数值分析与算法

第一次大作业实验报告

新雅 62/CDIE6 2016013327 项雨桐 2019 年 11 月 12 日

目录

1	实验	分析		1
	1.1	实验要	採	1
	1.2	需求分	析	1
2	方案	设计与	基本原理	1
	2.1	坐标变	· [换	1
		2.1.1	旋转扭曲坐标变换	1
		2.1.2	图像畸变坐标变换	2
	2.2	插值算	法	2
		2.2.1	最近邻插值	3
		2.2.2	双线性插值	3
		2.2.3	双三次插值	3
3	误差	分析		4
	3.1	模型误	送	4
		3.1.1	图像采样定理	4
		3.1.2	误差分析	5
		3.1.3		5
	3.2	方法误	送	5
		3.2.1	最近邻插值	5
		3.2.2	双线性插值	8
		3.2.3	双三次插值	9
	3.3	舍人误	送	10
		3.3.1	量化误差	10
		3.3.2	浮点数存储/计算误差	10
		3.3.3	截断误差	10
		3.3.4	旋转坐标的计算误差	10
		3.3.5	畸变坐标的计算误差	11
		3.3.6	最近邻插值的计算误差	12
		3.3.7	双线性插值的计算误差	13
		3.3.8	双三次插值的计算误差	13

4	实验总结					
	4.1	利用插值法进行图像变形的一般过程	15			
	4.2	线性插值方法的特性	15			

1 实验分析

1.1 实验要求

分别利用最近邻、双线性、双三次插值方法, 完成图像的旋转扭曲与畸变操作

1.2 需求分析

图像操作的实现主要分为两个部分:

- 1. 图像坐标变换: 坐标变换是图像变换的核心操作。图像变换的基本范式是规定原图像 (srcImage) 和目标图像 (dstImage) 坐标间的函数关系,并通过数值计算求取对应的坐标值。
- 2. 像素插值计算:通过 (srcImage) 对应坐标的像素值,利用一定插值计算的方法获得 (dstImage) 的对应坐标的像素值。对于 RGB 图像,可以对每个颜色通道分别插值后再组合获得新图像。

2 方案设计与基本原理

编写完成旋转扭曲和畸变坐标变换的算法,通过 (dstImage) 获得相应的 (srcImage) 坐标,通过对 (srcImage) 坐标进行插值计算,获得对应 (dstImage) 坐标的像素值。

2.1 坐标变换

2.1.1 旋转扭曲坐标变换

旋转扭曲坐标变换需要设置两个参数:最大旋转角 α_{\max} 和旋转半径 radius。旋转中心为图像中央。

设 (dstImage) 的某点坐标为 (x', y'), 则可得旋转角为

$$\alpha = \alpha_{max} \cdot \frac{radius - distance}{radius}$$

其中 distance 是 (x',y') 到图像中心的欧式距离。

则对应的 (srcImage) 的坐标 (x,y) 满足:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$
 (1)

本次实验中选取的旋转角分别为 $\frac{\pi}{4}$, $\frac{\pi}{2}$, $\frac{3\pi}{4}$, π ; 由于图像为正方形 512 × 512,因此选取的旋转半径为图像尺寸的一半(像素是离散的,中心点选为 (255.5, 255.5),因此半径 radius=255)

2.1.2 图像畸变坐标变换

图像畸变坐标变换需要设置两个参数:正/负畸变和畸变半径 radius,畸变中心为图像中央。

设 (dstImage) 的某点坐标为 (x',y'),则可得正畸变下 (srcImage) 的坐标 (x,y) 满足:

$$\begin{cases} x = \left[\frac{radius}{distance} \arcsin\left(\frac{distance}{radius}\right)\right] \cdot x' \\ y = \left[\frac{radius}{distance} \arcsin\left(\frac{distance}{radius}\right)\right] \cdot y' \end{cases}$$
(2)

负畸变下 (srcImage) 的坐标 (x,y) 满足:

$$\begin{cases} x = \left[\frac{radius}{distance} \sin\left(\frac{distance}{radius}\right)\right] \cdot x' \\ y = \left[\frac{radius}{distance} \sin\left(\frac{distance}{radius}\right)\right] \cdot y' \end{cases}$$
(3)

其中 distance 是 (x', y') 到图像中心的欧式距离。

本次实验中选取的畸变半径分别为 $\frac{3}{4}$ radius 和 radius, 其中 radius 是 旋转变换中使用的半径。

2.2 插值算法

设 (x',y') 经坐标变换得到的 (srcImage) 浮点型坐标为 (x,y), 令

$$\begin{cases} x = i + u \\ y = j + v \end{cases} \tag{4}$$

其中 i = floor(x), j = floor(y), 因此 $u, v \in [0, 1]$

设 f(m,n) 代表 (srcImage) 在坐标 (m,n) 处的像素值(单通道),则 (dstImage) 在 (srcImage) 对应坐标的像素值表示为 f(x,y)

2.2.1 最近邻插值

$$f(x,y) = \begin{cases} f(i,j) & u \le 0.5, v \le 0.5\\ f(i+1,j) & u > 0.5, v \le 0.5\\ f(i,j+1) & u \le 0.5, v > 0.5\\ f(i+1,j+1) & u > 0.5, v > 0.5 \end{cases}$$

$$(5)$$

2.2.2 双线性插值

$$f(x,y) = \begin{bmatrix} 1 - u & u \end{bmatrix} \begin{bmatrix} f(i,j) & f(i,j+1) \\ f(i+1,j) & f(i+1,j+1) \end{bmatrix} \begin{bmatrix} 1 - v \\ v \end{bmatrix}$$
 (6)

2.2.3 双三次插值

$$f(x,y) = ABC$$

其中

$$A = \begin{bmatrix} S(1+u) & S(u) & S(1-u) & S(2-u) \end{bmatrix}$$
 (7)

$$B = \begin{bmatrix} f(i-1,j-1) & f(i-1,j) & f(i-1,j+1) & f(i-1,j+2) \\ f(i,j-1) & f(i,j) & f(i,j+1) & f(i,j+2) \\ f(i+1,j-1) & f(i+1,j) & f(i+1,j+1) & f(i+1,j+2) \\ f(i+2,j-1) & f(i+2,j) & f(i+2,j+1) & f(i+2,j+2) \end{bmatrix}$$
(8)

$$C = \begin{bmatrix} S(1+v) \\ S(v) \\ S(1-v) \\ S(2-v) \end{bmatrix}$$

$$(9)$$

插值基函数:

$$S(x) = \begin{cases} 1 - (a+3)|x|^2 + (a+2)|x|^3 & |x| \leq 1\\ -4a + 8a|x| - 5a|x|^2 + a|x|^3 & 1 < |x| \leq 2\\ 0 & otherwise \end{cases}$$
(10)

本实验中取 a = -1

3 误差分析

本实验的误差主要包括以下四种:

- 观测误差(采样误差): 图像采集设备的光学、机械、电学特性给采样数据带来的误差
- 模型误差: 由采样值重建原模拟图像与实际图像函数的误差
- 方法误差: 用插值函数重建图像与理想值的误差
- 舍入误差:像素值的量化误差、浮点数据的存储与计算带来的误差等本实验的观测误差已不可考,下面分析其他三种误差:

3.1 模型误差

分析图像重建带来的误差,先引入图像采样与重建的概念。

3.1.1 图像采样定理

设图像在频域内是有限带宽的,也即:

$$\mathcal{F}(\Omega_x, \Omega_y) = 0$$

其中 $\|\Omega_x\| > \frac{\pi}{\Delta x}$, $\|\Omega_y\| > \frac{\pi}{\Delta y}$, Δx , Δy 是采样间隔,则利用采样值可以精确重建原图像。设原图像坐标为 (x,y),对应的像素值为 f(x,y),则:

$$f(x,y) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} f(m\Delta x, n\Delta y) \cdot \operatorname{sinc}(x - m\Delta x) \cdot \operatorname{sinc}(y - n\Delta y)$$

其中 $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

在本实验中, 我们取 $\Delta x = \Delta y = 1$ 。

3.1.2 误差分析

若图像在频域内有限带宽,由 IFT 的知识可知图像在空域内是无限延展的;反之,对任意有限范围内的图像,其频域内都有无限的高频成分。但由于人眼对图像的高频成分不敏感,所以由频率截断(低通滤波)带来的误差可以忽略不计,也即认为图像采样定理一般是成立的。这样,在图像函数满足 Dirichlet 条件的前提下,利用 sinc(x) 作为插值函数的图像重建函数与原图像的函数表达严格相等。

3.1.3 总结

在忽略低通滤波带来的截断误差、图像函数满足 Dirichlet 条件的前提下,图像函数

$$f(x,y) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} f(m,n) \cdot \operatorname{sinc}(x-m) \cdot \operatorname{sinc}(y-n)$$

不存在模型误差。

3.2 方法误差

方法误差:

$$R(x,y) = f(x,y) - L(x,y)$$

其中 L(x,y) 是插值函数。

$$\begin{cases} x = i + u & i = floor(x) \\ y = j + v & j = floor(y) \end{cases}$$
(11)

3.2.1 最近邻插值

插值函数:

$$L(x,y) = f(i,j) \cdot \mathbb{1} \Big|_{u \le 0.5, v \le 0.5} + f(i+1,j) \cdot \mathbb{1} \Big|_{u > 0.5, v \le 0.5} + f(i,j+1) \cdot \mathbb{1} \Big|_{u \ge 0.5, v > 0.5}$$

$$(12)$$

误差函数:

$$R(x,y) = f(i,j) \cdot [\operatorname{sinc}(u) \cdot \operatorname{sinc}(v) - 1 \Big|_{u \le 0.5, v \le 0.5}]$$

$$+ f(i+1,j) \cdot [\operatorname{sinc}(u-1) \cdot \operatorname{sinc}(v) - 1 \Big|_{u > 0.5, v \le 0.5}]$$

$$+ f(i,j+1) \cdot [\operatorname{sinc}(u) \cdot \operatorname{sinc}(v-1) - 1 \Big|_{u \le 0.5, v > 0.5}]$$

$$+ f(i+1,j+1) \cdot [\operatorname{sinc}(u-1) \cdot \operatorname{sinc}(v-1) - 1 \Big|_{u > 0.5, v > 0.5}]$$

$$+ \sum_{\substack{m = -\infty \\ \|x - m\| > 1 \\ \|y - n\| > 1}}^{+\infty} f(m,n) \cdot \operatorname{sinc}(x-m) \cdot \operatorname{sinc}(y-n)$$

$$= \operatorname{Int}(u,v) + \operatorname{Res}(x,y)$$
(13)

 $g(s,t) = \text{sinc}(s) \cdot \text{sinc}(t)$ 在 $[0,1]^2$ 上的图像如下所示:

图 $3.1: \operatorname{sinc}(s) \cdot \operatorname{sinc}(t)$ 图像

因此当
$$s=t=0.5$$
 时 $g(s,t)-1$ $\bigg|_{s<0.5,v<0.5}$ 取最大值为 $\frac{4}{\pi^2}$

则

$$\operatorname{Int}(u,v) \leq \frac{4}{\pi^2} \cdot \max\{f(i:i+1,j:j+1)\}$$

$$+ (\frac{4}{\pi^2} - 1) \cdot (\sum_{k=i}^{i+1} \sum_{l=j}^{j+1} f(k,l) - \max\{f(i:i+1,j:j+1)\})$$

$$\approx 0.41 \cdot \max\{f(i:i+1,j:j+1)\}$$

$$- 0.59 \cdot (\sum_{k=i}^{i+1} \sum_{l=i}^{j+1} f(k,l) - \max\{f(i:i+1,j:j+1)\})$$

$$(14)$$

对于 $\mathrm{sinc}(x-m)\cdot\mathrm{sinc}(y-n)$, 当 $\|x-m\|>1$, $\|y-n\|>1$ 时,由于 x,y 独立,因此

$$\operatorname{sinc}(x-m) \cdot \operatorname{sinc}(y-n) \leqslant \operatorname{sinc}^2(w_m)$$

其中 w_{max} 是 $\sin c^2(w)$ 的非零极值点,满足超越方程 $\tan(w_{max}) = w_{max}$, $\|w_{max}\| > 1$,分析可知点列 w_{max} 的正数部分第一项为 $w_1 = 1.43$,当 $n \to \infty$ 时一致收敛于 n + 0.5,因此 $n + 0.4 < w_n < n + 0.5$ 。 故:

$$\operatorname{Res}(x,y) \leqslant \max f(m,n) \cdot \sum_{\substack{m=-\infty \\ \|x-m\|>1 \\ \|y-n\|>1}}^{+\infty} \operatorname{sinc}(x-m) \cdot \operatorname{sinc}(y-n)$$

$$\leqslant \max f(m,n) \cdot \sum_{\substack{w_{max} \in (-\infty,+\infty) \setminus \{0\} \\ w_{max} \in (-\infty,+\infty) \setminus \{0\}}} \operatorname{sinc}^{2}(w_{max})$$

$$\leqslant \max f(m,n) \cdot \sum_{\substack{w_{max} \in (-\infty,+\infty) \setminus \{0\} \\ w_{max}}} \left[\frac{\sin(\pi w_{max})}{\pi w_{max}} \right]^{2}$$

$$= \max f(m,n) \cdot \frac{2}{\pi^{2}} \sum_{\substack{w_{max} \in (0,+\infty) \\ w_{max} \in (0,+\infty)}} \left[\frac{\sin(\pi w_{max})}{w_{max}} \right]^{2}$$

$$\leqslant \max f(m,n) \cdot \frac{2}{\pi^{2}} \sum_{\substack{w_{max} \in (0,+\infty) \\ w_{max} \in (0,+\infty)}} \left(\frac{1}{w_{max}} \right)^{2}$$

$$\leq \max f(m,n) \cdot \frac{2}{\pi^2} \sum_{n=1}^{+\infty} (\frac{1}{n+0.4})^2$$

 $\leq \max f(m,n) \cdot \frac{2}{\pi^2} \cdot 1.03$

因此

$$R(x,y) \leq \frac{4}{\pi^2} \cdot \max\{f(i:i+1,j:j+1)\}$$

$$+ (\frac{4}{\pi^2} - 1) \cdot (\sum_{k=i}^{i+1} \sum_{l=j}^{j+1} f(k,l) - \max\{f(i:i+1,j:j+1)\})$$

$$+ \frac{2}{\pi^2} \sum_{n=1}^{+\infty} (\frac{1}{n+0.4})^2 \cdot \max f(m,n)$$

$$\approx 0.41 \cdot \max\{f(i:i+1,j:j+1)\}$$

$$- 0.59 \cdot (\sum_{k=i}^{i+1} \sum_{l=j}^{j+1} f(k,l) - \max\{f(i:i+1,j:j+1)\})$$

$$+ 0.21 \cdot \max_{\substack{m \in \mathbb{Z} \setminus \{i,i+1\} \\ n \in \mathbb{Z} \setminus \{j,j+1\}}} f(m,n)$$

$$(15)$$

是相关像素点值的线性组合

3.2.2 双线性插值

插值函数:

$$L(x,y) = f(i,j) \cdot (1-u)(1-v) + f(i+1,j) \cdot u(1-v) + f(i,j+1) \cdot (1-u)v + f(i+1,j+1) \cdot uv$$
(16)

误差函数:

g(s,t) 在 $[0,1]^2$ 上的图像如下所示:

图 3.2: g(s,t) 图像

 $(s,t) \approx (0.27,0.27)$ 时, $\max g(s,t) \approx 0.25$ Res(x,y) 的分析同最近邻插值,因此:

$$R(x,y) \leq 0.25 * \max\{f(i:i+1,j:j+1)\} + 0.21 \cdot \max_{\substack{m \in \mathbb{Z} \setminus \{i,i+1\}\\n \in \mathbb{Z} \setminus \{j,j+1\}}} f(m,n)$$
(18)

也是相关像素点值的线性组合

3.2.3 双三次插值

双三次插值的分析方法和前两者类似,因公式过于繁琐不再赘述。另一种比较好的估计方法是:

$$|R_x(x,y)| \leqslant \frac{1}{4!} \max \left| \frac{\partial^4 f}{\partial x^4} \right| |(1+u)u(1-u)(2-u)| = \frac{3}{128} \max \left| \frac{\partial^4 f}{\partial x^4} \right|$$

$$|R_y(x,y)| \leqslant \frac{1}{4!} \max \left| \frac{\partial^4 f}{\partial x^4} \right| |(1+v)v(1-v)(2-v)| = \frac{3}{128} \max \left| \frac{\partial^4 f}{\partial y^4} \right|$$
(19)

也即

$$|R(x,y)| \le |R_x(x,y)| + |R_y(x,y)| = \frac{3}{128} \left(\max \left| \frac{\partial^4 f}{\partial x^4} \right| + \max \left| \frac{\partial^4 f}{\partial y^4} \right| \right)$$
 (20)

3.3 舍入误差

舍入误差的来源如下:

3.3.1 量化误差

量化误差主要是指像素值在量化为离散值时产生的误差。由于像素值的量化是向下取整,所以绝对误差为 1,相对误差为 1/256。

另外,在双三次插值出现 overshooting 和 undershooting 现象时采用 clamp 函数修正也会带来误差。

3.3.2 浮点数存储/计算误差

- 程序中的 (dstImage) 坐标值和 (srcImage) 中心点坐标值、旋转半径不存在误差¹
- 利用坐标计算的距离 distance 和最大旋转角 α_{\max} 在存储时存在截断 误差
- 利用二者计算得到变换后 (srcImage) 对应的浮点坐标 (*x*, *y*)、插值计算中得到的插值基函数、像素值存在计算带来的误差累积和本身的存储误差

3.3.3 截断误差

float 格式利用 23 个比特位表示小数部分,因此所有 float 类型变量的 截断误差是 $(\frac{1}{2})^{-24}$ 。

3.3.4 旋转坐标的计算误差

$$\|\Delta A\| \leqslant \max \|\frac{\partial f}{\partial x}\| \cdot \|\Delta x\| + \max \|\frac{\partial f}{\partial y}\| \cdot \|\Delta y\|$$

和

$$\begin{split} \alpha &= \alpha_{max} \cdot \frac{radius - distance}{radius} \\ \Delta \text{distance} &= \Delta \alpha_{\text{max}} = (\frac{1}{2})^{-24} \end{split}$$

 $^{^1}$ 中心点坐标值十进制为 255.5、旋转半径 0.75 倍 radius 为 191.25,在二进制用 float 存储时可以准确表示

知:

$$\begin{split} \frac{\partial}{\partial \alpha_{max}} &= \frac{radius - distance}{radius} \\ \frac{\partial}{\partial (distance)} &= -\frac{\alpha_{max}}{radius} \end{split}$$

因此:

$$\|\Delta\alpha\| \leqslant \max \|\frac{radius - distance}{radius}\| \cdot (\frac{1}{2})^{-24} + \max \|\frac{\alpha_{max}}{radius}\| \cdot (\frac{1}{2})^{-24}$$

对应的 (srcImage) 的坐标 (x,y) 满足:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$
 (21)

则:

$$\frac{\partial x}{\partial \alpha} = -x' \sin \alpha - y' \cos \alpha$$
$$\frac{\partial y}{\partial \alpha} = x' \cos \alpha - y' \sin \alpha$$

因此:

$$\|\Delta x\| \leqslant \max \|-x'\sin \alpha - y'\cos \alpha\| \cdot \|\Delta \alpha\|$$
$$\|\Delta y\| \leqslant \max \|x'\sin \alpha + y'\cos \alpha\| \cdot \|\Delta \alpha\|$$

3.3.5 畸变坐标的计算误差

正畸变下 (srcImage) 的坐标 (x,y) 满足:

$$\begin{cases} x = \left[\frac{radius}{distance} \arcsin\left(\frac{distance}{radius}\right)\right] \cdot x' \\ y = \left[\frac{radius}{distance} \arcsin\left(\frac{distance}{radius}\right)\right] \cdot y' \end{cases}$$
(22)

则

$$\frac{\partial x}{\partial distance} = [\frac{1}{distance}\sqrt{1 - (\frac{distance}{radius})^2} - \frac{radius}{distance^2}\arcsin{(\frac{distance}{radius})}] \cdot x'$$

$$\frac{\partial y}{\partial distance} = [\frac{1}{distance} \sqrt{1 - (\frac{distance}{radius})^2} - \frac{radius}{distance^2} \arcsin{(\frac{distance}{radius})}] \cdot y'$$

因此:

$$\|\Delta x\| \leqslant \max \|\left[\frac{1}{distance} \sqrt{1 - \left(\frac{distance}{radius}\right)^2} - \frac{radius}{distance^2} \arcsin\left(\frac{distance}{radius}\right)\right] \cdot x'\| \cdot \left(\frac{1}{2}\right)^{-24}$$

$$\|\Delta y\| \leqslant \max \|\left[\frac{1}{distance} \frac{1}{\sqrt{1 - (\frac{distance}{radius})^2}} - \frac{radius}{distance^2} \arcsin(\frac{distance}{radius})\right] \cdot x'\| \cdot (\frac{1}{2})^{-24}$$

负畸变下 (srcImage) 的坐标 (x,y) 满足:

$$\begin{cases} x = \left[\frac{radius}{distance} \sin\left(\frac{distance}{radius}\right)\right] \cdot x' \\ y = \left[\frac{radius}{distance} \sin\left(\frac{distance}{radius}\right)\right] \cdot y' \end{cases}$$
(23)

则

$$\begin{split} \frac{\partial x}{\partial distance} &= [\frac{1}{distance}\cos\frac{distance}{radius} - \frac{radius}{distance^2}\sin(\frac{distance}{radius})] \cdot x' \\ \frac{\partial y}{\partial distance} &= [\frac{1}{distance}\cos\frac{distance}{radius} - \frac{radius}{distance^2}\sin(\frac{distance}{radius})] \cdot y' \end{split}$$

因此:

$$\|\Delta x\| \leqslant \max \|\left[\frac{1}{distance}\cos\frac{distance}{radius} - \frac{radius}{distance^2}\sin\left(\frac{distance}{radius}\right)\right] \cdot x'\| \cdot \left(\frac{1}{2}\right)^{-24}$$
$$\|\Delta y\| \leqslant \max \|\left[\frac{1}{distance}\cos\frac{distance}{radius} - \frac{radius}{distance^2}\sin\left(\frac{distance}{radius}\right)\right] \cdot x'\| \cdot \left(\frac{1}{2}\right)^{-24}$$

3.3.6 最近邻插值的计算误差

最近邻插值算法:

$$f(x,y) = \begin{cases} f(i,j) & u \le 0.5, v \le 0.5\\ f(i+1,j) & u > 0.5, v \le 0.5\\ f(i,j+1) & u \le 0.5, v > 0.5\\ f(i+1,j+1) & u > 0.5, v > 0.5 \end{cases}$$
(24)

其中:

$$\begin{cases} x = i + u \\ y = j + v \end{cases} \tag{25}$$

i = floor(x), j = floor(y), 因此 $\Delta u = \Delta x, \Delta v = \Delta y$ 除去像素值本身的量化误差,由上述公式可知,算法引入的误差即为 $\Delta u = \Delta x$ 和 $\Delta v = \Delta y$

3.3.7 双线性插值的计算误差

双线性插值算法:

$$f(x,y) = f(i,j) \cdot (1-u)(1-v) + f(i+1,j) \cdot u(1-v) + f(i,j+1) \cdot (1-u)v + f(i+1,j+1) \cdot uv$$
(26)

$$\begin{cases} x = i + u \\ y = j + v \end{cases}$$
 (27)

i = floor(x), j = floor(y), 因此 $\Delta u = \Delta x, \ \Delta v = \Delta y$ 除去像素值本身的量化误差,由上述公式可知:

$$\frac{\partial f}{\partial u} = (1 - v)[f(i+1, j) - f(i, j)] + v[f(i+1, j+1) - f(i, j+1)]$$

$$\frac{\partial f}{\partial v} = (1 - u)[f(i, j + 1) - f(i, j)] + u[f(i + 1, j + 1) - f(i + 1, j)]$$

因此:

$$\|\Delta f\| \leqslant \max_{(u,v)\in[0,1]^2} \|(1-v)[f(i+1,j)-f(i,j)] + v[f(i+1,j+1)-f(i,j+1)]\| \cdot \|\Delta x\|$$

$$+ \max_{(u,v)\in[0,1]^2} \|(1-u)[f(i,j+1)-f(i,j)] + u[f(i+1,j+1)-f(i+1,j)]\| \cdot \|\Delta y\|$$
(28)

3.3.8 双三次插值的计算误差

插值基函数:

$$S(x) = \begin{cases} 1 - 2|x|^2 + |x|^3 & |x| \le 1\\ 4 - 8|x| + 5|x|^2 - |x|^3 & 1 < |x| \le 2\\ 0 & otherwise \end{cases}$$
 (29)

插值函数:

$$f(x,y) = ABC$$

其中

$$A = \begin{bmatrix} S(1+u) & S(u) & S(1-u) & S(2-u) \end{bmatrix}$$
 (30)

$$B = \begin{bmatrix} f(i-1,j-1) & f(i-1,j) & f(i-1,j+1) & f(i-1,j+2) \\ f(i,j-1) & f(i,j) & f(i,j+1) & f(i,j+2) \\ f(i+1,j-1) & f(i+1,j) & f(i+1,j+1) & f(i+1,j+2) \\ f(i+2,j-1) & f(i+2,j) & f(i+2,j+1) & f(i+2,j+2) \end{bmatrix}$$
(31)

$$C = \begin{bmatrix} S(1+v) \\ S(v) \\ S(1-v) \\ S(2-v) \end{bmatrix}$$
(32)

则

$$\frac{\partial f}{\partial u} = \frac{\partial A}{\partial u} BC$$

$$\frac{\partial f}{\partial v} = AB \frac{\partial C}{\partial v}$$
(33)

其中

$$\frac{\partial A}{\partial u} = \begin{bmatrix} \frac{\partial S(1+u)}{\partial u} & \frac{\partial S(u)}{\partial u} & \frac{\partial S(1-u)}{\partial u} & \frac{\partial S(2-u)}{\partial u} \end{bmatrix}$$
(34)

$$\frac{\partial C}{\partial v} = \begin{bmatrix} \frac{\partial S(1+v)}{\partial v} \\ \frac{\partial S(v)}{\partial v} \\ \frac{\partial S(1-v)}{\partial v} \\ \frac{\partial S(2-v)}{\partial v} \end{bmatrix}$$
(35)

对 $t \in [0,1]$

$$\frac{\partial S(1+t)}{\partial t} = -1 + 4t - 3t^2$$

$$\frac{\partial S(t)}{\partial t} = -4t + 3t^2$$

$$\frac{\partial S(1-t)}{\partial t} = 1 + 2t - 3t^2$$

$$\frac{\partial S(2-t)}{\partial t} = -24 + 22t - 3t^2$$

因此:

$$\|\Delta f\| \leqslant \max_{(u,v)\in[0,1]^2} \|\frac{\partial A}{\partial u}BC\| \cdot \|\Delta x\| + \max_{(u,v)\in[0,1]^2} \|AB\frac{\partial C}{\partial v}\| \cdot \|\Delta y\| \quad (36)$$

4 实验总结

4.1 利用插值法进行图像变形的一般过程

- 1. 图片预处理, 一般包括通道分离等
- 2. 确定坐标变换函数,由目标图像对应整型坐标得到原图像浮点坐标
- 3. 利用插值算法, 从原图像整型坐标的像素值获得浮点坐标的像素值, 也即目标图像对应点的像素值
- 4. 图片终处理, 例如通道合成, 偏差修正等

4.2 线性插值方法的特性

线性插值方法表现在预测点的像素值是原图像像素值的线性组合。不同的线性组合系数、原图像像素值的选取会得到不同的线性插值方法。

最近邻插值是一种零次插值,表现在只选取了原图像的 1 个采样点来 预测对应点的像素; 双线性插值是两个方向上的一次插值, 因此利用了最近 的 4 个点的像素, 插值基函数是线性的; 双三次插值是两个方向上的三次 插值, 利用了附近 16 个点的像素值, 插值基函数为 3 次, 可以通过选取不 同的参数来调节。

插值基函数的特性2:

- S(0) = 1
- $S(n) = 0, n \in \mathbb{Z} \setminus \{0\}$
- S(x) = 0, 当 x 超过插值范围时

本实验中的插值基函数是对理想插值函数 sinc(x) 的逼近

这三种线性插值均采用多项式函数作为插值基函数,如果图像函数 f(x,y) 满足一定的光滑特性,则可以证明这些经插值后的图像一致收敛 于原图像函数;且多项式阶次越高、选取的采样点越多,方法误差就越小,表现在图像上则是人工痕迹例如锯齿等现象越不明显。因此,从获得的图像中可以看出,双三次插值得到的图像最自然,双线性次之,最近邻最差。但 多项式阶次和采样点数目的增长带来的是计算复杂度的增加,因此在实际

²https://dailc.github.io/2017/11/01/imageprocess_bicubicinterpolation.html

应用中,应当根据所需的性能与计算开销之间进行平衡,合理选取插值方案。

从分析中也可以看出,线性插值方法的误差对于各采样点像素值也是 线性的。

另外还需指出的是,双三次插值有可能造成 overshooting 或 undershooting 现象,也即某像素预测值超出了 0^-255 的范围³。表现在图像上就是产生许多纯度高的彩色噪点⁴。这时需要利用 clamp 函数来将插值结果限制为 0^-255 的范围。

 $^{^3 {\}tt https://github.com/pytorch/pytorch/issues/21044}$

 $^{^4}$ 其实是 undershooting 产生的负值在强制转换为 uchar 类型时变为 overshooting