

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 7

CENTRÓIDE E BARICENTRO

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

- Conceitos de Centroide e Baricentro
- Estudos bidimensionais e tridimensionais
- Centroide de área, linha e volume
- Baricentro e aplicações

CENTROIDE E BARICENTRO

Baricentro: Centro de Gravidade

Centróide: Centro Geométrico

$$P = m \times g = p \times V \times g = p \times t \times A \times g$$

 $p = peso específico$
 $t = espessura$

CENTROIDE

O centroide é o ponto que representa o centro geométrico de uma área, linha ou volume, onde se concentra a distribuição uniforme de sua forma.

CENTROIDE DE VOLUME

CENTROIDE DE ÁREA

$$\bar{x} = \frac{\int x \cdot dV}{V}$$
 $\bar{y} = \frac{\int y \cdot dV}{V}$ $\bar{z} = \frac{\int z \cdot dV}{V}$ $\bar{x} = \frac{\int x \cdot dA}{A}$ $\bar{y} = \frac{\int y \cdot dA}{A}$ $\bar{z} = \frac{\int z \cdot dA}{A}$

$$\bar{x} = \frac{\int x. dA}{A}$$
 $\bar{y} = \frac{\int y. dA}{A}$ $\bar{z} = \frac{\int z. dA}{A}$

CENTROIDE DE LINHA

$$\bar{x} = \frac{\int x \cdot dL}{L}$$
 $\bar{y} = \frac{\int y \cdot dL}{L}$ $\bar{z} = \frac{\int z \cdot dL}{L}$

CENTROIDE

Placas

$$\overline{X} \sum A i = \sum \overline{X} i \cdot A i$$

$$\overline{Y} \sum Ai = \sum \overline{Y}i \cdot Ai$$

Arames

$$\overline{X}Li = \sum \overline{X}i \cdot Li$$

$$\overline{Y}Li = \sum \overline{Y}i \cdot Li$$

Alguns centroides são tabelados devidos as suas formas comuns como veremos nas tabelas a seguir.

CENTRO E BARICENTRO

Segmento de arco de circunferência

Área de setor circular

$$I_x = \frac{1}{4} r^4 (\theta - \frac{1}{2} \operatorname{sen} 2\theta)$$

$$I_x = \frac{1}{4} r^4 (\theta + \frac{1}{2} \operatorname{sen} 2\theta)$$

Arcos de quarto de circunferência e semicircunferência

$$A = \frac{1}{4} \pi r^2$$

$$A = \frac{4r}{3\pi}$$

Área de quarto de círculo

$$I_x = \tfrac{1}{16} \, \pi r^4$$

$$I_y=\tfrac{1}{16}\pi r^4$$

CENTRO E BARICENTRO

Área do trapézio

Área de semicírculo

$$I_x = \tfrac{1}{8}\pi r^4$$

$$I_{\rm y}=\tfrac{1}{8}\pi r^4$$

Área semiparabólica

Área do círculo

$$I_x = \tfrac{1}{4}\pi r^4$$

$$I_y = \tfrac{1}{4}\pi r^4$$

CENTRO E BARICENTRO

Área sob curva parabólica

Área do retângulo

$$I_x = \frac{1}{12}bh^3$$

$$I_y = \frac{1}{12}hb^3$$

Área do triângulo

$$I_x = \frac{1}{36}bh^3$$

EXEMPLO 1

Localize o centroide da área da placa mostrada na figura abaixo.

EXEMPL0 1

Segmento	A (pé ²)	\widetilde{x} (pé)	ỹ (pé)	$\widetilde{x}A$ (pé ³)	$\widetilde{y}A$ (pé ³)
1	$\frac{1}{2}(3)(3) = 4.5$	1	1	4,5	4,5
2	(3)(3) = 9	-1,5	1,5	-13,5	13,5
3	-(2)(1) = -2	2,5	2	5	-4
	$\Sigma A = 11,5$			$\Sigma \widetilde{x} A = -4$	$\overline{\Sigma \widetilde{y}A} = \overline{14}$

$$\overline{x} = \frac{\Sigma \widetilde{x} A}{\Sigma A} = \frac{-4}{11,5} = -0,348 \text{ pé}$$

$$\bar{y} = \frac{\Sigma \tilde{y} A}{\Sigma A} = \frac{14}{11.5} = 1,22 \text{ pé}$$

EXEMPLO 2

Localize o centroide da figura mostrada abaixo.

EXEMPLO 2

Segmento	L (mm)	\widetilde{x} (mm)	\widetilde{y} (mm)	\widetilde{z} (mm)	$\widetilde{x}L \text{ (mm}^2)$	$\tilde{y}L \text{ (mm}^2\text{)}$	$\tilde{z}L \text{ (mm}^2)$
1	$\pi(60) = 188,5$	60	-38,2	0	11.310	-7.200	0
2	40	0	20	0	0	800	0
3	$\frac{20}{\Sigma L = 248,5}$	0	40	-10	$\frac{0}{\Sigma \widetilde{x}L = 11.310}$	$\frac{800}{\Sigma \widetilde{y}L = -5.600}$	$\frac{-200}{\Sigma \widetilde{z}L = -200}$

$$\overline{x} = \frac{\Sigma \widetilde{x}L}{\Sigma L} = \frac{11.310}{248,5} = 45,5 \text{ mm}$$

$$\overline{y} = \frac{\Sigma \widetilde{y}L}{\Sigma L} = \frac{-5.600}{248,5} = -22,5 \text{ mm}$$

$$\overline{z} = \frac{\Sigma \widetilde{z}L}{\Sigma L} = \frac{-200}{248,5} = -0,805 \text{ mm}$$

CENTRO DE GRAVIDADE

 Considere um corpo tridimensional de qualquer tamanho e forma com massa m.

CENTRO DE GRAVIDADE

$$\bar{x} = \frac{\int x. dW}{W}$$
 $\bar{y} = \frac{\int y. dW}{W}$ $\bar{z} = \frac{\int z. dW}{W}$

CENTRO DE MASSA

$$\bar{x} = \frac{\int x \cdot dm}{m}$$
 $\bar{y} = \frac{\int y \cdot dm}{m}$ $\bar{z} = \frac{\int z \cdot dm}{m}$

CENTRO DE GRAVIDADE - BARICENTRO

- Escolha do elemento diferencial
- 1) Ordem do elemento: Sempre que possível seleciona-se um elemento de primeira ordem.
- 2) Continuidade: Deve ser possível integrar em uma operação contínua, englobando toda a figura.
- 3) Eliminação de Termos de Ordem Superior: Em comparação com termos de primeira ordem, os elementos de ordem superior podem ser desprezados.

CENTRO DE GRAVIDADE - BARICENTRO

- Escolha do elemento diferencial
- 4) Escolha das Coordenadas: Deve-se escolher o sistema de coordenadas que melhor se ajusta aos contornos da figura.
- 5) Coordenadas do Centroide de um Elemento: É essencial utilizar as coordenadas do centroide do elemento para calcular o primeiro momento do elemento.

CENTRO DE GRAVIDADE - BARICENTRO

Corpos compostos consiste em um conjunto de corpos de formatos mais simples como triângulo, quadrado semicírculos, etc. Para o cálculo do centro de gravidade do corpo todo é necessário que o peso e centro de gravidade de cada "parte" seja conhecido para que sejam considerados como partículas.

$$\overline{x} = \frac{\sum \widetilde{x} W}{\sum W}$$

$$\overline{x} = \frac{\Sigma \widetilde{x} W}{\Sigma W}$$
 $\overline{y} = \frac{\Sigma \widetilde{y} W}{\Sigma W}$ $\overline{z} = \frac{\Sigma \widetilde{z} W}{\Sigma W}$

$$\bar{z} = \frac{\Sigma \tilde{z} W}{\Sigma W}$$

- representam as coordenadas do centro de gravidade G do \overline{X} , \overline{V} , \overline{Z} corpo composto.
- $\widetilde{x},\widetilde{y},\widetilde{z}$ representam as coordenadas do centro de gravidade de cada parte que constitui o corpo.
 - é a soma dos pesos de todas as partes que constituem o corpo ou é $\sum W$ simplesmente o peso total do corpo composto.

EXEMPLO 3

Localize o baricentro da placa mostrada na figura abaixo. Use os dados:

A1 = 300x900 mm; W1 = 100kN, x1 = 200mm; y1 = 300 mm

A2 = 600x700 mm; W2 = 25kN, x2 = 600mm; y3 = 350mm

A3 = 600x200 mm; W3 = 75kN, x3 = 500mm; y3 = 800mm

EXERCÍCIOS E ATIVIDADES

Orientação para realização das Atividades:

- ➤ Realizar as atividade a mão livre;
- ➤ Realizar diagramas e desenhos para compreensão;
- > Realizar todas as contas de forma detalhada;
- ➤ Colocar as repostas principais a caneta;
- ➤Entregar as atividades e resolução dos exercícios em forma digital no sala virtual da disciplina.

Localize o centroide da figura mostrada abaixo.

Respostas:

x = 0 pol

y = 8,545 pol

Localize o centroide da área sombreada

Respostas: x = 8,74 poly = 4,87 pol

Para a área plana mostrada, determine a localização do centroide

Respostas:

x = 53,7 pol

y = 17,3 pol

Localize o centro de massa do conjunto formado por um suporte e um eixo. A face vertical é feita de uma chapa de metal que tem uma massa de 25 [kg/m²]. O material da base horizontal tem uma massa de 40 [kg/m²] e o eixo de aço tem uma densidade de 7,83 [g/m³].

Respostas:

x = 0

y = 26

z = 49