Математические методы диагностики ишемической болезни по электрокардиограмме сверхвысокого разрешения

И.С. Ямщиков

Научный руководитель: К. В. Воронцов Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Москва июнь 2014г.

Цель работы

Исследуется задача диагностики ишемической болезни по электрокардиограмме высокого разрешения.

Такими электрокардиаграмами называют снимающиеся с частотами более 250Гц (в отличие от стандартных ≤ 100 Гц)

Данная работа базируется на серии работ сотрудников СПбГМУ и ГУАП по моделированию развития ишемии миокарда на крысах.

Идея:

Авторами экспериментов утверждается, что развитие ишемии сопровождается изменениями в высокочастотной части спектра. И эти изменения становятся заметны еще до видимых глазу изменений кардиограммы в целом.

Рис.: Сравнение спектров записей до и во время операции для трех различных особей

Задача - использовать описанные соображения для классификации ЭКГ на полученные в спокойном состоянии и в ходе развития ишемии.

Спектральные признаки

Введем признаковое описание электрокардиограммы, характеризующее изменение высокочастотных компонент сигнала.

Каждая ЭКГ представляет собой временной ряд $ecg_i = ecg_i(t)$

Абсолютная величина сигнала зависит от настроек аппаратуры и может внести нежелательные искажения, поэтому в дальнейшем все время будем рассматривать нормированный сигнал:

$$\widetilde{ecg} = \frac{ecg}{(\|ecg\|_2)^2}$$

Используем преобразование Фурье:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} ecg(t)e^{-it\omega}dt$$

Признаки, вычисляющиеся по всему сигналу

В качестве признаков возьмем L2 норму отрезков фурье-образа сигнала:

$$F_{[\omega_1,\omega_2]} = \int_{\omega_1}^{\omega_2} |\widehat{f}(\omega)|^2 d\omega$$

Таким образом, взяв, к примеру, равномерное разбиение отрезка частот [0; 1000]Гц можно получить признаковое описание ЭКГ.

Задача Методика Эксперименты Выводы

Временная локализация

Особенностью описанного выше подхода является то, что признаки строятся по всему сигналу и не учитывают возможных локальных особенностей сигнала ЭКГ.

Ставится задача: выделить отдельные участки кардиоцикла, построение спектральных признаков по которым позволит улучшить качество классификации.

Выделение кардиоциклов

Для начала необходимо разбить запись на отдельные кардиоциклы. Наиболее часто используемым подходом для этого является выделение R зубца.

В существующих работах описано множество подходов детектирования R зубцов.

В данной работе используется подход с использованием вейвлет-преобразования.

Алгоритм:

Параметры: масштаб s, порог h

• Вычислить вейвлет-преобразование

$$T_s(b) = \int_{-\infty}^{\infty} ecg(t)\psi^*(\frac{t-b}{s})dt$$

- ② Найти времена, соответствующие локальным максимумам преобразования $\{t_M\}$
- lacksquare R пики: $\{t_R \in \{t_M\}: \ T_s(t_R) > h\}$

Новые признаки

Пусть для сигнала ЭКГ имеется набор отсчетов, соответствующих R пикам: t_{R_i}

Вычисляется средняя длина кардиоцикла $\Delta T_R = \left\langle t_{R_i} - t_{R_{i-1}} \right
angle$

И для каждого пика R_i берется окно, заданное параметрами ширины Δw и центра w_0 :

$$\Delta \tau_i = [t_{R_i} + \Delta T_R(w_0 - \frac{\Delta w}{2}); t_{R_i} + \Delta T_R(w_0 + \frac{\Delta w}{2})]$$

Вычисляется оконное преобразование Фурье, используя окно с носителем Δau_i :

$$\widehat{f}_i(\omega) = \int_{-\infty}^{\infty} W_{\Delta \tau_i}(t) ecg(t) e^{-it\omega} dt$$

Аналогично предыдущему пункту выделяются признаки:

$$Fw_{\Delta w, w_0}[\omega_1, \omega_2] = \sum_i \int_{\omega_1}^{\omega_2} \widehat{f}_{t_i} d\omega$$

В качестве интервалов частот в данной работе рассматривается равномерная сетка интервалов на $0-2000\ \Gamma$ ц, задающаяся параметром n - числом интервалов:

$$w_i = \frac{i}{n} 2000, \quad i \in [0, n]$$

Таким образом признаковое описание объекта будет зависить от параметров $(\Delta w, w_0, n)$.

В дальнейшем будет проводиться исследование качества классификации в зависимости от этих параметров.

Данные

Данные

Имеются кардиограммы высокого разрешения полученные в ходе эксперимента по моделированию ишемии миокарда на крысах.

В выборке 20 крыс, записи длиной порядка 2 секунд, частота 2кГц.

Рассматриваются кардиограммы особей в двух состояниях:

- Здоровая особь
- Раннее развитие ишемии

Требуется по высокочастотной части кардиограммы восстановить состояние особи

Метрикой качества будет являтся оценка $5 \times 5 fold$ кросс-валидации классификатора SVM с линейным ядром.

Пример данных - низкочастотный и высокочастотный сигналы:

Рис.: ЭКГ крысы. Низкочастотный (сверху) и высокочастотный (снизу) каналы.

Классификатор, использующий признаки на основе преобразования Фурье всего сигнала.

В качестве частотной сетки взята равномерная сетка на [0;1000] Гц интервале, поделенном на 10 частей.

Качество классификации - 75.7%

Рис.: ROC кривая

Задача Методика Эксперименты Выводы

Классификатор, использующий признаки на основе оконного преобразования Фурье

Рис.: Зависимость оценки $5 \times 5 fold$ кросс-валидации от центра окна (ширина окна $\Delta w = 0.4$, количество разбиений n=8)

Выводы

Эксперименты

Зависимость оценки $5 \times 5 fold$ кросс-валидации от ширины окна и количества разбиений:

(a) Зависимость от количества разбиений, ширина окна $\Delta w = 0.4$

(b) Зависимость оценки от ширины окна, количество разбиений n=8

Результаты

Оценки $5 \times 5 fold$ кросс-валидации:

Весь сигнал	75.7%
Окно размером $\Delta w = 0.4$ с центром в R пике	89.1%

Рис.: Сравнение ROC кривых

Выводы

 Разработан метод диагностики ишемической болезни по данным ЭКГ высокого разрешения, основанный на локализации амплитудно-частотной характеристики ЭКГ-сигнала.