《高等数学 A (二)》考试试卷(B卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	11	Ξ	四	五.	总分
得 分						
阅卷人						

选择题(每小题2分,共10分)

得 分

- 1. 方程 $y' + \frac{y}{x} = a(\ln x)$ 是 ().
 - (A) 一阶非齐次线性方程
- (B)一阶齐次线性方程

齐次方程 (C)

装

型

R

(D) 可分离变量方程

2. 设
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin(\frac{1}{x^2 + y^2}), (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
, 则在(0,0)处 $f(x,y)$ ().

- (A) 偏导数不存在 (B) 偏导数存在且连续 (C) 不可微 (D) 可微
- 3. 若 L 为球面 $x^2 + y^2 + z^2 = a^2$ 与平面 x + y + z = 0 的交线,则 $\int_I (x^2 + y z) ds = (a^2 + y^2) ds = (a^2$).
- (A) $\frac{2\pi a^3}{3}$ (B) $\frac{\pi a^3}{3}$ (C) $2\pi a^3$ (D) πa^3

- 4. 设 L 为曲线 $y = x^2$ 上从 A (1,1) 到 B (0,0) 的一段弧,则 $\int_{t} x dy = ($).
- (A) $\int_0^1 2x^2 dx$ (B) $\int_0^1 2x^2 dx$ (C) $\int_0^1 x dy$ (D) $\int_0^1 \sqrt{y} dy$.

- 5. 若正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数一定收敛的是 ().
 - (A) $\sum_{n=1}^{\infty} (u_n + a)(0 \le a < 1)$ (B) $\sum_{n=1}^{\infty} \sqrt{u_n}$ (C) $\sum_{n=1}^{\infty} \frac{1}{u}$ (D) $\sum_{n=1}^{\infty} (-1)^n u_n$

二、填空题(每小题2分,共10分)

得分

- 6. 设向量 $\bar{a} = \vec{i} + \vec{j} + \vec{k}$,则垂直于 \bar{a} 且同时垂直于 y 轴的单位向量是
- 7. 若 $z = \arcsin xy$,则 $\frac{\partial z}{\partial x} =$ ______.
- 8. 已知 $I = \int_0^2 dy \int_{y^2}^{2y} f(x, y) dx$,交换积分次序后 I =______.
- 9. 设 $\vec{F}(x,y,z) = \{e^x \sin y, 2xy^2 + z, xzy^2\}$,则 $div\vec{F}|_{(1,0,1)} =$ ______.
- 10. $f(x) = \pi x + x^2$ ($-\pi < x < \pi$) 的傅里叶级数展开式中系数 $b_3 =$ ______.
- 三、计算题(每小题9分,共54分)

得分

11. 求微分方程 y'' + 2y' + 5y = 0 满足初始条件 $y|_{x=0} = 3, y'|_{x=0} = 1$ 的特解.

12. 求旋转抛物面 $z = x^2 + y^2 - 1$ 在点(2,1,4) 处的切平面及法线方程.

13. 计算三重积分 $\iint_{V} z dv$,其中 $V : \frac{z^{2}}{4} \le x^{2} + y^{2} \le z^{2}, 0 \le z \le 1$.

14. 利用 Green 公式计算第二类曲线积分 $\int_L (e^x \sin y - my) dx + (e^x \cos y - m) dy$,其中 L 为从 点 B(b,0) 沿上半圆周 $y = \sqrt{(a-b)x - x^2}$ 到点 A(a,0),其中 a > b > 0.

15. 计算第二类曲面积分 $\iint_{\Sigma} z dx dy$,其中 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧.

16. 求幂级数 $\sum_{n=1}^{\infty} nx^n$ 的收敛域及和函数.

豼

四、应用题(每小题 10 分, 共 20 分)

17. 在第一卦限内作椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的切平面,使该切平面与三个坐标平面所 围成的四面体体积最小, 求切点坐标.

18. 设球体 $V: x^2 + y^2 + (z-a)^2 \le a^2$,球体内任一点的体密度为该点到原点距离的平方,求球体的重心位置.

五、证明题(每小题6分,共6分)

得 分

19. 证明: 级数
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n^2-n}}$$
 是条件收敛.