E1	E2	E3	E4	R1	R2	R3	R4	R5	R6	L1	C1	T1
12 V	25 V	14 V	20 V	15 Ω	25 Ω	30 Ω	10 Ω	12 Ω	40 Ω	29 mH	20 μF	150 μs

ESERCIZIO 1: Data la seguente rete calcolare il valore delle seguenti grandezze: I1, I2, I3, I4, I6, Vab.

ESERCIZIO 2: Il circuito seguente è inizialmente a regime con l'interruttore aperto. All'istante t = 0 l'interruttore viene chiuso. Calcolare il valore della corrente i_L sull'induttore all'istante t = T1.

ESERCIZIO 3: Dato il circuito seguente calcolare la potenza attiva P, la potenza reattiva Q e la potenza apparente A erogate dal generatore e la corrente $\overline{I4}$ in modulo e fase.

SOLUZIONI

Esercizio 1:

l1	12	13	14	16	Vab
0,405 A	0,529 A	0,934 A	0,586 A	0,057 A	8,108 V

Esercizio 2:

$$i_L(t) = -0.053e^{-775.795t} + 0.533$$

 $i(T1) = 0.486 A$

Esercizio 3:

Z	ı	Р	Q	Α	14	<14
10+9,656j	0,724-	5,068 W	4,900 VAR	7,049 VA	1,007 A	-44°
	0,700 j					