Networks

Introduction to Bayesian Networks

Outline

- Motivation for Bayesian networks
 - A probabilistic model for the *lac* operon
- Definition of Bayesian networks
- Representation of conditional probability distributions in Bayesian networks
- Computational tasks for Bayesian networks

Probabilistic Model of lac Operon

suppose we represent the system by the following discrete variables

L (lactose)	present, absent
G (glucose)	present, absent
I (lacI)	present, absent
$C\left(CAP\right)$	present, absent
lacI-unbound	true, false
CAP-bound	true, false
Z(lacZ)	high, low, absent

- suppose (realistically) the system is not completely deterministic
- the joint distribution of the variables could be specified by $2^6 \times 3 1 = 191$ parameters

Motivation for Bayesian Networks

- Explicitly state (conditional) independencies between random variables
 - Provide a more compact model (fewer parameters)
- Use directed graphs to specify model
 - Take advantage of graph algorithms/theory
 - Provide intuitive visualizations of models

A Bayesian Network for the lac System

Pr(L)

absent	present	
0.9	0.1	

Pr(|acI-unbound |L,I)

L	I	true	false
absent	absent	0.9	0.1
absent	present	0.1	0.9
present	absent	0.9	0.1
present	present	0.9	0.1

Pr (Z | lacI-unbound, CAP-bound)

lacI- unbound	CAP- bound	absent	low	high
true	false	0.1	8.0	0.1
true	true	0.1	0.1	0.8
false	false	0.8	0.1	0.1
false	true	0.8	0.1	0.1

Bayesian Networks

- Also known as Directed Graphical Models
- a BN is a Directed Acyclic Graph (DAG) in which
 - the nodes denote random variables
 - each node X has a *conditional probability distribution* (CPD) representing P(X | Parents(X))
- the intuitive meaning of an edge from *X* to *Y* is that *X* directly influences *Y*
- formally: each variable X is independent of its nondescendants given its parents

Bayesian Networks

• a BN provides a *factored* representation of the joint probability distribution

• this representation of the joint distribution can be specified with 20 parameters (vs. 191 for the unfactored representation)

Representing CPDs for Discrete Variables

- CPDs can be represented using tables or trees
- consider the following case with Boolean variables A, B, C, D

Pr(D	A.	R.	C
	$\boldsymbol{\nu}$	719	ν,	$\boldsymbol{\mathcal{L}}$

A	В	C	Т	F
Т	Т	Т	0.9	0.1
т	Т	F	0.9	0.1
Т	F	Т	0.9	0.1
т	F	F	0.9	0.1
F	Т	Т	0.8	0.2
F	Т	F	0.5	0.5
F	F	Т	0.5	0.5
F	F	F	0.5	0.5

Representing CPDs for Continuous Variables

- we can also model the distribution of continuous variables in Bayesian networks
- one approach: linear Gaussian models

$$Pr(X | u_1,...,u_k) \sim N(a_0 + \sum_{i} a_i \times u_i, \sigma^2)$$

• X normally distributed around a mean that depends linearly on values of its parents u_i

The Inference Task in Bayesian Networks

Given: values for some variables in the network (*evidence*), and a set of *query* variables

L	G	I	C	lacI- unbound	CAP- bound	Z
present	present	present	present	?	?	low

Do: compute the posterior distribution over the query variables

$$P(CAP - bound = true \mid L = present, G = present, I = present, C = present, Z = low)$$

- variables that are neither evidence variables nor query variables are *hidden* variables
- the BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

The Parameter Estimation Task

• Given: a set of training instances, the graph structure of a BN

L	G	I	C	lacI- unbound	CAP- bound	Z
present present absent	present present present	present present present	present present present	true true false	false false false	low absent high
			•••			

- **Do**: infer the parameters of the CPDs
- this is straightforward when there aren't missing values, hidden variables

The Structure Learning Task

• **Given**: a set of training instances

L	G	I	C	lacI- unbound	CAP- bound	Z
present present absent	present present present	present present present	present present present	true true false	false false false	low absent high
			•••			

• **Do**: infer the graph structure (and perhaps the parameters of the CPDs too)

Summary

- Bayesian networks provide a compact and visually intuitive representation of joint probability distributions
- Independence statements -> compactness
- Variety of representations for CPDs
- Key computational tasks
 - Inference, parameter estimation, structure learning