Hochschule für Technik Stuttgart

Interdisziplinäres Projekt

vorgelegt von

Halil Kocak

Bachelor-Studiengang Informatik

Fakultät Vermessung, Informatik und Mathematik

Wintersemester 2021/22

Ausarbeitung des Modells für Bildklassifizierung nach CRISP-DM

ErstprüferIn:

Dr. Prof. Jörg Homberger

Inhaltsverzeichnis

ΑI	Abbildungsverzeichnis											
Τā	belle	nverzeichnis	4									
1	Einl	eitung	5									
2	Mas	schinelles Lernen	6									
	2.1	Überwachtes Lernen	7									
	2.2	Künstliche Neuronale Netze	7									
		2.2.1 Neuronales Netz	7									
		2.2.2 Feed-Forward Propagierung	8									
		2.2.3 Eingabedaten	9									
		2.2.4 Lernverfahren	9									
	2.3	Deep Learning	10									
		2.3.1 Convolutional Neural Network	11									
	2.4	Evalutionstechniken	11									
3	CRI	SP-DM Modell	12									
	3.1	Aufbau des CRIPS-DM Modells	12									
	3.2	Business Understanding	12									
	3.3	Data Understanding	13									
	3.4	Data Preparation	13									
	3.5	Modeling	13									
	3.6	Evaluation	14									
	3.7	Deployment	14									
4	Ехр	eriment über die Fallstudie	15									
	4.1	Business Understanding	15									
	4.2	Data Understanding	15									
Li	torati	urverzeichnis	10									

Abbildungsverzeichnis

2.1	Maschinelles Lernen vs. Klassische Programmierung [Cho18] (K.1.1.2.	6
2.2	Modell eines Neurons [Abbe]	7
2.3	Schichten der Künstliche Neuronale Netze [Abbf]	8
2.4	Feed-Forward Netz	9
2.5	Künstliches Neuronales Netz vs. Deep Learning [Abbd]	LC
2.6	Aufbau eines CNNs [Abba]	. 1
3.1	Ablauf CRIPS-DM Modell [Abbb]	.2
4.1	Der gesamte Datensatz: FASHION-MNIST [Abbc]	16
4.2	Verteilung Trainingsdatensatz [Abbh]	7
4.3	Verteilung Testdatensatz [Abbg]	8

Tabellenverzeichnis

1.1	Labels des	Datensatzes																											1	7
-----	------------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

1 Einleitung

Es war immer die Frage ob, die Maschine jemals selbst die Entscheidungen anhand Informationen treffen oder wie ein Mensch Regeln aus Prozesse extrahieren kann [Cho18](K.1.1.1).

Dieses IDP-Projekt beinhaltet die Erkennung von Objekten auf Bildern durch den Einsatz von Künstlicher Intelligenz. Dabei wird die Disziplin Deep Learning unter Einsatz von Convutional Neural Network verwendet. Um diese zu verstehen werden allgemeine Informationen zur Künstlichen Intelligenz und dessen Bestandteile und Algorithmen benötigt. Zu Beginn ist es wichtig zu wissen, welche Probleme die Künstliche Intelligenz lösen kann und welche Bestandteile für diese Arbeit benötigt werden. In diesem Zusammenhang wird zum Beispiel das Verfahren Convutional Neural Network behandelt, welches zu den Deep Learning Methoden gehört und eine Teilmenge der Maschinellen Lernalgorithmen bildet. Außerdem wird im Rahmen dieser Arbeit das CRIPS-DM Modell vorgestellt und verwendet, welches als Standard für Data Mining Modelle definiert wurde.

2 Maschinelles Lernen

Maschinelles Lernen stellt ein Teilgebiet der Künstlichen Intelligenz dar. Dabei werden durch den Einsatz von Maschinen ein Verhalten aus den Daten extrahiert, wodurch die Maschine selbst Lernen kann. Dies Geschieht unter Verwendung verschiedener Techniken und Algorithmen. Während der Lernphase versucht die Maschine, Regelmäßigkeiten aus den Daten zu erkennen und diese zu verallgemeinern. Nachdem die Lernphase beendet ist, kann die Maschine eine Vorhersage aus den aktuellen Daten treffen [Fro21](S.2-3).

Abbildung 2.1: Maschinelles Lernen vs. Klassische Programmierung [Cho18] (K.1.1.2

In der Abbildung 2.1, ist der Unterschied zwischen der Klassischen Programmierung und den Maschinellen Lernalgorithmen zu sehen. Bei der Klassischen Programmierung werden Regeln definiert und implementiert. Anhand dieser Regeln werden die Daten verarbeitet, die dann zu einer Antwort führen. Anders ist es aber bei den Maschinellen Lernalgorithmen. Hier werden Daten und dessen Antworten als Eingabedaten betrachtet, wodurch die Maschine für sich die Regeln definiert [Cho18] (Kapitel 1).

Um Entscheidungen zu treffen, werden Eingabedaten benötigt, die der Maschine die nötigen Informationen liefern. Die Eingabedaten beinhalten auch die Lösung des Problems und somit auch den Wert, der von der Maschine vorhergesagt werden soll. Damit die Maschine nach Effizienz bewertet werden kann, ist eine Messung der Algorithmen erforderlich [Cho18](Kapitel 1.1.3).

Für die Lösungen der Probleme werden verschiedentliche Maschinelle Lernalgorithmen verwenden. Die Entscheidung welches benutzt werden soll hängt von den Eingabedaten und dem Ziel ab. Im Rahmen dieser Arbeit liegt der Fokus auf dem Convutional Neural Network Verfahren, welches zur Kategorie des überwachten Lernens gehört [Lub19].

2.1 Überwachtes Lernen

Das überwachte Lernen gehört zu den Lernverfahren des maschinellen Lernens und umfasst die Klassifikation und Regression. Bei einem überwachten Lernen werden Eingabedaten, die Beispiele beinhalten, einem bekannten Zielwert zugeordnet. Dadurch sind die Zielwerte bekannt und somit können die Fehler, bei einer falschen Klassifikation, während dem Lernprozess entdeckt werden [Cho18](K.4.1.2).

2.2 Künstliche Neuronale Netze

Im folgenden Abschnitt werden die Bestandteile von künstlichen Neuronalen Netzen definiert und der Aufbau beschrieben.

2.2.1 Neuronales Netz

Auf der linken Seite der Abbildung 2.2, befinden sich die Eingabedaten die als $x_0, x_1, ..., x_n \in \vec{X}$ definiert sind, wobei \vec{X} den Vektor \mathbb{R}^n darstellt. Jede einzelnen Eingabe $x_0, x_1, ..., x_n$ wird mit seinem Gewicht $w_{n,j}$ multipliziert, wobei $j \in [0, AnzahlNeuronen]$ gilt. Nachdem multiplizieren mit den Gewichten werden alle berechneten Werte an die Übertragungsfunktion übergeben. Dieser Ablauf ist dabei an eine echte Nervenzelle angelehnt, indem Neuronen aus anderen Nervenzellen, dieses Neuron anregen und auf diese übertragen können. Die Übertragungsfunktion summiert diese Werte zusammen und leitet sie dann an die Aktivierungsfunktion weiter. Die Aktivierungsfunktion beinhaltet genauso ein Schwellenpotenzial mit der wir auch Schwellenwerte prüfen können. Eine einfache Aktivierungsfunktion wäre hierbei das Alles-oder-nichts-Prinzip. Mit diesem Prinzip ist gemeint, dass bei Überschreitungen des Schwellwertes das Neuron aktiviert und unterhalb des Schwellwertes inaktiv gestellt wird [Fro21](S.169).

Abbildung 2.2: Modell eines Neurons [Abbe]

Zunächst ist wichtig wie die Vernetzungen und Verknüpfungen der Neuronen aussehen und funktionieren. In Abbildung 2.3 wird deutlich, dass ein einfaches Künstliches Neuronales Netz aus drei Schichten besteht. Die erste Schicht ist dabei die Eingabeschicht (engl. Inputlayer), die die Eingabe der Daten verarbeitet und wiederum mit jedem Neuron aus der verborgenen Schicht (engl.= Hiddenlayer) vernetzt ist. Durch die Ausgabeschicht werden Regeln, die aus der verborgenen Schicht extrahiert werden, bereitgestellt. Diese Neuronen werden zur Evaluation des Modells benutzt [Fro21](S.169).

Abbildung 2.3: Schichten der Künstliche Neuronale Netze [Abbf]

2.2.2 Feed-Forward Propagierung

Das neuronale Netz durchlauft bei jedem Dateneintrag einmal die Schichten entlang. Dazu wird die im Kapitel 2.2 definierte Model genutzt.

Mathematische Beschreibung eines Feed-Forward Netzes

Mit dem bisherigen Aufschrieb werden Bestandteile und deren Funktionen näher erklärt. Nun beschreiben wir das einfach neuronal Netz wie folgt. Vorerst definieren wir die Arbeitsweise zwischen den Schichten:

$$f: \mathbb{R}^{D_0} \to \mathbb{R}^{D_l}, f(\overrightarrow{X}) = (f_l \circ f_{l-1} \circ \dots \circ f_1)(u),$$

wobei f_l die Schichten sind und für jedes $L \in \{0, 1, 2, ..., l\}$ die Funktion,

$$f: \mathbb{R}^{D_{L-1}} \to \mathbb{R}^{D_0}$$
, $f_l(\overrightarrow{X}) = \sigma(w^l * \overrightarrow{X} + b^l)$, beschreibt.

Wobei \overrightarrow{X} der Vektor für die Eingabedaten (engl. Inputdata), $w^l \in \mathbb{R}^{(D_l \times D_{l-1})}$ die Gewichte, welche die Verbindungen (Abbild 2.3) von einem Neuron zu anderem Neuronen gewichten. und b^l der Verzerrungsvektor (engl. Bias), der Schicht l ist. [Pla21] (S.232 - 234)

Die Gewichte werden zunächst zufällig vergeben und mit dem Lernverfahren, der während dem Rückpropagierung stattfindet, optimiert. Damit das Neuronale Netz Abweichungen erkennen kann, werden Bias verwendet, die diese Abweichung darstellt.

Abbildung 2.4: Feed-Forward Netz

2.2.3 Eingabedaten

Die Eingabedaten $x_1, ..., x_n$ stellen die Merkmale (oder Attribute) dar, welches die Merkmale beinhalten, aus der das Neuronale Netz lernen kann. Zu beachten ist dabei die Datentypen der Eingabedaten, sowohl die Normierung dieser Daten. Hierzu gibt es verschiedentliche Datentypen, in diese Arbeit wird der Fokus auf Vektordaten und Bilddaten gerichtet [Cho18] (K.2.2.8).

Vektordaten

Dieses Datentyp wird als $\overrightarrow{x} \in \mathbb{R}^2$ definiert und beinhaltet in der erste Achse, die Datenwerte, wie zum Beispiel x_1 . Die zweite Achse ist die Merkmalsachse , die die Merkmale darstellen die zur Verfügung stehen [Cho18] (K.2.2.9).

Bilddaten

2.2.4 Lernverfahren

Bisher haben wir den Durchlauf eines Neuronalen Netzes definiert, jedoch nicht wie es aus den Daten lernen kann. Damit das Neuronale Netz lernen kann, benötigt es auch den Fehler zu entdecken. Durch die Vereinheitlichung der Neuronen mit der Aktivierungsfunktion, können Fehlerwerte kalkuliert werden. Dies Geschieht folgendermaßen. Wie nehmen an unsere Ausgabeschicht beinhaltet den Werte $x_0 = 0.75$, wobei der echte erwartete Wert y = 1 ist. Durch die Anwendung eines der Verlustfunktionen, stellt das Neuronale Netz fest, wie groß die Abweichung des Ergebnisses von der tatsächlichen Ergebnis ist. Hierzu werden verschiedentliche Verfahren genutzt [Mat21](S.124-126). Eines dieser Verfahren ist die mittlere quadratische Abweichung (engl. mean squared error, MSE).

$$MSE = \frac{1}{n} (\sum_{i=1}^{n}) (Y_i - \hat{Y}_i)^2$$

, wobei
n Anzahl der Datenpunkte, Y_n das erwartete Ergebnis und
 \hat{Y}_i die prognostizierten Werte sind.

In diesem Beispiel wird es wie folgt berechnet.

$$MSE = \frac{1}{1} \sum_{i=1}^{1} (Y_i - \hat{Y}_i)^2$$

$$MSE = 1 * (1 - 0.75)^2 = 0.0625$$

Somit kennt das Neuronale Netz die Abweichung der Prognose, womit es den Lernprozess starten kann. Es stellt sich die frage wie das Neuronale Netz sich optimieren bzw. verbessern lassen. [Pla21] (S.194). Es ist bekannt das ein Neuronales Netz mehrere Ausgaben liefern kann und für jedes diese Ausgabe ist es möglich einen Verlustfunktion zuzuweisen [Cho18].

2.3 Deep Learning

Bei Deep Learning handelt es sich um eine Teilmenge der Maschinellen Lernalgorithmen, mit der komplexere Aufgaben gelöst und automatisiert werden können. Der Unterschied zu einem Künstlichen Neuronalen Netz ist, dass Deep Learning mehrere verborgene Schichten beinhaltet (siehe Abbildung 2.5). Hierzu ist die Aktivierungsfunktion als die Sigmoid-Funktion vorgesehen, die wie folgt definiert ist:

$$sig(t) = \frac{1}{(1+e^-t)}$$

,wobei $sig(t) \in [0,1]$ und $t \in \mathbb{R}$ gilt.

Dies bedeutet, dass die Neuronen immer eine Zahl übertragen bekommen, die zwischen 0 und 1 liegt. Somit können durch Implementierungen Schwellenwerte definiert und dementsprechend Neuronen aktiviert oder deaktiviert werden [Fro21](S.178).

Abbildung 2.5: Künstliches Neuronales Netz vs. Deep Learning [Abbd]

2.3.1 Convolutional Neural Network

Bei einem CNN, im Deutschen "gefaltetes Neuronales Netzwerk", handelt es sich von einer Sonderform des künstlichen neuronalen Netzes, das speziell für Bild- oder Audiobearbeitung entwickelt wurde. Diese Form ist teils an dem biologischen Ablauf angelehnt. [Lub19] Der Aufbau eines CNNs ist in Abbildung 2.6 dargestellt.

Abbildung 2.6: Aufbau eines CNNs [Abba]

In Abbildung 2.6 sind mehrere Schichten (Layer) zu sehen. Dabei ist die Eingabeschicht (Inputlayer) und die Ausgabeschicht (Outputlayer) bekannt. Wie im vorherigen Abschnitt auch definiert, hat die CNN mehrere verborgene Schichten, darunter die Convolutional Layer, die einzelne Merkmale aus den Eingabedaten ortsunabhängig erkennt und daraufhin diese extrahiert. Diese Merkmale könnten bei einer Bildverarbeitung den Kanten, Linienformen und Farbtupfer entsprechen, die eine Struktur darstellen. Diese Merkmale werden in der Pooling-Schicht, auch als Subsampling bekannt, bearbeitet, indem die Auflösung der Merkmale reduziert und verdichtet wird. Somit werden überflüssige Informationen verworfen, wodurch die Datenmenge reduziert wird. Durch dies wird die Berechnungsgeschwindigkeit erhöht. Diese zwei Schichten können so oft wie möglich verwendet werden, da sie nur Merkmale aus den Bilder extrahieren und optimierend zu Verfügung stellen. Die eigentliche Klassifikation entsteht durch die Fully-Connected Layer, im Deutschen "vollständig verknüpfte Schicht", die sich der wiederholten Abfolge der Convolutional- und Pooling-Schichten anschließt, indem alle Merkmale der vorgelagerten Schichten mit jedem Ausgabemerkmal verknüpft sind. Somit werden mögliche Kombinationen aus den Strukturen entworfen, die komplexere Strukturen identifizieren lassen. Wichtig ist hierbei, dass die Anzahl an Neuronen in der vollständig vernetzten Schicht abhängig von den Klassen oder Objekten sind [Lub19].

2.4 Evalutionstechniken

3 CRISP-DM Modell

3.1 Aufbau des CRIPS-DM Modells

Das CRISP-DM Modell "Cross-Industry Standard Process for Data Mining" beschreibt den Standard für die Strukturierung der Maschinellen Lernalgorithmen. Das Ziel ist es, einen einheitlichen Prozess für Data Mining Projekte zu schaffen und ist eine Anleitung für Data Mining, die in 6 Schritten aufgeteilt ist [Wut19]. Der Ablauf des Modells ist in Abbildung 3.1 dargestellt.

Abbildung 3.1: Ablauf CRIPS-DM Modell [Abbb]

3.2 Business Understanding

Der erste Schritt der 6 Schritte des CRISP-DM Modells, ist das Business Understanding, welches sich mit den betriebswirtschaftlichen Problemen befasst. Zunächst werden betriebswirtschaftliche Anforderungen extrahiert und analysiert, wodurch die Grundlagen für weitere Schritte und Entscheidungen gebildet werden. Damit ein Verständnis über die betriebswirtschaftlichen Fragestellungen übermittelt wird, ist es wichtig die Anwender in die Data Mining Prozesse mit einzubeziehen.

Das Business Understanding beinhaltet 4 Aspekte, die in Betracht gezogen werden sollen. Hierzu gehört wie zuvor auch erwähnt, die Bestimmung der betriebswirtschaftlichen Problemstellungen und dessen Zielkriterien. Ein weiterer Aspekt, ist die Situationsbewertung, welches die zur Verfügung gestellten Ressourcen für

das Data Mining Projekt beschreibt. Dies bedeutet zum Beispiel die Software- und Personalressourcen. Zusätzlich werden Risiken, die, während dem Data Mining Projekt entstehen können, identifiziert. Auch die Bestimmung analytischer Ziele ist ein Aspekt des Business Understanding, indem eine Analyse der zuvor bestimmten betriebswirtschaftlichen Probleme durchgeführt wird. Auch Erfolgskriterien für das Data Mining Projekt werden bestimmt, wie zum Beispiel eine Optimierung des Geschäftsprozesses um 5% mit weniger Bedarf an Ressourcen. Der letzte Aspekt beinhaltet die Erstellung des Projektplans, welches die beabsichtigten Ziele des Projektes beschreibt, indem die Auflistung der einzelnen Schritte mit jeweiliger Zeitspanne definiert werden. Hinzu kommen die möglichen Risken oder Ursachen für das Scheitern des Projektes, die aufgefasst werden.

3.3 Data Understanding

In diesem Schritt werden relevante Datenbestände, die zu einer Hypothese führen können, aufgestellt. Zum Beispiel werden bei einer Wettervorhersage die aktuellen Zustände der Atmosphäre betrachtet. In diesem Fall ist der Datenbestand die Zustände der Atmosphäre. Zunächst werden Daten gesammelt, die benötigt werden und zu einer bereits bestehenden Datenmenge integriert. Als nächstes werden diese Datenbestände beschrieben. Hierzu werden Eigenschaften wie Quantität, Formateigenschaften, Anzahl der Einträge und Felder der Daten erfasst. Der letzte Schritt des Data Understanding ist die Untersuchung und die Bewertung der Daten, in dem eine Analyse mit den Daten betrieben wird, um erste Hypothesen und Erkenntnisse zu treffen und diese dann zu dokumentieren. Bei der Bewertung der Daten wird sichergestellt, dass die Daten verwendbar sind und sie keine fehlende Attributwerte enthalten [Wut19].

3.4 Data Preparation

Um die finale Menge der Datenauswahl zu erstellen, wird der Schritt Data Preparation durchgeführt. An erster Stelle werden Daten ausgewählt, die für das Ziel des Projektes relevante Informationen hergeben. Wichtig hierbei ist zu betrachten, dass die Daten in dem richtigen Datenformat gespeichert werden [Wut19].

3.5 Modeling

Um eine vorliegende Problemstellung aus dem Bereich Maschinelles Lernen lösen zu können, stehen verschiedene Modelle beziehungsweise Algorithmen zur Verfügung. Aus diesen Modellen wird dann das Model ausgesucht, welches im Bezug zum definierten Ziel das optimale Ergebnis liefert. Manche Modelle benötigen hierzu vorbestimmte Datenstrukturen, die dazu führen können, einen Schritt zurück zu gehen und sich noch einmal mit der Datenvorbereitung zu befassen. Anschließend wird das Modell trainiert und getestet um die Qualität und Genauigkeit des Modells zu überprüfen [Wut19].

3.6 Evaluation

Vor der Finalisierung des Data Mining Projektes, ist es noch notwendig zu prüfen, ob die Qualität des Modelles für das Ziel des Projektes ausreicht. Ist das Ergebnis noch nicht gut genug oder werden vorher definierte Ziele nicht erreicht, müssen die Gründe für das Scheitern analysiert und entsprechende Änderungen im Modell vorgenommen werden. Dies hat zufolge, dass die vorherigen Schritte nochmals durchlaufen werden müssen [Wut19].

3.7 Deployment

Als letztes werden die aus dem erstellten Modell gewonnen Erkenntnisse für die Nutzer vorbereitet und ihm als Anwendung zur Verfügung gestellt. Damit kann ein Anwender zum Beispiel eigene Daten in das Modell hochladen und erhält, je nach der vorliegenden Problematik, ein Ergebnis für seine verwendeten Daten [Wut19].

4 Experiment über die Fallstudie

4.1 Business Understanding

Online-Versandhändler haben oft eine hohe Rückläuferquote. Diese Rückläuferquote kommt zum Beispiel durch den Kauf von Artikeln in verschiedenen Größen zustande. Die nicht passenden Größen werden dann vom Käufer wieder zurückgesendet. Unter diese Versandhändler fällt, mit einer Rückläuferquote von bis zu 50%, auch das Unternehmen Zalando. Dabei müssen 97% der zurückgesendeten Produkte wieder eingelagert und verkauft werden [C.18]. Für den erneuten Verkauf werden die Produkte, in diesem Betrachtungsfall Klamotten, identifiziert, gelabelt und bei Bedarf wieder eingelagert. Das Unternehmen Zalando verschickte im Jahr 2019 rund 186 Millionen Bestellungen [Raber]. Wenn man davon ausgeht, dass eine Bestellung 4 Artikel beinhaltet und 50% der Bestellungen wieder zurückgesendet werden, ergibt das 372 Millionen Artikel, die wieder neu gelabelt und eingelagert werden müssen.

Die Unterstützung und Optimierung der Rückläuferbearbeitung, kann zum Beispiel durch eine AI gestützte Klassifikation gewährleistet werden. Mit diesem Ansatz kann dann die zu einem Artikel zugehörige Kategorie, auf Basis von Bildern, bestimmt werden. Damit ergibt sich die Frage- bzw. Problemstellung, inwiefern können Machine Learning Algorithmen bei der Klassifizierung von Bildern einzelner Kleidungsstücke unterstützen?

4.2 Data Understanding

Der für diese Arbeit gewählte Datensatz heißt Fashion MNIST und wurde im Jahr 2017 von dem Unternehmen Zalando veröffentlicht. Der Datensatz steht in einer GitHub Repository zur Verfügung und ist frei zugänglich [SE17]. Er beinhaltet Zalando-Artikelbilder, die in zwei Datensätze aufgeteilt sind. Der erste Satz enthält 60.000 Beispiele, die für das Training verwendet werden und der zweite Satz 10.000 Beispiele, die für das Testen verwendet werden. Jedes Beispiel, welches jeweils ein Bild darstellt, ist ein 28x28 Graustufenbild. Jedem Bild wird dabei noch ein Label zugeordnet. Ein Label repräsentiert eins der 10 Klassen, wobei jede Klasse eine Artikelkategorie darstellt. In der folgenden Abbildung 4.1 ist eine Übersicht des Datensatzes bzw. der Bilder zu sehen. Dabei werden pro Klasse drei Zeilen beansprucht.

Abbildung 4.1: Der gesamte Datensatz: FASHION-MNIST [Abbc]

Der ursprüngliche MNIST Datensatz, der durch Fashion-MNIST ersetzt wurde, ist sehr beliebt und wird oft verwendet, um Algorithmen zu validieren. Es heißt auch "If it doesn't work on MNIST, it won't work at all". Jedoch wurde der MNIST Datensatz aufgrund seiner Einfachheit ausgetauscht [SE17].

Auch die Labels bestehen aus 28x28 Pixeln, wobei jeder einzelne Pixel einen Wert zwischen 0 und 255 annehmen kann. Der aktuelle Datensatz Fashion-MNIST enthält folgende 10 Klassen bzw. Labels:

Label	Artikel
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Tabelle 4.1: Labels des Datensatzes

Der Trainings- als auch der Testdatensatz ist ziemlich ausgeglichen. In jedem Satz ist jede Kategorie mit ca. 10% vertreten, was in den nächsten Abbildungen zu sehen ist.

Abbildung 4.2: Verteilung Trainingsdatensatz [Abbh]

Abbildung 4.3: Verteilung Testdatensatz [Abbg]

Aufgrund der Ausgeglichenheit der Daten müssen im Rahmen der Data Preparation keine großen Änderungen oder Vorbereitungen vorgenommen werden.

Literaturverzeichnis

- [Abba] Aufbau eines CNN. https://www.researchgate.net/figure/Allgemeiner-Aufbau-eines-CNN-In-Anlehnung-an-MathWorks-2017_fig4_342750457, Zuletzt aufgerufen am 12.11.2021.
- [Abbb] CRISP-DM Modell. https://statistik-dresden.de/wp-content/uploads/2012/04/CRISP-DM_Process_Diagram1.png, Zuletzt aufgerufen am 12.11.2021.
- [Abbc] FASHION-MNIST. https://github.com/zalandoresearch/fashion-mnist/blob/master/doc/img/fashion-mnist-sprite.png,
 Zuletzt aufgerufen am 12.11.2021.
- [Abbd] KNN vs. DL. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0192-5, Zuletzt aufgerufen am 12.11.2021.
- [Abbe] Modell eines Neurons. https://datasolut.com/wp-content/uploads/2019/11/neuronale_netze_aktivierung-1024x485.png, Zuletzt aufgerufen am 12.11.2021.
- [Abbf] Schichten der KNN. https://datasolut.com/wp-content/uploads/2019/10/k%C3%9Cnstliche-neuronale-Netze.jpg, Zuletzt aufgerufen am 12.11.2021.
- [Abbg] Verteilung Testdatensatz. https://github.com/zalandoresearch/fashion-mnist, Zuletzt aufgerufen am 12.11.2021.
- [Abbh] Verteilung Trainingsdatesatz. https://github.com/zalandoresearch/fashion-mnist, Zuletzt aufgerufen am 12.11.2021.
- [C.18]Hoefer C. Wie mit amazon, zalando und otto reumgehen. managermagazin,2018. touren https: //www.manager-magazin.de/unternehmen/handel/ retouren-wie-amazon-zalando-und-otto-mit-ruecksendungen-umgehen-a-1213 html, Zuletzt aufgerufen am 13.11.2021.
- [Cho18] François Chollet. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek. [Frechen]: mitp Verlags, 2018.
- [Fro21] Jörg Frochte. Maschinelles Lernen: Grundlagen und Algorithmen in Python. Hanser eBook, 2021.

- [Lub19] Dipl.-Ing. Stefan Luber. Was ist ein convolutional neural network? BIGDATA INSIDER, 2019. https://www.bigdata-insider.de/was-ist-ein-convolutional-neural-network-a-801246/, Zuletzt aufgerufen am 12.11.2021.
- [Mat21] Stephan Matzka. Künstliche Intelligenz in den Ingenieurwissenschaften. Springer Fachmedien Wiesbaden, 2021.
- [Pla21] Matthias Plaue. Data Science. SpringerSpektrum, 2021.
- [Raber] L. Rabe. Jährliche anzahl der bestellungen bei zalanbis Statista, 10. November. 2021, https:// de.statista.com/statistik/daten/studie/325862/umfrage/ anzahl-aller-bestellungen-bei-zalando-pro-jahr/, Zuletzt aufgerufen am 12.11.2021.
- [SE17] Zalando SE. Fashion-mnist [datensatz]. 2017. https://github.com/zalandoresearch/fashion-mnist, Zuletzt aufgerufen am 10.11.2021.
- [Wut19] Laurenz Wuttke. Crisp-dm: Grundlagen, ziele und die 6 phasen des data mining prozess. datasolut, 2019. https://datasolut.com/crisp-dm-standard/, Zuletzt aufgerufen am 10.11.2021.