International Rectifier

20CJQ045

SCHOTTKY RECTIFIER

2 Amp

Major Ratings and Characteristics

Characte	eristics	20CJQ045	Units
' (\triangle v)	angular eform	2.0	А
V _{RRM}		45	V
I _{FSM} @ tp	=5µssine	390	А
V _F @1.	Apk, T _J = 125°C leg)	0.50	V
T _J rang	е	- 55 to 150	°C

Description/Features

The 20CJQ045 surface mount Schottky rectifier series has been designed for applications requiring very low forward drop and very small foot prints. Typical applications are in portables, switching power supplies, converters, automotive system, freewheeling diodes, battery charging, and reverse battery protection.

- Small footprint, surface mountable
- Low profile
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Common cathode

20CJQ045 Bulletin PD-20478 rev. F 01/03

Voltage Ratings

Part number	20CJQ045	
V _R Max. DC Reverse Voltage (V)	45	
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	Values	Units	Conditions
I _{F(AV)}	Max. Average Forward (Per Leg)	2	Α	50% duty cycle @ T _C =126°C, rectangular wave form
, ,	Current *See Fig. 5(Per Device)	4		50% duty cycle @ T _C =102°C, rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	390	Α	5μs Sine or 3μs Rect. pulse Following any rated load condition and with
	SurgeCurrent (Per Leg)*SeeFig.7	23		10ms Sine or 6ms Rect. pulse rated V _{RRM} applied
E _{AS}	E _{AS} Non-Repetitive Avalanche Energy		mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1 \text{Amps}, L = 4 \text{mH}$
	(Per Leg)			
I _{AR}	AR Repetitive Avalanche Current		Α	Current decaying linearly to zero in 1 µsec
	(Per Leg)			Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typical

Electrical Specifications

	Parameters	Values	Units	С	Conditions
V _{FM}	Max. Forward Voltage Drop	0.54	V	@ 1A	T,= 25 °C
	(Per Leg) * See Fig. 1 (1)	0.67	V	@ 2A	1 _J = 23 0
		0.50	V	@ 1A	T 425 9C
		0.65	V	@ 2A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	0.1	mA	T _J = 25 °C	\/ rated\/
	(Per Leg) * See Fig. 2 (1)	10	mA	T _J = 125 °C	$V_R = \text{rated } V_R$
V _{F(TO)}	V _{F(TO)} Threshold Voltage		V	$T_J = T_J \text{ max.}$	
r _t	- 101 - 11		mΩ		
C _T	Typ. Junction Capacitance (Per Leg)	70	pF	V _R = 5V _{DC} , (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance (Per Leg)	6	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change (Rated V _R)	7700	V/ µs		

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		Units	Conditions
T_J	Max. Junction Temperature Range	-55 to 150	°C	
T_{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJA}	Max.Thermal Resistance Junction to Ambient	65	°C/W	DC operation
R _{thJL}	Max.Thermal Resistance Junction to Lead	25	°C/W	DC operation
wt	Approximate Weight	0.13(.0045)	g(oz.)	
	Case Style	SOT-223		

Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

Fig. 6-Forward Power Loss Characteristics (PerLeg)

Fig. 7-Max. Non-Repetitive Surge Current (PerLeg)

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1} = 80\%$ rated V_R

20CJQ045 Bulletin PD-20478 rev. F 01/03

Marking Information

Tape and Reel Information

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 01/03