Situated reasoner

Naso Evangelou-Oost (Oneironaut)

6 June 2023

Introduction

- Concurrent & distributed systems are everywhere, yet really hard to reason about.
- Compositional methods mitigate the combinatorial explosion of possibilities when many interacting systems combine.
- Concurrent valuation algebras (CVAs) are...
 - compositional, modular, local,
 - algebraic, lattice-based,
 - able to detect subtle information inconsistency (e.g. sequential inconsistency),
 - algorithmically tractable.

- OVAs, CVAs
- 2 Trace models
- Morphisms
- 4 Local computation
- Summary & future work

Topologies and presheaves

Topologies encode the connective structure of distributed and concurrent systems:

 \bullet Topology ${\mathcal T}$ for distributed systems: networks.

Topology $\mathcal T$ for concurrent systems: shared memory and resources.

A *presheaf* is a contravariant functor on a topology $\mathcal I$

$$\Phi: \mathcal{T}^{op} \to \mathscr{P}os$$

I.e. we have,

- *Object map*: A function sending each domain $A \in \mathcal{I}$ to a poset Φ_A .
- Arrow map: A function sending each inclusion $B \subseteq A$ to a monotone restriction map $a \mapsto a^{\downarrow B} : \Phi_A \to \Phi_B$.
- *Transitivity*: For $C \subseteq B \subseteq A$ and $a \in \Phi_A$,

$$(a^{\downarrow B})^{\downarrow C} = a^{\downarrow C}$$

• *Identity law*: For each $A \in \mathcal{T}$ and $a \in \Phi_A$,

$$a^{\downarrow A}=a$$

Presheaf on a distributed system

(covariant) Grothendieck construction

Given $\Phi: \mathcal{T}^{op} \to \mathcal{P}os$, combine all the posets Φ_A into one big poset $\int \Phi$.

$$\int \Phi = \{ (A, a) \mid A \in \mathcal{T}, a \in \Phi_A \}$$

Partial order *≤*:

$$(A,a) \preceq (B,b) \iff B \subseteq A \text{ and } a^{\downarrow B} \leq_{\Phi_B} b$$

Shorthand: write a instead of (A, a) leaving domain implicit; use domain map d to recover domain

$$d: \int \Phi \to \mathcal{T}^{op}$$

 $\mathrm{d} \mathit{a} = \mathsf{domain} \ \mathsf{of} \ \mathit{a}$

Ordered valuation algebras (OVAs)

Definition. An ordered valuation algebra (OVA) consists of...

a poset-valued presheaf

$$\Phi: \mathcal{T}^{op} \to \mathscr{P}$$
os

a binary operator

$$\otimes: \int \Phi \times \int \Phi \to \int \Phi$$

a natural transformation

$$\epsilon: 1 \Rightarrow \Phi$$

(i.e. an element $\epsilon_A \in \Phi_A$ for each A such that $\epsilon_A^{\downarrow B} = \epsilon_B$ whenever $B \subseteq A$.)

Obeying the following axioms...

• Ordered semigroup:

⊗ is associative and monotone

Labelling:

$$d(a \otimes b) = da \cup db$$

Neutrality:

$$\epsilon_{\mathrm{d}a} \otimes a = a = a \otimes \epsilon_{\mathrm{d}a}$$

Combination:

$$(a \otimes b)^{\downarrow \mathrm{d} a} = a \otimes b^{\downarrow \mathrm{d} a \cap \mathrm{d} b}$$
 and $(a \otimes b)^{\downarrow \mathrm{d} b} = a^{\downarrow \mathrm{d} a \cap \mathrm{d} b} \otimes b$

Extension

Theorem. Let $(\Phi, \otimes, \epsilon)$ be an OVA. For each inclusion $B \subseteq A$ in \mathcal{T} , there is an adjunction

$$a^{\downarrow B} \leq_{\Phi_B} b \iff a \leq_{\Phi_A} \epsilon_a \otimes b$$

We call $b \mapsto \epsilon_a \otimes b$ extension of b to A and write $b^{\uparrow A} := \epsilon_a \otimes b$.

Some facts:

• Extension is a functor: if $C \subseteq B \subseteq A$ and $c \in \Phi_C$, then

$$(c^{\uparrow B})^{\uparrow A}=c^{\uparrow A}$$
 and $c^{\uparrow C}=c$

• If Φ has the *strongly neutral property:* $\forall A, B \in \mathcal{T}$ we have $\epsilon_A \otimes \epsilon_B = \epsilon_{A \cup B}$, then for all $B \subseteq A$,

$$\epsilon_B^{\uparrow A} = \epsilon_A$$

• Restriction after extension is the identity map, i.e., for $B \subseteq A$ and $b \in \Phi_B$,

$$(b^{\uparrow A})^{\downarrow B}=b$$

• Extension after restriction is a *closure operator*, i.e., for $B \subseteq A$ and $a \in \Phi_A$,

$$a \leq_{\Phi_A} (a^{\downarrow B})^{\uparrow A}$$
 and $(((a^{\downarrow B})^{\uparrow A})^{\downarrow B})^{\uparrow A} = (a^{\downarrow B})^{\uparrow A}$

• If for each $A \in \mathcal{A}$, Φ_A is a complete lattice, then so is $\int \Phi$.

Concurrent valuation algebras (CVAs)

Definition. A concurrent valuation algebra (CVA) consists of...

A commutative OVA

$$(\Phi, \parallel, \delta)$$

A (generally noncommutative) OVA

$$(\Phi, \red{\S}, \epsilon)$$

Obeying the following axioms...

Weak exchange:

$$(a \parallel b) \circ (c \parallel d) \preceq (a \circ c) \parallel (b \circ d)$$

Neutral laws:

$$\epsilon_A \preceq \epsilon_A \parallel \epsilon_A$$
 and $\delta_A \circ \delta_A \preceq \delta_A$

Refinement & reasoning

• Refinement:

$$a \leq b \iff \mathrm{d}b \subseteq \mathrm{d}a \text{ and } a^{\mathrm{d}b} \leq_{\Phi_{\mathrm{d}b}} b$$

• Hoare triple (Hoare logic):

$$p \{a\} q := p \, g \, a \leq q$$

• Jones quintuple (rely-guarantee logic):

$$p r \{a\} g q := p \{a \mid\mid r\} q \text{ and } a \leq g^{-1}$$

¹lan doesn't like this.

- OVAs, CVAs
- Trace models
- Morphisms
- 4 Local computation
- 5 Summary & future work

Trace models

- Trace models: specifications are subsets of *traces* = lists of observations $t = [t_1, \dots, t_n]$.
- Can be coupled to a clock or not. What does the i in t_i mean?
- Decoupling from a global clock = stuttering invariance (traces of states);

$$[1,1,2,3,3,3] \sim [1,2,2,3]$$

Two ways to encode stuttering-invarance:

- Stuttering closure: if the first trace belongs to a specification, so does the second.
- Stuttering reduction: both traces are identified in a quotient.

Parallel and sequential

Depends on what the elements t_i in a trace $t = [t_1, ..., t_n]$ mean:

- **State**: t_i is a state of the system.
 - Parallel = sync = $\wedge_A = \cap$,

$$\{[a,b,c]\} \wedge_A \{[a,b,c]\} = \{[a,b,c]\}$$

Sequential = gluing concatenation = ∨.

$$\{[a,b,c]\} \sim_A \{[c,d]\} = \{[a,b,c,d]\}$$

- Action: t_i is an action taken by the system.
 - Parallel = shuffle = \square ,

$$\{[a,b,c]\} \sqcup_{\mathcal{A}} \{[d,e]\} = \{[a,b,d,e,c],[d,a,b,c,e],[a,b,d,c,e],\ldots\}$$

Sequential = concatenation = ¬.

$$\{[a,b,c]\} \smallfrown_A \{[d,e]\} = \{[a,b,c,d,e]\}$$

State trace CVA Σ

- ullet State functor: $\Omega_A^{ extst{state}} \mathrel{\mathop:}= A o \mathbb{Z}$ (A-tuples)
- Nonempty list functor: $L_+: \mathcal{S}et \to \mathcal{S}et$
- Powerset functor: $P : \mathcal{S}et \rightarrow \mathcal{P}os$

State trace CVA Σ is defined as the composite,

$$\Sigma = \mathcal{T}^{op} \xrightarrow{\Omega^{\text{state}}} \mathcal{S}et \xrightarrow{L_+} \mathcal{S}et \xrightarrow{P} \mathcal{P}os$$

Parallel = synchronisation = meet:

$$a \wedge b := a^{\uparrow \operatorname{d} a \cup \operatorname{d} b} \cap b^{\uparrow \operatorname{d} a \cup \operatorname{d} b}$$

Sequential = gluing concatenation, matches final/initial states:

 $\wedge: \int \Sigma \times \int \Sigma \to \int \Sigma$

• Neutral elements for parallel, sequential resp.

$$egin{aligned} op: 1 \Rightarrow \Sigma &
u: 1 \Rightarrow \Sigma \
otag \

otag \
otag \
otag \
otag \
otag \
otag \
otag \
otag \
ot$$

Action trace CVA Γ

- Action functor: $\Omega^{act}: \mathcal{T}^{op} \to \mathcal{S}et$
 - ullet $\Omega_A^{\mathsf{act}} = \mathbb{Z}^A imes \mathbb{Z}^A$ (events = pairs of states)
 - $\Omega_A^{\text{act}} = P(\mathbb{Z}^A \times \mathbb{Z}^)$ (events with external choice)
 - $\Omega_A^{\operatorname{act}} = A \times A \to \mathbb{Z}$ (linear functions $\mathbb{Z}^A \to \mathbb{Z}^A$)

Action trace CVA Γ is defined as the composite:

$$\Gamma = \mathcal{T}^{op} \xrightarrow{\Omega^{act}} \mathcal{S}et \xrightarrow{L} \mathcal{S}et \xrightarrow{P} \mathcal{P}os$$

• Parallel = shuffle:

$$\sqcup : \int \Gamma \times \int \Gamma \to \int \Gamma$$

$$a \sqcup b := a^{\uparrow d a \cup d b} \sqcup_{d a \cup d b} b^{\uparrow d a \cup d b}$$

• Sequential = concatenation:

$$\begin{array}{l} \smallfrown: \int \Gamma \times \int \Gamma \to \int \Gamma \\ a \smallfrown b := a^{\uparrow \mathrm{d} a \cup \mathrm{d} b} \curvearrowright_{\mathrm{d} a \cup \mathrm{d} b} b^{\uparrow \mathrm{d} a \cup \mathrm{d} b} \end{array}$$

Neutral element (same for □ and ¬):

$$\iota: 1 \Rightarrow \Gamma$$

$$\iota_A = \{[\,]_A\}$$

Relative state trace model Σ^{rel}

• Free semigroup with idempotent generators $I: \mathcal{S}et \to \mathcal{S}emi$ $I(S) = L_+(S)$ modulo $ss \sim s$ for all $s \in S$, with concatenation as multiplication.

Relative state trace CVA Σ^{rel} is defined as the composite:

$$\Sigma^{rel} = \mathcal{T}^{op} \xrightarrow{\Omega^{state}} \mathcal{S}\textit{et} \xrightarrow{\quad I \quad} \mathcal{S}\textit{emi} \xrightarrow{\quad U \quad} \mathcal{S}\textit{et} \xrightarrow{\quad P \quad} \mathcal{P}\textit{os}$$

Combine operators and neutral elements defined as in Σ .

Projection and parallel no longer preserve the length of traces.
 Parallel syncs on common variables, shuffles on disjoint variables. E.g. a, b ∈ ∫ Σ^{rel} with da = {x, y} and db = {y, z},

$$a \wedge^{\text{rel}} b = \left\{ \begin{bmatrix} x_0 & x_1 & x_1 \\ y_0 & y_0 & y_1 \end{bmatrix} \right\} \wedge \left\{ \begin{bmatrix} y_0 & y_0 & y_1 \\ z_0 & z_1 & z_1 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x_0 & x_1 & x_1 \\ y_0 & y_0 & y_1 \\ z_0 & z_1 & z_1 \end{bmatrix}, \begin{bmatrix} x_0 & x_1 & x_1 & x_1 \\ y_0 & y_0 & y_0 & y_1 \\ z_0 & z_0 & z_1 & z_1 \end{bmatrix}, \begin{bmatrix} x_0 & x_0 & x_1 & x_1 \\ y_0 & y_0 & y_0 & y_1 \\ z_0 & z_1 & z_1 \end{bmatrix} \right\}$$

- OVAs, CVAs
- Trace models
- Morphisms
- 4 Local computation
- Summary & future work

Morphisms of OVAs & CVAs

Definition. A **lax morphism of OVAs** $f: (\Phi, \otimes, \epsilon) \to (\Phi', \otimes', \epsilon')$ is a family of maps $\{f_A : \Phi_A \to \Phi'_A\}_{A \in \mathcal{I}}$, obeying for all $a \in \Phi_A$, $b \in \Phi_B$ and $C \subseteq A$...

Monotonicity:

$$a \leq b \implies f_A(a) \leq f_B(b)$$

• Lax naturality:

$$f_A(a)^{\downarrow C} \preceq f_C(a^{\downarrow C})$$

Lax multiplicativity.

$$f_A(a) \otimes' f_B(b) \leq f_{A \cup B}(a \otimes b)$$

• Lax unitality.

$$\epsilon_A' \leq f_A(\epsilon_A)$$

Definition. A lax morphism of CVAs $f: (\Phi, \|, \delta, \S, \epsilon) \to (\Phi', \|', \delta', \S', \epsilon')$ is a map f that is both...

- ullet a lax morphism of (commutative) OVAs $(\Phi, \|, \delta) o (\Phi', \|', \delta)$,
- a lax morphism of OVAs $(\Phi, \S, \epsilon) \to (\Phi', \S', \epsilon)$.

Reversing the inequalities above defines a *colax morphism*.

Colax morphism from Σ to Σ^{rel}

Notice $L_+ \cong U \circ F$ where F is the free semigroup functor.

For each set X there is a quotient map $q_X : F(X) \twoheadrightarrow I(X) \cong F(X) / \sim$ where \sim is the congruence generated by x = xx for all $x \in X$. This map does a *stuttering reduction*.

This is natural in X, so we get a natural transformation $q: F \Rightarrow I$.

By composing (whiskering), this gives a natural transformation $f:\Sigma\Rightarrow\Sigma^{\mathsf{rel}}$.

$$f = \mathcal{I}^{op} \xrightarrow{\Omega^{\text{state}}} \mathcal{S}et \xrightarrow{F} \mathcal{S}emi \xrightarrow{U} \mathcal{S}et \xrightarrow{P} \mathcal{P}os$$

Moreover, f is a colax morphism of CVAs:

- $a \prec b \implies f(a) \prec f(b)$
- $f(\top) \prec \top^{\text{rel}}$
- $f(\nu) \prec \nu^{\text{rel}}$
- $f(a \land b) \leq f(a) \land^{\mathsf{rel}} f(b)$ (note this is not equality: consider a = [xx] and b = [x].)
- $f(a \smile b) \preceq f(a) \smile^{\mathsf{rel}} f(b)$

There should be a right-adjoint $g:\Sigma^{\mathsf{rel}} \to \Sigma$ that does stuttering closure. . .

- OVAs, CVAs
- Trace models
- Morphisms
- 4 Local computation
- 5 Summary & future work

Local computation

Efficient computation is enabled by the *combination* law:

$$(a \otimes b)^{\downarrow da} = a \otimes b^{\downarrow da \cap db}$$

 $(a \otimes b)^{\downarrow db} = a^{\downarrow da \cap db} \otimes b$

The LHS is usually *expensive* to compute, but the RHS can be *much cheaper* if $da \cap db$ is small.

- Local computation framweork specialises to standard optimal algorithms in databases, probabilistic graphical models, CSPs, dynamic programming, . . .
- We can already use these algorithms in a CVA on just parallel combinations.
- Need to generalise to noncommutative case & with 2 combine operators.
- Theoretically feasible from the generalised combination rule, but not yet implemented.

- OVAs, CVAs
- Trace models
- Morphisms
- 4 Local computation
- Summary & future work

Summary & future work

Summary:

- $\bullet \ \ We \ introduced \ \ CVAs, \ a \ \ modular/local/compositional \ \ algebra \ \ for \ specifying \ \ concurrent/distributed \ \ systems.$
- CVAs support a duoidal parallel/sequential algebraic structure, refinement, Hoare and rely-guarantee logics.
- We described 3 example trace models of CVAs and related them by morphisms.
- CVAs have a path to efficient algorithms for inference, static analysis, model checking...

Future work:

- More models: Aczel trace models, graph models, sheaf based models that better capture local properties. . .
- Push-forward/pullback of OVAs/CVAs on different spaces.
- Develop local computation algorithms.
- Formalisation in Isabelle.

References:

Evangelou-Oost, Nasos, Callum Bannister, Larissa Meinicke et al. (2023). *Trace models of concurrent valuation algebras*. arXiv: 2305.18017 [cs.L0].

Contact: naso@oneironaut.dev, linkedin.com/in/nasosev

