

QCON 全球软件开发大会 【北京站】2016

移动支付背后的高可用架构

易宝 陈斌

このり2016.10.20~22上海・宝华万豪酒店

全球软件开发大会2016

[上海站]

购票热线: 010-64738142

会务咨询: qcon@cn.infoq.com

赞助咨询: sponsor@cn.infoq.com

议题提交: speakers@cn.infoq.com

在线咨询(QQ): 1173834688

团・购・享・受・更・多・优・惠

优惠(截至06月21日) 现在报名,立省2040元/张

自我介绍

- 1989年取得吉林大学硕士学位。
- 1993年加入新加坡航空公司,任高级系统分析师。
- 1999年投身硅谷互联网技术发展的浪潮,参与互联网公司的创业。
- 2001年任日立美国系统集成总监。
- 2004年加入Abacus 国际公司,任首席架构师。
- 2005年加入易宝支付,负责技术研发、业务运营和技术运维。
- 2006年任Nokia美国移动互联网首席工程师。
- 2008年加入eBay/PayPal,任资深架构师,负责移动应用的架构设计。
- 2014年重回易宝,任集团CTO,负责技术发展战略。

移动支付迅猛发展

说明:以上数据根据厂商访谈、易观智库自有监测数据和易观智库研究模型估算获得,易观智库 将根据掌握的最新市场情况对历史数据进行微调。

移动支付的业务特点

缴费

- 卡号
- 有效期
- 验证码
- 密码

大额支付时密码保护

丢失后保护

移动支付的技术特点

移动终端的特点	移动应用的特点	移动应用的要求
屏幕小	显示的信息有限	输出简单
键盘小	输入的信息有限	减少输入
摄像头	抓取图型信息	扫描输入
无线传输	无线传输困难	减少传输
处理器小	避免做大量复杂运算	置计算于后台
存储少	存储的信息有限	减少数据存储
NFC	读取和模拟支付卡	近场通信
指纹识别	读取指纹信息	替代密码

移动支付对平台的要求

移动支付对平台有更大的依赖性

- 移动传输的网络延时较大,需要移动平台有更高的可用性。
- 移动终端的存储空间有限,需要移动平台有更大的存储水平扩展能力。
- 移动终端的处理能力有限,需要移动平台有强大的计算水平扩展能力。
- 移动用户终端数量增长快,需要移动平台有无限的水平扩展能力。

平台可用性的定义与计算

• 可用性的定义

平台的可用性是指当用户要使用该平台的服务时,平台可以按照预先定义好的服务水平协议(SLA)提供所请求的服务的可能性。

• 可用性的计算

大致上有五种方法度量可用性,每个公司可以根据自己的业务实践灵活选择最适合的度量方法。这五种方法分别是:

- 硬件可用时间计算法
- 用户抱怨数量统计法
- 可用服务时间计算法
- 外部服务监控统计法
- 业务流量对比计算法

可用性	服务停止时间
99.9%	≈556分钟
99.99%	≈53分钟
99.999%	≈5分钟
99.9999%	≈0.5分钟

提高平台的可用性一多活机房

- 传统数据中心的部署策略是热备模式,即一个活跃的可以接受外部用户的服务请求,并在平台处理后做出回应的主机房,以及配合一个不接受用户请求,只是做好准备等待主机房出现问题后接管的热备机房。
- 这种部署方案很常见,但是有两个问题:一是资源浪费;二是主备互换的过程中会有短暂的服务中断,影响用户体验。
- 多活机房就是几个机房同时接受外部用户的服务请求,当某个机房出现问题 无法提供服务时,服务自动分配到其他的机房。根据不同的业务,这种配置 策略有一定的局限性。比如移动支付交易,所有的写服务必须在主机房完 成,面造服务可以在任何一个机房发生。

提高平台的可用性一故障隔离

• 泳道理论

在游泳池中通过绳索连结起来的浮标构成泳道。泳道可以确保每位选手不受邻近

同时扣确促油由每个类毛数向同一个方向游

选手的水花和水浪的干扰

• 故障隔离两大原则

◎ 原则一: 不共享

理想情况是负载均 衡、网络前端、应用服 务器、数据库,绝对不 共享任何服务、硬件和 软件。

◎ 原则二:不跨区

不同隔离区之间无通讯, 所有服务调用必须发生在同一个故障隔离

泳道: 1	泳道: 2	泳道∶3
客户1和2	客户3到8	客户9到20
网络服务器	网络服务器	网络服务器
应用服务器	应用服务器	应用服务器
数据库服务器	数据库服务器	数据库服务器

QCon全球软件开发大会

提高平台的可用性一减少失误

波音公司研究了从1995年到2005年波音涉及到的飞机事故,结果显示: 55%的事故与人为失误相关联。易宝的运维事故大部分也是人为失误。通过落实 ITIL 管理体系,开展"三思而后行"培训,有力地提高了可用性。

提高移动的可用性一优化协议

采用更加优化的传输协议,如SPDY或者HTTP2,可以提高网络的传输效率大约20%。这主要是通过下述几个变化实现的:

- 主动推给客户JS和CSS,不必HTML解析
- 二进制格式传输数据
- 10:1的消息头压缩
- 一个TCP连接完成所有传输

提高移动的可用性一减少传输

- 可以把认证和鉴权token存储在服务端、客户端只保留指针
- 可以通过随机手段,避免token或者App更新请求同时发生
- 优化App日志,只在Wi-Fi网络下传,其他时候暂时保留
- 使用websocket, 减少不必要的交互,实现流式数据传输

平台的扩展性一X轴扩展

- X轴扩展代表克隆服务或数据,可以很容易而且均匀地分散在不同的实例间。
- X轴的实施往往容易被概念化,通常能以相对较低的成本实施。
- X轴的实施受完成任务的指令条数和所需要的数据量增长的限制。
- 例如: 同一个服务,可以简单地克隆,水平无限扩展,以满足业务需求。

平台的扩展性一Y轴扩展

- Y轴扩展代表分割责任、行动或数据。
- Y轴扩展容易概念化,其成本通常比X轴扩展稍高。
- Y轴扩展不仅有助于提高交易的可扩展性,同时可以减少交易处理的指令集和数据规模。
- 例如: 把一个应用分解, 重构应用形成几个新的应用服务, 每个服务可以进行X轴进行独立的, 无限的水平扩展。

平台的扩展性一Z轴扩展

- Z轴扩展代表基于客户或请求者分割工作。与X轴和Y轴分割一样,Z轴分割容易概念化,但是实施起来非常困难而且成本极高。
- Z轴扩展有助于提高交易和数据的可扩展性,如果实施得当也有助于扩展指令 集和过程。

平台的可扩展性

• 可扩展性的定义

平台的可扩展性是指随着业务的发展, 当需要扩大平台服务能力时, 不必重构软件系统, 通过增加新的设备满足业务增长的需要。

· X轴扩展

平台的服务能力可以通过不改变服务的情况下, 不断添加硬件设备来完成容量的扩展。

·Y轴扩展

平台的服务能力可以按照服务不断分解和部署来完成容量的扩展。

·Z轴扩展

平台的服务能力可以按照客户不断分解和部署来完成容量的扩展。

架构扩展的实例

《架构即未来》

Paypal CTO

Mike

ebay CTO

马丁

2015年6月 英文

2016年4月 中文

架构师 / CTO的《孙子兵法》

联系方式

THANKS!