The STUN algorithm for Persistent Scatterer Interferometry

- 1. Theory
- 2. PSIC4 Processing
- 3. Conclusions

STUN Algorithm

- Spatio-Temporal Unwrapping Network (STUN)
 - 1D temporal + 2D spatial phase unwrapping
- Goal:
 - Unwrap the phase in a single-master stack
 - Optimal estimation of displacement parameters
- Key Features:
 - Integer Least-Squares (ILS): estimator
 - Variance Component Estimation (VCE): weights
 - Alternative Hypothesis Tests: robust

STUN Processing Steps

- Point selection:
 - → ~4 PS/km² in reference network
 - ~200 PS/km² for estimation
 - Discard ~99%
- Reference Network Computation
 - Optional interferogram trend correction
- Tie more points to network
- Explicit phase unwrapping
 - Sparse grid Minimal Cost Flow (MCF)
- Optional Atmospheric Correction
 - Kriging Interpolation
- Final Estimation

Integer-Least Squares (ex. 1)

b1=5.79

b2=1.35

Integer Least-Squares (ex. 2)

5.75

1.35

Integer Least-Squares

- Readily extendible for more parameters:
 - Search of ambiguities solution space
 - Efficient search strategy exist (GPS application)
 - No increase in computation time
- Weighted least-squares:
 - Stochastic model for double-difference phase observations
 - Variance Component Estimation (VCE)
- Software available at Delft University of Technology
 - http://enterprise.lr.tudelft.nl/mgp/

Variance Component Estimation (ex. 1)

- 31 SLC images
- 30 interferograms
- 400 PS points
- 200 arcs (doubledifferences)

Variance Component Estimation

- "Weights" of the SLC scenes
 - Improves quality of estimated parameters
 - Reduces number of incorrectly estimated ambiguities
 - Automatically detect incorrectly processed interferograms
 - Realistic quality description of estimates
- Iterative estimation procedure
- See paper for equations

Real data application

PSIC4 Study

- Initiated by ESA at FRINGE 2003
- "Cross-Comparison of Persistent Scattering Processing Techniques"
- Marsailla Franca

Processed Area

- 25 x 40 km²
- Rural area
- Mountainous: 0-1000 m
- Subsidence due to mining

Baseline Distribution

- 80 SLC selected
- No extreme Doppler/large Baseline

Processed Interferograms

- Differential Interferograms
 - SRTM DEM
- Single Master
 - 20460
 - ERS-2
 - March 1999
- Coregistration
 - Geometry
 - Point Targets
- Sorted according to perpendicular baseline

Remote Sensing Technology Institute

Selected Points

Area:

• rg: 2400

az: 20000

~50 million pixels

Points:

- SCR > 1.5
- ~200,000 PS
- Phase data extracted at sub-pixel peak positions

Variance Component Estimation

 Average of estimated components at ~600 independent arcs

- SLC sigma ~15 -- 45 [deg]
- Accounts for random noise and atmospheric difference signal at arcs of typical length (1250 m)

Reference Network

- Points in reference network selected based on amplitude dispersion index:
 - Expected to be temporally coherent
- Network constructed
 - ~10 arcs per point
- At all arcs, estimate:
 - DEM error differences
 - Displacement rate differences
- Integer least-squares Estimator
 - Weighted

Parameter Integration

- Least-squares adjustment of estimates between PS points
- Yields DEM
 errors and
 Displacement
 rates *at* the
 PS points
- Alternative Hypothesis Tests
- Red: rejected arcs

Parameters at Reference Network

- Reference network
- ~1600 PS

DEM error

Displacement Rate

Remote Sensing

Estimated Parameters at PS

- 60,000 PS accepted

- **Subsidenc**
- -13 mm/y

- **Uplift**
- +5 mm/y

DEM update

Displacement Rate

Estimated Quality

- A posteriori variance factor
- Unwrapped data
 - Not yet corrected for atmospheric signal
- Precision decreases the further away from reference point (asterisk)
- Subsidence area: this factor is locally larger:
 - Functional model not correct?

Residual Phase

- Residual phase in interferogram
 - DEM error corrected
 - Displacement rate
- This is interpreted as
 - Random noise +
 - Atmospheric signal
- → Kriging Interpolation

Structure Functions

- Each panel shows the structure function of the residual phase in an interferogram.
- Atmospheric signal:
 - power-law
 - slope in loglog plot
- Red: estimated slope
 - input for Kriging

Kriging Interpolation

Kriging

Sensing Remote

Final Estimation

corrected for estimated atmospheric

2004

Remote Sensing Technology Institute

GIS Interface (geoTIFF)

Conclusions

Remote Sensing Technology Institute

Conclusions

- STUN = Spatio-Temporal Unwrapping Network
 - Integer Least-Squares
 - Variance Component Estimation
 - Alternative Hypothesis Tests
- PSIC4 Processing Report
 - Point Selection
 - Reference Network
 - Unwrapping
- Our paper gives more details on theory and displacement models
- Visit our Poster:
 - "DLR's Results of the PSIC4 Study"

Thank you!