AI MODEL RESEARCH REPORT

Project Title: AI-Based Cyber Security Threats Prediction AI Agent

Categories of Models Used in Cybersecurity

Category	Model Examples	Core Idea	Typical Use Case
Traditional Machine Learning Models	Decision Tree, Random Forest, SVM, KNN, Naïve Bayes	Learn statistical patterns in labeled data	Quick classification, small to medium datasets
Deep Learning Models	Artificial Neural Networks (ANN), CNN, RNN, LSTM	Learn complex temporal and spatial patterns	High accuracy, large datasets
Hybrid / Ensemble Models	Stacking, Boosting (XGBoost, AdaBoost), Voting Classifier	Combine multiple ML models to improve performance	Robust detection, better generalization
Reinforcement Learning Models	Deep Q-Networks (DQN), Actor-Critic	Learn through reward-based feedback	Adaptive threat response, AI agent behavior

Commonly Used Models in Research Papers

Model	Туре	Key Features	Accuracy (approx.)	Remarks
Random Forest (RF)	ML	Ensemble of Decision Trees	97–99%	Highly stable and interpretable
Support Vector Machine (SVM)	ML	Finds hyperplane to separate classes	95–98%	Good for smaller feature sets
K-Nearest Neighbors (KNN)	ML	Classifies based on neighboring samples	90–95%	Simple, but computationally heavy
Naïve Bayes	ML	Probabilistic	85–92%	Fast but less accurate for

		classifier		complex data
Artificial Neural Network (ANN)	DL	Multi-layer perceptron learns complex mappings	96–99%	Powerful but requires tuning
Convolutional Neural Network (CNN)	DL	Detects spatial patterns in features	97–99%	Great for structured network data
Recurrent Neural Network (RNN/LSTM)	DL	Learns sequential or temporal dependencies	98–99%	Excellent for time-based traffic data
XGBoost / LightGBM	Hybrid	Gradient boosting algorithms	98–99%	Efficient, scalable, widely used

Analysis

The project aims to build an autonomous AI agent that monitors, predicts, and responds to threats. So, the model must be accurate, fast, capable of handling large, real-time data, generalizable to new attacks, and scalable for autonomous operation.

Model	Strengths	Weaknesses	Suitability
Random Forest (RF)	High accuracy, robust, interpretable	Slower on very large data	Suitable for baseline
XGBoost	Extremely fast, efficient, and accurate	Complex tuning	Highly suitable
LSTM / RNN	Captures time-based traffic sequences	High computation cost	For advanced stage / real-time
CNN	Detects spatial patterns in flow features	Needs reshaping of input data	Optional for experiment
ANN	Strong generalization	Black-box behavior	For deep model version

Recommended Model Architecture

Based on project goals:

- 1. Start with Random Forest as the baseline model.
- 2. Move to advanced models like XGBoost for higher accuracy and efficiency.
- 3. Optionally integrate LSTM for temporal anomaly detection in future versions.
- 4. Hybrid approach: Combine Random Forest + XGBoost using Voting or Stacking Ensemble.

Research Insights

Ensemble models (RF, XGBoost) consistently outperform single models in cybersecurity datasets. Deep models (LSTM, CNN) are best when real-time traffic patterns are needed. XGBoost offers a balance between accuracy, efficiency, and scalability, making it perfect for an AI agent framework.

Final Model Selection

Stage	Selected Model	Reason
Training & Testing	Random Forest	Excellent interpretability, easy to tune
Optimization	XGBoost	High accuracy, efficient with large data
Future Enhancement	LSTM-based Agent	Adds temporal pattern recognition for live detection