Let $V^{(k)}$ be the set of subspace vectors at step k and assume $V^{(k)}$ $^{7}V^{(c)} = \mathcal{I}$ let $A = A^{T}$

We want to solve $(A-2I)^{-1}B=X$ which is equivalent to

(A-2I) X = B

Let $W^{(r)} = AV^{(r)}$

O solve the equation in the subspace. The subspace projected exposition is

 $V^{T}(A-2I) P_{V} X = V^{T} B$ where $P_{V} = V V^{T}$ (drapping (+) for now) $V^{T}(A-2I) V V^{T} X = V^{T} B$

 $(W^TV - 2I)V^TX = V^TB \Rightarrow (a - 2I)x = b$

where $a = W^T V$, $x = V^T X$, $b = V^T B$

a is a kak motrix, where k is the size of the Erylov space so you can solve this by using a normal dense algorithm like np. linaly. solve ()

Once you have X, then you generalle $X^{(+)}$, the guess the full space with $X^{(+)} = V^{(+)} X$

Now notice that at convergence, this should satisfy

(A-2I) V x-B=0

 \Rightarrow W x - $\lambda x - \beta = 0$

So we can define the residual

The algorith stops when [rtt] is kelow a thresheld. If it is not converged then just like the normal davidson, the new vector comes from

$$\left(\operatorname{diag}(A) - 2I\right)^{-1} r^{(F)} = V$$

Then you got orthogonalise V and add it to V(B+4)