PYMOL tutorial

http://www.pymol.org/ download Pymol

1) Double-click on the PyMol icon to launch the software.

Or

Pymol command line write → fetch 2WLY.pdb enter

2) Representation of the molecule

Wireframe to cartoon representation

Click
$$\rightarrow$$
 Show (S) \rightarrow Cartoon

Click
$$\rightarrow$$
 Hide (H) \rightarrow lines

Click
$$\rightarrow$$
 Color (S) \rightarrow by SS \rightarrow Helix sheet loop

Click
$$\rightarrow$$
 Hide (H) \rightarrow Waters

Click \rightarrow Show (S) \rightarrow organic \rightarrow spheres [display hetro atom (e.g. cofactor, ligand) in the file]

Left mouse click sphere \rightarrow sele \rightarrow label (L) \rightarrow residues

3) Display sequence

External GUI → Display → Sequence

Click on any amino acid residue of sequence → sele (right side) → L (Label) residue

4) Adding polar hydrogen on protein structure

$$2WLY \rightarrow Action (A) \rightarrow hydrogen \rightarrow add polar$$

5) Align two similar structures

Open two structures 1WLY (already opened), on pymol command line type "fetch 1CTN.pdb", \rightarrow go to the structure (1CTN) you want to align \rightarrow Action (A) \rightarrow select align \rightarrow to molecule \rightarrow select \rightarrow 2WLY.pdb

Hide (H) everything \rightarrow show(S) cartoon

Display \rightarrow sequence \rightarrow view alignment

6) Display ligand and nearby residues at 5 Å region

Pymol command line → fetch 1nh6.pdb

Click \rightarrow All \rightarrow Hide (H) everything

Display → sequence

Scroll at the end of sequence → select heteroatom (click NAG NAG NAG NAG NAG NAG) at the end of sequence

Click \rightarrow sele \rightarrow show \rightarrow sticks

Click \rightarrow sele \rightarrow Action (A) \rightarrow modify \rightarrow expand \rightarrow by 5 A, residues

Click \rightarrow sele \rightarrow show \rightarrow line

Click \rightarrow sele \rightarrow label \rightarrow residues

Select heteroatom (NAG) \rightarrow sele \rightarrow modify \rightarrow expand 4A \rightarrow find \rightarrow polar contacts \rightarrow just intra side chain

or

Visualize polar contacts between ligand and protein

Click → Action (A) → Preset ligands

Click \rightarrow Hide (H) \rightarrow ribbon

Click \rightarrow sele \rightarrow label residues

7) Surface form of protein

All \rightarrow Click Hide (H) \rightarrow everything \rightarrow All Show (S) \rightarrow cartoon \rightarrow Show (S) \rightarrow Surface

Menu bar \rightarrow Setting \rightarrow Transparency \rightarrow Surface \rightarrow 20%

Display \rightarrow Sequence \rightarrow click NAG NAG NAG NAG NAG \rightarrow sele \rightarrow Show (S) \rightarrow stick \rightarrow click again sele (to deactivate sele)

8) Distance between two residues

fetch 1v5d.pdb \rightarrow hide everything \rightarrow show cartoon \rightarrow Select residues 122 and 311 \rightarrow show sticks

Measure the distance between the two residues

Wizard → measurement → click one atom from 122 residue then click one atom from 311 residues

9) Duplicate the object

Action \rightarrow duplicate object \rightarrow obj01 \rightarrow action \rightarrow rename object

10) Site directed mutagenesis

Open 1v5d.pdb→ hide everything→ select residue e.g 1v5d-GLU122

wizard mutagenesis \rightarrow pymol right side click on no mutation \rightarrow select the residue from box for mutation \rightarrow display \rightarrow sequence \rightarrow click on residue 319

11) Separate complex pdb (1nh6.pdb) file into individual component

External Gui → Display → Sequence

Scroll at the end of sequence → select heteroatom (NAG) at the end of sequence

 $Click \rightarrow sele \rightarrow Action \rightarrow extract object$

13) Putting the ligand structure from one pdb file (1nh6.pdb) to another pdb file (1wly.pdb)

File \rightarrow reinitialize \rightarrow fetch 1nh6.pdb \rightarrow fetch 1wly.pdb \rightarrow 2wly \rightarrow Action (A) \rightarrow align 1nh6.pdb

Display Sequence \rightarrow click on NAG NAG NAG NAG NAG \rightarrow sele \rightarrow Action (A) \rightarrow copy to object 2wly (sequence of 2WLY copied NAG object appear

File \rightarrow export molecule \rightarrow selection 2wly \rightarrow save \rightarrow save as type \rightarrow pdb

14) Creating picture for publication

File -→ reinitialize → fetch 1nh6.pdb

All \rightarrow Hide everything \rightarrow show \rightarrow cartoon \rightarrow show organic spheres \rightarrow click color (C) \rightarrow by ss (helix, sheet, loop)

Display \rightarrow sequence \rightarrow scroll end of sequence \rightarrow select NAG \rightarrow sele \rightarrow color(C) \rightarrow by element

Show(S) \rightarrow surface \rightarrow external GUI \rightarrow settings \rightarrow transparency \rightarrow surface \rightarrow 50%

External Gui → Display Background → white

File \rightarrow save image \rightarrow png \rightarrow enter name

15) Save pymol session file \rightarrow save session as \rightarrow name of your file