6.3 Das Brechungsgesetz

Wie verläuft der Weg des Lichtstrahls, wenn er von einem Medium in ein anderes übertritt?

Feststellung zum Brechungsgesetz:

Der Lichtstrahl wird an der Grenzfläche der beiden Medien gebrochen.

Aufgabe 6.2:

Geben Sie Beispiele von Anwendungen der Lichtbrechung oder wo man es beobachten kann:

Abbildung 6.5: Quelle: http://img.fotocommunity.com/loeffellich tbrechung-529a1bf5-877d-42ad-8433-5b88c5889b69.jpg?height=1080

6.3.1 Übergang von optisch dünnerem in dichteres Medium

Was geschieht mit dem schräg einfallenden Lichtstrahl beim Übergang in ein optisch dichteres Medium?

Es gilt das Brechungsgesetz:

Tritt ein Lichtstrahl von einem optisch dünneren in ein optisch dichteres Medium, so wird er gegenüber seiner ursprünglichen Richtung zum Einfallslot hin gebrochen.

Optisch dünn = z.B. Luft Optisch dicht = z.B. Wasser, Glas

Grund für die Brechung des Lichts ist die unterschiedliche Lichtgeschwindigkeit in optisch unterschiedlich dichten Medien. Beispiele: .

Luft 300'000 km/s; Wasser 225'000 km/s, Glas 200'000 km/s.

Abbildung 6.6

1: Analogie Wasserwellen:

https://youtu.be/i40kAOm8gJ0?t=278 ab 4:38min bis 7:33min (Linse).

2: Analogie Inlineskates:

https://www.youtube.com/watch?v=VWLLCHREUtg (dauer 2:30min)

Das Verhältnis der unterschiedlichen Ausbreitungsgeschwindigkeiten des Lichts in zwei verschiedenen Medien / Stoffen wird mit der **Brechzahl n** ausgedrückt.

Vergleichswert ist die Lichtgeschwindigkeit im Vakuum mit \mathbf{c}_0 = **300'000 km/s**. Da sich die Lichtgeschwindigkeiten im Vakuum und in der Luft nur um 0,3 0 / $_{00}$ unterscheiden, darf beim Übergang aus Luft in andere Medien mit der Brechzahl 1,0 gerechnet werden.

Brechzahlen n					
Vakuum	1.0000	Acrylglas	1.49	Quarz	1.54
Luft	1.0003	Benzol	1.50	Flintglas	1.61
Wasser	1.33	Kronglas	1.51	Diamant	2.42

Für die Beschreibung des Brechungsgesetzes können die Brechzahlen verwendet werden. Das optisch **dichtere Medium** ist das Medium mit der **kleineren Lichtgeschwindigkeit** und der **grösseren Brechzahl n**.

Abbildung 6.7

$$n_1 \cdot sin(\alpha_1) = n_2 \cdot sin(\alpha_2)$$
 mit $c_0 = n_i \cdot c_i$

Aufgabe: berechnen Sie die Brechungswinkel für eine Lichtstrahl von Luft nach *Glas* bei einem Einfallswinkel von 45°. (Antwort=28°)

$$\sin(45) = 1.51 * \sin(a)$$
 | :1.51
0.707 : 1.51 = $\sin(a2) = 0.468$
a2 = $\arcsin(0.468) = 27.9 -> 28$

Aufgabe: berechnen Sie die Brechungswinkel für eine Lichtstrahl von Luft nach *Wasser* bei einem Einfallswinkel von 80°. (Antwort=48°)

Aufgabe 6.3: Snell's Window In die 2 Bilder unten sehen Sie Unterwasseraufnahmen. Man sieht das Ufer rundherum.

→ Erklären Sie wieso.

Abbildung 6.8

Quelle: https://www.newscientist.com/article/2144560-solving-how-fish-swim-so-well-may-help-design-underwater-robots/

Abbildung 6.9 Quelle: https://www.flickr.com/photos/jtbss/9393445794/in/photostream/

Darum ist es beim Angeln wichtig sich unauffällig zu verhalten am Ufer.

6.3.2 Übergang von optisch dichterem in dünneres Medium

Was geschieht mit einem schräg einfallenden Lichtstrahl beim Übergang in ein optisch dünneres Medium?

Abbildung 6.10

Aufgabe 6.4

Zeichnen Sie die gebrochene Lichtstrahl korrekt ein und geben Sie an wo der Einfallswinkel α_1 und Brechungswinkel α_2 gemessen werden.

Benützten Sie die Inlineskater-Analogie zum bestimmen in welcher Richtung die Lichtstrahl bricht.

6.3.2.1 Optische Hebung

Tritt auf beim Übergang eines Lichtstrahles in ein optisch dünneres Medium:

Der unter dem Wasser liegende Gegenstand erscheint dem Beobachter ausserhalb des Wassers **angehoben**.

Der Lichtstrahl kommt für den Beobachter nicht aus der Richtung des wahren Ortes, sondern aus der Richtung des höhergelegenen **scheinbaren (virtuellen)** Ortes.

Anwendungen, Vorkommen in der Natur oder im Alltag:

- Tiefer, klarer See ist tiefer oder flacher als er scheint?
- Jäger, die mit Harpune Fische fangen, müssen anders zielen:

.....

.....