Алгебры

Харитонцев-Беглов Сергей

8 ноября 2021 г.

Содержание

1. 1e	ория чисел	Т
1.1	1 НОД, делимость, линейные диофантовы уравнения	1
2. Π _I	родолжение теории чисел	4
2.1	1 Пара комментариев про предыдущую лекцию	4
2.2	2 Основная теорема арифметики	4
3. Ko	ольца вычетов и их друзья	7
3.1	1 Группы	7
3.2	2 Кольца	8
3.3	3 Построение кольца вычетов	8
3.4	4 Квадратное уравнение	10
3.5	5 Китайская теорема об остатках	10
3.6	6 Группы вычетов и криптографические протоколы	15
3.7	7 Алгоритм RSA	16
3.8	8 Генерация простых, тесты на простоту	16
4. M	4. Многочлены	

Алгебры Теория чисел

1. Теория чисел

1.1. НОД, делимость, линейные диофантовы уравнения

Определение 1.1. Диофантовым уравнение называется уравнение, которое можно решить в \mathbb{Z} .

Рассмотрим линейное диофантово уравнене

$$ax + by = c$$

Если бы мы были в \mathbb{R} , то решение быстро бы нашлось: $y = \frac{c-ax}{b}$. Но в целых штуках такая штука не всегда будет решением, т.к. b не всегда делит c-ax.

Определение 1.2. a делится на b (a : b, b|a), если $\exists c \in \mathbb{Z} : a = bc$.

Простые свойства:

- 1. $\forall a : a : 1$.
- $2. \forall a: 0: a.$
- 3. $\forall a, b, c, k, l \in \mathbb{Z} : a : c \wedge b : c \Rightarrow (ka + lb) : c$.

Доказательство. $a,b:c\Rightarrow \exists d,e: \left\{ \begin{array}{l} a=c\cdot d\\ b=c\cdot e \end{array} \right.$. Тогда $ka+lb=k\cdot cd+l\cdot ce=c\cdot (kd+le)\Rightarrow (ka+lb):c$

- 4. $\forall k \neq 0, k \in \mathbb{Z} : a : b \iff ak : bk$.
- 5. $a : b \iff a^2 : b^2$.
- 6. $a : b \Rightarrow \begin{bmatrix} |a| \geqslant |b| \\ a = 0 \end{bmatrix}$.
- 7. $a : b, b : c \Rightarrow a : c$.
- 8. a : a.
- 9. $a : b, b : a \Rightarrow a = \pm b$.

Теорема 1.1 (О делении с остатком). $a,b \in \mathbb{Z}, \exists ! (q,r) \colon \left\{ \begin{array}{l} q,r \in \mathbb{Z} \\ a = b \cdot q + r \\ 0 \leqslant r < |b| \end{array} \right.$

Доказательство.

- Единственность. Пусть есть два результата: $a = b \cdot q_1 + r_1$ и $a = b \cdot q_2 + r_2$. Тогда приравняем: $b \cdot q_1 + r_1 = b \cdot q_2 + r_2 \iff b(q_1 q_2) = r_2 r_1 \xrightarrow{r_1, r_2 \in [0; |b| 1]} r_2 r_1 \vdots b \xrightarrow{\text{Свойство 6}} r_2 r_1 = 0 \iff r_1 = r_2 \Rightarrow b(q_1 q_2) = 0 \iff q_1 = q_2$
- \bullet Существование. Здесь мы для конкретного b проверяем, что все a подходят.

I.
$$a \ge 0, b \ge 0$$
.

- База: a = 0. $0 = b \cdot 0 + 0$. (0,0) подходит.
- Переход: $a \rightarrow a + 1$.

$$a = b \cdot q + r$$
, где $0 \leqslant r < b$.

$$a + 1 = b \cdot q + (r + 1).$$

- * r < b 1. Тогда $r + 1 < b \Rightarrow (q, r + 1)$ подходит.
- * r = b 1. Тогда $a + 1 = b \cdot q + b = b \cdot (q + 1) \Rightarrow (q + 1, 0)$ подходит.
- II. a < 0, b > 0. $a < 0 \Rightarrow -a > 0$.

Из I: $\exists (q,r): -a = b \cdot q + r$, где $0 \leqslant r < b$. Соответственно a = -bq - r.

- -r = 0. $a = b \cdot q + 0 \Rightarrow (-q, 0)$ подходит.
- $-r > 0 \Rightarrow r \in [1; b-1]$. $a = -bq b + b r = b \cdot (-q-1) + b r \Rightarrow (-q-1, b-r)$ подходит
- III. $b<0\iff -b>0$. $\exists q,r:a=(-b)\cdot q+r$, где $0\leqslant r<|b|$, тогда $a=b(-q)+r\Rightarrow (-q,r)$ подходит

Вернемся к диофантову уравнению ax + by = c, где a, b, c фиксированы, а x, y — переменные. Пусть только a, b — фиксированы. Тогда подумаем, когда же ax + by = c имеет решения. Тогда решим задачу: описать $\{ax + by \mid x, y \in \mathbb{Z}\} =: \langle a, b \rangle$

Пример. $\langle 1, b \rangle = \mathbb{Z}$

Пример. $\langle 4,6 \rangle =$ четные числа

Заметим:

- 1. $\forall m, n \in \langle a, b \rangle : m + n \in \langle a, b \rangle$
- 2. $m \in \langle a, b \rangle \Rightarrow km \in \langle a, b \rangle \forall k$

Определение 1.3. Пусть $I \subset \mathbb{Z}$. I называется идеалом, если

$$\left\{ \begin{array}{l} m,n\in I\Rightarrow m+n\in I \ (\text{замкнутость по сложению}) \\ m\in I\Rightarrow \forall k\in\mathbb{Z}\colon k\cdot m\in I \ (\text{замкнутость по домножению}) \\ I\neq\varnothing \end{array} \right.$$

Пример. $\{0\}$ — идеал.

Пример. \mathbb{Z} — идеал (собственный).

Пример. $\langle a, b \rangle$ — идеал, порожденный a и b.

 $\forall a \in \mathbb{Z} \langle a \rangle = \{ax \mid x \in \mathbb{Z}\}$ — главный идеал (порожденный a).

Пример. $\{0\} = \langle 0 \rangle, \mathbb{Z} = \langle 1 \rangle, \langle 4, 6 \rangle = \langle 2 \rangle$

Теорема 1.2. В \mathbb{Z} любой идеал главный.

Доказательство. $I=\{0\}$ — ок. Тогда пусть $I\neq\{0\}$. Пусть $a\in I \land a<0 \Rightarrow -a=(-1)a\in I \land -a\in \mathbb{N}$. То есть $I\cap \mathbb{N}\neq\varnothing$. Найдем наименьшее $r\in I\cap \mathbb{N}$. Проверим, что $I=\langle r\rangle$ (тогда I-главный). Надо проверить $\langle r\rangle\subset I \land I\subset \langle r\rangle$.

Глава #1 2 из 20 Aвтор: XБ

- $x \in \langle r \rangle$. То есть $x = r \cdot z$. Т.к. $r \in I$, то $r \cdot z \in I$ (по определению идеала), т.е. $\langle r \rangle \subset I$.
- Пусть $a \in I$. Поделим с остатком: $a = r \cdot q + r_1$, $0 \le r_1 < r$, то есть $r_1 = a r \cdot q = a + (-q) \cdot r$. Т.к. $r \in I \Rightarrow (-q) \cdot r \in I \land a \in I \Rightarrow a + (-q) \cdot r \in I$, т.е. $r_1 \in I$. Ho! $0 \le r_1 < r$, а r m минимальное натуральное из I. Тогда $r_1 = 0 \Rightarrow a = r \cdot q$, т.е. $a \in \langle r \rangle$, а значит $I \subset \langle r \rangle$.

Определение 1.4. Пусть $a, b \in \mathbb{Z}$. Тогда $d - \text{HOД}(a, b) = \gcd(a, b) = (a, b)$

Докажем единственность. $\begin{cases} a \vdots d, b \vdots d \\ a \vdots d_1, b \vdots d_1 \end{cases} \iff d \vdots d_1. \text{ Тогда } d \vdots d_1 \wedge d_1 \vdots d, \text{ а значит } d = \pm d_1.$

Теорема 1.3. 1. $\forall a, b \; \exists d = (a, b)$

- $2. \ \exists x, y \in \mathbb{Z}: \ d = ax + by$
- 3. ax + by = c имеет решение $\iff c : d$.

Доказательство. Докажем каждый пункт отдельно:

- Рассмотрим $\langle a,b\rangle$ идеал. Он главный по предыдущей теореме: $\exists d\,\langle a,b\rangle = \langle d\rangle$.
- $d \in \langle d \rangle = \langle a, b \rangle$. А значит $\exists x, y : d = ax + by$. $a = a \cdot 1 + b \cdot 0 \in \langle a, b \rangle = \langle d \rangle$, значит a : d. Аналогично b : d. С другой стороны пусть a : d, b : d, тогда $d = \underbrace{ax}_{:d} + \underbrace{by}_{:d} : d$.

Пусть $\exists d_1 \colon a \colon d_1 \wedge a \colon d_1 \Rightarrow d = ax + by \colon d_1 \Rightarrow d$ — максимальный общий делитель.

• ax + by = c имеет решение $\iff c \in \langle a, b \rangle = \langle d \rangle$. А $c \in \langle d \rangle \iff c : d$.

Определение 1.5. a,b — взаимно просты, если (a,b)=1, то есть $\langle a,b\rangle=\mathbb{Z}$

Лемма. $\begin{cases} ab : c \\ (a,c) = 1 \end{cases} \Rightarrow b : c.$

Доказательство. По условию $ab \\cdots c$, значит $\exists x \in \mathbb{Z} : ab = c \cdot x$.

Так как (a,c)=1, то $\exists y,z\in\mathbb{Z}:ay+cz=1$. Тогда домножим все на b и получим aby+czb=b.

А значит
$$\begin{cases} aby & : c \\ czb & : c \end{cases} \Rightarrow b & : c$$

Глава #1 3 из 20 Aвтор: XБ

2. Продолжение теории чисел

2.1. Пара комментариев про предыдущую лекцию

- 1. Для любого набора $a_1, \ldots, a_n \in \mathbb{Z} \ \exists \gcd(a_1, \ldots, a_n)$ и $\exists x_1, \ldots, x_n : \ HOД = x_1a_1 + \ldots + x_na_n$. HOД такое d, что $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$.
- 2. Алгоритм Евклида.
 - (a,b) = (a,b-a), но и $b = a \cdot q + r$, тогда (a,b) = (a,r).
 - Пусть $r = b \mod a$, $x_1, x_2 \in \mathbb{N}$. Сделаем последовательность $x_{n+1} = x_{n-1} \mod x_n$. Тогда $(x_1, x_2) = (x_3, x_4) = \dots$ Заметим, что x_n убывает.
 - Тогда существует такое x_n , что $(x_1, x_2) = (x_n, 0) = x_n$.

2.2. Основная теорема арифметики

Определение 2.1. $x \in \mathbb{Z}, x \neq \pm 1$, тогда x — простое число, если $x = x_1x_2 \iff \begin{bmatrix} x_1 = \pm 1 \\ x_2 = \pm 1 \end{bmatrix} \ \forall x_1, x_2$

Свойство *. x — обладает свойством *, $\iff x \neq \pm 1 \land ab : x \Rightarrow \begin{bmatrix} a : x \\ b : x \end{bmatrix}$

Утверждение 2.1. p — простое $\iff p$ — обладает свойством *.

Доказательство.

- \Leftarrow Пусть $p=x_1x_2$. Тогда $x_1x_2 \vdots p$ по *: $\begin{bmatrix} x_1 \vdots p \\ x_2 \vdots p \end{bmatrix}$. Пусть $x_1=py$. $p=x_1x_2=pyx_2$. $1=yx_2\Rightarrow x_2=\pm 1$. Получили определение простого числа.
- \Rightarrow . Пусть p простое и ab \vdots p. d=(a,p), p простое $\Rightarrow d=p \lor d=1$. $d=p\Rightarrow a$ \vdots p. $d=1 \land (a,p)=1,$ по лемме ab \vdots $p \land (a,p)=1 \Rightarrow b$ \vdots p.

Теорема 2.2 (Основная теорема арифметики). Пусть $n \in \mathbb{Z}, n \neq 0$. Тогда n единственным образом с точностью до перестановки сомножителей, представимо в виде $(p_i - \text{простые}, p_i > 0)$

$$n = \varepsilon p_1 p_2 \dots p_k, \varepsilon = \pm 1 = \operatorname{sign}(n).$$

Или, иными словами, существует единственное каноническое разложение:

$$n = \varepsilon p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}, \varepsilon = \pm 1 = \text{sign}(n), a_i > 0, p_1 < p_2 < \dots < p_k.$$

Доказательство.

- 1. Существование. От противного. Пусть ∃ нераскладываемое число. Рассмотрим минимальное такое число.
 - x = 1 пустое произведение. Противоречие.

- \bullet x = p произведение из 1 члена. Противоречие.
- $x = x_1 x_2$. $x_1, x_2 \neq \pm 1 \Rightarrow x_1, x_2 < x \Rightarrow x_1, x_2$ раскладываемые. Или $x_1 = p_1 p_2 \dots p_n, x_2 = q_1 q_2 \dots q_m \Rightarrow x = p_1 p_2 \dots p_n q_1 q_2 \dots q_m$.
- 2. Единственность. Пусть есть плохие числа. X минимальное из них. $q_1q_2\dots q_n=X=p_1p_2\dots p_m$. Значит $p_1p_2\dots p_m$ і $q_1\Rightarrow p_1$ і $q_1\lor p_2\dots p_m$ і q_1 . Тогда $\exists p_i$ і q_1 . Тогда можно поделить на q_1 , но p_i простое, тогда $p_i=q_1$. Рассмотрим $X'=\frac{X}{q_1}$. $q_2q_3\dots q_n=X'=p_1p_2\dots p_{i-1}p_{i+1}\dots p_k$. X'< X, значит разложения X' равны, а значит, т.к. $p_i=q_1$, то равны и исходные разложения. Получили противоречие.

Контр-примеры для О. Т. А:

- 1. Рассмотрим $2\mathbb{Z}$ множество четных чисел. Теперь 6 простое, как и все (4k+2). Теперь как разложить на простые 60? $60 = 2 \cdot 30$, а также $60 = 6 \cdot 10$.
- 2. $\mathbb{Z} \cup \{\sqrt{5}\} = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$. Заметим, что $\mathbb{Z} \subset \mathbb{Z}\{\sqrt{5}\}$ $4 = 2 \cdot 2 = (\sqrt{5} 1)(\sqrt{5} + 1)$

Определение 2.2. $n \in \mathbb{Z}, n \neq 0, p$ — простое, тогда степень вхождения $(V_p(n) = k)$ p в n — $\max\{k \mid n : p^k\}$

В терминах разложения: $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$. $V_p(n)=a_i$, а если p нет в разложении, то $V_p(n)=0$.

Свойства: $V_p(n)$

- 1. $V_p(xy) = V_p(x) + V_p(y)$
- 2. $V_p(x+y)\geqslant \min(V_p(x),V_p(y)),$ а если $V_p(x)\neq V_p(y),$ то строгое равенство

Доказательство. $V_p(x) = a, V_p(y) = b$ и $x = p^a \cdot \widetilde{x}, y = p^b \cdot \widetilde{y}$.

Не умаляя общности: $a \geqslant b$. Тогда $x+y=p^a\widetilde{x}+p^b\widetilde{y}=p^b(p^{a-b}\widetilde{x}+\widetilde{y})$. Если a>b, то $\underbrace{p^{a-b}\widetilde{x}}+\widetilde{y}$

не делится на p. А значит $V_p(x+y) = \min(V_p(x), V_p(y))$. В случае же равенства, получаем $p^b \cdot (\widetilde{x} + \widetilde{y})$, для которого уже $V_p(x+y) \geqslant \min(V_p(x), V_p(y))$

Еще следствия из О. Т. А.

- 1. $x : y \Rightarrow V_p(x) \geqslant V_p(y) \forall$ простого p
- 2. $x = p_1^{a_1} \dots p_n^{a_n}, y = p_1^{b_1} \dots p_n^{b_n} \Rightarrow (x, y) = p_1^{\min(a_1, b_1)} \dots p_n^{\min(a_n, b_n)}$
- 3. $x=z^k\iff \forall$ простого $p\ V_p(x)$ і k
- 4. Количество натуральных делителей $x = \prod x_i^{a_i}$ равно $\tau(x) = \prod (a_i + 1)$

Доказательство. Делители X однозначно соотносятся с $\{(b_1, b_2, \dots, b_n) \mid 0 \leqslant b_i \leqslant a_i\}$

5. $\sigma(x)$ — сумма натуральных делителей x. Тогда $\sigma(x) = \frac{\prod (p_i^{a_i+1}-1)}{\prod (p_i-1)}$.

Доказательство. $\frac{\prod(p_i^{a_i+1}-1)}{\prod(p_i-1)}=\prod\frac{p_i^{a_i+1}-1}{p_i-1}=\prod(1+p_i+\ldots+p_i^{a_i})=$ раскроем скобки. = сумма делителей.

6.

 $m{Onpedenehue~2.3.}~m-{
m HOK}~({
m LCM},~[a,b]),$ если $m~\vdots~a,m~\vdots~b$ и $\forall n~n~\vdots~a\wedge n~\vdots~b \Rightarrow n~\vdots~m$ $[a,b]=\prod p_i^{\max(a_i,b_i)}$

7.
$$a, b \in \mathbb{Z}$$
 $(a, b) = 1$ $ab = c^k \Rightarrow \exists c_1, c_2 \ a = c_1^k, b = c_2^k$

3. Кольца вычетов и их друзья

Рассмотрим
$$a^2 - b^2 = 15^{2021} \iff (a - b)(a + b) = 3^{2021} \cdot 5^{2021} \Rightarrow \begin{cases} a + b = 3^k \cdot 5^l \\ a - b = 3^{2021 - k} \cdot 5^{2021 - l} \end{cases} \Rightarrow a = \frac{3^k \cdot 5^l + 3^{2021 - k} \cdot 5^{2021 - l}}{2}.$$

Уравнение $81a^2-169b^2=15^{2021}$ — тоже решается. А вот $a^2-2b^2=15^{2021}\iff (a-\sqrt{2}b)(a+\sqrt{2}b)=3^{2021}5^{2021}$ уже не решается в целых числах. Если вылезать, то надо расписывать разложение $a+\sqrt{2}b$, "3", "5" и единственность разложения на множители.

Еще один пример: $a^2+b^2=15^{2021}$. Посмотрим на остатки от деления на 4: $a^2,b^2 \mod 4 \in \{0,1\},15^{2021} \mod 4=3$. Но для этого нам нужно понимать что-то про кольцо вычетов по модулю.

3.1. Группы

Определение 3.1. Группой называется пара (G,*), где G — множество, а $*: G \times G \to G$ — бинарная операция, так что выполнены свойства:

- 1. $\forall a, b, c \in G : (a * b) * c = a * (b * c)$. Ассоциативность.
- 2. $\exists e \in G : \forall a \in G \ a * e = e * a = a$. Существование нейтрального элемента.
- 3. $\forall a \in G \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$. Существование обратного элемента.

Несколько примеров:

- 1. $(\mathbb{Z}, +), e = 0, a^{-1} = -a.$
- 2. $(\mathbb{Q} \setminus 0, \cdot), e = 1, a^{-1} = \frac{1}{a}$.
- $3. \ (2^M,\triangle), \ e=\varnothing, A^{-1}=A.$

Определение 3.2. Группа G называется абелевой, если $\forall x, y \in G : x * y = y * x$.

Пример Главный пример группы. Пусть $G = S(M) = \{f : M \to M \mid f -$ биекция $\}$, операция — композиция функций

- Ассоциативность упражнение.
- Нейтральный элемент f(x) = x, тождественное отображение.
- $f^{-1} =$ обратная функция. Она существует, так как f биекция.

Получили группы по композиции.

Пример. $M = \{1, 2, 3\}$. $f_1, f_2 : M \to M$ — биекция. f_1 — меняет местами 1 и 2: $1 \to 2, 2 \to 1, 3 \to 3$, f_2 переставляет по циклу: $1 \to 2, 2 \to 3, 3 \to 1$. $f_2 \circ f_1 : 1 \to 3, 2 \to 2, 3 \to 1$. $f_1 \circ f_2 : 1 \to 1, 2 \to 3, 3 \to 2$. Ну значит группа не абелева.

Докажем простейшие свойства групп:

1. З! нейтральный элемент.

Доказательство: заметим, что $e_1 = e_1 * e_2 = e_2$

2. \exists ! обратный элемент.

Доказательство: пусть b, c — обратные к a. Тогда (b*a)*c = e*c = c, но при этом b*(a*c) = b*e = b. Значит b = c.

3. $a * b = a * c \iff b = c$

Доказательство: $a * b = a * c \iff (a^{-1} * a) * b = (a^{-1} * a) * c \iff e * b = e * c \iff b = c$

3.2. Кольца

Определение 3.3. Кольцо — тройка $(R, +, \cdot)$ (R — множество, $+, \cdot : R \times R \to R)$, такая что:

1–4. (R, +) — абелева группа. Нейтральный элемент обозначается 0, обратный к a - -a.

5.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 и $(b+c) \cdot a = b \cdot a + b \cdot c$. Дистрибутивность.

Onpedenehue 3.4. Кольцо R называется ассоциативным, если выполнено

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

Onpedenetue 3.5. Кольцо R называется коммутативным, если

7.
$$a \cdot b = b \cdot a$$

Определение 3.6. Кольцо R называется кольцом с 1, если

8.
$$\exists 1 \in R : 1 \cdot a = a \cdot 1 = a$$

Пример. $(\mathbb{Z}, +, \cdot)$ — коммутативное ассоциативное кольцо с 1.

Определение 3.7. Коммутативное ассоциативное кольцо с 1 называется полем, если выполнена

9.
$$\forall a \in R \setminus \{0\} \exists b \in R \ ab = 1 \land 1 \neq 0$$

Пример. $(\mathbb{Q}, +, \cdot)$ — поле, а вот $(\mathbb{Z}, +, \cdot)$ — не поле.

3.3. Построение кольца вычетов

Определение 3.8. Пусть $a, b \in \mathbb{Z}$, говорят, что a сравнимо с b по модулю n ($a \equiv b \pmod n$), если $(a - b) \in n$. Эквивалентное определение: a и b имеют одинаковые остатки по модулю n.

Докажем, что сравнимость по модулю — отношение эквивалентности.

- $a \equiv a \pmod{n} \iff 0 \vdots n$
- (a-b): $n \iff (b-a)$: $n \Rightarrow a \equiv b \pmod{n} \iff b \equiv a \pmod{n}$.
- (a-b) : $n \wedge (b-c)$: $n \Rightarrow (a-b+b-c)$: $n \iff (a-c)$: n

Наблюдение. $a \in \mathbb{Z} \Rightarrow \overline{a} = \{b \mid a \equiv b\} = \{a + kn \mid k \in \mathbb{Z}\}. \mathbb{Z} = \overline{0} \cup \overline{1}...$

Определение 3.9. Фактор множества по отношению \equiv обозначается $\mathbb{Z}/n\mathbb{Z}$.

 $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.Элементы $\mathbb{Z}/n\mathbb{Z}$ называются классами вычетами по модулю.

1. $a \equiv b \pmod{n} \land c \equiv d \pmod{n} \iff a + c \equiv b + d \pmod{n} \land ac \equiv bd \pmod{n}$.

Доказательство
$$(a+c)-(b+d)=\underbrace{(a-b)}_{:n}-\underbrace{(d-c)}_{:n}$$
 : n .

Доказательство $ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d) \vdots n$.

Значит класс суммы и произведения зависит только от классов множителей и слагаемых.

Теорема 3.1. Пусть $n \in \mathbb{N}$. Тогда класс $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$, где $\overline{a} + \overline{b} = \overline{a + b} \wedge \overline{a} \cdot \overline{b} = \overline{a \cdot b}$ — ассоциативное коммутативное кольцо с единицей.

Доказательство. Все аксиомы — следствия из
$$\mathbb{Z}$$
. Докажем для примера $(\overline{a}+\overline{b})+\overline{c}$: $(\overline{a}+\overline{b})+\overline{c}=\overline{a+b+c}=\overline{a+b+c}=\overline{a}+\overline{b+c}=\overline{a}+(\overline{b}+\overline{c})$.

Закон сокращения не очень работает в кольце вычетов по модулю: $2 \cdot 1 = 2 \cdot 4 \pmod 6$, но $1 \neq 4 \pmod 6$.

Определение 3.10. Пусть R — коммутативное ассоциативное кольцо с единицей. Тогда $\forall a \in R: a$ — делитель нуля $\Rightarrow \exists b \neq 0: ab = 0$.

Пример. n- составное: $n=p_1p_2,\,n$ в $\mathbb{Z}/n\mathbb{Z}\overline{p_1p_2}=\overline{n}=0.$ Значит p_1,p_2- делители нуля.

Лемма. $\forall a, b, c \in R : ab = ac \land a$ — не делитель нуля $\Rightarrow b = c$.

Доказательство.
$$ab=ac$$
: $ab-ac=0 \iff a(b-c)=0$. a — не делитель нуля $\Rightarrow b-c=0 \iff b=c$.

Лемма. $a \in R$: a — обратим $\Rightarrow a$ — не делитель нуля.

Доказательство. Пусть
$$ab = 0 \Rightarrow a^{-1}(ab) = a^{-1} \cdot 0; (a^{-1}a)b = 0 \Rightarrow b = 0.$$

Замечание. Обратное неверно: в \mathbb{Z} 2 – не делитель нуля, но $\frac{1}{2} \notin \mathbb{Z}$.

Теорема 3.2. $\forall a \in Z : \overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Тогда:

- 1. \overline{a} обратим \iff (a, n) = 1
- 2. \overline{a} делитель нуля \iff $(a, n) \neq 1$.

Доказательство. \overline{a} — обратим $\iff \exists \overline{b} : \overline{a}\overline{b} = \overline{1} \iff \exists b : ab = 1 \pmod{n} \iff \exists b : ab - 1 : n \iff \exists b, k : ab - 1 = nk \iff \exists b, k : ab - nk = 1 \iff (a, n) = 1.$

$$(a,n)=1\Rightarrow \overline{a}$$
 — обратим \Rightarrow не делитель нуля.

$$(a,n)=d>1, a=dx.$$
 Тогда $\overline{a}\cdot rac{\overline{n}}{\overline{d}}=\overline{d}xrac{\overline{n}}{\overline{d}}=\overline{nx}=0$ и $rac{\overline{n}}{\overline{d}}
eq 0$. Значит $0<|rac{n}{\overline{d}}|< n$.

Cnedcmeue. n — простое $\Rightarrow \mathbb{Z}/n\mathbb{Z}$ — поле.

Доказательство. Достаточно проверить существование обратного. $\bar{a} \neq \bar{0} \iff a \not \mid n \iff (a,n)=1 \iff a$ — обратим.

Определение 3.11. \forall ассоциативного кольца с 1 R: R — называется кольцом без делителей нуля (область целостности), если делитель нуля только 0. $ab = 0 \iff a = 0 \lor b = 0$.

Замечание. R — область $\Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2 \ (a \neq 0)$.

Вернемся к диофантову уравнению ax + by = c, (a, b) = 1. Тогда $ax = c \pmod b$ и $by = c \pmod a$. Тогда $\overline{ax} = \overline{c}$ в $\mathbb{Z}/b\mathbb{Z} \xrightarrow{(a,b)=1} \overline{x} = \overline{a}^{-1}\overline{c} \pmod b$. Тогда $x = x_0 + kb$.

3.4. Квадратное уравнение

Посмотрим на $x^2 + px + q = 0$ в $\mathbb{Z}/n\mathbb{Z}$. Работает ли $x_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$. Есть проблемки:

- 1. $p^2 4q$ не квадрат в $\mathbb{Z}/n\mathbb{Z}$ (нет решений).
- 2. 2 = 0. Или $\nexists 2^{-1}$ (нельзя поделить на два).
- 3. n не простое. Тогда из $(x-x_1)(x-x_2)=0$ не следует, что $x=x_1\vee x=x_2$. Пример: $x^2-1=0\pmod 8$

3.5. Китайская теорема об остатках

Чтобы решать такие уравнения можно свести к простым модулям при помощи китайской теоремы об остатках.

Вопрос такой: как связаны $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$, $\mathbb{Z}/mn\mathbb{Z}$. Пусть $P_m: \mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z}$, а $P_{mn}: \mathbb{Z} \mapsto \mathbb{Z}/mn\mathbb{Z}$, P_m, P_{mn} — гомоморфизмы соответствующих колец.

Определение 3.12. Гомоморфизмом колец $f: R_1 \mapsto R_2$ называется такое отображение, что $\forall r_1, r_2 \in R_1: f(r_1 + r_2) = f(r_1) + f(r_2), f(r_1 r_2) = f(r_1) \cdot f(r_2), f(1) = 1.$

Определение 3.13. Гомоморфизмом группы $f: G_1 \mapsto G_2$ называется такое отображение, что $\forall g_1, g_2 \in G_1: f(g_1g_2) = f(g_1) \cdot f(g_2)$.

Замечание. f — гомоморфизм групп $G_1, G_2 \Rightarrow f(e_{G_1}) = e_{G_2}$. В частности f — гомоморфизм колец $R_1, R_2 \Rightarrow f(0_{R_1}) = 0_{R_2}$.

Доказательство.
$$f(e_{G_1}) = f(e_{G_1} \cdot e_{G_1}) = f(e_{G_1}) \cdot f(e_{G_1}); \ e_{G_2} \cdot f(e_{G_1}) = f(e_{G_1}) \cdot f(e_{G_1}); \ e_{G_2} = f(e_{G_1})$$

Существует такой гомоморфизм колец $P_{mn,m}$, что $P_{mn,m} \cdot P_{mn} = P_m$ (тут подразумевается композиция гомоморфизмов)

Доказательство. Предъявим такой гомоморфизм: $P_{mn,m}(\overline{a_{mn}}) = \overline{a_m}$.

 $Koppeкmнocmь. \ \overline{a_{mn}} = \overline{b_{mn}} \iff a \equiv b \pmod{mn} \iff a - b : mn \Rightarrow a - b : m \Rightarrow \overline{a_m} = \overline{b_m}$

Аналогично существует гомоморфизм $P_{mn,n}$. То есть $\overline{a_{mn}} \to (\overline{a_m}, \overline{a_n})$ — отображение. То есть $\mathbb{Z}/mn\mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Отступление.

Определение 3.14. R_1, R_2 — кольца. Рассмотрим $(R_1 \times R_2, +, \cdot) : (r_1, r_2) +_{R_1 \times R_2} (r_1' r_2') \coloneqq (r_1 +_{R_1} r_2, r_2 +_{R_2} r_2')$, где $+_{R_1 \times R_2}, +_{R_1}, +_{R_2}$ — операции сложения для соответствующих множеств. Тоже самое для умножения. Тогда $R_1 \times R_2$ — тоже кольцо, т.к. соответствующие свойства операций унаследуются, что можно проверить самостоятельно. Но заметка: если R_1 и R_2 были областями целостности, то их произведение областью целостности почти никогда не будет.

Итак мы построили гомоморфизм $\mathbb{Z}/mn\mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, назовём его $i_{m,n}$. Подумаем про его свойства. Во-первых заметим, что слева mn элементов, но и справа mn элементов!

Определение 3.15. Биективный гомоморфизм (групп, колец, ...) (называется изоморфизмом, \cong) если каждым a_i задано ровно одно b_j и наоборот.

Теорема 3.3 (Китайская теорема об остатках). Пусть (m,n)=1, тогда $\mathbb{Z}/mn\mathbb{Z}\cong\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$.

Доказательство.

- 1. $i_{m,n}$ инъективно. Пусть $i_{m,n}(\overline{a_{m,n}})=(\overline{a_m},\overline{a_n}),\ i_{m,n}(\overline{b_{n,m}})=(\overline{b_m},\overline{b_n})\Rightarrow a-b\ \vdots\ m\wedge a-b\ \vdots$ $n\xrightarrow[m]{(n,m)=1} a-b\ \vdots\ mn.$
- 2. Раз $i_{m,n}: \mathbb{Z}/nm\mathbb{Z} \mapsto \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ инъективно и $|\mathbb{Z}/nm\mathbb{Z}| = |\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}|$, то $i_{m,n}$ сюръективно, а значит и биективно.

Теорема 3.4 (КТО 2). $m_1, m_2, m_3, \ldots, m_n \in \mathbb{Z} \wedge (m_i, m_j) = 1 \Rightarrow \mathbb{Z}/m_1, m_2, \ldots, m_n \mathbb{Z} \mapsto \mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}/m_2 \mathbb{Z} \ldots$ - изоморфизм колец.

Теорема 3.5 (КТО без колец). $\forall m_1, \ldots, m_n \in \mathbb{Z} : \forall i, j(m_i, m_j) = 1, \forall a_1, \ldots, a_n \Rightarrow \exists x_0 \in Z : x \equiv a_1 \pmod{m_1} \land \ldots \land x \equiv a_n \pmod{m_n} \iff x \equiv x_0 \pmod{\prod_i m_i}$

То есть по факту мы хотим получить обратную функцию к $f_{m_1,m_2,...}: \overline{a_{m_1m_2m_3}} \mapsto (\overline{a_{m_1}}, \overline{a_{m_2}}, \overline{a_{m_3}}).$ Пусть тогда $g = f^{-1}$. Заметим, что g — гомоморфизм колец. Раз g сохраняет операции, то $g(\overline{x}, \overline{y}, \overline{z}) = g(\overline{x}, 0, 0) + g(0, \overline{y}, 0) + g(0, 0, \overline{z}) = \overline{x}g(1, 0, 0) + \overline{y}g(0, 1, 0) + \overline{z}g(0, 0, 1).$

Пусть
$$x = g(1, 0, 0) \iff \begin{cases} x \equiv 1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \\ x \equiv 0 \pmod{m_3} \end{cases} \iff \begin{cases} x \equiv 1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \end{cases}$$
.

В группе $\forall a \neq e \ \forall x : ax \neq x$. Тогда посмотрим группу $(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) \supset \{(a,0) \mid a \in \mathbb{Z}/m\mathbb{Z}\} \cong \mathbb{Z}/m\mathbb{Z}$.

Тогда для любого $n \in \mathbb{N} : n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_3} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \dots \times \mathbb{Z}/p_n^{\alpha_n}$.

Пример. Для того, чтобы решить $b^2 = a$ надо решить $b_i^2 = a$ для все составляющих.

Определение 3.16. Пусть C — группа $(a \in C)$, тогда порядок элемента a: $\operatorname{ord}(a) = \{\min k \in \mathbb{N} \mid a^k = 1\}$. А если такого k нет, то $\operatorname{ord}(a) = \infty$

Лемма. Пусть G — группа $(a \in G)$. $\langle a \rangle = \{a, a^2, \dots; a^{-1}, (a^{-1})^2, \dots, e\} = \{a^k \mid k \in \mathbb{Z}\}$. Тогда $(\langle a \rangle, *)$ — группа.

Доказательство. Проверим замкнутость относительно операций: 0-рной $(\{\dot\} \to e)$, унарной $a \to a^{-1}$, бинарной $(a,b) \to a*b$.

- $\bullet \ e = a^0 \in \langle a \rangle$
- $b \in \langle a \rangle . b = a^k \Rightarrow b^{-1} = a^{-k} \in \langle a \rangle .$
- $b, c \in \langle a \rangle$. $b = a^k, c = a^l \Rightarrow bc = a^{k+l} \in \langle a \rangle$.

 $Onpedenehue~3.17.~\langle a \rangle$ называется циклической группой, порожденной a.~G — циклическая группа $\iff \exists a \in G \colon G \cong \langle a \rangle$

Теорема 3.6 (О классификации циклических групп). ord $a = \infty \Rightarrow \langle a \rangle \cong (\mathbb{Z}, +)$. ord $a = k \in \mathbb{N} \Rightarrow \langle a \rangle \cong (\mathbb{Z}/k\mathbb{Z}, +)$

Доказательство. $f:(\mathbb{Z},+)\to \langle a\rangle$. То есть $k\mapsto a^k$. $f(k+l)=a^{k+l}=a^k\cdot a^l=f(k)+f(l)$, т.е. f — гомоморфизм. А ещё f — сюръекция по определению циклической группы.

Докажем инъективность. Пусть $a^k=a^l\iff a^{k-l}\cdot a^l=ea^l\iff a^{k-l}=e.$ Но ord $a=\infty!$ Значит k-l=0.

Теперь ord $a \neq \infty$. Тогда построим $f: \mathbb{Z}/k\mathbb{Z} \to \langle a \rangle$, то есть $\overline{m_k} \mapsto a^m$.

Корректность: $\overline{m_k} = \overline{n_k} \Rightarrow (m-n)$: k. То есть $m = n + k \cdot l$. Значит $a^m = a^{n+k \cdot l} \iff a^m = a^n \cdot a^{kl} = a^n$.

Аналогично первому случаю доказывается, что f — гомоморфизм и сюръекция.

Инъективность: $f(\overline{m}) = f(\overline{n}) \iff a^m = a^n \iff a^{m-n} = e, \ m-n = qk+r, 0 \leqslant r < k;$ $a^{qk+r} = e \iff (a^k)^q \cdot a^r = e \iff a^r = e, \ \text{но} \ r < k, \ \text{а} \ k$ — наименьшая натуральная степень обращения элемента в единицу, а значит r = 0, т.е. $f(\overline{n}) = f(\overline{m}) \iff (m-n) \vdots k$, т.е. мы имеем дело с одним классом эквивалентности.

Простыми словами, если ord $a=\infty \Rightarrow$ в последовательности $\{a^i\}$ - элементы не повторяются. А если ord $a\neq \infty$, то элементы повторяются с периодом k, а внутри периода элементы не повторяются.

Теорема 3.7 (Теорема Лангранжа). Пусть G — группа. $\forall G$ — n-элементная группа, тогда $\forall a \in G : n \ : \ \text{ord} \ a$

Доказательство. Пусть ord a = k. Рассмотрим отображение $m_a(x) = ax$. $m_a G \to G$. Нарисуем граф отображений (вершины — элементы G, ребра (стрелки) — $x \to ax$). $x \to ax \to a^2x \to a^3x \to \dots \to a^{k-1}x \to a^kx = x$, так как для $\forall i, j < k : a^ix = a^jx \Rightarrow i = j$.

Значит все элементы G разбиваются на циклы длины k. Следовательно n : k.

 ${\it C}$ ле ${\it d}$ c ${\it meue}$. G — конечная группа $(a \in G) \Rightarrow a^{|G|} = e$

Доказательство. ord a=k. $n=k\cdot l$ по теореме Лагранжа. Тогда $a^n=a^{k\cdot l}=\left(a^k\right)^l=e^l=e$

Пример. $(\mathbb{Z}/p\mathbb{Z},+)$. $\overline{a}^x = \underbrace{\overline{a} + \overline{a} + \overline{a} + \overline{a}}_{x \text{ pas}} = \overline{x}\overline{a}$.

Пример. p — простое.

 $G := (\mathbb{Z}/p\mathbb{Z} \setminus \{0\}, \cdot)$. |G| = p - 1. Тогда $a^{p-1} = 1$. Малая теорема Ферма.

На языке сравнений: $a \in \mathbb{Z}, a : p \Rightarrow a^{p-1} - 1 : p \iff a^{p-1} \equiv 1 \pmod{p}$.

Пример. $(\mathbb{Z}/p\mathbb{Z},+)$ — циклическая группа. А вот с G из предыдущего пункта — тоже, если p — простое. Но не очев.

Утверждение 3.8. G — группа (|G|=n). G — циклическая $\iff \exists a \in G : \text{ord } a=n$. МТФ: $\overline{a}, \overline{a}^2, \ldots$ — периодична с периодом p-1. Утверждение: $\exists \overline{a} : p-1$ — наименьший период этой последовательности.

Замечание. Пусть G — группа, |G|=p — простое. Тогда $G\cong (\mathbb{Z}/p\mathbb{Z},+)$. G — циклическая.

Доказательство. Возьмем $a \neq e$. Тогда $p : \operatorname{ord}(a) \Rightarrow \operatorname{ord}(a) = 1 \vee \operatorname{ord}(a) = p \Rightarrow a = e \vee \langle a \rangle = G \Rightarrow G -$ циклическая $\Rightarrow G \cong (\mathbb{Z}/p\mathbb{Z}, +)$.

Определение 3.18. R — ассоциативное кольцо, тогда $R^* = \{a \in R | \exists a^{-1}\}$ — группа обратимых элементов.

Проверим, что R^* — группа.

• Проверим замкнутость. $a, b \in R^* \Rightarrow \exists a^{-1} \exists b^{-1} : (ab)^{-1} = b^{-1}a^{-1}$.

- $1 \in R^*$.
- $a \in R^* : \exists a^{-1} \Rightarrow \exists (a^{-1})^{-1} = a$, значит $a^{-1} \in R^*$.

Замечание. $a^n = 1 \Rightarrow a \in R^*$. Т.к. тут записано, что $a \cdot a^{n-1} = 1$ — то есть он обратим.

Определение 3.19. Рассмотрим $R = \mathbb{Z}/n\mathbb{Z}$. Тогда $R^* = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \exists \overline{b} : \overline{a}\overline{b} = 1\} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a,n)=1\}$. Тогда $|R^*| = \varphi(n)$ — функция Эйлера.

Теорема 3.9 (Теорема Эйлера). $\forall b \in (\mathbb{Z}/n\mathbb{Z})^* = b^{\varphi(n)} = 1$

Теорема 3.10 (Теорема Эйлера). $\forall a \in \mathbb{Z} : (a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$

Эффективно вычислим $\varphi(n)$:

- 1. $n=p^k,\, p$ простое. $\varphi(n) = \{x\in\{1,\ldots,p^k\}\mid (x,p^k)=1\} = \{x\in\{1,\ldots,p^k\}\mid x\not [p] = p^k |\{p,2p,..,p^k\}| = p^k p^{k-1}.$
- 2. n составное. $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$

По КТО:

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times \ldots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}).$$

. Тогда заметим, что

$$(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}\times\ldots\times\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*=(\mathbb{Z}/p_1\mathbb{Z})^*\times\ldots\times(\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*.$$

Так как если (x_1, \ldots, x_k) — обратим, то x_i — обратимы.

Из этого получаем, что

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*| = |(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*| = \prod_{i=1}^k |(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*|.$$

Получили формулу из а). Применим её:

$$\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \dots (p_k^{\alpha_k} - p_k^{\alpha_k - 1}) = n \cdot (1 - \frac{1}{p_1}) \cdot \dots \cdot (1 - \frac{1}{p_k}).$$

Теорема 3.11 (Теорема о первообразном корне). $p \in \mathbb{Z}$ — простое $\Rightarrow (\mathbb{Z}/p\mathbb{Z})^*$ — циклическая.

Доказательство. В ноябре.

Посмотрим на устройство $\mathbb{Z}/p\mathbb{Z}$. $\exists a \in Z : \{\overline{a}, \overline{a^2}, \dots, \overline{a^{p-1}}\} = \{\overline{1}, \dots, \overline{p-1}\}.$

Тогда как устроены $(\mathbb{Z}/n\mathbb{Z})^*$ в общем случае?

Отступление: группа, порожденная множеством.

Определение 3.20. Подгруппа группы G — пара (H,*), где $H \subset G, *$ — замкнуто относительно H. Обозначается \leqslant .

Определение 3.21. Подгруппа группы G порожденная множеством S ($S \subset G$) — наименьшая по включению подгруппа G, содержащая все элементы S.

$$\langle S \rangle = \bigcap_{H < G} H$$

Замечание. $\forall I \forall H_{lpha}, \ldots, H_{\omega}, \ lpha, \ldots, \omega \in I \colon H_{i} \leqslant G \Rightarrow \bigcap_{i \in I} H_{i} \leqslant G$

Доказательство. Рассмотрим e ($\forall i \in I \ H_i$ — группа $\Rightarrow e \in H_i$) $\Rightarrow e \in \bigcap_{i \in I} H_i$.

 $\forall x \in \bigcap_{i \in I} (\forall i \in Ix^{-1} \in H_i) \Rightarrow x^{-1} \in \bigcap_{i \in I} H_i \Rightarrow \bigcap_{i \in I} H_i$ — группа (ассоциативность гарантируется определением подгруппы).

Теорема 3.12. $\forall S \subset G : \langle S \rangle = \{a_1^{\varepsilon_1} \dots a_k^{\varepsilon_k} \mid \forall i \in I a_i \in S \land \varepsilon_i = \pm 1\}$, т.е. все возможные произведения элементов из S и обратных к ним (элементы в произведении могут повторяться, k произвольное, не фиксировано)

Доказательство.

- 1. Пусть $a_1, a_2, \ldots, a_k \in S$. Тогда для любой $H \leqslant G$ $H \supseteq S$ верно:
 - (a) $a_i \in H$.
 - (b) $a_i^{\varepsilon_i} \in H$, так как H замкнута относительно $^{-1}$
 - (c) $a_1^{\varepsilon_1}a_2^{\varepsilon_2}\dots a_k^{\varepsilon_k}\in H$, так как H замкнуто относительно \cdot .

Значит $H \supset \langle S \rangle \Rightarrow \langle S \rangle \subseteq H$.

С другой стороны, сама группа $\langle S \rangle$, которую мы описали в предыдущей теореме, является корректной подгруппой G, т.е. $H = \langle S \rangle \Rightarrow H \supset S \land H \leqslant G$. Следовательно:

$$\bigcap_{H \leq G, S \subset H} H = \langle S \rangle.$$

Теорема 3.13. $(\mathbb{Z}/n\mathbb{Z})^*$ — циклическая $\iff \begin{cases} n=p^k & p>2$ — простое $n=2p^k & \text{см. выше} \\ n=2 \lor n=4 \end{cases}$

$$n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$$
. Тогда $(\mathbb{Z}/n\mathbb{Z})^*=(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^*\times\dots\times(\mathbb{Z}/p_k^{\alpha_k})^*$.

Утверждение 3.14. G_1, G_2, G — группы (конечные).

- 1. $G \cong G_1 \times G_2$. $(|G_1|, |G_2|) \neq 1 \Rightarrow G$ не циклическая.
- 2. $(|G_1|, |G_2|) = 1$ и G_1, G_2 циклическая $\Rightarrow G_1 \times G_2$ циклическая. (KTO).

Доказательство. Пусть $(|G_1|, |G_2|) > 1$. Тогда $\forall a \in G_1, b \in G_2$ $a^{|G_1|} = e_{G_1} \wedge b^{|G_2|} = e_{G_2} \Rightarrow (a,b)^{\operatorname{lcm}(|G_1|,|G_2|)} = (e,e) \Rightarrow \forall x \in G_1 \times G_2 : \operatorname{ord}(x) \leqslant \operatorname{lcm}(|G_1|,|G_2|) < |G_1| \cdot |G_2| = |G_1 \times G_2| \Rightarrow G_1 \times G_2$ — не циклическая.

Замечание. $a^{\varphi(n)}=1$. Точна ли оценка $\varphi(n)$? Если $(\mathbb{Z}/n\mathbb{Z})^*$ — циклическая (например, n — простое). Тогда да. Иначе пусть $n=pq,\ p,q$ — простые. Тогда по Эйлеру $a^{(q-1)(p-1)}=1$, а на самом деле $a^{\frac{(q-1)(p-1)}{2}}=1$.

Теперь докажем теорему о том, в каких случаях мультипликатиная группа вычетов циклическая.

Доказательство. $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Тогда $|(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*| = p_i^{\alpha_i} - p_i^{\alpha_i-1} \vdots 2$, кроме случая $p_i = 2, \alpha_i = 1$.

Поэтому, если k>2 или k=2 $p_1^{\alpha_1}, p_2^{\alpha_2} \neq 2^1 \Rightarrow \gcd$ у размеров групп не взаимно просты $\Rightarrow (\mathbb{Z}/n\mathbb{Z})^*$ — не циклическая.

Остались случаи $k = 1, n = p^a$ и $k = 2, n = 2 \cdot p^a$.

Случай $n = 2p^a, p \neq 2$. $(\mathbb{Z}/2\mathbb{Z})^* \times (\mathbb{Z}/p^a\mathbb{Z})^* = (\mathbb{Z}/p^a\mathbb{Z})^* -$ свели к случаю 1.

Пусть $n=p^a$. p=2, a=1,2 — очев. $a>2\Rightarrow (\mathbb{Z}/2^a\mathbb{Z})^*$ — не циклическая. Пусть циклическая, тогда $(\mathbb{Z}/2^a\mathbb{Z})^*=\langle x\rangle$, ord $x=2^{a-1}$. Тогда в $(\mathbb{Z}/2^a\mathbb{Z})^*$: $y^2=1\iff\exists k(x^k)^2=1\iff x^{2k}=1$. 2k : $2^{a-1}\wedge k$: $2^{a-2}\xrightarrow{x\in(0;2^{a-1})}k=0\lor k=2^{a-2}$. y^2 — имеет два решения. Ho! $1^2=(-1)^2=(2^{a-1}\pm 1)^2=1$. 4 решения. Противоречие.

Теперь, если $p \neq 2$, то группа будет циклической. А дальше на лекции произошёл кек следующего вида: доказать для случая $n = p^1$ довольно тяжело, будет потом или вообще не будет, в общем хз, а доказательство для случая $n = p^a$ выводится «позже..., это довольно элементарная выкладка..., выводится уже какими-то совсем такими ручными манипуляциями» из случая n = p, но как конкретно — сказано не было, какая досада.

Теорема 3.15. $a \in (\mathbb{Z}/p\mathbb{Z})^*$. Тогда $x^2 = a$ имеет решение $\iff a^{\frac{p-1}{2}} = 1$

Доказательство.

- \Rightarrow . $a = x^2 \Rightarrow a^{\frac{p-1}{2}} = (x^2)^{\frac{p-1}{2}} = x^{p-1} = 1 \text{ (MT}\Phi).$
- \Leftarrow . $a^{\frac{p-1}{2}}=1$. $\exists c: (\mathbb{Z}/p\mathbb{Z})^*=\langle c \rangle$. $\exists k: a=c^k$. Тогда $a^{\frac{p-1}{2}}=(c^k)^{\frac{p-1}{2}}\iff c^{\frac{k(p-1)}{2}}=1$ Та как ord $\frac{k(p-1)}{2}$ \vdots p-1. Тогда $\frac{k}{2}\in\mathbb{Z}$, то есть k=2l. $a=c^{2l}=(c^l)^2$.

3.6. Группы вычетов и криптографические протоколы

Главное отображение, которое нас интересует — $p_k : (\mathbb{Z}/p\mathbb{Z})^* \to (\mathbb{Z}/p\mathbb{Z})^* : p_k(x) = x^k$.

Заметим, что если $(p-1,k)=1\Rightarrow p_k$ — биекция: $p_k^{-1}(x)=x^l$, где $l:kl=1\pmod{p-1}$. $x\to x^k\to (x^k)^l=x^{kl}=x^1=1.$ $x\to (x^l)\to (x^l)^k=x.$

А если $(p-1,k) \neq 1$, то p_k — не биекция. Если $p-1=k\cdot s$ и g — первообразный корень, то ord g=p-1 и $(g^s)^k=1$. Тогда $1^k=1$ — не инъекция, т.к. несколько элементов перешли в единицу.

Классический протокол шифровки: протокол с закрытым ключом (ключ — способ шифровки / дешифровки).

Пусть Алиса(А) и Боб(В) хотят обмениваться информацией. Хотят придумать закрытый ключ путем пересылки сообщений.

Протокол Диффи-Хеллмана: А и В хотят сгенерировать закрытый ключ $m \in \mathbb{N}$.

- 1. Придумывают большое число p, объявляется всем
- 2. Придумывают a первообразный корень по модулю p: $\mathrm{ord}_p(\overline{a}) = p-1$, тоже объявляется всем
- 3. А: берет $x \in \mathbb{Z}$ (лучше (x, p-1) = 1) и посылает $a^x \pmod{p}$, x остаётся в тайне
- 4. В: берет $y \in \mathbb{Z}$, $a^y \mod p$, a^y отправляет, y остаётся в тайне
- 5. А вычисляет $(a^x)^y = a^{yx} \mod p$.
- 6. В: вычисляет $(a^y)^x = a^{xy} \mod p$.

Получили ключ a^{xy} .

Чтобы взломать надо найти x, y. Если есть x, то посчитать a^x просто, а вот наоборот — сложно, т.е. троллинг заключается в трудности вычисления дискретного логарифма (общая концепция — односторонние функции).

3.7. Алгоритм RSA

RSA — Rivest, Shamir, Adleman.

RSA — шифрование с открытым ключом:

- 1. А: придумывает p,q большие простые. Вычисляет $\varphi(pq)=(p-1)(q-1).$ p,q,(p-1)(q-1) закрытая часть ключа.
- 2. Выбирает $d:\in \mathbb{Z}$ (d, p-1)=(d, q-1)=1. p, q, d— закрытая часть.
- 3. Открытый ключ n = pq и $e \in \mathbb{Z} : de \equiv 1 \pmod{(p-1)(q-1)}$. Решение Л.Д.У.
- 4. В: хочет послать сообщение $(x \in \mathbb{Z}, (x, n) = 1)$ А: он посылает $x^e \pmod{n}$.
- 5. А: получает $y = x^e$ и вычисляет $y^d = (x^e)^d = x^{ed} = x^{k \cdot \varphi(n) + 1} = x \pmod{n}$.

Устойчивость: чтобы взломать, надо знать (p-1)(q-1), то нам надо просто знать p,q. Но мы не умеем делать это быстро.

3.8. Генерация простых, тесты на простоту

Теорема 3.16. $\pi(n)$ — количество простых на [1,n]. Тогда $\lim_{n\to+\infty}=\frac{\pi(n)}{\frac{n}{\ln n}}=1$.

Следствие. Случайное число на 1, n — простое с вероятностью $\frac{1}{\ln n}$

Способ генерации: возьмем p_1, p_2, \ldots, p_k — простые (небольшие). Попробуем $n = p_1^{a_1} p_2^{a_2} \ldots p_l^{a_k} + 1$, где a_i — произвольные степени. Получили число Люка.

Теорема 3.17 (Тест Люка). Пусть $b \in \mathbb{Z}$, такое что $b^{n-1} = 1 \pmod n$ и $b^{\frac{n-1}{p_i}} \neq 1 \pmod n$. Тогда n- простое.

Доказательство. $b^{n-1}=1\Rightarrow \operatorname{ord}_n(\overline{b_n})$ – делитель n-1.

 $b^{\frac{n-1}{p_i}} \neq 1 \Rightarrow \operatorname{ord}_n(\overline{b_n})$ — не делитель $\frac{n-1}{p_i}$ для любого $p_i \Rightarrow \operatorname{ord}(\overline{b_n}) = n-1 \Rightarrow |(\mathbb{Z}/n\mathbb{Z})^*| \geqslant n-1 \Rightarrow n$ — простое.

Замечание. n — простое, b — подходит $\iff b$ — первообразные корень. Их $\varphi(n-1)$. Пусть $\varphi(n-1) > \frac{n-1}{10}$, значит через к тестов будет вероятность проиграть $\left(\frac{9}{10}\right)^k$, что мало.

Замечание. Числа Люка — неоч для RSA: n=pq, p, q — числа Люка. Такие числа с большой вероятностью факторизуются: Выбираем $a\in\mathbb{Z}$, дальше $a\to a^2\to (a^2)^3\to\dots$, то есть вычисляем $a^{k!}\pmod{n}$. Помним, что $p-1=\prod p_i^{a_i}, q-1=\prod p_i^{b_i}$.

Рассмотрим $K_p = \min\{a^{k!} \equiv 1 \pmod{p} \mid k \in \mathbb{N}\}.$

 k_p, k_q - не велики. Действительно: $k_p : p-1 = \prod p_i^{a_i},$ а p_i — довольно маленькие.

Скорее всего $k_p \neq k_q$. Не умаляя общности считаем $k_p < k_q$, тогда $(a^{k_p!}, n) = p$.

Тест Ферма: $n \in \mathbb{N}, a \in [1, ..., n-1]$. Если $a^{n-1} \not\equiv 1 \pmod n$, значит n— составное.

Определение 3.22. Если n- составное, но $a^{n-1} \equiv 1 \pmod n$, то a- свидетель простоты.

Если n — составное, то или свидетелей $\leqslant \frac{\varphi(n)}{2} \leqslant \frac{n-1}{2}$, или любое взаимно простое с a является свидетелем простоты. Свидетели образуют подгруппу, а значит либо это вся группа,либо там $\leqslant \frac{\varphi(n)}{2}$ элементов.

Пусть там меньше половины, тогда после k итераций вероятность проиграть $\frac{1}{2^k}$, что довольно хорошо.

Тест Рабина-Миллера. Пусть $n-1=2^s\cdot m$. Тогда, если n- простое, то $x^2\equiv 1\pmod n$ $\Rightarrow x=\pm 1\pmod n$. Тогда берем $a\in (\mathbb{Z}/n\mathbb{Z})^*$. Считает $a^m,(a^m)^2,\ldots,(a^m)^{2^s}$. Так как n- простое \Rightarrow или $a^m=1$, или есть -1, а потом 1.

Условие Миллера-Рабина работает для $\forall a \in [1..\sqrt[7]{n}]$ или $\in [1..\log^2 n]$, если верим в гипотезу Римана.

Но Рабин заметил, что вероятность ошибиться для составного $\frac{\varphi(n)}{4}$

Алгебры Многочлены

4. Многочлены

Теперь мы многочлены будем рассматривать как самостоятельные элементы, а не как функции, ведь сами многочлены можно складывать и умножать! Причем свойства умножения и сложения удовлетворяет требованием кольца! Получили **Кольцо многочленов над кольцом** \mathbb{R} .

Но сначала рассмотрим немного другую штуку: **кольцо формальных степенных рядов** (отличие будет позже).

Определение 4.1. Пусть R — ассоциативное коммутативное кольцо. Тогда кольцо формальных степенных рядов R[[x]] — тройка $(R^{\mathbb{Z}_{\geqslant 0}}, +, \cdot)$.

$$+: (a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) := (a_0 + b_0, a_1 + b_1, \ldots)$$

· (Правило свертки): $(a_0, a_1, a_2, \ldots) \cdot (b_0, b_1, b_2, \ldots) = (a_0b_0, a_0b_1 + b_1b_0, \ldots)$, по факту: $(a_i) \cdot (b_i) = (c_i), c_n := \sum_{i=0}^n a_k b_{n-k}$

Так же можно представлять $(a_0, a_1, a_2, \ldots) \iff a_0 + a_1 x + a_2 x^2 + \ldots$ То есть, если неформально, то правило свертки — обычное раскрытие скобок.

Определение 4.2. $R^{\mathbb{Z}_{\geqslant 0}} = \{f : \mathbb{Z}_{\geqslant 0} \to R\} = \{(a_0, a_1, \ldots) | a_i \in R\}$

Теорема 4.1. R[[x]] — ассоциативное, коммутативное кольцо. Причем, если R с единицей, то R[[x]] — кольцо с единицей.

Доказательство. Заметим, что все аксиомы доказываются супер просто, ведь сложение у нас просто по координатам. Тогда получили очевидность коммутативности и ассоциативности + (следует из коммутативности и ассоциативности R). В качестве нуля берется $0 = (0, 0, 0, 0, \ldots)$. Обратный элемент $-(a_0, a_1, a_2, \ldots) = (-a_0, -a_1, -a_2 \ldots)$

Дистрибутивность — упражнение (из дистрибутивности R).

Коммутативность произведения: $c_n = \sum_{l=0}^n a_k b_{n-k} = \sum_{l=0}^n a_k b_l$, где $k,l \geqslant 0 \land k+l = n$. Тогда $c_n = \sum_{l=0}^n a_{n-l} b_l = \sum_{l=0}^m b_l a_{n-l}$ — формула свертки для $b \cdot a$.

Если $\exists 1_R$, то $(1_R, 0_R, 0_R, \dots)$ — нейтральный относительно · в R[[x]] (упражнение).

Ассоциативность (упражнение на смирение духа): $\forall f, g, h \in R[[x]](f \cdot g) \cdot h = f \cdot (g \cdot h)$. Введем много обозначений: $f = (a_n), g = (b_n), h = (c_n), f \cdot g = (d_n), g \cdot h = (e_n), (f \cdot g) \cdot h = k_n, f \cdot (g \cdot h) = (l_n)$

Хотим доказать, что $k_n = l_n \ \forall n \in \mathbb{Z}_{\geqslant 0}$. Тогда

$$k_n = \sum_{i=0}^n d_i c_{n-i} = \sum_{i=0}^n (\sum_{j=0}^i a_j b_{i-j}) c_{n-i}.$$

Воспользуемся дистрибутивностью:

$$k_n = \dots = \sum_{\substack{0 \le i \le n \\ 0 \le j \le i}} a_j b_{i-j} c_{n-i}.$$

Определим $s \coloneqq i - j, t \coloneqq n - i$, тогда

$$k_n = \dots = \sum_{\substack{j,s,t \geqslant 0\\j+s+t=n}} a_j b_s c_t \dots$$

Аналогично для l_n :

$$l_n = \dots = \sum_{\substack{j,s,t \geqslant 0\\j+s+t=n}} a_j b_s c_k \dots$$

Замечание. Если R — не коммутативное кольцо, то стоит различать ax^2, x^2a, xax .

Замечание. Существует инъективный гомоморфизм колец $i: R \to R[[x]]: a \to (a,0,0,0,\ldots)$. Это можно проверить.

Тогда не умаляя общности считаем, что R содержится в R[[x]] (в качестве подкольца).

Замечание. Положим по определению x := (0, 1, 0, 0, 0, ...).

Тогда (упражнение на индукцию) $x^n \coloneqq (0,0,\ldots,\overbrace{1}^n,0,0,\ldots)$ (1 стоит на n-ой позиции в **нумерации с нуля**)

Тогда, если $f = (a_0, a_1, a_2, \dots, a_n, 0, 0, 0)$ $(a_i \text{ при } i > n \text{ равно } 0).$

Тогда $f = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_n \cdot x^n$.

Замечание. $(a_0,a_1,a_2,\ldots)\cdot\underbrace{(0,1,0,\ldots)}_r=(0,a_0,a_1,\ldots)$

Следствие. $f : x. f = (a_i) \land a_0 = 0 \Rightarrow 1 \not f.$

Теорема 4.2. $f = (a_i)$. $f \in R[[x]] \iff a_0 \in R^*$. В частности: $R - \text{поле} \Rightarrow f - \text{обратим} \iff f \not \mid x$.

Доказательство.

- \Rightarrow . $(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (1, 0, 0, \ldots).$ $1 = a_0 b_0 \Rightarrow a_0 \in R^*.$
- \Leftarrow : будем вычислять последовательность (b_0, b_1, \ldots) . $a_0 \in R^*$, тогда: $a = a_0 b_0 \Rightarrow b_0 = a_0^{-1} = \frac{1}{a_0}$. $0 = a_0 b_1 + a_1 b_0 \Rightarrow \frac{-a_1 b_0}{a_0}$. И так далее. $0 = \sum_{i=0}^n a_i b_{n-i}$. $b_n = (-\sum_{i=1}^n a_i b_{n-i}) a_0^{-1}$.

Построили метод построения b, причем все хорошо!

Пример. $f = (1, 1, 1, 1, \ldots) = 1 + x + x^2 + x^3 + \ldots$ Тогда $\frac{1}{1+x+x^2+\ldots} = 1-x$. Тогда $1+x+x^2+x^3+\ldots = \frac{1}{1-x}$.

Теорема 4.3. Подмножество в R[[x]] $R[x] = \{(a_0, a_1, \dots \mid \exists N \forall n > N : a_n = 0\}$ — финитные последовательности, образуют подкольцо с единицей, называемое **кольцом многочленов** (вот и то самое отличие от формальных степенных рядов)).

Доказательство. Замкнутость по +: $a_n = 0$ при $n > N_1$ и $b_n = 0$ при $n > N_2$. Тогда при $n > \max(N_1, N_2)a_n + b_n = 0$.

Замкнутость по $: a_n = 0, n > N_1$ и $b_n = 0, n > N_2$. Тогда при $n > N_1 + N_2 : c_n = \sum_{i+j=n} a_i b_j = 0$. Так как при $i+j=N>N_1+N_2 \Rightarrow i>N_1 \vee j>N_2$.

$$1 \in k[x]!!!$$

Определение 4.3. $f \in k[x]$ степенью f называется $\deg f = \{\max k : a_k \neq 0\}$. Причем $\deg 0 = -\infty$

Свойства.

1. $\deg(f+g) \leqslant \max(\deg f, \deg g)$. Причем $\deg f \neq \deg g \to \deg(f+g) = \max(\deg f, \deg g)$.

Глава #4

19 из 20 Автор: Харитонцев-Беглов Сергей

2. $\deg(f \cdot g) \leqslant \deg f + \deg g$, а если R — область целостности, то $\deg(fg) = \deg f + \deg g$.

Cnedcmeue. R — область целостности $\Rightarrow R[x]$ — область целостности.

Теперь у нас K — поле.

Теорема 4.4 (О делении с остатком). $f, g \in K[x]$ $g \neq 0$. Тогда $\exists ! q, r \in K[x] : f = g \cdot q + r, \deg r < \deg g$.

Следствие. R — коммутативное, ассоциативное кольцо $a \in R$. Тогда \exists гомоморфизм колец $R[x] \to R: a_0 + a_1x + \ldots + a_nx^n \mapsto a_0 + a_1 \cdot a + \ldots + a_na^n$ — гомоморфизм эвалюации.

С другой стороны $f \in R[x]$ — полиномиальная функция. $F_f : R \to R \ a \mapsto \operatorname{ev}_a(f)$.

Определение 4.4. $f \in R[x]$. $a \in R$ — корень f, если $F_f(a) = 0$.

Теорема 4.5 (Безу). K — поле. $f \in K[x]$. $a \in K$. f = (x - a)g + r — деление с остатком.

- 1. r = f(a).
- 2. $a = 0 \iff f : (x a)$

Доказательство. $f = (x-a) \cdot g + r$, $\deg r < \deg(x-a) = 1 \Rightarrow \deg r = 0 \lor \deg r = -\infty \iff r = c \in K$.

$$F_f(a) = F_{x-a}(a)F_g(a) + F_r(a). \ f(a) = (a-a)g(a) + r \iff r = f(a).$$

Следствие. deg $f = n, f \in K[x], f \neq 0 \Rightarrow$ существует не более n корней f в K.

Доказательство. По индукции по n.

- База n = 0 $f = r \neq 0 0$ корней.
- Переход $n \to n+1$:

 $\deg f = n+1$. Нет корней $\Rightarrow 0 \leqslant n+1$.

Существует a — корень. $f=(x-a)\widetilde{f}, \deg\widetilde{f}=n.$ У \widetilde{f} не более n корней \Rightarrow у f не более n+1 корня.

С другой стороны b — корень $f\Rightarrow f(b)=0.$ $(b-a)\widetilde{f}(b)=0 \xrightarrow{k-\text{ о. ц.}} b-a=0 \lor \widetilde{f}=0 \iff b=a\lor b$ — корень \widetilde{f} . Таких не более n, а значит у f не более n+1 корня.