Advanced mixed-models workshop: Session 1

Dale Barr

University of Glasgow

Bremen March 2015

Tentative schedule

Today			
	Start	End	Activity
1	09:00	10:30	Review / Overview
2	11:00	12:30	Dataset 1 (one factor)
3	13:30	15:00	Dataset 2 (multifactor)
4	15:30	17:00	Slack time / Q&A / BYOD*

Tomor	row			
		Start	End	Activity
	1	09:00	10:30	Dataset 3 (GLMM)
	2	11:00	12:30	Dataset 4 (multifactor GLMM)
	3	13:00	15:00	Slack time / Q&A / BYOD*

^{*} Bring Your Own Data

Repository for this workshop

```
If you have git installed, use:
git clone https://github.com/dalejbarr/bremen.git
```

or download full archive from:

https://github.com/dalejbarr/bremen/archive/master.zip

General information on LMEMs

- Baayen (2008), Analyzing Linguistic Data
- Baayen, Davidson, & Bates (2008), JML
- Barr, Levy, Scheepers, Tily (2013), JML
- Barr (2013), Frontiers in Psychology (interactions)
- Bates et al. http://arxiv.org/pdf/1406.5823.pdf (technical)
- Bolker et al. (2009), Trends in Ecology & Evolution
- Westfall, Kenny, and Judd (2014), JEP: General (power)
- see also r-lang and r-sig-mixed-models mailing lists
- r-sig-mixed-models FAQ http://glmm.wikidot.com/faq
- add-on packages afex, pbkrcomp, lmerTest

Simulated data

- single-factor within subject / between items
- IV: type of word, DV = lexical decision times

$$Y_{si} = \beta_0 + S_{0s} + I_{0i} + (\beta_1 + S_{1s})X_i + e_{si}$$

Items

$$I_{0i} \sim N(0, \omega_{00}^2)$$

Define the data structures

```
library("MASS") # needed for murnorm
set.seed(11709)
nsubj <- 100
nitem <- 50 # must be an even number
## create the data structures
subj <- data frame(subject_id = 1:nsubj)</pre>
item <- data.frame(item_id = 1:nitem,</pre>
                    cond = rep(1:2, each = nitem / 2))
trial <- expand.grid(subject_id = 1:nsubj,</pre>
                       item id = 1:nitem)
```

Define parameters for data generation

By-item random effects

mu

```
[1,] 800 80 14.94782 894.9478
[2,] 800 80 -86.30801 793.6920
[3,] 800 80 -12.78345 867.2165
```

By-subject random effects

```
## define subject random effects variance
## variance co-variance matrix
svcov <- matrix(c(sri^2.</pre>
                    rcor * sri * srs.
                    rcor * sri * srs.
                    srs^2), nrow = 2)
## sample subjects
srfx \leftarrow mvrnorm(nsubj, mu = c(0, 0), Sigma = svcov)
subj$sri <- srfx[, 1]</pre>
subj$srs <- srfx[, 2]</pre>
head(subj, 3)
```

Pull it all together

```
item_id subject_id sri srs cond iri
                                                          err
1
                  1 -80.02597 -0.7625934 1 14.94782 382.34441 1077.6476
                  1 -80.02597 -0.7625934 1 -86.30801 283.44878 877.4961
173
235
                  1 -80.02597 -0.7625934 1 -12.78345 30.35586 697.9277
        4
390
                 1 -80.02597 -0.7625934 1 -13.91040 -282.01806 384.4269
                 1 -80.02597 -0.7625934 1 55.61871 -238.73081 497.2432
414
        5
513
                  1 -80.02597 -0.7625934 1 -45.92916 73.42391
                                                             707.8501
```

Decomposition matrix

$$Y_{si} = \beta_0 + S_{0s} + I_{0i} + (\beta_1 + S_{1s})X_i + e_{si}$$

Attaching package: 'dplyr'

The following object is masked from 'package:MASS':

select

The following object is masked from 'package:stats':

filter

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Source: local data frame [16 x 11]

	sid	iid	С	Y	mu	sri	iri	eff	srs	x	
1	1	1	1	1077.6476	800	-80.025967	14.94782	80	-0.7625934	-0.5	
2	1	2	1	877.4961	800	-80.025967	-86.30801	80	-0.7625934	-0.5	
3	1	26	2	637.6155	800	-80.025967	-65.44482	80	-0.7625934	0.5	
4	1	27	2	808.4316	800	-80.025967	171.89799	80	-0.7625934	0.5	
5	2	1	1	533.2496	800	44.612596	14.94782	80	54.5130100	-0.5	
6	2	2	1	930 9572	800	44 612596	-86 30801	80	54 5130100	-0.5	
Dale	Barr	(Hni	ver	sity of Glasgov	v)	Advanced mixed	models works	hon. 9	essic Breme	n March	20

Fitting the model

Loading required package: Matrix Loading required package: Rcpp

Viewing results

```
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Y ~ c + (1 + c | subject_id) + (1 | item_id)
  Data: dat
    AIC BIC logLik deviance df.resid
67635.0 67680.6 -33810.5 67621.0 4993
Scaled residuals:
   Min 10 Median 30 Max
-3.8927 - 0.6637 - 0.0136 0.6749 3.7872
Random effects:
Groups Name Variance Std.Dev. Corr
 subject_id (Intercept) 9467 97.30
             1254 35.42 0.32
item_id (Intercept) 7767 88.13
Residual 40119 200.30
Number of obs: 5000, groups: subject_id, 100; item_id, 50
Fixed effects:
          Estimate Std. Error t value
(Intercept) 793.29 16.06 49.38
```

С

112.10 25.81 4.34