DRUG LAB - CALCULATION SHEET

	t value										
N	FOR "n"	GROSS	PKG.	NET	1						
1		0.9161	0.1340		POPULATION (N)	=		35	CITY	Boston	
2	63.657	0.8904	0.1148	0.7756					LAB #	687761R	
3	9.925	1.0137	0.1357	0.8780	SAMPLE (n)	=		35 (CHEMIST	ASD	
4	5.841	1.3635	0.1311	1.2324	. ,						
5	4.604	0.9068	0.1300	0.7768	ACTUAL GROSS	=		33.78			
6	4.032	0.9678	0.1333	0.8345					GROSS	PKG.	NET
7	3.707	0.8303	0.1268	0.7035	SUM	=			33.651	4.620	29.030
8	3.499	0.9473	0.1396	0.8077							
9	3.355	0.9220	0.1319	0.7901	MEAN	=			0.961	0.132	0.829
10	3.250	0.9447	0.1382	0.8065							
11	3.169	0.8146	0.1276	0.6870	STD. DEV.	=			0.151	0.005	0.149
12	3.106	0.7350	0.1223	0.6127							
13	3.055	1.0593	0.1381	0.9212	c.v.	=				3.975	17.948
14	3.012	0.9457	0.1293	0.8164							
15	2.977	1.0265	0.1333	0.8932	VALUE FOR t	=		2.725			
16	2.947	1.1227	0.135	0.9877							
17	2.921	1.1832	0.1383	1.0449	EST. WGT.	=	BASED ON			29.160	29.030
18	2.898	0.9073	0.1294	0.7779							
19	2.878	0.8166	0.1227	0.6939							
20	2.861	0.8863	0.1297	0.7566							
21	2.845	1.0258	0.1336	0.8922	EST. MIN.	=	99% CONF.	LIMIT		29.075	26.630
22	2.831	0.9426	0.1383	0.8043							
23	2.819	0.9218	0.1345	0.7873	EST. MAX.	=	99% CONF.	LIMIT		29.244	31.430
24	2.807	0.8661	0.1273	0.7388							
25	2.797	0.7757	0.1329	0.6428							
26	2.787	1.3496	0.1343	1.2153							
27	2.779	0.8083	0.1340	0.6743							
28	2.771	0.8628	0.1367	0.7261							
29	2.763	0.8743	0.1343	0.7400							
30	2.756	0.9312	0.1315	0.7997							
31	2.750	0.9511	0.1335	0.8176							
32	2.750	0.9394	0.1336	0.8058							
33	2.750	0.9924	0.1276	0.8648							
34	2.750	0.8756	0.1285	0.7471							
35	2.725	1.3340	0.1384	1.1956							
36	2.725										
37	2.725										
38	2.704										
39	2.704										
40	2.704										
41	2.704										
42	2.690										
43	2.690										
44	2.690										
45	2.690										
46	2.680										
47	2.680										
48	2.680										
49	2.680										
50	2.680										