electroussafi.ueuo.com 1/7

Compteurs / décompteurs asynchrones

Exercice 1

1. Décompteur modulo 10

On veut que le décompteur passe à 1001_2 (9_{10}) lorsqu'il passe de 0000_2 à 1111_2 .

$$1111_{2} \\ \downarrow \downarrow \\ 1001_{2}$$

Pour cela, il suffit de remettre à zéro Q_2 et Q_1 . $R=\overline{Q_3Q_2Q_1Q_0}=\overline{Q}_3+\overline{Q}_2+\overline{Q}_1+\overline{Q}_0$

electroussafi.ueuo.com 2/7

2. On veut réaliser le cycle suivant : 9-8-7-6-5-4-9

		Q_3	Q_2	Q_1	Q_0		$\overline{Q_3}$	$\overline{Q_2}$	$\overline{Q_1}$	$\overline{Q_0}$
Ĺ,	\longrightarrow	1	0	0	1		0	1	1	0
		1	0	0	0		0	1	1	1
		0	1	1	1		1	0	0	0
		0	1	1	0		1	0	0	1
		0	1	0	1		1	0	1	0
		0	1	0	0 🖟	7	. 1	0	1	1
Remise à neuf		0	0	1	A^0	7	1	1	0	0

On veut que le décompteur passe à 1001_2 (9_{10}) lorsqu'il passe de 0100_2 à 0011_2 .

Pour cela, il suffit de remettre Q_1 à zéro et Q_3 à 1.

$$R_1 = S_3 = \overline{\overline{Q_3Q_2}}\overline{Q_1Q_0} = Q_3 + Q_2 + \overline{Q}_1 + \overline{Q}_0$$

electroussafi.ueuo.com 3/7

3. Le premier cycle est : 0 – F – E – D – C – B – A – 9 – 8 – 7 – 6 – 5 – 4, et les autres cycles sont : 9 – 8 – 7 – 6 – 5 – 4. Le schéma suivant permet de résoudre le problème du premier cycle. Lorsqu'on met le décompteur sous tension et l'interrupteur est fermé, on obtient l'état 4₁₀ (0100₂). Lorsqu'on ouvre l'interrupteur, le décompteur commence à décompter à partir de 4 et réalise le cycle : 4 – 9 – 8 – 7 – 6 – 5 – 4.

Exercice 2

1.

2. Pour avoir un décompteur asynchrone modulo 8 ; il suffit d'ajouter une 3^{ème} bascule D, comme suit :

electroussafi.ueuo.com 4/7

3. La séquence obtenue est : 0 - 1 - 2 - 3 - 0. On a un compteur asynchrone modulo 4.

4.

- 5. La séquence obtenue est : 0-3-2-1-0. On a un décompteur asynchrone modulo 4.
- **6.** Pour avoir un décompteur asynchrone modulo 8 ; il suffit d'ajouter une 3^{ème} bascule D, comme suit :

7. L'horloge de la $1^{\text{ère}}$ bascule dans les 2 cas est H. Pour le compteur l'horloge de la bascule n est \overline{Q}_{n-1} et pour le décompteur l'horloge de la bascule n est Q_{n-1} . on doit choisir soit \overline{Q}_{n-1} , soit Q_{n-1} . Pour faire le choix, on va utiliser une variable X, tel que :

X	horloge	Mode
0	Q _{n-1}	Décompteur
1	$\overline{\mathbb{Q}}_{n-1}$	Compteur

$$horloge = Q_{n-1}\overline{X} + \overline{Q}_{n-1}X = Q_{n-1} \oplus X$$

electroussafi.ueuo.com 5/7

Exercice 3

1. Compteur asynchrone modulo 10 avec des bascules D.

8	\mathbf{Q}_3	\mathbf{Q}_2	\mathbf{Q}_1	Q_0
	0	0	0	0
0.	0	0	0	1
	0	0	1	0
	0	0	1	1
	0	1	0	0
	0	1	0	1
	0	1	1	0
	0	1	1	1
	1	0	0	0
	1	0	0	1
Remise à zéro	1	0	1	0

On veut que le compteur passe à 0 lorsqu'il atteint :

 $10_{10} = 1010_2$. Pour cela on peut écrire l'expression logique :

$$R = \overline{Q_3 \overline{Q}_2 Q_1 \overline{Q}_0} = \overline{Q}_3 + Q_2 + \overline{Q}_1 + Q_0$$

electroussafi.ueuo.com 6/7

Remarque:

Ce n'est pas suffisant de remettre à zéro Q_3 et Q_1 (1010_2 $Q_3 = 1$, $Q_2 = 0$, $Q_1 = 1$ et $Q_0 = 0$); il faut mettre Q_2 aussi à zéro. Sinon, lorsque Q_1 passe de 1 à 0, Q_2 passe de 0 à $1(Q_1$ horloge de la bascule Q_2)

2. Décompteur asynchrone modulo 10 avec des bascules D.

	Q_3	\mathbf{Q}_2	\mathbf{Q}_1	Q_0
	51	0	0	1
250	1	0	0	0
0.	0	1	1	1
	0	1	1	0
	0	1	0	1
	0	1	0	0
	0	0	1	1
	0	0	1	0
	0	0	0	1
	0	0	0	0
Remise à zéro	1	1	1	1

On veut que le décompteur passe à 9 lorsqu'il atteint :

 $15_{10} = 1111_2$. Pour cela on peut écrire l'expression logique :

$$R = \overline{Q_3 Q_2 Q_1 Q_2} = \overline{Q}_3 + \overline{Q}_2 + \overline{Q}_1 + \overline{Q}_0$$

electroussafi.ueuo.com 7/7

alection (55afr

alection (50 fi