MARCH DATA CRUNCH MADNESS 2023

Predicting NCAA Tournament Champion

Team Jordan Year

Yujoon Jang
Jennifer McFadden
Masaya Sugimoto
Jingqing Zhou

Sponsored by: **Deloitte.** FORDHAM

Introduction

Problem Statement

Can we predict the 2023 March Madness NCAA Men's Basketball tournament bracket winners?

Objective

Utilize historical data, player performance, and additional features to build a model that accurately predicts 2023 March Madness NCAA Men's Basketball tournament result.

Methodology

Data Pre-Processing Feature Selection New Features

- Data Cleaning
- Data Merge

Research

Model Selection

Model Evaluation

- Data Validation PCA
- FeatureEngineering
- RFE
- Correlations

- Logistic Regression
- Random Forest
- Decision Tree
- XGBoost
- LightGBM

- Log Loss
- ROC AUC
- Precision
- Recall
- F-Measure

Data Pre-Processing & Feature Engineering

New features derived from existing data to enhance model accuracy

Pythagorean Win Percentage

Team's expected win percentage based on adjusted offensive & defense efficiency

Distance From Home

Distance between home court and game location court

Team 1 & Team 2
Difference

Difference between Team 1 and Team 2 for all performance metrics

Feature Selection

Used RFE and PCA techniques to identify features with strongest predicting power

PCA

Principal Component 1

Represent 87% of the dataset

- dist_diff
- pt_career_overall_wins_diff
- pt_career_school_wins_diff
- pt_coach_season_wins_diff
- pt team season losses diff

- score diff
- seed_diff
- adjoe_diff
- adjde_diff
- oe diff

Principal Component 2

Combined with PC1 represent 95% of the dataset

- pt_career_overall_losses_diff
- pt_career_school_losses_diff
- pt_overall_ncaa_diff
- pt_school_ncaa_diff
- pt_overall_s16_diff
- pt_school_s16_diff

Feature Selection

Correlation analysis performed post feature selection to further refine feature list

- Heat map shows correlation between features remaining after selection process
- "Hot" features removed due to high correlation

New Feature Research

Conducted preliminary research to understand most impactful indicators for tournament success

Research

- 1st party Qualtrics survey conducted at NCAA regular season game (15 total responses)
- NCAA super-fans family members and friends
- Articles and insights from top analysts

Top-cited Indicators

- Money
- Team and coach historical performance
- Scoring ability

Areas of opportunity based on data source availability

- 1) Team budget
- 2) Top scorers per team
- 3) Injured players

New Features

Expense & Revenue

- Men's team expenses
- Revenue generated by Men's Team

Source: US Department of Education Equity in Athletics Data Analysis

Star Player Rating

 Top scoring player's avg. points-per-game (ppg) proportion of team avg. points-per-game

Source: NCAA Statistics

Player Injury Adjustment

 10% reduction on adjusted offensive & defensive efficiency for seasonending key player injuries

Source: Rotowire & News Coverage

* Applied to 2023 data only

Enhanced Historical Training Data:

- Historical data for new features only available for 2011-2023, so 2002-2010 season data were removed from training set.
- However, predicting value from new features outweighs the loss of a smaller training data size, and removes potentially outdated seasons.

New Features

Higher expense budget and revenue advantageous in early rounds, importance waned in later rounds

New Features

- Bigger is not necessarily better for star player rating
- Top scorer should account for middle ground of ~20% total team points

Team star player rating by tournament round performance (through final four)

Model Performance Comparison

Out of five models tested, Logistic Regression strongest based on log loss

Name	Accuracy	Precision	Recall	F1 Score	Log Loss	ROC AUC
Random Forest	0.82	0.75	0.89	0.81	0.53	0.85
Logistic Regression $ar{\Psi}$	0.80	0.73	0.85	0.79	0.49	0.86
LightGBM	0.72	0.62	0.97	0.76	0.52	0.83
XGBoost	0.74	0.66	0.89	0.76	0.55	0.81
Decision Tree	0.75	0.71	0.75	0.73	0.56	0.79

Model Evaluation

New features Revenue and Team Expenses increased model accuracy

Logistic Regression Feature Importance

Tournament Result

Tournament Result (Amended)

^{*} Based on Logistic Regression Model

Thank You!

If you have any questions about the data, please contact us at:

Yujoon Jang - <u>yjang12@fordham.edu</u>

Jennifer Cate McFadden - <u>jmcfadden4@fordham.edu</u>

Masaya Sugimoto - <u>msugimoto@fordham.edu</u>

Jingqing Zhou - <u>jzhou109@fordham.edu</u>

Sponsored by:

