Ejercicio en clase 1

Considere los retornos anuales del *Promedio Industrial Dow Jones DJIA* para los años 1996-2005. Estos valores multiplicados por 100 son los siguientes: $\{-0.6, 3.1, 25.3, -16.8, -7.1, -6.2, 25.2, 22.6, 26.0\}$

Utilice estas observaciones para completar lo siguiente:

- (a) Construya un Q-Q plot ¿Los datos parecen estar distribuidos normalmente? Explique
- (b) Aplique un test de normalidad basado en el coeficiente de correlación r_Q al nivel de significancia $\alpha = .10$

El siguiente conjunto de datos nos da la edad x_1 , medida en años, así como el precio de venta x_2 , medido en miles de dolares para n = 10 autos usados. $\{(1, 18.95), (2, 19.00), (3, 17.95), (3, 15.54), (4, 14.00), (4,$ (5, 12.95), (6, 8.94), (8, 7.49), (9, 6.00), (11, 3.99)

- (a) Calcule las distancias generalizadas: $(\bar{X}-\mu)'S^{-1}(\bar{X}-\mu)$, j=1,2,...,10, donde $x_{i}^{'}=[x_{j1},x_{j2}]$.
- (b) Utilizando estas distancias, determine la proporción de las observaciones que caen dentro del 50 % del contorno de probabilidad de una distribución normal bivariada.
- (c) Ordene las distancias en y construya un gráfico de chi-cuadrada.
- (d) Dado los resultados anteriores, ; se distribuyen estos datos aproximadamente como una distribución normal bivariada? Explique.