Course Information		
Course title	Introduction to Intelligent Vehicles	
Semester	110-1	
Designated for	COLLEGE OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE GRADUATE INSTITUTE OF COMPUTER SCIENCE & INFORMATION ENGINEERING	
Instructor	CHUNG-WEI LIN	
Curriculum Number	CSIE5452	
Curriculum Identity Number	922 U4490	
Credits	3.0	

Course Syllabus

Please respect the intellectual property rights of others and do not copy any of the course information without permission

Intelligent vehicles can communicate with other vehicles or roadside units and behave autonomously. They are believed to significantly change the way that people move from a place to another place. This class will introduce fundamental knowledge in intelligent vehicles and then focus on some specific advanced topics (e.g., security). The knowledge and topics will bring state-of-the-art technology to students and develop their skills in system modeling, design, and analysis.

There are mainly four parts in this class:

Course Description

- (1) Background: This part will introduce traditional (i.e., without connectivity and autonomy) system architecture, vehicular networks, and basic design and analysis approaches.
- (2) Applications: This part will introduce applications of intelligent vehicles, including advanced driver-assistance systems, cooperative adaptive cruise control, and intersection management.
- (3) Technology: This part will introduce the technology which is needed to realize the applications of intelligent vehicles.
- (4) Advanced Topics: This part will introduce advanced topics such as over-the-air update, security, and certification.

	Depending on students' interests, final projects can be survey, implementation, or research.
Course Objective	 Understanding the traditional system architecture and networks. Understanding the state-of-the-art applications and technology of intelligent vehicles. Developing skills in system modeling, design, and analysis. Using or implementing simulation or analysis tools. Conducting preliminary research.

Progress

Week	Date	Торіс
Week 1 9/27	[0] Course Introduction	
	[1] System Architecture	
Week 2	10/04	[2] Timing Analysis I
Week 4	10/18	[3] Timing Analysis II
Week 5	10/25	[4] System Design
Week 6	Week 6 11/01	[5] Advanced Driver-Assistance Systems
		[6] Intersection Management
Week 7	11/08	Quiz 1 [6] Intersection Management
Week 8	11/15	[7] Connectivity
Week 9	11/22	[8] Sensing and Perception
Week 10	11/29	[9] Planning and Control
Week 11	12/06	[10] Verification
Week 12	12/13	Quiz 2 [11] Security
	[12] Edge Computing	
Week 13	Week 13 12/20	[13] Certification
		[14] Summary
Week 14	12/27	Project Presentation
Week 15	01/03	Project Presentation
Week 16	01/10	Project Presentation