9417 assignment2

Zheng Qiwen z5240149

Question 1:

Part A

This is screenshot of the result table.

				Decis	io	nTreeCl	as	sifier													
Dataset		5%	 I	10%	 I	15%		20%		25%		30%		35%		40%		45%	1	50%	ı
australian balance-scale hypothyroid	i	72.61% 69.92% 94.94%	i	74.35% 75.04% 96.31%	i	75.36% 69.12% 97.77%	i	77.39% 74.24% 99.18%	i	77.83% 74.40% 99.20%		79.71% 75.52% 99.42%	i	83.77% 78.08% 99.42%	i	81.16% 75.68% 99.52%	i	80.72% 77.92% 99.34%	i	83.48% 76.64% 99.20%	
				Berno	ul	liNB wi	th	priors													
Dataset	I	5%	Ī	10%	Ī	15%	Ī	20%	I	25%	I	30%	Ī	35%	I	40%	Ī	45%	Ι	50%	ı
australian balance-scale hypothyroid	į	73.48% 46.08% 91.38%	į	79.86% 46.08% 91.81%	į	81.45% 46.08% 92.23%	i	80.43% 46.08% 92.23%	i	79.71% 46.24% 92.23%	i	79.86% 46.08% 92.26%	i	79.86% 46.08% 92.23%	i	81.16% 46.24% 92.23%	į	82.17% 46.24% 92.23%	i	81.88% 46.08% 92.23%	

Part B

(3)(5)

Part C

After adding one line of code at the end(test_method(BernoulliNB(fit_prior=False), without priors)),we get the following table:

	BernoulliNB with	out priors		
Dataset 5%	10% 15%	20% 25%	30% 35%	40% 45% 50%
balance-scale 46.08%	46.08% 46.08%	6 46.08% 46.24%	46.08% 46.08%	80.00% 80.43% 80.58% 46.24% 46.24% 46.08% 51.25% 51.06% 50.82%

Comparing two tables, we can find BNB preforms better with priors, so the answer would be (1)

Question 2:

Part A

Accuracy score for training set: 0.8564516129032258.

However I got different accuracy score for test set from time to time, mostly it would be :0.8277153558052435, but there are small chance that I got 0.8314606741573034.It is because some randomness of building decision tree.

Part B

Optimal number of min samples leaf is: 5

Part C

Part D

The probability of this question is 0.36885245901639346.

The code is shown as following:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_auc_score
#read the data from dataset
df = pd.read_csv('titanic.csv')
target_name = "Survived"
target = df[target_name].values.reshape(-1,1)
all_features = df[0:].values[:,0:5]
#normalization
all_features_nom = (all_features-np.min(all_features,axis=0))/(np.max(all_features,axis=0)-np.min(all_features,axis=0))
#for partA to train the model and get the accuracy scores
cls1 = DecisionTreeClassifier()
cls1.fit(all_features_nom[0:620],target[0:620])
print('Accuracy score for training set: ',cls1.score(all_features_nom[0:620],target[0:620]))
print('Accuracy score for test set: ',cls1.score(all_features_nom[620:],target[620:]))
#preparation of getting min_samples_leaf and the plot
min_samples_leaf = 2
optimal_auc_test = 0
plt.xticks(range(2,21))
auc_trainset = []
auc_testset = []
for i in range(2,21):
    cls2 = DecisionTreeClassifier(min_samples_leaf = i)
    cls2.fit(all_features_nom[0:620],target[0:620])
    auc_train = roc_auc_score(target[0:620],cls2.predict_proba(all_features_nom[0:620])[:620,1])
    auc_test = roc_auc_score(target[620:],cls2.predict_proba(all_features_nom[620:])[:620,1])
    auc_trainset.append(auc_train)
    auc_testset.append(auc_test)
    if auc_test > optimal_auc_test:
         optimal_auc_test = auc_test
         min_samples_leaf = i
#show the answers
print("optimal number of min_samples_leaf is: ",min_samples_leaf)
plt.plot(range(2,21),auc_trainset,'-o',c='red',label ='Auc for training data')
```

```
plt.plot(range(2,21),auc_testset,'-o',c='blue',label='Auc for test data')
plt.legend()
plt.show()

#probability for P(S=true|G=female, C=1)
#count for people having that condition and count for people surviving under that condition
count_for_condition = 0
count_for_s = 0
for p in range(len(all_features)):
    if all_features[p][0]==1 and all_features[p][1] == 1:
        count_for_condition += 1
        if target[p][0] == 1:
            count_for_s += 1
```