Cálculo I Prof. Rafael B. de R. Borges

Lista de exercícios - Derivada

Questão 1. Definimos as funções trigonométricas hiperbólicas seno hiperbólico (senh x) e cosseno hiperbólico (cosh x) por

$$senh x = \frac{e^x - e^{-x}}{2}, \quad cosh x = \frac{e^x + e^{-x}}{2}.$$
 (1)

Definimos as demais funções hiperbólicas de maneira análoga às funções circulares, isto é,

$$tgh x = \frac{\operatorname{senh} x}{\cosh x}, \quad \operatorname{sech} x = \frac{1}{\cosh x},$$
(2)

e etc.

- a) Use as igualdades (1) para mostrar que $\cosh^2 x \sinh^2 x = 1$. Ou seja, essas funções podem ser usadas para parametrizar a hipérbole $x^2 y^2 = 1$ (daí o nome).
- b) Calcule a derivada de e^{-x} usando a regra
 - (i) do inverso multiplicativo;
- (ii) da cadeia.
- c) Use (1) e a letra (b) para mostrar que $(\operatorname{senh} x)' = \operatorname{cosh} x$ e $(\operatorname{cosh} x)' = \operatorname{senh} x$.
- d) Use as definições das funções hiperbólicas (isto é, (2) e etc.) e a letra (c) para calcular as derivadas de:
 - (i) tgh x

(iii) $\operatorname{sech} x$

(ii) $\coth x$

(iv) cossech x

Questão 2. Calcule as seguintes derivadas, usando a regra da função inversa:

a) $\sqrt[n]{x}$, $n \in \mathbb{N}$

c) $\operatorname{arctgh} x$

b) $\operatorname{arccosh} x$

d) arcsech x

Questão 3. Calcule a derivada das seguintes funções, usando a regra do produto:

a) e^{2x}

e) $(1+x^2) \operatorname{arctg} x$

b) $\sin x \cos x$

f) $x^2 \operatorname{senh} x \operatorname{sen} x$

c) x^2e^x

g) $\frac{\sec x}{x^3}$

d) $\sqrt{x} \cosh x$

h) $tg^2 x$

Questão 4. Calcule a derivada das seguintes funções, usando a regra do inverso multiplicativo ou da divisão:

a)
$$\frac{4}{x^4}$$

e)
$$\frac{\cos x}{\cosh x}$$

b)
$$\frac{1}{\sqrt{x}}$$

$$f) \frac{e^x + x}{x+1}$$

c)
$$\frac{\cos x}{x^2}$$

g)
$$\frac{\sin x}{x}$$

$$d) \frac{x}{\ln x}$$

h)
$$\frac{x^4}{x^2-1}$$

Questão 5. Calcule a derivada das seguintes funções, usando a regra da cadeia:

a)
$$e^{kx}$$
, onde k é uma constante

e)
$$x^{x}$$
 (dica: $x^{x} = (e^{\ln x})^{x}$)

b)
$$\ln(x^4 + x)$$

f)
$$\sec^2 x$$

c)
$$(x^3 + 2x - 1)^{100}$$

g)
$$sen(1/x)$$

d)
$$2^x$$
 (dica: $2^x = (e^{\ln 2})^x$)

h)
$$\sqrt{\cosh x^2}$$

Questão 6. Repare que a resposta da questão 3h é a mesma da questão 5f. Tente explicar o porquê.

Questão 7. Calcule a derivada das seguintes funções:

a)
$$\sqrt[10]{x} + 2 \ln 2$$

c)
$$(x \ln x - x)^{\pi}$$

$$b) \frac{e^{x^2} - x^2}{\sqrt{\ln x}}$$

d)
$$\frac{e^{\sec(\operatorname{tg} x)} + 1}{\cosh 5}$$

Questão 8. Ache a equação da reta tangente a f(x) no ponto x_0 :

a)
$$f(x) = e^{2x}$$
 (questão 3a), $x_0 = 1$

a)
$$f(x) = e^{2x}$$
 (questão 3a), $x_0 = 1$ c) $f(x) = \ln(x^4 + x)$ (q. 5b), $x_0 = 1$

b)
$$f(x) = \frac{\sin x}{x}$$
 (q. 4g), $x_0 = \frac{\pi}{2}$

b)
$$f(x) = \frac{\sin x}{x}$$
 (q. 4g), $x_0 = \frac{\pi}{2}$ d) $f(x) = (x^3 + 2x - 1)^{100}$ (q. 5c), $x_0 = 0$

Questão 9. Seja $f(x) = x^3 + x + 1$ e $g(x) = f^{-1}(x)$.

- a) Explique por que g(1) = 0.
- b) Calcule q'(1).

Questão 10. Considere f(x) derivável. Mostre que

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x).$$

Dica do Mestre: use o velho truque sujo da Matemática de somar e subtrair um termo conveniente.

Gabarito

1a)

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$
$$= \frac{(e^{2x} + 2 + e^{-2x}) - (e^{2x} - 2 + e^{-2x})}{4} = 1$$

1b)
$$\left(\frac{1}{e^x}\right)' = -\frac{(e^x)'}{e^{2x}} = -\frac{e^x}{e^{2x}} = -e^{-x}$$

1b)
$$(e^{-x})' = e^{-x} \cdot (-x)' = -e^{-x}$$

1c)
$$(\operatorname{senh} x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{(e^x)' - (e^{-x})'}{2} = \frac{e^x + e^{-x}}{2} = \cosh x$$

1d)
$$(\operatorname{tgh} x)' = \left(\frac{\operatorname{senh} x}{\operatorname{cosh} x}\right)' = \frac{\operatorname{cosh} x \cdot \operatorname{cosh} x - \operatorname{senh} x \cdot \operatorname{senh} x}{\operatorname{cosh}^2 x} = \operatorname{sech}^2 x$$

1d)
$$(\operatorname{sech} x)' = \left(\frac{1}{\cosh x}\right)' = -\frac{\sinh x}{\cosh^2 x} = -\operatorname{tgh} x \cdot \operatorname{sech} x$$

2a)

$$g(x) = \sqrt[n]{x}, \quad f(x) = x^n, \quad f'(x) = nx^{n-1}, \quad g'(x) = \frac{1}{n(g(x))^{n-1}} = \frac{1}{n\sqrt[n]{x^{n-1}}} = \frac{1}{n}x^{\frac{1}{n}-1}$$

2b)
$$\frac{1}{\sqrt{x^2-1}}$$

2c) Como $\cosh^2 x - \sinh^2 x = 1$, temos

$$\frac{\cosh^2 x}{\cosh^2 x} - \frac{\sinh^2 x}{\cosh^2 x} = \frac{1}{\cosh^2 x} \quad \therefore \quad 1 - \operatorname{tgh}^2 x = \operatorname{sech}^2 x.$$

Assim,

$$g(x) = \operatorname{arctgh} x, \quad f(x) = \operatorname{tgh} x, \quad f'(x) = \operatorname{sech}^{2} x,$$
$$g'(x) = \frac{1}{\operatorname{sech}^{2}(\operatorname{arctgh} x)} = \frac{1}{1 - \operatorname{tgh}^{2}(\operatorname{arctgh} x)} = \frac{1}{1 - x^{2}}.$$

2d)
$$-\frac{1}{|x|\sqrt{1-x^2}}$$

3a)
$$(e^x \cdot e^x)' = e^x \cdot e^x + e^x \cdot e^x = 2e^{2x}$$

3b)
$$\cos^2 x - \sin^2 x$$

3c)
$$2x e^x + x^2 e^x = (x^2 + 2x) e^x$$

$$3d) \frac{\cosh x}{2\sqrt{x}} + \sqrt{x} \sinh x$$

3e)
$$2x \arctan x + \frac{1+x^2}{x^2+1} = 2x \arctan x + 1$$

3f) $2x \operatorname{senh} x \operatorname{sen} x + x^2 \cosh x \operatorname{sen} x + x^2 \operatorname{senh} x \cos x$

3g)
$$\frac{\operatorname{tg} x \sec x}{x^3} - 3 \frac{\sec x}{x^4}$$

3h)
$$2 \sec^2 x \tan x$$

4a)
$$-4\frac{(x^4)'}{(x^4)^2} = -16\frac{x^3}{x^8} = -\frac{16}{x^5}$$

4b)
$$-\frac{(\sqrt{x})'}{(\sqrt{x})^2} = -\frac{1/2\sqrt{x}}{x} = -\frac{1}{2\sqrt{x^3}}$$

4c)
$$\frac{(\cos x)'x^2 - \cos x(x^2)'}{x^4} = \frac{-x^2 \sin x - 2x \cos x}{x^4}$$

4d)
$$\frac{\ln x - 1}{(\ln x)^2}$$

4e)
$$\frac{-\sin x \cosh x - \cos x \sinh x}{\cosh^2 x}$$

4f)
$$\frac{(e^x+1)(x+1)-(e^x+x)}{(x+1)^2}$$

$$4\mathbf{g}) \,\, \frac{x \cos x - \sin x}{x^2}$$

4h)
$$\frac{4x^3(x^2-1)-2x^5}{(x^2-1)^2}$$

5a)
$$u = kx, (e^u)' = e^u u' = ke^{kx}$$

5b)
$$u = x^4 + x, (\ln u)' = \frac{u'}{u} = \frac{4x^3 + 1}{x^4 + x}$$

5c)
$$100(x^3 + 2x - 1)^{99}(3x^2 + 2)$$

5d)
$$u = (\ln 2)x, (e^u)' = \ln 2 \cdot e^{(\ln 2)x} = \ln 2 \cdot 2^x$$

5e)
$$(\ln x + 1) x^x$$

5f)
$$u = \sec x, (u^2)' = 2uu' = 2\sec x(\operatorname{tg} x \sec x) = 2\operatorname{tg} x \sec^2 x$$

$$\mathbf{5g)} - \frac{\cos(1/x)}{x^2}$$

5h)
$$\frac{1}{2\sqrt{\cosh x^2}} \cdot \operatorname{senh} x^2 \cdot 2x$$

7a)
$$\frac{1}{10\sqrt[10]{x^9}}$$

7b)
$$\frac{(2xe^{x^2} - 2x)\sqrt{\ln x} - (e^{x^2} - x^2)/2x\sqrt{\ln x}}{\ln x}$$

7c)
$$\pi(x \ln x - x)^{\pi - 1} \ln x$$

7d)
$$\frac{e^{\sec(\operatorname{tg} x)}\operatorname{tg}(\operatorname{tg} x)\sec(\operatorname{tg} x)\sec^2 x}{\cosh 5}$$

8a)
$$y = f(x_0) + f'(x_0)(x - x_0) = e^2 + 2e^2(x - 1)$$

8b)
$$y = \frac{2}{\pi} - \frac{4}{\pi^2} \left(x - \frac{\pi}{2} \right)$$

8c)
$$y = \ln 2 + \frac{5}{2}(x-1)$$

8d)
$$y = 1 - 200x$$

9b)
$$g'(1) = \frac{1}{f'(g(1))} = \frac{1}{3 \cdot 0^2 + 1} = 1$$