



# **IS333**

USN 1 M S

### M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU)
BANGALORE – 560 054

## **SEMESTER END EXAMINATIONS -JANUARY 2016**

| Su  | bject    | & Branch : B.E Information Science & Engg. Semester  : Data Structures Max. Mark  t Code : IS333 Duration                                                                                                                                                                                          | ks :     | III<br>100<br>3 Hrs |
|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|
| Ins |          | tions to the Candidates:<br>Inswer one full question from each unit.                                                                                                                                                                                                                               | <u>-</u> |                     |
|     |          | UNIT – I                                                                                                                                                                                                                                                                                           |          |                     |
| 1.  | a)<br>b) | Define stack. List and implement the basic operations on stack.  Design a C code to convert an the expression from infix to postfix form using stack.                                                                                                                                              | CO1      |                     |
| 2   | a)<br>b) | What is a postfix notation? Bring out the importance of postfix notation in computer and convert the following from infix to postfix form using stack.  i. ((A+B)*C-(D-E))\$(F+G)  ii. A-B/(C*D\$E)  iii. A\$B*C-D+E/F/(G+H)  Design an algorithm to evaluate a postfix expression using stack and | CO1      | ` '                 |
|     | ~,       | evaluate the expression 623+-382/+*2^3+ using the same.                                                                                                                                                                                                                                            | 001      | (20)                |
|     |          | UNIT-II                                                                                                                                                                                                                                                                                            |          |                     |
| 3.  | a)       | Define recursion. Write a recursive function for computing nth term of a Fibonacci sequence. Hence give the trace of stack contents for n=5.                                                                                                                                                       | CO2      | (10)                |
|     | b)       | What are priority queues? Design a C code to implement priority queues                                                                                                                                                                                                                             | CO2      | (06)                |
|     | c)       | insertion operation using arrays.  What are the major drawbacks of ordinary queues? How do you overcome them.                                                                                                                                                                                      | CO2      | (04)                |
| 4.  | a)       | What are double ended queues? Design C functions to implement basic                                                                                                                                                                                                                                | CO2      | (14)                |
|     | b)       | operations on double ended queues.  Explain the working principle of circular queue with neat diagrams.                                                                                                                                                                                            | CO2      | (06)                |
|     | -,       |                                                                                                                                                                                                                                                                                                    | 001      | (00)                |
| 5.  | a)       | What is dynamic memory allocation? Explain malloc() and free()                                                                                                                                                                                                                                     | CO3      | (06)                |
| •   | b)       | functions with an example for each.  How can an ordinary queue be represented using a singly linked list?  Design C routines for linked implementation of ordinary queue operations, insertion and deletion.                                                                                       | CO3      | (10)                |
|     | c)       | Design a C code to reverse a Doubly Linked List                                                                                                                                                                                                                                                    | CO3      | (04)                |
| 6.  | a)       | What is a doubly linked list(DLL)? Write the C representation of the following  i. Insert an element into a DLL  ii. Delete an element from a DLL  iii. Display the contents of the DLL                                                                                                            | CO3      | (10)                |

iii. Display the contents of the DLL





CO3 (10)

- Design a C routine for i. To reverse the direction of singly linked list.
  - ii. To count the number of nodes in a singly linked list.
  - iii. To create ordered list.

### **UNIT-IV**

- Write short note on: CO4 (10)7. a)
  - Header linked list and its types. i.
  - Header node implementation and its Usage. ii.
  - Design a C code to implement stacks using circular linked list. (10)CO4 b)
- 8. a) Write a short note on circular lists. CO4 (05)
  - Design a C routine to check for palindrome using doubly linked list. CO4 (05)
  - CO4 (10)
  - Pictorially demonstrate the following on circular linked list:
    - Inserting a newnode at position=4.
    - ii. Deleting a last node from the list.

#### UNIT-V

- 9. a) What is a binary tree? Discuss types of binary trees with an example for CO5 (10)
  - Enumerate three types of tree traversal recursively for the following (10)binary tree.



- 10. a) Given a list of integers, write an algorithm to construct a binary search CO5 (10)tree avoiding duplicate integers. Trace the algorithm to construct binary search tree for the list: 6 4 3 7 10 14 3 7 5
  - b) Define Huffman code. Construct Huffman tree and generate Huffman CO5 (10)codes given the symbols and their frequency of occurrences.

| Symbol | Frequency |
|--------|-----------|
| Α      | 15        |
| В      | 6         |
| С      | 7 ·       |
| D      | 12        |
| E      | 12<br>25  |
| F<br>G | 4         |
| G      | 6         |
| Н      | 1         |
| I      | 15        |