Data Mining and Machine Learning

Assignment Project Exam Help

Statistical Modelling (2)
Add WeChat powcoder

Peter Jančovič

Objectives

- In part 1 of this topic we
 - Reviewed univariate Gaussian PDF
 - Introduced ignitivarial of Sevensian and Fhelp
 - Introduced maximum likelihood (ML) estimation of Gaussian Portparameters oder.com

Add WeChat powcoder

- In this part, we will
 - Introduce Gaussian Mixture Models (GMMs)
 - Introduce ML estimation of GMM parameters

Fitting a Gaussian PDF to Data

- Suppose $y = y_1, ..., y_t, ..., y_T$ is a set of T data values
- For a Gaussian PDF p with mean μ and variance σ, define: Assignment Project Exam Help

- The 'best fitting' Gaussian maximises $p(y|\mu,\sigma)$
- Maximising $p(y|\mu,\sigma)$ with respect to μ,σ is called Maximum Likelihood (ML) estimation of μ,σ

$$\mu = \frac{1}{T} \sum_{t=1}^{T} y_t, \quad \sigma = \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu)^2$$

UNIVERSITY^{OF} BIRMINGHAM

Multi-modal distributions

- In practice the distributions of many naturally occurring phenomena do not follow the simple bell-shaped Gassignment Project Exam Help
- For example, hittiphe data arises from several difference sources, there may be several distinct peaks (e.g. distribution of heights of adults)
- These peaks are the <u>modes</u> of the distribution and the distribution is called <u>multi-modal</u>

Gaussian Mixture PDFs

- Gaussian Mixture PDFs, or Gaussian Mixture Models (GMMs) used to model multi-modal and other non signment Project Exam Help
- A GMM is justipsweighteddeverage of several Gaussian PDFs, called the component PDFs
 Add WeChat powcoder

 For example, if p_1 and p_2 are Gaussian PDFs, then

$$p(y) = w_1 p_1(y) + w_2 p_2(y)$$

defines a 2 component Gaussian mixture PDF

Gaussian Mixture - Example

- 2 component mixture model
 - Component 1: μ =0, σ =0.1 -
 - Component 2: μ =2, σ =1
 - $-w_1 = w_2 = Assignment Project Exam Help$

- 2 component mixture model
 - Component 1: μ =0, σ =0.1
 - Component 2: u=2, $\sigma=1$ $w_1 = 0.2$ $w_2 = 0.8$ Project Exam Help

- 2 component mixture model
 - Component 1: μ =0, σ =0.1
 - Component 2: μ =2, σ =1
 - $-w_1 = 0.2$ Assignment Project Exam Help

5 component Gaussian mixture PDF

Gaussian Mixture Model

• In general, an *M* component Gaussian mixture PDF is defined by:

Assignment Project Exam Help

Add WeChat powcoder

where each p_m is a Gaussian PDF and

$$0 \le w_m \le 1, \sum_{m=1}^{M} w_m = 1$$

Relationship with Clustering

- Both model data using a set of centroids / means
- In clustering there is no parameter that specifies the 'spread' of a cluster. In a GMM component this is done by the downsia/previoustex.com
- In clustering we assign a sample to the closest centroid. In a GMM a sample is assigned to all components with varying probability.

Estimating the parameters of a Gaussian mixture model

- A Gaussian Mixture Model with M components has
 - M means: $\mu_1, ..., \mu_M$ Assignment Project Exam Help M variances: $\sigma_1, ..., \sigma_M$

 - M mixture weights. W₁, ..., WM
- Given $y = y_1$, Add Whatopowestderate these parameters?
- I.e. how do we find a maximum likelihood estimate of $\mu_1, ..., \mu_M, \sigma_1, ..., \sigma_M, w_1, ..., w_M$?

Parameter Estimation

- If we knew which component each sample y_t came from, then parameter estimation would be easy:
 - Set $\mu_m^{\text{Assignthentverajectvelive}}$ samples which belong to the m^{th} component https://powcoder.com

 – Set σ_m to be the variance of the samples which
 - belong to thednWe6inptopentcoder
 - Set w_m to be the proportion of samples which belong to the m^{th} component
- But we don't know which component each sample belongs to

The E-M Algorithm

• <u>Step 1</u>:

Choose number of GMM components, M, and Assignment Project Exam Help initial GMM parameters:

$$\mu_1^{(0)},...,\mu_M^{(0)},\sigma_1^{(0)},...,\sigma_M^{(0)},w_1^{(0)},...,w_M^{(0)}$$
 Add WeChat powcoder

The E-M Algorithm

- Step 2: For each sample y_t and each GMM component m calculate $P(m|y_t)$ using Bayes theorem and current sign of each sign of each GMM and current sign of each sample y_t and each GMM component t and each GMM and each GMM component t and each t
- Step 3: Define the new estimate of GMM parameters, $\mu_m^{(1)}$ and $\sigma_m^{(1)}$ as:

Add WeChat powcoder $\mu_m^{(1)} = \frac{1}{P_i} \sum_{t=1}^{T} P(m|y_t) y_t \quad \text{where} \quad P_i = \sum_{t=1}^{T} P(m|y_t)$

$$\sigma_m^{(1)} = \frac{1}{P_i} \sum_{t=1}^{T} P(m|y_t) (y_t - \mu_m^{(1)})^2$$

REPEAT (Step 2 and 3)

UNIVERSITYOF BIRMINGHAM

E-M continued

Calculate from m^{th} Gaussian component

mth weight

From Bayes' theorem:

Assignment Project Exam Help
$$p_m(y_t) = \frac{p(y_t | P_t)p(y_t) + p(y_t)p(y_t)}{https://p(y_t)coder.com}$$
Add WeChat powcoder

This is a measure of how much y_t 'belongs to' the m^{th} component

Sum over all components

UNIVERSITY^{OF} BIRMINGHAM

UNIVERSITYOF BIRMINGHAM

Example (continued)

So, given these initial estimates of g_1 and g_2 , and data points $X = \{x_1, x_2, x_3\} = \{-3, 2, 7\}$, the new values of \mathcal{A}_I in \mathcal{A}_I in \mathcal{A}_I reject Exam Help

$$\mu_2 = \frac{1 \times x_1 + 0.277 \times x_2 + 0 \times x_3}{1 + 0.277 + 0} = \frac{1 \times (-3) + 0.277 \times 2 + 0 \times 7}{1.277} = -1.92$$

E-M and k-means clustering

- Consider:
 - Estimating GMM component means in E-M, and
 - Estimating centroids in k-means clustering
- Notation Assignment Project Exam Help
 - GMM component means $\mu_1,...,\mu_M$
 - Cluster centrolattps://powcoder.com
- Given a sample y
 E-M: Calculate P(m | y) for each GMM component m

 - K-means: Calculate $d(c_m, y)$ for each centroid c_m
- Reestimation
 - E-M: For each m, allocate $P(m|y_t)y_t$ to reestimation of μ_m
 - K-means: Allocate all of y_t to the closest centroid (min $\{d(c_m, y_t)\}\)$

E-M and k-means clustering

- In some implementations of E-M, y is used <u>only</u> to reestimate the mean μ_m for the most probable GMM components ignment $\exp(i\pi k_m^2)$ and $\exp(i\pi k_m^2)$
- If the GMM toppo pert variances are all equal, and all of the component weights w_n are equal, then the following are equivalent:
 - $-m = \operatorname{argmin} \{d(y, c_m)\}\ (c_m \text{ is closest centroid to } y)$
 - $-m = argmax\{P(m|y)\}$ (i.e. m is the most probable GMM component)

The E-M algorithm

Example – initial model

Example – after 1st iteration of E-M

Example – after 2nd iteration of E-M

Example – after 4th iteration of E-M

Example – after 10th iteration of E-M

Summary

- Gaussian mixture PDFs (GMMs)
- Maximum Aikei And Mental Maximum Aikei And Aikei
- Comparison of Add Wrechmspoweroderans clustering

