ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάθημα: Τεχνητή νοημοσύνη.

Όνομα: Μουστάκας Αριστείδης

AEM: 2380

email: moustakas@csd.auth.gr

1) Nominal or numeric attributes.

1. pclass: nominal

2. sex: nominal

3. age: numeric

4. sibsp:numeric

5. parch: numeric

6. ticket: nominal

7. fare: numeric

8. cabin: nominal

9. embarked: nominal

10. survived: nominal

2) Missing values for each attribute.

1. pclass: 0 (0%)

2. sex:0(0%)

3. age: 177 (20%)

4. sibsp: 0 (0%)

5. parch: 0 (0%)

6. ticket: 0 (0%)

7. fare: 0 (0%)

8. cabin: 687 (77%)

9. embarked: 2 (0%)

10. survived: 0 (0%)

❖ Για τον αλγόριθμο ibk με 1 φίλο (με percentage split 66%) έχουμε την παρακάτω ακρίβεια:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.767	0.298	0.81	0.767	0.788	0.735	0
	0.702	0.233	0.645	0.702	0.672	0.735	1
Weighted Avg.	0.743	0.274	0.748	0.743	0.744	0.735	

όπου παρατηρούμε ότι το ποσοστό των παραδειγμάτων με τιμή 0 που ταξινομούνται σωστά είναι TPR = 76.7%, αντίστοιχα ότι το ποσοστό των παραδειγμάτων με τιμή 1 που ταξινομούνται σωστά είναι TPR = 70.2%. Γενικότερα το ποσοστό των παραδειγμάτων που ταξινομούνται σωστά είναι 74.3%. Επίσης παρατηρούμε ότι το ποσοστό των παραδειγμάτων με τιμή 0 που ταξινομούνται λάθος (δηλαδή που έπρεπε να ταξινομηθούν ως 1) είναι FPR = 29.8% και τέλος το ποσοστό των παραδειγμάτων με τιμή 1 που ταξινομούνται λάθος (δηλαδή που έπρεπε να ταξινομηθούν ως 0) είναι FPR = 23.3%. Γενικότερα το ποσοστό των παραδειγμάτων που ταξινομούνται λάθος είναι 27.4%. Όπως βλέπουμε τα στοιχεία που έχουν τιμή 0 ταξινομούνται καλύτερα. Επίσης το precision (μέσος όρος των precision του 0 και του precision του 1) είναι ίσος με Precision=74.8%. Τέλος ο αρμονικός μέσος των precision και recall είναι το F-Measure=74.4%.

❖ Για τον αλγόριθμο j48 (με percentage split 66%) έχουμε την παρακάτω ακρίβεια:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.862	0.342	0.807	0.862	0.834	0.781	0
	0.658	0.138	0.743	0.658	0.698	0.781	1
Weighted Avg.	0.785	0.265	0.783	0.785	0.783	0.781	

όπου παρατηρούμε ότι το ποσοστό των παραδειγμάτων με τιμή 0 που ταξινομούνται σωστά είναι TPR = 86.2%, αντίστοιχα ότι το ποσοστό των παραδειγμάτων με τιμή 1 που ταξινομούνται σωστά είναι TPR = 65.8%. Γενικότερα το ποσοστό των παραδειγμάτων που ταξινομούνται σωστά είναι 78.5%. Επίσης παρατηρούμε ότι το ποσοστό των παραδειγμάτων με τιμή 0 που ταξινομούνται λάθος (δηλαδή που έπρεπε να ταξινομηθούν ως 1) είναι FPR = 34.2% και τέλος το ποσοστό των παραδειγμάτων με τιμή 1 που ταξινομούνται λάθος (δηλαδή που έπρεπε να ταξινομηθούν ως 0) είναι FPR = 13.8%. Γενικότερα το ποσοστό των παραδειγμάτων που ταξινομούνται λάθος είναι 27.4%. Όπως βλέπουμε τα στοιχεία που έχουν

τιμή Ο ταξινομούνται καλύτερα. Επίσης το precision (μέσος όρος των precision του 0 και του precision του 1) είναι ίσος με Precision=78.3% . Τέλος το precision (μέσος όρος των precision του 0 και του precision του 1) είναι ίσος με Precision=78.3%.

<u>Παρατηρούμε</u> ότι από τους 2 παραπάνω αλγορίθμους το μεγαλύτερο ποσοστό πρόβλεψης σωστών αποτελεσμάτων το έχει ο j48.

4)

> Για τον αλγόριθμο ibk με 1 φίλο (με percentage split 66%) το ποσοστό των παραδειγμάτων που ταξινομείται σωστά είναι:

Correctly Classified Instances

225

74.2574 %

Για το αλγόριθμο j48 (με percentage split 66%) το ποσοστό των παραδειγμάτων που ταξινομείται σωστά είναι:

Correctly Classified Instances 238

78.5479 %

5)

• Για τον αλγόριθμο ibk με 1 φίλο (με cross validation 5) έχουμε ακρίβεια:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.825	0.354	0.789	0.825	0.807	0.747	0
	0.646	0.175	0.697	0.646	0.671	0.747	1
Weighted Avg.	0.756	0.285	0.754	0.756	0.755	0.747	

• Για τον αλγόριθμο j48 (με cross validation 5) έχουμε ακρίβεια:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.891	0.415	0.775	0.891	0.829	0.78	0
	0.585	0.109	0.769	0.585	0.664	0.78	1
Weighted Avg.	0.773	0.298	0.773	0.773	0.766	0.78	

Παρατηρούμε ότι ο j48 έχει και καλύτερο ποσοστό παραδειγμάτων που ταξινομούνται Ο ή 1 και είναι όντως Ο ή 1 (precision) αλλά και καλύτερο F-Measure που είναι ο αρμονικός μέσος των recall και precision.

Επίσης, για τον αλγόριθμο ibk με 1 φίλο (με cross validation 5) το ποσοστό των παραδειγμάτων που ταξινομείται σωστά είναι:

Correctly Classified Instances

674

75.6453 %

και αντίστοιχα για το αλγόριθμο j48 (με cross validation 5) το ποσοστό των παραδειγμάτων που ταξινομείται σωστά είναι:

Correctly Classified Instances

689

77.3288 %

<u>Παρατηρούμε</u> ότι ο αλγόριθμος j48 (με cross validation 5) έχει ταξινομεί σωστά περισσότερα στοιχεία.

6)

Κάνοντας απαλοιφή των ελλιπών έχουμε τα παρακάτω αποτελέσματα:

• Για τον αλγόριθμο ibk με 1 φίλο (με cross validation 5) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.816	0.304	0.812	0.816	0.814	0.768	0
	0.696	0.184	0.702	0.696	0.699	0.768	1
Weighted Avg.	0.77	0.258	0.77	0.77	0.77	0.768	
Correctly Clas	sified Ins	stances	686		76.9921	ŧ	

• Για τον αλγόριθμο j48 (με cross validation 5) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.891	0.404	0.78	0.891	0.832	0.788	0
	0.596	0.109	0.773	0.596	0.673	0.788	1
Weighted Avg.	0.778	0.291	0.777	0.778	0.771	0.788	
Correctly Clas	ssified In	stances	693		77.7778	8	

Παρατηρούμε ότι και για τους 2 αλγόριθμους τα TPR, Precision, Recall και F-Measure αυξάνονται όπως και τα παραδείγματα που ταξινομούνται σωστά. Άρα συμπεραίνουμε ότι μετά την εφαρμογή του φίλτρου για την απαλοιφή των ελλιπών τιμών η ακρίβεια αυξάνεται.

7)

♣ Για τον αλγόριθμο SMO (με cross validation 10) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.885	0.254	0.848	0.885	0.866	0.815	0
	0.746	0.115	0.802	0.746	0.773	0.815	1
Weighted Avg.	0.832	0.201	0.83	0.832	0.83	0.815	

όπου βλέπουμε πως οι μετρικές TPR, Precision Recall και F-Measure είναι πάνω από 80%. Άρα ο SMO είναι ένας πολύ "δυνατός" αλγόριθμος.

♣ Για τον αλγόριθμο BFTtree (με cross validation 10) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.914	0.623	0.702	0.914	0.794	0.64	0
	0.377	0.086	0.733	0.377	0.498	0.64	1
Weighted Avg.	0.708	0.417	0.714	0.708	0.681	0.64	

όπου παρατηρούμε ότι οι μετρικές αυτού του αλγορίθμου για το συγκεκριμένο dataset είναι αρκετά χαμηλές.

♣ Για τον αλγόριθμο RBFNetwork (με cross validation 10) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.847	0.31	0.814	0.847	0.83	0.821	0
	0.69	0.153	0.738	0.69	0.713	0.821	1
Weighted Avg.	0.787	0.25	0.785	0.787	0.785	0.821	

όπου βλέπουμε πως οι μετρικές TPR, Precision Recall και F-Measure είναι λίγο κάτω από 80%. Άρα ο RBFNetwork είναι ένας καλός αλγόριθμος.

♣ Για τον αλγόριθμο Zero-R (με cross validation 10) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	1	1	0.616	1	0.763	0.497	0
	0	0	0	0	0	0.497	1
Weighted Avg.	0.616	0.616	0.38	0.616	0.47	0.497	

όπου βλέπουμε πως οι μετρικές αυτού του αλγορίθμου μας δίνουν πολύ χαμηλά ποσοστά ακρίβειας.

 \clubsuit Για τον αλγόριθμο BayesNet (με cross validation 10) έχουμε τα παρακάτω αποτελέσματα:

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.849	0.327	0.806	0.849	0.827	0.838	0
	0.673	0.151	0.735	0.673	0.702	0.838	1
Weighted Avg.	0.781	0.26	0.779	0.781	0.779	0.838	

όπου βλέπουμε πως οι μετρικές TPR, Precision Recall και F-Measure είναι λίγο κάτω από 80%. Άρα ο BayesNet είναι ένας αρκετά καλός αλγόριθμος.