Informe de laboratorio N°4 Circuitos I

Guiraud Fernando, Rodríguez Carlos, Buglione Javier.

Universidad tecnológica de Panamá

figuiraud@gmail.com, rodriguezcarlosf24@gmail.com, j.buglione19@gmail.com

I. INTRODUCCIÓN

La corriente se relaciona con la carga que fluye por un elemento de circuito, en tanto que la tensión constituye una medida de la diferencia de energía potencial entre los extremos del elemento. Por otro lado, La ley axiomática de Kirchhoff (Ley de corrientes de Kirchhoff) establece que la suma algebraica de las corrientes que entran a cualquier nodo es cero.

Al combinar resistencias y fuentes, hemos encontrado un método para simplificar el análisis del circuito. Otro camino útil consiste en la aplicación de las ideas de división de tensión y de corriente.

Para esta experiencia, se tratarán con diferentes circuitos para comprobar estas leyes.

II. OBJETIVOS

- Verificar la ley de voltaje.
- Verificar la ley de corriente.

III. MATERIAL Y EQUIPO

- Juego de resistores varios de valores.
- Cables de conexión.
- Multímetro.
- Tableta de prototipo.
- Fuente de alimentación.

IV. DESARROLLO

 Determine el valor de las resistencias utilizando el código de colores impreso en cada una. Se le han suministrado 8 resistencias de valores diferentes, deben identificarlas y completar la tabla 1 ordenando las resistencias en orden ascendente.

Ν°	Valor	Tolerancia	Valor	% Error
	teórico	teórica	medido	$\frac{V_M - V_T}{V_T}.100$
R1	91 Ω	±5%	89,2 Ω	-0,01978
R2	100 Ω	±1%	100,3 Ω	0,003
R3	180 Ω	±5%	179,2 Ω	-0,0044
R4	220 Ω	±1%	220,7 Ω	0,003182
R5	240 Ω	±5%	240,1 Ω	0,000417
R6	330 Ω	±1%	329,5 Ω	-0,001515
R7	470 Ω	±5%	463 Ω	-0,01489
R8	1 000 Ω	±1%	999 Ω	-0,001

Tabla 1

2. Arme el siguiente circuito, realice las medidas indicadas y complete la tabla 2.

Circuito N°1						
Fuente de alimentación						
	Teórico		Medido			
Voltaje	24 V		24.07 V			
Corriente	24.47	7 mA	24.56 mA			
Resistencia (Ω)			Voltaje de las Resistencias			
N°	Teórico Medido		Teórico	Medido		
R1	91 89.2		2.226 V	2.1686 V		
R3	180 179.2		4.404 V	4.381 V		
R5	240 240.1		5.872 V	5.868 V		
R7	470	463	11.498 V	11.390 V		
Suma de los voltajes			24 V	23.81 V		

3. Arme el siguiente circuito, realice las medidas indicadas y complete la tabla 3.

Circuito N°2						
Fuente de alimentación						
	Teó	rico	Medido			
Voltaje	24	·V	24.07 V			
Corriente	14.54	4 mA	14.50 mA			
Resistencia (Ω)			Voltaje de las Resistencias			
N°	Teórico Medido		Teórico	Medido		
R2	100	100.3	1.455 V	1.444 V		
R4	220 220.7		3.200 V	3.184 V		
R6	330 329.5		4.800 V	4.767 V		
R8	1000	999	14.546 V	14.520 V		
Suma de	los volta	ajes	24 V	23.915 V		

4. Realice conclusiones de los resultados de la tabla 2 y 3.

Por medio de los dos circuitos anteriores se pudo comprobar la ley de voltaje de kirchhoff, todas las caídas de voltaje del circuito son iguales a las subidas de voltaje, lo que quiere decir que la sumatoria de todos los voltajes de las resistencias es igual a el voltaje de la fuente ya que es un circuito cerrado.

Para calcular los distintos voltajes de las resistencias, se puede hacer un divisor de voltaje en cada una como se puede ver en la siguiente ecuación:

$$V_1 = \frac{V_{Total} * R_1}{R1 + R2 + R3}$$

5. Arme el siguiente circuito, realice las medidas indicadas y complete la tabla 4.

Circuito N°3					
Fuente de alimentación					
	Teó	rico	Medido		
Voltaje	6 V		6.02 V		
Corriente	159.3 mA		152.3 mA		
Resist	encia (Ω)	Corriente de las		
			Resistencias		
N°	Teórico	Medido	Teórico	Medido	
R1	91	89.2	65.9 mA	61.2 mA	
R2	100 100.3		60 mA	58.3 mA	
R3	180	179.2	33.3 mA	31.3 mA	
Suma de	las corrie	entes	159.2 mA	150.8 mA	

6. Arme el siguiente circuito, realice las medidas indicadas y complete la tabla 5.

Circuito N°4						
	Fuente de alimentación					
	Teó	rico	Medido			
Voltaje	6 V		6.01 V			
Corriente	70.4 mA		68.1mA			
Resistencia (Ω)			Corriente de las			
			Resistencias			
N°	Teórico	Medido	Teórico	Medido		
R4	220	220.7	27.3 mA	26.7 mA		

R5	240	240.1	25.0 mA	24.5 mA
R6	330	329.5	18.2 mA	17.88 mA
Suma de	las corrie	70.5 mA	69.08 mA	

7. Realice conclusiones de los resultados de la tabla 4 y 5.

Los circuitos 3 y 4 sirvieron para comprobar la ley de corriente de Kirchhoff, la sumatoria de las corrientes de un circuito son igual a cero, como tenemos 3 resistencias en paralelo, sus corrientes van a ser igual a la distribución de la corriente de entrada, la que puede ser calculada a través de calcular la resistencia equivalente y por medio de la ley de ohm calcular la corriente total que entra al nodo al cual están conectadas todas las resistencias.

$$i_{total} = \frac{V_s}{R_{eq}}$$

Para calcular las corrientes que fluyen a través de cada una de las resistencias se puede aplicar un divisor de corriente, como se puede ver en la siguiente ecuación:

$$i_{R3} = \frac{i_{total} * R_2 / / R_3}{R_2 / / R_3 + R_1}$$

V. CONCLUSIÓN

Las variaciones de la sumatoria de los voltajes y corrientes pueden deberse a varios factores, como a la pérdida de energía en forma de calor en las resistencias o por imperfecciones de las resistencias tomadas en cuenta en su tolerancia teórica.

La ley de voltaje y corriente de Kirchhoff fue comprobada, ya que se logro verificar que las sumatorias de los voltajes y corrientes de cada resistencia fue igual a los voltajes y corrientes de entrada con pequeñas variaciones.

VI. REFERENCIAS

Hayt, W., Kemmerly, J., & Durbin, S. Engineering circuit analysis.