Title

D. Zack Garza

Tuesday 6th October, 2020

Contents

1	Tuesday, October 06		1
	1.1	Gathmann Chapter 4	1
	4		

Tuesday, October 06

Note: the sheaf of locally constant functions valued in a set S is written $\underline{\mathbf{S}}$.

1.1 Gathmann Chapter 4

Definition 1.0.1 (Ringed Spaces).

A **ringed space** is a topological space X together with a sheaf \mathcal{O}_X of rings.

Example 1.1.

- 1. X an affine variety and \mathcal{O}_X its ring of regular functions.
- 2. X a manifold over \mathbb{R}^n with \mathcal{O}_X a ring of smooth or continuous functions on X.
- 3. $X = \{p, q\}$ with the discrete topology and \mathcal{O}_X given by $p \mapsto R, q \mapsto S$.
- 4. Let $U \subset X$ an open subset of X an affine variety. Then declare \mathcal{O}_U to be $OO_X|_U$.

Recall that the restriction of a sheaf \mathcal{F} to an open subset $U \subset X$ is defined by $\mathcal{F}|_U(V) = \mathcal{F}(V)$.

Example 1.2.

Let X be a topological space and $p \in X$ a point. The *skyscraper