Neuronal Dynamics: Python Exercises

Professor Wulfram Gerstner Laboratory of Computational Neuroscience, EPF Lausanne

HODGKIN-HUXLEY (HH) NEURON MODEL

Exercise 1 Numerical Integration of HH model of the Squid Axon

Download HH.py from the book's webpage. HH.py is a python module containing 4 main functions: HH_Step, HH_Ramp, HH_Sinus and HH_ForwardEuler. The later is a subroutine used by the first 3 to perform the numerical integration. With those, you can simulate a step current, a ramp current or a sinusoidal current injected in the squid axon. The specific formulas implemented are described on pages 32 and 33 of the book. Once you have started ipython -pylab in the directory containing HH.py, simply type:

>> import HH

to port HH.py onto your current session. Then you can simulate a step current in a Hodgkin-Huxley model by typing:

>> HH.HH_Step()

which should trigger a plot with three panels. To have information on the arguments of the function, simply type:

>> HH.HH_Step?

or open HH.py in any text editor.

- 1. What is the lowest step current amplitude for generating at least one spike? Hint: use binary search on I_{amp} , with a 0.1 μA resolution.
- 2. What is the lowest step current amplitude to generate repetitive firing?
- 3. What is the minimum current required to make a spike when the current is slowly increased (ramp current waveform) instead of being increased suddenly?
- 4. What is the current threshold for repetitive spiking if the density of sodium channels is increased by a factor of 1.5? (You need to change the maximum conductance of sodium channel.)

Hint: You can change the parameters of the model in the appropriate section of HH.py; use any text editor to save the change. To actualize the change you have saved, you must type in your current ipython workspace:

>> reload(HH)

5. Look at HH_Step(I_amp = -5) and HH_Step(I_amp = -1). What is happening here? To which gating variable do you attribute this rebound spike?