INFORME FINAL

ESTUDIO

"EFECTO ECONÓMICO DEL CAMBIO CLIMÁTICO SOBRE LOS CULTIVOS PERMANENTES DE LA AGRICULTURA PERUANA: PERIODO 2011-2050"

Autor: Carlos Enrique Orihuela Romero (investigador UNALM)¹

Lima, 2014

Financiado por:

Con la participación de:

Operado por:

Universidad Nacional Agraria La Molina

INDICE

1.	INTRODUCCIÓN3
2.	DIAGNÓSTICO DE LA AGRICULTURA PERUANA 5
3.	MARCO CONCEPTUAL
4.	ASPECTOS METODOLÓGICOS21
5.	RESULTADOS
6.	CONCLUSIONES
7.	RECOMENDACIONES DE POLÍTICA36
BIE	BLIOGRAFÍA 38
AN	EXO 1: PROVINCIAS DONDE SE SIEMBRAN LOS CULTIVOS 42
AN	EXO 2: ESTIMACIONES DEL MANGO43
AN	EXO 3: ESTIMACIONES DE LA PALTA61
AN	EXO 4: ESTIMACIONES DE LA NARANJA79
AN	EXO 5: ESTIMACIONES DEL LIMON97
AN	EXO 6: ESTIMACIONES DEL CACAO115
AN	EXO 7: PERDIDAS DE LOS BENEFICIOS EN MILLONES SOLES133
AN	EXO 8: PERDIDAS DE LOS BENEFICIOS EN MILLONES SOLES134
	EXO 10: PRESENTACIÓN DE PLAN DE TRABAJO DEL ESTUDIO COMPARTIDO EN EL MINAM138
AN	EXO 11: PRESENTACIÓN DEL INFORME PARCIAL DEL ESTUDIO COMPARTIDO EN EL MINAM140
AN	EXO 12: PRESENTACIÓN DEL INFORME FINAL DEL ESTUDIO COMPARTIDO EN EL MINAM142
AN	EXO 13: PRESENTACIÓN DEL INFORME FINAL DEL ESTUDIO COMPARTIDO EN CONFERENCIA EN LA UNALM144

1. INTRODUCCIÓN

Si bien se han realizado numerosos estudios sobre el cambio climático (CC), definido como una importante variación estadística en el estado medio del clima o en su variabilidad que persiste durante un periodo prolongado (IPCC, 2012), todavía hay mucho que aprender respecto a sus implicancias. Uno de los consensos es que Latinoamérica será una de las regiones más vulnerables, en particular en sectores como el agrícola (IPCC, 2007; CEPAL, 2009).

A pesar de la atención mediática sobre el cambio climático en el Perú, poco se ha avanzado con respecto a investigaciones que analicen las relaciones entre las variables físicas, biológicas, sociales y los patrones climáticos, lo cual es fundamental para determinar puntualmente los efectos del CC. Pocos los estudios que han explorado estas relaciones, principalmente en el sector agrícola peruano.

Torres (2010) estimó el costo del CC para algunos cultivos de la agricultura de Piura. Entre sus hallazgos encontró que el 50% de la producción de mango, plátano, café y limón es explicada por las variables climáticas (temperatura y precipitación). Conforme a sus resultados, para el año 2030 se espera la reducción en los rendimientos del mango y plátano de 8 y 39%, respectivamente, aunque también aumentos en los rendimientos del café y limón de 41 y 53%, respectivamente. En el balance, se prevén pérdidas que bordean los 9 millones de dólares para su periodo de estudio.

Una conclusión similar fue obtenida por Loyola y Orihuela (2011) quienes estimaron las posibles pérdidas por el CC para la canasta de los principales cultivos de Piura y Lambayeque para el periodo 2010-2100. Los autores concluyen que estas pérdidas son significativas sólo en el largo plazo, principalmente para Piura. Cabe mencionar que ambos estudios utilizan el modelo agronómico, es decir, construyen funciones econométricas a fin de calcular la variación de los ingresos agrícolas a partir de la variación proyectada de las variables climáticas (precipitación y temperatura).

Quizá el estudio más amplio en evaluar el impacto del CC sobre el sector agrícola peruano fue el desarrollado por el CONSORCIO EIECCP (2013) quienes estimaron las pérdidas para los principales cultivos de la agricultura peruana: papa, arroz, maíz amarillo duro, caña de azúcar, café, plátano y maíz amiláceo, los cuales concentran el 47% del valor de la producción agrícola del 2011.

Los resultados arrojaron que el impacto del CC en la agricultura peruana generará disminuciones en la producción para todos los cultivos y para todos los escenarios siendo más severo el escenario A2, con excepción del café el cual tiene un comportamiento distinto pues en los primeros años crecerá la producción y luego disminuirá levemente. En conclusión se puede afirmar que el impacto del cambio climático en la agricultura será significativo.

Si bien Torres (2010) así como Loyola y Orihuela (2011) analizaron cultivos solamente para Piura y Lambayeque, estos dejaron de lado otros departamentos que podrían ser más vulnerables frente al CC. Asimismo, CONSORCIO EIECCP (2013) evalúa gran parte de los cultivos transitorios no obstante excluye de su análisis los principales cultivos permanentes: mango, naranja, limón sutil, palta y cacao; los cuales son propensos al CC según MINAG (2010, 2011) puesto que en su mayoría son sembrados en los departamentos más pobres y excluidos del país, siendo priorizados en el Programa Indicativo de Cooperación (PIC).

Por lo tanto, este estudio busca llenar este vacío y cuantificar monetariamente el impacto del CC sobre los principales cultivos permanentes de la agricultura peruana mediante un análisis desagregado a nivel departamental para los escenarios A1B, B1 y A2 durante el periodo 2011-2050. Este es el objetivo de esta investigación. Se presume que el efecto económico del CC sobre los principales cultivos permanentes de la agricultura peruana no es significativo. Esta es la hipótesis de este estudio.

La sección 2 comenta el diagnóstico de la agricultura peruana con énfasis en los cultivos a analizar, los criterios utilizados para su selección y el comportamiento de las variables climáticas en los departamentos en análisis. La sección 3 presenta el marco conceptual mientras que en la sección 4 se explica la metodología econométrica realizada. Los resultados son presentados en la sección 5 mientras que las conclusiones son presentadas en la sección 6. Finalmente, la sección 7 contiene las recomendaciones de política.

2. DIAGNÓSTICO DE LA AGRICULTURA PERUANA

En esta sección se describe brevemente los aspectos más relevantes de los cultivos permanentes que serán analizados.

2.1 Superficie y Producción Agrícola

Según cifras del Ministerio de Agricultura (MINAG, 2012a), el sector agropecuario ha concentrado aproximadamente el 8 % del PIB total 2011, proporción que se ha mantenido desde hace al menos una década. Este sector emplea alrededor del 38% de la población económicamente activa (PEA), siendo el segundo sector con mayor absorción de empleo, luego del sector servicios.

La superficie total agrícola cultivable en el año 2012 ascendió a 7,125 millones de hectáreas, divididas en 1,687, 3,296 y 2,142 millones en la costa, sierra y selva, respectivamente (INEI, 2013a). De este total, es importante observar la superficie de los principales cultivos transitorios y permanentes. En el primer caso, los más relevantes son: papa, maíz amarillo duro, maíz amiláceo, arroz, caña de azúcar, cebada grano y trigo, los cuales concentran el 64% del total de la superficie de este tipo de cultivos. En el segundo caso, los más importantes son el café, cacao, palta, mango, naranja, chirimoya y limón, representando el 57% del total de la superficie con cultivos permanentes (Cuadro 2-1).

Cuadro 2-1: Superficie de principales cultivos transitorios y permanentes (Año 2012)

Principales Cultivos Transitorios	Superficie (Miles ha)	Principales Cultivos permanentes	Superficie (Miles ha)
Papa	367,7	Café	425,4
Maíz amarillo duro	261,6	Cacao	144,2
Maíz amiláceo	240,8	Palta	65,7
Arroz	167,1	Mango	39
Caña de azúcar	141,3	Naranja	22,5
Cebada grano	45,3	Chirimoya	18,1
Trigo	45,2	Limón	17,8

Fuente: INEI (2013a) Elaboración propia.

Considerando que CONSORCIO EIECCP (2013) ya realizó el análisis del impacto económico del cambio climático sobre los cultivos mostrados en el Cuadro 2-1 excepto para

los principales cultivos permanentes (cacao, palta, mango, naranja y limón), estos últimos fueron los escogidos para esta investigación.

Considerando la producción de los cultivos permanentes seleccionados a nivel departamental, se puede diferenciar los grandes productores (GP) y pequeños productores (PP) si el porcentaje de participación en la producción total de los cultivos seleccionados es mayor y menor al 4%, respectivamente (Cuadro 2-2). Si bien la elección de GP y PP carece de justificación técnica, pues dentro de cada departamento pueden existir un cierto número de pequeños y grandes productores, se tomó como referencia el aporte histórico de la producción de un determinado cultivo sobre el total para así determinar donde se concentra gran parte de la producción.

Cuadro 2-2: Porcentaje promedio de la producción total de los cultivos seleccionados durante el periodo 1991-2011

		•			
Departamentos	Naranja	mango	limón	palta	cacao
Amazonas	1.69	0.33	2.29	0.82	8.16
Ancash	1.21	2.16	0.19	3.70	-
Apurímac	0.13	-	0.09	0.74	-
Arequipa	0.06	0.06	0.03	2.18	-
Ayacucho	1.13	0.13	0.20	1.76	20.47
Cajamarca	1.64	2.42	0.40	2.76	2.80
Cusco	4.48	0.57	0.24	2.39	26.71
Huancavelica	0.15	0.10	0.11	0.53	-
Huánuco	3.24	0.16	0.28	1.78	7.16
Ica	4.74	2.10	0.23	8.03	-
Junín	45.53	0.58	0.73	24.88	12.24
La Libertad	1.42	2.43	0.62	16.07	0.12
Lambayeque	1.03	10.13	23.66	0.60	-
Lima	15.87	3.86	0.08	27.08	-
Loreto	0.47	0.57	2.85	0.99	0.20
Madre de Dios	0.36	0.22	0.25	0.52	0.14
Moquegua	0.04	-	0.07	2.50	-
Piura	0.86	70.61	61.31	0.95	0.59
Puno	7.89	-	0.13	1.00	0.18
San Martin	5.06	1.61	1.52	0.71	18.85
Tumbes	0.06	0.23	1.19	-	0.42
Ucayali	2.92	1.73	3.55	-	1.97
Total	100	100	100	100	100

Fuente: MINAG (2013) Elaboración propia.

En base a la información disponible del MINAG (2012b), se estima que de los cinco cultivos analizados, el Perú exporta cuatro de ellos, siendo en mayor porcentaje el cacao (53%), seguido del mango (45%), palta (41%) y limón que representó sólo el 1% de la producción en el año 2011. El porcentaje restante de estos cultivos -básicamente limón y la naranja- son destinados al mercado nacional (Cuadro 2-3).

Cuadro 2-3: Producción agrícola total de los cultivos seleccionados designados al mercado nacional y extranjero en el año 2011 (miles de TM)

	•	•	,
Cultivos	Producción	Mercado Nacional	Mercado Extranjero
Cacao	56	26	30
Mango	352	192	160
Palta	214	123	91
Limón	214	212	2
Naranja	419	419	0

Fuentes: MINAG (2012b).

Elaboración propia.

Finalmente, la superficie agrícola bajo riego en la Región Costa, Sierra y Selva representa el 57, 38 y 5% del total, respectivamente. La superficie agrícola bajo secano se encuentra mayoritariamente en la Sierra y Selva, donde concentran el 51% y 45% del total de hectáreas. (Cuadro 2-4).

Cuadro 2-4: Superficie agrícola (en millones de ha) bajo riego y secano según región natural en el año 2012

Región Natural	Total	Rie	go	Seca	ino
	На	Ha	Ha %		%
Total	7,125	2,580	100	4,545	100
Costa	1,687	1,470	57	0,217	5
Sierra	3,296	0,990	38	2,306	51
Selva	2,142	0,121	5	2,021	44

Fuente: INEI (2013) Elaboración propia.

Es importante mencionar que el IV Censo Nacional Agropecuario 2012 indica que en comparación al censo de 1994, la superficie agrícola bajo riego se ha incrementado levemente en los departamentos con menor incidencia de pobreza debido posiblemente a que estos pueden invertir en tecnología e implementar la alternativa bajo riego en la superficie agrícola. Sin embargo, aún existen departamentos que siguen dependiendo de una agricultura bajo secano y de un factor tan importante y variable como son las precipitaciones, donde la ausencia de estas dificulta la producción agrícola, y por ende, las actividades vinculadas e ingresos de los agricultores.

En el caso de los departamentos más pobres, la proporción de la superficie agrícola bajo riego se ha reducido con excepción de Apurímac, en donde se incrementó la superficie agrícola bajo riego y secano. Lo anterior podría deberse a que existen agricultores que cuentan con mejores sistemas de riego que les permite almacenar agua durante el periodo de lluvias y luego utilizarla en épocas secas para evitar el deterioro de la producción

agrícola. Sin embargo, también hay lugares que carecen de este sistema y que dependen de una superficie agrícola bajo secano (Cuadro 2-5).

Cuadro 2-5: Superficie agrícola bajo riego y secano por departamentos ordenados de

mayor a menor nivel de incidencia de pobreza (%)

Departamento según	Incidencia de la		994		012
incidencia de pobreza	pobreza 2011 (%)	Riego (%)	Secano (%)	Riego (%)	Secano (%)
Sub total (1)		22	33	17	31
Apurímac		2,9	2,1	5,2	3,2
Ayacucho	50 – 57	5,0	3,4	3,5	3,3
Cajamarca	30 – 37	7,2	13,7	4,9	9,2
Huancavelica		3,6	4,4	1,7	3,9
Huánuco		3,2	9,3	1,5	11,4
Sub total (2)		23	21	22	23
Amazonas		1,5	3,7	1,0	5,2
Lambayeque	30-48	10,4	0,3	9,6	0,3
Loreto		0,0	4,8	0,1	5,6
Piura		10,4	1,9	10,5	2,9
Sub total (3)		55	46	61	46
Puno		0,8	10,4	0,6	9,0
Ancash		8,9	4,3	9,7	4,5
Arequipa		6,6	0,1	5,1	0,5
Cusco		3,2	8,6	3,9	7,1
Ica		6,7	0,1	9,2	0,5
Junín	10-29	2,4	8,7	2,5	9,2
La Libertad	10-29	12,4	5,5	10,9	5,8
Lima		10,8	0,3	15,9	2,3
Moquegua		1,0	0,0	1,2	0,1
San Martín		1,7	12,6	2,0	10,2
Tumbes		1,0	0,1	0,7	0,1
Ucayali		0	3,4	0,2	4,2
Madre de Dios ^{1/}		0	2,3	0	1,6
Total Nacio	onal (1+2+3)	100	100	100	100

¹/Madre de Dios tiene una incidencia menor a 10%.

Fuente: INEI (2012, 2013).

Elaboración propia

A continuación se presentan las fichas técnicas de los productos agrícolas para los cultivos seleccionados (Cuadro 2-6), señalándose las épocas para la siembra y la cosecha, así como las temperaturas mínimas, máximas y óptimas para cada uno de los casos. Nótese que no se presentan temperaturas únicas sino intervalos para la mayor parte de las variables señaladas. Esta consideración es importante al momento de elegir la estimación econométrica más adecuada para cada cultivo ya que se escogerá aquel que sea coherente con su respectiva ficha técnica.

Cuadro 2-6: Fichas técnicas de productos agrícolas seleccionados, según departamento

Cultivo Características								
Cultivo								
	Nombre científico	Mangifera indica L						
	Época siembra	Todo el año						
Mango	Época cosecha	Todo el año						
Mango	Temperatura mínima	16 °C						
	Temperatura máxima	35 °C						
	Temperatura optima	24 - 28 °C						
	Nombre científico	Citrus uarantifolia						
	Época siembra	Todo el año						
Limón	Época cosecha	Todo el año						
Limon	Temperatura mínima	12 ℃.						
	Temperatura máxima	38 ℃.						
	Temperatura optima	18-30 °C.						
	Nombre científico	Persea Americana Miller						
	Época siembra	Todo el año						
Palta	Época cosecha	Noviembre – Febrero						
Palla	Temperatura mínima	ND						
	Temperatura máxima	ND						
	Temperatura optima	18- 25 °C.						
	Nombre científico	Citrus sinensis						
	Época siembra	Todo el año						
Naranja	Época cosecha	Todo el año						
ivalalija	Temperatura mínima	23 °C.						
	Temperatura máxima	30 ℃.						
	Temperatura optima	23-30 °C.						
	Nombre científico	Theobroma cacao L.						
	Época siembra	Todo el año						
Coooo	Época cosecha	Todo el año						
Cacao	Temperatura mínima	ND						
	Temperatura máxima	ND						
	Temperatura optima	25- 29 °C.						

Fuente: Elaboración propia

2.2 Precios

Otro aspecto relevante son los precios chacra de los cultivos en análisis. Para analizar la evolución de estos precios durante el periodo 1991-2011 se estimaron sus respectivos precios *reales*. Para ello se utilizó el Índice de Precios al Consumidor (IPC) año base 1994, el cual fue obtenido de INEI (2013b) mientras que los precios chacra nominales provinieron del portal web del MINAG. Aún cuando en términos nominales los precios chacra tienden a ser crecientes, en términos reales ninguno de ellos refleja una tendencia definida (Gráficos 2-1, A, B, C, D y E para el caso del mango, naranja, palta, cacao y limón, respectivamente).

Con excepción del precio chacra del cacao, cultivo que es destinado recientemente para la exportación, el resto de precios presenta una tendencia hacia la baja. Esto es contrario a la

tendencia teórica, en donde se esperaría que los precios vayan en línea con el crecimiento real del PIB agrícola y/o del PIB total. Esto no ha sido el caso, al menos para los precios de los cultivos analizados. Estos resultados no son sorprendentes. Sánchez (2012) encontró que los precios chacra nominales de la agricultura peruana se incrementaron durante el periodo 1991-2008, sin embargo, en términos reales (año base 1994) habían caído -en promedio- 15.25%. Incluso, a pesar de ello, la producción se incrementó.

¿Cómo se explica este comportamiento contrario a la ley de la oferta? En general, la actividad agraria peruana se caracteriza por el desorden en la producción y la disminución de su rentabilidad y competitividad. Asimismo, los procesos de post cosecha y de mercadeo están sumamente desordenados por la falta de una apropiada infraestructura vial y la ausencia de un sistema de mercados mayoristas, lo cual incide en los altos costos de comercialización que afectan a los productores agrarios (MINAG, 2014).

De esta forma, los bajos precios de los cultivos agrarios obedecerían a la desorganización por parte de los agricultores: cada uno vende sus productos de manera individual, lo cual les resta poder de negociación. Por ende, es factible que desde el agricultor hasta el consumidor final exista una gran diferencia en los precios (Sánchez, 2012). Por lo tanto, es esperar que -al menos- en el futuro cercano esta tendencia en los precios nominales chacra no varíe, de manera que los respectivos precios reales puedan asumirse como constantes.

Gráfico 2-1: Evolución del precio real (1994) de los cultivos seleccionados por departamento que representan a los grandes productores durante el periodo 1991-2011

Fuente: INEI (2013b) y MINAG (2013)

Elaboración propia

Proyecciones de precios

Es costumbre proyectar los precios reales conforme a la tendencia observada durante un cierto periodo. Aplicar esto para el caso de los productos agrícolas no sería necesariamente apropiado. Asumir que el patrón de precios reales observado durante un periodo se repetirá en el futuro es muy discutible. Como se señaló en la sección anterior, los precios agrícolas dependen de diversas variables endógenas y/o exógenas, como la coyuntura económica y social, regulaciones, condiciones climáticas imperantes y/o futuras, e incluso de las expectativas basadas en los precios nominales observados.

Es muy difícil y cuestionable prever razonablemente los eventos futuros, sobre todo en el largo plazo. La construcción de escenarios suele ser la solución, sin embargo ello genera una mayor confusión sobre los resultados al basarse nuevamente en supuestos discutibles.

Proyectar precios chacra reales crecientes o decrecientes tampoco es la mejor opción. Un menor precio real futuro de cierto cultivo significaría que el agricultor opte por dirigir sus recursos hacia la siembra de otro cultivo cuyas expectativas le puedan generar mayor

beneficio. Un mayor precio futuro dado podría conllevar a que el agricultor pretenda especializarse en un cultivo y desestime otros. De esta forma, las proyecciones en simultáneo de los precios reales de un grupo de cultivos pueden conllevar a inconsistencias en los comportamientos.

Naturalmente esto puede ser, en parte, solucionado con las proyecciones de variables climáticas de manera que sea posible inferir las condiciones futuras en los cultivos, lo que a su vez, permitiría predecir razonablemente las futuras canastas de estos y cuales serán más rentables. No obstante, esto asume el conocimiento del beneficio futuro, lo cual también implica la predicción no sólo del precio real del cultivo, sino también de sus costos, lo cual nuevamente es discutible, sobre todo cuando la información de costos de producción es muy limitada, incluso en el presente.

Por estos motivos es razonable asumir precios chacra reales constantes. Esto garantizaría una especie de precios promedio entre los eventuales futuros periodos de precios altos y periodos de precios bajos. Naturalmente, esto también es discutible pero es la mejor opción dada la enorme incertidumbre y la poca información disponible en la actualidad sobre costos de producción agrícola, al menos para los cultivos seleccionados.

2.3 Productividad

Una forma de medir la productividad de los principales cultivos permanentes es mediante la construcción del índice VBP/S, donde VBP es el valor bruto de la producción en términos reales y S es la superficie agrícola cosechada. Por la forma de cálculo, esta productividad depende de los precios y de la capacidad del terreno o superficie agrícola para producir un determinado cultivo.

Es de esperar que la productividad dependa de las expectativas de precios. Mayores expectativas pueden implicar un mayor esfuerzo para obtener una mayor producción en una misma superficie. Este efecto no necesariamente es excluido cuando se trabaja con precios reales. Esto podría explicar la no existencia de un patrón definido en la evolución de esta productividad de los cultivos permanentes analizados. Este ha sido el caso de los cultivos permanentes en análisis (Grafico 2-2).

Gráfico 2-2: Evolución de la productividad según cultivo (1994=100)

Elaboración propia

2.4 Indicadores del sector agrario por departamentos

En el Perú, la actividad agrícola muestra diferencias a nivel departamental en términos de su contribución a la economía y del tamaño del empleo agrícola. Durante el periodo 2001-2011 y a nivel departamental, la contribución del sector agrícola en el PIB ha disminuido. Esto se explica por la escasa contribución del sector agrícola al PIB nacional (4%), la cual podría estar vinculada principalmente por la pobreza, la escasa dotación de activos públicos y privados que acceden los productores, y el limitado desarrollo de los mercados agrarios (trabajo, crédito, asistencia técnica, información, seguro, etc.).

Del Cuadro 2-7, se desprende que si bien los departamentos que son catalogados como pobres, su sector agrícola no ha contribuido significativamente en el PIB departamental respectivo durante los últimos años. Esto es explicado posiblemente por una mayor participación relativa de los sectores servicios, transporte y minería en dichos lugares.

Asimismo, se aprecia que la tasa de crecimiento promedio anual (2005-2011) de la población dedicada a la agricultura es levemente menor en términos relativos a la registrada en el periodo 2001-2005, lo que podría deberse a un aumento de la PEA agrícola en el año 2011 donde se empleó a más del 25% de la PEA total ocupada en estos lugares. Esta cifra podría ser resultado de estrategias para promover el desarrollo y crecimiento del sector agrícola mediante nuevos puestos de trabajos con mejores salarios.

Cuadro 2-7: Contribución de la agricultura al PIB total departamental y PEA agrícola según índice de pobreza (%), durante los años 2001, 2005 y 2011

Departamento	Incidencia de la pobreza 2011	PIB F dep	Contribución del PIB agrícola al PIB total departamental (%)		PEA ocupada (Miles de personas)		PEA ocupada agrícola (Miles de personas)		Tasa de crecimiento de la PEA ocupada agrícola (%)			
	(%)	200 1	200 5	201 1	2001	2005	2011	2001	2005	2011	2001-2005	2005-2011
Apurímac		17.4	13.3	14.4	208	198	238	55	52	60	-1,2	2,4
Ayacucho		17,4	14,2	10,1	271	305	333	71	80	84	3,0	0,8
Cajamarca	50 - 57	12,7	10,5	11,9	695	790	804	182	207	202	3,3	-0,4
Huancavelica		10,8	8,5	8,2	205	215	242	54	56	61	1,3	1,3
Huánuco		18,6	18,6	14,0	344	396	429	90	104	108	3,6	0,7
Amazonas		25,9	24,6	21,5	182	198	230	48	52	58	2,1	1,8
Lambayeque		8,5	6,2	5,3	454	524	610	119	137	154	3,6	1,9
Loreto	30-48	10,8	10,5	8,2	357	420	462	93	110	116	4,2	1,0
Piura		5,8	6,2	4,6	677	754	843	177	198	212	2,7	1,2
Puno		11,2	11,5	10,0	655	729	765	172	191	193	2,7	0,1
Ancash		5,2	3,9	3,8	466	532	573	122	139	144	3,3	0,6
Arequipa		9,4	9,3	7,4	501	546	635	131	143	160	2,2	1,9
Cusco		8,5	7,2	6,4	605	667	715	159	175	180	2,5	0,5
Ica		11,5	10,1	9,0	297	332	389	78	87	98	2,8	2,0
Junín		10,1	8,6	8,4	535	602	675	140	158	170	3,0	1,3
La Libertad		13,9	12,4	12,2	650	736	877	170	193	221	3,2	2,3
Lima	10-29	2,5	2,3	2,0	3.838	4.087	4.720	1.00 6	1.07 1	1.18 8	1,6	1,7
Moquegua		4,9	2,9	3,2	76	88	94	20	23	24	3,6	0,5
San Martín		17,4	18,3	17,3	305	375	429	80	98	108	5,2	1,6
Tumbes		4,8	4,5	5,4	93	109	122	24	29	31	4,1	1,1
Ucayali		13,3	11,0	9,3	161	198	253	42	52	64	5,4	3,4
Madre de Dios ^{1/}		7,7	5,6	4,7	45	53	69	12	14	17	4,3	3,7
Total Nacional		6,3	5,7	4,9	11.61 9	12.85 2	14.50 6	3.04 6	3.36 9	3.65 3	2,6	1,4

¹/Según INEI (2013), Madre de Dios tiene una incidencia menor a 10%. Fuente: INEI (2013) y BCRP (2013). Elaboración propia

En síntesis, los cultivos en análisis poseen patrones no definidos respecto a sus niveles de producción, precios, y productividad. Como fue señalado anteriormente, esto se debe -en parte- a la heterogeneidad entre los productores agrícolas y su débil poder de negociación, lo cual no les permitiría acceder a mejores condiciones económicas y tecnológicas. Es de esperar que otra variable importante en el comportamiento de los agricultores sea la variabilidad climática.

3. MARCO CONCEPTUAL

En la literatura se encuentra que los diferentes procedimientos para medir los efectos económicos del cambio climático sobre el sector agrícola se agrupan en dos enfoques básicos: estructurales y espaciales (McCarl et al., 2001; Molua y Lambi, 2007). A continuación se explican en detalle los modelos existentes para cada enfoque y la elección de uno de ellos según el propósito de esta investigación.

3.1 Enfoque Estructural

Este enfoque permite simular principalmente la respuesta de los cultivos ante la variación de la temperatura y precipitación. Con este enfoque se supone que los agricultores minimizan impactos o maximizan su bienestar, sujeto a las restricciones climáticas impuestas en el modelo. En este caso, el que se desarrolla es el llamado función de producción o modelo agronómico, el cual modela el rendimiento² de un cultivo en función al cambio de la temperatura, precipitación y el nivel de otros insumos necesarios. Esta aproximación presenta la ventaja no sólo de su fiabilidad en la estimación econométrica de cultivos específicos, sino también de identificar los umbrales de temperatura y/o precipitación a partir de los cuales los efectos pueden ser beneficiosos o perjudiciales.

Según Fleischer et al. (2007), el modelo de la función de producción explica que el rendimiento (R) de un determinado cultivo depende de Z, X, T y PR. La primera hace referencia al tipo de productor (grande o pequeño) ubicado en una determinada zona. La segunda está relacionada con todos los factores que influyen en R, tales como trabajo, capital, fertilizantes, tipo de suelo, sistema de riego y otros insumos. Finalmente, las dos últimas variables son el nivel de temperatura (T) y/o precipitación (PR), las cuales, están por debajo o encima de un determinado umbral. La evidencia empírica³ sugiere que la relación entre el R y las variables climáticas mencionadas deberían tener la forma de U invertida⁴, por lo cual se requiere modelarla utilizando una función cuadrática:

$$R = f(Z, X, T, T^2, PR, PR^2)$$
 (3.1)

Ramírez et al. (2009), Naciones Unidas (2011) y CONSORCIO EIECCP (2013) sugieren utilizar como variable dependiente la producción solo cuando se analice un grupo de cultivos en términos agregados.

Véase por ejemplo Mendelsohn et al. (1994), Ramírez et al., (2009), Loyola y Orihuela (2011), Naciones Unidas (2011), Rivera y Alvarado (2013) y CONSORCIO EIECCP (2013).

⁴ Existe evidencia de una relación en forma convexa entre la producción y variables climáticas (Mendelsohn et al., 1994).

Una vez que los resultados econométricos son obtenidos, estos servirán para obtener la diferencia del rendimiento bajo un escenario de cambio climático (R_{CC}) -tales como A1B, B1 y A2- y sin cambio (R_{SC}) o Business as Usual (BAU) que implica un comportamiento igual al actual, obteniendo así, el cambio⁵ del rendimiento (ΔR) en kg/ha para un determinado periodo. Multiplicando lo anterior por la diferencia de los precios (P) menos el costo unitario de producción (C), el cambio en los beneficios (ΔBT) en soles/ha serán:

$$\Delta BT = (P-C)^*(R_{CC} - R_{SC}) \tag{3.2}$$

Finalmente, el valor actual del cambio en BT durante el periodo 2011-2050 será equivalente a la expresión (3.3), la cual representa las eventuales pérdidas en el bienestar como consecuencia del CC, siendo "d" la tasa de descuento (Adams, 1989; Easterling et al., 1993; Rosenzweig y Parry, 1994).

$$\Delta BT_{2011-2050} = \sum_{t=2011}^{2050} \left[\frac{(P-C)^* (R_{CC,t} - R_{SC,t})}{1+d} \right]$$
 (3.3)

Al margen de los requerimientos de información, una de las limitaciones del modelo es que se excluye la posibilidad de incorporar el proceso de adaptación por parte del agricultor a través de cambios en sus planes y procesos productivos. De esta forma, se subestima la capacidad de adaptación de los agricultores al CC, sobrestimando los beneficios económicos asociados (Mendelsohn et al., 1994).

A pesar de las limitaciones del enfoque estructural, han sido diversas sus aplicaciones en el sector agrícola/pecuario de América Latina y sobre todo de Perú (Cuadro 3-1). Asimismo, si bien todos utilizan la misma metodología, estos difieren en algunos casos en el uso de variables dado la información disponible de cada país.

Por ejemplo, Ramírez et al. (2009), Ordaz et al. (2010a) y Mora et al. (2010a) encontraron pérdidas promedio para los escenarios climáticos A1B, B1 y A2 al 2100 que representaron el 19%, 13,5% y 2,6% del PIB 2007, respectivamente. En los tres estudios, los autores consideraron como variables explicativas de la función de rendimiento a la temperatura, precipitación, superficie provista para riego y la PEA rural. Asimismo, realizaron estimaciones econométricas de las ganancias agrícolas del 2006 para cada país utilizando

Es decir, por un lado, los rendimientos bajo un contexto de cambio climático incorporarán cambios futuros en la temperatura y/o precipitación en un determinado departamento a partir de posibles tendencias en el crecimiento demográfico y económico, es decir, el patrón de producción y consumo que derivan en mayores o menores emisiones de CO₂ y otros gases de efecto invernadero en la atmósfera. Por otro lado, el rendimiento bajo un escenario sin cambios incorporarán solamente la tendencia o el comportamiento actual del lugar (PACC, 2012).

como variables regresoras el género, edad y escolaridad del jefe de hogar, temperatura, precipitación y variables dummy de tipo de suelo (acrisols, cambisols, rendzinas, gleysols, fluvisols, luvisols, histosols y regosols). En este caso los autores encontraron evidencia estadística robusta para todas las variables excepto para la gran mayoría de dummies de tipo de suelo, siendo significativa al 10% sólo rendzinas y luvisols para el estudio de Ordaz et al. (2010a).

Los estudios de Ordaz et al. (2010b), Mora et al. (2010b) y Naciones Unidas (2011) estimaron también funciones de rendimiento para los cultivos en análisis usando sólo las variables climáticas temperatura y precipitación. Las pérdidas promedio al 2100 en este caso representaron el 5%, 18,5% y 2,1% del PIB 2007, respectivamente.

Cuadro 3-1: Principales estudios que utilizan la función de producción

Autores	Periodo1/	Sector/País	Cultivos
Ramírez et al. (2009)	1961-2005	Agropecuario/	maíz, frijol,
Railliez et al. (2009)	1901-2003	Istmo Centroamérica	arroz y pecuaria
Ordaz et al. (2010a)	1961-2005	Agropecuario/	Frijol, maíz, café y
01dd2 0t di. (2010d)	1001 2000	Honduras	pecuaria
Ordaz et al. (2010b)	1961-2006	Agropecuario/	Frijol, maíz, café y
0.002 ot all (20.00)	.00. 2000	El Salvador	pecuaria
Mora et al. (2010a)	1961-2006	Agropecuario/	Frijol, maíz, café y
(= 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0		Guatemala	pecuaria
Mora et al. (2010b)	1961-2005	Agropecuario/	Maíz, banano, arroz y
,		Panamá	pecuaria
Torres (2010)*	1970-2009	Agrícola/	mango, plátano, café
,		Perú	y limón
Naciones Unidas (2011)	1961-2005	Agropecuario/ Centroamérica	maíz, frijol, arroz y pecuaria
		Centivamenta	Mango, limón, caña
		Agrícola/	de azúcar, maíz
Loyola y Orihuela (2011)*	1994-2009	Perú	amarillo duro, plátano,
		1 Old	limón y algodón
D: 41 (0040)	1001 0010	Agrícola/	
Rivera y Alvarado (2013)	1991-2010	Perú	Café
			papa, arroz, maíz
CONSORCIO EIECCE (2012)	2004 2044	Agrícola/	amarillo duro, caña de
CONSORCIO EIECCP (2013)	2001-2011	Perú	azúcar, café, plátano y
			maíz amiláceo

^{1/} Se refiere al periodo en análisis de las estimaciones econométricas

Para el caso peruano, cuatro son los estudios que usaron dicha metodología. Torres (2010) estimó el costo del CC para algunos cultivos de la agricultura de Piura. Entre sus hallazgos encontró que el 50% de la producción de mango, plátano, café y limón es explicada por las variables climáticas (temperatura y precipitación). Conforme a sus resultados, para el año 2030 se espera la reducción en los rendimientos del mango y plátano de 8% y 39%,

^{*} Torres (2010), así como Loyola y Orihuela (2011) estimaron pérdidas solo para los departamentos de Piura (en ambos estudios) y en Lambayeque (sólo éste último). Fuente: Elaboración propia.

respectivamente, aunque también aumentos en los rendimientos del café y limón en 41% y 53%, respectivamente. En el balance, se prevén pérdidas que bordean los 9 millones de dólares para su periodo de estudio.

Una conclusión similar fue obtenida por Loyola y Orihuela (2011) quienes estimaron las posibles pérdidas por el CC para la canasta de los principales cultivos de Piura y Lambayeque para el periodo 2010-2100. Los autores concluyen que estas pérdidas en relación al valor bruto de la producción agrícola del 2009 son significativas (34,6% y 101,4%) principalmente para Piura a una tasa de descuento del 2% y 4%, respectivamente. Cabe mencionar que ambos estudios, construyen funciones econométricas a fin de calcular la variación de los ingresos agrícolas a partir de la variación proyectada de las variables climáticas (precipitación y temperatura).

Para el caso de Rivera y Alvarado (2013), se analizó el impacto del cambio climático sobre la variación de ingresos agrícolas de los productores cafetaleros en las principales zonas de producción en el Perú. Los resultados de las estimaciones econométricas muestran que existe una relación de convexidad entre la temperatura máxima y la producción de café convencional, y por ende, se evidencia que seguir cultivando café convencional a largo plazo será rentable para los agricultores de la zona en estudio, el cual aporta el 1.08% del valor bruto de la producción del sector agrícola del 2011.

Quizá el estudio más amplio en evaluar el impacto del CC sobre el sector agrícola peruano fue el desarrollado por el CONSORCIO EIECCP (2013) quienes estimaron las pérdidas para los principales cultivos de la agricultura peruana: papa, arroz, maíz amarillo duro, caña de azúcar, café, plátano y maíz amiláceo, los cuales concentran el 47% del valor de la producción agrícola del 2011. Los resultados muestran que el impacto del CC en la agricultura peruana generará disminuciones en la producción para todos los cultivos y escenarios a excepción del café que tiene un comportamiento distinto pues en los primeros años crecerá la producción y luego disminuirá levemente. En conclusión se puede decir que el impacto del cambio climático en la agricultura es probable que sea significativo.

3.2 Enfoque Espacial

El enfoque espacial busca estimar los efectos del CC en la agricultura con base en las diferencias observadas en los valores de la tierra, la producción agrícola y otros impactos climáticos relacionados entre regiones, utilizando métodos estadísticos o de programación para analizar cambios en los patrones espaciales de la producción (Molua y Lambi, 2007). Los modelos desarrollados en este enfoque son el *Ricardiano* y *Equilibrio General (EG)*.

El primero de ellos fue desarrollado por Mendelsohn et al. (1994), el cual asume que cada agricultor maximiza su ingreso neto sujeto a condiciones exógenas. Específicamente, el agricultor escoge su cosecha y los insumos para cada unidad de tierra que maximiza su beneficio tal como se expresa en (3.4):

$$\operatorname{Max} \pi = \sum_{i} P_{qi} Q_{i} (X_{i}, L_{i}, K_{i}, IR_{i}, C, W, S) - \sum_{i} P_{X} X_{i} - \sum_{i} P_{L} L_{i} - \sum_{i} P_{K} K_{i} - \sum_{i} P_{IR} IR_{i}$$
(3.4)

Donde π es el ingreso neto, P_{qi} y Q_i es el precio de mercado y la función de producción para el cultivo i, respectivamente. X_i es un vector de insumos anuales, tales como las semillas, fertilizantes y pesticidas, L_i es un vector de la mano de obra (asalariado y doméstico), K_i es un vector de capital, tales como tractores y equipos de cosecha, IR_i es un vector de opciones de riego. C es un vector de variables climáticas, W es el agua disponible para el riego, S es un vector de características del suelo, P_X es un vector de precios de inputs anuales, P_L es el vector de precios de la mano de obra, P_K es el precio renta del capital y P_{IR} es el costo anual de cada de sistema de riego.

Por lo tanto, si los agricultores escogen el cultivo que proporciona el mayor ingreso neto, el resultado será escoger una función de sólo variables exógenas como la expresión (3.5):

$$\pi^*=f(P_{qi}, C, W, S, P_X, P_L, P_K, P_{IR})$$
 (3.5)

Dado que el modelo Ricardiano asume competencia perfecta para el valor de la tierra, la libre entrada y salida de agentes en el mercado asegurará que el exceso de beneficios sea cero. Por lo tanto, las rentas de la tierra serán iguales al ingreso neto por unidad de superficie (Ricardo, 1817; Mendelsohn et al., 1994). Asimismo, el valor del suelo reflejará el valor presente del ingreso neto de cada agricultor.

En varios estudios, el valor de la tierra por unidad de superficie se ha encontrado que es sensible a la precipitación estacional y la temperatura (Mendelsohn et al. 1994, 1999, 2001;

Dinar et al., 1998; Mendelsohn, 2001; Mendelsohn y Dinar, 2003; Seo et al., 2005, 2008). Asimismo, debido a que la respuesta de estas variables climáticas sobre la dependiente no es lineal, los autores ya mencionados usan una forma funcional cuadrática. En consecuencia, se estima la expresión (3.6):

$$V_{\pi} = a + \sum_{i=estación} [b_i T_i + c_i (T_i)^2] + \sum_{i=estación} [d_i P R_i + e_i (P R_i)^2] + \sum_k m_k G_k + e_i$$
 (3.6)

Donde la variable dependiente es el valor de la tierra por unidad de superficie, mientras que T, PR y G representan la temperatura, precipitación y un conjunto de variables socioeconómicas relevantes, respectivamente. Teniendo en cuenta la expresión (3.6), el impacto del cambio climático es medido por el cambio del valor de la tierra (ΔV), la cual, resulta de un cambio en el clima de C_0 a C_1 :

$$\Delta V = V(C_1) - V(C_0) \tag{3.7}$$

Dado que el Modelo Ricardiano asume que los agricultores maximizan sus beneficios -dado que escogen el cultivo que les proporciona mayor ingreso-, están automáticamente incorporando el proceso de adaptación inherente en el mercado (Mendelsohn et al., 1994).

Esta es una distinción importante y que diferencia este enfoque a estudios que no toman en cuenta la adaptación (Deschenes y Greenstone, 2007). Sin embargo, las principales críticas radican en el uso de la estática comparativa. El resultado de la expresión (3.7) se basa en el supuesto de que las variables explicativas de (3.6) no cambian ante los escenarios C₀ a C₁, en otras palabras, el futuro puede ser explicado en base a la información pasada. Asimismo, no se incluye en el análisis los cambios en los precios agrícolas.

El segundo modelo es importante cuando se requiere calcular los efectos del cambio climático ocasionados por otras regiones -pues se asume que el clima fuera del área de estudio se mantiene constante-. Es decir, el modelo de EG ofrece la posibilidad de modelar la agricultura con respecto a otros sectores económicos, permitiendo la movilidad de recursos entre las regiones cuando existen los incentivos económicos para hacerlo. A pesar de que los EG tienen la ventaja de tomar los precios de los cultivos como endógenos y consideran vínculos intersectoriales, una limitación importante es que lo hace a costa de agregaciones muy drásticas en las que los diversos sectores espaciales o económicos están caracterizados por una empresa representativa (Schlenker et al., 2006).

De esta manera, todos los modelos tienen ventajas y desventajas. Por ello es importante señalar que los tres modelos deben ser considerados como complementarios y no sustitutos. Sin embargo, dado que el estudio requiere encontrar los umbrales de temperatura y precipitación para calcular el impacto monetario sobre los beneficios económicos de los principales cultivos permanentes, se considera pertinente desarrollar el modelo agronómico. Asimismo, si bien pudiese ser interesante incorporar en el análisis el modelo Ricardiano y el EG, las dificultades en la información histórica y departamental para el caso peruano hace difícil la aplicación de estos en el presente estudio.

4. ASPECTOS METODOLÓGICOS

Teniendo en cuenta la expresión (3.1) del modelo agronómico, esta se puede modelar econométricamente utilizando la siguiente función cuadrática general⁶ especificada en varios estudios (Mendelsohn et al., 1994; Seo et al., 2005; Seo y Mendelsohn, 2008):

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_2 T M_{it} + b_3 T M_{it}^2 + b_4 T N_{it} + b_5 T N_{it}^2 + b_6 P R_{it} + b_7 P R_{it}^2 + b_8 X_{it} + u_{it}$$

$$(4.1)$$

Donde:

R_{it} = Rendimiento del departamento i en el año t.

D1_i = Variable dicotómica que toma el valor de 1 si en el departamento i se encuentran los grandes productores y 0 en otro caso.

D2_i = Variable dicotómica que toma el valor de 1 si en el departamento i se encuentran los pequeños productores y 0 en otro caso.

TM_{it} = Temperatura máxima promedio para el departamento i en el año t.

TM_{it}² = Temperatura máxima promedio al cuadrado para el departamento i en el año t.

TN^{it} = Temperatura mínima promedio para el departamento i en el año t.

TN_{it}² = Temperatura mínima promedio al cuadrado para el departamento i en el año t.

PR_{it} = Precipitación para el departamento i en el año t.

PR_{it}² = Precipitación al cuadrado para el departamento i en el año t.

X_{it} = Factores tales como trabajo, capital, fertilizantes, tipo de suelo, sistema de riego.
 Todos para el departamento i en el año t.

 u_{it} = Error compuesto.

Dado la expresión (4.1) y considerando que no se encuentra registros estadísticos a nivel departamental y temporal de la matriz X para el caso peruano, (4.1) se delimita a lo

⁶ Para evitar el problema de la trampa de las variables ficticias, también se puede incluir el intercepto y D1 ó D2.

expresado por Ramírez et al. (2009), Ordaz et al. (2010a, 2010b, 2010c), Mora et al. (2010a, 2010b) y CONSORCIO EIECCP (2013):

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_2 T M_{it} + b_3 T M_{it}^2 + b_4 T N_{it} + b_5 T N_{it}^2 + b_6 P R_{it} + b_7 P R_{it}^2 + u_{it}$$
(4.2)

Si bien la expresión (4.2) presentará problemas por omitir los insumos X y que estos se encontrarán en el error u_{it}, es importante mencionar que si se asume la E(X'W)≈0 donde W= [D1, D2, TM, TM², TN, TN², PR, PR²], entonces los coeficientes serán insesgados y robustos pero no de mínima varianza, por lo que para corregir el problema de eficiencia, bastará estimar (4.2) usando errores estándar robustos.

A pesar que pueda existir evidencia de E(X'W) ≠0, ya que la precipitación podría tener un efecto sobre el tipo de suelo, esta podría ser baja e incluso estadísticamente poco robusta (Ramírez et al., 2009; Ordaz et al., 2010a; Mora et al., 2010a) concluyendo así que el sesgo en las estimaciones es pequeño. Asimismo, Torres (2010) asevera que las variables tipo de suelo y las condiciones de riego no deben ser incorporadas en las estimaciones de rendimiento del cultivo pues estas no varían considerablemente de una parcela a otra, además que existen fertilizantes y otras técnicas para suplir algunas deficiencias que existiera.

En todo caso, si bien se reconoce que la inclusión en la estimación econométrica podría ser válida para el caso peruano, la disponibilidad de información de X hace difícil incorporarla lo que justifica que autores como Torres (2010), Loyola y Orihuela (2011), Rivera y Alvarado (2013) y CONSORCIO EIECCP (2013) no la hayan incluido en sus estimaciones. Por otro lado, si bien se podría reducir el número de cultivos y/o regionales e incluso realizar sólo estimaciones de corte transversal como hicieron los autores Ramírez et al. (2009), Ordaz et al. (2010a), Mora et al. (2010a) a fin de incluir la variable X, estos no podrían ser utilizados para realizar proyecciones para calcular las pérdidas en términos de beneficios económicos de los principales cultivos permanentes pues se tendría una muestra poco significativa.

Finalmente, dado que para estimar (4.2) se dispone de información a nivel departamental para el periodo 1991-2011, el procedimiento para la estimación econométrica del rendimiento de cada cultivo será a través de un modelo de datos de panel⁷. Este tipo de modelo econométrico tiene la ventaja de reducir la colinealidad entre las variables

22

Hay que recordar que el número de observaciones totales para un panel balanceado esta dado por i x t, donde i es el número de departamentos utilizados en la estimación, y t, es el número de años considerados.

independientes (temperatura y precipitación), aportar más grados de libertad, y mejorar la precisión de los estimadores (Baltagi, 2008).

Considerando la expresión (4.2), es importante analizar el signo de los parámetros asociados a las variables temperatura y precipitación para asegurar la relación de la forma de U invertida entre R y las variables climáticas mencionadas. Se espera que los signos de los coeficientes b₂, b₄, b₆ sean positivos, ya que ante incrementos iniciales en el nivel de temperatura y precipitación es de suponer que aumente el rendimiento de tales cultivos. Por el contrario, los coeficientes b₃, b₅, b₇ deberían tener signo negativo, lo cual implicaría que existe un valor máximo (umbral) entre la relación rendimiento y las variables climáticas temperatura y/o precipitación, lo cual si estas superan este límite, los niveles de rendimiento se reducirán (Mendelsohn et al., 1994).

Elección del modelo y tipos de estimaciones de panel de datos

Si bien la expresión (4.2) es la especificación general que puede adoptar un determinado cultivo, a continuación se explican los principales pasos (en orden) a realizar para escoger el mejor modelo asociado cada cultivo y que posteriormente servirá para las proyecciones:

 a) Para cada cultivo, se estimará de forma adicional, diferentes alternativas a la expresión (4.2), tales como:

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_2 T M_{it} + b_3 T M_{it}^2 + b_6 P R_{it} + b_7 P R_{it}^2 + u_{it}$$
(4.3)

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_4 T N_{it} + b_5 T N_{it}^2 + b_6 P R_{it} + b_7 P R_{it}^2 + u_{it}$$
(4.4)

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_2 T M_{it} + b_3 T M_{it}^2 + b_4 T N_{it} + b_5 T N_{it}^2 + u_{it}$$
(4.5)

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_2 T M_{it} + b_3 T M_{it}^2 + u_{it}$$
(4.6)

$$R_{it} = b_0 D 1_i + b_1 D 2_i + b_4 T N_{it} + b_5 T N_{it}^2 + u_{it}$$
(4.7)

Generar diferentes alternativas a la forma general se explica porque quizás algunas de ellas son innecesarias o no relevantes al modelo. Asimismo, también la posible presencia de correlación entre las variables explicativas puede ocasionar que los parámetros sean no significativos e incluso ocasionen problemas de distorsión en los signos esperados (Green, 2000; Gujarati, 2004).

- b) Usando los siguientes criterios (en orden de importancia), se escogerá el mejor modelo:
 (i) signo esperado acorde a la teoría económica, (ii) umbral de temperatura y/o precipitación acorde a la ficha técnica del cultivo en análisis, (iii) probabilidad individual y grupal significativas y (iv) buena bondad de ajuste del modelo.
- c) Dado lo anterior, una vez obtenido la mejor especificación para cada cultivo, se procederá a analizar diferentes tipos de estimaciones de panel de datos, como son las estimaciones de datos agrupados (MCO), efectos fijos (MEF), y efectos aleatorios (MEA).

Cuando uno estima las expresiones (4.2)-(4.7) indicadas arriba agrupando todos los datos, sin tener en cuenta la estructura temporal de las observaciones, se estima por MCO. En este caso, se asume que u_{it} se distribuye normalmente con media cero y varianza constante.

Por otro lado, cuando se reconoce la estructura de datos de panel (con observaciones que varían en el tiempo y entre departamentos), se estima un MEF o MEA. En ambos casos, se tiene que el término de error de la estimación puede escribirse como (4.8):

$$u_{it} = \alpha_i + \epsilon_{it} \tag{4.8}$$

Es decir, este término de error tiene un componente fijo, que no depende del año (α_i) , y otro que sí depende del tiempo (ε_{it}) . En la estimación de los rendimientos agrícolas, el componente fijo estaría capturando la heterogeneidad departamental, la misma que podría o no afectar los rendimientos (piénsese en el caso de departamentos cuya tecnología es más productiva para un mismo cultivo).

Ahora bien, si α_i estuviera correlacionado con los indicadores climáticos, el no considerarlos (lo cual es realizado por la estimación de MCO agrupado) introduciría un sesgo en todos los estimadores (por variables omitidas) y estos serían ineficientes (su varianza no sería la mínima). En este caso, la estimación MEF sería la apropiada (Green, 2000; Baltagi, 2008).

Por el contrario, si α_i no estuviera correlacionado con los indicadores climáticos, la estimación apropiada es el MAE (estimar usando MEF sería ineficiente en este caso). El MAE asume, además, que α_i es un vector de variables aleatorias que no está correlacionada con ε_{it} . Finalmente, es importante señalar que si se estimaría por MEF,

las variables dicotómicas que se habían especificado en (4.2)-(4.7) no podrían estimarse⁸.

Por lo tanto, es de importancia mencionar que no existen desventajas o limitaciones en los tres métodos de estimación en panel de datos. Por el contrario, cada uno puede proporcionar los mejores estimadores dependiendo de las características que α_i tenga. Dado que en este estudio no se dispone de información a priori de α_i , es necesario estimar los tres modelos.

- d) Dado que se requiere disponer de sólo un modelo econométrico por cultivo, se plantea escoger si el modelo final es de tipo agrupado, de efectos fijos o aleatorios. En este caso, se optará por aquel que incorporé la temperatura promedio mínima, máxima y/o precipitación óptima acorde a la ficha técnica del cultivo bajo análisis (indicada en la sección anterior). Si bien es cierto que se pueden utilizar pruebas estadísticas, tales como Breusch-Pagan, Hausman y Wald, para escoger entre esos modelos, se escogerá según el criterio antes indicado de tal forma que exista una coherencia entre el modelo econométrico escogido y los requisitos climáticos de cada cultivo (CONSORCIO EIECCP, 2013).
- e) Como es de rigurosidad, el modelo finalmente elegido para cada cultivo será corregido por heteroscedasticidad y/o autocorrelación si fuera necesario.

Finalmente, dado que el interés es medir las futuras variaciones en los beneficios económicos del cacao, mango, palta, limón y naranja, se usarán los parámetros estimados y su respectiva especificación dado el mejor modelo de las expresiones (4.2)-(4.7), y se calculará la diferencia del rendimiento de un determinado cultivo bajo un contexto de CC^9 ($R_{CC,it}$) y sin cambio ($R_{SC,it}$) o Business as Usual (BAU) que implica un comportamiento igual al actual del departamento i y periodo t, obteniendo el cambio del rendimiento (ΔR_{it}) en kg/ha. Multiplicando lo anterior por la diferencia del precio (P) menos el costo unitario de producción (C) para el año 2011¹⁰, el cambio en los beneficios (ΔBT_{it}) en soles/ha serán:

$$\Delta BT_{it} = (P_{2011} - C_{2011})^* (R_{CC,it} - R_{SC,it})$$
(4.9)

10 Ya que las estimaciones econométricas serán desde 1991-2011, se tomará como valor de referencia el (P-C) del último año

⁸ Esto ocurre dado que al estimar por efectos fijos, α_i ya incorpora las variables dicotómicas D1 y D2, aunque no estima el efecto por separado sino solo el agregado.

Dado los escenarios climáticos A1B, B1 y A2.

Finalmente, el valor actual del cambio en BT_i durante el periodo 2011-2050 será equivalente a la expresión (4.10), la cual representa las eventuales pérdidas en el bienestar como consecuencia del CC, siendo d la tasa de descuento:

$$\Delta BT_{i,2011-2050} = \sum_{i} \sum_{t=2010}^{2050} \left[\frac{(P_{2011} - C_{2011})^* (R_{CC,it} - R_{SC,it})}{1+d} \right]$$
(4.10)

Datos

La información anual utilizada para la estimación econométrica de las expresiones (4.2)-(4.7), fue obtenida del MINAG (2013), la cual incluye cifras de rendimiento (R), superficie (S), producción (Q) y precios en chacra (P) por cultivo a escala departamental para el período 1991-2011. Asimismo, las variables climáticas T y PR se obtuvieron a partir del Servicio Nacional de Meteorología e Hidrología (SENAMHI), la cual incluye datos de frecuencia anual¹¹ de temperatura promedio máxima, mínima y precipitación.

Es evidente que el crecimiento, desarrollo y floración de ciertos cultivos ocurre en determinados meses del año, de manera que una mejor forma de evaluar el rendimiento de los cultivos es utilizando información mensual. Sin embargo, la información de la evolución de la superficie cosechada, rendimiento y niveles de producción no estuvieron disponibles a nivel mensual. Se reconoce que utilizar data anual podría implicar una distorsión en la estimación de los umbrales, sin embargo este el mejor esfuerzo con la data disponible.

Se consideraron variables dicotómicas: (D1=1 si el productor es grande y 0 en caso contrario) y (D2=1 si el productor es pequeño y 0 en caso contrario), fueron generadas a partir de si en una determinada zona se concentran los grandes o pequeños productores. Para esto se utilizó el aporte que tiene un determinado departamento en la producción total de un tipo de cultivo usando lo mostrado en el Cuadro 2-2 a partir del MINAG (2013).

Para realizar las proyecciones de cambios en los beneficios económicos a nivel departamental para cada cultivo, se utilizaron las proyecciones de temperatura máxima, mínima y precipitación del Centro de Datos para la Conservación (CDC) de la UNALM para los escenarios A1B, B1 y A2 para el periodo 2011-2050. Esta información se generó a partir

Dado que todos los cultivos en análisis son permanentes, no hubo la necesidad de considerar sólo el periodo de floración de cada cultivo seleccionado.

de la información climatológica de las variables temperatura máxima, mínima y precipitación que fueron obtenidos del SENAMHI.

Usando la subdivisión de la información en el espacio terrestre, se calcularon los promedios anuales de las variables seleccionadas y se realizaron correlaciones con la altitud de estas con las estimaciones de precipitaciones del Tropical Rainfall Measuring Mission (TRMM¹²).

Para los datos de TRMM, se utilizó la climatología de 3 meses de precipitación con resolución de 5 Km generados por Nesbitt y Anders (2009). Finalmente, se empleó el método de *co-kriging* con las variables identificadas, para interpolar la precipitación y temperaturas promedios anuales para una resolución de 1 Km. La información se subdividió en el espacio terrestre con un modelo de resolución relativamente alto, cuadriculándolo en unidades de 1 km de lado. Esta representación del espacio es habitualmente conocida como *ráster*, y funciona como una matriz numérica que está orientada a representar las condiciones climáticas.

Es importante mencionar que para los escenarios¹³ A1B, B1 y A2 se dispone de los siguientes modelos¹⁴: CSMK35, INCM3, MIMR, BCM20 y CSMK30. Dado que se observó que las proyecciones de los rendimientos por departamento y cultivo para estos modelos no varían sustancialmente, entonces se construyó las proyecciones de estas series a partir del promedio de cada modelo por escenario climático. Así también, para calcular la variación de beneficios, se consideraron diferentes tasas de descuento (d) sugeridas por la Comisión Económica para América Latina y el Caribe (Galindo, 2009): 0.5; 2, y 4%, las cuales serán aplicados a los escenarios ya mencionados.

En la medida que la tasa de descuento aumenta, las pérdidas se reducen sustancialmente. Este es el efecto del factor de descuento, mediante el cual el valor presente de los flujos lejanos tenderá a cero. Por este motivo en la literatura se ha sugerido una tasa de descuento social baja, decreciente (Weitzman, 1998) e incluso la posibilidad que adopte valores negativos, especialmente para un contexto especial de cambio climático, donde justamente los inminentes efectos perjudiciales ocurrirán en el muy largo plazo (Dasgupta, 2008).

¹² Satélite americano-japonés dedicado a medir las precipitaciones en el trópico.

Las características de desarrollo de los escenarios son: Escenario A2: Mundo muy heterogéneo, autosuficiente y conservación de las entidades locales; Escenario A1B, que considera una matriz energética más balanceada. Escenario B1: Mundo convergente preponderante en las soluciones de orden mundial encaminadas a la sostenibilidad económica, social y medio ambiental (IPCC, 2001).

Es importante mencionar que para los escenarios A1B y B1 se dispone además de los modelos GIAOM y MIHR. Sin embargo, para uniformizar con el escenario A2, estos se excluyeron del análisis.

5. RESULTADOS

A continuación se muestran los resultados de las estimaciones econométricas para los tres tipos de estimación explicados en la sección anterior: MCO agrupado, efectos fijos y efectos aleatorios. Si bien se estimó las expresiones (4.2)-(4.7) para cada cultivo, a continuación se presenta los principales resultados en el Cuadro 5-1.¹⁵

Para el caso del mango, la especificación escogida de la función de rendimiento es (5.1) usando la estimación MCO agrupado, la cual, reporta umbrales de temperatura 30,5°C (Gráfico 5-1.A) y precipitación de 1775,2 mm (Gráfico 5-1.B). Este modelo, que incorpora las variables dicotómicas por tipo productor y la temperatura máxima y precipitación como variables independientes, fue escogido dado que los niveles óptimos de las variables climáticas se encuentran acorde a la ficha técnica del cultivo, así como todos los coeficientes son estadísticamente significativos a nivel individual al 1% (excepto la variable D1) a diferencia del resto de modelos estimados.

$$R_{it} = 308,82D1_{i} - 3962,38D2_{i} + 952,64TM_{it} - 15,63TM_{it}^{2} + 1,20PR_{it} - 0,0003PR_{it}^{2} + u_{it}$$
 (5.1)

El modelo de efectos fijos si bien presenta una temperatura óptima acorde a la ficha técnica, no incorpora la precipitación pues para este modelo no resultó significativa. Con respecto al modelo de efectos aleatorios, esta se excluye dado que los coeficientes del nivel de precipitación (en términos lineales y cuadráticos) no presentan los signos adecuados.

Los resultados de las especificaciones finales de las funciones de rendimiento para la palta indican que la estimación más adecuada es el MCO agrupado cuya expresión es mostrada en (5.2) y que tiene como umbral de temperatura máxima 22,7°C (Gráfico 5-1.C), valor acorde a la ficha técnica de dicho cultivo y por ende ante incrementos de dicha variable climática más allá de ese nivel, el impacto sobre el rendimiento del cultivo será negativo. Asimismo, dicha estimación se escoge dado que todos los coeficientes son estadísticamente significativos al 1% y una bondad de ajuste (66%) mayor a la estimación por efectos fijos (57%) y aleatorios (21%).

$$R_{it} = -1995,41D1_{i} - 2689,76D2_{i} + 1013,59TM_{it} - 22,37TM_{it}^{2} + u_{it}$$
 (5.2)

Para el caso de la naranja, las estimaciones sugieren que la mejor estimación es el de MCO agrupado expresado en (5.3). Lo anterior se justifica principalmente por que a diferencia de las estimaciones de efectos fijos y aleatorios, la función que relaciona el rendimiento y la

_

¹⁵ Ver Anexos (2)-(6) para más detalles.

temperatura máxima es cóncava, con umbral de 28,3°C (Gráfico 5-1.D). Asimismo, la estimación por MCO agrupado presenta coeficientes estadísticamente significativos a nivel grupal e individual al 1% (excepto D1) y una bondad de ajuste mayor al 60%, lo cual, no se observa en los otros tipos de estimaciones.

$$R_{it} = 966,42TM_{it} - 17,07TM_{it}^2 - 571,66D1_i - 5685,53D2_i + u_{it}$$
(5.3)

Con respecto al limón, la especificación adecuada es (5.4), la cual se estima a partir de MCO agrupado ya que existe una relación de concavidad entre el rendimiento y las variables climáticas, con umbrales de 26,3°C (Gráfico 5-1.E) y 1031,9 mm (Gráfico 5-1.F) para el caso de la temperatura mínima y precipitación, respectivamente. Asimismo, se tiene una bondad de ajuste del 79% y todos los coeficientes son estadísticamente significativos al 1%. Caso contrario es lo obtenido en las estimaciones por efectos fijos y aleatorios, quienes se descartan no sólo por presentar una bondad de ajuste baja y coeficientes estadísticamente no significativos a nivel individual, sino además, por tener relaciones de tipo convexo entre el rendimiento y las variables climáticas mencionadas.

$$R_{it} = 10101,38D1_{i} + 4795,49D2_{i} + 237,38TN_{it} - 4,45TN_{it}^{2} + 1,43PR_{it} - 0,0006PR_{it}^{2} + u_{it}$$
 (5.4)

Los resultados para el cacao sugieren que la mejor estimación es el de MCO agrupado expresado en (5.5) ya que a diferencia del resto de estimaciones, la función que relaciona el rendimiento y las variables climáticas es cóncava, con umbrales de 26,3°C (Gráfico 5-1.G) y 1378,2 mm (Gráfico 5-1.H), respectivamente. Asimismo, la estimación por MCO agrupado presenta coeficientes estadísticamente significativos a nivel grupal e individual al 1% y una bondad de ajuste mayor al 65 %, lo cual, no se observa en las estimaciones de efectos fijos y aleatorios.

$$R_{it} = -215,82D1_{i} + 55,97TM_{it} - 1,06TM_{it}^{2} + 0,13PR_{it} - 0,00004PR_{it}^{2} + u_{it}$$
(5.5)

Finalmente, es importante mencionar que si bien el presente estudio utiliza la estimación por MCO agrupado, usada tambien por Ramírez et al. (2009), Ordaz et al. (2010a, 2010b, 2010c), Mora et al. (2010a), Orihuela y Loyola (2011), Rivera y Alvarado (2013) y CONSORCIO EIECCP (2013), las especificaciones (4.2)-(4.7) están implícitamente considerando diferencias o heterogeneidad departamental (α_i), al considerar variables dicotómicas que separen entre grandes (pequeños) productores y cuya tecnología es más (menos) productiva. Por lo tanto, las estimaciones econométricas tienen consistencia con la ficha técnica de cada cultivo por lo que lo mostrado en (5.1)-(5.5) puede ser utilizado en las proyecciones.

El hecho que la estimación por efectos fijos no sea considerada en ningún caso como la adecuada para cada cultivo, implica que si bien existe α_i , este no está correlacionado con las variables regresoras y por ende su incorporación seria errónea. Del mis modo, la estimación por efectos aleatorios no sería la adecuada ya que es necesaria la estimación de α_i y que esta no se encuentre como un componente del error u_{it} . Dicho lo anterior y dado las estimaciones escogidas, a continuación se muestran las proyecciones del rendimiento durante el periodo 2011-2050 por escenario climático y el cálculo de la variación de los beneficios económicos para cada cultivo.

Cuadro 5-1: Estimaciones econométricas de los modelos panel para los principales cultivos permanentes

		Mango			Palta			Naranja	<u> </u>	T .	Limón	•		Cacao	
R	MCO	MEF	MEA	MCO	MEF	MEA	MCO	MEF	MEA	MCO	MEF	MEA	MCO	MEF	MEA
Intercente	-	-9702,6	-14280,27	-	-11038,04	7670,97	-	43283,8	31762,42	-	9570,60	8461,62	-	1799,23	2201,26
Intercepto		(0,33)	(0,24)		(0,21)	(0,00)***		(0,00)***	(0,00)***		(0,00)***	(0,00)***		(0,00)***	(0,00)***
D1	308,82	-	-	-1995,41	-	-	-571,66	-	-	10101,38	-	-	-215,82	-	-
Di	(0,16)			(0,00)***			(0,18)			(0,00)***			(0,00)***		
D2	-3962,38	-	-	-2689,76	-	-	-5685,53	-	-	4795.49	-	-	-	-	-
DZ	(0,00)***			(0,00)***			(0,00)***			(0,00)***					
TM	952,64	1700,35	2142,49	1013,59	1680,69	-	966,42	-2502,33	-1658,00	-	-	-	55,97	-79,36	-125,54
1101	(0,00)***	(0,04)**	(0,03)**	(0,00)***	(0,02)**		(0,00)***	(0,02)**	(0,08)*				(0,00)***	(0,13)	(0,06)*
TM^2	-15,63	-34,21	-42,69	-22,38	-34.97	-	-17,07	44,43	29,59	-	-	-	-1,06	1,35	2,59
	(0,00)***	(0,04)**	(0,03)**	(0,00)***	(0,02)**		(0,00)***	(0,04)**	(0,11)				(0,00)***	(0,19)	(0,05)*
TN	-	-		-	-	117,96	-	-	-	237,38	-183,42	-51,06	0,13	0,01	-0,13
						(0,27)				(0,00)***	(0,52)	(0,83)	(0,00)***	(0,80)	(0,17)
TN ²	-	-		-	-	-3,85	-	-	-	-4,45	9,21	6,82	-0,00004	-0,00002	0,00002
	4.00		0.00			(0,46)				(0,04)**	(0,38)	(0,46)	(0,00)***	(0,19)	(0,45)
PR	1,20	-	-3,20	-	-	-	-	-	-	1,43	-2,20	-2,30	-	-	-
	(0,00)***		(0,07)*							(0,00)***	(0,06)*	(0,03)**			
PR^2	-0,0003	-	0,001	-	-	-	-	-	-	-0,0006	0,0005	0,0005	-	-	-
	(0,00)***	007	(0,03)**	400	100	400	4.40	110	110	(0,00)***	(0,15)	(0,13)	000	200	
Obs.	387	387	387	408	408	408	448	448	448	441	441	441	283	283	283
R2	0,83	0,74	0,31	0,66	0,57	0,21	0,61	0,65	0,31	0,79	0,64	0,31	0,66	0,61	0,21
Prob. F	0,00	0,00	0,01	0,00	0,00	0,05	0,00	0,00	0,08	0,00	0,00	0,07	0,00	0,00	0,19
TM óptimo	30,49	24,84	25,09	22,65	24,03	-	28,29	24,84	28,01	-	-	-	26,33	29,39	24,23
Gráfico	Cóncavo	Cóncavo	Cóncavo	Cóncavo	Cóncavo	-	Cóncavo	Convexo	Convexo	-	-	-	Cóncavo	Convexo	Cóncavo
TN óptimo	-	-	-	-	-	15,31	-	-	-	26,67	9,95	3,74	1378,24	250	3250
Gráfico	-	-	-	-	-	Cóncavo	-	-	-	Cóncavo	Convexo	Convexo	Cóncavo	Cóncavo	Convexo
PP óptimo		-	1294,49	-	-	-	-	-	-	1031,94	2200	2300	-	-	-
Gráfico	Cóncavo	-	Convexo	-	-	-	-	-	=	Cóncavo	Convexo	Convexo	-	-	-

Nota: En estas estimaciones se incluyó la opción MCG: Cross-Section Weight y los errores estándar robustos: White Cross-Section brindado por E-views 7. P-value en paréntesis: ***: p-value<0,01, **: p-value < 0,05, *: p-value < 0,10.

Fuente: Elaboración propia.

Gráfico 5-1: Relación entre el rendimiento y las variables climáticas para los principales cultivos permanentes

(H) Rendimiento del cacao (Kg/Ha) vs PR (mm)

Nota: TM=Temperatura máxima promedio (°C), TN=Temperatura mínima promedio (°C) y PR=precipitación (mm). Fuente: Elaboración propia.

Proyecciones de rendimiento y pérdidas de los beneficios económicos por cultivo

En primer lugar, en el Cuadro 5-1 se observan las pérdidas, en términos de beneficios económicos, ante cambios en la temperatura máxima o mínima y/o precipitación (acorde al modelo econométrico escogido por cultivo). Como se puede observar, todos los cultivos presentarían pérdidas durante el horizonte 2011-2050 para los tres escenarios climáticos excepto para el cultivo limón. Sobre este último, la explicación es que las proyecciones de temperatura y precipitación promedio están por debajo del umbral obtenido para estas variables (26,3°C y 1031,9 mm, respectivamente) según el modelo econométrico expresado en (5.4), registrando que dichas zonas no presenten pérdidas en términos de beneficios económicos.

En segundo lugar, si se asume que la superficie agrícola se mantiene al nivel reportado por INEI (2013) para cada cultivo en análisis durante el periodo 2011-2050, en el mismo cuadro se muestra las pérdidas en los beneficios¹⁶ como porcentaje del PIB agrícola del 2011. Los resultados indican que durante el 2011-2050 se registrarán pérdidas que pueden llegar como máximo al 2,24, 3,36, 0,28 y 2,13% del PIB agrícola del 2011 para el caso del mango, palta, naranja y cacao, respectivamente.

Ver Anexo 7 para más detalles.

Cuadro 5-1: Pérdidas de los Beneficios Económicos para los cultivos seleccionados (año base 2011)

					(3.10 3.30 2011)								
	So	les 2011/h	а	% del P	IB Agrícola	de 2011 ^{1/}							
Poriodo	Tasa de	e descuent	to (%)	Tasa	Tasa de descuento (%)								
Periodo	0,5	2	4	0,5	2	4							
2011-2050	-9.582	-9.512	-9.413	-2,17	-2,15	-2,13							
2011-2050	-9.591	-9.512	-9.401	-2,17	-2,15	-2,13							
2011-2050	-9.888	-9.794	-9.667	-2,24	-2,22	-2,19							
Poriodo	Tasa de	e descuent	to (%)	Tasa	de descue	nto (%)							
Periodo	0,5	2	4	0,5	2	4							
2011-2050	-8.808	-8.548	-8.233	-3,36	-3,26	-3,14							
2011-2050	-8.744	-8.497	-8.196	-3,33	-3,24	-3,12							
2011-2050	-8.174	-7.972	-7.723	-3,11	-3,04	-2,94							
Poriodo	Tasa de	e descuent	to (%)	Tasa	de descue	nto (%)							
Periodo	0,5	2	4	0,5	2	4							
2011-2050	-1.988	-2.003	-2.016	-0,26	-0,26	-0,26							
2011-2050	-1.973	-1.982	-1.989	-0,26	-0,26	-0,26							
2011-2050	-2.159	-2.160	-2.157	-0,28	-0,28	-0,28							
Poriodo	Tasa de	e descuent	to (%)	Tasa	de descuei	nto (%)							
Periodo	0,5	2	4	0,5	2	4							
2011-2050	1.380	1.289	1.181	0,14	0,13	0,12							
2011-2050	1.237	1.151	1.049	0,13	0,12	0,11							
2011-2050	983	918	841	0,1	0,09	0,09							
Poriodo	Tasa de	e descuent	to (%)	Tasa	de descue	nto (%)							
renouo	0,5	2	4	0,5	2	4							
2011-2050	-2.523	-2.490	-2.447	-2,11	-2,08	-2,05							
2011-2050	-2.529	-2.495	-2.450	-2,12	-2,09	-2,05							
2011-2050	-2.544	-2.510	-2.466	-2,13	-2,1	-2,06							
	2011-2050 2011-2050 Periodo 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050 2011-2050	Periodo Tasa de 0,5 2011-2050 -9.582 2011-2050 -9.591 2011-2050 -9.888 Periodo Tasa de 0,5 2011-2050 -8.808 2011-2050 -8.744 2011-2050 -8.174 Periodo Tasa de 0,5 2011-2050 -1.973 2011-2050 -2.159 Periodo Tasa de 0,5 2011-2050 1.380 2011-2050 1.237 2011-2050 983 Periodo 7.5 2011-2050 -2.523 2011-2050 -2.523 2011-2050 -2.529	Periodo Tasa de descuent 0,5 2 2011-2050 -9.582 -9.512 2011-2050 -9.591 -9.512 2011-2050 -9.888 -9.794 Tasa de descuent 0,5 2 2011-2050 -8.808 -8.548 2011-2050 -8.744 -8.497 2011-2050 -8.174 -7.972 Tasa de descuent 0,5 2 2011-2050 -1.988 -2.003 2011-2050 -1.973 -1.982 2011-2050 -2.159 -2.160 Tasa de descuent 0,5 2 2011-2050 1.380 1.289 2011-2050 1.237 1.151 2011-2050 Periodo 0,5 2 Tasa de descuent 0,5 2 2011-2050 983 918 Tasa de descuent 0,5 2 2011-2050 -2.523 -2.490 2011-2050 -2.523 -2.490 2011-2050 -2.529 -2	1,5 2 4	Periodo Tasa de descuento (%) Tasa 0,5 2 4 0,5 2011-2050 -9.582 -9.512 -9.413 -2,17 2011-2050 -9.591 -9.512 -9.401 -2,17 2011-2050 -9.888 -9.794 -9.667 -2,24 Tasa de descuento (%) Tasa 0,5 2011-2050 -8.808 -8.548 -8.233 -3,36 2011-2050 -8.744 -8.497 -8.196 -3,33 2011-2050 -8.174 -7.972 -7.723 -3,11 Tasa de descuento (%) Tasa 0,5 2011-2050 -1.988 -2.003 -2.016 -0,26 2011-2050 -1.973 -1.982 -1.989 -0,26 2011-2050 -2.159 -2.160 -2.157 -0,28 Tasa de descuento (%) Tasa 0,5 2011-2050 1.380 1.289 1.181 0,14 2011-2050 1.237 1.151 1.049 0,13 2011-2050	Periodo Tasa de descuento (%) Tasa de descuel 0,5 2 4 0,5 2 2011-2050 -9.582 -9.512 -9.413 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,17 -2,15 -2,15 -2,17 -2,15 -2,15 -2,17 -2,15 -2,15 -2,16 -2,16 -2,17 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,15 -2,24 -2,22 -							

^{1/} El PIB agrícola del 2011 asciende a 17231 Millones Soles (BCRP, 2013).

Fuente: Elaboración propia

El caso contrario ocurre con el limón, la cual se estima que para el mismo periodo tenga ganancias de 0,14%. Esta evidencia, para el caso de los principales cultivos permanentes, se puede contrastar con lo realizado por el CONSORCIO EIECCP (2013), quienes para el caso de los principales cultivos transitorios, el café¹⁷, caña de azúcar y plátano, obtuvieron pérdidas promedio durante el 2012-2100 que fluctuaron entre 2 y 7% del PIB agrícola del 2011 para los escenarios B1 y A2, respectivamente. Finalmente, si se analiza en conjunto para todos los cultivos en análisis, se concluye que tales pérdidas promedio llegarán a un máximo de 1,55% del PIB agrícola del 2011 para los escenarios (cuadro 5-2).

Para este cultivo, el CONSORCIO EIECCP (2013) encontró evidencia de ganancias para el periodo 2012-2100 según los escenarios A1B, B1 y A2.

Cuadro 5-2: Promedio de Pérdidas de los Beneficios Económicos como porcentaje del PIB agrícola de 2011 para los cultivos en análisis¹⁸

<u></u>	,	pa.a .cc		ununono
Escenarios	Periodo	de descuent	o (%)	
Escenarios	renouo	0,5	2	4
A1B	2011-2050	-1,55	-1,52	-1,49
A2	2011-2050	-1,55	-1,52	-1,49
B1	2011-2050	-1,53	-1,51	-1,48

Fuente: Elaboración propia

Es importante mencionar que las estimaciones aquí presentadas no incluyen ninguna adaptación ni cambios externos, como uso de nuevas tecnologías. A pesar de ello, el cálculo realizado nos indica cuál será la situación del sector agricultura si no se hace algo para contrarrestar los efectos adversos del cambio climático.

6. CONCLUSIONES

El cálculo econométrico se ha realizado en base a una muestra representativa de cultivos permanentes (mango, palta, naranja, limón y cacao). Se reconoce la omisión de otros cultivos permanentes pero tuvieron que ser excluidos debido a la falta de información agraria y climática.

Los resultados econométricos indican que todos los cultivos en análisis son estadísticamente explicados por la temperatura y precipitación, excepto la palta y naranja para esta última variable. La explicación a esto puede deberse por que estos cultivos no requieren de una gran precipitación durante todo el año o porque se está evidenciando sistemas de irrigación regulados, donde no hay una dependencia directa con relación a la precipitación.

Con respecto a las proyecciones para el periodo 2011-2050, se prevén pérdidas que pueden llegar como máximo al 2,24; 3,36; 0,28 y 2,13% del PIB agrícola del 2011 para el caso del mango, palta, naranja y cacao, respectivamente. Para el limón se estiman ganancias de hasta 0,14% también del PIB agrícola del 2011. En base a estos resultados, se acepta la hipótesis del estudio, de manera que las eventuales pérdidas del CC sobre el sector agrícola peruano -en términos de cultivos permanentes- se prevén que no sean significativas en términos macroeconómicos.

¹⁸ Para observar las pérdidas de los beneficios a nivel departamental, ver Anexo 8-9.

Estas proyecciones son razonables siempre y cuando la distribución actual de canasta de cultivos se mantenga en el futuro. No obstante, es posible que más adelante aquellos cultivos que sean muy susceptibles a las futuras alteraciones climáticas sean sustituidos por otros cultivos menos susceptibles. Este es un tema que futuros estudios deberían evaluar en las diferentes regiones agrícolas del país.

Más aun, los resultados de este estudio se basan en información mensual, la cual -como se señaló- puede distorsionar los resultados. Por ende, las cifras monetarias obtenidas deben ser tomadas con cautela.

La estimación de los impactos económicos del CC es una tarea urgente que merece ser tomada con cuidado especialmente en espacios tan heterogéneos como corresponde al caso peruano. En este sentido, algunas de las limitaciones que se han presentado en este estudio deben ser superadas en investigaciones posteriores. Por ejemplo, aplicar otros modelos y/o escenarios también podrían afinar los resultados.

Naturalmente, mejores resultados podrían obtenerse en la medida que se disponga de: i) mayor información climática no sólo para los diferentes espacios sino también a escalas que permitan establecer una relación espacial del clima con los cultivos, y ii) información de producción, superficie cosechada y rendimiento a nivel mensual. Esto es fundamental en un contexto de alta variabilidad como es en el caso del Perú.

7. RECOMENDACIONES DE POLÍTICA

Los resultados de este estudio indican que los eventuales efectos del CC sobre los cultivos permanentes serán mínimos en términos macroeconómicos. Sin embargo, esto no sugiere la omisión de políticas hacia los agricultores dedicados a los cultivos permanentes. No se conoce cuanta gente depende directamente de estos cultivos. Se desconoce además en qué medida cambiaria la dinámica económica (efecto multiplicador) y social y sus efectos en las pequeñas economías altamente dependientes de estos cultivos.

No hay estadísticas disponibles sobre la población dedicada exclusivamente a tales cultivos, de manera que pueda inferirse o cuantificarse algún nivel de vulnerabilidad, sobre todo en departamentos con mayor incidencia de pobreza (conforme a INEI). Esto sugiere la realización de estudios para determinar cuan vulnerables son las poblaciones

vinculadas a la siembra y cosecha de estos cultivos. Este es el punto de partida para implementar medidas de política.

- Asimismo, es tarea pendiente identificar y evaluar opciones de cultivos permanentes más resistentes -en comparación a la canasta actual- a la variabilidad climática. También debería estudiarse la factibilidad de implementar otra(s) canasta(s) de cultivo(s), según departamento. Esto debería ser una prioridad en la investigación, al menos en los lugares donde los cultivos permanentes involucren poblaciones vulnerables. Los resultados deberían constituir el punto de inicio para implementar futuras políticas agrícolas.
- Evaluar la factibilidad (incluso en simultáneo con los puntos anteriores) en la eventual implementación de programas de mitigación, como por ejemplo control de erosión en aquellas zonas más vulnerables. La elección deberá considerar no sólo criterios de eficiencia (costo-beneficio) sino también de equidad (población vulnerable, efecto multiplicador de la actividad agrícola, entre otros).

Los estudios pendientes deberían ser realizados para cada departamento. Los Gobiernos Regionales de los departamentos que *a priori* serían los más afectados (Anexo 1) deberían ser los encargados de fomentar esta tarea. Universidades, ONGs u otras agencias de cooperación podrían encargarse de la investigación/financiación.

BIBLIOGRAFÍA

Adams, R. (1989). Global climate change and agriculture: An economic perspective. American Journal of Agricultural Economics, vol. 71, pp. 1272-1279.

Baltagi, B. (2008). Econometric Analysis of Panel Data. John Wiley & Sons, Ltd. Fourth Edition.

BCRP (2013). Cuadros Históricos Anuales. Banco Central de Reserva del Perú [revisado 4 de noviembre de 2013]. Disponible en: http://bcrp.gob.pe

CAN (2008). El cambio climático no tiene fronteras. Impacto del cambio climático en la Comunicad Andina Comunidad Andina de Naciones. Disponible en: http://www.comunidadandina.org/public/libro_cambioclimatico1.pdf.

CEPAL (2009). La economía del cambio climático en América Latina y el Caribe. Síntesis 2009. Santiago de Chile.

CONSORCIO EIECCP (2013). Impacto Económico del Cambio Climático en la Agricultura Peruana. Estudio del Impacto Económico del Cambio Climático en el Perú. Documento no publicado.

Dasgupta P. (2008). Discounting climate change. Journal of Risk and Uncertainty, vol 37, pp. 141-169.

Deschenes, O., and Greenstone, M. (2007). The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. American Economic Review, vol. 97, pp. 354-385.

Dinar, A., Mendelsohn, R., Evenson, R., Parikh, J., Sanghi, A., Kumar, K., McKinsey, J., and Lonergan, S. (eds) (1998). Measuring the impact of climate change on Indian agriculture, World Bank Technical Paper No. 402, Washington, DC.

Easterling, W. (1993). Adapting United States agriculture to climate change. In: Preparing for an uncertain climate, Vol. 1: OTA-0-567. Office of Technology Assessment, Washington DC. P. 303-305.

FAO (2009). Estudio de Mercado enfocado a priorizar las compras locales de alimentos a pequeños productores.

Fleischer, A., Lichtman, I. y Mendelsohn, R. (2007). Climate Change, Irrigation, and Israeli Agriculture. World Bank, Policy Research Working Paper, No. 4135.

Galindo, L. (2009). La economía del cambio climático en México: Sécretaría de Hacienda y Crédito Público; México. Secretaría de Medio Ambiente y Recursos Naturales.

Green, W. (2000). Econometric Analysis. Fourth Ed. Upper Saddle River, New Jersey. Prentice Hall Ed. USA.

Gujarati, D. (2004). Econometría. Cuarta Edición, Mc Graw Hill. Bogotá- Colombia.

INEI (2009). Encuesta Nacional de Hogares sobre condiciones de vida y pobreza. (ENAHO) 2009. Instituto Nacional de Estadística e Informática. Disponible en: www.inei.gob.pe

INEI (2011). Evolución de la Pobreza al 2010. Instituto Nacional de Estadística e Informática. Disponible en: www.inei.gob.pe

INEI (2012). Evolución de la Pobreza en el Perú al 2011. Instituto Nacional de Estadística e Informática. Disponible en: www.inei.gob.pe

INEI (2013a). Resultados Definitivos: IV Censo Nacional Agropecuario 2012. Instituto Nacional de Estadística e Informática. Disponible en: www.inei.gob.pe

INEI (2013b). Sistema de Información Económica – Estadisticas Sectoriales. Índices de Precios. Instituto Nacional de Estadística e Informática. Disponible en www.inei.gob.pe. Fecha de actualización: 04/11/2013.

IPCC (2001). Climate Change 2001: Informe de síntesis. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change [Watson, R.T. and the Core Writing Team (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, pp. 398.

IPCC (2007). Climate Change: Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press; Cambridge.

IPCC (2012). Glossary of Terms used in the IPCC Fourth Assessment Report. Disponible en: http://www.ipcc.ch/pdf/glossary/tar-ipcc-terms-sp.pdf

Kurukulasuriya, P., and Mendelsohn, R. (2006). Modeling endogenous irrigation: The impact of climate change on farmers in Africa. Center for Environmental Economics and Policy in Africa (CEEPA) Discussion Paper No. 8. Special Series on Climate Change and Agriculture in Africa.

Loyola, R. y Orihuela, C. (2011). El costo económico del cambio climático en la agricultura peruana: El caso de la región Piura y Lambayeque. PMP13-2009. Consorcio de Investigación Económica y Social-CIES. Disponible en: www.cies.org.pe

McCarl, B., R. Adams y B. Hurd (2001). Global Climate Change and its Impact on Agriculture, inédito.

Mendelsohn, R., Nordhaus, W., Shaw, D. (1994). The Impact of Global Warming on Agriculture: A Ricardian Analysis. American Economic Review, American Economic Association, vol. 84(4), pp. 753-71.

Mendelsohn, R. and Nordhaus, W. (1999). The impact of global warming on agriculture: reply to Quiggin and Horowitz, The American Economic Review, vol.89, pp. 1046–1048.

Mendelsohn, R., Dinar, A. and Sanghi, A. (2001). The effect of development on the climate sensitivity of agriculture, Environment and Development Economics, vol. 6, pp. 85–101.

Mendelsohn, R. (ed.) (2001). Global Warming and the American Economy: A Regional Assessment of Climate Change, Cheltenham: Edward Elgar Publishing.

Mendelsohn, R. and Dinar, A. (2003). Climate, water, and agriculture, Land Economics, vol.79, pp. 328–341.

MINAG (2010). Seguro Agrario Catastrófico Campaña 2009-2010. Ministerio de Agricultura. Boletín Trimestral N0 01-AG/DGCA/DCSA. Disponible en: www.minag.gob.pe

MINAG (2011). Seguro Agrario Catastrófico Campaña 2010-2011. Ministerio de Agricultura. Boletín Trimestral No 01-AG/DGCA/DCSA. Disponible en: www.minag.gob.pe

MINAG (2012a). Dinámica Agropecuaria: 2002-2011. Ministerio de agricultura, Oficina de Estudios económicos y Estadísticos, Lima – Perú. Disponible en: www.minag.gob.pe

MINAG (2012b). Actividades estadísticas de Comercio Interior y Exterior. Ministerio de agricultura, Sistema Integrado de Estadística Agraria (SIEA), Lima – Perú. Disponible en: www.minag.gob.pe

MINAG (2013). Series Históricas de Producción Agrícola- Compendio estadístico. Disponible en http://frenteweb.minag.gob.pe/sisca/. Fecha de actualización: 04/11/2013.

MINAG (2014). Problemas de la agricultura peruana. Disponible en: www.minag.gob.pe

Molua, E. and Lambi, C. (2007). The Economic Impact of Climate Change on Agriculture in Cameroon, World Bank, Policy Research Working Paper, No. 4364.

Mora, J., Ordaz, J., Ramírez, D., Acosta, A. (2010a). Guatemala: Efectos del Cambio climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Mayo 2010.

Mora, J., Ordaz, J., Ramírez D., Acosta, A. (2010b). Panamá: Efectos del Cambio climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Agosto 2010

Naciones Unidas (2011). La Economía del Cambio Climático en Centroamérica: Reporte Técnico 2011. Convenio entre el Ministerio Británico para el Desarrollo Internacional (DFID) y la Sede Subregional en México de la Comisión Económica para América Latina y el Caribe (CEPAL), y el Convenio entre la Cooperación para el Desarrollo de Dinamarca (DANIDA) y la CEPAL, como parte del Proyecto "La economía del cambio climático en Centroamérica".

Nesbitt, S. y Anderson, A.(2009). Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. Geophysical Research Letters, vol. 36, L15815.

Ordaz, J., Ramírez, D., Mora, J., Acosta, A., Serna, B. (2010a). Honduras: Efectos del cambio climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Junio 2010.

Ordaz, J., Ramírez, D., Mora, J., Acosta, A., Serna, B (2010b). El Salvador: Efectos del cambio climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Agosto 2010.

Ordaz, J., Ramírez, D., Mora, J., Acosta, A., Serna, B (2010c). Costa Rica: Efectos del cambio climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Septiembre 2010.

PACC (2012). Estudio de la Economía del Cambio Climático en las regiones de Cusco y Apurímac. Serie de investigación regional No 21. Programa de Adaptación al Cambio Climático.

Ramírez, D., Ordaz, J., Mora, J. (2009). Istmo Centroamericano: Efectos del Cambio Climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Noviembre 2009.

Ramírez, D., Ordaz, J., Mora, J. (2010). Belice: Efectos del Cambio climático sobre la Agricultura. Comisión Económica para América Latina y el Caribe (CEPAL), Sede Subregional en México, D.F. Junio 2010.

Ricardo, D. (1817). On the principles of political economy and taxation. John Murray, London, England.

Rivera, F. y Alvarado, L. (2013). Impacto del Cambio Climático sobre los Ingresos del Café Convencional: Un Análisis de Panel Balanceado. Periodo 1991-2010. Natur@economía, vol. 1 (2), pp.49-68.

Rosenzweig, C. y M. Parry (1994). Potential impact of climate change on world food supply, Nature, vol.367, pp.133-138.

Sanabria, J. (2003). Impacto del Evento niño en la agricultura peruana campaña 2002-2003. Estudio Agrometeorológico. Dirección General de Agrometeorología del Servicio Nacional de Meteorología e Hidrología (SENAMHI).

Sánchez, A. (2012). Acumulación de capital y reproducción en la agricultura peruana 1970-2008. Colección Agrosaber Banco Agropecuario. pp. 372

Schlenker, W., Hanemann, W. y Fischer, A. (2006), The impact of global warming on US agriculture: An econometric analysis of optimal growing conditions, The Review of Economics and Statistics, vol. 88 (1), pp.113–125.

Seo, S., Mendelsohn, R. and Munasinghe, M. (2005). Climate change and agriculture in Sri Lanka: A Ricardian valuation. Environmental Development Economics, vol.10, pp.581-596.

Seo, S., Mendelsohn, R. (2008). A Ricardian Analysis of the Impact of climate change on South American Farms. Chilean Journal of Agricultural Research, vol. 68(1), pp. 69-79.

Seo, S., Mendelsohn, R., Dinar, A., Hassan, R., and Kurukulasuriya, P. (2008). A Ricardian analysis of the distribution of climate change impacts on agriculture across agro-ecological zones in Africa. World Bank Policy Research Working Paper (in press).

Torres, L. (2010). Análisis económico del cambio climático en la agricultura de la región Piura-Perú. Caso: Principales productos agroexportables. PBC34-2009. Consorcio de Investigación Económica y Social –CIES. Disponible en: www.cies.org.pe

Vargas, P. (2009). El Cambio climático y sus efectos en el Perú. Banco Central de Reserva del Perú. D.T. N°2009-14. Serie de Documentos de Trabajo. Working Paper series.

Weitzman, M. (1998). Why the Far-Distance Future Should Be Discounted At Its Lowest Possible Rate. Journal of Environmental Economics and Management, vol. 36, pp. 201-208.

ANEXO 1: PROVINCIAS DONDE SE SIEMBRAN LOS CULTIVOS

Departamento	naranja	Ubicación	mango	Ubicación	limón	Ubicación	palta	Ubicación	cacao	Ubicación
Amazonas	Chachapoyas	Selva alta	Chachapoyas	Selva alta	Utcubamba	Selva alta	Chachapoyas	Selva alta	Bagua	Selva alta
Ancash	Huaraz	Costa	Casma	Costa	Huaraz	Costa	Casma	Costa	-	-
Apurímac	Abancay	Sierra	Abancay	Sierra	Abancay	Sierra	Abancay	Sierra	-	-
Arequipa	Arequipa	Costa	Arequipa	Costa	Arequipa	Costa	Caravelí	Costa	-	-
Ayacucho	Huanta	Sierra	La Mar	Sierra	La Mar	Sierra	Huanta	Sierra	La Mar	Sierra
Cajamarca	Cutervo	Sierra	Contumaza	Sierra	Cajamarca	Sierra	Contumaza	Sierra	Cajamarca	Sierra
			La						La	
Cusco	La Convención	Sierra	Convención	Sierra	La Convención	Sierra	Mollepata	Sierra	Convención,	Sierra
									Quillabamba	
Huancavelica	Huancavelica	Sierra	Huancavelica	Sierra	Huancavelica	Sierra	Huancavelica	Sierra	-	-
Huánuco	Huánuco	Sierra	Huánuco	Sierra	Huánuco	Sierra	Huánuco	Sierra	Huánuco	Sierra
lca	Ica	Costa	lca	Costa	lca	Costa	Ica	Costa		
Junín	Junín	Sierra	Junín	Sierra	Junín	Sierra	Junín	Sierra	Junín	Sierra
La Libertad	Otuzco	Costa	Chepén	Costa	Bolivar	Costa	Ascope	Costa	Bolívar	Costa
Lambayeque	Lambayeque	Costa	Lambayeque	Costa	Lambayeque	Costa	Lambayeque	Costa	-	-
Lima	Huaral	Costa	Huaral	Costa	Huaral	Costa	Huaral	Costa	-	-
Loreto	Alto Amazonas	Selva baja	Loreto	Selva baja	Maynas	Selva baja	Maynas	Selva baja	Loreto	Selva baja
Madre de Dios	Tambopata	Selva baja	Tambopata	Selva baja	Tambopata	Selva baja	Tambopata	Selva baja	Tambopata	Selva baja
Moquegua	Mariscal Nieto	Costa			Mariscal Nieto	Costa	Mariscal Nieto	Costa	Mariscal Nieto	Costa
Piura	Huancabamba	Sierra	San Lorenzo	Costa	San Lorenzo	Costa	Chira	Costa	Morropón	Costa
Puno	Puno	Sierra			Puno	Sierra	Puno	Sierra	Puno	Sierra
San Martin	Mariscal Cáceres	Selva alta	Lamas	Selva alta	Mariscal Cáceres	Selva alta	Lamas	Selva alta	Tocache	Selva alta
Tumbes	Tumbes	Costa	Tumbes	Costa	Tumbes	Costa	-	-	Tumbes	Costa
Ucayali	Ucayali	Selva baja	Ucayali	Selva baja	Ucayali	Selva baja	-	-	Ucayali	Selva baja

Fuente: Elaboración propia con datos del INEI Y CIPCA.

ANEXO 2: ESTIMACIONES DEL MANGO

Cuadro A2-1: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 19:16

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 385 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	1098.140	48.31891	22.72693	0.0000
TMAX^2	-31.42255	1.043041	-30.12591	0.0000
TMIN	959.9244	15.97181	60.10115	0.0000
TMIN^2	-15.96045	0.782184	-20.40497	0.0000
PP	2.907603	0.083923	34.64591	0.0000
PP^2	-0.000872	3.34E-05	-26.13086	0.0000
D1	-3887.107	201.0595	-19.33312	0.0000
D2	-6745.353	549.7816	-12.26915	0.0000
	Weighted	Statistics		
R-squared	0.937209	Mean depende	nt var	7.932141
Adjusted R-squared	0.936043	S.D. dependent var		11.41672
S.E. of regression Durbin-Watson stat	0.935828 1.820204	Sum squared resid		330.1671

Cuadro A2-2: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 19:17

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 387 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	952.6411	46.51429	20.48061	0.0000
TMAX^2	-15.62799	1.099162	-14.21810	0.0000
PP	1.203854	0.152209	7.909223	0.0000
PP^2	-0.000338	5.49E-05	-6.146613	0.0000
D1	308.8222	219.6609	1.405905	0.1606
D2	-3962.380	508.2963	-7.795414	0.0000
	Weighted	Statistics		
R-squared	0.837593	Mean depende	nt var	3.939806
Adjusted R-squared	0.832837	S.D. dependent var		20.13257
S.E. of regression	0.943190	Sum squared resid		338.9405
Durbin-Watson stat	1.728109			

Cuadro A2-3: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 385 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN	1267.348	26.76758	47.34637	0.0000
TMIN^2	-35.87292	1.141787	-31.41822	0.0000
PP	4.827863	0.148744	32.45759	0.0000
PP^2	-0.001759	5.24E-05	-33.54578	0.0000
D1	1391.990	184.1881	7.557433	0.0000
D2	-136.2161	205.3208	-0.663431	0.5075
	Weighted	Statistics		
R-squared	0.897349	Mean depende	nt var	3.978655
Adjusted R-squared	0.895995	S.D. dependent var		11.00815
S.E. of regression	0.935918	Sum squared resid		331.9822
Durbin-Watson stat	1.810437			

Cuadro A2-4: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 389 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.				
TMAX	983.0568	42.63287	23.05866	0.0000				
TMAX^2	-16.19874	0.933689	-17.34918	0.0000				
D1	-148.6279	251.4464	-0.591092	0.5548				
D2	-3841.981	465.3636	-8.255870	0.0000				
	Weighted Statistics							
R-squared	0.658408	Mean depender	nt var	3.491867				
Adjusted R-squared	0.655747	S.D. dependent var		22.93593				
S.E. of regression	0.946398	Sum squared resid		344.8326				
Durbin-Watson stat	1.776501	·						

Cuadro A2-5: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 386 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN TMIN^2 D1 D2	1260.760 -36.91381 1683.700 1798.257	18.55034 0.669818 195.5421 110.8326	67.96425 -55.11018 8.610421 16.22498	0.0000 0.0000 0.0000 0.0000
	Weighted	Statistics		
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.922652 0.922044 0.945278 1.786363	Mean depende S.D. dependen Sum squared r	t var	7.869833 12.54929 341.3359

Cuadro A2-6: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 386 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	1265.441	46.07370	27.46559	0.0000
TMAX^2	-34.45148	0.984394	-34.99765	0.0000
TMIN	721.7965	12.54348	57.54354	0.0000
TMIN^2	-7.088358	0.657617	-10.77885	0.0000
D1	-4790.912	245.3432	-19.52739	0.0000
D2	-6495.626	509.7617	-12.74247	0.0000
	Weighted	Statistics		
R-squared	0.948079	Mean depender	nt var	8.879673
Adjusted R-squared	0.947396	S.D. dependent var		13.77410
S.E. of regression	0.940330	Sum squared resid		336.0035
Durbin-Watson stat	1.812411			

Cuadro A2-7: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 21:51

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 385 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TMAX	-1194.286 1189.026	10232.65 844.9185	-0.116713 1.407267	0.9072 0.1602
TMAX^2	-25.81187	17.14185	-1.505780	0.1330
TMIN	-314.3273	212.7846	-1.477209	0.1405
TMIN^2	18.16594	11.20113	1.621796	0.1057
PP	-3.039741	1.401085	-2.169562	0.0307
PP^2	0.001115	0.000452	2.469639	0.0140

Effects Specification

Weighted Statistics					
R-squared	0.746227	Mean dependent var	14317.13		
Adjusted R-squared	0.729309	S.D. dependent var	7936.383		
S.E. of regression	2913.242	Sum squared resid	3.06E+09		
F-statistic	44.10804	Durbin-Watson stat	1.053781		
Prob(F-statistic)	0.000000				

Cuadro A2-8: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 21:51

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 387 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

ob.
6291
1035
998
0284
)159
1

Effects Specification

Weighted Statistics					
R-squared	0.740367	Mean dependent var	14233.06		
Adjusted R-squared	0.724674	S.D. dependent var	7928.770		
S.E. of regression	2925.768	Sum squared resid	3.12E+09		
F-statistic	47.18076	Durbin-Watson stat	1.045848		
Prob(F-statistic)	0.000000				

Cuadro A2-9: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 385

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	12790.78	2530.708	5.054231	0.0000
TMIN	-224.8405	366.7245	-0.613105	0.5402
TMIN^2	11.37874	13.43550	0.846916	0.3976
PP	-4.674936	1.542386	-3.030977	0.0026
PP^2	0.001605	0.000501	3.201910	0.0015

Effects Specification

R-squared	0.619241	Mean dependent var	10684.18
Adjusted R-squared	0.596100	S.D. dependent var	4618.219
S.E. of regression	2935.021	Akaike info criterion	18.86470
Sum squared resid	3.12E+09	Schwarz criterion	19.10087
Log likelihood	-3608.454	Hannan-Quinn criter.	18.95836
F-statistic	26.76052	Durbin-Watson stat	1.242385
Prob(F-statistic)	0.000000		

Cuadro A2-10: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 21:47

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 389 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

C	-9702.640	10056.91	-0.964774	0.3353
TMAX TMAX^2	1700.355 -34.21012	835.8987 17.01163	2.034164 -2.010984	0.0427 0.0451

Effects Specification

Weighted Statistics					
R-squared	0.741873	Mean dependent var	14263.71		
Adjusted R-squared S.E. of regression	0.727844 2949.765	S.D. dependent var Sum squared resid	7887.366 3.20E+09		
F-statistic Prob(F-statistic)	52.88261 0.000000	Durbin-Watson stat	1.026510		

Cuadro A2-11: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 21:47

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 386 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10591.61	739.4018	14.32456	0.0000
TMIN	-201.6998	171.0415	-1.179244	0.2391
TMIN^2	12.47448	8.572706	1.455140	0.1465

Effects Specification

Weighted Statistics					
R-squared	0.749471	Mean dependent var	14471.13		
Adjusted R-squared	0.735743	S.D. dependent var	8325.123		
S.E. of regression	2961.960	Sum squared resid	3.20E+09		
F-statistic	54.59575	Durbin-Watson stat	1.022483		
Prob(F-statistic)	0.000000				

Cuadro A2-12: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 21:46

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 386 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-5164.415	9631.569	-0.536197	0.5922
TMAX	1406.542	813.6825	1.728613	0.0847
TMAX^2	-29.94036	16.77225	-1.785113	0.0751
TMIN	-288.1537	195.0207	-1.477554	0.1404
TMIN^2	17.50792	10.04821	1.742392	0.0823

Effects Specification

Weighted Statistics					
R-squared	0.746687	Mean dependent var	14338.52		
Adjusted R-squared	0.731335	S.D. dependent var	7910.391		
S.E. of regression	2945.471	Sum squared resid	3.15E+09		
F-statistic	48.63682	Durbin-Watson stat	1.031927		
Prob(F-statistic)	0.000000				

Cuadro A2-13: MEA

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 385

Coefficient	01.1.5		
2000.011	Std. Error	t-Statistic	Prob.
-11432.92	14634.01	-0.781257	0.4351
1911.282	1159.489	1.648383	0.1001
-41.12161	22.54876	-1.823675	0.0690
-21.72971	310.5993	-0.069961	0.9443
10.26926	12.05808	0.851649	0.3949
-3.207717	1.384297	-2.317217	0.0210
0.001195	0.000464	2.577309	0.0103
Effects Spe	ecification		
		S.D.	Rho
		3142.580	0.5354
		2927.225	0.4646
Weighted	Statistics		
0.343507	Mean depender	nt var	2162.979
0.028324	•		2980.701
2937.754	•		3.26E+09
2.865606	•		1.195415
0.009648			
	1911.282 -41.12161 -21.72971 10.26926 -3.207717 0.001195 Effects Spo	1911.282 1159.489 -41.12161 22.54876 -21.72971 310.5993 10.26926 12.05808 -3.207717 1.384297 0.001195 0.000464 Effects Specification Weighted Statistics 0.343507 Mean depender 0.028324 S.D. dependent 2937.754 Sum squared re 2.865606 Durbin-Watson	1911.282

Cuadro A2-14: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 22:03

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 387

Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-14280.27	12176.55	-1.172769	0.2416
TMAX	2142.495	998.2283	2.146297	0.0325
TMAX^2	-42.69373	19.73428	-2.163430	0.0311
PP	-3.202856	1.802042	-1.777348	0.0763
PP^2	0.001236	0.000572	2.160806	0.0313
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			3681.242	0.6110
Idiosyncratic random			2937.132	0.3890
	Weighted	Statistics		
R-squared	0.311915	Mean depende	nt var	1864.053
Adjusted R-squared	0.211778	S.D. dependent	t var	2971.154
S.E. of regression	2938.838	Sum squared resid		3.30E+09
F-statistic	3.148369	Durbin-Watson stat		1.183105
Prob(F-statistic)	0.014470			

Cuadro A2-15: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 385

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10259.12	2077.445	4.938339	0.0000
TMIN	55.99974	308.4526	0.181551	0.8560
TMIN^2	4.319618	11.72440	0.368430	0.7128
PP	-3.655952	1.348393	-2.711340	0.0070
PP^2	0.001256	0.000458	2.742116	0.0064
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			3121.665	0.5308
Idiosyncratic random			2935.021	0.4692
	Weighted	Statistics		
R-squared	0.030633	Mean depender	nt var	2182.425
Adjusted R-squared	0.020429	S.D. dependent var		2982.301
S.E. of regression	2951.242	·		3.31E+09
F-statistic	3.002099	Durbin-Watson	stat	1.170081
Prob(F-statistic)	0.018474			

Cuadro A2-16: MEA

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 389

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-21630.71	14351.83	-1.507174	0.1326
TMAX	2616.622	1137.842	2.299636	0.0220
TMAX^2	-51.19387	22.10089	-2.316371	0.0211
	Effects Sp	ecification		
	•		S.D.	Rho
Cross-section random			3514.541	0.5853
Idiosyncratic random			2958.294	0.4147
	Weighted	Statistics		
R-squared	0.013684	Mean depender	nt var	1955.310
Adjusted R-squared	0.008574	S.D. dependent var		2975.167
S.E. of regression	2961.538	Sum squared resid		3.39E+09
F-statistic	2.677669	Durbin-Watson stat		1.166228
Prob(F-statistic)	0.070000			

Cuadro A2-17: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 386

-				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8055.355	1930.055	4.173639	0.0000
TMIN	218.9883	306.5107	0.714456	0.4754
TMIN^2	-1.364937	11.62914	-0.117372	0.9066
	Effects Sp	ecification		
	·		S.D.	Rho
Cross-section random			3200.547	0.5377
Idiosyncratic random			2967.711	0.4623
	Weighted	Statistics		
R-squared	0.010922	Mean depender	nt var	2148.323
Adjusted R-squared	0.005757	S.D. dependent var		2980.400
S.E. of regression	2970.585	Sum squared resid		3.38E+09
F-statistic	2.114676	•		1.166589
Prob(F-statistic)	0.122079			

Cuadro A2-18: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:15

Sample: 1991 2011 Periods included: 21

Cross-sections included: 19

Total panel (unbalanced) observations: 386

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-18448.91	14103.94	-1.308068	0.1916
TMAX	2312.105	1132.781	2.041087	0.0419
TMAX^2	-48.39273	22.01334	-2.198337	0.0285
TMIN	103.6690	310.3827	0.334004	0.7386
TMIN^2	5.708023	12.03262	0.474379	0.6355
	Effects Spe	ecification		
			S.D.	Rho
Cross-section random			3228.717	0.5438
Idiosyncratic random			2957.325	0.4562
	Weighted	Statistics		
R-squared	0.026296	Mean depender	nt var	2123.175
Adjusted R-squared	0.016073	S.D. dependent	t var	2978.332
S.E. of regression	2953.109	Sum squared re	esid	3.32E+09
F-statistic	2.572304	Durbin-Watson	stat	1.186518
Prob(F-statistic)	0.037514			

ANEXO 3: ESTIMACIONES DE LA PALTA

Cuadro A3-1: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 399 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	1102.348	24.76114	44.51925	0.0000
TMAX^2	-26.82011	0.579486	-46.28255	0.0000
TMIN	78.16091	22.06507	3.542291	0.0004
TMIN^2	0.747145	0.858897	0.869889	0.3849
PP	0.942123	0.154199	6.109798	0.0000
PP^2	-0.000114	4.80E-05	-2.364029	0.0186
D1	-2820.210	232.1371	-12.14890	0.0000
D2	-3771.466	269.6275	-13.98769	0.0000
	Weighted	Statistics		
R-squared	0.716074	Mean depende	nt var	5.112145
Adjusted R-squared	0.710991	S.D. dependent var		6.594250
S.E. of regression	0.900722	Sum squared re	esid	317.2186
Durbin-Watson stat	1.782431			

Cuadro A3-2: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 402 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	1188.706	21.46112	55.38883	0.0000
TMAX^2	-26.70396	0.499473	-53.46428	0.0000
PP	0.593272	0.128800	4.606152	0.0000
PP^2	5.51E-05	4.66E-05	1.180851	0.2384
D1	-3716.719	234.0651	-15.87900	0.0000
D2	-4843.617	234.6543	-20.64150	0.0000
	Weighted	Statistics		
R-squared	0.719504	Mean depender	nt var	6.067771
Adjusted R-squared	0.715962	S.D. dependent	var	9.257997
S.E. of regression	0.913557	Sum squared re	esid	330.4961
Durbin-Watson stat	1.787713			

Cuadro A3-3: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 399 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN	240.7431	22.74279	10.58547	0.0000
TMIN^2	-9.549593	1.016799	-9.391818	0.0000
PP	1.554133	0.185983	8.356324	0.0000
PP^2	-0.000468	7.27E-05	-6.443767	0.0000
D1	7640.137	180.3223	42.36934	0.0000
D2	6420.988	176.0806	36.46619	0.0000
	Weighted	Statistics		
R-squared	0.453201	Mean depender	nt var	4.930867
Adjusted R-squared	0.446244	S.D. dependent	var	5.806303
S.E. of regression	0.901334	Sum squared re	esid	319.2741
Durbin-Watson stat	1.699941			

Cuadro A3-4: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 408 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	1013.595	16.32347	62.09431	0.0000
TMAX^2	-22.37790	0.425479	-52.59462	0.0000
D1	-1995.412	161.8941	-12.32541	0.0000
D2	-2689.763	173.9099	-15.46642	0.0000
	Weighted	Statistics		
R-squared	0.659758	Mean depender	nt var	5.559558
Adjusted R-squared	0.657231	S.D. dependent	var	9.728752
S.E. of regression	0.932925	Sum squared re	esid	351.6212
Durbin-Watson stat	1.857811			

Cuadro A3-5: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 406 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN	137.9673	17.90567	7.705233	0.0000
TMIN^2	-5.967822	0.763877	-7.812539	0.0000
D1	8473.767	126.6247	66.92034	0.0000
D2	7652.544	89.22175	85.76994	0.0000
	Weighted	Statistics		
R-squared	0.423420	Mean depender	nt var	5.020485
Adjusted R-squared	0.419117	S.D. dependent	var	6.056312
S.E. of regression	0.915595	Sum squared resid		337.0020
Durbin-Watson stat	1.758088			

Cuadro A3-6: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 404 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	1115.863	22.84186	48.85167	0.0000
TMAX^2	-26.63894	0.533764	-49.90773	0.0000
TMIN	-84.79797	16.48597	-5.143645	0.0000
TMIN^2	7.547254	0.475481	15.87287	0.0000
D1	-2311.949	188.3909	-12.27208	0.0000
D2	-2893.972	231.6496	-12.49289	0.0000
	Weighted	Statistics		
R-squared	0.707650	Mean depender	nt var	4.595093
Adjusted R-squared	0.703977	S.D. dependent	var	8.154857
S.E. of regression	0.920189	Sum squared re	esid	337.0058
Durbin-Watson stat	1.805977			

Cuadro A3-7: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 23:24

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 399 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-10471.63	8567.589	-1.222238	0.2224
TMAX	1472.920	726.0375	2.028710	0.0432
TMAX^2	-30.54575	14.68056	-2.080693	0.0381
TMIN	287.5182	139.5661	2.060086	0.0401
TMIN^2	-6.257130	7.148497	-0.875307	0.3820
PP	-0.884057	0.580900	-1.521875	0.1289
PP^2	0.000168	0.000254	0.661824	0.5085

Effects Specification

Weighted Statistics				
R-squared	0.624709	Mean dependent var	11440.54	
Adjusted R-squared	0.599555	S.D. dependent var	6771.101	
S.E. of regression	1931.783	Sum squared resid	1.39E+09	
F-statistic	24.83581	Durbin-Watson stat	1.058683	
Prob(F-statistic)	0.000000			

Cuadro A3-8: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 23:24

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 402 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-8553.270	8977.054	-0.952792	0.3413
TMAX	1511.519	741.4702	2.038543	0.0422
TMAX^2	-31.34626	14.97173	-2.093697	0.0370
PP	-1.164760	0.621540	-1.873990	0.0617
PP^2	0.000242	0.000268	0.901215	0.3680

Effects Specification

Weighted Statistics				
R-squared	0.598401	Mean dependent var	11050.37	
Adjusted R-squared	0.573965	S.D. dependent var	5847.721	
S.E. of regression	1928.592	Sum squared resid	1.41E+09	
F-statistic	24.48860	Durbin-Watson stat	0.983789	
Prob(F-statistic)	0.000000			

Cuadro A3-9: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 23:24

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 399 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6540.991	626.4339	10.44163	0.0000
TMIN	328.4774	140.1159	2.344326	0.0196
TMIN^2	-8.358789	7.011917	-1.192083	0.2340
PP	-0.873466	0.593916	-1.470690	0.1422
PP^2	0.000137	0.000256	0.537315	0.5914

Effects Specification

Weighted Statistics				
R-squared	0.615520	Mean dependent var	11294.64	
Adjusted R-squared	0.591939	S.D. dependent var	6497.552	
S.E. of regression	1936.651	Sum squared resid	1.41E+09	
F-statistic	26.10188	Durbin-Watson stat	1.008937	
Prob(F-statistic)	0.000000			

Cuadro A3-10: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 23:24

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 408 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-11038.04	8736.027	-1.263508	0.2072
TMAX	1680.698	732.7616	2.293650	0.0223
TMAX^2	-34.97085	15.00825	-2.330108	0.0203
	Effects Spec	cification		
Cross-section fixed (dur	mmy variables)			

Weighted Statistics				
R-squared	0.571888	Mean dependent var	10801.67	
Adjusted R-squared	0.548597	S.D. dependent var	5504.388	
S.E. of regression	1925.603	Sum squared resid	1.43E+09	
F-statistic	24.55400	Durbin-Watson stat	0.974764	
Prob(F-statistic)	0.000000			

Cuadro A3-11: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 23:23

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 406 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	5953.788	523.8253	11.36598	0.0000		
TMIN	332.3948	141.4158	2.350478	0.0193		
TMIN^2	-8.089583	7.184487	-1.125979	0.2609		
	Effects Specification					

Weighted Statistics				
R-squared	0.604594	Mean dependent var	11219.64	
Adjusted R-squared	0.582970	S.D. dependent var	6595.103	
S.E. of regression	1929.941	Sum squared resid	1.43E+09	
F-statistic	27.95964	Durbin-Watson stat	1.028051	
Prob(F-statistic)	0.000000			

Cuadro A3-12: MEF

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 23:23

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 404 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-12267.73	8411.268	-1.458488	0.1455
TMAX	1553.576	713.8730	2.176264	0.0302
TMAX^2	-31.75993	14.44559	-2.198590	0.0285
TMIN	299.8344	142.5253	2.103728	0.0361
TMIN^2	-6.458019	7.358043	-0.877682	0.3807

Effects Specification

Weighted Statistics				
R-squared	0.620731	Mean dependent var	11432.63	
Adjusted R-squared	0.597775	S.D. dependent var	6880.052	
S.E. of regression	1926.844	Sum squared resid	1.41E+09	
F-statistic	27.04030	Durbin-Watson stat	1.044514	
Prob(F-statistic)	0.000000			

Cuadro A3-13: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 399

Coefficient	Std. Error	t-Statistic	Prob.
538.2219	7701.300	0.069887	0.9443
760.2142	637.8011	1.191930	0.2340
-18.45098	12.77724	-1.444051	0.1495
46.52573	196.9030	0.236288	0.8133
1.884239	7.936612	0.237411	0.8125
-0.491991	0.870705	-0.565049	0.5724
0.000113	0.000306	0.371083	0.7108
Effects Spe	ecification		
•		S.D.	Rho
		1798.297	0.4622
		1939.696	0.5378
Weighted	Statistics		
0.216950	Mean depender	nt var	1970.950
0.211903	S.D. dependent	var	1928.541
1933.348	·		1.47E+09
1.126487	Durbin-Watson	stat	0.762868
0.346012			
	538.2219 760.2142 -18.45098 46.52573 1.884239 -0.491991 0.000113 Effects Special Spec	538.2219 7701.300 760.2142 637.8011 -18.45098 12.77724 46.52573 196.9030 1.884239 7.936612 -0.491991 0.870705 0.000113 0.000306 Effects Specification Weighted Statistics 0.216950 Mean dependent 0.211903 S.D. dependent 1933.348 Sum squared refused 1.126487 Durbin-Watson	538.2219 7701.300 0.069887 760.2142 637.8011 1.191930 -18.45098 12.77724 -1.444051 46.52573 196.9030 0.236288 1.884239 7.936612 0.237411 -0.491991 0.870705 -0.565049 0.000113 0.000306 0.371083 Effects Specification S.D. 1798.297 1939.696 Weighted Statistics 0.216950 Mean dependent var 0.211903 S.D. dependent var 1933.348 Sum squared resid 1.126487 Durbin-Watson stat

Cuadro A3-14: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 402

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-175.1932	7511.903	-0.023322	0.9814
TMAX	825.9421	608.9239	1.356396	0.1757
TMAX^2	-18.48256	12.24465	-1.509440	0.1320
PP	-0.524592	0.850225	-0.617003	0.5376
PP^2	0.000145	0.000300	0.481649	0.6303
	Effects Spe	ecification		
			S.D.	Rho
Cross-section random			1726.598	0.4437
Idiosyncratic random			1933.137	0.5563
	Weighted	Statistics		
R-squared	0.212553	Mean depender	nt var	2032.139
Adjusted R-squared	0.212604	S.D. dependent	var	1926.689
S.E. of regression	1930.575	•		1.48E+09
F-statistic	1.261728	•		0.740475
Prob(F-statistic)	0.284467			

Cuadro A3-15: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 399

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8057.601	1245.875	6.467423	0.0000
TMIN	88.07248	194.9586	0.451750	0.6517
TMIN^2	-2.448839	7.810929	-0.313515	0.7541
PP	-0.493961	0.860405	-0.574103	0.5662
PP^2	5.64E-05	0.000304	0.185514	0.8529
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			1911.316	0.4920
Idiosyncratic random			1942.084	0.5080
	Weighted	Statistics		
R-squared	0.113442	Mean depender	nt var	1862.441
Adjusted R-squared	0.116675	S.D. dependent	t var	1924.682
S.E. of regression	1937.096	·		1.48E+09
F-statistic	0.340253	Durbin-Watson	stat	0.744153
Prob(F-statistic)	0.850753			

Cuadro A3-16: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 23:28

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 408

Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-2368.242	4336.459	-0.546124	0.5853
TMAX	982.9786	355.1560	2.767738	0.0059
TMAX^2	-21.48544	7.391161	-2.906910	0.0039
	Effects Spe	ecification		
			S.D.	Rho
Cross-section random			1682.346	0.4322
Idiosyncratic random			1928.441	0.5678
	Weighted	Statistics		
R-squared	0.112198	Mean depender	nt var	2062.563
Adjusted R-squared	0.107320	S.D. dependent	var	1927.082
S.E. of regression	1924.523	Sum squared resid		1.50E+09
F-statistic	2.500570	Durbin-Watson stat		0.740879
Prob(F-statistic)	0.083304			

Cuadro A3-17: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 23:28

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 406

Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	7670.973	724.0717	10.59422	0.0000
TMIN	117.9602	106.6979	1.105553	0.2696
TMIN^2	-3.850147	5.217869	-0.737877	0.4610
	Effects Sp	ecification		
	·		S.D.	Rho
Cross-section random			1790.127	0.4610
Idiosyncratic random			1935.648	0.5390
	Weighted	Statistics		
R-squared	0.211229	Mean depende	nt var	1958.137
Adjusted R-squared	0.210727	S.D. dependent	t var	1925.932
S.E. of regression	1933.867	Sum squared resid		1.51E+09
F-statistic	0.247993	Durbin-Watson stat		0.749230
Prob(F-statistic)	0.780485			

Cuadro A3-18: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:27

Sample: 1991 2011 Periods included: 21

Cross-sections included: 20

Total panel (unbalanced) observations: 404

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1557.335	7150.499	-0.217794	0.8277
TMAX	903.9584	604.7801	1.494690	0.1358
TMAX^2	-21.17761	12.13975	-1.744484	0.0818
TMIN	57.95022	192.5853	0.300907	0.7636
TMIN^2	1.366050	7.754267	0.176168	0.8603
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			1721.397	0.4423
Idiosyncratic random			1932.821	0.5577
	Weighted	Statistics		
R-squared	0.216323	Mean depender	nt var	2033.029
Adjusted R-squared	0.206462	S.D. dependent	t var	1928.160
S.E. of regression	1927.204	Sum squared resid		1.48E+09
F-statistic	1.655286	Durbin-Watson	stat	0.761159
Prob(F-statistic)	0.159622			

ANEXO 4: ESTIMACIONES DE LA NARANJA CUADRO A4-1: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 19:41

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 439 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	563.7785	194.1109	2.904414	0.0039
TMAX^2	-13.47105	4.239925	-3.177191	0.0016
TMIN	331.7102	50.99536	6.504713	0.0000
TMIN^2	-4.934809	1.961545	-2.515777	0.0122
PP	1.476419	0.358458	4.118809	0.0000
PP^2	-0.000663	0.000111	-5.987665	0.0000
D1	3504.715	2202.971	1.590904	0.1124
D2	-1490.899	2158.323	-0.690767	0.4901
	Weighted	Statistics		
R-squared	0.555289	Mean depende	nt var	13720.05
Adjusted R-squared	0.546442	S.D. dependent var		6223.545
S.E. of regression	3535.350	Sum squared resid		5.39E+09
Durbin-Watson stat	0.530699			

CUADRO A4-2: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 442 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	769.1820	143.5646	5.357742	0.0000
TMAX^2	-12.49524	3.120281	-4.004524	0.0001
PP	0.370889	0.379556	0.977166	0.3290
PP^2	-0.000315	0.000101	-3.112217	0.0020
D1	1263.285	1734.593	0.728289	0.4668
D2	-3718.629	1688.246	-2.202658	0.0281
	Weighted	Statistics		
R-squared	0.632082	Mean depender	nt var	13667.18
Adjusted R-squared	0.625569	S.D. dependent var		6064.128
S.E. of regression	3695.876	Sum squared re	esid	5.96E+09
Durbin-Watson stat	0.469147			

CUADRO A4-3: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 439 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN	276.9992	45.93853	6.029779	0.0000
TMIN^2	-4.215958	1.882398	-2.239674	0.0256
PP	0.997285	0.371458	2.684782	0.0075
PP^2	-0.000614	0.000119	-5.173522	0.0000
D1	9629.992	459.4061	20.96183	0.0000
D2	4698.251	357.4790	13.14273	0.0000
	Weighted	Statistics		
R-squared	0.659659	Mean depender	nt var	14448.59
Adjusted R-squared	0.453419	S.D. dependent var		7575.655
S.E. of regression	3605.354	Sum squared resid		5.63E+09
Durbin-Watson stat	0.528092			

CUADRO A4-4: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 448 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	966.4233	123.7260	7.810997	0.0000
TMAX^2	-17.07769	2.385374	-7.159337	0.0000
D1	-571.6628	1395.609	-0.409615	0.6823
D2	-5685.538	1515.540	-3.751493	0.0002
	Weighted	Statistics		
R-squared	0.611449	Mean depende	nt var	14213.50
Adjusted R-squared	0.407472	S.D. dependent var		7550.570
S.E. of regression	3799.675	Sum squared resid		6.41E+09
Durbin-Watson stat	0.480569			

CUADRO A4-5: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 446 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN TMIN^2	237.7787 -4.164791	43.11259 1.710698	5.515296 -2.434557	0.0000 0.0153
D1	10199.62	227.8156	44.77141	0.0000
D2	5228.512	248.4134	21.04763	0.0000
	Weighted	Statistics		
R-squared	0.536302	Mean depende	nt var	14271.04
Adjusted R-squared	0.532476	S.D. dependent var		8089.327
S.E. of regression	3589.226	Sum squared re	esid	5.69E+09
Durbin-Watson stat	0.458229			

CUADRO A4-6: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 444 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	386.6627	163.7913	2.360704	0.0187
TMAX^2	-10.35650	3.570310	-2.900729	0.0039
TMIN	312.2133	58.86574	5.303820	0.0000
TMIN^2	-4.590788	2.385369	-1.924561	0.0549
D1	6455.425	1660.648	3.887293	0.0001
D2	1477.974	1690.029	0.874526	0.3823
	Weighted	Statistics		
R-squared	0.526873	Mean depender	nt var	13711.87
Adjusted R-squared	0.520331	S.D. dependent var		6553.945
S.E. of regression	3591.637	Sum squared resid		5.65E+09
Durbin-Watson stat	0.457548			

CUADRO A4-7: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 439

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TMAX	48906.42 -2920.724	14126.16 1103.579	3.462118 -2.646593	0.0006 0.0084
TMAX^2	51.06898	21.64620	2.359258	0.0188
TMIN	50.17618	354.7458	0.141443	0.8876
TMIN^2	4.217922	13.40186	0.314726	0.7531
PP	-1.615447	1.481920	-1.090104	0.2763
PP^2	0.000170	0.000488	0.347488	0.7284

Effects Specification

Cross-section fixed (dummy variables)

R-squared	0.659481	Mean dependent var	9602.693
Adjusted R-squared	0.637111	S.D. dependent var	4823.331
S.E. of regression	2905.587	Akaike info criterion	18.84832
Sum squared resid	3.47E+09	Schwarz criterion	19.10883
Log likelihood	-4109.205	Hannan-Quinn criter.	18.95110
F-statistic	29.48076	Durbin-Watson stat	0.553524
Prob(F-statistic)	0.000000		

CUADRO A4-8: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

	<u> </u>			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	48867.34	13883.28	3.519870	0.0005
TMAX	-2845.275	1098.440	-2.590287	0.0099
TMAX^2	50.42121	21.52953	2.341956	0.0197
PP	-1.299867	1.453108	-0.894542	0.3715
PP^2	3.90E-05	0.000475	0.082058	0.9346
	Effects Spec	cification		
Cross-section fixed (du	mmy variables)			

R-squared	0.657642	Mean dependent var	9606.861
Adjusted R-squared	0.637067	S.D. dependent var	4815.923
S.E. of regression	2901.299	Akaike info criterion	18.84073
Sum squared resid	3.50E+09	Schwarz criterion	19.08139
Log likelihood	-4137.801	Hannan-Quinn criter.	18.93565
F-statistic	31.96407	Durbin-Watson stat	0.562640
Prob(F-statistic)	0.000000		

CUADRO A4-9: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 439

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8837.983	2386.523	3.703289	0.0002
TMIN	134.2991	355.8333	0.377421	0.7061
TMIN^2	-2.104307	13.16836	-0.159800	0.8731
PP	-0.510349	1.456976	-0.350280	0.7263
PP^2	-0.000120	0.000485	-0.247143	0.8049

Effects Specification

Cross-section fixed (dummy variables)

R-squared	0.650707	Mean dependent var	9602.693
Adjusted R-squared	0.629563	S.D. dependent var	4823.331
S.E. of regression	2935.649	Akaike info criterion	18.86464
Sum squared resid	3.56E+09	Schwarz criterion	19.10655
Log likelihood	-4114.789	Hannan-Quinn criter.	18.96008
F-statistic	30.77552	Durbin-Watson stat	0.511783
Prob(F-statistic)	0.000000		

CUADRO A4-10: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	43283.80	13318.38	3.249929	0.0012
TMAX	-2502.335	1067.554	-2.343989	0.0195
TMAX^2	44.42806	20.99252	2.116376	0.0349
	Effects Sp	ecification		
Cross-section fixed (dumi	my variables)			
R-squared	0.653069	Mean depender	nt var	9584.401
Adjusted R-squared	0.634249	S.D. dependent	var	4791.087
S.E. of regression	2897.522	Akaike info crite	rion	18.83318
Sum squared resid	3.56E+09	Schwarz criterio	on	19.05308
Log likelihood	-4194.633	Hannan-Quinn	criter.	18.91987
F-statistic	34.70190	Durbin-Watson	stat	0.585232
Prob(F-statistic)	0.000000			

CUADRO A4-11: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8197.916	2285.964	3.586197	0.0004
TMIN	133.2354	351.7273	0.378803	0.7050
TMIN^2	-1.487457	12.96035	-0.114770	0.9087
	Effects Spe	cification		
Cross-section fixed (dumm	ny variables)			
Cross-section fixed (dumm	ny variables) 0.648905	Mean depender	nt var	9568.441
,	<u> </u>	Mean depender S.D. dependent		9568.441 4797.575
R-squared	0.648905	•	var	
R-squared Adjusted R-squared	0.648905 0.629770	S.D. dependent	var rion	4797.575
R-squared Adjusted R-squared S.E. of regression	0.648905 0.629770 2919.158	S.D. dependent Akaike info crite	var rion on	4797.575 18.84829
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.648905 0.629770 2919.158 3.60E+09	S.D. dependent Akaike info crite Schwarz criterio	var rion on criter.	4797.575 18.84829 19.06893

CUADRO A4-12: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	42491.45	13538.76	3.138503	0.0018
TMAX	-2532.704	1073.191	-2.359976	0.0187
TMAX^2	44.30777	21.15298	2.094635	0.0368
TMIN	80.69807	351.9408	0.229294	0.8188
TMIN^2	2.960893	13.21347	0.224081	0.8228
	Effects Spec	cification		
Cross-section fixed (du	mmy variables)			

Cross-section	fivod	(dummy	variables	ı
Cross-section	IIxea	(duminiv	variables	ı

		<u> </u>
0.655250	Mean dependent var	9583.389
0.634631	S.D. dependent var	4803.167
2903.311	Akaike info criterion	18.84187
3.52E+09	Schwarz criterion	19.08171
-4156.894	Hannan-Quinn criter.	18.93645
31.77891	Durbin-Watson stat	0.574877
0.000000		
	0.634631 2903.311 3.52E+09 -4156.894 31.77891	 0.634631 S.D. dependent var 2903.311 Akaike info criterion 3.52E+09 Schwarz criterion -4156.894 Hannan-Quinn criter. 31.77891 Durbin-Watson stat

CUADRO A4-13: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 439

Coefficient	Std. Error	t-Statistic	Prob.
40767.08	12549.15	3.248594	0.0013
-2410.744	1009.406	-2.388279	0.0174
41.84556	19.96095	2.096372	0.0366
228.4317	314.4815	0.726376	0.4680
-0.114351	12.19741	-0.009375	0.9925
-1.624222	1.378549	-1.178212	0.2394
0.000153	0.000464	0.329932	0.7416
Effects Sp	ecification		
		S.D.	Rho
		4345.371	0.6910
		2905.587	0.3090
Weighted	Statistics		
0.229550	Mean depende	nt var	1413.638
0.216071	S.D. dependent	t var	2911.413
2890.624	· ·		3.61E+09
2.192376	Durbin-Watson	stat	0.528817
0.042756			
	40767.08 -2410.744 41.84556 228.4317 -0.114351 -1.624222 0.000153 Effects Spoons Weighted 0.229550 0.216071 2890.624 2.192376	40767.08 12549.15 -2410.744 1009.406 41.84556 19.96095 228.4317 314.4815 -0.114351 12.19741 -1.624222 1.378549 0.000153 0.000464 Effects Specification Weighted Statistics 0.229550 Mean dependent 0.216071 S.D. dependent 2890.624 Sum squared re 2.192376 Durbin-Watson	40767.08 12549.15 3.248594 -2410.744 1009.406 -2.388279 41.84556 19.96095 2.096372 228.4317 314.4815 0.726376 -0.114351 12.19741 -0.009375 -1.624222 1.378549 -1.178212 0.000153 0.000464 0.329932 Effects Specification S.D. 4345.371 2905.587 Weighted Statistics 0.229550 Mean dependent var 0.216071 S.D. dependent var 2890.624 Sum squared resid 2.192376 Durbin-Watson stat

CUADRO A4-14: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 442

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	38887.36	12432.79	3.127806	0.0019		
TMAX	-2161.018	990.0441	-2.182750	0.0296		
TMAX^2	39.42859	19.58168	2.013545	0.0447		
PP	-1.400809	1.351191	-1.036721	0.3004		
PP^2	9.04E-05	0.000453	0.199367	0.8421		
	Effects Specification					
			S.D.	Rho		
Cross-section random			4238.138	0.6809		
Idiosyncratic random			2901.299	0.3191		
	Weighted	Statistics				
R-squared	0.221186	Mean depender	nt var	1442.809		
Adjusted R-squared	0.212227	S.D. dependent	2913.719			
S.E. of regression	2898.731	Sum squared resid		3.67E+09		
F-statistic	2.364685	Durbin-Watson	0.523448			
Prob(F-statistic)	0.052290					

CUADRO A4-15: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 439

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	8705.489	2152.736	4.043918	0.0001	
TMIN	139.1758	310.9701	0.447554	0.6547	
TMIN^2	-1.855220	11.85663	-0.156471	0.8757	
PP	-0.598214	1.339783	-0.446501	0.6555	
PP^2	-0.000128	0.000458	-0.278654	0.7806	
Effects Specification					
			S.D.	Rho	
Cross-section random			4149.932	0.6665	
Idiosyncratic random			2935.649	0.3335	
	Weighted	Statistics			
R-squared	0.207782	Mean depender	nt var	1493.589	
Adjusted R-squared	0.201363	S.D. dependent var		2917.592	
S.E. of regression	2922.608	Sum squared resid		3.71E+09	
F-statistic	0.850981	Durbin-Watson	0.490983		
Prob(F-statistic)	0.493488				

CUADRO A4-16: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 448

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	31762.42	11654.47	2.725342	0.0067
TMAX	-1658.009	942.1654	-1.759786	0.0791
TMAX^2	29.59570	18.67987	1.584364	0.1138
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			4058.518	0.6624
Idiosyncratic random			2897.522	0.3376
	Weighted	Statistics		
R-squared	0.210973	Mean depender	nt var	1491.947
Adjusted R-squared	0.206528	S.D. dependent var		2907.989
S.E. of regression	2900.910	Sum squared resid		3.74E+09
F-statistic	2.468562	Durbin-Watson stat		0.544278
Prob(F-statistic)	0.085866			

CUADRO A4-17: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 446

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8110.629	1974.334	4.108033	0.0000
TMIN	161.3376	303.2177	0.532085	0.5949
TMIN^2	-3.158159	11.56267	-0.273134	0.7849
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			4053.057	0.6584
Idiosyncratic random			2919.158	0.3416
	Weighted	Statistics		
R-squared	0.201814	Mean depende	nt var	1505.540
Adjusted R-squared	0.202692	S.D. dependent var		2905.870
S.E. of regression	2911.880	Sum squared resid		3.76E+09
F-statistic	0.402622	Durbin-Watson stat		0.516467
Prob(F-statistic)	0.668809			

CUADRO A4-18: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 19:38

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 444

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	33015.50	11755.65	2.808479	0.0052		
TMAX	-1882.530	966.1242	-1.948538	0.0520		
TMAX^2	31.77415	19.18869	1.655879	0.0985		
TMIN	272.4671	308.5188	0.883146	0.3776		
TMIN^2	-2.556803	11.93663	-0.214198	0.8305		
Effects Specification						
			S.D.	Rho		
Cross-section random			4128.955	0.6692		
Idiosyncratic random			2903.311	0.3308		
	Weighted	Statistics				
R-squared	0.219219	Mean depende	nt var	1475.205		
Adjusted R-squared	0.210282	S.D. dependent	2908.938			
S.E. of regression	2896.441	Sum squared resid		3.68E+09		
F-statistic	2.150577	Durbin-Watson	0.548964			
Prob(F-statistic)	0.073730					

ANEXO 5: ESTIMACIONES DEL LIMON CUADRO A5-1: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 441 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	-946.7417	159.6013	-5.931918	0.0000
TMAX^2	16.48016	3.454746	4.770297	0.0000
TMIN	363.1516	60.60095	5.992507	0.0000
TMIN^2	-7.703922	2.226548	-3.460030	0.0006
PP	0.924074	0.227563	4.060748	0.0001
PP^2	-0.000531	5.63E-05	-9.441399	0.0000
D1	22621.27	1496.138	15.11978	0.0000
D2	17076.62	1740.402	9.811884	0.0000
	Weighted	Statistics		
R-squared	0.771612	Mean depender	nt var	10779.43
Adjusted R-squared	0.259837	S.D. dependent var		4561.215
S.E. of regression	2948.759	Sum squared resid		3.77E+09
Durbin-Watson stat	0.528728			

CUADRO A5-2: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 443 Linear estimation after one-step weighting matrix

-				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	-737.5226	168.4247	-4.378945	0.0000
TMAX^2 PP	16.35156 -0.073664	3.768756 0.342262	4.338715 -0.215227	0.0000 0.8297
PP^2 D1	-0.000234 20908.80	8.67E-05 1691.064	-2.695458 12.36429	0.0073 0.0000
D2	15330.90	1931.849	7.935867	0.0000
	Weighted	Statistics		
R-squared	0.702088	Mean depende	nt var	10692.02
Adjusted R-squared	0.192959	S.D. dependent var		4397.247
S.E. of regression Durbin-Watson stat	3035.821 0.443825	Sum squared re	esid	4.03E+09

CUADRO A5-3: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 441 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN	237.3800	47.30369	5.018214	0.0000
TMIN^2	-4.459435	2.200010	-2.027006	0.0433
PP	1.434408	0.247204	5.802533	0.0000
PP^2	-0.000695	7.36E-05	-9.443921	0.0000
D1	10101.38	498.9518	20.24520	0.0000
D2	4795.490	273.0650	17.56172	0.0000
	Weighted	Statistics		
R-squared	0.796250	Mean depender	nt var	11260.13
Adjusted R-squared	0.288161	S.D. dependent	var	4760.666
S.E. of regression	3081.387	Sum squared re	esid	4.13E+09
Durbin-Watson stat	0.516131			

CUADRO A5-4: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 448 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
TMAX TMAX^2	-137.3560 3.590430	62.60310 1.300023	-2.194077 2.761820	0.0287 0.0060		
D1 D2	14160.68 8255.001	887.1644 722.4902	15.96173 11.42576	0.0000 0.0000		
Weighted Statistics						
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.789496 0.184020 3095.633 0.449734	Mean dependent var S.D. dependent var Sum squared resid		10600.93 4164.735 4.25E+09		

CUADRO A5-5: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 447 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN TMIN^2	218.2746 -5.626394	38.32300 1.547046	5.695655 -3.636864	0.0000
D1	11023.92	477.3274	23.09510	0.0000
D2	5540.864	203.9719	27.16484	0.0000
	Weighted	Statistics		
R-squared	0.750835	Mean depender	nt var	10837.57
Adjusted R-squared	0.245761	S.D. dependent	4217.190	
S.E. of regression Durbin-Watson stat	3095.480 0.462178	Sum squared re	esid	4.24E+09

CUADRO A5-6: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 445 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	-531.7204	131.9634	-4.029302	0.0001
TMAX^2	7.770593	2.822021	2.753556	0.0061
TMIN	337.8263	66.58644	5.073500	0.0000
TMIN^2	-7.474591	2.741998	-2.725965	0.0067
D1	18345.85	1395.841	13.14322	0.0000
D2	12716.66	1327.346	9.580509	0.0000
	Weighted	Statistics		
R-squared	0.750388	Mean depender	nt var	10488.38
Adjusted R-squared	0.241851	S.D. dependent var		4006.581
S.E. of regression	2996.955	Sum squared re	esid	3.94E+09
Durbin-Watson stat	0.500249			

CUADRO A5-7: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 441

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	29593.07	11406.90	2.594314	0.0098
TMAX	-1568.153	892.4790	-1.757076	0.0796
TMAX^2	29.73857	17.49011	1.700308	0.0898
TMIN	-188.5560	286.9022	-0.657214	0.5114
TMIN^2	9.974897	10.81113	0.922651	0.3567
PP	-2.666820	1.191297	-2.238585	0.0257
PP^2	0.000674	0.000393	1.716633	0.0868

Effects Specification

Cross-section fixed (dummy variables)

R-squared	0.649179	Mean dependent var	8131.343
Adjusted R-squared	0.626244	S.D. dependent var	3819.672
S.E. of regression	2335.179	Akaike info criterion	18.41095
Sum squared resid	2.25E+09	Schwarz criterion	18.67057
Log likelihood	-4031.615	Hannan-Quinn criter.	18.51336
F-statistic	28.30512	Durbin-Watson stat	0.764075
Prob(F-statistic)	0.000000		

CUADRO A5-8: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

. `	<u> </u>			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	29114.09	11217.71	2.595368	0.0098
TMAX	-1606.079	886.9301	-1.810829	0.0709
TMAX^2	31.31259	17.37106	1.802573	0.0722
PP	-2.433418	1.166628	-2.085856	0.0376
PP^2	0.000582	0.000381	1.525055	0.1280
	Effects Spec	cification		
Cross-section fixed (du	mmy variables)			

R-squared	0.647893	Mean dependent var	8128.018
Adjusted R-squared	0.626783	S.D. dependent var	3811.348
S.E. of regression	2328.408	Akaike info criterion	18.40066
Sum squared resid	2.26E+09	Schwarz criterion	18.64091
Log likelihood	-4049.745	Hannan-Quinn criter.	18.49541
F-statistic	30.69196	Durbin-Watson stat	0.777602
Prob(F-statistic)	0.000000		

CUADRO A5-9: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	9570.605	1910.744	5.008837	0.0000
TMIN	-183.4226	285.3474	-0.642805	0.5207
TMIN^2	9.211297	10.53782	0.874118	0.3826
PP	-2.204854	1.160482	-1.899947	0.0581
PP^2	0.000554	0.000386	1.433976	0.1523
	Effects Spec	cification		
Cross-section fixed (dum	nmy variables)			

ables)

R-squared	0.646484	Mean dependent var	8131.343
Adjusted R-squared	0.625188	S.D. dependent var	3819.672
S.E. of regression	2338.477	Akaike info criterion	18.40953
Sum squared resid	2.27E+09	Schwarz criterion	18.65061
Log likelihood	-4033.302	Hannan-Quinn criter.	18.50463
F-statistic	30.35682	Durbin-Watson stat	0.765640
Prob(F-statistic)	0.000000		

CUADRO A5-10: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	23203.15	10879.98	2.132646	0.0335
TMAX	-1245.427	871.5846	-1.428923	0.1538
TMAX^2	24.76782	17.12696	1.446130	0.1489
	Effects Sp	ecification		
Cross-section fixed (dumr	ny variables)			
R-squared	0.635153	Mean depender	nt var	8116.864
Adjusted R-squared	0.615362	S.D. dependent	var	3793.146
S.E. of regression	2352.480	Akaike info crite	18.41641	
Sum squared resid	2.35E+09	Schwarz criterio	18.63631	
Log likelihood	-4101.276	Hannan-Quinn criter.		18.50310
F-statistic	32.09264	Durbin-Watson stat (0.768884
Prob(F-statistic)	0.000000			

CUADRO A5-11: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8344.794	1857.501	4.492484	0.0000
TMIN	-136.4408	286.0020	-0.477062	0.6336
TMIN^2	7.377945	10.51348	0.701760	0.4832
	Effects Sp	ecification		
Cross-section fixed (dum	my variables)			
R-squared	0.634585	Mean depender	nt var	8118.026
Adjusted R-squared	0.614716	S.D. dependent	var	3797.243
S.E. of regression	2356.995	Akaike info crite	18.42036	
Sum squared resid	2.35E+09	9 Schwarz criterion 18.64		
Log likelihood	-4092.950	Hannan-Quinn criter. 18		18.50720
F-statistic	31.93865	Durbin-Watson stat		0.756550
Prob(F-statistic)	0.000000			

CUADRO A5-12: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	22963.06	11058.85	2.076441	0.0385
TMAX	-1186.228	877.9844	-1.351081	0.1774
TMAX^2	23.10466	17.29043	1.336269	0.1822
TMIN	-125.8453	288.2377	-0.436603	0.6626
TMIN^2	7.014137	10.79170	0.649956	0.5161
	Effects Spec	cification		
Cross-section fixed (du	mmy variables)			

R-squared	0.636634	Mean dependent var	8120.372
Adjusted R-squared	0.614953	S.D. dependent var	3805.618
S.E. of regression	2361.467	Akaike info criterion	18.42860
Sum squared resid	2.34E+09	Schwarz criterion	18.66804
Log likelihood	-4074.365	Hannan-Quinn criter.	18.52302
F-statistic	29.36427	Durbin-Watson stat	0.756624
Prob(F-statistic)	0.000000		

CUADRO A5-13: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 441

Coefficient	Std. Error	t-Statistic	Prob.
23884.72	9835.442	2.428434	0.0156
-1280.886	797.5815	-1.605962	0.1090
25.28028	15.78221	1.601822	0.1099
20.43012	247.3515	0.082596	0.9342
4.341378	9.593147	0.452550	0.6511
-2.685719	1.084157	-2.477242	0.0136
0.000628	0.000367	1.708442	0.0883
Effects Spe	ecification		
		S.D.	Rho
		2992.709	0.6216
		2335.179	0.3784
Weighted	Statistics		
0.324803	Mean depende	nt var	1393.744
0.311321	•		2342.130
2329.078	•		2.35E+09
1.839741	Durbin-Watson stat		0.723433
0.089920			
	23884.72 -1280.886 25.28028 20.43012 4.341378 -2.685719 0.000628 Effects Spe Weighted 0.324803 0.311321 2329.078 1.839741	23884.72 9835.442 -1280.886 797.5815 25.28028 15.78221 20.43012 247.3515 4.341378 9.593147 -2.685719 1.084157 0.000628 0.000367 Effects Specification Weighted Statistics 0.324803 Mean dependent 0.311321 S.D. dependent 2329.078 Sum squared reference 1.839741 Durbin-Watson	23884.72 9835.442 2.428434 -1280.886 797.5815 -1.605962 25.28028 15.78221 1.601822 20.43012 247.3515 0.082596 4.341378 9.593147 0.452550 -2.685719 1.084157 -2.477242 0.000628 0.000367 1.708442 Effects Specification S.D. 2992.709 2335.179 Weighted Statistics 0.324803 Mean dependent var 0.311321 S.D. dependent var 2329.078 Sum squared resid 1.839741 Durbin-Watson stat

CUADRO A5-14: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 443

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	23282.18	9696.564	2.401076	0.0168
TMAX	-1238.594	773.9102	-1.600436	0.1102
TMAX^2	26.25629	15.33293	1.712412	0.0875
PP	-2.546374	1.060475	-2.401163	0.0168
PP^2	0.000592	0.000359	1.651946	0.0993
Effects Specification				
			S.D.	Rho
Cross-section random			2903.647	0.6086
Idiosyncratic random			2328.408	0.3914
	Weighted	Statistics		
R-squared	0.320784	Mean depender	nt var	1427.301
Adjusted R-squared	0.311841	S.D. dependent	t var	2341.631
S.E. of regression	2328.307	Sum squared resid		2.37E+09
F-statistic	2.324143	Durbin-Watson	0.726108	
Prob(F-statistic)	0.055824			

CUADRO A5-15: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 441

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8461.625	1645.745	5.141518	0.0000
TMIN	-51.05896	242.6418	-0.210429	0.8334
TMIN^2	6.826510	9.275708	0.735956	0.4622
PP	-2.305914	1.049851	-2.196421	0.0286
PP^2	0.000543	0.000361	1.505771	0.1328
Effects Specification				
			S.D.	Rho
Cross-section random			2956.237	0.6151
Idiosyncratic random			2338.477	0.3849
	Weighted	Statistics		
R-squared	0.319204	Mean depender	nt var	1412.354
Adjusted R-squared	0.310206	S.D. dependent	t var	2343.688
S.E. of regression	2331.949	Sum squared resid		2.37E+09
F-statistic	2.134237	Durbin-Watson stat		0.730256
Prob(F-statistic)	0.075686			

CUADRO A5-16: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 448

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	15701.47	9311.948	1.686163	0.0925
TMAX	-718.7285	753.6743	-0.953633	0.3408
TMAX^2	16.01984	14.94901	1.071632	0.2845
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			3030.142	0.6239
Idiosyncratic random			2352.480	0.3761
	Weighted	Statistics		
R-squared	0.304539	Mean depende	nt var	1374.563
Adjusted R-squared	0.300065	S.D. dependent var		2351.958
S.E. of regression	2352.250	Sum squared resid		2.46E+09
F-statistic	1.014623	Durbin-Watson stat		0.723727
Prob(F-statistic)	0.363376			

CUADRO A5-17: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 447

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6881.219	1515.900	4.539362	0.0000
TMIN	52.52817	239.1807	0.219617	0.8263
TMIN^2	2.779517	9.145997	0.303905	0.7613
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			2930.704	0.6072
Idiosyncratic random			2356.995	0.3928
	Weighted	Statistics		
R-squared	0.306267	Mean depender	ıt var	1424.534
Adjusted R-squared	0.301790	S.D. dependent	var	2356.927
S.E. of regression	2354.682	Sum squared resid		2.46E+09
F-statistic	1.399979	Durbin-Watson stat		0.724346
Prob(F-statistic)	0.247688			

CUADRO A5-18: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/06/13 Time: 20:42

Sample: 1991 2011 Periods included: 21

Cross-sections included: 22

Total panel (unbalanced) observations: 445

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	15989.09	9441.550	1.693481	0.0911
TMAX	-778.7794	779.9611	-0.998485	0.3186
TMAX^2	15.79643	15.48420	1.020165	0.3082
TMIN	92.04584	248.8468	0.369890	0.7116
TMIN^2	0.917106	9.619120	0.095342	0.9241
	Effects Spe	ecification		
			S.D.	Rho
Cross-section random			3097.301	0.6324
Idiosyncratic random			2361.467	0.3676
	Weighted	Statistics		
R-squared	0.308105	Mean depender	nt var	1355.254
Adjusted R-squared	0.300912	S.D. dependent	t var	2354.633
S.E. of regression	2355.950	Sum squared resid		2.44E+09
F-statistic	0.898862	Durbin-Watson	stat	0.724130
Prob(F-statistic)	0.464481			

ANEXO 6: ESTIMACIONES DEL CACAO CUADRO A6-1: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/07/13 Time: 19:48

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	70.75858	2.332700	30.33333	0.0000
TMAX^2	-1.609770	0.076763	-20.97057	0.0000
TMIN	-31.12365	3.905171	-7.969857	0.0000
TMIN^2	1.668305	0.145653	11.45401	0.0000
PP	0.133697	0.021175	6.313813	0.0000
PP^2	-5.10E-05	7.15E-06	-7.129254	0.0000
D1	-155.8821	11.16448	-13.96233	0.0000
	Weighted	Statistics		
R-squared	0.717233	Mean depende	nt var	6.468307
Adjusted R-squared	0.711041	S.D. dependent var		8.577614
S.E. of regression	0.943235	Sum squared re	esid	243.7757
Durbin-Watson stat	1.451306			

CUADRO A6-2: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/07/13 Time: 19:47

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 283 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	55.97274	1.302254	42.98143	0.0000
TMAX^2	-1.063117	0.044692	-23.78783	0.0000
PP	0.129830	0.017025	7.625947	0.0000
PP^2	-4.71E-05	6.11E-06	-7.710027	0.0000
D1	-215.8211	9.626969	-22.41839	0.0000
	Weighted	Statistics		
R-squared	0.657292	Mean depender	nt var	7.410219
Adjusted R-squared	0.652361	S.D. dependent	t var	7.220782
S.E. of regression	0.945956	Sum squared re	esid	248.7633
Durbin-Watson stat	1.455160			

CUADRO A6-3: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/07/13 Time: 19:51

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN	78.98107	1.935866	40.79882	0.0000
TMIN^2	-2.417127	0.077565	-31.16277	0.0000
PP	0.444275	0.019814	22.42227	0.0000
PP^2	-0.000151	8.43E-06	-17.88196	0.0000
D1	-142.5231	13.33398	-10.68871	0.0000
	Weighted	Statistics		
R-squared	0.682559	Mean depender	nt var	6.072965
Adjusted R-squared	0.677958	S.D. dependent	var	8.297288
S.E. of regression Durbin-Watson stat	0.938943 1.406799	Sum squared re	esid	243.3253

CUADRO A6-4: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/07/13 Time: 19:52

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 284 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX TMAX^2 D1	60.98950 -1.185173 -198.1272	0.984603 0.040992 10.00791	61.94325 -28.91251 -19.79706	0.0000 0.0000 0.0000
	Weighted	Statistics		
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.569731 0.566669 0.951230 1.483111	Mean depende S.D. dependen Sum squared re	t var	6.661439 8.461239 254.2594

CUADRO A6-5: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section SUR)

Date: 11/07/13 Time: 19:53

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMIN TMIN^2 D1	104.0503 -3.298761 -43.38023	1.828316 0.073994 13.59523	56.91044 -44.58142 -3.190841	0.0000 0.0000 0.0016
	Weighted	Statistics		
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.599285 0.596402 0.941677 1.431348	Mean depende S.D. dependen Sum squared re	t var	6.096686 7.116660 246.5182

CUADRO A6-6: MCO Agrupado

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/07/13 Time: 19:54

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TMAX	79.28694	3.062868	25.88650	0.0000
TMAX^2	-1.870576	0.119761	-15.61927	0.0000
TMIN	-36.77744	8.129822	-4.523770	0.0000
TMIN^2	1.946596	0.260097	7.484114	0.0000
D1	-137.0526	18.95726	-7.229557	0.0000
	Weighted	Statistics		
R-squared	0.221714	Mean depender	nt var	833.1658
Adjusted R-squared	0.210434	S.D. dependent var		314.1808
S.E. of regression	230.8694	Sum squared resid		14710991
Durbin-Watson stat	0.544996			

CUADRO A6-7: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/07/13 Time: 19:59

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1628.375	644.3250	2.527256	0.0121
TMAX	-74.19689	51.05145	-1.453375	0.1473
TMAX^2	1.283672	0.982882	1.306029	0.1927
TMIN	7.089855	13.99220	0.506700	0.6128
TMIN^2	-0.116424	0.784393	-0.148425	0.8821
PP	0.034150	0.035856	0.952400	0.3418
PP^2	-2.61E-05	1.59E-05	-1.646877	0.1008

Effects Specification

Weighted Statistics					
R-squared	0.630662	Mean dependent var	1245.419		
Adjusted R-squared	0.603776	S.D. dependent var	1427.229		
S.E. of regression	204.9580	Sum squared resid	10964028		
F-statistic	23.45632	Durbin-Watson stat	0.869528		
Prob(F-statistic)	0.000000				

CUADRO A6-8: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/07/13 Time: 20:01

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 283 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1799.232	655.3743	2.745349	0.0065
TMAX	-79.35809	52.86362	-1.501185	0.1345
TMAX^2	1.352109	1.036858	1.304045	0.1933
PP	0.010398	0.041096	0.253011	0.8005
PP^2	-2.20E-05	1.67E-05	-1.320505	0.1878

Effects Specification

Weighted Statistics					
R-squared	0.619894	Mean dependent var	1207.545		
Adjusted R-squared	0.595510	S.D. dependent var	1294.061		
S.E. of regression	204.9968	Sum squared resid	11136280		
F-statistic	25.42202	Durbin-Watson stat	0.850558		
Prob(F-statistic)	0.000000				

CUADRO A6-9: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/07/13 Time: 20:01

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	589.3626	46.46885	12.68296	0.0000
TMIN	13.66699	13.61924	1.003506	0.3165
TMIN^2	-0.477086	0.755925	-0.631129	0.5285
PP	0.054096	0.040374	1.339867	0.1814
PP^2	-3.13E-05	1.66E-05	-1.881655	0.0610

Effects Specification

Weighted Statistics					
R-squared	0.625463	Mean dependent var	1238.390		
Adjusted R-squared	0.601253	S.D. dependent var	1414.633		
S.E. of regression	205.3023	Sum squared resid	11085194		
F-statistic	25.83529	Durbin-Watson stat	0.862931		
Prob(F-statistic)	0.000000				

CUADRO A6-10: MEF

Dependent Variable: REND

Method: Panel EGLS (Cross-section weights)

Date: 11/07/13 Time: 20:02

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 284 Linear estimation after one-step weighting matrix

White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1691.132	637.3219	2.653497	0.0084
TMAX	-75.46764	52.16127	-1.446814	0.1491
TMAX^2	1.330258	1.038709	1.280684	0.2014
Effects Specification				

Weighted Statistics					
R-squared	0.620424	Mean dependent var	1154.357		
Adjusted R-squared	0.599180	S.D. dependent var	983.3620		
S.E. of regression	210.5119	Sum squared resid	11876494		
F-statistic	29.20345	Durbin-Watson stat	0.790804		
Prob(F-statistic)	0.000000				

CUADRO A6-11: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	625.3918	190.2349	3.287472	0.0011		
TMIN	16.90535	28.42583	0.594718	0.5525		
TMIN^2	-0.803402	1.061258	-0.757028	0.4497		
Effects Specification						
Cross-section fixed (dumr	ny variables)					
R-squared	0.317769	Mean depender	nt var	666.7731		
Adjusted R-squared	0.279153	S.D. dependent var		249.6081		
S.E. of regression	211.9241	Akaike info criterion 1		13.60559		
Sum squared resid	11901631	Schwarz criterion 13.812		13.81275		
Log likelihood	-1895.585	Hannan-Quinn criter.		13.68867		
F-statistic	8.228782	Durbin-Watson stat 0.7		0.771390		
Prob(F-statistic)	0.000000					

CUADRO A6-12: MEF

Dependent Variable: REND Method: Panel Least Squares Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2006.032	1233.342	1.626501	0.1050
TMAX	-102.0580	95.06519	-1.073558	0.2840
TMAX^2	1.800631	1.815025	0.992069	0.3221
TMIN	15.46348	28.69626	0.538867	0.5904
TMIN^2	-0.706140	1.085109	-0.650755	0.5158

Effects Specification

0.321375	Mean dependent var	666.7731
0.277509	S.D. dependent var	249.6081
212.1655	Akaike info criterion	13.61452
11838734	Schwarz criterion	13.84759
-1894.841	Hannan-Quinn criter.	13.70799
7.326368	Durbin-Watson stat	0.784521
0.000000		
	0.277509 212.1655 11838734 -1894.841 7.326368	 0.277509 S.D. dependent var 212.1655 Akaike info criterion 11838734 Schwarz criterion -1894.841 Hannan-Quinn criter. 7.326368 Durbin-Watson stat

CUADRO A6-13: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281

Coefficient	Std. Error	t-Statistic	Prob.
2330.868	807.5139	2.886474	0.0042
-134.2776	67.55606	-1.987647	0.0478
2.534510	1.341863	1.888800	0.0600
4.527867	22.00817	0.205736	0.8372
0.315103	0.846492	0.372245	0.7100
-0.128593	0.095958	-1.340102	0.1813
2.14E-05	3.20E-05	0.670234	0.5033
Effects Spe	ecification		
		S.D.	Rho
		125.0425	0.2595
		211.2302	0.7405
Weighted	Statistics		
0.232501	Mean depende	nt var	235.3079
0.211315	•		212.5964
210.9103	•		12188385
1.534069	Durbin-Watson stat		0.780504
0.166999			
	2330.868 -134.2776 2.534510 4.527867 0.315103 -0.128593 2.14E-05 Effects Special Spec	2330.868 807.5139 -134.2776 67.55606 2.534510 1.341863 4.527867 22.00817 0.315103 0.846492 -0.128593 0.095958 2.14E-05 3.20E-05 Effects Specification Weighted Statistics 0.232501 Mean dependent 0.211315 S.D. dependent 210.9103 Sum squared results 1.534069 Durbin-Watson	2330.868 807.5139 2.886474 -134.2776 67.55606 -1.987647 2.534510 1.341863 1.888800 4.527867 22.00817 0.205736 0.315103 0.846492 0.372245 -0.128593 0.095958 -1.340102 2.14E-05 3.20E-05 0.670234 Effects Specification S.D. 125.0425 211.2302 Weighted Statistics 0.232501 Mean dependent var 0.211315 S.D. dependent var 210.9103 Sum squared resid 1.534069 Durbin-Watson stat

CUADRO A6-14: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 283

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2201.259	811.7175	2.711853	0.0071
TMAX	-125.5385	65.22911	-1.924579	0.0553
TMAX^2	2.597406	1.295636	2.004735	0.0460
PP	-0.135075	0.097413	-1.386621	0.1667
PP^2	2.41E-05	3.20E-05	0.751666	0.4529
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			137.1563	0.2992
Idiosyncratic random			209.8956	0.7008
	Weighted	Statistics		
R-squared	0.211466	Mean depender	nt var	214.8862
Adjusted R-squared	0.207387	S.D. dependent	var	210.9585
S.E. of regression	209.9381	Sum squared re	esid	12252576
F-statistic	1.524636	Durbin-Watson	stat	0.767400
Prob(F-statistic)	0.195134			

CUADRO A6-15: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	716.6634	126.1466	5.681196	0.0000
TMIN	-13.05038	20.16621	-0.647141	0.5181
TMIN^2	0.833634	0.775048	1.075590	0.2830
PP	-0.095063	0.093455	-1.017204	0.3099
PP^2	1.51E-05	3.16E-05	0.477460	0.6334
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			119.9430	0.2439
Idiosyncratic random			211.2035	0.7561
	Weighted	Statistics		
R-squared	0.218430	Mean depender	nt var	243.9648
Adjusted R-squared	0.204204	S.D. dependent	t var	213.0464
S.E. of regression	212.0895	Sum squared re	esid	12415020
F-statistic	1.295526	Durbin-Watson	stat	0.757401
Prob(F-statistic)	0.271996			

CUADRO A6-16: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 284

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1756.323	754.9849	2.326303	0.0207
TMAX	-93.57866	61.36943	-1.524841	0.0207
TMAX^2	1.915756	1.211814	1.580900	0.1150
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			129.9119	0.2754
Idiosyncratic random			210.7515	0.7246
	Weighted	Statistics		
R-squared	0.209558	Mean depender	nt var	225.9119
Adjusted R-squared	0.202509	S.D. dependent	var	211.1507
S.E. of regression	210.6615	Sum squared re	sid	12470289
F-statistic	1.355873	Durbin-Watson		0.744669
Prob(F-statistic)	0.259403			

CUADRO A6-17: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	649.0739	108.4005	5.987740	0.0000
TMIN	-9.806678	19.60367	-0.500247	0.6173
TMIN^2	0.648111	0.748246	0.866174	0.3871
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			115.0204	0.2275
Idiosyncratic random			211.9241	0.7725
	Weighted	Statistics		
R-squared	0.210896	Mean depender	nt var	253.6625
Adjusted R-squared	0.203780	S.D. dependent	var	213.5676
S.E. of regression	212.6250	Sum squared re	esid	12568208
F-statistic	1.531211	Durbin-Watson	stat	0.741671
Prob(F-statistic)	0.218092			

CUADRO A6-18: MEA

Dependent Variable: REND

Method: Panel EGLS (Cross-section random effects)

Date: 11/07/13 Time: 17:58

Sample: 1991 2011 Periods included: 21

Cross-sections included: 14

Total panel (unbalanced) observations: 281

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1862.744	744.6244	2.501589	0.0129
TMAX	-99.78364	63.43977	-1.572888	0.1169
TMAX^2	1.794880	1.255836	1.429231	0.1541
TMIN	5.003547	21.48694	0.232865	0.8160
TMIN^2	0.289481	0.826575	0.350218	0.7264
	Effects Sp	ecification		
			S.D.	Rho
Cross-section random			115.1132	0.2274
Idiosyncratic random			212.1655	0.7726
	Weighted	Statistics		
R-squared	0.222230	Mean depender	nt var	253.7345
Adjusted R-squared	0.208060	S.D. dependent	var	213.5715
S.E. of regression	212.1715	Sum squared re	esid	12424621
F-statistic	1.568753	Durbin-Watson	stat	0.759057
Prob(F-statistic)	0.182815			

ANEXO 7: PERDIDAS DE LOS BENEFICIOS EN MILLONES SOLES

Manga	Pariodo	Tasa d	de descuen	ito (%)
Mango	Periodo	0,5	2	4
A1B	2011-2050	-374	-371	-367
A2	2011-2050	-374	-371	-367
B1	2011-2050	-386	-382	-377
Palta	Periodo	Tasa d	de descuen	ito (%)
Palla	Periodo	0,5	2	4
A1B	2011-2050	-578	-561	-541
A2	2011-2050	-574	-558	-538
B1	2011-2050	-537	-523	-507
Naranja	Periodo	Tasa d	de descuen	ito (%)
ivararija	Periodo	0,5	2	4
A1B	2011-2050	-45	-45	-45
A2	2011-2050	-44	-45	-45
B1	2011-2050	-49	-49	-48
Limón	Periodo	Tasa d	de descuen	ito (%)
Lillon	renouo	0,5	2	4
A1B	2011-2050	25	23	21
A2	2011-2050	22	20	19
B1	2011-2050	17	16	15
Cacao	Periodo	Tasa d	de descuen	ito (%)
Cacao	renouo	0,5	2	4
A1B	2011-2050	-364	-359	-353
A2	2011-2050	-365	-360	-353
B1	2011-2050	-367	-362	-356

Fuente: Elaboración propia

ANEXO 8: PERDIDAS DE LOS BENEFICIOS EN MILLONES SOLES

Departamentos	Escenarios	Periodos	Tas	sa de descuento (%)	
_	Climático		0,5	2	4
Amazonas	A1B	2011-2050	-562.94	-549.68	-533.33
Amazonas	A2	2011-2050	-560.12	-547.52	-531.92
Amazonas	B1	2011-2050	-542.32	-531.09	-517.08
Ancash	A1B	2011-2050	-907.27	-894.02	-876.96
Ancash	A2	2011-2050	-910.31	-896.84	-879.52
Ancash	B1	2011-2050	-907.31	-894.37	-877.65
Arequipa	A1B	2011-2050	-647.75	-640.14	-630.09
Arequipa	A2	2011-2050	-648.61	-640.96	-630.85
Arequipa	B1	2011-2050	-657.97	-649.83	-639.15
Ayacucho	A1B	2011-2050	-608.02	-603.41	-596.87
Ayacucho	A2	2011-2050	-666.76	-661.18	-653.39
Ayacucho	B1	2011-2050	-687.12	-680.65	-671.82
Cajamarca	A1B	2011-2050	-463.24	-458.62	-452.37
Cajamarca	A2	2011-2050	-959.07	-948.97	-935.41
Cajamarca	B1	2011-2050	-978.30	-967.45	-952.98
Cusco	A1B	2011-2050	-1015.53	-1000.50	-981.20
Cusco	A2	2011-2050	-1017.69	-1003.21	-984.53
Cusco	B1	2011-2050	-1016.61	-1002.52	-984.27
Huancavelica	A1B	2011-2050	-520.30	-520.51	-519.66
Huancavelica	A2	2011-2050	-520.29	-519.08	-516.60
Huancavelica	B1	2011-2050	-552.46	-549.82	-545.66
Huánuco	A1B	2011-2050	-847.64	-842.78	-835.46
Huánuco	A2	2011-2050	-852.45	-846.29	-837.46
Huánuco	B1	2011-2050	-415.81	-412.34	-407.51
Ica	A1B	2011-2050	-588.86	-578.78	-566.00
Ica	A2	2011-2050	-594.38	-584.10	-571.10
Ica	B1	2011-2050	-586.59	-577.06	-564.93
Junín	A1B	2011-2050	-1095.80	-1093.71	-1089.05
Junín	A2	2011-2050	-1105.11	-1100.14	-1092.14
Junín	B1	2011-2050	-1157.65	-1150.15	-1139.17
La Libertad	A1B	2011-2050	-1410.42	-1381.34	-1345.10
La Libertad	A2	2011-2050	-1413.95	-1385.40	-1349.75
La Libertad	B1	2011-2050	-1378.23	-1352.70	-1320.56
Lambayeque	A1B	2011-2050	-367.78	-357.76	-345.52
Lambayeque	A2	2011-2050	-367.97	-358.41	-346.69
Lambayeque	B1	2011-2050	-349.38	-341.10	-330.88
Lima	A1B	2011-2050	-822.41	-821.60	-818.97
Lima	A2	2011-2050	-822.41	-821.60	-818.97
Lima	B1	2011-2050	-872.27	-867.30	-859.82
Loreto	A1B	2011-2050	-483.52	-474.39	-462.92
Loreto	A2	2011-2050	-483.52	-474.39	-462.92
Loreto	B1	2011-2050	-473.73	-465.33	-454.72
Madre de Dios	A1B	2011-2050	-131.02	-127.85	-123.96
Madre de Dios	A2	2011-2050	-128.04	-125.26	-121.82
Madre de Dios	B1	2011-2050	-124.57	-122.06	-118.93
Piura	A1B	2011-2050	-462.71	-451.60	-437.92
Piura	A2	2011-2050	-460.83	-450.17	-436.99
Piura	B1	2011-2050	-441.96	-432.59	-420.92

Departamentos		Periodos	Tas	a de descuento (%)
	Climático		0,5	2	4
San Martin	A1B	2011-2050	-734.07	-719.87	-702.09
San Martin	A2	2011-2050	-370.35	-363.48	-354.85
San Martin	B1	2011-2050	-366.01	-359.49	-351.25
Tumbes	A1B	2011-2050	-292.79	-289.57	-285.28
Tumbes	A2	2011-2050	-24.45	-24.16	-23.78
Tumbes	B1	2011-2050	-24.86	-24.56	-24.16
Ucayali	A1B	2011-2050	48.87	48.25	47.43
Ucayali	A2	2011-2050	49.11	48.46	47.61
Ucayali	B1	2011-2050	49.30	48.61	47.72

Fuente: Elaboración propia

ANEXO 9: PERDIDAS DE LOS BENEFICIOS COMO PORCENTAJE DEL PIB AGRICOLA 2011

Departamentos	Escenarios	Periodos	Tas	a de descuento	(%)
	Climático	1 0.1000	0,5	2	4
Amazonas	A1B	2011-2050	-3,27	-3,19	-3,10
Amazonas	A2	2011-2050	-3,25	-3,18	-3,09
Amazonas	B1	2011-2050	-3,15	-3,08	-3,00
Ancash	A1B	2011-2050	-5,27	-5,19	-5,09
Ancash	A2	2011-2050	-5,28	-5,20	-5,10
Ancash	B1	2011-2050	-5,27	-5,19	-5,09
Arequipa	A1B	2011-2050	-3,76	-3,71	-3,66
Arequipa	A2	2011-2050	-3,76	-3,72	-3,66
Arequipa	B1	2011-2050	-3,82	-3,77	-3,71
Ayacucho	A1B	2011-2050	-3,53	-3,50	-3,46
Ayacucho	A2	2011-2050	-3,87	-3,84	-3,79
Ayacucho	B1	2011-2050	-3,99	-3,95	-3,90
Cajamarca	A1B	2011-2050	-2,69	-2,66	-2,63
Cajamarca	A2	2011-2050	-5,57	-5,51	-5,43
Cajamarca	B1	2011-2050	-5,68	-5,61	-5,53
Cusco	A1B	2011-2050	-5,89	-5,81	-5,69
Cusco	A2	2011-2050	-5,91	-5,82	-5,71
Cusco	B1	2011-2050	-5,90	-5,82	-5,71
Huancavelica	A1B	2011-2050	-3,02	-3,02	-3,02
Huancavelica	A2	2011-2050	-3,02	-3,01	-3,00
Huancavelica	B1	2011-2050	-3,21	-3,19	-3,17
Huánuco	A1B	2011-2050	-4,92	-4,89	-4,85
Huánuco	A2	2011-2050	-4,95	-4,91	-4,86
Huánuco	B1	2011-2050	-2,41	-2,39	-2,36
Ica	A1B	2011-2050	-3,42	-3,36	-3,28
Ica	A2	2011-2050	-3,45	-3,39	-3,31
Ica	B1	2011-2050	-3,40	-3,35	-3,28
Junín	A1B	2011-2050	-6,36	-6,35	-6,32
Junín	A2	2011-2050	-6,41	-6,38	-6,34
Junín	B1	2011-2050	-6,72	-6,67	-6,61
La Libertad	A1B	2011-2050	-8,19	-8,02	-7,81
La Libertad	A2	2011-2050	-8,21	-8,04	-7,83
La Libertad	B1	2011-2050	-8,00	-7,85	-7,66
Lambayeque	A1B	2011-2050	-2,13	-2,08	-2,01
Lambayeque	A2	2011-2050	-2,14	-2,08	-2,01
Lambayeque	B1	2011-2050	-2,03	-1,98	-1,92
Lima	A1B	2011-2050	-4,77	-4,77	-4,75
Lima	A2	2011-2050	-4,77	-4,77	-4,75
Lima	B1	2011-2050	-5,06	-5,03	-4,99
Loreto	A1B	2011-2050	-2,81	-2,75	-2,69
Loreto	A2	2011-2050	-2,81	-2,75	-2,69
Loreto	B1	2011-2050	-2,75	-2,70	-2,64
Madre de Dios	A1B	2011-2050	-0,76	-0,74	-0,72
Madre de Dios	A2	2011-2050	-0,74	-0,73	-0,71
Madre de Dios	B1	2011-2050	-0,72	-0,71	-0,69
Piura	A1B	2011-2050	-2,69	-2,62	-2,54
Piura	A2	2011-2050	-2,67	-2,61	-2,54
			· ·	· ·	·
Piura San Martin	B1 A1B	2011-2050 2011-2050	-2,56 -4,26	-2,51 -4,18	-2,44 -4,07

Departamentos	Escenarios	Periodos	Tas	a de descuento	(%)
•	Climático		0,5	2	4
San Martin	A2	2011-2050	-2,15	-2,11	-2,06
San Martin	B1	2011-2050	-2,12	-2,09	-2,04
Tumbes	A1B	2011-2050	-1,70	-1,68	-1,66
Tumbes	A2	2011-2050	-0,14	-0,14	-0,14
Tumbes	B1	2011-2050	-0,14	-0,14	-0,14
Ucayali	A1B	2011-2050	0,28	0,28	0,28
Ucayali	A2	2011-2050	0,28	0,28	0,28
Ucayali	B1	2011-2050	0,29	0,28	0,28

ANEXO 10: PRESENTACIÓN DE PLAN DE TRABAJO DEL ESTUDIO COMPARTIDO EN EL MINAM

Lista de as	siste	ncia a l	a p			n de	plaņ	de tr	abajo) (Hc	oja 1	, – 2	25/06	/2013
-2011"				Jolascoasy (2) Meiongs So LOP	HINDE-DEADD-DEAD SYAlle Grinal. Bob. 20	imaile Pannay och re	mund Ommer, set pl	Vialcele Q minam . 196 gre.	PUBLICANC BUSQUED - MINAMY MICELAGO MINAMY GOB, PE	Sgarcia @ minom . gos , pe	Segus & minam, 806.72e	Klermposp @ Yallocones	mihua s@hotmail.com	
Presentación estudios a cargo de Carlos Orihuela onómico del cambio climático sobre los cultivos permanentes de la agricultura peruana: Período 2 "La región Junin ha estado en la senda del desarrollo sostenible? Evidencia del período 2005-2011" Auditorio MINAM, 25 de junio, 11 a.m.	Con participación de;	Cre sweet WA APCI		HINA 6	HINDE-DODD-DEW	MIN'MG - DSAAYA	HINTH- DOMAN	HWAN- CLOT	Probreme Busano - Mina	HIMAM - DGDB	MINAM - DOCORH	GRI	UNCP	
Presentación estudios a cargo de Carlos Orihuela "Éfecto económico del cambio climático sobre los cultivos permanentes de la agricultura peruana: Periodo 2011-2050" "La región Lunin ha estado en la senda del desarrollo sostenible? Evidencia del periodo 2005-2011" Auditorio MINAM, 25 de junio, 11 a.m.				Especialista	Equeste Formite	Especialist Ambiertal	By grouth	Especialisto.	1 Estanausta	Especialist.	Espainolist	COORDINADORA CRCYTEC	Docembe UNCP	
"Efec	Financiado por: LA COOPERACIÓN BELLA	At Desarrange. Operato por: Operato por: Operato por:	MAMON	JUAN ALBERTO OLASCORLA MOJUDED	Sara Ruth	Inde A. Haita Comes	José Hume Senz	Ally Solveds Podillo.	Mariana Cerna Kondin	Laura García	Giovanna Ezas	ROSA CANPOS PONCE	Mania Yorn Aliaga Guena	

tirem - mendida Odiplobel. Jed. 1 asobogodom.mom.gobodosa VENOWING GERARD PETCATA. ORG. la solis(a) minami, golb. be open collection to the this +medina eminam. gob. ichiarellal "Efecto económico del cambio climático sobre los cultivos permanentes de la agricultura peruana: Periodo 2011-2050" "La región Junín ha estado en la senda del desarrollo sostenible? Evidencia del periodo 2005-2011" Luk Jose de Selzie Agencia Palgo de Desamollo E DGILA - MINA M D608- MINAM Institución Presentación estudios a cargo de Carlos Orihuela C18 STATES Auditorio MINAM, 25 de junio, 11 a.m. MINAH MINGE Con participación de: Resp. ONG Aller Sup Sea. Coording day 2 most georg Givel de Programas Peges en Van Ve Bonden Ve D. RECTORA Especialista OCN B Tulio Medina Hinostorza 5030GAC Mendicta Veronique Gerand CASTADOÍ CIES consorcio de investigación econômica y social NOMBRE Solis LA COOPENACIÓN BELBA QN ♥ ADELA \$

ANEXO 11: PRESENTACIÓN DEL INFORME PARCIAL DEL ESTUDIO COMPARTIDO EN **EL MINAM**

Lista de asistencia a la presentación de informe parcial (Hoja 1) – 22/11/2013

"Efecto económico del cambio climático sobre los cultivos permanentes de la agricultura peruana: Período 2011-2050" Sala del Programa Nacional de Bosques - Av. Dos de Mayo 1545, Piso 5, San Isldro

Presentación estudios a cargo de Carlos Orihuela 22 de noviembre de 2013

CIES armana de investigacion económica y acad)	Profession, sasking, or two any entity
NOMBRE	Cargo	Institución	FIRMA
1 Geog. Jesús Munive Pefia	Dirección General de Asuntos Ambientales Agranios MINAGRI	MINAGRI	
2 Ing. Ivan Maita Gómez	Dirección General de Asuntos Ambientales Agrarios MINAGRI	MINAGRI	
3 ing. Edith Rojas;	Dirección General de Asuntos Ambientales Agrarios MINAGRI	MINAGRI	
4 Ing. Juan Olascoaga	Dirección General de Asuntos Ambientales Agrarios MINAGRI	MINAGRI	
S Ing. Jesús Quispe	Dirección General de Asuntos Ambientales Agrarios MINAGRI	MINAGRI	
6 Fidel Reynosa Guerrero	Director of estudios e investigation instituto National de Estadistica e	Instituto Nacional de Estadística e Informática	FLUMOS
7 Jhonny Rengifo Dávila	Dirección de Gestión y Negociación internacional	Agencia Peruana de Cooperación Internacional	
8 Samul Jaramillo	DGIIA	MINAM	B
NICOLAS CEDRÓN FLORES	DEEVFPN (exp. Formules. Proyedd)	HinaH	Micol Lake 4
Veronique Gerand	glewal de Praguamon - PO	Agentia Balga de Desavallo . CT3	Congress

Jramires @ Winalus you pe APCI APCI Presentación estudios a cargo de Carlos Orithuela "Efecto económico del cambio climático sobre los cultivos permanentes de la agricultura peruana: Periodo 2011-2050" CTB STRUCTS BOSO VES- HIMBY Sala del Programa Nacional de Bosques - Av. Dos de Mayo 1545, Piso 5, San Isldro MINAM MINAM UNA/M 22 de noviembre de 2013 DOCEME -- UNALM (REP) ESPECIALISMA GESTION INTEGRADA DE GUENOS. 1896 LA COOPERACIÓN BELGA . JOSE CARRANDA MURTADO CIES construir de investigación scontintida y sectal NOMBRE Financiado por:

ANEXO 12: PRESENTACIÓN DEL INFORME FINAL DEL ESTUDIO COMPARTIDO EN EL MINAM

Lista de asistencia a la presentación de informe final (Hoja 1) - 10/03/2014

Nº Nombre Julio C. Postigo	00		2 Junior Urtecho Baca	Ro			M _{loyin}	
	Para la Alimentación y la Agricul (FAO)	ca Subdirección de Sanción e Incentivos de OEFA		Proyecto Ad Climáti			o (spice) o	o (oveció o
14 E mail Inidas Julio Postigo@fao.	Julias Julia Postigo@fao.org	tivos de disai90@gefa.agh ne	Advanced management					> 6 m

Lista de asistencia a la presentación de informe final (Hoja 2) – 10/03/2014

23	22	71	20	19	8	17	16	15	14	13	12	Ħ	N
							yes was Uniques blegge	Leonica Escaber Souther	Acui Smeritus	MELINA PANDURD	hathate God	Roberto Piselli	Nombre
							HOWAN - DAVID	THUMH - DOCA	MINSON DECA	MINAM-PNOB	1 house	MINAM	Institución
							of phonogen Barbanh	The state port of the transfer	Darming Co	digo waring 30 sayarda	on gos magin a) that	rpiselle minomyolipe	E mail
							个	Diff Hold	TO THE PROPERTY OF THE PROPERT	of PC Stan	i di	I po Aut 1/2	Firma

ANEXO 13: PRESENTACIÓN DEL INFORME FINAL DEL ESTUDIO COMPARTIDO EN **CONFERENCIA EN LA UNALM**

1. Publicidad

XI FORUM

"RESULTADOS DE INVESTIGACIÓN ECONÓMICA SOBRE AMBIENTE Y **RECURSOS NATURALES**"

Día : Miércoles 26 de febrero 2014

: 3:00 – 5:00 pm Hora

: Auditorio A-2 - Campus UNALM, La Molina – Lima Lugar

INGRESO LIBRE

Contactos:

Flor Rivera, Coordinadora (Teléfono: 971074592)

Elvia Rodríguez, Departamento de Economía UNALM (Teléfono: 6147134)

E-mail: congresospee@lamolina.edu.pe

Organizado por:

Departamento de Economía y Planificación

Financiado por:

Operado por:

Con la participación de:

XI FORUM

"RESULTADOS DE INVESTIGACIÓN ECONÓMICA SOBRE AMBIENTE Y RECURSOS NATURALES"

PROGRAMA

	TROCKAMA
14:45-15:00	Inscripción de participantes
	PALABRAS DE BIENVENIDA
15:00-15:15	Ramón Diez Matallana
15.00-15.15	Jefe de departamento de la Facultad de Economía y Planificación,
	Universidad Nacional Agraria La Molina
	"Efecto económico del cambio climático sobre los cultivos
	permanentes de la agricultura peruana: Período 2011-2050"
	CARLOS ORIHUELA y JOSE NOLAZCO
15:15-15:45	Dpto. Economía y Planificación, Universidad Nacional Agraria La Molina-
	UNALM
	Financiado por el Fondo de Estudios y Consultorías Belga Peruano -
	FECBP
	"Impacto económico del cambio climático sobre la agricultura
	peruana"
15:45-16:15	LAURA ALVARADO
	Dpto. Economía y Planificación, Universidad Nacional Agraria La Molina –
	UNALM
	PANELISTAS / COMENTARIOS DEL PANEL Y PREGUNTAS DEL
	PUBLICO
	JUAN TORRES
	Dpto. de Ciencias, Universidad Nacional Agraria la Molina - UNALM
16:15-17:00	IRENE TREBEJO
	Dirección General Agro meteorología, El Servicio Nacional de Meteorología
	e Hidrología del Perú - SENAMHI
	LUIS LEDESMA
	Representante del Ministerio del Ambiente- MINAM

SOBRE EL FORUM

Al menos una vez al año, el Departamento de Economía y Planificación de la Universidad Nacional Agraria La Molina (UNALM) realiza un **FORUM** sobre investigaciones económicas en tópicos de cambio climático, recursos naturales (renovables y no renovables), desarrollo sostenible, y valoración de servicios ecosistémicos en general. Este evento no solo pretende servir como un espacio de diálogo, reflexión, intercambio de puntos de vista y cooperación entre los participantes sino además para generar información útil para los hacedores de políticas. Se invita a la comunidad académica, sectores involucrados y público en general a participar, ya sea presentando el resultado de sus investigaciones en los temas señalados o como asistente. Para mayores detalles, contactarse a: congresospee@lamolina.edu.pe.

SOBRE LOS EXPOSITORES Y PANELISTAS

CARLOS ORIHUELA

Economista de la Universidad Nacional Agraria La Molina (UNALM). Magíster en Economía de Recursos Naturales y del Medio Ambiente, Universidad de Concepción, Chile. Carlos es estudiante del programa doctoral en Economía de los Recursos Naturales y el Desarrollo Sustentable, convenio UNALM-Universidad Nacional Autónoma de México. Sus áreas de docencia son: matemática para economistas, economía de los recursos naturales, y valoración económica de impactos ambientales. Ha publicado artículos sobre valoración de bienes y servicios ambientales en revistas internacionales tales como *Resources Policy* y *Water Resources Management*. Es consultor en valoración económica de impactos ambientales y servicios ecosistémicos y docente de la Facultad de Economía y Planificación de la Universidad Nacional Agraria La Molina, Perú.

JOSE NOLAZCO

Economista de la Universidad Nacional Agraria La Molina (UNALM) con especialización en Econometría Aplicada en INEI y CIES. José Luis es estudiante del programa de Magister en Análisis Económico de la Universidad de Chile. Tiene experiencia en modelación econométrica, habiéndose desempeñado como docente en temas econométricos a nivel pregrado y postgrado en la Universidad Nacional Agraria La Molina (UNALM). Ha participado como experto en econometría en investigaciones sobre temas de macroeconomía, crecimiento económico, recursos naturales y cambio climático. Asimismo, se desempeñó como Consultor Junior en el Programa Desarrollo Rural Sostenible de Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

LAURA ALVARADO

Economista de la Universidad Nacional Agraria La Molina (UNALM). Magíster en Innovación Agraria para el Desarrollo Rural (UNALM). Laura es Candidata a Doctor del programa doctoral en Economía de los Recursos Naturales y el Desarrollo Sustentable, convenio UNALM-Universidad Nacional Autónoma de México. Cuenta con una especialización en Gestión sostenible de recursos naturales en la Universidad de Bruselas, Bélgica. Sus áreas de docencia son: matemática para economistas, economía de los recursos naturales y métodos de investigación. Actualmente es parte del equipo de investigación en cambio climático en la agricultura *The Agricultural Model Intercomparison and Improvement Project -AGMIP -Perú.* Es consultora en temas de recursos naturales, cambio climático y desarrollo rural y docente de la Facultad de Economía y Planificación de la Universidad Nacional Agraria La Molina, Perú.

JUAN TORRES

Biólogo. Maestro en ciencias en la Universidad Nacional Autónoma de México (desiertos y montañas) y especialista en cambio climático. Docente en el departamento de Biología de la Facultad de Ciencias en la Universidad Nacional Agraria la Molina (UNALM), coordinador del Centro de

Investigaciones de Zonas Áridas y profesor de posgrado sobre ecología aplicada. Investigador de Soluciones Prácticas-Intermediate Technology Development Group (ITDG).

IRENE TREBEJO

Ingeniero Meteorólogo de la UNALM, Magister en Agrometeorología de la Universidad de Sao Paulo-Brasil. Con experiencia en formulación, ejecución y coordinación de proyectos de investigación y desarrollo en Meteorología y agrometeorología. Actualmente ejerce el cargo de Directora General de Agrometeorología del SENAMHI y conduce la componente agroclimática del SENAMHI del PPR - Degradación de los Suelos Agrarios liderado por el MINAGRI. Es coordinadora del equipo Técnico para la investigación del impacto del cambio del clima en la Agricultura-AGMIP-PERÚ.

2. Presentación del expositor Orihuela (Presentación original adjunta en la carpeta "Conferencia UNALM" del CD)

Presentación de la Expositora Alvarado (Presentación original adjunta en la carpeta "Conferencia UNALM" del CD)

3. Lista de asistencia al XI Forum- 26/02/2014: (Lista original adjunta en la carpeta "Conferencia UNALM" del CD)

Hoja 1

LISTA DE ASISTENTES PAR EL XI FORUM "
RESULTADOS DE INVESTIGACIÓN ECONÓMICA SOBRE AMBIENTE Y RECURSOS
NATURALES"

Fecha: 26 de febrero de 2014

Š	Apellidos y Nombres	Institución	Correo Electrónico	Firma
-	Otarola Lowa ARTURE B.	MAC- GUIL WASI MINKA	wasininka egmail. am	
7	ROBLES LEUN ROSMERY A.	WWF	rosmery robbes 12 @ gradil cont	(3)
3	Diez Ustalla Na. RAMIN UNALM-DAEP rdiez @ Cambura. edu. per A. Lein	UNALM-DASP	Thiez O Pambina. edu. pe	A STATE OF THE PROPERTY OF THE
4	Hówac Ribadenera Sarvinanto KFW	WHY KTW	mource, libadeurno	/Samp?
w	JUM THURS GUENARD		emotable @ 12/20. cm	1
9	Aldo Core S	CCTA	aldoscruze gmail con	J.
7	Rodigo Cabrera Blume	Pucp.	rodroge do Dhotmoil. com	B
8	IRENE TREBETO V.	SANAMAS	conseque senamin tos se	1
6	CUPORD RICORD	MOLM	McWodu Dudorie	My Sall
10	E cuis	UNALM	Issnone @ golde compr	d
11	11 Apards Balan Low	UNALH	la Vatedo a lamstin de la Southern A	2. Southern

Hoja 2

12				
	CABREDA PLUME HATAS NEGADED	Puch	doctun Dynail an	Marked
13	Perso to tacky	CAMAS	bron for late & wail an	9
14	Pontoja Bendazil, Myreco.		part-posedegner 1. cm	The state of
12	carlos Junaya Euthernet	CHALM	CMIROYNG Cambron. edu. P.C	Cotras
16	Akgul Angel Bernauy Allega	CHACK	m_ bernuy @hamil. Gn	A
17	17 Jour Lyis Nobseco CAMA	UNACH	Tlacog agmail ware	Sept.
18				
19				
20				
21		-		
22		,		
23				
24				
25				
56				

Ноја 3

Š	Apellidos y Nombres	Institución	Correo Electrónico	Firma
27	Tomes Arias Ines C	EPG-UNALA	linestones & Small.com	R
28	PEDING COLLDON BUILDING	1005-UDACH	preend 2003 Oydoo. com	B
29	Corrido Elevera Natalia	Mypun	2000190 @ Lambina educan	(Milliamon
30	Luis LEDESMA GOYZUETA	MINAM	Hedesma amine, 936. p	, ~
31	Abarca Valverds, Gabriela H	CNALM	20080682@lamolina.edurpe	2000
32	Hercado Esinosa, Diane	CAURIT	direccio espinosa ginulican	01
33	Taime Cabra	Duch	Jacone 14 @ hotomail. com	Carried To
34	Just Havin Novra	UNALM	Tolore Jameline	The state of the s
32	Huaman Leneuras, Gracia Alajandia UNALH	dra UNALH	graciahl Bgmail. com	発え
36		IN B	bidelyd F@ yalvoo as.	Jake Jake
37	Loverna Del Carais	Mociec	Loverna des Penno, I. ion	
38	Ces pades Del Poza Willen	CUNCH	J. Ves. Sell. Oct.	
39			marray @catie.ac.cr	R
40	EDISEN CALDERN TITO	UNALM	EDISON CALOSTON TITO @ GMEIL	14
41	41 Romeno Cotienna Kelly	UNDER	Kr, comeroppe gired com	Keedy.

4. Fotos del XI Forum (Fotos originales adjuntas en la carpeta "Conferencia UNALM" del CD)

Foto 1. Panelistas y expositores. De izquierda a derecha: Juan Torres (UNALM), Luis Ledesma (MINAM), Irene Trebejo (SENAMHI), Laura Alvarado (UNALM), José Nolazco (UNALM)

Foto 2. José Nolazco exponiendo la investigación: "Efecto económico del cambio climático sobre los cultivos permanentes de la agricultura peruana: periodo 2011-2050"