14 Galois cohomology

14.1 群の cohomology

定義 14.1. G: 群、 M: 加法 (Abel) 群で G は M に加群としての作用をしているとする。ここで以下のように G^n から M への写像全体の集合を $C^n(n\in\mathbb{Z}_{\geq 0})$ として定める。

$$C^n = C^n(G, M) := \{f : G^n \longrightarrow M\} = \operatorname{Map}(G^n, M)$$

ただし $G^0=\{e\}$ と考えることで $C^0:=M$ と定める。この C^n の各元を n コチェイン $(\operatorname{cochain})$ という。 C^n 上へは $f,g\in C^n$ に対して (f+g)(x):=f(x)+g(x) と演算を定めることで C^n は加法群となる。

定義 14.2. C^n から C^{n+1} への以下のように定まる写像 ∂ を考える。

$$\partial = \partial^n : C^n \longrightarrow C^{n+1}$$
$$f \longmapsto \partial f$$

ここで $\partial f: G^{n+1} \longrightarrow M$ は G が M へ作用していることに注意して

$$\partial f(g_1, \dots, g_{n+1}) = g_1 f(g_2, \dots, g_{n+1})$$

$$+ \sum_{i=1}^n (-1)^i f(g_1, \dots, g_i g_{i+1}, \dots, g_{n+1})$$

$$+ (-1)^{n+1} f(g_1, \dots, g_n)$$

と定める。このときこの $\partial (=\partial^n): C^n(G,M) \longrightarrow C^{n+1}(G,M)$ は加法群の準同型になり、これをn次のコバウンダリー (双対境界) 作用素 (coboundary operator)とよぶ。

命題 **14.3.** コバウンダリー作用素 ∂ に対して $\partial^{n+1} \circ \partial^n = 0$ が成り立つ。

Proof. $4 \le n$ でまず考える。

 $(\partial^{n+1}\circ\partial^n)(f)(g_1,\ldots,g_{n+2})=\partial^{n+1}(\partial^n f)(g_1,\ldots,g_{n+2})$ なので $f':=\partial^n f$ として $\partial^{n+1} f'(g_1,\ldots,g_{n+2})$ は

$$\partial^{n+1} f'(g_1, \dots, g_{n+2}) = g_1 f'(g_2, \dots, g_{n+2})$$

$$+ \sum_{i=1}^{n+1} (-1)^i f'(g_1, \dots, g_i g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f'(g_1, \dots, g_{n+1})$$

である。 $f'(g_1,\ldots,g_ig_{i+1},\ldots,g_{n+2})=\partial^n f(g_1,\ldots g_ig_{i+1},\ldots,g_{n+2})$ を i の値によって計算する。 ・ i=1 のとき

$$\partial^{n} f(g_{1}g_{2}, \dots, g_{n+2}) = g_{1}g_{2}f(g_{3}, \dots, g_{n+2})$$

$$+ (-1)^{1} f((g_{1}g_{2})g_{3}, g_{4}, \dots, g_{n+2})$$

$$+ \sum_{k=3}^{n+1} (-1)^{k-1} f(g_{1}g_{2}, g_{3}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}g_{2}, g_{3}, \dots, g_{n})$$

· *i* = 2 のとき

$$\partial^{n} f(g_{1}, g_{2}g_{3}, g_{4}, \dots, g_{n+2}) = g_{1} f(g_{2}g_{3}, g_{4}, \dots, g_{n+2})$$

$$+ (-1)^{1} f(g_{1}(g_{2}g_{3}), g_{4}, \dots, g_{n+2})$$

$$+ (-1)^{2} f(g_{1}, (g_{2}g_{3})g_{4}, g_{5}, \dots, g_{n+2})$$

$$+ \sum_{k=4}^{n+1} (-1)^{k-1} f(g_{1}, g_{2}g_{3}, g_{4}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}, g_{2}g_{3}, g_{4}, \dots, g_{n+1})$$

・ $3 \le i \le n-1$ のとき

$$\partial^{n} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n+2}) = g_{1} f(g_{2}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ \sum_{k=1}^{i-2} (-1)^{k} f(g_{1}, \dots, g_{k}g_{k+1}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{i-1} f(g_{1}, \dots, g_{i-2}, g_{i-1}(g_{i}g_{i+1}), g_{i+2}, \dots, g_{n+2})$$

$$+ (-1)^{i} f(g_{1}, \dots, g_{i-1}, (g_{i}g_{i+1})g_{i+2}, g_{i+3}, \dots, g_{n+2})$$

$$+ \sum_{k=i+2}^{n+1} (-1)^{k-1} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{k}g_{k+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n+1})$$

· i=n のとき

$$\partial^{n} f(g_{1}, \dots, g_{n}g_{n+1}, g_{n+2}) = g_{1} f(g_{2}, \dots, g_{n}g_{n+1}, g_{n+2})$$

$$+ \sum_{k=1}^{n-2} (-1)^{k} f(g_{1}, \dots, g_{k}g_{k+1}, \dots, g_{n}g_{n+1}, g_{n+2})$$

$$+ (-1)^{n-1} f(g_{1}, \dots, g_{n-1}(g_{n}g_{n+1}), g_{n+2})$$

$$+ (-1)^{n} f(g_{1}, \dots, g_{n-1}, (g_{n}g_{n+1})g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}, \dots, g_{n-1}, g_{n}g_{n+1})$$

・ i = n + 1 のとき

$$\partial^{n} f(g_{1}, \dots, g_{n+1}g_{n+2}) = g_{1} f(g_{2}, \dots, g_{n+1}g_{n+2})$$

$$+ \sum_{k=1}^{n-1} (-1)^{k} f(g_{1}, \dots, g_{k}g_{k+1}, \dots, g_{n}, g_{n+1}g_{n+2})$$

$$+ (-1)^{n} f(g_{1}, \dots, g_{n-1}, g_{n}(g_{n+1}g_{n+2}))$$

$$+ (-1)^{n+1} f(g_{1}, \dots, g_{n})$$

となる。

また、
$$g_1f'(g_2,\ldots,g_{n+2})$$
 と $(-1)^{n+2}f'(g_1,\ldots,g_{n+1})$ は以下のようになる。
$$g_1\partial^n f(g_2,\ldots,g_{n+2}) = g_1(g_2f(g_3,\ldots,g_{n+2}) \\ + \sum_{i=2}^{n+1} (-1)^{i-1}f(g_2,\ldots,g_ig_{i+1},\ldots,g_{n+2}) \\ + (-1)^{n+1}f(g_2,\ldots,g_{n+1})) \\ (-1)^{n+2}\partial^n f(g_1,\ldots,g_{n+1}) = (-1)^{n+2}(g_1f(g_2,\ldots,g_{n+1}) \\ + \sum_{i=1}^n (-1)^i f(g_1,\ldots,g_ig_{i+1},\ldots,g_{n+1}) \\ + (-1)^{n+1}f(g_1,\ldots,g_n))$$

$$\begin{array}{l} -2i \frac{\lambda}{2} \frac{\partial^{n+1}(\partial^n f)(g_1,\ldots,g_{n+2})}{\partial^n x^{k_1}} \left\{ \frac{\lambda}{2} \frac{\lambda}{2} \frac{\lambda}{2} \right\} \\ \partial^{n+1}(\partial^n f)(g_1,\ldots,g_{n+2}) & + \sum_{i=2}^{n+1} (-1)^{i-1} g_1 f(g_2,\ldots,g_i g_{i+1},\ldots,g_{n+2}) \\ & + \sum_{i=2}^{n+1} (-1)^{n+1} g_1 f(g_2,\ldots,g_{n+1}) \right\} \\ & + (-1)^{n+1} g_1 g_2 f(g_3,\ldots,g_{n+2}) \\ & + (-1)^1 f(g_1 g_2 g_3,g_4,\ldots,g_{n+2}) \\ & + \sum_{i=2}^{n+1} (-1)^{k-1} f(g_1 g_2,g_3,\ldots,g_n) \\ & + (-1)^{n+1} f(g_1 g_2,g_3,\ldots,g_n) \right\} \\ & + (-1)^{n+1} f(g_1 g_2,g_3,\ldots,g_n) \\ & + (-1)^2 f(g_1 f(g_2 g_3),g_4,\ldots,g_{n+2}) \\ & + (-1)^2 f(g_1 f(g_2 g_3),g_4,\ldots,g_{n+2}) \\ & + (-1)^2 f(g_1 (g_2 g_3),g_4,\ldots,g_{n+2}) \\ & + (-1)^2 f(g_1 (g_2 g_3),g_4,\ldots,g_{n+2}) \\ & + \sum_{i=1}^{n+1} (-1)^{k-1} f(g_1,g_2 g_3,g_4,\ldots,g_{n+2}) \\ & + \sum_{i=2}^{n+1} (-1)^i f(g_1,\ldots,g_i g_{i+1},\ldots,g_{n+2}) \\ & + \sum_{i=3}^{n-1} (-1)^i f(g_1,\ldots,g_i g_{i+1},\ldots,g_{n+2}) \\ & + \sum_{i=3}^{n-1} (-1)^i f(g_1,\ldots,g_{i-1},(g_i g_{i+1})g_{i+2},g_{i+3},\ldots,g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_i g_{i+1},\ldots,g_n g_{n+1}) \\ & + \sum_{i=1}^{n-1} (-1)^{k-1} f(g_1,\ldots,g_i g_{i+1},\ldots,g_n g_{n+1},g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_n g_{n+1},g_{n+2}) \\ & + (-1)^{n-1} f(g_1,\ldots,g_{n-1},(g_n g_{n+1})g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_{n-1},(g_n g_{n+1})g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_{n-1},g_n g_{n+1},g_{n+2}) \\ & + \sum_{i=1}^{n-1} (-1)^k f(g_1,\ldots,g_n g_{n+1},\ldots,g_n,g_{n+1}) \right\} \\ & + \sum_{i=1}^{n-1} (-1)^k f(g_1,\ldots,g_n g_{n+1},\ldots,g_n,g_{n+1}) \\ & + \sum_{i=1}^{n-1} (-1)^k f(g_1,\ldots,g_n g_{n+1},\ldots,g_n,g_{n+1}) \\ & + \sum_{i=1}^{n-1} (-1)^k f(g_1,\ldots,g_n g_{n+1},\ldots,g_n,g_{n+1}) \\ & + \sum_{i=1}^{n-1} (-1)^{k+1} f(g_1,\ldots,g_n g_{n+1},\ldots,g_n,g_{n+1}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_n g_{n+1},\ldots,g_n g_{n+1}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_$$

定義 14.4. 以下のように $n\in\mathbb{Z}_{\geq 0}$ に対して定める Z^n を $\underline{n\text{-th}}$ コサイクル (双対輪体)といい、 B^n をn-th コバウンダリー (境界輪体)という。

$$Z^n = Z^n(G, M) := \ker(\partial^n)$$

$$B^n = B^n(G, M) := \operatorname{Im}(\partial^{n-1})$$

ただし $B^0:=0$ とする。このとき命題 (14.3) から $\partial^n\circ\partial^{n-1}=0$ なので $\partial^n(\mathrm{Im}(\partial^{n-1}))=0$ より $B^n\subset Z^n$ が成り立っている。よって剰余群 Z^n/B^n が定義できて

$$H^n = H^n(G, M) := Z^n(G, M)/B^n(G, M)$$

を Gの M 係数のn-th コホモロジー群 (cohomology)という。