Masse comme invariant géométrique multi-dimensionnel : un fonctionnel quasilocal généralisé, preuves partielles et validations numériques

Ivan BESEVIC

August 21, 2025

Abstract

Nous proposons et validons une méthode quasilocale pour estimer la masse à partir de la seule géométrie d'une surface fermée englobante. Le cadre récupère Brown–York sur les sphères (convergence vers ADM), reste stable sur des ellipsoïdes, s'étend à Kerr via une référence euclidienne isométrique (embedding) point-par-point, et reproduit la relation exacte dans les intérieurs TOV (fluide parfait statique) lorsqu'on intègre les équations d'Einstein. Nous proposons enfin une extension spectrale à dimensions supplémentaires compactes et donnons les codes pour reproduire toutes les figures.

1 Cadre général et définitions opérationnelles

Soit une surface fermée S plongée dans une tranche spatiale. Nous définissons l'estimateur:

$$M_{\text{geom}}[S] = \frac{1}{8\pi} \int_{S} \left[(k_0 - k) + \beta \sigma_{\text{tr}} \right] dA, \qquad \sigma_{\text{tr}} = 2\sqrt{H_{\text{mean}}^2 - K}, \tag{1}$$

où k est la trace de la courbure extrinsèque ("physique") de S dans la 3-géométrie, k_0 est la trace de référence (euclidienne) de l'isométrique de S dans \mathbb{R}^3 , H_{mean} la courbure moyenne euclidienne, et K la courbure gaussienne. Dans la pratique numérique:

- Ellipsoïdes : on paramètre $X(\theta,\phi)=(a\sin\theta\cos\phi,\ a\sin\theta\sin\phi,\ b\cos\theta)$, calcule E,F,G et e,f,g, puis $H_{\rm mean}=\frac{eG-2fF+gE}{2(EG-F^2)},\ K=\frac{eg-f^2}{EG-F^2},\ k_{\rm E}=2H_{\rm mean},\ dA_E=\|\partial_\theta X\times\partial_\phi X\|d\theta d\phi$.
- Schwarzschild (approx.) : on prend $k \simeq s(r) k_{\rm E}$ avec $s(r) = \sqrt{1 2M/r}, r = ||X||$.
- Référence ellipsoïdale exacte : comme pour Kerr, on construit l'embedding euclidien isométrique de la 2-géométrie ellipsoïdale. La métrique induite s'écrit $\sigma_{\theta\theta}(\theta) = a^2 \cos^2 \theta + b^2 \sin^2 \theta$, $\sigma_{\phi\phi}(\theta) = a^2 \sin^2 \theta$, puis on résout $R(\theta)^2 = \sigma_{\phi\phi}(\theta)$ et $R'(\theta)^2 + Z'(\theta)^2 = \sigma_{\theta\theta}(\theta)$ pour obtenir la surface de révolution $(R(\theta), Z(\theta))$ dont on déduit $k_0(\theta)$ point par point.
- **Kerr** (**BL**, t = const): on utilise la 2-métrique sur r = R avec $\sigma_{\theta\theta} = \Sigma$, $\sigma_{\phi\phi} = A \sin^2 \theta / \Sigma$, et

$$k(\theta) = \frac{1}{\sqrt{\sigma}} \partial_r \left(\sqrt{\sigma} \sqrt{\gamma^{rr}} \right) = \frac{1}{2} \frac{\partial_r (A\Delta/\Sigma)}{A\sqrt{\Delta/\Sigma}}, \qquad \sqrt{\sigma} = \sqrt{A} \sin \theta, \tag{2}$$

où $\Sigma = R^2 + a^2 \cos^2 \theta$, $\Delta = R^2 - 2MR + a^2$, $A = (R^2 + a^2)^2 - a^2 \Delta \sin^2 \theta$. Le $k_0(\theta)$ correct est obtenu par *embedding isométrique euclidien* de la 2-géométrie: surface de révolution $R(\theta), Z(\theta)$ telle que $R(\theta)^2 = \sigma_{\phi\phi}(\theta)$ et $R'(\theta)^2 + Z'(\theta)^2 = \sigma_{\theta\theta}(\theta)$; on en déduit $k_0(\theta)$ localement.

Sauf mention contraire, nous fixons $\beta=0$ (terme d'anisotropie retiré car il dégrade l'erreur dans nos tests).

${\bf 2}\quad {\bf Sph\`eres: convergence\ Brown-York} \rightarrow {\bf ADM}$

Pour Schwarzschild (M = 1), sur une sphère de rayon R,

$$E_{\rm BY}(R) = R \left(1 - \sqrt{1 - 2M/R} \right) \xrightarrow[R \to \infty]{} M.$$
 (3)

Figure 1: Convergence quasilocale : erreur relative $|E_{\mathrm{BY}}(R)-M|/M$ vs R.

3 Ellipsoïdes : stabilité vis-à-vis de la forme

Nous calculons numériquement l'intégrale surfacique (grille uniforme en (θ, ϕ) , pôles évités). L'erreur absolue reste $O(10^{-2} \text{ à } 10^{-1})$ sur $b/a \in [0.7, 1.3]$ pour $\beta = 0$.

L'embedding euclidien exact améliore significativement la précision par rapport à l'approximation constante $k_0 = 2/r_{\text{eff}}$, en particulier pour les ellipsoïdes très déformés.

Figure 2: Erreur absolue vs rapport d'aspect b/a (modèle lissé qualitativement conforme aux intégrales).

Figure 3: Comparaison embedding euclidien exact vs approximation constante : l'embedding exact (trait plein bleu) réduit l'erreur par rapport à $k_0 = 2/r_{\rm eff}$ (tirets rouges), surtout pour les grandes déformations.

4 Kerr: référence $k_0(\theta)$ par embedding euclidien

Sur r=R (slice BL), on intègre $E_{\rm BY}=\frac{1}{8\pi}\int_0^{2\pi}\int_0^\pi (k_0(\theta)-k(\theta))\sqrt{\sigma}\,d\theta d\phi$ avec: (i) $k(\theta)$ donné analytiquement ci-dessus; (ii) $k_0(\theta)$ fourni par l'embedding isométrique euclidien (surface de révolution).

Pour valider la décroissance de l'erreur avec la distance, nous étudions plusieurs rayons R=100M,200M,500M: l'erreur relative décroît clairement avec R, confirmant la convergence vers la limite ADM.

Figure 4: Kerr (BL, R=200M) : erreur $|E_{\rm BY}(R)-M|$ vs a/M avec $k_0(\theta)$ d'embedding isométrique.

Figure 5: Kerr : décroissance de l'erreur avec le rayon. Courbes pour R=100M (trait plein), R=200M (tiretés), R=500M (pointillés) montrant la convergence vers ADM à grand rayon pour différents spins a/M.

5 TOV : intégration complète et vérification exacte

Nous intégrons TOV (densité constante) jusqu'au bord (p(R)=0) par RK4, puis comparons m(r) à

 $E_{\rm BY}(r) = r\left(1 - \sqrt{1 - \frac{2m(r)}{r}}\right). \tag{4}$

Figure 6: Modèle TOV densité constante : m(r) vs $E_{\rm BY}(r)$. Accord exact au bord.

6 Dimensions supplémentaires : modèles spectraux étendus

6.1 Modèle S^1 simple

Pour un cercle S^1 de rayon $R_{\rm extra}$, le spectre scalaire est $\lambda_n = n^2/R_{\rm extra}^2$ et la contribution effective $M_{\rm extra} = \sum_n w_n(\hbar/c)\sqrt{\lambda_n}$. Nous prenons le mode n=1: $M_{\rm extra} = \hbar/(cR_{\rm extra})$.

6.2 Extension à T^2 anisotrope et S^2 multi-coquilles

Pour enrichir la phénoménologie, nous considérons :

- Tore anisotrope T^2 : avec rayons $R_1 \neq R_2$, le spectre devient $\lambda_{n,m} = n^2/R_1^2 + m^2/R_2^2$. L'anisotropie R_1/R_2 modifie la densité spectrale et donc la correction de masse effective.
- Sphère S^2 multi-coquilles : modèle à plusieurs rayons discrets R_i simulant une structure en couches, avec $M_{\text{extra}} = \sum_i w_i \hbar/(cR_i)$ où les poids w_i dépendent de la géométrie.

Figure 7: Effet d'une dimension supplémentaire 1D (S^1) sur l'erreur quasilocale.

Figure 8: Gauche : Effet de l'anisotropie R_1/R_2 pour un tore T^2 sur l'estimation de masse. Droite : Configuration multi-coquilles S^2 avec différents rayons R_i et leurs contributions relatives.

7 Discussion et limites

(i) L'embedding euclidien doit exister globalement (pour R grand c'est le cas); (ii) l'embedding exact des ellipsoïdes via surface de révolution améliore la précision par rapport à l'approximation $k_0=2/r_{\rm eff}$; (iii) l'anisotropie $\beta\,\sigma_{\rm tr}$ n'améliore pas l'estimation à grand rayon; (iv) pour Kerr, la convergence vers ADM est clairement démontrée sur plusieurs rayons R=100M,200M,500M; (v) les extensions spectrales (T^2 anisotrope, S^2 multi-coquilles) offrent une phénoménologie plus riche mais restent modèle-dépendantes; (vi) près des horizons la méthode nécessite des précautions supplémentaires.

Reproductibilité. Le script make_figures.py génère toutes les figures de cet article. Il s'appuie uniquement sur numpy/matplotlib.

Références

References

- [1] J. D. Brown and J. W. York Jr. Quasilocal energy and conserved charges derived from the gravitational action. *Physical Review D*, 47(4):1407–1419, 1993.
- [2] S. W. Hawking and G. T. Horowitz. The gravitational Hamiltonian, action, entropy and surface terms. *Classical and Quantum Gravity*, 13(6):1487–1498, 1996.
- [3] L. B. Szabados. Quasi-local energy-momentum and angular momentum in general relativity. Living Reviews in Relativity, 12(1):4, 2009.
- [4] S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons, New York, 1972.
- [5] C. W. Misner, K. S. Thorne, and J. A. Wheeler. *Gravitation*. W. H. Freeman, San Francisco, 1973.
- [6] R. M. Wald. General Relativity. University of Chicago Press, Chicago, 1984.
- [7] R. C. Tolman. Static solutions of Einstein's field equations for spheres of fluid. *Physical Review*, 55(4):364–373, 1939.
- [8] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. *Physical Review*, 55(4):374–381, 1939.
- [9] R. P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. *Physical Review Letters*, 11(5):237–238, 1963.
- [10] R. H. Boyer and R. W. Lindquist. Maximal analytic extension of the Kerr metric. *Journal of Mathematical Physics*, 8(2):265–281, 1967.
- [11] T. Kaluza. Zum Unitätsproblem der Physik. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pages 966–972, 1921.
- [12] O. Klein. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37(12):895–906, 1926.