Лекция 2: Поиск ассоциативных правил

M

Типовая прикладная задача: анализ «корзины покупателя»

Ассортимент супермаркета

Интересные правила

Задача Определить интересные правила в предпочтениях покупателей при выборе товара

м

Ассоциативный анализ

- Правила с семантикой:
 - \square в <u>s</u>% случаях ЕСЛИ верно $A_1, A_2, ..., A_k$, ТО с достоверностью <u>с</u> будет верно $B_1, B_2, ..., B_m$

$$A_1 \wedge A_2 \wedge ... \wedge A_k => B_1 \wedge B_2 \wedge ... \wedge B_m$$

- □ где A₁, A₂ , ..., A_k, B₁, B₂, ..., B_m (различные!) предикаты,
- \square s поддержка (support), c достоверность (confidence)
- Основная задача:
 - □ найти все <u>интересные</u> правила, с заданными ограничениями по s и с (возможно задание дополнительных ограничений на предикаты и сами правила)
- Основной математический аппарат:
 - □ дискретная математика, математическая логика, комбинаторная оптимизация (на основе метода «ветвей и границ» вариации полного перебора с отсевом подмножеств допустимых решений, заведомо не содержащих оптимальных решений).

Ассоциативный анализ

- Тип моделей:
 - □ Как правило, «описательный» (descriptive) Data mining => одна из задач наглядное представление правил
- Тип обучения:
 - □ «без учителя» (unsupervised) => тренировочный набор не размечен
- Типы правил:
 - □ Булевы!!!
 - Числовые нужна дискретизация, интервалы как булевы предикаты
 - Иерархические если определена иерархия для значений атрибутов
 - □ Временные как правило, семантика «в <u>s</u> случаях если произошло A и B, то потом случится C и D с вероятностью <u>c</u>»)
 - □ Пространственные предикаты определяют пространственные связи между объектами, например «рядом», «далеко» и т.п.

м

Ассоциативный анализ

- Прикладные задачи:
 - «Экономические»: анализ корзины, маркетинг
 - «Безопасность» и Web usage mining: модели поведения пользователя
 - □ Text mining: поиск ключевых слов, характеристик и тематик
 - □ Биоинформатика, медицина
- Задачи анализа:
 - □ Поиск самих правил
 - Поиск исключений (из правил)
 - □ Выделение признаков (на основе правил)
 - □ Классификация и прогнозирование (на базе правил)

Булевы ассоциативные правила

I = {item₁, item₂, ..., item_n} – множество атрибутов
D – множество транзакций T ⊆ D, каждая транзакция T – набор элементов из I,

Каждая транзакция T – бинарный вектор длины n: $(t_1, t_2, ..., t_n)$ $t_k=1$, если элемент item_k присутствует в T, иначе $t_k=0$

<u>Опр</u> Транзакция Т **содержит (поддерживает)** X – набор атрибутов из I, если X ⊆T

Опр **Ассоциативным правилом** называется импликация X = >Y, где $X,Y \subseteq I$ и $X \cap Y = \emptyset$

<u>Опр</u> Правило X=>Y имеет **поддержку (support) s**, если s% транзакций из D содержат X и Y

<u>Опр</u> Правило X=>Y имеет **достоверность** (**confidence**) **c**, если с% транзакций из D, содержащих X, также содержат Y.

M

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
D=	5	1	1	0	0
	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

```
I={Xлеб, Kефир, Пиво, Чипсы} supp(Xлеб) = 60\% supp(Kефир) = 50\% supp(Пиво) = 60\% supp(Чипсы) = 30\%
```

Пример правила: Пиво=>Чипсы $supp(\Pi=>H)=30\%$ $conf(\Pi=>H)=50\%$

```
<u>Задача:</u> Найти правила с параметрами: minsupp = 30%, minconf = 60%
```


Булевы ассоциативные правила

- Опр Найденные правила называются интересными правилами
- <u>Опр</u> Набор атрибутов X and Y называется **часто встречаемым** если supp(X and Y)>=minsupp

$$I = \{i_1, i_2, ..., i_n\}$$
 — набор атрибутов
Ассоциативное правило $X \Rightarrow Y$
 $X \subseteq I, Y \subseteq I, X \cap Y = \{\}$
 $support(X \Rightarrow Y) = p(X \text{ and } Y)$
 $confidence(X \Rightarrow Y) = p(Y \mid X) = \frac{p(X \text{ and } Y)}{p(X)}$

Задача : найти все ассоциативные правила c support $\geq MinSup$ u confidence >= MinConf

Множество транзакций

Популярные алгоритмы: Apriori, FP-tree

м

Алгоритм Apriori

- Основной принцип (анти-монотонность):
 - Любое подмножество часто встречаемого набора является часто встречаемым набором

Формально:

- Поддержка любого набора элементов не может превышать минимальной поддержки всех его подмножеств
- Необходимое условие частой встречаемости k-элементного набора
 частая встречаемость всех его (k-1)-элементных подмножеств
- □ В примере: supp({Хлеб, Кефир, Чипсы}) <= supp({Хлеб, Кефир}), supp({Хлеб, Чипсы}), supp({Кефир, Чипсы}), supp({Кефир}),
 - supp({Чипсы}),supp({Хлеб})

Этапы алгоритма:

- □ Генерация множества часто встречаемых наборов (supp >= minsupp): метод «ветвей и границ» направленный перебор от простых (коротких) наборов к сложным (длинным) с отсечением
- □ Генерация правил по найденным наборам (conf >= minconf)

M

Идея метода ветвей и границ для Apriori

M

Генерация множества часто встречаемых наборов атрибутов

```
L_1 = \{ \text{часто встречаемые 1-элементные наборы} \}
for (k = 2; L_{k-1}! = {}; k++) {}
 C_k = apriori-gen(L_{k-1}); // Генерация k-элементных кандидатов
 for all transactions t \in D {
  C_t = subset(C_k, t); // Кандидаты, которые содержатся в транзакции t
  forall candidates c \in C_t
    c.count++;
 L_k = \{c \in C_k \mid c.count >= minsupp \}
Answer = \bigcup_{k} L_{k}
```

7

Генерация кандидатов apriori-gen

Ck = apriori-gen(Lk-1)

Шаг JOIN

```
INSERT INTO C_k

SELECT p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub>

FROM L_{k-1} p, L_{k-1} q

WHERE p.item<sub>1</sub> = q.item<sub>1</sub>, ..., p.item<sub>k-2</sub> = q.item<sub>k-2</sub>,

p.item<sub>k-1</sub> < q.item<sub>k-1</sub>;
```

Шаг PRUNE

```
forall itemsets c \in C_k
forall (k-1)-subsets s of c
if (s \not\in L_{k-1}) delete c from C_k;
```

м

Пример генерации кандидатов

- L_3 ={abc, abd, acd, ace, bcd}
- Join: L_3*L_3
 - \square abcd = abc + abd
 - \square acde = acd + ace
- Pruning:
 - \square acde удален, т.к. ade не в L_3
- C₄={abcd}

٠,

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
D=	5	1	1	0	0
	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

Построение L1

supp(Xлеб) = 60% supp(Kефир) = 50% supp(Пиво) = 60% supp(Чипсы) = 30%L1 = {{X}, {K}, {П}, {Ч}}

Построение L2

 $\{X, K\}, \{X, \Pi\}, \{X, \Psi\} \}$ $\{K, \Pi\}, \{K, \Psi\}, \{\Pi, \Psi\} \}$ $supp(\{X, K\}) = 30\%$ $supp(\{X, \Pi\}) = 20\%$ $supp(\{X, \Psi\}) = 10\%$ $supp(\{K, \Pi\}) = 30\%$ $supp(\{K, \Psi\}) = 30\%$ $supp(\{\Pi, \Psi\}) = 30\%$ $L2=\{\{X,K\}, \{K,\Pi\}, \{K,\Psi\}, \{\Pi,\Psi\}\}$

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
D=	5	1	1	0	0
	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

```
L2=\{\{X,K\}, \{K,\Pi\}, \{K,Y\}, \{\Pi,Y\}\}\} Формируем L3 \{K,\Pi,Y\}
```

supp(
$$\{K, \Pi, Y\}$$
) = 30%
L3 = $\{\{K, \Pi, Y\}\}$

Результат= {{X}60%,{K}50%,{П}60%,{Ч}30%, {X,K}30%,{K,П}30%,{K,Ч}30%, {П,Ч}30%,{K, П, Ч}30%}

Генерация правил

- Критерий:
 - \square conf(X=>Y) = P(Y|X) = support({X,Y}) / support(X)
 - \square conf(X=>Y)>=minconf
 - □ все support известны с 1-го этапа
- Принцип:
 - \square Если правило {A} => {B, C} интересно, то и {A, B} => {C} интересно
- Доказательство:
 - \square conf({A}=>{B, C}) = supp({A, B, C}) / support({A})>=minconf
 - \square conf({A, B}=>{C}) = supp({A, B, C}) / support({A, B})
 - \square support({A, B}) <= supp({A})
 - \square conf({A, B}=>{ C})>=minconf
- Алгоритм:
 - □ Для каждого часто встречаемого набора проверять правила на интересность, начиная со случая, когда в правой части правила находится один атрибут и постепенно добавлять/убавлять атрибуты в/из правую/левой часть(и).

Метод ветвей и границ для генерации правил

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
	5	1	1	0	0
D=	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
ĺ	9	0	0	1	0
	10	0	0	1	0

Наборы:

{X}60%,{K}50%,{Π}60%, {Ч}30%,{X,K}30%,{K,Π}30%,{K,Ч}30%,{Π,Ч}30%,{K, Π, Ч}30%

Правила:

$$conf({X}=>{K})=50%$$

$$conf({K}=>{X})=60\%$$

$$conf({K}=>{\Pi})=60\%$$

$$conf(\{\Pi\}=>\{K\})=50\%$$

$$conf({K}=>{Y})=60\%$$

$$conf({Y}=>{K})=100%$$

$$conf(\{Y\}=>\{\Pi\})=100\%$$

$$conf({K, \Pi}=>{H})=100\%$$

$$conf({K}=>{\Pi, \, Y})=60\%$$

$$conf({\Pi}=>{K, Y})=50\%$$

$$conf({K, Y}=>{\Pi})=100\%$$

$$conf({Y}=>{K, \Pi})=100\%$$

$$conf({\Pi, \Psi}=>{K})=100\%$$

×

Недостатки Apriori

- Суть алгоритма Apriori:
 - □ Использовать часто встречаемые наборы размера (k 1) для генерации кандидатов часто встречаемых наборов размера k
 - □ Использовать dbscan и сравнения подмножеств атрибутов для расчета поддержки <u>кандидатов</u>
- Слабое место генерация кандидатов
 - □ Огромное число кандидатов: 10^4 1-элементных наборов приводят к 10^7 2-элементным наборам, если надо найти наборы размера 100 $\{a_1, a_2, ..., a_{100}\}$, нужно сгенерировать $2^{100} \approx 10^{30}$ кандидатов.
 - □ Множественные dbscan: (n + 1) сканирований, где n длина наибольшего набора
- Пути решения:
 - Хэш-деревья для хранения наборов и счетчиков поддержки.
 - □ Удаление неинформативных транзакций из базы
 - □ Разбиение базы и sampling набор будет часто встречаемым, если он часто встречаемый на каком-то подмножестве транзакций, но: необходима оценка полноты и достоверности

Поиск частых наборов без кандидатов

Oc	новная задача, решаемая методом <u>Frequent-Pattern tree</u> (<u>FP-tree</u>)
	«сжать» информацию о транзакциях и представить в «компактном» вид с быстрым поиском частых наборов (<u>FP-tree</u>)
	уйти от частых сканирований БД, не генерировать кандидатов, а искать их динамически по структуре FP-tree
	стратегия «разделяй и властвуй»: декомпозиция задачи поиска на боле мелкие подзадачи – рекурсивное построение «пути» частых наборов в FP-tree дереве
Св	ойства и требования к структуре:
	«сжатая» информация для поиска наборов должна быть полной
	размер вспомогательных структур не должен превосходить размер БД,
	не должно быть несодержательной информации, например, о редких наборах
	при поиске обратная упорядоченность по частоте наборов и атрибутов – более часто встречаемые атрибуты с большой вероятностью являются частью частых наборов

Построение FP-tree

<u>TID</u>	Items	frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	$min_support = 0.5$
300	$\{b, f, h, j, o\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$	<u>{}</u>

Шаги:

- Первое сканирование БД и построение частых 1 наборов
- 2. Обратная сортировка по частоте
- 3. Второе сканирование и построение FP-tree

Поиск частых наборов с FP-tree

Метод:

- □ Для каждого элемента найти его условный базовый набор
- □ На основе условного базового набора построить новое условное FP-tree поддерево для каждого элемента, рассматривая каждый путь как отдельную транзакцию
- □ Повторить процесс для элементов каждого вновь созданного условного FP-tree поддерева
- □ До тех пор пока результирующее FP-tree не будет пусто или не будет содержать единственный путь
- □ Единственный путь генерирует все комбинации подпутей,
 каждый из которых есть частый набор

Шаг 1: От FP-tree к условному базовому набору

- Для каждого элемента проход FP-tree «вверх» по дугам с запоминанием «условного» пути и его поддержки
- В результате с каждым элементом связан <u>условный базовый набор</u> (набор возможных путей к вершине с поддержкой)

Conditional pattern bases

<u>item</u>	cond. pattern base
c	<i>f</i> :3
a	fc:3
\boldsymbol{b}	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

v

Свойства условного FP-tree

- Свойство «узел-связь»:
 - □ Для каждого частого элемента a_i, все возможные частые наборы, содержащие a_i, могут быть получены обходом по пути «узел-связь» от a_i -го заголовочного элемента к корню FP-tree
- Свойство префикса:
 - □ Для поиска частых наборов для узла a_i в пути P, необходимо рассматривать только префикс подпути от a_i в P, его поддержка должна быть равна поддержке узла a_i.

Шаг 2: Построение условного FP-tree

- Для каждого условного базового набора
 - □ Построить условное FP-tree, содержащее только пути из базового набора

Поиск частых наборов по условным базовым наборам

Item	Условный базовый набор	Условное FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

Шаг 3: Рекурсивная обработка условного FP-tree

m-conditional FP-tree

cm-conditional FP-tree

Условный базовый набор для "cam": (f:3) *f*:3

cam-conditional FP-tree

Единственный путь в FP-tree

- Предположим в FP-tree T есть единственный путь Р
- Полное множество частых наборов из Т могут быть получены перебором всех возможных комбинаций подпутей из Р

m-conditional FP-tree

M

Принцип поиска частых наборов

- Свойство увеличения набора
 - Пусть α частый набор в DB, В α's условный базовый набор для α и β поднабор в В. Тогда α ∪ β есть частый набор в DB тогда и только тогда, когда β частый набор в В.
- "abcdef" частый набор тогда и только тогда, когда
 - □ "abcde" частый набор
 - □ "f" частый элемент для множества транзакций, содержащих "abcde"

Преимущества FP-tree перед Apriori

• Экспериментально:

□ FP-tree значительно (на некоторых задачах - на порядок)
 быстрее Apriori

Причина

- Нет генерации и проверки кандидатов
- Используется компактная структура для поиска частых наборов и расчета поддержки
- □ Нет повторяющихся сканирований БД
- □ Основные операции суммирование и построение дерева

.

Критика Support и Confidence

- Пример: (Aggarwal & Yu, PODS98)
 - □ Среди 5000 студентов
 - 3000 играют баскетбол
 - 3750 любят черный хлеб
 - 2000 и то и другое
 - □ basketball ⇒ bread [40%, 66.7%] вводит в заблуждение,
 поскольку процент любителей хлеба 75% выше support 66.7%.
 - □ basketball \Rightarrow not bread [20%, 33.3%] более полезное, хотя support and confidence ниже

	basketball	not basketball	sum(row)
bread	2000	1750	3750
not bread	1000	250	1250
sum(col.)	3000	2000	5000

Критика Support и Confidence

- Пример:
 - Х и Y: положительно коррелированны,
 - Х и Z, отрицательно коррелированны
 - support и confidence больше у
 X=>Z
- Нужна мера зависимости:

$$corr_{A,B} = \frac{P(A \text{ and } B)}{P(A)P(B)}$$

- P(B|A)/P(B)
 - □ A => B

X	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37,50%	75%

Itemset	Support	Interest
X,Y	25%	2
X,Z	37,50%	0,9
Y,Z	12,50%	0,57

×

Объективные меры интересности

- 1) $support(X \Rightarrow Y) = P(X \cap Y)$
- 2) $confidence(X \Rightarrow Y) = P(Y \mid X)$
- 3) generality($X \Rightarrow Y$) = P(Y)

4) lift(
$$X \Rightarrow Y$$
) = $\frac{P(X \cap Y)}{P_{EXP}(X \cap Y)} = \frac{P(X \cap Y)}{P(X)P(Y)} = \frac{P(Y \mid X)}{P(Y)} = \frac{confidence(X \Rightarrow Y)}{P(Y)}$

5)
$$RI(X \Rightarrow Y) = P(Y \mid X) - P(Y) = confidence(X \Rightarrow Y) - generality(X \Rightarrow Y)$$

6)
$$J(X \Rightarrow Y) = P(Y)[P(Y \mid X) \log_2 \frac{P(Y \mid X)}{P(Y)} + (1 - P(Y \mid X)) \log_2 \frac{1 - P(Y \mid X)}{1 - P(Y)}]$$
 (J-measure)

$$D(p(x), q(x)) = \sum_{x \in X} p(x) \log \frac{p(x)}{p(y)}$$
 (Kullback, Leibler)

Интересность

- Объективная
- Субъективная (на основе информации, заданной экспертом)
 - □ «Полезная» (Actionable)
 - □ «Неожиданная» (Unexpected)

•

Использование ограничений

- Проблема итеративного анализа больших объемов данных:
 - невозможно без использования ограничений
- Типы ограничений:
 - □ стандартные: на support и confidence
 - □ на меры объективной интересности
 - □ на выборку «горизонтально» подмножества транзакций
 - □ на выборку «вертикально» подмножества атрибутов
 - на значения отдельных атрибутов (с точки зрения алгоритма аналогично «вертикальному»)
 - □ шаблоны правил для поиска метаправила (задаются экспертом, учитываются методом «ветвей и границ» при генерации наборов и правил из них, сокращается перебор)
 - □ шаблоны «неинтересных» правил (поиск «неожиданных» правил, нарушающих шаблон) для оценки субъективной интересности

MIxtend (ML extensions)

- Обновляемая библиотека с широким спектром моделей ML
- Документация: http://rasbt.github.io/mlxtend/
- В курсе рассматривается:
 - □ Модуль предобработки preprocessing
 - □ Модуль анализа ассоциативных правил **frequent_patterns** (Apriori, Fpgrowth, …)
- Установка и импорт библиотеки
 - Установка через рір pip install mlxtend
 - □ Импорт через python from mlxtend.<module> import ...

Загрузка и обработка данных

- Набор транзакций:
 - □ CUSTOMER Id покупателя
 - □ TIME временная метка
 - □ PRODUCT Target (элемент)
- Формирование списка транзакций:
 - □ Группировка по id: .groupby("CUSTOMER")
 - \square Организация СПИСКа: .aggregate({"PRODUCT":list})
 - □ Получение значений: .values[:, 0]

```
array( list(['hering', 'corned b', 'olives', 'ham', 'turkey', 'bourbon', 'ice_crea']),
    list(['baguette', 'soda', 'hering', 'cracker', 'heineken', 'olives', 'corned_b']),
    list(['avocado', 'cracker', 'artichok', 'heineken', 'ham', 'turkey', 'sardines']),
    ...,
    list(['baguette', 'soda', 'hering', 'cracker', 'heineken', 'sardines', 'sardines']),
    list(['sardines', 'heineken', 'chicken', 'coke', 'ice_crea', 'corned_b', 'peppers']),
    list(['hering', 'corned_b', 'apples', 'olives', 'steak', 'bourbon', 'heineken'])],
    dtype=object)
```

```
        CUSTOMER
        TIME
        PRODUCT

        0
        0.0
        0.0
        hering

        1
        0.0
        1.0
        corned_b

        2
        0.0
        2.0
        olives

        3
        0.0
        3.0
        ham

        4
        0.0
        4.0
        turkey
```

Загрузка и обработка данных

- Кодирование транзакций:
 - preprocessing.TransactionEncoder
 - □ Матрица вхождения: fit transform()

```
te = TransactionEncoder()
te_ary = te.fit_transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)

te_ary
```

```
[[False, False, False, ..., False, False, True],
[False, False, False, ..., True, False, False],
[False, True, True, ..., False, False, True],
...,
[False, False, False, ..., True, False, False],
[False, False, False, ..., False, False, False]]
```

	apples	artichok	avocado	baguette	bordeaux	bourbon	chicken	coke
0	False	False	False	False	False	True	False	False
1	False	False	False	True	False	False	False	False
2	False	True	True	False	False	False	False	False
3	False	False	False	False	False	True	False	True
4	True	False	True	False	False	False	False	False

- Построение модели apriori:
 - □ Ограничение support: min_support
 - □ Макс. длина правил: max_len
- Формирование правил с помощью association rules
 - metric ('support', 'confidence', 'lift', 'leverage', 'conviction')
 - Мин. значение метрики: min_threshold

frequent_itemsets				
	support	itemsets		
0	0.313686	(apples)		
1	0.304695	(artichok)		
2	0.362637	(avocado)		
3	0.391608	(baguette)		
4	0.402597	(bourbon)		
5	0.314685	(chicken)		

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(artichok)	(avocado)	0.304695	0.362637	0.210789	0.691803	1.907700	0.100295	2.068038
1	(avocado)	(artichok)	0.362637	0.304695	0.210789	0.581267	1.907700	0.100295	1.660497
2	(artichok)	(heineken)	0.304695	0.599401	0.251748	0.826230	1.378426	0.069114	2.305336

Поиск ассоциативных правил

```
# Чтение данных
path_to_file = "../assoc.sas7bdat"
df = pd.read_sas(path_to_file, encoding='latin-1')
# Формирование списков транзакций
transactions = df.groupby('CUSTOMER').aggregate({"PRODUCT":list}).values[:, 0]
# Кодирование транзакций
te = TransactionEncoder()
te_ary = te.fit_transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)
# Построение модели
frequent_itemsets = apriori(df, min_support=0.1, use_colnames=True)
# Формирование правил
association_rules(frequent_itemsets, metric="support", min_threshold=0.2)
```

.

Поиск последовательностей

- Правила вида A₁ => A₂ => ... => A_k
 - □ С семантикой «После события A_i следует A_i»
 - □ Требует признак с ролью sequence
 - Есть дополнительные параметры на временные окна
 - □ Нельзя корректно рассчитать lift
 - Поддержка задается отдельно
 - □ Можно использовать в рекомендательных системах
- Алгоритм поиска последовательностей:
 - □ Сначала поиск частых эпизодов (без учета времени)
 - Потом из частых эпизодов выделяются многоместные правила «следования» с учетом времени
 - □ Возможны правила вида А=>А

2

Поиск последовательностей и анализ графа связей

- Для узлов (событий) можно рассчитать разные полезные характеристики:
 - □ Число связей (входящих, исходящих, всего)
 - □ Коэфициент кластеризации (реальное число связей ближайших соседей деленное на максимально возможное число связей между ними) показывает находится ли узел внутри плотной группы
 - □ Хабы узлы, из которых много ссылок на важные узлы (авторитеты)
 - □ Авторитеты важные узлы, на которые ссылается много хабов
 - □ Близость усредненное значение кратчайших путей до всех узлов в графе
 - □ Внутренность показывает как часто этот узел встречается в кратчайших путях между другими узлами
 - □ Собственная центральность (Eigenvector Centrality) уровень исходящих и входящих связей с учетом важности связанных узлов

networkx (Network Analysis)

- Обновляемая библиотека для работы с графами
- Документация: https://networkx.org/
- В курсе рассматривается:
 - □ Построение и визуализация графов
 - □ Расчет мер центральности
- Установка и импорт библиотеки
 - Установка через рір
 pip install mlxtend
 - □ Импорт через python import network as nx

м

Графовые операции

- Типы графов:
 - □ Неориентированные: Graph, MultiGraph
 - □ Ориентированные: DiGraph, MultiDiGraph
- G.add_edge("A", "B")
 G.add_edge("B", "D")
 G.add_edge("A", "C")
 G.add_edge("C", "D")

G = nx.Graph()

- Построение графа:
 - □ Новая вершина: .add_node
 - □ Новое ребро: .add edge
 - □ Можно добавлять вес
- Визуализация:
 - Выбор полотна (spring, spiral, spectral)
 - □ Визуализация nodes, edges, labels

```
pos = nx.spring_layout(G)
nodes = nx.draw_networkx_nodes(G, pos)
edges = nx.draw_networkx_edges(G, pos)
labels = nx.draw_networkx_labels(G, pos)
```


Пример графа транзакций

Меры центральности

Degree:

- degree_centrality(G)
- in_degree_centrality(G)
- out_degree_centrality(G)

Eigenvector:

- eigenvector_centrality(G)
- □ katz_centrality(G)
- closeness_centrality(G)
- Betweenness
- Group Centrality

Меры центральности

Визуализация

м

Поиск последовательностей и анализ графа связей

Алгоритм HITS:

Шаг 0. Инициализация. $\forall n \text{ auth}(n) = 1$, hub(n) = 1

Шаг 1. Авторитетности (обычно несколько итераций с sampling по n): $\operatorname{auth}(n) = \sum_{p \in Neib(n)} \operatorname{hub}(p)$

Шаг 2. Посредничество (обычно несколько итераций с sampling по n): $\mathbf{hub}(n) = \sum_{p \in Neib(n)} \mathrm{auth}(p)$

Шаг 3. Нормализация (разные схемы, иначе алг. может расходиться) **Если не выполнено условие остановки** (по числу итераций, по времени, по отклонению нормы всех hub и auth) то перейти на **Шаг 1.**

Алгоритм Eigenvector Centrality - поиск наибольшего с.зн. матрицы смежности (1 – есть связь, 0 – нет), причем у с.в. все координаты(они и есть оценка Eigenvector Centrality) неотрицательные.

^{*} Соседи определяются с учетом направления дуг

Пример расчета HITS

w

АНАЛИЗ ГРАФОВ

МЕТРИКИ ЦЕНТРАЛЬНОСТИ

Количественная характеристика узла, отражающая его роль в социальной сети

Типы метрик:

- Degree
- Influence
- Clustering Coefficient
- Closeness
- Betweenness
- Eigenvector Centrality
- Hub and Authority

Роль	Описание			
Лидер	Высокое значение Closeness и Betweeness			
Последователь	Высокое значение Closeness и Betweeness, но ниже чем у лидера			
Трансфер	Высокое значение betweeness, но низкая centrality			
"Крупная рыба"	Высокое значение Eigenvector			
Распространитель	Высокое значение Authority			
Случайный игрок	Низкое значение betweeness и низкое значение degree			