Skyler MacDougall

Exam 2

Due April 22nd at 8pm

1. If $V_{IN1}=6V,~V_{IN2}=2V,V_{O(SAT)}=\pm13V,R_L=5k\Omega$ in the following image, determine the output voltage V_O of the comparitor.

Figure 1

$$V_{IN1} > V_{IN2}; \ V_{IN1} = inverting \ input$$

$$\vdots$$

$$|V_O = -13V = (a)|$$
 (1)

2. If $V_{IN1}=6V, V_{IN2}=1V, V_{O(SAT)}=\pm 13V, R_L=4k\Omega$, determine the output current I_L (the current through R_L) of the comparator. (Using the comparator noted in question 1)

$$VV_{IN1} > V_{IN2}; \ V_{IN1} = inverting \ input$$
 \therefore $V_O = -13V$ $I_L = \frac{V_O}{R_L} = \frac{-13V}{4k\Omega}$ $\overline{|I_L = -3.25mA = (d)|}$

3. For a non-inverting amplifier with $R_f=9k\Omega, R_i=5k\Omega$ and the total RMS noise level referred to the input is $7\mu V$, select the noise level.

$$A = 1 + \frac{R_f}{R_i} = 1 + \frac{9k\Omega}{5k\Omega} = 2.8$$

$$V_o = V_i * A = V_i = 7\mu V * 2.8$$

$$V_o = 19.6\mu V = (b)$$

4. An amplifier has a common mode gain of 30dB and a differential gain of 110dB. What is the common mode rejection ratio?

$$CMRR = 20log(\frac{A_d}{|A_{cm}|})$$
 (4)
 $CMRR = 20log(\frac{110dB}{|30dB|})$
 $CMMR = 11.28dB$

5. An op-amp has a slew-rate of $5\frac{V}{\mu s}$ and is configured as a non-inverting amplifier, with $R_f=9.6k\Omega, R_i=4.2k\Omega.$ If an 8.00mV peak sine wave is applied to the non-inverting input, determine the slew-rate limiting frequency.

$$f_{sr} = \frac{S}{2\pi V_o}; \ V_o = V_i * (1 + \frac{R_f}{R_i})$$

$$f_{sr} = \frac{S}{2\pi V_i * (1 + \frac{R_f}{R_i})}$$

$$f_{sr} = \frac{5\frac{\cancel{N}}{\mu s}}{2 * \pi * 8m \cancel{N} * (1 + \frac{9.6\cancel{N}}{4.2\cancel{N}})}$$

$$f_{sr} = \frac{5}{2 * \pi * 0.0008 * 3.28} MHz$$

$$|f_{sr} = 30.27MHz \approx 30.3MHz = (a)|$$

6. An op-amp has a unity gain frequency of 4MHz and is configured as a non-inverting amplifier with $R_f=10.0k\Omega, R_i=4.4k\Omega$. Calculate the rise time (t_{CL}) associated with the amplifier.

$$T_{sr} = \frac{0.35}{BW}; BW = \frac{B}{k_n}; k_n = 1 + \frac{R_f}{R_i}$$

$$T_{sr} = \frac{0.35}{\frac{B}{1 + \frac{R_f}{R_i}}}$$

$$T_{sr} = \frac{0.35}{\frac{4MHz}{1 + \frac{10.0 \, \text{per}}{4.4 \, \text{per}}}}$$

$$T_{sr} = \frac{0.35}{\frac{4}{3.27}} \mu s$$

$$|T_{sr} = 286.\overline{36}ns = (d)|$$
(6)

7. Sketch the input characteristic curve given the below image and:

$$R_1 = 8.1k\Omega$$

$$R_2 = 3.1k\Omega$$

$$V_{O(STAT)} = \pm 13V$$
(7)

8. Sketch the output curve given the input curve shown below and the following:

$$R_1 = 8.2k\Omega$$
 (8)
 $R_2 = 4.6k\Omega$
 $V_{O(SAT)} = \pm 14V$

9. Sketch the input-output characteristic curve given the image below and the following: $\frac{1}{2}$

$$R_1 = 9.4k\Omega$$

$$R_2 = 3.3k\Omega$$

$$V_{O(SAT)} = \pm 13V$$
(9)

10. Sketch the output curve given the input curve below and the following:

$$R_1 = 9.0k\Omega$$
 (10)
 $R_2 = 4.9k\Omega$
 $V_{O(SAT)} = \pm 13V$

11. Sketch the input-output characteristic curve given the below image and the following:

$$R_1 = 9.6k\Omega$$
 (11)
 $R_2 = 3.9k\Omega$
 $V_{O(SAT)} = \pm 13V$

12. Sketch the output curve given the input (V_{in1}) curve and the following:

$$R_1 = 9.7k\Omega$$
 (12)
 $R_2 = 3.2k\Omega$
 $V_{O(SAT)} = \pm 12V$

13. What has been the most confusing point so far in this class?

Nothing much in particular, although I may have missed the last couple problems on this exam due to misunderstanding how triggers work.