EP de Ingeniería de Software

Programación Dinámica

Análisis y Diseño de Algoritmos, 2024-1 Jorge Luis Chávez Soto

Contenido

Introducción.

Definición de Programación Dinámica

Método General

Caminos Mínimos (Algoritmo de Floy)

Pasos para aplicar la programación dinámica

Análisis de tiempo de ejecución

Métodos ascendentes y descendentes

Problema de Fibonacci

Conclusiones.

Introducción

- Estas técnicas están diseñadas para aplicarse sobre determinados problemas.
- Cualquier fórmula matemática recursiva se puede traducir directamente a un algoritmo recursivo, pero quizá éste no necesariamente será eficiente.
- Una solución a este problema es escribir un algoritmo que "guarde respuestas" ó "soluciones parciales" en una tabla.
- Esta técnica se denomina "programación dinámica".

Definición de la Programación Dinámica

- Los algoritmos resuelven problemas descomponiéndolos en varios subproblemas que se resuelven recursivamente.
- Los resultados de los subproblemas mas pequeños son reutilizados en el calculo de subproblemas más grandes.
- La programación dinámica es una **técnica ascendente que** comienza habitualmente resolviendo los problemas **más** pequeños, guardando estos resultados.
- Entonces reutilizándolos para resolver subproblemas cada vez mayores hasta que se obtiene una solución al problema original.

Definición de la Programación Dinámica

- Un planteamiento de programación dinámica solo se justifica si existe un cierto grado de solapamiento en los subproblemas.
- La idea es **evitar el calculo** del mismo resultado dos veces. Esto se consigue construyendo una tabla en memoria, y rellanándola con resultados obtenidos conforme se van calculando.
- Téngase en cuenta que recuperar un resultado dado de esta tabla requiere un tiempo Q(1).

Método General.

La programación dinámica se basa en el razonamiento inductivo. La misma idea del divide y vencerás, pero aplicando una estrategia distinta.

Similitud:

- Descomposición recursiva del problema.
- Se obtiene aplicando un razonamiento inductivo.

Diferencia:

- Divide y vencerás: aplicar directamente la fórmula recursiva.
- Programación dinámica: resolver los problemas más pequeños, guardando los resultados en una tabla (programa iterativo).

Caminos Mínimos (Algoritmo de Floyd)

- Para calcular los caminos mínimos entre cualquier par de nodos de un grafo.
- Razonamiento inductivo: para calcular los caminos mínimos pudiendo pasar por los k primeros nodos usamos los caminos mínimos pasando por los k-1 primeros.
- D_k(i, j): camino mínimo de i a j pudiendo pasar por los nodos 1, 2, ..., k.

$$D_{k}(i,j) = \begin{cases} C[i,j] \\ \min(D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]) \end{cases} \quad \text{si } K = 0$$

 $D_n(i, j) \rightarrow caminos mínimos finales$

Caminos Mínimos (Algoritmo de Floyd)

- Aplicación de la fórmula:
 - Empezar por el problema pequeño: k = 0
 - Avanzar hacia problemas más grandes: k = 1, 2, 3, ...
- ¿Cómo se garantiza que un algoritmo de programación dinámica obtiene la solución correcta?
- Una descomposición es correcta si cumple el
- Principio de optimalidad de Bellman:
- La solución óptima de un problema se obtiene combinan<mark>do soluciones</mark> óptimas de subproblemas.

Caminos Mínimos (Algoritmo de Floyd)

- O bien: cualquier subsecuencia de una secuencia óptima debe ser, a su vez, una secuencia óptima.
- Ejemplo. Si el camino mínimo de A a B pasa por C, entonces los trozos de camino de A a C, y de C a B deben ser también mínimos.
- ▶ Ojo: el principio no siempre es aplicable.
- Contraejemplo. Si el camino simple más largo de A a B pasa por C, los trozos de A a C y de C a B no tienen por qué ser soluciones óptimas.

Pasos para aplicar programación dinámica

- 1) Obtener una descomposición recurrente del problema:
 - Ecuación recurrente.
 - Casos base.
- 2) Definir la estrategia de aplicación de la fórmula:
 - Tablas utilizadas por el algoritmo.
 - Orden y forma de rellenarlas.
- 3) Especificar cómo se **recompone la solución** final **a partir** de los valores de las tablas.
 - Punto clave: obtener la descomposición recurrente.
 - Requiere mucha "creatividad"...

Pasos para aplicar programación dinámica

- Cuestiones a resolver en el razonamiento inductivo:
 - ¿Cómo reducir un problema a subproblemas más simples?
 - ¿Qué parámetros determinan el tamaño del problema (es decir, cuándo el problema es "más simple")?
- Idea: ver lo que ocurre al tomar una decisión concreta
 → interpretar el problema como un proceso de toma de decisiones.
- **Ejemplos. Floyd.** Decisiones: Pasar o no pasar por un nodo intermedio.
- Mochila 0/1. Decisiones: coger o no coger un objeto dado.

Análisis de tiempos de ejecución.

La programación dinámica se basa en el uso de tablas donde se almacenan los resultados parciales.

► En general, el **tiempo** será de la forma:

Tamaño de la tabla * Tiempo de rellenar cada elemento de la tabla.

Un aspecto importante es la memoria puede llegar a ocupar la tabla.

Además, algunos de estos cálculos pueden ser innecesarios.

Métodos ascendentes y descendentes

- Métodos descendentes (divide y vencerás)
 - Empezar con el problema original y descomponer recursivamente en problemas de menor tamaño.
 - Partiendo del problema grande, descendemos hacia problemas más sencillos.
- Métodos ascendentes (programación dinámica)
 - Resolvemos primero los problemas pequeños (guardando las soluciones en una tabla). Después los vamos combinando para resolver los problemas más grandes.
 - Partiendo de los problemas pequeños avanzamos hacia los más grandes.

Problema de Fibonacci

Podemos dar una nueva versión de la función que calcula el n-ésimo término de la sucesión de Fibonacci.

$$F(n) = \begin{cases} 1 & \text{Si } n = 1 \text{ \'o } n = 0 \\ F(n-1) + F(n-2) & \text{Si } n > 1 \end{cases}$$

 Solucionar esto usando fuerza bruta que es el algoritmo recursivo, obliga a cálculos repetidos, F(2) es calculado dos veces para obtener F(4).

Problema de Fibonacci

- Problema: Muchos cálculos están repetidos.
- Con divide y vencerás: : $\Theta(1,62^n)$
- Con programación dinámica: Θ(η).

Problema de Fibonacci

- La programación dinámica evita recalcular los valores intermedios almacenándolos en una tabla.
 - Un arreglo F(0 ... n) conteniendo n+1 espacios y el valor de F(i) es almacenado en F(i).
 - Empezamos guardando F(0) y F(1); entonces, F(i) se calcula sumando F(i 2) y F(i 1) para i = 1, 2, 3 ..., n.
 - Como F(i 2) y F(i 1) pueden ser recuperados de la tabla y sumados en tiempo constante.
- Esta vez, utilizaremos un vector para no calcular varias veces el mismo término de la sucesión.

Conclusiones

- El razonamiento inductivo es una herramienta muy potente en resolución de problemas.
- Aplicable no sólo en problemas de optimización.
- ¿Cómo obtener la fórmula? Interpretar el problema como una serie de toma de decisiones.
- Descomposición recursiva no necesariamente implica implementación recursiva.
- Programación dinámica: almacenar los resultados en una tabla, empezando por los tamaños pequeños, y avanzando hacia los más grandes.

Gracias

Jorge Luis Chávez Soto

jchavezs@unmsm.edu.pe

https://twitter.com/jlchavezs

https://bit.ly/3YvxhWN