

King Saud University

College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Tutorial 11: Datapath Design

Q1: Show how to construct a 4 x n register file using necessary registers, MUX and decoder.

Solution:

Q2: Show the block diagram representation of a general datapath using the block diagram for a register file $(2^m \times n)$ and the function unit.

Solution:

Q 3:

Consider the following datapath and function table.

Show the 16 bit control words on the table below to perform the following microoperations assuming that the registers are of 8 bits

Microoperations	DA	AA	BA	MB	FS	MD	RW
	(15-13)	(12-10)	(9-7)	(6)	(5-2)	(1)	(0)
R1←R1-5	001	001	×××	1	0101	0	1
R0←R1+R5	000	001	101	0	0010	0	1
R7←R7+1	111	111	×××	×	0001	0	1
R4←sl R6	100	×××	110	0	1110	0	1
M[R3]←R1	×××	011	001	0	xxxx	×	0

Question 4:

The ALU computes a result, which is saved back to the registers. AA, BA, DA, WR, MB, MD, MW, and FS are control signals. Their values determine the exact actions taken by the datapath, and which registers are used and for what operation.

F5	Operation
0000	F = A
0001	F = A + 1
0010	F = A + B
0011	F = A + B + 1
0100	F = A + B'
0101	F = A + B' + 1
0110	F = A - 1
0111	F = A
1000	$F = A \wedge B (AND)$
1001	$F = A \vee B (OR)$
1010	$F = A \oplus B (XOR)$
1100	F = B
1011	F = A'

memory

Fill in the required information in the answer table to perform the following instructions assuming that the registers of 8 bits, and their initial signed 2's complement values were, R0 = 0E, R1 = 0F, R2 = 09, R3 = 0B, data in memory as shown, and the initial values of V, C, N, Z were 0's. The required information are:

- a. The generated control signals (AA, BA, DA, WR, MB, MD, MW, FS) on the diagram to perform the instruction.
- b. The values of V, C, N, and Z status flags after each instruction.

c.

The contents of memory and registers after executing the 5 instructions.	address	
$R0 \leftarrow M[R3]$	09	20
$R3 \leftarrow M[R2]$	0A	A3
$R1 \leftarrow R0 + 0F$ $M(R2) \leftarrow R1$	0B	21
$M[R2] \leftarrow R1$ $M[R1] \leftarrow R3$		

	2E	34
	2F	E4
Answer	30	71

AA	BA	DA	WR	MB	MD	MW	FS	V	C	N	Z	Microoprations
011	XXX	000	1	X	1	0	XXXX					R0 ← M[R3]
												$R3 \leftarrow M[R2]$
												$R1 \leftarrow R0 + 0F$
												M[R2] ← R1

							M[R1] ← R3
	,		,				

The contents of Registers and Memory are as shown:

R3 = 20

R0= 21		memory
	address	
R1 = 21 + 0F = 30	09	30
D3 00	0A	A3
R2 = 09	0B	21

2E	34
2F	E4
30	34 E4 20