Preparation Phase Prior Knowledge

Date	25 October 2022
Team Members	917719C051, 917719C069, 917719C079, 917719C079
Project Name	Project – Car Resale Value Prediction

Prior Knowledge – Car Resale Value Prediction:

1. Supervised and Unsupervised learning:

What is Machine Learning?

What is Machine Learning?

Machine Learning is the science of making computers learn and act like humans by feeding data and information without being explicitly programmed!

simplilearn

©Simplilearn. All rights reserved.

Types of Machine Learning:

Types of Machine Learning

©Simplilearn. All rights reserved.

Supervised Learning:

Supervised Learning

Simplifearn, All rights reserved.

Types of Supervised Learning:

Types of Supervised Learning

©Simplilearn. All rights reserved.

Applications of Supervised Learning:

Applications of Supervised Learning

Simplifearn. All rights reserved.

Unsupervised Learning:

Unsupervised Learning

©Simplilearn. All rights reserved.

Types of Unsupervised Learning:

Types of Unsupervised Learning

Applications of Unsupervised Learning:

Applications of Unsupervised Learning

©Simplilearn. All rights reserved.

2. Regression, Classification and Clustering:

Common ML Problems

- Classification
- Regression
- Clustering

Classification Problem:

Introduction to Machine Learning

Classification Problem

Goal: predict category of new observation

Classification Applications:

Classification Applications

• Medical Diagnosis Sick and Not Sick

Animal Recognition Dog, Cat and Horse

Important:

- Qualitative Output
- Predefined Classes

Regression:

Introduction to Machine Learning

Regression

Regression Model:

Regression Model

Fitting a linear function

Predictor: Weight

Height $\approx \beta_0 + \beta_1 \times \text{Weight}$

Response: Height

Coefficients: β_0, β_1

Estimate on previous input-output

> lm(response ~ predictor)

Regression Applications:

Introduction to Machine Learning

Regression Applications

- Time Subscriptions
- Grades
 Landing a Job
- Quantitative Output
- Previous **input-output** observations

Clustering:

Clustering

- **Clustering:** grouping objects in clusters
 - Similar within cluster
 - Dissimilar between clusters
- **Example:** Grouping similar animal photos
 - No labels
 - No right or wrong
 - Plenty possible clusterings

k-Means clustering:

Introduction to Machine Learning

k-Means

Cluster data in k clusters!

3. Random Forest Regressor:

Applications of Random Forest:

Application of Random Forest

Forest algorithms

Provides better detection in complicated

environments

Kinect

Random Forest is used in a game console called Kinect

Tracks body movements and recreates it in the game

©Simplilearn. All rights reserved.

Random Forest definition:

Decision Tree definition:

Important terms in decision tree:

Random Forest Working:

Random Forest using python with iris dataset:

4. Python Flask:

Flask – introduction:

Installation of flask – pre-requisites

Flask Application:

Variable rules in Flask:

Flask - HTTP methods:

Flask uses jinga2 template

Flask - Templates

Flask uses jinga2 template engine

```
<!doctype html>
<html>
<body>
      <h1>Hello {{ name }}!</h1>
</body>
```

Flask will try to find the HTML file in the templates folder, in the same folder in which this script is

```
from flask import Flask, render_template
app = Flask(__name__)
@app.route('/hello/<user>')
def hello_name(user):
    return render_template('hello.html', name = user)
if __name__ == '__main__':
    app.run(debug = True)
```

The Jinga2 template engine uses the following delimiters for escaping from HTML

- {% ... %} for Statements
 {{ ... }} for Expressions to print to the template output
 {# ... #} for Comments not included in the template output
 # ... ## for Line Statements

edureka!

Python Certification Training

www.edureka.co/python