§ 6.5 分布拟合检验

判断总体是否为某种分布(如正态分布)的检验问题,通称为分布的拟合优度检验,简称为分布 拟合检验.

一、总体分布只取有限个值的情况

设总体X可以分成k类,记为 A_1, A_2, \dots, A_k ,现对该总体作了n次观测,k个类出现的频数分别为:

$$n_1, \dots, n_k, \coprod \sum_{i=1}^k n_i = n.$$

检验如下假设:

 $H_0: P(A_i) = p_i, \Leftrightarrow H_1: 某些P(A_i) \neq p_i, i = 1, \cdots, k.$ 其中诸 $p_i \geq 0$ 且 $\sum_{i=1}^k p_i = 1$.

情形1 诸 p_i 均已知

如果 H_0 成立,则对每一类 A_i ,其频率 n_i/n 与概率 p_i 应较接近,即观测频数 n_i 与理论频数 np_i 应相差不大. 据此,英国统计学家K.Pearson提出如下检验统计量:

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}.$$

并证明在 H_0 成立时对充分大的n,上述检验统计量近似服从自由度为k-1的 χ^2 分布. 拒绝域为:

$$W = \left\{ \chi^2 > \chi_\alpha^2 \left(k - 1 \right) \right\}$$

例1 为募集社会福利基金,某地方政府发行福利彩票,中彩者用摇大转盘的方法确定最后中奖金额大转盘均分为20份,其中金额为5万、10万、20万、30万、50万、100万的分别占2份、4份、6份、4份、2份、2份、6份、假定大转盘是均匀的,则每一点朝下是等可能的,于是摇出各个奖项的概率如下:

额度	5万	10万	20万	30万	50万	100万
概率	0. 1	0. 2	0. 3	0. 2	0. 1	0. 1

现20人参加摇奖,摇得5万、10万、20万、30万、50万、100万的人数分别为2、6、6、3、3、0,由于没有一个人摇到100万,于是有人怀疑大转盘是不均匀的,那么该怀疑是否成立?

解 这是一个典型的分布拟合优度检验,总体共有6类,发生概率分别为0.1、0.2、0.3、0.2、0.1和0.1.这里k=6,检验拒绝域为:

$$\left\{\chi^2\geq\chi^2_{\alpha}(5)\right\}$$

若取 $\alpha = 0.05$, 查表知 $\chi_{0.05}^2(5) = 11.07$. 由数据得到

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}} = 3.75 < \chi^{2}_{0.05}(5)$$

故接受原假设,没有理由认为转盘不均匀.

在分布拟合检验中使用p值也是方便的. 使用统计软件可以算出

$$p = P(\chi^2(5) \ge 3.75) = 0.5859.$$

这个p值就反映了数据与假设的分布拟合程度的高低,p值越大,拟合越好.

情形2 诸 p_i 不完全已知

若诸 p_i , $i=1,\cdots,k$ 由 r(r < k)个未知参数 θ_1,\cdots,θ_r 确定. 即

$$p_i = p_i(\theta_1, \dots, \theta_r), \quad i = 1, \dots, k.$$

首先给出 $\theta_1, \dots, \theta_r$ 的极大似然估计 $\hat{\theta}_1, \dots, \hat{\theta}_r$,然后给出诸 p_i 的极大似然估计 $\hat{p}_i = p_i(\hat{\theta}_1, \dots, \hat{\theta}_r)$.

Fisher证明了
$$\chi^2 = \sum_{i=1}^k \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i}$$
在 H_0 成立时,近似

服从自由度为k-r-1的 χ^2 分布,故检验拒绝域为

$$\left\{\chi^2 > \chi_\alpha^2 \left(k - r - 1\right)\right\}$$

例2 卢瑟福在2608个等时间间隔内观测一枚放射性物质放射的粒子数X,下表是观测结果的汇总,其中 n_i 表示2608次观测中放射粒子数为i的次数.

i	0	1	2	3	4	5	6	7	8	9	10	11
n_i	57	203	383	525	532	408	273	139	45	27	10	6

试利用该组数据检验该放射物质在单位时间 内放射出的粒子数是否服从泊松分布. 解:本例中,要检验总体是否服从泊松分布.观测到0,1,…,11共12个不同取值,这相当于把总体分成12类.这里有一个未知参数2,采用极大似然估计,

$$\hat{\lambda} = \frac{1}{2608} (1 \times 203 + 2 \times 383 + ... + 11 \times 6) = 3.87.$$

将 $\hat{\lambda}$ 代入可以估计出诸 \hat{p}_i .见下表若取 $\alpha = 0.05$,则 $\chi^2_{\alpha}(k-r-1) = \chi^2_{0.05}(10) = 18.307$.本例中 $\chi^2 = 12.8967 < 18.307$,故接受原假设.使用统计软件可以算出检验的p值是0.2295.

列表如下:

i	n_i	\hat{p}_{i}	$n\hat{p}_{i}$	$\left(n_i - n\hat{p}_i\right)^2 / n\hat{p}_i$
0	57	0.0209	54.5	0.1147
1	203	0.0807	210.5	0.2672
2	383	0.1562	407.4	1.4614
3	525	0.2015	525.5	0.0005
4	532	0.1950	508.6	1.0766
5	408	0.1509	393.5	0.5343
6	273	0.0973	253.8	1.4525
7	139	0.0538	140.3	0.0120
8	45	0.0260	67.8	7.6673
9	27	0.0112	29.2	0.1658
10	10	0.0043	11.2	0.1258
11	6	0.0022	5.7	0.0158
合计	2608	1.0000	2068	$\chi^2 = 12.8967$

二、连续型分布的拟合检验

基本思想:为了检验随机变量X是否服从连续型分布 $F_0(x)$,可将X的取值范围分割为若干个区间,并在每个区间上算出相应的理论概率 p_{i_0} :通过这样处理,把连续型问题转化为离散型问题.

具体步骤:

(1)分组:将 $F_0(x)$ 的自变量分成 k 组

$$(b_0, b_1], (b_1, b_2], \dots, (b_{k-1}, b_k].$$

(每区间至少有5个样本,否则并入邻区间)

(2)求各组上的理论概率 p_{i_0} 及理论频数 np_{i_0} :

$$p_{i_0} = P\{b_{i-1} < X \le b_i\} = F_0(b_i) - F_0(b_{i-1}).$$

(3) 计算统计量
$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_{i_0})^2}{np_{i_0}};$$

注: 若 $F_0(x)$ 中有r个待估参数,则首先估计参数. 最后判断时,统计量的自由度降低r.

例4 测量了100根人造纤维的长度(毫米),所得的数据如下表:

长度	5.5~6.0	~6.5	~7.0	~7.5	~8.0	~8.5	~9.0	~9.5	~10	~10.5	~11
频数	2	7	6	17	17	14	16	10	7	3	1

问:能认为人造纤维的长度服从正态分布吗?

组号	b_i	u_i	$F_0(b_i)$	p_{i0}	$n p_{i0}$	n_i
1	6.0	-1.89	0.0294	0.0294	2.94	2
2	6.5	-1.44	0.0749	0.0454	4.54	7
3	7.0	-0.98	0.1635	0.0886	8.86	6
4	7.5	-0.53	0.2981	0.1346	13.46	17
5	8.0	-0.08	0.4681	0.1700	17.00	17
6	8.5	0.37	0.6443	0.1762	17.62	14
7	9.0	0.83	0.7967	0.1524	15.24	16
8	9.5	1.28	0.8997	0.1030	10.30	10
9	10	1.74	0.9591	0.0594	5.94	7
10	10.5	2.19	0.9857	0.0166	1.66	3
11	+∞	+∞	1	0.0143	1.43	1

三、列联表的独立性检验

列联表是将观测数据按两个或更多属性(定性变量)分类时所列出的频数表。例如,对随机抽取的1000人按性别(男或女)及色觉(正常或色盲)两个属性分类,得到如下二维列联表,又称2×2表或四格表.

小十 早日	视觉				
性别	正常	色盲			
男	535	65			
女	382	18			

一般,若总体中的个体可按两个属性A与B分类,A有r个类 A_1 ,…, A_r .B有s个类从总体中抽取大小为n的样本,设其中有 n_{ij} 个个体既属于 A_i 类又属于 B_j 类,称为频数,将 $r \times s$ 个 n_{ij} 排列为一个r行s列的二维列联表,简称 $r \times s$ 表.

$A \setminus B$	1	• • •	$oldsymbol{j}$	• • •	S	和
1	<i>n</i> ₁₁	• • •	n_{1j}	• • •	n_{1s}	n_{1}
•	•	•	•	•	•	•
i	n_{i1}	• • •	n_{ij}	• • •	n _{is}	$n_{i\cdot}$
•	•	•	•	•	•	•
r	n_{r1}	• • •	$oldsymbol{n}_{rj}$	• • •	n_{rs}	n_{r}
和	n _{.1}	• • •	$n_{\cdot j}$	• • •	$n_{\cdot s}$	n

列联表分析的基本问题是:考察各属性之间有无关联,即判别两属性是否独立.

如在前例中,问题是:一个人是否色盲与其性别是否有关?在 $r \times s$ 表中,若以 p_i 、 p_i 和 p_{ij} 分别表示总体中的个体仅属于 A_i ,仅属于 B_j 和同时属于 A_i ?与 B_j 的概率,可得一个二维离散分布表,则" A_i B_i 两属性独立"的假设可以表述为

$$H_0: p_{ij} = p_{i} p_{ij}, \qquad i = 1, \dots, r, \ j = 1, \dots, s$$

这就变为上一小节中诸 p_{ij} 不完全已知时的分布 拟合检验. 这里诸 p_{ij} 共有rs个参数,在原假设 H_0 成 立时,这rs个参数由r + s个参数 p_1, \dots, p_r 和 p_1, \dots, p_s 决定. 在这后r + s个参数中存在两个约束条件:

表 二维离散分布表

$A \setminus B$	1	• • •	$oldsymbol{j}$	• • •	S	行和
1	p_{11}	• • •	p_{1j}	• • •	p_{1s}	$p_{1\cdot}$
•	•	•	•	•	•	•
i	p_{i1}	• • •	p_{ij}	• • •	p_{is}	$p_{i\cdot}$
•	•	•	•	•	•	•
r	p_{r1}	• • •	p_{rj}	• • •	p_{rs}	$p_{r\cdot}$
列和	$p_{\cdot 1}$	• • •	$p_{\cdot j}$	• • •	$p_{\cdot s}$	1

$$\sum_{i=1}^{r} p_{i.} = 1, \quad \sum_{j=1}^{s} p_{.j} = 1.$$

所以,此时 p_{ij} 实际上由r+s-2个独立参数所确定. 总体共分为rs类,因此检验统计量为

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}}.$$

 H_0 成立时, χ^2 服从自由度为rs-(r+s-2)-1的 χ^2 分布. 其中诸 \hat{p}_{ii} 是在 H_0 成立下 p_{ii} 的极大似然估计,

$$\hat{p}_{ij} = \hat{p}_{i.}\hat{p}_{.j} = \frac{n_{i.}}{n} \cdot \frac{n_{.j}}{n}$$

对给定的显著性水平 α ,检验的拒绝域为

$$W = \{\chi^2 > \chi_\alpha^2((r-1)(s-1))\}.$$

例:为研究儿童智力发展与营养的关系,某研究机构调查了1436名儿童,得到如下表的数据,试在显著性水平0.05下,判断智力发展与营养有无关系.

表 儿童智力与营养的调查数据

		合计			
	<80	80~90	90~99	≥100	— • •
营养良好	367	342	266	329	1304
营养不良	56	40	20	16	132
合计	423	382	286	345	1436

解:用A表示营养状况,它有两个水平: A_1 表示营养良好, A_2 表示营养不良;B表示儿童智商,它有四个水平, B_1 , B_2 , B_3 , B_4 分别表示表中四种情况,沿用前面的记号,首先建立假设 H_0 :营养状况与智商无关联,即A与B独立.

 $H_0: p_{ij} = p_{i.}p_{.j}, \quad i = 1,2, \quad j = 1,2,3,4.$ 在 H_0 成立条件下,计算诸参数的极大似然估计值: $\hat{p}_1 = 1304/1436 = 0.9081, \quad \hat{p}_2 = 132/1436 = 0.0919, \quad \hat{p}_4 = 423/1436 = 0.2946, \quad \hat{p}_2 = 382/1436 = 0.2660, \quad \hat{p}_3 = 286/1436 = 0.1992, \quad \hat{p}_4 = 345/1436 = 0.2403,$ 进而可给出诸 $n\hat{p}_{ij} = n\hat{p}_{i.}\hat{p}_{.j}$,列表如下

	<80	80~90	90~99	≥100	$\hat{p}_{i.}$
营养良好	384.1677	346.8724	259.7631	313.3588	0.9081
营养不良	38.8779	35.1036	26.2881	31.7120	0.0919
$p_{.j}$	0.2946	0.2660	0.1992	0.2403	

由表可以计算检验统计量的值

$$\chi^2 = \sum \sum (n_{ij} - n\hat{p}_{ij})^2 / n\hat{p}_{ij} = 19.2785.$$

取 $\alpha = 0.05$,有 $\chi^2_{0.05}(3) = 7.815$,.

由于19.2785 > 7.815,故拒绝 H_0 ,认为营养状况对智商有影响. p值为0.0002。