METHOD AND APPARATUS FOR REFINING METALLIC TITANIUM

Patent number:

JP2004052037

Publication date:

2004-02-19

Inventor:

ONO KATSUTOSHI; SUZUKI RYOSUKE

Applicant:

ONO KATSUTOSHI; SUZUKI RYOSUKE; NIPPON

LIGHT METAL CO

Classification:

- international:

C22B34/12; F27B17/00

- european:

Application number: JP20020210537 20020719 Priority number(s): JP20020210537 20020719

Report a data error here

Abstract of JP2004052037

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for refining metallic titanium controlling solid solution oxygen concentration. <P>SOLUTION: In the method for producing the metallic titanium by heatreducing titanium oxide, a reaction zone is constituted with mixed fusing salt composed of calcium chloride (CaCl<SB>2</SB>) and calcium oxide (CaO) and/or calcium (Ca), and this reaction zone is divided into an electrolytic zone for electrolyzing the calcium oxide and/or the calcium chloride in the mixed fusing salt and reducing zone for reducing the titanium oxide, and in the above electrolytic zone, the calcium (Ca) and monovalent calcium ion (Ca+) are generated. Further, in the above reducing zone, the titanium oxide introduced into this reducing zone, is reduced with the calcium and the monovalent calcium ion generated in the above electrolytic zone and also, deoxidation in sponge-like metallic titanium (Ti) obtained by reducing the titanium oxide, is performed in this method and this apparatus for refining the metallic titanium. <P>COPYRIGHT: (C)2004,JPO

1:反応機

PA: 的吃锅锅

52:据陆建煤 作:用光带成

2: 世界阴极机

3: 险性均

38:退孔 4: 直流電源

5:原料投入劳

5:收容数

6a: 国现立

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-52037 (P2004-52037A)

(43) 公開日 平成16年2月19日(2004.2.19)

(51) Int. Cl. 7

FI

テーマコード (参考)

C22B 34/12 F27B 17/00

C22B 34/12102 C22B 34/12 103

4K001

F27B 17/00 Α

審査請求 未請求 請求項の数 13 OL (全 15 頁)

(21) 出願番号

特願2002-210537 (P2002-210537)

(22) 出願日

平成14年7月19日 (2002.7.19)

|(71) 出願人 596082046

小野 勝敏

東京都目黒区自由が丘3-16-8

特許法第30条第1項適用申請有り 2002年1月2 (71) 出願人 501405029 〇日 社団法人日本金属学会発行の「まてりあ 第41 巻 第1号(2002)」に発表

鈴木 亮輔

京都府京都市左京区岩倉三宅町247-8

(71) 出願人 000004743

日本軽金属株式会社

東京都品川区東品川二丁目2番20号

(74) 代理人 100082739

弁理士 成瀬 勝夫

(74) 代理人 100087343

弁理士 中村 智廣

(74) 代理人 100085040 弁理士 小泉 雅裕

最終頁に続く

(54) 【発明の名称】金属チタンの精錬方法及びその精錬装置

(57)【要約】 (修正有)

【選択図】

【課題】固溶酸素濃度が制御された金属チタンの精錬方 法及びその精錬装置を提供する。

【解決手段】酸化チタンを熱還元して金属チタンを製造 する精錬方法であり、塩化カルシウム(CaCl。)と 酸化カルシウム (CaO) 及び/又はカルシウム (Ca)からなる混合溶融塩で反応領域を構成し、この反応領 域を混合溶融塩中の酸化カルシウム及び/又は塩化カル シウムを電気分解する電解帯域と酸化チタンを還元する 還元帯域とに区画し、上記電解帯域ではカルシウム (C a) 及び 1 価カルシウムイオン (Ca⁺) を生成せしめ 、また、上記還元帯域ではこの還元帯域に導入された酸 化チタンを上記電解帯域で生成したカルシウム及び1価 カルシウムイオンにより還元すると共に、この酸化チタ ンの還元で得られたスポンジ状金属チタン (Ti)の脱 酸素を行う、金属チタンの精錬方法、精錬装置である。

図1

1:反応標 RA: 反応領域 EF:電解帯域 RF:逗元带城 2:炭素陽極材 3:险径材 3a: 透孔 4:直流弧源 5:原料投入管

6:収容部 6a:回収口

【特許請求の範囲】

【請求項1】

 $\mathbf{r} = \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$

酸化チタン(Ti〇₂)を熱還元して金属チタン(Ti)を製造する金属チタンの精錬方法であり、塩化カルシウム(CaCl₂)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなる混合溶融塩で反応領域を構成し、この反応領域を混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解する電解帯域と酸化チタンを還元する還元帯域とに区画し、上記電解帯域では混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解してカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)を生成せしめ、また、上記還元帯域ではこの還元帯域に導入された酸化チタンを上記電解帯域で生成したカルシウム及び1価カルシウムイオンにより還元すると共に、この酸化チタンの選元で得られたスポンジ状金属チタン(Ti)の脱酸素を行うことを特徴とする金属チタンの精錬方法。

【請求項2】

還元帯域で生成したスポンジ状金属チタンをこの還元帯域の混合溶融塩中に保持する保持時間を調節することにより、生成したスポンジ状金属チタン中の固溶酸素濃度を調節する 請求項1に記載の金属チタンの精錬方法。

【請求項3】

混合溶融塩中のカルシウム濃度(Ca濃度)が1.5重量%以下であって、酸化カルシウム濃度(CaO濃度)が11.0重量%以下である請求項1又は2に記載の金属チタンの精錬方法。

【請求項4】

電解帯域と還元帯域との間が、電解帯域の陽極に相対する陰極を構成し、かつ、電解帯域で生成したカルシウム及び1価カルシウムイオンが還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容する陰極材で区画されている請求項1~3のいずれかに記載の金属チタンの精錬方法。

【請求項5】

電解帯域では、陽極として炭素陽極材を用いて混合溶融塩中の酸化カルシウムを電気分解し、この酸化カルシウム中の酸素を炭酸ガスとして反応領域から系外に除去する請求項1~4のいずれかに記載の金属チタンの精錬方法。

【請求項6】

還元帯域には、上部には酸化チタンを供給するための原料供給口と電解帯域で生成したカルシウム及び1価カルシウムイオンが流入する流入口とを有し、また、下部には生成したスポンジ状金属チタンを収容して保持すると共に生成した酸化カルシウムが外部に流出する多数の流出孔が設けられた収容部を有する還元反応容器が配設されており、原料供給口より供給された酸化チタンをこの還元反応容器内上部で還元すると共に、生成したスポンジ状金属チタンをその下部の収容部内に収容して脱酸素せしめ、脱酸素終了後には還元反応容器を還元帯域から引き上げてスポンジ状金属チタンを回収する請求項1~5のいずれかに記載の金属チタンの精錬方法。

【請求項7】

反応領域から回収されたスポンジ状金属チタンは、チタンインゴットとして製品化される前に、水及び/又は希塩酸によって洗浄され、付着塩が除去される請求項1~6のいずれかに記載の金属チタンの精錬方法。

【請求項8】

酸化チタン(TiO₂)を熱還元して金属チタン(Ti)を製造するための金属チタンの精錬装置であり、塩化カルシウム(CaCl₂)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなる混合溶融塩が収容された反応領域を形成する反応槽と、この反応槽内に配設されて上記反応領域を電解帯域と還元帯域とに区画し、電解帯域で酸化カルシウム及び/又は塩化カルシウムの電気分解により生成したカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)が還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容する仕切り壁とを備えていることを特

10

20

30

40

徴とする金属チタンの精錬装置。

【請求項9】

i i i

反応槽内の反応領域を電解帯域と還元帯域とに区画する仕切り壁が、電解帯域の陽極に相対する陰極を構成する陰極材で構成されている請求項8に記載の金属チタンの精錬装置。

【請求項10】

反応槽内には、その反応領域の中央部に還元帯域を区画すると共に、この還元帯域を挟んでその両側に、若しくは、この還元帯域を囲んでその周囲に電解帯域を形成する陰極材が配設されている請求項9に記載の金属チタンの精錬装置。

【請求項11】

陰極材が、金属チタン製である請求項9又は10に記載の金属チタンの精錬装置。

10

【請求項12】

還元帯域には、上部には酸化チタンを供給するための原料供給口と電解帯域で生成したカルシウム及び1価カルシウムイオンが流入する流入口とを有し、また、下部には生成したスポンジ状金属チタンを収容して保持すると共に生成した酸化カルシウムが外部に流出する多数の流出孔が設けられた収容部を有する還元反応容器が還元帯域から引上げ可能に配設されている請求項8~11のいずれかに記載の金属チタンの精錬装置。

【請求項13】

還元反応容器が、金属チタン製である請求項12に記載の金属チタンの精錬装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

20

この発明は、酸化チタン(TiO₂)を熱還元して金属チタン(Ti)を製造する工業的に量産可能な金属チタンの精錬方法及びその精錬装置に関する。

[0002]

【従来の技術】

金属チタンは、次々とその優れた性質が明らかにされ、航空・宇宙の分野だけでなく、近年では、カメラ、めがね、時計、ゴルフクラブ等の民生品の分野にも利用されるようになり、更には、建材や自動車の分野でもその需要が期待されている。

[00003]

そして、この金属チタンの製造方法については、現在、工業的に行われている方法は、半 導体用高純度チタンを製造するために極めて小規模にチタン精錬を行う電解法を除き、い わゆるクロール法のみとなっている。

[0004]

このクロール法による金属チタンの精錬は、図5に示すように、次のようにして行われている。

先ず、原料の酸化チタン(TiO_2)を炭素(C)の存在下に塩素ガス(CI_2)と1000℃で反応させ、低沸点(沸点136℃)の四塩化チタン($TiCI_2$)を製造し、次いで得られた四塩化チタンを蒸留により精製して高純度の四塩化チタンを製造する。このときの四塩化チタンの生成反応は次の通りである。

 $T i O_2 + C + 2 C I_2 = T i C I_4 + C O_2$ $T i O_2 + 2 C + 2 C I_2 = T i C I_4 + 2 C O$ 40

50

[0005]

次に、このようにして得られた四塩化チタンを金属マグネシウムの存在下に還元し、金属チタンを製造する。この四塩化チタンの還元は、鉄製密閉容器に金属マグネシウムを仕込み、975℃に加熱して金属マグネシウムを溶融させ、この溶融金属マグネシウム中に四塩化チタンを滴下して行われ、次の反応式に従って金属チタンが生成する。

 $TiCl_4 + 2 Mg = Ti + 2 MgCl_2$

[0006]

この四塩化チタンの還元で得られた金属チタンは、通常、還元反応装置の内部形状を反映 した一つの大きな円柱形状の塊として得られ、多孔質固体状であっていわゆるスポンジ状

10

20

金属チタンと称されており、その内部には副生した塩化マグネシウムや未反応の金属マグネシウムが含まれており、また、一般に、その中心部では固溶酸素濃度が400~600ppm程度と低くて靭性に富み、反対に、外皮部では固溶酸素濃度が800~1000ppm程度で硬度に優れている。

[0007]

, ,

[0008]

次に、このスポンジ状金属チタンから消耗電極式真空アーク溶解法により製品のチタンインゴットを製造する際には、一次電極ブリケットの製造のために、大きな一塊となって生成したスポンジ状金属チタンを一旦破砕し粉砕する(破砕・粉砕処理)が、場合によってはこの際に、製造されるチタンインゴットの用途やスポンジ状金属チタンの部位(中心部と外皮部)による固溶酸素濃度の違いを考慮し、例えば靭性金属チタンを必要とする場合には主として中心部から得られる粉砕スポンジ状金属チタンを集めたり、あるいは、高硬度金属チタンを必要とする場合には主として外皮部から得られる粉砕スポンジ状金属チタン集める等の分別が行われる。

[0009]

そして、このようにして調製された粉砕スポンジ状金属チタンは、次に、圧縮成形工程でブリケットにしたのち、それらを多段に重ねてTIG溶接により円筒状の電極とされ、更に、真空アーク溶解や高周波溶解等の溶解工程で溶解され、表面の酸化皮膜を切削除去して目的の製品チタンインゴットが製造される。

[0010]

しかしながら、このようなクロール法による金属チタンの精錬においては、酸化チタンを製造原料とするものの、この酸化チタンを一旦低沸点の四塩化チタンに変えてから還元するために、その製造工程が長くなり、また、スポンジ状金属チタンの製造過程で高温減圧下の真空分離が不可欠であり、更に、製造されるスポンジ状金属チタンが大きな一つの塊として得られるので製品チタンインゴットを製造する際にはこのスポンジ状金属チタンの破砕・粉砕処理が不可欠になり、しかも、スポンジ状金属チタンはその中心部と外皮部とで固溶酸素濃度が大きく異なるために、製品チタンインゴットの用途によってはその破砕・粉砕処理で中心部からのものと外皮部からのものとを分別しなければならず、このようなことが結果として金属チタンの製造コストを極めて高くする大きな要因になっている。

[0011]

この金属チタンの精錬方法については、上記クロール法以外にも幾つかの方法が提案されている。

例えば、竹内 栄及び渡辺 治、日本金属学会第28巻(1964)第9号第549~554頁には、図6に示すように、黒鉛製ルツボaを陽極とし、その中央部にモリブデン製電極 b を陰極として配置し、ルツボa内には塩化カルシウム(CaCl₂)、酸化カルシウム(CaO)及び酸化チタン(TiO₂)からなる900~1100℃の混合溶融塩 c を仕込み、図示外の不活性ガスのアルゴン(Ar)の雰囲気下に混合溶融塩 c 中で酸化チタンを電解し、生成したチタンイオン(Ti⁴+)をモリブデン製電極 b の表面に析出させて金属チタン d を製造する方法が記載されている。

[0012]

また、WO 99/64638には、図7に示すように、反応容器内に塩化カルシウム(CaCl₂)の溶融塩cを仕込み、この溶融塩c中に陽極として黒鉛製電極aを、また、陰極として酸化チタン製電極bをそれぞれ配設し、これら黒鉛製電極aと酸化チタン製電

極 b との間に電圧を印加して陰極の酸化チタン製電極 b から酸素イオン(〇² ~)を引き抜き、この引き抜かれた酸素イオンを陽極の黒鉛製電極 a で炭酸ガス(CO₂)及び/又は酸素ガス(〇₂)にして放出することにより、酸化チタン製電極 b それ自体を還元して金属チタン d に変換する方法が記載されている。

[0013]

to the

しかしながら、前者の竹内・渡辺の論文に記載の方法においては、析出した金属チタン d が混合溶融塩 c 中で高濃度の酸化カルシウムと絶えず接触しているため、製造される金属チタン d 中の固溶酸素濃度を制御したり、あるいは、低下させて靭性に優れた金属チタン d を製造することが難しく、しかも、モリブデン製電極 b の表面に微細な樹枝状に析出してくるために大量生産が困難であり、工業的製造方法としては不向きであるという問題があり、また、後者のWO 99/64638記載の方法においては、陰極で生成した金属チタン d 中の微量酸素の固体内拡散が律速するために、脱酸素に長時間を要するという問題がある。

[0014]

【発明が解決しようとする課題】

[0015]

従って、本発明の目的は、金属チタンを工業的に有利に製造することができる金属チタンの精錬方法を提供することにある。また、本発明の他の目的は、固溶酸素濃度が制御された金属チタンを工業的に有利に製造することができる金属チタンの精錬方法を提供することにある。

更に、本発明の他の目的は、金属チタンを工業的に有利に製造することができる金属チタンの精錬装置を提供することにある。更にまた、本発明の他の目的は、固溶酸素濃度が制御された金属チタンを工業的に有利に製造することができる金属チタンの精錬装置を提供することにある。

[0016]

【課題を解決するための手段】

すなわち、本発明は、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造する金属チタンの精錬方法であり、塩化カルシウム(CaCl2)と酸化カルシウム(CaCl2)と酸化カルシウム(CaCDの反応領域を構成し、この反応領域を混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解する電解帯域と酸化チタンを還元する還元帯域とに区画し、上記電解帯域では混合溶融塩中の酸化カルシウム及び/又は塩化カルシウム(Ca)及び1価カルシウムイオン(Ca⁺)を生成せしめ、また、上記還元帯域ではこの還元帯域に導入された酸化チタンを上記電解帯域で生成したカルシウム及び1価カルシウムイオンにより還元すると共タンを上記電解帯域で生成したカルシウム及び1価カルシウムイオンにより還元すると共を特徴とする金属チタンの精錬方法である。

[0017]

50

10

40

50

また、本発明は、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造するための金属チタンの精錬装置であり、塩化カルシウム(CaCl2)と酸化カルシウム(CaOl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなる混合溶融塩が収容された反応領域を形成する反応槽と、この反応槽内に配設されて上記反応領域を電解帯域と還元帯域とに区画し、電解帯域で酸化カルシウム及び/又は塩化カルシウムの電気分解により生成したカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)が還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容する仕切り壁とを備えていることを特徴とする金属チタンの精錬装置である。

[0018]

, f 1

本発明において、原料として用いる酸化チタンについては、それがどのような方法で得られたものであってもよいが、純度については、この酸化チタン中の不純物が製造される金属チタン中に残留するので、製造される製品チタンインゴットに許容される不純物濃度範囲内であるのがよく、また、性状については、白色顔料の原料等の場合と異なり、結晶型、粒子径、形状、表面状態等において特に制約されない。

[0019]

また、本発明においては、酸化チタンを還元する際にその反応領域を構成する反応媒体として、塩化カルシウム(CaCl2)、カルシウム(Ca)及び酸化カルシウム(CaO)からなる通常800~1000℃の混合溶融塩が用いられる。この反応領域を構成する溶融塩は、電解帯域で電気分解を開始する際には塩化カルシウム(CaCl2)単独でもよく、この場合には塩化カルシウムの電気分解によりカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)が生成し、電気分解開始後直ちに混合溶融塩となる。この混合溶融塩中のカルシウムと酸化カルシウムの存在範囲は、通常、カルシウムが1.5重量%以下であって酸化カルシウムが11.0重量%以下であり、例えば混合溶融塩の温度が900℃の場合、カルシウムが0.5~1.5重量%の範囲であって、酸化カルシウムが0.1~5.0重量%の範囲である。

[0020]

更に、本発明においては、上記電解帯域で酸化カルシウム(CaO)を電気分解して生成したカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)が還元帯域で酸化チタンの還元剤や脱酸素剤として用いられるが、この際の混合溶融塩の組成については、製造される金属チタンの固溶酸素濃度を考慮して調整される。混合溶融塩中のCa/CaO濃度比が大きいと、還元や脱酸素に対する能力は大きくなるが、逆に酸化カルシウムの電気分解に対する能力が低下する。このCa濃度及びCaO濃度の調整は、例えば、電気分解の電流の大きさと原料の酸化チタンの供給速度により行うことができる。

[0021]

そして、本発明においては、上記混合溶融塩からなる反応領域を、酸化カルシウム及び/ 又は塩化カルシウムの電気分解を行う電解帯域と酸化チタンの還元を行う還元帯域とに区 画し、電解帯域では酸化カルシウム及び/又は塩化カルシウムを電気分解して酸化チタン の還元反応の際に還元剤として用いられるカルシウム(Ca)及び1価カルシウムイオン (Ca⁺)を生成せしめ、また、還元帯域ではこの電解帯域で生成したカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)を用いて酸化チタンを還元してスポンジ状金属チタンにすると共に、このスポンジ状金属チタンに含まれる固溶酸素を除去する脱酸素を行う。

[0022]

ここで、上記反応領域を電解帯域と還元帯域とに区画する手段については、電解帯域で生成したカルシウム(Ca)及び1価カルシウムイオン(Ca⁺)が還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容するものであり、好ましくは還元帯域に供給された原料の酸化チタンやこの還元帯域で生成したスポンジ状金属チタンが電解帯域に移動しないような構成を有するものであれば、特に制限されるものではなく、例えば、仕切り壁等を別に設けて区画してもよいほか、電解帯域の陽極に相対する陰極を構成する陰極材を利用して区画してもよく、更には、反応領域

の中央部に還元帯域を区画すると共に、この還元帯域を挟んでその両側に、若しくは、この還元帯域を囲んでその周囲に電解帯域を形成する陰極材を配設して構成にしてもよい。

[0023]

また、本発明において、上記電解帯域における陽極については、炭素陽極材を用い、混合溶融塩中の酸化カルシウムを電気分解した際に生成する酸素をこの炭素陽極材で補足し、炭酸ガスとして反応領域から系外に除去するのがよい。そして、この際に用いられる炭素陽極材については、より好ましくは、少なくとも混合溶融塩中に浸漬する部分にオーバーハング状に形成された傾斜面を形成するのがよく、これによって、この炭素陽極材の表面で生成した炭酸ガスは上記オーバーハング状の傾斜面に沿って上昇し、混合溶融塩中を不必要に拡散することなく系外に除去される。

[0024]

更に、本発明においては、上記還元帯域に、上部には酸化チタンを供給するための原料供給口と電解帯域で生成したカルシウム及び1価カルシウムイオンが流入する流入口とを有し、また、下部には生成したスポンジ状金属チタンを収容して保持すると共に生成した酸化カルシウムが外部に流出する多数の流出孔が設けられた収容部を有する還元反応容器を配設し、上記原料供給口より供給された酸化チタンをこの還元反応容器内で還元すると共に、生成したスポンジ状金属チタンをその収容部内に収容して脱酸素せしめ、この脱酸素終了後には還元反応容器を還元帯域から引き上げてスポンジ状金属チタンを回収するのが望ましい。このような還元反応容器を用いて酸化チタンの還元を行うことにより、反応槽の連続運転中の必要な時間帯にスポンジ状金属チタンを回収できるという利点が生じる。

[0025]

本発明において、酸化チタンが還元帯域の混合溶融塩中に供給されると、この酸化チタンは混合溶融塩中のカルシウム及び1価カルシウムイオンで瞬間的に還元され、生成した金属チタン粒子は凝集し焼結しながらこの混合溶融塩中を降下し、その間に、不定形であって緩やかに結合し、数mmから数10mmの大きさを有する目の粗い多孔質状塊に成長し、還元帯域の底部(還元反応容器を用いた場合にはその底部)に堆積する。

[0026]

次に、還元帯域から回収されたスポンジ状金属チタンは、次に、水及び/又は希塩酸によって洗浄され、表面に付着した塩化カルシウムや酸化カルシウムの付着塩が除去される。この際のスポンジ状金属チタン水洗及び/又は酸洗は、例えば、洗浄槽へ高圧水を導入して付着塩を溶解する工程と湿式サイクロン等によるスポンジ状金属チタンの回収工程との組合せ等として行われる。

[0027]

また、このようにして製造されたスポンジ状金属チタンは、従来のクロール法と同様に、次に、圧縮成形工程で電極とされ、更に、真空アーク溶解や髙周波溶解等の溶解工程で溶解され、溶解インゴットの肌を調整して目的の製品チタンインゴットが製造される。

[0028]

【発明の実施の形態】

以下に、本発明の原理を示す模式図及びフローチャートを参照して、本発明の好適な実施の形態を説明する。

[0029]

図1及び図2に、本発明の原理を示す模式図及びフローチャートが示されている。

図1において、金属チタンの精錬装置を構成する反応槽1内には塩化カルシウム(CaCl2)と酸化カルシウム(CaO)からなる800~100℃の混合溶融塩が収容され、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造するための反応領域RAが形成されている。

[0030]

この反応槽1には、黒鉛等の炭素材製の炭素陽極材2と多数の透孔3aを有する金属チタン板製の陰極材3とが互いに所定の間隔をおいて配設されており、これら炭素陽極材2と 陰極材3との間には直流電圧を印加するための直流電源4が設けられている。また、この

10

20

30

40

10

20

30

反応槽1内に形成された反応領域RAは、上記陰極材3により、炭素陽極材2側の電解帯域EFとこの炭素陽極材2とは反対側の還元帯域RFとに区画されている。

[0031]

上記電解帯域 E F において酸化カルシウムの電気分解により生成したカルシウム(Ca) 〔及び 1 価カルシウムイオン(Ca⁺)〕は、その比重が小さいことから混合溶融塩中を上昇し、陰極材 3 の上部にある比較的大きな透孔 3 a 及び比較的小さい透孔 3 a を介して還元帯域 R F 内に拡散する。

[0032]

また、上記還元帯域 R F には、その上方に原料の酸化チタンを供給するための原料投入管 5 が配設されていると共に、その下部には酸化チタンが還元されて生成したスポンジ状金属チタンを収容する収容部 6 が形成されており、更に、この収容部 6 の下端にはスポンジ 状金属チタンを回収するための回収口 6 a が設けられている。

[0033]

このような反応槽1を用いて酸化チタンから直接かつ連続的にチタン精錬を行うには、先ず、反応槽1に塩化カルシウム(CaCl₂)と酸化カルシウム(CaO)からなる800~1000℃の混合溶融塩を装入して反応領域RAを形成する。ここで、化学量論的な溶融塩化カルシウムのCaイオンは2価であるが、混合溶融塩中には1価のCaイオン(Ca₂²+)も存在する。そして、1価のCaイオンが存在する混合溶融塩は、CaCl₂ーCaO-Caの3元系状態で均一液相となり、1価のCaイオン濃度が増加するにつれて凝縮し、溶解限を超すとカルシウム(Ca)となって析出してくる。このカルシウム飽和濃度近傍の溶融塩化カルシウム相は、活量1の純粋カルシウムの還元能力に近づき、本発明において望ましい強還元性混合溶融塩となる。

[0034]

ここで、原料投入管 5 から酸化チタン(TiO₂)が反応領域 R A の還元帯域 R F に導入されると、この酸化チタンはカルシウム(C a)及び 1 価カルシウムイオン(C a ⁺)により還元され、生成した固体のチタン(Ti)が異相として析出すると共に、反応生成物の酸化カルシウム(C a O)はそのまま混合溶融塩中に溶解し、活量が低下して反応の駆動力が増加する。

 $T i O_2 + 2 C a^+ + 2 e = T i + 2 C a^{2+} + 2 O^{2-} \cdots (1)$

 $[O]_{T_i}$ + Ca^+ + e = Ca^2^+ + O^2^- …………… (2) なお、 Ca^+ 、 e、 Ca^2^+ 、及び O^2^- はそれぞれ溶融塩化カルシウム中に存在するイオン及び電子を示し、 $[O]_{T_i}$ は生成した金属チタン中の固溶酸素を示す。式(1)は酸化チタンの還元反応を示し、式(2)は式(1)で金属チタンが生成した後に継続して進行する金属チタン中の固溶酸素が脱酸素される脱酸反応を示す。

[0035]

この還元帯域RFで生成した酸化カルシウム(CaO)は、反応槽内の還流により電解帯域EF側に移動する。この電解帯域RFにおいては、炭素陽極材2と陰極材3との間に、例えば3.OVの電解電圧が印加され、陰極材3において酸化カルシウムの2価のカルシウムを1価に還元し、1価のCaイオンを生成せしめる。また、この際に生成した酸素イオン(O^2)は、炭素陽極材2側に移動し、この炭素陽極材2と反応して CO_2 — CO ガスとして系外に排出される。

[0036]

すなわち、この反応は、溶融塩化カルシウム中に溶解している酸化カルシウムの電気分解

とみなすことができる。また、電気分解の電極に印加するポテンシャルを任意に増加することによって、塩化カルシウム自体の電気分解を生ぜしめつつ、上記式(5)~(7)と同じ反応を起こすことも可能である。この場合、酸化カルシウムの理論分解電圧は塩化カルシウムの理論分解電圧より低いため、塩化カルシウムと酸化カルシウムの同時電気分解とみなすことができる。

[0037]

このような方法で到達し得る金属チタン中の固溶酸素濃度、すなわち脱酸素限界は、平衡論的には式(2)と等価な次式

に質量作用の法則を適用して得られる溶質の活量比

が小さくなればなるほど平衡酸素濃度が低下し、式(3)、(4)及び(5)の電解により脱酸生成物であるCaOを分解し、溶融塩化カルシウム中のCaOを定常的に低濃度に保持すると、金属チタン中の固溶酸素濃度は経時的に著しく低下し、例えば 0.2時間で 3000ppm、1時間で1000ppm、24時間で約400ppmに達し、100時間では50ppm以下まで可能である。

[0038]

本発明において、塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなる混合溶融塩により反応領域RAを構成する重要な特徴は、溶融塩化カルシウム中に溶解している酸化カルシウム及び/又は塩化カルシウムを電解すると、陰極でカルシウムが生成するが、このカルシウムは1価のCaイオンとして溶解し、広く速やかに拡散し、反応領域RAのいかなる個所(帯域)においても還元・脱酸素の反応が進行し、また、この還元・脱酸素の反応により生成する酸化カルシウムは直ちに混合溶融塩中に溶解して反応系に導入された酸化チタンの更なる還元反応及び生成した金属チタンの更なる脱酸反応の進行の妨げにならないということである。

[0039]

更に、本発明において重要な特徴は、還元帯域RFで生成した金属チタン粒子は、その表面で脱酸反応を受けながらこの還元帯域RF中を降下し、その間に互いに凝集し、焼結して数mmから数10mmの大きさを有する不定形であって緩やかに結合した目の粗い多孔質状塊に成長するので、加圧して容易に崩壊可能な多孔質状のスポンジ状金属チタンとして系外に取り出すことができるということである。

[0040]

このため、本発明においては、反応槽1の還元帯域RFで酸化チタンを還元して得られたスポンジ状金属チタンは、図2に示すように、この反応槽1の回収口6aからいわゆるスポンジ状金属チタンとして槽外に取り出した後、水洗・希塩酸洗浄に付され、表面に付着した塩化カルシウム等の付着塩が除去され、次いで圧縮成形工程でブリケットを経て電極とされ、更に、真空アーク溶解や高周波溶解等の溶解工程で溶解され、鋳肌を調整して目的の製品チタンインゴットが製造される。

[0041]

【実施例】

以下、添付図面の図3及び図4に示す実施例に基いて、本発明の金属チタンの精錬装置をより具体的に説明する。

[0042]

図3及び図4に、本発明の実施例に係る精錬装置の概略の構造を説明するための模式的な断面図が示されている。

この実施例において、この精錬装置は、鋼製の箱型容器 1 a に厚さ 2 0 0 m m のグラファイト内張り 1 b とステンレス鋼内張り 8 を施して形成された内容積が長さ 1 m ×幅 0 . 7 m ×高さ 1 m の反応槽 1 と、鉄製で筒状に形成され、上部には不活性ガスのアルゴンガス (Ar)の導入孔 3 b と排出孔 3 c とが形成されていると共に、上端開口を閉塞する絶縁性の蓋体 3 d を有し、また、下部の周壁部にはこの周壁の一部を下方から上方に切り起こ

10

20

30

して形成され、斜め下方外側に向けて開口する図示外の多数の透孔を有する金属チタン製の陰極材3と、この陰極材3の周壁から極間距離55cmをおいてその周辺に炭素陽極材2が配設され、これら炭素陽極材2と陰極材3との間には直流電圧を印加する直流電源4が設けられている。

[0043]

•

また、上記筒状に形成された陰極材3の下部の内部には、その周壁部から5 c mの隙間を維持して上端開口の筒状に形成され、上部には上記陰極材3の蓋体3 d を貫通して配設された原料投入管5から供給される酸化チタンを受け入れる原料供給口7 a とこの上部周壁に形成された比較的大きな透孔からなる流入口7 c とを有し、また、下部及び底壁部には比較的小さな透孔からなる多数の流出孔7 d が設けられた収容部7 b を有する金属チタン製の還元反応容器7が図示外の昇降手段で引上げ可能に配設されている。

[0044]

なお、この実施例において上記炭素陽極材 2 には、陰極材 3 に相対面すると共に混合溶融塩中に浸漬する側面に、垂線に対して約 5 ~ 4 5 度程度の角度でオーバーハング状に傾斜した傾斜面 2 a が設けられており、この炭素陽極材 2 の傾斜面 2 a で生成した炭酸ガス(CO₂)がこのオーバーハング状の傾斜面 2 a に沿って案内されながら上昇するようになっている。なお、この実施例においては、上記炭素陽極材 2 と陰極材 3 とが混合溶融塩中に浸漬する部分において、互いに対向面積を幅 5 0 c m×高さ 6 0 c mの大きさの電解帯域が形成されるように設計されている。

[0045]

この実施例においては、上記反応槽 1 内に、5.5 重量%の割合で酸化カルシウム(CaO)を含み、予め1000℃に加熱して溶融させた溶融塩化カルシウム350 kgが装入されると、この混合溶融塩からなる反応領域RAが形成され、また、上記陰極材3が仕切り壁として機能し、この反応領域RAを炭素陽極材2と陰極材3との間の電解帯域EFと筒状に形成された陰極材3内部、特に還元反応容器7内部の還元帯域RFとに区画するようになっている。

[0046]

ここで、上記電解帯域 E F を形成する炭素陽極材 2 と陰極材 3 との間に 3 . 2 V を超えない範囲で直流電圧を印加すると、炭素陽極材 2 の傾斜面 2 a で生成した炭酸ガスがこの傾斜面 2 a を伝って上昇し、反応領域 R A から外部に排出されると共に、陰極材 3 の表面で生成した 1 価の C a イオンは陰極材 3 の図示外の透孔にトラップされて筒状の陰極材 3 内部の還元帯域 R F 内に流入し、生成したカルシウム及び 1 価の C a イオンは更に還元反応容器 7 の上部周壁に形成された流入口 7 c からこの還元反応容器 7 内上部にまで流入する

[0047]

この状態で上記原料投入管 5 からアルゴンガスと共に平均粒径 0.5 μmの粉末状の酸化チタンが還元反応容器 7 の原料供給口 7 a 内の還元帯域 R F 上に供給されると、この酸化チタンはカルシウム及び 1 価の C a イオンにより発熱反応して瞬間的に還元され、析出した金属チタン粒子が還元帯域 R F の混合溶融塩中を下降し、その過程で焼結を繰り返し、還元反応容器 7 の下部の収容部 7 b 内にスポンジ状金属チタン 9 として堆積する。

[0048]

ここで、反応槽 1 内で反応領域 R A を構成する混合溶融塩は、電解帯域 E F での炭酸ガスやカルシウム及び 1 価の C a イオンの上昇により緩やかな上昇流が発生し、また、還元帯域 R F 、特に還元反応容器 7 内では生成したスポンジ状金属チタン 9 の下降により緩やかな下降流が発生し、図 4 に拡大して示す電解帯域 E F と還元帯域 R F 、特に還元反応容器 7 内との間にはゆっくりとした時計方向の移動が生じる。このため、還元反応容器 7 の収容部 7 b 内を通過した混合溶融塩の流れは、この還元反応容器 7 内の還元帯域 R F での酸化チタンの還元反応やスポンジ状金属チタン 9 の脱酸反応で生成した酸化カルシウムを溶解し、この酸化カルシウムを収容部 7 b の多数の流出孔 7 d から電解帯域 E F へと移動させる。

10

20

30

[0049]

所定量の酸化チタンが供給され、生成したスポンジ状金属チタン9が混合溶融塩中に所定時間滞留して所定の脱酸反応が終了した後、還元反応容器7はその図示外の昇降手段によりゆっくりと引き上げられ、生成したスポンジ状金属チタン9はこの還元反応容器7から外部に取り出されて回収される。

[0050]

この反応槽1の操業において、3.2 Vを超えない電解電圧及び0.6 A/c m²の陽極定電流密度で熱的定常状態が実現され、通電開始後13時間経過した時点でアルゴン雰囲気の還元反応容器7を混合溶融塩中に浸漬した。

[0051]

更に、原料投入管 5 からアルゴンガスと共に還元反応容器 7 内に投入された酸化チタンは、その純度が 9 9. 8 重量 % であり、アルゴンガスと共に 1 1 g / 分の供給速度で還元反応容器 7 内の混合溶融塩の表面全面に吹き付けられた。電解操作と酸化チタンの供給を 1 2 時間連続して行ったのち、酸化チタンの供給を停止して 3 時間経過後、還元反応容器 7 を 6 c m / 分の速度で引き上げ、 3 0 0 ℃まで冷却したのち、外部へ取り出して大気温度まで放冷した。

[0052]

また、上記電解操作の際には、混合溶融塩の表面の炭素陽極材 2 と陰極材 3 との間に、炭素陽極材 2 から遊離した炭素が浮遊して集まってくるが、この浮遊炭素濃縮層 1 0 についてはその厚さが 1 0 m m 以上にならないように間歇的に取り除き、その際にこの浮遊炭素に伴って外部に取り出される溶融塩化カルシウムに見合う量の溶融塩化カルシウムを炭素 陽極材 2 の背面側から補給するようにした。

[0053]

上述のようにして外部に引き上げられ、大気温度まで放冷された還元反応容器 7 は、次にそのまま 5 ℃の水に 1 0 分間浸漬され、これによって還元反応容器 7 の内面からスポンジ状金属チタン 9 が分離され、次いで 5 m o 1 % の塩酸水溶液中に浸漬されて内部のスポンジ状金属チタン 9 が十分に攪拌され、これによってスポンジ状金属チタン 9 の表面に付着した塩化カルシウム等の付着塩が充分に除去され、その後この還元反応容器 7 内から取り出されたスポンジ状金属チタン 9 は充分に乾燥された。

[0054]

この実施例で上記還元反応容器7内に供給された酸化チタンは合計で8.2 kgであり、また、得られたスポンジ状金属チタンは4.8 kgであり、収率は96重量%であった。また、得られたスポンジ状金属チタンの粒経は、0.2~30mmまで広く分布し、比較的緩く焼結したものであって加圧することにより容易に崩壊した。

更に、不純物の酸素、炭素、窒素、鉄及び塩素を定量した結果、酸素 0.07 wt%、炭素 0.05 wt%、窒素 0.01 wt%、鉄 0.18 wt%及び塩素 0.16 wt%であった。

[0055]

次に、このようにして得られたスポンジ状金属チタン 0.13kg を用い、圧縮プレス装置(ゴンノ社製)を用いて $100kg/cm^2$ の圧力で圧縮成形し、直径 30mm × 高さ 40mm のペレットを成形した。

得られたペレットをタングステン電極不活性ガス溶接(TIG溶接)により相互に繋いで直径30mm×長さ150mmの電極棒を形成し、次いで真空アーク溶解(VAR)を行い、鋳肌の酸化皮膜を切削除去してチタン丸棒を得た。

[0056]

一方、上で得られたペレットを電子ビーム溶解装置(ALD社製)のコールドハース内に充填し、このコールドハース内のペレットに直接電子ビームを照射して電子ビーム溶解(EBM)により溶解してチタンスラブを得た。

[0057]

上記真空アーク溶解(VAR)及び電子ビーム溶解(EBM)でそれぞれ得られた溶解チ

10

20

30

40

タンについて、微量ガス分析及び発光分光分析により含有不純物の定量分析を行った。 結果を表 1 に示す。

[0058]

【表1】

ſ		酸素	炭素	窒素	鉄	塩素
•	VAR	0.01wt%	0.06wt%	0.01wt%	0.08wt%	0.04wt%
	EBM	0.01wt%	0.05wt%	0.01wt%	0.02wt%	0.01wt%

10

[0059]

【発明の効果】

本発明によれば、金属チタンを工業的に有利に製造することができるだけでなく、固溶酸素濃度が制御された金属チタンを工業的に有利に製造することができる。

【図面の簡単な説明】

【図1】図1は、本発明の金属チタンの精錬方法及びその精錬装置の原理を示す模式的に示す説明図である。

【図2】図2は、本発明の金属チタンの精錬方法の原理を示すフローチャートである。

【図3】図3は、本発明の実施例に係る金属チタンの精錬装置を模式的に示す断面説明図 20である。

【図4】図4は、図3の要部を拡大して示す部分断面説明図である。

【図 5 】図 5 は、従来のクロール法による金属チタンの精錬方法を示す図 3 と同様のフローチャートである。

【図6】図6は、従来の金属チタンの精錬方法を模式的に示す断面説明図である。

【図7】図7は、従来の他の金属チタンの精錬方法を模式的に示す断面説明図である。

【符号の説明】

1 … 反応槽、1 a … 箱型容器、1 b … グラファイト内張り、R A … 反応領域、E F … 電解帯域、R F … 還元帯域、2 … 炭素陽極材、2 a … 傾斜面、3 … 陰極材、3 a … 透孔、3 b … 導入孔、3 c … 排出孔、3 d … 蓋体、4 … 直流電源、5 … 原料投入管、6 … 収容部、6 a … 回収口、7 … 還元反応容器、7 a … 原料供給口、7 b … 収容部、7 c … 流入口、7 d … 流出孔、8 … ステンレス鋼内張り、9 … スポンジ状金属チタン、1 0 … 浮遊炭素濃縮層

【図1】

1: 反応槽 RA: 反応槽 使序: 電流 RF: 電流 RF: 遗素極材 3: 陰極材 3a: 透流 A: 直原科 5: 原科 6: 収回 6a: 回口

【図2】

1a: 箱型容器 1b: グラファイト内張り 2a: 傾斜面 3b: 導入孔 3c: 排出孔 3d: 蓋体 7: 還元反応容器 8: ステンレス鋼内張り

[図4]

7a:原料供給口 7b:収容部 7c:流入口 7d:流出孔 9:スポンジ状金属チタン 10:浮遊炭素濃縮層

【図5】

【図6】

【図7】

フロントページの続き

(72)発明者 小野 勝敏東京都目黒区自由ヶ丘3-16-8

(72)発明者 鈴木 亮輔 京都府京都市左京区岩倉三宅町247-8Fターム(参考) 4K001 AA27 BA05 DA14