Лабораторная работа № 5,6

«Исследование цепи переменного тока с последовательным соединением активного сопротивления и индуктивности и активного сопротивления и ёмкости»

Цель работы: исследовать закономерности неразветвленной цепи переменного тока с активным сопротивлением и катушкой индуктивности при переменной индуктивности. Исследовать закономерности неразветвленной цепи переменного тока с активным сопротивлением и ёмкостью при переменной ёмкости.

Построить в масштабе треугольник напряжений, сопротивлений и мощностей.

В результате выполнения работы студент имеет возможность применить знания и умения области практической профессиональной деятельности:

- разработка, расчет и сборка радиоэлектронной аппаратуры;
- технического обслуживания и ремонта радиоэлектронной аппаратуры;
- настройка и наладка радиоэлектронной аппаратуры.

Для выполнения лабораторной работы студент должен повторить следующие разделы дисциплин:

- основы метрологии (ЭРИ);
- закон Ома для участка цепи (Физика).

1. Оборудование и приборы

- 1.1. Переменный источник электрической энергии ~30 В;
- 1.2. Катушка индуктивности с ферромагнитным сердечником;
- 1.3. Магазин сопротивлений 1 шт.;
- 1.4. Прибор М 92 для измерения переменного тока (предел 10 А);
- 1.5. Прибор М 92 для измерения переменного напряжения (предел 200 В);
- 1.6. Соединительные провода;
- 1.7. Ваттметр.

1.8.

2. Порядок выполнения работы

2.1. Собрать цепь по схеме, предъявить её для проверки руководителю занятий (преподавателю, лаборанту)

Pисунок 1 — Cхема включения R и L

Примечание 1: напряжение питания включать только по указанию преподавателя!

2.2. После проверки цепи руководителем занятия (преподавателем или лаборантом), включить питание и произвести необходимые измерения, результаты занести в таблицу 1 и 2.

Таблица 1 - Результаты измерений

Режим цепи	Измеренные данные				Рассчитанные данные									
	U, B	I, A	Р, Вт	U _R ,	U _L , B	Rц, Ом	Z _L , Om	R _L , Ом	R, Ом	Zц, Ом	Q, BAp	S, BA	L, Гн	φ, град
Катушка без сердечника														
Катушка с сердечником														

Примечание: свободная «колонка» оставлена для дополнительных по выбору измерении, необходимых для ответа на вопрос 3.3.

Рисунок 2 – Схема включения R и С

Примечание1: напряжение питания включать только по указанию преподавателя!

Таблица 2 - Результаты измерений

Режим цепи	Измеренные данные					Рассчитанные данные						
	U, B	I, A	Р, Вт	U _R , B	Uc, B	Хс, Ом	Zц, Ом	Rц, Ом	S, BA	Qc, BAp	φ, град	С, мкФ
C (100)												
½ C (50)												

- 2.3. Написать формулы, необходимые для вычисления указанных в таблице величин, произвести расчеты и полученные данные занести в таблицу.
- 2.4. Построить в масштабе треугольник напряжений, сопротивлений и мощностей для обоих режимов работы этой цепи.

3. Ответить на контрольные вопросы

- 3.1. Что понимают под реактивным сопротивлением катушки, причина его возникновения?
- 3.2. Как и почему изменяется ток в цепи при внесении в катушку ферромагнитного сердечника?
- 3.3. Учитывая, что в данной цепи стоит реальная катушка индуктивности, имеющая своё активное сопротивление и индуктивность, какие дополнительные измерения необходимо произвести, чтобы определить параметры катушки? Произвести расчет, внести в свободную колонку таблицы и закончить расчет.

- 3.4. Для определения индуктивности катушки учесть, что f=50 Γ ц.
- 3.5. Какие величины в результатах расчета должны остаться неизменными в обоих режимах работы цепи?
- 3.6. Что понимают под реактивным сопротивлением конденсатора, причина его возникновения?
- 3.7. Как и почему изменяется ток в цепи при изменении величины емкости?
- 3.8. Для определения ёмкости конденсатора учесть, что f=50Гц.
- 3.9. Как определить R1 и XC, не производя измерений UR и UC?

4. Оформить отчет

1.1. Отчет должен содержать:

Таблицу измерений с данными, полные ответы на контрольные вопросы с их обоснованием.

