

Available online at www.sciencedirect.com



Fluid Phase Equilibria 250 (2006) 138-149



# Solid-liquid phase equilibrium in the systems of LiBr-H<sub>2</sub>O and LiCl-H<sub>2</sub>O

J. Pátek\*, J. Klomfar

Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Dolejškova 5, CZ 182 00 Prague 8, Czech Republic
Received 24 April 2006; received in revised form 7 September 2006; accepted 8 September 2006
Available online 16 September 2006

## Abstract

A set of empirical temperature-molar fraction expressions for solid-liquid equilibrium curves of LiBr- $H_2O$  and LiCl- $H_2O$  systems is presented. The expressions are based upon a body of experimental data that have been compiled and critically evaluated. The equations cover the full composition range for LiCl- $H_2O$  system and compositions up to the salt mole fraction of x = 0.46 (i.e. mass fraction of w = 0.805) for LiBr- $H_2O$ , corresponding to transition from monohydrate to anhydrate. Temperatures and solution compositions at the eutectic point and at transition points between hydrates have been determined from intersections of the curves corresponding to the adjacent hydrate ranges of the phase diagram. Equations of a special structure were used, involving the coordinates of the transition points as parameters, which makes possible their direct non-linear optimization. To obtain more reliable results, a procedure was employed optimizing both the temperature-composition and composition-temperature equations simultaneously. The uncertainty in the obtained values of the transition point coordinates are estimated to be of the order of 1 K for temperature and 0.001 for the composition expressed in salt mole fraction. Gaps in the database are shown to give experimenters orientation for future research.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Aqueous solutions; Salt-water system; Lithium bromide; Lithium chloride; Solubility; Solid-liquid equilibrium

### 1. Introduction

The properties of phase diagrams of condensed aqueous systems of alkali halides are required not only in process design in the chemical industry, in desalination and dehydration processes, but they are of interest to a wider variety of fields such as geochemistry, oceanology, limnology, and atmospheric chemistry. It is also necessary in performance studies of absorption refrigeration machines, absorption heat pumps and heat transformers. The solid-liquid boundary forms the lower temperature limit of the liquid region of the system, determining thus the concentration range within which the system actually could be used in absorption machinery. Crystallization, which might occur in the liquid phase, can cause serious problems during operation. The temperature–saturated liquid composition (T-x) relation describing the boundary (most often called solubility curve) represents an indispensable information to compute the thermodynamic properties of the system. As for the pressure dependence of the solid-liquid equilibrium

of the salt-water system, it is generally considered insignificant.

Among the methods used for determining the solid–liquid equilibrium are measurements of the melting point (last crystal disappearing temperature) or of the freezing point (initial crystallization temperature), classical solubility measurement at constant temperature, and thermal analysis, as a rule conducted at ambient pressure. None of these methods seems to provide substantially more reliable results than the others.

The aim of the present study was to provide a reliable description of the solid–liquid coexistence curve based on critically evaluated experimental data compiled from the literature. A description of the solid–liquid equilibrium boundary of LiCl–H<sub>2</sub>O system has been given by Conde [1] and by Monnin et al. [2] in the form of functional dependence of, respectively, temperature on mass fraction and molality on temperature. As far as we are aware, no similar study concerning LiBr–H<sub>2</sub>O system has been published.

# 2. Two-solids saturation points

In equilibrium with saturated solution, the solid phase of alkali halide-water systems such as LiBr-H<sub>2</sub>O and LiCl-H<sub>2</sub>O

<sup>\*</sup> Corresponding author. Tel.: +420 266053153; fax: +420 28584695. *E-mail address*: patek@it.cas.cz (J. Pátek).



Fig. 1. Schematic phase diagrams for the LiBr-H<sub>2</sub>O and LiCl-H<sub>2</sub>O system.

is formed by ice on the low concentration side, by hydrates with 5, 3, 2, and 1 water molecule as the salt concentration in the solution increases, and by anhydrous salt at the highest concentrations. The solid–liquid phase diagram of the system thus consists of branches corresponding to the particular hydrates separated either by eutectic or by peritectic points, where two solids are precipitating simultaneously (Fig. 1).

To determine the transition temperatures between hydrates and the corresponding saturated solution composition, thermal analysis is used or the transition points are fixed by intersection of extrapolated curves for hydrates. An overview of the results of studies on the two-solids points is given in Tables 1 and 2 for the LiBr–H<sub>2</sub>O and LiCl–H<sub>2</sub>O system, respectively. In the tables, the temperatures are given in degrees Celsius in order not to confuse by the conversion to Kelvin the number of significant figures as it was stated by particular authors. The coordinates of the two-solids points obtained by various authors are scattered over the interval with the width of the order of several K for temperature and of the order of 0.001 for composition expressed in salt mole fraction.

Data found in the literature are conflicting especially for LiCl. Determinations of the transition temperatures show greater discrepancies than would be expected from the estimated accuracy of individual determinations. The results for the eutectic temperature are the most scattered. The thermal analysis seems not to provide much more reliable results then the data obtained from extrapolation. The scatter of the experimental data, most probably, should be ascribed especially to impurities as even small quantities of impurities change the melting point.

# 3. Data selection

Within the present study, 21 experimental studies has been collected containing a total of 288 data points on the solid–liquid equilibrium relation between temperature and composition for the LiBr–H<sub>2</sub>O system and 73 published studies containing 463 data points concerning the LiCl–H<sub>2</sub>O system. A body of 125 and 379 of them, respectively, were selected as the primary data used for fitting of the representative empirical equations. Though the temperature scale corrections are of the order of the data

 $Table \ 1 \\ Literature \ data \ on \ the \ temperature \ and \ the \ saturated \ solution \ composition \ at \ two-solids \ saturation \ points \ of \ the \ LiBr-H_2O \ system$ 

| Solid phases                                             | Bogorodski<br>[3] | Hüttig and<br>Steudemann <sup>TA</sup><br>[4] | ICT <sup>EX</sup><br>[5] | Heiks and<br>Garrett <sup>EX</sup><br>[6] | Biancifiori <sup>EX</sup><br>[7] | Carrett and<br>Woodruff <sup>EX</sup><br>[8] | Kessis <sup>TA</sup><br>[9] | Ennan and<br>Lapshin<br>[10] | Broul<br>et al. <sup>EX</sup><br>[11] | This<br>work <sup>EX</sup> |
|----------------------------------------------------------|-------------------|-----------------------------------------------|--------------------------|-------------------------------------------|----------------------------------|----------------------------------------------|-----------------------------|------------------------------|---------------------------------------|----------------------------|
| Eutectic point (°C)                                      |                   | -72                                           |                          | -67.5                                     | -67.5                            | -73                                          | -67.5                       | -72                          |                                       | -70.3                      |
| Ice + LiBr–5H <sub>2</sub> O<br>(wt.%)                   |                   | 39.1                                          |                          | 39.3                                      | 39.3                             | 39.4                                         | 39.07                       | 39.4                         |                                       | 39.09                      |
| Peritectic point (°C)                                    |                   | -53                                           |                          | -49                                       | -47                              |                                              | -51.2                       |                              |                                       | -50.7                      |
| LiBr-5H2O + LiBr-3H2O (wt.%)                             |                   | 47.3                                          |                          | 48.9                                      | 49.1                             |                                              | 47.5                        |                              |                                       | 47.94                      |
| Peritectic point (°C)                                    | 4                 | 4                                             | 4                        | 5                                         | 4                                |                                              | 2.9                         |                              | 5.7                                   | 4.0                        |
| $LiBr-3H_2O + LiBr-2H_2O$ (wt.%)                         | 56.74             | 59.2                                          | 61.2                     | 59.0                                      | 59.0                             |                                              | 58.2                        |                              | 59.2                                  | 57.81                      |
| Peritectic point (°C)                                    | 44                | 32                                            | 44                       |                                           | 32                               |                                              | 42.8                        |                              | 34.6                                  | 49.1                       |
| LiBr–2H <sub>2</sub> O + LiBr–H <sub>2</sub> O<br>(wt.%) | 65.07             | 65.2                                          | 67.6                     |                                           | 66                               |                                              | 64.7                        |                              | 67.6                                  | 65.98                      |
| Peritectic point (°C)                                    | 159               | 159                                           |                          |                                           |                                  |                                              | 156                         |                              |                                       | 156.0                      |
| LiBr-H <sub>2</sub> O + LiBr<br>(wt.%)                   |                   |                                               |                          |                                           |                                  |                                              | 80.5                        |                              |                                       | 80.50                      |

Method: EX, extrapolation; TA, thermal analysis.

 $Table\ 2$  Literature data on the temperature and the saturated solution composition at two-solids saturation points of the LiCl-H2O system

| Solid phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bogorods<br>[3]          | ki Hüttig and<br>Reuscher      | _                                         |                           | Benrath [13]  | Applebey et al. [14]      | Voskresenskaya<br>and Yanateva <sup>TA</sup><br>[15] | Applebey and<br>Cook [16]       | Garrett and<br>Woodruff [8] | Campbell and<br>Griffiths [17] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-------------------------------------------|---------------------------|---------------|---------------------------|------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------|
| Eutectic point (°C) Ice+LiCl-5H <sub>2</sub> O (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                | -80<br>25.3                               |                           |               |                           | -66<br>24.4                                          |                                 | -73<br>24.85                |                                |
| Peritectic point (°C) $ \label{eq:continuous} LiCl-5H_2O + LiCl-3H_2O \ (wt.\%) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                | -68<br>28.7                               |                           |               |                           | -57<br>30.4                                          |                                 |                             |                                |
| Peritectic point ( $^{\circ}$ C)<br>LiCl-3H <sub>2</sub> O + LiCl-2H <sub>2</sub> O (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | -16.5                          | -20<br>36.9                               | -16.5                     |               |                           | -15.6<br>37.2                                        |                                 |                             |                                |
| Peritectic point (°C) LiCl–2H <sub>2</sub> O + LiCl–H <sub>2</sub> O (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.5<br>47.98            | 12.5                           | 12.5<br>40.5                              | 12.5<br>42.7              | 20<br>45.28   | 19.1                      | 20.5<br>45.6                                         | 19.07                           |                             | 12.5                           |
| Peritectic point (°C)<br>LiCl-H <sub>2</sub> O + LiCl (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 100.5<br>56.5                  | 100.5<br>56.5                             | 100.5<br>56.5             |               | 93.5                      |                                                      | 93.51                           |                             |                                |
| Solid phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Moran <sup>TA</sup> [18] | Schimmel <sup>EX,TA</sup> [19] | Vuillard and<br>Kessis <sup>TA</sup> [20] | Kessis <sup>TA</sup> [21] | Akopov [22]   | Ennan and<br>Lapshin [10] | Broul et al. <sup>EX</sup> [11]                      | Monnin et al. <sup>EX</sup> [2] | Conde <sup>EX</sup> [1]     | This work <sup>EX</sup>        |
| Eutectic point (°C)<br>Ice+LiCl-5H <sub>2</sub> O (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -75.9                    | -84.0<br>25.2                  | -74.75<br>25                              |                           | -75.0<br>24.8 | -67.0<br>23.9             |                                                      | -75.9<br>25.02                  | -75.5<br>25.3               | -78.2<br>25.33                 |
| Peritectic point (°C) $ \label{eq:continuous} \mbox{LiCl-5H}_2\mbox{O} + \mbox{LiCl-3H}_2\mbox{O} \mbox{ (wt.\%)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -65.6                    | -67.2<br>29.3                  | -65.4                                     | -65.4<br>29.15            | -64.5<br>31.2 |                           |                                                      | -65.4<br>29.39                  | -68.2<br>28.7               | -67.2 29.05                    |
| Peritectic point (°C) $ eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_li$ | -20.5                    | -19.0<br>38.0                  | -20.5                                     | -20.5<br>37.80            | -18.0<br>38.5 |                           |                                                      | -17.26<br>38.23                 | -19.9<br>36.9               | -19.5<br>37.59                 |
| Peritectic point (°C)<br>LiCl-2H <sub>2</sub> O + LiCl-H <sub>2</sub> O (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.0                     | 19.0<br>45.2                   |                                           | 19.4<br>45.15             | 18.5<br>45.0  |                           | 18.5<br>45.0                                         | 20.79<br>45.34                  | 19.1<br>45.2                | 19.9<br>45.32                  |
| Peritectic point (°C)<br>LiCl–H <sub>2</sub> O + LiCl (wt.%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.0                     |                                |                                           |                           | 98<br>56.7    |                           | 96.0<br>55.8                                         | 96.59<br>56.19                  | 93.8<br>55.8                | 95.85<br>56.30                 |

Method: EX, extrapolation, TA, thermal analysis.

Table 3 Sources of data on the *T-x* relation of the LiBr-H<sub>2</sub>O system at solid-liquid equilibrium

| Author(s)                            | Year | Range of values |                      | Number of data total/used |
|--------------------------------------|------|-----------------|----------------------|---------------------------|
|                                      |      | Temperature (K) | Mass fraction (wt.%) |                           |
| Bogorodski [3]                       | 1893 | 277–317         | 57–65                | 2/1                       |
| Biltz [26]                           | 1902 | 269–273         | 0.07-0.8             | 4/4                       |
| Jones and Getman [27]                | 1904 | 229–273         | 1–30                 | 7/5                       |
| Jones [28]                           | 1907 | 263–273         | 1–50                 | 8/5                       |
| Hüttig and Reuscher [12]             | 1924 | 277–368         | 59–72                | 20/0                      |
| Hüttig and Steudemann [4]            | 1927 | 201-305         | 39–65                | 4/1                       |
| Steudemann [29]                      | 1927 | 205-266         | 14–55                | 12/11                     |
| Scott and Durham [30]                | 1930 | 298             | 60.4                 | 1/1                       |
| Scatchard and Prentiss [31]          | 1933 | 268–273         | 0.005-9.2            | 29/29                     |
| Simmons et al. [32]                  | 1936 | 298             | 65.3                 | 1/0                       |
| Birnthaler and Lange-Erlangen [33]   | 1938 | 298             | 60.9                 | 1/1                       |
| Blidin [34]                          | 1947 | 298             | 64.7                 | 1/0                       |
| Heiks and Garrett <sup>a</sup> [6]   | 1954 | 206–287         | 11–60                | 38/0                      |
| Biancifiori [7]                      | 1963 | 208-305         | 39–66                | 4/1                       |
| Kessis [9]                           | 1964 | 206-429         | 39–80                | 28/26                     |
| Boryta [35]                          | 1970 | 220-374         | 45–70                | 30/28                     |
| Ennan and Lapshin [10]               | 1973 | 201             | 39.4                 | 1/0                       |
| Raatschen [36]                       | 1985 | 284-334         | 58–66                | 5/5                       |
| Peters et al. [37]                   | 1993 | 242-309         | 50–64                | 7/7                       |
| Murakami <sup>a</sup> [38]           | 2002 | 250-300         | 58–64                | 78/0                      |
| Murakami and Kondo <sup>a</sup> [39] | 2003 | 312–366         | 65–69                | 7/0                       |

<sup>&</sup>lt;sup>a</sup> Data stated only in graphic forms.

experimental uncertainties, all the temperatures given in ITS-48 and IPTS-68 have been converted to ITS-90. To convert solution compositions expressed in mass fraction w of the salt in the solution and in molality m to molar fraction x:

$$x = \frac{w/M_{\text{salt}}}{w/M_{\text{salt}} + (1 - w)/M_{\text{H}_2\text{O}}},$$
(1)

$$x = \frac{m}{m + 1/M_{\text{H}_2\text{O}}},\tag{2}$$

the following values of molar masses were used:  $0.08685 \text{ kg mol}^{-1}$  for LiBr [23],  $0.04239 \text{ kg mol}^{-1}$  for LiCl [23], and  $0.018015268 \text{ kg mol}^{-1}$  for water [24].

Not all the original works provide sufficient comparable evidence on which to base a judgement of the relative merits of the various sets of results. To assess the quality of the particular sets of experimental data, the data on each branch of the solid-liquid equilibrium curve were preliminary fitted with weights equal to the reciprocal of the number of points in each set. In this way, the effect of different number of data points contained in particular data sets was cancelled. Mean relative (i.e., systematic) deviation of each particular data set provides an idea of how the set is shifted as a whole with respect to the common average values represented by the preliminary correlation. Data points with excessive deviation exceeding three times the obtained root mean square deviation  $(3\sigma)$  were rejected. In this way the experimental data were divided into two categories: primary data employed in the development of the correlation and secondary data used only for comparison purposes. The sources of the assessed sets of experimental data are listed in Tables 3 and 4. The number of points used for fitting is given in the tables for the primary data sets while for the secondary data it is equalled to zero. Only original unsmoothed experimental data were included in the data used for fitting of the empirical equations.

A stepwise least-square regression technique by de Reuck [25] has been applied in the present work to determine the optimal set of polynomial terms to be incorporated into the fitting function. The procedure ensures statistical significance of the polynomial terms included and randomness of the deviations of the experimental data from values calculated from the resultant equation.

Conde [1] and Monnin et al. [2] have rejected from their fits the data by Schimmel [19] in the pentahydrate region of the LiCl–H<sub>2</sub>O system, while the points of Hüttig and Steudemann [4] they have accepted here. As a matter of fact there is no well-grounded reason to reject these data of Schimmel. In comparison with the data of Hüttig and Steudemann [4], they show less or comparable scatter and less systematic deviation on all branches of the equilibrium curve belonging to other hydrates. When included into extrapolation, the data of Schimmel [19] result in lower eutectic temperature.

# 4. Methodology

It is the usual way to determine the coordinates of the two-solids saturation point from the intersection of the fits of the adjoining solubility curves (Conde [1], Monin et al. [2]). This procedure, though simple and plausible, brings some difficulties. With limited number of data points, the resultant intersection of the fitting curves can in some cases substantially depend on the choice of independent variable, i.e. whether the T-x data are fitted as a T(x) or an x(T) function. This can be demonstrated by comparison of the results obtained by Conde [1] and by Monin

Table 4 Sources of data on the T-x relation of the LiCl-H<sub>2</sub>O system at solid-liquid equilibrium

| Author(s)                                           | Year         | Range of values |                      | Number of data total/used |
|-----------------------------------------------------|--------------|-----------------|----------------------|---------------------------|
|                                                     |              | Temperature (K) | Mass fraction (wt.%) |                           |
| Kremers [40]                                        | 1856         | 273–433         | 38–59                | 6/5                       |
| Kremers [41]                                        | 1858         | 313–373         | 48–58                | 5/5                       |
| Arrhenius [42]                                      | 1888         | 271–273         | 0.4-1.9              | 4/0                       |
| Engel [43]                                          | 1888         | 273             | 40.5                 | 1/1                       |
| Bogorodski [3]                                      | 1893         | 294             | 48                   | 1/0                       |
| Loomis [44]                                         | 1897         | 271–273         | 0.04-2               | 6/5                       |
| Biltz [26]                                          | 1902         | 270–273         | 0.2–3.3              | 4/4                       |
| Jahn [45]                                           | 1905         | 272–273         | 0.1–1.2              | 9/9                       |
| Cheneveau [46]                                      | 1907         | 292             | 43.4                 | 1/0                       |
| Jahn [47]                                           | 1907         | 272–273         | 0.03-0.44            | 8/8                       |
| Washburn and MacInnes [48]                          | 1911         | 269–272         | 1.4–4                | 5/5                       |
| Piña de Rubies [49]                                 | 1913         | 298             | 44.9                 | 1/0                       |
| Rivett [50]                                         | 1913         | 268–273         | 0.5–4.8              | 7/7                       |
| Rodebush [51]                                       | 1918         | 249–268         | 5–19                 | 4/0                       |
| Schreinemakers and Kayser [52]                      | 1918         | 303             | 46.1                 | 1/1                       |
| Schreinemakers and Noorduyn [53]                    | 1918         | 303             | 46.3                 | 1/1                       |
| Klein and Svandberg [54]                            | 1920         | 271–273         | 0.4–2                | 3/0                       |
| Demassieux [55]                                     | 1923         | 323             | 49.6                 | 1/1                       |
| Hüttig and Reuscher [12]                            | 1924         | 273–433         | 39–59                | 12/11                     |
| Smits et al. [56]                                   | 1924         | 298             | 45.8                 | 1/1                       |
| Deacon [57]                                         | 1927         | 298             | 45.4                 | 1/1                       |
| Hüttig and Steudemann [4]                           | 1927         | 193–374         | 25–56                | 5/3                       |
| Steudemann [29]                                     | 1927         | 199–268         | 19–39                | 14/8                      |
| Palitzsch [58]                                      | 1928         | 298             | 45.77                | 2/2                       |
| Friend and Colley [59]                              | 1931         | 273–361         | 41–55                | 21/21                     |
| Bassett and Sanderson [60]                          | 1932         | 273–353         | 41–53                | 4/4                       |
| Benrath [13]                                        | 1932         | 273–373         | 41–56                | 12/12                     |
| Collins and Cameron [61]                            | 1932         | 297<br>298      | 45.4                 | 1/1<br>1/1                |
| Pearce and Nelson [62]                              | 1932<br>1933 | 268–273         | 44.9<br>0.003–5      | 33/0                      |
| Scatchard and Prentiss [31]<br>Applebey et al. [14] | 1933         | 275–429         | 41–58                | 15/15                     |
| Lannung [63]                                        | 1934         | 291             | 45.48                | 1/0                       |
| Benrath [64]                                        | 1934         | 273–372         | 40–56                | 5/5                       |
| Simmons et al. [32]                                 | 1936         | 298             | 45.9                 | 1/1                       |
| Friend et al. [65]                                  | 1937         | 345–427         | 52–59                | 18/18                     |
| Voskresenskaya and Yanateva [15]                    | 1937         | 207–375         | 4–57                 | 33/16                     |
| Benrath [66]                                        | 1938         | 273–373         | 41–56                | 4/4                       |
| Birnthaler and Lange-Erlangen [33]                  | 1938         | 298             | 45.8                 | 1/1                       |
| Robinson [67]                                       | 1945         | 298             | 45.83                | 1/1                       |
| Garrett and Woodruff [8]                            | 1951         | 200             | 25                   | 1/1                       |
| Johnson and Molstad [68]                            | 1951         | 303-343         | 46–51                | 3/3                       |
| Novoselova and Sosnovskaja [69]                     | 1951         | 273             | 41.3                 | 1/1                       |
| Blidin [70]                                         | 1952         | 298             | 46                   | 2/2                       |
| Blidin [71]                                         | 1953         | 303–313         | 45–48                | 2/1                       |
| Blidin [72]                                         | 1954         | 298–313         | 46–49                | 5/4                       |
| Blidin and Gordienko [73]                           | 1954         | 298             | 45.95                | 1/1                       |
| Campbell and Griffiths [17]                         | 1956         | 276–298         | 41–45                | 4/4                       |
| Campbell and Kartzmark [74]                         | 1956         | 298             | 45.4                 | 1/1                       |
| Moran [18]                                          | 1956         | 197             | 25                   | 1/0                       |
| Plyushchev et al. [75]                              | 1959         | 273–348         | 41–52                | 4/4                       |
| Schimmel [19]                                       | 1960         | 195–285         | 13–43                | 35/30                     |
| Vuillard and Kessis [20]                            | 1960         | 198             | 25                   | 1/1                       |
| Kessis [21]                                         | 1961         | 207–333         | 29–50                | 24/23                     |
| Akopov [22]                                         | 1962         | 198–371         | 25–48                | 9/4                       |
| Ravitch and Yastrebova [76]                         | 1963         | 523-829         | 62–93                | 11/11                     |
| Hasaba et al. [77]                                  | 1964         | 253–433         | 36–59                | 19/14                     |
| Belyaev and Tyuk [78]                               | 1966         | 298             | 45.6                 | 1/1                       |
| Sheveleva [79]                                      | 1966         | 293–323         | 45.5–45.9            | 2/1                       |
| Shevtchuk and Vaisfeld [80]                         | 1967         | 298             | 46.6                 | 1/1                       |
| Momicchioli et al. [81]                             | 1970         | 267–270         | 0.06–14.2            | 22/22                     |
| Vilcu and Irenei [82]                               | 1971         | 258–267         | 6–11                 | 6/6                       |
| Ennan and Lapshin [10]                              | 1973         | 206             | 24.1                 | 1/1                       |

Table 4 (Continued)

| Author(s)                 | Year | Range of values | Range of values      |       |  |
|---------------------------|------|-----------------|----------------------|-------|--|
|                           |      | Temperature (K) | Mass fraction (wt.%) |       |  |
| Gibbard and Fawaz [83]    | 1974 | 267–273         | 0.2–5.7              | 16/13 |  |
| Skvortsov [84]            | 1975 | 293–303         | 45.4–46.2            | 2/2   |  |
| Filipov and Mikelson [85] | 1977 | 298-308         | 45–47                | 2/2   |  |
| Kartzmark [86]            | 1977 | 298             | 45.4                 | 1/1   |  |
| Vaisfeld et al. [87]      | 1977 | 298             | 44.9                 | 1/0   |  |
| Lazorenko et al. [88]     | 1982 | 298-373         | 46–56                | 4/3   |  |
| Sharina et al. [89]       | 1983 | 273             | 40.9                 | 1/1   |  |
| Claudy et al. [90]        | 1984 | 203-258         | 13–34                | 12/2  |  |
| Khripun et al. [91]       | 1986 | 298             | 45.9                 | 1/1   |  |
| Apelblat [92]             | 1993 | 283-313         | 45–47                | 7/6   |  |
| Gomis et al. [93]         | 1996 | 298             | 46                   | 1/1   |  |

et al. [2]. Three data points from the data set of Kessis [21] and three data points of Schimmel [19] fall into the composition interval corresponding to pentahydrate as found by Conde, while according to results by Monnin et al. the some data points belong to the trihydrate region. To avoid such ambiguities, a procedure was used, optimizing simultaneously the T(x) and x(T) equations as independent in such a way that within the data uncertainty both resultant equations generate the same T-x relation.

Polynomials of the following form have been used to fit the data:

$$T(x) = T_{L} + \frac{T_{R} - T_{L}}{x_{R} - x_{L}}(x - x_{L}) + T_{t} \sum_{i=1}^{N} a_{i}(x - x_{L})^{m_{i}} (x_{R} - x)^{n_{i}},$$
(3)

$$x(T) = x_{L} + \frac{x_{R} - x_{L}}{T_{R} - T_{L}}(T - T_{L}) + \sum_{i=1}^{N} b_{i} \left(\frac{T - T_{L}}{T_{t}}\right)^{m_{i}}$$

$$\times \left(\frac{T_{R} - T}{T_{t}}\right)^{n_{i}}, \tag{4}$$

containing explicitly the temperatures  $T_{\rm L}$  and  $T_{\rm R}$  and compositions  $x_{\rm L}$  and  $x_{\rm R}$  of the transition points between hydrates. The subscripts L and R denote here the left and right endpoints of the interval, respectively. To introduce a dimensionless temperature variable and to make the coefficients  $a_i$  and  $b_i$  dimensionless, the water triple point temperature  $T_{\rm t} = 273.16$  K was arbitrarily selected as the reference temperature value. The optimal coordinates of the transition points were found using a simultaneous minimizing of the mean square deviation of the least square

Table 5 Coefficients and exponents of Eq. (3) for the LiBr–H<sub>2</sub>O system

| i | LiBr–5H <sub>2</sub> O <sup>a</sup> |                          |       | LiBr-3H <sub>2</sub> O <sup>b</sup> |       |       |
|---|-------------------------------------|--------------------------|-------|-------------------------------------|-------|-------|
|   | $\overline{a_i}$                    | $m_i$                    | $n_i$ | $\overline{a_i}$                    | $m_i$ | $n_i$ |
| 1 | 2.61161 × 10 <sup>1</sup>           | 1                        | 1     | $2.47039 \times 10^{1}$             | 1     | 1     |
| 2 | $2.38994 \times 10^4$               | 1                        | 3     | $4.65459 \times 10^3$               | 1     | 3     |
| i | LiBr–2H <sub>2</sub> O <sup>c</sup> |                          |       | LiBr–H <sub>2</sub> O <sup>d</sup>  |       |       |
|   | $\overline{a_i}$                    | $m_i$                    | $n_i$ | $\overline{a_i}$                    | $m_i$ | $n_i$ |
| 1 | $1.62375 \times 10^{1}$             | 1                        | 1     | $1.00743 \times 10^{1}$             | 1     | 1     |
| 2 | $2.47098 \times 10^3$               | 1                        | 3     | $3.94593 \times 10^3$               | 1     | 4     |
| i |                                     | Ice <sup>e</sup>         |       |                                     |       |       |
|   |                                     | $\overline{a_i}$         |       | $m_i$                               |       | $n_i$ |
| 1 |                                     | $1.33842 \times 10^{1}$  |       | 1                                   |       | 1     |
| 2 |                                     | $-4.39293 \times 10^{1}$ |       | 2                                   |       | 1     |
| 3 |                                     | $4.02577 \times 10^3$    |       | 3                                   |       | 1     |
| 4 |                                     | $-5.52364 \times 10^4$   |       | 4                                   |       | 1     |
| 5 |                                     | $3.28383 \times 10^5$    |       | 5                                   |       | 1     |

<sup>&</sup>lt;sup>a</sup>  $T_L = 202.8 \text{ K}$ ,  $T_R = 222.4 \text{ K}$ ,  $x_L = 0.1175$ ,  $x_R = 0.1604$ .

<sup>&</sup>lt;sup>b</sup>  $T_L = 222.4 \text{ K}$ ,  $T_R = 277.1 \text{ K}$ ,  $x_L = 0.1604$ ,  $x_R = 0.2213$ .

<sup>&</sup>lt;sup>c</sup>  $T_L$  =277.1 K,  $T_R$  = 322.2 K,  $x_L$  = 0.2213,  $x_R$  = 0.2869.

<sup>&</sup>lt;sup>d</sup>  $T_L = 322.2 \text{ K}, T_R = 429.15 \text{ K}, x_L = 0.2869, x_R = 0.4613.$ 

e  $T_L = 273.16 \text{ K}$ ,  $T_R = 202.8 \text{ K}$ ,  $x_L = 0.0000$ ,  $x_R = 0.1175$ .

Table 6 Coefficients and exponents of Eq. (4) for the LiBr–H<sub>2</sub>O system

| i | LiBr–5H <sub>2</sub> O <sup>a</sup> |                          |       | LiBr-3H <sub>2</sub> O <sup>b</sup> |       |       |
|---|-------------------------------------|--------------------------|-------|-------------------------------------|-------|-------|
|   | $\overline{b_i}$                    | $m_i$                    | $n_i$ | $\overline{b_i}$                    | $m_i$ | $n_i$ |
| 1 | $-6.17446 \times 10^{0}$            | 1                        | 1     | $-7.17618 \times 10^{-1}$           | 1     | 1     |
| 2 | $-1.46770 \times 10^3$              | 3                        | 1     | $-1.02551 \times 10^{+1}$           | 3     | 1     |
| i | LiBr–2H <sub>2</sub> O <sup>c</sup> |                          |       | LiBr–H <sub>2</sub> O <sup>d</sup>  |       |       |
|   | $\overline{b_i}$                    | $m_i$                    | $n_i$ | $\overline{b_i}$                    | $m_i$ | $n_i$ |
| 1 | $-1.06305 \times 10^{0}$            | 1                        | 1     | $-9.25082 \times 10^{-1}$           | 1     | 1     |
| 2 | $-1.90921 \times 10^{1}$            | 3                        | 1     | $-7.22341 \times 10^{0}$            | 3     | 1     |
| I |                                     | Ice <sup>e</sup>         |       |                                     |       |       |
|   |                                     | $\overline{b_i}$         |       | $m_i$                               |       | $n_i$ |
| 1 |                                     | $1.22335 \times 10^{0}$  |       | 1                                   |       | 1     |
| 2 |                                     | $-1.67781 \times 10^{0}$ |       | 1                                   |       | 2     |
| 3 |                                     | $-2.65346 \times 10^2$   |       | 1                                   |       | 4     |
| 4 |                                     | $-1.93594 \times 10^3$   |       | 1                                   |       | 5     |
| 5 |                                     | $-5.16209 \times 10^3$   |       | 1                                   |       | 6     |

<sup>&</sup>lt;sup>a</sup>  $T_L = 202.8 \text{ K}, T_R = 222.4 \text{ K}, x_L = 0.1175, x_R = 0.1604.$ 

fit of the Eqs. (3) and (4) to the experimental data. For each given set of values of the transition point coordinates  $T_L$ ,  $x_L$ ,  $T_R$ , and  $x_R$  the coefficients  $a_i$  and  $b_i$  of the optimal fitting polynomial and the corresponding mean square deviation of the least square fit were computed. Those values of the parameters  $T_L$ ,  $x_L$ ,  $T_R$  and  $x_R$  that minimize the mean square deviation were

accepted as the best estimate of the coordinates of the transition points. In this way, the method guarantees that the resultant transition points will not depend on the choice of the independent variable.

To start the optimizing procedure, the two-solids points found by Conde [1] were employed. Of course, the obtained final

Table 7
Coefficients and exponents of Eq. (3) for the LiCl–H<sub>2</sub>O system

| i | LiCl-5H <sub>2</sub> O <sup>a</sup> |       |       | LiCl-3H <sub>2</sub> O <sup>b</sup> |       |       |
|---|-------------------------------------|-------|-------|-------------------------------------|-------|-------|
|   | $\overline{a_i}$                    | $m_i$ | $n_i$ | $\overline{a_i}$                    | $m_i$ | $n_i$ |
| 1 | $4.84382 \times 10^{1}$             | 1     | 1     | $2.82060 \times 10^{1}$             | 1     | 1     |
| 2 | $-6.09630 \times 10^2$              | 2     | 1     | $7.38829 \times 10^3$               | 1     | 3     |
| i | LiCl-2H <sub>2</sub> O <sup>c</sup> |       |       | LiCl-H <sub>2</sub> O <sup>d</sup>  |       |       |
|   | $\overline{a_i}$                    | $m_i$ | $n_i$ | $\overline{a_i}$                    | $m_i$ | $n_i$ |
| 1 | $1.85930 \times 10^{1}$             | 1     | 1     | $1.42944 \times 10^{1}$             | 1     | 1     |
| 2 | $3.41697 \times 10^3$               | 1     | 3     | $1.10409 \times 10^3$               | 1     | 3     |
| i | LiCle                               |       |       | $Ice^f$                             |       |       |
|   | $\overline{a_i}$                    | $m_i$ | $n_i$ | $\overline{a_i}$                    | $m_i$ | $n_i$ |
| 1 | $5.51421 \times 10^{0}$             | 3     | 1     | $1.21511 \times 10^{1}$             | 1     | 1     |
| 2 | $1.00361 \times 10^{1}$             | 1     | 2     | $3.84172 \times 10^6$               | 2     | 6     |
| 3 | $9.78161 \times 10^{1}$             | 1     | 7     | $1.78237 \times 10^3$               | 3     | 1     |
| 4 |                                     |       |       | $-6.26807 \times 10^7$              | 6     | 2     |
| 5 |                                     |       |       | $1.16751 \times 10^{11}$            | 8     | 3     |

<sup>&</sup>lt;sup>a</sup>  $T_L = 195.0 \text{ K}$ ,  $T_R = 206.0 \text{ K}$ ,  $x_L = 0.1260$ ,  $x_R = 0.1482$ .

<sup>&</sup>lt;sup>b</sup>  $T_L = 222.4 \text{ K}$ ,  $T_R = 277.1 \text{ K}$ ,  $x_L = 0.1604$ ,  $x_R = 0.2213$ .

<sup>&</sup>lt;sup>c</sup>  $T_L = 277.1 \text{ K}$ ,  $T_R = 322.2 \text{ K}$ ,  $x_L = 0.2213$ ,  $x_R = 0.2869$ .

<sup>&</sup>lt;sup>d</sup>  $T_L = 322.2 \text{ K}, T_R = 429.15 \text{ K}, x_L = 0.2869, x_R = 0.4613.$ 

<sup>&</sup>lt;sup>e</sup>  $T_L = 273.16 \text{ K}$ ,  $T_R = 202.8 \text{ K}$ ,  $x_L = 0.0000$ ,  $x_R = 0.1175$ .

<sup>&</sup>lt;sup>b</sup>  $T_L = 206.0 \text{ K}, T_R = 253.7 \text{ K}, x_L = 0.1482, x_R = 0.2038.$ 

<sup>&</sup>lt;sup>c</sup>  $T_L = 253.7 \text{ K}$ ,  $T_R = 293.1 \text{ K}$ ,  $x_L = 0.2038$ ,  $x_R = 0.2605$ .

<sup>&</sup>lt;sup>d</sup>  $T_L = 293.1 \text{ K}, T_R = 369.0 \text{ K}, x_L = 0.2605, x_R = 0.3538.$ 

 $<sup>^{</sup>e}$   $T_{L} = 369.0 \text{ K}, T_{R} = 887.15 \text{ K}, x_{L} = 0.3538, x_{R} = 1.0000.$ 

<sup>&</sup>lt;sup>f</sup>  $T_L = 273.16 \text{ K}$ ,  $T_R = 195.0 \text{ K}$ ,  $x_L = 0.0000$ ,  $x_R = 0.1260$ .



Fig. 2. Water–ice equilibrium curve for the LiBr– $H_2O$  system.  $(\nabla)$  Biancifiori [7],  $(\triangleleft)$  Biltz [26],  $(\triangle)$  Ennan and Lapshin [10],  $(\times)$  Hüttig and Steudemann [4],  $(\bigcirc)$  Jones and Getman [27], (+) Jones [28],  $(\diamondsuit)$  Kessis [9],  $(\square)$  Scatchard and Prentiss [31],  $(\triangleright)$  Steudemann [29].

results are selfconsistent, i.e. when used as the starting values in the optimization of the two-solids point coordinates, the same values are reproduced by the procedure.

# 5. Results

Tables 5–8 give the coefficients  $a_i$  and  $b_i$  and the exponents  $n_i$  and  $m_i$  of Eqs. (3) and (4) for the LiBr–H<sub>2</sub>O and LiCl–H<sub>2</sub>O systems, respectively. The differences between Eqs. (3) and (4) are of the order of 0.1 K in temperature and of the order of 0.0001 in composition. The only exceptions are formed by the monohydrate region of the LiBr–H<sub>2</sub>O system and by the anhy-

Table 8 Coefficients and exponents of Eq. (4) for the LiCl $-H_2O$  system

|   |                                     |       |       | = •                                 |       |       |
|---|-------------------------------------|-------|-------|-------------------------------------|-------|-------|
| i | LiCl-5H <sub>2</sub> O <sup>a</sup> |       |       | LiCl-3H <sub>2</sub> O <sup>b</sup> |       |       |
|   | $\overline{b_i}$                    | $m_i$ | $n_i$ | $\overline{b_i}$                    | $m_i$ | $n_i$ |
| 1 | $-2.34477 \times 10^2$              | 2     | 1     | $-9.46096 \times 10^{-1}$           | 1     | 1     |
| 2 | $-4.40739 \times 10^3$              | 1     | 3     | $-2.03875 \times 10^{+1}$           | 3     | 1     |
| i | LiCl-2H <sub>2</sub> O <sup>c</sup> |       |       | LiCl-H <sub>2</sub> O <sup>d</sup>  |       |       |
|   | $\overline{b_i}$                    | $m_i$ | $n_i$ | $\overline{b_i}$                    | $m_i$ | $n_i$ |
| 1 | $-1.15613 \times 10^{0}$            | 1     | 1     | $-5.57535 \times 10^{-1}$           | 1     | 1     |
| 2 | $-2.78454 \times 10^{1}$            | 3     | 1     | $-4.01877 \times 10^0$              | 3     | 1     |
| i | LiCle                               |       |       | Ice <sup>f</sup>                    |       |       |
|   | $\overline{b_i}$                    | $m_i$ | $n_i$ | $\overline{b_i}$                    | $m_i$ | $n_i$ |
| 1 | $-1.52782 \times 10^{-1}$           | 1     | 1     | $1.28989 \times 10^{1}$             | 3     | 1     |
| 2 | $8.24563 \times 10^{-3}$            | 9     | 4     | $-1.22492 \times 10^{1}$            | 1     | 2     |
| 3 | $-6.23202 \times 10^{-2}$           | 3     | 2     | $1.21810 \times 10^5$               | 6     | 3     |
| 4 | $8.28259 \times 10^{-3}$            | 2     | 5     | $-1.03126 \times 10^3$              | 2     | 4     |
| 5 | $1.79910 \times 10^{-2}$            | 6     | 5     |                                     |       |       |
|   |                                     |       |       |                                     |       |       |

<sup>&</sup>lt;sup>a</sup>  $T_L = 195.0 \text{ K}$ ,  $T_R = 206.0 \text{ K}$ ,  $x_L = 0.1260$ ,  $x_R = 0.1482$ .



Fig. 3. The pentahydrate and trihydrate branches of the solid–liquid phase diagram of the LiBr– $H_2O$  system. ( $\nabla$ ) Biancifiori [7], ( $\triangle$ ) Bogorodski [3], ( $\bigcirc$ ) Boryta [35], ( $\times$ ) Hüttig and Steudemann [4], (+) Jones [28], ( $\triangleright$ ) Steudemann [29], ( $\Diamond$ ) Kessis [9], ( $\triangleleft$ ) Peters et al. [37].



Fig. 4. The dihydrate branch of the solid—liquid phase diagram of the LiBr– $H_2O$  system. ( $\triangledown$ ) Biancifiori [7], (+) Birnthaler and Lange-Erlangen [33], ( $\blacktriangledown$ ) Blidin [34], ( $\triangle$ ) Bogorodski [3], ( $\bigcirc$ ) Boryta [35], ( $\blacktriangle$ ) Hüttig and Reuscher [12], ( $\times$ ) Hüttig and Steudemann [4], ( $\diamondsuit$ ) Kessis [9], ( $\multimap$ ) Peters et al. [37], ( $\square$ ) Raatschen [36], ( $\blacksquare$ ) Scott and Durham [30], ( $\bullet$ ) Simmons et al. [32], (---) Broul et al. [11].

<sup>&</sup>lt;sup>b</sup>  $T_L = 206.0 \text{ K}, T_R = 253.7 \text{ K}, x_L = 0.1482, x_R = 0.2038.$ 

<sup>&</sup>lt;sup>c</sup>  $T_L = 253.7 \text{ K}$ ,  $T_R = 293.1 \text{ K}$ ,  $x_L = 0.2038$ ,  $x_R = 0.2605$ .

<sup>&</sup>lt;sup>d</sup>  $T_L = 293.1 \text{ K}$ ,  $T_R = 369.0 \text{ K}$ ,  $x_L = 0.2605 x_R = 0.3538$ .

<sup>&</sup>lt;sup>e</sup>  $T_L = 369.0 \text{ K}$ ,  $T_R = 887.15 \text{ K}$ ,  $x_L = 0.3538$ ,  $x_R = 1.0000$ .

<sup>&</sup>lt;sup>f</sup>  $T_L = 273.16 \text{ K}, T_R = 195.0 \text{ K}, x_L = 0.0000, x_R = 0.1260.$ 



Fig. 5. The monohydrate branch of the solid–liquid phase diagram of the LiBr–H<sub>2</sub>O system. ( $\bigcirc$ ) Boryta [35], ( $\blacktriangle$ ) Hüttig and Reuscher [12], ( $\diamondsuit$ ) Kessis [9], ( $\triangle$ ) Murakami and Kondo [39], ( $\square$ ) Raatschen [36], (--) Broul et al. [11].

drate region for the LiCl– $H_2O$  system, where the differences are by one order of magnitude greater. The obtained coordinates of the two-solids points are given in Tables 1 and 2. In Figs. 2–5, T–x experimental data points are depicted together with solid–liquid equilibrium curves computed from the resultant representative equations (3) for the LiBr– $H_2O$  system. Analogous information is shown in Figs. 6–10 for the LiCl– $H_2O$  system.

The absolute and relative root mean square deviations of the experimental data from the Eqs. (3) and (4) are given for the LiBr– $H_2O$  and the LiCl– $H_2O$  system in the Tables 9 and 10, respectively. The deviations give an idea of the scatter in the data around the fitted curves and through it an idea of the uncertainty of the temperature and molar fraction when calculated from the model.



Fig. 7. The pentahyderate and trihydrate branches of the solid–liquid phase diagram of the LiCl– $H_2O$  system. ( $\Diamond$ ) Akopov [22], ( $\times$ ) Claudy et al. [90], ( $\lhd$ ) Hasaba et al. [77], ( $\bullet$ ) Hüttig and Steudemann [4], ( $\triangle$ ) Kessis [21], ( $\bigcirc$ ) Schimmel [19], ( $\triangledown$ ) Steudemann [29], ( $\square$ ) Voskresenskaya and Yanateva [15], (---) Conde [1], ( $\cdots$ ) Monnin et al. [2].

Table 9 LiBr-H<sub>2</sub>O system

| Solid phases           | T(x), Eq. (3) | 3)           | x(T), Eq. (4) |              |  |
|------------------------|---------------|--------------|---------------|--------------|--|
|                        | RMSD<br>(K)   | RMSD%<br>(%) | RMSD          | RMSD%<br>(%) |  |
| Ice                    | 1.0           | 0.45         | 0.0017        | 5.3          |  |
| LiBr-5H <sub>2</sub> O | 0.2           | 0.10         | 0.0008        | 0.5          |  |
| LiBr-3H <sub>2</sub> O | 1.9           | 0.76         | 0.0022        | 1.1          |  |
| LiBr-2H <sub>2</sub> O | 2.5           | 0.83         | 0.0040        | 1.5          |  |
| LiBr-H <sub>2</sub> O  | 3.9           | 1.10         | 0.0037        | 1.1          |  |

Absolute (RMSD) and relative (RMSD%) root mean square deviations of the experimental *T*–*x* data from Eqs. (3) and (4).





Fig. 6. Water-ice equilibrium curve for the LiCl- $H_2O$  system. (a) ( $\bigcirc$ ) Gibbard and Fawaz [83], (\*) Jahn [45], ( $\square$ ) Jahn [28], ( $\triangle$ ) Klein and Svandberg [54], (+) Loomis [44], ( $\nabla$ ) Rivett [50], ( $\Diamond$ ) Scatchard and Prentiss [31], ( $\triangleright$ ) Washburn and MacInnes [48]. (b) ( $\Diamond$ ) Akopov [22], ( $\triangle$ ) Arrhenius [42], (+) Biltz [26], ( $\times$ ) Claudy et al. [90], ( $\blacklozenge$ ) Ennan and Lapshin [10], ( $\blacksquare$ ) Garrett and Woodruff [8], ( $\bullet$ ) Hüttig and Steudemann [4], (\*) Momicchioli et al. [81], ( $\triangleleft$ ) Moran [18], ( $\bigcirc$ ) Schimmel [19], ( $\nabla$ ) Steudemann [29], ( $\triangleright$ ) Vilcu and Irenei [82], ( $\square$ ) Voskresenskaya and Yanateva [15], ( $\blacktriangle$ ) Vuillard and Kessis [20], ( $\blacktriangleright$ ) Rodebush [51], (---) Conde [1], (····) Monnin et al. [2].



Fig. 8. The dihydrate branch of the solid–liquid phase diagram of the LiCl– $H_2O$  system. (a) ( $\Diamond$ ) Akopov [22], (+) Apelblat [92], ( $\bigcirc$ ) Applebey et al. [14], ( $\square$ ) Bassett and Sanderson [60], (\*) Benrath [13], ( $\triangleright$ ) Benrath [64], ( $\triangle$ ) Benrath [66], ( $\nabla$ ) Campbell and Kartzmark [74], ( $\blacksquare$ ) Engel [43], ( $\times$ ) Friend and Colley [59], ( $\triangleleft$ ) Hasaba et al. [77], ( $\blacktriangle$ ) Hüttig and Reuscher [12], ( $\blacksquare$ ) Hüttig and Steudemann [4]. (b) (\*) Cheneveau [46], ( $\triangle$ ) Kessis [21], (+) Kremers [40], ( $\Diamond$ ) Novoselova and Sosnovskaya [69], ( $\triangleright$ ) Plyushchev et al. [75], ( $\bigcirc$ ) Schimmel [19], ( $\nabla$ ) Steudemann [29], ( $\square$ ) Voskresenskaya and Yanateva [15], (---) Conde [1], ( $\cdots$ ) Monnin et al. [2].



Fig. 9. The monohydrate branch of the solid-liquid phase diagram of the LiCl- $H_2O$  system. (a) ( $\blacklozenge$ ) Akopov [22], (+) Apelblat [92], ( $\bigcirc$ ) Applebey et al. [14], ( $\square$ ) Bassett and Sanderson [60], ( $\lozenge$ ) Belyaev and Tyuk [78], (\*) Benrath [13], ( $\triangleright$ ) Benrath [64], ( $\triangle$ ) Benrath [66], ( $\triangledown$ ) Birnthaler and Lange-Erlangen [33], ( $\times$ ) Blidin [70], ( $\triangleleft$ ) Blidin [71], ( $\blacktriangle$ ) Bogorodski [3], ( $\blacktriangledown$ ) Demassieux [55]. (b) (+) Blidin [72], (\*) Blidin and Gordienko [73], ( $\times$ ) Campbell and Griffiths [17], ( $\triangleright$ ) Campbell and Kartzmark [74], ( $\triangleleft$ ) Collins and Cameron [61], ( $\triangle$ ) Deacon [57], ( $\blacktriangle$ ) Friend et al. [65], ( $\square$ ) Hasaba et al. [77], ( $\square$ ) Hüttig and Reuscher [12], ( $\square$ ) Johnson and Molstad [68], ( $\square$ ) Kessis [21], ( $\square$ ) Khripun et al. [91], ( $\square$ ) Kremers [40], ( $\square$ ) Kremers [41]. (c) (\*) Filipov and Mikelson [85], ( $\square$ ) Friend and Colley [59], (+) Gomis et al. [93], ( $\square$ ) Kartzmark [86], ( $\square$ ) Lazorenko et al. [88], ( $\square$ ) Pearce and Nelson [62], ( $\square$ ) Plyushchev et al. [75], ( $\square$ ) Vaisfeld et al. [87], (d) (\*) Robinson [67], ( $\square$ ) Sheveleva [79], (+) Shevtchuk and Vaisfeld [80], ( $\square$ ) Schreinemakers and Kayser [52], ( $\square$ ) Simmons et al. [32], ( $\square$ ) Skvortsov [84], ( $\square$ ) Smits et al. [56], ( $\square$ ) Schreinemakers and Noorduyn [53], ( $\square$ ) Voskresenskaya and Yanateva [15], ( $\square$ ) Conde [1], ( $\square$ ) Monnin et al. [2].





Fig. 10. The pure solid LiCl branch of the solid—liquid phase diagram of the LiCl−H<sub>2</sub>O system. (○) Applebey et al. [14], (▲) Friend et al. [65], (⊲) Hasaba et al. [77], (♦) Hüttig and Reuscher [12], (●) Hüttig and Steudemann [4], (■) Kremers [40], (▼) Kremers [41], (△) Ravitch and Yastrebova [76], (□) Voskresenskaya and Yanateva [15], (---) Conde [1], (····) Monnin et al. [2].

Table 10 LiCl-H2O system

| Solid phases           | <i>T</i> ( <i>x</i> ), Eq. (3) |           | <i>x</i> ( <i>T</i> ), Eq. (4) |           |  |
|------------------------|--------------------------------|-----------|--------------------------------|-----------|--|
|                        | RMSD (K)                       | RMSD% (%) | RMSD                           | RMSD% (%) |  |
| Ice                    | 0.06                           | 0.03      | 0.0001                         | 2.4       |  |
| LiCl-5H <sub>2</sub> O | 1.1                            | 0.58      | 0.0022                         | 1.6       |  |
| LiCl-3H <sub>2</sub> O | 1.4                            | 0.60      | 0.0019                         | 1.0       |  |
| LiCl-2H <sub>2</sub> O | 1.7                            | 0.62      | 0.0028                         | 1.2       |  |
| LiCl-H <sub>2</sub> O  | 2.7                            | 0.85      | 0.0039                         | 1.2       |  |
| LiCl                   | 5.7                            | 1.40      | 0.0030                         | 0.7       |  |

Absolute (RMSD) and relative (RMSD%) root mean square deviations of the experimental T-x data from Eqs. (3) and (4).

# 6. Conclusion

Two sets of empirical equations describing solid-liquid boundary for LiBr-H2O and LiCl-H2O systems has been developed based upon a body of critically assessed experimental data. Temperature and composition of the liquid phase corresponding to the two-solids saturation points were derived from the data. To obtain unambiguous coordinates of the transition points a method based on combined linear and non-linear optimization procedure was used. The experimental solid-liquid equilibrium data are available in the full composition range for LiCl-H<sub>2</sub>O system and up to the molar fraction x = 0.46 for LiBr-H<sub>2</sub>O corresponding to transition from monohydrate to anhydrate. The description of the solid-liquid boundary is based on data obtained by many different authors using at least four different methods. Therefore common systematic error in the data can be considered as negligible. The relative uncertainties associated with correlation can be estimated exclusively on the regression statistic (Tables 9 and 10) to be near  $\pm 1\%$  both for temperature and composition.

Comparisons of the available measurements on the solid-liquid equilibrium of the LiBr-H<sub>2</sub>O and LiCl-H<sub>2</sub>O systems have shown that the amount of available experimental data is far less valuable to establish a description of that property of the systems than it might appear at a first glance. Some of the available sets of the solid-liquid equilibrium data are only of limited value, because they show large scatter or systematic deviations when compared to other data. The largest gap in the data on the LiCl-H<sub>2</sub>O system is clearly found at the region of compositions corresponding to saturated solution in equilibrium with pentahydrate. The LiBr-H<sub>2</sub>O system is generally much less studied compared to the LiCl-H<sub>2</sub>O system. No data are available for solutions in phase equilibrium with anhydrous LiBr.

## List of symbols

coefficients of the fitting polynomial  $a_i$ coefficients of the fitting polynomial  $b_i$ molality (mol kg $^{-1}$ ) m exponents of the fitting polynomial  $m_i$ M  $molar mass (kg mol^{-1})$ degree of a polynomial term n exponents of the fitting polynomial  $n_i$ N number of the fitting polynomial terms **RMSD** absolute root mean square deviation RMSD = [(1/N)] $\sum (z_{\rm exp} - z_{\rm cal})^2]^{1/2}$ RMSD% relative root mean square deviation (%) RMSD% =

 $100[(1/N)\sum(z_{\rm exp}/z_{\rm cal}-1)^2]^{1/2}$ 

temperature (°C)

Ttemperature (K)

mass fraction of salt in the solution  $\boldsymbol{w}$ 

molar fraction of salt in the solution  $\boldsymbol{x}$ 

### Subscripts

left endpoint of the hydrate interval R right endpoint of the hydrate interval

at triple point

# Physical constants

 $0.018015268 \,\mathrm{kg}\,\mathrm{mol}^{-1}$  $M_{\mathrm{H}_2\mathrm{O}}$  $0.08685 \,\mathrm{kg}\,\mathrm{mol}^{-1}$  $M_{\rm LiBr}$ 

 $0.04239 \,\mathrm{kg}\,\mathrm{mo}^{-1}$  $M_{\rm LiCl}$ 

 $T_{\rm t}$ 273.16 K

# Acknowledgement

The work described in this paper has been performed under the research intention No. AV0Z20760514 awarded by the Academy of Sciences of the Czech Republic.

#### References

- [1] M.R. Conde, Int. J. Therm. Sci. 43 (2004) 367–382.
- [2] Ch. Monnin, M. Dubois, N. Papaiconomou, J.P. Simonin, J. Chem. Eng. Data 47 (2002) 1331–1336.
- [3] A.Ya. Bogorodski, J. Russ. PhysChem. Soc. 25 (1893) 318–342.
- [4] G.F. Hüttig, W. Steudemann, Z. Phys. Chem. Stöechiom. Verwandtschaftsl. 126 (1927) 105–117.
- [5] International Critical Tables of Numerical Data, Physics, Chemistry and Technology, 1st ed., vol. III, McGraw-Hill Book Company, New York, 1928.
- [6] J.R. Heiks, A.B. Garrett, J. Am. Chem. Soc. 76 (1954) 2587-2590.
- [7] M.A. Biancifiori, Termotechnica 17 (1963) 437–444.
- [8] A.B. Garrett, S.A. Woodruff, J. Phys. Colloid Chem. 55 (1951) 477-490.
- [9] J.J. Kessis, Bull. Soc. Chim. Fr. (1964) 48-52.
- [10] A.A. Ennan, V.A. Lapshin, Zh. Struk. Khim. 14 (1973) 21-29.
- [11] M. Broul, J. Nývlt, O. Söhnel, Solubility in Organic Compounds, Physical Science Data 6, Elsevier, Amsterdam, 1981.
- [12] G.F. Hüttig, F. Reuscher, Z. Anorg. Allg. Chem. 137 (1924) 155–180.
- [13] H. Benrath, Z. Anorg. Allg. Chem. 205 (1932) 417-424.
- [14] M.P. Applebey, F.H. Crawford, K. Gordon, J. Chem. Soc. 136 (1934) 1665–1671.
- [15] N.K. Voskresenskaya, O.K. Yanateva, Izv. Akad. Nauk. SSSR, Otd. Mat. Estestv. Nauk., Ser. Khim. 1 (1937) 97–121.
- [16] M.P. Applebey, R.P. Cook, J. Chem. Soc. 140 (1938) 547.
- [17] A.N. Campbell, J.E. Griffiths, Can. J. Chem. 34 (1956) 1647-1661.
- [18] H.E. Moran, J. Phys. Chem. 60 (1956) 1666-1667.
- [19] F.A. Schimmel, J. Chem. Eng. Data 5 (1960) 519-520.
- [20] G. Vuillard, J.J. Kessis, Bull. Soc. Chim. Fr. 28 (1960) 2063–2067.
- [21] J.J. Kessis, Bull. Soc. Chim. Fr. 29 (1961) 1503–1504.
- [22] E.K. Akopov, Zh. Neorg. Khim. 7 (1962) 385-388.
- [23] T.B. Coplen, J. Phys. Chem. Ref. Data 30 (2001) 701-712.
- [24] W. Wagner, A. Pruß, J. Phys. Chem. Data 31 (2002) 387-535.
- [25] K.M. de Reuck, Cryogenics 19 (1979) 505-512.
- [26] W. Biltz, Z. Phys. Chem. Stöechiom. Verwandtschaftsl. 49 (1902) 185–221.
- [27] H.C. Jones, F.H. Getman, Z. Phys. Chem. Stöechiom. Verwandtschaftsl. 49 (1904) 385–455.
- [28] H.C. Jones, Carnegie Publication No. 60, Washington, DC, 1907.
- [29] W. Steudemann, Die thermische Analyse der Systeme des Wassers mit den Lithiumhalogeniden, Jena, 1927.
- [30] A.F. Scott, E.J. Durham, J. Phys. Chem. 34 (1930) 531–537.
- [31] G. Scatchard, S.S. Prentiss, J. Am. Chem. Soc. 55 (1933) 4355-4362.
- [32] J.P. Simmons, H. Freimuth, H. Russell, J. Am. Chem. Soc. 58 (1936) 1692–1695.
- [33] W. Birnthaler, E. Lange-Erlangen, Z. Elektrochem., Ber. Bunsen-Ges. Phys. Chem. 44 (1938) 679–693.
- [34] V.P. Blidin, Zh. Obsch. Khim. 17 (1947) 1590-1594.
- [35] D.A. Boryta, J. Chem. Eng. Data 15 (1970) 142–144.
- [36] W. Raatschen, Thermophysikalische Eigenschaften von Methanol/Wasser-Lithiumbromid Lösungen, Aachen, 1985.
- [37] R. Peters, R. Busse, J.U. Keller, Int. J. Thermophys. 14 (1993) 763–775.
- [38] K. Murakami, Proceedings of the Asian Conference on Refrigation and Air Conditioning, Kobe, Japan, 2002.
- [39] K. Murakami, N. Kondo, Proceedings of the Fifteenth Symposium on Thermophysical Properties, Boulder, CO, USA, 2003.
- [40] P. Kremers, Ann. Phys. Chem. 99 (1856) 25-57.
- [41] P. Kremers, Ann. Phys. Chem. 103 (1858) 57–68.
- [42] S. Arrhenius, Z. Phys. Chem. Stöchiom. Verwandtschaftsl. 2 (1888) 491–505.

- [43] M. Engel, Ann. Chim. Phys. 13 (1888) 370-387.
- [44] E.H. Loomis, Ann. Phys. Chem. 60 (1897) 523-546.
- [45] H. Jahn, Z. Phys. Chem. Stöchiom. Verwandtschaftsl. 50 (1905) 129– 168
- [46] Cheneveau, Ann. Chim. Phys. 12 (1907) 145-228.
- [47] H. Jahn, Z. Phys. Chem. Stöchiom. Verwandtschaftsl. 59 (1907) 31– 40
- [48] E.W. Washburn, D.A. MacInnes, J. Am. Chem. Soc. 33 (1911) 1686–1713.
- [49] S. Piña de Rubies, An. Soc. Esp. Fis. Quim. 11 (1913) 422-435.
- [50] A.C.D. Rivett, Z. Phys. Chem. Stöchiom. Verwandtschaftsl. 82 (1913) 253–254.
- [51] W.H. Rodebush, J. Am. Chem. Soc. 40 (1918) 1204-1213.
- [52] F.A. Schreinemakers, G.M.A. Kayser, Chem. Weekblad 15 (1918) 120–121.
- [53] F.A. Schreinemakers, A.C. Noorduyn, Chem. Weekblad 15 (1918) 118–120.
- [54] O. Klein, K. Svanberg, Sven. Vetenskapsakad. Medd. Nobel-inst. 4 (1920) 13.
- [55] M.N. Demassieux, Ann. Chim. 20 (1923) 233-296.
- [56] A. Smits, J. Elgersma, M.E. Hardenberg, Rec. Trav. Chim. Pays-Bas 43 (1924) 671–677.
- [57] G.E.R. Deacon, J. Chem. Soc. 129 (1927) 2063-2065.
- [58] S. Palitzsch, Z. Phys. Chem. Abt. A 138 (1928) 379-398.
- [59] J.A.N. Friend, A.T.W. Colley, J. Chem. Soc. 133 (1931) 3148-3149.
- [60] H. Bassett, I. Sanderson, J. Chem. Soc. 134 (1932) 1855-1865.
- [61] S.C. Collins, F.K. Cameron, J. Chem. Soc. 32 (1932) 1705-1716.
- [62] J.N. Pearce, A.F. Nelson, J. Am. Chem. Soc. 54 (1932) 3544-3555.
- [63] A. Lannung, Z. Phys. Chem. Abt. A 170 (1934) 134–144.
- [64] H. Benrath, Z. Anorg. Allg. Chem. 220 (1934) 145-153.
- [65] J.N. Friend, R.W. Hale, S.E.A. Ryder, J. Chem. Soc. 139 (1937) 970.
- [66] H. Benrath, Z. Anorg. Allg. Chem. 240 (1938) 87-96.
- [67] R.A. Robinson, Trans. Faraday Soc. 41 (1945) 756-758.
- [68] E.J. Johnson, M.C. Molstad, J. Phys. Colloid Chem. 55 (1951) 257-281.
- [69] A.V. Novoselova, G. Sosnovskaya, Zh. Obsh. Khim. 21 (1951) 813–817.
- [70] V.P. Blidin, Dokl. Akad. Nauk. SSSR 84 (1952) 947–950.
- [71] V.P. Blidin, Dokl. Akad. Nauk. SSSR 88 (1953) 457-459.
- [72] V.P. Blidin, Izv. Akad. Nauk. SSSR Ser. Khim. (1954) 400-409.
- [73] V.P. Blidin, V.I. Gordienko, Dokl. Akad. Nauk. SSSR 94 (1954) 1081–1084.
- [74] A.N. Campbell, E.M. Kartzmark, Can. J. Chem. 34 (1956) 672–678.
- [75] V.E. Plyushchev, G.P. Kuznetsova, S.B. Stepina, Zh. Neorg. Khim. 4 (1959) 1449–1453.
- [76] M.I. Ravitch, L.F. Yastrebova, Zh. Neorg. Khim. 8 (1963) 202–207.
- [77] S. Hasaba, T. Uemura, Y. Higuchi, Refrigeration 39 (1964) 636–650.
- [78] I.N. Belyaev, L.E. Tyuk, Zh. Neorg. Khim. 11 (1966) 1919–1925.
- [79] A.D. Sheveleva, Uch. Zap. Permsk. Im. A.M. Gorkogo (1966) 3-14.
- [80] V.G. Shevtchuk, M.I. Vaisfeld, Zh. Neorg. Khim. 12 (1967) 1064-1068.
- [81] F. Momicchioli, O. Devoto, G. Grandi, G. Cocco, Ber. Bunsen-Ges. Phys Chem. 71 (1970) 59–66.
- [82] R. Vilcu, F. Irenei, An. Univ. Bucuresti Chim. 20 (1971) 103-111.
- [83] H.F. Gibbard, A. Fawaz, J. Sol. Chem. 3 (1974) 745-755.
- [84] V.G. Skvortsov, Zh. Neorg. Khim. 20 (1975) 3149-3151.
- [85] V.K. Filipov, K.N. Mikelson, Zh. Neorg. Khim. 22 (1977) 1689–1694.
- [86] E.M. Kartzmark, Can. J. Chem. 55 (1977) 2792-2798.
- [87] M.I. Vaisfeld, M.K. Onishchenko, V.G. Shevchuk, Zh. Neorg. Khim. 22 (1977) 1994–1998.
- [88] N.M. Lazorenko, N.N. Kisel, D.A. Storozenko, V.G. Shevchule, Zh. Neorg. Khim. 27 (1982) 1575–1577.
- [89] A.S. Sharina, S.N. Tyutina, L.V. Chernyku, Zh. Neorg. Khim. 28 (1983) 3171–3173
- [90] P. Claudy, J.M. Letoffe, J.J. Counioux, R. Cohen-Adad, J. Therm. Anal. 29 (1984) 423–431.
- [91] M.K. Khripun, A.Yu. Efimov, L.S. Lilitch, M.L. Kutuzova, Zh. Neorg. Khim. 31 (1986) 2659–2664.
- [92] A. Apelblat, J. Chem. Therm. 25 (1993) 63-71.
- [93] V. Gomis, F. Ruiz, J.C. Asensi, P. Cayuela, Fluid Phase Equilib. 119 (1996) 191–195.