- Each subsequent symbol is assigned the next binary number in sequence, ensuring that following codes are always higher in value.
- When you reach a longer codeword, then after incrementing, append zeros until the length of the new codeword is equal to the length of the old codeword.

Parameters

Data type	Name	Comment
itf8[]	alphabet	list of all encoded values
itf8[]	bit-lengths	array of bit-lengths for each symbol in the alphabet

Byte array coding

Often there is a need to encode an array of bytes. This can be optimized if the length of the encoded arrays is known. For such cases BYTE_ARRAY_LEN and BYTE_ARRAY_STOP codings can be used.

BYTE ARRAY LEN

Byte arrays are captured length-first, meaning that the length of every array is written using an additional encoding. For example this could be a golomb encoding. The parameter for BYTE_ARRAY_LEN are listed below:

Data type	Name	Comment
encoding <int></int>	lengths encoding	an encoding describing how the arrays lengths are
		captured
encoding byte>	values encoding	an encoding describing how the values are captured

BYTE ARRAY STOP

Byte arrays are captured as a sequence of bytes terminated by a special stop byteFor example this could be a golomb encoding. The parameter for BYTE ARRAY STOP are listed below:

Data t	ype	Name	Comment
byte		stop byte	a special byte treated as a delimiter
itf8		external id	id of an external block containing the byte stream

12.3 Choosing the container size

CRAM format does not constrain the size of the containers. However, the following should be considered when deciding the container size:

- Data can be compressed better by using larger containers
- Random access performance is better for smaller containers
- Streaming is more convenient for small containers
- Applications typically buffer containers into memory

We recommend <u>1MB-1MiB</u> containers. They are small enough to provide good random access and streaming performance while being large enough to provide good compression. <u>1MB-1MiB</u> containers are also small enough to fit into the L2 cache of most modern CPUs.

Some simplified examples are provided below to fit data into **1MB-1MiB** containers.

Unmapped short reads with bases, read names, recalibrated and original quality scores

We have 10,000 unmapped short reads (100bp) with read names, recalibrated and original quality scores. We estimate 0.4 bits/base (read names) + 0.4 bits/base (bases) + 3 bits/base (recalibrated quality scores) + 3 bits/base (original quality scores) = $^{\sim}$ 7 bits/base. Space estimate is (10,000 * 100 * 7) / 8 / 1024 / 1024 = $^{\sim}$ 0.9 MBMiB. Data could be stored in a single container.

Unmapped long reads with bases, read names and quality scores

We have 10,000 unmapped long reads (10kb) with read names and quality scores. We estimate: 0.4 bits/base (bases) + 3 bits/base (original quality scores) = $^{\sim}$ 3.5 bits/base. Space estimate is (10,000 * 10,000 * 3.5) / 8 / 1024 / 1024 = $^{\sim}$ 42 MBMiB. Data could be stored in 42 x 1MB-1MiB containers.

Mapped short reads with bases, pairing and mapping information

We have 250,000 mapped short reads (100bp) with bases, pairing and mapping information. We estimate the compression to be 0.2 bits/base. Space estimate is (250,000 * 100 * 0.2) / 8 / 1024 / 1024 = 0.6 MBMiB. Data could be stored in a single container.

Embedded reference sequences