UNIVERSIDAD TECNOLOGICA DE EL SALVADOR FACULTAD DE INFORMÁTICA Y CIENCIAS APLICADAS ESCUELA DE INFORMÁTICA CATEDRA DE HARDWARE

GUIA DE EJERCICIOS PARA LA PRÁCTICA

Parte I. Hacer el diseño de los circuitos lógicos a partir de las siguientes especificaciones:

- 1. $(AB((\overline{B+C})\overline{A}))+(A+BC(A+\overline{A})(\overline{ABC})).((\overline{AC})+(B+BA))$
- 2. $(AE+DC).(\overline{A+B.C+D((\overline{D+E}).B}).(\overline{D.E}+(\overline{ABCE+ACED}))$
- 3. $(\overline{AB(\overline{D+(CE)})})+(\overline{BD+((AC)+E)}).(\overline{ADE(BD+E(E+A))}).(D+E(AB)).(\overline{AE+CD(BC+AD)})$

Además genere la tabla de la verdad para cada uno de los ejercicios anteriores

Parte II Por medio de las tablas de la verdad genere el circuito lógico original y obtenga el circuito lógico minimizado con sus respectivas expresiones lógicas (originales y minimizadas)

Tabla 2.1	Tabla 2.1	Tabla 2.3
A B C Fx	A B C Fx	A B C D E Fx
	 	0 0 0 0 0 0
	0000	0 0 0 0 1 1
0 0 1 1	0 0 1 0	0 0 0 1 0 1
0 1 0 0	0 1 0 0	0 0 0 1 1 1
0 1 1 0	0 1 1 1	0 0 1 0 0 1
	 	0 0 1 0 1 1
1 0 0 1	1 0 0 1	0 0 1 1 0 0 0 0 1 1 1 0
1 0 1 1	1 0 1 1	0 0 1 1 1 0 0 1 0 0 0 0
1 1 0 0	1 1 0 0	0 1 0 0 1 0
1 1 1 0	1 1 1 0	0 1 0 1 0 0
		0 1 0 1 1 0
		0 1 1 0 0 1
		0 1 1 0 1 1
		0 1 1 1 0 1
		0 1 1 1 1 1
		1 0 0 0 0 1
		1 0 0 0 1 1
		1 0 0 1 0 1
		1 0 0 1 1 1
		1 0 1 0 0 0
		1 0 1 0 1 0
		1 0 1 1 0 0
		1 0 1 1 1 0 1 1 0 0 0 0
		1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
		1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1
		1 1 0 1 0
		1 1 1 0 0 1
		1 1 1 0 1 1
		1 1 1 1 0 1
		1 1 1 1 1 1

PARTE III Encontrar la tabla de la verdad de los siguientes circuitos y determinar a través de minterms aquellas combinaciones que activan un elemento .

1. Circuito 1

2. Circuito 2

PARTE IV. Hacer el diseño del circuito partiendo desde la función lógica que se presenta.

1. A'B'CD+A'BC'D+A'C'D+AB'D'+A'B+A'C+C'D'+B'D

V. Guía a resolver

Para cada compuerta lógica y en base a las variables de entrada, obtenga su correspondiente expresión Booleana y tabla de la verdad

1. Resolución de ejercicios mediante el análisis de las funciones o expresiones booleanas, obtenga el circuito equivalente en cada caso utilizando compuertas lógicas.

$$X = \overline{A} + D * \overline{C} + \overline{B} \overline{C}$$

$$X = A(\overline{D} + BC) + \overline{D(A * \overline{B})} + E$$

$$X = (\overline{D * EC}) + \overline{C(A * \overline{B})} + AB + D$$

$$X = \overline{A + DBC} + \overline{B} \overline{C} * C\overline{A}$$