Your Name Goes Here Math 387 Analysis I Homework 10

Problem List **5.2** {1,2,4,5,7}

Spring 2016 Due: Wednesday, April 13

H/T: Last Names

Unassigned, but suggested: Problem 6 in Section 5.2

10.1 Problem 5.2.1

Let f be in $\mathcal{R}[a,b]$. Prove that -f is in $\mathcal{R}[a,b]$ and

$$\int_a^b -f(x) \ dx = -\int_a^b f(x) \ dx.$$

Solution.

10.2 Problem 5.2.2

Let f and g be in $\mathcal{R}[a,b]$. Prove that f+g is in $\mathcal{R}[a,b]$ and

$$\int_{a}^{b} f(x) + g(x) \ dx = \int_{a}^{b} f(x) \ dx + \int_{a}^{b} g(x) \ dx.$$

Hint: Use Proposition 5.1.7 to find a single partition P such that $U(P, f) - L(P, f) < \epsilon/2$ and $U(P, g) - L(P, g) < \epsilon/2$.

Solution.

10.3 Problem 5.2.4

Prove the mean value theorem for integrals. That is, prove that if $f:[a,b] \to \mathbb{R}$ is continuous, then there exists a $c \in [a,b]$ such that $\int_a^b f = f(c)(b-a)$.

 \Box

10.4 Problem 5.2.5

If $f:[a,b]\to\mathbb{R}$ is a continuous function such that $f(x)\geq 0$ for all $x\in[a,b]$ and $\int_a^b f=0$. Prove that f(x)=0 for all x.

Solution. \Box

10.5 Problem 5.2.7

If $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are continuous functions such that $\int_a^b f=\int_a^b g$. Then show that there exists a $c\in[a,b]$ such that f(c)=g(c).

Solution. \Box