

Week 41: Lecture 2

Properties of birth and death processes

Geir-Arne Fuglstad

October 7, 2020

Information

Problem 2 iv) and v) on this week's exercise sheet requires you to read Section 6.4.

Section 6.2

Example

Assume we have two individuals. Individual 1 will die after a random time ϵ_1 and individual 2 will die after a random time ϵ_2 . Assume that $\epsilon_1, \epsilon_2 \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\alpha), \, \alpha > 0$, and define

X(t) = "Number of individuals alive at time t", $t \ge 0$.

- a) Is $\{X(t): t \ge 0\}$ a continuous-time Markov chain?
- b) Is $\{X(t): t \ge 0\}$ a birth and death process?
- c) What are the birth and death rates?

Theorem

If $T_i \sim \text{Exp}(\alpha_i)$ with $\alpha_i > 0$, i = 1, 2, ..., n, and $T_1, T_2, ..., T_n$ are independent, then

$$\min\{T_1, T_2, \ldots, T_n\} \sim \operatorname{Exp}\left(\sum_{i=1}^n \alpha_i\right).$$

Examples of pure death processes

- 1. Constant death rate: $\mu_i = \mu$ for $i \ge 1$.
- 2. Linear death process: $\mu_i = i\mu$ for $\mu > 0$ and $i \ge 1$.

Section 6.3

VERY IMPORTANT!

Theorem

In a birth and death process with birth rates $\lambda_0, \lambda_1, \ldots > 0$, and death rates $\mu_0 = 0$ and $\mu_1, \mu_2, \ldots > 0$, we have

- 1. sojourn times are independent;
- 2. the sojourn time each time you visit state i is $\text{Exp}(\lambda_i + \mu_i)$, $i = 0, 1, \ldots$

Note: Also valid for a finite state space $\{0, 1, \dots, N\}$ together with $\lambda_N = 0$.

Example

Assume a birth and death process with state space $\{0,1,2\}$ with birth rates $\lambda_0=5$, $\lambda_1=4$ and $\lambda_2=0$, and death rates $\mu_0=0$, $\mu_1=3$ and $\mu_2=6$.

- a) Which state is on average visited the longest each time?
- b) Assume the initial state is 0 and rates have unit $\rm min^{-1}$. What is the expected number of seconds until the second transition occurs?

VERY IMPORTANT!

Theorem

Consider a birth and death process with birth rates $\lambda_0, \lambda_1, \ldots$ and death rates μ_0, μ_1, \ldots After the sojourn time in state i ends, the process jumps either to state i-1 or to state i+1. The jump probabilities are

$$\Pr\{i \to i+1\} = \frac{\lambda_i}{\lambda_i + \mu_i},$$
$$\Pr\{i \to i-1\} = \frac{\mu_i}{\lambda_i + \mu_i},$$

Definition (Alternative definition)

The birth and death process with birth rates $\lambda_0, \lambda_1, \ldots$ and death rates μ_0, μ_1, \ldots can be constructed in the following way. Whenever, you jump to state i, two competing processes start:

- 1) T_1 = "time until birth" $\sim \text{Exp}(\lambda_i)$.
- 2) T_2 = "time until death" $\sim \text{Exp}(\mu_i)$.

If the next event is a birth, we jump to i + 1, and if the next event is a death we jump to i - 1.

Example

Consider the birth and death process illustrated above. When leaving state 1, what is the probability to jump to state 0 and what is the probability to jump to state 2?

Simulation of a birth and death process

Input:

- i_0 : initial state
- B: number of jumps
- $\lambda_0, \lambda_1, \ldots$ birth rates
- μ_0, μ_1, \ldots : death rates

Simulation of a birth and death process

Algorithm:

- 1. set $x_0 = i_0$ and $t_0 = 0$.
- 2. for b = 1 ... B
- 3. set $i = x_{h-1}$
- 4. draw $s \sim \text{Exp}(\mu_i + \lambda_i)$ and set $t_b = t_{b-1} + s$
- 5. draw $u \sim \mathcal{U}(0,1)$
- 6. if $u < \lambda_i/(\lambda_i + \mu_i)$
- 7. set $x_b = i + 1$
- 8. else
- 9. set $x_b = i 1$
- 10. end
- 11. end

Simulation of a birth and death process

Output:

$$x(t) = \begin{cases} x_0, & 0 \le t < t_1 \\ x_1, & t_1 \le t < t_2 \\ \vdots \\ x_{B-1}, & t_{B-1} \le t < t_B \\ x_B, & t = t_B. \end{cases}$$

Simulation example

Consider the birth and death process $\{X(t): t \ge 0\}$ with birth rates $\lambda_0 = \lambda_1 = \dots \lambda_{19} = 0.5$ [cars per minute] and $\lambda_{20} = 0$, and death rates $\mu_i = i/30$ [cars per minute], $i = 0, 1, \dots, 20$.