Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240610

 $\underline{https://github.com/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

l	Dimensionen, Schnitte und Kontouren 1.1 Dimensionen	2 2		3.4 Extrema von Funktionen zweier Variablen mit NB finden3.5 Extrema von Funktionen mehrerer Variablen mit NB finden	
	1.2 Schnitte	2	١.		
	1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen,	2	4	Integration (bi-variat)	5
	Ableitan DCI and Conditator (bi anni-t)	•		4.1 2D	
4	Ableitungen, DGL und Gradienten (bi-variat)	3		4.2 Normalbereich	
	2.1 Partielle Ableitung	3		4.3 Polar	
	2.2 Gradient (Nabla-Operator)			4.4 2D Transformation Polar zu Kartesisch	-
	2.3 Totale Ableitung	3		4.5 Derivative, Ableitung	-
	2.4 Linearapproximation (Tangential approximation)	3		4.6 3D Volumenberechnung	4
	2.5 DGL	3		4.7	
	2.6 Richtungselement (Tangentiallinie an Kontouren)	3		4.8	_
	2.7 Gradientenfeld \perp Kontouren	3			
	2.8 ?Wie heisst dieser Abschnitt?	3	5	Integration (multi-variat)	(
	2.9 Richtungs-Ableitung	3			
			6	Differenziation und Integration von Kurven	(
3	Extrema von Funktionen finden	4		· ·	
	3.1 Extrema von Funktionen zweier Variablen finden	4	7	(Ober-)Flächenintegrale	6
	3.2 Extrema von Funktionen mehrerer Variablen finden	4			
	3.3 Lokales oder Globales Extremum	4	8	Vektoranalysis	(

1 Dimensionen, Schnitte und Kontouren

1.1 Dimensionen

$$f: \mathbb{D}_f(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{W}_f(\subseteq \mathbb{R}^n)$$

Anzahl Dimensionen von \mathbb{D}_f , wobei $m \in \mathbb{N}$

Anzahl Dimensionen von \mathbb{W}_f , wobei $n \in \mathbb{N}$

wenn Output vektoriell

⚠ Variablen sind abhängig von einander!

Multi-Variat:

f ist "Multi-Variat", wenn:

f ist nicht "Multi-Variat", wenn:

· Input mehrdimensional ist

• Input und Output Skalare sind

· Output mehrdimensional ist

• Input und Output

mehrdimensional sind

1.1.1 Raumzeit

$$\begin{array}{c} \operatorname{Raum} \operatorname{3D} \left(x; y; z \right) \mathbb{R}^{3} \\ \operatorname{Zeit} \operatorname{1D} \left(t \right) \mathbb{R}^{1} \end{array} \right\} \mathbb{R}^{1} \times \mathbb{R}^{3} = \operatorname{Raumzeit} \operatorname{4D} \left(t; x; y; z \right)$$

1.1.2 Stationärer Fall

$$t \to \infty \to \text{Station\"ar}$$

$$T(x; y; z) \frac{\Delta T}{\Delta t} \to 0$$

1.1.3 Einheitsvektoren (Koordinatenvektoren)

$$\hat{x} = \vec{i} = \hat{i} = \vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \vec{j} = \hat{j} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{z} = \vec{k} = \hat{k} = e\vec{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

1.2 Schnitte

Schnitt = Restriktion \rightarrow Teilmenge vom Definitionsbereich \mathbb{D}_f

1.2.1 Partielle Funktion

- Nur eine Variable ist frei! (wählbar)
- Alle anderen Variablen sind fix! $\triangle W_f$ Analyse!

Beispiel: Schnitte

x-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur x,z-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x;y_0;f(x;y_0))$
- x-Wert ist variabel
- y-Wert ist fixiert $\Leftrightarrow y_0 = 2$

y-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur y,z-Ebene liegt.
- Bestehen aus den (x; y; z) Punkten $(x_0; y; f(x_0; y))$
- *x*-Wert ist fixiert $\Leftrightarrow x_0 = 3$
- y-Wert ist variabel

1.2.2 Bedingungen

Initialbedingungen Beziehen sich auf die Zeit

Randbedingungen Beziehen sich auf räumliche Ebenen

1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen, ...

Bei Kontouren, Levelsets, Niveaulinien oder Höhenlinien ist der Output der Funktion f konstant.

$$\vec{y} = \vec{f}(\vec{x}) = \text{const. wobei } \vec{x} \subset \mathbb{D}_f$$

Beispiel: Höhenlinien

Kontouren (Höhenlinien)

- Fläche wird geschnitten mit einer Ebene, die parallel zur x,y-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y; f(x; y) = z_0)$
- x-Wert ist variabel
- v-Wert ist variabel
- z-Wert ist fixiert $\Leftrightarrow z_0 = 3$

2 Ableitungen, DGL und Gradienten (bi-variat)

$$f: \mathbb{D}_f \subseteq \mathbb{R}^2 \to \mathbb{W}_f \subseteq \mathbb{R}$$
 skalar

2.1 Partielle Ableitung

Ableitung einer Partiellen Funktion.

Beispiel: Bi-Variate Funktion

f(x, y): y fixieren = const. = y_0 ; x einzige freie Variable

Notationen

1. Ordnung:
$$f(x; y_0) \Rightarrow \frac{\partial f}{\partial x} = f_x(x; y_0)$$
2. Ordnung:
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

2.1.1 Schwarz-Symmetrie

Wenn f_{xx} , f_{yy} , f_{xy} & f_{yx} stetig (sprungfrei) sind, dann gilt:

$$f_{xy} \stackrel{!}{=} f_{yx}$$

2.2 Gradient (Nabla-Operator)

Spaltenvektor mit partiellen Ableitungen

"Gradient"
$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{pmatrix}$$
 $\hat{=}$ Vektorfeld

2.3 Totale Ableitung

Für Fehlerrechnung benützt, da man hierbei die Abstände von (x; y; z) zu einem festen Punkt $(x_0; y_0; z_0)$ erhält. (relative Koordinaten)

$$D(f; (x_0, y_0, \dots)) : \mathbb{R}^2 \xrightarrow{1 \times 2 \text{ Matrix}} \mathbb{R}^1$$
; "gute Approximation"

$$f(x = x_0 + \Delta x; y = y_0 + \Delta y; \dots) = (D_{11}; D_{12}) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + f(x_0; y_0) + R_1$$

Wobei R_1 dem "Rest" entspricht. (Ähnlich wie bei Taylorreihe

$$\frac{R_1}{d = \sqrt{\Delta x^2 + \Delta y^2}} \rightarrow 0 \text{ ("gut", "schneller gegen 0 als } d")$$

$$D(f;(x_0;y_0)) = \left(D_{11} = \frac{\partial f}{\partial x}(x_0;y_0); D_{12} = \frac{\partial f}{\partial y}(x_0;y_0)\right)$$
$$= (\nabla f)^{\text{tr}} \text{ wenn } \frac{\partial f}{\partial x}; \frac{\partial f}{\partial y} \text{ stetig bei } A$$

2.4 Linearapproximation (Tangential approximation)

$$f(x; y) \approx f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$
 linear in Δx und Δy

2.4.1 Tangentialebene

$$g(x; y) = f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$g(x; y) = f(x_0; y_0) + f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

2.4.2 Tangentialer Anstieg (Totale Differential)

$$\mathrm{d}f \stackrel{!}{=} \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y \quad \text{bezüglich } A = \underbrace{(x_0; y_0)}$$

2.4.3 Differential-Trick (df Trick)

$$\begin{cases} f = c = \text{const.} & |d(\dots)| \\ df = dc \stackrel{!}{=} 0 \end{cases} \qquad f_x dx + f_y dy = 0 \quad \text{für Kontourlinien}$$

2.4.4 Implizite (Steigungs-)Funktion

$$y'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{f_x}{f_y \neq 0} \lor x'(y) = \frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{f_y}{f_x \neq 0}$$
 yo
$$y = \frac{P_0}{y} \lor y dy$$

2.5 DGL

$$y' = \left(-\frac{f_x}{f_y}\right); \ y(x_0) = y_0$$
right-hand-side (r.h.s.) Funktion

2.6 Richtungselement (Tangentiallinie an Kontouren)

$$\vec{r} = \left(dx = h; dy = y' dx = -\frac{f_x}{f_y} dx \right)^{tt}$$

2.7 Gradientenfeld \(\perp \) Kontouren

Skalarprodukt
$$\nabla f \bullet \begin{pmatrix} dx \\ dy = y' dx \end{pmatrix} \stackrel{!}{=} 0$$

2.8 ?Wie heisst dieser Abschnitt?

$$s(t): \quad P_0 + t \cdot \hat{v} \mid t \in \mathbb{R}$$

$$s(t): f(x_0 + t \cdot \hat{v}_1; y_0 + t \cdot \hat{v}_2)$$

$$\frac{ds(t)}{dt} = \dot{s}(t): \qquad t \mapsto \overbrace{\begin{pmatrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{pmatrix}}^{\left(x_0 + t \cdot v_1\right)} \mapsto f(x, y)$$

2.9 Richtungs-Ableitung

$$\frac{\partial f}{\partial \hat{v}} \stackrel{!}{=} D(f; (x_0; y_0)) \cdot \hat{v} \stackrel{\mathrm{Def.}}{\Leftrightarrow} \mathrm{grad}(f)^{\mathrm{tr}} \cdot \hat{v} = f_x \cdot v_1 + f_y \cdot v_2$$

Beispiel: Richtungs-Ableitung

$$\vec{x}: \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \hat{e}_1 \quad \Rightarrow \quad \frac{\partial f}{\partial \hat{e}_1} = f_x \cdot 1 + f_y \cdot 0 = \underline{f_x}$$

2.9.1 Spezialfälle

• $\alpha = \frac{\pi}{2} \Rightarrow \text{rechter Winkel}$ • $\frac{\partial f}{\partial \hat{v}}$ extremal - $\alpha = 0 \text{ (max)}$: $\nabla f \cdot \hat{v} > 0 \Rightarrow \text{grad}(f) \text{ liegt auf } \hat{v}$ - $\alpha = \pi \text{ (min)}$: $\nabla f \cdot \hat{v} < 0 \Rightarrow \text{grad}(f) \text{ liegt invers auf } \hat{v}$

Trigo: $\nabla f \cdot \hat{v} \wedge \frac{\partial f}{\partial \hat{v}} \implies \cos(\alpha) \cdot |\nabla f|$

3 Extrema von Funktionen finden

Stationäritätsbedingung: $\nabla f \stackrel{!}{=} \vec{0}$

3.1 Extrema von Funktionen zweier Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \implies x_0 \text{ und } y_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen bestimmen:

$$f_{xx} = \dots$$
 $f_{xy} = f_{yx} = \dots$ $f_{yy} = \dots$

3. Determinante Δ der Hesse-Matrix H bestimmen:

$$\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - \left(f_{xy}(x_0; y_0)\right)^2$$

4. Auswertung:

$\Delta > 0$	AND	$f_{xx}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{xx}(x_0;y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta > 0$	AND	$f_{yy}(x_0; y_0) > 0$	\Rightarrow	lokales Minimum
$\Delta < 0$			\Longrightarrow	Sattelpunkt
$\Delta = 0$?	Multi-variate-Taylor-logik

3.2 Extrema von Funktionen mehrerer Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \\ \vdots \\ f_t \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, \dots, t_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen für Hesse-Matrix H bestimmen:

$$\mathbf{H} = \begin{pmatrix} f_{xx} & f_{xy} & \dots & f_{xt} \\ f_{yx} & f_{yy} & \dots & f_{yt} \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx} & f_{ty} & \dots & f_{tt} \end{pmatrix}$$
• Symmetrien beachten!
• Nicht doppelt rechnen!
$$\Rightarrow f_{xt} = f_{tx}$$

3. Hesse-Matrix H mit gefundenen Stellen füllen:

$$\mathbf{H}(x_0, y_0, \dots t_0) = \begin{cases} f_{xx}(x_0, y_0, \dots t_0) & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) \end{cases}$$

4. Eigenwerte λ_i der Hesse-Matrix bestimmen:

 $\det \left(\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} \right) = 0$ Nullstellen λ_i finden \rightarrow Eigenwerte

Zur Erinnerung:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}, \quad \lambda \cdot \mathbf{E} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \lambda \end{pmatrix}$$

$$\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} = \dots$$

$$\dots = \begin{cases} f_{xx}(x_0, y_0, \dots t_0) - \lambda & f_{xy}(x_0, y_0, \dots t_0) & \dots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) - \lambda & \dots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \dots & f_{tt}(x_0, y_0, \dots t_0) - \lambda \end{cases}$$

5. Auswertung:

$\lambda_i < 0 \ \forall i$	\Longrightarrow	lokales Maximum
$\lambda_i > 0 \ \forall i$	\Longrightarrow	lokales Minimum
$\lambda_i > 0$ und $\lambda_i < 0$	\Longrightarrow	Sattelpunkt

- $\lambda_i < 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind negativ}$
- $\lambda_i > 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind positiv}$

3.3 Lokales oder Globales Extremum

Für eine beliebige die Funktion f(x, y, ..., t) gilt:

$f(x, y, \dots, t) \leq M_{\text{max}}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Maxinum
$f(x, y, \dots, t) > M_{\text{max}}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Maximum
$f(x, y, \dots, t) \ge M_{\min}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Minimum
$f(x, y, \dots, t) < M_{\min}$	$\exists (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	kein globales Minimum

grösstes lokales Maximum $M_{\rm max}$: kleinstes lokales Minimum M_{\min} :

3.4 Extrema von Funktionen zweier Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y) \stackrel{!}{=} 0$

Nebenbedingung: x + y = 1Standartform der Nebenbedingung: x + y - 1 = 0

2. Lagrancge-Funktion $\mathcal L$ aufstellen:

 $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot n(x, y)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion $\mathcal L$ Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \mathcal{L}_\lambda \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0$$
 $\qquad \qquad \mathcal{L}_{\lambda x} = \mathcal{L}_{x\lambda} = n_x = \dots$ $\qquad \qquad \mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_y = \dots$ $\qquad \qquad \mathcal{L}_{yy} = \dots$ $\qquad \qquad \mathcal{L}_{xy} = \mathcal{L}_{yx} = \dots$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0) = \begin{pmatrix}
\mathcal{L}_{\lambda \lambda}(x_0, y_0) & \mathcal{L}_{\lambda x}(x_0, y_0) & \mathcal{L}_{\lambda y}(x_0, y_0) \\
\mathcal{L}_{x \lambda}(x_0, y_0) & \mathcal{L}_{x x}(x_0, y_0) & \mathcal{L}_{x y}(x_0, y_0) \\
\mathcal{L}_{y \lambda}(x_0, y_0) & \mathcal{L}_{y x}(x_0, y_0) & \mathcal{L}_{y y}(x_0, y_0)
\end{pmatrix}$$

$$= \begin{pmatrix}
\mathcal{L}_{\lambda \lambda}(x_0, y_0) & n_x(x_0, y_0) & n_y(x_0, y_0) \\
n_x(x_0, y_0) & \mathcal{L}_{x x}(x_0, y_0) & \mathcal{L}_{x y}(x_0, y_0) \\
n_y(x_0, y_0) & \mathcal{L}_{y x}(x_0, y_0) & \mathcal{L}_{y y}(x_0, y_0)
\end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

$$det(\overline{\mathbf{H}}) = ...$$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum
$det(\overline{\mathbf{H}}) = 0$	\Longrightarrow	keine Aussage möglich

3.5 Extrema von Funktionen mehrerer Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y, ..., t) \stackrel{!}{=} 0$

2. Lagrancge-Funktion \mathcal{L} aufstellen:

 $\mathcal{L}(x, y, ..., t, \lambda) = f(x, y, ..., t) + \lambda \cdot n(x, y, ..., t)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion $\mathcal L$ Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \vdots \\ \mathcal{L}_t \\ f_x \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, ..., t_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0$$

$$\mathcal{L}_{xx} = \dots$$

$$\mathcal{L}_{yy} = \dots$$

$$\mathcal{L}_{yy} = \mathcal{L}_{y\lambda} = n_{y} = \dots$$

$$\mathcal{L}_{xt} = \mathcal{L}_{tx}$$

$$\mathcal{L}_{xt} = \mathcal{L}_{tx}$$

$$\mathcal{L}_{yt} = \mathcal{L}_{ty}$$

$$\mathcal{L}_{tt} = \mathcal{L}_{tx}$$

$$\mathcal{L}_{tt} = \mathcal{L}_{tx}$$

$$\mathcal{L}_{tt} = \mathcal{L}_{ty}$$

$$\mathcal{L}_{tt} = \mathcal{L}_{tx}$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(\mathbf{x}_{0}, \mathbf{y}_{0}, \dots \mathbf{t}_{0}) = \begin{pmatrix} \mathcal{L}_{\lambda \lambda}(\dots) & \mathcal{L}_{\lambda t}(\dots) & \mathcal{L}_{\lambda t}(\dots) & \mathcal{L}_{\lambda t}(\dots) \\ \mathcal{L}_{x \lambda}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{x y}(\dots) & \cdots & \mathcal{L}_{x t}(\dots) \\ \mathcal{L}_{y \lambda}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \cdots & \mathcal{L}_{y t}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathcal{L}_{t \lambda}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \cdots & \mathcal{L}_{t t}(\dots) \end{pmatrix}$$

$$= \begin{pmatrix} \mathcal{L}_{\lambda \lambda}(\dots) & n_{x}(\dots) & n_{y}(\dots) & \cdots & n_{t}(\dots) \\ n_{x}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{\lambda y}(\dots) & \cdots & \mathcal{L}_{x t}(\dots) \\ n_{y}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \cdots & \mathcal{L}_{y t}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{t}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \cdots & \mathcal{L}_{t t}(\dots) \end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $det(\overline{\mathbf{H}}) = ...$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Rightarrow	lokales Maximum
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum
$\det\left(\overline{\mathbf{H}}\right) = 0$	\Longrightarrow	keine Aussage möglich

4 Integration (bi-variat)

4.1 2D

$$\int \int_{\Omega} f(x; y) \cdot dx \cdot dy = \int_{X} \left(\int_{Y} f(x; y) \cdot dy \right) \cdot dx$$

$$wenn \int \int |f(x; y)| dx dy < \infty$$

4.2 Normalbereich

Schnitte sind Strecken (Intervalle) für x, y, ...

4.3 Polar

$$dx \cdot dy = r \cdot d\phi \cdot dr$$

4.4 2D Transformation Polar zu Kartesisch

T = Transformation

Polar
$$(r, \phi) \xrightarrow{T} (x, y)$$
 Kartesisch

$$\begin{pmatrix} x = r \cdot \cos(\varphi) \mathbb{R} \\ y = r \cdot \sin(\varphi) \mathbb{R} \end{pmatrix} 2D$$

Die Funktionen für x und y sind skalare Funktion.

$$x=x(r;\varphi) \qquad y=y(r;\varphi)$$

4.5 Derivative, Ableitung

4.6 3D Volumenberechnung

$$V = \int_{x_{\min}}^{x_{\max}} \left[\int_{y_{\min}(x)}^{y_{\max}(x)} f(x; y) \ dy \right] dx$$

4.7

4.8

- 5 Integration (multi-variat)
- 6 Differenziation und Integration von Kurven
- 7 (Ober-)Flächenintegrale
- 8 Vektoranalysis