PPAR: GPU code optimization

Caroline Collange she/her

caroline.collange@inria.fr https://team.inria.fr/pacap/members/collange/

> Master 1 PPAR - 2022

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization

Asynchronous execution

- Most GPU commands in CUDA are buffered in a queue
- Commands execute asynchronously, in order

Asynchronous execution

- By default, most CUDA function calls are asynchronous
 - Returns immediately to CPU code
 - GPU commands are queued and executed in-order
- Some commands are synchronous by default
 - cudaMemcpy(..., cudaMemcpyDeviceToHost)
 - Asynchronous version: cudaMemcpyAsync
- Keep it in mind when checking for errors and measuring timing!
 - Error returned by a command may be caused by an earlier command
 - Time taken by kernel<<<>>> launch is meaningless
- To force synchronization: cudaDeviceSynchronize()

Asynchronous transfers

Overlap CPU work with GPU work

Can we do better?

Multiple command queues / streams

Streams: pipelining commands

- Command queues in OpenCL
 - Commands from the same stream run in-order
 - Commands from different streams run out-of-order

Streams: benefits

- Overlap CPU-GPU communication and computation: Direct Memory Access (DMA) copy engine runs CPU-GPU memory transfers in background
 - Requires page-locked memory
 - Some Tesla GPUs have 2 DMA engines: simultaneous send and receive
- Concurrent kernel execution
 - Start next kernel before previous kernel finishes
 - Mitigates impact of load imbalance / tail effect

Example

Serial kernel execution

a block 0 a 3			b 0	b 3
a 1	a 4		b 1	
a 2			b 2	

Concurrent kernel execution

a block	a 3		b 2		
a 1	a 4		b 1		
a 2			0 C		ე 3

Page-locked memory

- By default, allocated memory is pageable
 - Can be swapped out to disk, moved by the OS...
- DMA transfers are only safe on page-locked memory
 - Fixed virtual → physical mapping
 - cudaMemcpy needs an intermediate copy: slower, synchronous only
- cudaMallocHost allocates page-locked memory
 - Mandatory when using streams
- Warning: page-locked memory is a limited resource!

Streams: example

Send data, execute, receive data

```
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaStreamCreate(&stream[i]);
float* hostPtr:
cudaMallocHost(&hostPtr, 2 * size);
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
   MyKernel <<<100, 512, 0, stream[i]>>>
        (outputDevPtr + i * size, inputDevPtr + i * size, size);
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
}
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);
```

Events: synchronizing streams

- Schedule synchronization of one stream with another
 - Specify dependencies between tasks

```
cudaEvent t e;
 cudaEventCreate(&e);
 kernel1<<<,,,,a>>>();
 cudaEventRecord(e, a);
 cudaStreamWaitEvent(b, e);
                                            kernel1
 kernel2<<<,,,,b>>>();
                                                               Event e
cudaEventDestroy(e);
Measure timing
                                                      kernel2
cudaEventRecord(start, 0);
                                                               start
kernel<<<>>>();
cudaEventRecord(stop, 0);
                                                      kernel
cudaEventSynchronize(stop);
                                                               stop
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
```

Scheduling data dependency graphs

- With streams and events, we can express task dependency graphs
 - Equivalent to threads and events (e.g. semaphores) on CPU
- Example:
 - 2 GPU streams: a b and 1 CPU thread:
 - Where should we place events?

Scheduling data dependency graphs

```
kernel1<<<,,,,a>>>();
cudaEventRecord(e1, a);
kernel2<<<,,,,b>>>();
cudaStreamWaitEvent(b, e1);
kernel3<<<,,,,b>>>();
cudaEventRecord(e2, b);
kernel5<<<,,,,a>>>();
cudaEventRecord(e3, a);
cudaEventSynchronize(e2);
CPU code
cudaStreamWaitEvent(b, e3);
kernel4<<<,,,,b>>>();
```


NVIDIA Compute capabilities

Newer GPUs introduce additional features

- Compute capability means both
 - Set of features supported
 Who can do more can do less: x > y → CC x includes CC y
 - Native instruction set
 Not always backward-compatible
 e.g. GPU of CC 6.0 cannot run binary for CC 5.2

Compiler targets

- Compiler flags: --generate-code arch=<arch>, code=<code>,...
 - arch=CC: directs PTX generation my code requires features of CC
 - code=CC: directs native code gen. generate code for GPU CC
 - Multiple targets are possible
- CC can be
 - compute xx for PTX
 - sm xx for native
- Example

nvcc -generate-code arch=compute 10,code=sm 10 --generate-code arch=compute_11,code='sm_12,sm_13'

-o hello hello.cu

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization

Memory access patterns

In traditional vector processing

Scalar load & broadcast Reduction & scalar store

(Non-unit) strided load (Non-unit) strided store

On GPUs

Every load is a gather, every store is a scatter

Breakdown of memory access patterns

- Vast majority: uniform or unit-strided
 - And even aligned vectors

Hardware is optimized for the common case

Memory coalescing

- In hardware: compare the address of each vector element
- Coalesce memory accesses that fall within the same segment

Dynamically detects parallel memory regularity

Consequences: threading granularity

X

- Coarse-grained threading
 - Decouple tasks to reduce conflicts X and inter-thread communication
 - e.g. MPI, OpenMP

- Fine-grained threading
 - Interleave tasks
 - Exhibit locality: neighbor threads share memory
 - Exhibit regularity: neighbor threads have a similar behavior
 - e.g. CUDA, OpenCL

Array of structures (AoS)

- Programmer-friendly memory layout
 - Group data logically
- Memory accesses not coalesced
 - Bad performance on GPU

```
struct Pixel {
          float r, g, b;
       };
       Pixel image AoS[480][640];
kernel void luminance (Pixel img[][],
    float luma[][]\
    int x=tid.x; int y=tid.y;
    luma[y][x]=.59*img[y][x].r
        + .11*img[y][x].g
        + .30*img[y][x].b;
```

Need to rethink data structures for fine-grained threading

Structure of Arrays (SoA)

- Transpose the data structure
 - Group together similar data for different threads
- Benefits from memory coalescing
 - Best performance on GPU

```
struct Image {
    float R[480][640];
    float G[480][640];
    float B[480][640];
};
Image image_SoA;
```

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization

Vector loads

- We can load more data at once with vector types
 - float2, float4, int2, int4...
 - More memory parallelism
 - Allows to reach peak throughput with fewer threads

Source: Paulius Micikevicius, GPU Performance Analysis and Optimization. GTC 2012.

Multiple outstanding loads

- Multiple independent loads from the same thread can be pipelined
 - More memory parallelism
 - Peak throughput with yet fewer threads

Buffer accesses through shared memory

- Global memory accesses are the most expensive
 - Focus on optimizing global memory accesses
- Strategy: use shared memory as a temporary buffer

- 1. Load with regular accesses
- 2. Read and write shared memory with original pattern
- 3. Store back to global memory with regular accesses

Example: matrix transpose

- \bullet B = A^T
- Naive algorithms
 - Option 1

```
Thread i,j:
B[j,i]=A[i,j]
```

Option 2

- Which one is better?
 - What is the problem?

Example: matrix transpose

- \bullet B = A^T
- Naive algorithms
 - Option 1

- Both are equally bad
 - Access to one array is non-coalesced

Matrix transpose using shared memory

- Split matrices in blocks
- Load the block in shared memory
- Transpose in shared memory
- Write the block back

Example with 16×16 blocks

```
Block bx,by, Thread tx,ty:
a[ty,tx]=A[by*16+ty,bx*16+tx]
Syncthreads

b[ty,tx]=a[tx,ty]
Syncthreads

B[by*16+ty,bx*16+tx]=b[ty,tx]
```

Matrix transpose using shared memory

- Split matrices in blocks
- Load the block in shared memory
- Transpose in shared memory
- Write the block back

Example with 16×16 blocks

Same location read and written:

→ local variable, per thread

Objection

- Isn't it just moving the problem to shared memory?
- Yes: shared memory has access restrictions too
- But
 - Shared memory is much faster, even for irregular accesses
 - We can optimize shared memory access patterns too

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization

Shared memory: banked

- Inside each SM, shared memory is distributed between multiple banks
 - ◆ 16 or 32 banks

Shared memory bank assignment

Interleaved on a word-by-word basis:
 Modulo placement of data

Shared memory address space

Shared memory: good case

- Threads access contiguous locations: no conflict
 - All threads can be served concurrently

Shared memory address space

Shared memory: bad case

- Threads access random locations: some conflicts
 - Some threads have to wait for a bank

Shared memory address space

Shared memory: worst case

- Threads access locations spaced by 16: systematic conflict
 - All threads have to wait for the same bank

Shared memory address space

Example: matrix transpose

Where are bank conflicts?

```
Block bx,by, Thread tx,ty:
   a[ty*16+tx]=A[by*16+ty,bx*16+tx]
   Syncthreads
   b[ty*16+tx]=a[tx*16+ty]
   Syncthreads
   B[by*16+ty,bx*16+tx]=b[ty*16+tx]
```


Example: matrix transpose

Where are bank conflicts?


```
Block bx,by, Thread tx,ty:

a[ty*16+tx]=A[by*16+ty,bx*16+tx]

Syncthreads
b[ty*16+tx]=a[tx*16+ty]

Syncthreads
B[by*16+ty,bx*16+tx]=b[ty*16+tx]
```

Column access: systematic conflicts

How to avoid them?

Remapping data

Solution 1: pad with empty cells

```
Block bx, by, Thread tx, ty:
   a[ty*17+tx]=A[by*16+ty,bx*16+tx]
   Syncthreads
   b[ty*16+tx]=a[tx*17+ty]
   Syncthreads
   B[by*16+ty,bx*16+tx]=b[ty*17+tx]
```

- No bank conflicts
- Memory overhead

Remapping data

- Solution 2: different mapping function
 - Example: map [y,x] to y*16+(x+y mod 16)
 - Or y*16+(x ^ y)

```
Block bx,by, Thread tx,ty:
    a[ty*16+(tx+ty)%16]=A[by*16+ty,bx*16+tx]
    Syncthreads
    b[ty*16+tx]=a[tx*16+(ty+tx)%16]
    Syncthreads
    B[by*16+ty,bx*16+tx]=b[ty*17+tx]
```

- No bank conflicts
- No memory overhead

Column accesses

Row

16 4

Recap

- Overlap long-latency communications with computations
- Avoid global accesses when you can
 - Reuse data to get enough arithmetic intensity
 - Use registers and shared memory whenever possible
- Make consecutive threads access contiguous data
 - Stage data in shared memory if needed
- Avoid bank conflicts in shared memory
- Express locality and regularity

Break

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization

Arithmetic intensity

- Example from first lecture
 - NVIDIA GTX 980 needs ≥114 flops / word to reach peak performance
- How to reach enough arithmetic intensity?
 - Need to reuse values loaded from memory

Classic example: matrix multiplication

Naive algorithm

• Arithmetic intensity: 1:1 :(

Reusing inputs

Move loop on k up

```
for k = 0 to n-1
    for i = 0 to n-1
        for j = 0 to n-1
        C[i,j]+=A[i,k]*B[k,j]
```


- But no more reuse on matrix C!

With tiling

Block loops on i and j

```
for i = 0 to n-1 step 16
  for j = 0 to n-1 step 16
   for k = 0 to n-1
      for i2 = i to i+15
      for j2 = j to j+15
            C[i2,j2]+=A[i2,k]*B[k,j2]
```

 For one block: product between horizontal panel of A and vertical panel of B

With more tiling

Block loop on k

```
for i = 0 to n-1 step 16
  for j = 0 to n-1 step 16
    for k = 0 to n-1 step 16
    for k2 = k to k+15
        for i2 = i to i+15
        for j2 = j to j+15
        C[i2,j2]+=A[i2,k]*B[k,j2]
```


Pre-loading data

Arithmetic intensity?

```
for i = 0 to n-1 step 16
   for j = 0 to n-1 step 16
       c = \{0\}
       for k = 0 to n-1 step 16
           a = A[i..i+15,k..k+15]
                                                        Load submatrices a and b
           b = B[k..k+15,j..j+15]
           for k2 = 0 to 15
                                                        Multiply submatrices c = a \times b
              for i2 = 0 to 15
                  for j2 = 0 to 15
                      c[i2,j2]+=a[i2,k2]*b[k2,j2]
       C[i..i+15,j..j+15] = c
                                                     Store submatrix c
                                   В
                                                            C
          Α
                                   b
                                                            C
    a
```

Breaking into two levels

Run loops on i, j, i2, j2 in parallel

```
for // i = 0 to n-1 step 16
                                  Level 2:
   for // j = 0 to n-1 step 16
                                   Blocks
      c = \{0\}
      for k = 0 to n-1 step 16
                                                    Level 1:
          a = A[i..i+15,k..k+15]
                                                    Threads
          b = B[k..k+15,j..j+15]
          for k2 = 0 to 15
             for // i2 = 0 to 15
                 for // j2 = 0 to 15
                    c[i2,j2]+=a[i2,k2]*b[k2,j2]
      C[i..i+15,j..j+15] = c
```

Let's focus on threads

Level 1: SIMD (PRAM-style) version

- Each processor has ID (x,y)
 - Loops on i2, j2 are implicit

```
c[x,y] = 0
for k = 0 to n-1 step 16
a[x,y] = A[i+x,k+y]
b[x,y] = B[k+x,j+y]
for k2 = 0 \text{ to } 15
c[x,y] = a[x,k2]*b[k2,y]
C[i+x,j+y] = c[x,y]
```

Read from other processors

How to translate to SPMD (BSP-style) ?

SPMD version

Place synchronization barriers

```
c[x,y] = 0
for k = 0 to n-1 step 16
   a[x,y] = A[i+x,k+y]
   b[x,y] = B[k+x,j+y]
   Barrier
   for k2 = 0 to 15
        c[x,y]+=a[x,k2]*b[k2,y]
   Barrier
C[i+x,j+y] = c[x,y]
```


Why do we need the second barrier?

Data allocation

- 3 memory spaces: Global, Shared, Local
 - Where should we put: A, B, C, a, b, c?

```
c[x,y] = 0
for k = 0 to n-1 step 16
   a[x,y] = A[i+x,k+y]
   b[x,y] = B[k+x,j+y]
   Barrier
   for k2 = 0 to 15
        c[x,y] += a[x,k2]*b[k2,y]
   Barrier
C[i+x,j+y] = c[x,y]
```

Data allocation

- Memory spaces: Global, Shared, Local
 - As local as possible

```
for k = 0 to n-1 step 16

a[x,y] = A[i+x,k+y]

b[x,y] = B[k+x,j+y]

Barrier

for k2 = 0 to 15

c += a[x,k2]*b[k2,y]

Barrier

C[i+x,j+y] = c

C[i+x,j+y] = c

Cocal: private to each thread (indices are implicit)

Global: shared between blocks / inputs and outputs

c += a[x,k2]*b[k2,y]

Shared: shared between threads, private to block
```

CUDA version

Straightforward translation

```
float Csub = 0;
                                              Precomputed base addresses
for(int a = aBegin, b = bBegin;
     a \le aEnd;
     a += aStep, b += bStep) {
     <u>shared</u> float As[BLOCK_SIZE][BLOCK_SIZE]; \to Declare shared memory
    shared float Bs[BLOCK SIZE][BLOCK SIZE];
    As[ty][tx] = A[a + wA * ty + tx];
                                              Linearized arrays
    Bs[ty][tx] = B[b + wB * ty + tx];
     syncthreads();
    for(int k = 0; k < BLOCK SIZE; ++k)
        Csub += As[ty][k] * Bs[k][tx];
    syncthreads();
int c = wB * BLOCK SIZE * by + BLOCK SIZE * bx;
C[c + wB * tv + tx] = Csub;
```

Optimizing memory access patterns

Back to the tiled matrix multiply algorithm

Let's focus on threads

Memory access patterns

On a block of 256 threads

```
T0 T1 T2 T3 T16 T17 T255

X 0 1 2 3 0 1 15

y 0 0 0 0 0 1 15
```

- Which accesses are coalesced?
- Are there bank conflicts?

Memory access patterns

:(

- No coalesced access
- Massive bank conflicts

Can we improve it?

Memory optimization

Exchange x and y

- Success!
- Now can we improve memory parallelism?

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Workload partitioning
- Instruction-level optimization

Workload partitioning

How to choose grid dimensions?

- Number of blocks per grid
 - Linear with data size, or constant
 - Min: at least number of SMs * blocks per SM
 - No max in practice
- Number of threads per block
 - Constant: should not depend on dataset size
 - Max: hardware limitation, 512 or 1024 threads
 - Min: size of a warp: 32 threads
- Iterations per thread
 - Constant or variable
 - Min: enough to amortize thread creation overhead
 - No max, but shorter-lived threads reduce load imbalance

Multiple grid/block dimensions

- Grid and block size are of type dim3
 - Support up to 3 dimensions

```
dim3 dimBlock(tx, ty, tz);
dim3 dimGrid(bx, by, bz);
my_kernel<<<dimGrid, dimBlock>>>(arguments);
```

- Implicit cast from int to dim3
 y and z sizes are 1 by default
- On device side, threadIdx, blockDim, blockIdx, gridDim are also of type dim3
 - Access members with .x, .y, .z

Occupancy metric

- Threads per SM / max threads per SM
- Resource usage may cause non-ideal occupancy
 - Register usage
 - Shared memory usage
 - Non-dividable block size

Available shared memory: 16KB

Usage: 12KB/block

→ Only 1 block / SM

Available registers: 32768

Usage: 64 registers/thread,

blocks of 256 threads

 \rightarrow Only 2 blocks / SM

Max threads/SM: 768 threads

Block size: 512 threads

→ Only 1 block / SM

Could run 3 blocks of 256 threads

GPU: on-chip memory

- Conventional wisdom
 - Cache area in CPU vs. GPU according to the NVIDIA CUDA Programming Guide:

But... if we include registers:

GPU	Register files + caches
NVIDIA GM204 GPU	8.3 MB
AMD Hawaii GPU	15.8 MB
Intel Core i7 CPU	9.3 MB

Figure 1-2. The GPU Devotes More Transistors to Data Processing

GPU/accelerator internal memory exceeds desktop CPU's

How many threads?

- As many as possible (maximize occupancy)?
 - Maximal data-parallelism
 - Latency hiding
 - Locality
 - Store private data of each thread
 - Thread management overhead
 - Initialization, redundant operations
- Trade-off between parallelism and memory locality

Multiple elements per thread

- Block size (16, 16) → (8, 16)
- 2 elements per thread: (x, y) and (x+8, y)

```
c[0] = 0
c[1] = 0
for k = 0 to n-1 step 16
    a[y,x] = A[i+y,k+x]
    b[y,x] = B[k+y,j+x]
    a[y+8,x] = A[i+y+8,k+x]
    b[y+8,x] = B[k+y+8,j+x]
    Barrier
    for k2 = 0 to 15
        c[0] += a[y,k2]*b[k2,x]
        c[1] += a[y+8,k2]*b[k2,x]
    Barrier

C[i+y,j+x] = c[0]
C[i+y+8,j+x] = c[1]
```

What about shared memory?

Data reuse

- Share reads to submatrix b
 - Fewer shared memory accesses
 - Exchange data through registers

```
c[0] = 0
c[1] = 0
for k = 0 to n-1 step 16
   a[y,x] = A[i+y,k+x]
   b[y,x] = B[k+y,j+x]
   a[y+8,x] = A[i+y+8,k+x]
   b[y+8,x] = B[k+y+8,j+x]
   Barrier
   for k2 = 0 to 15
      bl = b[k2,x]
      c[0] += a[y,k2]*bl
      c[1] += a[y+8,k2]*bl
   Barrier
C[i+y,j+x] = c[0]
C[i+y+8,j+x] = c[1]
```

Improves register usage too. Why?

Expressing vector loads

- Multiple consecutive elements per thread
 - Here: 4*x, 4*x+1, 4*x+2, 4*x+3
- Load, store, and compute on short vectors

```
c[0..31 = 0]
                                                       Vector loads
for k = 0 to n-1 step 4*16
                                                       from global memory
   a[y,4*x..4*x+3]) = A[i+y,k+4*x..k+4*x+3]
   b[y,4*x..4*x+3] = B[k+y,j+4*x..j+4*x+3]
   Barrier
                                                Vector loads/store-
   for k^2 = 0 to 15
                                                  in shared memory
       bl[0..3] = b[k2,4*x..4*x+3]
       c[0..3] += a[y,k2]*bl[0..3]
                                              Scalar-vector product
   Barrier
C[i+y,4*(j+x)...4*(j+x)+3] = c[0...3]
                                            Vector store to global memory
```

Example: SGEMM from CUBLAS 1.1

NVIDIA's reference matrix multiplication code in 2008

- 512 threads / CTA, 15 registers / thread
- 9 registers / 15 contain redundant data
- Only 2 registers really needed

512 threads / CTA Example from: Volkov. Programming inverse memory hierarchy: case of stencils pg GPUs. *ParCFD*, 2010.

Fewer threads, more computations

- Optimized version: SGEMM in CUBLAS 2.0
 - 8 elements computed / thread
 - Unrolled loops
 - Less traffic through shared memory, more through registers
- Overhead amortized
 - 1920 registers vs. 7680 for the same amount of work
 - Works for redundant computations too
- Instruction-level parallelism is still relevant

64 threads / CTA

Re-expressing parallelism

Converting types of parallelism

- General strategy
 - Design phase: focus on thread-level parallelism
 - Optimization phase: convert TLP to Instruction-level or Data-level parallelism

Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Workload partitioning
- Instruction-level optimization

Loop unrolling

- Can improve performance
 - Amortizes loop overhead over several iterations
 - May allow constant propagation, common sub-expression elimination...
- Unrolling is necessary to keep arrays in registers

The compiler can unroll for you

```
#pragma unroll
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}</pre>
```

Warp-based execution

- Threads in a warp run in lockstep
- On NVIDIA architectures, warp is 32 threads
- A block is made of warps (warps do not cross block boundaries)
 - Block size multiple of 32 for best performance

Branch divergence

Conditional block

```
if(c) {
    // A
}
else {
    // B
}
```

All threads of a warp take the same path

With imaginary 4-thread warps

Branch divergence

Conditional block

```
if(c) {
    // A
}
else {
    // B
}
```

Threads in a warp take different paths

Warps have to go through both A and B: lower performance

Avoiding branch divergence

 Hoist identical computations and memory accesses outside conditional blocks

```
if(tid % 2) {
    s += 1.0f/tid;
    s += t;
else {
    s -= 1.0f/tid;
    s -= t;
}
```

When possible, re-schedule work to make non-divergent warps

```
// Compute 2 values per thread
int i = 2 * tid;
s += 1.0f/i - 1.0f/(i+1);
```

What if I use C's ternary operator (?:) instead of if?
 (or tricks like ANDing with a mask, multiplying by a boolean...)

Ternary operator ? good : bad

- Run both branches and select: R = c ? A : B;
 - No more divergence?
- All threads have to take both paths
 No matter whether the condition is divergent or not

- Does not solve divergence: we lose in all cases!
- Only benefit: fewer instructions
 - May be faster for short, often-divergent branches
- Compiler will choose automatically when to use predication
 - Advice: keep the code readable, let the compiler optimize

Recap

- Beware of local arrays use static indices and loop unrolling
- Keep in mind branch divergence when writing algorithm but do not end up in managing divergence yourself

Takeaway

- Distribute work and data
 - Favor SoA
 - Favor locality and regularity
 - Use common sense (avoid extraneous copies or indirections)
- More threads ≠ higher performance
 - Saturate instruction-level parallelism first (almost free)
 - Complete with data parallelism (expensive in terms of locality)
- Usual advice applies
 - First write correct code
 - Profile
 - Optimize
 - Repeat

References and further reading/watching

- CUDA C Programming Guide
- Mark Harris. Introduction to CUDA C. http://developer.nvidia.com/cuda-education
- David Luebke, John Owens. Intro to parallel programming.
 Online course. https://www.udacity.com/course/cs344
- Paulius Micikevicius. GPU Performance Analysis and Optimization.
 GTC 2012.

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC 2012-GPU-Performance-Analysis.pdf