Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Курсовая работа по курсу «Численные методы»

Вариант №3: Нахождение собственных значений и собственных векторов симметричных разреженных матриц большой размерности.

Метод Ланцоша.

Студент: А.А. Литвина

Преподаватель: И.Э. Иванов

Группа: М8О-306Б

Дата: Оценка:

Подпись:

1 Постановка задачи

Для разреженной симметричной матрицы большой размерности найти собственные значения и собственные векторы методом Ланцоша.

2 Описание

Метод Ланцоша сводит частичную проблему собственных значений симметричной вещественной матрицы к полной проблеме собственных значений для симметричной трехдиагональной матрицы меньшей размерности.

Алгоритм Ланцоша комбинирует метод Ланцоша построения крыловского подпространства и метод Рэлея-Ритца поиска приближённых собственных значений.

Метод Рэлея-Ритца является методом поиска k приближённых собственных значений симметричной вещественной матрицы A размера $n \times n$. Если $Q = [Q_k, Q_u]$ ортонормированная матрица размера $n \times n$, Q_k имеет размер $n \times k$, Q_u имеет размер $n \times n - k$, то можно записать равенство:

$$T = Q^T A Q = [Q_k, Q_u]^T A [Q_k, Q_u] = \begin{bmatrix} Q_k^T A Q_k & Q_k^T A Q_u \\ Q_u^T A Q_k & Q_u^T A Q_u \end{bmatrix} = \begin{bmatrix} T_k & T_{ku}^T \\ T_{ku} & T_u \end{bmatrix}$$

Метод Рэлея-Ритца заключается в том, что собственные значения матрицы $T_k = Q_k^T A Q_k$ объявляются приближёнными собственными значениями матрицы A.

Метод Ланцоша - это метод построения матрицы Q, при использовании которого матрица T оказывается симметричной трёхдиагональной. Трёхдиагональность T приводит к тому, что матрица T_k является трёхдиагональной матрицей меньшей размерности, а для трёхдиагональных матриц существуют высокоэффективные методы поиска собственных значений.

В теории в методе Ланцоша для вычисления каждого следующего столбца q_{j+1} матрицы Q достаточно знать только q_{j-1} и q_j в силу трёхдиагональности матрицы Т. На практике из-за ошибок округления, если не предпринимать специальных мер, набор векторов $q_1, ..., q_k$ перестаёт быть ортогональным. Для борьбы с этим явлением на каждом шаге метода Ланцоша приходится выполнять полную переортогонализацию - повторно запускать процесс ортогонализации Грамма-Шмидта.

Алгоритм Ланцоша

Заполняем начальные значения:

$$q_1 = b/||b||,$$

$$\beta_1 = 0$$

$$q_0=0,$$

где b - прозвольный вектор.

Для всех j = 1, ..., k:

1.
$$z = Aq_i$$

2. Вычисляем элемент на позиции t_{jj} матрицы T_k :

$$\alpha_j = q_j^T z$$

3. Два раза проводим полную переортогонализацию Грамма-Шмидта: $z=z-\sum_{i=1}^{j-1}(z^Tq_i)q_i$ $z=z-\sum_{i=1}^{j-1}(z^Tq_i)q_i$

$$z = z - \sum_{i=1}^{j-1} (z^T q_i) q_i$$

$$z = z - \sum_{i=1}^{j-1} (z^T q_i) q_i$$

$$4. z = z - \alpha_j q_j - \beta_j q_{j-1}$$

5. Вычисляем элементы на позициях $t_{j,j+1}$ и $t_{j+1,j}$:

$$\beta_{j+1} = ||z||$$

6. Если $\beta_{j+1} = 0$, то алгоритм завершается

7.
$$q_{j+1} = z/\beta_{j+1}$$

В моей реализации я использовала k=3.

Для входных данных

10

$$0\; 5\; 0\; 0\; 7\; 0\; 0\; 3\; 0\; 1$$

$$5\ 0\ 0\ 4\ 0\ 0\ 0\ 0\ 2\ 0$$

$$0\; 0\; 3\; 0\; 0\; 0\; 1\; 0\; 0\; 0$$

$$0\ 4\ 0\ 0\ 6\ 0\ 0\ 0\ 0\ 0$$

$$7\ 0\ 0\ 6\ 0\ 0\ 0\ 0\ 4\ 0$$

$$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 \end{smallmatrix}$$

3627915824

искомая матрица T_3 выглядит следующим образом:

$$\left\{
\begin{array}{cccc}
0.0308785 & 0.412675 & 0 \\
0.412675 & 25.755 & 675.991 \\
0 & 675.991 & 0.00694791
\end{array}
\right\}$$

Как и ожидалось, она трехдиагональная и симметричная.

При решении полной проблемы собственных значений для симметричных трехдиагональных матриц эффективным является QR-алгоритм, позволяющий находить как вещественные, так и комплексные собственные значения.

В основе QR-алгоритма лежит представление матрицы в виде T=QR, где Q - ортогональная матрица $(Q^{-1}=Q^T)$, а R - верхняя треугольная. Такое разложение существует для любой квадратной матрицы.

Одним из возможных подходов к построению QR - разложения является использование преобразования Хаусхолдера, позволяющего обратить в нуль группу поддиагональных элементов столбца матрицы. Матрица Хаусхолдера имеет вид:

$$H = E - \frac{2}{v^T v} v v^T.$$

Произведем разложение $T=QR\;n-1$ раз, где $Q=H_1H_2...H_{n-1}$. Далее произведем перемножение матриц в обратном порядке: $T^{(k+1)}=R^{(k)}Q^{(k)}$.

Для нахождения **собственных векторов** необходимо перемножить все матрицы $Q: Q = Q^{(1)} * Q^{(2)} * ... * Q^{(k)}$. Столбцы матрицы Q и будут собственными векторами матрицы Q . (Собственные векторы исходной матрицы Q - это с.в. матрицы Q , дополненные нулями.)

Итерационный процесс продолжается, пока сумма квадратов поддиагольнальных элементов первого столбца достаточно велика, т.е.

$$\left(\sum_{l=2}^{n} \left(t_{l1}^{(k)}\right)^{2}\right)^{1/2} > \varepsilon.$$

Когда критерий окончания нарушается, диагональный элемент $t_{11}^{(k)}$ может быть принят в качестве собственного значения, а элементы $t_{22}^{(k)}$, $t_{23}^{(k)}$, $t_{32}^{(k)}$, $t_{33}^{(k)}$ составляют комплексносопряженные пары собственных значений, поэтому остальные с.з. определяются из решения квадратного уравнения $(t_{22}^{(k)}-\lambda^{(k)})(t_{33}^{(k)}-\lambda^{(k)})=t_{23}^{(k)}t_{32}^{(k)}$.

Чтобы проверить, что найденные собственные значения являются правильными, нужно посчитать след матрицы Т, он должен равняться сумме с.з. :

$$trT = \sum \lambda_i$$
.

Для нашей матрицы: 0.0308785 + 25.755 + 0.00694791 = 688.995 + 0.0308785 - 663.233 = 25.79282641 с точностью до ε .

3 Исходный код

```
1 | #include <iostream>
    #include <vector>
 3
    #include <cmath>
 5
    using namespace std;
 6
 7
    const double eps=0.0001;
 8
 9
   double norm(vector <double> b) {
10
      double s=0;
      for (int i=0; i < b.size(); i++) {</pre>
11
12
        s+=pow(b[i],2);
13
14
      return s;
   }
15
16
17
    int sign(double a) {
18
     if (a>0) return 1;
19
      if (a<0) return -1;
20
     return 0;
21
   }
22
23
   void print(vector <vector <double>> v) {
24
     for (int i=0; i<v.size(); i++) {</pre>
25
        for (int j=0; j<v.size(); j++) {</pre>
26
          cout << v[i][j] << "\t";
27
28
        cout << endl;</pre>
29
      }
30
   }
31
    double max(vector <vector<double>> A) {
32
33
      double max=0;
34
      for (int k=1; k<A.size(); k++) {</pre>
35
        if (abs(A[k][0])>eps) {
36
         max+=pow(A[k][0],2);
37
        }
38
      }
39
     return pow(max,0.5);
40
41
    void QR(vector <vector<double>> A) {
42
43
      int N=A.size();
44
      vector <vector <double>> newA (N, vector <double>(N,0));
45
      vector <vector <double>> H (N, vector <double>(N,0));
46
      vector <vector <double>> Q (N, vector <double>(N,0));
47 II
      vector <vector <double>> newQ (N, vector <double>(N,0));
```

```
48 |
      vector <vector <double>> Qtemp (N, vector <double>(N,0));
      vector <vector <double>> Qp (N, vector <double>(N,0));
49
50
      vector <vector <double>> R (N, vector <double>(N,0));
      vector <vector <double>> vvt (N, vector <double>(N,0));
51
      vector <double> v (N,0);
52
53
54
      for (int i=0; i<N; i++) {
55
       Q[i][i]=1;
56
57
58
      for (int i=0; i<N; i++) {
       Qp[i][i]=1;
59
60
61
     while (max(A)>eps) {
62
       for (int i=0; i<N-1; i++) \{
63
64
         int j;
65
         for (j=0; j<i; j++) {
66
           v[j]=0;
67
         double sum=0;
68
69
         for (int k=i; k<N; k++) {
70
           sum+=pow(A[k][i],2);
71
72
73
         sum=pow(sum,0.5);
         v[j]=A[j][i]+sign(A[j][i])*sum;
74
         for (j=i+1; j<N; j++) {
75
76
           v[j]=A[j][i];
77
78
79
         for (int k=0; k<N; k++) {
80
           for (int 1=0; 1<N; 1++) {
81
             vvt[k][1]=v[k]*v[1];
82
           }
         }
83
84
85
         double vtv=0;
86
         for (int k=0; k<N; k++) {
87
           vtv+=v[k]*v[k];
88
89
90
         for (int k=0; k<N; k++) {
91
           for (int 1=0; 1<N; 1++) {
92
             if (k==1)
93
               H[k][1]=1-2*vvt[k][1]/vtv;
94
95
               H[k][1]=-2*vvt[k][1]/vtv;
96
```

```
97 |
          }
98
99
          for (int k=0; k<N; k++) {
100
            for (int 1=0; 1<N; 1++) {
              for (int m=0; m<N; m++) {
101
102
                newQ[k][1] += Q[k][m]*H[m][1];
103
104
            }
105
          }
106
107
          for (int k=0; k<N; k++) {
            for (int 1=0; 1<N; 1++) {
108
109
              for (int m=0; m<N; m++) {
110
                newA[k][1] += H[k][m] * A[m][1];
111
112
            }
          }
113
114
115
          A=newA;
116
          Q=newQ;
117
118
          newA.assign(N, vector <double>(N,0));
119
          newQ.assign(N, vector <double>(N,0));
120
121
        for (int i=0; i<N; i++) {
122
123
          for (int j=0; j<N; j++) {
124
            for (int k=0; k<N; k++) {
125
              Qtemp[i][j]+=Qp[i][k]*Q[k][j];
126
127
          }
128
        }
129
130
        Qp=Qtemp;
131
         Qtemp.assign(N, vector <double>(N,0));
132
133
134
        A.assign(N, vector <double>(N,0));
135
        for (int k=0; k<N; k++) {
136
          for (int 1=0; 1<N; 1++) {
137
            for (int m=0; m<N; m++) {
138
              A[k][1] += R[k][m] * Q[m][1];
139
            }
140
        }
141
142
143
        Q.assign(N, vector <double>(N,0));
        for (int i=0; i<N; i++) {
144
145
          Q[i][i]=1;
```

```
146
        }
147
      }
148
149
      cout << "lambda1 = " << A[0][0] << endl;</pre>
150
151
      d=pow(A[1][1]+A[2][2],2)-4*(A[1][1]*A[2][2]-A[1][2]*A[2][1]);
      if (d>=0) {
152
153
        d=pow(d,0.5);
        cout << "lambda2 = " << (A[1][1]+A[2][2]+d)/2 << endl;</pre>
154
        cout << "lambda3 = " << (A[1][1]+A[2][2]-d)/2 << endl;
155
156
157
      else if (d<0) {
158
        d=pow(-d,0.5);
159
        cout << "lambda2 = " << (A[1][1]+A[2][2])/2 << " + " << d/2 << "i\n";
160
        cout << "lambda3 = " << (A[1][1]+A[2][2])/2 << " - " << d/2 << "i\n";
161
162
163
      for (int i=1; i<=N; i++) {
       cout << "X" << i << "\t\t";
164
165
      cout << "\n----\n";
166
      print(Qp);
167
168
    }
169
170
    int main() {
171
      int N;
172
      int k=3;
173
      cin >> N;
174
      vector <vector <double>> A (N, vector <double>(N,0));
175
      vector <vector <double>> q (k+2, vector <double>(N,0));
      vector <vector <double>> T (k, vector <double>(k,0));
176
177
      vector <double> b (N,0);
178
      vector <double> z (N,0);
      vector <double> temp (N,0);
179
180
      double alpha;
181
      double beta=0;
182
      for (int i=0; i<N; i++) {
183
184
        for (int j=0; j<N; j++) {
185
          cin >> A[i][j];
186
        }
      }
187
188
189
      for (int i=0; i<N; i++) {
190
        cin >> b[i];
191
192
193
      for (int i=0; i<N; i++) {
194
        q[1][i]=b[i]/norm(b);
```

```
195 ||
      }
196
197
      for (int i=1; i<k+1; i++) {
198
        for (int j=0; j<N; j++) {
199
          double s=0;
200
          for (int k=0; k<N; k++) {
201
            s+=A[j][k]*q[i][k];
202
203
          z[j]=s;
204
205
206
        alpha=0;
207
        for (int j=0; j<N; j++) {
208
          alpha+=q[i][j]*z[j];
209
210
211
        T[i-1][i-1]=alpha;
212
        if (i!=1) {
213
          T[i-1][i-2]=beta;
214
          T[i-2][i-1]=beta;
215
        }
216
217
        for (int p=0; p<2; p++) { // 2 times
218
          for (int j=0; j<N; j++) { // for z
219
            for (int k=1; k<i; k++) { // for sum
220
              double s=0;
221
              for (int m=0; m<N; m++) { // for z*q
222
                s+=z[m]*q[k][m];
223
224
              for (int m=0; m<N; m++) { //for s*q
225
                temp[m]+=q[k][m]*s;
226
              }
227
228
            z[j]-=temp[j];
          }
229
230
        }
231
232
        for (int j=0; j<N; j++) {
233
          z[j]=z[j]-alpha*q[i][j]-beta*q[i-1][j];
234
235
236
        beta=norm(z);
237
        if (beta==0)
238
          break;
239
240
        for (int j=0; j<N; j++) {
241
          q[i+1][j]=z[j]/beta;
242
243
      }
```

```
244 | 245 | QR(T);
246 | for (int i=0; i<N-k; i++) {
    for (int j=0; j<k; j++) {
        cout << 0 << "\t\t";
    }
251 | cout << endl;
252 | }
253 | cout << "----\n";
```

4 Консоль

Входные данные:

Введем симметричную разреженную матрицу размерности 10 и произвольный вектор той же размерности

10									
0	5	0	0	7	0	0	3	0	1
5	0	0	4	0	0	0	0	2	0
0	0	3	0	0	0	1	0	0	0
0	4	0	0	6	0	0	0	0	0
7	0	0	6	0	0	0	0	4	0
0	0	0	0	0	9	0	0	0	0
0	0	1	0	0	0	0	5	0	0
3	0	0	0	0	0	5	0	0	0
0	2	0	0	4	0	0	0	0	0
1	0	0	0	0	0	0	0	0	8

3 6 2 7 9 1 5 8 2 4

Выходные данные:

Собственные значения:

lambda1 = 688.995 lambda2 = 0.0308785lambda3 = -663.233

Собственные векторы:

X1	Х2	ХЗ
0.000427555 0.713807	0.000435745 -0.700342	1 -2.16111e-08
0.700342	0.713807	-0.000610473
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

0	0	0
0	0	0

Входные данные:

4 0 7 1 0 4 6 0 8 0 3 1 0 2 6

Выходные данные:

Собственные значения:

lambda1 = 856.138 lambda2 = 0.0354674 lambda3 = -829.661

Собственные векторы:

X1	Х2	Х3
-0.000314459	-0.000319414	1
-0.712634	0.701536	-1.37824e-08
-0.701536	-0.712634	-0.000448229

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Выводы

Выполнив этот курсовой проект, я познакомилась с одним из методов решения частичной задачи собственных значений симметричной матрицы - методом Ланцоша, который сводит симметричную вещественную матрицу к симметричной матрице меньшей размерности. Я реализовала его в виде программы, а так же повторила и закрепила QR-алгоритм нахождения собственных значений, который был изучен мною ранее.

На моем пути встретилось много трудноностей во время выполнения проекта. Самой главной из них, пожалуй, стала нехватка качественной понятной литературы.

Список литературы

Алгоритм Ланцоша для арифметики с плавающей точкой с полной переортогонализацией

URL: http://algorithms.parallel.ru/ru/Алгоритм_Ланцоша_для_арифметики _c_плавающей_точкой_c_полной_переортогонализацией

Алгоритм Ланцоша вычисления собственных значений симметричной матрицы для точной арифметики (без переортогонализации)

URL: https://algowiki-project.org/ru/Участник: AleksLevin/Алгоритм_Ланцоша _вычисления_собственных_значений_симметричной_матрицы _для_точной_арифметики_(без_переортогонализации)

Методы Крыловского подпространства

Јатез W. Demmel - Вычислительная линейная алгебра. Теория и приложения //Мир. - 2001 (с. 313, § 6.6 Методы Крыловского подпространства)