Automi e Linguaggi Formali - Q&A - PAL_{TM}

Gabriel Rovesti

Anno Accademico 2024-2025

Esercizio PAL_TM

Un linguaggio $B \subseteq \{0,1\}^*$ è **palindromo** se ogni stringa in B è palindroma, cioè se $w = w^R$ per ogni $w \in B$. Ad esempio, sia $\{00,1101,1001\}$ che \emptyset sono linguaggi palindromi, mentre $\{00,10\}$ non lo è. Considera il problema di determinare se il linguaggio di una TM M è palindromo.

Definizione 1. PAL_TM = $\{\langle M \rangle \mid M \text{ è una TM e } L(M) \text{ è palindromo}\}$

Teorema 1. PAL_TM è indecidibile.

Dimostrazione. Dimostriamo l'indecidibilità per riduzione dal problema della cofinalità $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ accetta } w\}$. Costruiamo una funzione di riduzione $f : \{\langle M, w \rangle\} \mapsto \{\langle M' \rangle\}$ dove M' è la TM che su input x:

- 1. Simula M su input w
- 2. Se M accetta w, accetta se $x = x^R$ oppure se x = "10"
- 3. Se M non accetta w (rifiuta o va in loop), accetta qualunque input x

Restituisce $\langle M' \rangle$.

Analisi dei casi:

Caso 1: Se $\langle M, w \rangle \in A_{\text{TM}}$, allora M accetta w, quindi M' accetta solo palindromi e la stringa "10". Poiché "10" non è palindroma, L(M') contiene almeno una stringa non palindroma, perciò $\langle M' \rangle \notin \text{PAL_TM}$.

Caso 2: Se $\langle M, w \rangle \notin A_{\text{TM}}$, allora M non accetta w, quindi $L(M') = \{0, 1\}^*$ che contiene stringhe non palindrome come "10", perciò $\langle M' \rangle \notin \text{PAL-TM}$.

Quindi abbiamo:

$$\langle M, w \rangle \in A_{\mathrm{TM}} \iff \langle M' \rangle \notin \mathrm{PAL}\text{-TM}$$

Equivalentemente:

$$\langle M, w \rangle \in A_{\mathrm{TM}} \iff \langle M' \rangle \in \overline{\mathrm{PAL}_{\mathrm{-}}\mathrm{TM}}$$

Poiché $A_{\rm TM}$ è indecidibile e si riduce a $\overline{\rm PAL_TM}$, anche $\overline{\rm PAL_TM}$ è indecidibile. Siccome $E_{\rm TM}$ è indecidibile e si riduce a PAL_TM, anche PAL_TM è indecidibile.

Osservazione

La chiave di questa dimostrazione è garantire che quando M accetta w, il linguaggio L(M') contenga almeno una stringa non palindroma. L'aggiunta della stringa "10" è cruciale: senza di essa, L(M') conterrebbe solo palindromi e sarebbe quindi palindromo, rendendo la riduzione inefficace.

Una costruzione alternativa potrebbe far accettare a M' l'insieme vuoto quando M accetta w (che è palindromo) e un linguaggio non palindromo quando M non accetta w, invertendo così la riduzione.