WHAT IS CLAIMED IS:

1	1. A method for encoding data channels in a CDMA system having data channel
2	interference cancellation, comprising the steps of:
3	identifying a non-orthogonal pilot signal using a channel code;
4	mixing a data signal having an in-phase portion and a quadrature portion
5	with a specific user channel code;
6	producing resultant signals using an output signal which is generated
7	during mixing of the data signal;
8	modulating the resultant signals using a PN code;
9	baseband discriminating the in-phase and the quadrature phase portions
10	of the data signal to produce second resultant signals;
11	modulating the discriminated in-phase portion and quadrature phase
12	portion of the data signal;
13	forming a composite output signal; and
14	transmitting the composite output signal to a base station.
1	2. The method of claim 1, wherein said identifying step comprises the step of:
2	modulating the non-orthogonal signal using the channel code.
1	3. The method of claim 1, wherein said mixing step comprises the step of:
2	modulating the data signal using the specific user channel code.
1	4. The method of claim 1, wherein said producing step comprises the step of:
2	summing output signals at a node in the CDMA system.

1	5. The method of claim 1, wherein said baseband discriminating step comprises the
2	step of:
3	spreading the in-phase portion and the quadrature phase portion of the
4	data signal.
1	6. The method of claim 5, wherein said spreading step comprises the step of:
2	modulating the in-phase portion and the quadrature phase portion of the
3	data signal using channel separation signals.
1	7. The method of claim 6, wherein said separation signals are orthogonal functions.
1	8. The method of claim 1, wherein said modulating the discriminated in-phase portion
2	and quadrature phase portion of the data signal comprises the step of:
3	modulating the discriminated in-phase portion and the discriminated
4	quadrature phase portion of the data signal using respective cosine and sine
5	functions.
1	9. The method of claim 1, wherein said forming step comprises the step of:
2	summing the second resultant signals.
1	10. An apparatus for encoding data channels in a CDMA system having data channel
2	interference cancellation, comprising:
3	means for identifying a non-orthogonal pilot signal using a channel code;
4	means for mixing a data signal having an in-phase portion and a
5	quadrature portion with a specific user channel code;
6	means for producing resultant signals using an output signal which is
7	generated during mixing of the data signal:

17

8	means for modulating the resultant signals using a PN code;
9	means for baseband discriminating the in-phase portion and the
10	quadrature phase portion of the data signal to produce a resultant signal;
11	means for modulating the discriminated in-phase portion and quadrature
12	phase portion of the data signal; and
13	means for forming a composite output signal.
1	11. A method for decoding data channels in a CDMA system having data channel
2	interference cancellation, comprising the steps of:
3	receiving a composite signal at a base station;
4	decoding the composite signal to generate first resultant signals;
5	demodulating the first resultant signals using a PN code to generate
6	second resultant signals;
7	demodulating the second resultant signal using channel separation
8	functions to generate demodulated resultant signals;
9	mixing the demodulated resultant signal with channel code data;
10	filtering mixed demodulated resultant signals to generate demodulated
11	data signals and a demodulated non-orthogonal pilot signal;
12	filtering the non-orthogonal pilot signal to remove interference;
13	generating pilot signal interference terms;
14	subtracting the pilot signal interference terms from the data signal; and
15	performing a dot product calculation using the filtered non-orthogonal
16	pilot signal and in-phase sub-band portions and quadrature sub-band portions of

the data signals to generate a decoded composite output signal.

1	12. The method of claim 11, wherein said decoding step comprises the step of:
2	demodulating the composite signal using respective cosine and sine
3	functions.
1	13. The method of claim 11, wherein said demodulating the second resultant signal
2	step comprises the steps of:
3	despreading the second resultant signal with respect to the in-phase
4	sub-band portions and quadrature sub-band portions of the data signal using a
5	first channel separation signal and a second channel separation signal,
6	respectively; and
7	despreading the second resultant signal with respect to the in-phase
8	sub-band portions and the quadrature sub-band portions of the data signal using
9	a third channel separation signal.
1	14. The method of claim 13, wherein the second channel separation signal is a complex
2	conjugate of the first channel separation signal.
1	15. The method of claim 14, wherein the first channel separation signal and the seond
2	channel separation signal are orthogonal functions.
1	16. The method of claim 11, wherein said mixing step comprises the steps of:
2	demodulating non-orthogonal pilot signal components of the demodulated
3	resultant signals using the channel code data; and
4	demodulating in-phase sub-band portions and quadrature sub-band
5	portions of the demodulated data signal using a specific user channel code.

1

2

1	17. The method of claim 11, wherein said filtering step comprises the step of:
2	performing an integration and dump.
1	18. The method of claim 17, wherein said integration and dump comprises the steps
2	of:
3	comparing code lengths of the demodulated data signals to each other;
4	multiplying matching code lengths of the demodulated data signals; and
5	integrating multiplied and matched code lengths of the demodulated data
6	signals.
1	19. The method of claim 11, wherein said step of generating pilot signal interference
2	terms comprises the steps of:
3	modulating the demodulated non-orthogonal pilot signal, using the
4	channel code data to generate resultant output signals; and
5	modulating the resultant output signal, using a specific channel code of
6	a user to generate a first pilot signal interference term and a forth pilot signal
7	interference term.
1	20. The method of claim 19, further comprising the steps of:
2	subsequent to modulating the resultant output signals, using a specific
3	channel code of a user, modulating the resultant output signals using a first
4	channel separation signal and a second channel separation signal to generate a
5	second pilot signal interference term and a third pilot signal interference term.

21. The method claim 19, wherein the first channel separation signal and the second channel separation signal are orthogonal functions.

5

6

7

signals;

generate second resultant signals;

1	22. The method of claim 11, wherein said step of performing a dot product calculation
2	comprises the steps of:
3	modulating cosine portions of the in-phase sub-band portions and cosine
4	portions of the quadrature sub-band portions of the data signal, using a cosine
5	portion of the demodulated non-orthogonal pilot signa to generate resultant
6	cosine in-phase sub-band portions and resultant cosine quadrature sub-band
7	portions;
8	modulating sine portions of the in-phase sub-band portions and sine
9	portions of the quadrature sub-band portions of the data signal using a sine
10	portion of the demodulated non-orthogonal pilot signal to generate resultant sine
11	in-phase sub-band portions and resultant sine quadrature sub-band portions;
12	summing the resultant cosine in-phase sub-band portions and the
13	resultant sine in-phase sub-band portions to generate a first composite signal
14	portion;
15	summing the resultant cosine quadrature sub-band portions and the result
16	sine portions of the quadrature sub-band portions to generate a second
17	composite signal portion; and
18	outputting the first composite signal portion and the second composite
19	signal portion as the decoded composite output signal.
1	23. An apparatus for decoding data channels in a CDMA system having data channel
2	interference cancellation, comprising the steps of:
3	means for receiving a composite signal at a base station;
4	means for decoding the composite signal to generate first resultant

means for demodulating the first resultant signals using a PN code to

1	means for demodulating the second resultant signal using channel
2	separation functions to generate demodulated resultant signals;
3	means for mixing the demodulated resultant signal with channel code
4	data;
5	means for filtering mixed demodulated resultant signals to generate
6	demodulated data signals and a demodulated non-orthogonal pilot signal;
7	means for filtering the non-orthogonal pilot signal to remove
8	interference;
9	means for generating pilot signal interference terms;
10	means for subtracting the pilot signal interference terms from the data
11	signal; and
12	means for performing a dot product calculation using the filtered
13	non-orthogonal pilot signal and in-phase sub-band portions and quadrature
14	sub-band portions of the data signals to generate a decoded composite output
15	signal.
1	24. A method for encoding/decoding data channels in a CDMA system having data
2	channel interference cancellation, comprising the steps of:
3	modulating a non-orthogonal pilot signal using a channel code;
4	modulating a data signal using a specific user channel code;
5	summing the modulated data signal and the modulated pilot signal to
6	obtain resultant signals;
7	modulating the resultant signals using a PN code;
8	spreading the modulated resultant signals using channel separation
9	signals;
10	modulating spread modulated resultant signals using respective cosine
11	and sine functions;

12	summing the spread modulated signals to form a composite output
13	signal;
14	transmitting the composite output signal to a base station;
15	receiving the transmitted composite output signal at a transceiver;
16	demodulating received composite signal using the respective cosine and
17	sine functions to generate a demodulated composite signal;
18	demodulating the demodulated composite output signal using a PN code;
19	demodulating the demodulated composite output signal using channel
20	separation functions to obtain demodulated resultant signals;
21	demodulating the demodulated resultant signals using the respective
22	cosine and sine functions;
23	filtering the demodulated resultant signals to generate a demodulated data
24	signal and a demodulated non-orthogonal pilot signal;
25	filtering the non-orthogonal pilot signal to remove interference;
26	generating first, second, third and forth pilot signal interference terms;
27	subtracting the first, second, third and forth pilot signal interference
28	terms from the data signal; and
29	performing a dot product calculation to generate an in-phase sub-band
30	data signal and a quadrature sub-band data signal.