Homework 4

Jaden Wang

Problem (1). f is 1-1 continuous so it is an immersion and is bijective onto its image f(X). By Theorem 26.6 of Munkres, f is a homeomorphism onto f(X) so it is an embedding.

Problem (4). Since f is a product map of polynomials, it is continuous. Let \tilde{f} denotes the map with domain restricted to the unit sphere in \mathbb{R}^3 and codomain restricted to its image, which remains continuous. Suppose $(x_1y_1, y_1z_1, x_1z_1, x_1^2 + 2y_1^2 + 3z_1^2) = (x_2y_2, y_2z_2, x_2z_2, x_2^2 + 2y_2^2 + 3z_2^2)$. In the case when none of the entries is zero, since $x_1 = \frac{x_2y_2}{y_1} = \frac{x_2z_2}{z_1}$, combining with $y_1z_1 = y_2z_2$ we obtain that $z_1^2 = z_2^2$ so $z_1 = \pm z_2$. Then $y_1 = \pm y_2$ and $x_1 = \pm x_2$ (the signs must be all + or all -). These solutions are consistent with the 4th entry so they are all valid. Whenever there is at least one entry that is zero, WLOG assume $x_1 = 0$, this forces that either x_2 or y_2 to be zero and either x_2 or z_2 to be zero. Suppose $x_2 \neq 0$, then $y_2 = z_2 = 0$, which forces that either y_1 or z_1 to be zero. WLOG suppose $y_1 = 0$, then by the relation that $x^2 + y^2 + z^2 = 1$, we obtain $z_1 = x_2 = 1$. Thus in the 4th entry we have

$$0^{2} + 2 \cdot 0^{2} + 3z_{1}^{2} = x_{2}^{2} + 2 \cdot 0^{2} + 3 \cdot 0^{2}$$
$$3 = 1,$$

a contradiction. Thus $x_1 = 0$ forces $x_2 = 0 = \pm x_1$.

Taken both cases together, for any $q \in \tilde{f}(S^2)$, $\tilde{f}^{-1}(q) = \{\pm p\}$ for some p in S^2 . That is, if we quotient S^2 by the antipodal action of \mathbb{Z}_2 , we obtain a map $g: S^2/\sim \to \tilde{f}(S^2)$, which again is continuous by the universal property of quotient topology. But $\mathbb{R}P^2 = S^2/\sim$ so we have found a well-defined continuous map from $\mathbb{R}P^2$ into \mathbb{R}^4 . It is clearly injective and surjective onto its image per the argument above, so it remains to show that g is a homeomorphism. By Corollary 22.3 of Munkres, it suffices to show that \tilde{f} is a quotient map. By Exercise 22.2(b), it suffices to show that there exists a continuous map $h: \tilde{f}(S^2) \to S^2$ s.t. $\tilde{f} \circ h = \mathrm{id}_{\tilde{f}(S^2)}$. Given $(a,b,c,d) \in \tilde{f}(S^2)$, we want to recover x,y,z in terms of a,b,c,d. Define $A = \sqrt{d-1+2\sqrt{2}b}$ and $B = \sqrt{3-d+2\sqrt{2}a}$. Then we can check that

$$x = \frac{\sqrt{2}(d-2)}{2(A-B)} - \frac{A-B}{2\sqrt{2}}$$

$$y = \frac{a}{x}$$

$$z = \frac{A - B}{2\sqrt{2}} + \frac{\sqrt{2}(d - 2)}{2(A - B)}$$

does the job (using the relation that $x^2+y^2+z^2=1$). Then the map $h:(a,b,c,d)\mapsto (x,y,z)$ is clearly continuous as the composition of continuous functions and gives us the identity (no need to worry about dividing by 0 since we know such x,y,z exist as (a,b,c,d) is in the image). It follows that g is a homemomorphism onto its image so it is an embedding.

Alternatively, we could use the fact that since $\mathbb{R}P^2$ is the quotient of a compact space and therefore compact, and \mathbb{R}^4 is Hausdorff so any subspace is Hausdorff, since g is already bijective continuous, it is a homeomorphism by Munkres Theorem 26.6.

Problem (7.16). I claim that 1 is a regular value of $g: TM \to \mathbb{R}$. Given $p \in g^{-1}(1)$, rank $dg_p = 0$ or 1. Suppose rank $dg_p = 0$, then it has to send everything to 0, but since g_p is an inner product, it is positive definite and cannot be constant so the derivative cannot be 0. Hence rank $dg_p = 1$ and 1 is a regular value of g. Thus $g^{-1}(1)$ is a 2n - 1 manifold which is the unit tangent bundle.

Problem (8.5). Suppose $X \subseteq M$ is measure zero. Then for any $p \in M$, denote the chart given by the definition (U_p, ϕ_p) s.t. $\phi_p(U_p \cap X)$ has measure zero. Clearly these charts form an atlas for M. By Exercise 8, we can obtain a countable atlas (U_i, ϕ_i) . Given any arbitrary chart (V, ψ) of M, $V = \bigcup_{i \in \mathbb{N}} U_i$. Then $\psi \circ \phi_i^{-1} : \phi_i(U_i) \cap \psi(V) \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is smooth. Thus we can apply Lemma 4 and obtain:

$$\psi \circ \phi_i^{-1}(\phi_i(U_i \cap X) \cap \phi_i(U_i \cap V)) = \psi(U_i \cap X \cap V)$$

has measure zero. Then we see that

$$\psi(V \cap X) \subseteq \bigcup_{i \in \mathbb{N}} \psi(U_i \cap X \cap V)$$

Since countable union of measure zero sets are measure zero, $\psi(V \cap X)$ is also measure zero by monotonicty.

Problem (8.8). Given an arbitrary atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha}) : \alpha \in J\}$ of a manifold M, since M

is second-countable, by Theorem 30.3 of Munkres, it is a Lindelof space. Therefore, there exists a countable subcover \mathcal{A}' of \mathcal{A} that serves as a countable atlas.

Problem (8.11). (\Rightarrow): The derivative of $\pi_u(x)$ at p is the unique linear operator d_{π_u} : $T_pM \to \mathbb{R}^{n-1}$ satisfying the following

$$\lim_{t \to 0} \frac{\pi_u(x + tv) - (\pi_u(x) + td_{\pi_u}(v))}{t} = 0$$

where $v \in T_pM \cong \mathbb{R}^n \subseteq \mathbb{R}^N$. Notice

$$\frac{1}{t}(x+tv-\langle x+tv,u\rangle u-x-\langle x,u\rangle u) = \frac{x}{t}+v-\langle \frac{x}{t},u\rangle u-\langle v,u\rangle u-\frac{x}{t}-\langle \frac{x}{t},u\rangle u$$
$$=v-\langle v,u\rangle u$$

Alternatively, projection is a linear operator so its derivative is just itself. Therefore, it's easy to see that $d_{\pi_u}(v) = v - \langle v, u \rangle u$. Now we have $u \notin T_pM$ iff u and v are linearly independent iff $tu - v \neq 0, v \neq 0, \ \forall \ t \in \mathbb{R}$ iff d_{π_u} doesn't send any nonzero vector in T_pM to 0 iff ker d_{π_u} iff it is not singular at p onto its image. (\Leftarrow):