

TP53 Allelic State in MSK-Impact Cohort

03/30/2020

Outline

0. Vocabulary

1. Motivation

- a. TP53 allelic state in MDS
- b. Pan Cancer Analysis

2. MSK-Impact Cohort

- a. Description of the data
- b. Overall Numbers
- c. Data Structuration
- d. Mutations
- e. TP53 State Study

3. TP53 Subgroups

- a. Definition of the subgroups
- b. Subgroup

4. Correlative Analysis

- a. Data Cleaning: Purity
- b. >1muts Subgroup

Copy Number Vocabulary and Abbreviations (1/3)

Main Copy-Number Events

Copy Number Vocabulary and Abbreviations (2/3)

- Total Copy Number (tcn):
 - → Number of alleles for a given locus
- Major Copy Number (mcn):
 - → The most-represented allele in the cell

tcn = lcn + mcn

- Lower Copy Number (Icn):
 - \rightarrow The less-represented allele in the cell

Diploid

tcn = 2; mcn = 1; lcn = 1

• LOSS

tcn = 1 ; mcn = 1 ; lcn = 0

<u>CNLOH</u>

tcn = 2; mcn = 2; lcn = 0

<u>Tetraploid</u>

tcn = 4; mcn = 2; lcn = 2

Copy Number Vocabulary and Abbreviations (3/3)

Mono-Allelic State

At least one wild-type allele in the cells.

Examples

Diploid Allele A _____

Mutation

- Allele B
- Loss without mutation

Tetraploid with 3 mutations

Bi-Allelic State

All the alleles of the gene are hit, by mutations or copy number events such as Loss or cnLOH.

 \rightarrow For a diploid karyotype, all alleles = 2 alleles

Examples

Diploid with 2 mutations on both alleles

Loss and 1 mutation

1 mutation, then cnloh

Motivation

TP53 Allelic State in MDS → Pan Cancer Analysis

TP53 Allelic State in MDS

- TP53 Allelic State has important consequences on clinical outcomes
 - Higher risk of death for bi-allelic hits compared to mono-allelic
 - Bi-allelic hits seem to be a driver of disease progression (MDS → AML)

Pan Cancer Analysis: MSK-Impact Cohort

- What are the representations of TP53 allelic states across cancer types?
- Is there significant clinical / phenotypic differences between mono-allelic and bi-allelic states ?
 - What are the cancers where the differences are most significant? The one where there are no differences?

MSK-Impact Cohort

Description of the data

Four different files

1. Cohort file

- Entire cohort samples
- Paths to raw data
- Run versions and parameters
- Purity / Ploidy

2. TP53 mutation file

- Only TP53 mutant samples
- Mutation Information
 - Start, End,
 - Protein Change, Mutation Type, Ref Allele, Tumor Allele
 - mutation_effect, oncogenic,
 - vaf, ccf

Description of the data

Four different files

1. Cohort file

- Entire cohort samples
- Paths to raw data
- Run versions and parameters
- Purity / Ploidy

2. <u>TP53 file</u>

- Only TP53 mutant samples
- Mutation Information
 - Start, End,
 - Protein Change, Mutation Type,
 Ref Allele, Tumor Allele
 - mutation_effect, oncogenic,
 - vaf, ccf

3. TP53 Copy-number File

- Entire cohort samples (dif: 446 samples)
- total copy number, lower copy number
- copy number state

4. Arm Level File

- Entire cohort samples (dif: 439 samples)
 - All arms (1p to 23q)
 - threshold: frac_of_arm = 0.8
- arm, tcn ,lcn, cn_state
- an All-Chromosome event (loss, cnloh ...) is encoded as two lines with same cn state and frac=1

Overall Numbers (1/2)

Entire Cohort

Number of samples in the cohort: 29 259

Number of patients in the cohort: 27 021

Proportion of Metastatic Samples: 41.3%

66 Tumor types

1000

0

500

1500

2000

of samples

2500

3500

4000

3000

Overall Numbers (2/2)

TP53 mutant cohort

- Number of TP53 mutant samples: **12 731 (43.5%)**
- Number of TP53 mutant patients: **11 982**
- Proportion of Metastatic Samples: 43.2%
- 53 tumor types

Data Structuration (1/2)

Facets Output:

- arm_level
- gene_level_tp53
- tp53.maf
- cohort

CBioPortal API:

- Clinical data
- Co-mutations

OncoKB API:

Mutations annotation

MASTER FILE

Data Structuration (2/2)

Clinical Data

- Cancer Type Sample Type
 - Purity Ploidy Survival Information Samples per patient
- **TP53 mutations**
 - # of mutations
 - VAF | max VAF | CFF | Mutation Type
 - Hotspot

TP53 locus Copy-Number

- Total Copy Number (tcn)
- Copy Number State
- Expected number of mutant copies

Genome-wide instability

- **WGD**
- # of chr with loss, gain, cnloh [arm size level]

Major Copy Number (mcn)

Lower Copy Number (Icn)

fraction of genome altered

Tumor burden

- TMB | MSI scores
- # of total mutations
- # of total oncogenic mutations

Mutations (1/2)

	prim_count	met_count	sum
tp53_count			
1	6549	5168	11717
2	593	304	897
3	67	29	96
4	14	3	17
5	3	1	4

- Strong enrichment for 1 TP53 mutation per sample
- Enrichment of 2 TP53 mutations in Primary Samples compared to Metastatic.

Mutations (2/2)

TP53 State Study: FACETS Output

3 types of events at TP53 Locus:

- Whole Genome Duplication
- Copy Number Events

Mutational Events

Copy Number States from FACETS are chronological:

- Copy Number Event → CNLOH / LOSS / GAIN / AMP / DIPLOID / TETRAPLOID
- 2. [Optional] WGD chronology → BEFORE / AFTER
- 3. [Optional] Copy Number Event → LOSS / GAIN / AMP

Examples:

DIPLOID HETLOSS CNLOH HOMDEL CNLOH BEFORE & LOSS DOUBLE LOSS AFTER

LOSS BEFORE & AFTER

TP53 State Study: Allelic Representation

CNLOH BEFORE & LOSS

LOSS BEFORE & AFTER

TP53 State Study: With mutation

CNLOH BEFORE & LOSS

TP53 State Study: With mutation

CNLOH BEFORE & LOSS

TP53 State Study: With mutation

CNLOH BEFORE & LOSS

Mutation Timing	# of tp53 mutant copies	# WT Alleles
mut before CNLOH	3	0
mut after CNLOH, before WGD	1	2
mut after CNLOH, before WGD	2	1
mut after WGD, before LOSS	1	2
mut after LOSS	1	2

Mutation Timing	# of tp53 mutant copies	# WT Alleles
mut before CNLOH	3	0
mut after CNLOH, before WGD	1	2
mut after CNLOH, before WGD	2	1
mut after WGD, before LOSS	1	2
mut after LOSS	1	2

Objective: Define groups based on similar Copy Number Events and on similar TP53 allelic state

<u>Idea:</u> The number of tp53 mutant copies allows us to know the number of WT alleles because **# of WT = TCN - # of mutants**.

→ Plot the expected number of tp53 mutant copies against the TCN

$$\frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity))) \qquad \text{https://www.nature.com/articles/s41588} \\ \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity)) \qquad \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity + 2 \times (1 - purity))) \qquad \frac{vaf}{murity} \times (tcn \times purity + 2 \times (1 - purity + 2 \times (1$$

- The peak of the distribution is reached for exp_nb ≈ 3.
- So # WT = tcn exp_nb = 3 - 3 = 0

Definition of TP53 subgroups

First Look at the distributions

We grouped the different Copy Number States into 4 groups to look at the data and compare the distributions:

- <u>CNLOH</u> = ['CNLOH', 'CNLOH BEFORE & LOSS', 'CNLOH AFTER', 'CNLOH BEFORE', 'CNLOH & GAIN', 'CNLOH BEFORE & GAIN', 'AMP (LOH)']
- <u>LOSS</u> = ['HETLOSS', 'LOSS BEFORE', 'LOSS AFTER', 'HOMDEL', 'LOSS BEFORE & AFTER', 'DOUBLE LOSS AFTER']
- GAIN = ['GAIN', 'AMP', 'AMP (BALANCED)', 'LOSS & GAIN']
- <u>DIPLOID & TETRAPLOID</u> = ['DIPLOID', 'TETRAPLOID']

CNLOH

count

cn_state

AMP (LOH)	12
CNLOH	802
CNLOH & GAIN	61
CNLOH AFTER	43
CNLOH BEFORE	174
CNLOH BEFORE & GAIN	26
CNLOH BEFORE & LOSS	893

cn_state

LOSS

count

226

cn_state

DOUBLE LOSS AFTER 149

HETLOSS 3727

HOMDEL 71

LOSS AFTER 271

LOSS BEFORE 3131

LOSS BEFORE & AFTER

DIPLOID & TETRAPLOID

GAIN

count

cn_state

AMP 12 AMP (BALANCED) 4 91 **GAIN**

> **LOSS & GAIN** 15

cn_state

Subgroups Definition

No Allele groups:

HOMDEL

Mono-allelic groups (WT allele is still present):

- Reference group: 0 mutation and a LOSS
- TP53 mutant group: 1 TP53 mutation and DIPLOID / TETRAPLOID / LOSS AFTER

Possibly bi-allelic groups:

- cnLOH group: at least 1 TP53 mutation and a CNLOH event
- Loss group: at least 1 TP53 mutation and a LOSS event LOSS BEFORE / HETLOSS / LOSS BEFORE & AFTER
- >1 mut group : at least 2 TP53 mutations and not in Loss or cnLOH groups

1 WILD TYPE

count

cn_state

DIPLOID 1262

LOSS AFTER 166

TETRAPLOID 29

cn_state DIPLOID LOSS AFTER TETRAPLOID

>=1 cnLOH

cn_state

CNLOH

>=1_LOSS

count

cn_state

HETLOSS 3727

LOSS BEFORE 3131

LOSS BEFORE & AFTER 226

cn_state
LOSS BEFORE & AFTER
HETLOSS
LOSS BEFORE

>1muts

count

106

53

cn_state

DIPLOID 459

DOUBLE LOSS AFTER 42

GAIN 37

LOSS AFTER

TETRAPLOID

>1muts

on_state
DIPLOID
GAIN
LOSS AFTER
TETRAPLOID
DOUBLE LOSS AFTER

Subgroups Summary (1/2)

	count
mut_cn_group	
>=1_LOSS	7087
0_HETLOSS	2833
>=1_cnLOH	1895
1_WILD_TYPE	1457
>1muts	697
HOMDEL	296

Subgroups Summary (1/2)

count

mut_cn_group	tp53_count	
0_HETLOSS	0	2833
1_WILD_TYPE	1	1457
>1muts	2	616
	3	68
	4	10
	5	3
>=1_LOSS	1	6904
	2	161
	3	19
	4	3
>=1_cnLOH	1	1850
	2	39
	3	6
HOMDEL	0	224
	1	63
	2	8
	4	1

Subgroups Summary (1/2)

count

mut_cn_group	Sample_Type	
0_HETLOSS	Metastasis	1260
	Primary	1556
1_WILD_TYPE	Metastasis	494
	Primary	963
>1muts	Metastasis	232
	Primary	465
>=1_LOSS	Metastasis	3271
	Primary	3816
>=1_cnLOH	Metastasis	821
	Primary	1074
HOMDEL	Metastasis	116
	Primary	179

Subgroups Summary (1/2)

		count		
mut_cn_group	Cancer_Type	0		
0_HETLOSS	OSS Breast Cancer			
	Non-Small Cell Lung Cancer	347		
	Prostate Cancer	254		
1_WILD_TYPE	Non-Small Cell Lung Cancer	322		
	Colorectal Cancer	198		
	Pancreatic Cancer	142		
>1muts	Colorectal Cancer	116		
	Non-Small Cell Lung Cancer	110		
	Glioma	101		
>=1_LOSS	Colorectal Cancer	1361		
	Non-Small Cell Lung Cancer	1158		
	Breast Cancer	1005		
>=1_cnLOH	Non-Small Cell Lung Cancer	348		
	Colorectal Cancer	281		
	Breast Cancer	237		
HOMDEL	Soft Tissue Sarcoma	47		
	Breast Cancer	41		
	Prostate Cancer	34		

Subgroups Summary (2/2)

Enrichments

- 0 HETLOSS:
 - Breast Cancer. 0
 - Mesothelomia
- >1muts:

1 WILD TYPE

>=1 cnLOH

- Skin Cancer. 0
- Head and Neck Cancer. \circ
- Glioma 0
- >=1 cnLOH:
 - Glioma 0
 - Germ Cell Tumor

Correlative Analysis

	>=1_cnLOH	1_WILD_TYPE	>1muts	HOMDEL	>=1_LOSS	0_HETLOSS	SUM	ratio	purity_median_interval
0.20	70	239	39	4	135	57	544	3.8	[0.32, 0.52]
0.21	98	303	52	4	210	85	752	5.3	[0.33, 0.52]
0.22	117	377	62	6	323	116	1001	7.0	[0.34, 0.52]
0.23	135	443	74	13	429	149	1243	8.7	[0.36, 0.53]
0.24	174	497	86	16	535	191	1499	10.5	[0.37, 0.54]
0.25	219	553	95	19	657	237	1780	12.5	[0.38, 0.54]
0.26	245	600	106	21	807	287	2066	14.5	[0.39, 0.54]
0.27	282	655	131	27	937	344	2376	16.7	[0.41, 0.55]
0.28	323	709	151	38	1062	383	2666	18.7	[0.42, 0.55]
0.30	405	785	183	43	1355	470	3241	22.7	[0.45, 0.56]
0.31	437	824	194	45	1504	520	3524	24.7	[0.47, 0.57]
0.32	478	856	207	48	1679	577	3845	27.0	[0.49, 0.57]
0.33	512	895	216	54	1851	616	4144	29.1	[0.5, 0.58]
0.34	550	916	232	58	1995	663	4414	30.9	[0.51, 0.58]
0.35	593	936	246	60	2159	719	4713	33.0	[0.52, 0.59]
0.36	632	958	264	66	2302	765	4987	35.0	[0.53, 0.59]
0.37	676	985	282	72	2441	808	5264	36.9	[0.54, 0.6]
0.40	773	1046	309	92	2841	941	6002	42.1	[0.58, 0.62]
0.60	1372	1268	486	192	5059	1831	10208	71.6	[0.73, 0.76]
0.80	1739	1403	616	267	6480	2526	13031	91.3	[0.85, 0.87]
1.00	1895	1457	697	296	7087	2833	14265	100.0	[nan, nan]

Cut: 0.25

• Population lost: 12.5 %

Medians: [0.38, 0.54]

	>=1_cnLOH	1_WILD_TYPE	>1muts	HOMDEL	>=1_LOSS	0_HETLOSS	SUM	ratio	purity_median_interval
0.20	70	239	39	4	135	57	544	3.8	[0.32, 0.52]
0.21	98	303	52	4	210	85	752	5.3	[0.33, 0.52]
0.22	117	377	62	6	323	116	1001	7.0	[0.34, 0.52]
0.23	135	443	74	13	429	149	1243	8.7	[0.36, 0.53]
0.24	174	497	86	16	535	191	1499	10.5	[0.37, 0.54]
0.25	219	553	95	19	657	237	1780	12.5	[0.38, 0.54]
0.26	245	600	106	21	807	287	2066	14.5	[0.39, 0.54]
0.27	282	655	131	27	937	344	2376	16.7	[0.41, 0.55]
0.28	323	709	151	38	1062	383	2666	18.7	[0.42, 0.55]
0.30	405	785	183	43	1355	470	3241	22.7	[0.45, 0.56]
0.31	437	824	194	45	1504	520	3524	24.7	[0.47, 0.57]
0.32	478	856	207	48	1679	577	3845	27.0	[0.49, 0.57]
0.33	512	895	216	54	1851	616	4144	29.1	[0.5, 0.58]
0.34	550	916	232	58	1995	663	4414	30.9	[0.51, 0.58]
0.35	593	936	246	60	2159	719	4713	33.0	[0.52, 0.59]
0.36	632	958	264	66	2302	765	4987	35.0	[0.53, 0.59]
0.37	676	985	282	72	2441	808	5264	36.9	[0.54, 0.6]
0.40	773	1046	309	92	2841	941	6002	42.1	[0.58, 0.62]
0.60	1372	1268	486	192	5059	1831	10208	71.6	[0.73, 0.76]
0.80	1739	1403	616	267	6480	2526	13031	91.3	[0.85, 0.87]
1.00	1895	1457	697	296	7087	2833	14265	100.0	[nan, nan]

Cut: 0.30

• Population lost: 22.7 %

• Medians: [0.45, 0.56]

	>=1_cnLOH	1_WILD_TYPE	>1muts	HOMDEL	>=1_LOSS	0_HETLOSS	SUM	ratio	purity_median_interval
0.20	70	239	39	4	135	57	544	3.8	[0.32, 0.52]
0.21	98	303	52	4	210	85	752	5.3	[0.33, 0.52]
0.22	117	377	62	6	323	116	1001	7.0	[0.34, 0.52]
0.23	135	443	74	13	429	149	1243	8.7	[0.36, 0.53]
0.24	174	497	86	16	535	191	1499	10.5	[0.37, 0.54]
0.25	219	553	95	19	657	237	1780	12.5	[0.38, 0.54]
0.26	245	600	106	21	807	287	2066	14.5	[0.39, 0.54]
0.27	282	655	131	27	937	344	2376	16.7	[0.41, 0.55]
0.28	323	709	151	38	1062	383	2666	18.7	[0.42, 0.55]
0.30	405	785	183	43	1355	470	3241	22.7	[0.45, 0.56]
0.31	437	824	194	45	1504	520	3524	24.7	[0.47, 0.57]
0.32	478	856	207	48	1679	577	3845	27.0	[0.49, 0.57]
0.33	512	895	216	54	1851	616	4144	29.1	[0.5, 0.58]
0.34	550	916	232	58	1995	663	4414	30.9	[0.51, 0.58]
0.35	593	936	246	60	2159	719	4713	33.0	[0.52, 0.59]
0.36	632	958	264	66	2302	765	4987	35.0	[0.53, 0.59]
0.37	676	985	282	72	2441	808	5264	36.9	[0.54, 0.6]
0.40	773	1046	309	92	2841	941	6002	42.1	[0.58, 0.62]
0.60	1372	1268	486	192	5059	1831	10208	71.6	[0.73, 0.76]
0.80	1739	1403	616	267	6480	2526	13031	91.3	[0.85, 0.87]
1.00	1895	1457	697	296	7087	2833	14265	100.0	[nan, nan]

Cut: 0.35

• Population lost: 33.0 %

Medians: [0.52, 0.59]

Study Plan

Future analyses, across subgroups and tumor types:

- >1muts Subgroup Exploration
- Genome-wide genomic instability (# of chr loh, loss, gain)
- Tumor Burden and co-mutations (TMB, MSI, Oncogenic)
- Clinical correlates when available (survival ...)

>1muts Subgroup

 Enrichment of Missense Mutations in >1muts Subgroup

>1muts Subgroup

 Enrichment of Missense Mutations in >1muts Subgroup

 Higher mutation count across all IMPACT genes in >1muts subgroup

>1muts Subgroup

Mutation Count per Cancer Type for >1muts Subgroup

Thank You