Data Mining Classification: Alternative Techniques

Lecture Notes for Chapter 4
Instance-Based Learning

Introduction to Data Mining, 2nd Edition

by

Tan, Steinbach, Karpatne, Kumar

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires the following:
 - A set of labeled records
 - Proximity metric to compute distance/similarity between a pair of records
 - e.g., Euclidean distance
 - The value of k, the number of nearest neighbors to retrieve
 - A method for using class labels of K nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

How to Determine the class label of a Test Sample?

- Take the majority vote of class labels among the knearest neighbors
- Weight the vote according to distance
 - weight factor, $w = 1/d^2$

Choice of proximity measure matters

 For documents, cosine is better than correlation or Euclidean

11111111110

VS

00000000001

011111111111

100000000000

Euclidean distance = 1.4142 for both pairs, but the cosine similarity measure has different values for these pairs.

Nearest Neighbor Classification...

Data preprocessing is often required

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Data Mining Classification: Alternative Techniques

Bayesian Classifiers

Introduction to Data_R Mining, 2ⁿ Edition by
Tan, Steinbach, Karpatne, Kumar

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(Y|X) = \frac{P(X|Y)}{P(X)}$$

$$P(X|Y) = \frac{P(X|Y)}{P(Y)}$$

Bayes theorem:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- Given a record with attributes (X₁, X₂,..., X_d), the goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes P(Y| X₁, X₂..., X₃
- Can we estimate P(Y| X₁, X₂,..., X_d) directly from data?

Tid	Refund	Marit al Statu s	Taxabl e Incom e	Evad e
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marit al Statu s	Taxabl e Incom e	Evad e
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

We need to estimate

P(Evade = Yes | X) and P(Evade = No | X)

In the following we will replace

Evade = Yes by Yes, and

Evade = No by No

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marit al Statu s	Taxabl e Incom e	Evad e
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

How to estimate P(X | Yes) and P(X | No)?

Naïve Bayes Classifier

Assume independence among attributes X_i when class is given:

-
$$P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$$

- Now we can estimate P(X_i| Y_j) for all X_i and Y_j combinations from the training data
- New point is classified to Y_j if $P(Y_j) \prod P(X_i | Y_j)$ is maximal.

Naïve Bayes on Example Data

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

 $P(X_1, X_2, ..., X_d | Y_i) = P(X_1 | Y_i) P(X_2 | Y_i)... P(X_d | Y_i)$

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marit al Statu s	Taxabl e Incom e	Evad e
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

•
$$P(y)$$
 = fraction of instances of class y

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For categorical attributes:

$$P(X_i = c|y) = n_c/n$$

- where |X_i =c| is number of instances having attribute value X_i =c and belonging to class y
- Examples:

Estimate Probabilities from Data

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(X_i | Y_j) = e^{\frac{1}{\sqrt{2\pi\sigma_{ij}^2}}} - \frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}$$

- One for each (X_i,Y_i)
 pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) \frac{1}{\sqrt{2\pi}} e^{-\frac{(120-110)^{2}}{2(2975)}} 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

Naiver Bayes Chassifier:

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25

× P(Divorced | No)

× P(Income=120K | No)

 $= 4/7 \times 1/7 \times 0.0072 = 0.0006$

P(X | Yes) = P(Refund=No | Yes)

× P(Divorced | Yes)

× P(Income=120K | Yes)

 $= 1 \times 1/3 \times 1.2 \times 10^{-9} = 4 \times 10^{-10}$

Since P(X|No)P(No) >

P(X|Yes)P(Yes) Therefore P(No|X) >

P(Yes|X)

Naïve Bayes (Summary)

Robust to isolated noise points

- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes

- Redundant and correlated attributes will violate class conditional assumption
 - -Use other techniques such as Bayesian Belief Networks (BBN)

Example of Bayesian Belief Network

Data Mining

Support Vector Machines

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

b11 and b12, b21 and b22: A pair of parallel hyperplanes such that they touch the closest instances of both classes.

Find hyperplane maximizes the margin => B1 is better than B2

Learning Linear SVM

- Objective is to maximize: Margin =
 - Which is equivalent to minimizing: $L(w) = \frac{1}{2}$ Subject to the following constraints:

$$y^{i} = \begin{cases} 1 & \text{if } w \cdot x_{i} + b \geq 1 \\ -1 & \text{if } wx \end{pmatrix} + b \leq -1$$

$$y_i(w \cdot x_i + b) \ge 1, i = 1, 2, ..., N$$

- This is a constrained optimization problem
 - Solve it using Lagrange multiplier method

Learning Linear SVM

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once w and b are found? Given a test record, x_i

$$f(\overrightarrow{x_i}) = \begin{cases} 1 & \text{if } w \xrightarrow{\bullet} x_i + b \ge 1 \\ -1 & \text{if } w \bullet x_i + b \le 1 \\ -1 & \text{otherwise} \end{cases}$$

What if the problem is not linearly separable?

Nonlinear Support Vector Machines

What if decision boundary is not linear?

$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & \text{otherwise} \end{cases}$$

Nonlinear Support Vector Machines

Transform data into higher dimensional space

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46.$$

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{2} x_1 + w_1 \sqrt{2} x_2 + w_0 = 0.$$

Decision boundary:

$$w \cdot \Phi(x) + b =$$

Characteristics of SVM

- A convex optimization problem in which efficient algorithms are available to find the global minimum of the objective function
- Overfitting is handled regularizing the model parameters and maximizing the margin of the decision boundary
- SVM can handle irrelevant and redundant attributes better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values

Data Mining

Lecture Notes for Chapter 4 Artificial Neural Networks

Introduction to Data Mining, 2nd Edition

by

Tan, Steinbach, Karpatne, Kumar

Logistic Regression

Logistic Regression/2

Introduction to Data Mining, 2nd Edition

Artificial Neural Networks (ANN)

- Basic Idea: A complex non-linear function can be learned as a composition of simple processing units
- ANN is a collection of simple processing units (nodes) that are connected by directed links (edges)
 - Every node receives signals from incoming edges, performs computations, and transmits signals to outgoing edges
 - Analogous to human brain where nodes are neurons and signals are electrical impulses
 - Weight of an edge determines the strength of connection between the nodes
- Simplest ANN: Perceptron (single neuron)

Basic Architecture of Perceptron

$$y = \begin{cases} 1, & \text{if } \mathbf{w}^T \mathbf{x} + b > 0. \\ -1, & \text{otherwise.} \end{cases}$$

$$\tilde{\mathbf{w}} = (\mathbf{w}^T \ b)^T \qquad \tilde{\mathbf{x}} = (\mathbf{x}^T \ 1)^T$$

$$\hat{y} = sign(\tilde{\mathbf{w}}^T \tilde{\mathbf{x}})$$
Activation Function

- Learns linear decision boundaries
- Related to logistic regression (activation function is sign instead of sigmoid)

Perceptron Example

X ₁	X ₂	X ₃	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

Output Y is 1 if at least two of the three inputs are equal to 1.

Perceptron Example

X ₁	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
where $sign(x) = \begin{bmatrix} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x \le 0 \end{bmatrix}$

Perceptron Learning Rule

- Initialize the weights (w₀, w₁, ..., w_d)
- Repeat
 - For each training example (x_i, y_i)
 - Compute $y \bullet_i$
 - Update the weights:

$$w_j^{(k+1)} = w_j^{(k)} + \lambda (y_i - \hat{y}_i^{(k)}) x_{ij}$$

- Until stopping condition is met
- k: iteration number; λ : learning rate

Example of Perceptron Learning

$$\lambda = 0.1$$

X_1	X_2	X_3	Y
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	W_0	W ₁	W_2	W_3
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Weight updates over first epoch

Epoch	W_0	W_1	W_2	W_3
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

Weight updates over all epochs

Multi-layer Neural Network

- More than one hidden layer of computing nodes
- Every node in a hidden layer operates on activations from preceding layer and transmits activations forward to nodes of next layer
- Also referred to as "feedforward neural networks"

Activation Functions

$$a_i^l = f(z_i^l) = f(\sum_j w_{ij}^l a_j^{l-1} + b_i^l)$$

Deep Learning Trends

- Training deep neural networks (more than 5-10 layers) could only be possible in recent times with:
 - Faster computing resources (GPU)
 - Larger labeled training sets
- Algorithmic Improvements in Deep Learning
 - Responsive activation functions (e.g., RELU)
 - Regularization (e.g., Dropout)
 - Supervised pre-training
 - Unsupervised pre-training (auto-encoders)
- Specialized ANN Architectures:
 - Convolutional Neural Networks (for image data)
 - Recurrent Neural Networks (for sequence data)
 - Residual Networks (with skip connections)
- Generative Models: Generative Adversarial Networks