Podstawy Elektro Sprawo	Ocena				
Nr ćwiczenia: 3					
Temat: Analiza układów RLC					
Rok Akademicki: 2023/2024					
Kierunek, rok, semestr, g					
Skład grupy labo					
1. Jak					
2. Wojcie	ech Niedziela, 160363				
3. Łukasz	Bielaszewski, 160268				

1 Wprowadzenie

Cel ćwiczenia: Poniższe ćwiczenia mają na celu praktyczne zilustrowanie zachowania rezonansu w układach prądu zmiennego z rezystorami, cewkami i kondensatorami oraz przedstawienie jak wykonywane są pomiary prądu zmiennego. Dodatkowo pokazuje ono jak należy analitycznie sprawdzać wyniki pomiarów.

Wiadomości Teoretyczne:

 ${f Drugie}$ ${f Prawo}$ ${f Kirchhoffa:}$ W zamkniętym obwodzie suma spadków napięć równa jest sumie sił elektromotorycznych występujących w tym obwodzie.

2 Przebieg ćwiczeń

Symulacja obwodu

Symualacje obwodów RLC, zostały przeprowadzone w programie LTspice, dla komponentów o wartościach:

$$R=997\Omega, RL=68\Omega, C=3.2nF, L=33mH$$

Z wartością napięcia wymuszenia sinusoidalnego $V_{PP}=5V$

2.1 Zadanie: Rezonans szeregowy

Schemat układu szeregowego RLC

2.1.1 Pomiary napięć

Wykonano serię pomiarów napięć na pojemności, indukcyjności oraz rezystancji. Napięcia na rezystancji pojemności i indukcyjności zmierzono z wykorzystaniem przyrządów programu LTspice. Pomiary przeprowadzono dla częstotliwości pobudzenia z zakresu 1kHz..30kHz. Dokonano zagęszczenia punktów pomiarowych w okolicach częstotliwości, w których napięcie na rezystancji zaczyna gwałtownie zanikać.

kHz	1	8	9	10	11	14	15	16	17	19	21	28	30
U_R [V]	0.038	0.392	0.480	0.590	0.732	1.392	1.63	1.618	1.424	1.027	0.771	0.421	0.372
U_L [V]	0.008	0.666	0.936	1.318	1.868	4.81	4.992	4.969	4.578	3.722	3.156	2.331	2.228
U_C [V]	1.7	2.3	2.5	2.8	3.2	4.8	4.9	4.3	3.5	2.3	1.6	0.6	0.5

Charakterystyka częstotliwości

Wykres napięć

Poniższy wykres przedstawia wartości napięć na źródle zaisalnia oraz na elementach R,L,C w funkcji częstotliwości pobudzenia

Maksymalny spadek napięć na rezystancji Częstotliwość dla której spadek napięcia na rezystancji przyjmuje wartość maksymalną to 15.5kHz. Możemy sprawdzić czy ta wartość jest poprawna korzystając ze wzoru: $f_0=\frac{1}{2\pi\sqrt{LC}}$

$$f_0 = \frac{1}{2\pi\sqrt{33*10^{(-3)}*3.2*10^{(-9)}}}$$
$$f_0 = \frac{10^6}{2\pi\sqrt{105.6}}$$
$$f_0 \approx 15.488kHz$$

Zrzut oscyloskopowy przebiegów napięcia źródła i prądu w obwodzie (Częstotliwość 15.5 kHz) Wykres I

Zrzut oscyloskopowy przebiegów napięcia źródła i prądu w obwodzie (Częstotliwość 6 kHz) Wykres II

Zrzut oscyloskopowy przebiegów napięcia źródła i prądu w obwodzie (Częstotliwość 25 kHz) Wykres III

2.1.2 Wnioski na podstawie zrzutów oscyloskopowych

Przy częstotliwościach poniżej rezonanswoej (**Wykres II**), reaktancja indukcyjna $X_L = wL$ jest mniejsza niż reaktancja pojemnościowa $X_C = \frac{1}{wC}$. Skutkuje to tym, że obwód jest charakteru pojemnościowego, prąd na wykresie "wyprzedza"napięcie czyli przesunięcie fazowe jest dodatnie.

Przy częstotliwościach powyżej rezonanswoej (**Wykres III**), reaktancja indukcyjna $X_L = wL$ jest większa niż reaktancja pojemnościowa $X_C = \frac{1}{wC}$. Skutkuje to tym, że obwód jest charakteru indukcyjnego, napięcie na wykresie "wyprzedza" prąd czyli przesunięcie fazowe jest ujemne.

2.1.3 Dobroć elementu indukcyjnego

Używając wyznaczonych empirycznie parametrów obliczamy dobroć elementu indukcyjnego przy użyciu wzoru:

$$Q_L = \frac{w_o L}{R_L}$$

Przekształcając wzór na f_o możemy wyliczyć pulsację rezonansową obwodu (w_o)

$$f_o = \frac{w_o}{2\pi}$$

$$w_o = 15.488 * 2\pi \approx 97.314$$

$$Q_L = \frac{97.134 * 0.033}{68} \approx 0.0472$$

2.2 Zadanie: Rezonans równoległy

Schemat układu równoległego RLC

2.2.1 Pomiary napięć

Wykonano serię pomiarów napięć na zaciskach oraz rezystancji. Napięcia na rezystancji i zaciskach zmierzono z wykorzystaniem przyrządów programu LTspice. Pomiary przeprowadzono dla częstotliwości pobudzenia z zakresu 1kHz..30kHz. Dokonano zagęszczenia punktów pomiarowych w okolicach częstotliwości, w których napięcia na elementach R,L,C przyjmują wartości szczytowe.

kHz	1	3	5	7	9	11	13	14	15	16	17	20	25
U_R [V]	1.73	1.48	1.15	0.85	0.59	0.37	0.19	0.10	0.031	0.038	0.10	0.26	0.51
$U_{Zaciski}[V]$	0.36	0.96	1.33	1.52	1.66	1.72	1.75	1.763	1.766	1.767	1.764	1.74	1.68

Charakterystyka częstotliwości

Wykres napięć

Poniższy wykres przedstawia wartości napięć (otrzymane przez wcześniej wykonane pomiary) na dwójniku LC oraz rezystancji w funkcji częstotliwości pobudzenia.

Przbiegi napięć dla obwodu pozostającego w stanie rezonansu

Poniższy wykres przedstawia przebieg napięcia dla obwodu równoleg
łego RLC z częstotliwością pobudzenia równą 15.5kHz

Wykres dla obwodu pozostającego w stanie rezonansu

V(N001,N002) - napięcie źródła

V(N002) - spadek napięcia na rezystancji

2.3 Zadanie: Obwód RC zasilony prądem przemiennym

2.3.1 Dane oraz schemat

Symualacje obwodów RC, zostały przeprowadzone w programie LTspice, dla komponentów o wartościach:

$$R = 1000\Omega, C = 10nF$$

Z wartością napięcia wymuszenia sinusoidalnego $V_{PP}=5V$

Schemat obwodu RC

2.3.2 Wyniki symulacji

Żeby utworzyć charakterystykę częstotliwości zostały przeprowadzone pomiary napięcia szczytowego w częstotliwościach 1 - 19 kHz, z krokiem 2kHz, na rezystancji i źródle pobudzenia w programie LTspice. Następnie przy użyciu wzoru na napięcie skuteczne przy źródle sinusoidalnym $V_{skuteczne} = \frac{V_{szczytowe}}{\sqrt{2}}$ wyliczono wartośći skuteczne napięcia. Z II prawa Kirchoffa wyliczono U_C w następujący sposób:

$$V_{in} = \sqrt{U_R^2 + U_C^2}$$

$$V_{in}^2 = U_R^2 + U_C^2$$

$$\sqrt{V_{in}^2 - U_R^2} = U_C$$

$$V_{in} = 1.7677$$

	Hz	1	3	5	7	9	11	13	15	17	19
U_I	R [V]	0.111	0.327	0.529	0.709	0.863	0.999	1.106	1.199	1.272	1.332
$U_{\mathbf{c}}$	$_{C}[V]$	1.764	1.737	1.686	1.619	1.542	1.454	1.379	1.299	1.227	1.161

Charakterystyka częstotliwości RC

Wykres Zależności $U_C = f(w)$

Weryfikacja danych pomiarowych

Korzystając z wzoru na reaktancję pojemnościową, impendację oraz prąd można analitycznie sprawdzić poprawność naszych pomiarów wyprowadzając wzory tak jak ukazano poniżej:

$$X_C = -j(\frac{1}{wC})$$

$$Z = R - jX_C$$

$$|Z| = \sqrt{R^2 + X_C^2}$$

$$I = \frac{V_{in}}{|Z|}$$

$$U_R = I * R$$

Przykład weryfikacji

Pomiary i obliczenia wykazują, że przy częstotliwości równej 1kHZ $U_R=0.111$ i $U_C=1.764$.

$$X_C = -j(\frac{1}{2000\pi * 10^{-8}}) = \approx -j(15915.5)$$

$$Z = 1000\Omega - j(15915.5)$$

$$|Z| = \sqrt{1000^2 + (-15915.5))^2} \approx 15943.9\Omega$$

$$I = \frac{1.7677V}{15943.9\Omega} \approx 0.1108mA$$

$$U_R = 1.108 * 10^{-4}A * 1000 \approx 0.1108$$

Pomiędzy wynikami jest marginalna różnica rzędu tysięcznych, wynikająca z zaokrąglania wyników. Pomiary były wykonane poprawnie.

2.3.3 Zmiany skutecznej wartości prądu

Poniższy wykres reprezentuje zmianę skutecznej wartości prądu w obwodzie w funkcji częstotliwości pobu dzenia [Hz]. Wykorzystano w tym celu prawo Ohma dla obwodów prądu przemiennego:

$$I_L = \frac{U_R}{R}$$

2.3.4 Przesunięcie fazowe w układzie RC dla f = 1kHz

$$\phi 1 = atan(\frac{wL}{R}) \approx 0.2045 rad \approx 11.715^{\circ}$$

2.4 Zadanie : Obwód RL zasilony prądem przemiennym

2.4.1 Dane oraz schemat

Symualacje obwodu RL, zostały przeprowadzone w programie LTspice, dla komponentów o wartościach:

$$R = 1000\Omega, L = 33mH, R_L = 68\Omega$$

Z wartością napięcia wymuszenia sinusoidalnego $V_{PP}=5V$

Schemat obwodu RL

2.4.2 Wyniki symulacji

Żeby utworzyć charakterystykę częstotliwości zostały przeprowadzone pomiary napięcia szczytowego w częstotliwościach 1 - 19 kHz, z krokiem 2kHz, na rezystancji i źródle pobudzenia w programie LTspice. Następnie przy użyciu wzoru na napięcie skuteczne przy źródle sinusoidalnym $V_{skuteczne} = \frac{V_{szczytowe}}{\sqrt{2}}$ wyliczono wartośći skuteczne napięcia. Z II prawa Kirchoffa wyliczono U_L w następujący sposób:

$$V_{in} = \sqrt{U_R^2 + U_L^2}$$

$$V_{in}^2 = U_R^2 + U_L^2$$

$$\sqrt{V_{in}^2 - U_R^2} = U_L$$

$$V_{in} = 1.7677$$

kHz	1	3	5	7	9	11	13	15	17	19
U_R [V]	1.730	1.501	1.227	1.003	0.834	0.709	0.614	0.541	0.482	0.434
$U_L[V]$	0.359	0.933	1.272	1.4557	1.558	1.618	1.657	1.682	1.701	1.713

Charakterystyka częstotliwości RL

Wykres Zależności $U_L = f(w)$

Weryfikacja danych pomiarowych

Korzystając z wzoru na reaktancję indukcyjną, impendację oraz prąd można analitycznie sprawdzić poprawność naszych pomiarów wyprowadzając wzory tak jak ukazano poniżej:

$$X_L = wL = 2\pi * f * L$$

$$Z = \sqrt{R^2 + X_L^2}$$

$$I = \frac{V_{in}}{Z}$$

$$U_R = I * 1000$$

Przykład weryfikacji

Pomiary i obliczenia wykazują, że przy częstotliwości równej 1kHZ $U_R=1.730$ i $U_L=0.359$.

$$X_L = 2\pi * 10^3 * 33 * 10^{-3} \approx 207.3451$$

$$Z = \sqrt{10^6 + 207.3451^2} \approx 1021.2698$$

$$I = \frac{1.7677}{1021.2698} \approx 0.0017308$$

$$U_R = 0.0017308 * 10^3 \approx 1.7308$$

Pomiędzy wynikami jest marginalna różnica rzędu tysięcznych, wynikająca z zaokrąglani wyników. Pomiary były wykonane poprawnie.

2.4.3 Zmiany skutecznej wartości prądu

Poniższy wykres reprezentuje zmianę skutecznej wartości prądu w obwodzie w funkcji częstotliwości pobu dzenia [Hz]. Wykorzystano w tym celu prawo Ohma dla obwodów prądu przemiennego:

$$I_L = \frac{U_R}{R}$$

2.4.4 Przesunięcie fazowe w układzie RL dla f = 1kHz

$$\phi 1 = atan(\frac{X_C}{R}) \approx 0.0047734 rad \approx 0.2736^{\circ}$$

2.4.5 Relacje pomiędzy X_L , f i I

Po porównaniu wykresów można zauważyć relacje pomiędzy reaktancją indukcyjną, częstotliwością pobudzenia oraz wartością prądu w obwodzie. Mianowicie reaktancja indukcyjna X_L jest proporcjonalna do częstotliwości pobudzenia (f) natomiast wartość prądu I_L jest odwrotnie proporcjonalna do nich. Można to potwierdzić chociażby poprzez przeanalizowanie wzoru na reaktancję indukcyjną:

$$X_L = \frac{U_L(t)}{I_L(t)}$$

3 Wnioski

Cel ćwiczenia, jakim było praktyczne zilustrowanie zachowania rezonansu w układach prądu zmiennego oraz pokazano jak analitycznie sprawdzać wyniki pomiarów wykonanych przy użyciu narzędzi tj. multimetr czy oscyloskop. Przykłady weryfikacji danych pomiarowych pokazują, że pomiary były wykonane z dokładnością wystarczającą dla uzyskania wiarygodnych wyników.

Ćwiczenie potwierdziło prawidłowość II prawa Kirchhoffa jako sposobu obliczania wartości napięcia w obwodzie z zmiennym źródłem z dwona elementami w którym napięcie skuteczne jednego z elementów zostało już zmierzone.

Literatura

- B. Jaworski, A. Dietłaf, L. Miłkowska: Kurs fizyki. Elektryczność i magnetyzm. Warszawa: Państwowe Wydawnictwo Naukowe, 1984.
- Jay Orear: Fizyka. T. 1. Warszawa: Wydawnictwa Naukowo-Techniczne, 1998. ISBN 83-204-2451-8.