HAMILTONSche Quaternionen

Proseminar Mathematik

Leon Richardt

7. Juli 2020

Universität Osnabrück

Überblick

Reelle Algebren

Historisches

Die Quaternionenalgebra H

Der Imaginärraum von H

Bezug zu klassischen Vektorprodukten

Zentrum von H

Endomorphismen von H

Fundamentalsatz der Algebra für Quaternionen

Anmerkung

In dieser Präsentation stehen kleine griechische Buchstaben stets für reelle Zahlen; lateinische Buchstaben stehen für Elemente der momentan betrachteten Algebra.

Definition

Ein Vektorraum V über $\mathbb R$ mit einer Produktabbildung

$$V \times V \to V, (x,y) \mapsto xy$$

heißt Algebra über $\mathbb R$ (oder reelle Algebra), wenn die beiden Distributivgesetze

$$(\alpha x + \beta y)z = \alpha \cdot xz + \beta \cdot yz,$$

$$x(\alpha y + \beta z) = \alpha \cdot xy + \beta \cdot xz$$

für alle $\alpha, \beta \in \mathbb{R}$ und $x, y, z \in V$ erfüllt sind.

Definition

Ein Element x einer Algebra \mathcal{A} heißt Nullteiler, falls es ein Element $0 \neq y \in \mathcal{A}$ mit xy = 0 oder yx = 0 gibt.

Konsequenterweise heißt eine Algebra nullteilerfrei, falls sie keine Nullteiler $\neq 0$ besitzt.

Definition

Eine Algebra $A = (V, \cdot)$ heißt ...

- · ... assoziativ, wenn x(yz) = (xy)z für alle $x, y, z \in V$ gilt.
- · ... kommutativ, wenn xy = xy für alle $x, y \in V$ gilt.
- ... mit Einselement, wenn es ein Element $e \in V$ mit ex = xe = x für alle $x \in V$ gibt.
- \cdot ... Divisionsalgebra, falls $\mathcal{A} \neq 0$ und die Gleichungen

$$ax = b \text{ und } ya = b$$

für alle $a, b \in V$, $a \neq 0$, eindeutig lösbar sind.

Lemma

Folgende Aussagen über eine endlichdimensionale Algebra ${\mathcal A}$ sind äquivalent:

- i) A ist Divisionsalgebra.
- ii) A ist nullteilerfrei.

Beweis.

- i) \implies ii) ist klar.
- $ii) \implies i)$:

Sei $a \in \mathcal{A}$ {0}. Die Abbildung $\varphi \colon \mathcal{A} \to \mathcal{A}$, $x \mapsto ax$ ist ein VR-Endomorphismus. Wegen der Nullteilerfreiheit ist $\operatorname{kern}(\varphi) = \{0\}$, was aufgrund des Kernkriteriums die Injektivität bedeutet. Da weiterhin $\dim(\mathcal{A}) < \infty$, folgt aus der Dimensionsformel die Bijektivität. Damit ist jede Gleichung der Form ax = b eindeutig lösbar.

Die eindeutige Lösbarkeit von ya = b ergibt sich durch analoge Betrachtung der Abbildung $y \mapsto ya$.

Liegt ein VR V mit einer Basis e_1,\ldots,e_n vor, so lässt sich durch die Festlegung der n^2 Basisprodukte

$$e_u e_v$$
, $1 \le u, v \le n$,

eine Algebra eindeutig bestimmen. Denn sind $x = \sum_{u=1}^{n} \alpha_u e_u$ und $y = \sum_{v=1}^{n} \beta_v e_v$ beliebige Elemente in V, so gilt wegen der Distributivgesetze

$$xy = \sum_{u,v=1}^{n} (\alpha_u \beta_v) e_u e_v.$$

Assoziativität und Kommutativität lassen sich dann einfach anhand der Basisprodukte überprüfen.

Der Imaginärraum von ⊞

Der Imaginärraum von ℍ

Bezug zu klassischen Vektorprodukten

Fundamentalsatz der Algebra für Quaternionen