DISZKRÉT MATEMATIKA I.

4. előadás

Halmazok számossága

Hotel INFINITY******* paradoxona:

ISMÉTLÉS

 \clubsuit Definíció. A $\varrho:X\longrightarrow Y$ leképezés <u>bijektív,</u> ha injektív és szürjektív is.

♣ **Definíció.** Az X és Y halmazok <u>azonos számosságúak</u> (<u>ekvivalensek</u>) ha létezik közöttük $\varrho: X \longrightarrow Y$ bijekció (kölcsönösen egyértelmű megfeleltetés). (George CANTOR (1845-1918))

Jelölés: $X \sim Y$.

$\mathsf{PI.}\ X\not\sim Y$

kulcsszó: BIJEKCIÓÓÓÓÚ...

 $[0;1] \sim [0;2]$

Galileo **GALILEI** (1564-1642) észrevette, hogy a négyzetszámok ugyanannyian vannak, mint maguk a természetes számok.

nem negatív páros számok?

CANTOR

természetes számok ~ egész számok !!

$$z_n = \begin{cases} -n/2 & \text{ha } 2 \mid n \\ (n+1)/2 & \text{ha } 2 \nmid n \end{cases}.$$

 \aleph_0 : természetes számok számossága (\aleph : alef)

természetes számok ∼ racionális számok !!!!

"Látom, de nem akarok hinni a szememnek!"

természetes számok < valós számok (\aleph_1) !!!!!!

(Cantor-féle átlós eljárás)

"A végtelennél nagyobb halmaz létezésével kapcsolatban, melyet Isten segedelmével fedeztem fel, immár semilyen kétségem sincsen." \Longrightarrow A végtelennek is lehet nagysága!

 \clubsuit **Definíció.** Az X halmaz <u>végtelen</u> <u>számosságú</u> ha létezik önmagával ekvivalens valódi részhalmaza.

Jelölés: $|X| = \infty$.

Definíció. Az X halmaz <u>véges</u> <u>számosságú</u> ha nem végtelen számosságú.

A végtelennek is lehet nagysága!

Megszámlalható számosság: $\aleph_0 = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| \neq |\mathbb{R}|$.

Kontinuuum számosság: $\aleph_1 = |\mathbb{R}| = |[0; 1]|$.

KONTINUUM HIPOTÉZIS: Nincs olyan halmaz, melynek számossága \aleph_0 és \aleph_1 közé esne.

 \clubsuit **Tétel.** $\mathbb{N} \not\sim \mathbb{R}$. ($\mathbb{N} \not\sim [0; 1]$, Cantor-féle átlós eljárás)

Tegyük fel indirekt, hogy $[0;1] \sim \mathbb{N}$, azaz \mathbb{R} elemei sorbarendezhetők. Vegyünk egy tetszőleges sorrendet amely [0;1] elemeit végtelen tizedestört alakban tartalmazza: a k-adik szám n-edik tizedesjegyét a_{kn} -nel jelöli.

$$\alpha_0 = 0, a_{01}a_{02}a_{03} \dots a_{0n} \dots
\alpha_1 = 0, a_{11}a_{12}a_{13} \dots a_{1n} \dots
\vdots
\alpha_k = 0, a_{k1}a_{k2}a_{k3} \dots a_{kn} \dots
\vdots$$

Legyen $\beta = 0, b_1 b_2 b_3 \dots b_n \dots$ végtelen tizedestört, amelynek jegyeire

$$\alpha_0 = 0, \mathbf{a_{01}} a_{02} a_{03} \dots a_{0n} \dots \\
\alpha_1 = 0, a_{11} \mathbf{a_{12}} a_{13} \dots a_{1n} \dots \\
\vdots \\
\alpha_k = 0, a_{k1} a_{k2} a_{k3} \dots a_{kn} \dots \\
\vdots$$

Legyen $\beta = 0, b_1 b_2 b_3 \dots b_n \dots$ végtelen tizedestört, amelynek jegyeire

$$b_i = 1$$
 ha $a_{i-1,i} \neq 1$ és

$$b_i = 2$$
 ha $a_{i-1,i} = 1$

Ez garantálja, hogy bármely i esetén $\beta \neq \alpha_{i-1}$, ugyanis mindketten végtelen tizedestörtek, egymástól az i-edik tizedesjegyben különböznek. Azaz β nincs benne a felsorolásban: mégsem lehet felsorolni [0; 1] összes elemét.