Capítulo 6

Decomposição em Soma diretas invariantes

Se $W_1, W_2 \subseteq V$ subespaços, já discutimos a soma $W = W_1 + W_2$, i.é, o subespaço de todos os $\alpha = \alpha_1 + \alpha_2$ com $\alpha_i \in W_i$. Uma situação particularmente agradável ocorre quando W_1 e W_2 são disjuntos. De fato, neste caso, um dado vetor $\alpha \in W$ pode ser escrito sob a forma $\alpha = \alpha_1 + \alpha_2$, $\alpha_i \in W_i$, de uma única maneira. Isto resulta do fato de que se também temos $\alpha = \beta_1 + \beta_2$ com $\beta_i \in W_i$, então:

$$\alpha_1 + \alpha_2 = \beta_1 + \beta_2$$

de modo que

$$\alpha_1 - \beta_1 = \beta_2 - \alpha_2$$

e como $\alpha_1 - \beta_1 \in W_1$ e $\beta_2 - \alpha_2 \in W_2$, devemos ter $\alpha_1 - \beta_1 = \beta_2 - \alpha_2 = 0$, i.é, $\alpha_1 = \beta_1$ e $\alpha_2 = \beta_2$. Quando W_1 e W_2 forem disjuntos diremos que a soma $W = W_1 + W_2$ é direta, ou que W é **soma direta** de W_1 e W_2 . A importância das somas diretas está no fato de que se $W = W_1 \bigoplus W_2$, podemos estudar W através dos pares de vetores (α_1, α_2) com $\alpha_i \in W_i$.

Desejamos considerar "somas diretas" de vários subespaços. Para isso precisaremos de um conceito de independência de subespaços.

Definição 6.1. Sejam W_1, W_2, \dots, W_k subespaços do espaço vetorial V. Dizemos que W_1, \dots, W_i são independentes se

$$\alpha_1 + \alpha_2 + \cdots + \alpha_k = 0$$
, com $\alpha_i \in W_i$

implica que cada α_i é nulo.

Teorema 6.2. Seja V um espaço vetorial sobre o corpo F. Sejam W_1, \dots, W_k subespaços de V e seja $W = W_1 + \dots + W_k$. As seguintes condições são equivalentes.

- 1. W_1, \dots, W_k são independentes.
- 2. Cada vetor $\alpha \in W$ pode ser escrito de uma única maneira sob a forma

$$\alpha = \alpha_1 + \dots + \alpha_k$$

 $com \ \alpha_i \in W_i, i \in 1, \cdots, k$

3. Para cada $j, 2 \leq j \leq k$, o subespaço W_j é disjunto da soma $(W_1 + \cdots + W_{j-1})$.

Demonstração. (1) \Longrightarrow (2). Suponhamos que W_1, \dots, W_k sejam independentes. Pela definição de W, cada vetor $\alpha \in W$ pode ser escrito como $\alpha = \alpha_1 + \dots + \alpha_k$ com $\alpha_i \in W_i$. Suponhamos também que $\alpha = \beta_1 + \dots + \beta_k$ com $\beta_i \in W_i$. Então

$$\alpha_1 + \dots + \alpha_k = \beta_1 + \dots + \beta_k$$

portanto

$$(\alpha_1 - \beta_1) + \dots + (\alpha_k - \beta_k) = 0$$

e como $(\alpha_i - \beta_i) \in W_i$, a independência dos W_i implica que $\alpha_i - \beta_i = 0, \forall i \in 1, ..., k$. Isto mostra que os α_i são determinados de modo único por α .

 $(2) \implies (3)$. Seja α um vetor na interseção

$$W_j \cap (W_1 + \cdots + W_{j-1})$$

Então existem vetores $\alpha_1, \dots, \alpha_{j-1} \in W_i$ tais que $\alpha = \alpha_1 + \dots + \alpha_{j-1}$. Mas como $\alpha \in W_j$ a única maneira de escrever α como soma de vetores em W_i , deve ser

$$\alpha = 0 + \dots + 0 + \alpha + 0 + \dots + 0$$

Consequentemente, temos que $\alpha = \alpha_1 + \cdots + \alpha_{j-1} = 0$.

(3) \Longrightarrow (1). Seja $\alpha_i \in W_i, i \in 1, \dots, k$ e suponhamos que $\alpha_1 + \dots + \alpha_k = 0$. Desejamos demonstrar que cada α_i é o vetor nulo. Suponhamos o contrário, i. é, que para algum i tenhamos $\alpha_i \neq 0$. Seja j o maior inteiro $1 \leq i \leq k$ tal que $\alpha_i \neq 0$. Então temos

$$\alpha_1 + \dots + \alpha_k = 0, \ \alpha_i \neq 0. \tag{1}$$

Agora (1) diz que $\alpha_j = -\alpha_1 - \cdots - \alpha_{j-1}$, de modo que α_j está na interseção de $W_j \cap (W_1 + \cdots + W_{j-1})$. Logo $\alpha_j = 0$. Contradição.

Se uma das três condições do Teorema 6.2 valer para W_1, \dots, W_k , diremos que a soma $W = W_1 + \dots + W_k$ é **soma direta** e escrevemos $W = W_1 \bigoplus \dots \bigoplus W_k$.