\mathbf{Index}

A	
Abelian Groups	vol.1:p.24
Adjoint Operators	vol.1: pp.43 - 44,87,103
	vol.3: pp.134 - 135
Adjugate Matrix	vol.2: pp.120 - 121
Affine Spaces	vol.1: p.93
Algebraic Lyapunov Equation	vol.4: pp.80 - 82
Asymptotically Stable	vol.2: p.76
noy inprovidually studie	vol.3: pp.82 - 84
	vol.4: pp.7, 61 - 62, 67 - 69, 75
Attracting Fixed Point	vol.2: p.76
Troutacoing Fixed Folia	vol.3: pp.83 - 84
Attractiveness	vol.3: p.83
Autonomous Systems	vol.1:p.7
Autonomous Systems B	voi.1 . p.1
Basin Boundary	vol.2:p.89
Basin of Attraction	vol.2: p.89
Basis	vol.2: p.05 vol.2: pp.125 - 127
Bendixson's Theorem	vol.4: pp.25 - 29
Bifurcation	vol.1: pp.11 - 12,63 - 64
Diffication	vol.4: pp.11 - 12,03 - 04 vol.4: pp.12 - 13
Bifurcation (Fold)	vol.4: pp.12 - 13 vol.4: pp.12 - 13,57
Bifurcation (Transcritical)	vol.4: pp.12 - 15, 57 vol.4: pp.12 - 15
Bifurcation Diagram	vol.4: pp.12 - 13 vol.4: pp.12, 15 - 17
Body Velocity	vol.1: p.38
C	001.1 . p.36
Carrying Capacity	vol.4:p.9
Causal Systems	vol.2: p.152
Causai bysicins	vol.3: pp.3 - 4
Cayley Hamilton Theorem	vol.2: pp.139 - 140
Cayley Hammon Theorem	vol.3: pp.121 - 122
Center Manifold Theory	vol.4: pp.39 - 45
Center Mannold Theory Centers (Equilibrium Point)	vol.4: pp.23, 26
Centroid of Area	vol.1: pp.4-6
Characteristic Equation	vol.2: pp.77, 138 - 139
Characteristic Equation	vol.3: pp.77, 138 - 139 vol.3: p.37
	vol.4: p.34
Column Space	vol.2: pp.133 - 134
Complex Conjugate Transpose	vol.3: pp.40 - 44
Condition Number (Of a Matrix)	vol.3: pp.40-44 vol.3: pp.61-62
Connection Vector Field	vol.1: pp.118 - 119
Conservative System	vol.1: pp.118 - 119 vol.2: pp.89 - 91, 103
Conservative System Conservative Vector Fields	
	vol.1: pp.145 - 146
Constraint Halanamia	vol.2: p.90
Constraint, Holonomic	vol.1:pp.76-77

Constraint, Nonholonomic	vol.1: pp.110 - 117, 135 - 136
Continuity w.r.t. Initial Conditions	vol.4: pp.53 - 55
Continuity w.r.t. Parameters	vol.4:pp.54-55
Continuously Differentiable	vol.4: pp.48 - 52
Contour	vol.2: pp.91 - 92
Controllability	vol.3:p.132
Controllability Gramian	vol.3:p.135
	vol.4:p.80
Convolution	vol.3: pp.2-4
Convolution (Discrete)	vol.3: pp.14, 17
Coordinate Transformation Matrix	vol.2: pp.128 - 129
	vol.4: pp.18, 20 - 41
Coordinate Vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2: pp.51 - 54
Cotangent Bundle	vol.1: p.126
Cotangent Space	vol.1: p.126 vol.1: p.126
Cotangent Space Cotangent Vector	vol.1: p.120 vol.1: pp.127 - 130
Cramer's Rule	**
	vol.2 : p.121
Cross Product	vol.1: pp.1 - 2
Curl (Vector)	vol.1: p.145
Curvature (Constraint)	vol.1: pp.144 - 145
D	
Dead Zone Nonlinearity	vol.2:p.151
Deficient Matrix	vol.2: pp.140 - 141
Degenerate Matrix	vol.2:p.139
Degrees of Freedom	vol.1:p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal Coordinate Form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
	vol.3:p.46
	vol.4:p.79
Diffeomorphic	vol.1:p.20
Differentiable	vol.4: pp.51 - 52
Differential Algebraic Equations	vol.2: pp.41 - 44, 47 - 48
Differential Algebraic Equations, Differentiation Index	vol.2: pp.47 - 48
Differential Algebraic Equations, Model Consistency	vol.2: p.44
Differential Algebraic Equations, Regularity	vol.2: p.45
Differential Algebraic Equations, Solution	vol.2: p.44
Dimension (Of a Vector Space)	vol.2: pp.125 - 126
Direct Product of Two Sets	vol.1: p.20
Direct Froduct of Two Sets Direct Sum	-
	vol.1: p.20
Direct Sum of Two Sets	vol.1: p.125
Directional Linearity	vol.1: p.106
Distribution (Allowable Velocities)	vol.1: pp.112, 148 - 150
Divergence	vol.4: pp.25 - 29

Dot	Product	vol.2:pp.134-135
		vol.3:p.41
E		
Eige	enspace	vol.2:p.140
Eige	envalue	vol.2: pp.77, 138 - 145
		vol.3: pp.36 - 45, 56 - 59
Eige	envector	vol.2: pp.76 - 77, 138 - 145
		vol.3: pp.36-45
Eige	envector (Left)	vol.3: pp.50 - 51
Eler	mentary Row Operators	vol.2:p.107
Eml	bedding	vol.1:p.96
Equ	uilibrium Point	vol.3: pp.1, 5-10, 79-84
		vol.4:pp.3-4
Equ	nivalent Vectors w.r.t. Functions	vol.1: pp.100 - 101
Eule	er Lagrange Equation	vol.1:p.136
Exis	stence And Uniqueness Theorem	vol.1:pp.11,13
		vol.2:p.82
		vol.4:pp.46-52
Exp	ponential Map	vol.1: pp.48 - 51, 103 - 104
Ext	ternal Forces	vol.1:p.1
F		
Fini	ite Escape Time	vol.4:pp.9-10
Foc	eus Node	vol.4:pp.22,33
Fold	d Bifurcation	vol.4: pp.12 - 13,57
Fore	ce Couple	vol.1:p.2
Fore	ce Couple System	vol.1:p.3
For	ward Euler Integration	vol.2:p.148
For	ward Kinematics	vol.1: pp.78, 83 - 84
Free	quency Response	vol.3:pp.98,105
Frol	benius Norm	vol.3: pp.62, 102-117
Fun	ndamental Vector Field (Infinitesimal Generator	vol.1: pp.99 - 100
G		
Gai	t Generation	vol.1:p.124
Gau	ussian Elimination	vol.2:p.104
Gen	neralized Coordinates	vol.1:p.78
Geo	odesics	vol.1: pp.44 - 46, 51, 96 - 99
Glo	bally Asymptotically Stable	vol.3:p.93
		vol.4:pp.62,67
Gra	adient Vector Field	vol.1: pp.129 - 130
Gra	am Schmidt Orthogonality Procedure	vol.2:p.137
Gre	een's Theorem	vol.4:pp.25-27
Gro	oup	vol.1: pp.21, 94-95
Gro	oup Invariant Vectors	vol.1:p.100
Gro	oup, Left/right Action	vol.1: pp.24 - 29, 33, 80, 96, 137
Gro	oup, Symmetry	vol.1: pp.108 - 109, 137
H		
H_{∞}	Norm	vol.3: pp.108 - 119

Hartman Grobman Theorem	vol.4: pp.23 - 24
Hermitian Matrix	
	vol.3 : p.107
Heteroclinic Trajectory	vol.2 : p.94
Holonomic Constraint	vol.1: pp.76 - 77
Homeomorphic	vol.1:p.19
	vol.2:p.88
	vol.4:p.23
Homogeneity	vol.3:p.1
Homogeneous Equations	vol.2:p.105
Hopf Bifurcation	vol.4: pp.35 - 38
Huber Function	vol.4:p.71
Hurwitz Matrix	vol.3: pp.94 - 96
	vol.4: pp.81 - 82
Hyperbolic Equilibrium Point	vol.4: pp.22-24
Hyperbolic Fixed Point	vol.2:pp.87-88
Hysteresis	vol.1: pp.66, 70-71
	vol.2:p.42
I	
Idempotent	vol.2:p.37
Image (Algebra)	vol.1:p.124
Impulse Response	vol.3: pp.19 - 20, 29 - 30, 36
Index Theory	vol.2: pp.98 - 101
,	vol.4:p.35
Induced Norm	vol.3: pp.103 - 104
Infinity Norm	vol.3: pp.100 - 101
	vol.4:p.61
Inner Product	vol.2: pp.134 - 135
Intol Product	vol.3: p.41
Internal Forces	vol.1: p.1
Intersection (Spaces)	vol.2: pp.130 - 131
Invariance	vol.1: p.139
Invariant Manifold	vol.4: pp.42 - 45
Invariant Set	vol.4: pp.74 - 77
Isocline	vol.2: pp.74, 84
Isomorphic	vol.1:p.22
J	
Jacobi Liouville Formula	vol.3:p.27
Jacobian	vol.1: pp.84 - 86
	vol.2: p.85
	vol.4: pp.56 - 58
Jordan Blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K	
K Step Observability Matrix	vol.3: pp.138 - 139
Kalman Rank Test	vol.3:p.136
Kernel	vol.1: pp.124 - 125
Kinematic Locomotion	vol.1: pp.105 - 107
L	

L1 Norm	vol.3: pp.100 - 101
	vol.4:p.61
L2 Induced Gain of a System	vol.3:p.108
L2 Norm	vol.3: pp.100 - 101
	vol.4:p.61
La Salle's Invariance Principle	vol.4: pp.74 - 77,85 - 87
Lagrangian	vol.2:p.45
Lagrangian Multipliers	vol.2: pp.45 - 46
	vol.3:p.126
Laplace Transform	vol.2:p.147
	vol.3: pp.29 - 33
Level Sets	vol.4: pp.66-69
Liapunov Fixed Point	vol.2:p.76
Lie Algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
Lie Bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie Groups	vol.1: pp.21, 96-99
Lifted Actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Limit Cycle	vol.3:p.82
	vol.4: pp.10 - 12, 33 - 38
Linear Combination	vol.2:p.124
Linear Equations	vol.2:p.104
Linear Independence	vol.2: pp.124 - 125
Linear Time Invariance	vol.2:p.152
	vol.3: pp.8 - 9, 17
Linear Transformation	vol.2: pp.131 - 133
Linearity	vol.3:p.15
Linearity (Mapping)	vol.1: pp.106 - 107
Linearity (Systems)	vol.2:p.152
	vol.3:p.1
Linearization at a Fixed Point	vol.1: pp.10 - 11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
	vol.4: pp.5 - 8, 23 - 24, 88
Lipschitz Continuous Function	vol.4:pp.49-55
Local Connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locally Asymptotically Stable	vol.4: pp.61 - 62, 67 - 69
Locomotion	vol.1:p.104
Logistic Equation	vol.4:p.9
Lorenz Attractor	vol.4:p.12
Lotka Volterra Model of Competition	vol.2:p.88
Lyapunov Functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
	vol.4: pp.65 - 87
Lyapunov Stability	vol.4: pp.59 - 69
Manifolds Manifolds, Accessible	vol.1: pp.17 - 19,93 vol.1: pp.76 - 78

Manifolds, C^k Differentiable	vol.1: p.20
	vol.4: pp.48 - 52
Manifolds, Curvature	vol.1: p.93
Manifolds, Stable	vol.2:p.89
Manifolds, Topology	vol.1:p.93
Marginally Stable	vol.3:pp.53,56
Markov Parameters	vol.3:p.20
Matrix Cofactor	vol.2: pp.111, 118 - 120
Matrix Determinant	vol.2: pp.115 - 119
Matrix Exponentiation	vol.3: pp.26 - 27,36
Matrix Inverse	vol.2: pp.110 - 115
Matrix Minor	vol.2 : p.111
Matrix Operations	vol.2: p.106
Matthew Equation	vol.3: p.27
Memoryless Systems	vol.2:p.152
	vol.3:p.4
Metzler Matrix	vol.4:p.31
Minimum Energy Input	vol.3: pp.127 - 129, 133 - 136
Modal Contributions of Initial Conditions	vol.3: pp.41 - 45, 51
Modal Decomposition	vol.3: pp.35 - 45, 51
Model Consistency	vol.2:p.44
Model Uncertainty	vol.3: pp.109 - 115
Modular Addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic Function	vol.1:p.13
Multiplicative Calculus	vol.1: pp.34 - 38, 46 - 47
N	00011 Pp.01 00, 10 11
Negative Semidefinite Function	vol.4: pp.67, 74
Negative Semidefinite Matrix	vol.3: p.93
Neumann Series	_
	vol.3 : p.22
Neutrally Stable	vol.2: p.76
Nilpotent Matrix	vol.3: p.35
Node	vol.4: pp.21, 33
Noether's Theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147
Nonholonomic Constraint	vol.1: pp.110 - 117, 135 - 136
Normal Matrix	vol.3: pp.36-46
Nullcline	vol.2:p.84
Nullity	vol.2:p.134
Nullspace	vol.2: pp.132 - 134
0	• •
Observability	vol.3: pp.136 - 139
v	vol.4: pp.86 - 87
Observability Gramian	vol.4: p.80
Observability Gramman Observer Based Controller	vol.3: p.148 - 149
One Form	
One rorm	vol.1: pp.125, 127 - 129

Optimal Frame	vol.1:p.83
Orthogonal Compliment	vol.2: pp.137 - 138
Orthogonal Set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal Basis	
	vol.2: p.136
Outer Product	vol.2:p.136
Output Feedback Design	vol.3:p.147
Overdetermined System	vol.2:pp.19,41
P	
P Norm	vol.3: pp.100 - 102
	vol.4:p.61
Davellel Linkage Mechanisms	vol.3: pp.59 - 60
Parallel Linkage Mechanisms	
Pbh Test	vol.3: p.136
Pendulum	vol.4: pp.7 - 8,63 - 64,72 - 77
Periodic Orbits	vol.4: pp.25 - 34
Pfaffian Constraint	vol.1: pp.111 - 117
Phase (Angle)	vol.2:p.61
Phase Coordinate Form	vol.3:p.6
Phase Drift	vol.2 : p.68
	-
Phase Lock	vol.2: p.67
Phase Portrait	vol.1: pp.7-9
	vol.2: pp.74, 83
	vol.3:p.35
	vol.4: pp.5, 17-19
Pitchfork Bifurcation	vol.4: pp.12, 15-17
Poincare Bendixson Criterion	vol.4: pp.32 - 34
Poles (Transfer Function)	vol.2: p.147
	vol.3: pp.58 - 59
Position Trajectory	vol.1:p.105
Positive Definite Function	vol.4: pp.65-66
Positive Definite Matrix	vol.3:p.87
	vol.4: pp.78 - 79
Positive Invariant Set	vol.4: pp.21, 29 - 34, 69
Positive Semidefinite Matrix	vol.3: p.125
Positive System	vol.4: p.31
Potentials	vol.1:p.17
Power Spectral Density	vol.3: pp.116 - 119
Predator/prey Model	vol.4: pp.30 - 31
Preimage (Algebra)	vol.1:p.124
Principally Kinematic System	vol.1: p.139
Principle Minors	vol.3:p.88
Principle of Least Action	vol.1: pp.131 - 133
Projection Operator	vol.2:p.37
Q	
Quadratic Programming	vol.3: pp.125 - 126
R	
Radially Unbounded	vol.3:p.89

D (M + :)	vol.4: pp.67 - 68
Range (Matrix)	vol.2: pp.132 - 133
Range of Entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reachability	vol.3: pp.120 - 126, 130, 132
Reachability Gramian	vol.3: pp.124 - 129, 133 - 135
Reaction Force	vol.1:p.4
Realization Theory	vol.2:p.149
Reconstruction Equation	vol.1: pp.114 - 123, 138
Region of Attraction	vol.4:p.15
Regular Control Problem	vol.2:p.45
Resolvent	vol.3: pp.17 - 18, 30, 36
Resonance	vol.3:p.50
Reversible System	vol.2: pp.92-95
Rigid Body	vol.1:p.23
Rigid Body, Left Lifted Action	vol.1: pp.38-41
Rigid Body, Right Lifted Action	vol.1: pp.41 - 43
Routh Hurwitz Criterion	vol.3: pp.77 - 80
	vol.4: pp.34, 83
Row Echelon Form	vol.2: p.107
Row Space	vol.2: p.134
Runge Kutta Method	vol.2:p.83
S	001.2 . p.00
Saddle Connection	vol.2:p.94
Saddle Node	vol.4: pp.19 - 21
Sector Bounded Nonlinearities	vol.4: pp.15 - 21 vol.4: p.72
Semidirect Product of Two Sets	
	vol.1: p.24
Sensitivity Function	vol.4: pp.55 - 58
Separatrix	vol.2: p.89
Shape Trajectory	vol.1: p.105
Shift Operator	vol.3: pp.1-2
Signal Norms	vol.3: pp.96 - 104
Similar Matrices	vol.2:p.142
Singular Matrix	vol.2: pp.41 - 42, 51, 110, 122
Singular Value Decomposition	vol.3: pp.104 - 110, 128 - 129
Singular Vectors	vol.3:p.106
Sink Node	vol.4:pp.19,21
Small Gain Theorem	vol.3: pp.109 - 114
Solution, Differential Algebraic Equations	vol.2:p.44
Source Node	vol.4:pp.19,21
Span	vol.2: pp.124 - 125
Spatial Velocity	vol.1:pp.43,85
Special Euclidean Group	vol.1:p.23
-	vol.2: pp.1-2
Special Orthogonal Group, $so(N)$	vol.1: p.22
1 · · · · · · · · · · · · · · · · · · ·	vol.2: pp.1 - 2
Stability	vol.3: pp.80 - 84
~ vasiney	00.00 pp.00 01

	vol.4:p.5
Stability Via Linearization	vol.4 : p.88 - 90
Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2: p.76
Stable	vol.3: pp.53 - 59,91 - 94
	vol.4: p.5
State Estimator Controller	vol.3: pp.144 - 147
State Feedback Controller	vol.3: pp.144 - 144 vol.3: pp.140 - 144
State Space Model	vol.2: pp.147 - 150
State Space Model	vol.3: p.5
State Transition Matrix	vol.3: pp.11 - 13
State Vector	vol.2: pp.147 - 149
State Vector	vol.3:p.5
Strain Energy	vol.2: pp.5 - 7
Structural Stability	vol.2: p.88
Subcritical Hopf Bifurcation	vol.4: pp.37 - 38
Subcritical Pitchfork Bifurcation	vol.4:p.17
Subspace	vol.2: pp.129 - 130
Sum (Spaces)	vol.2: pp.130 - 131
Supercritical Hopf Bifurcation	vol.4: pp.35 - 37
Supercritical Pitchfork Bifurcation	vol.4: pp.15 - 16
Superposition	vol.3: pp.1, 13
Supremum	vol.3: p.98
Symmetric Matrix	vol.2:p.144
v	vol.3: pp.86 - 96
	vol.4:p.78
Symmetry	vol.1: pp.108 - 109, 131
System Norms	vol.3: pp.99 - 120
T	
Tangent Spaces	vol.1: pp.29 - 30
Taylor Series Expansion	vol.3:pp.7-8
	vol.4: pp.6, 39-40, 44-45
Tensor Product	vol.1:p.20
Time Invariance	vol.2:p.152
	vol.3:pp.1-4
Time Reversal Symmetry	vol.2: pp.92 - 93
Toeplitx Matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3:pp.60-61
Transcritical Bifurcation	vol.4:pp.12-15
Transfer Function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated Robotic Mechanisms	vol.3: pp.59 - 77
Underactuated System	vol.1:p.104
Underdetermined System	vol.2:pp.19,41

	Unitary Diagonal Coordinate Transformation	vol.3: pp.38 - 43,50
		vol.4:p.79
	Unstable	vol.2:p.76
1	V	
	Van Der Pol Oscillator	vol.4:pp.11-12
	Variance Amplication	vol.3:p.117
	Variations of Constants Formula	vol.3:pp.24,54
	Varignon's Theorem	vol.1:p.1
	Vector Field	vol.1: pp.30 - 31
		vol.2:p.74
	Vector Mapping	vol.2:p.127
	Vector Space	vol.2: pp.122 - 123
	Vertical Space	vol.1:p.125
	Virtual Work	vol.3: pp.63 - 64
V	V	
	White in Time Gaussian Processes	vol.3: pp.115 - 119
	Work (Mechanical)	vol.1:p.145
	Z	
	Z Transform	vol.3: pp.14-22
	Zero Set	vol.1: pp.76, 110-111
	Zeros (Transfer Function)	vol.2:p.147