

数据结构和算法

作者: 小甲鱼

让编程改变世界 Change the world by program

邻接表 (无向图)

- 邻接矩阵看上去是个不错的选择, 首先是容易理解, 第二是索引和编排都很舒服~
- 但是我们也发现,对于边数相对顶点较少的图,这种结构无疑是存在对存储空间的极大浪费。

顶点数组:		V0	V1	V2	V3
	V0	V	1	V2	V 3
V0	0	0	0	∞	∞
V1	8	()	∞	∞
V2	∞	0	0	0	∞
V3	∞	0	0	∞	0

邻接表 (无向图)

- 因此我们可以考虑另外一种存储结构方式,例如 把数组与链表结合一起来存储,这种方式在图结 构也适用,我们称为邻接表(AdjacencyList)。
- 邻接表的处理方法是这样:
 - 图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过数组可以较容易地读取顶点信息,更加方便。
 - 图中每个顶点Vi的所有邻接点构成一个线性表,由于邻接点的个数不确定,所以我们选择用单链表来存储。

邻接表 (无向图)

下标	data	first	
0	V0		1 2 3
1	V1		0 2 ^
2	V2		0 1 3
3	V3		0 2 ^

邻接表 (有向图)

 若是有向图,邻接表结构也是类似的,我们先来看下 把顶点当弧尾建立的邻接表,这样很容易就可以得到 每个顶点的出度;

下标	data	first		2	^			
0	V0		->	3	,,			
1	V1			0			2	٨
2	V2			0		\	1	^
3	V3	٨						

邻接表 (有向图)

• 但也有时为了便于确定顶点的入度或以顶点为孤头的弧,我们可以建立一个有向图的逆邻接表:

下标	data	first		1	
0	V0				
1	V1			2	^
2	V2			1	^
3	V3		- >	0	^

• 此时我们很容易就可以算出某个顶点的入度或出度是多少,判断两顶点是否存在弧也很容易实现。

邻接表 (网)

• 对于带权值的网图,可以在边表结点定义中再增加一个数据域来存储权值即可:

下标	data	first	3 5 ^
0	V0		
1	V1		0 4 2 3 ^
2	V2		0 8 1 3 ^
3	V3	٨	

代码实现

• 作为一个课后作业给大家自己锻炼下,小甲鱼提供的参考答案仅供参考借鉴!

