

UD3.- Sistema de Nombres de Dominio. (DNS)

2º CURSO GRADO SUPERIOR **DAW**

Despliegue de Aplicaciones Web 2020-21

ÍNDICE

- INTRODUCCIÓN
- ¿QUÉ ES DNS?
- SISTEMA DE NOMBRES DE DOMINIO
 - DOMINIOS
 - ZONAS / DELEGACIÓN
 - FUNCIONAMIENTO
- BASES DE DATOS
- SERVIDORES DE NOMBRES
- DELEGACIÓN DE DOMINIO / GLUE RECORDS

1. INTRODUCCIÓN

- En una red TCP/IP las máquinas se identifican mediante una dirección IP.
- En redes pequeñas podríamos recordar todas las IP's asignadas a cada máquina.
 - ¿Cuantas direcciones somos capaces de memorizar?
 - Los nombres son fáciles de recordar

74.125.29.101 → GOOGLE.COM

1. INTRODUCCIÓN

- Inicialmente, en ARPANET, se utilizaba en archivo hosts.txt, en el que se listaban todos los hosts y sus direcciones IP.
 - Todas las noches, los hosts conectados a la red obtenían este archivo del sitio en el que se mantenía.
 - Cuando miles de hosts se conectaron a la red se dieron cuenta de que este método no podría funcionar.

1. INTRODUCCIÓN

- Inconvenientes
 - El tamaño del archivo crecía de forma considerable.
 - Genera mucho tráfico en el servidor.
 - Inconsistencias entre copias locales / centrales.
 - Duplicidad y conflictos de nombres.

Actualmente se dispone del archivo hosts para su uso local tanto en sistemas operativos unix, like-unix y windows

```
File Edit View Terminal Help

127.0.0.1 localhost
127.0.1.1 ubuntu
0.0.0 facebook.com

# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
~
```

2. ¿QUÉ ES DNS?

DNS (Domain Name Server) o servidor de nombres de dominio proporciona un mecanismo de traducción de nombres de dominio en direcciones IP y viceversa.

¿Qué página se obtiene al acceder a la ip 164.132.156.96?

2.1 ESTRUCTURA Y FUNCIONAMIENTO

Se trata de un esquema de nombres jerárquico que permite asignar nombres, basándose en el concepto de dominio y utilizando para su gestión una base de datos distribuida.

2.1 ESTRUCTURA Y FUNCIONAMIENTO

- Los nombres se organizan jerárquicamente en forma de árbol.
- El nombre de dominio correspondiente a cada nodo se define como la secuencia formada por las etiquetas de ese nodo hasta el nodo raíz, separados por un "." (camino).
- El nodo raíz, contiene una etiqueta vacía, por lo que todo dominio termina con un "."

2.1 ESTRUCTURA Y FUNCIONAMIENTO

- Los nombres se organizan jerárquicamente en forma de árbol.
- El nombre de dominio correspondiente a cada nodo se define como la secuencia formada por las etiquetas de ese nodo hasta el nodo raíz, separados por un "." (camino).
- El nodo raíz, contiene una etiqueta vacía, por lo que todo dominio termina con un "."

3. SISTEMA DE NOMBRES DE INTERNET

- El espacio de nombres en Internet se divide en diferentes dominios de nivel superior (TLD).
- Cada uno de estos dominios se divide en subdominios, y estos, a su vez, también se subdividen.

Ibm.com cisco.com

C3.1 DOMINIOS DE NIVEL SUPERIOR (TLD)

- Los dominios de nivel superior o TLD (top-level domain) se dividen en dos categorías:
 - Genéricos: División por tipo de organización; .com (comercial), edu (instituciones educativas), info (información), name (nombres de personas) y pro (profesiones, como internacionales), mil (fuerzas armadas de Estados Unidos), net (proveedores de red) y .org (organizaciones no lucrativas)...
 - De país: incluyen una entrada para cada país, como se define en la ISO 3166; .es (españa), it (italia), fr (francia),...

3.1 DOMINIOS DE NIVEL SUPERIOR (TLD)

■ **ISO 3166** - 2 caracteres

www.cipfpbatoi.es

3.2 NOMBRES DE DOMINIO

Nombres de dominio

- No distinción entre mayúsculas y minúsculas
 - Cadena de hasta 255 caracteres, formada por etiquetas (<= 63 caracteres)

ddaw.cipfpbatoi.es

3 etiquetas → ddaw cipfpbatoi es

3.2 NOMBRES DE DOMINIO

- Los nombres de dominio pueden ser absolutos y relativos
 - Absoluto o FQDN (Fully Qualified Domain Name):
 Constituye el nombre de dominio completo de una red.

ddaw.cipfpbatoi.es.

Siempre termina en "."

 Relativo o PQDN (Partial Qualified Domain Name): solo especificamos la parte del host relativa a un dominio:

ddaw(.cipfpbatoi.es.)

- El espacio de nombres de dominio se divide en zonas.
 - Cada una de las zonas se encuentra bajo el control administrativo de una organización.
 - La responsabilidad es delegada por la organización que se encuentra en el nivel superior.

- Los dominios de **nivel superior** son asignados por **IANA** (*Internet Corporation for assigned Names*).
 - La creación de nuevos nombres y su asignación es administrado por ICANN (Assigned Numbers Authority).
 - http://www.iana.org/domains/root/db
- ICANN delega automáticamente la responsabilidad de los dominios geográficos en instituciones locales de cada país.
 - España → red.es

- La empresa u organización responsable de cada zona puede:
 - Añadir o quitar nodos dentro de su zona.
 - Modificar la información de sus nodos.
 - Crear nuevas sub-zonas y delegar su gestión en otras autoridades administrativas.

- Ejemplos:
 - Red.es → delega la zona CIPFPBatoi.es
 en los servidores DNS del centro educativo.
 - CIPFPBatoi → delega la zona mail.cipfpbatoi.es en los servidores DNS de una empresa de envío de correos; mailchimp, dr.sender...
 - CIPFPBatoi → Crea nuevos nodos que corresponden a:
 - www.cipfpbatoi.es
 - moodle.cipfpbatoi.es
 - Intranet.cipfpbatoi.es

- En la parte superior de la jerarquía, existen 13 servidores que comparten la responsabilidad de las zonas de nivel superior.
- De esta forma se evita que el servidor raíz se convierta en el cuello de botella.
 - Algunos de los servidores raíz se implementan mediante múltiples servidores geográficamente distantes

- La resolución de una nombre a una dirección ip requerirá los siguientes pasos:
 - El programa de aplicación llama a un procedimiento de biblioteca (resolver) residente en el sistema operativo y le pasa el nombre de dominio.
 - El resolver envía un paquete UDP al servidor DNS configurado.
 - a) Si el dominio recae sobre la jurisdicción del **servidor nombres**, este devuelve una **respuesta autorizada** al resolver y este se la pasa al programa de aplicación.
 - b) Si no se dispone de información, se debe **consultar** a los **servidores de nombres** de los niveles superiores.

- Para incrementar su eficiencia el sistema DNS utiliza una caché. Para informar de que la respuesta viene de memoria caché se marcará como no autoritativa.
- Para evitar que la información de la caché quede obsoleta, el servidor DNS proporciona junto a la respuesta un tiempo de vida (TTL) que define el tiempo en segundos que la información puede almacenarse en cache.

- Cuando una consulta no se encuentra en el servidor local, existen 2 formas de generar la respuesta:
 - Modo recursivo: El propio servidor se ocupa de realizar consultas recursivas a otros servidores y solo devolver la respuesta final o un error (en caso de encontrarla).
 - Modo interactivo: La respuesta unicamente incluye una referencia al servidor que puede proporcionar más información. (El cliente debe preocuparse de continuar realizando consultas hasta encontrar la que busca).

Modo recursivo

Modo iteractiva

3.5 ACTIVIDAD PREVIA

- Actividad 1.- Escoge cualquier nombre de dominio y realiza el proceso de resolución paso a paso.
 - Debes indicar cada uno de los servidores DNS a los que se ha consultado. Ayúdate de la siguiente **herramienta online**.
- Actividad 2.- Busca información sobre el concepto de propagación DNS. Como puede afectar al proceso de puesta en producción de un servicio.
- Actividad 3.- Si quisiéramos adquirir un nombre de dominio con terminación .es ¿A quién deberíamos dirigirnos?

Resolución inversa/directa

- Los servidores DNS mantienen 2 base de datos en ficheros distintos sobre una misma zona:
 - Zona de traducción directa: Obtención de la dirección ip a partir del nombre de dominio (Acceso a una web a través del navegador,...)
 - Zona de resolución inversa: Obtención del nombre de dominio a partir de la IP. (Autenticación de correos electrónicos,...)
 - Utilizan un dominio especial in-addr-arpa (121.45.34.123.in-addr-arpa)
 - IP en notación inversa (No admite CIDR)

Registro de Recursos

- Cada una de estas bases de datos, esta compuesta por un conjunto de entradas a las que denominamos registro de recursos (RR)
- Un registro de recursos se compone de:

```
Nombre de dominio TTL Clase Tipo Valor moodle.cipfpbatoi.es 600 IN A 147.156.167.210
```

TTL: Tiempo de vida.(Segundos)

Clase: Actualmente sólo se utiliza IN (redes TCP/IP)

Tipo: Indica la funcionalidad del registro

Dato_Registro (Valor): Número o texto ASCII dependiendo del tipo de registro

Tipos de Registros

 Registro SOA: La configuración de cada zona comienza con el SOA (Start Of Authority).

```
info2.com. IN SOA ns.info2.com. admin.info2.com.

2009051701; numero de serie (cambios)
10800; actualización S. secundarios
3600; tiempo de reintento
604800; caducidad registros secundario
86400; valor TTL - Almacenamiento caché
```

Todos estos valores pueden indicarse en segundos o utilizando meta-carácteres para representar a las unidades de tiempo. Por ejemplo, **1W2D5H10M** especifica: 1 semana (**week**), 2 días (**day**), 5 horas (**hour**) y 10 minutos (**minute**).

Tipos de Registros

NS (Name Server): Establece los servidores de nombres autorizados para la zona.

```
info2.com. IN NS servidor.info2.com.
```

Debe contener registros indicando tanto los servidores primarios como los secundarios

Tipos de Registros

A (Address): Establece una correspondencia entre un nombre de dominio completamente cualificado (FQDN) y una dirección IP.

```
pc11.info2.com. IN A 192.168.2.100
```

PTR (PoinTeR, puntero): Hace lo contrario que el registro A: asigna una dirección IP a un nombre de dominio completamente cualificado. Este tipo de recursos se utilizan en la resolución inversa.

1.2.168.192.in-addr.arpa IN PTR pc11.info2.com.

Tipos de Registros

CNAME (Canonic NAME, nombre canónico): crea un alias para el nombre de dominio especificado. Se asigna a un host que tiene una dirección IP válida y que responde a diversos nombres. Pueden declararse varios para un host.

```
prueba.info2.com. IN CNAME pc11.info2.com.
```

A la máquina pc11 se le asigna el alias «prueba»:

Tipos de Registros

MX (Mail eXchange, intercambio de correo): Indica una o varias máquinas encargadas de la entrega de correo en el dominio. Si este posee varias máquinas como registros MX se puede indicar, mediante un valor numérico, el orden de preferencia

5. CLIENTES DNS

- Un cliente DNS es un programa que se ejecuta en la computadora del usuario y que genera peticiones DNS de resolución de nombres a un servidor DNS.
 - Se conocen como Resolvers
 - Ej. Un navegador es una aplicación que hace llamadas al resolver del Sistema operativo para obtener las IP's a las que dirigirse.

5.1 ACTIVIDAD PREVIA

Actividad3. Utilizando el cliente DNS dig consulta las IP's a las que deberíamos ir para acceder a los siguientes sitios web; alcoi.org, google.es, telefonica.com

```
$ dig nombre_de_dominio
```

¿Qué tipo de registro de Base de Datos tiene?

¿Qué servidor DNS ha atendido la solicitud?

Tipos

- Las especificaciones DNS definen dos tipos de servidores de nombres:
 - Servidores primarios: lee los datos de la zona a partir de un archivo ubicado en el mismo host.

Tipos

 Servidores secundarios o esclavos: obtiene los datos de zona desde otro servidor de nombres autorizado para la zona, denominado servidor maestro.

Cuando un **servidor secundario** se inicia, **contacta** con su **servidor maestro** y, si es necesario, descarga los datos sobre la zona. Esto se conoce como una **transferencia de zona**.

Tipos

- Tanto el servidor maestro primario como los esclavos de una zona están autorizados para dicha zona.
- Los archivos que cargan los servidores maestros, se denominan ficheros de zona.
- Los servidores esclavos, normalmente, respaldan los datos que reciben mediante las transferencias de zona a un fichero de zona almacenado de forma local.

Tipos

Servidor DNS cache: Solo atiende consultas de clientes DNS sobre nombres de dominios y almacena los resultados para posteriores usos. (No mantiene configuración de zonas)

6. DELEGACIÓN DE DOMINIOS

Registros glue

- Cuando compramos un dominio, nuestro proveedor lleva a cabo una delegación de la zona correspondiente a ese dominio.
- Para realizar una delegación de zona se utilizan dos registros de recursos:
 - Registro NS → Proporciona el FQDN del servidor DNS de la zona.
 - Registro A → Asocia el FQDN con una dirección IP

Denominados **Registros Glue**La zona padre
mantiene sobre la zona subordinada.

6. DELEGACIÓN DE DOMINIOS

Registros glue

■ Ej. Si quisieramos delegar la zona mail.info2.com necesitariamos introducir en el servidor DNS de la zona info2.com los siguientes registros:

```
mail.info2.com. IN NS ns.mail.info2.com. ns.mail.info2.com. IN A 1.2.3.4
```


6. DELEGACIÓN DE DOMINIOS

Eso es todo... de momento :-)

