2019/5/4 聚类分析.html

聚类分析

基本定义

什么是聚类分析

把一组对象分成若干个聚类(Cluster), 使得同一个聚类中的对象之间具有高的相似性(High intra-cluster similarity), 不同聚类中的对象之间具有低的相似性(Low inter-cluster similarity).

怎样度量聚类方法

聚类内对象的高度同质性(Homogeneity) 聚类间对象的高度分离性 (Separation)

一些常见的聚类准则及其计算复杂性

k-Center: 最大半径最小化 (NP-hard)

k-Cluster: 最大直径最小化 (NP-hard)

k-median: 聚类内部距离之和的最小化 (若视k为输入变量,则NP-hard,对于固定的k,则是P问题)

k-means: 聚类内部距离平方之和的最小化 (无论k是否固定,均为NP-hard)

Min-cut: 最小割 (P)

Max-cut: 最大割 (NP-hard)

Ncut: 规范割 (NP-hard)

MRSD准则 (NP-hard)

k-means

- k-means算法如下:
- 1. 把对象划分成k 个非空子集;
- 2. 计算当前划分的每个聚类的中心;
- 3. 把每一个对象分配到离它最近的中心;
- 4. 返回到第2步, 当满足某种停止条件时停止。
- 停止条件:

当分配不再发生变化时停止;

当前后两次迭代的目标函数值小于某一给定的阈值时;

当达到给定的迭代次数时。

层次方法(单链接与全链接)

这种方法不需要用户提供聚类的数目k 作为输入。

2019/5/4 聚类分析.html

 若定义两个聚类之间的距离为二者对象之间的最小距离,则该算法也称为单链接算法(Single-Linkage Algorithm, SLA),也称为最小生成树算法。

• 若定义两个聚类之间的距离为二者对象之间的最大距离,则该算法也称为全链接算法(Complete-Linkage Algorithm, CLA)。

示例:

• 给定5个对象间的距离如下表

No	1	2	3	4	5
1	0				
2	6	0			
3	2	4	0		
4	3	4	5	0	
5	7	1	5	5	0

- 步骤1: 每个对象当做一个聚类.
- **步骤 2**: 找出上述5个聚类中最近的两个聚类2和5,因为它们的距离最小: $d_{25}=1$. 所以, 2和5凝聚成一个新的聚类 $\{2,5\}$.

• 步骤3. 计算聚类 {2,5} 与聚类 {1}, {3}, {4}的

距离

• $d_{\{2,5\}1} = \min\{d_{21}, d_{51}\} = \min\{6,7\} = 6$

• $d_{\{2,5\}3} = \min\{d_{23}, d_{53}\} = \min\{4,5\} = 4$

• $d_{\{2,5\}4} = \min\{d_{24}, d_{54}\} = \min\{4,5\} = 4$

No	{2,5]	} 1	3	4
{2,5}	0			
1	6	0		
3	4	2	0	
4 Cechniques	4	3	5	0

星期六

Data Mining: Concepts and Te

2019/5/4 聚类分析.html

- 4个聚类 {2,5}, {1}, {3}, {4}中最近的2个聚类是 {1} 和{3}. 因此, 1和3凝聚成一个新的聚类. 现在, 我们有3个聚类: {1,3}, {2,5}, {4}.

- 步骤4. 计算聚类 {1,3}与 {2,5}, {4}之间的距离
 - $-d_{\{1,3\}\{2,5\}}=\min\{d_{1\{2,5\}},d_{3\{2,5\}}\}=\min\{6,4\}=4$
 - $-d_{\{1,3\}4}=\min\{d_{14},d_{34}\}=\min\{3,5\}=3$
 - 因此, 聚类{1,3}和 {4}凝聚成一个新的聚类{1,3,4}.

No	{2,	5} {1,3	} 4	
{2,5}	0			
{2,5} {1,3}	4	0		
4	4	3	0	

- 现在, 我们得到2个聚类 {1,3,4} 和 {2,5}
- 步骤5. 计算{1,3,4}的{2,5}聚类

 $-d_{\{2,5\}\{1,3,4\}} = \min\{d_{\{2,5\}\{1,3\}}, d_{\{2,5\}4}\} = \min\{4,4\} = 4$

No	{2,5}	{1,3,4}
{2,5} {1,3,4}	0 4	0

- 聚类 {1,3,4}和 {2,5}凝聚成一个唯一的聚类 {1,2,3,4,5}.