Computer Vision I

Homework 4

Given October 12, 2018, Due: October 19, 2018

Homographies

- 1. (Old exam problem) The planar facade of a building is captured in an image taken by a camera. Assume this pane corresponds to the world coordinate frame's Z = 0 plane, and scene point (X, Y) on the building projects to image pixel coordinates (u, v).
 - (a) What is the planar projective transformation that describes the relationship between (X,Y) and (u,v)? Give your answer using homogeneous coordinates.
 - (b) How many degrees of freedom does this transformation have?
 - (c) How many point correspondences are required to determine this transformation?
 - (d) Would having more correspondences that your answer above be helpful in any way? If no, briefly explain why not. If yes, explain how they could be used.
 - (e) Give one invariant of a planar projective transformation.
 - (f) Give one invariant of a planar affine transformation that is not an invariant for a planar projective transformation.
 - (g) If the building has sets of lines on it running parallel to both the X and Y axes, how could we use the corresponding lines in the image to determine if the building plane is parallel to the image plane?
- 2. A template g is matched against an image f, both shown below:

f =	0	0	0	0	0	0	0	0	g=	1 0 0		
	0	2	4	2	0	0	0	0				
	0	2	0	0	0	0	0	0			1 1	1
	0	0	2	0	0	0	2	0				0
	0	0	0	0	0	0	2	0				
	1	2	1	0	0	2	4	2			1	U
	0	1	0	0	0	0	0	0				
	0	1	0	0	0	0	0	0				

- (a) Find the SSD between f and g.
- (b) Find the Correlation between f and g .
- (c) Find the Normalized Correlation between f and g