

IIC 2433 Minería de Datos

https://github.com/marcelomendoza/IIC2433

- HAC -

Clustering Jerárquico

Idea:

Algorithm Basic agglomerative hierarchical clustering algorithm.

- 1: Compute the proximity matrix, if necessary.
- 2: repeat
- 3: Merge the closest two clusters.
- 4: Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.
- 5: **until** Only one cluster remains.

Clustering Jerárquico

aglomerativo

Single Link:

$$d_{min}(C_i, C_j) = min_{\boldsymbol{p} \in C_i, \, \boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$$

$$d_{max}(C_i, C_j) = max_{\boldsymbol{p} \in C_i, \, \boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$$

$$d_{avg}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{p} \in C_i} \sum_{\boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$$

Método de Ward:

#datos de cada cluster

$$\Delta(A,B) = \sum_{i \in A \bigcup B} ||\overrightarrow{x_i} - \overrightarrow{m}_{A \bigcup B}||^2 - \sum_{i \in A} ||\overrightarrow{x_i} - \overrightarrow{m}_{A}||^2 - \sum_{i \in B} ||\overrightarrow{x_i} - \overrightarrow{m}_{B}||^2 = \frac{n_A n_B}{n_A + n_B} ||\overrightarrow{m}_A - \overrightarrow{m}_B||^2$$

Centroide del nuevo cluster <

Método de Ward:

#datos de cada cluster

$$\Delta(A,B) = \sum_{i \in A \bigcup B} ||\overrightarrow{x_i} - \overrightarrow{m}_{A \bigcup B}||^2 - \sum_{i \in A} ||\overrightarrow{x_i} - \overrightarrow{m}_{A}||^2 - \sum_{i \in B} ||\overrightarrow{x_i} - \overrightarrow{m}_{B}||^2 = \frac{n_A n_B}{n_A + n_B} ||\overrightarrow{m}_A - \overrightarrow{m}_B||^2$$

Centroide del nuevo cluster <

$$-d_{mean}(C_i, C_j) = |m_i - m_j|$$

- DBSCAN Y OPTICS -

Density-based clustering

Idea: Interpretar regiones de alta densidad como clusters.

Enfoque: Center-based density

Noción de densidad: Circunferencia centrada en A de radio mínimo **Eps** tal que contiene al menos **MinPts** vecinos.

La noción de densidad centrada en puntos nos permite clasificar los datos en tres categorías:

Dado MinPts y Eps: - hiperparámetros

- Core point: un dato es un core point si la circunferencia de radio Eps centrada en torno del dato cumple que $MinPts \leq Pts$
- Border point: un dato es un border point si no es un core point pero pertenece al vecindario de un core point.
- **Noise point**: Un dato es un **noise point** si no cumple con ninguna de las definiciones anteriores.

$$MinPts = 7$$

Ejemplo:

Core, border y noise points (verde, azul y rojo, resp.)

Algoritmo:

Algorithm DBSCAN algorithm.

- 1: Label al. points as core, border, or noise points.
- Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- Assign each border point to one of the clusters of its associated core points.

DBSCAN construye un grafo de vecinos cercanos y lo colorea usando componentes conexas

Grafo dirigido construido conectando core points y border points:

Componentes conexas en DBSCAN:

Sintonización del algoritmo

Sintonización del algoritmo

1000 puntos tienen a lo más distancia = 5 a su 4° vecino

- UC - M. Mendoza -

Si EPS = 5 y MinPts = $5 \rightarrow 1000$ core points

Notar que si aumento EPS, los clusters son menos densos

DBSCAN

OPTICS

OPTICS usa MinPts fijo, lo que permite definir qué es un CORE point.

Si aumento el valor de EPS, los clusters densos quedarán contenidos en los nuevos clusters.

reachability-distance(p, q1) = ϵ' reachability-distance(p, q2) = d(p, q2)

Se define la **core-distance** de p como el menor EPS para el cual p es CORE.

La **reachability-distance** entre q y p es el mayor valor entre la **core-distance** de p y la distancia Euclideana entre p y q.

OPTICS

OPTICS ordena los objetos según su **reachability-distance** a los CORE point.

