(1 point)	
Find the length of th	ne curve
	$y = \frac{x^5}{6} + \frac{1}{10x^3}, 1 \le x \le 2.$
Aro longth - 1061	
Arc length = 1261	7240
(1 point)	
Find the length of th	ne curve
	$y^2 = 4(x+4)^3$, $0 \le x \le 2$, $y > 0$.
Arc length = 2/27*	(55^(3/2)-37^(3/2))
(1 point)	
Find the length of th	ne curve
	$y^2 = 4x, 0 \le y \le 2.$
Arc length = sqrt(2	?)+In(1+sqrt(2))
(1 point) To find the	length of the curve defined by
	$y = 5x^4 + 12x$
from the point (-1,-7	7) to the point (1,17), you'd have to compute
	$\int_{a}^{b} f(x)dx$
where $a = \begin{bmatrix} -1 \end{bmatrix}$, $b = 1$, and $f(x) = ((20x^3+12)^2+1)^(1/2)$.
(1 point)	along the of the curve $x=\frac{1}{2}x^4$ ever the interval [1, 2] using the transposidal rule and 5 intervals (i.e. T.)
$T_5 = 0.1*(\text{sqrt}(2) + 2)$	c length of the curve $y=\frac{1}{4}x^4$ over the interval [1,2] using the trapezoidal rule and 5 intervals (i.e., T_5). $2 \operatorname{sqrt}(1+1.2^{\wedge})$
(1 point)	
	on of the astroid of $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$.
$s = 30 \operatorname{sqrt}(5)$	
(1 point) Find the ar	c length of the curve $y = \frac{1}{8} \left(-x^2 + 8 \ln(x) \right)$ from $x = 4$ to $x = 7$.
Length = 33/8+ln(7/4)
(1 point) Find the to	tal length of the astroid defined by the parametric equations
	$x(t) = a\cos^3 t$ and $y(t) = a\sin^3 t$, where $a > 0$.
Length = 6a	
If the variable $a = 0$), what is the length of the astroid?
	, what is the folight of the desired.