CSC 2700 Intro to Programming for Audio/Music

Stephen David Beck, Ph.D.

What is sound?

Sound is when air molecules are disturbed and set in motion

What is sound?

What is sound?

Parameters of sound

- Amplitude
 - The amount of energy in the sound
- Waveform
 - The shape of a regular vibration
- Frequency
 - Cycles per second

Waveform

- Amplitude => height of waveform
- Measured as Intensity $Watts/m^2$
- Threshold of hearing is $10^{-12}W/m^2$
- Threshold of pain is $1W/m^2$

Decibels

- Perception of Intensity/Amplitude is exponential
 - *I* is measured intensity
 - Io is threshold of hearing $10^{-12} W/m^2$

$$Bel = log(\frac{I}{I_0})$$

$$deciBel = 10 * log(\frac{I}{I_0})$$

Waveform

- Frequency => number
 of waveforms or cycles
 per second
- Unit of measurement=> Hz
- kHz is 1000 Hz

Frequency

- Perception of Frequency is also exponential
- Pitch is the ratio of two frequencies
 - A440 => 440 Hz
 - 2:1 is Octave
 - 3:2 is Fifth

The Analog Process

Analog Recordings

Digitizing Sound

- When analog signal is recorded digitally:
 - Signal enters an Analog-to-Digital-Converter (ADC)
 - Measures instantaneous amplitude of input signal
 - Outputs stream of numbers

Digital Audio

Digital vs Analog

- Analog is continuous
- Digital is discrete
 - Need lots of "samples" of the analog signal
 - Need good representation of amplitude values

Terminology for Digital Audio

- Sampling Rate
 - The number of samples / sec the ADC or DAC processes
 - Sampling Rates for
 - CD = 44,100 Hz (44.1 kHz)
 - DVD = 48,000 Hz (48 kHz)

Nyquist Theorem

A discrete time sequence of a continuous signal contains enough information to accurately reproduce the signal when the sampling rate is twice the highest frequency in the original signal

$$f_{Nyquist} = \frac{f_{SR}}{2}$$

Aliasing

- "Wagon-wheel" effect
 - As wheel moves faster, it appears to move faster
 - As wheel speed approaches Nyquist limit, wheel appears to slow down, stop and then reverse

Aliasing Effect

• As measured frequency rises past $f_{Nyquist}$ the playback frequency decreases at same rate

Terminology for Digital Audio

- Resolution or bit-size
 - The size in bits of each sample
 - Binary storage is in 0s and 1s (bits)
 - 8-bit datum = 0010 0111
 - $2^8 = 256$ possible states / values
 - only 256 values between -I and I

Quantization Error

Low bit size => high quantization error

High bit size => low quantization error

Terminology for Digital Audio

- Resolution
 - In digital audio, -6 dB of S/N ratio per bit
 - 8 bits $(2^8 = \pm 128) = > -48 \text{ dB S/N}$
 - I6 bits $(2^{16} = \pm 32768) = > -96 \text{ dB S/N}$
 - 24 bits $(2^{24} = \pm 8, 388, 608) = > -144 dB S/N$

Acoustics Theory

- Sound is generated by vibrating systems
- Regular vibrations are measured by amplitude
 (dB) and frequency (Hz) of waveform
- Simple sound => sine wave

$$A_{(t)} = A * \sin(2\pi f t + \phi)$$

Complex sound => many sine waves

$$A_{(t)} = \sum_{n=0}^{\infty} A_n * \sin(2\pi f_n t + \phi_n)$$

Timbre

- Harmonic Spectrum
 - Component frequencies are integer relations of f_0

$$A_{(t)} = \sum_{n=0}^{\infty} A_n * \sin(2\pi(n * f_0)t + \phi_n)$$

- Inharmonic Spectrum
 - Not!

Classical Theory of Timbre

- Spectrum is "steady-state"
- Sound is articulated by an envelope
- Spectrum
 remains constant
 over frequency
 domain

Modern Theory of Timbre

Spectra is DYNAMIC

Modern Theory of Timbre

Spectra is DYNAMIC

- Instrument
- Notes
- Dynamics
- Articulations

- Tempo Description
- Metronome
- Meter