FIT I 045: Algorithms and Programming Fundamentals in Python Lecture 14 Divide and Conquer

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING

Objectives

Objectives of this lecture are to:

- 1. Understand design paradigm divide-and-conquer
- 2. Know how to sort efficiently (Mergesort)

This covers learning outcomes:

- 2 choose and implement appropriate problem solving strategies;
- 5 determine the computational cost and limitations of algorithms

Overview

- 1. Divide-and-conquer paradigm
- 2. Mergesort
- 3. Linear-time Merge
- 4. Quicksort

Computational Complexity of Insertion Sort

```
def insert(i, lst): n = i

j = i

while j > 0 and lst[j-1] > lst[j]: \longrightarrow 0(1)

lst[j-1], lst[j] = lst[j], lst[j-1] \longrightarrow 0(0)

j = j - 1

0(1)

0(0)

0(0)

0(0)
```

```
def insertion_sort(lst): \longrightarrow n = len(lst)
for i in range(1, len(lst)): \longrightarrow O(n)
insert(i, lst) \longrightarrow O(n)
O(n^2)
```

Total cost of insert calls

best case (sorted input):

$$\begin{array}{rcl}
 & n \text{ times} \\
1 + 1 + 1 + \dots + 1 & = O(n)
\end{array}$$

• worst case (inversely sorted input): $1+2+\cdots+(n-1)+n=O(n^2)$ = (n+1)n/2 as previously

Quadratic complexity

Quadratic complexity means that 2x input leads to 4x computation time

Conversely: half input means only quarter computation time

So solving two inputs of half size each can be done in half the time!

Or four inputs of quarter size can be solved in a quarter of the time

...and so on

This motivates divide-and-conquer strategy

illustration: [Levitin, p. 133]

illustration: [Levitin, p. 170]

Goal: getting to "linearithmic" time by dividing log n times

Overview

- I. Divide-and-conquer paradigm
- 2. Mergesort
- 3. Linear-time Merge
- 4. Quicksort

Application to sorting

merge solutions

How to solve subproblems

Insertion Sort?

What would be resulting time complexity?

Merge Sort by Example


```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:

    # set lst to concatenation of merged chunks of
    # size k

    k = 2 * k
    return ls</pre>
```



```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:
        nxt = []
        # for all pairs of consecutive chunks
        # ls[a:b], ls[b:c]:
        # merge and concatenate to nxt
        ls = nxt
        k = 2 * k
    return ls</pre>
```



```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:
        nxt = []
        # for all pairs of consecutive chunks
        # ls[a:b], ls[b:c]:
            nxt += merge(ls[a:b], ls[b:c])
        ls = nxt
        k = 2 * k
    return ls</pre>
```



```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:
        nxt = []
        for a in range(0, n, 2*k):
        # ls[a:b], ls[b:c]:
            nxt += merge(ls[a:b], ls[b:c])
        ls = nxt
        k = 2 * k
    return ls</pre>
```



```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:
        nxt = []
        for a in range(0, n, 2*k):
            b, c = a + k, a + 2*k
            nxt += merge(ls[a:b], ls[b:c])
        ls = nxt
        k = 2 * k
    return ls</pre>
```


- Let k_i be chunk size after i iterations of loop
- In the beginning: $k_0 = 1$
- In every iteration size is doubled: $k_i = 2k_{i-1}$, i.e., $k_i = 2^i$
- After $l = \lceil \log_2 n \rceil$ iterations: $k_l = 2^{\lceil \log_2 n \rceil} \ge n$
- So at most $O(\log_2 n)$ outer loop iterations

Quiz time (https://flux.qa)

Clayton: AXXULH
Malaysia: LWERDE

- Let k_i be chunk size after i iterations of loop
- In the beginning: $k_0 = 1$
- In every iteration size is doubled: $k_i = 2k_{i-1}$, i.e., $k_i = 2^i$
- After $l = \lceil \log_2 n \rceil$ iterations: $k_l = 2^{\lceil \log_2 n \rceil} \ge n$
- So at most $O(\log_2 n)$ outer loop iterations
- Inner loop iterations: $\frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \cdots$

```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n: —
                                                              O(\log n)
                                                      O(\log n)
         nxt = []
                                                      O(\log n) | O(\log n)
         for a in range (0, n, 2*k):
                                                               O(n)
              b_{r} c = a + k_{r} a + 2*k
                                                       O(n)
                                                               O(n)
              nxt += merge(ls[a:b], ls[b:c]) \rightarrow
         ls = nxt —
                                                    \rightarrow O(\log n) | O(\log n)
         k = 2 * k
                                                    \rightarrow O(\log n) | O(\log n)
    return ls —
```

- Let k_i be chunk size after i iterations of loop
- In the beginning: $k_0 = 1$
- In every iteration size is doubled: $k_i = 2k_{i-1}$
- After $l = \lceil \log_2 n \rceil$ iterations: $k_l = 2^{\lceil \log_2 n \rceil} \ge$
- So at most $O(\log_2 n)$ outer loop iterations

= 1 (geometric series)

• Inner loop iterations:
$$\frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots < n\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots\right) = n$$

Overview

- I. Divide-and-conquer paradigm
- 2. Mergesort
- 3. Linear-time Merge
- 4. Quicksort

```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:
                                                      O(\log n)
                                               O(\log n)
        nxt = []
                                               O(\log n) O(\log n)
        for a in range (0, n, 2*k):
                                                O(n)
                                                        O(n)
            b, c = a + k, a + 2*k
                                                O(n)
                                                        O(n)
            nxt += merge(ls[a:b], ls[b:c]) \rightarrow
        ls = nxt —
                                              \rightarrow O(\log n) O(\log n)
        k = 2 * k —
                                              \rightarrow O(\log n) O(\log n)
    return ls ———
```

- What is total merging cost?
- Define complexity of merge in terms of len(ls1) +len(ls2)
- Need to aim for linear time complexity

Merging by repeated insertion

```
def insertion_merge(11, 12):
    res = 11 + 12
    n1, n2 = len(11), len(12)
    for i in range(n1, n1+n2):
        insert(i, res)
    return res
```

Worst case: 12 [n-1] < 11 [0]

n I*n2 comparisons

Smart Merging Algorithm

```
def merge(11, 12):
    res = []
    n1, n2 = len(11), len(12)
    i, j = 0, 0
    while i < n1 and j < n2:
        if l1[i] <= 12[j]:
            res += [l1[i]]
            i += 1
        else:
            res += [l2[j]]
            j += 1
    return res + l1[i:] + l2[j:]</pre>
```


Computational Complexity of Smart Merging Algorithm

```
def merge(11, 12):
                                   n = n1 + n2
   res = [] —
                                         O(0)
   n1, n2 = len(11), len(12)
                                         O(0)
   i, j = 0, 0
   while i < n1 and j < n2:</pre>
       <u>if</u> 11[i] <= 12[j]:7
         res += [l1[i]]
          i += 1
       else:
          res += [12[j]]
          j += 1
   return res + 11[i:] + 12[j:] —
```

- Loop terminates after n1 increments of i or n2 increments of j
- In every iteration either i or j are incremented
- So loop terminates after at most nI+n2 = n iterations
- Final concatenation in O(n+nI+n2) = O(n)

```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n: —
                                                        O(\log n)
                                                O(\log n)
        nxt = []
                                                O(\log n) | O(\log n)
        for a in range (0, n, 2*k):
                                                         O(n)
            b, c = a + k, a + 2*k
                                                  O(n)
                                                         O(n)
            nxt += merge(ls[a:b], ls[b:c]) \rightarrow
        ls = nxt -
                                               \rightarrow O(\log n) | O(\log n)
        k = 2 * k —
                                               \rightarrow O(\log n) | O(\log n)
    return ls —
```

- Let k_i be chunk size after i iterations of loop
- Merging cost in *i*-th iteration: $\frac{n}{2k_i}T_{\text{merge}}(2k_i)$

pairs of chunks to merge cost of merging

```
def mergesort(ls):
    k, n = 1, len(ls)
    while k < n:
                                                           O(\log n)
                                                   O(\log n)
         nxt = []
                                                   O(\log n) O(\log n)
         for a in range (0, n, 2*k):
                                                            O(n)
             b, c = a + k, a + 2*k
                                                            O(n)
             nxt += merge(ls[a:b], ls[b:c]) \rightarrow O(n \log n) O(n \log n)
         ls = nxt —
                                                 \rightarrow O(\log n) | O(\log n)
        k = 2 * k ----
                                                 \rightarrow O(\log n) | O(\log n)
    return ls ——
```

 $O(n\log n)$ $O(n\log n)$

- Let k_i be chunk size after i iterations of loop
- Merging cost in *i*-th iteration: $\frac{n}{2k_i}T_{\text{merge}}(2k_i) = O\left(n\frac{2k_i}{2k_i}\right) = O(n)$
- Resulting total merge cost: $O(n \log n)$

Overview

- I. Divide-and-conquer paradigm
- 2. Mergesort
- 3. Linear-time Merge
- 4. Quicksort

Summary of Mergesort

With Mergesort, we split our list until it was single elements, then merged sorted lists

Splitting the list was simple; just split in half

Merging took work; needed to keep the lists sorted

Going the other way

Quicksort splits the lists intelligently

Choose an item to be the "pivot" (say, the first item)

Partition into two parts based on the pivot

Quicksort - Partitioning

- Pivot is in final position
- Items on the left and right do not need to change sides
- Sort each side independently

Quicksort - Algorithm

5

Good splits

Bad splits

Summary

Algorithmic paradigm: divide-and-conquer

- halving problem sizes leads to trivial subproblems after logarithmically many reductions
- if not too much overhead: allows to replace linear complexity term by logarithmic term

Merge Sort allows worst-case "linearithmic" sorting

Next lecture

Recursive functions