AER 8375 – Analyse et performance des avions TP 1B – Calculs de paramètres reliés aux vitesses

Pour ce TP, vous devez ajouter différents calculs au programme développé pour le TP 1A. Le travail peut se faire seul ou en équipe.

Spécifications du programme :

- Entrées:
 - Altitude pression H_p (ft)
 - o Température T (deg. C) ou déviation par rapport à ISA ΔISA (deg. C)
 - O Vitesse (une parmi les suivantes):

- Mach
- Vitesse vraie V (kts)
- Vitesse équivalente V_e (kts)
- Vitesse calibrée V_c (kts)
- o Masse de l'avion W (lb)
- O Surface alaire S (ft^2) (si non spécifié, assumez S = 520 ft^2)
- Longueur de référence pour calcul du nombre de Reynolds (ft) (si non spécifié, assumez l = MAC = 8.286 ft)
- Sorties additionnelles relatives au TP 1A (4 chiffres significatifs sont requis):
 - O Vitesse du son a (kts et ft/s)
 - O Vitesses de l'avion:
 - Mach
 - Vitesse vraie V (kts et ft/s)
 - Vitesse équivalente V_e (kts et ft/s)
 - Vitesse calibrée V_c (kts et ft/s)
 - Pression totale p_t (lb/ft²)
 - Pression dynamique q (lb/ft²)
 - \circ Pression d'impact q_c (lb/ft²)
 - o Température totale T_t (deg. C et deg. K)
 - O Viscosité dynamique μ (lb-sec/ft2)
 - O Nombre de Reynolds RN (basé sur MAC)
 - \circ Coefficient de portance de l'avion Cl (basé sur $N_z = 1.0$)

Le programme doit être utilisé pour calculer les sorties additionnelles pour les conditions suivantes. Un tableau Excel des solutions sera fourni pour valider vos fonctions.

Нр	T	W	Vitesse
(ft)	(°C)	(lb)	
-2000*	35	40,000	150.0 kts CAS
20000	-40	40,000	250.0 kts EAS
36089	-60	40,000	450.0 kts TAS
40000	-50	40,000	Mach 0.74

^{*} Les résultats obtenus pour ce cas peuvent être validés par des calculs manuels.

Des calculateurs de propriétés atmosphériques/vitesses/RN sont disponibles sur internet et devraient être utilisés, en plus des calculs manuels, pour vérifier vos résultats. Des données d'autres sources peuvent être utilisées au besoin.

L'étudiant doit développer toutes les parties du code et ne peut utiliser des modules ou des sousroutines fournis sur internet et/ou dans d'autres cours.