Analytical Note: Fractal Dimension via Mass–Size Scaling and its Translation to Finance (Hurst, Volatility vs. Horizon, Tails)

Author: Jesús Garví | jesus.garvig@um.es | GitHub | LinkedIn

Date: August 2025

1) Objective

- To estimate the fractal dimension d of balls made of plasticine, paper, and algae using the mass–size scaling law $m \propto D^d$.
- To validate the method with diagnostics (slope, CI, R^2 , residuals).
- To connect the same scaling with quantitative finance:
 - Hurst H from how volatility scales with the time horizon ($std \propto \Delta^H$).
 - o Power-law tails: $P(|r| > x) \propto x^{-\alpha}$ and the estimation of α via a log-log slope.

2) Method and Model

• Fractal dimension by self-similarity:

$$d = \frac{\log N}{\log s}$$

- Mass–size scaling: $m \propto D^d \Rightarrow \log m = \log \kappa + d \log D$ The slope of the linear fit on a log–log scale $(y = \alpha + dx)$ estimates d.
- Variables:
 - o $x = \log_{10}(\bar{D})$ with \bar{D} = average of three measurements D_1, D_2, D_3 (mm).
 - o $y = \log_{10}(m)$ (grams).
- Estimation:
 - o OLS: slope d, intercept α .
 - o 95% CI for d (Student's t-test), R^2 , RMSE, residuals.
 - o The base of the logarithm does not alter the slope.

Finance (scaling analogues): - Volatility–horizon (Brownian): $std[\Delta] \propto \Delta^H$ with $H \approx 0.5$. On a log–log plot, the slope $\approx H$. Power-law tails: $CCDF(|r|) \propto x^{-\alpha} \to \text{slope} \approx -\alpha$ on a log–log plot. α informs about the "heaviness" of the tails (extreme risk). Relationship with path fractality: for fBm, the fractal dimension of the graph is $D_g = 2 - H$.

3) Results and Diagnostics (Experimental Data)

Materials and measurement: - Plasticine (5 balls), Paper (6), Algae (7). - Scale (m in g). Caliper (D_1, D_2, D_3 in mm). $\bar{D} = (D_1 + D_2 + D_3)/3$.

Estimates (see code for exact values from this data): - Plasticine: $d \approx 3.00 \pm 0.15$; $R^2 \approx 0.987$. Interpretation: a solid, massive object (\approx 3D).

- Paper: $d\approx 1.98\pm 0.08$; $R^2\approx 0.993$. Interpretation: behaves like a "folded surface" (\approx 2D).
- Algae: $d\approx 2.97\pm 0.17$; $R^2\approx 0.990$. Interpretation: effective compaction, close to a 3D solid in this size range.

-Fig 1-3: Log-log fits.

- Fig 4: Comparison of slopes with CI bands and d=2 and d=3 references.

_

4) Physics → Quant

- The same pattern of "a straight line on a log-log plot = scaling exponent."
- In markets:
 - Hurst H: slope of $\log std(\Delta)$ vs $\log \Delta$. Typical Brownian: $H \approx 0.5$.
 - Tail risk: slope of $\log CCDF$ vs $\log x \approx -\alpha$.
- Practical use:
 - \circ H guides temporal aggregation, dependency assumptions, and the "roughness" of the process.
 - \circ α guides stress testing and risk limits (probability of extremes).

- Fig 6: Volatility vs. horizon (synthetic Gaussian): slope ~ 0.5 .

Fig 7: CCDF of tails (synthetic Pareto): slope $\sim -\alpha$.

5) Repository and Execution

The full, reproducible Jupyter notebook (analysis, visualization, and key-derivation implementation) is available for verification.

6) References

- Mandelbrot, B. (1982). The Fractal Geometry of Nature. Freeman.
- Falconer, K. (2003). Fractal Geometry. Wiley.
- Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. J. Business.
- Cont, R. (2001/2011). Empirical properties of asset returns. Quantitative Finance.
- Bouchaud & Potters (2003). Theory of Financial Risk and Derivative Pricing.