EXERCÍCIOS 5.2 = PÁGINA 354

A soma de Riemann representa a soma das áreas dos dois retângulos acima do eixo x menos a soma das áreas dos três retângulos abaixo do eixo x; isto é, a área resultante dos retângulos com relação ao eixo x.

3. -0.856759

A soma de Riemann representa a soma das áreas dos dois retângulos acima do eixo x menos a soma das áreas dos três retângulos abaixo do eixo x.

- 5. (a)4
- (c)10
- **7.** -475, -85
- 9. 124,1644

- 11. 0,3084
- 13. 0,30843908, 0,30981629, 0,31015563

15.	n	R_n
	5	1,933766
	10	1,983524
	50	1,999342
	100	1,999836

(b)6

Os valores de R_n parecem se aproximar de 2.

17.
$$\int_{2}^{6} x \ln(1+x^{2}) dx$$

17.
$$\int_{2}^{6} x \ln(1+x^{2}) dx$$
 19. $\int_{1}^{8} \sqrt{2x+x^{2}} dx$ 21. 42

23.
$$\frac{4}{3}$$
 25. 3,

23.
$$\frac{4}{3}$$
 25. 3,75 29. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2 + 4i/n}{1 + (2 + 4i/n)^5} \cdot \frac{4}{n}$

31.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\sin \frac{5\pi i}{n} \right) \frac{\pi}{n} = \frac{2}{5}$$

37.
$$3 + \frac{9}{4}\pi$$
 39. 2,5 **41.** 0 **43.** 3 **45.** $e^5 - e^3$

45.
$$e^5 - e$$

47.
$$\int_{-1}^{5} f(x) dx$$
 49. 122

51.
$$2m \le \int_0^2 f(x) dx < 2M$$
 pela Propriedade 8 da Comparação

55.
$$3 \le \int_{1}^{4} \sqrt{x} \, dx \le 1$$

55.
$$3 \le \int_{1}^{4} \sqrt{x} \, dx \le 6$$
 57. $\frac{\pi}{12} \le \int_{\pi/4}^{\pi/3} \text{tg } x \, dx \le \frac{\pi}{12} \sqrt{3}$

59.
$$0 \le \int_0^2 x e^{-x} dx \le 2/e$$
 69. $\int_0^1 x^4 dx$ **71.** $\frac{1}{2}$

69.
$$\int_{0}^{1} x^{4} dx$$

EXERCÍCIOS 5.3 PÁGINA 364

- 1. Um processo desfaz o que o outro faz. Veja o Teorema Fundamental do Cálculo, na página 363.
- 3. (a) 0, 2, 5, 7, 3 (b)(0,3)

(c) x = 3

(a), (b)
$$x^2$$

7.
$$g'(x) = 1/(x^3 + 1)$$

9.
$$g'(y) = y^2 \operatorname{sen} y$$
 11. $F'(x) = -\sqrt{1 + \operatorname{sec} x}$

13.
$$h'(x) = -\frac{\arctan(1/x)}{x^2}$$
 15. $y' = \sqrt{\operatorname{tg} x + \sqrt{\operatorname{tg} x}} \sec^2 x$

$$y' = \sqrt{\lg x + \sqrt{\lg x} \sec^2 x}$$

17.
$$y' = \frac{3(1-3x)^3}{1+(1-3x)^2}$$
 19. $\frac{3}{4}$

23.
$$\frac{16}{3}$$
 25. $\frac{7}{8}$ 27. $\frac{156}{7}$ 29. $\frac{40}{3}$

27.
$$\frac{156}{7}$$

33.
$$\frac{49}{3}$$

35.
$$\ln 3$$
 37. π **39.** $e^2 - 1$

43. A função
$$f(x) = x^{-4}$$
 não é contínua no intervalo [-2, 1], de modo que o TFC2 não pode ser aplicado.

45. A função
$$f(\theta) = \sec \theta \operatorname{tg} \theta$$
 não é contínua no intervalo $[\pi/3, \pi]$, de modo que o TFC2 não pode ser aplicado.

47.
$$\frac{243}{4}$$
 49. 2

53.
$$g'(x) = \frac{-2(4x^2 - 1)}{4x^2 + 1} + \frac{3(9x^2 - 1)}{9x^2 + 1}$$

55.
$$y' = 3x^{7/2} \operatorname{sen}(x^3) - \frac{\operatorname{sen}\sqrt{x}}{2\sqrt[4]{x}}$$

59.29

61. (a)
$$-2\sqrt{n}$$
, $\sqrt{4n-2}$, n um inteiro > 0
(b) $(0, 1)$, $(-\sqrt{4n-1}, -\sqrt{4n-3})$, $e(\sqrt{4n-1}, \sqrt{4n+1})$, n um inteiro > 0 (c) 0.74

63. (a) Máx. loc. em 1 e 5; mín. loc. em 3 e 7

(b)
$$x = 9$$

(c)
$$(\frac{1}{2}, 2), (4, 6), (8, 9)$$

(d) Ver o gráfico à direita.

73.
$$f(x) = x^{3/2}, a = 9$$

EXERCÍCIOS 5.4 PÁGINA 372

5.
$$\frac{1}{3}x^3 - (1/x) + C$$
 7. $\frac{1}{4}x^4 + 3x^2 + x + C$

7.
$$\frac{1}{2}x^4 + 3x^2 + x + 6$$