# TCP & UDP

Mattia Pacchin – mattia@v-research.it



# TCP VS UDP (liv. trasporto)

- Lo strato di trasporto della rete Internet mette a disposizione delle applicazioni attive in ciascun host due distinti protocolli di trasporto:
  - 1. servizi affidabili orientati alla connessione, detti di tipo stream offerti dal TCP (Transmission Control Protocol)
  - 2. servizi non affidabili senza connessione, detti di tipo datagram offerti dall'UDP (User Datagram Protocol)



### TCP

- Il protocollo TCP offre un trasporto affidabile in quanto consente il controllo dell'integrità dell'informazione contenuta nei pacchetti e il controllo sull'effettiva consegna del messaggio
- TCP è dunque un protocollo orientato alla connessione, il software di rete che implementa TCP deve assicurare due condizioni fondamentali:
  - 1. certezza che il programma applicativo destinatario sia attivo
  - 2. garanzia che tutti i pacchetti inviati dal mittente raggiungeranno la loro destinazione



### TCP

- Elementi dell'intestazione TCP:
  - 1. Numero di porta sorgente TCP
  - 2. Numero di porta di destinazione TCP
  - 3. Numero di sequenza
  - 4. Numero di conferma di ricezione (ACK)
  - 5. Somma di controllo TCP (checksum)
  - 6. Dimensioni della finestra a scorrimento TCP
  - 7. Bit di segnalazione (FLAG)

#### **TCP** header

| Porta Sorgente(16) |              |                  | Porta destinazione(16 |  |
|--------------------|--------------|------------------|-----------------------|--|
|                    |              | Numero di Seq    | uenza(32)             |  |
|                    | N            | lumero di Acknow | ledgement(32)         |  |
| HLEN(4)            | Riservati(6) | Flag(6)          | Window(16)            |  |
| Checksum(16)       |              |                  | Urgent Pointer(16)    |  |
| Opzioni            |              |                  | Padding               |  |



### TCP

- Per capire il significato del numero di sequenza, bisogna ricordare che i segmenti TCP viaggiano in un ordine sequenziale numerato, all'interno di pacchetti IP. Il numero di sequenza nell'intestazione TCP stabilisce l'ordine che la destinazione deve usare per riassemblare i segmenti nell'ordine di partenza.
- Quando l'host ricevente ottiene un segmento TCP, risponde al mittente con un piccolo pacchetto di conferma detto ACK (ACKnowledgment) o conferma di ricezione. Il numero di ciascuna conferma di ricezione coincide con il numero di sequenza del pacchetto che è stato ricevuto più uno.
- Il mancato ACK viene rilevato dal mittente: se non riceve una conferma di ricezione per ogni pacchetto che ha trasmesso, trascorso un tempo t di timeout, il mittente rimanda il pacchetto in questione.
- Nella pratica, per ridurre il numero di conferme (ACK) ed ottimizzare lo scambio dei dati, gli host scambiano anche un numero relativo alla dimensione della finestra (campo Window): questo numero indica quanti byte possono essere ricevuti e mantenuti nel buffer prima di inviare una conferma (ack). La finestra viene adattata in base alle condizioni del trasferimento (es. errori rilevati) regolando il flusso TCP.



# TCP - Three Way Handshake

- Il procedimento per avviare una connessione TCP può essere informalmente descritto come segue:
  - "Iniziamo una connessione, fammi sapere se sei in linea e hai ricevuto questa richiesta"
  - 2. "Sì, io ho ricevuto la tua richiesta e sono pronto a stabilire il collegamento"
  - 3. "Va bene, ho ricevuto la tua conferma di ricezione; ecco i primi dati per te" (connessione stabilita)
- La sequenza iniziale con cui viene stabilita una connessione è detta three-way handshaking
- Il primo pacchetto dati ha numero di sequenza uguale all'ACK precedente





# TCP – Three Way Handshake

- Resiste alla instaurazione contemporanea di due connessioni
- Ignora pacchetti di apertura ritardatari





