Cours du 28/04/2021 Étude du sens de variation d'une suite

~ 33 M.33

- Déterminer le sens de variation des suites définies ci-dessous.
 - 1. $\begin{cases} u_0 = -5 \\ u_{n+1} = u_n + n + 3, \text{ pour tout entier naturel } n \end{cases}$
 - 2. $\begin{cases} v_0 = 1 \\ v_{n+1} = v_n (1 v_n), \text{ pour tout entier naturel } n \end{cases}$

$$M_1 = M_{0+1} = M_0 + 0 + 3 = -5 + 3 = -2$$

Mo < M, est une condition rodicersaire mais

presente pour que (Mm) soit voissente

quanti
presente mois

- presente mois

 $u_{m+1}-u_m=u_m+m+3,-u_m=m+3$ on s'intèresse

1 Sens de variation d'une suite

1.1 Définition

👸 Définition 1

- Une suite (u_n) est **croissante** à partir du rang p si pour tout entier $n \ge p$ on a $u_n \le u_{n+1}$.
- Une suite (u_n) est **décroissante** à partir du rang p si pour tout entier $n \ge p$ on a $u_n \ge u_{n+1}$.
- Une suite (u_n) est **constante** à partir du rang p si pour tout entier $n \ge p$ on a $u_{n+1} = u_n$.

Corollaire admis

- Si une suite (u_n) est **croissante** à partir du rang p alors pour tout couple d'entiers (n, m) avec $p \leqslant n \leqslant m$, on a $u_p \leqslant u_n \leqslant u_m$.
- Si une suite (u_n) est **décroissante** à partir du rang p alors pour tout couple d'entiers (n, m) avec $p \le n \le m$, on a $u_p \ge u_n \ge u_m$.

acm Pronote L> Non

(beur

Sens de variation d'une suite ouithmétique

😰 Propriété 1 Suites arithmétiques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r.

- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si r>0.
- $(u_n)_{n\in\mathbb{N}}$ est constante si r=0.
- (u_n)_{n∈N} est strictement décroissante si r < 0.

Exemples: On considére des suites arithmétiques Forme emplicité Sens de variation Mo croisante Mm=40+mXTI=-3+2m 604 Mm= 604 (onstante M= 15-3W décroisante

ou uo o quite à considérer la suite ophosé

🄁 Propriété 2 Suites géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 .

Pour tout entier $n \in \mathbb{N}$, on a $u_n = u_0 \times q^n$.

- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si
- $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si 0 <
- (u_n)_{n∈N} est constante à partir du rang 1 si q = 0 et à partir du rang 0 si q = 1.
- $(u_n)_{n \in \mathbb{N}}$ n'est pas monotone si q < 0

• Deuxième cas () Mo C O

La suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout entier naturel n par $v_n=-un$ est géométrique de même raison qet de premier terme $v_0 > 0$

On applique la propriété précédente à $(\nu_n)_{n\in\mathbb{N}}$ et on en déduit par symétrie le sens de variation de

- (u_n)_{n∈N} est strictement décroissante si 1 <
- (u_n)_{n∈ℕ} est strictement croissante si 0 < q <
- (u_n)_{n∈N} est constante à partir du rang 1 si q = 0 et à partir du rang 0 si q = 1.
- (u_n)_{n∈N} n'est pas monotone si q < 0

Les différents cas exposés ci-dessus sont compliqués à retenir. En pratique, la propriété peut se résumer

Si la raison q de (u_n)_{n∈N} est négative alors (u_n)_{n∈N} n'est pas monotone.

Page 4/11

http://frederic-junier.org/

Suites Partie 2

Première

 Si la raison q de (u_n)_{n∈N} est positive alors (u_n)_{n∈N} est monotone et son sens de variation est fixé par la comparaison de deux termes consécutifs comme u_0 et u_1 .

m. 43 N. 33

Pour les suites géométriques suivantes dont on donne le 1^{er} terme et la raison, déterminer le sens de variation.

1.
$$u_0 = 3$$
 et $q = 2$.

3.
$$w_0 = \frac{-2}{3}$$
 et $q = \frac{8}{3}$.

2.
$$v_0 = -1$$
 et $q = \frac{4}{5}$.

4.
$$t_0 = 0.5$$
 et $q = 10^{-1}$.

スト

Preuse: (un) est géométrique de premier

terme ue 3 et de raison q = 2

Jone on a la formula emplicite: un= 3×2

D'une part 2000, d'autre part la raison

q vérifie q >1, donc d'après une propriété

du cours (un) est croissante.

u(n)=0.00005

W. 46 W. 32

	 Démonstration On considère la suite (u_n) définie pour tout entier naturel n par u_n = qⁿ avec q > 0. 1. Étudier le signe de la différence u_{n+1} - u_n en fonction de q. 2. En déduire le sens de variation de la suite (u_n) en fonction de q.
	1) (m se danne, en nombre 9>6
	1) On se danne un nombre 9>6 Pour tout entir n>0.
	M - M = 0 - 0
	Monto Ma = 9 - 9 On veut étudier le signe de Monto - Mon
	CUCTO and Section To step 11 and 12 south
	$M_{MA} - M_{m} = q^{M+1} - q^{m} = q^{N}q - q^{m} = q^{N} (q^{-1})$
	produit
	Con pout appliquer la régle du signe d'un produit. Sochant-que q >0 on peut distinct - que depend de q-1):
	itale Luay no 0 < p ang Inahab tisti
	: (1-p et langlet enjer el jas muel de q-1):
ふじ	one a-1 - 0 +
ふじ	oso q-1 - 0 +
かい	1er (a): 0< 9<1: Mn+1-Mn < 0
مند	10 - 0 to 20 - 1 1-p ens 1er ou: 0> mu-1+mu: 1>p>0: : 20 120 elmainuel (my) and
مند	10 - 0 to 20 20 cons 0 > mU - 1+mU : 1>p>0 : 20 120 else mu > 1+m u mols else maisonist (my) mols
si	1er (a): 0< 9<1: Mn+1-Mn < 0

Capacité 4 Déterminer le sens de variation d'une suite géométrique, voir exo 3 p.17

Un lac de montagne est alimenté par une rivière et régulé par un barrage, situé en aval, d'une hauteur de 10 m. On mesure le niveau de l'eau chaque jour à midi. Le 1er janvier 2018, à midi, le niveau du lac était de 6,05 m.

Entre deux mesures successives, le niveau d'eau du lac évolue de la façon suivante :

- d'abord une augmentation de 6 % (apport de la rivière);
- ensuite une baisse de 15 cm (écoulement à travers le barrage).
- On modélise l'évolution du niveau d'eau du lac par une suite (u_n), le terme u_n représentant le niveau d'eau du lac à midi, en cm, n jours après le $1^{\rm er}$ janvier 2018. Ainsi le niveau d'eau du lac, en a. Calculer le niveau du lac, en cm, le 2 janvier 2018 à midi. $\Rightarrow u_0 = 1,06 \times 10^{-15}$ cm, le 1^{er} janvier 2018 est donné par $u_0 = 605$.

 - **b.** Démontrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} = 1,06u_n 15$. \longrightarrow $u_n \xrightarrow{+6\%} 1,66 u_n \xrightarrow{-1}$
- On pose, pour tout n∈ N, v_n = u_n 250.
 - **a.** Démontrer que la suite (v_n) est géométrique de raison 1,06.
 - **b.** Exprimer v_n en fonction de n, pour tout $n \in \mathbb{N}$ et en déduire que, $u_n = 355 \times 1,06^n + 250$.
 - c. Déterminer le sens de variation de la suite (u_n).
 - d. Que peut-on dire des valeurs de u_n lorsque n devient très grand? Le modèle est-il réaliste?
 - e. Lorsque le niveau du lac dépasse 10 m, l'équipe d'entretien doit agrandir l'ouverture des vannes du barrage.
 - Compléter la fonction seuil () ci-dessous afin qu'elle retourne le nombre de jours au bout duquel la première date d'intervention des techniciens sera nécessaire.

Page 5/11

http://frederic-junier.org/

Suites Partie 2

Première

Algorithme de seuil

Python

```
def seuil(s):
   n = 0
   u = 605
   while ....:
       n = n + 1
   return n
```

2) a) Pour tout entier m >0: Month = 1,06 Mm - 15 On ansidère la suite von= Mn-250 Démontrons que (von) est géannêtrique Nontre = Umtr - 250) formule de récurrence de (un) Nonth = 1,06 Mm - 15 - 250 $\frac{1}{100} = \frac{100 \, \text{m} - 265}{100 \, \text{m} - 265}$ $\frac{1}{100} = \frac{100 \, \text{m} - 265}{100 \, \text{m} - 250} = \frac{100 \, \text{m}}{100 \, \text{m}}$ $\frac{1}{100} = \frac{100 \, \text{m} - 250}{100 \, \text{m}} = \frac{100 \, \text{m}}{100 \, \text{m}}$ La suite (vontest danc géomètrique de 1,66 Pour demain finir cette capacités. + Activités du cours On considère la suite (u_n) définie par $u_1 = 1$ et pour tout entier naturel :

- **1.** Calculer u_2 et u_3 .
- 2. Recopier puis compléter la fonction informatique suivante programmée en langage Python afin qu'elle renvoie le terme u_n pour $n \ge 1$.

3. Pour tout entier naturel $n \ge 1$, on pose :

$$v_n = u_n + 1.$$

- a. Démontrer que la suite (v_n) est géométrique de raison 2.
- **b.** Donner une expression de v_n en fonction de n.
- c. En déduire que, pour tout entier naturel $n \ge 1$, on a :

$$u_n = 2^n - 1$$
.

- **4.** Déterminer le sens de variation de la suite (u_n) .
- **5.** Conjecturer la valeur de $\lim_{n\to+\infty} u_n$.