

[August 2024 Session]

PHY 403 (Atomic and molecular physics)

Exercises

Instructor: Ambresh Shivaji (email: ashivaji, office: 2F6-AB1)

2024-09-19 07:40:15+05:30

Review of one electron atoms/ions

1. In classical mechanics, for $\frac{1}{r}$ potential, apart from orbital angular momentum (\vec{L}) , there exists another conserved quantity known as Laplace-Runge-Lunz vector,

$$\vec{N} = \frac{\vec{p} \times \vec{L}}{m} - \frac{c}{r}\vec{r} \tag{1}$$

where c is a dimensionful constant. Argue that the correct generalization of this quantity to quantum mechanics is given by the operator,

$$\vec{N} = \frac{1}{2m} (\vec{p} \times \vec{L} - \vec{L} \times \vec{p}) - \frac{c}{r} \vec{r}$$
 (2)

Further, show that it commutes with the Hamiltonian for the H-atom. Take $c = \frac{e^2}{4\pi\epsilon_0}$.

2. Show that, for a general eigenstate $\psi_{n\ell m}$, the expectation values of kinetic energy T and potential energy V, satisfy

$$2\langle T \rangle = -\langle V \rangle. \tag{3}$$

- 3. Compare the expectation value of the radial coordinate and the most probable radial location of the electron in the ground state of the H-atom.
- 4. Estimate the binding energy of a pionic atom (a system of π^- and nucleus).
- 5. Show that the parity of the eigenstate $\psi_{n\ell m}$ is determined by $(-1)^{\ell}$.
- 6. Go through the Appendix 7 of B & J for the non-relativistic limit of the Dirac equation which leads to relativistic corrections, H'_1 , H'_2 and H'_3 discussed in the class. [This exercise is optional. Any difficulty in following the derivation can be discussed outside the regular class schedule.]

7. The fine structure formula for the Hydrogen atom obtained by solving Dirac equation exactly is given by,

$$E_{nj} = mc^{2} \left\{ \left[1 + \left(\frac{\alpha}{n - (j + \frac{1}{2}) + \sqrt{(j + \frac{1}{2})^{2} - \alpha^{2}}} \right)^{2} \right]^{-1/2} - 1 \right\}.$$
 (4)

Noting that $\alpha \ll 1$, show that the fine structure result obtained in perturbation theory agrees with above result at $\mathcal{O}(\alpha^4)$.

8. Show that for $\ell = 0$ states of the Hydrogen atom,

$$\left\langle \frac{3\mathbf{S}_e.\hat{r}\mathbf{S}_p.\hat{r} - \mathbf{S}_e.\mathbf{S}_p}{r^3} \right\rangle = 0 \tag{5}$$

- 9. Argue that for typical magnetic fields that can be produced in the laboratory, the quadratic term in **A** is negligible with respect to the linear term in the NR Hamiltonian for the Hydrogen atom in presence of constant magnetic field.
- 10. Prove the following identity,

$$(\mathbf{L.S})\mathbf{S} \times \mathbf{J} - \mathbf{S} \times \mathbf{J}(\mathbf{L.S}) = i\hbar(\mathbf{J} \mathbf{S.J} - \mathbf{S} \mathbf{J}^{2})$$
(6)

11. Argue that the unperturbed degenerate states,

$$|2\pm\rangle = \frac{1}{\sqrt{2}}(|200\rangle \pm |210\rangle) \tag{7}$$

qualify for good states in the study of linear Satrk effect in Hydrogen atom by showing that,

- (a) $|2\pm\rangle$ are orthogonal.
- (b) $\langle 2 + |H'|2 \rangle = 0$.
- (c) $E_{\pm}^{(1)}=\langle 2\pm|H'|2\pm\rangle,$ a result from non-degenerate perturbation theory.
- 12. Landau Levels: Problem 5.2 B&J.

Two electron atoms/ions

1. Evaluate the following integral.

$$\int_0^\infty dr_2 \, \frac{r_2^2}{r_>} e^{-2Zr_2} \tag{8}$$

where $r_{>} = r_1$ if $r_1 > r_2$ and $r_{>} = r_2$ if $r_2 > r_1$.

- 2. Show that if the ground state wave function has an uncertainty of $\mathcal{O}(\epsilon)$, then the uncertainty in the estimation of ground state energy using the Variational method is of $\mathcal{O}(\epsilon^2)$.
- 3. Show that for singly excited states of the helium atom,

$$\langle \phi_+^0 | \frac{1}{r_{12}} | \phi_-^0 \rangle = 0.$$
 (9)

Further, show that four integrals in $\langle \phi^0_+ | \frac{1}{r_{12}} | \phi^0_+ \rangle$ can be written in terms of two integrals J and K introduced in the class.

- 4. Problem 6.4 B&J.
- 5. Discuss the suitable choice of trial wave functions for He atom in 2^1S and 2^3S states. Estimate their energies using variation method.

Many electron atoms/ions

1.	Determine the form of the normalized	symmetric and	antisymmetric total	eigenfunction for
	a system of three particles, in which t	the interactions	between the particle	es can be ignored.