CS1231-Midterm 1, 2018

Name:

Matric Number:

Tutorial Group:

Seat Number:

1. [1 marks] Which of these sentences are propositions?

Ans: (c)

- (a) Can you answer this question? (b) x+2=11 (c) Boston is the capital of Massachusetts.
- (d) Do not pass go.
- **2.** [4 marks] Show that $\neg p \to (q \to r) \equiv q \to (p \lor r)$ by two different methods.

Using truth table:

p q r	$\neg p$	$q \rightarrow r$	$ \neg p \rightarrow (q \rightarrow r) $	$p \lor r$	$q \to (p \lor r)$
T T T	F	T	T	T	T
T T F	F	F	T	T	T
T F T	F	T	T	T	T
T F F	F	T	T	T	T
F T T	T	T	T	T	T
F T F	T	F	F	F	F
F F T	T	T	T	T	T
F F F	T	T	T	F	T

Using theorem:

$$\neg p \to (q \to r) \equiv \neg (\neg p) \lor (q \to r) \equiv p \lor (\neg q \lor r) \equiv \neg q \lor (p \lor r) \equiv q \to (p \lor r).$$

- **3.** [4 marks] Let D be the set of all animals. Let P(x) be "x can fly" and B(x) be "x is a bird". For each of the following, translate into a logical expression with domain D.
- (i) Every bird can fly.

$$\forall x \in D, B(x) \to P(x).$$

(ii) Being a bird is not a necessary condition for an animal being able to fly. (Hint: Use quantifier(s). Simplify your answer as much as possible.)

$$\exists x \in D, P(x) \land \neg B(x).$$

4. [2 marks] Determine, with justification, the truth values of the following expression.

$$\exists x \in \mathbb{Z} \forall y \in \mathbb{Z}, xy = x.$$

Truth Value: T.

Justification: For x = 0, $\forall y \in \mathbb{Z}$, xy = x becomes $\forall y \in \mathbb{Z}$, $0 \times y = 0$, which is true.

- **5.** [4 marks] Let D consist of all people in the world. Let L(x,y) be the statement "x loves y" and Q(x,y) be the statement "x and y are the same person", where the domain for both x and y is D. Translate the following into logical expressions using quantifiers \forall, \exists , and logical connectives.
- (i) Everybody loves Jerry.

Answer: $\forall x \in D, L(x, Jerry)$.

(ii) There is somebody whom no one loves.

Answer: $\exists x \in D \forall y \in D, \neg L(y, x).$

(iii) There are exactly two people whom Lynn loves.

Answer: $\exists x, y \in D \forall z \in D, \neg Q(x, y) \land (L(Lynn, z) \leftrightarrow Q(x, z) \lor Q(y, z)).$

- **6.** [2 marks] Translate the following into a logical expression using quantifiers \forall , \exists , and logical connectives. Use U, D and M, where U is a set which consists of all students in the university, D is a set which consists of all departments in the university, and M is a set which consists of all courses in the university. Let C(x) be the statement "x is a student in this class", T(x,y) be "the student x has taken the course y" and O(y,z) be "the course y is offered by the department z."
- "There is a student in this class who has taken every course offered by one of the departments in the university."

Answer: $\exists x \in U \exists z \in D \forall y \in M, C(x) \land (O(y, z) \rightarrow T(x, y)).$

- 7. [3 marks] Using valid arguments forms, derive the conclusion r from the following given hypotheses:
- (i) $(p \wedge t) \rightarrow (r \vee s)$, (ii) $q \rightarrow (u \wedge t)$, (iii) $u \rightarrow p$, (iv) $\neg s$, (v) q.

Answer:

- 1. q
- 2. $q \rightarrow (u \land t)$
- 3. $u \wedge t$ (From 1, 2)
- 4. u (From 3)
- 5. $u \rightarrow p$
- 6. p (From 4, 5)
- 7. t (From 3)
- 8. $p \wedge t \text{ (From 6,7)}$
- 9. $(p \wedge t) \rightarrow (r \vee s)$
- 10. $r \vee s$ (From 8,9)
- 11. $\neg s$
- 12. r (From 10,11)