If the energy distribution for fission neutrons from ²³⁵U follows the functional approximation (for energy in MeV)

$$\chi(E) = 0.453e^{-1.036E} \sinh(\sqrt{2.29E}).$$

then the most probable energy of a neutron corresponds to the maximum of the function. A maximum value will be found at a critical point of the function, which can be found via differentiation (specifically when $\frac{d\chi}{dE} = 0$):

$$\begin{split} \frac{d\chi}{dE} &= 0 = \frac{d}{dE} \left(0.453 e^{-1.036E_{\text{max}}} \sinh(\sqrt{2.29E_{\text{max}}}) \right) \\ 0 &= 0.453 \frac{d}{dE} \left(e^{-1.036E_{\text{max}}} \sinh(\sqrt{2.29E_{\text{max}}}) \right) \\ 0 &= 0.453 \left[e^{-1.036E} \frac{d}{dE} \sinh(\sqrt{2.29E_{\text{max}}}) + \frac{d}{dE} \left(e^{-1.036E_{\text{max}}} \right) \sinh(\sqrt{2.29E_{\text{max}}}) \right] \\ 0 &= 0.453 \left[e^{-1.036E} \cosh(\sqrt{2.29E}) \frac{d}{dE} \left(\sqrt{2.29E_{\text{max}}} \right) - 1.036 e^{-1.036E} \sinh(\sqrt{2.29E}) \right] \\ 0 &= 0.453 \left[e^{-1.036E} \cosh(\sqrt{2.29E}) \frac{\sqrt{2.29}}{2\sqrt{E_{\text{max}}}} - 1.036 e^{-1.036E} \sinh(\sqrt{2.29E}) \right] \\ 0 &= \frac{\sqrt{2.29} \cosh(\sqrt{2.29E})}{2\sqrt{E_{\text{max}}}} - 1.036 \sinh(\sqrt{2.29E}) \\ 0 &= 1 - 1.369 \sqrt{E_{\text{max}}} \tanh(\sqrt{2.29E_{\text{max}}}) \\ 1 &= 1.369 \sqrt{E_{\text{max}}} \tanh(\sqrt{2.29E_{\text{max}}}) \end{split}$$

$$E_{\rm max} = 0.724 \ {\rm MeV}$$

The average energy can be found by finding the expected value of the function on the domain $[0,\infty)$.

$$E_{\text{ave}} = \int_0^\infty E \, \chi(E) \, dE$$

$$= \int_0^\infty E \left(0.453 e^{-1.036E} \sinh(\sqrt{2.29E}) \right) \, dE$$

$$= 0.453 \int_0^\infty E \, e^{-1.036E} \sinh(\sqrt{2.29E}) \, dE$$

This integral cannot be solved analytically. Solving numerically (with Wolram Alpha),

$$E_{\text{ave}} = 1.98 \text{ MeV}$$

A general reaction rate for process x as a function of energy can be defined as

$$R_x(E) = \Sigma_x(E)\phi(E)$$

where $\Sigma_x(E)$ is the macroscopic cross section for reaction x and ϕ is the neutron flux, both at energy E. The macroscopic cross section can be further decomposed, so that

$$R_x(E) = n_x \sigma_x(E) \phi(E).$$

Comparing neutron-neutron reactions with all neutron-nuclei reactions, the ratio of reaction rates is

$$\frac{R_{nn}(E)}{R_{tot}(E)} = \frac{n_n \sigma_{nn}(E)\phi(E)}{n_{\text{UO}_2} \sigma_{tot}(E)\phi(E)}.$$

We can know that the neutron flux is $\phi(0.025 \text{ eV} = 10^{16} \text{ neutrons/(cm}^2 \cdot \text{s})$ and they are at thermal energies $(E = 0.025 \text{ eV} \text{ and traveling at } v = \sqrt{\frac{2(0.025 \text{ eV})}{m_n}} = 2.190 \times 10^5 \text{ cm/s})$. The neutrons that are then in a 1 cm³ volume at any given second is

$$n_n = \frac{\phi(0.025 \text{ eV})}{v} = \frac{10^{16} \text{ neutrons/(cm}^2 \cdot \text{s})}{2.190 \times 10^5 \text{ cm/s}} = 4.566 \times 10^{10} \text{ neutrons/cm}^3$$

For UO₂, $\rho = 10.97 \text{ g/cm}^3$, $m_{\rm O} = 16.0 \text{ g/mol}$, $m_{\rm U8} = 238.05 \text{ g/mol}$, and $m_{\rm U5} = 235.04 \text{ g/mol}$. If we use an enrichment of 5% (atom percent), then $m_{\rm UO_2} = 0.95(238.05) + 0.05(235.04) + 2(16.0) = 269.90 \text{ g/mol}$. For number density, we find

$$n_{\rm UO_2} = \frac{\rho N_A}{m_{\rm UO_2}} = \frac{(10.97~{\rm g/cm^3})(6.022\times10^{23})}{269.90~{\rm g/mol}} = 2.448\times10^{22}~{\rm molecules/cm^3}$$

Additionally, we're given that $\sigma_{nn}=10$ b, and we can determine the microscopic cross section for UO₂ from tabulated data. (From ENDF/B-VII.1 at 0.025 eV: $\sigma_{tot,U8}=11.962$ b, $\sigma_{tot,U5}=698.856$ b, and $\sigma_{tot,O}=3.852$ b)

$$\sigma_{tot} = 0.95\sigma_{tot,U8} + 0.05\sigma_{tot,U5} + 2\sigma_{tot,O}$$

$$\sigma_{tot} = 0.95(11.962 \text{ b}) + 0.05(698.856 \text{ b}) + 2(3.852 \text{ b})$$

$$\sigma_{tot} = 54.011 \text{ b}$$

We can now sove for the ratio of reaction rates (noting that $\phi(E)$ cancels in the numerator and denominator)

$$\frac{R_{nn}(E)}{R_{tot}(E)} = \frac{n_n \sigma_{nn}(E)}{n_{\text{UO}_2} \sigma_{tot}(E)} = \frac{(4.566 \times 10^{10} \text{ neutrons/cm}^3)(10 \text{ b})}{(2.448 \times 10^{22} \text{ molecules/cm}^3)(54.011 \text{ b})}$$
$$\frac{R_{nn}(E)}{R_{tot}(E)} = 3.40 \times 10^{-13}$$

The rate of neutron-neutron collisions is 13 orders of magnitudes less than the rate of neutron- UO_2 collisions.

Problem 4

First, we define the average scattering cosine $\bar{\mu}_0$ as the average dot product, $\langle \hat{\Omega} \cdot \hat{\Omega}' \rangle$. When normalized by $4\pi \Sigma_s$, the total of cross sections for scattering from any angle $\hat{\Omega}$ to any other angle $\hat{\Omega}'$, this is

$$\bar{\mu}_0 \equiv \langle \hat{\Omega} \cdot \hat{\Omega}' \rangle = \left(\frac{1}{4\pi \Sigma_s} \right) \int_{4\pi} d\hat{\Omega} \int_{4\pi} d\hat{\Omega}' \, \hat{\Omega} \cdot \hat{\Omega}' \Sigma_s (\hat{\Omega} \cdot \hat{\Omega}')$$

In the center of mass system, the probability that a particle scatters in any direction is roughly uniform, $\Sigma_{\text{CM}}(\theta_C) = \frac{\Sigma_s}{4\pi}$,

$$\bar{\mu}_0 = \frac{1}{\Sigma_s} \int_{4\pi} d\hat{\Omega} \int_{4\pi} d\hat{\Omega}' \, \hat{\Omega} \cdot \hat{\Omega}' \Sigma_{\rm CM}(\theta_C).$$

Problem 5

A critical reactor has a multiplication factor of k = 1. The multiplication factor can be definied as

$$k \equiv \frac{\text{\# neutrons produced}}{\text{\# neutrons absorbed}}$$

Mathematically, the number of neutrons produced is $\int_0^E \nu \Sigma_f(E) \phi(E) dE$ and the number of neutrons absorbed is $\int_0^E \Sigma_a(E) \phi(E) dE$. Altogether, we can mathematically describe a critical reactor as

$$1 = \frac{\int_0^E \nu \Sigma_f(E) \phi(E) dE}{\int_0^E \Sigma_a(E) \phi(E) dE}$$

or equivalently

$$\int_0^E \nu \Sigma_f(E) \phi(E) dE = \int_0^E \Sigma_a(E) \phi(E) dE.$$

Since we are considering only thermal cross sections, we will let $\Sigma_X(E) = \Sigma_X(0.025 \text{ eV}) = \Sigma_{X,T}$ and we find

$$\nu \Sigma_{f,T} \int_0^E \phi(E) dE = \Sigma_{a,T} \int_0^E \phi(E) dE.$$

The integrals over flux cancel, and so

$$\nu \Sigma_{f,T} = \Sigma_{a,T}$$
.

The macroscopic cross sections can be rewritten as $\Sigma_{f,T} = \Sigma_{f,T,F}$ and $\Sigma_{a,T} = \Sigma_{a,T,F} + \Sigma_{a,T,M}$ where subscripts F and M denote fuel and moderator, respectively. Furthermore, each macroscopic cross section for each material can be expressed in terms of the material's number density and microscopic cross section, $\Sigma = n\sigma$. In total

$$\nu n_F \sigma_{f,T,F} = n_F \sigma_{a,T,F} + n_M \sigma_{a,T,M}$$
.

The fuel-to-moderator density at criticality can then be expressed as

$$\frac{n_F}{n_M} = \frac{\sigma_{a,T,M}}{\nu \sigma_{f,T,F} - \sigma_{a,T,F}}.$$

a.) Graphite

$$\frac{n_F}{n_M} = \frac{\sigma_{a,T,M}}{\nu \sigma_{f,T,F} - \sigma_{a,T,F}}.$$

Answer the following questions as true or false, provide a one sentence justification for your answer

- 1. The integro-differential form of the transport equation expresses a local balance between neutron production and losses.
- 2. A vacuum boundary condition for the integro-differential transport equation implies a zero outgoing angular flux.
- 3. In the transport equation in curvilinear coordinates, the redistribution term allows neutrons to migrate between the directions as they move along a straight line.
- 4. A nuclear system is subcritical if its eigenvalues satisfy max(Re(j)) ; 1.
- 5. The energy spectrum of the fundamental eigenmode of the eigenvalue problem is skewed as though a 1 absorber is present.