Stability of Bianchi attractors in gauged supergravity

Karthik Inbasekar

Tata Institute of Fundamental Research, Mumbai

National String Meeting, Dec 2013

Ref: 1206.3887, 1307.1314

Plan of the talk

Introduction

Motivation Overview

Bianchi Attractors

Symmetries Example

Stability of Bianchi attractors in gauged sugra

Gauged Supergravity
Linearised equations
Stability conditions
Stable Bianchi Attractors

Summary and Future outlook

Stability of Bianchi attractors

Introduction

Motivation Overview

Bianchi Attractors

Stability

ummary and uture outlook

Introduction

- In gauge/gravity correspondence, black branes are holographic duals to field theories at finite temperature.
- Extremal branes exhibit vanishing entropy density at zero temperature and describe ground states of the field theory.
- Bianchi attractors: Classification of homogeneous anisotropic extremal black brane horizons in d = 5.

 $Iizuka\hbox{-}Kachru\hbox{-}Kundu\hbox{-}Narayan\hbox{-}Sircar\hbox{-}Trivedi$

- Lifshitz, Schrödinger geometries belong to Bianchi Type I in the classification.
- Appear as generalised attractor solutions in extensions of attractor mechanism to gauged supergravity.

Cacciatori-Klemm , Kachru-Kallosh-Shmakova

Stability of Bianchi attractors

Introduction

Overview

Bianchi Attractors

Stability

Future outlook

- Generalised attractors
 - Generalised attractors: solutions to equations of motion that reduce to algebraic equations when all the fields, curvature tensors are constants in tangent space.
 - Gauge field, and Einstein equations reduce to algebraic equations at the attractor point.
 - Scalar field equations reduce to a minimisation condition on an attractor potential.
 - Generalised attractor geometries are characterised by constant anholonomy coefficients.

$$[e_a, e_b] = c_{ab}{}^c e_c ; \quad e_a \equiv e_a^{\mu} \partial_{\mu}$$
$$c_{ab}{}^c = e_a^{\mu} e_b^{\nu} (\partial_{\mu} e_{\nu}^c - \partial_{\nu} e_{\mu}^c)$$

Bianchi attractors have constant anholonomy by construction.

Bianchi Attractors in gauged supergravity

- Bianchi type metrics can be easily realised in simple Einstein-Maxwell systems with massive gauge fields.
- Typical scalar kinetic term of gauged supergravities,

$$g_{xy}\mathcal{D}_{\mu}\phi^{x}\mathcal{D}^{\mu}\phi^{y}; \quad \mathcal{D}_{\mu}\phi^{x} \equiv \partial_{\mu}\phi^{x} + gA_{\mu}^{I}K_{I}^{x}(\phi).$$

At attractor points scalars are constant, terms like

$$g^2 g_{xy} K_I^{\chi} K_J^{y} A_{\mu}^I A^{J\mu}$$

act as effective mass term for the gauge field.

 Several Bianchi attractors were embedded in gauged supergravity as generalised attractors. Inbasekar-Tripathy

Stability of Bianchi attractors

Introduction

Overview

Bianchi Attractors

stability

Summary and Future outlook

Motivation: Stability of Bianchi metrics

 Instabilities due to scalar fluctuations exist in large class of such metrics. Donos-Gauntlett-Pantelidou, Cremonini-Sinkovics, Andrade-Ross, Keeler

- Studying such instabilities help in understanding how the geometry might get corrected in the IR.
- A common recipe to study the stability of Bianchi type metrics will be useful.
- Embedding Bianchi type metrics as generalised attractors in gauged supergravity provided an ideal platform for this study.

Stability of Bianchi

Motivation

Overview

Bianchi Attractors

Stability

Summary and

Motivation: Stability of generalised attractors

- Generalised attractor analysis does not involve susy, relies on extremisation of an attractor potential.
- Solutions were found at critical points, not at absolute minima of attractor potential.
- Preliminary susy analysis of existing solutions using KSI indicated broken susy.
- Non-susy attractors can be unstable to scalar fluctuations about critical value.

Stability of Bianchi attractors

ntroduction

Motivation

Bianchi Attractors

Stability

Summary and

Overview

- Analyse the stability of Bianchi attractors in gauged supergravity under scalar fluctuations about the attractor value.
- Examine the field equations at the linearised level and demand that fluctuations vanish near the horizon.
- Determine conditions of stability.
- Identify the class of Bianchi attractors which satisfy the condition.

Stability of Bianchi attractors

ntroduction
Motivation
Overview

Bianchi Attractors

Stability

Summary and Future outlook

Bianchi Attractors

Introduction

Motivation

Overview

Bianchi Attractors Symmetries Example

Stability of Bianchi attractors in gauged sugra Gauged Supergravity Linearised equations Stability conditions Stable Bianchi Attractors

Summary and Future outlook

Stability of Bianchi attractors

Introduction

Bianchi Attra

Symmetries Example

ummary and

Bianchi Attractors
Symmetries
Example

• Homogeneous symmetries: invariant basis \tilde{e}_i , i = 1, 2, 3 that commutes with Killing vectors.

$$[\xi_j, \tilde{e}_i] = 0, \quad [\tilde{e}_i, \tilde{e}_j] = c_{ij}^{\ k} \tilde{e}_k$$

- Invariant vectors close to form a Lie algebra isomorphic to Bianchi classification (I-IX) of 3d real Lie algebras Bianchi.
- Metric written in terms of invariant one forms ω^i dual to \tilde{e}_i displays manifest homogeneous symmetries.

$$d\omega^k = \frac{1}{2}c_{ij}^{\ k}\omega^i \wedge \omega^j$$

Stability

Bianchi Attractors: Symmetries

Additional symmetries: scale invariance, time translation invariance

$$\hat{r} \to \lambda \hat{r}$$
, $\hat{t} \to \lambda^{-u_0} \hat{t}$, $\omega^i \to \lambda^{-u_i} \omega^i$

• Fix the form of the metric completely.

$$ds^2 = L^2 \left[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2(u_i + u_j)} \eta_{ij} \omega^i \otimes \omega^j \right]$$

Have constant anholonomy coefficients by construction.

Stability of Bianchi attractors

Introduction

Symmetries

Stability

ummary and uture outlook

Example: Bianchi II

• One forms, invariant vectors, structure constants,

$$\begin{aligned} c_{23}^{\ 1} &= 1 = -c_{32}^{\ 1}, \\ \xi_1 &= \partial_{\hat{y}}, & \tilde{e}_1 &= \partial_{\hat{y}}, & \omega^1 &= d\hat{y} - \hat{x}d\hat{z}, & d\omega^1 &= \omega^2 \wedge \omega^3, \\ \xi_2 &= \partial_{\hat{z}}, & \tilde{e}_2 &= \hat{x}\partial_{\hat{y}} + \partial_{\hat{z}}, & \omega^2 &= d\hat{z}, & d\omega^2 &= 0, \\ \xi_3 &= \partial_{\hat{x}} + \hat{z}\partial_{\hat{y}}, & \tilde{e}_3 &= \partial_{\hat{x}}, & \omega^3 &= d\hat{x}, & d\omega^3 &= 0 \end{aligned}$$

scaling in coordinates,

$$(\hat{x},\hat{y},\hat{z}) \rightarrow (\lambda^{-u_1}\hat{x},\lambda^{-(u_1+u_3)}\hat{y},\lambda^{-u_3}\hat{z})$$

scaling in one forms,

$$(\omega^1, \omega^2, \omega^3) \rightarrow (\lambda^{-(u_1+u_3)}\omega^1, \lambda^{-u_3}\omega^2, \lambda^{-u_1}\omega^3)$$

metric

$$ds^2 = L^2 igg[-\hat{r}^{2u_0} d\hat{t}^2 + rac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2(u_1+u_3)} (\omega^1)^2 + \hat{r}^{2u_3} (\omega^2)^2 + \hat{r}^{2u_1} (\omega^3)^2 igg]$$

Example: Bianchi IX

• Invariant one forms,

$$\begin{split} \omega^1 &= -\sin(\hat{z})d\hat{x} + \sin(\hat{x})\cos(\hat{z})d\hat{y}, \quad d\omega^1 = \omega^2 \wedge \omega^3 \;, \\ \omega^2 &= \cos(\hat{z})d\hat{x} + \sin(\hat{x})\sin(\hat{z})d\hat{y}, \quad d\omega^2 = \omega^3 \wedge \omega^1 \;, \\ \omega^3 &= \cos(\hat{x})d\hat{y} + d\hat{z}, \quad d\omega^3 = \omega^1 \wedge \omega^2 \end{split}$$

• no scaling symmetry in $(\hat{x},\hat{y},\hat{z})$ coordinates and one forms

$$ds^{2} = L^{2} \left[-\hat{r}^{2u_{0}} d\hat{t}^{2} + \frac{d\hat{r}^{2}}{\hat{r}^{2}} + (\omega^{1})^{2} + (\omega^{2})^{2} + (\omega^{3})^{2} \right]$$

• Metric can be rewritten in direct product form $AdS_2 \times M_{IX}$

$$ds^2=L_1^2igg(- ilde{r}^2d ilde{t}^2+rac{d ilde{r}^2}{ ilde{r}^2}igg)+L_2^2igg((\omega^1)^2+(\omega^2)^2+(\omega^3)^2igg)$$

Stability of Bianchi attractors in gauged sugra

Introduction

Motivation

Overview

Bianchi Attractors
Symmetries
Example

Stability of Bianchi attractors in gauged sugra

Gauged Supergravity
Linearised equations
Stability conditions
Stable Bianchi Attractors

Summary and Future outlook

Stability of Bianchi attractors

Introduction

Bianchi Attractors

Stability

Linearised equations
Stability conditions
Stable Bianchi
Attractors

ummary and

Ceresole-Dall'Agata

Gauged Supergravity

• The scalars in the theory parametrise a manifold that factorises into a direct product of a very special and quaternionic manifold,

$$\mathcal{M}_{scalar} = \mathcal{S}(n_V + n_T) \otimes \mathcal{Q}(n_H).$$

$$C_{IJK}h^Ih^Jh^K=1, \quad h^I\equiv h^I(\phi).$$

- The R symmetry group is $SU(2)_R$.
- We consider the truncated theory with vector multiplets, abelian gauging of the isometries of the scalar manifold and gauging of $U(1)_R$ symmetry.

 Ordinary derivatives on scalar and fermions are replaced with K-covariant derivatives.

$$\partial_{\mu}\phi^{x} \to \mathcal{D}_{\mu}\phi^{x} \equiv \partial_{\mu}\phi^{x} + gA_{\mu}^{I}K_{I}^{x}(\phi)$$

• Gauging the $U(1)_R$ Symmetry:

$$abla_{\mu}\psi_{
u i}
ightarrow
abla_{\mu}\psi_{
u i} + \imath g_{R}A^{I}_{\mu}V_{I}\psi_{
u i}.$$

 Gauging leads to scalar potentials in the theory possibility of AdS vacuum.

Stability of Bianchi attractors

Introduction

Bianchi Attractors

Stabilit

Gauged Supergravity Linearised equations Stability conditions

ummary and

Lagrangian

• The bosonic part of the Lagrangian:

$$\begin{split} \hat{\mathbf{e}}^{-1}\mathcal{L}_{\textit{Bosonic}}^{\mathcal{N}=2} &= -\frac{1}{2}R - \frac{1}{4}\mathsf{a}_{IJ}F_{\mu\nu}^{I}F^{J\mu\nu} - \frac{1}{2}\mathsf{g}_{xy}\mathcal{D}_{\mu}\phi^{\mathsf{x}}\mathcal{D}^{\mu}\phi^{\mathsf{y}} \\ &- \mathcal{V}(\phi) + \frac{\hat{\mathbf{e}}^{-1}}{6\sqrt{6}}\mathcal{C}_{IJK}\epsilon^{\mu\nu\rho\sigma\tau}F_{\mu\nu}^{I}F_{\rho\sigma}^{J}A_{\tau}^{K} \end{split}$$

 The potential in this case comes only from the R symmetry gauging,

$$\mathcal{V}(\phi) = -g_R^2 [2P_{ij}P^{ij} - P_{ij}^x P^{xij}],$$

$$P_i^k \equiv h^I V_I \delta_i^k, \quad P_i^x^k \equiv h^{xI} V_I \delta_i^k.$$

Stability of Bianchi attractors

Introduction

Bianchi Attractors

Stability

Gauged Supergravity

Linearised equations Stability conditions Stable Bianchi

ımmary and ıture outlook

$$\phi_c^{\mathsf{x}} + \epsilon \delta \phi^{\mathsf{x}},$$

$$A_{\mu}^{\mathsf{I}} + \epsilon \delta A_{\mu}^{\mathsf{I}},$$

$$g_{\mu\nu} + \epsilon \gamma_{\mu\nu},$$

Gauge field equations,

$$\begin{split} a_{IJ}|_{\phi_{c}} \nabla_{\mu} F_{\delta}^{I\mu\nu} - g^{2} K_{IJ}|_{\phi_{c}} \delta A^{\nu J} &= \\ &- \left(\frac{\partial a_{IJ}}{\partial \phi^{z}} \bigg|_{\phi_{c}} \nabla_{\mu} (F^{I\mu\nu} \delta \phi^{z}) - g^{2} \frac{\partial K_{IJ}}{\partial \phi^{z}} \bigg|_{\phi_{c}} \delta \phi^{z} A^{\nu J} \right) \\ &+ g K_{Iy}|_{\phi_{c}} \partial^{\nu} \delta \phi^{y} \end{split}$$

 Regularity of the gauge fields requires well behaved scalar fluctuations near the horizon. Introduction

Bianchi Attractors

Stability

Gauged Supergravity Linearised equations Stability conditions Stable Bianchi Attractors

Summary and Future outlook

Linearised Einstein equations

Linearised Einstein equation,

$$\nabla^{\alpha}\nabla_{\alpha}\bar{\gamma}_{\mu\nu} + 2R_{(\mu\ \nu)}^{\ \alpha}\bar{\gamma}_{\beta\alpha} - 2R_{(\mu}^{\ \beta}\bar{\gamma}_{\nu)\beta} + g_{\mu\nu}(R_{\alpha\beta}\bar{\gamma}^{\alpha\beta} + \frac{2}{2-D}R\bar{\gamma}) + R\bar{\gamma}_{\mu\nu} + 2\dot{T}_{\mu\nu}^{attr}(g_{\alpha\beta} + \epsilon\gamma_{\alpha\beta})|_{\epsilon=0} + 2\dot{T}_{\mu\nu}(\phi_c + \epsilon\delta\phi)|_{\epsilon=0} = 0$$

• Stress energy dependence on $\gamma_{\mu\nu}$ and $\delta\phi^z$

• Stress energy dependence on
$$\gamma_{\mu\nu}$$
 and $\delta\phi^2$
$$\dot{T}^{attr}_{\mu\nu}(g_{\alpha\beta}+\epsilon\gamma_{\alpha\beta})|_{\epsilon=0}=\mathcal{V}_{attr}(\phi_c)(\bar{\gamma}_{\mu\nu}+\frac{2\bar{\gamma}}{2-D}g_{\mu\nu})$$

$$\begin{split} -\left.(\bar{\gamma}_{\lambda\sigma}+\frac{\bar{\gamma}}{2-D}g_{\lambda\sigma})(\frac{1}{2}T_{attr}^{\lambda\sigma}g_{\mu\nu}+a_{IJ}|_{\phi_{c}}F_{\mu}^{I}{}^{\lambda}F_{\nu}^{J}{}^{\sigma})\right.\\ \dot{T}_{\mu\nu}(\phi_{c}+\delta\phi)|_{\epsilon=0}=T_{\mu\nu}^{attr}|_{\phi_{c}}\\ &+gK_{yI}|_{\phi_{c}}\Big(A^{\lambda I}\partial_{\lambda}(\delta\phi^{y})g_{\mu\nu}-A_{\mu}^{I}\partial_{\nu}(\delta\phi^{y})-A_{\nu}^{I}\partial_{\mu}(\delta\phi^{y})\Big). \end{split}$$

 $-\left|\frac{\partial a_{IJ}}{\partial \phi^{z}}\right|_{\perp} F_{\mu\lambda}^{I} F_{\nu}^{J\lambda} + g^{2} \frac{\partial K_{IJ}}{\partial \phi^{z}}\Big|_{\perp} A_{\mu}^{I} A_{\nu}^{J} \delta \phi^{z}$

$$\begin{split} T_{\mu\nu} & (g_{\alpha\beta} + \epsilon \gamma_{\alpha\beta})|_{\epsilon=0} = V_{attr}(\phi_c)(\gamma_{\mu\nu} + \frac{1}{2 - D}g_{\mu\nu}) \\ & - (\bar{\gamma}_{\lambda\sigma} + \frac{\bar{\gamma}}{2 - D}g_{\lambda\sigma})(\frac{1}{2}T_{attr}^{\lambda\sigma}g_{\mu\nu} + a_{IJ}|_{\phi_c}F_{\mu}^{I\ \lambda}F_{\nu}^{J\ \sigma}) \\ & \dot{T}_{\mu\nu}(\phi_c + \delta\phi)|_{\epsilon=0} = T_{\mu\nu}^{attr}|_{\phi_c} \end{split}$$

Stress energy tensor: Backreaction at first order

 For Gauged sugra with generic gauging, trace of Einstein equation,

$$R(g_{\mu\nu}, \gamma_{\mu\nu}) \frac{(2-D)}{2} = T_{\mu}^{attr\mu}|_{\phi_c} + (D-2)gK_{yI}|_{\phi_c}A^{\lambda I}\partial_{\lambda}(\delta\phi^{y})$$
$$+ g^{2}\frac{\partial K_{IJ}}{\partial\phi^{z}}\Big|_{\phi_c}A^{I}_{\mu}A^{J\mu}\delta\phi^{z}$$

$$T_{\mu}^{\mu attr}|_{\phi_c} = \mathcal{V}_{attr}(\phi_c)D - \left[a_{IJ}|_{\phi_c}F_{\mu\nu}^IF^{\mu\nu J} + g^2K_{IJ}|_{\phi_c}A_{\mu}^IA^{\mu J}\right]$$
 $K_{IJ} = g_{xy}K_I^xK_J^y$

- Scalar fluctuation terms indicate backreaction even at first order perturbation.
- Relevant boundary conditions for scalars should be such that they are well behaved near the horizon.
- For $U(1)_R$ gauging, g=0 and back reaction is absent.

Scalar fluctuation equations

• Scalar fluctuation equation for arbitrary gauged sugra,

$$\nabla_{\mu}\nabla^{\mu}\delta\phi^{\mathsf{x}} - g^{\mathsf{z}\mathsf{x}}rac{\partial^{2}\mathcal{V}_{\mathsf{attr}}}{\partial\phi^{\mathsf{z}}\partial\phi^{\mathsf{y}}}igg|_{\phi_{\mathsf{c}}}\delta\phi^{\mathsf{y}} + 2g\left(g^{\mathsf{z}\mathsf{x}}\tilde{\nabla}_{\mathsf{y}}\mathsf{K}_{\mathsf{l}\mathsf{z}}
ight)igg|_{\phi_{\mathsf{c}}}\mathsf{A}^{\mu\mathsf{l}}\nabla_{\mu}\delta\phi^{\mathsf{y}} = 0$$

- $\tilde{
 abla}$ covariant derivative w.r.t g_{xy} .
- ∇ covariant derivative w.r.t near horizon metric.
- higher order metric/gauge field fluctuations can be ignored for solving the above equation at lowest order.
- Laplacian for any given 5d Bianchi type metric,

$$abla_{\mu}
abla^{\mu}=rac{1}{L^{2}}igg[\hat{r}^{2}\partial_{\hat{r}}^{2}+(m+2)\hat{r}\partial_{\hat{r}}-rac{1}{\hat{r}^{2u_{0}}}\partial_{\hat{t}}^{2}igg]$$

$$m = -1 + \sum_{l} c_{l} u_{l}, c_{l} > 0, c_{0} = 1.$$

Scalar fluctuation equations

 For the specific gauged supergravity model fluctuation equation reduce to ,

$$\left[\hat{r}^2\partial_{\hat{r}}^2 + (m+2)\hat{r}\partial_{\hat{r}} - \frac{1}{\hat{r}^2u_0}\partial_{\hat{t}}^2 - \lambda\right]\delta\phi^{x} = 0$$

 λ - Eigenvalue of double derivative of attractor potential.

Sign of λ - indicates nature of critical point.

• For ansatz $\delta\phi(\hat{r},\hat{t})=f(\hat{r})e^{ik\hat{t}}$ (with k real), we get Bessel equation

$$\left[\hat{r}^2\partial_{\hat{r}}^2 + (m+2)\hat{r}\partial_{\hat{r}} + \left(\frac{k^2}{\hat{r}^{2u_0}} - \lambda\right)\right]f(\hat{r}) = 0$$

Scalar fluctuations

Scalar fluctuations

• implies $\lambda < 0$,

$$f(X) = \left(\frac{X}{2}\right)^{\nu_0} \left[C_1 H^1_{\nu_\lambda}(X) \left[\Gamma(1 - \nu_\lambda) e^{i\nu_\lambda \pi} + \Gamma(1 + \nu_\lambda) \right] + C_2 H^2_{\nu_\lambda}(X) \left[\Gamma(1 - \nu_\lambda) e^{-i\nu_\lambda \pi} + \Gamma(1 + \nu_\lambda) \right] \right]$$

$$X = \frac{k}{u_0 \hat{r}^{u_0}}, \quad \nu_{\lambda} = \frac{\sqrt{(1+m)^2 + 4\lambda}}{2u_0}, \quad \nu_0 = \frac{(1+m)}{2u_0}$$
• Consistency condition for ν_{λ} real,

• Consistency condition for ν_{λ} real.

$$\nu_{\lambda} = \frac{\sqrt{(1+m)^2 + 4\lambda}}{2u_0} = \frac{\sqrt{(\sum_{l} c_{l} u_{l})^2 + 4\lambda}}{2u_0} \le 1$$

 $-\frac{(\sum_{l}c_{l}u_{l})^{2}}{\lambda}\leq\lambda<0$

 Scalar fluctuations - well defined for critical points which are maxima of attractor potential.

Conditions for stability

• In our coordinate system horizon is located at $\hat{r} = 0$, $X \simeq 1/\hat{r}$, consider asymptotic expansion of f(X)

$$f(X) \sim \left(rac{X}{2}
ight)^{
u_0 - rac{1}{2}} \sqrt{rac{1}{\pi}} \left[C_1 e^{i(X - rac{\pi}{2}(
u_\lambda + rac{1}{2}))} \left[\Gamma(1 -
u_\lambda) e^{i
u_\lambda \pi} + \Gamma(1 +
u_\lambda)
ight]$$
 $+ C_2 e^{-i(X - rac{\pi}{2}(
u_\lambda + rac{1}{2}))} \left[\Gamma(1 -
u_\lambda) e^{-i
u_\lambda \pi} + \Gamma(1 +
u_\lambda)
ight]$

Leading divergent term is absent only when,

$$u_0 = \frac{(1+m)}{2u_0} = \frac{\sum_{l} c_l u_l}{2u_0} \le \frac{1}{2}$$

• since $c_0 = 1$,

$$\sum_{I,I\neq 0}c_Iu_I\leq 0$$

 But u_I ≥ 0 for regular horizon, therefore stability conditions are:

$$u_0 \neq 0, \quad u_I = 0 \quad \forall I \neq 0$$

Stable Bianchi attractors

• Bianchi attractors with scale invariance in all directions,

$$ds^2 = L^2 \left[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2(u_i + u_j)} \eta_{ij} \omega^i \otimes \omega^j \right]$$

Stability condition,

$$u_0 \neq 0$$
, $u_I = 0 \quad \forall I \neq 0$

• Stable Bianchi attractors in gauged supergravity are a subclass with scale invariance only in \hat{r} and \hat{t} .

$$ds^2 = L^2 \left(-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} \right) + L^2 \left(\eta_{ij} \omega^i \otimes \omega^j \right)$$

• They are of the direct product form $AdS_2 \times M$.

$$ds^{2} = L_{1}^{2} \left(-\tilde{r}^{2} d\tilde{t}^{2} + \frac{d\tilde{r}^{2}}{\tilde{r}^{2}} \right) + L_{2}^{2} \left(\eta_{ij} \omega^{i} \otimes \omega^{j} \right)$$

Stable Bianchi attractors

• Unstable generalised attractors

Geometry	λ	и0	$u_I, I \neq 0$
Lifshitz	-34	3	1
Bianchi II	$-\frac{22}{3}$	$\sqrt{2}$	$u_1=u_3=\frac{1}{2\sqrt{2}}$
Bianchi VI h < 0	$-1 + \frac{14h}{3} - h^2$	$\frac{1}{\sqrt{2}}(1-h)$	$u_2 = -\frac{1}{\sqrt{2}}h, u_3 = \frac{1}{\sqrt{2}}$

• Stable generalised attractors in direct product form

Geometry	λ	u_0	$u_I, I \neq 0$
$Lif_{u_0}(2) \times M_I$	$-\frac{5u_0^2}{3}$	any $u_0 > 0$	0
$AdS_2 \times M_I$	$-\frac{5}{3}$	1	0
$Lif_{u_0}(2) \times M_{II}$	$-\frac{61}{6}$	$\sqrt{\frac{11}{2}}$	0
$Lif_{u_0}(2) \times M^*$	$\lambda < 0$	any $u_0 > 0$	0

Summary and Future outlook

Introduction

Motivation

Bianchi Attractor

Symmetrie: Example

Stability of Bianchi attractors in gauged sugr

Gauged Supergravity
Linearised equations
Stability conditions
Stable Rianchi Attract

Summary and Future outlook

Stability of Bianchi attractors

Introduction

Bianchi Attractors

Stability

Summary and Future outlook

- Bianchi attractors are generalised attractor solutions in gauged supergravity.
- Generalised attractor procedure relies on extremisation of an attractor potential rather than susy.
- non-supersymmetric fixed points can be unstable attractors.
- We studied scalar fluctuations about the attractor value and derived stability conditions by demanding regularity near the horizon.

 Instability - III behaved fluctuations near the horizon will backreact strongly \implies significant deviation from the attractor geometry.

- Consistency condition on scalar fluctuations: critical point is a maxima of the attractor potential.
- Regularity of the fluctuations near the horizon require the near horizon geometry to factorise as $AdS_2 \times M$,

$$ds^2 = L_1^2 \left(-\tilde{r}^2 d\tilde{t}^2 + \frac{d\tilde{r}^2}{\tilde{r}^2} \right) + L_2^2 \left(\eta_{ij} \omega^i \otimes \omega^j \right)$$

 $M = M_I, M_{II} \dots M_{IX}$ - 3d homogeneous subspaces invariant under the Bianchi type symmetries.

Summary and Future outlook

$$\left[\hat{r}^{2}\partial_{\hat{r}}^{2} + (m+2)\hat{r}\partial_{\hat{r}} - \lambda\right]\delta\phi^{x} = 0.$$

$$\delta\phi^{x} = C_{1}r^{\left(\sqrt{4\lambda + (1+m)^{2}} - (1+m)\right)/2} + C_{2}r^{\left(-\sqrt{4\lambda + (1+m)^{2}} - (1+m)\right)/2}$$

- Fluctuations vanishing as $\hat{r} \to 0$ exist when $\lambda > 0$, $C_2 = 0$.
- However, no bianchi attractors were found for critical points with $\lambda>0$ possible model dependent artifacts.

Introduction

Bianchi Attractors

Summary and Future outlook

Future outlook

• Based on stability analysis we conclude that Bianchi attractors of the form $AdS_2 \times M$ are stable geometries in the deep IR.

- The factorisation of the near horizon geometry is reminiscent of the situation for extremal black holes.
- It is known that the near horizon geometry of extremal black holes preserve supersymmetry.
- Reasonable to expect $AdS_2 \times M$ geometries to preserve some fraction of the supersymmetry (work in progress).

Stability of Bianchi attractors

Introduction

Bianchi Attractors

Stability

Summary and Future outlook

Stability of Bianchi attractors

Introduction

Bianchi Attractors

Stability

Summary and Future outlook

Thank You!

Minimal Surface