Math 201A, Homework 4 (Measurable Functions)

Problem1. Let X be a nonempty topological space and let μ be a measure on X. Prove that if the functions $f_n: X \to [-\infty, +\infty]$ are μ -measurable for $n = 1, 2, \ldots$, then the set

$$A = \{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists} \}$$

is μ -measurable.

Problem2. Prove that any Lebasgue-measurable function $f: \mathbb{R} \to \mathbb{R}$ that satisfies the relation

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}$

must be linear.

Problem3. Let $f:(0,1) \to \mathbb{R}$ be such that for every $x \in (0,1)$ there exists $\delta > 0$ and a Borel-measurable function $g: \mathbb{R} \to \mathbb{R}$ (both dependent on x), such that f(y) = g(y) for all $y \in (x - \delta, x + \delta) \cap (0, 1)$. Prove that f is Borel-measurable. (You can assume that f(x) = 0 outside the interval (0,1)).

Problem4. Give an example of a collection of Lebesgue-measurable nonnegative functions $\{f_{\alpha}\}_{{\alpha}\in A}\ (f_{\alpha}\colon \mathbb{R}\to\mathbb{R})$ such that the function

$$g(x) = \sup_{\alpha \in A} f_{\alpha}(x), \quad x \in \mathbb{R}$$

is finite for all $x \in \mathbb{R}$ but g is not Lebesgue-measurable. Here A is a nonempty index set.