

CE301 - Estatística Básica Famílias de distribuições

Paulo Justiniano Ribeiro Jr

Departamento de Estatística Setor de Ciências Exatas Universidade Federal do Paraná

22 de maio de 2025

Probabilidades

Como interpretar probabilidades?

- ► Informação prévia/disponível. Definição clássica.
- ► Obtida por observação/simulação. Definição frequentista (estimativa, limite de proporção)
- ► Atribuição "opinativa". Definição subjetiva.

Em outras palavras, probabilidades podem ser atribuídas por:

- ► modelos.
- dados.
- ▶ ou de forma subjetiva.

Probabilidades

Probabilidade(s) em (eventos de) interesse. Revisando:

- ► Medida no intervalo [0,1].
- Resultados por vezes contra-intuitivos.
- ► Formalização: fundamentos e notação.
- ► Propriedades (complementar, união, intersecção, condicional).
- ► Teorema de Bayes.

Problemas estilizados e analogias.

Atribuindo probabilidades

- ► Sair cara no lançamento de uma moeda.
- ► A soma de dois dados ser 6.
- ▶ Uma ninhada de cinco cães ter três fêmeas.
- ► Um jogador de basquete acertar todos lance-livres em um jogo.
- ▶ Uma seguradora registrar mais de 10 sinistros em um dia.
- Uma região registrar chuva (precipitação) em abril superior a 200 mm.
- ▶ Um paciente responder positivamente a certo tratamento.
- Uma pessoa avaliar positivamente um filme.

Atribuindo probabilidades

Modelos probabilísticos

- ▶ Padrões de comportamento.
- ► Situações *estilizadas* modelos probabilísticos.
- ► Variáveis aleatórias
- Distribuições de probabilidades

Muitas vezes a sociedade "organiza" o mundo de forma a trazer previsibilidade a partir fenômenos de ocorrência imprevisível.

Como ter previsibilidade a partir da imprevisibilidade?

Variáveis aleatórias

São "simplificações" (funções) de interesse do espaço amostral. São "dispositivos" para atribuir probabilidades em certos padrões de comportamento.

Um exemplo simples: quantos machos há em uma ninhada de três cães? (estamos interessados somente no número de machos e não na ordem dos nascimentos)

Espaço amostral:

$$\Omega = \{ (F, F, F), (F, F, M), (F, M, F), (M, F, F), (F, M, M), (M, F, M), (M, M, F), (M, M, M) \}$$

Variável aleatória: Y : número de machos

Domínio: $y \in \{0, 1, 2, 3\}$

Variáveis aleatórias Organizando:

Definindo a variável aleatória:

Y: número de machos em ninhada com 3 cães.

► Verificando seus possíveis valores (domínio):

$$y \in \{0, 1, 2, 3\}.$$

► Atribuindo probabilidades a seus possíveis valores:

У	0	1	2	3
Probabilidades	1/8	38	38	1 8

A tabela pode ser substituída por uma equação que produz seus valores:

$$P[Y = y] = {3 \choose y} (1/2)^y (1 - 1/2)^{3-y} = {n \choose y} (p)^y (1 - p)^{n-y}.$$

Probabilidades em gráficos

Calculando Probabilidades

Revisitando a lista de problemas:

- Vamos formalizar as soluções
- ▶ Pode-se representar problemas *reais* parecidos ou análogos

Considere o lançamento de um dado normal.

- 1. Quais os resultados possíveis?
- 2. Qual a probabilidade de sair a face 5?
- 3. Qual a probabilidade de cada possível resultado?
- 4. Qual a probabilidade de sair uma face que seja um número divisível por 3?

UFPR

Suposições e modelo teórico

- ▶ ocorre uma entre seis possíveis faces
- ► as faces são igualmente prováveis

Tabela 1. Distribuição de probabilidades da face no lançamento de um dado

Face (y)	1	2	3	4	5	6
Probabilidades $P[Y = y]$	<u>1</u>	$\frac{1}{6}$	1/6	<u>1</u>	<u>1</u>	$\frac{1}{6}$
Prob. Acum. $P[Y \le y] = F(y)$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	<u>5</u>	6

$$P[Y = y_i] = \frac{1}{6} \ \forall i$$

Generalizando

- ▶ Definimos uma variável aleatória (v.a.) que associa valores ao resultado do experimento. Neste último caso a associação é simples e direta, 1-1.
- ▶ Distribuição de probabilidades: como o total da probabilidade (1) se distribui entre os possíveis valores da v.a..
- A distribuição da v.a. pode ser descrita por uma tabela, ou, caso possível, por uma fórmula (uma função de probabilidades) que atribui seus valores.
- ► Neste caso dizemos ter uma família de distribuição especial ou conhecida.

Generalizando a solução: Exercício 1

Y : face de um dado (v.a. discreta)

$$y \in \{1,2,3,4,5,6\}$$

$$Y \sim U_{\rm d}(n=6)$$

$$P[Y = y] = \frac{1}{n} = \frac{1}{6}$$

Considere o lançamento de um dado não usual, no qual a probabilidade de cada face é proporcional ao seu valor.

- 1. Quais os resultados possíveis?
- 2. Qual a probabilidade de sair a face 5?
- 3. Qual a probabilidade de cada possível resultado?
- 4. Qual a probabilidade de sair uma face que seja um número divisível por 3?

Suposições e modelo probabilístico (teórico)

- ▶ Ocorre uma entre seis possíveis faces.
- $ightharpoonup \Omega = \{1,2,3,4,5,6\}.$
- ► As faces não são igualmente prováveis.

Tabela 2. Distribuição de probabilidades da face no lançamento de um dado

Face (y)	1	2	3	4	5	6
P[Y=y]	<u>1</u> 21	2 21	<u>3</u> 21	4 21	<u>5</u> 21	<u>6</u> 21
$P[Y \le y]$	1 21	3 21	<u>6</u> 21	10 21	1 <u>5</u> 21	<u>21</u> 21

Generalizando a partir do Exercício 2 Notação:

Y : face de um dado (v.a. discreta)

$$y \in \{1,2,3,4,5,6\}$$

$$P[Y = y_i] = \frac{y_i}{\sum_i y_i}$$

Considere o lançamento de dois dados e o interesse está na soma das faces.

- 1. Quais os resultados possíveis?
- 2. Qual a probabilidade da soma ser 5?
- 3. Qual a probabilidade de cada possível resultado?
- 4. Qual a probabilidade que a soma das faces seja um número divisível por 3?

Suposições e modelo teórico

- ► Y: soma das faces no lançamento de dois dados
- $y \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Tabela 3. Distribuição de probabilidades da soma das faces no lançamento de dois dados

y	2	3	4	5	6	7	8	9	10	11	12
P[Y = y]	<u>1</u> 36	$\frac{2}{36}$	3/36	4 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	$\frac{4}{36}$	3 36	2 36	1 36
$F(y) = P[Y \le y]$	1 36	3 36	<u>6</u> 36	10 36	15 36	21 36	26 36	30 36	33 36	35 36	1

A tabela pode ser expressa pela equação: $P[Y = y] = \frac{6 - |y - 7|}{36}$.

Variáveis aleatórias discretas

- ► Y tem valores em um conjunto enumerável
- ▶ Possui um função de probabilidades P[Y = y] com valores expressos por uma tabela ou fórmula
- ▶ Pode tb ser caracterizada por uma função acumulada

$$F(y) = \sum_{i} P[Y = y_i]$$

- ▶ Pode-se calcular medidas que expressam características da distribuição tais como:
 - Média (valor esperado, esperança): $E[Y] = \sum_i y_i \cdot P[Y = y_i]$
 - ► Variância : $Var[Y] = \sum_i (y_i E[Y])^2 \cdot P[Y = y_i]$
 - ► mediana, quantis, etc

Variáveis aleatórias discretas

Um dado foi fabricado com o centro em madeira leve e cada face com uma chapa metálica porém de diferentes características (espessura/densidade) em cada face?

- 1. Quais os resultados possíveis?
- 2. Como calcular a probabilidade de sair a face 5?
- 3. Como calcular a probabilidade de cada possível resultado?
- 4. Como calcular a probabilidade de sair uma face que seja um número divisível por 3?

Suposições e procedimento empírico

- ▶ ocorre uma entre seis possíveis faces
- \bullet $\Omega = \{1,2,3,4,5,6\}$
- ► as faces podem não ser igualmente prováveis
- experimento: lançou-se o dado 1000 vezes obtendo-se

Tabela 4. Distribuição de probabilidades da face no lançamento de um dado

Face (y)	1	2	3	4	5	6
Probabilidades	123	159	227	199	178	114
	1000	1000	1000	1000	1000	1000

Distribuição de probabilidades obtida empiricamente

UFPR

Uma pergunta válida:

Os valores observados são incompatíveis com a hipótese de equiprobabilidade?

Face (y)	1	2	3	4	5	6
Probs Observadas	123	159	227	199	178	114
	1000	1000	1000	1000	1000	1000
Probs "Esperadas"	167	167	167	167	166	166
	1000	1000	1000	1000	1000	1000

UFPR

Uma pergunta válida:

Face (y)	1	2	3	4	5	6
Probs Observadas	123 1000	159 1000	227 1000	199	$\frac{178}{1000}$	114 1000
Probs "Esperadas"	167 1000	167 1000	167 1000	167 1000	166 1000	166 1000
Probs Simuladas	185 1000	163 1000	164 1000	169 1000	172 1000	147

UFPR

Uma pergunta válida:

Face (y)	1	2	3	4	5	6
Probs Observadas	123 1000	159 1000	227 1000	199 1000	178 1000	114
Probs "Esperadas"	167	167	167	167	166	166
	1000	1000	1000	1000	1000	1000
Probs Simuladas (2)	146	179	160	164	170	181
	1000	1000	1000	1000	1000	1000

Uma pergunta válida:

Uma pergunta válida:

Voce vai a um cassino em uma mesa que tem um jogo no qual se lançam dois dados como em um problema anterior. A regra é a de que se a soma for 6, 7 ou 8 voce ganha, valor igual ao apostado, caso contrário, perde o apostado.

- 1. Qual sua opinão sobre suas chances de ganhar?
- 2. Quais os resultados possíveis?
- 3. Qual sua opinião sobre a probabilidade da soma ser 5?
- 4. Oual sua opinião sobre a probabilidade de cada possível resultado?
- 5. Qual sua opinião sobre a probabilidade de sair uma face que seja um número divisível por 3?

Qual sua opinião sobre a probabilidade?

Revisitando Interpretações de probabilidade

- ► Clássica: obtenção a partir de modelo teórico (ex. 1 a 3)
- ► Frequentista: obtenção a partir de procedimento empírico (ex. 4)
- Subjetiva: opinião do indivíduo (ex. 5)

Em um teste múltipla escolha de quatro questões, deve-se marcar uma alternativa em cada questão.

Cada questão é composta de cinco alternativas das quais apenas uma é correta. Qual a probabilidade de um indivíduo acertar por mero acaso alguma questão?

A resposta é mais simples se calcularmos pelo complementar: $P[\cdot] = 1 - (0.8)^4 = 0.59$, mas Organizando o problema ...

- ► Y: número de questões certas
- $y \in \{0, 1, 2, 3, 4\}$
- ► $P[Y = y] = \binom{4}{y} (1/5)^y (4/5)^{4-y} = \binom{n}{y} p^y (1-p)^{n-y}$ (distribuição Binomial!)
- ► Evento de interesse:

$$P[Y \ge 1] = 1 - P[Y = 0] = 1 - {4 \choose 0} (1/5)^0 (4/5)^4 = 0.59$$

Código R:

1 - dbinom(0, size=4, prob=1/5)

[1] 0.5904

Alguns biólogos fizeram estudos de laboratório sobre o comportamento de animais quando submetidos a um estímulo, o quais poderiam apresentar ou não resposta positiva. Em particular estavam interessados nas respostas positivas ao estímulo. Considera-se que na população destes animais, 10% sejam sensíveis ao estímulo.

O biólogo A possuia um grupo em que 10 animais eram sensíveis e 20 eram insensíveis. Ele selecionou ao acaso 8 animais para teste.

O biólogo B dispunha de um grande número de animais e foi testando um a um até encontrar o terceiro sensível ao estímulo.

O biólogo ${\cal C}$ fazia testes diários e encontrava uma média de 2,8 animais sensíveis a cada dia.

O biólogo ${\cal D}$ submeteu 10 animais ao estímulo e registrou quantos eram sensíveis.

O biólogo ${\it E}$ dispunha de um grande número de animais e foi testando um a um até encontrar um sensível ao estímulo.

Biólogo A: Distribuição Hipergeométrica

O biólogo *A* possuia um grupo em que 10 animais eram sensíveis e 20 eram insensíveis. Ele selecionou ao acaso 8 animais para teste. *Qual a probabilidade do biólogo A encontrar ao menos 2 animais sensíveis?*

Y : número de sensíveis entre oito testados.

$$Y \sim HG(m, n, k)$$

$$y \in \{0, 1, 2, \dots 8\}$$

$$P[Y = y] = \frac{\binom{m}{y} \binom{n}{k-y}}{\binom{m+n}{k}} = \frac{\binom{10}{y} \binom{20}{8-y}}{\binom{30}{9}}$$

$$P[Y \ge 2] = 1 - P[Y = 0] - P[Y = 1] = 1 - \frac{\binom{10}{0}\binom{20}{8-0}}{\binom{30}{8}} - \frac{\binom{10}{1}\binom{20}{8-1}}{\binom{30}{8}} = 0.8460$$

Código R:

1 - phyper(1, m=10, n=20, k=8)

[1] 0.8460308

Distribuição binomial negativa

O biólogo *B* dispunha de um grande número de animais e foi testando um a um até encontrar o terceiro sensível ao estímulo.

Qual a probabilidade de precisar testar no máximo 6 animais?

Y : número de não sensíveis encontrados até encontrar o terceiro sensível.

$$Y \sim BN(k, p)$$

$$y \in \{0, 1, 2, ...\}$$

$$P[Y = y] = {y + k - 1 \choose k - 1} (1 - p)^y p^k = {y + 3 - 1 \choose 3 - 1} (0.9)^y (0.1)^3$$

$$P[Y \le 3] = P[Y = 0] + P[Y = 1] + P[Y = 2] + P[Y = 3] = 0.0158$$

```
pnbinom(3, size=3, prob=0.1)
## [1] 0.01585
```

Distribuição Poisson

O biólogo *C* fazia testes diários e encontrava uma média de 2,8 animais sensíveis a cada dia.

Qual a probabilidade de encontrar menos que dois sensíveis em um determinado dia?

Y : número de sensíveis encontrados por dia.

$$Y \sim P(\lambda)$$

 $y \in \{0, 1, 2, ...\}$
 $P[Y = y] = \frac{e^{-\lambda} \lambda^y}{y!} = \frac{e^{-2.8} 2.8^y}{y!}$
 $P[Y < 2] = P[Y = 0] + P[Y = 1] = \frac{e^{-2.8} 2.8^0}{4!}$

$$P[Y < 2] = P[Y = 0] + P[Y = 1] = \frac{e^{-2.8}2.8^{0}}{0!} + \frac{e^{-2.8}2.8^{1}}{1!} = 0.2311$$

Código R:

ppois(1, lambda=2.8)

Distribuição Binomial

O biólogo *D* submeteu 10 animais ao estímulo e registrou quantos eram sensíveis..

Qual a probabilidade de encontrar mais que 3 animais sensíveis?

Y : número de sensíveis entre 10 testados.

$$Y \sim B(n, p)$$

 $y \in \{0, 1, 2, ... 10\}$

$$P[Y = y] = {n \choose y} p^{y} (1 - p)^{n - y} = {10 \choose y} (0.1)^{y} (0.9)^{10 - y}$$

$$P[Y > 3] = 1 - P[Y \le 3] = 1 - P[Y = 0] - P[Y = 1] - P[Y = 2] - P[Y = 3] = 0.0128$$

```
1 - pbinom(3, size=10, prob=0.1)
## [1] 0.0127952
```

Distribuição Geométrica

O biólogo E dispunha de um grande número de animais e foi testando um a um até encontrar um sensível ao estímulo...

Qual a probabilidade de precisar testar mais que 3 animais?

Y : número de não sensíveis testados até encontrar o primeiro sensível.

$$Y \sim G(p)$$

 $y \in \{0, 1, 2, ...\}$
 $P[Y = y] = (1 - p)^y p$
 $P[Y \ge 3] = 1 - P[Y = 0] - P[Y = 1] - P[Y = 2] = 0.7290$

```
1 - pgeom(2, prob=0.1)
  Γ17 0.729
```

Os modelos dos biólogos

Atenção: definição da variável

Geométrica:

Y: número de "falhas" até primeiro sucesso $P[Y=y]=(1-p)^y p$, para $y=0,1,\ldots$ ou

Y: número de tentativas até primeiro sucesso $P[Y = y] = (1 - p)^{y-1}p$, para y = 1, 2, ...

Binomial negativa:

Y: número de "falhas" até o k-ésimo sucesso ...

Y: número de tentativas até o k-ésimo sucesso ...

Modelos

Modelos de probabilidade e modelos estatísticos.

- ► Escolha de modelo.
- ► Constantes e parâmetros.
- ► Famílias e obtenção do(s) parâmetro(s).
- ► Modelagem estatística, regressão e generalizações.

Exercício 10

Considere o surgimento de um defeito na pista em um trecho de rodovia com extensão de 20 km.

- 1. Qual a probabilidade de que o defeito ocorra nos primeiros 5 km?
- 2. Qual a probabilidade de que o defeito ocorra entre os quilômetros 12 e 15?
- 3. Se o defeito ocorre na segunda metade do trecho, qual a probabilidade de seja nos últimos 3 km?
- 4. O custo de manutenção é de R\$2.000,00 se ocorre nos primeiros 5 km, de R\$5.000,00 se ocorre entre 5 e 16 kms e de R\$10.000,00 se ocorre nos ultimos 4 km. Que custo espera-se ter em 20 manutenções?

Exercício 10

Considere o surgimento de um defeito na pista em um trecho de rodovia com extensão de 20 km.

- 1. Qual a probabilidade de que o defeito ocorra nos primeiros 5 km? Resposta: 1/4
- 2. Qual a probabilidade de que o defeito ocorra entre os quilômetros 12 e 15? Resposta: 3/20
- 3. Se o defeito ocorre na segunda metade do trecho, qual a probabilidade de seja nos últimos 3 km?

Resposta: 3/10

4. O custo de manutenção é de R\$2.000,00 se ocorre nos primeiros 5 km, de R\$5.000,00 se ocorre entre 5 e 16 kms e de R\$10.000,00 se ocorre nos ultimos 4 km. Que custo espera-se ter em 20 manutenções? Resposta: $\frac{5}{20}2000 + \frac{11}{20}5000 + \frac{4}{20}10000 = 5250$

Exercício 10

O que mudou?

Domínio de Y nos reais (ou subconjunto dos reais), no exemplo $y \in [0, 20]$

- ► a v.a. é contínua,
- ▶ não faz mais sentido em avaliar o valor em um ponto P[Y = y]
- ▶ Define-se uma função de densidade de probabilidade (fdp) f(y)
 - $f(y) \ge 0 \ \forall y$
 - $f(y) \mathrm{d} y = 1$
- ► E as probabilidades de interesse são áreas sob a função

$$P[a < Y < b] = \int_{a}^{b} f(y) dy$$

Considere o surgimento de um defeito na pista em um trecho de rodovia com extensão de 20 km.

1. Qual a probabilidade de que o defeito ocorra nos primeiros $5 \ km$? Resposta: 1/4 = 0.25

2. Qual a probabilidade de que o defeito ocorra entre os quilômetros 12 e 15? Resposta: 3/20 = 0,15

3 Se o defeito ocorre na segunda metade do trecho, qual a probabilidade de seja nos últimos 3 km?

Resposta: $\frac{3}{10}$

4. O custo de manutenção é de R\$2.000,00 se ocorre nos primeiros 5 km, de R\$5.000,00 se ocorre entre 5 e 16 kms e de R\$10.000,00 se ocorre nos ultimos 4 km. Que custo espera-se ter em 20 manutenções? Resposta: $\frac{5}{20}2000 + \frac{11}{20}5000 + \frac{4}{20}10000 = 5250$

Uma distribuição especial, ou melhor, normal

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1. $P[Y \le 160]$
- 2. P[Y > 180]
- 3. $P[155 \le Y \le 175]$
- 4. $P[Y \le a] = 0.99$
- 5. $P[\mu b \le Y \le \mu + b] = 0.80$
- 6. $P[Y \le 160 | Y \le 170]$
- 7. P[Y > 180|Y > 165]
- 8. $P[Y \le 185|Y > 155]$
- 9. $P[Y > 175|Y \le 190]$

Probabilidade

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1. $P[Y \le 160]$
- 2.
- 3.
- 4.
- 5.
- 6.
- 0.
- /.
- 8.
- 9.

Probabilidade

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 2. P[Y > 180]

- 6.

- 8.

Código R:

1 - pnorm(180, 170, 10) ## [1] 0.1586553

Probabilidade

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1.
- 2.
- 3. $P[155 \le Y \le 175]$
- 4
- 5.
- 6.
- 7
- 1.
- 8
- 9.

```
pnorm(175, mean = 170, sd = 10) -
pnorm(155, mean = 170, sd = 10)
## [17] 0.6246553
```


Quantis

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1.
- 3.
- 4. $P[Y \le a] = 0.99$
- 5.
- 6.

- 8.

Quantis

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1.
- 2.
- 3.
- 4.
- 5. $P[\mu b \le Y \le \mu + b] = 0.80$
- 6.
- 7.
- /.
- 8.
- 9.

Código R:

qnorm(0.90, 170, 10) - 170 ## [1] 12.81552

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1.
- 2.
- 3.
- 4
- 5.
- 6. P[Y < 160|Y < 170]
- 7.
- 8.
- 0.
- 9. Sádi

Código R:

pnorm(160, 170, 10)/pnorm(170, 170, 10) ## [1] 0.3173105

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 1.
- 2.
- 3.
- 4
- 5
- 6.
- 7. P[Y > 180 | Y > 165]
- 7. 1 [1 / 100 | 1 / 10.
- 8.
- 9.

Código R:

(1 - pnorm(180, 170, 10))/(1 - pnorm(165, 176, 10))/(1 - pnorm(165, 176, 10))

 $Y \sim N(\mu = 170, \sigma^2 = 10^2)$

- 6.

- 8. P[Y < 185|Y > 155]

$$Y \sim N(\mu = 170, \sigma^2 = 10^2)$$

- 6.

- 8.
- 9. $P[Y > 175 | Y \le 190]$

Escore Z e probabilidade

$$Z = \frac{Y - \mu}{\sigma} \sim N(\mu_Y, \sigma_Y^2)$$

$$Z = \frac{Y - \mu}{\sigma} \sim N(\mu_Z = 0, \sigma_Z^2 = 1)$$

- ► Z desvios padrão acima (ou abaixo) da média.
- ► Probabilidades equivalentes em *Y* ou *Z*.
- Usado para cálculo de probabilidades utilizando "tabelas da distribuição normal".
- ► No exemplo:

$$P[Y \le 160] = P[Z \le \frac{160 - 170}{10}] = P[Z \le -1]$$

Escore Z e quantil

$$Y \sim N(\mu_Y, \sigma_Y^2)$$

$$Z = \frac{Y - \mu}{\sigma} \sim N(\mu_Z = 0, \sigma_Z^2 = 1)$$

$$P[Z \le z] = 0.99$$

$$z = 2.326$$

$$\frac{a - 170}{10} = 2.326$$

$$a = 193.263$$

Distribuição Gama

Distribuição Gama

 $\mu = 17$: média e $\sigma^2 = 100$: variância

Parametrização utilizada: "shape" (forma) e "scale" (escala)

(shape) sh =
$$\frac{\mu^2}{\sigma^2}$$

(scale) sc = $\frac{\sigma^2}{\mu}$

```
pgamma(20, sh = (17/10)^2, sc = 10^2/17, lower = FALSE)
## [1] 0.3160481
qgamma(0.80, sh = (17/10)^2, sc = 10^2/17)
## [1] 24.35641
diff(pgamma(c(10, 30), sh = (17/10)^2, sc = 10^2/17))/pgamma(30, sh = (17/10)^2, sc=10^2/17)
## [1] 0.7024844
```

Comparando v.a.'s discretas e contínuas Uniforme discreta:

$$Y_{1} \sim U_{d}\{1,6\}$$

$$y \in \{1,2,3,4,5,6\}$$

$$P[Y_{1} = y] = \frac{1}{6}$$

$$F_{Y_{1}}(y) = \frac{\lfloor y \rfloor + 1}{6}$$

Uniforme contínua:

$$Y_{2} \sim U_{c}[1,6]$$

$$y \in [1,6]$$

$$f(Y_{2} = y) = \frac{1}{6-1} = \frac{1}{5}$$

$$F_{Y_{2}}(y) = \frac{y-1}{6-1} = \frac{y-1}{5}$$

V.A.'s (uniforme) discreta e contínua

Probabilidades para v.a.'s discretas e contínuas Uniforme discreta:

$$Y_1 \sim U_d\{1,6\}$$

$$P[Y_1 = 4] = \frac{1}{6}$$

$$P[Y_1 \le 4] = F_{y_1}(4) = P[Y_1 = 1] + P[Y_1 = 2] + P[Y_1 = 3] + P[Y_1 = 4] = \frac{4}{6} = 0.67$$

Uniforme contínua:

$$Y_{2} \sim U_{c}[1,6]$$

$$P[Y_{2} = 4] = f(4) = 0$$

$$P[3,5 < Y_{2} \le 4,5] = \int_{3.5}^{4.5} f(y) dy = 0.2$$

$$P[Y_{2} \le 4] = F_{y_{2}}(4) = \int_{1}^{4} f(y) dy = 0.6$$

V.A.'s (uniforme) discreta e contínua

V.A.'s discretas e contínuas

Comentários finais

- ► Variáveis aleatórias são um tipo de "dispositivo" que nos ajuda a atribuir probabilidades a eventos de interesse.
- ► A distribuição de probabilidade define como a probabilidade "se espalha" entre os possíveis valores da v.a..
- Existem distribuições discretas e continuas que acomodam diferentes comportamentos da variável de interesse.
- Aqui tratamos de distribuições univariadas, os conceitos se extendem para distribuições multivariadas.