

電子電路實習實 驗報告

實驗名稱:聲音放大電路

系別:電子工程系(第一)

班級:電子系二甲

組別:5

姓名:謝亞倫、王冠中

學號: C111112104、C111112168

任課老師:林俊宏

評分:A□ B□ C□

1. 實驗項目名稱:LM386 音頻放大實驗

• 實驗原理與相關應用

LM386 是專門為低損耗電源所設計的功率放大器。它的內建增益為 20,透過 1、8 號腳位間電容的搭配,增益最高可達 200,許多人將這塊晶片用在音頻訊號的放大上,也就是依靠電子電路將聲音放大。

LM386 的接腳腳位,在1、8 號接腳間加入一顆電容,就能讓訊號增益,2、3 號接腳則是提供我們輸入音源,可以將中間不同的訊號平滑化。

LM386 是一種音頻集成功放,具有自身功耗低、更新內建增益可調整、電源電壓範圍大、外接元件少和總諧波失真小等優點的功率放大器,廣泛應用於錄音機和收音機之中。

在音源進入正、反相輸入做濾波電路,將高音與低音分別開來,給他不一樣的音色

8%E6%99%B6%E7%89%871m386/

https://www.chip37.com/scp/LM386

• 實驗材料

貝砌的竹			
外觀	規格	備註	
LIN286	LM386	線性 IC Gain 1 Input (-) 2 Input (+) 3 GND 4 Sypass Sypass Sypass Vs Sypass Vout	
可變電阻	VR_1	20k	
	VR_4	2k	
電容	$C_1 = 10 \mu\mathrm{F}$		
	$C_3 = 250 \mu\mathrm{F}$		
麵包版			

• 實驗結果與討論

- 1. 將可變電阻R4調到最小。使得1, 8腳短路,根據原理, G_v 應該會趨近200。
- 2. 將訊號產生器產生輸出正弦波1kHz,調整R1使得 V_{in} 峰對峰電壓為 40mVpp,此時 V_{out} 也還是正弦波,不能讓輸出波形截止,若有截止,請將 V_{in} 電壓再調低,調到 V_{out} 沒有截止或失真便不再轉動R1,比方說調到30mVpp。
- 3. 此時,請用電表量測R4數值,計算出最大增益 $G_v = \frac{V_{out}}{V_{in}}$ 。
- 4. 接下來,請轉動可變電阻R4至下表要求,並記錄之。

R4	R4最大	R4*75%	R4*50%	R4*15%	R4最小
R4 理論值	2k	1.5k	1k	500	0
R4 實際值	2.017k	1.4988k	999.3	504	0.49
Gv理論值	31.381	34.862	41.41	58.2677	200
Gv實際值	33.963	35.593	52.353	69.286	200

結論: OPA 的體質不同,導致 Gv 的放大倍率會與理論值有所差異

2. 實驗項目名稱: LM386 音頻放大實驗

• 實驗原理與相關應用

LM358 產業標準雙通道運算放大器為成本敏感型應用提供了卓越的價值, 具有低失調(典型值為 $300\mu V$)、接地共模輸入範圍和高差分輸入電壓能力。運算放大器透過增強的特性簡化了電路設計,例如單位增益穩定性、3mV 的較低失調電壓(室溫下的最大值)以及每個放大器 $300\,\mu A$ 的較低靜態電流(典型值)。

資料來源:https://www.chip37.com/scp/LM386

● 實驗材料

外觀		備註	
ファイト I M 358N	LM358	線性 IC OUT1 1 8 Vcc IN1 (+) 3 + 6 IN2 (+) GND 4 + 5 IN2 (+)	
1,11,286	LM386	線性 IC LM386 B Gain Input (-) 2 Input (+) 3 Vs GND 4	
可變電阻	VR_1	20k	

電容	$C_1 = 22 \mu\mathrm{F}$	電解電容
	$C_2 = 0.1 \mu\mathrm{F}$	陶瓷或積層電容
	$C_3 = 0.1 \mu\text{F}$	陶瓷或積層電容
	$C_4 = 100 \mu\text{F}$	電解電容
	$C_5 = 100 \mu\text{F}$	電解電容
	$C_6 = 10 \mu\mathrm{F}$	電解電容
	$C_7 = 100 \mu\mathrm{F}$	電解電容
電阻	$R_1 = 1 k \Omega \pm 5\%$	棕黑紅金
	$R_2 = 100 \text{ k}\Omega \pm 5\%$	棕黑黃金
	$R_3 = 1 k \Omega \pm 5\%$	棕黑紅金
	$R_4 = 2\Omega \pm 5\%$	紅黑紅金
麵包版		

• 實驗結果與討論

這個實驗把麥克風接收到的音頻所產生的波行透過 OPA 放大,再透過喇叭發出聲音的方式,產生出放大後的波型

實驗中,由於雜訊的波形太大,所以會引響發出的聲音,可以透過調整可電阻來減少雜訊

黄色是 Vout1,綠色為 Vout5