

FACULTAD DE INGENIERÍA - Course 2019/2019

SECRETARÍA/DIVISIÓN: DIVISIÓN DE INGENIERÍA ELÉCTRICA ÁREA/DEPARTAMENTO: INGENIERÍA EN COMPUTACIÓN

LABORATORIO DE COMPUTACIÓN GRÁFICA E INTERACCIÓN HUMANO COMPUTADORA:

Proyecciones y puertos de vista. Transformaciones Geométricas

Reynaldo Martell Avila

PRÁCTICA 3

Contents

1	Objetivos de aprendizaje	2
	1.1 Objetivos generales:	2
	1.2 Objetivos específicos:	
2	Recursos a emplear	2
	2.1 Software	2
	2.2 Equipos	2
	2.3 Instrumentos	
3	Fundamento Teórico	2
	3.1 Desarrollo de actividades	2
4	Observaciones y Conclusiones	3
5	Anexos	3

1 Objetivos de aprendizaje

1.1 Objetivos generales:

El alumno repasará como crear buffers de OpenGL, leer archivos, comprenderá los diferentes tipos de proyección y las funciones de la librería glm para crear éstas, así como comprenderá los diferentes sistemas de referencia de OpenGL. Del mismo modo practicará como colocar en la escena diferentes geometrías.

1.2 Objetivos específicos:

El alumno practicará crear geometrías con índices, revisará los sistemas de referencia que se aplican en OpenGL, comprenderá la utilización de la matriz de modelo, vista, proyección y la zona de dibujo.

2 Recursos a emplear

2.1 Software

Sistema Operativo: Windows 7 Ambiente de Desarrollo: Visual Studio 2017.

2.2 Equipos

Los equipos de cómputo con los que cuenta el laboratorio de Computación Gráfica

2.3 Instrumentos

3 Fundamento Teórico

• Presentación de conceptos.

Se mostrará la utilización de índices, se revisará como crear los shaders de fragmento y vértices desde un archivo, se presentará el funcionamiento de variables globales que son tomadas de los shaders, utilizará los diferentes tipos de proyecciones y funciones para crearlas, así como colocar diferentes figuras en pantalla.

• Datos necesarios. Librería OpenGL 3.3, librería de creación de ventanas, IDE de desarrollo (Visual Studio 2017.

3.1 Desarrollo de actividades

- 1. Se explica el código para crear una clase que maneje el programa y los shaders.
- 2. Se explica el código base para crear un cubo utilizando indices.
- 3. Se muestra el sistema de referencia de dibujo glViweport()
- 4. Se utiliza el concepto de variables uniform y su utilidad.
- 5. Se explica y se cambian los parámetros que definen los diferentes tipos de proyecciones.

- 6. Ejercicio: Los siguientes ejercicios se deben crear con un cubo con un color por cada lado. Se debe crear otro VAO y VBO
- 7. Utilizando un cubo unitario con centro en el origen como primitiva, y la transformación de translación y escalamiento, se creará una escena con las siglas CG 2019.
- 8. Se procede a crear un par de figuras instanciado el cubo y aplicando transformaciones básicas a cada una de las instancias.

- 9. Ejercicio: Crear la misma forma de la estrella de la práctica 2 con indices.
- 10. Deben subir sus ejercicios en Github y colocar la liga en su reporte.

4 Observaciones y Conclusiones

5 Anexos

- 1. Cuestionario previo.
 - (a) ¿Qué es una clase en c++?
 - (b) ¿Qué es un constructor y destructor de la clase, y cómo se declara en c++?
 - (c) ¿Cómo se instancia un objeto en c++?
 - (d) Investigar como abrir un archivo en c++.
 - (e) Investigue para qué sirve la función **glViewport** y que parámetros recibe.
 - (f) Investigue que es la matriz de Modelo, Vista, Proyección.
 - (g) ¿Qué es una proyección e investigue los tipos de proyecciones, en el ámbito de gráficos?
 - (h) Que utilidad tiene las funciones **glm::ortho**, **glm::frustum** y **glm::perspective**, y que son los parámetros que reciben.
 - (i) Para qué sirve la función **glfwSetWindowPos** y que parámetros recibe.

- (j) ¿Cuáles son las transformaciones geométricas básicas en tres dimensiones y sus matrices asociadas?
- (k) Investigué para sirve la función **glm::scale**, **glm::translate**, **glm::rotate**, y que parámetros reciben.
- 2. Actividad de investigación previa.
 - (a) Realizar un **git pull origin master** y un **git pull myRepo master**, antes de comenzar la práctica.