Compilers Context Free Grammars

LEIC

FEUP-FCUP

2022

Compilers - Important dates

- Check Point: April 5 and April 6
- ▶ Written Test 1 (25%): April 20
- ▶ Deadline for Project 1st part (12,5%): May 8
- Project presentations (1st part): May 10 and May 11
- ► Check Point: May 31 and June 1
- ► Project Deadline (30%): June 12
- ▶ Project presentations (7,5%): June 14 and June 15
- Written Test 2 (25%): June 21

Compiler steps

This lecture

Syntactic Analysis

Context free grammars

Examples

Parsing

Recursive descent parsing

LL Parsing

Syntactic analysis

- ▶ Check that a program syntax is correct with respect to a given grammar e.g.:
 - open and closed brackets { }, () match
 - operators +, *, etc. respect their arity;
 - instructions end correctly;)
- Note that a sentence may have a correct syntax and still does not make sense Example (Chomsky, 1957): "Colorless green ideas sleep furiosly"
- ► The (parser) builds an abstract syntax tree (AST) from a list of tokens (or outputs a syntax error)
- Main framewok: context free grammars

This lecture

Syntactic Analysis

Context free grammars

Examples

Parsing

Recursive descent parsing

LL Parsing

Context free grammars

A context free grammar $G = (\Sigma, N, S, P)$ is defined by:

- ∑ set of *terminal* symbols;
- N set of non-terminal symbols;
- $S \in N$ initial symbol;
 - *P* set of de *production rules* $X \to \alpha$ where:
 - X is non-terminal;
 - lacktriangledown as a sequence (maybe empty) of terminal or non-terminal symbols

Example

Terminal symbols:

$$\Sigma = \{a, b\}$$

Non-terminal symbols:

$$N = \{S, B\}$$

Initial symbol:

S

Production rules:

$$S \to aSB$$

$${\it S} \rightarrow \varepsilon$$

$$S \rightarrow B$$

$$B \rightarrow Bb$$

$$B \rightarrow b$$

Derivations

A derivation relation \Rightarrow replaces a non-terminal symbol by the right-hand side of its corresponding rule.

Example:

$$S \rightarrow aSB$$
 (1)

$$S \to \varepsilon$$
 (2)

$$S \to B$$
 (3)

$$B \to Bb$$
 (4)

$$B \to b$$
 (5)

 $S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$

Language defined by a grammar

- ▶ Beginning with the initial symbol. . .
- expand the non-terminals using the corresponding production rules. . .
- when there only terminal symbols: we reach a word described by the grammar.

For the previous grammar *G*:

$$S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaBbB \Rightarrow aabbB \Rightarrow aabbb$$

Thus: $aabb \in L(G)$.

Language defined by a grammar (cont.)

Thus, if
$$G = (\Sigma, N, S, P)$$
 then

$$L(G) = \{ w \in \Sigma^* : S \Rightarrow^* w \}$$

 $(\Rightarrow^*$ is the *transitive closure* of the derivation.)

Exercise

$$G: S \rightarrow aSB$$

$$S \rightarrow \varepsilon$$

$$S \rightarrow B$$

$$B \rightarrow Bb$$

$$B \rightarrow b$$

Describe the language produced by G.

- ▶ Where may we have occurrences of *a* and *b*?
- ▶ What is the relation between the *number* of *a*s and *b*s?

Syntax trees

Each production rule

$$X \to \alpha_1 \dots \alpha_n$$

corresponds to a node with n sub-trees:

Syntax trees (cont.)

Example:

$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$$

corresponds to the tree:

$$G: S \rightarrow aSB \quad (1)$$

$$S \rightarrow \varepsilon \quad (2)$$

$$S \rightarrow B \quad (3)$$

$$B \rightarrow Bb \quad (4)$$

$$B \rightarrow b \quad (5)$$

Syntax trees (cont.)

 $S \Rightarrow^* aabbb$ may have two different derivations:

$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$$
 (6)

$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{3}{\Rightarrow} aaBBB \stackrel{5}{\Rightarrow} aabBB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$$
 (7)

(6) corresponds to the tree on the left-hand side; (7) corresponds to the tree on the right-hand side.

$$G: S \rightarrow aSB$$
 (1)
 $S \rightarrow \varepsilon$ (2)
 $S \rightarrow B$ (3)
 $B \rightarrow Bb$ (4)
 $B \rightarrow b$ (5)

Ambiguous grammars

A grammar is ambiguous if it produces words with different syntax trees.

G is ambiguous

$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$$

 $S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{3}{\Rightarrow} aaBBB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$

because the two previous derivations correspond to two different syntax trees.

Ambiguous grammars

A grammar is ambiguous if it produces words with different syntax trees.

G is ambiguous

$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$$
 $S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{3}{\Rightarrow} aaBBB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$

because the two previous derivations correspond to two different syntax trees.

Note:

- different derivations may correspond to the same syntax tree
- ▶ an ambiguous grammar must produce different syntax tree and not only different derivations

This lecture

Syntactic Analysis

Context free grammars

Examples

Parsing

Recursive descent parsing

LL Parsing

Arithmetic expressions

```
Non-terminals: E
Terminals (tokens): num + * ( )
Production rules:
                                                           E \rightarrow E + E
                                                           F \rightarrow F*F
                                                           E \rightarrow \text{num}
                                                           E \rightarrow (E)
Or...:
                                  E \rightarrow E + E \mid E * E \mid \text{num} \mid (E)
```

Arithmetic expressions (cont.)

► This grammar is *ambiguous*

Arithmetic expressions (cont.)

1+2+3:

Arithmetic expressions (cont.)

1+2*3:

How to eliminate ambiguity

For the previous example we must define:

associativity properties

left: 1+2+3 means
$$(1+2)+3$$
 right: 1+2+3 means $1+(2+3)$

▶ a priority between + and * e.g. 1+2*3 means $1 + (2 \times 3)$ or $(1 + 2) \times 3$

How to eliminate ambiguity (cont.)

$$E \rightarrow E + T$$
 $T \rightarrow T * F$ $F \rightarrow \text{num}$ $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

► In this grammar:

```
expressions E are sums of terms;
terms T are products of factors;
factors F are constants or expressions between brackets.
```

▶ Productions of E and T with left recursion mean left associativity of + and *

How to eliminate ambiguity (cont.)

Now 1+2+3 and 1+2*3 have unique syntaxt trees:

Example: sequences of statements

```
Non-terminals: S (statements) E (expressions)

Terminals (tokens): ident num = ( ) + , ; ++

Production rules: S \rightarrow S ; S \qquad E \rightarrow \text{ident}
S \rightarrow \text{ident} = E \qquad E \rightarrow \text{num}
S \rightarrow \text{ident} ++ \qquad E \rightarrow E + E
```

Example:

```
a = 17; b = 2

a = 0; (a++; b=a+5)
```


Example: sequences of statements (cont.)

Exercises:

- 1. Show that the previous grammar is ambiguous.
- 2. Rewrite the grammar to eliminate ambiguity. (Note: the problem is not only with expressions!)

"Dangling else"

if/then with optional *else*:

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{if } E \text{ then } S$
 $S \rightarrow etc.$

Then

if e_1 then if e_2 then s_1 else s_2

may have the two meanings:

if
$$e_1$$
 then {if e_2 then s_1 else s_2 } (8)

if
$$e_1$$
 then {if e_2 then s_1 } else s_2 (9)

Usually programming languages use (8): associate the else to the nearest if.

"Dangling else" (cont.)

Two new non-terminals: *M* (*matched statements*) and *U* (*unmatched statements*).

$$S o M$$

 $S o U$
 $M o$ if E then M else M
 $M o$ etc.
 $U o$ if E then S
 $U o$ if E then M else U

In practice: it may be better to solve these ambiguities in the parser implementation...

Left Factoring

$$A \to \alpha\beta \mid \alpha\gamma$$

Example: dangling else

An LL(1) parser cannot distinguish between the production choices.

Solution: rewrite the rule as:

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta \mid \gamma$$

This lecture

Syntactic Analysis

Context free grammars

Examples

Parsing

Recursive descent parsing

LL Parsing

Parsing

- Build an AST from a list of tokens (or reject the program with a syntax error output)
- Parsing:

top-down begin by the root (non-terminal initial symbol S) and find the leftmost derivation.

bottom-up begin by the tokens and find the reversed rightmost derivation.

- ► *Top-down* parsing:
 - recursive descent parsing
 - predictive parsing (LL(1))

This lecture

Syntactic Analysis

Context free grammars

Examples

Parsing

Recursive descent parsing

LL Parsing

Implemented directly in a programming language:

- ► Each non-terminal symbol corresponds to a function (or method)
- ► Each production correspond to a different case (if the production is recursive, so it is the function)
- ► Consume tokens from left to right
- Decide which production to use using the next token

Example

```
Programming Language:
begin
if 1=1 then
    begin
    print 0=11 ; print 123=4
    end
 else
    print 11=42
end
```

Example (cont.)

Grammar:

$$S o ext{if } E ext{ then } S ext{ else } S$$
 $L o ext{end}$ $S o ext{begin } S ext{ } L o ext{; } S ext{ } L ext{ } E o ext{num} = ext{num}$

Implementation in C/Java

parsing consumes tokens from the standard input

```
Token getToken(void); // read next token from the standard input
```

► Keep *look-ahead* token in a global variable:

- parsing algorithm decides what to do using the token and the look-ahead
- consume(...) consumes a specific token

Implementation in C/Java (cont.)

```
void parse_S(void) {
  switch(next) {
  case IF:
    advance(); parse_E(); consume(THEN); parse_S();
    consume(ELSE); parse_S();
    break:
  case BEGIN:
    advance(); parse_S(); parse_L();
    break;
  case PRINT:
    advance(); parse_E();
    break:
 default:
   error("syntax error");
```

Implementation in C/Java (cont.)

```
void parse_E(void) {
  consume(NUM); consume(EQUAL); consume(NUM);
void parse_L(void) {
  switch(next) {
  case END:
    advance();
    break;
  case SEMI:
    advance(); parse_S(); parse_L();
    break:
  default:
    error("syntax error");
```

Stop

- ► The program terminates without redundant *tokens*
- ► The parser must know when to finish
- ► Add a special *token* \$ meaning the end of file
- ▶ Add a new production rule $S' \rightarrow S$ \$
- \triangleright S' is now the new initial symbol

```
void accepted(void) {
   parse_S();
   consume(EOF);
}
```

This lecture

Syntactic Analysis

Context free grammars

Examples

Parsing

Recursive descent parsing

LL Parsing

LL Parsing

- Parsing by recursive descent chooses the production rule based on the next terminal symbol
- ▶ We may need to rewrite the grammar to know what is the next terminal symbol

Example

Problems:

- ► How do we choose which rule to use from *E* and *T*?
- ▶ How to avoid a cycle caused by left recursion in *E* and *T* ?

Left Recursion Removal

Consider the following grammar:

$$E \rightarrow E + T$$

 $E \rightarrow T$

E produces sums of terms, i.e. $E \Rightarrow^* T + T + \cdots + T$.

Let us define an equivalent grammar adding a new non-terminal symbol E':

$$E \rightarrow T E'$$

 $E' \rightarrow + T E'$
 $E' \rightarrow \varepsilon$

This grammar is right recursive.

Left Recursion Removal (cont.)

$$E \rightarrow T E'$$

 $E' \rightarrow + T E'$
 $E' \rightarrow \varepsilon$

- ▶ Rules in E' have recursion on the right and not on the left
- ▶ We now may decide which rule to use based on the next symbol:
- + use $E' \rightarrow + T E'$ otherwise use $E' \rightarrow \varepsilon$

Left Recursion Removal (cont.)

Applying the same transformation to the initial grammar we get:

$$\begin{array}{lll} E \rightarrow T \ E' & T \rightarrow F \ T' \\ E' \rightarrow + \ T \ E' & T' \rightarrow * \ F \ T' \\ E' \rightarrow - \ T \ E' & T' \rightarrow / \ F \ T' \\ E' \rightarrow \varepsilon & T' \rightarrow \varepsilon \end{array} \qquad \begin{array}{ll} F \rightarrow \text{num} \\ F \rightarrow (E) \end{array}$$

We now may define a recursive descent parser.

Exercise: implement a recursive descent *parser* for this grammar.

Grammars LL(1)

- ► These grammars belong to a class called *LL*(1): *Left-to-right parse*, *Leftmost derivation*, *1-symbol look-ahead*
- LL(1) contains all the grammars that may be implemented using recursive descent
- LL(k) means: Left-to-right parse, Leftmost derivation, k-symbols look-ahead
- ▶ Let us implement a parser for LL(1) grammars without recursion but using an auxiliary explicit stack.

FIRST

Let $G = (\Sigma, N, S, P)$ be a grammar and X a non-terminal symbol.

When the next token is x, we may use rule $X \to \gamma$ if

$$x \in \mathsf{FIRST}(\gamma)$$

meaning that x is an *initial symbol* in derivations starting at γ .

To choose between two rule $X \to \gamma$ and $X \to \gamma'$ using only the next symbol we must guarantee that they do not share initial symbols:

$$\mathsf{FIRST}(\gamma) \cap \mathsf{FIRST}(\gamma') = \emptyset$$

FIRST (cont.)

Definition

$$\mathsf{FIRST}(\gamma) = \{ x \in \Sigma : \gamma \Rightarrow^* x\beta, \text{ for some } \beta \}$$

This means that $FIRST(\gamma)$ is the set of tokens at the beginning of words derived by γ .

- lacktriangle This definition is not useful to compute FIRST(γ) for each rule $X o \gamma$
- Let us see how to compute the set FIRST

FIRST (cont.)

$$E \rightarrow E + T$$
 $T \rightarrow T * F$ $F \rightarrow \text{num}$ $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

Start computing FIRST directly for non-recursive rules e.g.

$$FIRST(F) = \{num, (\}$$

▶ Recursive rules must respect some equations; e.g. for *T*:

$$\mathsf{FIRST}(T) = \mathsf{FIRST}(T * F) \cup \mathsf{FIRST}(F)$$
$$\iff \mathsf{FIRST}(T) = \mathsf{FIRST}(T) \cup \mathsf{FIRST}(F)$$

► The least solution for the previous equation is:

$$\mathsf{FIRST}(T) = \mathsf{FIRST}(F) = \{\mathsf{num}, (\}$$

Let us see how to get the solution using an iterative method

FIRST (cont.)

lacktriangle We will also need a predicate NULLABLE(γ) to decide if a sequence may generate the empty word

Equations for FIRST and NULLABLE

▶ In the previous example we may define the simplification

$$FIRST(T * F) = FIRST(T)$$

because it is not possible to derive the empty word ε from T

lacktriangle In general: to compute FIRST we need to know which non-terminals may derive arepsilon

$$\mathsf{NULLABLE}(X) = \left\{ \begin{array}{ll} \mathsf{True} & \text{, if } X \Rightarrow^* \varepsilon \\ \mathsf{False} & \text{, otherwise} \end{array} \right.$$

Let us define this predicate by a set of equations

Equations for FIRST and NULLABLE (cont.)

```
FIRST(\varepsilon) = \{\}
          FIRST(a) = \{a\} \quad (a \in \Sigma)
       \mathsf{FIRST}(\alpha\beta) = \begin{cases} \mathsf{FIRST}(\alpha) \cup \mathsf{FIRST}(\beta), & \mathsf{if NULLABLE}(\alpha) \\ \mathsf{FIRST}(\alpha), & \mathsf{otherwise} \end{cases}
         FIRST(X) = FIRST(\gamma_1) \cup ... \cup FIRST(\gamma_n).
                        where X \to \gamma_i are all the rules for X
  NULLABLE(\varepsilon) = True
  NULLABLE(a) = False \quad (a \in \Sigma)
NULLABLE(\alpha\beta) = NULLABLE(\alpha) \land NULLABLE(\beta)
 NULLABLE(X) = NULLABLE(\gamma_1) \lor ... \lor NULLABLE(\gamma_n)
                        where X \to \gamma_i are all the rules for X
```

Algorithm for computing FIRST and NULLABLE

Iterative algorithm:

- 1. Inicially NULLABLE(X) := False and FIRST(X) := \emptyset for every non-terminal symbol
- 2. Compute new elements for the right-hand side of productions using the previous equations
- 3. Repeat this util the sets do not change (reach a fixpoint)

Algorithm for computing FIRST and NULLABLE

Iterative algorithm:

- 1. Inicially NULLABLE(X) := False and FIRST(X) := \emptyset for every non-terminal symbol
- 2. Compute new elements for the right-hand side of productions using the previous equations
- 3. Repeat this util the sets do not change (reach a fixpoint)
- We may compute NULLABLE and then FIRST
- ► The algorithm terminates because the previous equations define a *monotonic* function in a finite complete partial order (remember partial orders from Discrete Mathematics...)

Example: arithmetic expressions

$$E \rightarrow E + T$$
 $T \rightarrow T * F$ $F \rightarrow \text{num}$ $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

$$\begin{aligned} & \mathsf{NULLABLE}(E) = (\mathsf{NULLABLE}(E) \land \mathsf{NULLABLE}(+) \land \mathsf{NULLABLE}(T)) \lor \mathsf{NULLABLE}(T) \\ & \mathsf{NULLABLE}(T) = (\mathsf{NULLABLE}(T) \land \mathsf{NULLABLE}(*) \land \mathsf{NULLABLE}(F)) \lor \mathsf{NULLABLE}(F) \\ & \mathsf{NULLABLE}(F) = \mathsf{NULLABLE}(\mathsf{num}) \lor \mathsf{NULLABLE}((E)) = \mathsf{False} \end{aligned}$$

	iterations		
non-terminals	0	1	
NULLABLE(E)	False	False	
NULLABLE(T)	False	False	
NULLABLE(F)	False	False	

Reaches a fixpoint in iteration 1.

Example: arithmetic expressions (cont.)

$$E \rightarrow E + T \qquad T \rightarrow T * F \qquad F \rightarrow \text{num}$$

$$E \rightarrow T \qquad T \rightarrow F \qquad F \rightarrow (E)$$

$$\mathsf{FIRST}(E) = \mathsf{FIRST}(E+T) \cup \mathsf{FIRST}(T) = \mathsf{FIRST}(E) \cup \mathsf{FIRST}(T)$$

$$\mathsf{FIRST}(T) = \mathsf{FIRST}(T * F) \cup \mathsf{FIRST}(F) = \mathsf{FIRST}(T) \cup \mathsf{FIRST}(F)$$

$$\mathsf{FIRST}(F) = \mathsf{FIRST}(\text{num}) \cup \mathsf{FIRST}((E)) = \{\text{num}, (\}\}$$

	ite	rations			
non-terminals	0	1	2	3	4
FIRST(E)	Ø	Ø	Ø	$\{num,(\}$	{num, (}
FIRST(T)	\emptyset	Ø	$\{num, (\}$	$\{num, (\}$	$\{num, (\}$
FIRST(F)	Ø	$\{num, (\}$	$\{num, (\}$	$\{num, (\}$	$\{num, (\}$

Reaches a fixpoint in iteration 4.

Example: arithmetic expressions (cont.)

Solutions:

$$\begin{aligned} &\mathsf{FIRST}(E) = \{\mathsf{num}, (\}\\ &\mathsf{FIRST}(T) = \{\mathsf{num}, (\}\\ &\mathsf{FIRST}(F) = \{\mathsf{num}, (\}\\ \end{aligned}$$

Thus this grammar is not LL(1) because the FIRST sets of the right-hand side of rules

$$E \rightarrow E + T$$

 $E \rightarrow T$

are not disjoint — in fact they are both equal to $\{num, (\}$.

Exercise

Write the equations and compute NULLABLE and FIRST for the following grammar:

$$\begin{array}{ccc} S & \rightarrow AB \\ A & \rightarrow aAb & \mid \varepsilon \\ B & \rightarrow bB & \mid \varepsilon \end{array}$$

Exercise

Write the equations and compute NULLABLE and FIRST for the following grammar:

$$\begin{array}{ccc} S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

Solutions:

$$\mathsf{NULLABLE}(S) = \mathsf{NULLABLE}(A) = \mathsf{NULLABLE}(B) = \mathit{True}$$

$$\mathsf{FIRST}(S) = \{a, b\}$$

$$\mathsf{FIRST}(A) = \{a\}$$

$$\mathsf{FIRST}(B) = \{b\}$$

FOLLOW

- ▶ The set FIRST is not enough to characterize LL(1) grammars
- For rules $X \to \gamma$ where NULLABLE(γ) we need to know the tokes which may occur after X (FIRST(γ) is not enough to know this)
- \triangleright Set FOLLOW(X): tokens that occur after X in a derivation beginning in S

$$\mathsf{FOLLOW}(X) = \{c \in \Sigma \ : \ \mathsf{there} \ \mathsf{are} \ \alpha, \beta \ \mathsf{such \ that} \ S \Rightarrow^* \alpha X c \beta \}$$

(FOLLOW) Equations:

Add a new non-terminal symbol \$ and a new rule to capture the end of the input list of token:

$$S' \rightarrow S$$
\$

For each non terminal symbol X, for each rule: $Y \to \alpha X \beta$:

- ▶ $FOLLOW(X) \supseteq FIRST(\beta)$
- ▶ Se NULLABLE(β) then FOLLOW(X) \supseteq FOLLOW(Y)

How to compute the set FOLLOW

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

$$S' \rightarrow S\$$$
 FOLLOW(S) $\supseteq \{\$\}$ FIRST(\$) = {\$\$}
S \rightarrow AB FOLLOW(A) $\supseteq \{b\}$ FIRST(B) = {b}
FOLLOW(A) \supseteq FOLLOW(S) because NULLABLE(B)
FOLLOW(B) \supseteq FOLLOW(S)
FOLLOW(A) $\supseteq \{b\}$ FIRST(b) = {b}
B $\rightarrow bB$ FOLLOW(B) \supseteq FOLLOW(B)
(A $\rightarrow \varepsilon$ e B $\rightarrow \varepsilon$ are useless)

How to compute the set FOLLOW (cont.)

We get the following equations:

```
FOLLOW(S) \supseteq {$}
FOLLOW(A) \supseteq {b}
FOLLOW(A) \supseteq FOLLOW(S)
FOLLOW(B) \supseteq FOLLOW(B)
```

Solve the equations iteratively, beginning with \emptyset for every token.

iterations				
non-terminals	0	1	2	3
FOLLOW(S)	Ø	{\$}	{\$ }	{\$ }
FOLLOW(A)	Ø	{ <i>b</i> }	$\{b,\$\}$	$\{b,\$\}$
FOLLOW(B)	Ø	Ø	{\$ }	{\$ }

LL(1) Parsing

The rule to choose productions is:

We choose a production rule $N \to \alpha$ on input symbol c if:

- 1. $c \in FIRST(\alpha)$, or
- 2. $Nullable(\alpha)$ and $c \in FOLLOW(N)$.

If we can always choose a production uniquely by using these rules, this is called LL(1) parsing. A grammar that can be parsed using LL(1) parsing is called an LL(1) grammar.

Theorem: A grammar is LL(1) if the FIRST sets corresponding to different rules defining the same non-terminal symbol have an empty intersection and for every nonterminal A such that FIRST(A) contains ϵ , $FIRST(A) \cap FOLLOW(A) = \emptyset$

Parsing table

Use NULLABLE, FIRST and FOLLOW to build the parsing table:

- columns: tokens
- ► lines: non-terminal symbols
- write $X \to \gamma$:
 - ▶ on line X column t for each $t \in FIRST(\gamma)$;
 - ▶ if NULLABLE(γ), on line X column t for each $t \in FOLLOW(X)$.

A grammar is LL(1) if and only if each entry in the table has at most one rule.

Parsing table (cont.)

Example:

$$S' \rightarrow S\$$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \varepsilon$$

$$B \rightarrow bB \mid \varepsilon$$

Parsing table (check NULLABLE, FIRST, FOLLOW in the previous slides):

Each table entry haz zero or one rules \implies the grammar is LL(1).

Table for Predictive Parsing

- ▶ Recursive descent Parsing uses the programming language exectution stack (e.g. Java or C)
- ▶ We may implement predictive *parsing* without recursion using the parsing table and an explicit stack.

Table for Predictive Parsing (cont.)

```
Parsing algorithm:
stack := empty; push (S', stack);
while (stack not empty) do
  if top(stack) is a terminal then
   /* consume input */
    consume(top(stack)); pop(stack);
 else if(table[top(stack),next] is empty) then
     report_error();
  else
    /* use a grammar rule */
    symbols := right_hand_side(table[top(stack),next]);
    pop(stack):
    pushList(symbols, stack);
```

Example: parsing of aabbb

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

Table:

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	S o AB	S o AB	S o AB
Α	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	A o arepsilon	A o arepsilon
В		B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	

Example: parsing of aabbb

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

Table:

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A ightarrow aAb	A oarepsilon	A o arepsilon
В		B o bB	B o arepsilon

	input	
<u>S'</u>	<u>a</u> abbb\$	S' o S\$
<u>S</u> \$	<u>a</u> abbb\$	S' o S\$

Example: parsing of aabbb

Grammar:

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

Table:

	a	Ь	\$
S'	$\mathcal{S}' o \mathcal{S}$ \$	$\mathcal{S}' o \mathcal{S}$ \$	S' o S\$
S	$S' \rightarrow S\$$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A o aAb	A oarepsilon	A ightarrow arepsilon
В		B o bB	B o arepsilon

stack	input	
<u>S'</u>	<u>a</u> abbb\$	$S' \to S$ \$ $S \to AB$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	

Grammar:

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	a	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	S o AB	S o AB	S o AB
Α	A ightarrow aAb	A oarepsilon	A o arepsilon
В	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	B o bB	B o arepsilon

stack	•	action
<u>S'</u>	<u>a</u> abbb\$	S' o S\$
<u>S</u> \$	<u>a</u> abbb\$	$S \rightarrow AB$
<u>A</u> B\$	<u>a</u> abbb\$	A o aAb
<u>a</u> AbB\$	<u>a</u> abbb\$	

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A o aAb	A oarepsilon	A ightarrow arepsilon
В		B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	$\mathcal{S}' o \mathcal{S}$ \$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	$ extit{A} ightarrow extit{a} extit{A} extit{b}$
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A o aAb	A oarepsilon	A ightarrow arepsilon
В		B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	$\mathcal{S}' o \mathcal{S}$ \$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	$ extit{A} ightarrow extit{a} extit{A} extit{b}$
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	A o aAb
<u>a</u> AbbB\$	<u>a</u> bbb\$	

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A o aAb	A oarepsilon	A ightarrow arepsilon
В		B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	S' o S\$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	A o aAb
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	A o aAb
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume a
<u>A</u> bbB\$	<u>b</u> bb\$	

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	b	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	S o AB	S o AB	S o AB
Α	A o aAb	A o arepsilon	A o arepsilon
В	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	$\mathcal{S}' o \mathcal{S}$ \$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	$ extit{A} ightarrow extit{a} extit{A} extit{b}$
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	A o aAb
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume a
<u>A</u> bbB\$	<u>b</u> bb\$	A o arepsilon
<u>b</u> bB\$	<u>b</u> bb\$	

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	S o AB	S o AB	S o AB
Α	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	A oarepsilon	A ightarrow arepsilon
В		B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	S' o S\$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	A o aAb
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	A o aAb
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume a
<u>A</u> bbB\$	<u>b</u> bb\$	A oarepsilon
<u>b</u> bB\$	<u>b</u> bb\$	consume b
<u>b</u> B\$	<u>b</u> b\$	

Grammar:

$$\begin{array}{lll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	<i>S</i> ′ → <i>S</i> \$
S	S o AB	S o AB	S o AB
Α	A ightarrow aAb	A oarepsilon	A o arepsilon
В	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	$\mathcal{S}' o \mathcal{S}$ \$
<u>S</u> \$	<u>a</u> abbb\$	$\mathcal{S} o \mathcal{A}\mathcal{B}$
<u>A</u> B\$	<u>a</u> abbb\$	${ extstyle A} ightarrow a { extstyle A} b$
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	${ extstyle A} ightarrow a{ extstyle A} b$
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume a
<u>A</u> bbB\$	<u>b</u> bb\$	A oarepsilon
<u>b</u> bB\$	<u>b</u> bb\$	consume b
<u>b</u> B\$	<u>b</u> b\$	consume b
<u>B</u> \$	<u>b</u> \$	

Grammar:

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	S' o S\$
S	S o AB	S o AB	S o AB
Α	A o aAb	A oarepsilon	A ightarrow arepsilon
В	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	$\mathcal{S}' o \mathcal{S} \$$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	${\sf A} o {\sf a}{\sf A}{\sf b}$
<u>a</u> AbB\$	<u>a</u> abbb\$	consume a
<u>A</u> bB\$	<u>a</u> bbb\$	${\sf A} o {\sf a}{\sf A}{\sf b}$
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume <i>a</i>
<u>A</u> bbB\$	<u>b</u> bb\$	A oarepsilon
<u>b</u> bB\$	<u>b</u> bb\$	consume <i>b</i>
<u>b</u> B\$	<u>b</u> b\$	consume <i>b</i>
<u>B</u> \$	<u>b</u> \$	B o bB
<u>b</u> B\$	<u>b</u> \$	

\sim	ra			_	
G	ra	m	m	а	r

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	a	Ь	\$
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	S' o S\$
S	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A ightarrow aAb	A oarepsilon	A oarepsilon
В		B o bB	B oarepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	S' o S\$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	A o aAb
<u>a</u> AbB\$	<u>a</u> abbb\$	consume <i>a</i>
<u>A</u> bB\$	<u>a</u> bbb\$	A o aAb
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume a
<u>A</u> bbB\$	<u>b</u> bb\$	A o arepsilon
<u>b</u> bB\$	<u>b</u> bb\$	consume b
<u>b</u> B\$	<u>b</u> b\$	consume b
<u>B</u> \$	<u>b</u> \$	B o bB
<u>b</u> B\$	<u>b</u> \$	consume b
<u>B</u> \$	<u>\$</u>	

Grammar:

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

	а	Ь	\$
S'	$\mathcal{S}' o \mathcal{S}$ \$	$\mathcal{S}' o \mathcal{S}$ \$	$\mathcal{S}' o \mathcal{S}$ \$
S	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	S o AB	S o AB
Α	A o aAb	A oarepsilon	A oarepsilon
В		B o bB	B o arepsilon

stack	input	action
<u>S'</u>	<u>a</u> abbb\$	$\mathcal{S}' o \mathcal{S} \$$
<u>S</u> \$	<u>a</u> abbb\$	S o AB
<u>A</u> B\$	<u>a</u> abbb\$	A o aAb
<u>a</u> AbB\$	<u>a</u> abbb\$	consume <i>a</i>
<u>A</u> bB\$	<u>a</u> bbb\$	${\sf A} o {\sf a}{\sf A}{\sf b}$
<u>a</u> AbbB\$	<u>a</u> bbb\$	consume <i>a</i>
<u>A</u> bbB\$	<u>b</u> bb\$	A o arepsilon
<u>b</u> bB\$	<u>b</u> bb\$	consume <i>b</i>
<u>b</u> B\$	<u>b</u> b\$	consume <i>b</i>
<u>B</u> \$	<u>b</u> \$	B o bB
<u>b</u> B\$	<u>b</u> \$	consume <i>b</i>
<u>B</u> \$	<u>\$</u> \$	B o arepsilon
\$	\$	

Grammar:

$$\begin{array}{ll} S' & \rightarrow S\$ \\ S & \rightarrow AB \\ A & \rightarrow aAb \mid \varepsilon \\ B & \rightarrow bB \mid \varepsilon \end{array}$$

		Ь	
S'	S' o S\$	<i>S</i> ′ → <i>S</i> \$	$\mathcal{S}' o \mathcal{S}$ \$
S	S o AB	S o AB	$\mathcal{S} o \mathcal{A}\mathcal{B}$
Α	A ightarrow aAb	A oarepsilon	A oarepsilon
В	$S' \rightarrow S$ \$ $S \rightarrow AB$ $A \rightarrow aAb$	B o bB	B o arepsilon

input	action
<u>a</u> abbb\$	S' o S\$
<u>a</u> abbb\$	$S \rightarrow AB$
<u>a</u> abbb\$	A o aAb
<u>a</u> abbb\$	consume a
<u>a</u> bbb\$	A o aAb
<u>a</u> bbb\$	consume a
<u>b</u> bb\$	A ightarrow arepsilon
<u>b</u> bb\$	consume b
<u>b</u> b\$	consume b
<u>b</u> \$	B o bB
<u>b</u> \$	consume b
<u>\$</u>	$B o \varepsilon$
\$	consume \$
ε	accept
	aabbb\$ aabbb\$ aabbb\$ aabbb\$ aabbb\$ abbb\$ abbb\$ bbb\$ bbb\$

Conclusions

Parsing *top-down*:

- ► Recursive descent *parsing*
- Recursive functions in Java or C
- LL(1) is a widely used class of grammars
- ► Define a parsing table
- ► Parsing using the parsing table and an auxiliary stack

Parser generators

- We have studied parsers which recognize a language (yes or no output)
- ► The next step is to use parsing to also build a syntactic tree
- ▶ It is possible to use tools which automatically build *top-down* parsers:

```
JavaCC for Java: https://javacc.github.io/javacc/
Parsec for Haskell: http://hackage.haskell.org/package/parsec
```