

Linear Regression using Python

What is Regression?

- A technique of finding the relationship between two or more variables
- Change in dependent variable is associated with a change in one or more independent variables.

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

What is Regression?

Regression is a technique that displays the relationship between variable "y" based on the values of variable "x".

For example,.

As the temperature drops people put on more jackets to keep warm

Regression Use Case

- Temperature vs. Number of cones sold at ice cream store
- Inches of rain vs. new cars sold
- Daily Snowfall vs. number of skier visits

If you think there is a relationship between two things regression would help confirm it!

Types of Regression

There are various types of Regression, but we will focus on:

- Linear Regression
- Logistic Regression

Types of Regression

LOGISTIC REGRESSION

Continuous Variables

Categorical Variables

Solves Regression Issue

Solves Classification Issue

Straight Line

S-Curve

What is Linear Regression?

- Simple linear regression is useful for finding relationship between two continuous variables
- One is predictor or independent variable and other is response or dependent variable

<u>Regression</u>

<u>Regression</u>

<u>Regression</u> $y-\bar{y}$ $(x-\bar{x})^2(x-\bar{x})(y-\bar{y})$ y = mx + c0.4 -0.8 Dependent 3 -0.60.6 ♣ Variable 3 0.4 4 0 0 -1.6 -1.64 1.4 2.8 5 5 3.6 3 mean

$$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

<u>Regression</u>

Equation of Regression line for m = 0.1, c = 3.3 is:

y = 0.1x + 3.3

Mean Square Error

$$m = 0.1$$

 $c = 3.3$
 $y = 0.1x + 3.3$

For given m = 0.1 & c = 3.3, Lets predict values for y when $x = \{1,2,3,4,5\}$

$$y = 0.1 \times 1 + 3.3 = 3.2$$

 $y = 0.1 \times 2 + 3.3 = 3.1$
 $y = 0.1 \times 3 + 3.3 = 3.0$
 $y = 0.1 \times 4 + 3.3 = 2.9$
 $y = 0.1 \times 5 + 3.3 = 2.8$

Mean Square Error

$$m = 0.1$$

 $c = 3.3$
 $y = 0.1x + 3.3$

For given m = 0.1 & c = 3.3, Lets predict values for y when $x = \{1,2,3,4,5\}$

$$y = 0.1 \times 1 + 3.3 = 3.2$$

 $y = 0.1 \times 2 + 3.3 = 3.1$
 $y = 0.1 \times 3 + 3.3 = 3.0$
 $y = 0.1 \times 4 + 3.3 = 2.9$
 $y = 0.1 \times 5 + 3.3 = 2.8$

Finding the best Fit Line

х	y_p
1	3.2
2	3.1
3	3.0
4	2.9
5	2.8

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

X	у	y_p	$(y_p - \bar{y})$
1	4	3.2	3.2-3.6
2	3	3.1	
3	4	3.0	
4	2	2.9	
5	5	2.8	

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

Independent Variable

X	y	y_p	$(y_p - \overline{y})$	$(y-\overline{y})$
1	4	3.2	-0.4	4 – 3.6
2	3	3.1	-0.5	
3	4	3.0	-0.6	
4	2	2.9	-0.7	
5	5	2.8	-0.8	

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

$\boldsymbol{\mathcal{X}}$	\mathcal{Y}	y_p	$(y_p - \bar{y})$	$(y-\bar{y})$
1	4	3.2	-0.4	0.4
2	3	3.1	-0.5	-0.6
3	4	3.0	-0.6	0.4
4	2	2.9	-0.7	-1.6
5	5	2.8	-0.8	1.4

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

y_p	$(y_p - \bar{y})$	$(y-\bar{y})$	$(y_p - \bar{y})^2$
3.2	-0.4	0.4	$(-0.4)^2$
3.1	-0.5	-0.6	
3.0	-0.6	0.4	
2.9	-0.7	-1.6	
2.8	-0.8	1.4	

 $R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$

Independent $\sum (y - \bar{y})$

y_p	$(y_p - \bar{y})$	$(y-\overline{y})$	$(y_p - \bar{y})^2$
3.2	-0.4	0.4	0.16
3.1	-0.5	-0.6	0.25
3.0	-0.6	0.4	0.36
2.9	-0.7	-1.6	0.49
2.8	-0.8	1.4	0.64

 $R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$

Independent Variable

y_p	$(y_p - \overline{y})$	$(y_{-}\overline{y})$	$(y_p - \bar{y})^2$	$(y-\bar{y})^2$
3.2	-0.4	0.4	0.16	$(0.4)^2$
3.1	-0.5	-0.6	0.25	
3.0	-0.6	0.4	0.36	
2.9	-0.7	-1.6	0.49	
2.8	-0.8	1.4	0.64	

 $R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$

y_p	$(y_p - \overline{y})$	$(y-\overline{y})$	$(y_p - \bar{y})^2$	$(y-\bar{y})^2$
3.2	-0.4	0.4	0.16	0.16
3.1	-0.5	-0.6	0.25	0.36
3.0	-0.6	0.4	0.36	0.16
2.9	-0.7	-1.6	0.49	2.56
2.8	-0.8	1.4	0.64	1.96

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

Independent Variable

y_p	$(y_p - \bar{y})$	$(y-\overline{y})$	$(y_p - \bar{y})^2$	$(y-\bar{y})^2$
3.2	-0.4	0.4	0.16	0.16
3.1	-0.5	-0.6	0.25	0.36
3.0	-0.6	0.4	0.36	0.16
2.9	-0.7	-1.6	0.49	2.56
2.8	-0.8	1.4	0.64	1.96

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}} = \frac{1.9}{5.2}$$

Independent Variable

 \sum 1.9 \sum 5.2

y_p	$(y_p - \overline{y})$	$(y-\overline{y})$	$(y_p - \bar{y})^2$	$(y-\bar{y})^2$
3.2	-0.4	0.4	0.16	0.16
3.1	-0.5	-0.6	0.25	0.36
3.0	-0.6	0.4	0.36	0.16
2.9	-0.7	-1.6	0.49	2.56
2.8	-0.8	1.4	0.64	1.96

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.36$$

Independent Variable

 \sum 1.9 \sum 5.2

www.intellipaat.com

India: +91-7847955955

US: 1-800-216-8930 (TOLL FREE)

sales@intellipaat.com