Camera models

- A camera model describes a projection from P³ to P².
- The most basic camera model is the pinhole camera where a 3D world point X is projected onto a 2D image point x in the image plane through a camera center C.
- In the physical camera, a mirror image is formed behind the camera center. However, often a virtual image plane is depicted in front of the camera center.
- The points X, C and (the 3D point) x are collinear, i.e. lie on the same line in space.

Central projection

If the camera center is at the origin and the image plane is the plane Z = f the world coordinate $(X,Y,Z)^{\top}$ is mapped to the point $(fX/Z, fY/Z, f)^{\top}$ in space or (fX/Z, fY/Z) in the image plane, i.e.

$$(X,Y,Z)^{\top} \mapsto (fX/Z, fY/Z)^{\top}$$

Synonyms

- The camera center is also called projection center, perspective center, optical center, or focus.
- The image plane is also called focal plane.
- The distance between the camera center and the image plane is called focal distance, principal distance, camera constant, or filmfocus-distance.
- The ray through the camera center orthogonal to the image plane is called principal axis, principal ray, camera axis or central ray.
- The intersection between the principal ray and the image plane is called *principal point* or *foot point*.
 - The plane through the camera center parallel with the image plane is called the principal plane.

Central projection in homogenous coordinat

The corresponding expression in homogenous coordinates may be written as

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX \\ fY \\ Z \end{bmatrix} = \begin{bmatrix} f & 0 \\ f & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}.$$

$$\mathbf{x} \qquad \qquad \mathbf{P} \qquad \mathbf{X}$$

- The matrix P is called the camera matrix and maps the world point X onto the image point x.
- In more compact form P may be written as

$$P = \mathsf{diag}(f, f, 1)[\mathbf{I} \mid \mathbf{0}],$$

where diag(f, f, 1) is a diagonal matrix and I is the identity matrix.

The principal point

 If the principal point is not at the origin of the image coordinate system, the mapping becomes

$$(X,Y,Z)^{\top} \mapsto (fX/Z + p_x, fY/Z + p_y)^{\top},$$

where $(p_x, p_y)^{\top}$ are the image coordinates for the principal point.

In homogenous coordinates

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{bmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

The camera position and orientation

- Usually the camera coordinate system does not coincide with the world coordinate system. The two coordinate systems are related via a rotation and a translation.
- If the point $\tilde{\mathbf{X}}$ denotes an cartesian 3D point in world coordinates and $\tilde{\mathbf{X}}_{\text{Cam}}$ denotes the same point in camera coordinates, then their relation is given by

$$\tilde{\mathbf{X}}_{\text{cam}} = \mathtt{R}(\tilde{\mathbf{X}} - \tilde{\mathbf{C}}),$$

where $\tilde{\mathbf{C}}$ is the camera center in world coordinates and R is a 3×3 rotation matrix describing the orientation of the camera in space.

In homogenous coordinates

$$\mathbf{X}_{\mathsf{Cam}} = \left[\begin{array}{cc} \mathtt{R} & -\mathtt{R}\tilde{\mathbf{C}} \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} X \\ Y \\ Z \\ 1 \end{array} \right] = \left[\begin{array}{cc} \mathtt{R} & -\mathtt{R}\tilde{\mathbf{C}} \\ 0 & 1 \end{array} \right] \mathbf{X},$$

or

$$\mathbf{x} = \mathtt{KR}[\mathtt{I} \mid -\tilde{\mathbf{C}}]\mathbf{X}.$$

The camera calibration matrix

If we write

$$\mathtt{K} = \left[egin{array}{ccc} f & p_x \ f & p_y \ & 1 \end{array}
ight]$$

the projection may be written as

$$\mathbf{x} = K[I \mid \mathbf{0}] \mathbf{X}_{cam}$$
.

■ The matrix K is called the camera calibration matrix. The notation X_{Cam} emphasizes that the world coordinates are with respect to the camera, i.e. the camera center is at the origin, the X and Y axes coincide and the principal axis coincides with the Z axis.

Internal and external parameters

The projection equation

$$\mathbf{x} = \mathtt{KR}[\mathtt{I} \mid -\tilde{\mathbf{C}}]\mathbf{X}$$

that describes the general projection for a pinhole camera has 9 degrees of freedom: 3 in K (the elements f, p_x, p_y), 3 in R (rotation angles) and 3 for $\tilde{\mathbf{C}}$.

- The elements of K describes properties internal to the camera while the parameters of R and C describe the relation between the camera and the world.
- The parameters are therefore called one of

K	$R, \hat{\mathbf{C}}$
internal parameters	external parameters
internal orientation	external orientation
intrinsic parameters	extrinsic parameters
sensor model	platform model

Sometimes it is practical not to write the camera center explicitly but instead describe the world-to-camera transformation as $\tilde{X}_{\text{Cam}} = R\tilde{X} + t$ with camera matrix

$$P = K[R \mid \mathbf{t}],$$

where
$$\mathbf{t} = -R\tilde{\mathbf{C}}$$
.

Aspect ratio

- If we have different scale in the x and y directions, i.e. the pixels are not square, we have to include that deformation into the equation.
- **.** Let m_x and m_y be the number of pixels per unit in the x and y direction of the image. Then the camera calibration matrix becomes

$$\begin{split} \mathbf{K} &= \left[\begin{array}{ccc} m_x & & \\ & m_y & \\ & & 1 \end{array} \right] \left[\begin{array}{ccc} f & & p_x \\ & f & p_y \\ & & 1 \end{array} \right] \\ &= \left[\begin{array}{ccc} m_x f & & m_x p_x \\ & m_y f & m_y p_y \\ & & 1 \end{array} \right] = \left[\begin{array}{ccc} \alpha_x & & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right], \end{split}$$

where $\alpha_x = fm_x$ and $\alpha_y = fm_y$ is the focal length in pixels in the x and y directions and $\tilde{\mathbf{x}}_0 = (x_0, y_0)^\top = (m_x p_x, m_y p_y)^\top$ is the principal point in pixels.

A camera with unknown aspect ratio has 10 degrees of freedom.

The general projective camera

 A general projective camera P maps world points X onto image points x according to

$$\mathbf{x} = P\mathbf{X}$$
.

where the camera matrix P is a 3×4 homogenous matrix of rank 3.

A general projective camera may be blocked as

$$P = [M \mid \mathbf{p}_4],$$

where M is a 3×3 matrix. We will see that P is a finite camera iff M is non-singular

Skew

For an even more general camera model we can add a skew parameter s to describe any non-orthogonality between the image axis. Then the camera matrix becomes

$$\mathbf{K} = \left[\begin{array}{ccc} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right].$$

A camera matrix

$$\mathtt{P} = \mathtt{KR}[\mathtt{I} \mid -\tilde{\mathbf{C}}] = [\mathtt{KR} \mid -\mathtt{KR}\tilde{\mathbf{C}}]$$

where the camera calibration matrix K is in the form above is called a *finite* projective camera.

- ullet A finite projective camera has 11 degrees of freedom, the same as a 3×4 homogenous matrix.
- **P** For a finite projective camera P the left 3×3 block KR is always non-singular.
- If we remove this restriction we get a *general projective camera* described by a 3×4 matrix of rank 3.

The camera center

- The camera matrix P has a 1-dimensional null-space. Let the vector \mathbf{C} be a basis for the null-space, i.e. $\mathbf{PC} = \mathbf{0}$. We will see that \mathbf{C} represents the camera center in homogenous coordinates.
- Study the line through C and an arbitrary point A in space. Points on this line may be described by

$$\mathbf{X}(\lambda) = \lambda \mathbf{A} + (1 - \lambda)\mathbf{C}, -\infty < \lambda < \infty.$$

• Under the mapping x = PX points on the line are mapped to

$$\mathbf{x} = P\mathbf{X}(\lambda) = \lambda P\mathbf{A} + (1 - \lambda)\underbrace{P\mathbf{C}}_{=0} = \lambda P\mathbf{A}, \ -\infty < \lambda < \infty.$$

- This means that all points on the line are mapped to the same point PA. Thus, the line has to be a ray through the camera center. Since A was arbitrary, C must be a homogenous representation of the camera center.
- For finite cameras this is given from the fact that $\mathbf{C} = (\tilde{\mathbf{C}}^{\top}, 1)^{\top}$ is a null-vector to $\mathbf{P} = \mathrm{KR}[\mathbf{I} \mid -\tilde{\mathbf{C}}].$
- Another line of reasoning concludes that the projection $PC = (0,0,0)^{\top}$ is undefined and the camera center is the only point with an undefined projection.

The camera column vectors

- ▶ Let \mathbf{p}_i , i = 1, ..., 4 be the columns of P. Then \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 are the mappings of the axis directions in the world coordinate system.
- **9** E.g. the X axis $\mathbf{D} = (1,0,0,0)^{\top}$ is mapped to

$$\mathtt{P}\mathbf{D} = \left[egin{array}{ccc} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \mathbf{p}_4 \end{array}
ight] \left[egin{array}{c} 1 \ 0 \ 0 \ 0 \end{array}
ight] = \mathbf{p}_1.$$

• The column vector \mathbf{p}_4 is the mapping of the world origin $(0,0,0,1)^{\mathsf{T}}$.

ne principal point and the principal axis

- The principal axis is the line through the camera center C orthogonal to the principal plane P³.
- The axis intersects the image plane in the principal point.
- **●** The normal of the principal plane $\mathbf{P}^3 = (p_{31}, p_{32}, p_{33}, p_{34})^{\top}$ has direction $\hat{\mathbf{P}}^3 = (p_{31}, p_{32}, p_{33}, 0)^{\top}$.
- The projection of this point gives the principal point $P\hat{P}^3$.
- If $P = [M \mid p_4]$ the principal point is calculated as

$$\mathbf{x}_0 = \mathbf{M}\mathbf{m}^3,$$

where $\mathbf{m}^{3\top}$ is the third row of M.

The camera row vectors

- Let $\mathbf{P}^{i\top}$, $i=1,\ldots,3$ be the rows of P.
- The principal plane of the camera is the plane through the camera center parallel with the image plane. It consists of all points \mathbf{X} that are mapped to the line at infinity in the image plane, i.e. $P\mathbf{X} = (x, y, 0)^{\top}$.
- A point is on the principal plane iff $\mathbf{P}^{3\top}\mathbf{X} = 0$. Thus the vector \mathbf{P}^3 represents the principal plane. Especially \mathbf{C} is in the principal plane since $\mathbf{PC} = \mathbf{0}$.
- All points \mathbf{X} on the plane $\mathbf{P^2}$ satisfy $\mathbf{P^{2\top}X} = 0$ and are therefore mapped to $\mathbf{PX} = (x,0,w)^{\top}$ on the image x axis. Since $\mathbf{PC} = 0$ the plane $\mathbf{P^2}$ the plane may be defined by the camera center and the image x axis.
- Similarly the plane \mathbf{P}^1 may be defined by the camera center and the image y axis.
- The vectors P¹ and P² depend on the internal coordinate system of the camera. P³ does not.

The direction of the principal axis

- In theory all points \mathbf{X} outside the principal plane are projected to a finite point in the image plane according to $\mathbf{x} = P\mathbf{X}$. In reality only points *in front of* the camera.
- Let $P = [M \mid \mathbf{p}_4]$. We know that \mathbf{m}_3 points in the direction of the principal axis. However, the sign of P is undefined so the question is if \mathbf{m}^3 or $-\mathbf{m}^3$ points in the positive direction.
- Study the projection

$$\mathbf{x} = P_{\mathsf{cam}} \mathbf{X}_{\mathsf{cam}} = K[I \mid \mathbf{0}] \mathbf{X}_{\mathsf{cam}},$$

where \mathbf{X}_{Cam} is a 3D point in camera coordinates. Note that the vector $\mathbf{v} = \det(\mathbf{M})\mathbf{m}^3 = (0,0,1)^{\top}$ points *forward* in the direction of the principal axis, independently of the scaling of \mathbf{P}_{Cam} since

$$P_{cam} \rightarrow kP_{cam} \Rightarrow \mathbf{v} \rightarrow k^4\mathbf{v}$$

with unchanged sign.

In world coordinates the camera matrix is $P = kK[R \mid -Rp_4]$, where M = kKR. Since det(R) = +1 the direction of $\mathbf{v} = det(M)\mathbf{m}^3$ is unchanged.

ward and backward projection of points

- A world point X is forward projected (mapped) onto an image point according to x = PX.
- Points at infinity (vanishing points) $D = (\mathbf{d}^{\top}, 0)^{\top}$ are mapped to

$$\mathbf{x} = \mathtt{P}\mathbf{D} = [\mathtt{M} \mid \mathbf{p}_4]\mathbf{D} = \mathtt{M}\mathbf{d}$$

and are only affected by the left 3×3 block M of P.

- An image point is backward projected as a ray in space. We know two points on this ray: The camera center C and the point P^+x , where P^+ is the *psuedo inverse* of P. The psuedo inverse of P is the matrix $P^+ = P^\top (PP^\top)^{-1}$ such that $PP^+ = I$.
- **●** The point P^+x is on the ray since it is projected onto x, since $P(P^+x) = Ix = x$.
- The ray can thus be describes as the line

$$\mathbf{X}(\lambda) = \mathbf{P}^{+}\mathbf{x} + \lambda\mathbf{C}.$$

– p. 17

Point depth

If the camera matrix has been normalized such that $\det(\mathbb{M}) > 0$ and $\|\mathbf{m}^3\| = 1$ the \mathbf{m}^3 is a unit vector in the positive principal axis direction. Then w may be interpreted as the depth of the point \mathbf{X} from the camera center \mathbf{C} in the direction of the principal axis

For an unnormalized camera matrix, the depth of a point $\mathbf{X} = (X,Y,Z,T)^{\top}$ with respect to a camera $P = [\mathtt{M} \mid \mathbf{p}_4]$ may instead be calculated as

$$\operatorname{depth}(\mathbf{X}; \mathbf{P}) = \frac{\operatorname{sign}(\det(\mathbf{M}))w}{T ||\mathbf{m}^3||},$$

where

$$P(X, Y, Z, T)^{\top} = w(x, y, 1)^{\top}.$$

If P is a finite camera, then all points satisfying

$$sign(\det(\mathbf{M}))w/T > 0$$

Point depth

- Study a camera $P = [M \mid \mathbf{p}_4]$ that projects a point $\mathbf{X} = (X, Y, Z, 1)^\top = (\tilde{\mathbf{X}}^\top, 1)^\top$ in \mathcal{R}^3 on the image point $\mathbf{x} = w(x, y, 1)^\top = P\mathbf{X}$.
- **▶** Let $\mathbf{C} = (\tilde{\mathbf{C}}^{\top}, 1)^{\top}$ be the camera center. Then

$$w = \mathbf{P}^{3\top} \mathbf{X} = \mathbf{P}^{3\top} (\mathbf{X} - \mathbf{C})$$

since PC = 0 for the camera center C.

Since

$$\mathbf{P}^{3\top}(\mathbf{X} - \mathbf{C}) = \mathbf{m}^{3\top}(\tilde{\mathbf{X}} - \tilde{\mathbf{C}}),$$

where \mathbf{m}^3 is the direction of the principal axis,

$$w = \mathbf{m}^{3\top} (\tilde{\mathbf{X}} - \tilde{\mathbf{C}})$$

may be interpreted as the inner product between the direction of the principal axis and the ray through the camera center and X.

Factorizing the camera matrix

- $\ \ \, \ \ \, \ \ \,$ Given a camera matrix P the camera center is given from the nullspace PC = 0.
- For a finite camera

$$\mathbf{P} = [\mathbf{M} \mid -\mathbf{M}\tilde{\mathbf{C}}] = \mathbf{K}[\mathbf{R} \mid -\mathbf{R}\tilde{\mathbf{C}}]$$

with $\det(\mathtt{M}) > 0$, K and R may be calculated by the *RQ factorization* of M.

- The RQ factorization of a matrix A gives an upper triangular matrix K ("R") and an orthogonal matrix R ("Q") such that KR = A.
- The matrix R describes the orientation and K the calibration of the camera.
- If K is chosen to have positive diagonal elements the factorization is unique.
- If the calibration matrix K is scaled such that $K_{33}=1$ it may be interpreted as

$$\mathbf{K} = \left[\begin{array}{ccc} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right].$$

Affine cameras

▶ An affine camera $P = [M \mid p_4]$ is an infinite camera, i.e. M has rank 2.

● An affine camera P has last row $\mathbf{P}^{3\top} = (0,0,0,1)^{\top}$.

Points at infinity in \mathcal{P}^3 are mapped onto points at infinity in \mathcal{P}^2 .

■ The camera center C is on the plane at infinity.

The principal plane is the point at infinity.

The principal point is undefined.

lacksquare The canonical form $[I \mid 0]$ is replaced by the parallel projection matrix

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right].$$

■ The camera caibration matrix K is replaced by

$$\left[\begin{array}{cc} \mathtt{K}_{2\times 2} & \mathbf{0} \\ \mathbf{0} & 1 \end{array}\right].$$

– p. 21

