Отчет по лабораторной работе 1.1.1 «Определение удельного сопротивления нихромовой проволоки»

Головинов Г.А. Б02-304 Долгопрудный, 2023

1 Аннотация

Цель работы: Измерить удельное сопротивление тонкой проволоки круглого сечения, изготовленной из нихромового сплава.

Используемые инструменты: Микрометр, амперметр, вольтметр, тонкая нихромовая нить круглого сечения, мост постоянного тока P4833, источник постоянного тока, реостат.

Сопротивление нихромовой нити определяется двумя способами:

- 1. С помощью моста постоянного тока
- 2. С помощью амперметра, вольтметра, реостата и источника постоянного тока, соединенных согласно схеме 1

2 Основные теоретические сведения

Удельное сопротивление однородной проволоки круглого сечения:

$$\rho = R \frac{\pi d^2}{4l} \tag{1}$$

где R - сопротивление проволоки, d - её диаметр, l - длина.

Диаметр проволоки можно измерить с помощью микрометра, а её длину в данной работе считаем известной. При подключении согласно схеме 1 можно найти сопротивление проволоки, используя следующие соотношения:

$$R_{wire1} = \frac{V}{I} \tag{2}$$

Где V - показание вольтметра, а I - показание амперметра. Так как вольтметр и амперметр не идеальные, сопротивление нити считается с помощью уравнения (3)

$$R_{wire} \approx R_{wire1} \left(1 + \frac{R_{wire1}}{R_V} \right) \tag{3}$$

Так как $R_V = 10 \mathrm{M}\Omega$, можно сказать, что $R_{wire} \approx R_{wire1}$ Подставляем полученные значения R_{wire} в уравнение (1) и получим удельное сопротивление проволоки ρ .

Результаты измерений и обработка данных 3

3.1Измерение диаметра проволоки

Таблица 1: Результаты измерения диаметра проволоки d

	1	2	3	4	5	6	7	8	9	10
d, мм	0,35	0,35	0,36	0,36	0,35	0,35	0,35	0,35	0,35	0,35

Среднее значение $\langle d \rangle = 0,352$ мм

Стандартное отклонение $\sigma_d = \sqrt{\frac{1}{N-1} \sum (d_i - \langle d \rangle)^2} = 0,004216$ мм

Случайная погрешность среднего $\sigma_{\langle d \rangle} = \frac{\sigma_d}{\sqrt{N}} = 0,001333$ мм С учетом инструментальной погрешности микрометра $\Delta=0.01$ мм, погрешность измерения диаметра может быть вычислена как

$$\sigma^{full}_{\langle d \rangle} = \sqrt{\sigma^2_{\langle d \rangle} + \Delta^2_{\text{mkm}}} \approx 0,0101 \text{ mm}$$

$$d = 0,3520 \pm 0,0101 \text{ MM} \tag{4}$$

3.2Измерение сопротивления проволоки

Пользуясь методом наименьших квадратов на графике V(I) строим прямые $V = \langle R \rangle I$

Рис. 1: Зависимость измеренного напряжения от силы тока.

Таблица 2: Результаты измерения $V,\,I$ для разных длин проволоки

	$l = (50, 0 \pm 0, 2)$ см						
V, мВ	512	598	723	857	1067	1371	1550
І, мА	96	112	135	160	200	258	290
	$l = (30, 0 \pm 0, 2)$ cm						
V, мВ	322	377	454	569	739	889	
І, мА	100	116	140	176	230	276	
	$l = (20, 0 \pm 0, 2)$ cm						
V, мВ	206	231	281	355	510	606	
І, мА	96	108	132	166	240	286	

Получим
$$\langle R_1 \rangle = 5,3258\Omega, \langle R_2 \rangle = 3,2025\Omega, \langle R_3 \rangle = 2,1076\Omega$$
 (5)

Случайная погрешность определения углового коэффициента вычисляем как $\sigma_R^{rnd} = \sqrt{\frac{1}{N-1}\left(\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - \langle R \rangle^2\right)}$ Систематическая погрешность, обусловленная инструментальными по-

Систематическая погрешность, обусловленная инструментальными погрешностями приборов $\Delta_R^{sys} \sim R \sqrt{\left(\frac{\Delta V}{V_{max}}\right)^2 + \left(\frac{\Delta I}{I_{max}}\right)^2}$

Полная погрешность сопротивления R не превышает $\sigma_R^{full} \leq \sqrt{\left(\sigma_R^{rnd}\right)^2 + \left(\Delta_R^{sys}\right)^2}$

 Таблица 3: Результаты измерения сопротивления проволоки двумя способами

l, cm	$\langle R \rangle, \Omega$	σ_R^{rnd}, Ω	Δ_R^{sys}, Ω	σ_R^{full}, Ω	R_{bridge}, Ω
50	5,3258	0,1380	0,0919	0,1658	$5,3400 \pm 0,0100$
30	3,2025	0,1691	0,0581	0,1788	$3,2360 \pm 0,0100$
20	2,1076	0,1263	0,0370	0,1316	$2,1552 \pm 0,0100$

Полученные с помощью графика значения R немного ниже контрольных значений R_{bridge} , однако все отклонения находятся в пределах $\pm \sigma_R^{full}$

3.3 Вычисление удельного сопротивления проволоки

Подставляя в уравнение (1) сопротивление R, получим удельное сопротивление ρ проволоки.

Таблица 4: Результаты вычисления удельного сопротивления нити

l, см	$\rho, 10^{-6} \ \Omega \cdot \mathrm{M}$
50	$1,0365 \pm 0,0409$
30	$1,0388 \pm 0,0635$
20	$1,0255 \pm 0,0910$

Погрешность
$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

Усредняя результаты трёх опытов получим

$$\langle \rho \rangle = (1,0336 \pm 0,0651) \cdot 10^{-6} \,\Omega \cdot \text{M} \ (\varepsilon_{\rho} = 6,2984\%)$$
 (6)

4 Обсуждение результатов и выводы

В ходе работы мы получили значение удельного сопротивления нихромовой проволоки круглого сечения с точностью $\varepsilon_{\rho}\approx 6,3\%$. Табличные

значения $\rho_{\text{табл}}$ лежат в диапазоне $0,99\dots 1,16\cdot 10^{-6}~\Omega\cdot$ м в зависимости от состава сплава, из которого изготовлена нить. Полученные значения $\rho=(1,0336\pm 0,0651)\cdot 10^{-6}~\Omega\cdot$ м входят в этот диапазон, однако относительно большая погрешность не позволяет определить марку сплава.

Полученные значения сопротивления R нитей оказались не самыми точными ($\varepsilon_R \approx 3,1\%$), что сильно повлияло на конечную погрешность для удельного сопротивления нити ρ . Одним из объяснений может стать то, что в этой работе мы не учитывали сопротивления других компонентов цепи, например, проводников и их соединений (ржавчина, царапины, неплотный контакт и т.д.). Большое отклонение также может быть объяснено неопытностью автора и недостаточной минимизацией функционала, который предусмотрен в МНК.

На точность результата повлияла также погрешность измерения диаметра проволоки. Случайная погрешность измерения микрометром оказалась меньше, чем цена его деления. Это не позволило уменьшить неточность измерений с помощью их многократного повторения. Кроме того, по нашим данным сложно сказать что-то об однородности диаметра проволоки на всей ее длине.