

EECS-731

TRAVELING WITH CONFIDENCE?

Dana Almansour, Michael Bechtel, Brandon Wheat

Outline

- Motivation
- Overview
- Data Sets
- Data Exploration
- Regression
- Time Series Forecasting
- Anomaly Detection
- Learning Outcomes

Motivation

- Industry: Public transportation (bus, train, etc.)
- International usage of public transportation has plummeted due to COVID
 - For example, usage in the US was down ~60% nationally in March (FTA)
- There have been recent rebounds, but no full recoveries
- We wanted to potentially answer the following questions:
 - Do COVID cases correlate to transit usage?
 - o Given previous trends, what will future trends look like?
 - Are there any usage outliers in a given time period?

Overview

Data Sources

- Daily transit hub usage: Google's Community Mobility Reports
 - Provides several per-country datasets (135 countries total)
 - Each set contains data for several mobility metrics (grocery stores, retail, parks, etc.)
 - We use the transit hub metric provided in these reports
 - Source: https://www.google.com/covid19/mobility/
- Daily COVID cases: Our-World-in-Data COVID-19 Dataset
 - Provides general COVID trends on a per-country basis
 - We use the number of new cases per day and the overall totals for each country
 - Source: https://ourworldindata.org/coronavirus-source-data

Exploratory Data Analysis

- Looked at data from 10 countries:
 - O CA, DE, ES, FR, GB, IT, JP, KR, MX, US
 - When showing results, we anonymize the countries (A J)
- All transit hub usage data had the same date range: 2/15/20 11/3/20
- Take COVID case data in the same range
 - All tested countries started reporting prior to 2/15

Example Transit Hub Usage

Usage for Country A

- All values are percentages of transit hub usage relative to a "pre-COVID" baseline (1/3/20 2/6/20):
- Each tested country displays similar usage trends

Regression

- How do COVID cases correlate to transit hub usage?
- Tested three Regression models on all country datasets
 - Random Forest
 - Gradient Boosting
 - MLP Regressor (Neural Network)
- For the MLP Regressor, better results were achieved by preprocessing COVID case data (MinMax)
 - The Random Forest and Gradient Boosting models performed better with the raw data.
- Approach: shuffle and split data into train and test sets (50/50)
- Use root mean squared error (RMSE) to evaluate performance

Regression Comparison

Country	Random Forest	Gradient Boosting	MLP Regressor
Α	5.51	5.89	4.86
В	8.38	8.79	6.37
С	5.62	6.40	5.71
D	10.45	11.74	16.15
Е	9.23	8.65	8.86

- Example: countries A E
- No single model performed the best across all countries
 - While not shown, Gradient Boosting did perform the best for some countries (G, I)

Regression

- Example: Country A
- Model: MLP Regressor
 - o RMSE = 5.07

- COVID cases do roughly correlate to transit hub usage in given datasets.
 - This was evident across all tested countries.
- Are COVID cases an accurate indicator for transit hub usage?
 - Can this be used for forecasting?

Regression/Time Series

• Use the same approach, but don't shuffle the data \rightarrow simulate future predictions

- For each country, use the regression model that performed the best on the shuffled data.
- Can the models still accurately predict transit hub usage?

Regression/Time Series

Examples: MLP Regressor for countries A and B

- No, the models can't use COVID cases to predict future transit hub trends
 - Predictions were different for each country, but none were ever close to the actual trends
- For each country, the same results occurred with other train/test splits (70/30, 90/10, etc.)

Time Series Forecasting

- Tested two time series forecasting models
 - FBProphet
 - ARIMA
- FBProphet is a tool developed by Facebook for time series forecasting, it considers three main components:
 - Seasonality
 - Trends
 - Events
- ARIMA has three main features:
 - Auto Regression regresses a variable on past values of itself
 - Integration reduces seasonality from a time series
 - Moving Average removes random movements from a time series
- We use both models to predict 100 days in the future (11/4/20 2/12/21)

FBProphet

- For country A there is no negative or positive trend, which is reflected in the forecast
- For country A Transit is greatest on Saturdays and lowest on Mondays

ARIMA

- For country A, ARIMA also predicts that usage will remain stagnant
 - o For the most part, FBProphet and ARIMA had similar predictions
- All countries had different prediction patterns but stayed around the average
 - The model never predicted that a country would get back to pre-COVID usage

Anomaly Detection

- Tested two anomaly detection models on all our country datasets
 - Local Outlier Factor
 - K-Nearest Neighbor
- Local Outlier detection computes the local density deviation of a given point with respect to is neighbors
 - O Data with much lower densities were considered outliers
- K-Nearest Neighbor measures a points distance from a clusters center
 - O Data with much larger distances from a center were considered anomalies

Local Outlier Factor

- The outliers for each country are represented by the purple data points
 - Since LOF >> 1, we can deduce that these are outliers present in this dataset which we are analysing.
- Since Local Outlier Factor takes into account the knn and ldr in a very efficient manner, we can deduce outlier here more efficiently than Knn clustering anomaly detection outlier.
- Some countries produce more usable results (country J)

K-Nearest Neighbors

- The points with the highest anomaly scores are colored red and the lowest are colored blue
- The value of k is to be kept optimal
 - o High k values cause larger anomaly scores (overfitting)
 - Low k values cause lower anomaly scores (underfitting)
- In both cases, the anomalies occurred at the beginning of the timeline
 - This also happened in the other tested countries
- Which model is better at detecting anomalies for our data?

Learning Outcomes

- Regression
 - o COVID cases and transit hub usage due correlate for a given time period
 - COVID cases can't be used to reliably predict future usage trends
- Time Series
 - Usage trends are likely to remain at their current levels (at least for the next 100 days)
 - Usage may increase in some countries but not by a significant margin
- Anomaly Detection
 - There are outliers present in the given time period and we have used two methods for its analysis
 - Local Outlier Factor is more efficient than Knn clustering for detecting outliers.
 - Some outlier trends are more helpful for addressing transit hub usage
- For many models, all countries displayed similar results and behaviors
 - \circ No one country really stood out from the rest
- All results and visualizations can be found at:

https://github.com/mbechtel2/EECS731-GroupProject