CS 513

Probability Assignment

Vardaan Kishore 10434327

1.1

Jerry and Susan have a joint bank account. Jerry goes to the bank 20% of the days. Susan goes there 30% of the days. Together they are at the bank 8% of the days.

a.

$$P(J|S) = P(J \&S) / P(S) = 0.08 / .3 = 0.267 = 26.7\%$$

b.

$$(.20-0.08) / (1-.3) = 0.17143 = 17.14\%$$

C

$$.08 / (1 - 0.58) = 0.19048 = 19.048$$

Harold and Sharon are studying for a test.

Harold's chances of getting a "B" are 80%.

Sharon's chances of getting a "B" are 90%.

The probability of at least one of them getting a "B" is 91%.

The probability of they all getting a B is as following:

Using
$$P(a \land b) = P(a) + P(b) - P(a \cup b)$$

80% + 90% - 91% = 79%

a. What is the probability that only Harold gets a "B"?

$$80\% - 79\% = 1\%$$

b. What is the probability that only Sharon gets a "B"?

c. What is the probability that both won't get a "B"

$$1 - 91\% = 9\%$$

1.3

Jerry and Susan have a joint bank account. Jerry goes to the bank 20% of the days. Susan goes there 30% of the days. Together they are at the bank 8% of the days.

Are the events "Jerry is at the bank" and "Susan is at the bank" independent?

NO, because if they are independent events, the probability will be:

$$P(A \land B) = P(A) * P(B)$$

But

 $P(A \land B) = 8\%$ which is not equal to $\{P(A) * P(B) = 60\%\}$. Thus they are not independent.

1.4

You roll 2 dice.

Are the events "the sum is 6" and "the second die shows 5" independent?

Sample Space = $\{(2,4), (4,2), (1,5), (5,1), (3,3)\}$

P(sum=6) = 5/36

P(second die=5) = 1/6

P(sum=6 and second die=5) = 1/36

This is $\neq 5/216$ { P(sum=6) * P(second_die=5)}

Thus, they are dependent events.

Are the events "the sum is 7" and "the first die shows 5" independent?

Sample Space = $\{ (3,4), (4,3), (5,2), (2,5), (6,1), (1,6) \}$

P(sum=7) = 6/36 = 1/6

 $P(first_die=5) = 1/6$

P(sum=7 and first_die=5) = $1/36 = P(sum=7) * P(first_die=5)$

Thus, they are independent events.

1.5

An oil company is considering drilling in either TX, AK and NJ. The company may operate in only one state. There is 60% chance the company will choose TX and 10% chance - NJ. There is 30% chance of finding oil in TX, 20% - in AK, and 10% - in NJ.

1. What's the probability of finding oil?

```
P(\text{oil and TX}) = 30\% * 60\% = 18\% \\ P(\text{oil and AK}) = 20\% * 30\% = 6\% \\ P(\text{oil and NJ}) = 10\% * 10\% = 1\% \\ P(\text{oil}) = P(\text{oil and TX}) + P(\text{oil and AK}) + P(\text{oil and NJ}) = 25\%
```

2.The company decided to drill and found oil. What is the probability that they drilled in TX?

```
P(TX|oil) = P(oil \text{ and } TX) / P(oil) = 18\% / 25\% = 72\%
```

1.6

Using the Titanic data What is the probability that a passenger did not survive? 1490/2201 = 67.69%

What is the probability that a passenger was staying in the first class?

325/2201 = 24.696%

Given that a passenger survived, what is the probability that the passenger was a first class?

203 / 711 = 28.55%

Are survival and staying in the first class independent?

```
P(Survived) = 711/2201 = 32.303%
P(FirstClass) = 325/2201 = 14.766%
P(FirstClass & Survived) = 203/325 = 62.462%
If they are independent, P(F & S) should equals P(S) *
```

If they are independent, P(F & S) should equals P(S) * P(F), but it isn't. So they are not independent event.

Given that a passenger survived, what is the probability that the passenger was staying in the first class and the passenger was a child? 6 / 711 = .8 %

Given that a passenger survived, what is the probability that the passenger was an adult?

654/711 = 91.9%

Given that a passenger survived, are age and staying in the first class independent?

P(Age|S) = 324/499 = 64.929%

P(FirstClass|S) = 203/499 = 40.681% P(Female)

& FirstClass|S| = 141/499 = 28.257%

Because P(Female|S)* P(FirstClass|S)≠ P(Female & FirstClass|S),

They are dependent.

7- Assuming between Age and Calsin P(AnB)=P(A) P(B)

Jotal.

P(Adult n 1st) = 308.9

P(Adult n 2nd) = 270.88

P(Adult n 38d) = 611.03

P(Adult n 60w) = 841.17

P(Child n 1st) = 16.09 P(Child n 2nd) = 14.11 P(Child n 3rd) = 34.96 P(Child n 0cm) = 43.83

I. Assuming Conditional on scourinal status

P(ANBIC) = P(AIC) · P(BIC)

R·H·S=) 57/11 = 57/11 = 0

LHS=) P(ANBIC) = 57/711

Thus conditional Independent event

Swala!

P(Adult n 18t) = 186-12 P(Adult n 2001) = 108.54 P(Adult n 3001) = 163-73 P(Adult n 0000) = 195.00

P(Child n 1st) = 16.27 P(Child n 2rd) = 9.46 P(Child n 3xd) = 14.27 P(Child n Oren) = 16.99

Non-Sumual:

P(Adult n 1st) = 197.74

P(Adult n 2nd) = 161.17

P(Adult n 3rd) = 509.57

P(Adult n (now) = 649.51

PChild n 1st) = 4.258

PChild n 2nd) = 5.828

PChild n 3rd) = 18-427

PChild n onew) = 23-487

Stoumed:	1St	and	38 d	(rew)	Jotal
Adult	186-72	108-54	113.73	195-00	653-99
Child	16-27	9.46	14.27	16-99	56-99
	203	118	178	212	71)
Mon-Swam	ued:	and	3 801	Grew	1
Adult	117.74	161.17	309.57	649-	
child	4.258	5-828	18-421	23.L	
	122	167	528	673	, 1490