Master's Thesis

Privacy-preserving Smart Metering Using DC-Nets

Gregor Garten

November 29, 2021

TU Dresden
Faculty of Computer Science
Institute of Systems Architecture
Chair of Privacy and Data Security

Betreuender Hochschullehrer: Dr. Stefan Köpsell

Dr. Elke Franz

Betreuender Mitarbeiter: Dipl.-Inf. Tim Lackorzynski

Lorem Ipsum

Selbständigkeitserklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die angegebenen Hilfsmittel benutzt habe.
Dresden, den ?today?
Gregor Garten

Abstract

_____write abstract ... write abstract

Contents

Lis	st of	Figures	XIII
Lis	st of	Tables	χv
1		oduction	1
	$1.1 \\ 1.2$	A Section	1 1
	1.3	Yet Another Section	1
	1.4	Test commands	1
2	Tecl	hnical Background	3
	2.1	Smart Grid	3
	2.2	Smart Meter	3
3	Des	ign	5
4	lmp	lementation	7
5	Eval	luation	9
6	Futu	ure Work	11
7	Con	clusion And Outlook	13

Todo list

vrite abstract	VI)
dopt title page	1
dopt disclaimer	1
write introduction	1
add content	1
Figure: Come up with a mindblowing figure	2
vrite state	
vrite design	5
vrite implementation	
vrite evaluation	
vrite future work	11
vrite conclusion	13

List of Figures

1.1	Short description	2
	A mindblowing figure	

List of Tables

1 1	Some interesting numbers														1
T.T	Dome interesting numbers	•													

1 Introduction

1.1 A Section

Referencing other chapters: $2\ 3\ 4\ 5\ 6\ 7$

Name	\mathbf{Y}	${f Z}$
Foo	20,614	23%
Bar	9,914	11%
Foo + Bar	$30,\!528$	34%
total	88,215	100 %

Table 1.1: Various very important looking numbers and sums.

More text referencing Table 1.1.

1.2 Another Section

Citing [bellard2005qfa] other documents [bellard2005qfa; boileau06] and Figure 1.1.

Something with umlauts and a year/month date: [becher04:'feurig'hacken'mit'firew].

And some online resources: [green04], [patent:4819234]

1.3 Yet Another Section

add content

adopt title

adopt disclaimer

write introduction

page

1.4 Test commands

DROPS L⁴LinuxNOVA QEMU memcpy A sentence about BASIC. And a correctly formatted one about ECC.

Figure 1.1: A long description of this squirrel figure. Image taken from http://commons.wikimedia.org/wiki/File:Sciurus-vulgaris_hernandeangelis_stockholm_2008-06-04.jpg

Figure 1.2: A mindblowing figure

2 Technical Background

This section introduces an overview of the basic concepts for this work. Therefore, the key components of the smart grid are explained, what structural changes and what challenges the smart grid will bring. In addition, this chapter discusses the current state of research.

2.1 Smart Grid

The original energy network was mainly considered as a transmission system to send electricity from the generators via a elongated network of cables and transformers to the consumers. Instead of a few electricity producers (e.g. nuclear power plants, coal-fired power plants), which were responsible for a large part of the electricity generation, there are now many smaller producers (e.g. wind turbines). However, renewable power generation is often dependent on external environmental factors. In order for the smart grid to be stable despite fluctuations in power generation, smart meters have been introduced. This enables the electricity provider to receive the electricity consumption of a household every 15 minutes. It offers the possibility to get more easily the current electricity demand from the consumers. Previously, the current electricity demand was simulated from load forecasting models. If the demand should increase spontaneously, peaker plants, mainly consisting of coal-fired power plants, would be turned on to quickly meet this demand. This is costly and environmentally unfriendly. Since then, structural changes have been made to optimize the energy grid and make it more intelligent by exchanging information in near-real-time. This allows the demand to be matched to the available supply. The fundamental component of the smart grid are the smart meters, which were already mentioned. They which will be discussed in more detail in the next section.(Quelle:Smart Grid Communications)(Privacy Survey2013)

2.2 Smart Meter

Smart meters are the key component in a smart grid. A smart meter is an electricity meter that has an interface to the Internet. This enables two-way communication between the control center and the meter. This is also called Advanced Metering Infrastructure (AMI). Two-way communication improves the quality of the power grid and makes it possible to offer services that would not be possible without a smart meter. It's now possible to detect power outages. As a result, the power grid operator can detect power failures on its own. Previously, the operator was dependent on customer calls to detect power outages. Depending on the setting, it can send electricity consumption to

the electricity provider at least every 15 minutes. hi

hi

hi

hi

write state

3 Design

...design ... write design

4 Implementation

... implementation ... write implementation mentation

5 Evaluation

... evaluation ... write evaluation tion

6 Future Work

... future work ... write future work

7 Conclusion And Outlook

... conclusion ... write conclusion