Problem 1 [50 pts]. Modified the programs provided with Lab 8 to calculate moments of a random-number distribution, $\langle r^k \rangle = \frac{1}{N} \sum_{i=1}^{N} r_i^k$, where k=1 (mean value), 2, and 3, for N=100, 1,000,

10,000 and 100,000 random real numbers over the interval [0,1]. Calculate the moments using the two random number generators in randomSimple.hs and randomSystem.hs. Compare your results with $\frac{1}{k+1}$. In addition, calculate $\sqrt{N}\left|\left\langle r^k\right\rangle - \frac{1}{k+1}\right|$ for each value of N and both random

number generators. This quantities should be of order of 1 (or in the range of 0.1-10) for uncorrelated random numbers. Comment on your results and the quality of both generators. Include a copy of the piece of code with your answers.

Problem 2 [50 pts]. Write a program to determine π . Use that for a circular pond, centered at the origin and enclosed in a 2m×2m square, the area is $A_{pond} = \pi$ (r=1m). Throw N stones in random

directions one after another and count how many will fall in the pond $(N_{\rm pond})$. Assuming that we throw the stones uniformly and randomly, $(N_{\rm pond}/N)$ will be proportional to $(A_{\rm pond}/A_{\rm sq})$ and hence, $A_{\rm pond}=\pi=(N_{\rm pond}/N)A_{\rm sq}$, where $A_{\rm sq}=4{\rm m}^2$. Each of the stones will land within the square with random coordinates, x_i and y_i , where $-1{\rm m} \le x_i, y_i \le 1{\rm m}$. Generate the random coordinates, x_i and y_i , using the built-in [0,1] random-number generator used in randomSystem.hs with a change in the interval size. For $N=100,\ 10,000,\ {\rm and}\ 100,000,\ {\rm report}$ the number obtained for π . How good is the result $(\pi=3.14159265...)$? Include a copy of the piece of code with your answers.

