0.1 Jordan 标准型的进一步讨论和应用

定理 0.1

线性变换 φ 的特征值 λ_1 的度数等于 φ 的 Jordan 标准型中属于特征值 λ_1 的 Jordan 块的个数, λ_1 的重数等于所有属于特征值 λ_1 的 Jordan 块的阶数之和.

证明 设 $V \neq n$ 维复线性空间, $\varphi \neq V$ 上的线性变换. 设 φ 的初等因子组为

$$(\lambda - \lambda_1)^{r_1}, (\lambda - \lambda_2)^{r_2}, \cdots, (\lambda - \lambda_k)^{r_k}, \tag{1}$$

定理**??**告诉我们, 存在 V 的一组基 $\{e_{11},e_{12},\cdots,e_{1r_1};e_{21},e_{22},\cdots,e_{2r_2};\cdots;e_{k1},e_{k2},\cdots,e_{kr_k}\}$, 使得 φ 在这组基下的表示矩阵为

上式中每个 J_i 是相应于初等因子 $(\lambda - \lambda_i)^{r_i}$ 的 Jordan 块, 其阶正好为 r_i . 令 V_i 是由基向量 $e_{i1}, e_{i2}, \cdots, e_{ir_i}$ 生成的子空间, 则

$$\varphi(e_{ir_i}) = e_{i,r_i-1} + \lambda_i e_{ir_i}.$$

这表明 $\varphi(V_i) \subseteq V_i$, 即 $V_i(i=1,2,\cdots,k)$ 是 φ 的不变子空间. 显然我们有

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k.$$

线性变换 φ 限制在 V_1 上 (仍记为 φ) 便成为 V_1 上的线性变换. 这个线性变换在基 $\{e_{11},e_{12},\cdots,e_{1r_1}\}$ 下的表示矩阵为

$$\boldsymbol{J}_{1} = \begin{pmatrix} \lambda_{1} & 1 & & & \\ & \lambda_{1} & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_{1} \end{pmatrix}.$$

注意到 J_1 的特征值全为 λ_1 , 并且 $\lambda_1 I - J_1$ 的秩等于 $r_1 - 1$, 故 J_1 只有一个线性无关的特征向量, 不妨选为 e_{11} . 显然 e_{11} 也是 φ 作为 V 上线性变换关于特征值 λ_1 的特征向量. 不失一般性, 不妨设在 φ 的初等因子组即(1) 式中

$$\lambda_1 = \lambda_2 = \cdots = \lambda_s, \quad \lambda_i \neq \lambda_1 (i = s + 1, \cdots, k),$$

则 J_1, \cdots, J_s 都以 λ_1 为特征值, 且相应于每一块有且只有一个线性无关的特征向量. 相应的特征向量可取为

$$e_{11}, e_{21}, \cdots, e_{s1},$$
 (3)

显然这是s个线性无关的特征向量.如果 $\lambda_i \neq \lambda_1$,则容易看出 $\mathbf{r}(\lambda_1 \mathbf{I} - \mathbf{J}_i) = r_i$,于是

$$r(\lambda_1 I - J) = \sum_{i=1}^k r(\lambda_1 I - J_i) = (r_1 - 1) + \dots + (r_s - 1) + r_{s+1} + \dots + r_k = n - s.$$

因此 φ 关于特征值 λ_1 的特征子空间 V_{λ_1} 的维数等于 $n-r(\lambda_1 I-J)=s$,从而特征子空间 V_{λ_1} 以(3)式中的向量为一组基.又 λ_1 是 φ 的 $r_1+r_2+\cdots+r_s$ 重特征值,因此 λ_1 的重数与度数之差等于

$$(r_1+r_2+\cdots+r_s)-s.$$

推论 0.1

线性变化 (矩阵) 的 Jordan 标准型中属于特征值 λ_0 的每一个 Jordan 块都有且仅有一个线性无关的特征向量.

证明 由上述定理 0.1的证明立得.

定义 0.1 (根子空间)

设 λ_0 是n维复线性空间V上线性变换 φ 的特征值,则

$$R(\lambda_0) = \{ \mathbf{v} \in V \mid (\varphi - \lambda_0 \mathbf{I})^n(\mathbf{v}) = \mathbf{0} \}$$

构成了V的一个子空间,称为属于特征值 λ_0 的根子空间.

定理 0.2

设 φ 是n维复线性空间V上的线性变换.

(1) 若φ的初等因子组为

$$(\lambda - \lambda_1)^{r_1}, (\lambda - \lambda_2)^{r_2}, \cdots, (\lambda - \lambda_k)^{r_k},$$

则 V 可分解为 k 个不变子空间的直和:

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k, \tag{4}$$

其中 V_i 是维数等于 r_i 的关于 $\varphi - \lambda_i I$ 的循环子空间;

$$V = R(\lambda_1) \oplus R(\lambda_2) \oplus \cdots \oplus R(\lambda_s),$$

其中 $R(\lambda_i)$ 是 λ_i 的根子空间, $R(\lambda_i)$ 的维数等于 λ_i 的重数, 且每个 $R(\lambda_i)$ 又可分解为(4) 式中若干个 V_j 的直和.

证明 在定理 0.1的证明的基础上, 现在再来看 J_1 所对应的子空间 V_1 , 由 (2)式中诸等式可知

$$(\varphi - \lambda_1 \mathbf{I})(e_{1r_1}) = e_{1,r_1-1}, \cdots, (\varphi - \lambda_1 \mathbf{I})(e_{12}) = e_{11}, (\varphi - \lambda_1 \mathbf{I})(e_{11}) = \mathbf{0},$$

因此, 若记 $\alpha = e_{1r_1}, \psi = \varphi - \lambda_1 I$, 则

$$\psi(\alpha) = e_{1,r_1-1}, \psi^2(\alpha) = e_{1,r_1-2}, \cdots, \psi^{r_1-1}(\alpha) = e_{11}, \psi^{r_1}(\alpha) = \mathbf{0}.$$

也就是说

$$\{\alpha, \psi(\alpha), \psi^2(\alpha), \cdots, \psi^{r_1-1}(\alpha)\}$$

构成了 V_1 的一组基.

上面的事实说明,每个 Jordan 块 J_i 对应的子空间 V_i 是一个循环子空间. 把属于同一个特征值, 比如属于 λ_1 的所有循环子空间加起来构成 V 的一个子空间:

$$R(\lambda_1) = V_1 \oplus \cdots \oplus V_s$$
.

$$s = \dim R(\lambda_1) = r_1 + \cdots + r_s$$
.

事实上, 我们可以证明

$$R(\lambda_1) = \{ \mathbf{v} \in V \mid (\varphi - \lambda_1 \mathbf{I})^n(\mathbf{v}) = \mathbf{0} \}. \tag{5}$$

为证明 (5)式成立, 设 $U = \{ v \in V \mid (\varphi - \lambda_1 I)^n(v) = \mathbf{0} \}$, 则由上面的分析知道, $R(\lambda_1) \subseteq U$. 另一方面, 任取 $v \in U$, 设 $v = v_1 + v_2$, 其中 $v_1 \in R(\lambda_1), v_2 \in V_{s+1} \oplus \cdots \oplus V_k$. 因为 $(\lambda - \lambda_1)^n$ 与 $(\lambda - \lambda_{s+1})^n \cdots (\lambda - \lambda_k)^n$ 互素, 故存在多项式

 $p(\lambda), q(\lambda)$, 使

$$(\lambda - \lambda_1)^n p(\lambda) + (\lambda - \lambda_{s+1})^n \cdots (\lambda - \lambda_k)^n q(\lambda) = 1.$$

将 $\lambda = \varphi$ 代入上式并作用在 ν 上可得

$$\mathbf{v} = p(\varphi)(\varphi - \lambda_1 \mathbf{I})^n(\mathbf{v}) + q(\varphi)(\varphi - \lambda_{s+1} \mathbf{I})^n \cdots (\varphi - \lambda_k \mathbf{I})^n(\mathbf{v})$$

$$= q(\varphi)(\varphi - \lambda_{s+1} \mathbf{I})^n \cdots (\varphi - \lambda_k \mathbf{I})^n(\mathbf{v}_1) + q(\varphi)(\varphi - \lambda_{s+1} \mathbf{I})^n \cdots (\varphi - \lambda_k \mathbf{I})^n(\mathbf{v}_2)$$

$$= q(\varphi)(\varphi - \lambda_{s+1} \mathbf{I})^n \cdots (\varphi - \lambda_k \mathbf{I})^n(\mathbf{v}_1) \in R(\lambda_1).$$

这就证明了(5)式.

上面的结果表明: 特征值 λ_0 的根子空间可表示为若干个循环子空间的直和, 每个循环子空间对应于一个 Jordan 块. 虽然我们前面的讨论是对特征值 λ_1 进行的, 其实对任一特征值 λ_i 均适用.

命题 0.1

证明: 复数域上的方阵 A 必可分解为两个对称阵的乘积.

证明 设 P 是非异阵且使 $P^{-1}AP = J$ 为 A 的 Jordan 标准型, 于是 $A = PJP^{-1}$. 设 J_i 是 J 的第 i 个 Jordan 块, 则

$$\boldsymbol{J}_{i} = \begin{pmatrix} \lambda_{i} & 1 & & & \\ & \lambda_{i} & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_{i} \end{pmatrix} = \begin{pmatrix} & & & 1 & \lambda_{i} \\ & & & 1 & \lambda_{i} \\ & & \ddots & \ddots & \\ 1 & & \ddots & & \\ \lambda_{i} & & & & \end{pmatrix} \begin{pmatrix} & & & 1 \\ & & & 1 \\ & & & \ddots & \\ 1 & & & & \\ 1 & & & & \end{pmatrix},$$

即 J_i 可分解为两个对称阵之积. 因此 J 也可以分解为两个对称阵之积, 记为 S_1, S_2 , 于是

$$A = PJP^{-1} = PS_1S_2P^{-1} = (PS_1P')(P^{-1})'S_2P^{-1}.$$

显然 PS_1P' 和 $(P^{-1})'S_2P^{-1}$ 都是对称矩阵, 故 A 必可分解为两个对称阵的乘积.

例题 0.1 已知

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 6 & 1 & 2 & 1 \\ -14 & -5 & -1 & 0 \end{pmatrix},$$

计算 A^k .

 \mathbf{m} 用初等变换把 $\lambda \mathbf{I} - \mathbf{A}$ 化为对角 λ -矩阵并求出它的初等因子组为

$$(\lambda - 1)^2$$
, $(\lambda - 1)^2$.

因此.A 的 Jordan 标准型为

$$\boldsymbol{J} = \begin{pmatrix} 1 & 1 & & \\ 0 & 1 & & \\ & & 1 & 1 \\ & & 0 & 1 \end{pmatrix}.$$

因为

$$\mathbf{P}^{-1}\mathbf{A}^{k}\mathbf{P} = (\mathbf{P}^{-1}\mathbf{A}\mathbf{P})^{k} = \mathbf{J}^{k},$$

故先计算 J^k . 注意 J 是分块对角阵, 它的 k 次方等于将各对角块 k 次方, 因此

定理 0.3 (Jordan-Chevalley 分解)

设A 是n 阶复矩阵,则A 可分解为A = B + C,其中B,C 适合下面条件:

- (1) B 是一个可对角化矩阵;
- (2) C 是一个幂零阵:
- (3) BC = CB;
- (4) B, C 均可表示为 A 的多项式.

不仅如此,上述满足条件 (1)(3) 的分解是唯一的 (即只要满足条件 (1)(3) 的分解就是唯一的). 进而,上述满足条件 (1)(2)(3)(4) 的分解也是唯一的.

注 要证满足条件 (1)(3) 的分解是唯一的等价于: 设 B,C 满足 (1)(2)(3)(4), 再设 B',C' 满足 (1)(3), 只要证明 b=B',C=C' 即可.

证明 先对 A 的 Jordan 标准型 J 证明结论. 设 A 的全体不同特征值为 $\lambda_1, \lambda_2, \dots, \lambda_s$ 且

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

其中 J_i 是属于特征值 λ_i 的根子空间对应的块, 其阶设为 m_i . 显然对每个 i 均有 $J_i = M_i + N_i$, 其中 $M_i = \lambda_i I$ 是对角阵, N_i 是幂零阵且 $M_i N_i = N_i M_i$. 令

$$M = \begin{pmatrix} M_1 & & & \\ & M_2 & & \\ & & \ddots & \\ & & & M_s \end{pmatrix}, \quad N = \begin{pmatrix} N_1 & & & \\ & N_2 & & \\ & & \ddots & \\ & & & N_s \end{pmatrix},$$

则 J = M + N, MN = NM, M 是对角阵, N 是幂零阵.

因为 $(J_i - \lambda_i I)^{m_i} = \mathbf{O}$, 所以 J_i 适合多项式 $(\lambda - \lambda_i)^{m_i}$. 而 λ_i 互不相同, 因此多项式 $(\lambda - \lambda_1)^{m_1}$, $(\lambda - \lambda_2)^{m_2}$, \cdots , $(\lambda - \lambda_s)^{m_s}$ 两两互素. 由中国剩余定理, 存在多项式 $g(\lambda)$ 满足条件

$$g(\lambda) = h_i(\lambda)(\lambda - \lambda_i)^{m_i} + \lambda_i$$

对所有 $i = 1, 2, \dots, s$ 成立 (这里 $h_i(\lambda)$ 也是多项式). 代入 J_i 得到

$$g(\mathbf{J}_i) = h_i(\mathbf{J}_i)(\mathbf{J}_i - \lambda_i \mathbf{I})^{m_i} + \lambda_i \mathbf{I} = \lambda_i \mathbf{I} = \mathbf{M}_i.$$

于是

$$g(\mathbf{J}) = \begin{pmatrix} g(\mathbf{J}_1) & & & \\ & g(\mathbf{J}_2) & & \\ & & \ddots & \\ & & g(\mathbf{J}_s) \end{pmatrix} = \begin{pmatrix} \mathbf{M}_1 & & & \\ & \mathbf{M}_2 & & \\ & & \ddots & \\ & & & \mathbf{M}_s \end{pmatrix} = \mathbf{M}.$$

又因为N = J - M = J - g(J), 所以N 也是J的多项式.

现考虑一般情形, 设 $P^{-1}AP = J$, 则 $A = PJP^{-1} = P(M+N)P^{-1}$. 令 $B = PMP^{-1}$, $C = PNP^{-1}$, 则 B 是可对角化矩阵,C 是幂零阵,BC = CB 并且

$$g(A) = g(PJP^{-1}) = Pg(J)P^{-1} = PMP^{-1} = B,$$

从而 C = A - g(A).

最后证明唯一性. 假设 A 有另一满足条件 (1) (3) 的分解 $A = B_1 + C_1$, 则 $B - B_1 = C_1 - C$. 由 $B_1C_1 = C_1B_1$ 不难验证 $AB_1 = B_1A$, $AC_1 = C_1A$. 因为 B = g(A), 故 $BB_1 = B_1B$. 同理 $CC_1 = C_1C$. 设 $C^r = O$, $C_1^t = O$, 用二项式定理即知 $(C_1 - C)^{r+t} = O$. 于是

$$(B - B_1)^{r+t} = (C_1 - C)^{r+t} = O.$$

因为 $BB_1 = B_1B$,它们都是可对角化矩阵,由命题??知它们可同时对角化,即存在可逆阵Q,使 $Q^{-1}BQ$ 和 $Q^{-1}B_1Q$ 都是对角阵.注意到

$$(Q^{-1}BQ - Q^{-1}B_1Q)^{r+t} = (Q^{-1}(B - B_1)Q)^{r+t} = Q^{-1}(B - B_1)^{r+t}Q = 0,$$

两个对角阵之差仍是一个对角阵,这个差的幂要等于零矩阵,则这两个矩阵必相等,由此即得 $B = B_1$,从而 $C = C_1$.

定理 **0.4** (**AB** 和 **BA** 的非 **0** 特征值的 **Jordan** 块完全一致)

设 $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$, 则 AB 和 BA 的非 0 特征值的 Jordan 块完全一致.

证明 考虑 $PAQQ^{-1}BP^{-1}, Q^{-1}BP^{-1}PAQ$ 可不妨设

$$A = \begin{pmatrix} E_r & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{pmatrix}, B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}, B_1 \in \mathbb{C}^{r \times r}, B_3 \in \mathbb{C}^{(n-r) \times r},$$

这里B的分块和A对应.于是直接计算有

$$AB = \begin{pmatrix} B_1 & B_2 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} B_1 & 0 \\ B_3 & 0 \end{pmatrix}.$$

从 (0.1) 可以看到 AB, BA 非 0 特征值都集中在 B_1 上, 所以非 0 特征值完全一致. 设 $\lambda \neq 0$ 是 AB, BA 特征值. 则回忆命题??, 决定 C Jordan 块分布, 我们知道只需决定 $(\lambda E - C)^k$, $k \in \mathbb{N}_0$ 的秩即可. 于是对每个 $k \in \mathbb{N}_0$, 我们有

$$(\lambda E_m - AB)^k = \begin{pmatrix} (\lambda E_r - B_1)^k & * \\ 0 & \lambda^k E_{m-r} \end{pmatrix}, (\lambda E_n - BA)^k = \begin{pmatrix} (\lambda E_r - B_1)^k & 0 \\ * & \lambda^k E_{n-r} \end{pmatrix}.$$

作初等变换

$$\begin{pmatrix} (\lambda E_r - B_1)^k & * \\ 0 & \lambda^k E_{m-r} \end{pmatrix} \rightarrow \begin{pmatrix} (\lambda E_r - B_1)^k & 0 \\ 0 & \lambda^k E_{m-r} \end{pmatrix}, \begin{pmatrix} (\lambda E_n - B_1)^k & 0 \\ * & \lambda^k E_{n-r} \end{pmatrix} \rightarrow \begin{pmatrix} (\lambda E_r - B_1)^k & 0 \\ 0 & \lambda^k E_{n-r} \end{pmatrix},$$

于是我们证明了

$$r\left(\left(\lambda E_m - AB\right)^k\right) + n = r\left(\left(\lambda E_n - BA\right)^k\right) + m, \forall k \in \mathbb{N}_0,$$

这就证明了 AB 和 BA 的非 0 特征值的 Jordan 块完全一致.