With you today:

Eng. Ahmed Ashraf Khalil.

Data scientist

home credit risk

MY GP IN EPSILON AI INSTITUTE ABOUT PREDICTING WHO WILL BE ABLE TO PAY THE LOAN IN TIME

Data input features:

CNT_CHILDREN, AMT_TOTAL_INCOME, AMT_GOODS_PRICE,....

SK_ID_CURR	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	REGION_POPULATION_RELATIVE	DAYS_BIRTH	DAYS_
100002	0	202500.0	406597.5	24700.5	351000.0	0.018801	-9461	
100003	0	270000.0	1293502.5	35698.5	1129500.0	0.003541	-16765	
100004	0	67500.0	135000.0	6750.0	135000.0	0.010032	-19046	
100006	0	135000.0	312682.5	29686.5	297000.0	0.008019	-19005	
100007	0	121500.0	513000.0	21865.5	513000.0	0.028663	-19932	

Which:

CNT_CHILDREN: count of children

TOTAL_INCOME: Total income

GOODS_PRICE: Goods price

Machine learning procedure:

1- EDA

2- Preprocessing

3- Machine learning model

EDA:

- * Exploring data types
- * Nan values count in data
- * statistical information about the data
 - * central tendency
 - * quartiles statistics
- * relation between features and correlations

Exploring data types

```
print("data types in the dataframe : ",data.dtypes.unique(),"\n\n",data.dtypes)
data types in the dataframe : [dtype('int64') dtype('0') dtype('float64')]
                                 int64
 SK ID CURR
NAME_CONTRACT_TYPE
                               object
                               object
CODE_GENDER
FLAG_OWN_CAR
                               object
FLAG OWN REALTY
                               object
AMT_REQ_CREDIT_BUREAU_WEEK
                              float64
AMT_REQ_CREDIT_BUREAU_MON
                              float64
AMT REQ CREDIT BUREAU QRT
                              float64
AMT_REQ_CREDIT_BUREAU_YEAR
                              float64
is_train
                                int64
Length: 122, dtype: object
```

Nan values count percentage in data

```
total = df[df.columns[df.isnull().any()==True]]
total.isnull().mean().sort_values(ascending=False)
COMMONAREA MEDI
                            0.698723
COMMONAREA AVG
                            0.698723
COMMONAREA MODE
                            0.698723
NONLIVINGAPARTMENTS AVG
                            0.694330
NONLIVINGAPARTMENTS MODE
                            0.694330
EXT SOURCE 2
                            0.002146
AMT GOODS PRICE
                            0.000904
AMT_ANNUITY
                            0.000039
CNT FAM MEMBERS
                            0.000007
DAYS LAST PHONE CHANGE
                            0.000003
Length: 67, dtype: float64
```

statistical information about the data

data.describe()

	SK_ID_CURR	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	REGION_POPULATION_RELATIVE	DAYS_BIR
count	356255.000000	356255.000000	3.562550e+05	3.562550e+05	356219.000000	3.559770e+05	356255.000000	356255.0000
mean	278128.000000	0.414316	1.701161e+05	5.877674e+05	27425.560657	5.280200e+05	0.020917	-16041.2488
std	102842.104413	0.720378	2.235068e+05	3.986237e+05	14732.808190	3.660650e+05	0.013915	4358.8039
min	100001.000000	0.000000	2.565000e+04	4.500000e+04	1615.500000	4.050000e+04	0.000253	-25229.0000
25%	189064.500000	0.000000	1.125000e+05	2.700000e+05	16731.000000	2.340000e+05	0.010006	-19676.0000
50%	278128.000000	0.000000	1.530000e+05	5.002110e+05	25078.500000	4.500000e+05	0.018850	-15755.0000
75%	367191.500000	1.000000	2.025000e+05	7.975575e+05	34960.500000	6.750000e+05	0.028663	-12425.0000
max	456255.000000	20.000000	1.170000e+08	4.050000e+06	258025.500000	4.050000e+06	0.072508	-7338.0000

8 rows x 106 columns

relation between features and correlations

Preprocessing:

- * data cleaning
 - * filling Nan values
 - * deleting the Nan values
- * removing outliers
- * Feature Generation
- * labeling categorical values
- * Feature Scaling

Dealing with Nan values

```
df['DAYS EMPLOYED'].fillna(df['DAYS EMPLOYED'].mode()[0],inplace=True)
data['CNT_FAM_MEMBERS'].fillna(data['CNT_FAM_MEMBERS'].median(),inplace=True)
data['NEW SCORES STD'].fillna(data['NEW SCORES STD'].mean(),inplace=True)
def process_df(df, raw=False):
   df_nan = df[df.columns[df.isnull().any()]]
   df_na = df_nan[df_nan.columns[df_nan.isnull().mean()*100 < 50]]</pre>
   df_not_nan = df[df.columns[~df.isnull().any()]]
   df_na_cat = df_na.select_dtypes(include='0')
   for col in df na cat:
       df na cat[col].fillna(df na cat[col].mode()[0], inplace=True)
   df na num = df na.select_dtypes(exclude='0')
   df na num = remove outliers(df na num)
   df na num = df na num.fillna(df na num.mean())
      if raw:
          df = pd.concat([df not nan.drop('SK_ID_CURR', axis=1), df_na_cat, df_na_num], axis=1)
      else:
   df = pd.concat([df_not_nan, df_na_cat, df_na_num], axis=1)
   df = pd.get dummies(df, drop first=True)
   return df
```

Removing outliers

Feature Generation

```
#feature generation and filling nana values
data['NEW_CREDIT_TO_ANNUITY_RATIO'] = data['AMT_CREDIT'] / data['AMT_GOODS_PRICE']
data['NEW_CREDIT_TO_GOODS_RATIO'] = data['AMT_CREDIT'] / data['AMT_GOODS_PRICE']
data['NEW_ANNUITY_TO_INCOME_RATIO'] = data['AMT_ANNUITY'] / data['AMT_INCOME_TOTAL']
data['NEW_CREDIT_TO_INCOME_RATIO'] = data['AMT_CREDIT'] / data['AMT_INCOME_TOTAL']
data['NEW_INC_PER_MEMB'] = data['AMT_INCOME_TOTAL'] / (1 + data['CNT_FAM_MEMBERS']
data['NEW_INC_PER_CHLD'] = data['AMT_INCOME_TOTAL'] / (1 + data['CNT_CHILDREN'])

data['NEW_EMPLOY_TO_BIRTH_RATIO'] = data['DAYS_EMPLOYED'] / data['DAYS_BIRTH']
data['NEW_CAR_TO_BIRTH_RATIO'] = data['OWN_CAR_AGE'] / data['DAYS_BIRTH']
data['NEW_CAR_TO_EMPLOY_RATIO'] = data['OWN_CAR_AGE'] / data['DAYS_EMPLOYED']
data['NEW_PHONE_TO_BIRTH_RATIO'] = data['DAYS_LAST_PHONE_CHANGE'] / data['DAYS_BIRTH']

data['NEW_SOURCES_PROD'] = data['EXT_SOURCE_1'] * data['EXT_SOURCE_2'] * data['EXT_SOURCE_3']
data['NEW_EXT_SOURCES_MEAN'] = data[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1)

data['NEW_SCORES_STD'] = data['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1)
```

Feature scaling

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaler.fit(trainX)
trainX, testX = scaler.transform(trainX), scaler.transform(testX)
```

Feature scaling

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaler.fit(trainX)
trainX, testX = scaler.transform(trainX), scaler.transform(testX)
```

Labeling categorical values

FONDKAPREMONT_MODE_reg oper spec account	HOUSETYPE_MODE_specific housing	HOUSETYPE_MODE_terraced house	WALLSMATERIAL_MODE_Mixed	WALLSMATERIAL_MODE_Monolithic \
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

The Machine learning model:

- * Deal with imbalanced target label
- * Choose the learning parameters
- * Evaluate the module

Deal with imbalanced target label before: after:

Choose the learning parameters

Evaluate the module locally

```
[3320] valid_0's auc: 0.981489
Early stopping, best iteration is:
[3228] valid_0's auc: 0.981492
```

Evaluate the model by kaggle

Name	Submitted	Wait time	Execution time	Score
sub.csv	4 days ago	1 seconds	1 seconds	0.78259

Complete

