05.04 — 16.04.2021 26/21/16 з. на 5/4/3

Цель этого листка — научиться считать количество комбинаторных объектов с учётом различных симметрий. Например, количество раскрасок *каруселей* или *ожерелий*.

Pаскраску карусели из n вагончиков в k цветов можно представлять как раскраску вершин правильного n-угольника в k цветов. Не обязательно использовать все цвета (это касается всех раскрасок в этом листке). При этом раскраски, совмещающиеся поворотом, считаются неотличимыми. Более научное названия для раскрасок каруселей — $uu\kappa$ лические nocледовательности.

Две pаскраски ожерелья из n бусин в k цветов считаются одинаковыми, если их можно перевести друг в друга поворотом или поворотом и «переворачиванием».

Задача 1. Найдите число раскрасок карусели из n вагончиков в k цветов для **a)** n=5; **б)** n=4; **в)** n=6.

Задача 2. Найдите число замкнутых ориентированных связных p-звенных ломаных с вершинами в вершинах данного правильного p-угольника (где p-простое). Ломаные, отличающиеся поворотом, неотличимы. Выведите отсюда критерий Вильсона для простого числа p (см. задачу 23.12г)).

Определение 1. Пусть дана группа преобразований G множества X. Говорят также, что группа G deŭ-cmeyem на множестве X. Введём на X отношение эквивалентности \sim :

$$a \sim b \Leftrightarrow \exists g : \ g(a) = b.$$

Классы эквивалентности по данному отношению \sim называются *орбитами*. Орбита элемента $x \in X$ обозначается так: Gx. Количество орбит обозначается через C(G,X) или C(G).

Задача 3 $^{\varnothing}$. Докажите, что \sim — отношение эквивалентности.

Задача 4. Объясните, что количество раскрасок каруселей и ожерелий является количеством орбит для некоторой группы преобразований G некоторого множества X и найдите G и X.

Задача 5. а) Опишите группу движений единичного круга; б) Найдите орбиту каждой точки при действии этой группы; в) Найдите преобразование, не имеющее конечного порядка.

Задача 6 Сколько элементов может быть в орбите карусели, состоящей из n вагончиков и раскрашенной в k цветов при **a)** n=4; n=6; **б)** произвольном n?

Задача 7. Ответьте на пункты предыдущей задачи для ожерелья из n бусин, раскрашенного в k цветов.

Определение 2. Неподвижными точками преобразования $g \in G$ называется те $x \in X$, для которых g(x) = x. Множеество неподвижных точек преобразования g обозначается через X^g .

Определение 3. *Стабилизатором* элемента $x \in X$ при действии группы преобразований G называется множество $\{g \mid g(x) = x\} \subset G$. **Обозначение:** G_x .

Задача 8. Найдите количество неподвижных точек $|X^g|$ для группы преобразования G множеств X из задачи 4, соответствующей **a)** раскраскам карусели; **б)** раскраскам ожерелий.

Задача 9. Найдите стабилизаторы каждой из точек следующих множеств при действии их групп движений: **a)** квадрата; **б)** правильного m-угольника. **в)*** куба;

Задача 10. Рассмотрим группу движений куба G. Эта группа также является группой преобразований следующих множеств: **a)** множества вершин куба; **b)** множества диагоналей куба; **b)** множества граней куба; **r)*** множества пар вершин куба. Опишите орбиты и стабилизаторы во всех случаях.

Задача 11 . Докажите следующие формулы: а) $C(G) = \sum_{x \in X} \frac{1}{|Gx|}$. б) $\sum_{x \in X} |G_x| = \sum_{g \in G} |X^g|$. Замечание 1. Как мы видим из задач 8 и 11, множество $|X^g|$ вычислять относительно просто, а чтобы

Замечание 1. Как мы видим из задач 8 и 11, множество $|X^g|$ вычислять относительно просто, а чтобы связать её с C(G) достаточно связать количество элементов в орбите и стабилизаторе. Это будет сделано в следующей задаче.

Задача 12 $^{\varnothing}$. **a)** Пусть g(a)=b. Как найти все элементы в G_b , зная все преобразования из G_a ?

- **б)** Докажите, что $|G| = |Gx| \cdot |G_x|$ для любого $x \in X$.
- в) (Лемма Бернсайда) Докажите, что число орбит равно среднему числу неподвижных точек, то есть $C(G) = \frac{1}{|G|} \sum_{g \in G} |X^g|$.

Задача 13. а) Сколько существует раскрасок каруселей из n вагончиков в k цветов?

- **б)** Сколько существует раскрасок ожерелий из n бусин в k цветов?
- ${\bf B}$) Сколькими способами можно раскрасить вершины куба в k цветов? Раскраски, совмещающиеся вращением куба (то есть движением, сохраняющим ориентацию, считаются одинаковыми.

$\begin{array}{ c c } 1 \\ a \end{array}$	1 6	1 B	2	3	4	5 a	5 6	5 B	6 a	6 6	7	8 a	8 6	9 a	9 6	9 B	$\begin{vmatrix} 10 \\ a \end{vmatrix}$	10 б	10 B	10 Г	11 a	11 б	12 a	12 б	12 B	13 a	13 б	13 B