

CSCE 580: Introduction to Al

CSCE 581: Trusted Al

Lecture 5: Formal Represention and Logic

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 7TH SEP 2023

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 580, 581 - FALL 2023

Organization of Lecture 5

- Introduction Segment
 - Recap of Lecture 4
- Main Segment
 - Logic First Order
 - Inferencing
 - Representation in the Large: ConceptNet, Cyc
 - Trust Issues with Knowledge Representation
- Concluding Segment
 - Course Project Discussion
 - About Next Lecture Lecture 6
 - Ask me anything

Introduction Section

Recap of Lecture 4

- Representing World Knowledge
- Logic (Propositional)
- Inferencing (Propositional)
- Code setup for AIMA examples

Relationship Between Main Al Topics

Where We Are in the Course

CSCE 580/ 581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification
- Week 9: Machine Learning Classification Trust Issues and

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

CSCE 580, 581 - FALL 2023

Main Section

Intelligent Agent Model

Intelligent Agent – Simple Knowledge Based

KB Agent Procedure

function KB-AGENT(*percept*) **returns** an *action* static: *KB*, a knowledge base *t*, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action - ASK(KB, MAKE-ACTION-QUERY(t))TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action

Source: Russell & Norvig, AI: A Modern Approach

CSCE 580, 581 - FALL 2023

First Order Predicate Logic (FOPL)

580 581 - FALL 2023

Concepts

Constants: a, b, student123, teacher94

• Name of a specific object.

Variables: X, Y.

Refer to an object without naming it.

Predicates: Father, Before

• Relationships between objects. May be many and may not be unique. Objects are specified as arguments (arity of a predicate).

Functions: father-of

• Mapping from objects to objects. Mapping must be present and be unique. Objects are specified as arguments (arity of a predicate).

Terms: dad-of(organism33), leftLeg(John)

A logical expression that refers to an object

Atomic Sentences: in(dad-of(dog33), food6)

- Can be true or false
- Correspond to propositional symbols P, Q

Adapted from:

- a) Dan Weld's AI course (CSE 573, Univ. of Washington)
- b) Russell & Norvig, AI: A Modern Approach

Objects

Relations

Functions

CSCE 580, 581 - FALL 2023

FOPL - Syntax

BNF (Backus-Naur Form) grammar of sentences in FOPL

Source: Russell & Norvig, AI: A Modern Approach

```
Sentence — AtomicSentence
                        Sentence Connective Sentence
                        Quantifier Variable, . . . Sentence
                        ¬ Sentence
                        (Sentence)
AtomicSentence - Predicate(Term, ...) Term = Term
            Term \rightarrow Function(Term,...)
                        Constant
                        Variable
     Connective \rightarrow \Rightarrow | A \lor | \Leftrightarrow
      Quantifier \rightarrow VI3
        Constant \longrightarrow A \setminus X \setminus John \mid \cdots
        Variable \rightarrow a | x s •••
       Predicate → Before \ HasColor \ Raining \ · · · ·
       Function — Mother \ LeftLegOf \ \ \cdots
```

Connectives and Quantifiers

Logical connectives: and, or, not, =>

Quantifiers:

• ∀ : Forall

∘ ∃ : There exists

Examples:

- 1. All students: ∀ students
- 2. All students are university members:

```
\forall x \; Student(x) => UniversityMember(x)
(For all x, if x is a student, then x is a UniversityMember)
```

- 3. A phone: $\exists x \ Phone(x)$
- 4. John has a phone:

 $\exists x \ Phone(x) \land Owns(John,x)$ (There exists a phone such that John owns it.)

Connections / Equivalences

$$\forall x \neg P = \neg \exists x P \qquad \neg P \land \neg Q = \neg (P \lor Q)$$

$$\neg \forall x P = 3x \neg P \qquad \neg (P \land Q) = \neg P \lor \neg Q$$

$$\forall x P = \neg \exists x \neg P \qquad P \land Q = \neg (\neg P \lor \neg Q)$$

$$\exists x P = \neg \forall x \neg P \qquad P \lor Q = \neg (\neg P \land \neg Q)$$

Derivable from De Morgan's law about sets: $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$

Source: Russell & Norvig, AI: A Modern Approach

CSCE 580, 581 - FALL 2023 1

Comparing Syntax - FOPL and Propositional Logic

Source: Russell & Norvig, AI: A Modern Approach

```
Sentence — AtomicSentence
                        Sentence Connective Sentence
                        Quantifier Variable, . . . Sentence
                       ¬ Sentence
                        (Sentence)
AtomicSentence - Predicate(Term, ...) Term = Term
            Term \rightarrow Function(Term,...)
                        Constant
                        Variable
     Connective \rightarrow \Rightarrow | A \lor | \Leftrightarrow
      Quantifier \rightarrow VI3
        Constant \rightarrow A \setminus X \setminus John \mid \cdots
        Variable \rightarrow a | x s • • •
       Predicate → Before \ HasColor \ Raining \ · · · ·
       Function — Mother \ LeftLegOf \ \ \cdots
```

FOPL Semantics – Models and Interpretations

Interpretations - Mappings from Syntactic tokens → Model elements

Satisfiability, Validity, & Entailment

- S is **valid** if it is true in all interpretations
- S is **satisfiable** if it is true in some interpretations
- S is unsatisfiable if it is false for all interpretations
- S1 **entails** S2 if forall interpretations where S1 is true, S2 is also true

Source: Dan Weld's AI course (CSE 573, Univ. of Washington

© Daniel S. Weld

Comparing - FOPL and Propositional Logic

Ontology	Facts (P, Q)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables & quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, GSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable

Source: Dan Weld's AI course (CSE 573, Univ. of Washington

CSCE 580, 581 - FALL 2023 20

Formal Logic

- Properties of Logic System
 - **Soundness**: if it produces only true statements
 - **Completeness**: if it produces all true statements
 - Consistency: if it does not produce a sentence and its negation

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Example: Course Selection

E 580, 581 - FALL 2023 22

Example Situation – Course Selection

- A person wants to pass an academic program in two majors: A and B
- There are three subjects available: A, B and C, each with three levels (*1, *2, *3). There are thus 9 courses: A1, A2, A3, B1, B2, B3, C1, C2, C3
- To graduate, at least one course at beginner (*1) level is needed in major(s) of choice(s), and two courses at intermediate levels (*2) are needed
- Answer questions
 - Q1: How many minimum courses does the person have to take?
 - Q2: Can a person graduate in 2 majors studying 3 courses only?
 - ...

Representation – Propositional Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has studied courseA1: yes student has taken course; no student has not taken
 - has_studied_courseA2
 - has studied courseA3
 - has_studied_courseB1
 - has studied courseB2
 - has studied courseB3
 - has studied courseC1
 - has_studied_courseC2
 - has_studied_courseC3

LowerThan_Course_A1_CourseA2
LowerThan_Course_A2_CourseA3
LowerThan_Course_B1_CourseB2
LowerThan_Course_B2_CourseB3
LowerThan_Course_C1_CourseC2
LowerThan_Course_AC_CourseC3

• Previous statements set did not capture hierarchy between levels; new sentences would not have followed the reality in the world. Need more statements – LowerThan as shown.

Representation – FOPL Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation

```
    has_studied (?x , ?y)
    ?x: course name  // A, B, C
    ?y: course level  // 1, 2, 3
```

- lower_than _level(?x, ?y)
 - ? x: 1, 2
 - ?y: 2, 3

Revisiting Formal Representations: Ontologies

CSCE 580, 581 - FALL 2023 26

Challenge of Reasoning on Ontologies

Formal Representation in the Large

CSCE 580, 581 - FALL 2023 28

ConceptNet

- NLP focused graph knowledge graph that connects words and phrases of natural language with labeled edges.
- Concepts collected from experts, crowdsourcing, and games with a purpose
- Supports multiple languages

Details: http://conceptnet.io/,

https://github.com/commonsense/conceptnet5/wiki,

Paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewFile/14972/14051

Demonstration - ConceptNet

Examples:

- Concepts:
 - Word: http://conceptnet.io/c/en/word,
 - duck: http://conceptnet.io/c/en/duck
- Relationships:
 - http://conceptnet.io/s/resource/wordnet/rdf/3.1

Project CYC

- A large ontology to capture the world and human common sense
 - · Doug Lenat lead team of computer scientists, computational linguists, philosophers, and logicians
 - Identify and formally axiomatize the tens of millions of rules about world
 - ~40 years effort by Cycorp
- Reasoners on the ontology to make decisions
 - 1000+ specialized reasoners

Details: https://www.cyc.com/

Source: Cyc White Paper

Cyc Details

- Ontology of about 1.5 million general concepts (e.g., taxonomically "placing" terms like eyes, sleep, night, person, unhappiness, hours, posture, being woken up, etc.);
- More than 25 million general rules and assertions involving those concepts
 - "Most people sleep at night, for several hours at a time, lying down, with their eyes closed, they can be awakened by a loud noise but don't like that, "
- Domain-specific extensions to the common sense ontology and knowledge base
 - healthcare, intelligence, defense, energy, transportation and financial services.
- Promoting synergistic use of ontology and learning based approaches (now)
 - Cyc and LLM https://arxiv.org/ftp/arxiv/papers/2308/2308.04445.pdf.

Source: White Paper – Cyc Technology Overview

Trust Issues With Data and Representation

- Data
 - Respecting data privacy; using open data whenever available
 - Diversity
 - Handling missing/ unknown data; standard representations
- Representation
 - Using appropriate logic
 - Having expressive facts in the knowledge base; reusing standards

Exercise and Code

- FOPL Reasoning
 - https://github.com/biplav-s/course-ai-tai-f23/blob/main/sample-code/Class5-fo-logic/ExploreFOLogic.ipynb

Source: Russell & Norvig, AI: A Modern Approach

Lecture 5: Summary

- We talked about
 - Logic First Order
 - Inferencing
 - Representation in the Large: ConceptNet, Cyc
 - Trust Issues with Knowledge Representation

Concluding Section

Course Project

Project Discussion: What Problem Fascinates You?

- Data
 - Water
 - Finance
- Analytics
- Application
 - Building chatbot
- Users
 - Diverse demographics
 - Diverse abilities
 - Multiple human languages

Project execution in sprints

- Sprint 1:
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Human interaction: Develop a basic chatbot (no AI), no problem focus
- Sprint 2:
 - Solving: Evaluate your solution on problem
 - Human interaction: Integrated your choice of chatbot (rule-based or learning-based) and methods
- Sprint 3:
 - Evaluation: Comparison of your solver chatbot with an LLM-based alternative, like ChatGPT

CSCE 580, 581 - FALL 2023 3

Project Discussion

- Create a private Github repository called "CSCE58x-Fall2023-<studentname>-Repo". Share with Instructor (biplav-s) and TA (kausik-l)
- Create Google folder called "CSCE58x-Fall2023-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (lakkarajukausik90@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by next class (Sep 5, 2023)

- 1. Instructor:
 - City snapshot for Columbia, SC (like for London http://citydashboard.org/london/)
 - ...
- 2. Students
 - Pedestrian detection using ...
 - Health monitoring ...

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Who will care when done:
- 4. Data need:
- 5. Methods:
- 6. Evaluation:
- 7. Users:
- 8. Trust issue:

About Next Lecture – Lecture 6

Lecture 6: Searching for Problem Solving

- Search
- Heuristics