

well-foundedness and axiom of foundation

 ${\bf Canonical\ name} \quad {\bf Well foundedness And Axiom Of Foundation}$

Date of creation 2013-03-22 17:25:34 Last modified on 2013-03-22 17:25:34

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Theorem Classification msc 03E30 Recall that a relation R on a class C is well-founded if

- 1. For any $x \in C$, the collection $\{y \in C \mid yRx\}$ is a set, and
- 2. for any non-empty $B \subseteq C$, there is an element $z \in B$ such that if yRz, then $y \notin B$.

z is called an R-minimal element of B. It is clear that the membership relation \in in the class of all sets satisfies the first condition above.

Theorem 1. Given ZF, \in is a well-founded relation iff the Axiom of Foundation (AF) is true.

We will prove this using one of the equivalent versions of AF: for every non-empty set A, there is an $x \in A$ such that $x \cap A = \emptyset$.

Proof. Suppose \in is well-founded and A a non-empty set. We want to find $x \in A$ such that $x \cap A = \emptyset$. Since \in is well-founded, there is a \in -minimal set x such that $x \in A$. Since no set y such that $y \in x$ and $y \in A$ (otherwise x would not be \in -minimal), we have that $x \cap A = \emptyset$.

Conversely, suppose that AF is true. Let A be any non-empty set. We want to find a \in -minimal element in A. Let $x \in A$ such that $x \cap A = \emptyset$. Then x is \in -minimal in A, for otherwise there is $y \in A$ such that $y \in x$, which implies $y \in x \cap A = \emptyset$, a contradiction.