CALCULUS 2 EXAM 1 PRACTICE PROBLEMS

ADRIAN PĂCURAR

Contents

1.	Inverse Functions	2
2.	The Natural Log and Exp Functions	2
3.	General Log and Exponential (arbitrary base)	5
4.	Exponential Growth/Decay and Compound Interest	5
5.	Inverse Trigonometric Functions	6
6.	L'Hospital's Rule	7
7.	Integration By Parts	8
8.	Trigonometric Integrals	9
9.	Trigonometric Substitution	10
10.	Partial Fractions	10

1. Inverse Functions

Problem 1. Consider the function $g(x) = \sqrt{4x+4}$

- a) Is q a one-to-one function?
- b) What is the domain of g?
- c) Does g^{-1} exist?
- d) What is the domain of q^{-1} ?
- e) What is the range of g^{-1} ?
- f) Compute $q^{-1}(4)$.

Problem 2. For the function $f(x) = x^3 + 1$, find $f^{-1}(9)$ and $f^{-1}(28)$.

Problem 3. Find a formula for $f^{-1}(x)$ for the specified functions. Verify your result by checking that $f(f^{-1}(x)) = x$.

a)
$$f(x) = \frac{2x+1}{x-3}$$
.

b)
$$f(x) = \sqrt{x-2}$$
.

b)
$$f(x) = \sqrt[3]{x-2}$$
.
c) $f(x) = \frac{1}{x-1}$.

Problem 4. Determine $(f^{-1})'(a)$ for the following functions at the specified a value:

a)
$$f(x) = \sqrt{4x + 4}$$
 at $a = 4$.

b)
$$f(x) = x^3 + 1$$
 at $a = 28$.

c)
$$f(x) = \sqrt{x^3 + 4x + 4}$$
 at $a = 3$.

d)
$$f(x) = x^3 + 4x + 6x + 5$$
 at $a = 5$.

e)
$$f(x) = \sqrt{x-2}$$
 at $a = 2$.

Problem 5. Consider a one-to-one function h which satisfies the following:

$$h(10) = 21$$
 $h'(10) = 2$ $h^{-1}(10) = 4.5$ $h'(4.5) = 3$

What is $(h^{-1})'(10)$?

2. The Natural Log and Exp Functions

Problem 6. Expand $\ln \left(\frac{x^2 \sqrt{x^2 + 1}}{x^2 - 1} \right)$ using the rules of logarithms.

Problem 7. Combine $\ln(x) + 3\ln(x+1) - \frac{1}{2}\ln(x+2)$ into a single logarithm.

Problem 8. Evaluate the integral

$$\int_{1}^{e^2} \frac{1}{t} dt.$$

Problem 9. Evaluate the limit $\lim_{x\to\infty} \ln\left(\frac{1}{x^2+1}\right)$.

Problem 10. Compute the derivative of the following functions:

a)
$$\ln |\sqrt[3]{x-1}|$$

b)
$$x^3 \ln(x)$$

c)
$$\sin(\ln x)$$

d)
$$\sin(x)\ln(5x)$$

e)
$$\frac{1}{\ln x}$$

f)
$$y = \ln\left(\frac{x}{x^2 + 1}\right)$$

$$g) y = \ln(x\sqrt{x^2 - 1})$$

h)
$$y = \ln \sqrt{\frac{x+1}{x-1}}$$
 (without logarithmic differentiation)

i)
$$y = \sqrt{\frac{x+1}{x-1}}$$
 (with logarithmic differentiation)

Problem 11. Compute the following integrals:

a)
$$\int \frac{x}{3-x^2} dx$$

$$b) \int_2^4 \frac{3}{x} dx$$

c)
$$\int \frac{x^2 + x + 1}{x} dx$$

d)
$$\int_4^9 \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$$

e)
$$\int \frac{dx}{x \ln(x)}$$

$$f) \int \frac{\sin(2x)}{1 + \cos^2(x)} dx$$

g)
$$\int \frac{\cos(\ln t)}{t} dt$$

Problem 12. Compute the derivative of the following functions:

a)
$$y = e^{\tan(\theta)}$$

b)
$$y = x^3 e^{x^2}$$

c)
$$y = \ln(1 + e^{2x})$$

d)
$$y = \frac{e^{2x}}{e^{2x} + 1}$$

e)
$$xe^{y} + ye^{x} = 1$$

f)
$$y = x^{e^x}$$

g)
$$y = x^{\sqrt{x}}$$

$$h) y = x^{x^2}$$

Problem 13. Find the inverse of the functions $y = e^{x^3}$ and $y = (\ln x)^5$.

Problem 14. Evaluate the following integrals:

a)
$$\int_0^1 (x^e + e^x) dx$$

b)
$$\int_0^1 e dx$$

c)
$$\int e^x \sqrt{1 + e^x} dx$$

$$d) \int \frac{e^u}{(1+e^u)^2} du$$

e)
$$\int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx$$

f)
$$\int e^{\sin(\theta)}\cos(\theta)d\theta$$

Problem 15. Compute each of the two limits:

$$\lim_{x \to \infty} \frac{x^8 + 5x^3 + 2e^x + 1}{4x^8 + 6x + 3e^x + 9} \qquad \lim_{x \to \infty} \frac{5x^3 + 2e^{2x} + 1}{6x + 3e^{5x} + 9}$$

4

$$\lim_{x \to \infty} \frac{5x^3 + 2e^{2x} + 1}{6x + 3e^{5x} + 9}$$

3. General Log and Exponential (arbitrary base)

The only things you need to remember for this is

$$\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$$
 and $\frac{d}{dx}a^x = a^x\ln(a)$

They behave the same as the natural log/exp. Sometimes it is also useful to know the change of base formula

$$\log_b(a) = \frac{\ln(a)}{\ln(b)}$$

Problem 16. Sketch the graph of the following functions:

- a) $f(x) = 3 \ln x$
- b) ln(x-3)
- c) $\ln |x|$
- d) $e^x + 1$
- e) $3e^{x} + 2$
- f) $(0.5)^x$ and 2^x on the same axis
- g) e^{-x} and e^{x} on the same axis
- h) 2^x and 10^x on the same axis
- i) $\log_2(x)$ and $\log_{10}(x)$ on the same axis
- j) 2^{-x} and 10^{-x} on the same axis

4. Exponential Growth/Decay and Compound Interest

Problem 17. The population of Mathland in the year 2000 was 500. The population increases (continuously and steadily) by approximately 10% per year. What is the function P(t) which gives the size of the population after t years? What is P(0)? What will the population be in 2050?

Problem 18. The population of Calculand was 700 in the year 2000 (t = 0), and 3000 in the year 2010 (t = 10). Using the exponential model for population growth, give a general formula for P(t), and use it to estimate the population of Calculand in 2015.

Problem 19. The half-life of the Carbon-14 isotope is approximately 5,730 years. Archaeologists dig up a bowl made of oak and determine that it has only about 40% of the carbon-14 that a similar quantity of living oak has today. Estimate the age of the bowl. (Hint: use exponential decay $m(t) = m_0 e^{kt}$ to find k, then solve $0.4 = e^{kt}$ for t).

Problem 20. How long will it take an investment of \$2,000 to double if the investment earns interest at the rate of 6% per year. What if the interest was compounded monthly?

Problem 21. How long will it take an investment of \$5,000 to triple at an interest rate of 4% per year compounded weekly. Assume 52 weeks in a year.

Problem 22. What is the interest rate needed for an investment of \$5,000 to grow to \$6,000 in 3 years if interest is compounded continuously.

Problem 23. Find the interest rate needed for an investment of \$2,000 to double in 5 years if interest is compounded annually.

Problem 24. Find the present value of \$20,000 due in 3 years at an interest rate of 12%/year compounded monthly.

Problem 25. Glen invests \$100,000 in an account yielding 6.6% interest compounded monthly. Being unhappy with the return on his investment, he wishes to reinvest the final amount at the end of the first year into a new account where interest is compounded quarterly. What interest rate should he look for if he wishes to obtain \$130,130 at the end of the third year (i.e. after keeping the money for 2 more years in the second account).

5. Inverse Trigonometric Functions

Problem 26. Evaluate the following:

$$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) \qquad \sin^{-1}(\sin \pi) \qquad \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \qquad \cos\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$$
$$\tan^{-1}(1) \qquad \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Problem 27. Use an appropriate triangle to give a formula in terms of x for:

$$\tan(\sin^{-1}(x)) \qquad \cos(\tan^{-1}(x))$$

Problem 28. Prove (using implicit differentiation and appropriate trig identities) the derivatives

$$\frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\sec^{-1}(x) = \frac{1}{x\sqrt{x^2-1}}$$

Problem 29. Compute the derivatives of the following functions:

- a) $\sin^{-1} \sqrt{\cos x}$
- b) $\tan^{-1}(\ln x)$
- c) $\sin^{-1}(x^2-1)$
- d) $\cos^{-1}(x^2 1)$
- e) $x \sin^{-1}(x) + \sqrt{1-x^2}$

f) $\tan^{-1}(x - \sqrt{1 + x^2})$

g)
$$\arctan \sqrt{\frac{1-x}{1+x}}$$

h) $\arcsin(e^x)$

Problem 30. Compute the following integrals:

a)
$$\int \frac{1}{\sqrt{9-x^2}} dx$$

b)
$$\int_0^{1/2} \frac{1}{1+4r^2} dx$$

c)
$$\int_0^{\frac{1}{\sqrt{2}}} \frac{x}{\sqrt{1-x^4}} dx$$

$$d) \int \frac{1}{x(1+(\ln x)^2)} dx$$

e)
$$\int \frac{\cos^{-1}(x)}{\sqrt{1-x^2}} dx$$

$$f) \int \frac{e^{2x}}{\sqrt{1 - e^{4x}}} dx$$

g)
$$\int \frac{1}{\sqrt{x(1+x)}} dx$$

h)
$$\int \frac{1}{r\sqrt{r^2-4}} dx$$

6. L'Hospital's Rule

Problem 31. Evaluate the following limits:

a)
$$\lim_{x\to 3} \frac{x-3}{9-x^2}$$

b)
$$\lim_{x\to 4} \frac{x^2 - 2x - 8}{x - 4}$$

c)
$$\lim_{x\to -2} \frac{x^3+8}{x+2}$$

$$d) \lim_{t\to 0} \frac{e^{2t} - 1}{\sin t}$$

e)
$$\lim_{x\to\infty} \frac{\ln x}{\sqrt{x}}$$

f)
$$\lim_{x\to\infty} (\ln x - \sqrt{x})$$

g)
$$\lim_{x\to 0} \frac{\sqrt{1+2x} - \sqrt{1-4x}}{x}$$

h)
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$

i)
$$\lim_{x\to 1} \frac{x^a - 1}{x^b - 1}, \ b \neq 0$$

j)
$$\lim_{x\to\infty} x \sin(\pi/x)$$

$$k) \lim_{x \to \infty} x^3 e^{-x^2}$$

l)
$$\lim_{x\to-\infty} x \ln\left(1-\frac{1}{x}\right)$$

m)
$$\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

n)
$$\lim_{x\to 0^+} x^{\sqrt{x}}$$

o)
$$\lim_{x\to\infty} x^{1/x}$$

p)
$$\lim_{x\to\infty} x^{e^{-x}}$$

q)
$$\lim_{x\to 1} \left(\frac{9x}{x-1} - \frac{9}{\ln x} \right)$$

Problem 32. For $0 \le r \le 1$ and $t \in (0, \infty)$, show that

$$\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^{nt} = e^{rt}$$

Note: this proves that the formula for continuously compound interest is P_0e^{rt} , where P_0 is the initial amount, and r is the interest rate.

7. Integration By Parts

Recall the integration by parts formula:

$$\int uv' = uv - \int u'v$$

Problem 33. Evaluate the following integrals:

a)
$$\int x \sin(x) dx$$

b)
$$\int x^5 \cos(x) dx$$
 (tabular integration makes this FAST)

c)
$$\int \ln(x) dx$$

d)
$$\int (\ln(x))^2 dx$$

e)
$$\int \frac{(\ln(x))^2}{x^3} dx$$

f)
$$\int x^4 (\ln(x))^2 dx$$

g)
$$\int \arctan(x)dx$$

h)
$$\int e^x \sin(x) dx$$

i)
$$\int x \tan^2(x) dx$$

j)
$$\int x^4 \sin(2x) dx$$
 (use tabular integration)

k)
$$\int x^3 e^{-2x} dx$$
 (use tabular integration)

1)
$$\int \cos(\ln x) dx$$
 (make a substitution first)

m)
$$\int e^{\sqrt{x}} dx$$
 (make a substitution first)

8. Trigonometric Integrals

Problem 34. Evaluate the following integrals:

a)
$$\int \sin^2(x) dx$$

b)
$$\int \cos^3(x) dx$$

c)
$$\int \sin^4(x) dx$$

d)
$$\int \sin^4(x) \cos^5(x) dx$$

e)
$$\int \sin^4(x) \cos^2(x) dx$$

f)
$$\int \tan^6(x) \sec^4(x) dx$$

g)
$$\int \tan^5(x) \sec^7(x) dx$$

h)
$$\int \tan(x)dx$$

i)
$$\int \tan^2(x) dx$$

$$\int \tan^3(x)dx$$

$$k) \int_0^{\pi/4} \tan^4(x) dx$$

1)
$$\int \sin(3x)\sin(8x)dx$$

m)
$$\int x \sin^2(x^2) dx$$

n)
$$\int x \sec(x) \tan(x) dx$$

o)
$$\int \sec^3(x) dx$$
 (use integration by parts, $u = \sec(x)$ and $v' = \sec^2(x)$)

9. Trigonometric Substitution

You have three main identities to recognize which substitution to make:

$$\cos^2 \theta = 1 - \sin^2 \theta$$
 $\tan^2 \theta + 1 = \sec^2 \theta$ $\tan^2 \theta = \sec^2 \theta - 1$

Problem 35. Evaluate the following integrals:

a)
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$

$$b) \int \frac{\sqrt{x^2 - 1}}{x^4} dx$$

c)
$$\int_0^a \frac{1}{(a^2+x^2)^{3/2}} dx$$

d)
$$\int_0^{1/2} x\sqrt{1-4x^2} dx$$

e)
$$\int \frac{x+1}{x^2+1} dx$$

f)
$$\int \frac{x^2}{\sqrt{x^2 - 7}} dx$$

g)
$$\int \frac{1}{\sqrt{x^2 + 2x + 5}} dx$$

$$h) \int \frac{x^2}{\sqrt{9-4x^2}} dx$$

i)
$$\int \frac{x^2+1}{(x^2-2x+2)^2} dx$$

10. Partial Fractions

Here are some examples of the splitting pattern:

$$\frac{*}{(x+1)(x+2)(x-3)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x-3}$$

$$\frac{*}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x-2)}$$

$$\frac{*}{(x^2+4)^3} = \frac{Ax+B}{x^2+4} + \frac{Cx+D}{(x^2+4)^2} + \frac{Ex+F}{(x^2+4)^3}$$

$$\frac{*}{(x^4+1)^2(x-3)} = \frac{Ax^3 + Bx^2 + Cx + D}{x^4+1} + \frac{Ex^3 + Fx^2 + Gx + H}{(x^4+1)^2} + \frac{I}{(x-3)}$$

$$\frac{*}{(x^4+1)(x^2+8)(x-2)^2} = \frac{Ax^3 + Bx^2 + Cx + D}{x^4+1} + \frac{Ex+F}{x^2+8} + \frac{G}{x-2} + \frac{H}{(x-2)^2}$$

Problem 36. Show using partial fractions the following chain of equalities:

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a}\right) dx = \frac{1}{2a} \ln \left(\frac{x - a}{x + a}\right) + C$$

Problem 37. Evaluate the following integrals:

a)
$$\int \frac{\sqrt{x+4}}{x} dx$$
 (make the rationalizing substitution $u = \sqrt{x+4}$ first)

b)
$$\int \frac{5x+1}{(2x+1)(x-1)} dx$$

c)
$$\int_0^1 \frac{2}{2x^2 + 3x + 1} dx$$

d)
$$\int_0^1 \frac{x^2 + x + 1}{(x+1)^2(x+2)} dx$$

e)
$$\int \frac{x^2 + x + 1}{(x^2 + 1)^2} dx$$

f)
$$\int \frac{x^5 + x - 1}{x^3 + 1} dx$$
 (top degree is bigger, so use polynomial division first!)

g)
$$\int \frac{1}{\sqrt{x} - \sqrt[3]{x}} dx$$
 (make the substitution $u = \sqrt[6]{x}$ first!)

h)
$$\int \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx$$
 (make an appropriate substitution first!)

i)
$$\int \frac{x^4 + 9x^2 + x + 2}{x^2 + 9} dx$$
 (simplify first, pay close attention to the numerator/denominator)

j)
$$\int_{1}^{2} \frac{3x^2 + 6x + 2}{x^2 + 3x + 2} dx$$
 (simplify first)

k)
$$\int \ln(x^2 - x + 2)dx$$
 (use integration by parts first)

1)
$$\int \frac{4x}{x^3 + x^2 + x + 1} dx$$