Лабораторная работа № 4.

Тема: Синтез сдвигающих регистров.

1. Цель работы:

Изучить принцип работы сдвигающих регистров.

2. Программа работы.

- 2.1. Синтезировать и начертить схему последовательного (сдвигающего) 4-х разрядного регистра.
 - 2.2. Ввести схему регистра и проверить ее работу.
 - 2.3. Изучить принцип работы универсального сдвигающего регистра К155ИР13

(SN74198).

- 2.4. Начертить схему исследования регистра К155ИР13.
- 2.5. Исследовать работу регистра.
- 2.6. На базе ИС К155ИР13 сконструировать кольцевой сдвигающий регистр.
- 2.7. Исследовать работу кольцевого регистра.

3. Краткие теоретические сведения.

Последовательные регистры предназначаются для кратковременного хранения информации, представленной в двоичном коде, и строятся на триггерах разных типов. Кроме того, в последовательных регистрах осуществляется логическая операция сдвига кода хранимого числа на любое число разрядов. Сдвиг кода числа осуществляется с помощью сдвигающих импульсов, которые сдвигают все разряды кода числа с входа (сдвиг вправо) или с выхода регистра (сдвиг влево) к его выходу (входу), последовательно переводя каждый триггер регистра в состояния, соответствующее разряду кода на входе данного триггера в момент поступления очередного сдвигающего импульса.

Рассмотрим принцип работы последовательного регистра в процессе сдвига кода m-разрядного двоичного числа. В общем случае хранимое в регистре число $X = x_m \dots x_i \ x_{i-1} \dots x_l$ при сдвиге преобразуется в число $Y = y =_m \dots y_n \ y_{n-1} \dots y_l$, где

$$\begin{cases} y_{i+p} & \text{при } m \ge (i+p) \ge 1; \\ y_{i} & = \begin{cases} 0 & \text{при } (i+p) > m; \\ 0 & \text{при } (i+p) < 1; \end{cases}$$

Здесь величина p определяет количество разрядов, на которые производится сдвиг, а его знак — направление сдвига (при сдвиге вправо p>0, при сдвиге влево p<0). Таким образом, сдвиг кода числа проявляется в изменении положения его разрядов.

Поскольку вес каждого разряда определяется его положением в коде, то сдвиг вправо на p разрядов (в сторону младших разрядов) соответствует операции деления, а влево (в сторону старших разрядов) соответствует операции умножения на величину K^0 , где K – основание системы счисления.

В последовательном регистре триггеры связаны между собой, поэтому задача синтеза регистра сводится к определению межтриггерных связей с учетом типа применяемых триггеров. Поскольку при подаче на триггеры регистра сдвигающего импульса происходит переход каждого последующего триггера в состояние, соответствующее состоянию предыдущего, то при синтезе регистра достаточно рассмотреть процесс передачи информации между *i*+1 –м и *i*-м триггерами регистра.

4. Методические указания по выполнению работы

- 4.1. Синтезировать сдвиговый регистр. Для этого составить таблицу возможных переходов i-го триггера из состояния Q_i^t в момент времени t (до прихода сдвигающего импульса) в состояние Q_i^{t+1} после прихода сдвигающего импульса в зависимости от его собственного состояния Q_i^t и состояния Q_{i+1}^t предыдущего триггера. Отразить прицедуру синтеза в отчете.
- 4.1.1. Зарисовать в отчет схему электрическую принципиальную по примеру рис.1.
 - 4.1.2. Ввести схему регистра и проверить его работу.
 - 4.1.3. Продемонстрировать правильность работы регистра преподавателю.
- 4.2. Изучить принцип работы универсального сдвигового регистра на ИС К155ИР13 (SN74198).

Восьмиразрядный универсальный сдвиговый регистр К155ИР13 представлен на рис.2.

Занесение информации в регистр осуществляется в параллельном или последовательном коде. В первом случае используются входы *D1-D8*. Во втором случае используются входы DR и DL. Вход DR последовательного сдвига вправо (от 8-го разряда к 1-му); он используется для последовательной (поразрядной) записи числа, начиная с младших разрядов. Вход DL последовательного сдвига влево (от 1-го разряда к 8-му); он используется для последовательной (поразрядной) записи числа, начиная со старших разрядов. Занесение информации в регистр выполняется по синхроимпульсу (точнее по перепаду); вход положительному поступающему на С. Считывание информации из регистра происходит в параллельном коде. Вход R используется для установки регистра в «0». Входы S0 и S1 являются управляющими; они задают режим работы регистра в соответствии со следующей таблицей:

Таблица 2.

S1	S0	Режим работы
0	0	Хранение
0	1	Сдвиг влево
1	0	Сдвиг вправо
1	1	Запись

- 4.2.1. Занести в отчет схему приведенную на рис. 3.
- 4.2.2. Ввести схему и проверить ее работу.
- 4.2.3. Продемонстрировать работу регистра во всех режимах преподавателю.
- 4.3. На базе ИС К155ИР13 сконструировать универсальный кольцевой регистр.
- 4.3.1. Зарисовать в отчет схему электрическую принципиальную сконструированного регистра.
- 4.3.2. Изменить схему.
- 4.3.3. Продемонстрировать правильность работы сконструированного регистра преподавателю.
 - 5. Содержание отчета.
 - 5.1. Описание процедуры синтеза 4-х разрядного сдвигового регистра.
 - 5.2. Схема синтезированного регистра.
 - 5.3. Схема исследования ИС К155ИР13.
 - 5.4. Схема кольцевого регистра.
 - 5.5. Выводы.
 - 6. Контрольные вопросы.
 - 6.1. Что такое сдвигающий регистр?
- 6.2. Каким арифметическим операциям эквивалентен сдвиг числа влево на два разряда и вправо на два разряда ?
 - 6.3.В чем заключается универсальность регистра К155ИР13?
 - 6.4. Назовите назначение всех выводов ИС К155ИР13.

Функциональная схема регистра.

Рис.1.

Условное обозначение ИС К155ИР13.

Рис.2.

Схема для исследования ИС К155ИР13.

Рис. 3.