Appl. No. 10/709,099 Amdt. dated August 16, 2006 Reply to Office action of May 17, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

5 Listing of Claims:

Claim 1(original): A method for joint equalizing and decoding of an incoming data stream in a P-tap parallel decision-feedback decoder (PDFD), the method comprising:

shifting a plurality of survivor metrics into a plurality of first shift registers, wherein for each state of a code utilized by the incoming data stream, a survivor metric for a state is shifted into a first shift register for the state, each first shift register having M cells;

choosing a first survivor metric according to survivor metrics in the first shift registers; and

15

20

25

shifting the first survivor metric into a second shift register having N cells.

Claim 2(original): The method of claim I, further comprising calculating an inter-symbol interference (ISI) value for each state according to the survivor metrics at the M cells of the first shift register for the state and according to the survivor metrics at the N cells of the second shift register.

Claim 3(original): The method of claim 2, wherein calculating the ISI value for a particular state comprises summing the results of multiplying the survivor metrics at the M cells of the first shift register for the particular state and at the N cells of the second shift register with a respective coefficient.

Claim 4(original): The method of claim 1, wherein choosing the first survivor metric

10

15

20

25

Appl. No. 10/709,099 Amdt. dated August 16, 2006

Reply to Office action of May 17, 2006

comprises choosing the first survivor metric according to the survivor metrics at the Mth cells of the first shift registers.

Claim 5(original): The method of claim 4, wherein choosing the first survivor metric further comprises selecting a most frequent survivor metric being present at the greatest number of Mth cells of the first shift registers as the first survivor metric.

Claim 6(original): The method of claim 4, wherein choosing the first survivor metric further comprises averaging the survivor metrics at the Mth cells of the first shift registers and then selecting a survivor metric being closest to the average as the first survivor metric.

Claim 7(original): The method of claim 1, further comprising performing Viterbi decoding of the incoming data stream.

Claim 8(original): The method of claim 1, wherein the code utilized by the incoming data stream is a Trellis code.

Claim 9(original): The method of claim 1, wherein P is equal to M plus N.

Claim 10(original): A P-tap parallel decision-feedback decoder (PDFD) comprising:

a plurality of first shift registers, wherein for each state of a code utilized by an incoming data stream, a survivor metric for a state is shifted into the first shift register for the state, each first shift register having M cells;

a decision device coupled to the first shift registers for outputting a first survivor metric according to survivor metrics in the first shift registers; and

15

Appl. No. 10/709,099 Amdt. dated August 16, 2006 Reply to Office action of May 17, 2006

a second shift register having N cells, wherein the first survivor metric is shifted into the second shift register.

- Claim 11(original): The PDFD of claim 10, further comprising a plurality of inter-symbol interference (ISI) value calculators for calculating an ISI value for each state according to the survivor metrics at the M cells of the first shift register for the state and according to the survivor metrics at the N cells of the second shift register.
- 10 Claim 12(original): The PDFD of claim 11, wherein the ISI value calculator for a particular state comprises:
 - a plurality of multipliers for multiplying the survivor metrics at the M cells of the first shift register for the particular state and at the N cells of the second shift register with a respective coefficient; and
 - a summing unit coupled to the outputs of the plurality of multipliers for summing the results of the multiplications and outputting the ISI value.
- Claim 13(original): The PDFD of claim 10, wherein the decision device chooses the first 20 survivor metric according to the survivor metrics at the Mth cells of the first shift registers.
- Claim 14(original): The PDFD of claim 13, wherein the decision device chooses the first survivor metric by selecting a most frequent survivor metric being present at the greatest 25 number of Mth cells of the first shift registers as the first survivor metric.

Claim 15(original): The PDFD of claim 13, wherein the decision device chooses the first

10

25

Appl. No. 10/709,099 Amdt, dated August 16, 2006 Reply to Office action of May 17, 2006

survivor metric by averaging the survivor metrics at the Mth cells of the first shift registers and then selecting a survivor metric being closest to the average as the first survivor metric.

5 Claim 16(currently amended): —The method of claim 10, wherein tThe PDFD of claim 10 performs is for Viterbi decoding of the incoming data stream.

Claim 17(original): The PDFD of claim 10, wherein the incoming data stream is a four-dimensional gigabit Ethernet stream utilizing an 8-state Trellis code.

Claim 18(original): The PDFD of claim 10, wherein P is equal to M plus N.

Claim 19(new): A P-tap parallel decision-feedback decoder (PDFD) comprising:

- a plurality of X first shift registers, wherein for each state of a code utilized by an incoming data stream, a survivor metric for a state is shifted into the first shift register for the state, each first shift register having M cells;
- a first decision device coupled to the first shift registers for outputting a first survivor 20 metric according to survivor metrics in the first shift registers;
 - a plurality of Y second shift registers, wherein the first survivor metric for a state is shifted into the second shift register for the state, each second shift register having N cells; and

a second decision device coupled to the second shift registers for outputting a second survivor metric according to survivor metrics in the second shift registers,

Appl. No. 10/709,099 Amdt. dated August 16, 2006 Reply to Office action of May 17, 2006

wherein X is greater than Y.

Claim 20(new): The PDFD of claim 19, wherein the first decision device chooses the first survivor metric by selecting a most frequent survivor metric being present at the greatest number of Mth cells of the first shift registers as the first survivor metric.

Claim 21(new): The PDFD of claim 19, wherein the first decision device chooses the first survivor metric by averaging the survivor metrics at the Mth cells of the first shift registers and then selecting a survivor metric being closest to the average as the first survivor metric.

Claim 22(new): The PDFD of claim 19, wherein the second decision device chooses the second survivor metric by selecting a most frequent survivor metric being present at the greatest number of Nth cells of the second shift registers as the second survivor metric.

Claim 23(new): The PDFD of claim 19, wherein the second decision device chooses the second survivor metric by averaging the survivor metrics at the Nth cells of the second shift registers and then selecting a survivor metric being closest to the average as the second survivor metric.

20

15

10