Lösungen zu Aufgabe 3, Zettel 2

Jendrik Stelzner

23. November 2016

i)

Für alle $f,g\in R[\![T]\!]$ gilt

$$d_q(f,g) = 0 \iff q^{-\nu(f-g)} = 0 \iff \nu(f-g) = \infty \iff f-g = 0 \iff f = g.$$

Für jedes $h \in R[T]$ und $i \ge 0$ ist genau dann $h_i \ne 0$ wenn $-h_i \ne 0$, we shalb $\nu(h) = \nu(-h)$. Für alle $f, g \in R[T]$ gilt deshalb

$$d_q(f,g) = q^{-\nu(f-g)} = q^{-\nu(g-f)} = d_q(g,f).$$

Zum Beweis der Dreiecksungleichung fixieren wir $f,g,h\in R[\![T]\!]$. Es gilt zu zeigen, dass

$$q^{-\nu(f-h)} \le q^{-\nu(f-g)} + q^{-\nu(g-h)}. (1)$$

Hierfür zeigen wir, dass bereits

$$q^{-\nu(f-h)} \leq \max\{q^{-\nu(f-g)}, q^{-\nu(g-h)}\}.$$

(Wir zeigen also, dass in (1) bereits einer der beiden Summanden ausreicht. Um welchen es sich dabei handelt hängt allerdings von f, g und h ab.) Da

$$\max\{q^{-\nu(f-g)},q^{-\nu(g-h)}\} = q^{\max\{-\nu(f-g),-\nu(g-h)\}} = q^{-\min\{\nu(f-g),\nu(g-h)\}}$$

gilt

$$q^{-\nu(f-h)} \leq \max\{q^{-\nu(f-g)}, q^{-\nu(g-h)}\} \iff \nu(f-h) \geq \min\{\nu(f-g), \nu(g-h)\}.$$

Diese letzte Ungleichung gilt, denn für alle $0 \le i < \min\{\nu(f-g), \nu(g-h)\}$ gilt $f_i = g_i$ und $g_i = h_i$, und somit auch $f_i = h_i$.

Wir merken noch an, dass die Metrik d_q translations
invariant ist, d.h. es gilt

$$d_q(f+h,g+h) = d_q(f,g)$$
 für alle $f,g,h \in R[T]$.

ii)

Für $f \in R[T]$ und eine Folge $(f^{(i)})_i$ von Elementen $f^{(i)} \in R[T]$ gilt

$$f^{(i)} \to f \text{ f\"ur } i \to \infty \text{ bez\"uglich } d_q$$

$$\iff d_q(f^{(i)}, f) \to 0 \text{ f\"ur } i \to \infty$$

$$\iff q^{-\nu(f^{(i)} - f)} \to 0 \text{ f\"ur } i \to \infty$$

$$\iff -\nu(f^{(i)} - f) \to -\infty \text{ f\"ur } i \to \infty$$

$$\iff \nu(f^{(i)} - f) \to \infty \text{ f\"ur } i \to \infty$$

$$\iff \text{f\"ur jedes } n \ge 0 \text{ gibt es ein } j \ge 0 \text{ mit } \nu(f^{(i)} - f) \ge n \text{ f\"ur alle } i \ge j$$

$$\iff \text{f\"ur jedes } n \ge 0 \text{ gibt es ein } j \ge 0 \text{ mit } f_m^{(i)} = f_m \text{ f\"ur alle } m \le n, i \ge j$$

$$\iff \text{f\"ur jedes } n \ge 0 \text{ gibt es ein } j \ge 0 \text{ mit } f_n^{(i)} = f_n \text{ f\"ur alle } i \ge j.$$

Es gilt also $f^{(i)} \to f$ genau dann wenn für jedes $n \ge 0$ gilt, dass $f_n^{(i)} = f_n$ für i groß genug. (Man beachte, dass es von n abhängt, wann $f_n^{(i)}$ konstant wird. Insbesondere wird die Folge $f^{(i)}$ selbst nicht notwendigerweise konstant.) Das zeigt insbesondere, dass die Folge $(f^{(i)})_i$ genau dann konvergiert, wenn für jedes $n \ge 0$ die Folge der Koeffizienten $(f_n^{(i)})_i$ konstant wird.

Wir haben auch gezeigt, dass sich der Grenzwert $\lim_{i \to \infty} f^{(i)}$ dann koeffizientenweise bestimmen lässt.

Eine Reihe $\sum_{i=0}^{\infty} f^{(i)}$ konvergiert per Definition genau dann, wenn die Folge $(g^{(j)})_j$ der Partialsummen $g^{(j)} \coloneqq \sum_{i=0}^j f^{(i)}$ konvergiert. Wie bereits gezeigt ist dies äquivalent dazu, dass für jedes $n \ge 0$ die Koeffizientenfolge $(g_n^{(j)})_j$ konstant wird. Dies bedeutet gerade, dass es für jedes $n \ge 0$ ein $k \ge 0$ gibt, so dass $g_n^{(j_1)} = g_n^{(j_2)}$ für alle $j_1 \ge j_2 \ge k$; wegen $g_n^{(j_1)} - g_n^{(j_2)} = \sum_{i=j_2+1}^{j_1} f_n^{(i)}$ ist dies äquivalent dazu, dass $f_n^{(i)} = 0$ für alle i > k.

Außerdem zeigt die obige Argumentation, dass sich der Grenzwert der Reihe $\sum_{i=0}^{\infty} f^{(i)}$ dann koeffizientenweise berechnen lässt, d.h. für alle $n \geq 0$ gilt $(\sum_{i=0}^{\infty} f^{(i)})_n = \sum_{i=0}^{\infty} f_n^{(i)}$.

Wir wollen den Leser an dieser Stelle darauf aufmerksam machen, dass sich Konvergenzverhalten einer Folge, bzw. Reihe in $R[\![T]\!]$ nicht von dem gewählten Parameter q>1 abhängt.

Bemerkung 1. Versieht man den Ring R mit der diskreten Topologie, bzw. der diskreten Metrik, so entspricht der topologische Raum R[T] zusammen mit den stetigen Projektionen $\pi_i \colon R[T] \to R$, $f \mapsto f_i$ dem abzählbaren topologischen Produkt $\prod_{i>0} R$.

iii)

Für alle $n, i \geq 0$ gilt $(T^i)_n = \delta_{in}$; für fixiertes $n \geq 0$ ist deshalb $(T^i)_n = 0$ für alle n > i. Wie im Aufgabenteil ii) gesehen, ist deshalb $T^i \to 0$ for $i \to \infty$ bezüglich d_q .

Für $f \in R[T]$ konvergiert die Reihe $\sum_{i=0}^{\infty} f_i T^i$, denn für jedes $n \geq 0$ gilt $(f_i T^i)_n = f_i \delta_{in}$, und für i > n verschwindet dieser Term. Durch koeffizientenweises Berechnen des Grenzwertes ergibt sich, dass

$$\left(\sum_{i=0}^{\infty} f_i T^i\right)_n = \sum_{i=0}^{\infty} (f_i T^i)_n = \sum_{i=0}^{\infty} f_i \delta_{in} = f_n \quad \text{für alle } n \ge 0,$$

und somit $\sum_{i=0}^{\infty} f_i T^i = f$.

iv)

Unabhängigkeit der Topologie vom Parameter q

Es seien $q_1,q_2>0$. Es gilt zu zeigen, dass eine Teilmenge $U\subseteq R[\![T]\!]$ genau dann offen bezüglich d_{q_1} ist, wenn sie offen bezüglich d_{q_2} ist. Dies ist äquivalent dazu, dass eine Teilmenge $C\subseteq R[\![T]\!]$ genau dann abgeschlossen bezüglich d_{q_1} ist, wenn sie abgeschlossen bezüglich d_{q_2} ist. Hierfür genügt es zu zeigen, dass eine Teilmenge $C\subseteq R[\![T]\!]$ genau dann folgenabgeschlossen bezüglich d_{q_1} ist, wenn sie folgenabgeschlossen bezüglich d_{q_2} ist.

In Aufgabenteil ii) haben wir gesehen, dass das Konvergenzverhalten einer Folge $(f^{(i)})_i$ von Elementen $f^{(i)} \in R[\![T]\!]$ bezüglich den Metriken d_{q_1} und d_{q_2} nicht von den Parametern q_1 und q_2 abhängt, d.h. für jedes $f \in R[\![T]\!]$ gilt genau dann $f^{(i)} \to f$ bezüglich d_{q_1} wenn $f^{(i)} \to f$ bezüglich d_{q_2} . Deshalb ist $C \subseteq R[\![T]\!]$ genau dann folgenabgeschlossen bezüglich d_{q_1} , wenn es folgenabgeschlossen bezüglich d_{q_2} ist.

Also ist die von d_q erzeugte Topologie unabhängig von q.

Stetigkeit der Ringoperationen

Es gilt zu zeigen, dass für je zwei konvergente Folgen $(f^{(i)})_i$ und $(g^{(i)})_i$ von Elementen $f^{(i)},g^{(i)}\in R[\![T]\!]$ auch die Folgen $(f^{(i)}+g^{(i)})_i$ und $(f^{(i)}\cdot g^{(i)})_i$ konvergieren, und dass

$$\lim_{i \to \infty} \left(f^{(i)} + g^{(i)} \right) = \left(\lim_{i \to \infty} f^{(i)} \right) + \left(\lim_{i \to \infty} g^{(i)} \right)$$

und

$$\lim_{i \to \infty} \left(f^{(i)} \cdot g^{(i)} \right) = \left(\lim_{i \to \infty} f^{(i)} \right) \cdot \left(\lim_{i \to \infty} g^{(i)} \right)$$

Hierfür fixieren wir zwei solche konvergenten Folgen und schreiben $f\coloneqq \lim_{i\to\infty} f^{(i)}$ und $g\coloneqq \lim_{i\to\infty} g^{(i)}$.

Es sei $n \geq 0$. Aus $f^{(i)} \to f$ und $g^{(i)} \to g$ ergibt sich nach Aufgabenteil ii), dass es ein $j \geq 0$ gibt, so dass $f_n^{(i)} = f_n$ und $g_n^{(i)} = g_n$ für alle $i \geq j$. Es sei $j \geq j_f, j_g$. Für alle $i \geq j$ ist

$$(f^{(i)} + g^{(i)})_n = f_n^{(i)} + g_n^{(i)} = f_n + g_n = (f + g)_n.$$

Aus der Beliebigkeit von $n \ge 0$ folgt nach Aufgabenteil ii), dass $f^{(i)} + g^{(i)} \to f + g$.

Für das Produkt gehen wir analog vor: Es sei $n \geq 0$. Da $f^{(i)} \to f$ und $g^{(i)} \to g$ ergibt sich nach Aufgabenteil ii), dass es ein $j \geq 0$ gibt, so dass $f_k^{(i)} = g_k^{(i)}$ für alle $k = 0, \ldots, n$ und $i \geq j$. Für alle $i \geq j$ ist damit auch

$$(f^{(i)} \cdot g^{(i)})_n = \sum_{k=0}^n f_k^{(i)} g_{n-k}^{(i)} = \sum_{k=0}^n f_k g_{n-k} = (f \cdot g)_n.$$

Wegen der Beliebigkeit von n zeigt dies nach Aufgabenteil ii), dass $f^{(i)} \cdot g^{(i)} \to f \cdot g$.

Die Stetigkeit der Inversion ergibt sich ähnlich: Es sei $(f^{(i)})_i$ eine Folge von Einheiten $f^{(i)} \in R[\![T]\!]^{\times}$ und $f \in R[\![T]\!]^{\times}$ mit $f^{(i)} \to f$ für $i \to \infty$. Es sei $g \coloneqq f^{-1}$ und für alle $i \ge 0$ sei $g^{(i)} \coloneqq (f^{(i)})^{-1}$. Es gilt zu zeigen, dass auch $g^{(i)} \to g$ für $i \to \infty$.

Wir fixieren ein $n \geq 0$. Da $f^{(i)} \to f$ gibt es ein $j \geq 0$ mit $f_k^{(i)} = f_k$ für alle $i \geq j$ und $0 \leq k \leq n$. Wir zeigen dass $g_k^{(i)} = g_k$ für alle $i \geq j$ und $0 \leq k \leq n$, per Induktion über k: Für alle $i \geq j$ ist $g_0 = f_0^{-1} = (f_0^{(i)})^{-1} = g_0^{(i)}$. Gilt $g_k^{(i)} = g_k$ für alle $0 \leq k < n$ und $i \geq j$, so ergibt sich, dass

$$g_{k+1} = -g_0 \sum_{\ell=0}^{k} g_{\ell} f_{k+1-\ell} = -g_0^{(i)} \sum_{\ell=0}^{k} g_{\ell}^{(i)} f_{k+1-\ell}^{(i)} = g_{k+1}^{(i)}.$$

Ingesamt zeigt dies, dass es für jedes $n \ge 0$ ein $j \ge 0$, so dass $g_k^{(i)} = g_k$ für alle $0 \le k \le n$ und $i \ge j$; insbesondere ist $g_n^{(i)} = g_n$ für alle $i \ge j$. Das zeigt, dass $g^{(i)} \to g$ für $i \to \infty$.

Bemerkung 2. Die Menge der Einheiten $R[\![T]\!]^{\times}$ ist als Teilmenge von $R[\![T]\!]$ sowohl offen als auch abgeschlossen:

Es sei $(f^{(i)})_i$ eine Folge in $R\llbracket T \rrbracket^{\times}$ die gegen ein $f \in R\llbracket T \rrbracket$ konvergiert. Für alle $i \geq 0$ ist $f_0^{(i)} \in R^{\times}$, da $f^{(i)}$ invertierbar ist. Es gibt ein $j \geq 0$ mit $f_0 = f_0^{(i)}$ für alle $i \geq j$. Also ist auch $f_0 \in R^{\times}$, und somit $f \in R\llbracket T \rrbracket^{\times}$. Das zeigt, dass $R\llbracket T \rrbracket^{\times}$ folgenabgeschlossen in $R\llbracket T \rrbracket$ ist, und somit abgeschlossen in $R\llbracket T \rrbracket$.

Analog ergibt sich, dass auch $R[\![T]\!] \setminus R[\![T]\!]^{\times}$ abgeschlossen ist, und $R[\![T]\!]^{\times}$ somit offen. Die Aussage lässt sich auch abstrakter einsehen: Versieht man R mit der diskreten Topologie, bzw. der diskreten Metrik, so ist die Projektion auf den konstanten Koeffizienten $\pi_0\colon R[\![T]\!] \to R$, $f\mapsto f_0$ stetig. Für jede Menge von Koeffizienten $C\subseteq R$ sind dann die Urbilder $\pi_0(C)$ und $\pi_0(R\setminus C)=R[\![T]\!] \setminus \pi_0(C)$ offen in $R[\![T]\!]$. Wählt man $C=R^{\times}$, so ergibt sich die Aussage.

v)

Es genügt zu zeigen, dass R[T] bezüglich d_q vollständig ist. Die Menge der Cauchyfolgen stimmt dann mit der Menge der konvergenten Folgen überein, und diese ist unabhängig von q, da die Topologie unabhängig von q ist.

Ist $(f^{(i)})_i$ eine Cauchyfolge in R[T] bezüglich d_q , so ist inbesondere $d_q(f^{(i+1)}, f^{(i)}) \to 0$ für $i \to \infty$. Wegen der Translationsinvarianz von d_q ist $d_q(f^{(i+1)} - f^{(i)}, 0) \to 0$, also $f^{(i+1)} - f^{(i)} \to 0$. Nach Aufgabenteil ii) gibt es deshalb für jedes $n \ge 0$ ein $j \ge 0$ mit

 $f_n^{(i+1)}-f_n^{(i)}=0$ für alle $i\geq j$, also $f_n^{(i+1)}=f_n^{(i)}$ für alle $i\geq j$, weshalb die Folge $(f_n^{(i)})_i$ für $i\geq j$ konstant ist. Nach Aufgabenteil ii) konvergiert die Folge $(f^{(i)})_i$ deshalb.

vi)

Nachweis der Kontraktion

Behauptung. Für alle $f, g \in R[T]$ gilt

$$\nu(fg) \ge \nu(g)$$
 und $\nu(Tg) = \nu(g) + 1$.

Ist $f \in T \cdot R[T]$, so gilt $\nu(fg) \ge \nu(g) + 1$.

Beweis. Für alle $0 \le i < \nu(g)$ gilt $g_i = 0$ und somit auch

$$(fg)_i = \sum_{j=0}^{i} f_j \underbrace{g_{i-j}}_{=0} = 0.$$

Deshalb ist $\nu(fg) \geq \nu(g)$. (Tatsächlich ergibt sich mit der obigen Argumentation, dass $\nu(fg) \geq \nu(f) + \nu(g)$. Ist R ein Integritätsbereich, so handelt es sich hierbei um eine Gleichheit.) Aus $(Tg)_0 = 0$ und $(Tg)_i = (Tg)_{i-1}$ für alle $i \geq 1$ ergibt sich, dass $\nu(Tg) = \nu(g) + 1$. Ist $f \in T \cdot R[T]$ so gibt es ein $f' \in R[T]$ mit f = Tf'. Deshalb gilt dann

$$\nu(fg) = \nu(Tf'g) = \nu(f'g) + 1 \ge \nu(g) + 1.$$

Für alle $f \in T \cdot R[T]$ und $g \in R[T]$ bezeichnen wir die gegebene Abbildung mit

$$\phi_{f,g} \colon R\llbracket T \rrbracket \to R\llbracket T \rrbracket, \quad x \mapsto g - fx.$$

Aus der obigen Behauptung erhalten wir für alle $x_1, x_2 \in R[T]$, dass

$$\begin{split} d_q(\phi_{f,g}(x_1),\phi_{f,g}(x_2)) &= d_q(g-fx_1,g-fx_2) = q^{-\nu((g-fx_1)-(g-fx_2))} \\ &= q^{-\nu(f(x_2-x_1))} \leq q^{-(\nu(x_2-x_1)+1)} = q^{-1}q^{-\nu(x_2-x_1)} \\ &= q^{-1}d_q(x_2,x_1) = q^{-1}d_q(x_1,x_2). \end{split}$$

Da q > 1 ist $0 < q^{-1} < 1$. Damit haben wir gezeigt, dass $\phi_{f,g}$ bezüglich d_q eine Kontraktion ist (mit möglicher Kontraktionskonstante q^{-1}).

Bestimmung der Einheiten

Ist $f \in R[\![T]\!]$ eine Einheit, so gibt es ein $g \in R[\![T]\!]$ mit fg=1. Dann muss $1=(fg)_0=f_0g_0$ und somit $f_0 \in R^\times$ (mit $f_0^{-1}=g_0$).

Es sei nun andererseits $f \in R[T]$ mit $f_0 \in R^{\times}$.

Im Fall $f_0 = 1$ betrachten wir die abgeänderte Potenzreihe

$$f' := f - 1 = f - f_0 = \sum_{i=1}^{\infty} f_i T^i \in T \cdot R[T].$$

Dann ist $\phi_{f',1} \colon R[\![T]\!] \to R[\![T]\!]$ eine Kontraktion bezüglich d_q . Da $R[\![T]\!]$ bezüglich d_q ein vollständiger metrischer Raum ist, können wir auf $\phi_{f',1}$ den Banachschen Fixpunktsatz anwenden. Somit erhalten wir einen (eindeutigen) Fixpunkt $x \in R[\![T]\!]$ von $\phi_{f',1}$. Es gilt nun $x = \phi_{f',1}(x) = 1 - f'x$ und somit x(1+f') = 1. Also ist x=f'=f'0 eine Einheit (mit x=f'=f'1).

Ist allgemeiner $f_0 \in R^{\times}$, so lässt sich f als $f = f_0(f_0^{-1}f)$ schreiben. Nach der obigen Argumentation ist $f_0^{-1}f$ eine Einheit in $R[\![T]\!]$. Da auch $f_0 \in R^{\times} \subseteq R[\![T]\!]^{\times}$ ist f das Produkt zweier Einheiten, und damit ebenfalls eine Einheit.

vii)

Für $f \in R[T]$ und die Folge $(f^{(i)})_i$ von Polynomen $f^{(i)} := \sum_{j=0}^i f_j T^j \in R[T]$ gilt nach Aufgabenteil ii), dass $f^{(i)} \to f$ für $i \to \infty$. Also ist R[T] dicht in R[T].

viii)

Motivation

Ein Ringhomomorphismus $\psi\colon R[T]\to S$ ist eindeutig durch die Einschränkung $\varphi\coloneqq\psi|_R$ und das Bild $s\coloneqq\psi(T)$ bestimmt: Für ein beliebiges Polynom $\sum_i a_iT^i\in R[T]$ gilt dann, dass

$$\psi\left(\sum_{i} a_{i} T^{i}\right) = \sum_{i} \psi(a_{i}) s^{i}; \tag{2}$$

da $a_i=0$ für fast alle i gilt, ist auch $\psi(a_i)=0$ für fast alle i, und die Summe $\sum_i \psi(a_i) s^i$ somit wohldefiniert. Umgekehrt liefert jedes Paar (φ,s) bestehend aus einem Ringhomomorphismus $\varphi\colon R\to S$ und einen Element $s\in S$ durch (2) einen Ringhomomorphismus $\psi\colon R[T]\to S$, und die beiden Konstruktionen sind invers zueinander.

Es ist naheliegend, dieses Ergebnis auf den Potenzreihenring $R[\![T]\!]$ zu verallgemeinern: Ein Ringhomomorphismus $\psi\colon R[\![T]\!] \to S$ sollte mit $\varphi\coloneqq \psi|_R$ und $s\coloneqq \psi(T)$ durch $\psi(\sum_i a_i T^i) = \sum_i \varphi(a_i) s^i$ eindeutig bestimmt sein. Die oben genutzte Bedingung, dass $a_i=0$ für fast alle i, gilt nun aber nicht mehr; daher ergibt der Ausdruck $\sum_i \varphi(a_i) s^i$ im Allgemeinen keinen Sinn.

Man kann diesen Ausdruck Sinn verleihen, indem man fordert, dass S ein topologischer Raum ist: Dann kann $\sum_i \varphi(a_i) s^i$ als eine Reihe gesehen werden. Damit diese Reihe konvergiert muss die Wahl von s allerdings noch passend eingeschränkt werden; für s=1 und $\sum_i a_i T^i = \sum_i T^i$ (also $a_i=1$ für alle i) ergibt etwa die Summe $\sum_i 1$ im Allgemeinen keinen Sinn. Außerdem sollte ψ stetig sein, damit ψ auch mit unendlichen Summen verträglich ist

Bevor wir uns an das Rechnen machen, wollen wir noch abkürzende Begriffe einführen:

Definition 3. *Es sei* $a: \mathbb{N}^2 \to R$.

1. Die Matrix a heißt zeilenendlich, wenn in jeder Zeile fast alle Einträge verschwinden, d.h. für jedes $i \in \mathbb{N}$ gilt $a_{ij} = 0$ für fast alle $j \in \mathbb{N}$.

2. Die Matrix a heißt spaltenendlich, wenn in jeder Spalte fast alle Einträge verschwinden, d.h. für jedes $j \in \mathbb{N}$ gilt $a_{ij} = 0$ für fast alle $i \in \mathbb{N}$.

Ringhomomorphismen $\psi \colon R[\![T]\!] \to S \leadsto \mathsf{Paare}\ (\varphi,s)$

Es sei $\psi \colon R[T] \to S$ ein stetiger Ringhomomorphismus. Es seien $\varphi := \psi|_R$ und $s := \psi(T)$. Dann ist φ ein Ringhomomorphismus, und es gilt zu zeigen, dass

$$\sum_{j} \left(\sum_{i} \varphi(a_{ij}) s^{i} \right) = \sum_{i} \left(\sum_{j} \varphi(a_{ij}) s^{i} \right)$$

für jede zeilen- und spaltenendliche Matrix $a \colon \mathbb{N}^2 \to R$. Hierfür fixieren wir eine solche Matrix.

Für alle $i,j\in\mathbb{N}$ seien $f^{(i)}\coloneqq\sum_j a_{ij}T^i$ und $g^{(j)}\coloneqq\sum_i a_{ij}T^i$; da a zeilen- und spaltenendlich ist sind beide Summen endlich.

Behauptung. Die beiden Reihen $\sum_{i=0}^{\infty} f^{(i)}$ und $\sum_{j=0}^{\infty} g^{(j)}$ konvergieren, und für die Grenzwerte gilt $\sum_{i=0}^{\infty} f^{(i)} = \sum_{j=0}^{\infty} g^{(j)}$.

Beweis. a Für alle $n \geq 0$ gilt $f_n^{(i)} = \delta_{ni} \sum_j a_{ij}$. Also ist $f_n^{(i)} = 0$ alle $i \neq n$, we shalb die Reihe $\sum_{i=0}^{\infty}$ nach Aufgabenteil ii) konvergiert. Für den Grenzwert $f \coloneqq \sum_{i=0}^{\infty} f^{(i)}$ gilt $f_n = \sum_{i=0}^{\infty} f_n^{(i)} = \sum_j a_{nj}$ für alle $n \geq 0$.

Für alle $n \geq 0$ gilt $g_n^{(j)} = a_{nj}$. Wegen der Spaltenendlichkeit von a gilt für jedes $n \geq 0$, dass $g_n^{(j)} = a_{nj} = 0$ für fast alle $j \geq 0$. Deshalb konvergiert die Reihe $\sum_{j=0}^{\infty} g^{(j)}$. Für den Grenzwert $g \coloneqq \sum_{j=0}^{\infty} g^{(j)}$ gilt $g_n = \sum_{j=0}^{\infty} g_n^{(j)} = \sum_j a_{nj}$ für alle $n \geq 0$, und somit f = g.

Anwenden von ψ auf die Reihe $\sum_{i=0}^{\infty} f^{(i)}$ ergibt, dass die Reihe $\sum_{i=0}^{\infty} \psi(f^{(i)})$ konvergiert, und dass

$$\psi\left(\sum_{i=0}^{\infty} f^{(i)}\right) = \sum_{i=0}^{\infty} \psi(f^{(i)}) = \sum_{i=0}^{\infty} \psi\left(\sum_{j} a_{ij} T^{i}\right) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \varphi(a_{ij}) s^{i}.$$

Analog ergibt sich, dass auch die Reihe $\sum_{j=0}^\infty \psi(g^{(i)})$ konvergiert, und dass

$$\psi\left(\sum_{j=0}^{\infty} g^{(j)}\right) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \varphi(a_{ij}) s^{i}.$$

Also konvergieren die beiden Reihen $\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\varphi(a_{ij})s^i$ und $\sum_{j=0}^{\infty}\sum_{i=0}^{\infty}\varphi(a_{ij})s^i$. Da $\sum_{i=0}^{\infty}f^{(i)}$ und $\sum_{j=0}^{\infty}g^{(j)}$ ergibt sich außerdem, dass die beiden Reihen gleich sind.

Paare $(\varphi, s) \rightsquigarrow \mathsf{Ringhomomorphismen} \ \psi \colon R[\![T]\!] \to S$

Es sei nun (φ, s) ein Paar bestehend aus einem Ringhomomorphismus $\varphi \colon R \to S$ und einem Element $s \in S$, so dass für jede zeilen- und spaltenendliche Matrix $a \colon \mathbb{N}^2 \to R$ die beiden Reihen $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \varphi(a_{ij}) s^i$ und $\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \varphi(a_{ij}) s^i$ konvergieren und die beiden Grenzwerte übereinstimmen. Wir konstruieren in mehreren Schritten einen stetigen Ringhomomorphismus $\psi \colon R[\![T]\!] \to S$ mit $\psi|_R = \varphi$ und $\psi(T) = s$.

Schritt 1: Konstruktion von $\tilde{\psi} \colon R[T] \to S$

Nach der universellen Eigenschaft des Polynomrings R[T] entspricht das Paar (φ,s) einem eindeutigen Ringhomomorphismus $\tilde{\psi} \colon R[T] \to S$ mit $\tilde{\psi}|_R = \varphi$ und $\tilde{\psi}(T) = s$.

Schritt 2:
$$(f^{(i)})_i$$
 konvergiert in $R[T] \implies \tilde{\psi}(f^{(i)})_i$ konvergiert in S

Ist $(f^{(i)})_i$ eine in R[T] konvergente Folge von Polynomen $f^{(i)} \in R[T]$ so konvergiert auch die Bildfolge $(\tilde{\psi}(f^{(i)}))_i$:

Wir definieren die Folge $(g^{(i)})_i$ von Polynomen $g^{(i)} \in R[T]$ durch $g^{(0)} := f^{(0)}$ und $g^{(i)} := f^{(i)} - f^{(i-1)}$ für alle $i \geq 1$. Dann ist $\sum_{j=0}^i g^{(j)} = f^{(i)}$ für alle i. Damit ist ins-

$$\tilde{\psi}(f^{(i)}) = \tilde{\psi}\left(\sum_{j=0}^i g^{(j)}\right) = \sum_{j=0}^i \tilde{\psi}(g^{(j)}) \qquad \text{für alle } i \geq 0.$$

Es gilt also zu zeigen, dass die Reihe $\sum_{j=0}^\infty \tilde{\psi}(g^{(j)})$ konvergiert.

Da die Folge $f^{(i)}$ konvergiert, wissen wir, dass die Reihe $\sum_{j=0}^{\infty}g^{(j)}$ konvergiert. Die Matrix $a: \mathbb{N}^2 \to R$, $(i,j) \mapsto g_i^{(j)}$ ist zeilen- und spaltenendlich: Für jedes $j \geq 0$ ist $g^{(j)}$ ein Polynom und somit $g_i^{(j)}=0$ für fast alle $i\geq 0$. Da die Reihe $\sum_{j=0}^\infty g^{(j)}$ konvergiert, gilt nach Aufgabenteil ii) für jedes $i \ge 0$, dass $g_i^{(j)} = 0$ für fast alle $j \ge 0$.

Da die Matrix a zeilen- und spaltenendlich ist, konvergiert die Reihe $\sum_{i=0}^{\infty} \sum_{i} \varphi(g_i^{(j)}) s^i$ nach Annahme. Da

$$\sum_{i} \varphi\left(g_{i}^{(j)}\right) s^{i} = \tilde{\psi}\left(\sum_{i} g_{i}^{(j)} T^{i}\right) = \tilde{\psi}\left(g^{(j)}\right) \qquad \text{für alle } i \geq 0$$

ist dies genau die Konvergenz der Reihe $\sum_{j=0}^{\infty} \tilde{\psi}(g^{(j)})$.

Schritt 3: Falls $(f^{(i)})_i \to f$ in R[T], dann gilt $\lim_{i \to \infty} \tilde{\psi}(f^{(i)}) = \sum_{i=0}^{\infty} f_i s^i$

Ist $(f^{(i)})_i$ eine Folge von Polynomen $f^{(i)} \in R[T]$ mit $f^{(i)} \to f \in R[T]$, so gilt für den Grenzwert $\lim_{i \to \infty} \tilde{\varphi}(f^{(i)})$, dass $\lim_{i \to \infty} \tilde{\varphi}(f^{(i)}) = \sum_{i=0}^{\infty} \varphi(f_i)s^i$: Die Folge $(g^{(j)})$ von Polynomen $g^{(j)} \in R[T]$ sei definiert wie zuvor. Wie oben gesehen gilt $f = \lim_{i \to \infty} f^{(i)} = \sum_{j=0}^{\infty} g^{(j)}$, und die Matrix $\mathbb{N}^2 \to R$, $(i,j) \mapsto g_i^{(j)}$ ist zeilen- und

spaltenendlich. Damit erhalten wir, dass

$$\begin{split} \lim_{i \to \infty} \tilde{\psi} \left(f^{(i)} \right) &= \sum_{j=0}^{\infty} \tilde{\psi} \left(g^{(j)} \right) = \sum_{j=0}^{\infty} \tilde{\psi} \left(\sum_{i} g_{i}^{(j)} T^{i} \right) = \sum_{j=0}^{\infty} \sum_{i} \varphi \left(g_{i}^{(j)} \right) s^{i} \\ &= \sum_{i=0}^{\infty} \sum_{j} \varphi \left(g_{i}^{(j)} \right) s^{i} = \sum_{i=0}^{\infty} \varphi \left(\sum_{j} g_{i}^{(j)} \right) s^{i} = \sum_{i=0}^{\infty} \varphi \left(\left(\sum_{j=0}^{\infty} g^{(j)} \right)_{i} \right) s^{i} \\ &= \sum_{i=0}^{\infty} \varphi(f_{i}) s^{i}. \end{split}$$

Schritt 4: Konstruktion von ψ

Wir können nun ψ definieren: Es sei $f \in R[\![T]\!]$. Wegen der Dichtheit von R[T] in $R[\![T]\!]$ gibt es eine Folge $(f^{(i)})_i$ von Polynomen $f^{(i)} \in R[T]$ mit $f^{(i)} \to f$. Nach den vorherigen Schritten konvergiert die Bildfolge $(\tilde{\psi}(f^{(i)}))_i$ und der Grenzwert $\lim_{i \to \infty} \tilde{\psi}(f^{(i)}) = \sum_{i=0}^\infty f_i s^i$ hängt nur von f ab. Wir definieren $\psi(f) \coloneqq \lim_{i \to \infty} \tilde{\psi}(f^{(i)}) = \sum_{i=0}^\infty f_i s^i$.

Man bemerke, dass $\psi|_{R[T]} = \hat{\psi}$:

Schritt 5: Stetigkeit von ψ

Der Beweis der Stetigkeit von ψ wird noch hinzugefügt.

Wir wollen hier aber noch bemerken, dass ψ die eindeutige stetige Fortsetzung von $\tilde{\psi}$ auf $R[\![T]\!]$ ist: Ist $\psi'\colon R[\![T]\!]\to S$ eine stetige Fortsetzung von $\tilde{\psi}$, so gibt es für jedes $f\in R[\![T]\!]$ eine Folge $(f^{(i)})_i$ von Polynomen $f^{(i)}\in R[\![T]\!]$ mit $f^{(i)}\to f$ mit $f^{(i)}\to f$, weshalb

$$\psi'(f) = \psi'\left(\lim_{i \to \infty} f^{(i)}\right) = \lim_{i \to \infty} \psi'(f^{(i)}) = \lim_{i \to \infty} \tilde{\psi}(f^{(i)}) = \psi(f).$$

Schritt 6: ψ ist ein Ringhomomorphismus

Es seien $f,g\in R[\![T]\!]$ und $(f^{(i)})_i,(g^{(i)})_i$ zwei Folgen von Polynomen $f^{(i)},g^{(i)}\in R[\![T]\!]$ mit $f^{(i)}\to f$ und $g^{(i)}\to g$. Aus der Stetigkeit der Addition von $R[\![T]\!]$ folgt, dass auch $f^{(i)}+g^{(i)}\to f+g$. Aus der Stetigkeit der Addition von S und der Stetigkeit von ψ ergibt sich damit, dass

$$\begin{split} \psi(f) + \psi(g) &= \left(\lim_{i \to \infty} \tilde{\psi}(f^{(i)})\right) + \left(\lim_{i \to \infty} \tilde{\psi}(g^{(i)})\right) = \lim_{i \to \infty} (\tilde{\psi}(f^{(i)}) + \tilde{\psi}(g^{(i)})) \\ &= \lim_{i \to \infty} \tilde{\psi}(f^{(i)} + g^{(i)}) = \tilde{\psi}\left(\lim_{i \to \infty} f^{(i)} + g^{(i)}\right) = \psi(f + g). \end{split}$$

Also ist ψ additiv. Analog ergibt sich, dass ψ multiplikativ ist (in der obigen Argumentation ersetzt man Addition durch Multiplikation). Außerdem gilt

$$\psi(1) = \psi(T^0) = \psi\left(\sum_{i=0}^{\infty} \delta_{i,0} T^i\right) = \sum_{i=0}^{\infty} \varphi(\delta_{i,0}) s^i = \sum_{i=0}^{\infty} \delta_{i,0} s^i = s^0 = 1.$$

Schritt 7: Die beiden Konstruktionen sind invers zueinender

Es sei $\psi\colon R[\![T]\!] \to S$ ein stetiger Ringhomomorphismus. Es seien $\varphi\coloneqq\psi|_R$ und $s\coloneqq\psi(T)$. Es sei $\tilde{\theta}\colon R[\![T]\!] \to S$ der eindeutige Ringhomomorphismus mit $\tilde{\theta}|_R=\varphi$ und $\tilde{\theta}(T)=s$, und es sei $\theta\colon R[\![T]\!] \to S$ die eindeutige stetige Fortsetzung von $\tilde{\theta}$. Die Einschränkung $\tilde{\psi}\coloneqq\psi|_{R[T]}$ ist ein Ringhomomorphismus mit $\tilde{\psi}|_R=\psi|_{R[T]}|_R=\psi|_R=\varphi$ und $\tilde{\psi}(T)=\psi(T)=s$, weshalb $\tilde{\psi}=\tilde{\theta}$. Also ist ψ eine stetige Fortsetzung von $\tilde{\psi}=\tilde{\theta}$ auf $R[\![T]\!]$; wegen der Eindeutigkeit dieser Fortsetzung ist $\psi=\theta$.

Es sei nun (φ,s) ein Paar bestehend aus einem Ringhomomorphismus $\varphi\colon R\to S$ und einem Element $s\in S$ wie in der Aufgabenstellung. Es sei $\tilde{\psi}\colon R[T]\to S$ der eindeutige Ringhomomorphismus mit $\tilde{\psi}|_R=\varphi$ und $\psi\colon R[\![T]\!]\to S$ die eindeutige stetige Fortsetzung von ψ . Für das zu ψ gehörige Paar (φ',s') mit $\varphi'=\psi|_R$ und $s'=\psi(T)$ gilt $\varphi'=\psi|_R=\tilde{\psi}|_R=\varphi$ und $s'=\psi(T)=\tilde{\psi}(T)=s$, also $(\varphi',s')=(\varphi,s)$.

ix)

Es sei $\iota\colon R\to R[\![T]\!], r\mapsto r=rT^0$ die kanonische Inklusion und $f\in T\cdot R[\![T]\!]$. Es gilt zu zeigen, dass das Paar (ι,f) im Sinne des vorherigen Aufgabenteiles einen wohldefinierten Ringendomorphismus

$$\psi \colon R\llbracket T \rrbracket \to R\llbracket T \rrbracket, \quad \sum_{i=0}^{\infty} a_i T^i \mapsto \sum_{i=0}^{\infty} a_i f^i$$

induziert. Hierfür müssen wir überprüfen, dass für jede zeilen- und spaltenendliche Matrix $a\colon \mathbb{N}^2 \to R$ die beiden Reihen

$$\sum_{i=0}^{\infty} \left(\sum_{j} \iota(a_{ij}) f^i \right) = \sum_{i=0}^{\infty} \left(\sum_{j} a_{ij} f^i \right) \quad \text{und} \quad \sum_{j=0}^{\infty} \left(\sum_{i} \iota(a_{ij}) f^i \right) = \sum_{j=0}^{\infty} \left(\sum_{i} a_{ij} f^i \right)$$

konvergieren und gleichen Wert haben.

Hierfür bemerken wir, dass aus $f \in T \cdot R[T] = (T)$ folgt, dass $f^i \in (T^i)$ für alle $i \ge 0$ (da $f \in (T)$ ist f = Tg für ein $g \in R[T]$, und somit $f^i = T^i g^i \in (T^i)$ für alle $i \ge 0$).

Für jedes $i \geq 0$ gilt $f^i \in (T^i)$ und somit $\sum_j a_{ij} f^i \in (T^i)$. Deshalb gilt $(\sum_j a_{ij} f^i)_n = 0$ für alle i > n, und somit $\sum_j a_{ij} f^i \to 0$ für $i \to \infty$. Nach Aufgabenteil ii) konvergiert deshalb die Reihe $\sum_{i=0}^{\infty} (\sum_j a_{ij} f^i)$, und für alle $n \geq 0$ gilt

$$\left(\sum_{i=0}^{\infty} \left(\sum_{j} a_{ij} f^{i}\right)\right)_{n} = \sum_{i=0}^{\infty} \left(\sum_{j} a_{ij} f^{i}\right)_{n} = \sum_{i} \sum_{j} a_{ij} (f^{i})_{n}.$$

Für die Konvergenz der Reihe $\sum_{j=0}^{\infty}(\sum_{i}a_{ij}f^{i})$ gilt es zu zeigen, dass $\sum_{i}a_{ij}f^{i}\to 0$ für $j\to\infty$, dass es also für jedes $n\geq 0$ ein $J\geq 0$ mit $(\sum_{i}a_{ij}f^{i})_{n}=0$ für alle $j\geq J$ gibt. Für jedes $j\geq 0$ gilt für alle $n\geq 0$, dass

$$\left(\sum_{i} a_{ij} f^{i}\right) = \sum_{i} a_{ij} (f^{i})_{n} = \sum_{i=0}^{n} a_{ij} (f^{i})_{n}.$$

Wegen der Zeilenendlichkeit von a gibt es für jedes $i=0,\ldots,n$ ein $J_i\geq 0$ mit $a_{ij}=0$ für alle $j \geq J_i$. Für $J \coloneqq \max_{i=1,\dots,n} J_i$ gilt dann $a_{ij} = 0$ für alle $i = 1,\dots,n$ und $j \geq J$. Für jedes $j \geq J$ ist also $(\sum_i a_{ij} f^i)_n = \sum_{i=0}^n a_{ij} (f^i)_n = 0$. Die Reihe $\sum_{j=0}^\infty (\sum_i a_{ij} f^j)$ konvergiert also, und für jedes $n \geq 0$ gilt

$$\left(\sum_{j=0}^{\infty} \left(\sum_{i} a_{ij} f^{i}\right)\right)_{n} = \sum_{j} \left(\sum_{i} a_{ij} f^{i}\right)_{n} = \sum_{j} \sum_{i} a_{ij} (f^{i})_{n}.$$

Wegen der Endlichkeit der Summen $\sum_i \sum_j a_{ij} (f^i)_n$ und $\sum_j \sum_i a_{ij} (f^i)_n$ ergibt sich für die beiden konvergenten Reihen $\sum_{i=0}^\infty \sum_j a_{ij} f^i$ und $\sum_{j=0}^\infty \sum_i a_{ij} f^i$, dass

$$\left(\sum_{i=0}^{\infty} \left(\sum_{j} a_{ij} f^i\right)\right)_n = \sum_{i} \sum_{j} a_{ij} (f^i)_n = \sum_{j} \sum_{i} a_{ij} (f^i)_n = \left(\sum_{j=0}^{\infty} \left(\sum_{i} a_{ij} f^i\right)\right)_n$$

für alle $n \ge 0$, und somit $\sum_{i=0}^{\infty} \sum_{j} a_{ij} f^i = \sum_{j=0}^{\infty} \sum_{i} a_{ij} f^i$.

x)

Es sei $f \in R[\![T]\!]$ mit $f_0 = 1$. Die Potenzreihe $g \coloneqq f - 1 = \sum_{i=1}^\infty f_i T^i \in T \cdot R[\![T]\!]$ liefert nach dem vorherigen Aufgabenteil einen stetigen Ringendomorphismus $\psi \colon R[\![T]\!] \to R[\![T]\!]$ mit $\psi(\sum_i a_i T^i) = \sum_{i=0}^\infty a_i g^i$ für alle $\sum_i a_i T^i \in R[\![T]\!]$. Inbesondere gilt $f = 1 + g = \psi(1 + T)$. Da $(1+T)(\sum_i (-1)^i T) = 1$ ist 1+T eine Einheit mit $(1+T)^{-1} = \sum_i (-1)^i T^i$. Deshalb ist auch $\psi(1+T)=1+g=f$ eine Einheit in $R[\![T]\!]$ mit

$$\psi(1+T)^{-1} = \psi\left((1+T)^{-1}\right) = \psi\left(\sum_{i}(-1)^{i}T^{i}\right) = \sum_{i}(-1)^{i}g^{i}.$$

Damit haben wir gezeigt, dass jede Potenzreihe $f \in R[T]$ mit $f_0 = 1$ eine Einheit ist. Die Charakterisierung der Einheitengruppe $R[T]^{\times}$ ergibt sich damit wie in Aufgabenteil vi).