| STAT201B Lecture 5 Sufficiency

1 Sufficiency

在对 θ 进行 inference 的时候,我们希望仅将 data 中相关的 information 分离出来,即在不损失信息的情况下将 data 压缩成 T(X),这样的好处在于:

- 1. 提升 computational efficiency
- 2. 降低 storage requirements
- 3. 包含 irrelevant information 可能会增加 estimator 的 risk (见 Rao-Blackwell Theorem)
- 4. 提升数据的 scientific interpretability

1.1 Definition: Sufficient Statistic

& Logic ∨

关于 Sufficient Statistics 的更多论述, 见 STA3020 Lecture 4, 包括:

- Rank statistics 和 order statistics 的性质
- Sufficient statistics 的存在性
- Sufficient statistics 的一个充分条件:

$$T(x) = T(x') \implies rac{f(x| heta)}{f(x'| heta)} ext{ is invariant over } heta, orall x, x' \in \Omega$$

· One-to-one mapping 保证 sufficiency

令

- 1. X 的分布来自于 $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ (一个与 θ 相关的分布族),
- 2. Statistic T 的 range 为 \mathcal{T}

则 statistic T 被称为 sufficient,

若 对于任意 $t \in \mathcal{T}$, conditional distribution $P_{\theta}(X|T(X)=t)$ 与 θ independent

≡ Example ∨

令 $X_i \overset{i.i.d.}{\sim} Ber(\theta), i=1,\ldots,n$, 则 $T=\sum_{i=1}^n X_i$ 是 θ 的 sufficient statistic:

由于

$$egin{aligned} P_{ heta}(X|T(X)=t) &= rac{P_{ heta}(X_1,\ldots,X_n,T(X)=t)}{P_{ heta}(T(X)=t)} \ &= egin{cases} 0 & ext{if } t
eq \sum_{i=1}^n X_i \ rac{P_{ heta}(X_1=x_1,\ldots,X_n=x_n)}{P_{ heta}(\sum_{i=1}^n x_i=t)} &= rac{\prod_{i=1}^n heta^{x_i}(1- heta)^{x_i}}{\binom{n}{t} heta^t(1- heta)^t} &= rac{1}{\binom{n}{t}} heta^t(1- heta)^t}{\binom{n}{t} heta^t(1- heta)^t} &= rac{1}{\binom{n}{t}} & ext{if } t = \sum_{i=1}^n X_i \end{cases} \end{aligned}$$

与 θ independent, $\forall t \in \mathcal{T}$, T 为 θ 的 sufficient statistic

1.2 Theorem: Neyman Factorization Theorem

使用定义求解 sufficient statistics 较为繁琐, 可以使用 Neyman Factorization Theorem 快速求解

今 Proof (仅考虑 discrete case) ∨

Proof. (of Theorem.1.10: Neyman-Fisher Factorization Theorem) We prove the FactorizationTheorem for discrete random variables as an illustration, the general proof follow the same line.

• Suppose T is sufficient. We want to prove the right hand side of (1.2). Let t = T(x). The joint pmf. of X is

$$X = X$$
 时间 your print of X is $X = X$ 时一定有了= t $f(x|\theta) = \mathbb{P}_{\theta}(X = x) = \mathbb{P}_{\theta}(\{X = x\} \bigcap \{T = t\})$ $= \mathbb{P}_{\theta}(X = x|T = t)\mathbb{P}_{\theta}(T = t) =: h(x)g(t, \theta).$

• Suppose the right hand side of (1.2) holds. We want to prove T is sufficient. Apparently, when $T(x) \neq t$, we have $\mathbb{P}_{\theta}(X = x | T = t) = 0$ by definition, which is invariant over θ . Meanwhile, when T(x) = t. Let $S = \{x' \in \mathcal{X}_n : T(x') = t\}$. Then

$$\mathbb{P}(X=x|T=t) = \frac{\mathbb{P}_{\theta}(\{X=x\} \bigcap \{T=t\})}{\mathbb{P}_{\theta}(T=t)} = \frac{\mathbb{P}_{\theta}(\{X=x\})}{\mathbb{P}_{\theta}(T=t)}$$
$$= \frac{\mathbb{P}_{\theta}(\{X=x\})}{\left\{\sum_{x' \in S} \mathbb{P}_{\theta}(X=x')\right\}} = \frac{g(t,\theta)h(x)}{\left\{\sum_{x' \in S} g(t,\theta)h(x')\right\}} = \frac{h(x)}{\left\{\sum_{x' \in S} h(x')\right\}}$$

which is invariant over θ , and conclude that T is sufficient by definition.

≡ Example ∨

令 $Y_i \overset{i.i.d.}{\sim} Uniform(0,\theta), i=1,\ldots,n$ 证明: $T=Y_{(n)}$ 为 θ 的 sufficient statistic

$$egin{aligned} P_{ heta}(Y) &= \prod_{i=1}^n igg(rac{1}{ heta}igg) \mathbf{1}(0 < Y_i < heta) \ &= igg(rac{1}{ heta}igg)^n igg[\prod_{i=1}^n \mathbf{1}(0 < Y_i < heta)igg] \ &= igg(rac{1}{ heta}igg)^n \cdot \mathbf{1}(Y_{(1)} > 0) \cdot \mathbf{1}(Y_{(n)} < heta) \ &= \mathbf{1}(Y_{(1)} > 0) \cdot igg[igg(rac{1}{ heta}igg)^n \cdot \mathbf{1}(Y_{(n)} < heta)igg] \end{aligned}$$

其中 $\mathbf{1}(Y_{(1)}>0)$ 可以被视作 h(y), $\left(\frac{1}{\theta}\right)^n \cdot \mathbf{1}(Y_{(n)}<\theta)$ 可以被视作 $g(T(y),\theta)$

∃ Example ∨

B) 1:
$$X_1, \dots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$$
, $\neq \lambda \bowtie sufficient statistic$

$$f(x|\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \cdot 1_{\{X_i \in N\}} \right)$$

$$= \left(\prod_{i=1}^{n} \frac{1}{X_i!} \cdot 1_{\{X_i \in N\}} \right) \cdot \left(e^{-n\lambda} \cdot \lambda^{n\overline{X}} \right)$$

$$h(x) \qquad g(t,\lambda)$$

$$t = \overline{X}, i.e. T(X) = \overline{X}$$

⊞ Example ∨

$$B$$
 2: X_1, \dots, X_n in Bernoulli (P) , 其中 $P \in (0,1)$, 求 λ fi sufficient statistic $f(x|P) = \prod_{i=1}^n \left(p^{x_i} (1-P)^{1-x_i} \cdot 1_{\{X_i \in \{0,1\}\}} \right)$

$$= \left(\frac{P}{1-P} \right)^{n\bar{X}} \cdot (1-P)^n \cdot \left[\prod_{i=1}^n 1_{\{X_i \in \{0,1\}\}\}} \right]$$

$$f(x)$$

$$= \left(\frac{P}{1-P} \right)^{n\bar{X}} \cdot (1-P)^n \cdot \left[\prod_{i=1}^n 1_{\{X_i \in \{0,1\}\}\}} \right]$$

$$f(x)$$

$$f$$

≡ Example ∨

$$\int (x|\theta) = \prod_{i=1}^{n} \left\{ (2\pi\sigma^{2})^{-\frac{1}{2}} \exp\left(-\frac{(X_{i}-M)^{2}}{2\sigma^{2}}\right) \right\} \\
= \left[\frac{\exp\left(-\frac{x^{2}}{2\sigma^{2}}\right)}{(2\pi\sigma^{2})^{\frac{1}{2}}} \right] \cdot \exp\left\{-\frac{n\mu^{2}-2n\mu\overline{x}}{2\sigma^{2}}\right\} \\
+ = \overline{x}, i.e. \quad T(x) = \overline{x}$$

$$\exists \mu \in \mathbb{A}^{p}, \sigma^{2} + \overline{x}_{p}, \theta = \sigma^{2}$$

$$f(x|\theta) = \prod_{i=1}^{n} \left\{ (2\pi\sigma^{2})^{-\frac{1}{2}} \exp\left(-\frac{(X_{i}-M)^{2}}{2\sigma^{2}}\right) \right\} \\
= \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} \cdot \exp\left\{-\frac{n\cdot(\frac{x_{i}-M}{2})^{2}}{2\sigma^{2}}\right\} \\
= \frac{1}{n\cdot \overline{x}_{i}^{2}}(x_{i}-\mu)^{2}, i.e. \quad T(x) = \frac{1}{n\cdot \overline{x}_{i}^{2}}(x_{i}-\mu)^{2}$$

$$\exists \mu, \sigma^{2} + \overline{x}_{p}, \theta = (\mu, \sigma^{2})$$

$$f(x|\theta) = \prod_{i=1}^{n} \left\{ (2\pi\sigma^{2})^{-\frac{1}{2}} \exp\left(-\frac{(X_{i}-M)^{2}}{2\sigma^{2}}\right) \right\} \\
= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^{2}}\left[\frac{x_{i}}{x_{i}}(x_{i}-\overline{x})^{2} + n(\overline{x}-\mu)^{2}\right] \right\} \\
= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^{2}}\left[(n-1)\cdot S^{2} + n(\overline{x}-\mu)^{2}\right] \right\} (S^{2} = \frac{\pi}{n}(x_{i}-\overline{x})^{2})$$

$$T(x) = (S^{2}, \overline{x})$$

1.3 Theorem: Rao-Blackwell Theorem

关于 loss, risk, admissibility, Rao-Blackwell Theorem 的更多描述, 见 STA3020 Lecture 5, 包括:

- Estimand, estimator, estimate 的区别
- Bias 和 unbiasedness 的定义
- Loss function 和 risk function 的定义
- Admissibility 的定义:
 - 一个 estimator δ 被称为 **inadmissible**, 若存在另一个 estimator δ' dominates δ , 即:

$$\exists \delta' \quad s.\ t. \quad egin{cases} R(heta,\delta') \leq R(heta,\delta) & ext{for all } heta \in \Theta \ R(heta,\delta') < R(heta,\delta) & ext{for some } heta \in \Theta \end{cases}$$

- 一个 estimator δ 被称为 admissible, 若上述 estimator 不存在
- Strictly convex loss function 下 admissible estimator 的

令:

- X 为分布为 $P_{\theta} \in \mathcal{P} = \{P_{\theta}, \theta \in \mathbb{R}\}$ 的随机变量
- $\delta(X)$ 为 θ 的 (任意) 一个 estimator

若:

- T(X) 为 θ 的一个 sufficient statistic
- Loss function $\mathcal{L}(\theta, \delta(X))$ 为关于 $\delta(X)$ 的 strictly convex function (如 L_2 loss)
- $\delta(X)$ 有 finite expectation 与 risk,即 $R(\theta, \delta(X)) = \mathbb{E}[\mathcal{L}(\theta, \delta(X))] < \infty$

则:

- 若定义 $\eta(t) = E_{\theta}[\delta(X)|T=t], \forall t$ (即 $\delta(X)$ 在 T 下的条件期望,是一个关于 T 的函数)
- 则 estimator $\eta(T) = E_{\theta}[\delta(X)|T(X)]$ 满足:

$$R(\theta, \eta) < R(\theta, \delta)$$

除非 $\delta(X) = \eta(T)$ with probability 1

⚠ Remark ∨

- 1. 若 strictly convex 被替换为 convex, 则 < 被替换为 ≤, 但是若去除 convexity assumption, 则定理不成立
- 2. 此处 T 被要求为 sufficient statistic, 这主要是为了确保 $\eta(T)$ independent with θ (因此可以被视作一个 estimator)
- 3. Rao-Blackwell theorem 的实际意义在于: 我们<mark>可以通过 conditioning on sufficient statistics 来优化现有的 estimator</mark>

♦ Proof ∨

由 Jensen's inequality, 有

$$\mathcal{L}(\theta, \eta(t)) = \mathcal{L}(\theta, \mathbb{E}[\delta(X)|T(X) = t])$$

$$\leq \mathbb{E}[\mathcal{L}(\theta, \delta|T(X) = t)]$$

当且仅当 $\theta = \eta(t)$ with probability 1 时取等;

对两侧取期望,有:

$$R(\theta, \eta) = \mathbb{E}[\mathcal{L}(\theta, \eta)] \leq \mathbb{E}[\mathbb{E}[\mathcal{L}(\theta, \delta(X)|T)]] = R(\theta, \delta)$$

iii Example: 对 MSE 的优化 ∨

考虑 estimator δ 和 L2 loss $\mathcal{L}(\theta, \delta) = (\theta - \delta)^2$, 则经过 Rao-Blackwell 优化过的 estimator $\eta = \mathbb{E}_{\theta}[\delta|T]$ 满足:

$$R(\theta, \eta) = \mathbb{E}_{\theta}[\mathcal{L}(\theta, \eta)]$$
 $= \mathbb{E}_{\theta}[(\theta - \mathbb{E}_{\theta}[\delta|T])^{2}]$
 $= \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}[\theta - \delta|T])^{2}]$ (conditional on θ , 可以将 θ 视作常数放入期望)
 $\leq \mathbb{E}_{\theta}[\mathbb{E}_{\theta}[(\theta - \delta)^{2}|T]]$ (Jensen's inequality)
 $= \mathbb{E}_{\theta}[(\theta - \delta)^{2}]$
 $= R(\theta, \delta)$

1.4 Jensen's Inequality

令:

- 1. $(\Omega, \mathcal{F}, \mathbb{P})$ 为一个 probability space
- 2. $X: \Omega \to R$ 为一个 integrable random variable (即 $\mathbb{E}[|X|] < \infty$)

若:

- $1. \varphi : \mathbb{R} \to \mathbb{R}$ 为 convex function
- $2. \ \varphi : \mathbb{R} \to \mathbb{R}$ 为 integrable

则:

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$$

若 φ 为 strictly convex, 则当且仅当 X is almost surely constant 时取等

i≣ Example ∨

 $(\mathbb{E}[X])^2 \leq \mathbb{E}[X^2]$