Numeri razionali e reali

1 Dimostrazione dell'irrazionalità di $\sqrt{2}$

Si vuole dimostrare che $\nexists r \in \mathbb{Q}$ tale che $r = \sqrt{2} \iff r^2 = 2$.

Si suppone per assurdo che esista $r \in \mathbb{Q}$ tale che $r^2 = 2$. Sia r > 0 (per semplicità).

$$r = \frac{p}{q}, \quad p, q \in \mathbb{N}, q \neq 0$$

con $p \in q$ primi tra loro.

$$\left(\frac{p}{q}\right)^2 = 2 \iff \frac{p^2}{q^2} = 2 \iff p^2 = 2q^2$$

cio
è p^2 è pari, quindi anche pè pari, ovver
op=2m con $m\in\mathbb{N}.$

$$\implies (2m)^2 = 2q^2$$

$$\iff 4m^2 = 2q^2$$

$$\implies q^2 = 2m^2$$

allora anche q^2 , e di conseguenza q, è pari.

Ciò è assurdo perché si erano scelti pe q primi tra loro, ma se sono entrambi pari hanno in comune il fattore 2. \Box

2 Cifre decimali

Un numero razionale si può sempre scrivere come numero decimale limitato (cioè con un numero finito di cifre) o periodico.

I numeri irrazionali, invece, hanno infinite cifre non periodiche.

Osservazione: $0.\overline{9} = 1$

3 Operazioni su $\mathbb Q$ e $\mathbb R$

L'insieme \mathbb{Q} e l'insieme \mathbb{R} hanno due operazioni (addizione e prodotto) che verificano le seguenti proprietà:

· proprietà associativa

$$\forall x, y, z \in \mathbb{Q} \text{ (o } \mathbb{R}), \quad (x+y)+z=x+(y+z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

• proprietà commutativa

$$\forall x, y \in \mathbb{Q} \text{ (o } \mathbb{R}), \quad x + y = y + x$$

$$x \cdot y = y \cdot x$$

• proprietà distributiva

$$\forall x, y \in \mathbb{Q} \text{ (o } \mathbb{R}), \quad (x+y) \cdot z = x \cdot z + y \cdot z$$

• \exists ! un **elemento neutro** per l'addizione (0) e per la moltiplicazione (1)

$$\forall x \in \mathbb{Q} \text{ (o } \mathbb{R}), \quad x + 0 = x$$

$$x \cdot 1 = x$$

• esistenza dell'opposto di ogni elemento

$$\forall x \in \mathbb{Q} \text{ (o } \mathbb{R}) \quad \exists ! -x \in \mathbb{Q} \text{ (o } \mathbb{R}), \quad x + (-x) = 0$$

• esistenza dell'**inverso** (o **reciproco**) di ogni elemento, eccetto 0

$$\forall x \in \mathbb{Q} \text{ (o } \mathbb{R}) \text{ con } x \neq 0 \quad \exists ! x^{-1} \in \mathbb{Q} \text{ (o } \mathbb{R}), \quad x + x^{-1} = 1$$

 \mathbb{Q} e \mathbb{R} sono quindi **campi**.

4 Insiemi ordinati

Un insieme A è **ordinato** se $\forall x, y \in A$, se $x \leq y$ e $z \in A$ allora $x + z \leq y + z$. Inoltre, se $x \leq y$ e $z \geq 0$, allora $x \cdot z \leq y \cdot z$.

A è totalmente ordinato se $\forall x, y \in A$, o $x \leq y$ o $y \leq x$.

Osservazione: Se $x \leq y$ e $y \leq x$, allora x = y.

Gli insiemi numerici \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} sono totalmente ordinati.

5 Insiemi densi, continui e discreti

 \mathbb{Q} e \mathbb{R} sono insiemi **densi** sulla retta orientata perché in ogni intervallo delimitato da due punti sulla retta ci sono infiniti numeri.

Ciò nonostante, i punti della retta non sono in corrispondenza biunivoca con \mathbb{Q} . Lo sono invece con \mathbb{R} , che è quindi un insieme **continuo**. \mathbb{N} , \mathbb{Z} e \mathbb{Q} , non essendo continui, si dicono invece insiemi **discreti**.

6 Proprietà dei numeri reali

$$\forall x,y \in \mathbb{R} \quad \exists \text{ infiniti } z \in \mathbb{Q}, \quad x < z < y$$

$$\forall x,y \in \mathbb{R} \quad \exists \text{ infiniti } z \in \mathbb{R} \smallsetminus \mathbb{Q}, \quad x < z < y$$

7 Intervalli

Siano $a, b \in \mathbb{R}$ con a < b.

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$[a,+\infty) = \{x \in \mathbb{R} : a \le x\}$$

$$(a,+\infty) = \{x \in \mathbb{R} : a < x\}$$

$$(-\infty,b] = \{x \in \mathbb{R} : x \le b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x < b\}$$

$$(-\infty, +\infty) = \mathbb{R}$$
 $(0, +\infty) = \mathbb{R}^+$ $(-\infty, 0) = \mathbb{R}^-$

8 Modulo

Il **modulo**, o **valore assoluto**, corrisponde alla distanza di un numero dall'origine (0) sulla retta orientata.

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

8.1 Proprietà

1.
$$|x| \ge 0 \quad \forall x \in \mathbb{R}$$

 $|x| = 0 \iff x = 0$

2.
$$|x \cdot y| = |x| \cdot |y| \quad \forall x, y \in \mathbb{R}$$

3.
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|} \quad \forall x, y \in \mathbb{R}, y \neq 0$$

4. $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R} \ (disuguaglianza \ triangolare)$

5. Se
$$a > 0$$
, $|x| < a \iff -a < x < a$ e $|x| < a \iff -a < x < a$.

6. Se
$$a > 0$$
, $|x| > a \iff x < -a \lor x > a$ e $|x| \ge a \iff x \le -a \lor x \ge a$.

7. Se
$$n \in \mathbb{N}$$
 e $n \neq 0$, allora $\forall x, y \in \mathbb{R}$ si ha che $x^{2n} < y^{2n} \iff |x| < |y|$ e $x^{2n} \leq y^{2n} \iff |x| \leq |y|$, mentre $x^{2n+1} < y^{2n+1} \iff x < y$ e $x^{2n+1} \leq y^{2n+1} \iff x \leq y$.

8.
$$\sqrt{x^2} = |x|$$

8.1.1 Dimostrazione della 5

$$|x| < a$$

$$\begin{cases} x \ge 0 \\ x < a \end{cases} \lor \begin{cases} x < 0 \\ -x < a \end{cases}$$

$$\begin{cases} x \ge 0 \\ x < a \end{cases} \lor \begin{cases} x < 0 \\ x > -a \end{cases}$$

$$0 \le x < a \lor -a < x < 0$$

$$-a \le x \le a$$

$$x \in (-a, a)$$

8.1.2 Dimostrazione della 6

$$|x| > a$$

$$\begin{cases} x \ge 0 \\ x > a \end{cases} \lor \begin{cases} x < 0 \\ -x > a \end{cases}$$

$$\begin{cases} x \ge 0 \\ x > a \end{cases} \lor \begin{cases} x < 0 \\ x < -a \end{cases}$$

$$x > a \lor x < -a$$

 $x \in (-\infty, -a) \cup (a, +\infty)$