

## PJM Markets 201

**Production Cost Simulation** 

PJM State & Member Training Dept.

www.pjm.com | Public PJM©2024

#### **Objectives**



#### Student will be able to:

- Evaluate operating parameter impacts through simulation using PJM's market optimization software
  - Interpret LMP components and draw conclusions regarding system performance
  - Apply generator operating parameters and estimate their impact on SCUC and SCED
  - Deduce the cause for units not being selected by the optimization

#### **Simulation Environment**

- Fictitious 64-bus market
- 6 Generation Operating Companies
  - Various generation types



#### What Are We Looking For?

- Draw conclusions about units based on LMP components
  - Effect on constraints
  - Contribution to marginal losses
- Investigate drivers for Day-Ahead Commitment
  - Why wasn't a unit picked up?
  - What characteristic can be modified to lower unit production costs?



How small unit parameter changes impact RTO Production Costs

#### **System Contour Map**





# Base Case One: Pilgrim CC 1

## Base Case System Bid Production Cost = \$10,761,371



### PJM Markets Objective Function Minimize Total Production Cost



## **System Bid Production Cost = \$10,761,371**



#### **LMP Components**

Is Pilgrim 1 upstream or downstream from the constraint? Close or distant to the load center?



#### Pilgrim 1 Price 99 Schedule

The time is currently 2200. Should Pilgrim 1 be running? Why is the unit running?



| Pilgrim 1 Offer |                  |    |        |  |  |
|-----------------|------------------|----|--------|--|--|
| Segment         | Segment MW Price |    |        |  |  |
| 1               | 0                | \$ | 15.00  |  |  |
| 2               | 258              | \$ | 120.00 |  |  |
| 3               | 532              | \$ | 170.00 |  |  |
| 4               | 818              | \$ | 200.00 |  |  |

| Pilgrim 1 Parameters |          |              |  |  |
|----------------------|----------|--------------|--|--|
| Schedule Name        | Price 99 | Price PLS 79 |  |  |
| Min Run Time (Hours) | 12       | 4            |  |  |

#### **Pilgrim 1 Price PLS 79 Schedule**

What time would you expect for Pilgrim 1 to be released when committed on the Price PLS 79 Schedule?



| Pilgrim 1 Offer |     |    |        |  |
|-----------------|-----|----|--------|--|
| Segment         | MW  |    | Price  |  |
| 1               | 0   | \$ | 15.00  |  |
| 2               | 258 | \$ | 120.00 |  |
| 3               | 532 | \$ | 170.00 |  |
| 4               | 818 | \$ | 200.00 |  |

| Pilgrim 1 Parameters |          |              |  |  |
|----------------------|----------|--------------|--|--|
| Schedule Name        | Price 99 | Price PLS 79 |  |  |
| Min Run Time (Hours) | 12       | 4            |  |  |

#### **Operating Reserve Credits**

Pilgrim 1 does not receive any operating reserve credits when on Price PLS 79 Schedule. The system operating reserve credit payment drops by \$97,786.



## New System Bid Production Cost = \$10,497,846 Changed the Minimum Run Time Pilgrim 1



#### PJM Markets Objective Function Minimize Total Production Cost



\$10,761,371 -\$264,000 \$10,497,846



# Case Two: Ben Units 1, 2, and 3

#### **Superior Gen's Portfolio**

What side of the constraint are the Ben units on? Raising generation at Ben has what impact on the constraint?



#### **Ben Unit Parameters**

| Ben Station's Price 99 Parameters |    |                   |       |                   |     |                   |
|-----------------------------------|----|-------------------|-------|-------------------|-----|-------------------|
| Unit Name                         | BE | N 1               | BEN 2 |                   | BE  | N 3               |
| Min Run Time (Hours)              |    | 2                 |       | 2                 |     | 2                 |
| Min Down Time (Hours)             |    | 2                 |       | 2                 |     | 2                 |
| Cold Notification Time            |    | 0                 |       | 0                 |     | 0                 |
| Inter Notification Time           |    | 0                 |       | 0                 |     | 0                 |
| Hot Notification Time             |    | 0                 |       | 0                 |     | 0                 |
| Cold Startup Cost                 | \$ | 101,712.00        | \$    | 101,712.00        | \$: | 101,712.00        |
| Inter Startup Cost                | \$ | 76,652.00         | \$    | 76,652.00         | \$  | 76,652.00         |
| Hot Startup Cost                  | \$ | 67,827.00         | Ş     | 67,827.00         | \$  | 67,827.00         |
| Cold Startup Time                 |    | 0                 |       | 0                 |     | 0                 |
| Inter Startup Time                |    | 0                 |       | 0                 |     | 0                 |
| Hot Startup Time                  |    | 0                 |       | 0                 |     | 0                 |
| Econ. Max                         |    | 64 <mark>0</mark> |       | 64 <mark>0</mark> |     | 62 <mark>0</mark> |
| Econ. Min                         |    | 550               |       | 550               |     | 560               |
| No Load Cost                      | \$ | 3,500.00          | \$    | 3,500.00          | \$  | 3,500.00          |

#### Ben 3's Eco Min is higher

Units are committed at respective eco mins

- Ben 3's higher eco min drives the production cost rate higher
- Production Cost Rate = Production Cost/Committed
   MWs

Ben 3's Eco Max is less than the other two units

No impact on unit commitment in this scenario

What happens when Ben 3 lowers the cold startup cost to \$50k?

## Ben 1 Total Production Cost, First Hour

| Segment | MW                | Price       |              |
|---------|-------------------|-------------|--------------|
| 1       | 0                 | \$<br>15.00 |              |
| 2       | 250               | \$<br>23.48 |              |
| 3       | 375               | \$<br>26.77 |              |
| 4       | 425               | \$<br>27.58 |              |
| 5       | 460               | \$<br>27.84 |              |
| 6       | 5 <mark>50</mark> | \$<br>28.47 | Eco Min is 5 |
| 7       | 5 <mark>85</mark> | \$<br>29.48 |              |
| 8       | 62 <mark>5</mark> | \$<br>29.90 |              |
| 9       | 66 <mark>2</mark> | \$<br>30.64 |              |



| Ben 1 Production Cost at Eco Min (550 MW) |                                 |                  |              |  |  |
|-------------------------------------------|---------------------------------|------------------|--------------|--|--|
| Area                                      | Area of Rectangle               | Area of Triangle | Total        |  |  |
| No Load                                   |                                 |                  | \$3,500      |  |  |
| 1                                         | 3750                            | 1060             | 4810         |  |  |
| 2                                         | 2935                            | 205.625          | 3140.625     |  |  |
| 3                                         | 1338.5                          | 20.25            | 1358.75      |  |  |
| 4                                         | 965.3                           | 4.55             | 969.85       |  |  |
| 5                                         | 2505.6                          | 28.35            | 2533.95      |  |  |
|                                           | <b>Production Cost at</b>       | Eco Min          | \$16,313.18  |  |  |
|                                           | Cold Start Up                   |                  | \$101,712.00 |  |  |
|                                           | \$118,025.18                    |                  |              |  |  |
|                                           | Production Cost Rate at Eco Min |                  |              |  |  |

#### Ben 2 Total Production Cost, First Hour

| Segment | MV | ٧                 | Price       |
|---------|----|-------------------|-------------|
| 1       |    | 0                 | \$<br>15.00 |
| 2       |    | 250               | \$<br>24.08 |
| 3       |    | 350               | \$<br>26.96 |
| 4       |    | 375               | \$<br>27.86 |
| 5       |    | 424               | \$<br>28.31 |
| 6       |    | 500               | \$<br>28.54 |
| 7       |    | 5 <mark>50</mark> | \$<br>29.17 |
| 8       |    | 585               | \$<br>30.04 |
| 9       |    | 63 <mark>0</mark> | \$<br>30.52 |
| 10      |    | 66 <mark>1</mark> | \$<br>31.15 |





| Ben 2 Production Cost at Eco Min (550 MW) |                           |                  |              |  |  |
|-------------------------------------------|---------------------------|------------------|--------------|--|--|
| Area                                      | Area of Rectangle         | Area of Triangle | Total        |  |  |
| No Load                                   |                           |                  | \$3,500      |  |  |
| 1                                         | 3750                      | 1135             | 4885         |  |  |
| 2                                         | 2408                      | 144              | 2552         |  |  |
| 3                                         | 674                       | 11.25            | 685.25       |  |  |
| 4                                         | 1365.14                   | 11.025           | 1376.165     |  |  |
| 5                                         | 2151.56                   | 8.74             | 2160.3       |  |  |
| 6                                         | 1427                      | 15.75            | 1442.75      |  |  |
|                                           | <b>Production Cost at</b> | Eco Min          | \$16,601.47  |  |  |
|                                           | Cold Start Up             |                  | \$101,712.00 |  |  |
|                                           | \$118,313.47              |                  |              |  |  |
|                                           | \$30.18                   |                  |              |  |  |

#### Ben 3 Total Production Cost (Full Startup)

| Segment | MW                | Price    |
|---------|-------------------|----------|
| 1       | 0                 | \$ 15.00 |
| 2       | 250               | \$ 24.08 |
| 3       | 350               | \$ 26.96 |
| 4       | 375               | \$ 27.86 |
| 5       | 424               | \$ 28.31 |
| 6       | 500               | \$ 28.54 |
| 7       | 5 <mark>50</mark> | \$ 29.30 |
| 8       | 5 <mark>60</mark> | \$ 29.51 |
| 9       | 5 <mark>85</mark> | \$ 30.04 |
| 10      | 63 <mark>0</mark> | \$ 30.52 |
| 11      | 66 <mark>1</mark> | \$ 31.15 |

Eco min is 560. How is the price calculated?



|         | Ben 3 Production Cost at Eco Min (560 MW) |                  |              |  |  |  |
|---------|-------------------------------------------|------------------|--------------|--|--|--|
| Area    | Area of Rectangle                         | Area of Triangle | Total        |  |  |  |
| No Load |                                           |                  | \$3,500      |  |  |  |
| 1       | 3750                                      | 1135             | 4885         |  |  |  |
| 2       | 2408                                      | 144              | 2552         |  |  |  |
| 3       | 674                                       | 11.25            | 685.25       |  |  |  |
| 4       | 1365.14                                   | 11.025           | 1376.165     |  |  |  |
| 5       | 2151.56                                   | 8.74             | 2160.3       |  |  |  |
| 6       | 1427                                      | 19               | 1446         |  |  |  |
| 7       | 293                                       | 1.05             | 294.05       |  |  |  |
|         | <b>Production Cost at</b>                 | \$16,898.77      |              |  |  |  |
|         | Cold Start Up                             |                  | \$101,712.00 |  |  |  |
|         | \$118,610.77                              |                  |              |  |  |  |
|         | \$30.18                                   |                  |              |  |  |  |

#### Linear Interpolation to Determine the \$/MW between 550 and 585 MW

Slope = 
$$m = \frac{d_y}{d_x} = \frac{rise}{run}$$

$$m = \frac{\$(30.04-29.30)}{MW(585-550)} = \$.021/MW$$

#### Therefore:

$$0.021 = \frac{(y_1 - 29.30)}{(560 - 550)}$$

$$0.21 = (y_1 - 29.30)$$

$$y_1$$
 = **29.51**

#### Ben 3 Total Production Cost (Reduced Start Up)

| Segment | MW                | Price    |
|---------|-------------------|----------|
| 1       | 0                 | \$ 15.00 |
| 2       | 250               | \$ 24.08 |
| 3       | 350               | \$ 26.96 |
| 4       | 375               | \$ 27.86 |
| 5       | 424               | \$ 28.31 |
| 6       | 500               | \$ 28.54 |
| 7       | 5 <mark>50</mark> | \$ 29.30 |
| 8       | 5 <mark>60</mark> | \$ 29.51 |
| 9       | 585               | \$ 30.04 |
| 10      | 63 <mark>0</mark> | \$ 30.52 |
| 11      | 661               | \$ 31.15 |





| Ben 3 Production Cost at Eco Min with Reduced Start Up Cost |                            |                  |             |  |
|-------------------------------------------------------------|----------------------------|------------------|-------------|--|
| Area                                                        | Area of Rectangle          | Area of Triangle | Total       |  |
| No Load                                                     |                            |                  | \$3,500     |  |
| 1                                                           | 3750                       | 1135             | 4885        |  |
| 2                                                           | 2408                       | 144              | 2552        |  |
| 3                                                           | 674                        | 11.25            | 685.25      |  |
| 4                                                           | 1365.14                    | 11.025           | 1376.165    |  |
| 5                                                           | 2151.56                    | 8.74             | 2160.3      |  |
| 6                                                           | 1427                       | 19               | 1446        |  |
| 7                                                           | 293                        | 1.05             | 294.05      |  |
|                                                             | Production Cost at Eco Min |                  | \$16,898.77 |  |
|                                                             | Cold Start Up              |                  | \$50,000.00 |  |
| Total Production Cost at Eco Min                            |                            |                  | \$66,898.77 |  |
| Production Cost Rate at Eco Min                             |                            |                  | \$30.18     |  |

#### **Ben Unit's Production Cost Rate**

Production Cost Rate = 
$$\frac{\text{Production Cost}}{\text{Committed MWs}}$$

| Ben Unit's Production Cost Rate |                        |            |                             |  |  |
|---------------------------------|------------------------|------------|-----------------------------|--|--|
| Unit                            | <b>Production Cost</b> | Eco Min MW | <b>Production Cost Rate</b> |  |  |
| Ben 1                           | \$16,313.18            | 550        | \$29.66                     |  |  |
| Ben 2                           | \$16,601.47            | 550        | \$30.18                     |  |  |
| Ben 3                           | \$16,898.77            | 560        | \$30.18                     |  |  |

How can we use the production cost rate to explain why the Ben units are committed?

#### **Superior Gen's Portfolio**

#### Ben 3 clears in the Day-Ahead Market instead of Ben 2.

#### **Generator Revenue Components**



## New System Bid Production Cost = \$10,438,825 Changed the Cold Start Cost for Ben 3



#### PJM Markets Objective Function Minimize Total Production Cost



\$10,761,371 -\$264,000 -\$59,000



# Case Three: Sunny 1 CC

#### Sunny 1 Output vs LMP



Sunny 1 came offline at **midnight**.

At 0900, Sunny 1 is offered at \$35 with a LMP of \$150.

Why has the unit not been committed?

## New System Bid Production Cost = \$10,312,081 Changed the Sunny 1 Minimum Down Time

| Sunny 1 Parameters    |          |              |  |  |
|-----------------------|----------|--------------|--|--|
| Schedule Name         | Price 99 | Price PLS 79 |  |  |
| Min Down Time (Hours) | 24       | 4            |  |  |

### PJM Markets Objective Function Minimize Total Production Cost



\$10,761,371 -\$264,000 -\$59,000 -\$127,000



# New System Bid Production Cost = \$10,312,081 Changed Sunny 1 Minimum Down Time



What happens to LMP when Sunny 1's minimum downtime is decreased?



## **Case Four: Cliff 1 Nuclear Unit**

#### **Cliff 1 Day-Ahead Market Clearing**

| Cliff 1 Parameters           |         |        |
|------------------------------|---------|--------|
| Schedule Name                | Price 9 | 9      |
| Min Run Time (Hours)         |         | 24     |
| Min Down Time (Hours)        |         | 24     |
| Cold Notification Time       |         | 0      |
| Inter Notification Time      |         | 0      |
| <b>Hot Notification Time</b> |         | 0      |
| Cold Startup Cost            | \$      | -      |
| Inter Startup Cost           | \$      | -      |
| Hot Startup Cost             | \$      | -      |
| Cold Startup Time            |         | 28     |
| Inter Startup Time           |         | 22     |
| Hot Startup Time             |         | 10     |
| Econ. Max                    |         | 885    |
| Econ. Min                    |         | 885    |
| No Load Cost                 | Ç       | 908.84 |

| Cliff 1 Unit Hourly Availability |                      |  |
|----------------------------------|----------------------|--|
| Hour                             | <b>Commit Status</b> |  |
| HE 1                             | U                    |  |
| HE 2                             | U                    |  |
| HE 3                             | U                    |  |
| HE 4                             | U                    |  |
| HE 5                             | U                    |  |
| HE 6                             | U                    |  |
| HE 7                             | U                    |  |
| HE 8                             | U                    |  |
| HE 9                             | U                    |  |
| HE 10                            | U                    |  |
| HE 11                            | U                    |  |
| HE 12                            | U                    |  |
| HE 13                            | U                    |  |
| HE 14                            | U                    |  |
| HE 15                            | U                    |  |
| HE 16                            | U                    |  |
| HE 17                            | U                    |  |
| HE 18                            | U                    |  |
| HE 19                            | U                    |  |
| HE 20                            | U                    |  |
| HE 21                            | U                    |  |
| HE 22                            | U                    |  |
| HE 23                            | U                    |  |
| HE 24                            | U                    |  |

The unit has just come back from a planned outage and did not clear in the Day-Ahead Market.

How does Saratoga Generation troubleshoot as to why Cliff 1 is not committed?

What change needs to happen for Cliff 1 to clear in the DA Market?

## **System Contour Map With Cliff 1 Unavailable**



#### System Contour Map – With Cliff 1 Available



# New System Bid Production Cost = \$9,870,237 Changed the Availability of Cliff 1 Nuclear Unit



#### PJM Markets Objective Function Minimize Total Production Cost



\$10,761,371 -\$264,000 -\$59,000 -\$127,000 -\$442,000

\$9,870,237

Total Reduction in Production Cost for all scenarios = \$891,134

# System Bid Production Cost = \$9,870,237 **Dropped by \$442,000**

- Cliff 1 Nuclear (Saratoga Power Company)
  - a. Congestion goes away
  - b. Total bid production costs dropped by \$442k
  - c. This will be investigated as withholding

#### **Summary**

- Total Bid Production Cost Base Case
  - \$10,761,371
- Four incremental changes
  - Operating Parameters
  - No changes to offer curves
- Total Bid Production Cost Final Case
  - \$9,870,237
  - 8% total reduction in costs
  - More improvements possible





# Questions?

**PJM Client Management & Services** 

**Telephone:** (610) 666-8980

**Toll Free Telephone: (866) 400-8980** 

Website: www.pjm.com



The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services