Requested Parit:

JP2209934A

Title:

PRODUCTION OF MOLDED ARTICLE OF FLAME-RETARDANT CROSSLINKED POLYBUTYLENE TEREPHTHALATE RESIN;

Abstracted Patent:

JP2209934;

Publication Date:

1990-08-21;

Inventor(s):

URABE HIROSHI; others: 02;

Applicant(s):

MITSUBISHI KASEI CORP; others: 01;

Application Number:

JP19890030872 19890209;

Priority Number(s):

IPC Classification:

C08J7/00; C08F2/46; C08J7/00;

Equivalents:

JP2018959C, JP7057822B;

ABSTRACT:

PURPOSE:To obtain the subject molded article having excellent flame-retardancy by molding a polybutylene terephthalate resin compounded with a flame- retardant, a filler and a specific crosslinking agent and crosslinking the molded article with radiation.

CONSTITUTION: The objective molded article can be produced by compounding a polybutylene terephthalate resin with preferably 1-10wt.% of a flame-retardant (preferably antimony trioxide), preferably 10-40wt.% of a filler (preferably glass fiber) and diallyl cyanurate as a crosslinking agent, preferably further compounding with 2,6-di-t-4-methylphenol, etc., as a radical polymerization inhibitor, molding the obtained polybutylene terephthalate resin and crosslinking the molded article with radiation.

码公開 平成2年(1990)8月21日

平2-209934 ② 公開特許公報(A)

@Int. Cl. 5 識別記号 庁内整理番号 7/00 2/46 7/00 C 08 J 305 8720-4F MDT 8215-4 J 8720-4 F C 08 F C 08 J C 08 K C 08 L CFD 5/29

67:02

審査請求 未請求 請求項の数 1 (全4頁)

60発明の名称 難燃性架橋ポリプチレンテレフタレート樹脂成形物の製造法

> 20特 願 平1-30872

願 平1(1989)2月9日 忽出

明 者 浦 部 宏 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社 ⑫発 総合研究所内

哲 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社 @発 明 者 吉 息 総合研究所内

沢 修 福島県いわき市小名浜字高山34番地 日本化成株式会社研 @発 明 者 小

究所内

勿出 願 三菱化成株式会社 東京都千代田区丸の内2丁目5番2号 人

日本化成株式会社 福島県いわき市小名浜字高山34番地 る出 題 人

個代 理 人 弁理士 長谷川 外1名

屻

1 発明の名称

樹脂成形物の製造法

2 特許額求の戦団

(1) 難燃剤、光慣剤、及び架鍋剤としてシア リルイソシアヌレートを配合したポリプチレンテ レフタレート樹脂を成形し、成形物を放射線照射 により架偽することを特徴とする難燃性架偽ポリ ブチレンテレフタレート樹脂皮形物の製造法。

発明の詳細な説明

「産業上の利用分野」

本発明は、難燃性が向上した難燃性架機ポリブ チレンテレフタレート樹脂成形物の製造法に関す

「従米の技術」

ポリプチレンテレフタレート樹脂(以下PBT 樹脂と略称する)は、結晶化速度が早いため成形 性が良好であり、さらにかラス繊維などで補強す ることにより機械的性質を向上させることができ るので、ת気器具部品、自動車部品、家庭用品な どに現在広く使用されている。

【発明が解決しようとする問題点】

しかしながら、PBT樹脂は可燃性であるため、 電気、電子機器部品などに使用される場合難燃化 が強く要望される。そこで難燃化PBT樹脂組成 物を得るために、一般的に有機系難燃剤や無機系 雅燃剤を添加配合する方法が使用されており、例 えば、有機ハロゲン化合物、酸化アンチモン系化 合物及びそれらの併用が多く、その他有機リン化 合物、含蜜素化合物なども使用されている。

ところが難燃性を高めるために有機系難燃剤を 多環に添加すると耐衝離性、引張強度等の機械的 性質が低下し、また、有機系難燃剤はコスト面で 髙価であるため多景に使用することが難しい。さ らに、従米知られている無機系難燃剤として三酸 化アンチモンを用いた難燃性PBT樹脂は、三酸 化アンチモンの配合量を増大させるほど機械的性 奴は低下する.

|発明の目的]

本発明者等は 配意検討した結果、軽燃剤、ガラス繊維等の充填 耐、及び特定の架鍋剤を配合した軽燃性PBT樹 脂を放射線照射によって架橋することにより、従 米に比べて少量の軽燃剤の使用で着しい軽燃効果 を挙げ、上記の欠点を解消しうることを見いだし、 本発明に到達したものである。

すなわち本発明は、難燃剤、充填剤、及び架機剤としてジアリルイソシアヌレートを配合したPBT樹脂を成形し、成形物を放射線照射により架機することを特徴とする難燃作PBT樹脂成形物の製造法を内容とするものである。

[発明の構成]

本発明におけるPBT樹脂とは、テレフタル酸またはテレフタル酸のジアルキルエステルと、1・4ープタンジオールとを重縮合して得られるポリエステルであり、PBTを主体とする共重合あるいは混合物であってもよい。上記PBT樹脂を構成するテレフタル酸は、その一部をイソフタル酸、ヘキサヒドロテレフタル酸、ジフェニルジカルポ

所の配合量は、好ましくはPBT樹脂成形物全体に対し3~40重量%、更に好ましくは5~30重量%である。添加量が3重量%に満たないと十分な難燃効果が得られず、また40重量%を増えると機械的性質が低下する。

無機系羅燃剤とは、酸化アンチモン系化合物、はう酸塩または水酸化アルミニウム等が挙げられる。好ましくはアンチモンス化合物であり、具体的には、三酸化アンチモン、五酸化アンチモと、三酸化アンチモン等が挙げられる。特に、三酸化アンチモン等が挙げられる。特に、三酸化アンチモンが好ましい。無機系羅燃剤の配合質は見光でよい。無機系羅燃剤の配合質は1~15重量%であり、更に好ましくは1~10重量%である。添加量が1重量%が小さく、また15重量%を移れるので好ましくない。

次に本発明の成形物には、形質剤としてガラス 繊維、炭素繊維、シリコンカーバイト繊維、アス

また、本発明で用いられる難燃剤は、有機系、 無機系のものが挙げられる。これらは各々単独で も用いられるが、有機系と無機系を併用するのが 好ましい。

有機系難燃剤としては、一般に用いられる有機 ハロゲン化合物及びリン化合物が挙げられるが、 特に有機ハロゲン化合物が好ましい。有機系難燃

また、本発明で用いられる架橋削は、ジアリルイソシアヌレートである。なお、本架橋削には、 予めラジカル重合禁止削を加えておくことが好ま しい。

ラジカル 照合禁止剤としては、ハイドロキノン メチルエーテル、2 - t - ブチルハイドロキノン、 P - ペンゾキノン、2,6 - ジーt - 4 - ノチルフェ ノール、2,6 - ジーt - 4 - ブチルー 4 - n - ブ チルフェノール、2,2 - ノチレンピス(4 - ノチ

ジアリルイソシアヌレートの配合量はPBT樹 腑に対して好ましくは0.5~10重貨%であり、更に好ましくは0.5~7重量%である。配合量が0.5 取散%未満では、放射線の限射による効果は余り期待できない。また、10重量%以上ではPBT樹脂の機械的作質の低下がみられる。

本発明のPBT樹脂成形物は、上記難燃剤、充 収剤、及びジアリルイソシアヌレートを配合する ことにより得られる。

尚、本発明の成形物は更に、可塑剤、離型剤、 滑剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、 発泡剤が添加されても差し支えない。

配合の方法としては、特に制限はなく、例えば

て照射しても、それ以上の効果は期待できず、逆にPBT樹脂成形物の機械的性質の低下がみられる。

「寒施伽し

以下、本発明を実施例について説明するが、本 発明はこれらの実施例に限定されるものではない。 実施例 1 ~ 3

PBT樹脂(三菱化成(株)製、商品名:ノバドゥール5008)、ガラス繊維、三酸化アンチモン及びジアリルイソシアヌレート(日本化成(株)製)を、第1表に示したような配合剤合で混合し、二軸押出機を用いて温度250℃で混練してペレット化した。得られたペレットを乾燥後、温度250℃でプレス成形して0.2mm 厚の試験片(幅125mm×長さ12.5mm)を作成した。その後、これら成形物を2MeVの電子級加速機を用いて電子級を17Mrad 照射した。

得られた試験片の難燃性はUL94規格垂直燃 焼試験、引張強度はASTMD638、曲げ強度 はASTMD790、アイゾット衝勢値はAST 全成分を予備しておき、得られた予備混合物を混雑する方法、PBT樹脂と難燃剤及び架機剤とを予備混合または混練後、最後に充填剤を混練する方法等が挙げられる。前配混合は例えば二軸スクリュー押出機、単軸スクリュー押出機等により行うことができる。

このようにして得られるPBT樹脂は、射出成形、押出成形、プロー成形等の各種の成形法により種々の成形品に成形される。

尚、成形される成形物とは、コネクター、プリント配線茶盤等が挙げられる。

この発明に用いられる放射線とは、 a 線、 β線、 y 線、電子線などを挙げることができる。

照射は窓温で行われ、照射雰囲気は空気中または不活性ガス(窒素やアルゴンガス)中で行われる。改質に必要な被照射体である成形物の大きさ、厚き、形状などによって異なるが通常は5~30 Mrad 好ましくは10~20 Mrad が適当である。これが5 Mrad 未満では、線量が少なく所望の架橋効果が期待できない。また、30 Mrad をこえ

MD256に単拠してそれぞれ測定した。

燃焼試験の結果、1回目と2回目の燃焼時間はそれぞれ平均で1秒、1秒、灼熱時間2.3秒かつ炎粒子の落下がなかった。また、機械的性質の結果は、第1 表に示した通りである。

比較例1~4

第1表に示したように配合剤合をかえた以外は 実施例1~3と同様に行ない、成形物を成形した。 この成形物を第1表に示す照射条件で電子線照射 した。次いでこの成形物を実施例1~3と同様に した。次いでこの成形物を実施例1~3と同様に して燃焼性、引張強度、曲げ強度、アイゾット衝 撃値を測定した。その結果を第1表に示したが燃 焼試験で、比較例1~3では炎粒子が試験片の下 方においた綿(未処理の外科用綿)に満下し、綿が 発火した。また、比較例4では綿が発火しなかっ たが、機械的性質が低下した。

表

3

	樹脂組成 (重量%)				電子線		枫		被	的性	貿		
		雞炸	热剂			魚魚		降伏	破.断	曲げ	秀性率	アイソッ	卜衝擊的
	РВТ			ガラス	架构剂	n	燃烧性	強度	伸び	強度	1	kgcm/cm	ノッチ付
	組織	有機系	無機系	操雜		有無		kg/cm²	%	kg/cm²	kg/cm²	1/2"	1/8"
実施例1	69.5	9	3.5	1 5	3.0	有	V - 0	720	4.8	1 2 4 0	4 4 0 0 0	3.8	5.7
灾趋例 2	70.5	1 0	4.0	1 5	0.5	有	V - 0	7 1 0	5.0	1 2 4 0	48000	3.8	5.5
実施例3	6 9	1 0	4.0	1 5	2.0	有	V - 0	730	4.9	1 2 5 0	4 9 0 0 0	3.7	5.5
比較例 1	6 9	1 0	4.0	1 5	2.0	無	V — 2	7 4 0	5.3	1 2 5 0	45000	3.8	5.7
比較例 2	7 1	1 0	4.0	1 5	-	有	V - 2	7 1 0	5.2	1 2 4 0	4 9 0 0 0	3.1	5.1
比較例3	7 1	1 0	4.0	1 5	-	無	V - 2	700	5.2	1 2 3 0	5 1 0 0 0	3.6	4.8
比較例 4	6 8	1 2	5.0	1 5	-	無	V - 0	6 5 0	3.7	1 1 5 0	4 2 0 0 0	1.7	2.5

【発明の効果】

本発明の架偽PBT樹脂成形物は軽燃性に優れた効果を示すものである。

出順人 三菱化成株式会社

(ほか1名)

代理人 弁理士 長 谷 川 一

(ほか1名)