Laboratorio di Algoritmi e Strutture Dati 2020/2021 — Seconda parte

Mattia Bonaccorsi — 124610 – bonaccorsi.mattia@spes.uniud.it Muhamed Kouate — 137359 – kouate.muhamed@spes.uniud.it Enrico Stefanel — 137411 – stefanel.enrico@spes.uniud.it Andriy Torchanyn — 139535 – torchanyn.andriy@spes.uniud.it

12 maggio 2021

Indice

1	Alberi binari di ricerca semplici 1.1 Definizione di BST	2
2	Alberi binari di ricerca di tipo AVL 2.1 Definizione di Albero AVL	2
3	Alberi binari di ricerca di tipo Red-Black 3.1 Definizione di RB Tree	3
	Calcolo della complessità 4.1 Caso random	6

1 Alberi binari di ricerca semplici

1.1 Definizione di BST

Un albero binario di ricerca (o BST) T è una struttura dati ad albero, in cui valgono le seguenti proprietà:

$$\forall x \in T, \ \forall y \in left(T) \to y.key < x.key$$

$$\forall x \in T, \ \forall z \in right(T) \to z.key > x.key$$
 (*)

dove k.key indica il valore della chiave di k, e left(B) (rispettivamente right(B)) indica il sotto-albero sinistro (rispettivamente destro) di B.

Esempio Un BST di tipo semplice, in cui ogni nodo contiene una chiave numerica dell'insieme $\{1, 2, 3, 4, 5, 6, 10\}$ e un campo alfanumerico di tipo stringa, è il seguente:

Bisogna notare che non è l'unico BST costruibile partendo dallo stesso insieme di chiavi. Un'alternativa, per esempio, potrebbe essere stata quella di utilizzare il valore minore come chiave per la radice dell'albero, e attaccare in ordine crescente le altre chiavi, ognuna come figlio destro del nodo precedente.

2 Alberi binari di ricerca di tipo AVL

2.1 Definizione di Albero AVL

Un albero AVL T è un BST (\star) , in cui vale la seguente proprietà:

$$\forall x \in T \to |h(left(x)) - h(right(x))| \le 1 \tag{*}$$

dove h(k) indica il valore dell'altezza dell'albero radicato in k, e left(B) (rispettivamente right(B)) indica il sotto-albero sinistro (rispettivamente destro) di B.

Esempio Un Albero AVL in cui ogni nodo contiene una chiave numerica dell'insieme $\{1, 2, 3, 4, 5, 6, 9, 10\}$ e un campo alfanumerico di tipo stringa, è il seguente:

, dove, ad esempio, left(root) ha altezza 2, mentre right(root) ha altezza 3.

3 Alberi binari di ricerca di tipo Red-Black

3.1 Definizione di RB Tree

Un albero di tipo Red-Black (o RB Tree) T è un BST (\star), in cui ogni nodo ha associato un campo "colore", che può assumere valore rosso o nero, ed inoltre vale che:

$$\forall x \in T \to h_b(left(x)) = h_b(right(x)) \tag{\bullet}$$

dove $h_b(x)$ indica l'altezza nera dell'albero radicato in x, ovvero il massimo numero di nodi neri lungo un possibile cammino da x a una foglia.

Esempio Un BST di tipo Red-Black, in cui ogni nodo contiene una chiave numerica dell'insieme $\{4, 5, 6, 7, 8, 9, 10, 11\}$ e un campo alfanumerico di tipo stringa, è il seguente:

4 Calcolo della complessità

Implementate le tre strutture dati precedentemente descritte utilizzando il linguaggio Python, si è poi proceduto a calcolare i tempi medi per la ricerca e l'inserimento di n chiavi generate in modo pseudo-casuale.

4.1 Caso random

4.2 Caso sorted

Tempi di ricerca e inserimento per alberi binari di ricerca

4.3 Caso smart

