$\begin{array}{c} {\rm M368K} \\ {\rm Homework} \ \# 1 \end{array}$

Burden and Faires.

Section 7.1 (#1a, 4c, 12). Section 7.2 (# 6^{1} ae, 19 2). Section 7.3 (#2a, 4a, 10 3 ac, 14).

Programming mini-project.

Consider the linear system of equations

$$4x_1 + x_2 - x_3 + x_4 = -2
x_1 + 4x_2 - x_3 - x_4 = -1
-x_1 - x_2 + 5x_3 + x_4 = 0
x_1 - x_2 + x_3 + 3x_4 = 1.$$
(1)

- (a) Download the C++ program file program1.cpp, function file jacobi.cpp and library files matrix.cpp and matrix.h from the course webpage. These files implement the Jacobi method; read the program file for instructions on how to compile and run.
- (b) Use the Jacobi method to solve (1) to within a tolerance of $||r^{(k)}||_{\infty} < 10^{-3}$, beginning from an initial guess $x^{(0)} = 0$, where $r^{(k)} = b Ax^{(k)}$. Report the approximate solution $x^{(k)}$ and number of iterations k required.
- (c) Write a function gauss_seidel.cpp to implement the Gauss-Seidel method. Repeat part (b) using this method with $x^{(0)} = 0$ and briefly compare results. Which method converges faster for this system? Do you get the same solution and convergence speed for different choices of $x^{(0)}$?

Turn in: responses to (b), (c) and a copy of gauss_seidel.cpp.

 $^{^{1}}$ Indicate if the matrix is convergent.

²For simplicity, assume all eigenvalues/vectors of A are real. Verify result for the eigenvalues of $A = \begin{bmatrix} -1 & 4 \\ 1 & 2 \end{bmatrix}$ using the ∞ -norm.

³Would Jacobi converge to the exact solution for arbitrary $x^{(0)}$? What about Gauss-Seidel?