Math 431 - Intro to Probability Comprehensive Review Notes

Prof. Claude

Spring 2024

Probability Spaces and Basic Properties

Definition 1. A probability space is a triple (Ω, \mathcal{F}, P) where:

- Ω is the sample space
- \mathcal{F} is a σ -algebra of subsets of Ω (the events)
- P is a probability measure on (Ω, \mathcal{F}) , satisfying: (i) $P(\Omega) = 1$, (ii) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for disjoint $A_i \in \mathcal{F}$.

Property 1 (Probability Axioms). For events $A, B \in \mathcal{F}$:

- 1. $P(A^c) = 1 P(A)$
- 2. If $B \subset A$ then $P(B) \leq P(A)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Discrete Probability Spaces

Definition 2. For a discrete sample space Ω , a **probability mass function** is a function $p: \Omega \to [0,1]$ satisfying $\sum_{x \in \Omega} p(x) = 1$. Then $P(A) = \sum_{x \in A} p(x)$.

Continuous Probability Spaces

Definition 3. A random variable X has a **probability density function** f if $f \ge 0$, $\int_{-\infty}^{\infty} f(x) dx = 1$, and $P(a \le X \le b) = \int_{a}^{b} f(x) dx$.

Conditional Probability and Independence

Definition 4. The conditional probability of A given B is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 when $P(B) > 0$

Theorem 1 (Multiplication Rule).

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_2 \cap A_1) \dots P(A_n \mid A_{n-1} \cap \dots \cap A_1)$$

Theorem 2 (Law of Total Probability). If $\{B_1, \ldots, B_n\}$ is a partition of Ω with $P(B_i) > 0$ for all i, then

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

Theorem 3 (Bayes' Theorem).

$$P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{n} P(A \mid B_j)P(B_j)}$$

Definition 5. Events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Important Discrete Distributions

- Bernoulli(p): P(X = 1) = p, P(X = 0) = 1 p
- Binomial(n,p): $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, \dots, n$
- Geometric(p): $P(X = k) = (1 p)^{k-1}p, k = 1, 2, ...$
- Negative Binomial(r, p): $P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, \ k = r, r + 1, \dots$
- Hypergeometric(N, K, n): $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$, $\max(0, n-N+K) \le k \le \min(n, K)$
- **Poisson**(λ): $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, ...$

Important Continuous Distributions

- Uniform(a,b): $f(x) = \frac{1}{b-a}$, $a \le x \le b$
- Exponential(λ): $f(x) = \lambda e^{-\lambda x}, x \ge 0$
- Normal(μ, σ^2): $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$

Joint Distributions

Definition 6. The **joint probability mass function** of discrete random variables X and Y is $p_{X,Y}(x,y) = P(X = x, Y = y)$.

Definition 7. The **joint probability density function** of continuous random variables X and Y is a function $f_{X,Y}$ satisfying

$$P((X,Y) \in A) = \iint_A f_{X,Y}(x,y) \, dy \, dx$$

Definition 8. The marginal pmf of X is $p_X(x) = \sum_y p_{X,Y}(x,y)$. The marginal pdf of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$.

Definition 9. The conditional pmf of Y given X = x is $p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$. The conditional pdf of Y given X = x is $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$.

Theorem 4. X and Y are **independent** if and only if $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ (discrete case) or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ (continuous case).

Functions of Random Variables

Definition 10. The moment generating function of X is $M_X(t) = \mathbf{E}(e^{tX})$.

Theorem 5. If X is discrete with pmf p_X and Y = g(X), then the pmf of Y is

$$p_Y(y) = \sum_{x:g(x)=y} p_X(x)$$

Theorem 6. If X is continuous with pdf f_X and Y = g(X), where g is monotone, then the pdf of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

Theorem 7. If X is continuous with cdf F_X , then $F_X(X) \sim Uniform(0,1)$.

Sums of Independent Random Variables

Theorem 8 (Convolution). If X and Y are independent, then:

- Discrete case: $p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x)$
- Continuous case: $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$

Property 2 (Memoryless Property). • If $X \sim Geometric(p)$, then $P(X > m + n \mid X > m) = P(X > n)$.

• If $X \sim Exponential(\lambda)$, then $P(X > s + t \mid X > s) = P(X > t)$.

Limit Theorems

Theorem 9 (Law of Large Numbers). If X_1, X_2, \ldots are iid with $\mathbf{E}(X_i) = \mu$, then $\bar{X}_n \to \mu$ as $n \to \infty$.

Theorem 10 (Central Limit Theorem). If X_1, X_2, \ldots are iid with $\mathbf{E}(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$, then

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0, 1) \quad as \ n \to \infty$$

Example 1 (Poisson Limit of Binomial). If $X_n \sim Bin(n, \lambda/n)$ and λ is fixed, then $X_n \stackrel{d}{\to} Poisson(\lambda)$ as $n \to \infty$.

Conclusion

This comprehensive review covers all the key topics from the course:

- Probability spaces and basic properties
- Conditional probability, Bayes' theorem, independence
- Discrete and continuous distributions
- Joint, marginal, and conditional distributions
- Functions of random variables, transformations
- Sums of independent random variables, convolution
- Memoryless property of Geometric and Exponential

• Limit theorems: Law of Large Numbers, Central Limit Theorem
With a solid grasp of these concepts, you are well-prepared for further
studies in probability theory and statistics. Keep practicing problems,
exploring connections between ideas, and appreciating the power and
beauty of probabilistic reasoning. All the best!