Часть 1. Тест.

Вопрос 1 \clubsuit В множественное регрессии матрица X имеет размер 56×6 , TSS = 1100, ESS = 100. Несмещённая оценка для дисперсии случайных ошибок модели примерно равна

A 19

D 20

G Нет верного ответа.

B 30

E 40

 $\boxed{\mathsf{C}} \sqrt{30}$

 $\boxed{\mathsf{F}} \sqrt{40}$

A 4

D -9

[G] Нет верного ответа.

B -4

E 8

C -7

F -8

Вопрос 3 \clubsuit Если $\mathrm{E}(X)=4$, $\mathrm{E}(Y)=3$, $\mathrm{Var}(X)=6$, $\mathrm{Var}(Y)=7$, $\mathrm{Cov}(X,Y)=-1$, то $\mathrm{Cov}(1-X+2Y,1X)$ равна

A 8

D -8

G Нет верного ответа.

B 4

E -7

C -9

F -4

A -9

D 4

G Нет верного ответа.

B 8

E -7

C -8

F -4

A -9

D -8

G Нет верного ответа.

B 4

E -4

C -7

F 8

A 4

D -8

G Нет верного ответа.

B -4

E 8

C -7

F -9

A 8

D -9

G Нет верного ответа.

B -4

E -8

C 4

F -7

A -7

D -8

G Нет верного ответа.

B -4

E 8

C -9

F 4

A 8

D -7

[G] Нет верного ответа.

B -4

E 4

C -8

F -9

A 8

D -4

G Нет верного ответа.

B -8

E -7

C -9

F 4

Часть 2. Задачи.

1. На основании опроса была оценена следующая модель:

$$ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 age_i + \beta_4 sex_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- age_i возраст в годах
- $sex_i пол (1 мужской, 0 женский)$

Показатель	Значение
R^2	0.903
Скорректированный \mathbb{R}^2	B 7
Стандартная ошибка регрессии	B6
Количество наблюдений	B2

Результаты дисперсионного анализа:

	df	SS	MS	F	Р-значение
Регрессия	3	2638.3	879.4	B 5	0.000
Остаток	B 1	282.1	16.6		
Итого	B 3	B4			

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Константа	-6.96	12.38	-0.56	0.58	-33.08	19.16
exper	2.65	0.32	8.38	0.000	1.98	3.32
age	B8	B9	8.06	0.000	4.13	7.06
sex	-10.73	1.79	B10	0.000	-14.49	-6.95

- а) Найдите пропущенные числа В1-В10.
- б) Как изменятся результаты оценки регрессии, если переменную sex_i переопределить так, чтобы 0 соответствовал мужчинам, 1 женщинам?

Ответ округляйте до 2-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

2. Юный эконометрист Вениамин очень любит опаздывать на первую пару. Он считает, что время (в минутах), на которое он опаздывает, $time_t$, зависит от количества снега (в миллиметрах), выпавшего за последние сутки, $snow_t$. После месяца упорного сбора данных, он смог оценить следующую модель:

$$\widehat{time_t} = 12 + 0.2snow_t$$

Оценка ковариационной матрицы коэффициентов, $\widehat{\text{Var}}(\hat{\beta}) = \begin{pmatrix} 5 & 0.03 \\ 0.03 & 0.01 \end{pmatrix}$

Оценка дисперсии ошибок равна $\hat{\sigma}^2 = 1.45$.

За последние сутки выпало 15 миллиметров снега.

- а) Постройте точечный прогноз времени опоздания Вениамина
- б) Постройте 95%-ый доверительный интервал для $\mathrm{E}(time_t|snow_t=15)$ для ожидаемого опоздания Вениамина
- в) Постройте 95%-ый предиктивный интервал (доверительный интервал) для фактического опоздания Вениамина
- 3. По данным 27 фирм, упорядоченных по капиталу, $K_1 < K_2 < \ldots < K_n$, была оценена зависимость выпуска Y_i от труда L_i и капитала K_i с помощью моделей

(1)
$$\ln Y_i = \beta_1 + \beta_2 \ln L_i + \beta_3 \ln K_i + u_i$$

(2)
$$\ln Y_i = \beta_1 + \beta_2 \ln \frac{L_i}{K_i} + u_i$$

	Модель (1)	Модель (2)
константа	1.1706	1.0692
	(0.326)	(0.1317)
$\ln L$	0.6029	
	(0.125)	
$\ln K$	0.375	
	(0.085)	
$\ln \frac{L}{K}$		0.6369
		(0.0754)
R-squared	0.943	0.74
F	200.24	71.351
P-value	0.0	0.0
RSS	0.851	
N	27	27

- а) На уровне значимости $\alpha=0.05$ проверьте для модели (1) гипотезы H_0 : $\beta_2=\beta_3=0$ и H_0 : $\beta_3=0.5$.
- б) Объясните, почему модель (2) является ограниченной версией модели (1). Явно выпишите ограничения. На уровне значимости $\alpha=0.05$ проверьте гипотезу об этих ограничениях.

в) Фирмы разделили на маленькие, $i \leq 14$, и большие, $i \geq 15$. Для этих двух групп оценили отдельные регрессии. Можно ли считать, что производственные функции для больших и маленьких фирм не различаются? Ответ подтвердите подходящим тестом.

	Модель для $i \leq 14$	Модель для $i \geq 15$
константа	0.6998	1.4082
	(0.649)	(0.678)
$\ln L$	0.9000	0.0081
	(0.133)	(0.226)
$\ln K$	0.2100	0.805
	(0.056)	(0.179)
R-squared	0.896	0.908
F	47.84	49.81
P-value	0.0	0.0
RSS	0.119	0.362
N	14	13

4. С помощью теста Бокса-Кокса оценили зависимость веса индивида (в килограммах) от его роста (в сантиметрах):

Log likelihood = -2659.5656

Number of obs	=	540
LR chi2(2)	=	230.68
Prob > chi2	=	0.000

W	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
/lambda	1.055498	1.892654		0.577	-2.654035	4.76503
/theta	0263371	.1471576		0.858	3147607	.2620865

Estimates of scale-variant parameters

		Coef.
Notrans _cons		2.936809
Trans	н	.0237224
/sigma		.1660251

Test HO:	Restricted log likelihood	chi2	Prob > chi2
theta=lambda = -1	-2680.8693	42.61	0.000
theta=lambda = 0	-2659.7618	0.39	0.531
theta=lambda = 1	-2685.5201	51.91	0.000

Какую спецификацию модели (линейную, линейную в логарифмах, полулогарифмическую) следует предпочесть и почему?

- 5. По данным для 23 демократических стран оценили зависимость индекса Джини¹ от ВВП на душу населения с учетом ППС (паритета покупательной способности). Затем провели тест Рамсея.
 - . reg gini gdp if democ==1

Source	SS	df		MS		Number of obs F(1, 21)	
Model Residual	506.853501 815.572523	1 21		853501 367868		Prob > F R-squared	= 0.0016 = 0.3833 = 0.3539
Total	1322.42602	22	60.1	102738		Root MSE	= 6.2319
gini	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
gdp _cons	0006307 44.30983	.0001		-3.61 12.40	0.002 0.000	0009937 36.87993	0002676 51.73974

. ovtest

- а) Сформулируйте нулевую и альтернативную гипотезу теста Рамсея
- б) Опишите пошагово, как проводится тест Рамсея
- в) Прокомментируйте результаты теста Рамсея

 $^{^{1}}$ Индекс Джини — это мера неравенства доходов. Чем выше индекс Джини, тем выше неравенство.