## Informática Teórica Tarea #1 "Esto no se compila"

Andrés Navarro // 201673001-K

25 de septiembre de 2017

Una forma alternativa de construir una expresión regular que reconoce el lenguaje aceptado por el DFA  $M = (Q, \Sigma, \delta, q_0, F)$  es plantear expresiones regulares para las palabras que llevan al DFA desde el estado inicial a cada uno de los estados. Básicamente, llamando  $R_q$  a la expresión para llegar al estado q, si  $\delta(q,a) = p$ , entre las alternativas para  $R_p$  estará  $R_q a$ . El lenguaje aceptado por M es la alternancia entre las expresiones para estados finales.

Esto termina en un sistema de ecuaciones para los distintos  $R_q$ , podemos usar nuestro teorema sobre solución de ecuaciones de la forma  $X = XA \cup B$  entre lenguajes para resolver una de ellas, y substituir en las demás, hasta finalmente tener todos los  $R_q$  requeridos.

Comentarios en C++ quedan definidos por el DFA de la figura 1, donde hemos omitido el estado muerto y las transiciones a él para simplificar. El alfabeto usado es  $\{/, *, a, n\}$ , donde / y \* representan esos caracteres, n representa al fin de línea (se escribe  $' \setminus n'$  en C++) y a es cualquier otro caracter válido.



Figura 1: Comentarios en C++

1. Plantee el sistema de ecuaciones descrito para expresiones regulares  $R_1$  a  $R_7$  partiendo del autómata de la figura 1. Use s en vez del símbolo \* para evitar ambigüedades.

Dado que  $R_1$  es el correspondiente al estado 1, el cual es el inicial, se llega a el consumiendo solamente  $\epsilon$ , para el resto de expresiones  $R_n$ , su ecuación fue confecionada visualizando el autómata.

 $R_1 = \epsilon$ 

A  $R_2$  solo se puede llegar desde  $R_1$  consumiendo /.

 $R_2 = R_1 /$ 

Para  $R_3$  podemos llegar desde  $R_2$  consumiendo s, desde el mismo consumiendo a,n o /, o desde  $R_4$  consumiendo a o n.

 $R_3 = R_2 s |R_3| |R_3 a| |R_3 a| |R_4 a| |R_4 a|$ 

A  $R_4$  se puede llegar desde  $R_3$  consumiendo s, o desde el mismo consumiendo s.

 $R_4 = R_3 s | R_4 s$ 

Para  $R_5$  se tiene que solo se puede llegar desde  $R_4$  consumiendo /.

$$R_5 = R_4 /$$

Para  $R_6$  se puede llegar consumiendo / desde  $R_2$  o desde el mismo consumiendo s o a.

$$R_6 = R_2/|R_6/|R_6s|R_6a$$

Por último, para  $R_7$  se tiene que se puede llegar a el desde  $R_6$  consumiendo n.

$$R_7 = R_6 n$$

Finalmente tenemos el sistema:

$$R_1 = \epsilon$$

$$R_2 = R_1 /$$

$$R_3 = R_2 s |R_3| |R_3 a| |R_3 a| |R_4 a| |R_4 a|$$

$$R_4 = R_3 s | R_4 s$$

$$R_5 = R_4 /$$

$$R_6 = R_2/|R_6/|R_6 s|R_6 a$$

$$R_7 = R_6 n$$

2. Dé la expresión regular para el lenguaje aceptado por el autómata en términos de los  $R_k$ . Se trabajará sobre las ecuaciones.

Tanto  $R_1$  como  $R_2$  permanecen igual.

$$R_1 = \epsilon$$

$$R_2 = R_1 /$$

Reemplazando  $R_2$  en  $R_3$ .

$$R_3 = R_2 s |R_3| |R_3 a| |R_3 a| |R_4 a| |R_4 a| |R_4 a| |R_5 a| |R$$

Ahora, en  $R_4$  reemplazamos  $R_3$ .

$$R_4 = R_3 s | R_4 s \Rightarrow R_4 = (R_1/s | R_3/| R_3 a | R_3 n | R_4 a | R_4 n) s | R_4 s$$

En  $R_5$  finalmente nos queda:

$$R_5 = ((R_1/s|R_3/|R_3a|R_3n|R_4a|R_4n)s|R_4s)/$$

Por otro lado, reemplazando  $R_2$  en  $R_6$ :

$$R_6 = R_2/|R_6/|R_6s|R_6a \Rightarrow R_6 = R_1//|R_6/|R_6s|R_6a$$

Finalmente  $R_7$  queda como:

$$R_7 = R_6 n \Rightarrow R_7 = (R_1 / / |R_6 / |R_6 s| R_6 a) n$$

Dado que nuestro DFA tiene dos estados finales, nuestra expresion regular estará dada por los  $R_n$  correspondientes a estos dos estados. Estos estados corresponden al 5 y al 7, por lo que nuesto RE sería:

$$RE = R_5 | R_7$$

Si reemplazamos con lo obtenido:

$$RE = ((R_1/s|R_3/|R_3a|R_3n|R_4a|R_4n)s|R_4s)/|(R_1//|R_6/|R_6s|R_6a)n$$

3. Indique paso a paso cómo resuelve el sistema de ecuaciones para las variables necesarias para la pregunta 2. Recordar que el teorema 1.1 nos dice que:

$$X = A|XB \Rightarrow X = AB^*$$

O bien:

$$X = A|BX \Rightarrow X = B^*A$$

Primero reemplazamos  $R_1$  en  $R_2$ 

$$R_1 = \epsilon$$

$$R_2 = R_1 / \Rightarrow R_2 = \epsilon / \Rightarrow R_2 = /$$

Trabajando sobre  $R_3$ 

Primero tenemos:

$$R_3 = R_4 a | R_4 n \Rightarrow R_3 = R_4 (a | n)$$

Con lo obtenido anteriormente de  $R_2$ :

$$R_3 = R_2 s \Rightarrow R_3 = /s$$

Tenemos:

$$R_3 = / \, s |R_3 / |R_3 \, a |R_3 \, n |R_4 (a|n) \Rightarrow R_3 = / \, s |R_3 (/|a|n) |R_4 (a|n)$$

Ahora, ocupando el teorema 1.1:

$$R_3 = /s|R_3(/|a|n) \Rightarrow R_3 = /s(/|a|n)^*$$

$$R_3 = R_4(a|n)|R_3(/|n|a) \Rightarrow R_3 = R_4(a|n)(/|n|a)^*$$

Finalmente:

$$R_3 = /s(/|a|n)^* |R_4(a|n)(/|n|a)^*$$

Trabajando sobre  $R_4$ 

Ocupando el teorema 1.1 tenemos:

$$R_4 = R_3 s | R_4 s \Rightarrow R_4 = R_3 s s^*$$

Sabiendo que  $ss* = s^+$ :

$$R_4 = R_3 s^+$$

Con lo obtenido en  $R_3$ :

$$R_4 = (/s(/|a|n)^*|R_4(a|n)(/|n|a)^*)s^+ \Rightarrow R_4 = /s(/|a|n)^*s^+|R_4(a|n)(/|n|a)^*s^+$$

Ocupando el teorema 1.1 tenemos:

$$R_4 = /s(/|a|n)^* s^+ |R_4(a|n)(/|n|a)^* s^+ \Rightarrow R_4 = /s(/|a|n)^* s^+ ((a|n)(/|n|a)^* s^+)^*$$

Trabajando sobre  $R_5$ 

Ocupando lo obtenido en  $R_4$ :

$$R_5 = R_4/ \Rightarrow R_5 = /s(/|a|n)^* s^+ ((a|n)(/|n|a)^* s^+)^*/$$

Trabajando sobre  $R_6$ :

$$R_6 = R_6/|R_6 s|R_6 a \Rightarrow R_6 = R_6(/|s|a)$$

Ocupando el teorema 1.1 tenemos:

$$R_6 = R_2/|R_6(/|s|a) \Rightarrow R_6 = R_2/(/|s|a)^*$$

Reemplazando R<sub>2</sub>:

$$R_6 = //(/|s|a)^*$$

Trabajando sobre  $R_7$ :

Reemplazando  $R_6$ :

$$R_7 = R_6 n \Rightarrow R_7 = //(/|s|a)^* n$$

Con lo respondido en la pregunta 2, sabemos que la RE esta descrita por:

$$RE = R_5 | R_7$$

Reemplazando con lo obtenido:

$$RE = \frac{|s(|a|n)^* s^+ ((a|n)(|n|a)^* s^+)^*}{||f(|a|n)^* s^+||}$$