Numerical Methods in Engineering

INTERPOLATION

Lectures 20-22:

Read Chapter 18, Sections 1-5

Lecturer: Associate Professor Naila Allakhverdiyeva

Lecture 20

INTRODUCTION TO INTERPOLATION

- □ Introduction
- □Interpolation Problem
- **□**Existence and Uniqueness
- □Linear and Quadratic Interpolation
- Newton's Divided Difference Method
- Properties of Divided Differences

Introduction

Interpolation was used for long time to provide an estimate of a tabulated function at values that are not available in the table.

What is sin (0.15)?

X	sin(x)
0	0.0000
0.1	0.0998
0.2	0.1987
0.3	0.2955
0.4	0.3894

Using Linear Interpolation $\sin (0.15) \approx 0.1493$ True value (4 decimal digits) $\sin (0.15) = 0.1494$

The Interpolation Problem

Given a set of n+1 points,

$$(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$$

Find an n^{th} order polynomial $f_n(x)$ that passes through all points, such that:

$$f_n(x_i) = f(x_i)$$
 for $i = 0, 1, 2, ..., n$

Example

An experiment is used to determine the viscosity of water as a function of temperature. The following table is generated:

Problem: Estimate the viscosity when the temperature is 8 degrees.

Temperature (degree)	Viscosity
0	1.792
5	1.519
10	1.308
15	1.140

Interpolation Problem

Find a polynomial that fits the data points exactly.

$$V(T) = \sum_{k=0}^{n} a_k T^k$$

$$V_i = V(T_i)$$

V: Viscosity

T: Temperature

 a_k : Polynomial

coefficients

Linear Interpolation: V(T)=1.73-0.0422 TV(8)=1.3924

Existence and Uniqueness

Given a set of n+1 points:

$$(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$$

Assumption:

are distinct

$$X_0, X_1, ..., X_n$$

Theorem:

There is a <u>unique</u> polynomial $f_n(x)$ of <u>order $\leq n$ </u> such that:

$$f_n(x_i) = f(x_i)$$
 for $i = 0,1,...,n$

Examples of Polynomial Interpolation

Linear Interpolation

 Given any two points, there is one polynomial of order ≤ 1 that passes through the two points.

Quadratic Interpolation

Given any three points there is one polynomial of order ≤ 2 that passes through the three points.

Linear Interpolation

Given any two points,

$$(x_0, f(x_0)), (x_1, f(x_1))$$

The line that interpolates the two points is:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Example:

Find a polynomial that interpolates (1,2) and (2,4).

$$f_1(x) = 2 + \frac{4-2}{2-1}(x-1) = 2x$$

Quadratic Interpolation

Given any three points:

$$(x_0, f(x_0)), (x_1, f(x_1)), and (x_2, f(x_2))$$

The polynomial that interpolates the three points is:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

where:

$$b_0 = f(x_0)$$

$$b_{1} = f[x_{0}, x_{1}] = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$b_{2} = f[x_{0}, x_{1}, x_{2}] = \frac{x_{2} - x_{1}}{x_{2} - x_{1}}$$

 $x_2 - x_0$

General nth Order Interpolation

Given any n+1 points:

$$(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$$

The polynomial that interpolates all points is:

$$f_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0) \dots (x - x_{n-1})$$

$$b_0 = f(x_0)$$

$$b_1 = f[x_0, x_1]$$

• • • •

$$b_n = f[x_0, x_1, \dots, x_n]$$

Divided Differences

$$f[x_k] = f(x_k)$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Second order DD

• • • • • • • • • • •

$$f[x_0, x_1, ..., x_k] = \frac{f[x_1, x_2, ..., x_k] - f[x_0, x_1, ..., x_{k-1}]}{x_k - x_0}$$

Divided Difference Table Newton's Interpolation Method

×	F[]	F[,]	F[, ,]	F[, , ,]
x_0	F[x0]	$F[x_0,x_1]$	$F[x_0, x_{1,} x_2]$	$F[x_0, x_1, x_2, x_3]$
x_{1}	F[x ₁]	$F[x_1,x_2]$	$F[x_1, x_2, x_3]$	
x ₂	F[x ₂]	$F[x_2,x_3]$		
X ₃	F[x ₃]			

$$f_n(x) = \sum_{i=0}^n \left\{ F[x_0, x_1, ..., x_i] \mid \prod_{j=0}^{i-1} (x - x_j) \right\}$$

X	F[]	F[,]	F[, ,]
0	-5	2	-4
1	-3	6	
-1	-15		

Entries of the divided difference table are obtained from the data table using simple operations.

x_i	$f(x_i)$
0	-5
1	-3
-1	-15

X	F[]	F[,]	F[, ,]
0	-5	2	-4
1	-3	6	
-1	-15		

X_i	$f(x_i)$
0	-5
1	-3
-1	-15

The first two column of the

table are the data columns.

Third column: First order differences.

Fourth column: Second order differences.

X_i	\mathcal{Y}_i
0	-5
1	-3
-1	-15

X	F[]	F[,]	F[, ,]
0	-5	2	-4
1	-3	6	
-1	-15		
	$\frac{-15 - (-3)}{-1 - 1} = 6$ $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$		

X_i	${\cal Y}_i$
0	-5
1	-3
-1	-15

X_i	\mathcal{Y}_i
0	-5
1	-3
-1	-15

Two Examples

Obtain the interpolating polynomials for the two examples:

X	У
1	0
2	3
3	8

X	У
2	3
1	0
3	8

What do you observe?

Two Examples

X	Υ		
1	0	3	1
2	3	5	
3	8		

$$P_2(x) = 0 + 3(x-1) + 1(x-1)(x-2)$$
$$= x^2 - 1$$

X	Υ		
2	3	3	1
1	0	4	
3	8		

$$P_2(x) = 3 + 3(x-2) + 1(x-2)(x-1)$$
$$= x^2 - 1$$

Ordering the points should not affect the interpolating polynomial!

Properties of Divided Difference

Ordering the points should not affect the divided difference:

$$f[x_0, x_1, x_2] = f[x_1, x_2, x_0] = f[x_2, x_1, x_0]$$

Example

 Find a polynomial to interpolate the data.

X	f(x)
2	3
4	5
5	1
6	6
7	9

Example

X	f(x)	f[,]	f[, ,]	f[, , ,]	f[, , , ,]
2	3	1	-1.6667	1.5417	-0.6750
4	5	-4	4.5	-1.8333	
5	1	5	-1		
6	6	3			
7	9				

$$f_4 = 3 + 1(x-2) - 1.6667(x-2)(x-4) + 1.5417(x-2)(x-4)(x-5)$$
$$-0.6750(x-2)(x-4)(x-5)(x-6)$$

Summary

Interpolating Condition: $f(x_i) = f_n(x_i)$ for i = 0, 1, 2, ..., n

- * The interpolating Polynomial is unique.
- * Different methods can be used to obtain it
 - Newton Divided Difference
 - Lagrange Interpolation
 - Other methods

Ordering the points should not affect the interpolating polynomial.

Lecture 21

LAGRANGE INTERPOLATION

The Interpolation Problem

Given a set of n+1 points:

$$(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$$

Find an n^{th} order polynomial: $f_n(x)$ that passes through all points, such that:

$$f_n(x_i) = f(x_i)$$
 for $i = 0, 1, 2, ..., n$

Lagrange Interpolation

Problem:

Given

X_i		x_1	 \mathcal{X}_n
${\cal Y}_i$	\mathcal{Y}_0	\mathcal{Y}_1	 ${\cal Y}_n$

Find the polynomial of least order $f_n(x)$ such that:

$$f_n(x_i) = f(x_i)$$
 for $i = 0,1,...,n$

$$f_n(x) = \sum_{i=0}^n f(x_i) \ \ell_i(x)$$

$$\ell_i(x) = \prod_{j=0, j \neq i}^n \frac{(x - x_j)}{(x_i - x_j)}$$

Lagrange Interpolation

 $\ell_i(x)$ are called the cardinals.

The cardinals are nth order polynomials:

$$\ell_i(x_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Lagrange Interpolation Example

$$P_{2}(x) = f(x_{0})\ell_{0}(x) + f(x_{1})\ell_{1}(x) + f(x_{2})\ell_{2}(x)$$

$$\ell_{0}(x) = \frac{(x - x_{1})}{(x_{0} - x_{1})} \frac{(x - x_{2})}{(x_{0} - x_{2})} = \frac{(x - 1/4)}{(1/3 - 1/4)} \frac{(x - 1)}{(1/3 - 1/4)}$$

$$\ell_{1}(x) = \frac{(x - x_{0})}{(x_{1} - x_{0})} \frac{(x - x_{2})}{(x_{1} - x_{2})} = \frac{(x - 1/3)}{(1/4 - 1/3)} \frac{(x - 1)}{(1/4 - 1/3)}$$

$$\ell_{2}(x) = \frac{(x - x_{0})}{(x_{2} - x_{0})} \frac{(x - x_{1})}{(x_{2} - x_{1})} = \frac{(x - 1/3)}{(1 - 1/4)} \frac{(x - 1/4)}{(1 - 1/4)}$$

X	1/3	1/4	1
У	2	-1	7

$$P_2(x) = 2\{-18(x-1/4)(x-1)\} - 1\{16(x-1/3)(x-1)\} + 7\{2(x-1/3)(x-1/4)\}$$

Example

Find a polynomial to interpolate:

Both Newton's interpolation method and Lagrange interpolation method must give the same answer.

X	У
0	1
1	3
2	2
3	5
4	4

Newton's Interpolation Method

0	1	2	-3/2	7/6	-5/8
1	3	-1	2	-4/3	
2	2	3	-2		
3	5	-1			
4	4				

Interpolating Polynomial

$$f_4(x) = 1 + 2(x) - \frac{3}{2}x(x-1) + \frac{7}{6}x(x-1)(x-2)$$
$$-\frac{5}{8}x(x-1)(x-2)(x-3)$$

$$f_4(x) = 1 + \frac{115}{12}x - \frac{95}{8}x^2 + \frac{59}{12}x^3 - \frac{5}{8}x^4$$

Interpolating Polynomial Using Lagrange Interpolation Method

$$f_4(x) = \sum_{i=0}^{\infty} f(x_i) \ \ell_i = \ell_0 + 3\ell_1 + 2\ell_2 + 5\ell_3 + 4\ell_4$$

$$\ell_0 = \frac{(x-1)}{(0-1)} \frac{(x-2)}{(0-2)} \frac{(x-3)}{(0-3)} \frac{(x-4)}{(0-4)} = \frac{(x-1)(x-2)(x-3)(x-4)}{24}$$

$$\ell_1 = \frac{(x-0)}{(1-0)} \frac{(x-2)}{(1-2)} \frac{(x-3)}{(1-3)} \frac{(x-4)}{(1-4)} = \frac{x(x-2)(x-3)(x-4)}{-6}$$

$$\ell_2 = \frac{(x-0)}{(2-0)} \frac{(x-1)}{(2-1)} \frac{(x-3)}{(2-3)} \frac{(x-4)}{(2-4)} = \frac{x(x-1)(x-3)(x-4)}{4}$$

$$\ell_3 = \frac{(x-0)}{(3-0)} \frac{(x-1)}{(3-1)} \frac{(x-2)}{(3-2)} \frac{(x-4)}{(3-4)} = \frac{x(x-1)(x-2)(x-4)}{-6}$$

$$\ell_4 = \frac{(x-0)}{(4-0)} \frac{(x-1)}{(4-1)} \frac{(x-2)}{(4-2)} \frac{(x-3)}{(4-3)} = \frac{x(x-1)(x-2)(x-3)}{24}$$

Lecture 22

INVERSE INTERPOLATION

ERROR IN POLYNOMIAL INTERPOLATION

Problem: Given a table of values

Find x such that: $f(x) = y_k$, where y_k is given

X_i	x_0	x_1		\mathcal{X}_n
${\cal Y}_i$	\mathcal{Y}_0	\mathcal{Y}_1	••••	${\mathcal Y}_n$

One approach:

Use polynomial interpolation to obtain $f_n(x)$ to interpolate the data then use Newton's method to find a solution to x

$$f_n(x) = y_k$$

Inverse interpolation:

Exchange the roles
 of x and y.

X_i	x_0	x_1		\mathcal{X}_n
${\cal Y}_i$	\mathcal{Y}_0	\mathcal{Y}_1	•	${\cal Y}_n$

- 2. Perform polynomial Interpolation on the new table.
- 3. Evaluate

$$x = f_n(y_k)$$

Question:

What is the limitation of inverse interpolation?

- The original function has an inverse.
- $y_1, y_2, ..., y_n$ must be distinct.

Example

Problem:

X	1	2	3
У	3.2	2.0	1.6

Given the table. Find x such that f(x) = 2.5

3.2	1	8333	1.0417
2.0	2	-2.5	
1.6	3		

$$x = f_2(y) = 1 - 0.8333(y - 3.2) + 1.0417(y - 3.2)(y - 2)$$

 $x = f_2(2.5) = 1 - 0.8333(-0.7) + 1.0417(-0.7)(0.5) = 1.2187$

Errors in polynomial Interpolation

 Polynomial interpolation may lead to large errors (especially for high order polynomials).

BE CAREFUL!

 When an nth order interpolating polynomial is used, the error is related to the (n+1)th order derivative.

10th Order Polynomial Interpolation

Errors in polynomial Interpolation

Theorem

Let f(x) be a function such that:

$$f^{(n+1)}(x)$$
 is continuous on [a, b], and $|f^{(n+1)}(x)| \le M$.

Let P(x) be any polynomial of degree $\leq n$ that interpolates f at n+1 equally spaced points in [a, b] (including the end points). Then:

$$|f(x)-P(x)| \le \frac{M}{4(n+1)} \left(\frac{b-a}{n}\right)^{n+1}$$

Example

$$f(x) = \sin(x)$$

We want to use 9^{th} order polynomial to interpolate f(x) (using 10 equally spaced points) in the interval [0,1.6875].

$$\left| f^{(n+1)} \right| \le 1 \quad \text{for } n > 0$$

$$M = 1, \ n = 9$$

$$|f(x)-P(x)| \le \frac{M}{4(n+1)} \left(\frac{b-a}{n}\right)^{n+1}$$

$$|f(x)-P(x)| \le \frac{1}{4(10)} \left(\frac{1.6875}{9}\right)^{10} = 1.34 \times 10^{-9}$$

Summary

- The interpolating polynomial is unique.
- Different methods can be used to obtain it.
 - Newton's divided difference
 - Lagrange interpolation
 - Others
- Polynomial interpolation can be sensitive to data.
- BE CAREFUL when high order polynomials are used.