上海交通大学 2012-2013 学年第一学期《矩阵理论》试卷 (2013.1.3,14:00-16:00)

成绩

).

姓名______ 学号_____ 矩阵理论分班号或任课教师_____

	本试卷共 4 页, 15 道题, 满分 100 分. 其中 $diag$ 表示对角矩阵, A^* 表示 A 的共轭转置.	
	一. 单项选择题 (每题 3 分, 共 15 分)	
	1. 设 $V=\mathbb{C}^{3\times 3}$ 是全体 3 阶复方阵构成的复线性空间, U,W 是 V 的两个子空间, 其中 $U=\{A\in V trA^*=0\}, W=\{A\in V A^T+A=0\}.$	
则 d	$\operatorname{im}(U+W) - \operatorname{dim}U = ($ (C) 7 (D) 8	
	2. 设 U, W 是内积空间 V 的两个子空间. 则 $ (A) (U + W)^{\perp} = U^{\perp} + W^{\perp} \qquad \qquad (B) (U + W)^{\perp} = U^{\perp} \cap W^{\perp} $ $ (C) (U \cap W)^{\perp} = U^{\perp} \cap W^{\perp} \qquad \qquad (D) (U \cap W)^{\perp} = U + W $	
	3. 设两个 4 阶复矩阵 A 与 B 的最小多项式分别为 $x^2(x-1)$ 与 $x(x-1)$, 则矩阵 $\begin{pmatrix} A^* & 0 \\ 0 & B \end{pmatrix}$ 的 Jor-	-
dan	标准形所含 Jordan 块的个数为 () (A) 5 (B) 6 (C) 7 (D) 8	
	4. 设 $\ \bullet \ _a$ 分别表示复线性空间 \mathbb{C}^n 的 a - 范数, $a = 1, 2, \infty$. 设 $x \in \mathbb{C}^n$. 则必有() (A) $\ x\ _1 \le \ x\ _2 \le \ x\ _\infty$ (B) $\ x\ _2 \le \ x\ _1 \le \ x\ _\infty$ (C) $\ x\ _\infty \le \ x\ _1 \le \ x\ _2$ (D) $\ x\ _\infty \le \ x\ _1 \le n\ x\ _\infty$	
	5. 设 2 阶 复矩阵 $A, B, A - B$ 均为投影矩阵,则() (A) $AB = BA = 0$ (B) $AB = BA = I$ (C) $AB = BA = A$ (D) $AB = BA = B$	
	二. 填空题 (每题 3 分, 共 15 分)	
	6. 设 $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, $\sigma\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$, 则 σ 关于基 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 的矩阵为()
	7. 线性方程组 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ 的最优解为 ().
	8. 设 σ 是通常欧氏空间 \mathbb{R}^2 上的正交变换,且 $\sigma\begin{pmatrix} -3\\4 \end{pmatrix} = \begin{pmatrix} 5\\0 \end{pmatrix}$,则 $\sigma\begin{pmatrix} 0\\5 \end{pmatrix} = ($).
	9. 矩阵 A 的三角分解为 $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 则 A 的正交三角分解为 ().

10. 设A是秩为2的3阶正交投影矩阵,则矩阵 $I-\sin A$ 的 Jordan 标准形为 (

- 三. 计算题 (每题 15 分, 共 60 分)
- 11. 设 $V = \mathbb{R}^3$ 是实线性空间. 定义V 上的线性变换 σ 如下:

$$\sigma: (x_1, x_2, x_3)^T \mapsto (x_2, -2x_2 + 2x_3, x_2 - x_3)^T, \quad \forall (x_1, x_2, x_3)^T \in V.$$

- (1) 求 σ 的核空间 $Ker(\sigma)$ 与像空间 $Im(\sigma)$ 的各一组基;
- (2)证明或否定 $V = \text{Ker}(\sigma) \oplus \text{Im}(\sigma)$.

12. 设 $V = \mathbb{R}^{n \times n}$ 是全体n 阶实矩阵构成的实线性空间. 对任意 $A, B \in V$, 定义

$$(A, B) = tr(A^T B).$$

- (1)证明上面定义的函数 (•,•) 是 V 上的一个内积;
- (2) 证明或否定: 全体基本矩阵 E_{ij} , $1 \le i, j \le n$ 构成 V 的一个标准正交基;
- (3) 设 $U = \{A \in V \mid A = aI, a \in \mathbb{R}\}$, 求U的正交补 U^{\perp} 的一个标准正交基.

$$13. \, \mathop{ \stackrel{ \,\,{}_{}}{\,\,\,}} \mathop{\mathcal{U}}\nolimits A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{array} \right).$$

- (1) 写出 A 的 Jordan 标准形 J (请将 Jordan 块按阶数从大到小排列);
- $(2) \, \vec{\mathcal{R}} \int_0^t e^{Js} ds;$
- (3) 求定解问题 $x'(t) = Jx(t) + (0,0,1)^T, x(0) = (1\ 0\ 0)^T$ 的解.

14. 设矩阵 $A\in\mathbb{C}^{m\times n}$ $(m\geq n)$ 的秩为 r>0,A 的奇异值分解为 $A=U\mathrm{diag}(\sigma_1,...,\sigma_r,0,...,0)V^*,$ $U=(u_1,\cdots,u_m),V=(v_1,\cdots,v_n)$ 分别是 m 阶与 n 阶酉矩阵.设矩阵 $B=\begin{pmatrix}A&A\end{pmatrix}$.

- (1) 求 BB* 的谱分解;
- (2) 求 B 的奇异值分解;
- (3) 求 B*B 的 Moore-Penrose 广义逆.

四.证明题 (每题10分,共10分)

15. 设 A,B 均为 $m \times n$ 阶复矩阵. 记 σ_A 是 A 的最大奇异值. 证明:

- (1) $\sigma_A = \max_{x \neq 0, x \in \mathbb{C}^n} \frac{\|Ax\|_2}{\|x\|_2} = \max_{x^*x=1} \|Ax\|_2.$
- (2) $\sigma_{A+B} \leq \sigma_A + \sigma_B$.