

## Pontifícia Universidade Católica de Minas Gerais (Unidade São Gabriel)

Programa de Pós-graduação - Mestrado em Informática

5 - 0531PIX

Disciplina: Fundamentos Teóricos da Computação

P = 1 P2 12

PUC Minas Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

## Exercícios Extra (2ª AVALIAÇÃO - 1º sem/2015)

## Nome:

- 1) Construa AP (apenas o diagrama) e GLC para as seguintes linguagens: E -> X | aEbE | bEaE
  - a)  $L_1 = \{ w \in \{a, b\}^* | n_a(w) 1 = n_b(w) \}$ , em que  $n_s(w)$  é o número de símbolos s em w (04 pontos)
  - b)  $L_2 = \{ a^n b^{2n} c^k \mid n, k \ge 0 \}$

Ø S→AB A > a Abbl>

(04 pontos)

(04 pontos)

- c)  $L_3 = \{ a^m b^n c^k \mid m \ge n \text{ ou } n \le k \} \chi_{3 \ge \lambda_1 \mid \lambda_2}$   $\chi_{1 \ge 3c} \quad \sup_{\substack{A \ge Aa \mid \lambda_1 \\ A \ge Aa \mid \lambda_2}} \quad \lim_{\substack{A \ge Aa \mid \lambda_1 \\ A \ge Aa \mid \lambda_2}} \quad \lim_{\substack{A \ge Aa \mid \lambda_1 \\ A \ge Aa \mid \lambda_2}} \quad \mathcal{E}$
- B -> BC IX
- Considere a seguinte GLC  $G = (\{P, A, B\}, \{a, b\}, R, P)$ , em que **R** contém as seguintes regras:

| $P \to RS$ $R \to AR \mid \lambda$                                                           |                                                                                                                                                                 | a, a/A<br>b, b/A<br>A, P/RS<br>A, R/AR<br>A, R/A     |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $S \rightarrow BS \mid \lambda$ $A \rightarrow aAb \mid ab$ $B \rightarrow bBa \mid \lambda$ | $P \rightarrow RS \rightarrow R \rightarrow AR \rightarrow A \rightarrow ab$ $P \rightarrow RS \rightarrow ARS \rightarrow akRS \rightarrow abR \rightarrow ab$ | λ, S/BS<br>λ, S/λ<br>λ, A/aAb<br>λ, A/ab<br>λ, B/bBa |

## Pede-se:

- (03 pontos) a) Construa um AP (apenas o diagrama) que reconheça L(G);
- G é ambigua pou existe duas oriens de denvação diferentes para a frase. ab b) Mostre que **G** é ambígua. (03 pontos)
- Considere a linguagem  $L_{OUAD} = \{ a^{n^2} | n \ge 0 \}$ . Mostre que ela não é LLC. (04 pontos)
- Sabendo que L<sub>OUAD</sub> (da questão 3) não é LLC, mostre se a linguagem a seguir é ou não LLC 4)

 $L_{OUAD-B-PAR} = \{ w \in \{a, b\}^* \mid n_a(w) \text{ é um quadrado perfeito e } n_b(w) \text{ é par } \},$ 

em que  $n_s(w)$  representa a quantidade de símbolos s presentes na palavra w. (03 pontos)



L= {wwR & [a,b])

 $L = \{a^n b^n / n \ge 0\}$ 

obc li+k=j

GLC B = ( & A, B S, Ea, b S, R, A)

al Construa uma 616 6'

GLC: S-20511X 5 - XY x > aXb/x

Y-s byclx



A -> aAbb 1B

B -> bBaalA.12

| Eliminar B > \lambda | Elimnar A → \lambda              | Elimnor B->A            | Elimnar B -> B           | Eliminar A > B           | Eliminur A -> A           |
|----------------------|----------------------------------|-------------------------|--------------------------|--------------------------|---------------------------|
| $A_0 \Rightarrow A$  | $A_0 \rightarrow A \mid \lambda$ | A <sub>o</sub> →AI X    | A, →A/X                  | Ao -> A IX               | A,→λla Abblabbl bhaa Ibaa |
| A -> aAbb   B   N    | A -> aAbb   B   abb              | A ->aAbb B abb          | A >aAbb18/abb            | A -> aAbb   abb bBaa boa | A -> aAbb   abb  bBaa boa |
| B→ bBaa]Albaa        | B-> bBaa]Albaa                   | B-> bBaa baa aAbb B abb | B → bBaal baal aAbb labb | B->bBaalbaalaAbblabb     | B->bBaalbaalaAbblabb      |

Converte das regras remanescentes (I) Converte das regras remanescentes (II)

A -> XIXAYY IXYY IYBXXIYXX A -> XIXP IXQ IYR IYS

A -> XAYY | XYY | YBXX | YXX A -> XP | XQ | YR | YS

B- YBXX | YXX | XAYY | XYY B > YR | YS | XP | XQ

X -> a X → a

Y -> b y → b

P-> AQ R-> BS

Q -> YY S->XX

```
S. (aub) *ba (aub) *
GLC para \frac{T \cdot n_b > n_a}{a'' b''} \frac{T \cdot n_b > n_a}{v \cdot n_b > n_b}
 X ~SITIU
   S-> as | bs | sa | sb | ba
    T -> aTb | bu V -> aVb law
    U-> bUIX W-> aWIX
                 5 · n + nc · na + nc
  S-> Albic
                                                                           6
O A → aAlbAlcAlAalAblAclba 9→ 9clElG
                                                                           N-> aNcl PclaR
                                                  I⇒ aIIJIL
OB → aBlbBlcBlBalBblBclca E → aEblbF G → aGblaH J > bJclbK L > bJclcM P > PclQ R > aRlQ

    C→ aclbciccicalcbiccicb F→ bFIX H→ aHIX K→ bKIX M→ cHIX

 GLC para a"b"c"d":n,m>0
                                   GLC para a"b"c": n>m or m=p
  S->AB
                                            S-> AC I DE
  A-> GAb/X
                                         B-> cBd/X
                                              B-> aB | \( \) €-> b € c | \( \)
                                             C-> Cclh
GLC para a^{i}b^{j}c^{k}: i=j or j=k
 S-> ABICD
  A \rightarrow aAbl\lambda
```

B-> Bc/X