

Exercise 1: (representations and graph isomorphisms)

Given the following 2 graphs:

For each of the graphs, in the following called G:

- 1. How many different representations (adjacency matrices) can you find for graph G? (Let r_G be this number)
- 2. Chose an adjacency matrix B. How many permutation matrices can you find, such that $B = P(PB)^T$? (Let p_G be this number).

Note: p_G corresponds to the number of isomorphisms from B to itself, which is also called an automorphism. You could chose any pair of representations A and B, and finding the number of different P for which $A = P(PB)^T$ holds, the result will always be p_G .

3. What is the product of the number of representations r_G and the number of isomorphisms p_G ?

Exercise 2: (Wiener index and boiling points)

Given the following graph G representing the chemical compound 2,3-dimethylpentan:

- 1. Determine the edge-weight matrix.
- 2. Determine the distance matrix.
- 3. Determine the Wiener-Index.
- 4. Determine the number of shortest paths of length 3.

- 5. Determine the value p_0 and w_0 of the formula for predicting the boiling point for this compound.
- 6. Determine the estimated boiling points and compare it to the real boiling point.
- 7. What is the asymptotic worst case performance for finding the distance matrix based on repeated squaring?
- 8. Do you know a method that has a better asymptotic worst case performance?

Exercise 3: (From random polygon to an ellipse)

Given the matrices

$$M_3 = \frac{1}{2} \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right)$$

and

$$M_4 = \frac{1}{2} \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{array} \right)$$

- 1. Which of both matrices is invertible?
- 2. Compute the determinant of M_3 and M_4 .
- 3. Are the columns of M_3 independent? Are the columns of M_4 independent?
- 4. Draw an equilateral triangle with points (x_1^k, y_1^k) , (x_2^k, y_2^k) , and (x_3^k, y_3^k) . Assume the triangle is a result of $M_3 \cdot x^{k-1}$ and $M_3 \cdot y^{k-1}$ as presented in the lecture. Ignoring normalization, find x^{k-1} and y^{k-1} . Can you find several solutions for x^{k-1} and y^{k-1} ?
- 5. Draw a square with points (x_1^k, y_1^k) , (x_2^k, y_2^k) , (x_3^k, y_3^k) , and (x_4^k, y_4^k) . Assume the square is a result of $M_4 \cdot x^{k-1}$ and $M_4 \cdot y^{k-1}$ as presented in the lecture. Ignoring normalization, find x^{k-1} and y^{k-1} . Can you find several solutions for x^{k-1} and y^{k-1} ? What is the conclusion wrt. the (non-)existence of an inverse of M_4 ?

Exercise 4: (From random polygons to an ellipse)

Given vector v = (0, 3, -1, -2, 0).

- 1. Determine $w = v \overline{v}$, where \overline{v} is the mean of v.
- 2. Determine $\frac{w}{||w||_2}$, where $||\cdot||_2$ refers to the 2-norm.
- 3. What is the length of vector $\frac{w}{||w||_2}$?