数字逻辑与处理器基础知识与方法

 $\boldsymbol{T}^T\boldsymbol{T}$

2024年9月26日

目录		2.1	从电路到逻辑门				
		2.2	组合逻	2辑	3		
布尔代数	2		2.2.1	组合逻辑电路的分析方法	3		
1.1 数的编码与表示	2		2.2.2	组合逻辑电路的设计过程	5		
			2.2.3	组合逻辑电路的评价指标	6		
逻辑计算	3		2.2.4	组合逻辑电路的设计实例	6		
	布尔代数	布尔代数 2 1.1 数的编码与表示	布尔代数 2 1.1 数的编码与表示 2	布尔代数2.2 组合逻1.1 数的编码与表示2 2.2.12.2.2.22.2.3	布尔代数2.2组合逻辑有尔代数22.2.1组合逻辑电路的分析方法1.1数的编码与表示22.2.2组合逻辑电路的设计过程2.2.3组合逻辑电路的评价指标		

1 布尔代数 2

1 布尔代数

1.1 数的编码与表示

定义 1.1.1. 二进制

二进制是基数为 2, 只有两个数码 0 和 1 的数制。二进制数中, 每一个数码称为一个二进制位 (bit), 权值最小的二进制位称为最低位 (LSB), 权值最大的二进制位称为最高位 (MSB)。

所有的 4-bit 二进制数如表 1.1 所示。

表 1.1: 4-bit 二进制数

	B	IN		DEC	HEX	BIN				DEC	HEX
0	0	0	0	0	0	1	0	0	0	8	8
0	0	0	1	1	1	1	0	0	1	9	9
0	0	1	0	2	2	1	0	1	0	10	A
0	0	1	1	3	3	1	0	1	1	11	В
0	1	0	0	4	4	1	1	0	0	12	С
0	1	0	1	5	5	1	1	0	1	13	D
0	1	1	0	6	6	1	1	1	0	14	E
0	1	1	1	7	7	1	1	1	1	15	F

二进制数的**左移**运算和**右移**运算分别是将二进制数的所有位向左或向右移动一位,移动后的空位补 0。左移一位相当于乘 2,右移一位相当于除 2。

定义 1.1.2. BCD 码

BCD (binary-coded decimal) 码是二进制编码的一种,用 4 位二进制数表示一个十进制数的一位。8421 BCD 码的编码规则是:用二进制数的 0-9 的编码表示十进制数的 0-9,不使用二进制数的 10-15的编码。

由于 8421 BCD 码是**有权码**, 其加减法运算可以直接使用二进制数和十进制数的加减法运算规则。

例题 1.1.1. (1) $34_{10} + 45_{10} = 0011\,0100_{BCD} + 0100\,0101_{BCD} = 0111\,1001_{BCD} = 79_{10}$ 。
(2) $14_{10} + 9_{10} = 0001\,0100_{BCD} + 0000\,1001_{BCD} = 0001\,1101_{BCD} = \frac{\text{进位}}{\text{=}} = 0010\,0011_{BCD} = 23_{10}$ 。

8个二进制位称为一个字节。

2 逻辑计算

2.1 从电路到逻辑门

定义 2.1.1. 逻辑门

逻辑门是一种能够实现逻辑运算的电路, 其输入和输出均为逻辑值。逻辑门的输入和输出均为二进制数, 输入的二进制数称为输入变量, 输出的二进制数称为输出变量。

常用的逻辑门如表 2.2 所示。

表 2.2: 常用逻辑门

逻辑门	符号	记号	运算	逻辑门	符号	记号	运算
非门	A — Y	NOT	$Y = A^{\prime 1}$	缓冲器	$A \longrightarrow Y$	BUF	Y = A
与非门	A = B	NAND	$Y = \overline{A \cdot B}$	与门	A =	AND	$Y = A \cdot B$
或非门	$A \longrightarrow B \longrightarrow Y$	NOR	$Y = \overline{A + B}$	或门	$A \longrightarrow Y$	OR	Y = A + B
异或非门	$A \xrightarrow{B} Y$	XNOR	$Y = \overline{A \oplus B}$	异或门	$A \longrightarrow Y$	XOR	$Y = A \oplus B$

元件 2.1. 传输门

特性 传输门是一种多输入单输出的逻辑门, 其输出为

$$Y = \begin{cases} A, & B = 1 \\ \text{undefined}, & B = 0 \end{cases}$$

2.2 组合逻辑

定义 2.2.1. 组合逻辑

组合逻辑是一种逻辑电路, 其输出仅取决于当前的输入及延时, 与电路的历史状态无关。组合逻辑电路中没有反馈回路。

2.2.1 组合逻辑电路的分析方法

分析组合逻辑电路,即是从给定的设计电路(晶体管或逻辑门电路)中,找出输入与输出之间的关系,用 真值表、布尔表达式等形式表示。

 $^{^1}$ 为区别单个的非逻辑和其他多目运算中的非,这里约定单独的非逻辑用 A' 表示,夺目运算附带的非逻辑用 \overline{A} 表示。

例题 2.2.1. 分析如图 2.1a 所示的组合逻辑电路。

\boldsymbol{A}	В	С	F_0	F_1	F_2
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
_1	1	1	0	0	0

(b) 真值表

图 2.1: 组合逻辑电路实例 1

解. 根据逻辑门的运算规则, 可得到

$$\begin{cases} F_0 = A \oplus (B \cdot C) \\ F_1 = B \oplus C \\ F_2 = \overline{C} \end{cases}$$

因此,该组合逻辑电路输出的真值表如表 2.1b 所示。可以看出,这个电路所实现的功能为 $(F_0F_1F_2)_2=(ABC)_2+1$,这是一个 3-bit 二进制自增电路。

例题 2.2.2. 分析如图 2.2a 所示的组合逻辑电路。

\boldsymbol{A}	В	\boldsymbol{C}	D	F_0	F_1
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	1

(b) 真值表

图 2.2: 组合逻辑电路实例 2

解. 根据逻辑门的运算规则, 可得到

$$\begin{cases} F_0 = \overline{\overline{AC} \cdot \overline{B\overline{c}}} \\ F_1 = \overline{\overline{B\overline{C}} \cdot \overline{CA}} \\ F_2 = \overline{(A+B) \cdot \overline{AB}} \end{cases}$$

因此,该组合逻辑电路输出的真值表如表 2.2b 所示,这是一个 Gray 码递增电路。

(S)

2.2.2 组合逻辑电路的设计过程

设计一个组合逻辑电路, 需要将算法转化为二元逻辑的计算, 化简后用逻辑电路结构实现。

例题 2.2.3. 设计一个 2-bit 比较器。

解. 2-bit 比较器的设计需求为:

• 功能: 比较两个 2-bit 二进制数的大小;

• 输入: 两个 2-bit 二进制数 A₁A₀ 和 B₁B₀;

• 输出: 三个逻辑值 LT、EQ 和 GT, 分别表示 A < B、A = B 和 A > B。

用卡诺图表示出 LT、EQ 和 GT 的逻辑表达式如表 2.3 所示, 即知其两级与或表达式为

$$LT = A_1' B_1 + A_1' A_0' B_0 + A_0' B_1 B_0$$

$$EQ = A_1'A_0'B_1'B_0' + A_1'A_0B_1'B_0 + A_1A_0'B_1B_0' + A_1A_0B_1B_0$$

$$GT = A_1 B_1' + A_1 B_1' B_0' + A_1 A_0 B_0'$$

其中 EQ 可以更简单地表示为

$$EQ = \overline{A_1 \oplus B_1} \cdot \overline{A_0 \oplus B_0}$$

或者利用另外两个输出的逻辑表达式, 即

$$EQ = \overline{LT + GT}$$

将LT、EQ和GT的逻辑表达式转化为逻辑电路,即可得到2-bit 比较器的设计。

(S)

表 2.3: 2-bit 比较器设计的卡诺图

(a) LT

(b) *EQ*

(c) GT

	1										1			
$A_1A_0\backslash B_1B_0$	00	01	11	10	$A_1A_0\backslash B_1B_0$	00	01	11	10	$A_1A_0\backslash B_1B_0$	00	01	11	10
00		1	1	1	00	1				00				
01			1	1	01		1			01	1			
11					11			1		11	1	1		1
10			1		10				1	10	1	1		

如上 4-bit 输入的逻辑运算已经比较复杂。对于更加复杂的逻辑运算,在处理中需要采取更多的技巧以简化运算,如:

• 将输入变量分组, 写成更简单的逻辑表达式的多级运算:

$$f(A, B, C, \cdots) = F(g_1(A, B, \cdots), g_2(C, \cdots), \cdots)$$

• 将输入变量分离, 写成更简单的逻辑表达式的分支计算:

$$f(A, B, C, \cdots) = A \cdot g_1(B, C, \cdots) + \overline{A} \cdot g_2(B, C, \cdots)$$

• 从结构化表达式中找出重复的部分加以复用, 简化逻辑电路。

同时, 还需要照应到实际的功耗、性能、面积等要求。

2.2.3 组合逻辑电路的评价指标

评价逻辑电路的主要指标包括:

- 稳态因素:
 - -逻辑电平:逻辑电路的输入和输出电平高低;
 - 噪声容限:逻辑电路抵抗噪声的能力;
 - 静态功耗:逻辑电路在稳态工作时的功耗, 主要与电路的 V_{CC} 有关;
 - 面积:逻辑电路的物理尺寸;
 - 扇出系数:逻辑门的输出能够驱动的输入数量。
- 动态因素:
 - 传输延迟和时钟频率:逻辑电路的输入到输出的延迟时间;
 - 时序容限:逻辑电路的输入信号的时序要求;
 - 动态功耗:逻辑电路在工作时的功耗,主要与电路的切换频率有关;
 - 噪声:逻辑电路在工作时产生的噪声。

2.2.4 组合逻辑电路的设计实例

A) 编码器(Encoder)和译码器(Decoder) 用 m 个二进制位对 $n \le 2^m$ 个输入信号进行编码,得到 m 位二进制代码的电路,称为 $2^m - m$ 线编码器。

例题 2.2.4. 设计一个 4-2 线编码器用作抢答器, 其中每个抢答按钮按下时对应输入信号为 1, 其余输入信号为 0。

解. 4个输入信号的抢答器的真值表如表 2.3a 所示",容易得到其逻辑表达式为

$$Y_0 = A_3 + A_1$$
$$Y_1 = A_3 + A_2$$

该编码器的设计如图 2.3b 所示。

"由于编码器的输入信号类型数最多为输出信号所能表示的最大数值,其必定要用**无关项**的形式归总一些设计之外的情况。 考虑到输出信号的唯一性,表中无关项的分布不是对称的。

图 2.3: 4-2 线编码器设计

译码是编码的逆过程,即将编码后的信号转换为原始信号。用 n 个二进制位对 $m \leq log_2 n$ 个输入信号进行译码,得到 n 位二进制代码的电路,称为 $log_2 n - n$ 线译码器。

- B) **多路选择器**(Multiplexer, MUX) 用n个控制信号对 2^n 个输入信号进行选择,得到一个输出信号的电路,称为 2^n :1 **多路选择器**。
 - C) 加法器 用于实现二进制数的加法运算。

例题 2.2.5. 设计一个 4-bit 全加器电路。

解. 1-bit 全加器有 3 个输入信号 $(A \cup B)$ 和进位信号 $(A \cup B)$ 和进位信号 $(A \cup B)$ 不能出信号 $(A \cup B)$ 不能知识信号 $(A \cup B)$ 不能记信号 $(A \cup B)$ 不能记信号 $(A \cup B)$ 不能出信号 $(A \cup B)$ 不能记信号 $(A \cup B)$ 不能出信号 $(A \cup B)$ 不能是是 $(A \cup B)$ 不能是 $(A \cup B)$ 不是

......