for dessification and regression	non parameters (like Knn)
the tree will be learned from data	nou linear classifier
the prediction will be taken in the leaf	
Rules:	* if features are categorical:
O every rout to leafs	1- no need for one-hot-encoling
@ every rout to positive leafs	2 - maximum deep = # of feature
no need for one-hot-encoding	
on need for feature normalization	
Can overfitting easily (especially with high * of fee	tures)
- for multiclass => no need for any change	
Someth them to binary with threshold What threshold? The one with less emp you can use the same feature again with author D no need for normalization	lo Wo

Decision Trees Versus Logistic Regression (6)

Multiclass Decision Stump

N = 40,1 feature,3 classes

Credit	у
excellent	safe
fair	risky
fair	safe
poor	danger
excellent	risky
fair	safe
poor	danger
poor	safe
fair	safe

. What we used above 1) dessification error = 1 - maxip;

in error => they are some e= 200 but B is better since has pure

- => So error rate is not good onough

X General Formula:
any impurity measure (error, entropy, Gini)

$$IG(D_p) = I(D_p) - \frac{N_{left}}{N_p}I(D_{left}) - \frac{N_{right}}{N_p}I(D_{right})$$

& more gain is botter

Example-IG with Classification Error

Example-IG with Classification Error

 $error = 1 - \max p_i$

$$B:I_E(D_{left})=1-rac{40}{60}=1-rac{2}{3}=rac{1}{3}$$

$$B:I_E(D_{right})=1-rac{20}{20}=1-1=0$$

$$B:IG_E=0.5-rac{60}{80} imesrac{1}{3}-rac{20}{80} imes0=0.5-0.25-0=0.25$$

Example-IG with Entropy

$$Entropy = -\sum_{j} p_{j} log_{2} p_{j}$$

$$I_H(D_p) = -\left(0.5\log_2(0.5) + 0.5\log_2(0.5)\right) = 1$$
 $A: I_H(D_{left}) = -\left(rac{30}{40}\log_2\left(rac{30}{40}
ight) + rac{10}{40}\log_2\left(rac{10}{40}
ight)
ight) = 0.81$
 $A: I_H(D_{right}) = -\left(rac{10}{40}\log_2\left(rac{10}{40}
ight) + rac{30}{40}\log_2\left(rac{30}{40}
ight)
ight) = 0.81$
 $A: IG_H = 1 - rac{40}{80} imes 0.81 - rac{40}{80} imes 0.81 = 0.19$

Example-IG with Entropy

$$Entropy = -\sum_{j} p_{j} log_{2} p_{j}$$

$$B:I_H(D_{left})=-\left(rac{20}{60}\log_2\!\left(rac{20}{60}
ight)+rac{40}{60}\log_2\!\left(rac{40}{60}
ight)
ight)=0.92$$
 $B:I_H(D_{right})=-\left(rac{20}{20}\log_2\!\left(rac{20}{20}
ight)+0
ight)=0$ $B:IG_H=1-rac{60}{80} imes0.92-rac{20}{80} imes0=0.31$ its better

Example-IG with Gini index

$$Gini = 1 - \sum_{i} p_j^2$$

$$I_G(D_p) = 1 - \left(\left(rac{40}{80}
ight)^2 + \left(rac{40}{80}
ight)^2
ight) = 1 - (0.5^2 + 0.5^2) = 0.5$$

$$A:I_G(D_{left})=1-\left(\left(rac{30}{40}
ight)^2+\left(rac{10}{40}
ight)^2
ight)=1-\left(rac{9}{16}+rac{1}{16}
ight)=rac{3}{8}=0.375$$

$$A:I_G(D_{right})=1-\left(\left(rac{10}{40}
ight)^2+\left(rac{30}{40}
ight)^2
ight)=1-\left(rac{1}{16}+rac{9}{16}
ight)=rac{3}{8}=0.375.$$

$$A:I_G=0.5-rac{40}{80} imes 0.375-rac{40}{80} imes 0.375=0.125$$

Example-IG with Gini index

$$Gini = 1 - \sum_{j} p_j^2$$

$$B:I_G(D_{left})=1-\left(\left(rac{20}{60}
ight)^2+\left(rac{40}{60}
ight)^2
ight)=1-\left(rac{9}{16}+rac{1}{16}
ight)=1-rac{5}{9}=0.44$$

$$B:I_G(D_{right})=1-\left(\left(rac{20}{20}
ight)^2+\left(rac{0}{20}
ight)^2
ight)=1-(1+0)=1-1=0$$

$$B:I_G=0.5-rac{60}{80} imes 0.44-0=0.5-0.33=0.17$$

