





# Battery heater control circuit





NTC output for battery charger and heater circuit (see above)



Batteries & fuses

|   | Sheet: /BATTERY<br>File: BATTERY.scl |                         |          |   |          |  |
|---|--------------------------------------|-------------------------|----------|---|----------|--|
| I | Title: Battery                       | y, Battery Heater, N    | TC       |   |          |  |
| ĺ | Size: A                              | Date: 2020-08-11        |          |   | Rev:     |  |
| ı | KiCad E.D.A. kid                     | ad 5.1.6-c6e7f7d87ubunt | u16.04.1 |   | ld: 4/35 |  |
| _ |                                      | 4                       |          | 5 |          |  |













# Battery heater control circuit





NTC output for battery charger and heater circuit (see above)



Batteries & fuses

| Sheet: /sheet5F4CFCDF/<br>File: BATTERY.sch     |           |  |  |  |
|-------------------------------------------------|-----------|--|--|--|
| Title: Battery, Battery Heater, NTC             |           |  |  |  |
| Size: A Date: 2020-08-11                        | Rev:      |  |  |  |
| KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 11/35 |  |  |  |
| 4                                               | 5         |  |  |  |



#### Maximum Power Point Control (MPPC)

The MPPC input of the LTC3130/LTC3130-1 can be used with an optional external voltage divider to dynamically adjust the commanded inductor current in order to maintain a minimum input voltage when using high resistance sources, such as photovoitals pendes, so as to maximize input power transfer and prevent V<sub>III</sub> from dropping too low under load.

Referring to Figure 4, the MPPC pin is internally connected to the noninverting input of a g<sub>m</sub> amplifiler, whose inverting input is consected to the 1.07 reference. If the voltage at MPPC, using the external voltage divider, falls below the reference voltage, the output of the amplifier pulls the internal VC node low. This reduces the commanded average inductor current so as to reduce the input current and regulate V<sub>M</sub> to the programmed minimum voltage, as to see the contract of the programmed minimum voltage.

$$V_{IN(MPPC)} = 1.00V \cdot \left(1 + \frac{R5}{R6}\right)$$

Note that external compensation should not be required for MPPC loop stability if the input filter capacitor,  $\text{C}_{\text{IN}}$ , is at least  $22\mu\text{F}.$ 

The MPPC divider resistor values can be in the  $M\Omega$  range so as to minimize the input current in very low power applications. However, stray capacitance and noise pickup on the MPPC pin must also be minimized. If the MPPC function is not required, the MPPC pin should be tied to  $V_{CC}$ .

Beware of adding a noise filter capacitor to the MPPC pin, as the added filter pole may cause the MPPC control loop to be unstable.

Note that because Burst Mode operation will be inhibited if the MPPC loop bakes control, the converter will be operating in fixed frequency mode, and will therefore require a minimum of about 6mA of continuous input current to operate. For operation from weaker sources, such as small indoor solar panels, refer to the Applications Information section to see how the RUM pin may be programmed to control the converter in a hysterettic manner while providing an effective MPPC function by maintaining V<sub>M</sub> at the desired voltage. This technique can be used with soccess as weak as 3µA (enough to power the IC in UVI.O and the external RUM divider).



Figure 4. MPPC Amplifier with External Resistor Divider

PGOOD is open drain.
Pulled low when VOUT is less than 7.5% programmed value
High—Z when VOUT is within 5% programmed value

## MODE (Pin 11/Pin 11): Mode Select Pin.

GND D

VIND

MPPC

GNDD-

VS1D

VS2D-

MODE = Low (ground): Enables automatic Burst Mode operation

22uF minimum

 $\mathsf{MODE} = \mathsf{High}$  (tie to  $\mathsf{V}_{\mathsf{CC}}$ ): Fixed frequency PWM operation

Table 1.  $\ensuremath{\text{V}_{\text{OUT}}}$  Program Settings for the LTC3130-1

| VS2             | VS1             | V <sub>OUT</sub> |
|-----------------|-----------------|------------------|
| 0               | 0               | 1.8V             |
| 0               | V <sub>CC</sub> | 3.3V             |
| V <sub>CC</sub> | 0               | 5.0V             |
| V <sub>CC</sub> | V <sub>CC</sub> | 12V              |

Sheet: /SOLAR\_MPPT\_5V/

**→**VOUT

**⊸**GND

-DPG00D

**D**VCC

4.7uF

20uF minimum

File: LTC3130.sch

C? L? C? 22nF <10uH 22nF

LTC3130-1

U?

PVIN

VIN

RUN

MPPC

MODE

VS2

10 VS1

R? 0

R? 0

SW2

VOUT

**EXTVCC** 

PGOOD

VCC

Title: LTC3130

| Size: A      | Date: 2020-08-09                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 13/35 |

4 5

#### Maximum Power Point Control (MPPC)

The MPPC input of the LTC3130/LTC3130-1 can be used with an optional external voltage divider to dynamically adjust the commanded inductor current in order to maintain a minimum input voltage when using high resistance sources, such as photovoltaic panels, so as to maximize input power transfer and prevent  $V_{\rm IM}$  from dropping too low under load.

Referring to Figure 4, the MPPC pin is internally connected to the noninverting input of a g<sub>m</sub> amplifiler, whose inverting input is consected to the 1.07 reference. If the voltage at MPPC, using the external voltage divider, falls below the reference voltage, the output of the amplifier pulls the internal VC node low. This reduces the commanded average inductor current so as to reduce the input current and regulate V<sub>M</sub> to the programmed minimum voltage, as to see the contract of the programmed minimum voltage.

$$V_{IN(MPPC)} = 1.00V \cdot \left(1 + \frac{R5}{R6}\right)$$

Note that external compensation should not be required for MPPC loop stability if the input filter capacitor,  $\text{C}_{\text{IN}}$ , is at least  $22\mu\text{F}.$ 

The MPPC divider resistor values can be in the  $M\Omega$  range so as to minimize the input current in very low power applications. However, stray capacitance and noise pickup on the MPPC pin must also be minimized. If the MPPC function is not required, the MPPC pin should be tied to  $V_{CC}$ .

Beware of adding a noise filter capacitor to the MPPC pin, as the added filter pole may cause the MPPC control loop to be unstable.

Note that because Burst Mode operation will be inhibited if the MPPC loop bakes control, the converter will be operating in fixed frequency mode, and will therefore require a minimum of about 6mA of continuous input current to operate. For operation from weaker sources, such as small indoor solar panels, refer to the Applications Information section to see how the RUM pin may be programmed to control the converter in a hysterettic manner while providing an effective MPPC function by maintaining V<sub>M</sub> at the desired voltage. This technique can be used with soccess as weak as 3µA (enough to power the IC in UVI.O and the external RUM divider).



Figure 4. MPPC Amplifier with External Resistor Divider

PGOOD is open drain.
Pulled low when VOUT is less than 7.5% programmed value
High—Z when VOUT is within 5% programmed value

## MODE (Pin 11/Pin 11): Mode Select Pin.

GND D

VIND

MODE = Low (ground): Enables automatic Burst Mode operation

22uF minimum

 $\mathsf{MODE} = \mathsf{High}$  (tie to  $\mathsf{V}_{\mathsf{CC}}$ ): Fixed frequency PWM operation

Table 1.  $\ensuremath{\text{V}_{\text{OUT}}}$  Program Settings for the LTC3130-1

| VS2             | VS1             | V <sub>OUT</sub> |
|-----------------|-----------------|------------------|
| 0               | 0               | 1.8V             |
| 0               | V <sub>CC</sub> | 3.3V             |
| V <sub>CC</sub> | 0               | 5.0V             |
| V <sub>CC</sub> | V <sub>CC</sub> | 12V              |

Sheet: /sheet5F62C2E5/

**→**VOUT

**⊸**GND

-DPG00D

**D**VCC

4.7uF

20uF minimum

File: LTC3130.sch

C? L? C? 22nF <10uH 22nF

LTC3130-1

U?

PVIN

VIN

RUN

MPPC

MODE

VS2

10 VS1

R? 0

R? 0

GNDD-

VS1D

VS2D-

SW2

VOUT

**EXTVCC** 

PGOOD

VCC

Title: LTC3130

| Size: A      | Date: 2020-08-09                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 14/35 |

4









Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

Current Limit Various R<sub>SET</sub> Values

R<sub>SET</sub> Min. Current Typ. Current Max. Current

| [Ω]  | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |
|      |       |       |       |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F64B64C/

File: CURRENT\_MONITOR.sch

| Size: A      | Date: 2020-09-06                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 17/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

|     | [mA] | [mA] | [mA] |
|-----|------|------|------|
| 309 | 1120 | 1490 | 1860 |
| 340 | 1010 | 1350 | 1690 |
| 374 | 920  | 1230 | 1540 |
| 412 | 840  | 1120 | 1400 |
| 453 | 760  | 1010 | 1270 |
| 499 | 690  | 920  | 1150 |
| 549 | 630  | 840  | 1050 |
|     |      |      |      |

Current Limit Various R<sub>SET</sub> Values

**−D**VOUT

604 732 570 950 790 470 630 520 430 887 650 1070 320 540 350 240 440 1910 300 3090 150

Sheet: /CURRENT\_MONITORS/sheet5F6570FB/

File: CURRENT\_MONITOR.sch

| Size: A         | Date: 2020-09-06                 | Rev:      |
|-----------------|----------------------------------|-----------|
| KiCad E.D.A. ki | cad 5.1.6—c6e7f7d87ubuntu16.04.1 | ld: 18/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

Current Limit Various R<sub>SET</sub> Values

R<sub>SET</sub> Min. Current Typ. Current Max. Current

| [Ω]  | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F662C0D/

File: CURRENT\_MONITOR.sch

| Title: | Current I | Monitor |
|--------|-----------|---------|
|--------|-----------|---------|

| Size: A      | Date: 2020-09-06                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 19/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current L        | imit Various | R <sub>SET</sub> Values |              |
|------------------|--------------|-------------------------|--------------|
| R <sub>SET</sub> | Min. Current | Typ. Current            | Max. Current |
| [Ω]              | Limit        | Limit                   | Limit        |

| [44] | [mA] | [mA] | [mA] |
|------|------|------|------|
| 309  | 1120 | 1490 | 1860 |
|      |      |      |      |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F6AA080/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 20/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current Limit Various R <sub>SET</sub> Values |              |              |              |
|-----------------------------------------------|--------------|--------------|--------------|
| R <sub>SET</sub>                              | Min. Current | Typ. Current | Max. Current |
| [Ω]                                           | Limit        | Limit        | Limit        |

| [44] | [mA] | [mA] | [mA] |
|------|------|------|------|
| 309  | 1120 | 1490 | 1860 |
|      |      |      |      |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F6AA081/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 21/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current Limit Various R <sub>SET</sub> Values |              |              |              |  |
|-----------------------------------------------|--------------|--------------|--------------|--|
| R <sub>SET</sub>                              | Min. Current | Typ. Current | Max. Current |  |
| [Ω]                                           | Limit        | Limit        | Limit        |  |

| feed | [mA] | [mA] | [mA] |
|------|------|------|------|
|      |      |      | . ,  |
| 309  | 1120 | 1490 | 1860 |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F6AA082/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 22/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current L        | imit Various | R <sub>SET</sub> Values |              |
|------------------|--------------|-------------------------|--------------|
| R <sub>SET</sub> | Min. Current | Typ. Current            | Max. Current |
| [Ω]              | Limit        | Limit                   | Limit        |

| [44] | [mA] | [mA] | [mA] |
|------|------|------|------|
| 309  | 1120 | 1490 | 1860 |
|      |      |      |      |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F6AA083/

File: CURRENT\_MONITOR.sch

| Size: A      | Date: 2020-09-06                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 23/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

Current Limit Various R<sub>SET</sub> Values

R<sub>SET</sub> Min. Current Typ. Current Max. Current

| [Ω]  | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F69144B/

File: CURRENT\_MONITOR.sch

| Title: | Current I | Monitor |
|--------|-----------|---------|
|--------|-----------|---------|

| Size: A        | Date: 2020-09-06                   | Rev:      |
|----------------|------------------------------------|-----------|
| KiCad E.D.A. k | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 24/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current L        | imit various | n <sub>SET</sub> values |              |
|------------------|--------------|-------------------------|--------------|
| R <sub>SET</sub> | Min. Current | Typ. Current            | Max. Current |
| [Ω]              | Limit        | Limit                   | Limit        |
|                  | [mA]         | [mA]                    | [mA]         |
| 309              | 1120         | 1490                    | 1860         |
| 340              | 1010         | 1350                    | 1690         |
| 374              | 920          | 1230                    | 1540         |
| 412              | 840          | 1120                    | 1400         |
| 453              | 760          | 1010                    | 1270         |
|                  |              |                         |              |

Current Limit Various R<sub>SET</sub> Values

**−D**VOUT

499 549 576 1150 1050 840 800 630 1000 604 732 570 950 470 630 790 887 520 650 1070 320 430 540 350 240 440 1910 180 300 150 3090 110

Sheet: /CURRENT\_MONITORS/sheet5F685A41/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 25/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

Current Limit Various R<sub>SET</sub> Values

R<sub>SET</sub> Min. Current Typ. Current Max. Current

| [Ω]  | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F67A0F2/

File: CURRENT\_MONITOR.sch

| Title: | Current I | Monitor |
|--------|-----------|---------|
|--------|-----------|---------|

| Size: A        | Date: 2020-09-06                   | Rev:      |
|----------------|------------------------------------|-----------|
| KiCad E.D.A. k | cicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 26/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current Limit various riger values |              |              |      |  |  |  |
|------------------------------------|--------------|--------------|------|--|--|--|
| RSET                               | Min. Current | Typ. Current | Max. |  |  |  |
| [Ω]                                | Limit        | Limit        | L    |  |  |  |
|                                    | [mA]         | [mA]         | l fr |  |  |  |

**−D**VOUT

|      | [mA] | [mA] | [mA] |
|------|------|------|------|
| 309  | 1120 | 1490 | 1860 |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

Sheet: /CURRENT\_MONITORS/sheet5F66E777/

File: CURRENT\_MONITOR.sch

| Size: A      | Date: 2020-09-06                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 27/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current Limit Various R <sub>SET</sub> Values |              |              |              |  |  |  |
|-----------------------------------------------|--------------|--------------|--------------|--|--|--|
| R <sub>SET</sub>                              | Min. Current | Typ. Current | Max. Current |  |  |  |
| [Ω]                                           | Limit        | Limit        | Limit        |  |  |  |
|                                               |              |              |              |  |  |  |

|      | [mA] | [mA] | [mA] |
|------|------|------|------|
| 309  | 1120 | 1490 | 1860 |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F69DE07/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 28/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current Limit Various R <sub>SET</sub> Values |                               |                               |                               |  |  |
|-----------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|
| R <sub>SET</sub><br>[Ω]                       | Min. Current<br>Limit<br>[mA] | Typ. Current<br>Limit<br>[mA] | Max. Current<br>Limit<br>[mA] |  |  |

|      | [mA] | [mA] | [mA] |
|------|------|------|------|
| 309  | 1120 | 1490 | 1860 |
| 340  | 1010 | 1350 | 1690 |
| 374  | 920  | 1230 | 1540 |
| 412  | 840  | 1120 | 1400 |
| 453  | 760  | 1010 | 1270 |
| 499  | 690  | 920  | 1150 |
| 549  | 630  | 840  | 1050 |
| 576  | 600  | 800  | 1000 |
| 604  | 570  | 760  | 950  |
| 732  | 470  | 630  | 790  |
| 887  | 390  | 520  | 650  |
| 1070 | 320  | 430  | 540  |
| 1300 | 260  | 350  | 440  |
| 1910 | 180  | 240  | 300  |
| 3090 | 110  | 150  | 190  |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F69DE06/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 29/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Junenii i               | current chint various n <sub>SET</sub> values |                               |                               |  |  |  |
|-------------------------|-----------------------------------------------|-------------------------------|-------------------------------|--|--|--|
| R <sub>SET</sub><br>[Ω] | Min. Current<br>Limit<br>[mA]                 | Typ. Current<br>Limit<br>[mA] | Max. Current<br>Limit<br>[mA] |  |  |  |
| 309                     | 1120                                          | 1490                          | 1860                          |  |  |  |
| 340                     | 1010                                          | 1350                          | 1690                          |  |  |  |
| 374                     | 920                                           | 1230                          | 1540                          |  |  |  |
| 412                     | 840                                           | 1120                          | 1400                          |  |  |  |
| 453                     | 760                                           | 1010                          | 1270                          |  |  |  |
| 499                     | 690                                           | 920                           | 1150                          |  |  |  |
| 549                     | 630                                           | 840                           | 1050                          |  |  |  |
| 576                     | 600                                           | 800                           | 1000                          |  |  |  |
|                         |                                               |                               |                               |  |  |  |

630 520 430

350 240

650

540

440

300

Current Limit Various R<sub>SET</sub> Values

470

320

1070

1910

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F69DE05/ File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 Id: 30/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current L        | imit Various | R <sub>SET</sub> Values |              |
|------------------|--------------|-------------------------|--------------|
| R <sub>SET</sub> | Min. Current | Typ. Current            | Max. Current |

| Ω    | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |
|      |       |       |       |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5F69DE04/

File: CURRENT\_MONITOR.sch

| Size: A        | Date: 2020-09-06                  | Rev:      |
|----------------|-----------------------------------|-----------|
| KiCad E.D.A. k | icad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 31/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

| Current L        | imit Various | R <sub>SET</sub> Values |              |
|------------------|--------------|-------------------------|--------------|
| R <sub>SET</sub> | Min. Current | Typ. Current            | Max. Current |
|                  | Limit        | Limit                   | Limit        |

| [Ω]  | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |
|      |       |       |       |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet601A160D/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 32/35





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

#### Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

Current Limit Various R<sub>SET</sub> Values

R<sub>SET</sub> Min. Current Typ. Current Max. Current

|        |                                                                                | Limit                                                                       | Limit                                                              | [Ω]                                                                  |
|--------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|
|        | [mA]                                                                           | [mA]                                                                        | [mA]                                                               |                                                                      |
|        | 1860                                                                           | 1490                                                                        | 1120                                                               | 309                                                                  |
|        | 1690                                                                           | 1350                                                                        | 1010                                                               | 340                                                                  |
| $\neg$ | 1540                                                                           | 1230                                                                        | 920                                                                | 374                                                                  |
|        | 1400                                                                           | 1120                                                                        | 840                                                                | 412                                                                  |
|        | 1270                                                                           | 1010                                                                        | 760                                                                | 453                                                                  |
|        | 1150                                                                           | 920                                                                         | 690                                                                | 499                                                                  |
|        | 1050                                                                           | 840                                                                         | 630                                                                | 549                                                                  |
|        | 1000                                                                           | 800                                                                         | 600                                                                | 576                                                                  |
| $\neg$ | 950                                                                            | 760                                                                         | 570                                                                | 604                                                                  |
| $\neg$ | 790                                                                            | 630                                                                         | 470                                                                | 732                                                                  |
| $\neg$ | 650                                                                            | 520                                                                         | 390                                                                | 887                                                                  |
| ╗      | 540                                                                            | 430                                                                         | 320                                                                | 1070                                                                 |
|        | 440                                                                            | 350                                                                         | 260                                                                | 1300                                                                 |
| ╗      | 300                                                                            | 240                                                                         | 180                                                                | 1910                                                                 |
| $\neg$ | 190                                                                            | 150                                                                         | 110                                                                | 3090                                                                 |
|        | 1400<br>1270<br>1150<br>1050<br>1000<br>950<br>790<br>650<br>540<br>440<br>300 | 1120<br>1010<br>920<br>840<br>800<br>760<br>630<br>520<br>430<br>350<br>240 | 840<br>760<br>690<br>630<br>600<br>570<br>470<br>390<br>320<br>260 | 412<br>453<br>499<br>549<br>576<br>604<br>732<br>887<br>1070<br>1300 |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5FABABE2/

File: CURRENT\_MONITOR.sch

|     | _    |      |     |   | • •     |
|-----|------|------|-----|---|---------|
| Tit | <br> | roni | - м | - | 1 T 🔿 I |
|     |      |      |     |   |         |

| Size: A      | Date: 2020-09-06                   | Rev:      |
|--------------|------------------------------------|-----------|
| KiCad E.D.A. | kicad 5.1.6-c6e7f7d87ubuntu16.04.1 | ld: 33/35 |





Z1 = (Z2\*(1-g/vref\*r\*i)) / (g/vref\*r\*i)

Where:

g = Gain

r = shunt resistance

i = max/trip current (in Amps)
Z1 = 'top' resistor in reference divider leg
Z2 = 'bottom' resistor in reference divider leg

When IN+ is greater than the reference voltage, the comparator's open drain output turns on.

The MCP65R46 has two VRef voltages based on the package you get. Either 2.4V or 1.2V

It's slightly adventageous to use the higher 2.4V Reference instead of the 1.2V reference because we can get a larger range of configurable trip currents

Current Limit Various R<sub>SET</sub> Values

R<sub>SET</sub> Min. Current Typ. Current Max. Current

| [Ω]  | Limit | Limit | Limit |
|------|-------|-------|-------|
|      | [mA]  | [mA]  | [mA]  |
| 309  | 1120  | 1490  | 1860  |
| 340  | 1010  | 1350  | 1690  |
| 374  | 920   | 1230  | 1540  |
| 412  | 840   | 1120  | 1400  |
| 453  | 760   | 1010  | 1270  |
| 499  | 690   | 920   | 1150  |
| 549  | 630   | 840   | 1050  |
| 576  | 600   | 800   | 1000  |
| 604  | 570   | 760   | 950   |
| 732  | 470   | 630   | 790   |
| 887  | 390   | 520   | 650   |
| 1070 | 320   | 430   | 540   |
| 1300 | 260   | 350   | 440   |
| 1910 | 180   | 240   | 300   |
| 3090 | 110   | 150   | 190   |

**−D**VOUT

Sheet: /CURRENT\_MONITORS/sheet5FAEE81F/

File: CURRENT\_MONITOR.sch

Title: Current Monitor

Date: 2020-09-06 Size: A Rev: KiCad E.D.A. kicad 5.1.6-c6e7f7d87ubuntu16.04.1 ld: 34/35

