Prénom: Nom: NOMA:

Travail 3

Transistor bipolaire: Analyse DC et AC

Soit l'amplificateur bipolaire représenté à la Fig. 3.1, où le signal du générateur est noté v_{SIG} , l'entrée est notée v_{IN} et la sortie est notée v_{OUT} .

Fig. 3.1 – Schéma du circuit de l'amplificateur bipolaire.

La tension d'alimentation est $V_{DD}=5$ [V] et le transistor est un bipolaire BC107B. Les capacités du montage valent respectivement $C_{in}=1$ [μ F] et $C_L=0.1$ [μ F]. La résistance de base vaut $R_B=168$ [k Ω] et la résistance de générateur $R_{sig}=100$ [Ω]. On considère par ailleurs 3 cas pour les valeurs des résistances R_E et R_C :

- 1. $R_E = 50 [\Omega]$ et $R_C = 330 [\Omega]$.
- 2. $R_E = 10 [k\Omega] \text{ et } R_C = 3.3 [k\Omega].$
- 3. $R_E = 10 \, [\text{M}\Omega] \, \text{et} \, R_C = 1 \, [\text{k}\Omega].$

Analyse DC

1. Sur base du schéma de l'amplificateur de la Fig. 3.1

- Donnez le type de transistor utilisé?

- Identifiez les bornes du transistor auxquelles correspondent v_{IN} et v_{OUT} ?

- Identifiez la configuration d'amplificateur utilisée?

ELEC1530 - Travail 3

- Donnez les conditions de polarisation pour placer le transistor en régime actif. Sur bas de simulations Spice, identifiez ensuite dans quelle régime se trouve le transistor pour le 3 choix de résistances de polarisation proposés.

2. Pour le cas où le transistor se trouve en régime actif, donnez toutes les équations qui permettent de calculer les courants et tensions du montage. Comparez ensuite avec les valeurs Spice extraites au travers d'une simulation du point de fonctionnement DC (.op).

Equations			

Point de polarisation

Grandeur	Unité	Valeur calculée	Valeur simulée sur Spice
I_B			
$I_{\mathcal{C}}$			
I_E			
V_B			
V_{C}			
V_E			

ELEC1530 - Travail 3

Prénom:	Nom:	NOMA:
rrenom:	Nom:	NOMA:

Analyse AC

3. Donnez les équations des paramètres petit signal g_m , r_0 , r_π et r_e du transistor bipolaire et estimez leurs valeurs numériques. Comparez avec les valeurs extraites de Spice.

Grandeur	T Incité	17-1114	Valous simulta ous Cuina
Grandeur	Unité	Valeur calculée	Valeur simulée sur Spice
g_m			
r_o			
r_{π}			
r_e			

4. Dessinez le schéma petit signal du circuit d'amplification. Calculez les résistances d'entrée (par rapport à v_{IN}) et de sortie de l'amplificateur. Calculez les gains petit signal $\frac{v_{out}}{v_{in}}$ et $\frac{v_{out}}{v_{sig}}$ dans la bande passante.

Schéma petit signal		

Résistances d'entrée et de sortie du circuit d'amplification

ELEC1530 - Travail 3

Prénom:	Nom:	NOMA:
	Gains en tension	
de 1 [la fréquence avec une source de tension μ F]) et une charge capacitive de 100 [nF]	Bode des gains (du montage et du circuit) en fonction AC (v_{SIG} appliquée via une capacité de découplage de le (entre v_{OUT} et la masse). Comparez avec vos calculation faute et basse de la bande passante.
	Simulations Spice	
	Limites de la bande passante	

ELEC1530 - Travail 3 4