Rangkaian Bias DC

Bipolar Junction Transistor **BJT**

Tujuan

- Menggambar garis beban dc (dc load line) dari nilai V_{cc} yang diberikan dan rangkaian collector-emitter
- Menjelaskan titik kerja (Q-point) dari amplifier.
- Menjelaskan dan analisa Macam-macam rangkaian bias :
 - Rangkaian bias base
 - Rangkaian bias voltage-divider
 - Rangkaian bias emitter
 - Rangkaian bias collector-feedback
 - Rangkaian bias emitter-feedback bias circuits

Operasi amplifier

Garis beban DC

- Apabila $I_B >> maka I_C >> dan V_{CE} <<$
- Apabila $I_B << maka I_C << dan V_{CE} >>$
- Shg perubahan pada VBB → perubahan titik kerja transistor disepanjang garis lurus yang disebut dengan garis beban dc

Letak titik Q pada garis beban

Plot garis beban dc rangkaian dibawah ini

Plot garis beban dc rangkaian dibawah ini, kemudian tentukan nilai V_{CE} untuk $I_{C}=1,\,2,\,$ 5 mA

Optimum Q-point pada operasi amplifier

Bias Base (fixed bias).

Tentukan nilai I_C dan V_{CE} dan gambarkan garis beban dc dari rangkaian dibawah ini

$$I_{B} = \frac{V_{CC} - 0.7V}{R_{B}} = \frac{8V - 0.7V}{360k\Omega}$$
$$= 20.28\mu A$$

$$I_C = h_{FE}I_B = (100)(20.28\mu\text{A})$$

= 2.028mA

$$V_{CE} = V_{CC} - I_C R_C$$

= $8V - (2.028 \text{mA})(2 \text{k}\Omega)$
= 3.94V

10

Garis beban dc

Contoh 4(Q-point shift)

Transistor pada rangkaian contoh 3 memiliki nilai $h_{FE} = 100$ pada T = 25 °C dan h_{FF} = 150 pada T = 100 °C. Tentukan Qpoint dari nilai I_C dan V_{CE} pada kedua temperatur.

Karakteristik Bias Base (Fixed Bias) (1)

Karakteristik Base bias (Fixed bias)(2)

Persamaan Load line:

$$I_{C(\text{sat})} \cong \frac{V_{CC}}{R_C}$$

$$V_{CE(\text{off})} = V_{CC}$$

Persamaan Q-point

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$I_C = h_{FE}I_B$$

$$V_{CE} = V_{CC} - I_C R_C$$

Voltage divider bias (1)

Tentukan nilai I_{CO} dan V_{CEO} untuk rangkaian dibawah ini:

$$V_{B} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$
$$= (10V) \frac{4.7k\Omega}{22.7k\Omega} = 2.07V$$

$$V_E = V_B - 0.7V$$

= 2.07V - 0.7V = 1.37V

Karena $I_{CQ} \cong I_E$ (atau $h_{FE} >> 1$),

$$I_{CQ} \cong \frac{V_E}{R_E} = \frac{1.37 \text{ V}}{1.1 \text{k}\Omega} = 1.25 \text{mA}$$

$$V_{CEQ} = V_{CC} - I_{CQ} (R_C + R_E)$$

= 10V - (1.25mA)(4.1k\Omega) = 4.87V

Buktikan bahwa $I_2 > 10 I_B$.

$$I_2 = \frac{V_B}{R_2} = \frac{2.07 \text{ V}}{4.7 \text{k}\Omega} = 440.4 \mu\text{A}$$

$$I_B = \frac{I_E}{h_{FE} + 1} = \frac{1.25 \text{mA}}{50 + 1}$$
$$= 24.51 \mu\text{A}$$

$$\therefore I_2 > 10I_B$$

Rangkaian bias Voltage-divider dengan: $R_1=1.5~{\rm k}\Omega$, $R_2=680~\Omega$, $R_C=260~\Omega$, $R_E=240~\Omega$ dan $V_{CC}=10~{\rm V}$. Bilai nilai ${\rm h_{FE}}{=}173$, Tentukan nilai I_B dan garis beban ari rangkaian :

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = (10V) \frac{680\Omega}{2180\Omega} = 3.12V$$

$$V_E = V_B - 0.7V = 3.12V - 0.7V = 2.42V$$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{2.42 \text{V}}{240 \Omega} = 10 \text{mA}$$

$$I_B = \frac{I_E}{h_{FE(\text{ave})} + 1} = \frac{10\text{mA}}{174} = 57.5\mu\text{A}$$

Garis Beban DC contoh 7

$$R_{EQ} = R_2 // (h_{FE} R_E)$$
$$= 10 k\Omega // (50 \times 1.1 k\Omega) = 8.46 k\Omega$$

$$V_B \cong V_{CC} \frac{R_{EQ}}{R_1 + R_{EQ}}$$

= $(20\text{V}) \frac{8.46\text{k}\Omega}{68\text{k}\Omega + 8.46\text{k}\Omega} = 2.21\text{V}$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{V_B - 0.7V}{R_E}$$

$$= \frac{2.21V - 0.7V}{1.1k\Omega} = 1.37 \text{mA}$$

$$V_{CEQ} = V_{CC} - I_{CQ} (R_C + R_E)$$

= 20V - (1.37mA)(7.3k\Omega) = 9.99V

Karakteristik Voltage-divider bias (1)

Ciri Rangkaian: Voltage divider pada rangkaian base

Keuntungan: Nilai Q-point stabil meskipun dalam perubahan h_{FE} .

Kerugian: Dibutuhkan lebih banyak komponen dibanding rangkaian bias yang lain.

Aplikasi : digunakan untuk bias linear amplifier.

Karakteristik Voltage-divider bias (2)

Persamaan garis beban dc

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Persamaan Q-point (Asumsi $h_{FE}R_E > 10R_2$):

$$\begin{aligned} V_B &= V_{CC} \, \frac{R_2}{R_1 + R_2} \\ V_E &= V_B - 0.7 \, \mathrm{V} \\ I_{CQ} &\cong I_E = \frac{V_E}{R_E} \\ V_{CEQ} &= V_{CC} - I_{CQ} \left(R_C + R_E \right) \end{aligned}$$

Rangkaian Bias Transistor yang lain

- Emitter-bias circuits
- Feedback-bias circuits
 - Collector-feedback bias
 - Emitter-feedback bias

Bias Emitter

Asumsi transistor beroperasi pada active region.

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Asumsi $h_{FE} >> 1$.

$$V_{CE} \cong V_{CC} - I_C \left(R_C + R_E \right) + V_{EE}$$

$$I_{B} = \frac{12V - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$
$$= \frac{11.3V}{100\Omega + 201 \times 1.5k\Omega} = 37.47\mu A$$

$$I_{CQ} = h_{FE}I_B = 200 \times 37.47 \mu A$$

= 7.49mA

$$V_{CEQ} \cong V_{CC} - I_C (R_C + R_E) - (-V_{EE})$$

= 24V - 7.49mA (750\Omega + 1.5k\Omega)
= 7.14V

Garis beban Rangkaian Bias-Emitter

Karakteristik Emitter-bias (1)

Ciri rangkaian: Dua (dual-polairty) power supply dan resistor base dihubungkan ke ground.

Keuntungan: Q-point pada rangkaian stabil terhadap perubahan h_{FE} .

Kerugian: dibutuhkan dual-polarity power supply.

Aplikasi: linear amplifiers.

Karakteristik Bias Emitter (2)

Persamaan garis beban:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Persamaan Q-point:

$$I_{CQ} = (h_{FE}) \frac{-V_{BE} + V_{EE}}{R_B + (h_{FE} + 1)R_E}$$
$$V_{CEQ} \cong V_{CC} - I_{CQ} (R_C + R_E) + V_{EE}$$

Bias Collector-feedback.

$$V_{CC} = (I_C + I_B)R_C + I_B R_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$\begin{aligned} V_{CEQ} &= V_{CC} - (h_{FE} + 1) I_B R_C \\ &\cong V_{CC} - I_{CO} R_C \end{aligned}$$

Tentukan nilai I_{CQ} dan V_{CEQ} untuk amplifier disamping.

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{C}}$$
$$= \frac{10V - 0.7V}{180k\Omega + 101 \times 1.5k\Omega} = 28.05\mu A$$

$$I_{CQ} = h_{FE}I_B = 100 \times 28.05 \mu A$$

= 2.805mA

$$V_{CEQ} = V_{CC} - (h_{FE} + 1)I_B R_C$$

$$= 10V - 101 \times 28.05 \mu A \times 1.5 k\Omega$$

$$= 5.75 V_{CEQ}$$

$$= 5.75 V_{CEQ}$$

30

Karakteristik Collector-Feedback (1)

Ciri rangkaian: Resistor base dihubungkan antara terminal base dan collector transistor.

Keuntungan: Rangkaian sederhana dengan Q-point relatif stabil.

Kerugian: Karakteristik ac jelek

Applications: bias linear

amplifiers.

Karakteristik Collector-Feedback (2)

Hubungan Q-point:

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} R_C$$

Rangkaian Bias Emitter-feedback

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (h_{FE} + 1)R_E}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$\begin{split} V_{CEQ} &= V_{CC} - I_C R_C - I_E R_E \\ &\cong V_{CC} - I_{CQ} \left(R_C + R_E \right) \end{split}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}} = \frac{16V - 0.7V}{680k\Omega + 51 \times 1.6k\Omega}$$
$$= 20.09\mu A$$

$$I_{CQ} = h_{FE}I_B = 50 \times 20.09 \mu A = 1 \text{mA}$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} (R_C + R_E)$$

= 16V - (1mA)(7.8k\O) = 8.2V

Karakteristik Emitter-Feedback (1)

Ciri rangkaian: sama seperti voltage divider bias dengan R_2 hilang (atau base bias dengan penambahan R_F).

Keuntungan: Rangkaian sederhana dengan nilai Q-point stabil

Kerugian: membutuhkan banyak komponen dibanding collector-feedback bias.

Aplikasi: bias linear amplifiers.

Karakteristik Emitter-Feedback(2)

Hubungan Q-point:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} \left(R_C + R_E \right)$$