Likelihood and Log Likelihood

Andy Grogan-Kaylor 2022-03-03

Contents

- 1 Background 1
- 2 Maximum Likelihood Estimation 1
- 3 Log-Likelihood 1
- 4 Visualizing the Likelihood and Log-Likelihood 1
- 5 Conclusion 1

1 Background

The likelihood is the probability that a given set of parameters would give rise to a given data set.

Formally, the likelihood is a product of probabilities.

$$\mathcal{L}(\beta) = \prod p(\beta|x, y)$$

2 Maximum Likelihood Estimation

Maximum Likelihood Estimation is essentially the process of finding the combination of parameters (e.g. β) which maximizes the likelihood of producing the data.

3 Log-Likelihood

Because probabilities are by definition < 1, the likelihood $\mathcal L$ tends to be a very small number. For a variety of reasons, it is often easier to work with the logarithm of the likelihood: $\ln \mathcal L$.

4 Visualizing the Likelihood and Log-Likelihood

5 Conclusion

Higher values of the *log-likelihood* closer to 0 represent models with a better fit.

Joint Likelihood of Two Parameters

Figure 1: Joint Likelihood of Two Parameters

Figure 2: Likelihood and Log-Likelihood