

Model Development Phase Template

Date	July 2024
Team ID	739971
Project Title	Estimating the Stock keeping units using Machine Learning
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Paste the screenshot of the model training code

Model Validation and Evaluation Report (5 marks):

Mode 1	Summary	Training and Validation Performance Metrics
Model 1		Linear Regression Model
	Linear regression model typically include mean square error,R2 score to evaluate its predictive performance and generalization capability.	<pre>from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error,r2_score</pre>
		<pre>lr=LinearRegression() lr.fit(x_train,y_train) pred=lr.predict(x_test) print("Mean Squared Error:",mean_squared_error(y_test,pred)) print("R2 Score:",r2_score(y_test,pred))</pre>
		Mean Squared Error: 3103.1409991414653 R2 Score: 0.05424514437673167

Random Forest Regressor

Model 2 Random forest regression model often encompass mean square error, recall, R2 score to measure its prediction quality and robustness.

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error,r2_score
```

model=RandomForestRegressor()

```
model.fit(x_train,y_train)
pred=model.predict(x_test)
```

```
print("Mean Squared Error:",mean_squared_error(y_test,pred))
print("R2 Score:",r2_score(y_test,pred))
```

Mean Squared Error: 892.5601685747586

R2 Score: 0.7279713962082139

include accuracy precision

3

regression
model
commonly
include
accuracy,
precision,
recall, R2 score
which help
assess the
model's
prediction
accuracy and
generalizability

Decision tree

Decision Tree Regressor

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import accuracy_score
dt=DecisionTreeRegressor()
dt.fit(x_train,y_train)
pred=dt.predict(x_test)
print("Mean Squared Error:",mean_squared_error(y_test,pred))
print("R2 Score:",r2_score(y_test,pred))
print(accuracy_score(pred,y_test))
```

Mean Squared Error: 1610.1784215784216

R2 Score: 0.5092604361036386

0.031302031302031304