

27123

PATENT TRADEMARK OFFICE

Docket No. 1232-4829-11
-11**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

Applicant(s): YOGO, et al

Group Art Unit: 1765

Serial No.: 10/085,500

Examiner:

Filed: February 26, 2002

For: CALCIUM FLUORIDE CRYSTAL AND METHOD AND APPARATUS FOR PRODUCING THE SAME

CLAIM TO CONVENTION PRIORITYCommissioner for Patents
Washington, D.C. 20231

Sir:

In the matter of the above-identified application and under the provisions of 35 U.S.C. §119 and 37 C.F.R. §1.55, applicant(s) claim(s) the benefit of the following prior application(s):

Application(s) filed in: Japan

In the name of: Canon Kabushiki Kaisha

Serial No(s): 2001-051935

Filing Date(s): February 27, 2001

Serial No(s): 2002-022480

Filing Date(s): January 30, 2002

COPY OF PAPERS
ORIGINALLY FILED

RECEIVED
JUN 13 2002
TC 1700

- Pursuant to the Claim to Priority, applicant(s) submit(s) a duly certified copy of said foreign application.
- A duly certified copy of said foreign application is in the file of application Serial No. , filed .

Respectfully submitted,
MORGAN & FINNEGAN, L.L.P.

Dated: June 3, 2002

By:

Joseph A. Calvaruso
Registration No. 28,287

Correspondence Address:

MORGAN & FINNEGAN, L.L.P.
345 Park Avenue
New York, NY 10154-0053
(212) 758-4800 Telephone
(212) 751-6849 Facsimile

1765

Docket No. 1232-4829**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

Applicant(s): YOGO, et al.

Group Art Unit: 1765

Serial No.: 10/085,500

Examiner:

Filed: February 26, 2002

For: CALCIUM FLUORIDE CRYSTAL AND METHOD AND APPARATUS FOR PRODUCING THE SAME

CERTIFICATE OF MAILING (37 C.F.R. §1.8(a))Commissioner for Patents
Washington, DC 20231

Sir:

I hereby certify that the attached:

1. Claim to Priority Convention
2. Certified copies of two (2) priority documents
3. Return Receipt Postcard

along with any paper(s) referred to as being attached or enclosed and this Certificate of Mailing are being deposited with the United States Postal Service on date shown below with sufficient postage as first-class mail in an envelope addressed to the: Commissioner for Patents, Washington, DC 20231.

Respectfully submitted,
MORGAN & FINNEGAN, L.L.P.Dated: June 3, 2002By: Helen Tiger
Helen TigerCorrespondence Address:MORGAN & FINNEGAN, L.L.P.
345 Park Avenue
New York, NY 10154-0053
(212) 758-4800 Telephone
(212) 751-6849 FacsimileCOPY OF PAPERS
ORIGINALLY FILEDRECEIVED
JUN 13 2002
TC 1700

CFE 3335 US (1/2)
051935/2001

本 国 特 許 庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出 願 年 月 日

Date of Application:

2 0 0 1 年 2 月 2 7 日

出 願 番 号

Application Number:

特願 2 0 0 1 - 0 5 1 9 3 5

[ST.10/C]:

[J P 2 0 0 1 - 0 5 1 9 3 5]

出 願 人

Applicant(s):

キヤノン株式会社

COPY OF PAPERS
ORIGINALLY FILED

RECEIVED
JUN 13 2002
TC 1700

2 0 0 2 年 3 月 2 2 日

特 訸 庁 長 官
Commissioner,
Japan Patent Office

及 川 耕 造

出 証 番 号 出 証 特 2 0 0 2 - 3 0 1 9 1 3 0

【書類名】 特許願
【整理番号】 4402095
【提出日】 平成13年 2月27日
【あて先】 特許庁長官 殿
【国際特許分類】 C30B 11/00
G03F 7/20
G02B 1/00
【発明の名称】 弗化物の精製方法及び装置
【請求項の数】 14
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 余語 瑞和
【特許出願人】
【識別番号】 000001007
【氏名又は名称】 キヤノン株式会社
【代理人】
【識別番号】 100110412
【弁理士】
【氏名又は名称】 藤元 亮輔
【電話番号】 03-3523-1227
【手数料の表示】
【予納台帳番号】 062488
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0010562

特2001-051935

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 弗化物の精製方法及び装置

【特許請求の範囲】

【請求項1】 弗化物の原料を収納すると共に内部を排氣する排氣機構を有する坩堝を加熱して前記弗化物の原料を脱水する工程と、

前記脱水工程時に前記排氣機構により前記坩堝内を排氣する工程とを有する前記弗化物の精製方法。

【請求項2】 前記坩堝はスカベンジャーを更に収納し、

前記精製方法は、

前記弗化物の原料に含まれる不純物を除去するために前記スカベンジャーを反応させる工程と、

前記反応工程時に前記排氣機構による前記坩堝内の排氣を行わず前記坩堝を密閉する工程とを更に有する請求項1記載の方法。

【請求項3】 前記坩堝はスカベンジャーを更に収納し、

前記精製方法は、

前記スカベンジャーが反応することによって生成される生成物を除去する工程と、

前記除去工程時に前記排氣機構により前記坩堝内を排氣する工程とを更に有する請求項1または2記載の方法。

【請求項4】 前記弗化物の原料を融解及び固化する工程と、

前記融解固化工程時に前記排氣機構による前記坩堝内の排氣を行わず前記坩堝を密閉する工程とを更に有する請求項1から3のいずれか一項記載の方法。

【請求項5】 前記排氣機構は、前記坩堝上部に設けられた開閉可能な蓋である請求項1から4のいずれか一項記載の方法。

【請求項6】 弗化物の原料を収納して内部を排氣する排氣機構を有する坩堝を収納する処理チャンバーの真密度を検出する工程と、

前記検出された真密度に基づいて前記排氣機構による排氣を制御する工程とを有する前記弗化物の精製方法。

【請求項7】 前記排氣機構は、前記坩堝上部に設けられた開閉可能な蓋で

ある請求項6記載の方法。

【請求項8】 弗化物を精製するための処理チャンバーと、前記処理チャンバーの圧力を検出する圧力検出部と、前記処理チャンバーに収納され、前記弗化物の原料を収納すると共に内部を排気する排気機構を有する坩堝と、前記圧力検出部が検出した前記処理チャンバー内の圧力に基づいて前記排気機構による排気を制御する制御部とを有する精製装置。

【請求項9】 前記排気機構は、前記坩堝上部に設けられた開閉可能な蓋である請求項8記載の装置。

【請求項10】 請求項8または9記載の精製装置によって精製された前記弗化物の結晶を利用して製造される光学素子。

【請求項11】 レンズ、回折格子、光学膜体及びそれらの複合体の一である請求項10記載の光学素子。

【請求項12】 紫外光、遠紫外光及び真空紫外光を露光光として利用し、当該露光光を、請求項11記載の光学素子を含む光学系を介して被処理体に照射して当該被処理体を露光する露光装置。

【請求項13】 請求項12記載の露光装置を用いて前記被処理体を投影露光する工程と、

前記投影露光された前記被処理体に所定のプロセスを行う工程とを有するデバイス製造方法。

【請求項14】 請求項12記載の露光装置を用いて投影露光された被処理体より製造されるデバイス。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、真空紫外域から遠赤外域までの広い波長範囲から選ばれた所定の波長の光のために用いられる各種光学素子、レンズ、窓材、プリズム等に好適である弗化物結晶を製造するための弗化物の精製方法及び装置に係る。特に、エキシマレーザー用の光学部品（又は光学素子）として好適な弗化物結晶を製造するた

めの弗化物の精製方法及び装置に関する。

【0002】

【従来の技術】

エキシマレーザーは、紫外域で発振する唯一の高出力レーザーとして注目されており、電子産業や化学産業やエネルギー産業において応用が期待されている。具体的には金属、樹脂、ガラス、セラミックス、半導体等の加工や化学反応等に利用されている。エキシマレーザー光の中でもArFレーザーやF₂レーザーはそれぞれ波長が193nmの光、又は、157nmといった真空紫外域と呼ばれる波長域の光であり、光学系にはこうした波長域の光の透過率が高いものを用いなければならない。例えば、弗化カルシウム（萤石）、弗化バリウム、弗化マグネシウムなどの結晶が挙げられる。

【0003】

ここで、従来の弗化物結晶の製造方法を弗化カルシウムを例にとって説明する。

【0004】

赤外から可視域で使用される結晶の場合は、原料として天然に産する安価な萤石原石を使用する。紫外あるいは真空紫外域で使用する結晶の場合は、天然の萤石原料を用いると、不純物が多いために紫外あるいは真空紫外域で吸収が生じてしまう。このため、化学合成で作られた高純度の粉体原料を使用する。

【0005】

この原料の嵩密度を上げ、原料中の不純物を除去するために、原料を溶融して精製する工程が必要となる。この精製工程においては、原料が水分等と反応して生成した酸化物や原料中の不純物を除去するために、金属の弗化物であるスカベンジャーを原料に加えなければならない。例えば、弗化物結晶が弗化カルシウム、スカベンジャーが固体のZnF₂の場合、原料が水分と反応して生成したCaOはZnF₂と反応してCaF₂となり、スカベンジャーはZnOとなって原料溶融時に蒸発する。

【0006】

精製工程によって作られた弗化物結晶のブロックを2次原料として最終的な結

晶を製造した場合、透過特性等の光学性能の非常に優れた弗化物の単結晶が得られることが期待される。

【0007】

ところで製造工程に関して、公開特許2000年第191322号公報には、スカベンジャーを添加した弗化物原料を融解する加熱工程において、弗化物原料を収納する室内のガスが室外に放出されやすくなることにより、室内中の一酸化炭素等の生成物や気化したスカベンジャーが原料中に取り込まれないようにするという開示がある。

【0008】

【発明が解決しようとする課題】

しかし、前記公報のように、加熱工程において室内中のガスが室外に放出されやすくするだけでは、弗化物中の不純物を十分に取り除くことが出来ない可能性がある。

【0009】

また、室中の温度に応じて室内中の雰囲気を変えるだけでは、例えば空气中に含まれる水分の割合が季節によって異なることにより、常に所望の特性の弗化物を得ることが出来ない可能性がある。

【0010】

本発明は、かかる上記従来の問題に鑑みてなされたもので、その目的は、特に短波長で高出力の光を長期間繰り返し照射した場合であっても、透過率特性が劣化し難い弗化物結晶を製造するための、弗化物の精製方法及び装置を提供することにある。

【0011】

また、別の目的は、弗化物原料の蒸発を抑制して弗化物結晶の収率を上げることにより、原料単価が高価な物であっても製造コストを押さえることができ、更に、産業廃棄物の放出を削減できる精製方法及び装置を提供することにある。

【0012】

また、別の目的は、弗化物原料や炉内にあらかじめ付着する水分量が、季節や材料の製造ロットの違いなどで変動しても、安定した脱水状態を実現して精製品

や最終的な結晶の良品率を高くできる、汎用性に飛んだ精製方法及び装置を提供することにある。

【0013】

【課題を解決するための手段】

上記目的を達成するために、本発明の一側面としての弗化物の精製方法は、弗化物の原料を収納すると共に内部を排気する排気機構を有する坩堝を加熱して前記弗化物の原料を脱水する工程と、前記脱水工程時に前記排気機構により前記坩堝内を排気する工程とを有する。かかる方法によれば脱水工程時に排気機構が排気するので脱水効率が高まる。前記坩堝はスカベンジャーを更に収納し、前記精製方法は、前記原料に含まれる不純物を除去するために前記スカベンジャーを反応させる工程と、前記反応工程時に前記排気機構による前記坩堝内の排気を行わず前記坩堝を密閉する工程とを更に有してもよい。かかる方法は、坩堝を密閉することによりスカベンジャーが蒸発して減少することを防止することができる。また、密閉により反応自身も促進する。前記精製方法は、前記スカベンジャーが反応することによって生成される生成物を除去する工程と、前記除去工程時に前記排気機構により前記坩堝内を排気する工程とを更に有してもよい。これにより、坩堝を排気するので気化した生成物の除去の効率が高まり、原料や炉内に付着している有害な水分や有害なスカベンジ反応物（弗化物原料とスカベンジャーとの反応生成）を坩堝外に除去することができる。前記精製方法は、前記弗化物の原料を融解及び固化する工程と、前記融解固化工程時に前記排気機構による前記坩堝内の排気を行わず前記坩堝を密閉する工程とを更に有してもよい。かかる方法は、坩堝を密閉することにより融解固化工程における弗化物結晶成分の蒸発減少を防止することができる。上述した排気機構は、例えば、坩堝上部に設けられた開閉可能な蓋から構成される。

【0014】

本発明の別の側面としての弗化物の精製方法は、弗化物の原料を収納して内部を排気する排気機構を有する坩堝を収納する処理チャンバーの真圧度を検出する工程と、前記検出された真圧度に基づいて前記排気機構による排気を制御する工程とを有する。かかる方法によれば、排気機構による排気は真圧度に基づき、脱

水状態などの精製工程の進行状況に合わせて制御される。上述した排気機構は、例えば、坩堝上部に設けられた開閉可能な蓋から構成される。

【0015】

本発明の別の側面としての精製装置は、弗化物を精製するための処理チャンバーと、前記処理チャンバーの圧力を検出する圧力検出部と、前記処理チャンバーに収納され、前記弗化物の原料を収納すると共に内部を排気する排気機構を有する坩堝と、前記圧力検出部が検出した前記処理チャンバー内の圧力に基づいて前記排気機構による排気を制御する制御部とを有する。かかる精製装置は、制御部が処理チャンバー内の圧力に基づき、精製工程の進行に合わせて排気機構による排気を制御する制御することができる。上述した排気機構は、例えば、坩堝上部に設けられた開閉可能な蓋から構成される。

【0016】

また、本発明の別の側面としての光学素子は、かかる製造装置によって製造される弗化物の結晶から製造される。上述の光学素子は、レンズ、回折格子、光学膜体及びそれらの複合体、例えば、レンズ、マルチレンズ、レンズアレイ、レンチキュラーレンズ、ハエの目レンズ、非球面レンズ、回折格子、バイナリーオプティックス素子及びそれらの複合体を含む。また、光学素子は、単体のレンズ等に加えて（例えば、フォーカス制御用の）光センサーなどを含む。

【0017】

本発明の更に別の側面としての露光装置は、紫外光、遠紫外光及び真空紫外光を露光光として利用し、当該露光光を光学系を介して被処理体に照射して当該被処理体を露光する露光装置であって、前記光学系は上述の光学素子を含む。かかる露光装置も光学素子と同様の作用を奏する。

【0018】

本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いて被処理体を投影露光する工程と、前記投影露光された被処理体に所定のプロセスを行う工程とを有する。上述の露光装置の作用と同様の作用を奏するデバイス製造方法の請求項は、中間及び最終結果物であるデバイス自体にもその効力が及ぶ。また、かかるデバイスは、LSIやVLSIなどの半導体チップ、CCD、L

CD、磁気センサー、薄膜磁気ヘッドなどを含む。

【0019】

【発明の実施の形態】

図1に本発明の実施形態の一つについて、弗化物の精製方法及び弗化物結晶の製造方法のフローチャートを示す。

【0020】

(原料調合工程S11) 弗化物原料にスカベンジャーを添加して十分に混合する。スカベンジャーの添加量は、原料の0.02mol%以上、2mol%以下とする。弗化物の原料は、弗化カルシウム、弗化バリウム、弗化マグネシウム等を使用する。固体スカベンジャーとして用いられる弗化物は、弗化亜鉛、弗化マンガン、弗化鉛、弗化ビスマス、弗化ナトリウム、弗化リチウムなどが望ましい。

【0021】

ここで、例えば弗化亜鉛スカベンジャーは次の化学式2に従って、水分の存在により発生した酸化カルシウム(化学式1)を弗化カルシウムに変える。生成した酸化亜鉛は化学式3に従って還元されて、一酸化炭素ガス(もしくは炭酸ガス)を発生する。こうして、弗化カルシウムの酸化が防止される。以上が、スカベンジ反応(スカベンジャーによる不純物除去反応)として知られているものである。

【0022】

【化1】

【0023】

【化2】

【0024】

【化3】

【0025】

(精製工程 S12) スカベンジャーを添加・混合した弗化物原料を図4に示す精製炉の坩堝の中にいれる。なお、図4において、301は精製炉のチャンバーであり、真空排気系312に接続されている。302は断熱材、303はヒーター、304は原料を収容する室としての坩堝、305は弗化物原料である。306は坩堝を上下させる機構に接続されている。坩堝には蓋307が設けられていて、精製炉の上部に蓋を上下させる機構308があり、これによって蓋の開閉ができるようになっている。図4において蓋を開いた状態を実線で、閉じた状態は破線で示した。また、309はチャンバー内の真空度を測定するための真空計である。測定された真空度は制御部311に送信され、制御部311はかかる結果に基づいて坩堝304の蓋304を開閉する蓋上下機構308を信号線310を通して制御する。坩堝304の温度は熱電対313によって測定され、制御部311に通知される。

【0026】

(脱水工程 S21) 本実施形態においては、初めに、制御部311は坩堝304の蓋307を開口するように機構308を制御する。次いで、制御部311は、真空排気系312を制御して排気を開始して、真空計309が所定の真空度に達したことを検出した後でヒーター303を通電して坩堝304を加熱する。

弗化物原料や坩堝304に吸着する水分はおよそ100~300℃の間に脱水されるため、300℃かそれ以下の温度までは加熱の速度を緩やかにするか、100~300℃の間の適当な温度で長時間保持するようにする。この処理は脱水がかなり進行した段階を真空計309でモニターする。真空計309では真空度が安定しているかどうかをモニターする。

【0027】

(スカベンジ反応工程S22) 次に、真空計309により所定の圧力に達したことが検出されると、制御部311は、機構308を制御して坩堝304の蓋307を閉口し、更に坩堝304を加熱する。スカベンジ反応を十分に促進するため、反応が進む温度帯では原料を加熱する速度を緩やかにするか、あるいは適当な温度で長時間保持するようにする。

【0028】

(スカベンジ反応生成物除去工程S23) スカベンジ反応が十分進行し、真空計309により所定の圧力に達したことが検出されたら、制御部311は、機構308を制御して再び坩堝304の蓋307を開口する。そして、原料が完全に融解するように加熱を続ける。ここでもスカベンジ反応生成物や残留スカベンジャーのガスが減少して真空度が安定するのを待つ。ここでの目的は、弗化物原料の蒸発ができるだけ少なくして、しかも坩堝304外にスカベンジ反応生成物や残留スカベンジャーを除去することである。

【0029】

(弗化物原料融解、固化工程S24) 真空計309により所定の圧力に達したことが検出されると、制御部311は、機構308を制御して再び坩堝304の蓋307を閉口する。融解した弗化物を徐冷して、固化させる。なお、徐冷の際、坩堝304を引き下げると不純物の除去は一層向上する。この工程で得られた弗化物は、不純物を除去して高密度を大きくすることが目的であるから、粒界が存在する結晶であってもよいため精密な温度管理は必要としない。こうして得られた結晶のうち特に上部、即ち経時に最後に結晶化した部分を除去する。この部分は不純物が集まりやすいので、この除去作業によって特性に悪影響を与える不純物を除去する。

【0030】

(単結晶成長工程 S13) 精製した結晶を2次原料として、図示しない結晶成長炉において弗化カルシウムの単結晶を成長させる。成長方法は結晶の大きさや使用目的に応じて適当な方法を選択するが、例えば、ブリッジマン法を用いて坩堝を徐々に引き下げ冷却して単結晶を成長させることができる。

【0031】

(アニール工程 S14) 続いて、結晶成長した弗化物単結晶を図示しないアニール炉で熱処理して複屈折を低減する。

【0032】

(成形加工 S15) その後は、必要とされる光学部品（又は光学素子）の形状に切断、研磨等の方法で成形加工する。光学素子は、レンズ、回折格子、光学膜体及びそれらの複合体、例えば、レンズ、マルチレンズ、レンズアレイ、レンチキュラーレンズ、ハエの目レンズ、非球面レンズ、回折格子、バイナリーオプティック素子及びそれらの複合体を含む。また、光学素子は、単体のレンズ等に加えて（例えば、フォーカス制御用の）光センサーなどを含む。必要に応じて、反射防止膜を弗化物結晶の光学物品表面に設けるとよい。反射防止膜としては、弗化マグネシウムや酸化アルミニウム、酸化タンタルが好適に用いられ、これらは抵抗加熱による蒸着や電子ビーム蒸着やスパッタリングなどで形成できる。必要とされる光学物品の形状（凸レンズ、凹レンズ、円盤状、板状等）に成形加工するための研磨加工においては、 CaF_2 結晶内の転位密度が小さいことにより部分的な面精度の低下は非常に小さく許容値以下で高精度の加工が可能である。

【0033】

本実施形態によれば、炉内雰囲気の真圧度をモニターし、その結果を用いて坩堝の蓋の開閉のタイミングを決定することによって、脱水状態などの精製処理の進行状況に合わせて蓋を開閉することができる。

【0034】

また、本実施形態によれば、弗化物原料が精製処理において融解固化するまでの各段階で坩堝の蓋を開閉することによって、原料や炉内に付着している有害な

水分や有害なスカベンジ反応物を坩堝外に除去できる。この一方で、弗化物結晶成分の蒸発減少を防止できるようになる。

【0035】

この結果、エキシマレーザーなどの短波長で高出力の光を長期間繰り返し照射した場合であっても、透過率特性が劣化し難い弗化物結晶を製造するための、弗化物の精製方法が提供できるようになる。

【0036】

また、原料単価が高価な弗化物原料の蒸発が過剰にならないように抑制して、製造コストを抑えることができ、更に、産業廃棄物の放出を削減できる方法が提供できるようになる。

【0037】

また、弗化物原料や炉内にあらかじめ付着する水分量が、季節や材料の製造ロットの違いなどで変動しても、安定した脱水状態を実現して、精製品や最終的な結晶の良品率を高くすることができるようになる。

【0038】

なお上記実施形態では、坩堝の蓋を開閉することで坩堝内の排気を行っていたが、排気機構としてこれに限られるものではない。例えば、坩堝側面の周囲に縦方向に設けた複数穴と、坩堝外側からその穴を塞ぐことができる筒状の覆いである。この覆いで塞ぐ穴の数を変化させることにより、坩堝内の排気状態を変化させることができ、上記実施形態と同様な効果を得ることができる。

【0039】

【実施例】

以下に実施例をあげて本発明をより詳細に説明する。

【0040】

【実施例1】

図2に、実施例1で行った精製工程S12について、温度と時間、そして蓋の開閉状態と開閉を切替える時の真空度の情報を示した。

【0041】

(原料調合工程S11) 高純度合成CaF₂粉体原料10kgにスカベンジ

ヤーとして弗化亜鉛を0.08mo1% (10.5g) 添加して十分に混合した。

【0042】

(精製工程S12) スカベンジャーを添加・混合した弗化物原料を図4に示す精製炉の坩堝の中に入れた。

【0043】

(脱水工程S21) 初めに、坩堝の蓋を開いた状態にした。次いで、真空排気を開始して、真空中度が 1.33×10^{-3} Pa以下に達した後でヒーターに通電して坩堝の加熱を開始した。なお、真空排気は精製工程S12が終了するまで継続して行っている。加熱速度は、室温から200°Cまで100°C/hで加熱して、200°Cで24時間保持した。この時の真空中度(全圧)の変化であるが、200°C保持開始から時間の経過とともに初めは上昇して、その後は徐々に減少した。200°C保持開始から20時間以上経過するとほぼ安定して約 1.33×10^{-3} Pa以下になっていた。

【0044】

(スカベンジ反応工程S22) 次に、坩堝の蓋を閉じた状態にした。再び坩堝を50°C/hの加熱速度で加熱した。加熱速度を100°C/hより遅くしたのは、スカベンジャーによる不純物除去反応を十分に行うためである。なお、弗化カルシウム原料にスカベンジャーとして弗化亜鉛を使用する時は、およそ400～1300°Cの温度域でスカベンジ反応が進行することがわかったので、この範囲が加熱速度を遅くしたり、適当な温度で長時間保持する方法などが適宜選択できる。

【0045】

(スカベンジ反応生成物除去工程S23) 1000°Cになった時点で炉内雰囲気の圧力は約 5×10^{-4} Paとなっていて、ここで再び坩堝の蓋を開け、さらに原料が融解する温度(1420°C)まで同じ加熱速度で加熱を続けて、真空中度の変化を観察した。ここでも真空中度が安定する時期を観察した。ここでの目的は、弗化物結晶成分の蒸発はできるだけ少なくして、スカベンジ反応生成物や残留スカベンジャーを坩堝外に除去することである。1000°Cで蓋を開けてから1

420℃に加熱するまでの真圧度の変化は次のようになった。すなわち、100℃で蓋を開けてから真圧度（全圧）は加熱とともに上昇して1100℃付近で極大になり、その後少し減少した。そして約1300℃以上になると再び少しずつ増加し始めた。つまり、実施例1の構成では1300℃付近で真圧度が極小になっていた（約 $1.8 \text{ 乃至 } 2.3 \times 10^{-4} \text{ Pa}$ 、例えば、 $2.0 \times 10^{-4} \text{ Pa}$ ）。これは、約1300℃以上で弗化物結晶成分の蒸発が徐々に激しくなることを意味している。

【0046】

（弗化物原料融解、固化工程S24） 1300℃で真圧度の極小を確認してから、1320℃で坩堝の蓋を閉じた。その後は50℃/hの加熱速度のまま1420℃まで加熱し続けた。1420℃で10時間保持して原料が十分に融解した後、融解した弗化物を2℃/hで1300℃まで徐冷して固化させた。その後は室温まで炉内で放冷した。なお、徐冷の際、坩堝を引き下げるとき不純物の除去は一層向上するが、実施例1では引き下げはしなかった。この工程で得られた弗化物は、不純物を除去して高密度を大きくすることが目的であるから、粒界が存在する結晶であってもよいため精密な温度管理は必要としない。

【0047】

こうして得られた結晶のうち特に上部、あるいは経時に最後に結晶化した部分を5mmほど除去した。この部分は不純物が集まりやすいので、この除去作業によって特性に悪影響を与える不純物を除去する。

【0048】

こうして得られた弗化カルシウム結晶（精製品）を切断、研磨して10mm厚の円盤とし、真圧紫外域の透過スペクトルを測定した。この結果を図5に示す。この場合の透過スペクトルは表面2面分の反射を含む結果であり純粹な内部透過率とは異なる。なお、図5には後述する別の実施例と比較例の結果も合せて示している。この図で示されるように、実施例1の精製品の真圧紫外透過スペクトルには大きな吸収が見られなかった。

【0049】

また、実施例1において、弗化カルシウム原料10kgに対して得られた精製

品の重量は9.5kg程度であった。この場合の原料の収率は95%となる。表1に、精製を終えた段階での原料の収率を示した。なお、表1には後述する別の実施例と比較例の結果も合せて示している。

【0050】

(単結晶成長工程S13) こうして精製した結晶を原料として単結晶を成長させた。成長方法はブリッジマン法を用いて、坩堝を1時間当たり2.0mmの降下速度で引き下げ冷却して単結晶を成長させた。

【0051】

(アニール工程S14) 続いて、結晶成長した弗化物単結晶をアニール炉で熱処理して複屈折を低減した。こうして得られた弗化カルシウム単結晶を切断、研磨して10mm厚の円盤とし、F₂エキシマレーザー(157nm)照射試験を実施した。それには、出力30mJ/cm²のレーザーを1×10³パルス照射した。表1に、レーザーパルス照射前後の内部透過率の値を示した。この表でわかるように、実施例1の単結晶は、照射前の内部透過率は99.6%、照射後は99.5%であり、長期の使用に耐える性能を有していた。なお、今回のレーザー照射試験において良好な内部透過率とは、照射前99.5%以上、照射後99.4%以上のことをいう。

【0052】

(成形加工S15) その後は、必要とされる光学部品の形状に切断、研磨等の方法で成形加工する。また、必要に応じて、反射防止膜を弗化物結晶の光学部品表面に設けるとよい。こうして得られたレンズを各種組み合せれば、エキシマレーザー、特にArFエキシマレーザーあるいはF₂エキシマレーザー等の高エネルギー光に適した高耐久性能を有する光学系を構成できる。この光学系と、被露光体としての基板を移動させるステージとを組み合せて、露光装置を構成できる。

【0053】

【実施例2】

図3に、実施例2で行った精製工程S12について、温度と時間、そして蓋の開閉状態と開閉を切替える時の真空度の情報を示した。

【0054】

また、精製炉の構成は基本的に実施例1と同様であるので詳しい説明は省略する。なお、坩堝の大きさなどは、製造する結晶の大きさに合せて適宜調整する。

【0055】

(原料調合工程S11) 高純度合成CaF₂粉体原料30kgにスカベンジャーとして弗化亜鉛を0.13mol% (50g) 添加して十分に混合した。

【0056】

(精製工程S12) スカベンジャーを添加・混合した弗化物原料を図4に示す精製炉の坩堝の中に入れた。

【0057】

(脱水工程S21) 初めに、坩堝の蓋を開いた状態にした。次いで、真空排気を開始して、真圧度が 1.33×10^{-3} Pa以下に達した後でヒーターに通電して坩堝の加熱を開始した。室温から200°Cまで100°C/hで加熱して、200°Cで保持した。

【0058】

実施例2においても、200°C保持の終了の目安として真圧度の変化を利用した。真圧度(全圧)の変化は定性的には実施例1と同様であり、すなわち200°Cで保持を開始してから保持時間の経過とともに真圧度は初め上昇して、その後、徐々に減少した。200°C保持開始から28時間以上経過するとほぼ安定して約 1.33×10^{-3} Pa以下になった。

【0059】

(スカベンジ反応工程S22) そこで少し余裕を見て、200°C保持開始から32時間後に坩堝の蓋を閉じた状態にした。再び坩堝を100°C/hの加熱速度で加熱して、坩堝の温度が700°Cになった時点で、スカベンジャーによる不純物除去反応を行うため700°Cで10時間保持した。

【0060】

(スカベンジ反応生成物除去工程S23) 700°C保持の後、再び100°C/hの加熱速度で1000°Cまで加熱して再び坩堝の蓋を開けた。蓋を開ける直前の炉内雰囲気の圧力は約 5×10^{-4} Paとなっていた。蓋を開けたまま原料が

融解する温度（1420℃）まで加熱を続けて、真空度の変化を観察した。実施例2では、真空度は1420℃になってから2時間ほど経過すると極小を示し（約 1.8 乃至 2.3×10^{-4} Pa、例えば、 2.0×10^{-4} Pa）、その後は真空度（全圧）は増加し始めた。つまり1420℃で2時間保持すれば、坩堝外にスカベンジ反応生成物などを除去できることがわかった。

【0061】

（弗化物原料融解、固化工程S24）そこで実施例2では、1420℃で2時間保持した後で坩堝の蓋を閉じた。この温度で更に10時間保持（1420℃で合計12時間保持）して原料が十分に融解した後、融解した弗化物を5mm/hの引き下げ速度で24時間引き下げて固化させた。その後は室温まで炉内で放冷した。こうして得られた結晶のうち上部（最後に結晶化した部分）を2mmほど除去した。この部分は不純物が集まりやすいので、この除去作業によって特性に悪影響を与える不純物を除去する。こうして得られた弗化カルシウム結晶（精製品）を切断、研磨して10mm厚の円盤とし真空紫外域の透過スペクトルを測定したところ、真空紫外域の透過スペクトルには問題となる吸収はみられなかつた（図5）。また、原料の収率は96%だった（表1）。

【0062】

（単結晶成長工程S13）こうして精製した結晶を原料として単結晶を成長させた。成長方法はブリッジマン法を用いて、坩堝を1時間あたり2.0mmの降下速度で引き下げ冷却して単結晶を成長させた。

【0063】

（アニール工程S14）続いて、結晶成長した弗化物単結晶をアニール炉で熱処理して複屈折を低減した。こうして得られた弗化カルシウム単結晶を切断、研磨して10mm厚の円盤とし、F²エキシマレーザー（157nm）照射試験（出力30mJ/cm²のレーザーを 1×10^3 パルス照射）を実施したが、内部透過率は照射前99.8%、照射後も99.8%で変化がなく、長期の使用に耐える良好な性能を有していた（表1）。

【比較例】

以下に比較例をあげて本発明の有効性を説明する。比較検討実験においても基

本的に、（原料調合工程 S 1 1）、（精製工程 S 1 2）、（単結晶育成工程 S 1 3）、（アニール工程 S 1 4）、（成形加工 S 1 5）の工程を経て結晶の製造を試みた。この中で、（精製工程 S 1 2）を除いた他の工程は実施例 1 の方法に従ったので、精製工程を中心に説明する。

【比較例 1】

実施例 1 と同様にして、高純度合成 CaF_2 粉体原料 10 kg にスカベンジャーとして弗化亜鉛を 0.08 mol % (10.5 g) 添加して十分に混合した。次に比較例 1 の精製工程 S 2 1 は、脱水工程 S 2 1 以外は実施例 1 と同じ条件を行った。即ち、（脱水工程 S 2 1）では、坩堝の蓋を閉じたまま真空排気した（室温～200°C）。実施例 1 ではこの付着水の除去を坩堝の蓋を開いたままにした点が異なる。（スカベンジ反応工程 S 2 2） 坩堝の蓋を閉じた状態を維持して 200°C から 1000°C に加熱した。（スカベンジ反応生成物除去工程 S 2 3）では、蓋を開けた状態を維持して 1000°C～1300°C に加熱した。（弗化物原料融解、固化工程 S 2 4）では、再び蓋を閉じた状態で融解して 1300°C～1420°C に維持した。その後は蓋を閉じたまま徐々に冷却して固化した。

【0064】

このようにして作られた弗化カルシウム結晶（精製品）を切断、研磨して 10 mm 厚の円盤とし真空紫外域の透過スペクトルを測定した。この結果は、図 5 で示されるように短波長側に吸収が発生していた。こうして得られた結晶を原料として実施例 1 と同様の条件で単結晶を成長させて、更にアニールを行ってみたが、得られた単結晶は、F₂ エキシマレーザー (157 nm) 照射前で内部透過率は 78.0%、照射後で 74.0% しかなく、透過性能とレーザー耐久性能ともに良好とはいえないかった。（表 1）

【比較例 2】

実施例 1 と同様にして、高純度合成 CaF_2 粉体原料 10 kg にスカベンジャーとして弗化亜鉛を 0.08 mol % (10.5 g) 添加して十分に混合した。

【0065】

次に比較例 2 の精製工程 S 2 1 は、スカベンジ反応工程 S 2 2 を除いて実施例 1 と同じ条件を行った。即ち、（脱水工程 S 2 1）では、坩堝の蓋を開いたまま

真空排気し、室温～200℃に維持した。（スカベンジ反応生成物除去工程S23）では、蓋を開けた状態を維持して1000℃～1300℃に加熱した。（弗化物原料融解、固化工程S24）では、再び蓋を閉じた状態で融解して1300℃～1420℃に加熱し、その後は蓋を閉じたまま徐々に冷却して固化した。

【0066】

このようにして作られた弗化カルシウム結晶（精製品）を切断、研磨して10mm厚の円盤とし真空紫外域の透過スペクトルを測定したところ、短波長側に吸収が発生していた（図5）。こうして得られた結晶を原料として実施例1と同様の条件で単結晶を成長させて、更にアニールを行ってみたが、得られた単結晶は、F₂エキシマレーザー（157nm）照射前で内部透過率は79.5%、照射後で76.2%しかなく、良好な内部透過率とは言えなかった（表1）。

【比較例3】

実施例1と同様にして、高純度合成CaF₂粉体原料10kgにスカベンジャーとして弗化亜鉛を0.08mol%（10.5g）添加して十分に混合した。

【0067】

次に比較例3の精製工程S21は、スカベンジ反応生成物除去工程S23を除いて実施例1と同じ条件で行った。即ち、（脱水工程S21）では、坩堝の蓋を開いたまま真空排気し、室温～200℃に維持した。（スカベンジ反応工程S22）では、坩堝の蓋を閉じた状態を維持して200℃から1000℃に加熱した。（スカベンジ反応生成物除去工程S23）では、蓋を閉じた状態を維持して1000℃～1300℃に加熱した。実施例1ではこのプロセスは蓋を開いて行っていた。（弗化物原料融解、固化工程S24）では、蓋を閉じた状態で融解して1300℃～1420℃に加熱し、その後は蓋を閉じたまま徐々に冷却して固化した。

【0068】

このようにして作られた弗化カルシウム結晶（精製品）を切断、研磨して10nm厚の円盤とし真空紫外域の透過スペクトルを測定したところ、短波長側に吸収が発生していた（図5）。こうして得られた結晶を原料として実施例1と同様の条件で単結晶を成長させて、更にアニールを行ってみたが、得られた単結晶は

、 F_2 エキシマレーザー（157 nm）照射前で内部透過率は79.5%、照射後で76.2%しかなく、良好な内部透過率とは言えなかった（表1）

【比較例4】

実施例1と同様にして、高純度合成CaF₂粉体原料10kgにスカベンジャーとして弗化亜鉛を0.08mol%（10.5g）添加して十分に混合した。

【0069】

次に比較例4の精製工程S21は弗化物原料融解、固化工程S24を除いて実施例1と同じ条件で行った。即ち、（脱水工程S21）では、培塙の蓋を開いた状態を維持して室温～200℃に加熱した。（スカベンジ反応工程S22）では、蓋を閉じた状態を維持して200℃から1000℃に加熱した。（スカベンジ反応生成物除去工程S23）では、蓋を開けたまま融解して1300℃～1420℃に加熱した。その後は蓋を開けたまま徐々に冷却して固化した。

【0070】

このようにして作られた弗化カルシウム結晶（精製品）を切断、研磨して10mm厚の円盤とし、ガンマ線照射前後の真空紫外域の透過スペクトルを測定した。ガンマ線照射条件は実施例と同じである。この比較例4に実験で得られた結晶（精製品）は実施例1の結晶と同じく、真空紫外域で吸収が見られず良好な透過特性であった（図5）。更にこの後に単結晶育成とアニールとを行って得られた単結晶であるが、 F_2 エキシマレーザーパルス（157 nm）を長期にわたって照射しても、内部透過率の低下が少なく長期の使用に耐える性能を有していた（表1）。しかしながら比較例4では、精製工程の原料融解固化中（S24）に培塙の蓋を開けていて弗化物原料の蒸発が激しくなるため、弗化カルシウム原料10kgに対して得られた精製品の重量は8.5kg程度しかなかった（原料の収率85%）。これに対して実施例1では9.5kgの精製品（原料の収率95%）が得られたことを考慮すると、原料の収率の点からは好ましい精製方法とは言えず、製造コストが高くなってしまうことが判った（表1）。また、弗化物原料の蒸発が激しい分、産業廃棄物の放出が多くなってしまう。

【比較例5】

実施例2と同様にして、高純度合成CaF₂粉体原料30kgにスカベンジャー

ーとして弗化亜鉛を0.13mol% (50g) 添加して十分に混合した。次に比較例5の精製工程では、温度と時間及び坩堝の蓋の開閉状態を実施例2と同一条件に固定して、弗化物原料の精製実験を何回か繰り返し試みた。この精製条件の要点をまとめると次の様になる。即ち、(脱水工程S21)では、坩堝の蓋を開けた状態で真空排気して 1.33×10^{-3} Pa以下にし、蓋を開けて真空排気を続けたまま、室温から200°Cまで100°C/hで加熱して200°Cで32時間保持した。(スカベンジ反応生成物除去工程S23)では、1000°Cで蓋を開口した。蓋を開けたまま、1420°Cまで100°C/hで加熱して1420°Cで2時間保持した。(弗化物原料融解、固化工程S24)では、再び蓋を閉じて、1420°Cで更に10時間保持して十分に融解した。その後は蓋を閉じたまま5mm/hの引き下げ速度で24時間引き下げて固化した。更に室温まで炉内で放冷した。

【007.1】

この精製条件による弗化物原料の精製を、11月から翌年の2月にかけて8回試みた。また、少し期間をおいて、6月から9月にかけて8回試みた。このようにして作られた弗化カルシウム結晶(精製品)を切断、研磨して10nm厚の円盤とし、真空紫外域の透過スペクトルを測定した。結果(図示せず)であるが、11月から翌年の2月にかけての8個の精製品のうち7個については、真空紫外域の透過スペクトルには問題となる吸収は見られなかった。1個のサンプルだけは短波長側に多少の吸収が発生していた。一方、6月から9月の8個の精製品では、5個について短波長側に吸収が生じていることがわかった。

【007.2】

また、真空紫外域短波長側に吸収の生じなかつた精製品(結晶)については、実施例2と同様の結晶育成工程とアニール工程を行うことで、F₂エキシマレーザー(157nm)に対しても、透過性能が良好な単結晶が得られた。

【007.3】

従って比較例5においては、温度と時間及び坩堝の蓋の開閉状態を実施例2と同一条件に固定して、弗化物原料の精製実験を試みたのであるが、11月から翌年2月までの良品の割合(7/8の割合)が良かったのに対して、6月から9月

の間は良品の割合が悪くなってしまったことになる。この原因としては、冬と夏とで湿度が大きく異なり、弗化物原料や精製炉内に付着した水分量に差があることが想定される。つまり、脱水工程S21の温度と時間の条件を固定してしまい、真空度の観察によって脱水状態を確認しないまま次の工程（スカベンジ反応工程以降）に進んでしまったため、夏に湿度が高い場合には十分に脱水が行われず、弗化物原料が酸化したまま残留してしまったことが考えられる。

【0074】

【表1】

	原料の収率 (精製品)	内部透過率(単結晶)		備考
		レーザー照射前	照射後	
実施例1	95%	99.6%	99.5%	良
実施例2	96%	99.8%	99.8%	良
比較例1		78.0%	74.0%	内部透過率不良
比較例2		79.5%	76.2%	内部透過率不良
比較例3		90.3%	88.6%	内部透過率不良
比較例4	85%	99.5%	99.4%	原料の収率不良

【0075】

以下、図6を参照して、本発明の例示的な露光装置1について説明する。ここで、図6は、本発明の例示的な露光装置1の概略断面図である。露光装置1は、図6に示すように、照明装置10と、レチクル20と、投影光学系30と、プレート40と、ステージ45とを有する。露光装置1は、ステップアンドリピート方式又はステップアンドスキャン方式でレチクル20に形成された回路パターンをプレート40に露光する走査型投影露光装置である。

【0076】

照明装置10は転写用の回路パターンが形成されたレチクル20を照明し、光源部12と照明光学系14とを有する。

【0077】

光源部12は、例えば、光源としてレーザーを使用する。レーザーは、波長約

193 nmのArFエキシマレーザー、波長約248 nmのKrFエキシマレーザー、波長約157 nmのF₂エキシマレーザーなどを使用することができるが、レーザーの種類はエキシマレーザーに限定されず、例えば、YAGレーザーを使用してもよいし、そのレーザーの個数も限定されない。光源部12にレーザーが使用される場合、レーザー光源からの平行光束を所望のビーム形状に整形する光束整形光学系、コヒーレントなレーザー光束をインコヒーレント化するインコヒーレント化光学系を使用することが好ましい。但し、光源部12に使用可能な光源はレーザーに限定されるものではなく、一又は複数の水銀ランプやキセノンランプなどのランプも使用可能である。

【0078】

照明光学系14はマスク20を照明する光学系であり、レンズ、ミラー、ライトインテグレーター、絞り等を含む。例えば、コンデンサーレンズ、ハエの目レンズ、開口絞り、コンデンサーレンズ、スリット、結像光学系の順で整列する等である。照明光学系14は、軸上光、軸外光を問わず使用することができる。ライトインテグレーターは、ハエの目レンズや2組のシリンドリカルレンズアレイ（又はレンチキュラーレンズ）板を重ねることによって構成されるインテグレーター等を含むが、光学ロッドや回折素子に置換される場合もある。かかる照明光学系14のレンズなどの光学素子に本発明の光学素子を使用することができる。

【0079】

レチクル20の上には転写されるべき回路パターン（又は像）が形成され、図示しないレチクルステージに支持及び駆動される。レチクル20から発せられた回折光は投影光学系30を通りプレート40上に投影される。プレート40はウエハや液晶基板などの被処理体でありレジストが塗布されている。レチクル20とプレート40とは共役の関係にある。走査型投影露光装置の場合は、マスク20とプレート40を走査することによりマスク20のパターンをプレート40上に転写する。ステッパー（ステップアンドリピート露光方式の露光装置）の場合はマスク20とプレート40を静止させた状態で露光が行われる。

【0080】

投影光学系30は、複数のレンズ素子のみからなる光学系、複数のレンズ素子

と少なくとも一枚の凹面鏡とを有する光学系（カタディオプトリック光学系）、複数のレンズ素子と少なくとも一枚のキノフォームなどの回折光学素子とを有する光学系、全ミラー型の光学系等を使用することができる。色収差の補正が必要な場合には、互いに分散値（アッペ値）の異なるガラス材からなる複数のレンズ素子を使用したり、回折光学素子をレンズ素子と逆方向の分散が生じるように構成したりする。かかる投影光学系30のレンズなどの光学素子に本発明の光学素子を使用することができる。

【008.1】

プレート40にはフォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、プリベーク処理とを含む。前処理は洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質（即ち、界面活性剤塗布による疎水性化）処理であり、HMDS（Hexamethyl-disilazane）などの有機膜をコート又は蒸気処理する。プリベークはベーキング（焼成）工程であるが現像後のそれよりもソフトであり、溶剤を除去する。

【008.2】

ステージ45はプレート40を支持する。ステージ45は、当業界で周知のいきなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。例えば、ステージ45はリニアモータを利用してXY方向にプレート40を移動することができる。レチクル20とプレート40は、例えば、同期走査され、ステージ45と図示しないレチクルステージの位置は、例えば、レーザー干渉計などにより監視され、両者は一定の速度比率で駆動される。ステージ45は、例えば、ダンパを介して床等の上に支持されるステージ定盤上に設けられ、レチクルステージ及び投影光学系30は例えば、鏡筒定盤は床等に載置されたベースフレーム上にダンパ等を介して支持される図示しない鏡筒定盤上に設けられる。

【008.3】

露光において、光源部12から発せられた光束は、照明光学系14によりレチクル20を、例えば、ケーラー照明する。レチクル20を通過してマスクパター

ンを反映する光は投影光学系30によりプレート40に結像される。露光装置1が使用する照明光学系14及び投影光学系30は、本発明の光学素子を含んで紫外光、遠紫外光及び真空紫外光を高い透過率で透過すると共に屈折率均質性や複屈折率が少ないので、高い解像度とスループットで経済性よくデバイス（半導体素子、LCD素子、撮像素子（CCDなど）、薄膜磁気ヘッドなど）を提供することができる。

【0084】

次に、図7及び図8を参照して、上述の露光装置1を利用したデバイスの製造方法の実施例を説明する。図7は、デバイス（ICやLSIなどの半導体チップ、LCD、CCD等）の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ101（回路設計）ではデバイスの回路設計を行う。ステップ102（マスク製作）では、設計した回路パターンを形成したマスクを製作する。ステップ103（ウェハ製造）ではシリコンなどの材料を用いてウェハを製造する。ステップ104（ウェハプロセス）は前工程と呼ばれ、マスクとウェハを用いてリソグラフィ技術によってウェハ上に実際の回路を形成する。ステップ105（組み立て）は後工程と呼ばれ、ステップ104によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程（ダイシング、ボンディング）、パッケージング工程（チップ封入）等の工程を含む。ステップ106（検査）では、ステップ105で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷（ステップ107）される。

【0085】

図8は、ステップ104のウェハプロセスの詳細なフローチャートである。ステップ111（酸化）ではウェハの表面を酸化させる。ステップ112（CVD）では、ウェハの表面に絶縁膜を形成する。ステップ113（電極形成）では、ウェハ上に電極を蒸着などによって形成する。ステップ114（イオン打ち込み）ではウェハにイオンを打ち込む。ステップ115（レジスト処理）ではウェハに感光剤を塗布する。ステップ116（露光）では、露光装置1によってマスクの回路パターンをウェハに露光する。ステップ117（現像）では、露光したウ

エハを現像する。ステップ118（エッティング）では、現像したレジスト像以外の部分を削り取る。ステップ119（レジスト剥離）では、エッティングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施例の製造方法によれば従来よりも高品位のデバイスを製造することができる。

【0086】

以上、本発明の好ましい実施例を説明したが、本発明はこれらに限定されずその要旨の範囲内で種々の変形及び変更が可能である。

【0087】

【発明の効果】

本発明の精製方法及び装置は、坩堝の通気性と密閉性の両方を確保してかつ通気性を所望の量に調節できるので弗化物結晶の透過率を含む光学特性が優れた弗化物結晶をもたらす。また、かかる弗化カルシウム結晶から製造される光学素子は解像度やスループットの高い露光を行って高品位なデバイスを提供する露光装置の光学系に適用することができる。

【0088】

【図面の簡単な説明】

【図1】 本発明の、弗化物原料から弗化物結晶光学部品を成形加工するまでの製造工程を説明するためのフローチャートである。

【図2】 本発明の実施例の精製工程を説明するためのフローチャートである。

【図3】 本発明の別の実施例の精製工程を説明するためのフローチャートである。

【図4】 精製装置の断面を示す模式図である。

【図5】 種々の条件で作製した弗化カルシウム結晶（精製品）の分光特性である。

【図6】 本発明の露光装置の概略断面図である。

【図7】 本発明の露光工程を有するデバイス製造方法を説明するためのフローチャートである。

【図8】 図6に示すステップ104の詳細なフローチャートである。

- 301 精製炉のチャンバー
- 302 断熱材
- 303 ヒーター
- 304 埋堀
- 305 弗化カルシウム
- 306 埋堀引き下げ機構
- 307 埋堀の蓋
- 308 蓋を上下させる機構（開閉機構）
- 309 真空計
- 310 信号線
- 311 制御部
- 312 真空排気系

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【書類名】 要約書

【要約】

【課題】 精製工程における坩堝の通気性と密閉性の両方を確保してかつ通気性を所望の量に調節可能に構成することによって光学特性の優れた弗化物結晶及びそれから製造される光学素子を提供する。

【解決手段】 弗化物の原料を収納すると共に開閉可能な蓋を有する坩堝を加熱して前記弗化物の原料を脱水する工程と、前記脱水工程時に前記坩堝の蓋を開口して前記坩堝内を排気する工程とを有する弗化物の精製方法を提供する。

【選択図】 図1

出願人履歴情報

識別番号 [000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社