Algebra 1

slidy k přednáškám

KMI/ALG1

Zpracováno dle přednášek prof. Ivana Chajdy.

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- 2 Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť A, B jsou neprázdné množiny. **Kartézský součin množin A a B** (označujeme $A \times B$) je množina všech uspořádaných dvojic $\langle a,b \rangle$, kde $a \in A$, $b \in B$. Každou podmnožinu $R \subseteq A \times B$ nazveme **binární relace mezi množinami** A **a** B. Je-li A = B, pak $R \subseteq A \times A$ nazveme **binární relace na množině A**.

Relaci vyjadřujeme buď výčtem uspořádaných dvojic, např. pro $A = \{a,b,c\},\ R = \{\langle a,a\rangle,\langle b,b\rangle,\langle a,c\rangle\}$ nebo nějakým předpisem. Známé binární relace: $\leq,=,\neq,\parallel,\perp$, býti dělitelno, atd. Někdy místo $\langle a,b\rangle\in R$ zapisujeme aRb, např. a=b místo $\langle a,b\rangle\in=$, $a\leq b$ místo $\langle a,b\rangle\in\leq$, atp.

Binární relace R na množině $A \neq \emptyset$ se nazývá:

- reflexivní, jestliže pro každé $a \in A$ platí $\langle a, a \rangle \in R$
- **symetrická**, jestliže pro každé $a,b \in A$, pokud $\langle a,b \rangle \in R$, pak také $\langle b,a \rangle \in R$
- tranzitivní, jestliže pro každé $a,b,c\in A$, pokud $\langle a,b\rangle\in R$ a $\langle b,c\rangle\in R$, pak také $\langle a,c\rangle\in R$
- antisymetrická, jestliže pro každé $a, b \in A$, pokud $\langle a, b \rangle \in R$ a $\langle b, a \rangle \in R$, pak a = b.

Některé relace: **identita** neboli **rovnost** (někdy označujeme ω): $\langle a,b\rangle \in \omega$, právě když a=b. **Úplná relace** neboli **úplný čtverec** (označení ι nebo $A\times A$): pro každé $a,b\in A$ platí $\langle a,b\rangle \in \iota$. **Prázdná relace** \emptyset : pro každé $a,b\in A$ platí $\langle a,b\rangle \notin \emptyset$.

Nechť R je binární relace mezi množinami A a B a nechť S je binární relace mezi množinami B a C. Inverzní relací R^{-1} k relaci R nazýváme binární relaci mezi množinami B a A takovou, že $\langle a,b\rangle \in R^{-1}$, právě když $\langle b,a\rangle \in R$. Součinem (složením) relací R a S nazýváme binární relaci $R \circ S$ mezi množinami A a C definovanou takto: $\langle a,c\rangle \in R \circ S$, právě když existuje $b \in B$ tak, že $\langle a,b\rangle \in R$ a $\langle b,c\rangle \in S$.

Relační součin je asociativní, t.j. je-li R binární relace mezi množinami A a B, S je binární relace mezi množinami B a C, T je binární relace mezi množinami C a D, pak $(R \circ S) \circ T = R \circ (S \circ T)$.

Důkaz. Libovolná uspořádaná dvojice $\langle a,d \rangle \in (R \circ S) \circ T$, právě když existuje $c \in C$ tak, že $\langle a,c \rangle \in R \circ S$, $\langle c,d \rangle \in T$, právě když existuje $b \in B$ a existuje $c \in C$ tak, že $\langle a,b \rangle \in R$, $\langle b,c \rangle \in S$, $\langle c,d \rangle \in T$, právě když existuje $b \in B$ tak, že $\langle a,b \rangle \in R$, $\langle b,d \rangle \in S \circ T$, právě když $\langle a,d \rangle \in R \circ (S \circ T)$, odkud dostáváme, že $\langle R \circ S \rangle \circ T = R \circ (S \circ T)$.

Nechť *R* je binární relace mezi množinami *A* a *B* a nechť *S* je binární relace mezi množinami *B* a *C*. Pak

- (a) $(R^{-1})^{-1} = R$
- (b) $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

Důkaz.

- (a) $\langle a,b\rangle\in(R^{-1})^{-1}$, právě když $\langle b,a\rangle\in R^{-1}$, což platí právě když $\langle a,b\rangle\in R$. Tedy $(R^{-1})^{-1}=R$.
- (b) Libovolná uspořádaná dvojice $\langle a,c\rangle \in (R\circ S)^{-1}$, právě když $\langle c,a\rangle \in R\circ S$, právě když existuje $b\in B$ tak, že $\langle c,b\rangle \in R$, $\langle b,a\rangle \in S$, právě když existuje $b\in B$ tak, že $\langle b,c\rangle \in R^{-1}$, $\langle a,b\rangle \in S^{-1}$, právě když $\langle a,c\rangle \in S^{-1}\circ R^{-1}$, odkud $(R\circ S)^{-1}=S^{-1}\circ R^{-1}$.

Nechť R je binární relace na množině A. Pak

- (a) R je reflexivní, právě když $\omega \subseteq R$
- (b) R je symetrická, právě když $R = R^{-1}$
- (c) R je tranzitivní, právě když $R \circ R \subseteq R$.

Důkaz.

- (a) $\forall a \in A \text{ plati } \langle a, a \rangle \in \omega$. Tedy $\omega \subseteq R$, právě když $\forall a \in A \text{ plati } \langle a, a \rangle \in R$ neboli R je reflexivní.
- (b) Nechť R je symetrická. Jestliže $\langle a,b \rangle \in R$, pak ze symetrie $\langle b,a \rangle \in R$, což je ekvivalentní s tím, že $\langle a,b \rangle \in R^{-1}$, tedy $R=R^{-1}$. Obráceně, nechť $R=R^{-1}$. Jestliže $\langle a,b \rangle \in R$, pak $\langle b,a \rangle \in R^{-1}=R$, t.j. R je symetrická.
- (c) Necht' R je tranzitivní a $\langle a,b \rangle \in R \circ R$. Pak existuje $c \in A$ tak, že $\langle a,c \rangle \in R$, $\langle c,b \rangle \in R$. Z tranzitivity plyne $\langle a,b \rangle \in R$, tedy $R \circ R \subseteq R$. Obráceně, necht' $R \circ R \subseteq R$ a necht' $\langle a,c \rangle \in R$, $\langle c,b \rangle \in R$. Pak $\langle a,b \rangle \in R \circ R \subseteq R$, tedy R je tranzitivní.

Podobně lze dokázat následující tvrzení:

- (1) Monotonie relací: nechť R, S, T jsou binární relace na množině A, R⊆S. Pak R⁻¹ ⊆ S⁻¹ a R∘T⊆S∘T, T∘R⊆T∘S.
- (2) Nechť R je binární relace na množině A. Má-li R některou z vlastností: reflexivita, symetrie, tranzitivita, antisymetrie, pak má tuto vlastnost i R⁻¹.
- (3) Jsou-li R, S reflexivní binární relace na množině A, pak $R \subseteq R \circ S$, $S \subseteq R \circ S$.
- (4) Binární relace R na množině A je antisymetrická, právě když R∩R⁻¹ ⊆ ω.

Příklad

Najděte dvě konkrétní binární relace R, S tak, aby $R \circ S \neq S \circ R$, t.j. dokažte, že součin binárních relací není komutativní.

Řešení: jednoduché.

Binární relace *R* na množině *A* se nazývá **ekvivalence**, je-li reflexivní, symetrická a tranzitivní.

Například ω a ι jsou ekvivalence.

Lemma

Nechť R, S jsou reflexivní binární relace na množině A. Pak $R \circ S$ je také reflexivní binární relace na A.

Důkaz. Jelikož R, S jsou reflexivní, je dle Věty 1.3 $\omega \subseteq R$, $\omega \subseteq S$ a tedy i $\omega = \omega \circ \omega \subseteq R \circ S$, t.j. $R \circ S$ je také reflexivní.

Nechť R, S jsou ekvivalence na množině A. Pak $R \circ S$ je ekvivalence na A, právě když $R \circ S = S \circ R$.

Důkaz. Předpokládejme, že $R \circ S$ je ekvivalence na A. Zřejmě $R \circ S$ je symetrická a tedy dle Věty 1.3 platí, že $R \circ S = (R \circ S)^{-1}$. Podobně platí, že $R = R^{-1}$ a $S = S^{-1}$ (neboť R, S jsou symetrické, protože jsou ekvivalence). S využitím Věty 1.2 odtud dostáváme, že

$$R \circ S = (R \circ S)^{-1} = S^{-1} \circ R^{-1} = S \circ R.$$

Předpokládejme nyní, že $R \circ S = S \circ R$. Jestliže $\langle a,b \rangle \in R \circ S$, pak $\exists x \in A$ tak, že $\langle a,x \rangle \in R$, $\langle x,b \rangle \in S$. Ze symetrie R a S plyne $\langle b,x \rangle \in S$, $\langle x,a \rangle \in R$, tedy $\langle b,a \rangle \in S \circ R = R \circ S$, neboli $R \circ S$ je symetrická.

Nechť dále $\langle a,b\rangle \in R\circ S, \langle b,c\rangle \in R\circ S$. Pak (v důsledku asociativity součinu relací a dle Věty 1.3.) platí $\langle a,c\rangle \in (R\circ S)\circ (R\circ S)=R\circ (S\circ R)\circ S=R\circ (R\circ S)\circ S=(R\circ R)\circ (S\circ S)\subseteq R\circ S$, tedy $R\circ S$ je tranzitivní. Dle předchozího Lemma je $R\circ S$ i reflexivní. Dohromady $R\circ S$ je ekvivalence na A.

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť A, B jsou neprázdné množiny a f je binární relace mezi množinami A a B. Relace f se nazývá **zobrazení** A **do** B, má-li tyto vlastnosti:

- (i) $\forall a \in A \ \exists b \in B \ \text{tak}, \ \text{\'e} \ \langle a, b \rangle \in f$
- (ii) jestliže $\langle x, y_1 \rangle \in f$ a $\langle x, y_2 \rangle \in f$, pak $y_1 = y_2$.

Je-li f zobrazením množiny A do B, budeme tento fakt zapisovat symbolem $f:A\to B$. Místo $\langle x,y\rangle\in f$ budeme zapisovat y=f(x). Prvek y nazveme **obraz prvku** x, prvek x nazveme **vzor prvku** y. Množinu $f(A)=\{f(x);x\in A\}$ nazveme **úplný obraz množiny** A.

Nechť A, B, C jsou neprázdné množiny a $f: A \rightarrow B, g: B \rightarrow C$ jsou zobrazení. Pak součin relací $h = f \circ g$ je zobrazení z A do C.

Důkaz. Stačí ověřit podmínky (i) a (ii) z definice zobrazení.

- (i) Nechť $a \in A$. Pak $\exists b \in B$ tak, že $\langle a, b \rangle \in f$ a $\exists c \in C$ tak, že $\langle b, c \rangle \in g$, tedy $\langle a, c \rangle \in f \circ g = h$.
- (ii) Nechť $\langle a,c_1\rangle \in h,\ \langle a,c_2\rangle \in h$ pro $c_1,c_2\in C$. Pak $\exists b_1,b_2\in B$ tak, že $\langle a,b_1\rangle \in f,\ \langle b_1,c_1\rangle \in g,\ \langle a,b_2\rangle \in f,\ \langle b_2,c_2\rangle \in g.$ Ale f je zobrazení, tedy $b_1=b_2$. Avšak i g je zobrazení, tedy $c_1=c_2$, neboli i h splňuje (ii).

Definice

Jsou-li $f: A \to B, g: B \to C$ zobrazení, pak relaci $f \circ g$, která je dle Věty 1.5. také zobrazením, nazveme **složené zobrazení** f,g. Tedy $f \circ g(x) = g(f(x))$.

Důsledek (Věty 1.1 a 1.5)

Skládání zobrazení je asociativní, t.j. $f \circ (g \circ h) = (f \circ g) \circ h$.

Definice

Nechť $f: A \rightarrow B$ je zobrazení. f se nazývá

- (a) surjekce, je-li f(A) = B
- (b) injekce, jestliže $\forall x_1, x_2 \in A$ platí $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- (c) **bijekce**, je-li *f* současně surjekce a injekce.

Bijekce $f: A \rightarrow A$ se také nazývá **permutace množiny** A.

Nechť $f: A \to B$, $g: B \to C$ jsou zobrazení. Jsou-li f, g surjekce (resp. injekce, resp. bijekce), je i $f \circ g$ surjekce (resp. injekce, resp. bijekce).

Důkaz.

- (a) Nechť f,g jsou surjekce, $h = f \circ g$. Pak pro každý prvek $c \in C$ existuje $b \in B$ tak, že g(b) = c, a pro každý prvek $b \in B$ existuje $a \in A$ tak, že f(a) = b, tedy $\forall c \in C$ existuje $a \in A$ tak, že $h(a) = f \circ g(a) = g(f(a)) = g(b) = c$, t.j. h je surjekce.
- (b) Nechť $a_1, a_2 \in A$, $a_1 \neq a_2$. Jelikož f je injekce, je $f(a_1) \neq f(a_2)$. Dále, g je injekce, tedy $f \circ g(a_1) = g(f(a_1)) \neq g(f(a_2)) = f \circ g(a_2)$, odkud $f \circ g$ je injekce.
- (c) Jsou-li f, g bijekce, pak dle (a), (b) je $f \circ g$ surjekce i injekce, t.j. bijekce.

Nechť $f: A \to B$ je zobrazení. Inverzní relace f^{-1} je zobrazením $B \to A$ tehdy a jen tehdy, je-li f bijekce.

Důkaz.

- (a) Nechť f je bijekce. Pak f je surjektivní, t.j. ∀b ∈ B existuje a ∈ A tak, že b = f(a), t.j. ⟨a,b⟩ ∈ f, neboli ⟨b,a⟩ ∈ f⁻¹, t.j. f⁻¹ splňuje podmínku (i) z definice zobrazení. Dokážeme (ii): nechť ⟨b,a₁⟩ ∈ f⁻¹, ⟨b,a₂⟩ ∈ f⁻¹, pak ⟨a₁,b⟩ ∈ f, ⟨a₂,b⟩ ∈ f, t.j. f(a₁) = b = f(a₂). Jelikož f je injekce, plyne odtud a₁ = a₂. Tedy f⁻¹ je zobrazení.
- (b) Nechť relace $f^{-1}: B \to A$ je zobrazení. Pak pro každé $b \in B$ existuje $a \in A$ tak, že $f^{-1}(b) = a$, t.j. $\langle b, a \rangle \in f^{-1}$, neboli $\langle a, b \rangle \in f$, t.j. f(a) = b, takže f je surjekce. Dále, nechť $a_1, a_2 \in A$, $a_1 \neq a_2$. Kdyby $f(a_1) = f(a_2) = b$, pak $\langle a_1, b \rangle \in f$, $\langle a_2, b \rangle \in f$, tedy $\langle b, a_1 \rangle \in f^{-1}$, $\langle b, a_2 \rangle \in f^{-1}$, což je spor s tím, že f^{-1} je zobrazení. Tedy $f(a_1) \neq f(a_2)$, t.j. f je injekce. Dohromady, f je bijekce.

Důsledek

Nechť $f: A \rightarrow B$, $g: B \rightarrow C$ jsou bijekce. Pak

- (a) $f^{-1}: B \to A$ je bijekce
- (b) $g^{-1} \circ f^{-1}$ je bijekce *C* na *A* a platí $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Důkaz. Dle Věty 1.7 je f^{-1} zobrazení, a dále f^{-1} je bijekce, právě když $(f^{-1})^{-1}$ je zobrazení. Dle Věty 1.2 je ale $(f^{-1})^{-1} = f$, což je zobrazení, t.j. f^{-1} je bijekce.

Dále, dle Věty 1.2 je $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$. Dle Věty 1.7 je ale $(f \circ g)^{-1}$ zobrazením C do A. Dle (a) a Věty 1.6 je tedy $g^{-1} \circ f^{-1} = (f \circ g)^{-1}$ bijekce.

Nechť $A \neq \emptyset$ je množina. Zobrazení $id_A : A \rightarrow A$ dané předpisem $id_A(x) = x$ pro každé $x \in A$ se nazývá **identické zobrazení**.

Je ihned zřejmé, že id_A je bijekce, t.j. permutace množiny A.

Nechť $f: A \rightarrow B$ je zobrazení. Pak

- (a) $f = f \circ id_B = id_A \circ f$
- (b) f je bijekce tehdy a jen tehdy, když existuje zobrazení $g: B \to A$ tak, že $f \circ g = id_A$, $g \circ f = id_B$.

Důkaz. Tvrzení (a) je zřejmé. Dokážeme (b):

- (1) Je-li f bijekce, pak položíme $g = f^{-1}$. Zřejmě $f \circ g = f \circ f^{-1} = id_A$, $g \circ f = f^{-1} \circ f = id_B$.
- (2) Nechť pro $f: A \to B$ existuje $g: B \to A$ tak, že $f \circ g = id_A$, $g \circ f = id_B$. Nechť $b \in B$. Pak $f(g(b)) = g \circ f(b) = id_B(b) = b$, tedy f je surjekce, neboť každé $b \in B$ má vzor v zobrazení f, totiž prvek $g(b) \in A$.

Nechť $a_1, a_2 \in A$. Je-li $f(a_1) = f(a_2)$, pak $a_1 = id_A(a_1) = f \circ g(a_1) = g(f(a_1)) = g(f(a_2)) = f \circ g(a_2) = id_A(a_2) = a_2$, tedy f je injekce. Dohromady, f je bijekce.

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- 2 Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť I je některá množina a pro každé $i \in I$ je A_i množina. Pak množinu $\{A_i; i \in I\}$ nazveme **systém množin indexovaný množinou** I, nebo jen **indexovaný systém množin**.

Příklad

Je-li $I = \{1,2,3\}$, pak $\{A_i; i \in I\} = \{A_1,A_2,A_3\}$.

Definice

Nechť $A \neq \emptyset$. Indexovaný systém neprázdných množin $\pi = \{B_i; i \in I\}$ nazveme **rozklad množiny** A, jestliže

- (i) množiny z π jsou vzájemně disjunktní, t.j. $\forall i, j \in I, i \neq j$ je $B_i \cap B_j = \emptyset$
- (ii) π tvoří pokrytí A, t.j. $\bigcup \{B_i; i \in I\} = A$.

Množiny B_i nazýváme **třídy rozkladu** π .

Je-li $\{C_i; i \in I\}$ některý indexovaný systém množin, pak řekneme, že množiny tohoto systému jsou **po dvou různé**, jestliže $i, j \in I$, $i \neq j \Rightarrow C_i \neq C_j$.

Definice

Nechť E je ekvivalence na množině A. Pro každé $a \in A$ nazveme množinu

$$E(a) = \{b \in A; \langle a, b \rangle \in E\}$$

třídou ekvivalence E obsahující prvek a.

Nechť E je ekvivalence na množině A, nechť $a,b \in A$. Pak E(a) = E(b) nebo $E(a) \cap E(b) = \emptyset$.

Důkaz. Nechť $a,b \in A$ a nechť $E(a) \cap E(b) \neq \emptyset$. Tedy existuje $c \in A$ tak, že $c \in E(a)$, $c \in E(b)$. Pak $\langle a,c \rangle \in E$, $\langle b,c \rangle \in E$, ze symetrie $\langle c,b \rangle \in E$, z tranzitivity $\langle a,b \rangle \in E$. Nechť $x \in E(a)$. Pak $\langle x,a \rangle \in E$, ale $\langle a,b \rangle \in E$, tedy z tranzitivity $\langle x,b \rangle \in E$ a ze symetrie $\langle b,x \rangle \in E$, tedy $x \in E(b)$. Dokázali jsme $E(a) \subseteq E(b)$. Podobně lze dokázat, že $E(b) \subseteq E(a)$, odkud E(a) = E(b).

Poznámka. Tedy, je-li E ekvivalence na A, pak pro každé $a \in A$ utvoříme E(a). Pro $b \in A$ pak je buď E(b) = E(a), nebo $E(b) \cap E(a) = \emptyset$, tedy z indexovaného systému $\{E(a); a \in A\}$ lze vybrat podsystém po dvou různých množin, který ale už bude systémem vzájemně disjunktních množin.

Nechť E je ekvivalence na množině $A \neq \emptyset$. Ze systému $\{E(a); a \in A\}$ všech tříd E lze vybrat systém π_E po dvou různých množin tak, že π_E je **rozklad množiny** A, nazvaný **indukovaný ekvivalencí** E. Třídy π_E jsou třídy ekvivalence E.

Důkaz. Jelikož E je reflexivní, platí $\langle a,a\rangle\in E$ pro každé $a\in A$, t.j. $a\in E(a)$. Tedy $\{a\}\subseteq E(a)$. Dále $A=\bigcup\{\{a\};a\in A\}\subseteq\bigcup\{E(a);a\in A\}\subseteq A$, neboť $E(a)\subseteq A$, tedy $A=\bigcup\{E(a);a\in A\}$. Vybereme-li ze systému $\{E(a);a\in A\}$ po dvou různé množiny, dostaneme podsystém π_E . To jsme ale vynechali jen "opakující se" množiny, t.j. opět $A=\bigcup\{E(a);E(a)\in\pi_E\}$, neboli π_E tvoří pokrytí množiny A. Podle předchozí poznámky (a Věty 1.9) je π_E systém vzájemně disjunktních množin, který je rozkladem A a jehož třídy jsou třídy E(a) ekvivalence E.

Nechť $\pi = \{B_i; i \in I\}$ je rozklad množiny $A \neq \emptyset$. Definujme relaci E_{π} takto:

 $\langle a,b\rangle \in E_{\pi}$, právě když $\exists i \in I$ tak, že $a,b \in B_i$.

Pak E_{π} je **ekvivalence** na A nazvaná **indukovaná rozkladem** π . Její třídy jsou třídy rozkladu π .

Důkaz. Jelikož π je rozklad, je pokrytím, t.j. pro každé $a \in A$ existuje $i \in I$ tak, že $a \in B_i$, t.j. $\langle a, a \rangle \in E_\pi$, tedy E_π je reflexivní. Jestliže $\langle a, b \rangle \in E_\pi$, pak $a, b \in B_i$ pro některé $i \in I$, tedy $b, a \in B_i$, t.j. $\langle b, a \rangle \in E_\pi$, neboli E_π je symetrická. Jestliže $\langle a, b \rangle \in E_\pi$, $\langle b, c \rangle \in E_\pi$, pak existují $i, j \in I$ tak, že $a, b \in B_i$, $b, c \in B_j$. Tedy $b \in B_i \cap B_j$. Ale třídy π jsou vzájemně disjunktní, tedy $B_i \cap B_j \neq \emptyset \Rightarrow B_i = B_j$, tedy $a, c \in B_i \Rightarrow \langle a, c \rangle \in E_\pi$. Tedy E_π je také tranzitivní, t.j. E_π je ekvivalence. Dále, $x \in E_\pi(a)$ právě když $\langle a, x \rangle \in E_\pi$, což je právě když $a, x \in B_i$ pro některé $i \in I$. Tedy třídy E_π jsou právě třídy rozkladu π .

Nechť $A \neq \emptyset$, nechť E je ekvivalence na A a π nechť je rozklad na A. Pak, je-li π_E rozklad indukovaný ekvivalencí E a E_{π_E} je ekvivalence indukovaná rozkladem π_E , platí $E_{\pi_E} = E$. Dále, je-li E_{π} ekvivalence indukovaná rozkladem π a $\pi_{E_{\pi}}$ rozklad indukovaný ekvivalencí E_{π} , platí $\pi_{E_{\pi}} = \pi$.

Důkaz.

- (a) $\langle x,y \rangle \in E \Leftrightarrow \text{existuje třída } B_i \text{ rozkladu } \pi_E \text{ tak, že } x,y \in B_i \Leftrightarrow \langle x,y \rangle \in E_{\pi_E}, \text{ tedy } E = E_{\pi_E}.$
- (b) $B \in \pi \Leftrightarrow B$ je třídou ekvivalence $E_{\pi} \Leftrightarrow B \in \pi_{E_{\pi}}$.

Podle Vět 1.10, 1.11, 1.12 lze každému rozkladu **jednoznačně** přiřadit ekvivalenci a každé ekvivalenci lze **jednoznačně** přiřadit rozklad. Tedy ekvivalence a rozklady na množině *A* vzájemně korespondují. Budeme-li hovořit o ekvivalenci na *A*, je to totéž, jako kdybychom hovořili o indukovaném rozkladu, hovoříme-li o rozkladu, je to totéž, jako kdybychom hovořili o indukované ekvivalenci.

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť $f: A \rightarrow B$ je zobrazení. Relace E_f na A definovaná předpisem:

$$\langle x, y \rangle \in E_f$$
, právě když $f(x) = f(y)$

je ekvivalence, tzv. ekvivalence indukovaná zobrazením f.

Důkaz. $\forall a \in A$ je f(a) = f(a), t.j. $\langle a, a \rangle \in E_f$, tedy E_f je reflexivní. Jestliže $\langle a, b \rangle \in E_f$, pak f(a) = f(b), tedy f(b) = f(a), neboli $\langle b, a \rangle \in E_f$, odkud E_f je symetrická. Jesliže $\langle a, b \rangle \in E_f$ a $\langle b, c \rangle \in E_f$, pak f(a) = f(b), f(b) = f(c), tedy f(a) = f(c), t.j. $\langle a, c \rangle \in E_f$, tedy E_f je tranzitivní a dohromady ekvivalence.

Nechť E je ekvivalence na $A \neq \emptyset$, nechť $\pi_E = \{B_i; i \in I\}$ indukovaný rozklad (t.j. každá B_i je třídou E). Množinu π_E všech tříd E nazveme **faktorová množina** A **dle** E a označíme A/E.

Definice

Nechť E je ekvivalence na $A \neq \emptyset$. Definujme zobrazení $f_E : A \rightarrow A/E$ takto: $a \rightarrow B_i$, je-li B_i třída rozkladu π_E obsahující a. Zobrazení f_E se nazývá **kanonické zobrazení** A do A/E.

Poznamenejme, že jelikož π_E je rozklad, je zřejmě f_E skutečně zobrazení, neboť a padne právě do jediné třídy rozkladu π_E . Je zřejmé, že f_E je surjekce.

Nechť E je ekvivalence na A, f_E je kanonické zobrazení A do A/E, nechť E_{f_E} je ekvivalence, indukovaná zobrazením f_E . Pak $E_{F_E}=E$.

Důkaz. $\langle a,b\rangle \in E_{f_E} \Leftrightarrow f_E(a) = f_E(b)$, což je ekvivalentní s tím, že a,b padnou do téže třídy rozkladu π_E , t.j. do téže třídy ekvivalence E. t.j. $\langle a,b\rangle \in E$.

Věta 1.15

Nechť $f:A\to B$ je zobrazení. Pak $f=g\circ h$, kde $g:A\to A/E_f$ je kanonické zobrazení (a tedy surjekce), a $h:A/E_f\to B$ je injekce.

Důkaz. Nechť $E_f(a)$ je třída ekvivalence E_f obsahující prvek a. Jestliže $x,y\in E_f(a)$, pak f(x)=f(y) a také naopak $f(x)=f(y)\Rightarrow x,y$ patří do téže třídy E_f . Tedy zobrazení $h:E_f(a)\to f(a)$ je injekce. Nechť $g:A\to A/E_f$ je kanonické zobrazení. Pak $g\circ h(a)=h(g(a))=h(E_f(a))=f(a)$, tudíž $f=g\circ h$.

Důsledek

Každé zobrazení $f: A \rightarrow B$ lze vyjádřit jako složené zobrazení $f = g \circ h$, kde g je surjekce a h je injekce.

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- 3 Matice

Věta 1.16

Nechť B, C jsou neprázdné množiny, $A = B \times C$. Nechť E_1, E_2 jsou relace na A definované takto:

$$\langle (x_1,x_2),(y_1,y_2) \rangle \in E_1$$
, právě když $x_1=y_1$,
$$\langle (x_1,x_2),(y_1,y_2) \rangle \in E_2$$
, právě když $x_2=y_2$.

Pak E_1, E_2 jsou ekvivalence na A a platí

$$E_1\cap E_2=\omega_A,\quad E_1\circ E_2=\iota_A=E_2\circ E_1.$$

Důkaz. Je ihned patrné, že E_1 , E_2 jsou ekvivalence. Předpokládejme $\langle (x_1,x_2),(y_1,y_2)\rangle \in E_1 \cap E_2$. Pak $x_1=y_1$, neboť $\langle (x_1,x_2),(y_1,y_2)\rangle \in E_1$, $x_2=y_2$, neboť $\langle (x_1,x_2),(y_1,y_2)\rangle \in E_2$, tedy $(x_1,x_2)=(y_1,y_2)$, odtud $E_1 \cap E_2 = \omega_A$. Nechť $(x_1,x_2),(y_1,y_2)$ jsou libovolné prvky z A. Pak $\langle (x_1,x_2),(x_1,y_2)\rangle \in E_1$, $\langle (x_1,y_2),(y_1,y_2)\rangle \in E_2$ tedy $\langle (x_1,x_2),(y_1,y_2)\rangle \in E_1 \circ E_2$, t.j. $E_1 \circ E_2 = \iota_A$. Analogicky se ukáže $E_2 \circ E_1 = \iota_A$.

Věta 1.17

Nechť A je množina a E_1 , E_2 jsou ekvivalence na A takové, že $E_1 \cap E_2 = \omega_A$ a $E_1 \circ E_2 = \iota_A = E_2 \circ E_1$. Pak existují množiny B, C a bijekce $f: A \to B \times C$, přičemž $B = A/E_1$, $C = A/E_2$.

Důkaz. Označme E(a) třídu ekvivalence E obsahující prvek $a \in A$. Nechť E_1, E_2 jsou ekvivalence na A takové, že $E_1 \cap E_2 = \omega_A$ a $E_1 \circ E_2 = \iota_A$. Nechť f je zobrazení A do $A/E_1 \times A/E_2$, které přiřazuje $x \mapsto \langle E_1(x), E_2(x) \rangle$. Pak

- (a) Necht' $x, y \in A$, f(x) = f(y). Pak Tedy $E_1(x) = E_1(y)$, $E_2(x) = E_2(y)$, t.j. $\langle x, y \rangle \in E_1$, $\langle x, y \rangle \in E_2$, tedy $\langle x, y \rangle \in E_1 \cap E_2 = \omega_A$, neboli x = y. Tedy f je injekce.
- (b) Nechť ⟨a,b⟩ ∈ A/E₁ × A/E₂. Tedy a je některá třída ekvivalence E₁, b je některá třída ekvivalence E₂. Zvolme libovolně x ∈ a, y ∈ b. Jelikož E₁ ∘ E₂ = ι₄, je ⟨x,y⟩ ∈ E₁ ∘ E₂. Tedy existuje t ∈ A tak, že ⟨x,t⟩ ∈ E₁, ⟨t,y⟩ ∈ E₂, t.j. E₁(t) = a, E₂(t) = b, a tedy f(t) = ⟨E₁(t), E₂(t)⟩ = ⟨a,b⟩, t.j. f je surjekce.
- Z (a) a (b) dostáváme, že f je bijekce.

Poznámka. Na každé $A \neq \emptyset$ existují ekvivalence E_1, E_2 takové, že $E_1 \cap E_2 = \omega_A$, $E_1 \circ E_2 = \iota_A = E_2 \circ E_1$. Stačí zvolit $E_1 = \omega_A$, $E_2 = \iota_A$. Pak ale A/E_1 je bijektivní s A, A/E_2 je jednoprvková. Tento rozklad je tzv. **triviální**. Rozklad A na $B \times C$ je tzv. **netriviální**, je-li E_1, E_2 různé od ω_A, ι_A .

Příklad

```
A = \{a, b, c, x, y, z\}, E_1 \text{ má rozklad } \{\{a, x\}, \{b, y\}, \{c, z\}\}, E_2\}
má rozklad \{\{a,b,c\},\{x,y,z\}\}. Ověřte E_1 \cap E_2 = \omega_A,
E_1 \circ E_2 = \iota_{\Delta} = E_2 \circ E_1. Pak
        a \mapsto \langle \{a, x\}, \{a, b, c\} \rangle
        b \mapsto \langle \{b, y\}, \{a, b, c\} \rangle
        c \mapsto \langle \{c, z\}, \{a, b, c\} \rangle
       x \mapsto \langle \{a, x\}, \{x, y, z\} \rangle
       y \mapsto \langle \{b, y\}, \{x, y, z\} \rangle
       z \mapsto \langle \{c, z\}, \{x, y, z\} \rangle
definuje bijekci f z A na A/E_1 \times A/E_2, t.j.
\{\{a,x\},\{b,y\},\{c,z\}\}\times\{\{a,b,c\},\{x,y,z\}\}.
```

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť M je množina. Označme ExpM množinu všech podmnožin množiny M. Je-li tedy M konečná a má-li n prvků, pak ExpM má 2^n prvků. Je-li M prázdná, pak ExpM obsahuje jedinou množinu, a to \emptyset , tedy Exp $\emptyset = \{\emptyset\}$. Je-li M nekonečná, je zřejmě i ExpM nekonečná.

Definice

Nechť A je množina a \mathscr{M} neprázdný systém (některých) jejích podmnožin, t.j. $\mathscr{M} \subseteq ExpA$. \mathscr{M} se nazývá **uzávěrový systém na** A, jestliže pro libovolný podsystém $\mathscr{N} \subseteq \mathscr{M}$ platí $\bigcap \mathscr{N} \in \mathscr{M}$.

Příklad

- (1) Celá množina ExpA je uzávěrový systém, neboť průnik libovolného podsystému N ⊆ ExpA je opět podmnožina z A, t.j. ∩N ∈ ExpA.
- (2) $\mathscr{M} = \{\emptyset, A\}$ je uzávěrový systém na A neboť $\mathscr{N} \subseteq \mathscr{M}$ je buď \mathscr{N} prázdný systém, nebo $\mathscr{N} = \{\emptyset\}$, nebo $\mathscr{N} = \{A\}$ nebo $\mathscr{N} = \{\emptyset, A\}$. Průnik prázdného systému je $A \in \mathscr{M}$, pro ostatní je $\bigcap \mathscr{N} = \emptyset$ nebo $\bigcap \mathscr{N} = A$, tedy vždy $\mathscr{N} \in \mathscr{M}$.
- (3) Nechť $A = B \times B$, \mathcal{M} je systém všech ekvivalencí na B (t.j. ekvivalence na B je podmnožina $B \times B = A$, tedy je to systém některých podmnožin A). Ukažte, že průnik libovolné množiny ekvivalencí je opět ekvivalence.
- (4) Nechť M ⊆ ExpA. Průnik prázdného podsystému systému M je A.

Nechť \mathcal{M} je uzávěrový systém na A a $X \subseteq A$. Označme $[X] = \bigcap \{B \in \mathcal{M}; X \subseteq B\}$. Množinu [X] nazveme **člen uzávěrového systému generovaný** X, nebo jen stručně **uzávěr** X.

Věta 1.18

Nechť \mathcal{M} je uzávěrový systém na A a nechť $X, Y \subseteq A$. Pak platí:

- (a) $X \subseteq [X]$
- (b) [X] je nejmenší (vzhledem k \subseteq) prvek z \mathscr{M} obsahující X
- (c) [[X]] = [X]
- (d) $X \subseteq Y \Rightarrow [X] \subseteq [Y]$.

Důkaz.

- (a) Dle definice je [X] průnik všech množin z M, které obsahují X, tedy i tento průnik obsahuje X.
- (b) Kdyby [X] nebyl nejmenší (vzhledem k \subseteq) prvek y \mathscr{M} , který obsahuje X (dle (a) obsahuje X), pak by v \mathscr{M} existoval menší, t.j. $Z \in \mathscr{M}$, $X \subseteq Z$, $Z \subseteq [X]$, $Z \neq [X]$. Pak ale $Z \in \{B \in \mathscr{M}; X \subseteq B\} = \mathscr{N}$ a tedy $[X] = \bigcap \mathscr{N} \subseteq Z$, t.j. [X] = Z, spor.
- (c) Jelikož $[X] \in \mathcal{M}$, pak $[X] \in \{B \in \mathcal{M}; X \subseteq B\}$, (dle definice uzávěru) tedy $[[X]] \subseteq [X]$. Dle (a) ovšem $[X] \subseteq [[X]]$, tedy platí (c).
- (d) Je-li $X \subseteq Y$, pak $\{B \in \mathcal{M}; X \subseteq B\} \supseteq \{B \in \mathcal{M}; Y \subseteq B\}$, a tedy $[X] = \bigcap \{B \in \mathcal{M}; X \subseteq B\} \subseteq \bigcap \{B \in \mathcal{M}; Y \subseteq B\} = [Y]$.

Věta 1.19

Nechť *f* : *ExpA* → *ExpA* je zobrazení splňující:

- (i) $X \subseteq f(X)$
- (ii) $X \subseteq Y \Rightarrow f(X) \subseteq f(Y)$
- (iii) f(f(X)) = f(X).

Pak $\mathcal{M} = \{f(X); X \subseteq A\}$ je uzávěrový systém na A a [X] = f(X).

Důkaz. Chceme dokázat, že pro každý podsystém $\mathcal{N} \subseteq \mathcal{M}$ je $\bigcap \mathcal{N} \in \mathcal{M}$. Nechť $\mathcal{N} = \{B_i; i \in I\}$, t.j. $B_i = f(X_i)$ pro některou $X_i \subseteq A$. Označme $B = \bigcap \mathcal{N}$. Pak $B \subseteq f(X_i)$ pro každé $i \in I$, tedy dle (ii) platí $f(B) \subseteq f(f(X_i)) = f(X_i)$ dle (iii), a tedy $f(B) \subseteq \bigcap \{f(X_i); i \in I\} = \bigcap \mathcal{N} = B$. Dle (i) je ale $B \subseteq f(B)$, tedy B = f(B), t.j. $B \in \mathcal{M}$.

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- 2 Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- 3 Matice

Nechť $A \neq \emptyset$. Binární operací na množině A nazveme každé zobrazení $f: A \times A \rightarrow A$.

Příklad

Nechť $\mathbb Z$ je množina všech celých čísel, + přiřadí každé dvojici čísel $a,b\in\mathbb Z$ číslo $a+b\in\mathbb Z$. Je tedy + binární operace. Místo +(a,b) budeme, jak je zvykem, psát a+b. Bude-li \circ některá binární operace na A, budeme místo $\circ(a,b)$ zapisovat $a\circ b$.

Nechť $A \neq \emptyset$ a \circ je binární operace na A. Dvojici $\mathscr{A} = (A, \circ)$ budeme nazývat **grupoid**. Je-li operace \circ **asociativní**, t.j. jestliže $\forall a, b, c \in A$ platí $a \circ (b \circ c) = (a \circ b) \circ c$, nazývá se grupoid (A, \circ) **pologrupa**. Operace \circ se nazývá **komutativní**, jestliže $a \circ b = b \circ a$ pro každé $a, b \in A$.

Budeme-li operaci v grupoidu zapisovat symbolem +, nazýváme grupoid (A,+) aditivní, budeme-li operaci zapisovat \circ (nebo vynechávat), nazývá se grupoid (A,\circ) multiplikativní.

Jestliže v grupoidu (A, \circ) existuje prvek e takový, že $a \circ e = e \circ a = a$ pro každé $a \in A$, nazývá se e **jednotkou** (A, \circ) . Jestliže v A existuje prvek n takový, že $a \circ n = n \circ a = n$, nazývá se n **nula** grupoidu (A, \circ) .

Věta 1.20

Každý grupoid má nejvýše jednu jednotku a nejvýše jednu nulu.

Důkaz. Nechť e, f jsou jednotky v grupoidu $\mathscr{A} = (A, \circ)$. Pak $e = e \circ f = f$. Analogicky, jsou-li n, m nuly v \mathscr{A} , pak $n = n \circ m = m$.

Definice

Nechť $\mathscr{A}=(A,\circ)$ je grupoid, nechť $\emptyset\neq B\subseteq A$. Jestliže $\forall a,b\in B$ platí $a\circ b\in B$, nazývá se (B,\circ) **podgrupoid** grupoidu \mathscr{A} .

Věta 1.21

Množina všech podgrupoidů daného grupoidu spolu s 0 tvoří uzávěrový systém.

Důkaz. Nechť $Sub\mathscr{A}$ je množina všech podgrupoidů grupoidu \mathscr{A} spolu s \emptyset . Nechť $\mathscr{N}=\{B_i;i\in I\}$ je některý systém podgrupoidů \mathscr{A} . Pak buď $\bigcap\mathscr{N}=\emptyset$, a tedy $\bigcap\mathscr{N}\in Sub\mathscr{A}$, nebo $\bigcap\mathscr{N}\neq\emptyset$; pak nechť $a,b\in\bigcap\mathscr{N}$, tedy $a,b\in B_i$ pro každé $i\in I$, ale B_i je podgrupoid, t.j. $a\circ b\in B_i$ pro každé $i\in I$, a tedy $a\circ b\in\bigcap\mathscr{N}$. Tedy $\bigcap\mathscr{N}$ je podgrupoid, t.j. $\bigcap\mathscr{N}\in Sub\mathscr{A}$.

Důsledek

Nechť $\mathscr{A}=(A,\circ)$ je grupoid a nechť $X\subseteq A$. Pak existuje nejmenší podgrupoid grupoidu \mathscr{A} obsahující X, t.j. [X]. Tento grupoid [X] nazveme **podgrupoid generovaný množinou** X.

Důkaz plyne přímo z Věty 1.21 a Věty 1.18.

Nechť (A, \circ) je pologrupa. Jestliže pro každé dva prvky $a, b \in A$ existují $x, y \in A$ tak, že platí $a \circ x = b$, $y \circ a = b$, pak se (A, \circ) nazývá **grupa**.

Definice

Je-li (A, \circ) grupoid s jednotkou e, nazveme prvek $b \in A$ **prvkem** inverzním k $a \in A$, jestliže $a \circ b = b \circ a = e$.

Zřejmě, je-li a inverzní k b, je také b inverzní k a. Inverzní prvek (pokud existuje!) k prvku $a \in A$ budeme označovat a^{-1} , tedy $(a^{-1})^{-1} = a$.

Věta 1.22

Nechť $\mathscr{G}=(G,\circ)$ je grupa. Pak v \mathscr{G} existuje jednotka a pro každý prvek $a\in G$ existuje prvek inverzní.

Důkaz.

(i) Nechť a ∈ G. Dle definice existují prvky e, f ∈ G tak, že a ∘ e = a, f ∘ a = a. Nechť dále x ∈ G je libovolný prvek. Dle definice existuje y ∈ G tak, že x = y ∘ a, tedy

$$x \circ e = (y \circ a) \circ e = y \circ (a \circ e) = y \circ a = x.$$

Analogicky lze dokázat $f \circ x = x$.

Zvolme nyní za x = f. Pak tedy $f \circ e = f$. Zvolme x = e, pak $f \circ e = e$, tedy $e = f \circ e = f$. Dohromady, v G existuje prvek e takový, že $e \circ x = x = x \circ e$ pro každé $x \in G$, t.j. e je jednotkou \mathscr{G} .

(ii) Z definice plyne, že pro každé $a \in G$ existují $x, y \in G$ tak, že $a \circ x = e, y \circ a = e$. Potom

$$x = e \circ x = (y \circ a) \circ x = y \circ (a \circ x) = y \circ e = y,$$

tedy x = y, t.j. $x = a^{-1}$, prvek inverzní k a.

Věta 1.23

Nechť $\mathscr{G}=(G,\circ)$ je pologrupa s jednotkou e, kde $\forall a\in G$ existuje prvek inverzní k a. Pak \mathscr{G} je grupa.

Důkaz. Nechť $a, b \in G$. Položme $x = a^{-1} \circ b$, $y = b \circ a^{-1}$. Pak

$$a \circ x = a \circ (a^{-1} \circ b) = (a \circ a^{-1}) \circ b = e \circ b = b,$$

$$y \circ a = (b \circ a^{-1}) \circ a = b \circ (a \circ a^{-1}) = b \circ e = b.$$

Dle definice, \mathscr{G} je grupa.

Definice

Grupa $\mathscr{G} = (G, \circ)$ se nazývá **abelovská**, je-li komutativní, t.j. pro každé $a, b \in G$ platí $a \circ b = b \circ a$.

Poznámka. Budeme-li grupu (G, \circ) zapisovat v aditivním tvaru, t.j. (G, +), pak její jednotku budeme značit 0 a inverzní prvek k prvku $a \in G$ symbolem -a; také jej budeme nazývat **prvek opačný** k prvku a. Často místo a + (-b) zapisujeme a - b.

Příklad

- Nechť Z je množina všech čísel celých. Pak (Z,+) je abelovská grupa s jednotkou 0.
- Nechť \mathbb{R}_+ je množina všech kladných reálných čísel. Pak Nechť (\mathbb{R}_+,\cdot) je abelovská grupa s jednotkou 1.
- Nechť A je libovolná množina, nechť 𝒫(A) je množina všech permutací na A. Nechť ∘ označuje skládání zobrazení. Pak (𝒫(A),∘) je grupa s jednotkou id_A; pokud |A| > 2, pak není abelovská.

Nechť $\mathscr{G}=(G,\circ)$ je grupa. Podgrupoid (A,\circ) grupoidu (G,\circ) se nazývá **podgrupa grupy** \mathscr{G} , je-li (A,\circ) grupou.

Příklad

Grupa $(\mathbb{Z},+)$ je podgrupou grupy $(\mathbb{R},+)$ všech reálných čísel. Poznamenejme, že podgrupoid grupy ještě nemusí být podgrupa. Např. je-li \mathbb{N} množina všech přirozených čísel, je $(\mathbb{N},+)$ podgrupoid $(\mathbb{Z},+)$, ale $(\mathbb{N},+)$ není grupa.

Okruhem nazveme trojici $\mathscr{R}=(R,+,\cdot)$ takovou, že $R\neq\emptyset$ je množina, + a \cdot jsou binární operace na R a

- (i) (R,+) je abelovská grupa (0 její jednotka)
- (ii) (R, \cdot) je pologrupa
- (iii) platí **distributivní zákony**, t.j. pro každé $a,b,c \in R$ platí

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

Okruh \mathscr{R} se nazývá **komutativní**, jestliže $a \cdot b = b \cdot a$ pro každé $a,b \in R$. Okruh \mathscr{R} se nazývá **unitární**, má-li pologrupa $(R \setminus \{0\},\cdot)$ jednotku. Je-li \mathscr{R} unitární, budeme jeho jednotku označovat 1. Prvek 0 (jednotka (R,+)) se nazývá **nulou okruhu** \mathscr{R} .

Příklad

Komutativní unitární okruhy jsou například: okruh celých čísel $(\mathbb{Z},+,\cdot)$, okruh reálných čísel $(\mathbb{R},+,\cdot)$, okruh komplexních čísel $(\mathbb{C},+,\cdot)$ a okruh racionálních čísel $(\mathbb{Q},+,\cdot)$.

Poznámka. Název nula okruhu pro prvek 0 je oprávněný, neboť je nulou pologrupy (R, \cdot) , což snadno ověříme. Totiž, dle distributivních zákonů platí $\forall a \in R$:

$$a \cdot a = a \cdot (a+0) = a \cdot a + a \cdot 0,$$

 $a \cdot a = (a+0) \cdot a = a \cdot a + 0 \cdot a,$
avšak $(R,+)$ je grupa, tedy $a \cdot 0 = 0 = 0 \cdot a.$

Prvek a okruhu $\mathcal{R}=(R,+,\cdot)$ se nazývá **dělitel nuly**, jestliže $a\neq 0$ a existuje $b\neq 0$, $b\in R$ tak, že $a\cdot b=0$.

Příklad

Nechť A je množina všech funkcí jedné reálné proměnné na intervalu [0,1], nechť + a \cdot je sčítání respektive násobení funkcí. Pak $\mathscr{A}=(A;+,\cdot)$ je komutativní unitární okruh (jednotkou je konstantní funkce f(x)=1). Tento okruh má dělitele 0: nechť g(x) je funkce: g(x)=0 pro $x\in[0,\frac{1}{2}]$, $g(x)\neq 0$ pro $x\in(\frac{1}{2},1]$. Nechť h(x) je funkce: $h(x)\neq 0$ pro $x\in[0,\frac{1}{2}]$, h(x)=0 pro $x\in(\frac{1}{2},1]$. Pak g(x) i h(x) jsou nenulové, ale $g(x)\cdot h(x)$ je nulová funkce na [0,1].

Okruh $\mathcal{R} = (R, +, \cdot)$ se nazývá **obor integrity**, je-li komutativní, unitární a neobsahuje-li dělitele nuly.

Příklad

Každý z okruhů ($\mathbb{Z},+,\cdot$), ($\mathbb{R},+,\cdot$), ($\mathbb{Q},+,\cdot$), ($\mathbb{C},+,\cdot$) je obor integrity.

Definice

Okruh $\mathscr{R}=(R,+,\cdot)$ se nazývá **těleso**, je-li množina jeho nenulových prvků grupou vzhledem k operaci \cdot . Těleso \mathscr{R} se nazývá **komutativní**, je-li $(R\setminus\{0\},\cdot)$ abelovská grupa.

Příklad

Okruhy $(\mathbb{R},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{C},+,\cdot)$ jsou komutativní tělesa. Okruh $(\mathbb{Z},+,\cdot)$ není těleso.

Věta 1.24

Každé komutativní těleso je obor integrity.

Důkaz. Zřejmě stačí dokázat, že komutativní těleso $\mathscr{R}=(R,+,\cdot)$ má jednotku a neobsahuje dělitele 0. Avšak, je-li R těleso, je $(R\setminus\{0\},\cdot)$ grupa, ta má jednotku 1, což je zřejmě jednotkou okruhu \mathscr{R} . Dále, nechť $a,b\in R, a\neq 0\neq b$. Pak $a,b\in R\setminus\{0\}$, to je ale grupa, tedy $a\cdot b\in R\setminus\{0\}$, a tedy $a\cdot b\neq 0$.

Je-li $\mathscr{R}=(R,+,\cdot)$ okruh, $A\subseteq R$ taková, že $(A,+,\cdot)$ je opět okruh, pak se $(A,+,\cdot)$ nazývá **podokruh okruhu** \mathscr{R} . Je-li \mathscr{R} těleso, $A\subseteq R$ taková, že $(A,+,\cdot)$ je opět těleso, pak $(A,+,\cdot)$ nazveme **podtěleso tělesa** R. Každé podtěleso tělesa $\mathscr{C}=(C,+,\cdot)$ komplexních čísel nazveme **číselné těleso**. Každý podokruh okruhu \mathscr{C} nazveme **číselný okruh**.

Příklad

 $\mathscr{C}=(\mathbb{C},+,\cdot)$, $\mathscr{R}=(\mathbb{R},+,\cdot)$, $\mathscr{Q}=(\mathbb{Q},+,\cdot)$ jsou číselná tělesa, $\mathscr{Z}=(\mathbb{Z},+,\cdot)$ je číselný okruh, který není tělesem.

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Mějme dán okruh $\mathscr{R}=(R,+,\cdot)$.

Jak jsme již ukázali, $\forall a \in R$ platí $a \cdot 0 = 0 = 0 \cdot a$.

Ověříme, že $\forall a,b \in R$ platí $a \cdot (-b) = (-a) \cdot b = -a \cdot b$.

Totiž, $a \cdot (-b) + a \cdot b = a \cdot (-b+b) = a \cdot 0 = 0$, odkud $a \cdot (-b) = -a \cdot b$, analogicky se dá ukázat, že $(-a) \cdot b = -a \cdot b$.

V unitárním okruhu navíc $\forall a \in R$ platí $a \cdot (-1) = (-1) \cdot a = -a$.

Nechť $\mathscr{R}=(R,+\cdot)$ je komutativní okruh. Jelikož (R,+) je grupa (je tedy asociativní), nemusíme součty ve tvaru $a_1+a_2+a_3+\cdots+a_n$ závorkovat. Jsou-li $a_1,\ldots,a_n\in R$ budeme používat tzv. **sumační symbol**

$$a_1 + a_2 + a_3 + \cdots + a_n = \sum_{i=1}^n a_i$$
.

Číslo i nazveme součtový index.

Snadno lze (použitím asociativního a komutativního zákona a distributivních zákonů) ověřit platnost následujících pravidel:

(i)
$$\sum_{i=1}^{m} a_i + \sum_{i=m+1}^{n} a_i = \sum_{i=1}^{n} a_i$$

(ii)
$$\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i = \sum_{i=1}^{n} (a_i + b_i)$$

(iii)
$$c \cdot \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} c \cdot a_i$$

(iv)
$$(\sum_{i=1}^{m} a_i) \cdot (\sum_{i=1}^{n} b_i) = \sum_{i=1}^{m} (a_i \cdot \sum_{j=1}^{n} b_j) = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_i \cdot b_j)$$

(v)
$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}$$
.

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť $A \neq \emptyset \neq B$ jsou množiny. Zobrazení $\circ : A \times B \to B$ nazveme **levá vnější operace nad množinami** A, B (v tomto pořadí). Jsou-li $a \in A$, $b \in B$, pak prvek $\circ (a, b)$ budeme zapisovat $a \circ b$.

Definice

Nechť (V,+) je abelovská grupa, nechť T je (číselné) těleso, nechť $\circ: T \times V \to V$ je levá vnější operace nad T, V. Pak čtveřici $\mathscr{V} = (V,+,T,\circ)$ nazveme **vektorový prostor nad** T, platí-li $\forall \mathbf{u}, \mathbf{v} \in V, \, \forall c, d \in T$

(i)
$$c \circ (\mathbf{u} + \mathbf{v}) = c \circ \mathbf{u} + c \circ \mathbf{v}$$

(ii)
$$(c+d) \circ \mathbf{u} = c \circ \mathbf{u} + d \circ \mathbf{u}$$

(iii)
$$(c \cdot d) \circ \mathbf{u} = c \circ (d \circ \mathbf{u})$$

(iv)
$$1 \circ u = u$$
.

Prvky z V budeme nazývat **vektory**, čísla z tělesa T **skaláry**. Množinu V nazveme **pole** vektorového prostoru \mathscr{V} .

Poznámka. Protože není nebezpečí nedorozumění, budeme operaci v grupě (V,+) i sčítání v tělese T označovat stejným symbolem "+". Také levou vnější operaci ve $\mathscr V$ budeme označovat shodně jako násobení v T a budeme ji nazývat **násobení vektoru skalárem**.

Příklady

- Každé těleso T je vektorovým prostorem samo nad sebou.
 Sčítání vektorů definujeme jako sčítání prvků tělesa T a násobení vektorů skaláry jako násobení prvků tělesa T s prvky tělesa T.
- Nechť V je množina všech funkcí jedné reálné proměnné na intervalu [a,b], + je operace sčítání funkcí, kde (f+g)(x)=f(x)+g(x). Nechť dále \cdot je levá vnější operace násobení funkce reálným číslem. Pak $(V,+,\mathbb{R},\cdot)$ je vektorový prostor nad \mathbb{R} .
- Množina P(T) všech polynomů s koeficienty z tělesa T je spolu s obvyklými operacemi sčítání polynomů a násobení prvkem z T vektorový prostor nad T.

Nechť $\mathscr V$ je vektorový prostor nad tělesem T, nechť $\mathbf v, \mathbf u_1, \ldots, \mathbf u_k \in V$. Řekneme, že vektor $\mathbf v$ je **lineární kombinací vektorů** $\mathbf u_1, \ldots, \mathbf u_k$, jestliže existují čísla $c_1, \ldots, c_k \in T$ tak, že

$$\mathbf{v} = c_1 \cdot \mathbf{u}_1 + \cdots + c_k \cdot \mathbf{u}_k.$$

Poznámka. Symbolem o budeme označovat tzv. **nulový vektor**, což je jednotka grupy (V,+). Použitím podmínky (ii) dostaneme $\forall \mathbf{u} \in V$:

$$0 \cdot \mathbf{u} = (c + (-c)) \cdot \mathbf{u} = c \cdot \mathbf{u} + (-c \cdot \mathbf{u}) = \mathbf{o}.$$

Tedy nulový vektor je lineární kombinací libovolných vektorů z V: je-li $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$, pak

$$0 \cdot \mathbf{u}_1 + \cdots + 0 \cdot \mathbf{u}_k = \mathbf{o}.$$

Vektory $\mathbf{u}_1, \dots, \mathbf{u}_k$ z vektorového prostoru \mathscr{V} se nazývají **lineárně závislé**, jestliže existují čísla $c_1, \dots, c_k \in T$, která nejsou všechna rovna nule tak, že nulový vektor \mathbf{o} je roven netriviální lineární kombinaci vektorů $\mathbf{u}_1, \dots, \mathbf{u}_k$, t.j.

$$\mathbf{o} = c_1 \cdot \mathbf{u}_1 + \cdots + c_k \cdot \mathbf{u}_k,$$

kde aspoň jedno $c_i \neq 0$. Jestliže vektory $\mathbf{u}_1, \dots, \mathbf{u}_k$ nejsou lineárně závislé, nazývají se **lineárně nezávislé**.

Poznámka. Zřejmě vektory $\mathbf{u}_1,\dots,\mathbf{u}_k\in\mathscr{V}$ jsou lineárně nezávislé, právě když

$$\mathbf{0} = c_1 \cdot \mathbf{u}_1 + \cdots + c_k \cdot \mathbf{u}_k \quad \Rightarrow \quad c_1 = c_2 = \cdots = c_k = 0.$$

Poznámka. Jeden vektor $\mathbf{u} \in \mathscr{V}$ je lineárně nezávislý, právě když $\mathbf{u} \neq \mathbf{o}$. Nulový vektor \mathbf{o} je totiž lineárně závislý, neboť $\mathbf{o} = c \cdot \mathbf{o}$ pro každé $c \in T$, $c \neq 0$; dle (i), (ii), (iii): $c \cdot \mathbf{o} = c \cdot (0 \cdot \mathbf{u}) = (c \cdot 0) \cdot \mathbf{u} = 0 \cdot \mathbf{u} = (c + (-c)) \cdot \mathbf{u} = (c \cdot \mathbf{u}) + (-c \cdot \mathbf{u}) = \mathbf{o}$.

Věta 2.1

Jsou-li mezi vektory $\mathbf{u}_1, \dots, \mathbf{u}_m \in \mathcal{V}$ některé lineárně závislé, pak jsou $\mathbf{u}_1, \dots, \mathbf{u}_m$ lineárně závislé.

Důkaz. Předpokládejme, že $\mathbf{u}_1, \dots, \mathbf{u}_k$ jsou lineárně závislé pro k < m (jsou-li to jiné vektory, zaměníme pořadí). Pak existují $c_1, \dots, c_k \in T$ tak, že

$$\mathbf{o} = c_1 \cdot \mathbf{u}_1 + \cdots + c_k \cdot \mathbf{u}_k,$$

kde $c_i \neq 0$ aspoň pro jedno $i \in \{1, ..., k\}$. Pak ale platí

$$\mathbf{o} = c_1 \cdot \mathbf{u}_1 + \cdots + c_k \cdot \mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \cdots + 0 \cdot \mathbf{u}_m,$$

kde aspoň jedno $c_i \neq 0$, tedy $\mathbf{u}_1, \dots, \mathbf{u}_m$ jsou lineárně závislé.

Důsledek 1

Je-li mezi vektory $\mathbf{u}_1, \dots, \mathbf{u}_m$ vektor nulový \mathbf{o} , pak jsou $\mathbf{u}_1, \dots, \mathbf{u}_m$ lineárně závislé.

Důsledek 2

Jsou-li vektory $\mathbf{u}_1,\ldots,\mathbf{u}_m$ lineárně nezávislé a je-li $\{\mathbf{u}_{j_1},\ldots,\mathbf{u}_{j_k}\}\subseteq \{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$, pak jsou $\mathbf{u}_{j_1},\ldots,\mathbf{u}_{j_k}$ opět lineárně nezávislé.

Nechť $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathscr{V}$. Pak $\mathbf{u}_1, \dots, \mathbf{u}_k$ jsou lineárně závislé, právě když je aspoň jeden z nich lineární kombinací ostatních vektorů.

Důkaz.

(a) Nechť $\mathbf{u}_1,\ldots,\mathbf{u}_k$ jsou lineárně závislé. Pak existují $c_1,\ldots,c_k\in T$ tak, že $c_1\cdot\mathbf{u}_1+\cdots+c_k\cdot\mathbf{u}_k=\mathbf{o}$ a existuje $j\in\{1,\ldots,k\}$ tak, že $c_j\neq 0$. Pak ale

$$\mathbf{u}_{j} = \left(-\frac{c_{1}}{c_{j}}\right) \cdot \mathbf{u}_{1} + \cdots + \left(-\frac{c_{j-1}}{c_{j}}\right) \cdot \mathbf{u}_{j-1} + \left(-\frac{c_{j+1}}{c_{j}}\right) \cdot \mathbf{u}_{j+1} + \cdots + \left(-\frac{c_{k}}{c_{j}}\right) \cdot \mathbf{u}_{k},$$

tedy \mathbf{u}_i je lineární kombinací ostatních vektorů.

(b) Je-li \mathbf{u}_j lineární kombinací vektorů $\mathbf{u}_1,\dots,\mathbf{u}_{j-1},\mathbf{u}_{j+1},\dots,\mathbf{u}_k$, pak existují $c_1,\dots,c_{j-1},c_{j+1},\dots,c_k\in T$ tak, že $\mathbf{u}_j=c_1\cdot\mathbf{u}_1+\dots+c_{j-1}\cdot\mathbf{u}_{j-1}+c_{j+1}\cdot\mathbf{u}_{j+1}+\dots+c_k\cdot\mathbf{u}_k$, odkud $\mathbf{o}=c_1\cdot\mathbf{u}_1+\dots+c_{j-1}\cdot\mathbf{u}_{j-1}+(-1)\mathbf{u}_j+c_{j+1}\cdot\mathbf{u}_{j+1}+\dots+c_k\cdot\mathbf{u}_k$, t.j. $\mathbf{u}_1,\dots,\mathbf{u}_k$ jsou lineárně závislé.

Nechť $\mathscr{V}=(V,+,T,\cdot)$ je vektorový prostor nad tělesem T, nechť $\emptyset \neq W \subseteq V$. Pak $\mathscr{W}=(W,+,T,\cdot)$ nazveme **podprostor vektorového prostoru** \mathscr{V} , jestliže

- (i) $\forall \mathbf{u}, \mathbf{v} \in W$ je $\mathbf{u} + \mathbf{v} \in W$
- (ii) $\forall \mathbf{u} \in W, \forall c \in T \text{ je } c \cdot \mathbf{u} \in W.$

Poznámka. Je-li \mathscr{W} podprostor \mathscr{V} , **o** nulový vektor ve \mathscr{V} , pak zřejmě $\mathbf{o} \in \mathscr{W}$, neboť W je neprázdná, t.j. existuje $\mathbf{u} \in W$, dle (ii) ale $c \cdot \mathbf{u} \in W$, $(-c) \cdot \mathbf{u} \in W$, dle (i) pak $c \cdot \mathbf{u} + (-c) \cdot \mathbf{u} = (c + (-c)) \cdot \mathbf{u} = \mathbf{0} \cdot \mathbf{u} = \mathbf{o} \in W$.

Příklady

- (a) Je-li $\mathscr V$ vektorový prostor, pak $\mathscr V$ je podprostor $\mathscr V$, také $\{{\bf o}\}$ je podprostor $\mathscr V$.
- (b) Je-li $\mathscr V$ vektorový prostor všech funkcí reálné proměnné na intervalu [a,b], pak např. množina všech funkcí z V splňujících f(a)=0 je podprostor $\mathscr V$.

Neprázdná podmnožina W vektorového prostoru \mathscr{V} je polem podprostoru \mathscr{W} , právě když s každými prvky $\mathbf{u}_1,\ldots,\mathbf{u}_k$ obsahuje i jejich lineární kombinaci.

Důkaz. Jestliže $\mathbf{u}_1, \dots, \mathbf{u}_k \in W$, pak dle (ii) také $c_1 \cdot \mathbf{u}_1, \dots, c_k \cdot \mathbf{u}_k \in W$ pro libovolné $c_1, \dots, c_k \in T$ a dle (i) tedy i $c_1 \cdot \mathbf{u}_1 + c_2 \cdot \mathbf{u}_2 \in W$, tedy i $c_1 \cdot \mathbf{u}_1 + c_2 \cdot \mathbf{u}_2 + c_3 \cdot \mathbf{u}_3 \in W$ atd. až $c_1 \cdot \mathbf{u}_1 + \dots + c_k \cdot \mathbf{u}_k \in W$. Obráceně, jestliže W obsahuje s každými $\mathbf{u}_1, \dots, \mathbf{u}_k$ i jejich lineární kombinaci, pak pro $\mathbf{u}, \mathbf{v} \in W$ a $c \in T$ zřejmě i $\mathbf{u} + \mathbf{v} \in W$, $c \cdot \mathbf{u} \in W$, tedy dle (i), (ii) je W polem prostoru \mathscr{V} .

Podprostory vektorového prostoru $\mathscr V$ tvoří uzávěrový systém, t.j. je-li $\{\mathscr W_\gamma; \gamma \in \Gamma\}$ některý podsystém podprostorů $\mathscr V$, pak i $\mathscr W = \bigcap \{\mathscr W_\gamma; \gamma \in \Gamma\}$ je podprostor $\mathscr V$.

Důkaz. Nechť $W = \bigcap \{W_\gamma; \gamma \in \Gamma\}$ a nechť $\mathbf{u}, \mathbf{v} \in W, \ c \in T$. Pak $\mathbf{u}, \mathbf{v} \in W_\gamma$ pro každé $\gamma \in \Gamma$, ale W_γ je podprostor $\mathscr V$, tedy i $\mathbf{u} + \mathbf{v} \in W_\gamma$, $c \cdot \mathbf{u} \in W_\gamma$ pro každé $\gamma \in \Gamma$, a odtud $\mathbf{u} + \mathbf{v} \in W, c \cdot \mathbf{u} \in W$, t.j. W splňuje (i), (ii), je tedy (polem) podprostoru $\mathscr V$.

Poznámka. Vzhledem $k \subseteq je \{o\}$ nejmenší a \mathscr{V} největší podprostor \mathscr{V} . Je-li $A \subseteq V$, pak existuje nejmenší podprostor prostoru \mathscr{V} obsahující A, t.j. **podprostor** [A] **generovaný množinou** A. Je-li $A = \emptyset$, pak zřejmě $[\emptyset] = \{o\}$.

Nechť M je podmnožina vektorového prostoru \mathscr{V} . **Lineárním obalem množiny** M **ve** \mathscr{V} rozumíme množinu všech lineárních kombinací vektorů z M.

Věta 2.5

Nechť $M \neq \emptyset$ je podmnožina vektorového prostoru \mathscr{V} . Pak lineární obal M je právě podprostor [M] generovaný M.

Důkaz. Nechť L(M) je lineární obal M. Pak zřejmě $M \subseteq L(M)$. Dle Věty 2.3 je L(M) podprostor \mathscr{V} , tedy $[M] \subseteq L(M)$. Obráceně, nechť $\mathbf{u} \in L(M)$. Pak dle definice existují $\mathbf{u}_1, \ldots, \mathbf{u}_k \in M$ a $c_1, \ldots, c_k \in T$ tak, že $\mathbf{u} = c_1 \cdot \mathbf{u}_1 + \cdots + c_k \cdot \mathbf{u}_k$. Tedy \mathbf{u} padne do každého podprostoru prostoru \mathscr{V} obsahujícího M, tedy i do jejich průniku, t.j. $\mathbf{u} \in [M]$, neboli $L(M) \subseteq [M]$. Dokázali jsme [M] = L(M).

Poznámka. Jsou-li tedy $\mathcal{W}_1, \mathcal{W}_2$ podprostory vektorového prostoru \mathcal{V} , pak nejmenší podprostor, obsahující současně \mathcal{W}_1 a \mathcal{W}_2 je dle Věty 2.5 lineárním obalem množiny $W_1 \cup W_2$. Následující věta ukazuje, že tento podprostor lze vyjádřit i jednodušeji.

Jsou-li $\mathcal{W}_1, \mathcal{W}_2$ podprostory vektorového prostoru \mathcal{V} , pak polem nejmenšího podprostoru, obsahujícího \mathcal{W}_1 a \mathcal{W}_2 je množina $W_1 + W_2 = \{ \mathbf{v} \in V; \mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2, \text{ kde } \mathbf{v}_1 \in W_1, \mathbf{v}_2 \in W_2 \}.$

Důkaz. Dle Věty 2.5 je zřejmé, že $W_1 + W_2 \subset [W_1 \cup W_2]$. Dále, pro libovolné $\mathbf{v}_1 \in W_1$ platí $\mathbf{v}_1 = \mathbf{v}_1 + \mathbf{o}$, ale $\mathbf{o} \in W_2$, tedy $\mathbf{v}_1 \in W_1 + W_2$, t.j. $W_1 \subset W_1 + W_2$. Analogicky se ověří $W_2 \subset W_1 + W_2$. Stačí tedy dokázat, že $W_1 + W_2$ je polem podprostoru prostoru \mathcal{V} . Nechť $\mathbf{u}, \mathbf{v} \in W_1 + W_2, c \in T$. Pak existují $\mathbf{u}_1, \mathbf{v}_1 \in W_1, \mathbf{u}_2, \mathbf{v}_2 \in W_2$ tak, že $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$. Jelikož grupa (V,+) je komutativní, platí $\mathbf{u} + \mathbf{v} = (\mathbf{u}_1 + \mathbf{u}_2) + (\mathbf{v}_1 + \mathbf{v}_2) = (\mathbf{u}_1 + \mathbf{v}_1) + (\mathbf{u}_2 + \mathbf{v}_2)$. Dle definice ale $\mathbf{u}_1 + \mathbf{v}_1 \in W_1$, $\mathbf{u}_2 + \mathbf{v}_2 \in W_2$, tedy $\mathbf{u} + \mathbf{v} \in W_1 + W_2$. Dále, $c \cdot \mathbf{u} = c \cdot (\mathbf{u}_1 + \mathbf{u}_2) = c \cdot \mathbf{u}_1 + c \cdot \mathbf{u}_2$, avšak $c \cdot \mathbf{u}_1 \in W_1$, $c \cdot \mathbf{u}_2 \in W_2$, tedy $c \cdot \mathbf{u} \in W_1 + W_2$, t.j. $W_1 + W_2$ je polem podprostoru (obsahujícího W_1, W_2), tedy $[W_1 \cup W_2] \subset W_1 + W_2$.

Nechť \mathscr{V} je vektorový prostor, $\mathscr{W}_1, \mathscr{W}_2$ jeho podprostory. Podprostor $\mathscr{W}_1 + \mathscr{W}_2$, jehož pole je množina $W_1 + W_2$ nazveme **součet podprostorů** $\mathscr{W}_1, \mathscr{W}_2$. Je-li navíc $\mathscr{W}_1 \cap \mathscr{W}_2 = \{\mathbf{o}\}$, nazveme $\mathscr{W}_1 + \mathscr{W}_2$ **přímý součet podprostorů** $\mathscr{W}_1, \mathscr{W}_2$.

Věta 2.7

Je-li vektorový prostor $\mathscr V$ přímý součet podprostorů $\mathscr W_1, \mathscr W_2$, pak každý vektor $\mathbf v \in \mathscr V$ lze vyjádřit jediným způsobem ve tvaru $\mathbf v = \mathbf v_1 + \mathbf v_2$, kde $\mathbf v_1 \in \mathscr W_1$, $\mathbf v_2 \in \mathscr W_2$.

Důkaz. Dle Věty 2.5 lze $\mathbf{v} \in \mathscr{V}$ vyjádřit aspoň jedním způsobem ve tvaru $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2, \ \mathbf{v}_1 \in \mathscr{W}_1, \ \mathbf{v}_2 \in \mathscr{W}_2$. Předpokládejme, že $\mathbf{v} = \mathbf{u}_1 + \mathbf{u}_2, \ \mathbf{u}_1 \in \mathscr{W}_1, \ \mathbf{u}_2 \in \mathscr{W}_2$. Pak $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{u}_1 + \mathbf{u}_2$, a tedy $\mathbf{v}_1 - \mathbf{u}_1 = \mathbf{u}_2 - \mathbf{v}_2$, t.j. $\mathbf{v}_1 - \mathbf{u}_1$ i $\mathbf{u}_2 - \mathbf{v}_2$ patří do téhož podprostoru. Avšak $\mathbf{v}_1 - \mathbf{u}_1 \in \mathscr{W}_1$, $\mathbf{u}_2 - \mathbf{v}_2 \in \mathscr{W}_2$, tedy $\mathbf{v}_1 - \mathbf{u}_1 \in W_1 \cap W_2 = \{\mathbf{o}\}$, analogicky $\mathbf{u}_2 - \mathbf{v}_2 \in W_1 \cap W_2 = \{\mathbf{o}\}$, tedy $\mathbf{v}_1 = \mathbf{u}_1, \ \mathbf{u}_2 = \mathbf{v}_2$. Neboli vyjádření $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ je jednoznačné.

Nechť $\mathscr V$ je vektorový prostor, $M \neq \emptyset$ jeho podmnožina. Je-li $[M] = \mathscr V$, nazývá se M množina generátorů $\mathscr V$.

Poznámka. Dle Věty 2.5 je tedy každý vektor z \mathscr{V} lineární kombinací generátorů. Zřejmě má každý vektorový prostor množinu generátorů, např. M = V.

Definice

Řekneme, že vektorový prostor \mathscr{V} je **konečné dimenze**, má-li aspoň jednu konečnou množinu generátorů.

Definice

Bází vektorového prostoru \mathscr{V} konečné dimenze rozumíme libovolnou lineárně nezávislou konečnou množinu $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ jeho generátorů.

Nechť $M = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ je bází \mathscr{V} . Pak každý vektor $\mathbf{v} \in \mathscr{V}$ lze jediným způsobem vyjádřit jako lineární kombinaci vektorů $\mathbf{u}_1, \dots, \mathbf{u}_n$.

Důkaz. Protože M je množinou generátorů, lze dle Věty 2.5 každý $\mathbf{v} \in \mathcal{V}$ zapsat ve tvaru

$$\mathbf{v} = c_1 \cdot \mathbf{u}_1 + \cdots + c_n \cdot \mathbf{u}_n = \sum_{i=1}^n c_i \mathbf{u}_i.$$

Jestliže

$$\mathbf{v} = d_1 \cdot \mathbf{u}_1 + \cdots + d_n \cdot \mathbf{u}_n = \sum_{i=1}^n d_i \mathbf{u}_i,$$

pak

$$\mathbf{o} = \mathbf{v} - \mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{u}_i - \sum_{i=1}^{n} d_i \mathbf{u}_i = \sum_{i=1}^{n} (c_i - d_i) \mathbf{u}_i.$$

Jelikož $\mathbf{u}_1, \dots, \mathbf{u}_n$ jsou lineárně nezávislé, je $c_i - d_i = 0$ pro $i = 1, \dots, n$, odkud $c_1 = d_1, \dots, c_n = d_n$.

Příklad

Nechť \mathscr{V} je množina všech čtveřic $\mathbf{a} = (a_1, a_2, a_3, a_4)$ reálných čísel. Položme

$$\mathbf{a} + \mathbf{b} = (a_1, a_2, a_3, a_4) + (b_1, b_2, b_3, b_4)$$

$$= (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4),$$

$$c \cdot \mathbf{a} = (c \cdot a_1, c \cdot a_2, c \cdot a_3, c \cdot a_4),$$

tedy $\mathcal V$ je vektorový prostor nad tělesem reálných čísel. Zřejmě $\mathbf e_1=(1,0,0,0),\ \mathbf e_2=(0,1,0,0),\ \mathbf e_3=(0,0,1,0),\ \mathbf e_4=(0,0,0,1)$ tvoří jeho bázi, neboť

$$\mathbf{a} = (a_1, a_2, a_3, a_4) = a_1 \cdot \mathbf{e}_1 + a_2 \cdot \mathbf{e}_2 + a_3 \cdot \mathbf{e}_3 + a_4 \cdot \mathbf{e}_4.$$

Tato báze zřejmě není jediná, bází je v tomto prostoru nekonečně mnoho.

Je-li $M = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ množina generátorů vektorového prostoru \mathscr{V} , pak existuje $M' \subseteq M$ tak, že M' je bází \mathscr{V} .

Důkaz. Není-li M, kde $[M]=\mathscr{V}$, přímo bází \mathscr{V} , pak jsou vektory $\mathbf{u}_1,\ldots,\mathbf{u}_n$ lineárně závislé, a dle Věty 2.2 existuje aspoň jeden $\mathbf{u}_i\in M$, který je lineární kombinací ostatních. Tedy můžeme \mathbf{u}_i vynechat, neboť $M_1=M\setminus\{\mathbf{u}_i\}$ opět generuje \mathscr{V} . Je-li nyní M_1 lineárně nezávislá, je bází. Není-li M_1 lineárně nezávislá, lze opět jeden vektor vynechat, obdržíme M_2 a tak dále. Po konečném počtu kroků (neboť M je konečná), obdržíme lineárně nezávislou $M'\subseteq M$, která generuje \mathscr{V} , t.j. M' je báze \mathscr{V} .

Věta 2.10 (Steinitzova věta o výměně bazí)

Nechť $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ je množina generátorů vektorového prostoru $\mathscr{V} \neq \{\mathbf{o}\}$ a nechť $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ jsou lineárně nezávislé vektory z \mathscr{V} . Pak $k \leq n$ a při vhodném očíslování vektorů $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ je množina $\{\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{u}_{k+1},\ldots,\mathbf{u}_n\}$ opět množinou generátorů \mathscr{V} .

Důkaz. Indukcí dle počtu k vektorů $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$.

(a) Nechť k=1. Jelikož \mathbf{v}_1 je lineárně nezávislý, je $\mathbf{v}_1 \neq \mathbf{o}$. Dle předpokladu je $[\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}] = \mathcal{V}$, ale $\mathbf{v}_1 \in \mathcal{V}$, tedy dle Věty 2.5 existují skaláry $c_1,\ldots,c_n \in T$ tak, že

$$\mathbf{v}_1 = \sum_{i=1}^n c_i \mathbf{u}_i,$$

přičemž aspoň jeden $c_i \neq 0$ (jinak by $\mathbf{v}_1 = \mathbf{o}$). Předpokládejme např. $c_1 \neq 0$ (jinak bychom $\mathbf{u}_1, \dots, \mathbf{u}_n$ přečíslovali). Pak platí

$$\mathbf{u}_1 = \frac{1}{c_1}\mathbf{v}_1 - \sum_{j=2}^n \frac{c_j}{c_1}\mathbf{u}_j,$$

odkud zřejmě $[\{\mathbf{v}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}] = \mathcal{V}$. Přitom $1 \le n$.

(b) Nechť k>1 a předpokládejme, že tvrzení platí pro všechna čísla $1,\ldots,k-1$. Jelikož $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ jsou lineárně nezávislé, jsou dle Důsledku 2 (Věty 2.1) také $\{\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\}$ lineárně nezávislé. Dle indukčního předpokladu platí $k-1\leq n$ a po vhodném očíslování $\mathbf{u}_1,\ldots,\mathbf{u}_n$ je $\{\mathbf{v}_1,\ldots,\mathbf{v}_{k-1},\mathbf{u}_k,\ldots,\mathbf{u}_n\}$ množinou generátorů $\mathscr V$. Tedy existují $c_1,\ldots,c_{k-1},d_k,\ldots,d_n\in T$ tak, že

$$\mathbf{v}_k = \sum_{i=1}^{k-1} c_i \mathbf{v}_i + \sum_{j=k}^n d_j \mathbf{u}_j, \tag{*}$$

přičemž aspoň jeden ze skalárů d_k,\ldots,d_n je nenulový (jinak by $\mathbf{v}_k = \sum_{i=1}^{k-1} c_i \mathbf{v}_i$, spor s lineární nezávislostí $\mathbf{v}_1,\ldots,\mathbf{v}_k$). Očíslujme $\mathbf{u}_k,\ldots,\mathbf{u}_n$ vhodně tak, aby $d_k \neq 0$. Pak z (*) vyplývá $k \leq n$ a

$$\mathbf{u}_k = -\sum_{i=1}^{k-1} \frac{c_i}{d_k} \mathbf{v}_i + \frac{1}{d_k} \mathbf{v}_k - \sum_{j=k+1}^n \frac{d_j}{d_k} \mathbf{u}_j,$$

tedy $[\{\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{u}_{k+1},\ldots,\mathbf{u}_n\}] = \mathscr{V}.$

Indukcí jsme dokázali tvrzení pro každé k.

Důsledek 1

Nechť $\mathscr{V} \neq \{\mathbf{o}\}$ je vektorový prostor konečné dimenze. Pak každé jeho dvě báze mají stejný počet prvků.

Důkaz. Jsou-li $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$, $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ dvě báze \mathscr{V} , pak dle Steinitzovy věty $k \leq n$ a $n \leq k$, t.j. n = k.

Definice

Je-li $\mathscr{V} \neq \{\mathbf{o}\}$ vektorový prostor konečné dimenze, pak počet prvků jeho libovolné báze nazýváme **dimenze** \mathscr{V} a značíme dim \mathscr{V} . Je-li $\mathscr{V} = \{\mathbf{o}\}$, položíme dim $\mathscr{V} = 0$.

Důsledek 2

Nechť $[\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}]=\mathscr{V}$, nechť $\mathbf{v}_1,\ldots,\mathbf{v}_k\in\mathscr{V}$. Je-li k>n, jsou $\mathbf{v}_1,\ldots,\mathbf{v}_k$ lineárně závislé.

Důkaz. Kdyby $\mathbf{v}_1, \dots, \mathbf{v}_k$ byly lineárně nezávislé, muselo by dle Steinitzovy věty platit $k \le n$.

Důsledek 3

Nechť $[\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}] = \mathcal{V}$, pak dim $\mathcal{V} \leq n$.

Důkaz. Plyne přímo ze Steinitzovy věty a z definice dimenze.

Nechť dim $\mathcal{V} = n$, nechť $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathcal{V}$. Pak následující podmínky jsou ekvivalentní:

- (i) $\mathbf{u}_1, \dots, \mathbf{u}_n$ jsou lineárně nezávislé
- (ii) $[\{u_1, ..., u_n\}] = \mathscr{V}$
- (iii) $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ je báze \mathscr{V} .

Důkaz.

- (i) \Rightarrow (ii): Je-li $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ libovolná báze \mathcal{V} , pak dle Steinitzovy věty $[\{\mathbf{u}_1, \dots, \mathbf{u}_n\}] = [\{\mathbf{v}_1, \dots, \mathbf{v}_n\}] = \mathcal{V}$.
- (ii) \Rightarrow (iii): Je-li $[\{\mathbf{u}_1, \dots, \mathbf{u}_n\}] = \mathcal{V}$, pak $\mathbf{u}_1, \dots, \mathbf{u}_n$ jsou lineárně nezávislé, jinak by dle Steinitzovy věty platilo $n = \dim \mathcal{V} < n$, spor.
- (iii) ⇒ (i): Dle definice báze.

Nechť dim $\mathscr{V}=n$. Pak každá množina $\mathbf{u}_1,\dots,\mathbf{u}_k$ lineárně nezávislých vektorů z \mathscr{V} je obsažena v některé bázi prostoru \mathscr{V} .

Důkaz. Plyne ihned ze Steinitzovy věty.

Věta 2.13

Nechť \mathscr{W} je podprostor prostoru \mathscr{V} konečné dimenze. Pak dim $\mathscr{W} \leq \dim \mathscr{V}$, přičemž rovnost platí právě když $\mathscr{W} = \mathscr{V}$.

Důkaz. Zřejmě, jsou-li některé vektory nezávislé ve \mathscr{W} , jsou lineárně nezávislé i ve \mathscr{V} . Je-li tedy dim $\mathscr{V}=n$, pak má každá lineárně nezávislá množina ve \mathscr{W} nejvýše n prvků, t.j. dim $\mathscr{W} \leq \dim \mathscr{V}$. Zbytek důkazu plyne z Věty 2.11.

Věta 2.14 (O dimenzi spojení a průniku)

Nechť $\mathcal{W}_1, \mathcal{W}_2$ jsou podprostory prostoru \mathcal{V} konečné dimenze. Pak $\dim \mathcal{W}_1 + \dim \mathcal{W}_2 = \dim (\mathcal{W}_1 + \mathcal{W}_2) + \dim (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Důkaz. Nechť $\dim \mathcal{W}_1 = k$, $\dim \mathcal{W}_2 = h$, $\dim (\mathcal{W}_1 \cap \mathcal{W}_2) = m$. Zřejmě $m \leq k$, $m \leq h$. Nechť $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ je báze \mathcal{W}_1 , $\{\mathbf{v}_1, \dots, \mathbf{v}_h\}$ je báze \mathcal{W}_2 , a $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ je báze $\mathcal{W}_1 \cap \mathcal{W}_2$. Dle Steinitzovy věty platí, že při vhodném očíslování je $\{\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{u}_{m+1}, \dots, \mathbf{u}_k\}$ bází \mathcal{W}_1 a $\{\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_h\}$ je bází \mathcal{W}_2 . Ukážeme, že $M = \{\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{u}_{m+1}, \dots, \mathbf{u}_k, \mathbf{v}_{m+1}, \dots, \mathbf{v}_h\}$ je bází $\mathcal{W}_1 + \mathcal{W}_2$. Nechť $\mathbf{z} \in \mathcal{W}_1 + \mathcal{W}_2$, tedy $\mathbf{z} = \mathbf{z}_1 + \mathbf{z}_2$ pro $\mathbf{z}_i \in \mathcal{W}_i$, tedy \mathbf{z}_1 je lineární kombinace $\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_h$, tedy \mathbf{z} je lineární kombinací vektorů z M. Stačí tedy dokázat, že vektory z M jsou lineárně nezávislé.

Nechť

$$\sum_{i=1}^m c_i \cdot \mathbf{w}_i + \sum_{j=m+1}^k d_j \cdot \mathbf{u}_j + \sum_{k=m+1}^h b_k \cdot \mathbf{v}_k = \mathbf{o}.$$

Pak $\sum_{i=1}^{m} c_i \cdot \mathbf{w}_i + \sum_{j=m+1}^{k} d_j \cdot \mathbf{u}_j = \sum_{k=m+1}^{h} (-b_k) \cdot \mathbf{v}_k$. Avšak vektor na levé straně patří do \mathcal{W}_1 , na pravé do \mathcal{W}_2 , a proto oba vektory patří do $\mathcal{W}_1 \cap \mathcal{W}_2$. Tedy existují $a_1, \ldots, a_m \in T$ tak, že

$$(-b_{m+1})\cdot \mathbf{v}_{m+1}+\cdots +(-b_h)\cdot \mathbf{v}_h=a_1\cdot \mathbf{w}_1+\cdots +a_m\cdot \mathbf{w}_m.$$

Ovšem $\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_h$ jsou lineárně nezávislé, tedy $a_1 = \dots = a_m = b_{m+1} = \dots = b_h = 0$. Odtud

$$c_1 \cdot \mathbf{w}_1 + \cdots + c_m \cdot \mathbf{w}_m + d_{m+1} \cdot \mathbf{u}_{m+1} + \cdots + d_k \cdot \mathbf{u}_k = \mathbf{o}.$$

Avšak $\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{u}_{m+1}, \dots, \mathbf{u}_k$ jsou také lineárně nezávislé, tedy $c_1 = \dots = c_m = d_{m+1} = \dots = d_k = 0$.

Dohromady, všechny vektory z M jsou lineárně nezávislé, tedy M je báze $W_1 + W_2$. Podle definice dimenze dostaneme tvrzení věty.

Důsledek

Je-li vektorový prostor konečné dimenze $\mathscr V$ přímým součtem podprostorů $\mathscr W_1$ a $\mathscr W_2$, pak dim $\mathscr W_1$ +dim $\mathscr W_2$ =dim $\mathscr V$.

Důkaz. Plyne z Věty 2.14, neboť $\mathcal{W}_1 \cap \mathcal{W}_2 = \{\mathbf{o}\}.$

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť T je číselné těleso, n přirozené číslo. Na n-násobném kartézském součinu $T^n = V$ definujeme operaci + takto: je-li $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in V$, pak

$$(a_1,\ldots,a_n)+(b_1,\ldots,b_n)=(a_1+b_1,\ldots,a_n+b_n).$$

Zřejmě (V,+) je abelovská grupa, prvek $\mathbf{o}=(0,\ldots,0)$ je její jednotkou, prvek $(-a_1,\ldots,-a_n)$ je inverzní k prvku (a_1,\ldots,a_n) . Definujme levou vnější operaci: $c\in T, (a_1,\ldots,a_n)\in V$,

$$c \cdot (a_1, \ldots, a_n) = (c \cdot a_1, \ldots, c \cdot a_n).$$

Jednoduše lze ověřit, že $\mathscr{V}=(V,+,T,\cdot)$ je vektorový prostor dimenze n. Tento vektorový prostor nazveme **aritmetický** a budeme jej značit T^n . Snadno se dokáže, že jedna z jeho (nekonečně mnoha) bází je $\mathbf{e}_1,\ldots,\mathbf{e}_n$, kde $\mathbf{e}_1=(1,0,\ldots,0)$, $\mathbf{e}_2=(0,1,\ldots,0),\ldots,\mathbf{e}_n=(0,0,\ldots,1)$. Skutečně: $(a_1,a_2,\ldots,a_n)=a_1\cdot\mathbf{e}_1+a_2\cdot\mathbf{e}_2+\cdots+a_n\cdot\mathbf{e}_n$.

Označme $\mathscr{V}_i = \{(0,\ldots,0,a_i,0,\ldots,0); a_i \in T\}$. Zřejmě \mathscr{V}_i je podprostor dimenze 1 ve \mathscr{V} a \mathscr{V} je přímým součtem $\mathscr{V}_1 + \mathscr{V}_2 + \cdots + \mathscr{V}_n$.

Zapisujeme-li aritmetický vektor \mathbf{a} ve tvaru (a_1, a_2, \ldots, a_n) , nazýváme tento zápis **řádkový vektor**. Zapisujeme-li \mathbf{a} ve

tvaru
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
, nazýváme jej **sloupcový vektor**.

Je-li $\mathscr V$ vektorový prostor dimenze n, $\{\mathbf u_1,\ldots,\mathbf u_n\}$ jeho báze, pak $\mathscr V$ lze reprezentovat aritmetickým vektorovým prostorem takto: je-li $\mathbf a\in\mathscr V$, pak $\mathbf a=a_1\cdot\mathbf u_1+\cdots+a_n\cdot\mathbf u_n$ je jednoznačné vyjádření vektoru $\mathbf a$ v bázi $\{\mathbf u_1,\ldots,\mathbf u_n\}$. Přiřaď me vektoru $\mathbf a$ n-tici koeficientů (a_1,\ldots,a_n) . Je-li $\mathbf b=b_1\cdot\mathbf u_1+\cdots+b_n\cdot\mathbf u_n$, $\mathbf b\to(b_1,\ldots,b_n)$, $c\in T$. Pak zřejmě $c\cdot\mathbf a\to(c\cdot a_1,\ldots,c\cdot a_n)$, $\mathbf a+\mathbf b\to(a_1+b_1,\ldots,a_n+b_n)$.

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Ve vektorovém prostoru nad tělesem T můžeme vektory sčítat, odčítat a násobit skaláry z tělesa T (levá vnější operace). Nemáme však zaveden pojem délky vektoru, úhlu mezi vektory apod. Zavedeme proto další pojem.

Definice

Nechť $\mathscr{V}=(V,+,\mathbb{R},\cdot)$ je vektorový prostor nad tělesem reálných čísel \mathbb{R} . **Skalárním součinem** \circ nazveme zobrazení $V\times V$ do tělesa \mathbb{R} , které má tyto vlastnosti:

- (i) $\forall \mathbf{u}, \mathbf{v} \in V, \mathbf{u} \circ \mathbf{v} = \mathbf{v} \circ \mathbf{u}$
- (ii) $\forall \mathbf{u} \in V, \mathbf{u} \neq \mathbf{o}, \mathbf{u} \circ \mathbf{u} > 0$
- (iii) $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, $(\mathbf{u} + \mathbf{v}) \circ \mathbf{w} = \mathbf{u} \circ \mathbf{w} + \mathbf{v} \circ \mathbf{w}$
- (iv) $\forall \mathbf{u}, \mathbf{v} \in V, \forall \mathbf{c} \in \mathbb{R}, (\mathbf{c} \cdot \mathbf{u}) \circ \mathbf{v} = \mathbf{c} \cdot (\mathbf{u} \circ \mathbf{v}).$

Příklady

- (1) Je-li $\mathscr{V}=(\mathbb{R}^n,+,\mathbb{R},\cdot)$ aritmetický (n-dimenzionální) vektorový prostor nad \mathbb{R} , $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, $\mathbf{y}=(y_1,y_2,\ldots,y_n)$, pak $\mathbf{x}\circ\mathbf{y}=\sum_{i=1}^nx_i\cdot y_i$ definuje skalární součin \circ .
- (2) Je-li \mathscr{V} vektorový prostor všech funkcí jedné reálné proměnné nad intervalem [a,b], pak $\mathbf{f} \circ \mathbf{g} = \int_a^b f(x)g(x)dx$ definuje skalární součin \circ .

Nechť $\mathscr{V}=(V,+,\mathbb{R},\cdot)$ je vektorový prostor nad tělesem reálných čísel, ve kterém je definován skalární součin. Pak se \mathscr{V} nazývá **Eukleidovský vektorový prostor**.

Definice

Nechť $\mathscr V$ je Eukleidovský vektorový prostor, nechť $\mathbf u \in V$. Číslo $\|\mathbf u\| = \sqrt{\mathbf u \circ \mathbf u}$ nazveme **délka vektoru u**.

Nechť $\mathscr V$ je Eukleidovský vektorový prostor, $\mathbf u, \mathbf v \in V$. Pak

(a) $\forall c \in \mathbb{R}$ je $\|c \cdot \mathbf{u}\| = |c| \cdot \|\mathbf{u}\|$

po odmocnění $|\mathbf{u} \circ \mathbf{v}| < \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.

- (b) $\|\mathbf{o}\| = 0$ a pro $\mathbf{u} \neq \mathbf{o}$ je $\|\mathbf{u}\| > 0$
- (c) $|\mathbf{u} \circ \mathbf{v}| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$ (Schwarzova nerovnost).

Důkaz. (a) $||c \cdot u|| = \sqrt{c \cdot u \circ c \cdot u} = \sqrt{c^2 \cdot u \circ u} = |c| \cdot ||u||$. (b) o = u - u, tedy $||o|| = ||u - u|| = \sqrt{(u - u) \circ (u - u)} = ||u - u|| = \sqrt{(u - u) \circ (u - u)} = ||u - u|| = ||u - u||$

$$\sqrt{\mathbf{u} \circ \mathbf{u} - \mathbf{u} \circ \mathbf{u} + \mathbf{u} \circ \mathbf{u}} = \sqrt{0} = 0$$
. Je-li $\mathbf{u} \neq \mathbf{o}$, pak dle (ii) platí $\mathbf{u} \circ \mathbf{u} > 0$, a tedy $\|\mathbf{u}\| = \sqrt{\mathbf{u} \circ \mathbf{u}} > 0$. (c) Dle (ii) a (b) platí $\|\mathbf{u} - c \cdot \mathbf{v}\| \ge 0 \ \forall c \in \mathbb{R}$. Rozepsáním dostaneme $0 \le (\mathbf{u} - c \cdot \mathbf{v}) \circ (\mathbf{u} - c \cdot \mathbf{v}) = \mathbf{u} \circ (\mathbf{u} - c \cdot \mathbf{v}) + (-c \cdot \mathbf{v}) \circ (\mathbf{u} - c \cdot \mathbf{v}) = \mathbf{u} \circ \mathbf{u} + \mathbf{u} \circ (-c \cdot \mathbf{v}) + (-c \cdot \mathbf{v}) \circ \mathbf{u} + (-c \cdot \mathbf{v}) \circ (-c \cdot \mathbf{v}) = c^2 \cdot \mathbf{v} \circ \mathbf{v} - 2c \cdot \mathbf{u} \circ \mathbf{v} + \mathbf{u} \circ \mathbf{u}$, což je kvadratická funkce pro c . Jelikož je nezáporná, nemůže mít pravá strana dva různé reálné kořeny (neprotíná osu x ve dvou bodech), a tedy pro diskriminant platí

 $4 \cdot (\mathbf{u} \circ \mathbf{v})^2 - 4 \cdot (\mathbf{u} \circ \mathbf{u}) \cdot (\mathbf{v} \circ \mathbf{v}) \leq 0$, odtud $(\mathbf{u} \circ \mathbf{v})^2 \leq (\mathbf{u} \circ \mathbf{u}) \cdot (\mathbf{v} \circ \mathbf{v})$, tedy

Nechť $\mathscr V$ je Eukleidovský vektorový prostor a $\mathbf u, \mathbf v \in V$, $\mathbf u \neq \mathbf o \neq \mathbf v$. Úhlem φ vektorů $\mathbf u, \mathbf v$ nazveme číslo

$$\varphi = \arccos \frac{\mathbf{u} \circ \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}.$$

Platí tedy $\cos \varphi = \frac{\mathbf{u} \circ \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$, kde $0 \le \varphi \le \pi$. Je-li $\mathbf{u} = \mathbf{o}$ nebo $\mathbf{v} = \mathbf{o}$, položíme $\cos \varphi = 0$. Ze Schwarzovy nerovnosti plyne, že úhel φ je určen jednoznačně.

Vektory \mathbf{u} , \mathbf{v} nazveme **ortogonální** (**kolmé**), ozn. $\mathbf{u} \perp \mathbf{v}$, je-li $\varphi = \frac{\pi}{2}$, t.j. $\cos \varphi = 0$, t.j. $\mathbf{u} \circ \mathbf{v} = 0$.

Věta 2.16

Jsou-li $\mathbf{u}, \mathbf{v}_1, \dots, \mathbf{v}_m$ vektory z Eukleidovského vektorového prostoru a platí-li $\mathbf{u} \perp \mathbf{v}_i$ pro $i = 1, \dots, m$, pak $\mathbf{u} \perp \mathbf{w}$ pro každý vektor $\mathbf{w} \in [\{\mathbf{v}_1, \dots, \mathbf{v}_m\}].$

Důkaz. Nechť $\mathbf{w} \in [\{\mathbf{v}_1, \dots, \mathbf{v}_m\}]$. Pak $\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m$ pro některá čísla $c_1, \dots, c_m \in \mathbb{R}$. Potom $\mathbf{u} \circ \mathbf{w} = \mathbf{u} \circ (c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m) = \mathbf{u} \circ (c_1 \mathbf{v}_1) + \dots + \mathbf{u} \circ (c_m \mathbf{v}_m) = c_1(\mathbf{u} \circ \mathbf{v}_1) + \dots + c_m(\mathbf{u} \circ \mathbf{v}_m) = 0 + \dots + 0 = 0$.

Vektory $\mathbf{u}_1, \dots, \mathbf{u}_m$ jsou **vzájemně ortogonální**, platí-li $\mathbf{u}_i \perp \mathbf{u}_j$ pro každé $i \neq j$.

Věta 2.17

Nenulové vzájemně ortogonální vektory $\mathbf{u}_1, \dots, \mathbf{u}_m$ jsou lineárně nezávislé.

Důkaz. Nechť $\mathbf{o} = c_1 \mathbf{u}_1 + \cdots + c_m \mathbf{u}_m$ pro $c_i \in \mathbb{R}$. Pak $\forall k \in \{1, \dots, m\}$ platí

$$0 = \mathbf{o} \circ \mathbf{u}_k = (c_1 \mathbf{u}_1 + \dots + c_m \mathbf{u}_m) \circ \mathbf{u}_k = c_1 (\mathbf{u}_1 \circ \mathbf{u}_k) + \dots + c_m (\mathbf{u}_m \circ \mathbf{u}_k) = 0 + \dots + 0 + c_k (\mathbf{u}_k \circ \mathbf{u}_k) + 0 + \dots + 0 = c_k \|\mathbf{u}_k\|^2 > 0 \text{ pro } c_k \neq 0. \text{ Tedy } c_k = 0. \text{ Tedy } \forall k \in \{1, \dots, m\} \text{ je } c_k = 0, \text{ t.j. } \mathbf{u}_1, \dots, \mathbf{u}_m \text{ jsou lineárně nezávislé.}$$

Důsledek a definice

Jsou-li $\mathbf{u}_1, \dots, \mathbf{u}_m$ vzájemně ortogonální vektory, přičemž $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ generuje celý prostor \mathscr{V} , pak je to báze \mathscr{V} (tzv. **ortogonální báze**).

Příklad

Je-li $\mathscr{V}=(\mathbb{R}^n,+,\mathbb{R},\cdot)$ aritmetický vektorový prostor, pak např. vektory $\mathbf{e}_1=(1,0,\ldots,0), \mathbf{e}_2=(0,1,\ldots,0),\ldots,\mathbf{e}_n=(0,\ldots,0,1)$ tvoří ortogonální bázi prostoru \mathscr{V} .

Dále ukážeme metodu, tzv. **Schmidtův ortogonalizační proces**, pomocí které lze každou bázi vektorového prostoru \mathscr{V} převést na bázi ortogonální.

Nechť \mathscr{V} je Eukleidovský vektorový prostor konečné dimenze, nechť $\mathbf{v}_1,\dots,\mathbf{v}_m$ je jeho báze. Pak existují čísla d_{ik} tak, že vektory

$$\mathbf{u}_{i} = \mathbf{v}_{i} - \sum_{k=1}^{i-1} d_{ik} \mathbf{u}_{k}$$
 $(i = 1, ..., m)$

tvoří ortogonální bázi.

Důkaz. Indukcí. Je-li dim $\mathscr{V}=1$, je $\mathbf{u}_1=\mathbf{v}_1$. Nechť dim $\mathscr{V}=m>1$ a předpokládejme, že jsme již sestrojili vektory $\mathbf{u}_1, \dots, \mathbf{u}_{n-1}$, které jsou vzájemně ortogonální a platí $[\{\mathbf{u}_1,\ldots,\mathbf{u}_{n-1}\}] = [\{\mathbf{v}_1,\ldots,\mathbf{v}_{n-1}\}].$ Položme nyní $\mathbf{u}_n = \mathbf{v}_n - \sum_{k=1}^{n-1} c_{nk} \mathbf{u}_k$, kde $c_{nk} = \frac{\mathbf{v}_n \circ \mathbf{u}_k}{\mathbf{u}_k \circ \mathbf{u}_k}$. Pak pro $j=1,\ldots,n-1$ platí $\mathbf{u}_n \circ \mathbf{u}_i = \mathbf{v}_n \circ \mathbf{u}_i - \sum_{k=1}^{n-1} c_{nk} (\mathbf{u}_k \circ \mathbf{u}_i) = \mathbf{v}_n \circ \mathbf{u}_j - c_{nj} (\mathbf{u}_j \circ \mathbf{u}_j)$ (neboť $\mathbf{u}_{s} \perp \mathbf{u}_{r}$ pro $r \neq s$). Dosazením za c_{nj} dostaneme $\mathbf{u}_{n} \circ \mathbf{u}_{j} = 0$, tedy \mathbf{u}_{n} je také kolmý na $\mathbf{u}_1, \dots, \mathbf{u}_{n-1}$. Indukcí jsme dokázali, že $\mathbf{u}_1, \dots, \mathbf{u}_m$ jsou vzájemně ortogonální. Dle Věty 2.17 jsou tedy lineárně nezávislé, a dle Steinitzovy věty tvoří bázi \mathcal{V} . 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 年 9 9 0 0 円

Postup ortogonalizace

Nechť $\mathbf{v}_1, \dots, \mathbf{v}_n$ jsou lineárně nezávislé vektory ve \mathscr{V} . Položme

$$\begin{aligned} & \mathbf{u}_{1} = \mathbf{v}_{1} \\ & \mathbf{u}_{2} = \mathbf{v}_{2} - (\frac{\mathbf{v}_{2} \circ \mathbf{u}_{1}}{\mathbf{u}_{1} \circ \mathbf{u}_{1}}) \mathbf{u}_{1} \\ & \mathbf{u}_{3} = \mathbf{v}_{3} - (\frac{\mathbf{v}_{3} \circ \mathbf{u}_{2}}{\mathbf{u}_{2} \circ \mathbf{u}_{2}}) \mathbf{u}_{2} - (\frac{\mathbf{v}_{3} \circ \mathbf{u}_{1}}{\mathbf{u}_{1} \circ \mathbf{u}_{1}}) \mathbf{u}_{1} \\ & \dots \\ & \mathbf{u}_{n} = \mathbf{v}_{n} - (\frac{\mathbf{v}_{n} \circ \mathbf{u}_{n-1}}{\mathbf{u}_{n-1} \circ \mathbf{u}_{n-1}}) \mathbf{u}_{n-1} - \dots - (\frac{\mathbf{v}_{n} \circ \mathbf{u}_{1}}{\mathbf{u}_{1} \circ \mathbf{u}_{1}}) \mathbf{u}_{1}. \end{aligned}$$

Pak $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ jsou vzájemně ortogonální.

Obsah

- Základní algebraické struktury
 - Binární relace
 - Zobrazení
 - Ekvivalence a rozklady
 - Ekvivalence a zobrazení
 - Rozklady množin na kartézský součin
 - Uzávěrové systémy
 - Základní algebraické struktury
 - Pravidla pro počítání v okruzích
- Vektorové prostory
 - Aritmetické vektorové prostory
 - Eukleidovské vektorové prostory
- Matice

Nechť T je číselné těleso, m, n jsou čísla přirozená a nechť $a_{ij} \in T$ pro i = 1, ..., m, j = 1, ..., n. Dvojindexované schéma

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

se nazývá **matice typu** $m \times n$ **nad** T. Číslo a_{ij} se nazývá **prvek matice** A z i-tého řádku a j-tého sloupce. Číslo i se nazývá **řádkový**, číslo j **sloupcový index** prvku a_{ij} .

Někdy budeme matici A označovat jen stručně $A = ||a_{ij}||$. Nechť $r = \min(m, n)$; pak řekneme, že prvky $a_{11}, a_{22}, \ldots, a_{rr}$ tvoří **hlavní diagonálu matice** A.

Příklad

$$A = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 1 & \frac{1}{4} & -2 & -\frac{2}{3} \\ 0 & 0 & 7 & 1 \end{pmatrix} \text{ je matice typu } 3 \times 4 \text{ nad tělesem } \mathbb{Q},$$

kde prvky $2, \frac{1}{4}$ a 7 tvoří hlavní diagonálu.

Definice

Matice $A = \|a_{ij}\|$ typu $m \times n$, kde m = n, se nazývá **čtvercová matice (stupně** n**)**. Čtvercová matice A se nazývá **diagonální**, pokud všechny její prvky, které neleží na hlavní diagonále jsou rovny 0. Diagonální matice se nazývá **skalární**, jestliže všechny její prvky na hlavní diagonále jsou si rovny. Skalární matice se nazývá **jednotková matice stupně** n, jsou-li všechny její prvky na hlavní diagonále rovny 1 (budeme ji označovat E_n). Matici $N = \|n_{ij}\|$ typu $m \times n$ nazveme **nulová matice**, jestliže $n_{ij} = 0$ pro každé $i = 1, \ldots, m$, $j = 1, \ldots, n$.

Příklad

Nechť A,B,C,D,E_2 jsou čtvercové matice stupně 2 nad tělesem \mathbb{Q} : $A=\begin{pmatrix}2&1\\0&-3\end{pmatrix}, B=\begin{pmatrix}4&0\\0&0\end{pmatrix}, C=\begin{pmatrix}-3&0\\0&-3\end{pmatrix}, D=\begin{pmatrix}0&0\\0&0\end{pmatrix}, E_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$

Pak A není diagonální, B je diagonální, ale není skalární, C, D, E_2 jsou skalární, přičemž D je nulová a E_2 je jednotková.

Označení. Symbolem $\mathcal{M}_{m \times n}(T)$ resp. $\mathcal{M}_n(T)$ označíme množinu všech matic typu $m \times n$ resp. všech čtvercových matic stupně n nad tělesem T.

Dvě matice $A = ||a_{ij}||$, $B = ||b_{ij}||$ z $\mathcal{M}_{m \times n}(T)$ jsou si **rovny**, jestliže $a_{ij} = b_{ij}$ pro každé i = 1, ..., m, j = 1, ..., n. Zapisujeme A = B.

Definice

Nechť $A = \|a_{ij}\|$, $B = \|b_{ij}\| \in \mathcal{M}_{m \times n}(T)$. Součtem matic A a B rozumíme matici $A + B = \|c_{ij}\|$, kde $c_{ij} = a_{ij} + b_{ij}$ pro každé $i = 1, \ldots, m, j = 1, \ldots, n$.

Příklad

Součtem matic
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 2 & 0 \end{pmatrix}$ je matice $A + B = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$.

Množina $\mathcal{M}_{m \times n}(T)$ spolu se zavedenou operací sčítání matic tvoří abelovskou grupu.

Důkaz. Nechť $A = \|a_{ij}\|, B = \|b_{ij}\|, C = \|c_{ij}\| \in \mathcal{M}_{m \times n}(T)$. Jelikož sčítání v T je asociativní, t.j.

$$a_{ij}+(b_{ij}+c_{ij})=(a_{ij}+b_{ij})+c_{ij}, \quad \forall i,j,$$

platí také A+(B+C)=(A+B)+C, t.j. $(\mathcal{M}_{m\times n}(T),+)$ je pologrupa. Nechť $N=\|n_{ij}\|\in\mathcal{M}_{m\times n}(T)$ je nulová matice, t.j. $n_{ij}=0$ pro každé i,j. Pak $a_{ij}+0=0+a_{ij}=a_{ij}$, odtud A+N=N+A=A, tedy N je jednotkou v $(\mathcal{M}_{m\times n}(T),+)$. Označme -A matici, jejíž prvky jsou $-a_{ij}$, t.j. $-A=\|-a_{ij}\|$. Snadno se přesvědčíme, že A+(-A)=(-A)+A=N, tedy -A je prvek inverzní k A, tedy $(\mathcal{M}_{m\times n}(T),+)$ je grupa. Jelikož sčítání v T je komutativní: $a_{ij}+b_{ij}=b_{ij}+a_{ij}$, je také A+B=B+A, tedy tato grupa je abelovská.

Matici -A budeme nazývat **matice opačná k** A.

Nechť T je číselné těleso, $A \in \mathcal{M}_{m \times n}(T)$. Prvky z T budeme nazývat skaláry. Zavedeme levou vnější operaci $: T \times \mathcal{M}_{m \times n}(T) \to \mathcal{M}_{m \times n}(T)$ takto: $c \in T$, $A = \|a_{ij}\|$, pak $cA = \|c \cdot a_{ii}\|$ je tzv. **násobení matice skalárem**.

Příklad

Nechť
$$T = \mathbb{Q}$$
, $A = \begin{pmatrix} 0 & 0 & 1 \\ -2 & 1 & 0.5 \end{pmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{Q})$, pak $4A = \begin{pmatrix} 0 & 0 & 4 \\ -8 & 4 & 2 \end{pmatrix}$ a $-2A = \begin{pmatrix} 0 & 0 & -2 \\ 4 & -2 & -1 \end{pmatrix}$.

Nechť T je číselné těleso, $\mathcal{M}_{m\times n}(T)$ množina všech matic typu $m\times n$ nad T, + sčítání matic, \cdot levá vnější operace násobení matice skalárem. Pak $(\mathcal{M}_{m\times n}(T),+,T,\cdot)$ je vektorový prostor dimenze $m\times n$ nad T.

Důkaz. Dle Věty 3.1 je $(\mathcal{M}_{m\times n}(T),+)$ abelovská grupa, stačí tedy ověřit (i), (ii), (iii), (iv) z definice vektorového prostoru. Snadno lze dokázat, že pro každé $A,B\in\mathcal{M}_{m\times n}(T),\ c,d\in T$ platí

(i)
$$c(A+B)=cA+cB$$

(ii)
$$(c+d)A = cA + dA$$

(iii)
$$(cd)A = c(dA)$$

(iv)
$$1A = A$$

a tedy $(\mathcal{M}_{m\times n}(T);+,T,\circ)$ je vektorový prostor nad T. Dále, označme J_{ij} matici takovou, že prvek v i-tém řádku a j-tém sloupci je roven 1 a všechny ostatní prvky jsou rovny 0:

$$J_{ij} = \left(egin{array}{cccccc} 0 & \dots & 0 & \dots & 0 \\ dots & & & & & \\ 0 & \dots & 1 & \dots & 0 \\ dots & & & & \\ 0 & \dots & 0 & \dots & 0 \end{array}
ight).$$

Pak $\{J_{ij}; i=1,\ldots,m, j=1,\ldots,n\}$ tvoří bázi tohoto vektorového prostoru, neboť zřejmě pro $A=\|a_{ij}\|$ platí

$$A = a_{11}J_{11} + a_{12}J_{12} + \cdots + a_{1n}J_{1n} + a_{21}J_{21} + \cdots + a_{mn}J_{mn}.$$

Dle Důsledků Steinitzovy věty je dimenze tohoto vektorového prostoru rovna počtu prvků báze, t.j. $m \times n$. (Ověření, že J_{ij} jsou lineárně nezávislé je snadné.)

Nechť $A = \|a_{ij}\|$ je matice typu $m \times n$. **Matici transponovanou k matici** A nazýváme matici $A^T = \|a_{ji}\|$ typu $n \times m$, která vznikne z A vzájemnou záměnou řádků a sloupců (t.j. otočením A podle hlavní diagonály).

Příklad

Je-li
$$A = \begin{pmatrix} -1 & 0 & 3 \\ 4 & 10 & -2 \end{pmatrix}$$
, pak $A^T = \begin{pmatrix} -1 & 4 \\ 0 & 10 \\ 3 & -2 \end{pmatrix}$.

Snadno lze ověřit, že $(A+B)^T = A^T + B^T$ a $(cA)^T = cA^T$.

Nyní zavedeme tzv. součin matic:

Definice

Nechť $A = \|a_{ij}\|$ je typu $m \times n$, nechť $B = \|b_{jk}\|$ je typu $n \times p$ jsou matice nad tělesem T. **Součinem matic** A **a** B (v tomto pořadí) nazveme matici $AB = \|c_{ik}\|$ typu $m \times p$, pro jejíž prvky platí:

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \cdots + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}$$

pro každé i = 1, ..., m, k = 1, ..., p.

Poznámka. Můžeme tedy násobit matice *A* a *B* jen tehdy, je-li počet sloupců matice *A* roven počtu řádků matice *B*. Tedy, jestliže existuje součin *AB*, nemusí existovat součin *BA*.

Poznámka. Pravidlo o násobení A a B si lze zapamatovat takto: násobíme i-tý řádek matice A k-tým sloupcem matice B, abychom obdrželi prvek c_{ik} matice AB.

Příklad

Mějme matice
$$A = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & -2 & 1 & -1 \\ 3 & 1 & 2 & 1 \end{pmatrix}$,

A typu 2×3 , B typu 3×4 . Zřejmě součin matic B a A neexistuje. Lze ale násobit matice A a B, přičemž AB je typu 2×4 a

$$AB = \begin{pmatrix} 11 & -5 & 3 & 2 \\ 7 & 0 & 6 & -1 \end{pmatrix},$$

kde

$$c_{11} = 2 \cdot 1 + 3 \cdot 2 + 1 \cdot 3 = 2 + 6 + 3 = 11,$$

 $c_{12} = 2 \cdot 0 + 3 \cdot (-2) + 1 \cdot 1 = 0 - 6 + 1 = -5,$
 \vdots
 $c_{21} = (-1) \cdot 1 + 1 \cdot 2 + 2 \cdot 3 = -1 + 2 + 6 = 7,$
 \vdots

Násobení matic je asociativní, t.j. jestliže $A \in \mathcal{M}_{m \times n}(T)$, $B \in \mathcal{M}_{n \times p}(T)$, $C \in \mathcal{M}_{p \times r}(T)$, pak

$$(AB)C = A(BC).$$

Důkaz. Nechť $A = \|a_{ij}\|$, $B = \|b_{jk}\|$, $C = \|c_{kl}\|$. Označme $D = AB = \|d_{ik}\|$ (je typu $m \times p$), $F = BC = \|f_{jl}\|$ (je typu $n \times r$). Tedy $d_{ik} = \sum_{j=1}^n a_{ij}b_{jk}$, $f_{jl} = \sum_{k=1}^p b_{jk}c_{kl}$. Dále vypočítáme prvek v i-tém řádku a I-tém sloupci matic (AB)C a A(BC). Pro (AB)C je to

$$\sum_{k=1}^{p} d_{ik} c_{kl} = \sum_{k=1}^{p} (\sum_{j=1}^{n} a_{ij} b_{jk}) c_{kl} = \sum_{k=1}^{p} \sum_{j=1}^{n} (a_{ij} b_{jk}) c_{kl},$$

a pro matici A(BC) je to prvek

$$\sum_{j=1}^{n} a_{ij} f_{jl} = \sum_{j=1}^{n} a_{ij} \left(\sum_{k=1}^{p} b_{jk} c_{kl} \right) = \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ij} (b_{jk} c_{kl}).$$

Protože sčítání v T je komutativní a asociativní, násobení v T je asociativní, oba tyto prvky se sobě rovnají (pro každé i, l), tedy dle definice rovnosti matic platí (AB)C = A(BC).

Poznámka. Vzhledem k asociativitě násobení matic není nutné součiny závorkovat, t.j. místo (*AB*)*C* budeme psát jen *ABC*.

Poznámka. Násobení matic není obecně komutativní, a to ani v případě, že oba součiny *AB* i *BA* existují! Například pro čtvercové matice stupně 2

$$A = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

je

$$AB = \left(egin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}
ight)
eq \left(egin{array}{cc} 0 & 0 \\ 2 & 0 \end{array}
ight) = BA.$$

Násobení matic je distributivní vzhledem ke sčítání, t.j. pro $A \in \mathcal{M}_{m \times n}(T)$, $B, C \in \mathcal{M}_{n \times p}(T)$ platí A(B+C) = AB + AC, pro $D \in \mathcal{M}_{p \times r}(T)$ platí (B+C)D = BD + CD.

Důkaz. Nechť $A = \|a_{ij}\|$, $B = \|b_{jk}\|$, $C = \|c_{jk}\|$. Označme $A(B+C) = F = \|f_{ik}\|$, $AB+AC = G = \|g_{ik}\|$. Pak $f_{ik} = \sum_{j=1}^n a_{ij}(b_{jk}+c_{jk}) = \sum_{j=1}^n (a_{ij}b_{jk}+a_{ij}c_{jk}) = g_{ik}$ pro každé i,k, tedy A(B+C) = AB+AC. Druhý distributivní zákon (B+C)D = BD+CD se dokazuje analogicky.

Tvrzení. Platí, že $(AB)^T = B^T A^T$.

Nechť T je těleso, $n \in \mathbb{N}$. Pak $\mathcal{M}_n(T) = (\mathcal{M}_n(T), +, \cdot)$ je unitární okruh, jehož jednotkou je jednotková matice. Je-li n > 1, pak tento okruh není komutativní a obsahuje dělitele nuly. Je-li n = 1, pak $\mathcal{M}_1(T)$ je komutativní těleso.

Důkaz. Dle Věty 3.1 je $(\mathcal{M}_n(T),+)$ abelovská grupa, dle Věty 3.3 je $(\mathcal{M}_n(T),\cdot)$ pologrupa, zřejmě E_n je její jednotkou. Dle Věty 3.4 platí distributivní zákony, tedy $(\mathcal{M}_n(T);+,\cdot)$ je okruh. Je-li n>1 a

$$A, B \in \mathcal{M}_{n}(T), A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 1 \\ \vdots & & & \\ 0 & \dots & 0 & 1 \end{pmatrix}, \text{ pak}$$

$$AB = \begin{pmatrix} 0 & \dots & 0 & n \\ 0 & \dots & 0 & 0 \\ \vdots & & & \\ 0 & \dots & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 \\ \vdots & & & \\ 0 & \dots & 0 & 0 \end{pmatrix} = BA, \text{ t.j. } AB \neq BA,$$

přičemž B je levý a A je pravý dělitel 0.

Je-li n = 1, pak $A = ||a_{11}||$, $B = ||b_{11}||$, tedy pro sčítání i násobení platí pravidla z T, t.j. $\mathcal{M}_1(T)$ je komutativní těleso.