

4.3.4 无分类编址的IPv4地址

4.3.4 无分类编址的IPv4地址

- 划分子网在一定程度上缓解了因特网在发展中遇到的困难,但是数量巨大的C类网因为其地 址空间太小并没有得到充分使用,而因特网的IP地址仍在加速消耗,整个IPv4地址空间面 临全部耗尽的威胁。
- 为此,因特网工程任务组IETF又提出了采用无分类编址的方法来解决IP地址紧张的问题,同时还专门成立IPv6工作组负责研究新版本IP以彻底解决IP地址耗尽问题。
- 1993年, IETF发布了无分类域间路由选择CIDR(Classless Inter-Domain Routing)的RFC 文档: RFC 1517~1519和1520。
 - CIDR消除了传统的A类、B类和C类地址,以及划分子网的概念;
 - CIDR可以更加有效地分配IPv4的地址空间,并且可以在新的IPv6使用之前允许因特网的规模继续增长。

4.3.4 无分类编址的IPv4地址

■ CIDR使用 "斜线记法" , 或称CIDR记法。即在IPv4地址后面加上斜线 "/" , 在斜线后面写上网络前缀所占的比特数量。

【举例】

128.14.35.7 / 20

网络前缀占用的比特数量: 20

主机编号占用的比特数量: 32-20=12

- CIDR实际上是将网络前缀都相同的连续的IP地址组成一个"CIDR地址块"。
- 我们只要知道CIDR地址块中的任何一个地址,就可以知道该地址块的全部细节:

П	地址块的最小	批批
---	--------	----

地址块的最大地址
地址坎彻取入地址

- □ 地址块中的地址数量
- □ 地址块聚合某类网络(A类、B类或C类)的数量
- □ 地址掩码 (也可继续称为子网掩码)

4.3.4 无分类编址的IPv4地址

【例1】请给出CIDR地址块128.14.35.7/20的全部细节(最小地址,最大地址,地址数量,聚合C类网数量,地址掩码)。

【解析】

最小地址: 128.14.32.0

最大地址: 128.14.47.255

地址数量: 2⁽³²⁻²⁰⁾

聚合C类网的数量: $2^{(32-20)} \div 2^8$

地址掩码: 255.255.240.0

── 20比特网络前缀 ── 12比特主机号

→ 128.14.00100011.00000111

128.14.00100000.0000000

128.14.00101111.11111111

4.3.4 无分类编址的IPv4地址

【练习】请给出CIDR地址块206.0.64.8/18的全部细节(最小地址,最大地址,地址数量,聚合C类网数量,地址掩码)。

【解析】

206.0.64.8/18 -----

最小地址: 206.0.64.0

最大地址: 206.0.127.255

地址数量: 2⁽³²⁻¹⁸⁾

聚合C类网的数量: $2^{(32-18)} \div 2^8$

地址掩码: 255.255.192.0

4.3.4 无分类编址的IPv4地址

路由聚合(构造超网)

【举例】

4.3.4 无分类编址的IPv4地址

路由聚合(构造超网)

【举例】

4.3.4 无分类编址的IPv4地址

路由聚合(构造超网)

【举例】

路由器R2的路	油表
目的网络	下一跳
i i	1
172.1.4.0/25	R1
172.1.4.128/25	R1
172.1.5.0/24	R1
172.1.6.0/24	R1
172.1.7.0/24	R1
i	ŧ

172.1.7.0/24

4.3.4 无分类编址的IPv4地址

路由聚合(构造超网)

172.1.4.0/25

172.1.6.0/24

【举例】

172.1.7.0/24

172.1.4.128/25

聚合地址块: 172.1.4.0 / 22

- 网络前缀越长,地址块越小,路由越具体;
- 若路由器查表转发分组时发现有多条路由可选,则选择网络前缀最长的那条,这称为最长前缀匹配,因为这样的路由更具体。

4.3.4 无分类编址的IPv4地址

【2011年 题38】在子网192.168.4.0/30中,能接收目的地址为192.168.4.3的IP分组的 最大主机数是 🧲

C. 2 A. 0 B. 1 【解析】 192.168.4.0/30 ---192.168.4.0

4.3.4 无分类编址的IPv4地址

【2011年 题38】在子网192.168.4.0/30中,能接收目的地址为192.168.4.3的IP分组的 最大主机数是 🥑

A. 0

B. 1

C. 2

【解析】 $192.168.4.0/30 \longrightarrow 192.168.4.0$ 最小地址 作为网络地址 192.168.4.0 192.168.4.0 192.168.4.1 192.168.4.0 可分配的最小地址 可分配的最大地址 192.168.4.2 192.168.4.0 0 最大地址 作为广播地址 192.168.4.3 192.168.4.0

4.3.4 无分类编址的IPv4地址

【2018年 题38】某路由表中有转发接口相同的4条路由表项,其目的网络地址分别为35.230.32.0/21、35.230.40.0/21、35.230.48.0/21和35.230.56.0/21,将该4条路由聚合后的目的网络地址为 C

A. 35.230.0.0/19

B. 35.230.0.0/20

C. 35.230.32.0/19

D. 35.230.32.0/20

【解析】

路由聚合的方法: 找共同前缀	共同前缀						
35.230.32.0/21	35.230.0 0 1	0	0	0	0	0	.0
35.230.40.0/21	35.230.0 0 1	0	1	0	0	0	.0
35.230.48.0/21	35.230.0 0 1	1	0	0	0	0	.0
35.230.56.0/21 ───	35.230.0 0 1	1	1	0	0	0	.0
	共19位						

路由聚合后的目的网络地址: 35.230.32.0 /19

4.3.4 无分类编址的IPv4地址

网络前缀越长, 地址块越小, 路由越具体;

划分子网在一定程度上缓解了因特网在发展中遇到的困难,但是 <mark>数量巨大的C类网因为其地址空间太小并没有得到充分使</mark> 用,而因特网的IP地址仍在加速消耗,整个 <mark>IPv4地址空间面临全部耗尽的威胁</mark> 。
为此,因特网工程任务组IETF又提出了采用 <mark>无分类编址</mark> 的方法来解决IP地址紧张的问题,同时还专门成立IPv6工作组负 责研究新版本IP以彻底解决IP地址耗尽问题。
1993年,IETF发布了无分类域间路由选择CIDR(Classless Inter-Domain Routing)的RFC文档: RFC 1517~1519和1520
□ CIDR消除了传统的A类、B类和C类地址,以及划分子网的概念;
□ CIDR可以更加有效地分配IPv4的地址空间,并且可以在新的IPv6使用之前允许因特网的规模继续增长。
CIDR使用"斜线记法",或称CIDR记法。即在IPv4地址后面加上斜线"/",在斜线后面写上网络前缀所占的比特数量。
CIDR实际上是将网络前缀都相同的连续的IP地址组成一个"CIDR地址块"。
我们只要知道CIDR地址块中的任何一个地址,就可以知道该地址块的全部细节:
□ 地址块的最小地址 □ 地址块的最大地址 □ 地址块中的地址数量
□ 地址块聚合某类网络 (A类、B类或C类) 的数量 □ 地址掩码 (也可继续称为子网掩码)
路由聚合(构造超网)的方法 是找共同前缀

■ 若路由器查表转发分组时发现有多条路由可选,则选择网络前缀最长的那条,这称为<mark>最长前缀匹配</mark>,因为这样的路由更具体。

4.3.4 无分类编址的IPv4地址

划分子网在一定程度上缓解了因特网在发展中遇到的困难,但是数量巨大的C类网因为其地址空间太小用,而因特网的IP地址仍在加速消耗,整个IPv4地址空间面临全部耗尽的威胁。	并没有得到充分使
为此,因特网工程任务组IETF又提出了采用 <mark>无分类编址</mark> 的方法来解决IP地址紧张的问题,同时还专门成责研究新版本IP以彻底解决IP地址耗尽问题。	成立IPv6工作组负
1993年,IETF发布了无分类域间路由选择CIDR(Classless Inter-Domain Routing)的RFC文档: RFC	1517~1519和1520
□ CIDR消除了传统的A类、B类和C类地址,以及划分子网的概念;	
□ CIDR可以更加有效地分配IPv4的地址空间,并且可以在新的IPv6使用之前允许因特网的规模继续	增长。
CIDR使用"斜线记法",或称CIDR记法。即在IPv4地址后面加上斜线"/",在斜线后面写上网络前	缓所占的比特数量 。
CIDR实际上是将网络前缀都相同的连续的IP地址组成一个"CIDR地址块"。	
我们只要知道CIDR地址块中的任何一个地址,就可以知道该地址块的全部细节:	
□ 地址块的最小地址 □ 地址块的最大地址 □ 地址块中的地址数量	
□ 地址块聚合某类网络 (A类、B类或C类) 的数量 □ 地址掩码 (也可继续称为子网掩码)	
路由聚合(构造超网)的方法是找共同前缀	

- 网络前缀越长,地址块越小,路由越具体;
- 若路由器查表转发分组时发现有多条路由可选,则选择网络前缀最长的那条,这称为<mark>最长前缀匹配</mark>,因为这样的路由更具体。

4.3.4 无分类编址的IPv4地址

划分子网在一定程度上缓解了因特网在发展中遇到的困难,但是 <mark>数量巨大的C类网</mark> 因为其 <mark>地址空间太小并没有得到充分使</mark> 用,而因特网的IP地址仍在加速消耗,整个IPv4 <mark>地址空间面临全部耗尽的威胁</mark> 。
为此,因特网工程任务组IETF又提出了采用 <mark>无分类编址</mark> 的方法来解决IP地址紧张的问题,同时还专门成立IPv6工作组负 责研究新版本IP以彻底解决IP地址耗尽问题。
1993年,IETF发布了无分类域间路由选择CIDR(Classless Inter-Domain Routing)的RFC文档: RFC 1517~1519和1520.
□ CIDR消除了传统的A类、B类和C类地址,以及划分子网的概念;
□ CIDR可以更加有效地分配IPv4的地址空间,并且可以在新的IPv6使用之前允许因特网的规模继续增长。
CIDR使用"斜线记法",或称CIDR记法。即在IPv4地址后面加上斜线"/",在斜线后面写上网络前缀所占的比特数量。
CIDR实际上是将网络前缀都相同的连续的IP地址组成一个"CIDR地址块"。
我们只要知道CIDR地址块中的任何一个地址,就可以知道该地址块的全部细节:
□ 地址块的最小地址 □ 地址块的最大地址 □ 地址块中的地址数量
□ 地址块聚合某类网络 (A类、B类或C类) 的数量 □ 地址掩码 (也可继续称为子网掩码)

网络前缀越长,地址块越小,路由越具体;

路由聚合(构造超网)的方法是找共同前缀

■ 若路由器查表转发分组时发现有多条路由可选,则选择网络前缀最长的那条,这称为<mark>最长前缀匹配</mark>,因为这样的路由更具体。