Dual Optimization for Newsvendor-like Problem

Chuwen

March 7, 2021

FMP: variant case and weighted summation

$$f = \min_{x_{it}, u_{it}, \delta_t, \epsilon_t} \mathbf{b}^{\mathsf{T}} \delta + \mathbf{h}^{\mathsf{T}} \epsilon \tag{1}$$

s.t.

$$\sum_{i} c_{i}u_{it} + \delta_{t} - \epsilon_{t} = d_{t}, \quad \forall t \in T$$
 (2)

$$U_{i,\cdot}, S_{i,\cdot}, X_{i,\cdot} \in \Omega_i, \quad \forall i \in I$$
 (3)

- ▶ b, h are time-variant
- $ightharpoonup c_i \neq 1$.

FMP: Lagrangian relaxation

For the FMP, dual function:

$$\phi(\lambda) = -\sum_{t} \lambda_{t} d_{t} + \sum_{i} \min_{\Omega_{i}} c_{i} \sum_{t} \lambda_{t} u_{it}$$

It reduces to a set of low dimensional minimization problems for each $i \in I, \forall \lambda$

(Recall $\lambda_t \in [-b,h]$ and $\delta_t^\star = \epsilon_t^\star = 0$ else unbounded)

$$\min_{\Omega_i} \frac{c_i}{\sum_t} \lambda_t \cdot u_{i,t} \tag{4}$$

(4) is the subproblem to be solved by dynamic programming. (states: lifespan, action: work or start maintence)

FMP: subgradient method

At each iteration k:

- \triangleright y_k solves $\phi(\lambda_k) = \min_{y} \lambda_k^{\mathsf{T}}(y-b)$
- ▶ for FMP: $y_k = U_k^\mathsf{T} c$, $U_k = (u_{it}^{(k)})$, solved from (4) by DP.
- update λ_k .

Small case: |I| = 1, t = 2

$$\begin{array}{ll} c = 1 \\ \min & 2\delta_0 + 3\delta_1 + 4\epsilon_0 + \epsilon_1 \\ s.t. & u_0 + \delta_0 - \epsilon_0 = 1 \\ & u_1 + \delta_1 - \epsilon_1 = 0 \\ & 2u_0 + s_0 = 6 \\ & -6s_0 + 2u_1 - s_0 + s_1 = 0 \\ & s_0 + u_0 \leq 1 \\ & s_1 + u_1 \leq 1 \\ & s_0, s_1 \geq 2 \\ \hline \\ \begin{array}{ll} \text{dual} \\ & -2 \leq \lambda_0 \leq 4 \\ & -3 \leq \lambda_1 \leq 1 \\ \\ & \min \lambda_0(u_0 - 1) + \lambda_1(u_1 - 0) \end{array}$$

$$c = 2$$

min
$$2\delta_0 + 3\delta_1 + 4\epsilon_0 + \epsilon_1$$

s.t. $2u_0 + \delta_0 - \epsilon_0 = 1$
 $2u_1 + \delta_1 - \epsilon_1 = 0$
 $2u_0 + s_0 = 6$
 $-6x_0 + 2u_1 - s_0 + s_1 = 0$
 $x_0 + u_0 \le 1$
 $x_1 + u_1 \le 1$
 $s_0, s_1 \ge 2$

$$\min_{u} \lambda_0(2u_0-1) + \lambda_1(2u_1-0)$$

Small case: |I| = 1, t = 2

results:

$$\begin{array}{c} \textit{gurobi}: \\ c = 1 \\ \\ u^{\star} = [1,0] \\ f^{\star} = 0 \\ \\ \textit{subgradient}: \\ \\ \lambda_{k} = [-2,0] \\ \phi_{k} = 0 \\ \\ u_{k} = [1,0] \\ \phi_{k} = f^{\star} \\ \end{array} \qquad \begin{array}{c} c = 2 \\ \\ u^{\star} = [0,0] \\ \\ \lambda_{k} = [-3.5203e^{-5},0] \\ \\ \phi_{k} = 0 \\ \\ u_{k} = [0,0] \\ \\ \phi_{k} \neq f^{\star} \end{array}$$

Small case, relax

results:

$$\begin{array}{lll} \textit{gurobi}: \textit{u} \in [0,1] & \textit{c} = 1 & \textit{c} = 2 \\ & \textit{u}^{\star} = [1,0] & \textit{u}^{\star} = [0.5,0] \\ & \textit{f}^{\star} = 0 & \textit{f}^{\star} = 0 \\ & \textit{gurobi}: \textit{x} \in [0,1] & \textit{c} = 1 & \textit{c} = 2 \\ & \textit{u}^{\star} = [1,0] & \textit{u}^{\star} = [0,0] \\ & \textit{f}^{\star} = 0 & \textit{f}^{\star} = 2 \end{array}$$

Small case

The subgradient method (sg) stops at (maximum) 400 iterations, then compared with benchmarks by Gurobi (grb).

- ▶ lb_grb, f_{grb} are lower bound, primal value from grb.
- ▶ f_{relax}^u , f_{relax}^x primal value from grb for problem with relaxed u and x only, respectively: $f_{\text{relax}}^x = f^x$?
- t_grb, t_sg are runtime from grb and sg, respectively.
- ϕ_{sg} is the dual value (ϕ) by sg.
- $ightharpoonup z_{sg}$ is primal value in sg using averaged primal recovery, i.e.

$$z_{\rm sg} = z(\bar{y}_k) = f(\bar{\delta}_k, \bar{\epsilon}_k)$$

 $\phi_{\rm gap}$, z_gap are relative gap from sg to grb for dual and primal values.

FMP: c = 1 small case 5×5

	lb_grb	f_{grb}	t_grb	$f_{ m relax}^{\!\scriptscriptstyle U}$	$f_{\mathrm{relax}}^{\!\scriptscriptstyle X}$	t_sg	$\phi_{\sf sg}$	$\phi_{\sf gap}$
0	34.00	34.00	0.01	32.50	34.00	1.26	34.00	0.00%
1	42.00	42.00	0.01	40.83	42.00	0.01	42.00	0.00%
2	84.00	84.00	0.01	78.25	84.00	0.01	84.00	0.00%
3	49.00	49.00	0.01	45.50	49.00	0.04	48.96	-0.08%
4	50.00	50.00	0.01	50.00	50.00	0.00	50.00	0.00%
5	112.00	112.00	0.01	106.17	112.00	0.01	112.00	0.00%
6	47.00	47.00	0.02	47.00	47.00	0.02	47.00	0.00%
7	69.00	69.00	0.03	67.33	69.00	0.04	68.98	-0.04%
8	41.00	41.00	0.02	34.25	41.00	0.64	41.00	0.00%
9	91.00	91.00	0.00	89.67	91.00	0.01	91.00	0.00%

FMP: c = 1 large case 10×15

$\qquad \qquad f_{\mathsf{relax}}^{\mathsf{x}} \neq f^{\mathsf{x}}$

	lb_grb	$f_{ m grb}$	t_grb	$f_{ m relax}^{\mu}$	$f_{ m relax}^{ m x}$	t_sg	$\phi_{\sf sg}$	$\phi_{\sf gap}$
0	467.00	467.00	0.59	460.25	455.00	3.97	467.00	0.00%
1	375.00	375.00	0.22	370.00	366.00	0.12	375.00	0.00%
2	158.00	158.00	0.67	155.92	158.00	4.73	158.00	0.00%
3	463.00	463.00	0.80	457.08	458.00	5.86	463.00	0.00%
4	370.00	370.00	0.11	367.17	363.00	4.46	370.00	0.00%
5	336.00	336.00	1.04	329.17	333.00	0.10	336.00	0.00%
6	350.00	350.00	0.74	344.42	348.00	3.93	350.00	0.00%
7	416.00	416.00	0.09	409.17	409.00	0.19	415.61	-0.09%
8	374.00	374.00	0.88	363.50	363.00	7.81	374.00	0.00%
9	343.00	343.00	1.30	330.67	336.00	0.24	342.67	-0.10%

FMP: c = 1 large case 10×15 , primal solution

 z_k is the value of best primal (recovery) solution, ϕ_k is the dual value, f^* is the benchmark optimal value by grb. there is a gap from z_k to f^*

FMP: $c \neq 1$ small case 5×5

	lb_grb	$f_{ m grb}$	t_grb	$f_{ m relax}^u$	$f_{\rm relax}^{\rm x}$	t_sg	$\phi_{\sf sg}$	$\phi_{\sf gap}$
0	8.00	8.00	0.01	0.00	8.00	0.75	-0.00	-99.99%
1	9.00	9.00	0.01	0.00	9.00	0.68	8.00	-11.11%
2	55.00	55.00	0.02	52.50	55.00	1.33	54.98	-0.03%
3	11.00	11.00	0.03	5.00	11.00	1.06	10.00	-9.09%
4	7.00	7.00	0.02	0.00	7.00	0.85	4.00	-42.85%
5	20.00	20.00	0.03	12.33	20.00	1.08	20.00	-0.00%
6	22.00	22.00	0.01	20.00	22.00	0.01	22.00	0.00%
7	15.00	15.00	0.01	8.67	15.00	0.01	15.00	0.00%
8	14.00	14.00	0.03	6.00	14.00	1.01	10.00	-28.57%
9	18.00	18.00	0.02	13.00	18.00	0.68	18.00	-0.00%

Conclusion

- ▶ ? zero duality gap: $\phi^* = f^*$, ϕ^* is the best bound by ϕ and f^* is the best primal value.
- ▶ ? can we bound the quality of heuristic for averaged solution? $\bar{z}_k = z(\bar{y}_k)$ converges to ϕ^* :

$$|\bar{z}_k - \phi^*|$$

ightharpoonup? can we improve $\bar{z}=z(\bar{y})$, round \bar{z}