MATH-517: Assignment 3

Duncan Bleich

2025-10-03

Theoretical exercise

First notice that we can rewrite

$$\left(\hat{\beta}_0(x),\,\hat{\beta}_1(x)\right) = \arg\min_{\beta_0,\beta_1 \in \mathbb{R}} \sum_{i=1}^n \left(Y_i - \beta_0 - \beta_1(X_i - x)\right)^2 K\left(\frac{X_i - x}{h}\right),$$

as

$$\left(\hat{\beta}_0(x), \, \hat{\beta}_1(x)\right) = \arg\min_{\beta_0, \beta_1 \in \mathbb{R}} \|\mathbf{W}^{1/2} \left(\vec{Y} - \mathbf{X}\vec{\beta}\right)\|^2 \tag{1}$$

where

$$\mathbf{W} = \operatorname{diag}\left(K\left(\frac{X_1 - x}{h}\right), \dots, K\left(\frac{X_n - x}{h}\right)\right), \quad \vec{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix},$$

and

$$\mathbf{X} = \begin{pmatrix} 1 & X_1 - x \\ 1 & X_2 - x \\ \vdots & \vdots \\ 1 & X_n - x \end{pmatrix}.$$

This is a regular weighted least square problem, whose solution is given by

$$\hat{\beta} = \left[\mathbf{X}^T \mathbf{W} \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{W} \vec{Y},$$

when $\left[\mathbf{X}^T\mathbf{W}\mathbf{X}\right]$ is invertible. Indeed, we can write (1) in a linear model form with

$$\vec{Y}' = \mathbf{W}^{1/2} \vec{Y}, \quad \mathbf{X}' = \mathbf{W}^{1/2} \mathbf{X},$$

whose least square estimator takes the form

$$\begin{split} \hat{\beta} &= \left[\mathbf{X}'^T \mathbf{X}' \right]^{-1} \mathbf{X}'^T \vec{Y}' \\ &= \left[\mathbf{X}^T (\mathbf{W}^{1/2})^T \mathbf{W}^{1/2} \mathbf{X} \right]^{-1} \mathbf{X}^T (\mathbf{W}^{1/2})^T \mathbf{W}^{1/2} \vec{Y} \\ &= \left[\mathbf{X}^T \mathbf{W} \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{W} \vec{Y}. \end{split}$$

This follows from the fact that $\mathbf{W} = \mathbf{W}^T$ and the matrix $\mathbf{W}^{1/2}$ with

$$\left(\mathbf{W}^{1/2}\right)_{(i,j)} = \sqrt{\mathbf{W}_{(i,j)}}, \quad i,j \in \{1,\dots,n\}$$

is well-defined as \mathbf{W} has non-negative entries and as \mathbf{W} is symmetric, $\mathbf{W}^{1/2}$ is also symmetric. For this reasoning to work, we must assume \mathbf{X}' to be of full rank, i.e., of rank two in this particular case. Let $\mathbf{M} = \left[\mathbf{X}^T \mathbf{W} \mathbf{X}\right]^{-1} \mathbf{X}^T \mathbf{W} \in \mathbb{R}^{2 \times n}$, we get

$$\vec{\beta} = \mathbf{M} \vec{Y}$$

and since $\hat{m}(x) = \hat{\beta}_0(x)$, we are only interested in the first entry of $\hat{\beta}$. Define $e_1 = (1,0)^T$, we have that

$$\begin{split} \hat{\beta}_0 &= e_1^T \mathbf{M} \vec{Y} \\ &= \sum_{i=1}^n \mathbf{M}_{(1,i)} Y_i, \end{split}$$

where $\mathbf{M}_{(1,i)}$, $i=1,\ldots,n$ depend on x,K,h and the X_j 's only, they do not depend on the Y_i 's. We can therefore express $\hat{m}(x)$ as a weighted average on the observations:

$$\hat{m}(x) = \sum_{i=1}^{n} w_{ni}(x) Y_i,$$

with $w_{ni}(x) = \mathbf{M}_{(1,i)}$ for $i = 1, \dots, n$. We now use the notation

$$S_{n,k}(x) = \frac{1}{nh} \sum_{i=1}^n (X_i - x)^k K\left(\frac{X_i - x}{h}\right), \quad k = 0, 1, 2, \label{eq:snk}$$

in order to derive an explicit expression for $w_{ni}(x)$ in terms of $S_{n,0}(x), S_{n,1}(x), S_{n,2}(x)$, and the kernel. To do so, we need to go back to our definition of **M**:

$$\begin{split} \left[\mathbf{X}^{T}\mathbf{W}\mathbf{X}\right]^{-1} &= \left[\begin{pmatrix} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) & \sum_{i=1}^{n} \left(X_{i}-x\right) K\left(\frac{X_{i}-x}{h}\right) \\ \sum_{i=1}^{n} \left(X_{i}-x\right) K\left(\frac{X_{i}-x}{h}\right) & \sum_{i=1}^{n} \left(X_{i}-x\right)^{2} K\left(\frac{X_{i}-x}{h}\right) \end{pmatrix}\right]^{-1} \\ &= \begin{pmatrix} nh \, S_{n,0}(x) & nh \, S_{n,1}(x) \\ nh \, S_{n,1}(x) & nh \, S_{n,2}(x) \end{pmatrix}^{-1} \\ &= \frac{1}{nh[S_{n,0}S_{n,2}-S_{n,1}^{2}]} \begin{pmatrix} S_{n,2} & -S_{n,1} \\ -S_{n,1} & S_{n,0} \end{pmatrix} \end{split}$$

and

$$\mathbf{X}^T\mathbf{W} = \begin{pmatrix} K\left(\frac{X_1 - x}{h}\right) & \dots & K\left(\frac{X_n - x}{h}\right) \\ (X_1 - x)K\left(\frac{X_1 - x}{h}\right) & \dots & (X_n - x)K\left(\frac{X_n - x}{h}\right) \end{pmatrix}.$$

From this, we get that

$$\mathbf{M}_{1,i} = w_{ni}(x) = \frac{S_{n,2}(x)K\left([X_i - x]/h\right) - S_{n,1}(X_i - x)K([X_i - x]/h)}{nh[S_{n,0}S_{n,2} - S_{n,1}^2]}.$$

Finally, summing over i gives

$$\begin{split} \sum_{i=1}^n w_{ni} &= \frac{S_{n,2}(x) \sum_{i=1}^n K\left([X_i - x]/h\right) - S_{n,1}(x) \sum_{i=1}^n (X_i - x) K([X_i - x]/h)}{nh[S_{n,0}(x)S_{n,2}(x) - S_{n,1}^2(x)]} \\ &= \frac{nhS_{n,0}(x)S_{n,2}(x) - nhS_{n,1}(x)S_{n,1}(x)}{nh[S_{n,0}(x)S_{n,2}(x) - S_{n,1}^2(x)]} \\ &= 1. \end{split}$$

Practical exercise

We consider a sample $\{(X_i,Y_i)\}_{i=1}^n$ of i.i.d. random vectors. Our goal is to estimate the conditional expectation

$$m(x) = \mathbb{E}[Y \mid X = x],$$

using the local linear estimator \hat{m} , as introduced in Lecture 3 (Slide 14). Throughout this study, we assume homoscedasticity, i.e.,

$$\sigma^2(x) = \operatorname{Var}(Y \mid X = x) \equiv \sigma^2,$$

and we use a quartic (biweight) kernel for \hat{m} . Under these assumptions, the optimal bandwidth minimizing the asymptotic mean integrated squared error (AMISE) is

$$h_{AMISE} = n^{-1/5} \left(\frac{35\sigma^2 |\text{supp}(X)|}{\theta_{22}} \right)^{1/5}, \qquad \theta_{22} = \int \left(m''(x) \right)^2 f_X(x) \, dx.$$

Here, the quantities σ^2 and θ_{22} are unknown and will be estimated using parametric OLS. To do so, we partition the data into N blocks. In each block j, we fit the polynomial regression model

$$Y_i = \beta_{0j} + \beta_{1j}X_i + \beta_{2j}X_i^2 + \beta_{3j}X_i^3 + \beta_{4j}X_i^4 + \epsilon_i,$$

which yields the fitted regression function

$$\hat{m}_{j}(X_{i}) = \hat{\beta}_{0j} + \hat{\beta}_{1j}X_{i} + \hat{\beta}_{2j}X_{i}^{2} + \hat{\beta}_{3j}X_{i}^{3} + \hat{\beta}_{4j}X_{i}^{4}.$$

From this, the unknown parameters can be estimated as

$$\hat{\theta}_{22}(N) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^N \left(\hat{m}_j''(X_i) \right)^2 \mathbf{1}_{X_i \in \mathcal{X}_j},$$

$$\hat{\sigma}^2(N) = \frac{1}{n-5N} \sum_{i=1}^n \sum_{j=1}^N \left(Y_i - \hat{m}_j(X_i)\right)^2 \mathbf{1}_{X_i \in \mathcal{X}_j}.$$

The purpose of the simulation study is to examine how different parameters and hyperparameters influence the estimation of the optimal bandwidth h_{AMISE} . We generate data according to the following process:

- Covariate: $X \sim \text{Beta}(\alpha, \beta)$.
- Response: $Y = m(X) + \epsilon$, where

$$m(x) = \sin\!\left(\left(\tfrac{x}{3} + 0.1\right)^{-1}\right), \qquad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

For simplicity, we fix the noise variance at $\sigma^2 = 1$.

To assess the impact of the sample size n on our estimate of h_{AMISE} , we will look at the values $n \in \{200, 400, 800, 1600\}$ and fix $\alpha, \beta = 2$. For each fixed n, we will take N to be the value that minimizes the Mallow's C_p

$$C_p(N) = \mathrm{RSS}(N)/\{\mathrm{RSS}(N_{\mathrm{max}})/(n-5N_{\mathrm{max}})\} - (n-10N),$$

where

$$\mathrm{RSS}(N) = \sum_{i=1}^n \sum_{j=1}^N \{Y_i - \hat{m}_j(X_i)\}^2 \mathbb{1}_{X_i \in \mathcal{X}_j}$$

and $N_{\text{max}} = \max\{\min(|n/20|, 5), 1\}.$

From the expression of h_{AMISE} , we would expect that doubling the sample size n, would shrink \hat{h}_{AMISE} by $2^{-1/5}$. Let us now look at how our estimate \hat{h}_{AMISE} changes for different values of n:

Figure 1: Estimated optimal bandwidth h versus different sample sizes n=100, 200, 400, 800 and 1600. The estimated bandwidth seems to decrease as the sample size increases, which is what we expected would happen.

While it does look like the estimated bandwidth \hat{h}_{AMISE} shrinks as the sample size n grows, it is difficult to see where our theoretical $2^{-1/5}$ is. A more helpful way of looking at this would be by taking the log-log scale:

Figure 2: Log–log scaling of the plug-in bandwidth estimate $\hat{h}_{\rm AMISE}$ versus sample size n. Each point is an estimate computed for a given n (using the C_p -optimal block size N for that dataset). The straight line is an OLS fit in log–log space; its slope (shown on the plot) is close to the theoretical -0.2, confirming the expected scaling $\hat{h}_{\rm AMISE} \propto n^{-1/5}$. Axes are $\log(n)$ and $\log(\hat{h}_{\rm AMISE})$.

We repeat the simulation R=400 times for each sample size n. In each replicate, we resample (X,Y), select the Cp-optimal block size N, and compute \hat{h}_{AMISE} .

Figure 3: Boxplots of the plug-in bandwidth estimates \hat{h}_{AMISE} across R=400 replications for each sample size $n \in \{200, 400, 800, 1600\}$. In each replicate we resample (X,Y), choose the Cp-optimal block size N, and compute \hat{h}_{AMISE} . The overlaid dot indicates the mean across replications.

The boxplots above summarize the distribution across replications, which gives a clear view of variability. The red dots indicate the means across replications. Proceding as before, we get the following plot on a log-log scale:

Log-log scaling using the mean \hat{h}_{AMISE} E over 400 replications

Figure 4: This plot shows $\log(\overline{\hat{h}}_{\mathrm{AMISE}})$ versus $\log(n)$, where $\overline{\hat{h}}_{\mathrm{AMISE}}$ is the mean over R=400 replications at each sample size $n\in 200, 400, 800, 1600$. In each replicate we resample (X,Y), choose the C_p -optimal block size N, and compute \hat{h}_{AMISE} . The straight line is an OLS fit in log–log space; its slope is close to the theoretical -0.2, confirming $\hat{h}_{\mathrm{AMISE}} \propto n^{-1/5}$.

This strengthens our previous assumption, namely, that $\hat{h}_{\text{AMISE}} \propto n^{-1/5}$. Let us now quickly look at how the optimal value of N evolves, when increasing n:

Distribution of Nopt (Cp) across 400 replications

Figure 5: Estimated \hat{h}_{AMISE} vs. block size N by sample size n. Red points show the estimates computed from blockwise degree-4 fits for each block size N; the dashed vertical line in each panel marks the value of N that minimizes Mallows' C_p ."

From this, it seems like N should depend on the sample size n. Indeed, each block fit uses 5 parameters, so we require n-5N>0 and a sufficient number of observations per block (practically $\gtrsim 10$ –15 in the sparsest block) for stable estimation. As n increases we can afford a larger N without starving blocks; empirically the C_p -optimal $\hat{N}_{\rm opt}$ increases slowly with n. We now want to look into the impact the chosen block size N, used in the estimation of θ_{22} and σ^2 , has on the estimate \hat{h}_{AMISE} . We will this time let the sample size take the values 200, 800, 3200 and 12800. Moreover, for each n, we let $N \in \{1, \dots, N_{\rm max}\}$.

Estimated optimal bandwidth vs block size N

Figure 6: Estimated \hat{h}_{AMISE} vs. block size N by sample size n. The red points show the estimates computed from blockwise degree-4 fits for each block size N; the dashed vertical line in each panel marks the value of N that minimizes mallow's C_n .

For very small N, the blockwise degree–4 polynomials underfits the regression function $m(\cdot)$, which downplays our estimate $\hat{\theta}_{22}$ and inflates the variance estimate $\hat{\sigma}^2$. Since $\hat{h}_{\text{AMISE}} \propto \left(\frac{\hat{\sigma}^2}{\hat{\theta}_{22}}\right)^{1/5}$, the ratio is large and \hat{h} is too big. Increasing N improves curvature capture, raising $\hat{\theta}_{22}$ and reducing $\hat{\sigma}^2$, so \hat{h} decreases. When increasing N, some blocks become saprse and the residual degrees of freedoms n-5N shrinks, making both $\hat{\theta}_{22}$ and $\hat{\sigma}^2$ more noisy.

Lastly, we want to explore the effects different values of the parameters α and β have on our estimate \hat{h}_{AMISE} . We fix n=1600 and take N_p , the value of N minimizing Mallow's C_p , as the block size.

Beta distributions Parameters Beta(0.5,0.5) — Beta(1,3) — Beta(1,5) Beta(5,1) — Beta(2,2) — Beta(5,5)

Figure 7: Probability density function of the Beta(α, β) distribution for different pairs (α, β).

The above plot shows how the shape of the Beta density changes with (α, β) , when $(\alpha, \beta) = (0.5, 0.5)$, we get a U-shaped density and when $\alpha \neq \beta$, we get strong skews, and parts of [0,1] become sparsely populated as a consequence. This has a significant impact on our estimator of the optimal bandwidth as with equal-width blocks, those regions translate into sparse blocks, so the degree-4 fits of \hat{m} , and \hat{m}'' , performed in each block are noisier. As a result, the plug-in estimators $\hat{\theta}_{22}$ and $\hat{\sigma}^2$ fluctuate more and the resulting \hat{h}_{AMISE} varies more across replications. By contrast, for more evenly spread designs (e.g., Beta(2, 2) or Beta(5, 5)), blocks are better populated, the fits are more stable, and the distribution of \hat{h}_{AMISE} over the 400 replications is noticeably tighter as we can see on the following plot:hat

Estimated optimal bandwidth across Beta shapes (n = 800) R = 400 replications per shape 0.4 0.3 0.1 0.0 Repart (0.50.5) Repart (0.50.5)

Figure 8: The plot illustrates the distribution of the estimated h_{AMISE} for different beta shapes (pairs (α, β)). As expected, the estimated values of h_{AMISE} fall in a tighter intervall when the corresponding density functions are more evenly spread across [0, 1].

Design density