Построение регуляризованных тематических моделей в BigARTM

Mypaт Апишев great-mel@yandex.ru MelLain@github.com

МГУ им. М.В.Ломоносова, Яндекс, ШАД

17 марта, 2017

Содержание занятия

- 1 Теоретическое напоминание
 - Аддитивная регуляризация ТМ
 - Мультимодальные тематические модели
 - Краткий обзор библиотеки BigARTM
- Эксперименты в BigARTM
 - Стратегии регуляризации
 - Общие рекомендации по подбору параметров
 - Практические советы и оценивание моделей
- З Реальный эксперимент
 - Подготовка эксперимента
 - Проведение эксперимента
 - Оценивание результатов

Тематическое моделирование

Тематическое моделирование (topic modeling) статистический анализ текстов для выявления латентных тем в коллекциях документов.

Тема — терминология предметной области, набор терминов (слов или n-грамм), часто со-встречающихся в документах.

Вероятностная тематическая модель:

- тема t распределение p(w|t) над терминами w
- документ d распределение p(t|d) над темами t

Мешок слов

Мешок слов (Bag-Of-Words) — представление текстовых данных, в котором учитывается только частота встречаемости слов в документах. Порядок слов игнорируется.

Исходное предложение: I can drink a milk can

Его мешок слов:

T: 1

can: 2

drink: 1

a: 1

milk: 1

Проще, но теряется много полезной информации.

Матричное разложение

Если представить данные в виде матрицы $\|p(w|d)\|$, то тематическая модель — это матричное разложение:

Постановка задачи ARTM и регуляризованный EM-алгоритм

Максимизация логарифма правдоподобия с регуляризатором:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t} \phi_{wt} \theta_{td} + \frac{R(\Phi, \Theta)}{\Phi, \Theta} \rightarrow \max_{\Phi, \Theta}$$

ЕМ-алгоритм: метод простых итераций для системы уравнений

Е-шаг:
$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in W}{\mathsf{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right), \quad n_{wt} = \sum_{d \in D} n_{dw} p_{tdw} \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right), \quad n_{td} = \sum_{w \in d} n_{dw} p_{tdw} \end{cases}$$

Мультимодальная тематическая модель

Выявление тематики документов p(t|d) и терминов p(w|t), а также модальностей: p(aвтоp|t), p(время|t), p(ссылка|t), p(тег|t), p(баннер|t), p(изображение|t), p(пользователь|t), . . .

Мультимодальная тематическая модель

Пусть имеются две модальности:

- обычные слова
- имена авторов (категорий / тегов и т.п.)

Алгоритм обучения

Оффлайн ЕМ-алгоритм

- Многократное итерирование по коллекции.
- Однократный проход по документу.
- Необходимость хранить матрицу Θ.
- Ф обновляется в конце каждого прохода по коллекции.
- Применяется при обработке небольших коллекций.

Онлайн ЕМ-алгоритм

- Однократный проход по коллекции.
- Многократное итерирование по документу.
- Нет необходимости хранить матрицу Θ.
- Ф обновляется через заданное число документов.
- Применяется для больших коллекций в потоковом режиме.

Список регуляризаторов в BigARTM

BigARTM реализует мультимодальную ARTM. Часто используемые регуляризаторы (можно добавлять свои) 1 :

- SmoothSparseThetaRegularizer: сглаживание/разреживание Θ
- ② SmoothSparsePhiRegularizer: сглаживание/разреживание Ф
- Овесот PhiRegularizer: декоррелирование тем в Ф
- lacktriangle TopicSelectionThetaRegularizer: разреживания p(t) и отбор тем
- **1** ImproveCoherencePhiRegularizer: повышение когерентности²

Полный список с описаниями — в онлайн-документации.

¹названия классов в Python API

²мера качества, коррелирующая с экспертными оценками интерпретируемости

Список метрик качества в BigARTM

Часто используемые метрики качества³ (можно добавлять свои):

- PerplexityScore: перплексия
- SparsityPhiScore: разреженность Ф
- SparsityThetaScore: разреженность Ө
- ТорісКеrnelScore: характеристики ядер тем + когерентность⁴
- ⑤ TopTokensScore: наиболее вероятные в темах слова + когерентность

Полный список с описаниями — в онлайн-документации.

³названия классов в Python API

⁴ Vorontsov K. V., Potapenko A. A. Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization. AIST 2014.

Важные особенности BigARTM

- Все регуляризаторы и метрики приспособлены для работы с мультимодальными моделями.
- Представление документа либо как «мешка слов», либо как последовательного текста w_1, \ldots, w_{n_d} .
- Считывание и модификация матрицы вспомогательных переменных $p_{tdi} = p(t|d, w_i)$ для любого документа.
- Построение иерархических тематических моделей.
- Чтение данных как с диска, так и из RAM.

Про входные форматы данных

BigARTM оперирует данными во внутреннем бинарном представлении, называемыми батчами.

Получить батчи из своих данных можно с помощью встроенного парсера, который поддерживает несколько типов входных форматов, основной — формат Vowpal Wabbit.

Батч — текстовый файл, каждая строка — один документ.

Формат строк:

[<title>] [|@default class] {token 1[:counter 1]} {other modalities}

doc1 Alpha Bravo:10 Charlie:5 | @author Ola Nordmann doc2 Bravo:5 Delta Echo:3 | @author Ivan Ivanov

Детальное описание форматов — в онлайн-документации.

Smooth/Sparse Φ

Формула М-шага:

$$\phi_{wt} = \underset{w \in W}{\mathsf{norm}} (n_{wt} + \tau f(\phi_{wt}) d_w)$$

- Позволяет сглаживать/разреживать различные подмножества тем заданным распределением.
- Для контроля типа распределения по словам можно использовать словарь d_w и функцию f:
 - \bigcirc Словарь d_w это объект класса Dictionary, который содержит информацию о коллекции и дополнительные изменяемые множители для каждого слова.
 - **2** Функция f некоторое преобразование, позволяющее текущему значению ϕ_{wt} влиять на собственную регуляризацию.

Что за функция f?

Напоминание:

$$\mathsf{KL}(P||Q) = \sum_{i=1}^{n} p_{i} \ln \frac{p_{i}}{q_{i}}$$

Регуляризатор сглаживания:

$$\sum_{t \in \mathcal{T}} \mathsf{KL}(\beta_w || \phi_{wt}) \to \min_{\Phi} \quad \Leftrightarrow \quad R(\Phi) = \sum_{t \in \mathcal{T}} \sum_{w \in W} \beta_w \ln \phi_{wt} \to \max_{\Phi}$$

$$\phi_{\mathsf{wt}} \frac{\partial R}{\partial \phi_{\mathsf{wt}}} = \beta_{\mathsf{w}} \quad \Leftrightarrow \quad f(\phi_{\mathsf{wt}}) = 1$$

Если ln(x) заменить на $\mu(x)$, то $f(x) = x\mu'(x)$. В случае KL-дивергенции $\mu \equiv \ln$, поэтому f(x) = 1.

- Простое сглаживание/разреживание всех значений матрицы Φ заданным значением n: достаточно создать один регуляризатор и задать ему $\tau = n$.
- Разделение тем на две группы (предметные и фоновые), разреживать первую группу и сглаживать вторую. Для этого надо создать два регуляризатора и каждому заполнить соответствующее поле topic_names. У первого регуляризатора au будет отрицательным, у второго — положительным.
- Сглаживание/разреживание только слов заданных модальностей: нужно создать один регуляризатор и заполнить его поле class_ids.

- Сглаживание/разреживание слов из заданного списка: для этого нужно внести правки в словарь, после чего указать этот словарь в качестве параметра dictionary регуляризатора.
- Разреживание/сглаживание с увеличением влияния маленьких значений ϕ_{wt} и уменьшением влияния больших. Для этого нужно создать объект функции KlFunctioninfo и передать его в качестве параметра kl_function_info регуляризатора (помните, что f — это производная от выбранной функции).

- Все эти стратегии можно комбинировать и смешивать.
- Сглаживание фоновых тем можно включать с первой итерации, при постоянном коэффициенте регуляризации.
- Оправо в право в право в предостава в пр итераций, когда алгоритм уже почти сойдётся.
- Опомощью словарей и списков тем можно сглаживать/разреживать любые подматрицы Ф.

Пример использования разреживания

Естественные предположения:

- каждая тема состоят из небольшого числа слов
- темы, как множества слов, существенно различны
- каждый документ относится к небольшому числу тем

Пример использования сглаживания

Частичное обучение тем по ключевым словам:

- для некоторых тем задаются семантические ядра
- для некоторых документов задаются темы
- для фоновых тем сглаживание по словарю общей лексики

Про словари в BigARTM

Словари в BigARTM играют огромную роль, они используются:

- для инициализации тематической модели
- для некоторых метрик качества
- для некоторых регуляризаторов

О словарях можно прочесть в нескольких разделах документации.

- Словарь в Python можно сохранить на диск методом artm.Dictionary.save_text(filename),
- отредактировать и загрузить обратно двойственным методом load_text().

Про словари в BigARTM

В текстовом виде Dictionary представляет собой набор строк, каждая строка (кроме первой заголовочной) соответствует одному уникальному слову из словаря коллекции.

Строка имеет следующий формат:

token modality value tf df

- Первые два элемента это само слово в виде строки и его модальность, последние два — значения tf и df данного слова. Все эти значения считаются библиотекой в процессе парсинга.
- Поле value тоже считается при парсинге, и представляет собой нормированное значение tf. Но его можно переопределять. Оно используется в регуляризаторе SmoothSparsePhi как множитель коэффициента регуляризации для данного слова.

Smooth/Sparse Θ

Формула М-шага:

$$\theta_{td} = \underset{t \in T}{\mathsf{norm}} (n_{td} + \tau \alpha_i f(\theta_{td}) m_{dt})$$

- Позволяет сглаживать/разреживать различные подмножества тем заданным распределением
- ullet Параметр $lpha_i$ позволяет регулировать степень воздействия регуляризатора на данной внутренней итерации i
- Для контроля распределения по темам и по документам можно использовать:
 - **1** Вектор или матрицу m (о ней подробно написано в документации, работает как дополнительный множитель)
 - $oldsymbol{Q}$ Функция f позволяет текущему значению $heta_{ut}$ влиять на свою регуляризацию

- Простое сглаживание/разреживание матрицы Θ.
- Разделение на предметные и фоновые темы.
- Использование функции f и параметра α (alpha_iter).
- Регуляризацию можно использовать при получении векторов θ_d для новых документов.

Не забывайте про флаги

- cache_theta хранить ⊖ или нет
- reuse_theta переиспользовать Θ с прошлой итерации или нет.

Формула М-шага:

$$\phi_{\textit{wt}} = \underset{\textit{w} \in \textit{W}}{\mathsf{norm}} \big(\textit{n}_{\textit{wt}} - \tau \phi_{\textit{wt}} \sum_{\textit{s} \in \textit{T}} \phi_{\textit{ws}} \big)$$

- Позволяет разреживать Ф таким образом, чтобы получать как можно более непохожие темы.
- Воздействие регулируется по темам и модальностям аналогично описанному ранее.
- Рекомендуется включать почти сразу после начала обучения.

О подборе параметров

Параметры бывают структурные:

- Число батчей и документов в батчах
- Число потоков-обработчиков
- Число проходов по коллекции/документу
- Тип алгоритма
- Параметры алгоритма (если онлайн)

Или обычные:

- Наборы регуляризаторов и их параметров
- Наборы модальностей и их параметров

Подбор структурных параметров

- Число потоков обработчиков выбирается исходя из возможностей экспериментальной машины
- Число батчей должно быть кратно числу потоков
- Размер батча не слишком маленьким, но и не слишком большим (порядка 10^5 слов)
- Тип алгоритма оффлайн проще, онлайн круче.
- Параметры алгоритма чёткой методики нет, можно перебором.
- Число тем регуляризатор отбора тем или априорные предпочтения.

Подбор траектории регуляризации

Не надо добавлять в модель сразу все регуляризаторы!

Легче добавлять по одному, оптимизируя au.

При этом надо всегда понимать, зачем именно регуляризатор добавляется в модель и как он примерно работает.

- Сглаживание/разреживание.
- Декоррелятор.
- Частичное обучение.
- Модальности.

Подбор параметров: grid search или random search.

Относительные коэффициенты регуляризации (Медленнее!): gamma = 0.5 — можно перебирать τ от 0 до 1 (только Φ).

Что нужно для эксперимента, кроме BigARTM

Помимо BigARTM, установленного и настроенного под Python, желательно пользоваться следующими инструментами:

- Jupyter Notebook
- Лемматизаторы (pymorphy2, pymystem)
- Базовые средства обработки текстов из nltk
- Модули numpy, pandas, re и matplotlib
- Программы для просмотра больших текстовых файлов (Windows: emeditor, Linux/MacOS: less)

Какие бывают типы результатов

- Перплексия и другие числовые метрики.
- Топ-слова в темах.
- Документы (топ-документы надо извлекать).

Извлечение топ-документов для большой коллекции:

- Обучили модель без сохранения Ө.
- ② Идём в цикле по батчам и подаём их в ARTM.transform() (просим извлечь dense_theta).
- Оправов В правов правов по право правов по правов п (максимум по столбцам, например).
- Закончив обработку, удаляем Ө для текущего батча, переходим к следующему.

Графики

важны для понимания и презентации числовых метрик:

Топ-слова и документы придётся просматривать глазами.

Презентация результатов

Для визуализации специальных модальностей можно пользоваться разнообразными инструментами

- Метки времени график распределения P(время|t)
- Геотеги наложить на реальную карту

Презентация результатов

Гистограммы полезны для оценивания частот модальностей.

- Важно: визуализация всегда нагляднее других способов (хоть и не всегда полнее).
- В Python много средств визуализации. Почти всегда можно подобрать что-то с нуля за 2-3 часа.
- Можно рисовать в Matlab или в LaTeX (tikz)

Постановка задачи

Дано:

- Коллекция постов сайта LiveJournal.
- Словарь этнонимов (слов, связанных с этносами).

Задача: выявить как можно большее количество качественных тем, связанных с этно-проблемами.

Метрика качества: оценки асессоров.

Параметры коллекции

Параметры коллекции:

- 1.58 млн. документов в виде «мешка слов»;
- 860 тыс. слов словаре;
- коллекция прошла лемматизацию.

Особенности:

- много слов с ошибками:
- коллекция русскоязычная, но присутствую термины на английском, украинском;
- много жаргонных слов и терминов специфических областей — сложно понимать и интерпретировать темы!

Подготовка данных

Парсим данные в формат Vowpal Wabbit.

Сохраним только те слова, которые:

- содержат только символы киррилицы и дефис;
- 2 содержат не более одного дефиса (встречаются слова вроде --, ----);
- **3** имеют длину не менее 3 символов (встречаются слова вроде 'а', 'ж');
- встречаются в коллекции не менее 20 раз;

Объём итогового словаря: 90 тыс слов.

В таких случаях бывают полезны регулярные выражения.

Составление словаря этнонимов

Описание проблемы:

- Имеется словарь из нескольких сотен этнонимов.
- Слова собраны в списки (например [абхаз, абхазец, абхазка])
- Часть этих слов не встречаются в LJ
- Нужно составить аналогичный словарь, специфичный для LJ

Можно сделать вручную:

- преобразовать списки всех слов в один линейный список;
- пройтись по этому списку и для каждого слова найти все максимально похожие на него;
- выбрать вручную в получившемся множестве все наиболее этничные слова, по 1-2 на каждый этноним исходного списка.

Объём итогового словаря этнонимов: 250 слов.

Примеры этнонимов

османский

восточноевропейский

эвенк

швейцарская

аланский

саамский

латыш

литовец

цыганка

ханты-мансийский

карачаевский

кубинка

гагаузский

русич

сингапурец

перуанский

словенский

вепсский

ниггер адыги

сомалиец

абхаз

темнокожий

нигериец

лягушатник

камбоджиец

Сглаживание/разреживание этнонимов

+ сглаживание обычных слов

+ декорреляция этничных тем

+ модальность этнонимов

Примеры лучших тем

(русские): акция, организация, митинг, движение, активный, мероприятие, совет, русский, участник, москва, оппозиция, россия, пикет, протест, проведение, националист, поддержка, общественный, проводить, участие, (славяне, византийцы): славянский, святослав, жрец, древние, письменность, рюрик, летопись, византия, мефодий, хазарский, русский, азбука, (сирийцы): сирийский, асад, боевик, район, террорист, уничтожать, группировка, дамаск, оружие, алесио, оппозиция, операция, селение, сша, нусра, турция, (турки): турция, турецкий, курдский, эрдоган, стамбул, страна, кавказ, горин, полиция, премьер-министр, регион, курдистан, ататюрк, партия, (иранцы): иран, иранский, сша, россия, ядерный, президент, тегеран, сирия, оон, израиль, переговоры, обама, санкция, исламский, (палестинцы): террорист, израиль, терять, палестинский, палестинец, террористический, палестина, взрыв, территория, страна, государство, безопасность, арабский, организация, иерусалим, военный, полиция, газ, (ливанцы): ливанский, боевик, район, ливан, армия, террорист, али, военный, хизбалла, раненый, уничтожать, сирия, подразделение, квартал, армейский, (ливийцы): ливан, демократия, страна, ливийский, каддафи, государство, алжир, война, правительство, сша, арабский, али, муаммар, сирия, (евреи): израиль, израильский, страна, израил, война, нетаньяху, тель-авив, время, сша, сирия, египет, случай, самолет, еврейский, военный, ближний,

Некоторые результаты

Модель	Лучших	Хороших	Удовл.	Всего
	тем	тем	тем	
PLSA (300)	9	11	18	38
PLSA (400)	12	15	17	44
С.Р.Д. (200+100)	18	33	20	71
С.Р.Д. (250+150)	21	27	20	68
С.Р.Д.М. (300+100)	28	23	23	74
С.Р.Д.М. (250+150)	22	25	33	80
С.Р.Д.М. (250+150)	32	42	40	104
(после настройки)				

С – сглаживание, Р – разреживание,

Д - декорреляция, М – этномодальность

Что можно делать ещё?

- Эти эксперименты были продолжены на более крупной и сложной коллекции IQBuzz постов разных русскоязычных социальных медиа (в основном Вконтакте).
- Был вручную собран новый, более полный и насыщенный существительными словарь этнонимов.
- Постановка задачи была усложнена: в дополнение для каждой релевантной темы требовалось исследовать её изменение в пространстве и времени.
- Для этого строились мультимодальные модели с дополнительными модальностями геотегов авторов, а также меток времени публикации сообщения.

Пример темы с привязкой ко времени и пространству

Топ-слова:

чеченский, чечня, кадыров, боевик, террорист, убийство, рамзан, грозный, спецназ, наемник, кавказ, погибать, операция, теракт, вооруженный, боевой, заложник, дудаев, лидер, командир

Топ-геотеги:

Москва, Санкт-Петербург, Чечня

Топ-метки времени:

Сосредоточены в начале и конце декабря 2014

Комментарий:

Совпадает с датой 20-тилетия начала войны в Чечне.

Данные IQBuzz охватывают период 2014-2015 годов.

Тем такого же качества — больше 10% от общего количества и примерно 30% от общего числа признанных этничными.

Спасибо за внимание! :)

bigartm.org