Dkt: P9858

Amendments to the Claims:

This listing of claims will replace all prior version, and listings, of claims in the

application. Where claims have been amended and/or canceled, such amendments and/or

cancellations are done without prejudice and/or waiver and/or disclaimer to the claimed and/or

disclosed subject matter, and the applicant and/or assignee reserves the right to claim this subject

matter and/or other disclosed subject matter in a continuing application.

Listing of Claims:

1. (Currently amended): A portable communication device comprising:

an analog-to-digital converter to provide a digital output signal;

a signal generator coupled to the digital output signal to generate a feedback signal;

wherein the portable communication device is adapted to subtract the feedback signal

from an intermediate frequency (IF) signal; and

a multiplier to extract an in-phase part of the IF signal after subtraction of the feedback

signal; and further comprising:

a filter adapted to provide a filtered signal with a bandwidth to the multiplier, wherein the

signal generator generates a feedback signal that reduces the difference between the IF signal and

the feedback signal over at least a portion of the bandwidth of the filtered signal; and

an integrator coupled to the multiplier and adapted to perform spectral shaping of the

extracted signal;

wherein the signal generator comprises an amplitude phase shift key modulator.

2. (Canceled)

3. (Original): The portable communication device of claim 2, wherein the portable

communication device is adapted to change the digital output signal to reduce the difference

between the IF signal and the feedback signal.

4-6. (Canceled)

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/750,386

Filing Date: December 27, 2000

Title: PORTABLE COMMUNICATION DEVICE AND METHOD THEREFOR

Page 3 Dkt: P9858

7. (Currently amended): The portable communication device of claim [[5]] 1, further

comprising a local oscillator coupled to the modulator.

8. (Original): The portable communication device of claim 7, wherein the digital output

signal consists of a bit coupled to the signal generator such that the signal generator generates a

feed back signal that is either in-phase with the local oscillator or about 180° out of phase with

the local oscillator.

9. (Original): The portable communication device of claim 7, wherein the digital output

signal comprises at least two bits.

10. (Original): The portable communication device of claim 1, wherein the portable

communication device is adapted to receive an input signal and the digital output signal

represents an over-sampled version of the input signal.

11. (Currently amended): An apparatus comprising:

a subtractor adapted to subtract a feedback signal from an intermediate frequency (IF)

signal to provide a subtracted signal;

a multiplier to isolate a portion of the subtracted signal having encoded information; and

a signal generator to provide the feedback signal determined, at least in part, on the

isolated portion of the subtracted signal wherein the signal generator comprises an amplitude

phase shift key modulator.

12. (Original): The apparatus of claim 11, further comprising an integrator coupled to

receive the subtracted signal.

13. (Previously presented): The apparatus of claim 11, further comprising an oscillator

coupled to the multiplier.

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/750,386

Filing Date: December 27, 2000

Title: PORTABLE COMMUNICATION DEVICE AND METHOD THEREFOR

Page 4 Dkt: P9858

14. (Original): The apparatus of claim 11, further comprising an analog-to-digital

converter to provide a digital output signal, wherein the feedback signal is determined, at least in

part, on the digital output signal.

15. (Original): The apparatus of claim 11, wherein the signal generator comprises a

modulator.

16. (Original): The apparatus of claim 15, wherein the modulator is coupled to a local

oscillator.

17. (Original): The apparatus of claim 11, further comprising an antenna adapted to

receive a radio frequency (RF) signal.

18. (Original): The apparatus of claim 17, wherein the RF signal is the IF signal.

19. (Currently amended): A method comprising:

receiving an input intermediate frequency (IF) signal and generating a quantized signal

determined, at least in part, on the input IF signal;

subtracting a feedback signal from the input IF signal to provide a subtracted signal; and

multiplying the subtracted signal by an oscillator signal to generate a baseband signal for

quantization; and further comprising:

amplitude shift key modulating the digital output signal to provide the feedback signal.

20. (Original): The method of claim 19, further comprising generating the feedback

signal with the quantized signal.

21. (Previously presented): The method of claim 20, wherein generating a quantized

signal includes converting at least a portion of the base band signal with an analog-to-digital

converter to provide a digital output signal.

22. (Original): The method of claim 21, further comprising modulating the digital output signal to provide the feedback signal.

23. (Original): The method of claim 19, further comprising integrating the subtracted signal.

24. (Cancelled)

25. (Currently amended): An article comprising: a storage medium having stored thereon instructions, that, when executed by a computing platform, result in:

receiving an input intermediate frequency (IF) signal and generating a quantized signal determined, at least in part, on the input IF signal;

subtracting a feedback signal from the input IF signal to provide a subtracted signal; and extracting an in-phase portion of the subtracted signal for quantization; and further comprising:

amplitude shift key modulating the digital output signal to provide the feedback signal.

- 26. (Previously presented): The article of claim 25, wherein the instructions, when executed, further result in converting at least a portion of the extracted signal with an analog-to-digital converter to provide a digital output signal.
- 27. (Original): The article of claim 25, wherein the instructions, when executed, further result in integrating the subtracted signal.