Tutorial Week 9

COMP9418 - Advanced Topics in Statistical Machine Learning, 17s2, UNSW Sydney

Instructor: Edwin V. Bonilla

Last Update: Wednesday 13th September, 2017 at 10:45

1. Consider an exponential family distribution:

$$p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(\boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{y})\right)$$
(1)

$$= \exp\left(\boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{y}) - A(\boldsymbol{\theta})\right), \tag{2}$$

where $\boldsymbol{\theta}$ are the parameters of the distribution and $A(\boldsymbol{\theta}) = \log Z(\boldsymbol{\theta})$ is the log partition function, with $Z(\boldsymbol{\theta}) = \sum_{\mathbf{y}} \exp\left(\boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{y})\right)$ for discrete \mathbf{y} .

(a) Show that

$$\frac{dA}{d\theta} = \mathbb{E}_{p(\mathbf{y}|\theta)}[\phi(\mathbf{y})] = \sum_{\mathbf{y}} p(\mathbf{y}|\theta)\phi(\mathbf{y}). \tag{3}$$

(b) Show that

$$\frac{dA}{d\boldsymbol{\theta}d\boldsymbol{\theta}^{T}} = \mathbb{C}\text{ov}[\boldsymbol{\phi}(\mathbf{y})] = \mathbb{E}_{p(\mathbf{y}|\boldsymbol{\theta})}[\boldsymbol{\phi}(\mathbf{y})\boldsymbol{\phi}(\mathbf{y})^{T}] - \mathbb{E}_{p(\mathbf{y}|\boldsymbol{\theta})}[\boldsymbol{\phi}(\mathbf{y})]\mathbb{E}_{p(\mathbf{y}|\boldsymbol{\theta})}[\boldsymbol{\phi}(\mathbf{y})]^{T}. \tag{4}$$

(c) Given training data $\mathcal{D} = \{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)}\}$ show that the optimum of the average log likelihood:

$$\mathcal{L}(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \log p(\mathbf{y}^{(n)} | \boldsymbol{\theta})$$
 (5)

is achieved when:

$$\mathbb{E}_{p_{\text{emp}}}[\boldsymbol{\phi}(\mathbf{y})] = \mathbb{E}_{p(\mathbf{y}|\boldsymbol{\theta})}[\boldsymbol{\phi}(\mathbf{y})], \tag{6}$$

where $\mathbb{E}_{p_{\text{emp}}}[\phi(\mathbf{y})]$ denotes the empirical expectation of $\phi(\mathbf{y})$.

- (d) Show that a tabular MRF is an exponential family distribution, specifying what the parameter vector $\boldsymbol{\theta}$ and feature vector $\boldsymbol{\phi}$ are. What is $\frac{dA}{d\boldsymbol{\theta}}$ and what does Equation (6) imply in this case? How does this relate to the MLE for directed graphical models?
- 2. Consider the graphical model in Figure 1.
 - (a) Give the Markov blanket for every node in the graph.
 - (b) Confirm or refute the following conditional independence statements:
 - i. $x_1 \perp \!\!\! \perp x_3 | x_2$
 - ii. $x_1 \perp \!\!\! \perp x_3 | x_2, x_4$

Figure 1: Graphical model for question 2.

iii. $x_1 \perp x_3 \mid x_2, x_5$

iv. $x_6 \perp x_1 | x_2, x_3, x_4, x_5$

v. $x_6 \perp \!\!\! \perp x_1 | x_2, x_4$

vi. $x_6 \perp \!\!\! \perp x_1 | x_2$

vii. $x_6 \perp x_1 | x_4$

viii. $x_6, x_1 \perp x_3, x_5 | x_2, x_4$

ix. $x_6, x_1 \perp x_3, x_5 | x_4$