Határozza meg az alábbi függvények deriváltját!

1,
$$f(x) = (2x+1)^7$$

16,
$$f(x) = (x^2 + 5x - 3)^9$$

$$2, \qquad f(x) = \sqrt{x^2 - 4}$$

17,
$$f(x) = \lg(2x+4)$$

3,
$$f(x) = \log_2(x^2 - 5x + 6)$$

18,
$$f(x) = \ln(3x)$$

4,
$$f(x) = \ln(x^2 + 2)$$

19,
$$f(x) = e^{5x}$$

5,
$$f(x) = e^{x^2 + 3x + 6}$$

20,
$$f(x) = \sqrt{1 - 4x^2}$$

6,
$$f(x) = \sqrt{x^2 + 5x + 6}$$

21,
$$f(x) = \frac{1 + e^{2x}}{1 - e^{2x}}$$

$$f(x) = \sqrt{1 + e^x}$$

$$22, \qquad f(x) = \left(\frac{1+x}{1-x}\right)^2$$

$$8, \qquad f(x) = \ln(1 - \sqrt{x})$$

$$23, \qquad f(x) = \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$

9,
$$f(x) = \ln(1 - 3x^2)$$

24,
$$f(x) = \frac{e^{3x}}{2 + e^{3x}}$$

10,
$$f(x) = e^{x^2} + \ln 7x$$

25,
$$f(x) = 4x^2 + e^{2x} + \ln 2x$$

11,
$$f(x) = \sqrt{2-5x^2}$$

26,
$$f(x) = 10^{2x} - (x^2 + 7)^3$$

12,
$$f(x) = (x^2 + 3) \cdot \log_5(4x - 2)$$

13,
$$f(x) = \sqrt{2+5x^3} - e^{x^2+3} - \ln(9x-1)$$

$$14, \quad f(x) = e^{7x} \cdot \lg 5x$$

27,
$$f(x) = \ln^2(x^2 + 1)$$

15,
$$f(x) = \ln \sqrt{x^2 - 2}$$

28,
$$y = (x^2 + 4)^2$$

28,
$$y = (x^2 + 4)^2$$
 29, $y = (x^3 + 13)^5$

30,
$$y = \sqrt{4x^2 - 6x + 9}$$

31,
$$y = \sqrt{x^5 + 5x^3}$$

32,
$$y = \frac{1}{3x^8 + 2x - x^{-3}}$$

31,
$$y = \sqrt{x^5 + 5x^3}$$
 32, $y = \frac{1}{3x^8 + 2x - x^{-3}}$ **33,** $y = \frac{3.5x^{-\frac{4}{3}}}{\sqrt{4x^2 - 6x + 9}}$

34,
$$y = \sqrt{x}(x^3 + 3x)$$
 35, $y = xe^x$

35.
$$y = xe^x$$

36,
$$y = \frac{x^2 - 4}{x + 7}$$

37,
$$y = \sqrt{x}(x^3 + 3x)$$
 38, $y = \frac{x^2 - 49}{x + 1}$

38,
$$y = \frac{x^2 - 49}{x + 1}$$

39,
$$y = \ln(x^2)$$

40.
$$v = e^{\sin x}$$

41.
$$y = x \sin x$$

42,
$$y = \sqrt{x}e^{x}$$

43,
$$y = e^x (x^3 + 3x)^5$$
 44, $y = e^{x^2 + 19x + 49}$
45, $f(x) = 6x^2 + \frac{3}{\sqrt[4]{x}} - \frac{x^2}{\sqrt[3]{x}} + \log_5 8 - 2\log_3 x$

46,
$$g(x) = \frac{\sin x}{4x^3 - 6}$$
 47, $h(x) = e^x \cdot \ln x$
49. $j(x) = \sin \sqrt{10x^4 + 3x^2}$

48,
$$i(x) = \frac{2\cos(x^3 + 2x)}{x^2 + 6x + 3}$$

$$50, \ f_{1(x)} = x \cdot \sin x,$$

$$51, \ f(x) = x \cdot \sin 3x$$

50,
$$f_{1(x)} = x \cdot \sin x$$
, **51,** $f(x) = x \cdot \sin 3x$, **52,** $f_3(x) = \frac{\sin x}{2x^4 + 3}$

$$53, f_4(\mathbf{x}) = \sqrt{\sin x + 3}$$

54,
$$f_5 := x^4 \cdot \sin 5x$$
,

53,
$$f_4(\mathbf{x}) = \sqrt{\sin x + 3}$$
, 54, $f_5 := x^4 \cdot \sin 5x$, 55, $f_6(\mathbf{x}) = x^3 \cdot \sqrt[4]{x^3} \cdot \sin x$,

56,
$$f_7(\mathbf{x}) = (x^5 + \pi)^3 \cdot \sin 3x$$
, **57,** $f_8 = \frac{x \cdot \cos 6x}{x^2 - 1}$.

57,
$$f_8 = \frac{x \cdot \cos 6x}{x^2 - 1}$$

$$58, f_{9(x)} = \frac{x^3 \cdot \cos x^3}{\sin^3 x + 6},$$

58,
$$f_{9(x)} = \frac{x^3 \cdot \cos x^3}{\sin^3 x + 6}$$
, **59,** $f_{11} = x^3 \cos 4x + \frac{1}{x^2 + 1}$,

$$f_{12}(x) = \sin 2x \cdot tgx \quad (x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[),$$

61.
$$f_{13}(x) := tg^3 x + ctgx^3 + 3x - \sqrt[3]{x} - \frac{3}{x^3} \quad (x \in \left] 0, \sqrt[3]{\frac{\pi}{2}} \right],$$

62,
$$f_{14}(x) := \frac{\sin 3x}{x^4 + \sqrt{2}} + \cos^5(2x + 1),$$

63,
$$f_{15}(x) := \frac{\operatorname{arctg} 2x^4}{\cos^2 x + 5}$$
,

64
$$f(x) := arctg 2x^4 \cdot (cos^2 x + 5)$$
.

65,
$$f(x) = \frac{1}{\sqrt[3]{x^2}} + \sqrt{x}$$

66,
$$f(x) = (1 - x^3) \cdot (x^2 - 2x)$$

67,
$$f(x) = \frac{2x^2 + 3x}{1 + 2x}$$

68,
$$f(x) = \sin^2 x - \sin x^2$$

69.
$$f(x) = x^2 \cdot ctg\sqrt{x}$$

$$70, \quad f(x) = e^{-x} \cdot \cos 2x$$

71,
$$f(x) = tg^2 \sqrt{x} + \frac{1}{\cos \pi}$$

72,
$$f(x) = e^{\operatorname{arsh}\left(\frac{x}{2}+3\right)}$$

$$73, \quad f(x) = ctg \frac{x}{x^2 + 1}$$

74,
$$f(x) = \ln(x + \sqrt{x^2 - 1})$$

$$75, \ f(x) = \ln(ch\sqrt{x})$$

76,
$$f(x) = \text{th}\left(\frac{\cos^2 2x}{x^2 - 1}\right)$$

77,
$$f(x) = sh(\sqrt{x} \cdot e^{-x})$$

78,
$$f(x) = \sin^2(\arccos x)$$

79,
$$f(x) = \log_2(\sqrt[3]{x^2} \cdot \sinh x) + e^3$$