

存储器 (SPI-FLASH) 扩展使用方案

基于 WT588D 语音芯片强大的控制端口驱动能力,利用一个 WT588D 语音芯片可扩展驱动多个 SPI-Flash 存储器,以获得更大的存储空间和更多的控制地址。在目前 WT588D 外挂 64M 存储器程序如火似茶的开发时期,利用多个 32M 存储器也能做到 64M 的效果,存储空间骤然递增。而且还能拥有更多的控制地址,从之前的 220 段语音地址,扩展到 440 段或者更多段语音地址,同时外挂多个 SPI-Flash 存储器,有效的将语音地址数量提高到数倍。从基本上解决了 WT588D 外挂单个 SPI-FLASH 存储空间有限的问题。使得 WT588D 能被更好的应用在更多的场合,如游戏机系统,长时间放音系统,多国语言系统,以及需要更多段语音的收银系统,叫号系统等。

扩展后的地址数量=220×存储器数量

1、扩展使用框图

框图中只画出外挂三个存储器,实际上WT588D语音芯片可驱动的外部存储器的数量能达到数十个。

2、外挂存储器数量跟语音地址和播放时间的关系

表格中数据为用 WT588D 当作主控的情况下计算得来。表中仅列出 3 个 SPI-Flash 存储器的应用数据。

序号	存储器型号	存储器容量	外挂存储器数量	语音地址(段)	播放时间(秒)
1			1	220	30
2	W25X20	2M	2	440	60
3			3	660	90
4			1	220	100
5	W25X40	4M	2	440	200
6			3	660	300
7			1	220	200
8	W25X80	8M	2	440	400
9			3	660	600
10			1	220	500
11	W25X16	16M	2	440	1000
12			3	660	1500
13			1	220	1000
14	W25X32	32M	2	440	2000
15			3	660	3000

3、扩展电路图

3.1、开关切换模式

控制: 此电路为外挂 6 个 SPI-FLASH 方案, SPI-FLASH 的 DO、DI、CS、CLK 级联接到 WT588D 语音芯片的 P13 (DO)、P14 (DI)、P15 (CS)、P16 (CLK)。SPI-FLASH 的 3、8 脚接 VCC ,通过多档开关选 SPI-FLASH 器的 7 脚/HOLD 为高电平来让 SPI-FLASH 工作, /HOLD 脚需要接 10K 下拉电阻。VCC 的工作电压范围为 2.7~3.6V,VDD 的工作电压范围为 DC2.8~5.5V。选用外挂不同数量的 SPI-FLASH,在电路中添加或删减 SPI-FLASH 即可。

下载:将各个 SPI-FLASH 的 DO、DI、CS、CLK 连接到下载器的的 DO、DI、CS、CLK,由多档开关选择设置 SPI-FLASH_/HOLD 脚高电平来让 SPI-FLASH 处于有效状态,/HOLD 脚为低电平则 SPI-FLASH 无效。/HOLD 脚为高电平的 SPI-FLASH 处于连接状态,此时可将语音工程下载到当前连接的 SPI-FLASH。拨动开关选择其他 SPI-FLASH,可继续下载语音工程到其他 SPI-FLASH。

注意: 仅能选择级联中的其中一个 SPI-FLASH 的/HOLD 脚为高电平, 否则整个电路将不能正常工作。

3.2、MCU 切换模式

控制: 此电路为外挂 6 个 SPI-FLASH 方案, SPI-FLASH 的 DO、DI、CS、CLK 级联接到 WT588D 语音芯片的 P13 (DO)、P14 (DI)、P15 (CS)、P16 (CLK)。SPI-FLASH 的 3、8 脚接 VCC ,通过 MCU 选择 SPI-FLASH 的 7 脚/HOLD 为高电平来让 SPI-FLASH 工作,同时其他 SPI-FLASH 的/HOLD 脚需要置为低电平。如果 MCU 工作电压为 5V ,则需要在 MCU 跟 SPI-FLASH 的/HOLD 脚之间串接上 1K 电阻。VCC 的工作电压范围为 2.7~3.6V , VDD 的工作电压范围为 DC2.8~5.5V。选用外挂不同数量的 SPI-FLASH ,在电路中添加或删减 SPI-FLASH 即可。

MCU 还可以通过其他控制端口控制 WT588D 进行工作 如电路图中为三线串口控制模式 ,MCU 的 P12、P13、P14 控制 WT588D 语音芯片的 P01、P02、P03。让一个 MCU 实现同时控制选择多个 SPI-FLASH 和 WT588D 语音芯片。

下载:将各个 SPI-FLASH 的 DO、DI、CS、CLK 级联到下载器的的 DO、DI、CS、CLK , MCU 控制选择任意的 SPI-FLASH 处于工作状态 , 即可进行下载操作。

注意: 仅能选择级联中的其中一个 SPI-FLASH 的/HOLD 脚为高电平, 否则整个电路将不能正常工作。

4、SPI-FLASH 工作状态

表格中以级联 $6 ext{ } \cap SPI\text{-FLASH}$ 为案例说明,低电平状态为 0,高电平状态为 1.。

序号	FLASH1	FLASH2	FLASH3	FLASH4	FLASH5	FLASH6	有效状态
1	1	0	0	0	0	0	FLASH1
2	0	1	0	0	0	0	FLASH2
3	0	0	1	0	0	0	FLASH3
4	0	0	0	1	0	0	FLASH4
5	0	0	0	0	1	0	FLASH5
6	0	0	0	0	0	1	FLASH6

5、适用范围

此方案适用于 WT588D-16P、WT588D-20SS、WT588D-32L 做为主控的应用电路。

序号	语音芯片	SPI-FLASH 扩展数量	单个 SPI-FLASH 容量范围
1	WT588D-16P	≥10	2~32M bit
2	WT588D-20SS	≥10	2~32M bit
3	WT588D-32L	≥10	2~32M bit