Presenter: Nawaz Quraishi

- → Motivation
- ☐ Preview of the Data & Exploration
- Feature Engineering
- □ Modeling
- Next Steps
- Conclusion

Motivation: Perform Customer Segmentation and employ a Deep Learning Model on a Retail Data Set

#### Dataset:

- UCI Online II Retail Data Set
- 525,461 rows and 8 columns
- Transactions from 2009 to 2010

### Preview of the dataset

|   | Invoice | StockCode | Description                         | Quantity | InvoiceDate         | Price | Customer ID | Country        |
|---|---------|-----------|-------------------------------------|----------|---------------------|-------|-------------|----------------|
| 0 | 489434  | 85048     | 15CM CHRISTMAS GLASS BALL 20 LIGHTS | 12       | 2009-12-01 07:45:00 | 6.95  | 13085.0     | United Kingdom |
| 1 | 489434  | 79323P    | PINK CHERRY LIGHTS                  | 12       | 2009-12-01 07:45:00 | 6.75  | 13085.0     | United Kingdom |
| 2 | 489434  | 79323W    | WHITE CHERRY LIGHTS                 | 12       | 2009-12-01 07:45:00 | 6.75  | 13085.0     | United Kingdom |
| 3 | 489434  | 22041     | RECORD FRAME 7" SINGLE SIZE         | 48       | 2009-12-01 07:45:00 | 2.10  | 13085.0     | United Kingdom |
| 4 | 489434  | 21232     | STRAWBERRY CERAMIC TRINKET BOX      | 24       | 2009-12-01 07:45:00 | 1.25  | 13085.0     | United Kingdom |

Messy data with number of missing values, negative values for quantities and price

| Quantity |               | Price         | Customer ID   |  |
|----------|---------------|---------------|---------------|--|
| count    | 525461.000000 | 525461.000000 | 417534.000000 |  |
| mean     | 10.337667     | 4.688834      | 15360.645478  |  |
| std      | 107.424110    | 146.126914    | 1680.811316   |  |
| min      | -9600.000000  | -53594.360000 | 12346.000000  |  |
| 25%      | 1.000000      | 1.250000      | 13983.000000  |  |
| 50%      | 3.000000      | 2.100000      | 15311.000000  |  |
| 75%      | 10.000000     | 4.210000      | 16799.000000  |  |
| max      | 19152.000000  | 25111.090000  | 18287.000000  |  |

### Exploratory Data Analysis - Heat Map



**Exploratory Data Analysis - Analyzing Total Sales per Year** 



Exploratory Data Analysis - Analyzing Total Sales by Month



### **Exploratory Data Analysis - Top 5 Customers by Total Sales**



### Feature Engineering

- Total Sales (Quantity \* Price)
- Extracted Year, Month, Day & Hour
- Created Bins by Total Sales

#### K-Means Clustering

- Capable of clustering quickly and efficiently
- Suitable when you have fewer features
- Simplicity of implementation
- Adapts to new examples
- Widely used in the Retail Industry

K-Means Clustering: Selecting clusters (Elbow Method)



K-Means Clustering: Selecting clusters (Silhouette Analysis, k=5)



K-Means Clustering: Selecting clusters (Silhouette Analysis, k=6)



K-Means Clustering: Silhouette score observations

- Computationally expensive
- For most clusters, Silhouette scores were above 0.50

K-Means Clustering: Analyzing the clusters

 Although Elbow Method & Silhouette scores suggest choosing five or six clusters, it was more logical to have three clusters instead

### K-Means Clustering: Analyzing the clusters

| Cluster                                                                         | # 2                                                                                                                                 | Cluster                                                                         | ·#3                                                                                                                                          | Cluster # 4                                                                     |                                                                                                                                     |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| invoice quantity price customer_id total_sales year hour spend_category cluster | inf<br>1.033452e+01<br>3.158353e+00<br>1.547881e+04<br>1.870086e+01<br>2.009000e+03<br>1.310505e+01<br>0.000000e+00<br>2.000000e+00 | invoice quantity price customer_id total_sales year hour spend_category cluster | 9.922310e+28<br>1.000000e+00<br>8.864848e+03<br>1.529000e+04<br>8.864848e+03<br>2.010000e+03<br>1.280000e+01<br>1.000000e+00<br>3.000000e+00 | invoice quantity price customer_id total_sales year hour spend_category cluster | inf<br>2.913678e+02<br>2.647586e+01<br>1.547551e+04<br>5.669323e+02<br>2.009926e+03<br>1.215449e+01<br>1.000000e+00<br>4.000000e+00 |  |

#### **Deep Learning**

Used Deep Learning for classifying the clusters that I generated

- Sequential model
- Two hidden layers (100 neurons each)
- Softmax (for multiclass classification)
- Sparse categorical cross entropy for loss
- ReLu for Activation
- Accuracy for evaluation

Next steps

Accuracy score of the Deep Learning Model: 0.5785

The current accuracy score is not at the desired level, but it can serve as a starting point for further improvements in accuracy

#### Conclusion

- Successfully implemented K-means Clustering & Deep Learning techniques for customer segmentation
- The project sharpened my skills in data exploration, feature engineering, model optimization & interpretation
- Achieved a baseline accuracy of 0.5785, providing a starting point for future improvement and exploration of advanced techniques
- Laid a solid foundation for further exploration of advanced topics in Data Science and data-driven decision-making

Thank you for your attention!