

IN THE CLAIMS

1. (currently amended) A method of displaying an input signal, the method comprising:
 - sampling the input signal;
 - searching for a zero space pattern in the sampled signal;
 - determining, if zero space pattern is not found, whether non-return-to-zero (NRZ) autoscale is applicable ~~if zero space pattern is not found~~;
 - performing, if zero space pattern is found, the following:
 - locating a first zero space;
 - locating a second zero space, following the first zero space;
 - calculating bit period of the input signal by determining time period between the first zero space and the second zero space;
 - displaying the input signal using the calculated bit period as the basis for a scale; and
 - wherein each of the zero spaces is a period of time with no signal value above a threshold.
2. (original) The method recited in claim 1 further comprising initializing offset and time scale.
3. (previously cancelled).
4. (original) The method recited in claim 1 wherein the step of locating the first zero space comprises:
 - locating a first transition, X_1 , where value of the input signal is more than a threshold value, V_{THRES} , before the first transition, X_1 , but less than the threshold value, V_{THRES} , after the first transition, X_1 , the first transition, X_1 , being the first such transition following the offset; and

locating a second transition, X_2 , where value of the input signal is less than the threshold value, V_{THRES} , before the second transition, X_2 , but more than the threshold value, V_{THRES} , after the second transition, X_2 , the second transition, X_2 , being the first such transition following the first transition, X_1 .

5. (original) The method recited in claim 4 wherein the step of locating the second zero space comprises:

locating a third transition, X_3 , where value of the input signal is more than a threshold value, V_{THRES} , before the third transition, X_3 , but less than the threshold value, V_{THRES} , after the third transition, X_3 , the third transition, X_3 , being the first such transition following the second transition, X_2 ; and

locating a fourth transition, X_4 , where value of the input signal is less than the threshold value, V_{THRES} , before the fourth transition, X_4 , but more than the threshold value, V_{THRES} , after the fourth transition, X_4 , the fourth transition, X_4 , being the first such transition following the third transition, X_3 .

6. (original) The method recited in claim 5 wherein the step of calculating the bit period comprises determining temporal difference between the third transition, X_3 , and the first transition, X_1 .

7. (original) The method recited in claim 1 further comprising displaying the input signal using a multiple of the calculated bit period as the scale.

8. (currently amended) An apparatus for displaying an input signal, the apparatus comprising:
a processor;
storage connected to the processor, the storage including instructions for the processor to:
sample the input signal;

search for a zero space pattern in the sampled signal;
determine, if zero space pattern is not found, whether non-return-to-zero
(NRZ) autoscale is applicable if zero space pattern is not found;
perform, if zero space pattern is found, the following:
 locate a first zero space;
 locate a second zero space, following the first zero space;
 calculate bit period of the input signal by determining time period
 between the first zero space and the second zero space;
 display the input signal using the calculated bit period as the basis
 for a scale; and
 wherein each of the zero spaces is a period of time with no signal
 value above a threshold.

9. (original) The apparatus recited in claim 8 wherein the storage further comprises
instructions for the processor to initialize offset and time scale.

10. (previously cancelled).

11. (original) The apparatus recited in claim 8 wherein the storage further comprises
instructions for the processor to:

 locate a first transition, X_1 , where value of the input signal is more than a threshold
 value, V_{THRES} , before the first transition, X_1 , but less than the threshold
 value, V_{THRES} , after the first transition, X_1 , the first transition, X_1 , being the
 first such transition following the offset; and

 locate a second transition, X_2 , where value of the input signal is less than the
 threshold value, V_{THRES} , before the second transition, X_2 , but more than the
 threshold value, V_{THRES} , after the second transition, X_2 , the second
 transition, X_2 , being the first such transition following the first transition,
 X_1 .

12. (original) The apparatus recited in claim 11 wherein the storage further comprises instructions for the processor to:

locate a third transition, X_3 , where value of the input signal is more than a threshold value, V_{THRES} , before the third transition, X_3 , but less than the threshold value, V_{THRES} , after the third transition, X_3 , the third transition, X_3 , being the first such transition following the second transition, X_2 ; and

locate a fourth transition, X_4 , where value of the input signal is less than the threshold value, V_{THRES} , before the fourth transition, X_4 , but more than the threshold value, V_{THRES} , after the fourth transition, X_4 , the fourth transition, X_4 , being the first such transition following the third transition, X_3 .

13. (previously presented) The apparatus recited in claim 8 wherein the storage further comprises instructions for the processor to determine temporal difference between the third transition, X_3 , and the first transition, X_1 .

14. (original) The apparatus recited in claim 13 wherein the storage further comprises instructions for the processor to display the input signal using a multiple of the calculated bit period as the scale.

15. (currently amended) A machine readable medium comprising program for the machine to display an input signal, the program comprising instructions for the machine to:

sample the input signal;
search for a zero space pattern in the sampled signal;
determine, if zero space pattern is not found, whether non-return-to-zero (NRZ)
autoscale is applicable if zero space pattern is not found;
perform, if zero space pattern is found, the following:
locate a first zero space;

locate a second zero space, following the first zero space;
calculate bit period of the input signal by determining time period between
the first zero space and the second zero space;
display the input signal using the calculated bit period as the basis for a
scale; and
wherein each of the zero spaces is a period of time with no signal value
above a threshold.

16. (original) The medium recited in claim 15 wherein the medium is selected from a group consisting of magnetic disc, optical disc, read only memory (ROM), random access memory (RAM), harddrive, compact disc (CD), flash memory, and solid state memory.

//
//
//