CSEE 3827: Fundamentals of Computer Systems

Combinational Circuits

Outline (M&K 3.1, 3.3, 3.6-3.9, 4.1-4.2, 4.5, 9.4)

Combinational Circuit Design

- Standard combinational circuits
 - enabler
 - decoder
 - encoder / priority encoder
 - Code converter
 - MUX (multiplexer) & DeMux
- Addition / Subtraction
 - half and full adders
 - ripple carry adder
 - carry lookahead adder
- Shifter

Combinational circuits

- Combinational circuits are stateless
- The outputs are functions only of the inputs

Hierarchical design

3-4 Design small circuits to be used in a bigger circuit "Big" Circuit MX B_0 E **ME** B_2 B_3 (a)

Smaller Circuits

© 2008 Pearson Education, Inc. M. Morris Mano & Charles R. Kime

LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Enabler circuits

3-15

Output is "enabled" (F=X) only when input 'ENABLE' signal is asserted (EN=1)

Decoder-based circuits

Converts n-bit input to m-bit output, where $n \le m \le 2^n$

"Standard" Decoder: i^{th} output = 1, all others = 0, where i is the binary representation of the input (ABC)

Decoder-based circuits

So, if decoders produce minterms. . .

Internal design of 1:2 decoder

Hierarchical design of decoder (2:4 decoder)

Hierarchical design of decoder (3:8 decoder)

Encoders

T 3-7

Inverse of a decoder: converts m-bit input to n-bit output, where $n \le m \le 2^n$

■ TABLE 3-7 Truth Table for Octal-to-Binary Encoder

Inputs									Output	S
D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	\mathbf{D}_0	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Decoder and encoder summary

Note: for Encoders - input is assumed to be just one 1, the rest 0's

Priority Encoder

T 3-8

Like a regular encoder, but designed for any combination of inputs.

■ TABLE 3-8 Truth Table of Priority Encoder

	Inp	outs	Outputs			
D_3	D ₂	D ₁	\mathbf{D}_0	A ₁	A_0	V
0	0	0	0	X	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

(b) Numeric designation for display

Code conversion for the "a"

Input							ut	pu	ıt		
Val	W	Χ	Υ	Ζ	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
А	1	0	1	0	1	1	1	0	1	1	1
b	1	0	1	1	0	0	1	1	1	1	1
С	1	1	0	0	1	0	0	1	1	1	0
d	1	1	0	1	0	1	1	1	1	0	1
Ε	1	1	1	0	1	0	0	1	1	1	1
F	1	1	1	1	1	0	0	0	1	1	1

Multiplexers

 Combinational circuit that selects binary information from one of many input lines and directs it to one output line

indicate (in binary) which input feeds to the output

Truth table for a 4:1 mux

Internal mux organization

3-26

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime

In class exercise

How would you implement an 8:1 mux using two 4:1 muxes?

Multiplexer truth table

			2^n i	nputs			n-bi	t BCD v	1 output		
а	X	X	X	X	Х	Х	X	0	0	0	а
X	b	X	X	X	X	X	X	0	0	1	b
X	X	С	X	X	X	X	X	0	1	0	С
X	X	X	d	X	X	X	X	0	1	1	d
X	X	X	X	е	X	X	X	1	0	0	е
X	X	X	X	X	f	X	X	1	0	1	f
X	X	X	X	X	X	g	X	1	1	0	g
X	x	X	X	X	X	X	h	1	1	1	h

Demultiplexers

1 input	t n-bit BCD value				2 ⁿ outputs						
а	0	0	0	а	0	0	0	0	0	0	0
b	0	0	1	0	b	0	0	0	0	0	0
C	0	1	0	0	0	С	0	0	0	0	0
d	0	1	1	0	0	0	d	0	0	0	0
е	1	0	0	0	0	0	0	е	0	0	0
f	1	0	1	0	0	0	0	0	f	0	0
g	1	1	0	0	0	0	0	0	0	g	0
h	1	1	1	0	0	0	0	0	0	0	h

Muxes and demuxes called "steering logic"

Decimal v. binary addition

Ripple carry adder

Subtraction w. twos complement representation

Can be accomplished with a twos-complementor and an adder

In class exercise: designing an adder-subtractor

Adder/subtractor for #'s in 2's complement form

4-7

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime

LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Handling overflow

Handling overflow

```
c4c3c2c1c0a3a2a1a0b3b2b1b0s3s2s1s0
```

a3	b3	с3	С4	s3	overflow
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Overflow computation in adder/subtractor

For 2's complement, overflow if 2 most significant carries differ

Ripple carry adder delay analysis

- Assume unit delay for all gates
 - $S = A \oplus B \oplus Cin$
 - [S ready _____ units after A,B and Cin ready]
 - Cout = AB + ACin + BCin
 - [Cout ready ____ units after A,B and Cin ready]

Carry lookahead adder (CLA)

- Goal: produce an adder of less circuit depth
- Start by rewriting the carry function

$$C_{i+1} = a_ib_i + a_iC_i + b_iC_i$$

 $C_{i+1} = a_ib_i + C_i(a_i+b_i)$
 $C_{i+1} = g_i + C_i(p_i)$

carry generate g_i = a_ib_i carry propagate pi = ai + bi

Carry lookahead adder (CLA) (2)

Can recursively define carries in terms of propagate and generate signals

$$C_{1} = g_{0} + C_{0}p_{0}$$

$$C_{2} = g_{1} + C_{1}p_{1}$$

$$= g_{1} + (g_{0} + C_{0}p_{0})p_{1}$$

$$= g_{1} + g_{0}p_{1} + C_{0}p_{0}p_{1}$$

$$C_{3} = g_{2} + C_{2}p_{2}$$

$$= g_{2} + (g_{1} + g_{0}p_{1} + C_{0}p_{0}p_{1})p_{2}$$

$$= g_{2} + g_{1}p_{2} + g_{0}p_{1}p_{2} + C_{0}p_{0}p_{1}p_{2}$$

- ith carry has i+1 product terms, the largest of which has i+1 literals
- If AND, OR gates can take unbounded inputs: total circuit depth is 2 (SoP form)
- If gates take 2 inputs, total circuit depth is 1 + log₂ k for k-bit addition

Carry lookahead adder (CLA) (3)

 $C_3 = g_2 + g_1p_2 + g_0p_1p_2 + C_0p_0p_1p_2$

$$c_0 = 0$$
 $s_0 = a_0 \oplus b_0 \oplus c_0$
 $c_1 = g_0 + c_0p_0$ $s_1 = a_1 \oplus b_1 \oplus c_1$
 $c_2 = g_1 + g_0p_1 + c_0p_0p_1$ $s_2 = a_2 \oplus b_2 \oplus c_2$

 $S_3 = A_3 \oplus b_3 \oplus C_3$

Contraction

Contraction is the simplification of a circuit through constant input values.

Contraction example: adder to incrementer

What is the hardware and delay savings of implementing an incrementer

Can be reduced to half-adders

Incrementer circuit

a ₀	S	С
0	1	0
1	Ο	1

$$S_0=\overline{a_0}, C_0=a_0$$

Multi-wire notation

• Useful when running a bunch of bits in parallel to the same (similar place)

Shifter Circuit

• Shifts bits of a word: $A_{k-1}A_{k-2}...A_2A_1A_1$

$$B_{k-1}B_{k-2}...B_2B_1B_0$$

- Various types of shifters
 - Barrel: selector bits indicate (in binary) how "far" bits shift
 - selector value = j, then B_i = A_{i-j}
 - bits can "wraparound" B_i (mod 2^n) = A_{i-j} (mod 2^n) or rollout (B_i =0 for i<j)
 - L/R with enable: n=2, high bit enables, low bit indicates direction (e.g., 0=left [B_i = A_{i-1}], 1=right [B_i = A_{i+1}])

Barrel Shifter Design with wraparound (using MUXs)

• Basic form of design: Each A_i feeds into each MUX connecting to B_j into input (j-i) mod 4

Barrel Shifter Design with wraparound (using MUXs)

- Basic form of design: Each A_i feeds into each MUX connecting to B_j into input (j-i) mod 4
- Selector is 10 (i.e., 2 binary): each MUX entry 2 is selected

L/R Shift w/ Rollout

- Basic form of design:
 - 0 & 1 MUX selectors (S₁ = 0) feed A_i to B_i
 - 2 MUX selector feeds from left (B_i = A_{i-1}), 3 MUX from right (B_i = A_{i+1})
 - Note 0 feeds (0's roll in when bits rollout)

L/R Shift w/ Rollout

- Basic form of design:
 - 0 & 1 MUX selectors ($S_1 = 0$) feed A_i to B_i
 - 2 MUX selector feeds from left ($B_i = A_{i-1}$), 3 MUX from right ($B_i = A_{i+1}$)
 - Note 0 feeds (0's roll in when bits rollout)