

Misure di densità

G. Galbato Muscio L. Gravina L. Graziotto M. Rescigno

Gruppo B2.3

Esperienza di laboratorio 27 marzo 2017

Consegna della relazione 3 aprile 2017

Sommario

La densità è definita come il rapporto tra massa e volume, ed è una proprietà intensiva della materia.

$$\rho = \frac{m}{V} \qquad [\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$$

In questa esperienza ci proponiamo di compiere misure di densità di diversi campioni, adottando diversi procedimenti operativi e al fine di determinare il materiale di cui è composto un campione incognito.

Indice

0	Convenzioni e formule	3
1	Scopo e descrizione dell'esperienza	3
2	Apparato Sperimentale 2.1 Strumenti	
3	Sequenza Operazioni Sperimentali 3.1 Verifica degli strumenti	

	$\frac{3.4}{3.5}$	Misura della densità del campione B	8	
	3.6	Misura della densità dei campioni A con metodo grafico	9	
4 Considerazioni finali				
E	len	co delle tabelle		
	1	30 misurazioni di altezza con Palmer e nonio, di diametro con		
		Palmer e di massa sul cilindro 9 dei campioni A. Viene riportata	11	
	2	in alto l'incertezza degli strumenti e la media delle misure Riepilogo dei valori di altezza misurata con Palmer e nonio, dia-	11	
		metro misurato con Palmer e massa del cilindro 9 dei campioni		
	9	Minus della conicciona del liculta della considerazione	11	
	3	Misure della variazione del livello dell'acqua in una provetta graduata in seguito all'inserimento graduale di 10 coppie di 3 cilindri.	12	
	4	Singole misurazioni di altezza con Palmer e nonio, di diametro		
		con Palmer e di massa sui 30 cilindri. Viene riportata in alto		
		l'incertezza degli strumenti e la media delle misure	13	
	5	Misure di Offset registrate sul Palmer	14	
	6	Misure di volume e densità dei 30 campioni	14	
	7	Considerazioni globali su volume e densità dei 30 campioni	15	
	8	Misure di volume e densità ripetute 30 volte sul campione 9	15	
	9	Considerazioni globali su volume e densità del campione 9	15	

0 Convenzioni e formule

In questa relazione verranno usate le seguenti convenzioni:

- 1. sarà usata la virgola [,] come separatore decimale;
- 2. l'approssimazione decimale della cifra 5 sarà fatta per eccesso;
- 3. al fine di migliorare la qualità dell'elaborazione dei dati, ogni grafico/isto-gramma prodotto a mano su carta millimetrata sarà riportato insieme al suo equivalente prodotto attraverso un software di analisi dati¹;
- 4. tutti i conti e i risultati parziali saranno presentati senza tenere cura delle cifre significative, i risultati finali saranno invece presentati correttamente.

Inoltre, si farà riferimento alle seguenti formule:

1. media

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i; \tag{1}$$

2. varianza

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2; \tag{2}$$

3. deviazione standard

$$\sigma = \sqrt{\sigma^2}. (3)$$

1 Scopo e descrizione dell'esperienza

L'esperienza si sviluppa secondo 5 operazioni sperimentali:

- 1. misura della densità di un singolo campione, al fine di determinare il materiale di cui è costituito;
- 2. misura di 30 campioni dello stesso materiale, per migliorare la stima precedente della densità;
- 3. misura di un campione dello stesso materiale dei precedenti, ma con dimensioni differenti, con l'obiettivo di verificare la compatibilità del materiale con quello costitutivo dei 30 campioni;
- 4. misura della densità di un singolo campione di materiale differente, al fine di identificarne la composizione;
- 5. determinazione della densità dei campioni già misurati nella seconda fase, utilizzando un metodo grafico.

 $^{^1\}mathrm{In}$ questo contesto i dati sono stati elaborati con il software di analisi R.

2 Apparato Sperimentale

2.1 Strumenti

- Bilancia di precisione [risoluzione 0,001 g, incertezza 0,0003 g, portata 7500 g];
- Calibro a nonio ventesimale [divisione 0,05 mm, incertezza 0,05 mm, portata 20 cm];
- Calibro Palmer [divisione 0,01 mm, incertezza 0,001 mm, portata 25 mm];
- Provetta graduata [divisione 2 mL, incertezza 0,5 mL];

2.2 Campioni

- A: 30 cilindri di dimensioni variabili e materiale incognito (colore argentato lucido²);
- ullet B: cilindro dello stesso materiale dei campioni ${f A},$ ma di diversa dimensione;
- C: cilindro con foro prossimo alla base di diverso materiale rispetto ai precedenti (colore dorato lucido³).

3 Sequenza Operazioni Sperimentali

3.1 Verifica degli strumenti

Un primo controllo sugli strumenti di misura ci porta a concludere che il calibro ventesimale è ben tarato e non presenta offset evidenti (come, d'altronde, ci aspettavamo per il modo di costruzione dello strumento); il calibro Palmer risulta invece essere soggetto di un offset di valutazione incerta, approfondiremo il problema nella sezione 3.2. La bilancia di precisione può essere tarata a 0 prima di ogni misurazione; la provetta graduata sarà invece riempita fino a un certo livello e si valuteranno le differenze di indicazioni segnate, permettendo dunque di escludere l'incertezza del valore considerato come 0.

3.2 Misura della densità di un singolo campione

Scegliamo come campione dal gruppo \mathbf{A} il cilindro che abbiamo numerato 9. La procedura di misurazione consiste in:

- 1. misura ripetuta 30 volte dell'altezza del cilindro prima con il calibro a nonio e poi con il calibro Palmer;
- 2. valutazione dello strumento nel complesso più adatto alle nostre misure; come argomentato nel seguito, il calibro Palmer e^4 la scelta più adatta;

²Utilizziamo il colore e l'aspetto dei campioni come *prior* per escludere materiali come legno, vetro o oro, e dunque per escludere eventuali evidenti errori nella misura.

³vedi nota 2

⁴Nel limite di questa relazione e delle opinioni dei quattro autori.

- 3. misura ripetuta 30 volte del diametro del cilindro con il calibro Palmer;
- 4. misura ripetuta 30 volte della massa del cilindro con la bilancia di precisione;
- 5. calcolo della densità del campione per ognuna delle misure;
- 6. stima della densità con relativa incertezza.

Tutti i dati sperimentali raccolti sono riportati nella tabella 1. Per determinare quale tra il calibro ventesimale e il calibro Palmer sia più adatto alla nostra esperienza, e di conseguenza per determinare lo strumento con il quale effettuare il resto delle misure di questa sezione, confrontiamo le incertezze relative all'altezza nei due diversi casi.

Le misure con il calibro a nonio sono sintetizzate da

$$\bar{h} = 20.08667 \,\mathrm{mm}$$
 $\sigma = 0.03198 \,\mathrm{mm}$

dove con \bar{h} intendiamo la media calcolata con (1), mentre con σ intendiamo la deviazione standard calcolata con (3). Per quanto detto nella sezione 3.1, il calibro a nonio non presenta alcun errore di calibrazione nella misura dello 0, non essendo uno strumento tendenzialmente affetto da offset considereremo credibile questo risultato e non propagheremo un'eventuale incertezza nella misura dello 0. L'errore di tipo B stimato per questo strumento è quello riportato nella sezione 2.1, cioè $u_n=0.05\,\mathrm{mm}$. La misura dell'altezza h effettuata con il calibro a nonio è quindi soggetta ad un'incertezza σ_T stimabile come

$$\sigma_T = \frac{\sigma}{\sqrt{30}} \oplus u_n$$

$$= \sqrt{\left(\frac{\sigma}{\sqrt{30}}\right)^2 + u_n^2} = 0.05 \,\text{mm}.$$

Risultato prevedibile in quanto $\sigma/\sqrt{30}$ è di diversi ordini di grandezza inferiore di u_n . L'incertezza relativa all'altezza misurata con il calibro a nonio è quindi, in percentuale,

$$\frac{\sigma_T}{\bar{h}} = 0,25\%. \tag{4}$$

Le misure con il calibro Palmer sono sintetizzate da

$$\bar{h} = 20,01653 \,\mathrm{mm}$$
 $\sigma = 0,00468 \,\mathrm{mm}$

con le stesse notazioni di prima. A differenza del calibro a nonio, il Palmer è uno strumento meccanicamente predisposto ad errori di offset e in questo caso specifico, facendo 10 misure dello 0^5 , risulta

$$\bar{z} = 0.006 \,\mathrm{mm}$$
 $\sigma_z = 0.0035 \,\mathrm{mm}$,

le misure dell'offset sono riportate nella tabella 5. Dovremo quindi tener conto anche della dispersione dell'offset nella propagazione dell'incertezza su questa

⁵La scelta di calcolare la dispersione sull'offset effettuando più misure invece di usare quella già trovata misurando le altezze è giustificata dal fatto che non possiamo essere sicuri dell'assoluta linearità della risposta dello strumento, esso potrebbe infatti avere una risposta diversa nei pressi dello 0.

misura. L'incertezza di tipo B del calibro Palmer può essere stimata nell'ordine di $u_p=0.001\,\mathrm{mm}$, propagando l'errore sulla misura otteniamo

$$\begin{split} \sigma_T &= \frac{\sigma}{\sqrt{30}} \oplus u_p \oplus \frac{\sigma_z}{\sqrt{10}} \oplus u_p \\ &= \sqrt{\left(\frac{\sigma}{\sqrt{30}}\right)^2 + \left(\frac{\sigma_z}{\sqrt{10}}\right)^2 + 2u_p^2} = 0,0020\,\mathrm{mm} \end{split}$$

dove abbiamo considerato l'incertezza strumentale sia nella misura dell'altezza che in quella dello 0. L'incertezza relativa è quindi, in percentuale,

$$\frac{\sigma_T}{\bar{h}} = 0,01\%. \tag{5}$$

Appare quindi immediatamente evidente che l'incertezza sulle misure effettuate con il calibro Palmer è nettamente inferiore di quella sulle misure del nonio, abbiamo quindi scelto il calibro Palmer per effettuare (ove possibile) le successive misure di lunghezza.

Nella tabella 2 vengono invece riportati anche i valori calcolati di varianza (σ^2), deviazione standard (σ) e il massimo e il minimo valore ottenuti nella misurazione.

Dopo aver effettuato tutte le misure necessarie, ossia diametro e massa di ogni cilindro, siamo in grado di calcolare la densità relativa ad ogni misura attraverso l'equazione

$$\rho = \frac{m}{\frac{\pi}{4} \cdot \left(\frac{D}{10}\right)^2 \cdot \frac{h}{10}} \tag{6}$$

che restituisce la densità in g/cm³, ottenendo i dati riportati nella tabella ??. Di queste 30 misure di densità possiamo ricavarne media $(\bar{\rho})$ e deviazione standard (σ) , in particolare:

$$\bar{\rho} = \sigma = .$$

La propagazione dell'incertezza su questa misura necessità, però, di alcune riflessioni: nell'equazione (6) compare il prodotto $(D^2 \cdot h)$, che è un prodotto di due misure di lunghezza effettuate con lo stesso strumento di misura (il calibro Palmer) e quindi necessariamente correlate (per via dello stesso offset), per propagare l'incertezza dobbiamo quindi prima di tutto studiare come tale correlazione la influenza. Ricordiamo che, in generale, la densità è data da

$$\rho = \frac{m}{V} \tag{7}$$

dove m è la massa e V il volume (le relative unità di misura cambiano da contesto a contesto); ovviamente le misure di massa e di volume sono misure scorrelate, dal momento che sono state effettuate con metodi e strumenti completamente diversi, per cui è possibile applicare direttamente la formula per l'incertezza relativa di una funzione monomia ed ottenere la propagazione dell'incertezza sulla densità a partire da quelle sulla massa e sul volume: occupiamoci quindi di stimare quest'ultima, poi penseremo al resto.

Considerando che si tratta di cilindri approssimativamente regolari, il volume è dato da

$$V = \pi \cdot \left(\frac{D}{10}\right)^2 \cdot \frac{h}{10}.\tag{8}$$

Scriviamo adesso le due grandezze correlate (che sono anche le uniche due variabili della funzione) in relazione al valore vero (indicato con la dicitura star) e all'offset (z_0) , cioè

$$D = D^* - z_0$$
 $h = h^* - z_0$

e sostituiamole in (8), in modo da ottenere

$$V = \pi \cdot \left(\frac{D^* - z_0}{10}\right)^2 \cdot \frac{h^* - z_0}{10} \tag{9}$$

dove si è aggiunta una terza variabile z_0 . Espandendo in serie di Taylor intorno al punto medio possiamo propagare l'incertezza su ρ come

$$\sigma_T^2 = \left(\frac{\partial V}{\partial D^*}\Big|_{\bar{V}}\right)^2 \sigma_{D^*}^2 + \left(\frac{\partial V}{\partial h^*}\Big|_{\bar{V}}\right)^2 \sigma_{h^*}^2 + \left(\frac{\partial V}{\partial z_0^*}\Big|_{\bar{V}}\right)^2 \sigma_{z_0^2} \tag{10}$$

dove

$$\begin{split} \frac{\partial V}{\partial D^*} &= \frac{\pi}{4} (2D^*h^* - 2D^*z_0 - 2h^*z_0 + 2z_0^2) \\ \frac{\partial V}{\partial h^*} &= \frac{\pi}{4} (D^{*2} + z_0^2 - 2D^*z_0) \\ \frac{\partial V}{\partial z_0^*} &= \frac{\pi}{4} (-D^{*2} + 2z_0h^* - 3z_0^2 - 2d^*h^* + 4d^*z_0) \end{split}$$

e $\sigma_{D^*},\sigma_{h^*},\sigma_{z_0}$ sono le deviazioni standard delle misure nella tabella 1. L'incertezza finale sul volume è quindi

$$\sigma_V = X. \tag{11}$$

Riprendendo adesso l'equazione (7) essendo le variabili scorrelate possiamo utilizzare la formula di propagazione dell'incertezza su funzioni monomie:

$$\frac{\sigma_{\rho}}{\bar{\rho}} = \frac{\sigma_{V}}{\bar{V}} \oplus \frac{\sigma_{m}}{\bar{m}} \tag{12}$$

$$=X. (13)$$

che si riduce ad essere una semplice somma in quadratura.

Concludiamo allora che la stima che statisticamente meglio approssima la vera densità del cilindro numerato 9 è

$$\rho = \bar{\rho} \pm \sigma_{\rho}.\tag{14}$$

3.3 Misura della densità dei campioni A

Effettuiamo ora la misura della densità di ognuno dei 30 campioni del gruppo ${\bf A},$ seguendo il procedimento:

- 1. numerazione dei campioni;
- misura della altezza e del diametro di ogni cilindro con il calibro Palmer, scelto in quanto presenta incertezza inferiore a quella del nonio, una sola volta per ciascuno;

- 3. misura della massa di ogni cilindro con la bilancia di precisione;
- 4. calcolo della densità di ogni campione.

I dati sono riportati nella tabella ??; poiché altezza e diametro sono stati misurati in mm, e volendo esprimere la densità nell'unità di misura [g/cm³], la calcoliamo con l'equazione:

$$\rho = \frac{m}{\frac{\pi}{4} \cdot \left(\frac{D}{10}\right)^2 \cdot \frac{h}{10}},$$

dove indichiamo con m la massa in g, con D il diametro in mm e con h l'altezza in mm. Riportiamo quindi negli istogrammi ?? e ??, il primo disegnato a mano e il secondo generato con R, le frequenze con cui si ripetono i valori della densità per i campioni $\bf A$. Concludiamo che il materiale di cui sono costituiti i campioni sia l'alluminio, in quanto la sua densità, $\rho_{\rm Al}=2,70\,{\rm g/cm^3}$, è compatibile entro gli errori con il valore da noi ottenuto.

3.4 Misura della densità del campione B

Il campione B, che mostra lo stesso aspetto dei campioni \mathbf{A} , è un cilindro con dimensioni maggiori rispetto ai precedenti. La procedura seguita per determinarne la densità è la seguente:

- 1. misura unica dell'altezza con il calibro a nonio (in quanto è al di fuori della portata del calibro Palmer);
- misura unica del diametro con il calibro Palmer (in quanto più accurato del nonio);
- 3. misura unica della massa con la bilancia di precisione.

I dati ottenuti sono riportati nella tabella ??.

3.5 Misura della densità del campione C

Il campione \mathbf{C} è un cilindro che presenta un foro in prossimità della base, che approssimiamo a sua volta come un cilindro di altezza pari al diametro del campione, e di cui calcoliamo il diametro con il calibro a nonio. La procedura seguita per determinarne la densità è la seguente:

- 1. misura unica del diametro del campione con il calibro Palmer;
- 2. misura unica dell'altezza del campione con il calibro Palmer;
- 3. misura unica del diametro del foro con il calibro a nonio;
- 4. misura unica della massa del campione con la bilancia di precisione;
- 5. stima della densità con relativa incertezza e determinazione del materiale di cui il campione è costituito.

I dati ottenuti sono riportati nella tabella ??.

3.6 Misura della densità dei campioni A con metodo grafico

Adottiamo ora un altro metodo per determinare la densità dei campioni **A**, suddividendoli in 10 gruppi di cui misuriamo in modo integrale massa e volume, quest'ultimo mediante la variazione del livello di acqua in una provetta graduata.

Rappresentando poi i dati su di un grafico, individuiamo la migliore retta che li approssima, il cui coefficiente angolare è legato alla densità dei campioni stessi

I dati ottenuti sono riportati nella tabella 3, e nel grafico (figura ??). Per confronto con quanto realizzato a mano in laboratorio, si riporta il grafico (figura 1) generato con R in un secondo momento. Abbiamo scelto di porre sull'asse delle ascisse la massa e su quello delle ordinate la variazione di volume rispetto a quello misurato inizialmente nella provetta, in quanto quest'ultimo è affetto da un'incertezza molto maggiore di quella della massa.

Il coefficiente angolare della retta che approssima meglio i dati è

$$m = \frac{V_2 - V_1}{m_2 - m_1}$$

dove i punti sono stati scelti sulla retta e non sono dati sperimentali, in quanto la retta ne tiene già conto nel complesso. Sono stati scelti quindi i valori

$$m_1 = 14,000 \,\mathrm{g}, \qquad V_1 = 5,0 \,\mathrm{mL};$$

$$m_2 = 149,000 \,\mathrm{g}, \qquad V_2 = 55,0 \,\mathrm{mL}.$$

Poiché la densità si ottiene dal rapporto

$$\rho = \frac{m}{V},$$

l'inverso del coefficiente angolare della retta sarà pari alla nostra stima della densità con metodo grafico:

$$\rho = \frac{149,000 - 14,000}{55,0 - 5,0} \frac{g}{mL} = 2,700 \frac{g}{mL};$$

Per propagare l'errore su tale valore, dunque, sommiamo in quadratura gli errori relativi di massa e volume:

$$rac{\sigma_{
ho}}{
ho} = \sqrt{\left(rac{\sigma_{\Delta m}}{\Delta m}
ight)^2 + \left(rac{\sigma_{\Delta V}}{\Delta V}
ight)^2}$$

Dove gli errori assoluti su massa e volume sono ottenuti propagando l'incertezza sulla differenza dei valori finale e iniziale

$$\sigma_{\Delta V} = \sqrt{2\sigma_V} = 0.7 \,\mathrm{mL}$$
 ricordando che $\sigma_V = 0.5 \,\mathrm{mL}$

$$\sigma_{\Delta m} = \sqrt{2\sigma_m} = 5.7 \times 10^{-4} \,\mathrm{g}$$
 ricordando che $\sigma_m = 0.0004 \,\mathrm{g}$;

Perciò

$$\frac{\sigma_{\rho}}{\rho} = 0,014 \Rightarrow \sigma_{\rho} = 0,038 \frac{\text{g}}{\text{mL}}.$$

Figura 1: Volume integrale in funzione della massa integrale dei campioni A, con retta di best fit, generato con R.

La stima della densità con metodo grafico è dunque

$$(2.70 \pm 0.04) \, rac{
m g}{
m mL} = (2.70 \pm 0.04) \, rac{
m g}{
m cm^3}$$

É evidente che l'incertezza su tale stima, che è pari all'1,5%, sia maggiore rispetto a quella ottenuta con i metodi precedenti. Riteniamo che questo sia dovuto alla minore precisione nella misura del volume ottenuta attraverso la variazione del livello di acqua nella provetta rispetto al calcolo indiretto misurando le dimensioni con il più preciso calibro Palmer.

4 Considerazioni finali

Tabella 1: 30 misurazioni di altezza con Palmer e nonio, di diametro con Palmer e di massa sul cilindro 9 dei campioni A. Viene riportata in alto l'incertezza degli strumenti e la media delle misure.

	Altezza-Palmer(mm)	Altezza-nonio(mm)	Diametro-Palmer(mm)	Massa(g)
Incertezza:	0,001	0,05	0,001	0,0003
1	20,018	20,15	11,975	6,1070
2	20,021	20,05	11,985	6,1080
3	20,019	20,10	12,018	6,1070
4	20,020	20,10	11,974	6,1070
5	20,019	20,10	11,983	6,1080
6	20,011	20,05	11,985	6,1080
7	20,021	20,10	11,978	6,1050
8	20,019	20,10	11,979	6,1080
9	20,015	20,10	11,986	6,1070
10	20,011	20,15	11,980	6,1090
11	20,011	20,10	11,982	6,1090
12	20,015	20,05	11,979	6,1090
13	20,011	20,05	11,989	6,1080
14	20,015	20,10	11,990	6,1090
15	20,020	20,05	11,981	6,1090
16	20,012	20,05	11,982	6,1080
17	20,009	20,05	11,978	6,1070
18	20,015	20,10	11,984	6,1090
19	20,015	20,10	11,980	6,1090
20	20,019	20,05	11,971	6,1080
21	20,025	20,05	11,989	6,1090
22	20,019	20,05	11,984	6,1080
23	20,020	20,10	11,980	6,1070
24	20,010	20,10	11,991	6,1080
25	20,010	20,10	11,980	6,1070
26	20,021	20,05	11,975	6,1080
27	20,020	20,10	11,992	6,1090
28	20,025	20,10	11,981	6,1100
29	20,010	20,10	11,973	6,1080
30	20,020	20,15	11,978	6,1080

Tabella 2: Riepilogo dei valori di altezza misurata con Palmer e nonio, diametro misurato con Palmer e massa del cilindro 9 dei campioni A.

	Media	σ^2	σ	Max	Min
Altezza-Palmer(mm)	20,017	2,0e-5	0,00468	20,025	20,009
Altezza-nonio(mm)	20,09	9,9e-5	0,03198	20,15	20,05
Diametro-Palmer(mm)	11,983	7,0e-5	0,00854	12,018	11,971
Massa(g)	6,1080	1,0e-06	0,00100	6,1100	$6,\!1050$

Tabella 3: Misure della variazione del livello dell'acqua in una provetta graduata in seguito all'inserimento graduale di 10 coppie di 3 cilindri.

	Massa(g)	Volume $V(ml)$	Variazione volume $\Delta V(\text{ml})$
Incertezza:	0,0003	0,5	0,5
Condizione iniziale:	0,0000	115,0	0,0
1	11,2620	119,0	4,0
2	$29,\!2920$	126,0	11,0
3	44,0600	131,0	16,0
4	58,6300	136,0	21,0
5	69,8700	140,0	25,0
6	86,8000	146,0	31,0
7	101,0500	153,0	38,0
8	119,4800	159,0	44,0
9	134,1300	164,0	49,0
10	$143,\!5400$	168,0	53,0

Tabella 4: Singole misurazioni di altezza con Palmer e nonio, di diametro con Palmer e di massa sui 30 cilindri. Viene riportata in alto l'incertezza degli strumenti e la media delle misure.

	Altezza-Palmer(mm)	Diametro-Palmer(mm)	Massa(g)
Incertezza:	0,001	0,001	0,0003
Media:	20,024	10,500	4,7842
1	21,060	11,970	6,0960
2	20,080	11,960	6,0610
3	20,012	7,950	2,6940
4	19,820	11,915	5,9850
5	20,019	9,972	4,2630
6	20,050	11,955	6,1080
7	18,905	8,050	2,6000
8	20,040	7,970	2,7030
9	20,017	11,983	6,1070
10	18,178	9,935	3,8130
11	19,990	7,969	2,6940
12	19,995	11,960	6,0990
13	20,030	9,945	4,2180
14	20,030	11,945	6,1050
15	19,694	11,920	5,9330
16	20,019	9,955	4,2100
17	20,005	11,970	6,1110
18	20,596	9,952	4,3310
19	18,320	11,922	5,5110
20	19,975	7,960	2,6940
21	22,020	8,050	3,0420
22	20,705	9,960	4,3330
23	20,020	11,962	6,1060
24	20,740	11,940	$6,\!2590$
25	22,372	$9{,}955$	4,7090
26	20,090	9,989	4,0240
27	17,945	8,055	2,4620
28	20,010	11,960	6,0580
29	19,970	11,978	6,0890
30	20,021	11,985	6,1080

Tabella 5: Misure di Offset registrate sul Palmer

	Offset (mm)
Media:	0,006
σ :	0,004
1	0.005
2	0.009
3	0.009
4	0.005
5	0.005
6	0.001
7	0.000
8	0.009
9	0.010
10	0.009

Tabella 6: Misure di volume e densità dei 30 campioni

	Volume (cm^3)	$\rho\left(\frac{g}{cm^3}\right)$
1	2,370	2,572
2	$2,\!256$	2,687
3	0,993	2,712
4	2,210	2,708
5	1,563	2,727
6	$2,\!251$	2,714
7	0,962	2,702
8	1,000	2,704
9	$2,\!257$	2,705
10	1,409	2,706
11	0,997	2,702
12	$2,\!246$	2,715
13	1,556	2,711
14	$2,\!245$	2,720
15	2,198	2,700
16	1,558	2,702
17	$2,\!251$	2,715
18	1,602	2,703
19	2,045	2,695
20	0,994	2,710
21	1,121	2,714
22	1,613	2,686
23	2,250	2,714
24	2,322	2,695
25	1,741	2,704
26	1,574	$2,\!556$
27	0,914	2,692
28	2,248	2,695
29	2,250	2,706
30	2,259	2,704

Tabella 7: Considerazioni globali su volume e densità dei 30 campioni

	Media	σ^2	σ	Max	Min
Volume (cm^3)	1,775	0,2663	0,5249	2,370	0,915
$\rho\left(\frac{g}{cm^3}\right)$	2,696	0,0013	0,0371	2,727	2,556

Tabella 8: Misure di volume e densità ripetute 30 volte sul campione 9

	Volume (cm^3)	$\rho\left(\frac{g}{cm^3}\right)$
1	2,255	2,709
2	$2,\!259$	2,704
3	$2,\!271$	2,689
4	2,254	2,709
5	2,258	2,705
6	2,258	2,706
7	$2,\!256$	2,706
8	2,256	2,707
9	2,258	2,704
10	2,256	2,708
11	2,256	2,707
12	2,256	2,708
13	2,259	2,704
14	2,260	2,703
15	$2,\!257$	2,707
16	$2,\!257$	2,707
17	$2,\!255$	2,709
18	2,258	2,706
19	$2,\!256$	2,708
20	2,253	2,711
21	2,261	2,702
22	2,258	2,705
23	2,257	2,706
24	2,260	2,703
25	2,256	2,708
26	2,255	2,709
27	2,261	2,702
28	2,258	2,706
29	2,253	2,711
30	2,256	2,708

Tabella 9: Considerazioni globali su volume e densità del campione 9

	Media	σ^2	σ	Max	Min
Volume (cm^3)	$2,\!257$	1,0386e-05	0,0033	2,271	2,253
$\rho\left(\frac{g}{cm^3}\right)$	2,706	$1,\!4833e\text{-}05$	0,0039	2,711	2,689