CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTION OPERATION

4	0	-1				3.1 + 0.0 + 1.(-1) + 1.1 + 3 0 + 6 1 1/+ 2.1 + 7.0 + 2.1						+2.6					
3	0	1	2	7	4		F	iter	•	٠		_1	٠	•	۰	۰	۰
41	5°	8-1	9	3	1		1	0	-1	۰	٠	-5		0	0	۰	
21	70	2	5	1.	3	*	1	0	-1		='	٠	٠				
0	1	3	1.	7.	8		1	0	-1	0		0	٠	0	0	0	
y	2	1	6	2	8.			3×3					٠	0			
2	Ų	5	2	3	9.	"Cross							<u>,</u> 4	~ 4	۰	٠	
_		6×	6			by		venti			tron"						

#STEP 2

VERTICAL EDGE DETECTION

HORIZONTAL EDGE DETECTION

From Bright to Dark

10	0	10	0	0	0	
10	0	10	0	0	0-	
10	Ιō	10	0	.0	0.	*
0	0	0	10	10	10	.,
0	0	0 °	10	ſV	10°	
0	0,	0.	10	10	10.	

		- (
	١	١	١
*	٥	0.	0
	- 1	-1	-1

0	0	0	. 0
30	10	-10	-30
30	10	70	-30
0	0 -	0	· 0

	0	0
	-	

LEARNING TO DETECT FOGES

PADDING

Dowsides to solve: -> Shrinking img when using filters -> Losing info from the edge.

$$P_{+}^{+}2P_{-}^{+}+1=K$$

$$P_{-}^{+}\frac{g_{-}^{+}}{2}$$

8 x 8

$$D = n - f + 1$$

$$- Img 8 \times 6, f - 3 \times 3 \rightarrow D = 8 - 3 + 1 = 6$$

$$- 3 + 1 = 6$$

STRIDE

Stride - Saltos

$$D = \frac{n+2p-3}{s} + 1$$

$$D = \frac{7-3}{2} + 1 = 3$$

CONVOLUTION ON RGB IMGS

Detect vertical edges on Red & Blue

MULTIPLE FILTERS

ONE LAYER OF A CNN

I NUMBER OF PARAMETER?

Example: 10 filters, 3x3x3. Nº parameters in One layer

NOTATION SUMMARY

In layer l:

- · flet = filter size
- · pll] = padding size
- · sled = stride size
- · nc = number of filters /channels
- · Each filter is: flex flex nce-17
- · Activations: a ces no kes no ces

$$-1 NH = \frac{(e-1)}{5} \frac{2p^{-1}}{5} \int_{-\infty}^{(e)} \frac{(e)}{5}$$

MAX-POOLING

1	3	2	1		
2	9	1	1	9	2
1	3	2	3	6	3
5	6	1	2	27	ر ک

-		3	2	_	3		
2		9	7	1	5		
Λ		3	2	3	2		
8		3	5	1	0		
5	+	6	1	2	9	-	
5×5×2							

1=3 S=1	

9	9	5	
9	વ	5	
8	- 6	7	
. ,	"x3 x1	2	

AVERAGE POOLING

Similar to max-pooling but calculating the average

le Net-5

(32,32,37	3072	U
(2812816)	4707	3×5×5×6+6 = 456
(14,14,6)	1176	0
(10,10,16)	1600	2416
(515176)	400	0
(12011)	120	48120
(8411)	84	10164
(1011)	10	850
	(28,28,6) (14,14,6) (10,19,16) (5,5,16) (12,11) (84,11)	(28,28,6) 4707 (14,14,6) 4176 (10,10,16) 4600 (5,5,16) 400 (120,11) 420 (84,11) 84