Отчёт по лабораторной работе 7

Элементы криптографии. Однократное гаммирование

Максимова Ксения НБИбд-02-18

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	8
Сп	исок литературы	9

List of Figures

11	Drea 1 Von mannarer																									_
4.I	Рис 1.Код программы	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1

1 Цель работы

Освоить на практике применение режима однократного гаммирования.

2 Задание

Разработать приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования.

3 Теоретическое введение

Смысл однократного гаммирования заключается в наложении (снятии) на открытые (зашифрованные) данные последовательности элементов других данных, полученной с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Иными словами, наложение гаммы — это сложение её элементов с элементами открытого (закрытого) текста по некоторому фиксированному модулю, значение которого представляет собой известную часть алгоритма шифрования [1].

Преимущества однократного гаммирования[1]: 1. Абсолютная стойкость шифра в случае, когда однократно используемый ключ, длиной, равной длине исходного сообщения, является фрагментом истинно случайной двоичной последовательности с равномерным законом распределения. 2. Криптоалгоритм не даёт никакой информации об открытом тексте: при известном зашифрованном сообщении все различные ключевые последовательности возможны и равновероятны

При всех очевидных приемуществах, есть один весомый недостаток, который сразу бросается в глаза, - это необходимость иметь огромные объемы данных, которые можно было бы использовать в качестве гаммы. Для этих целей обычно пользуются датчиками настоящих случайных чисел[2].

Необходимые и достаточные условия абсолютной стойкости шифра[1]: - полная случайность ключа; - равенство длин ключа и открытого текста; - однократное использование ключа

4 Выполнение лабораторной работы

Программа, позволяющая шифровать и дешифровать данные в режиме однократного гаммирования.

Figure 4.1: Рис 1.Код программы

Рисунок 1

5 Выводы

Разработано приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования.

Список литературы

- 1. Элементы криптографии. Однократное гаммирование
 - 2. Прикладные задачи шифрования