

EEG/MEG 2:

Spatial Resolution and Nonlinear Methods

Olaf Hauk

olaf.hauk@mrc-cbu.cam.ac.uk

Spatial Resolution of EEG/MEG – Basic Concepts

Resolution Matrix, Point-Spread and Cross-Talk Functions (PSFs and CTFs)

The EEG/MEG Forward Problem

 $j_1 + j_2 = 1$ under-determined problem, no unique solution

d=Lj

d: data (n_sensors x 1) **L**: "leadfield" (n_sensors x n_dipoles), **j**: dipoles (n_dipoles x 1) Usually n_dipoles >> n_sensors.

Let's Start Again: The "Blurry Image" Analogy

Just because the brain is complicated doesn't mean source estimation has to be complicated

Linear Methods Can Easily Tell Us If They Do What We Want Superposition Principle

If you know the behaviour for point sources, you can predict the behaviour for complex sources.

The Resolution Matrix

Relationship between estimated and true source distribution.

Creating an Optimal Resolution Matrix

$$\hat{\mathbf{s}} = \mathbf{R}\mathbf{s}$$

The closer **R** is to the identity matrix, the closer our estimate is to the true source.

Therefore, let us minimise the difference between **R** and the identity matrix in the least-squares sense:

$$\|R - I\|_2 = min$$

This leads to the **Minimum Norm Estimator (MNE)**:

$$G_{MN} = \mathbf{L}^T (\mathbf{L} \mathbf{L}^T)^{-1}$$

Its resolution matrix $\mathbf{R}_{MN} = \mathbf{L}^T (\mathbf{L} \mathbf{L}^T)^{-1} \mathbf{L}$ is symmetric.

Spatial Resolution / Leakage:

Point-Spread and Cross-Talk

PSFs and CTFs for Some ROIs

For MNE, PSFs and CTFs turn out to be the same

Good

PSFs and CTFs for Some ROIs

For MNE, PSFs and CTFs turn out to be the same

Less good

Localisation Bias Has Consequences for ROI analysis

PSFs/CTFs Can Tell You How It Looks Like

Desikan-Killiany Atlas parcellation

Adaptive cortical parcellation based on resolution matrix are possible: Farahibozorg/Henson/Hauk NI 2018 https://pubmed.ncbi.nlm.nih.gov/28893608/

Quantifying Resolution From PSFs and CTFs

It's not just peak localisation that counts, but also spatial extent of the distribution.

Whole-Brain Maps of Resolution Metrics

Combining EEG and MEG improves spatial resolution.

Comparing Estimators – MNE-type methods

Comparing Estimators – Beamformers

Thank you

