K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Multi-transistor Circuits

Numerical 1:

Calculate the voltage gain of each stage and the overall AC voltage gain for the BJT cascade amplifier circuit shown in figure 1. Given $\beta_1 = 150 \& \beta_2 = 150$

Figure 1: Circuit 1

Solution:

DC Analysis:

Due to R-C coupling, both the stages Q point are isolated.

Since both stages are symmetric in parameters & resistor values, DC analysis of one stage is sufficient

For DC analysis all the capacitors are open circuited, since f = 0Hz

Hence the circuit becomes,

Figure 2: DC Equivalent Circuit

Applying Thevenin's theorem at the base of the transistor,

Figure 3: Thevenin's Equivalent Circuit

$$V_{TH} = \frac{R_2 \times V_{CC}}{R_1 + R_2}$$

$$= \frac{6.2k\Omega \times 15V}{24k\Omega + 6.2k\Omega}$$

$$= 3.079V$$

$$R_{TH} = R_1 \parallel R_2$$
$$= 24k\Omega \parallel 6.2k\Omega$$
$$= 4.927k\Omega$$

Applying KVL to input Base Emitter loop,

$$V_{TH} - I_{B_1Q}R_{TH} - V_{BE_1} - I_{E_1Q}R_{E_1} = 0$$

$$V_{TH} - I_{B_1Q}R_{TH} - V_{BE_1} - (1+\beta_1)I_{B_1Q}R_{E_1} = 0$$
[Since, $I_E = (1+\beta)I_B$]

$$I_{B_1Q} = \frac{V_{TH} - V_{BE_1}}{R_{TH} + (1 + \beta_1)R_{E_1}}$$

$$= \frac{3.079 - 0.7}{4.927k\Omega + (151) \times 1.5k\Omega}$$

$$= \mathbf{10.279}\mu\mathbf{A}$$

$$I_{C_1Q} = \beta_1 I_{B_1Q} = 150 \times 10.279 \mu A = 1.54 \text{mA}$$

Applying KVL to output Collector Emitter loop,

$$V_{CC} - I_{C_1Q}R_{C_1} - V_{CE_1Q} - I_{C_1Q}R_{E_1} = 0$$

$$\begin{aligned} V_{CE_1Q} &= V_{CC} - I_{C_1Q}(R_{C_1} + R_{E_1}) \\ &= 15V - (1.54mA)(5.1k\Omega + 1.5k\Omega) \\ &= 15V - 10.225V \\ &= 4.775V \end{aligned}$$

Small Signal Parameters:

 $r_{o_1} = r_{o_2} = \infty$ [Assumption]

$$r_{\pi_1} = \frac{\beta_1 V_T}{I_{C_1 Q}}$$

$$= \frac{150 \times 0.026V}{1.54mA}$$

$$= \mathbf{2.532k\Omega}$$

$$g_{m_1} = \frac{I_{C_1Q}}{V_T}$$

$$= \frac{1.54mA}{26mV}$$

$$= \mathbf{59.23mA/V}$$

Since both stages are identical,

$$r_{\pi_1} = r_{\pi_2} = 2.532 \text{k}\Omega$$
 & $g_{m_1} = g_{m_2} = 59.23 \text{mA/V}$

Mid Band AC Equivalent Circuit:

Figure 4: Small Signal Equivalent Circuit

Voltage gain of first stage: $Av_1 = \frac{V_1}{V_i}$

$$Av_1 = \frac{V_1}{V_i} = \frac{-g_{m_1}V_{\pi_1}(R_{C_1} \parallel R_3 \parallel R_4 \parallel r_{\pi_2})}{V_{\pi_1}}$$

$$Av_{1} = -g_{m_{1}}(R_{C_{1}} \parallel R_{3} \parallel R_{4} \parallel r_{\pi_{2}})$$

$$= -(59.23mA/V)(5.1k\Omega \parallel 24k\Omega \parallel 6.2k\Omega \parallel 2.532k\Omega)$$

$$= -(59.23mA/V)(1259.477\Omega)$$

$$= -74.59$$

Voltage gain of second stage: $Av_2 = \frac{V_o}{V_1}$

$$Av_2 = \frac{V_o}{V_1} = \frac{-g_{m_2}V_{\pi_2}(R_{C_2})}{V_{\pi_2}}$$

$$Av_2 = -g_{m_2}(R_{C_2})$$

= -(59.23mA/V)(5.1k\O)
= -**302**

Input Impedance of first stage (Z_i):

$$Z_i = R_1 \parallel R_2 \parallel r_{\pi_1}$$
$$= 24k\Omega \parallel 6.2k\Omega \parallel 2.532\Omega$$
$$= 1.672k\Omega$$

Output Impedance of second stage (Z_o) :

$$Z_o = R_{C_2}$$
$$= \mathbf{5.1k}\Omega$$

Overall Voltage Gain:
$$A_{V_T} = \frac{V_o}{V_i}$$

$$A_{V_T} = \frac{V_o}{V_i} = \frac{V_1}{V_i} \times \frac{V_o}{V_1}$$

$$A_{V_T} = A_{V_1} \times A_{V_2}$$
= (-74.59) \times (-302)
= **22526.18**

$$|A_{V_T}|$$
 in dB = $20 \log_{10} (A_{V_T})$
= $20 \log_{10} (22526.18)$
= 87.05 dB

Output Voltage (V_o) :

$$A_{V_T} = \frac{V_o}{V_i} \quad \Longrightarrow \quad V_o = A_{V_T} \times V_i$$

$$V_i = 25\mu V$$
 [peak to peak]

$$\therefore V_o = A_{V_T} \times V_i$$

$$= 22526.18 \times 25\mu V$$

$$= \mathbf{0.563V}$$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 5: Circuit Schematic

Figure 6: Input Output waveforms of 1st stage

Figure 7: Input Output waveforms of 2nd stage

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
Q point: I_{C_1Q}, V_{CE_1Q}	1.54mA, 4.775V	1.525mA, 4.916V
Q point: I_{C_2Q}, V_{CE_2Q}	1.54mA, 4.775V	1.525mA, 4.916V
Voltage gain of 1st stage: Av_1	-74.59	-71.116
Voltage gain of 2nd stage: Av_2	-302	-295.384
Overall Voltage gain: A_{V_T}	22526.18	21006.52
Input Impedance of 1st stage: Z_i	$1.672k\Omega$	_
Output Impedance of 2nd stage: Z_o	$5.1k\Omega$	_
Output Voltage	0.563V	0.525V
Overall voltage gain A_{V_T} in dB	87.05dB	86.447dB

Table 1: Numerical 1

Numerical 2:

For the JFET cascade amplifier given in figure 8, using identical JFET's with $I_{DSS} = 8mA \& V_p = -4.5V$, calculate the voltage gain of each stage, the overall gain of the amplifier & the output voltage V_o .

Figure 8: Circuit 2

Solution: Since both stages of given amplifier are symmetric, DC analysis of single stage is sufficient

DC Analysis:

For DC analysis all the capacitors will get open circuited as f = 0Hz

Thus the circuit becomes,

Figure 9: DC Equivalent Circuit

$$V_{GS_1} = V_{G_1} - V_{S_1}$$

= $0 - I_{D_1} R_{S_1}$ [:: $I_G = 0$]
= $-I_{D_1}(390)$
= $-390I_{D_1}$ (1)

$$\begin{split} I_{D_1} &= I_{DSS} \left(1 - \frac{V_{GS_1}}{V_p} \right)^2 \\ &= (8mA) \left(1 + \frac{V_{GS_1}}{4.5} \right)^2 \qquad(2) \end{split}$$

Substituting equation (2) in equation (1),

$$V_{GS_1} = -3.12 \left(1 + \frac{V_{GS_1}}{4.5} \right)^2$$

$$= -3.12 \left(1 + 0.44 V_{GS_1} + 0.0493 V_{GS_1}^2 \right)$$

$$= -3.12 - 1.3728 V_{GS_1} - 0.1538 V_{GS_1}^2$$

$$0.1538V_{GS_1}^2 + 2.3728V_{GS_1} + 3.12 = 0$$

 $V_{GS_1} = -1.45V$ or $V_{GS_1} = -13.976V$

$$V_{GS} > V_p$$
, $V_{GSQ_1} = -1.45$ V

$$I_{DQ_1} = I_{DSS} \left(1 - \frac{V_{GSQ_1}}{V_p} \right)^2$$

$$= (8mA) \left(1 - \frac{(-1.45V)}{-4.5V} \right)^2$$

$$= 3.675 \text{mA}$$

Since both stages are identical

$$\therefore V_{GSQ_1} = V_{GSQ_2} \quad \& \quad I_{DQ_1} = I_{DQ_2}$$

Small Signal Parameter:

$$g_{m_1} = \frac{2I_{DSS}}{|V_p|} \left(1 - \frac{V_{GSQ_1}}{V_p} \right)$$
$$= \frac{2 \times 8mA}{4.5} \left(1 - \frac{(-1.45V)}{-4.5V} \right)$$
$$= 2.4 \text{mA/V}$$

: Both stages are identical,

$$\therefore g_{m_1} = g_{m_2}$$

Mid frequency AC Equivalent Circuit:

Figure 10: Small Signal Equivalent Circuit

Gain of
$$1^{st}$$
 stage: $Av_1 = \frac{V_1}{V_i}$

$$Av_1 = \frac{V_1}{V_i} = \frac{(-g_{m_1}V_{gs_1})(R_{D_1} \parallel R_{G_2})}{V_{gs_1}}$$

$$Av_{1} = -g_{m_{1}}(R_{D_{1}} \parallel R_{G_{2}})$$

$$= -(2.4mA/V)(2.2k\Omega \parallel 10M\Omega)$$

$$= -(2.4mA/V)(2.199k\Omega)$$

$$= -5.28$$

Gain of
$$2^{nd}$$
 stage: $Av_2 = \frac{V_o}{V_1}$

$$Av_{2} = \frac{(-g_{m_{2}}V_{gs_{2}})(R_{D_{2}})}{V_{gs_{2}}}$$

$$= -g_{m_{2}}R_{D_{2}}$$

$$= -(2.4mA/V)(2.2k\Omega)$$

$$= -5.28$$

Overall Voltage Gain: $A_{V_T} = \frac{V_o}{V_i}$

$$A_{V_T} = \frac{V_1}{V_i} \times \frac{V_o}{V_1}$$

$$A_{V_T} = A_{V_1} \times A_{V_2}$$
= (-5.28) \times (-5.28)
= 27.8784

$$\begin{aligned} |A_{V_T}| \text{ in dB} &= 20 \log_{10} \left(A_{V_T}\right) \\ &= \mathbf{28.9} \text{dB} \end{aligned}$$

Input Impedance of 1^{st} stage ($\mathbf{Z_i}$):

$$Z_i = R_{G_1} = 10M\Omega$$

$$\therefore Z_i = \mathbf{10M}\mathbf{\Omega}$$

Output Impedance of 2^{nd} stage (\mathbb{Z}_{o}):

$$Z_o = R_{o_2}$$

$$\therefore Z_o = 2.2k\Omega$$

Output Voltage (V_o) :

$$A_{V_T} = \frac{V_o}{V_i} \implies V_o = A_{V_T} \times V_i$$

$$V_o = 27.8784 \times (20mV) = \mathbf{0.5575V}$$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 11: Circuit Schematic

Figure 12: Input Output waveforms of 1st stage

Figure 13: Input Output waveforms of 2nd stage

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
Q point: I_{DQ_1}, V_{GSQ_1}	3.675mA, -1.45V	3.69mA, -1.44V
Q point: I_{DQ_2}, V_{GSQ_2}	3.675mA, -1.45V	3.69mA, -1.44V
Voltage gain of 1st stage: Av_1	-5.28	-5.3
Voltage gain of 2nd stage: Av_2	-5.28	-5.31
Overall Voltage gain: A_{V_T} in dB	28.9dB	28.98dB
Input Impedance of 1st stage: Z_i	$10M\Omega$	_
Output Impedance of 2nd stage: Z_o	$2.2k\Omega$	_
Output Voltage: V_o	0.5575V	0.5639V

Table 2: Numerical 2

Numerical 3:

Determine the small signal voltage gain of the multitransistor circuit shown in figure 14. Given $\beta_1=150~\&~\beta_2=200$

Figure 14: Circuit 3

Solution:

From datasheet,

For 2N3904, $\beta_1 = 150$, $V_{BE} = 0.7V$ & For 2N3906, $\beta_2 = 200$, $V_{EB} = 0.7V$

DC Analysis:

For DC analysis we will short circuit all the capacitors, since frequency is 0Hz

Thus the circuit becomes,

Figure 15: DC Equivalent Circuit

Considering the Thevenin's Equivalent of base circuit of transistor Q_1

Figure 16: DC Equivalent Circuit with Thevenin's Equivalent Circuit

$$V_{TH} = \frac{R_2}{R_1 + R_2} (V_+ - V_-) - V_-$$

$$= \frac{50k\Omega}{100k\Omega + 50k\Omega} \times (10V - 5V)$$

$$= -1.67V$$

$$R_{TH} = R_1 \parallel R_2$$
$$= 100k\Omega \parallel 50k\Omega$$
$$= 33.33k\Omega$$

Applying KVL to Base Emitter loop of Q_1 ,

$$V_{TH} - I_{B_1}R_{TH} - V_{BE_1} - I_{E_1}R_{E_1} = V_{-}$$

$$V_{TH} - I_{B_1}R_{TH} - V_{BE_1} - (1+\beta_1)I_{B_1}R_{E_1} - V_{-} = 0$$
 [Since, $I_E = (1+\beta)I_B$]

$$\begin{split} I_{B_1} &= \frac{V_{TH} - V_{BE_1} - V_{-}}{R_{TH} + (1 + \beta_1)R_{E_1}} \\ &= \frac{-1.67 - 0.7 + 5}{33.33k\Omega + (151) \times 2k\Omega} \\ &= \textbf{7.84}\mu\textbf{A} \end{split}$$

$$I_{C_1} = \beta_1 I_{B_1} = 150 \times 7.84 \mu A = \mathbf{1.176mA}$$

$$I_{E_1} = I_{C_1} + I_{B_1} = 1.176 + 7.84 = \mathbf{1.183mA}$$

$$\begin{aligned} V_{C_1} &= V_{CC} - I_{C_1} R_{C_1} \\ &= 5 - (1.176mA \times 5k\Omega) \\ &= -\mathbf{0.88V} \end{aligned} \qquad \text{[Ignoring } I_{B_2} \& I_{RC_1} \cong I_{C_1} \text{]}$$

$$V_{E_2} = V_{B_2} + V_{EB_2}$$

$$= V_{C_1} + V_{EB_2}$$

$$= -0.88 + 0.7$$
[:: $V_{C_1} = I_{B_2}$]

$$\begin{split} I_{E_2} &= \frac{V_+ - V_{E_2}}{R_{E_2}} \\ &= \frac{5 - (-0.18)}{2k\Omega} \\ &= \mathbf{2.59mA} \end{split}$$

= -0.18V

$$\begin{split} I_{C_2} &= \frac{\beta_2}{1 + \beta_2} I_{E_2} \\ &= \frac{200}{1 + 200} \times 2.59 mA \\ &= \mathbf{2.577mA} \end{split}$$

$$\begin{split} I_{B_2} &= \frac{I_{E_2}}{1 + \beta_2} \\ &= \frac{2.59}{1 + 200} \\ &= \mathbf{12.88} \mu \mathbf{A} \end{split}$$

Now, rewriting the exact expression for equation (1),

$$V_{C_1} = V_{CC} - I_{RC_1} R_{C_1}$$

$$I_{RC_1} = I_{C_1} - I_{B_2} = 1.176mA - 12.88\mu A = 1.163mA$$

$$V_{C_1} = V_+ - I_{RC_1} R_{C_1}$$

= 5 - (1.163mA × 5k\O)
= -0.815V

$$V_{E_2} = V_{B_2} + V_{EB_2}$$

= $V_{C_1} + V_{EB_2}$
= $-0.815 + 0.7$
= $-0.115\mathbf{V}$

$$I_{E_2} = rac{V_+ - V_{E_2}}{R_{C_2}}$$

$$= rac{5 - (-0.115)}{2k\Omega}$$

$$= 2.5575 \text{mA}$$

$$\begin{split} I_{C_2} &= \frac{\beta_2}{1+\beta_2} I_{E_2} \\ &= \frac{200}{1+200} \times 2.5575 mA = \mathbf{2.544mA} \end{split}$$

$$I_{B_2} = rac{I_{E_2}}{1 + eta_2} \ = rac{2.5575}{1 + 200} \ = \mathbf{12.72} \mu \mathbf{A}$$

$$V_{E_1} = I_{E_1} R_{E_1} + V_{-}$$

= $(1.183mA \times 2k\Omega) - 5$
= -2.634 V

$$V_{CE_1} = I_{C_1} - V_{E_1}$$

= -0.815 - (-2.634)
= **1.819V**

$$V_{C_2} = I_{C_2} R_{C_2} - V_{-}$$

= $(2.544mA \times 1.5k\Omega) - 5$
= -1.184 **V**

$$V_{EC_2} = V_{E_2} - V_{C_2}$$

= -0.115 - (-1.184)
= **1.069V**

Node Voltages:

$$V_{B_1} = -1.934V, V_{C_1} = -0.815V, V_{E_1} = -2.634V$$

 $V_{C_2} = -1.184V, V_{E_1} = -0.115V, V_{B_1} = -0.815V$

Terminal Currents:

$$I_{B_1} = 7.84\mu A, I_{C_1} = 1.176mA, I_{E_1} = 1.183mA$$

 $I_{B_2} = 12.72\mu A, I_{C_2} = 2.544mA, I_{E_2} = 2.5575mA$

AC Equivalent Circuit:

Figure 17: AC Equivalent Circuit

Small Signal Parameters:

$$g_{m_1} = rac{I_{C_1}}{V_T}$$

$$= rac{1.176mA}{26mV}$$
= 45.23mA/V

$$egin{aligned} r_{\pi_1} &= rac{eta_1 V_T}{I_{C_1}} \ &= rac{150 imes 26 mV}{1.176 mA} \ &= \mathbf{3.316 k} \Omega \end{aligned}$$

$$g_{m_2} = rac{I_{C_2}}{V_T}$$

$$= rac{2.544mA}{26mV}$$
= 97.846mA/V

$$\begin{split} r_{\pi_2} &= \frac{\beta_2 V_T}{I_{C_2}} \\ &= \frac{200 \times 0.026 V}{2.544 mA} \\ &= \mathbf{2.044k} \Omega \end{split}$$

Figure 18: Small Signal Equivalent Circuit

$$\begin{split} A_{V_T} &= \frac{V_o}{V_s} = \frac{V_0}{V_1} \times \frac{V_1}{V_s} \\ Av_1 &= \frac{V_1}{V_s} = \frac{V_1}{V_i} \times \frac{V_i}{V_s} \\ V_i &= \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_S} V_s \\ \frac{V_i}{V_s} &= \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_S} \\ Av_1 &= \frac{-g_{m_1} V_{\pi_1} (R_{C_1} \parallel r_{\pi_2})}{V_{\pi_1}} \times \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_S} \\ &= -g_{m_1} (R_{C_1} \parallel r_{\pi_2}) \times \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_S} \\ &= -(45.23 mA/V) \times (5 k\Omega \parallel 2.044 k\Omega) \times \frac{33.33 k\Omega}{33.33 k\Omega + 0.5 k\Omega} \\ &= -(45.23 mA/V) \times (1.45 k\Omega) \times (0.985) \\ &= -64.599 \\ Av_2 &= \frac{V_o}{V_1} = \frac{-g_{m_2} V_{\pi_2} (R_{C_2} \parallel R_L)}{V_{\pi_2}} \\ &= -g_{m_2} (R_{C_2} \parallel R_L) \\ &= -(97.846 mA/V) \times (1.55 k\Omega \parallel 5 k\Omega) \\ &= -(97.846 mA/V) \times (1.153 k\Omega) \\ &= -112.816 \end{split}$$

Overall Volatge Gain (A_{V_T}) :

$$A_{V_T} = Av_1 \times Av_2$$

= $(-64.599) \times (-112.816)$
= 7287.8

$$A_{V_T}$$
 in dB = $20 \log_{10} (A_{V_T})$
= $20 \log_{10} (7287.8)$
= 77.251 dB

Output Voltage (V_o) :

$$A_{V_T} = \frac{V_o}{V_i} \implies V_o = A_{V_T} \times V_i$$

$$V_i = 1\mu V$$
 [peak to peak]

$$\therefore V_o = A_{V_T} \times V_i$$

$$= 7287.8 \times 1 \mu V$$

$$= 7.287 \text{mV} \quad \text{[peak to peak]}$$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 19: Circuit Schematic

Figure 20: Input Output waveforms of 1st stage

Figure 21: Input Output waveforms of 2nd stage

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
I_{B_1}	$7.84\mu A$	$7.797\mu A$
I_{C_1}, I_{E_1}	1.176mA, 1.183mA	1.169mA, 1.177mA
I_{B_2}	$12.72\mu A$	$12.553 \mu A$
I_{C_2}, I_{E_2}	2.544mA, 2.5575mA	2.51mA, 2.523mA
V_{C_1}	-0.815V	-0.785V
V_{C_2}	-1.184V	-1.2339V
V_{E_1}	-2.634V	-2.645V
V_{E_2}	-0.115V	-0.0465V
V_{B_1}	-1.934V	-1.9265V
V_{B_2}	-0.815V	-0.785V
A_{V_T} in dB	77.25dB	75.96dB
V_o [peak to peak]	7.287mV	6.281mV

Table 3: Numerical 3
