OPERAÇÕES UNITÁRIAS I

PROFª KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 10

5. Cominuição

5.1 Introdução

Fundamento Teórico da Cominuição (ou fragmentação de partículas)

Conjunto de operações de redução de tamanhos de partículas (como por exemplo minérios), executado de maneira controlada, e de modo a cumprir objetivos pré-determinados.

Constitui basicamente de duas etapas principais:

Britagem

Moagem

Principais Objetivos da Cominuição:

- a) Permitir manuseio do material e seu transporte contínuo (Ex: pedaço de rocha muito volumoso e pesado para ser transportado por caçambas, e transportadores de correia)
- b) Facilitar a separação de um constituinte desejado, contido numa estrutura mais complexa (separar a ganga do minério bruto);
- c) Aumentar a área superficial dos sólidos para aumentar a velocidade de alguns processos, tais como: redução no tempo de secagem, extração de solúveis e reações químicas, etc.
- d) Aumentar a efetividade na mistura de partículas (Ex: Fertilizante em pó);
- e) Melhorar a comercialização de produtos (uniformidade de tamanho e forma). Ex: Produtos alimentícios e minerais.

Princípios físicos da redução de tamanho de sólidos

Compressão

Esmagamento grosseiro de materiais duros

Impacto

Usados na moagem grosseira, média e fina

Cisalhamento

Para materiais menos duros, não abrasivos, moagem fina

Considerar:

DUREZA

ESTRUTURA MECÂNICA

TEOR UMIDADE

SENSIBILIDADE TÉRMICA

Diferenças entre as operações de Britagem e Moagem

- Partículas grosseiras
- Forças de compressão e de impacto.
- Baixa relações de redução de tamanho
- À seco
- A operação deve ser repetida diversas vezes, mudando-se o equipamento, até obtenção de material adequado à moagem.

Britagem:

- Partículas finas
- Processos de abrasão e arredondamento (quebra de arestas).
- Maiores relações de redução de tamanho
- Preferencialmente à úmido, para facilitar transporte e evitar formação de poeiras

Moagem

CIRCUITO CLÁSSICO DA COMINUIÇÃO

CONSUMO ENERGÉTICO NA COMINUIÇÃO

Os custos de energia são o principal gastos em trituração (ou britamento) e moenda, de maneira que os fatores que controlam esses custos são importantes.

O sólido a ser fragmentado inicialmente sofre deformação e fica em estado de tensão até que, ultrapassando o limite de ruptura, as partículas se rompem.

"O trabalho necessário para fragmentar o sólido é proporcional ao aumento de superfície produzido"

As leis de **Kick, Rittinger e Bond** são leis empíricas que podem ser obtidas a partir de uma equação diferencial que relaciona o trabalho elementar necessário (-dW, trabalho fornecido) para fragmentar a unidade de massa do sólido com uma variação de tamanho (-dD, redução de tamanho ou diâmetro médio).

$$-dW = k \left(\frac{-dD}{D^n}\right)$$

Portanto:

Lei de Kick: n = 1 (primeiras fases do britamento)

Lei de Rittinger: n= 2 (moagem fina)

Lei de Bond: n = 1,5 (geral)

Lei de Rittinger (n=2)

A mais antiga dessas relações, diz :

"A área da nova superfície produzida por fragmentação é diretamente proporcional ao trabalho útil consumido".

Aplicada moagem fina

$$-\int_{0}^{W}dW = -k\int_{D_{1}}^{D_{2}}\frac{dD}{D^{2}}$$

$$-W = Ck\left(\frac{1}{D_{2}} - \frac{1}{D_{1}}\right)$$
1a Lei da Cominuição

Lei de Kick (n=1)

Aplicada às primeiras fases do britamento, quando as modificações de extensão superficial não são importantes

$$-\int_{0}^{W} dW = -k \int_{D_{1}}^{D_{2}} \frac{dD}{D}$$

$$-W = Ck \ln \left(\frac{D_1}{D_2}\right)$$

2ª Lei da Cominuição

Lei de Bond (n=1,5)

$$-\int_{0}^{W} dW = -k \int_{D_{1}}^{D_{2}} \frac{dD}{D^{1.5}}$$

$$-W = CkW_i \left(\frac{1}{\sqrt{D_2}} - \frac{1}{\sqrt{D_1}} \right)$$

3ª Lei da Cominuição

A energia consumida para reduzir o tamanho de um material é inversamente proporcional à raiz quadrada do tamanho"

Wi é um índice de trabalho do material (tabelado), definido como o trabalho necessário para reduzir a unidade de peso (tonelada curta = 907 kg) do material, desde um tamanho inicial D2, até uma granulometria 80% passante em 100 µm

Se W for dado em HP, C em ton/h e D em cm e Wi em kWh/ton, então k=0,134

EXÉRCÍCIOS DE CONSUMO **ENERGÉTICO EM BRITADORES** E **MOINHOS**

EX17: (Gomide, pg98) Fazer uma estimativa da energia necessária para britar 100t/h de calcário, desde um diâmetro D80=5cm até o diâmetro final de 8 mesh (D80=0,236 cm). (Britagem a seco)

Dados:

Alimentação D1= 5cm

Produto D2=0,236 cm

C=100 t/h

Wi=? A seco

W

Pela Lei de Bond:

$$-W = 0.134CW_{i} \left(\frac{1}{\sqrt{D_{2}}} - \frac{1}{\sqrt{D_{1}}} \right)$$

 $W_i = 12,74 \cdot 1,34 = 17,07 kWh/t$

Tabela III-15
INDICES DE TRABALHO PARA MOAGENS A ÚMIDO (kWh/t)
PARA MOAGENS A SECO MULTIPLICAR POR 1.34

Material	Densidade	Indice de trabalho
Argila Ardosia	2,51 2,57	6,30 14,30
Arcia	2,65	16,46
Barita	4,28	6,24
Bauxita	2,20	8,78
Basalto Blenda	2,89 3,68	20,41 12,42
Calcáreo	2,66	12,74
Carbureto de silicio	2,73	26,17
Cascalho	2,63	15,87
Carvão	1,40	13,00
Cimento	2,67	10,57
Clinquer	3,09	13,49
Coque	1,31	15,13

EX17: (Gomide, pg98) Fazer uma estimativa da energia necessária para britar 100t/h de calcário, desde um diâmetro D80=5cm até o diâmetro final de 8 mesh (D80=0,236 cm). (Britagem a seco)

Dados:

Alimentação D1= 5cm

Produto D2=0,236 cm

C=100 t/h

Wi=? A seco

-W=???

Pela Lei de Kick

$$-W = 0.134CW_{i} \left(\frac{1}{\sqrt{D_{2}}} - \frac{1}{\sqrt{D_{1}}} \right)$$

$$W_i = 12,74 \cdot 1,34 = 1707 kWh / t$$

$$-W = 0.134 \cdot 100 \frac{t}{h} \cdot 17,07 \frac{kWh}{t} \left(\frac{1}{\sqrt{0.236}} - \frac{1}{\sqrt{5}} \right) = 368HP$$

EX18: (Gomide, pg99) Britagem de hematita à úmido.

A operação é feita em britador de ciclindros lisos. Atualmente gasta-se 1/4HP com britador vazio e 14HP para britar 6,4t/h com D1=3mm até D2=1 mm. Se reduzir o espaçamento dos cilindros pela metade, quanto será gasto de energia? Faça estimativa pelas 3 Leis da cominuição.

Dados:

Alimentação D1= 0,3cm Produto D2=0,1 cm C=6,4 t/h

Wi=? (úmido) -W*=14-0,25=13,75HP -W**=??? D2**=0,05cm

Pela Lei de Rittinger:

$$\frac{-W^{**}}{-W^{*}} = \frac{Ck\left(1/D_{2}^{**} - 1/D_{1}^{**}\right)}{Ck\left(1/D_{2}^{*} - 1/D_{1}^{**}\right)} = \frac{\left(1/D_{2}^{**} - 1/D_{1}^{**}\right)}{\left(1/D_{2}^{*} - 1/D_{1}^{*}\right)}$$

$$-W^{**} = -W^* \frac{\left(1/D_2^{**} - 1/D_1^{**}\right)}{\left(1/D_2^* - 1/D_1^*\right)}$$

$$-W^{**} = 13,75 \frac{(1/0,05-1/0,3)}{(1/0,1-1/0,3)} = 34,4HP \approx 35HP$$

EX18: (Gomide, pg99) Britagem de hematita à úmido.

A operação é feita em britador de ciclindros lisos. Atualmente gasta-se 1/4HP com britador vazio e 14HP para britar 6,4t/h com D1=3mm até D2=1 mm. Se reduzir o espaçamento dos cilindros pela metade, quanto será gasto de energia? Faça estimativa pelas 3 Leis da cominuição.

Dados:

Alimentação D1= 0,3cm Produto D2=0,1 cm C=6,4 t/h

Wi=? (úmido) -W*=14-0,25=13,75HP -W**=??? Pela Lei de Kick:

$$\frac{-W^{**}}{-W^{*}} = \frac{kC \ln \left(D_{1}^{**} / D_{2}^{**}\right)}{kC \ln \left(D_{1}^{*} / D_{2}^{*}\right)} = \frac{\ln \left(D_{1}^{**} / D_{2}^{**}\right)}{\ln \left(D_{1}^{*} / D_{2}^{*}\right)}$$

$$-W^{**} = -W^* \frac{\ln(D_1^{**} / D_2^{**})}{\ln(D_1^* / D_2^*)}$$

$$-W^{**} = 13,75 \frac{\ln(3/0,5)}{\ln(3/1)} = 22,4HP \approx 23HP$$

EX18: (Gomide, pg99) Britagem de hematita à úmido.

A operação é feita em britador de ciclindros lisos. Atualmente gasta-se 1/4HP com britador vazio e 14HP para britar 6,4t/h com D1=3mm até D2=1 mm. Se reduzir o espaçamento dos cilindros pela metade, quanto será gasto de energia? Faça estimativa pelas 3 Leis da cominuição.

Dados:

Alimentação D1= 0,3cm Produto D2=0,1 cm C=6,4 t/h

Wi=? (úmido) -W*=14-0,25=13,75HP -W**=??? Pela Lei de Bond:

$$\frac{-W^{**}}{-W^{*}} = \frac{0.134CW_{i}\left(1/\sqrt{D_{2}**} - 1/\sqrt{D_{1}**}\right)}{0.134CW_{i}\left(1/\sqrt{D_{2}} - 1/\sqrt{D_{1}}\right)} = \frac{\left(1/\sqrt{D_{2}**} - 1/\sqrt{D_{1}**}\right)}{\left(1/\sqrt{D_{2}} - 1/\sqrt{D_{1}}\right)}$$

$$-W^{**} = -W^{*} \frac{\left(1/\sqrt{D_{2} **} - 1/\sqrt{D_{1} **}\right)}{\left(1/\sqrt{D_{2}} - 1/\sqrt{D_{1}}\right)}$$

$$-W^{**} = 13,75 \frac{\left(1/\sqrt{0,05} - 1/\sqrt{0,3}\right)}{\left(1/\sqrt{0,1} - 1/\sqrt{0,3}\right)} = 27,2HP \approx 28HP$$

Atividades da Aula 10

Individual:

- □ Ler sobre : Princípios de Fragmentação, no livro "Tratamentos de Minérios, 5ª Ed."
- ☐ Refaça os exercícios.

Empresa

- ☐ Baixar catálogos de britadores e moinhos
- ☐ Colocar no site da empresa vídeos sobre tipos e princípio de funcionamento de britadores e moinhos
- ☐ Atualizar o site com vídeos de elutriadores
- ☐ Finalizar Projeto Orientado de Elutriadores

