

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-330801

(43)Date of publication of application : 30.11.1999

(51)Int.CI.

H01P 1/161
H01P 1/213

(21)Application number : 10-138651

(71)Applicant : MITSUBISHI ELECTRIC CORP

(22)Date of filing : 20.05.1998

(72)Inventor : YONEDA HISAFUMI
MIYAZAKI MORIYASU

(54) WAVEGUIDE TYPE POLARIZER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a waveguide type polarizer, having satisfactory reflecting characteristics and isolation characteristics over a wide range.

SOLUTION: This device is provided with a rectangular main waveguide 1, rectangular branching waveguides 2a and 2b which are branched at a right angle to the main waveguide, and conductor sheet metals 3a and 3b provided in the main waveguide 1, to be positioned parallel to the tube axes of the main waveguide 1 and the branch waveguides 2a and 2b, and to be positioned as a pair symmetrically with respect to the center of main waveguide width in a direction orthogonally crossing the both tube axes. Then, the conductor sheet metals 3a and 3b are provided with projecting parts which project in a space, where the main waveguide 1 and the branch waveguides 2a and 2b cross for branching the polarization in the tube axial direction of the branch waveguides 2a and 2b to the branching waveguides 2a and 2b.

LEGAL STATUS

[Date of request for examination] 19.01.2001

[Date of sending the examiner's decision of rejection] 10.09.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection] 2002-19748

[Date of requesting appeal against examiner's decision of rejection] 10.10.2002

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-330801

(43)公開日 平成11年(1999)11月30日

(51)Int.Cl.⁶

H 01 P 1/161
1/213

識別記号

F I

H 01 P 1/161
1/213

D

審査請求 未請求 請求項の数12 O.L (全 16 頁)

(21)出願番号 特願平10-138651

(22)出願日 平成10年(1998)5月20日

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72)発明者 米田 尚史

東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内

(72)発明者 宮▲ざき▼ 守▲やす▼

東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内

(74)代理人 弁理士 宮田 金雄 (外2名)

(54)【発明の名称】導波管形偏波器

(57)【要約】

【課題】 広帯域にわたって良好な反射特性およびアイソレーション特性を有する導波管形偏波器を提供する。

【解決手段】 長方形主導波管と、この主導波管に対して直角に分岐する長方形分岐導波管と、前記主導波管内に設けられ、前記主導波管および前記分岐導波管の両方の管軸に平行で、かつ両方の管軸に直交する方向の主導波管幅の中央に対して対称な位置に對をなす導体薄板とを備え、前記導体薄板は、前記主導波管と前記分岐導波管の交差する空間に突出し、前記分岐導波管の管軸方向の偏波を前記分岐導波管に分岐させる突出部を有する。

1 : 主導波管
2 a, 2 b : 分岐導波管
3 a, 3 b : 金属薄板

【特許請求の範囲】

【請求項1】 長方形主導波管と、この主導波管に対して直角に分岐する長方形分岐導波管と、前記主導波管内に設けられ、前記主導波管および前記分岐導波管の両方の管軸に平行で、かつ両方の管軸に直交する方向の主導波管幅の中央に対して対称な位置に對をなす導体薄板とを備え、前記導体薄板は、前記主導波管と前記分岐導波管の交差する空間に突出し、前記分岐導波管の管軸方向の偏波を前記分岐導波管に分岐させる突出部を有することを特徴とする導波管形偏波器。

【請求項2】 前記主導波管における、前記分岐導波管の管軸および前記主導波管の管軸に対して直交する方向の幅aと、前記分岐導波管の管軸と平行な方向の高さbとが、使用周波数帯域の下限周波数 f_L と上限周波数 f_H と光速cに対して $f_H/3 < f_L < b/a \leq 1$ および $c/2 < f_L < b < c/f_H$ を満足することを特徴とする請求項1に記載の導波管形偏波器。

【請求項3】 前記主導波管は、正方形導波管であることを特徴とする請求項1または2のいずれかに記載の導波管形偏波器。

【請求項4】 前記分岐導波管の管軸と平行な前記主導波管の壁面と前記導体薄板とを導通する導通部材を備えたことを特徴とする請求項1ないし3のいずれかに記載の導波管形偏波器。

【請求項5】 前記分岐導波管の管軸と平行な前記主導波管の壁面と前記導体薄板との間あるいは前記導体薄板間に挟まれ、前記分岐導波管の管軸と直交する前記主導波管の壁面に接する直方体導体ブロックを備えたことを特徴とする請求項1ないし4のいずれかに記載の導波管形偏波器。

【請求項6】 前記分岐導波管の管軸と平行な前記主導波管の壁面に接する直方体リッジを備えたことを特徴とする請求項5に記載の導波管形偏波器。

【請求項7】 前記導体薄板の前記主導波管壁面と対向する側に接する直方体リッジを備えたことを特徴とする請求項5または6のいずれかに記載の導波管形偏波器。

【請求項8】 前記直方体導体ブロックに対し前記主導波管の管軸方向に位置するとともに、前記分岐導波管の管軸と直交する前記主導波管の壁面に接し、傾斜を有する導体ブロック部を備えたことを特徴とする請求項5ないし7のいずれかに記載の導波管形偏波器。

【請求項9】 前記直方体リッジに対し前記主導波管の管軸方向に位置するとともに、前記分岐導波管の管軸と平行な前記主導波管壁面に接し、傾斜を有するリッジを備えたことを特徴とする請求項6に記載の導波管形偏波器。

【請求項10】 前記分岐導波管の分岐口に結合孔を備えたことを特徴とする請求項1ないし9のいずれかに記載の導波管形偏波器。

【請求項11】 前記分岐導波管中に結合孔を備えたことを特徴とする請求項1ないし10のいずれかに記載の導波管形偏波器。

【請求項12】 前記分岐導波管の管軸と平行な前記主導波管壁面と前記導体薄板との間および前記導体薄板間に挟まれ、前記分岐導波管の管軸に直交する前記主導波管壁面に接するアイリスを備えたことを特徴とする請求項1ないし11のいずれかに記載の導波管形偏波器。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、導波管形偏波器に関するものである。

【0002】

【従来の技術】 図23は例えば特開平7-22803号公報に示された直交2偏波共用アンテナ給電系で用いられる従来の偏波器の構成を示す斜視図である。図において、41は直交する2つの直線偏波からなる2種類の電波を伝送する円形主導波管、42はこの円形主導波管41の一端に設けられた短絡導体板、43aおよび43bは円形主導波管41の壁面上で、かつ短絡導体板42より使用周波数帯の円形主導波管内波長の約1/4離れた位置と、約3/4もしくは3/4以上離れた位置とに互いの孔面が直交するように設けられた結合孔、44aおよび44bはこれら結合孔43a、43bを介して円形主導波管41の管軸と直角をなす方向に分岐する方形状導波管、あるいは不要な信号を阻止する一对のろ波器である。

【0003】 次に動作について説明する。円形主導波管41にその管軸と垂直をなして入射された2種類の電波のうち、方形分岐導波管44aの管軸と垂直をなす偏波面をもつ電波の円形主導波管基本モードは、短絡導体板42からの反射波の影響により円形主導波管41内で定在波を励起する。この定在波の分布が密となる位置、すなわち短絡導体板42より使用周波数帯の円形主導波管内波長の約1/4だけ離れている位置に結合孔43aが設けられているため、この定在波が結合孔43aにより方形分岐導波管44a内の方形導波管基本モードに結合し、方形分岐導波管44aの管軸と垂直をなす偏波面をもつ電波の円形主導波管基本モードが方形分岐導波管44a内を伝搬する。また、円形主導波管41にその管軸と垂直をなして入射された2種類の電波のうち、方形分岐導波管44bの管軸と垂直をなす偏波面をもつ電波の円形主導波管基本モードは、短絡導体板42からの反射波の影響により円形主導波管41内で定在波を励起する。この定在波の分布が密となる位置、すなわち結合孔43aより使用周波数帯の円形主導波管内波長の約1/2だけ離れている位置に結合孔43bが設けられているため、この定在波が結合孔43bにより方形分岐導波管44b内の方形導波管基本モードに結合し、方形分岐導波管44bの管軸と垂直をなす偏波面をもつ電波の円

形主導波管基本モードが方形分岐導波管44b内を伝搬する。

【0004】

【発明が解決しようとする課題】従来の偏分波器は以上のように構成され、円形主導波管41内の基本モードから方形分岐導波管44a、44b内の基本モードへの変換は、主導波管41内の円形導波管基本モードの定在波を利用したものである。この定在波の分布（密となる位置）は周波数により大きく変化するが、結合孔43a、43bの位置は固定されているため、広い周波数帯域にわたって強い結合を得ることは困難であった。また、広い周波数帯域にわたって強い結合を得るために結合孔43a、43bの開口径を大きくすると、高次モードを介して起こる結合孔43aと結合孔43bの間の不要結合が大きな影響を与えて偏分波器のアイソレーション特性の劣化を引き起す。したがって、広い周波数帯域にわたって強い結合を得ることは困難であった。つまり、従来の導波管形偏分波器では、主導波管内の基本モードの定在波分布が周波数により大きく変化するが、この変化に対応できる構成となっていないため、広帯域にわたって良好な反射特性およびアイソレーション特性が得られないという問題があった。

【0005】本発明は、上記のような問題点を解決するためになされたものであり、広帯域にわたって良好な反射特性およびアイソレーション特性を有する導波管形偏分波器を得ることを目的とする。

【0006】

【課題を解決するための手段】本発明に係る導波管形偏分波器は、長方形主導波管と、この主導波管に対して直角に分岐する長方形分岐導波管と、前記主導波管内に設けられ、前記主導波管および前記分岐導波管の両方の管軸に平行で、かつ両方の管軸に直交する方向の主導波管幅の中央に対して対称な位置に對をなす導体薄板とを備え、前記導体薄板は、前記主導波管と前記分岐導波管の交差する空間に突出し、前記分岐導波管の管軸方向の偏波を前記分岐導波管に分岐させる突出部を有するものである。

【0007】また、前記主導波管における、前記分岐導波管の管軸および前記主導波管の管軸に対して直交する方向の幅aと、前記分岐導波管の管軸と平行な方向の高さbとが、使用周波数帯域の下限周波数fLと上限周波数fHと光速cに対して $fH/3fL < b/a \leq 1$ および $c/2fL < b < c/fH$ を満足するものである。

【0008】また、前記主導波管は、正方形導波管である。

【0009】また、前記分岐導波管の管軸と平行な前記主導波管の壁面と前記導体薄板とを導通する導通部材を備えたものである。

【0010】また、前記分岐導波管の管軸と平行な前記主導波管の壁面と前記導体薄板との間あるいは前記導体

薄板間に挟まれ、前記分岐導波管の管軸と直交する前記主導波管の壁面に接する直方体導体ブロックを備えたものである。

【0011】また、前記分岐導波管の管軸と平行な前記主導波管の壁面に接する直方体導体リッジを備えたものである。

【0012】また、前記導体薄板の前記主導波管壁面と対向する側に接する直方体リッジを備えたものである。

【0013】また、前記直方体導体ブロックに対し前記主導波管の管軸方向に位置するとともに、前記分岐導波管の管軸と直交する前記主導波管の壁面に接し、傾斜を有する導体ブロック部を備えたものである。

【0014】また、前記直方体リッジに対し前記主導波管の管軸方向に位置するとともに、前記分岐導波管の管軸と平行な前記主導波管壁面に接し、傾斜を有するリッジを備えたものである。

【0015】また、前記分岐導波管の分岐口に結合孔を備えたものである。

【0016】また、前記分岐導波管中に結合孔を備えたものである。

【0017】また、前記分岐導波管の管軸と平行な前記主導波管壁面と前記導体薄板との間および前記導体薄板間に挟まれ、前記分岐導波管の管軸に直交する前記主導波管壁面に接するアーリスを備えたものである。

【0018】

【発明の実施の形態】実施の形態1. 図1は本発明の一実施形態における導波管形偏分波器の構成を示す斜視図である。図1において、1は直交する2つの直線偏波からなる電波を伝送する長方形主導波管である。この長方形主導波管1において、主導波管の高さbは、使用周波数帯域の下限周波数fLと上限周波数fHと光速cより、 $c/2fL < b < c/fH$ を満足する値とし、主導波管の幅aは、 $fH/3fL < b/a \leq 1$ を満足する値とする。以後説明上、主導波管1の管軸方向を前後方向と呼ぶ。 $2a$ および $2b$ は、長方形主導波管1に対して直角にかつ対称に分岐する2つの長方形分岐導波管である。以後説明上、分岐導波管 $2a$ 、 $2b$ の分岐する方向（管軸方向）を上下方向と呼ぶ。また、主導波管1および分岐導波管 $2a$ 、 $2b$ の両方の管軸に直交する方向を左右方向と呼ぶ。 $3a$ および $3b$ は、主導波管1の左右の壁面に平行で、主導波管1内の左右対称な位置に對をなす導体薄板としての金属薄板である。この金属薄板 $3a$ 、 $3b$ は主導波管1と分岐導波管 $2a$ 、 $2b$ の交差する空間に突出し、主導波管1で伝送されてきた電波のうち分岐導波管 $2a$ 、 $2b$ に分岐させる働きをする突出部を有する。なお、分岐導波管 $2a$ 、 $2b$ の前後に向かい合う壁面間の距離dが、使用上限周波数fHの自由空間波長の2分の1以下となるように設ける。また、主導波管1の左側の壁面と金属薄板 $3a$ との間隔、主導波管1の右側の壁面と金属

薄板3bとの間隔、および金属薄板3aと3bとの間隔が、使用上限周波数 f_H の自由空間波長の2分の1以下となるように、金属薄板3a、3bを設ける。P1は主導波管1の入力端、P2は主導波管1の出力端、P3、P4は分岐導波管2a、2bの出力端である。

【0019】次に動作について説明する。主導波管1の左側の壁面と金属薄板3aとの間隔、主導波管1の右側の壁面と金属薄板3bとの間隔、および金属薄板3aと3bとの間隔が、主導波管1の入力端P1より入射された直交する直線偏波からなる電波のうち金属薄板3a、3bに平行な偏波をもつ電波の使用上限周波数 f_H の自由空間波長の2分の1以下となるように、金属薄板3a、3bが設けられている。このため、主導波管1の入力端P1より入射された直交する直線偏波からなる電波のうち金属薄板3a、3bに平行な偏波をもつ電波にとって、主導波管1の左側の壁面と金属薄板3aとの間、主導波管1の右側の壁面と金属薄板3bとの間、および金属薄板3aと3bとの間の空間は遮断領域となり、金属薄板3a、3bに平行な偏波をもつ電波は主導波管1の出力端P2へはほとんど伝送されない。そして、主導波管1と分岐導波管2a、2bの交差する空間の突出部、すなわち図1に示すような金属薄板3a、3bの円弧状の切り欠き部分があるため、金属薄板3a、3bに平行な偏波をもつ電波は主導波管1の入力端P1へ大きく反射することなく分岐導波管2a、2bの出力端P3、P4へ伝送される。次に、金属薄板3a、3bに垂直な偏波を持つ電波について説明する。分岐導波管2a、2bの前後に向かい合う壁面は、この壁面間の距離dが使用上限周波数 f_H の自由空間波長の2分の1以下となるように設けられている。このため、主導波管1の入力端P1より入射された直交する直線偏波からなる電波のうち分岐導波管2a、2bの管軸と直交する偏波をもつ電波（すなわち金属薄板3a、3bに垂直な偏波を持つ電波）にとって、分岐導波管2a、2b内の空間は遮断領域となり、この電波は分岐導波管2a、2bの出力端P3、P4へはほとんど伝送されない。さらに、この金属薄板3a、3bに垂直な偏波を持つ電波にとって、金属薄板3a、3bは主導波管1内の伝送の障害とはならず、この電波は入力端P1へ大きく反射することなく主導波管1の出力端P2へ伝送される。

【0020】図2を用いて、金属薄板3a、3bに平行な偏波をもつ電波の分波の動作を電界分布に基づいて説明する。図1のように主導波管1および金属薄板3a、3bおよび分岐導波管2a、2bが上下対称に構成される導波管回路は、上下対称面が電気壁となり、上下対称に並べた2つの方形導波管E面ペンドと類似した回路構造となる。このため、金属薄板3a、3bと平行な偏波を持つ電波の基本モードであるTE10モードは、主導波管1内および分岐導波管2a、2bおよび金属薄板3a、3b近傍において図2に示すような電界分布とな

る。方形導波管E面ペンド内の電界分布と同様に、コーナー部の円弧形状により電界分布の乱れを生じることなく緩やかに主導波管1内から分岐導波管2a、2b内へと進行する。従って、主導波管1の入力端P1より入射した金属薄板3a、3bと平行な偏波を持つ電波を、主導波管1内の定在波を利用することなく、進行波のみにより広帯域にわたって効率的に分岐導波管2a、2bの出力端P3、P4へ伝送することができる。

【0021】また、図1に示すような導波管形偏分波器では、主導波管1内で発生する不要高次モードが抑圧される。この原理について、図3を用いて説明する。主導波管1の入力端P1より金属薄板3a、3bと平行な偏波を持つ電波が入射した場合、主導波管1の左右に向かい合う壁面と金属薄板3aあるいは3bとの間の領域では、図3に示すような不要高次モードすなわちTE02モードが発生する。このTE02モードは偏分波器の使用周波数帯域が広い場合に使用周波数帯域の広域側で大きく発生し、基本伝送モードの反射特性劣化の原因となる。しかし、図3に示すように、偏分波器の主導波管1内では、2枚の金属薄板を左右対称に挿入しているため、導波管形偏分波器を左右対称に2等分する面が磁気壁となり、金属薄板3aと金属薄板3bとの間の領域ではTE02モードは全く発生しない。また、金属薄板3a、3bと平行な偏波を持つ電波の基本伝送モードは、主導波管1内の左右対称2等分面付近で電界分布が密、主導波管1の左右に向かい合う壁面付近では電界分布が疎となる。本来、TE02モードは、基本伝送モードの電界分布が密となるところで基本伝送モードと結合すれば大きく発生する。しかし、前述のように、基本伝送モードの電界分布が密となる左右対称2等分面付近ではTE02モードは全く発生せず、TE02モードが発生するのは基本伝送モードの電界分布が疎となる主導波管1の左右に向かい合う壁面付近である。従って、TE02モードは基本伝送モードの電界分布が密となるところで結合することができず、不要高次モードであるTE02モードの発生を広帯域にわたって抑圧することができる。

【0022】以上説明したように、長方形主導波管と、この主導波管に対して直角に分岐する長方形分岐導波管と、主導波管内に設けられ、主導波管および分岐導波管の両方の管軸に平行で、かつ両方の管軸に直交する方向の主導波管幅の中央に対して対称な位置に対をなす導体薄板（例えは金属薄板）とを備え、この導体薄板は、主導波管と分岐導波管の交差する空間に突出し、分岐導波管の管軸方向の偏波を分岐導波管に分岐させる突出部を有することにより、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0023】また、主導波管における、分岐導波管の管軸および主導波管の管軸に対して直交する方向（図1で

左右方向)の幅 a と、分岐導波管の管軸と平行な方向(図1で上下方向)の高さ b とが、使用周波数帯域の下限周波数 f_L と上限周波数 f_H と光速 c に対して $f_H/3 < b/a \leq 1$ および $c/2 < f_L < b < c/f_H$ を満足するようにすることにより、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波をより効率的に分波することが可能である。

【0024】また、主導波管1は導波管幅 a 、導波管高さ b の長方形主導波管としたが、正方形主導波管でも同様の効果を得ることができる。

【0025】なお、主導波管と分岐導波管の交差する空間に突出した金属薄板の突出部は、図1に示した円弧状の切り欠きにより形成される形状に限られない。例えば、図4に示す金属薄板4a、4bのような楕円弧状の切り欠きを持つ形状でも、同様の効果を得ることができる。さらに、図5に示す金属薄板5a、5bのような斜め状の切り欠きを持つ形状、図6に示す金属薄板6a、6bのような階段状の切り欠きを持つ形状でも、同様の効果を得ることができる。

【0026】すなわち、主導波管と分岐導波管の交差する空間の突出部の形状は、導体薄板と平行な偏波を分岐導波管に分岐することができる形状であればよく、上述した形状に限られるものではない。また、上記実施形態では上下対称の形状を示したが、導体薄板と平行な偏波を少しでも分岐できる形状であれば上下対称でなくてもよい。

【0027】また、上記実施の形態では分岐導波管が上下対称に分岐した形状を示したが、分岐導波管の管軸方向の偏波を分岐導波管に分岐することができる形状であればよく、分岐導波管の数および位置は上記実施形態に示した形状に限られるものではない。例えば、導体薄板を入力端P1から見ていげた状に配置し、上下左右4方向に分岐導波管を設けてもよい。

【0028】実施の形態2. 本実施の形態では、実施の形態1で示した導波管形偏分波器に主導波管と導体薄板とを導通する部材を設けた例を示す。図7は、本実施形態における導通部材を設けた導波管形偏分波器の構成を示す斜視図である。図7において、7a、7b、7c、7dは分岐導波管2a、2bの管軸と平行な主導波管1の壁面と金属薄板3a、3bとを導通する導通部材としての金属柱である。その他の構成については実施の形態1と同一である。

【0029】次に動作について説明する。金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射したとき、実施の形態1で記述したように、偏分波器の主導波管1内では、2枚の金属薄板3a、3bを左右対称に挿入しているため、導波管形偏分波器を左右対称に2等分する面が磁気壁となり、金属薄板3aと金属薄板3bとの間の領域では不要高次モードであるTE02モードは全く発生しない。これに対し、主導波管1の左右の壁面付近では、基本伝送モードの電界分布が疎となるため、基本モードと結合してTE02モードが大きく発生することはないものの、全く発生しないわけではない。そこで、図7に示すような主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとの間に金属柱7a、7b、7c、7dを設けることにより、主導波管1の左右の壁面と金属薄板3a、3bとの間に導通箇所ができるため、これらの空間内においても不要高次モードであるTE02モードの発生は広帯域にわたって抑圧できる。

【0030】一方、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、この電波の基本伝送モードは主導波管1内の上下の壁面近傍では電界分布が疎となる。このため、主導波管1内の上下の壁面近傍に金属柱7a、7b、7c、7dを設置することにより、金属薄板3a、3bに垂直な偏波を持つ電波は入力端P1へ大きく反射することなく主導波管1の出力端P2へ伝送される。

【0031】以上説明したように、分岐導波管の管軸と平行な主導波管の壁面と導体薄板とを導通する導通部材を備えることにより、広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0032】実施の形態3. 本実施の形態では、実施の形態1で示した導波管形偏分波器に主導波管の壁面と導体薄板との間に直方体導体ブロックを設けた例を示す。図8は、本実施形態における直方体導体ブロックを設けた導波管形偏分波器の構成を示す斜視図である。図8において、8a、8b、8c、8dは分岐導波管2a、2bの管軸と平行な主導波管1の壁面と金属薄板3a、3bとにより挟まれ、分岐導波管2a、2bの管軸と直交する前記主導波管の壁面に接して設けられた直方体導体ブロックとしての直方体金属ブロックである。その他の構成については実施の形態1と同一である。

【0033】次に動作について説明する。金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射したとき、実施の形態1で記述したように、偏分波器の主導波管1内では、2枚の金属薄板を左右対称に挿入しているため、導波管形偏分波器を左右対称に2等分する面が磁気壁となり、金属薄板3aと金属薄板3bとの間の領域では不要高次モードであるTE02モードは全く発生しない。これに対し、主導波管1の左右の壁面付近では、基本伝送モードの電界分布が疎となるため、基本モードと結合してTE02モードが大きく発生することはないものの、全く発生しないわけではない。そこで、図8に示すような主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとにより挟まれ、分岐導波管2a、2bの管軸と直交する主導波管1の壁面に接する直

方体金属ブロック8a、8b、8c、8dを設けることにより、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとの間の空間をこの直方体金属ブロック8a、8b、8c、8dの分だけ狭めることができるため、これらの空間内において不要高次モードであるTE02モードの発生は広帯域にわたって抑圧できる。

【0034】一方、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、この電波の基本伝送モードは主導波管1内の上下の壁面近傍では電界分布が疎となる。直方体金属ブロック8a、8b、8cおよび8dは主導波管1内の上下の壁面近傍に設置されているため、金属薄板3a、3bに垂直な偏波を持つ電波は入力端P1へ大きく反射することなく主導波管1の出力端P2へ伝送される。

【0035】以上説明したように、分岐導波管の管軸と平行な主導波管の壁面と導体薄板とにより挟まれ、分岐導波管の管軸と直交する主導波管の壁面に接する直方体導体ブロックを備えることにより、広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0036】実施の形態4. 本実施の形態では、前述の直方体導体ブロックを備えた導波管形偏波器に直方体リッジを設けた例を示す。図9は、本実施形態における直方体導体ブロックおよび直方体リッジを設けた導波管形偏波器の構成を示す斜視図である。図9において、9a、9bは分岐導波管2a、2bの管軸と平行な主導波管1の壁面に接し上下対称位置に設けられた直方体リッジである。その他の構成については前記実施の形態と同一である。

【0037】次に動作について説明する。金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射したとき、前述したように、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとにより挟まれ、分岐導波管2a、2bの管軸と直交する前記主導波管の壁面に接する直方体金属ブロック8a、8b、8c、8dが設けられていることにより、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとの間の空間がこの直方体金属ブロック8a、8b、8c、8dの分だけ狭められているため、これらの空間内において不要高次モードであるTE02モードの発生は広帯域にわたって抑圧される。

【0038】一方、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、主導波管1の左右の壁面と金属薄板3a、3bとの間の空間は、主導波管1に直方体金属ブロック8a、8b、8c、8dを設けた状態にさらに直方体リッジ9a、9b、9c、9dを設けることにより、金属薄板3aと金属薄板3bとの間に構成される長方形導波管に並列接続された2つの

リッジ導波管のように働く。これにより、主導波管1内の金属薄板3a、3bの設けられた部分と入力端P1とのインピーダンス整合がとられ、金属薄板3a、3bに垂直な偏波を持つ電波は入力端P1に大きく反射することなく主導波管1の出力端P2へ伝送される。

【0039】以上説明したように、分岐導波管の管軸と平行な主導波管の壁面に接する直方体リッジを備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端とのインピーダンス整合をとることができるために、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0040】また、本実施の形態では、直方体リッジを分岐導波管2a、2bの管軸と平行な主導波管1の壁面に接し上下対称位置に設けたが、主導波管1内の金属薄板3a、3bの設けられた部分と入力端P1とのインピーダンス整合がとれれば、直方体リッジを設ける位置は上下対称位置でなくてもよい。

【0041】また、本実施の形態では直方体リッジを分岐導波管の管軸と平行な主導波管の壁面に接するように設けた例を示したが、図10に示すように金属薄板3a、3bの主導波管1壁面と対向する側に接するように直方体リッジ10a、10bを設けても、同様の効果を得ることができる。さらに、図11に示すように、分岐導波管2a、2bの管軸と平行な主導波管1の壁面上および金属薄板3a、3b上に直方体リッジを設けると、金属薄板3aと金属薄板3bとの間に構成される長方形導波管に並列接続された2つのダブルリッジ導波管のように働く。これにより、主導波管1内の金属薄板3a、3bの設けられた部分と入力端P1とのよりよいインピーダンス整合がとられ、金属薄板3a、3bに垂直な偏波を持つ電波は入力端P1に大きく反射することなく主導波管1の出力端P2へ伝送される。

【0042】実施の形態5. 本実施の形態では、前述の直方体導体ブロックを備えた導波管形偏波器において、この直方体導体ブロックに対し主導波管の管軸方向に傾斜を有する導体ブロック部を設けた例を示す。図12は、本実施形態における直方体導体ブロックおよび傾斜を有する導体ブロック部を設けた導波管形偏波器の構成を示す斜視図である。図12において、11a、11b、11c、11d、11e、11f、11g、11hは直方体金属ブロック8a、8b、8c、8dに対し主導波管1の管軸方向に位置するとともに、分岐導波管2a、2bの管軸と直交する主導波管1の壁面に接し、傾斜を有する導体ブロック部としての金属ブロックである。その他の構成については前記実施の形態と同一である。

【0043】次に動作について説明する。金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射

したとき、前述したように、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとにより挟まれ、分岐導波管2a、2bの管軸と直交する前記主導波管の壁面に接する直方体金属ブロック8a、8b、8c、8dが設けられていることにより、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとの間の空間がこの直方体金属ブロック8a、8b、8c、8dの分だけ狭められているため、これらの空間内において不要高次モードであるTE02モードの発生は広帯域にわたって抑圧される。

【0044】一方、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、傾斜を有する金属ブロック11a、11b、11c、11d、11e、11f、11g、11hが設けられていることにより、主導波管1の入力端P1および出力端P2と主導波管1の直方体金属ブロック8a、8b、8c、8dが設けられている部分とのインピーダンス整合が取られるため、金属薄板3a、3bに垂直な偏波を持つ電波は入力端P1に大きく反射することなく主導波管1の出力端P2へ伝送される。

【0045】以上説明したように、直方体導体ブロックに対し主導波管の管軸方向に位置するとともに、分岐導波管の管軸と直交する主導波管の壁面に接し、傾斜を有する導体ブロック部を備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端および出力端とのインピーダンス整合をとることができるために、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0046】また、傾斜を有する金属ブロック11e、11f、11g、11hは、直方体金属ブロック8a、8b、8c、8dと別の部材としているが、それぞれが一体となった部材で構成しても、同様の効果を得ることができる。

【0047】また、図12に示した傾斜を有する金属ブロック11a、11b、11c、11d、11e、11f、11g、11hの代わりに、図13に示すような階段状の傾斜を有する金属ブロック12a、12b、12c、12d、12e、12f、12g、12hを設けても、同様の効果を得ることができる。

【0048】なお、傾斜を有する導体ブロック部の形状は、主導波管内の導体薄板の設置部分と入力端および出力端とのインピーダンス整合をとができる形状であればよく、すなわち上記実施形態に示した形状に限られるものではない。

【0049】実施の形態6. 本実施の形態では、前述の直方体導体ブロックおよび直方体リッジを備えた導波管形偏波器に、前述の傾斜を有する導体ブロック部を設けたものに、さらに直方体リッジに対し主導波管の管軸方向に傾斜を有するリッジを設けた例を示す。図14

は、本実施形態における直方体導体ブロック、直方体リッジ、傾斜を有する導体ブロック部および傾斜を有するリッジを設けた導波管形偏波器の構成を示す斜視図である。図14において、13a、13b、13c、13dは直方体リッジ9a、9bに対し主導波管1の管軸方向に位置するとともに、分岐導波管2a、2bの管軸と平行な主導波管1の壁面に接し、傾斜を有するリッジである。その他の構成については前記実施の形態と同一である。

【0050】次に動作について説明する。金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射したとき、前述したように、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとにより挟まれ、分岐導波管2a、2bの管軸と直交する前記主導波管の壁面に接する直方体金属ブロック8a、8b、8c、8dが設けられていることにより、主導波管1の左右の壁面と金属薄板3aあるいは金属薄板3bとの間の空間がこの直方体金属ブロック8a、8b、8c、8dの分だけ狭められているため、これらの空間内において不要高次モードであるTE02モードの発生は広帯域にわたって抑圧される。

【0051】一方、前述したように、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、主導波管1の左右の壁面と金属薄板3a、3bとの間の空間は、主導波管1に直方体金属ブロック8a、8b、8c、8dと直方体リッジ9a、9bが設けられていることにより、金属薄板3aと金属薄板3bとの間に構成される長方形導波管に並列接続された2つのリッジ導波管のように働くため、主導波管1内の金属薄板3a、3bの設けられた部分と入力端P1とのインピーダンス値がある程度近付けられる。これにさらに、傾斜を有する金属ブロック11a、11b、11c、11d、11e、11f、11g、11hと傾斜を有するリッジ13a、13b、13cおよび13dを設けることにより、主導波管1の入力端P1および出力端P2と主導波管1の直方体金属ブロック8a、8b、8c、8dが設けられている部分とのインピーダンス整合が取られるため、金属薄板3a、3bに垂直な偏波を持つ電波を入力端P1に大きく反射することなく主導波管1の出力端P2へ伝送することができる。

【0052】以上説明したように、直方体リッジに対し主導波管の管軸方向に位置するとともに、分岐導波管の管軸と平行な主導波管の壁面に接し、傾斜を有するリッジを備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端および出力端とのインピーダンス整合をとができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0053】また、傾斜を有するリッジ13c、13d

は、直方体リッジ9a、9bと別の部材としているが、それぞれが一体となった部材で構成しても、同様の効果を得ることができる。

【0054】また、図14に示した傾斜を有するリッジ13a、13b、13c、13dの代わりに、図15に示すような階段状の傾斜を有するリッジ14a、14b、14c、14dを設けても、同様の効果を得ることができる。

【0055】なお、傾斜を有するリッジの形状は、主導波管内の導体薄板の設置部分と入力端および出力端とのインピーダンス整合をとることができる形状であればよく、すなわち上記実施形態に示した形状に限られるものではない。

【0056】実施の形態7. 本実施の形態では、実施の形態1で示した導波管形偏分波器に結合孔を設けた例を示す。図16は、本実施形態における結合孔を設けた導波管形偏分波器の構成を示す斜視図である。図16において、15a、15bは分岐導波管2a、2bの分岐口に平行に設けられた結合孔である。その他の構成については実施の形態1と同一である。

【0057】次に動作について説明する。金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射したとき、実施の形態1で記述したように、金属薄板3a、3bの円弧状の切り欠きがあるため、金属薄板3a、3bに平行な偏波をもつ電波は主導波管1の入力端P1へ大きく反射することなく分岐導波管2a、2bに分岐される。複数の結合孔15a、15bは、この分岐されてきた電波の電界と直交するよう分岐導波管2a、2bの分岐口に挿入されているため、この電波の進行の障害とはならない。

【0058】一方、前記実施の形態で記述したように、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、分岐導波管2a、2b内が遮断領域となるため、電波は分岐導波管2a、2bの出力端P3、P4へはほとんど伝送されない。そして、分岐導波管2a、2bが分岐する分岐口に平行に並べられた複数個の結合孔15a、15bは、主導波管1の管軸方向の幅がその波長に比べて非常に小さいため、この電波の基本伝送モードが各分岐口付近で高次モードと結合することを抑制する。したがって、金属薄板3a、3bに垂直な偏波を持つ電波は、入力端P1へ大きく反射することなく主導波管1の出力端P2へ伝送される。

【0059】以上説明したように、分岐導波管の分岐口に結合孔を備えることにより、広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波をより効率的に分波することが可能である。

【0060】なお、本実施の形態では分岐導波管2a、2bの分岐口に結合孔を設けたものを示したが、図17

に示すように、更に分岐導波管2a、2b内に結合孔16a、16bを設ければ、より広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。なお、図17では分岐導波管2a、2bの分岐口および内部に結合孔を設けているが、内部のみに結合孔を設けた場合も同様の効果を得ることができる。

【0061】また、本実施の形態では結合孔がお互いに平行となるように設けたが、不要高次モードを抑圧することができれば、平行でなくてもよい。

【0062】実施の形態8. 本実施の形態では、前述の分岐導波管の分岐口に結合孔を備えた導波管形偏分波器に、さらに分岐導波管の管軸と平行な主導波管壁面と導体薄板との間および導体薄板間に挟まれ、分岐導波管の管軸に直交する主導波管壁面に接するアイリスを設けた例を示す。図18は、本実施形態における結合孔およびアイリスを設けた導波管形偏分波器の構成を示す斜視図である。図18において、17a、17b、17c、17d、17e、17fは分岐導波管2a、2bの管軸と平行な主導波管1壁面と金属薄板3a、3bとの間および金属薄板3a、3b間に挟まれ、分岐導波管の管軸に直交する主導波管壁面に接するアイリスである。その他の構成については前記実施の形態と同一である。

【0063】次に動作について説明する。前述のように複数の結合孔15a、15bは、金属薄板3a、3bに平行な偏波を持つ電波が入力端P1より入射して分岐された電波の電界と直交するようにして分岐導波管2a、2bの分岐口に挿入されているため、この電波の進行の障害とはならず、この電波は主導波管1の入力端P1へ大きく反射することなく分岐導波管2a、2bの出力端P3、P4へ伝送される。

【0064】一方、金属薄板3a、3bに垂直な偏波を持つ電波が入力端P1より入射したとき、分岐導波管2a、2bが分岐する分岐口に平行に並べられた複数個の結合孔15a、15bは、主導波管1の管軸方向の間隔がその波長に比べて非常に小さいため、この電波の基本伝送モードが各分岐口付近で高次モードと結合することを抑制する。そして、アイリス17a、17b、17c、17d、17e、17fをこの電波の電界分布が疎となる主導波管1の上下の壁の近傍のみを塞ぐように設置することにより、使用周波数帯の高域側ではこの電波の進行の障害とはならず、使用周波数帯の低域側では反射特性を改善する整合調整素子として機能する。したがって、金属薄板3a、3bに垂直な偏波を持つ電波は、入力端P1へ大きく反射することなく主導波管1の出力端P2へ伝送される。

【0065】以上説明したように、分岐導波管の管軸と平行な主導波管壁面と導体薄板との間および導体薄板間に挟まれ、分岐導波管の管軸に直交する主導波管壁面に

接するアイリスを備えることにより、使用周波数帯の低域側で反射特性を改善する整合調整素子として機能するため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0066】なお、本実施の形態では実施の形態1で示した導波管形偏分波器に結合孔15a、15bを設け、さらにアイリス17a、17b、17c、17d、17e、17fを設けているが、アイリス17a、17b、17c、17d、17e、17fを単独で設けた場合にも同様の効果を得ることができる。

【0067】実施の形態9。実施の形態1では、図1のような2枚の金属薄板3a、3bを設けた導波管形偏分波器を示したが、図19に示すように4枚の金属薄板18a、18b、18c、18dを設けても同様の効果を得ることができる。この金属薄板18a、18b、18c、18dのような導体薄板は、主導波管1の入力端P1より入射した金属薄板3a、3bと平行な偏波を持つ電波を、広帯域にわたって効率的に分岐導波管2a、2bの出力端P3、P4へ分岐することができればよく、枚数を限定するものではない。

【0068】また、図8で示した実施の形態では、4つの直方体金属ブロック8a、8b、8c、8dを設けた導波管形偏分波器を示したが、金属薄板を4枚設けた場合は図20に示すように8つの直方体金属ブロック19a、19b、19c、19d、19e、19f、19g、19hを設けても同様の効果を得ることができる。この直方体金属ブロック19a、19b、19c、19d、19e、19f、19g、19hのような直方体導体ブロックは、広帯域にわたって不要高次モードを抑圧することができればよく、導体薄板の枚数に応じて適宜設ければよい。

【0069】また、図9で示した実施の形態では、4つの直方体金属ブロック8a、8b、8c、8dと、2つの直方体リッジ9a、9bを設けた導波管形偏分波器を示したが、金属薄板を4枚設けた場合は図21に示すように8つの直方体金属ブロック19a、19b、19c、19d、19e、19f、19g、19hと、4つの直方体リッジ20a、20b、20c、20dとを設けても同様の効果を得ることができる。この直方体リッジは、主導波管1内の金属薄板3a、3bの設けられた部分と入力端P1とのインピーダンス整合をとることができればよく、導体薄板の枚数に応じて適宜設ければよい。

【0070】また、図18で示した実施の形態では、複数の結合孔15a、15bと、6つのアイリス17a、17b、17c、17d、17e、17fとを設けた導波管形偏分波器を示したが、金属薄板を4枚設けた場合は図22に示すように10個のアイリス21a、21b、21c、21d、21e、21f、21g、21

h、21i、21jを設けても同様の効果を得ることができる。このアイリスは、使用周波数帯の高域側ではこの電波の進行の障害とならず、使用周波数帯の低域側で反射特性を改善する整合調整素子として機能すればよく、導体薄板の枚数に応じて適宜設ければよい。

【0071】なお、実施の形態1で示した分岐導波管の管軸方向の偏波を分岐させる金属薄板の突出部の形状は、上記全ての実施の形態において適用できるものである。また、実施の形態2で示した金属柱のような導通部材を設けるという構成も同様に、上記全ての実施の形態において適用できるものである。また、実施の形態3で示した直方体導体ブロックを設けるという構成、あるいは実施の形態4で示した直方体導体ブロックと直方体リッジとを設けるという構成も同様に、上記全ての実施の形態において適用できるものである。また、実施の形態5で示した直方体導体ブロックと、傾斜を有する導体ブロック部とを設けるという構成、あるいは実施の形態6で示した直方体導体ブロックと、傾斜を有する導体ブロック部と、直方体リッジと、傾斜を有するリッジとを設けるという構成も同様に、上記全ての実施の形態において適用できるものである。また、実施の形態7で示した結合孔を設けるという構成も同様に、上記全ての実施の形態において適用できるものである。また、実施の形態8で示したアイリスを設けるという構成も同様に、上記全ての実施の形態において適用できるものである。

【0072】

【発明の効果】以上説明したように、長方形主導波管と、この主導波管に対して直角に分岐する長方形分岐導波管と、前記主導波管内に設けられ、前記主導波管および前記分岐導波管の両方の管軸に平行で、かつ両方の管軸に直交する方向の主導波管幅の中央に対して対称な位置に対をなす導体薄板とを備え、前記導体薄板は、前記主導波管と前記分岐導波管の交差する空間に突出し、前記分岐導波管の管軸方向の偏波を前記分岐導波管に分岐させる突出部を有することにより、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0073】また、前記主導波管における、前記分岐導波管の管軸および前記主導波管の管軸に対して直交する方向の幅aと、前記分岐導波管の管軸と平行な方向の高さbとが、使用周波数帯域の下限周波数 f_L と上限周波数 f_H と光速cに対して $f_H/3f_L < b/a \leq 1$ および $c/2f_L < b < c/f_H$ を満足することにより、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0074】また、前記主導波管が正方形導波管であることにより、広帯域にわたって良好な反射特性およびア

イソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0075】また、前記分岐導波管の管軸と平行な前記主導波管の壁面と前記導体薄板とを導通する導通部材を備えることにより、広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波を持つ電波を分波することが可能である。

【0076】また、前記分岐導波管の管軸と平行な前記主導波管の壁面と前記導体薄板との間あるいは前記導体薄板間に挟まれ、前記分岐導波管の管軸と直交する前記主導波管の壁面に接する直方体導体ブロックを備えることにより、広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波を持つ電波を分波することが可能である。

【0077】また、前記分岐導波管の管軸と平行な前記主導波管の壁面に接する直方体リッジを備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端とのインピーダンス整合をとることができるために、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0078】また、前記導体薄板の前記主導波管壁面と対向する側に接する直方体リッジを備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端とのインピーダンス整合をとることができるために、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0079】また、前記直方体導体ブロックに対し前記主導波管の管軸方向に位置するとともに、前記分岐導波管の管軸と直交する前記主導波管の壁面に接し、傾斜を有する導体ブロック部を備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端および出力端とのインピーダンス整合をとることができるために、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0080】また、前記直方体リッジに対し前記主導波管の管軸方向に位置するとともに、前記分岐導波管の管軸と平行な前記主導波管壁面に接し、傾斜を有するリッジを備えることにより、広帯域にわたって不要高次モードを抑圧し、主導波管内の導体薄板の設置部分と入力端および出力端とのインピーダンス整合をとることができるために、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0081】また、前記分岐導波管の分岐口に結合孔を備えることにより、広帯域にわたって不要高次モードを

抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0082】また、前記分岐導波管中に結合孔を備えることにより、広帯域にわたって不要高次モードを抑圧することができるため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【0083】また、前記分岐導波管の管軸と平行な前記主導波管壁面と前記導体薄板との間および前記導体薄板間に挟まれ、前記分岐導波管の管軸に直交する前記主導波管壁面に接するアリスを備えることにより、使用周波数帯の低域側で反射特性を改善する整合調整素子として機能するため、広帯域にわたって良好な反射特性およびアイソレーション特性を得て、直交する2つの偏波をもつ電波を分波することが可能である。

【図面の簡単な説明】

【図1】本発明の一実施形態における導波管形偏波器の構成を示す斜視図

【図2】電波の分波の動作を示す説明図

【図3】不要高次モードが抑圧される原理を示す説明図

【図4】主導波管と分岐導波管の交差する空間に突出した突出部の形状の例を示す斜視図。

【図5】主導波管と分岐導波管の交差する空間に突出した突出部の形状の例を示す斜視図。

【図6】主導波管と分岐導波管の交差する空間に突出した突出部の形状の例を示す斜視図。

【図7】本発明の実施形態における導通部材を設けた導波管形偏波器の構成を示す斜視図。

【図8】本発明の実施形態における直方体導体ブロックを設けた導波管形偏波器の構成を示す斜視図。

【図9】本発明の実施形態における直方体導体ブロックおよび直方体リッジを設けた導波管形偏波器の構成を示す斜視図。

【図10】本発明の実施形態における直方体導体ブロックおよび直方体リッジを設けた導波管形偏波器の構成を示す斜視図。

【図11】本発明の実施形態における直方体導体ブロックおよび直方体リッジを設けた導波管形偏波器の構成を示す斜視図。

【図12】本発明の実施形態における直方体導体ブロックおよび傾斜を有する導体ブロック部を設けた導波管形偏波器の構成を示す斜視図。

【図13】本発明の実施形態における直方体導体ブロックおよび傾斜を有する導体ブロック部を設けた導波管形偏波器の構成を示す斜視図。

【図14】本発明の実施形態における直方体導体ブロック、直方体リッジ、傾斜を有する導体ブロック部および傾斜を有するリッジを設けた導波管形偏波器の構成を示す斜視図。

【図15】本発明の実施形態における直方体導体ブロック、直方体リッジ、傾斜を有する導体ブロック部および傾斜を有するリッジを設けた導波管形偏波器の構成を示す斜視図。

【図16】本発明の実施形態における結合孔を設けた導波管形偏波器の構成を示す斜視図。

【図17】本発明の実施形態における結合孔を設けた導波管形偏波器の構成を示す斜視図。

【図18】本発明の実施形態における結合孔およびアイリスを設けた導波管形偏波器の構成を示す斜視図。

【図19】本発明の実施形態における4枚の金属薄板を設けた導波管形偏波器の構成を示す斜視図。

【図20】本発明の実施形態における8つの直方体導体ブロックを設けた導波管形偏波器の構成を示す斜視図。

【図21】本発明の実施形態における8つの直方体導体ブロックおよび4つの直方体リッジを設けた導波管形偏波器の構成を示す斜視図。

【図22】本発明の実施形態における結合孔および10個のアイリスを設けた導波管形偏波器の構成を示す斜視図。

【図23】従来の偏波器の構成を示す斜視図。

【符号の説明】

1 主導波管

2 a、2 b	分岐導波管
3 a、3 b	金属薄板
4 a、4 b	金属薄板
5 a、5 b	金属薄板
6 a、6 b	金属薄板
7 a、7 b、7 c、7 d	金属柱
8 a、8 b、8 c、8 d	直方体金属ブロック
9 a、9 b	直方体リッジ
10 a、10 b	直方体リッジ
11 a～11 h	金属ブロック
12 a～12 h	金属ブロック
13 a～13 d	リッジ
14 a～14 d	リッジ
15 a、15 b	結合孔
16 a、16 b	結合孔
17 a～17 f	アイリス
18 a～18 d	金属薄板
19 a～19 h	直方体金属ブロック
20 a～20 d	直方体リッジ
21 a～21 j	アイリス
P 1	主導波管1の入力端
P 2	主導波管1の出力端
P 3	分岐導波管の出力端
P 4	分岐導波管の出力端

【図1】

1 : 主導波管
2 a, 2 b : 分岐導波管
3 a, 3 b : 金属薄板

【図2】

→ 電界

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図23】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.