Homework 3.

- 1 Let $\{\mathbf{e}_x, \mathbf{e}_y\}$ be an orthonormal basis in \mathbf{E}^2 . Consider the following ordered pairs:
- a) $\{\mathbf{e}_y, \mathbf{e}_x\}$
- b) $\{\mathbf{e}_y, -\mathbf{e}_x\}$
- c) $\{\frac{\sqrt{2}}{2}\mathbf{e}_x + \frac{\sqrt{2}}{2}\mathbf{e}_y, -\frac{\sqrt{2}}{2}\mathbf{e}_x + \frac{\sqrt{2}}{2}\mathbf{e}_y\}$
- d) $\{\frac{\sqrt{3}}{2}\mathbf{e}_x + \frac{1}{2}\mathbf{e}_y, \frac{1}{2}\mathbf{e}_x \frac{\sqrt{3}}{2}\mathbf{e}_y\}$

Show that all these ordered pairs are orthonormal bases in \mathbf{E}^2 .

Find amongst them the bases which have the same orientation as the orientation of the basis $\{\mathbf{e}_x, \mathbf{e}_y\}$.

Find amongst them the bases which have the orientation opposite to the orientation of the basis $\{\mathbf{e}_x,\mathbf{e}_y\}$.

2 Let $\{e, f\}$ be a basis in two-dimensional linear space V. Consider an ordered pair $\{a, b\}$ such that

$$\mathbf{a} = \mathbf{f}, \ \mathbf{b} = \gamma \mathbf{e} + \mu \mathbf{f},$$

where γ, μ are arbitrary real numbers.

Find values γ , μ such that an ordered pair $\{a, b\}$ is a basis and this basis has the same orientation as the basis $\{e, f\}$.

- **3** Let $\{a, b, c\}$ be an arbitrary basis in E^3 . Show that the basis $\{a, b, c\}$ either has the same orientation as the basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$, or the same orientation as the basis $\{\mathbf{e}_y, \mathbf{e}_x, \mathbf{e}_z\}$.
- 4 Let $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ be an orthonormal basis in \mathbf{E}^3 . Consider the following ordered triples:
 - a) $\{e_x, e_x + 2e_y, 5e_z\},\$
 - b) $\{e_y, e_x, 5e_z\},\$
 - c) $\{\mathbf{e}_y, \mathbf{e}_x, -5\mathbf{e}_z\},\$
 - d) $\left\{\frac{\sqrt{3}}{2}\mathbf{e}_x + \frac{1}{2}\mathbf{e}_y, -\frac{1}{2}\mathbf{e}_x + \frac{\sqrt{3}}{2}\mathbf{e}_y, \mathbf{e}_z\right\},$ e) $\left\{\mathbf{e}_y, \mathbf{e}_x, \mathbf{e}_z\right\},$

Show that all ordered triples a),b),c),d),e),f) are bases.

Show that the bases a), c), d) and f) have the same orientation as the basis $\{e_x, e_y, e_z\}$, and the bases b) and e) have the orientation opposite to the orientation of the basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$. Show that bases d), e) and f) are orthonormal bases and bases a), b) and c) are not orthonormal bases.

5 Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be a basis in linear three-dimensional space V.

Consider the following ordered triples: $\{\mathbf{f}, \mathbf{e} + 2\mathbf{f}, 3\mathbf{g}\}, \{\mathbf{e}, \mathbf{f}, 2\mathbf{f} + 3\mathbf{g}\}.$

Show that these ordered triples are bases and these bases have opposite orientations.

- **6** Show that a linear operator P which transforms the orthonormal basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ to the basis $\{\mathbf{e}_x, \mathbf{e}_z, -\mathbf{e}_y\}$ is a rotation. Find an axis and an angle of this rotation.
- [†] What about a linear operator P which transforms the orthonormal basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ to the basis $\{\mathbf{e}_{u}, \mathbf{e}_{x}, -\mathbf{e}_{z}\}$. Is it a rotation?
- 7^{\dagger} (Euler Theorem). A linear operator P in \mathbf{E}^3 transforms an orthonormal basis to the orthonormal basis with the same orientation. Prove that it is a rotation.