Ecuación de la Recta: Forma Punto – Pendiente

Dados los puntos:

P = x; y Punto arbitrario en la recta

 $P_0 = x_0; y_0$ Punto conocido (punto de paso)

Despejando la ecuación de la pendiente se obtiene:

$$L: y - y_0 = m(x - x_0)$$

m: pendiente

Ecuación de la Recta: Forma Pendiente – Intersección con el eje y

De la Figura, se tiene que la recta pasa por el punto $(0;b)\,$ y si remplazamos en la ecuación anterior, obtenemos:

$$L: y - b = m(x - 0)$$

Luego al despejar, se obtiene:

$$L: y = mx + b$$

Ecuación general de la recta

La ecuación general de una recta es la expresión de la forma:

$$ax + by + c = 0$$

Donde: a y b no son ceros al mismo tiempo.

Ecuación de la recta vertical y horizontal

Recta vertical

En el caso de los segmentos y las rectas verticales el concepto de pendiente no se define.

Las rectas verticales poseen ecuaciones del tipo:

$$x = x_0; \ x_0 \in \mathbb{R}$$

Recta horizontal

El caso de las rectas horizontales su pendiente es cero entonces haciendo m=0 en cualquiera de las ecuaciones vistas anteriormente se obtiene:

$$y = y_0; \ y_0 \in \mathbb{R}$$

Rectas paralelas y perpendiculares

Recta paralela

Cuando se conocen las ecuaciones de dos rectas L_1 y L_2 con pendientes m_1 y m_2 respectivamente, es muy simple determinar cuándo se trata de rectas paralelas, en este caso sus pendientes son iguales, es decir

$$m_1 = m_2$$

Recta perpendicular

La perpendicularidad entre rectas requiere que las pendientes satisfagan la condición:

$$m_1 \cdot m_2 = -1$$

- 1 Sean A(1;1), B(-3;4)y C(4;5) los vértices de un triángulo. Determine la longitud del
- · segmento que une el vértice A y el punto medio del lado BC.

Ion gi-lud del segmento
$$d = \sqrt{|x-x_1|^2 + |y-y_1|^2}$$

$$d = \sqrt{|0,50-1|^2 + |4.50-1|^2}$$

$$d = \sqrt{|0,25| + |12,25}$$

$$d = \sqrt{|12,50|} = 3,54$$

Puntos medios
$$P\left(\frac{-3+4}{2}; \frac{4+5}{2}\right) - P(h; K) = \frac{1}{2}; \frac{9}{2}$$

$$(0,50; 4; 50)$$

- 2 Determine la ecuación punto pendiente de la recta que pasa por el punto (6; -2) y su
- · pendiente es -1/2.

Ewación punto pendiente:
$$Y - Y_0 = m(X - X_0)$$

Puntos: $P(6; -2)$

E. Estantack
$$Y+2=-\frac{1}{2}X+3$$

$$Y=-\frac{1}{2}X+3$$

3 Determine la ecuación de una recta que pasa por los puntos (-3; 4)y (4; 5). Escriba la ecuación de la recta en las 3 formas estudiadas y trace su gráfica indicando los puntos

de corte con los ejes coordenados.

de corte con los ejes coordenados.

Fundiente
$$= (\frac{5-4}{4+3})$$

Determine la ecuación de la recta que pasa por el punto (2; 5) y es paralela a la recta de ecuación 8x - 4y = -12. Trace su gráfica indicando los puntos de corte con los ejes coordenados.

$$m.m_z = -1$$
 $m + 8 = -1 = > m = -2$

Ewación punto pendiente.

conter com el eje X (Y=0)

t9 =
$$72X$$
 p (4.5;0)
4,5 z X p (4.5;0)
corte un el ere y ($x=0$)

- Sean las rectas L_1 : 10x 4y = 10 y L_2 : 6x + 9y = 18. Determine la ecuación de
- una recta que pasa por el punto de intersección de las rectas L_1 y L_2 , y es perpendicular a la recta L_1 .

$$m \cdot m_2 = -1$$
 Pendiente. (9) $10x - 4y = 10$ (2) $6x + 9y = 18$

$$60 \times -24 = 60$$

 $60 \times +90 = 180$

$$114y = 120$$

 $y = 1,05$
 $x = 1,42$

$$\sqrt{\frac{1}{5}} - 1,05 = -\frac{2}{5} (x - 1,42)$$

$$L = m = 2.5$$
 $m_1 < 2.5 = 1$
 $m_1 = -\frac{2}{5}$

- Determine una ecuación de la recta cuya gráfica se muestra a continuación. Además
- determine las coordenadas de los puntos de corte con los ejes.

Pontos:
$$\left(-1; 3\right) \wedge \left(2, 1\right)$$

Pendiente: $\left(\frac{1-3}{2+1}\right) = \left(-\frac{2}{3}\right)$

Ecuación punto pendiente:

$$y-3=-\frac{2}{3}x-\frac{2}{3}$$

Eromanon intersecto con el eje 'Y"

L:
$$Y = \frac{2x}{3} + \frac{7}{3}$$

Conter con el eje x (Y=0)
x (O, 3,5)

para asegurar que tus soluciones son correctas y retroalimentar tu aprendizaje.

1. Los puntos A(0;0), B(5;2) y C(-1;-2) son los vértices de un triángulo. Determine la longitud

Resuelve los siguientes ejercicios y si tienes dudas aprovecha la asesoría virtual con tu profesor AAD

- del segmento que une el vértice A y el punto medio del lado BC.

 2. Dados los puntos: A (-7; 4), B (2; 8) y C(0; -2)
 - a. Determine la distancia y el punto medio entre los puntos A y C . b. Determine la ecuación general de la recta que pasa por los puntos B y C.
- B. Dadas las rectas L_1 : 8x 6y = 24 y L_2 : 9x 6y = -18, determine la ecuación de la recta que pasa por el punto de intersección de las rectas L_1 y L_2 , y es perpendicular a la recta L_2 .
- 4. Si la recta L₁ pasa por los puntos (1; -1) y (6; 14) y la recta L₂ pasa por los puntos (9; 3) y (-6; 8). ¿Las rectas L₁ y L₂ son paralelas, perpendiculares o ninguna de ellas?
 5. Determine la ecuación de la recta que pasa por el punto medio del segmento AB, con A(-1; 4)
 - y B(3; 2), y es perpendicular a la recta cuya ecuación es 3y + 2x = 3. Trace su gráfica indicando los puntos de corte con los ejes coordenados.

 Determine la ecuación de la recta que pasa por el punto (2; 5) y es paralela a la recta cuya equación es Ax + 6x = 24. Trace su gráfica indicando los puntos de corte con los ejes
 - ecuación es -4x + 6y = 24. Trace su gráfica indicando los puntos de corte con los ejes coordenados.
- coordenados.

 Ou Determine la ecuación de la recta formada por los puntos que equidistan de los puntos (1; 6) y de (5; 2).

Respuestas:

- 1. 2u
- **2. a.** $d(A; C) = \sqrt{85} u = 9,22 u$. Punto medio de A y C es: $M\left(-\frac{7}{2}; 1\right)$ **b.** L: 5x y 2 = 0
- 3. $y = -\frac{2}{3}x 88$
- 4. Las rectas L_1 y L_2 son perpendiculares.
- 5. L: $y 3 = \frac{3}{2}(x 1)$. Para graficar, halle los puntos de corte con los ejes.
- 6. L: $y = \frac{2}{3}x + \frac{11}{3}$. Para graficar, halle los puntos de corte con los ejes.
- 7. L: -x + y 1 = 0