

Report No. : EED32K00112102 Page 1 of 66

TEST REPORT

Product : Testo Control Unit

Trade mark : • testo

Model/Type reference : 0480 0069

Serial Number : N/A

Report Number : EED32K00112102 **FCC ID** : WAF-04800069

Date of Issue : Jun. 15, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Testo SE & Co. KGaA
Testo-Strasse 1, Lenzkirch 79853, Germany

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

pproved by

Report Seal

Tested by:

Reviewed by:

Date:

Tom-chen

Tom chen (Test Project)

19

Kevin yang (Reviewer)

Jun. 15, 2018

Max liang

Max liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:3096309230

2 Version

	-	
5, 2018	Original	
		- CA
	5, 2018	5, 2018 Original

Report No.: EED32K00112102 Page 3 of 66

3 Test Summary

rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	dB Occupied Bandwidth 47 CFR Part 15 Subpart C Section 15.247 (a)(1) Carrier Frequencies Separation 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANSI C6		PASS
			PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List		PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Do mo o wler	162.1	UKATU	10.0

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No.: EED32K00112102 Page 4 of 66

4 Content

1 COVER PAGE 2 VERSION					
3 TEST SUMMARY	•••••	•••••			
4 CONTENT				•••••	
5 TEST REQUIREMENT	-			•••••	
5.1 TEST SETUP					
5.1.1 For Conducte	ed test setup				
	Emissions test setup				
	ed Emissions test set				
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION					
6 GENERAL INFORMAT					
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIP	JN TION OF FLIT				
6.3 PRODUCT SPECIFIC					
6.4 DESCRIPTION OF S					
6.5 TEST LOCATION					
6.6 DEVIATION FROM S	TANDARDS				8
6.7 ABNORMALITIES FR					
6.8 OTHER INFORMATION					
6.9 MEASUREMENT UN					
7 EQUIPMENT LIST			••••••	•••••	10
8 RADIO TECHNICAL R	REQUIREMENTS SP	ECIFICATION	•••••	•••••	12
Annendix A): 20dB	Occupied Bandwidth				-0- 1
	er Frequency Separa				
	Time				
	ing Channel Number				
Appendix E): Cond	ucted Peak Output F	Power			2
	edge for RF Conduc				
	onducted Spurious				
	dorandom Frequency				
	na Requirement				
,	ower Line Conducted icted bands around f		ov (Padiated)		
	ited Spurious Emissi				
PHOTOGRAPHS OF TE					
PHOTOGRAPHS OF EL	JT CONSTRUCTION	IAL DETAILS	••••••	•••••	6

Report No.: EED32K00112102 Page 5 of 66

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Report No.: EED32K00112102 Page 6 of 66

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			0
Temperature:	23.1 °C		
Humidity:	45% RH		
Atmospheric Pressure:	1010mbar	(20)	

5.3 Test Condition

	Test Mode	Tx	RF Channel				
	rest Mode	IX.	Low(L)	Middle(M)	High(H)		
	GFSK/π/4DQPSK/	GFSK/π/4DQPSK/	Channel 1	Channel 40	Channel79		
	8DPSK(DH1,DH3, DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz		
Ī	TX mode: The EUT transmitted the continuous signal at the specific channel(s).						

Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK			
packets	1-DH1 1-DH3 1-DH5			
Power(dBm)	4.625	5.102	5.435	

Mode	π/4DQPSK			
packets	2-DH1	2-DH3	2-DH5	
Power(dBm)	4.120	4.675	5.328	
Mode		8DPSK		
packets	3-DH1	3-DH3	3-DH5	
Power(dBm)	4.231	4.781	5.225	

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No. : EED32K00112102 Page 7 of 66

6 General Information

6.1 Client Information

Applicant:	Testo SE & Co. KGaA	
Address of Applicant:	Testo-Strasse 1, Lenzkirch 79853, Germany	
Manufacturer:	Shenzhen Phonemax Technology Co., Ltd.	
Address of Manufacturer: 5F, East block, LaoBing Building, Xingye Road, Xixiang, Bao'an E Shenzhen		
Factory:	Shenzhen Newsun Technology Co., Ltd	
Address of Factory:	5F, Block A1, Zhongtai Information Industrial Park, No. 2 Dezheng Road, Shilong Community, Shiyan Street, Bao`an District, Shenzhen	

6.2 General Description of EUT

Product Name:	Testo Contro	Testo Control Unit			
Model No.(EUT):	0480 0069				
Trade mark:	●testo				
EUT Supports Radios application:	WiFi: IEEE 8	BT: 4.0 BT Dual mode, 2402MHz to 2480MHz WiFi: IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz GPS: 1559MHz to 1610MHz			
Power Supply:	Adapter	Model: 0554 1104 Input: 100-240V~50/60Hz, 0.2A Output: 5.0V 1.0A			
0	Battery	Rechargeable Li-ion Battery 3.8V, 2150mAh, 8.17Wh	-0-		
USB cable:	200cm(shielded)				
Sample Received Date:	May 11, 2018				
Sample tested Date:	May 11, 2018	3 to Jun. 14, 2018			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	3.0	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	(3)
Hopping Channel Type:	Adaptive Frequency Hopping systems	(0,
Firmware version:	3.18.19(manufacturer declare)	
Hardware version:	V1.2(manufacturer declare)	
Antenna Type:	MONOPOLE	
Antenna Gain:	2.3dBi	
Test Voltage:	AC 120V, 60Hz	

Report No. : EED32K00112102 Page 8 of 66

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
16	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		_0-

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	2 RF power, conducted	0.57dB (1GHz-18GHz)
2 Dadistad Courisma	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	3 Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	0 1 11 1 1	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32K00112102 Page 10 of 66

7 Equipment List

	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-26-2017 05-25-2018	05-25-2018 05-24-2019			
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019			
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019			

RF Conducted test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019		
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019		
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019		
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019		

Page 11 of 66

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019		
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	06-05-2018	06-04-2019		
Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019		
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019		
Receiver	R&S	ESCI	100435	05-26-2018 05-25-2018	05-25-2018 05-24-2019		
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019		
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019		
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019		
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019		
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019		
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019		
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019		
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002	(01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001		01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	<u> </u>	01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002	<u></u>	01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001		01-10-2018	01-09-2019		

8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
1	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No. : EED32K00112102 Page 13 of 66

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	1.040	0.90917	PASS	(65)
GFSK	MCH	1.043	0.90893	PASS	
GFSK	НСН	1.040	0.90502	PASS	
π/4DQPSK	LCH	1.285	1.1708	PASS	
π/4DQPSK	MCH	1.288	1.1732	PASS	Peak
π/4DQPSK	НСН	1.287	1.1687	PASS	detector
8DPSK	LCH	1.284	1.1727	PASS	
8DPSK	MCH	1.284	1.1729	PASS	(3)
8DPSK	нсн	1.283	1.1726	PASS	(0,)

Report No. : EED32K00112102 Page 14 of 66

Test Graph

Report No. : EED32K00112102 Page 17 of 66

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.044	PASS
GFSK	MCH	0.942	PASS
GFSK	НСН	0.962	PASS
π/4DQPSK	LCH	0.990	PASS
π/4DQPSK	MCH	1.118	PASS
π/4DQPSK	HCH	1.074	PASS
8DPSK	LCH	1.034	PASS
8DPSK	MCH	1.052	PASS
8DPSK	НСН	1.100	PASS

Report No. : EED32K00112102 Page 18 of 66

Test Graph

Report No. : EED32K00112102 Page 21 of 66

Appendix C): Dwell Time

Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle	Verdict
GFSK	DH1	LCH	0.369866	320	0.118	0.30	PASS
GFSK	DH1	MCH	0.36987	320	0.118	0.30	PASS
GFSK	DH1	НСН	0.369867	320	0.118	0.30	PASS
GFSK	DH3	LCH	1.62514	160	0.26	0.65	PASS
GFSK	DH3	MCH	1.625137	160	0.26	0.65	PASS
GFSK	DH3	НСН	1.62514	160	0.26	0.65	PASS
GFSK	DH5	LCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	MCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	НСН	2.8612	106.7	0.305	0.76	PASS

Report No. : EED32K00112102 Page 22 of 66

Test Graph

Report No. : EED32K00112102 Page 24 of 66

Report No. : EED32K00112102 Page 25 of 66

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Report No. : EED32K00112102 Page 26 of 66

Test Graph

Report No. : EED32K00112102 Page 27 of 66

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	5.435	PASS
GFSK	MCH	4.992	PASS
GFSK	НСН	4.721	PASS
π/4DQPSK	LCH	5.328	PASS
π/4DQPSK	MCH	4.866	PASS
π/4DQPSK	нсн	4.557	PASS
8DPSK	LCH	5.225	PASS
8DPSK	MCH	4.835	PASS
8DPSK	НСН	4.540	PASS

Report No. : EED32K00112102 Page 28 of 66

Test Graph

Page 30 of 66

Report No. : EED32K00112102 Page 31 of 66

Appendix F): Band-edge for RF Conducted Emissions Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict	
05014	1.011	0.400	4.907	Off	-61.221	-15.09	PASS	
GFSK	LCH	2402	4.716	On	-61.006	-15.28	PASS	
			4.379	Off	-60.106	-15.62	PASS	
GFSK	HCH	1 2480	4.379	On	-60.109	-15.62	PASS	
445.05014		0.400	4.275	Off	-59.915	-15.73	PASS	
π/4DQPSK	LCH	H 2402	1.248	On	-60.756	-18.75	PASS	
2	(6,			3.414	Off	-60.010	-16.59	PASS
π/4DQPSK	HCH	2480	3.101	On	-60.803	-16.9	PASS	
			4.308	Off	-59.585	-15.69	PASS	
8DPSK	8DPSK LCH	2402	4.145	On	-60.419	-15.86	PASS	
(6.)		6.	3.508	Off	-59.938	-16.49	PASS	
8DPSK	HCH	2480	3.097	On	-60.036	-16.9	PASS	

Report No. : EED32K00112102 Page 32 of 66

Test Graph

Report No. : EED32K00112102 Page 36 of 66

Appendix G): RF Conducted Spurious Emissions Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	4.991	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	4.565	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	4.342	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	4.195	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	3.846	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	3.427	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	4.216	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	3.666	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	3.503	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32K00112102 Page 37 of 66

Test Graph

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32K00112102 Page 44 of 66

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is MONOPOLE and no consideration of replacement. The best case gain of the antenna is 2.3dBi.

Report No. : EED32K00112102 Page 45 of 66

Test Procedure:	Test frequency range :150KHz	z-30MHz	(2)	<u> </u>				
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	 2) The EUT was connected to Stabilization Network) which power cables of all other to which was bonded to the growth for the unit being measure multiple power cables to a exceeded. 3) The tabletop EUT was place reference plane. And for floorizontal ground reference. 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was better the stability of th	ch provides a 50Ω/50 units of the EUT were pround reference plane and. A multiple socket of single LISN provided the dupon a non-metall por-standing arrangement of the vertical ground refered to the horizontal ground reference between the closest poretween the closest position.	uH + 5Ω linear imp connected to a sec e in the same way a cutlet strip was use the rating of the LIS ic table 0.8m above tent, the EUT was p eference plane. The rence plane. The ver- cound reference plara unit under test and in top of the ground pints of the LISN 1 a	edance. The cond LISN 2, is the LISN 1 d to connect N was not e the ground placed on the ertical ground he. The LISN bonded to and reference and the EUT.				
	All other units of the EUT a	and associated equipn	nent was at least 0.	8 m from the				
	5) In order to find the maximum of the interface cables mus conducted measurement.							
_imit:	(6,	(6,	(6,0)					
	Francisco de CALLEX	Limit (d	dΒμV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*	100				
	0.5-5	56	46	(6.5)				
	5-30	60	50					
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is appli	-		e range 0.15				
easurement Data		(58)						
initial pre-scan was	s performed on the live and neutral age measurement were performed			mission were				

Page 46 of 66

No.	Freq.		ding_Le dBu∀)	vel	Correct Factor	N	leasuren (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	39.20	36.08	25.11	9.74	48.94	45.82	34.85	64.96	54.96	-19.14	-20.11	Р	
2	0.4060	29.50	26.42	19.46	9.75	39.25	36.17	29.21	57.73	47.73	-21.56	-18.52	Р	
3	0.7060	28.83	26.43	20.22	9.75	38.58	36.18	29.97	56.00	46.00	-19.82	-16.03	Р	
4	2.4539	38.72	35.10	26.03	9.70	48.42	44.80	35.73	56.00	46.00	-11.20	-10.27	Р	
5	13.6900	36.93	33.76	24.91	9.95	46.88	43.71	34.86	60.00	50.00	-16.29	-15.14	Р	
6	19.5740	46.93	44.53	32.75	10.06	56.99	54.59	42.81	60.00	50.00	-5.41	-7.19	Р	

Report No. : EED32K00112102 Page 47 of 66

Neutral line:

		Read	ding_Le	vel	Correct	M	leasurem	nent	Lin	nit	Mai	rgin		
No.	Freq.	(dBuV)		Factor		(dBuV)		(dB	uV)	(0	iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	39.52	36.43	23.54	9.74	49.26	46.17	33.28	64.96	54.96	-18.79	-21.68	Р	
2	0.3700	31.13	28.74	23.57	9.76	40.89	38.50	33.33	58.50	48.50	-20.00	-15.17	Р	
3	0.7460	26.44	23.48	14.96	9.75	36.19	33.23	24.71	56.00	46.00	-22.77	-21.29	Р	
4	1.6220	27.13	24.85	13.70	9.72	36.85	34.57	23.42	56.00	46.00	-21.43	-22.58	Р	
5	2.3980	34.02	30.48	20.71	9.71	43.73	40.19	30.42	56.00	46.00	-15.81	-15.58	Р	
6	19.4460	40.18	37.41	25.86	10.05	50.23	47.46	35.91	60.00	50.00	-12.54	-14.09	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00112102 Page 48 of 66

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
			Peak	1MHz	3MHz	Peak	100
	(32)	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Belo	w 1GHz test proced	dure as below:				
	b. T v c. T d. F	The EUT was placed at a 3 meter semi-andetermine the position of the EUT was set 3 nowas mounted on the The antenna height is determine the maximolarizations of the after antenna was tuned the antenna was tuned able was turned from	echoic camber. The nof the highest rancters away from top of a variable-to varied from one turn value of the fintenna are set to the mission, the EUT and to heights from	he table wa adiation. the interfer neight ante meter to fo eld strength make the r was arrar of meter to	ence-receinna tower. Our meters h. Both hor measurement ouged to its	oving antenna, above the grorizontal and veent. worst case and and the rotatal	which which was bund ertica dertica dertica ble
	f. F fi fi	The test-receiver sys Bandwidth with Maxin Place a marker at the requency to show co pands. Save the spector lowest and highes	mum Hold Mode. e end of the restric ompliance. Also m ctrum analyzer plo	cted band one	closest to the	ne transmit s in the restric	
		ve 1GHz test proce					
	Abov g. E to r h. b		dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfound found the X ax	e form table meter and , the Highe ormed in X, xis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case	
Limit:	Abov g. E to r h. b	ve 1GHz test proced Different between about of fully Anechoic Character (Above 18GHz b). Test the EUT in the radiation measure fransmitting mode, a	dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfound found the X ax	e form table meter and , the Highe rmed in X, xis position uencies me	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case	
Limit:	Abov g. E to r h. b	ve 1GHz test proced Different between about of fully Anechoic Character (Above 18GHz b). Test the EUT in the radiation measure fransmitting mode, and Repeat above proced	dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfo and found the X as dures until all freq	e form table meter and , the Highe rmed in X, xis position uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	to 1.5 meter). positioning for t is worse case as complete.	
Limit:	Abov g. E to r h. b	ve 1GHz test proced Different between ab to fully Anechoic Chameter (Above 18GHz b. Test the EUT in the radiation measurement of the radiation mode, and Repeat above proced frequency	dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfo and found the X as dures until all freq Limit (dBµV	e form table meter and , the Highe ormed in X, kis position uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe	to 1.5 meter). positioning for t is worse case complete. mark	
Limit:	Abov g. E to r h. b	ve 1GHz test procedure of fully Anechoic Character (Above 18GHz of Test the EUT in the radiation measure fransmitting mode, and Repeat above procedure of the summer of the radiation measure fransmitting mode, and Repeat above procedure of the summer of t	dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfo and found the X as dures until all freq Limit (dBµV 40.6	e form table meter and , the Highe rmed in X, xis position uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	oositioning for t is worse case as complete.	
Limit:	Abov g. E to r h. b	ve 1GHz test proced Different between ab to fully Anechoic Chameter (Above 18GHz). Test the EUT in the radiation measurement of the radiation measurement of the radiation measurement of the radiation mode, and the radiation mode, and the radiation mode of the radiation mode of the radiation mode of the radiation mode. The radiation of the radiation mode of the radiation of the	dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfo and found the X as dures until all freq Limit (dBµV 40.6	e form table meter and the Highe meter and the Highe med in X, kis position mencies med	e 0.8 meter table is 1.5 st channel Y, Z axis ping which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	to 1.5 meter). cositioning for t is worse cases complete. mark eak Value eak Value	
Limit:	Abov g. E to r h. b	ve 1GHz test procedures the control of the control	dure as below: ove is the test site imber and change the distance is 1 e lowest channel rements are perfo and found the X as dures until all freq Limit (dBµV 40.6 43.9	e form table meter and the Highe meter and the Highe med in X, axis position the median (m @3m) of the median	e 0.8 meter table is 1.5 st channel Y, Z axis ping which i easured wared wared Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse cases complete. mark eak Value eak Value	

Page 49 of 66

Test plot as follows:

Worse case mode:	GFSK(1-DH5)		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK(1-DH5)		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Page 50 of 66

Worse case mode:	GFSK(1-DH5)	200	200	
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK(1-DH5)	
Frequency: 2480MHz	Test channel: Highest Polarization: Vertice	cal Remark: Peak

3.12 44.14 58.18 49.87

2483.500

32.71

Page 51 of 66

Worse case mode:	π/4DQPSK(2-DH5)	200		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

/ 200	7 200	/ 2.3/	/ 43/	
Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Page 52 of 66

Worse case mode:	π/4DQPSK(2-DH5)	200	200
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	π/4DQPSK(2-DH5)	(6)	(0)
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Page 53 of 66

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

		Read L Level Level	imit Over Line Limit Pol/Phase	Remark
MHz dB/m	dB dB	dBuV dBuV/m dB	uV/m dB	
1 2390.000 32.53			4.00 -34.79 Horizontal	

1 25.71	7 (%) (9.1	1 -66,793	1 40.71	
Worse case mode:	8DPSK(3-DH5)			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

	Freq			Preamp Factor					Pol/Phase	Remark
	MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2390.000	32.53	3.07	44.03	48.13	39.70	74.00	-34.30	Vertical	Peak
2 pp	2403.137	32.56	3.08	44.04	90.99	82.59	74.00	8.59	Vertical	Peak

Page 54 of 66

Worse case mode:	8DPSK(3-DH5)	200	200	
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	8DPSK(3-DH5)		(8)	
Frequency: 2 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Page 55 of 66

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32K00112102 Page 56 of 66

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	- (<u> (12)</u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32K00112102 Page 57 of 66

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(6)	
Test mode:	Transmitting	Horizontal

	Freq		Cable Loss			Limit Line		Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	51.843	14.30	0.13	4.79	19.22	40.00	-20.78	Horizontal	QP
2	99.528	12.43	0.58	5.15	18.16	43.50	-25.34	Horizontal	QP
3	226.894	12.12	1.24	5.41	18.77	46.00	-27.23	Horizontal	QP
4	411.824	15.45	1.36	5.63	22.44	46.00	-23.56	Horizontal	QP
5	545.183	17.72	1.54	5.57	24.83	46.00	-21.17	Horizontal	QP
6 рр	900.147	22.10	2.49	6.72	31.31	46.00	-14.69	Horizontal	QP

Page 58 of 66

	Freq		Cable Loss					Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			_
1	50.232	14.56	0.11	5.26	19.93	40.00	-20.07	Vertical	QP	
2	89.276	10.74	0.40	6.87	18.01	43.50	-25.49	Vertical	QP	
3	274.194	13.01	1.20	5.79	20.00	46.00	-26.00	Vertical	QP	
4	459.114	16.33	1.48	5.58	23.39	46.00	-22.61	Vertical	QP	
5	760.704	19.57	2.50	6.62	28.69	46.00	-17.31	Vertical	QP	
6 pp	890.728	21.96	2.48	6.19	30.63	46.00	-15.37	Vertical	OP	

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-D	H5)	Test chai	nnel:	Lowest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1159.096	30.13	1.79	44.44	48.67	36.15	74.00	-37.85	Pass	~°.H
1502.732	30.88	2.29	43.99	48.50	37.68	74.00	-36.32	Pass	(H)
4804.000	34.69	5.98	44.60	48.55	44.62	74.00	-29.38	Pass	H
6032.401	35.92	7.43	44.50	49.17	48.02	74.00	-25.98	Pass	Н
7206.000	36.42	6.97	44.77	48.38	47.00	74.00	-27.00	Pass	Н
9608.000	37.88	6.98	45.58	46.65	45.93	74.00	-28.07	Pass	Н
1270.334	30.39	1.97	44.29	49.32	37.39	74.00	-36.61	Pass	V
1553.293	30.97	2.35	43.94	48.44	37.82	74.00	-36.18	Pass	V
4804.000	34.69	5.98	44.60	48.09	44.16	74.00	-29.84	Pass	V
5821.207	35.77	7.26	44.52	48.90	47.41	74.00	-26.59	Pass	V
7206.000	36.42	6.97	44.77	48.40	47.02	74.00	-26.98	Pass	V
9608.000	37.88	6.98	45.58	46.65	45.93	74.00	-28.07	Pass	V

Worse case mode:		GFSK(1-DH5)		Test channel:		Middle	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1296.469	30.45	2.01	44.25	49.04	37.25	74.00	-36.75	Pass	ьН
1468.696	30.81	2.25	44.03	48.82	37.85	74.00	-36.15	Pass	H
4882.000	34.85	6.14	44.60	49.60	45.99	74.00	-28.01	Pass	≥ H
6032.401	35.92	7.43	44.50	49.52	48.37	74.00	-25.63	Pass	Н
7323.000	36.43	6.85	44.87	47.65	46.06	74.00	-27.94	Pass	Н
9764.000	38.05	7.12	45.55	48.21	47.83	74.00	-26.17	Pass	Н
1286.606	30.43	1.99	44.26	49.08	37.24	74.00	-36.76	Pass	V
1823.477	31.43	2.66	43.66	48.46	38.89	74.00	-35.11	Pass	V
4882.000	34.85	6.14	44.60	49.41	45.80	74.00	-28.20	Pass	V
5806.408	35.76	7.25	44.52	49.52	48.01	74.00	-25.99	Pass	V
7323.000	36.43	6.85	44.87	46.66	45.07	74.00	-28.93	Pass	V
9764.000	38.05	7.12	45.55	47.37	46.99	74.00	-27.01	Pass	V

_		-	
Page	ൈ	Ωf	66

Worse case	Worse case mode:		GFSK(1-DH5)		nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1333.284	30.53	2.06	44.20	48.19	36.58	74.00	-37.42	Pass	Н
1651.146	31.15	2.47	43.83	48.27	38.06	74.00	-35.94	Pass	/°;H
4960.000	35.02	6.29	44.60	47.33	44.04	74.00	-29.96	Pass	(AH)
6032.401	35.92	7.43	44.50	49.04	47.89	74.00	-26.11	Pass	Н
7440.000	36.45	6.73	44.97	46.84	45.05	74.00	-28.95	Pass	Н
9920.000	38.22	7.26	45.52	47.24	47.20	74.00	-26.80	Pass	Н
1147.354	30.10	1.77	44.46	49.37	36.78	74.00	-37.22	Pass	V
1521.981	30.91	2.32	43.97	49.09	38.35	74.00	-35.65	Pass	V
4960.000	35.02	6.29	44.60	48.13	44.84	74.00	-29.16	Pass	V
6203.700	36.01	7.39	44.52	49.53	48.41	74.00	-25.59	Pass	V
7440.000	36.45	6.73	44.97	47.89	46.10	74.00	-27.90	Pass	V
9920.000	38.22	7.26	45.52	47.41	47.37	74.00	-26.63	Pass	V

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1176.935	30.17	1.82	44.42	48.62	36.19	74.00	-37.81	Pass	Н
1823.477	31.43	2.66	43.66	48.72	39.15	74.00	-34.85	Pass	Н
4804.000	34.69	5.98	44.60	48.74	44.81	74.00	-29.19	Pass	Н
6017.064	35.91	7.44	44.50	49.17	48.02	74.00	-25.98	Pass	₩H
7206.000	36.42	6.97	44.77	48.07	46.69	74.00	-27.31	Pass	Н
9608.000	37.88	6.98	45.58	46.86	46.14	74.00	-27.86	Pass	Н
1293.173	30.44	2.00	44.25	49.09	37.28	74.00	-36.72	Pass	V
1851.542	31.48	2.69	43.63	48.74	39.28	74.00	-34.72	Pass	V
4804.000	34.69	5.98	44.60	48.31	44.38	74.00	-29.62	Pass	V
6032.401	35.92	7.43	44.50	48.93	47.78	74.00	-26.22	Pass	V
7206.000	36.42	6.97	44.77	48.73	47.35	74.00	-26.65	Pass	V
9608.000	37.88	6.98	45.58	46.31	45.59	74.00	-28.41	Pass	V

Page 61 of 66

Worse case	Worse case mode:		((2-DH5)	Test char	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1296.469	30.45	2.01	44.25	48.74	36.95	74.00	-37.05	Pass	Н
1764.123	31.34	2.60	43.72	47.87	38.09	74.00	-35.91	Pass	~ H
4882.000	34.85	6.14	44.60	48.84	45.23	74.00	-28.77	Pass	(H)
6032.401	35.92	7.43	44.50	48.91	47.76	74.00	-26.24	Pass	H
7323.000	36.43	6.85	44.87	47.94	46.35	74.00	-27.65	Pass	Н
9764.000	38.05	7.12	45.55	47.62	47.24	74.00	-26.76	Pass	Н
1280.072	30.41	1.98	44.27	48.88	37.00	74.00	-37.00	Pass	V
1521.981	30.91	2.32	43.97	48.67	37.93	74.00	-36.07	Pass	V
4882.000	34.85	6.14	44.60	47.98	44.37	74.00	-29.63	Pass	V
5617.407	35.61	7.05	44.54	50.36	48.48	74.00	-25.52	Pass	V
7323.000	36.43	6.85	44.87	47.81	46.22	74.00	-27.78	Pass	V
9764.000	38.05	7.12	45.55	47.55	47.17	74.00	-26.83	Pass	V

Worse case	Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1286.606	30.43	1.99	44.26	48.96	37.12	74.00	-36.88	Pass	Н
1502.732	30.88	2.29	43.99	49.18	38.36	74.00	-35.64	Pass	Н
4960.000	35.02	6.29	44.60	47.37	44.08	74.00	-29.92	Pass	Н
6412.427	36.12	7.33	44.54	49.44	48.35	74.00	-25.65	Pass	S H
7440.000	36.45	6.73	44.97	45.82	44.03	74.00	-29.97	Pass	Н
9920.000	38.22	7.26	45.52	46.94	46.90	74.00	-27.10	Pass	Н
1323.141	30.51	2.05	44.22	48.52	36.86	74.00	-37.14	Pass	V
1828.125	31.44	2.67	43.66	48.07	38.52	74.00	-35.48	Pass	V
4960.000	35.02	6.29	44.60	47.24	43.95	74.00	-30.05	Pass	V
6032.401	35.92	7.43	44.50	49.04	47.89	74.00	-26.11	Pass	V
7440.000	36.45	6.73	44.97	47.34	45.55	74.00	-28.45	Pass	V
9920.000	38.22	7.26	45.52	46.56	46.52	74.00	-27.48	Pass	V

Page 62 of 66

Worse case	Worse case mode:		DH5)	Test chan	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1270.334	30.39	1.97	44.29	49.31	37.38	74.00	-36.62	Pass	Н
1541.476	30.95	2.34	43.95	48.50	37.84	74.00	-36.16	Pass	/°;H
4804.000	34.69	5.98	44.60	48.29	44.36	74.00	-29.64	Pass	(AH)
5821.207	35.77	7.26	44.52	49.25	47.76	74.00	-26.24	Pass	H
7206.000	36.42	6.97	44.77	47.79	46.41	74.00	-27.59	Pass	Н
9608.000	37.88	6.98	45.58	46.74	46.02	74.00	-27.98	Pass	Н
1303.086	30.46	2.02	44.24	49.34	37.58	74.00	-36.42	Pass	V
1545.405	30.96	2.35	43.95	49.03	38.39	74.00	-35.61	Pass	V
4804.000	34.69	5.98	44.60	48.64	44.71	74.00	-29.29	Pass	V
6511.117	36.17	7.31	44.55	49.12	48.05	74.00	-25.95	Pass	V
7206.000	36.42	6.97	44.77	48.07	46.69	74.00	-27.31	Pass	V
9608.000	37.88	6.98	45.58	47.22	46.50	74.00	-27.50	Pass	V

Worse case	Worse case mode:		8DPSK(3-DH5)		Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	1.86	44.38	48.66	36.37	74.00	-37.63	Pass	Н
1502.732	30.88	2.29	43.99	48.87	38.05	74.00	-35.95	Pass	Н
4882.000	34.85	6.14	44.60	48.91	45.30	74.00	-28.70	Pass	Н
6017.064	35.91	7.44	44.50	49.65	48.50	74.00	-25.50	Pass	₩ H
7323.000	36.43	6.85	44.87	48.06	46.47	74.00	-27.53	Pass	Н
9764.000	38.05	7.12	45.55	46.86	46.48	74.00	-27.52	Pass	Н
1283.335	30.42	1.99	44.27	48.33	36.47	74.00	-37.53	Pass	V
1541.476	30.95	2.34	43.95	48.74	38.08	74.00	-35.92	Pass	V
4882.000	34.85	6.14	44.60	48.78	45.17	74.00	-28.83	Pass	V
6001.768	35.90	7.44	44.50	49.10	47.94	74.00	-26.06	Pass	V
7323.000	36.43	6.85	44.87	47.31	45.72	74.00	-28.28	Pass	V
9764.000	38.05	7.12	45.55	47.40	47.02	74.00	-26.98	Pass	V

_	~~		00	
Page	63	OT	66	

Worse case	Worse case mode:		8DPSK(3-DH5)		nel:	Highest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1179.935	30.18	1.83	44.41	48.69	36.29	74.00	-37.71	Pass	Н
1521.981	30.91	2.32	43.97	49.14	38.40	74.00	-35.60	Pass	~°#.
4960.000	35.02	6.29	44.60	48.35	45.06	74.00	-28.94	Pass	(AH)
5850.919	35.79	7.29	44.51	49.50	48.07	74.00	-25.93	Pass	Н
7440.000	36.45	6.73	44.97	47.49	45.70	74.00	-28.30	Pass	Н
9920.000	38.22	7.26	45.52	46.95	46.91	74.00	-27.09	Pass	Н
1289.885	30.43	2.00	44.26	49.45	37.62	74.00	-36.38	Pass	V
1541.476	30.95	2.34	43.95	49.52	38.86	74.00	-35.14	Pass	V
4960.000	35.02	6.29	44.60	47.60	44.31	74.00	-29.69	Pass	V
6032.401	35.92	7.43	44.50	49.13	47.98	74.00	-26.02	Pass	V
7440.000	36.45	6.73	44.97	47.26	45.47	74.00	-28.53	Pass	V
9920.000	38.22	7.26	45.52	46.35	46.31	74.00	-27.69	Pass	V

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32K00112102 Page 64 of 66

PHOTOGRAPHS OF TEST SETUP

Test model No.: 0480 0069

Radiated spurious emission Test Setup-1(9K-30M)

Radiated spurious emission Test Setup-2(30M-1G)

Report No. : EED32K00112102 Page 65 of 66

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Page 66 of 66

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32K00112101 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

