# **Monte Carlo Simulation**

Name: Naman Goyal Roll No: 180123029

Lab No: **05** 

## Ques.1) (a)

-> Samples are being generated for N(0,1) using Box-Muller and Marsgalia-Bray methods for 100 and 10000 values. The mean and variance observed :

#### Mean:

| Method         | 100 values | 10000 values |
|----------------|------------|--------------|
| Box-Muller     | -0.128     | -0.013       |
| Marsgalia-Bray | -0.036     | -0.005       |

#### Variance:

| Method         | 100 values | 10000 values |
|----------------|------------|--------------|
| Box-Muller     | 0.94       | 1.007        |
| Marsgalia-Bray | 0.98       | 1.0129       |

Ques.1) (b)
-> For Box-Muller:



No of iterations = 100

-> For Marsgalia-Bray:



No of iterations = 100



No of iterations = 10000



No of iterations = 10000

Ques.1) (c)
-> Box-Muller for N(0,5):



No of iterations = 100

-> Box-Muller for N(5,5):



No of iterations = 10000



No of iterations = 100



No of iterations = 10000

-> The orange lines represent the actual distribution curve according to the formula of Normal distribution and the blue lines represent the observed one.

### -> Marsgalia-Bray for N(0,5):





No of iterations = 100

No of iterations = 10000

#### -> Marsgalia-Bray for N(5,5):





No of iterations = 100

No of iterations = 10000

- -> The orange lines represent the actual distribution curve according to the formula of Normal distribution and the blue lines represent the observed one.
- -> It can be concluded from both the above methods that generated distribution converges to the actual distribution according to the formula on increasing the number of iterations in the process.

#### Ques.2)

-> The time of executions in the above methods are:

| Method         | 100 values | 10000 values |
|----------------|------------|--------------|
| Box-Muller     | 0.000177   | 0.018710     |
| Marsgalia-Bray | 0.0001467  | 0.019892     |

```
naman-ubuntu@naman:~/Desktop/Monte_Lab5$ python3 180123029_NamanGoyal_a.py
Mean generated for 100 values is -0.12843280738574303
Variance generated for 100 values is 0.9363486343921261
Time of execution for 100 values is 0.0001766681671142578
Mean generated for 10000 values is -0.012292695595812704
Variance generated for 10000 values is 1.007429959144274
The time of execution for 10000 values is 0.01871013641357422
naman-ubuntu@naman:~/Desktop/Monte_Lab5$ |
```

```
naman-ubuntu@naman:~/Desktop/Monte_Lab5$ python3 180123029_NamanGoyal_b.py
Mean generated for 100 values is -0.03635027010377276
Variance generated for 100 values is 0.6845029390132865
Time of execution for 100 values is 0.00014662742614746094
Proportion of Values Rejected for 100 samples = 0.22
Mean generated for 10000 values is -0.005834580943937106
Variance generated for 10000 values is 1.0129621631803947
The time of execution for 10000 values is 0.01989269256591797
Proportion of Values Rejected for 10000 samples = 0.2174
naman-ubuntu@naman:~/Desktop/Monte_Lab5$
```

#### Ques.3)

- -> From the above 2 figs., we can see that the **Proportion of Values Rejected** for **Marsgalia-Bray** for the 2 samples :
  - 1.) For 100 values :: **0.22**
  - 2.) For 10000 values :: **0.2174**
- -> The values are very close to 1- $\pi/4 = 0.214601$ .
- -> So they observed are values are **comparable** to the above-given value.