EXAMPLE

Verify the formula for the volume of a pyramid with rectangular base of area A and height h.

EXAMPLE

Verify the formula for the volume of a pyramid with rectangular base of area A and height h.

$$A(x) = \left(\frac{x}{h}\right)^2 A.$$

EXAMPLE

Verify the formula for the volume of a pyramid with rectangular base of area A and height h.

$$A(x) = \left(\frac{x}{h}\right)^2 A.$$

$$V = \int_0^h \left(\frac{x}{h}\right)^2 A \, dx = \frac{A}{h^2} \frac{x^3}{3} \Big|_0^h = \frac{1}{3} A h \text{ cubic units.}$$

$$A(x) = \frac{1}{2} (2\sqrt{a^2 - x^2})b = b\sqrt{a^2 - x^2}$$

$$V = \int_{-a}^{a} b\sqrt{a^2 - x^2} dx = b \int_{-a}^{a} \sqrt{a^2 - x^2} dx$$
$$= b \frac{\pi a^2}{2} = \frac{\pi}{2} a^2 b \text{ m}^3.$$

$$A(x) = \frac{1}{2} (2\sqrt{a^2 - x^2})b = b\sqrt{a^2 - x^2}$$

Now, by the Mean Value Theorem, there is a point c_k , with $x_{k-1} < c_k < x_k$, such that

$$\Delta y_k = f'(c_k) \, \Delta x_k.$$

Now, by the Mean Value Theorem, there is a point c_k , with $x_{k-1} < c_k < x_k$, such that

$$\Delta y_k = f'(c_k) \, \Delta x_k.$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} L_k = \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + [f'(c_k)]^2} \, \Delta x_k = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$$

DEFINITION If f' is continuous on [a, b], then the **length** (arc length) of the curve y = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) is the value of the integral

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

EXAMPLE

Find the length of the graph of

$$f(x) = \frac{x^3}{12} + \frac{1}{x}, \qquad 1 \le x \le 4.$$

EXAMPLE

Find the length of the graph of

$$f(x) = \frac{x^3}{12} + \frac{1}{x}, \qquad 1 \le x \le 4.$$

Solution

$$f'(x) = \frac{x^2}{4} - \frac{1}{x^2}$$

$$1 + [f'(x)]^2 = 1 + \left(\frac{x^2}{4} - \frac{1}{x^2}\right)^2 = 1 + \left(\frac{x^4}{16} - \frac{1}{2} + \frac{1}{x^4}\right)$$
$$= \frac{x^4}{16} + \frac{1}{2} + \frac{1}{x^4} = \left(\frac{x^2}{4} + \frac{1}{x^2}\right)^2.$$

EXAMPLE

Find the length of the graph of

$$f(x) = \frac{x^3}{12} + \frac{1}{x}, \qquad 1 \le x \le 4.$$

Solution

$$f'(x) = \frac{x^2}{4} - \frac{1}{x^2}$$

$$1 + [f'(x)]^2 = 1 + \left(\frac{x^2}{4} - \frac{1}{x^2}\right)^2 = 1 + \left(\frac{x^4}{16} - \frac{1}{2} + \frac{1}{x^4}\right)$$
$$= \frac{x^4}{16} + \frac{1}{2} + \frac{1}{x^4} = \left(\frac{x^2}{4} + \frac{1}{x^2}\right)^2.$$

The length of the graph over [1, 4] is

$$L = \int_{1}^{4} \sqrt{1 + [f'(x)]^{2}} dx = \int_{1}^{4} \left(\frac{x^{2}}{4} + \frac{1}{x^{2}}\right) dx$$
$$= \left[\frac{x^{3}}{12} - \frac{1}{x}\right]_{1}^{4} = \left(\frac{64}{12} - \frac{1}{4}\right) - \left(\frac{1}{12} - 1\right) = \frac{72}{12} = 6.$$

EXAMPLE

(The circumference of an ellipse) Find the circumference of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

where $a \ge b > 0$.

EXAMPLE

(The circumference of an ellipse) Find the circumference of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

$$y = b\sqrt{1 - \frac{x^2}{a^2}} = \frac{b}{a}\sqrt{a^2 - x^2}.$$

where $a \ge b > 0$.

EXAMPLE

(The circumference of an ellipse) Find the circumference of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad y = b\sqrt{1 - \frac{x^2}{a^2}} = \frac{b}{a}\sqrt{a^2 - x^2}, \qquad \frac{dy}{dx} = -\frac{b}{a}\frac{x}{\sqrt{a^2 - x^2}},$$

where $a \ge b > 0$.

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{b^2}{a^2} \frac{x^2}{a^2 - x^2}$$
$$= \frac{a^4 - (a^2 - b^2)x^2}{a^2(a^2 - x^2)}.$$

EXAMPLE

(The circumference of an ellipse) Find the circumference of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

-b

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, y = b\sqrt{1 - \frac{x^2}{a^2}} = \frac{b}{a}\sqrt{a^2 - x^2}, \frac{dy}{dx} = -\frac{b}{a}\frac{x}{\sqrt{a^2 - x^2}},$$

$$\frac{dy}{dx} = -\frac{b}{a} \frac{x}{\sqrt{a^2 - x^2}}$$

where $a \ge b > 0$.

-a

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{b^2}{a^2} \frac{x^2}{a^2 - x^2}$$
$$= \frac{a^4 - (a^2 - b^2)x^2}{a^2(a^2 - x^2)}.$$

$$s = 4 \int_0^a \frac{\sqrt{a^4 - (a^2 - b^2)x^2}}{a\sqrt{a^2 - x^2}} dx$$
Let $x = a \sin t$,
$$dx = a \cos t dt$$

Let
$$x = a \sin t$$
,
 $dx = a \cos t dt$

$$=4\int_0^{\pi/2} \frac{\sqrt{a^4 - (a^2 - b^2)a^2 \sin^2 t}}{a(a\cos t)} a\cos t \, dt$$

$$=4\int_0^{\pi/2} \sqrt{a^2 - (a^2 - b^2)\sin^2 t} \, dt = 4a\int_0^{\pi/2} \sqrt{1 - \frac{a^2 - b^2}{a^2}} \sin^2 t \, dt$$

$$= 4a \int_0^{\pi/2} \sqrt{1 - \varepsilon^2 \sin^2 t} \, dt \text{ units,}$$

where $\varepsilon = (\sqrt{a^2 - b^2})/a$ is the eccentricity of the ellipse.

Formula for the Length of x = g(y), $c \le y \le d$

If g' is continuous on [c, d], the length of the curve x = g(y) from A = (g(c), c) to B = (g(d), d) is

$$L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} \, dy = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} \, dy.$$

EXAMPLE

Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

EXAMPLE

Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

The derivative

$$\frac{dy}{dx} = \frac{2}{3} \left(\frac{x}{2}\right)^{-1/3} \left(\frac{1}{2}\right) = \frac{1}{3} \left(\frac{2}{x}\right)^{1/3}$$

is not defined at x = 0, so we cannot find the curve's length.

EXAMPLE

Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

The derivative

$$\frac{dy}{dx} = \frac{2}{3} \left(\frac{x}{2}\right)^{-1/3} \left(\frac{1}{2}\right) = \frac{1}{3} \left(\frac{2}{x}\right)^{1/3}$$

is not defined at x = 0, so we cannot find the curve's length. We therefore rewrite the equation to express x in terms of y:

$$y = \left(\frac{x}{2}\right)^{2/3}$$

$$y^{3/2} = \frac{x}{2}$$
Raise both sides to the power 3/2.
$$x = 2y^{3/2}.$$
Solve for x.

EXAMPLE

Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

The derivative

$$\frac{dy}{dx} = \frac{2}{3} \left(\frac{x}{2}\right)^{-1/3} \left(\frac{1}{2}\right) = \frac{1}{3} \left(\frac{2}{x}\right)^{1/3}$$

is not defined at x = 0, so we cannot find the curve's length. We therefore rewrite the equation to express x in terms of y:

$$y = \left(\frac{x}{2}\right)^{2/3}$$

$$y^{3/2} = \frac{x}{2}$$
Raise both sides to the power 3/2.
$$x = 2y^{3/2}.$$
Solve for x.

$$L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy = \int_{0}^{1} \sqrt{1 + 9y} dy$$
$$= \frac{1}{9} \cdot \frac{2}{3} (1 + 9y)^{3/2} \Big]_{0}^{1}$$
$$= \frac{2}{27} \left(10\sqrt{10} - 1\right) \approx 2.27.$$

$$\frac{dx}{dy} = 2\left(\frac{3}{2}\right)y^{1/2} = 3y^{1/2}$$

is continuous on [0, 1].

The Differential Formula for Arc Length

If y = f(x) and if f' is continuous on [a, b], then by the Fundamental Theorem of Calculus we can define a new function

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} dt.$$

The function s is called the **arc length function** for y = f(x).

The Differential Formula for Arc Length

If y = f(x) and if f' is continuous on [a, b], then by the Fundamental Theorem of Calculus we can define a new function

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} dt.$$

The function s is called the **arc length function** for y = f(x).

$$\frac{ds}{dx} = \sqrt{1 + [f'(x)]^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

The Differential Formula for Arc Length

If y = f(x) and if f' is continuous on [a, b], then by the Fundamental Theorem of Calculus we can define a new function

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} dt.$$

The function s is called the **arc length function** for y = f(x).

$$\frac{ds}{dx} = \sqrt{1 + [f'(x)]^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

Then the differential of arc length is

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

$$ds = \sqrt{dx^2 + dy^2}$$

Areas of Surfaces of Revolution

The surface generated by revolving the graph of a nonnegative function y = f(x), $a \le x \le b$, about the x-axis. The surface is a union of bands like the one swept out by the arc PQ.

Areas of Surfaces of Revolution

The line segment joining *P* and *Q* sweeps out a frustum of a cone.

 x_{k-1}

The surface generated by revolving the graph of a nonnegative function y = f(x), $a \le x \le b$, about the x-axis. The surface is a union of bands like the one swept out by the arc PQ.

Areas of Surfaces of Revolution

The surface generated by revolving the graph of a nonnegative function y = f(x), $a \le x \le b$, about the x-axis. The surface is a union of bands like the one swept out by the arc PQ.

The line segment joining *P* and *Q* sweeps out a frustum of a cone.

Frustum surface area

$$= 2\pi \cdot \frac{f(x_{k-1}) + f(x_k)}{2} \cdot \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$$
$$= \pi (f(x_{k-1}) + f(x_k)) \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}.$$

Areas of Surfaces of Revolution

The surface generated by revolving the graph of a nonnegative function y = f(x), $a \le x \le b$, about the x-axis. The surface is a union of bands like the one swept out by the arc PQ.

The line segment joining *P* and *Q* sweeps out a frustum of a cone.

Frustum surface area

$$= 2\pi \cdot \frac{f(x_{k-1}) + f(x_k)}{2} \cdot \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$$
$$= \pi (f(x_{k-1}) + f(x_k)) \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}.$$

$$\int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} \, dx$$

Areas of Surfaces of Revolution

EXAMPLE

(Surface area of a sphere) Find the area of the surface of a sphere of radius a.

Areas of Surfaces of Revolution

EXAMPLE

(Surface area of a sphere) Find the area of the surface of a sphere of radius a.

Solution Such a sphere can be generated by rotating the semicircle with equation $y = \sqrt{a^2 - x^2}$, $(-a \le x \le a)$, about the x-axis.

Areas of Surfaces of Revolution

EXAMPLE

(Surface area of a sphere) Find the area of the surface of a sphere of radius a.

Solution Such a sphere can be generated by rotating the semicircle with equation $y = \sqrt{a^2 - x^2}$, $(-a \le x \le a)$, about the x-axis.

$$\frac{dy}{dx} = -\frac{x}{\sqrt{a^2 - x^2}} = -\frac{x}{y},$$

Areas of Surfaces of Revolution

EXAMPLE

(Surface area of a sphere) Find the area of the surface of a sphere of radius a.

Solution Such a sphere can be generated by rotating the semicircle with equation $y = \sqrt{a^2 - x^2}$, $(-a \le x \le a)$, about the x-axis.

$$\frac{dy}{dx} = -\frac{x}{\sqrt{a^2 - x^2}} = -\frac{x}{y},$$

$$S = 2\pi \int_{-a}^{a} y \sqrt{1 + \left(\frac{x}{y}\right)^2} dx$$

$$= 4\pi \int_{0}^{a} \sqrt{y^2 + x^2} dx$$

$$= 4\pi \int_{0}^{a} \sqrt{a^2} dx = 4\pi ax \Big|_{0}^{a} = 4\pi a^2 \text{ square units.}$$

Infinite Sequences AND Series

Representing Sequences

A sequence is a list of numbers

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

in a given order. Each of a_1 , a_2 , a_3 and so on represents a number. These are the **terms** of the sequence. For example, the sequence

$$2, 4, 6, 8, 10, 12, \ldots, 2n, \ldots$$

has first term $a_1 = 2$, second term $a_2 = 4$, and *n*th term $a_n = 2n$. The integer *n* is called the **index** of a_n , and indicates where a_n occurs in the list. Order is important. The sequence 2, 4, 6, 8... is not the same as the sequence 4, 2, 6, 8...

Representing Sequences

We can think of the sequence

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

as a function that sends 1 to a_1 , 2 to a_2 , 3 to a_3 , and in general sends the positive integer n to the nth term a_n . More precisely, an **infinite sequence** of numbers is a function whose domain is the set of positive integers.

Representing Sequences

We can think of the sequence

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

as a function that sends 1 to a_1 , 2 to a_2 , 3 to a_3 , and in general sends the positive integer n to the nth term a_n . More precisely, an **infinite sequence** of numbers is a function whose domain is the set of positive integers.

The function associated with the sequence

$$2, 4, 6, 8, 10, 12, \ldots, 2n, \ldots$$

sends 1 to $a_1 = 2$, 2 to $a_2 = 4$, and so on. The general behavior of this sequence is described by the formula $a_n = 2n$.

Representing Sequences

We can equally well make the domain the integers larger than a given number n_0 , and we allow sequences of this type also. For example, the sequence

is described by the formula $a_n = 10 + 2n$. It can also be described by the simpler formula $b_n = 2n$, where the index n starts at 6 and increases. To allow such simpler formulas, we let the first index of the sequence be any integer.

Representing Sequences

Sequences can be described by writing rules that specify their terms, such as

$$a_n = \sqrt{n}, \quad b_n = (-1)^{n+1} \frac{1}{n}, \quad c_n = \frac{n-1}{n}, \quad d_n = (-1)^{n+1},$$

or by listing terms:

$$\{a_n\} = \left\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots\right\}$$

$$\{b_n\} = \left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1} \frac{1}{n}, \dots\right\}$$

$$\{c_n\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n-1}{n}, \dots\right\}$$

$$\{d_n\} = \{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}.$$

We also sometimes write

$$\{a_n\} = \left\{\sqrt{n}\right\}_{n=1}^{\infty}.$$

Representing Sequences

two ways to represent sequences graphically

Convergence and Divergence

DEFINITIONS The sequence $\{a_n\}$ converges to the number L if for every positive number ϵ there corresponds an integer N such that for all n,

$$n > N \implies |a_n - L| < \epsilon$$
.

If no such number L exists, we say that $\{a_n\}$ diverges.

If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the **limit** of the sequence (Figure 10.2).

Convergence and Divergence

Convergence and Divergence

EXAMPLE

(a)
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 (b) $\lim_{n \to \infty} k = k$ (any constant k)

Convergence and Divergence

EXAMPLE

(a)
$$\lim_{n\to\infty}\frac{1}{n}=0$$

(a)
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 (b) $\lim_{n \to \infty} k = k$ (any constant k)

Show that the sequence $\{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$ diverges. EXAMPLE

Convergence and Divergence

DEFINITION The sequence $\{a_n\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than N, $a_n > M$. If this condition holds we write

$$\lim_{n\to\infty} a_n = \infty \qquad \text{or} \qquad a_n \to \infty .$$

Similarly if for every number m there is an integer N such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

$$\lim_{n\to\infty} a_n = -\infty \qquad \text{or} \qquad a_n \to -\infty.$$

Convergence and Divergence

