IB102: Automaty a gramatiky: vnitrosem. písemka 24.11.2006

- 1. Napište definici deterministického konečného automatu a rozšířené přechodové funkce. (10 bodů)
- 2. Určete, kolik slov má jazyk $L^3 \setminus L$, kde $L=\{a, aa, aaa\}$ (5 bodů)
- 3. Najděte deterministický konečný automat rozpoznávající jazyk $L = \{w \in \{a,b,c\}* | wobsahuje \ podslovo \ babaab\}$ (10 bodů)
- 4. Nechť L, R jsou jazyky nad abecedou {a, b}. Rozhodněte, zda platí následující implikace a své rozhodnutí zdůvodněte. (15 bodů)
 - (a) L a L.R jsou regulární => R je regulární
 - (b) $L \cup R$ není regulární => L nebo R není regulární
- 5. Rozhodněte, zda je daný jazyk regulární. Své tvrzení zdůvodněte. (20 bodů) $L = \{a\}^* : \{ w \in \{b, c\}^* \mid \#_b(w) = \#_c(w) \}$
- 6. K danému konečnému automatu sestrojte ekvivalentní (nedeterministický) konečný automat bez epsilon kroků. (20 bodů)

A	a	b	ε
$\rightarrow 1$	{2}	{4} .	{3,5}
2	{2,3}	0	{5}
$\leftarrow 3$	0	{1,4,5}	0
$\leftarrow 4$	{4}	{2}	0
5	0	{3,4}	{2}

7. (20 bodů)

Uvažujte následující relace na slovech nad abecedou $\Sigma = \{a,b\}$. U každé relace určete, zda se jedná o pravou kongruenci. Pokud rozhodnete, že se o pravou kongruenci nejedná, dokažte to. V opačném případě určete index relace a popište jednotlivé třídy ekvivalence.

(a)
$$u \sim v \iff \#_a(u) = \#_a(v) + 1$$

(b)
$$u \sim v \iff \#_a(u) = \#_a(v)$$

(c)
$$u \sim v \stackrel{def}{\iff} \#_a(u)$$
 i $\#_a(v)$ jsou liché nebo $u = v$

(d)
$$u \sim v \stackrel{def}{\iff} \#_a(u)$$
 a $\#_a(v)$ mají stejnou paritu