Name:-Divya Agarwal

Reg no:-21MCA0176 Subject:-Python

Lab

Assignment 5

1. Take a dataset of your choice and perform 5 different data visualisation charts using seaborn

Importing the necessary libraries to visualize the dataset.

Barplot

```
sb.set(rc = {'figure.figsize':(15,8)})
sb.barplot(data['Age'],data['Glucose'])
```


Lineplot

sb.lineplot(data['Age'],data['BMI'])

Scatterplot

sb.scatterplot(data=data, x=data['Age'], y=data['Glucose'])

Distplot

sb.distplot(data['Age'])

Kdeplot

sb.kdeplot(age);

2) Take a dataset of your choice and perform 5 different data visualisation charts using matplotlib

import pandas as pd import matplotlib.pyplot as plt

data = pd.read_csv('./COVID-19 Coronavirus.csv') data

	Country	Other names	ISO 3166-1 alpha-3 CODE	Population	Continent	Total Cases	Total Deaths	Tot Cases//1M pop	Tot Deaths/1M pop	Death percentage
0	Afghanistan	Afghanistan	AFG	40462186	Asia	177827	7671	4395	190	4.313743
1	Albania	Albania	ALB	2872296	Europe	273870	3492	95349	1216	1.275058
2	Algeria	Algeria	DZA	45236699	Africa	265691	6874	5873	152	2.587216
3	Andorra	Andorra	AND	77481	Europe	40024	153	516565	1975	0.382271
4	Angola	Angola	AGO	34654212	Africa	99194	1900	2862	55	1.915438
(222)	2220	1000	1000	120	220	(102)	100	1500	822	1900
220	Wallis and Futuna	Wallis and Futuna Islands	WLF	10894	Oceania	454	7	41674	643	1.541850
221	Western Sahara	Western Sahara	ESHÂ	623031	Africa	10	1	16	2	10.000000
222	Yemen	Yemen	YEM	30975258	Asia	11806	2143	381	69	18.151787
223	Zambia	Zambia	ZMB	19284482	Africa	317076	3967	16442	206	1.251120
224	Zimbabwe	Zimbabwe	ZWE	15241601	Africa	246525	5446	16174	357	2.209107

Bar Chart

```
re=data.iloc[:30,5].values de=data.iloc[:30,4].values
co=data.iloc[:30,3].values
x=list(data.iloc[:30,0])
plt.figure(figsize=(25,10))
ax=plt.axes()
ax.set_facecolor('black') ax.grid(linewidth=0.4,
color='#8f8f8f')
plt.xticks(rotation='vertical',
size='20',
       color='white')#ticks of X
plt.yticks(size='20',color='white')
ax.set_xlabel('\nCountry',size=25,
color='#4bb4f2') ax.set_ylabel('No. of
cases\n',size=25,
                   color='#4bb4f2')
plt.tick_params(size=20,color='white')
ax.set_title('India\n',
size=50,color='#28a9ff')
```

```
plt.bar(x,co,label='re') plt.bar(x,re,label='re',color='green')
plt.bar(x,de,label='re',color='red')
for i,j in zip(x,co):
ax.annotate(str(int(j)),
xy=(i,j+3),
color='white',
```

size='15')

plt.legend(['Total Deaths','Total Cases','Population'], fontsize=20)

India

Country

Scatter Plot

plt.scatter(data['Total Cases'], data['Country'])

plt.title('Total Cases vs. Total Deaths')

plt.ylabel('Total Cases')

plt.xlabel('Total Deaths')

plt.show()

Heat Map

corr = data[['Total Cases', 'Total Deaths', 'Population',
'Country']].corr()
plt.title('Heatmap of Total Cases, Total Deaths, Population, and
Country')
sb.heatmap(corr, annot=True)
plt.show()

Pie Chart

```
slices = [62, 142, 195]
activities = ['Total Cases', 'Total deaths', 'Country']

cols=['#4C8BE2','#00e061','#fe073a'] exp
= [0.2,0.02,0.02]

plt.pie(slices,labels=activities,
textprops=dict(size=25,color='black'),
radius=3, colors=cols,
autopct='%2.2f%%', explode=exp,
shadow=True,
    startangle=90)

plt.title('Transmission\n\n\n\n\n',color='#4fb4f2',size=40)
```


Histogram

plt.hist(data['Total Cases'])

