

Case Study #3: Customer Segmentation at TripAdvisor with Recommendation AB Tests

ALICE Team¹ and Victor Lei²

Miruna Oprescu¹

¹MSR New England

²TripAdvisor

- 1. Case Study
- 2. Methodology
- 3. EconML Solution
- 4. Results & Takeaways

The company's decision makers have some questions:

- 1. Does this program work, i.e. does it compel users to spend more time on the website?
- 2. For what kind of users does it work best?

Proposal #1: Use existing data on members and non-members

Problem: Confoundedness. We cannot simply compare members with non-members because the customers who chose to become members are likely already more engaged than other users.

Proposal #2: Run an A/B test

Problem: Imperfect Compliance. A direct A/B test is infeasible because the website cannot force a random subset of users to become members.

Proposal #3: Run a recommendation A/B test that offers signup incentives to a randomized group of users.

Trip Advisor Solution: Use existing A/B test that offered an easier sign-up flow to a subset of users.

- 1. Case Study
- 2. Methodology
- 3. EconML Solution
- 4. Results & Takeaways

Instrumental Variable

A random variable Z that affects the treatment assignment T but does not affect the outcome Y other than through the treatment

Example of IV: Cohort assignment in recommendation A/B test

Challenges and Limitations of Typical IV Methods

- They might not scale like typical ML algorithms
 - Weak instruments require large datasets for effect estimation
- They do not account for both complex effect or compliance heterogeneity
 - Not accounting for heterogeneity in compliance and effect can lead to biased average effects

For random half of 4 million users, easier sign-up flow was enabled

Easier sign-up incentivizes membership

For each user we observe:

- $T \rightarrow \text{treatment}$, e.g. user membership
- $Y \rightarrow$ outcome, e.g. number of visits in the 14 days post experiment
- $X \rightarrow$ features that capture heterogeneity, e.g. user features
- $Z \rightarrow$ instrumental variable, e.g. assignment in A/B test

Structural equations:

$$Y = \theta_0(X) \cdot T + f_0(X) + e$$
$$T = h_0(X, Z) + \eta$$

Doubly Robust IV (DRIV)¹

Simplifications: $T, Z \in \{0, 1\}, P(Z = 1|X) = 1/2$.

Consider the compliance score:

$$\Delta(X) = (2Z - 1) \frac{\mathbb{P}(T = 1 | Z = 1, X) - \mathbb{P}(T = 1 | Z = 0, X)}{2}$$

Define the following residuals: $\tilde{Y} = Y - \mathbb{E}[Y|X]$, $\tilde{T} = T - \mathbb{E}[T|X]$.

2. Estimate preliminary $\hat{\theta}(X)$ with DMLIV:

$$\hat{\theta} = \underset{\theta(\cdot)}{\operatorname{argmin}} \mathbb{E}\left[\left(\tilde{Y} - \theta(X) \cdot \Delta(X)\right)^{2}\right]$$

3. Estimate robust final $\theta(X)$:

$$\min_{\theta(\cdot)} \mathbb{E} \left[\left(\hat{\theta}(X) + \frac{\tilde{Y} - \hat{\theta}(X) \cdot \tilde{T}}{\Delta(X)} - \theta(X) \right)^{2} \right]$$

¹V. Syrgkanis, V. Lei, et al. *Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments*. NeurIPS, 2019.

Classification

Regression

Simplifications: $T, Z \in \{0, 1\}, P(Z = 1|X) = 1/2$.

1. Consider the compliance score:

$$\Delta(X) = (2Z - 1) \underbrace{\mathbb{P}(T = 1 | \hat{Z} = 1, X)} - \mathbb{P}(T = 1 | \hat{Z} = 0, X)$$
Define the following resid
$$\underbrace{\mathbb{E}COnML} - \mathbb{E}[T|X].$$

2. Estimate preliminary $\hat{\theta}(X)$ with DMLIV:

$$\hat{\theta} = \underset{\theta(\cdot)}{\operatorname{argmin}} \mathbb{E}\left[\left(\tilde{Y} - \theta(X) \cdot \Delta(X)\right)^{2}\right]$$

3. Estimate robust final $\theta(X)$:

$$\min_{\theta(\cdot)} \mathbb{E} \left[\left(\hat{\theta}(X) + \frac{\tilde{Y} - \hat{\theta}(X) \cdot \tilde{T}}{\Delta(X)} - \theta(X) \right)^{2} \right]$$

- 1. Case Study
- 2. Methodology
- 3. EconML Solution
- 4. Results & Takeaways

Data features:

Feature Name	Type	Details
days_visited_exp_pre	X	#days a user visits the attractions pages
days_visited_free_pre	X	#days a user visits the website through free channels (e.g. domain direct)
days_visited_{fs,hs,rs,vrs}_pre	X	#days a user visits the flights/hotels/restaurants/vacation rental pages
locale_en_US	X	whether the user access the website from the US
os_type	X	user's operating system (windows, osx, other)
revenue_pre	X	how much the user spent on the website in the pre-period
easier_signup	Z	whether the user was exposed to the easier signup process
became_member	T	whether the user became a member
days_visited_post	Υ	#days a user visits the website in the 28 days after the experiment

Data sample:

	days_visited_exp_pre	days_visited_fs_pre	revenue_pre	os_type_osx	easier_signup	became_member	days_visited_post
Ī	0 1	7	0.01	0	0	0	1
	1 10	27	2.26	0	0	0	15
	2 18	8	0.03	0	0	0	17
	3 17	23	418.77	0	0	0	6
	4 24	22	1.54	0	0	0	12

DRIV @EconML

DRIV In Action:

DRIV @EconML

Treatment effects interpreter

- 1. Case Study
- 2. Methodology
- 3. EconML Solution
- 4. Results & Takeaways

Results in a Nutshell

- Large heterogeneity based on which pages were recently visited
- Large heterogeneity based on platform of access (e.g. iPhone, Linux etc.)
- Results enable better targeting of the right user populations and improvements of membership offering for user segments with small effects

Key Takeaways

- Recommendation A/B Tests are useful when there are unobserved confounders and compliance cannot be enforced
- For Trip Advisor, these results enable better targeting of the right user populations and improvements of membership offering for user segments with small effects
- EconML provides an end-to-end solution to the intent-to-treat scenario
 - Jupyter Notebook: github.com/microsoft/EconML
 - TripAdvisor Case Study: <u>aka.ms/econml</u>

Thank You!

