GEOMETRIA ANALÍTICA

Introdução

- Estudo da **recta** no espaço \mathbb{R}^n :
 - a) Definição e propriedades;
 - b) Representação analítica:
 - i) Equação vectorial;
 - ii) Equações cartesianas espaço \mathbb{R}^3 ;
 - iii) Equações cartesiana e reduzida espaço \mathbb{R}^2 .
- Estudo do **plano** no espaço \mathbb{R}^n :
 - a) Definição e propriedades;
 - b) Representação analítica:
 - i) Equação vectorial;
 - ii) Equação cartesiana espaço \mathbb{R}^3 ;
 - c) Vector normal ao plano \mathbb{R}^3 .
- Aplicações geométricas no espaço \mathbb{R}^3 :
 - a) Problemas de distâncias;
 - b) Problemas de ângulos;
 - c) Posições relativas envolvendo:
 - i) Dois planos;
 - ii) Uma recta e um plano;
 - iii) Duas rectas.

Estudo da Recta

Definições

Definição: Sejam, no espaço \mathbb{R}^n , um ponto P e um vector não nulo \vec{a} . Chama-se *recta que passa em P e é paralela ao vector* \vec{a} , designando-se por $L(P;\vec{a})$, ao conjunto de pontos de \mathbb{R}^n tal que

$$L(P; \vec{a}) = \left\{ X \in \mathbb{R}^n : X = P + t\vec{a}, t \in \mathbb{R} \right\}$$

O vector \vec{a} é denominado por *vector direcção* ou *vector director* da recta $L(P; \vec{a})$.

• Se a recta $L(P; \vec{a})$ passa na origem, O, então:

$$L(P;\vec{a}) = L(O;\vec{a}) = \left\{ X \in \mathbb{R}^n : X = t\vec{a}, t \in \mathbb{R} \right\} = L(\vec{a})$$

Neste caso, a *recta* $L(P; \vec{a})$ coincide com o *subespaço* gerado pelo vector não nulo \vec{a} .

Definição: Diz-se que o ponto $Q \in \mathbb{R}^n$ está na recta $L(P; \vec{a})$, se

$$Q \in L(P; \vec{a}) \iff \exists^1 t \in \mathbb{R} : Q = P + t\vec{a} \iff \exists^1 t \in \mathbb{R} : Q - P = t\vec{a}$$

ou ainda,

$$Q \in L(P; \vec{a}) \iff Q - P \in L(\vec{a})$$

Rectas paralelas

Definição: rectas paralelas

No espaço \mathbb{R}^n , as rectas $r = L(P; \vec{a})$ e $r_1 = L(Q; \vec{b})$ dizem-se paralelas, se os seus vectores direcção forem paralelos, isto é, $\vec{a} \parallel \vec{b}$.

- No espaço \mathbb{R}^n , as rectas *paralelas* podem ser classificadas em:
 - i) Iguais ou coincidentes;
 - ii) Estritamente paralelas.

Rectas iguais ou coincidentes

Teorema: Sejam, no espaço \mathbb{R}^n , as rectas $r = L(P; \vec{a})$ e $r_1 = L(P; \vec{b})$, que passam no mesmo ponto P. As rectas dadas dizem-se iguais ou coincidentes, se e só se os seus vectores direcção forem paralelos, isto é,

$$r = r_1 \iff \vec{a} \parallel \vec{b}$$

Teorema: Sejam, no espaço \mathbb{R}^n , as rectas $r = L(P; \vec{a})$ e $r_1 = L(Q; \vec{a})$, que possuem o *mesmo vector direcção* \vec{a} . As rectas dadas dizem-se *iguais* ou *coincidentes*, se e só se $Q \in L(P; \vec{a})$, isto é,

$$r = r_1 \iff Q \in r$$

 As duas proposições atrás apresentadas podem ser reduzidas à seguinte proposição que lhes é equivalente:

Dadas as rectas $r = L(P; \vec{a})$ e $r_1 = L(Q; \vec{b})$ no espaço \mathbb{R}^n , então

$$L(P;\vec{a}) = L(Q;\vec{b}) \iff \vec{a} \parallel \vec{b} \land Q \in L(P;\vec{a})$$

Rectas estritamente paralelas

Teorema: Sejam, no espaço \mathbb{R}^n , a recta $r = L(P; \vec{a})$ e o ponto $Q \notin r$. Então, existe uma e uma só recta que *passa em* Q e é *estritamente paralela* à recta $r = L(P; \vec{a})$; é o caso, por exemplo, da recta $r_1 = L(Q; \vec{a})$.

Teorema: Sejam, no espaço \mathbb{R}^n , as rectas $r = L(P; \vec{a})$ e $r_1 = L(Q; \vec{b})$. As rectas dadas dizem-se estritamente paralelas, se e só se os seus vectores direcção forem paralelos e $Q \notin L(P; \vec{a})$, isto é,

$$r \parallel r_1 \Leftrightarrow \vec{a} \parallel \vec{b} \land Q \notin r$$

Propriedades

Teorema: Sejam P e Q dois pontos distintos do espaço \mathbb{R}^n . Então, existe uma e uma só recta que *passa em P* e Q; é o caso, por exemplo, da recta que *passa em P* e tem como *vector direcção* $\overrightarrow{PQ} = Q - P$, isto é,

$$L(P; \overrightarrow{PQ}) = \left\{ X \in \mathbb{R}^n : X = P + t(Q - P), t \in \mathbb{R} \right\}$$

Teorema: Os vectores \vec{a} e \vec{b} do espaço \mathbb{R}^n são *linearmente dependentes*, se e só se estão na mesma recta que passa na origem.

Representação analítica da recta – \mathbb{R}^n

• No espaço \mathbb{R}^n , seja a recta

$$r = L(P; \vec{a}) = \left\{ X \in \mathbb{R}^n : X = P + t\vec{a}, t \in \mathbb{R} \right\}$$

• Neste caso, é possível associar à recta $r = L(P; \vec{a})$ a função vectorial a uma variável real

$$X(t) = P + t\vec{a}$$

Trata-se de uma função injectiva, tal que:

Domínio: ℝ

Conjunto de Chegada: \mathbb{R}^n

Contradomínio: $r = L(P; \vec{a})$

• A expressão

$$X(t) = P + t\vec{a}$$
, $t \in \mathbb{R}$

é designada por **equação vectorial** da recta $r = L(P; \vec{a})$.

Representação analítica da recta – \mathbb{R}^3

• Substituindo na equação vectorial da recta $r = L(P; \vec{a})$

$$X(t) = P + t\vec{a}$$

as coordenadas dos vectores

$$X = (x, y, z), P = (p_1, p_2, p_3) \in \vec{a} = (a_1, a_2, a_3)$$

obtêm-se as (três) equações paramétricas da recta

$$\begin{cases} x = p_1 + ta_1 \\ y = p_2 + ta_2 \\ z = p_3 + ta_3 \end{cases}, t \in \mathbb{R}$$

 Eliminando o parâmetro real t nas equações paramétricas, obtêm-se as (duas) equações cartesianas da recta

$$\begin{cases} \alpha x + \beta y + \gamma z = \delta \\ \alpha_1 x + \beta_1 y + \gamma_1 z = \delta_1 \end{cases}$$

que dependem unicamente das variáveis cartesianas x, y e z.

 Como veremos oportunamente, as equações cartesianas da recta correspondem à definição da recta através da intersecção de dois planos.

Representação analítica da recta – \mathbb{R}^2

• Substituindo na equação vectorial da recta $r = L(P; \vec{a})$

$$X(t) = P + t\vec{a}$$

as coordenadas dos vectores

$$X = (x, y), P = (p_1, p_2) \in \vec{a} = (a_1, a_2)$$

obtêm-se as (duas) equações paramétricas da recta

$$\begin{cases} x = p_1 + ta_1 \\ y = p_2 + ta_2 \end{cases}, t \in \mathbb{R}$$

 Eliminando o parâmetro real t nas equações paramétricas, obtém-se a equação cartesiana da recta

$$\alpha x + \beta y = \delta$$

que depende unicamente das variáveis cartesianas x e y.

• A equação cartesiana da recta pode ainda ser reescrita sob a forma

$$y = \frac{1}{\beta}(-\alpha x + \delta) \iff y = mx + b , \beta \neq 0$$

que é designada por equação reduzida da recta, em que:

m: declive

b: ordenada na origem

Distância de um ponto a uma recta – \mathbb{R}^n

Teorema: Sejam, no espaço \mathbb{R}^n , a recta $r = L(P; \vec{a})$ e o ponto Q. A distância do ponto Q à recta r, designada por $d_{Q,r}$, é dada por

$$d_{Q,r} = ||Q - I||$$

em que I, o ponto da recta r mais próximo do ponto Q, é dado por

$$I = P + \overrightarrow{\text{proj}}_{\vec{a}} \overrightarrow{PQ} = P + \frac{(Q - P) \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

• Distância da recta à origem, O:

$$d_{O,r} = ||O - I|| = ||I||$$

Distância de um ponto a uma recta – \mathbb{R}^3

Teorema: Sejam, no espaço \mathbb{R}^3 , a recta $r = L(P; \vec{a})$ e o ponto Q. A distância do ponto Q à recta r, designada por $d_{Q,r}$, é dada por

$$d_{Q,r} = \frac{\left\| \overrightarrow{PQ} \times \overrightarrow{a} \right\|}{\left\| \overrightarrow{a} \right\|}$$

• Distância da recta à origem, O:

$$d_{\mathrm{O},r} = \frac{\|P \times \vec{a}\|}{\|\vec{a}\|}$$

Distância de um ponto a uma recta – \mathbb{R}^2

Teorema: Sejam, no espaço \mathbb{R}^2 , a recta r, com equação cartesiana $\alpha x + \beta y = \delta$ e equação reduzida y = mx + b, e o ponto $Q = (q_1, q_2)$. A distância do ponto Q à recta r, designada por $d_{Q,r}$, é dada por

$$d_{Q,r} = \frac{|\alpha q_1 + \beta q_2 - \delta|}{\sqrt{\alpha^2 + \beta^2}} = \frac{|q_2 - mq_1 - b|}{\sqrt{1 + m^2}}$$

Exemplo 1: Seja a recta r, que passa no ponto P = (-3,1,1) e tem como vector direcção $\vec{a} = (1,-2,3)$. Determine:

- a) Uma equação vectorial para a recta r.
- b) Equações cartesianas para a recta r.
- c) A distância do ponto S = (1,1,1) à recta r.
- d) O ponto I da recta r mais próximo do ponto S.

Solução:

a) Equação vectorial da recta r.

$$X(t) = P + t\vec{a}, t \in \mathbb{R} \iff (x, y, z) = (-3, 1, 1) + t(1, -2, 3), t \in \mathbb{R}$$

b) Equações cartesianas da recta r.

$$\begin{cases} 2x + y = -5 \\ -3x + z = 10 \end{cases}$$

c) Distância do ponto S à recta r.

$$d_{S,r} = \frac{2\sqrt{182}}{7}$$

d) Ponto I da recta r mais próximo do ponto S:

$$I = X\left(\frac{2}{7}\right) = \left(-\frac{19}{7}, \frac{3}{7}, \frac{13}{7}\right)$$