已知薛定谔方程:
$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\varphi(t)\rangle = \hat{H} |\varphi(t)\rangle$$
, 其中 $\hat{H} = \hat{H}_0 + \hat{H}'$, $\hat{H}' = -eZE_z$,

对方程两边同时左乘 $\langle u_a |$ 得:

$$\left\langle u_{a} \left| i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \right| \varphi \right\rangle = \left\langle u_{a} \left| (\hat{H}_{0} + \hat{H}') \right| \varphi \right\rangle \Rightarrow i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \left\langle u_{a} \left| \varphi \right\rangle = \left\langle u_{a} \left| \hat{H}_{0} \right| \varphi \right\rangle + \left\langle u_{a} \left| (-eE_{z}Z) \right| \varphi \right\rangle,$$

对上式代入
$$|\varphi\rangle = C_{a0}(t) \exp(-iE_a t/\hbar) |u_a\rangle + C_{b0}(t) \exp(-iE_b t/\hbar) |u_b\rangle$$
,得

左边 = i
$$\hbar \frac{\mathrm{d}}{\mathrm{d}t} [C_{a0}(t) \exp(-\mathrm{i}E_a t/\hbar) \langle u_a | u_a \rangle + C_{b0}(t) \exp(-\mathrm{i}E_b t/\hbar) \langle u_a | u_b \rangle],$$

右边 =
$$\langle u_a | \hat{H}_0[C_{a0}(t) \exp(-iE_a t/\hbar) | u_a \rangle + C_{b0}(t) \exp(-iE_b t/\hbar) | u_b \rangle$$
]
+ $\langle u_a | (-eE_z Z)[C_{a0}(t) \exp(-iE_a t/\hbar) | u_a \rangle + C_{b0}(t) \exp(-iE_b t/\hbar) | u_b \rangle$]
= $C_{a0}(t) \exp(-iE_a t/\hbar) \langle u_a | \hat{H}_0 | u_a \rangle + C_{b0}(t) \exp(-iE_b t/\hbar) \langle u_a | \hat{H}_0 | u_b \rangle$
+ $C_{a0}(t) \exp(-iE_a t/\hbar) \langle u_a | (-eE_z Z) | u_a \rangle + C_{b0}(t) \exp(-iE_b t/\hbar) \langle u_a | (-eE_z Z) | u_b \rangle$

考虑到:

$$\hat{H}_{0}\left|u_{a}\right\rangle = E_{a}\left|u_{a}\right\rangle, \quad \hat{H}_{0}\left|u_{b}\right\rangle = E_{b}\left|u_{b}\right\rangle, \quad \left\langle u_{a}\left|u_{a}\right\rangle = \left\langle u_{b}\left|u_{b}\right\rangle = 1, \left\langle u_{a}\left|u_{b}\right\rangle = \left\langle u_{b}\left|u_{a}\right\rangle = 0,$$

于是有:
$$\langle u_a | \hat{H}_0 | u_a \rangle = E_a \langle u_a | u_a \rangle = E_a$$
, $\langle u_a | \hat{H}_0 | u_b \rangle = E_b \langle u_a | u_b \rangle = 0 \Rightarrow$

左边 = i
$$\hbar \frac{\mathrm{d}}{\mathrm{d}t} [C_{a0}(t) \exp(-\mathrm{i}E_a t/\hbar)] = \mathrm{i}\hbar \dot{C}_{a0}(t) \exp(-\mathrm{i}E_a t/\hbar) + E_a C_{a0}(t) \exp(-\mathrm{i}E_a t/\hbar)$$
,

右边 =
$$E_a C_{a0}(t) \exp(-iE_a t/\hbar) + C_{a0}(t) \exp(-iE_a t/\hbar) \langle u_a | (-eE_z Z) | u_a \rangle$$

+ $C_{b0}(t) \exp(-iE_b t/\hbar) \langle u_a | (-eE_z Z) | u_b \rangle$

由于固有电偶极矩为零,即 $\langle u_a | eZ | u_a \rangle = \langle u_b | eZ | u_b \rangle = 0$,于是有

右边 =
$$E_a C_{a0}(t) \exp(-iE_a t/\hbar) + C_{b0}(t) \exp(-iE_b t/\hbar) \langle u_a | (-eE_z Z) | u_b \rangle$$
,

左边 = 右边
$$\Rightarrow$$
 i $\hbar \dot{C}_{a0}(t) \exp(-iE_a t/\hbar) = C_{b0}(t) \exp(-iE_b t/\hbar) \langle u_a | (-eE_z Z) | u_b \rangle$,

将相互作用哈密顿算符的矩阵元记为: $H'_{ab} = \langle u_a | \hat{H}' | u_b \rangle = \langle u_a | (-eZE_z) | u_b \rangle$,

定义原子频率(又称为共振频率) $\omega_0 = (E_a - E_b)/h$,

那么上面方程可以表达为: $i\hbar \dot{C}_{a0}(t) = H'_{ab}C_{b0}(t) \exp(i\omega_0 t)$,

注:可以利用电偶极矩的矩阵元 $D_{ab} = \langle u_a | eZ | u_b \rangle$,将相互作用哈密顿算符的矩阵元表

达为: $H'_{ab} = -E_z D_{ab}$ 。

通过以上详细推导, 既能熟悉课程内容, 也是进一步通过例题熟悉量子力学演算。