Kompresja obrazów statycznych - algorytm JPEG

Joint Photographic Expert Group - 1986

- ISO International Standard Organisation
- CCITT Comité Consultatif International de Téléphonie et Télégraphie

Standard ISO - 1991

Jacek Jarnicki Politechnika Wrocławska

- 1. Konwersja obrazu do modelu YIQ (obrazy barwne)
- 2. Podział obrazu na bloki

Algorytm kodowania obrazu

- 3. Obliczenie transformaty kosinusowej dla bloków
- 4. Kwantyzacja współczynników transformaty
- Konwersja tablicy współczynników do postaci wektora
- 6. Kodowanie wektora współczynników

Jacek Jarnicki Politechnika Wrocławska

3

Zastosowanie algorytmu - kompresja cyfrowych obrazów fotograficznych

Założenia:

- obraz monochromatyczny
 tablica liczb całkowitych opisujących jasność punktów obrazu
- obraz barwny

tablice liczb całkowitych (zazwyczaj trzy) opisujące obraz w języku przyjętego modelu barw n.p. dla modelu RGB trzy tablice określające zawartości trzech barw podstawowych

Jacek Jarnicki Politechnika Wrocławska

-

1. Konwersja obrazu do modelu YIQ

Przykładowo, dla modelu RGB obraz opisany jest przy pomocy trzech tablic

$$R = [r_{ij}], G = [g_{ij}], B = [b_{ij}]$$

Konwersja polega na opisaniu obrazu przy pomocy trzech nowych tablic Y, I, Q, których elementy oblicza się według zależności

$$\begin{bmatrix} y_{ij} \\ i_{ij} \\ q_{ij} \end{bmatrix} = \begin{bmatrix} 0.229 & 0.587 & 0.114 \\ -0.168 & -0.257 & -0.321 \\ 0.212 & -0.528 & 0.311 \end{bmatrix} \begin{bmatrix} r_{ij} \\ g_{ij} \\ b_{ij} \end{bmatrix}$$

Jacek Jarnicki Politechnika Wrocławska

Po wykonaniu konwersji obraz jest opisany przy pomocy trzech nowych tablic

$$Y = [y_{ij}], I = [i_{ij}], Q = [q_{ij}]$$

Tablica Y określa tak zwaną luminancję, natomiast I i $\mathcal Q$ chrominancję .

2. Podział obrazu na bloki

Tablice Y, I i Q po przeskalowaniu tak, że ich elementy stają się liczbami całkowitymi dzieli się na bloki (mniejsze tablice) o rozmiarze 8x8, opisane funkcją.

$$f(x, y)$$
 $x = 0,1,...,7$ $y = 0,1,...,7$

Jacek Jarnicki Politechnika Wrocławska

5

7

3. Obliczanie transformaty kosinusowej (DCT) dla bloków

$$f(x,y) \Longrightarrow F(u,v)$$

$$F(u,v) = \frac{C(u)C(v)}{4} \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos\left(\frac{2x+1}{16}up\right) \cos\left(\frac{2y+1}{16}vp\right)$$

$$\mathbf{F}(\mathbf{u},\mathbf{v}) \Longrightarrow \mathbf{f}(\mathbf{x},\mathbf{y})$$

$$f(x,y) = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v)\cos\left(\frac{2x+1}{16}up\right)\cos\left(\frac{2y+1}{16}vp\right)$$

$$gdzie \quad C(u) = \begin{cases} 1/\sqrt{2} & dla \quad u = 0 \\ 1 & dla \quad u \neq 0 \end{cases} \quad i \quad C(v) = \begin{cases} 1/\sqrt{2} & dla \quad v = 0 \\ 1 & dla \quad v \neq 0 \end{cases}$$

Jacek Jarnicki Politechnika Wrocławska

•

Fragment obrazu "płaszczyzna"

Blok obrazu wejściowego

Blok jako funkcja

Transformata DCT funkcji

Jacek Jarnicki Politechnika Wrocławska

Fragment obrazu "szachownica"

Blok obrazu wejściowego

Transformata DCT funkcji

Jacek Jarnicki Politechnika Wrocławska

Odwrócenie wykonanych operacji (dekodowanie)

Integer Round (DCT-1(
$$F^{Q}(u,v)*Q(u,v)$$
)) \Longrightarrow $f^{*}(x,y)$

Dla obrazu fotograficznego

$$\mathbf{f(x,y)} = \begin{bmatrix} 186 & 198 & 199 & 190 & 182 & 177 & 182 & 197 \\ 179 & 184 & 183 & 176 & 173 & 172 & 175 & 184 \\ 188 & 182 & 180 & 178 & 174 & 172 & 171 & 166 \\ 132 & 130 & 139 & 146 & 151 & 169 & 191 & 201 \\ 131 & 134 & 137 & 140 & 139 & 139 & 138 \\ 153 & 157 & 161 & 172 & 177 & 145 & 89 & 49 \\ 190 & 178 & 192 & 196 & 120 & 43 & 39 & 47 \\ 176 & 184 & 187 & 112 & 41 & 39 & 43 & 44 \end{bmatrix}$$

$$\mathbf{f^*(x,y)} = \begin{bmatrix} 183 & 186 & 187 & 182 & 176 & 178 & 188 & 198 \\ 178 & 188 & 196 & 192 & 180 & 69 & 168 & 171 \\ 169 & 174 & 178 & 175 & 170 & 170 & 176 & 183 \\ 147 & 140 & 133 & 135 & 148 & 168 & 186 & 197 \\ 131 & 126 & 126 & 135 & 149 & 153 & 146 & 136 \\ 150 & 160 & 173 & 178 & 163 & 127 & 82 & 51 \\ 176 & 190 & 195 & 172 & 125 & 75 & 44 & 31 \\ 181 & 185 & 168 & 114 & 50 & 19 & 32 & 58 \end{bmatrix}$$

Jacek Jarnicki Politechnika Wrocławska

Politechnika Wrocławska

13

15

5. Konwersja tablicy współczynników do postaci wektora

$$F^{Q}(u,v) \implies [DC, AC_1, AC_2, ..., AC_{63}]$$

Algorytm zig-zag (A. G. Tescher 1978)

[DC, AC₁,...,AC₆₃] = [75, 2, 18, -1, 5, -2, -2, 2, 10, 1, -2, 0, 1, 1, 0, 0, 0, -2, -3, -3, 1, 0, 0,..., 0]

Jacek Jarnicki Politechnika Wrocławska

Kodowanie i dekodowanie (przykłady)

• Dla obrazu fotograficznego

przed kompresją f(x,y)

po kompresji i dekompresji $f^*(x,y)$

• Dla obrazu "szachownica"

przed kompresją f(x,y)

po kompresji i dekompresji $f^*(x,y)$

Jacek Jarnicki Politechnika Wrocławska

. . .

6. Kodowanie wektora współczynników

wektor - [DC, AC_1 , AC_2 ,..., AC_{63}]

- kodowanie DC dla bloków obrazu (tablicy bloków)
- kodowanie AC₁, AC₂, ... , AC₆₃ dla bloku

Kodowanie entropijne - długość słowa kodowego odpowiadającego kodowanemu elementowi (symbolowi) jest różna dla różnych elementów.

Elementy, które statystycznie występują częściej mają krótsze słowa kodowe.

Jacek Jarnicki Politechnika Wrocławska

6.1. Kodowanie DC (składowej stałej)

Obraz został podzielony na bloki 8x8.

 DC^{i} - składowa stała dla bloku i . i = 0, 1, ..., m

m - liczba bloków obrazu

Do kodowania składowej stałej stosuje się algorytm DPCM.

Jacek Jarnicki Politechnika Wrocławska

17

Algorytm kodowania składowej stałej DC

- Buduje się wektor $\mathbf{DC} = [\mathbf{DC^0}, \mathbf{DC^1}, \mathbf{DC^2}, ..., \mathbf{DC^k}, \mathbf{DC^{k+1}}, ..., \mathbf{DC^m}].$
- Wylicza się wektor $\Delta = [\Delta_0, \Delta_1, ..., \Delta_i, ..., \Delta_m]$ ze wzoru

$$\Delta_0 = DC^0$$
 $\Delta_i = DC^i - DC^{i-1} \quad i = 1,2,...,m$

• Elementy wektora $\Delta = [\Delta_0, \Delta_1, ..., \Delta_i, ..., \Delta_m]$ koduje się przy pomocy tabeli kodu Huffmana

Jacek Jarnicki Politechnika Wrocławska

18

6.2. Kodowanie [AC₁, AC₂, ...,AC₆₃]

Przykładowa postać wektora:

$$[AC_1,...,AC_{63}] = [2, 18, -1, 5, -2, -2, 2, 10, 1, -2, 0, 1, 1, 0, 0, 0, -2, -3, -3, 1, 0, 0,..., 0]$$

Wektor zawiera elementy niezerowe, przedzielone niekiedy ciągami zer.

[...,
$$AC_{i-1}$$
, 0,..., 0, AC_i , 0,..., 0, AC_{i+1} , 0,...]

Ciąg elementów koduje się przy pomocy następującej struktury.

Symbol-1 = (Runlength, Size)

Symbol-2 = (Amplitude)

Runlength – liczba zer pomiędzy AC_i i poprzednim niezerowym AC_{i-1} (kodowana jako liczba binarna)

Size – liczba określająca zakres AC_i

Amplitude – liczba wyrażajaca wartość AC_i

Do kodowania **AC**_i używa się kodu Huffmana.

Jacek Jarnicki Politechnika Wrocławska

Algorytm kodowania AC_i:

1. Obliczana jest liczba S przy pomocy wzoru

 $S = Integer Round [log_2(abs(AC_i)) + 1]$

2. Dla liczby S znajdowane jest słowo kodu Huffmana określające kod **Size** np. według następującej tabeli:

S	kod Size	S	Kod Size
0	00	6	1110
1	010	7	11110
2	011	8	111110
3	100	9	1111110
4	101	10	11111110
5	110	11	111111110

Jacek Jarnicki Politechnika Wrocławska

21

Następnie wyliczany jest kod **Amplitude** zgodnie z kolejną tabelą:

S	współczynnik AC _i	Kod Amplitud e
0	0	
1	-1, 1	0, 1
2	-3, -2, 2, 3	00, 01, 10, 11
3	-7,,-4, 4,,7	000,, 011, 100,,111
4	-15,,-8, 8,,15	0000,, 0111, 1000,, 1111
-	itd.	itd.

Przykład: $AC_i = 12$ to: S = 4, Size = 101, Amplitude = 1100, czyli razem kod $AC_i = 1011100$

Jacek Jarnicki Politechnika Wrocławska

22

7. Podsumowanie Koder JPEG (uproszczony) Bloki 8x8 danych źródłowych DCT Kwantyzator Koder bitowy Sompresowane Jacek Jarnicki Politechnika Wrocławska 23

