

杏仁过敏原

检测说明书

食品中杏仁过敏原的定量酶免疫检测试剂盒

灵敏度(以杏仁计)	0.2ppm
回收率	69-107%
孵育时间	60 分钟

杏仁过敏原

杏仁(扁桃仁)属于蔷薇科,含有高达 25%的蛋白质。其中一些蛋白具有致敏性。不单是其纤维抑制蛋白与花粉有交叉反应,杏仁主要蛋白 AMP 也有一定的相关性。AMP 在各种不同加工过程中都具有热稳定性。因此,杏仁也是最重要的一种过敏原。对于杏仁过敏人群,食品中潜在的杏仁过敏原是一个严重问题。据悉,极微量杏仁即可引起严重的过敏反应,甚至可能导致过敏性休克。因此,杏仁过敏患者一定要避免摄食含有杏仁的食物。加工过程中的交叉污染也要受到关注,比如巧克力的生产过程。有些加工过程并不一定能完全排除杏仁过敏原,因此,对食品成品的检测会更好地确定其是否含有杏仁过敏原。

欧陆分析杏仁快检试剂盒是一种灵敏度高,专门性强的定量分析试剂盒,广泛 应用于饼干、粮食、冰淇淋和巧克力等食品中杏仁过敏原的检测。

检测原理

该产品基于酶联免疫检测的原理。微孔板内包被抗体能直接捕获杏仁蛋白。样品经过提取后的待测液,连同标准品系列加入到包被有抗体的微孔中进行孵育。室温孵育 20 分钟后,用清洗液清洗掉未结合的残留物,加入酶标记的第二抗体,与杏仁蛋白形成双抗体夹心结构。再次清洗后,加入底物,与酶复合物形成蓝色。加入终止液溶液变为黄色。杏仁含量和显色浓度成正比。

注意事项

完全遵守良好实验室操作规范,将会得到更可靠的检测结果:

- 1. 检测开始前, 使所有试剂回复至室温。
- 2. 使用前轻摇或倒置试剂使试剂均匀,不要产生泡沫。
- 3. 检测开始后、按照操作步骤的顺序和时间、中途不要停顿。
- 4. 试剂使用后用各自的盖子封好,不要相互交叉。
- 5. 每个不同样本更换一次性吸头以免交叉污染。
- 6. 所有样本和标准品应同时进行操作,以确保测试条件一致。
- 7. 不同批次的试剂盒不要混用。
- 8. 不要使用过期的试剂。
- 9. 检定实验室设备(移液器,酶标仪等)的精度和准确性。

安全说明

- 1. 实验室不要吸烟、饮食和用嘴吸取液体。
- 2. 处理危险样本时带上一次性手套。
- 3. 避免底物和终止液皮肤和口鼻(可能会有刺激、灼烧或毒性危害)。一旦接 触、用大量的水冲洗。
- 按照良好实验室规范处理使用过的化学物质。

试剂盒提供材料

试剂盒含有 96/48 次检测。保存条件为 2-8C°。瓶子上和外包装注有有效期。

- 1. 微孔板含有 12/6 条每条 8 孔抗体微孔
- 2. 杏仁标准品(0.0.4.1.4 和 10ppm):每瓶 2.0mL, 共 5 瓶, 红色, 即用。
- 3. 酶结合物:15/7.5mL, 标记为红色, 即用。
- 4. 底物 (TMB) : 15mL, 即用。
- 5. 终止液 (0.5M 硫酸):15mL,即用。

- 6. 提取和稀释缓冲液(Tris):2/1*120mL 的 10 倍浓缩液,标记为红色,和蒸馏水按 1+9 稀释后使用。稀释后 4C°下可至少保存 1 周,冷冻后如有结晶要在 37C°下回温 15 分钟。
- 7. 浓缩清洗液 (PBS-Tween20) : 60mL 的 10 倍浓缩液, 和蒸馏水按 1+9 稀释后 使用。稀释后 4C°下可至少保存 4 周, 冷冻后如有结晶要在 37C°回温 15 分钟。
- 8. 塑料袋用干保存未使用的微孔。
- 9. 操作说明书。

其它未提供的材料

- 1. 移液器,100 μL
- 2. 量筒和天平
- 3. 混匀器
- 4. 水浴摇床
- 5. 离心机
- 6. 酶标仪
- 7. 蒸馏水

样品准备

为了避免交叉污染,所有使用的容器必须彻底清洗干净,因为杏仁蛋白可能会 牢固附着在某些容器表面。为避免交叉污染,强烈建议注意清洗顺序。以下样品制 备适用于各种样品。

- 1. 在混匀有代表性的样品中抽取至少 5g 磨碎的粉末样品。
- 2. 取适量浓缩提取液、稀释 10 倍。
- 3. 1g 均匀样品中加入 20mL 预稀释的提取液,60°水浴 15 分钟,期间每 2 分钟摇晃以确保提取均匀。
- 4. 样品液 2000g 离心 10 分钟,如果有悬浮物,过滤。
- 5. 每孔用 100µL 清液。如果结果超出检测范围,稀释后重测。

检测步骤

取适量的浓缩清洗液,和蒸馏水 1+9 的比例稀释 10 倍。标准品在样品前后各加 1 次,用平均值进行计算。考虑良好实验室规范和质控,建议样品做 2 重复。具体过程如下:

- 1. 如前述准备好提取的样品。
- 2. 取出适量微孔,分别加入100µL标准品和样品。
- 3. 室温孵育 20 分钟。
- 4. 倒掉微孔中的液体。将清洗液加满每个微孔,清洗后倒掉。重复清洗 3 次,然后将微孔倒置并在吸水纸巾上拍干,确保微孔中无液体残留。
- 5. 吸取 100µL 酶结合物到每个微孔中。
- 6. 室温孵育 20 分钟。
- 7. 按步骤 4 重复清洗微孔。
- 8. 吸取 100µL 底物到每个微孔中。
- 9. 室温避光(抽屉里)孵育20分钟。
- 10. 吸取 100µL 终止液到每个微孔中。
- 11. 混匀后在 450nm 波长下读取吸光值, 并输入表格计算结果。

曲线标准值

下表是典型标准曲线参考值。结合比例以 10ppm 的标准吸光值为 100%基准。这些数据仅作为示例,不能替代每次测定实验。

杏仁含量/ppm	10ppm 的结合比率/%
10	100
4	54
1	21
0.4	13
0	6

性能

灵敏度

该试剂盒的检出限为 0.2ppm,定量低限为 0.4 ppm。

由于样品基质和空白的影响, 检测结果低于定量低限可视为阴性。

交叉反应性

本试剂盒与以下产品无交叉反应。

Apricot 杏肉	Egg 鸡蛋	Pistachio 开心果
Barley 大麦	Fenugreek 葫芦巴	Plum 李子
Brazil nut 巴西坚果	Hazelnut 榛子	Poppy seed 罂粟籽
Buckwheat 荞麦	Lecithin 卵磷脂	Rice 大米
Cashew nut 腰果	Milk 牛奶	Rye 黑麦
Cherry 樱桃	0ats 燕麦	Sesame 芝麻
Chestnut 栗	Paprika 红椒	Soy 大豆
Cocoa 可可	Peach 桃	Sunflower seeds 葵花籽
Coconut 椰子	Peanut 花生	Walnut 核桃
Corn 玉米	Pecan 美洲山核桃	Wheat 小麦
Cumin 小茴香	Pine nuts 松子	

其他交叉反应如下:

杏仁	100%
樱桃核	1.7%
鼠尾草	0.0003%
马哈利酸樱桃核	1.4%
桃核	16%
粉椒	0.00004%
李核	1.0%

精度

批内稳定性	3-9%
批间稳定性	3-13%
日间稳定性	2-8%

线性

加标样品(曲奇饼干、谷物、冰淇淋和巧克力)系列浓度的结果在85-98%。

回收率

不同样品中进行杏仁加标,测定平均回收率如下:

曲奇饼干	91%
谷物	107%
冰淇淋	79%
黑巧克力	69%