Random Walk based Proximity Measures in Directed Graphs

Speaker: 李寰

Recommender systems¹

What are the top k movie recommendations for Alice in IMDB?

Content-based search in databases^{1, 2}

- 1. S. Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. WWW '07.
- 2. A. Balmin, V. Hristidis, & Y. Papakonstantinou. ObjectRank: Authority-based keyword search in databases. *VLDB '04*.

Random walk based proximity measures in directed graphs

- Personalized pagerank
 - G. Jeh & J. Widom (WWW '03)
- Truncated hitting and commute times
 - P. Sarkar, A. Moore, & A. Prakash (ICML '08)
- Escape probability
 - H. Tong, Y. Koren, & C. Faloutsos (KDD '07)

Random walks

- Start at 1
- Move to a neighbor j randomly
- Continue

- Transition matrix P = [p(i, j)]
 - $p(i,j) \triangleq \Pr[i \text{ moves to } j]$

 - $lacksquare p_{t+1} = p_t P$

$$\boldsymbol{P} = \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

Personalized pagerank

- Stationary distribution $\pi=\pi P$
- Pagerank¹
 - Rank web-pages by distribution satisfying

$$\boldsymbol{v} = (1 - \alpha)\boldsymbol{v}\boldsymbol{P} + \frac{\alpha}{n}\mathbf{1}$$

- Personalized pagerank²
 - Using a non-uniform restart distribution

$$\mathbf{v} = (1 - \alpha)\mathbf{v}\mathbf{P} + \alpha\mathbf{r}$$

ullet e.g. $oldsymbol{r}=oldsymbol{e}_i$ when computing proximities from node i

Hitting and commute times

- Hitting time h(i, j)
 - \Box Expected length of the path $i \longrightarrow j$
- Commute time c(i,j) = h(i,j) + h(j,i)
 - ullet Expected length of the path $i \longrightarrow j \longrightarrow i$
- Drawbacks^{1, 2}
 - Take into account very long paths
 - oxdots h(i,j) is small whenever j has a large stationary probability $oldsymbol{\pi}_j$
 - Alice likes cartoons, so her top 10 recommendations should not be the 10 most popular movies
- 1. D. Liben-Nowell & J. Kleinberg. The link predication problem for social networks. CIKM '03.
- 2. M. Brand. A random walks perspective on maximizing satisfaction and profit. SIAM '05.

Truncated hitting and commute times¹

- Truncated version of hitting time and commute times
 - Only considers paths of length at most T

a) Un-truncated hitting time

b) Truncated hitting time

Escape probability¹

- The escape probability from node A to node B
 - ullet Denoted as $ep(A \to B)$
 - Pr [starting at A, reaches B before returning to A]

Asymmetry of escape probability

Issue 1: "Degree-1 node" effect

Adding an absorbing node

Issue 2: Weakly connected pair

Solving ep(i -> j)

- The generalized voltage
 - $v_k \triangleq \Pr[A \text{ random walk starting at } k \text{ visits } j \text{ before } i]$
- Calculating $\boldsymbol{v} \triangleq (v_1 \ v_2 \ \cdots \ v_n)^{\top}$

$$lacksquare$$
 $v_i=0$, $v_j=1$, $orall k
eq i,j,\, v_k=\sum_l p_{kl}\cdot v_l$

$$\qquad \text{Split } \boldsymbol{P} = \begin{pmatrix} \hat{\boldsymbol{P}} & \boldsymbol{c}_i & \boldsymbol{c}_j \\ \boldsymbol{r}_i^\top & 0 & p(i,j) \\ \boldsymbol{r}_j^\top & p(j,i) & 0 \end{pmatrix} \text{ and } \boldsymbol{v} = \begin{pmatrix} \hat{\boldsymbol{v}} & 0 & 1 \end{pmatrix}^\top$$

$$_{\square}$$
 Then $\hat{m{v}}=\hat{m{P}}\hat{m{v}}+m{c}_{j}$ \Rightarrow $\hat{m{v}}=(m{I}-\hat{m{P}})^{-1}m{c}_{j}$

$$ep(i \to j) = \sum_{k} p_{ik} \cdot v_k = \boldsymbol{r}_i^{\top} (\boldsymbol{I} - \hat{\boldsymbol{P}})^{-1} \boldsymbol{c}_j + p(i, j)$$

Solving ep(i -> j)

- The generalized voltage
 - $v_k \triangleq \Pr[A \text{ random walk starting at } k \text{ visits } j \text{ before } i]$
- Calculating $\boldsymbol{v} \triangleq (v_1 \ v_2 \ \cdots \ v_n)^{\top}$

$$lacksquare$$
 $v_i=0$, $v_j=1$, $orall k
eq i,j,\, v_k=\sum_l p_{kl}\cdot v_l$

$$oxdot$$
 Then $\hat{oldsymbol{v}} = \hat{oldsymbol{P}}\hat{oldsymbol{v}} + oldsymbol{c}_i \ \Rightarrow \ \hat{oldsymbol{v}} = (oldsymbol{I} - oldsymbol{v})$

 $ep(i \to j) = \sum_{k} p_{ik} \cdot v_k = \mathbf{r}_i^{\mathsf{T}} (\mathbf{I} - \hat{\mathbf{P}})^{-1} \mathbf{c}_j + p(i, j)$

Fast solution for all-pair proximities

Theorem. Let
$$\mathbf{Q} = [q(i,j)] \triangleq (\mathbf{I} - c\mathbf{P})^{-1}$$
. $\forall i \neq j$, there is

$$ep(i \to j) = \frac{q(i,j)}{q(i,i)q(j,j) - q(i,j)q(j,i)}.$$

- Proved by Block Matrix Inversion Lemma
- Fast solution to all-pair proximilities
 - $flue{Q} = (m{I} cm{P})^{-1}$
 - □ For all pair of nodes, compute $Prox(i,j) = \frac{q(i,j)}{q(i,i)q(j,j)-q(i,j)q(j,i)}$
- Time complexity $\Theta(1 \text{ matrix inversion}) + \Theta(n^2)$

Fast solution for one-pair proximity

Theorem. Let $\mathbf{Q} = [q(i,j)] \triangleq (\mathbf{I} - c\mathbf{P})^{-1}$. $\forall i \neq j$, there is

$$ep(i \to j) = \frac{q(i,j)}{q(i,i)q(j,j) - q(i,j)q(j,i)}.$$

- Fast solution to one-pair proximity
 - Only need two columns of Q
 - Taylor expansion

$$(\boldsymbol{I} - c\boldsymbol{P})^{-1} = \boldsymbol{I} + c\boldsymbol{P} + (c\boldsymbol{P})^2 + \cdots$$

Computing ith column of Q

$$Qe_i = (I - cP)^{-1}e_i = e_i + cPe_i + (cP)^2e_i + \cdots$$

Fast solution for one-pair proximity

- Fast solution to one-pair proximity
 - Only need two columns of Q
 - Taylor expansion

$$(\boldsymbol{I} - c\boldsymbol{P})^{-1} = \boldsymbol{I} + c\boldsymbol{P} + (c\boldsymbol{P})^2 + \cdots$$

Computing ith column of Q

$$\mathbf{Q}\mathbf{e}_i = (\mathbf{I} - c\mathbf{P})^{-1}\mathbf{e}_i = \mathbf{e}_i + c\mathbf{P}\mathbf{e}_i + (c\mathbf{P})^2\mathbf{e}_i + \cdots$$

Time complexity

$$\Theta\left(t(n+m)\right)$$

Experimental results

- Effectiveness
 - Link Prediction
 - Existence
 - Direction
- Efficiency
 - Fast all-pair proximities
 - Fast one-pair proximity

Datasets (all real)

Name	Node #	Edge #	Directionality
WL	4k	10k	A-links to-B
PC	36k	64k	Who-contact-whom
EP	76k	509k	Who-trust-whom
CN	28k	353k	A-cites-B
AE	38k	115k	Who-email to-whom

Link Prediction: existence

- Q: Given a pair of nodes i and j, is there a link between them?
- A: Yes iff $ep(i \rightarrow j) + ep(j \rightarrow i)$ reaches a given threshold

Dataset	Accuracy
WL	65.40%
PC	79.60%
AE	81.51%
CN	86.71%
EP	92.21%

Link Prediction: direction

- Q: Given the existence of the link between i and j, what is the direction of it?
- A: Compare $ep(i \rightarrow j)$ and $ep(j \rightarrow i)$, pick the greater one

Efficiency: Fast all-pair proximities

Efficiency: Fast one-pair proximity

Lemma. The expected time r_i for a random walk starting at node i to return to i is the reciprocal of the stationary probability of i. That is

$$r_i = \frac{1}{\pi_i}.$$

Lemma. The expected time r_i for a random walk starting at node i to return to i is the reciprocal of the stationary probability of i. That is

$$r_i = \frac{1}{\pi_i}.$$

- Intuitively¹
 - \Box A long walk always ends up in stationary distribution π
 - Suppose the walk length is T, then the expected number it visits i is $\pi_i T$
 - \Box The average time between two visits is $\frac{T}{\pi_i \cdot T} = \frac{1}{\pi_i}$

Lemma. The expected time r_i for a random walk starting at node i to return to i is the reciprocal of the stationary probability of i. That is

$$r_i = \frac{1}{\pi_i}.$$

- Intuitively¹
 - \Box A long walk always ends up in stationary distribution π
 - Suppose the walk length is T, then the expected number it visits i is $\pi_i T$
 - \Box The average time between two visits is $\frac{T}{\pi_i \cdot T} = \frac{1}{\pi_i}$
- Rigorously proved by the Strong Law of Large Numbers²

Theorem. The probability that a random walk starting at node i visits j before returning to i, which equals $ep(i \rightarrow j)$, satisfies

$$\operatorname{ep}(i \to j)c(i,j) = \frac{1}{\pi_i},$$

where c(i, j) is the commute time between i and j.

Theorem. The probability that a random walk starting at node i visits j before returning to i, which equals $ep(i \rightarrow j)$, satisfies

$$\operatorname{ep}(i \to j)c(i,j) = \frac{1}{\pi_i},$$

where c(i, j) is the commute time between i and j.

- Proof¹
 - Consider a random walk w starting at i, and random variables
 - X = the first time w returns to i
 - Y = the first time w returns to i after visiting j
 - $\ \square \$ By definition $E(X)=\frac{1}{\pi_i}$ and E(Y)=c(i,j)

Theorem. The probability that a random walk starting at node i visits j before returning to i, which equals $ep(i \rightarrow j)$, satisfies

$$\operatorname{ep}(i \to j)c(i,j) = \frac{1}{\pi_i},$$

where c(i, j) is the commute time between i and j.

- Proof¹
 - Consider a random walk w starting at i, and random variables
 - X = the first time w returns to i
 - Y = the first time w returns to i after visiting j
 - □ By definition $E(X) = \frac{1}{\pi_i}$ and E(Y) = c(i, j)
 - □ Cleary $X \le Y$, and $Pr[X = Y] = p \triangleq ep(i \rightarrow j)$

Theorem. The probability that a random walk starting at node i visits j before returning to i, which equals $ep(i \rightarrow j)$, satisfies

$$\operatorname{ep}(i \to j)c(i,j) = \frac{1}{\pi_i},$$

where c(i,j) is the commute time between i and j.

- Proof¹
 - Consider a random walk w starting at i, and random variables
 - X = the first time w returns to i
 - Y = the first time w returns to i after visiting j
 - □ By definition $E(X) = \frac{1}{\pi_i}$ and E(Y) = c(i, j)
 - □ Cleary $X \le Y$, and $Pr[X = Y] = p \triangleq ep(i \rightarrow j)$
 - $E(Y X) = p \cdot 0 + (1 p) \cdot E(Y) = (1 p)c(i, j)$

Theorem. The probability that a random walk starting at node i visits j before returning to i, which equals $ep(i \rightarrow j)$, satisfies

$$\operatorname{ep}(i \to j)c(i,j) = \frac{1}{\pi_i},$$

where c(i, j) is the commute time between i and j.

Proof¹

- Consider a random walk w starting at i, and random variables
 - X = the first time w returns to i
 - Y = the first time w returns to i after visiting j
- □ By definition $E(X) = \frac{1}{\pi_i}$ and E(Y) = c(i, j)
- □ Cleary $X \le Y$, and $Pr[X = Y] = p \triangleq ep(i \rightarrow j)$
 - $E(Y X) = p \cdot 0 + (1 p) \cdot E(Y) = (1 p)c(i, j)$

Theorem. The probability that a random walk starting at node i visits j before returning to i, which equals $ep(i \rightarrow j)$, satisfies

$$\operatorname{ep}(i \to j)c(i,j) = \frac{1}{\pi_i},$$

where c(i,j) is the commute time between i and j.

$$ep(i \to j) + ep(j \to i) = \frac{1}{c(i,j)} \left(\frac{1}{\pi_i} + \frac{1}{\pi_j} \right)$$

- Recall that h(i,j) is small whenever π_i is large
 - Bad for personalization
- To alleviate this
 - Sarkar et al. restrict the length of random walk¹
 - Tong et al. reduce the dependence on stationary distribution²
- 1. P. Sarkar, A. Moore, & A. Prakash. Fast Incremental Proximity Search in Large Graphs. ICML '08.
- 2. H. Tong, Y. Koren, & C. Faloutsos. Fast direction-aware proximity for graph mining. KDD '07.

The End