a) Titulo:

ESTUDIO DE EVALUACION DE LA EFECTIVIDAD BIOLOGICA DEL PRODUCTO BLUE 76
COMO PROMOTOR DEL RENDIMIENTO EN EL CULTIVO DE JITOMATE EN ATLATLAUCAN,
MOR., MEXICO 2011.

b) Nombre y profesión del responsable del estudio:

Dr. Dagoberto Guillen Sánchez

Ing. Agr. Especialista en Parasitología Agrícola

Profesor Investigador del Instituto Profesional de la Región Oriente de la Univ. Aut. del Estado de Morelos.

c) Objetivos generales y específicos:

c.1) Objetivos generales:

Conocer el efecto de la aplicación del producto BLUE 76 sobre el rendimiento del cultivo de jitomate.

c.2) Objetivos específicos:

- 1. Evaluar el efecto de diferentes dosis del producto BLUE 76 como promotor del vigor y su efecto en el rendimiento en el cultivo de jitomate.
- Comparar el efecto de las dosis evaluadas de BLUE 76 con otro producto comercial recomendado para incrementar el vigor y su efecto sobre el rendimiento en el cultivo de jitomate.
- Evaluar el posible efecto fitotóxico de las dosis evaluadas del producto BLUE 76 al cultivo de jitomate.

d) Lugar de realización del estudio:

El presente estudio se instalará en una huerta comercial de jitomate de la variedad Pony propiedad del Sr. Miguel Zavala ubicada geográficamente a los 18° 57' 52.52" de latitud norte, 98° 54' 07.70" de longitud oeste y a una altura sobre el nivel medio del mar de 1792 m.

e) Nombre común y comercial del producto a evaluar:

NOMBRE COMERCIAL: BLUE 76

La fórmula de Blue 76 contiene elementos unidos a cadenas proteínicas que facilitan su absorción en las plantas y elementos mayores y menores complejos en forma coloidal que se obtienen de sustancias animales y vegetales cuyo origen es la concentración de sedimentos orgánicos. Así mismo un alto contenido de vitaminas, proteína y materia orgánica. Todo este ecosistema y/o medio integral, se encuentra combinado con enzimas que actúan como catalizadores y aceleradores de la descomposición dentro un sustrato de polisacáridos y poli péptidos naturales que permite la adecuada vida y reproducción de los microorganismos que hacen un eficaz y único proceso de fertilización.

Blue 76 contiene 76 minerales complejos en forma coloidal, que se obtienen de vida vegetal y animal. Así como todos los aminoácidos en cadenas proteicas.

Blue 76 es una poderosa herramienta que combina todos los materiales necesarios para la agricultura sustentable, mejora los suelos, incrementa la materia orgánica, los microorganismos benéficos y minerales del suelo. Manteniendo el suelo productivo, sin pérdida de potencia o bloqueo y mejorando su estructura y calidad. Su forma líquida facilita su aplicación en cualquier sistema de riego.

f) Cultivo sobre el cual se probará el insumo:

Jitomate variedad Pony.

g) Tipo de suelo:

No se especificará el tipo de suelo en virtud de que los tratamientos serán aplicados al follaje.

h) Estado fenológico del cultivo:

El estado fenológico del cultivo al momento de iniciar el programa de aplicaciones fue floración - fructificación y se registró la fenología del cultivo durante la realización del estudio en base a la escala propuesta por Reinhold, 1994.

	FECHA	ACTIVIDAD			CODIGO*	ESTADO DE DESARROLLO
	21/07/2011	Instalación	У	1 ^a	71	Formación del primer grupo de racimos con
		aplicación				frutos pequeños
	28/07/2011	2ª aplicación			74	Aparición de un segundo grupo de racimos
	04/08/2011	3ª aplicación			76	Frutos del primer grupo de racimos con la
		-				forma característica, y con más del 50% del
						tamaño normal
	11/08/2011	3ª evaluación			79	Nueve o mas racimos de frutos en la planta
	14/08/2011	Cosecha			81	10% de los frutos con color típico
	17/08/2011	Cosecha			85	50% de los frutos con coloración típica
_	20/09/2011	Cosecha			87	70% de los frutos con coloración típica

i) Diseño del experimento, extensión de las parcelas y número de ellas:

Los tratamientos fueron alojados en un diseño experimental de bloques completos al azar con cuatro repeticiones. Cada unidad experimental constó de cuatro surcos de 1.4 m de separación por 5 m de largo, lo que equivale a 28.0 m² por unidad experimental y 112.0 m² por tratamiento.

Distribución de unidades experimentales.

5	3	2	1
4	1	4	5
3	2	1	4
2	4	5	3
1	5	3	2
I	II	III	IV

j) Dosis, época y método de aplicación.

Las dosis de los tratamientos evaluados se muestran en el Cuadro 1.

Cuadro 1. Tratamientos y dosis a evaluar para incrementar el vigor y rendimiento del cultivo de jitomate en Quecholac, Pue., México. 2011.

	Dosis		
Tratamientos	P.F./ha		
Testigo absoluto			
2. BLUE 76	4.0 L		
3. BLUE 76	5.0 L		
4. BLUE 76	6.0 L		
5. Kendal®	2.0 L		

P.F.: Producto Formulado

Se realizaron tres aplicaciones a intervalos de 10 días llevándose a cabo estas con una aspersora motorizada motorizada (ARIMITSU®) previa calibración del equipo a un gasto de agua por hectárea de 400 L. El programa de aplicaciones se inició cuando se detectó una media de 1 cm de diámetro en los frutos (inicio de fructificación).

k) Método de evaluación:

El método de evaluación consistió en muestrear al azar 15 frutos al azar por unidad experimental al momento de la cosecha y registrar de estos su diámetro, longitud y peso. Por otra parte, se muestrearon al azar 5 racimos por unidad experimental (20 por tratamiento) registrándose el número de frutos por racimo.

A los siete días de cada aplicación se registró el número de hojas de un total de 5 plantas al azar por unidad experimental (20 por tratamiento) y de cada una de estas plantas se midió la longitud de hojas de un tamaño de muestra de 10 hojas al azar por parcela (40 por tratamiento).

A los siete días de la tercera aplicación, se extrajeron 3 plantas al azar por unidad experimental (12 por tratamiento) se registró la longitud de la raíz principal; mientras que al momento de la cosecha, se evaluó el rendimiento por parcela de tres cortes así como se registraron los grados Brix de una muestra de 5 frutos al azar por unidad experimental en cada uno de los cortes.

Por otra parte, se registrará el número de días a la cosecha a partir de la primera aplicación.

I) Parámetros de estimación de la efectividad biológica:

La efectividad biológica de los tratamientos a evaluar se determinó en función del efecto de estos sobre la longitud y diámetro de frutos, peso de frutos, número de frutos por racimo, número de

hojas por planta, longitud de hojas, longitud de raíz, rendimiento en kg/ha, grados Brix por corte y días a la cosecha.

El posible efecto fitotóxico de los tratamientos se evaluará con la escala visual del Cuadro 2.

m) Análisis de datos:

A los datos de los parámetros evaluados se les aplicó el análisis de varianza y la prueba de comparación de medias de Tukey con un α =0.05 con el paquete de análisis estadístico SAS®.

n) Calendarización de actividades:

El estudio estuvo sujeto a la siguiente calendarización de actividades:

FECHA	ACTIVIDAD	ACTIVIDAD ESPECIFICA
21/07/2011	Instalación y 1ª aplicación	
28/07/2011	2ª aplicación	1ª evaluación de número de hojas por planta y longitud de hojas
04/08/2011	3ª aplicación	2ª evaluación del número de hojas por planta y longitud de hojas
11/08/2011	3ª evaluación	3ª evaluación del número de hojas por planta y longitud de hojas y evaluación de la longitud de raíz
14/09/2011	Cosecha	1er Corte: Evaluación de la longitud y diámetro de frutos, frutos por racimo, Rendimiento y Grados Brix
17/09/2011	Cosecha	2do Corte: Rendimiento y Grados Brix.
20/09/2011	Cosecha	3er Corte: Rendimiento y Grados Brix

Cuadro 2. Escala de puntuación EWRS para evaluar el efecto fitotóxico del producto BLUE 76 al cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

Valor	Efecto sobre el cultivo
1	Sin efecto
2	Síntomas muy ligeros
3	Síntomas ligeros
4	Síntomas que no se reflejan en el rendimiento
5	Daño medio
6	Daños elevados
7	Daños muy elevados
8	Daños severos
9	Muerte completa

Transformación de la escala porcentual logarítmica de la EWRS a escala porcentual.

Valor puntual	% de fitotoxicidad al cultivo
1	0.00
2	1.00
3	3.50
4	7.00
5	12.50
6	20.00
7	30.00
8	50.00
9	100.00

o) Análisis estadístico que muestra las diferencias entre los tratamientos del experimento y su discusión:

o.1) Días a la cosecha.

Al evaluar el número de días a la cosecha después de la primera aplicación no se detectaron diferencias entre los tratamientos, realizándose el primer corte a los 41 días después de la primera aplicación.

o.2) Longitud de frutos.

El análisis estadístico de la longitud de frutos (Cuadro 1 del apéndice) muestra que existen diferencias entre los tratamientos, por lo que se realizó la prueba de Tukey (Cuadro 3) en la cual se observa que los frutos con mayor longitud se detectaron en la dosis de 6.0 L/ha de BLUE 76 con 9.9 cm de longitud; mientras que la dosis de 5.0 L/ha fue estadísticamente igual a la dosis de 2.0 L/ha de Kendal®, presentando longitudes de 9.27 y 9.1 cm respectivamente.

Por su parte, en un grupo de igualdad estadística diferente se ubicó la dosis de 4.0 L/ha de BLUE 76 con una media de longitud de frutos de 8.35 cm; mientras que en el Testigo absoluto los frutos presentaron una longitud promedio de 7.73 cm, lo que demuestra que al aplicar el BLUE 76 en sus diferentes dosis favorece un incremento en la longitud de los frutos de jitomate.

Cuadro 3. Comparación de medias de la longitud (cm) de frutos de jitomate en el muestreo realizado en Atlatlaucan, Mor., México. 2011.

Tratamiento	Dosis P.F./ha	Longitud (Media en cm)	Comparación (α=0.05)
4. BLUE 76	6.0 L	9.90	A*
3. BLUE 76	5.0 L	9.27	В
5. Kendal®	2.0 L	9.10	В
2. BLUE 76	4.0 L	8.35	С
Testigo absoluto		7.75	D

P.F.: Producto Formulado

o.3) Diámetro de frutos.

Al aplicar el análisis de varianza a los datos del diámetro de frutos se detectaron diferencias entre los tratamientos (Cuadro 2 del apéndice), observándose en la comparación de medias de Tukey (Cuadro 4) que los mejores tratamientos para favorecer un mayor diámetro de frutos de jitomate son las dosis de 6.0 y 5.0 L/ha de BLUE 76, siendo estadísticamente iguales entre sí con una media de 6.55 y 6.51 cm de diámetro respectivamente.

En un grupo de igualdad estadística aparte, los tratamientos BLUE 76 y Kendal® presentaron diámetros de 5.97 y 6.19 cm. Por su parte el Testigo absoluto presentó el menor diámetro de frutos con una media de 5.35 cm.

Cuadro 4. Comparación de medias del diámetro (cm) de frutos de jitomate en el muestreo realizado en Atlatlaucan, Mor., México. 2011.

	Dosis	Diámetro	Comparación
Tratamiento	P.F./ha	(Media en cm)	$(\alpha = 0.05)$
3. BLUE 76	5.0 L	6.55	A*
4. BLUE 76	6.0 L	6.51	Α
5. Kendal®	2.0 L	6.19	В
2. BLUE 76	4.0 L	5.97	В
1. Testigo absoluto		5.35	С

P.F.: Producto Formulado

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

o.4) Peso de frutos.

El análisis de varianza del peso de frutos muestra que existen diferencias entre los tratamientos (Cuadro 3 del apéndice) y en la comparación de medias de Tukey (Cuadro 5) se observa los frutos que presentaron el mayor peso fueron aquellos pertenecientes al tratamiento BLUE 76 a dosis de 6.0 L/ha con una media de 1.556 kg.

La dosis de 5.0 L/ha de BLUE 76 presentó un peso promedio de 1.448 kg; mientras que la dosis de 4.0 L/ha, 1.383 kg siendo ambos tratamientos superados por la dosis de 2.0 L/ha de Kendal® que presentó un peso promedio de 1.454 kg.

De los datos anteriores se deduce que el producto BLUE 76 al ser aplicado en dosis de 6.0 L/ha, favorece frutos con un mayor tamaño y mayor peso, presentando diferencias significativas con el Testigo absoluto que presentó un peso promedio de 1.145 kg, valor que también fue superado por el efecto que ejercieron las dosis de 5.0 y 4.0 L/ha del mismo producto.

Cuadro 5. Comparación de medias del peso de frutos de jitomate en el muestreo realizado en Atlatlaucan. Mor., México, 2011.

	Dosis	Peso	Comparación
Tratamiento	P.F./ha	(Media en gr)	$(\alpha = 0.05)$
4. BLUE 76	6.0 L	1.556	A*
5. Kendal®	2.0 L	1.454	В
3. BLUE 76	5.0 L	1.448	ВС
2. BLUE 76	4.0 L	1.383	С
1. Testigo absoluto		1.145	D

P.F.: Producto Formulado

o.5) Frutos por racimo.

Al analizar el número de frutos por racimo se encontraron diferencias entre tratamientos (Cuadro 4 del apéndice) observándose que el mayor número de estos lo produjo la dosis de 6.0 L/ha de BLUE 76 con una media de 5.4 frutos/racimo según se observa en la comparación de medias de Tukey (Cuadro 6) siendo este el mejor tratamiento; mientras que las dosis de 5.0 y 4.0 L/ha del mismo producto presentaron promedios de 5.15 y 4.85 frutos/racimo.

El tratamiento Kelpak® a dosis de 2.0 L/ha presentó una media de 5.0 frutos/racimo y todos estos presentan una diferencia altamente significativa con el Testigo absoluto en el cual se reporta una media de 3.85 frutos/racimo.

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α =0.05

Cuadro 6. Comparación de medias del número de frutos por racimo de jitomate en el muestreo realizado en Atlatlaucan, Mor., México. 2011.

	attatation, titlotti, titlottio	. = v			
	Dosis	Frutos/racimo			Comparación
Tratamiento	P.F./ha	(Media)			$(\alpha = 0.05)$
4. BLUE 76	6.0 L	5.40	F	\ *	
3. BLUE 76	5.0 L	5.15	F	4	В
5. Kendal®	2.0 L	5.00	F	4	В
2. BLUE 76	4.0 L	4.85			В
Testigo absoluto		3.85			С

P.F.: Producto Formulado

o.6) Número de hojas por planta.

Al analizar los datos del número promedio de hojas por planta en los muestreos realizados se encontraron diferencias entre los tratamientos (Cuadro 5, 6 y 7 del apéndice), observándose en la comparación de medias de Tukey (Cuadro 7) que las plantas tratadas con las dosis de 4.0, 5.0 y 6.0 L/ha de BLUE 76, así como de Kendal® presentan un mayor número de estas en comparación con el Testigo absoluto (Cuadro 7), siendo los resultados muy similares después de dos aplicaciones para las dosis de 5.0 y .6.0 L/ha de BLUE 76, así como de Kendal® a dosis de 2.0 L/ha; mientras que la dosis de 4.0 L/ha de BLUE 76 presentó el menor número de hojas después de tres aplicaciones dentro de los tratamientos con fertilizante; sin embargo, también superó al Testigo absoluto.

Cuadro 7. Comparación de medias del número promedio de hojas por planta en el cultivo de tomate en los muestreos realizados en Atlatlaucan, Mor., México. 2011.

		1ª Ev	val	2ª Ev	al	3ª I	Eval
	Dosis	Hojas/F	Planta	Hojas/P	lanta	Hojas/	/Planta
Tratamiento	P.F./ha	(Med	lia)	(Medi	a)	(Me	edia)
1. Testigo		49.25	С	57.45	С	59.10	D
2. BLUE 76	4.0 L	50.95	С	61.60 A E	3	62.80	С
3. BLUE 76	5.0 L	55.55	В	62.90 A		65.15	В
4. BLUE 76	6.0 L	60.25 A*		62.95 A*		66.15 A	В
5. Kendal®	2.0 L	59.45 A		60.70 I	3	66.80 A	*

P.F.: Producto Formulado

o.7) Longitud de hojas.

En el análisis de varianza de la longitud de hojas en la primera, segunda y tercera evaluación se encontraron diferencias entre tratamientos (Cuadro 8, 9 y 10 del apéndice) por lo que se llevó a cabo la prueba de Tukey (Cuadro 8) en la cual se observa que los tratamientos que favorecen un mayor desarrollo del follaje son las dosis de 5.0 y 6.0 L/ha de BLUE 76, seguidas por la dosis de

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un lpha=0.05

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

2.0 L/ha de Kendal®, la cual ejerce un efecto estadísticamente igual al de la dosis de 5.0 L/ha de BLUE 76.

Cuadro 8. Comparación de medias de la longitud de hojas (cm) en el cultivo de tomate en los muestreos realizados en Atlatlaucan, Mor., México. 2011.

		1ª Eval	2ª Eval	3ª Eval	
	Dosis	Longitud	Longitud	Longitud	
Tratamiento	P.F./ha	(Media en cms)	(Media en cms)	(Media en cms)	
1. Testigo		17.93 D	22.58 E	28.43 D	
2. BLUE 76	4.0 L	20.88 C	25.26 D	31.54 C	
3. BLUE 76	5.0 L	25.18 B	27.74 C	32.94 B	
4. BLUE 76	6.0 L	27.01 A*	31.04 A*	35.49 A*	
5. Kendal®	2.0 L	25.01 B	30.18 B	33.26 B	

P.F.: Producto Formulado

De manera general, los resultados confirman que al aplicar BLUE 76 se promueve una mayor vigor de la planta, que se refleja en un follaje más abundante, aunado a una mayor longitud de raíz, mayor número de frutos por racimo, con un mayor peso y tamaño, lo que se refleja de manera directa en el rendimiento, por lo que se justifica el uso de este fertilizante orgánico en dosis de 5.0 y/o 6.0 L/ha.

o.8) Longitud de raíz.

Al realizar el muestreo de la longitud de raíz, siete días después de la tercera aplicación, se encontraron diferencias entre los tratamientos (Cuadro 11 del apéndice), por lo que se realizó la comparación de medias de Tukey (Cuadro 9) en la cual se observa que el mejor tratamiento para promover una mayor longitud de raíz es la dosis de 6.0 L/ha la cual presentó una longitud de raíz promedio de 59.49 cm.

Las dosis de 2.0 L/ha de Kendal® y 5.0 L/ha de BLUE 76 ofrecieron un efecto de control estadísticamente igual con longitudes de 57.03 y 55.79 cm respectivamente; mientras que la dosis de 4.0 L/ha de BLUE 76 presentó una longitud de raíz de 52.14 cm.

Los datos del Testigo absoluto indican que la aplicación de BLUE 76 en dosis de 4.0, 5.0 y 6.0 L/ha, así como de Kendal® en dosis de 2.0 L/ha favorecen frutos de mayor calidad, un follaje más abundante y sobre todo generan un área de raíz mayor lo que permite una absorción adecuada de los nutrientes del suelo favoreciéndose de esta manera el desarrollo del cultivo con un mayor vigor, justificando así el uso de estos fertilizantes orgánicos.

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

Cuadro 9. Comparación de medias de la longitud de raíz en plantas de jitomate en el muestreo realizado en Atlatlaucan, Mor., México. 2011.

Tratamiento	Dosis P.F./ha	Longitud (Media en cm)	Comparación (α=0.05)
4. BLUE 76	6.0 L	59.49	A*
5. Kendal®	2.0 L	57.03	В
3. BLUE 76	5.0 L	55.79	В
2. BLUE 76	4.0 L	52.14	С
1. Testigo absoluto		45.70	D

P.F.: Producto Formulado

o.9) Rendimiento.

El análisis de varianza de la primera, segunda y tercera evaluación muestra que existen diferencias entre los tratamientos (Cuadro 12, 13 y 14 del apéndice) observándose en la comparación de medias de Tukey de cada una de las evaluaciones (Cuadro 10) que el tratamiento que favorece un mayor rendimiento del cultivo es la dosis de 6.0 L/ha de BLUE 76 con diferencias de 3.43, 3.73 y 4.17 ton/ha respecto al Testigo absoluto en la primera, segunda y tercera evaluación.

Por su parte, las dosis de 5.0 y 4.0 L/ha de BLUE 76 también ejercieron un efecto que favoreció un mayor rendimiento en comparación con el Testigo absoluto, aunque ligeramente menor al de la dosis de 6.0 L/ha del mismo fertilizante orgánico; mientras que la dosis de 2.0 L/ha de Kendal® presentó un rendimiento similar al de la dosis de 5.0 L/ha de BLUE 76.

En general, los resultados del rendimiento en kg/ha del cultivo de jitomate confirmar que al aplicar al fertilizante orgánico BLUE 76 se logra un mayor vigor del cultivo (incremento del área foliar), una mayor raíz que permite asimilar de manera más eficiente los nutrientes del suelo y que se refleja en un mayor rendimiento.

Cuadro 10. Comparación de medias del rendimiento (kg/ha) en el cultivo de tomate en los muestreos realizados en Atlatlaucan, Mor., México. 2011.

		1ª Eval	2ª Eval	3ª Eval
	Dosis	Rend.	Rend.	Rend.
Tratamiento	P.F./ha	(Ton/ha)	(Ton/ha)	(Ton/ha)
1. Testigo		23.776 C	24.482 C	23.955 D
2. BLUE 76	4.0 L	25.642 B	26.892 B	26.723 C
3. BLUE 76	5.0 L	26.285 A B	27.696 A B	27.125 B C
4. BLUE 76	6.0 L	27.214 A*	28.214 A*	28.133 A*
5. Kendal®	2.0 L	25.642 B	27.410 A B	27.500 B

P.F.: Producto Formulado

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

o.10) Grados Brix.

Al aplicar el análisis de varianza a los datos de los grados Brix en frutos de jitomate en los muestreos realizados se encontraron diferencias entre los tratamientos (Cuadros 15, 16 y 17 del apéndice) confirmándose que las dosis de 4.0, 5.0 y 6.0 L/ha de BLUE 76 (fertilizante orgánico) además de favorecer el vigor de la planta favorecen que estas produzcan frutos de una mayor calidad (Cuadro 11), observándose diferencias significativas con el Testigo absoluto el cual en los tres muestreos realizados presentó los valores más bajos de Grados Brix.

De las dosis evaluadas de BLUE 76, la dosis de de 4.0 L/ha presentó el menor valor de grados Brix, siendo este mas alto en el primer corte; mientras que las dosis de 5.0 y 6.0 L/ha mantuvieron un efecto constante durante los tres cortes realizados), siendo en cada muestreo mayor en la dosis de 6.0 L/ha (Cuadro 11). Por su parte, la aplicación de Kendal® también favorece un incremento en los grados Brix en los frutos siendo su efecto estadísticamente igual a la dosis de 5.0 L/ha de BLUE 76.

Cuadro 11. Comparación de medias de los valores de Grados Brix en frutos de jitomate en los muestreos realizados en Atlatlaucan, Mor., México. 2011.

		1ª Eval	2ª Eval	3ª Eval
	Dosis	Grados Brix.	Grados Brix	Grados Brix
Tratamiento	P.F./ha	(Media)	(Media)	(Media)
1. Testigo		9.58 C	9.54 C	9.73 C
2. BLUE 76	4.0 L	10.09 B	9.94 B	9.87 C
3. BLUE 76	5.0 L	10.15 B	10.44 A*	10.44 A B
4. BLUE 76	6.0 L	10.67 A*	10.74 A	10.78 A*
5. Kendal®	2.0 L	10.20 B	10.36 A	10.34 B

P.F.: Producto Formulado

En general, en los resultados del presente estudio se observa que al aplicar el fertilizante orgánico BLUE 76 al cultivo de jitomate en dosis de 4.0, 5.0 y 6.0 L/ha se favorece un incremento en el vigor de las plantas así como en la calidad de los frutos cosechados, sobresaliendo las dosis de 5.0 y 6.0 L/ha, la cuales pueden emplearse según el manejo que se haga del cultivo en relación a su fertilización.

o.11) Análisis nutrimental de follaje y frutos.

Se anexa al presente informe el original del análisis nutrimental del follaje y frutos para cada uno de los tratamientos de acuerdo a lo solicitado en el Oficio No. 311.02.1844 y en el presente informe

^{*}Tratamientos con la misma letra son estadísticamente iguales según prueba de Tukey con un α=0.05

se presenta de manera desglosada la información para el estudio de BLUE 76 en jitomate y su efecto nutrimental en follaje y frutos.

Análisis nutrimental del follaje

								ppm			
Tratamientos	%N	%P	%K	%Ca	%Mg	Fe	Mn	Zn	Cu	В	%Na
Testigo	1.19	0.244	3.74	3.061	1.785	347.15	416.99	63.36	75.49	24.60	0.077
Blue 76 4.0 L/ha	1.26	0.238	4.46	3.266	1.659	164.11	378.19	50.60	58.30	22.76	0.032
Blue 76 5.0 L/ha	1.40	0.271	4.31	3.048	1.672	93.07	365.68	46.90	76.01	20.27	0.07
Blue 76 6.0 L/ha	1.19	0.264	5.60	3.135	1.619	100.37	302.94	37.26	65.67	22.76	0.058
Kendal 2.0 L/ha	1.19	0.238	4.64	3.491	1.524	155.19	412.65	57.69	64.80	23.93	0.048

Análisis nutrimental de frutos.

								ppm			
Tratamientos	%N	%P	%K	%Ca	%Mg	Fe	Mn	Zn	Cu	В	%Na
Testigo	0.77	0.373	5.78	0.419	0.110	42.09	10.52	11.74	7.31	19.93	0.036
Blue 76 4.0 L/ha	1.12	0.379	4.70	1.023	0.107	43.96	14.22	14.50	12.68	19.77	0.069
Blue 76 5.0 L/ha	1.54	0.394	4.61	1.046	0.093	32.57	17.41	14.55	8.88	22.10	0.039
Blue 76 6.0 L/ha	0.77	0.400	6.27	0.598	0.123	39.03	12.54	15.23	7.24	39.91	0.042
Kendal 2.0 L/ha	1.09	0.461	4.26	3.208	0.116	44.39	16.15	14.46	9.32	19.60	0.061

p) Conclusiones:

De los resultados obtenidos se concluye lo siguiente:

- 1. La aplicación de las dosis de 4.0, 5.0 y 6.0 L/ha de BLUE 76 (fertilizante orgánico) favorece el desarrollo vegetativo del cultivo de jitomate que se refleja en una mayor área foliar, longitud de raíz, longitud y diámetro de frutos, así como en un mayor rendimiento y grados Brix en los frutos cuando se realizan tres aplicaciones a intervalos de siete días entre cada una y se inicia el programa de aplicaciones al inicio de la formación de frutos (no más de 1 cm).
- 2. De las dosis evaluadas de BLUE 76 (fertilizante orgánico), sobresalieron por su respuesta en los parámetros evaluados las dosis de 5.0 y 6.0 l/ha, y tomando en cuenta las diferencias que presentaron sobre los parámetros evaluados, se sugiere el uso de la dosis

de 5.0 L/ha, con la que se tiene una respuesta favorable del cultivo de jitomate en el incremento del vigor así como del rendimiento, con lo que se reduce el costo del tratamiento.

- 3. El producto Keldal®, también presento un efecto favorable en los parámetros evaluados; siendo muy similar al efecto que produjeron las dosis de 5.0 y 6.0 L/ha de BLUE 76 (fertilizante orgánico).
- 4. No se detectaron efectos fitotóxicos al cultivo de jitomate de la variedad Pony por la aplicación de las dosis de 4.0, 5.0 y 6.0 L/ha de BLUE 76, así como de 2.0 l/ha de Kendal®.

q) Bibliografía consultada.

Domínguez V.A. 1978. Abonos minerales. Ministerio de agricultura. Madrid.

FAO 2003. Production Yearbook, Food and Agricultural Organization of the United Nations. Roma, Italia.

Reinhold Stauss, Basle. 1994. Compendium of Growth Stage Identification Keys for Mono and Dicotyledoneus Plants. Extended BBCH Scale. Ciba Geigy AG. Switzerland.

Sandoval V.M. y B. Brizuela A.P. 2002. Horticultura Intensiva en Invernaderos. Sociedad Mexicana de la Ciencia del Suelo. Montecillos, Edo. de México.

Sandoval V.M. 2005. Cultivo en Invernadero en México, con énfasis en nutrición. En: Producción de Jitomate en Invernadero. Néstor Bautista Martínez y Jorge Alvarado López (Eds). Colegio de Postgraduados. Montecillo, México. p: 73-101.

r) Apéndice:

Cuadro 1. Análisis de varianza de la longitud de frutos en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	11.3812	2.8453	343.57	0.0001
Bloques	3	0.0064	0.0021		
Error	12	0.0993	0.0082		
Total	19	11.4870			

R²: 0.991349; C.V.: 1.025343; RCME: 0.091003; Media: 8.875333

Cuadro 2. Análisis de varianza del diámetro de frutos en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	3.8488	0.9622	67.76	0.0001
Bloques	3	0.0165	0.0055		
Error	12	0.1704	0.0142		
Total	19	4.0358			

R²: 0.957779; C.V.: 1.948181; RCME: 0.119164; Media: 6.116667

Cuadro 3. Análisis de varianza del peso de frutos en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	379816.3000	94954.0750	101.15	0.0001
Bloques	3	13345.2000	4448.4000		
Error	12	11265.3000	938.7750		
Total	19	404426.8000			

R²: 0.972145; C.V.: 2.192603; RCME: 30.63944; Media: 1397.400

Cuadro 4. Análisis de varianza del número de frutos por racimo en el cultivo de jitomate en Atlatlaucan. Mor., México, 2011.

,,		=			
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	5.6600	1.4150	30.99	0.0001
Bloques	3	0.1020	0.0340		
Error	12	0.5480	0.0456		
Total	19	6.3100			

R²: 0.913154; C.V.: 4.406136; RCME: 0.213698; Media: 4.85

Cuadro 5. Análisis de varianza del número de hojas por planta en la primera evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	388.3680	97.0920	123.21	0.0001
Bloques	3	19.6540	6.5513		
Error	12	9.4560	0.7880		
Total	19	417.4780			

R²: 0.977350; C.V.: 1.611352; RCME: 0.887694; Media: 55.09

Cuadro 6. Análisis de varianza del número de hojas por planta en la segunda evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

•					
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	81.5720	20.3930	32.70	0.0001
Bloques	3	0.6560	0.2186		
Error	12	7.4840	0.6236		
Total	19	89.7120			

R²: 0.916577; C.V.: 1.292090; RCME: 0.789726; Media: 61.12

Cuadro 7. Análisis de varianza del número de hojas por planta en la tercera evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	156.9400	39.2350	75.79	0.0001
Bloques	3	2.6080	0.8693		
Error	12	6.2120	0.5176		
Total	19	165.7600			

R²: 0.962524; C.V.: 1.124204; RCME: 0.719491; Media: 64.0000

Cuadro 8. Análisis de varianza de la longitud de hojas por planta en la primera evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

		, , , , , , , , , , , , , , , , , , , ,	_		
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	219.3558	54.8389	962.19	0.0001
Bloques	3	0.3170	0.1056		
Error	12	0.6839	0.0569		
Total	19	220.3568			

R²: 0.996896; C.V.: 1.028873; RCME: 0.238735; Media: 23.20350

Cuadro 9. Análisis de varianza de la longitud de hojas por planta en la segunda evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

,		, ,			
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	195.2342	48.8085	713.01	0.0001
Bloques	3	0.8373	0.2791		
Error	12	0.8214	0.0684		
Total	19	196.8930			

R²: 0.995828; C.V.: 0.956155; RCME: 0.261637; Media: 27.36350

Cuadro 10. Análisis de varianza de la longitud de hojas por planta en la tercera evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	108.2948	27.0737	726.83	0.0001
Bloques	3	1.1190	0.3730		
Error	12	0.4469	0.0372		
Total	19	109.8609			

R²: 0.995931; C.V.: 0.596878; RCME: 0.193000; Media: 32.33500

Cuadro 11. Análisis de varianza de la longitud de raíz en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	459.6318	114.9079	134.03	0.0001
Bloques	3	2.1943	0.7314		
Error	12	10.2881	0.8573		
Total	19	472.1143			

R²: 0.978208; C.V.: 1.713676; RCME: 0.925928; Media: 54.03167

Cuadro 12. Análisis de varianza del rendimiento por hectárea en la primera evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

-					
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	25362500.0	6340625.00	31.88	0.0001
Bloques	3	264987.24	88329.08		
Error	12	2386479.59	198873.30		
Total	19	28013966.84			

R²: 0.914811; C.V.: 1.734379; RCME: 445.9521; Media: 25712.50

Cuadro 13. Análisis de varianza del rendimiento por hectárea en la segunda evaluación en el cultivo de jitomate en Atlatlaucan, Mor., México. 2011.

		, - ,	-		
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	33843367.35	8460841.84	50.02	0.0001
Bloques	3	627295.92	209098.64		
Error	12	2029591.84	169132.65		
Total	19	36500255.10			

R²: 0.944395; C.V.: 1.526608; RCME: 411.2574; Media: 26939.29

Cuadro 14. Análisis de varianza del rendimiento por hectárea en la tercera evaluación en el cultivo de iitomate en Atlatlaucan. Mor.. México. 2011.

,	,	, =			
F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	41638392.86	10409598.21	166.58	0.0001
Bloques	3	705803.57	235267.86		
Error	12	749872.45	62489.37		
Total	19	43094068.88			

R²: 0.982599; C.V.: 0.936688; RCME: 249.9787; Media: 26687.50

Cuadro 15. Análisis de varianza de los grados Brix en frutos de jitomate en la primera evaluación en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	2.4270	0.6067	47.56	0.0001
Bloques	3	0.0362	0.0120		
Error	12	0.1530	0.0127		
Total	19	2.6163			

R²: 0.941492; C.V.: 1.113750; RCME: 0.112945; Media: 10.14100

Cuadro 9. Análisis de varianza de los grados Brix en frutos de jitomate en la segunda evaluación en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	3.4946	0.8736	29.70	0.0001
Bloques	3	0.0932	0.0310		
Error	12	0.3530	0.0294		
Total	19	3.9408			

R²: 0.910426; C.V.: 1.680510; RCME: 0.171513; Media: 10.20600

Cuadro 10. Análisis de varianza de los grados Brix en frutos de jitomate en la tercera evaluación en Atlatlaucan, Mor., México. 2011.

F.V.	G.L.	S.C.	C.M.	F.C.	Pr > F
Tratamientos	4	2.9270	0.7317	27.88	0.0001
Bloques	3	0.0907	0.0302		
Error	12	0.3149	0.0262		
Total	19	3.3327			

R²: 0.905506; C.V.: 1.582784; RCME: 0.161998; Media: 10.23500

r.1) Datos de campo y análisis estadístico.

CORRIDA DE SAS PARA LOS DATOS DE LA LONGITUD DE FRUTOS EN EL CULTIVO DE JITOMATE

Obs tmt blq F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 longfrutos 1 7.2 7.1 7.9 7.3 8.2 7.8 8.4 8.1 8.4 8.3 7.4 7.4 7.8 8.3 7.9 7.8333 $2 \quad 1 \quad 2 \quad 7.8 \ 7.4 \ 7.6 \ 7.8 \quad 8.3 \ 8.5 \quad 7.3 \quad 7.6 \quad 7.4 \quad 7.9 \quad 7.6 \quad 7.8 \quad 7.6 \quad 7.3$ 7.7000 7.5 7.6 7.4 7.5 7.5 7.8 8.2 7.9 7.4 7.6 8.1 7.0 7.8 7.5 7.8 7.6400 4 1 4 8.1 7.5 7.4 7.5 7.6 7.6 7.8 7.4 7.8 7.9 8.1 7.8 7.8 7.9 8.2 8.3 8.7 8.5 8.2 8.3 8.3 8.4 8.3 8.7 8.3 8.7 8.5 8.7 8.5 8.4 8.4533 6 2 2 8.1 7.9 8.2 8.1 8.5 8.6 8.5 8.4 8.5 8.5 8.6 8.3 8.4 8.0 8.4 8.3333 $7 \quad 2 \quad 3 \quad 8.1 \quad 8.3 \quad 8.2 \quad 8.2 \quad 8.3 \quad 8.3 \quad 8.4 \quad 8.5 \quad 8.5 \quad 8.3 \quad 8.5 \quad 8.3 \quad 8.4 \quad 8.4 \quad 8.3$ 8.3333 8 2 4 8.1 8.2 8.4 8.2 8.4 8.4 8.4 8.4 8.4 8.3 8.3 8.5 8.2 8.2 8.3 8.3133 8.9 8.8 8.9 9.2 8.7 9.2 9.0 9.1 9.3 9.4 9.3 9.3 8.9 9.4 10 3 2 9.1 9.2 9.3 9.3 9.4 9.5 9.5 9.4 9.5 9.3 9.4 9.2 9.2 9.3 9.3200 11 3 3 9.3 9.3 9.5 9.4 9.4 9.5 9.5 9.3 9.1 9.2 9.2 9.5 9.4 9.2 9.3 9.3400 $12 \quad 3 \quad 4 \quad 9.3 \quad 9.3 \quad 9.1 \quad 9.1 \quad 9.5 \quad 9.5 \quad 9.4 \quad 9.4 \quad 9.4 \quad 9.3 \quad 9.4 \quad 9.2 \quad 9.3 \quad 9.5 \quad 9.4$ 9.3400 13 4 1 9.8 9.9 9.7 9.8 9.7 9.8 9.6 9.8 9.7 9.8 9.7 9.6 9.8 10.2 9.8 9.7800 14 4 2 9.8 9.9 9.7 9.8 9.6 9.8 9.8 10.3 10.4 9.8 9.9 9.9 10.4 9.9 9.7 15 4 3 10.3 9.9 9.9 9.7 9.9 9.9 10.4 10.3 10.2 10.0 10.3 10.0 9.8 9.9 9.9 10.0267 16 4 4 9.8 9.7 9.9 9.8 10.1 9.8 9.9 9.8 9.7 9.7 9.9 9.8 9.9 10.4 10.3 9.9000 17 5 1 $8.9\ 8.7\ 9.2\ 9.2\ 9.3\ 9.4\ 8.9\ 8.7\ 8.9\ 9.5\ 9.4\ 9.3\ 9.3\ 8.7\ 8.9$ 9.0867 18 5 2 9.3 9.3 9.4 9.1 9.2 8.7 8.9 8.9 8.7 8.8 8.8 8.8 9.2 9.2 9.4 9.0467 $9.8 \ 9.3 \ 9.4 \ 9.5 \ 10.0 \ 8.7 \quad 8.9 \quad 8.9 \quad 8.8 \quad 8.8 \quad 8.9 \quad 9.1 \quad 9.2 \quad 9.2 \quad 8.7$ 9.1467 8.9 8.7 8.9 8.8 8.8 9.2 9.2 9.3 9.4 9.4 9.5 9.4 9.3 9.4 8.7

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores			
tmt	5	1 2 3 4 5			
bla.	4	1234			

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: longfrutos

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	11.38765333	1.62680762	196.44	<.0001
Error	12	0.09937778	0.00828148		
Total correcto	19	11.48703111			

R-cuadrado Coef Var Raiz MSE longfrutos Media

0.991349	1.025343	0.091003	8.875333
----------	----------	----------	----------

Fuente	DF	Anova SS	Cuadrado de la media	F-Valor	Pr > F
tmt blq	4	11.38120889	2.84530222 0.00214815	343.57 0.26	<.0001 0.8532

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para longfrutos

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.008281
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	0.2051

Medias con la misma letra no son significativamente diferentes.

Tukey Agrup	oamiento	Media	N	tmt	
	Α	9.90500	4	4	
	B B	9.27833	4	3	
	В	9.10167	4	5	
	С	8.35833	4	2	
	D	7.73333	4	1	

CORRIDA DE SAS PARA LOS DATOS DEL DIAMETRO DE FRUTOS EN EL CULTIVO DE JITOMATE

Obs tmt blq F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 diamfrutos

1	1	1	5.4	5.6	5.7	5.4	5.8	5.9	5.6	5.4	5.5	5.6	5.6	5.7	5.4	5.6	5.4	5.57333
2	1	2	5.3	5.4	5.3	5.6	5.4	5.5	5.3	5.4	5.2	5.6	5.4	5.6	5.4	5.3	5.1	5.38667
3	1	3	5.3	5.4	5.3	5.4	5.0	5.0	5.2	5.4	5.3	5.4	5.3	5.2	5.2	5.3	5.1	5.25333
4	1	4	5.3	5.2	5.4	5.2	5.2	5.1	5.5	5.0	5.0	5.0	5.0	5.3	5.2	5.1	5.3	5.18667
5	2	1	5.9	5.7	5.8	5.9	5.8	5.7	5.8	5.8	5.9	5.8	5.7	5.8	5.6	5.7	5.8	5.78000
6	2	2	5.9	6.2	6.1	5.8	6.1	6.3	5.8	5.9	5.4	5.7	5.9	6.2	6.1	6.2	5.9	5.96667
7	2	3	5.9	6.2	6.1	5.8	5.9	6.3	6.2	5.9	5.8	6.2	5.9	6.1	6.2	6.3	5.8	6.04000
8	2	4	6.2	5.9	6.1	6.2	5.9	5.8	6.3	6.2	6.3	6.1	5.9	6.3	6.2	6.1	6.1	6.10667
9	3	1	6.5	6.6	6.7	6.6	6.8	6.4	6.8	6.5	6.6	6.8	6.7	6.6	6.7	6.8	6.7	6.65333
10	3	2	6.6	6.4	6.6	6.5	6.4	6.6	6.6	6.4	6.5	6.6	6.4	6.7	6.6	6.5	6.3	6.51333
11	3	3	6.6	6.7	6.6	6.6	6.5	6.5	6.8	6.4	6.6	6.4	6.5	6.6	6.6	6.5	6.5	6.56000
12	3	4	6.5	6.4	6.5	6.6	6.3	6.5	6.4	6.5	6.7	6.5	6.6	6.5	6.4	6.5	6.4	6.48667
13	4	1	6.6	6.8	6.5	6.4	6.5	6.5	6.4	6.5	6.6	6.6	6.6	6.5	6.4	6.5	6.4	6.52000
14	4	2	6.6	6.4	6.5	6.5	6.6	6.6	6.4	6.4	6.5	6.5	6.6	6.7	6.7	6.6	6.5	6.54000
15	4	3	6.4	6.5	6.6	6.5	6.4	6.6	6.4	6.6	6.5	6.4	6.5	6.4	6.6	6.5	6.4	6.48667
16	4	4	6.4	6.5	6.6	6.5	6.5	6.6	6.4	6.5	6.4	6.6	6.5	6.4	6.6	6.4	6.7	6.50667
17	5	1	6.3	6.4	6.4	6.3	6.1	6.2	6.5	6.3	6.1	6.2	6.2	6.3	6.5	6.4	6.3	6.30000
18	5	2	6.0	6.3	6.2	6.2	6.3	6.1	6.2	6.0	6.0	6.0	6.0	6.3	6.1	6.2	6.1	6.13333
19	5	3	5.7	5.9	6.1	6.2	6.3	6.1	6.2	6.0	6.0	6.0	6.2	6.1	6.3	6.4	6.2	6.11333
20	5	4	6.3	6.2	6.2	6.3	6.0	6.0	6.1	6.4	6.2	6.3	6.3	6.2	6.4	6.3	6.2	6.22667

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20

Procedimiento ANOVA

Variable dependiente: diamfrutos

		Suma de	Cuadrado de		
Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	3.86546667	0.55220952	38.89	<.0001
Error	12	0.17040000	0.01420000		
Total correcto	19	4.03586667			

	H-Cuaurauo	coel var	Raiz WSE	diamirutos media
	0.057770	1 040101	0 110164	6 116667

	Cuadrado de						
Fuente	DF	Anova SS	la media	F-Valor	Pr > F		
tmt	4	3.84888889	0.96222222	67.76	<.0001		
h1a	3	0.01657778	0 00552503	0.30	0 7620		

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para diamfrutos

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.0142
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	0.2686

Tukey Agrupamient	to	Media	N	tmt
	A A	6.55333	4	3
	A	6.51333	4	4
	В	6.19333	4	5
	B B	5.97333	4	2
	С	5.35000	4	1

Instituto Profesional de la Región Oriente

CORRIDA DE SAS PARA LOS DATOS DEL PESO DE FRUTO EN EL CULTIVO DE JITOMATE

0bs	tmt	blq	pesofru ⁻
1	1	1	1125
2	1	2	1056
3	1	3	1178
4	1	4	1221
5	2	1	1358
6	2	2	1412
7	2	3	1385
8	2	4	1378
9	3	1	1425
10	3	2	1436
11	3	3	1454
12	3	4	1479
13	4	1	1521
14	4	2	1534
15	4	3	1578
16	4	4	1592
17	5	1	1425
18	5	2	1431
19	5	3	1475
20	5	4	1485

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles Valores			
tmt	5	1 2 3 4 5		
blq	4	1 2 3 4		

Número de observaciones 20

Procedimiento ANOVA

Suma de

Cuadrado de

94954.0750 101.15 <.0001 4448.4000 4.74 0.0210

Variable dependiente: pesofruto

tmt

blq

ruente	DF C	uadrados	ia media	F-Valor	Pr > F
Modelo	7 393	161.5000	56165.9286	59.83	<.0001
Error	12 11	265.3000	938.7750		
Total correcto	19 404	426.8000			
R-cuadrado	Coef Var	Raiz MSE	pesofruto	Media	
0.972145	2.192603	30.63944	139	7.400	
		c	uadrado de		
Fuente	DF	Anova SS	la media	F-Valor	Pr > F

13345.2000 Procedimiento ANOVA

379816.3000

Prueba del rango estudentizado de Tukey (HSD) para pesofruto

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un

índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	938.775
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	69.055

Medias con la misma letra no son significativamente diferentes.

Tukey Agrupamiento	Media	N	tmt
Α	1556.25	4	4
B B	1454.00	4	5
C B	1448.50	4	3
C	1383.25	4	2
D	1145.00	4	1

CORRIDA DE SAS PARA LOS DATOS DEL NUMERO DE FRUTOS POR RACIMO EN EL CULTIVO DE JITOMATE

0bs	tmt	blq	R1	R2	R3	R4	R5	frutosracim
1	1	1	5	4	4	3	4	4.0
2	1	2	3	3	3	4	5	3.6
3	1	3	4	4	4	4	3	3.8
4	1	4	4	4	4	4	4	4.0
5	2	1	5	6	6	4	4	5.0
6	2	2	5	4	5	5	5	4.8
7	2	3	5	5	5	5	5	5.0
8	2	4	5	5	4	4	5	4.6
9	3	1	6	5	5	5	5	5.2
10	3	2	5	5	5	6	6	5.4
11	3	3	5	5	5	5	5	5.0
12	3	4	5	5	5	5	5	5.0
13	4	1	6	6	5	5	6	5.6
14	4	2	6	5	5	6	5	5.4
15	4	3	5	5	5	5	6	5.2
16	4	4	5	6	5	6	5	5.4
17	5	1	4	5	5	5	5	4.8
18	5	2	5	5	5	6	6	5.4
19	5	3	4	5	5	5	6	5.0
20	5	4	5	5	5	4	5	4.8

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20

Procedimiento ANOVA

Variable dependiente: frutosracimo

Suma de Cuadrado de

Instituto Profesional de la Región Oriente

Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	5.76200000	0.82314286	18.03	<.0001
Error	12	0.54800000	0.04566667		

Total correcto 19 6.31000000

R-cuadrado Coef Var Raiz MSE frutosracimo Media

0.913154 4.406136 0.213698 4.850000

Tuente DF Anova SS la media F-Valor Pr > F

tmt 4 5.66000000 1.41500000 30.99 <.0001
blq 3 0.10200000 0.03400000 0.74 0.5459

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para frutosracimo

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 0.045667
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 0.4816

Medias con la misma letra no son significativamente diferentes.

Tukey	ukey Agrupamiento		Media	N	tmt
		A A	5.4000	4	4
	ВВ	A A	5.1500	4	3
	В	A	5.0000	4	5
	B B		4.8500	4	2
		С	3.8500	4	1

CORRIDA DE SAS PARA LOS DATOS DEL NUMERO DE HOJAS POR PLANTA DE JITOMATE

0bs	eval	tmt	blq	P1	P2	Р3	P4	P5	hojasplanta
1	1	1	1	45	47	46	48	52	47.6
2	1	1	2	47	48	51	50	47	48.6
3	1	1	3	51	50	48	53	51	50.6
4	1	1	4	47	52	50	53	49	50.2
5	1	2	1	49	42	50	50	47	47.6
6	1	2	2	52	51	54	49	53	51.8
7	1	2	3	54	52	51	52	53	52.4
8	1	2	4	49	51	53	52	55	52.0
9	1	3	1	59	54	57	52	51	54.6
10	1	3	2	53	54	58	57	57	55.8
11	1	3	3	56	57	55	55	58	56.2
12	1	3	4	54	56	55	55	58	55.6
13	1	4	1	59	61	62	58	59	59.8
14	1	4	2	62	58	57	59	63	59.8
15	1	4	3	60	61	58	59	63	60.2

Instituto Profesional de la Región Oriente

16	1	4	4	62	63	61	65	55	61.2
17	1	5	1	62	57	54	58	59	58.0
18	1	5	2	61	60	58	59	57	59.0
19	1	5	3	63	61	62	60	60	61.2
20	1	5	4	58	59	57	62	62	59.6
21	2	1	1	56	54	58	56	57	56.2
22	2	1	2	59	58	57	58	56	57.6
23	2	1	3	57	58	59	61	57	58.4
24	2	1	4	56	57	58	58	59	57.6
25	2	2	1	63	61	62	62	62	62.0
26	2	2	2	58	59	63	62	63	61.0
27	2	2	3	61	62	63	62	61	61.8
28	2	2	4	63	62	60	60	63	61.6
29	2	3	1	64	62	65	63	65	63.8
30	2	3	2	65	63	62	62	63	63.0
31	2	3	3	62	61	63	62	62	62.0
32	2	3	4	63	62	64	62	63	62.8
33	2	4	1	62	64	65	62	63	63.2
34	2	4	2	65	62	63	62	63	63.0
35	2	4	3	62	63	64	62	63	62.8
36	2	4	4	63	62	64	62	63	62.8
37	2	5	1	61	60	60	59	58	59.6
38	2	5	2	61	62	60	60	57	60.0
39	2	5	3	60	61	62	63	62	61.6
40	2	5	4	60	63	62	62	61	61.6
41	3	1	1	56	58	57	57	58	57.2
42	3	1	2	58	59	61	57	58	58.6
43	3	1	3	59	62	61	58	60	60.0
44	3	1	4	61	63	62	58	59	60.6
45	3	2	1	64	62	63	63	64	63.2
46	3	2	2	63	63	62	62	64	62.8
47	3	2	3	64	62	61	60	63	62.0
48	3	2	4	63	64	62	65	62	63.2
49	3	3	1	64	65	65	66	65	65.0
50	3	3	2	66	65	65	65	65	65.2
51	3	3	3	63	65	67	65	66	65.2
52	3	3	4	65	65	66	66	64	65.2
53	3	4	1	66	66	67	65	65	65.8
54	3	4	2	65	66	66	65	68	66.0
55	3	4	3	68	67	65	65	66	66.2
56	3	4	4	68	67	67	65	66	66.6
57	3	5	1	64	65	68	68	66	66.2
58	3	5	2	68	67	65	68	67	67.0
59	3	5	3	68	68	67	68	65	67.2
60	3	5	4	65	68	68	65	68	66.8

----- eval=1 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	1
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: hojasplanta

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	408 0220000	58 2888571	73 97	< 0001

Instituto Profesional de la Región Oriente

Error 12 9.4560000 0.7880000

Total correcto 19 417.4780000

R-cuadrado Coef Var Raiz MSE hojasplanta Media

0.977350 1.611352 0.887694 55.09000

Tuente DF Anova SS la media F-Valor Pr > F
tmt 4 388.3680000 97.0920000 123.21 <.0001
blq 3 19.6540000 6.5513333 8.31 0.0029

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para hojasplanta

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 0.788
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 2.0007

Medias con la misma letra no son significativamente diferentes.

tmt	N	Media	Tukey Agrupamiento
4	4	60.2500	A
5	4	59.4500	A A
3	4	55.5500	В
2	4	50.9500	C
1	4	49 2500	C

------ eval=2 ------

Procedimiento ANOVA

Información del nivel de clase

Clase Niveles Valores
eval 1 2
tmt 5 1 2 3 4 5
blq 4 1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: hojasplanta

Suma de Cuadrado de

Fuente DF cuadrados la media F-Valor Pr > F

Instituto Profesional de la Región Oriente

Modelo	7	82.22800000	11.74685714	18.84	<.0001
--------	---	-------------	-------------	-------	--------

Error 12 7.48400000 0.62366667

Total correcto 19 89.71200000

R-cuadrado Coef Var Raiz MSE hojasplanta Media

0.916577 1.292090 0.789726 61.12000

 Fuente
 DF
 Anova SS
 Cuadrado de la media
 F-Valor
 Pr > F

 tmt
 4
 81.57200000
 20.39300000
 32.70
 <.0001</td>

 blq
 3
 0.65600000
 0.21866667
 0.35
 0.7895

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para hojasplanta

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 0.623667
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 1.7799

Medias con la misma letra no son significativamente diferentes.

Tukey	Agrupami	.ento	Media	N	tmt
		A A	62.9500	4	4
		Α	62.9000	4	3
	В	A A	61.6000	4	2
	B B		60.7000	4	5
		С	57.4500	4	1

----- eval=3 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	3
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: hojasplanta

Instituto Profesional de la Región Oriente

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	159.5480000	22.7925714	44.03	<.0001
Error	12	6.2120000	0.5176667		

Total correcto 19 165.7600000

R-cuadrado Coef Var Raiz MSE hojasplanta Media

0.962524 1.124204 0.719491 64.00000

Fuente	DF	Anova SS	Cuadrado de la media	F-Valor	Pr > F
tmt	4	156.9400000	39.2350000	75.79	<.0001
blq	3	2.6080000	0.8693333	1.68	0.2241

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para hojasplanta

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.517667
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	1.6216

Medias con la misma letra no son significativamente diferentes.

Tukey Agr	Tukey Agrupamiento		Media	N	tmt
		A A	66.8000	4	5
	B B	A	66.1500	4	4
	В		65.1500	4	3
		С	62.8000	4	2
		D	59.1000	4	1

CORRIDA DE SAS PARA LOS DATOS DE LA LONGITUD DE HOJAS EN LOS MUESTREOS REALIZADOS EN EL CULTIVO DE JITOMATE

0bs	eval	tmt	blq	longhojas
1	1	1	1	18.10
2	1	1	2	17.59
3	1	1	3	18.16
4	1	1	4	17.88
5	1	2	1	20.58
6	1	2	2	20.71
7	1	2	3	20.82
8	1	2	4	21.42
9	1	3	1	25.41
10	1	3	2	24.90
11	1	3	3	24.97
12	1	3	4	25.44
13	1	4	1	27.17
14	1	4	2	27.12

15	1	4	3	26.76
16	1	4	4	26.99
17	1	5	1	25.05
18	1	5	2	24.84
19	1	5	3	25.04
20	1	5	4	25.12
21	2	1	1	22.75
22	2	1	2	22.22
23	2	1	3	22.66
24	2	1	4	22.72
25	2	2	1	25.07
26	2	2	2	25.06
27	2	2	3	25.51
28	2	2	4	25.43
29	2	3	1	27.63
30	2	3	2	27.66
31	2	3	3	27.71
32	2	3	4	27.96
33	2	4	1	30.41
34	2	4	2	30.93
35	2	4	3	31.64
36	2	4	4	31.18
37	2	5	1	29.76
38	2	5	2	30.13
39	2	5	3	30.14
40	2	5	4	30.70
41	3	1	1	27.99
42	3	1	2	28.06
43	3	1	3	28.62
44	3	1	4	29.05
45	3	2	1	31.40
46	3	2	2	31.46
47	3	2	3	31.47
48	3	2	4	31.85
49	3	3	1	32.87
50	3	3	2	32.81
51	3	3	3	33.05
52	3	3	4	33.06
53	3	4	1	35.40
54	3	4	2	35.27
55	3	4	3	35.42
56	3	4	4	35.88
57	3	5	1	32.79
58	3	5	2	33.12
59	3	5	3	33.57
60	3	5	4	33.56

------ eval=1 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	1
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: longhojas

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	219.6729250	31.3818464	550.62	<.0001

Error 12	0.6839300 0.0569942
----------	---------------------

Total correcto 19 220.3568550

R-cuadrado Coef Var Raiz MSE longhojas Media

0.996896 1.028873 0.238735 23.20350

Cuadrado de

Fuente	DF	Anova SS	la media	F-Valor	Pr > F
tmt	4	219.3558300	54.8389575	962.19	<.0001
blq	3	0.3170950	0.1056983	1.85	0.1911

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para longhojas

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 0.056994
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 0.5381

Medias con la misma letra no son significativamente diferentes.

tmt	N	Media	Tukey Agrupamiento
4	4	27.0100	А
3	4	25.1800	В В
5	4	25.0125	В
2	4	20.8825	С
1	4	17.9325	D

------eval=2 ------

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	2
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: longhojas

Suma de Cuadrado de

Instituto Profesional de la Región Oriente

Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	196.0716050	28.0102293	409.18	<.0001
Error	12	0.8214500	0.0684542		

Total correcto 19 196.8930550

R-cuadrado Coef Var Raiz MSE longhojas Media

0.995828 0.956155 0.261637 27.36350

 Fuente
 DF
 Anova SS
 Cuadrado de la media
 F-Valor
 Pr > F

 tmt
 4
 195.2342300
 48.8085575
 713.01
 <.0001</td>

 blq
 3
 0.8373750
 0.2791250
 4.08
 0.0328

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para longhojas

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 0.06845
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 0.5897

Medias con la misma letra no son significativamente diferentes.

tmt	N	Media	Tukey Agrupamiento
4	4	31.0400	А
5	4	30.1825	В
3	4	27.7400	С
2	4	25.2675	D
1	4	22.5875	Е

------ eval=3 -----

Procedimiento ANOVA

Información del nivel de clase

Clase Niveles Valores
eval 1 3
tmt 5 1 2 3 4 5

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: longhojas

Instituto Profesional de la Región Oriente

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F	
Modelo	7	109.4139100	15.6305586	419.62	<.0001	
Error	12	0.4469900	0.0372492			
Total correcto	19	109.8609000				
R-cuadrado	Coef	⁻ Var Raiz MS	SE longhojas	Media		
0.995931	0.59	96878 0.19300	00 32	.33500		
			Cuadrado de			
Fuente	DF	Anova SS	la media	F-Valor	Pr > F	
tmt	4	108.2948500	27.0737125	726.83	<.0001	
blq	3	1.1190600	0.3730200	10.01	0.0014	
		Sistema SAS	15:08 Tues	day, Novemb	er 30, 2011	11

------ eval=3 -----

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para longhojas

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.037249
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	0.435

Medias con la misma letra no son significativamente diferentes.

tmt	N	Media	Tukey Agrupamiento
4	4	35.4925	А
5	4	33.2600	В В
3	4	32.9475	В
2	4	31.5450	С
1	4	28.4300	D

CORRIDA DE SAS PARA LOS DATOS DE LA LONGITUD DE RAIZ EN EL CULTIVO DE JITOMATE

0bs	tmt	blq	P1	P2	Р3	longraiz
1	1	1	47.5	46.8	47.6	47.3000
2	1	2	46.9	47.5	42.6	45.6667
3	1	3	41.5	46.7	43.5	43.9000
4	1	4	44.5	46.2	47.1	45.9333
5	2	1	53.4	51.1	50.6	51.7000
6	2	2	52.1	51.4	50.8	51.4333
7	2	3	53.1	51.2	53.4	52.5667
8	2	4	54.3	52.5	51.8	52.8667
9	3	1	57.3	57.3	55.4	56.6667
10	3	2	56.2	56.7	53.4	55.4333
11	3	3	56.4	54.5	55.8	55.5667
12	3	4	55.4	56.3	54.8	55.5000
13	4	1	59.6	57.5	57.6	58.2333

Instituto Profesional de la Región Oriente

14	4	2	58.1	59.4	59.7	59.0667
15	4	3	59.7	61.5	58.7	59.9667
16	4	4	59.5	61.7	60.9	60.7000
17	5	1	56.8	57.8	56.9	57.1667
18	5	2	55.8	57.6	58.4	57.2667
19	5	3	54.6	58.7	55.6	56.3000
20	5	4	57.5	56.5	58.2	57.4000

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20

Procedimiento ANOVA

Variable dependiente: longraiz

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	461.8262778	65.9751825	76.95	<.0001
Error	12	10.2881111	0.8573426		
Total correcto	19	472.1143889			

R-cuadrado Coef Var Raiz MSE longraiz Media
0.978208 1.713676 0.925928 54.03167

 Cuadrado de

 Fuente
 DF
 Anova SS
 1a media
 F-Valor
 Pr > F

 tmt
 4
 459.6318889
 114.9079722
 134.03
 <.0001</td>

 blq
 3
 2.1943889
 0.7314630
 0.85
 0.4914

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para longraiz

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 0.85734
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 2.0869

tmt	N	Media	Tukey Agrupamiento
4	4	59.4917	А
5	4	57.0333	В
3	4	55.7917	B B

C 52.1417 4 2
D 45.7000 4 1

CORRIDA DE SAS PARA LOS DATOS DEL RENDIMIENTO POR HECTAREA

0bs	eval	tmt	blq	rend	rendimiento
1	1	1	1	67.8	24214.29
2	1	1	2	65.4	23357.14
3	1	1	3	64.8	23142.86
4	1	1	4	68.3	24392.86
5	1	2	1	69.8	24928.57
6	1	2	2	72.5	25892.86
7	1	2	3	73.4	26214.29
8	1	2	4	71.5	25535.71
9	1	3	1	73.5	26250.00
10	1	3	2	72.9	26035.71
11	1	3	3	73.4	26214.29
12	1	3	4	74.6	26642.86
13	1	4	1	75.8	27071.43
14	1	4	2	76.3	27250.00
15	1	4	3	76.8	27428.57
16	1	4	4	75.9	27107.14
17	1	5	1	72.4	25857.14
18	1	5	2	70.6	25214.29
19	1	5	3	72.6	25928.57
20	1	5	4	71.6	25571.43
21	2	1	1	69.8	24928.57
22	2	1	2	68.7	24535.71
23	2	1	3	67.6	24142.86
24	2	1	4	68.1	24321.43
25	2	2	1	74.5	26607.14
26	2	2	2	75.6	27000.00
27	2	2	3	74.6	26642.86
28	2	2	4	76.5	27321.43
29	2	3	1	77.8	27785.71
30	2	3	2	78.1	27892.86
31	2	3	3	76.4	27285.71
32	2	3	4	77.9	27821.43
33	2	4	1	78.9	28178.57
34	2	4	2	81.1	28964.29
35	2	4	3	79.2	28285.71
36	2	4	4	76.8	27428.57
37	2	5	1	78.1	27892.86
38	2	5	2	76.6	27357.14
39	2	5	3	77.1	27535.71
40	2	5	4	75.2	26857.14
41	3	1	1	67.5	24107.14
42	3	1	2	65.9	23535.71
43	3	1	3	67.8	24214.29
44	3	1	4	67.1	23964.29
45	3	2	1	75.5	26964.29
46	3	2	2	74.6	26642.86
47	3	2	3	74.3	26535.71
48	3	2	4	74.9	26750.00
49	3	3	1	76.5	27321.43
50	3	3	2	75.8	27071.43
51	3	3	3	75.4	26928.57
52	3	3	4	76.1	27178.57
53	3	4	1	79.8	28500.00
54	3	4	2	78.6	28071.43
55	3	4	3	77.4	27642.86
56	3	4	4	79.3	28321.43
57	3	5	1	78.4	28000.00
58	3	5	2	77.6	27714.29
59	3	5	3	75.6	27000.00
60	3	5	4	76.4	27285.71

----- eval=1 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores			
eval	1	1			
tmt	5	1 2 3 4 5			
blq	4	1 2 3 4			

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: rendimiento

Fuente		DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo		7	25627487.24	3661069.61	18.41	<.0001
Error		12	2386479.59	198873.30		
Total corr	ecto	19	28013966.84			
	R-cuadrado	Coef	Var Raiz MSE	rendimient	o Media	
	0.914811	1.734	379 445.9521	2	5712.50	
Fuente		DF	Anova SS	Cuadrado de la media	F-Valor	Pr > F
tmt blq		4 3	25362500.00 264987.24	6340625.00 88329.08	31.88 0.44	<.0001 0.7258

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para rendimiento

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	198873.3
Valor crítico del rango estudentizado	4.50760
Diferencia significativa minima	1005.1

tmt	N	Media	Tukey Agrupamiento	
4	4	27214.3	A A	
3	4	26285.7	B A B	
2	4	25642.9	- В В	
5	4	25642.9	В	
1	4	23776.8	С	

----- eval=2 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores			
eval	1	2			
tmt	5	1 2 3 4 5			
bla	4	1 2 3 4			

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: rendimiento

		Sum	ıa de	Cuadrado de		
Fuente	DF	cuadr	ados	la media	F-Valor	Pr > F
Modelo	7	3447066	63.27	4924380.47	29.12	<.0001
Error	12	202959	91.84	169132.65		
Total correcto	19	3650025	55.10			
R-cuadrado	Coef	Var	Raiz MSE	rendimient	o Media	
0.944395	1.526	608	411.2574	2	6939.29	
				Cuadrado de		
Fuente	DF	Anov	a SS	la media	F-Valor	Pr > F
tmt	4	3384336	37.35	8460841.84	50.02	<.0001
blq	3	62729	95.92	209098.64	1.24	0.3395

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para rendimiento

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	169132.7
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	926.89

Tukey Agrupamie	nto	Media	N	tmt
	A A	28214.3	4	4
В	Α	27696.4	4	3
В В	A A	27410.7	4	5
B B		26892.9	4	2

C	24482.1	4	I
 	- eval=3 -		

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	3
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: rendimiento

blq

		Suma de	Cuadrado de			
Fuente	DF (cuadrados	la media	F-Valor	Pr > F	
Modelo	7 423	344196.43	6049170.92	96.80	<.0001	
Error	12	749872.45	62489.37			
Total correcto	19 430	094068.88				
R-cuadrado	o Coef Var	Raiz MSE	rendimient	o Media		
0.982599	9 0.936688	249.9787	7 2	6687.50		
			Cuadrado de			
Fuente	DF	Anova SS	la media	F-Valor	Pr > F	
tmt	4 416	638392.86	10409598.21	166.58	<.0001	

705803.57 Procedimiento ANOVA

235267.86

3.76 0.0409

Prueba del rango estudentizado de Tukey (HSD) para rendimiento

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa 0.05
Error de grados de libertad 12
Error de cuadrado medio 62489.37
Valor crítico del rango estudentizado 4.50760
Diferencia significativa mínima 563.4

tmt	N	Media	Tukey Agrupamiento
4	4	28133.9	Α
5	4	27500.0	В В
3	4	27125.0	СВ
2	4	26723.2	C C

D 23955.4 4

CORRIDA DE SAS PARA LOS DATOS DE GRADOS BRIX EN FRTUOS EN JITOMATE

0bs	eval	tmt	blq	F1	F2	F3	F4	F5	gradosbrix
1	1	1	1	9.7	9.6	9.7	9.4	9.5	9.58
2	1	1	2	9.6	9.7	9.8	9.8	9.5	9.68
3	1	1	3	9.6	9.6	9.5	9.5	9.6	9.56
4	1	1	4	9.4	9.5	9.5	9.6	9.5	9.50
5	1	2	1	10.2	10.6	9.8	9.7	10.1	10.08
6	1	2	2	9.9	9.9	10.1	10.2	10.1	10.04
7	1	2	3	10.3	10.2	9.9	10.2	10.2	10.16
8	1	2	4	10.3	10.2	10.2	9.8	9.9	10.08
9	1	3	1	10.3	10.4	10.2	10.0	10.2	10.22
10	1	3	2	10.3	10.1	10.3	9.9	9.9	10.10
11	1	3	3	10.3	10.1	9.8	9.9	10.3	10.08
12	1	3	4	10.1	10.0	10.0	10.4	10.6	10.22
13	1 1	4 4	1 2	10.6 10.6	10.5	10.4	10.6 10.8	10.8	10.58
14 15	1	4	3	10.6	10.7 10.7	10.0 10.5	11.1	10.9 10.9	10.60 10.76
16	1	4	4	10.9	9.9	11.3	10.8	10.9	10.76
17	1	5	1	10.1	9.9	8.9	10.3	10.4	9.92
18	1	5	2	10.6	10.3	10.0	10.2	10.1	10.24
19	1	5	3	10.4	10.3	10.5	10.5	10.2	10.38
20	1	5	4	10.6	10.3	10.0	10.1	10.4	10.28
21	2	1	1	9.8	9.1	8.9	9.2	9.3	9.26
22	2	1	2	9.3	9.8	9.6	9.4	9.8	9.58
23	2	1	3	9.6	9.4	9.7	9.8	9.6	9.62
24	2	1	4	9.9	9.7	9.5	9.8	9.7	9.72
25	2	2	1	10.2	9.9	9.8	9.8	9.9	9.92
26	2	2	2	9.9	9.8	10.1	10.0	9.8	9.92
27	2	2	3	10.2	10.1	10.0	9.8	9.9	10.00
28	2	2	4	10.0	10.0	9.9	9.8	9.9	9.92
29	2	3	1	10.3	10.4	10.6	10.3	10.5	10.42
30	2	3	2	10.3	10.5	10.5	10.6	10.5	10.48
31	2	3	3	10.3	10.4	10.8	10.3	10.5	10.46
32	2 2	3 4	4 1	10.6	10.4	10.4	10.4	10.3	10.42
33 34	2	4	2	10.6 10.2	11.3	10.8	10.9	10.8	10.88
35	2	4	3	10.2	10.3 10.7	10.4 10.5	10.3 10.8	10.4 10.9	10.32 10.76
36	2	4	4	11.2	11.3	10.9	10.9	10.7	11.00
37	2	5	1	9.8	10.2	10.3	10.4	10.2	10.18
38	2	5	2	10.4	10.3	10.4	10.5	10.5	10.42
39	2	5	3	10.3	10.5	10.5	10.5	10.7	10.50
40	2	5	4	10.2	10.3	10.4	10.5	10.3	10.34
41	3	1	1	9.8	9.7	9.6	9.8	9.8	9.74
42	3	1	2	9.7	9.6	9.6	9.8	9.7	9.68
43	3	1	3	9.5	9.7	9.8	9.8	9.6	9.68
44	3	1	4	9.8	9.9	9.9	9.7	9.9	9.84
45	3	2	1	10.2	10.3	10.1	10.0	10.0	10.12
46	3	2	2	10.6	9.8	9.9	9.9	10.1	10.06
47	3	2	3	9.9	9.8	9.9	10.2	9.8	9.92
48	3	2	4	9.3	9.4	9.1	9.6	9.6	9.40
49	3	3	1	10.4	10.6	10.3	10.4	10.5	10.44
50	3	3	2	10.6	10.2	10.4	10.6	10.5	10.46
51	3	3	3	10.4	10.5	10.5	10.4	10.7	10.50
52	3	3	4	10.6	10.4	10.3	10.1	10.5	10.38
53 54	3 3	4	1	10.6	11.1	10.8 10.7	10.9	10.7	10.82
54 55	3	4 4	2 3	10.8 10.6	10.9 10.7	10.7	10.8 10.8	11.4 10.8	10.92 10.74
56	3	4	4	10.5	10.7	10.8	10.8	10.6	10.74
57	3	5	1	10.3	10.4	10.7	10.3	10.0	10.26
58	3	5	2	10.1	10.3	10.3	10.4	10.5	10.32
59	3	5	3	10.6	10.4	10.3	10.4	10.5	10.44
60	3	5	4	10.6	10.2	10.2	10.3	10.4	10.34

eval=1 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	1
tmt	5	1 2 3 4 5
h]a	4	1 2 3 4

Número de observaciones 20 Procedimiento ANOVA

Variable dependiente: gradosbrix

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	2.46330000	0.35190000	27.59	<.0001
Error	12	0.15308000	0.01275667		
Total correcto	19	2.61638000			

R-cuadr	ado	Coef Var	Raiz MSE	gradosbrix Media
0.941	492	1.113750	0.112945	10.14100

	Cuadrado de					
Fuente	DF	Anova SS	la media	F-Valor	Pr > F	
tmt	4	2.42708000	0.60677000	47.56	<.0001	
bla	3	0.03622000	0.01207333	0.95	0.4489	

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para gradosbrix

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.012757
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	0.2546

 ${\tt Medias} \ {\tt con} \ {\tt la} \ {\tt misma} \ {\tt letra} \ {\tt no} \ {\tt son} \ {\tt significativamente} \ {\tt diferentes}.$

Tukey Agrupamiento	Media	N	tmt
Α	10.67500	4	4
В	10.20500	4	5
B B	10.15500	4	3
B B	10.09000	4	2

eval=2	
Procedimiento	ANOVA

9.58000

Información del nivel de clase

Clase	Niveles	Valores
eval	1	2
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones 2 Procedimiento ANOVA

Variable dependiente: gradosbrix

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	3.58788000	0.51255429	17.42	<.0001
Error	12	0.35300000	0.02941667		
Total correcto	19	3.94088000			

R-cuadrado	Coef Var	Raiz MSE	gradosbrix Media
0.910426	1.680510	0.171513	10.20600

			Cuadrado de		
Fuente	DF	Anova SS	la media	F-Valor	Pr > F
tmt	4	3.49468000	0.87367000	29.70	<.0001
blq	3	0.09320000	0.03106667	1.06	0.4037

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para gradosbrix

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.029417
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	0.3866

tmt	N	Media	Tukey Agrupamiento
4	4	10.7400	Α
			Α
3	4	10.4450	Α
			Α
5	4	10.3600	Α

В	9.9400	4	2
C	0.5450	4	1

----- eval=3 -----

Procedimiento ANOVA

Información del nivel de clase

Clase	Niveles	Valores
eval	1	3
tmt	5	1 2 3 4 5
blq	4	1 2 3 4

Número de observaciones Procedimiento ANOVA

Variable dependiente: gradosbrix

Fuente	DF	Suma de cuadrados	Cuadrado de la media	F-Valor	Pr > F
Modelo	7	3.01778000	0.43111143	16.43	<.0001
Error	12	0.31492000	0.02624333		
Total correcto	19	3.33270000			
R-cuadrado	Coef	Var Raiz M	SE gradosbri	x Media	
0.905506	1.58	2784 0.1619	98 1	0.23500	
			Cuadrado de	.	
Fuente	DF	Anova SS	la media	F-Valor	Pr > F
tmt	4	2.92700000	0.73175000	27.88	<.0001
blq	3	0.09078000	0.03026000	1.15	0.3677

Procedimiento ANOVA

Prueba del rango estudentizado de Tukey (HSD) para gradosbrix

NOTA: Este test controla el índice de error experimentwise de tipo I, pero normalmente tiene un índice de error de tipo II más elevado que REGWQ.

Alfa	0.05
Error de grados de libertad	12
Error de cuadrado medio	0.026243
Valor crítico del rango estudentizado	4.50760
Diferencia significativa mínima	0.3651

tmt	N	Media	Tukey Agrupamiento
4	4	10.7800	А
3	4	10.4450	A B A

B
B
10.3400 4 5
C
9.8750 4 2
C
C
9.7350 4 1

s) Anexo

Análisis del follaje y frutos de jitomate.

Descripción.

Muestra	Elemento	Clave	Tratamiento
Hoja	Sample 25	B76-0	Testigo absoluto
Hoja	Sample 6	B76-4	BLUE 76 4.0 L/ha
Hoja	Sample 13	B76-5	BLUE 76 5.0 L/ha
Hoja	Sample 11	B76-6	BLUE 76 6.0 L/ha
Hoja	Sample 12	B76-K	Kendal® 2.0 L/ha
Fruto	Sample 19	B76-0	Testigo absoluto
Fruto	Sample 1	B76-4	BLUE 76 4.0 L/ha
Fruto	Sample 4	B76-5	BLUE 76 5.0 L/ha
Fruto	Sample 18	B76-6	BLUE 76 6.0 L/ha
Fruto	Sample 30	B76-K	Kendal® 2.0 L/ha

ATENTAMENTE:

DR. DAGOBERTO GUILLEN SANCHEZ RESPONSABLE DEL ESTUDIO

Texcoco, Méx., a 04 de Octubre del 2011.

Abasto Empresarial, S.A. de C.V. Oriente 67 A, No. 2828, Int. 5 Col. Amp. Asturias 06890 México, D.F.

Por medio del presente, hago llegar resultados de muestras de Follaje

Muestra	Elemento	Clave	%N	%P	%K	%Ca	% Mg	Fe (mg kg-1)	Mn (mg kg-1)	Zn (mg kg-1)	Cu (mg kg-1)	B (mg kg-1)	%Na
Hoja	Sample 6	B76-4	1.26	0.238	4.46	3.268	1.659	164.11	378.19	50.60	58.30	22.76	0.032
Fruto	Sample 1	B76-4	1.12	0.379	4.70	1.023	0.107	43.96	14.22	14.50	12.68	19.77	0.069
Hoja	Sample 13	B76-5	1.40	0.271	4.31	3.048	1.672	93.07	365.68	46.90	76.01	20.27	0.07
Fruto	Sample 4	B76-5	1.54	0.394	4.61	1.046	0.093	32.57	17.41	14.55	8.88	22.10	0.039
Hoja	Sample 11	B76-6	1.19	0.264	5.60	3.135	1.619	100.37	302.94	37.26	65.67	22.76	0.058
Fruto	Sample 18	B76-6	0.77	0.400	6.27	0.598	0.123	39.03	1.54	15.23	7.24	39.91	0.042
Hoja	Sample 12	B76-K	1.19	0.238	4.64	3.491	1.524	155.19	412.65	57.69	64.80	23.93	0.048
Fruto	Sample 30	B76-K	1.09	0.461	4.26	3.208	0.116	44.39	16.15	14.46	9.32	19.60	0.061
Hoja	Sample 14	BL-O	1.40	0.201	3.75	2.963	1.966	219.27	257.83	42.97	65.50	20.43	0.122
Fruto	Sample 7	BL-O	1.47	0.505	6.24	1.032	0.102	44.44	22.45	19.21	11.73	19.77	0.043
Hoja	Sample 24	BL-4	1.09	0.313	3.65	4.799	1.945	295.87	317.49	50.49	68.50	19.43	0.072
Fruto	Sample 10	BL-4	0.77	0.379	4.86	0.444	0.095	18.00	9.32	12.52	5.96	19.27	0.031
Hoja	Sample 25	B76-O	1.19	0.244	3.74	3.061	1.785	347.15	416.99	63.36	75.49	24.60	0.077
Fruto	Sample 19	B76-O	0.77	0.373	5.78	0.419	0.110	42.09	10.52	11.74	7.31	19.93	0.036
Hoja	Sample 33	BL-6	1.05	0.323	3.71	4.236	0.950	113.37	88.17	28.70	0.00	22.10	0.091
Fruto	Sample 16	BL-6	0.77	0.367	5.75	1.044	0.095	40.69	12.54	14.49	7.18	16.94	0.042
Hoja	Sample 21	BL-K	0.42	0.331	3.21	3.182	1.834	122.80	314.81	46.05	57.31	21.43	0.042
Fruto	Sample 32	BL-K	0.81	0.368	3.91	1.013	0.114	30.52	14.79	10.64	-1.53	18.93	0.089
Hoja	Sample 23	BL-5	1.51	0.261	3.47	4.154	1.851	161.08	286.65	40.40	63.06	18.60	0.086
Fruto	Sample 20	BL-5	0.98	0.335	4.98	1.005	0.118	39.26	11.96	11.88	7.01	21.43	0.048

Sin más por el momanto, reciba un cordial y afectuoso saludo.

M.C. Martin Valencia Aceves Responsable del Laboratorio