Deuxièmes bac sciences PC/SVT/ST

Résumé: Produit scalaire dans l'espace

Deuxièmes bac sciences PC/SVT/ST

- Cours détaillé
- > Résumé de cours
- Série corrigée

www.elboutkhili.jimdofree.com

Résumé: GEOMETRIE DANS L'ESPACE

Prof: FAYSSAL 2bac SC PC/SVT/ST

$(0, \vec{l}, \vec{l}, \vec{k})$ un repère orthonormé de l'espace Condition de colinéarité de deux vecteurs

Soient $\overrightarrow{U}(x; y; z)$ et $\overrightarrow{V}(x'; y'; z')$ deux vecteurs \vec{U} et \vec{V} sont colinéaires si : $\vec{U} = \alpha \vec{V}$

 $ightharpoonup \vec{U}$ et \vec{V} sont colinéaires

$$\Delta_{x} = \begin{vmatrix} y & y' \\ z & z' \end{vmatrix} ; \Delta_{y} = \begin{vmatrix} x & x \\ z & z \end{vmatrix}$$

 $\vec{U}(x; y; z)$; $\vec{V}(x'; y'; z')$ vecteurs \vec{U} ; \vec{V} et \vec{W} so

ssi $\exists (\alpha; \beta) \in IR^2 : \overrightarrow{W}$ \triangleright Les vecteurs \overrightarrow{U} : \overrightarrow{V}

ssi $det(\overrightarrow{U}; \overrightarrow{V}; \overrightarrow{W})$

 $\overrightarrow{U} \text{ et } \overrightarrow{V} \text{ sont colinéaires}$ $\Delta_x = \begin{vmatrix} y & y' \\ z & z' \end{vmatrix}; \Delta_y = \begin{vmatrix} x & x \\ z & z \end{vmatrix}$ Vacteurs col Vacteurs col

correction dans

Norme d'un vecte

Formule trigonomes.

Soient \overrightarrow{U} et \overrightarrow{V} deux vecteurs non ...

l'espace donc : $\overrightarrow{U} = \overrightarrow{AB} \ et \overrightarrow{V} = \overrightarrow{AC}$ Le produit scalaire de \overrightarrow{U} et \overrightarrow{V} dans l'espace est le nombre réel noté \overrightarrow{U} . \overrightarrow{V} et définit par :

 $\overrightarrow{U} \cdot \overrightarrow{V} = \overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times cos(\overrightarrow{AB}; \overrightarrow{AC})$

 $ightharpoonup \overrightarrow{U} \cdot \overrightarrow{V} = \|\overrightarrow{U}\| \times \|\overrightarrow{V}\| \times cos(\overrightarrow{U}; \overrightarrow{V})$

Formule analytique de produit scalaire

Soient $\overrightarrow{U}(x; y; z)$ et $\overrightarrow{V}(x'; y'; z')$ on a :

$$\overrightarrow{U} \cdot \overrightarrow{V} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = xx' + yy' + zz'$$

csant par le point

le livre FMATHS

on est pelle

sienne

z + d = 0

cteur

+d=0

Jorme u un points $A(x_A; y_A; Contactez-nous)$ Soit $\overline{U}(x; y; z)$ $\|\overline{U}\|$

0681399067

normal au pian \rightarrow A un point et \vec{n} un vector

l'espace L'ensemble des points M(x; y; z)de l'espace tel que \overrightarrow{AM} . $\overrightarrow{n} = 0$ est un plan (P) passant par A et de vecteur normale \vec{n}

Position relative de deux plans Soient (P) Un plan de vecteur normale \vec{n} et (Q) un plan de vecteur normalen'

(P)//(Q) ssi \vec{n} et $\vec{n'}$ sont colinéaire

 $(P) \perp (Q)$ ssi \overrightarrow{U} et \overrightarrow{V} sont orthogonaux

Position relative d'un plan et une droite

(D) une droite de vecteur directeur \vec{U} et(P) Un plan de vecteur normale \vec{n}

 $(P) \perp (D)$ ssi \overrightarrow{n} et \overrightarrow{U} sont colinéaires

 $(P)//(D)ssi \overrightarrow{n} et \overrightarrow{U} sont orthogonaux$

DISTANCE D'UN POINT à UN PLAN

Position relative d'une sphère et un plan Soit (S) une sphère de centre Ω et de rayon **W**un plan et d la distance entre le

Soient (P): ax + by + cz.

A(x_A ; y_A ; z_A) un point de l'espac projection orthogonale de A su

LA Suite de la

La distance de point A au pl

$$d(A; (P)) = AH = \frac{|ax_A|}{\sqrt{1 - |ax_A|^2}}$$

Soit (S) la sphère de c rayon r l'équation ca

$$(x-a)^2 + (y-a)^2 + (y-a$$

L'équation cartés

Contactez-nous définit par son diar $M(x; y; z) \in (S) \Leftrightarrow APA.$

0681399067 Proposition: l'ensemble des points M

L'ensemble des points M(x; y; z) de l'espace tel que :

$$(S): x^2 + y^2 + z^2 + ax + by + cz + d = 0$$

est un sphère si $D = a^2 + b^2 + c^2 - 4d > 0$

- > Son centre est le point $\Omega\left(-\frac{a}{2}; -\frac{b}{2}; -\frac{c}{2}\right)$
- > Son rayon est $r = \frac{\sqrt{D}}{2}$

d < R

Dans ce cas le plan coupe la sphère

Suivant un cercle (C) de centre H et de rayon r tel que : $r = \sqrt{R^2 - d^2}$

Pour déterminer les cordonnées de H on résoudre le système suivant :

$$\begin{cases} (\Omega \mathbf{H}) : \begin{cases} x = x_{\Omega} + at \\ y = y_{\Omega} + bt \end{cases} ; (t \in IR) \\ z = z_{\Omega} + ct \\ (P) : ax + by + cz + d = 0 \end{cases}$$

<mark>'tion relative d'une sphère et une droite</mark>

(S) une sphère de centre Ω et d rayon R

Δ) la droite passant par le point A et de

teur directeur $\vec{U}(\alpha; \beta; \gamma)$

Prof: FAYSSAL

our déterminer les cordonnées des points intersections de sphère (S) et la droite (Δ) n résoudre le système suivant :

$$\begin{cases} (\Delta): \begin{cases} x = x_A + \alpha t \\ y = y_A + \beta t \end{cases} ; & (t \in IR) \\ z = z_A + \gamma t \end{cases}$$
$$(S): (x - x_{\Omega})^2 + (y - y_{\Omega})^2 + (z - z_{\Omega})^2 = R^2$$