ECON 6190

Problem Set 5

Gabe Sekeres

October 17, 2024

1. Consider a random variable Z_n with probability distribution

$$Z_n = \begin{cases} -n & \text{with probability } \frac{1}{n} \\ 0 & \text{with probability } 1 - \frac{2}{n} \\ 2n & \text{with probability } \frac{1}{n} \end{cases}$$

(a) We have that, as $n \to \infty$, for some $\delta > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left\{ |Z_n - 0| > \delta \right\} = \lim_{n \to \infty} \frac{1}{n} = 0$$

and

$$\lim_{n \to \infty} \mathbb{P}\{|Z_n - 0| \le \delta\} = \lim_{n \to \infty} 1 - \frac{2}{n} + \frac{1}{n} = 1$$

so $Z_n \stackrel{p}{\to} 0$.

(b) We have that, for some n,

$$\mathbb{E}[Z_n] = \frac{1}{n} \cdot (-n) + \left(1 - \frac{2}{n}\right) \cdot 0 + \frac{1}{n} \cdot 2n = -1 + 2 = 1$$

Since this is not dependent on n, as $n \to \infty$, $\mathbb{E}[Z_n] = 1 \neq 0$.

(c) We have that

$$Var(Z_n) = \mathbb{E}[Z_n^2] - (\mathbb{E}[Z_n])^2 = \frac{1}{n} \cdot n^2 + \left(1 - \frac{2}{n}\right) \cdot 0 + \frac{1}{n} \cdot 4n^2 - 1 = 5n - 1$$

- 2. Let X_n and Y_n be sequences of random variables, and let X be a random variable.
 - (a) We have that, from the Triangle Inequality

$$\lim_{n \to \infty} \mathbb{P}\left\{ |Y_n - c| > \delta \right\} \le \lim_{n \to \infty} \mathbb{P}\left\{ |Y_n - X_n| + |X_n - c| > \delta \right\}$$

and since $X_n \stackrel{p}{\to} Y_n$ and $X_n \stackrel{p}{\to} c$, we have that

$$\lim_{n\to\infty}\mathbb{P}\left\{\left|Y_n-c\right|>\delta\right\}\leq\lim_{n\to\infty}\mathbb{P}\left\{\left|X_n-Y_n\right|>\delta\right\}+\lim_{n\to\infty}\mathbb{P}\left\{\left|X_n-c\right|>\delta\right\}=0$$

So $Y_n \stackrel{p}{\to} c$.

- (b) Since $a_n \to a$, the function $a_n x$ approaches the continuous function f(x) = ax as $n \to \infty$, so by Slutsky's Theorem, $a_n X_n \xrightarrow{p} aX$.
- (c) We have that $X_n \stackrel{p}{\to} 0$, so from Slutsky's Theorem, $\sin X_n \stackrel{p}{\to} \sin 0 = 0$. From the Continuous Mapping Theorem, we have that $\frac{\sin X_n}{X_n} \stackrel{p}{\to} \frac{\sin 0}{0} = \cos 0 = 1$.
- 3. We have that

$$\mathbb{E}[\mathbb{1}_{x \in A}] = \mathbb{P}\{x \in A\} \cdot 1 + \mathbb{P}\{x \not\in A\} \cdot 0 = \mathbb{P}\{x \in A\}$$

1

- 4. Let $\{X_1, \ldots, X_n\}$ be a random sample.
 - (a) We have that $f(x) = e^{-x+\theta} \mathbb{1}_{x>\theta}$. Note that

$$F(x) = \int_{\infty}^{x} e^{-x+\theta} \mathbb{1}_{x \ge \theta} dx = e^{\theta} \int_{\theta}^{x} e^{-x} dx = e^{\theta} \left[-e^{-x} \Big|_{\theta}^{x} = \left(1 - e^{\theta - x} \right) \mathbb{1}_{x \ge \theta} \right]$$

Thus,

$$\mathbb{P}\left\{\min_{i} X_{i} \leq x\right\} = 1 - \mathbb{P}\left\{\min_{i} X_{i} > x\right\} = 1 - \prod_{i=1}^{n} \mathbb{P}\{X_{i} > x\} = 1 - e^{n(\theta - x)} \mathbb{1}_{x \geq \theta}$$

So fixing $\delta > 0$,

$$\mathbb{P}\left\{\left|\min_{i}X_{i}-\theta\right|\leq\delta\right\}=\mathbb{P}\left\{\min_{i}X_{i}\geq\theta+\delta\right\}+\mathbb{P}\left\{\min_{i}X_{i}\leq\theta-\delta\right\}=\mathbb{P}\left\{\min_{i}X_{i}\geq\theta+\delta\right\}=1-e^{-n\delta}$$

and as $n \to \infty$, $1 - e^{-n\delta} \to 1$, so $\min_i X_i \stackrel{p}{\to} \theta$.

(b) We have that $X_i \sim U[0, \theta]$. This means that

$$\mathbb{P}\left\{X_i \le x\right\} = \int_{-\infty}^{\infty} \frac{1}{\theta} \mathbb{1}_{0 \le x \le \theta} dx = \int_{0}^{x} \frac{1}{\theta} dx = \frac{x}{\theta} \mathbb{1}_{x \in [0, \theta]}$$

Thus,

$$\mathbb{P}\left\{\max_{i} X_{i} \leq x\right\} = \mathbb{1}_{x \in [0,\theta]} \prod_{i=1}^{n} \frac{x}{\theta} = \left(\frac{x}{\theta}\right)^{n} \mathbb{1}_{x \in [0,\theta]}$$

And fixing $\delta > 0$,

$$\mathbb{P}\left\{\left|\max_{i} X_{i} - \theta\right| > \delta\right\} = \mathbb{P}\left\{\max_{i} X_{i} > \theta + \delta\right\} + \mathbb{P}\left\{\max_{i} X_{i} < \theta - \delta\right\} = \left(\frac{\theta - \delta}{\theta}\right)^{n}$$

So as $n \to \infty$, $\mathbb{P}\{|\max_i X_i - \theta| > \delta\} \to 0$, meaning that $\max_i X_i \stackrel{p}{\to} \theta$.

- 5. Which of the following statistics converge in probability by the weak law of large numbers and the continuous mapping theorem? For each, which moments are required to exist?
 - (a) $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$. Since $f(y)=y^{2}$ is a continuous function, by the continuous mapping theorem this converges in probability as long as the first moment exists.
 - (b) $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{3}$. Since $f(y)=y^{3}$ is a continuous function, by the continuous mapping theorem this converges in probability as long as the first moment exists.
 - (c) $\max_{i \leq n} X_i$. Since $f(Y) = \max_i Y_i$ is a continuous function, by the continuous mapping theorem this converges in probability as long as the first and second moments exist.
 - (d) $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2}$. If the first and second moments exist and are finite, this converges in probability, since variance is continuous as long as it is finite.
 - (e) $\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} X_{i}}$ (Assuming that $\mathbb{E} X > 0$). This does not converge in probability, as it is not a continuous function
 - (f) $\mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^n X_i > 0\right\}$. This does not converge in probability, as it is not a continuous function.
 - (g) $\frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}$. As long as $\bar{Y}_{n}\stackrel{p}{\to}Y$ for some Y, this converges in probability as long as the first moment exists.

- 6. A weighted sample mean takes the form $\bar{X}_n^{\star} = \frac{1}{n} \sum_{i=1}^n w_i X_i$ for some non-negative constants w_i satisfying $\frac{1}{n} \sum_{i=1}^n w_i = 1$. Assume X_i is iid.
 - (a) We have that

bias
$$(\bar{X}_n^{\star}) = \mathbb{E}[\bar{X}_n^{\star}] - \mu = \frac{1}{n} \sum_{i=1}^n w_i \, \mathbb{E}[X_i] - \mu = \mu \frac{1}{n} \sum_{i=1}^n w_i - \mu = \mu - \mu = 0$$

(b) We have that, defining $\sigma^2 = \text{Var}(X_i) \ \forall i$, since X_i are iid,

$$\operatorname{Var}(\bar{X}_n^{\star}) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(w_i X_i) = \frac{1}{n^2} \sum_{i=1}^n w_i^2 \operatorname{Var}(X_i)$$

- (c) We want to show that $\bar{X}_n^{\star} \stackrel{p}{\to} \mu = \mathbb{E}[\bar{X}_n^{\star}]$. From the slides, a sufficient condition is that $\mathrm{Var}(\bar{X}_n^{\star}) \to 0$. If $\frac{1}{n^2} \sum_{i=1}^n w_i^2 \to 0$, then since our sample is iid, we have that $\mathrm{Var}(\bar{X}_n^{\star}) \to 0$, and thus by Chebyshev's Inequality, $\bar{X}_n^{\star} \stackrel{p}{\to} \mu$.
- (d) We have that $\frac{1}{n} \max_i w_i \to 0$ as $n \to \infty$. This means that as $n \to \infty$,

$$\frac{1}{n^2} \sum_{i=1}^n w_i^2 \le \frac{1}{n^2} \left(n \cdot \max_i w_i^2 \right) = \left(\frac{1}{n} \max_i w_i \right) \max_i w_i \to 0 \cdot \max_i w_i = 0$$

so thus, $\frac{1}{n^2} \sum_{i=1}^n w_i^2 \to 0$.