EAiIB	Autor 1		Rok	Grupa	Zespół
Informatyka	Autor 2		II	V	II
Pracownia FIZYCZNA WFiIS AGH	Temat: Elektroliza				nr ćwiczenia: 35
Data wykonania: 7.10.2015	Data oddania: 14.10.2015	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:

1 Cel ćwiczenia

Wyznaczanie równoważnika elektrochemicznego miedzi oraz stałej Faradaya w doświadczeniu z elektrolizą wodnego roztworu CuSO₄

2 Wstęp

Charakterystyczną grupę przewodników prądu elektrycznego stanowią elektrolity. Są to przeważnie wodne roztwory zasad, kwasów i soli. Przy rozpuszczaniu kryształu wiązania jonowe pękają i atomy przechodzą do roztworu w postaci jonów poruszających się bezwładnie w roztworze. Jeśli przez roztwór ten przepuścimy prąd elektryczny, to ruch jonów staje się uporządkowany. Kationy zdążają do ujemnej elektrody, aniony do katody. Przepływowi prądu towarzyszy zobojętnianie jonów na elektrodach i wydzielanie się substancji na elektrodach. Proces ten nazywamy elektrolizą.

W celu zobojętnienia naładowanego elektrycznie jonu, musi przepłynąć ładunek równy: $w \cdot e$, gdzie w to wartościowość jonu. Dla przykładu jony w związku używanym w doświadczeniu (CuSO₄) mają wartościowość w = 2. Liczba wydzielonych na elektrodzie atomów N jest równa stosunkowi wartości dostarczonego ładunku do ładunku pojedynczego jonu:

$$N = \frac{It}{we} \tag{1}$$

Aby otrzymać masę powstałych atomów trzeba wartość tę podzielić przez liczbę Avogadro i pomnożyć przez masę molową.

$$m = N \frac{\mu}{N_A} = \frac{\mu}{weN_A} It \tag{2}$$

Zgodnie z I prawem Faradaya wydzielona masa jest proporcjonalna do wartości przepływającego prądu oraz czasu:

$$m = kIt \tag{3}$$

Porównując wzory (3) i (2) otrzymujemy wzór na współczynnik proporcjonalności k zwany elektrochemicznym równoważnikiem substancji:

$$k = \frac{\mu}{weN_A} \tag{4}$$

Iloczyn eN_A to stała Faradaya Jest to wartość stała. Przekształcając wzór (4) otrzymamy wzór na stałą Faradaya oraz wartość ładunku elementarnego

$$F = eN_A = \frac{\mu}{wk} \tag{5}$$

3 Układ pomiarowy

Przyrzady

- Naczynie do elektrolizy siarczanu miedzi CuSO₄ z miedzianymi elektrodami w kształcie równoległych płyt, oddalonych od siebie o kilka centymetrów (rys. 1).
- Zasilacz napięcia stałego

- Amperomierz
- Opornica suwakowa
- Waga elektroniczna

Rysunek 1: Schemat obwodu elektrycznego

4 Wyniki pomiarów

czas elektrolizy	t	=	35	min
natężenie prądu	I	=	0,65	A
masa katody przed elektrolizą	m_1	=	113,262	g
masa katody po elektrolizie	m_2	=	113,715	g
masa wydzielonej miedzi	$m=m_2-m_1$	=	0,453	g
masa anod przed elektrolizą	M_1	=	214,646	g
masa anod po elektrolizie	M_2	=	214,197	g
zmiana masy anod	$M=M_2-m_1$	=	0,451	g

Dane określające niepewność przyrządów:

Klasa amperomierza			0,5	
Używany zakres amperomierza			0,75	A
Niepewność graniczna wagi (znamionowa)	Δm	=	0,001	g
Niepewność pomiaru masy	u(m)	=	0,005	g

5 Opracowanie wyników

Przekształcając wzór (3) możemy obliczyć współczynnik elektrochemiczny k:

$$k = \frac{m}{It} = \frac{453 \cdot 10^{-3}}{65 \cdot 10^{-2} \cdot 21 \cdot 10^{2}} = \frac{453}{65 \cdot 21} \cdot 10^{-3} \approx 0,3319 \cdot 10^{-3} \left[\frac{g}{A \cdot s} \right]$$
 (6)

Korzystając z otrzymanej w (6) wartości współczynnika *k* i wzoru (5), obliczamy eksperymentalną wartość stałej Faradaya;

$$F = \frac{\mu}{wk} = \frac{63,58}{2 \cdot 33.19 \cdot 10^{-5}} \approx 95782 \left[\frac{C}{mol} \right]$$
 (7)

Korzystając z otrzymanej w (7) wartości stałej Faradaya F, obliczamy eksperymentalną wartość ładunku elementarnego:

$$e = \frac{F}{N_A} = \frac{9,5782 \cdot 10^4}{6,0222 \cdot 10^{23}} \approx 1,5905 \cdot 10^{-19} [C]$$
 (8)

6 Obliczanie niepewności pomiarowej

Niepewność pomiaru czasu uznajemy za pomijalnie małą (niepewność względna znacznie poniżej 1%) Niepewność pomiaru masy miedzi wydzielonej podczas elektrolizy przyjmujemy jako:

$$u(m) = 0,005g$$

ze względu na możliwość niedokładnego wysuszenia elektrod po procesie elektrolizy. Niepewność wartości ładunku elektrycznego, który przepłynął przez elektrolit

$$u(I) = \frac{\text{klasa amperomierza} \cdot \text{zakres}}{100} = 3,75 \cdot 10^{-3} [A]$$

$$u(Q) = t \cdot u(I) = 3,75 \cdot 10^{-3} \cdot 2, 1 \cdot 10^{3} = 7,875[C]$$

Niepewność względna i bezwzględna równoważnika elektrochemicznego

$$\frac{u(k)}{k} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[\frac{u(I)}{I}\right]^2} = \sqrt{\left[\frac{0,005}{0,453}\right]^2 + \left[\frac{0,00375}{0,65}\right]^2} \approx 0,0125$$

$$u(k) = \frac{u(k)}{k} \cdot k = 0,0125 \cdot 0,3319 \cdot 10^{-3} \approx 0,0042 \cdot 10^{-3} \left[\frac{g}{A \cdot s}\right]$$

Niepewność względna i bezwzględna stałej Faradaya oraz ładunku elementarnego

$$\frac{u(F)}{F} = \sqrt{\left[\frac{u(\mu)}{\mu}\right]^2 + \left[\frac{u(k)}{k}\right]^2} = \sqrt{\left[\frac{u(k)}{k}\right]^2} = \frac{u(k)}{k} = \frac{u(e)}{e}$$

$$u(F) = F\frac{u(k)}{k} = 95782 \cdot 0,0125 \approx 1193 \left[\frac{C}{mol}\right]$$

$$u(e) = e\frac{u(k)}{k} = 1,5905 \cdot 10^{-19} \cdot 0,0125 \approx 0,0198 \cdot 10^{-19}[C]$$

7 Podsumowanie wyników

	wartość tablicowa	wartość wyznaczona w eksperymencie	różnica	niepewność	niepewność względna [%]
$k\left[\frac{mg}{A\cdot s}\right]$	0,3294	0,3319	0,0025	0,0042	1,25
$F\left[\frac{\tilde{C}}{mol}\right]$	96500	95782	718	1193	1,25
$e[10^{-19}C]$	1,6022	1,5905	0,0117	0,0198	1,25

8 Wnioski

- Wyznaczone eksperymentalnie wartości są zgodne z wartościami tablicowymi w granicach niepewności pomiarowych, co świadczy o poprawności metody
- Uzyskane niepewności względne są dosyć małe (ok 1%) co świadczy o dokładności metody
- Różnica pomiędzy zmianą masy anod a masą wydzielonej miedzi mieści się w granicach niepewności pomiarowych