MIDTERM EXAMINATION

November 2017 Duration: 90 minutes

SUBJECT: REAL ANALYSIS	
Deputy head of Dept. of Mathematics:	Lecturer:
Assoc. Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 Determine whether the following sets are open in \mathbb{R}^2 , closed in \mathbb{R}^2 , or neither.

- (a) (15 marks) $A = \{(x,y) \in \mathbb{R}^2 : ax + by \ge c\}$ where $a,b,c \in \mathbb{R}$ are constants;
- (b) (15 marks) $B = \{(x, y) \in \mathbb{R}^2 : 0 < x + y \le 1\}.$

Question 2

- (a) (20 marks) Let (X, d) be a metric space, $f: X \to \mathbb{R}$ a continuous function, and $c \in \mathbb{R}$ a constant. Show that the function $cf: X \to \mathbb{R}$ defined by $(cf)(x) = c \cdot f(x)$ is continuous.
- (b) (5 marks) Is the following statement true or false: "If $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous, so is f^2 ?" Explain your answer.

Question 3 (25 marks) Let (X, \mathcal{M}) be a measurable space. Show that $\mathcal{A} = \{A \subset X : A \cap E \in \mathcal{M} \text{ for every } E \in \mathcal{M}\}$

is a σ -algebra which contains \mathcal{M} .

Question 4 Let μ^* be an outer measure on X.

- (a) (10 marks) Use the definition of μ^* -measurable sets to show that X is μ^* -measurable.
- (b) (10 marks) Show that if E is a μ^* -measurable set and $\mu^*(E) < \infty$, then $\mu^*(F \setminus E) = \mu^*(F) \mu^*(E)$ for every set F in X with $F \supset E$.

MIDTERM EXAMINATION

November 2017 Duration: 90 minutes

SOLUTIONS

Question 1 (a) Suppose $(x_n, y_n) \in A$, $(x_n, y_n) \to (x_0, y_0)$. We have $x_n \to x_0$ and $y_n \to y_0$, so

$$ax_0 + by_0 = \lim_{n \to \infty} ax_n + by_n \ge c$$
 as $n \to \infty$.

Thus $(x_0, y_0) \in A$ and therefore A is closed.

(b) Consider the sequence $\{(x_n, y_n) = (\frac{1}{2n}, \frac{1}{2n})\}$. As $0 < x_n + y_n = \frac{1}{n} \le 1$, $(x_n, y_n) \in B$ for all n. However, $(x_n, y_n) \to (0, 0) \notin B$, hence B is not closed. Furthermore, $(0, 1) \in B$ and for all r > 0, $(0, 1 + \frac{r}{2}) \in B((0, 1), r)$ but $(0, 1 + \frac{r}{2}) \notin B$. Hence $B((0, 1), r) \notin B$ and consequently, B is not open.

Question 2 (a) Let $x \in X$ and $\{x_n\} \subset X$, $x_n \to x$. Since f is continuous at x, $f(x_n) \to f(x)$ and hence, $cf(x_n) \to cf(x)$. Thus cf is continuous at x. Since $x \in X$ is arbitrary, cf is continuous on X.

(b) The answer is no. The function f(x) = x is Lipschitz continuous on \mathbb{R} since |f(x) - f(y)| = |x - y| for all $x, y \in \mathbb{R}$. However, $f^2(x) = x^2$ is not is Lipschitz continuous because for any $\delta > 0$,

$$|f(n+\delta) - f(n)| = |(n+\delta)^2 - n^2| = 2n\delta + \delta^2 > 2n\delta \to \infty \text{ as } n \to \infty.$$

Question 3 Let $A \in \mathcal{M}$. Since \mathcal{M} is a σ -algebra, for every $E \in \mathcal{M}$, we have $A \cap E \in \mathcal{M}$, so $A \in \mathcal{A}$, that is, $\mathcal{M} \subset \mathcal{A}$. In particular, $X \in \mathcal{A}$.

Suppose $A \in \mathcal{A}$ and $E \in \mathcal{M}$. As $A \cap E \in \mathcal{M}$ we get

$$A^c \cap E = E \setminus A = E \setminus (A \cap E) \in \mathcal{M},$$

implying $A^c \in \mathcal{A}$.

If $\{A_n\} \subset \mathcal{A}$ and $E \in \mathcal{M}$, then $A_n \cap E \in \mathcal{M}$ for all n. Since \mathcal{M} is closed under countable union,

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap E = \bigcup_{n=1}^{\infty} (A_n \cap E) \in \mathcal{M}.$$

Thus $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Therefore \mathcal{A} is a σ -algebra.

Question 4 (a) For every $E \subset X$,

$$\mu^*(E) = \mu^*(E) + \mu^*(\emptyset) = \mu^*(E \cap X) + \mu^*(E \cap X^c).$$

Thus X is μ^* -measurable.

(b) Since E is a μ^* -measurable and $F \supset E$,

$$\mu^*(F) = \mu^*(F \cap E) + \mu^*(F \cap E^c) = \mu^*(E) + \mu^*(F \setminus E).$$

As
$$\mu^*(E) < \infty$$
, $\mu^*(F \setminus E) = \mu^*(F) - \mu^*(E)$.