实验报告

课	程	计算机组成与系统结构	姓	名	王磊	学	号	202231060435
指导	教师	徐媛媛	专业:	班级	计科 2202	成	绩	

实验四 系统总线与总线接口实验

一、实验目的

- 1. 理解总线的概念及其特性。
- 2. 掌握控制总线的功能和应用。

二、实验设备

PC 机一台, Logism 实验系统一套。

三、实验原理及内容

总线是计算机中连接各个功能部件的纽带,是计算机各部件之间进行信息传输的公共通路。总线不只是一组简单的信号传输线,它还是一组协议。分时与共享是总线的两大特征。所谓共享,在总线上可以挂接多个部件,它们都可以使用这一信息通路来和其他部件传送信息。所谓分时,同一总线在同一时刻,只能有一个部件占领总线发送信息,其他部件要发送信息得在该部件发送完释放总线后才能申请使用。总线结构是决定计算机性能、功能、可扩展性和标准化程度的重要因素。

1. 中断接口

本实验在简单模型计算机的基础上,还需要在单总线数据通路中增加与中断相关的硬件模块,图 4-1 为中断接口原理图,主要包括异常程序地址计数器 EPC,中断使能寄存器 IE,中断控制器等模块,需要在主电路中将这些模块进行有效连接,并进行最终的联调,测试 CPU 是否能正常响应 2 个按键对应的中断服务程序。

图 4-1 中断接口原理图

2. 中断控制器原理

本中断控制器可处理 3 个中断源的中断请求, 3 个中断源分别是按键 Key1、Key2 和 Key3。该中断控制器中的优先权编码器会对 3 个中断源进行判优,输出当前中断请求中号码最大的那个中断源的编码 IntNo.,并提出中断请求 IntR。各个中断源提出中断请求,对应号码的中断请求指示灯会相应点亮,当中断请求提出后,会自动熄灭中断请求指示灯。

图 4-2 中断控制器原理图

3. 微指令修改

由于增加了中断控制逻辑,需要修改模型机的微指令格式,新增与中断有关的控制字段,包括: STI (开中断)、CLI (关中断)、EPCin (断点保存)、EPCout (断点输出)、Addrout (输出中断服务程序地址)和 P_{INTR} (是否有中断请求)字段,模型机微指令修改为图 4-3 所示格式。

图 4-3 微指令格式(增加中断)

4. 微程序修改

由于增加了中断控制逻辑,需在中断服务程序中增加中断返回的机器指令 erect,在微程序流程图中增加中断响应和 erect 指令分支。修改后的微程序流程图如图 4-4 所示。 修改微程序流程图,截图置于此处

图 4-4 微程序流程图(增加中断)

在原模型机微程序基础上增加中断响应和中断返回 erect 指令微程序,修改后的微程序如图 4-5 所示:截取微程序(支持中断) excel 表格图置于此处

4	Α	В	С	D	Ε	F							М																	AD	AE	AF		AJ
1	微指令功能	866/8081J	PCout	DRout	Zout	Rout	IRijout	Millout	Oktout	PCin	ARin	DREin	DRin	Xin	Rin	lRin	PSWin	Rs/Rt	RegDst	Add	Add4	Slt	READ	WRITE E	PCout E	PCin	Addrout	STI	CLI	P1	P2	РЗ	微指令	微指令十六进制
2	取指令	0	1								1			1																		1	10000000100100000000000000000	20240000
3	取指令	1																			1											(90000000000000000010000000000	800
4	取指令	2			1					1		1											1									(00100001010000000000100000000	8500200
5	取指令	3		1												1														1		(10000000000001000000000000000	10010004
6	lw	4				1						0		1																		(90010000000100000000000000000	4040000
7	lw	5					1					2								1										,		(90001000000000000100000000000	2001000
В	lw	6			1						1																					(9010000 <mark>0100000000000000000000000000000</mark>	8200000
9	lw	7										1											1									(0000000010000000000100000000	100200
LO	lw	8		1											1																	1	1000000000010000000000000000	10020001
1	sw	9				1								1																		(90010000000100000000000000000	4040000
2	SW	10					1													1												(90001000000000000100000000000	2001000
13	sw	11			1						1																					(001000001000000000000000000000	8200000
4	SW	12				1							1					1														(000100000010000100000000000000	4084000
15	sw	13							1															1								1	0000010000000000000010000000	800101
6	beq	14				1								1																		(90010000000100000000000000000	4040000
17	beq	15				1											1	1										,			1	1	001000000000011000000000000001	4000003
8.	beq	16	1											1																		1	100000000000100000000000000000	20040000
19	beq	17						1												1												(000001000000000001000000000000	1001000
0	beq	18			1					1																						1	01000010000000000000000000000	8400001
21	slt	19				1								1								- 4								, .		(90010000000100000000000000000	4040000
2	slt	20				1												1				1										(000100000000000100010000000000	4004400
23	slt	21			1										1				1													1	01000000000100010000000000000	8022001
4	addi	22				1								1																		(90010000000100000000000000000	4040000
25	addi	23					1													1												(90001000000000000100000000000	2001000
6	addi	24			1										1																	1	01000000000100000000000000000	8020001
7	eret	25								1				χ.											1			1				1	00000010000000000000001001000	400091
28	中断	26	1																							1			1				100000000000000000000000100100	20000048
29	中断	27								1																	1					1	000000100000000000000000010000	400021

图 4-5 模型机微程序(增加中断)

5. 实验结果分析

在控制存储器中载入设计好的微程序,在主存 MEM 中载入 sort-5-int. hex 文件,运行程序,观察结果。分别按下 key1 和 key2,再观察结果。

图 4-6 实验结果 1

图 4-6 为运行 sort-5-int. hex 的实验结果,结果表明程序对数据进行了降序排序

图 4-7 实验结果 2

图 4-7 为按下 key1 后的实验结果,结果表明按下 key1 后,从地址 0x90 起始的连续 8 个字节的数据将各自增加 1。

图 4-8 实验结果 3

图 4-8 为按下 key2 后的实验结果,结果表明按下 key2 后,从地址 0xa0 起始的连续 8 个字节的数据将各自增加-1。

四、思考题

请为 key3 实现中断控制功能。

1. 请问中断控制逻辑图中哪些地方需要修改,如何修改?

修改后截图并配文字说明

图 4-9 地址 0x4d

通过计算该位置的地址信息,将 0x4d 转换成二进制形式得到 1001101。由于在读取过程中仅读 $2^{\sim}11$ 位,所以完整的地址信息为 100110100。将其转换为十六进制,结果为 134。在下图中提供常量 0x134,并且连接到选择 key3 的引脚上。

图 4-10 0x134 连接到选择 key3 的引脚上

2. 为 key3 编写中断服务程序,该中断服务程序的功能是:将本人学号的前 4 位、中间 4 位和后 4 位分别写入三个不同的寄存器中。例如,某生学号为 202131060101,选择\$20、\$21 和\$22 寄存器分别存放学号的前 4 位、中间 3 位和最后 4 位,按下 key3,响应中断,能观察到\$20、\$21 和\$22 寄存器的值变为 0x00002021、0x00003106 以及 0x00000101。

(1) 编写程序

设计思路:使用 addi 指令进行赋值,之后利用 erect 指令返回。实际操作:

- 1. \$20 赋初值为 2022: 001000 00000 10100 00000111111100110 即 0x201407e6
- 2. \$21 赋初值为 3106: 001000 00000 10101 0000110000100010 即 0x20150c22
- 3. \$22 赋初值为 0435: 001000 00000 10110 0000000110110011 即 0x201601b3
- 4. erect 参考已有程序 0x42000018

图 4-11 编写程序

(2) 实验结果及分析

图 4-12 实验结果

由图可知,\$20 被赋值为\$20 0x7e6 即 2022,\$21 被赋值为\$20 0xc22 即 3106,\$20 被赋值为\$20 0x1b3 即 \$20 0435,在主存中可以看到指令正确中断返回,实验结果正确,