Chapitre 1

Introduction aux Statistiques

Théorème 1.0.1 (de Slutsky)

On suppose que : $(X)_n \xrightarrow[n\infty]{\mathcal{L}} X$ $(Y)_n \xrightarrow[n\infty]{\mathcal{L} \ ou \ \mathbb{P}} a = c \xrightarrow{te}$

Alors $(X_n, Y_n) \xrightarrow[n \infty]{\mathcal{L}} (X, a)$

Application 1.1

Sous les hypothèses du théorème de Slutsky, on a :

i.
$$X_n + Y_n \xrightarrow{\mathcal{L}} X + a$$
 si $m = a$

ii.
$$X_nY_n \xrightarrow{\stackrel{n\infty}{\mathcal{L}}} aX$$
 si $m =$

i.
$$X_n + Y_n \xrightarrow[n \infty]{\mathcal{L}} X + a$$
 si $m = d$
ii. $X_n Y_n \xrightarrow[n \infty]{\mathcal{L}} aX$ si $m = 1$
iii. $X_n / Y_n \xrightarrow[n \infty]{\mathcal{L}} X/a$ si $m = 1$ et $a \neq 0$

Théorème 1.0.2 (Delta-méthode)

Soient $(X)_n$ variable aléatoire à valeurs dans \mathbb{R}^d et $\theta \in \mathbb{R}^d$.

Soient : i. $\phi:\mathbb{R}^d\to\mathbb{R}^m,$ différentiable en θ

ii. $(c_n)_{n\geq 1}$ une suite de réels tels que $c_n\underset{n\infty}{\rightarrow}\infty$

Si $c_n(X_n - \theta) \xrightarrow[n \infty]{\mathcal{L}} X$ alors $c_n(\phi(X_n) - \phi(\theta)) \xrightarrow[n \infty]{\mathcal{L}} \phi'(\theta)X$ Où ϕ' est la matrice m * d d'éléments $(\frac{\partial \phi_i}{\partial x_j})_{i,j}$

Théorème 1.0.3 (de Student)

 $(X)_n$ variables aléatoires dans $\mathbb R$ de loi $\mathcal N(\mu,\sigma^2)$

On a : i. $\bar{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

ii.
$$\mathcal{R}_n = \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \sim \sigma^2 \mathfrak{X}^2 (n-1)$$

ii.
$$\mathcal{R}_n = \sum_{i=1}^n (X_i - \bar{X}_n)^2 \backsim \sigma^2 \mathfrak{X}^2 (n-1)$$

iii. $\mathcal{R}_n \quad \text{II} \quad \bar{X}_n$
iv. $\mathcal{S}_n^2 = \frac{1}{n-1} \mathcal{R}_n \text{ et } T_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} \backsim t(n-1)$

Définition 2.1.6

Dans un modèle dominé, on va définir les fonctions de vraisemblance :

$$\begin{array}{ccc} \mathfrak{X} \times \Theta & \rightarrow & \mathbb{R}_{+} \\ (x, \theta) & \mapsto & L(x, \theta) = \frac{d\mathbb{F}_{\theta}}{dx}(x) \end{array}$$

2.1.3 Identifiabilité

Définition 2.1.7

Un modèle $\mathcal{M}=(\mathfrak{X},\mathcal{A},\{\mathbb{P}_{\theta},\theta\in\Theta\})$ est dit identifiable si l'application de Θ dans l'espace des probabilités sur $\mathcal{M}=(\mathfrak{X},\mathcal{A})$ qui à θ associe \mathbb{P}_θ est injective

2.1.4 Exhaustivité

Une statistique est dite exhaustive si et seulement si la loi de (X|S(X)) ne dépend pas de θ .

Théorème 2.1.1 (Critère de factorisation)

Une statistique est exhaustive si et seulement si la vraisemblance peut s'écrire $\stackrel{\prime}{}$

$$L(x,\theta) = \Psi(S(x),\theta)\lambda(x)$$

Une statistique S est dite totale ou complète si et seulement si pour toute fonction Φ mesurable

$$\{\forall\ \theta\in\Theta, E_{\theta}(\Phi(S(X)))=0\}\Rightarrow \{\forall\ \theta\in\Theta, \Phi(S(X))=0, [\mathbb{P}_{\theta}]\ ps\}$$

2.1.5 Modèle exponentiel (1)

Définition 2.1.10

On dit qu'un modèle $\mathcal{M}=(\mathfrak{X},\mathcal{A},\{\mathbb{P}_{\theta},\theta\in\Theta\})$ est exponentiel si :

. Il est dominé par une mesure μ , $-L(x,\theta)=\lambda(x)\Phi(x)\exp(\sum_i Q_i(\theta)S_i(x)), \text{ où } S(X)=(S_1(X),...,S_n(X)) \text{ est la statistique}$

Proposition 2.1.1

- La statistique canonique est exhaustive
- ii. S suit un modèle exponentiel. iii. Le modèle est de type exponentiel (1) si les fonctions $S_j(x), j=1...n$ sont linéairements indépendantes au sens affine

(ie
$$\forall x \in \mathfrak{X}, \sum_{j=1}^{n} a_j S_j(x) = 0 \Rightarrow a_1 = \dots = a_n = 0$$
)
Alors $\mathbb{P}_{\theta_1} = \mathbb{P}_{\theta_2}$ si et seulement si $Q_j(\theta_1) = Q_j(\theta_2), \forall j = 1...n$.

Chapitre 2

Méthodologie Statistique

2.1 Méthodologie statistique

2.1.1 Généralités

Définition 2.1.1 (Modèle statistique)
On appelle modèle statistique la famille $\mathcal{M} = (\mathfrak{X}, \mathcal{A}, \{\mathbb{P}_{\theta}, \theta \in \Theta\})$.

Définition 2.1.2 (Modèle d'échantillonage)

$$\begin{split} \mathcal{M} &= (\mathfrak{X}^n, \mathcal{A}_n, \{\mathbb{P}_{\theta}^{\overset{\smile}{\otimes} n}, \theta \in \Theta\}) \\ &- \mathcal{A}_n \text{ tribu de } \mathfrak{X}^n, \end{split}$$

- $\mathbb{P}_{\theta}^{\otimes n}$ probabilité produit de n copies indépendantes de $\mathbb{P}_{\theta}.$

Définition 2.1.3

On dira qu'un modèle est paramétrique si $\Theta\subset\mathbb{R}^d.$

Dans $\mathcal{M} = (\mathfrak{X}, \mathcal{A}, {\mathbb{P}_{\theta}, \theta \in \Theta})$, on appelle statistique toute variable aléatoire S qui s'écrit comme une fonction de X:S(X).

2.1.2 Domination

 $\Theta \subset \mathbb{R}^d$, d étant le nombre de paramètres.

Définition 2.1.5

Un modèle $\mathcal{M} = (\mathfrak{X}, \mathcal{A}, \{\mathbb{P}_{\theta}, \theta \in \Theta\})$ est dit dominé s'il existe une mesure μ sur $(\mathfrak{X}, \mathcal{A})$ positive, σ -finie, telle que $\forall \theta \in \Theta$, \mathbb{P}_{θ} est absolument continue par rapport à μ .

 \mathbb{P}_{θ} est absolument continue par rapport à μ :

 $\forall A \in A, \mu(A) = 0 \Rightarrow \mathbb{P}_{\theta}(A) = 0.$

 σ -finie : $\exists (A_n)_n \in \mathcal{A}$ telle que $\mathfrak{X} = \bigcup A_n$ et $\mu(A_n) < \infty, \forall n$

Corollaire 2.1.1

Dans un modèle exponentiel (1), si les $S_j(x)$ sont linéaires indépendantes au sens affine, alors le paramètres θ est identifiable si et seulement si l'application $\theta \to Q(\theta) = (Q_1(\theta),...,Q_n(\theta))$ est injective

Dans un modèle exponentiel (1), si $Q(\Theta)$ est d'intérieur non vide, alors S est totale.

2.2 Estimation sans biais

Définition 2.2.1

Dans le cas de l'estimation ponctuelle, on appelle estimation δ (ou règle de décision), une statistique de $\mathfrak X$ dans $g(\Theta).$

Définition 2.2.2

Deux estimateurs seront comparés grâce à l'erreur quadratique moyenne (EQM) définie par :

$$R_{\delta} = E_{\theta}(L(\theta, \delta(X))) = E_{\theta}((g(\theta) - \delta(X))^{2})$$

Définition 2.2.3

On dit que δ_1 est préférale à δ_2 si

$$\forall \theta \in \Theta, R(\delta_1, \theta) \leq R(\delta_2, \theta)$$

(Si l'inégalité est stricte pour au moins un θ, δ_2 est inadmissible.)

Définition 2.2.4 (Estimateur sans biais (ESB))

Un estimateur $\delta(X)$ de $q(\theta)$ est dit sans biais si

$$E[\delta(X)] = g(\theta), \forall \ \theta \in \Theta$$

Théorème 2.2.1 (Amélioré de RAOUL-BLACKWELL)

Soient δ un ESB de $g(\theta)$ et S la statistique exhaustiv Soit $\delta_S \rightarrow E_{\theta}(\delta(X)|S(X) = s)$.

Alors :
$$\begin{cases}
R_{\delta_s} \leq R_s(\theta) \\
\delta_S \text{ est un ESB}
\end{cases}$$

${\bf Th\'{e}or\`{e}me~2.2.2~(Lehmann~Scheff\'{e})}$

Si δ est un ESB de $g(\theta)$ et si S est une statistique exhaustive et totale alors l'améliorée de RAOUL-BLACKWELL δ_S de δ est optimale dans la classe des ESB (ie sa variance est minimale).