Module-IV Semantic & Discourse level Analysis

by:

Dr. Soumya Priyadarsini Panda

Sr. Assistant Professor

Dept. of CSE, SIT, Bhubaneswar

Semantic Analysis

Semantic Analysis

- Semantic analysis involves mapping of natural language utterances to some representation of meaning.
- Semantic analysis creates a representation of the meaning of a sentence,
 - where the basic building blocks of the system are: Entities, Concepts, Relations, Predicates
- Many language processing tasks requires non linguistic knowledge of the words besides, morphological and syntactic knowledge.
- A semantic representation bridges the gap between the linguist and common sense knowledge.
- The language used to describe the semantics representations is called a **meaning representation language**

Meaning Representation

• A meaning representation language bridges the gap between linguistic and common sense knowledge.

Example:

A cup on the table

On(cup, table)

Air India serves Hyderabad

Serves(Air India, Hyderabad)

- Requires semantic knowledge
 - Word meanings
 - How word meanings combined in sentences to form sentence meanings

- Examples of meaning representation languages:
 - First order predicate logic (FOPL)
 - Semantic Nets
 - Conceptual dependency

Characteristics of a Meaning Representation Language

- A meaning representation language must be
 - Verifiable
 - Unambiguous
 - Supports canonical forms
 - Support inference and variables
 - Expressiveness

Verifiability:

- Determines the truth of the representation in the knowledge base
- Example:
 - Does Kingfisher serve Hyderabad?
 - Serves(Kingfisher, Hyderabad)

Unambiguous:

• Support representations that have only one possible interpretation

Support for canonical form:

Examples:

Does Air India offers a flight to Hyderabad

Does Air India have a flight to Hyderabad

Does Air India serves Hyderabad

Meaning representation:

Serves(Air India, Hyderabad)

Serves: {offers, have, serves}

Support inference and variables:

Example:

Serves(Air India, Hyderabad)

R(x, y)

Expressiveness:

Should be able to address different domains

Example:

bats in the field

Approaches to Meaning Representation

1. Syntax-driven semantic analysis

2. Semantic grammar

1. Syntax-driven Semantic Analysis

- Meaning of sentence are obtained from meanings of parts
 - E.g. groupings and relations from syntax
- It uses syntactic constituents of a sentence to build its meaning representation

Example:

 $S \rightarrow NP VP$

 $\exists e, x, y \text{ is}_a (e, nomination) \land nominator (e, x) \land nominee (e, y)$ verb \rightarrow nominates $\{\exists e, x, y \text{ is}_a (nomination) \land nominator (e, x) \land nominee (e, y)\}$

 $VP \rightarrow verb NP \{verb_{\cdot sem} (NP_{\cdot sem})\}$

President nominates speaker.

2. Semantic Grammar

- Syntax-driven semantics analysis relies on traditional grammar rules which are not meant for semantic processing.
- Semantic grammar brings semantic capabilities into the grammar
 - A grammar developed with the intension of handling semantics
- Rules and constituents corresponds directly to entities and activities in the domain

Example:

I want to go from Delhi to Chennai on 24th April

A rule can be created of the form:
 InfoRequest: User wants to go <to city> <from city> <TimeExpr>

Lexical Semantics

- It involves studying the meaning of individual words
- It includes words, sub-words, affixes (sub-units), compound words and phrases.
- Lexical semantics plays an important role in semantic analysis, allowing machines to understand relationships between lexical items (words, phrasal verbs, etc.)
- The relationships are useful in organizing words in lexical databases.
- WordNet is a widely known lexical database

Types of Word Relationships

• Hypernym:

• A hypernym is a word with a more general sense. Example:

'Automobile' is a hypernym for 'car', 'truck'

• Hyponym:

- A hyponym is a word with a more specific meaning. Example:
 - 'car' is hyponym of 'automobile'

Polysemy:

Word with different but related meanings
 Example: 'chair'
 'chair person' or 'furniture'

• Homonyms:

• Two words that are sound the same and are spelled alike but have a different meaning.

Example: bank (river bank), bank (Financial institution)

• Synonyms:

• Words that have the same sense or nearly the same meaning as another Examples: happy, ecstatic, overjoyed

• Antonyms:

Words that have opposite meanings

Example: happy, sad

WordNet

• WordNet is a large lexical database for English language that lists all senses of a word.

Example:

"read"

Noun:

1. read (something that is read) "The article was a very good read"

Verb:

- 1. read(interpret something that is written or printed)
 - "read the newspaper"
- 2. Read (scan) "this dictionary can be read by the computer"
- 3. Read (interpret the significance of; human behavior)
 - "She read the sky and predicted rain";
 - "I cant read his strange behavior"

. . . .

11.

Internal Structure of words

Thematic role:

• Thematic role is the semantic relationship between predicate (a verb) and an argument (noun phrase) of a sentence

Example:

Nomination -> nominator

Singing -> singer

Selectional Restrictions:

• Selectional restrictions are semantic constraints that are placed on arguments for a given word sense.

Example:

eat requires some eating object

A table eats grass X

```
\exists e , x, y eating(e), \land agent(e, x) \land theme(e, y)
```

Ambiguity

- Ambiguity refers to a situation where an expression (words or phrases or sentence) can have more than one interpretation.
- Natural languages are highly ambiguous and resolving the varied interpretations in a reasonable time by computerized models is a difficult task.
- Ambiguity can occur at four different levels:
 - Lexical
 - Syntactic
 - Semantic
 - Pragmatic

Lexical Ambiguity

- Lexical ambiguity is the ambiguity of a single word.
- A word may be ambiguous with respect to its internal structure or its syntactic class.

Examples:

book (Noun, Verb)

plant, bat

Syntactic Ambiguity

• Syntactic ambiguity is the ambiguity in grammatical structure leading to different interpretations.

Examples:

"He saw the man with a telescope"

"Stolen painting found by tree"

Semantic Ambiguity

- Semantic ambiguity occurs when meaning of the words can be misinterpreted.
- i.e. the meaning of the words in a phrase can be combined in different ways, leading to different interpretations.
- Different interpretations of the same sentence.

Example:

Pragmatic Ambiguity

• Pragmatic Ambiguity refers to a situation where the context of a phrase gives it multiple interpretations.

Example:

 S_1 : Cake is on the table.

S₂: I have prepared some snacks

 S_3 : Give it to the kids

cake snacks both cake & snacks

 S_1 : Cake is on the table.

 S_2 : I have prepared some snacks

 S_3 : Give **it** to the kids

S₄: Kids enjoyed cake and snacks

=> 'it' refers to "both cake and snacks"

Word Sense Disambiguation (WSD)

- WSD is the process of identifying which sense of a word is used in a sentence when the word has multiple meaning.
- Given a word and its possible senses as defined by a dictionary, the objective is to classify an occurrence of the word in context into one or more of its sense classes.

Example:

- The word "orange" can refer to a color, a fruit, or even a city in Florida
- WSD has its applications in Machine Translation systems, question answering systems, text to speech systems, etc.

Approaches to WSD

• Selectional Restriction-based WSD

Context-based WSD

Selectional Restriction-based WSD

• Selectional restrictions or preferences can be used in parsing to eliminate incorrect meaning representations

Example:

employ

The institute will employ new employees. ('to hire')

The committee employed her proposal. ('to accept')

- Human/organization -> human(to hire)
- Human/organization -> idea(to accept)

Context-based WSD

- Uses the context of ambiguous word
- Two types:
 - Knowledge-based
 - Corpus-based

Knowledge-based WSD

• It utilizes information from an explicit lexicon or knowledge base to disambiguate a word.

• The lexicon or knowledge base used may contain machine readable dictionary or hand coded rules to disambiguate.

Corpus-based WSD

- A corpus-based approach extracts information on word sense from a large sense tagged corpus.
- The information used to annotate an ambiguous word may be:
 - Distributional information (frequency distribution of a sense)
 - Context
 - Additional knowledge sources
- Two approaches to corpus-base WSD
 - 1. Supervised WSD
 - 2. Unsupervised WSD

Supervised WSD:

- Rely on a sense-tagged training corpus for disambiguation.
- Classification algorithms like KNN may be applied for disambiguation.
- With a good quality tagged data set, the overall accuracy in WSD can be very high.

Unsupervised WSD:

- Uses raw or unlabelled text corpora for training and annotated data for evaluation.
- A completely unsupervised algorithm can not perform sense tagging. It can only perform sense discrimination.
- The unsupervised WSD algorithm creates a number of clusters based on the context of an ambiguous word and discriminate between them without labeling them.

Knowledge Sources in WSD

- Context of a word
- Frequency of a sense
- Selectional preferences
- Domain

Issues in Processing Indian Languages

- Indic scripts have a nonlinear structure
- Have a free word order
 - i.e. words can be moved freely within a sentence without changing the meaning of the sentence
- Have rich set of morphological variants
- Extensive and productive use of complex predicates
- Ambiguity

Discourse Analysis

Discourse Analysis

- Attempts to interpret structure and meaning of larger units
 - at paragraph and document level, in terms of words, phrases, clusters and sentences.
- Requires Discourse Knowledge
 - Knowledge of how the meaning of a sentence is determined by processing sentences
- Concerned with linguistic phenomena and extra linguistic phenomena
- Discourse level analysis uses: the situational context, cultural, social, interpersonal and linguistic knowledge

Cohesion

- Cohesion bounds text together.
- It's the textual phenomenon that involves linking elements

Example:

- "Yesterday, my friend invited me to my friend's house. When I reached, my friend was preparing coffee. My friend's father was cleaning dishes. My friend's mother was busy writing a book"
- This type of over specification is avoided through the use of "her"
- "Yesterday, my friend invited me to her house. When I reached, my friend was preparing coffee. Her father was cleaning dishes. Her mother was busy writing a book"
- "Her" is cohesive with "my friend"

Reference

• Link a referring expression to another referring expression in the surrounding expression.

Example:

- Suha bought a printer. It cost her Rs.20000.
 - 'Her' refers to a person named 'Suha'
 - 'It' refers to an entity named 'printer'

Ellipsis

- It's a form of grammatical cohesion.
- It refers to the phenomenon when a part of a sentence is omitted or left un pronounced.
- The reader uses the surrounding text to recover the omitted text

Example:

- I know that lady. Do you?
- Here 'Do You' is an ellipsis stands for 'Do you know that lady'

Reference Resolution

- It is the process of resolving references to earlier or later items in the discourse.
- Reference resolution techniques uses various constraints and preferences to identify the preferred reference.

Example:

Apple on a table. She is eating it

Apple table

Using selectional restrictions 'eat' refers to 'apple' not the 'table'

The two Components of NLP

- NLU is focused on deriving analytic insights from textual data,
 - NLG is used to synthesize textual content by combining analytic output with contextualized narratives

Natural language Generation (NLG)

- NLG deals with automatic generation of natural language sentence using non linguistic inputs.
- The technology can actually tell a story— exactly like that of a human analyst—by writing the sentences and paragraphs for you.
- NLG is one of the fastest growing technologies being adopted in the industry.
- There many use-cases for NLG, but it is seen to be most effective in automating the time-intensive data analysis and reporting activities.

Usable Application of NLG

- Natural language databases: Airline schedule database, Accounting database or spreadsheets, expert system knowledge bases, etc.
- Summary generation
- Language Translator
- Social Media Monitoring
- Chat bots
- Survey Analysis
- Media content creation

NLG Cont...

- The problems with most NLG platforms is that they **hard code intelligence into a template**.
- This makes for systems that are brittle and hard to change and are not able to accept new data without new coding.

- To generate text, the NLG model need to identify:
 - What to write
 - How to write it

Cont...

• There are two major approaches to language generation: using templates and dynamic creation of documents

Phases of NLG

Communicative goal

Cont...

Discourse Planner:

- Decides the ordering and structure of the text that is to be generated
- Output is represented in the form of a tree

• Text Planner:

- Decides words and phrases to express the concepts and structure present in a discourse plan
- Involves sentence aggregation, lexicalization and referencing expression generation

Surface Realization:

• Takes sentence plan produced by the text planner and generate individual sentences

Challenges

- Data availability and quality
- Originality and writing quality
- Bias