Redes de Computadores

Parte 01 – Introdução

Prof. Kleber Vieira Cardoso

Tópicos

- Definição
- A Internet
 - Protocolo e serviço
- A periferia da rede
 - Aplicações, redes de acesso e meios físicos

Definição

- Uma rede de computadores é um conjunto de computadores e equipamentos de comunicação interligados através de meios de comunicação
 - Os objetivos primordiais de uma rede é permitir que os usuários se comuniquem e compartilhem recursos
- Uma rede de comunicação é um conceito mais amplo, pois não se restringe a computadores

Definição

- Vale lembrar que:
 - Vários objetos podem ser ou possuir computadores
 - Exemplos: celular, TV, carro, geladeira, etc.
 - Há vários tipos de equipamentos de comunicação
 - Em breve, vamos conhecer alguns
 - Há vários meios (ou canais) de comunicação
 - Em breve, vamos conhecer alguns
 - O usuário de uma rede pode ser uma pessoa ou um software
 - Vários tipos de recursos podem ser compartilhados ou acessados através de uma rede

Tópicos

- Definição
- A Internet
 - Protocolo e serviço
- A periferia da rede
 - Aplicações, redes de acesso e meios físicos

A Internet

- Será utilizada como referência ao longo da disciplina, porque:
 - É formada através da interligação de uma grande quantidade de redes
 - Interliga uma imensa variedade de equipamentos
 - Ilustra a maior parte dos conceitos (se não todos) que estão relacionados a redes de computadores

Internet: visão dos componentes

 Bilhões de dispositivos conectados:

 Executando aplicações de rede

- •Fibra, cabo metálico, radio, satélite
- •Taxa de transmissão: largura de banda
- Enlaces sem fio

 Enlaces cabeados

Smartphone

- Comutação de pacotes: encaminhamento de pacotes ("fatias" dos dados)
 - •Roteadores e comutadores

Internet: visão dos componentes

- Internet: "rede de redes"
 - ISPs interconectados
- Protocolos controlam envio e recebimento de mensagens
 - E.g., HTTP, TCP, IP, DCF (802.11)
- "Padrões" da Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Internet: uma visão de serviços

- Infraestrutura que fornece serviços às aplicações:
 - Web, VoIP, e-mail, jogos, vídeo, redes sociais, ...
- Fornece interfaces de programação para as aplicações:
 - Permite que as aplicações se "conectem" com a Internet
 - Fornece diferentes tipos de serviço
 - E.g., sem conexão, orientado a conexão

O que é um protocolo?

<u>protocolos humanos:</u>

- "que horas são?"
- "tenho uma dúvida"
- apresentações
- ... mensagens específicas são enviadas
- ... ações específicas são realizadas quando as mensagens são recebidas

Protocolos de rede:

- máquinas ao invés de pessoas
- todas as atividades de comunicação na Internet são governadas por protocolos

Protocolos definem o formato e a ordem das mensagens enviadas e recebidas pelas entidades da rede, e também as ações tomadas quando da transmissão ou recepção de mensagens

O que é um protocolo?

Um protocolo humano e um protocolo de rede:

Tópicos

- Definição
- A Internet
 - Protocolo e serviço
- A periferia (ou borda) da rede
 - Aplicações, redes de acesso e meios físicos

Estrutura da rede em mais detalhe

Periferia da rede

- Aplicações e hospedeiros (hosts) ou sistemas finais
- Redes de acesso, meio físico: enlaces de comunicação

Núcleo da rede:

- Roteadores interconectados
- Rede de redes

A borda da rede

- Sistemas finais (hosts):
 - Executam programas de aplicação
 - E.g., WWW, e-mail, P2P
- Modelo cliente/servidor
 - O host cliente faz os pedidos que são atendidos pelos servidores
 - E.g., WWW Firefox (navegador)/
 Apache (servidor); E-mail Microsoft
 Outlook (cliente)/ Microsoft Exchange
 Server (servidor)
- Modelo par-a-par (peer-topeer):
 - Interação simétrica entre os hosts
 - E.g., Skype,qBittorrent/Vuze/Deluge/uTorrent

A borda da rede: serviço orientado a conexão

Objetivo: transferência de dados entre sistemas finais

- Handshaking: inicialização (preparação) para a transf. de dados
 - Alô, alô protocolo humano
 - inicializa o "estado" em dois hosts que desejam se comunicar
- TCP Transmission Control Protocol
 - serviço orientado a conexão da Internet

TCP [RFC 793]

- Transferência de dados através de um fluxo de bytes ordenados e confiável
 - perda: reconhecimentos e retransmissões
- controle de fluxo:
 - transmissor não inunda o receptor
- controle de congestionamento :
 - transmissor "diminui a taxa de transmissão" quando a rede está congestionada

A borda da rede: serviço sem conexão

- Objetivo: transferência de dados entre sistemas finais
 - mesmo que antes!
- UDP User Datagram Protocol [RFC 768]: serviço sem conexão da Internet
 - transferência de dados não confiável
 - não controla o fluxo
 - nem congestionamento

Aplicações que usam TCP:

 HTTP (WWW), FTP (transferência de arquivo), SSH (acesso remoto), SMTP (e-mail)

Aplicações que usam UDP:

 Teleconferência, telefonia Internet (VoIP), streaming de media

Redes de acesso e meios físicos

P: Como conectar os sistemas finais ao núcleo da rede?

- redes de acesso residencial
- redes de acesso institucional (escola, empresa)
- redes de acesso móvel

Alguns aspectos comumente considerados:

- largura de banda (bits por segundo) da rede de acesso
- compartilhada ou dedicada

Acesso residencial: xDSL (digital subscriber line)

Usa linha telefôncia existente até o DSLAM que está na central

Dados sobre a linha DSL vão para a Internet

Voz sobre a linha DSL vão para a rede telefônica

Diferentes tecnologias:

- •ADSL: sobe ~700Kbps, desce ~5Mbps
- •ADSL 2+: sobe ~IMbps, desce ~I5Mbps
- •VDSL2: sobe ~5Mbps, desce ~50Mbps

Acesso residencial: cable modem ou HFC (hybrid fiber coax)

Usa a rede de distribuição de vídeo (TV por assinatura) para enviar/receber também dados

Acesso residencial: cable modem

- Assimétrica
 - •Até 30Mbps de descida e 2 Mbps de subida
 - •Padrão DOCSYS 3.0 prevê descida de ~400Mbps e subida de ~100Mbps
- Rede de cabo métalico e fibra conecta residências ao ISP
 - •Residências compartilham a rede de acesso até o cable headend
 - *Diferente do DSL, o qual tem rede de acesso dedicada até a central

Acesso residencial: Fiber-To-The-Home (FFTH)

- Leva fibra da operadora até a casa do usuário
 - Diferentes tecnologias de distribuição, e.g., PON, AON
 - Já é possível usar taxas de Gbps
 - Tipicamente, serviços ainda são da ordem Mbps

Acesso residencial: rede doméstica

Acesso institucional: Ethernet

- Tipicamente usado empresas, universidades, órgãos governamentais, etc.
- Taxas de transmissão: 10 Mbps, 100Mbps, 16bps, 106bps
- Atualmente, os sistemas finais estão conectados através de comutadores (switches) Ethernet

Redes de acesso sem fio (wireless)

Acesso sem fio compartilhado

 Acesso usa geralmente um estação base (e.g., ponto de acesso, torre celular, eNodeB)

Redes locais sem fio:

Alcance dentro de uma edificação 802.11b/g/n/ac (WiFi): 11, 54, 450, 600 Mbps

Acesso sem fio de longa distância

Fornecido por operadora de telecom Dezenas de km 3G, 4G (LTE): entre I e I0 Mbps

Host: envio de pacotes de dados

Envio do host:

- Obtém mensagem da aplicação
- Divide mensagem partes menores, i.e., *pacotes*, de comprimento *L* bits
- Transmite cada pacote através da rede de accesso na *taxa de transmissão R*
 - Taxa de transmissão do enlace ou capacidade do enlace ou largura de banda do enlace

Atraso de tempo necessário = para colocar pacote do pacote de L bits no enlace = $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Meios físicos

- Enlace físico: bit de dados transmitido se propaga através do enlace
- Meios guiados:
 - os sinais se propagam em meios sólidos: cobre, fibra
- Meios não guiados:
 - os sinais se propagam
 livremente: ar, água, espaço

<u>Par Trançado (TP - *Twisted*</u> <u>Pair)</u>

- dois fios de cobre isolados
 - Categoria 3: fios tradicionais de telefonia, 10 Mbps Ethernet
 - Categoria 5: 100MbpsEthernet
 - Categoria 5e e 6: GigabitEthernet
 - Categoria 6a e 6e: 10GbE

Meios físicos: cabo coaxial, fibra ótica

Cabo coaxial

- Fio (transporta o sinal) dentro de outro fio (blindagem)□
 - Em geral, é usado de forma compartilhada
- Alguns usos: Ethernet 10Mbps (antigo), cable modem

Cabo de fibra ótica

- Fibra de vidro transporta pulsos de luz
- Oferece altas taxas
 - ✓ Ex.: 100 Gbps (comercialmente disponível), > 15Tbps (em testes)
- Baixa taxa de erros

Meios físicos: ar, espaço

- Sinal transportado em ondas eletromagnéticas
- Não há "fio" físico
 - Fácil de implantar
 - Pode atravessar paredes
 - Usuário pode se mover
- Sofre efeitos do ambiente de propagação:
 - desvanecimento
 - reflexão, refração
 - obstrução por objetos
 - interferência

Tipos de enlaces de rádio:

Terrestres

- ✓ Em geral, utiliza a faixa de microondas (300MHz-300Ghz)
- ✓ Curta distâncias (redes locais)•E.g., WiFi
- ✓ Longa distância •E.g., 3G, 4G

□ Satélite

- √ "Repetidor" bem posicionado
- ✓ Útil para atender áreas com pouca (ou nenhuma) infraestrutura
- ✓ Pode oferecer centenas de Mbps, porém tem longos atrasos (devido à distância)

Exercícios

- 1) Por que os padrões são importantes para os protocolos?
- 2) A taxa de transmissão HFC é dedicada ou é compartilhada entre usuários? É possível haver colisões na direção provedor-usuário de um canal HFC? Por quê?
- 3) Cite as tecnologias de acesso residencial disponíveis em sua cidade. Para cada tipo de acesso, apresente a taxa *downstream*, a taxa *upstream* e o preço mensal anunciados.