Learning from Data Lecture 6: Linear Regression Semi-Supervised Learning

Malvina Nissim
m.nissim@rug.nl
room 1311.421

19 December 2016

1/32

Malvina Nissim LFD – Lecture 6 19 December 2016

Topics

- Linear Regression
- Semi-supervised learning
 - Bootstrapping
 - Co-training
 - Active learning
 - Distant Supervision
- Feature analysis
- Shared Task

Classification vs Regression

create models of prediction from gathered data

 classification the dependent variables are categorical

input x: feature vector

output: discrete class label

 regression the dependent variables are numerical

input x: feature vector

output y: continuous value

Example: Predicting housing prices in the Netherlands

Data

training data

size m²	price
57	150,000
90	210,000
30	90,000

Data

training data

size m²	price
57	150,000
90	210,000
30	90,000

x (input) y (output)

Data

training data

size m²	price
57	150,000
90	210,000
30	90,000

$$x (input)$$
 $y (output)$ $\langle x, y \rangle$

regression: predict numeric (continuous) output

regression: predict numeric (continuous) output

regression: predict numeric (continuous) output

Generalisation

experience (training data)

size m²	price
57	150,000
90	210,000
30	90,000

Generalisation

Generalisation

Modelling in LR

- Fitting a model to training data that generalises well to unseen data
- Hypothesis/model/function
- The model is a function that knows how to map x to y

One-feature example

Malvina Nissim LFD – Lecture 6 19 December 2016

Error as vertical lines

Mean Squared Error (MSE)

How close is a regression line to a set of points?

General idea:

- take the distances from the actual points to the regression line (distance = error)
- square them (necessary to remove any negative signs; also gives more weight to larger differences)
- take average

Mean Squared Error (MSE)

Steps to calculate the MSE from a set of X and Y values:

- find the regression line
- insert your X values into the linear regression equation to find the new Y values (Y)
- subtract the new Y value from the original to get the error
- square the errors
- add up the errors
- find the mean

interpretation: the smaller the MSE, the closer to the best fit

Regression in scikit

- training (fitting)
- testing
- evaluating

```
1 >>> from sklearn import linear_model
2 >>> from sklearn.metrics import mean_squared_error
3
4 >>> lr = linear_model.LinearRegression()
5 >>> lr.fit(Xtrain, Ytrain)
6
7 >>> Yguess = lr.predict(Xtest)
8 >>> mean_squared_error(Ytest, Yguess)
9
10 # worked out:
11 >>> np.mean((Yguess - Ytest) ** 2))
```

Hypothesis

- Parameters (weights) represented by Theta, Θ
- With one feature only:

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1$$

• Multiple features:

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \dots + \Theta_n x_n$$
for convenience, $x_0 = 1$

$$h_{\Theta}(x) = \Theta_0 x_0 + \Theta_1 x_1 + \Theta_2 x_2 + \dots + \Theta_n x_n$$

example interpretation:

price =
$$\Theta_0 + \Theta_1 \text{Size} + \Theta_2 \text{Age} + \Theta_3 \text{\#Floors.}$$

Hypothesis

- Parameters (weights) represented by Theta, Θ
- With one feature only:

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1$$

• Multiple features:

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + ... + \Theta_n x_n$$

for convenience, $x_0 = 1$
 $h_{\Theta}(x) = \Theta_0 x_0 + \Theta_1 x_1 + \Theta_2 x_2 + ... + \Theta_n x_n$

example interpretation:

price =
$$\Theta_0 + \Theta_1 \text{Size} + \Theta_2 \text{Age} + \Theta_3 \text{\#Floors...}$$

https://www.coursera.org/learn/machine-learning/ lecture/rkTp3/cost-function

Cost function J

How to fit the best possible model to our training data?

- find Θs that minimise the cost
- and because cost is squared error, then
- minimising squared difference between predicted output and true output $(h_{\Theta}(x) y)^2$

semi-supervised learning

unlabeled data

unsupervised learning

unlabeled data labeled data unlabeled data

◀□▷ ◀鬪▷ ◀불▷ ◀불▷

What is SSL? More formally

- Learning from both labeled and unlabeled data:
 - *l* labeled instances $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and
 - u unlabeled instances $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, usually u>>l
- Goal: better classifier than from labeled data alone

labeled data

unlabeled data

Anti-SSL arguments

- "We'll find the time and money to annotate more labeled data"
- Hmm, but:
 - Annotating PT WSJ took a decade!
 - What about building a NER for, say, Irish? Who is going to annotate it for me?

Semi-supervised learning

use a little amount of labelled data + a large amount of unlabelled data

13/32

Malvina Nissim LFD – Lecture 6 19 December 2016

Semi-supervised learning

use a little amount of labelled data + a large amount of unlabelled data

it's a matter of getting help

- the classifier gets help from itself → bootstrapping
- the classifier gets help from another classifier → co-training
- the classifier gets help from a human → active learning

13 / 32

Malvina Nissim LFD – Lecture 6 19 December 2016

bootstrapping

aka self-training: the classifier uses its own predictions to teach itself

Procedure (only one classifier is required, with no split of features):

15/32

aka self-training: the classifier uses its own predictions to teach itself

Procedure (only one classifier is required, with no split of features):

- start with a set of labeled data, and build a classifier, which is then applied on the set of unlabeled data.
- ② only those instances with a labeling confidence exceeding a certain threshold are added to the labeled set.
- the classifier is then retrained on the new set of labeled examples, and the process continues for several iterations.

15/32

aka self-training: the classifier uses its own predictions to teach itself

Procedure (only one classifier is required, with no split of features):

- start with a set of labeled data, and build a classifier, which is then applied on the set of unlabeled data.
- ② only those instances with a labeling confidence exceeding a certain threshold are added to the labeled set.
- the classifier is then retrained on the new set of labeled examples, and the process continues for several iterations.

15/32

aka self-training: the classifier uses its own predictions to teach itself

Procedure (only one classifier is required, with no split of features):

- start with a set of labeled data, and build a classifier, which is then applied on the set of unlabeled data.
- only those instances with a labeling confidence exceeding a certain threshold are added to the labeled set.
- the classifier is then retrained on the new set of labeled examples, and the process continues for several iterations.

15/32

 Malvina Nissim
 LFD – Lecture 6
 19 December 2016
 16 / 32

Malvina Nissim LFD – Lecture 6 19 December 2016 16 / 32

labeled SOURCE

labeled TARGET

unlabeled TARGET

Bootstrapping or Self-training

parameters:

- iterations: number of iterations
- pool size: number of examples selected from the unlabeled set U for annotation at each iteration.
- growth size: number of most confidently labeled examples that are added at each iteration to the set of labeled data L.

17/32

Bootstrapping or Self-training

- useful when very little but very good data is available and it's too costly to annotate more
- if the data is very skewed it can be problematic to safely assign the low frequency class(es)
- the choice of initial seed examples is crucial
- → this is different from "bootstrap" as used in statistics!

17/32

co-training

Co-training

• two sufficient and independent sets of features: an instance X is $X = (X_1, X_2)$

$$P(X_1|X_2, Y) = P(X_1|Y)$$

 $P(X_2|X_1, Y) = P(X_2|Y)$

- independent sets are different views
- independent views can be informative
- exploit two views of the same phenomenon to acquire more labelled data for training

(ref: Blum & Mitchell 1998)

19/32

active learning

Active learning

excellent slides by Piyush Rai

 Malvina Nissim
 LFD – Lecture 6
 19 December 2016
 22 / 32

distant supervision

• so far: little amount of gold data, large amounts of unlabelled data

24 / 32

- so far: little amount of gold data, large amounts of unlabelled data
- what if we have ZERO labelled data to start with?

24 / 32

- so far: little amount of gold data, large amounts of unlabelled data
- what if we have ZERO labelled data to start with?
- we can approximate labelled data (and get large amounts)

24/32

- so far: little amount of gold data, large amounts of unlabelled data
- what if we have ZERO labelled data to start with?
- we can approximate labelled data (and get large amounts)

24 / 32

- so far: little amount of gold data, large amounts of unlabelled data
- what if we have ZERO labelled data to start with?
- we can approximate labelled data (and get large amounts)

use *reasonably safe proxies* to obtain training labels

24 / 32

Distant Supervision: examples

 Malvina Nissim
 LFD - Lecture 6
 19 December 2016
 25 / 32

Distant Supervision: examples

I'll be back even stronger. See me at g4. GG's to hbox and every one else I played. Fun tourney great crowd. I missed this:)

 \Rightarrow positive

I cant believe this is happening oh my god my heart just broke into a million pieces i actually cant stop crying:(

 \Rightarrow negative

25 / 32

Distant Supervision: examples

25 / 32

how to understand the contribution of features

Choosing features

pos tagging identity of the word being processed, identity of the words immediately to the left and right, part-of-speech tag of the word to the left, function/content word

sentiment analysis positive/negative trait in a lexicon, id of the speaker, discourse relations (contrast, concession, ...)

authorship verification character n-grams, pos n-grams, sentence length, punctuation, ...

named entity recognition ...

Feature analysis

- leave one out (feature ablation): remove one single feature at the time and re-train and re-test the classifier to compare results with and without that feature.
 - \rightarrow The most useful features are those that cause the biggest drop in performance
- single feature classifier: train and test the classifier with just one feature at the time.
 - \rightarrow The most useful features are those that yield the highest performance

Leave one out

- also known as ablation
- it helps assessing the contribution of one feature
- often used with groups of features

Leave one out

- also known as ablation
- it helps assessing the contribution of one feature
- often used with groups of features

Single feature classifier

- it helps assessing the contribution of one feature
- often used with groups of features

shared task

Shared Task

also known as challenge

- evaluating systems on the same data for a proper comparison
- assessing (and sharing) state of the art systems and methods
- converging efforts on common interests
- creating data

Shared Task

Procedure:

- research groups or programme committees propose a series of tasks
- the shared task's organisers make a sample available
- teams register
- teams receive training data
- teams develop their systems
- teams receive test data
- after about one week teams return their outputs/systems to the organisers
- organisers evaluate systems according to predefined metrics
- teams and organisers write reports
- workshop(s)

Shared Task

also known as challenge

- evaluating systems on the same data for a proper comparison
- assessing (and sharing) state of the art systems and methods
- converging efforts on common interests
- creating data

Semeval 2016 Semeval 2017

