Metodi di crowdsourcing nello studio del linguaggio

Metodi sperimentali per la raccolta e l'analisi dei dati linguistici Pisa, 6-7 dicembre 2011

Sommario

- Cos'è il crowdsourcing
 - Il turco meccanico
 - Intelligenza artificiale artificiale
 - Come funziona il crowdsourcing
 - Amazon Mechanical Turk e Crowdflower
- 2 Crowdsourcing e studio del linguaggio
 - Dall'azienda alla ricerca
 - Chi sono i "lavoratori"?
- 3 Esperimenti di crowdsourcing
 - Crowdsourcing e classificazione azionale
 - Crowdsourcing e metonimia
 - Crowdsourcing e linguaggi artificiali
 - Crowdsourcing e raccolta di corpora
- 4 Conclusioni

Il turco meccanico Intelligenza artificiale artificiale Come funziona il crowdsourcing Amazon Mechanical Turk e Crowdflower

Il turco meccanico

intelligenza artificiale?

"Il Turco", Wolfgang von Kempelen, 1769 (incisione di Karl Gottlieb von Windisch)

Il turco meccanico Intelligenza artificiale

Come funziona il crowdsourcing
Amazon Mechanical Turk e Crowdflower

Dentro il turco

intelligenza artificiale artificiale

Intelligenza artificiale artificiale

Esempi: parsing, categorizzazione di immagini, traduzione, elicitazione...

Intelligenza artificiale

Come: sistemi di machine learning (test, training, valutazione)

Intelligenza artificiale artificiale

Come: invece di chiedere "alla macchina", chiedo "all'uomo dentro la macchina"

Il turco meccanico Intelligenza artificiale artificiale Come funziona il crowdsourcing Amazon Mechanical Turk e Crowdflower

Cos'è il crowdsourcing

(Uno o pochi) annotatori umani "esperti" tempo, denaro, esperienza

 \uparrow

CROWDSOURCING (crowd + outsourcing)

 $\label{eq:Crowd} {\sf Crowd} = {\sf tanti} \; {\sf lavoratori}, \; "{\sf gente} \; {\sf comune}" \\ {\sf Outsourcing} = "{\sf esportare}" \; {\sf alcuni} \; {\sf compiti} \; {\sf affidandoli} \; {\sf a} \; {\sf risorse} \; {\sf esterne} \\$

Come funziona il crowdsourcing

Un "modello di business":

- "datore di lavoro" → "open call"
- un portale che raccoglie le calls
- lavoratori con accesso internet

Microtasking:

- i compiti sono relativamente facili (per un essere umano) e rapidi

 → pochi centesimi a "task"
- i dati provenienti da una "crowd" di lavoratori
- il lavoratore "lavora" in momenti di pausa o nel tempo libero, svolgendo diversi "micro-compiti"

Micro task = qualunque cosa si possa "incorporare" in un browser o in una app

Amazon Mechanical Turk (AMT)

Il "turco meccanico" di Amazon - https://www.mturk.com uno dei portali più grandi e più usati per il crowdsourcing

Lato lavoratore:

- più di 183 mila "compiti"
- non necessariamente tutti "aperti"
- può scegliere in base alla retribuzione e/o in base a cosa preferisce

Lato datore di lavoro:

- creare nuovi compiti
- o controllo dei compiti assegnati
- "accettare" o "rifiutare" i compiti svolti dai lavoratori
- assegnare dei bonus

Il turco meccanico
Intelligenza artificiale artificiale
Come funziona il crowdsourcing
Amazon Mechanical Turk e Crowdflower

Amazon Mechanical Turk

Cosa vede il lavoratore:

"HITs" (Human Intelligence Tasks) - "a question that needs an answer"

Il turco meccanico
Intelligenza artificiale artificiale
Come funziona il crowdsourcing
Amazon Mechanical Turk e Crowdflower

Amazon Mechanical Turk

Cosa vede il datore di lavoro:

			Results Delete	
Created:	December 07, 2010	Assignments Completed:	108 / 108	
Time Elapsed:	14 days	Estimated Completion Time:	COMPLETE	
Average Time per Assignment:	9 minutes 13 seconds	Effective Hourly Rate:	\$2.604	
Batch Progress:	100% submitted	100% published	•	
'Thematic-based event gener	ation - Patient-D' @ 03 Dec 07:12		Results Delete	
Created:	December 03, 2010	Assignments Completed:	7 / 101	
Time Elapsed:	14 days	Estimated Completion Time:	Not yet available	
			A1 500	
Average Time per Assignment:	7 minutes 39 seconds	Effective Hourly Rate:	\$1.569	
Average Time per Assignment:	7 minutes 39 seconds	Effective Hourly Rate:	\$1.569	
Average Time per Assignment: Batch Progress:	7 minutes 39 seconds	Effective Hourly Rate:	\$1.569	

Crowdflower

http://crowdflower.com/

"the worlds largest enterprise crowdsourcing platform"

- 1.5 milioni di lavoratori
- "gold answers" per controllo qualità
- i task sono poi distribuiti ai lavoratori attraverso varie piattaforme (ad esempio, AMT)
- "interfaccia" per AMT ma non solo

- 2007: AMT apre a task esterni ad AMT stesso e Powerset inizia a usarlo per raccogliere dati per sviluppare un motore di ricerca in linguaggio naturale
- per più di un anno la maggior parte delle HIT che compaiono su AMT sono create da Powerset
- dall'NLP alla traduzione automatica fino ad esperimenti veri e propri

(Munro et al. 2010)

Dal "microtasking" in azienda alla ricerca: raccogliere dati sperimentali e condurre esperimenti

Vantaggi:

- grande disponibilità di partecipanti
- campione molto variegato
- rapidità e convenienza

Svantaggi:

- campione molto variegato
 (e poco controllo su chi sono realmente i partecipanti)
- serve "creatività" nel formulare il compito e nel controllo qualità (non ci sono "risposte giuste")
- scarso controllo sulle liste (ma è possibile, cfr. Watts e Jaeger 2011)

Sondaggio del 2010

United States: 47%

India: 34%

Miscellaneous: 19%

fonte: http://www.behind-the-enemy-lines.com/2010/03/new-demographics-of-mechanical-turk.html

Crowdsourcing e studio del linguaggio Chi sono i "lavoratori"?

fonte: http://www.behind-the-enemy-lines.com/2010/03/new-demographics-of-mechanical-turk.html

Crowdsourcing e studio del linguaggio "Is it good?"

Snow et al. 2008 "Cheap and Fast - But is it Good? Evaluating Non-Expert Annotations for Natural Language Task"

- Diversi domini di ricerca (affect recognition, word similarity, recognizing textual entailment, event temporal ordering, word sense disambiguation)
- Alti ITA (inter-tagger agreement, "indici di concordanza" tra annotatori) tra non-esperti su AMT e "professionisti"

Ma anche:

Fort et al. 2011 "Amazon Mechanical Turk: Gold Mine or Coal Mine?"

- i risultati di Snow et al. non persistono su studi di larga scala
- stima: 80% delle HITs svolte dal 20% dei "turkers" più attivi
 (> 15 ore a settimana a persona)
- media di meno di 2 dollari l'ora

Crowdsourcing e studio del linguaggio Strategie

- o non pagare troppo né troppo poco
- creare un rapporto "fiduciario" con i lavoratori
- creare compiti "divertenti", o quantomeno "interessanti"
- creare dei sistemi di "controllo" dei dati

Crowdsourcing e studio del linguaggio Workshops nel 2011

- July 2011, Boston MA: Tutorial at CogSci 2011 on "How to use Mechanical Turk for Cognitive Science Research" (W. Mason e S. Suri)
- July 2011 Boulder CO:
 Workshop on Crowdsourcing Technologies for Language and
 Cognition Studies at the LSA Institute (R. Munro e H. Tily)
 "the first time that researchers had come together for a workshop
 dedicated wholly to crowdsourcing technologies as a tool for
 empirical studies"

"Armchair linguistics is changing"

"Armchair linguistics is changing"

Workshop on Crowdsourcing Technologies for Language and Cognition Studies

- Artificial language learning (Jaeger et al.)
- Interazione e dialogo (Clausen e Potts)
- Logical metonymy (Zarcone e Pado)

Esperimenti di crowdsourcing

Crowdsourcing e classificazione azionale

	[dyn]	[dur]	[res]	
STA	_	+	_	essere olandese
ACT	+	+	_	cantare
ACC	+	+	+	disegnare un ritratto
ACH	+	_	+	scomparire

Esperimenti di crowdsourcing

Crowdsourcing e classificazione azionale

Quattro esperimenti (Zarcone e Lenci 2010)

- classificazione di immagini e di VP per l'italiano (esperimento via web più "tradizionale"
- classificazione di immagini e di VP per l'inglese (crowdsourcing)

Esperimenti di crowdsourcing

Crowdsourcing e classificazione azionale

		α	α_{w}	accuracy	
Experiment 1	IT, verbs	0.35	0.43	0.63	sito web
Experiment 2	EN, verbs	0.46	0.53	0.68	crowdsourcing
Experiment 3	IT, img	0.22	0.31	0.42	sito web
Experiment 4	EN, img	0.28	0.39	0.54	crowdsourcing

Esperimenti di crowdsourcing

Crowdsourcing e metonimia

"Logical metonymy" e "covert events" (CE)

oggetti che denotano eventi (EV) vs. entità (EN):

EV: begin the afternoon

- → √ begin(afternoon)
- \rightarrow **X** begin(**CE**(afternoon))

EN: begin the **newspaper**

- → × begin(newspaper)
- → √ begin(CE(newspaper))
 - \rightarrow begin $\boldsymbol{reading}$ the newspaper

Generative Lexicon (Pustejovsky 1995)

- i CE vengono interpretati solo con oggetti del tipo EN
- i CE sono recuperati dai qualia dell'oggetto (quale agentivo, quale telico)

Esperimenti di crowdsourcing

Crowdsourcing e metonimia

participanti: 15 partecipanti dagli USA

materiali: 60 frasi:

EN: Jim began/spotted the magazine **EV**: Al began/spotted the ceremony

EN/EV Nick began/spotted the conquest

procedura:

- does the sentence involve an additional activity that is not mentioned in the sentence? (additional activity o no additional activity)
- quando rispondevano additional activity,
 ai partecipanti veniva chiesto di fornire degli esempi

Esperimenti di crowdsourcing

Crowdsourcing e metonimia

- agreement basso (lpha=.35) ma buon agreement con gli annotatori (lpha=.6)
 - Obj_type: binomial $p < .001 \rightarrow significant$ effect
 - Verb_type: $z = -8.322, p < .001 \rightarrow significant effect$
 - Interaction: binomial $p < .001 \rightarrow \text{significant effect}$

condition	CE	no-CE
begin,EN	63%	37%
spot,EN	11%	89%
begin,EN/EV	39%	61%
spot,EN/EV	6%	94%
begin,EV	18%	82%
spot,EV	6%	94%

Esperimenti di crowdsourcing

Crowdsourcing e metonimia

- 1 or 2 risposte per partecipante (media 1.4, min. 1, max. 6)
- chi ha dato una risposta sola: media 3.2 CE per ogni VP
- media generale di 5 CE per VP (min 1 max 15)
 - EN: start the portrait → 9 CEs: paint (x20), draw (x4), critique (x3), hang (x2), model (x2), sketch (x2), admire, pose for, review
 - EN/EV: finish the harvest → 15 CEs: gather (x5), collect (x4), plan (x3), reap (x3), sell (x3), load (x2), store (x2), cook, eat, enjoy, jar, package, pick, pull, ship
 - EV: enjoy the conference \rightarrow 4 CEs: attend (x3), hold (x2), participate in, watch

	tot	Qualia-structure CEs		other CEs
		agentive	telic	
elicited CEs (tokens)	542	132 (24.3%)	162 (29.9%)	248 (45.8%)
elicited CEs (types)	205	31 (15.1%)	25 (12.2%)	149 (72.7%)

Esperimenti di crowdsourcing

Crowdsourcing e linguaggi artificiali

Jaeger et al., "A web-based (iterated) language learning paradigm with human participants"

"gioco" di apprendimento linguaggi artificiali \rightarrow usato per replicare studi di laboratorio in Hudson Kam, C., and Newport, E. (2005)

Esperimenti di crowdsourcing

Crowdsourcing e raccolta di corpora

Clausen e Potts, "Collecting task-oriented dialogues"

video game + chat: due giocatori devono trovare insieme sei carte consecutive dello stesso seme

- raccolta di dati linguistici (dialogo) ma anche delle mosse nello spazio
- 439 trascrizioni, 111 giocatori unici (Luglio 2011)

Conclusioni

"A tool is only as good as the people who use it."

- necessario conoscerne caratteristiche e limiti
- o potenzialità diverse da quelle dei metodi più tradizionali
- richiede di "pensare" l'esperimento in modo diverso
- necessità di controlli di qualità
- questioni etiche

Grazie

- Fort, K., Adda, G., e Cohen, K. B., 2011. Amazon Mechanical Turk: Gold Mine or Coal Mine?. Computational Linguistics 37, 413420.
- Munro, R., Bethard, S., Kuperman, V., Tzuyin Lai, V., Melnick, R., Potts, C., Schnoebelen T., e Tily, H., 2010. Crowdsourcing and language studies: the new generation of linguistic data. Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk, Los Angeles, CA.
- Munro, R. e Tily, H., 2011. The Start of the Art: Introduction to the Workshop on Crowdsourcing Technologies for Language and Cognition Studies, Boulder.
- Snow, R., O'Connor, B., Jurafsky, D., Ng, A. Y., 2008. Cheap and Fast -But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks. Proceeding of EMNLP '08.
- Watts, A. e Jaeger, T. F., 2011. Balancing experimental lists without sacrificing voluntary participation. Workshop on Crowdsourcing Technologies for Language and Cognition Studies. Boulder, Colorado.
- Zarcone, A. e Padó, S.. 2011. A crowdsourcing study of logical metonymy. Workshop on Crowdsourcing Technologies for Language and Cognition Studies. Boulder, Colorado.