

Chapitre 1 : Programmation linéaire

J.-F. Scheid

v2.1

I. Introduction

1) Modélisation

En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier:

- les variables intrinsèques (inconnues)
- les différentes contraintes auquelles sont soumises ces variables
- l'objectif visé (optimisation).

Dans un problème de programmation linéaire (**PL**) les contraintes et l'objectif sont des fonctions **linéaires** des variables. On parle aussi de *programme linéaire*.

Exemple d'un problème de production.

Une usine fabrique 2 produits P_1 et P_2 nécessitant des ressources d'équipement, de main d'oeuvre et de matières premières disponibles en quantité limitée.

	P_1	P_2	disponibilité
équipement	3	9	81
main d'œuvre	4	5	55
matière première	2	1	20

 P_1 et P_2 rapportent à la vente 6 euros et 4 euros par unité.

Quelles quantités (non entières) de produits P_1 et P_2 doit produire l'usine pour maximiser le bénéfice total venant de la vente des 2 produits ?

- *Variables* : x_1 et x_2 sont les quantités des produits P_1 et P_2 fabriqués $(x_1, x_2 \in \mathbb{R})$.
- Fonction objectif à maximiser : La fonction objectif F correspond au bénéfice total : $F(x_1, x_2) = 6x_1 + 4x_2$. On cherche donc

$$\max_{(x_1,x_2)} [F(x_1,x_2) = 6x_1 + 4x_2].$$

- Contraintes:
 - Disponibilité de chacune des ressources :

$$3x_1 + 9x_2 \le 81$$
$$4x_1 + 5x_2 \le 55$$
$$2x_1 + x_2 \le 20$$

• Positivité des variables: $x_1, x_2 > 0$.

En résumé, le problème de production se modélise sous la forme d'un *programme linéaire* :

$$\max_{(x_1, x_2)} [F(x_1, x_2) = 6x_1 + 4x_2].$$
sous les contraintes:
$$\begin{cases} 3x_1 + 9x_2 \le 81 \\ 4x_1 + 5x_2 \le 55 \\ 2x_1 + x_2 \le 20 \\ x_1, x_2 \ge 0 \end{cases}$$

I. Introduction

2) Résolution graphique (PL à 2 variables)

Les contraintes où apparaissent des inégalités correspondent géométriquement à des **demi-plans**.

Intersection de ces demi-plans = ensemble des variables satisfaisant à toutes les contraintes.

L'ensemble des contraintes est un polygône convexe.

Détermination du maximum de F

Fonction objectif $F(x_1, x_2) = 6x_1 + 4x_2 \Rightarrow$ droite de coefficient directeur (-1, 6/4).

Pour déterminer max F, on fait "glisser" la droite (translation parallèle à la direction de la droite) du haut vers le bas jusqu'à rencontrer l'ensemble des variables satisfaisant les contraintes \Rightarrow <u>solution optimale</u> $(x_1, x_2) = (15/2, 5)$ avec max(F) = 65.

On remarque que le maximum de *F* est atteint en **un sommet** du **polygône convexe** des contraintes.

II. Formes générales d'un programme linéaire

1) Forme canonique mixte

$$\max_{(x_1,\dots,x_n)} \left[F(x_1,\dots,x_n) = c_1 x_1 + \dots + c_n x_n = \sum_{j=1}^n c_j x_j \right].$$

- igg(ullet contraintes inégalités : $orall i \in I_1, \; \sum_{j=1}^n a_{ij} x_j = a_{i1} x_1 + \cdots + a_{in} x_n \leq b_i$

 $I = I_1 \cup I_2$: ens. des indices de contraintes, card $(I) = m \Rightarrow \underline{m}$ contraintes $J = J_1 \cup J_2$: ens. des indices des variables, card $(J) = n \Rightarrow \underline{n \text{ variables}}$

Notations

Vecteurs:

$$\mathbf{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$$
 (les inconnues)
 $\mathbf{c} = (c_1, \dots, c_n)^{\top} \in \mathbb{R}^n,$
 $\mathbf{b} = (b_1, \dots, b_m)^{\top} \in \mathbb{R}^m$

Matrice A de taille $m \times n$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

2) Forme canonique pure

Sous cette forme, pas de contraintes d'égalité $I_2 = \emptyset$ et $J_2 = \emptyset$.

Un programme linéaire (PL) est dit sous forme <u>canonique pure</u> s'il s'écrit:

$$\max_{\mathbf{x}} \left[F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} = c_1 x_1 + \cdots c_n x_n \right]$$
sous les contraintes :
$$\begin{cases} A\mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{cases}$$

3) Forme standard

Sous cette forme, $I_1 = \emptyset$ et $J_2 = \emptyset$.

Un programme linéaire (PL) est dit sous forme standard s'il s'écrit:

$$\max_{\mathbf{x}} \left[F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} \right]$$
sous les contraintes :
$$\begin{cases} A\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases}$$

On dit de plus que le PL est sous forme standard $\underline{simpliciale}$ si A de taille $m \times n$ avec $m \le n$, se décompose en:

$$A = \left(I_m \mid H\right)$$

- I_m matrice identité de taille $m \times m$
- *H* matrice de taille $m \times (n m)$

Remarque sur la positivité des variables.

Sous forme canonique pure ou standard, on impose toujours la positivité des variables $x \ge 0$. En fait, on peut toujours se ramener au cas $x \ge 0$:

- Si la variable x a une borne inférieure non nulle $x \ge I$, il suffit de considérer la nouvelle variable y = x I à la place de la variable x et alors on a $y \ge 0$.
- S'il n'y a pas de borne inférieure sur x (variable libre), on peut toujours poser x = y z avec les nouvelles variables $y \ge 0$, $z \ge 0$.

4) Variables d'écarts

Proposition

Tout PL sous forme standard <u>s'écrit</u> de façon équivalente en un PL sous forme canonique pure et inversement.

Démonstration. i) Soit un PL sous forme canonique pure. On a

$$Ax \le b \Leftrightarrow Ax + e = b, e \ge 0$$

où $\mathbf{e} = (e_1, \cdots, e_m)^{\top}$ sont appelées <u>variables d'écart</u>.

Ainsi,
$$\left\{ \begin{array}{l} A\mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left(A \mid I_m \right) \begin{pmatrix} \mathbf{x} \\ \mathbf{e} \end{pmatrix} = \mathbf{b} \\ \left(\begin{matrix} \mathbf{x} \\ \mathbf{e} \end{matrix} \right) \geq \mathbf{0} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \tilde{A}\tilde{\mathbf{x}} = \mathbf{b} \\ \tilde{\mathbf{x}} \geq \mathbf{0} \end{array} \right.$$

avec $\tilde{A} = \left(A \mid I_m\right)$ matrice de taille $m \times (n+m)$.

ii) (Réciproque) Soit un PL sous forme standard. On a

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow \left\{ \begin{array}{l} A\mathbf{x} \leq \mathbf{b} \\ A\mathbf{x} \geq \mathbf{b} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} A\mathbf{x} \leq \mathbf{b} \\ -A\mathbf{x} \leq -\mathbf{b} \end{array} \right.$$
$$\Leftrightarrow \left(\frac{A}{-A} \right) \mathbf{x} \leq \left(\frac{\mathbf{b}}{-\mathbf{b}} \right)$$
$$\Leftrightarrow \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}$$

où \tilde{A} est une matrice de taille $2m \times n$ et $\tilde{\mathbf{b}} \in \mathbb{R}^{2m}$.

Exemple. Problème de production de l'introduction.

PL sous forme standard. On introduit 3 variables d'écarts e_1, e_2, e_3 .

$$\begin{aligned} \max_{(x_1,x_2,e_1,e_2,e_3)} \left[F(x_1,x_2) = 6x_1 + 4x_2 \right]. \\ \text{sous les contraintes:} \\ \left\{ \begin{array}{l} 3x_1 + 9x_2 + e_1 = 81 \\ 4x_1 + 5x_2 + e_2 = 55 \\ 2x_1 + x_2 + e_3 = 20 \end{array} \right. \\ \left\{ \begin{array}{l} x_1,x_2 \geq 0 \\ e_1,e_2,e_3 \geq 0 \end{array} \right. \end{aligned}$$

Les inconnues sont désormais x_1, x_2, e_1, e_2, e_3 .

III. Solutions de base réalisables

PL sous forme standard $(A\mathbf{x} = \mathbf{b})$.

Hypothèse de rang plein

On suppose que la matrice A est de taille $m \times n$ avec $rang(A) = m \le n$

Rappel: rang(A) = nombre maximal de lignes de A linéairement indépendantes (=nombre max. de colonnes linéairement indépendantes).

Remarques : Sous l'hypothèse de rang plein :

- le système $A\mathbf{x} = \mathbf{b}$ admet toujours des solutions.
- si m < n, le système $A\mathbf{x} = \mathbf{b}$ admet une infinité de solution.
- si m = n, la solution est unique et vaut $\mathbf{x} = A^{-1}\mathbf{b}$, dans ce cas, il n'y a rien à maximiser...
- Hypothèse non restrictive : si rang(A) < m le système A**x** = **b** n'a pas de solution *en général*. Si rang(A) < m et **b** \in Im(A), il y a des équations redondantes qu'on peut supprimer.

Quelques définitions...

Définition (solution réalisable)

On appelle solution réalisable tout vecteur ${\bf x}$ qui satisfait les contraintes du PL i.e. tel que $A{\bf x}={\bf b}$ et ${\bf x}\geq {\bf 0}$.

Définition (variables de base)

Soit $B \subset \{1, \dots, n\}$ un ensemble d'indices avec $\operatorname{card}(B) = m$ tel que les colonnes A^j , $j \in B$, de A sont linéairement indépendantes. Autrement dit, la matrice carrée A_B formée des colonnes A^j , $j \in B$, est <u>inversible</u>. On dit que l'ensemble B des indices est une <u>base</u>.

- Les variables $\mathbf{x}_B = (x_j, j \in B)$ sont appelées <u>variables de base</u>.
- Les variables $\mathbf{x}_H = (x_i, j \notin B)$ sont appelées <u>variables hors-base</u>.

Remarques.

- Sous l'hypothèse de rang plein, il existe toujours une base non vide.
- Quitte à renuméroter les indices, on peut toujours écrire les décompositions par blocs :

$$A = (A_B | A_H)$$
 où A_H est la matrice formée des colonnes A^j , $j \notin B$ $\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_H \end{pmatrix}$.

Le système $A\mathbf{x} = \mathbf{b}$ est équivalent à

$$A_B \mathbf{x}_B + A_H \mathbf{x}_H = \mathbf{b}.$$

 \Rightarrow on peut fixer les variables hors-base et les variables de base sont alors complètement déterminées (la matrice A_B est inversible)

Définition (solution de base)

On dit que
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_H \end{pmatrix}$$
 est solution de base associée à la base B si $\mathbf{x}_H = \mathbf{0}$.

Propriétés des solutions de base réalisables

Si
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_H \end{pmatrix}$$
 est une solution de base réalisable alors $\mathbf{x}_H = \mathbf{0}$ et $\mathbf{x}_B = A_B^{-1} \mathbf{b}$.

Remarque. Il y a *au plus* C_n^m solutions de base (toutes ne sont pas réalisables).

Exemple. Problème de production de l'introduction. Sous forme standard, le PL s'écrit

$$\max_{(x_1,x_2)} \left[F(x_1,x_2) = 6x_1 + 4x_2 \right].$$
 sous les contraintes:
$$\begin{cases} 3x_1 + 9x_2 + e_1 = 81 \\ 4x_1 + 5x_2 + e_2 = 55 \\ 2x_1 + x_2 + e_3 = 20 \end{cases}$$

$$\begin{cases} x_1, x_2 \ge 0 \\ e_1, e_2, e_3 \ge 0 \end{cases}$$

On a
$$m=3$$
, $n=5$, rang $(A)=m=3$. Une base est donnée par $B=\{3,4,5\}$ avec $A_B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. La solution de base réalisable correspondante est $\mathbf{x}=(x_1,x_2,e_1,e_2,e_3)^{\top}=\underbrace{(0,0,\underbrace{81,55,20})^{\top}}_{1}$.

IV. Propriétés géométriques des solutions de base réalisables

On note

$$\mathcal{D}_R = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \},$$

l'ensemble des solutions réalisables d'un PL sous forme standard.

Définitions (rappels)

- Un *polyèdre* Q de \mathbb{R}^n est défini par $Q = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathcal{M}\mathbf{x} \leq \mathbf{b} \}$ où \mathcal{M} est une matrice $m \times n$.
- Un ensemble E est dit *convexe* si $\forall \mathbf{x}, \mathbf{y} \in E$, $\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in E$ pour tout $0 \le \lambda \le 1$.

Proposition

L'ensemble \mathcal{D}_R des solutions réalisables est un polyèdre convexe, fermé.

Exemple. $\mathcal{D}_R = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid 2x_1 + \frac{3}{2}x_2 + x_3 = 3, \ x_1, x_2, x_3 \ge 0 \right\}$

Caractérisation de l'optimum

Définition (sommet)

Un point $\mathbf{x} \in \mathcal{D}_R$ est un <u>sommet</u> (ou point extrême) si et seulement s'il n'existe pas $\mathbf{y}, \mathbf{z} \in \mathcal{D}_R$, $\mathbf{y} \neq \mathbf{z}$ tels que $\mathbf{x} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{z}$ avec $0 < \lambda < 1$.

Théorème

- x est une solution de base réalisable si et seulement si x est un sommet de D_R.
- L'optimum de la fonction objectif F sur \mathcal{D}_R , s'il existe, est atteint en au moins un sommet de \mathcal{D}_R .

Tout se passe donc avec les solutions de base : pour résoudre un PL sous forme standard, il suffit de se restreindre aux solutions de base réalisables (les sommets de \mathcal{D}_R).

3 situations possibles :

- **1** $\mathcal{D}_R = \emptyset$: le PL n'a pas de solution.
- ② $\mathcal{D}_R \neq \emptyset$ mais la fonction objectif F n'est pas majorée sur \mathcal{D}_R : le maximum de F vaut $+\infty$ (cas exclu si \mathcal{D}_R est borné).
- ③ $\mathcal{D}_R \neq \emptyset$ et la fonction objectif F est majorée sur \mathcal{D}_R : le PL admet une solution optimale (non nécessairement unique).

Remarque. Au plus C_n^m solutions de base réalisables. Pour déterminer une solution de base, on doit résoudre $A_B \mathbf{x}_B = \mathbf{b}$. Une méthode directe de type Gauss/LU requière de l'ordre de $\mathcal{O}(m^3)$ opérations.

 \Rightarrow Exploration exhaustive de toutes les solutions de base (comparaison des coûts correspondants) : $\mathcal{O}(m^3 C_n^m)$ opérations. Ce nombre est vite très grand avec n et m. Par exemple, avec n=20 et m=10, on a $3\cdot 10^8$ opérations.

Méthode du simplexe : on explore seulement les sommets qui permettent d'augmenter la fonction objectif \Rightarrow on réduit le nombre de solution de base à explorer.