Dialysis & Renal Transplantation

Prof Madunil A Niriella

Department of Medicine

Management Options in End Stage Kidney Disease (ESKD)

- Haemodialysis (HD)
- Peritoneal Dialysis (PD)
- Renal Transplantation (Tx)
- Conservative Management

Principles of HD

- Blood from patient pumped through dialyser ('artificial kidney')
- Dialyzer → series of semi-permeable membranes (usually cellulose-based)
- Dialysate flows within dialyzer, counter-current to blood flow
- Plasma biochemistry changes to that of dialysate

 → molecules diffuse down concentration
 gradients

Haemodialysis

Principles of HD

Hemodialysis

Movement of small solutes by diffusion through the addition of dialysate to the fluid side of the filter.

Dialyzer

Access for HD

Arterio-venous fistula (AVF)

Arterio-venous shunts

Dialysis catheters

Arterio-Venous Fistula

- Radial / brachial artery & cephalic vein
- Connected surgically
- Takes 6-8 weeks to mature
- Large bore needles inserted to take blood to & from dialysis machine

Arterio-Venous Shunts

- Large-bore plastic cannula (graft)
- Surgically tied to adjacent superficial artery & vein
- Complications infection
 thrombosis
 disconnection →
 exanguination

Temporary Dialysis Catheters

- When dialysis is needed immediately
- Large-bore double lumen cannula
- Inserted in to central vein subclavian, jugular, femoral
- Preferably under ultra-sound guidance
- Can be kept in for short periods only

Semi-Permanent Dialysis Catheters

- When inserted with a skin tunnel – can be kept for longer since risk of infection is less
- BUT high risk of local & systemic sepsis since catheter is external
- Jugular route preferred

Dialysis Prescription

Tailoring dialysis to individual patients to obtain optimum results

Parameters are –

Dry weight

Choice of dialysate buffer

Frequency & duration of dialysis

Dry Weight

- Weight at which patient is neither fluid-overloaded nor fluid-depleted
- Patient is weighed at start of dialysis
- If fluid-overloaded > remove fluid during dialysis to achieve dry weight

Dialysis Buffer

Usually acetate or bicarbonate

Sodium & calcium in dialysate carefully monitored

Frequency & Duration of Dialysis

- Average sized adult 4-5 hours dialysis three times per week
- If using highly permeable synthetic membranes (high-flux HD) shorter duration of dialysis is possible
- All patients anti-coagulated with Heparin during dialysis
 - (blood coming in to contact with foreign surfaces will activate clotting cascade)

Complications of HD

Commonly – hypotension

Rarely –

anaphylactic reactions hard-water syndrome haemolytic reactions air embolism

Adequacy of Dialysis

- True measures of adequacy are patient morbidity
 & mortality
- Under-dialysis causes non-specific symptoms
 ie insomnia, itching, fatigue, restless legs, peripheral sensory
 neuropathy
- Adequacy assessed by computerized calculation of urea kinetics

HD in Acute Kidney Injury

 Best way of achieving rapid biochemical improvement

Disadvantages haemodynamic instability
 dialysis disequilibrium

Dialysis Disequilibrium

- Due to over-rapid correction of uraemia
- Rapid changes in plasma osmolality causes cerebral oedema
- Disequilibrium manifests as
 - nausea & vomiting restlessness headache hypertension myoclonic jerks seizures & coma

Haemofiltration

- Used for both AKI & CKD
- More gentle & for longer periods than HD
- Causes less haemodynamic instability better for acutely ill patients

- Remove plasma water & its dissolved constituents
 (Na, K, urea) by convective flow across high-flux
 semi-permeable membrane
- Replace with solution of desired biochemical composition

Peritoneal Dialysis (PD)

 Uses peritoneal membrane as a semi-permeable membrane

 Tube placed in peritoneal cavity through anterior abdominal wall

Dialysate run in to peritoneal cavity under gravity

Principles of PD

- Uraemic toxins pass in to dialysate down concentration gradient
- Water attracted in to peritoneal cavity by osmosis

(Dialysate osmolarity determined by its dextrose content)

 Fluid changed regularly to repeat process

Types of PD

 Continuous ambulatory peritoneal dialysis (CAPD)

Nightly intermittent peritoneal dialysis (NIPD)

Tidal dialysis

Becoming available in SL

CAPD

Continuous Ambulatory Peritoneal Dialysis

CAPD

- Dialysate present within peritoneal cavity continuously
- Dialysate exchanges done
 3-5 times/day
- Using sterile no-touch technique to connect bags of dialysate to peritoneal catheter
- Each exchange takes
 20-40 mins
- Used for maintenance PD

NIPD

 Automated device performs exchanges each night while patient is asleep

Tidal Dialysis

- Residual volume left within peritoneal cavity
- Continuous cycling of small volumes in & out

Complications of PD

- Peritonitis
- Infection around catheter site
- Constipation common
- Leakage of dialysate
 - thru diaphragmatic defect in to pleural cavity -> pleural 'effusion' down patent processus vaginalis in to scrotum
- Failure of peritoneal membrane function with long-term CAPD
- Sclerosing peritonitis potentially fatal

PD Peritonitis

- Most common serious complication of PD
- Clinical features –

```
abdo pain
cloudy peritoneal effluent
nausea & vomiting
fever
paralytic ileus
```

(guarding & rebound tenderness unusual)

- Microscopy of PD fluid >100 neutrophils/ml
- Must culture PD fluid

PD Peritonitis ct

Broad-spectrum antibiotics to cover Gram negative
 & positive organisms

Antibiotics given - intra-peritoneally (preferred) intra-venous
 oral

Commonly due to Staph epidermidis (50%)

Contra-indications to PD

- Unwillingness or inability of patient to learn PD technique
- Previous peritonitis
- Presence of a stoma (iliostomy, colostomy)
- Active intra-abdominal sepsis
- Abdominal hernia
 will expand with PD
 must be repaired before starting PD
- Visual impairment
- Severe arthritis

Complications of Long Term Dialysis

Cardiovascular disease

Sepsis

Dialysis amyloidosis
 causes carpal tunnel syndrome or dialysis arthropathy

Renal Transplantation

- If successful → almost complete rehabilitation in ESKD
- Freedom from diet & fluid restriction
- Correction of anaemia & infertility
- Need for parathyroidectomy reduced

 Using kidney from cadaveric donor or living close relative

- Anastomose donor kidney to iliac vessels of recipient
 Donor ureter placed in recipient bladder
- Need immuno-suppression as long as transplant is in place to prevent rejection
- Donor kidney graft survival –

80% → 5-10 years

60% → 10-30 years

Factors Affecting Success of Renal Transplantation

- ABO blood group compatibility between donor & recipient
- HLA type matching donor & recipient
- Adequate immuno-suppression
- Experienced Transplant Centre

Cadaveric Donation

 From patients suffering brain-stem death with still beating hearts

 Consent needed from close relatives if patient is not a registered organ donor

Living Related Donation

- Identical twins are ideal no need of immunosuppression
- Close relatives siblings or parents
- Donor must be aged >18 yrs
- Donor Pre-op
 - clinical examination
 measure renal function
 Hepatitis B & C, HIV & CMV status
 renal imaging

Immuno-suppression

- Given long-term to prevent rejection of graft
- Risk of rejection highest in first 3 months posttransplant – most rejection episodes are reversible
- Drugs used –
 corticosteroids
 azathioprine
 ciclosporin
 tacrolimus
 mycophenolate mofetil
 antilymphocytic & antithymocytic globulin

Complications of Renal Transplantation

Technical failures

Complications of immuno-suppression

Other complications

Technical failures

Occlusion or stenosis of arterial anastomosis

Occlusion of venous anastomosis

Urinary leaks due to –
 damage to lower ureter
 defects in anastomosis between ureter & recipient
 bladder

Complications of Immuno-suppression

- Corticosteroids diabetes, hypertension, Cushinoid appearance, osteoporosis & fracture
- Ciclosporin diabetes, hypertension, nephrotoxicity
- Tacrolimus diabetes, nephrotoxicity, neurotoxicity

Azathioprin – hepatotoxicity, bone marrow suppression

General Complications of Immuno-suppression

Increased risk of skin tumours

Increased risk of infections, sp opportunistic

Increased risk of lymphoma

Other complications

- Recurrence of disease that caused renal failure
 eg MCGN, FSGS, Goodpasture's syndrome
- Lipid abnormalities → ↑ risk of IHD
- De novo glomerulonephritis in grafted kidney

Choice of Renal Replacement Therapy (RRT)

- Ideal renal transplant
- Age is not a barrier to transplantation
- Choice between CAPD & HD until transplantation
- HD expensive
- CAPD not freely available
- Shortage of donor kidneys
- Post-transplant costs high

Contra-indications to Renal Transplantation

Sensitization to HLA antigens

by pregnancy, blood transfusion or previous failed transplant is a relative contra-indication only

Previous malignancy

Severe non-renal disease

limiting survival & post-transplant rehabilitation

Vascular disease, sp in DM