Bryan Ng

Differentia Equations

RC Circuit

Vector
Differential
Equations

Change of

Inductors (Preview)

EECS 16B CSM

Bryan Ngo

Computer Science Mentors

2020-09-21

RC Circuit

Differentia Equations

Change of Basis

- 1 Differential Equations
- 2 RC Circuits
- 3 Vector Differential Equations
- 4 Change of Basis
- 5 Inductors (Preview)

Logistics

EECS 16B CSM

Bryan Ng

Differentia Equations

RC Circuit

Vector Differentia Equations

Change o

- Quest?
- Focus for today?
- messenger chat
- all slides available at https://github.com/bdngo/16b-csm

Bryan Ngo

Differential Equations

BC Circuit

Vector Differentia

Change of

Inductors (Preview)

Differential Equations

Differential Equations

EECS 16B CSM

Bryan Ng

Differential Equations

RC Circui

. - -.. -..

Differential Equations

Change o Basis

Inductors (Preview) Concept check!

Differential Equations

EECS 16B CSM

Bryan Ng

Differential Equations

RC Circuit

Vector
Differentia
Equations

Change of Basis

Inductors (Preview) Concept check!

$$\frac{d}{dt}x(t) = f(x,t) \tag{1}$$

- Focusing on first-order ODEs
- Relates the derivative in other terms
- 3Blue1Brown video

Exponential Differential Equation

Homogeneous

EECS 16B CSM

Bryan Ngo

Differential Equations

RC Circui

Vector Differentia

Differentia Equations

Basis

$$\frac{d}{dt}x(t) = \lambda x(t) \implies x(t) = x_0 e^{\lambda t}$$
 (2)

Exponential Differential Equation

Non-Homogeneous

EECS 16B CSM

Differential Equations

$$\frac{d}{dt}x(t) = \alpha x(t) + \beta \tag{3}$$

Bryan Ng

Differentia Equations

RC Circuits

Vector Differential Equations

Change of

Inductors (Preview)

RC Circuits

Undamped Response

EECS 16B CSM

Bryan Ngo

Differentia Equations

RC Circuits

Vector
Differential

Change o

Undamped Response

EECS 16B CSM

Bryan Ng

Differentia Equations

RC Circuits

Vector Differentia

Change of

Inductors (Preview)

$$C\frac{d}{dt}V_C = -\frac{V_C}{R} \tag{4}$$

$$\frac{d}{dt}V_C = -\frac{1}{RC}V_C$$

$$\Rightarrow V_C(t) = V_0 e^{-\frac{1}{RC}t} = V_0 e^{-\frac{1}{\tau}t} \tag{6}$$

(5)

Bryan Ng

Differentia Equations

RC Circuit

Vector Differential Equations

Basis

Vector Differential Equations

General Form

EECS 16B CSM

Bryan Ng

Differentia Equations

RC Circuits

...

Vector Differential Equations

Change of Basis

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t)$$
(7)

- lacksquare if $m{A}$ is diagonal, simply a bunch of exponential differential Equations
- if not, we can try to diagonalize

Bryan Ngo

Differentia Equations

RC Circuit

Vector
Differentia
Equations

Change of Basis

Inductors (Preview)

Change of Basis

Motivation

EECS 16B CSM

Bryan Ng

Differentia Equations

RC Circuit

Vector Differentia Equations

Change of Basis

- conversion from one linear coordinate system to another
- Yet another 3Blue1Brown video

A Visualization

EECS 16B CSM

Bryan Ngo

Differentia Equations

RC Circuit

Differentia Equations

Change of Basis

Diagonalization

EECS 16B CSM

Bryan Ngc

Differentia Equations

RC Circuit

Vector Differentia

Change of Basis

- want the eigenvectors to be the basis for a vector space
- makes math way easier

Diagonalization

EECS 16B CSM

Bryan Ngo

Differentia Equations

RC Circuit

Vector
Differentia
Equations

Change of Basis

Inductors (Preview) want the eigenvectors to be the basis for a vector space

makes math way easier

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \tag{8}$$

$$AV = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}$$
 (9)

$$=egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_n \end{bmatrix} egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$= V\Lambda \implies \Lambda = V^{-1}AV \tag{11}$$

(10)

Diagonalizing DEs

EECS 16B CSM

Change of Basis

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t)$$
(12)

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{12}$$

$$\frac{d}{dt}\mathbf{V}\mathbf{z}(t) = \mathbf{A}\mathbf{V}\mathbf{z}(t) + \mathbf{B}\mathbf{u}(t) \tag{13}$$

$$\Rightarrow \frac{d}{dt}\mathbf{z}(t) = \mathbf{V}^{-1}\mathbf{A}\mathbf{V}\mathbf{z}(t) + \mathbf{V}^{-1}\mathbf{B}\mathbf{u}(t) \tag{14}$$

$$\Rightarrow \frac{d}{dt} z(t) = V^{-1} A V z(t) + V^{-1} B u(t)$$
(14)

$$= \mathbf{\Lambda} \boldsymbol{z}(t) + \boldsymbol{V}^{-1} \boldsymbol{B} \boldsymbol{u}(t) \tag{15}$$

Bryan Ngo

Differentia Equations

RC Circuit

Vector
Differentia
Equations

Change of Basis

Inductors (Preview)

Basic Properties

EECS 16B CSM

Bryan Ng

Differentia Equations

RC Circuit

Vector
Differentia
Equations

Change of

Inductors

Inductors (Preview)

$$V_L \begin{cases} + \bigvee_{L} I_L \\ V_L \\ - \bigvee_{L} I_L \end{cases}$$

$$V_L = L \frac{d}{dt} I_L$$

(16)

- like a capacitor but for magnetic fields
- resists instantaneous change in current

Basic Properties

EECS 16B CSM

Inductors (Preview)

$$V_L \begin{cases} + \sqrt[4]{I_L} \\ V_L \\ - \sqrt{1 - I_L} \end{cases}$$

$$V_L = L \frac{d}{dt} I_L$$

(16)

- like a capacitor but for magnetic fields
- resists instantaneous change in current
- what happens when $\omega = 0$? $\omega = \infty$?