第1章

部分空間の双対性

行空間と核空間の直交

 $A = (a_{ij})$ を $m \times n$ 行列とする。

このとき、A の第 i 行ベクトル $\left(a_{i1} \cdots a_{in}\right) \in {}^t\mathbb{R}^n$ は、次の線形汎関数 ϕ_i と同一視できる。

$$\phi_i = a_{i1}x_1 + \cdots + a_{in}x_n$$

この行ベクトル $\phi_i \in {}^t\mathbb{R}^n$ が張る空間 $\langle \phi_1, \ldots, \phi_n \rangle \subset {}^t\mathbb{R}^n$ を、A の行空間と呼び、 $\mathsf{Row}\ A$ と書く。

ここで、 x_j はベクトル $\boldsymbol{v} \in \mathbb{R}^n$ に対して、j 番目の成分を返す座標関数である。そこで、

$$\phi_i(\boldsymbol{v}) = a_{i1}x_1(\boldsymbol{v}) + \dots + a_{in}x_n(\boldsymbol{v})$$
$$= a_{i1}v_1 + \dots + a_{in}v_n$$

とみると、 ϕ_i は \boldsymbol{v} に作用して、 \boldsymbol{A} の第 i 行ベクトルと \boldsymbol{v} の内積を返すことがわかる。

すると、 $\phi_i(\boldsymbol{v})$ を縦に並べたものは、 $A\boldsymbol{v}$ に一致する。

$$Aoldsymbol{v} = egin{pmatrix} a_{11}v_1 + \cdots + a_{1n}v_n \ dots \ a_{m1}v_1 + \cdots + a_{mn}v_n \end{pmatrix} = egin{pmatrix} \phi_1(oldsymbol{v}) \ dots \ \phi_m(oldsymbol{v}) \end{pmatrix}$$

このとき、Av = o となる場合は、

$$\phi_i(\boldsymbol{v}) = 0 \quad (i = 1, \ldots, m)$$

が成り立つことになる。

すなわち、A のすべての行ベクトルに対して、 \boldsymbol{v} との内積が 0 になる。

このことから、A の行空間に属するベクトルと、 $A \mathbf{v} = \mathbf{o}$ の解空間 $\mathrm{Ker}\,A$ に属するベクトル \mathbf{v} は、互いに直交することがわかる。

よって、次の関係が成り立つ。

$$\operatorname{Ker} A = (\operatorname{Row} A)^{\perp}$$

また、 $(Row\ A)^{\perp}$ の直交補空間は $Row\ A$ に一致することから、両辺の直交補空間をとると、次も成り立つ。

$$(\operatorname{Ker} A)^{\perp} = \operatorname{Row} A$$

・ 核空間と行空間の直交関係 *A* の核空間と、*A* の行空間(行ベクトルが張る空間)は、直交補空間の関係にある。

$$\operatorname{Ker} A = (\operatorname{Row} A)^{\perp}$$
$$(\operatorname{Ker} A)^{\perp} = \operatorname{Row} A$$

この定理は、核空間と像空間との関係として言い換えることもできる。

A の像空間 Im A は、A の列ベクトルが張る空間(列空間)であった。

A を転置すると行と列が入れ替わるので、 A^{T} の行空間は A の列空間に対応する。

よって、定理を次のように書き換えることができる。

** 核空間と転置行列の像空間の直交関係 A の核空間と、 A^{T} の像空間は、直交補空間の関係にある。

$$\operatorname{Ker} A = (\operatorname{Im} A^{\top})^{\perp}$$
$$(\operatorname{Ker} A)^{\perp} = \operatorname{Im} A^{\top}$$

直交補空間から零化空間へ

さて、 $\operatorname{Ker} A = (\operatorname{Row} A)^{\perp}$ という<u>直交補空間</u>の関係を導くにあたって、ここでは次のような議論を行った。

- 1. 横ベクトルと同一視できる線形汎関数を考える
- 2. 線形汎関数に縦ベクトルを作用させたものを内積とみなす
- 3. 内積が 0 になることから直交補空間の関係を導く

つまり、ここでは内積が定められている空間(計量空間)で議論を行ったわけだが、内積を 考えずに、線形汎関数の集合(双対空間)だけで議論を行うこともできる。

直交補空間の概念を内積を使わずに拡張し、一般の線形空間上で定義したものが、次に述べる零化空間である。

零化空間

V を線形空間とし、その部分空間 $W \subset V$ を考える。

V の双対空間 V^* (線形汎関数の集合) の中で、「W の元に作用させると 0 になる」ような線形汎関数を集めた集合を零化空間 (annihilator) という。

$$W^{\perp} = \{ \phi \in V^* \mid \forall \boldsymbol{w} \in W, \langle \phi, \boldsymbol{w} \rangle = 0 \}$$

を W の零化空間という。

 $\phi \in V^*$ が W のすべてのベクトル \boldsymbol{w} に対して $\phi(\boldsymbol{w}) = 0$ となるとき、その ϕ は W を「全滅させてしまう (annihilate)」という意味で、零化空間は annihilator と呼ばれる。

零化空間は V^* の部分空間

 V^* の中から、 $\phi(\boldsymbol{w})=0$ を満たす元 $\phi\in V^*$ を取り出した集合が W^\perp であるので、 W^\perp は V^* の部分空間である。

***** 零化空間の双対空間への包含関係 V を n 次元の線形空間とし、W を V の部分空間とする。

このとき、W の零化空間 W^{\perp} は、V の双対空間 V^* の部分空間である。

[Todo 1:]

.....

Zebra Notes

Туре	Number
todo	1