14. Breytuskipti

Stærðfræðigreining IIB, STÆ205G, 18. febrúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

14.1

Upprifjun 14.1

Látum $P = (x, y) \neq \mathbf{0}$ vera punkt í plani. *Pólhnit* P er talnapar $[r, \theta]$ þannig að r er fjarlægð P frá O = (0, 0) og θ er hornið á milli striksins \overline{OP} og x-ássins. (Hornið er mælt þannig að rangsælis stefna telst jákvæð, og leggja má við θ heil margfeldi af 2π .)

14.2

Skilgreining 14.2

P'olhnitar'etthyrningur í xy-planinu er svæði sem afmarkast af tveimur hringbogum $x^2+y^2=a^2$ og $x^2+y^2=b^2$ og tveimur hálflínum sem byrja í (0,0) og mynda hornin α og β við x-ásinn (Hornin eru mæld þannig að rangsælis stefna telst jákvæð.) Gerum

ráð fyrir að $0 \le a \le b$ og að $0 \le \beta - \alpha \le 2\pi$. Þá má lýsa pólhnitarétthyrningnum með því að nota pólhnit þannig að

$$D = \{ [r, \theta] \mid 0 \le a \le r \le b, \alpha \le \theta \le \beta \}.$$

14.3

Setning 14.3

Ef f er fall sem er heildanlegt yfir pól
hnitarétthyrning $D=\{[r,\theta]\mid 0\leq a\leq r\leq b, \alpha\leq\theta\leq\beta\}$ þá er

$$\iint_D f(x,y) dA = \int_0^\beta \int_a^b f(r\cos\theta, r\sin\theta) r dr d\theta.$$

14.4

Upprifjun 14.4

Látum f vera fall skilgreint á bili $[\alpha, \beta]$. Jafnan $r = f(\theta)$ lýsir mengi allra punkta í planinu sem hafa pólhnit á forminu $[f(\theta), \theta]$ þar sem $\alpha \leq \theta \leq \beta$. Þetta mengi kallast pólhnitagraf fallsins f.

Setning 14.5

Látum D vera svæði i xy-plani sem afmarkast ef pólhnitalínum $\theta = \alpha$ og $\theta = \beta$ og tveimur pólhnitagröfum $r = a(\theta)$ og $r = b(\theta)$. Gerum ráð fyrir að $0 \le a(\theta) \le r \le b(\theta)$ og $0 \le \beta - \alpha \le 2\pi$. Ef f er heildanlegt fall yfir D þá er

$$\iint f(x,y) dA = \int_{\alpha}^{\beta} \int_{a(\theta)}^{b(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

14.6

14.5

Regla 14.6

Hugsum okkur að f(x,y) sé fall og hægt sé að rita f(x,y)=g(x)h(y). Látum $R=[a,b]\times [c,d]$. Pá er

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} g(x)h(y) dy dx$$
$$= \left(\int_{a}^{b} g(x) dx \right) \left(\int_{c}^{d} h(y) dy \right).$$

Setning 14.7 (Almenn breytuskiptaregla fyrir tvöföld heildi)

Látum $x=x(u,v),\ y=y(u,v)$ vera gagntæka vörpun milli svæðis S í uv-plani og svæðis D í xy-plani. Gerum ráð fyrir að föllin $x(u,v),\ y(u,v)$ hafi samfelldar fyrsta stigs hlutafleiður á S. Ef f er heildanlegt fall yfir D, þá er fallið g(u,v)=f(x(u,v),y(u,v)) heildanlegt yfir S og

$$\iint_D f(x,y) \, dx \, dy = \iint_S g(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \, dv.$$

$$\overline{PQ} = \frac{\partial x}{\partial u} du \mathbf{i} + \frac{\partial y}{\partial u} du \mathbf{j}$$

$$\overline{PR} = \frac{\partial x}{\partial v} dv \mathbf{i} + \frac{\partial y}{\partial v} dv \mathbf{j}$$

$$dA = |\overline{PQ} \times \overline{PR}|$$

$$= \left| \frac{\partial (x,y)}{\partial (u,v)} \right| du dv$$

14.8