Détermination des efforts et des lois de mouvement en dynamique Révision cinématique –

Sciences
Industrielles de
l'Ingénieur

TD 04

Robot de peinture Pôle Chateaubriand - Joliot Curie Savoirs et compétences :

Robot de peinture

On étudie un robot de peinture de voiture. Ce robot se déplace par rapport à une carrosserie de voiture, et projette dessus de la peinture. L'objectif est de déterminer les lois du mouvement du robot, pour lui permettre de vérifier le critère de vitesse de déplacement relatif (entre le robot et la carrosserie de voiture) du cahier des charges.

Exigences techniques	Critère	Niveau
1.7	Vitesse de déplacement relatif	Vitesse constante

La modélisation cinématique du robot est donnée sur la figure suivante :

Le chariot S_1 , auquel on associe le repère $\mathcal{R}_1(A, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est en mouvement de translation de direction $\overrightarrow{y_0}$ par rapport au bâti S_0 de repère $\mathcal{R}_0(A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$.

Le corps S_2 , auquel on associe le repère $\mathcal{R}_2(A, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ est en mouvement de rotation autour de l'axe $(B, \overrightarrow{z_0})$ avec le chariot S_1 .

Le bras S_3 , auquel on associe le repère $\mathcal{R}_3(B, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ est en mouvement de rotation autour de l'axe $(B, \overrightarrow{y_2})$ avec le corps S_2 .

Question 1 Construire les figures planes de repérage/paramétrage.

Question 2 Exprimer les vecteurs vitesse instantanée de rotation $\overrightarrow{\Omega(1/0)}$, $\overrightarrow{\Omega(2/1)}$, $\overrightarrow{\Omega(3/2)}$ et $\overrightarrow{\Omega(3/0)}$.

Question 3 Déterminer $\overline{V(P,3/0)}$.

Question 4 *Déterminer* $\Gamma(P,3/0)$.

Question 5 Déterminer $\Gamma(P,3/0) \cdot \overrightarrow{x_0}$.

Question 6 Calculer les produits vectoriels et scalaires suivants : $\overrightarrow{z_3} \land \overrightarrow{x_2}$ et $\overrightarrow{z_3} \cdot \overrightarrow{x_2}$, $\overrightarrow{z_3} \land \overrightarrow{y_1}$ et $\overrightarrow{z_3} \cdot \overrightarrow{y_1}$.

On a $\overrightarrow{OD} = b \overrightarrow{y_0}$ avec $b = \sqrt{L^2 - H^2}$. On désire que P décrive la droite $(D, \overrightarrow{x_0})$ à vitesse constante V, conformément au cahier des charges.

Question 7 Représenter sur une figure dans le plan $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$, puis sur une figure dans le plan $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$, les positions des points O, D, A, B et P du robot lorsque celuici est en position extrême (A est en D).

Question 8 Traduire, à l'aide de l'expression de $\overrightarrow{V(P,3/0)}$ le fait que P se déplace à la vitesse V selon $\overrightarrow{x_0}$. En déduire $\dot{\beta}$.

Question 9 Exprimer alors $\dot{\lambda}$ et $\dot{\alpha}$ en fonction de L, V, α et β_0 .

Question 10 A l'aide de la figure précédente, exprimer β_0 en fonction de b et L.

Question 11 Exprimer $\dot{\lambda}$ et $\dot{\alpha}$ en fonction de V, b et α .