OTYET NO BUYUKANTENDAMY APAKTUKYMY

ABOPATOPHAN PAGOTA ~ 1

APTEMENKO MUKUTA BAAAHKABOBUY

TPYNNA: 19112

I POCTA MOBRA 3AAA 4M:
$$\begin{cases} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + f(x,t) \\ \lambda = \alpha \frac{\partial^2 u}{\partial x^2} + f(x,t) \end{cases}$$
 And $y_{p-m} \in \text{Tennonpo Bodno CTM} \quad \text{Result} \quad \begin{cases} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + f(x,t) \\ u(x,0) = \mu(x) \\ u(0,t) = \mu_1(t) \\ u(x,t) = \mu_2(t) \end{cases}$

$$\frac{u_{\kappa}^{j+2} - u_{\kappa}^{j}}{\tau} = \alpha \left[\frac{u_{\kappa+1}^{j+1} - 2u_{\kappa}^{j+2} + u_{\kappa-1}^{j+2}}{2h^{2}} + \frac{u_{\kappa+1}^{j} - 2u_{\kappa}^{j} + u_{\kappa-1}^{j}}{2h^{2}} \right] + f_{\kappa}^{j+2}$$

B MOEM CAYMAE:

$$M(x) = x^4 - x$$

$$M_1(t) = t^2 - t$$

$$M_2(t) = t^2 + t(1-e)$$

$$f(x,t) = x + 2t - e^{x} - \alpha (12x^{2} - te^{x})$$

$$U(x,t) = X^{4} - X + t \times + t^{2} - t e^{x}$$

II PLZYNGTATGI

1) CXEMA KDANKA-NNWACONA YCTONYNBA

NOPARON TOYING OT BLIBODA TOYER

$$O(\tau^2 + h^2)$$
 B TOYMAX BUAA $(x_j, \frac{t_n + t_{n+2}}{2})$

T.E GIAN O WEMS MUTATS
$$\frac{f(x_j, t_n) + f(x_j, t_{n+2})}{2}$$

unv
$$*\varepsilon f((\delta+\frac{1}{2})\chi, kh)$$

And f_{k}^{j+2} Tabanya C omnokama $\left[O(x+h^2)\right]$

S S	0.1	0.01	0,001
0,1	0,1459	D, 1362	0, 1372
0,01	0,0 112	0.0132	0,0128
0,001	0,0009	0,0010	0,0009

 A_{nq} $f_{k}^{j+\frac{1}{2}}$ TAGANYA C OMNGKAMN $\left[O(x^{2}+h^{2})\right]$

'n	0.1	0,01	0,001
0,1	0.0012	-s 14 · 10	12 · 10 - 7
0,01	0,0013	12 10	11 10 - 7
0,001	0,0012	13 · 10	12. 10-7