模电实验报告 10: 波形变换电路实验

xy 学号 匡亚明学院 2019 年 2 月 29 日

1 实验目的

1. 学习使用运放组成精密全波整流电路、电压-频率转换电路。

2 实验仪器

示波器、信号发生器、交流毫伏表、数字万用表。

3 预习内容

1. 分析电路图, 定性绘制本实验所用电路的输出波形。

4 实验内容

4.1 精密全波整流电路

4.1.1 原理

若直接用二极管整流,由于普通二极管内限电压为零点几伏,所以只能用于大信号整流。若要求检波器件的内限电压尽可能地小,例如 1mV,则可利用运放和二极管可构成这样的检波器件,如图 (1-(1)),即等效理想检波二极管,如图 (1-(2))。

图 1: 理想检波二极管

在图 (1-(1)) 中, 若运放输入 V_i 为很小的正电压, 由于运放的开环增益很大, 运放输出 V_o 将为很大的负电压, D1 截止; 若运放输入 V_i 为很小的负电压, 由于运放的开环增益很大, 运放输出 V_o 将趋向于很大的正电压, D1 导通, D1 导通后有 V_o V_i 。可见, 图 (1-(1)) 等效为一个理想检波二极管。

图 (2) 就是利用这样的等效理想检波二极管组成的精密全波整流电路。以输入为正弦波为例,介绍其工作原理。

图 2: 精密全波整流电路

在正半周期, V_i 为正, 运放 AR1 的反相输入端电压为 0^+ , 输出趋向于很大的负电压, 二极管 D1 截止。这里先假设 D2 导通。那么, 由 R_1 、 R_2 、 R_3 、AR1、D1、D2 组成的电路等效为放大倍数为 -1 的放大器, V_{o1} 输出的波形如图 (3-(2))。当运放 AR1 的反相输入端电压为 0^+ 时, 输出趋向于很大的负电压, 而输出 V_{o1} 为输入的反相, 为有限的负电压, 所以 D2 导通, D2 导通后, 运放输出端电压为 $-V_i-V_{D2th}$, 其中 V_{D2th} 为 D2 导通时的电压降。可见, 先前假设 D2 导通是正确的。 V_{o1} 再经由 R_4 、 R_5 、 R_6 、AR2 组成的放大倍数为 -2 的放大器, 正半周期输入 V_i 经 AR1、AR2 组成的两级放大器放大, 形成的输出为 V_{o12} ,如图 (3-(3)),为幅值为输入的两倍的正半周期正弦波。与此同时,输入 V_i 经 R_P (理论上其阻值应为 20k Ω)、 R_6 、 R_5 、AR2 组成的放大倍数为 -1 的放大器放大, 形成的输出为 V_{o2} ,如图 (3-(4))。输入为正半周期时的输出 V_o 为 V_{o12} 与 V_{o2} 的线性迭加,如图 (3-(5))。显然,输出波形与输入波形是完全相同的。

在负半周期, V_i 为负, 运放 AR1 的反相输入端电压为 0⁻, 输出趋向于很大的正电压, 二极管 D1 导通。这里先假设 D2 截止。那么, 运放 AR1 输出端开路。由于 AR1 的反相输入端电压 0⁻, AR2 反相输入端电压为 0, 所以没有电流流过 R_3 , V_{o1} 为 0, 如图 (3-(2))。当运放 AR1 的反相输入端电压为 0⁻ 时,输出趋向于很大的正电压,而输出 V_{o1} 为 0, 可见,先前假设 D2 截止是正确的。 V_{o1} 再经由 R_4 、 R_5 、 R_6 、AR2 组成的放大器,输出 V_{o12} 仍为 0, 如图 (3-(3))。与此同时,输入 V_i 经 R_P (理论上其阻值应为 20k Ω)、 R_6 、 R_5 、AR2 组成的放大倍数为 -1 的放大器放大,形成的输出为 V_{o2} ,如图 (3-(4))。输入为负半周期时的输出 V_o 为 V_{o12} 与 V_{o2} 的线性迭加,如图 (3-(5))。显然,输出波形与输入波形是完全相同的。

可见, 在图 (2) 所示电路中, 若运放为理想运放, $R_P = R_6 = 2R_1$, $R_1 = R_3 = R_4$, 则输出是对输入的全波整流, 如图 (3-(5))。由于实际元件数值并不等于标称值, 所以实验电路中设置了电位器, 用于调整。由于本实验使用的信号源最小输出是峰值为 50 mV 的正弦电压, 当输入为峰值为 50 mV 的正弦

图 3: 图 (2) 电路各点输出波形分析

电压时, 实验电路输出应与图 (3-(5)) 基本相同。

4.1.2 内容

- 1. 取输入 V_i 有效值为 1V、f=1kHz 的正弦波。调整 R_P , 观察输出波形, 使其相邻的峰值尽可能相等。
- 2. 保持输入信号频率不变, 取输入 V_i 峰值为 50 mV 的正弦波。观察输出波形, 与 (1) 的输出波形 做比较, 试分析造成两者波形差异的原因。

4.2 电压-频率转换电路

4.2.1 原理

电路如图 (4)。这是一个简易的低频压控振荡器。输入为直流电压,输出为基频频率随输入直流电压变化而变化的锯齿波。

在稳态。设在 $V_{o1}=V_z$ 、 $V_o=-V_z$ 时刻,运放 AR1 正相输入端电压过 0,趋向负, V_{o1} 翻转,由 V_z 变为 $-V_z$ 。如图 (5),向电容正向充电的电流 i_{CP} 为

$$i_{CP} = i_{R_7} - i_i = \frac{V_z - V_{Dth}}{R_7} - \frac{V_i}{R_4} \tag{1}$$

图 4: 低频压控振荡器

其中, V_{Dth} 为二极管的导通电压。向电容正向充电使输出电压 V_o 上升, 当输出电压上升到 $V_o=V_z$ 时, AR1 正相输入端的电压再次过 0, 但趋向于正, V_{o1} 再次翻转, 由 $-V_z$ 变为 V_z 。记此过程持续的时间为 T1, 在此过程中, 输出电压的变化量为

$$V_o = \frac{1}{C} \int_0^{T_1} \left(\frac{V_z - V_{Dth}}{R_7} - \frac{V_i}{R_4} \right) dt = \left(\frac{V_z - V_{Dth}}{R_7 C} - \frac{V_i}{R_4 C} \right) T_1 = 2V_z$$
 (2)

图 5: 图 (4) 所示电路的输出波形

从中可解出

$$T_{1} = \frac{2V_{z}}{\frac{V_{z} - V_{Dth}}{R_{7}C} - \frac{V_{i}}{R_{4}C}}$$
(3)

紧接着, 由于 $V_{o1}=V_z$, AR2 反相输入端为"虚地", 这使得二极管 D 截止, 只有 V_i 向电容反向充电, 充电电流为

$$i_{CN} = -\frac{V_i}{R_4} \tag{4}$$

向电容反向充电使输出电压 V_o 下降, 当输出电压下降到 $V_o = -V_z$ 时, AR1 正相输入端的电压过 0, 趋向于负, V_{o1} 翻转, 由 V_z 变为 $-V_z$ 。记此过程持续的时间为 T_2 ,在此过程中, 输出电压的变化量为

$$V_o = -\frac{1}{C} \int_0^{T_2} i_{CN} dt = -\frac{1}{C} \int_0^{T_2} \frac{V_i}{R_4} dt = -\frac{V_i}{R_4 C} T_2 = -2V$$
 (5)

从中可解出

$$T_2 = 2R_4 C \frac{V_z}{V_i} \tag{6}$$

输出 V。的波形如图 (5), 为锯齿波。其基频频率为

$$f = \frac{1}{T_1 + T_2} = \frac{(V_z - V_{Dth})R_4V_i - R_7V_i^2}{2(V_z - V_{Dth})V_zR_4^2C} = \frac{V_i}{2R_4CV_z} - \frac{R_7V_i^2}{2(V_z - V_{Dth})V_zR_4^2C}$$
(7)

可见, 基频频率是输入电压的二次函数, 其函数曲线如图 (6)。

图 6: 输出波形频率-输入直流电压特性曲线

当 $0 < V_i < \text{R4}(V_z - V_{Dth})/2R_7$ 时,基频频率随输入电压增加而单调上升。人们通常希望基频频率 f 是输入电压 V_i 的一次函数,这就要求(7)式中的 R_7 较小。但就电路而言, R_7 不能很小,因为 AR2 反相输入端电位近似为 0, V_{o1} 为低时约为-6V,若此电压全部加在二极管 D 上,二极管正向导通电压约为零点几伏,则电路无法正常工作。建议在实验中 R_7 取 $1\text{k}\Omega$,或取 $1\text{k}\Omega$ 电位器,在实验中再调整。若再设 $V_{Dth} = 0.7\text{V}$,则(7)式可写为

$$f \approx 37.88V_i - 0.7147V_i^2 \tag{8}$$

若输入电压较小, 也可使频率 f 近似为输入电压 V_i 的一次函数。由 (8) 式可知, 当 V_i 为 26.5V 时, f 取最大值。若实验中取 $0 < V_i < 5$ V, 由图 (6) 可见, f 近似为输入电压 V_i 的一次函数。

在本实验电路中,当 $V_{o1}=-V_z$ 时,流经 R_7 的电流将灌入运放 AR1;同时,为稳定 $V_{o1}=-V_z=-6$ V,由"地"流经稳压二极管的电流也将灌入运放 AR1。若限流电阻 R_5 过大, V_{o1} 将上升,这在示波器可清楚地看到, V_{o1} 波形上下幅值严重不对称,正向幅值大,负向幅值小。而 (7) 式是在图 (5) 所示的 V_{o1} 波形上下对称时推导出来的,所以测量到的频率值将较大地大于用 (8) 式估算的频率值。这时应减小 R_5 ,使 V_{o1} 波形的反相幅值略小于正相幅值即可, R_5 不宜过小,建议取 1k Ω < R_5 < R_5

4.2.2 内容

- 1. 取输入电压 V_i =1V, 选取适当的 R_5 , 使 V_{o1} 波形上下幅值近似相等。选取 R_7 (可取 500 至 1000Ω)。
- 2. 测量并绘制输出波形频率-输入直流电压特性曲线, 取输入直流电压 V(0.1, 5)V。并与理论估算值相比较。

5 实验数据

5.1 精密全波整流电路

在此实验中, $R_P = 19.8505$ k Ω 。

5.1.1 $v_{irms} = 0.9893V$

图 7: $v_{irms} = 0.9893$ V 时的波形图

5.1.2 $v_{ipp} = 50 \text{mV}$

此时 $v_{irms} \approx 17.545 \text{mV}$

5.2 电压-频率转换电路

输入信号 $V_I=1.0004\mathrm{V},\ R_5=5.1\mathrm{k}\Omega,\ R_7=1\mathrm{k}\Omega$ 。

测得的输出信号频率于输入信号电压关系曲线如图 (10),可见电压-频率曲线与抛物线符合较好,拟合公式标在图中。

图 8: $v_{ipp} = 50$ mV 时的波形图

图 9: 电压-频率转换电路波形图

6 实验讨论

7 思考题

- 7.1 若要求输出为整流后的波形的直流分量, 应如何修改图 (2) 所示电路? 当输入 V_i 有效值为 1V 时, 这个直流分量应为多少伏?
- 7.2 若输入为正弦分量加直流分量,在输出端仅要求反映正弦分量,应如何修改图 (2) 所示电路?设 f=1kHz,给出具体的元件参数。

参考文献

[1] 康华光. 电子技术基础 (模拟部分). 高等教育出版社, 2006.

图 10: 测得输出频率-输入电压特性曲线