

Motion Transformer for Unsupervised Image Animation

Jiale Tao¹ Biao Wang² Tiezheng Ge² Yuning Jiang² Wen Li¹ Lixin Duan¹ ¹University of Electronic Science and Technology of China ²Alibaba Group

Parameters FLOPs

53.64G

1.28G

1.26G

7.54G

60.8%

69.8%

45.57M

14.21M

14.20M

12.23M

Model capacity.

User preferences.

|TaiChiHD TEDTalks VoxCeleb

66.4%

57.1%

ImageGenerator

FOMM

MRAA

MotionEstimator-FOMM

MotionEstimator-MRAA

96.5%

68.5%

MotionEstimator-Ours

Introduction

1. Image Animation

- ☐ Input: a source image and a driving video; Output: a video with the motion from the driving video and the appearance from the source image.
- ☐ General animation: learn part motion representations (keypoints and affine transformations) via self-supervised image reconstruction.

2. Motivation

□ Current motion estimators: built by CNNs, do not explicitly model the interactions/relationship between motions, which can potentially lead to noticeable artifacts being produced in the generated animation video.

Methodology

$$P_l^i = \sum_j \text{MSA}(Q_{P_{l-1}^i}, K_{P_{l-1}^j}, V_{P_{l-1}^j}) + \sum_j \text{MSA}(Q_{P_{l-1}^i}, K_{I_{l-1}^j}, V_{I_{l-1}^j})$$

- ☐ Motions are represented as learnable tokens (Motion Tokens).
- ☐ Image is divided into patches with position encoding (Image Tokens).
- ☐ Motion tokens are decoded to final motion information (affine matrix) via motion2image cross attention.
- ☐ The relationship between motions are modeled by motion2motion self attention.
- ☐The two types of attention are unified in a single transformer architecture.

Experiments

1. Quantitative and Qualitative Comparison with Existing Methods

Quantitative comparisons on the video self-reconstruction task.

	TaiChiHD			TEDTalks			VoxCeleb			MGIF		
	L1	(AKD,	MKR)	AED	L1	(AKD,	MKR)	AED	L1	AKD	AED	L1
FOMM	0.057	(6.649,	0.036)	0.172	0.029	(4.382,	0.008)	0.127	0.041	1.29	0.133	0.0224
MRAA	0.048	(5.246,	0.024)	0.150	0.027	(3.955,	0.007)	0.118	0.040	1.28	0.133	0.0274
Ours	0.045	(4.670,	0.021)	0.148	0.026	(3.456,	0.007)	0.113	0.038	1.18	0.116	0.0200

Qualitative comparison on cross-identity image animation

3. Visualizations

(b) TEDTalks
Visual attention visualization.

2. Ablation study

On position encoding.

	L1	(AKD,	MKR)	AED
$\overline{w/o} \; \mathrm{PE}$	0.047	(5.482,	0.028)	0.158
$w \; \mathrm{PE}$	0.045	(4.670,	0.021)	0.148

On CNN backbone.

CNN	Param.	L1	(AKD,	MKR)	AED
Stem	5.56M	0.048	(6.056,	0.030)	0.161
HR-W32	12.23M	0.045	(4.670)	, 0.021)	0.148
HR-W48	21.30M	0.045	(4.829,	0.020)	0.149

On transformer layers.

Layers	L1	(AKD,	MKR)	AED
4	0.046	(5.320,	0.027)	0.155
8	0.046	(5.226,	0.025)	0.154
12	0.045	(4.670,	0.021)	0.148

EUROPEAN CONFERENCE ON COMPUTER VISION TEL AVIV 2022