Задача

У Орака есть последовательность a длины n.

Он придумал мультимножество $t = \{ HOK(\{a_i, a_j\}) \mid i < j \}$ и попросил вас найти HOД(t). Иначе говоря, вам нужно найти HOД(t) всех пар элементов в данной последовательности.

Дополнительные условия

Входные данные

В первой строке записано одно целое число $n \ (2 \le n \le 100000)$.

Во второй строке записаны n целых чисел, $a_1, a_2, ..., a_n$ ($1 \le a_i \le 200000$).

Выходные данные

Выведите одно целое число: **HOД({ HOK({a_i, a_i}) | i < j })**.

Ограничения: 3 секунды, 256 мегабайт.

Разбор

Обозначения: p - простое, ans - ответ (НОД НОК'ов всех пар элементов из a)

Наблюдение: p^k делит ans тогда и только тогда, когда по крайней мере n - 1 чисел из a делятся на p^k .

Доказательство: Если максимум n - 2 чисел из a делятся на p^k , то существуют два различных индекса x, y < n такие, что p^k не делит a_x и a_y , т. е. p^k не делит **HOK** (a_x, a_y) . Если же хотя бы n - 1 чисел из a делятся на p^k , то в каждой паре есть число, которое делится на p^k .

Таким образом, для каждой пары элементов (x, y) НОК(x, y) делится на p^k , а значит и ans делится на p^k .

Реализация

Пусть d_i это набор, содержащий все числа из a, кроме a_i . Значит $HOД(d_i)$ делится по крайней мере на n-1 элементов a.

Также, если как минимум n-1 чисел из a делится на p^k , то всегда возможно найти такое i, что $HOД(d_i)$ делится на p^k .

По выше доказанному наблюдению $ans = HOK(HOД(d_1), HOД(d_2), ..., HOД(d_n))$.

Чтобы посчитать $HOД(d_i)$ для каждого i, посчитаем $pre_i = HOД(a_1, a_2, ..., a_i)$ и $suf_i = HOД(a_i, a_{i+1}, ..., a_n)$.

Следовательно, $HOД(d_i) = HOД(pre_i-1, suf_i+1)$.