

CSE408 Asymptotic notations

Lecture #4

Asymptotic Notations

- The efficiency analysis framework concentrates on the order of growth of an algorithm's basic operation count as the principal indicator of the algorithm's
- To compare and rank such orders of growth, computer scientists use three notations: (big oh), (big omega), and (big theta) efficiency

O Notation

O-notation

DEFINITION A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \le cg(n)$$
 for all $n \ge n_0$.

Ω -notation

DEFINITION A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \ge cg(n)$$
 for all $n \ge n_0$.

Here is an example of the formal proof that $n^3 \in \Omega(n^2)$:

$$n^3 \ge n^2$$
 for all $n \ge 0$,

i.e., we can select c = 1 and $n_0 = 0$.

⊕-notation

DEFINITION A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$.

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes

- O(g(n)): class of functions f(n) that grow no faster than g(n)
- $\Theta(g(n))$: class of functions f(n) that grow at same rate as g(n)
- $\Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Some properties of asymptotic order of growth

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n)) \text{ iff } g(n) \in \Omega(f(n))$
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

Note similarity with $a \le b$

• If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Establishing order of growth using limits

$$\lim T(n)/g(n) = \frac{c}{n}$$

Examples:

10*n*

VS.

 m^2

$$n(n+1)/2$$

VS.

n

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \qquad \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Example: 2^n vs. n!

Exmaple

EXAMPLE 1 Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 . (This is one of the examples we used at the beginning of this section to illustrate the definitions.)

Example

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.$$

Since the limit is equal to a positive constant, the functions have the same order of growth or, symbolically, $\frac{1}{2}n(n-1) \in \Theta(n^2)$.

Example

EXAMPLE 2 Compare the orders of growth of $\log_2 n$ and \sqrt{n} . (Unlike Example 1, the answer here is not immediately obvious.)

Example

$$\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n\to\infty} \frac{\left(\log_2 n\right)'}{\left(\sqrt{n}\right)'} = \lim_{n\to\infty} \frac{\left(\log_2 e\right)\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2\log_2 e \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0.$$

Since the limit is equal to zero, $\log_2 n$ has a smaller order of growth than \sqrt{n} . (Since $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$, we can use the so-called *little-oh notation*: $\log_2 n \in o(\sqrt{n})$. Unlike the big-Oh, the little-oh notation is rarely used in analysis of algorithms.)

Small Oh Notation

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight. The bound $2n^2 = O(n^2)$ is asymptotically tight, but the bound $2n = O(n^2)$ is not. We use o-notation to denote an upper bound that is not asymptotically tight. We formally define o(g(n)) ("little-oh of g of n") as the set

Small Oh Notation

$$o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$$
.

For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.

The definitions of O-notation and o-notation are similar. The main difference is that in f(n) = O(g(n)), the bound $0 \le f(n) \le cg(n)$ holds for *some* constant c > 0, but in f(n) = o(g(n)), the bound $0 \le f(n) < cg(n)$ holds for *all* constants c > 0. Intuitively, in the o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \tag{3.1}$$

Exmaple

EXAMPLE 3 Compare the orders of growth of n! and 2^n .

Orders of growth of some important functions

- All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a > 1 is
- All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0 \in \Theta(n^k)$
- Exponential functions a^n have different orders of growth for different a's
- order $\log n < \text{order } n^{\alpha} \ (\alpha > 0) < \text{order } a^n < \text{order } n! < \text{order } n^n$

Basic asymptotic efficiency classes

constant

log *n* logarithmic

n linear

 $n \log n$ n-log-n

 n^2 quadratic

 n^3 cubic

 2^n exponential

n! factorial

Thank You!!!