Exercises week 5

Michele De Vita

April 3, 2018

1.

i)
$$\mathbf{C} = (0, 5, -7, 0),$$
 $d = -2$
ii) $\mathbf{C} = \begin{pmatrix} 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix},$ $d = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

2. This plot shows the SSE in function of β :

The F-test score is $\frac{SSE_{H_0}-SSE}{SSE}$ where $SSE=SSE(\hat{\beta})$ that is the y in the plot where $x=\hat{\beta}$ and $SSE_{H_0}=SSE(\beta=1)$

The plot for the numerator of Wald test is the same of the previous because the numerator is the same except for a square difference instead of normal difference.

The main difference between F-test and Wald test is the denominator in the first is $\hat{\theta}$ while in the second is $var(\hat{\theta})$. There is also a relation between test statistics F and W: W = rF

3. The confidence interval for μ_0 is $\mathbf{x}_0'\hat{\beta} \pm t_{n-p}(1-\alpha/2)\hat{\sigma}(\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}x_0)^{1/2}$ while for prediction is $\mathbf{x}_0'\hat{\beta} \pm t_{n-p}(1-\alpha/2)\hat{\sigma}(1+\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}x_0)^{1/2}$. The

difference between the two formulas is the "1+" near x_0 that become from the fact that the estimation try to give an confidence interval of a parameter, so with no variance, while the prediction try to estimate a aleatory variable with a expected value and a variance.

4.
$$f(x_0) = \mathbf{x}_0' \hat{\beta} \pm t_{n-2} (1 - \alpha/2) \hat{\sigma} (1 + \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} x_0)^{1/2} \text{ where } X = \begin{pmatrix} 1 & x_{11} \\ \vdots & \vdots \\ 1 & x_{n1} \end{pmatrix}$$
 and $p = 2$.

The length of interval is minimum when $\mathbf{x_0} = \mu$ because we can write the product $\mathbf{x_0'}(\mathbf{X'X})^{-1}\mathbf{x_0}$ as $\frac{\sum (x_i - x_0)^2}{dev(x)}$ then the numerator $\sum (x_i - x_0)^2$ is minimized when $x_0 = \mu$

5. Increasing the number of parameters is not always a good idea: we can ex-

press the SPSE (expected squared prediction error as):
$$\underbrace{n\sigma^2}_{irreducible\ part} + \underbrace{|M|\sigma^2}_{Variance\ error} + \underbrace{\sum_{i=1}^n (u_{iM} - u_i)^2}_{BIAS^2}$$

6. If we consider only X_1 we have $X = X_1$ then

$$\begin{split} E\left[\tilde{\beta}_{1}\right] &= E\left[(\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{y}\right] \\ &= (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'E\left[\mathbf{y}\right] \\ &= (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'(\mathbf{X}_{1}\beta_{1} + \mathbf{X}_{2}\beta_{2}) \\ &= \beta_{1} + (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{X}_{2}\beta_{2} \end{split}$$

The bias vanish if $X_1'X_2 = 0$ that in statical words mean that X_1 and X_2 are uncorrelated or when β_2 is irrelevant

- 7. If we omit a relevant covariate, we can have a decrease the variance of model such that the increase of $bias^2$ is overall convenient
- 8. $SPSE = \sum (y_{n+i} \hat{y}_{iM}^2)$. See point 5

9.

$$E(SSE) = E\left(\sum (y_i - \hat{y}_{iM})^2\right)$$

$$= E(\varepsilon'\varepsilon)$$

$$= (n-p)\sigma^2$$

$$= E(SPSE) - 2|M|\sigma^2$$

$$= n\sigma^2 + |M|\sigma^2 - 2|M|\sigma^2$$

$$= n\sigma^2 - |M|\sigma^2$$

$$= (n-p)\sigma^2$$

SSE underestimate the SPSE because $SP\hat{S}E = S\hat{S}E + 2|M|\hat{\sigma}^2$. This bias is more severe for complex models because the bias is proportional to model complexity

10.
$$AIC = n \log(\hat{\sigma}^2) + 2(|M| + 1)$$

 $BIC = n \log(\hat{\sigma}^2) + \log(n)(|M| + 1).$

Since SPSE is not observable the two latter indicators are used to evaluate the fit of the model.

The difference between AIC and BIC is the term before (|M|+1): in AIC is equal to 2 while in BIC is $\log(n)$. This mean that BIC have a major penalty when the model complexity increase in big dataset. Next we can see the tables with the results:

n = 100	AIC	BIC
l = -300, M = 5	612	627.63
l = -290, M = 9	600	626.05

n = 200	AIC	BIC
l = -300, M = 5	612	631.79
l = -290, M = 9	600	632.98

Between n=100 and n=200 we can note the phenomenon described before with BIC, because with n=100 there is a decrement of BIC between the two configurations while for n=200 the BIC increase between the two configurations

11.
$$VIF_j = \frac{1}{1 - R_j^2}$$
.

It measures the correlation between the covariate x_j with the other covariates. The greater is $R_j^2 \in [0,1]$ the greater is VIF_j . An empiric alert for variance is when $VIF_j > 10$

12. The ridge regression add a penalty term λ to the linear regression. The $\mathbf{PLS}(\beta) = (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) + \lambda\beta'\beta$.

The ridge regression is biased respect to linear regression:

$$E_{LS}(\hat{\beta}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta = \beta$$

$$E_{PLS}(\hat{\beta}) = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta \text{ (when penalty = 0 } E_{PLS}(\hat{\beta}) = E_{LS}(\hat{\beta}))$$

When λ increases the coefficients β tends to zero because $\lambda \mathbf{K} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{K}) - \mathbf{X}'\mathbf{X}$.

If we multiply two definite semipositive matrices $(\mathbf{X}'\mathbf{X} + \lambda \mathbf{K})^{-1}$ with

 $(\mathbf{X}'\mathbf{X} + \lambda \mathbf{K}) - \mathbf{X}'\mathbf{X}$ also the result is definite semipositive that is $\mathbf{I_p} - (\mathbf{X}'\mathbf{X} + \lambda \mathbf{K})^{-1}\mathbf{X}'\mathbf{X}$.

This imply that $(\mathbf{X}'\mathbf{X} + \lambda \mathbf{K})^{-1}\mathbf{X}'\mathbf{X}$ have the diagonal elements between

[0, 1] and this term appears when we express $\hat{\beta}_{PLS}$ in function of $\hat{\beta}_{LS}$:

$$\hat{\beta}_{PLS} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{K})^{-1}\mathbf{X}'\mathbf{X}\beta_{\mathbf{LS}}$$

The covariance matrix of $\hat{\beta}_{PLS}$ for the same reason is lower than variance of $\hat{\beta}_{LS}$ so in some cases can be convenient use a ridge regression when the bias error is less relevant than variance error

Stata code

```
gen x3 = runiform()
gen y = rnormal(-1 + 0.3 * x1 + 0.2*x3, 0.2^2)
regress y x1 x2 x3
regress y x1 x3
```