Cours 6

Calcul propositionnel : déduction naturelle

Déduction naturelle (Gentzen)

Système de déduction :

$$\Gamma \vdash A$$

La formule A est prouvable à partir de l'ensemble de formules Γ

L'ensemble des *preuves* $\Gamma \vdash A$ est définie inductivement comme l'ensemble des couples (Γ, A)

- ▶ tels que $A \in \Gamma$ ax $\overline{\Gamma, A \vdash A}$
- obtenus à partir d'autres preuves par des règles de déduction de la forme
 hypotheses / conclusions
 (voir suite)

Notations:

$$\Gamma, A = \Gamma \cup \{A\}$$

$$\Gamma, \Delta = \Gamma \cup \Delta$$

Logique minimale (NM)

$$\operatorname{intro}_{\Rightarrow} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \operatorname{elim}_{\Rightarrow} \frac{\Gamma \vdash A \qquad \Delta \vdash A \Rightarrow B}{\Gamma, \Delta \vdash B}$$

$$\operatorname{intro}_{\wedge} \frac{\Gamma \vdash A \qquad \Delta \vdash B}{\Gamma, \Delta \vdash A \land B}$$

$$\operatorname{elim}_{\wedge}^{1} \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \operatorname{elim}_{\wedge}^{2} \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

$$\operatorname{intro}_{\vee}^{1} \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \qquad \operatorname{intro}_{\vee}^{2} \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$$

$$\operatorname{elim}_{\vee} \frac{\Gamma \vdash A \lor B}{\Gamma \land A \lor \vdash C} \qquad \Delta', B \vdash C$$

Exemple

$$\vdash (a \land b) \Rightarrow (b \land a)$$

Logique intuitionniste (NJ)

Deux nouvelles règles :

$$\operatorname{intro}_{\neg} \frac{\Gamma, A \vdash \neg B \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash \neg A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg A \quad \Delta \vdash A}{\Gamma, \Delta \vdash B}$$

De manière équivalente, on ajoute le symbole \bot (= absurde), et la règle

$$\operatorname{elim}_{\perp} \frac{\Gamma \vdash \bot}{\Gamma \vdash A}$$
 ex falso quodlibet sequitur

et $\neg A$ devient une abréviation de $A \Rightarrow \bot$.

Logique intuitionniste (NJ)

Exercice : Prouver $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$ en logique minimale.

Exercice: intro- est dérivable dans NM.

Remarque : elim $_{-}$ est équivalent à elim $_{\perp}$.

NJ est plus forte que NM

 $\Gamma \vdash_{NM} A \text{ implique } \Gamma \vdash_{NJ} A$

Logique classique (NK)

On ajoute un nouveau moyen d'inférence : le tiers exclus.

3 règles possibles:

$$TE \frac{\Gamma \vdash A \lor \neg A}{\Gamma \vdash A} \quad abs \frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \quad elim_{\neg \neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

NK strictement plus forte que NJ : il existe des formules sans négation dérivables dans NK et pas dans NJ.

$$\vdash_{NK} ((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$
 (loi de Peirce)

NK vs NJ

Tautologies prouvables dans NK:

$$\vdash_{NK} (A \lor B) \Longleftrightarrow \neg(\neg A \land \neg B)$$

$$\vdash_{NK} (A \Rightarrow B) \Longleftrightarrow (\neg A \lor B)$$

$$\vdash_{NK} (A \land B) \Longleftrightarrow \neg(\neg A \lor \neg B)$$

Dans NJ on ne peut en prouver qu'un sens.

Traduction de NK vers NJ

Définition

Soient \mathcal{L} et \mathcal{L}' deux logiques, \mathcal{L} plus forte que \mathcal{L}' , et ϕ associant à toute formule de \mathcal{L} une formule de \mathcal{L}' . ϕ est une *traduction* de \mathcal{L} vers \mathcal{L}' si pour toute formule A de \mathcal{L} on a :

- $\blacktriangleright \vdash_{\mathcal{L}} A \Longleftrightarrow \varphi(A)$
- \triangleright si $\vdash_{\mathcal{L}} A$ alors $\vdash_{\mathcal{L}'} \varphi(A)$

Traduction de NK vers NJ (Glivenko 1929) : $\varphi(A) = \neg \neg A$ (ça ne marche pas avec le calcul des prédicats).

Correction et complétude

Théorème (Correction)

 $Si \Gamma \vdash_{NM} A$, alors $\Gamma \models A$.

 $Si \Gamma \vdash_{NJ} A$, alors $\Gamma \models A$.

Si $\Gamma \vdash_{NK} A$, alors $\Gamma \models A$.

Théorème (Complétude)

 $Si \Gamma \models A$, alors $\Gamma \vdash_{NK} A$.

Preuve de complétude

Nous le considérons le système de connecteur complet $\{\neg, \Rightarrow\}$. Nous ne prouvons la complétude de \vdash_{NK} que pour les formules ne contenant que les connecteurs \neg et \Rightarrow . Attention, cela ne prouve pas la complétude pour les formules comportant d'autres connecteurs!

$$\mu(A) = \text{nombre d'occurrence de} \neg \text{dans } A + 2 \times \text{nombre d'occurrence de} \Rightarrow \text{dans } A$$

$$\mu(\Gamma, A) = \mu(A) + \sum_{F \in \Gamma} \mu(F)$$

Nous montrons par récurrence sur $n \in \mathbb{N}$,

$$\mathfrak{P}(n) =$$
 "pour tout Γ , A tels que $\mu(\Gamma, A) = n$, $\Gamma \models A$ implique $\Gamma \vdash_{NK} A$ "

Hypothèse de récurrence forte (HR) :

pour tout
$$k \in \mathbb{N}$$
, $k < n$ implique $\mathfrak{P}(k)$

Nous supposons : $\Gamma \models A$ et $\mu(\Gamma, A) = n$

Étude de cas sur la forme de A:

- $A = \neg \neg A'$
 - $A = A_1 \Rightarrow A_2$
 - $A = \neg (A_1 \Rightarrow A_2)$
 - A = p ou $A = \neg p$

Si
$$A = \neg \neg A'$$

- ▶ $\Gamma \models \neg \neg A'$ implique $\Gamma \models A'$
- ► HR sur $\mu(\Gamma, A') = n 2$: $\Gamma \models A'$ implique $\Gamma \vdash A'$
- ▶ $\Gamma \vdash A'$ implique $\Gamma \vdash \neg \neg A'$

Si
$$A = A_1 \Rightarrow A_2$$

- ▶ $\Gamma \models A_1 \Rightarrow A_2$ implique $\Gamma, A_1 \models A_2$
- ► HR sur $\mu(\Gamma \cup \{A_1\}, A_2) = n 2$: $\Gamma, A_1 \models A_2$ implique $\Gamma, A_1 \vdash A_2$
- ▶ Γ , $A_1 \vdash A_2$ implique $\Gamma \vdash A_1 \Rightarrow A_2$

Si
$$A = \neg (A_1 \Rightarrow A_2)$$

- ▶ $\Gamma \models \neg (A_1 \Rightarrow A_2)$ implique $\Gamma \models A_1$ et $\Gamma \models \neg A_2$
- ► HR sur $\mu(\Gamma, A_1) = n \mu(A_2) 3$ et $\mu(\Gamma, \neg A_2) = n \mu(A_1) 2$: donc $\Gamma \models A_1$ implique $\Gamma \vdash A_1$ et $\Gamma \models \neg A_2$ implique $\Gamma \vdash \neg A_2$
- ▶ $\Gamma \vdash A_1$ et $\Gamma \vdash \neg A_2$ implique $\Gamma \vdash \neg (A_1 \Rightarrow A_2)$

Si A = p ou $A = \neg p$: on étudie la forme des formules dans Γ

- $\Gamma = \Gamma', \neg \neg B$
- $\Gamma = \Gamma', B_1 \Rightarrow B_2$
- $\Gamma = \Gamma', \neg(B_1 \Rightarrow B_2)$
- ▶ Γ ne contient que des formules de la forme r, $\neg r$

Si
$$\Gamma = \Gamma', \neg \neg B$$

- $ightharpoonup \Gamma', \neg \neg B \models A \text{ implique } \Gamma', B \models A$
- ► HR sur $\mu(\Gamma' \cup \{B\}, A) = n 2 : \Gamma', B \models A$ implique $\Gamma', B \vdash A$
- ▶ Γ' , $B \vdash A$ implique Γ' , $\neg \neg B \vdash A$

Si
$$\Gamma = \Gamma', B_1 \Rightarrow B_2$$

- ▶ Γ' , $B_1 \Rightarrow B_2 \models A$ implique Γ' , $\neg B_1 \models A$ et Γ' , $B_2 \models A$
- ► HR sur $\mu(\Gamma' \cup \{\neg B_1\}, A) = n \mu(B_2) 1$ et $\mu(\Gamma' \cup \{B_2\}, A) = n \mu(B_1) 2$: $\Gamma', \neg B_1 \models A$ implique $\Gamma', \neg B_1 \vdash A$ et $\Gamma', B_2 \models A$ implique $\Gamma', B_2 \vdash A$
- ▶ Γ' , $\neg B_1 \vdash A$ et Γ' , $B_2 \vdash A$ implique Γ' , $B_1 \Rightarrow B_2 \vdash A$

Si
$$\Gamma = \Gamma', \neg(B_1 \Rightarrow B_2)$$

- ▶ Γ' , $\neg (B_1 \Rightarrow B_2) \models A$ implique Γ' , B_1 , $\neg B_2 \models A$
- ► HR sur $\mu(\Gamma' \cup \{B_1, \neg B_2\}, A) = n 2 : \Gamma', B_1, \neg B_2 \models A$ implique $\Gamma', B_1, \neg B_2 \vdash A$
- ▶ Γ' , B_1 , $\neg B_2 \vdash A$ implique Γ' , $\neg (B_1 \Rightarrow B_2) \vdash A$

Enfin, si Γ ne contient que des littéraux et A = p ou $A = \neg p$. Notons $\Gamma = \Gamma^+ \cup \Gamma^-$ (séparation littéraux positifs/négatifs)

- ▶ Si $\neg \Gamma^+ \cap \Gamma^- \neq \emptyset$, Γ est de la forme Γ' , r, $\neg r$ et donc Γ' , r, $\neg r \vdash A$.
- A = p et $p \in \Gamma^+$: OK
- $A = p \text{ et } p \notin \Gamma^+ : \Gamma \not\models A$
- $A = \neg p \text{ et } \neg p \in \Gamma^- : OK$
- $A = \neg p \text{ et } \neg p \notin \Gamma^+ : \Gamma \not\models A$

Lemmes techniques sur \models

Lemme

- $ightharpoonup \Gamma \models \neg \neg A \text{ implique } \Gamma \models A$
- ▶ $\Gamma \models A_1 \Rightarrow A_2$ implique $\Gamma, A_1 \models A_2$
- ▶ $\Gamma \models \neg (A_1 \Rightarrow A_2)$ implique $\Gamma \models A_1$ et $\Gamma \models \neg A_2$
- ▶ Γ , $\neg \neg B \models A$ implique Γ , $B \models A$
- ▶ Γ , $B_1 \Rightarrow B_2 \models A$ implique Γ , $\neg B_1 \models A$ et Γ , $B_2 \models A$
- ▶ Γ , \neg ($B_1 \Rightarrow B_2$) \models A implique Γ , B_1 , $\neg B_2 \models A$

Lemmes techniques sur ⊢

Lemme

Si $\Gamma \vdash A$ *alors* Γ , $B \vdash A$.

Lemme

- ▶ $\Gamma \vdash A \text{ implique } \Gamma \vdash \neg \neg A$
- ▶ Γ , $A_1 \vdash A_2$ implique $\Gamma \vdash A_1 \Rightarrow A_2$
- ▶ $\Gamma \vdash A_1$ et $\Gamma \vdash \neg A_2$ implique $\Gamma \vdash \neg (A_1 \Rightarrow A_2)$
- ▶ Γ , $B \vdash A$ implique Γ , $\neg \neg B \vdash A$
- ▶ Γ , $\neg B_1 \vdash A$ et Γ , $B_2 \vdash A$ implique Γ , $B_1 \Rightarrow B_2 \vdash A$
- ▶ Γ , B_1 , $\neg B_2 \vdash A$ implique Γ , $\neg (B_1 \Rightarrow B_2) \vdash A$
- $ightharpoonup \Gamma, B, \neg B \vdash A$

Toutes les règles de déduction

$$\operatorname{intro}_{\Rightarrow} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \operatorname{elim}_{\Rightarrow} \frac{\Gamma \vdash A \qquad \Delta \vdash A \Rightarrow B}{\Gamma, \Delta \vdash B}$$

$$\operatorname{intro}_{\wedge} \frac{\Gamma \vdash A \qquad \Delta \vdash B}{\Gamma, \Delta \vdash A \land B} \qquad \operatorname{elim}_{\wedge}^{1} \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \operatorname{elim}_{\wedge}^{2} \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

$$\operatorname{intro}_{\vee}^{1} \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \qquad \operatorname{intro}_{\vee}^{2} \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$$

$$\operatorname{elim}_{\vee} \frac{\Gamma \vdash A \lor B \qquad \Delta, A \vdash C \qquad \Delta', B \vdash C}{\Gamma, \Delta, \Delta' \vdash C}$$

$$\operatorname{intro}_{\neg} \frac{\Gamma, A \vdash \neg B \qquad \Delta, A \vdash B}{\Gamma, \Delta \vdash \neg A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg A \qquad \Delta \vdash A}{\Gamma, \Delta \vdash B}$$

$$\operatorname{elim}_{\perp} \frac{\Gamma \vdash \bot}{\Gamma \vdash A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

$$\operatorname{TE}_{\neg} \frac{\Gamma \vdash A \lor \neg A}{\Gamma, \Delta \vdash A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

Plan

- Logique minimale
- 2 Logique intuitionniste
- 3 Logique classique
- 4 Correction et complétude
- Memento