RLC 电路的暂态过程实验报告

陈依皓 202211140007 实验时间: 3月2日

● 【实验原理】

1. RC 充放电的一阶暂态过程

对如图所示的 RC 串联电路, 有电路方程

$$\tau \frac{d}{dt} u_c(t) + u_c(t) = u(t)$$

其中, $\tau \equiv RC$, τ 是时间常数, 被称为电路的间常数。 假设t < 0 时, $u(t) = u_0$; 当 $t \ge 0$ 时, $u(t) = u_\infty$, 则有

$$u_c(t) = \begin{cases} u_0 & t < 0 \\ u_{\infty} + (u_0 - u_{\infty})e^{-\frac{t}{\tau}} & t \ge 0 \end{cases}$$

当 $t \gg \tau$ 时, $u_c(t)$ 达到新的稳定值 u_∞

2. RLC 串联电路的二阶暂态过程

对如图所示的 RLC 串联电路, 有电路方程

$$LC\frac{d^2}{dt^2}u_c(t) + RC\frac{d}{dt}u_c(t) + u_c(t) = u(t)$$

我们可以将其改写为

$$u(t) \downarrow \begin{array}{c} R & L & C & i(t) \\ \hline \\ u(t) \downarrow & \\ \end{array}$$

$$\frac{1}{\omega_0^2} \frac{d^2}{dt^2} u_c(t) + \frac{1}{Q\omega_0} \frac{d}{dt} u_c(t) + u_c(t) = u(t)$$

其中, $\omega_0 = \frac{1}{\sqrt{LC}}$ 为固有频率, $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ 称为品质因数

要得到外加电压 u(t) = 0 时, $u_c(t)$ 的解析表达式,我们令 $u_c(t) = e^{j\omega t}$ ·,带入方程得到

$$\omega = \omega_{1,2} = \left(\frac{j}{2Q} \pm \sqrt{1 - \frac{1}{4Q^2}}\right) \omega_0$$

由该表达式可知 $Q > \frac{1}{2}$, $Q = \frac{1}{2}$, $Q < \frac{1}{2}$ 时,电路对应不同的暂态表现

 $Q > \frac{1}{2}$, 电路表现为欠阻尼

$$u_c(t) = c \exp[-Im(\omega)t] \cos[Re(\omega) + \varphi]$$

 $Q < \frac{1}{2}$, 电路表现为过阻尼

$$u_c(t) = c_1 e^{-t/\tau_1} + c_2 e^{-t/\tau_2}$$

其中

$$\tau_{1,2} = \frac{1}{Im(\omega_{1,2})} = \frac{2Q}{\omega_0(1 \pm \sqrt{1 - 4Q^2})} = \frac{1}{2} \left(1 \mp \sqrt{1 - 4Q^2} \right) RC$$

 $Q = \frac{1}{2}$, 电路表现为临界阻尼

$$u_c(t) = (c_1 + c_2 t)e^{-t/\tau}$$

其中

$$\tau = 1/\omega_0$$

● 【实验内容及数据处理】

1. 测量 RC 放电曲线, 并计算时间常数

电路参数: $C=0.1\mu F$, $R=100\Omega$, 方波电压峰峰值4.00Vpp

实验记录:

时间常数
$$\tau_{\cancel{#}\cancel{k}} = (R + R_0)C = 5.100\mu s$$

$$\tau_{\text{MB}} = \frac{1}{B} = 5.409 \mu s$$

相对误差: $\eta = 6.05$ %

2. 测量 RLC 串联电路欠阻尼振荡曲线,并计算固有频率和品质因数

电路参数: $C=0.1\mu F$, L=10.807mH, $R=10\Omega$, $R_0=50\Omega$, $R_L=14.538\Omega$

(1) 计算固有频率

由波形图可测量

$T_{\frac{1}{2}}$ (μ s)	100.198	99.372	101.47	100.912
------------------------------	---------	--------	--------	---------

得

$$T_{
ot M_{\overline{\omega}}} = \overline{T} = 200.976 \ \mu s$$
 $T_{
ot 200.553} \ \mu s$ 相对误差 $\eta = 2.70 \ \%$

(2) 计算品质系数:

由波形图可测量

k	1	2	3	4	5	6
ΔV (\vee)	4.323	1.857	0.812	0.353	0.162	0.062

曲线拟合如图

$$Q_{\text{MM}} = \sqrt{\frac{\pi^2}{\alpha^2} + \frac{1}{4}} = 3.791$$
 $Q_{\text{MW}} = \frac{1}{R_{eff}} \sqrt{\frac{L}{C}} = 4.410$

$$Q_{\cancel{\#}\cancel{k}} = \frac{1}{R_{eff}} \sqrt{\frac{L}{C}} = 4.410$$

相对误差η = 14.036%

3. 观察 RLC 串联电路暂态过程的不同衰减模式,测量临界电阻

过阻尼

临界阻尼

欠阻尼

● 【实验反思】

- 1. 本次实验测量 RC 放电曲线时,选择了直接利用示波器导出波形数据而不是测量数据点,虽然简化了操作,但是由于数据点太多,做出的散点图反而不直观。而且拟合出的曲线 R^2 值较小,这说明对于示波器的使用仍然不够熟练,需要加强。
- 2.实验测量的品质系数 Q 值与理论值有较大误差。误差分析为: $K \Delta V$ 所测量的数据点只有 6 个,应当增加测量点的数量;测量过程中,应当让单个波峰-波谷尽量占满示波器的屏幕以增加 ΔV 的测量精度。两者共同影响造成拟合出的 α 值有较大误差。