

Honeywell

H316
CIRCUIT MODULES AND PARTS
INSTRUCTION MANUAL

Doc. No. 70130072166AV

Order No. M-494

Honeywell

SERIES 16

H316 CIRCUIT MODULES AND PARTS INSTRUCTION MANUAL

Doc. No. 70130072166AV

Order No. M-494

November 1974

COPYRIGHT © 1969, 1970, HONEYWELL INC.

COPYRIGHT © 1971, 1972, 1973, 1974, HONEYWELL INFORMATION SYSTEMS INC.

The information contained herein is the exclusive property of Honeywell Information Systems Inc., except as otherwise indicated, and shall not be disclosed or reproduced, in whole or in part, without explicit written authorization from the company. The distribution of this material outside the company may occur only as authorized.

REVISION HISTORY

New Revision Level of Manual	Change No.	Effective Date	Number and New Revision Level of Affected Drawings	Pages Affected by Revision
E	7690	Jan. 1970		vi, ix, 2-20, 2-22, 2-23, 2-45, 2-47, 2-57, 2-58, 3-20, 3-21
C	7759	Feb. 1970		1-67
D	8006	Mar. 1970		1-67
E	8128	June 1970		1-21, 1-23, 1-25, 1-27, 1-29, 1-31, 1-33, 1-35, 1-37
F	8356	June 1970	70022835E 70022836E 70022841C	iv, vi, ix 2-31 2-33 2-45 2-47, 2-61, 2-62
G	8451	July 1970		2-2
H	8684	Sept. 1970		Title page (deleted), vii, viii, x, xi, xii (added); 4-4, 4-8, 4-9, 4-13, 4-23, 4-24, 4-27 - 4-31, 4-32 (deleted); 5-1 - 5-31 (added)

Publications Department, Field Engineering Division, Newton, MA 02161

Printed in the United States of America
All rights reserved

REVISION HISTORY (Cont)

New Revision Level of Manual	Change No.	Effective Date	Number and New Revision Level of Affected Drawings	Pages Affected by Revision	
J	8704	Nov. 1970	A70022955D P70022955E B70022955E P70022970B A70022970B	2-58 2-58 2-59, 2-60 vi, x, xi, xii, 2-47, 2-57 - 2-59; 2-60 (added) 2-61 2-62	
K	9313	Mar. 1971		1-49, 1-50, 1-51, 1-53	
L	9375	Apr. 1971		2-49, 2-64	
M	9423A	May 1971		2-1, 2-4, 2-5, 2-10, 2-13 - 2-28, 4-19, 5-9 C70022843D C70022835F C70022836F C70022837B C70022838C C70022839E C70022840B C70022841C P70022841C	2-29 2-31 2-33 2-35 2-37 2-39 2-41 2-45 2-47
N	9529A	June 1971		3-19, 3-21	
P	9650	July 1971	C70022839E	2-39	
Q	9689	July 1971		1-1, 1-19, 1-97 - 1-103, 3-1 - 3-44	
R	9919	Nov. 1971	C70023327C C70023697C	1-49 1-50 1-51, 1-53	
S	10140	Jan. 1972		2-60	
T	10189	Feb. 1972		vi thru x; xi, xii added; 4-1 thru 4-31; 4-33 thru 4-77 added; 5-1 thru 5-30; 5-31 thru 5-49 added	
U	10218	Mar. 1972		2-52	
V	10260	Apr. 1972		v, 2-49, 2-53 thru 2-66; 2-67 thru 2-73 added 2-37 2-45, 2-47	
W	10229	Apr. 1972	70023412H	3-9, 3-10	
Y	20049	June 1972	70023329E 70023990B	1-61 1-62 1-63	

REVISION HISTORY (Cont)

New Revision Level of Manual	Change No.	Effective Date	Number and New Revision Level of Affected Drawings	Pages Affected by Revision
Z	20593	Sept. 1972	--	1-49, 1-51, 1-53, 1-61, 1-67, 3-35
AA	20707	Oct. 1972	--	4-1, 4-48, 4-65, 4-68, 4-71, 4-72, 4-79 (added)
AB	20085	Dec. 1972	--	4-13
AC	20328	Jan. 1973	--	1-33
AD	30090	March 1973	--	4-68, 4-79
AE	30110	April 1973	--	1-19, 1-73 thru 1-76, 1-77, 1-79, 2-5 2-27, 2-43 (deleted), 3-31 thru 3-33
AF	30136	May 1973	-- A70032670C	3-36, 3-38, 3-39, 3-44
AG	31471	Aug. 1973	C70025464C C70025966B --	1-97 thru 1-99 (added) 1-101 thru 1-103 (added) CSM-150 Core Memory Module, 3-1 thru 3-62 (added) Chapters IV and V (deleted)*
AH	30795	Sept. 1973	C70032889B C70032890C C70032891B C70032892B C70032893B C70032894B C70032895B C70032896B C70032897B C70032899B C70050524B	3-49 3-31 3-33 3-35 3-37 3-39 3-41 3-45 3-43 3-47 3-56
AJ	30216	Sept. 1973	70023412N (Sheets 1 thru 8) 70023412N (Sheet 9)	4-3 thru 4-10 4-11 (added)
AK	31273	Oct. 1973	C70032890C D70033040B	3-31 3-59
AL	30996	Nov. 1973	C70032895C C70032896C	3-41 3-45
AM	32132	Jan. 1974	--	Addendum added
AN	30222	Feb. 1974	D70031961G D70031976D	Included in Rev. AM

*Information contained in Chapters IV and V now appears in Document Number 70130072759,
Order Number M-1532.

REVISION HISTORY (Cont.)

New Revision Level of Manual	Change No.	Effective Date	Number and New Revision Level of Affected Drawings	Pages Affected by Revision
AP	40230	July 1974	D70030064Z D70023412P	3-63 through 3-66 added 4-3 through 4-11
AR	40524	July 1974	D70033040C	3-59
AS	40658	Aug. 1974		A-5, A-7
AT	40785	Sept. 1974	P70050523C	3-53
AU	40860	Sept. 1974		1-41
AV	41059	Sept. 1974		3-57, 3-58

CONTENTS

	<u>Page</u>
CHAPTER I. PLUG-IN CIRCUIT MODULES	
SECTION 1.	
INTEGRATED CIRCUIT CHARACTERISTICS	
	1 - 1
Specifications	1 - 1
Input Switching Thresholds	1 - 1
Output Logic Levels	1 - 1
Temperature Range	1 - 1
Power Supply Requirements	1 - 2
Fan-In Expansion Using Nodes	1 - 2
Loading	1 - 2
Basic NAND Circuit	1 - 2
Type F-01 NAND Gate	1 - 3
Type F-03 Power Amplifier	1 - 3
Type F-04 Flip-Flop	1 - 4
Pulse Dodging	1 - 5
DC Operation	1 - 6
Control Inputs Used to Steer Clock Pulses	1 - 7
Control Inputs Used as a Second Clock	1 - 9
Control Inputs Used Directly to Set or Reset	1 - 9
Input Loading	1 - 11
Output Drive Capability	1 - 11
Circuit Delay	1 - 11
Clock and Control Input Timing Requirements	1 - 11
DC Input Timing Requirements	1 - 11
Control Inputs	1 - 11
Maximum Allowable Clock Skew	1 - 13
Type F-09 Power Amplifier	1 - 13
Type F-19 Functional Logic Gate	1 - 14
Type 930/961 NAND Gates	1 - 15
Type 946/949 NAND Gates	1 - 15
Type 936/937 Hex Inverter	1 - 16
Type 932 Power Amplifier	1 - 16
Type 944 Power Amplifier	1 - 16
Type 962/963 Trip NAND Gates	1 - 17
Type 032 Quad NAND Gates	1 - 17
SECTION 2.	1 - 19
MODULE DESCRIPTIONS	
Columns 1-4 Module, Model CC-364A	1 - 21
Columns A-D Module, Model CC-365A	1 - 27
Columns 9-12 Module, Model CC-366A	1 - 33
Address Bus Module, Model CC-367	1 - 39
Shift Register Module, Model CC-368	1 - 43
Lamp Driver Module, Model CC-369B	1 - 49
M Register Module, Model CC-370	1 - 55
Clock Module, Model CC-371	1 - 61
Regulator Counter Module, Model CC-372	1 - 67
Memory Timing Module, Model CC-373	1 - 73
ASR Interface Module, Model CC-374	1 - 81
High Speed A-U No. 1 Module, Model CC-375	1 - 89
High Speed A-U No. 2 Module, Model CC-401	1 - 93

CONTENTS (Cont)

	<u>Page</u>
Extended Address Module, Models CC-510A and CC-869	1-97
Memory Parity Board, Models CC-558 and CC-621	1-101
Cable PAC, Model CC-672	1-105
Cable PAC, Model CC-681	1-109

CHAPTER II. CSM-160 CORE MEMORY MODULE

SECTION 1. DESCRIPTION	2-1
System Layout	2-1
Logic Signal List	2-1
Specifications	2-3
Capacity	2-3
Storage Mode	2-4
Cycle Time	2-4
Input Levels	2-4
Output Levels	2-4
Memory Cycle Timing	2-4
SECTION 2. PRINCIPLES OF OPERATION	2-7
Principles of Magnetic Core Memories	2-7
Magnetic Core Storage	2-7
Information Sensing	2-10
Addressing	2-11
Writing	2-12
Core Stack Configuration	2-12
Addressing and Selection	2-12
Addressing-Random Access	2-12
Decoding and Selection	2-13
Timing and Control	2-13
Operating Modes	2-13
Read-Regenerate Mode	2-13
Clear-Write Mode	2-16
Interface Timing	2-16
Memory Retention	2-16
Interference from Magnetic Field	2-17
SECTION 3. MAINTENANCE	2-19
Tools and Test Equipment	2-19
Recommended Spare Parts	2-19
PAC Handling and Repair Procedures	2-19
Inserting and Removing System PACs	2-19
PAC Troubleshooting	2-19
Component Checking	2-19
Component Replacement	2-19
Maintenance Inspection	2-20

CONTENTS (Cont)

	<u>Page</u>
Preventive Maintenance Procedure	2-20
Memory Drive and Inhibit Voltage Calibration	2-21
Strobe Timing Calibration	2-21
Corrective Maintenance Procedures	2-21
Magnetic Core Stack Maintenance	2-22
Sense Windings	2-22
Drive Windings	2-24
Inhibit Windings	2-24

SECTION 4. LOGIC BLOCK DIAGRAMS

2-27

SECTION 5. MEMORY PAC DESCRIPTIONS

2-47

Inhibit μ -PAC, Models CM-305/CM-488	2-49
Selector μ -PAC, Models CM-306/CM-640	2-53
Sense Amplifier μ -PAC, Models CM-363A/CM-489A/CM-734/CM-735	2-57
Sense Amplifier μ -PAC, Models CM-363B/CM-489B/CM-734/CM-735	2-61
Resistor μ -PAC, Model CM-384A	2-65
NAND Type 1 PAC, Model DI-335	2-67
Extender PAC, Model XP-330	2-71

CHAPTER III. CSM-150 CORE MEMORY MODULE

SECTION 1. INTRODUCTION

3 - 1

General Description	3 - 1
Physical Description	3 - 1
Electrical Design	3 - 1
Specifications	3 - 2
General	3 - 2
Physical	3 - 2
Environment	3 - 2
Power	3 - 2
Interface	3 - 3
Data Retention	3 - 3
Parity	3 - 4

SECTION 2. OPERATING PROCEDURES

3 - 5

Operating Modes	3 - 5
Adjustments and Limitations	3 - 5
Adjustments	3 - 5
Limitations	3 - 5
Signals	3 - 6
Address Interface Signals	3 - 6
Data Interface Signals	3 - 6
Timing and Control Interface Signals	3 - 6

CONTENTS (Cont)

	Page
SECTION 3. FUNCTIONAL THEORY OF OPERATION	
Basic Operation	3-8
Functional Elements	3-8
Storage Array	3-8
Selection Interface Circuits	3-9
Write or Regenerate Interface Circuits	3-9
Read Interface Circuits	3-9
Timing and Control Circuits	3-9
Parity Logic	3-10
SECTION 4. DETAILED THEORY OF OPERATION	
	3-11
Storage Element	3-11
Storage Array and Addressing	3-12
Selection Circuits	3-13
Data Loop	3-14
Read Data Path	3-14
Write Data Path	3-15
Timing and Control	3-15
Address and Current Timing	3-16
Data Loop Timing	3-16
Parity Logic	3-16
Timing Diagrams	3-18
SECTION 5. INSTALLATION	
	3-19
Tools and Test Equipment	3-19
Space and Environment	3-19
Interface Considerations	3-19
Installation Procedures	3-19
Unpacking, Repacking and Reshipping	3-19
Mechanical Procedures	3-20
Electrical Checkout Procedure	3-20
SECTION 6. MAINTENANCE	
	3-21
Equipment Configuration	3-21
Mechanical Assemblies	3-21
Module Location	3-21
Operator Maintenance	3-21
Standard Maintenance	3-21
Tools and Test Equipment	3-21
Preventive Maintenance	3-22
Adjustment	3-22
Removal and Replacement	3-23

CONTENTS (Cont)

	<u>Page</u>
SECTION 7. TROUBLESHOOTING	
	3 - 24
General Procedures	3 - 24
Specific Procedures	3 - 24
Module Interchangeability	3 - 24
Core Memory Test Program	3 - 24
Control Panel Debugging	3 - 24
Waveform Checks	3 - 25
Core Plane Troubleshooting	3 - 25
Sense - Inhibit Windings	3 - 25
Drive Windings	3 - 26
Troubleshooting Table	3 - 26
Cable Information	3 - 27
SECTION 8. REFERENCE DATA	
	3 - 28
SECTION 9. LOGIC BLOCK DIAGRAMS	
	3 - 30
SECTION 10. MEMORY PAC DESCRIPTIONS	
	3 - 51
Integrated Circuit Descriptions	3 - 51
Recommended Spare Parts	3 - 51
Address Board, Model CM-866	3 - 51
Data Board, Model CM-867	3 - 55
CSM-150 Core Plane	3 - 55
CHAPTER IV. MAINFRAME ILLUSTRATED PARTS BREAKDOWN	
General	4 - 1
Equipment Coding	4 - 1
Methods of Use	4 - 1
Parts Procurement Guide	4 - 2
APPENDIX A. ACME POWER SUPPLIES	
	A - 1
APPENDIX B. ACME POWER SUPPLIES	
	B - 1
ADDENDUM TYPE 316/716 POWER DISTRIBUTION UNIT	

ILLUSTRATIONS

<u>Figure/LBD</u>	<u>Page</u>	
1-1-1	Switching Thresholds	1-2
1-1-2	F-01 Dual NAND Gate	1-3
1-1-3	F-03 Power Amplifier	1-3
1-1-4	Type F-04 Flip-Flop Logic Symbol and Equivalent Logic Circuit	1-4
1-1-5	Double-Rank Flip-Flop Pulse Dodging, Timing Diagram	1-5
1-1-6	DC Operation	1-6
1-1-7	Control Inputs Used to Gate Clock Pulses	1-7
1-1-8	Control Inputs Used as a Second Clock	1-9
1-1-9	Control Inputs Used Directly to Set or Reset	1-10
1-1-10	Flip-Flop Input Pulse Requirements	1-12
1-1-11	DC Set and Reset Input Signal Requirements	1-12
1-1-12	Timing Requirements for Control Inputs, Using Clock Triggering	1-12
1-1-13	Allowable Clock Skew, Logic and Timing	1-13
1-1-14	Type F-09 Power Amplifier Equivalent Logic Symbol	1-14
1-1-15	F-19 Logic Symbol	1-14
1-1-16	930/961 Dual NAND Gates	1-15
1-1-17	946/949 Quad NAND Gates	1-15
1-1-18	936/937 Hex Inverter	1-16
1-1-19	932/944 Power Amplifiers	1-16
1-1-20	962/963 Trip NAND Gates	1-17
1-1-21	032 Quad NAND Gate	1-17
1-2-1	Columns 1-4 Module Parts Location	1-22
1-2-2	Columns 1-4 Module Schematic Diagram	1-23
1-2-3	Columns A-D Module Parts Location	1-28
1-2-4	Columns A-D Module Schematic Diagram	1-29
1-2-5	Columns 9-12 Module Parts Location	1-34
1-2-6	Columns 9-12 Module Schematic Diagram	1-35
1-2-7	Address Bus Module Parts Location	1-40
1-2-8	Address Bus Module Schematic Diagram	1-41
1-2-9	Shift Register Module Parts Location	1-44
1-2-10	Shift Register Module Schematic Diagram	1-45
1-2-11	Lamp Driver Module Parts Location	1-50
1-2-12	Lamp Driver Module Schematic Diagram	1-51
1-2-13	M Register Module Parts Location	1-56
1-2-14	M Register Module Schematic Diagram	1-57
1-2-15	Clock Module Parts Location	1-62
1-2-16	Clock Module Schematic Diagram	1-63
1-2-17	Regulator Counter Module Parts Location	1-68
1-2-18	Regulator Counter Module Schematic Diagram	1-69
1-2-19	Memory Timing Module Parts Location	1-75
1-2-20	Memory Timing Module Schematic Diagram	1-77
1-2-21	ASR Interface Module Parts Location	1-83
1-2-22	ASR Interface Module Schematic Diagram	1-85
1-2-23	High Speed A-U No. 1 Module Parts Location	1-90
1-2-24	High Speed A-U No. 1 Module Schematic Diagram	1-91
1-2-25	High Speed A-U No. 2 Module Parts Location	1-94
1-2-26	High Speed A-U No. 2 Module Schematic Diagram	1-95
1-2-27	Extended Address Module, Model CC-510A	1-98
1-2-28	Extended Address Module, Model CC-869	1-99
1-2-29	Memory Parity Board, Model CC-558	1-102
1-2-30	Memory Parity Board, Model CC-621	1-103

ILLUSTRATIONS (Cont)

<u>Figure/LBD</u>		<u>Page</u>
1-2-31	Cable PAC, Model CC-672, Schematic Diagram	1-106
1-2-32	Model CC-672 Parts Location	1-107
1-2-33	Cable PAC, Model CC-681, Schematic Diagram	1-110
1-2-34	Model CC-681 Parts Location	1-111
2-1-1	Stack Coding Diagram	2-2
2-1-2	Interface Timing Requirements for all Units	2-5
2-2-1	Ferrite Core Hysteresis Loop	2-8
2-2-2	Core Control Windings	2-9
2-2-3	Coincident-Current Selection	2-10
2-2-4	Address Decoding and Selection, Simplified Block Diagram	2-14
2-2-5	Decoding and Selection Matrix, Simplified Schematic	2-15
2-2-6	Regeneration Loop, Simplified Diagram	2-17
80.00	CSM-160 and H-316 Memory Timing Control	2-29
80.01	CSM-160, ICM-160 and H-316 Memory X Selection Sinks and Switches	2-31
80.02	CSM-160, ICM-160 and H-316 Memory Y Selection Sinks and Switches	2-33
80.03	CSM-160, ICM-160 and H-316 Memory X and Y Selection Diode Matrix	2-35
80.04	CSM-160, ICM-160 and H-316 Memory Sense Amplifiers	2-37
80.05	CSM-160, ICM-160 and H-316 Memory Inhibit Drivers	2-39
80.06	H-316 Memory 1 x 3 Connector Wiring	2-41
80.08	H-316 Memory PAC Complement and Allocation	2-43
1	Inhibit μ -PAC, Models CM-305/CM-488 Parts Location	2-50
2	Inhibit μ -PAC, Models CM-305/CM-488 Schematic Diagram and Logic Symbol	2-51
1	Selector μ -PAC, Models CM-306/CM-640, Parts Location	2-55
2	Selector μ -PAC, Model CM-306, Schematic Diagram and Logic Symbol	2-56
1	Sense Amplifier μ -PAC, Models CM-363A/ CM-489A, CM-734/CM-735, Parts Location	2-58
2	Sense Amplifier μ -PAC, Models CM-363A/ CM-734, Schematic Diagram and Logic Symbol	2-59
3	Sense Amplifier μ -PAC, Models CM-489A/ CM-735, Schematic Diagram and Logic Symbol	2-60
1	Sense Amplifier μ -PAC, Models CM-363B/ 489B/734/735, Parts Location	2-62
2	Sense Amplifier μ -PAC, Models CM-363B/ 734, Schematic Diagram and Logic Symbol	2-63
3	Sense Amplifier μ -PAC, Models CM-489A/ 735, Schematic Diagram and Logic Symbol	2-64
1	Resistor μ -PAC, Model CM-384A, Parts Location	2-65
2	Resistor μ -PAC, Model CM-384A, Schematic Diagram	2-66

ILLUSTRATIONS (Cont)

<u>Figure/LBD</u>	<u>Page</u>
DI-335-1	NAND Type 1 PAC, Schematic Diagram and Logic Symbol 2-68
DI-335-2	NAND Type 1 PAC, Parts Location 2-69
DI-335-3	NAND Type 1 PAC, Gates Used in Parallel 2-70
XP-330-1	Extender PAC 2-71
3-4-1	Ferrite Core B-H Characteristics 3-11
3-4-2	Two-Bit, 4-Word, 3D, 3-Wire Core Array 3-12
3-4-3	Two-by-Two Bipolar Diode Matrix 3-13
3-4-4	Selection Switches 3-14
3-4-5	Read Data Circuits 3-14
3-4-6	Inhibit Circuit 3-15
3-4-7	Parity Generation and Register Logic 3-17
8101	CSM-150 Memory Timing and Control, CSM-866 Address Board, Slot 2 3-31
8102	CSM-150 Memory Y-Selection, CM-866 Address Board, Slot 2 3-33
8103	CSM-150 Memory X-Selection, CM-866 Address Board, Slot 2 3-35
8104	CSM-150 Memory Data Bits 1 through 16, CM-867, Slots 5 and 6 3-37
8105	CSM-150 Memory Parity, CM-867, Slots 5 and 6 3-39
8110	CSM-150 Memory Interface Timing 3-41
8111	CSM-150 Memory Internal Timing Diagram 3-43
8112	CSM-150 Memory 1x3 Connector Wiring 3-45
8113	CSM-150 Memory PAC Complement/Allocation 3-47
8114	CSM-150 Memory Block Diagram 3-49
3-10-1	Address Board, Model CM-866, Assembly 3-52
3-10-2	Data Board, Model CM-867, Assembly 3-56
3-10-3	Simplified Schematic Diagram of the CSM-150 Core Plane 3-59
3-10-4	Interface Connections of the CSM-150 Core Plane 3-60
3-10-5	Logic and Option Drawer Assembly 3-63
4-1	H316 General Purpose Computer, Rack-Mounted Model, Type 316-01 4-14
4-2	H316 General Purpose Computer, Rack-Mounted Model, Types 316-0100 and 316-0110 4-16
4-3	H316 General Purpose Computer, Table Top Model, Type 316-01 4-18
4-4	H316 General Purpose Computer, Table Top Model, Types 316-0100 and 316-0110 4-20
4-5	Control Panel, Type 316-01 4-22
4-6	Control Panel, Types 316-0100 and 316-0110 4-24
4-7	Chassis Assembly, Type 316-01 4-26
4-8	Chassis Assembly, Types 316-0100 and 316-0110 4-28
4-9	Mainframe Logic and Option Drawer Assembly, Type 316-01 4-30
4-10	Mainframe Logic and Option Drawer Assembly, Types 316-0100 and 316-0110 4-32
4-11	CSM-160 Core Memory Unit, Types 316-01, 316-0100, and 316-0110 4-34
4-12	CSM-150 Core Memory Unit, Types 316-01 316-0100, and 316-0110 4-36
4-13	Logic Module Layout 4-38
4-14	Cable Block Diagram 4-40
4-15	Cable Assembly, Power, Electrical, Type 316-01 4-41
4-16	Cable Assembly, Power, Electrical, Types 316-0100 and 316-0110 4-42

ILLUSTRATIONS (Cont)

<u>Figure/LBD</u>		<u>Page</u>
4-17	Cable Assembly, Power, Electrical Types 316-01, 316-0100 and 316-0110	4-43
4-18	Cable Assembly, Special Purpose, Control Panel Cable No. 1, Type 316-01	4-44
4-19	Cable Assembly, Special Purpose, Control Panel Cable No. 1, Types 316-0100 and 316-0110	4-45
4-20	Cable Assembly, Special Purpose, Control Panel Cable No. 2, Type 316-01	4-46
4-21	Cable Assembly, Special Purpose, Control Panel Cable No. 2, Types 316-0100 and 316-0110	4-47
4-22	Cable Assembly, Special Purpose, μ -PAC to μ -PAC, for Types 316-01, 316-0100, and 316-0110	4-48

TABLES

2-1-1	Logic Signal List	2-3
2-3-1	Tools and Test Equipment	2-20
2-3-2	Operational Failures	2-23
2-3-3	Partial Word Failures	2-23
2-3-4	Address, Decoding, and Selection Failures	2-23
2-3-5	Sense Winding Check List	2-25
2-3-6	Inhibit Winding Check List	2-26
3-1-1	Current Requirements	3-3
3-1-2	Operating Limits of Temperature-Compensated 15 VDC Supply	3-3
3-2-1	Operating Modes	3-5
3-5-1	Installation Tools and Test Equipment	3-19
3-6-1	Troubleshooting and Maintenance Tools and Test Equipment	3-21
3-6-2	Memory Strobe Test Modes	3-23
3-7-1	Troubleshooting Memory Failures	3-26
3-10-1	Address Board, Model CM-866, Parts List	3-53
3-10-2	Data Board, Model CM-867, Parts List	3-57
4-1	Figure Number Cross Reference	4-13

PREFACE

This instruction manual provides complete descriptive and reference material for the circuit modules and parts used in the H316 General Purpose Computer manufactured by Honeywell Inc., Framingham, Massachusetts. Three types of H316 computers are manufactured: Types 316-01, 316-0100, and 316-0110. The differences among the three are, for the most part, mechanical and, unless specifically stated, the parts for the three are the same. Options are documented in separate manuals.

This manual is divided into four chapters: Chapter I contains technical specifications, microcircuit characteristics, and individual assembly illustrations and parts listings for the logic modules. Chapters II and III provide instructions for proper operation and maintenance of the CSM-160 and CSM-150 core memories, respectively, and associated PAC logic modules. A detailed illustrated parts breakdown is presented in Chapter IV as an aid to service personnel in identification and procurement of replaceable parts including assemblies and components.

NOTICE

All H316 power supply information, formerly presented in this publication as Chapters IV and V, now appears as Appendices A and B in this document for this printing only. The power supply information will appear in Document Number 70130072759, Order Number M-1532, as of January 1974.

CHAPTER I PLUG-IN CIRCUIT MODULES

This chapter contains specifications for integrated circuit plug-in devices used throughout the H316 General Purpose Computer. Section 1 contains the information pertinent to integrated circuit characteristics associated with the logic module subassemblies. Section 2 contains detailed assembly and schematic drawings and parts listings for each logic circuit module type.

SECTION 1 INTEGRATED CIRCUIT CHARACTERISTICS

This section contains general specifications and detailed technical data for the integrated circuits used on the H316 logic modules.

SPECIFICATIONS

All performance specifications are guaranteed based on worst-case tolerances. Actual performance will invariably exceed these specifications. The following specifications apply to all circuit types.

Input Switching Thresholds

The following definitions apply to all electronic signals. A "passive" signal is defined as a signal that denotes voltage potential between +2.5 volts and +V_{cc}. An "active" signal is defined as a signal that denotes potential between 0 volt and +0.95 volts. Figure 1-1-1 defines the switching thresholds of the circuits. An "active" input applied to a gate will guarantee a "passive" output. If a "passive" signal is simultaneously applied to all inputs of a NAND gate, the output is guaranteed to be "active."

Output Logic Levels (for all circuit types)

Active Levels: 0 to 0.5 volts

Passive Levels: 3.5 to 6.3 volts

Temperature Range

Operating (case temperature): 0 °C to +80 °C

Storage: -65 °C to +150 °C

Figure 1-1-1. Switching Thresholds

Power Supply Requirements

Nominal:	+5.5V to +6.0V
Operating Range:	+5.1 to +6.3V
Absolute Maximum Rating:	+8.0V

Fan-In Expansion Using Nodes

Many of the integrated circuits have expansion nodes available on gate inputs allowing input gating expansion by connecting discrete diodes. As many as twenty silicon diodes may be connected to one node without degrading dc performance. However, there is degradation in the turn-on delay as the stray capacitance on the node point is increased. This delay increase amounts to 1.5 nanoseconds per picofarad of added capacitance.

Loading

Loading and drive specifications are expressed in terms of current (milliamperes). Input load current is the amount of current that the driving source must sink when the source is active. A passive drive source is not required to sink or supply current except for minor amounts of leakage.

Basic NAND Circuit

All NAND gates are ground-emitter, inverter amplifiers. All inputs are diode-buffered, and the output is the voltage of a saturated transistor when it is in the active state. The following circuits have an internal resistor to V_{CC} connected to the collector

of each output: 930, 961, 946, 949, 936, 937, 962, 963, and F-19 (excluding circuit C). The F-04 flip-flops also have resistors to V_{cc} . The following contain total pole circuits which provide a low drive impedance when the circuits go from the active to passive state: F-03, F-09, 932, F-19 (circuit C only). The following circuits have open collectors: F-01, 944, and 032. All outputs are protected so that accidental grounding of an output will not cause circuit damage.

When all inputs to a NAND gate have passive signals applied, the output will be active. If any one input to a NAND gate is active, the output will be passive.

TYPE F-01 NAND GATE (CCD 70 950 100 001)

The F-01 dual NAND gate (Figure 1-1-2) has two 3-input gates, each with an input node and a separate kilohm load resistor which is connected to $+V_{cc}$.

Figure 1-1-2. F-01 Dual NAND Gate

Specifications

Input Loading:	2.0 mA
Output Drive:	23.0 mA
Circuit Delay:	30 ns (max) measured at 1.5V level with 75 pF stray capacitance

TYPE F-03 POWER AMPLIFIER (CCD 70 950 100 003)

The F-03 power amplifier microcircuit (Figure 1-1-3) has two 3-input inverter amplifiers with nodes for input gating expansion. The power amplifier circuit is logically equivalent to the F-01 gate but has twice the dc drive and three times the ac drive capability.

Figure 1-1-3. F-03 Power Amplifier

Specifications

Input Loading: 4.0 mA

Output Drive: 50.0 mA

Circuit Delay: 30 ns (max) measured at 1.5V level with 250 pF
stray capacitance

TYPE F-04 FLIP-FLOP (CCD 70 950 100 004)

The standard μ -PAC integrated circuit flip-flop, type F-04, is a double-rank, J-K flip-flop with dc set and reset capability. Figure 1-1-4 shows the logic symbol and equivalent logic circuit.

A. LOGIC SYMBOL

B. EQUIVALENT LOGIC CIRCUIT

553

Figure 1-1-4. Type F-04 Flip-Flop Logic Symbol and Equivalent Logic Circuit

The clock gate portion of the flip-flop is composed of the clock and the set and reset control inputs. The control inputs are energized by passive signals. A positive pulse on the clock will cause the flip-flop to assume the state determined by the condition of the control inputs. With J-K circuitry, no combination of the control input signals can cause an ambiguous state.

The set and reset control inputs may be used as follows.

- a. To gate clock pulses
- b. As direct set and reset inputs
- c. As another clock input when a set and a reset control are tied together.

For dc operation, voltage levels are used on the dc inputs. Signals applied to the dc set and reset inputs take precedence over any ac gating. However, output spikes may occur when the reset clock gate is activated during a dc set, or vice-versa. Such spikes can be eliminated by tying the dc set input to a reset control input and tying the dc reset input to a set control input.

Pulse Dodging

The flip-flop utilizes the double-rank technique of pulse dodging (Figure 1-1-5). When the clock input makes the positive transition, the state of the input flip-flop is fixed and data transfer from the input flip-flop to the input of the output flip-flop is inhibited. On the negative transition of the clock input, data from the input flip-flop is shifted to the output flip-flop and the inputs to the input flip-flop are inhibited. Thus the clock provides intrinsic pulse dodging by means of trailing edge triggering. This feature permits strobing of the flip-flop output with input triggering signals.

Figure 1-1-5. Double-Rank Flip-Flop Pulse Dodging,
Timing Diagram

DC Operation

If either dc set goes to ground, the flip-flop will assume the set state; if any dc reset goes to ground, the flip-flop will assume the reset state. If both a dc set and a dc reset go to ground at the same time, both the set and the reset outputs will be ambiguous. Figure 1-1-6 contains diagrams and equations describing this mode of flip-flop operation.

A.) LOGIC DIAGRAM

B) Truth Table and Boolean Equations

$$S_D - \text{AND result of the dc set inputs. } S_D = S_1 \cdot S_2$$

$$R_D - \text{AND result of the dc reset inputs. } R_D = R_1 \cdot R_2 \cdot R_3$$

F - state of the flip-flop (set output)

F' - previous state of the flip-flop

S_D	R_D	F
0V	0V	(Condition not allowed. Output will be ambiguous.)
0V	V_{cc}	Set
V_{cc}	0V	Reset
V_{cc}	V_{cc}	$F' \text{ (no change)}$ $F = R_D (\bar{S}_D + F')$

C) TIMING DIAGRAM

Figure 1-1-6. DC Operation

Control Inputs Used to Steer Clock Pulses

If V_{cc} is applied to both the set controls (S_C) and the reset controls (R_C), the flip-flop will be complemented by the application of a clock pulse. If only S_C or R_C is at V_{cc} , the state of the flip-flop will be a set or reset, respectively, after the clock is energized. If both S_C and R_C are at ground, the flip-flop will remain in its previous state. One restriction is that when a control input is used to gate the clock, the control input cannot make a negative transition while the clock is a ONE. Figure 1-1-7 contains diagrams and equations describing this mode of flip-flop operation.

A) LOGIC DIAGRAM

B) Truth Table and Boolean Equations

S_C - AND result of the set control inputs, $S_C = s_1 \cdot s_2$

R_C - AND result of the reset control inputs, $R_C = r_1 \cdot r_2$

F' - previous state of the flip-flop

F - state of the flip-flop after the clock pulse

S	R	F'	F
OV	OV	OV	OV
OV	OV	V_{cc}	V_{cc}
OV	V_{cc}	OV	OV
OV	V_{cc}	V_{cc}	OV
V_{cc}	OV	OV	V_{cc}
V_{cc}	O	V_{cc}	V_{cc}
V_{cc}	V_{cc}	OV	V_{cc}
V_{cc}	V_{cc}	V_{cc}	OV

$$F = S_C \overline{F'} + \overline{R_C} F'$$

(C) TIMING DIAGRAMS

(1) COMPLEMENTING

(2) SET

(3) RESET

(4) NO CHANGE

558

Figure 1-1-7. Control Inputs Used to Gate Clock Pulses (Sheet 2 of 2)

Control Inputs Used as a Second Clock

A set and a reset control can be tied together and used as another clock input. In this case, the resultant clock is the ANDed result of both clocks. Figure 1-1-8 contains diagrams describing this mode of flip-flop operation.

A. LOGIC DIAGRAM

B. TIMING DIAGRAM

Figure 1-1-8. Control Inputs Used As a Second Clock

Control Inputs Used Directly to Set or Reset

The set and the reset control inputs can also be used separately to change the state of the flip-flop. When the clock is at V_{cc} , the first control input that goes from V_{cc} to ground acts as the clock input. After a set control changes from V_{cc} to ground, the flip-flop will be in the set state. After a reset control changes from V_{cc} to ground, the flip-flop will be in the reset state. Figure 1-1-9 contains diagrams and equations describing this mode of flip-flop operation.

A. LOGIC DIAGRAM

B) Boolean Equations

S_C - AND result of the set control inputs

R_C - AND result of the reset control inputs

F - state of the flip-flop

primes (') - previous state of a signal

$$F = S'_C \cdot \bar{S}_C \quad (\text{setting operation})$$

$$\bar{F} = R'_C \cdot \bar{R}_C \quad (\text{resetting operation})$$

C. TIMING DIAGRAM

Figure 1-1-9. Control Inputs Used Directly to Set or Reset

Input Loading

DC inputs: 1.33 mA
Clock input: 2.0 mA
Control inputs: 2.0 mA

Output Drive Capability

8 unit loads (both outputs)

(Capable of also driving 75 pF total capacitance with delays as specified.)

Circuit Delay

The following circuit delays are specified from the +1.5V level of the input signal to the +1.5V level of the output signal.

Clock input (negative transition) to latest output	{ 45 ns (typ) 60 ns (max)
DC set input to set output or DC reset input to reset output	{ 65 ns (typ) 80 ns (max)
DC set input to reset output or DC reset input to set output	{ 45 ns (typ) 60 ns (max)

Clock and Control Input Timing Requirements

To trigger the flip-flop at the clock or control inputs, pulses must meet the requirements shown in Figure 1-1-10.

DC Input Timing Requirements

To activate a dc input, signals must meet the requirements of Figure 1-1-11.

Control Inputs

Figure 1-1-12 shows the timing requirements of the set and reset control inputs when they are being used to steer the triggering clock input to set the flip-flop. The reset control input must be completely switched to ground before the clock starts positive. No control input should go from Vcc to ground while the clock is positive. The set control input must be switched to Vcc at least 40 ns before the clock starts towards ground. The clock must be a positive pulse of 40 ns minimum duration. The flip-flop changes state on the trailing edge of the positive clock pulse. Reset timing is the same, except that the time relations and logic levels of the set and reset input must be interchanged.

T_1 (POSITIVE TIME) = 40 NS (MIN)

T_2 (NEGATIVE TIME) = 60 NS (MIN)

$+V$ = +3.0 VOLTS (MIN)

T RISE AND T FALL REQUIREMENT - ANY μ -PAC OUTPUT SIGNAL WILL
561A RELIABLY TRIGGER THE FLIP-FLOP.

Figure 1-1-10. Flip-Flop Input Pulse Requirements

T_1 (TIME AT 0 VOLT) = 80 NS (MIN)

V = 3.0 VOLTS (MIN)

A561

Figure 1-1-11. DC Set and Reset Input Signal Requirements

* INTERCHANGE SET AND
RESET CONTROL TIMING
TO RESET THE FLIP-FLOP

(T_1) = 0 (MIN)

(T_2) = 40 NS (MIN)

(T_p) = 40 NS (MIN)

(V) = 3.0 VOLTS (MIN)

Figure 1-1-12. Timing Requirements for Control Inputs,
Using Clock Triggering

Maximum Allowable Clock Skew

In cases where a register is being driven by clock (shift) signals from different sources, the output of one stage may arrive at the next stage before late clock signal. If the delay between the early and late clock signals is more than 30 ns, erroneous data transfer may occur. To guarantee proper operation the allowable clock skew must be as shown in Figure 1-1-13. Note that the triggering signal to flip-flop B is S_A rather than C_B . This situation is not detrimental to the operation of the shift register. Either S_A or C_B may trigger flip-flop B, depending on which occurs first.

Figure 1-1-13. Allowable Clock Skew, Logic and Timing

TYPE F-09 POWER AMPLIFIER (CCD 70 950 100 009)

The type F-09 high speed power amplifier microcircuit has two 4-input inverter amplifiers with nodes for input gating expansion. (See Figure 1-1-14.) The power amplifier circuit is logically equivalent to the F-01 gate but has about twice the output drive capability. It has a short circuit protection network such that accidental grounding of the output will not damage the circuit.

Specifications

Input Loading:	4.0 mA
Output Drive:	50 mA
Circuit Delay:	15 ns with 70 pF of stray capacitance

Figure 1-1-14. Type F-09 Power Amplifier Equivalent Logic Symbol

TYPE F-19 FUNCTIONAL LOGIC GATE (CCD 70 950 100 019)

The F-19 (Figure 1-1-15) has five NAND gates interconnected as a functional gating circuit. The outputs of A and B are connected together and can be used to perform the logic OR operation. This output is connected as an input to the power amplifier inverter (gate C). Gates D and E have input nodes (pins 2, 6 and 7) to facilitate input gate expansion by connecting discrete diodes to them.

Figure 1-1-15. F-19 Logic Symbol

Specifications

Input Load:	2.0 mA
Output Drive:	Circuit A-B, D-E - 23.5 mA Circuit C - 40.0 mA
Circuit Delay:	20 ns per gate with 70 pF stray capacitance

TYPE 930/961 NAND GATES (CCD 70 950 105 001/009)

The 930 and 961 (Figure 1-1-16) dual 4-input NAND circuits are logically similar to the F-01 gate. The 930 has a 6 kilohm resistor connected between the output collector and $+V_{cc}$ while the 961 has a 2 kilohm resistor. Otherwise, the two are identical.

Figure 1-1-16. 930/961 Dual NAND Gates

Specifications

Input Loading:	1.6 mA
Output Drive:	12.8 mA
Circuit Delay:	930-75 ns averaged over two stages
	961-50 ns averaged over two stages

TYPE 946/949 NAND GATES (CCD 70 950 105 002/010)

The 946 and 949 (Figure 1-1-17) quad 2-input NAND circuits are similar to each other in all respects except for the value of the resistor which connects between the output collector and $+V_{cc}$. The 946 has a 6 kilohm resistor while the 949 has a 2 kilohm. The AND-OR-INVERT operation can be performed with the 6 kilohm version by connecting the output of two gates together. This can be done without substantial reduction in output drive capability.

Figure 1-1-17. 946/949 Quad NAND Gates

Specifications

Input Loading:	1.6 mA
Output Drive:	12.8 mA
Circuit Delay:	946-75 ns averaged over two stages
	961-50 ns averaged over two stages

TYPE 936/937 HEX INVERTER (CCD 70 950 105 004/011)

The 936 and 937 (Figure 1-1-18) contain six inverter circuits. The 936 has a 6-kilohm resistor while the 937 has a 2 kilohm resistor.

Figure 1-1-18. 936/937 Hex Inverter

Specifications

Input Load: 1.6 mA

Output Drive: 12.8 mA

Circuit Delay: 936-75 ns averaged over two stages
937-50 ns averaged over two stages

TYPE 932 POWER AMPLIFIER (CCD 70 950 105 005)

The type 932 power amplifier has two 4-input inverter amplifiers with nodes for input gating expansion (see Figure 1-1-19). The circuit is logically equivalent to the 930 gate but has twice the output drive capability. The 932 output cannot be connected to other outputs to perform the AND-OR-INVERT logic function.

Figure 1-1-19. 932/944 Power Amplifiers

Specifications

Input Load: 1.6 mA

Output Drive: 36.0 mA

Circuit Delay: 80 ns averaged over two stages driving 500 pF of stray capacitance

TYPE 944 POWER AMPLIFIER (CCD 70 950 105 008)

The 944 (Figure 1-1-19) dual 4-input power amplifier differs from the 932 only in that it has an open collector for OR operations. The turn-on delay is 40 nanoseconds when driving 120 picofarads of stray capacitance. The turn-off delay is dependent on the amount of external current that is supplied to charge the stray capacitance. The input loading and output drive specifications are similar to the 932.

TYPE 962/963 TRIP NAND GATES (CCD 70 950 105 006/012)

The 962 and 963 (Figure 1-1-20) triple 3-input NAND gates are similar to each other in all respects except for the value of resistance between the collectors and $+V_{cc}$. The 962 has a 6 kilohm resistor while the 963 has a 2 kilohm resistor.

Figure 1-1-20. 962/963 Trip NAND Gates

Specifications

Input Load: 1.6 mA

Output Drive: 12.8 mA

Circuit Delay: 962-75 ns averaged delay over two stages
963-50 ns averaged delay over two stages

TYPE 032 QUAD NAND GATE (CCD 70 950 100 032)

The 032 quad 2-input NAND gate (Figure 1-1-21) is logically similar to the 930 but it does not have a resistor between the collector and $+V_{cc}$. This feature allows many of these gates to be collector ORed without degrading the dc drive capability.

Figure 1-1-21. 032 Quad NAND Gate

Specifications

Input Load: 1.6 mA

Output Drive: 20.0 mA

Circuit Delay: 45 ns averaged over two stages

SECTION 2 MODULE DESCRIPTIONS

This section contains detailed assembly and schematic diagrams, and parts listings for the following logic circuit modules.

✓CC-364A	Columns 1-4 Module
CC-365A	Columns A-D Module
✓CC-366A	Columns 9-12 Module
✓CC-367	Address Bus Module
✓CC-368	Shift Register Module
✓CC-369B	Lamp Driver Module
✓CC-370	M Register Module
✓CC-371	Clock Module
CC-372	Regulator Counter Module
CC-373/CC-899	Memory Timing Module
✓CC-374	ASR Interface Module
✓CC-375	High Speed A-U No. 1 Module
✓CC-401	High Speed A-U No. 2 Module
CC-510A/CC-869	Extended Address Module
CC-558/CC-621	Memory Parity Board
CC-672	Cable PAC
CC-681	Cable PAC

COLUMNS 1-4 MODULE, MODEL CC-364A

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C8	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR14, CR16-CR18, CR23-CR25	DIODE: Replacement type 1N914	70 943 083 002
CR19-CR22	DIODE: Replacement type 882	70 943 024 002
M1-M4, M6 M9, M25, M28-M30, M32-M35, M38	MICROCIRCUIT: 946, quad NAND gate integrated circuit	70 950 105 002
M5	MICROCIRCUIT: 962, triple NAND gate integrated circuit	70 950 105 006
M7, M8, M11 M16, M17, M19, M31, M36, M39, M41, M43, M45, M48, M50, M51	MICROCIRCUIT: Power amplifier integrated circuit	70 950 105 008
M10, M13 M37, M40	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M12, M24, M27, M46	MICROCIRCUIT: F-01, Dual NAND gate integrated circuit	70 950 100 001
M14, M15, M18, M20-M22, M42, M44, M52	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M23, M26	MICROCIRCUIT: 936, hex inverter integrated circuit	70 950 105 004
M47, M49	MICROCIRCUIT: 930, dual NAND gate integrated circuit	70 950 105 001
R1, R3, R5, R7	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056
R2, R4, R6, R8	RESISTOR, FIXED, COMPOSITION: 510 ohms $\pm 5\%$, 1/4W	70 932 007 042
R9-R13	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70 932 007 049

COMPONENT VIEW

Figure 1-2-1. Columns 1-4 Module Parts Location

M NO.	GRID CORD	TYPE	GATES					
			1	2	3	4	5	6
1	B2	946	1	8	74	81		
2	B8	946	2	5	15	16		
3	C8	946	4	5	6	7		
4	B7	946	9	10	20	21		
5	F2	962	11	154	150			
6	C7	946	12	13	23			
7	C1	944	30	66				
8	A8	944	17	27				
9	H8	946	18	40	55	67		
10	G8	963	19	51	54			
11	A7	944	22	33				
12	D4	F01	130	131				
13	G7	963	24	57	60			
14	E8	032	25	36	37	38		
15	E5	032	98	106	109	110		
16	C2	944	28	29				
17	H1	944	147	148				
18	E7	032	31	43	44	45		
19	B1	944	34	35				
20	F4	032	104	118	120	121		
21	F5	032	99	111	113	114		
22	F6	032	32	46	48	49		
23	E1	936	50	56	55	71	137	143
24	O8	F01	52	53				
25	H4	946	96	119	133	145		
26	O1	936	62	68	122	128	134	140
27	D7	F01	58	59				
28	H7	946	61	73	47			
29	D2	946	63	69	135	141		
30	D3	946	64	70	136	142		
31	G2	944	14	72				
32	B5	946	75	76	88	89		
33	C5	946	77	78	79	80		
34	S4	946	82	83	93	94		
35	C4	946	84	85	86	87		
36	A5	944	90	100				
37	G6	963	92	123	126			
38	H9	946	91	112	127	139		
39	A4	944	95	105				
40	G4	963	97	129	132			
41	H2	944	138	144				
42	F8	032	26	39	41	42		
43	A1	944	101	102				
44	E4	032	103	115	116	117		
45	E5	944	106	107				
46	D5	F01	124	125				
47	E2	930	146	155				
48	F1	944	149	152				
49	G1	930	151	153				
50	B3	944	156	157				
51	C3	944	158	159				
52	H6	032	160					

TYPE	VCC	GRD
930-963	14	7
SN-7401	4	11
SUHL-F23	4	10
F01-F03	4	11
F09	4	11

LEGEND

TYPE OF MICROCIRCUIT: Shows a symbol for a logic gate with 8 pins. MICROCIRCUIT REFERENCE GATE NO.: Shows a symbol for a logic gate with 8 pins and a reference number (e.g., 1-99). ASSEMBLY DRAWING GRID COORDINATES: Shows a symbol for a logic gate with 8 pins and a coordinate pair (e.g., 10-10).

LBD - SCHEMATIC REF. GATE NO. CONVERSION	
LBD	SCH
1-99	1-99
A0-A9	100-109
B0-B9	110-119
C0-C9	120-129
D0-D9	130-139
E0-E9	140-149
F0-F9	150-159
G0-G9	160-169
H0-H9	170-179
I0-I9	180-189
J0-J9	190-199

Figure 1-2-2. Columns 1-4 Module Schematic Diagram (Sheet 1 of 2)

Figure 1-2-2. Columns 1-4 Module Schematic Diagram (Sheet 2 of 2)

COLUMNS A-D MODULE, MODEL CC-365A

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C8	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1, CR2, CR13, CR14	DIODE: Replacement type 882	70 943 024 002
CR3-CR12, CR15-CR38	DIODE: Replacement type 1N914	70 943 083 002
M1, M6, M7, M20, M21, M30, M31, M41	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M2, M5, M9, M12, M15, M16, M19, M23, M26, M29, M33, M36, M39, M43, M49	MICROCIRCUIT: 946, quad NAND gate integrated circuit	70 950 105 002
M3, M4, M13, M14, M17, M18, M27, M28, M37, M38, M45, M46	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M8, M22, M42, M32	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M35, M48	MICROCIRCUIT: 962, triple NAND gate integrated circuit	70 950 105 006
M10, M25	MICROCIRCUIT: 936, hex inverter integrated circuit	70 950 105 004
M11, M24, M34, M44	MICROCIRCUIT: F-01, dual NAND gate integrated circuit	70 950 100 001
M40, M47, M50	MICROCIRCUIT: 930, dual NAND gate integrated circuit	70 950 105 001
R1, R2, R7 R8	RESISTOR, FIXED, COMPOSITION: 510 ohm $\pm 5\%$, 1/4W	70 932 007 042
R3-R6	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056

COMPONENT VIEW

Figure 1-2-3. Columns A-D Module Parts Location

CC 365 Sheet 1

M NO.	GRID CORD	TYPE	GATES						
			1	2	3	4	5	6	7
1	A6	032	1	8	71	78			
2	A5	946	2	3	15	16			
3	C5	944	17	26					
4	B5	944	27	28					
5	D6	946	4	5	6	7			
6	G1	032	33	34	35	40			
7	G5	032	25	36	38	39			
8	F5	963	18	48	51				
9	E5	946	19	37	52	64			
10	D2	936	47	53	59	62	65	68	
11	A1	F01	49	50					
12	C2	946	60	61	66	67			
13	F1	944	133	139					
14	D1	944	63	69					
15	E1	046	130	131	136	137			
16	A8	946	9	10	20	21			
17	C8	944	22	30					
18	B8	944	31	32					
19	D8	946	11	12	13	14			
20	F2	032	41	42	103	104			
21	G8	032	29	43	45	46			
22	E8	963	24	54	57	70			
23	B1	F01	55	56					
24									
25	E2	936	117	123	129	132	135	138	
26	A7	946	72	73	85	86			
27	C7	944	87	96					
28	B7	944	97	98					
29	D7	946	74	75	76	77			
30	G2	032	105	110	111	112			
31	G7	963	95	106	108	109			
32	F7	962	89	118	121				
33	E7	946	88	107	122	134			
34	C1	F01	119	120					
35	A2	962	154	157	159				
36	A4	946	79	80	90	91			
37	C4	944	92	100					
38	B4	944	101	102					
39	D4	946	81	82	83	84			
40	H1	930	150	158					
41	G4	032	99	113	115	116			
42	F4	963	94	124	127				
43	E4	946	93	114	128	140			
44	B2	F01	125	126					
45	H2	944	143	156					
46	I3	944	142	144					
47	H4	930	141	146					
48	H8	962	145	147	153				
49	H7	946	148	152	155				
50	H5	930	149	151					

TYPE	VCC	GRD
930-963	14	7
SN-7401	4	11
SUHL-F23	4	10
F01-F03	4	11
F09	4	11

LEGEND

The legend illustrates the mapping between reference gate numbers and assembly drawing grid coordinates. It shows a circle divided into four quadrants labeled 9, 10, 11, and 12, with a central point labeled 8. Below the diagram, the text reads:

- TYPE: MICROCIRCUIT
- VCC: REFERENCE GATE NO.
- GRD: ASSEMBLY DRAWING GRID COORDINATES

LBD - SCHEMATIC REF. GATE NO. CONVERSION	
LBD	SCH
1-99	1-99
A0-A9	100-109
B0-B9	110-119
C0-C9	120-129
D0-D9	130-139
E0-E9	140-149
F0-F9	150-159
G0-G9	160-169
H0-H9	170-179
I0-I9	180-189
J0-J9	190-199

Figure 1-2-4. Columns A-D Module Schematic Diagram (Sheet 1 of 2)

COLUMNS 9-12 MODULE, MODEL CC-366A

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C8	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.33 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1, CR4, CR8, CR10	DIODE: Replacement type 882	70 943 024 002
CR2, CR3, CR5-7, CR9, CR11-CR31	DIODE: Replacement type 1N914	70 943 083 002
M1, M2, M5, M9, M12, M15 M16, M19, M23, M26, M29, M33, M36, M39, M43, M49	MICROCIRCUIT: 946, quad NAND gate integrated circuit	70 950 105 002
M6, M7, M30, M41	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M3, M4, M13, M14, M17, M18, M27, M28, M35, M37, M38, M45	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M8, M22, M31, M32, M42	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M48	MICROCIRCUIT 962, triple NAND gate integrated circuit	70 950 105 006
M10, M25	MICROCIRCUIT: 936, hex inverter integrated circuit	70 950 105 004
M11, M24, M34, M44	MICROCIRCUIT: F-01, dual NAND gate integrated circuit	70 950 100 001
M46, M47, M40	MICROCIRCUIT: 930, dual NAND gate integrated circuit	70 950 105 001
R1, R3, R5, R7	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056
R2, R4, R6, R8	RESISTOR, FIXED COMPOSITION: 510 ohms $\pm 5\%$, 1/4W	70 932 007 042

Figure 1-2-5. Columns 9-12 Module Parts Location

M NO	GRID CORD	TYPE	GATES					
			1	2	3	4	5	6
1	A3	946	1	8	75	82		
2	A5	946	2	3	15	16		
3	C5	944	17	27				
4	B5	944	28	29				
5	D5	946	4	5	6	7		
6	H5	032	25	35	36	37		
7	G5	032	26	38	40	41		
8	F5	963	19	50	53	67		
9	E5	946	18	39	54	67		
10	D2	936	49	55	61	64	68	71
11	B2	F01	51	52				
12	C2	946	62	63	69	70		
13	E1	032	66	73	140	147		
14	D1	944	65	72				
15	C1	946	136	137	143	144		
16	A7	946	9	10				
17	C7	944	22	32				
18	B7	944	33	34				
19	D7	946	11	12	13	14		
20	H7	032	30	42	43	44		
21	G7	032	31	45	47	48		
22	F7	963	24	56	59			
23	E7	946	23	46	60	74		
24	B1	F01	57	58				
25	E2	936	123	129	135	138	142	145
26	A4	946	76	77	89	90		
27	C4	944	91	101				
28	B4	944	102	103				
29	D4	946	78	79	80	81		
30	H4	032	99	109	110	111		
31	G4	032	100	112	114	115		
32	F4	963	93	124	127			
33	E4	946	92	113	128	141		
34	A2	F01	125	126				
35	F2	944	139	146				
36	A8	946	83	84	94	95		
37	C8	944	96	106				
38	B8	944	107	108				
39	D8	946	85	86	87	88		
40	H8	032	104	116	117	118		
41	G8	032	105	119	121	122		
42	F8	963	98	130	133			
43	E8	946	97	120	134	148		
44	A1	944	131	132				
45	H2	944	153	154				
46	H1	930	151	152				
47	G1	930	150					
48	F1	962	149	156	158			
49	G2	946	155	157				

TYPE	VCC	GRD
930-963	14	7
SN-7401	4	11
SUHL-F23	4	10
F01-F03	4	11
F09	4	11

LEGEND

- TYPE OF MICROCIRCUIT
- MICROCIRCUIT
- REFERENCE GATE NO.
- ASSEMBLY DRAWING GRID COORDINATES

LBD - SCHEMATIC	REF. GATE NO. CONVERSION
LBD	SCH
1-99	1-99
A0-A9	100-109
B0-B9	110-119
C0-C9	120-129
D0-D9	130-139
E0-E9	140-149
F0-F9	150-159
G0-G9	160-169
H0-H9	170-179
I0-I9	180-189
J0-J9	190-199

Figure 1-2-6. Columns 9-12 Module Schematic Diagram (Sheet 1 of 2)

Figure 1-2-6. Columns 9-12 Module Schematic Diagram (Sheet 2 of 2)

ADDRESS BUS MODULE, MODEL CC-367

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C5	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR8	DIODE: Replacement type 1N914	70 943 083 002
M1, M2, M4, M20	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M3, M16, M17	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M5, M8	MICROCIRCUIT: 937, fast hex inverter integrated circuit	70 950 105 011
M6, M7, M18, M19	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M9, M11-M14, M21-M28	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M10, M15	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
R1-R9	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056
R10-R24	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70 932 007 049

COMPONENT VIEW

Figure 1-2-7. Address Bus Module Parts Location

Figure 1-2-8. Address Bus Module Schematic Diagram

SHIFT REGISTER MODULE, MODEL CC-368

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C8	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1, CR3- CR14	DIODE: Replacement type 1N914	70 943 083 002
M1, M5, M7, M8, M11, M14, M15, M18, M20, M22, M25, M28, M29, M33, M35, M37, M41, M42	MICROCIRCUIT: 946, quad NAND gate integrated circuit	70 950 105 002
M2, M9, M16, M23, M31, M38	MICROCIRCUIT: 936, hex inverter integrated circuit	70 950 105 004
M3, M6, M10, M13, M17, M19, M24, M26, M32, M34, M39, M40	MICROCIRCUIT: 962, triple NAND gate integrated circuit	70 950 105 006
M4, M12, M21, M27, M30, M36	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M43	MICROCIRCUIT: 932, power amplifier integrated circuit	70 950 105 005
M44	MICROCIRCUIT: 930, dual NAND gate integrated circuit	70 950 105 001
M45-M50	MICROCIRCUIT: F-04, flip-flop integrated circuit	70 950 100 004
M51-M54	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
R1, R2	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056
R3-R10	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70 932 007 049

Figure 1-2-9. Shift Register Module Parts Location

Figure 1-2-10. Shift Register Module
Schematic Diagram (Sheet 1 of 2)

Figure 1-2-10. Shift Register Module
Schematic Diagram (Sheet 2 of 2)

LAMP DRIVER MODULE, MODEL CC-369B

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C3	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR19, CR20A-CR20S, CR21-CR23	DIODE: Replacement type 1N914	70 943 083 002
M1-M16	MICROCIRCUIT: 936, hex inverter integrated circuit	70 950 105 004
M18-M20	MICROCIRCUIT: 937, fast hex inverter integrated circuit	70 950 105 011
M21, M22, M25	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M23, M17	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M24	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
Q1A-Q1S, Q2	TRANSISTOR, SILICON, NPN:	70 943 744 003
R1A-R1P	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056
R2A-R2S, R7,	RESISTOR, FIXED, FILM: 1.1K $\pm 1\%$, 1/2W	70 932 123 203
R3A-R3S, R4	RESISTOR, FIXED, COMPOSITION: 820 ohms $\pm 5\%$, 1/4W	70 932 007 047
R5, R9-R12	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70 932 007 049
R6	RESISTOR, FIXED, FILM: 100 ohms $\pm 1\%$, 1/2W	70 932 123 101

Figure 1-2-11. Lamp Driver Module Parts Location

Figure 1-2-12. Lamp Driver Module Schematic Diagram (Sheet 2 of 2)

M REGISTER MODULE, MODEL CC-370

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C8	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR27	DIODE: Replacement type 1N914	70 943 083 002
M1, M7, M10, M22, M33, M48	MICROCIRCUIT: 937, fast hex inverter integrated circuit	70 950 105 011
M2, M18	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M3, M6, M9	MICROCIRCUIT: F-09, dual power amplifier integrated circuit	70 950 100 009
M4, M14, M15, M25, M31, M38, M42	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M5, M8, M11, M12, M24, M26, M32, M36, M41, M46, M49	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M13, M20, M21, M29, M30, M35, M39, M40, M43, M44, M45	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M16, M17, M19, M23, M27, M28, M34, M37, M47	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
R1-R11	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056

Figure 1-2-13. M Register Module Parts Location

Figure 1-2-14. M Register Module Schematic Diagram (Sheet 1 of 2)

LEGEND

The legend defines the symbols used for microcircuit reference gate numbers and assembly drawing grid coordinates:

- Type of Microcircuit (Symbol: circle with 9)
- Microcircuit (Symbol: circle with 10)
- Reference Gate No. (Symbol: circle with 11)
- Assembly Drawing Grid Coordinates (Symbol: circle with 8)

Figure 1-2-14. M Register Module Schematic Diagram (Sheet 2 of 2)

CLOCK MODULE, MODEL CC-371

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C24	CAPACITOR, FIXED, MICA DIELECTRIC: 75 pF $\pm 2\%$, 100 Vdc	70 930 004 214
C25-C32	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR29	DIODE: Replacement type 1N914	70 943 083 002
L1-L3	DELAY LINE	70 000 206 703
M1-M8, M13-M15, M18, M19, M26	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M9, M17, M21, M22, M24, M30, M35	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M10, M20, M23, M27 M29, M31	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M11, M25, M28, M42	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M12, M33	MICROCIRCUIT: 937, hex inverter integrated circuit	70 950 105 011
M16	MICROCIRCUIT: F-19, logic gate integrated circuit	70 950 100 019
M32, M34	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M36-M41, M43-M50	MICROCIRCUIT: F-09, power amplifier integrated circuit	70 950 100 009
R1	RESISTOR, FIXED, COMPOSITION: 130 ohms $\pm 5\%$, 1/4W	70 932 007 028
R2-R9	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056
R10	RESISTOR, FIXED, COMPOSITION: 510 ohms $\pm 5\%$, 1/4W	70 932 007 042

Figure 1-2-15. Clock Module Parts Location

CC - 371 Sheet 1

M NO.	GRID CORD	TYPE	GATES					
			1	2	3	4	5	6
1	A1	961	83	91				
2	B1	961	84	92				
3	C1	961	85	93				
4	D1	961	86	94				
5	E1	961	87	95				
6	F1	961	88	96				
7	G1	961	89	97				
8	H1	961	90	98				
9	A2	944	123	124				
10	B2	949	67	78	81	82		
11	C2	963	75	77	79			
12	D2	937	59	64	71	76	80	106
13	E2	961	99					
14	F2	961	119	120				
15	G2	961	113	114				
16	H2	F19	1	2	9	10	126	
17	A3	944	121	122				
18	F3	961	62	63				
19	G3	961	110	112				
20	A4	949	48	100				
21	B4	944	45	52				
22	C4	944	47	54				
23	D4	949	61	102	104	109		
24	E4	944	70	108				
25	F4	963	69	116	118			
26	G4	961	60	115				
27	A5	949	56	66	73	74		
28	B5	963	53	55	72			
29	C5	949	46	50	58	57		
30	D5	944	49	51				
31	E5	949	7	13	19	20		
32	F5	932	6	8	14			
33	G5	937	16	24	25	103	105	107
34	A6	932	65	68				
35	F6	944	18					
36	G6	F09	3	4				
37	A7	F09	35	101				
38	B7	F09	37	38				
39	C7	D09	29	30				
40	D7	F09	31	32				
41	E7	F09	39	40				
42	F7	963	5	15	21			
43	G7	F09	11	23				
44	A8	F09	43	44				
45	B8	F09	41	42				
46	C8	F09	33	34				
47	D8	F09	13	26				
48	E8	F09	27	36				
49	F8	F09	22	28				
50	G8	F09	17	125				

TYPE	VCC	GRD
930-963	14	7
SN-7401	4	11
F01-F03	4	11
F09	4	11

LBD	SCHEMATIC	REF GATE NO	CONVERSION
LBD	SCH		
1-99		1-99	
A0-A9		100-109	
B0-B9		110-119	
C0-C9		120-129	
D0-D9		130-139	
E0-E9		140-149	
F0-F9		150-159	
G0-G9		160-169	
H0-H9		170-179	
I0-I9		180-189	
J0-J9		190-199	

Figure 1-2-16. Clock Module Schematic Diagram (Sheet 1 of 2)

Figure 1-2-16. Clock Module Schematic Diagram (Sheet 2 of 2)

REGULATOR COUNTER MODULE, MODEL CC-372

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C8	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR8	DIODE: Replacement type 1N914	70 943 083 002
M1, M3-M8	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M2, M15-M24	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M9-M14	MICROCIRCUIT: 937, hex inverter integrated circuit	70 950 105 011
M25-M35	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M36-M40, M42	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M41, M43	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M44-M46	MICROCIRCUIT: F-04, flip-flop integrated circuit	70 950 100 004
R1, R2, R6- R14, R16-R18	RESISTOR, FIXED, FILM: 2K $\pm 2\%$, 1/4W	70 932 114 056
R3, R4, R5	RESISTOR, FIXED, FILM: 510 ohms $\pm 2\%$, 1/4W	70 932 114 042
R15	RESISTOR, FIXED, FILM: 1K $\pm 2\%$, 1/4W	70 932 114 049

COMPONENT VIEW

Figure 1-2-17. Regulator Counter Module Parts Location

M N O.	G R I D	C O R D	T Y P E	GATES					
				1	2	3	4	5	6
1	H6	963		1	4	6			
2	F5	963		19	20	31			
3	G4	963		38	45	47			
4	G3	963		51	55	59			
5	A5	963		70	71	77			
6	D5	963		86	89	142			
7	C3	963		98	109				
8	F6	937		5	9	11	13	15	
9	H5	937		23	24	26	28	33	34
10									
11	F4	937		35	36	44	46	57	
12	C5	937		82	83	115	124	87	
13	D3	937		99	100	102	112	116	143
14	A1	937		110	130	131	138	144	146
15	E6	949		10	12	14	16		
16	G6	949		2	3	7	63		
17	G2	949		25	27	29	30		
18	G5	949		17	18	32	39		
19	F3	949		50	53	54	61		
20	B6	949		65	66	73	81		
21	B5	949		78	79	93	103		
22	D1	949		108	118				
23	B3	949		120	121	123	129		
24	B2	949		134	135	140	141		
25	C5	944		21	22				
26	E4	944		37	40				
27	F2	944		60	64				
28	H2	944		62	8				
29	D4	944		85	94				
30	A4	944		74	104				
31	E1	944		114	145				
32	E2	944		119	126				
33	F1	944		111	113				
34	C4	944		88	96				
35	A3	944		106	139				
36	H3	961		49	52				
37	E3	961		48	56				
38	C1	961		91	105				
39	C6	961		68	69				
40	B1	961		122	137				
41	H4	032		41	42	43	58		
42	D6	961		67					
43	B4	032		43	84				
44	A6	F04		75					
45	C2	F04		132					
46	A2	F04		127					

TYPE	VCC	GRD
930-963	14	7
SN-7401	4	11
FO1-FO4	4	11

LEGEND

TYPE OF MICROCIRCUIT

 MICROCIRCUIT

 REFERENCE GATE NO.

 ASSEMBLY DRAWING GRID COORDINATES

Figure 1-2-18. Regulator Counter Module Schematic Diagram (Sheet 1 of 2)

Figure 1-2-18. Regulator Counter Module Schematic Diagram (Sheet 2 of 2)

MEMORY TIMING MODULE, MODEL CC-373

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C32	CAPACITOR, FIXED, MICA DIELECTRIC: 120 μ F $\pm 2\%$, 100 Vdc	70 930 004 219
C33-C40	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
M1, M2, M9 M10, M11	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M3, M5, M8 M19, M27	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M4, M7, M14 M22, M24-M26	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M6, M15, M16	MICROCIRCUIT: 937, fast hex inverter integrated circuit	70 950 105 011
M12, M13, M17, M18, M20, M21 M23	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M28-M36	MICROCIRCUIT: F-03 power amplifier integrated circuit	70 950 100 003
CR1-CR8, CR11	DIODE: Replacement type 1N914	70 943 083 002
CR9, CR10	DIODE	70 943 088 001
Q1	TRANSISTOR, SILICON, NPN: Replacement type 2N3011	70 943 722 001
Q2	TRANSISTOR, SILICON, PNP: Replacement type 2N3012	70 943 721 001
DL1-DL4	DELAY LINE	70 000 206 703
R1-R4, R10, R18	RESISTOR, FIXED, COMPOSITION: 510 ohms $\pm 5\%$, 1/4W	70 932 007 042
R5, R7, R8	RESISTOR, FIXED, COMPOSITION: 1K ohms $\pm 5\%$, 1/4W	70 932 007 049
R9	RESISTOR, FIXED, COMPOSITION: 820 ohms $\pm 5\%$, 1/4W	70 932 007 047
R11	RESISTOR, FIXED, COMPOSITION: 100 ohms $\pm 5\%$, 1/4W	70 932 007 025
R12	RESISTOR, FIXED, COMPOSITION: 750 ohms $\pm 5\%$, 1/4W	70 943 007 046

Electrical Parts List (Cont)

Ref. Desig.	Description	Part No.
R13	RESISTOR, FIXED, COMPOSITION: 39 ohms $\pm 5\%$, 1/2W	70 932 004 015
R14-R16	RESISTOR, FIXED, COMPOSITION: 330 ohms $\pm 5\%$, 1/4W	70 932 007 037
R17	RESISTOR, FIXED, COMPOSITION: 180 ohms $\pm 5\%$, 1/2W	70 932 004 031

Figure 1-2-19. Memory Timing Module Parts Location

The following temporary jumpers must be inserted prior to the start of any tests.

a. CC-373

Connect P3 to T30
P5 to T40
P1 to T25
P6 to T15
P7 to T13
P8 to T33
P9 to T35
P10 to T12
P11 to T14
P12 to T12
P13 to T2
P14 to T30
P17 to T35
P5 to P15

b. CC-899

Connect P3 to T23
P5 to T40
P7 to T13
P8 to T33
P9 to T36
P10 to T14
P11 to T14
P12 to T8
P13 to T1
P14 to T30
P15 to T40
P17 to T38
P18 to T13
P6 to T14
P1 to T22

M NO.	GRID CORD	TYPE	GATES					
			1	2	3	4	5	6
1	A5	949	22	23	29	30		
2	B5	949	21	36	37	51		
3	G1	963	52	53				
4	D5	961	15	16				
5	C5	963	9	28	63			
6	C4	937	8	27	50	72	74	76
7	D4	961	1	71				
8	A4	963	6	7	73			
9	D3	949	67	68	69	70		
10	C3	949	5	35	66	97		
11	A3	949	11	48	99	43		
12	B3	944	55	98				
13	E5	944	13	40				
14	E4	937	14	19	41	49	75	77
15	F2	937	24	25	38	44	56	58
16	F3	944	34	42				
17	E3	944	2	65				
18	F4	963	4	12	26			
19	G2	944	59	60				
20	H2	944	61	62				
21	G3	961	17	39				
22	G4	944	3	54				
23	H3	961	10	18				
24	H4	961	31	32				
25	G5	961	47	57				
26	E2	963	45	46	64			
27	A2	703	78	88				
28	A1	703	79	83				
29	B2	703	86	87				
30	C2	703	80	11				
31	B1	703	82	88				
32	C1	703	88	90				
33	D2	703	92	93				
34	D1	703	91	94				
35	E1	703	95	96				

TYPE	VCC	GRD
930-963	14	7
SN-7401	4	11
F01-F04	4	11

LBD	SCH
1-99	1-99
A0-A9	100-109
B0-B9	110-119
C0-C9	120-129
D0-D9	130-139
E0-E9	140-149
F0-F9	150-159
G0-G9	160-169
H0-H9	170-179
I0-I9	180-189
J0-J9	190-199

Figure 1-2-20. Memory Timing Module Schematic Diagram (Sheet 1 of 2)

Figure 1-2-20. Memory Timing Module Schematic Diagram (Sheet 2 of 2)

ASR INTERFACE MODULE, MODEL CC-374

Electrical Parts List

Ref. Desig.	Description	Part No.
C1	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 1 μ F $\pm 5\%$, 50 Vdc	70 930 316 037
C2	CAPACITOR, FIXED, MICA DIELECTRIC: 300 pF $\pm 5\%$, 100 Vdc	70 930 011 239
C3	CAPACITOR, FIXED, MICA DIELECTRIC: 10 pF $\pm 5\%$, 100 Vdc	70 930 011 105
C4	CAPACITOR, FIXED, MICA DIELECTRIC: 680 pF $\pm 5\%$, 100 Vdc	70 930 011 049
C5-C13	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
C15	CAPACITOR, FIXED, ELECTROLYTIC-TANTALUM: 1 μ F $\pm 10\%$, 35 Vdc	70 930 217 054
CR1-CR6, CR8-CR24	DIODE: Replacement type 1N914	70 943 083 002
CR7	DIODE: Replacement type FD777	70 943 088 001
L1, L2	COIL, R. F: 6.8 μ H $\pm 10\%$	70 939 207 023
M1, M10, M11, M17, M36, M43	MICROCIRCUIT: 962, triple NAND gate integrated circuit	70 950 105 006
M2, M12, M14, M18, M44	MICROCIRCUIT: 936, hex inverter integrated circuit	70 950 105 004
M3, M4, M6, M8, M9, M15, M16, M21, M26-M35, M41	MICROCIRCUIT: F-04, flip-flop integrated circuit	70 950 100 004
M5, M13, M25, M37, M38, M42	MICROCIRCUIT: 946, quad NAND gate integrated circuit	70 950 105 002
M7, M19, M20	MICROCIRCUIT: 930, dual NAND gate integrated circuit	70 950 105 001
M22, M23	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M24	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M39, M40	MICROCIRCUIT: F-03, power amplifier integrated circuit	70 950 100 003

Electrical Parts List (Cont)

Ref. Desig.	Description	Part No.
Q1	TRANSISTOR, SILICON, PNP: Replacement type 2N3012	70 943 721 002
Q2-Q8, Q11	TRANSISTOR, SILICON, NPN: Replacement type 2N3011	70 943 754 002
Q9, Q10	TRANSISTOR, SILICON, NPN: Replacement type 2N2369	70 943 720 001
R1, R3, R5, R12, R13, R18, R23, R26, R28	RESISTOR, FIXED, COMPOSITION: 1K ±5%, 1/4W	70 932 007 049
R2	RESISTOR, FIXED, COMPOSITION: 750 ohms ±5%, 1/4W	70 932 007 046
R4, R6, R11	RESISTOR, FIXED, COMPOSITION: 1.5K ±5%, 1/4W	70 932 007 053
R7, R8	RESISTOR, FIXED, FILM: 2.2K ±2%, 1/4W	70 932 114 057
R9, R17	RESISTOR, FIXED, FILM: 1.5K ±2%, 1/4W	70 932 114 053
R10	RESISTOR, VARIABLE, FILM: 1K ±10%	70 933 302 007
R14	RESISTOR, FIXED, FILM: 1K ±2%, 1/4W	70 932 114 049
R15	RESISTOR, FIXED, FILM: 360 ohms ±2%, 1/4W	70 932 114 038
R16	RESISTOR, VARIABLE, FILM: 10K ±10%	70 933 302 010
R19	RESISTOR, FIXED, COMPOSITION: 270 ohms ±5%, 1/4W	70 932 007 035
R20, R21	RESISTOR, FIXED, COMPOSITION: 2K ±5%, 1/4W	70 932 007 056
R22	RESISTOR, FIXED, COMPOSITION: 4.7K ±5%, 1/4W	70 932 007 065
R24	RESISTOR, FIXED, FILM: 220 ohms ±2, 1 W	70 932 115 033
R25	RESISTOR, FIXED, FILM: 180 ohms ±2%, 1W	70 932 115 031
R27	RESISTOR, FIXED, COMPOSITION: 9.1K ±5%, 1/4W	70 932 007 072

COMPONENT VIEW

Figure 1-2-21. ASR Interface Module Parts Location

Figure 1-2-22. ASR Interface Module Schematic Diagram (Sheet 1 of 2)

Figure 1-2-22. ASR Interface Module
Schematic Diagram (Sheet 2 of 2)

HIGH SPEED A-U NO. 1 MODULE, MODEL CC-375

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C5	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR17	DIODE: Replacement type 1N914	70 943 083 002
M1-M4, M17	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M5, M10, M12, M20-M23, M25	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M6, M9, M14, M15, M24, M26	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
M7, M18, M19	MICROCIRCUIT: 937, fast hex inverter integrated circuit	70 950 105 011
M8, M13, M29	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M11, M16, M27, M28	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
R1, R2	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056

Figure 1-2-23. High Speed A-U No. 1 Module Parts Location

HIGH SPEED A-U NO. 2 MODULE, MODEL CC-401

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C5	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
CR1-CR14	DIODE: Replacement type 1N914	70 943 083 002
M1-M6	MICROCIRCUIT: 032, quad NAND gate integrated circuit	70 950 100 032
M7, M22, M23	MICROCIRCUIT: 937, fast hex inverter integrated circuit	70 950 105 011
M8-M11, M13, M14, M18	MICROCIRCUIT: 944, power amplifier integrated circuit	70 950 105 008
M12, M21	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70 950 105 010
M15-M17	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70 950 105 009
M19, M20	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70 950 105 012
R1, R2	RESISTOR, FIXED, COMPOSITION: 2K $\pm 5\%$, 1/4W	70 932 007 056

Figure 1-2-25. High Speed A-U No. 2 Module Parts Location

Figure 1-2-26. High Speed A-U No. 2
Module Schematic Diagram

EXTENDED ADDRESS MODULE, MODELS CC-510A AND CC-869

Electrical Parts List

Ref. Desig.	Description	Part No.
C1 - C6	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70930313016
CR1 - CR4	DIODE, SILICON	70943083002
M1, M7	MICROCIRCUIT: 937, hex inverter integrated circuit	70950105011
M2, M38	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70950105010
M3, M8, M41	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70950105012
M4, M10	MICROCIRCUIT: 032, NAND gate integrated circuit, Type SN 7401	70950100032
M5, M6, M37*	MICROCIRCUIT: 944, dual NAND gate integrated circuit	70950105008
M9	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70950105009
M11 - M13	MICROCIRCUIT: F-04, flip-flop integrated circuit	70950100004
M14 - M21*	MICROCIRCUIT: F-01, NAND gate integrated circuit	70950100001
M22 - M36, M39*	MICROCIRCUIT: F-03, power amplifier integrated circuit	70950100003
M40	MICROCIRCUIT: F-02, quad NAND gate integrated circuit	70950100002
R1 - R23, R25 - R31, R34, R35*	RESISTOR, FIXED, COMPOSITION: 62 ohms $\pm 5\%$, 1/4W	70932007020
R24, R32, R33, R36*	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70932007049

*Model CC-869 does not use M14 - M37, M39, and R1 - R36.

**Figure 1-2-27. Extended Address Module, Model CC-510A
(Drawing No. C70025464702, Rev C)**

**Figure 1-2-28. Extended Address Module, Model CC-869
(Drawing No. C 70025464703, Rev C)**

MEMORY PARITY BOARD, MODELS CC-558 AND CC-621

Electrical Parts List

Ref. Desig.	Description	Part No.
C1 - C8*	CAPACITOR, FIXED, PLASTIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70930313016
CR1 - CR7*	DIODE, SILICON	70943083002
M1 - M4*	MICROCIRCUIT: 949, quad NAND gate integrated circuit	70950105010
M5 - M7*	MICROCIRCUIT: 963, triple NAND gate integrated circuit	70950105012
M8 - M12*	MICROCIRCUIT: 961, dual NAND gate integrated circuit	70950105009
M13 - M18*	MICROCIRCUIT: 032, NAND gate integrated circuit, Type SN 7401	70950100032
M19 - M22*	MICROCIRCUIT: 937, hex inverter integrated circuit	70950105011
M23, M24	MICROCIRCUIT: F-03, power amplifier integrated circuit	70950100003
M25 - M34*	MICROCIRCUIT: F-04, flip-flop integrated circuit	70950100004
M35	MICROCIRCUIT: F-02, NAND gate integrated circuit	70950100002
R1, R2*	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70932007049

*Model CC-621 does not use C1, C4, C7, CR1 - CR7, M3, M4, M7, M9 - M17,
M19 - M22, M25 - M34, R1, R2.

Figure 1-2-29. Memory Parity Board, Model CC-558
(Drawing No. C 70025966701, Rev B)

COMP. VIEW

Figure 1-2-30. Memory Parity Board, Model CC-621
(Drawing No. C 70025966702, Rev B)

CABLE PAC, MODEL CC-672

The Cable PAC, Model CC-672 (Figures 1-2-31 and 1-2-32), contains 16 1K resistors and one 2.2 μ F capacitor. One side of each component is connected to +6V. The other side of each component is connected to individual plated-through holes and connector pins. In addition, 16 plated-through holes (numbers 18-31) are connected directly to 16 connector pins (numbers 51-66). All plated-through holes can accept No. 24 AWG wire.

**Model CC-672
Electrical Parts List**

Ref. Desig.	Description	Part No.
C1	CAPACITOR, FIXED, ELECTROLYTIC: 2.2 μ F $\pm 20\%$, 35 Vdc	70930217017
J1, J2	WIRE, TINNED: No. 24 AWG	70940001020
R1-R16	RESISTOR, FIXED, COMPOSITION: 1K $\pm 5\%$, 1/4W	70932007049
--	SLEEVING, ELECTRICAL	70981003814

Figure 1-2-31. Cable PAC, Model CC-672, Schematic Diagram

Figure 1-2-32. Model CC-672 Parts Location

CABLE PAC, MODEL CC-681

The Cable PAC, Model CC-681 (Figures 1-2-33 and 1-2-34), contains 17 1K resistors and one 2.2 μ F capacitor. One side of 11 resistors (R1-R11) is connected to +6V, and six resistors and one capacitor are connected to -6V. The other side of each component is connected to individual plated-through holes and connector pins. In addition, 14 plated-through holes (numbers 11-22, 25, 31) are connected directly to 14 connector pins. All plated-through holes can accept No. 24 AWG wires. This PAC is used with the bottom harness and can be used in the Model 316 ruggedized computer.

**Model CC-681
Electrical Parts List**

Ref. Desig.	Description	Part No.
C1	CAPACITOR, FIXED, ELECTROLYTIC: 2.2 μ F \pm 20%, 35 Vdc	70930217017
J1-J3	WIRE, TINNED: No. 24 AWG	70940001020
R1-R17	RESISTOR, FIXED, COMPOSITION: 1K \pm 2%, 1/4 W	70932114049
--	SLEEVING, ELECTRICAL	70981003804

A3560

Figure 1-2-33. Cable PAC, Model CC-681, Schematic Diagram

Figure 1-2-34. Model CC-681 Parts Locations

CHAPTER II CSM-160 CORE MEMORY MODULE

SECTION 1 DESCRIPTION

The CSM-160 Core Memory Module is a high-speed, digital storage device capable of storing a maximum of 16 bits of information in 4096 locations, expandable to 16,384 locations in increments of 4096. Data is stored in an array of 30 mil ferrite cores. Selection of address is accomplished by use of conventional four-wire coincident-current techniques. The switching time of the cores and the frequency characteristics of the driving and logic circuitry permit a full-cycle time of 1.6 μ s. The memory does not contain a data register or a timing generator. Memory address signals are received from the address bus at the beginning of any memory operation. The appropriate timing signals are also received and the selection of a location is accomplished in the memory core array. During a memory load (clear-write) cycle, data are supplied to the memory from the computer and stored at the selected address. During a memory-unload (read-regenerate) cycle, the data word at the selected location is first transferred to the computer and then regenerated (rewritten) into the core array.

SYSTEM LAYOUT

The system consists of modular connector BLOC assemblies holding groups of μ -PACs. The solderless-wrap connector assembly is a single piece of molded, glass-filled phenolic capable of holding eight μ -PACs. The memory module is contained in three connector assemblies arranged in a 1 x 3 connector plane.

The core stack is a plug-in unit requiring six μ -PAC connectors, three on each side (Figure 2-1-1). The stack assembly is made up of four glass epoxy boards, each containing four core mats of 4096 cores interconnected to make a stack of 16 bit words.

LOGIC SIGNAL LIST

Logic signals used in the memory are identified and defined in Table 2-1-1. Positive signals (+6V) are labeled "+", and ground signals (0V) are labeled "-". Amplified signals have a letter following the polarity indicator (e.g., XXXX+A).

NOTES:

1. VIEWED FROM CORE MAT SIDE.
2. CENTER BOARDS NOT PRESENT FOR AN 8-BIT STACK.
3. X0-X63 & Y0-Y63 ARE DEFINED AS THE CURRENT SOURCE END AT READ TIME. X0-X63 & Y0-Y63 ARE DEFINED AS THE CURRENT SINK AT READ TIME.

Figure 2-1-1. Stack Coding Diagram

Table 2-1-1
Logic Signal List

<u>Mnemonic</u>	<u>Name</u>
BANK- A through D	Memory Bank Select
INHBX+	Inhibit Command
M01FF+ to M16FF+	Memory Module Data Inputs
MAD05- to MAD16-	Memory Address Inputs
MADCL-	Memory Address Clear Command
MBSYX+	Memory Busy Signal
MEMCI+	Memory Cycle Initiate
MM01F- to MM16F	Sense Amplifier Output Pulses
MSTCL-	Master Clear Pulse
RMBSX-	Reset Memory Busy Pulse
RTDL-	Reset Timing Delay Line Pulse
RZ01+ to RZ16+	Inhibit Winding Termination Resistors
STROB-	Sense Amplifier Strobe
SW01+ tp SW16+	Sense Windings
SWCYX-	Start Write Cycle Pulse
UNSL-	Unit Select Command
UNSL+A through C	Unit Select Signal
WRITE-	Write Enable Signal
XB01+ to XB08+	X-Bus Selection Outputs
XCSR+	X-Current Source Resistor
XD01+ to XD16+	X-Drive Selection Outputs
XRSW-	X-Read Switch Signal
XTIMG+	X-Read/Write Timing
XWSW-	X-Write Switch Signal
XYRE-	X & Y Read Enable Signal
XYWE-	Y-Read Switch Signal X & Y Write Enable Signal
YB01+ to YB08+	Y-Bus Selection Outputs
YCSR+	Y-Current Source Resistor
YD01+ to YD16+	Y-Drive Selection Outputs
YTIMG+	Y-Read/Write Timing
ZW01± to ZW16±	Inhibit Windings

SPECIFICATIONS

Capacity

4K randomly addressable 16-bit words, expandable to 16K in 4K increments.

Storage Mode

Coincident-current magnetic
core array (3D, 4-wire)
X0 through X63 X Drive Line
Y0 through Y63 Y Drive Line

Cycle Time

1.6 μ s

Input Levels

Positive (Passive): +2.4V to +6.3V
Ground (Active): 0V to 0.5V at 2.0 mA
(max)

Output Levels

Positive (Passive): +6.3V max at 0 mA;
+3.0V to +5.0V at 0.3 mA
Ground (Active): +0.5V max at 13.6 mA

Memory Cycle Timing

For each cycle, the computer must provide the memory with an address and a read or write indication, and provide the timing circuits (located outside the memory) with a start signal. Once the cycle has been initiated, another cycle cannot be started until 1.6 μ s has elapsed. During a read cycle, information will be available no more than the time presented in Figure 2-1-2. If the memory is performing a write cycle, information must be made available to the memory within the time specified in Figure 2-1-2. Interface connections are shown in Section 4 (LBD 80.06).

NOTE

- 1 ALL TIMES MEASURED AT THE +1.5V LEVEL.
- 2 CSM-160 NOMENCLATURE IN PARENTHESIS.
- 3 PULSE WITH 80 NSEC AT +.5V AND 400 NSEC AT +8.0V
- 4 ALL TIMES IN NANoseconds

Figure 2-1-2. Interface Timing Requirements for all Units
Except A70023577705 (70942507002 Stack)
(A70110011397, Rev G)

SECTION 2 PRINCIPLES OF OPERATION

PRINCIPLES OF MAGNETIC CORE MEMORIES

Magnetic Core Storage

The memory core stack, housed in the magnetic core unit, is a matrix configuration of individual (30 mils O.D., 18 mils I.D.) ferrite cores. Basically, the ferrite core is a 1-bit storage element in the form of a ferrite ceramic ring that can be magnetically saturated to either positive or negative flux density. The ferrite material retains a large part of the magnetic flux developed at the time the core is saturated which is an important characteristic of the core. The time required to switch a core from one polarity or state to another is primarily dependent on the core material and size. Consequently, cores measuring only tenths of an inch in diameter are used in the memory core array to permit fast switching speeds.

A similarity exists between the magnetic core and the flip-flop in that both provide storage for one bit of data. The two extremes of saturation in a magnetic core represents ZERO and ONE, as do the two stable states of a flip-flop. A core can be set to a ONE state by the application of a current pulse of similar magnitude applied in the opposite direction. Similarly, a flip-flop is set or reset by applying pulses to the appropriate inputs. Both the magnetic core and the flip-flop provide memory of the last pulse applied, but the core does so without requiring power to hold its state.

The ferrite core has a nearly rectangular hysteresis loop. The hysteresis loop is a graphical representation of the flux density produced in a magnetic material, plotted against the magnetizing force that produces it. Figure 2-2-1 is a simplified drawing showing the generation of a typical ferrite core hysteresis loop. Starting with an unmagnetized core, an increase in magnetizing current (H) increases the flux density (B) along the S-shaped curve (A). The flux density levels off when the core is saturated, and any additional current applied does not appreciably increase the flux density because the core material is supporting as much flux as it can. As the current is decreased, then made to flow in the opposite direction, the flux does not collapse along the same line (B); and most of the flux remains even after the current has fallen to zero. The amount of flux actually remaining is a function of the retentivity of the magnetic material. As a magnetizing current is applied in the opposite direction, it has little effect on the flux level until the current reaches the knee of the hysteresis loop.

**As Positive Current Increases
Rising Flux Density is Limited
by Core Saturation**

**Most of the Flux Remains after the
Current is Removed.**

**As Negative Current Reaches the
Switching Point, the Core is Driven
to Negative Saturation**

**As with Positive Current, when Negative
Current is Removed, Most of the Flux
Remains**

**Thus, the Core is always Saturated
in the Positive or Negative Direction**

Figure 2-2-1. Ferrite Core Hysteresis Loop

A slight increase in current beyond the knee of the curve switches the core rapidly to negative saturation (C). The point on the curve representing the amount of current required to change the state of the core is termed the coercive current. When the negative magnetizing current is removed, most of the flux is retained as before (D). Note that the original sweep from a magnetically neutral condition is never repeated (E). A memory core in coincident-current use is never in a neutral condition, but is switched from one saturated state to the other. The core is thus an extremely useful binary component because it can exist in either of two stable states and can switch rapidly from one to the other.

For any given toroidal magnetic core, the necessary magnetomotive force required to effect switching is a function of the product of the number of turns of wire and the current driven through those turns. It is not economically feasible to wind multiple turns of wire around the small toroidal cores used in core memories; rather the number of turns is reduced to two, one in each of the perpendicular driving coordinates, and the current in these coordinate wires is of such a magnitude as to cause switching (rapid flux change) to occur.

In addition to the perpendicular (X and Y) coordinate selection lines, each core is also threaded by two other wires, each of which passes through every core in a plane. One is the sense winding, which detects flux-change due to switching of a core and thus provides a readout signal from the plane. The other winding is the inhibit winding which is used, as its name suggests, to inhibit or prevent the writing of a ONE into the core, thereby causing ZERO to be stored. A single memory core, with its associated control windings is illustrated in Figure 2-2-3.

A disadvantage of the memory core is that it does not provide a static indication of its state, as does a flip-flop. To obtain an indication of the condition of the flux in a memory core, the state of the core must be switched.

Figure 2-2-2. Core Control Windings

Figure 2-2-3. Coincident-Current Selection

Information Sensing

Sense lines allow the reading of information stored in the cores. One sense line (Figure 2-2-2) is threaded through all memory cores of each mat.

To read any of the words stored in memory, half-currents in the proper direction are generated in the selected X- and Y-lines (Figure 2-2-3). The read half-currents combine at the coincident junction of the X- and Y-lines to change the state of the affected core in each memory mat. If the affected core is storing a ONE at that instant, the effect of the read half-currents will change the state of the core to ZERO. If the core was previously in the ZERO state, the read half-currents will have no effect on the core. When the core is switched from the ONE to the ZERO state, the rapid change in flux from positive saturation to negative saturation induces a voltage pulse in the corresponding sense line. Therefore, the presence of a voltage pulse in the sense line during the read operation indicates that a ONE has been stored in the indicated core. If no voltage pulse occurs in a sense line during read operation, a ZERO is indicated. The sense lines designated SW01 through SW16 in the memory core stack are connected to sense amplifiers. A ONE input to any of the sense amplifiers is amplified and applied to the information register. Thus, output data is transferred from its storage location in the core stack to the information register.

Addressing

The complete core stack for a magnetic core unit consists of a number of individual matrices or mats. Each mat contains memory cores assembled in a rectangular configuration. The memory cores are threaded by X- and Y-lines in each mat so that one memory core is physically located at each junction of an X-line and Y-line.

As previously stated, pulses of current applied along the X- and Y-lines switch a memory core from one state to another. If one-half of the current required to switch a core is applied along the X-line, and one-half of the necessary current is applied along the Y-line, the core situated at the junction of the energized X- and Y-lines will receive the full switching current. This type of operation is termed coincident-current operation.

A coincident-current magnetic core memory depends upon the coincidence of two half-currents to read data from or to write data into the cores. Two additive half-current pulses will set the core to the ONE state, while two half-current pulses applied in the opposite direction will reset the core to the ZERO state. A core with two half-current inputs is essentially an AND circuit requiring that half-current be applied to both X- and Y-lines in the same direction to change the state of the flux at the core. A half-current applied to one line without a similar half-current applied to the other line has no effect on the core.

Only one X-line and one Y-line of a mat are energized during a single cycle, and only that core situated at the junction of the activated X- and Y-lines will respond to the coincident half-current pulses. Therefore, only one core in each mat will be affected during a single cycle. A simplified diagram of coincident-current selection of a memory core is illustrated in Figure 2-2-3. In effect, the X-line selects one row (X-row), and the Y-line selects one column (Y-column).

In coincident-current memories, the X- and Y-lines are wired in series through all mats of the memory core array. Thus each X-line and each Y-line threads corresponding rows or columns of cores in all memory mats. Energizing one of the X-lines (designated X_1 through X_m in Figure 2-2-3) supplies a half-current pulse to the appropriate row of cores in every mat. Similarly, energizing one of the Y-lines (designated Y_1 through Y_n), supplies a half-current pulse to the appropriate column of cores in every plane. When pulses occur simultaneously on two lines (X and Y), they select the same core position in each of the planes. Therefore, the X- and Y-lines select a word in the memory core array and enable read or write operations.

Writing

Inhibit lines are used to enable a computer word or instruction to be written into memory at a selected address location. A single inhibit line is threaded through each memory core in a mat (Figure 2-2-2) and each mat of the magnetic core stack requires an individual inhibit line.

To write information into memory, half-current pulses in the direction opposite to those generated for read operation are applied to the selected X- and Y-coincident junction to switch the affected core in each memory plane.

Since all the cores at the selected address have been cleared to the ZERO state prior to the application of the write half-currents, the write half-currents operate to switch all cores to the ONE state. If the incoming data dictates that a ZERO is to be written into a specific core, some means must be used to prevent the core from switching to the ONE state when the write half-currents are generated. This is accomplished by the inhibit (Z) lines designated ZW01 through ZW16. An inhibit pulse, when transmitted through the inhibit line of the memory plane at the same time that the write half-currents are applied through the X- and Y-lines, prevents the writing of a ONE because the inhibit current subtracts from X- and Y-write current.

The inhibit pulse is of the same magnitude but of the opposite polarity to the write half-current pulses. Therefore, the inhibit pulse directly cancels the effect of one write half-current pulse. The net effect of the two write half-current pulses and an inhibit pulse, is equivalent to a single write half-current pulse on the addressed core. This prevents the core from switching from the ZERO to the ONE state.

Information to be written into memory is stored in the information register prior to being transferred to the memory core stack. During the transfer operation, a passive signal from the register flip-flop will prevent the generation of an inhibit pulse whereas an active signal from the register flip-flop allows an inhibit pulse to be generated. In this way information is rewritten (or new information is written) into the selected memory location exactly as it appears in the information register.

CORE STACK CONFIGURATION

The storage array is organized about a conventional four-wire "3D" configuration where 4096 addressed cores are made available by the intersection of 64 X lines and 64 Y lines in each bit area.

ADDRESSING AND SELECTION

Addressing-Random Access

The memory address register consists of cross-coupled flip-flops located on the CM-306 Selector PAC. Data received by the 12 single-ended, address input lines (MAD05 through MAD16) will set the flip-flops and a reset pulse (MADCL-) will commonly reset all the flip-flops at the end of the cycle. The address flip-flop outputs control the drive line selection circuits. Section 5 contains a detailed description of this PAC.

Decoding and Selection

Figure 2-2-4 is a simplified diagram of the address decoding and selection for a typical bit of a 4K memory. Three address bits are transferred to the X switches and three others to the X sinks. The X switches uniquely enable one of eight read/write line pairs going to the diode matrix; the X sinks select one of eight read/write busses. The selected bus enables one end of eight drive lines, each of which has its other end connected to an enabled diode matrix. Thus, only one of 64 X lines has been selected. The Y-line selection is accomplished in a similar manner.

Figure 2-2-5 is a simplified schematic diagram of the X decoding and selection matrix. Two diodes per line isolate a single line when selected. Consider a read-regenerate cycle involving drive line X60. During the read portion of the cycle, X read switch (Q1) and X read sink (Q4) are selected by related address register outputs. These selection outputs are turned on when read timing pulses XRSW- for the switch and XYRE- for the sink go to 0V. Read current then flows in line X60 from +15V through R1, Q1, CR1, CR2, X60, and Q4 to ground. Read current ceases to flow when signals XRSW- and XYRE- return to +6V. During the write portion of the cycle the addresses do not change. Write timing pulses XYWE- for the sinks and XWSW- for the switches are generated. When these signals go to 0V, sink Q2 and switch Q3 are turned on. Write current then flows from +15V through R1, Q3, CR3, line X60, CR4 and Q2 to ground. Write current ceases when signals XYWE- and XWSW- return to +6V. At the end of the cycle, the addresses will change and, by similar manner, the remainder of the X lines will be selected.

The Y-selection matrix is similar to the one described with the exception of being decoded by different addresses and command signals. For a detailed description of the CM-306 Selector PAC, refer to Section 5.

TIMING AND CONTROL

Section 4 contains the timing and control logic diagrams to illustrate the logical functions associated with the control and distribution of memory timing pulses. Interface timing is presented in Figure 2-1-2.

OPERATING MODES

Read-Regenerate Mode

Memory interface signals are provided by the CPU or the memory expansion option. When the Selector PAC control pulses XRSW- and XYRE- are generated, the sinks and switches are turn on. Stored data present in the address register will be read out (Figure 2-2-6). The sense amplifier strobe input (STROB-) will sample the data. If a ONE was stored at that address, the sense amplifier associated with that bit will produce an output, setting the data registers external to the memory module. The set side of the data registers (MXXFF+) will be presented to the input of the inhibit drivers and disable it. If a ZERO was stored at that address, no output will occur. The data register will remain reset and enable the inhibit drivers. During the write portion of the cycle, the selector PAC

Figure 2-2-4. Address Decoding and Selection, Simplified Block Diagram

Figure 2-2-5. Decoding and Selection Matrix, Simplified Schematic

control pulses (XRSW- and XYWE-) are generated, and X- and Y-line currents are once again established. When the inhibit pulse (INHBX+) is generated, a ONE will be inserted into the stack if the inhibit drivers were disabled. A ZERO will be reinserted if the drivers were enabled.

Clear-Write Mode

The clear-write mode operation is identical to the read-regenerate mode except the sense amplifier strobe signal is not generated. Without the sense amplifier strobe, data stored in a selected address are destroyed. During the write portion of the cycle, new information stored in the data register is inserted in the core stack in the same manner that information is regenerated.

INTERFACE TIMING

The interface timing for the read-regenerate and clear-write modes is shown in Figure 2-1-2. The timing distributor does not form an integral part of the memory system, therefore, with the exception of signals XYRE-, XYWE-, XRSW-, and XWSW-, all signals, whether used internally or as commands, are classified as interface timing.

The address inputs (MAD05 through MAD16-) must be present for all cycles for the duration shown on the interface timing diagram. The data lines (M01FF+ through M16FF+) must be stable for the duration of the INHBX+ pulse as defined on the timing diagram for a read-regenerate or clear-write cycle.

MEMORY RETENTION

The magnetic core array does not require power to provide a static memory capability. A pulse of power is required to switch cores from one state to the other, but the pulse is not necessary to hold cores in their respective states. All cores remain in the state to which they have been switched because of material retentivity in the core. If power is removed or lost, the magnetic core array retains stored information indefinitely.

The turn-on sequencing of the main power supply is designed to allow the +15 voltage to remain off until the +6V and -6V logic supplies are stabilized. Similarly, the +15V supply is turned off before the logic supplies go out of regulation. This feature ensures that no current can flow during the power supply turn-on and turn-off transients providing memory input commands are quiescent which might change data previously stored in the core array.

Figure 2-2-6. Regeneration Loop, Simplified Diagram

INTERFERENCE FROM MAGNETIC FIELD

Fan motors or power supplies having large magnetic fields should not be mounted close to the core stacks (some fan motors have fields that exceed 10 gauss). Reliable memory operation is guaranteed only if the peak magnetic field is held below 3 gauss in the region of the core mats.

SECTION 3 MAINTENANCE

This section contains data on preventive and corrective maintenance, service and repair for the H316 Magnetic Core Memory Module. Detailed PAC descriptions are included in Section 5 of this chapter.

TOOLS AND TEST EQUIPMENT

Table 2-3-1 lists the tools and test equipment required to service the memory. Detailed information on wire-wrapping tools and procedures is contained in the Instruction Manual for Solderless Wrapping of μ -PAC Digital Modules, Doc. No. 70130071371.

RECOMMENDED SPARE PARTS

One spare PAC of each type specified in Section 4 (LBD 80.08) is recommended as a spare part. Two F-08 microcircuits (70950100008) are recommended as spare parts if a spare corestack is not purchased. Section 5 contains parts lists for all PACs in the memory.

PAC HANDLING AND REPAIR PROCEDURES

Inserting and Removing System PACs

The μ -PAC connector is polarized to protect against incorrect PAC insertion.

μ -PAC removal from the memory is accomplished by engaging the two holes in the handle of the PAC with the μ -PAC extractor tool. Do not remove or insert printed circuit cards without turning off the dc power to the unit.

PAC Troubleshooting

The Extender PAC, Model XP-330, can be used to gain access to points on the μ -PACs. Signals on the pins of the μ -PACs may be ascertained from the PAC descriptions contained in Section 5.

Component Checking

Many μ -PACs have identical channels. Components can be checked by resistance comparison with parts on other channels or other μ -PACs.

Component Replacement

When replacing defective components, use a low-wattage soldering iron and rosin core 60/40 solder. Remove excess solder from the printed circuit board. Care should be taken to avoid lifting the etch.

Table 2-3-1
Tools and Test Equipment

Quantity	Description	Type (or Equivalent)
1	Oscilloscope	Tektronix 585
1	Dual-Trace Preamplifier	Tektronix 82
1	Multimeter	Simpson 260
1	Card Extender PAC	XP-330
1	μ -PAC Extractor Tool	B008428
1	AC Current Probe	Tektronix P6016 probe and passive termination (or type 131 amplifier)
1	Hand Wire-Unwrapping Tool	70 917 202 001 (Gardner-Denver 505084-LH)
1	Hand Wire-Wrapping Tool, Battery Operated	70 917 200 001 (Gardner-Denver No. 14R2)
1	Wire Stripper	70 917 250 001 (Ideal 45-179)
25 ft	No. 30 AWG Solid Wire	70 940 061 010
1	Quick Disconnect Terminal Crimper	T and B WT 145
25 ft	No. 30 AWG Twisted-Pair Solid Wire	70 940 402 002
1	Precision DC Voltmeter	Weston Model 931-1905003 30/7 5/3 volts, $\pm 1/2\%$, 1000 ohms/volt

Insert the leads of the new component through the drilled hole or eyelet, clip off excess wire, and solder to the printed circuit etch. A flat pack should be placed squarely on the etched area, using an insulator between it and the μ -PAC (except F-33 use Insulgreas instead of insulator). The leads should then be cut to the proper length and soldered. Examine the PAC carefully for excess solder. Remove rosin deposits with a commerical cleaning solvent and wipe the PAC clean with a dry lint-free cloth.

MAINTENANCE INSPECTION

Conduct a visual inspection periodically. Watch for accumulation of dust, dirt, improperly seated PACs, and damaged or improperly dressed cable and signal leads. Check to see that all connectors are securely mated and that the cooling fans are operating properly. Clean fan filters periodically. Do not clean core stack with air hose.

PREVENTIVE MAINTENANCE PROCEDURE

The memory is thoroughly tested at Honeywell Inc., Framingham, Mass., prior to shipment. All planes are tested simultaneously under all ZEROS, all ONES, and worst-pattern conditions. The drive currents and strobe timing are set so that optimum operating margins result. The memory should be tested periodically, as a preventive maintenance procedure, by using a memory test program.

Memory Drive and Inhibit Voltage Calibration

The memory drive and inhibit currents are determined by the setting of the +15 Vdc supply and the CM-384A precision resistors. The +15V supply setting should be periodically checked by using a voltmeter capable of reading the voltage within $\pm 1\%$. Measurements should be made at the memory terminals while a program is running in the memory.

The +15 Vdc supply should be within the following ranges as a function of stack inlet ambient temperature.

<u>Temperature</u>	<u>+15 Vdc Range</u>
0°C	+16.0 \pm 0.6V
25°C	+15.0 \pm 0.8V
50°C	+13.8 \pm 0.6V

The memory may be operated at marginal +15 Vdc supply for corrective or preventative maintenance purposes. The diagnostic program should contain at least the worst pattern (exclusive-OR of MA01-, MA03-, MA04-, MA07-, MA09-, and MA10-), all ONES and all ZEROS. Failure points at high +15V setting (do not exceed +17.5V) and low +15V setting should be noted; their differences should be at least 1.6V at 0°C and 25°C and 1.1V at 50°C. The +15V supply may be set at the center of the failure point margins or at the values shown above.

Strobe Timing Calibration

The timing of the sense amplifier strobe pulse is set for each unit to give optimum operating margins. It should not be necessary to adjust the strobe timing. If a change in timing is required to obtain proper memory operation, the associated PACs should be checked (e.g., CM-306, CM-305) before a timing change is made. The CC-373 description in the Appendix should be referred to if a timing change is required. The STROB- pulse should be between 150 ns and 200 ns wide at the 1.5V points.

CORRECTIVE MAINTENANCE PROCEDURES

Memory system troubleshooting consists of determining the type of problem, predicting the μ -PAC at fault, and locating the faulty circuit. Test procedures to aid in troubleshooting are as follows.

CAUTION

Use oscilloscope probes carefully to avoid shorting of connector terminals resulting in damage to the PAC.

- a. In some cases, spare PACs may be used to isolate faulty circuits by interchanging identical PACs and noting any shift in the faulty bits or addresses. All memory PACs with the same designation are interchangeable.
- b. Refer to PAC schematic and assembly drawings in Section 5 to isolate the defective components on the printed circuit card. Replace defective components.
- c. Memory failures are generally of the following types:
 - (1) Operation failures, which are caused by faulty timing and control circuits.
 - (2) Partial data word failures caused by a faulty sense amplifier, data register flip-flop, or data regeneration circuits.
 - (3) Address failures caused by faulty address register or selection circuits.
- d. Memory failures may be localized by the following procedures:
 - (1) Load the test pattern into the memory.
 - (2) Initiate a read operation at each address sequentially and check each readout data word for the following failures:
 - (a) Operation failures: No apparent response to commands applied to the memory, or faulty operation at all addresses (Table 2-3-3).
 - (b) Partial data word failures: Failures of one bit or series of two or more bits at all addresses (Table 2-3-4).
 - (c) Address failures: Faulty memory operation at particular addresses only (Table 2-3-5).

MAGNETIC CORE STACK MAINTENANCE

Under normal operating conditions, it is unlikely that troubles will occur within the magnetic core stack. However, continuity measurements of the sense inhibit and drive windings will enable maintenance personnel to check core stack wiring. Exercise caution in taking these measurements to avoid damaging the matrix windings.

CAUTION

Multimeter current and voltage should be kept below 300 mA and 30V, respectively, to avoid damage to matrix windings and components.

Sense Windings

- a. Turn off memory power. Remove the Sense Amplifier PAC, CM-363A associated with the sense windings to be checked.
- b. Place the ohmmeter leads across the sense winding inputs (SWXX+ and SWXX-) to the Sense Amplifier PAC as determined from the logic diagrams of Section 4 and check for continuity. One sense winding links 4096 cores (Table 2-3-5).

Table 2-3-2
Operational Failures

Symptoms	Probable Fault
No apparent response to commands	1. DC voltage 2. CC-373 PAC 3. MBSYX-, MEMCI+, RTDL- signals
Unable to read from any address	1. CC-373 PAC 2. 15.5 volt supply 3. STROB- Signal

Table 2-3-3
Partial Word Failures

Symptoms	Probable Fault
Failure of one bit (ZERO or ONE) at all addresses	1. Sense Amplifier PAC (CM-363A) 2. Data register 3. Inhibit PAC 4. Sense winding 5. Inhibit winding 6. Resistor PAC
Failure of one bit at particular addresses	1. Sense Amplifier PAC 2. X or Y-switch or sink PAC 3. Sense winding 4. X or Y-drive line 5. X or Y-selection diode (F-08)
Failure of one bit at one address	1. Marginal Sense Amplifier PAC 2. Marginal core

Table 2-3-4
Address, Decoding, and Selection Failures

Symptom	Probable Fault
All bits fail as a function of particular address bits	1. X or Y-switch or sink PAC 2. CC-363A PAC 3. X- or Y-drive line 4. X- or Y-selection diode

c. Resistance readings should be approximately 28 ohms for all sense windings. The resistance readings for all bits should agree within $\pm 10\%$.

Drive Windings

a. Turn off memory power. Remove the Selector PAC, CM-306 associated with the X- and Y-drive line to be checked. This can be determined from the logic diagrams by relating the bad address to a sink and switch output for both the X- and Y-coordinates. The drive winding connections to the core stack are shown in Figure 2-1-1.

b. The actual drive line connections are located on the core stack printed circuit board. The selection switch outputs are isolated by a diode from each drive line so that the resistance reading between any dual bus (XDXX) and line bus (XBXX) will include a diode forward drop.

c. Measure continuity by referring to the simplified selection diagram, Figure 2-2-5. For example, to check the continuity of drive line X60, put one ohmmeter probe on the corresponding sink output (collector output of transistor Q4) and the other ohmmeter probe on the proper switch output (collector of transistor Q2). A low resistance (one forward diode drop plus a drive line resistance of approximately 6 ohms) indicates continuity for both diodes and the drive line. It may be necessary to reverse the probes to obtain the correct polarity to forward-bias the selection diodes. The continuity of the current path for the opposite drive polarity should be similarly checked by moving the probe from the collector of Q2 to the emitter of Q1 and reversing the polarity. In this mode of measuring, two diodes will be in the circuit. A high resistance reading in both drive current polarity paths indicates an open drive winding or drive bus. If a drive bus is open, the other drive lines connected to the same bus will also have a high resistance reading. A high resistance reading in only one of the read or write current paths indicates an open F-08 flat pack diode.

Inhibit Windings

a. Turn off memory power. Remove the Inhibit PAC CM-305 associated with the inhibit line to be checked.

b. Place the ohmmeter leads across the inhibit winding inputs (ZWXX+ and ZWXX-) to the Inhibit PAC as determined from the logic diagram of Section V and Table 2-3-6.

c. Resistance readings should be approximately 11 ohms for all inhibit windings. The resistance windings for all bits should agree within $\pm 10\%$.

Table 2-3-5
Sense Winding Check List

Sense Winding	Location	Sense Winding	Location
SW01+	A1BX0323	SW09+	A1BX0114
SW01-	A1BX0321	SW09-	A1BX0116
SW02+	A1BX0319	SW10+	A1BX0110
SW02-	A1BX0317	SW10-	A1BX0112
SW03+	A1BX0315	SW11+	A1BX0124
SW03-	A1BX0313	SW11-	A1BX0122
SW04+	A1BX0311	SW12+	A1BX0118
SW04-	A1BX0309	SW12-	A1BX0120
SW05+	A1BX0324	SW13+	A1BX0123
SW05-	A1BX0322	SW13-	A1BX0121
SW06+	A1BX0318	SW14+	A1BX0119
SW06-	A1BX0320	SW14-	A1BX0117
SW07+	A1BX0314	SW15+	A1BX0115
SW07-	A1BX0316	SW15-	A1BX0113
SW08+	A1BX0310	SW16+	A1BX0111
SW08-	A1BX0312	SW16-	A1BX0109

Table 2-3-6
Inhibit Winding Check List

Sense Winding	Location	Sense Winding	Location
ZW01+	A1CX0603	ZW09+	A1CX0406
ZW01-	A1CX0601	ZW09-	A1CX0408
ZW02+	A1BX0632	ZW10+	A1AX0426
ZW02-	A1BX0631	ZW10-	A1AX0428
ZW03+	A1BX0601	ZW11+	A1CX0607
ZW03-	A1BX0602	ZW11-	A1CX0605
ZW04+	A1AX0631	ZW12+	A1AX0627
ZW04-	A1AX0629	ZW12-	A1AX0625
ZW05+	A1CX0402	ZW13+	A1BX04-30
ZW05-	A1CX0404	ZW13-	A1BX04-29
ZW06+	A1BX0432	ZW14+	A1BX04-03
ZW06-	A1BX0431	ZW14-	A1BX04-04
ZW07+	A1BX0401	ZW15+	A1BX06-30
ZW07-	A1BX0402	ZW15-	A1BX06-29
ZW08+	A1AX0430	ZW16+	A1BX06-03
ZW08-	A1AX0432	ZW16-	A1BX06-04

SECTION 4
LOGIC BLOCK DIAGRAMS

This section contains the following logic block diagrams. The logic block diagram (LBD) number is shown in the upper righthand corner of each drawing.

<u>LBD No.</u>	<u>Dwg. No.</u>	<u>Description</u>
80.00	C70022843	Timing and Control
80.01	C70022835	X -Selection Sinks and Switches
80.02	C70022836	Y -Selection Sinks and Switches
80.03	C70022837	X - and Y -Selection Diode Matrix
80.04	C70022838	Sense Amplifiers
80.05	C70022839	Inhibit Drivers
80.06	C70022840	1 x 3 Connector Wiring
80.08	C70022841	PAC Complement and Allocation
---	P70022841	Parts List

A B C D E F G H J K L M N

L.B.D. NO.
80.00

NOTES

! "X" DESIGNATES A, B,C & D FOR H-316 MODULE A,B,C & D RESPECTIVELY OR 1,2,3 & 4 FOR CSM-160 MODULE 1,2,3 & 4 RESPECTIVELY. SEE LBD 80-06 TABLE T AND NOTE I.

A "X" DESIGNATES MODULE LOCATION G H T B J FOR M-316 MODULE A B C D RESPECTIVELY

© 2014 KOMMUNAL AUSTRIA AG, PARISIENNERSTRASSE 10

1

NOTES:

FIN No OF FLAT PAC (F-08)

2

— 1 —

1

CHK	REVISIONS	REV.
✓	✓	A

TAKEN FROM
SER. #543313

~~✓~~ ECO 9423 B

HORNBY WELLS

HONEYWELL
INC.

DEC COMPUTER CONTROL DIVISION
Old Connecticut Path, Framingham, Mass.

DR. D'AMELIO

ENG. D. DAVIES 29-1-1966

APP. C. Haase 2-12-1969

PROJECT NO. 55202

TITLE

CSM-160 TCM-160 AND

ESM-160, ICM-160 AND

H-316 MEMORY X & Y SELECTION

DIODE MATRIX

For more information about the study, please contact Dr. Michael J. Hwang at (319) 356-4000 or via email at mhwang@uiowa.edu.

SIZE	DWG NO.	RFV.
------	---------	------

IC 10022837B

NOTES: JUMPER PAC A014998701 } JUMPER PAC A014998702 } USED FOR MULTI-MODULE CONNE

3 PAC LOCATIONS FOR ALL MODULES THE SAME AS MODULE "A" WITH THE EXCEPTION OF **8** **2**

REV	REVISIONS	REV
L-HK	A	
	TAKE OUT S R S # 53, 3	
ECO 769C	B	
	TEXT CHANGES SEE ECO	
1/2/70	A.K.	
ECO 8356	C	
	ENT. CHG SEE ECO	
1/18/70	A.K.	
ECO 10260	D	
SSE ECO		
1/3/72	/1/2	SSR

P70022841		PARTS LIST	
H O N E Y W E L L <small>INC.</small> 35 COMPUTER CONTROL DIVISION ONE CHICAGO PARK DRIVE, CHICAGO, ILLINOIS 60645			
DR	D HAMEL	DATE	
ENG	K IZBICKI	1-31-1969	
APP	C 40422	2-12-76	
PROJECT NO. 55202		SIZE	DWG NO.
		C	70022841

H316 Memory PAC Complement

Part Number	Description	Quantity
70 006 707 701	NAND Type 1 PAC, Model DI-335	1
70 021 896 701	Selector μ -PAC, Model CM-306	4
70 022 970 702	Resistor μ -PAC, Model CM-384A	1
70 022 955 707	Sense Amplifier μ -PAC, Model CM-363B	2
70 021 402 701	Inhibit μ -PAC, Model CM-305	2
70 942 507 002	Core Memory Unit, Plugable	1

SECTION 5 MEMORY PAC DESCRIPTIONS

This section contains the following circuit descriptions and parts lists for the special μ -PACs used in the H316 Magnetic Core Memory Modules.

CM-305/CM-488	Inhibit PAC
CM-306/CM-640	Selector PAC
CM-363A/CM-489A/ CM-734/CM-735	Sense Amplifier PAC
CM-363B/CM-489B/ CM-734/CN-735	Sense Amplifier PAC
CM-384A	Resistor PAC
DI-335	NAND Type 1 PAC
XP-330	Extender PAC

INHIBIT μ -PAC, MODELS CM-305/CM-488

The Inhibit μ -PAC, Model CM-305 (Figure 1 and 2), contains two groups of four 425 mA transistor switches and one NAND gate. Each switch is controlled by a data input and strobed by a common line within each circuit.

An output switch is turned on (active state) when the corresponding data input is at an active state, the timing input for circuits A, B, C and D is at a passive state, and the timing input for circuits E, F, G, and H is at an active state.

The emitters of the output transistors are brought out to external pins 1 and 27. Optional capacitors C1, C2, and C3 are provided for filtering the +15V supply. Clamp diodes at each collector are used with inductive loads.

The CM-488 contains one group of four transistor switches. Circuits D, E, F, and G of Figure 1 and 2 are omitted.

Specifications**Frequency of Operation**

DC to 2 MHz

Input Loading

1 unit load each (1.6 mA)

Output Characteristics

Current: 425 mA (max)

Voltage: 17.5V (max)

Power: 200 mW (max)

Current Requirements

+6V: 70 mA (max)

Circuit Delay (420 mA Resistive Load)

Turn-on Delay (1.5V of input to 10% of current) 190 ns (max)

Turn-off Delay (1.5V of input to 90% of current) 190 ns (max)

Power Dissipation

2.2W (max)

Figure 1. Inhibit μ -PAC, Models CM-305/CM-488, Parts Location
(Dwg B70021402, Rev. D)

Electrical Parts List (No. P70021402, Rev. E)

Ref. Desig.	Description	Part No.
C1-C4	CAPACITOR, FIXED, SOLID TANTALUM: 6.8 μ F $\pm 20\%$, 20 Vdc	70 930 235 211
C5	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 20 Vdc	70 930 313 016
CR1-CR8-- CR1-CR3, CR8*	DIODE, SILICON	70 943 083 003
M1	MICROCIRCUIT: Type 936, hex single-input inverter integrated circuit	70 950 105 004
M2-M4-- M4*	MICROCRICUIT: Type 946, quad two-input NAND gate integrated circuit	70 950 105 002
Q1, Q3, Q5, Q7, Q7, Q9, Q11, Q13, Q15-- Q1, Q3, Q5, Q15*	TRANSISTOR: Silicon NPN	70 943 722 002
Q2, Q4, Q6, Q8, Q10, Q12, Q14, Q16-- Q2, Q4, Q6, Q16*	TRANSISTOR: Silicon NPN Type 778-2	70 943 778 002
R1-R8-- R1-R3, R8*	RESISTOR, FIXED, COMPOSITION: 100 ohms $\pm 5\%$, 1/4W	70 932 007 025

*CM-488 only

Figure 2. Inhibit μ -PAC, Models CM-305/CM-488,
Schematic Diagram and Logic Symbol
(Dwg B70021402, Rev. D)

SELECTOR μ -PAC, MODELS CM-306/CM-640

The Selector μ -PAC, Model CM-306 (Figures 1 and 2), contains three registers, as well as decoding and drive circuitry for half of an 8 x 8 selection matrix. The outputs can sink or switch inductive loads of up to 450 mA with voltages up to +17V.

The CM-640 is identical to the CM-306 except the address gates are connected as buffers rather than register stages.

Address Circuits

Three Type 961 power amplifier gates constitute the three register stages of the CM-306. Pin 6 is a common reset input to all three register stages. Pins 3, 14, and 20 are set inputs; pins 8, 9, and 17 are reset inputs; pins 10, 16, and 22 are set outputs. One type 961 gate serves as an address buffer. Five type 961 gates serve as address buffers for the CM-640.

Decoding and Drive Circuitry

Four F-33 flat packs decode the address circuit inputs and sink or switch up to 450 mA of current into inductive loads. Input pin 24 at logic ONE enables the switch outputs. Pins 25 and 28 are inputs to a NAND gate whose output, at logic ONE, activates the sink outputs. Only one output (sink or switch) of an F-33 can be activated during a given cycle.

The expansion input, pin 4, must be at logic ONE to enable the CM-306 μ -PAC.

Input and Output Signals

Table 1 lists logic levels on various pins and the resulting active outputs.

Table 1
Input/Output Logic Signals

Pin 20 (A3+)	Pin 14 (A2+)	Pin 3 (A1+)	Pin 24 (Timing Switch)	Pins 25 and 28 (Timing Sink)	Active Output Pin No.
0	0	0	0	1	11
0	0	0	1	0	13
0	0	1	0	1	18
0	0	1	1	0	15
0	1	0	0	1	27
0	1	0	1	0	30
0	1	1	0	1	31
0	1	1	1	0	32
1	0	0	0	1	1
1	0	0	1	0	5
1	0	1	0	1	12
1	0	1	1	0	7
1	1	0	0	1	19
1	1	0	1	0	21
1	1	1	0	1	26
1	1	1	1	0	23

SpecificationsInput Loading

Address Inputs	1 unit load
Reset Input	3 unit loads
Expansion Input	6 unit loads
Timing Inputs	1 unit load

Circuit Delay (430 mA Resistive Load)

Turn-on Delay (1.5V of timing input to 90% of current)	Sink	120 ns (max)
	Switch	140 ns (max)
Turn-off Delay (1.5V of timing input to 10% of current)	Sink	200 ns (max)
	Switch	120 ns (max)

Output Characteristics

Current (sink or switch)	450 mA (max)
Voltage (sink or switch)	17V (max)
Power (sink or switch)	560 mW (max)
Collector-Emitter Saturation Voltage (sink or switch)	0.9V (max)
Register Set Output	4 unit loads

Current Requirements

100 mA at 15V
45 mA at +6V

Power Dissipation

2.5 W (max)

Figure 1. Selector μ -PAC, Model CM-306/CM-640, Parts Location
(Dwg B70021896, Rev. D)

Electrical Parts List (No. P70021896, Rev. D)

Ref. Desig.	Description	Part No.
C1	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 016
C2	CAPACITOR, FIXED, SOLID TANTALUM: 6.8 μ F $\pm 20\%$, 20 Vdc	70 930 235 211
CR1-CR8	DIODE, SILICON	70 943 083 003
M1-M4	MICROCIRCUIT: Type 961, dual four-input NAND integrated circuit	70 950 105 009
M5-M8	MICROCIRCUIT: F-33, selection switch integrated circuit	70 950 100 033

Figure 2. Selector μ -PAC, Model CM-306,
Schematic Diagram and Logic Symbol
(Dwg B70021896, Rev. D)

SENSE AMPLIFIER μ -PAC, MODELS CM-363A/CM-489A/CM-734/CM-735

The Sense Amplifier μ -PAC, Models CM-363A and CM-734, contains four dual-in-line integrated circuit sense amplifiers, each of which contains two complete amplifier circuits capable of detecting and amplifying core signals. Each circuit has its own strobe input, all inputs being driven by the same buffer amplifier. A resistor divider network determines the threshold voltage for the eight circuits. Each amplifier output is connected to an inverter gate. The μ -PAC also contains the sense line termination resistors for each circuit.

The CM-489A and CM-735 contain only two dual-in-line integrated circuit sense amplifiers. Circuits A and B are omitted.

Circuit Function

A differential signal which is greater than the threshold voltage will produce a positive sense amplifier output if the strobe circuit is enabled. A negative strobe signal applied to the strobe buffer amplifier will enable the strobe gate and a positive signal will disable it. The sense amplifier output will be inverted, making a negative signal available to perform a logical OR function.

Specifications**Strobe Input**

Input loading: 1.6 mA

Power Dissipation

2.7W (max)

DC Threshold

14 mV to 28 mV

Output

Delay from strobe input to PAC output

Leading edge: 155 ns (max)

Trailing edge: 155 ns (max)

Current Requirements

+6V: 332 mA (max)

-6V: 110 mA (max)

Pulse width with 100 ns sense input

pulse width: 80 ns (min)

Drive capability: 12.8 mA

Figure 1. Sense Amplifier μ -PAC,
Models CM-363A/CM-489A, CM-734/CM-735,
Parts Locations (Dwg No. A70022955, Rev. E)

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C4	CAPACITOR, FIXED, MICA DIELECTRIC: 120 pF $\pm 10\%$, 100 Vdc	70 930 016 030
C5-C9	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 021
CR1, CR2	DIODE, SILICON	70 943 083 002
M1	MICROCIRCUIT: Type 936, hex inverter integrated circuit	70 950 105 004
M2	MICROCIRCUIT: Type 946, quad two-input NAND gate integrated circuit	70 950 105 002
M3-M6 ¹ M3, M4 ²	MICROCIRCUIT: Dual sense amplifier integrated circuit (See note 5)	70 950 100 XXX
M3-M6 ³ M3, M4 ⁴	MICROCIRCUIT: Dual sense amplifier integrated circuit	70 950 100 042
R1-R16	RESISTOR, FIXED, FILM: 150 ohms $\pm 2\%$, 1/4W	70 932 114 029
R17	RESISTOR, FIXED, FILM: 270 ohms $\pm 2\%$, 1/4W	70 932 114 035
R18	RESISTOR, FIXED, FILM: 1 ohm $\pm 2\%$, 1/4W	70 932 114 145
¹ CM-363/CM-363A ² CM-489/CM-489A ³ CM-734 ⁴ CM-735 ⁵ Part No. 70 950 100 034 (plastic) may be used interchangeably with 70 950 100 042 (ceramic)		

Figure 2. Sense Amplifier μ -PAC, Models CM-363A/CM-734,
Schematic Diagram and Logic Symbol
(Dwg A70022955, Rev. E)

7586

LEGEND

- (1) PIN NUMBER OF PAC
- (2) PIN NUMBER OF MICROCIRCUIT
- M3 REFERENCE DESIGNATION OF MICROCIRCUIT
- 936 TYPE OF MICROCIRCUIT

NOTE I: CM-489A OR CM-735

Figure 3. Sense Amplifier μ -PAC, Models CM-489A/CM-735,
Schematic Diagram and Logic Symbol
(Dwg A70022955, Rev E)

SENSE AMPLIFIER μ -PAC, MODELS CM-363B/489B/734/735

The Sense Amplifier μ -PAC, Models CM-363B and CM-734, contains four dual-in-line integrated circuit sense amplifiers, each of which contains two complete amplifier circuits capable of detecting and amplifying core signals. Each circuit has its own strobe input, all inputs being driven by the same buffer amplifier. A resistor divider network determines the threshold voltage for the eight circuits. Each amplifier output is connected to an inverter gate. The μ -PAC also contains the sense line termination resistors for each circuit.

The CM-489B and CM-735 contain only two dual-in-line integrated circuit sense amplifiers. Circuits A and B are omitted.

Circuit Function

A differential signal which is greater than the threshold voltage will produce a positive sense amplifier output if the strobe circuit is enabled. A negative strobe signal applied to the strobe buffer amplifier will enable the strobe gate and a positive signal will disable it. The sense amplifier output will be inverted, making a negative signal available to perform a logical OR function.

Specifications

Strobe Input

Input loading: 1.6 mA

DC Threshold

14 mV to 28 mV

Current Requirements

+6V: 332 mA (max)
-6V: 110 mA (max)

Power Dissipation

2.7W (max)

Output

Delay from strobe input to PAC output

Leading edge: 155 ns (max)
Trailing edge: 155 ns (max)

Pulse width with 100 ns sense input
pulse width: 80 ns (min)
Drive capability: 12.8 mA

* NOT USED ON CM-489B AND CM-735

Figure 1. Sense Amplifier μ -PAC, Models CM-363B/489B/734/735,
Parts Locations (Dwg No. A70022955, Rev. F)

Electrical Parts List

Ref. Desig.	Description	Part No.
C1-C4	CAPACITOR, FIXED, MICA DIELECTRIC: 120 pF $\pm 10\%$, 100 Vdc	70 930 016 030
C5-C9	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	70 930 313 021
CR1, CR2	DIODE, SILICON	70 943 083 002
M1	MICROCIRCUIT: Type 936, hex inverter integrated circuit	70 950 105 004
M2	MICROCIRCUIT: Type 946, quad two-input NAND gate integrated circuit	70 950 105 002
M3-M6 ¹ M3, M4 ²	MICROCIRCUIT: Dual sense amplifier integrated circuit (See note 5)	70 950 100 XXX
M3-M6 ³ M3, M4 ⁴	MICROCIRCUIT: Dual sense amplifier integrated circuit	70 950 100 042
R1-R16	RESISTOR, FIXED, FILM: 150 ohms $\pm 2\%$, 1/4W	70 932 114 029
R17	RESISTOR, FIXED, FILM: 270 ohms $\pm 2\%$, 1/4W	70 932 114 035
R18	RESISTOR, FIXED, FILM: 1 ohm $\pm 2\%$, 1/4W	70 932 114 145
	¹ CM-363B ² CM-489B ³ CM-734 ⁴ CM-735 ⁵ Part No. 70 950 100 034 (plastic) may be used interchangeably with 70 950 100 042 (ceramic)	

C5947B

LOGIC SYMBOLLEGEND

- (1) PIN NUMBER OF PAC
- (2) PIN NUMBER OF MICROCIRCUIT
- M3 REFERENCE DESIGNATION OF MICROCIRCUIT
- 936 TYPE OF MICROCIRCUIT

Figure 2. Sense Amplifier μ -PAC, Models CM-363B/734,
Schematic Diagram and Logic Symbol (Dwg No. A70022955, Rev. F)

7586B

LEGEND

- (1) PIN NUMBER OF PAC
- (2) PIN NUMBER OF MICROCIRCUIT
- M3 REFERENCE DESIGNATION OF MICROCIRCUIT
- 936 TYPE OF MICROCIRCUIT

Figure 3. Sense Amplifier μ -PAC, Models CM-489B/735,
Schematic Diagram and Logic Symbol (Dwg No. A70022955, Rev. F)

RESISTOR μ -PAC, MODEL CM-384A

The Resistor μ -PAC, Model CM-384A (Figures 1 and 2), contains 20 3W wirewound resistors. Sixteen of these (R1 through R16) are used as current limiting resistors for the inhibit drive lines. The four noninductive resistors form two groups of parallel pairs used as current-limiting resistors for the X- and Y- drive lines.

6557

Figure 1. Resistor μ -PAC, Model CM-384A,
Parts Locations (A70022970, Rev D)

Electrical Parts List (No. P70022970, Rev D)

Ref. Desig.	Description	Part No.
R1-R16	RESISTOR, FIXED, WIREWOUND: 30 ohms $\pm 1\%$, 3W	70 932 206 409
R17	RESISTOR, FIXED, WIREWOUND: 60 ohms $\pm 1\%$, 3W	70 932 223 123
R18-R20	RESISTOR, FIXED, WIREWOUND: 50 ohms $\pm 1\%$, 3W	70 932 223 122

5942

Figure 2. Resistor μ -PAC, Model CM-384A, Schematic Diagram

NAND TYPE 1 PAC, MODEL DI-335

The NAND Type 1 PAC, Model DI-335 (Figures DI-335-1 and DI-335-2), contains 10 independent 2-input NAND gates. Each gate performs the NAND function for positive logic (+6V = ONE, 0V = ZERO). For negative logic, it becomes a NOR gate.

Two of the 10 gates have separate load connections available at the PAC terminals. Outputs of these gates can be tied together, using a single load resistor, without loss of output drive capability. A detailed description of the basic NAND circuit appears in Section 1.

INPUT AND OUTPUT SIGNALS

Inputs

When both inputs to a gate are +6V or not connected, the output is at ground. When any input is at ground, the output is +6V.

Load

This point is internally connected through a collector load resistor to +6V.

Collector Output

The collector output must be connected to at least one load resistor, either internal or external to the module.

Output

Each output terminal is internally connected to a collector load resistor. If an output is connected to load points or other outputs, the output drive capability of the structure is reduced.

SPECIFICATIONS

<u>Frequency of Operation (System)</u>	<u>Circuit Delay</u>
DC to 5 MHz	(Measured at +1.5V, averaged over two stages) 30 ns (max)
<u>Input Loading</u>	<u>Current Requirements</u>
1 unit load each	+6V: 112 mA (max)
<u>Fan-In</u>	<u>Power Dissipation</u>
Refer to Section 1	0.67W (max)
<u>Output Drive Capability</u>	<u>Handle Color Code</u>
8 unit loads each	Red
<u>Outputs in Parallel</u>	
Refer to Section 1	

Figure DI-335-1. NAND Type 1 PAC,
Schematic Diagram and Logic Symbol

528

Figure DI-335-2. NAND Type 1 PAC, Parts Locations

Electrical Parts List

Ref. Desig.	Description	3C Part No.
M1, M2	MICROCIRCUIT: F-02, quad NAND gate integrated circuit	950 100 002
M3	MICROCIRCUIT: F-01, dual NAND gate integrated circuit	950 100 001
C1	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 μ F $\pm 20\%$, 50 Vdc	930 313 016

APPLICATIONS

The NAND gates operate on levels, pulses, or combinations of both. Two gates can be wired back-to-back to form a dc set-reset flip-flop.

The two gates with separate load outputs form standard NAND gates when the load and collector output terminals are connected. When the collector outputs of gates are connected in parallel as in Figure DI-335-3, the AND-OR-INVERT function is performed. At the point where the outputs are tied together, an AND operation with logic ONEs (OR operation with logic ZEROs) takes place.

Figure DI-335-3. NAND Type I PAC,
Gates Used in Parallel

EXTENDER PAC, MODEL XP-330

The Extender PAC, Model XP-330 (Figure XP-330-1), provides unobstructed access to any μ -PAC while it is electrically mounted in its appropriate μ -BLOC connector. The connector terminals at the front end of the XP-330 mount into any μ -BLOC connector and the connector at the rear accepts the μ -PAC it is displacing. Front and rear terminals are directly tied together electrically.

Figure XP-330-1. Extender PAC

CHAPTER III CSM-150 CORE MEMORY MODULE

SECTION 1 INTRODUCTION

GENERAL DESCRIPTION

The 8192-word CSM-150 Core Memory Module, used for the Type 316 processor main memory, has a word length of 17 bits. The 17th bit is not used if the mainframe does not have the parity option. The nominal memory cycle time is 1600 ns. The module occupies one 1-by-3 location in the processor drawer and can be paralleled with up to three modules on a single memory bus. A 4096-word, 17-bit memory module is also available for mainframes requiring only 4096 words of memory. Expansion above 4096 or 8192 words is allowable in 8192-word increments only.

Physical Description

The core memory module is packaged on a backplane with 7 rows of 3-connector-high assemblies. The connectors are mounted on 0.375-inch centers. Each connector is 2.3 inches long and has a double row of 34 solderless-wrap pins. The backplane assembly, when mounted in the H316 drawer, takes the same area as the CSM-160 Core Memory Module but requires extra height, which is available in the drawer. The printed circuit board used in the design is the MACRO-PAC with three connector tongues. The MACRO-PAC measures 8.45 by 4.5 inches. The core plane unit is a two-board folded design that plugs into two rows of six connectors. The X and Y drive electronics is packaged on one printed circuit board, and the sense-digit electronics is packaged on two printed circuit boards, thus requiring three rows of connectors for circuit boards. The I/O and module-to-module interconnections are accomplished by using cable PACs that plug into two connectors in each outside row of the backplane assembly.

Electrical Design

The CSM-150 Core Memory Module is built around a magnetic core array wired in a 3D, 3-wire organization, where each core is threaded by three wires; two of these wires are used for addressing a word, and the third is used for both reading and writing data in the bits of a word. Integrated circuits are used for addressing and read sensing, and a transformer-coupled discrete transistor driver is used for writing. The remaining circuits

are of the common or high-speed TTL type, with open-collector drivers on all outputs. The required memory voltages are +6, -6, and +15 Vdc, with the last one requiring temperature compensation for operation over the specified temperature range. The data outputs from the module are the outputs of open collector hex buffers.

SPECIFICATIONS

General

Organization	3-wire, 3-D coincident current
Capacity	4096 or 8192 words, expandable in 8192-word increments only
Word Size	17 bits
Addressing	Random access
Modes of Operation	Clear-Write Read-Write
Cycle Time	1600 ns (maximum rate at which memory may be cycled for all modes)
Access Time	350 ns max from MX YTM+ input

Physical (Nominal)

Width	2-3/4 in. (7.00 cm)
Length	9-7/16 in. (24.00 cm)
Thickness	5-3/4 in. (14.60 cm)
Weight	2.3 lb (1.05 kgm)

Environment

Operating Temperature	0 to +60°C
Storage Temperature	-55 to +85°C
Relative Humidity	95% without condensation
Cooling	220 linear ft per min.
Altitude	15,000 ft max.
Magnetic Fields	3.0 gauss max. magnetic field strength at the core plane

Power

Current requirements are listed in Table 3-1-1. The +6 Vdc and -6 Vdc inputs must be held within ± 5 percent at the backplane of the core memory module. The +15 Vdc must be within the range shown in Table 3-1-2 at the backplane pins. Current drain on the

+15 Vdc supply and power dissipation in the core memory module are strongly dependent on the number of data zeros being written into the memory.

Table 3-1-1.
Current Requirements

<u>Voltage, Vdc</u>	<u>Current, Amperes</u>	
	<u>Active</u>	<u>Standby</u>
+6	1.27	1.01
-6	0.25	0.25
+15	3.50	0.32

Table 3-1-2.
Operating Limits of Temperature-
Compensated 15 VDC Supply

<u>Temperature, °C</u>	<u>Limit, Vdc</u>
0	15.6 ± 0.6
25	15.0 ± 0.8
60	14.0 ± 0.6

Interface

Input, Standard	One standard TTL load -2.0 mA max. at +0.4V +50 µA max. at +2.4V +1.0 mA max. at +5.5V Input uncertainty range, +0.8 to +2.0V
Input, Exceptions MXYTM+ WRITE-, MADCL-A, Address and Bank Select	Three standard loads Two standard loads
Output, Standard	One open-collector drive +0.4V max. at +20 mA +250 µA max. at +5.5V All outputs are 7407 except EPARB+ (74H04) and PAMEO- (7405)

Data Retention

Data stored in the memory will not be altered during power on/off sequencing if the following conditions are met.

- Sequencing Up -- No commands to the memory module should be initiated until all the supply voltages have attained their nominal values (within the limits of the specified tolerances). The +6 and -6 voltages should attain 90 percent of their nominal values prior to sequencing up the +15V supply.
- Sequencing Down -- Memory cycle should not be in progress (all commands to the memory are halted) prior to or during the power down sequencing. The +15V should reach +3V prior to sequencing down the -6V and +6V supplies.

Parity

All core memory modules contain storage for the parity (17th) bit, the data register, and the parity generation electronics. These circuits are not used if the CPU does not have the parity option.

SECTION 2 OPERATING PROCEDURES

OPERATING MODES

The core memory, when commanded by the processor, performs read or write cycles at 1600 ns or slower. The address, mode, and exact timing of these cycles are controlled by the processor. All operating modes, each requiring one memory cycle, are listed in Table 3-2-1.

Table 3-2-1.
Operating Modes

<u>Mode</u>	<u>Description</u>
Read-Write	One word read from storage onto memory data output bus. Storage location cleared by fetch but written into storage from data input bus.
Clear-Write	One word in storage cleared and written with new data from memory data input bus.

ADJUSTMENTS AND LIMITATIONS

Adjustments

No operating adjustments are required for the core memory module. The power supply voltages and strobe calibration should be checked, as specified in Section 6.

Limitations

Cooling. -- Systems containing core memory must not be operated unless the cooling system is functioning properly. Fan failures longer than 30 seconds cause overheating and may damage components. Blockage of cooling by cables or dust must be avoided to ensure cool air at a uniform temperature ($\pm 5^\circ\text{C}$) to all core memory modules operated from a single temperature-compensated power supply.

Looping. -- Higher memory reliability and lower power drain are achieved if a single cycle loop is avoided. Preferred loops occupy two or three cycles and contain mostly ONEs in instruction and operand words.

SIGNALS

The following signal descriptions assume the reader has some familiarity with the organization and operation of the core memory module. Persons unfamiliar with the module should read Section 3, Functional Theory of Operation.

Address Interface Signals

Address Inputs (MADD04+ through MADD16+). -- Input signals to the address registers are single ended and are stored in registers under the control of MADCL-A.

Bank Select Input (BANKX-). -- The memory bank-select input, a single-ended signal, is stored in a register under the control of MADCL-A. A ground level on BANKX- signifies module selection. BANKA-, BANKB-, BANKC- and BANKD- control memory modules A, B, C and D, respectively.

Data Interface Signals

Data Inputs (M01FF+ through M16FF+). -- Data inputs to the inhibit drivers are single ended and buffered through a 74H04. A high data input during the write cycle results in no inhibit current, and a ONE will be stored in the memory.

Data Outputs (MM01F- through MM16F-). -- Data outputs are single ended and supplied in open collector 7407 gates for wire-OR'ing with other modules. A negative data output pulse signifies a ONE output from the memory.

Timing and Control Interface Signals

Memory Read/Write Timing (MXYTM+). -- MXYTM+ is a single rail, positive-going double pulse that starts the read and write cycle timing in the core memory module.

Memory Strobe Enable (MSTEN-). -- MSTEN- is a single rail input to the core memory module that, when low, enables the memory sense strobe generation circuit.

Memory Address Register Clear Command (MADCL-A). -- Address register clear command is a single rail negative pulse whose trailing edge latches the address and bank register flip-flops. It is also used as parity data register clear pulse.

Write Enable (WRITE-). -- Write enable, a single rail negative pulse, gates the MXYTM+ command to generate the write timing for the core memory module.

Parity Bit Data Output (PAMEO-). -- The sense data output of the parity bit is stored in the parity data register, and the buffered output of the register (PAMEO-) is transmitted to the processor for parity error checking.

Parity Generator Output (PAGEO-). -- This is the output of the parity tree transmitted on a single rail to the processor.

Parity Error Strobe (EPARB+). -- This is a parity strobe pulse generated in the core memory module and transmitted single rail to the processor for parity error strobing.

SECTION 3 FUNCTIONAL THEORY OF OPERATION

BASIC OPERATION

The core memory module consists of an array of 139, 264 ferrite cores including those for the parity bits, surrounded by interface and control electronics. The core plane serves as a storage device due to the magnetic properties of the ferrite cores. Each ferrite core has two possible stable magnetic states, arbitrarily called ONE and ZERO. The act of writing a ONE consists of altering or switching a ferrite core from its ZERO state. To write a ZERO, the ferrite core is prevented or inhibited from altering its state. To read a ONE, the ferrite core is switched from its ONE to its ZERO state. The change of flux thus produced develops a voltage that is detected by the sense amplifier connected to the sense-inhibit line. To read a ZERO, the core remains in its ZERO state; therefore, no change of flux is detected. The purpose of the electronics surrounding the core array is to detect a particular word-set of cores in the array and either clear them and write in new data, or sense them and then, since the word has been set to ZERO in order to sense it, save and rewrite the sensed data back into the word. The time taken by either of these two operations, clear-write or read-regenerate, is one memory cycle.

FUNCTIONAL ELEMENTS

LBD 8114, Drawing No. 70032889, in Section 9 best illustrates the CSM-150 Core Memory Module. For additional details of each functional element and circuit, see Section 4, Detailed Theory of Operation, and the logic block diagrams in Section 9.

Storage Array

The storage array, which is the core plane, consists of 139, 264 ferrite cores, including the parity bit, wired into an array to permit access of one of 8192 words (17 bits per word) per memory cycle. Addressing the array requires selecting one of the 128 X-lines and one of the 64 Y-lines and pulsing these lines with two address selection currents (nominally 400 mA in amplitude and 300 ns wide) twice per cycle. The core plane is also threaded with 17 sense-inhibit lines, each passing through one ferrite core at each of the 8192 different X- and Y-line intersections. In every cycle each sense-inhibit line requires a nominal 750 mA, 350 ns wide inhibit current, if, in that bit, a ZERO is to be written. A data output from the array on the sense-inhibit winding is a differentially sensed voltage, approximately 38 mV for a ONE and less than 12 mV for a ZERO. Included on the core plane are 8-by-8 and 8-by-16 bipolar diode matrices which, coupled with the inherent 64-by-128 decoding in the array, simplify the addressing of 8192 separate words. These diodes are packaged in a 14-pin dual in-line package with 16 diodes per package. In the

two-diodes-per-line selection scheme used in this design, 16 DIPs (256 diodes) for the X-line selection (128 lines) and 8 DIPs (128 diodes) for the Y-line selection (64 lines) are required, thus making a total of 24 diode DIPs to complete the X-line and Y-line selection for the 8192-word core plane.

Selection Interface Circuits

Address selection currents are driven through the storage array from selection interface circuits, via the X- and Y-diode matrices. The address bits (13 for an 8192-word memory and 12 for a 4096-word memory) and Bank-Select signal supplied to the memory are latched in registers within the core memory module. These registers are set up before a memory cycle and remain stable for the duration of that cycle. The MA04 address register output is disabled for 4096-word memories, as shown in LBD 8101, Drawing No. C70032890, in Section 9. Selection circuits decode the address bits to select and drive a unique word in the memory. All currents are disabled if the core memory module is not selected by the BANKX- signal.

Write or Regenerate Interface Circuits

The core memory module contains 17 write circuits, one per bit in the data word. The information present on the data input bus lines is used to write data into the memory. During the second, or write, portion of a memory cycle, a write-inhibit current will be supplied to the core array if that data bit is to be stored as a ZERO. No inhibit current occurs if a ONE is to be written. Write circuits are required to write data in a word being read (Read-Write cycle) as well as to alter the stored data (Clear-Write cycle).

Read Interface Circuits

The core memory module contains 17 read circuits, one per bit in the data word. During the first, or read, portion of a memory cycle, the sense amplifiers, at strobe time, discriminate between the core ONE and ZERO signals on the sense-inhibit lines. If a ONE is detected, the Memory Data output bus is pulled to ground for the time shown in Section 9, LBD 8110, Drawing No. C70032895. If a ONE is not detected in a bit, no action occurs, and the data output bus remains high.

Timing and Control Circuits

Input signals MXYTM+ and WRITE- control the majority of timing in the core memory module. These signals are gated and buffered to control the inhibit-current pulse widths and delayed to provide the proper read- and write-drive current timings.

The sense amplifier strobe pulse is generated by a one-shot during the read portion of a read-write cycle. The MSTEN- input gates the sense amplifier strobe during a read-write cycle.

Parity Logic

Electronics to generate odd parity during every memory cycle are included in every core memory module. Also included is a parity data register to store the parity bit data output from the read portion of a read-write cycle for use later in the cycle for parity error check and parity rewrite.

The output of the parity generator is buffered through two separate buffers to drive two individual memory interface lines, PAGEO- and PAMEO-. The signal PAGEO- indicates to the processor the output state of the parity generator for comparison with PAMEO-.

The buffered outputs of the parity register and parity generator output (gated with LPREG+) are collector-OR'ed to drive the memory interface line PAMEO- and also tied internally to the memory write interface circuits to close the parity regeneration loop.

The use of parity by the processor is an optional feature at the CPU.

SECTION 4 DETAILED THEORY OF OPERATION

STORAGE ELEMENT

Information in a core memory is stored in an array of ferrite toroidal cores. Each core may be individually set to one of two magnetic states, thereby representing one bit of binary information. A discussion of ferrite core storage is best conducted in terms of the core B-H relationship, shown in Figure 3-4-1. Magnetizing force, H , is proportional to the total current on wires passing through the core. Magnetic flux density, B , is proportional to the resulting magnetization of the core. Figure 3-4-1 illustrates two useful properties of the core. First, the core is a threshold element. A core in state B_0 remains in that state if a magnetizing force of magnitude H_1 or less is applied and removed. Second, the core is a memory element. If a larger magnetizing force, H_2 , is applied, the core switches from the state of negative magnetic flux density, B_0 , to the state of positive magnetic flux density, B_1 , and remains there even after H is reduced to zero. The core remains in state B_1 until an equally strong magnetizing force in the opposite direction switches it back to B_0 . Figure 3-4-1 also illustrates one difficulty of core storage. In order to sense the state of a core it is necessary to measure the change in B resulting from the application of a force H , and the change in B is almost undetectable until that force exceeds H_1 . Therefore, a core must be switched to be sensed.

Figure 3-4-1. Ferrite Core B-H Characteristics

STORAGE ARRAY AND ADDRESSING

Read-Write Cycle and Coincident Current Selection

The storage array is formed by arranging cores and wiring so that there are as many sets of cores as there are bits in the storage word. In each set of cores a common sense-inhibit wire threads every core, and running through all sets are X- and Y-address selection lines that intersect each other only once in each bit-set of cores. A two-bit, four-word array is shown in Figure 3-4-2.

Figure 3-4-2. Two-Bit, 4-Word, 3D, 3-Wire Core Array

Figure 3-4-2 shows that if a current, slightly weaker than required to switch a core, is applied to one X-line and one Y-line, then only one core per bit mat will see a current $I_x + I_y$ strong enough to cause switching. If that core switches, a voltage is induced in the sense winding for that bit and shows up at the sense terminals, S_1 or S_2 . A core that switches as a result of such read-select currents is defined as having been in the ONE state. All cores in the selected word are then in the ZERO state after the read-select currents have ended, either because they were already ZERO, or because the read currents switched them to ZERO. After the read half cycle currents have read and cleared the word, write half cycle currents are applied to the same X- and Y-lines. These currents are equal to, but of opposite polarity from, the read-select currents. Again, only one core per bit set may see a total current strong enough to cause switching. The write half cycle currents drive all the bits in the selected word back to the ONE state. If a ZERO is to be written into a particular bit instead of a ONE, the sense-inhibit winding for that bit is driven with an inhibit current $2I_{Z1}$, which cancels one write-select current in the selected core. The inhibit current prevents that core from switching out of the ZERO state. As many inhibit currents are required as there are ZEROS in the word to be written. Study of Figure 3-4-2 will prove that the inhibit current does not add to any write select currents, so no other core in that bit-set will be switched during a write half cycle.

Figure 3-4-3 shows the means of connecting two diodes to one end of each X- or Y-selection line and bussing the other ends of the selection lines to form a 2-by-2 bipolar diode matrix. The matrix permits driving a particular selection line, without driving any other line, by selection of one bus line and one pair of drive lines (one drive line for each current polarity). The simplified matrix shown is not efficient, but the actual matrix is efficient, since one of the two matrices, namely the Y-matrix on the core plane, addresses 64 drive lines with only eight bus lines and eight drive line pairs. The X-matrix addresses 128 lines with 16 bus lines and 8 drive line pairs. A 4096 word memory module has an 8192 word core plane, but half the X address lines are disabled by the MA04 address register wiring change shown in Section 9, LBD 8101, Drawing No. C70032890.

Figure 3-4-3. Two-by-Two Bipolar Diode Matrix

SELECTION CIRCUITS

Selection Switches

Figure 3-4-4 illustrates how bipolar selection currents are driven through the storage array. Each switch circuit acts as a single-pole, double-throw switch. If all six address bits are true, a pair of read-timing or write-timing commands cause a current path to be completed through the selection line, from the drive current node to ground. The current flows through the selection line in either of two opposite directions, depending whether read or write timing is commanded. The core memory module contains 8 drive line switches and 8 bus line switches for the Y-axis and 8 drive line switches and 16 bus line switches for the X-axis.

Figure 3-4-4. Selection Switches

DATA LOOP

Read Data Path

The read data path is illustrated in Figure 3-4-5. The ONE signal from the core plane is a differential signal of typically 38 mV peak amplitude, of either polarity (hence the sense amplifier exclusive-OR symbol). The ZERO signal is ideally zero, but various effects bring it up to about 10 mV at strobe time. The sense amplifier is biased with external resistors to discriminate between ONES and ZEROS at a nominal threshold of 18 mV. The sense amplifier is strobed early in a memory cycle when the address selection noise on the sense-inhibit lines has decayed below the threshold level. If a ONE is detected, a negative going pulse appears on the data output bus. If a ZERO is present, the data output remains high. A pulse stretcher circuit on each data output circuit guarantees the minimum pulse width needed to set the memory information register in the CPU. All data output lines are from open collector 7407 buffers.

Figure 3-4-5. Read Data Circuits

There are 17 read circuits in a core memory module, including the parity bit. The 17th bit is not used if the CPU does not have the parity option.

Write Data Path

The write data path is shown in Figure 3-4-6. Inhibit current is driven into a sense-inhibit winding only when a ZERO is to be written in that bit of the word. The two-input gate turns on (ground output) at inhibit time if the memory data input is low. Current in the gate output is coupled through a 1 to 1 transformer to turn on the inhibit driver transistor. The saturated transistor completes the inhibit current path, from +15 Vdc through the sense-inhibit winding to ground. The value of inhibit current is set by the +15 Vdc supply and the inhibit resistor. A balun-connected transformer forces equal current sharing in the two legs of the winding.

When inhibit time ends and the transistor is turned off, inductance of the inhibit winding tends to continue the current flow in the same direction as before, and the inhibit driver end of that winding swings sharply to a negative voltage. The turnoff diode clamps this swing and provides a path for the current to decay exponentially to zero. There are 17 inhibit circuits in a core memory module.

Figure 3-4-6. Inhibit Circuit

TIMING AND CONTROL

Refer to Section 9 for detailed diagrams of the timing circuits. Signal names used below follow the same conventions used in the LBDs in Section 9; that is, when several similar signals (e.g., data inputs) are described together, their differentiating characters (e.g., M₀1FF+) are replaced with double letters (MXXFF+). Also, signals that differ only by a suffix (INHEN+A and INHEN+B) have identical timing except for differences in gate delays.

Address and Current Timing

Prior to a memory cycle, address and bank-select are gated into registers by MADCL-A. Register outputs follow the inputs as long as MADCL-A is low.

The cycle begins with the leading edge of the first positive pulse of MXYTM+. The leading and trailing edges of this first pulse are shifted in an RLC network and combined in gates to form read current timing commands (XRSW+, XRSK+A, XRSK+B, YRSW+ and YRSK+). The second positive pulse of MXYTM+ is similarly shaped to produce the write-timing (XWSW+A, XWSW+B, XWSK+, YWSW+, YWSK+) and inhibit-timing (INHEN+A and INHEN+B) signals.

Data Loop Timing

Sense amplifier strobe (STROB-) timing is generated by ANDing three signals: XRSW+ (read current timing signal), MSTRB- (reset output of a one-shot triggered from YRSK+), and MSTEN+ (buffered memory strobe enable input from the CPU).

The XRSW+ input removes a race condition due to triggering delay in the one-shot and also defines the trailing edge of strobe. The MSTRB- input defines a critical timing edge, the leading edge of strobe. The MSTEN+ input disables the strobe pulse during clear-write cycles. The strobe pulse enables the sense amplifier data to the data output bus through the pulse stretcher and buffer.

Parity Logic

The electronics and logic associated with the parity bit consist of the following:

- a. The 17th bit (parity bit) read data path,
- b. The 17th bit (parity bit) write data path,
- c. The parity generator,
- d. The parity data register.

The 17th bit, read-data and write-data paths have previously been explained. The parity generator consists of two 8-bit parity generator checker circuits (PG1 and PG2) connected in series to generate odd parity. The system data input lines are broken into two 8-bit groups. The buffered outputs of M01FF+ through M08FF+ drive PG1, and the output of PG1 and buffered outputs of M09FF+ through M16FF+ drive PG2 (see Figure 3-4-7). The output of the parity generator is buffered through the 7404 and 7407 gates to drive the memory interface line designated PAGEO-. The output of PG2 is also gated with a timing pulse called LPREG+. The output of this gate is collector-OR'ed with the parity register's buffered output to control the interface signal line called PAMEO-. The PAMEO- has two functions depending upon the memory cycle in progress. During a read-write cycle the 17th bit is stored in the parity register and PAMEO- is used to compare with PAGEO- at the processor end. It is also tied internally to the write interface to complete the regeneration or write portion of the cycle. During clear-write cycles PAMEO- is controlled by the gated output of PG2 to write the parity information into the memory.

Figure 3-4-7. Parity Generation and Register Logic

TIMING DIAGRAMS

Refer to Section 9, LBDs 8110 and 8111, Drawing No. C70032895 and C70032897, for interface and internal timing, respectively.

SECTION 5 INSTALLATION

Service personnel should be familiar with the complete installation procedure and the interface requirements before attempting to install the core memory module.

TOOLS AND TEST EQUIPMENT

Table 3-5-1 lists the tools and equipment required to install the core memory module.

Table 3-5-1.
Installation Tools and Test Equipment

<u>Quantity</u>	<u>Description</u>	<u>Type or Equivalent</u>
1	Digital voltmeter	Honeywell Model 623 ($\pm 0.05\%$ F.S., 1 Megohm Input Resistance)
1	Trimpot adjustment tool or screwdriver	
1	Screwdriver	Phillips
2	Screw, pan head	70904113021
2	Lockwasher, split	70902006078
2	Washer, flat	70902054003
2	Bushing, insulated	70916300007
2	Spacer	A700322753701

SPACE AND ENVIRONMENT

The core memory module occupies the same space as a 1-by-3 omni-BLOC. Environmental specifications are listed in Section 1.

INTERFACE CONSIDERATIONS

The interface requirements are met by inserting the two I/O cable PACs into the appropriate connector slots provided in the memory connector block. Interface pin connections and cable PAC locations are shown in LBD 8112, Drawing No. C70032896, in Section 9.

INSTALLATION PROCEDURES

Unpacking, Repacking and Reshipping

Upon receipt of the core memory module, care must be exercised in unpacking. A thorough visual inspection should be made for damage and loose hardware. Check for

foreign objects between the core plane boards. Extreme caution must be observed to prevent any object from penetrating into the core plane area.

Should reshipping become necessary, wrap the module in plastic, seal with tape, and place in a sturdy cardboard box with more than one inch of resilient packaging on all sides.

Mechanical Procedures

Insert the core memory module with the circuit boards side up in the upper level of the chassis. Use the spacer, tools, and mounting hardware outlined in Table 3-5-1.

Electrical Checkout Procedure

To perform the electrical checkout procedure,

- a. Load the Core Memory Test Program, CMT5, Document No. 70181454000.
- b. Run the diagnostic test in the installed module.
- c. Halt the program, fetch any location in the module, turn power off and on, and fetch the location again to see that it is unchanged.
- d. Perform the voltage and strobe margin checks described in Section 6.

SECTION 6 MAINTENANCE

EQUIPMENT CONFIGURATION

Mechanical Assemblies

The mechanical components of the core memory module are shown in Section 10. There are five major subassemblies: three circuit boards, one core plane, and one solderless-wrap connector backplane.

Module Location

The core memory module occupies the same area as a 1-by-3 omni-BLOC. Since the CSM-150 Core Memory Module is higher than a CSM-160 Core Memory Module, it requires slightly different mounting methods, as described in Section 5.

OPERATOR MAINTENANCE

No operator maintenance is necessary on the core memory module. The operator should periodically check the cooling fans and air filters.

STANDARD MAINTENANCE

Tools and Test Equipment

The tools and equipment listed in Table 3-6-1 are needed for maintenance and troubleshooting in addition to those listed in Table 3-5-1.

Table 3-6-1.
Troubleshooting and Maintenance Tools and Test Equipment

<u>Quantity</u>	<u>Description</u>	<u>Type or Equivalent</u>
1	Oscilloscope	Tektronix 454
1	Multimeter	Simpson 260
3	Card Extender PACs	Honeywell XP-330
1	MACRO-PAC Extractor Tool	Honeywell B70026032701
1	AC Current Probe	Tektronix P6020
1	Hand Wire-Unwrapping Tool	Gardner-Denver 505244
1	Hand Wire-Wrapping Tool, Battery-Operated	Honeywell 70917200001 (Gardner-Denver No. 14R2)
1	Wire Stripper	Honeywell 70917250001 (Ideal 45-179)

Table 3-6-1. (Cont)

<u>Quantity</u>	<u>Description</u>	<u>Type or Equivalent</u>
5 Ft	No. 30 AWG Solid Wire	Honeywell 70940061010
1	Quick Disconnect Terminal Crimper	T & B WT 145

Preventive Maintenance

Cleanliness. -- The core memory module must be kept free of dust, dirt, and any foreign objects. The air filter of the cooling system must be kept clean to ensure sufficient air flow. Should it be necessary to clean the core plane, only use de-ionized water. However, cleaning the core plane is not recommended as a field procedure.

CAUTION

Never use an air hose to clean the core plane.

Margin Checks. -- The power-supply margin checks can detect performance degradation before operational failures occur. The memory drive and inhibit currents are determined by the setting of the +15 Vdc supply and the resistors on the CM-866 and CM-867 boards. The +15V supply setting should be periodically checked by using a voltmeter capable of reading the voltage within ± 1 percent. Measurements should be made at the memory terminals while a program is running in the memory. The CMT5 diagnostic program contains several test patterns, including the worst pattern (exclusive-OR of MAD13- and MAD08-), all ONEs and all ZEROs. Failure points at the high +15V setting (do not exceed +17.5V) and low +15V setting should be noted; their differences should be at least 1.6V at 25°C and 1.2V at 0 and 60°C. The +15V supply should be set at the center of the failure point margins. Temperature tracking specifications are listed in Section 1.

Adjustment

The core memory module has no adjustable components. The timing of the sense amplifier strobe pulse is set at Honeywell Inc. for each unit to give optimum operating margins. It is not necessary to adjust the strobe timing. If a change in timing is required to obtain proper memory operation, the associated boards and core plane should be checked before a change is made.

Table 3-6-2 presents the strobe jumpers that can be added for test purposes to uncover marginal operation. The jumper locations are shown in Figure 3-10-1 in Section 10 and on LBD 8101, Drawing No. C70032890, in Section 9.

Table 3-6-2.
Memory Strobe Test Modes

<u>Mode</u>	<u>Mean</u>	<u>Function</u>
Early Strobe	Jumper J ₂ (between SST5 and SST2)	Increase tendency for memory to pick ONEs (detect marginal ZERO bits)
Late Strobe	Jumper J ₃ (between SST1 and SST4)	Increase tendency for memory to drop ONEs (detect marginal ONEs)
Normal	No Jumpers	Normal

Removal and Replacement

The board connectors are polarized to protect against incorrect board insertion. Board removal from the memory is accomplished by engaging the cut-out in the handle of the board with the board extractor tool. Do not remove or insert printed circuit cards without turning off the dc power. Additional care should be taken when removing the CM-867 data board adjacent to the I/O cable slot in the first memory module as the cable sleeving can be ruptured due to scratching by the DIP leads on the etch side of this board.

CAUTION

Remove the boards on both sides of the core plane. This allows more room for gripping the handle when removing the core plane. Do not use the MACRO-PAC Extractor Tool or any other tool; otherwise, damage to the core plane will result.

When replacing defective components, use a low-wattage soldering iron and rosin 60/40 solder. Remove excess solder from the printed circuit board. Care should be taken to avoid lifting the etch.

SECTION 7 TROUBLESHOOTING

GENERAL PROCEDURES

The following steps should be performed before repairing the module.

- a. Uncover symptoms.
- b. Determine type of problems.
- c. Determine section at fault.
- d. Locate faulty circuit.

If the module is to be forwarded for repair, troubleshooting should nonetheless be carried at least through Step b and specifics of the problem forwarded along with the module. Include the module serial number with all documentation. If the module is to be replaced, use the checkout procedure in Section 5 on the new module. The reader should be familiar with the material in previous sections of the manual before attempting repairs other than module replacement. Refer to Section 6 for maintenance tools and procedures, Section 8 for signal mnemonics, Section 10 for mechanical assemblies, parts locations, and parts lists, and Section 9 for logic diagrams and detailed timing diagrams.

SPECIFIC PROCEDURES

Module Interchangeability

Module interchangeability involves no wiring changes. Unless the problem is a marginal condition in the processor or power supply, module swapping will isolate a faulty module. Because of the above uncertainty, diagnosis should be carried beyond module swapping. All memory boards with the same designation are interchangeable. For example, a CM-867B will replace a CM-867B, CM-867A or CM-867. A CM-867 will not be interchangeable with a CM-867A or CM-867B.*

Core Memory Test Program

The core memory test (CMT) program exercises the memory in various troublesome and diagnostic patterns and prints out errors. It is useful for uncovering and determining the type of problem.

Control Panel Debugging

Control panel debugging is invaluable if the processor cannot load and run CMT, but is almost useless for intermittent or pattern-sensitive errors. A general path to try is as

*This is an example only. CM-867A and CM-867B do not exist at this time.

follows. Store ONEs throughout the module, and examine suspect locations. Repeat with ZEROs. To check if address bit circuits are operating, go to the lowest address in the module, and store ZERO in it. Set each address bit (4 through 16) to ONE, one at a time, and store the address in itself. Fetch the lowest location again, check that it is still ZERO. Store ZERO in it again. Fetch each of the other locations stored; they should be unchanged. Any errors in the words being read will point to the address bit at fault. This test is most stringent with +6 Vdc supply to the module set 5 percent low. In all above tests, fetching two or three times at the same address will check regeneration.

Waveform Checks

Waveform checks isolate a problem to a specific circuit. The majority of signals can be observed on the backplane connector pins or the board test point terminals (labelled TP on the LBDs and assembly drawings). If additional signals must be viewed, three XP-330 μ -PAC extenders can be used.

The drawings in Sections 9 and 10 can be used to determine the proper waveforms. Common circuits (e.g., data bits) can be compared to determine signal differences. Check the CM-866 drive and timing signals if failures are common to all data bits. Observe the CM-867 sense and inhibit waveforms if failures are at all locations and at some or all data bits. Probing sense amplifier inputs requires a differential oscilloscope preamplifier and should be done carefully to avoid component damage and introduction of spurious signals.

CORE PLANE TROUBLESHOOTING

Under normal operating conditions it is unlikely that troubles will occur within the core plane. However, continuity measurements of the sense-inhibit and drive windings enable maintenance personnel to check core-plane wiring. Exercise caution in taking these measurements to avoid damaging the matrix windings.

Repair should not be attempted on the core plane since it may affect vendor warranties. A defective core plane should be returned to Honeywell Inc. for repair or replacement. A report describing failure symptoms or diagnosis should be returned with it.

CAUTION

Multimeter current and voltage should be kept below 300 mA and 30V, respectively, to avoid damage to matrix windings and components.

Sense-Inhibit Windings

- a. Turn off memory power. Remove the CM-867 data board associated with the sense-inhibit windings to be checked.
- b. Place the ohmmeter leads across the sense winding inputs (SWXX+ and SWXX-) to the CM-867 data board, as determined from LBD 8104, Drawing No. C70032893, in Section 9 (bits 1 to 16) or from LBD 8105, Drawing No. C70032894, (parity bit 17), and check for continuity. One sense-winding links 8192 cores.

- c. Resistance readings should be typically 13 ohms (across SWXX+ and SWXX-) for all sense-inhibit windings. The resistance readings for all windings should agree within ± 7 percent.
- d. Measure between signals IZXX+ and SWXX+ to check inhibit wiring continuity. Results should be 6.4 ohms ± 7 percent. Repeat for IZXX+ to SWXX-.

Drive Windings

- a. Turn off memory power. Remove the CM-866 address board. The drive winding connections to the core plane are shown in LBDs 8102 and 8103, Drawing No. C70032891 and C70032892, respectively, in Section 9 and Figures 3-10-3 and 3-10-4 in Section 10.
- b. The actual drive line connections are located on the core plane printed circuit board. The selection switch outputs are isolated by a diode from each drive line so that the resistance reading between any drive bus (e.g., XDXX) and line bus (e.g., XBXX) includes a diode forward drop.
- c. Measure continuity by putting one ohmmeter probe on the XDXX (or YDXX) pin and the other probe on the XBXX (or YBXX) bus. A low resistance of one forward diode drop plus a drive line resistance of approximately 8.5 ohms indicates continuity for the diode and the drive line. It may be necessary to reverse the probes to obtain the correct polarity to forward bias the selection diodes. A high impedance measurement in both directions indicates an open line or diode.

Troubleshooting Table

Memory failures are localized by loading the test pattern into the memory and by initiating a read operation at each address sequentially and then checking each readout data word for the type of failures. Generally, memory failures are operational failures, partial data word failures, or address, decoding and selection failures. An operational failure, caused by faulty timing and control circuits, occurs when commands applied to the memory have no apparent response or when there is a faulty operation at all addresses.

Partial data word failures are caused by a faulty sense amplifier, data register flip-flop (in the processor), or by data-write circuits.

Address, decoding and selection failures are caused by a faulty address register or selection circuits. The memory operation is faulty at only particular addresses.

Table 3-7-1 lists the general type of memory failure along with symptoms and probable causes.

Table 3-7-1.
Troubleshooting Memory Failures

<u>Failure</u>	<u>Symptom</u>	<u>Probable Cause</u>
Operational	No apparent response to commands	1. Dc voltage 2. No timing inputs (CPU failure) 3. MXYTM+, WRITE-, MADCL-A, BANK X- signals and associated logic.
	Unable to read from any address	1. +15 Vdc supply 2. MSTEN-, STROB- 3. CPU

Table 3-7-1. (Cont)

<u>Failure</u>	<u>Symptom</u>	<u>Probable Cause</u>
Partial Data Word	Failure of one bit (ZERO or ONE) at all addresses	1. CM-867 data board 2. CPU data register 3. Sense-inhibit winding
	Failure of one bit at particular addresses	1. CM-867 data board 2. CM-866 address board 3. Sense-inhibit winding 4. X- or Y-drive line 5. X- or Y-selection diode
	Failure of one bit at one address	1. Marginal data board (CM-867) 2. Marginal core
Address, Decoding, and Selection	All bits fail as a function of particular address bits	1. CM-866 address board 2. X- or Y-drive line 3. X- or Y-selection diode
	All bits fail at lower or upper 4096 addresses	Configuration jumper (LBD 8101) in- correct

Cable Information

LBD 8113, Drawing No. 70032899, in Section 9 shows the locations of two μ -PAC jumper cables required for each CSM-150 Core Memory Module. LBD 8112, Drawing No. 70032895, in Section 9 shows the backplane pins for all interface signals. Power (+15 Vdc, +6 Vdc, -6 Vdc and ground) is connected to the Heyco connectors on the solderless-wrap backplane.

SECTION 8
REFERENCE DATA

The signal mnemonics for the CSM-150 Core Memory Module are listed below.

<u>Signal</u>	<u>Description</u>	<u>LBD</u>
BANKA- through BANKD-	Memory Bank Select Inputs	8101, 8112
INHEN+ A, B	Inhibit Timing Command	8101, 8104, 8105
M01FF+ through M16FF+	Memory Module Data Inputs	8104, 8105, 8112
MAD04- through MAD16-	Memory Address Inputs	8101, 8102, 8103, 8112
MADCL-A	Memory Address Clear Command	8101, 8112
MM01F - through MM16F -	Memory Data Outputs (sense amplifier outputs)	8104, 8105, 8112
PAMEO-	Parity Bit Data Output	8105, 8112
PAGEO-	Parity Generator Output	8105, 8112
EPRAB+	Parity Error Strobe Output	8105, 8112
APGNO+	8-Bit Parity Generator Output	8105, 8112
IZ01+ through IZ17+	Inhibit Windings	8104, 8105
STROB±	Sense Amplifier Strobe Command	8101, 8104, 8105
SW01± through SW17±	Sense Windings	8104, 8105
MXYTM+	Memory Read and Write Timing Commands	8101, 8112
WRITE-	Write-Enable Timing Command	8101, 8112
MSTEN±	Memory Strobe-Enable Command	8101, 8112
MWENB+	Memory Write-Enable Command	8101
LPREG±	Load Parity Register Command	8101, 8105
MLATC+ A, B, and -A	Memory Address Latch Command	8101, 8102, 8103
AR04± through AR16±	Memory Address Latch Output Commands	8101, 8102, 8103
MSTRB-	Memory Strobe Leading Edge Timing Command	8101
MRGEN-A and MRGEN-B	Memory Read-Enable Command	8101
MWGEN-A and MWGEN-B	Memory Write-Enable Command	8101
Test Points A, B, C, and X	Test Points	8101
XRSW+	X-Read Switch Timing Command	8101, 8103
XRSK+A and XRSK+B	X-Read Sink Timing Command	8101, 8103
XWSW+A and XWSW+B	X-Write Switch Timing Command	8101, 8103
XWSK+	X-Write Sink Timing Command	8101, 8103
YRSW+	Y-Read Switch Timing Command	8101, 8102

<u>Signal</u>	<u>Description</u>	<u>LBD</u>
YRSK+	Y-Read Sink Timing Command	8101, 8102
YWSW+	Y-Write Switch Timing Command	8101, 8102
YWSK+	Y-Write Sink Timing Command	8101, 8102
XDCSR+	X-Diode Drive Current Source	8103
XBCSR+	X-Bus Drive Current Source	8103
YDCSR+	Y-Diode Drive Current Source	8102
YBCSR+	Y-Bus Drive Current Source	8102
SAVTH-	Sense Amplifier Threshold Voltage	8104, 8105
MIT01- through MIT17-	Memory Inhibit Bit 01 through 17	8104, 8105
M01FF-A through M17FF-A	Buffered Data Inputs	8104, 8105

SECTION 9
LOGIC BLOCK DIAGRAMS

This section includes the logic block diagrams (LBD) referenced throughout Chapter 3.
The LBD number of each drawing is shown in the upper right-hand corner.

<u>LBD No.</u>	<u>Drawing No.</u>	<u>Description</u>
8101	C70032890	CSM-150 Memory Timing and Control, CM-866 Address Board, Slot 2
8102	C70032891	CSM-150 Memory Y-Selection, CM-866 Address Board, Slot 2
8103	C70032892	CSM-150 Memory X-Selection, CM-866 Address Board, Slot 2
8104	C70032893	CSM-150 Memory Data Bits 1 through 16, CM-867, Slots 5 and 6
8105	C70032894	CSM-150 Memory Parity, CM-867, Slots 5 and 6
8110	C70032895	CSM-150 Memory Interface Timing
8111	C70032897	CSM-150 Memory Internal Timing Diagram
8112	C70032896	CSM-150 1-by-3 Connector Wiring
8113	C70032899	CSM-150 Memory PAC Complement/ Allocation
8114	C70032889	CSM-150 Memory Block Diagram

⚠ ○ DESIGNATES BOARD CONNECTOR AND PIN. >-- INDICATES CSM-150 INTERFACE SIGNAL
□ INDICATES SOURCE LBD OR I/O PIN.

CHK. REVISIONS REV.
PER ISSUE A
ECC 30725 B

HONEYWELL

HONEYWELL
I N C.
 COMPUTER CONTROL EQUIPMENT

 COMPUTER CONTROL DIVISION
611 South Main Street • P.O. Box 1000 •

Old Connecticut Path, Framingham, Mass.

DR. R. BOUDROT

ENG. S.DURVASULA **8/10/72**

APP. D. ROTHENBERG 8/10/72

PROJECT NO. H404-01

TITLE

CSM - 150 MEMORY

Y SELECTION

1 SELECTION

- CM-866 ADDRESS

SLOT 2

SIZE DWG NO.

C 70032891

REV.
B

NOTICES

A LOGIC, INHIBIT AND SENSE AMP GNDs ARE TIED TOGETHER BY THE BACKPLANE GND. E

3 M, N, P, DOUBLE AND TRIPLE LETTERS ARE VARIABLES SHOWN IN TABLE. AN EXAMPLE FOR INHIBIT VARIABLES G6, FF, XX AND N IS THE M101- CONNECTION FROM DIP M4 OUTPUT 06 TO RESISTOR R1A.

WARNING SPARE GATES M3 OUT PUTS 3 AND 12, M11 OUTPUT 12, M17 OUTPUTS 16 AND 18 ARE FOR INTERNAL USE ONLY.

 DESIGNATES BOARD CONNECTOR AND PIN. INDICATES CSM-150 INTERFACE SIGNAL
 INDICATES SOURCE, LBD OR I/O PIN.

 E3 INDICATES SOURCE EBD OR I/O PIN

m LBD 12760 5/1

A B C D E F G H J K L M N P L.B.D. NO. 8III

TIME IN NANoseconds

NOTES:

⚠ JUMPERS J2 AND J3 SHALL VARY STROBE TIMING 12 ± 3 NS EARLIER AND LATER RESPECTIVELY.

⚠ INPUTS NOT SHOWN AND OUTPUTS SHALL BE PRE LBD 8II0.

⚠ TIME IN NANoseconds (1.5V POINTS). TOLERANCE ± 8 NS.

CHG	REVISIONS	REV.
1	PER ISSUE A	
2	ECO 3055	3
3	EXT CHGS PER	
4	ECO 23-75	
5	ECO 2044	2
6	ECO 2044	1

H O N E Y W E L L

I N C.
COMPUTER CONTROL DIVISION
Old Connecticut Path, Framingham, Mass.

DR. W. O'BRIEN DATE 8/10/72

ENG. S. DURVASULA 8/10/72

APP. D. ROTHENBERG 8/10/72

PROJECT NO. H404-01

TITLE
CSM-150 MEMORY
INTERNAL TIMING
DIAGRAM

SIZE DWG NO. 70032897 REV. B

A B C D E F G H J K L M N P LBD. NO. 8112

MEMORY/MAINFRAME INTERFACE ▲

INTERMODULE CABLE
CONNECTOR SLOT I

	A1		A7
BANKC-	01	02	BANKB-
MM05F-	03	04	MM04F-
M12FF+	05	06	M13FF+
MAD05-	07	08	MAD06-
MM03F-	09	10	GNDXX+B
MAD07-	11	12	MADCL-A
MAD08-	13	14	GNDXX+B
MM02F-	15	16	MSTEN-
M15FF+	17	18	GNDXX+B
M14FF+	19	20	MAD04-
MM01F-	21	22	GNDXX+B
M16FF+	23	24	PAMEO-
GNDXX+A	25	26	MXYTM+
WRITE-	27	28	GNDXX+A
	29	30	GNDXX+A
	31	32	GNDXX+A
GND	33	34	

INTERFACE CABLE
CONNECTOR SLOT 7

	A1		A7
BANKB-	01	02	BANKA-
MM05F-	03	04	MM04F-
M12FF+	05	06	M13FF+
MAD05-	07	08	MAD06-
MM03F-	09	10	GNDXX+B
MAD07-	11	12	MADCL-A
MAD08-	13	14	GNDXX+B
MM02F-	15	16	MSTEN-
M15FF+	17	18	GNDXX+B
M14FF+	19	20	MAD04-
MM01F-	21	22	GNDXX+B
M16FF+	23	24	PAMEO-
GNDXX+A	25	26	MXYTM+
WRITE-	27	28	GNDXX+A
	29	30	GNDXX+A
	31	32	GNDXX+A
GND	33	34	

BANK SELECT WIRING ▲

CSM-150 MODULE D
32K

CSM-150 MODULE C
24K

CSM-150 MODULE B
16K

CSM-150 MODULE A
8K (OR4K)

NOTES:

INTERFACE WIRING IS IDENTICAL FOR ALL CSM-150 MODULES. BANKX-SIGNAL NAMES ARE SHOWN FOR MODULE A AND DIFFERENCES FOR MODULES B,C,D SHOWN IN THE LOWER DIAGRAM.

BANKX-IS WIRED FROM A702 TO A227. BACKPLANE WIRES SHOWN ALLOW THE PROPER BANK SELECT SIGNAL TO BE CONNECTED TO EACH CSM-150 MODULE.

REV. 4 PER ISSUE

CHEC

ECO 30986 B

REV. C

DATE 8/10/72

ECO 75-7-5

REV. C

ECO 30986 C

DATE 8/10/72

ECO 75-7-5

REV. C

ECO 30986 C

DATE 8/10/72

ECO 75-7-5

REV. C

H O N E Y W E L L
I N C.

COMPUTER CONTROL DIVISION
Old Connecticut Path, Framingham, Mass.

DR. R. BOUDROT DATE 8/10/72

ENG. S. DURVASULA 8/10/72

APP. D. ROTHENBERG 8/10/72

PROJECT NO. H404-01

TITLE

CSM-150 MEMORY
1X3 CONNECTOR WIRING

SIZE Dwg No. REV.

C 70032896 C

A B C D E F G H J K L M N P L.B.D. NO. 8113

1
2
3
4
5
6
7
8
9
10
11
12

PAC ALLOCATION VIEWED FROM PAC SIDE

△ CODING EXAMPLE

NOTES:
 △ SLOT 7 ACCOMMODATES TWO INPUT CABLES. SLOT 1 IS FOR TWO INTERMODULE JUMPER CABLES.
 △ CHARACTERS ARE OPTIONAL AT MEMORY MODULE LEVEL AND GENERALLY NOT USED, FOR EXAMPLE, A1C10634 IS SHORTENED TO C634 TO INDICATE SLOT 6 CONNECTOR C PIN 34.
 △ SEE H316 CODING DWG. 70023412 FOR ADDITIONAL DETAILS.

REVISIONS

REV. A

PRE ISSUE

REV. B

PRE

REV. C

REV. D

REV. E

REV. F

REV. G

REV. H

REV. I

REV. J

REV. K

REV. L

REV. M

REV. N

REV. O

- P70 032 899

PARTS LIST

H O N E Y W E L L

I N C.

COMPUTER CONTROL DIVISION

Old Connecticut Path, Framingham, Mass.

PAC COMPLEMENT/ALLOCATION

DR. R. BOUDROT DATE 8/10/72

ENG. S. DURVASULA 8/10/72

APP. D. ROTHENBERG 8/10/72

SIZE DWG NO. REV.

PROJECT NO. H 404-01

C 70032899 B

SECTION 10 MEMORY PAC DESCRIPTIONS

This section contains the following circuit descriptions and parts lists for the special Address Board, Model CM-866, and Data Board, Model CM-867, used in the CSM-150 Core Memory Module. For board locations, refer to the PAC complement, shown in LBD 8113, Drawing No. 70032899, in Section 9.

INTEGRATED CIRCUIT DESCRIPTIONS

The majority of integrated circuits are standard devices listed in vendor catalogs. Reference information is also contained in System 700, Type 716, Integrated Circuits Manual, Doc. No. 70130072667, which may be ordered from Honeywell Inc.

RECOMMENDED SPARE PARTS

One CM-866 address board, one CM-867 data board, and one CSM-150 core plane are recommended as spares.

ADDRESS BOARD, MODEL CM-866

The Address Board, CM-866, contains circuitry to perform the following functions.

- a. Store bank enable and address inputs received from the processor. This is implemented with four 7475-quad latches. The latch circuit outputs in turn drive the 25862 selection drivers.
- b. Provide selection and drive currents for an 8K matrix. This is implemented with twenty 25862-dual in-line packages, each of which includes two sink-switch pairs with decoding.
- c. Provide logic and timing circuitry to control matrix read-write timing, inhibit timing, register latch timing, sense amplifier strobe generation (pulse width control and leading edge adjustment), load parity register timing, and parity error strobe pulse. LBDs 8101, 8102, and 8103, Drawing No. C70032890, C70032891, and C70032892, respectively, in Section 9 illustrate the schematics for the CM-866 address board. Figure 3-10-1 is the assembly drawing for the CM-866 and Table 3-10-1 contains a listing of parts.

Specifications are as follows:

- a. Input Loading -- One standard TTL unit load except for MXYTM+, WRITE- and MADCL-A, which are two unit loads each.
- b. Selection Output Characteristics -- Current: 480 mA, max.; voltage: 17.5V, max.
- c. Timing -- Refer to LBDs 8110 and 8111, Drawing No. C70032895 and C70032897, respectively, in Section 9.

2. INSTALL J2 OR J3 TEMPORARILY AT SYSTEM TEST IF REQUIRED FOR STROBE
MARGIN CHECK PER LBD 8101.
1. POWER RESISTORS R12,13,16,17,23,24. WILL BE MOUNTED OFF P.C. BD. NOT
TO EXCEED THE COMPONENT HEIGHT SPEC. OF .230 MAX.

Figure 3-10-1. Address Board, Model CM-866, Assembly
(Drawing No. C70050523, Rev A)

Table 3-10-1.
 Address Board, Model CM-866, Parts List
 (P70050523, Rev C)

ITEM NO.	DOCUMENT NO.	DESCRIPTION	QTY
06 A	70950118 010	INTEGRATED DEVICE 74H00 M14	001
07 A	70950118 013	INTEGRATED DEVICE 74H10 M17	001
08 A	70950104 009	INTEGRATED DEVICE 9601 M15	001
09 A	70950118 011	INTEGRATED DEVICE 74H04 M13,M41,M18,M16	004
10 A	70950118 006	INTEGRATED DEVICE 7475 M44,M20,M42,M43	004
11 A	P04040854-002	INTEGRATED DEVICE 25862 M21 THRU M40	020
12 A	70943083 003	DIODE SILICON CR7,CR8A THRU CR8H CR9A THRU CR9R	025
13 C	70032890 000	ELE SCHMATIC REF DWG	REF
14 C	70032891 000	ELE SCHMATIC REF DWG	REF
15 C	70032892 000	ELE SCHMATIC REF DWG	REF
I6 A	70930004 134	CAPACITOR 10 PF 6/-5%	002

NOTES

NOTE 1 ASSEMBLE PER C70050523

701 - CM-866

NOTE 2 VALUE MAY CHANGE AT FINAL TEST

RANGE 4.7K 70932114065 TO 12.0K 70932114075

Table 3-10-1. (Cont)

ITEM NO.	DOCUMENT NO.	DESCRIPTION	QTY
			701
17 A	70932226 259	C13,C14 RESISTOR FIXED W/W 40.2 OHMS 6/-1% 3WNI R12,R13,R16,R17	004
18 A	70932004 029	RESISTOR 150 OHMS 1/2W 6/-5% R24	001
19 A	70932114 049	RESISTOR 1.0K OHM 1/4W 6/-2% R15,R18,R26	027
		R14A THRU R14H R19A THRU R19R	
■20 P	04420034 001	DIODE SI RECT CR5	001
21 A	70939207 025	COIL RF 10UH 6/-10% L1,L2,L3,L4	004
22 A	70930100 208	CAPACITOR .01MFD 6/-20% C21,C24,C20,C16	004
23 A	70930004 112	CAPACITOR 62PF 6/-5%	002
		C11,C12	
24 A	70930230 023	CAPACITOR 6.8MFD 6/-2% 25V C22,C23,C17,C18,C19 C25	006
25 A	70932114 070	RESISTOR 7.5K OHMS 1/4W 6/-2% R22 NOTE 2	001
26 A	70930004 106	CAPACITOR 35 PF 6/-5% C15	001
27 A	70932114 047	RESISTOR 820 OHMS 1/4W 6/-2% R28	001
28 A	70932114 075	RESISTOR 12.K OHMS 1/4W 6/-2% R29	001
29 A	70937077 004	TERMINAL STUD T.P.X,T.P.Y, T.P.A, T.P.B,T.P.C	005
30 A	70937010 001	TERMINAL STUD SST1 THRU SST6	006
31 A	04910040 004	JUMPER J1	001
32 A	70932004 026	RESISTOR 110 OHMS 1/2W 6/-5% R23	001
33 B	70008913 866	PLATE IDENT.	001

DATA BOARD, MODEL CM-867

The CM-867 data board contains circuitry to implement the following functions:

- a. Amplify sense winding signals for 9 bits and adapt them for presentation to the central processor.
- b. Generate inhibit currents for 9 bits, depending upon the state of the data input lines to the board.
- c. Provide parity generation. Store the sense output of the parity bit in the parity data register.
- d. Reduce the +6V and -6V power supply levels to +5V and -5V, respectively, for use with TTL circuits.

The schematics for the CM-867 data board are shown in LBDs 8104 and 8105, Drawing No. 70032893 and 70032894, respectively, in Section 9. The assembly drawing for the CM-867 data board is shown in Figure 3-10-2, and the associated parts list is presented in Table 3-10-2.

Specifications are as follows:

- a. Sense Input -- ONE: 25 mV minimum for 30 ns; ZERO: 12 mV max. for the duration of strobe.
- b. Inhibit Output -- Max. current: 850 mA; max. voltage: 17V
- c. Timing -- See LBDs 8110 and 8111, Drawing No. 70032895 and C70032897, respectively, in Section 9.

CSM-150 CORE PLANE

The CSM-150 plug-in core plane is a conventional 3-wire, 3D, coincident current configuration. Cores are switched by controlling currents in two orthogonal wires threaded through the cores, called X- and Y-lines. The sense and inhibit functions are shared by the third line that is parallel to the Y-line. A current through the sense-inhibit line during the write portion of a cycle prevents the core plane from switching and thus controls whether a ONE or ZERO is written into the core plane. The flux change during the read time is also sensed on the sense-inhibit wire during read-write cycles. There are 17 mats, each containing 8192 cores, for a total of 8192 words, each 17 bits long (parity is included).

The core plane assemblies vary according to the manufacturer, but all have the same interface characteristics. Figures 3-10-3 and 3-10-4 illustrate the assembly. Figure 3-10-3 is a simplified schematic diagram of the CSM-150 core plane, and Figure 3-10-4 illustrates the interface connections of the CSM-150 core plane.

Specifications are as follows:

Core O.D. = 18 mils

Core signals at nominal drive (400 mA) and inhibit (375 mA) currents:

Min. ONE: 25 mV for 30 ns

Max. ZERO: 12 mV

Temperature Compensation: 0.25 percent per °C

Peaking Time: 180 ns typical

Switching Time: 290 ns max.

Figure 3-10-2. Data Board, Model CM-867, Assembly
(Drawing No. C70050524, Rev B)

Table 3-10-2.
 Data Board, Model CM-867, Parts List
 (P70050524, Rev C)

ITEM NO.	DOCUMENT NO.	DESCRIPTION	QTY
			701 702
06 A	70950118 011	INTEGRATED DEVICE 74H04 M1,M2	002 002
07 A	70950118 019	INTEGRATED DEVICE 7438 M4,M5,M6	003 003
08 A	70950100 044	INTEGRATED DEVICE 7524	005 005
09 A	70938024 001	TRANSFORMER DIP T1 THRU T5	005 005
10 A	70943778 001	TRANSISTOR NPN Q1A THRU Q1J	009 009
11 A	70943083 003	DIODE SILICON CR1A THRU CR1J CR2A THRU CR2J CR3A THRU CR3J	027 027
12 C	70032893 000	ELE SCHMATIC REF DWG	REF REF
13 C	70032894 000	ELE SCHMATIC REF DWG	REF REF
15 A	70916400 002	INSULATOR DISK	009 009
16 A	70932114 029	RESISTOR 150 OHMS 1/4W 6/-2% R2A THRU R2J R5A THRU R5J R6A THRU R6J	027 027
17 A	70932226 245	RESISTOR FIXED W/W	018 018

NOTES

ASSEMBLE PER C70050524
 701 - CM-867

702=CM-867A

Table 3-10-2. (Cont)

ITEM NO.	DOCUMENT NO.	DESCRIPTION	QTY	
			701	/
18 A	70932114 001	28.7 OHMS 6/-1% 3WNI R3A THRU R3J, R10A THRU R10J RESISTOR	001	00
19 A	70932114 060	10 OHM 6/-2% 1/4W R9 RESISTOR	001	00
20 A	70930230 023	3K OHM 6/-2% 1/4W R8 CAPACITOR	014	C
21 A	70930100 208	6.8 MFD 6/-20% 25V C3A THRU C3E,C5,C7, C9,C12,C14,C15, C16,C17,C18 CAPACITOR	003	00
22 A	70930004 019	.01MFD 6/-20% C6,C10,C8 CAPACITOR	005	005
23	70930004 012	120PF 6/-10% C4A THRUS C4E CAPACITOR	009	009
24 A	04040405 001	62 PF 6/-10% C11A THRU C11J INTEGRATED DEVICE	001	001
25 A	70950118 092	DM8220N M12 INTEGRATED DEVICE	002	002
26 A	70950118 050	M13,M14 INTEGRATED DEVICE	002	002
27 P	04420034 001	74H05 M3,M15 DIODE SI RECT	002	002
28 A	70932114 017	CR4,CR6 RESISTOR	009	009
29 A	70932114 056	47 OHM 1/4W 6/-2% R1A THRU R1J RESISTOR	025	025
30 A	04910040 004	2K OHM 1/4W 6/-2% R4A THRU R4J R13 THRU R15 R7A THRU R7J R16A-B R17, R12 JUMPER	003	003
32 B	70008913 86	J1,J2,J3 PLATE IDENT	001	
33 B	70025642867	PLATE IDENT	001	
34	70940001-020	WIRE ELEC TIN-24AWG	A/R	

X-DECODE 8K		Y-DECODE 8K		WORST CASE PATTERN 8K	
READ	X B	READ	Y B	Y0	- - - - - Y63
XD	CA CC 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	CA CC 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	CA CC 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	X0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STACK	03 04 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31	03 04 2 3 6 7 10 11 14 15	05 06 16 17 20 21 24 25 28 29	X63	1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
	08 09 33 35 37 39 41 43 45 46 48 50 52 54 56 58 60 62	07 08 18 19 22 23 26 27 30 31	09 10 32 33 36 37 40 41 44 45	X64	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	11 12 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95	11 12 34 35 39 42 43 46 47	13 14 48 49 52 53 56 57 60 61	XI27	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	13 14 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126	13 14 48 49 52 53 56 57 60 61	15 16 50 51 54 55 58 59 62 63		
	15 16 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127				

NOTE:
CA DENOTES DIODE ANODE BUS
CC DENOTES DIODE CATHODE BUS

② INHIBIT PAIRS SHALL BE TWISTED TOGETHER WITH SENSE PAIRS FOR A GIVEN BIT AS SHOWN, OR THE INHIBIT WIRES SHORTED AT THE CORE MAT AND A TWISTED TRIPLET USED FROM THE CORE MAT TO THE INTERFACE CONNECTOR.

③ ARTWORK PROVISIONS SHOULD BE MADE FOR 24 1/4 WATT RESISTORS FOR THE 8K H-716. THEY ARE NOT NEEDED FOR THE CSM-150 (8K H-716) AND MAY NOT BE NEEDED FOR THE 8K H-716.

Figure 3-10-3. Simplified Schematic Diagram of the CSM-150 Core Plane
(Drawing No. D70033040, Rev C)

Figure 3-10-4. Interface Connections of the CSM-150 Core Plan
(Drawing No. C70032758, Rev A) (Sheet 1 of 2)

NOTES

1. BACKPLANE GROUND SHOWN FOR REFERENCE.
"STACK GND" SHOULD NOT BE TIED TO THESE PINS BY VENDOR.

Figure 3-10-4. Interface Connections of the CSM-150 Core Plane
(Drawing No. C70032758, Rev A) (Sheet 2 of 2)

Figure 3-10-5. Logic and Option Drawer Assembly (D70030064, Rev Z,
Sheet 1 of 4)

Figure 3-10-5. Logic and Option Drawer
Assembly (D70030064, Rev Z,
Sheet 2 of 4)

Figure 3-10-5. Logic and Option Drawer Assembly (D70030064, Rev Z, Sheet 3 of 4)

CHAPTER IV MAINFRAME ILLUSTRATED PARTS BREAKDOWN

This chapter contains the illustrated parts breakdown (IPB) for the three configurations of the H316 General Purpose Computer: table top, rack-mountable, and rack-mounted, Types 316-01, 316-0100, and 316-0110, including control panel, chassis assembly, and memory. Options are documented in separate manuals.

GENERAL

The mainframe IPB is designed to aid logistical personnel in identification and procurement of replaceable parts including assemblies and components.

EQUIPMENT CODING

Coding drawings have been provided for use as an aid to further identify equipment.

METHODS OF USE

Locating a part in this chapter can be done in several ways. The method used depends upon the availability of information initially. Once having knowledge of the name of the assembly on which the part is located, find the assembly name listed in Table 4-1. Having obtained the location of the part, refer to Figures 4-1 and 4-2 in the Group Assembly Parts List and proceed as follows:

- a. Identify on the illustration the equipment rack and locate the unit within the rack, indicated by a block leader line containing a number (Index).
- b. Refer to the parts lists immediately following the illustration.
- c. Read the information as it applies.
- d. Refer to another illustration (figure) that presents a detailed breakdown of that assembly.
- e. Immediately following the breakdown illustration, the parts list will contain the following information:
 1. Figure and Index Number: Each illustration is identified by a figure number. Each illustration contains leader lines and index numbers that key the order in which the parts are identified in the parts list. The only exceptions are the PACs, which are keyed in a different manner.

2. Designation: Honeywell coding designation (refer to coding explanation and coding drawings).
3. Honeywell Part Number: Honeywell part numbers are given unless otherwise indicated by an asterisk.
4. Indenture: The relationship of an item to its next higher assembly (NHA) is indicated in this column. The "B" level is an inherent part of the first preceding "A" level. The "C" level is an inherent part of the first preceding "B" level, etc.
5. Description: This column may contain the following:
 - (a) Data sufficient to identify parts for ordering purposes.
 - (b) Instructions for locating a more detailed illustration for breakdown, i.e., "(See Figure 4-6 for breakdown)."
 - (c) Re-establishing how that particular figure was arrived at, i.e., "(Refer to Figure 4-5-1 for NHA)."
 - (d) Reference to the coding drawing for a better understanding of the coding technique used, i.e., "See Drawing Number 70023412, sheet 3 for coding drawing."
6. Quantity per Assembly: Each new figure is considered an assembly and the quantity indicated in the column is the unit quantity representing the total used common to that assembly. The appearance of "REF" indicates that the quantity was stated at its first appearance (NHA).

PARTS PROCUREMENT GUIDE

1. When ordering from this manual, always reference the model and serial number of the computer.
2. Give the location of the assembly where the part is used.
3. State the part number with the description given in this manual.
4. Direct all inquiries to the following address:

Honeywell Inc.
Old Connecticut Path
Framingham, Massachusetts 01701

Telephone: 617-879-2600
TWX: 710-380-6706

Important:

The illustrations shown are representative of all Honeywell Inc. H316 computers; therefore, the illustrations used may not show minor differences between industrial machines. If the differences are major, changes will be added to the illustration.

As changes are made to the equipment, this publication will be updated.

Coding Drawing No. 70023412, Rev P (Sheet 3 of 9)

Coding Drawing No. 70023412, Rev P (Sheet 4 of 9)

Coding Drawing No. 70023412, Rev P (Sheet 5 of 9)

ALPHABETIC: A B C D E F G H I J K L M N P Q R S T
NUMERIC: 1 2 3 4 5 6 7 8 9 0
DIGIT NO DESIGNATOR: U Z A C RR TT
1 UNIT
2 ZONE
3 AREA
4 COLUMN
5,6 ROW
7,8 TERMINATION

Coding Drawing No. 700221

Coding Drawing No. 70023412, Rev P (Sheet 7 of 9)

Coding Drawing No. 70023412, Rev P (Sheet 8 of 9)

Coding Drawing No. 70023412, Rev P (Sheet 9 of 9)

GROUP ASSEMBLY PARTS LIST

Table 4-1 lists the figure number used to locate the Group Assembly Parts List for a particular subassembly

Table 4-1
Figure Number Cross Reference

Fig. No.	Description	Part No.
4-1	H316 General Purpose Computer, Rack-Mounted Model, Type 316-01	70023278501
4-2	H316 General Purpose Computer, Rack-Mounted Model, Types 316-0100 and 316-0110	70030063701
4-3	H316 General Purpose Computer, Table Top Model, Type 316-01	70023278703
4-4	H316 General Purpose Computer, Table Top Model, Types 316-0100 and 316-0110	70030071703
4-5	Control Panel, Type 316-01	70023065
4-6	Control Panel, Types 316-0100 and 316-0110	70030065
4-7	Chassis Assembly, Type 316-01	70023235
4-8	Chassis Assembly, Types 316-0100 and 316-0110	70030054701
4-9	Mainframe Logic and Option Drawer Assembly, Type 316-01	70023232
4-10	Mainframe Logic and Option Drawer Assembly, Types 316-0100 and 316-0110	70030064701
4-11	CSM-160 Core Memory Unit, Types 316-01, 316-0100, and 316-0110	70023577
4-12	CSM-150 Core Memory Unit, Types 316-01, 316-0100, and 316-0110	70032935
4-13	Logic Module Layout, Types 316-01, 316-0100, and 316-0110	No number
4-14	Cable Block Diagram	No number
4-15	Cable Assembly, Power, Electrical, Type 316-01	70023838701
4-16	Cable Assembly, Power, Electrical, Types 316-0100 and 316-0110	70030072701
4-17	Cable Assembly, Power, Electrical, Types 316-01, 316-0100, and 316-0110	70023837701
4-18	Cable Assembly, Special Purpose, Type 316-01	70024016701
4-19	Cable Assembly, Special Purpose, Types 316-0100 and 316-0110	70029942701
4-20	Cable Assembly, Special Purpose, Type 316-01	70024010701
4-21	Cable Assembly, Special Purpose, Types 316-0100 and 316-0110	70029943701
4-22	Cable Assembly, Special Purpose, μ -PAC to μ -PAC, Types 316-01, 316-0100, and 316-0110	70013826701

5958

Figure 4-1. H316 General Purpose Computer,
Rack-Mounted Model, Type 316-01

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-1-	A	70023278701	A	H316 GENERAL PURPOSE COMPUTER, RACK-MOUNTED MODEL, TYPE 316-01.	
-1	A2	70023065	B	CONTROL PANEL ASSEMBLY (see Figure 4-5 for breakdown and Coding Drawing No. 70023412, Sheet 2).	1
-2	A4	70023235	B	CHASSIS ASSEMBLY (see Figure 4-7 for breakdown and Coding Drawing No. 70023412, Sheet 6).	1
-3	A1	70023232	B	MAINFRAME LOGIC AND MEMORY DRAWER (see Figure 4-9 for breakdown and Coding Drawing No. 70023412, Sheet 3).	1
-4	A3	70960061001	B	POWER SUPPLY (see Coding Drawing No. 70023412, Sheet 5).	

Figure 4-2. H316 General Purpose Computer, Rack-Mounted Model, Types 316-0100 and 316-0110

Fig. & Index No.	Desig- nation	Part No.	Inden- ture	Description	Qty per Ass'y
4-2-	A	70030063701	A	H316 GENERAL PURPOSE COMPUTER, RACK-MOUNTED MODEL, TYPES 316-0100 and 316-0110.	
-1	A2	70030065	B	CONTROL PANEL ASSEMBLY (see Figure 4-6 for breakdown and Coding Drawing No. 70023412, Sheet 7).	1
-2	A4	70030054	B	CHASSIS ASSEMBLY (see Figure 4-8 for breakdown and Coding Drawing No. 70023412, Sheet 8).	1
-3	A1	70030064701	B	MAINFRAME LOGIC AND MEMORY DRAWER (see Figure 4-10 for break- down and Coding Drawing No. 70023412, Sheet 3).	1
-4	A3	70023699	B	POWER SUPPLY (see Coding Drawing No. 70023412, Sheet 5).	1

Figure 4-3. H316 General Purpose Computer,
Table Top Model, Type 316-01

Fig. & Index No.	Desig- nation	Part No.	Inden- ture	Description	Qty per Ass'y
4-3-	A	70023278703	A	H316 GENERAL PURPOSE COMPUTER, TABLE TOP MODEL, TYPE 316-01.	
-1		70023697701	B	COVER TOP.	1
-2	A2	70023065	B	CONTROL PANEL ASSEMBLY (same as Rack-Mounted Model, see Figure 4-5 for breakdown).	1
-3	A4	70023235701	B	CHASSIS ASSEMBLY (same as Rack- Mounted Model, see Figure 4-7 for breakdown).	1
-4	A1	70023232701	B	MAINFRAME LOGIC AND MEMORY DRAWER (same as Rack-Mounted Model; see Figure 4-9 for breakdown).	1
-5	A3	70023699701	B	POWER SUPPLY, MODIFIED (same as Rack Mounted Model except for mount- ing hardware).	1
-6		912251001	C	LEVELING FOOT.	4
-7		906320002	C	SNAPSLIDE FASTENER.	2

71-0033

Figure 4-4 H316 General Purpose Computer, Table
Top Model, Types 316-0100 and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-4-	A	70030071703	A	H316 GENERAL PURPOSE COMPUTER, TABLE TOP MODEL, TYPES 316-0100 and 316-0110.	
-1		70023697701	B	COVER TOP.	1
-2	A2	70030065	B	CONTROL PANEL ASSEMBLY (same as Rack-Mounted Model, see Figure 4-6 for breakdown).	1
-3	A4	70030054701	B	CHASSIS ASSEMBLY (same as Rack-Mounted Model, see Figure 4-8 for breakdown).	1
-4	A1	70030064	B	MAINFRAME LOGIC AND MEMORY DRAWER (same as Rack-Mounted Model, see Figure 4-10 for breakdown).	1
-5	A3	70023699701	B	POWER SUPPLY, MODIFIED (same as Rack-Mounted Model except for mounting hardware).	1
-6		912251001	C	LEVELING FOOT.	4
-7		906320002	C	SNAPSLIDE FASTENER.	2

5960

Figure 4-5. Control Panel, Type 316-01

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-5-	A2	70023065	B	CONTROL PANEL ASSEMBLY (Refer to Figure 4-1-1 and 4-3-1, Type 316-01 for NHA)	Ref.
-1	A2E23	70960056001	C	CIRCUIT BREAKER, DOUBLE POLE: 1st pole series trip at 30A, 250 Vac 50/60 Hz, curve 3; 2nd pole relay trip 6 Vdc, 50 mA curve p.	1
-2	A2E24, 22, 21, 20, 18, 16, 15, 13, 12, 11, 09, 08, 07, 05, 03, 02, 01	70934278001	C	SWITCH PUSH-ROCKER DPDT: 60A ac; 0.5A dc.	17
		70023068701	C	BUTTON, CAP-MOLDED LIGHT: grey plastic; 0.527 by 0.912 inch.	17
-3	A2D24, 22, 21, 20, 18, 16, 15, 13, 12, 11, 09, 08, 07, 05, 03, 02,	70908281001	C	HOUSING, LIGHT INDICATOR.	16
		70935081203	C	LIGHT, INDICATOR: 28V at 0.04A; yellow lens.	16
-4	A2F2		C	PUSHBUTTON LIGHT INDICATOR ASSEMBLY CONSISTING OF:	1
		70935031002	D	LAMPHOLDER ASSEMBLY: short flange type	1
		70910353001	D	LENS SWITCH ACTUATOR.	1
		70934263001	D	SWITCH, PUSH - SPDT: 5A at 250V.	1
		70945002002	D	LAMP, INCANDESCENT: 0.04 A at 28V 7-1 3/4 bulb, midget flange base.	2
-5	A2F4	70934020003	C	SWITCH, LEVER LOCKING: 3 position, 3A, 200 W.	1
-6	A2F06, 08, 17, 18, 19, 20	70934276001	C	SWITCH, PUSH, ROCKER - SPDT: 6A at 125 Vac, 3A at 250 Vac; 1.0 A dc.	6
-7	A2F07	70934272001	C	SWITCH, PUSH, ROCKER - SPDT: 6A at 125 Vac; 3A at 250 Vac, 1.0 A dc.	1
-8	A2F10, 11, 12 13, 14		C	PUSHBUTTON ASSEMBLY CONSISTING OF:	1
		70934275001	D	SWITCH, PUSH, INTERLOCK: 5 station interlock; 3A, 300W max; ac noninductive load.	1
		70910303001	D	PUSHBUTTON: molded plastic, black/ white face.	5
		70943083002	D	SEMICONDUCTOR DEVICE, DIODE: silicon type .	1

Figure 4-6. Control Panel, Types 316-0100 and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-6-	A2	70030065	B	CONTROL PANEL ASSEMBLY (Refer to Figures 4-2-1 and 4-4-1, Types 316-0100 and 316-0110 for NHA).	Ref.
-1	A2E23	70960058001		CIRCUIT BREAKER, DOUBLE POLE: 1st pole series trip at 30A, 250 Vac 50/60 Hz, curve 3; 2nd pole relay trip 6 Vdc, 50 mA curve p.	1
-2	A2E24, 22, 21, 20, 18, 16, 15, 13,	70934284001		SWITCH PUSH-ROCKER DPDT: 60A ac; 0.5A dc.	16
-3	12, 11, 09, 08, 07, 05, 03, 02, 01	70934283001		SWITCH PUSH SPDT.	1
-4	A2F2	70934287001		PUSHBUTTON LIGHT INDICATOR ASSEMBLY:	1
-5	A2F4	7093428801		SWITCH, LEVER LOCKING: 3 position, 3A, 200W	1
-6	A2F06, 08, 17, 18, 19, 20	70934285001		SWITCH, PUSH, ROCKER - SPDT: 6A at 125 Vac, 3A at 250 Vac; 1.0A dc.	6
-7	A2F07	70934285002		SWITCH, PUSH, ROCKER - SPDT: 6A at 125 Vac; 3A at 250 Vac; 1.0A dc.	1
-8	A2F10, 11, 12, 13, 14	70934286001		PUSHBUTTON ASSEMBLY.	1

5955

Figure 4-7. Chassis Assembly, Type 316-01

Fig. & Index No.	Designation	Part No.	Indenture	Description	Qty per Ass'y
4-7-	A4	70023235701	B	CHASSIS ASSEMBLY, TYPE 316-01 (Refer to Figures 4-1-2 and 4-2-2 for NHA).	Ref
-1	A4E03	70963015007	C	RELAY ARMATURE - DPDT; 1 sec delay, contacts rated 5A, 125/250Vac; coils 24 Vdc, 2W continuous duty.	1
-2	A4B03, 06, 08	70964007001	C	FAN AXIAL: 4.13 in. square by 1.970 in. thick.	3
-3	A4C07	70937502019	C	TERMINAL BOARD: barrier type; 19 terminals; 20A rated, black molded bakelite.	1
-4	A4D09	7096002005	C	FUSE, CARTRIDGE: 0.5A; 250V; 1/4 in. diameter by 1-1/4 in. long instantaneous - Littelfuse 312.500.	1
-5	A4D09	70935008001	C	FUSEHOLDER: indicating types accom. 1/4 in. by 1-1/4 diameter fuse, rated 30A at 90 to 250V.	1
-6		70911003701	C	FILTER, AIR CONDITIONING.	1

Figure 4-8. Chassis Assembly, Types 316-0100 and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-8-	A4	70030054701	B	CHASSIS ASSEMBLY, TYPES 316-0100 and 316-0110 (Refer to Figures 4-2-2 and 4-4-2 for NHA).	Ref.
-1		70960002005	C	FUSE, CARTRIDGE: 0.5A; 250V; 1/4 in. diameter by 1-1/4 in. long instantaneous Littelfuse 312.500.	1
		70935011002	C	FUSEHOLDER, IN-LINE: indicating types accom. 1/4 in. by 1-1/4 in. diameter fuse, rated 30A at 90 to 250V.	1
-2		70911003009	C	FILTER, AIR CONDITIONING.	1
-3	A4B03, 06, 08	70964008006	C	FAN, AXIAL: 4.13 in square by 1.970 in. thick.	

Figure 4-9. Mainframe Logic and Option Drawer Assembly,
Type 316-01

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-9-	A1	70023232701	B	LOGIC AND OPTION DRAWER ASSEMBLY, TYPE 316-01 (Refer to Figures 4-1-3 and 4-4-4 for NHA).	Ref
-1		70023577704	C	CORE MEMORY UNIT (see Figures 4-11 and 4-12 for breakdown).	1
-2		No number	C	LOGIC PAC LAYOUT (see Figure 4-13 for breakdown).	1

71-0021

Figure 4-10. Mainframe Logic and Option Drawer Assembly,
Types 316-0100 and 316-0110

Fig. & Index No.	Desig- nation	Part No.	Inden- ture	Description	Qty per Ass'y
4-10-	A1	70030064701	B	LOGIC AND OPTION DRAWER ASSEMBLY, TYPES 316-0100 and 316-0110 (Refer to Figures 4-2-3 and 4-4-4 for NHA).	Ref
-1		70023577704	C	CORE MEMORY UNIT (see Figures 4-11 and 4-12 for breakdown).	1
-2		No number	C	LOGIC PAC LAYOUT (see Figure 4-13 for breakdown).	1
-3		70030069001		PLATE FILLER.	Ref

Figure 4-11. CSM-160 Core Memory Unit, Types 316-01,
316-0100, and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-11-	AIE-G	70023577	C	CSM-160 CORE MEMORY UNIT (Refer to Figure 4-10-1 for NHA).	Ref
-1	A1G608	CM-384	D	RESISTOR PAC (see Chapter II, Section 5 for breakdown).	1
-2	A1G607, A1E603, A1G602, A1G603	CM-306	D	SELECTOR PAC (see Chapter II, Section 5 for breakdown).	4
-3	A1F607, 08	CM-305	D	INHIBIT PAC (see Chapter II, Section 5 for breakdown)	2
-4	A1F601, 03	CM-363A	D	SENSE AMPLIFIER PAC (see Chapter II, Section 5 for breakdown).	2
-5	A1G04 A1G05	70	D	CORE STACK: 4096 words, 16 bits per word.	1
-6	A1G601	DI-375	D	NAND PAC (See Chapter II, Section 5, for breakdown).	1

Figure 4-12. CSM-150 Core Memory Unit, Types 316-01, 316-0100, and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-12-	AIE-G	70032935	C	CSM-150 CORE MEMORY UNIT (Refer to Figure 4-10-1 for NHA).	Ref
-1	A1E602	CM-866	D	ADDRESS BOARD (see Chapter III, Section 10 for breakdown).	1
-2	A1E603 A1E604	70	D	CORE STACK: 8192 words, 17 bits per word.	1
-3	A1E605 A1E606	CM-867	D	DATA BOARD (See Chapter III, Section 10 for breakdown).	2

5966

Figure 4-13. Logic Module Layout

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-13-	A1BA	No Number	C	LOGIC PAC LAYOUT - PAC SIDE VIEW (Refer to Figure 4-9-2 and 4-10-2 for NHA).	Ref
-1	A1AA09	CC-372C	D	REGULATOR COUNTER MODULE (See Chapter I, Section 2 for breakdown).	1
-2	A1AA10	CC-373	D	MEMORY MODULE (See Chapter I, Section 2 for breakdown).	1
-3	A1AA11	CC-401	D	HIGH SPEED A-U No. 2 MODULE (See Chapter I, Section 2 for breakdown).	1
-4	A1AA12	CC-375	D	HIGH SPEED A-U No. 1 MODULE (See Chapter I, Section 2 for breakdown).	1
-5	A1AA13	CC-368	D	SHIFT REGISTER MODULE (See Chapter I, Section 2 for breakdown).	1
-6	A1AA14	CC-369B	D	LAMP DRIVER MODULE (See Chapter I, Section 2 for breakdown).	1
-7	A1BA17	CC-344/ CC-696	D	REAL TIME CLOCK PAC (See Real Time Clock Option Instruction Manual Doc. No. 70130072179A for breakdown).	1
-8	A1AA18	CC-080 CC-681*	D	CABLE PAC (See Chapter I, Section 2 for breakdown).	1
-9	A1AA17	CC-079 CC-672*	D	CABLE PAC (See Chapter I, Section 2 for breakdown).	1
-10	A1AA08	CC-367	D	ADDRESS BUS MODULE (See Chapter I, Section 2 for breakdown).	1
-11	A1AA07	CC-366A	D	COLUMNS 9-12 MODULE (See Chapter I, Section 2 for breakdown).	1
-12	A1AA06	CC-364A	D	COLUMNS 1-4 MODULE (See Chapter I, Section 2 for breakdown).	1
-13	A1AA05	CC-371B	D	CLOCK MODULE (See Chapter I, Section 2 for breakdown).	1
-14	A1AA04	CC-370A	D	M REGISTER MODULE (See Chapter I, Section 2 for breakdown).	1
-15, -16	A1AA02, 03	CC-365A	D	COLUMNS A-D MODULE (See Chapter I, Section 2 for breakdown).	2
-17	A1AA01	CC-374A	D	ASR INTERFACE MODULE (See Chapter I, Section 2 for breakdown)	1
-18	A1AA15	CC-510A	D		1
-19	A1AA16	CC-558	D		1

*Used in Type 316-0100 only

Figure 4-14. Cable Block Diagram

Fig. & Index No.	Type	Part No.	Inden-ture	Description	Qty per Ass'y
4-14- -1	316-01	940252003	A	CABLING BLOCK DIAGRAM.	Ref
	316-0100	940252002	B	CABLE ASSEMBLY, POWER: Electrical, 12 ft overall length.	1
-2	316-01	70023838701	B	CABLE ASSEMBLY, POWER: Electrical Power Supply to Control Panel, 9 ft overall length (see Figure 4-15 for breakdown).	1
	316-0100	70030072703	B	CABLE ASSEMBLY, POWER: Electrical Power Supply to Control Panel; 9 ft overall length (see Figure 4-16 for breakdown).	1
-3	Both types	70023837705	B	CABLE ASSEMBLY, POWER: Electrical Power Supply to Logic Drawer, 10 ft. overall length (see Figure 4-17 for breakdown).	1
-4	316-01	7024016701	B	CABLE ASSEMBLY, SPECIAL PURPOSE: Control Panel Cable No. 1 (see Figure 4-18 for breakdown).	1
	316-0100	70029942701	B	CABLE ASSEMBLY, SPECIAL PURPOSE: Control Panel Cable No. 1 (see Figure 4-19 for breakdown).	1
-5	316-01	7024010701	B	CABLE ASSEMBLY, SPECIAL PURPOSE: Control Panel Cable No. 2 (see Figure 4-20 for breakdown).	1
	316-0100	70029943701	B	CABLE ASSEMBLY, SPECIAL PURPOSE: Control Panel Cable No. 2 (see Figure 4-21 for breakdown).	1
-6	Both types	70032670703	B	CABLE ASSEMBLY, SPECIAL PURPOSE: μ-PAC to μ-PAC, 2 ft overall length (see Figure 4-22 for breakdown).	2

5963

Figure 4-15. Cable Assembly, Power, Electrical, Type 316-01

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-15-		7023838701	B	CABLE ASSEMBLY, POWER: Electrical (Refer to Figure 4-14-2 for NHA).	Ref
-1	B2A	70941371001	C	CONNECTOR, PLUG, ELECTRICAL.	1
-2		70941571001	C	PLUG TIP, MALE.	15
-3	AXC	70937058003	C	TERMINAL LUG.	15
-4		70981002024	C	SLEEVING, ELECTRICAL.	8 ft

5963

Figure 4-16. Cable Assembly, Power, Electrical,
Types 316-0100 and 316-0110

Fig. & Index No.	Desig- nation	Part No.	Inden- ture	Description	Qty per Ass'y
4-16-		70030072703	B	CABLE ASSEMBLY, POWER: Electrical (Refer to Figure 4-14-2 for NHA).	Ref
-1	B2A	70941341003	C	CONNECTOR, PLUG, ELECTRICAL.	1
-2		70941571001	C	PLUG TIP, MALE.	15
-3	AXC	70937200001	C	TERMINAL.	6
-4		70981002021	C	SLEEVING, ELECTRICAL.	9 Ft

Figure 4-17. Cable Assembly, Power, Electrical,
Types 316-01, 316-0100 and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-17-		7023837705	B	CABLE ASSEMBLY, POWER: Electrical (Refer to Figure 4-14-3 for NHA).	Ref
-1	B2C	70941341001	C	CONNECTOR, PLUG, ELECTRICAL.	1
-2		70941571001	C	PLUG TIP, MALE.	13
-3	A1D	70937200001	C	TERMINAL, QUICK DISCONNECT.	11
-4		70981002023	C	SLEEVING, ELECTRICAL.	8 Ft

5964

Figure 4-18. Cable Assembly, Special Purpose,
Control Panel Cable No. 1, Type 316-01

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-18-		70024016701	B	CABLE ASSEMBLY, SPECIAL PURPOSE, CONTROL PANEL CABLE NO. 1, TYPE 316-01 (Refer to Figure 4-14-4 for NHA).	Ref
-1	A1AA17	CC-079	C.	CABLE PAC (See Figure 4-13-9 for PAC location and Chapter I, Section 2 for breakdown).	Ref
-2		70013624001	C	BRACKET, CLAMPING .	1
-3		70013626001	C	PLATE.	1
-4		70013623001	C	CLAMP.	1
-5		70940359001	C	CABLE, SPECIAL, ELECTRICAL .	4 Ft

5964

Figure 4-19. Cable Assembly, Special Purpose, Control Panel Cable No. 1, Types 316-0100 and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-19-		70029942701	B	CABLE ASSEMBLY SPECIAL PURPOSE, CONTROL PANEL CABLE NO. 1, TYPES 316-0100 and 316-0110 (Refer to Figure 4-14-4 for NHA).	Ref
-1	A1AA17	CC-672	C	CABLE PAC (See Figure 4-13-9 for PAC location and Chapter 1, Section 2 for breakdown).	Ref
-2		70013624001	C	BRACKET, CLAMPING.	1
-3		70029335001	C	PLATE.	1
-4		70029261001	C	CLAMP.	1
-5		70940161001	C	CABLE, SPECIAL, ELECTRICAL.	4 Ft

5965

Figure 4-20. Cable Assembly, Special Purpose,
Control Panel Cable No. 2, Type 316-01

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-20-		70024010201	B	CABLE ASSEMBLY, SPECIAL PURPOSE, CONTROL PANEL CABLE NO. 2, TYPE 316-01 (Refer to Figure 4-14-5 for NHA).	Ref
-1	A1AA18	CC -080	C	CABLE PAC (See Figure 4-13-8 for PAC location and Chapter I, Section 2 for breakdown).	Ref
-2		70013624001	C	BRACKET, CLAMPING.	1
-3		70013626001	C	PLATE.	1
-4		70013623001	C	CLAMP.	1
-5		70940359001	C	CABLE, SPECIAL, ELECTRICAL.	4 Ft

5965

Figure 4-21 Cable Assembly, Special Purpose, Control Panel Cable No. 2, Types 316-0100 and 316-0110

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-21-		70029943701	B	CABLE ASSEMBLY, SPECIAL PURPOSE, CONTROL PANEL CABLE NO. 2, TYPES 316-0100 and 316-0110 (Refer to Figure 4-14-5 for NHA).	Ref
-1	A1AA18	CC-681	C	CABLE PAC (See Figure 4-13-8 for PAC location and Chapter I, Section 2 for breakdown).	Ref
-2		70013624001	C	BRACKET, CLAMPING.	1
-3		70029335001	C	PLATE.	1
-4		70029261001	C	CLAMP.	1
-5		70940159001	C	CABLE, SPECIAL, ELECTRICAL.	4 Ft.

Figure 4-22. Cable Assembly, Special Purpose, μ -PAC to μ -PAC, for Types 316-01, 316-0100, and 316-0110 (Drawing No. A70032670 Rev C)

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-22-		70032670703	B	CABLE ASSEMBLY, μ -PAC to μ -PAC (Refer to Figure 4-14-6 for NHA).	Ref
-1		70013767701	B	PC CBL PAC .	2
-2		70013626001	B	Plate.	2
-3		70904109001	C	Screw, No. 2-56 x 1/8 in.	4
-4		70032671001	C	Clamp.	2
-5		70013624001	C	Bar, Clamping.	2
-6		70940377001	C	Cable, 32 Twisted Pair.	A/R
-7		70902050001	C	Washer, Flat, No. 2 .	4
-8		70902006039	C	Washer, Lock, Split, No. 2 .	12
-9		70982152003	C	Cable Marker .	2
-10		70904109002	C	Screw, No. 2-56 x 3/16 in.	8
-11		70902050002	C	Washer, Flat, No. 2 .	4

SECTION 2 ILLUSTRATED PARTS BREAKDOWN

This section contains the illustrated parts breakdown (IPB) of the power supply for both rack-mounted and table top models of the Ault Power Supply Model PR-130, used in the H316 General Purpose Computer.

Figure 4-23. Power Supply, Rack-Mounted Configuration

Figure 4-24. Power Supply, Table Top Configuration

Figure A-2. Installation and Accessories (Ref. Drawing 70033043, Rev. A)

Figure A-5. Coding Diagram (Ref.
Drawing 70031976, Rev. D)

APPENDIX A
AULT POWER SUPPLIES

CHAPTER IV AULT POWER SUPPLIES

This chapter is divided into three parts. Each part contains illustrated parts breakdown (IPB) for power supplies manufactured by Ault Inc. and used in the H316 General Purpose Computer.

Part I contains operation instruction and for IPB Ault Model PR-100 manufactured per Honeywell specification control drawing (SCD) No. 950061001; Part II presents the operating instructions and IPB for Ault Model PR-130, manufactured per Honeywell SCD No. 950061002; and Part III contains the IPB for Ault Model PR-136 and PR-143, manufactured per SCDS 950 061 003 and 950 061 004, respectively.

PART I AULT POWER SUPPLY, MODEL PR-100

Part I contains two sections presenting the assembly description and illustrated parts breakdown for Ault Model PR-100.

SECTION I ASSEMBLY DESCRIPTION

This section presents the theory of operation, maintenance, troubleshooting procedure and adjustments for Ault Model PR-100.

The H316 Power Supply is designed to provide operating voltages for the H316 Computer as follows:

24 Vac	1 ampere
+6 Vdc	8-20 amperes
-6 Vdc	1 ampere (max)
+15.5 Vdc	0.2 - 5 amperes
+24 Vdc	2 amperes (max)

A multiple secondary constant voltage transformer is used to provide these required operating potentials using an input line of 95 to 130 Vac at either 50 or 60 Hz. Logic circuitry is included in the power supply to control the turn on procedure. Circuit protection devices include fuses, a low line voltage sensing circuit, and a thermostat switch.

PHYSICAL LAYOUT

The Power Supply measures approximately 17 inches wide by 17 1/2 inches deep by 5 inches high, and it is available for mounting with either the rack-mounted or table top computer configuration. The table top configuration uses the power supply as the computer

base, with the mainframe hinged to the top of the power supply. The rack-mounted configuration places the power supply below the mainframe and separately attached to the mounting rack. Cooling is provided by a built in fan and four connectors are used for input and output voltages.

THEORY OF OPERATION

The Power Supply converts ac input power into four regulated dc outputs and one nonregulated 24 Vac output. A block diagram of the power supply is shown in Figure 4-1. Input ac power is supplied to a constant voltage transformer in the input power converter. Three secondaries of the constant voltage transformer provide the +6V, -6V and +24V output voltages. The +24V winding also provides bulk ac power to a series regulator which regulates the +15.5V output voltage. A fourth secondary provides the 24 Vac output. The logic circuitry provides the required sequencing, line sensing and overvoltage protection. Reverse diodes are included across each output to prevent accidental reversal of polarity.

Input Power Converter

Input ac power is supplied to the primary of constant voltage transformer T1. (Refer to Figure 4-2). Thermostat switch S1 interrupts ac power if the ambient temperature reaches an unsafe operating level. A3A is the input ac fuse. The outputs of three secondaries of T1 are rectified and filtered to provide the +6V and +24V outputs as well as several other required bulk dc sources. A fourth secondary of T1 provides the unregulated 24 Vac output. Capacitor C17 is used in combination with a winding on T1 to resonate the transformer at the line frequency and provide the constant voltage characteristic. All the windings are tapped to allow change over between 50 and 60 Hz line operation. Transformer T2 is used by the line sense circuitry to monitor the input ac line.

Reference Voltages

Figure 4-3 shows the positive and negative reference sources required by the +15.5V turn-on delay circuit and the +15.5V overvoltage circuit. The rectified voltage from A2 is filtered by R2 and C2 and applied to zener diode CR6, which provides the positive reference voltage. Similarly, the rectified voltage from CR3 and CR4 is filtered by R1 and C1 and applied to zener diode CR5, which provides the negative reference voltage.

+15.5V Series Regulator

The +15.5V series regulator and the turn-on control circuitry for the +15.5V output is shown in Figure 4-4.

Turn-on Control. -- The turn-on control circuitry is indicated by the dashed lines in Figure 4-4. Whenever Q6 is on, Q7 is on, which provides a drive current source for the +15.5V series regulator. In this condition Q12 is also on, preventing CR12 from conducting. Whenever Q6 is turned off, however, Q7 is also turned off, removing the drive current to the +15.5V series regulator, and turning it off. It also turns Q12 off, which causes CR12 to

5768A

Figure 4-1. Power Supply Block Diagram

Figure 4-2. Input Power Converter

Figure 4-3. Positive and Negative Reference Sources

Figure 4-4. +15.5-Volt Series Regulator

conduct. This fires the crowbar SCR in the +15.5V overvoltage circuit, which shuts down the 15.5V output. During initial turn-on of the supply, this circuit attempts to fire the crowbar SCR, which would prevent turn-on. However, since no output voltage is present then, the crowbar SCR cannot turn on.

Series Regulator Operation. -- The output voltage appears across a voltage divider consisting of R36, R37, R38 and R39, and an external temperature programming resistor. The wiper voltage of R37 is compared to the reference voltage across zener diode CR11 by transistor Q8. Q8 controls the series regulator by shunting a portion of the base drive current for Q9 (provided by R23) away from Q9. (It is assumed that the turn-on control circuitry has already indicated turn-on). Q9 in turn controls the conductivity of Q10 and the pass transistor, Q11, which controls the load current.

Current limiting is provided by the circuit consisting of R31, R34, R35, and Q13. The current level is sensed by R31. The voltage across R31 is compared to a fixed voltage across R34 by transistor Q13. Whenever the maximum allowed current is reached, the voltage across R31 exceeds the voltage across R34. This causes Q13 to conduct, shunting away a portion of the base drive current for Q9, thus reducing the load current. The over-load characteristic is shown in Figure 4-5.

5769

Figure 4-5. Output Voltage/Current Overload Characteristic

Reverse Diodes

Diodes CR32, CR33, CR34, and CR35 are connected across the +6V, -6V, +24V and +15.5V outputs, respectively, to prevent accidental reversal of polarity in excess of two volts on any of these outputs.

Logic Circuitry

The logic circuitry consists of a line sense circuit, a +15.5V turn-on delay circuit and an overvoltage circuit for the +15.5V output.

Line Sense Circuit. -- The line sense circuit (refer to Figure 4-6) initiates turn-off of the power supply if ac input voltage is below allowable limits.

The ac input voltage is sensed by transformer T2. The secondary voltage is full-wave rectified by CR15 and CR16 to provide an unfiltered dc voltage across R46, R47 and R48. R47 is adjusted so that, when the peak ac input voltage rises above the low line limit, CR17 will conduct, turning on Q17 until the ac input voltage drops below this level again.

At the beginning of each half-cycle, C12 begins to charge at a rate determined by C12, R55 and the fixed reference voltage across zener diode CR19. Whenever C12 charges to the predetermined level, CR20 conducts, which causes SCR CR22, to fire. The charge rate is determined so that, if the ac input voltage is at low line or above, Q17 will be turned on due to the line sense voltage before C12 has charged to the level which causes CR20 to conduct. Transistor Q16 is held on by the full-wave rectified voltage at all times except for a short period as the ac input voltage passes through zero volts. At this time, Q16 turns on and discharges C12 to reset the line sense circuit.

Under normal ac input voltage conditions, Q17 clamps the gate of CR22 before it is fired (Figure 4-7 shows waveforms of the cathodes CR17 and CR20). However, if the ac input voltage fails to reach the low line level for one half-cycle, CR22 is fired, and the following sequence occurs:

- a. Coupling diode CR21 conducts, turning Q5 on, which activates the relay trip coil on the external input circuit breaker.
- b. Coupling diode CR23 also conducts, drawing current through R57 away from zener diode CR24. This turns CR24 off, which then turns Q18 off. After a short period, C14 charges sufficiently to cause zener diode CR25 to conduct and fire crowbar SCR CR14 in the +15.5V overvoltage circuit.
- c. Coupling diode CR26 also conducts, drawing current through R61 away from zener diode CR27, turning CR27 off, which then turns Q19 off. Relay K1 becomes deenergized and grounds the power status terminal. It also prevents CR29 from conducting, which turns CR30 and Q20 on. This causes the fault signal to appear (drop to ground).

In summary, whenever the ac input voltage fails to reach the low line limit for one half-cycle, the fault signal appears, the external input breaker is opened, the power status terminal is grounded, and, after a short time delay period, the +15.5V output is crowbarred.

Figure 4-7. Line Sense Circuit Waveform

+15.5V Turn-on Delay Circuit. -- The +15.5V turn-on delay circuit (Refer to Figure 4-8) ensures that the +15.5V output is not allowed to turn on until the ± 6 V output voltages have both reached 90% of nominal.

5774

Figure 4-8. +15.5-Volt Turn-On Delay Circuit

5773

Figure 4-9. +15.5-Volt Overvoltage Circuit

The +6V output determines the current through resistors R6 and R7. This current is compared to the current through R5, which is determined by the negative reference voltage. Whenever the +6V output reaches its minimum allowed level, the current through R6 and R7 exceeds the current through R5, turning Q1 on, clamping Q2 off and allowing zener diode CR9 to conduct.

Similarly, the -6V output determines the current through R14 and R15. This current is compared with the current through R13, which is determined by the positive reference voltage. Whenever the -6V output reaches its minimum allowed level, the current through R14 and R15 exceeds the current through R13, turning Q3 off, turning Q4 off, and allowing zener diode CR9 to conduct.

Whenever both the +6V and -6V outputs are above their minimum allowed levels, Q2 and Q4 are both off, and zener diode CR9 conducts to provide a turn-on signal for the +15.5V regulator. However, if either the +6V or -6V output is below its minimum allowed level, CR9 does not conduct. This removes the turn-on signal for the +15.5V regulator, which turns off the regulator and crowbars the +15.5V output.

+15.5V Overvoltage Circuit. -- The +15.5V overvoltage circuit (Refer to Figure 4-9) crowbars the +15.5V output via SCR CR14 whenever the +15.5V output exceeds its maximum allowed level or whenever a shut-down signal is received from the +15.5V regulator or the line sense circuit.

The +15.5V output determines the current through R40 and R41. This current is compared with the current through R66, which is determined by the negative reference voltage. Whenever the +15.5V output exceeds its maximum allowed level, the current through R40 and R41 exceeds the current through R66. This turns Q14 on, which turns Q15 on. This fires crowbar SCR CR14, which clamps the +15.5V output voltage to a low level. This circuit is also activated in the same manner whenever the +15.5V regulator or the line sense circuit provides a positive signal at the base of Q14.

MAINTENANCE

The only routine maintenance required for the power supply is periodic cleaning or replacement of the air filter. Adjustment procedures, a trouble shooting chart and interface connection data are described in the following paragraphs.

Replacement Parts

Replacement parts can be purchased directly from Honeywell Inc., Framingham, Mass. However, most of the components are standard electrical parts and might be obtained locally in less time.

Recommended Test Instruments

The following test instruments will be helpful in testing and adjusting the power supply:

Voltmeter, ac/dc
Ammeter, ac/dc
Card Extender

Troubleshooting Procedure

Use every safety precaution when troubleshooting the power supply. The supply should be visibly examined for broken, loose or damaged parts, or wire and foreign objects. In the event of an audibly or visually apparent malfunction, proceed directly to the affected area and perform the necessary repairs. Apparent circuit board failure may be caused by improperly adjusted potentiometers. This should be kept in mind when troubleshooting the power supply.

WARNING

The input transformer produces voltage in excess of 600 volts. Exercise extreme caution whenever the power supply cover is off. Remove any rings, watches or other metallic objects before installation or testing. Avoid contact with heat sinks or the input transformer, which operate at high temperatures.

Figure 4-10.

Power Supply Schematic Diagram

Perform the following preliminary checks before troubleshooting the unit:

- a. Remove any foreign objects from the power supply.
- b. Since the power status signal is provided by a mercury relay, the power supply must be placed in an upright position to ensure proper operation.
- c. Check all input and output connections.
- d. Check the remote temperature sensing device connection.
- e. Check for proper connections for 50 or 60 Hz operation

Table 4-1.
Troubleshooting Guide

SYMPTOM	POSSIBLE CAUSE	SUGGESTED ACTION
Power supply will not turn on.	<ul style="list-style-type: none">a. No input ac power.b. Open thermostat S1.c. Blown fuse A1A or A3Ad. Low ac line voltage.e. Faulty or misadjusted line sense circuit under low ac line condition.	<ul style="list-style-type: none">a. Check for input power.b. Check for proper cooling.c. Check fuses.d. Check for faulty signal.e. Check ac line level and line sense circuit adjustment.
No +15.5V output voltage.	<ul style="list-style-type: none">a. Undervoltage on +6V or -6V output.b. Shorted output.c. Faulty or misadjusted turn-on delay circuit.	<ul style="list-style-type: none">a. Check $\pm 6V$ levels.b. Check with external loads removed.c. Check turn-on delay circuit.
Low +15.5V output voltage.	<ul style="list-style-type: none">a. Improper adjustment.b. Blown fuse A4Ac. Overloaded output.d. Misadjusted overcurrent limit.	<ul style="list-style-type: none">a. Check output adjustment.b. Check fuse.c. Check with external load removed.d. Check adjustment.
Overvoltage occurs on +15.5V output.	<ul style="list-style-type: none">a. Misadjusted output.b. Shorted pass transistor Q11.c. Misadjusted overvoltage circuit.	<ul style="list-style-type: none">a. Check adjustment.b. Check Q11.c. Check adjustment of overvoltage circuit; Overvoltage may not be actually occurring.
False indication at power status terminal.	<ul style="list-style-type: none">a. Power supply not in upright position.	<ul style="list-style-type: none">a. Check position of supply.

ADJUSTMENTS

50 or 60 Hz Operation Adjustment

Several tap changes are required on transformer T1 to convert from 60 Hz to 50 Hz operation. Figure 4-2 shows the correct wiring for 60 Hz operation. The dashed lines show the changes required for 50 Hz operation. Changing frequency operation also requires readjustment of the line sense circuit.

Output Voltage Adjustments

The +15.5V output is the only adjustable output. This voltage is controlled by potentiometer R37 where Clockwise rotation will increase the output voltage level.

+15.5V Overvoltage Adjustment

The +15.5V overvoltage adjustment is controlled by potentiometer R41. Proceed as follows:

- a. Turn R41 (maximum overvoltage setting) fully clockwise.
- b. Apply input ac power.
- c. Adjust the +15.5V output voltage to the desired overvoltage setting (18V) with the output voltage adjustment potentiometer R37. It may be necessary to replace the external thermistor with a decade box to reach this level.
- d. Slowly turn R41 counterclockwise until the +15.5V output voltage drops to zero.
- e. Remove input ac power.
- f. Replace the external thermistor if it had been removed.
- g. Turn R37 fully counterclockwise.
- h. Apply input ac power.
- i. Set the +15.5V output voltage to the desired operating level.

+15.5V Overcurrent Adjustment

Adjust the overload bendback point with potentiometer R34 using the following procedure:

- a. Turn R34 fully clockwise.
- b. Apply a load to the +15.5V output equal to the desired overcurrent setting.
- c. Apply input ac power.
- d. Slowly turn R34 counterclockwise until the +15.5V output voltage starts to drop.
- e. Remove input ac power and remove the load.

Line Sense Circuit Adjustment

The line sense circuit is adjusted by potentiometer R47. This adjustment is required

whenever a change is made between 50 Hz and 60 Hz operation. Proceed as follows:

- a. Turn R47 fully clockwise.
- b. Apply 95 Vac (low line) to the input power terminals.
- c. Slowly turn R47 counterclockwise until the fault signal appears.
- d. Remove input ac power.

± 6 V Undervoltage Adjustment

The +15.5V turn-on delay circuit contains ± 6 V undervoltage sensors. These sensors have been adjusted at the factory and should normally require no adjustment. However, if adjustment should become necessary, proceed as follows:

$+6$ V Output Adjustment Procedure

- a. Turn R7 fully counterclockwise.
- b. Disconnect the lead from connector J1-H to capacitor C18 (positive terminal) at the capacitor.
- c. Connect the disconnected lead to a positive voltage source of the desired undervoltage level.
- d. Apply input ac power.
- e. Slowly turn R7 clockwise until the +15.5V output drops to zero.
- f. Remove input ac power.
- g. Remove the external voltage source and reconnect the lead to C18.

-6 V Output Adjustment Procedure

- a. Turn R15 fully counterclockwise.
- b. Disconnect the lead from connector J1-J to capacitor C20 (negative terminal) at the capacitor.
- c. Connect the disconnected lead to a negative voltage source of the desired undervoltage level.
- d. Apply input ac power.
- e. Slowly turn R15 clockwise until the +15.5V output drops to zero.
- f. Remove input ac power.
- g. Remove the external voltage source and reconnect the lead to C20.

CONNECTOR INTERFACE DATA

All inputs and outputs are made via the four connectors on the power supply. The pin connections are tabulated below. The connector number precedes the pin number; for example,

B2A-A refers to pin A or connector B2A.

<u>Terminal</u>	<u>Identification</u>
B1B	AC Input Power
B2A-A	+24 Vdc Output
B2A-D	Common
B2A-F	To relay trip coil on circuit breaker
B2A-H	To relay trip coil on circuit breaker
B2A-J	+6V Output
B2A-M	From input circuit breaker
B2A-N	From input circuit breaker
B2A-P	From input circuit breaker
B2A-S	From input circuit breaker
B2A-R	To Fan
B2A-U	To Fan
B2A-T	To input circuit breaker
B2A-V	To input circuit breaker
B2A-W	To input circuit breaker
B2A-X	To input circuit breaker
B2B-YEL	24 Vac Output
B2B-RED	+6 Vdc Output
B2B-BLK	-6 Vdc Output
B2B-WHT	Common
B3B	Ac outlet, non-fused
B4B	Ac outlet, fused
B2C-A	+24 Vdc Output
B2C-B	+15.5 Vdc Output
B2C-C	Common
B2C-D	Common
B2C-E	Common
B2C-F	Line fault signal
B2C-H	+6 Vdc Output
B2C-M	Temperature sense element
B2C-N	Temperature sense element
B2C-P	-6Vdc Output
B2C-R	Power status terminal
B2C-S	+6 Vdc output

SPECIFICATIONS

Input Power

95-130 VRMS, 50 or 60 Hz ± 1 Hz, single phase.

Output Power

<u>Output Voltage</u>	<u>Current Range</u>	<u>Regulation Band</u>	<u>Set Current</u>	<u>Ripple (p-p)</u>
+24 Vdc	0 - 2A	±5%*	1.5A	5%
+15.5Vdc	.2 - 5A	±5%	----	2%
+6Vdc	8 - 20A	±6%*	15A	2%
-6Vdc	0 - 1A	±6%*	0.5A	2%
24Vac	0 - 1A	----	----	----

*Regulation of +24V, +6V and -6V includes static line voltage changes (at set current) and ripple only.

Adjustment Range

The +15.5V output is adjustable to nominal.

Temperature Compensation

The +15.5V output is remotely controlled by a temperature sensing device (Honeywell P/N 70 932 305 001) at a nominal rate of -0.5% per °C from 0-60°C. The bandwidth allowed is ±4% deviation from linearity below 25°C and ±2% deviation from linearity above 25°C.

Oversupply Protection

Turn-on and turn-off will not cause the +15.5V output to exceed 18V nor the ±6V outputs to exceed nominal by more than 20%.

An oversupply crowbar circuit prevents the +15.5V output from exceeding 18V in the event of a regulator component failure.

Overcurrent Protection

Fuses are provided for input ac power, the internal fan, bulk dc power for the +15.5V regulator and two ac auxiliary outputs. Current limiting circuitry is incorporated in the +15.5V regulator.

Output Voltage Reversal

Reverse diodes are included across each dc output to prevent any voltage from reversing polarity by more than 2.0 volts.

Thermal Cutout

A thermal cutout is included to remove input ac power to the power supply if unsafe temperature is exceeded.

Operating Temperature

0 - 60°C.

Efficiency

50% or greater when fully loaded.

Turn-on Turn-off Sequencing

The following turn-on and turn-off sequencing is provided under all rated load conditions:

1. During turn-on, the +15.5V output will not rise above 20% of nominal until the ± 6 V outputs are above 90% of nominal. The ± 6 V outputs are energized when power is applied.
2. During turn-off, the ± 6 V outputs shall remain above 90% of nominal until the +15.5V output drops below 20% of nominal.
3. A +5 to +6 volt fault signal rated at 10 mA is provided whenever input ac power is within acceptable limits. The +15.5V output will remain within regulation for a minimum of 1.0 ms after loss of this signal, and the ± 6 V outputs will remain in regulation for at least 2 ms.
4. The fault signal will fall to ground level within 1/2 cycle of the loss of input ac power. Removing the fault signal also trips the input ac circuit breaker.

SECTION 2 ILLUSTRATED PARTS BREAKDOWN

This section contains the illustrated parts breakdown (IPB) of the power supply for both rack-mounted and table top models of the H316 General Purpose Computer.

5959

Figure 4-11. Power Supply, Rack-Mounted Configuration (Part 1 of 2)

Figure 4-11. Power Supply, Table Top Configuration (Part 2 of 2)

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
4-11	A3	950061001*	C	POWER SUPPLY - AULT Mfg; No. PR 100-A1 2 (Refer to Figure 3-1-4 and 3-2-5 for NHA).	Ref
-1	A1A	6221293	D	FUSE, CARTRIDGE - 3A, Slo-Blo	1
-2	A2A	6221294	D	FUSE, CARTRIDGE - 10A, Slo-Blo	2
-3	A3A	6221294	D	FUSE, CARTRIDGE - Same as A2A	Ref
-4	A4A	62211002	D	FUSE, CARTRIDGE - 7.5A	1
-5	C22	4001540	D	CAPACITOR, FXD, ELECTROLYTIC - 175 μ F, 25V	1
-6	TB4	6201601	D	TERMINAL BOARD - barrier type	2
-7	L1	3021285	D	CHOKE	1
-8	C19	4001278	D	CAPACITOR, ELECTROLYTIC - 100,000 μ F, 10V	3
-9	C20	4001278	D	CAPACITOR, ELECTROLYTIC - same as C19	Ref
-10	C18	4001278	D	CAPACITOR, ELECTROLYTIC - same as C19	Ref
-11	R69	5804601	D	RESISTOR, FXD, WIREWOUND - 15 ohms, 5W $\pm 10\%$	1
-12	C21	4001283	D	CAPACITOR, FXD, ELECTROLYTIC - 50,000 μ F, 32V	1
-13	R70	5003083	D	RESISTOR, FXD, FILM - 620 ohms, 2W, $\pm 5\%$	1
-14	R68	5003054	D	RESISTOR, FXD, FILM - 39 ohms, 2W, $\pm 5\%$	1
-15	TB2	6201601	D	TERMINAL BOARD - same as TB4	1
-16	C17	4061414	D	CAPACITOR, FXD - 6 μ F, 660V	1
-17	CR32	6031033	D	SEMICONDUCTOR DEVICE, DIODE - type IN1341	4
-18	CR33	6031033	D	SEMICONDUCTOR DEVICE, DIODE - same as CR32	Ref
-19	CR34	6031033	D	SEMICONDUCTOR DEVICE, DIODE - same as CR32	Ref
-20	CR35	6031033	D	SEMICONDUCTOR DEVICE, DIODE - same as CR32	Ref
-21	A3	0802583	D	CIRCUIT CARD ASSEMBLY (See Figure 4-12 for breakdown)	1
-22	T2	3011428A	D	TRANSFORMER	1
-23	TB3	6201158	D	TERMINAL BOARD - barrier type	1
-24	B1	6281011	D	FAN, AXIAL	1
-25	T1	3011471B	D	TRANSFORMER, CONSTANT VOLTAGE	1
-26	TB1	6201132	D	TERMINAL BOARD - barrier type; C-J type 2-140	1

*CCD part number assignment

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
4-11	CR36, CR37 (not shown) A2 (not shown) C16 (not shown) R71 (not shown)	60311881 6061092 4061102 5808201	D D D D	SEMICONDUCTOR DEVICE, DIODE - type 40HF5 RECTIFIER CAPACITOR, FXD, ELECTROLYTIC - 0.1 μ F, 600V RESISTOR, FXD, WW - 0.5 ohm, 50W 10%	2 1 1 1
-27	B3B, B4B	62015502	D	CONNECTOR, RECEPTACLE, ELEC - 2 section w/2 female parallel contact and 1 gnd pin contact, Hubbell type 5262	2
-28	B2C	62012402	D	CONNECTOR, RECEPTACLE, ELEC - Burndy type, MS20RM58	2
-29	B1B		D	CONNECTOR, AC, PWR-Hubbel P/N 7486	1
-30	B2A	62012402	D	CONNECTOR, RECEPTACLE, ELEC - same as B2C	Ref
-31	B2B		D	CONNECTOR RECEPTACLE - consisting of 5 contacts; two DC2025 yellow; one DC2025 red; one DC2025 black; one DC2025 white, Heyco type	1

5946

Figure 4-12. Printed Circuit Card (Part 1 of 2)

5945

Figure 4-12. Printed Circuit Card (Part 2 of 2)

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
4-12-	A3	0802583	D	CIRCUIT CARD ASSEMBLY (Refer to Figure 4-11-21 for NHA)	Ref
-1	CR23	6031300	E	SEMICONDUCTOR DEVICE, DIODE - type 10D05	10
-2	CR22	6001072	E	SEMICONDUCTOR DEVICE, DIODE - SCR type C106F1	1
-3	C13	4061239	E	CAPACITOR - 0.002 μ F, 500V	6
-4	CR21	6031300	E	SAME AS CR23	1
-5	CR20	60511002	E	SEMICONDUCTOR DEVICE, DIODE - type 1N753A	2
-6	C11	4001069	E	CAPACITOR - 2 μ F, 50V	1
-7	C14	4041018	E	CAPACITOR - 1.0 μ F, 50V	2
-8	C12	4041010	E	CAPACITOR - same as C14	Ref
-9	CR25	60511002	E	SEMICONDUCTOR DEVICE, DIODE - same as CR20	Ref
-10	C9	4061138	E	CAPACITOR - 0.047 μ F, 200V	1
-11	C8	4061239	E	CAPACITOR - same as C13	Ref
-12	CR14	6001038	E	SEMICONDUCTOR DEVICE, DIODE - SCR type C20U	1
-13	CR13	6051300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-14	C6	4001542	E	CAPACITOR - 10 μ F, 35V	1
-15	CR12	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-16	S1	62610945	E	THERMOSTAT	1
-17	C15	4061239	E	CAPACITOR - same as C13	Ref
-18	CR5	6051215	E	SEMICONDUCTOR DEVICE, DIODE - type 1N4733A	2
-19	C5	4061239	E	CAPACITOR - same as C13	Ref
-20	CR8	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-21	C3	4061239	E	CAPACITOR - same as C13	Ref
-22	CR7	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-23	CR6	6051215	E	SEMICONDUCTOR DEVICE, DIODE - same as CR5	Ref
-24	C2	4001539	E	CAPACITOR - 300 μ F, 15V	2
-25	C1	4001539	E	CAPACITOR - same as C2	Ref
-26	CR4	6031290	E	SEMICONDUCTOR DEVICE, DIODE - type 10D1	2
-27	CR3	6031290	E	SEMICONDUCTOR DEVICE, DIODE - same as CR4	Ref
-28	CR2	6031301	E	SEMICONDUCTOR DEVICE, DIODE - type 1N4816	2

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Indenture	Description	Qty per Ass'y
-29	CR1	6031301	E	SEMICONDUCTOR DEVICE, DIODE - same as CR2	Ref
-30	CR11	605110037	E	SEMICONDUCTOR DEVICE, DIODE - type 1N751A	1
-31	C7	4061132	E	CAPACITOR - 0.001 μ F, 200V	1
-32	CR10	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-33	CR9	605110030	E	SEMICONDUCTOR DEVICE, DIODE - type 1N746A	4
-34	CR15	6031172	E	SEMICONDUCTOR DEVICE, DIODE - type 1N645	1
-35	CR16	6031172	E	SEMICONDUCTOR DEVICE, DIODE - type 1N645	1
-36	CR18	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-37	CR17	605110020	E	SEMICONDUCTOR DEVICE, DIODE - type 1N752A	2
-38	CR19	605110028	E	SEMICONDUCTOR DEVICE, DIODE - type 1N964B	1
-39	C10	4061142	E	CAPACITOR - 0.068 μ F, 200V	1
-40	C4	4061239	E	CAPACITOR - same as C13	Ref
-41	CR31	605110020	E	SEMICONDUCTOR DEVICE, DIODE - same as CR17	Ref
-42	K1	6241104	E	RELAY, MERCURY WETTED	1
-43	CR30	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-44	CR29	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-45	CR28	6031300	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-46	CR24	605110030	E	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-47	CR27	605110030	E	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-48	CR26	605110030	E	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-49	R62	5001129	E	RESISTOR, FXD, COMP - 51K ohms, 1/2W, 5%	3
-50	R58	5001105	E	RESISTOR, FXD, COMP - 5.1K ohms, 1/2W, 5%	8
-51	R53	5001040	E	RESISTOR, FXD, COMP - 10 ohms, 1/2W, 5%	2
-52	R60	5001095	E	RESISTOR, FXD, COMP - 2K ohms, 1/2W, 5%	1
-53	R56	5001088	E	RESISTOR, FXD, COMP - 1K ohms, 1/2W, 5%	3

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
-54	R59	5001040	E	RESISTOR, FXD, COMP - same as R53	Ref
-55	Q18	6011075	E	TRANSISTOR, type 2N3569	14
-56	R52	5001119	E	RESISTOR, FXD, COMP - 20K ohms, 1/2W, 5%	2
-57	Q16	6011075	E	TRANSISTOR - same as Q18	Ref
-58	R67	5001092	E	RESISTOR, FXD, COMP - 1.5 ohms, 1/2W, ±5%	1
-59	R49	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-60	R45	5001071	E	RESISTOR, FXD, COMP - 200 ohms, 1/2W, 5%	1
-61	R44	5001073	E	RESISTOR, FXD, COMP - 240 ohms, 1/2W, 5%	1
-62	Q15	6011151	E	TRANSISTOR - type 2N3638	2
-63	R42	5001099	E	RESISTOR, FXD, COMP - 3K ohms, 1/2W, 5%	1
-64	Q6	6011075	E	TRANSISTOR - same as Q18	Ref
-65	Q14	6011075	E	TRANSISTOR - same as Q18	Ref
-66	R43	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-67	R40	5303099	E	RESISTOR, FXD, FILM - 3K ohms, 1W, 5%	1
-68	R41	59013526	E	RESISTOR, VARIABLE - 1K ohm	2
-69	R27	5001088	E	RESISTOR, FXD, COMP - same as R56	Ref
-70	Q8	6011075	E	TRANSISTOR - same as Q18	Ref
-71	R26	5001081	E	RESISTOR, FXD, COMP - 510 ohms, 1/2W, 5%	2
-72	R28	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-73	R29	5001116	E	RESISTOR, FXD, COMP - 15K ohms, 1/2W, 5%	2
-74	R30	5001096	E	RESISTOR, FXD, COMP - 2.2K ohms, 1/2W, 5%	3
-75	R22	5001081	E	RESISTOR, FXD, COMP - same as R26	Ref
-76	Q12	6011075	E	TRANSISTOR - same as Q18	Ref
-77	R35	5001100	E	RESISTOR, FXD, COMP - 3.3K ohms, 1/2W, 5%	1
-78	Q11	6011133	E	TRANSISTOR - type MJ2801	2
-79	R33	5001077	E	RESISTOR, FXD, COMP - 360 ohms, 1/2W, 5%	1
-80	Q10	6011133	E	TRANSISTOR - same as Q11	Ref
-81	R14	5303086	E	RESISTOR, FXD, FILM - 820 ohms, 1W, 5%	3
-82	R18	5001072	E	RESISTOR, FXD, COMP - 220 ohms, 1/2W, 5%	1
-83	Q9	6011075	E	TRANSISTOR - same as Q18	Ref

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
-84	R25	5001057	E	RESISTOR, FXD, COMP - 51 ohms, 1/2W, 5%	1
-85	R66	5303089	E	RESISTOR, FXD, FILM - 1.1K ohms, 1W, 5%	2
-86	R15	5901128	E	RESISTOR, VARIABLE - 400 ohms	3
-87	Q4	6011151	E	TRANSISTOR - same as Q15	Ref
-88	Q3	6011075	E	TRANSISTOR - same as Q18	1
-89	R37	5901132	E	RESISTOR, VARIABLE - 500 ohms	1
-90	R16	5001116	E	RESISTOR, FXD, COMP - same as R29	Ref
-91	Q2	6011075	E	TRANSISTOR - same as Q18	Ref
-92	R10	5001129	E	RESISTOR, FXD, COMP - same as R62	Ref
-93	Q1	6011075	E	TRANSISTOR - same as Q18	Ref
-94	R9	5001096	E	RESISTOR, FXD, COMP - same as R30	Ref
-95	R8	5001096	E	RESISTOR, FXD, COMP - same as R30	Ref
-96	R7	5901128	E	RESISTOR, VARIABLE - same as R15	Ref
-97	R17	5001075	E	RESISTOR, FXD, COMP - 300 ohms, 1/2W, 5%	1
-98	R13	5303086	E	RESISTOR, FXD, FILM - same as R14	Ref
-99	R6	5303086	E	RESISTOR, FXD, FILM - same as R14	Ref
-99A	R5	5303089	E	RESISTOR, FXD, FILM - same as R66	Ref
-100	R2	5003071	E	RESISTOR, FXD, COMP - 200 ohms, 2W, ±5%	2
-101	R3	5002060	E	RESISTOR, FXD, COMP - 68 ohms, 1W, ±5%	1
-102	R1	5003071	E	RESISTOR, FXD, COMP - same as R2	Ref
-103	R4	5002060	E	RESISTOR, FXD, COMP - same as R3	Ref
-104	R24	5804602	E	RESISTOR, FXD, WW - 5 ohms, 5W, ±10%	1
-105	R31	5804455	E	RESISTOR, FXD, WW - 0.1 ohm, 5W, ±5%	1
-106	R32	5001070	E	RESISTOR, FXD, COMP - 180 ohms, 1/2W, ±5%	1
-107	R34	5901128	E	RESISTOR, VARIABLE - same as R15	Ref
-108	Q13	6011075	E	TRANSISTOR - same as Q18	Ref
-109	R38	5303092	E	RESISTOR, FXD, FILM - 1.5K ohms, 1W, ±5%	2
-110	R36	5303086	E	RESISTOR, FXD, FILM - 820 ohms, 1W, ±5%	1
-111	R23	5001088	E	RESISTOR, FXD, COMP - same as R56	Ref
-112	R39	5303097	E	RESISTOR, FXD, FILM - 2.4K ohms, 1W, ±5%	1
-113	R20	5001105	E	RESISTOR, FXD, FILM - same as R58	Ref

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
-114	Q7	6011153	E	TRANSISTOR - type 2N3644	2
-115	R19	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-116	R21	5001112	E	RESISTOR, FXD, COMP - 10K ohms, 1/2W, ±5%	3
-117	R51	5001112	E	RESISTOR, FXD, COMP - same as R21	Ref
-118	R12	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-119	R50	5001119	E	RESISTOR, FXD, COMP - same as R52	Ref
-120	R46	5303092	E	RESISTOR, FXD, FILM - same as R38	Ref
-121	R48	5303087	E	RESISTOR, FXD, FILM - 910 ohms, 1W, ±5%	1
-122	Q17	6011075	E	TRANSISTOR - same as Q18	Ref
-123	Q5	6011153	E	TRANSISTOR - same as Q7	Ref
-124	R47	59013526	E	RESISTOR, VARIABLE - same as R41	Ref
-125	R11	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-126	Q20	6011075	E	TRANSISTOR - same as Q18	Ref
-127	R55	5001097	E	RESISTOR, FXD, COMP - 2.4K ohms, 1/2W, 5%	1
-128	R65	5003083	E	RESISTOR, FXD, FILM - 620 ohms, 2W, ±5%	1
-129	R64	5001129	E	RESISTOR, FXD, COMP - same as R62	Ref
-130	R63	5001101	E	RESISTOR, FXD, COMP - 3.6 ohms, 1/2W, ±5%	1
-131	R54	5002081	E	RESISTOR, FXD, COMP - 510 ohms, 1W, ±5%	1
-132	R57	5001112	E	RESISTOR, FXD, COMP - same as R21	Ref
-133	Q19	6011075	E	TRANSISTOR - same as Q18	Ref
-134	R61	5001102	E	RESISTOR, FXD, COMP - 3.9K ohms, 1/2W, ±5%	1
	C23	4001061	E	CAPACITOR, FXD - 50 μF, 50V Sprague type TE	1

PART II
AULT POWER SUPPLY, MODEL PR-130

Part II contains two sections presenting the assembly description and illustrated parts breakdown for Ault Model PR-130. Two versions of this power supply were manufactured per Honeywell SCD No. 950 061 002; Serial No. 0 through 570, and 571 through 589. Component differences are presented in Figure 4-22 and listed in Table 4-3.

SECTION I
ASSEMBLY DESCRIPTION

This section presents the theory of operation, maintenance, troubleshooting procedure and adjustments for Model PR-130 Power Supply.

Model PR-130 Power Supply is designed to provide operating voltages for the H316 computer as follows:

24 Vac	1 ampere
+6.5 Vdc	8-20 amperes
-6 Vdc	1 ampere (max)
+15.5 Vdc	0.2 - 5 amperes
+24 Vdc	2 amperes (max)

A multiple secondary constant voltage transformer is used to provide these required operating potentials using an input line of 95 to 130 Vac at either 50 or 60 Hz. Logic circuitry is included in the power supply to control the turn on procedure. Circuit protection devices include fuses, a low line voltage sensing circuit, and a thermostat switch.

PHYSICAL LAYOUT

The Power Supply measures approximately 17 inches wide by 17 1/2 inches deep by 5 inches high, and it is available for mounting with either the rack-mounted or table top computer configuration. The table top configuration uses the power supply as the computer base, with the mainframe hinged to the top of the power supply. The rack-mounted configuration places the power supply below the mainframe and separately attached to the mounting rack. Cooling is provided by a built in fan and four connectors are used for input and output voltages.

THEORY OF OPERATION

The Power Supply converts ac input power into four regulated dc outputs and one nonregulated 24 Vac output. A block diagram of the power supply is shown in Figure 4-13. Input ac power is supplied to a constant voltage transformer in the input power converter. Three secondaries of the constant voltage transformer provide the +6.5V, -6V and +24V output voltages. The +24V winding also provides bulk ac power to a series regulator which regulates the +15.5V output voltage. A fourth secondary provides the 24 Vac output. The logic circuitry provides the required sequencing, line sensing and overvoltage protection. Reverse diodes are included across each output to prevent accidental reversal of polarity.

Input Power Converter

Input ac power is supplied to the primary of constant voltage transformer T1. (Refer to Figure 4-14). Thermostat switch S1 interrupts ac power if the ambient temperature reaches an unsafe operating level. A3A is the input ac fuse. The outputs of three secondaries of T1 are rectified and filtered to provide the +6.5V, -6V, and +24V outputs as well as several other required bulk dc sources. A fourth secondary of T1 provides the unregulated 24 Vac output. Capacitor C17 is used in combination with a winding of T1 to resonate the transformer at the line frequency and provide the constant voltage characteristic. All the windings are tapped to allow change over between 50 and 60 Hz line operation. Transformer T2 is used by the line sense circuitry to monitor the input ac line.

Reference Voltages

Figure 4-15 shows the positive and negative reference sources required by the +15.5V turn-on delay circuit and the +15.5V overvoltage circuit. The rectified voltage from A2 is filtered by R2 and C2 and applied to zener diode CR6, which provides the positive reference voltage. Similarly, the rectified voltage from CR3 and CR4 is filtered by R1 and C1 and applied to zener diode CR5, which provides the negative reference voltage.

+15.5V Series Regulator

The +15.5V series regulator and the turn-on control circuitry for the +15.5V output is shown in Figure 4-16.

Turn-on Control. -- The turn-on control circuitry is indicated by the dashed lines in Figure 4-16. Whenever Q6 is on, Q7 is on, which provides a drive current source for the +15.5V series regulator. In this condition Q12 is also on, preventing CR12 from conducting. Whenever Q6 is turned off, however, Q7 is also turned off, removing the drive current to the +15.5V series regulator, and turning it off. It also turns Q12 off, which causes CR12 to conduct. This fires the crowbar SCR in the +15.5V overvoltage circuit, which shuts down the 15.5V output. During initial turn-on of the supply, this circuit attempts to fire the crowbar SCR, which would prevent turn-on. However, since no output voltage is present then, the crowbar SCR cannot turn on.

5768

Figure 4-13. Power Supply Block Diagram

Figure 4-14. Input Power Converter

Figure 4-15. Positive and Negative Reference Sources

Figure 4-16. +15.5-Volt Series Regulator

Series Regulator Operation. -- The output voltage appears across a voltage divider consisting of R36, R37, R38 and R39, and an external temperature programming resistor. The wiper voltage of R37 is compared to the reference voltage across zener diode CR11 by transistor Q8. Q8 controls the series regulator by shunting a portion of the base drive current for Q9 (provided by R23) away from Q9. (It is assumed that the turn-on control circuitry has already indicated turn-on). Q9 in turn controls the conductivity of Q10 and the pass transistor, Q11, which controls the load current.

Current limiting is provided by the circuit consisting of R31, R34, R35, and Q13. The current level is sensed by R31. The voltage across R31 is compared to a fixed voltage across R34 by transistor Q13. Whenever the maximum allowed current is reached, the voltage across R31 exceeds the voltage across R34. This causes Q13 to conduct, shunting away a portion of the base drive current for Q9, thus reducing the load current. The over-load characteristic is shown in Figure 4-17.

5769

Figure 4-17. Output Voltage/Current Overload Characteristic

Reverse Diodes

Diode assembly SCDA-1 (A4) is connected across the +6.5V and -6V line; while SCNA-1 (A5) is connected across the +24V and +15.5V outputs respectively, to prevent accidental reversal of polarity in excess of two volts on any of these outputs.

Logic Circuitry

The logic circuitry consists of a line sense circuit, a +15.5V turn-on delay circuit and an overvoltage circuit for the +15.5V output.

Line Sense Circuit. -- The line sense circuit (refer to Figure 4-18) initiates turn-off of the power supply if ac input voltage is below allowable limits.

The ac input voltage is sensed by transformer T2. The secondary voltage is full-wave rectified by CR15 and CR16 to provide an unfiltered dc voltage across R46, R47 and R48. R47 is adjusted so that, when the peak ac input voltage rises above the low line limit, Q17 will be turned on until the ac input drops to normal again.

At the beginning of each half-cycle, C12 begins to charge at a rate determined by C12, R55 and the fixed reference voltage across zener diode CR19. Whenever C12 charges to the predetermined level, CR20 conducts, which causes SCR CR22, to fire. The charge rate is determined so that, if the ac input voltage is at low line or above, Q17 will be turned on due to the line sense voltage before C12 has charged to the level which causes CR20 to conduct. Transistor Q16 is held on by the full-wave rectified voltage at all times except for a short period as the ac input voltage passes through zero volts. At this time, Q16 turns on and discharges C12 to reset the line sense circuit.

Under normal ac input voltage conditions, Q17 clamps the gate of CR22 before it is fired (Figure 4-19 shows waveforms of the cathodes CR17* and CR20). However, if the ac input voltage fails to reach the low line level for one half-cycle, CR22 is fired, and the following sequence occurs:

- a. Coupling diode CR21 conducts, turning Q5 on, which activates the relay trip coil on the external input circuit breaker.
- b. Coupling diode CR23 also conducts, drawing current through R57 away from zener diode CR24. This turns CR24 off, which then turns Q18 off. After a short period, C14 charges sufficiently to cause zener diode CR25 to conduct and fire crowbar SCR CR14 in the +15.5V overvoltage circuit.
- c. Coupling diode CR26 also conducts, drawing current through R61 away from zener diode CR27, turning CR27 off, which then turns Q19 off. Relay K1 becomes deenergized and grounds the power status terminal. It also prevents CR29 from conducting, which turns CR30 and Q20 on. This causes the fault signal to appear (drop to ground).

In summary, whenever the ac input voltage fails to reach the low line limit for one half-cycle, the fault signal appears, the external input breaker is opened, the power status terminal is grounded, and, after a short time delay period, the +15.5V output is crowbarred.

*For Serial No. 0 through 570 operation only.

*CR17 is replaced with resistor R76 for Serial No. 570 and beyond.
 **R51 is omitted for Serial No. 570 and beyond.

Figure 4-18. Line Sense Circuit

Figure 4-19. Line Sense Circuit Waveform

+15.5V Turn-on Delay Circuit. -- The +15.5V turn-on delay circuit (Refer to Figure 4-20) ensures that the +15.5V output is not allowed to turn on until the ± 6 V output voltages have both reached 90% of nominal.

5774

Figure 4-20. +15.5-Volt Turn-On Delay Circuit

The +6.5V output determines the current through resistors R6 and R7. This current is compared to the current through R5, which is determined by the negative reference voltage. Whenever the +6.5V output reaches its minimum allowed level, the current through R6 and R7 exceeds the current through R5, turning Q1 on, clamping Q2 off and allowing zener diode CR9 to conduct.

Similarly, the -6V output determines the current through R14 and R15. This current is compared with the current through R13, which is determined by the positive reference voltage. Whenever the -6V output reaches its minimum allowed level, the current through R14 and R15 exceeds the current through R13, turning Q3 off, turning Q4 off, and allowing zener diode CR9 to conduct.

Whenever both the +6.5V and -6V outputs are above their minimum allowed levels, Q2 and Q4 are both off, and zener diode CR9 conducts to provide a turn-on signal for the +15.5V regulator. However, if either the +6.5V or -6V output is below its minimum allowed level, CR9 does not conduct. This removes the turn-on signal for the +15.5V regulator, which turns off the regulator and crowbars the +15.5V output.

+15.5V Overvoltage Circuit. -- The +15.5V overvoltage circuit (refer to Figure 4-21) crowbars the +15.5V output via SCR CR14 whenever the +15.5V output exceeds its maximum allowed level or whenever a shut-down signal is received from the +15.5V regulator or the line sense circuit.

Figure 4-21. +15.5-Volt Overvoltage Circuit

The +15.5V output determines the current through R40 and R41. This current is compared with the current through R66, which is determined by the negative reference voltage. Whenever the +15.5V output exceeds its maximum allowed level, the current through R40 and R41 exceeds the current through R66. This turns Q14 on, which turns Q15 on. This fires crowbar SCR CR14, which clamps the +15.5V output voltage to a low level. This circuit is also activated in the same manner whenever the +15.5V regulator or the line sense circuit provides a positive signal at the base of Q14.

MAINTENANCE

The only routine maintenance required for the power supply is periodic cleaning or replacement of the air filter. Adjustment procedures, a trouble shooting chart and interface connection data are described in the following paragraphs.

Replacement Parts

Replacement parts can be purchased directly from Honeywell Inc., Framingham, Mass. However, most of the components are standard electrical parts and might be obtained locally in less time.

Recommended Test Instruments

The following test instruments will be helpful in testing and adjusting the power supply:

Voltmeter, ac/dc
Ammeter, ac/dc
Card Extender

Troubleshooting Procedure

Use every safety precaution when troubleshooting the power supply. The supply should be visibly examined for broken, loose or damaged parts, or wire and foreign objects. In the event of an audibly or visually apparent malfunction, proceed directly to the affected area and perform the necessary repairs. Apparent circuit board failure may be caused by improperly adjusted potentiometers. This should be kept in mind when troubleshooting the power supply.

WARNING

The input transformer produces voltage in excess of 600 volts. Exercise extreme caution whenever the power supply cover is off. Remove any rings, watches or other metallic objects before installation or testing. Avoid contact with heat sinks or the input transformer, which operate at high temperatures.

Perform the following preliminary checks before troubleshooting the unit:

- a. Remove any foreign objects from the power supply.
- b. Since the power status signal is provided by a mercury relay, the power supply must be placed in an upright position to ensure proper operation.
- c. Check all input and output connections.
- d. Check the remote temperature sensing device connection.
- e. Check for proper connections for 50 or 60 Hz operation

Table 4-2.
Troubleshooting Guide

SYMPTOM	POSSIBLE CAUSE	SUGGESTED ACTION
Power supply will not turn on.	<ul style="list-style-type: none">a. No input ac power.b. Open thermostat S1.c. Blown fuse A1A or A3Ad. Low ac line voltage.e. Faulty or misadjusted line sense circuit under low ac line condition.	<ul style="list-style-type: none">a. Check for input power.b. Check for proper cooling.c. Check fuses.d. Check for faulty signal.e. Check ac line level and line sense circuit adjustment.
No +15.5V output voltage.	<ul style="list-style-type: none">a. Undervoltage on +6.5V or -6V output.b. Shorted output.c. Faulty or misadjusted turn-on delay circuit.	<ul style="list-style-type: none">a. Check +6.5V or -6V levels.b. Check with external loads removed.c. Check turn-on delay circuit.
Low +15.5V output voltage.	<ul style="list-style-type: none">a. Improper adjustment.b. Blown fuse A4Ac. Overloaded output.d. Misadjusted over-current limit.	<ul style="list-style-type: none">a. Check output adjustment.b. Check fuse.c. Check with external load removed.d. Check adjustment.
Overvoltage occurs on +15.5V output.	<ul style="list-style-type: none">a. Misadjusted output.b. Shorted pass transistor Q11.c. Misadjusted overvoltage circuit.	<ul style="list-style-type: none">a. Check adjustment.b. Check Q11.c. Check adjustment of overvoltage circuit: Overvoltage may not be actually occurring.
False indication at power status terminal.	<ul style="list-style-type: none">a. Power supply not in upright position.	<ul style="list-style-type: none">a. Check position of supply.

ADJUSTMENTS

50 or 60 Hz Operation Adjustment

Several tap changes are required on transformer T1 to convert from 60 Hz to 50 Hz operation. Figure 4-14 shows the correct wiring for 60 Hz operation. The dashed lines show the changes required for 50 Hz operation. Changing frequency operation also requires readjustment of the line sense circuit.

Output Voltage Adjustments.

The +15.5V output is controlled by potentiometer R37 (clockwise rotation increases the output voltage level). The +6.5V output is controlled by potentiometers R72 and R74. The -6V output is adjusted by wirewound resistor R80 or R81. The Power Supply is normally delivered with R81 connected as the -6V adjustment. However, R80 must be used if the -6V cannot be adjusted using R81. In this case, the lead at point A, R81, must be moved to point B, R80. (See Figure 4-29.)

+15.5V Overvoltage Adjustment

The +15.5V overvoltage adjustment is controlled by potentiometer R41. Proceed as follows:

- a. Turn R41 (maximum overvoltage setting) fully clockwise.
- b. Apply input ac power.
- c. Adjust the +15.5V output voltage to the desired overvoltage setting (18V) with the output voltage adjustment potentiometer R37. It may be necessary to replace the external thermistor with a decade box to reach this level.
- d. Slowly turn R41 counterclockwise until the +15.5V output voltage drops to zero.
- e. Remove input ac power.
- f. Replace the external thermistor if it had been removed.
- g. Turn R37 fully counterclockwise.
- h. Apply input ac power.
- i. Set the +15.5V output voltage to the desired operating level.

+15.5V Overcurrent Adjustment

Adjust the overload bendback point with potentiometer R34 using the following procedure:

- a. Turn R34 fully clockwise.
- b. Apply a load to the +15.5V output equal to the desired overcurrent setting.
- c. Apply input ac power.
- d. Slowly turn R34 counterclockwise until the +15.5V output voltage starts to drop.
- e. Remove input ac power and remove the load.

Line Sense Circuit Adjustment

The line sense circuit is adjusted by potentiometer R47. This adjustment is required whenever a change is made between 50 Hz and 60 Hz operation. Proceed as follows:

- a. Turn R47 fully clockwise.
- b. Apply 95 Vac (low line) to the input power terminals.
- c. Slowly turn R47 counterclockwise until the fault signal appears.
- d. Remove input ac power.

+6.5V or -6V Undervoltage Adjustment

The +15.5V turn-on delay circuit contains +6.5V or -6V undervoltage sensors. These sensors have been adjusted at the factory and should normally require no adjustment. However, if adjustment should become necessary, proceed as follows:

+6.5V Output Adjustment Procedure

- a. Turn R7 fully counterclockwise.
- b. Disconnect the lead from connector J1-H to capacitor C18 (positive terminal) at the capacitor.
- c. Connect the disconnected lead to a positive voltage source of the desired undervoltage level.
- d. Apply input ac power.
- e. Slowly turn R7 clockwise until the +15.5V output drops to zero.
- f. Remove input ac power.
- g. Remove the external voltage source and reconnect the lead to C18.

-6V Output Adjustment Procedure

- a. Turn R15 fully counterclockwise.
- b. Disconnect the lead from connector J1-J to capacitor C20 (negative terminal) at the capacitor.
- c. Connect the disconnected lead to a negative voltage source of the desired undervoltage level.
- d. Apply input ac power.
- e. Slowly turn R15 clockwise until the +15.5V output drops to zero.
- f. Remove input ac power.
- g. Remove the external voltage source and reconnect the lead to C20.

CONNECTOR INTERFACE DATA

All inputs and outputs are made via the four connectors on the power supply. The pin connections are tabulated below. The connector number precedes the pin number; for example, B2A-A refers to pin A or connector B2A.

<u>Terminal</u>	<u>Identification</u>
B1B	AC Input Power
B2A-A	+24 Vdc Output
B2A-D	Common
B2A-F	To relay trip coil on circuit breaker
B2A-H	To relay trip coil on circuit breaker
B2A-J	+6.5 V Output
B2A-M	From input circuit breaker
B2A-N	From input circuit breaker
B2A-P	From input circuit breaker
B2A-S	From input circuit breaker
B2A-R	To Fan
B2A-U	To Fan
B2A-T	To input circuit breaker
B2A-V	To input circuit breaker
B2A-W	To input circuit breaker
B2A-X	To input circuit breaker
B2B-YEL	24 Vac Output
B2B-RED	+6.5 Vdc Output
B2B-BLK	-6 Vdc Output
B2B-WHT	Common
B3B	Ac outlet, non-fused
B4B	Ac outlet, fused
B2C-A	+24 Vdc Output
B2C-B	+15.5 Vdc Output
B2C-C	Common
B2C-D	Common
B2C-E	Common
B2C-F	Line fault signal
B2C-H	+6.5 Vdc Output
B2C-J	B2C-J
B2C-K	B2C-K
B2C-M	Temperature sense element
B2C-N	Temperature sense element
B2C-P	-6 Vdc Output
B2C-R	Power status terminal
B2C-S	+6.5 Vdc output

SPECIFICATIONS

Input Power

95-130 VRMS, 50 or 60 Hz \pm 1 Hz, single phase.

Output Power

<u>Output Voltage</u>	<u>Current Range</u>	<u>Regulation Band</u>	<u>Set Current</u>	<u>Ripple (p-p)</u>
+24 Vdc	0 - 2A	$\pm 5\%$ *	1.5A	5%
+15.5Vdc	.2 - 5A	$\pm 5\%$	----	2%
+6.5 Vdc	8 - 20A	$\pm 6\%$ *	15A	2%
-6Vdc	0 - 1A	$\pm 6\%$ *	0.5A	2%
24Vac	0 - 1A	----	----	----

*Regulation of +24V, +6.5V and -6V includes static line voltage changes (at set current) and ripple only.

Adjustment Range

The +15.5V output is adjustable to nominal.

Temperature Compensation

The +15.5V output is remotely controlled by a temperature sensing device (Honeywell P/N 70 932 305 001) at a nominal rate of -0.5% per $^{\circ}\text{C}$ from 0-60 $^{\circ}\text{C}$. The bandwidth allowed is $\pm 4\%$ deviation from linearity below 25 $^{\circ}\text{C}$ and $\pm 2\%$ deviation from linearity above 25 $^{\circ}\text{C}$.

Oversupply Protection

Turn-on and turn-off will not cause the +15.5V output to exceed 18V nor the +6.5V and -6V outputs to exceed nominal by more than 20%.

An oversupply crowbar circuit prevents the +15.5V output from exceeding 18V in the event of a regulator component failure.

Overcurrent Protection

Fuses are provided for input ac power, the internal fan, bulk dc power for the +15.5V regulator and two ac auxiliary outputs. Current limiting circuitry is incorporated in the +15.5V regulator.

Output Voltage Reversal

Reverse diodes are included across each dc output to prevent any voltage from reversing polarity by more than 2.0 volts.

Thermal Cutout

A thermal cutout is included to remove input ac power to the power supply if unsafe temperature is exceeded.

Operating Temperature

0 - 60°C.

Efficiency

50% or greater when fully loaded.

Turn-on Turn-off Sequencing

The following turn-on and turn-off sequencing is provided under all rated load conditions:

1. During turn-on, the +15.5V output will not rise above 20% of nominal until the +6.5V and -6V outputs are above 90% of nominal. The +6.5V and -6V outputs are energized when power is applied.
2. During turn-off, the +6.5V and -6V outputs shall remain above 90% of nominal until the +15.5V output drops below 20% of nominal.
3. A +5 to +6 volt fault signal rated at 10 mA is provided whenever input ac power is within acceptable limits. The +15.5V output will remain within regulation for a minimum of 1.0 ms after loss of this signal, and the +6.5V and -6V outputs will remain in regulation for at least 2 ms.
4. The fault signal will fall to ground level within 1/2 cycle of the loss of input ac power. Removing the fault signal also trips the input ac circuit breaker.

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-24-	A3	950061002	C	POWER SUPPLY - AULT Mfg. No. PR-130	Ref
-1	A5A	6221082	D	FUSE, CARTRIDGE - 3A	1
-2	A1A	6221293	D	FUSE, CARTRIDGE - 3A, Slo-Blo	1
-3	A2A	6221294	D	FUSE, CARTRIDGE - 10A, Slo-Blo	2
-4	A3A	6221294	D	FUSE, CARTRIDGE - Same as A2A	Ref
-5	A4A	62211002	D	FUSE, CARTRIDGE - 7.5A	1
-6	R74	580-84001	D	RESISTOR, VARIABLE, WIREWOUND - 0.11 ohms, 50W ±10%	2
-7	R72	580-84001	D	RESISTOR, VARIABLE, WIREWOUND - Same as R74	Ref
-8	C17	4061414	D	CAPACITOR, FXD: 6 µF, 660V	2
-9	TB4	6201601	D	TERMINAL BOARD - barrier type	2
-10	L1	3021285	D	CHOKE	1
-11	C19	4001278	D	CAPACITOR, ELECTROLYTIC - 100,000 µF, 10V	3
-12	C21	4001283	D	CAPACITOR, ELECTROLYTIC - 50,000 µF, 32V	1
-13	C18	4001278	D	CAPACITOR, ELECTROLYTIC - Same as C19	Ref
-14	R69	5804601	D	RESISTOR, FXD, WIREWOUND - 15 ohms, 5W±10%	1
-15	C20	4001278	D	CAPACITOR, ELECTROLYTIC - Same as C19	Ref
-16	R68	5003054	D	RESISTOR, FXD, FILM - 39 ohms, 2W, ±5%	1
-17	R70	5003083	D	RESISTOR, FXD, FILM - 620 ohms, 2W, ±5%	1
-18	TB2	6201601	D	TERMINAL BOARD - same as TB4	1
-19	C22	4001540	D	CAPACITOR, FXD, ELECTROLYTIC - 125 µF, 25V	1
-20	A4	60611601	D	DIODE ASSEMBLY - Type SCDA1	1
-21	A5	60610971	D	DIODE ASSEMBLY - Type SCNA1	1
-22	A3	0802583	D	CIRCUIT CARD ASSEMBLY (See Figure 4-12 for breakdown)	1
-23	T2	3011428	D	TRANSFORMER	1
-24	TB3	6201158	D	TERMINAL BOARD - barrier type	1 1
-25	B1	6281011	D	FAN, AXIAL	1
-26	T1	3011522	D	TRANSFORMER, CONSTANT VOLTAGE	1
-27	TB1	6201132	D	TERMINAL BOARD - barrier type; C-J type 2-140	1

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
4-24	CR 36, CR 37*	60311881	D	SEMICONDUCTOR DEVICE, DIODE - type 40HF5	2
	A2*	6061001	D	DIODE - Assembly type SCPA1	1
	C16*	4061171	D	CAPACITOR, FXD, ELECTROLYTIC - 0.1 μ F, 600V	1
	R71*	58078805	D	RESISTOR, FXD, WIREWOUND - 0.5 ohm, 50W 10%	1
-28	B1B		D	CONNECTOR, AC, PWR - Hubbell P/N 8486	1
-29	B2C	62012401	D	CONNECTOR, RECEPTACLE, ELEC - Burndy type, MS20RM58	2
-30	B2A	62012401	D	CONNECTOR, RECEPTACLE, ELEC - Same as B2C	Ref
-31	B2B		D	CONNECTOR, RECEPTACLE - consisting of 5 contacts: two DC2025 yellow; one DC2025 red; one DC2025 black; one DC2025 white, Heyco type	1
-32	B3B, B4B	62015502	D	CONNECTOR, RECEPTACLE, ELEC - 2 section w/2 female parallel contact and 1 gnd pin contact, Hubbell type 5262	2

*Not shown

Figure 4-25. Printed Circuit Card (Part 1 of 2)

Figure 4-25. Printed Circuit Card (Part 2 of 2)

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
4-25	A3	0802583	D	CIRCUIT CARD ASSEMBLY (Refer to Figure 4-24-22 for NHA)	Ref
-1	CR23	6032201	E	SEMICONDUCTOR DEVICE, DIODE - type 10D1	12
-2	CR22	6001072	E	SEMICONDUCTOR DEVICE, DIODE - SCR type C106F1	1
-3	C13	4061239	E	CAPACITOR - 0.001 μ F, 500V	6
-4	CR21	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	1
-5	CR20	60511002	E	SEMICONDUCTOR DEVICE, DIODE - type 1N753A	2
-6	C11	4001069	E	CAPACITOR - 2 μ F, 50V	1
-7	C14	4041018	E	CAPACITOR - 1.0 μ F, 50V	2
-8	C12	4041018	E	CAPACITOR - same as C14	Ref
-9	CR25	60511002	E	SEMICONDUCTOR DEVICE, DIODE - same as CR20	Ref
-10	C9	4061138	E	CAPACITOR - 0.047 μ F, 200V	1
-11	C8	4061239	E	CAPACITOR - same as C13	Ref
-12	CR14	6001038	E	SEMICONDUCTOR DEVICE, DIODE - SCR type C20U	1
-13	CR13	6052201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-14	C6	4001542	E	CAPACITOR - 10 μ F, 35V	1
-15	CR12	6032201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-16	S1	62610945	E	THERMOSTAT	1
-17	C15	4061239	E	CAPACITOR - same as C13	Ref
-18	C23	4001961	E	CAPACITOR, FXD - 50 μ F, 50V Sprague Type TE	1
-19	CR5	6051215	E	SEMICONDUCTOR DEVICE, DIODE - type 1N4733A	2
-20	C5	4061239	E	CAPACITOR - same as C13	Ref
-21	CR8	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-22	C3	4061239	E	CAPACITOR - same as C13	Ref
-23	CR7	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-24	CR6	6051215	E	SEMICONDUCTOR DEVICE, DIODE - same as CR5	Ref
-25	C2	4001539	E	CAPACITOR - 300 μ F, 15V	2
-26	C1	4001539	E	CAPACITOR - same as C2	Ref
-27	CR4	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
-28	CR 3	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-29	CR 2	6031301	E	SEMICONDUCTOR DEVICE, DIODE type 1N4816	2
-30	CR 1	6031301	E	SEMICONDUCTOR DEVICE, DIODE - same as CR2	Ref
-31	CR 11	605110037	E	SEMICONDUCTOR DEVICE, DIODE - type 1N751A	1
-32	C7	4061132	E	CAPACITOR - 0.001 μ F, 200V	1
-33	CR 10	6032201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-34	CR 9	605110030	E	SEMICONDUCTOR DEVICE, DIODE - type 1N746A	4
-35	CR 15	6031171	E	SEMICONDUCTOR DEVICE, DIODE - type 1N645	2
-36	CR 16	6031171	E	SEMICONDUCTOR DEVICE, DIODE - same as CR15	Ref
-37	CR 18	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-38	CR 17	605110020	E	SEMICONDUCTOR DEVICE, DIODE - type 1N752A	2
-39	CR 19	60511028	E	SEMICONDUCTOR DEVICE, DIODE - type 1N964B	1
-40	C10	4061142	E	CAPACITOR - 0.068 μ F, 200V	1
-41	C4	4061239	E	CAPACITOR - same as C13	Ref
-42	CR 31	605110020	E	SEMICONDUCTOR DEVICE, DIODE - same as CR17	Ref
-43	K1	6241104	E	RELAY, MERCURY WETTED	1
-44	CR 30	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-45	CR 29	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-46	CR 28	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-47	CR 24	605110030	E	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-48	CR 27	605110030	E	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-49	CR 26	60312201	E	SEMICONDUCTOR DEVICE, DIODE - same as CR23	Ref
-50	R62	5001105	E	RESISTOR, FXD, COMP - 5.1K ohms, 1/2W, 5%	11
-51	R58	5001105	E	RESISTOR, FXD, COMP - same as R62	Ref
-52	R53	5001051	E	RESISTOR, FXD, COMP - 30 ohms, 1/2W, 5%	2

▲ See Table 4-3 at end of this section.

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Indenture	Description	Qty per Ass'y
-53	R60	5001095	E	RESISTOR, FXD, COMP - 2K ohms, 1/2W, 5%	1
-54	R56	5001088	E	RESISTOR, FXD, COMP - 1K ohms, 1/2W, 5%	3
-55	R59	5001040	E	RESISTOR, FXD, COMP - 10 ohms, 1/2W, 5%	1
-56	Q18	6011075	E	TRANSISTOR - type 2N3569	14
-57	R52	5001119	E	RESISTOR, FXD, COMP - 20K ohms, 1/2W, 5%	2
-58	Q16	6011075	E	TRANSISTOR - same as Q18	Ref
-59	R67	5001092	E	RESISTOR, FXD, COMP - 1.5K ohms, 1/2W, ±5%	1
-60	R49	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-61	R45	5001071	E	RESISTOR, FXD, COMP - 200 ohms, 1/2W, 5%	1
-62	R44	5001073	E	RESISTOR, FXD, COMP - 240 ohms, 1/2W, 5%	1
-63	Q15	6011151	E	TRANSISTOR - type 2N3638	2
-64	R42	5001099	E	RESISTOR, FXD, COMP - 3K ohms, 1/2W, 5%	1
-65	Q6	6011075	E	TRANSISTOR - same as Q18	Ref
-66	Q14	6011075	E	TRANSISTOR - same as Q18	Ref
-67	R43	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-68	R40	6403099	E	RESISTOR, FXD, FILM - 3K ohms, 1W, 5%	1
-69	R41	59013526	E	RESISTOR, VARIABLE - 1K ohm	2
-70	R27	5001088	E	RESISTOR, FXD, COMP - same as R56	Ref
-71	Q8	6011075	E	TRANSISTOR - same as Q18	Ref
-72	R26	5001081	E	RESISTOR, FXD, COMP - 510 ohms, 1/2W, 5%	2
-73	R28	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-74	R29	5001116	E	RESISTOR, FXD, COMP - 15K ohms, 1/2W, 5%	2
-75	R30	5001096	E	RESISTOR, FXD, COMP - 2.2K ohms, 1/2W, 5%	3
-76	R22	5001081	E	RESISTOR, FXD, COMP - same as R26	Ref
-77	Q12	6011075	E	TRANSISTOR - same as Q18	Ref
-78	R35	5001100	E	RESISTOR, FXD, COMP - 3.3K ohms, 1/2W, 5%	1
-79	Q11	6011133	E	TRANSISTOR - type MJ2801	2
-80	R33	5001077	E	RESISTOR, FXD, COMP - 360 ohms, 1/2W, 5%	1
-81	Q10	6011133	E	TRANSISTOR - same as Q11	Ref

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
-82	R14	5303086	E	RESISTOR, FXD, FILM - 820 ohms, 1W, 5%	3
-83	R18	5001072	E	RESISTOR, FXD, COMP - 220 ohms, 1/2W, 5%	1
-84	Q9	6011075	E	TRANSISTOR - same as Q18	Ref
-85	R25	5001057	E	RESISTOR, FXD, COMP - 51 ohms, 1/2W, 5%	1
-86	R66	5303089	E	RESISTOR, FXD, FILM - 1.1K ohms, 1W, 5%	2
-87	R15	59013524	E	RESISTOR, VARIABLE - 400 ohms	3
-88	Q4	6011151	E	TRANSISTOR - same as Q15	Ref
-89	Q3	6011075	E	TRANSISTOR - same as Q18	1
-90	R37	59013546	E	RESISTOR, VARIABLE - 1K ohms	1
-91	R16	5001116	E	RESISTOR, FXD, COMP - same as R29	Ref
-92	Q2	6011075	E	TRANSISTOR - same as Q18	Ref
-93	R10	5001129	E	RESISTOR, FXD, COMP - 51 ohms, 1/2W ±5%	1
-94	Q1	6011075	E	TRANSISTOR - same as Q18	Ref
-95	R9	5001096	E	RESISTOR, FXD, COMP - same as R30	Ref
-96	R8	5001096	E	RESISTOR, FXD, COMP - same as R30	Ref
-97	R7	59013524	E	RESISTOR, VARIABLE - same as R15	Ref
-98	R17	5001075	E	RESISTOR, FXD, COMP - 300 ohms, 1/2W, 5%	1
-99	R13	5303086	E	RESISTOR, FXD, FILM - same as R14	Ref
-100	R6	5303086	E	RESISTOR, FXD, FILM - same as R14	Ref
-101	R5	5303089	E	RESISTOR, FXD, FILM - same as R66	Ref
-102	R2	5003071	E	RESISTOR, FXD, COMP - 200 ohms, 2W, ±5%	2
-103	R3	5002060	E	RESISTOR, FXD, COMP - 68 ohms, 1W, ±5%	1
-104	R1	5003071	E	RESISTOR, FXD, COMP - same as R2	Ref
-105	R4	5002060	E	RESISTOR, FXD, COMP - same as R3	Ref
-106	R24	5804602	E	RESISTOR, FXD, WIREWOUND - 5 ohms, 5W, ±10%	1
-107	R31	5804455	E	RESISTOR, FXD, WIREWOUND - 0.1 ohm, 5W, ±5%	1
-108	R32	5001070	E	RESISTOR, FXD, COMP - 180 ohms, 1/2W, ±5%	1
-109	R34	59013524	E	RESISTOR, VARIABLE - same as R15	Ref
-110	Q13	6011075	E	TRANSISTOR - same as Q18	Ref
-111	R38	5303091	E	RESISTOR, FXD, FILM - 1.3K ohms, 1W, ±5%	2

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
-112	R36	5303081	E	RESISTOR, FXD, FILM - 510 ohms, 1W, ±5%	1
-113	R23	5001088	E	RESISTOR, FXD, COMP - same as R56	Ref
-114	R39	5303097	E	RESISTOR, FXD, FILM - 2.4K ohms, 1W, ±5%	1
-115	R20	5001105	E	RESISTOR, FXD, FILM - same as R58	Ref
-116	Q7	6011153	E	TRANSISTOR - type 2N3644	2
-117	R19	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-118	R21	5001112	E	RESISTOR, FXD, COMP - 10K ohms, 1/2W, ±5%	3
▲	-119	R51	5001112	RESISTOR, FXD, COMP - same as R21	Ref
-120	R12	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
▲	-121	R50	5001119	RESISTOR, FXD, COMP - same as R52	Ref
▲	-122	R46	5303092	RESISTOR, FXD, FILM - 1.5K ohms, 1/2 W ±5%	1
-123	CR38	60312201	E	SEMICONDUCTOR DEVICE DIODE - Same as CR23	Ref
▲	-124	R48	5303087	RESISTOR, FXD, FILM - 910 ohms, 1W, ±5%	1
-125	Q17	6011075	E	TRANSISTOR - same as Q18	Ref
-126	Q5	6011153	E	TRANSISTOR - same as Q7	Ref
▲	-127	R47	5901125	RESISTOR, VARIABLE - 1K ohms	1
-128	R11	5001105	E	RESISTOR, FXD, COMP - same as R58	Ref
-129	Q20	6011075	E	TRANSISTOR - same as Q18	Ref
-130	R55	5001097	E	RESISTOR, FXD, COMP - 2.4K ohms, 1/2W, 5%	1
-131	R65	5003083	E	RESISTOR, FXD, FILM - 620 ohms, 2W, ±5%	1
-132	R64	5001105	E	RESISTOR, FXD, COMP - same as R62	Ref
-133	R63	5001101	E	RESISTOR, FXD, COMP - 3.6K ohms, 1/2W, ±5%	1
-134	R54	5002081	E	RESISTOR, FXD, COMP - 510 ohms, 1W, ±5%	1
-135	R57	5001112	E	RESISTOR, FXD, COMP - same as R21	Ref
-136	Q19	6011075	E	TRANSISTOR - same as Q18	Ref
-137	R61	5001102	E	RESISTOR, FXD, COMP - 3.9K ohms, 1/2W, ±5%	1
-138	R75	5001064	E	RESISTOR, FXD, COMP - 100 ohms, 1/2W ±5%	1

▲ See Table 4-3 at end of this section.

Table 4-3.
Component Changes Per Serial Number

Fig & Index No.	Serial No. 0 through 570			Serial No. 571 through 589		
	Desig	Description	Part No.	Desig	Description	Part No.
4-25	-38	SEMICONDUCTOR DEVICE, DIODE - Type 1N752A	605110020	R76	RESISTOR, FXD, COMP - 100 ohms 1/2W ±5%	5001064
	-119	RESISTOR, FXD, FILM - 10K, 1/2W ±5%	5001112		Not Used	
	-122	RESISTOR, FXD, FILM - 1.5K, 1/2W ±5%	5303092	R46	RESISTOR, FXD, FILM - 2.4K, 1W ±5%	5303097
	-124	RESISTOR, FXD, FILM - 910 ohms 1W ±5%	8303087	R48	RESISTOR, FXD, FILM - 1.1K, 1W ±5%	5303089
	-127	RESISTOR, VARIABLE - 1K	5901125	R47	RESISTOR, VARIABLE - 500 ohms	59013525

PART III
AULT POWER SUPPLY, MODELS PR-136/PR-143

Part III contains one section presenting the illustrated parts breakdown and schematic diagram for Models PR-136 and PR-143 Power Supplies, manufactured by Ault Inc. per Honeywell SCDs 950 061 003 and 950 061 004, respectively. The operation of both models (PR-136 and PR-143) is similar to Ault Model PR-130. Therefore, refer to Part II, Section 1, for the physical layout, theory of operation, maintenance, troubleshooting procedure, and adjustments for Models PR-136 and PR-143 Power Supplies.

Figure 4-26. Power Supply, Rack-Mounted Configuration (Part 1 of 2)

71-0028

Figure 4-26. Power Supply, Table Top Configuration (Part 2 of 2)

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
4-26		950061003*	C	POWER SUPPLY - AULT Mfg No. PR136-A1	Ref
-1	A5A	6221082	D	FUSE, CARTRIDGE - 3A	1
-2	A1A	6221203	D	FUSE, CARTRIDGE - 3A, Slo-Blo	1
-3	A2A	6221294	D	FUSE, CARTRIDGE - 10A, Slo-Blo	2
-4	A3A	6221294	D	FUSE, CARTRIDGE - Same as A2A	Ref
-5	A4A	62211002	D	FUSE, CARTRIDGE - 7.5A	1
-6	C17	4061414	D	CAPACITOR - 6 μ F, 660V	1
-7	R74	580-84001	D	RESISTOR, VARIABLE, WIREWOUND - 0.11 ohms 50W $\pm 10\%$	2
-8	R72	580-84001	D	RESISTOR, VARIABLE, WIREWOUND - same as R74	Ref
-9	TB4	6201601	D	TERMINAL BOARD - Barrier Type	2
-10	L1	3021285	D	CHOKE	1
-11	CR 36, CR 37	60311881	D	RECTIFIER - 40 HF5	2
-12	R70 (Hidden)	5003083	D	RESISTOR, FIXED, COMPOSITION - 620 ohms, 2W, 5%	1
-13	C18	4001278	D	CAPACITOR - 100,000 μ F, 10V	3
-14	A2	60610981	D	DIODE ASSEMBLY - SCPA1	1
-15	R68	5003054	D	RESISTOR, FIXED, COMPOSITION - 39 ohms, 2W, 5%	1
-16	C19	4001278	D	CAPACITOR - Same as C18	Ref
-17	R79	580842023	D	RESISTOR, WIREWOUND - 200 ohms, 10W, 10%	1
-18	C20	4001278	D	CAPACITOR - Same as C18	Ref
-19	R69 (Hidden)	5804601	D	RESISTOR, WIREWOUND - 15 ohms, 5W, 10%	1
-20	R78	5003056	D	RESISTOR, FIXED, COMPOSITION - 47 ohms, 2W, 5%	1
-21	C21	4001283	D	CAPACITOR - 50,000 μ F, 32V	1
-22	TB2	6201158	D	TERMINAL BOARD - Barrier Type	1
-23	C22	4001540	D	CAPACITOR - 175 μ F, 25V	1
-24	A4	60611601	D	DIODE ASSEMBLY - SCDA1	1
-25	A5	60610971	D	DIODE ASSEMBLY - SCNA1	1
-26	A3	080253	D	CIRCUIT CARD ASSEMBLY	1
-27	T2	3011428	D	TRANSFORMER	1
-28	TB3	6201158	D	TERMINAL BOARD - Barrier Type	1
-29	B1	1018418	D	FAN ASSEMBLY - Modified	1
-30	T1	3011522	D	TRANSFORMER	1
-31	TB1	6201132	D	TERMINAL BOARD - Barrier Type	1

*Honeywell Part No.

Fig. & Index No.	Designation	AULT Mfg. No. Part No.	Inden-ture	Description	Qty per Ass'y
-32	B1B	62015503	D	INLET, ELECTRICAL - Hubbell Type 5240	1
-33	B2C	62012401	D	CONNECTOR, RECEPTACLE, ELECTRICAL - Same as B2A	Ref
-34	B2A	62012401	D	CONNECTOR, RECEPTACLE, ELECTRICAL - Burndy Type MS20RM58	2
-35	B2B	620-1643 (Blk) 620-1644(Yel) 620-1645(Red)	D	CONNECTOR, RECEPTACLE, ELECTRICAL - Heyco Type DC202-1	1
-36	B3B, B4B	62015502	D	CONNECTOR, RECEPTACLE, ELECTRICAL - Hubbell Type 5262	2
* -37	R80 (not shown)	580-6553	D	RESISTOR, VARIABLE, WIREWOUND 5 ohms, 25W	1
* -38	R81 (not shown)	580-6557	D	RESISTOR, VARIABLE, WIREWOUND 50 ohms, 25W	1
* -39	DS1 (not shown)	62S-1033-041	D	LIGHT, MINIATURE, HM 550	1

*SCD 950 061 004, Rev. F

71-0041

Figure 4-27. Printed Circuit Card (Part 1 of 2)

Figure 4-27. Printed Circuit Card (Part 2 of 2)

Fig. & Index No.	Designation	AULT Mfg. Co. Part No.	Inden-ture	Description	Qty per Ass'y
4-27	A3	1802584	D	CIRCUIT CARD ASSEMBLY (Refer to Figure 4-27 for NHA)	Ref
-1	CR23	60312201	E	SEMICONDUCTOR DEVICE, DIODE - Type 10D01	15*
-2	CR22	6001072	E	SEMICONDUCTOR DEVICE, DIODE - Type SCR C106F1	1
-3	C13	406-1239	E	CAPACITOR - 0.001 μ F, 500V	6
-4	CR21	60312201	E	Same as CR-23	Ref
-5	CR20	60511002	E	SEMICONDUCTOR DEVICE, DIODE - Zener - Type 1N753A	2
-6	C11	4001069	E	CAPACITOR - 2 μ F, 50V	1
-7	C14	4041018	E	CAPACITOR - 1.0 μ F, 50V	2
-8	C12	4041018	E	CAPACITOR - same as C14	Ref
-9	CR25	60511002	E	Same as CR20	Ref
-10	C9	4061138	E	CAPACITOR - 0.047 μ F, 200V	1
-11	C8	4061239	E	CAPACITOR - same as C13	Ref
-12	CR14	6001038	E	SEMICONDUCTOR DEVICE, DIODE - Type C20U	1
-13	CR13	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-14	C6	4001542	E	CAPACITOR - 10 μ F, 35V	1
-15	CR12	4041018	E	CAPACITOR - 1.0 μ F, 50V	2
-16	S1	62610945	E	THERMOSTAT	1
-17	C15	4061239	E	CAPACITOR - same as C13	Ref
-18	CR5	6051215	E	SEMICONDUCTOR DEVICE, DIODE - Type 1N4733A	2
-19	C5	4061239	E	CAPACITOR - same as C13	Ref
-20	CR8	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-21	C3	4061239	E	CAPACITOR - Same as C13	Ref
-22	CR7	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-23	CR6	6051215	E	SEMICONDUCTOR DEVICE - same as CR5	Ref
-24	C2	4001539	E	CAPACITOR - 300 μ F, 15V	2
-25	C1	4001539	E	CAPACITOR - same as C2	Ref
-26	CR4	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-27	CR3	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-28	CR2	6031301	E	RECTIFIER - 1N4816	2
-29	CR1	6031301	E	RECTIFIER - same as CR2	Ref

*SCD 950 061 004--Change qty 15 to 16.

Fig. & Index No.	Designation	Part No.	Indenture	Description	Qty per Ass'y
-30	CR11	605110037	E	SEMICONDUCTOR DEVICE, DIODE - Type 1N751A	1
-31	C7	4061132	E	CAPACITOR - 0.001 μ F, 200V	1
-32	CR10	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-33	CR9	605110030	E	SEMICONDUCTOR DEVICE, DIODE - Type 1N746A	3
-34	CR15	6031171	E	SEMICONDUCTOR DEVICE, DIODE - Type 1N645	2
-35	CR16	6031171	E	SEMICONDUCTOR DEVICE - same as CR15	Ref
-36	CR18	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
*-37	R76	5001064	E	RESISTOR, FIXED, COMPOSITION - 100 ohms, 1/2W, 5%	2
-38	CR19	605110028	E	SEMICONDUCTOR DEVICE, DIODE - Type 1N964B	1
-39	C10	4061239	E	CAPACITOR - 0.068 μ F, 200V	1
-40	C4	4061239	E	CAPACITOR - same as C13	Ref
-41	CR31	605110020	E	SEMICONDUCTOR DEVICE, DIODE - Type 1N752A	1
-42	K1	6241104	E	RELAY	1
-43	CR30	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-44	CR29	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-45	CR28	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-46	CR24	605110030	E	SEMICONDUCTOR DEVICE - same as CR9	Ref
-47	CR27	605110030	E	SEMICONDUCTOR DEVICE - same as CR9	Ref
-48	CR26	60312201	E	SEMICONDUCTOR DEVICE - same as CR23	Ref
-49	R62	5001105	E	RESISTOR, FIXED, COMPOSITION - 5.1K ohms, 1/2W, 5%	10
-50	R58	5001105	E	RESISTOR - same as R62	Ref
-51	R53	5001051	E	RESISTOR, FIXED, COMPOSITION - 30 ohms, 1/2W, 5%	1
-52	R60	5001095	E	RESISTOR, FIXED, COMPOSITION - 2K ohms, 1/2W, 5%	1
-53	R56	5001088	E	RESISTOR, FIXED, COMPOSITION - 1K ohms, 1/2W, 5%	3
-54	R59	5001040	E	RESISTOR, FIXED, COMPOSITION - 10 ohms, 1/2W, 5%	1

*SCD 950 061 004--Replace R76 with CR39, Part No. 60312201, same as CR23.

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
-55	Q18	6011075	E	SEMICONDUCTOR DEVICE, TRANSISTOR Type 2N3569	14
-56	R52	5001119	E	RESISTOR, FIXED, COMPOSITION - 20K ohms, 1/2W, 5%	2
-57	Q16	6011075	E	SEMICONDUCTOR DEVICE, TRANSISTOR same as Q18	Ref
-58	R67	5001092	E	RESISTOR, FIXED, COMPOSITION - 1.5K ohms, 1/2W, 5%	1
-59	R49	5001105	E	RESISTOR - same as R62	Ref
-60	R45	5001071	E	RESISTOR, FIXED, COMPOSITION - 200 ohms, 1/2W, 5%	1
-61	R44	5001073	E	RESISTOR, FIXED, COMPOSITION - 240 ohms, 1/2W, 5%	1
-62	Q15	6011151	E	SEMICONDUCTOR DEVICE, TRANSISTOR Type 2N3638	2
-63	R42	5001099	E	RESISTOR, FIXED, COMPOSITION - 3K ohms, 1/2W, 5%	1
-64	Q6	6011075	E	SEMICONDUCTOR DEVICE - same as Q18	Ref
-65	Q14	6011075	E	SEMICONDUCTOR DEVICE - same as Q18	Ref
-66	R43	5001105	E	RESISTOR - same as R62	Ref
-67	R40	5303099	E	RESISTOR, FIXED, FILM - 3K ohms, 1W, 5%	1
-68	R41	59013526	E	POTENTIOMETER - 1K ohm	1
-69	R27	5001080	E	RESISTOR - same as R56	Ref
-70	Q8	6011075	E	SEMICONDUCTOR DEVICE - same as Q18	Ref
-71	R26	5001081	E	RESISTOR, FIXED, COMPOSITION - 510 ohms, 1/2W, 5%	2
-72	R28	5001105	E	RESISTOR - same as R62	Ref
-73	R29	5001116	E	RESISTOR, FIXED, COMPOSITION - 15K ohms, 1/2W, 5%	2
-74	R30	5001096	E	RESISTOR, FIXED, COMPOSITION - 2.2K ohms, 1/2W, 5%	3
-75	R22	5001081	E	RESISTOR - same as R26	Ref
-76	Q12	6011075	E	SEMICONDUCTOR DEVICE - same as Q18	Ref
-77	R35	5001100	E	RESISTOR, FIXED, COMPOSITION - 3.3K 1/2W, 5%	1
-78	Q11	6011133	E	SEMICONDUCTOR DEVICE, TRANSISTOR Type MJ2801	2
-79	R33	5001077	E	RESISTOR, FIXED, COMPOSITION - 360 ohms, 1/2W, 5%	1

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
-80	Q10	6011133	E	SEMICONDUCTOR DEVICE - same as Q11	Ref
-81	R14	5303086	E	RESISTOR, FIXED, FILM - 820 ohms, 1W, 5%	3
-82	R18	5001072	E	RESISTOR, FIXED, COMPOSITION - 220 ohms, 1/2W, 5%	1
-83	Q9	6011075	E	SEMICONDUCTOR DEVICE - same as Q18	Ref
-84	R25	5001057	E	RESISTOR, FIXED, COMPOSITION - 51 ohms, 1/2W, 5%	1
-85	R66	5303089	C	RESISTOR, FIXED, FILM - 1.1K ohms, 1W, 5%	3
-86	C23	4001061	E	CAPACITOR - 50 μ F, 50V	1
-87	R15	59013524	E	POTENTIOMETER - 400 ohms	3
-88	Q4	6011151	E	SEMICONDUCTOR DEVICE - same as Q15	Ref
-89	Q3	6011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-90	R37	59013546	E	POTENTIOMETER - 1K ohms	1
-91	R16	5001116	E	RESISTOR - same as R29	Ref
-92	Q2	6011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-93	R10	5001129	E	RESISTOR, FIXED, COMPOSITION - 51K ohms, 1/2W, 5%	1
-94	Q1	6011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-95	R9	5001096	E	RESISTOR - same as R30	Ref
-96	R8	5001096	E	RESISTOR - same as R30	Ref
-97	R7	59013524	E	POTENTIOMETER - same as R15	Ref
-98	R17	5001075	E	RESISTOR, FIXED, COMPOSITION - 300 ohms, 1/2W, 5%	1
-99	R13	5303086	E	RESISTOR - same as R14	Ref
-100	R6	5303086	E	RESISTOR - same as R13	Ref
-101	R5	5303089	E	RESISTOR - same as R66	Ref
-102	R2	5003071	E	RESISTOR, FIXED, COMPOSITION - 200 ohms, 2W, 5%	2
-103	R3	5002060	E	RESISTOR, FIXED, COMPOSITION - 68 ohms, 1W, 5%	2
-104	R1	5003071	E	RESISTOR - same as R2	Ref
-105	R4	5002060	E	RESISTOR - same as R3	Ref
-106	R24	5804602	E	RESISTOR, WIREWOUND - 5 ohms, 5W, 10%	1
-107	R31	5804455	E	RESISTOR, WIREWOUND - 0.1 ohm, 5W, 5%	1

Fig. & Index No.	Designation	Part No.	Indenture	Description	Qty per Ass'y
-108	R 32	5001070	E	RESISTOR, FIXED, COMPOSITION - 180 ohms, 1/2W, 5%	1
-109	R 34	59013524	E	POTENTIOMETER - same as R15	Ref
-110	Q 13	6011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-111	R 38	5303091	E	RESISTOR, FIXED, FILM - 1.3K ohms, 1W, 5%	1
-112	R 36	5303081	E	RESISTOR, FIXED, FILM - 510 ohms, 1W, 5%	1
-113	R 23	501088	E	RESISTOR - same as R56	Ref
-114	R 39	5303097	E	RESISTOR, FIXED, COMPOSITION - 2.40K, 1W, 5%	2
-115	R 20	5001105	E	RESISTOR - same as R62	Ref
-116	Q 7	6011153	E	SEMICONDUCTOR DEVICE, TRANSISTOR Type 2N3644	2
-117	R 19	5001105	E	RESISTOR - same as R62	Ref
-118	R 21	5001112	E	RESISTOR, FIXED, COMPOSITION - 10K ohms, 1/2W, 5%	2
-119	R 12	5001105	E	RESISTOR - same as R62	Ref
-120	R 50	5001119	E	RESISTOR - same as R52	Ref
-121	R 46	5305097	E	RESISTOR - same as R39	Ref
-122	R 48	5303089	E	RESISTOR - same as R66	Ref
-123	Q 17	6011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-124	Q 5	6011153	E	SEMICONDUCTOR DEVICE - same as Q7	Ref
-125	R 47	59013525	E	POTENTIOMETER, 500 ohms	1
-126	R 11	5001105	E	RESISTOR - same as R62	Ref
-127	Q 20	6011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-128	R 55	5001097	E	RESISTOR, FIXED, COMPOSITION - 2.4K ohms, 1/2W, 5%	1
-129	R 65	5003083	E	RESISTOR, FIXED, COMPOSITION - 620 ohms, 2W, 5%	1
-130	R 64	5001105	E	RESISTOR - same as R62	Ref
-131	R 63	5001101	E	RESISTOR, FIXED, COMPOSITION - 3.6K ohms, 1/2W, 5%	1
-132	R 54	5002081	E	RESISTOR, FIXED, COMPOSITION - 510 ohms, 1W, 5%	1
-133	R 57	5001112	E	RESISTOR - same as R21	Ref
-134	Q 19	5011075	E	SEMICONDUCTOR DEVICE - same as Q8	Ref
-135	C 23	4001061	E	CAPACITOR - 50 μ F, 50V	1

Figure 4-28. Model PR-136 Power Supply,
Schematic Diagram (SCD 950 061 003)

Figure 4-29. Model PR-143-A1 Power Supply, Schematic Diagram (SCD 950 061 004, Rev F)

APPENDIX B
ACME POWER SUPPLIES

CHAPTER V ACME POWER SUPPLIES

This chapter is divided into two parts. Each part contains information for the power supplies manufactured by Acme Electric Corporation, and used in the H316 General Purpose Computer.

Part I contains operating instructions and illustrated parts breakdown (IPB) for Acme Model PS-1-59307, manufactured per Honeywell Specification Control Drawing (SCD) No. 950061001.

Part II contains the IPB and schematic diagram for Acme Model PS-2-59307, manufactured per Honeywell SCD No. 950061003.

PART I ACME POWER SUPPLY, MODEL PS-1-59307

SECTION 1 ASSEMBLY DESCRIPTION

The H316 Power Supply is designed to provide operating voltages for the H316 computer as follows:

24 Vac	1 ampere (max)
+6 Vdc	8-20 amperes
+6.5 Vdc*	8-20 amperes
-6 Vdc	1 ampere (max)
+15.5 Vdc	0.2-5 amperes
+24 Vdc	2 amperes (max)

A multiple secondary constant voltage transformer is used to provide these required operating potential using an input line of 95 to 130 Vac at either 50 or 60 Hz. Logic circuitry is included in the power supply to control the turn on procedure. Circuit protection devices include fuses, a low line voltage sensing circuit, and a thermostat switch.

PHYSICAL LAYOUT

The power supply measures 17.28 inches wide by 17.19 inches deep by 5.15 inches high, and it is available for mounting with either the rack-mounted or table top computer configuration. The table top configuration uses the power supply as the computer base, with the mainframe hinged to the top of the supply. The rack-mounted configuration places the power supply below the mainframe and separately attached to the mounting rack. Cooling is provided by a built in fan and three connectors are used for input and output voltages. This power supply consists of the basic power unit Figure 5-1, +15.5 Vdc circuit (printed circuit board) Figure 5-2, and a line sensing circuit (printed circuit board) Figure 5-3.

*For Model PS-2-59307 only

Figure 5-1. Basic Power Supply Schematic

Figure 5-2. Power Supply +15.5 Vdc Circuit Schematic
(Printed Circuit Card A-84702-A)

REF. PC CARD A-84702-A

6121

Figure 5-3. Line Sensing Circuit Schematic
(Printed Circuit Card A-87249)

THEORY OF OPERATION

The power supply converts ac input power into four regulated dc outputs and one nonregulated 24 Vac output. A block diagram of the power supply is shown in Figure 5-4. Input ac power is supplied to a constant voltage transformer in the input power converter. Three secondaries of the constant voltage transformer provide the +6V, -6V, and +24V output voltages. The +24V winding also provides bulk ac power to a series regulator which regulates the +15.5 output voltage. A fourth secondary provides the 24 Vac output. The logic circuitry provides the required sequencing, line sensing, and overvoltage protection. Reverse diodes are included across each output to prevent accidental reversal of polarity.

Figure 5-4. Power Supply Block Diagram

Input Power Converter

Input ac power is supplied to the primary of constant voltage transformer T1. (Refer to Figure 5-5.) A line voltage sensing circuit provides a "fault signal" to indicate whether the ac line voltage is above or below line limits. A3A is the input ac fuse. The outputs of three secondaries of T1 are rectified and filtered to provide the $\pm 6\text{V}$ and $+24\text{V}$ outputs as well as several other required bulk dc sources. A fourth secondary of T1 provides the unregulated 24 Vac output. A capacitor is used in combination with a winding on T1 to resonate the transformer at the line frequency and provide the constant voltage characteristic. All the windings are tapped to allow change over between 50 and 60 Hz line operation. Transformer T2 is used by the line sense circuitry to monitor the input ac line.

Figure 5-5. Input Power Converter Diagram

+15.5 Vdc Supply Circuit

The +15.5 Vdc supply is controlled by a remote temperature sensing device. This supply is a basic series regulator containing a temperature sensitive voltage adjustment, an overvoltage circuit, and a current limit circuit.

The basic series regulator, Figures 5-6 and 5-7, consists of a comparison element which compares a portion of the output voltage with the reference voltage, and generates an error signal. This signal is amplified and applied to the base of a series pass element which increases or decreases the output in response to the error signal.

7390

Figure 5-6. Series Regulator Circuit Block Diagram

6116

Figure 5-7. Series Regulator Circuit Schematic

The basic schematic of the regulator for the +15.5 Vdc power supply is presented in Figure 5-8. This unit contains the temperature sensitive voltage circuit, the overvoltage firing circuit, and the current limit circuit.

The remote temperature sensing device (Honeywell P/N 70 932 305 001) is a thermistor that provides a nominal temperature coefficient of $-0.5\%/\text{ }^{\circ}\text{C}$. This device is included in the output voltage circuit that changes the output as the resistance of the device changes. The overvoltage circuit is designed to limit the output voltage to less than +18 Vdc. The current cutback circuit limits the output current to less than 6 amperes.

Turn-on, Turn-off Sequence. -- The turn-on sequence of the +15.5 Vdc supply provides a delay (see Figure 5-8 relay K1) so that the +6V and -6V supplies exceeds 90% of nominal before the +15.5V supply exceeds 20% of normal. The turn-off sequence of this supply starts to crowbar at 1 ms after the "fault signal" goes to common. The +15.5V supply will be reduced to 20% of normal before the +6V or -6V supplies have changed by 10%.

Line Voltage Sensing Circuit

The line voltage sensing circuit provides a "fault signal" to indicate whether the ac line voltage is above the low line limit. The comparison element, Figures 5-9 and 5-10, compares a portion of a voltage that is directly proportional to the line voltage with a reference voltage. If the line voltage falls below the specified low line limit, the "fault signal" (5 to 6 Vdc) is reduced to zero. Thus, the power status is shorted to common through a set of relay contacts and a signal (approximately 30 Vdc) is applied to the input circuit breaker relay trip coil that shuts down the input power (see Figure 5-11).

MAINTENANCE

The only routine maintenance required for the power supply is periodic cleansing or replacement of the air filter. Adjustment procedures, a trouble shooting chart and interface connection data are described in the following paragraphs.

Replacement Parts

Replacement parts can be purchased directly from Honeywell Inc., Framingham, Mass. However, most of the components are standard electrical parts and might be obtained locally in less time.

Recommended Test Instruments

The following test instruments will be helpful in testing and adjusting the power supply:

Voltmeter, ac/dc

Ammeter, ac/dc

Card Extender

Figure 5-8. Schematic of +15.5 Vdc Power Supply Regulator

Figure 5-9. Line Voltage Sensing Circuit Block Diagram

6117

Figure 5-10. Line Voltage Sensing Circuit Schematic

REF. PCC CARD A-87243

Figure 5-11. Line Sensing Circuit

Troubleshooting Procedure

Use every safety precaution when troubleshooting the power supply. The supply should be visibly examined for broken, loose or damaged parts, or wire and foreign objects. In the event of an audibly or visually apparent malfunction, proceed directly to the affected area and perform the necessary repairs. Apparent circuit board failure may be caused by improperly adjusted potentiometers. This should be kept in mind when troubleshooting the power supply.

WARNING

The input transformer produces voltage in excess of 600 volts. Exercise extreme caution whenever the power supply cover is off. Remove any rings, watches or other metallic objects before installation or testing. Avoid contact with heat sinks or the input transformer, which operate at high temperatures.

Perform the following preliminary checks before troubleshooting the unit:

- a. Remove any foreign objects from the power supply.
- b. Check all input and output connections.
- c. Check the remote temperature sensing device connection.
- d. Check for proper connections for 50 or 60 Hz operation.

Table 5-1.
Troubleshooting Guide

SYMPTOM	POSSIBLE CAUSE	SUGGESTED ACTION
Power supply will not turn on.	<ol style="list-style-type: none">a. No input ac power.b. Blown fuse A1A, A2A, or A3Ac. Low ac line voltage.d. Faulty or misadjusted line sense circuit under low ac line condition.	<ol style="list-style-type: none">a. Check for input power.b. Check fuses.c. Check for faulty signal.d. Check ac line level and line sense circuit adjustment.
No +15.5V output voltage.	<ol style="list-style-type: none">a. Under voltage on +6V or -6V output.b. Shorted outputc. Faulty or misadjusted turn-on delay circuit.	<ol style="list-style-type: none">a. Check ± 6V levels.b. Check with external loads removed.c. Check turn-on delay circuit.
Low +15.5V output voltage.	<ol style="list-style-type: none">a. Improper adjustment.b. Blown fuse A4A.c. Overloaded output.d. Misadjusted over current limit.	<ol style="list-style-type: none">a. Check output adjustment.b. Check fuse.c. Check with external load removed.d. Check adjustment.
Overvoltage occurs on +15.5V output.	<ol style="list-style-type: none">a. Misadjusted output.b. Shorted pass transistor Q2.c. Misadjusted overvoltage circuit.	<ol style="list-style-type: none">a. Check adjustment.b. Check Q2.c. Check adjustment of overvoltage circuit: Overvoltage may not be actually occurring.

ADJUSTMENTS

50 or 60 Hz Operation Adjustment

Several tap changes are required on transformer T1 to convert from 60 Hz to 50 Hz operation. Figure 5-5 shows the correct wiring for 60 Hz operation. The dashed lines show the changes required for 50 Hz operation. Changing frequency operation also requires readjustment of the line sense circuit.

Output Voltage Adjustments

The +15.5V output is the only adjustable output. This voltage is controlled by potentiometer R6 (Figure 5-2) where clockwise rotation will increase the output voltage level.

+15.5V Overvoltage Adjustment

The +15.5V overvoltage adjustment is controlled by potentiometer R23. Proceed as follows:

- a. Turn R23 (maximum overvoltage setting) fully clockwise.
- b. Apply input ac power.
- c. Adjust the +15.5V output voltage to the desired overvoltage setting (18V) with the output voltage adjustment potentiometer R6. It may be necessary to replace the external thermistor with a decade box to reach this level.
- d. Slowly turn R23 counterclockwise until the +15.5V output voltage drops to zero.
- e. Remove input ac power.
- f. Replace the external thermistor if it had been removed.
- g. Turn R6 fully counterclockwise.
- h. Apply input ac power.
- i. Set the +15.5V output voltage to the desired operating level.

+15.5V Overcurrent Adjustment

Adjust the overload bendback point with potentiometer R34 using the following procedure:

- a. Turn R4 fully clockwise.
- b. Apply a load to the +15.5V output equal to the desired overcurrent setting.
- c. Apply input ac power.
- d. Slowly turn R4 counterclockwise until the +15.5V output voltage starts to drop.
- e. Remove input ac power and remove the load.

Line Sense Circuit Adjustment

The line sense circuit is adjusted by potentiometer R7. This adjustment is required whenever a change is made between 50 Hz and 60 Hz operation. Proceed as follows:

- a. Turn R7 fully clockwise.
- b. Apply 95 Vac (low line) to the input power terminals.
- c. Slowly turn R7 counterclockwise until the fault signal goes to ground.
- d. Remove input ac power.

±6V Undervoltage Adjustment

The +15.5V turn-on delay circuit contains ±6V undervoltage sensors. These sensors have been adjusted at the factory and should normally require no adjustment. However, if adjustment should become necessary, proceed as follows:

±6V Undervoltage Adjustment Procedure (for Model PS-1-59307 only)

- a. Turn R10 fully counterclockwise.
- b. Disconnect one lead of resistor R9 at junction (capacitor C9 and resistor R7).
- c. Connect the disconnected lead to a positive voltage source of the desired undervoltage level.
- d. Apply input ac power.
- e. Slowly turn R10 clockwise until the +15.5V output drops to zero.
- f. Remove input ac power.
- g. Remove the external voltage source and reconnect the lead.

+6.5V Output Adjustment Procedure (for Model PS-2-59307 only)

- a. Turn off power to system.
- b. Place a suitable meter on pin B2CS and adjust slide-wire resistor R11 (Figures 5-15 and 5-19).
- c. Turn on power to system and read meter.
- d. Turn off power to system and adjust slidewire resistor R11.
- e. Repeat steps b, c, and d until meter reading is 6.5 Vdc.

CONNECTOR INTERFACE DATA

All inputs and outputs are made via the three connectors on the power supply. The pin connections are tabulated in Table 5-2. The connector number precedes the pin number; for example, B2A-A refers to pin A or connector B2A.

SPECIFICATIONS

Input Power

95-130 VRMS, 50 or 60 Hz \pm 1 Hz, single phase.

Output Power

<u>Output Voltage</u>	<u>Current Range</u>	<u>Regulation Band</u>	<u>Set Current</u>	<u>Ripple (p-p)</u>	<u>Ovvoltage Protection</u>	<u>Max. Voltage</u>
+24 Vdc	0 - 2A	$\pm 5\%*$	1.5A	5%	---	---
+15.5 Vdc	0.2 - 5A	$\pm 5\%$	---	2%	+18	
+6 Vdc	8 - 20A	$\pm 6\%*$	15A	2%	---	
-6 Vdc	0 - 1A	$\pm 6\%*$	0.5A	2%	---	
+6.5 Vdc	8 - 20A	$\pm 6\%**$	15A	2%	---	
24 Vac	0 - 1A	---	---	---	---	

*Regulation of +24V, +6V and -6V includes static line voltage changes (at set current) and ripple only.

**For Model PS-2-59307 only.

Table 5-2.
Pin Connections*

<u>Terminal</u>	<u>Identification</u>
B2A-A	+24 Vdc Output
B2A-D	Common
B2A-F	+30V fault signal
B2A-H	-6V Output
B2A-J	+6V Output (+6.5V)
B2A-L	Junction Δ
B2A-M	AC fused
B2A-N	To AC B4B
B2A-P	AC Outlet fused B3B
B2A-S	To AC B4B
B2A-R	To Fan
B2A-U	To Fan
B2A-T	To AC B1B
B2A-V	To AC B1B-W
B2A-W	To AC B1B
B2A-X	To AC B1B-W
B2B-E	24 Vac Output
B2B-C	+6 Vdc Output (+6.5V)
B2B-A	-6 Vdc Output
B2B-B	Common
B3B	AC Outlet, fused
B4B	AC Outlet, fused
B2C-A	+24 Vdc Output
B2C-B	+15.5 Vdc Output
B2C-C	Common
B2C-D	Common
B2C-E	Common
B2C-F	Line fault signal
B2C-H	+6 Vdc Output (+6.5V)
B2C-K	-6 Vdc Output
B2C-M	Temperature sense element
B2C-N	Temperature sense element
B2C-P	-6 Vdc Output
B2C-R	Power status terminal
B2C-S	{ +6 Vdc Output for Model PS-1-59307 +6.5Vdc Output for Model PS-2-59307

* For Model PS-1-59307 See Figure 5-1
For Model PS-2-59307 See Figure 5-19

The +15.5V supply regulation is $\pm 5\%$ for:

1. Line Change (95 - 130 Vac).
2. A 2.6 Ampere load step in the range above 0.3 Ampere.
3. Temperature drift over a 90 day period.

The voltage level of the +15.5V supply is remotely controlled by a temperature sensing device.

Line Voltage Sensing

Circuitry is included to provide a "fault signal" to indicate whether the ac line voltage is above the low line limit.

("fault signal" is 5 to 6 Vdc when the input is above low line)

("fault signal" is 0 when the line is below low line)

Overvoltage Protection

Turn-on and turn-off will not cause the +15.5V output to exceed 18V nor the ± 6 V outputs to exceed nominal by more than 20%.

An overvoltage crowbar circuit prevents the +15.5V output from exceeding 18V in the event of a regulator component failure.

Overcurrent Protection

Fuses are provided for input ac power, the internal fan, bulk dc power for the +15.5V regulator and two ac auxiliary outputs. Current limiting circuitry is incorporated in the +15.5V regulator.

Output Voltage Reversal

Diodes are across each output to prevent a reverse voltage of greater than 2.0V.

Excess Temperature

A temperature sensitive switch is located on the transistor heat sink which will send the "fault signal" to 0 in the event of excess temperature. Normal operating temperature is 0 - 60°C.

SECTION 2 ILLUSTRATED PARTS BREAKDOWN

This section contains the illustrated parts breakdown (IPB) of the Acme Electric Corporation Power Supply, Model PS-1-59307 used on both the rack-mounted and table top models of the H316 General Purpose Computer.

Figure 5-12. Power Supply, Acme Model PS-1-59307,
Parts Location Diagram (Sheet 1 of 2)

Figure 5-12. Power Supply, Acme Model PS-1-59307,
Parts Location Diagram (Sheet 2 of 2)

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
5-12	DEF1 through DEF3	70950061-* 001	C	POWER SUPPLY-Acme Elec. Corp. Part No. PS-1-59307 (Ref. to Figs. 3-1-4 and 3-2-5 for NHA)	A/R
-1	A1A	A-25-74310	D	FUSE, CARTRIDGE - 1A; Bussman MDA10A; slow-blowing type	1
-2	A2A	A-32-74310	D	FUSE, CARTRIDGE - 2A; Bussman MDA2A; slow-blowing type	1
-3	A3A	A-31-74310	D	FUSE, CARTRIDGE - 8A; Bussman MDA8A, slow-blowing type	1
-4	A4A	A-10-23108	D	FUSE, CARTRIDGE - 8A; Bussman ABC8A; fast-blowing type	1
-5	K1	A-5-89745	D	RELAY, ARMATURE - spdt; coil, Hart-Advance 67DP-D-203, res. ohms 185	1
-6	CR6	A-2-81259	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N5401	4
-7	CR5	A-2-81259	D	SEMICONDUCTOR DEVICE, DIODE - same as CR6	Ref
-8	CR2	A-2-81259	D	SEMICONDUCTOR DEVICE, DIODE - same as CR6	Ref
-9	CR1	A-2-81259	D	SEMICONDUCTOR DEVICE, DIODE - same as CR6	Ref
-10	C3	A-60-74243	D	CAPACITOR, FIXED, ELECT - 21,500 μ F; 40V; Mallory type CGS	1
-11	R3	A-67-41321	D	RESISTOR, FIXED, COMPOSITION - 2.4K ohms, 2W; $\pm 5\%$	3
-12	C7	A-57-74243	D	CAPACITOR, FIXED, ELECT - 6000 μ F, 40V	2
-13	R6	A-59-41321	D	RESISTOR, FIXED, COMPOSITION - 1K ohm, 2W, $\pm 5\%$	3
-14	C6	A-57-74243	D	CAPACITOR, FIXED, ELECT - same as C7	Ref
-15	T1	T-65717	D	TRANSFORMER, POWER	1
-16	SCR1	A-2-61908	D	THYRISTOR-type 2N682, GEC35Fx50 F964	1
-17	CR10	A-2-41409	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N1184A	3
-18	CR9	A-2-92571	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 368B VW	2
-19	CR11	A-4-92571	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 368B VW	3
-20	CR12	A-2-93571	D	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-21	L1	T-15-56515	D	TRANSFORMER	1
-22	C8	A-55-74243	D	CAPACITOR, FIXED, ELECT - 2000 μ F, 40V; Mallory type CGS	1
-23	R8 (not shown)	A-59-41321	D	RESISTOR, FIXED, COMPOSITION - same as R6	Ref

*Honeywell part no.: assignment

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
-24	C10	A-5-81411	D	CAPACITOR, FIXED, ELECT - 5 μ F, 660V	2
-25	C5	A-5-81411	D	CAPACITOR, FIXED, ELECT - same as C10	Ref
-26	C9	A-25-74243	D	CAPACITOR, FIXED, ELECT - 76,000 μ F, 15V; Sangamo type 500	4
-27	R7	A-67-41321	D	RESISTOR, FIXED, COMPOSITION - same as R3	Ref
-28	C4	A-25-74243	D	CAPACITOR, FIXED, ELECT - same as C9	Ref
-29	R5	A-59-41321	D	RESISTOR, FIXED, COMPOSITION - same as R6	Ref
-30	C1	A-25-74243	D	CAPACITOR, FIXED, ELECT - same as C9	Ref
-31	R4	A-67-41321	D	RESISTOR, FIXED, COMPOSITION - same as R3	Ref
-32	C2	A-25-74243	D	CAPACITOR, FIXED, ELECT - same as C9	Ref
-33	TS1	A-5-78408	D	THERMOSTAT - opens 160°F \pm 8°; closes 180°F \pm 8°; Elmwood Sensor Series (F180 88-58)	1
-34	R1 (not shown)	A-8-62377	D	RESISTOR, FIXED, FILM - 0.2 ohm, 5W, \pm 3%; Tepro type TS5W	2
-35	Q1	A-1-67703	D	TRANSISTOR - Westinghouse type 2N3055	3
-36	R2 (not shown)	A-8-62377	D	RESISTOR, FIXED, FILM - same as R1	Ref
-37	Q2	A-1-67703	D	TRANSISTOR - same as Q1	Ref
-38	Q3	A-1-67703	D	TRANSISTOR - same as Q1	Ref
-39	CR4	A-2-41409	D	SEMICONDUCTOR DEVICE, DIODE - same as CR10	Ref
-40	CR3	A-2-41409	D	SEMICONDUCTOR DEVICE, DIODE - same as CR10	Ref
-41	CR8	A-4-92571	D	SEMICONDUCTOR DEVICE, DIODE - same as CR11	Ref
-42	F1	A-81342	D	FAN, AXIAL - 0.003 HP, 16W, 115V, 60 Hz; Howard Industries Model 1075-3038	1
-43	T2	T-66620	D	TRANSFORMER	1
-44	CR7	A-4-92571	D	SEMICONDUCTOR DEVICE, DIODE - same as CR11	Ref
-45	PC2	A-87243-B	D	PRINTED WIRING ASSY - (See Figure 5-13 for additional parts breakdown)	1

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
- 46	PC1	A-84702-A	D	PRINTED WIRING ASSY - (See Figure 5-14 for additional parts breakdown)	1
- 47	C11	A-5-80289	D	CAPACITOR, FIXED, ELECT - 4000 μ F, 15V; Sprague type 39D	1
- 48	R10	A-1-82119	D	RESISTOR, VARIABLE - 50 ohms, 2W	1
- 49	B4B	A-55703	D	CONNECTOR, RECEPTACLE, ELECT - Hubbell P/N 5252	2
- 50	B3B	A-55703	D	CONNECTOR, RECEPTACLE, ELECT - same as B4B	Ref
- 51	B2C	A-3-45705	D	CONNECTOR, RECEPTACLE - Burndy type MS-20RM-58	2
- 52	B2B	A-11-58608	D	CONNECTOR, RECEPTACLE - c/o Heyco DC-202 and Acme Housing P/N A-6-58608-01	1
- 53	B2A	A-3-45705	D	CONNECTOR, RECEPTACLE - same as B2C	Ref
- 54	B1B	A-89705	D	CONNECTOR, RECEPTACLE, ELECT - Hubbell Type P/N 5278	1
	R11	A-2-67813	D	RESISTOR, VARIABLE - 0.15 ohm, 105W	1
	R12	A-1-57288	D	RESISTOR, VARIABLE - 1 ohm, 12W	1

Figure 5-13. Printed Circuit Board (PC2),
Parts Location Diagram

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
5-13	PC2	A-87243-B	D	PRINTED WIRING ASSY - (Refer to Figure 5-12-45 for the next higher assembly)	Ref
-1	CR1	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N5395	7
-2	C6	A-16-79114	E	CAPACITOR, FIXED - 100 μ F 15V	7
-3	CR2	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-4	R1	A-86-44507	E	RESISTOR, FIXED, COMPOSITION - 240 ohms, 2W, $\pm 5\%$	2
-5	CR3	A-4-50538	E	SEMICONDUCTOR DEVICE, DIODE - type 1N747A	1
-6	R5	A-19-44507	E	RESISTOR, FIXED, COMPOSITION - 680 ohms, 1/2W, $\pm 5\%$	1
-7	Q2	A-1-80269	E	TRANSISTOR - Motorola type 2N3903	4
-8	Q3	A-1-80269	E	TRANSISTOR - same as Q2	Ref
-9	R8	A-48-44507	E	RESISTOR, FIXED, COMPOSITION - 3K ohms, 1/2W, $\pm 5\%$	1
-10	R3	A-17-44507	E	RESISTOR, FIXED, COMPOSITION - 6.8K ohms, 1/2W, $\pm 5\%$	1
-11	CR4	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-12	R2	A-33-44507	E	RESISTOR, FIXED, COMPOSITION - 8.2K ohms, 1/2W, $\pm 5\%$	1
-13	R4	A-50-44507	E	RESISTOR, FIXED, COMPOSITION - 1.3K ohms, 1/2W, $\pm 5\%$	1
-14	R6	A-40-44507	E	RESISTOR, FIXED, COMPOSITION - 200 ohms, 1/2W, $\pm 5\%$	1
-15	Q1	A-1-80270	E	TRANSISTOR - Motorola type 2N3905	4
-16	Q4	A-1-80269	E	TRANSISTOR - same as Q2	Ref
-17	Q5	A-1-80270	E	TRANSISTOR - same as Q1	Ref
-18	R15	A-86-44507	E	RESISTOR, FIXED, COMPOSITION - same as R1	Ref
-19	R14	A-21-44507	E	RESISTOR, FIXED, COMPOSITION - 3.9K ohms, 1/2W, $\pm 5\%$	1
-20	CR5	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-21	CR6	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-22	Q9	A-2-80115	E	TRANSISTOR - type 2N697	1
-23	R7	A-8-81756	E	RESISTOR, VARIABLE - 2K ohms	1
-24	CR13	A-1-86133	E	SEMICONDUCTOR DEVICE, DIODE - type 1N4001	1

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
-25	K1	A-89760	E	RELAY, MERCURY, WETTED – C. P. Clare P/N HGSM1001	1
-26	R23	A-18-44507	E	RESISTOR, FIXED, COMPOSITION – 330 ohms, 1/2W, ±5%	1
-27	R22	A-58-44507	E	RESISTOR, FIXED, COMPOSITION – 820 ohms, 1/2W, ±5%	1
-28	CR11	A-89761	E	SEMICONDUCTOR DEVICE, DIODE – type 1N914	1
-29	C2	A-6-88012	E	CAPACITOR, FIXED, CERAMIC – 0.1 µF, 100V	1
-30	CR12	A-89761	E	SEMICONDUCTOR DEVICE, DIODE – same as CR11	Ref
-31	R17	A-6-44507	E	RESISTOR, FIXED, COMPOSITION – 1.5K ohms, 1/2W, ±5%	1
-32	R16	A-43-44507	E	RESISTOR, FIXED, COMPOSITION – 10K ohms, 1/2W, ±5%	1
-33	R18	A-22-44507	E	RESISTOR, FIXED, COMPOSITION – 2.2K ohms, 1/2W, ±5%	Ref
-34	Q7	A-1-80269	E	TRANSISTOR – same as Q2	Ref
-35	R19	A-1-44507	E	RESISTOR, FIXED, COMPOSITION – 100 ohms, 1/2W, ±5%	1
-36	Q8	A-1-80269	E	TRANSISTOR – same as Q2	Ref
-37	CR10	A-89761	E	SEMICONDUCTOR DEVICE, DIODE – same as CR11	Ref
-38	Q6	A-1-80270	E	TRANSISTOR – same as Q1	Ref
-39	C3	A-3-79114	E	CAPACITOR, FIXED – 100 µF, 35V	1
-40	CR7	A-7-78467	E	SEMICONDUCTOR DEVICE, DIODE – type 1N4734A	1
-41	C5	A-1-51997	E	CAPACITOR, FIXED, ELECTRICAL – 1 µF, 25V, Sprague 30D, type TE1200	1
-42	R20	A-9-44507	E	RESISTOR, FIXED, COMPOSITION – 2.4K ohms, 1/2W, ±5%	1
-43	SUS1	A-3-82197	E	TRANSISTOR – type 2N4989	1
-44	C4	A-2-88012	E	CAPACITOR, FIXED, CERAMIC – 0.01 µF, 100V	1
-45	R9	A-53-44507	E	RESISTOR, FIXED, COMPOSITION – 470 ohms, 1/2W, ±5%	1
-46	R21	A-44507	E	RESISTOR, FIXED, COMPOSITION – 3.9 ohms, 1/2W, ±5%	1
-47	CR8	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE – same as CR1	Ref
-48	CR9	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE – same as CR1	Ref
-49	R10	A-44-44507	E	RESISTOR, FIXED, COMPOSITION – 910 ohms, 1/2W, ±5%	1

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
-50	R11	A-5-44507	E	RESISTOR, FIXED, COMPOSITION - 1K ohms, 1/2W, ±5%	1
-51	R13	A-32-44507	E	RESISTOR, FIXED, COMPOSITION - 6.2K ohms, 1/2W, ±5%	1
-52	R12	A-16-59094	E	RESISTOR, FIXED, COMPOSITION - 200K ohms, ±5%	1
-53	R24	A-31-44507	E	RESISTOR, FIXED, COMPOSITION - 5.1K ohms, 1/2W, ±5%	1
-54	Q10	A-1-80270	E	TRANSISTOR - same as Q1	Ref

Figure 5-14. Printed Circuit Board (PCI), Parts Location Diagram

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
5-14	PC1	A-84702-A	D	PRINTED WIRING ASSY - (Refer to Figure 5-12-46 for the next higher assembly)	Ref
-1	SUS1	A-3-82197	E	TRANSISTOR - type 2N4989	1
-2	C7	A-2-88012	E	CAPACITOR, FIXED, CERAMIC - 0.01 μ F, 100V	3
-3	Q4	A-1-73737	E	TRANSISTOR - type 2N3053	4
-4	R18	A-95-44507	E	RESISTOR, FIXED, COMPOSITION - 18K ohms, 1/2W, $\pm 5\%$	1
-5	C4	A-2-88012	E	CAPACITOR, FIXED, CERAMIC - same as C7	Ref
-6	C5	A-7-71984	E	CAPACITOR, FIXED, CERAMIC - 0.12 μ F, 20V	1
-7	CR5	A-4-59072	E	SEMICONDUCTOR DEVICE, DIODE - type 1N936	1
-8	R19	A-22-44507	E	RESISTOR, FIXED, COMPOSITION - 2.2K ohms, 1/2W, $\pm 5\%$	1
-9	R14	A-9-59094	E	RESISTOR, FIXED, COMPOSITION - 100K ohms, 1/2W, $\pm 5\%$	1
-10	Q5	A-1-73737	E	TRANSISTOR - same as Q4	Ref
-11	R20	A-48-44507	E	RESISTOR, FIXED, COMPOSITION - 3K ohms, 1/2W, $\pm 5\%$	1
-12	Q3	A-1-83242	E	TRANSISTOR - type 2N4248	1
-13	Q6	A-1-51997	E	TRANSISTOR - same as Q4	Ref
-14	R15	NOT	USED		
-15	C6	A-1-51997	E	CAPACITOR, FIXED - 1 μ F, 25V, Sprague 30D, Type TE1200	1
-16	R24	A-24-44507	E	RESISTOR, FIXED, COMPOSITION - 1.5K ohms, 1/2W, $\pm 5\%$	1
-17	R23	A-6-81756	E	RESISTOR, VARIABLE - 500 ohms	1
-18	R22	A-50-44507	E	RESISTOR, FIXED, COMPOSITION - 1.3K ohms, 1/2W, $\pm 5\%$	1
-19	C3	A-2-88012	E	CAPACITOR, FIXED, CERAMIC - same as C7	Ref
-20	R16	A-36-76348	E	RESISTOR, FIXED, FILM - 4.99K ohms, $\pm 1\%$, type RN60D	1
-21	R7	A-34-76348	E	RESISTOR, FIXED, FILM - 4.87K ohms, $\pm 1\%$, type RN60D	1
-22	R6	A-8-81756	E	RESISTOR, VARIABLE - 1K ohms	1
-23	R5	A-5-44507	E	RESISTOR, FIXED, COMPOSITION - 1K ohms, 1/2W, $\pm 5\%$	1
-24	R4	A-7-81756	E	RESISTOR, VARIABLE - 1K ohms	1
-25	Q1	A-1-73737	E	TRANSISTOR - same as Q4	Ref

Fig. & Index No.	Designation	Acme Part No.	Inden- ture	Description	Qty per Ass'y
-26	R3	A-22-44507	E	RESISTOR, FIXED, COMPOSITION - 2.2K ohms, 1/2W, ±5%	1
-27	R2	A-21-44507	E	RESISTOR, FIXED, COMPOSITION - 3.9K ohms, 1/2W, ±5%	1
-28	R13	A-32-44507	E	RESISTOR, FIXED, COMPOSITION - 6.2K ohms, 1/2W, ±5%	1
-29	R12	A-12-44507	E	RESISTOR, FIXED, COMPOSITION - 3.3K ohms, 1/2W, ±5%	1
-30	C1	A-1-79114	E	CAPACITOR, FIXED, ELECT- 150 µF, 35V	1
-31	R11	A-38-44507	E	RESISTOR, FIXED, COMPOSITION - 270 ohms, 1/2W, ±5%	1
-32	C2	A-1-71984	E	CAPACITOR, FIXED, CERAMIC - 0.001 µF, 1 KV	1
-33	R1	A-40-44507	E	RESISTOR, FIXED, COMPOSITION - 200 ohms, 1/2W, ±5%	1
-34	CR2	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N5395	2
-35	CR1	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR2	Ref
-36	R10	A-25-44507	E	RESISTOR, FIXED, COMPOSITION - 1.2K ohms, 1/2W, ±5%	1
-37	R9	A-56-44507	E	RESISTOR, FIXED, COMPOSITION - 7.5K ohms, 1/2W, ±5%	1

PART II
ACME POWER SUPPLY, MODEL PS-2-59307

Part II contains one section presenting the illustrated parts breakdown and two schematics for Model PS-2-59307 manufactured by Acme Electric Corporation per Honeywell SCD 950 061 003. The operation of Model PS-2-59307 is similar to Acme Electric Model PS-1-59307. Therefore, refer to Part I, Section 1, for the physical layout, theory of operation, maintenance, troubleshooting procedure and adjustment for Model PS-2-59307 Power Supply.

Figure 5-15. Power Supply, Acme Model PS-2-59307,
Parts Location Diagram (Sheet 1 of 2)

Figure 5-15. Power Supply, Acme Model PS-1-59307,
Parts Location Diagram (Sheet 2 of 2)

Fig. & Index No.	Designation	Acme Part No.	Indenture	Description	Qty per Ass'y
5-15		70950061003*	C	POWER SUPPLY, ACME ELEC CORP. Part No. PS-2-59307	
-1	A5A	A-7-27241	C	FUSE, CARTRIDGE - 1.5A Bussman AGC; fst-blown type	1
-2	A1A	A-25-74310	D	FUSE, CARTRIDGE - 3A Bussman MDAA; slow-blown type	1
-3	A2A	A-32-74310	D	FUSE, CARTRIDGE - 10A Bussman MDA10A; slow-blown type	1
-4	A3A	A-31-74310	D	FUSE, CARTRIDGE - 8A Bussman MDA8A; slow-blown type	1
-5	A4A	A-10-23108	D	FUSE, CARTRIDGE - 8A Bussman ABC8A; fast-blown type	1
-6	PC3	A-1-95726	D	PRINTED CIRCUIT BOARD - (See Figure 5 for additional Parts Break- down)	1
-7	CR6	A-2-82573	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N5392	4
-8	CR5		D	SEMICONDUCTOR DEVICE, DIODE - same as CR6	Ref
-9	CR2		D	SEMICONDUCTOR DEVICE, DIODE - same as CR6	Ref
-10	CR1		D	SEMICONDUCTOR DEVICE, DIODE - same as CR6	Ref
-11	C3	A-60-74243	D	CAPACITOR, FIXED, ELECT - 21,500 μ F; 40V; Mallory type CGS	1
-12	R3	A-47-41321	D	RESISTOR, FIXED, COMPOSITION - 2.4K ohms, 2W $\pm 5\%$	3
-13	C7	A-27-74243	D	CAPACITOR, FIXED, ELECT - 6000 μ F, 40V	2
-14	R6	A-41-62377	D	RESISTOR, FIXED, COMPOSITION - 250 ohms, 5W, $\pm 5\%$	3
-15	C6	A-57-74343	D	CAPACITOR, FIXED, ELECT - same as C7	Ref
-16	T1	T-65717	D	TRANSFORMER, POWER	1
-17	CR10	A-2-41409	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N1184A	3
-18	CR9	A-2-92571	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N3616	2
-19	R11	A-2-67813	D	RESISTOR, VARIABLE - 0.2 ohm, 105W	1
-20	CR12	A-2-93571	D	SEMICONDUCTOR DEVICE, DIODE - same as CR9	Ref
-21	CR11	A-4-92571	D	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 1N3618	3
-22	SCR1	A-2-61908	D	THYRISTOR - type 2N682, GEC35Fx50F964	1

*Honeywell Part Number

Fig. & Index No.	Design- nation	Acme Part No.	Inden- ture	Description	Qty per Ass'y
-23	L1	T-15-56515	D	CHOKE	1
-24	C10	A-5-81411	D	CAPACITOR, FIXED, ELECT - 5 μ F, 660V	2
-25	C5	A-5-81411	D	CAPACITOR, FIXED, ELECT - same as C10	Ref
-26	R8 (not shown)	A-59-41321	D	RESISTOR, FIXED, COMPOSITION - 1K ohm, 2W, $\pm 5\%$	Ref
-27	C8	A-55-74243	D	CAPACITOR, FIXED, ELECT - 2000 μ F, 40V; Mallory type CGS	1
-28	R12	A-157288	D	RESISTOR, VARIABLE - 2 ohms, 25W	1
-29	R7	A-67-41321	D	RESISTOR, FIXED, COMPOSITION - same as R3	Ref
-30	C9	A-25-74243	D	CAPACITOR, FIXED, ELECT - 76, 000 μ F, 15V; Sangamo type 500	4
-31	C4	A-25-74243	D	CAPACITOR, FIXED, ELECT - same as C9	Ref
-32	R5	A-28-41321	D	RESISTOR, FIXED, COMPOSITION - 36 ohms, 2W	Ref
-33	C1	A-25-74243	D	CAPACITOR, FIXED, ELECT - same as C9	Ref
-34	R4	A-67-41321	D	RESISTOR, FIXED, COMPOSITION - same as R3	Ref
-35	C2	A-25-74243	D	CAPACITOR, FIXED, ELECT - same as C9	Ref
-36	CR7	A-4-92571	D	SEMICONDUCTOR DEVICE, DIODE - same as CR11	Ref
-37	TS1	A-5-78408	D	THERMOSTAT - opens 160°F $\pm 8\%$; closes 180°F $\pm 8\%$; Elmwood Sensor Series (F180 88-58)	1
-38	R1 (not shown)	A-8-62377	D	RESISTOR, FIXED, FILM - 0.2 ohm, 5W, $\pm 3\%$, Tepro type TS5W	2
-39	Q1	A-1-67703	D	TRANSISTOR - Westinghouse type 1561-0604	3
-40	R2 (not shown)	A-8-62377	D	RESISTOR, FIXED, FILM - same as R1	Ref
-41	Q2	A-1-67703	D	TRANSISTOR - same as Q1	Ref
-42	Q3	A-1-67703	D	TRANSISTOR - same as Q1	Ref
-43	CR4	A-2-41409	D	SEMICONDUCTOR DEVICE, DIODE - same as CR10	Ref
-44	CR3	A-2-41409	D	SEMICONDUCTOR DEVICE, DIODE - same as CR10	Ref
-45	F1	A-81342	D	FAN, AXIAL - 0.003 HP, 16W, 115V, 60 Hz; Howard Industries Model 6-218-152	1

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
-46	T2	T-66620	D	TRANSFORMER	1
-47	CR8	A-4-92571	D	SEMICONDUCTOR DEVICE, DIODE - same as CR11	Ref
-48	PC2	A-1-87243B	D	PRINTED WIRING ASSY - (See Figure 5-13 for additional parts breakdown)	1
-49	PC1	A-1-74602A	D	PRINTED WIRING ASSY - (See Figure 5-14 for additional parts breakdown)	1
-50	B1B	A-89705	D	CONNECTOR, RECEPTACLE, ELECT-Hubbell Type P/N 5278	1
-51	B2A	A-3-45705	D	CONNECTOR, RECEPTACLE - Burndy type MS-20RM-58	2
-52	B2B	A-11-58608	D	CONNECTOR, RECEPTACLE - c/o Heyco DC-202 and Acme Housing P/N A-6-58608-01	1
-53	B2C	A-3-45705	D	CONNECTOR, RECEPTACLE - same as B2A	Ref
-54	B3B	A-55703	D	CONNECTOR, RECEPTACLE, ELECT-Hubbell P/N 5252	2
-55	B4B	A-55703	D	CONNECTOR, RECEPTACLE, ELECT - same as B3B	Ref

Figure 5-16. Printed Circuit Board (PC2), Parts Location Diagram

Fig. & Index No.	Designation	Acme Part No.	Indenture	Description	Qty per Ass'y
5-16	PC2	A-87243	D	PRINTED CIRCUIT BOARD - (Refer to Figure 5-12-48 for the next higher assembly)	Ref
-1	CR1	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 384H	7
-2	C6	A-16-79114	E	CAPACITOR, FIXED - 100 μ F 15V	7
-3	CR2	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-4	R1	A-86-44507	E	RESISTOR, FIXED, COMPOSITION - 240 ohms, 2W, $\pm 5\%$	2
-5	CR3	A-4-50538	E	SEMICONDUCTOR DEVICE, DIODE - type 1N747A	1
-6	R5	A-19-44507	E	RESISTOR, FIXED, COMPOSITION - 680 ohms, 1/2W, $\pm 5\%$	1
-7	Q2	A-1-80269	E	TRANSISTOR - Motorola type 2N3903	4
-8	Q3	A-1-80269	E	TRANSISTOR - same as Q2	Ref
-9	R8	A-48-44507	E	RESISTOR, FIXED, COMPOSITION - 3K ohms, 1/2W, $\pm 5\%$	1
-10	R3	A-17-44507	E	RESISTOR, FIXED, COMPOSITION - 6.8K ohms, 1/2W, $\pm 5\%$	1
-11	CR4	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-12	R2	A-33-44507	E	RESISTOR, FIXED, COMPOSITION - 8.2K ohms, 1/2W, $\pm 5\%$	1
-13	R4	A-50-44507	E	RESISTOR, FIXED, COMPOSITION - 1.3K ohms, 1/2W, $\pm 5\%$	1
-14	R6	A-40-44507	E	RESISTOR, FIXED, COMPOSITION - 200 ohms, 1/2W, $\pm 5\%$	1
-15	Q1	A-1-80270	E	TRANSISTOR - Motorola type 2N3905	4
-16	Q4	A-1-80269	E	TRANSISTOR - same as Q2	Ref
-17	Q5	A-1-80270	E	TRANSISTOR - same as Q1	Ref
-18	R15	A-86-44507	E	RESISTOR, FIXED, COMPOSITION same as R1	Ref
-19	R14	A-21-44507	E	RESISTOR, FIXED, COMPOSITION 3.9K ohms, 1/2W, $\pm 5\%$	1
-20	CR5	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
-21	CR6	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-22	Q9	A-2-80115	E	TRANSISTOR - type 2N697	1
-23	R7	A-8-81756	E	RESISTOR, VARIABLE - 2K ohms	1
-24	CR13	A-1-86133	E	SEMICONDUCTOR DEVICE, DIODE - type 1N4001	1
-25	K1	A-89760	E	RELAY, MERCURY, WETTED - C. P. Clare P/N HGSM1001	1
-26	R23	A-18-44507	E	RESISTOR, FIXED, COMPOSITION - 330 ohms, 1/2W, ±5%	1
-27	R22	A-58-44507	E	RESISTOR, FIXED, COMPOSITION - 820 ohms, 1/2W, ±5%	1
-28	CR11	A-89761	E	SEMICONDUCTOR DEVICE, DIODE - type 1N914	1
-29	C2	A-6-88012	E	CAPACITOR, FIXED, CERAMIC - 0.1 µF, 100V	1
-30	CR12	A-89761	E	SEMICONDUCTOR DEVICE, DIODE - same as CR11	Ref
-31	R17	A-6-44507	E	RESISTOR, FIXED, COMPOSITION - 1.5K ohms, 1/2W, ±5%	1
-32	R16	A-43-44507	E	RESISTOR, FIXED, COMPOSITION - 10K ohms, 1/2W, ±5%	1
-33	R18	A-22-44507	E	RESISTOR, FIXED, COMPOSITION - 2.2K ohms, 1/2W, ±5%	Ref
-34	Q7	A-1-80269	E	TRANSISTOR - same as Q2	Ref
-35	R19	A-1-44507	E	RESISTOR, FIXED, COMPOSITION - 100 ohms, 1/2W, ±5%	1
-36	Q8	A-1-80269	E	TRANSISTOR - same as Q2	Ref
-37	CR10	A-89761	E	SEMICONDUCTOR DEVICE, DIODE - same as CR11	Ref
-38	Q6	A-1-80270	E	TRANSISTOR - same as Q1	Ref
-39	C3	A-3-79114	E	CAPACITOR, FIXED - 100 µF, 35V	1
-40	CR7	A-7-78467	E	SEMICONDUCTOR DEVICE, DIODE - type 1N4734A	1
-41	C5	A-1-51997	E	CAPACITOR, FIXED, ELECTRICAL - 1 µF, 25V, Sprague 30D, type TE1200	1

Fig. & Index No.	Designation	Acme Part No.	Indenture	Description	Qty per Ass'y
-42	R20	A-9-44507	E	RESISTOR, FIXED, COMPOSITION - 2.4K ohms, 1/2W, ±5%	1
-43	SUS1	A-3-82197	E	TRANSISTOR - type 2N4989	1
-44	C4	A-2-88012	E	CAPACITOR, FIXED, CERAMIC - 0.01 μF, 100V	1
-45	R9	A-53-44507	E	RESISTOR, FIXED, COMPOSITION - 470 ohms, 1/2W, ±5%	1
-46	R21	A-44507	E	RESISTOR, FIXED, COMPOSITION - 3.9 ohms, 1/2W, ±5%	1
-47	CR8	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-48	CR9	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR1	Ref
-49	R10	A-44-44507	E	RESISTOR, FIXED, COMPOSITION - 910 ohms, 1/2W, ±5%	1
-50	R11	A-5-44507	E	RESISTOR, FIXED, COMPOSITION - 1K ohms, 1/2W, ±5%	1
-51	R13	A-32-44507	E	RESISTOR, FIXED, COMPOSITION - 6.2K ohms, 1/2W, ±5%	1
-52	R12	A-16-59094	E	RESISTOR, FIXED, COMPOSITION - 200K ohms, ±5%	1
-53	R24	A-31-44507	E	RESISTOR, FIXED, COMPOSITION - 5.1K ohms, 1/2W, ±5%	1
-54	Q10	A-1-80270	E	TRANSISTOR - same as Q1	Ref

Figure 5-17. Printed Circuit Board (PC1), Parts Location Diagram

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
5-17	PC1	A-84702-A	D	PRINTED CIRCUIT BOARD - (Refer to Figure 5-12-46 for the next higher assembly)	Ref
-1	SUS1	A-3-82197	E	TRANSISTOR - type 2N4989	1
-2	C7	A-2-75736	E	CAPACITOR, FIXED, CERAMIC - 0.01 μ F, 50V	3
-3	Q4	A-1-73737	E	TRANSISTOR - type 2N3053	4
-4	R18	A-95-44507	E	RESISTOR, FIXED, COMPOSITION - 18K ohms, 1/2W, $\pm 5\%$	1
-5	C4	A-2-75736	E	CAPACITOR, FIXED, CERAMIC - same as C7	Ref
-6	C5	A-11-85474	E	CAPACITOR, FIXED, CERAMIC - 0.10 μ F, 20V	1
-7	CR5	A-4-59072	E	SEMICONDUCTOR DEVICE, DIODE - type 1N936	1
-8	R19	A-22-44507	E	RESISTOR, FIXED, COMPOSITION - 2.2K ohms, 1/2W, $\pm 5\%$	1
-9	R14	A-9-59095	E	RESISTOR, FIXED, COMPOSITION - 100K ohms, 1/2W, $\pm 5\%$	1
-10	Q5	A-1-73737	E	TRANSISTOR - same as Q4	Ref
-11	R20	A-48-44507	E	RESISTOR, FIXED, COMPOSITION - 3K ohms, 1/2W, $\pm 5\%$	1
-12	Q3	A-1-83242	E	TRANSISTOR - type 2N4248	1
-13	Q6	A-1-73737	E	TRANSISTOR - same as Q4	Ref
-14	C6	A-1-51997	E	CAPACITOR, FIXED - 1 μ F, 25V, Sprague 30D, type TE1200	1
-15	R24	A-6-44507	E	RESISTOR, FIXED, COMPOSITION - 1.5K ohms, 1/2W, $\pm 5\%$	1
-16	R23	A-6-81756	E	RESISTOR, VARIABLE - 500 ohms	1
-17	R22	A-50-44507	E	RESISTOR, FIXED, COMPOSITION - 1.3K ohms, 1/2W, $\pm 5\%$	1
-18	C3	A-2-75736	E	CAPACITOR, FIXED, CERAMIC - same as C7	Ref
-19	R16	A-49-94562-91	E	RESISTOR, FIXED, FILM - 499K ohms, $\pm 1\%$, type RN60D	1
-20	R7	A-42-94562-21	E	RESISTOR, FIXED, FILM - 4.22K ohms, $\pm 1\%$, type RN60D	1
-21	R6	A-8-81756	E	RESISTOR, VARIABLE - 2K ohms	1
-22	R5	A-5-44507	E	RESISTOR, FIXED, COMPOSITION - 1K ohms, 1/2W, $\pm 5\%$	1
-23	R4	A-7-81756	E	RESISTOR, VARIABLE - 1K ohms	1
-24	Q1	A-1-73737	E	TRANSISTOR - same as Q4	Ref
-25	R3	A-22-44507	E	RESISTOR, FIXED, COMPOSITION - 2.2K ohms, 1/2W, $\pm 5\%$	1

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
-26	R2	A-21-44507	E	RESISTOR, FIXED, COMPOSITION - 3.9K ohms, 1/2W, ±5%	1
-27	R13	A-32-44507	E	RESISTOR, FIXED, COMPOSITION - 6.2K ohms, 1/2W, ±5%	1
-28	R12	A-12-44507	E	RESISTOR, FIXED, COMPOSITION - 3.3K ohms, 1/2W, ±5%	1
-29	C1	A-1-79114	E	CAPACITOR, FIXED, ELECT - 150 μF, 35V	1
-30	R11	A-38-44507	E	RESISTOR, FIXED, COMPOSITION - 270 ohms, 1/2W, ±5%	1
-31	C2	A-1-71984	E	CAPACITOR, FIXED, CERAMIC - 0.001 μF, 1 kV	1
-32	R10	A-25-44507	E	RESISTOR, FIXED, COMPOSITION - 1.2K ohms, 1/2W, ±5%	1
-33	R1	A-40-44507	E	RESISTOR, FIXED, COMPOSITION - 200 ohms, 1/2W, ±5%	1
-34	R9	A-56-44507	E	RESISTOR, FIXED, COMPOSITION - 7.5K ohms, 1/2W, ±5%	1
-35	CR2	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - Westinghouse type 384H	2
-36	CR1	A-4-82573	E	SEMICONDUCTOR DEVICE, DIODE - same as CR2	Ref

Figure 5-18. Printed Circuit Board (PC3), Part Location Diagram

Fig. & Index No.	Designation	Acme Part No.	Inden-ture	Description	Qty per Ass'y
5-18	PC3	A-1-95726	D	PRINTED CIRCUIT BOARD (Refer to Figure 5-12-6 for the next higher assembly)	Ref
-1	R3	A-82-94562-50	E	RESISTOR, FIXED, FILM - 825 ohms, 0.25W	1
-2	R4	A-36-94562-50	E	RESISTOR, FIXED, FILM - 365 ohms, 0.25W	1
-3	R9	A-41-72691	E	RESISTOR, FIXED, FILM - 120 ohms, 0.25W	1
-4	R5	A-4-93416	D	RESISTOR, POTENTIOMETER - 500 ohms, 1W	1
-5	C2	A-30-71984	E	CAPACITOR, FIXED - 100 pF, 1 kV	6
-6	R6	A-33-94562-20	E	RESISTOR, FIXED, FILM - 332 ohms, 0.25W	1
-7	Q3	A-1-83243	E	TRANSISTOR - Replacement type 2N5135	3
-8	C7	A-21-85850	E	CAPACITOR, FIXED - 50 μ H, 15 Vdc	1
-9	CR1	A-2-50538	E	DIODE - Replacement type 1N746A	2
-10	R10	A-35-72691	E	RESISTOR, FIXED, FILM - 68 ohms, 0.25W	1
-11	C3	A-30-71984	E	CAPACITOR, FIXED - 100 pF, 1 kV Same as C2	Ref
-12	SCR1	A-2-71320	E	DIODE - C6F	1
-13	R15	A-46-72691	E	RESISTOR, FIXED, FILM - 200 ohms, 0.25W	1
-14	Q5	A-1-83243	E	TRANSISTOR - same as Q3	Ref
-15	K1	A-8-77170	E	RELAY - 12 Vdc-T154-2C-12 Vdc	1
-16	C5	A-30-71984	E	CAPACITOR, same as C3	Ref
-17	R17	A-5944507	E	RESISTOR, FIXED, FILM - 510 ohms, 0.5W	1
-18	CR2	A-2-50538	E	DIODE - same as CR1	Ref
-19	R18	A-71-4407	E	RESISTOR, FIXED, FILM - 30 ohms, 0.5W	1
-20	Q6	A-1-83242	E	TRANSISTOR - Replacement type 2N4248	3
-21	C4	A-30-71984	E	CAPACITOR - same as C2	Ref
-22	R16	A37-72691	E	RESISTOR, FIXED, FILM - 82 ohms, 0.25W	2
-23	CR4	A-1-82573	E	DIODE - Replacement type 1N5392	3
-24	R19	A-49-41321	E	RESISTOR, FIXED, FILM - 300 ohms, 2W	1
-25	R20	A-1-72692	E	RESISTOR, FIXED, FILM - 10K, 0.25W	1
-26	R14	A-6-44507	E	RESISTOR, FIXED, FILM - 1.5K, 0.5W	1

Fig. & Index No.	Designation	Part No.	Inden-ture	Description	Qty per Ass'y
-27	Q4	A-1-83243	E	TRANSISTOR - same as Q3	Ref
-28	R21	A-67-72691	E	RESISTOR, FIXED, FILM - 1.5K, 0.25W	1
-29	CR5	A-1-82673	E	DIODE - same as CR4	Ref
-30	Q2	A-1-83243	E	TRANSISTOR - same as Q6	Ref
-31	R11	A-79-72691	E	RESISTOR, FIXED, FILM - 4.7K, 0.25W	1
-32	CR3	A-1-82573	E	DIODE - same as CR4	Ref
-33	R13	A-19-44507	E	RESISTOR, FIXED, FILM - 680 ohms, 0.5W	1
-34	R12	A-37-72691	E	RESISTOR, FIXED, FILM - same as R16	Ref
-35	C5	A-30-71984	E	CAPACITOR - same as C2	Ref
-36	Q1	A-1-83242	E	TRANSISTOR - same as Q6	Ref
-37	R8	A-47-44507	E	RESISTOR, FIXED, FILM - 300 ohms 0.5W	1
-38	R1	A-3-48082	E	JUMPER No. 22 PVC wire	1
-39	C1	A-30-71984	E	CAPACITOR - same as C2	Ref
-40	R2	A-3-93416	E	RESISTOR, POTENTIOMETER - 200 ohms, 1W	1

Figure 5-19. Basic Power Supply Schematic, Acme Model PS-2-59307

Figure 5-20. Sequencing Circuit Schematic (Printed Circuit Board A-1-95726) (PC3)

ADDENDUM
TYPE 316/716 POWER DISTRIBUTION UNIT

SECTION 1
INTRODUCTION

GENERAL DESCRIPTION

The Type 316/716 Power Distribution Box is designed to provide 120 Vac one-phase 60 Hz power to Type 316/716 drawers, μ -PAC option drawers and various peripheral devices via standard parallel blade duplex outlets.

The unit takes two phases of a three-phase system and splits it into two single-phase branch circuits, on which are contained five individual fused outlets.

SPECIFICATIONS

Electrical Specifications

Input Voltage. -- The input voltage to the power distribution box is a 208 Vac three-phase 60 Hz 5 wire service.

Input Current. -- Loading on the input lines will be from phase to neutral on two-phase only. The maximum load current per phase will be 24A, and there is no provision or procedure for balancing the load on the phase. The unused phase is terminated at the input connector and for possible future expansion.

Output Voltages and Currents. -- The voltage provided by each output connector is normally 120 Vac one-phase 60 Hz, and the maximum current that can be obtained from each duplex connector is 15A.

Power On/Off. -- The power distribution box is turned on and off by means of a 120 Vac control line from a Type 316/716 power supply or similar source which controls a two-pole contact within the box.

Mechanical Specifications

The dimensions of the power distribution are:

Length: 16.475 inches

Width: 19 inches

Height: 5.22 inches

The power distribution box consists of the following:

Sheet metal chassis

Input converter

Contacts

Five output converters

Five output Edison base fuses

Input circuit breaker

Input and output RFI filters.

The input and output connectors are mounted on the rear of the PD box: the circuit breaker and fuses are on the front. The contactor is attached to the inside of the front panel, and the RFI filters are located near the right side at the bottom of the box.

SECTION 2 OPERATING PROCEDURES

CONTROLS AND INDICATORS

There are no controls or indicators on the power distribution box.

OPERATING GUIDES

For personnel safety, do not replace fuses with the input circuit breaker in the ON position.

SECTION 3 FUNCTIONAL THEORY OF OPERATION

BLOCK DIAGRAM ANALYSIS

The block diagram of the power distribution box is shown in Figure A-1.

The ac input power enters the power distribution box through J8 and passes through an RFI filter to the circuit breaker. From there it goes to the contactor and J7 via a fuse. When the contactor is energizing by J6, power is provided to J1 through J5 via 15A fuses. J1 has an additional RFI filter for load which could generate noise onto the ac line.

Figure A-1. Power Distribution Unit Block Diagram

SECTION 4 DETAILED THEORY OF OPERATION

DETAILED LOGIC DESCRIPTION

Refer to Figure A-3 for schematics. The power distribution box is designed to take two phases of a three-phase input power line and divide into two single-phase branch circuits for the operation of any Type 316/716 equipment which requires 120 Vac via a standard parallel blade plug.

J8 brings into the box two phases, neutral and earth ground. Earth ground (pin GR) is connected to the box by an integral stud which is also connected to the ground terminals of J1 through J7. The neutral line, Pin W, is wired directly to "cold" side of each connector (silver colored terminal). The two phases (pins X and Y) are each wired to a pi section RFI filter and then to a two-pole community circuit breaker. Thus, if a fault occurs in one phase, the other will also be disconnected. The breaker will trip for currents in excess of 24A. The output of the circuit breaker is wired to a two-pole contactor and one leg is also wired to J7 through a 15A fuse. The output of the contactor is wired to the "hot" side of the duplex outlet (brass color). When used in a Type 316/716 system, a Type 316/716 power supply is plugged into J7 and a cable from the duplex outlet on the Type 316/716 power supply is plugged into J6. With the circuit breaker in the ON position, power is applied to J7 and the switch on the Type 316/716 control panel which is plugged into J7 via the power supply. When the switch is turned on, the duplex outlet on the supply energizes the contactor through J6 thus applying power to J7 through J5 on the PD box. Conversely, when the switch on the control panel is turned off, power is also removed from the outlet on the PD box.

INTERFACE

Primary Power Interface

The ac input connector on the power distribution box, J8, mates with a Hubbell Model No. 25414 or equivalent.

Output Power Interface

J1 through J5 will mate with any parallel blade plug (i.e., Hubbell Cap. 5200 series or 5900 series).

Control Interface

J7 mates with any parallel blade plug (i.e., Hubbell Caps, 5200 series or 5900 series). J6 mates with a Hubbell Model No. 4730-K twist lock connector or equivalent.

SECTION 5 INSTALLATION

PRELIMINARY INFORMATION

Service personnel should be familiar with the complete installation procedure and safety precautions before attempting to install the Type 316/716 power distribution box.

Tools and Test Equipment

A medium size screwdriver is all that is required to install the Power Distribution Unit.

Space and Environmental Requirements

The space and environmental requirements are presented in the Mechanical Specification paragraph.

INTERFACE CONSIDERATIONS

Interface considerations are presented in the Electrical Specification.

INSTALLATION PROCEDURE

Mechanical Procedure

Refer to Figure A-2.

Electrical Interconnections

Refer to the Site Planning Manual (order no. AD71) for the input ac connection. For additional cabling information, refer to Table A-1 (wire list).

CHECKOUT PROCEDURE

Initial Checkout

Before plugging in power, check all fuses. Check that circuit breaker is in the OFF position, and check that all plugs to the Type 316/716 power supply are firmly seated in their pockets.

Cycle-up Checkout

Plug in ac connector and operate power switch on control panel. Check for 120Vac with ac voltmeter at each duplex output.

On-Line Checkout

Connect cables to duplex outlet and apply power via control panel. Check each device plugged into box for presence of ac power.

**SECTION 6
MAINTENANCE**

EQUIPMENT CONFIGURATION

Figure A-2 presents the installation and accessories drawing.

SECTION 7 TROUBLESHOOTING

TROUBLESHOOTING PROCEDURES

The box should be given a good visible inspection for damage to internal parts and input and output connectors.

Recommended Test Equipment

Ac voltmeter, ac ammeter.

Check Procedure

If there is no output at any of the connectors, check the following:

- a. Voltage present at input connector.
- b. Blown 15A fuse of Type 316/716 power supply.
- c. Control panel to Type 316/716 power supply cable not connected.
- d. Loose cables at J6 and J3.
- e. Defective contactor.
- f. Defective circuit breaker.

If there is no voltage at an individual output connector, check 15A fuses on front of PD box.

If individual fuse blows continuously, check for overload or shunt at output connector.

WIRE LIST

The wire list is presented in Table A-1.

Refer to Interface paragraph for interface connections.

Table A-1.
PDU Wire List

<u>From</u>	<u>To</u>	<u>Wire Color and Gage</u>
XXAJ8--J0X	XXA10---01	BLK #10
XXAJ8--J0Y	XXA11---01	
XXAJ8--J0W	XXAJ1--J04	
XXA11---02	XXB07-CB04	
XXA11---02	XXB07-CB03	
XXB07-CB01	XXB08---02	
XXB07-CB02	XXB08---01	#10
XXBF6--F01	XXB08---02	BLK #14
XXB08---08	XXAJ6--P01	BLK
XXB08---07	XXAJ6--P02	BLK
XXBF1--F02	XXA09---01	RED
XXAJ2--J04	XXAJ7--J01	BLK
XXBF2--F02	XXAJ2--J02	RED
XXBF3--F02	XXAJ3--J02	RED
XXA09---02	XXAJ1--J02	BLK
XXBF2--F01	XXB08---05	BLK
XXBF3--F01	XXB08---06	BLK
XXBF4--F02	XXAJ4--J02	RED
XXBF4--F01	XXB08---06	BLK
XXBF5--F01	XXB08---06	BLK
XXBF5--F02	XXAJ5--J02	RED
XXBF6--F02	XXAJ7--J02	BLK #14
XXAJ1--J03	XXAJ2--J03	#10
XXAJ8--J0W	XXAJ3--J03	#10
XXAJ3--J04	XXAJ4--J04	#10
XXAJ4--J03	XXAJ5--J03	#14
XXBF1--F01	XXB08---05	BLK #14
XXAJ8--JGR	XXA12-GR01	GRN #10
XXA12-GR01	XXAJ01-J05	#14
XXAJ01-J05	XXAJ02-J05	
XXAJ02-J05	XXAJ03-J05	
XXAJ03-J05	XXAJ04-J05	
XXAJ04-J05	XXAJ05-J05	
XXAJ05-J05	XXAJ07-J03	
XXAJ07-J03	XXAJ06-J03	GRN #14

SECTION 8
REFERENCE DATA

PD UNIT SCHEMATIC (Figure A-3.)

Figure A-3. Power Distribution Unit Schematic
(Ref. Drawing C70050266, Rev. C)

SECTION 9
ILLUSTRATED PARTS BREAKDOWN

This section contains illustrated parts lists for the following power distribution unit assemblies.

	<u>Table No.</u>	<u>Figure No.</u>
Chassis Assembly	A-2	A-4
Coding Drawing	—	A-5

Table A-2.
Chassis Assembly Parts List
(See Figure A-4)

<u>Item</u>	<u>Part Number</u>	<u>Description</u>	<u>Qty</u>
01	7001954-702	CHASSIS, DET/ASSY	001
02	7001953-701	PANEL, FRONT DET/ASSY	001
03	70031806-701	COVER, PDU DET/ASSY	001
04	70942407-002	LINE FILTER	003
06	70960060-013	CIRCUIT BREAKER, CB 1	001
07	70982112-001	PLATE, IDENT	001
09	70941163-001	CONNECTOR, RECEPTACLE, ELECT, J7	001
10	70941323-001	CONNECTOR, RECEPTACLE, ELEC, J1-J5	005
11	04670063-029	FUSE-FUSTAT F1-F6	006
12	04670062-013	FUSE-HOLDER-FUSTAT	006
13	70901400-009	NUT, SHEET SPRING	010
15	70941334-001	CONNECTOR, RECEPTACLE, J6	001
17	70901005-002	NUT, #10-32	007
18	70902050-012	WASHER, FLAT, #10	007
19	70902006-043	WASHER, LOCK, #10	007
20	70963027-002	RELAY, SOLENOID, K1	001
21	70902006-042	WASHER, LK, #8-32	016
22	70902050-010	WASHER, FLAT, #8-32	016
23	70904113-046	SCREW, #8-32	006
24	70960060-102	CIRCUIT BREAKER, MTG BRKT	001
27	70032069-702	GROUND STRAP	001
28	70902003-032	WASHER, EXT, TOOTH #10	007
30	70032183-000	ONE-LINE DIAGRAM	001
31	70982128-003	PLATE, IDENT	001
32	70982131-001	PLATE, IDENT	001
33	70906164-001	CLAMP, CAP	003
34	70901003-006	HEX, NUT, 8-32	006
35	70908052-131	SPACER	001
36	04310020-015	CAP	003
37	70032761-702	CABLE, POWER	001
38	03510051-003	CLAMP, CABLE	001
39	70908035-004	CLIP, ELECT	001
40	70937506-005	BOARD, TERM	001
43	70031997-702	WIRE LIST	001
44	70033072-000	SCHEMATIC PDV	REF
45	70033073-000	CODING, DWG	REF
46	70982006-005	PLATE, DESIG	001

USERS' REMARKS FORM

TITLE:

DOC. PART NO. _____

DATED _____

ERRORS NOTED:

Fold

Cut Along Line

SUGGESTIONS FOR IMPROVEMENT:

Fold

FROM: NAME _____ DATE _____

COMPANY _____ M/S _____

TITLE _____

ADDRESS _____

ZIP _____

HONEYWELL INFORMATION SYSTEMS INC.
CEO B
300 CONCORD ROAD
BILLERICA, MA. 01821
ATTN: CEOB PUBLICATIONS, MS 872-A

Honeywell