警示

中山大学理工学院 2013 学年 2 学期期末 高等量子力学 试卷 (A)

11、研 13 年级	物理等、研 13 专业	姓名:	学号:
老师姓名: 林琼桂			考试成绩:

- 一、(本题 50 分,每小题 5 分)在正确陈述的序号前打 √或在空白处填入答案.
- 1. 静磁场中的 Schrödinger 方程是 $i\hbar\partial\psi/\partial t = -(\hbar^2/2\mu)\left(\nabla iq A/\hbar\right)^2\psi$. 使得方程形式保持不变的规范变换 是 $\psi \to \psi' = \mathrm{e}^{\mathrm{i} q \Lambda(\boldsymbol{x})/\hbar} \psi$ 以及 ① $A \to A' = A - \nabla \Lambda(\boldsymbol{x})$ ② $A \to A' = A + \nabla \Lambda(\boldsymbol{x})$.
- 2. 设力学量 F 满足 $i\hbar\partial F/\partial t+[F,H]=0$, ψ 满足 Schrödinger 方程, 则 $(\mathrm{d}/\mathrm{d}t)(\psi,F\psi)=$
- 3. $[x,p]=i\hbar$,这 ① 意味着 ② 并不意味着 x 和 p 不可能有任何共同本征态.
- 4. $[L_x, L_y] = i\hbar L_z$, 这 ① 意味着 ② 并不意味着 L_x 和 L_y 不可能有任何共同本征态.
- 5. $L = x \times p$ 是轨道角动量, L_z 与位置算符的对易关系是 $[L_z, x] = , [L_z, y] = , [L_z, z] =$
- 6. 接上题, 已知 $\{L^2,L_z\}$ 的共同本征态是 $|lm\rangle$, 本征值是 $\{l(l+1)\hbar^2,m\hbar\}$, 则 $z|lm\rangle$ ① 也是 ② 不是 L_z 的本征态,如果也是,则其本征值为
- 7. 接上题, 令 $x_{\pm}=x\pm \mathrm{i} y$, 则 $x_{\pm}|lm\rangle$ ① 也是 ② 不是 L_z 的本征态,如果也是,则其本征值为
- 8. 关于Dirac 方程与 Klein-Gordon 方程的下列说法哪个是正确的? ① 它们和 Schorödinger 方程一样都是 基本假设. ② 它们可以从 Schorödinger 方程推导出来. ③ 它们可以从量子力学的基本假设推导出来.
- 9. 中心力场中的 Dirac 方程为 $i\hbar\partial\psi/\partial t=H\psi$, 其中 $H=c\alpha\cdot p+\beta mc^2+V(r)$, 此时, 轨道角动量 $\boldsymbol{L}=\boldsymbol{x}\times \boldsymbol{p}$ ① 是 ② 不是 守恒量.
- 10. 在 Lorentz 变换 $x \to x' = ax$ 下,Dirac 场 $\psi(x)$ 的变换矩阵满足 $\Lambda^{-1}\gamma^{\mu}\Lambda = a^{\mu}_{\nu}\gamma^{\nu}$,对于镜面反射 $a = \operatorname{diag}(1, -1, 1, 1)$, Λ 应为 ① γ^1 ② $\gamma^0 \gamma^1$ ③ $\gamma^2 \gamma^3$ ④ $\gamma^0 \gamma^2 \gamma^3$.
- 二、(本题 20 分)用坐标 x 和动量 p 定义算符

$$a = \frac{1}{\sqrt{2}} \left(\alpha x + \frac{\mathrm{i}p}{\hbar \alpha} \right), \quad a^{\dagger} = \frac{1}{\sqrt{2}} \left(\alpha x - \frac{\mathrm{i}p}{\hbar \alpha} \right),$$

其中 α 是常数,量纲为 L^{-1} . 定义相干态 $|\beta\rangle$ 满足 $\alpha|\beta\rangle = \beta|\beta\rangle$ 和 $\langle\beta|\beta\rangle = 1$ (其中 $\beta \in \mathbb{C}$).

- 1. 试计算 $x_0 = \langle \beta | x | \beta \rangle$ 和 $p_0 = \langle \beta | p | \beta \rangle$. (10 分)
- 2. 求坐标表象中的归一化波函数 $\psi_{\beta}(x) = \langle x|\beta \rangle$. (10 分)
- 三、(本题 30 分)外场 V 中的一维 Klein-Gordon 方程为

$$\left[\left(\frac{1}{c} \frac{\partial}{\partial t} + \frac{\mathrm{i}}{\hbar c} V \right)^2 - \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{m^2 c^2}{\hbar^2} \right] \varphi(x, t) = 0.$$

- 1. 设 V=V(x) 与时间无关,则可令 $\varphi(x,t)=\psi(x)\mathrm{e}^{-\mathrm{i}Et/\hbar}$ 进行分离变量,试求出 $\psi(x)$ 所满足的方程. (8
- 2. 设 V(x) = 0, 当 |x| > a; $V(x) = -V_0$, 当 |x| < a; 其中 $0 < V_0 \ll mc^2$. 试根据解的行为确定束缚态能级 E 的取值范围. (10分)
- 3. 求偶字称束缚态的能级满足的方程. (6分)
- 4. 求奇宇称束缚态的能级满足的方程. (6分)