

Present status of HIMAC ECR ion sources

M. Muramatsu¹, K. Takahashi², T. Suzuki², F. Ouchi², S. Hashizaki², M. Sei², T. Sasano², T. Shiraishi², T. Kondo², M. Kawashima², Y. Iwata¹, and A. Kitagawa¹

1 National Institutes for Quantum Radiological Science and Technology (QST-NIRS), Japan 2 Accelerator Engineering Corporation (AEC), Japan

NIRS HIMAC

Heavy Ion Medical Accelerator in Chiba (HIMAC)

10 GHz NIRS-ECR ion source

- TWT Amp., 9.75-10.25 GHz, 1 kW

- Mirror field: 0.93 T / 0.76 T

- Axial field: 0.8 T

- Extraction voltage: 25kV max.

- C^{4+} : 430 µA (C^{2+} : 200 µA for therapy)

Schematic View Of NIRS-ECR Iron yoke Insulator Plasma Chamber sextupole magnet Extraction Water Mirror Electrode Cooling Coil

18 GHz NIRS-HEC source

KLY: 18 GHz, 1400 W

TWTA: 17.10 - 18.55, 1200 W

Extraction voltage: 60 kV max.

Production of heavy ions (Ar, Fe, Kr, Xe) for biological and physical experiment

Prototype ion source for carbon ion radiotherapy (Kei2-source)

Production of C⁴⁺ ion for biological experiment in HIMAC

All permanent magnet

Mirror field: 0.84 T / 0.55 T

Radial field: 0.75 T

Extraction voltage: 30 kV max.

Commercial model (Kei series):Gunma, Saga, Kanagawa, Osaka, Yamagata -> under operating

Prototype ion source for various ion production (Kei3-source)

All permanent magnet

Mirror field: 0.84 T / 0.55 T

• Radial field: 0.75 T

Extraction voltage: 30 kV max.

Development of ECR ion source (two frequency heating, gas mixing...)

Operation of ion sources at HIMAC in 2019

ECR: 10 GHz NIRS-ECR, HPIG: NIRS-PIG, K

HEC: 18 GHz NIRS-HEC KIS: 10 GHz Kei2-source

Ratio of operation time and ion species in 2019

Operation time of various ion species in 2019

- Total operation time of ion sources were 9786.16hour in 2019.
- ECR produce C ion for medical use,
- HEC: Heavy ion, isotopic gas, PIG: light ion, spattering, KIS: carbon, He
- Operation time of carbon was 5923.04 hour (ECR: med., KIS, HEC, PIG: exp.)

Operation time of HIMAC synchrotron

Upper synchrotron ring

- Carbon for medical use and few bio. Phys. experiment
- Beam energy for medical use is 56-430 MeV/n
- Other ion used for biological and physical experiment

Lower synchrotron ring

- Biological and physical experiment
- Iron and Oxygen are used a lot next to carbon

Development of 18 GHz NIRS-HEC

Gas switching at NIRS-HEC for multi-ion irradiation

- pulsed gas by solenoid valve
- production of He⁺, C²⁺, O³⁺, Ne⁴⁺
- beam switching

Production of Indium and Tin ion at 18 GHz NIRS-HEC

- In: $In(C_5H_5)$
- Sn: $Sn(i-C_3H_7)_4$

Multi-ion irradiation

- Multi-ion irradiation: Optimization of ion species by irradiation area
 - Center of tumor: Neon, Oxygen (higher biological effect than carbon)
 - -> Suppression of cancer recurrence
 - Around the center of the tumor: Carbon
 - Near normal tissue: Helium (lower biological effect than carbon)
 - -> Reducing side effects

 Dose distribution with He, C, O at pancreas

Distribution of LET with He, C, O at pancreas

Ion source: production of He, C, O, and Ne ion

Material for ion production

同期信号 q/A判定

He: He²⁺

CO₂: C²⁺, O³⁺ Ne: Ne⁴⁺

Gas switching system

Gas switching system

Material for ion production

He: He²⁺

CO₂: C²⁺, O³⁺ Ne: Ne⁴⁺

Exhaust time of gases

	Pulse width [msec]	Repetition [Hz]	Pressure [MPa]	Time to 1.0E-5 Pa [sec]
Не	0.12	1.2	0.00	5
CO ₂	0.3	1.2	-0.05	11
Ne	0.25	1.2	0.00	7

Beam switching time

Development of ECRIS

Gas switching at NIRS-HEC for multi-ion irradiation

- pulsed gas by solenoid valve
- production of He⁺, C²⁺, O³⁺, Ne⁴⁺
- beam switching

Production of Indium and Tin ion at NIRS-HEC

- In: $In(C_5H_5)$
- Sn: $Sn(i-C_3H_7)_4$

Production of Indium and Tin ion

Peltier cooler for MIVOC 0-room temperature

W. Takasugi RSI 81, 02A329 (2010)

Material

In: $In(C_5H_5)$

Sn: $Sn(i-C_3H_7)_4$

Production of Is ion from In(C₅H₅)

DEVICE	UNIT	PRESET	
TG1_D	msec	152.39	
TG ₁ _W	msec	12	
TG2_D	msec	152.4	
TG2_W	msec	11.9	
M_GFL	cc/min	0.08	02
S_GFL	cc/min	0	
AMP1:F	W	1200	
AMP2:F	W	600	
LENS_D	kV	7.2	
MRR ₁	Α	865	
MRR ₂	Α	570	
EXT_D	kV	31	
AG_D	kV	46	
BD	V	100	
TEMP	Degree C	6.2	
BA	mT	187.48	
SLTA ₀₂	mm	10	
SELF	sec	0.412	

Optimized for 20+ $^{115}In^{20+}$: 90 μA

Production of Sn ion from $Sn(i-C_3H_7)_4$

DEVICE	UNIT	PRESET	
TG1_D	msec	0	
TG1_W	msec	75	
TG2_D	msec	0	
TG2_W	msec	75	
M_GFL	cc/min	0	02
S_GFL	cc/min	-	
AMP1:F	W	950	
AMP2:F	W	200	
LENS_D	kV	6	
MRR1	Α	865	
MRR ₂	Α	550	
EXT_D	kV	32	
AG_D	kV	53.333	
BD	V	100	
TEMP	Degree C	9.2	
BA	mT	215.71	
SLTA ₀₂	mm	5	
SELF	sec	0.412	

Optimized for 18+ 120 Sn¹⁸⁺: 15 μ A not separation

Operation in 2019

- Total operation time: 9786hour
- Without big trouble (discharge, operation mistake)

Development of ECRIS

- Gas switching at NIRS-HEC for multi-ion irradiation
 - production of He⁺, C²⁺, O³⁺, Ne⁴⁺
 - switching time: 7-35 sec
- Production of Indium and Tin ion at NIRS-HEC
 - ¹¹⁵In²⁰⁺: 90 μA
 - 120 Sn $^{18+}$: 15 μ A (?)

Heavy ion radiotherapy facilities worldwide

