רציפות במידה שווה וליפשיציות

הגדרות

1. תהיינה D = D, נאמר שf = D, נאמר שf = D, נאמר שf = D, נאמר שf = D, נאמר ש

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \mathbf{x}, \mathbf{x} \in \mathbf{D} \quad |\hat{x} - x| < \delta \Rightarrow |f(\hat{x}) - f(x)| < \varepsilon$$

- $\forall \mathbf{x} \in \mathbf{D} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \mathbf{\hat{x}} \in \mathbf{D}$ אם"ם היא רציפות בכל $x \in D$ אם"ם היא רציפות: f רציפה בD אם"ם היא רציפה בכל מים לרציפות: f $.\varepsilon$ ב אווי בי δ , תלויה רק ב δ , תלויה ה δ התלויה הווי בי δ , וגם ב δ , ואם δ רבמ"ש ב δ , ולויה רק ב δ , ולויה רק ב
 - 2. ליפשיציות

I במקטע וגזירה בכל נקודה פנימים של f $(x, orall x_1, x_2 \in I \mid f(x_1) - f(x_2)| \leq M \mid x_1 - x_2|$ אם קיים $M \in \mathbb{R}$ אם קיים נאמר ש-f היא f

משפטים

1. רבמ"ש⇒רציפות:

Iיהי $f:I o\mathbb{R}$ ותהי $f:I o\mathbb{R}$ ותהי ותהי והי [הוכחה מיידית מההגדרות]

ב. יהיו D ביהיו $(x_n)_{n=1}^\infty$, $(\hat{x}_n)_{n=1}^\infty$ המקיימות את שלושת התנאים ב-D אם"ם קיים $\varepsilon_0>0$ וקיימות $\varepsilon_0>0$ וקיימות את שלושת התנאים $f:f:D o\mathbb{R}$

$$orall n \in \mathbb{N} \, x_n, \hat{x}_n \in D$$
)א(

$$\lim_{n\to\infty} (x_n - \hat{x}_n) = 0$$
)a(

$$\forall n \in \mathbb{N} |f(x_n) - f(\hat{x}_n)| \ge \varepsilon_0$$
) λ (

 $\exists arepsilon>0\ \forall \delta>0\ \exists x,\hat{x}\in D\quad |\hat{x}-x|<\delta igwedge |f\left(\hat{x}\right)-f\left(x
ight)|\geq arepsilon$ הוכחה f אם f אינה רבמ"ש, היא מקיימת את השלילה של ההגדרה, קרי x_n המקיימים x_n,\hat{x}_n המקיים x_n,\hat{x}_n עבור x_n,\hat{x}_n עבור x_n,\hat{x}_n המקיימים x_n,\hat{x}_n המקיימים x_n,\hat{x}_n המקיימים x_n,\hat{x}_n שלכן מתקיים המקיימים x_n,\hat{x}_n המקיימים x_n,\hat{x}_n שלכן מתקיים המקיימים x_n,\hat{x}_n המקיימים x_n,\hat{x}_n המקיימים x_n,\hat{x}_n

$$\forall n \in \mathbb{N} |\hat{x}_n - x_n| < \delta = \frac{1}{n} \iff -\frac{1}{n} \le \hat{x}_n - x_n \le \frac{1}{n}$$

$$\lim_{n o \infty} \left(\hat{x}_n - x_n
ight) = 0$$
 וממשפט הכריך נקבל

ביישם היינה על הכיווו ⇒

3. משפט קנטור

[a,b]יהיו [a,b]. אזי $f:[a,b]
ightarrow \mathbb{R}$ יהיו $a < b \in \mathbb{R}$ ותהי $a < b \in \mathbb{R}$ יהיו

- נניח בשלילה שהיא איננה רבמש
- . 2ב, 2א, 2ב, את המקיימות ($(x_n)_{n=1}^\infty, (\hat{x}_n)_{n=1}^\infty$ סדרות סדרות 5 סדרות $(x_n)_{n=1}^\infty, (\hat{x}_n)_{n=1}^\infty$ המקיימות את את את את פר, 2ב, 2ג.
- ממשפט (2) קיים 0 > 0 וקיימווע 2 טו ווונ $n_{n-1}, (x_n)_{n-1}, (x_n)_{n-1}$ וונין $1 \in 0$ מרא נסיק ש $1 \in 0$ וויירשטראס קיימות ע"י $1 \in 0$, כלומר $1 \in \mathbb{N}$ מרא נסיק ש $1 \in \mathbb{N}$ חסומות ע"י $1 \in \mathbb{N}$, כלומר $1 \in \mathbb{N}$ מרא נסיק ש $1 \in \mathbb{N}$ חסומות ע"י $1 \in \mathbb{N}$, ונסמן $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$ מושר $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$ מושר $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$ ומאש"ג נקבל $1 \in \mathbb{N}$
- בסתירה $|x_{n_k}-\hat{x}_{n_k}|<arepsilon_0$ מתקיים k>K כך שלכל $K\in\mathbb{N}$ ברט קיים ולכן בפרט קיים וולכן בפרט $\lim_{k\to\infty}(\hat{x}_{n_k})=\lim_{k\to\infty}f\left(x_{n_k}\right)=x_0$ בסתירה •

4. אפיון היינה לקיום גבול של פונקציה בנקודה

תהי $D o (x_n)_{n=1}^\infty$ סדרת היינה עבור f ב- x_0 , אז יש לf גבול ב x_0 אם "ם לכל x_n סדרת היינה עבור x_n הסדרה x_n מתכנסת. $(f(x_n))_{n=1}^{\infty}$

הוכחה נראה שקילות לאפיון היינה:

- . אם קיים הגבול $\lim_{n \to \infty} f\left(x_n\right) = L$ אם קיים הגבול בפרט, כלומר קיים הגבול הנ"ל כנדרש. היינה יתקיים $(x_n)_{n=1}^\infty$ לכל הב"ל כנדרש, לכל הב"ל כנדרש האם קיים הגבול הנ"ל כנדרש.
- $(ilde{x}_1,\hat{x}_1, ilde{x}_2,\hat{x}_2,\dots, ilde{x}_n,\hat{x}_n,\hat{x}_n,\dots)$ אזי מאינפי 1 הסדרה השזורה . $\lim_{n o\infty} ilde{x}_n=L_1,\lim_{n o\infty} ilde{x}_n=L_2$ נגדיר 2 סדרות היינה $ilde{x}_n,\hat{x}_n,\hat{x}_n$ נסמן $ilde{x}_n=L_1$ היא גם סדרת היינה, ולפי ההנחה הסדרה הנ"ל מתכנסת (נסמןL) ולכן קבוצת הגבולות החלקיים שלה היא בדיוק $\{L\}$, כלומר כנדרש $\lim_{x \to \infty} f(x) = L$ ולכן מאפיון היינה וולכן $L_1 = L = L_2$

5. קריטריון קושי לקיום גבול של פונקציה בנקודה

 $x_0 \in \mathbb{R}$ תהי $f:D o \mathbb{R}$ המוגדרת בסביבה מנוקבת של

אז יש לf גבול ב x_0 אם"ם מתקיים תנאי קושי לקיום גבול של פונקציה בנקודה:

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall \tilde{x}, \hat{x} \in D \quad \tilde{x}, \hat{x} \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\} \Rightarrow |f(\tilde{x}) - f(\hat{x})| < \varepsilon$$

נניח שקיים $\hat{x}\in(x_0-\delta,x_0+\delta)\setminus\{x_0\}\ |f(x)-L|<rac{arepsilon}{2}$ שעבורה $\delta>0$ שעבורה . $\lim_{x o x_0}f(x)\stackrel{def}{=}L\in\mathbb{R}$ מתקיים כנדרש: $\hat{x},\hat{x}\in(x_0-\delta,x_0+\delta)$

$$\left|f\left(\tilde{x}\right)-f\left(\hat{x}\right)\right|=\left|f\left(\tilde{x}\right)-L+L-f\left(\hat{x}\right)\right|\overset{\triangle}{\leq}\left|f\left(\tilde{x}\right)-L\right|+\left|L-f\left(\hat{x}\right)\right|=\left|f\left(\tilde{x}\right)-L\right|+\left|f\left(\hat{x}\right)-L\right|<2\frac{\varepsilon}{2}=\varepsilon$$

בערה ההבדל מרבמש הוא הסביבה המנוקבת!

- n>N שמקיים לכל אזי עבור $N\in\mathbb{N}$ שמקיים לפי תנאי קושי, ונקבל שקיים אזי עבור $\delta>0$ המתאימה ל $\delta>0$ המתאימה ל $\delta>0$ שמקיים לכל $f\left(x_{n}
 ight)_{n=1}^{\infty}$ אזי $\left(x_{n}
 ight)_{n=1}^{\infty}$, אזי ולכן בפרט לכל א היא N < m, n מתקיים, אזי ולכן כל אזי N < m, n היא אולכן בפרט לכל אזי . סדרת קושי ועל כן מתקיים $\lim_{x \to x_0} f\left(x\right) = f\left(x_0\right)$ כנדרש
 - בקטע בקטע בקטע בקצוות \Rightarrow רבמש בקטע 6.

יהיו $a < b \in \mathbb{R}$, ותהי f:[a,b] o f פונקציה רציפה בכל f:[a,b] o f אם $a < b \in \mathbb{R}$ יהיו

הוכחה ראשית נשים לב שזוהי גרסה למשפט קנטור על קטע פתוח.

- נניח שהגבולות קיימים. \Rightarrow
- $.orall x\in [a,b]\; \hat{f}\left(x
 ight)= egin{cases} \lim_{x o a^+} f\left(x
 ight) & x=a \ f\left(x
 ight) & x\in (a,b) ext{ ע} \ , \hat{f}:[a,b] o \mathbb{R} \ & \lim_{x o a^+} f\left(x
 ight) & x=b \end{cases}$
- $(a,b)\subset [a,b]$ משום ש(a,b)רבמש ב[a,b] ובפרט לכן רבמש ב-
 - (a,b)מתלכדות ב(a,b), לכן f רבמ"ש ב \hat{f},f
 - (a,b)נניח ש-f רבמש ב \Leftarrow

 $\{a,b\}$ נשים לב להערה בהוכחה על קושי, אזי לכל arepsilon נתאים δ בהגדרת רבמש, אזי תנאי קושי מתקיים ולכן יש גבולות ב

[a,b] מסקנה(!) הפונקציה הרציפה $\mathbb{R}: (a,b) o T: (a,b) o \mathbb{R}$ מסקנה מיימת לה הרחבה רציפה לקטע הסגור

חסומה אם"ם f ליפשיצית f חסומה אם"ם f

Iתהי fרציפה במקטע I וגזירה בכל נקודה פנימית של I, ובנוסף f' חסומה ב

.אזי f היא ליפשיצית

הוכחה

 $\forall x \in I \; |f'\left(x
ight)| \leq M$ חסומה ועל כן קיים $0 \leq M \in \mathbb{R}$ חסומה ועל כן קיים

 $(x_1,x_2)\subseteq I$ יהיו $f:x_1< x_2\subseteq I$ גזירה רציפה ב $f:x_1< x_2\subseteq I$, וגזירה בפרט ב $f:x_1,x_2\subseteq I$ יהיו $f:x_1< x_2\in I$ אזי קיים לגראנז, אזי קיים $f:x_1> x_2=I$ המקיים $f:x_1>I$ המקיים לגראנז, אזי קיים $f:x_1>I$ המקיים $f:x_1>I$ המקיים לגראנז, אזי קיים $f:x_1>I$ המקיים $f:x_1>I$ ועל כן ליפשיצית כנדרש. ובתוספת של הנתון נקבל שמתקיים $f:x_1>I$ ועל כן ליפשיצית כנדרש.