In the diagram shown below, there is an object moving with constant speed in a circle. So $|v_1| = |v_2|$ and $|r_1| = |r_2|$.

 $\Delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1$, so subtracting vectors, as we see on the diagram shown below, the triangle with the $\Delta \mathbf{v}$ is a similar triangle with the triangle with the two radii and the $\Delta \mathbf{r}$.

- 1. The length of the path from t_1 to t_2 can be written as $v\Delta t$.
- Since these are similar triangles, you can say, $\Delta \mathbf{v}/\Delta \mathbf{r} = \mathbf{v}/\mathbf{r} = \Delta \mathbf{v}/\mathbf{v}\Delta \mathbf{t}$.
- 2. Then by algebra, $\Delta v/\Delta t = (v/r)^*v$.
- 3. We are left with $|a| = v^2/r$.