Глава 8. Системы дифференциальных уравнений

Системы дифференциальных уравнений – это набор дифференциальных уравнений, содержащих несколько неизвестных функций. Решение системы – это набор функций, который удовлетворяет всем уравнениям системы. Общего метода решения систем дифференциальных уравнений не существует.

8.1 Метод исключения

Метод исключения аналогичен соответствующему алгебраическому методу. Выразим одну из неизвестных функций из какого-нибудь уравнения и подставим в оставшиеся уравнения. Затем выражаем следующую функцию и так далее, пока система не решится.

Пример 1

Решить систему уравнений:

(2): -y'' + 6y' - 8y = 0 – линейное однородное уравнение с постоянными коэффициентами. Составляем характеристическое уравнение:

$$-\lambda^{2} + 6\lambda - 8 = 0 \Leftrightarrow \lambda^{2} - 6\lambda + 8 = 0 \Leftrightarrow (\lambda - 2)(\lambda - 4) = 0 \Leftrightarrow \begin{bmatrix} \lambda = 2 \\ \lambda = 4 \end{bmatrix}$$

Общее решение: $y = C_1 e^{2t} + C_2 e^{4t}$ – подставляем в уравнение (1):

(1):
$$x = 5C_1e^{2t} + 5C_2e^{4t} - 2C_1e^{2t} - 4C_2e^{4t} \Leftrightarrow x = 3C_1e^{2t} + C_2e^{4t}$$
.

108 Глава 8

Пример 2

$$\begin{cases} x' = 3x - 2y \\ y' = 4x + 7y \\ x(0) = 1 \\ y(0) = 0 \end{cases}$$

Сначала решим систему уравнений без начальных условий:

$$\begin{cases} y = \frac{3}{2}x - \frac{1}{2}x' & (1) \\ \frac{3}{2}x' - \frac{1}{2}x'' = 4x + \frac{21}{2}x - \frac{7}{2}x' & (2) \end{cases}$$

Преобразуем уравнение (2): $-\frac{1}{2}x'' + 5x' - \frac{29}{2}x = 0$.

Напишем характеристическое уравнение:

$$-\frac{1}{2}\lambda^2 + 5\lambda - \frac{29}{2} = 0 \iff \lambda^2 - 10\lambda + 29 = 0 \iff \lambda = \frac{10 \pm \sqrt{100 - 116}}{2} \iff \lambda_{1,2} = 5 \pm 2i$$

Общее решение: $x = C_1 e^{5t} \cos 2t + C_2 e^{5t} \sin 2t$.

Соответственно,

$$x' = 5C_1e^{5t}\cos 2t - 2C_1e^{5t}\sin 2t + 5C_2e^{5t}\sin 2t + 2C_2e^{5t}\cos 2t.$$

Подставим x и x' в уравнение (1):

$$y = \frac{3}{2}C_1e^{5t}\cos 2t + \frac{3}{2}C_2e^{5t}\sin 2t - \frac{5}{2}C_1e^{5t}\cos 2t + C_1e^{5t}\sin 2t - \frac{5}{2}C_2e^{5t}\sin 2t - C_2e^{5t}\cos 2t \iff$$

$$\Leftrightarrow y = (-C_1 - C_2)e^{5t}\cos 2t + (-C_2 + C_1)e^{5t}\sin 2t.$$

$$\Leftrightarrow y = (-C_1 - C_2) e^{st} \cos 2t + (-C_2 + C_1) e^{st} \sin 2t.$$

Удовлетворим начальным условиям:

Otbet:
$$\begin{cases} x = e^{5t} \cos 2t - e^{5t} \sin 2t, \\ y = 2e^{5t} \sin 2t. \end{cases}$$

8.2 Матричный метод

Метод применим только для линейной системы дифференциальных уравнений с постоянными коэффициентами.

Мы будем применять матричный метод только для линейной однородной системы с постоянными коэффициентами. Продемонстриуем метод на примере.

Пример 1

Решить систему уравнений:

$$\begin{cases} x' = x - 2y - z \\ y' = -x + y + z \\ z' = x - z \end{cases}$$

1) Выпишем матрицу системы:

$$A = \left(\begin{array}{rrr} 1 & -2 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{array}\right).$$

2) Найдём собственные числа и собственные векторы матрицы A :

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -2 & -1 \\ -1 & 1 - \lambda & 1 \\ 1 & 0 & -1 - \lambda \end{vmatrix} = 0.$$

Решая уравнение, находим λ . Мы будем решать только те задачи, в которых все собственные числа λ различны.

Итак, мы получили 3 различных собственных числа λ . Для каждого собственного числа λ решаем уравнение:

$$AX = \lambda X \iff (A - \lambda I) X = 0.$$

Находим
$$X = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$$
.

 Γ лава 8

3) Выписываем ответ:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = e^{\lambda_1 t} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} + e^{\lambda_2 t} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} + e^{\lambda_3 t} \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix}$$

$$X_1$$

Это был общий способ. Решим конкретно наш пример.

$$\det (A - \lambda I) = 0 \Leftrightarrow \begin{vmatrix} 1 - \lambda & -2 & -1 \\ -1 & 1 - \lambda & 1 \\ 1 & 0 & -1 - \lambda \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow (1 - \lambda)^{2} (-1 - \lambda) - 2 + (1 - \lambda) + 2 (1 + \lambda) = 0 \Leftrightarrow$$

$$\Leftrightarrow (\lambda^{2} - 2\lambda + 1) (-1 - \lambda) - 2 + 3 + \lambda = 0 \Leftrightarrow$$

$$\Leftrightarrow -\lambda^{2} - \lambda^{3} + 2\lambda + 2\lambda^{2} - 1 - \lambda + 1 + \lambda = 0 \Leftrightarrow$$

$$\Leftrightarrow -\lambda^{3} + \lambda^{2} + 2\lambda = 0 \Leftrightarrow \lambda (\lambda^{2} - \lambda - 2) = 0 \Leftrightarrow$$

$$\Leftrightarrow \lambda (\lambda - 2) (\lambda + 1) = 0$$

Итак, собственные числа:

$$\lambda_1 = 0,$$

$$\lambda_2 = 2,$$

$$\lambda_3 = -1.$$

1. $\lambda_1 = 0$.

Найдём собственные векторы:

$$(A - \lambda_1 I) X_1 = 0 \iff AX_1 = 0 \iff$$

$$\Leftrightarrow \begin{pmatrix} 1 & -2 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \xi_1 - 2\xi_2 - \xi_3 = 0 \\ -\xi_1 + \xi_2 + \xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_1 = \xi_3 \\ \xi_2 = 0 \\ \xi_1 - \xi_3 = 0 \end{cases}$$

Так как ξ_1 и ξ_3 — произвольные постоянные, обозначим их за C_1 :

$$\xi_1 = \xi_3 = C_1 = const, \quad \xi_2 = 0.$$

Итак,
$$X_1 = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

2.
$$\lambda_2 = 2$$
.

$$(A - \lambda_2 I) X_2 = 0 \Leftrightarrow \begin{pmatrix} -1 & -2 & -1 \\ -1 & -1 & 1 \\ 1 & 0 & -3 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = 0$$

$$\int -\eta_1 - 2\eta_2 - \eta_3 = 0 \qquad \int \eta_1 = 3\eta_3 \qquad \int \eta_1 = 3\eta_3$$

$$\begin{cases} -\eta_1 - 2\eta_2 - \eta_3 = 0 \\ -\eta_1 - \eta_2 + \eta_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \eta_1 = 3\eta_3 \\ -3\eta_3 - 2\eta_2 - \eta_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \eta_1 = 3\eta_3 \\ \eta_2 = -2\eta_3 \\ -3\eta_3 - \eta_2 + \eta_3 = 0 \end{cases}$$

Пусть $\eta_3 = C_2$, тогда $\eta_2 = -2C_2$, $\eta_1 = 3C_2$.

$$X_2 = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = C_2 \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}.$$

3.
$$\lambda_3 = -1$$
.

$$(A - \lambda_3 I) X_3 = 0 \Leftrightarrow \begin{pmatrix} 2 & -2 & -1 \\ -1 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} 2\zeta_1 - 2\zeta_2 - \zeta_3 = 0 \\ -\zeta_1 + 2\zeta_2 + \zeta_3 = 0 \end{cases} \Leftrightarrow \begin{cases} -2\zeta_2 - \zeta_3 = 0 \\ 2\zeta_2 + \zeta_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \zeta_1 = 0 \\ \zeta_3 = -2\zeta_2 \\ \zeta_3 = 0 \end{cases}$$

Пусть $\zeta_2 = C_3$, тогда $\zeta_3 = -2C_3$.

$$X_3 = \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} = C_3 \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}.$$

 Γ лава 8

Выписываем ответ. В векторной форме:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}.$$

В классической форме:

$$\begin{cases} x = C_1 + 3C_2e^{2t}, \\ y = -2C_2e^{2t} + C_3e^{-t}, \\ z = C_1 + C_2e^{2t} - 2C_3e^{-t}. \end{cases}$$

Пример 2

Решить систему уравнений:

$$\begin{cases} x' = 8y - x, \\ y' = x + y. \end{cases}$$

1) Выписываем матрицу системы:

$$A = \left(\begin{array}{cc} -1 & 8\\ 1 & 1 \end{array}\right)$$

2) Найдём собственные числа и собственные векторы матрицы A :

$$\det (A - \lambda I) = 0 \iff \begin{vmatrix} -1 - \lambda & 8 \\ 1 & 1 - \lambda \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow -(1 + \lambda)(1 - \lambda) - 8 = 0 \Leftrightarrow -1 + \lambda^2 - 8 = 0 \Leftrightarrow$$

$$\Leftrightarrow (\lambda - 3)(\lambda + 3) = 0.$$

Итак, собственные числа:

$$\lambda_1 = 3,$$
$$\lambda_2 = -3.$$

Найдём собственные векторы:

1. $\lambda_1 = 3$.

$$(A - \lambda_1 I) X_1 = 0 \iff \begin{pmatrix} -4 & 8 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = 0 \iff$$

$$\Leftrightarrow \begin{cases} -4\eta_1 + 8\eta_2 = 0 \\ \eta_1 - 2\eta_2 = 0 \end{cases} \Leftrightarrow \begin{cases} \eta_1 = 2\eta_2, \\ \eta_1 = 2\eta_2. \end{cases}$$

Пусть $\eta_2 = C_1$, тогда $\eta_1 = 2C_1$.

$$X_1 = \left(\begin{array}{c} \eta_1 \\ \eta_2 \end{array}\right) = C_1 \left(\begin{array}{c} 2 \\ 1 \end{array}\right)$$

2.
$$\lambda_2 = -3$$
.

$$(A - \lambda_2 I) X_2 = 0 \Leftrightarrow \begin{pmatrix} 2 & 8 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix} = 0$$

$$\Leftrightarrow \begin{cases} 2\zeta_1 + 8\zeta_2 = 0 \\ \zeta_1 + 4\zeta_2 = 0 \end{cases} \Leftrightarrow \begin{cases} \zeta_1 = -4\zeta_2 \\ \zeta_1 = -4\zeta_2 \end{cases}$$

Пусть $\zeta_2 = C_2$, тогда $\zeta_1 = -4C_2$.

$$X_2 = \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix} = C_2 \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

3. Выписываем ответ. В векторной форме:

$$\begin{pmatrix} x \\ y \end{pmatrix} = C_1 e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + C_2 e^{-3t} \begin{pmatrix} -4 \\ 1 \end{pmatrix}.$$

В классической форме:

$$\begin{cases} x = 2C_1e^{3t} - 4C_2e^{-3t} \\ y = C_1e^{3t} + C_2e^{-3t} \end{cases}$$

Решите самостоятельно:

26)
$$\begin{cases} x' = x - y \\ y' = y - x \end{cases}$$
27)
$$\begin{cases} x' = y \\ y' = -2x + 3y \end{cases}$$