Model and simulate lateral vehicle dynamics

https://www.mathworks.com/matlabcentral/fileexchange/158356-model-predictive-control-mpc-virtual-lab?seid=PSM 15028&stid=FX rc3 behav&status=SUCCESS

The lateral vehicle dynamics are depicted in the below picture. It's described using a bicycle model with two degrees of freedom, lateral position and yaw angle.

Here,

- X and Y denote the position of the vehicle in global coordinates
- V_X and V_Y denote the longitudinal and lateral velocities of the vehicle in body-fixed coordinates with respect
 to the center of gravity
- ψ is the yaw angle of the vehicle
- δ is the front steering angle
- · Yref is the reference lateral position
- ψ_{ref} is the reference yaw angle

Next, you will model the lateral vehicle dynamics which are separated from the longitudinal vehicle dynamics. Therefore, you will assume a constant longitudinal velocity, which you will define below.

Create a State Space Model:

2. State Variables

Let the states be:

$$\mathbf{x} = egin{bmatrix} e_y \ e_\psi \ v_y \ r \end{bmatrix}$$

Where:

- ullet $e_y = Y Y_{ref}$: lateral position error
- $oldsymbol{e} e_{\psi} = \psi \psi_{ref}$: yaw angle error
- v_y : lateral velocity
- $oldsymbol{\cdot} r=\dot{\psi}$: yaw rate

Input:

$$\mathbf{u} = \delta$$
 (steering angle)

3. Vehicle Dynamics Equations (Lateral-Yaw)

Linearized lateral and yaw dynamics:

$$m(\dot{v}_y + V_x r) = F_{yf} + F_{yr}$$

 $I_z \dot{r} = a F_{yf} - b F_{yr}$

Where:

- m: mass of the vehicle
- Iz: moment of inertia about z-axis
- a, b: distances from CG to front/rear axle
- ullet F_{yf} , F_{yr} : lateral tire forces

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$$

$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}$$

Symbol	Meaning
$x\mathbb{x}$	State vector (e.g., $[ey, e\psi, vy, r]T[e_y, e_\backslash psi, v_y, r]^T$)
$u\mathbf{u}$	Input vector (e.g., δ \delta, the steering angle)
$x^{\cdot} \setminus dot{\mathbb{T}}$	(Derivative of the state (rate of change)
y\mathbf{y}	Output vector (what you measure or want to control)
A	System matrix: how the current state affects the future state
В	Input matrix: how the input affects the state

ullet F_{yf} , F_{yr} : lateral tire forces

III 4. State Equations

After substituting and simplifying:

$$\begin{split} \dot{v}_y &= \frac{-C_f - C_r}{mV_x} v_y + \left(\frac{-aC_f + bC_r}{mV_x} - V_x\right) r + \frac{C_f}{m} \delta \\ \dot{r} &= \frac{-aC_f + bC_r}{I_z V_x} v_y + \frac{-a^2C_f - b^2C_r}{I_z V_x} r + \frac{aC_f}{I_z} \delta \end{split}$$

And for tracking:

$$\dot{e}_y = v_y + V_x e_\psi \ \dot{e}_\psi = r$$

Define ABCD for state space model :

%x1= Vy (Lateral Velocity)

%x2= psi (Yaw rate) %x3= e_y Lateral Position Error i.e. Deviation from the reference trajectory in the lateral (Y) direction %x4= e_psi Yaw angle error i.e Difference between the vehicle's heading ψ and the desired heading

A = [-(2*Cf + 2*Cr)/(m*Vx), 0, -Vx, -(2*Cf*If - 2*Cr*Ir)/(m*Vx);

0, 0, 1, 0; -(2*Cf*lf - 2*Cr*lr)/(lz*Vx), 0, 0, -(2*Cf*lf^2 + 2*Cr*lr^2)/(lz*Vx);

1, Vx, 0, 0];

% B Matrix

B = [2*Cf/m;0;2*Cf*If/Iz;0];

% C Matrix

 $C = [0\ 0\ 0\ 1;\ 0\ 1\ 0\ 0];$

% D Matrix

D = [0; 0];

MATLAB based MPC Project:

Design Parameters of MPC

How to sample time(time frame in which the control runs the algorithm). Recommended Sample time:

Prediction Horizon:

It is how far ahead you are looking into the environment.

MPC Page 2

x \u0000 \u00000 \u0000 \u0000 \u0000 \u0000 \u0000 \u00000 \u00000 \u00000 \u0	
y\mathbf{y}	Output vector (what you measure or want to control)
A	System matrix: how the current state affects the future state
В	Input matrix: how the input affects the state
С	Output matrix: maps the state to the output
D	Feedthrough matrix: mans input directly to output (usually 0)

Control Horizon:

How far in future applying the logic to.

Type of Constraints:

Hard: Those which sats always throw-out in search environment. e.g.: Upper limit of the accelerating peddle

Soft: Those which are likely to appear in environment but not always present. e.g. Weather conditions

Follow a trajectory with basic vehicle model

Monday, August 18, 2025 4:12 PM

Scenario: you have a linearized vehicle model which needs to be used with MPC Toolbox.

Step 1 : Design the Model and Linearize it:

Youtube: Mod-01 Lec-01 Introduction to Vehicle Dynamics

Step 2:

Create State Space Model and create Matlab file storing all the variable.

Here: Input_Variables.mlx

$$A = \begin{bmatrix} -\frac{(2C_f + 2C_r)}{mV_x} & 0 & -V_x - \frac{(2C_f l_f - 2C_r l_r)}{mV_x} & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{(2C_f l_f - 2C_r l_r)}{I_z V_x} & 0 & -\frac{(2C_f l_f^2 + 2C_r l_r^2)}{I_z V_x} & 0 \\ 1 & V_x & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{2C_f}{m} \\ 0 \\ \frac{2C_f l_f}{I_z} \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad D = 0$$

Step 3:

Create a Open loop Model to see plants Behavior

Input: Steering Angle (rad)

Plant(State Space of Vehicle)

Output: Lateral distance travelled; Yaw Angle(rad)

Step 4:

Implementation:

Download MPC_Basic Repo.

1) Open Main_script.m Run Main_script.m

2)Follow scope in Plant characterization.m

Output 1)Correlation between Steering angle , yaw angle and Lateral Position.

3)Open and run AutonomousSteeringSystem.slx.

Key Elements of MPC

 Formulation of the control problem as an (deterministic) optimization problem

$$\begin{aligned} \min_{u_i} \sum_{i=0}^p \phi_i(x_i, u_i) \\ g_i(x_i, u_i) &\geq 0 \\ x_{i+1} &= F(x_i, u_i) \end{aligned} \xrightarrow{?} \begin{aligned} u_0 &= \mu(x_0) \\ \text{HJB Eqn.} \end{aligned}$$

- · On-line optimization
- Receding horizon implementation (with feedback update)

At t = k, Set $x_0 = \hat{x}_k$ (Estimated Current State) Solve the optimization problem numerically Implement solution u_0 as the current move. Repeat!

Popularity of Quadratic Objective in Control

Quadratic objective

Linear State Space System Model

$$\sum_{i=0}^{p} x_{i}^{T} Q x_{i} + \sum_{i=0}^{m-1} u_{i}^{T} R u_{i}$$

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k$$

- Fairly general
 - State regulation
 - Output regulation
 - Setpoint tracking
- Unconstrained linear least squares problem has an analytical solution. (Kalman's LQR)
- Solution is smooth with respect to the parameters
- Presence of inequality constraints → no analytical solution

Classical Process Control

Ad Hoc Strategies, Heuristics

- Regulation
 - Constraint handling
 Local entimization
 - Local optimization

Lead / Lag Filters

· Model is not explicitly used

Classical Process Control

$$p = k_c \left(1 + \frac{1}{\tau_I} \int_0^t e(t') dt' + \tau_D \frac{de}{dt} \right)$$

Ad Hoc Strategies, Heuristics

- Regulation
- · Constraint handling
- · Local optimization

- Model is not explicitly used inside the control algorithm
- No clearly stated objective and constraints
- Inconsistent performance
- · Complex control structure
- · Not robust to changes and failures
- Focus on the performance of a local unit

Example 1: Blending System

- Control r_A and r_B
- · Control q if possible
- Flowrates of additives are limited

Model-Based Optimal Control

Open-Loop Optimal Control Problem

Model-Based Optimal Control

- Open-loop optimal solution is not robust
- Must be coupled with on-line state / model parameter update
- · Requires on-line solution for each updated problem
- Analytical solution possible only in a few cases (LQ control)
- Computational limitation for numerical solution, esp. back in the '50s and '60s

Model constraints

(C_I

 $\dot{x} = f(x, u)$

Geografia

Model Predictive Control (Receding Horizon Control)

- At time k, solve the open-loop optimal control problem on-line with x₀ = x(k)
- Apply the optimal input moves u(k) = u_θ
- Obtain new measurements, update the state and solve the OLOCP at time k+1 with x₀ = x(k+1)
- Continue this at each sample time

Lecturenot eonMPC-J...

Lecturenot eonMPC-J...