

Roteiro da Aula

- Aeronaves
- A Estrutura do Avião
- Controles de Voo
- Anexo: Familiarização e Cultura Aeronáutica
 - Circuito de Tráfego Padrão (VFR)
 - Pistas de Pouso

AERONAVES

AERONAVE É TODO VEÍCULO CAPAZ DE SE SUSTENTAR E NAVEGAR NA ATMOSFERA.

AERÓSTATOS => Aeronaves mais leves que o ar.

Livres

Princípio de Arquimedes:

Todo corpo mergulhado em um fluido sofre a ação de uma força vertical, para cima, igual ao peso do fluido deslocado.

Cativos

AERÓDINOS => Aeronaves mais pesadas que o ar.

✓ Asa Rotativas

Planadores

Helicópteros

http://www.pal-v.com/

PARTES COMPONENTES DE UM AVIÃO

A ESTRUTURA DE UM AVIÃO

PARTES PRINCIPAIS Componentes da estrutura ou célula de um avião:

- > Asas
- **>** Wings
- Fuselagem

 Body / Fuselage
- > Empenagem
- > Tail
- > Superfícies de controle
- >Control surfaces

FIGURA EXTRAÍDA DA REF. 2.2

ESFORÇOS ESTRUTURAIS

A estrutura do avião deve resistir a diversos esforços

durante a operação (no ar ou no solo).

Os principais esforços são:

- >Tração
- >Tension
- ➤ Compressão
- **≻**Compression
- >Flexão
- ▶ Bending
- > Cisalhamento
- >Shear
- > Torção

>Torsion

MATERIAIS

Os materiais utilizados em aviões devem ser leves e resistentes => Elevada relação resistência/peso.

Os materiais mais comuns utilizados em aviões são: Aço (steel), alumínio, magnésio, aço inoxidável (stainless steel), bronze, latão (brass), plásticos e materiais compostos (composites), Kevlar.

Materiais Compostos:

- >MMC (metal matrix composites)
- >PMC (polymer matrix composites)

Fibra de vidro Fibra de carbono CMC (ceramic matrix composites)

Madeira, tela, etc.

ASAS

- > Produzir sustentação para o voo.
- > Asa Entelada: Revestimento não resistente. Revestimento para suportar a pressão aerodinâmica.
- > Asa Metálica: Ausência de tirantes e montantes. Revestimento resistente.

ASA ENTELADA

ASA METÁLICA

Basic wood wing structure and components.

ASAS

Wing structure nomenclature.

Asa Baixa

CLASSIFICAÇÃO QUANTO À ASA

Posição em relação à fuselagem

CLASSIFICAÇÃO QUANTO À ASA

Fixação

ASA CANTILÉVER

ASA SEMI-CANTILÉVER

CLASSIFICAÇÃO QUANTO À ASA

Fixação

Externally braced wings, also called semicantilever wings, have wires or struts to support the wing.

Full cantilever wings have no external bracing and are supported internally.

FAA-H-8083-31 Aviation Maintenance Technician Handbook-Airframe Volume 1, 2012.

CLASSIFICAÇÃO QUANTO À ASA

Forma em Planta

FUSELAGEM

- ≻É o corpo do avião.
- > São fixadas as asas e a empenagem.
- > Aloja os tripulantes, passageiros e carga.

Tripulantes + Passageiros (PAX) = Ocupantes = POB (Person On *Board*)

- > Aloja alguns sistemas do avião.
- >Aloja o trem de pouso e o motor, dependendo da arquitetura.

FUSELAGEM Principais Tipos

- Tubos de aço soldados
- Revestido com tela => não resiste a esforços

A truss-type fuselage.

FAA-H-8083-31 Aviation Maintenance Technician Handbook-Airframe Volume 1, 2012.

ESTRUTURA TUBULAR

(TRUSS-FRAME)

FUSELAGEM Principais Tipos

- Caverna e revestimento
- Caverna dá a forma aerodinâmica à fuselagem
- Revestimento suporta esforços
- Revestimentos => Chapa metálica, plástico reforçado ou contraplacado de madeira

FUSELAGEM

Principais Tipos

- Caverna, revestimento e longarina (reforçador)
- Caverna dá a forma aerodinâmica à fuselagem
- Revestimento suporta esforços
- Revestimentos => Chapa metálica, plástico reforçado ou contraplacado de madeira

The most common airframe construction is semimonocoque.

ESTRUTURA SEMI-MONOCOQUE

EMPENAGEM

- Empenagem (tail) é o conjunto de superfícies destinadas à estabilizar o voo do avião.
 - ✓ Empenagem Horizontal (H-Tail)

Estabilização do avião em relação ao eixo transversal

ou

Se opõe à tendência ao movimento de arfagem (pitch)

Estabilizador Horizontal fixo + Profundor (Elevator)

Estabilizador Horizontal móvel

✓ Empenagem Vertical (V-Tail)

Estabilização do avião em relação ao eixo vertical

ou

Se opõe à tendência ao movimento de guinada (yaw)

Estabilizador Vertical fixo (deriva) + Leme de Direção (rudder)

EMPENAGEM

Components of a typical empennage.

EMPENAGEM

SUPERFÍCIES DE CONTROLE (CONTROL SURFACES)

- >São partes móveis => asa e da empenagem
- > Localização mais comum => Bordos de fuga (trailing edge)
- > Forma de fixação => Dobradiças (hinge)
 - ✓ Superfícies Primárias
 - ✓ Superfícies Secundárias

SUPERFÍCIES DE CONTROLE

(CONTROL SURFACES)

SUPERFÍCIES DE CONTROLE

(CONTROL SURFACES)

SUPERFÍCIES DE CONTROLE (CONTROL SURFACES)

As superfícies de controle têm estruturas semelhantes à das asas, porém, mais simplificada.

SUPERFÍCIES DE CONTROLE (CONTROL SURFACES)

Dispositivos Hipersustentadores

- > Concebidos para aumentar a sustentação das asas
- > Utilizados nas operações de pouso e decolagem
 - √ Flapes
 - √ Slats

http://adg.stanford.edu/

Spoilers in up position "dump" lift

SUPERFÍCIES DE CONTROLE

(CONTROL SURFACES)

Spoilers

- >São painéis colocados no extra dorso das asas. Quando defletidos, diminuem a sustentação e aumentam o arrasto.
 - ✓ Em Voo (Flight Spoiler) => Deflexão simétrica => Speed Brake
 - ✓ Em Solo (Ground Spoiler) => Deflexão simétrica => Speed Brake
 - ✓ Em Voo => Deflexão assimétrica => Superfícies de controle primárias (ailerons)

CONTROLES DE VOO

(FLIGHT CONTROLS)

O sistema de controle de voo são os mecanismos que movimentam as superfícies de controle do avião (profundor, ailerons, leme e compensadores).

- > Manche
- > Pedais

MANCHE

(STICK/WHEEL)

É acionado pelo piloto utilizando as mãos.

MANCHE

(STICK/WHEEL)

MANCHE

(STICK)

MOVIMENTOS DE ARFAGEM (TANGAGEM) (PITCH MOTION)

MANCHE (WHEEL)

MOVIMENTOS DE ROLAMENTO (BANCAGEM) (ROLLING MOTION)

Fernando Madeira

PEDAIS

(PEDALS)

MOVIMENTOS DE GUINADA (YAWING MOTION)

FIGURA EXTRAÍDA DA REF. 2.5

MECANISMOS

O mecanismo do sistema de controle de voo é formado pelo manche, pedais, alavancas, cabos, quadrantes, polias, esticadores, roldanas, tubos de torque, hastes, etc.

sistema típico de comando do profundor de um avião leve

VERIFICAÇÕES E AJUSTES

Para os aviões leves, as principais verificações e ajustes que o mecânico realiza são:

- Alinhamento dos Comandos: Quando o manche e os pedais estiverem em neutro, as superfícies de comando também devem estar em neutro.
- Ajuste dos Batentes: Os batentes devem ser ajustados para manter as superfícies de comando de voo dentro dos limites estipulados pelo fabricante para evitar que a estrutura seja sobrecarregada em voo.
- Ajuste da Tensão dos Cabos: A tensão deve ser ajustada de acordo com os valores estipulados pelo fabricante. Cabos frouxos podem reduzir as ações dos comandos de voo, e cabos muito esticados podem tornar os comandos duros e desgastar os componentes do sistema.
- > Balanceamento das Superfícies: O balanceamento deve ser verificado principalmente após a execução de um reparo ou pintura da superfície.

REFERÊNCIAS

- 2.1 Jorge M. Homa, Aeronaves e Motores, Editora Asa, 29ª Edição.
- 2.2 Theodore A. Talay, Introduction to the Aerodynamics of Flight, NASA SP-367, 1975. Disponível no site
- http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760003955_1976003955_pdf
- 2.3 Acyr Costa Schiavo, Conhecimentos Técnicos e Motores para Pilotos, Editora EAPAC, 1982.
- 2.4 Luiz Pradines, Fundamentos da Teoria de Voo, Edições Inteligentes, 2004.
- 2.5 John F. Welch, Van Sickle's Modern Airmanship, Tab Books, 7th Edition, 1995.
- 2.6 FAA-H-8083-31 Aviation Maintenance Technician Handbook-Airframe Volume 1, 2012.
- 2.7 FAA-H-8083-25A Pilot's Handbook of Aeronautical Knowledge, 2008.