```
10-1
                                                               Sorted
                                                 unsorted
                                 Sorted
            UnSorted
                                                               double
                                                 double
                                 single
              single
                                                               linked
                                                 linked
                                 linked
              linked
                                                             0(/L/)
                                               O([L])
                                0(/11)
              0(14)
Search (L.K)
                                                             0(4)
                                                 9(11
                                0(141)
                0(1)
Insert (L,X)
                                               0(1/1)
                                                            0(14)
                                0(14)
               0(14)
Delete (L,X)
                                                            0((1)
                                               0(14)
                                0([L])
               0(12/)
Successor(L,X)
                                                            0(11/)
                                              0(/L/)
                                0(14)
predecessor(L,x) O(L1)
                                                              0(1)
                                               D(14)
                                 0(1)
               0//11)
Minimum (L)
                                 0(11)
                                               0(14)
                                                            0((L))
                0(14)
Maximum(L)
                                         diplicated alements.
                               accepts
    * Assuming the linked list
12.2-2
                                                      Tree-Maximum (x)
  Tree - Minimum(X)
                                                          if right[x]=N/C
        if left [x] = NIL
                                                              veturn X
               yeturn X
                                                         else return Tree-Moximum(right [x])
         else veturn Tree-Minimum (Left[x])
           Tree - Predecesson(x)
 12.2-3
                    then roturn Tree_Maximum (left[x])
              if left[x] + NIL
             Y = PIXJ
             while y = NIL and X = left[y]
                    do X - XOY
                          Y = P[Y]
              return y
```

2. (a) Open addressing with linear probing:

K	$h(k) = k^2 \mod m$	$h(k, i) = (h'(k) + i) \mod m$	Final Position
3	$3^2 \mod 5 = 4$	$(4+0) \mod 5 = 4$	4
4	$4^2 \mod 5 = 1$	$(1+0) \mod 5 = 1$	1
2	$2^2 \mod 5 = 4$	(4 + 0) mod 5 = 4, (4 + 1) mod 5 = 0	0
5	$5^2 \mod 5 = 0$	$(0+0) \mod 5 = 0$, $(0+1) \mod 5 = 1$, $(0+2) \mod 5 = 2$	2
1	$1^2 \mod 5 = 1$	$(1+0) \mod 5 = 1$, $(1+1) \mod 5 = 2$, $(1+2) \mod 5 = 3$	3

(b) Open addressing with quadratic probing, where $c_1 = 1$ and $c_2 = 2$:

K	$h'(k) = k^2 \mod m$	$h(k, i) = (h'(k) + i * c_1 + i^2 * c_2) \mod m$	Final Position
3	$3^2 \mod 5 = 4$	$(4+0*1+0^2*2)$ mod 5 = 4	4
4	$4^2 \mod 5 = 1$	$(1+0*1+0^2*2) \mod 5=1$	1
2	$2^2 \mod 5 = 4$	$(4+0*1+0^2*2)$ mod 5 = 4,	2
		$(4+1*1+1^2*2)$ mod 5 = 2	
5	$5^2 \mod 5 = 0$	$(0+0*1+0^2*2) \mod 5=0$	0
1	1 ² mod 5 = 1	$(1+0*1+0^2*2)$ mod 5 = 1, $(1+1*1+1*2)$ mod 5 =	
		4, (1 + 2*1 + 4*2) mod 5 = 1, (1 + 3*1 + 9*2) mod 5 =	
		2, $(1 + 4*1 + 16*2)$ mod 5 = 2. No place for 1 in the	
		hash table.	

(c)

K	$h(k) = k^2 \mod m, m = 5$	Final Position
3	$3^2 \mod 5 = 4$	4
4	$4^2 \mod 5 = 1$	1
2	$2^2 \mod 5 = 4$	4
5	$5^2 \mod 5 = 0$	0
1	$1^2 \mod 5 = 1$	1

The load factor is $\alpha = n/m = 5/5 = 1$.

(d)

K	0	1	2	3	4	5	6	7	8	9	10
$h(k)=k^2$	0	1	4	9	5	3	3	5	9	4	1
mod 11											

For $k \ge 11$, we can represent k = 11*a + b, where a is the quotient of k divided by 11 and b is the remainder, $0 \le b \le 10$. Then we have:

$$h(k) = k^2 \mod 11 = (11a + b)^2 \mod 11 = (11^2 a^2 + b^2 + 2 * 11 * ab) \mod 11$$
$$= b^2 \mod 11, 0 \le b \le 10$$

This goes back to the above table. Thus, for any $k\ge 0$, all the possible values of $h(k)=k^2 mod\ 11$ are: 0, 1, 3, 4, 5, and 9

Solutions for HW#9

(.a) minimum height = 2.

K= < 35, 14.76, 2, 27, 43.89>

OR

K= <35, 14, 2, 27, 76, 43, 89>

There are also other insertion orders for the keys in K that can generate the same Binary Search Tree of minimum height above. (b) maximum height = 6.

K= (2, 14, 27, 35, 43, 76, 89> K=(89,76,43,35,27,14,2> OR

(C) height=3

height = 4

height = 5

K= <76,43,35,27,14,2,897 k= <43, 27, 14, 2, 35, 89, 76) K= <43,35,27,14,2,76.89>

Note: There are also other