Michaelmas Term IIB Project Presentation

Variance Investigation of Learning Latent Space Energy-Based Prior Model

Prithvi Raj [pr478@cam.ac.uk]

November 20, 2023 IIB Project Code: D-mag92-1

Supervisors:

Prof. Mark Girolami Mr. Justin Bunker

Context

Latent space modelling – low-dimensional representation of the data that encapsulates its fundamental characteristics.

Figure: Example of latent-space learning with DDPM¹

Some benefits:

- Dimensionality Reduction
- Interpretability
- Improved Generalisation

Latent Space Energy-Based Prior Model²

Energy-based learning to better capture the latent space prior distribution:

$$p_{\alpha}(z) = \frac{1}{Z_{\alpha}} \exp(f_{\alpha}(z)) \cdot \pi_{0}(z)$$

Top-down generator to map the acquired latent representations back to the original observable data:

$$x = g_{\beta}(z) + \epsilon$$

²Bo Pang et al. (2020). "Learning Latent Space Energy-Based Prior Model". In: *Advances in Neural Information Processing Systems*. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., pp. 21994–22008. URL: https:

Training

$$p_{\alpha}(z) = \frac{1}{Z_{\alpha}} \exp(f_{\alpha}(z)) \cdot \pi_0(z)$$
 $x = g_{\beta}(z) + \epsilon$

- 1. Sample: $z_{prior} \sim p_{\alpha}(z)$, $z_{posterior} \sim p_{\theta}(z|x) = p_{\beta}(x|z)p_{\alpha}(z)$
- 2. Predict: $x = g_{\beta}(z_{posterior}) + \epsilon$
- 3. Maximum Likelihood:

$$egin{aligned}
abla_{ heta} \log(p_{ heta}(x)) &= \mathbb{E}_{p_{ heta}(z|x)} \left[
abla_{ heta} \log(p(x,z))
ight] \ &= \mathbb{E}_{p_{ heta}(z|x)} \left[
abla_{ heta} \log(p_{lpha}(z)) +
abla_{ heta} \log(p_{eta}(x|z))
ight] \end{aligned}$$

Closer Analysis of Maximum Likelihood Terms

$$egin{aligned}
abla_{ heta} \log(p_{lpha}(z)) &\propto \mathbb{E}_{p_{ heta}(z|x)} \left[
abla_{lpha} f_{lpha}(z)
ight] - \mathbb{E}_{p_{lpha}(z)} \left[
abla_{lpha} f_{lpha}(z)
ight] \
abla_{ heta} \log(p_{eta}(x|z)) &\propto \mathbb{E}_{p_{ heta}(z|x)} \left[
abla_{eta} \log(p_{eta}(x|z)
ight] \end{aligned}$$

EBM-Learning involves closely "matching" $p_{\alpha}(z)$ to $p_{\beta}(z|x)$, (get a more informed prior). GEN-Learning involves maximising $p_{\theta}(x)$. essentially as an MSE loss between prediction and observation.

For generation, sample $z \sim p_{\alpha}(z)$, then pass through generator, $x = g_{\beta}(z)$. Assume $p_{\alpha}(z)$ has closely matched $p_{\theta}(z|x)$

Rough Around the Edges

Langevin sampling is employed to sample from complex/intractable probability distributions.

$$z_0 \sim p_0(z), \quad z_{k+1} = z_k + s \nabla_z \log \pi(z_k) + \sqrt{2s\varepsilon_k}, \quad k = 1, \dots, K.$$

- No error correction, (all proposed steps were accepted)
- ► Short run MCMC, (20 iterations were used)

Despite the "statistical flexibility" highly-defined images can be generated...

Example

Figure: Model-generated images after training on SVHN, CIFAR-10, and Celeb-A respectively³

³Bo Pang et al. (2020). "Learning Latent Space Energy-Based Prior Model". In: *Advances in Neural Information Processing Systems*. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., pp. 21994–22008. URL: https:

My Project

Would enhancing the model's ability to produce samples with **lower variance** in their estimated likelihoods result in improved performance?

Taking a step further, we propose an investigation into the **gradient** of the log-marginal likelihood, given its existing availability as the learning gradient.

$$abla_{ heta} \log(p_{ heta}(\mathbf{x})) = \mathbb{E}_{p_{ heta}(\mathbf{z}|\mathbf{x})} \left[
abla_{ heta} \log(p(\mathbf{x},\mathbf{z}))
ight]$$

By incorporating thermodynamic integration⁴ into the assessment of the marginal likelihood, it is proposed that the variance in the MCMC estimate can be adjusted by leveraging power posteriors⁵.

⁴Ben Calderhead and Mark Girolami (2009). "Estimating Bayes factors via thermodynamic integration and population MCMC". In: Computational Statistics Data Analysis 53.12, pp. 4028–4045. ISSN: 0167-9473. DOI: https://doi.org/10.1016/j.csda.2009.07.025. URL: https://www.sciencedirect.com/science/article/pii/S0167947309002722.

Power Posterior Modification

$$egin{aligned} p_{lpha}(\mathbf{z}) &= rac{1}{Z_{lpha}} \exp(f_{lpha}(\mathbf{z})) \pi_{0}(\mathbf{z}) \ \mathbf{x} &= g_{eta}(\mathbf{z}) + \epsilon \quad \Longrightarrow \quad p_{eta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; g_{eta}(\mathbf{z}), \sigma_{\epsilon}^{2} \mathbf{I}) \ &p_{ heta}(\mathbf{z}|\mathbf{x}, t) = rac{p_{eta}(\mathbf{x}|\mathbf{z})^{t} p_{lpha}(\mathbf{z})}{Z_{lpha, eta, t}} \end{aligned}$$

Now the optimisation has some dependence on the temperature scheduling, t:

$$heta^* = rg \max_{ heta} \log(p_{ heta}(\mathbf{x})) \propto \int_0^1 \mathbb{E}_{p_{ heta}(\mathbf{z}|\mathbf{x},t)} \left[\log(p_{ heta}(\mathbf{x}|\mathbf{z}))
ight] dt$$

Questions to Answer

Does thermodynamic integration reduce variance in $\nabla_{\theta} \log(p_{\theta}(\mathbf{x}))$ compared to the vanilla model?

Does reduced variance improve the model's performance?

Experimental Outline - Slide 1

Training:

Train both models (vanilla and altered with thermodynamic integration) for an equal number of epochs.

Metrics Extraction:

- ▶ During training, periodically extract $\nabla_{\theta} \log(p(x|\theta))$ during training.
- ► Calculate average variances and collect FID scores, similar to Faghri's approach⁶.

Evaluation:

- ► After training, evaluate models on test datasets.
- Collect variances, FID scores, and generate images.

Experimental Outline - Slide 2

Iterative Comparison:

- If more data is required, modify temperature schedules or network architectures and repeat.
- Obtain a comprehensive dataset.

Visualization:

- Plot variance against training iteration.
- Plot FID score against training iteration.
- Plot FID score against variance for each model.
- Compare and contrast the results.

Progress

- Ramping up on literature and PyTorch. Read paper then implement.
- Implemented denoising diffusion model and denoising score matching model.
- Coded up my own Latent EBM/Generator model. Developed troubleshooting skills.

Target Dataset

Any examples are from training to generate make_moons dataset:

Figure: Sklearn's make_moons Dataset

Denoising Diffusion Model - Diffusion/Noise Addition

Figure: Adding noise to create a latent representation.

Denoising Diffusion Model - Sample Generation

Generated Samples

Figure: Samples generated by DDM during training.

Denoising Score Model - Noise Addition

Figure: Noise addition in denoising score model.

Denoising Score Model - Sample Generation

Generated Samples

Figure: Samples generated by denoising score model during training.

Latent EBM/Generator Failed Attempt

Figure: Model failed to generate samples!

Troubleshooting

Figure: Langevin Sampler Troubleshooting

Troubleshooting

Figure: Histogram of samples from $\pi_0(z)$, p(z), and $p_\theta(z|x)$

Make Moons Retry

Figure: Learning the Make Moons Dataset

Make Moons Close-enough?

Figure: Successful EBM/Generator Make Moons Generation