Design & Analysis of Algorithms

[Solving Recurrence]

Soharab Hossain Shaikh
BML Munjal University

Recurrences and Running Time

• An equation or inequality that describes a function in terms of its value on smaller inputs.

$$T(n) = T(n-1) + n$$

- Recurrences arise when an algorithm contains recursive calls to itself
- What is the running time of the algorithm?
- Need to solve the recurrence

2

- Find an explicit formula of the expression
- Bound the recurrence by an expression that involves n

2

Example Recurrences

• T(n) = T(n-1) + n $\Theta(n^2)$

1

- Recursive algorithm that loops through the input to eliminate one item
- T(n) = T(n/2) + c $\Theta(Ign)$
 - Recursive algorithm that halves the input in one step
- T(n) = 2T(n/2) + 1 $\Theta(n)$
 - Recursive algorithm that splits the input into 2 halves and does a constant amount of other work

3

4

Recurrent Algorithm: Binary Search

• For an ordered array A, finds if x is in the array A[lo...hi]

Algo BINARY-SEARCH (A, lo, hi, x)

if (lo > hi)

return FALSE

mid $\leftarrow \lfloor (lo+hi)/2 \rfloor$ if x = A[mid]return TRUE

if (x < A[mid])

BINARY-SEARCH (A, lo, mid-1, x)

if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x)

Analysis of Binary Search

Methods for Solving Recurrences

- Iteration Method
- Recursion Tree Method
- Master's Method

ŝ

The Iteration Method

- Convert the recurrence into a summation and try to bound it using known series
 - Iterate the recurrence until the initial condition is reached.
 - Use back-substitution to express the recurrence in terms of *n* and the initial (boundary) condition.

7

The Iteration Method Example:1

$$T(n) = c + T(n/2)$$

$$T(n) = c + T(n/2) \qquad T(n/2) = c + T(n/4)$$

$$= c + c + T(n/4) \qquad T(n/4) = c + T(n/8)$$

$$= c + c + c + T(n/8)$$
Assume $n = 2^k$

$$T(n) = \underbrace{c + c + ... + c}_{k \text{ times}} + T(1)$$

$$= c + c + C + C(1)$$

$$= c + c + ... + C + C(1)$$

8

6

7

The Iteration Method Example: 2

$$T(n) = n + 2T(n/2) \qquad \text{Assume: } n = 2^k$$

$$T(n) = n + 2T(n/2) \qquad T(n/2) = n/2 + 2T(n/4)$$

$$= n + 2(n/2 + 2T(n/4))$$

$$= n + n + 4T(n/4)$$

$$= n + n + 4(n/4 + 2T(n/8))$$

$$= n + n + n + 8T(n/8)$$

$$... = in + 2^iT(n/2^i)$$

$$= kn + 2^kT(1)$$

$$= nlgn + nT(1) = \Theta(nlgn)$$

Changing Variables

$$T(n) = 2T(\sqrt{n}) + lgn$$

$$- Rename: m = lgn \Rightarrow n = 2^m$$

$$T(2^m) = 2T(2^{m/2}) + m$$

$$- Rename: S(m) = T(2^m)$$

$$S(m) = 2S(m/2) + m \Rightarrow S(m) = O(mlgm)$$

$$(demonstrated before)$$

$$T(n) = T(2^m) = S(m) = O(mlgm) = O(lgn|g|gn)$$

Idea: transform the recurrence to one that you have seen before

10

9

Recursion Tree Method

Convert the recurrence into a tree:

- Each node represents the cost incurred at various levels of recursion
- Sum up the costs of all levels

11

10

Example 1

W(n) = $2W(n/2) + n^2$ W(n/2) = W(n/2) + w(n/2) + w(n/2) = W(n/2) + w(

Example 3

W(n) = W(n/3) + W(2n/3) + n

• The longest path from the root to a leaf is: $n \to (2/3)n \to (2/3)^2 \ n \to ... \to 1$ • Subproblem size hits 1 when $1 = (2/3)^n \Leftrightarrow i = \log_{3/2} n$ • Cost of the problem at level i = n• Total cost: $W(n) < n + n + ... = \sum_{i=0}^{(\log_{3/2} n)-1} n + 2^{(\log_{3/2} n)} W(1) < \frac{(n/3)}{(2n/3)} \longrightarrow n$ • Cost of the problem $n + n = \frac{(\log_{3/2} n)-1}{\log_{3/2} n} + O(n) = \frac{1}{\log_{3/2} n} \log_{3/2} n \log_$

Master's Method

· "Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Idea: compare f(n) with nlogba

- f(n) is asymptotically smaller or larger than n^{log}b^a by a polynomial factor n^e
- f(n) is asymptotically equal with n^{log}_b^a

16

Master's Method

• "Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Case 1: if $f(n) = O(n^{\log_{h} a - \epsilon})$ for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_{h} a})$

Case 2: if $f(n) = \Theta(n^{\log_b a})$, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3: if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then: $T(n) = \Theta(f(n))$

regularity condition

17

40

Example

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare $n^{\log_2 2}$ with f(n) = n

$$\Rightarrow$$
 f(n) = Θ (n) \Rightarrow Case 2

 \Rightarrow T(n) = Θ (nlgn)

19

Example

$$T(n) = 2T(n/2) + n^2$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare n with $f(n) = n^2$

 \Rightarrow f(n) = $\Omega(n^{1+\epsilon})$ Case 3 \Rightarrow verify regularity cond.

a $f(n/b) \le c f(n)$

18

 \Leftrightarrow 2 n²/4 \le c n² \Rightarrow c = $\frac{1}{2}$ is a solution (c<1)

 \Rightarrow T(n) = Θ (n²)

20

19 20

Example

$$T(n) = 2T(n/2) + \sqrt{n}$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare n with $f(n) = n^{1/2}$

$$\Rightarrow$$
 f(n) = $O(n^{1-\epsilon})$ Case 1

$$\Rightarrow$$
 T(n) = Θ (n)

21

Example

$$T(n) = 3T(n/4) + nlgn$$

$$a = 3$$
, $b = 4$, $log_4 3 = 0.793$

Compare $n^{0.793}$ with f(n) = nlgn

$$f(n) = \Omega(n^{\log_4 3 + \epsilon})$$
 Case 3

Check regularity condition:

$$3*(n/4)lg(n/4) \le (3/4)nlgn = c *f(n), c=3/4$$

$$\Rightarrow$$
T(n) = Θ (nlgn)

22

21

22

If $f(n) = \Theta(n^c)$

$$T(n) = aT\left(\frac{n}{b}\right) + n^c \quad a \geq 1, b \geq 1, c > 0$$

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & a > b^c \\ \Theta(n^c \log_b n) & a = b^c \\ \Theta(n^c) & a < b^c \end{cases}$$

23

Inadmissible Cases

•
$$T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$$

a is not a constant

•
$$T(n) = 0.5T\left(\frac{n}{2}\right) + n$$

 $a < 1$ cannot have less than one sub problem

•
$$T(n) = 64T\left(\frac{n}{8}\right) - n^2 \log n$$

f(n) is not positive

24

23

Proof

$$\begin{split} T(n) &= aT \left(\frac{a}{b} \right) + n^c \quad a \geq 1, b \geq 1, c > 0 \\ \downarrow \downarrow \\ T(n) &= \begin{cases} \Theta(n^{\log_b a}) & a > b^c \\ \Theta(n^c \log_b n) & a = b^c \\ \Theta(n^c) & a < b^c \end{cases}$$

Proof (Iteration method)

$$\begin{split} T(n) &= aT\left(\frac{n}{b}\right) + n^c \\ &= n^c + a\left(\left(\frac{n}{b}\right)^c + aT\left(\frac{n}{b^2}\right)\right) \\ &= n^c + \left(\frac{c}{b^c}\right) n^c + a^2T\left(\frac{n}{b^2}\right) \\ &= n^c + \left(\frac{a}{b^c}\right) n^c + a^2T\left(\frac{n}{b^2}\right) \\ &= n^c + \left(\frac{a}{b^c}\right) n^c + a^2\left(\left(\frac{n}{b^2}\right)^c + aT\left(\frac{n}{b^2}\right)\right) \\ &= n^c + \left(\frac{a}{b^c}\right) n^c + \left(\frac{a}{b^c}\right)^2 n^c + a^3T\left(\frac{n}{b^2}\right) \\ &= \dots \\ &= n^c + \left(\frac{a}{b^c}\right) n^c + \left(\frac{a}{b^c}\right)^2 n^c + \left(\frac{a}{b^c}\right)^3 n^c + \left(\frac{a}{b^c}\right)^4 n^c + \dots + \left(\frac{a}{b^c}\right)^{\log_b n - 1} n^c + a^{\log_b n}T(1) \\ &= n^c \sum_{b = 0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + a^{\log_b n} \\ &= n^c \sum_{b = 0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b n} \end{split}$$

Recall geometric sum $\sum_{k=0}^n x^k = \frac{x^{n+1}-1}{x-1} = \Theta(x^n)$

Proof

• $a < b^c$ $a < b^c \Leftrightarrow \frac{a}{b^c} < 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k \leq \sum_{k=0}^{+\infty} \left(\frac{a}{b^c}\right)^k = \frac{1}{1 - \left(\frac{a}{b^c}\right)} = \Theta(1)$

 $a < b^c \Leftrightarrow \log_b a < \log_b b^c = c$ $T(n) = n^c \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}$ $= n^c \cdot \Theta(1) + n^{\log_b a}$ $=\Theta(n^c)$

 $\begin{array}{l} a=b^c \Leftrightarrow \frac{a}{b^c}=1 \Rightarrow \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k = \sum_{k=0}^{\log_b n-1} 1 = \Theta(\log_b n) \\ a=b^c \Leftrightarrow \log_b a = \log_b b^c = c \\ T(n) = \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a} \\ = n^c \Theta(\log_b n) + n^{\log_b a} \\ = n^c \Theta(\log_b n) + n^{\log_b a} \end{array}$ $= \Theta(n^c \log_b n)$

25 26

Proof

$$\begin{split} \bullet & \boxed{a > b^c} \\ a > b^c \Leftrightarrow \frac{a}{b^c} > 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k = \Theta\left(\left(\frac{a}{b^c}\right)^{\log_b n}\right) = \Theta\left(\frac{a^{\log_b n}}{(b^c)^{\log_b n}}\right) = \Theta\left(\frac{a^{\log_b n}}{n^c}\right) \\ T(n) &= n^c \cdot \Theta\left(\frac{a^{\log_b n}}{n^c}\right) + n^{\log_b a} \\ &= \Theta(n^{\log_b a}) + n^{\log_b a} \\ &= \Theta(n^{\log_b a}) \end{split}$$

End of Lecture