at the end of the quarter! Don't

worry about a low numerical

score!

The midterm was on the long end for 60 minutes

- Again, the curve will take care of low numerical scores, but...
- We will try to make the next one a bit shorter!

If you didn't do as well on the midterm as you wanted...

- That's okay! There's lots of time to come back.
- My suggestion: Practice problems!
 - Look in the book (Algorithms Illuminated), and in CLRS
 - Recommended exercises on the slides
 - By popular demand, we will be putting more practice problems on section material
 - Make sure you really understand the HW, and try to do it yourself before going to office hours, relying on your HW team, etc..
- If there's a concept you are struggling with, come to office hours and ask! We're here to help!

Announcements

- Embedded EthiCS Lecture 1 is posted!
 - Find it on Ed/Canvas!
 - You are responsible for this material for future HW/Exams.

• HW3 due Friday ☺

Today: hashing

Outline

- Hash tables are another sort of data structure that allows fast INSERT/DELETE/SEARCH.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- Hash families are the magic behind hash tables.
- Universal hash families are even more magical.

Goal

 We want to store nodes with keys in a data structure that supports fast

node with key "2" INSERT/DELETE/SEARCH. • INSERT • DELETE SEARCH data structure HERE IT IS

Last time

- Self balancing trees:
 - O(log(n)) deterministic INSERT/DELETE/SEARCH

#prettysweet

Today:

- Hash tables:
 - O(1) expected time INSERT/DELETE/SEARCH
- Worse worst-case performance, but often great in practice.

#evensweeterinpractice

eg, Python's dict, Java's HashSet/HashMap, C++'s unordered_map
Hash tables are used for databases, caching, object representation, ...

One way to get O(1) time

• Say all keys are in the set {1,2,3,4,5,6,7,8,9}.

That should look familiar

- Kind of like COUNTINGSORT from Lecture 6.
- Same problem: if the keys may come from a "universe" $U = \{1,2,...,10000000000\}$, direct addressing takes a lot of space.

The universe is

Solution?

Put things in buckets based on one digit

INSERT:

Hash tables

- That was an example of a hash table.
 - not a very good one, though.
- We will be more clever (and less deterministic) about our bucketing.

This will result in fast (expected time)
 INSERT/DELETE/SEARCH.

But first! Terminology.

- U is a *universe* of size M.
 - M is really big.
- But only a few (at most n) elements of U are ever going to show up.
 - M is waaaayyyyyyy bigger than n.
- But we don't know which ones will show up in advance.

Only a n keys will ever show up.

Example: U is the set of all strings of at most 280 ascii characters. (128²⁸⁰ of them).

The only ones which I care about are those which appear as trending hashtags on twitter/X. #hashinghashtags

There are way fewer than 128²⁸⁰ of these.

Hash Functions

A hash function h: U → {1, ..., n}
 is a function that maps elements
 of U to buckets 1, ..., n.

- Note! For this lecture, n is both #buckets and #(things that might show up).
- That doesn't need to be the case, but in general we should think of those two things as being on the same order.

Hash Tables (with chaining)

A hash table consists of:

- An array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time O(1)
 - To find something in the linked list takes time O(length(list)).
- A hash function $h: U \to \{1, ..., n\}$.
 - For example, h(x) = least significant digit of x.

INSERT:

13

22

43

9

SEARCH 43:

Scan through all the elements in bucket h(43) = 3.

DELETE 43:

Search for 43 and remove it.

For demonstration purposes only!

This is a terrible hash function! Don't use this!

Aside: Hash tables with open addressing

- The previous slide is about hash tables with chaining.
- There's also something called "open addressing"
- You don't need to know about it for this class.

Hash Tables (with chaining)

A hash table consists of:

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time O(1)
 - To find something in the linked list takes time O(length(list)).
- A hash function $h: U \to \{1, ..., n\}$.
 - For example, h(x) = least significant digit of x.

INSERT:

13

22

43

9

SEARCH 43:

Scan through all the elements in bucket h(43) = 3.

DELETE 43:

Search for 43 and remove it.

For demonstration purposes only!

This is a terrible hash function! Don't use this!

Outline

- Hash tables are another sort of data structure that allows fast INSERT/DELETE/SEARCH.
 - (We still need to figure out how to do the bucketing)

Interlude: motivation for hash families

- Hash families are the magic behind hash tables.
- Universal hash families are even more magical.

What we want from a hash table

- 1. We want there to be not many buckets (say, n).
 - This means we don't use too much space

n=9 buckets

2. We want the items to be pretty spread-out in the buckets.

n=9 buckets

Worst-case analysis

- Goal: Design a function $h: U \to \{1, ..., n\}$ so that:
 - No matter what n items of U a bad guy chooses, the buckets will be balanced.
 - Here, balanced means O(1) entries per bucket.

• If we had this*, then we'd achieve our dream of O(1)

INSERT/DELETE/SEARCH

Can you come up with such a function?

Think-Pair-Share Terrapins

This is impossible! 43 13 No deterministic hash function can defeat worst-case input!

We really can't beat the bad guy here.

- The universe U has M items
- They get hashed into n buckets
- At least one bucket has at least M/n items hashed to it.
- M is waayyyy bigger then n, so M/n is bigger than n.
- Bad guy chooses n of the items that landed in this very full bucket.

Solution: Randomness

The game

Plucky the pedantic penguin

1. An adversary chooses any n items $u_1, u_2, ..., u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a **random** hash function $h: U \rightarrow \{1, ..., n\}$.

3. HASH IT OUT #hashpuns

What is a "random hash function"?

- It's a function that's picked using some randomness, but there are lots of ways to do that!
- One way: uniformly random:

\boldsymbol{x}	h(x)
AAAAA	3
AAAAAB	1
AAAAAC	6
AAAAAD	1
ZZZZZY	7
ZZZZZZ	2

• Now we have a well-defined function $h: U \rightarrow \{1, 2, ..., n\}$

Note: we could have drawn a random function from a different distribution than uniform... we'll come back to that later.

All of the M things in the universe

Why does randomness help?

Intuitively: The bad guy can't foil a hash function that they don't yet know.

Why not? What if there's some strategy that foils a random function with high probability?

Plucky the Pedantic Penguin

We'll need to do some analysis...

Intuitive goal

It's **bad** if lots of items land in u_i's bucket. So we want **not that**.

Formal goal

We could replace "2" here with any constant; it would still be good. But "2" will be convenient.

- Let h be a random hash function.
- Want: For all ways a bad guy could choose $u_{1,}u_{2},...,u_{n}$ to put into the hash table, and for all $i \in \{1,...,n\}$, E[number of items in u_{i} 's bucket] ≤ 2 .
- If that were the case*:

Goal:

- Come up with a distribution on hash functions so that:
- For all i=1, ..., n,
 E[number of items in u_i's bucket] ≤ 2.

Aside

• For all i=1, ..., n, E[number of items in u_i 's bucket $] \le 2$.

VS

• For all i=1,...,n:

E[number of items in bucket i] ≤ 2

Are these the same?

Think-Pair-Share Terrapins

Aside

For all i=1, ..., n,
 E[number of items in u_i 's bucket] ≤ 2.

VS

• For all i=1,...,n:

E[number of items in bucket i] ≤ 2

Are these the same?

Think-Pair-Share Terrapins

No! (This was your pre-lecture exercise!)

Aside

• For all i=1, ..., n, $E[\ number \ of \ items \ in \ u_i \ 's \ bucket \] \leq 2.$

VS

• For all i=1,...,n:

E[number of items in bucket i] ≤ 2

Suppose that the distribution on h led to:

Goal:

- Come up with a distribution on hash functions so that:
- For all i = 1, ..., n, $E[\text{ number of items in } u_i'\text{s bucket }] \leq 2$.

Claim:

 The goal is achieved by a uniformly random hash function.

Proof of Claim

- Let h be a uniformly random hash function.
- Then for all i = 1, ..., n, E[number of items in u_i 's bucket] ≤ 2 .

•
$$E\left[\begin{smallmatrix} \# \text{ items in } \\ u_i \text{ 's bucket} \end{smallmatrix}\right] =$$
• $= E\left[\sum_{j=1}^{n} \mathbf{1}\{h(u_i) = h(u_j)\}\right]$
• $= \sum_{j=1}^{n} P\{h(u_i) = h(u_j)\}$
• $= 1 + \sum_{j \neq i} P\{h(u_i) = h(u_j)\}$
• $= 1 + \sum_{j \neq i} 1/n$
• $= 1 + \frac{n-1}{n} \leq 2$.

You will formally verify this on HW. Intuitively, there are n possibilities where u_j can land, and only one of them is $h(u_i)$.

A uniformly random hash function leads to balanced buckets

- We just showed:
 - For all ways a bad guy could choose $u_{1,u_2}, ..., u_n$, to put into the hash table, and for all $i \in \{1, ..., n\}$, E[number of items in u_i 's bucket] ≤ 2 .
- Which implies*:
 - No matter what sequence of operations and items the bad guy chooses,

E[time of INSERT/DELETE/SEARCH] = O(1)

So our solution is:

Pick a uniformly random hash function?

What's wrong with this plan?

Think-Pair-Share Terrapins

A uniformly random hash function is not a good idea.

 In order to store/evaluate a uniformly random hash function, we'd use a lookup table:

	x	h(x)
All of the M things in the universe	AAAAA	1
	AAAAAB	5
	AAAAAC	3
	AAAAAD	3
	ZZZZZY	7
	ZZZZZZ	3

- Each value of h(x) takes log(n) bits to store.
- Storing M such values requires Mlog(n) bits.
- In contrast, direct addressing (initializing a bucket for every item in the universe) requires only M bits.

The problem is with the **size** of the set of functions we are considering

- FACT: It takes at least $\log_2 |A|$ bits to represent a random element from a set A (on average).
 - If A = "all of the functions from U to $\{1, ..., n\}$ ", then...
 - $|A| = n^{M}$
 - $\log_2|A| = M \log n$
- So it takes at least
 M log n bits to
 represent a
 random function
 from this set. ☺

Solution

smaller SUBSET of functions.

- Pick from a smaller set of functions H.
- If H is small, we have a hope of being able to represent $h \in H$ with fewer bits.
- A set H of functions $h: U \rightarrow \{1, \dots, n\}$ is called a hash family. All of the hash functions $h: U \rightarrow \{1, ..., n\}$ This elephant represents a huge This mouse represents a much

SET of functions

Outline

- **Hash tables** are another sort of data structure that allows fast INSERT/DELETE/SEARCH.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- Hash families are the magic behind hash tables.
- Universal hash families are even more magic.

Hash families

• A **hash family** is a collection of hash functions.

"All of the functions" is a hash family

Any subset of functions is also a hash family.

Example a smaller hash family

- H = { function which returns the least sig. digit,
 function which returns the most sig. digit }
- If we pick h in H at random, we need to store only **one bit** to remember which we picked.

This mouse represents a much smaller SUBSET of functions. In this case, just two functions: $\left\{h_{least-sig},h_{most-sig}\right\}$

The game

 h_0 = Most_significant_digit h_1 = Least_significant_digit H = { h_0 , h_1 } 2. You, the algorithm, chooses a **random** hash function $h: U \to \{0, ..., 9\}$. Choose it randomly from H.

I picked h_1

1. An adversary (who knows H) chooses any n items $u_1, u_2, ..., u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

This is not a very good hash family

- H = { function which returns least sig. digit,
 function which returns most sig. digit }
- On the previous slide, the adversary could have been a lot more adversarial...

The game

 h_0 = Most_significant_digit h_1 = Least_significant_digit H = $\{h_0, h_1\}$ 2. You, the algorithm, chooses a **random** hash function $h: U \to \{0, ..., 9\}$. Choose it randomly from H.

I picked h_{i}

1. An adversary (who knows H) chooses any n items $u_1, u_2, ..., u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

Outline

- **Hash tables** are another sort of data structure that allows fast INSERT/DELETE/SEARCH.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- Hash families are the magic behind hash tables.
- Universal hash families are even more magic.

How to pick the hash family?

- Definitely not like in that example.
- Let's go back to that computation from earlier....

Proof of Claim

- Let h be a uniformly random hash function.
- Then for all $i=1,\ldots,n$, E[number of items in u_i 's bucket] ≤ 2 .

•
$$E\left[\begin{smallmatrix} \# \text{ items in} \\ u_i \text{ 's bucket} \end{smallmatrix}\right] =$$
• $= E\left[\sum_{j=1}^n \mathbf{1}\{h(u_i) = h(u_j)\}\right]$
• $= \sum_{j=1}^n P\{h(u_i) = h(u_j)\}$
• $= 1 + \sum_{j \neq i} P\{h(u_i) = h(u_j)\}$
• $= 1 + \sum_{j \neq i} 1/n$
• $= 1 + \frac{n-1}{n} \leq 2$. All that we needed was that this is $1/n$

Universal hash families

• H is a **universal hash family** if, when h is chosen uniformly at random from H,

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- Earlier analysis shows:
 - If we draw h uniformly at random from a universal hash family H, the resulting hash table will have expected time* O(1) INSERT/DELETE/SEARCH
- And if H is small (and appropriately structured), we can store a random $h \in H$ efficiently!

Small universal hash The whole scheme will be family H Choose h randomly from H Assumption: We can This mouse store h using log | H | bits represents a small subset of functions and apply it in time O(1). (We'll see a family where we can do this later) **Probably** these buckets will be pretty balanced. Universe U

Universal hash families

• H is a *universal hash family* if, when h is chosen uniformly at random from H,

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

Let's see some examples and some non-examples!

Example

 Universal hash family: if you choose h randomly from H,

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- $H = \text{the set of all functions } h: U \to \{1, ..., n\}$
 - We saw this earlier it corresponds to picking a uniformly random hash function.
 - Unfortunately this H is really really large.

Non-example

 Universal hash family: if you choose h randomly from H,

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- h_0 = Most_significant_digit
- h_1 = Least_significant_digit
- $H = \{h_0, h_1\}$

Prove that this choice of *H* is NOT a universal hash family!

Non-example

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- h_0 = Most_significant_digit
- h_1 = Least_significant_digit
- $H = \{h_0, h_1\}$

NOT a universal hash family:

$$P_{h\in H}\{h(101)=h(111)\}=1>\frac{1}{10}$$

A small universal hash family??

- Here's one:
 - Pick a prime $p \ge M$. (And not much bigger than M)
 - Define

$$f_{a,b}(x) = ax + b \mod p$$

$$h_{a,b}(x) = f_{a,b}(x) \mod n$$

• Define:

$$H = \{ h_{a,b}(x) : a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\} \}$$

A small universal hash family??

- Here's one:
 - Pick a prime $p \ge M$. (And not much bigger than M)
 - Define

$$f_{a,b}(x) = ax + b \mod p$$

$$h_{a,b}(x) = f_{a,b}(x) \mod n$$

• Define:

$$H = \{ h_{a,b}(x) : a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\} \}$$

See CLRS (Thm 11.5) if you are

curious, but you don't need to know

why this is true for this class.

• Claims:

H is a universal hash family.

 \blacktriangleright A random $h \in H$ takes $O(\log M)$ bits to store.

A random $h \in H$ takes $O(\log M)$ bits to store and is fast to evaluate!

$$H = \{ h_{a,b}(x) : a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\} \}$$

$$|H| = p \cdot (p-1) = O(M^2)$$

- Need to store two numbers to represent $h \in H$:
 - $a \text{ is in } \{1, ..., p-1\}$
 - $b \text{ is in } \{0, ..., p-1\}$
 - Store a and b with $2\log(p)$ bits
 - By our choice of p (close to M), that's $O(\log(M))$ bits.
- Also, given a and b, h is fast to evaluate!
 - It takes time O(1) to compute h(x).
- Compare: direct addressing was M bits!
 - Example: If $M = 128^{280}$, log(M) = 1960.

A small universal hash family??

- Here's one:
 - Pick a prime $p \ge M$. (And not much bigger than M)
 - Define

$$f_{a,b}(x) = ax + b \mod p$$

$$h_{a,b}(x) = f_{a,b}(x) \mod n$$

• Define:

$$H = \{ h_{a,b}(x) : a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\} \}$$

See CLRS (Thm 11.5) if you are

curious, but you don't need to know

why this is true for this class.

• Claims:

H is a universal hash family.

A random $h \in H$ takes $O(\log M)$ bits to store.

Outline

- **Hash tables** are another sort of data structure that allows fast INSERT/DELETE/SEARCH.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.
- Hash families are the magic behind hash tables.
- Universal hash families are even more magic.

Want O(1) INSERT/DELETE/SEARCH

We studied this game

- 2. You, the algorithm, chooses a random hash function $h: U \rightarrow \{1, ..., n\}$.
- An adversary chooses any n items $u_1, u_2, \dots, u_n \in U$, and any sequence of LINSERT/DELETE/SEARCH operations on those items.

3. HASH IT OUT

Uniformly random h was good

If we choose h uniformly at random,

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

 That was enough to ensure that all INSERT/DELETE/SEARCH operations took O(1) time in expectation, even on adversarial inputs.

Uniformly random h was bad

 If we actually want to implement this, we have to store the hash function h.

That takes a lot of space!

 We may as well have just initialized a bucket for every single item in U.

• Instead, we chose a function randomly from a smaller set.

All of the hash functions
{I, ..., n}

This elephant represents a huge **SET of functions**

This mouse represents a much smaller SET of functions.

Universal Hash Families

H is a universal hash family if:

If we choose h uniformly at random in H,

for all
$$u_i, u_j \in U$$
 with $u_i \neq u_j$,
$$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

This was all we needed to make sure that the buckets were balanced in expectation!

- We gave an example of a really small universal hash family H, of size $O(M^2)$
 - We needed only $O(\log M)$ bits to store it!
 - And we can apply any $h \in H$ in time O(1)!

Hashing a universe of size M into n buckets, where at most n of the items in M ever show up.

Conclusion:

- We can build a hash table that supports INSERT/DELETE/SEARCH in O(1) expected time
- Requires O(n log(M)) bits of space.
 - O(n) buckets
 - O(n) items with log(M) bits per item
 - O(log(M)) to store the hash function

That's it for data structures (for now)

Achievement unlocked

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!

Next Time

New Unit! Graphs!

Before Next Time

• Pre-lecture exercise!