MATH 105: Homework 8

William Guss 26793499 wguss@berkeley.edu

March 28, 2016

- 29. Upper semicontinuity.
 - (a) A graph of an upper semicontinuous graph here:

(b) Show the following.

Definition 1. We say that a function $f: M \to \mathbb{R}$ is (ϵ, δ) -upper semicontinuous if and only if for every $\epsilon > 0$ there is a $\delta > 0$ so that

$$0 < d(x, y) < \delta \implies f(y) < f(x) + \epsilon \tag{1}$$

Lemma 1. Upper semicontinuity is equivalent to the (ϵ, δ) -upper semicontinuity.

Proof. Observe the following fact about \limsup .

$$\limsup_{y \to x} g(y) = \alpha = \lim_{\epsilon \to 0} \sup \{ g(y) : y \in M \cap M_{\epsilon}(x) \setminus \{x\} \}.$$
 (2)

Therefore f is upper semicontinuous if and only if

$$\limsup_{y \to x} f(y) \le f(x) \iff \lim_{\epsilon \to 0} \sup \{ f(y) : y \in M \cap M_{\epsilon}(x) \setminus \{x\} \} \le f(x).$$
 (3)

We then know for every $\epsilon > 0$ there exists a δ so that

$$\sup\{f(y) : y \in M \cap M_{\delta}(x)\{x\}\} < f(x) + \epsilon. \tag{4}$$

This is true if and only if

$$d(y,x) < \delta \implies f(y) < f(x) + \epsilon.$$
 (5)

Therefore f is (ϵ, δ) -upper semicontinuous.

Theorem 1. The function $f: M \to \mathbb{R}$ if upper semicontinuous if and only if for every $a \in \mathbb{R}$,

$$U_a = \{x : f(x) < a\} \tag{6}$$

is an open subset of M.

Proof. Take some $x \in U_a$. Then upper semicontinuity implies that for every $\epsilon > 0$ there is a δ so that

$$0 < d(x, y) < \delta \implies f(y) < f(x) + \epsilon. \tag{7}$$

We know that f(x) < a, so take $\epsilon = f(x) - a$. Then for every y with $d(x, y) < \delta$,

$$f(y) < f(x) + a - f(x) = a,$$
 (8)

and $y \in U_a$. Therefore for all $u \in U_a$ there exists a δ so that $d(u,v) < \delta \implies v \in U_a$, and U_a is open.

In the opposite direction suppose that U_a is open. Then, for every $x \in U_a$ there exists a δ so that $d(y,x) < \delta \Longrightarrow \Box$