

Lecture 5 Part I

BU.330.760 Generative AI for Business

Minghong Xu, PhD.

Associate Professor

Reflections

- >>> Agentic AI: "automation"
 - A few "chatGPT"s talking to each other
 - Each handle a specific task
 - Prompt engineering is the core, like HR training the new employee
- >>> Business case
 - Focus: understand a process and automate it

Today's Agenda

- >>> BloombergGPT vs RAG
 - Last part of "Capability"
- >>> LLM risks, governance, adversarial attacks
 - Vulnerability

LLM Challenges (Recap)

>>> Reasoning

- LLMs are good at pattern recognition and statistical analysis, mimic patterns from training data
- Lack true understanding, lack arithmetic, commonsense, and symbolic reasoning

>>> Domain adaption

Incorporate domain knowledge and local expertise

Four Ways that Enterprises Deploy LLMs | Fiddler Al Blog

BloombergGPT

https://arxiv.org/abs/2303.17564

Model Overview

- >> 50 billion parameters
- >>> Combining general-purpose LLM and domain-specific LLM

- >>> Financial language documents over 40 years
- >> 700 billion tokens

Dataset	Docs 1e4	C/D	Chars 1e8	C/T	Toks 1e8	Т%
FINPILE	175,886	1,017	17,883	4.92	3,635	51.27%
Web	158,250	933	14,768	4.96	2,978	42.01%
News	10,040	1,665	1,672	4.44	376	5.31%
Filings	3,335	2,340	780	5.39	145	2.04%
Press	1,265	3,443	435	5.06	86	1.21%
Bloomberg	2,996	758	227	4.60	49	0.70%
PUBLIC	50,744	3,314	16,818	4.87	3,454	48.73%
C4	34,832	2,206	7,683	5.56	1,381	19.48%
Pile-CC	5,255	4,401	2,312	5.42	427	6.02%
GitHub	1,428	$5,\!364$	766	3.38	227	3.20%
Books3	19	552,398	1,064	4.97	214	3.02%
PubMed Central	294	$32,\!181$	947	4.51	210	2.96%
ArXiv	124	47,819	591	3.56	166	2.35%
OpenWebText2	1,684	3,850	648	5.07	128	1.80%
FreeLaw	349	15,381	537	4.99	108	1.52%
StackExchange	1,538	2,201	339	4.17	81	1.15%
DM Mathematics	100	8,193	82	1.92	43	0.60%
Wikipedia (en)	590	2,988	176	4.65	38	0.53%
USPTO Backgrounds	517	4,339	224	6.18	36	0.51%
PubMed Abstracts	1,527	1,333	204	5.77	35	0.50%
OpenSubtitles	38	31,055	119	4.90	24	0.34%
Gutenberg (PG-19)	3	399,351	112	4.89	23	0.32%
Ubuntu IRC	1	$539,\!222$	56	3.16	18	0.25%
EuroParl	7	65,053	45	2.93	15	0.21%
YouTubeSubtitles	17	19,831	33	2.54	13	0.19%
BookCorpus2	2	$370,\!384$	65	5.36	12	0.17%
HackerNews	82	5,009	41	4.87	8	0.12%
PhilPapers	3	$74,\!827$	23	4.21	6	0.08%
NIH ExPorter	92	$2,\!165$	20	6.65	3	0.04%
Enron Emails	24	1,882	5	3.90	1	0.02%
Wikipedia (7/1/22)	2,218	3,271	726	3.06	237	3.35%
TOTAL	226,631	1,531	34,701	4.89	7,089	100.00%

Training Data

>>> Financial Datasets

- 363B tokens, 51.27% of training
- Created internally or acquired from external
- Time-stamped from 2007-3-1 to 2022-7-31
- Cleaning: remove markup, special formatting and templates
- Types
 - Web: crawl from quality websites containing financially relevant information
 - News: all new articles, including transcripts of Bloomberg TV news
 - Filings: financial statements, 10-K and 10-Q from EDGAR
 - Press: press releases issued by companies, public communications similar to news stories
 - Bloomberg: Bloomberg authored news, opinions and analyses

Training Data (Cont.)

>>> Public Datasets

- 345B tokens, 48.73% of training
- The Pile: dataset used in GPT-Neo (Black et al., 2021), GPTJ (Wang and Komatsuzaki, 2021), and GPT-NeoX (20B) (Black et al., 2022)
- Colossal Clean Crawled Corpus (C4): dataset used in training T5 (Raffel et al., 2020)
- Wikipedia: dump of English Wikipedia from July 1, 2022

Model Specifications

10

- >>> Decoder-only
- >>> 70 layers of transformer decoder blocks
- >>> Budget: 1.3M GPU hours on 40GB A100
- >>> Use PyTorch, and Amazon SageMaker service
 - 64 p4d.24xlarge instances

Shape	_
Number of Layers	70
Number of Heads	40
Vocabulary Size	$131,\!072$
Hidden Dimension	7,680
Total Parameters	50.6B
Hyperparameters	
Max Learning Rate	6e-5
Final Learning Rate	6e-6
Learning Rate schedule	cosine decay
Gradient Clipping	0.3
Training	
Tokens	569B
Hardware	$64 \times 8 \text{ A}100 \text{ 40GB}$
Throughput	32.5 sec/step
avg. TFLOPs	102
total FLOPS	2.36e23

Table 4: A summary of the hyper-parameters and their values for BloombergGPT.

Evaluation

Suite	Tasks	What does it measure?
Public Financial Tasks Bloomberg Financial Tasks	5 12	Public datasets in the financial domain NER and sentiment analysis tasks
Big-bench Hard (Suzgun et al., 2022) Knowledge Assessments Reading Comprehension Linguistic Tasks	23 5 5 9	Reasoning and general NLP tasks Testing closed-book information recall Testing open-book tasks Not directly user-facing NLP tasks

Table 5: Evaluation Benchmarks. We evaluate BloombergGPT on a high-coverage set of standard benchmarks that assess downstream performance, taken from HELM, SuperGLUE, MMLU, and the GPT-3 suite. Since these have significant overlap and/or include each other, we restructure them into the categories presented here. We only evaluate on one setup per dataset. We further assess BloombergGPT on a suite of internal and public financial tasks.

- >>> Some NLP tasks can be different on financial language "COMPANY to cut 10,000 jobs"
- >>> Is it positive or negative in sentiment?

Task	Template/Example		
Discriminative			
Sentiment Analysis			
	Question: what is the sentiment?		
	Answer: {negative/neutral/positive}		
Aspect Sentiment Analysis	{sentence}		
	Question: what is the sentiment on {target}?		
	Answer: {negative/neutral/positive}		
Binary Classification	$\{ ext{sentence}\}$		
	Question: {question}?		
	Answer: {Yes/No}		
Generative			
NER.	Steve Jobs is the CEO of Apple		
	Extract named entity: Steve Jobs (person), Apple (organization)		
NER+NED	AAPL stopped using Intel Chips		
	Extract ticker: AAPL, INTC		
QA	{context}		
	Question: {question}?		
	Answer: {answer}		

Table 7: Template for the different tasks we evaluate in the financial domain.

General NLP Tasks

13

- >>> Knowledge assessment
 - Ability to recall information seen in training, e.g. science and commonsense
- >>> Reading comprehension
 - Ability to generate correct responses given input text
- >>> Basic understanding of language itself
 - Evaluate disambiguation
 - Grammar check
 - Recognize entailment
 - Words in context

Benefits of Domain Specialization

- >>> Generation of Bloomberg query language (BQL)
 - Translate natural language queries into valid BQL

```
Input: Get me the last price and market cap for Apple
Output: get(px_last,cur_mkt_cap) for(['AAPL US Equity'])
Input: Tesla price
Output: get(px_last) for(['TSLA US Equity'])
Input: Get the yield and spread for EC527035 Corp and AL580550 Corp
Output: get(yield,spread) for(['EC527035 Corp','AL580550 Corp'])
Input: apple and ibm market cap and eps
Output: get(cur_mkt_cap,is_eps) for(['AAPL US Equity','IBM US Equity'])
Input: industry subgroup of ibm apple microsoft google
Output: get(industry_subgroup()) for(['AAPL US Equity','IBM US Equity', 'MSFT US Equity','GOOGL US Equity'])
```

Figure 4: Using Bloomberg Query Language. Using only a few examples in a few-shot setting, the model can utilize its knowledge about stock tickers and financial terms to compose valid queries to retrieve the data, given a request in natural language. In each case, the model is given 3 examples (not shown) followed by the 'Input" and a prompt of "Output:".

Benefits (Cont.)

>>> Suggestion of news headlines

Assist journalists in writing short headlines

Input: The US housing market shrank in value by \$2.3 trillion, or 4.9%, in the second half of 2022, according to Redfin. That's the largest drop in percentage terms since the 2008 housing crisis, when values slumped 5.8% during the same period.

Output: Home Prices See Biggest Drop in 15 Years

Input: The global economy is in a better place today than many predicted months ago, Janet Yellen said at the G20. At home, she pointed to a resilient US economy, where headline inflation has moderated and the labor market is strong. She also called for the IMF to move swiftly toward a fully-financed program for Ukraine.

Output: Yellen Sees Global Economy More Resilient Than Expected

Input: Google was sued by the US and eight states seeking the breakup of its ad-tech business for allegedly monopolizing the digital advertising market. The lawsuit is the Biden administration's first big challenge to a tech titan and one of the rare times since 1982 that the DOJ has sought to cleave up a major company.

Output: Google Sued for Monopoly in Online Ad Market

Figure 5: Using BloombergGPT to generate short headline suggestions in a three-shot setting. Bloomberg News sends many newsletters a day that requires these headlines. BloombergGPT could help with the editing process by suggesting initial headlines from the text.

- Financial question answering
 - Query financial knowledge, such as CEO of a company

Input: CEO of Assicurazioni Generali?
BloombergGPT: Philippe Donnet

GPT-NeoX: Antonio De Lorenzo, Simone Gambarini, Enrico Zanetti FLAN-T5-XXL: John M Forsyth, Christopher K Peters, {empty string}

Input: CEO of Silicon Valley Bank?
BloombergGPT: Greg Becker

GPT-NeoX: John Hodor, Mike Fridgen, Peter R Briger

FLAN-T5-XXL: Christian Klein, John M Forsyth, John M Forsyth

Input: CEO of IHS Markit Ltd? BloombergGPT: Lance Uggla

GPT-NeoX: John F Lechleiter, David Steward, Niall O Broin

FLAN-T5-XXL: William M Hawkins, John M Forsyth, John M Forsyth

Input: CEO of Walgreens Boots Alliance?

BloombergGPT: Rosalind Brewer

GPT-NeoX: Mark V Dei, Stefano Pessina, Stefano Pessina

FLAN-T5-XXL: Christian Klein, John M Forsyth, John M Forsyth

Input: CEO of Citigroup Inc? BloombergGPT: Jane Fraser

GPT-NeoX: Michael L Corbat, Michael L Corbat, Michael L Corbat* FLAN-T5-XXL: Christian Sewing, John M Forsyth, John M Forsyth

Figure 6: Testing the ability of BloombergGPT, GPT-NeoX, and FLAN-T5-XXL to recall the names of CEOs of companies. Each model is run in a 10-shot setting. We sample up to three answers and present all of them if they are incorrect. *Michael Corbat was CEO of Citigroup until 2021, highlighting the importance of an up-to-date model.

Ethics and Limitations

- >>> Ensure accurate and factual information is crucial
- >>> Comply with regulations
- >>> Toxicity and bias, harmful language
- Limitations
 - You need to have enough data to train your domain-specific LLM
 - You need sufficient computing resources

Retrieval-Augmented Generation

Problems to address

- >>> Pre-trained language models store factual knowledge in parameters
 - Parameterized implicit knowledge base
- >>> Issues?
- >>> Memory is "rigid", difficult to update as parameters are difficult to update
- >>> Hallucinations

A Hybrid Model

>>> Combine parametric memory and non-parametric memory

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela

- >>> Published in 2021 by researchers from Meta Al
- https://arxiv.org/abs/2005.11401
- >>> Enhance LLMs with your own data, internal knowledge base

Mathematical Model (Optional)

Figure 1: Overview of our approach. We combine a pre-trained retriever (Query Encoder + Document Index) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

Two Components

- >>> Retrieval Component: search a large database or corpus of documents to find relevant information
 - Similar to search engine, find pages related to a search query
 - Vector database to vectorize the "local" knowledge

- >>> Generation Component: take the retrieved documents as additional context and generate a response
 - leverage the strength of generative models to produce coherent and contextually appropriate text
 - "Augmented generation"

Architecture

Vector Database

- >>> What is vectorize (Recap)?
- >>> Numerical representation of text, embedding

- >>> LLMs have a limit of the number of tokens they accept as input
- >>> Break down into small chunks
- >>> Embeddings most like the question will be returned
- >>> Reduces costs on the number of tokens passed through an LLM

Another View

Experiments

- >>> Non-parametric knowledge source: December 2018 Wikipedia dump
- >>> Split into disjoint 100-word chunks, total 21M documents
- >>> Top 5 or top 10 documents for each query
- >>> Task types
 - Open-domain QA
 - Abstractive QA, e.g. "what is the weather in Baltimore, MD"
 - Jeopardy question generation, trying to guess an entity form a fact, e.g. "In 1986 Mexico scored as the first country to host this international sports competition twice"
 - Fact verification, retrieving evidence and reasoning over the evidence to classify true or false or unverifiable

What Problems does RAG Solve

>>> Cost-effective implementation

- Avoids expensive model retraining, makes AI more accessible
- Cost-effective approach to introducing new data to the LLM

>>> Current Information

 Allows developers to provide the latest research, statistics, or news to the generative models by connecting to information sources

>>> Enhanced user trust

Provides source attribution, enables verification

More developer control

- Developers can test and improve their chat applications more efficiently
- Better security

BloombergGPT vs RAG (Discussion)

Aspects	BloombergGPT (Domain-specific)	RAG
Training		
Knowledge Base		
Cost		
Flexibility		
Real-time updates		
Deep domain knowledge		

Challenges from Practice

29

- >>> Authorization on sensitive information
 - Leveled access
- >>> Recency of information
 - How often to update the vector database
- >> What may "kill" RAG?

Agentic RAG

- >>> Traditional RAG: rely on static retrieval and generation
- >>> Agentic RAG: use agents to
 - Decide which data sources to use
 - Formulate queries for information retrieval
 - Integrate external tools like APIs or databases
 - Reason about the user's query and break it down into sub-tasks
 - Iteratively refine their actions and responses

Lab 4: RAG for Resumes

- >>> Download the .ipynb file and resumes
- >>> Create a folder "RAG" in your Google Drive
- >>> Unzip and upload resumes folder into "RAG" folder
- >>> There are multiple places that use this path, you need to change them if using your own folder structure

Google NotebookLM

- https://notebooklm.google.com/
- >>> An experimental AI-first notebook that uses RAG technology to integrate user-uploaded documents and notes into its responses, essentially acting as a personalized research assistant

- >>> BloombergGPT Podcast
- https://notebooklm.google.com/notebook/d97d629d-bc27-41df-b154-ab239eaf32c3/audio