Отчёт по лабораторной работе №2

Дисциплина: Сетевые технологии

Мишина Анастасия Алексеевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	8
4	Выводы	11

Список иллюстраций

2.1	Конфигурации сети	6
	Топология сети	7
3.1	Предельно допустимый диаметр коллизий в Fast Ethernet	8
3.2	Проверка работоспособности по первой модели	9
3.3	Временные задержки компонентов сети Fast Ethernet	9
3.4	Сумма длины сегментов умноженная на удельное время	
	двойного оборота сегментов	10
3.5	Проверка работоспособности по второй модели	10

Список таблиц

1 Цель работы

Цель данной работы — изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

2 Задание

В данной лабораторной работе требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

Нам даны конфигурации сети (рис. 2.1) и топология сети (рис. 2.2).

Варианты заданий

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Рис. 2.1: Конфигурации сети

Рис. 2.4. Топология сети

Рис. 2.2: Топология сети

3 Выполнение лабораторной работы

Для начала оценим работоспособность с помощью первой модели. Требуется высчитать диаметр домена коллизий и сравнить его с референтным значением. Так как по условию у нас имеются два повторителя класса II и все сегменты ТХ (а именно 100BASE-TX), то в соответствии с таблицей (рис. 3.1) получаем, что предельно допустимый диаметр домена коллизий в Fast Ethernet 205 м.

Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соединяющий два узла без повторителей	100	412,0	_	_
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	_	308,8
Два повторителя класса II	205	228,0	_	216,2

Рис. 3.1: Предельно допустимый диаметр коллизий в Fast Ethernet

Посчитаем суммы длин сегментов в каждой строке и сравним их с референтным значением. Результаты меньше 205 м отмечаем зеленым - это работоспособные сети (1, 3 и 4) (рис. 3.2).

\overline{A}	А	В	С	D	Е	F	G	Н
1		Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Диаметр домена коллизий
2	1	96	92	80	5	97	97	198
3	2	95	85	85	90	90	98	283
4	3	60	95	10	5	90	100	200
5	4	70	65	10	4	90	80	164
6	5	60	95	10	15	90	100	210
7	6	70	98	10	9	70	100	207
0								

Рис. 3.2: Проверка работоспособности по первой модели

Теперь оценим работоспособность сети с помощью второй модели. Для этого требуется найти наихудшие пути в домене коллизий, определить сегменты. В нашей конфигурации все сегменты 100BASE-ТХ и используется витая пара категории 5. Рассчитаем время для двойного оборота на сегментах, умножая длину сегмента на удельное время двойного оборота 1,112 би/м, исходя из таблицы (рис. 3.3).

Компонент	Удельное время двойного оборота (би/м)	Максимальное время двойного оборота (би)
Пара терминалов TX/FX	_	100
Пара терминалов Т4	-	138
Пара терминалов Т4 и ТХ/FX	-	127
Витая пара категории 3	1,14	114 (100 м)
Витая пара категории 4	1,14	114 (100 м)
Витая пара категории 5	1,112	111,2 (100 м)
Экранированная витая пара	1,112	111,2 (100 м)
Оптоволокно	1,0	412 (412 м)
Повторитель класса I	-	140
Повторитель класса II, имеющий порты типа ТХ/FX	-	92
Повторитель класса II, имеющий порты типа Т4	-	67

Рис. 3.3: Временные задержки компонентов сети Fast Ethernet

Для каждой строки перемножим значения сегментов наихудшего пути и удельное время двойного оборота сегментов, полученные значения сложим (рис. 3.4).

	Узел 1	Узел 2	Узел 3		Узел 4	Узел 5	
	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	
1	96	92	80	5	97	97	
2	95	85	85	90	90	98	
3	60	95	10	5	90	100	
4	70	65	10	4	90	80	
5	60	95	10	15	90	100	
6	70	98	10	9	70	100	
	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	
1	106,752			5,56		107,864	
2	105,64			100,08		108,976	
3		105,64		5,56		111,2	
4				4,448	100,08	88,96	
5		105,64		16,68		111,2	
6		108,976		10,008		111,2	

Рис. 3.4: Сумма длины сегментов умноженная на удельное время двойного оборота сегментов

Затем к получившейся сумме добавим время двойного оборота двух повторителей класса II (92 би/м для каждого) и пары терминалов с интерфейсами ТХ (100 би/м). Также добавим 4 битовых интервала для учета задержек и сравним результат с числом 512. Результаты меньше 512 указывают нам на работоспособные сети (выделены зеленым) (рис. 3.5).

	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6		Время двойного оборота для наихудшего пути	+ 4 Доп. Интервала
1	106,752			5,56		107,864	220,176	504,176	508,176
2	105,64			100,08		108,976	314,696	598,696	602,690
3		105,64		5,56		111,2	222,4	506,4	510,4
4				4,448	100,08	88,96	193,488	477,488	481,48
5		105,64		16,68		111,2	233,52	517,52	521,5
6		108,976		10,008		111,2	230,184	514,184	518,184

Рис. 3.5: Проверка работоспособности по второй модели

В результате рабочими остаются те же варианты сетей, что и по первой модели (сети 1, 3 и 4).

4 Выводы

В ходе выполнения лабораторной работы были изучены принципы технологий Ethernet и Fast Ethernet. Также были практически освоены методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.