Álgebra Linear – Videoaula 1

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Motivação

Vetores e suas operações

Podemos operar com vetores de modo geométrico:

e portanto segue que u + v = v + u para quaisquer vetores u, v.

Objetivo

Procurar estruturas algébricas que possam ser interpretadas geometricamente como acima.

A definição

Um espaço vetorial consiste de um conjunto não vazio V – cujos elementos são chamados de vetores – munido de duas operações:

- A soma ou adição de vetores, que a cada par de vetores u, v faz corresponder um novo vetor u + v, chamado de soma de u e v.
- A multiplicação ou produto por escalar, que a cada vetor v e a cada número real λ associa um novo vetor λv , chamado de produto de λ por v.

que satisfazem a diversos axiomas.

A definição – Os axiomas da adição

VS1 Associatividade da soma: Para todos os vetores u, v, w de V, vale que

$$u + (v + w) = (u + v) + w.$$

VS2 Comutatividade da soma: Para todos os vetores u, v de V, vale que

$$u + v = v + u$$
.

VS3 Existência de vetor nulo: Existe um vetor 0_V tal que

$$v + 0_V = 0_V + v = v$$

para todo $v \in V$; Este vetor é chamado de **zero** ou **vetor nulo**.

VS4 Existência de inverso aditivo: Para todo vetor v, existe um vetor (-v) tal que

$$v + (-v) = (-v) + v = 0_V.$$

O vetor (-v) é chamado de **inverso aditivo** ou **oposto** de v.

A definição - Os axiomas do produto

VS5 Associatividade da multiplicação: Para todo vetor v de V e todos os escalares $\alpha, \beta \in \mathbb{R}$, vale que

$$\alpha(\beta v) = (\alpha \beta) v.$$

VS6 Distributividade à esquerda: Para todos os vetores u, v de V e todo escalar α , vale que

$$\alpha(u+v)=\alpha u+\alpha v.$$

VS7 <u>Distributividade à direita</u>: Para todos vetor v de V e todos os escalares $\alpha, \beta \in \mathbb{R}$, vale que

$$(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}.$$

VS8 Elemento neutro do produto: Para todo vetor v, vale que

$$1v = v$$
.

Álgebra Linear, aula 1

Seja

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$
$$= \{ (x_1, x_2) : x_1, x_2 \in \mathbb{R} \}$$

com operações

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

e

$$\lambda(x_1,x_2)=(\lambda x_1,\lambda x_2).$$

Exemplos: \mathbb{R}^2 , associatividade da soma

Associatividade da soma: Se
$$x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2),$$

$$(x + y) + z = ((x_1, x_2) + (y_1, y_2)) + (z_1, z_2)$$

$$= (x_1 + y_1, x_2 + y_2) + (z_1, z_2)$$

$$= ((x_1 + y_1) + z_1, (x_2 + y_2) + z_2)$$

$$= (x_1 + (y_1 + z_1), x_2 + (y_2 + z_2))$$

$$= (x_1, x_2) + (y_1 + z_1, y_2 + z_2)$$

$$= (x_1, x_2) + ((y_1, y_2) + (z_1, z_2))$$

$$= x + (y + z),$$

o que prova que a soma é associativa.

Comutatividade é similar.

Exemplos: \mathbb{R}^2 , quem é o vetor nulo?

Qual o vetor $o = (o_1, o_2)$ tal que x + o = o + x = x para qualquer vetor $x = (x_1, x_2)$?

Rascunho:

$$x + o = x$$

$$(x_1, x_2) + (o_1, o_2) = (x_1, x_2)$$

$$(x_1 + o_1, x_2 + o_2) = (x_1, x_2)$$

$$\begin{cases} x_1 + o_1 = x_1 \\ x_2 + o_2 = x_2 \end{cases}$$

$$o_1 = o_2 = 0.$$

Este é o melhor candidato para o vetor nulo.

Exemplos: \mathbb{R}^2 , quem é o vetor nulo?

Defina $0_{\mathbb{R}^2}=0_2=(0,0).$ Então para todo vetor $x=(x_1,x_2)$ temos que

$$x + 02 = (x1, x2) + (0,0)$$

$$= (x1 + 0, x2 + 0)$$

$$= (x1, x2)$$

$$= x.$$

e similarmente $0_2 + x = x$.

Portanto, 0_2 é de fato o vetor nulo de \mathbb{R}^2 (com as operações dadas).

Exemplos: \mathbb{R}^2 , quem são os vetores opostos?

Se $x = (x_1, x_2)$ é dado, qual o vetor -x = (a, b) tal que $x + (-x) = 0_2$? Rascunho:

$$x + (-x) = 02$$

$$(x1, x2) + (a, b) = (0, 0)$$

$$(x1 + a, x2 + b) = (0, 0)$$

$$\begin{cases} x1 + a = 0 \\ x2 + b = 0 \end{cases}$$

$$\begin{cases} a = -x1 \\ b = -x2 \end{cases}$$

 $(-x) = (-x_1, -x_2)$ é o melhor **candidato** para o vetor oposto de x.

Exemplos: \mathbb{R}^2 , quem são os vetores opostos?

Dado
$$x = (x_1, x_2)$$
, **defina** $-x = (-x_1, -x_2)$. Temos que
$$x + (-x) = (x_1, x_2) + (-x_1, -x_2)$$
$$= (x_1 - x_1, x_2 - x_2)$$
$$= (0, 0)$$
$$= 0_2,$$

e similarmente $(-x) + x = 0_2$.

Portanto, $-x = (-x_1, -x_2)$ é de fato o vetor oposto de $x = (x_1, x_2)$.

Exemplos: \mathbb{R}^n

Seja

$$\mathbb{R}^{n} = \mathbb{R} \times \cdots \times \mathbb{R}$$

$$= \{(x_{1}, \dots, x_{n}) : x_{1}, \dots, x_{n} \in \mathbb{R}\}$$
(n vezes)

com operações

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,x_2+y_2,\ldots,x_n+y_n)$$

e

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\lambda x_2,\ldots,\lambda x_n).$$

Este é chamado de **espaço euclidiano** *n*-dimensional.

- $0_n = 0_{\mathbb{R}^n} = (0, \dots, 0).$
- $-(x_1,\ldots,x_n=(-x_1,\ldots,-x_n).$

Exemplos: $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$

Casos particulares

Normalmente chamam-se

- ullet $\mathbb{R}^1=\mathbb{R}$ de reta real.
- \mathbb{R}^2 de plano.
- \mathbb{R}^3 de espaço.

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Exemplos: $M_{m \times n}$

Seja $\mathsf{M}_{m \times n}(\mathbb{R})$ o conjunto das matrizes reais de ordem $m \times n$ com as operações: Se

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad e \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix},$$

então

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Exemplos: $M_{m \times n}$

e se $\lambda \in \mathbb{R}$,

$$\lambda A = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{bmatrix}$$

Éstas operações determinam o espaço vetorial das matrizes de ordem $m \times n$.

Notações alternativas

- $\bullet \ \mathsf{M}_{m\times n}(\mathbb{R}) = \mathbb{R}^{m\times n} = \mathsf{Mat}_{m\times n}(\mathbb{R}).$
- Para espaços de matrizes quadradas, $M_{n\times n}(\mathbb{R})=M_n(\mathbb{R})$.

Se X é um conjunto então \mathbb{R}^X é o conjunto das funções $X \to \mathbb{R}$.

Se $f,g \in \mathbb{R}^X$ e $\lambda \in \mathbb{R}$, então $(f+g),(\lambda f):X \to \mathbb{R}$ são dadas por

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

para todo $x \in X$.

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Exemplos: \mathbb{R}^X , distributividade à direita

Se $f \in \mathbb{R}^X$ e $\alpha, \beta \in \mathbb{R}$, como mostrar que $(\alpha + \beta)f = (\alpha f) + (\beta f)$?

São funções de X a $\mathbb{R}!$ Tem-se que mostrar que os valores são iguais.

Para todo $x \in X$,

$$((\alpha + \beta)f)(x) = (\alpha + \beta)f(x)$$
 (definição de função soma)

$$= (\alpha f(x)) + (\beta f(x))$$
 (distributividade em \mathbb{R})

$$= (\alpha f)(x) + (\beta f)(x)$$
 (definição de função produto)

$$= ((\alpha f) + (\beta f))(x)$$
 (definição de soma de funções)

Portanto, $(\alpha + \beta)f = (\alpha f) + (\beta f)$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $f \in \mathbb{R}^X$.

Se "x" é uma variável, seja $\mathbb{R}[x]$ o espaço dos polinômios reais:

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

 $(a_0, a_1 \dots, a_n \text{ coeficientes reais})$ com as operações usuais: Se

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$q(x) = b_0 + b_1 x + \dots + b_m x^m$$

- $p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \cdots$
- $\lambda p(x) = (\lambda a_0) + (\lambda a_1)x + (\lambda a_2)x^2 + \cdots$

Produtos diretos

Sejam V_1, \ldots, V_n espaços vetoriais.

O produto direto de V_1, \ldots, V_n é o produto cartesiano

$$\prod_{i=1}^n V_i = V_1 \times \cdots \times V_n$$

com operações "entrada-a-entrada":

$$(v_1,\ldots,v_n)+(w_1,\ldots,w_n)=(v_1+w_1,\ldots,v_n+w_n)$$
$$\lambda(v_1,\ldots,v_n)=(\lambda v_1,\ldots,\lambda v_n)$$

- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.
- $\mathbb{R}^{m+n} \cong \mathbb{R}^m \times \mathbb{R}^n$ $(x_1, \ldots, x_m, y_1, \ldots, y_n) \cong ((x_1, \ldots, x_m), (y_1, \ldots, y_n))$

Exemplos: Uma operação diferente em ${\mathbb R}$

Seja $V=\mathbb{R}$ com a "soma"

$$x \oplus y = x + y + 1$$
.

e o produto por escalar

$$\lambda \odot y = \lambda x + \lambda - 1$$

Exercício

V é um espaço vetorial com as operações \oplus e \odot .

Quem é o vetor nulo?

Exemplos: Uma operação diferente

Queremos 0_V tal que $x \oplus 0_V = x$ para todo x:

$$x \oplus 0_V = x$$
$$x + 0_V + 1 = x$$
$$0_V = -1$$

Parte do Exercício anterior: Verifique que $0_V = -1$ é, de fato, um vetor nulo para V.

Um contra-exemplo

Seja $V=\mathbb{R}$ com a soma $x\oplus y=y$ e o produto $\lambda\odot x=0$ A distributividade vale:

$$(\alpha + \beta) \odot x = 0$$
$$= 0 \oplus 0$$
$$= (\alpha x) \oplus (\beta x).$$

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Um contra-exemplo

Mas a comutatividade não:

$$x \oplus y = y$$

 $y \oplus x = x$.

É preciso achar um contra-exemplo explícito!

Tome
$$x = 0$$
 e $y = 1$ em V . Então

$$0\oplus 1=1,$$

mas

$$1\oplus 0=0,$$

 $\text{logo } 0 \oplus 1 \neq 1 \oplus 0.$

Propriedades básicas - unicidade do vetor nulo

VS4 Para todo vetor v, existe -v tal que $v + (-v) = 0_V$.

Mas então (-v) depende de $0_V!$

Teorema

O vetor nulo de um espaço vetorial V é único.

Se o e o' são vetores nulos, então

$$o = o + o'$$

$$= o'$$
.

Propriedades básicas - unicidade de vetores opostos

Teorema

Dado um vetor v de um espaço vetorial V, o inverso aditivo de v é único.

Se $w \in w'$ são inversos aditivos de v, então

$$w = w + 0_V$$
 (vetor nulo)
 $= w + (v + w')$ (w' é inverso aditivo de v)
 $= (w + v) + w'$ (associatividade da soma)
 $= 0_V + w'$ (w é inverso aditivo de v)
 $= w'$. (vetor nulo)

Propriedades básicas - regras de sinal

Teorema (Regras de Sinal)

Seja V um espaço vetorial. Então as seguintes igualdades são válidas para quaisquer escalares α e β e quaisquer vetores v e w:

- **1** $\alpha \mathbf{0}_{V} = \mathbf{0}_{V}$.
- $0v = 0_V$.
- (-v) = v.

Propriedades básicas - regras de sinal

Por exemplo, para provar que $\alpha 0_V = 0_V$. Seja $v = \alpha 0_V$. Então

$$v = \alpha 0_V$$

$$= \alpha (0_V + 0_V)$$

$$= \alpha 0_V + \alpha 0_V$$

$$= v + v$$

(vetor nulo) (distributividade)

UNIVERSIDADE FEDERAL
DE SANTA CATARINA

Propriedades básicas - regras de sinal

$$v = v + v$$
.

Some -v em ambos os lados da equação:

$$v + (-v) = v + v + (-v)$$

$$0_V = v + 0_V$$

$$0_V = v$$

$$0_V = \alpha 0_V$$

(inverso aditivo)

(vetor nulo)

como queríamos.

Propriedades básicas - diferenças e quocientes

Se v, w, \ldots são vetores e $\alpha \neq 0$ é um escalar, então

$$v - w := v + (-w)$$

$$\frac{v}{\alpha} := \frac{1}{\alpha}v.$$

Além disso,

$$v_1 + v_2 + v_3 + v_4 = ((v_1 + v_2) + (v_3 + v_4))$$

= $v_1 + ((v_2 + v_3) + v_4)$

UNITERSIDADE FEDERAL
DE SANTA CATARINA

Propriedades básicas - leis do cancelamento

Teorema (Leis do cancelamento)

Em um espaço vetorial,

- Se v + x = w + x então v = w.
- 2 Se $\lambda \neq 0$ e $\lambda v = \lambda w$ então v = w.
- **3** Se $v \neq 0_V$ e $\lambda v = \mu v$ então $\lambda = \mu$.

Os itens 1 e 2 são exercícios. A prova do item 3 é feita por "redução ao absurdo".

DE SANTA CATARINA

Propriedades básicas - leis do cancelamento

Se $v \neq 0_V$ e $\lambda v = \mu v$ então $\lambda = \mu$.

Suponha que $v \neq 0_V$ e $\lambda v = \mu v$, mas que $\lambda \neq \mu$. Então

$$\begin{array}{l} \lambda v = \mu v \\ \lambda v - \mu v = 0_V \\ (\lambda - \mu) v = 0_V \\ \end{array} \qquad \begin{array}{l} \text{(subtraia } \mu v) \\ v = \left(\frac{1}{\lambda - \mu}\right) 0_V \\ \end{array} \qquad \begin{array}{l} \text{(multiplique por } (\lambda - \mu)^{-1}) \\ v = 0_V, \\ \end{array}$$

uma contradição.

Portanto, se $v \neq 0_V$ e $\lambda v = \mu v$, então $\lambda = \mu$.