

3

Problem?

5

nere

Problem

But...

...there

Curiosity!

CHALLENGE...

I have...

- ... a set of drone-based images

CHALLENGE...

I want...

- ... the ground foot print as vectors / polygons

Using Jupyter Notebook with...

```
from PIL import Image
from PIL.ExifTags import TAGS, GPSTAGS
import os, glob, sys
import ogr, osr, math as m, datetime
```


... and some Geometry...

... and some Math...

The Photographic Footprint of a Camera on a Drone

variables				
xsensor ysensor	36 24	width of sensor in mm height of sensor in mm	Field of view wide:	$2 \tan^{-1} \left(\frac{36}{2 \times 50} \right) = 39.6^{\circ}$
focallen altitude	50 100	focal length of lens in mm height in m	Field of view tall:	$2 \tan^{-1} \left(\frac{24}{2 \times 50} \right) = 26.99^{\circ}$
xgimbal ygimbal	30 30	x-axis gimbal angle y-axis gimbal angle	From drone to bottom of picture:	$100 \times \tan \left(30 - \frac{1}{2} \times 39.6\right) = 17.99m$
			From drone to top of picture:	$100 \times \tan\left(30 + \frac{1}{2} \times 39.6\right) = 118.33m$
			From drone to left of picture:	$100 \times \tan \left(30 - \frac{1}{2} \times 26.99\right) = 29.63m$
Drone Altitude = 100			From drone to right of picture:	$100 \times \tan\left(30 + \frac{1}{2} \times 26.99\right) = 94.88m$
		11/1	Height of photo footprint:	94.88 - 29.63 = 65.25m
		1//	Width of photo footprint:	118.33 - 17.00 - 100.33m

WE NEED

Information from the sensor:

- Camera type and settings (focal Length etc.)
- Gimbal information (pitch, yaw, roll)

WE MUST SPECIFY

Vector-Data Settings

- Format
- Filename
- Localisation

AND THEN....

... comes

into action

JUPYTER NOTEBOOK

AND FINALLY...

The Result

AND FINALLY...

Or

BUT

Am I right...?????

CONTACT

Jupyter Notebook / Sourcecode can be freely requested via:

hans-joerg.stark@sbb.ch @Glrambler

