UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB CENTRO DE INFORMÁTICA - CI DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC DISCIPLINA: Métodos Matemáticos I

Aluno(a):

Lista de Exercícios. Operadores Positivos. Teorema dos Valores Singulares.

Obs. Na resolução de cada exercício indique todos os passos para que o raciocínio desenvolvido fique extremamente claro. Os cálculo em si podem, e devem, ser feitos usando algum *software* e coloque apenas os resultados indicando qual o *software* utilizado.

01. Dada a matriz **A**:

- (i) escreva a expressão da transformação linear T cuja matriz em relação as bases canônicas é A identificando o domínio e o contradomínio de T;
- (ii) determine a matriz A^t e escreva a expressão da transformação linear \mathbf{T}^* adjunta de \mathbf{T} em relação as bases canônicas identificando o domínio e o contradomínio de \mathbf{T}^* ;
- (iii) determine a matrizes $\mathbf{A}^t \mathbf{A}$ e $\mathbf{A} \mathbf{A}^t$, assim como as expressões dos operadores $\mathbf{T}^* \circ \mathbf{T}$ e $\mathbf{T} \circ \mathbf{T}^*$ identificando os seus domínios e contradomínios;
- (iv) determine os autovalores de $\mathbf{A}^t \mathbf{A}$ (ou de $\mathbf{T}^* \circ \mathbf{T}$, ou de $\mathbf{T} \circ \mathbf{T}^*$, ou de $\mathbf{A} \mathbf{A}^t$);
- (v) determine os valores singulares de \mathbf{A} (ou de \mathbf{T} , ou de \mathbf{T}^* , ou de \mathbf{A}^t);
- (vi) determine a base ortonormal de autovetores de A^tA (ou de $T^* \circ T$);
- (vii) determine a base ortonormal de autovetores de $\mathbf{A}\mathbf{A}^t$ (ou de $\mathbf{T} \circ \mathbf{T}^*$);
- (viii) determine a matriz U cujas colunas são autovetores ortonormais de AA^t (ou de $T \circ T^*$);
 - (ix) determine a matriz V^t cujas linhas são autovetores ortonormais de $A^t A$ (ou de $T^* \circ T$);
 - (x) determine a matriz $\sqrt{\Sigma}$ dos valores singulares de **A** (ou de \mathbf{A}^t , ou de \mathbf{T} , ou de \mathbf{T}^*);

(xi) ilustre o Teorema da Decomposição em Valores Singulares para ${\bf A}$ calculando o produto ${\bf U} \sqrt{\Sigma} {\bf V}^{\bf t}$ e verificando se de fato a identidade ${\bf A} = {\bf U} \sqrt{\Sigma} {\bf V}^{\bf t}$ está satisfeita.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
, (b) $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$, (c) $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$,

(d)
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
, (e) $\mathbf{A} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$, (f) $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$,

(g)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, (h) $\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$.

Referências.

- [1] J. L. Boldrini, S. R. Costa, V. L. Figueiredo, H. G. Wetzler; Álgebra Linear, 3a edição, editora HARBRA, 1986.
- [2] E. L. Lima; Álgebra Linear, Coleção Matemática Universitária, 6a edição, 2003.
- [3] S. Lipschutz, M. Lipson; Álgebra Linear, tradução da 4a edição norte americana "Schaum's outline of theory and problems of linear algebra", Bookman, 2011.
- [4] G. Strang; Álgebra Linear e suas aplicações, tradução da 4a edição norteamericana "Linear algebra and its application", Cengage Learning, 2014.