Table 3: Variant lovE Mutations

lovE	lovFp-	MO oligos used	Amino	Amino	Amino	Amino	Amino	Amino	Amino	Amino	Amino	Amino	Amino
allele	neo		Acid	Acid	Acid	Acid		Acid		Acid	Acid	Acid	Acid
	Mediated	_	Change	Change	Change	Change 4	Change 5	Change	Change 7	Change 8	Change	Change 10	Change 11
-	+/-	2624/2654	H253R	S341P) I)) I	-1) I) I	2	
2	-/+	2624/2654	R121W	S133L	S322G								
ဧ	+++	2624/2654	C73R	A83V	T135I								
4	++	2624/2654	C73R	E177G									
2	++	2624/2654	C73R										
9	-/+	2624/2654	C153Y	E197K	T281A								
7	+	2624/2654	C73R	T256A	N466S								
8	+++	2624/2654	C73R	E141V									
6	‡	2624/2654	C73R	E303K									
10	+++	2624/2654	Q41K										
16	+++	2680/2686	Q41K	P16A	G23S	T9M	Q362E						
19	-/+	2700/2701	R21H	S34A	Q80H	A84S	E303D	H374D	A440T	A441V	C445S	P469S	
20	+	2700/2701	F31L	T409i									
21	+++	2700/2701	F31L	M97I	E113D	D146N	P163S	N367I	H458Y				
30	-/+	2681/2686	143V	Q295L									
31	‡	2680/2686	F31L	P101S	C153R	C159S	E162K	R293L	S311N				
32	+	2680/2686	L14I	E18V	G138C	E338G	V361L	P389S	N400S				
33	++	2680/2686	Q41R	S174Y	A402T								
34	++	2680/2686	F31L	T52I	P101Q	P108S	V111I						
36	-/+	2700/2701	D85N	1143F	M232I	T315I	S382Y	M385K					
37	++	2700/2701	T46I	Q62R	K77R	S323C	N367Y	V373I					
38	+/-	2700/2701	Q41R	T294I	P310L	G337D	P389L	A394V	G436S				
39	+	2680/2686	T52N	V111I	T139	V184I	T281A						
40	++++	2680/2686	Q41R	D4E	V87I	D110E	E141K	A189T	N276D	T347R	N367I	Q377R	A425T
41	+/-	2680/2686	D131N	S133L	R312G	A429G							
wild- tvpe	,	N/A	N/A										

15

20

25

Table 4 summarizes amino acid substitutions that were isolated multiple times, suggesting that they are particularly important for improving *lovE* variant activity on *lovFp-HIS3p-neo* expression.

10

Table 4: lovE Mutations Isolated Multiple Times

Amino Acid Change	Number of Times Isolated in <i>lovE</i> 1-41	lovE variant
F31L	4	20, 21, 31, 34
Q41K	2*	10, 16
Q41R	3*	33, 38, 40
T52I/T52N	1 each	34, 39
C73R	6*	3, 4, 5, 7, 8, 9
P101S/P101Q	1 each	31, 34
V111I	2	34, 39
S133L	2	2, 41
E141V, E141K	1 each	8, 40
C153Y/C153R	1 each	6, 31
T281A	2	6, 39
N367I/N367Y	2/1	21, 40, 37
P389S/P389L	1 each	32, 38

^{*} allele was isolated in additional lovE variants that were not fully sequenced

Example 5: Increased lovF-lacZ Expression in S. cerevisiae

In order to quantify the increase in lovF expression, β -galactosidase activity was measured in lovE variant transformed S. cerevisiae strains that also harbored lovFp-lacZ reporter derivative plasmids. lovF-lacZ reporter derivative plasmids were constructed as follows.

Plasmid MB1918 contains the <code>lovFp-lacZ</code> reporter gene. It can be derived from pRS424 (Sikorski and Hieter (1989) <code>Genetics</code> 122:19-27). First, primers MO107 (SEQ ID NO:25) and MO197 (SEQ ID NO:26) are used to PCR amplify the lacZ gene from Yep355 (Myers, et al., <code>Gene 45:299-310 (1986))</code>. This lacZ-containing fragment was inserted into the <code>BamHI-HindIII</code> sites of pRS416 (Sikorski and Hieter, <code>Genetics 122:19-27 (1989))</code>. This same <code>lacZ</code> fragment can be cut out of the resulting vector with <code>KpnI-NotI</code> and inserted into the same sites of pRS424 to create pRS424-lacZ. Primers MO1293 (SEQ ID NO:27) and MO1294 (SEQ ID NO:28) are used

20

25

5 to PCR amplify a 2.09 kb fragment of the *lovF* promoter from A. terreus genomic DNA. The *lovF* promoter fragment was then cut with *NotI-BglII* and inserted into *NotI-BamHI* linearized pRS424-*lacZ*.

Plasmid MB2114 contains the *lovF*p-*CYC1*p-lacZ reporter gene. It can be derived from pRS424-lacZ (see MB1918 plasmid construction). Primers MO1787 (SEQ ID NO:29) and MO1788 (SEQ ID NO:30) are used to amplify the 264 bp basal *CYC1* element from pRS415 CYC1 (Mumberg, et al., Gene 156:119-122 (1995)). This 264 bp fragment was inserted upstream of the pRS424-lacZ derivative which has been digested with *SpeI-BamHI*. Finally, the *lovF* promoter from MB1918 was PCR amplified with MO1793 (SEQ ID NO:31) and MO1794 (SEQ ID NO:32) and inserted into the *NotI-SpeI* sites to create MB2114.

Yeast strains utilized in this study include strains MY2145 and MY2159, which are both derived from the S. cerevisiae sigma 1278b strain background; the genotypes are both strains are as follows: MATa $ura3\Delta0$ $leu2\Delta0$ $his3\Delta::hisG$ $trp1\Delta0::hisG$. MY2145 and MY2159 contain the lovFp-lacZ reporter plasmids MB2114 and MB1918, respectively.

MY2124 transformed with individual lovE variant plasmids was mated to S. cerevisiae strains MY2154 and MY2159. Diploids were selected on SC-UraTrp media. Multiple diploids from each individual mating were assayed 30 for $lov {\it Fp-lacZ}$ expression using 96 well format β galactosidase assays. For β -galactosidase assays, cells were transferred from transformation plates to 96-well microtiter plates containing 200 μl Z buffer. 12 strains were transferred simultaneously using a 12-channel multi-35 pipettor to scoop cells from transformation plates. Duplicate samples were prepared for all assays. OD600 readings were taken on samples in Z buffer. These values were used to normalize for equal cell number in all assays. After determining $OD_{600}\text{, }150~\mu\text{l}$ of each sample in 40