MLforCyberSec Project

Wenwei Zhang(wz2037) Linnan Zhang(lz2400) Tianhao Wang(tw2245)

Link to Github

```
└── clean_validation_data.h5 // this is clean data used to evaluate the BadNet and design the backdoo
   clean_test_data.h5
   sunglasses_poisoned_data.h5
   anonymous_1_poisoned_data.h5
   └── Multi-trigger Multi-target
       eyebrows_poisoned_data.h5
       lipstick_poisoned_data.h5
       └─ sunglasses_poisoned_data.h5
-- models
   L— sunglasses_bd_net.h5
   L— sunglasses_bd_weights.h5
   multi_trigger_multi_target_bd_net.h5
   multi_trigger_multi_target_bd_weights.h5
   ___ anonymous_1_bd_net.h5
   __ anonymous_1_bd_weights.h5
   L— anonymous_2_bd_net.h5
   __ anonymous_2_bd_weights.h5
   repair_sunglasses_bd_net.h5
   repair_anonymous_1_bd_net.h5
   repair_anonymous_2_bd_net.h5
   repair_multi_trigger_multi_target_bd_net.h5
 architecture.py
 sparse-fine-pruning.py
Geval_Anonymous_1.py
├── Geval_Anonymous_2.py
— Geval_Multi_trigger.py
 Geval Sunglasses.py
 eval.py // this is the evaluation script
```

I. Dependencies

- 1. Python 3.6.9
- 2. Keras 2.3.1
- 3. Numpy 1.16.3
- 4. Matplotlib 2.2.2
- 5. H5py 2.9.0
- 6. TensorFlow 2.7.0

II. Validation Data

1. Download the validation and test datasets from here and store them under data/ directory.

- 2. The dataset contains images from YouTube Aligned Face Dataset. We retrieve 1283 individuals each containing 9 images in the validation dataset.
- 3. sunglasses_poisoned_data.h5 contains test images with sunglasses trigger that activates the backdoor for sunglasses_bd_net.h5. Similarly, there are other .h5 files with poisoned data that correspond to different BadNets under models directory.

III. Evaluating the Backdoored Model

- 1. The DNN architecture used to train the face recognition model is the state-of-the-art DeepID network. This DNN is backdoored with multiple triggers. Each trigger is associated with its own target label.
- 2. To evaluate the backdoored model, execute eval.py by running: python3 eval.py <clean validation data directory> <model directory> . E.g., python3 eval.py data/clean_validation_data.h5 models/sunglasses_bd_net.h5 . Clean data classification accuracy on the provided validation dataset for sunglasses_bd_net.h5 is 97.87 %.

IV. Repair Network

1. The repaired network for all 4 bad nets are: models/repair_sunglasses_bd_net.h5 models/repair_anonymous_1_bd_net.h5 models/repair_anonymous_2_bd_net.h5 models/repair_multi_trigger_multi_target_bd_net.h5.

They are created by runing command:

- python3 sparse-fine-pruning.py <model path> <clean data path>
- e.g. python3 sparse-fine-pruning.py models/anonymous_1_bd_net.h5 data/clean_validation_data.h5
- 2. Each repaired network has a corresponding evaluation script:
 - models/repair_sunglasses_bd_net.h5: Geval_Sunglasses.py
 - models/repair_anonymous_1_bd_net.h5 : Geval_Anonymous_1.py
 - models/repair_anonymous_2_bd_net.h5: Geval_Anonymous_2.py
 - models/repair_multi_trigger_multi_target_bd_net.h5 : Geval_Multi_trigger.py

Each script can be run by:

python3 Geval_*.py

V. Project Report

Project report can be read here.