TEHNICI DE COMPILARE – CURSUL 7

EXEMPLU DE GRAMATICĂ SLR(1)

Fie G_2 gramatica cu producțiile:

- 1: $E \rightarrow TR$
- 2: $R \rightarrow +TR$
- 3: $R \rightarrow *TR$
- 4: $R \rightarrow \lambda$
- 5: $T \rightarrow n$
- 6: $T \rightarrow (E)$
 - 1) Extindem G la G': introducem productia $E' \rightarrow E$
 - 2) Calculăm mulțimile *Follow* cu algoritmul din cursul 4, inițializând *Follow*(*E*) cu {#}. Obținem:

Follow(X)	Pasul 1	Pasul 2
Ε	#,)	
T	+,*,#)
R	#)

3) Calculam mulțimile canonice LR(0) pentru G_2 :

$$I_{0} = \begin{bmatrix} E' \rightarrow E & \frac{goto(I_{0},E)}{\longrightarrow} I_{1} \\ E \rightarrow TR & \frac{goto(I_{0},T)}{\longrightarrow} I_{2} \\ T \rightarrow n & \frac{goto(I_{0},n)}{\longrightarrow} I_{3} \\ T \rightarrow (E) & \frac{goto(I_{0},()}{\longrightarrow} I_{4} \end{bmatrix}$$

$$I_{2} = \begin{bmatrix} E \rightarrow T.R \xrightarrow{goto(I_{2},R)} I_{5} \\ R \rightarrow . + TR \xrightarrow{goto(I_{2},+)} I_{6} \\ R \rightarrow . * TR \xrightarrow{goto(I_{2},*)} I_{7} \\ R \rightarrow . \end{bmatrix}$$

$$I_1 = [E' \to E.]$$

$$I_3 = [T \rightarrow n.]$$

$$I_{4} = \begin{bmatrix} T \rightarrow (.E) \xrightarrow{goto(I_{4},E)} I_{8} \\ E \rightarrow .TR \xrightarrow{goto(I_{4},T)} I_{2} \\ T \rightarrow .n \xrightarrow{goto(I_{4},n)} I_{3} \\ T \rightarrow .(E) \xrightarrow{goto(I_{4},n)} I_{4} \end{bmatrix}$$

$$I_{5} = [E \rightarrow TR.]$$

$$I_{6} = \begin{bmatrix} R \rightarrow +.TR \xrightarrow{goto(I_{6},T)} I_{1} \\ T \rightarrow .n \xrightarrow{goto(I_{6},n)} I_{3} \\ T \rightarrow .(E) \xrightarrow{goto(I_{6},n)} I_{4} \end{bmatrix}$$

$$I_{7} = \begin{bmatrix} R \rightarrow *.TR \xrightarrow{goto(I_{7},T)} I_{10} \\ T \rightarrow .n \xrightarrow{goto(I_{7},n)} I_{3} \\ T \rightarrow .(E) \xrightarrow{goto(I_{7},n)} I_{4} \end{bmatrix}$$

$$I_{8} = [T \rightarrow (E.) \xrightarrow{goto(I_{8},n)} I_{11}]$$

$$I_{9} = \begin{bmatrix} R \rightarrow +.TR \xrightarrow{goto(I_{9},R)} I_{1} \\ R \rightarrow .+TR \xrightarrow{goto(I_{9},R)} I_{1} \\ R \rightarrow .+TR \xrightarrow{goto(I_{9},R)} I_{1} \end{bmatrix}$$

$$I_{10} = \begin{bmatrix} R \rightarrow *.TR \xrightarrow{goto(I_{10},R)} I_{13} \\ R \rightarrow .+TR \xrightarrow{goto(I_{10},R)} I_{1} \\ R \rightarrow .+TR \xrightarrow{goto(I_{10},R)} I_{1} \end{bmatrix}$$

$$I_{11} = [T \rightarrow (E).]$$

$$I_{12} = [R \rightarrow +TR.]$$

$$I_{13} = [R \rightarrow *.TR.]$$

$$I_{13} = [R \rightarrow *.TR.]$$

Tabela de analiză sintactică SLR(1) pentru G_2 :

	action							goto		
	+	*	n	()	#	Е	Т	R	
0	Error	Error	shift 3	shift 4	error	error	1	2	Error	
1	Error	Error	error	error	error	accept	error	error	Error	
2	shift 6	shift 7	error	error	reduce 4	reduce 4	error	error	5	
3	reduce 5	reduce 5	error	error	reduce 5	reduce 5	error	error	Error	
4	Error	Error	shift 3	shift 4	error	error	8	2	Error	
5	Error	Error	error	error	reduce 1	reduce 1	error	error	Error	
6	Error	Error	shift 3	shift 4	error	error	error	9	Error	
7	Error	Error	shift 3	shift 4	error	error	error	10	Error	
8	Error	Error	error	error	shift 11	error	error	error	Error	
9	shift 6	shift 7	error	error	reduce 4	reduce 4	error	12	error	
10	shift 6	shift 7	error	error	reduce 4	reduce 4	error	13	error	
11	reduce 6	reduce 6	error	error	reduce 6	reduce 6	error	error	error	
12	Error	Error	error	error	reduce 2	reduce 2	error	error	error	
13	Error	Error	error	error	reduce 3	reduce 3	error	error	error	

Tabela *action* nu are intrări multiple, rezultă că G_2 este SLR(1). Analiza sintactică decurge exact ca pentru gramaticile LR(1).

PROPRIETĂȚI ALE GRAMATICILOR DE TIP LR

Teorema 1. Automatul finit determinist construit pe baza funcției goto din algoritmul LR(1) recunoaște mulțimea prefixelor viabile ale lui G.

Demonstrație. Fie $G = (N, \Sigma, S, P)$ gramatică independentă de context și extensia sa definita prin $G' = (N \cup \{S'\}, \Sigma \cup \{\#\}, S', P \cup \{S' \rightarrow S\})$ cu L(G) = L(G'). Considerăm automatul $A = (Q, \Sigma \cup N, goto, I_0, F)$, unde $Q = C_G = \{I_0, I_1, ..., I_n\}$, $I_0 = closure(\{S' \rightarrow S; \#\})$, goto fiind funcția de tranziție a lui A, C_G mulțimile canonice LR(1) asociate lui $G, F = \{J \in C_G | \exists A \rightarrow \alpha : \alpha \in J\}$.

Arătăm că $\forall A \neq S', A \rightarrow \alpha. \beta$; $a \in goto(I_0, \gamma) \Leftrightarrow A \rightarrow \alpha. \beta$; a validă pentru prefixul viabil $\gamma \in (N \cup \Sigma)^*$.

" \Rightarrow " $|\gamma| = n$. Facem inducție după n.

n=0. Atunci $\gamma=\lambda$ și $goto(I_0,\gamma)=I_0=closure(\{S'\to S;\#\})$, deci $\alpha=\lambda$ și $A\to\alpha.\beta; \alpha\in I_0=closure(\{S'\to S;\#\})$. Atunci există

$$\begin{array}{ll} S \rightarrow \alpha_1, & \quad \alpha_1 = A_1 \beta_1 \\ A_1 \rightarrow \alpha_2, & \quad \alpha_2 = A_2 \beta_2 \\ \vdots & \quad \end{array}$$

$$\begin{array}{ccc} A_{k-1} \rightarrow \alpha_k, & \alpha_k = A_k \beta_k \\ A_k \rightarrow \beta, & \end{array}$$

unde $A \to \alpha$. β ; $\alpha = A_k \to \beta$; $\alpha \in I_0$ (posibil $k = 0, \beta = \alpha_1$). Atunci:

$$S\Rightarrow\alpha_1=A_1\beta_1\Rightarrow A_2\beta_2\beta_1\Rightarrow\cdots\Rightarrow A_k\beta_k\dots\beta_1\Rightarrow\beta\beta_k\dots\beta_1\text{ si }a\in$$

$$First(\beta_k \dots \beta_1 \#). \text{ Fie } \beta_k \dots \beta_1 \Rightarrow \beta_k' \dots \beta_1' \text{ , unde } \beta_i \Rightarrow \beta_i', \beta_i' \in \Sigma^*, \alpha = d$$

 $First(\beta'_k ... \beta'_1 \#)$ Avem:

$$S \stackrel{*}{\Rightarrow} A\beta'_k \dots \beta'_1 \stackrel{\Rightarrow}{\Rightarrow} \beta\beta'_k \dots \beta'_1$$

$$\gamma = \lambda$$

$$a = First(\beta'_k \dots \beta'_1 \#),$$

deci $A \to \alpha$. β ; α valida pentru prefixul viabil $\gamma = \lambda$.

$$n \longrightarrow n+1$$
: Fie $\gamma = X_1 \dots X_{n+1}, |\gamma| = n+1$ și $A \to \alpha.\beta; \alpha \in goto(I_0, X_1 \dots X_{n+1}).$

Notăm cu $I_t = goto(I_0, X_1 ... X_n), I_j = goto(I_0, X_1 ... X_{n+1}),$ deci $I_j = goto(I_t, X_{n+1}).$ Avem deci $A \to \alpha.\beta; \alpha \in goto(I_t, X_{n+1}).$ Rezultă că există $B \to \alpha'. X_{n+1}\beta'; b \in I_t$ astfel încât

$$B \to \alpha' X_{n+1}$$
. β' ; $b \in I_j$, $\beta' = B_1 \gamma_1$, $b = b_1$

$$B_1 \to B_2 \gamma \in P, B_1 \to B_2 \gamma_2 \in I_j, \qquad b_2 \in First((\gamma_1 b_1) = First(\gamma_1 b))$$

:

$$B_{k-1} \rightarrow \gamma_k \in P, B_{k-1} \rightarrow \gamma_k; b_k \in I_j, b_k \in First(\gamma_{k-1} \dots \gamma_1 b).$$

Există
$$\gamma_{k-1}',\ldots,\gamma_1'\in\Sigma^*$$
, $\gamma_{k-1}\overset{*}{\Rightarrow}\gamma_{k-1}',\ldots,\gamma_1\overset{*}{\Rightarrow}\gamma_1'$ și $\gamma_{k-1}\ldots\gamma_1b\overset{*}{\Rightarrow}\gamma_{k-1}'\ldots\gamma_1'b$, $b_k=d$

 $First(\gamma'_{k-1}...\gamma'_1b)$. Avem posibilitățile:

a)
$$A \to \alpha.\beta$$
; $\alpha = B \to \alpha' X_{n+1}.\beta'$; $b \in I_t$

b)
$$A \rightarrow \alpha.\beta$$
; $a = B_{k-1} \rightarrow \gamma_k$; $First(\gamma'_{k-1} ... \gamma'_1 b)$

Din $B \to \alpha'. X_{n+1}\beta'$; $b \in I_t = goto(I_0, X_1 ... X_n)$, din ipoteza de inducție rezultă că $B \to \alpha'. X_{n+1}\beta'$; b validă pentru prefixul $X_1 ... X_n$, deci:

*

i.
$$S \Rightarrow \delta B w \Rightarrow_d \delta \alpha' X_{n+1} \beta' w$$

ii.
$$\delta \alpha' = X_1 \dots X_n$$

iii.
$$b = First(w#)$$
.

În cazul a), din ii. rezulta $\delta \alpha' X_{n+1} = X_1 \dots X_n X_{n+1}$ și deci $A \to \alpha . \beta$; $\alpha = B \to \alpha' X_{n+1} . \beta'$; b validă pentru prefixul viabil $\gamma = X_1 \dots X_n X_{n+1}$.

În cazul b), avem:

$$\bullet \quad S \stackrel{*}{\Rightarrow} \delta B w \stackrel{\Rightarrow}{\rightarrow} \delta \alpha' X_{n+1} \beta' w = \delta \alpha' X_{n+1} B_1 \gamma_1 w \stackrel{*}{\Rightarrow} \delta \alpha' X_{n+1} B_1 \gamma_1' w \stackrel{\Rightarrow}{\Rightarrow} \dots \stackrel{\Rightarrow}{\rightarrow} d \qquad d \qquad d$$

$$\delta \alpha' X_{n+1} \gamma_k \gamma'_{k-1} \dots \gamma'_1 w$$

•
$$\delta \alpha' X_{n+1} = X_1 ... X_n X_{n+1}$$

•
$$a = b_k = First(\gamma'_{k-1} \dots \gamma'_1 b) = First(\gamma'_{k-1} \dots \gamma'_1 w \#)$$

adica $A \to \alpha$. β ; $\alpha = B_{k-1} \to \gamma_k$; $First(\gamma'_{k-1} ... \gamma'_1 w\#)$ valida pentru prefixul viabil $\gamma = X_1 ... X_n X_{n+1}$.

" \Leftarrow " Demonstram următoarea

n

Lemă. Dacă $S\Rightarrow \gamma Ax$, atunci $\forall A \rightarrow \alpha \in P, A \rightarrow \alpha; First(x\#) \in goto(I_0, \gamma).$

Facem inducție după n.

n=0: $S=\gamma Ax$, $\gamma=x=\lambda$, A=S. Fie $S\to\alpha\in P$. Atunci, din definiția lui $closure\ S\to\alpha$; $\#\in goto(I_0,\lambda)=I_0=closure(\{S'\to.S;\#\})$.

n

 $n \to n+1$: $S \Rightarrow \gamma Ax \Rightarrow \gamma \gamma_1 Bx_1 x$. Din ipoteza de inductie:

 $A \to \gamma_1 Bx_1$, $First(x\#) \in goto(I_0, \gamma)$, $deci A \to \gamma_1 . Bx_1$, $First(x\#) \in goto(I_0, \gamma\gamma_1)$ și atunci $\forall B \to \beta \in P, B \to .\beta$; $First(x_1x\#) \in goto(I_0, \gamma\gamma_1)$ și cu aceasta am demonstrat Lema.

Fie acum $A \to \alpha$. β ; α validă pentru prefixul viabil γ . Aceasta înseamnă:

*

- i. $\exists S \Rightarrow \theta Ax \Rightarrow_d \theta \alpha \beta x$
- ii. $\theta \alpha = \gamma$
- iii. a = First(x#)

Din Lema de mai sus rezultă că $A \to \alpha\beta$; $First(x\#) \in goto(I_0, \theta)$, deci $A \to \alpha.\beta$; $First(x\#) \in goto(I_0, \theta\alpha)$, adică $A \to \alpha.\beta$; $\alpha \in goto(I_0, \gamma)$.

Teorema 2. Gramatica independentă de context $G = (N, \Sigma, S, P)$ este LR(1) dacă și numai dacă tabela *action* construită cu algoritmul LR(1) nu are intrări multiple.

Demonstrație. Fie G' extensia lui G și $C_G = \{I_0, ..., I_n\}$ mulțimile canonice LR(1) ale lui $G, I_0 = closure(\{S' \rightarrow S.; \#\})$.

- " \Rightarrow " Fie *G* de tip LR(1). Presupunem că tabela *action* asociată are intrări multiple. Avem cazurile:
 - a) $\exists i, j \in \{0,1,...,n\}, a \in \Sigma$, $action[i,a] = shift j, action[i,a] = reduce <math>B \to \gamma$ (conflict deplasare-reducere). Aceasta înseamnă că $\exists A \to \alpha$. $a\beta$; $b \in I_i$, $goto(I_i,a) = I_j$ și $\exists B \to \gamma$.; $a \in I_i$. Fie $\gamma_1 \in (N \cup \Sigma)^*$ astfel

încât $I_i = goto(I_0, \gamma_1)$. Atunci, conform Teoremei 1, rezultă că $A \to \alpha$. $\alpha\beta$; $b \neq \gamma$.; a sunt valide pentru prefixul viabil γ_1 . Atunci:

i.
$$\exists S \Rightarrow \theta Ax \underset{d}{\Rightarrow} \theta \alpha \alpha \beta x$$

ii.
$$\theta \alpha = \gamma_1$$

iii.
$$b = First(x\#)$$

iv.
$$\exists S \Rightarrow \theta' B x' \Rightarrow_d \theta' \gamma x'$$

v.
$$\theta' \gamma = \gamma_1$$

vi.
$$a = First(x'\#)$$

$$S \Rightarrow \theta' B x' \Rightarrow_d \theta' \gamma x' = \gamma_1 x'$$

$$S \Rightarrow \theta Ax \Rightarrow_{d} \theta \alpha a \beta x = \gamma_{1} a \beta x$$

$$First(a\beta x) = First(x') = a$$

Cum G este LR(1), rezulta $\theta = \theta'$, A = B, $\gamma = \alpha \alpha \beta$. Rezulta din ii., v. și din $\theta = \theta'$ că $\alpha = \gamma$, dar atunci $\lambda = \alpha \beta$, contradicție, deoarece $\alpha \in \Sigma$.

b) $action[i, a] = reduce \ A \rightarrow \alpha, action[i, a] = reduce \ B \rightarrow \beta$, pentru $0 \le i \le n, a \in \Sigma \cup \{\#\}, A \rightarrow \alpha \ne B \rightarrow \beta$ (conflict reducere-reducere). Atunci $A \rightarrow \alpha$.; $a \in I_i, B \rightarrow \beta$.; $a \in I_i, I_i = goto(I_0, \gamma), \gamma \in (N \cup \Sigma)^*$ prefix viabil. Avem:

vii.
$$\exists S \Rightarrow \theta Ax \Rightarrow_d \theta \alpha x$$

viii.
$$\theta \alpha = \gamma$$

ix.
$$a = First(x\#)$$

$$\mathbf{x.} \quad \exists S \Rightarrow \theta' B x' \underset{d}{\Rightarrow} \theta' \beta x'$$

xi.
$$\theta'\beta = \gamma$$

xii.
$$a = First(x'\#)$$

Rezultă:

First(x) = First(x') = α , $S \Rightarrow \theta Ax \Rightarrow \theta \alpha x = \gamma x$, $S \Rightarrow \theta' Bx' \Rightarrow \theta' \beta x' = \gamma x'$. $d \qquad d \qquad d$ Cum G este LR(1), rezulta ca $\theta = \theta'$, A = B, $\alpha = \beta$, deci $A \rightarrow \alpha = B \rightarrow \beta$, contradictie.

" \Leftarrow " Fie G astfel ca *action* nu are intrări multiple. Presupunem că G nu este LR(1).

Atunci există două derivări drepte:

$$S \stackrel{*}{\Rightarrow} \alpha A u \stackrel{\Rightarrow}{\Rightarrow} \alpha \beta u = \gamma u, u \in \Sigma^*$$
 și $S \stackrel{*}{\Rightarrow} \alpha' A' u' \stackrel{\Rightarrow}{\Rightarrow} \alpha' \beta' u' = \alpha \beta v = \gamma v, v \in \Sigma^*$ astfel încât $FIRST_k(u) = FIRST_k(v)$, **pentru care cel puțin una din relațiile** $\alpha \neq \alpha', A \neq A', \beta \neq \beta'$ este adevărată.

În conformitate cu Lema anterioară, rezultă că:

$$A \to \beta; First(u\#) \in goto(I_0, \alpha)$$
 (1)

$$A' \to \beta'; First(u'\#) \in goto(I_0, \alpha')$$
 (2)

$$A \rightarrow \beta$$
.; $First(u\#) \in goto(I_0, \alpha\beta) = goto(I_0, \gamma)$ (3)

$$A' \to \beta'; First(u'\#) \in goto(I_0, \alpha'\beta')$$
 (4)

Avem cazurile:

c)
$$u' = v$$
. Atunci $\alpha\beta = \alpha'\beta' = \gamma$, $First(u') = First(v) = First(u)$, deci $First(u\#) = First(u'\#) = x$. Fie $I_j = goto(I_0, \gamma)$, $0 \le j \le n$. Atunci: $action[j,x] = (\beta,r_1)$, $action[j,x] = (\beta',r_2)$, unde $r_1:A \to \beta, r_2:A' \to \beta'$. Daca $\alpha = \alpha'$, atunci din $\alpha\beta = \alpha'\beta' = \gamma$, rezulta ca $\beta = \beta'$. Cum una dintre relatiile $\alpha \ne \alpha'$, $A \ne A'$, $\beta \ne \beta'$ este adevărată, atunci $A \ne A'$, deci $r_1 \ne r_2$. Daca $\alpha \ne \alpha'$, atunci din $\alpha\beta = \alpha'\beta' = \gamma$ rezulta ca $\beta \ne \beta'$, deci din nou $r_1 \ne r_2$. Atunci $action$ are intrari multiple, contradictie.

d)
$$|u'| < |v|$$
. Rezulta ca $v = v'u'$. Avem $\alpha'\beta'u' = \alpha\beta v$, deci $\alpha'\beta'u' = \alpha\beta v'u'$, adica $\alpha'\beta' = \alpha\beta v'$ (5)
Totodata $First(v) = First(v') = First(u) = x \in \Sigma$ (6)
d1) $\alpha' = \alpha$. Ținând cont și de (5), rezultă că $\beta' = \beta v'$. Atunci:
 $A' \to \beta'$; $First(u'\#) = A' \to \beta v'$; $First(u'\#) \in goto(I_0, \alpha')$, deci $A' \to \beta v'$

$$A' \rightarrow \beta'$$
; $First(u'\#) = A' \rightarrow \beta v'$; $First(u'\#) \in goto(I_0, \alpha')$, $deci A' \rightarrow \beta \cdot v'$; $First(u'\#) \in goto(I_0, \alpha'\beta) = goto(I_0, \alpha\beta) = goto(I_0, \gamma)$ (7)

Din (3) si (7) rezulta ca $action[j,x] = reduce A \rightarrow \beta$, action[j,x] = shift k unde $I_k = goto(I_j, x)$, deci action are intrari multiple, contradictie.

$$d2) |\alpha'| < |\alpha|, \alpha = \alpha' \alpha''$$
(8)

```
Avem:
A' \rightarrow .\beta'; First(u'\#) \in goto(I_0, \alpha') \Longrightarrow A' \rightarrow \alpha''\beta. v'; First(u'\#) \in
goto(I_0, \alpha'\alpha''\beta) = goto(I_0, \alpha\beta) = goto(I_0, \gamma) = I_i
                                                                                               (10)
Din (3), (6) si (10) rezulta ca action[j,x] = reduce A \rightarrow \beta, action[j,x] = shift k
unde I_k = goto(I_i, x), deci action are intrari multiple, contradictie.
d3) |\alpha'| > |\alpha|, \alpha' = \alpha \alpha''
Din (5) si (11) rezulta \alpha \alpha'' \beta' = \alpha \beta v' \implies \alpha'' \beta' = \beta v'
                                                                                               (12)
d3.1)Presupunem \beta prefix propriu al lui \alpha'', adica \alpha'' = \beta \alpha'''. Din \alpha' = \alpha \alpha'' = \alpha''
\alpha\beta\alpha''' si \alpha'\beta' = \alpha\beta\nu' rezulta \alpha\beta\alpha'''\beta' = \alpha\beta\nu' \Rightarrow \alpha'''\beta' = \nu' \in \Sigma^*, First(\nu') =
First(\alpha'''\beta') \Rightarrow First(v') = First(v) = First(\alpha'''). Avem:
A' \rightarrow .\beta'; First(u'\#) \in goto(I_0, \alpha\beta\alpha''')
                                                                                              (13)
A \rightarrow .\beta; First(u\#) \in goto(I_0, \alpha\beta)
                                                                                              (14)
Din (13) și ținând cont că \alpha''' \in \Sigma^+, rezulta ca exista B \to \delta. \alpha''' A\theta; First(u'\#) \in
goto(I_0, \alpha\beta) = goto(I_0, \gamma)
Din (3) si (15) rezulta ca action[j, x] = reduce A \rightarrow \beta, action[j, x] = shift k
unde I_k = goto(I_j, x), deci action are intrari multiple, contradictie.
d3.2) Daca \beta = \alpha'', adica \alpha' = \alpha\beta = \gamma = \alpha'\beta' \Longrightarrow \beta' = \lambda. Cum \alpha'\beta'u' = \alpha\beta v,
rezulta u' = v \in \Sigma^* \implies First(u'\#) = First(v\#)
Din (3), (4) si (16) rezulta action[i, x] = reduce A \rightarrow \beta, action[i, x] =
reduce A' \to \beta'. Deoarece \beta' = \lambda, \beta \neq \lambda, rezulta action are intrari multiple,
contradictie.
d3.3) Presupunem \alpha'' prefix propriu al lui \beta, deci \beta = \alpha'' \alpha'''
Din (11), (12), (17) (\alpha' = \alpha \alpha'', \alpha'' \beta' = \beta v', \beta = \alpha'' \alpha''') rezulta ca \alpha'' \beta' = \beta v' = \beta v'
\alpha''\alpha'''v' \Rightarrow \beta' = \alpha'''v'. Ținând cont și de (3), (4) obținem:
A \rightarrow \beta.; First(u\#) \in goto(I_0, \alpha\beta)
A' \rightarrow \alpha''' \cdot v'; First(u'\#) \in goto(I_0, \alpha'\alpha''')
Dar \alpha'\alpha''' = \alpha\alpha''\alpha''' = \alpha\beta \Longrightarrow A' \to \alpha'''.v'; First(u'\#) \in goto(I_0, \alpha\beta) (18)
Din (3) si (18) rezulta ca action[j, x] = reduce A \rightarrow \beta, action[j, x] = shift k
unde I_k = goto(I_i, x), deci action are intrari multiple, contradictie.
```

(9)

Din (5) si (8), $\alpha'\beta' = \alpha'\alpha''\beta v' \Longrightarrow \beta' = \alpha''\beta v'$

Teorema 3. Orice gramatică de tip LR(k), $k \ge 2$, este echivalentă cu o gramatică de tip LR(1).

e) |u'| > |v| Analog cazului d).

Pentru algoritmii de tip LR este suficient k=1, adică se ia în considerare doar un singur simbol lookahead.

Teorema 4. Orice gramatică de tip LL(k), $k \ge 0$, este echivalentă cu o gramatică de tip LR(k).