Markov properties for undirected graphs

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 2, Michaelmas Term 2009

October 15, 2009

Random variables X and Y are conditionally independent given the random variable Z if

$$\mathcal{L}(X \mid Y, Z) = \mathcal{L}(X \mid Z).$$

We then write $X \perp\!\!\!\perp Y \mid Z$ (or $X \perp\!\!\!\perp_P Y \mid Z$) Intuitively:

Knowing *Z* renders *Y* irrelevant for predicting *X*. Factorisation of densities:

$$X \perp \!\!\!\perp Y \mid Z \iff f(x,y,z)f(z) = f(x,z)f(y,z)$$

 $\iff \exists a,b: f(x,y,z) = a(x,z)b(y,z).$

For random variables X, Y, Z, and W it holds

- (C1) If $X \perp \!\!\!\perp Y \mid Z$ then $Y \perp \!\!\!\perp X \mid Z$;
- (C2) If $X \perp \!\!\!\perp Y \mid Z$ and U = g(Y), then $X \perp \!\!\!\perp U \mid Z$;
- (C3) If $X \perp \!\!\!\perp Y \mid Z$ and U = g(Y), then $X \perp \!\!\!\perp Y \mid (Z, U)$;
- (C4) If $X \perp \!\!\!\perp Y \mid Z$ and $X \perp \!\!\!\perp W \mid (Y, Z)$, then $X \perp \!\!\!\perp (Y, W) \mid Z$;

If density w.r.t. product measure f(x, y, z, w) > 0 also

(C5) If
$$X \perp \!\!\!\perp Y \mid (Z, W)$$
 and $X \perp \!\!\!\perp Z \mid (Y, W)$ then $X \perp \!\!\!\perp (Y, Z) \mid W$.

Graphoid axioms

Ternary relation \perp_{σ} is *graphoid* if for all disjoint subsets A, B, C, and D of V:

- (S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$;
- (S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$;
- (S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid (C \cup D)$;
- (S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid (B \cup C)$, then $A \perp_{\sigma} (B \cup D) \mid C$;
- (S5) if $A \perp_{\sigma} B \mid (C \cup D)$ and $A \perp_{\sigma} C \mid (B \cup D)$ then $A \perp_{\sigma} (B \cup C) \mid D$.

Semigraphoid if only (S1)–(S4) holds.

Separation in undirected graphs

Let G = (V, E) be finite and simple undirected graph (no self-loops, no multiple edges).

For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in \mathcal{G} , i.e. that all paths from A to B intersect S.

Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a graphoid.

This fact is the reason for choosing the name 'graphoid' for such separation relations.

Systems of random variables

For a system V of labeled random variables $X_v, v \in V$, we use the shorthand

$$A \perp\!\!\!\perp B \mid C \iff X_A \perp\!\!\!\perp X_B \mid X_C,$$

where $X_A = (X_v, v \in A)$ denotes the set of variables with labels in A.

The properties (C1)–(C4) imply that $\bot\!\!\!\bot$ satisfies the semi-graphoid axioms for such a system, and the graphoid axioms if the joint density of the variables is strictly positive.

- $\mathcal{G}=(V,E)$ simple undirected graph; \perp_{σ} (semi)graphoid relation. Say \perp_{σ} satisfies
- (P) the pairwise Markov property if

$$\alpha \nsim \beta \Rightarrow \alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\};$$

(L) the local Markov property if

$$\forall \alpha \in V : \alpha \perp_{\sigma} V \setminus \mathsf{cl}(\alpha) \mid \mathsf{bd}(\alpha);$$

(G) the global Markov property if

$$A \perp_{\mathcal{G}} B \mid S \Rightarrow A \perp_{\sigma} B \mid S$$
.

Pairwise Markov property

Any non-adjacent pair of random variables are conditionally independent given the remaning.

For example, $1 \perp_{\sigma} 5 \mid \{2, 3, 4, 6, 7\}$ and $4 \perp_{\sigma} 6 \mid \{1, 2, 3, 5, 7\}$.

Local Markov property

Every variable is conditionally independent of the remaining, given its neighbours.

For example, $5 \perp_{\sigma} \{1,4\} \mid \{2,3,6,7\}$ and $7 \perp_{\sigma} \{1,2,3\} \mid \{4,5,6\}$.

Global Markov property

To find conditional independence relations, one should look for separating sets, such as $\{2,3\},~\{4,5,6\},$ or $\{2,5,6\}$ For example, it follows that $1\perp_{\sigma}7\,|\,\{2,5,6\}$ and $2\perp_{\sigma}6\,|\,\{3,4,5\}.$

For any semigraphoid it holds that

$$(G) \Rightarrow (L) \Rightarrow (P)$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$(P) \Rightarrow (G)$$

so that in the graphoid case

$$(G) \iff (L) \iff (P).$$

The latter holds in particular for $\perp \!\!\! \perp$, when f(x) > 0.

$$(\mathsf{G})\Rightarrow (\mathsf{L})\Rightarrow (\mathsf{P})$$

(G) implies (L) because $bd(\alpha)$ separates α from $V \setminus cl(\alpha)$.

Assume (L). Then $\beta \in V \setminus cl(\alpha)$ because $\alpha \not\sim \beta$. Thus

$$\mathsf{bd}(\alpha) \cup ((V \setminus \mathsf{cl}(\alpha)) \setminus \{\beta\}) = V \setminus \{\alpha, \beta\},\$$

Hence by (L) and (S3) we get that

$$\alpha \perp_{\sigma} (V \setminus \mathsf{cl}(\alpha)) \mid V \setminus \{\alpha, \beta\}.$$

(S2) then gives $\alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\}$ which is (P).

$(P) \Rightarrow (G)$ for graphoids

Assume (P) and $A \perp_{\mathcal{G}} B \mid S$. We must show $A \perp_{\sigma} B \mid S$.

Wlog assume A and B non-empty. Proof is reverse induction on n = |S|.

If n = |V| - 2 then A and B are singletons and (P) yields $A \perp_{\sigma} B \mid S$ directly.

Assume |S| = n < |V| - 2 and conclusion established for |S| > n: First assume $V = A \cup B \cup S$. Then either A or B has at least two elements, say A. If $\alpha \in A$ then $B \perp_{\mathcal{G}} (A \setminus \{\alpha\}) \mid (S \cup \{\alpha\})$ and also $\alpha \perp_{\mathcal{G}} B \mid (S \cup A \setminus \{\alpha\})$ (as $\perp_{\mathcal{G}}$ is a semi-graphoid). Thus by the induction hypothesis

$$(A \setminus \{\alpha\}) \perp_{\sigma} B \mid (S \cup \{\alpha\}) \text{ and } \{\alpha\} \perp_{\sigma} B \mid (S \cup A \setminus \{\alpha\}).$$

Now (S5) gives $A \perp_{\sigma} B \mid S$.

$(P) \Rightarrow (G)$ for graphoids, continued

For $A \cup B \cup S \subset V$ we choose $\alpha \in V \setminus (A \cup B \cup S)$. Then $A \perp_{\mathcal{G}} B \mid (S \cup \{\alpha\})$ and hence the induction hypothesis yields $A \perp_{\sigma} B \mid (S \cup \{\alpha\})$.

Further, either $A \cup S$ separates B from $\{\alpha\}$ or $B \cup S$ separates A from $\{\alpha\}$. Assuming the former gives $\alpha \perp_{\sigma} B \mid A \cup S$.

Using (S5) we get $(A \cup \{\alpha\}) \perp_{\sigma} B \mid S$ and from (S2) we derive that $A \perp_{\sigma} B \mid S$.

The latter case is similar.

Assume density f w.r.t. product measure on \mathcal{X} .

For $a \subseteq V$, $\psi_a(x)$ denotes a function which depends on x_a only, i.e.

$$x_a = y_a \Rightarrow \psi_a(x) = \psi_a(y).$$

We can then write $\psi_a(x) = \psi_a(x_a)$ without ambiguity. The distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if

$$f(x) = \prod_{a \in A} \psi_a(x)$$

where A are *complete* subsets of G.

Complete subsets of a graph are sets with all elements pairwise neighbours.

Factorization example

The *cliques* of this graph are the maximal complete subsets $\{1,2\}$, $\{1,3\}$, $\{2,4\}$, $\{2,5\}$, $\{3,5,6\}$, $\{4,7\}$, and $\{5,6,7\}$. A complete set is any subset of these sets.

The graph above corresponds to a factorization as

$$f(x) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)\psi_{25}(x_2, x_5) \times \psi_{356}(x_3, x_5, x_6)\psi_{47}(x_4, x_7)\psi_{567}(x_5, x_6, x_7).$$

Factorization theorem

Let (F) denote the property that f factorizes w.r.t. \mathcal{G} and let (G), (L) and (P) denote Markov properties w.r.t. $\perp \!\!\! \perp$.

It then holds that

$$(F) \Rightarrow (G)$$

and further: If f(x) > 0 for all x, $(P) \Rightarrow (F)$.

The former of these is a simple direct consequence of the factorization whereas the second implication is more subtle and known as the *Hammersley–Clifford Theorem*.

Thus in the case of positive density (but typically only then), all the properties coincide:

$$(F) \iff (G) \iff (L) \iff (P).$$

Any joint probability distribution P of $X = (X_v, v \in V)$ has a dependence graph G = G(P) = (V, E(P)).

This is defined by letting $\alpha \not\sim \beta$ in G(P) exactly when

$$\alpha \perp \!\!\!\perp_{P} \beta \mid V \setminus \{\alpha, \beta\}.$$

X will then satisfy the pairwise Markov w.r.t. G(P) and G(P) is smallest with this property, i.e. P is pairwise Markov w.r.t. \mathcal{G} iff

$$G(P) \subseteq \mathcal{G}$$
.

If f(x) > 0 for all x, P is also globally Markov w.r.t. G(P).