Nota. Изоморфизм $E^n \to E'^n$ позволяет переносить свойства скалярного произведения из одного в другое пространство

Ех: $\|x+y\| \leq \|x\| + \|y\|$ - арифметические векторы со скалярным произведением $(x,y) = \sum_{i=1}^n x_i y_i$

 $E'^n \in C_{[a;b]}$ со скалярным произведением $(f,g) = \int_a^b f * g dx$

$$\sqrt{\int_a^b (f*g)^2 dx} \le \sqrt{\int_a^b f^2 dx} + \sqrt{\int_a^b g^2 dx}$$

Задача о перпендикуляре

Постановка: Нужно опустить перпендикуляр из точки пространства ${\it E}^n$ на подпространство ${\it G}$

Точка M - конец вектора x в пространстве E^n . Нужно найти M_0 (конец вектора x_0 , проекции x на G)

$$x_0 + h = x$$

где $h \perp G$. Правда ли что, длина перпендикулярного вектора h - минимальная длина от точки M до G?

Th.
$$h \perp G, x_0 \in G, x = x_0 + h$$
. Тогда $\forall x' \in G(x' \neq x_0) \quad ||x - x'|| > ||x - x_0||$

$$\Box ||x - x'|| = ||x - x_0 + x_0 - x'|| \stackrel{\text{по теореме Пифагора}}{====} ||x - x_0|| + ||x_0 - x'|| = ||h|| + ||x_0 - x'|| > ||x - x_0||$$

 $Nota.\ x_0$ называется ортогональной проекцией, возникает вопрос о ее вычислении (так находятся основания перпендикуляров)

Алгоритм: $x_0 = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_k + e_k$, $\{e_i\}_{i=1}^k$ - базис G (необязательно ортонормированный) Дан вектор x, пространство G, нужно найти λ_i

$$h = x - x_0, \ h \perp G \quad (h, e_i) \stackrel{h \perp e_i}{=} {}^{\forall i} 0$$

 $(x - x_0, e_i) = (x, e_i) - (x_0, e_i) = 0$

$$(x, e_i) = (x_0, e_i)$$

Тогда $\forall i \quad (x_0,e_i) = (\lambda_1 e_1 + \dots + \lambda_k e_k,e_i) = \lambda_1(e_1,e_i) + \dots + \lambda_k(e_k,e_i)$ - (e_k,e_i) - числа, а λ_i - неизвестные

Получили СЛАУ:

$$\begin{vmatrix} (e_1, e_1) & (e_1, e_2) & \dots & (e_1, e_k) \\ \dots & \dots & \dots & \dots \\ (e_k, e_1) & (e_k, e_2) & \dots & (e_k, e_k) \end{vmatrix} \times \begin{vmatrix} \lambda_1 \\ \lambda_k \end{vmatrix} = \Gamma \times \begin{vmatrix} \lambda_1 \\ \lambda_k \end{vmatrix} = \begin{vmatrix} (x, e_1) \\ \dots \\ \lambda_k \end{vmatrix}$$

Nota. В матрице Γ нет нулевых строк, так как e_i - бизисная и по крайней мере $e_i^2 \neq 0$ Таким образом по теореме Крамера $\exists!(\lambda_1,\ldots,\lambda_k)$

 ${f Def.}$ Матрица $\Gamma=(e_i,e_j)_{i,j=1...k}$ называют матрицей Γ рама

$$\Gamma = I = \left| \begin{array}{ccc} 1 & 0 & \dots \\ 0 & 1 & \dots \\ \dots & 1 \end{array} \right|, \text{ если базис ортонормированный }$$

Далее, І - единичная матрица Грама

$$Nota.$$
 Тогда $I imes egin{array}{c|c} \lambda_1 & = & \lambda_1 \\ \dots & \lambda_k & = & \dots \\ \lambda_k & = & (x,e_1) \\ \lambda_k & = & (x,e_k) \\ \end{array}$

Приложения задачи о перпендикуляре

1) Метод наименьших квадратов

В качестве простейшей модели зависимости y=y(x) берем линейную функцию $y=\lambda x$ Ищем минимально отстоящую прямую от данных (x_i,y_i) , то есть ищем λ Определим расстояние (в этом методе) как $\sigma^2 = \sum_{i=1}^n (y_i - y_{0i})^2 = \sum_{i=1}^n (y_i - \lambda x_i)^2$ - минимизируем Таким образом, ищем y_0 (ортог. проекция) такое, что $(y-y_0)^2 = \sigma^2$ - минимальное Если $y_0 = \lambda_1 x_1 + \dots + \lambda_k x_k$, где x_i - набор измерений для i-ой точки Рассмотрим y_0 как разложение по базису $\{x_i\}$

2) Многочлен Фурье

$$P(t) = \frac{a_0}{2} + a_1 cost + b_1 sint + \dots a_n cosnt + b_n sinnt$$
 - линейная комбинация Функции 1, cost, sint, ..., cosnt, sinnt - ортогональны

Задача в том, чтобы для функции f(t), определенной на отрезке $[0;2\pi]$ найти минимально отстоящий многочлен P(t) при том, что расстояние определяется как $\sigma^2 = \int_0^{2\pi} (f(t) - P(t))^2 dt$ Нужно найти a_i и b_i - обычные скалярные произведения $a_i = k \int_0^{2\pi} f(t) cos(it) dt, \ b_i = m \int_0^{2\pi} f(t) sin(it) dt \ (k, m$ - нормирующие множители)

2. Линейный оператор (линейное отображение, линейный функционал, линейное преображение)

2.1. Определение

Линейный оператор - это отображение $V^n \stackrel{\mathcal{A}}{\Longrightarrow} W^m$ $(V^n, W^m$ - линейные пространства размерности $n \neq m$ в общем случае), которое $\forall x \in V^n$ сопоставляет один какой-либо $y \in W^m$ и $\mathcal{A}(\lambda x_1 + \mu x_2) = \lambda \mathcal{A} x_1 + \mu \mathcal{A} x_2 = \lambda y_1 + \mu y_2$

Nota. Заметим, что если 0 представим как 0 * x, где $x \neq 0$, то $\mathcal{A}(0) = \mathcal{A}(0 * x) = 0 * \mathcal{A}x \stackrel{0*y}{=} 0$

Nota. Если V = W, то \mathcal{A} называют линейным преобразованием, но далее будем рассматривать в основном операторы $\mathcal{A}: V \to V, \mathcal{A}: V^n \to W^n$

 $Ex.\ 1.\ V = \mathbb{R}^2$ - пространство направленных отрезков $\mathcal{A}: V \leftarrow V$ $\mathcal{A}x = y = \lambda y_1 + \mu y_2$ для таких \mathcal{A} как сдвиг, поворот, гомотетия, симметрия

 $Ex.\ 2.\ V^n = W^m,$ где m < n \mathcal{A} - оператор проектирования (убедиться, что он линейный)

 $Ex.\ 3.\ V^n$ - пространство числовых строк длины n

 $\mathcal{A}: V^n \leftarrow V^n$ $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$ $\mathcal{A}x = y: \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} x = y$

2.2. Действия с операторами

Def. $\mathcal{AB}: V \to W$

- 1) $(\mathcal{A} + \mathcal{B})x \stackrel{def}{=} \mathcal{A}x + \mathcal{B}x$ определение суммы $\mathcal{A} + \mathcal{B} = \mathcal{C}$
- 2) $(\lambda \mathcal{A})x \stackrel{def}{=} \lambda(\mathcal{A}x) \lambda \mathcal{A} = \mathcal{D}$

Nota. Сформируем линейное пространство из операторов $\mathcal{A}:V \to W$

- 1) Ассоциативность сложения (очевидно)
- 2) Коммутативность (очевидно)

- 3) Нейтральный элемент Ox = 0
- 4) Противоположный: $-\mathcal{A} = (-1) * A$
- 5) ... *LAB*

Def: I - тождественный - $\forall x \in V \mid Ix = x$