Math 3B: Lecture 9

Noah White

October 12, 2016

Review lecture

• Poll on Piazza

Review lecture

- Poll on Piazza
- Please vote for what you want covered in the review lecture

Last time

• Finding area under curves

Last time

- Finding area under curves
- Definition of definite integral using Reimann Sum

Last time

- Finding area under curves
- Definition of definite integral using Reimann Sum
- Using summation identities to calculate definite integrals

The definite integral

Defintion

The definite integral of a function f(x) is defined to be

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=0}^{n-1} f(a + k \cdot \Delta x)$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Solution

$$\int_0^1 x^2 - 4 \, \mathrm{d}x = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Solution

$$\int_0^1 x^2 - 4 \, dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{k^2}{n^2} - 4$$

$$\int_0^1 x^2 - 4 \, \mathrm{d}x = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

$$\int_0^1 x^2 - 4 \, \mathrm{d}x = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

$$\int_0^1 x^2 - 4 \, dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{k^2}{n^2} - 4$$

$$= \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=0}^{n-1} k^2 - \frac{1}{n} \sum_{k=0}^{n-1} 4$$

$$\int_{0}^{1} x^{2} - 4 \, dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{k^{2}}{n^{2}} - 4$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \sum_{k=0}^{n-1} k^{2} - \frac{1}{n} \sum_{k=0}^{n-1} 4$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \cdot \frac{1}{6} (n-1)n(2n-1) - \frac{4n}{n}$$

$$\int_{0}^{1} x^{2} - 4 \, dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{k^{2}}{n^{2}} - 4$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \sum_{k=0}^{n-1} k^{2} - \frac{1}{n} \sum_{k=0}^{n-1} 4$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \cdot \frac{1}{6} (n - 1) n (2n - 1) - \frac{4n}{n}$$

$$= \lim_{n \to \infty} \frac{2n^{2} - 3n + 1}{6n^{2}} - 4$$

$$\int_{0}^{1} x^{2} - 4 \, dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{k=0}^{n-1} f(0 + k \cdot \frac{1}{n})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{k^{2}}{n^{2}} - 4$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \sum_{k=0}^{n-1} k^{2} - \frac{1}{n} \sum_{k=0}^{n-1} 4$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \cdot \frac{1}{6} (n - 1) n (2n - 1) - \frac{4n}{n}$$

$$= \lim_{n \to \infty} \frac{2n^{2} - 3n + 1}{6n^{2}} - 4$$

$$= \frac{1}{3} - 4 = -\frac{11}{3}$$

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{2}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{2}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

• $F(x) = \int_a^x f(t) dt$ is a function of x.

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

- $F(x) = \int_a^x f(t) dt$ is a function of x.
- every input x produces a number as an output.

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) \, \mathrm{d}t - \int_{a}^{x} f(t) \, \mathrm{d}t \right]$$

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) \, \mathrm{d}t - \int_{a}^{x} f(t) \, \mathrm{d}t \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, \mathrm{d}t$$

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) \, \mathrm{d}t - \int_{a}^{x} f(t) \, \mathrm{d}t \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, \mathrm{d}t$$

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) \, \mathrm{d}t - \int_{a}^{x} f(t) \, \mathrm{d}t \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, \mathrm{d}t$$

$$= \lim_{h \to 0} \frac{1}{h} h f(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) \, \mathrm{d}t - \int_{a}^{x} f(t) \, \mathrm{d}t \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, \mathrm{d}t$$

$$= \lim_{h \to 0} \frac{1}{h} h f(x)$$

$$= f(x)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

Why?

Well $F(x) = \int_a^x f(t) dt + C$ for some a and C. So

$$F(b) - F(a) = \int_a^b f(t) dt + C - \int_a^a f(t) dt - C$$
$$= \int_a^b f(t) dt$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Solution

An antiderivative of $x^2 - 4$ is $\frac{1}{3}x^3 - 4x$ so

$$\int_0^1 x^2 - 4 \, dx = \frac{1}{3} \cdot 1^3 - 4 - \frac{1}{3} \cdot 0^3 + 4 \cdot 0$$
$$= \frac{1}{3} - 4 = -\frac{11}{3}$$

Question

Evaluate the definite integral

$$\int_0^\pi \sin x \, \mathrm{d}x$$

Question

Evaluate the definite integral

$$\int_0^\pi \sin x \, \mathrm{d}x$$

Solution

An antiderivative of $\sin x$ is $-\cos x$ so

$$\int_0^{\pi} \sin x \, dx = -\cos \pi + \cos 0$$
$$= -(-1) + 1 = 2$$

The indefinite integral

We also use the following notation for the general antiderivative:

Definition

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

The indefinite integral

We also use the following notation for the general antiderivative:

Definition

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

Example

$$\int \sin(x) - x \, \mathrm{d}x = -\cos(x) - \frac{1}{2}x^2 + C$$

• As we have seen, some antiderivatives are difficult to guess,

- As we have seen, some antiderivatives are difficult to guess,
- especially if it involves reversing the chain rule.

- As we have seen, some antiderivatives are difficult to guess,
- especially if it involves reversing the chain rule.
- We solve this by introducing a new variable.

- As we have seen, some antiderivatives are difficult to guess,
- especially if it involves reversing the chain rule.
- We solve this by introducing a new variable.

Substitution

Suppose u = g(x), then

$$\int f(g(x))g'(x) dx = \int f(u) du$$

- As we have seen, some antiderivatives are difficult to guess,
- especially if it involves reversing the chain rule.
- We solve this by introducing a new variable.

Substitution

Suppose u = g(x), then

$$\int f(g(x)) \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x = \int f(g(x))g'(x) \, \mathrm{d}x = \int f(u) \, \mathrm{d}u$$

Question

$$\int 4x\sqrt{x^2+1}\,\,\mathrm{d}x$$

Question

$$\int 4x\sqrt{x^2+1}\,\mathrm{d}x$$

Solution

We use the substitution $u=x^2+1$, so $\frac{\mathrm{d} u}{\mathrm{d} x}=2x$, we can write the integral

$$\int 2 \cdot \sqrt{x^2 + 1} \cdot 2x \, \mathrm{d}x = 2 \int \sqrt{u} \, \mathrm{d}u$$

Question

$$\int 4x\sqrt{x^2+1}\,\mathrm{d}x$$

Solution

We use the substitution $u=x^2+1$, so $\frac{\mathrm{d} u}{\mathrm{d} x}=2x$, we can write the integral

$$\int 2 \cdot \sqrt{x^2 + 1} \cdot 2x \, dx = 2 \int \sqrt{u} \, du$$
$$= 2 \cdot \frac{2}{3} u^{\frac{3}{2}} + C$$

Question

$$\int 4x\sqrt{x^2+1}\,\mathrm{d}x$$

Solution

We use the substitution $u=x^2+1$, so $\frac{\mathrm{d} u}{\mathrm{d} x}=2x$, we can write the integral

$$\int 2 \cdot \sqrt{x^2 + 1} \cdot 2x \, dx = 2 \int \sqrt{u} \, du$$
$$= 2 \cdot \frac{2}{3} u^{\frac{3}{2}} + C$$
$$= \frac{4}{3} (x^2 + 1)^{\frac{3}{2}} + C$$

Integration by substitution (definite integrals)

Substitution for definite integrals

Suppose u = g(x), then

$$\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Integration by substitution (definite integrals)

Substitution for definite integrals

Suppose u = g(x), then

$$\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Example

$$\int_0^1 4x \sqrt{x^2 + 1} \, \mathrm{d}x = 2 \int_1^2 \sqrt{u} \, \mathrm{d}u$$

Integration by substitution (definite integrals)

Substitution for definite integrals

Suppose u = g(x), then

$$\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Example

$$\int_0^1 4x \sqrt{x^2 + 1} \, dx = 2 \int_1^2 \sqrt{u} \, du$$
$$= 2 \left(\frac{2}{3} 2^{\frac{3}{2}} - \frac{2}{3} 1^{\frac{3}{2}} \right) = \frac{4}{3} (2\sqrt{2} - 1)$$