Conception d'une application au service de la santé publique

Oumouni Mestapha

Projet 2 parcours IML, Openclassrooms

Plan

Présentation de l'application et le dataset

Nettoyage de jeu de données

Analyse univariée et bivariée

Analyse multi-variée

Application *Nutri-vegan*

- Classement des produits vegan (végétarien et végétalien)
- Nutri-score du produit
- Liste des ingrédients
- Informations nutritionnelles (macro et micronutriments)
- Proposition des produits similairs

Données openFood

Les variables qualitatives

Les informations générales sur la fiche du produit : nom, date de création et de modification, les contributeurs les pays des produits et ses marques, ingredients, additives ...

Un ensemble de tags : catégorie du produit, localisation, origine...

Les variables quantitatives

Quantité en grammes d'un nutriment pour 100g du produit (macro et micro-nutriments)

Traitement de jeu de données

Variables qualitatives

countries_index=data['countries_fr'].value_counts().head(5).to_frame().index

data = data[data.countries_fr.isin(countries_index)]

- code
- creator
- product_name
- brands
- categories_fr
- main_category_fr
- countries fr
- ingredients_text
- additives_fr
- nutritions_grade_fr

Variables quantitatives

forte corrélation niveau d'importance redondance

nutrition_score_fr_100g
energy_100g
fat_100g
saturated_fat_100g
cholesterol_100g
carbohydrates_100g
sugars_100g
fiber_100g
proteins_100g
salt_100g
vitamin_c_100g
calcium_100g
iron_100g

	energy_100g	fat_100g	saturated_fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
count	2.510570e+05	234080.000000	221174.000000	233810.000000	236488.000000	195072.000000	250070.000000	246944.000000
mean	1.141427e+03	12.687791	5.102747	32.101850	16.005656	2.856944	7.080298	2.051322
sto	6.572863e+03	17.569114	7.982191	29.782784	22.394071	13.033953	8.447826	130.468261
min	0.000000e+00	0.000000	0.000000	0.000000	-17.860000	-6.700000	-800.000000	0.000000
25%	3.770000e+02	0.000000	0.000000	6.000000	1.300000	0.000000	0.600000	0.063500
50%	1.100000e+03	5.000000	1.790000	20.750000	5.700000	1.500000	4.710000	0.589280
75%	1.674000e+03	20.000000	7.140000	58.330000	24.000000	3.600000	10.000000	1.391920
max	3.251373e+06	714.290000	550.000000	2916.670000	3520.000000	5380.000000	430.000000	64312.800000

Valeurs aberrantes

valeur négative	valeur absolue ou zéro
valeur maximale	100 (sucre et graisse) 3700 (énergie)

```
for c in col:
    upper_lim = data[c].quantile(0.96)
    ind = data.index[data[c] > upper_lim]
    data = data.drop(ind , axis=0)
```

	energy_100g	fat_100g	saturated_fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100\
count	233427.000000	217189.000000	204888.000000	129840.000000	216903.00000	220265.000000	179809.000000	232509.000000	229498.000000
mean	1100.123153	12.432798	4.914900	0.014447	31.93572	16.200523	2.352412	6.224411	1.616159
std	801.477035	17.422403	7.578051	0.026055	29.02987	21.373038	2.911432	6.600903	6.802467
min	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000
25%	356.000000	0.000000	0.000000	0.000000	6.25000	1.500000	0.000000	0.500000	0.060000
50%	1046.000000	4.700000	1.790000	0.000000	20.00000	5.880000	1.400000	4.300000	0.561340
75%	1665.000000	20.000000	7.140000	0.018000	58.00000	24.240000	3.600000	9.250000	1.333500
max	3700.000000	100.000000	100.000000	0.107000	100.00000	100.000000	14.600000	28.000000	100.000000

Valeurs manquantes-KNN Imputation

KNN Imputer maintient la valeur, la variabilité de données avec plus de précision

```
# On divise les colonnes en deux ensembles
col = data.select_dtypes('float64').columns
col_macro = col.drop(['calcium_100g', 'energy_100g', 'cholesterol_100g', 'vitamin_c_100g', 'iron_100g'])
col_micro =['cholesterol_100g', 'vitamin_c_100g', 'calcium_100g', 'iron_100g']

from sklearn.impute import KNNImputer
from sklearn.model_selection import train_test_split
X_train, X_test = train_test_split(data[col_macro], test_size=0.20)
model = KNNImputer(n_neighbors=5, missing_values=np.nan)
model.fit(X_train)
df_imp1 = model.transform(data[col_macro])
df_imp1 = pd.DataFrame(df_imp1, columns=col_macro)
```

Imputation de nutri-grade

- Nan = string équivalent
- nutrition_grade_fr =nutrition_score_fr_100g

Aliments solides (points)	Boissons (points)	Nutriscore (lettre)	
-15 à -1	Eau	AB CD E	
0 à 2	≤1	ABODE	
3 à 10		ABCDE	
11 à 18	6 à 9	ABCD	
19 à 40	10 à 40	ABCD	

data.info()

memory usage: 47.9+ MB

<class 'pandas.core.frame.DataFrame'> Int64Index: 261852 entries, 0 to 320771 Data columns (total 23 columns): Column Non-Null Count Dtype code 261852 non-null object 261852 non-null object creator 261852 non-null object product name brands 261852 non-null object 261852 non-null object categories fr countries fr 261852 non-null object ingredients text 261852 non-null object additives fr 261852 non-null object nutrition grade fr 261852 non-null object main category fr 261852 non-null object energy 100g 261852 non-null float64 11 fat 100g 261852 non-null float64 12 saturated fat 100g 261852 non-null float64 13 cholesterol 100g 261852 non-null float64 14 carbohydrates 100g 261852 non-null float64 15 sugars 100g 261852 non-null float64 16 fiber 100g 261852 non-null float64 proteins 100g 261852 non-null float64 18 salt 100g 261852 non-null float64 19 vitamin c 100g 261852 non-null float64 calcium 100g 261852 non-null float64 iron 100g 261852 non-null float64 22 nutrition score fr 100g 261852 non-null float64 dtypes: float64(13), object(10)

Analyse exploratoire (v. qualitative)

Analyse exploratoire (v. quantitative)

distribution non-gaussienne

Matrice de corrélation

Corrélation significative entre les variables énergétiques et le nutri-score.

Absence d'une corrélation négative.

Analyse ANOVA


```
# reshape dataframe db suitable for ANOVA test
data_brand = pd.melt(db, id_vars=[], value_vars=top_brand)
data_brand.columns=['brands','nutrition_score_fr_100g']
anova_category = smf.ols('nutrition_score_fr_100g~brands', data=data_brand).fit()
sm.stats.anova_lm(anova_category)
```

	df	sum_sq	mean_sq	F	PR(>F)
brands	3.0	412.838594	137.612865	2.042609	0.105656
Residual	7120.0	479682.288036	67.371108	NaN	NaN

Produit Vegan et variables nutritionnelles

Produit Vegan et variables nutritionnelles

La répartition des protéines au sein des trois groupes est déséquilibré

Les étiquettes se contentent d'afficher l'information calorique des produits: les protéines, graisses et sucres.

Composantes PCA

97.99768929 99.54518255 100.

```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
# removing the mean and scaling to unit variance
scaler = StandardScaler()
X = data_food.select_dtypes('float64')
X scaled = scaler.fit transform(X)
#Instanciation de L'ACP
n = data food.select dtypes('float64').shape[1]
space_pca = PCA(n_components=n)
nutri_pca = space_pca.fit_transform(X_scaled)
#Explained variance in %
var_exp = space_pca.explained_variance_ratio *100
print(var exp.cumsum())
[ 26.13465762 40.77487013 54.35517329 63.54409163
                                                     71.41898725
```

78.48797618 84.65082737 89.01634972 92.66052365 95.71636878

Composantes PCA

Régression multiples


```
columns = data_food.select_dtypes('float64').columns
# variable cible
y = data_food['nutrition_score_fr_100g']
#(variables explicative
X = data_food[columns.drop(['nutrition_score_fr_100g'])]
```

```
from sklearn.preprocessing import StandardScaler

# removing the mean and scaling to unit variance
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
#spLit data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.25, random_state=0)
#fit model
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
#prediction
y_pred = model.predict(X_test)
```

Régression multiples

Régression multiple

Erreur quadratique approche 10% du Max de Nuti-score

Le modèle peut faire des prédictions raisonnablement bonnes

Amélioration du modèle

Qualité et la quantité des données

Données OpenFood assez éparses

Données contenant beaucoup d'erreur

La qualité de nettoyage affect les prédictions