Кольцо вычетов

- $\boxed{1}$ Докажите, что если $a \equiv b \pmod{n}$ и $c \equiv d \pmod{n}$, то $a + b \equiv c + d \pmod{n}$.
- 2 Докажите, что всякое число сравнимо по модулю 9 с суммой своих цифр.
- $\boxed{3}$ Найдите признак делимости числа $\overline{a_n a_{n-1} \dots a_1}$ на 11.
- 4 Найдите остаток от деления числа 2^{1001} : а) на 3; б) на 5; в) на 13.
- $\boxed{5}$ Постройте таблицы Кэли для колец \mathbb{Z}_6 , \mathbb{Z}_7 . Содержат ли они единицу? Найдите все пары делителей нуля. Является ли какое-либо из них полем?
 - [6] Докажите, что уравнение $3x^2 4y^2 = 13$ не имеет целочисленных решений.
 - 7* Докажите, что число $2222^{5555} + 5555^{2222}$ делится на 7.

Поля

- $\fbox{8}$ Сколько решений имеют уравнения а) $x^2+1=0$, б) $x^2=2$ полях $\Bbb R$, $\Bbb Q$, $\Bbb Z_2$, $\Bbb Z_3$, $\Bbb Z_5$, $\Bbb Z_{11}$, $\Bbb Z_{13}$, $\Bbb Z_p$?
 - $\boxed{9}$ В какую степень надо возвести 2022, чтобы получить 36 в полях \mathbb{Z}_5 , \mathbb{Z}_7 , \mathbb{Z}_{11} ?
 - 10 Решите уравнения: а) $x^2 + 3x + 7 = 0$ в полях \mathbb{Z}_3 , \mathbb{Z}_7 , \mathbb{Z}_{11} , $\mathbb{Q}\left(\sqrt{2}\right)$;
 - б) $x^2 + (4 2\sqrt{2})x + 3 2\sqrt{2} = 0$ в полях $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$.
 - 11^* Нарисуйте все прямые на плоскости \mathbb{Z}_3^2 .
- 12^* Нарисуйте на плоскости \mathbb{Z}_5^2 линии, заданные уравнениями $y=kx,\ y=x^2,\ x^2+y^2=1,\ x^2+y^2=-1.$
- 13^* Сколько прямых проходит через каждую точки плоскости \mathbb{Z}_p^2 ? Сколько всего на этой плоскости имеется прямых?

Группа подстановок

$$\boxed{15} \ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}.$$

- а) Найдите $\pi \sigma$ и $\sigma \pi$;
- б) Найдите порядки подстановок π и σ как элементов группы;
- в) Найдите подстановки π^{2022} и σ^{2022} ;
- г) Найдите подстановки π^{-1} и σ^{-1} .

 $\boxed{16}$ Каких подстановок в $S_{
m n}$ больше: чётных или нечётных?

[17] Разложите подстановки в произведение независимых циклов и найдите их декремент:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 5 & 4 & 1 \end{pmatrix}$$
; 6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 6 & 7 & 3 & 5 & 1 \end{pmatrix}$;
B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 8 & 2 & 3 & 1 & 5 & 7 \end{pmatrix}$; r) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 6 & 8 & 1 & 9 & 3 & 7 & 5 \end{pmatrix}$.

18 Найдите произведение подстановок:

a)
$$(135)(264) \cdot (1452)(36)$$
; 6) $(14)(27)(35) \cdot (1546237)$; B) $(13745)(286) \cdot (15)(27)(34)(68)$; r) $(126)(39)(4857) \cdot (162)(378495)$; A) $(12)(365)(47) \cdot (13)(25)(47) \cdot (12)(356)(47)$;

19 Вычислите:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 3 & 5 & 4 \end{pmatrix}^{122}$$
; 6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 1 & 3 & 2 & 7 & 5 \end{pmatrix}^{130}$;
B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 7 & 6 & 2 & 4 & 5 & 1 \end{pmatrix}^{142}$; r) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 5 & 7 & 1 & 9 & 2 & 3 & 6 & 8 \end{pmatrix}^{145}$.

20 Решите уравнения:

a)
$$X \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 8 & 2 & 5 & 6 & 1 & 7 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 3 & 2 & 5 & 1 \end{pmatrix};$$

6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 6 & 4 & 9 & 2 & 3 & 7 & 1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 3 & 2 & 5 & 1 \end{pmatrix};$

B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 3 & 6 & 4 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 1 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix};$

F) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 1 & 2 & 4 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 1 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix}.$

 21^* Можно ли в игре «Пятнашки» из позиции слева получить позицию справа?

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	