

基础理论复习

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

学习目标

&

重难点

- 1. 掌握分子和原子、同素异形体的概念,能够分辨它们的区别和联系;
- 2. 掌握物质的量与质量和微粒数相互转化的计算
- 3. 运用质量守恒及其推论计算化学变化中的各种守恒关系;
- 4. 了解氧气的性质;

根深蒂固

考点一:分子原子及同素异形体

一. 分子原子

1. 原子与分子的区别与联系

	分 子	原 子			
定义		原子是化学变化中的			
	①分子是保持物质化学性质的一种微粒;				
プロよ	②分子是由构成;	①原子是化学变化中的最小粒子;			
不同点	③在化学变化中,分子可分成原子,原子重	②在化学变化中,原子不可再分			
	新组合成新的分子。				
和田上	①质量和体积都非常小,均能直接构成物质;	②彼此之间均有间隔;③总是在不停			
相同点	地运动; ④同种分子(原子)化学性质相同; ⑤都有种类和数目。				
联 系	原子可以构成分子,分子在化	比学反应中分解成原子			

2. 元素与原子的区别和联系

	元素	原子
定		原子是化学变化中的最小微粒(注意:原
义	同一类的总称	子不是构成物质的最小粒子。)
不	①只讲,不讲。	①既讲,又讲。例如:
	例如:二氧化硫是由元素	二氧化硫是由无数个二氧化硫分子构
同上	和元素组成的。	成的,一个二氧化硫分子是由一个硫原
点	②宏观概念	子和两个氧原子构成的. ②微观概念。
联	二末月回、坐居之仇公劫。	主主和医フ日兰体和人体的艺术
系	兀系走问一尖原于的思称;刀	元素和原子是总体和个体的关系.

- 注意: 1. 大部分物质由分子构成。如,水由水分子构成, 二氧化碳二氧化碳分子构成。
 - 2. 金属和稀有气体及固态非金属由原子直接构成。 如,铁由铁原子构成,氩气由氩原子构成。

二. 同素异形体

1.	概念:		
2.	同素异形体的化学性质	,但物理性质;	
	同素异形体之间的转换	(例金刚石与石墨之间的相互转换)属于	_变化
3.	碳的同素异形体有:		
	氧元素的同素异形体有:	;	
	磷元素的同素异形体有:	0	

考点二: 化学计算

- 一. 物质的量
- 1. 物质的量
- (1) 七大基本物理量之一, 符号: n
- (2) 表示
- (3) 单位: 摩尔, 简称: 摩, 符号: mol
- (4) 1mol=6.02×10²³ 个微粒, 6.02×10²³ 又称

2. 注意点

- (1) 摩尔概念只适用于 粒子(如分子、原子等)
- (2) 使用摩尔时必须指明物质微粒的名称或符号
- (3) 1mol 任何微粒的数目都约为 6.02×10²³ 个

3. 物质的量与微粒个数之间的换算

物质的质量 (m) $\underset{\times M}{\overset{+M}{\longleftarrow}}$ 物质的量 (n) $\underset{\stackrel{+N_A}{\longleftarrow}}{\overset{\times N_A}{\longrightarrow}}$ 微粒个数(N)

4. 摩尔质量

- (1) 摩尔质量: 1 摩尔物质的质量叫做该物质的摩尔质量
- (2) 符号: M ; 单位: 克/摩尔 ; 符号: g/mol
- (3) 摩尔质量、物质的质量、式量的区别和联系。
- ①摩尔质量与式量:数值上相等,摩尔质量有单位(g/mol),式量没有单位
- ②摩尔质量与物质的质量:摩尔质量是指1摩物质的质量,单位是g/mol;
- ③物质的质量是实际质量,单位为 g
- ④物质的量与物质的质量:物质的量单位是 mol;物质的质量单位是 g

二. 质量守恒定律

1.	质量守恒定律
1.	火里 1

(1)	内容:					
(2)	微观原理:	化学变化前后,	原子的	没有改变,	没有增减,	没有变化

(3) 化学变化的实质: 分子分解为原子, 原子又重新组合成新的分子。

2. 定律的理解

(1) " 化学反应 "是前提。	
-------------------------	--

质量守恒定律的适用范围是,不适用于物理变化,任何化学变化都遵循质量守恒定律。

(2)"参加反应"是基础。

概念中明确指出是"参加反应"的各物质的质量总和, 不能计算在内。

(3)"质量总和"是核心。

无论是参加反应的物质,还是反应后生成的物质,计算时不能漏掉任何一项。

(4)"质量守恒"是目的。

定律只适用于"质量"守恒,不包括		等
------------------	--	---

3. 定律的宏观、微观解释

化学反应的实质是参加反应的原子重新组合形成新物质的过程。

即化学反应前后	\	·	_没有改变,	因此,	化学反应前后物
质的总质量守恒。					

三. 化学方程式计算

- 1. 根据化学方程式的计算就是从量的方面来研究物质变化的一种重要的方法,其计算步骤和方法,一般分为以下几步:
 - (1) 设未知量,常用 x 或 n 表示、
 - (2) 根据题意确定反应物与生成物,写出并配平反应的化学方程式。
 - (3) 在有关物质化学式下面写出系数并代入已知物质的物质的量和所设未知量。
 - (4) 列比例式求解,写出答案.
- 2. 在初中阶段,根据化学方程式的计算,主要有以下几种基本类型:
 - (1) 根据化学方程式计算反应物、生成物间的质量比

反应物、生成物间的质量比,就是各反应物、生成物相对分子质量×计量数之比.

(2) 根据化学方程式计算反应物或生成物的质量

反应物或生成物质量的计算,一般是根据化学方程式中各反应物、生成物间的质量比来求算的,对某些反应,可直接依据质量守恒定律进行计算.

(3) 根据化学方程式进行含有一定且杂质的反应物或生成物的计算

考点三: 氧气的性质

— .	物	理	性	牐

通常状况下,是-	一种	色、_	味的气体密度	_空气,	 _溶于水,	降温后
可变为	的液体或		_雪花状固体。			

二. 化学性质

反应物		反应现象		生成物及特	化学方程式	实验注意事项
	,	空气中	氧气中	征		
非金属单质	木炭					
	硫					
	磷					
	氢气					
金属单质	镁带					
	铁丝					

三. 空气中氧气含量的测定

- 1. 实验原理:通过燃烧消耗集气瓶内的氧气,使集气瓶内____变小,在大气压的作用下使水倒流入集气瓶中,流进集气瓶内水的体积就是所 的体积。
- 2. 实验现象:红磷燃烧,产生大量的_____,放出大量热;打开弹簧夹后,烧杯中的水沿导管进入集气瓶中,其体积约占集气瓶内体积的____。
 - 3. 实验结论: 空气中氧气的体积约占 1/5。
 - 4. 误差分析:

思考1: 为什么有时气体减少的体积小于 1/5 呢?

思考 2: 该实验中有时气体减少的体积大于 1/5, 又是为什么呢?

四. 实验室制备氧气

	1 1 TO ME TO 11. ME 1. ME A	. 4.
1.	加热氯酸钾和二氢化锰的混合	と物別

- (1) 反应原理:
- (2) 实验装置: 固+固,加热型
- (3) 收集方法: 用 或 收集
- (4) 检验氧气是否收集满了的方法:用带火星的木条,放在______,若带火星的木条复然,则说明氧气收集满了。收集满了的氧气集气瓶应该 放在桌子上。

检验是否为氧气的方法:将带火星的木条_____集气瓶中,若带火星的木条复燃,则说明是氧气;反之,则不是。

(5) 实验步骤: 查-装-定-点-收-离-熄

思考:该实验的注意事项主要有哪些?

2. 双氧水分解制氧气

- (1) 反应原理:
- (2)制取装置:为"固-液不加热型"
- (3) 使用该装置制取氧气的优点:

过氧化氢(俗称双氧水)遇到二氧化锰分解放出氧气的速度相当快,本装置中使用分液漏斗代替长颈漏斗的最大优点是能够分批分量地加入反应物,从而很好地控制反应速度。如果采用长颈漏斗,则需将漏斗下端伸入液面以下,防止______

枝繁叶茂

知识点 1: 分子、原子及同素异形体	
【例1】(普陀一模)2008年诺贝尔化学奖的研究原	成果,可依据生物发光现象检测超微量钙的存在。这里的"钙
是指 ()	
A. 分子 B. 原子 C. 元素	D. 单质
变式 1: (宝山一模)二氧化碳气体制成干冰的微	观解释是 ()
A. 分子体积变小	B. 构成分子的原子体积变小
C. 分子间有间隙,间隙变小	D. 分子可以再分
变式 2: (奉贤一模)从下图获取的信息中错误的	是 ()
	升温 8 8 氦气、氧气分离
A. 空气是一种混合物 B.	氧气由氧分子构成
C. 氮气沸点比氧气高 D.	该过程为物理变化
【 例 2 】(宝山一模)属于同素异形体的一组物质 A. 金刚石 活性炭 B. 水银 银	
变式 1: (崇明一模)金刚石、石墨都是由碳元素	组成的单质,关于二种碳单质的叙述,错误的是()
A. 都是黑色固体 C. 在氧气中都能燃烧	B. 碳原子的排列方式不同 D. 互称碳元素的同素异形体
变式 2: 两种互为同素异形体的物质是 ()
A. 一氧化碳、二氧化碳 B. 冰、干冰	C. 金刚石、石墨 D. 水、双氧水
知识点 2: 化学计算	

【例1】(嘉定一模)"物质的量"是国际单位制中的基本物理量之一,有关说法正确的是 (

- A. 44gCO₂含有 2mol 氧
- B. 1molH₂O 中约含 6.02×10²³ 个氧原子
- C. 氧气的摩尔质量是 16g/mol
- D. 1molCO₂中约含 6.02×10²³ 个氧分子

变式1:	(松江一模)	水果因含有乙酸乙酯等物质而具有芳香气味,	关于乙酸乙酯(C4H8O2)的说法正确的是
	()		

- A. 乙酸乙酯由三个元素组成
- B. 乙酸乙酯由 4 个碳原子、8 个氢原子和 2 个氧原子构成
- C. 碳元素的质量分数最高
- D. 碳、氢、氧元素质量比为 2:4:1

【例 2】(闸北一模)取一定质量的 CaCO3 固体高温加热一段时间后,冷却,测得剩余固体的质量为 8.0g,其 中, 钙元素质量分数为 50.0%。下列判断正确的是(

- A. 生成 2.0gCO₂气体
- B. 原来 CaCO₃ 的质量为 14.5g
- C. 剩余 8.0g 固体为纯净物 D. 剩余 8.0g 固体中加入稀盐酸无明显现象

变式1: 密闭容器中,将1mol的CO和1mol的 O_2 混合,一定条件下充分反应。正确的是 (

- A. 参加反应的CO和O2的物质的量之比为1:1
- B. 反应后气体的物质的量为原混合气体的3/4
- C. 反应后的气体中C、O原子的物质的量之比为1:2
- D. 反应后密闭容器中气体的摩尔质量一定为44g/mol

【例3】(宝山一模)某学习小组用木炭还原氧化铜,反应中固体质量随时间变化的数据见下表。

加热时间/min	0	t_1	t_2	t ₃
固体质量/g	38.0	33.6	29.2	29.2

- (1) 反应生成的气体质量
- (2) 计算被还原的氧化铜的物质的量。(根据化学方程式计算)

变式 1: (奉贤一模)鸡蛋壳的主要成分是碳酸钙(其它成分不与水也不与盐酸反应)。为了测定鸡蛋壳中碳酸钙的含量,进行如下实验,请回答下列问题:

RATURE ET A	1	1	-	
	鸡蛋壳25克	加入160克稀盐酸 	固液混合物1	76. 2克
(1) 生成二氧化	化碳的质量是	g,其特	勿质的量为	mol。
(2) 求参加反应	五的碳酸钙的物质	的量。(根据化学方	程式计算)	
(3)鸡蛋壳中碗	炭酸钙的质量分数	为	o	
知识点 3: 氧气的				
【例1】(徐汇一模)	物质在氧气中燃	烧,生成物为气体的	是 ()	
A. 红磷	B. 钧	É条 C.	铁丝	D. 木炭
变式1: (长宁一模))	
A. 氧气约占空气		B. 拉瓦		
C. 氧气是一种可	可燃性气体	D. 氧 ^左	的化学性质比较	活泼
变式2: (长宁一模)				
		一氧化碳 ③氦		
A. ①②	B. 123	C.	124	D. ①④
				
				量"这一问题时,小芳认为:通过在
				扁低"或"不变")。她根据蜡烛燃烧产
物的特点阐述了自己			开用图3装置进	行实验,证实了自己的结论。(注:
本题实验中装置的气	密性良好, 水槽 [©]	₩的液体是水) ┃	இப	
		zum.	A HILL	

小明认真分析了小芳的实验结果后,进行了如下探究:

【提出问题】导致小芳这一实验结果还有其它原因吗?

【实验探究】小明设计了图 4 装置,进行以下操作:

- (1) 取黄豆粒大小的白磷,用滤纸吸去表面的水份,放入捆在电烙铁下面铁片的凹槽内;
- (2) 将燃烧匙内的蜡烛点燃后迅速插入钟罩内,并立即塞紧橡皮塞;
- (3)待蜡烛熄灭后(蜡烛有剩余),接通电烙铁电源,发现白磷先熔成液体,接着燃烧产生大量白烟,说明通电前钟罩内含有 ,产生白烟的化学反应方程式是 。

【得出结论】导致小芳这一实验结果的另一原因是______

【交流与反思】小明和小芳分析了上述实验后,又提出了一个问题:

变式 1: 某化学兴趣小组对教材中"测定空气里氧气含量"的实验(见图 11)进行了大胆改进,设计如图 12(选用容积为 45mL 的 18×180mm 的试管作反应容器)实验方案进行,收到了良好的效果。请你对比分析下面图 11、图 12 实验,回答下列有关问题:

- (1) 指出实验中 A、B 仪器的名称: A____、B___。
- (2) 图 11 实验中发生反应的化学方程式为。
- (3) 图 12 实验的操作步骤如下:
 - ①点燃酒精灯。
 - ②撤去酒精灯,待试管冷却后松开弹簧夹。
- ③将少量红磷平装入试管中,将 20mL 的注射器活塞置于 10mL 刻度处,并按图 12 中所示的连接方式固定好,再将弹簧夹紧橡皮管。
 - ④读取注射器活塞的数据。

你认为正确的实验操作顺序是 (填序号)。

- (4)图 12实验中,注射器活塞将从 10mL 刻度处慢慢前移到约为 mL 刻度处才停止。
- (5) 对照图 11 实验, 你认为图 12 实验有何优点? (回答一点即可) 。 。 。

【例3】结合下列图示装置,回答有关问题。

	Α	В	С	D	E	
(1) 写出编号所指仪器的:	名称: a		; b	。用 A 装置制取某种气体的一个化	七
学方程式	\ 为	0				
(2)	实验室中,用加热高锰	孟酸钾的方法	制取氧气,	发生装置	可选用(填标号);用向上排空气泡	去
收集氧气	,应如何验满?			o	0	
(3) 氢气是最清洁的燃料,	它的密度比	空气小,对	推溶于水,	实验室常用锌粒与稀硫酸反应来制得。收集	ŧ
氢气的装	置可选用或_	。(填	标号)			
变式1:	研究性学习小组选择"H	₂ O ₂ 生成 O ₂	的快慢与什	一么因素有	f关"的课题进行探究,以下是他们探究的主题	更
过程:						
【假设】	H ₂ O ₂ 生成 O ₂ 的快慢与	催化剂种类有	1 关			
【实验方	「案】常温下,在两瓶同	质量、同浓度	更的 H ₂ O ₂ 溶	液中,分	別加入相	
同质量的	J MnO ₂ 和水泥块,测量	各生成一瓶	(相同体积) O ₂ 所需	影的时间。	
【进行实	云验】右图是他们进行实	验的装置图,	此实验中自	宜采用的气	气体收集	
方法是	0					
【实验记	记录 】					
	实验编号	1			2	
	反应物	5%H	$_2$ O $_2$		5%H ₂ O ₂	
	催化剂	1g 水	泥块		$1 \mathrm{gMnO}_2$	
	时间	165 ₹	沙		46 秒	
【结论】	该探究过程得出的结论	:是			0	
【反思】	H ₂ O ₂ 在常温下分解缓慢	曼,加入 MnO	2或水泥块	后反应明显	显加快,若要证明 MnO ₂ 和水泥块是该反应的	的
催化剂,	还需要增加实验来验证	它们在化学员	反应前后的		,是否改变。	
H ₂ O ₂ 生馬	戏 O ₂ 的快慢与哪些因素	有关?请你帮	哥助他们继续	卖探究。((只要求提出一种影响 H ₂ O ₂ 生成 O ₂ 的快慢的	的
因素以及	5相关假设和实验方案)					

【假设】_____

【实验方案】_____

瓜熟蒂落

1.	(崇明一模) 水变成水蒸气的过程中, 发生	变化的	勺是 ()
	A. 分子质量 B. 分子种类	С.	分子间隔 D. 原子种类
2.	(奉贤一模)干冰可用于人工降雨,当飞机	L撒布干	F冰后,云层中不会发生是 ()
	A. 二氧化碳分子的质量 E	B. 二氧	氧化碳分子间间隔
	C. 水分子间的间隔 I	D. 水分	分子运动速率
3.	(虹口一模) 关于微粒的说法正确的是	()
	A. 只有分子能构成物质	В.	分子间有间隙而原子间没有
	C. 一个 O 原子的质量约为 $\frac{16}{6.02 \times 10^{23}}$ g	D.	液态变为固态后构成物质的微粒就不动
4.	(普陀一模)有关分子与原子。的说法,正确	角的是	
A	A. 分子可分,而原子在任何情况下不可再	分	
J	3. 分子可直接构成物质,而原子要先构成	分子才[能构成物质
(C. 分子能保持物质的化学性质,原子不能	保持物	质的化学性质
I	 分子在化学变化中可分解成原子,这些 	原子又	【可重新组合构成新的分子
5.	(松江一模) 属于同素异形体的一组物质是	()
	A. 一氧化碳和二氧化碳	В.	水和冰
	C. 石墨和碳 60	D.	木炭和活性炭
6. (嘉定一模) 2015年 10月6日,中国科学家	屠呦呦	放表得 2015 年诺贝尔生理学或医学奖,以表彰她在青蒿素
(C	₁₅ H ₂₂ O ₅)的发现及其应用于治疗疟疾方面所)	斤做出的	的杰出贡献。下列关于青蒿素的叙述正确的是(
1	A. 青蒿素由 42 个原子构成	В.	青蒿素属于有机物
	C. 青蒿素中氢元素的质量分数最大		青蒿素的摩尔质量为 282
7.	(松江一模)"物质的量"是国际单位制中一	·个基太	x物理量,有关说法正确的是 ()
, •	、西西 医八 网络时里 化自即干压啊!		10-1-1-1 11/1001A 11-01H1/C
	A. lmol H ₂ 的质量为 1g	B. 1mo	ol H₂ 约含 6.02×10 ²³ 个氢原子

	()			
	A. 青蒿素分子的]式量为 282g/mol	B. 青蒿素中氢元	素含量最高
	C. 青蒿素由 42~	个原子构成	D. 氢氧元素的原	子个数比为 22:5
9.	电进行电解水实验			电性。若用 8%的硫酸溶液 200g,通直流 0%。则已电解的水的质量为() D. 40g
10. 数比		身 CO、CO ₂ 和 O ₂ 各 11	mol 在一密闭容器中充分	反应,冷却后该容器内的碳、氧原子的个
	A. 1: 1	B. 1: 2	C. 2: 3	D. 2: 5
11.			氮气的混合气体的密闭容则其中氮气的质量分数不C. 30%	器中燃烧产生 CO 和 CO ₂ ,且反应后测得 可能为 () D. 40%
12.	(嘉定一模) 从分	子、原子的角度认识化	化学反应是化学研究的基本	本方法. 如图是某密闭容器中物质变化过
程的]微观示意图("	"表示氧原子,"〇"	表示氢原子):	
	∞ % (会 <u>変化Ⅰ</u> 点燃 。	変化Ⅱ 降至室温	
请回	答:			
①变	E化 I 的现象	,发生反应的作	化学方程式是	;
②变	E化 I 的过程中,没	设有发生变化的最小微		[微粒名称);
③下			(填写序号)	;
		三质没有改变		
<u> </u>			D. 分子的种类发生了	
			t程的一条宏观信息是 	
5 Ē	.知"●"的相对原子	质量是" [○] "的 m 倍。	则参加反应的 〇〇 和	的质量比为。

8. (闵行一模)我国科学家屠呦呦因发现治疗疟疾的"青蒿素($C_{15}H_{22}O_{5}$)"而获得诺贝尔奖。说法正确的是

13.	(松江一模) 2015 年 8 月天津塘沽发生特大爆炸事故,其中一种物质为电石。电石(CaC_2)与 X 接触	触剧
	烈反应产生可燃性气体乙炔(C_2H_2)。	
	①电石和 X 反应的化学方程式为: $CaC_2+2X\rightarrow Ca(OH)_2+C_2H_2\uparrow$. 其中 X 的化学式为	

②利用乙炔燃烧产生的高温可以焊接金属。 C_2H_2 的摩尔质量为______, $0.25 mol_1C_2H_2$ 中含有______个氢原子,将 C_2H_2 在纯氧中燃烧,其生成物中一定含有 元素。

③乙炔可以用排水法进行收集,由此可推知乙炔的性质是。

14. (虹口一模) Mg某石灰石样品与足量稀盐酸反应(杂质不反应), 共生成0.1mol二氧化碳。请计算:

① 参加反应的碳酸钙的质量。(请根据化学方程式列式计算)_____

② 已知该样品中含碳酸钙 80%,则 M=______g。

15. (普陀一模)工业上利用高温分解石灰石(主要成分 CaCO₃,杂质不参与任何反应),得到生石灰。现实验室利用此原理来分析石灰石的纯度,使用 100g 原料,完全分解后得到固体 64.8g,计算:

(写出计算过程)

- (1) 反应中得到的二氧化碳气体的物质的量为多少摩尔?
- (2) 原料中的碳酸钙纯度为多少?

16.	. (晋陀一模)实验室中验证氧气的性质,进行了如下实验:	H-
	①将硫粉点燃伸入氧气集气瓶,燃烧的现象是;	
	②将红热的铁丝伸入氧气集气瓶中,燃烧的方程式为;	6
	③将灼热的铜丝(表面已变黑)伸入 CO 气体中(如右图),发生的化学反应的方	
	程式为	co-(-)
	④以上的化学反应都可以称为氧化反应,理由是,	而上述①和②的反应
	也可以称为(填写反应基本类型)反应。	
17.	. 在"空气中氧气含量的测定"实验探究中,甲生设计了如下实验方案:	
	在燃烧匙内盛过量红磷,点燃后立即插入集气瓶内,塞紧橡皮塞,待红磷火焰熄灭,	集气瓶冷却至室温,
打チ	开铁夹,水注入集气瓶。(实验装置如图1所示)回答下列问题:	
	12.00 Parties of the control of the	
(1	1)实验过程中,观察到的主要现象是	
反区	应的化学方程式是。	
	2) 乙生用上述实验装置测定的结果是:空气中氧气含量与正常值有较明显的偏差,其要求答出两种):	操作上的原因可能是
(3	。 3) 丙生也设计了一个实验方案,装置和操作同上,只不过用木炭代替了红磷。当木炭 [。]	停止燃烧,集气瓶冷
却多	至室温,打开铁夹后,水能否进入集气瓶?为什么?	
	4)若仍然用木炭代替红磷,丙生的实验方案应作何改进,才能保证实验成功? (只需的地方)	答出实验方案中须改
18.	. 实验室利用下图实验装置进行实验,回答下列问题:	

1	上图中仪器 a 的名称为	o		
2	实验室用装置 A 制取氧气	的化学方程式是		,在上图右侧框内
Ī	画出排气法收集氧气的装置	置示意图。		
3	实验室用过氧化氢溶液和	二氧化锰制氧气时	选用 B 装置为反应装置。实验	中,同学们发现不能得到平
Ī	隐的氧气流。大家提出从南	两个方面加以改进。	:	
一長	是把发生装置由 B 改为	(填字母编	· 号),其理由是	o
二是	是将过氧化氢溶液加水稀释	泽。若把 50g 质量	分数为20%的过氧化氢溶液稀释	译成 5%的过氧化氢溶液,需
加水的质	质量为g。			
4	某同学为测定过氧化氢溶液	夜中溶质质量分数	,向过氧化氢溶液中加入二氧	化锰制取氧气,相关数据如
下:				_
	反应前物质的原	质量 / g	充分反应后物质的质量 / g	
	过氧化氢溶液	二氧化锰	固体与液体混合物质量	
	68.0	0.1	66.5	

请计算:

I. 该同学制得氧气的物质的量为_____mol;

II. 该同学所用过氧化氢溶液的溶质质量分数。(根据化学方程式列式计算)_____