"Fovea Detector"

https://www.shadertoy.com/view/4dsXzM

From Images to Objects

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees." -- Max Wertheimer, 1923

Recap

- Segmentation vs Boundary Detection vs semantic segmentation / scene parsing
- Why boundaries / Grouping?
- Recap: Canny Edge Detection
- The Berkeley Segmentation Data Set
- pB boundary detector ~2001
- Sketch Tokens 2013

Recap: modern boundary detection

- Learn from humans where image boundaries are.
- Boundaries aren't super well defined.
 - Depth discontinuities
 - Semantic boundaries
 - Texture boundaries
 - Illumination boundaries

Today: Scene Parsing / Semantic Segmentation

- Label every pixel of an image with a category label (usually with the help of contextual reasoning).
- Well known example: TextonBoost
- Detailed look at the "non parametric" approach of Tighe and Lazebnik

Object Recognition and Segmentation are Coupled

No Segmentation

Approximate Segmentation

Good Segmentation

The Three Approaches

Segment → Detect

Detect → Segment

Segment ←→ Detect

Segment first and ask questions later.

- Reduces possible locations for objects
- Allows use of shape information and makes long-range cues more effective
- But what if segmentation is wrong?

Object recognition + data-driven smoothing

- Object recognition drives segmentation
- Segmentation gives little back

He et al. 2004

TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation

J. Shotton; University of Cambridge J. Jinn, C. Rother, A. Criminisi; MSR Cambridge

The Ideas in TextonBoost

- Textons from Universal Visual Dictionary paper [Winn Criminisi Minka ICCV 2005]
- Color models and GC from "Foreground Extraction using Graph Cuts" [Rother Kolmogorov Blake SG 2004]
- Boosting + Integral Image from Viola-Jones
- Joint Boosting from [Torralba Murphy Freeman CVPR 2004]

What's good about this paper

 Provides recognition + segmentation for many classes (for the time it was published)

Combines several good ideas

Very thorough evaluation

TextonBoost Overview

$$\log P(\mathbf{c}|\mathbf{x}, \boldsymbol{\theta}) = \sum_{i} \underbrace{\psi_{i}(c_{i}, \mathbf{x}; \boldsymbol{\theta}_{\psi})}^{\text{shape-texture}} + \underbrace{\pi(c_{i}, \mathbf{x}_{i}; \boldsymbol{\theta}_{\pi})}^{\text{color}} + \underbrace{\lambda(c_{i}, i; \boldsymbol{\theta}_{\lambda})}^{\text{location}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} \underbrace{\phi(c_{i}, c_{j}, \mathbf{g}_{ij}(\mathbf{x}); \boldsymbol{\theta}_{\phi})}_{\text{edge}} - \log Z(\boldsymbol{\theta}, \mathbf{x})$$

Shape-texture: localized textons

$$\psi_i(c_i, \mathbf{x}; \boldsymbol{\theta}_{\psi}) = \log \widetilde{P}_i(c_i | \mathbf{x})$$

Color: mixture of Gaussians

$$P(x|c) = \sum_{k} P(k|c) \mathcal{N}(x \mid \bar{x}_k, \Sigma_k) \qquad \pi(c_i, x_i; \boldsymbol{\theta}_{\pi}) = \log \sum_{k} \boldsymbol{\theta}_{\pi}(c_i, k) P(k|x_i)$$

Location: normalized x-y coordinates

$$\lambda_i(c_i, i; \boldsymbol{\theta}_{\lambda}) = \log \boldsymbol{\theta}_{\lambda}(c_i, \hat{i})$$

Edges: contrast-sensitive Pott's model

$$\phi(c_i, c_j, \mathbf{g}_{ij}(\mathbf{x}); \boldsymbol{\theta}_{\phi}) = -\boldsymbol{\theta}_{\phi}^T \mathbf{g}_{ij}(\mathbf{x}) \delta(c_i \neq c_j) \qquad \mathbf{g}_{ij} = [\exp(-\beta \|x_i - x_j\|^2), 1]^T$$

Texture-Shape

- 17 filters (oriented gaus/lap + dots)
- Cluster responses to form textons
- Count textons within white box (relative to position i)
- Feature = texton + rectangle

Texton Visualization

Results on Boosted Textons

- Boosted shape-textons in isolation
 - Training time: 42 hrs for 5000 rounds on 21class training set of 276 images

Qualitative (Good) Results

Qualitative (Bad) Results

 But notice good segmentation, even with bad labeling

Quantitative Results

class True class	building	grass	tree	cow	sheep	sky	aeroplane	water	face	car	bike	flower	sign	bird	book	chair	road	cat	dog	body	boat
building	61.6	4.7	9.7	0.3		2.5	0.6	1.3	2.0	2.6	2.1		0.6	0.2	4.8		6.3	0.4		0.5	
grass	0.3	97.6	0.5								0.1									1.3	
tree	1.2	4.4	86.3	0.5		2.9	1.4	1.9	8.0	0.1							0.1		0.2	0.1	
cow		30.9	0.7	58.3				0.9	0.4			0.4			4.2					4.1	
sheep	16.5	25.5	4.8	1.9	50.4									0.6			0.2				
sky	3.4	0.2	1.1			82.6		7.5									5.2				
aeroplane	21.5	7.2				3.0	59.6	8.5													
water	8.7	7.5	1.5	0.2		4.5		52.9		0.7	4.9			0.2	4.2		14.1	0.4			
face	4.1		1.1						73.5						8.4			0.4	0.2	5.2	
car	10.1		1.7							62.5	3.8		5.9	0.2			15.7				
bike	9.3		1.3							1.0	74.5		2.5			3.9	5.9		1.6		
flower		6.6	19.3	3.0								62.8			7.3		1.0				
sign	31.5	0.2	11.5	2.1		0.5		6.0		1.5		2.5	35.1		3.6	2.7	8.0	0.3		1.8	
bird	16.9	18.4	9.8	6.3	8.9	1.8		9.4						19.4			4.6	4.5			
book	2.6		0.6						0.4			2.0			91.9					2.4	
chair	20.6	24.8	9.6	18.2		0.2					3.7				1.9	15.4	4.5		1.1		
road	5.0	1.1	0.7					3.4	0.3	0.7	0.6		0.1	0.1	1.1		86.0			0.7	
cat	5.0		1.1	8.9				0.2		2.0					0.6		28.4	53.6	0.2		
dog	29.0	2.2	12.9	7.1				9.7							8.1		11.7		19.2		
body	4.6	2.8	2.0	2.1	1.3	0.2			6.0	1.1					9.9		1.7	4.0	2.1	62.1	
boat	25.1		11.5			3.8		30.6		2.0	8.6		6.4	5.1			0.3				6.6

Closed-universe recognition

Test image

Output

Closed-universe datasets

Open-universe datasets

- Small amount of data
- Static datasets
- Limited variation
- Full annotation

- Large amount of data
- Evolving datasets
- Wide variation
- Incomplete annotation

Open-universe recognition

There are 754152 labelled objects

Polygons in this image

(IMG, XML)

car
car
car
car
traffic light
traffic light
license plat
window
license plat
Street Lamp
building
buildings
road
human
car
window
lamp post
lamp post

Evolving training set

http://labelme.csail.mit.edu/

Open-universe recognition

Very large/open-ended set of classes

nikontante, te z 10g ea of tepoplet, ne te to te think to pole to the contrating the pole to the contration of the contr

Open-universe recognition

on the property of the control of th

Unbalanced data distribution

Potential solution: Lazy learning

LARGE-SCALE NONPARAMETRIC IMAGE PARSING

Joseph Tighe and Svetlana Lazebnik ECCV 2010

Step 1: Scene-level matching

Superpixel features

	Mask of superpixel shape over its bounding box (8×8)	64
Shape	Bounding box width/height relative to image width/height	2
	Superpixel area relative to the area of the image	1
Location	Mask of superpixel shape over the image	64
	Top height of bounding box relative to image height	1
	Texton histogram, dilated texton histogram	100×2
Texture/SIFT	SIFT histogram, dilated SIFT histogram	100×2
	Left/right/top/bottom boundary SIFT histogram	100×4
Color	RGB color mean and std. dev.	3×2
	Color histogram (RGB, 11 bins per channel), dilated hist.	33×2
	Color thumbnail (8×8)	192
Appearance	Masked color thumbnail	192
	Grayscale gist over superpixel bounding box	320

Superpixels

(Felzenszwalb & Huttenlocher, 2004)

Pixel Area (size)

Absolute mask (location)

Texture

Color histogram

Region-level likelihoods

 Nonparametric estimate of class-conditional densities for each class c and feature type k:

$$\hat{P}(f_k(r_i) | c) = \frac{\#(N(f_k(r_i)), c)}{\#(D, c)}$$
Features of class c within some radius of r_i

**Total features of class c in the dataset in the dataset in the dataset in the dataset.

Per-feature likelihoods combined via Naïve Bayes:

$$\hat{P}(r_i \mid c) = \prod_{\text{features } k} \hat{P}(f_k(r_i) \mid c)$$

Region-level likelihoods

Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov random field (MRF) energy function:

$$E(\boldsymbol{c}) = \sum_{i} -\log L(r_i, c_i) + \lambda \sum_{i,j} \delta[c_i \neq c_j] \varphi(c_i, c_j)$$

$$\text{Vector of } \text{Regions} \text{Regions } \text{Likelihood score for } \text{region } r_i \text{ and label } c_i \text{ regions } \text{Smoothing } \text{penalty} \text{ Co-occurrence } \text{penalty}$$

Efficient approximate minimization using α -expansion (Boykov et al., 2002)

Step 3: Global image labeling

 Compute a global image labeling by optimizing a Markov random field (MRF) energy function:

labels

$$E(\boldsymbol{c}) = \sum_{i} -\log L(r_i, c_i) + \lambda \sum_{i,j} \delta[c_i \neq c_j] \varphi(c_i, c_j)$$

$$\text{Vector of } \text{Regions} \text{Regions } \text{Likelihood score for } \text{region } r_i \text{ and label } c_i \text{ Neighboring } \text{Smoothing } \text{penalty} \text{ Co-occurrence } \text{penalty}$$

Step 3: Global image labeling

 Compute a global image labeling by optimizing a Markov random field (MRF) energy function:

$$E(c) = \sum_{i} -\log L(r_i, c_i) + \lambda \sum_{i,j} \delta[c_i \neq c_j] \varphi(c_i, c_j)$$

$$\text{Vector of region labels} \text{Regions region } \text{Regions region } \text{Regions region } \text{Smoothing penalty} \text{Co-occurrence penalty}$$

Original image

Maximum likelihood labeling

Edge penalties

MRF labeling

Datasets

	Training images	Test images	Labels
SIFT Flow (Liu et al., 2009)	2,488	200	33
Barcelona	14,871	279	170
LabelMe+SUN	50,424	300	232

Overall performance

Per-class classification rates

Results on SIFT Flow dataset

Results on LM+SUN dataset

Summary so far

- A lazy learning method for image parsing:
 - Global scene matching
 - Superpixel-level matching
 - MRF optimization
- Challenges
 - Indoor images are hard!
 - We do well on "stuff" but not on "things"

We get the "stuff" but not the "things"

