

Projet S8 2021 – 2022

Modèle SIR spatialisé

Réalisé par :

De Gieter Hugo Rouanet Clément

MACS 2

Encadré par :

M. Nicolas Vauchelet

SOMMAIRE

Introduction

I – Modèle SIR

II – Modèle SIR spatialisé

Conclusion

INTRODUCTION

Modèle SIR:

- Modèle mathématique permettant de représenter l'évolution d'une épidémie dans le temps.
- Extension → Spatialisation
- En quoi l'ajout d'une composante spatiale modifie-t-elle l'évolution de la maladie dans le temps ?

I - Modèle SIR : Modélisation

Population divisé en 3 catégories :

S: individus « sains »

• I : individus « infectés »

• R : individus « rétablis »

Hypothèses:

- Négligence phénomènes démographiques → population supposée constante
- Un individu quitte les « sains » qu'en devenant infecté
- Les individus ayant contractés la maladie, deviennent immunisés
- Toutes les personnes malades finissent par guérir ou mourir

I - MODÈLE SIR : MODÉLISATION

On a à tout instant t:

$$S(t) + I(t) + R(t) = N$$

On introduit:

- r le taux d'infection
- j la durée moyenne d'infection
- a le taux de guérison $\rightarrow a = \frac{1}{j}$

Le problème est le suivant :

$$\forall t \in [0, T], \begin{cases} \frac{dS}{dt}(t) = -rS(t)I(t) \\ \frac{dI}{dt}(t) = rS(t)I(t) - aI(t) \\ \frac{dR}{dt}(t) = aI(t) \end{cases}$$

avec
$$S(0) = S_0 \ge 0$$
, $I(0) = I_0 \ge 0$, $R(0) = 0$.

I - MODÈLE SIR : SIMULATION

Pour approcher numériquement S, I et R, on utilise un schéma aux différences finies:

Soit $(t_i)_{i=0}^M$ la discrétisation régulière de [0,T] en M+1 points :

$$t_i = i \times dt$$
, $\forall i \in [0, M]$ avec $dt = \frac{T}{M}$

$$\forall i \in [0, M],$$

$$\forall i \in [0, M], \qquad \begin{cases} \frac{S^{i+1} - S^i}{dt} = -rS^i I^i \\ \frac{I^{i+1} - I^i}{dt} = rS^i I^i - aI^i \\ \frac{R^{i+1} - R^i}{dt} = aI^i \end{cases}$$

avec
$$S^0 = S_0 \ge 0$$
, $I^0 = I_0 \ge 0$, $R^0 = 0$.

I - MODÈLE SIR : RÉSULTATS

II — Modèle SIR spatialisé : modélisation

On reprend le modèle précédent avec ses hypothèses.

On obtient le système suivant :

$$\forall t \in [0, T] \ et \ \forall x, y \in \Omega,$$

$$\begin{cases} \frac{dS}{dt}(t,x,y) = D\Delta S(t,x,y) - rS(t,x,y)I(t,x,y) \\ \frac{dI}{dt}(t,x,y) = D\Delta I(t,x,y) + rS(t,x,y)I(t,x,y) - aI(t,x,y) \\ \frac{dR}{dt}(t,x,y) = D\Delta R(t,x,y) + aI(t,x,y) \end{cases}$$
 avec S

où T est le temps final tel que $T \geq 0$;

D est le coefficient de diffusion tel que $D \in [0, 1]$;

 Ω est un rectangle représentant le domaine et $\partial\Omega$ son bord.

avec
$$S(0, x, y) = S_0 \ge 0$$
, $I(0, x, y) = I_0 \ge 0$, $R(0, x, y) = 0$.

$$\frac{dS}{dn}(t, x, y) = g \text{ sur } \partial\Omega$$

$$\frac{dI}{dn}(t, x, y) = h \text{ sur } \partial\Omega$$

$$\frac{dR}{dn}(t, x, y) = k \text{ sur } \partial\Omega$$

II - Modèle SIR spatialisé : simulation

Nous allons approcher les dérivées en temps grâce au schéma d'Euler semi-implicte, qui est de la forme :

$$y^{n+1} = y^n + dt \Big(D\Delta y^{n+1} + f(t^n, y^n) \Big) \qquad \forall n \in \mathbb{N}$$

On obtient alors le système suivant :

$$\forall n \in [0, N-1] \ et \ \forall x, y \in C, \qquad \begin{cases} S^{n+1}(x, y) - dt D \Delta S^{n+1}(x, y) = S^{n}(x, y) - r dt S^{n}(x, y) I^{n}(x, y) \\ I^{n+1}(x, y) - dt D \Delta I^{n+1}(x, y) = I^{n}(x, y) + dt \Big(r S^{n}(x, y) I^{n}(x, y) - a I^{n}(x, y) \Big) \\ R^{n+1}(x, y) - dt D \Delta R^{n+1}(x, y) = R^{n}(x, y) + a dt I^{n}(x, y) \end{cases}$$

$$\text{avec } S^{0} = S_{0}, \ I^{0} = I_{0} \ \text{et } R^{0} = 0$$

II — Modèle SIR spatialisé : simulation

Soit $V = H^1(\Omega)$.

On obtient donc le problème variationnel suivant :

(PV) Trouver $S, I, R \in V$ tel que

$$\begin{cases} \int_{\Omega} S^{n+1}v dx dy + dt D \int_{\Omega} \nabla S^{n+1} \nabla v dx dy - \int_{\Omega} S^{n}v dx dy + r dt \int_{\Omega} S^{n} I^{n}v dx dy = \underbrace{dt D \int_{\partial\Omega} gv ds}_{= 0} \\ \int_{\Omega} I^{n+1}v dx dy + dt D \int_{\Omega} \nabla I^{n+1} \nabla v dx dy - \int_{\Omega} I^{n}v dx dy - dt \int_{\Omega} \left(r S^{n} I^{n} - a I^{n}\right) v dx dy = \underbrace{dt D \int_{\partial\Omega} hv ds}_{= 0} \\ \int_{\Omega} R^{n+1}v dx dy + dt D \int_{\Omega} \nabla R^{n+1} \nabla v dx dy - \int_{\Omega} R^{n}v dx dy - a dt \int_{\Omega} I^{n}v dx dy = \underbrace{dt D \int_{\partial\Omega} hv ds}_{= 0} \end{cases}$$

II - Modèle SIR spatialisé : analyse

On va montrer l'existence et l'unicité de la solution S pour l'équation (1). Pour cela, on vérifie les hypothèses du théorème de Lax-Milgram; afin de pouvoir l'appliquer.

On pose:

$$a(S,v) = \int_{\Omega} S^{n+1}v dx dy + dt D \int_{\Omega} \nabla S^{n+1} \nabla v dx dy - \int_{\Omega} S^{n}v dx dy + r dt \int_{\Omega} S^{n} I^{n}v dx dy$$

$$L(v) = dtD \int_{\partial\Omega} gv ds$$

a est une forme bilinéaire, continue et coercive.

L est une forme linéaire continue.

 $V=H^1(\Omega)$ est un espace de Hilbert.

- ⇒ On applique le théorème de Lax-Milgram.
- \implies Le problème variationnel (PV) admet une unique solution.

t = 7.25

II - Modèle SIR spatialisé : résultats

t = 8.41

t = 10.583

II - Modèle SIR spatialisé : résultats

$$I_0 = 0.1$$

$$r = \frac{1}{14}$$

$$a = 0.7$$

D = 0.5

II - Modèle SIR spatialisé : résultats

$$r = \frac{1}{14}$$

$$a = 0.7$$

$$D = 0,1$$

 $S_0 = 0.9$

 $I_0 = 0.1$

a = 0.7

D = 0.5

II - Modèle SIR spatialisé : résultats

II - Modèle SIR spatialisé : résultats

$$I_0 = 0.1$$

$$r = \frac{1}{14}$$

$$a = 0.7$$

D = 0.1(!(y<1.6 m && y>1.4 m))+ 0.5(y<1.6m && y>1.4m)

CONCLUSION

Pertinence du modèle :

- Modèle simple
- Peu de paramètres
- Facilement programmable
- Modèle assez réaliste

Observations grâce à la simulation :

- Propagation selon la longueur
- Coefficient de diffusion