◇◇◇ Lycée Qualifiant Errazi-Taznakhte ◇◇◇ A.S.: 2024/2025 Matière: Mathématiques Classe: 1BACSEF-1 Prof:Ouamen Mustapha Devoir à domicile N° 2 (Semestre n° 1)

Exercice 1

Soit ABCD un parallélogramme de centre O et I le milieu du segment [AB]. Soit G le point d'intersection de (BD) et (CI).

- 1 Montrer que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
- Construire le point k, barycentre des points pondérés (A;1),(B;1),(C;-1).
- Montrer que K est le barycentre des points pondérés (G;3),(C;-2).
- 4 Montrer que $K \notin [GC]$ et $K \in (GC)$.
- Montrer que A est le barycentre des points pondérés (D; 1), (G; 3), (C; -2).
- 6 Montrer que A est le milieu du segment [DK].
- 7 Déterminer l'ensemble $\left\{ M \in P \mid \|\overrightarrow{MD} + 3\overrightarrow{MG} 2\overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\| \right\}$.
- B Dans le plan rapporté au repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points : A(1,1), B(-3,1), et C(2,0). Déterminer les coordonnées du point G.

Exercice 2

Soient A(-2;1), B(0;-2), et C(1;3) des points dans le plan (O,\vec{i},\vec{j}) orthonormé direct.

- 1 Calculer: \overrightarrow{AB} , \overrightarrow{AC} , $\overrightarrow{AB} \cdot \overrightarrow{AC}$, et $\det(\overrightarrow{AB}, \overrightarrow{AC})$.
- 2 Calculer $\cos(\overrightarrow{AB}, \overrightarrow{AC})$ et $\sin(\overrightarrow{AB}, \overrightarrow{AC})$, puis en déduire l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$.
- 3 Déduire la nature du triangle *ABC*.
- 4 Déterminer l'équation de la droite (AB), et en déduire d(C, (AB)).
- 5 Déterminer l'équation cartésienne du cercle (\mathscr{C}) de diamètre [AB].
- 6 On considère le cercle (\mathscr{C}) d'équation : $x^2 + y^2 2x 4y 3 = 0$.
 - (a) Montrer que $\Omega(1;2)$ est le centre du cercle (\mathscr{C}), et que son rayon est $R=2\sqrt{2}$.
 - (b) Déterminer une représentation paramétrique du cercle (\mathscr{C}).
 - (c) Vérifier que le point A(-1;0) appartient au cercle (\mathscr{C}) .
- 7 Résoudre le système : $S: \begin{cases} x^2 + y^2 + 2x + 4y 5 < 0, \\ x + 2y + 10 \ge 0. \end{cases}$