

Cahier d'entraînement en physique-chimie

PT/PT*

Page web du *Cahier d'entraînement*, dernières versions

Ce cahier d'entraı̂nement a été écrit collectivement par des professeurs en classes préparatoires scientifiques.

Coordination

Colas Bardavid et Catherine Lavainne

Équipe des participants

Steve Arnefaux	Geoffroy Burgunder	Catherine LAVAINNE
Stéphane BARGOT	Erwan Capitaine	Alain Lombard
Chloé Barraud	Hervé Catry	Emmanuel Loyer
Fabien Baudribos	Vincent Combette	Louis Péault
Laurent Beau	Guillaume Davieau	Gwenaël Raillet
Julien Bellier	Jean-Marie Delorme	Alain Robichon
Lionel Beluze	Frédéric Desforges	Renaud Ruamps
Marc Beutier	Alexis Drouard	Pierre-Simon Saulue
Ariane Beyrath	Hervé George	Théo Tassin
Allan Bildé	Florence Goutverg	Étienne Thibierge
Guillaume Blot-Teyssedre	Mathieu Hebding	Marc Venturi
Olivier Boinot-Turpault	Lucas Henry	Delphine VIANDIER
Cécile Bonnand	Didier Hérisson	Anthony YIP
Alexis Brès	Fanny Jospitre	
Frédéric Bruneau	Joris Laleque	

Le pictogramme de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). Le pictogramme du bulldozer a été créé par Ayub IRAWAN (The Noun Project). Le pictogramme de la calculatrice a été créé par Sita RAISITA (The Noun Project).

L'illustration de la couverture a été réalisée par Regolo Bizzi.

Sommaire

Mode d'emplo	i du cahier d'entraînementv
	S
Fiche 1.	Opérateurs vectoriels
Électroma	gnétisme en régime permanent
Fiche 2.	Électrostatique
Fiche 3.	Magnétostatique21
Électroma	gnétisme en régime variable
Fiche 4.	Équations de Maxwell
Fiche 5.	Induction
Fiche 6.	Ondes électromagnétiques I54
Fiche 7.	Ondes électromagnétiques II
Optique	
Fiche 8.	Modèle scalaire de la lumière
Fiche 9.	Interférences à deux ondes
Fiche 10.	Interférences à N ondes
Thermody	namique
Fiche 11.	Outils mathématiques pour la diffusion
Fiche 12.	Diffusion thermique
Fiche 13.	Transferts thermiques
Fiche 14.	Tables et diagrammes thermodynamiques
Fiche 15.	Thermodynamique industrielle

Électronique	
Fiche 16. Signaux	37
Fiche 17. ALI	19
Fiche 18. ALI saturé	58
Fiche 19. Oscillateurs électroniques	38
Mécanique des fluides	_
Fiche 20. Bilans en mécanique des fluides	75
Thermochimie	
Fiche 21. Transformations chimiques	32
Électrochimie	
Fiche 22. Courbes intensité-potentiel)1
Fiche 23. Phénomène de corrosion)8
Fiche 24. Piles et accumulateurs)7
Réponses et corrigés Réponses et corrigés	_ l5

Mode d'emploi

Qu'est-ce que le cahier d'entraînement?

Le cahier d'entraînement en physique-chimie est un outil destiné à renforcer l'acquisition de **réflexes utiles** en physique et en chimie.

Il ne se substitue en aucun cas aux TD donnés par votre professeur; travailler avec ce cahier d'entraînement vous permettra en revanche d'aborder avec plus d'aisance les exercices de physique-chimie.

Pour donner une analogie, on pourrait dire que ce cahier d'entraînement est comparable aux **exercices de musculation** d'un athlète : ils sont nécessaires pour mieux réussir le jour J lors de la compétition, mais ils ne sont pas suffisants. Un coureur de sprint fait de la musculation, mais il fait également tout un tas d'autres exercices.

Pour vous aider à mieux vous entraîner, nous avons ajouté quelques exercices sur des thèmes qui ne figurent pas au programme, en prenant soin de rappeler, dans ce cas, les équations en jeu. Il faut voir ces exercices comme des occasions supplémentaires pour s'entraîner à manipuler des mathématiques au service de la physique et de la chimie.

Ce cahier a été conçu par une large équipe de professeurs en classes préparatoires, tous soucieux de vous apporter l'aide et les outils pour réussir.

Comment est-il organisé?

Le cahier est organisé en *fiches d'entraînement*, chacune correspondant à un thème issu de votre programme de deuxième année.

Les pictogrammes

Certains entraînements sont accompagnés d'un pictogramme.

Ces entraînements sont basiques et transversaux.

Les compétences qu'ils mettent en jeu ne sont pas forcément spécifiques au thème de la fiche et peuvent être transversales.

Ce pictogramme a été choisi parce que le bulldozer permet de construire les fondations et que c'est sur des fondations solides que l'on bâtit les plus beaux édifices. Ces entraı̂nements sont donc le gage pour vous d'acquérir un socle solide de savoir-faire.

Ces entraînements vous entraînent au calcul à la main.

Dans ces entraînements, les calculs doivent être faits sans calculatrice.

Comment utiliser ce cahier?

Le cahier d'entraînement ne doit pas remplacer vos TD. Il s'agit d'un outil à utiliser en complément de votre travail « normal » en physique-chimie (apprentissage du cours, recherche de TD, recherche des DM).

Un travail personnalisé.

Le cahier d'entraînement est prévu pour être utilisé en autonomie.

Choisissez vos entraînements en fonction des difficultés que vous rencontrez, des chapitres que vous étudiez, ou bien en fonction des conseils de votre professeur.

Ne cherchez pas à faire linéairement ce cahier : les fiches ne sont pas à faire dans l'ordre mais en fonction des points que vous souhaitez travailler.

Un travail régulier.

Pratiquez l'entraînement à un rythme régulier : **une dizaine de minutes par jour** par exemple. Privilégiez un travail régulier sur le long terme plutôt qu'un objectif du type « faire dix fiches par jour pendant les vacances ».

Un travail efficace.

Utilisez les réponses et les corrigés de façon appropriée : il est important de chercher suffisamment par vous-même avant d'aller les regarder. Il faut vraiment **persévérer** dans votre raisonnement et vos calculs avant d'aller voir le corrigé si vous voulez que ces entraînements soient efficaces.

Une erreur? Une remarque?

Si jamais vous voyez une erreur d'énoncé ou de corrigé, ou bien si vous avez une remarque à faire, n'hésitez pas à écrire à l'adresse cahier.entrainement@gmail.com.

Si vous pensez avoir décelé une erreur, merci de donner aussi l'identifiant de la fiche, écrit en gris en haut à gauche de chaque fiche.

Opérateurs vectoriels

Prérequis

Notation avec et sans le symbole nabla $\overrightarrow{\nabla}$ des opérateurs :

- gradient : $\overrightarrow{\operatorname{grad}}(f) = \overrightarrow{\nabla} f$
- divergence : $\operatorname{div}(\vec{A}) = \vec{\nabla} \cdot \vec{A}$
- rotationnel : $\overrightarrow{rot}(f) = \overrightarrow{\nabla} \wedge \overrightarrow{A}$

Expressions de ces opérateurs vectoriels en coordonnées cartésiennes.

Dans toute cette fiche, les grandeurs a, b et c sont des constantes ayant la dimension d'une longueur.

Sur l'opérateur gradient

Entraînement 1.1 — Quelle écriture pour le gradient ?

Le gradient est un opérateur vectoriel qui s'applique à des fonctions scalaires. Pour un système de coordonnées cartésiennes (x, y, z) décrivant l'espace, la définition du gradient d'une fonction f(x, y, z) est :

$$\overrightarrow{\operatorname{grad}}(f) = \overrightarrow{\nabla}(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y} + \frac{\partial f}{\partial z} \overrightarrow{e_z}.$$

On considère la fonction V(x, y, z) = xyz. Quelle est la bonne expression du gradient de V?

(a)
$$\nabla(V) = zy \vec{e_x} + zx \vec{e_y} + yx \vec{e_z}$$

$$(c)$$
 $\overrightarrow{\text{grad}}(V) = zy \overrightarrow{e_y} + zx \overrightarrow{e_x} + yx \overrightarrow{e_z}$

$$\vec{\nabla}(V) = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$$

Entraînement 1.2 — Calcul de gradients en coordonnées cartésiennes.

On munit l'espace d'un repère cartésien dont le système de coordonnées est noté (x, y, z).

On rappelle l'expression de l'opérateur gradient dans ce système de coordonnées :

$$\overrightarrow{\operatorname{grad}}(f(x,y,z)) = \frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y} + \frac{\partial f}{\partial z} \overrightarrow{e_z}.$$

Développer les expressions suivantes :

a)
$$\overrightarrow{\operatorname{grad}}\left(xy+yz+zx+\frac{xyz}{a}\right)$$

b)
$$\overrightarrow{\text{grad}}(3x^2 + 2a(y-z) + b^2)$$

c)
$$\overrightarrow{\text{grad}}(x^2y + y^2z + z^2x + a^3)$$

d)
$$\overrightarrow{\operatorname{grad}} \left(2xy + 8a^2 e^{z/(2b)} - 6c^2 \right) \dots$$

e)
$$\overrightarrow{\text{grad}}\left(8x^2y + \frac{6a^4}{y} - 5b^2z\right) \dots$$

Entraı̂nement 1.3 — Calcul de gradients en coordonnées cylindriques.

0000

On munit l'espace d'un repère cylindrique dont le système de coordonnées est noté (r, θ, z) .

On donne l'expression de l'opérateur gradient dans ce système de coordonnées :

$$\overrightarrow{\operatorname{grad}}(f(r,\theta,z)) = \frac{\partial f}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{e_\theta} + \frac{\partial f}{\partial z} \overrightarrow{e_z}.$$

Développer les expressions suivantes :

a)
$$\overrightarrow{\operatorname{grad}}\left(3z - \frac{r^2}{a} - 2r\theta\right) \dots$$

b)
$$\overrightarrow{\operatorname{grad}}\left(\frac{a^2}{r^2}e^{5\theta}\right)$$

c)
$$\overrightarrow{\text{grad}}\left(\sqrt{r^2-a^2}\right)$$

d)
$$\overrightarrow{\operatorname{grad}}\left(7\theta\left(\frac{r}{a}\right)^4 + \ln(z/b)\right)$$

e)
$$\overrightarrow{\operatorname{grad}}\left(\frac{z}{r}\sin(\theta)\right)$$

Entraı̂nement 1.4 — La bonne formule.

0000

On introduit deux systèmes de coordonnées pour décrire un plan : des coordonnées cartésiennes (x_1, x_2) et des coordonnées polaires (ρ, α) .

Parmi les formules suivantes de gradient à deux dimensions d'une fonction scalaire g du plan, identifier la seule écriture valable :

(a)
$$\overrightarrow{\operatorname{grad}}(g(x_1, x_2)) = \frac{\partial g}{\partial x_1} \overrightarrow{e_{x_1}} + \frac{\partial g}{\partial x_2} \overrightarrow{e_{x_2}}$$

$$(c) \overrightarrow{\operatorname{grad}}(g(r,\alpha)) = \frac{\partial g}{\partial \rho} \overrightarrow{e_{\rho}} + \frac{1}{r} \frac{\partial g}{\partial \rho} \overrightarrow{e_{\alpha}}$$

(b)
$$\vec{\nabla}g(x_1, x_2) = \frac{\partial g}{\partial x_2} \overrightarrow{e_{x_1}} + \frac{\partial g}{\partial x_1} \overrightarrow{e_{x_1}}$$

$$\overrightarrow{\nabla} \boldsymbol{\cdot} g(r,\rho) = \frac{\partial g}{\partial \rho} \overrightarrow{e_\rho} + \frac{1}{\rho} \frac{\partial g}{\partial \alpha} \overrightarrow{e_\alpha}$$

.....

Entraînement 1.5 — Valeurs et projections d'un gradient.

On munit l'espace d'un repère cartésien dont le système de coordonnées est noté (x, y, z).

On donne l'expression de l'opérateur gradient dans ce système de coordonnées :

$$\vec{\nabla}(f(x,y,z)) = \frac{\partial f}{\partial x} \vec{e_x} + \frac{\partial f}{\partial y} \vec{e_y} + \frac{\partial f}{\partial z} \vec{e_z}.$$

On considère la fonction $g(x, y, z) = (x - 2)^2 + (y + 1)^2 + z^2 - 1$, on note M(x, y, z) un point quelconque de l'espace et A le point de coordonnées (-1, 1, 2).

- a) Calculer g(A)
- c) La quantité 2y + 2 correspond à :

- b) La quantité 2z correspond à :
 - $(a) \overrightarrow{\operatorname{grad}}(g) \cdot \overrightarrow{e_x}$
- $(b) \overrightarrow{\operatorname{grad}}(g) \cdot \overrightarrow{e_y}$
- d) La quantité 2x 4 correspond à :
- (a) $\overrightarrow{\operatorname{grad}}(g) \cdot \overrightarrow{e_x}$
- $(c) \overrightarrow{\operatorname{grad}}(g) \cdot \overrightarrow{e_z}$
- (b) $\overrightarrow{\operatorname{grad}}(g) \cdot \overrightarrow{e_y}$

e) La quantité $\vec{\nabla}g(M)$ correspond au vecteur :

$$\begin{array}{c}
\text{(a)} \\
2(x-2) \\
2(y-1) \\
2z
\end{array}$$

(a)
$$\begin{pmatrix} 2(x-2) \\ 2(y-1) \\ 2z \end{pmatrix}$$
 (b)
$$\begin{pmatrix} 2(y-1) \\ 2(x+2) \\ 2z \end{pmatrix}$$
 (c)
$$\begin{pmatrix} 2(x-2) \\ 2(y+1) \\ 2z \end{pmatrix}$$

$$\begin{array}{c}
\left(2(x-2)\right) \\
2(y+1) \\
2z
\end{array}$$

f) Calculer $\| \vec{\nabla} g(\mathbf{A}) \|$

L Entraînement 1.6 − Enquête sur une fonction.

On considère une fonction f(x, y, z) inconnue telle que $\overrightarrow{\text{grad}}(f) = 2xy\overrightarrow{e_x} + x^2\overrightarrow{e_y} + a^2\overrightarrow{e_z}$.

- a) Quelle est l'unique relation valable?
- (a) $\frac{\partial f(x,y,z)}{\partial x} = 2xy$ (b) $\frac{\partial f(x,y,z)}{\partial z} = x^2$ (c) $\frac{\partial f(x,y,z)}{\partial x} = y$

b) Quelle primitive est solution de la réponse précédente?

(a) $f(x, y, z) = xy^2 + g(x, y)$

(c) $f(x, y, z) = x^2y + yx^2$

- (b) $f(x, y, z) = x^2y + g(y, z)$
- c) Que vérifie la dérivée partielle par rapport à y de la réponse précédente?

d) En s'appuyant sur les réponses précédentes, quelle est la bonne expression de q?

(a)
$$g = a^2y + \text{cste}$$
 (b) $g = a^2z + \text{cste}$ (c) $g = a^2 + \text{cste}$

$$(b)$$
 $g = a^2z + cste$

$$(c)$$
 $g = a^2 + cste$

e) Quelle est l'expression de la fonction f(x, y, z) telle que f(0, 0, 0) = 0?

(a)
$$f = x^2y + a^2z$$
 (b) $f = y^2z + a^2x$ (c) $f = x^2z + a^2y$

$$\widehat{\text{(b)}} \ f = y^2 z + a^2 x$$

$$(c) f = x^2 z + a^2 y$$

Sur l'opérateur divergence

Entraı̂nement 1.7 — Calcul de divergences en coordonnées cartésiennes.

On munit l'espace d'un repère cartésien dont le système de coordonnées est noté (x, y, z).

On donne l'expression de l'opérateur divergence dans ce système de coordonnées :

$$\operatorname{div}(\overrightarrow{A}) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}.$$

Développer les expressions suivantes :

a)
$$\operatorname{div}\left(3x^{2}\overrightarrow{e_{x}}+2ay\overrightarrow{e_{y}}-2bz\overrightarrow{e_{z}}\right)$$

b)
$$\operatorname{div}\left(2xy\overrightarrow{e_y} + 8a^2e^{\frac{z}{2b}}\overrightarrow{e_z} - 6b^2\overrightarrow{e_x}\right)$$

c)
$$\operatorname{div}\left(8x^2y\overrightarrow{e_x} + \frac{6x^4}{y}\overrightarrow{e_y}\right)$$

d)
$$\operatorname{div}(x\overrightarrow{e_z} + z\overrightarrow{e_x})$$

e)
$$\operatorname{div}(x^2y\vec{e_x} - yx^2(\vec{e_y} - \vec{e_z}))$$

Entraı̂nement 1.8 — Calcul de divergences en coordonnées cylindriques.

On munit l'espace d'un repère cylindrique dont le système de coordonnées est noté (r, θ, z) .

On donne l'expression de l'opérateur divergence dans ce système de coordonnées :

$$\operatorname{div}(\overrightarrow{A}) = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}.$$

Développer les expressions suivantes :

a)
$$\operatorname{div}\left(-\frac{r^2}{a}\overrightarrow{e_r} - 2r\theta\overrightarrow{e}_\theta + 3z\overrightarrow{e}_z\right)$$

b)
$$\operatorname{div}(r\overrightarrow{e}_{\theta})$$

Entraînement 1.9 — Bataille de divergences.

Quel est le champ dont la divergence au point A(-1,-1,1) est maximale?

(a)
$$x^2 \vec{e_x} + y^2 \vec{e_y} + z^2 \vec{e_z}$$

$$(c)$$
 $z^2 \overrightarrow{e_x} + x^2 \overrightarrow{e_y} + y^2 \overrightarrow{e_z}$

(a)
$$x^2 \overrightarrow{e_x} + y^2 \overrightarrow{e_y} + z^2 \overrightarrow{e_z}$$
 (c) $z^2 \overrightarrow{e_x} + x^2 \overrightarrow{e_y} + y^2 \overrightarrow{e_z}$
(b) $y^2 \overrightarrow{e_x} + x^2 \overrightarrow{e_y} + z^2 \overrightarrow{e_z}$ (d) $y^2 \overrightarrow{e_x} + x^2 \overrightarrow{e_z} + z^2 \overrightarrow{e_y}$

$$(d) y^2 \overrightarrow{e_x} + x^2 \overrightarrow{e_z} + z^2 \overrightarrow{e_z}$$

Entraînement 1.10 — Choix du système de coordonnées.

On munit l'espace d'un système de coordonnées cartésiennes (x, y, z) et d'un système de coordonnées sphériques (r, θ, φ) . On s'intéresse au champ vectoriel $\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z} = r\overrightarrow{e_r}$ et on donne l'expression de l'opérateur divergence en coordonnées sphériques :

$$\operatorname{div}(\overrightarrow{A}) = \frac{1}{r^2} \frac{\partial r^2 A_r}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (\sin(\theta) A_{\theta})}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial A_{\varphi}}{\partial \varphi}.$$

Développer les expressions suivantes :

a)
$$\operatorname{div}(x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z})$$

b)
$$\operatorname{div}(r\vec{e_r})$$

On munit l'espace de dimension 2 d'un système de coordonnées cylindro-polaires (r, θ) .

On s'intéresse au champ vectoriel $\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} = r\overrightarrow{e_r}$.

c) La divergence de ce champ (définie dans l'entraînement 1.8), en tout point, vaut :

Sur l'opérateur rotationnel

Entraînement 1.11 — Calcul de rotationnels en coordonnées cartésiennes.

On munit l'espace d'un repère cartésien dont le système de coordonnées est noté (x, y, z).

On donne l'expression de l'opérateur rotationnel dans ce système de coordonnées :

$$\overrightarrow{\mathrm{rot}}(\overrightarrow{A}) = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \overrightarrow{e_z}.$$

Développer les expressions suivantes :

a)
$$\overrightarrow{rot}(3x^2\overrightarrow{e_x} + 2by\overrightarrow{e_y} - 2cz\overrightarrow{e_z})$$

b)
$$\overrightarrow{rot}(2xy\overrightarrow{e_x} + 8c^2\overrightarrow{e_z}\overrightarrow{e_y} - 6c^2\overrightarrow{e_z})$$

c)
$$\overrightarrow{rot}\left(8x^2y\overrightarrow{e_x} + \frac{6x^4}{y}\overrightarrow{e_y}\right)$$

d)
$$\overrightarrow{rot}(-x\overrightarrow{e_z} + z\overrightarrow{e_x})$$

e)
$$\overrightarrow{rot}(x^2y\overrightarrow{e_x} - yx^2(\overrightarrow{e_y} - \overrightarrow{e_z}))$$

Entraînement 1.12 — Calcul de rotationnels en coordonnées cylindriques.

On munit l'espace d'un repère cylindrique dont le système de coordonnées est noté (r, θ, z) .

On donne l'expression de l'opérateur divergence dans ce système de coordonnées :

$$\overrightarrow{\mathrm{rot}}(\overrightarrow{A}) = \left(\frac{1}{r}\frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}\right)\overrightarrow{e_r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right)\overrightarrow{e_\theta} + \left(\frac{1}{r}\frac{\partial rA_\theta}{\partial r} - \frac{\partial A_r}{\partial \theta}\right)\overrightarrow{e_z}.$$

Développer les expressions suivantes :

a)
$$\overrightarrow{rot}\left(-\frac{r^2}{a}\overrightarrow{e_r} - 2r\theta\overrightarrow{e_\theta} + 3z\overrightarrow{e_z}\right)$$

b)
$$\overrightarrow{rot}(r\overrightarrow{e_{\theta}})$$

Sur la représentation graphique

Entraînement 1.13 — Exploiter une carte de champ.

On considère un champ $\vec{v}(M)$ dérivant d'un gradient de potentiel Φ , c'est-à-dire tel qu'en tout point M:

$$\overrightarrow{v}(M) = \overrightarrow{\text{grad}} \Phi(M)$$

La figure ci-dessous représente les lignes de champ (en trait plein) et les équipotentielles (en tirets). Le système est invariant par translation orthogonalement au plan de la figure. Les valeurs du potentiel $\Phi(M)$ sont données pour chaque équipotentielle en UA (unité arbitraire).

On admet que le champ est tel que div $\vec{v} = \vec{0}$, c'est-à-dire à flux conservatif. Autrement dit, le long d'un tube de champ de section S, la quantité vS est conservée.

- a) Par rapport aux équipotentielles, les lignes de champ sont orientées :
 - (a) parallèlement

- (b) orthogonalement
- (c) aléatoirement

b) Estimer graphiquement v(C) en UA/m sachant que AB ≈ 50 cm

\sim	\rightarrow
/ \	A T)
1 9 1	$\Delta \bowtie$
(a)	μ

$$(b) \overrightarrow{BA}$$

d) Estimer graphiquement $\frac{v(\mathbf{C})}{v(\mathbf{D})}$ en calculant un rapport de longueurs

Sur les opérateurs laplaciens

Entraı̂nement 1.14 — Opérateur laplacien scalaire en coordonnées cartésiennes.

On munit l'espace d'un repère cartésien dont le système de coordonnées est noté (x,y,z).

On donne l'expression de l'opérateur laplacien (scalaire) dans ce système de coordonnées :

$$\Delta(f(x,y,z)) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

Développer les expressions suivantes :

a)
$$\Delta \left(\frac{x^2y}{a} + bz + c^2\right)$$

b)
$$\Delta(y^2 - 5az)$$

c)
$$\Delta \left(b^2 \ln(\frac{z}{a}) + 3x^2 \right)$$

Entraı̂nement 1.15 — Opérateur laplacien vectoriel en coordonnées cartésiennes.

On munit l'espace d'un repère cartésien dont le système de coordonnées est noté (x, y, z). On donne l'expression de l'opérateur laplacien (vectoriel) dans ce système de coordonnées :

$$\Delta(\overrightarrow{A}(x,y,z)) = \Delta A_x \overrightarrow{e_x} + \Delta A_y \overrightarrow{e_y} + \Delta A_z \overrightarrow{e_z}.$$

On dispose d'un vecteur \overrightarrow{A} dont les coordonnées cartésiennes sont les suivantes : $\begin{pmatrix} \frac{x^2y}{a} + bz + c^2 \\ y^2 - 5az \\ b^2 \ln\left(\frac{z}{a}\right) + 3x^2 \end{pmatrix}.$

Développer $\Delta \overrightarrow{A}$

Bilan sur les opérateurs

Entraînement 1.16 — Scalaire ou vecteur?

Les différents opérateurs rencontrés peuvent être des opérateurs :

- (a) scalaires s'appliquant à des scalaires
- (c) vectoriels s'appliquant à des scalaires
- (b) scalaires s'appliquant à des vecteurs
- (d) vectoriels s'appliquant à des vecteurs

- Quel cas correspond à l'opérateur « la placien » appliqué à un champ scalaire ? $\ldots \ldots$

Réponses mélangées

▶ Réponses et corrigés page 216

&

Électrostatique

Prérequis

Repérages cartésien, cylindrique et sphérique. Intégrales curvilignes, de surface et de volume. Champs scalaires et vectoriels. Gradient. Théorème de Gauss.

Constantes utiles

- \rightarrow Charge élémentaire : $e=1,\!60\times 10^{-19}\,\mathrm{C}$
- \rightarrow Permittivité diélectrique du vide : $\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F} \cdot \mathrm{m}^{-1}$

Distributions de charge : symétries, invariances, charge totale

Entraînement 2.1 — Calculs intégraux de longueurs, surfaces et volumes.
On rappelle les déplacements élémentaires dans chacun des trois systèmes de coordonnées :
• en coordonnées cartésiennes : $\overrightarrow{d\ell} = dx \overrightarrow{e_x} + dy \overrightarrow{e_y} + dz \overrightarrow{e_z}$
• en coordonnées cylindriques (ou cylindro-polaires) : $\overrightarrow{d\ell} = dr \ \overrightarrow{e}_r + r d\theta \ \overrightarrow{e}_\theta + dz \ \overrightarrow{e_z}$
• en coordonnées sphériques : $\overrightarrow{d\ell} = dr \ \overrightarrow{e}_r + r d\theta \ \overrightarrow{e}_\theta + r \sin(\theta) d\varphi \ \overrightarrow{e}_\varphi$
a) Exprimer l'élément de circonférence d $\mathcal C$ d'un disque de rayon R
b) Grâce à un calcul intégral, retrouver la circonférence d'un cercle de rayon R .
c) En coordonnées cylindriques, exprimer l'aire d $\mathcal S$ de l'élément de surface orthogonal à $\overrightarrow{e_z}$.
d) Grâce à un calcul d'intégrale, retrouver la surface d'un disque de rayon R
e) Grâce à un calcul d'intégrale, retrouver le volume d'une boule de rayon R
Entraînement 2.2 — Charge totale d'une distribution linéique.
Dans chacun des cas suivants, déterminer la charge totale des distributions linéiques suivantes à l'aide de
la relation : $Q = \int \lambda(M) d\ell_M$.
a) Pour une tige de longueur ℓ chargée avec une densité linéique de charge uniforme λ_0 .
a) I out une tige de longueur i chargée avec une densité intelique de charge uniforme λ_0 .
b) Pour un anneau de rayon a dont la densité linéique de charge, non uniforme, est $\lambda(M) = q_0 \theta/a$ avec q_0
une constante et θ l'angle qui repère le point M sur l'anneau.

&	En	ntraînement 2.3 — Feuille d'aluminium chargée.	0000
		it une feuille d'aluminium de format A4 à laquelle 1 000 électrons t été arrachés. La feuille porte alors la charge électrique Q . $L=29.7\mathrm{cm}$	$21{,}0\mathrm{cm}$
	a)	Exprimer la charge Q en fonction de la charge électrique élémentaire e	
	b)	Exprimer la surface S de la feuille en fonction des longueurs L et ℓ	
	c)	En déduire la valeur de la charge surfacique moyenne $\sigma=Q/S$ portée par la feuille	
		ntraînement 2.4 — Quadrupôle électrostatique. n considère la distribution de charge ci-dessous.	0000
		$ \begin{array}{cccc} & \overrightarrow{ey} & & \\ & \overrightarrow{ez} & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	
	a)	Quels sont les trois plans de symétrie de la distribution?	
	b)	Quels sont les deux plans d'antisymétrie de la distribution?	
	En	ntraînement 2.5 — Autour d'une sphère chargée.	0000
	To	ous les résultats devront être donnés en écriture scientifique.	
	a)	Quel est le volume en m³ d'une sphère de rayon $R=25\mathrm{cm}$?	
	b) uni	Que vaut la charge totale de la sphère, en coulombs, si celle-ci est chargée avec une densité iforme de $\rho_0 = 50.0 \mathrm{nC} \cdot \mathrm{m}^{-3}$?	volumique
	• • •		
	c)	Quelle est l'aire de la surface de la sphère en m ² ?	
	d) uni	Que vaut la charge totale de la sphère, en coulombs, si celle-ci est chargée avec une densité iforme $\sigma = 8 \mu\text{C} \cdot \text{m}^{-2}$?	surfacique

.....

Entraînement 2.6 — Tube chargé localement.

Un tube conducteur d'axe (Oz) possède une densité surfacique de charge $\sigma(\theta) = \sigma_0 \cos(\theta)$, avec σ_0 une constante et θ l'angle des coordonnées cylindriques (r, θ, z) .

- a) Comment s'exprime l'aire d'un élément de surface dS du tube?
 - (a) dr dz

- $(b) R d\theta dz$
- $(c) R \sin(\theta) d\theta dz$
- (d) $R dr d\theta$
- b) Comment s'exprime la charge totale Q portée par le tube?
- (a) $Q = \int_{r=0}^{R} \int_{r=0}^{H} \sigma(\theta) dr dz$

- $(c) Q = \int_{\theta=0}^{2\pi} \int_{\theta=0}^{H} \sigma(\theta) R \, \mathrm{d}\theta \, \mathrm{d}z$
- (d) $Q = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} \sigma(\theta) R \, dr \, d\theta$
- À l'aide du calcul d'une intégrale, déterminer la charge totale Q

Entraînement 2.7 — Autour d'un cylindre chargé.

Soit un câble cylindrique d'axe (Oz), de hauteur h et de rayon R, doté d'une densité volumique de charge ρ .

- a) Laquelle de ces formules permet de calculer l'aire de la surface latérale du cylindre?
- $\widehat{\text{a}}$ $\pi R^2 h$

 \bigcirc $4\pi R^2 h$

(b) $2\pi Rh$

b) Sans négliger les effets de bords, déterminer les invariances de cette distribution de charge si,

pour
$$0 \leqslant z \leqslant h$$
, $\rho = \rho_0 \left(\frac{r}{R}\right)^3$,

avec ρ_0 une constante homogène à une charge volumique.

- (a) invariance par translation parallèlement à $\overrightarrow{e_x}$
- (c) invariance par translation parallèlement à $\overrightarrow{e_z}$
- (b) invariance par rotation autour de l'axe (Oz)
- (d) aucune invariance
- c) Même question si, pour $0 \le z \le h$, $\rho = \rho_0 \left(\frac{r}{R}\right)^3 \sin\left(\frac{\theta}{2}\right)$
- d) Même question si le cylindre est de hauteur infinie avec $\rho = \rho_0 \left(\frac{r}{R}\right)^3$

De la distribution de charge au champ électrostatique

Entraînement 2.8 — Superpositions et symétries.

Sur le schéma ci-contre figurent, en M₁ et M₂, les champs électrostatiques E_1 et E_2 respectivement générés par les deux charges $q_1 = +e$ et $q_2 = +e$.

Le plan $(M_2, \overrightarrow{e_y}, \overrightarrow{e_z})$, nommé \mathcal{P} , est un plan de symétrie de la distribution de charge.

c) Quelles propositions sont correctes?

(a)
$$\vec{E}(M_3) = -2\vec{e_x} + 8\vec{e_y}$$

$$(c)$$
 $\vec{E}(M_2) \in \mathcal{P}$

$$\overrightarrow{\text{b}} \ \overrightarrow{E}(\text{M}_3) = 2\overrightarrow{e_x} + 8\overrightarrow{e_y}$$

$$\overrightarrow{\mathbf{d}}$$
 $\overrightarrow{E}(\mathbf{M}_2) \perp \mathcal{P}$

Entraînement 2.9 — Symétrie d'une distribution volumique de charge.

Le champ électrostatique créé par la distribution volumique ci-dessous est noté \vec{E} . Le plan (Π_1) est un plan de symétrie de la distribution. Le plan (Π_2) est un plan d'antisymétrie de la distribution.

On rappelle qu'en tout point d'un plan de symétrie (resp. antisymétrie) de la distribution, le champ électrostatique appartient (resp. est perpendiculaire) à ce plan.

a) Quel vecteur unitaire est normal au plan (Π_1) ?

0000

b) Quel vecteur unitaire est normal au plan (Π_2) ?.....

c) En un point M(x, 0, 0) de l'axe (Ox), identifier l'expression correcte parmi celles proposées.

$$(a) \vec{E}(M) = \vec{0}$$

$$\overrightarrow{E}(M) = E(M)\overrightarrow{e_y}$$

$$\overrightarrow{E}(\mathbf{M}) = E(\mathbf{M})\overrightarrow{e_z}$$

Entraînement 2.10 — Invariances d'une distribution volumique de charge.

La grille infinie représentée ci-dessous est constituée de tiges infinies selon $\overrightarrow{e_z}$ et est chargée uniformément négativement.

Soit M un point de l'espace repéré par (x, y, z).

Sachant que les composantes du champ électrique \vec{E} possèdent les mêmes invariances que celles de la distribution de charge, lesquelles de ces expressions sont valides si l'étude des symétries a déjà été menée?

(a)
$$\vec{E}(x, y, z) = E_x(y)\vec{e_x} + E_y(y)\vec{e_y}$$

(c)
$$\vec{E}(x, y, z) = E_x(x, y) + E_y(x, y)$$

$$(\vec{\mathbf{d}}) \| \vec{E} \| (x, y, z) = \| \vec{E} \| (x, y, 0) \| \vec{E} \| \vec{E} \| (x, y, 0) \| \vec{E} \| \vec$$

🚉 Entraînement 2.11 — Homogénéités.

Dans les expressions suivantes, ρ , σ et λ sont des densités de charge volumique, surfacique et linéique. Le potentiel électrostatique est noté V, et a, ℓ , h et r sont des longueurs.

a) Parmi les expressions suivantes, identifier celles qui sont homogènes à une charge électrique.

$$\bigcirc$$
 $4\pi a^2 \rho$

$$(b) \lambda \pi a^2$$

$$\bigcirc \rho \pi a^2 h$$

b) Parmi les expressions suivantes, identifier celles qui sont homogènes à un champ électrostatique.

(a)
$$\frac{\sigma}{\varepsilon_0}$$

(b)
$$(V_2 - V_1)e$$
 (c) $\frac{q^2}{4\pi\varepsilon_0 r}$ (d) $\frac{\rho r}{\varepsilon_0}$

$$\bigcirc \frac{q^2}{4\pi\varepsilon_0 r}$$

Entraînement 2.12 — Tracé d'une composante du champ.

La composante radiale du champ électrostatique créé au point M par une sphère de centre O, de rayon R, dotée d'une densité volumique de charge ρ_0 , est donnée en fonction de la distance r = OM par

$$E_r(r < R) = \frac{\rho_0 r}{3\varepsilon_0}$$
 et $E_r(r > R) = \frac{3\rho_0 R^3}{\varepsilon_0 r^2}$.

Laquelle de ces courbes décrit l'évolution de E_r en fonction de r?

Entraînement 2.13 — Calcul d'un champ électrostatique par intégration.

Un disque, d'axe (Oz) et de rayon R, possède une charge surfacique uniforme σ . On note P un point du disque tandis que M est un point de l'espace qui appartient à l'axe (Oz).

- a) Comment s'exprime l'aire élémentaire dS centrée sur $P(r,\theta)$?
 - \widehat{a} dS = r dr dz

 $(b) dS = r \sin(\theta) dr d\theta$

 $\begin{array}{c}
\text{(c)} dS = dx dz \\
\text{(d)} dS = r dr d\theta
\end{array}$

b) Quelle est l'expression du produit scalaire $\overrightarrow{PM} \cdot \overrightarrow{e_z}$?

(a) $\overrightarrow{PM} \cdot \overrightarrow{e_z} = PM$

(b) $\overrightarrow{PM} \cdot \overrightarrow{e_z} = dz$

 $\overrightarrow{\text{d}}$ $\overrightarrow{\text{PM}} \cdot \overrightarrow{e_z} = r$

c) Quelle est l'expression de la distance $PM = \|\overrightarrow{PM}\|$?

(a) $PM = z^2 + r^2$

(c) $PM = \sqrt{dz^2 + dr^2}$

(b) PM = $\sqrt{z^2 + r^2}$

 $\widehat{\mathrm{d}}$ PM = $\mathrm{d}r + \mathrm{d}z$

Le principe de superposition énonce que le champ électrostatique en M est la somme des champs électrostatiques créés par chaque élément de surface d'aire dS et de charge d $Q = \sigma$ dS. L'expression du champ créé par une source ponctuelle permet alors d'exprimer la composante axiale $E_z = \vec{E} \cdot \vec{e_z}$ du champ créé par le disque sur l'axe (Oz) par :

$$E_z = \iint_P \frac{\sigma \, \mathrm{d}S}{4\pi\varepsilon_0} \frac{\overrightarrow{\mathrm{PM}} \cdot \overrightarrow{e_z}}{\mathrm{PM}^3} = \int_{r=0}^{r=R} \int_{\theta=0}^{\theta=2\pi} \frac{\sigma \, r \, \mathrm{d}r \, \mathrm{d}\theta}{4\pi\varepsilon_0} \frac{z}{(r^2+z^2)^{3/2}}.$$

d) Calculer l'intégrale précédente à l'aide du changement de variable $u=r^2$.

.....

e) Simplifier l'expression obtenue en d) si $z \ll R$ afin de retrouver l'expression du champ créé par un plan infini uniformément chargé.

......

f) Sachant que $(1+\varepsilon)^{\alpha}=1+\alpha\varepsilon$ à l'ordre 1 en ε quand $\varepsilon\to 0$, simplifier l'expression obtenue en d) si $z \gg R$ afin de retrouver l'expression du champ créé par une charge ponctuelle $Q_0 = \pi R^2 \sigma$.

Flux électrostatique

Entraînement 2.14 — Signe d'un flux électrostatique à travers une surface.

Le flux $\phi = \iint \vec{E} \cdot \vec{dS}$ du champ électrostatique \vec{E} à travers une surface orientée (S) dépend de l'orientation de cette surface (voir ci-dessous la flèche sur chaque contour).

0000

Entraînement 2.15 — Flux électrostatique à travers une calotte sphérique.

Une charge ponctuelle q, placée au centre O d'un repère sphérique, crée le champ électrostatique $\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{e}_r$ avec (r, θ, φ) les coordonnées sphériques du point

La calotte sphérique représentée ci-contre (en deux dimensions) est la portion de sphère de rayon R qui intersecte le demi-cône d'axe de révolution (Oz) et de demi-angle $\alpha > 0$.

a) Comment s'exprime un élément de surface dS de la calotte sphérique?

(a)
$$dS = R^2 \cos(\varphi) d\varphi d\theta$$

$$(c) dS = R\cos(\theta) d\theta d\varphi$$

$$\widehat{(b)} dS = R\sin(\varphi) d\varphi d\theta$$

$$(d) dS = R^2 \sin(\theta) d\theta d\varphi$$

b) Comment s'exprime le flux ϕ du champ électrostatique \vec{E} à travers la calotte sphérique?

(a)
$$\phi = \int_{\varphi=\pi-\alpha}^{\pi+\alpha} \int_{\theta=0}^{2\pi} \vec{E} \cdot R^2 \cos(\varphi) \, d\varphi \, d\theta \, \vec{e}_r$$
 (c) $\phi = \int_{\theta=\pi-\alpha}^{\pi} \int_{\varphi=0}^{2\pi} \vec{E} \cdot R^2 \sin(\theta) \, d\theta \, d\varphi \, \vec{e}_r$

$$(c) \phi = \int_{\theta=\pi-\alpha}^{\pi} \int_{\varphi=0}^{2\pi} \vec{E} \cdot R^2 \sin(\theta) \, d\theta \, d\varphi \, \vec{e}_{\tau}$$

(b)
$$\phi = \int_{\varphi = -\alpha}^{\alpha} \int_{\theta = 0}^{\pi} \vec{E} \cdot R^2 \cos(\varphi) \, d\varphi \, d\theta \, \vec{e}$$

Calculer la double intégrale. Écrire le résultat obtenu sous la forme $\phi = K(1 - \cos \alpha)$, avec K une

Entraînement 2.16 — Avec le théorème de Gauss.

Une distribution volumique, de charge volumique inconnue, crée un champ électrostatique dont l'expression en repérage sphérique est $\vec{E}(M) = E_r \vec{e}_r = \frac{q}{4\pi\varepsilon_0} \frac{1}{r^2} \left(1 + \frac{r}{a}\right) e^{-r/a} \vec{e}_r$, où q et a sont des constantes positives.

a) Exprimer le flux électrostatique $\phi(\vec{E})$ à travers une sphère de rayon r en fonction de E(r) et r.

......

b) Exprimer la charge $Q = \varepsilon_0 \phi(\vec{E})$ (théorème de Gauss) située à l'intérieur de la sphère de rayon r.

(a)
$$\frac{q}{\varepsilon_0} \left(1 + \frac{r}{a} \right) e^{-r/a}$$

$$\bigcirc q \left(1 + \frac{r}{a}\right) e^{-r/a}$$

$$\widehat{\mathrm{(d)}} - q \, \mathrm{e}^{-r/a}$$

Circulation du champ électrostatique – Potentiel électrostatique

Entraînement 2.17 — Signe d'une circulation électrostatique le long d'un chemin.

Les lignes du champ électrostatique \overrightarrow{E} produit par une charge ponctuelle q négative convergent vers cette charge. La circulation $\mathcal{C}=\int \overrightarrow{E}\cdot\overrightarrow{\mathrm{d}\ell}$ le long d'un chemin orienté dépend de l'orientation de ce chemin.

Pour chaque chemin orienté, indiquer si la circulation \mathcal{C} est positive, négative ou nulle.

Entraînement 2.18 — Orientation du champ au sein d'un condensateur plan.

Le schéma ci-dessous représente un condensateur plan dont les armatures sont portées aux potentiels $V_1 = -6 \,\mathrm{V}$ et $V_2 = 3 \,\mathrm{V}$. Deux surfaces équipotentielles sont représentées par des lignes en tirets.

a) Donner l'orientation du vecteur grad V.

$$(a) \vec{e_x}$$

$$(b) - \overline{e_i}$$

$$(c)$$
 $-\overline{e_2}$

$$\overrightarrow{d}$$
 $\overrightarrow{e_z}$

b) Donner l'orientation du vecteur champ électrostatique
$$\overrightarrow{E}$$
.

$$(a) \vec{e_x}$$

$$(c)$$
 $-\bar{e}_s$

$$\stackrel{\frown}{\mathrm{d}}$$

$$V_1 = -6 \, \mathrm{V}$$

Entraînement 2.19 — Circulation et différence de potentiel.

0000

Soit un segment orienté allant d'un point A à un point B de coordonnées cartésiennes respectives (a,0) et (2a, 2a). Le vecteur déplacement élémentaire en repérage cartésien s'exprime comme $\overrightarrow{d\ell} = dx \overrightarrow{e_x} + dy \overrightarrow{e_y}$.

- a) Laquelle des relations suivantes est valable le long du segment AB?

Soit un champ $\vec{E} = E_0 (1 - e^{-x/a}) \vec{e_x}$, avec a > 0.

- b) Sachant que le champ électrostatique est orienté dans le sens des potentiels électriques V décroissants, déterminer sans calcul lequel de V(x=a) ou V(x=2a) est le potentiel le plus élevé
- c) La circulation électrostatique sur le segment AB est reliée à la différence de potentiel électrique par

$$V(\mathbf{A}) - V(\mathbf{B}) = \int_{\mathbf{A}}^{\mathbf{B}} \overrightarrow{E} \cdot \overrightarrow{d\ell}.$$

0000

Entraînement 2.20 — Approximation dipolaire.

Soit un dipôle électrostatique constitué de deux charges ponctuelles opposées +q et -q, séparées par une distance AB = a. D'après le principe de superposition, le potentiel créé par ce doublet en un point M s'écrit

$$V(\mathbf{M}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\mathbf{A}\mathbf{M}} - \frac{1}{\mathbf{B}\mathbf{M}} \right).$$

a) Laquelle de ces propositions donne l'expression de $AM = \|\overrightarrow{AM}\|$ au carré en fonction de a et θ ?

(a)
$$AM^2 = r^2 + \left(\frac{a}{2}\right)^2 - ar\sin(\theta)$$

$$(c) AM^2 = r^2 + \left(\frac{a}{2}\right)^2 - ar\cos(\theta)$$

(b)
$$AM^2 = r^2 + \left(\frac{a}{2}\right)^2 + ar\cos(\theta)$$

On se place dans l'approximation dipolaire, c'est-à-dire loin du doublet de charges : $r \gg a$.

- b) Réaliser un développement limité de 1/AM à l'ordre 1 en a/r
- Même question pour 1/BM
- En déduire l'expression du potentiel V(M) dans l'approximation dipolaire.

Entraînement 2.21 — Effet de pointe.

Un individu porte une charge négative, ce qui modifie localement les propriétés du champ électrostatique. La figure ci-dessous représente qualitativement les lignes de champ en trait plein tandis que les (surfaces) équipotentielles sont illustrées en pointillés. L'échelle du schéma est 1 division $\leftrightarrow 40\,\mathrm{cm}$.

a) Comment sont orientées les lignes de champ électrostatique?

(a) vers l'individu

b) Quel est le signe des valeurs de potentiel électrostatique des

équipotentielles représentées?

c) Évaluer l'ordre de grandeur du champ en A ...

d) Indiquer par une analyse de la carte de champ, et sans aucun calcul, laquelle de ces propositions est vraisemblable:

$$(a) \vec{E}(B) > \vec{E}(A)$$

$$(c)$$
 $\vec{E}(B) = \vec{E}(A)$

$$\stackrel{\textstyle \frown}{(\mathrm{b})} \ \| \overrightarrow{E}(\mathrm{B}) \| > \| \overrightarrow{E}(\mathrm{A}) \|$$

$$(\mathbf{d}) \| \vec{E}(\mathbf{B}) \| < \| \vec{E}(\mathbf{A}) \|$$

Réponses mélangées

$$\overrightarrow{e_y} \quad \frac{1}{r} \left(1 - \frac{a \cos(\theta)}{2r} \right) \quad \text{nulle} \qquad (O, \overrightarrow{e_x} + \overrightarrow{e_y}, \overrightarrow{e_z}), \ (O, \overrightarrow{e_x} - \overrightarrow{e_y}, \overrightarrow{e_z}) \quad \text{positif}$$

$$2,57 \times 10^{-15} \, \text{C} \cdot \text{m}^{-2} \quad \text{(b)} \quad \text{(c)} \quad \text{(b)} \text{ et (d)} \quad \text{(c)} \quad \text{(a)} \text{ et (f)} \quad 0 \quad \text{(c)}$$

$$(D) \quad (D) \quad (D)$$

$$(O, \vec{e_x} + \vec{e_y}, \vec{e_z}), (O, \vec{e_z})$$

$$2,57 \times 10^{-15} \,\mathrm{C \cdot m^{-1}}$$

$$\tau$$

$$\frac{1}{r} \left(1 + \frac{a \cos(\theta)}{2r} \right)$$

$$\frac{\sigma}{2\varepsilon_0} \left(1 - \sqrt{\frac{z^2}{z^2 + R^2}} \right)$$

$$\bigcirc$$

$$\frac{q}{2\varepsilon_0} (1 - \cos \alpha)$$

$$-2\overrightarrow{e_x} + 8\overrightarrow{e_y}$$

$$\frac{\widetilde{K}}{\frac{4}{2}}\pi R^3$$

EMP2

Magnétostatique

Prérequis

Repérages cartésien, cylindrique et sphérique. Intégrales curvilignes, de surface et de volume. Champs scalaire et vectoriel. Théorème d'Ampère.

Constantes utiles

- \rightarrow Charge électrique élémentaire : $e = 1,602 \times 10^{-19}$ C
- \rightarrow Masse de l'électron : $m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$
- \rightarrow Perméabilité magnétique du vide : $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H\cdot m^{-1}}$

Distributions de courant et densités de courant

Entraînement 3.1 — Dimension de densités de courant.

La dimension d'une intensité électrique est notée I, celle d'un temps T, et celle d'une longueur L.

a) On note \overrightarrow{j} une densité volumique de courant, $\overrightarrow{j}_{\mathrm{s}}$ une densité surfacique de courant et I l'intensité d'un courant. Quelles sont les relations correctes?

- (a) $I = \iint \vec{j} \cdot d\vec{S}$ (b) $\vec{j} = \iint I d\vec{S}$ (c) $I = \iiint \vec{j} \cdot d\vec{V}$ (d) $I = \int \vec{j}_s \cdot d\vec{\ell}$

b) Comment s'écrit la dimension de la norme d'une densité volumique de courant \vec{j} ?

- $(a) I \cdot L^{-3}$

c) Comment s'écrit la dimension de la norme d'une densité surfacique de courant $\overrightarrow{j_s}$?

- $(a) I \cdot L^{-1}$

Entraînement 3.2 — Densité volumique de courant en coordonnées cylindriques.

Soit un conducteur cylindrique (rayon a et longueur ℓ) d'axe (Oz) parcouru par un courant d'intensité

$$I = \iint \overrightarrow{j} \cdot \overrightarrow{dS},$$

où $\overrightarrow{j} = j_0 \frac{b}{r} \overrightarrow{e_z}$ est le vecteur densité volumique de courant, avec j_0 et b constants, et $\overrightarrow{dS} = dS\overrightarrow{e_z}$ un élément de section orientée.

Exprimer I en fonction de la section S du conducteur, du rayon a et des constantes j_0 et b.

Entraînement 3.3 — Densité surfacique de courant en coordonnées cylindriques.

Soit un conducteur cylindrique (rayon a et longueur ℓ) d'axe (Oz) parcouru par un courant d'intensité

$$I = \int \vec{j}_{s} \cdot \vec{d\ell},$$

où $\vec{j_{\rm s}}=j_{{\rm s},0}\vec{e_{\theta}}$ est un vecteur densité surfacique de courant constant et où $\overrightarrow{d\ell} = dz \overrightarrow{e_{\theta}}$ un élément de longueur orientée.

Exprimer I en fonction de la longueur ℓ du conducteur et de la constante $j_{s,0}$.

Symétries et invariances

Entraînement 3.4 — Vent solaire.

Le vent solaire est un flux de particules chargées, majoritairement constitué de protons et de noyaux d'hélium. Le Soleil est considéré comme ponctuel et placé à l'origine O d'un repère sphérique. En première approximation, le vent solaire est assimilé à un courant de particules radial et stationnaire.

- a) Si l'émission est isotrope, quelle est l'expression simplifiée du vecteur densité de courant en $M(r, \theta, \varphi)$?
 - $(a) \vec{j}(M) = j_r(r,\theta)\vec{e_\theta}$

(c) $\vec{j}(M) = j_r(r,\theta)\vec{e_r}$

 $(b) \vec{j}(M) = j_{\theta}(r)\vec{e_{\theta}}$

b) Exprimer alors l'intensité I_R du courant électrique traversant une sphère de rayon R.

Entraînement 3.5 — Propriétés de symétrie d'une distribution de courant (I).

Soit un solénoïde d'axe (Ox), parcouru par un courant stationnaire d'intensité I.

On rappelle qu'un plan de symétrie (resp. antisymétrie) d'une distribution de courant est un plan pour lequel, de part et d'autre de celui-ci, les courants de la distribution sont répartis de manière strictement identique (resp. opposée).

Parmi les propositions ci-dessous, quelles sont celles qui sont correctes?

- (a) Le plan (xOy) est un plan de symétrie de la distribution.
- (b) Le plan (xOy) est un plan d'antisymétrie de la distribution même si le solénoïde n'est pas infiniment long.
- (c) Le plan (xOz) est un plan d'antisymétrie de la distribution.
- (d) Le plan (xOz) est un plan de symétrie de la distribution seulement si le solénoïde est infi-

Entraînement 3.6 — Propriétés de symétrie d'une distribution de courant (II).

On considère la situation suivante, où deux fils infinis sont parcourus par des courants de même intensité I et de même sens (de l'arrière vers l'avant).

On rappelle qu'en tout point d'un plan de symétrie (respectivement d'antisymétrie) de la distribution, le champ magnétostatique est perpendiculaire (respectivement appartient) à ce plan.

a) Le plan (xOy) est un plan d'antisymétrie pour la distribution.

Quelles sont les propositions correctes?

- (a) Le vecteur $\overrightarrow{e_z}$ est normal à ce plan.
- (b) Au point O, le champ \vec{B} est selon $\pm \vec{e_z}$.
- (c) Au point P_1 , le champ \vec{B} appartient à ce plan.
- \overrightarrow{d} Au point P₃, le champ \overrightarrow{B} appartient à ce plan.

.....

b) Le plan (yOz) est un plan de symétrie pour la distribution.

Quelles sont les propositions incorrectes?

- (a) Le vecteur $\overrightarrow{e_x}$ est normal à ce plan.
- (b) $\vec{B}(P_4) = B_y(P_4)\vec{e_y} + B_z(P_4)\vec{e_z}$
- (c) Au point P_2 , le champ \vec{B} est selon $\pm \vec{e_y}$.
- $\overrightarrow{B}(O) = B(O)\overrightarrow{e_z}$

......

- c) Quelles sont les propositions incomplètes ou incorrectes?
- (a) Le plan (xOz) est un plan d'antisymétrie pour la distribution.
- $(b) \vec{B}(O) = \vec{0}$
- (c) Le champ \vec{B} est toujours perpendiculaire au plan (xOz).
- $\overrightarrow{B}(P_2) = -\overrightarrow{B}(P_1)$

Entraînement 3.7 — Couche épaisse infinie parcourue par un courant.

Soit une couche infinie suivant les axes (Ox) et (Oy), située entre les plans d'équations z = d et z = -d, parcourue par un courant de densité volumique uniforme $\vec{j} = j_0 \vec{e_x}$.

- a) Exprimer l'intensité I du courant qui traverse la surface Σ orientée suivant $\overrightarrow{e_x}$...
- b) Quelles sont les invariances de cette distribution de courant?
 - (a) invariance par translation parallèlement à l'axe (Ox)
 - (b) invariance par rotation autour de l'axe (Oz)
 - (c) invariance par translation parallèlement à l'axe (Oy)
 - (d) aucune invariance

c) Le champ magnétostatique au point M est suivant le vecteur $\overrightarrow{e_y}$.

Sachant que les composantes du champ magnétostatique possèdent les mêmes invariances que la distribution, déterminer l'expression correcte.

(a)
$$\vec{B}(M) = B_y(y)\vec{e_y}$$

(b)
$$\vec{B}(M) = B_y(z)\vec{e_y}$$
 (c) $\vec{B}(M) = B_y(y,z)\vec{e_y}$

0000

Champs magnétostatiques

\blacksquare Entraînement 3.8 — Théorème de superposition.

Deux solénoïdes longs, parcourus par des courants stationnaires d'intensités I_1 et I_2 , sont positionnés perpendiculairement entre eux et à égale distance d'un point O. En ce point, le champ magnétostatique produit par le solénoïde (1) est supposé s'écrire $\overline{B_1}(O) = \mu_0 n_1 I_1 \overrightarrow{e_x}$, avec n_1 le nombre de spires par unité de longueur du solénoïde (1).

a) Par analogie avec l'expression fournie pour le solénoïde (1), écrire le champ magnétostatique produit par le solénoïde (2) au point O.

- b) D'après le théorème de superposition, comment s'écrit alors le champ total produit au point O?
 - (a) $\vec{B}(O) = \mu_0(n_1I_1 + n_2I_2)\vec{e_z}$

(c) \vec{B} (O) = $\mu_0(n_1I_1 - n_2I_2)(\vec{e_x} + \vec{e_y})$

(b) $\vec{B}(O) = \mu_0(n_1I_1 - n_2I_2)\vec{e_z}$

 $(\overrightarrow{d}) \overrightarrow{B}(O) = \mu_0 (n_1 I_1 \overrightarrow{e_x} - n_2 I_2 \overrightarrow{e_y})$

Entraînement 3.9 — Analyse dimensionnelle et champ magnétique.

Sachant que la force magnétique s'exprime comme $\vec{F} = q\vec{v} \wedge \vec{B}$, avec \vec{v} une vitesse, q une charge électrique et \vec{B} un champ magnétique, déterminer laquelle des expressions ci-dessous est homogène à la norme B d'un champ magnétique si m est une masse et R un rayon.

Entraînement 3.10 — Graphes et expressions d'un champ magnétique.

On donne les graphes associés aux champs magnétiques créés par divers dispositifs, chacun étant parcouru par un courant d'intensité I.

Le champ magnétique d'un conducteur cylindrique de rayon a parcouru par un courant volumique uniforme est donné par

$$B = \frac{\mu_0 Ir}{2\pi a^2} \text{ pour } 0 < r < a$$

$$B = \frac{\mu_0 Ir}{2\pi a^2}$$
 pour $0 < r < a$ et $B = \frac{\mu_0 I}{2\pi r}$ pour $r > a$.

Quel graphe correspond au champ magnétique créé par ce conducteur cylindrique?

Entraînement 3.11 — Champ magnétostatique quadrupolaire.

En repérage cartésien et dans le plan d'équation z=0, les composantes du champ magnétostatique créé par un quadrupôle sont $B_x = ky$, $B_y = kx$ et $B_z = 0$, avec k une constante non nulle.

b) En ce qui concerne la carte de champ (1), quelle est la proposition valide?

- $(a) \vec{B}(M) = \vec{B}(N)$
- (b) B(M) < B(N)
- (c) B(M) > B(N)

Circulation et flux magnétostatiques

Entraînement 3.12 — Circulation d'un champ magnétostatique sur un chemin.

La circulation $\mathcal{C} = \int_{(\Gamma)} \vec{B} \cdot \vec{d\ell}$ du champ magnétostatique \vec{B} le long d'un chemin orienté (Γ) dépend de

l'orientation de ce chemin. Pour chaque cas, exprimer $\mathcal C$ le long du chemin ABC en fonction du pas d du quadrillage. Sur chaque ligne de champ, la norme B du champ est supposée uniforme.

Entraînement 3.13 — Courants enlacés.

Pour chaque cas, exprimer l'intensité I_{enl} des courants enlacés par le contour (C) en fonction de l'intensité du courant I. Attention aux signes!

Entraı̂nement 3.14 — Signe d'un flux magnétostatique à travers une surface.

0000

On sait que le flux $\phi = \iint \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{dS}}$ du champ magnétostatique \overrightarrow{B} à travers une surface orientée (S) dépend de l'orientation de cette surface (voir ci-dessous la flèche sur chaque contour).

- ...
- b) Que vaut ϕ dans le cas d?

Entraînement 3.15 — Flux à travers une spire carrée.

0000

Soit une spire carrée de côté a, orientée dans le sens ABCD. On note x l'abscisse du côté BC. Dans le demi-espace tel que $x\geqslant 0$, règne un champ magnétostatique \overrightarrow{B} uniforme perpendiculaire au plan de la spire.

Exprimer le flux magnétostatique à travers la spire orientée, de normale \vec{n} , défini par $\phi(\vec{B}) = \iint \vec{B} \cdot \vec{n} \, dS$.

- a) Pour x < 0 ...
- b) Pour $x \in [0, a]$
- c) Pour x > a ...

Entraînement 3.16 — Théorème d'Ampère et flux d'un champ non uniforme.

Un fil conducteur est bobiné en N spires jointives sur un tore circulaire de rayon moyen R à section carrée de côté a. La normale de chaque spire est orientée suivant le vecteur $\overrightarrow{e_{\theta}}$ de la base cylindrique. L'intensité du courant parcourant la bobine est notée I.

Le champ magnétostatique créé par cette bobine à l'intérieur du tore s'écrit : $\overrightarrow{B}=B(r)\overrightarrow{e_{\theta}}$.

a) Soit un cercle de centre O, de rayon $R - \frac{a}{2} < r < R + \frac{a}{2}$ et orienté suivant le vecteur $\overrightarrow{e_{\theta}}$. Quelle est l'intensité du courant enlacé par ce cercle?

- (a) I
- (b) *NI*
- \bigcirc $\frac{a}{R}I$

...

b) Le théorème d'Ampère s'écrit : $\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{\text{enl}}$, avec I_{enl} l'intensité du courant enlacé par le contour

fermé choisi. En déduire l'expression de la composante B(r) du champ

c) Exprimer le flux $\phi(\vec{B}) = \iint \vec{B} \cdot dS \vec{e_{\theta}}$ à travers la surface d'une spire

(田)

Entraı̂nement 3.17 — Flux magnétostatique au sein d'un circuit magnétique.

Dans le circuit magnétique représenté ci-contre, de perméabilité relative $\mu_{\rm r}=4\,000$, chaque colonne possède une section carrée de côté $a=20\,{\rm cm}$. Celle de gauche est bobinée, formant un solénoïde de $N=1\,000$ spires jointives et de longueur $\ell=10\,{\rm cm}$.

Le circuit est alimenté par un courant d'intensité $I=200\,\mathrm{mA}$. Le champ magnétostatique produit est guidé dans le circuit selon les lignes fléchées en tirets et a pour intensité $B=\mu_0\mu_\mathrm{r}NI/\ell$.

a) Calculer avec un chiffre significatif la valeur du champ magnétostatique au sein du solénoïde.

- b) Le flux magnétostatique à travers (S) s'exprime comme $\phi = NBS$. Calculer ϕ
- c) Sachant que le flux ϕ_2 traversant (S_2) vérifie $4\phi_2 = \phi$, calculer le flux ϕ_1 traversant (S_1) .

Dipôle magnétostatique

Entraînement 3.18 — Spire circulaire et développement dipolaire.

Le champ magnétostatique créé en un point $\mathrm{M}(0,0,z)$ par un courant d'intensité I parcourant une spire de rayon R et d'axe (Oz) est $\vec{B}(M) = \frac{\mu_0 I R^2}{2(R^2 + z^2)^{3/2}} \vec{e_z}$.

a) Quel est le moment magnétique associé à cette source de champ magnétostatique?

(a) $\overrightarrow{\mathcal{M}} = \pi R^2 I$

(b) $\overrightarrow{\mathcal{M}} = \mu_0 \pi R^2 I \overrightarrow{e_z}$ (c) $\overrightarrow{\mathcal{M}} = \pi R^2 I \overrightarrow{e_z}$

b) Simplifier l'expression du champ magnétostatique dans l'approximation dipolaire $z \gg R$.

Entraînement 3.19 — Champ créé par un dipôle.

La carte de champ d'un dipôle magnétique de centre O et de moment magnétique \vec{m} est représentée cicontre. Le champ magnétostatique est noté \vec{B} .

En s'aidant de la carte fournie et en étudiant la situation pour certains angles particuliers, identifier l'expression correcte de \vec{B} en un point M quelconque loin du dipôle.

(a)
$$\vec{B}(M) = \frac{\mu_0 m}{4\pi r^3} (2\sin(\theta)\vec{e_r} - \cos(\theta)\vec{e_\theta})$$
 (c) $\vec{B}(M) = \frac{\mu_0 m}{4\pi r^3} (2\cos(\theta)\vec{e_r} - \sin(\theta)\vec{e_\theta})$

$$\overrightarrow{B}(\mathbf{M}) = \frac{\mu_0 m}{4\pi r^3} (2\cos(\theta)\overrightarrow{e_r} - \sin(\theta)\overrightarrow{e_\theta})$$

$$(b) \vec{B}(M) = \frac{\mu_0 m}{4\pi r^3} (2\sin(\theta)\vec{e_r} + \cos(\theta)\vec{e_\theta}) \qquad (d) \vec{B}(M) = \frac{\mu_0 m}{4\pi r^3} (2\cos(\theta)\vec{e_r} + \sin(\theta)\vec{e_\theta})$$

$$(\vec{\mathbf{d}}) \vec{B}(\mathbf{M}) = \frac{\mu_0 m}{4\pi r^3} (2\cos(\theta)\vec{e_r} + \sin(\theta)\vec{e_\theta})$$

Entraînement 3.20 — Équilibre d'un aimant.

Un aimant très fin, de moment magnétique \vec{m} , est posé sur une pointe en un point O différent de son centre de gravité G. L'ensemble est plongé dans un champ magnétostatique $\overrightarrow{B_{\rm ext}}$ vertical uniforme. L'aimant subit le couple magnétique de moment $\overrightarrow{\Gamma} = \overrightarrow{m} \wedge \overrightarrow{B_{\rm ext}}$. À l'équilibre, il est à l'horizontale.

- a) Exprimer la projection du moment $\overrightarrow{\Gamma}$ suivant l'axe (Oz)
- b) Le moment du poids par rapport à l'axe (Oz) s'écrit -dMg, avec M la masse de l'aimant et d = OG. En supposant qu'il n'y a pas d'autre moment, exprimer la distance d à l'équilibre.

Entraînement 3.21 — Moment de force magnétique.

On rappelle qu'un dipôle de moment magnétique \vec{m} , baignant dans un champ magnétostatique extérieur uniforme \vec{B} , subit des forces magnétiques de moment $\vec{\Gamma} = \vec{m} \wedge \vec{B}$.

Pour chaque situation suivante (boucle de courant ou aimant droit), les vecteurs \vec{m} et \vec{B} sont dans le plan (Oxy). Indiquer la direction et le sens du moment $\vec{\Gamma}$.

Entraînement 3.22 — Force exercée sur un dipôle.

Un dipôle de moment magnétique \overrightarrow{m} dans un champ magnétostatique $\overrightarrow{B}_{\mathrm{ext}}$ non uniforme subit la force $\vec{F} = -\overrightarrow{\text{grad}}(E_{\text{p}})$, avec $E_{\text{p}} = -\vec{m} \cdot \overrightarrow{B}_{\text{ext}}$. En coordonnées cylindriques, on a $\overrightarrow{\text{grad}}(f(r)) = \frac{\mathrm{d}f}{\mathrm{d}r} \overrightarrow{e_r}$.

a) Déterminer l'expression de \overrightarrow{F} pour un dipôle qui serait de même direction et de même sens qu'un champ d'expression $\overrightarrow{B_{\rm ext}} = \frac{\mu_0 I}{2\pi r} \overrightarrow{e_{\theta}}$ (fil rectiligne infini d'axe (Oz)).

b) Vers quelles zones le dipôle est-il alors attiré?

(a) celles de champ plus faible

(b) celles de champ plus intense

Réponses mélangées

......

$$-Ba^2$$
 $2j_0S\frac{b}{a}$ (

(b)
$$\frac{\mu_0 N I a}{2\pi} \ln \left(\frac{R + a/2}{R - a/2} \right)$$

$$4\pi R^2 j_r(R)$$

$$\frac{\mu_0 N_1}{2\pi r}$$

$$3 \times 10^2 \,\mathrm{Wb}$$
 4

► Réponses et corrigés page 228

Équations de Maxwell

Prérequis

Équations de Maxwell. Opérateurs différentiels.

Constantes utiles

- \rightarrow Permittivité du vide : $\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F} \cdot \mathrm{m}^{-1}$
- \rightarrow Perméabilité magnétique du vide : $\mu_0 = 1,26 \times 10^{-6} \, \mathrm{T \cdot m \cdot A^{-1}}$
- \rightarrow Dans le vide : $\varepsilon_0\mu_0=\frac{1}{c^2},$ où c est la célérité de la lumière dans le vide

Pour commencer

Entraînement 4.1 — Équations de Maxwell et dimensions.

On munit l'espace d'un repère cartésien (x, y, z) et on note t la dépendance temporelle.

On s'intéresse aux équations de Maxwell auxquelles obéissent les champs électrique \vec{E} et magnétique \vec{B} dans un milieu caractérisé par une densité volumique de charge ρ et une densité volumique de courant \vec{j} .

a) Parmi les quatre équations suivantes, laquelle n'est pas une équation de Maxwell?

$$(a) \operatorname{div}(\vec{E}) = \frac{\rho}{\varepsilon_0}$$

$$\overrightarrow{\cot}(\overrightarrow{B}) = \mu_0 \overrightarrow{j} + \varepsilon_0 \mu_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

$$(\vec{b}) \vec{\operatorname{rot}}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

$$(\vec{\mathbf{d}}) \ \frac{\partial \rho}{\partial t} + \operatorname{div}(\vec{j}) = 0$$

On s'intéresse aux relations entre les dimensions qui découlent des équations de Maxwell.

On considère les dimensions suivantes : L pour une longueur, T pour un temps, M pour une masse et I pour une intensité du courant électrique.

On rappelle l'expression de la force de Lorentz : $\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \wedge \overrightarrow{B}$.

- b) Donner la dimension d'une charge électrique q
- c) Donner la dimension d'un champ magnétique à l'aide de l'expression de la force de Lorentz.

d) Donner la dimension d'un champ électrique à l'aide de l'expression de la force de Lorentz.

e) Retrouver la dimension d'un champ électrique, à l'aide de l'équation de Maxwell-Faraday.

Entraînement 4.2 — Courants et ordres de grandeur.

L'équation de Maxwell-Ampère s'écrit aussi, en introduisant le courant de conduction \vec{j}_{cond} et le courant de déplacement $\vec{j}_{\text{dépl}}$:

$$\overrightarrow{\mathrm{rot}}(\vec{B}) = \mu_0 (\vec{j}_{\mathrm{cond}} + \vec{j}_{\mathrm{dépl}}), \quad \text{qui est équivalente à} \quad \overrightarrow{\mathrm{rot}}(\vec{B}) = \mu_0 \vec{j}_{\mathrm{cond}} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}.$$

On admet la loi d'Ohm $\vec{j}_{\rm cond} = \sigma \vec{E}$ et on considère un champ électrique $\vec{E} = E_0 \cos(\omega t + \varphi) \vec{e_x}$.

- a) Comment s'exprime l'ordre de grandeur de la quantité $\alpha = \frac{\|\vec{j}_{\text{cond}}\|}{\|\vec{j}_{\text{dépl}}\|}$?

- b) Laquelle des conditions suivantes permet d'obtenir $\alpha \gg 1$ dans un conducteur (où σ a pour ordre de grandeur $10^7 \,\mathrm{S}\cdot\mathrm{m}^{-1}$)?

 - (a) $f \ll 10^3 \,\text{Hz}$ (c) $f \ll 10^{17} \,\text{Hz}$ (b) $f \ll 10^9 \,\text{Hz}$
 - $(b) f \ll 10^9 \,\mathrm{Hz}$

On considère une onde électromagnétique de pulsation $\omega = 1.0 \,\mathrm{rad} \cdot \mathrm{MHz}$.

- c) Calculer α si cette onde se propage dans un métal de conductivité $\sigma=1.0\times 10^7\,{\rm S\cdot m^{-1}}$.
- Calculer α si cette onde se propage dans de l'eau de mer avec $\sigma = 1.0 \times 10^{-4} \,\mathrm{S} \cdot \mathrm{m}^{-1} \,\ldots$
- e) Calculer α si cette onde se propage dans du verre avec $\sigma = 1.0 \times 10^{-13} \,\mathrm{S} \cdot \mathrm{m}^{-1} \ldots$

\blacksquare Entraı̂nement 4.3 — Transposition réels \longleftrightarrow complexes.

On considère les deux champs électriques suivants :

$$\begin{split} \overrightarrow{\underline{E}}_1 &= E_0 \exp[\mathrm{i}(\omega t - kx)] \overrightarrow{e_y} - \mathrm{i} E_0 \exp[\mathrm{i}(\omega t - kx)] \overrightarrow{e_z} \\ \mathrm{et} \quad \overrightarrow{E}_2 &= -E_0 \cos[\omega t + kz] \overrightarrow{e_x} - E_0 \sin[\omega t + kz] \overrightarrow{e_y}. \end{split}$$

a) Exprimer le champ \vec{E}_1 associé à \vec{E}_1 .

b) Exprimer le champ $\vec{\underline{E}}_2$ associé à $\vec{\overline{E}}_2$.

Champs et opérateurs

\blacksquare Entraînement 4.4 — Voir la divergence.

Le théorème de Green-Ostrogradski affirme que, pour un champ de vecteurs \vec{A} , on a

$$\iiint_{\mathcal{V}} \operatorname{div}(\overrightarrow{A}) \, \mathrm{d}\tau = \oiint_{\mathcal{S}} \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}S},$$

où \mathcal{V} est le volume délimité par la surface \mathcal{S} fermée.

Ce théorème indique que si le flux élémentaire d ϕ du champ de vecteurs \vec{A} à travers une surface infinitésimale fermée d $\mathcal S$ autour d'un point M est non nul, alors la divergence de ce même champ de vecteurs au point M est non nulle. En particulier, si $d\phi > 0$ (flux sortant) alors $div \vec{A}(M) > 0$.

On considère le champ de vecteurs suivant :

Pour chacune des zones suivantes, en estimant le flux du champ de vecteurs sur la zone, indiquer si la divergence du champ de vecteurs y est nulle, positive ou négative.

a)	Zone 1	

Le théorème de Stokes affirme que, pour un champ de vecteurs \overrightarrow{A} , on a

$$\iint_{\mathcal{S}} \overrightarrow{\operatorname{rot}} \, \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}S} = \oint_{\Gamma} \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}\ell},$$

où $\mathcal S$ est la surface délimitée par le contour Γ fermé.

Ce théorème indique que si la circulation élémentaire $d\mathcal{C}$ du champ de vecteurs \overrightarrow{A} à travers un contour fermé Γ délimitant une surface infinitésimale dS est non nulle, alors le rotationnel de ce même champ de vecteurs au point M est non nul. En particulier, si $d\mathcal{C} > 0$ alors $\overrightarrow{rot} \overrightarrow{A}(M) > 0$.

On considère les champs de vecteurs suivants :

Pour chacune des zones suivantes, en estimant la circulation du champ de vecteurs sur la zone, indiquer si la composante du rotationnel selon $\overrightarrow{e_z}$ du champ de vecteurs y est nulle, positive ou négative.

- a) Zone 1
- c) Zone 3
- e) Zone 5

- b) Zone 2
- d) Zone 4
- f) Zone 6

Conservation de la charge et potentiel électrique

Entraı̂nement 4.6 — Conservation de la charge. On note ρ la densité volumique de charge et \overrightarrow{j} le vecteur densité volumique de courant. On rappelle les équations de Maxwell-Ampère : $\overrightarrow{rot} \overrightarrow{B} = \mu_0 \overrightarrow{j} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$, et de Maxwell-Gauss : $\overrightarrow{div} \overrightarrow{E} = \frac{\rho}{\varepsilon_0}$. On rappelle aussi le théorème de Schwarz : pour tout champ \overrightarrow{A} , on a div $\left(\frac{\partial \overrightarrow{A}}{\partial t}\right) = \frac{\partial (\operatorname{div} \overrightarrow{A})}{\partial t}$. a) Développer $\operatorname{div}(\overrightarrow{\operatorname{rot}}\overrightarrow{B})$ à l'aide de l'équation de Maxwell-Ampère. b) Exprimer $\operatorname{div}(\overrightarrow{\operatorname{rot}} \overrightarrow{B})$ en injectant l'équation de Maxwell-Gauss. c) On rappelle que, pour tout vecteur \vec{A} , div $(rot \vec{A}) = 0$. Quelle équation obtient-on? (a) $\operatorname{div} \vec{j} - \frac{\partial \rho}{\partial t} = 0$ (b) $\operatorname{div} \vec{j} + \frac{\partial \rho}{\partial t} = 0$ (c) $\mu_0 \operatorname{div} \vec{j} + \frac{\partial \rho}{\partial t} = 0$ (d) $\mu_0 \operatorname{div} \vec{j} - \frac{\partial \rho}{\partial t} = 0$ Entraînement 4.7 — Piège électrostatique. On considère une région de l'espace, vide de charge, dans laquelle règne un potentiel : $V(x,y,z) = \frac{V_0}{a^2} (x^2 + 2y^2 - 3z^2),$ où V_0 (en V) et a sont des constantes positives. a) Donner l'unité de a L'opérateur laplacien en coordonnées cartésiennes est donné par $\Delta V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$. b) Déterminer l'expression de ΔV

d) L'allure de V(x,0,0) en fonction de l'abscisse x est une portion :

(b) d'hyperbole

......

Calculer le champ électrique $\overrightarrow{E} = -\overrightarrow{\text{grad}} V$ en O, origine du repère

(c) d'exponentielle

(a) de cercle

(d) de parabole

0000

0000

Théorèmes de Stokes-Ampère et Green-Ostrogradski

Entraînement 4.8 — Théorème de Stokes-Ampère.

Dans le repère $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, considérons le vecteur fixe

$$\vec{\omega} = \omega \vec{e}_z$$

Rappelons que, pour tout point M de l'espace, on a :

- $\overrightarrow{OM} = r\overrightarrow{e_r} + z\overrightarrow{e_z}$ dans la base cylindrique $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$;
- $\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$ dans la base cartésienne.

On considère par ailleurs un cylindre infini d'axe (Oz) et de rayon a.

On considère le champ de vecteurs défini par :

$$\begin{cases} \overrightarrow{v} = \overrightarrow{\omega} \wedge \overrightarrow{\mathrm{OM}} & \text{ pour } r < a \,; \\ \overrightarrow{\mathrm{rot}} \ \overrightarrow{v} = \overrightarrow{0} & \text{ pour } r > a \;. \end{cases}$$

- a) Déterminer l'expression de $\vec{v} = \omega \vec{e_z} \wedge (r\vec{e_r} + z\vec{e_z})$
- b) Déterminer l'expression de $\vec{v} = \omega \vec{e_z} \wedge (x\vec{e_x} + y\vec{e_y} + z\vec{e_z})$

En coordonnées cartésiennes, l'opérateur rotationnel est défini par :

$$\overrightarrow{\mathrm{rot}} \ \overrightarrow{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) \overrightarrow{e_x} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) \overrightarrow{e_y} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) \overrightarrow{e_z}.$$

Le théorème de Stokes s'énonce de la façon suivante.

Soit Γ un contour fermé et orienté, et soit Σ une surface quelconque s'appuyant sur Γ et orientée avec la règle du tire-bouchon de Maxwell ou la règle de la main droite. Pour un champ de vecteurs \overrightarrow{A} défini en tout point, on a :

$$\oint_{\Gamma} \overrightarrow{A}_{(\mathrm{M})} \cdot \overrightarrow{\mathrm{d}}\ell_{(\mathrm{M})} = \iint_{\Sigma} \overrightarrow{\mathrm{rot}}(\overrightarrow{A})_{(\mathrm{M})} \cdot \overrightarrow{n} \, \mathrm{d}S_{(\mathrm{M})}.$$

En appliquant ce théorème sur un contour fermé circulaire Γ de rayon r, calculer v(r) dans les deux cas suivants :

- d) Pour r < a
- e) Pour r > a

Entraînement 4.9 — Application du théorème de Green-Ostrogradski.

On considère le champ suivant :

$$\vec{A}(r,\theta,\varphi) = (ar - br^3)\vec{e_r},$$

en coordonnées sphériques, où a et b sont des constantes.

En coordonnées sphériques, l'opérateur divergence est défini par :

$$\operatorname{div} \overrightarrow{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}.$$

- a) Calculer $\operatorname{div}(\overrightarrow{A})$
- b) Quelle est l'expression de l'élément de volume d'une boule en coordonnées sphériques?
 - (a) $d\tau = r \sin \theta \, dr \, d\theta \, d\varphi$
 - $\widehat{\mathbf{b}}) \, \mathrm{d}\tau = r^2 \sin \theta \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\varphi$
 - $(c) d\tau = r \sin \theta \sin \varphi dr d\theta d\varphi$
 - $(d) d\tau = r^2 \sin \theta \sin \varphi dr d\theta d\varphi$

......

On rappelle le théorème de Green-Ostrogradski.

Soit \mathcal{S} une surface fermée de volume intérieur \mathcal{V} , orientée vers l'extérieur par convention. Pour un champ de vecteurs \overline{A} défini en tout point, on a :

$$\iint_{\mathcal{S}} \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}S} = \iiint_{\mathcal{V}} \operatorname{div}(\overrightarrow{A}) \, \mathrm{d}\tau.$$

- c) À l'aide de ce théorème, exprimer le flux $\iint_{\text{sphère}} \overrightarrow{A} \cdot \overrightarrow{dS}$ du champ à travers une sphère de centre O de rayon R.
- d) Quelle est l'expression de l'élément de surface d'une sphère en coordonnées sphériques?

......

- (a) $dS = \sin\theta \, d\theta \, d\varphi$
- $\widehat{\mathbf{b}}) \, \mathrm{d}S = r \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\varphi$
- $(c) dS = r^2 \sin \theta d\theta d\varphi$
- e) Calculer directement le flux du champ à travers la sphère de centre O et de rayon R à partir de l'expression du champ \hat{A} .

Jouons avec les équations de Maxwell

On donne pour les quatre prochains exercices les expressions du rotationnel en coordonnées cartésiennes :

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \overrightarrow{e_z}$$

et en coordonnées cylindriques :

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}\right) \overrightarrow{e_r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \overrightarrow{e_\theta} + \frac{1}{r} \left(\frac{\partial r A_\theta}{\partial r} - \frac{\partial A_r}{\partial \theta}\right) \overrightarrow{e_z}.$$

\blacksquare Entraînement 4.10 — Existence ou non d'un champ électromagnétique.

0000

Vérifier à l'aide des équations de Maxwell si les champs électromagnétiques suivants existent ou non. Répondre par « oui » par « non ».

On se place dans le vide; on rappelle donc que $\varepsilon_0 \mu_0 = \frac{1}{c^2} = \frac{\omega^2}{k^2}$.

a)
$$\vec{E} = E_0 \cos(\omega t - kx + \varphi_0) \vec{e_y}$$
 et $\vec{B} = \frac{E_0 k}{\omega} \cos(\omega t - kx + \varphi_0) \vec{e_z}$

b)
$$\vec{E} = E_0 \cos(\omega t + ky)\vec{e_y}$$
 et $\vec{B} = \frac{E_0 k}{\omega} \cos(\omega t + ky)\vec{e_y}$

c)
$$\begin{cases} \vec{E} = E_1 \cos(\omega t + kz + \varphi_1) \vec{e_x} + E_2 \cos(\omega t + kz + \varphi_2) \vec{e_y} \\ \vec{B} = \frac{E_2 k}{\omega} \cos(\omega t + kz + \varphi_2) \vec{e_x} - \frac{E_1 k}{\omega} \cos(\omega t + kz + \varphi_1) \vec{e_y} \end{cases}$$

\blacksquare Entraînement 4.11 — Utilisation de l'équation de Maxwell-Faraday.

On rappelle l'équation de Maxwell-Faraday :

$$\overrightarrow{\mathrm{rot}}(\overrightarrow{E}) = -\frac{\partial \overrightarrow{B}}{\partial t}.$$

On se place dans un milieu vide de charge et de courant (sans champ statique).

Déterminer l'expression du champ magnétique \vec{B} associé à chacun des champs électriques \vec{E} suivants.

a) En coordonnées cartésiennes : $\vec{E} = E_0 \cos(\omega t - kz + \varphi) \vec{e_x}$

.....

b) En coordonnées cartésiennes : $\vec{E} = E_0 \cosh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \vec{e_x}$

.....

c) En coordonnées cylindriques : $\overrightarrow{E} = \frac{E_0}{(kr)^2}\cos(\omega t)\overrightarrow{e_z}$

Entraînement 4.12 — Utilisation de l'équation de Maxwell-Ampère.

On rappelle l'équation de Maxwell-Ampère : $\overrightarrow{rot}(\vec{B}) = \mu_0 \vec{j} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$.

On se place dans un milieu vide de charge et de courant (pas de champs statiques).

Déterminer l'expression du champ électrique \vec{E} associé à chacun des champs magnétiques \vec{B} suivants.

a) En coordonnées cartésiennes : $\vec{B} = B_0 \sin(\omega t - kz + \varphi) \vec{e_y}$

b) En coordonnées cartésiennes : $\vec{B} = B_0 \sinh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \vec{e_y}$

c) En coordonnées cylindriques : $\vec{B} = \frac{cB_0}{(kr)^2} \sin(\omega t) \vec{e_\theta}$

Entraînement 4.13 — Détermination de \vec{E} à partir de \vec{B} .

Le champ magnétique créé dans un solénoïde infini de rayon R, d'axe (Oz), comportant n spires par unité de longueur et parcouru par un courant d'intensité électrique i(t) dépendant du temps est

$$\vec{B} = \mu_0 ni(t) \vec{e_z}$$
.

On rappelle que le champ magnétique à l'extérieur d'un solénoïde est nul.

On rappelle les expressions de l'équation de Maxwell-Faraday sous formes locale et intégrale :

$$\overrightarrow{\operatorname{rot}} \, \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \qquad \text{et} \qquad \oint_{\Gamma} \overrightarrow{E} \cdot \overrightarrow{\operatorname{d}\ell} = -\iint_{\Sigma} \frac{\partial \overrightarrow{B}}{\partial t} \cdot \overrightarrow{\operatorname{d}S}.$$

a) Par analyse des invariances, déterminer la ou les variable(s) dont dépend le champ électrique. On adoptera les coordonnées cylindriques.

Le champ électrique \vec{E} est dirigé selon $\vec{e_{\theta}}$.

En utilisant l'équation locale de Maxwell-Faraday, déterminer l'expression du champ électrique créé par le solénoïde dans les deux cas suivants.

- b) Pour r < R

On souhaite retrouver ces résultats en passant par la forme intégrale de l'équation de Maxwell-Faraday. Cette méthode nécessite de choisir une surface sur laquelle nous allons calculer le flux et la circulation.

- d) En tenant compte de la direction du champ \vec{B} et des dépendances spatiales du champ \vec{E} , quelle surface pouvons-nous choisir?
 - $\begin{picture}(a)$ Un cylindre de hauteur h et de rayon r
- \bigcirc Un disque d'axe \bigcirc et de rayon r
- (b) Un plan rectangulaire de dimension $r\times z$
- \bigcirc Une sphère de rayon r

En utilisant la forme intégrale de l'équation de Maxwell-Faraday sur cette surface, déterminer l'expression du champ électrique créé par le solénoïde dans les deux cas suivants.

e) Pour r < a

.....

f) Pour r > a

Vecteur de Poynting

Entraînement 4.14 — Vecteur de Poynting.

La forme générale du vecteur de Poynting vérifie : $\overrightarrow{\Pi} = \frac{1}{u_0} \overrightarrow{E} \wedge \overrightarrow{B}$.

Développer les vecteurs de Poynting pour les champs électromagnétiques suivants :

a) $\vec{E} = E_0 \cos(\omega t - kz + \varphi) \vec{e_x}$ et $\vec{B} = B_0 \sin(\omega t - kz + \varphi) \vec{e_y}$

.....

b) $\vec{E} = E_0 \cosh(\beta z) \exp(-\alpha t) \vec{e_z}$ et $\vec{B} = B_0 \sinh(\beta z) \exp(-\alpha t) \vec{e_y}$

.....

L Entraînement 4.15 ─ Vecteur de Poynting complexe.

Une onde électromagnétique plane monochromatique se propage suivant l'axe (Oz). Les expressions des composantes du champ électrique sont :

$$\vec{E} \begin{vmatrix} E_x = E_{0x} \cos(kz - \omega t + \psi_1) \\ E_y = E_{0y} \cos(kz - \omega t + \psi_2) \\ E_z = 0. \end{vmatrix}$$

Le vecteur d'onde est noté $\vec{k} = k \vec{e_z}$ avec $\omega = k c$.

On travaille tout d'abord en notation réelle :

- a) Déterminer l'expression du champ magnétique $\overrightarrow{B} = \frac{\overrightarrow{k} \wedge \overrightarrow{E}}{\omega}$
- b) Déterminer l'expression du vecteur de Poynting $\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} \dots$

On travaille maintenant en notation complexe :

c)	Déterminer l'expression du champ électrique \vec{E}
١)	Determiner i expression du champ electrique \underline{E}

- d) Déterminer l'expression du champ magnétique $\overrightarrow{\underline{B}}$
- e) Déterminer l'expression du conjugué du champ magnétique $\overrightarrow{\underline{B}}^*$...
- f) Calculer les composantes du vecteur complexe $\frac{\vec{E} \wedge \vec{B}^*}{2 \mu_0}$

Conclusion:

g) On en déduit que
$$\left\langle \overrightarrow{\Pi} \right\rangle = \left\langle \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \right\rangle$$
 vaut : (a) $\left\langle \frac{\overrightarrow{E} \wedge \overrightarrow{B}^*}{2 \mu_0} \right\rangle$ (b) $\left\langle \frac{2 \overrightarrow{E} \wedge \overrightarrow{B}^*}{2 \mu_0} \right\rangle$ (c) $\left\langle \frac{\overrightarrow{E} \wedge \overrightarrow{B}^*}{\mu_0} \right\rangle$?

Entraînement 4.16 — Un bilan d'énergie.

On considère un condensateur composé de deux disques métalliques de surface S, de rayon R, distants de $L \ll R$ et séparés par du vide. Lors de la charge, on suppose que, dans le système de coordonnées cylindriques, les champs électrique et magnétique régnant entre les deux armatures sont :

0000

$$\overrightarrow{E}(t) = \frac{Q(t)}{\varepsilon_0 S} \overrightarrow{e_z} \qquad \text{et} \qquad \overrightarrow{B}(r,t) = \frac{\mu_0}{2S} \frac{\mathrm{d}Q}{\mathrm{d}t} r \overrightarrow{e_\theta}.$$

On ne considère aucun courant de conduction dans cet exercice.

On considère que l'énergie stockée dans le condensateur est essentiellement sous forme électrique. La densité volumique d'énergie électromagnétique s'écrit alors $e=\frac{\varepsilon_0 E^2}{2}$.

- a) Calculer l'énergie stockée $\mathcal{E}=\iiint_{\mathcal{V}}e\,\mathrm{d}\tau$ dans le condensateur sachant que l'élément de volume $\mathrm{d}\tau$, en coordonnées cylindriques, vaut $\mathrm{d}\tau=r\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}z$.
- c) Calculer le flux sortant $\phi = \iint_{\text{cylindre}} \overrightarrow{\Pi} \cdot \overrightarrow{dS}$ à travers la surface cylindrique délimitant le volume entre les deux armatures.
- d) Les résultats précédents permettent de déduire que :

(a)
$$\mathcal{E} + \phi = 0$$
 (b) $\mathcal{E} + \frac{\partial \phi}{\partial t} = 0$ (c) $\frac{\partial \mathcal{E}}{\partial t} + \phi = 0$ (d) $\frac{\partial \mathcal{E}}{\partial t} + \frac{\partial \phi}{\partial t} = 0$

e) On rappelle le théorème de Green-Ostrogradski.

Soit Σ une surface fermée de volume intérieur \mathcal{V} , orientée vers l'extérieur par convention. Pour un champ de vecteurs \overrightarrow{A} défini en tout point, on a :

$$\iint_{\Sigma} \overrightarrow{A} \cdot \overrightarrow{dS} = \iiint_{\mathcal{V}} \operatorname{div}(\overrightarrow{A}) \, d\tau.$$

En utilisant ce théorème, quelle relation (appelée théorème de Poynting) obtient-on?

(a)
$$\frac{\partial e}{\partial t} + \frac{\partial \left(\operatorname{div} \overrightarrow{\Pi}\right)}{\partial t} = 0$$

$$(c) e + \frac{\partial \left(\operatorname{div} \overrightarrow{\Pi}\right)}{\partial t} = 0$$

$$(\mathbf{d}) e + \operatorname{div} \overrightarrow{\Pi} = 0$$

Réponses mélangées $\frac{M}{I \cdot T^2} \qquad -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{r}{2} \overrightarrow{e_\theta} \qquad \text{Positive} \qquad \text{Nulle} \qquad \frac{B_0}{\sqrt{\varepsilon_0 \mu_0}} \cosh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \overrightarrow{e_x}$ $E_{0}\cos[\omega t - kx]\overrightarrow{e_{y}} + E_{0}\sin[\omega t - kx]\overrightarrow{e_{z}} \qquad 3a - 5br^{2} \qquad \frac{a^{2}}{r}\omega \qquad -\frac{E_{0y}}{c}\cos(kz - \omega t + \psi_{2})\overrightarrow{e_{x}} + \frac{E_{0x}}{c}\cos(kz - \omega t + \psi_{1})\overrightarrow{e_{y}}$ $\frac{1}{c} \left(E_{0x} e^{-i(kz - \omega t + \psi_1)} \overrightarrow{e_y} - E_{0y} e^{-i(kz - \omega t + \psi_2)} \overrightarrow{e_x} \right) \qquad 1,1 \times 10^1 \qquad 1,1 \times 10^{-8} \qquad 2\omega \overrightarrow{e_z} \qquad \text{N\'egative}$ Négative $\mu_0 \text{ div } \overrightarrow{j} + \mu_0 \frac{\partial \rho}{\partial t}$ $r\omega \frac{E_0 B_0}{\mu_0} \cos(\omega t - kz + \varphi) \sin(\omega t - kz + \varphi) \overrightarrow{e_z}$ $-\mu_0 n \frac{\text{d}i}{\text{d}t} \frac{R^2}{2r} \overrightarrow{e_\theta} \quad \text{Nulle} \quad \textcircled{c} \quad -\mu_0 n \frac{\text{d}i}{\text{d}t} \frac{R^2}{2r} \overrightarrow{e_\theta} \quad -\frac{2E_0}{k^2 r^3} \int \cos(\omega t) \overrightarrow{e_\theta} \, dt \quad \text{Positive}$ $E_{0x} e^{\text{i}(kz - \omega t + \psi_1)} \overrightarrow{e_x} \qquad \frac{M \cdot L}{I \cdot T^3} \quad -E_0 \exp[\text{i}(\omega t + kz)] \overrightarrow{e_x} \quad \text{Négative}$ $+E_{0y} e^{\text{i}(kz - \omega t + \psi_2)} \overrightarrow{e_y} \qquad \overrightarrow{I} \cdot T^3 \quad +\text{i}E_0 \exp[\text{i}(\omega t + kz)] \overrightarrow{e_y} \quad \text{Négative}$ $1,1 \times 10^{12} \quad \textcircled{b} \qquad \frac{c^3 B_0}{k^2 \omega r^3} \cos(\omega t) \overrightarrow{e_z} \qquad \mu_0 \text{ div } \overrightarrow{j} + \varepsilon_0 \mu_0 \frac{\partial \text{ div } \overrightarrow{E}}{\partial t} \quad \textcircled{a}$ (d) Positive (b) $E_0\sqrt{\varepsilon_0\mu_0}\sinh(\sqrt{\varepsilon_0\mu_0}\alpha z)\exp(-\alpha t)\vec{e_y}$ $4\pi R^3(a-bR^2)$ $E_0 \frac{k}{\omega} \cos(\omega t - kz + \varphi) \overrightarrow{e_y}$ $B_0 \frac{k}{\varepsilon_0 \mu_0 \omega} \sin(\omega t - kz + \varphi) \overrightarrow{e_x}$ non $4\pi R^3 (a - bR^2)$ $I \cdot T$ $\frac{E_{0x}^2 + E_{0y}^2}{2 \mu_0 c} \overrightarrow{e_z} \qquad \text{Nulle} \qquad \text{m} \qquad \textcircled{a} \qquad -\frac{R}{2\varepsilon_0 S^2} Q \frac{\mathrm{d}Q}{\mathrm{d}t} \overrightarrow{e_r} \qquad \frac{1}{c} \left(E_{0x} \, \mathrm{e}^{\mathrm{i}(k \, z - \omega \, t + \psi_1)} \, \overrightarrow{e_y} \right) - E_{0y} \, \mathrm{e}^{\mathrm{i}(k \, z - \omega \, t + \psi_2)} \, \overrightarrow{e_x} \right)$

► Réponses et corrigés page 234

Induction

Fiche du « Cahier d'entraînement 1^{re} année » pour se préparer

→ Champ magnétique, Induction

Prérequis

Champ magnétique. Loi de Faraday. Orientation d'une surface à l'aide de la règle de la main droite (règle du tire-bouchon).

Flux du champ magnétique $\Phi = \iint_S \overrightarrow{B} \cdot \overrightarrow{dS}$. Force élémentaire de Laplace $\overrightarrow{dF_L} = i\overrightarrow{d\ell} \wedge \overrightarrow{B}$. Loi des mailles.

Pour commencer

Entraînement 5.1 — Orientation d'une surface.

On associe à un contour orienté son vecteur normal en utilisant la règle dite de la main droite ou du tire-bouchon.

Pour chaque contour Γ_i orienté suivant, exprimer le vecteur normal unitaire $\overrightarrow{n_i}$ de la surface qu'il délimite en fonction des vecteurs \vec{e}_x , \vec{e}_y , \vec{e}_z .

- a) $\overrightarrow{n_1}$
- d) $\vec{n_4}$
- b) $\vec{n_2}$
- e) $\overrightarrow{n_5}$

\blacksquare Entraînement 5.2 — Orientation d'un contour.

On associe à un contour orienté son vecteur normal en utilisant la règle dite de la main droite ou du tire-bouchon. Quelle représentation du contour pourrait correspondre aux vecteurs suivants?

La réponse peut être « aucune »!

Entraînement 5.3 — Varie ou ne varie pas? Telle est la question.

Soit un cadre de vecteur normal \vec{n} et un champ magnétique \vec{B} .

Dans les situations suivantes, le flux de \vec{B} à travers le cadre varie-t-il au cours du temps? Répondre par « oui » ou « non ».

On rappelle que le flux est défini par $\Phi = \iint_{\mathcal{C}} \vec{B} \cdot d\vec{S}$.

- a) \vec{B} est uniforme et initialement $\vec{B} \wedge \vec{n} = \vec{0}$. Le cadre tourne autour d'un de ses côtés ...
- b) Le cadre pénètre dans une zone où règne \vec{B} uniforme. \vec{B} et \vec{n} sont colinéaires
- Le champ $\vec{B}(t)$ dépend du temps et est perpendiculaire à \vec{n} . Le cadre est fixe et indéformable.

.....

d) Le cadre est animé d'un mouvement de translation rectiligne dans \vec{B} uniforme et constant.

.....

e) La surface du cadre diminue. Le champ \vec{B} est uniforme, colinéaire de sens opposé à \vec{n} .

.....

f) Le cadre est fixe. Le champ \vec{B} est colinéaire à \vec{n} , non uniforme et indépendant du temps.

Flux du champ magnétique

Entraînement 5.4 — Flux à travers un circuit mobile (I).

On considère un circuit carré de côté ℓ se déplaçant à la vitesse $\overrightarrow{v} = v\overrightarrow{e_x}$ et dont le côté droit est repéré par l'abscisse x_c .

Un champ magnétique uniforme $\overrightarrow{B} = B\overrightarrow{e_z}$ règne dans la zone comprise entre x=0 et $x=a>\ell$.

On oriente le circuit tel que $\vec{n} = -\vec{e_z}$.

0000

Exprimer le flux du champ magnétique $\Phi = \iint_S \vec{B} \cdot \vec{dS}$ en fonction de B, x_c, ℓ et a si :

a)
$$x_c < 0$$

c)
$$\ell < x_c < a$$

b)
$$0 < x_c < \ell$$

d)
$$a < x_c < a + \ell$$

En déduire la dérivée du flux par rapport au temps en fonction de B, v et ℓ si :

e)
$$x_c < 0$$

g)
$$\ell < x_c < a$$

f)
$$0 < x_c < \ell$$

h)
$$a < x_c < a + \ell$$

Entraı̂nement 5.5 — Flux à travers un disque.

On considère le système de coordonnées cylindriques (r, θ, z) de base $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$. Soit un champ magnétique uniforme

$$\vec{B} = B_{\rm m} \cos(\omega t) \vec{e_z} \text{ si } r < a \text{ et } \vec{B} = \vec{0} \text{ si } r > a.$$

Déterminer le flux Φ du champ magnétique à travers un disque de rayon R d'axe z et de vecteur normal $\overrightarrow{e_z}$ si :

a)
$$R < a$$

b)
$$R > a$$

On considère maintenant un champ magnétique $\overrightarrow{B'}$ défini par

$$\overrightarrow{B'}(\mathbf{M}) = B_0 \left(1 - \frac{r}{a}\right) \overrightarrow{e_z} \text{ si } r < a \quad \text{et} \quad \overrightarrow{B'} = \overrightarrow{0} \text{ si } r > a.$$

On désire exprimer son flux Φ' aussi à travers le disque de rayon R d'axe z et de vecteur normal $\overrightarrow{e_z}$.

c) Quelle sera l'expression de l'élément de surface dS du disque à considérer pour calculer le flux de $\overrightarrow{B'}$?

.....

Déterminer Φ' si :

d)
$$R < a$$

e)
$$R > a$$

Entraînement 5.6 — Flux à travers un circuit mobile (II).

Dans une zone de champ magnétique uniforme

$$\vec{B} = B\vec{e_z}$$

on considère une spire orientée de rayon R en rotation autour d'un axe Δ perpendiculaire à l'axe (Oz) avec une vitesse angulaire constante ω .

a) Quelle est l'expression du flux de \vec{B} à travers la spire à t quelconque?

Exprimer le flux en fonction de B et R pour les différentes valeurs de ωt suivantes :

b)
$$\frac{\pi}{2}$$

c)
$$\frac{2\pi}{3}$$
 ...

d)
$$\frac{11\pi}{6}$$
 ...

e)
$$2\pi$$
 ...

0000

Entraînement 5.7 — Flux propre d'un tore.

$$\vec{B}(\mathbf{M}) = \frac{\mu_0 NI}{2\pi r} \vec{e_\theta}$$

pour 0 < z < a ou d < r < d + a, et nul sinon.

On désire, dans un premier temps, calculer le flux de ce champ à travers une seule des spires. Le vecteur normal à la spire est le vecteur $\overrightarrow{e_{\theta}}$.

a) Quelle sera la surface élémentaire dS à utiliser pour le calcul du flux $\Phi = \iint_{-\infty} \vec{B} \cdot dS \vec{e_{\theta}}$?

$$\widehat{\mathbf{a}}$$
 $\mathrm{d}S = \mathrm{d}r\,\mathrm{d}z$

$$\widehat{\mathbf{b}}) \, \mathrm{d}S = r \, \mathrm{d}\theta \, \mathrm{d}r$$

(b)
$$dS = r d\theta dr$$
 (c) $dS = r d\theta dz$

$$\widehat{\mathrm{d}}$$
 $\mathrm{d}S = \mathrm{d}\theta\,\mathrm{d}z$

b) Quelle sera l'expression du flux à travers une spire?

(a)
$$\Phi = \int_{r=d}^{a+d} \int_{z=0}^{a} \frac{\mu_0 NI}{2\pi r} dr \times dz$$

$$\begin{array}{c}
\bullet = \int_{\theta=0}^{2\pi} \int_{z=0}^{a} \frac{\mu_0 NI}{2\pi r} r \, d\theta \times dz
\end{array}$$

$$\Phi = \int_{0}^{r=a} \int_{0}^{z-a} \frac{\mu_0 NI}{2\pi r} \, dr \times dz$$

$$\underbrace{\mathbf{d}}_{r=d} \Phi = \int_{r=d}^{\theta=0} \int_{z=0}^{z=0} \frac{\mu_0 NI}{2\pi r} r \, \mathrm{d}\theta \times \mathrm{d}z$$

c) En réalisant le calcul intégral, calculer Φ

d) En déduire l'expression du coefficient d'auto-induction L défini par $\Phi_{\text{tore}} = LI$, où Φ_{tore} désigne le flux du champ créé par le tore à travers ses N spires (aussi appelé flux propre).

Lien avec l'équation de Maxwell-Faraday

Entraînement 5.8

Soit \overrightarrow{E} un champ électrique d'expression $E(r)\overrightarrow{e_{\theta}}$ et soit \overrightarrow{B} un champ magnétique d'expression $B_0\cos(\omega t)\overrightarrow{e_z}$. Ils sont reliés par l'équation de Maxwell-Faraday $\overrightarrow{rot} \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$.

On rappelle l'expression du rotationnel en coordonnées cylindriques :

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}\right) \overrightarrow{e_r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \overrightarrow{e_\theta} + \frac{1}{r} \left(\frac{\partial (rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta}\right) \overrightarrow{e_z}.$$

a) Quelle est l'équation vérifiée par E(r)?

$$(a) \frac{1}{r} \frac{\mathrm{d}(rE(r))}{\mathrm{d}r} = -B_0 \sin(\omega t)$$

$$\bigcirc \frac{1}{r} \frac{\mathrm{d}(rE(r))}{\mathrm{d}r} = B_0 \omega \sin(\omega t)$$

$$(b) - \frac{\mathrm{d}(E(r))}{\mathrm{d}r} = B_0 \omega \sin(\omega t)$$

b) En déduire E(r).

On prendra E(r=0)=0.

Systèmes d'équations couplées

Entraînement 5.9

Après écriture de la loi des mailles et de la relation fondamentale de la dynamique, un étudiant obtient ce système d'équations à résoudre :

$$\begin{cases} Ri + aBv = 0 \\ m\frac{\mathrm{d}v}{\mathrm{d}t} - iBa = mg. \end{cases}$$

a) Quelle est l'équation différentielle vérifiée par v?

(a)
$$\frac{\mathrm{d}v}{\mathrm{d}t} - \frac{a^2B^2v}{Rm} = g$$

$$\bigcirc \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{a^2 B^2 v}{Rm} = g$$

$$\label{eq:delta_def} \textcircled{b} \ \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{a^2B^2v}{R} = g$$

b) Quelle est la dimension du coefficient $\frac{a^2B^2}{Rm}$?

On note T la dimension d'un temps et M la dimension d'une masse.

$$\bigcirc$$
 T⁻¹

$$(d) T \cdot M^-$$

Entraînement 5.10 — Passage en complexe.

On considère un dispositif dont les équations mécaniques et électriques permettent d'établir le système suivant, où u est une tension :

$$\begin{cases} Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} - \alpha Bv = u \\ m\frac{\mathrm{d}v}{\mathrm{d}t} = -iB\alpha - kz - hv \\ v = \frac{\mathrm{d}z}{\mathrm{d}t}. \end{cases}$$

Les grandeurs i, u et v sont sinusoïdales donc du type $x(t) = X_{\rm m} \cos(\omega t + \varphi)$.

Leur grandeur complexe associée est du type $\underline{x}(t) = X_{\rm m} \exp(\mathrm{j}\omega t + \varphi)$ et leur amplitude complexe associée $\underline{X} = X_{\rm m} \exp(\mathrm{j}\varphi)$ (où $\mathrm{j}^2 = -1$).

a) Comment s'écrit le système après passage en complexe?

$$\left(\begin{array}{l} E \underline{I} + jL\omega \underline{I} - \alpha B\underline{V} = U_{\rm m}\cos(\omega t) \\ \frac{m}{j\omega}\underline{V} = -B\alpha\underline{I} - k\frac{1}{j\omega}\underline{V} - h\underline{V} \\ \underline{V} = j\omega\underline{Z} \end{array} \right)$$

$$\begin{array}{l}
\hline{\text{C}} \begin{cases}
R\underline{I} + jL\omega\underline{I} - \alpha B\underline{V} = \underline{U} \\
jm\omega\underline{V} = -B\alpha\underline{I} - k\frac{1}{j\omega}\underline{V} - h\underline{V} \\
\underline{V} = j\omega\underline{Z}
\end{array}$$

b) Exprimer l'amplitude complexe \underline{V} en fonction de \underline{I} .

.....

c) En éliminant \underline{V} dans les deux premières équations du système, déterminer la bonne expression de l'impédance complexe $\underline{Z_{\rm eq}} = \frac{\underline{U}}{\underline{I}}$ parmi les expressions suivantes.

(a)
$$\underline{Z_{\text{eq}}} = R + \frac{L}{j\omega} + \frac{\alpha^2 B^2}{h + j(k\omega - \frac{m}{\omega})}$$

(b)
$$\underline{Z_{\text{eq}}} = R + jL\omega + \alpha^2 B^2 \left(h + j \left(m\omega - \frac{k}{\omega} \right) \right)$$

$$\underbrace{\mathbf{d}}_{\mathbf{eq}} = \frac{R + jL\omega + \alpha^2 B^2}{\left(h + j\left(m\omega - \frac{k}{\omega}\right)\right)}$$

Entraı̂nement 5.11 — Bilan de puissance.

On considère le système d'équations électrique (EE) et mécanique (EM) suivant avec la force électromotrice induite e = -Bav, avec la force de Laplace de valeur $f_{\rm L} = Bai$ et où f est une force exercée par un opérateur extérieur :

$$\begin{cases} e = Ri & \text{(EE)} \\ m \frac{\mathrm{d}v}{\mathrm{d}t} = f + f_{\mathrm{L}} & \text{(EM)}. \end{cases}$$

On rappelle que l'énergie cinétique de la barre est $E_c = \frac{1}{2}mv^2$ et que la puissance dissipée par effet Joule est $\mathcal{P}_J = Ri^2$.

- a) Exprimer, en fonction de R et i, le terme Bavi à partir de e dans (EE) ...
- b) Exprimer, en fonction de m, v et f, le terme Bavi à partir de f_L dans (EM).

.....

c) Égaliser les expressions obtenues en a) et b) pour exprimer la puissance fournie par l'opérateur fv en fonction de E_c et \mathcal{P}_J .

On rappelle que $(f^2(x))' = 2f'(x)f(x)$.

.

Force de Laplace

Entraı̂nement 5.12 — Force de Laplace sur une spire rectangulaire.

On considère un champ magnétique \vec{B} uniforme ainsi qu'un circuit rectangulaire (appelé « circuit 1 »), parcouru par un courant i.

Quelle est l'expression de la force de Laplace s'exerçant sur chaque portion du circuit 1 en fonction de B, a, i et des vecteurs unitaires du repère?

a) PQ

c) RS

b) QR

d) SP

e) Quelle est la résultante des forces de Laplace exercées sur le circuit $1 ? \dots$

....

Entraînement 5.13 — Force de Laplace sur une spire triangulaire.

0000

On considère un champ magnétique \vec{B} uniforme et un circuit triangulaire (appelé « circuit 2 »), parcouru par un courant i.

Quelle est l'expression de la force de Laplace s'exerçant sur chaque portion du circuit 2 en fonction de B, a, i et des vecteurs unitaires du repère?

Entraînement 5.14 — Couple des forces de Laplace sur une spire.

0000

Un circuit mobile \mathcal{C} de surface S dans lequel circule un courant d'intensité I est soumis à différents champs magnétiques uniformes et constants produits par trois bobines tels que:

$$\overrightarrow{B_1} = B\overrightarrow{e_x}$$
 ; $\overrightarrow{B_2} = B\overrightarrow{e_y}$; $\overrightarrow{B_3} = B\overrightarrow{e_z}$.

On rappelle que le moment magnétique d'une spire $\overrightarrow{\mathcal{M}}$ est défini par $\overrightarrow{\mathcal{M}} = I\overrightarrow{S}$ avec \overrightarrow{S} son vecteur surface.

a) Exprimer le vecteur surface \vec{S} en fonction de S et de la base $(\vec{e_x}, \vec{e_y}, \vec{e_z})$

Exprimer le couple des forces de Laplace $\overrightarrow{\Gamma}_{L} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}$ que subit la spire \mathcal{C} en fonction de S, I et B pour :

b)
$$\overrightarrow{B_1}$$
 ... c) $\overrightarrow{B_2}$... d) $\overrightarrow{B_3}$...

c)
$$\overrightarrow{B_2}$$
 ...

d)
$$\overrightarrow{B_3}$$
 ...

Les couples des forces de Laplace mettent la spire en rotation. Parmi les champs produits par les bobines, déterminer à l'aide de la règle de la main droite celui qui provoque les rotations du circuit $\mathcal C$ données ci-dessous.

e) La rotation de la spire autour de l'axe (Ox) dans le sens direct.

(d) aucun

f) La rotation de la spire autour de l'axe (Oy) dans le sens direct?

g) La rotation de la spire autour de l'axe (Oz) dans le sens direct?

Autour du rail de Laplace

Le rail de Laplace est un circuit constitué de deux rails conducteurs parallèles horizontaux espacés d'une distance $\ell=10$ cm sur lesquels repose une tige conductrice \mathcal{T} de masse m=10 g.

Celle-ci glisse sans frottement sur les rails tout en leur restant perpendiculaire.

On repère la position x de la tige sur l'axe (Ox). On suppose que les rails conducteurs et la tige ont une résistance nulle.

L'ensemble est soumis à un champ magnétique uniforme permanent $\vec{B} = B\vec{e_z}$, avec B = 1 T. À l'instant initial, la tige est lancée à une vitesse $\vec{v}(t=0) = v_0 \vec{e_x}$.

Le composant D est un dipôle dont la nature sera indiquée dans les exercices suivants.

Entraînement 5.15 — Rail de Laplace (I).

Dans cet entraı̂nement, le dipôle D est une résistance R. On peut établir l'équation électrique (EE) et l'équation mécanique (EM) suivantes :

$$\begin{cases} B\ell v = Ri & \text{(EE)} \\ m\frac{\mathrm{d}v}{\mathrm{d}t} = -B\ell i & \text{(EM)}. \end{cases}$$

- a) Déterminer l'équation différentielle vérifiée par v(t)
- b) Quelle est l'expression de la vitesse v(t)?

(a)
$$v_0 \exp\left(-\frac{mR}{B^2\ell^2}t\right)$$

Entraînement 5.16 — Rail de Laplace (II).

Dans cet entraı̂nement, le dipôle D est un générateur de tension non idéal (constitué d'un générateur de tension idéal de force électromotrice E en série avec sa résistance interne r). On peut établir l'équation électrique (EE) et l'équation mécanique (EM) suivantes :

$$\begin{cases} B\ell v(t) + E = ri & \text{(EE)} \\ m\frac{\mathrm{d}v(t)}{\mathrm{d}t} = -B\ell i & \text{(EM)}. \end{cases}$$

- a) Déterminer l'équation différentielle vérifiée par v(t)
- b) Quelle est l'expression de la vitesse limite v_{lim} atteinte par la tige?

50 Fiche no 5. Induction

Entraînement 5.17 — Rail de Laplace (III).

Dans cet entraînement, le dipôle D est une bobine d'inductance $L=0.5\,\mathrm{H}$ et de résistance $r=1\,\Omega$. On peut établir l'équation électrique (EE) et l'équation mécanique (EM) suivantes :

$$\begin{cases} B\ell v = L\frac{\mathrm{d}i(t)}{\mathrm{d}t} + ri(t) & \text{(EE)} \\ m\frac{\mathrm{d}v}{\mathrm{d}t} = -B\ell i(t) & \text{(EM)}. \end{cases}$$

- b) Quelle est l'équation caractéristique associée à l'équation différentielle vérifiée par i(t)?

(a)
$$x^2 + \frac{r}{L}x + \frac{B^2\ell^2}{mL} = 0$$

$$\textcircled{c} \ x^2 + \frac{L}{r}x + \frac{B^2\ell^2}{mL}x = 0$$

- c) Comment peut-on qualifier le discriminant associé à l'équation caractéristique?
 - (a) Il est strictement positif.
 - (b) Il est nul.
 - (c) Il est strictement négatif.

d) Quelle est l'expression de i(t)?

Les nombres α et β sont réels.

(a)
$$\alpha e^{\left(-\frac{r}{2L} + \frac{1}{2}\sqrt{\frac{r^2}{L^2} - 4\frac{B^2\ell^2}{mL}}\right)t} + \beta e^{\left(-\frac{r}{2L} - \frac{1}{2}\sqrt{\frac{r^2}{L^2} - 4\frac{B^2\ell^2}{mL}}\right)t}$$

$$(b) e^{-\frac{r}{2L}t} \left(\alpha \cos \left(\frac{1}{2} \sqrt{\frac{r^2}{L^2} - 4 \frac{B^2 \ell^2}{mL}} t \right) + \beta \sin \left(\frac{1}{2} \sqrt{\frac{r^2}{L^2} - 4 \frac{B^2 \ell^2}{mL}} t \right) \right)$$

$$(c) (\alpha + \beta t) e^{-\frac{r}{2L}t}$$

$$(d) e^{-\frac{r}{2L}t} \left(\alpha \cos \left(\frac{1}{2} \sqrt{4 \frac{B^2 \ell^2}{mL} - \frac{r^2}{L^2}} t \right) + \beta \sin \left(\frac{1}{2} \sqrt{4 \frac{B^2 \ell^2}{mL} - \frac{r^2}{L^2}} t \right) \right)$$

Entraînement 5.18 — Équations différentielles.

On considère un circuit constitué d'un générateur de force électromotrice constante E, d'un dipôle et d'une tige mobile $\mathcal T$ de résistance R repérée par la coordonnée x sur l'axe (Ox), plongé dans un champ magnétique \overrightarrow{B} . On oriente le circuit dans le sens horaire.

On admet que le principe fondamental de la dynamique appliqué à la tige \mathcal{T} selon l'axe (Ox) permet d'écrire la relation $m\ddot{x}=iaB$. De plus, la force électromotrice induite est $e=-Ba\dot{x}$.

On étudie les cas où le dipôle correspond à ces trois montages suivants.

0000

Dipôle 1	Dipôle 2	Dipôle 3
Fil		$-\!$

a) Quel sera le montage complet en tenant compte de la force électromotrice induite e?

b) Exprimer la tension u à partir de la loi des mailles en fonction de E , i , R , B , a et \dot{x} .	
du	
c) Exprimer $\frac{du}{dt}$ en fonction de B , a , m , R , i et de $\frac{di}{dt}$	
d) Donner l'équation différentielle vérifiée par i pour le dipôle 1.	
e) Donner l'équation différentielle vérifiée par i pour le dipôle 2.	
f) Donner l'équation différentielle vérifiée par i pour le dipôle 3.	

52 Fiche no 5. Induction

Réponses mélangées

oui
$$\overrightarrow{0}$$
 $-Ri^2$ (a) $-Bx_c\ell$ (c) $\frac{\sqrt{2}}{2}(\overrightarrow{e_y}+\overrightarrow{e_z})$ (d) 0 $\frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{B^2\ell^2}{mr}v(t) = -\frac{B\ell E}{mr}$ (c) non (a) $B_0\omega\sin(\omega t)\frac{r}{2}$ $\frac{\mu_0N^2a}{2\pi}\ln\left(\frac{d+a}{d}\right)$ $\overrightarrow{e_y}$ aucune non (c) $2\pi B_0\left(\frac{R^2}{2} - \frac{R^3}{3a}\right) - \frac{B\pi R^2}{2}$ $\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{B^2\ell^2}{mR}v = 0$ $R\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{(Ba)^2}{m}i = 0$ $IBS\overrightarrow{e_x}$ $-\frac{\sqrt{2}}{2}(\overrightarrow{e_y}+\overrightarrow{e_z})$ $\frac{\mu_0NIa}{2\pi}\ln\left(\frac{d+a}{d}\right)$ $-iaB\overrightarrow{e_y}$ $mv\frac{\mathrm{d}v}{\mathrm{d}t} - fv$ $i\frac{\sqrt{3}}{2}aB\overrightarrow{e_x}$ oui $R\frac{\mathrm{d}i}{\mathrm{d}t} + \left(\frac{(Ba)^2}{m} + \frac{1}{C}\right)i = 0$ $L\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + R\frac{\mathrm{d}i}{\mathrm{d}t} + \left(\frac{(Ba)^2}{m} + \frac{1}{C}\right)i = 0$ $\frac{-\alpha B\underline{I}}{h+\mathrm{j}(m\omega-\frac{k}{\omega})}$ (d) $\frac{\sqrt{3}}{2}B\pi R^2$ $-IBS\overrightarrow{e_z}$ $-i\frac{\sqrt{3}}{2}aB\overrightarrow{e_z}$ 0 $-B(a-(x_c-\ell))\ell$ $ibB\overrightarrow{e_x}$ (d) $\pi R^2B_{\mathrm{m}}\cos(\omega t)$ $\frac{\mathrm{d}E_c}{\mathrm{d}t} + \mathcal{P}_{\mathrm{J}}$ $S\overrightarrow{e_y}$ $-B\ell^2$ (c) $B\pi R^2\cos(\omega t)$ (b) $\overrightarrow{0}$ (c) (c) (a) $B\pi R^2$ $\overrightarrow{0}$ $-\frac{(Ba)^2}{m}i-R\frac{\mathrm{d}i}{\mathrm{d}t}$ $Bv\ell$ $-\frac{E}{B\ell}$ (a) 0 $-\overrightarrow{e_z}$ $iaB\overrightarrow{e_y}$ $dS=r\,\mathrm{d}\theta\,\mathrm{d}r$ (a) $\overrightarrow{e_y}$ $\frac{\mathrm{d}^2i(t)}{\mathrm{d}t^2}+\frac{r}{L}\frac{\mathrm{d}i(t)}{\mathrm{d}t}+\frac{B^2\ell^2}{mL}i(t)=0$ $2\pi B_0\frac{a^2}{6}$ $E-Ba\dot{x}-Ri$ $-Bv\ell$ $\pi a^2B_{\mathrm{m}}\cos(\omega t)$ (d) $-ibB\overrightarrow{e_x}$ (c) non $\overrightarrow{e_z}$ 0 oui (b)

► Réponses et corrigés page 244

Fiche n° 5. Induction 53

Ondes électromagnétiques I

Prérequis

Pour une onde plane progressive monochromatique : $\lambda=c/f$ et f=1/T. Équations de Maxwell dans un espace vide de charges et de courants :

$$\operatorname{div} \overrightarrow{E} = 0$$
 (Maxwell-Gauss)

$$\operatorname{div} \overrightarrow{B} = 0 \tag{Maxwell-Thomson}$$

$$\overrightarrow{\operatorname{rot}}\, \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$
 (Maxwell-Faraday)

$$\overrightarrow{\mathrm{rot}}\, \overrightarrow{B} = \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \qquad \qquad (\mathrm{Maxwell-Ampère})$$

Formules d'analyse vectorielle, en coordonnées cartésiennes :

$$\operatorname{div} \overrightarrow{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \overrightarrow{e_z}$$

$$\overrightarrow{\Delta A} = \Delta A_x \overrightarrow{e_x} + \Delta A_y \overrightarrow{e_y} + \Delta A_z \overrightarrow{e_z}$$

$$\Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}$$

Constantes utiles

- \rightarrow Célérité de la lumière dans le vide : $c = 3{,}00 \times 10^8\,\mathrm{m\cdot s}^{-1}$
- \rightarrow Perméabilité magnétique du vide : $\mu_0 = 4\pi \times 10^{-7}\,\mathrm{H}\cdot\mathrm{m}^{-1}$
- \rightarrow Permittivité du vide : $\varepsilon_0 = 9 \times 10^{-12} \, \mathrm{F \cdot m}^{-1}$

Calculs numériques

Calculer, avec un chiffre significatif, les grandeurs suivantes :

- a) la vitesse de propagation des ondes électromagnétiques dans le vide $c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}$..
- b) La fréquence f d'une onde de longueur d'onde dans le vide $\lambda = 600\,\mathrm{nm}$
- c) La longueur d'onde dans le vide d'une onde de fréquence $f=3\,\mathrm{GHz}$
- d) La période d'une onde de longueur d'onde dans le vide $\lambda=3\,\mathrm{pm}$

0000

Entraînement 6.2 — Combat de grandeurs (I).

On considère un pointeur laser émettant une onde représentée par son champ électromagnétique

$$\vec{E}(M,t) = E_0 \cos(\omega t - kx)\vec{e_z}$$
 et $\vec{B}(M,t) = -\frac{E_0}{c}\cos(\omega t - kx)\vec{e_y}$,

avec $E_0 = 100 \,\mathrm{V} \cdot \mathrm{m}^{-1}$ et une ampoule classique à filament de puissance lumineuse égale à $100 \,\mathrm{W}$. Le faisceau laser est un cylindre de section $S = 1,0 \,\mathrm{mm}^2$.

a) Expliciter la puissance moyenne surfacique $\langle P \rangle = \Big\langle \iint \overrightarrow{\mathrm{d}} \overrightarrow{S} \Big\rangle$, avec $\overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$.

On rappelle que $\langle \cos^2(\alpha) \rangle = 1/2$ si α dépend du temps

- b) Calculer numériquement la puissance moyenne du laser
- c) Qui de l'ampoule classique ou du laser est le plus puissant en moyenne?

(E) Entraînement 6.3 — Combat de grandeurs (II).

On souhaite comparer le champ magnétique terrestre égal à $5 \times 10^{-5} \,\mathrm{T}$ à une onde radiofréquence représentée par son champ magnétique $\vec{B}(M,t) = B_0 \cos(\omega t - kx) \vec{e_z}$, de puissance moyenne 1 W.

Le faisceau a une section $S = 1 \,\mathrm{m}^2$. On rappelle que dans ce cas $B_0 = \frac{E_0}{c}$ où E_0 est la norme du champ électrique de l'onde plane.

- a) Exprimer B_0 en fonction de la puissance moyenne rayonnée $\langle P \rangle = \frac{E_0^2 S}{2\mu_0 c}$
- b) Que dire du champ magnétique de l'onde radiofréquence?
 - (a) Il est plus intense que le champ terrestre. (c) Il est du même ordre de grandeur que le
- b Il est moins intense que le champ terrestre.

Dérivées partielles et opérateurs

Entraînement 6.4 — Calcul de dérivées partielles (I).

On considère le champ électrique suivant : $\overrightarrow{E}(M,t)=E_0\cos(\omega t-kx)\overrightarrow{e_z}$. Calculer :

- a) $\frac{\partial \vec{E}}{\partial t}$
- d) $\frac{\partial^2 \vec{E}}{\partial x^2}$
- b) $\frac{\partial \vec{E}}{\partial x}$
- e) $\frac{\partial^2 \vec{E}}{\partial t^2}$
- c) $\frac{\partial \vec{E}}{\partial z}$

	En	ntraînement 6.5 — Calcul de dérivées partielles (II).	0000
	On	n considère le champ magnétique suivant : $\vec{B}(M,t) = B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kx) \vec{e_z}$. Calculer :	
	a)	$rac{\partial ec{B}}{\partial t}$	
	b)	$rac{\partial ec{B}}{\partial x}$	
	c)	$rac{\partial ec{B}}{\partial y}$	
	d)	$rac{\partial^2 \overrightarrow{B}}{\partial t^2}$	
	e)	$\frac{\partial^2 \vec{B}}{\partial x^2}$	
	f)	$\frac{\partial^2 \vec{B}}{\partial y^2}$	
 .		ntraînement 6.6 — Calcul d'opérateurs vectoriels (I). n considère le champ électrique suivant : $\overrightarrow{E}(M,t) = E_0 \cos(\omega t - kx) \overrightarrow{e_z}$. Calculer :	0000
	a)	$\operatorname{div} \overrightarrow{E}$	
	b)	$\overrightarrow{\operatorname{rot}} \overrightarrow{E}$	
	c)	$ec{\Delta} ec{E}$	
	En	ntraînement 6.7 — Calcul d'opérateurs vectoriels (II).	0000
		n considère le champ $\overrightarrow{A}(M,t)$ dont les composantes sont données par :	
		$\begin{cases} A_x = 0 \\ A_y = A_0 \cos\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \\ A_z = \alpha A_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz). \end{cases}$	
	Cal	dculer:	
	a)	$\operatorname{div} \overrightarrow{A}$	
	b)	$\overrightarrow{\operatorname{rot}}\overrightarrow{A}$	
	c)	$ec{\Delta} ec{A}$	

Entraînement 6.8 — Équation de propagation.

On cherche dans cet entraı̂nement à démontrer l'équation de propagation des ondes électromagnétiques dans le vide. On rappelle pour cela la formule du double rotationnel d'un vecteur \overrightarrow{A} :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{rot}}\overrightarrow{A}) = \overrightarrow{\operatorname{grad}}(\overrightarrow{\operatorname{div}}\overrightarrow{A}) - \overrightarrow{\Delta}\overrightarrow{A}.$$

a) En utilisant l'équation de Maxwell-Faraday puis celle de Maxwell-Ampère, on montre que :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{rot}}\,\overrightarrow{E}) = \alpha \frac{\partial^2 \overrightarrow{E}}{\partial t^2}.$$

Quelle est l'expression de α ?

(a)
$$\alpha = \mu_0 \varepsilon_0$$

$$(b) \alpha = \frac{1}{\mu_0 \varepsilon_0}$$

$$\bigcirc \alpha = -\mu_0 \varepsilon_0$$

b) En utilisant l'équation de Maxwell-Gauss et la formule du double rotationnel, établir une seconde expression de $\overrightarrow{\mathrm{rot}}(\overrightarrow{\mathrm{rot}}\,\overrightarrow{E})$

c) En égalisant les expressions de $\overrightarrow{rot}(\overrightarrow{rot}\,\vec{E})$ obtenues aux questions précédentes, on obtient l'équation de d'Alembert $\vec{\Delta}\vec{E} = \frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2}$.

Exprimer c en fonction de ε_0 et μ_0

....

Solutions de l'équation de propagation

Entraînement 6.9 — Représentation d'un signal.

On considère trois signaux :

• signal nº 1 : $E(x_0,t) = 2 + \cos \left(2\pi \frac{t}{T_1} \right) \text{ avec } T_1 = 5 \, \mathrm{s}$

On donne ci-contre leurs représentations graphiques (à x_0 fixé, en fonction du temps).

Entraînement 6.10 — Caractérisation d'une onde.

Dans chaque cas, dire si l'onde représentée est progressive (c'est-à-dire de la forme f(x-ct) ou g(x+ct)) et/ou harmonique (dont la dépendance temporelle est sinusoïdale).

a)

.....

b)

.....

c)

.....

Entraînement 6.11 — Onde représentée par son champ magnétique.

On étudie une onde électromagnétique dont le champ magnétique s'écrit :

$$\vec{B}(M,t) = B_0 \exp(-(t/\tau - x/\delta)^2) \vec{u_y}.$$

Choisir la représentation qui convient :

Entraı̂nement 6.12 — Onde électromagnétique dans un guide d'ondes.

Soit une onde électromagnétique, dont le champ électrique est donné par :

$$\vec{E} = E_0 \cos(\alpha z) \sin(\omega t - kx) \vec{e_y},$$

où E_0 et α sont des constantes. On rappelle l'équation de propagation d'une onde électromagnétique dans le vide, aussi appelée équation de d'Alembert :

$$\overrightarrow{\Delta}\overrightarrow{E} = \frac{1}{c^2}\frac{\partial^2\overrightarrow{E}}{\partial t^2}.$$

- a) Calculer $\overrightarrow{\Delta E}$
- b) Calculer $\frac{\partial^2 \vec{E}}{\partial t^2}$, sans utiliser l'équation de d'Alembert
- c) En utilisant l'équation de d'Alembert, exprimer k en fonction de ω , α et c

On rappelle qu'il y a dispersion si la vitesse de phase $v_{\varphi} = \frac{\omega}{k}$ de l'onde dépend de ω .

d) Y a-t-il dispersion ici?

Entraı̂nement 6.13 — Onde sphérique progressive.

On considère le champ électrique sphérique suivant : $\overrightarrow{E}(r,t) = \frac{a}{r}\cos(\omega t - kr)\overrightarrow{e_{\theta}}$.

On rappelle l'expression du rotationnel en coordonnées sphériques :

$$\overrightarrow{\mathrm{rot}}\ \overrightarrow{A} = \frac{1}{r\sin(\theta)} \bigg(\frac{\partial(\sin\theta A_\varphi)}{\partial\theta} - \frac{\partial A_\theta}{\partial\varphi} \bigg) \overrightarrow{e_r} + \frac{1}{r} \bigg(\frac{1}{\sin(\theta)} \frac{\partial A_r}{\partial\varphi} - \frac{\partial(rA_\varphi)}{\partial r} \bigg) \overrightarrow{e_\theta} + \frac{1}{r} \bigg(\frac{\partial(rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial\theta} \bigg) \overrightarrow{e_\varphi}.$$

a) Calculer le rotationnel du champ \vec{E} .

.....

b) En déduire le champ \vec{B} associé à l'aide de l'équation de Maxwell-Faraday.

- c) Indiquer les caractéristiques de la structure de ce champ électromagnétique :
 - (a) L'onde est transverse.
 - (b) L'onde est longitudinale.
 - (c) Les vecteurs $(\overrightarrow{k},\overrightarrow{E},\overrightarrow{B})$ forment un triè dre direct.
 - $(\overrightarrow{\mathbf{d}})$ Les vecteurs $(\overrightarrow{k},\overrightarrow{E},\overrightarrow{B})$ forment un triè dre indirect.
 - $\stackrel{\textstyle \frown}{\mbox{(e)}}$ Les vecteurs $(\overrightarrow{B},\overrightarrow{k},\overrightarrow{E})$ forment un triè dre direct.

Les vecteurs (B, k, E) forment un triedre direct.

 $On\ attend\ plusieurs\ r\'eponses.$

Entraı̂nement 6.14 — Onde dans un guide d'ondes.

On considère le champ électrique suivant :

$$\vec{E}(x,z,t) = E_0 \sin\left(\frac{\pi x}{a}\right) \cos(\omega t - kz) \vec{e_y}.$$

a) Exprimer les valeurs de z pour les quelles le champ \overrightarrow{E} s'annule.

.....

b) Exprimer les valeurs de x pour les quelles le champ \overrightarrow{E} s'annule.

.....

Entraı̂nement 6.15 — Onde plane en notation complexe.

On considère le champ électrique complexe polarisé rectilignement suivant :

$$\overrightarrow{\underline{E}} = \underline{E}_0 \exp \Big(\mathrm{j} (\omega t - k_x x - k_y y - k_z z) \Big) \overrightarrow{e_x} \qquad \text{et} \qquad \overrightarrow{k} = k_x \overrightarrow{e_x} + k_y \overrightarrow{e_y} + k_z \overrightarrow{e_z}.$$

Calculer:

- a) la dérivée temporelle de $\overrightarrow{\underline{E}}$
- b) la divergence de $\overrightarrow{\underline{E}}$
- c) le rotationnel de $\overrightarrow{\underline{E}}$
- d) le laplacien vectoriel de $\underline{\underline{\vec{E}}}$

Attribuer alors à chaque opération de dérivation ci-dessous l'expression qui lui est associée.

- (a) $-j\vec{k} \cdot \vec{\underline{E}}$
- $\bigcirc -j \overrightarrow{k} \wedge \underline{\overrightarrow{E}}$
- e) $\frac{\partial \vec{\underline{E}}}{\partial t}$ g) $\vec{\operatorname{rot}} \cdot \vec{\underline{E}}$
- f) $\operatorname{div} \overrightarrow{\underline{E}}$
- h) $\vec{\Delta} \vec{\underline{E}}$

Entraînement 6.16 — Vitesse de phase et vitesse de groupe.

On considère une onde plane progressive harmonique pour laquelle la pulsation ω et le vecteur d'onde k vérifient la relation de dispersion $k^2 = \frac{\omega^2 - \omega_0^2}{c^2}$, où ω_0 est une constante positive telle que $\omega_0 < \omega$.

a) Exprimer la vitesse de phase $v_{\varphi} = \frac{\omega}{k}$ de cette onde.

.....

b) En différentiant l'expression de k^2 , exprimer la vitesse de groupe $v_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$ de cette onde.

Puissance et énergie des ondes électromagnétiques

Le vecteur de Poynting $\overrightarrow{\Pi}$ et l'énergie volumique du champ $w_{\rm em}$ sont respectivement définis par :

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$$
 et $w_{\rm em} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$.

₽.
Ф

Entraı̂nement 6.17 — Puissance d'une onde plane progressive.

On considère le champ électromagnétique plan progressif monochromatique suivant :

$$\vec{E}(y,t) = E_0 \cos(\omega t - ky)\vec{e_z}$$
 et $\vec{B}(y,t) = \frac{E_0}{c} \cos(\omega t - ky)\vec{e_x}$.

- a) Calculer le vecteur de Poynting
- b) Calculer l'énergie volumique électromagnétique

Entraı̂nement 6.18 — Puissance d'une onde sphérique progressive.

On considère le champ électromagnétique sphérique suivant :

$$\vec{E}(r,t) = \frac{a}{r}\cos(\omega t - kr)\vec{e_{\theta}}$$
 et $\vec{B}(r,t) = \frac{a}{cr}\cos(\omega t - kr)\vec{e_{\varphi}}$.

- a) Calculer le vecteur de Poynting
- b) Calculer l'énergie volumique électromagnétique
- c) Calculer la puissance rayonnée $P=\iint \overrightarrow{\Pi} \cdot \overrightarrow{\mathrm{d}S}$ à travers une sphère de centre O et de rayon r.

.....

Entraînement 6.19 — Puissance d'une onde dans un guide d'ondes.

Pour un certain champ électromagnétique dans le vide, on a : $\vec{E}(x,z,t) = E_0 \sin\left(\frac{\pi x}{a}\right) \cos(\omega t - kz) \vec{e_y}$.

a) Calculer le champ \overrightarrow{B} associé à l'aide de l'équation de Maxwell-Faraday.

- b) Calculer le vecteur de Poynting
- c) Donner la moyenne temporelle du vecteur de Poynting.

 On rappelle que $\langle \cos^2(\alpha) \rangle = \frac{1}{2} \, si \, \alpha \, d\acute{e}pend \, du \, temps \, \dots$

Réponses mélangées

$$A_0 \cos\left(\frac{\pi y}{a}\right) \left(\frac{\pi}{a} \alpha \cos(\omega t - kz)\right) - k \sin(\omega t - kz) \hat{e}_x^{\star} - \left(\frac{\pi}{a}\right)^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kx) \hat{e}_z^{\star} = a$$

$$(b) \quad 5 \times 10^{14} \text{ Hz} - kE_0 \sin(\omega t - kx) \hat{e}_y^{\star} - c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \quad 0 \quad -\omega^2 \vec{E}$$

$$kE_0 \sin(\omega t - kx) \hat{e}_z^{\star} - A_0 \cos(\omega t - kz) \left(\left(\frac{\pi}{a}\right)^2 + k^2\right) \times 1 \times 10^{-1} \text{ m}$$

$$\left(\cos\left(\frac{\pi y}{a}\right) + \alpha \sin\left(\frac{\pi y}{a}\right)\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-\omega^2 E_0 \cos(\omega t - kx) \hat{e}_z^{\star} - k^2 E_0 \cos(\omega t - kx) \hat{e}_z^{\star} + \frac{\varepsilon_0 c\alpha^2}{a} \cos^2(\omega t - kr) \hat{e}_r^{\star}$$

$$\varepsilon_0 cE_0^2 \cos^2(\omega t - ky) \hat{e}_y^{\star} - \omega E_0 \sin(\omega t - kx) \hat{e}_z^{\star} + A_0 \sin\left(\frac{\pi y}{a}\right) \left(-\frac{\pi}{a} \cos(\omega t - kz) + k\alpha \sin(\omega t - kz)\right)$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kx) \hat{e}_z^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \sin\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos\left(\omega t - kz\right) \hat{e}_x^{\star} + 2 \times 1 \times 10^{-1} \text{ m}$$

$$-k^$$

► Réponses et corrigés page 250

Ondes électromagnétiques II

Prérequis

$$\begin{array}{l} \text{Maxwell-Gauss (M-G)} \\ \text{div } \overrightarrow{E} = \frac{\rho}{\varepsilon_0} \end{array}$$

Maxwell-Faraday (M-F)
$$\overrightarrow{rot} \, \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

Relation entre
$$c$$
, μ_0 et ε_0
 $\varepsilon_0 \, \mu_0 c^2 = 1$

Maxwell-Thomson (M-T) $\operatorname{div} \vec{B} = 0$

Maxwell-Ampère (M-A) $\overrightarrow{\operatorname{rot}} \, \overrightarrow{B} = \mu_0 \, \overrightarrow{j} + \varepsilon_0 \, \mu_0 \, \frac{\partial \overrightarrow{E}}{\partial t}$

> Loi d'Ohm locale $\vec{i} = \gamma \vec{E}$

Pour bien commencer

La Entraînement 7.1 − Vecteurs orthogonaux ou colinéaires.

Dans chaque cas, déterminer si les vecteurs \vec{a} , \vec{b} et \vec{c} sont cohérents avec les équations fournies. Répondre simplement par « oui » ou « non ».

a)
$$\vec{a} \cdot \vec{b} = 0$$
 et $\vec{a} \cdot \vec{c} = 0$

b)
$$\vec{a} \wedge \vec{b} = \vec{c}$$

c)
$$\vec{a} \wedge \vec{b} = \vec{0}$$
 et $\vec{a} \cdot \vec{c} = 0$

Entraînement 7.2 — Dériver des exponentielles complexes.

Établir une relation de dispersion liant \underline{k} à ω pour chaque équation différentielle.

On s'appuiera sur un champ électrique de la forme :

$$\vec{\underline{E}}(z,t) = E_0 \exp[i(\omega t - \underline{k}z)]\vec{e_x}.$$

a)
$$\frac{\partial \vec{E}}{\partial t} + \alpha \frac{\partial^2 \vec{E}}{\partial z^2} = \vec{0}$$

b)
$$\frac{\partial^3 \vec{\underline{E}}}{\partial t^3} + \alpha \frac{\partial^3 \vec{\underline{E}}}{\partial z^3} + \beta \frac{\partial \vec{\underline{E}}}{\partial t} = \vec{0}$$

c)
$$\frac{\partial^2 \vec{\underline{E}}}{\partial t^2} + \alpha \frac{\partial \vec{\underline{E}}}{\partial z} + \beta \vec{\underline{E}} = \vec{0}$$

Entraînement 7.3 — Conservation de la charge.

On considère dans un plasma « dilué » une onde électromagnétique de fréquence suffisamment élevée, ce qui simplifie l'écriture de la densité volumique de courant en notation complexe $\vec{j} = \underline{\alpha}(\omega) \underline{\vec{E}}$.

En régime sinusoïdal forcé, l'équation de conservation de la charge s'écrit i $\omega \rho + \text{div } \vec{j} = 0$.

- a) Établir une relation entre $\underline{\rho}$, $\underline{\alpha}$ et ω
- b) En tenant compte de l'expression de la conductivité complexe $\underline{\alpha} = \frac{N e^2}{\mathrm{i} m \omega}$ et en introduisant la pulsation plasma $\omega_p = \sqrt{\frac{N e^2}{m \varepsilon_0}}$, établir une relation liant ω , ω_p et $\underline{\rho}$

Entraînement 7.4 — Expression du vecteur d'onde.

On considère une onde plane progressive monochromatique polarisée rectilignement et caractérisée par le champ électrique complexe $\vec{\underline{E}} = E_0 \exp[i(\omega t - \underline{k}z)] \vec{e_x}$. On pose $\alpha_0 = \omega_p^2 \tau \varepsilon_0 = \frac{\omega_p^2 \tau}{u_0 c^2}$.

Cette onde se propage dans un métal réel de conductivité α . On admet que la relation de dispersion est :

$$\underline{k}^2 = \frac{\omega^2}{c^2} \left[1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{\omega \, \tau \, (1 - \mathrm{i} \, \omega \, \tau)} \right].$$

Dans les différents cas, déterminer l'expression de k.

- a) $\omega \ll \frac{1}{\tau} \ll \omega_p$ b) $\frac{1}{\tau} \ll \omega < \omega_p$ d) $\frac{1}{\tau} \ll \omega_p \ll \omega$

\clubsuit Entraînement 7.5 — Vitesse de phase.

Dans un milieu de propagation, les vitesses de phase v_{φ} et de groupe v_{g} d'une onde sont définies par

$$v_{\varphi} = \frac{\omega}{k'}$$
 et $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k'}$,

où k' est la partie réelle positive du vecteur d'onde \vec{k} . Dans un plasma, la relation de dispersion s'écrit :

$$\underline{k}^2 = \frac{\omega^2 - \omega_p^2}{c^2},$$

où ω_p est une constante.

- a) Exprimer la vitesse de phase v_{φ} lorsque $\omega > \omega_p$
- b) Exprimer la vitesse de groupe v_g lorsque $\omega > \omega_p$

Énergie et puissance

Entraînement 7.6 — Vecteur de Poynting et énergie du champ.

On considère un champ électromagnétique dans un milieu d'indice réel n défini par

$$\vec{E} = E_0 \cos(\omega t - kz) \vec{e_x}$$

et
$$\vec{B} = \frac{n}{c} E_0 \cos(\omega t - kz) \vec{e_y}$$
.

Le vecteur de Poynting $\overrightarrow{\Pi}$ et l'énergie volumique du champ w_{em} sont définis par

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} \quad \text{et} \quad w_{em} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}.$$

- b) Exprimer la moyenne temporelle du vecteur de Poynting
- Déterminer l'énergie volumique associée à l'onde
- Exprimer la moyenne temporelle de l'énergie

\blacksquare Entraı̂nement 7.7 — Puissance dans un conducteur.

On considère une onde dans un conducteur d'épaisseur de peau δ , de conductivité réelle γ , vérifiant

$$\vec{E} = E_0 e^{-\frac{x}{\delta}} \cos\left(\omega t - \frac{x}{\delta}\right) \vec{e_y}$$

$${\rm et} \quad \overrightarrow{B} = \frac{E_0}{\omega \delta} \exp \Bigl(-\frac{x}{\delta} \Bigr) \Bigl[\sin \Bigl(\omega t - \frac{x}{\delta} \Bigr) + \cos \Bigl(\omega t - \frac{x}{\delta} \Bigr) \Bigr] \overrightarrow{e_z}.$$

Le vecteur de Poynting $\overrightarrow{\Pi}$ et la puissance volumique perdue par effet Joule p_J sont définis par

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$$
 et $p_J = \vec{j} \cdot \vec{E}$.

a) Exprimer la moyenne du vecteur de Poynting.

b) Exprimer la puissance moyenne perdue par effet Joule.

.....

Entraînement 7.8 — Vecteur de Poynting en notation complexe.

En notation complexe, la moyenne temporelle du vecteur de Poynting pour des ondes planes progressives monochromatiques est donnée par

$$\left\langle \overrightarrow{\Pi}\right\rangle =\frac{\mathrm{Re}(\underline{\overrightarrow{E}}^{*}\wedge\underline{\overrightarrow{B}})}{2\mu_{0}},$$

où le symbole * désigne la conjugaison complexe. On considère un champ électromagnétique dans un milieu d'indice complexe n défini par

$$\underline{\overrightarrow{E}} = \underline{E}_0 \exp[\mathrm{i}(\omega t - kz)] \overrightarrow{e_x} \qquad \text{et} \qquad \underline{\overrightarrow{B}} = \frac{\underline{n}\,\underline{E}_0}{c} \exp[\mathrm{i}(\omega t - kz)] \overrightarrow{e_y}.$$

Déterminer la moyenne du vecteur de Poynting

Manipuler les équations de Maxwell

\blacksquare Entraînement 7.9 — Relation de dispersion.

On considère l'équation de propagation complexe dans un plasma :

$$\Delta \underline{\vec{E}} - \frac{1}{c^2} \frac{\partial^2 \underline{\vec{E}}}{\partial t^2} = \mu_0 \frac{\partial \underline{\vec{j}}}{\partial t}.$$

Le champ électrique qui se propage dans le plasma vaut : $\vec{\underline{E}} = E_0 \exp[\mathrm{i} (\omega t - \underline{k} z)] \vec{e_x}$ avec $\vec{\underline{k}} = \underline{k} \vec{e_z}$.

En tenant compte de l'expression du vecteur densité de courant $\vec{j} = \underline{\alpha} \vec{E} = \frac{n e^2}{i \omega m} \vec{E}$, établir l'équation de dispersion, liant k, ω , c et $\omega_p^2 = \frac{n e^2}{m\varepsilon_0}$.

.....

Entraı̂nement 7.10 — Établir une équation d'onde.

On considère un milieu ohmique localement neutre tel que : $\rho = 0$ et $\vec{j} = \gamma \vec{E}$. On pourra utiliser la relation $\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{rot}} \vec{E}) = \overrightarrow{\operatorname{grad}}(\operatorname{div} \vec{E}) - \Delta \vec{E}.$

a) Exprimer l'équation de Maxwell-Gauss modifiée.

......

b) Exprimer l'équation de Maxwell-Ampère modifiée.

.....

c) Déterminer l'équation différentielle à laquelle \vec{E} obéit.

.....

Entraı̂nement 7.11 — Vérification des équations de Maxwell (I).

Nous nous plaçons dans le vide $(\rho=0$ et $\overrightarrow{j}=\overrightarrow{0})$ et nous supposons que \overrightarrow{E} et \overrightarrow{B} s'écrivent

$$\overrightarrow{E}(z,t) = E_0 \cos(\omega t - kz) \overrightarrow{e_z}$$
 et
$$\overrightarrow{B}(z,t) = \frac{kE_0}{\omega} \cos(\omega t - kz) \overrightarrow{e_x} \quad \text{avec} \quad k = \omega/c.$$

- b) Les champs électrique et magnétique vérifient-ils l'équation de Maxwell-Faraday?
- c) Les champs électrique et magnétique vérifient-ils l'équation de Maxwell-Ampère?

Entraînement 7.12 — Vérification des équations de Maxwell (II).

On se place dans un plasma où l'on a

$$\underline{\vec{j}}(z,t) = -i\frac{\varepsilon_0 \omega_p^2}{\omega} \underline{\vec{E}}(z,t), \qquad \underline{\rho}(z,t) = \underline{0} \qquad \text{et} \qquad \overline{\vec{k}} = \frac{\omega}{c} \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \, \overrightarrow{e_z} \quad \text{avec} \quad \omega > \omega_p.$$

On suppose que

$$\begin{split} & \underline{\vec{E}}(z,t) = E_0 \exp[\mathrm{i}(\omega t - kz)] \overrightarrow{e_x} \\ \mathrm{et} \quad & \underline{\vec{E}}(z,t) = \frac{kE_0}{\omega} \exp[\mathrm{i}(\omega t - kz)] \overrightarrow{e_y} \quad \mathrm{avec} \quad k = \omega/c. \end{split}$$

- b) Les champs électrique et magnétique vérifient-ils l'équation de Maxwell-Faraday?
- c) Les champs électrique et magnétique vérifient-ils l'équation de Maxwell-Ampère?

Différentes familles d'ondes

Entraînement 7.13 — Onde progressive ou onde évanescente.

0000

Nous nous intéressons à un champ électrique de la forme

$$\vec{\underline{E}}(x,t) = E_0 \exp[i(\omega t - \underline{k}x)]\vec{e_z},$$

avec $\underline{k} = k' + ik$ " et où k" ≤ 0 .

Pour chaque relation de dispersion, déterminer si le champ électrique se présente sous la forme d'une onde

- (a) progressive $\vec{\underline{E}}(x,t) = E_0 \exp[i(\omega t k'x)]\vec{e_z}$
- (b) évanescente $\vec{\underline{E}}(x,t) = E_0 \exp(k"x) \exp(\mathrm{i}\omega t) \vec{e_z}$
- (c) progressive atténuée $\vec{E}(x,t) = E_0 \exp(k"x) \exp[i(\omega t k'x)] \vec{e}_z$

a)
$$\underline{k}^2 = -i\frac{\omega}{c}$$

\clubsuit Entraı̂nement 7.14 — Courbes et expressions.

0000

Dans chaque cas, indiquer la ou les courbes qui correspondent à chaque expression de \overrightarrow{E} fournie.

- a) $\vec{E}(x,t) = E_0 \cos(\omega t kx)\vec{e_z}$
- b) $\vec{E}(x,t) = E_0 \cos(\omega t) \exp(-kx) \vec{e_z}$ avec k > 0
- c) $\vec{E}(x,t) = E_0 \cos(\omega t k'x) \exp(-k"x) \vec{e_z}$ avec k" > 0

Réflexion et transmission

Entraînement 7.15 — Coefficients de réflexion et transmission en amplitude.

On considère les champs $\{\vec{E}_i, \vec{B}_i\}$ dans le milieu d'indice n_1 en incidence normale sur un dioptre en x=0produisant les champs réfléchis $\{\vec{E}_r, \vec{B}_r\}$ dans le milieu d'indice n_1 et transmis $\{\vec{E}_t, \vec{B}_t\}$ dans le milieu d'indice n_2 tels que :

$$\begin{cases}
\vec{E}_i = E_0 \cos(\omega t - k_1 x) \vec{e}_y \\
\vec{B}_i = \frac{n_1 E_0}{c} \cos(\omega t - k_1 x) \vec{e}_z
\end{cases}$$

$$\begin{cases}
\vec{E}_r = r E_0 \cos(\omega t + k_1 x) \vec{e}_y \\
\vec{B}_r = -\frac{n_1 r E_0}{c} \cos(\omega t + k_1 x) \vec{e}_z
\end{cases}$$

$$\begin{cases}
\vec{E}_t = t E_0 \cos(\omega t - k_2 x) \vec{e}_y \\
\vec{B}_t = \frac{n_2 t E_0}{c} \cos(\omega t - k_2 x) \vec{e}_z
\end{cases}$$

$$\begin{cases}
\vec{E}_r = rE_0 \cos(\omega t + k_1 x) \vec{e_y} \\
\vec{B}_r = -\frac{n_1 r E_0}{c} \cos(\omega t + k_1 x) \vec{e_z}
\end{cases}$$

$$\begin{cases} \vec{E}_t = tE_0 \cos(\omega t - k_2 x) \vec{e_y} \\ \vec{B}_t = \frac{n_2 t E_0}{c} \cos(\omega t - k_2 x) \vec{e_z}. \end{cases}$$

a) Les relations de continuité des champs entre les milieux 1 et 2 en x=0 imposent :

$$\vec{E}_1 = \vec{E}_2$$
 et $\vec{B}_1 = \vec{B}_2$.

En déduire deux relations entre r, t, n_1 et n_2

b) En déduire l'expression des coefficients r et t

Entraînement 7.16 — Coefficients de réflexion et transmission.

Un dioptre en x = 0 sépare du vide d'indice $n_1 = 1$ pour x < 0 d'un plasma d'indice réel n_2 pour x > 0. On rappelle les coefficients de réflexion et de transmission en amplitude (r, t):

et en puissance (R,T):

$$R = |r|^2$$
 et $T = |t|^2 \frac{n_2}{n_1}$

- Donner la longueur d'onde dans chaque domaine
- À l'aide du graphique, évaluer r et t
- En déduire l'indice n_2 du plasma
- Calculer les coefficients R et T

Entraînement 7.17 — Coefficients de réflexion et transmission en puissance.

En notation complexe, pour des ondes planes progressives monochromatiques de vecteur d'onde $\vec{\underline{k}}_1$ perpendiculaire au champ électrique $\vec{\underline{E}}$, le champ magnétique $\vec{\underline{B}}$ associé est

$$\underline{\vec{B}} = \frac{\underline{\vec{k}}_1 \wedge \underline{\vec{E}}}{\omega},$$

et la moyenne temporelle du vecteur de Poynting est donnée par $\left\langle \overrightarrow{\Pi} \right\rangle = \frac{\mathsf{Re}(\overrightarrow{\underline{E}}^* \wedge \overrightarrow{\underline{B}})}{2\mu_0}$.

On rappelle la relation d'analyse vectorielle $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}$.

a) Calculer la moyenne temporelle du vecteur de Poynting

Ce champ, en incidence normale sur un dioptre, donne lieu à un champ réfléchi de coefficient d'amplitude \underline{t} de vecteur d'onde $-\underline{k}_1$ ainsi qu'à un champ transmis de coefficient d'amplitude \underline{t} de vecteur d'onde \underline{k}_2 .

b) Exprimer les puissances réfléchie et transmise.

.....

c) En déduire l'expression de $R = -\frac{\langle \Pi_r \rangle}{\langle \Pi \rangle}$ et $T = \frac{\langle \Pi_t \rangle}{\langle \Pi \rangle}$

Réponses mélangées

$$\pm \frac{\omega}{c} \quad \text{oui} \quad v_g = c \sqrt{1 - \frac{\omega_p^2}{\omega_p}} \quad \text{non} \quad k^2 = \frac{\omega^2 - \omega_p^2}{c^2} \quad 2 \, \text{m et } 4 \, \text{m}$$

$$\frac{nE_0^2}{2\mu_0 c} \overrightarrow{e_z} \quad \underline{\rho} \left(\frac{\underline{\alpha}}{\varepsilon_0} + \mathrm{i} \, \omega \right) \quad \frac{|\underline{E}_0|^2}{2\mu_0 c} \, \mathrm{Re}(\underline{n}) \overrightarrow{e_z} \quad \text{non} \quad \pm \frac{\sqrt{\omega^2 - \omega_p^2}}{c}$$

$$\text{oui} \quad \frac{1}{2} \quad (\underline{b}) \quad \text{oui} \quad (\underline{c}) \quad \frac{E_0^2}{2\mu_0 \omega \delta} e^{-\frac{2x}{\delta}} \overrightarrow{e_x} \quad |\underline{r}|^2 \quad \text{et } |\underline{t}|^2 \, \mathrm{Re}\left(\frac{\underline{k}_2}{\underline{k}_1} \right)$$

$$\Delta \overrightarrow{E} - \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = \mu_0 \gamma \frac{\partial \overrightarrow{E}}{\partial t} \quad \text{div } \overrightarrow{E} = 0 \quad \begin{cases} r + 1 = t \\ n_1 - rn_1 = tn_2 \end{cases} \quad v_\varphi = \frac{c}{\sqrt{1 - \frac{\omega_p^2}{\omega^2}}}$$

$$\text{oui} \quad \frac{1}{9} \, \text{et } \frac{8}{9} \quad \pm \mathrm{i} \frac{\omega}{c} \sqrt{\omega_p^2 - \omega^2} \quad \pm \frac{1 + \mathrm{i}}{\delta} \, \text{avec } \delta = \sqrt{\frac{2}{\mu_0 \alpha \omega}} \quad \underline{k} = \frac{\beta - \omega^2}{\mathrm{i} \alpha}$$

$$1 \, \text{et } 3 \quad (\underline{a}) \quad \frac{\varepsilon_0 E_0^2}{4} (1 + n^2) \quad \frac{1}{3} \, \text{et } \frac{4}{3} \quad \text{oui} \quad \frac{\gamma E_0^2}{2} \mathrm{e}^{-\frac{2x}{\delta}} \quad 1 \, \text{et } 4$$

$$1 \, \text{et } 2 \quad \underline{k}^3 = \frac{\omega^3}{\alpha} - \frac{\beta}{\alpha} \omega \quad \frac{|\underline{E}|^2}{2\mu_0 \omega} \, \mathrm{Re}(\underline{k}_1) \quad \frac{\varepsilon_0 E_0^2}{2} (1 + n^2) \cos^2(\omega t - kz) \quad \text{oui}$$

$$\text{non} \quad \overrightarrow{\mathrm{rot}} \, \underline{B} = \mu_0 \gamma \overrightarrow{E} + \frac{1}{c^2} \frac{\partial \overrightarrow{E}}{\partial t} \quad \begin{cases} r = \frac{n_1 - n_2}{n_1 + n_2} \\ -\frac{|\underline{E}|^2 |\underline{t}|^2}{2\mu_0 \omega} \, \mathrm{Re}(\underline{k}_1) \\ t = \frac{2n_1}{n_1 + n_2} \quad -\frac{|\underline{E}|^2 |\underline{t}|^2}{2\mu_0 \omega} \, \mathrm{Re}(\underline{k}_2) \end{cases}$$

$$\text{oui} \quad \mathrm{i} \, \omega \, \underline{\rho} \left(1 - \frac{\omega_p^2}{\omega^2} \right) = 0 \quad \frac{n E_0^2}{\mu_0 c} \cos^2(\omega t - kz) \overrightarrow{e_z} \quad \text{non} \quad \underline{k}^2 = \frac{\mathrm{i} \omega}{\alpha}$$

► Réponses et corrigés page 256

0000

Modèle scalaire de la lumière

Prérequis

Optique géométrique (rayons, indice optique, lentilles, lois de Snell-Descartes). Trigonométrie. Longueurs d'onde dans le vide et dans un milieu, période, fréquence et pulsation.

Constantes utiles

 \rightarrow Célérité de la lumière dans le vide : $c = 3,00 \times 10^8 \,\mathrm{m \cdot s}^{-1}$

Exprimer un chemin optique

Dans un milieu homogène, le chemin optique entre deux points A et B est défini comme le produit de l'indice optique n du milieu par la distance géométrique AB parcourue par un rayon lumineux : (AB) = $n \times$ AB.

.a

Entraı̂nement 8.1 — De l'eau dans un verre.

Un rayon issu d'une source ponctuelle arrive sous incidence normale à la surface de l'eau contenue dans un verre. Les indices optiques de l'air et de l'eau sont respectivement notés $n_{\rm air}$ et $n_{\rm eau}$.

- c) En déduire l'expression du chemin optique (SF)
- d) Comment se réexprime cette expression si l'air est assimilé au vide?

Entraînement 8.2 — Points conjugués par une lentille.

Deux points A et A' sont conjugués par une lentille convergente : tous les rayons issus de A et arrivant en A' ont des chemins optiques identiques. Pour simplifier, ces points sont choisis sur l'axe optique de la lentille. L'air est assimilé au vide.

On note e l'épaisseur maximale de la lentille et n l'indice optique du verre.

En travaillant avec le rayon confondu avec l'axe optique, exprimer :

- b) le chemin optique dans l'air (AB) + (CA') en fonction de la distance AA' et e ...
- c) l'expression générale du chemin optique (AA') qu'on peut en déduire

Entraînement 8.3	— Lentille	éclairée	avec un	angle	d'incidence	non	nul.

Des rayons, provenant d'une source S à l'infini, éclairent une lentille sous un angle d'incidence α . Ils convergent en un point S' du plan focal image de la lentille. Les points A et B sont situés à gauche, juste avant la lentille. L'indice optique du verre est n. L'air est assimilé au vide.

a) En sachant que le plan passant par H et B est une surface d'onde pour la source S, exprimer la différence de chemin optique (SA) - (SB) en fonction de la distance AB et de l'angle α .

.....

b) Les points S et S' sont conjugués donc les chemins optiques (SAS') et (SBS') sont égaux.

En déduire la différence de chemin optique (AS') - (BS') en fonction de la distance AB et de l'angle α .

.....

Surfaces d'onde et théorème de Malus

D'après le théorème de Malus, les rayons lumineux issus d'un point source S sont perpendiculaires aux surfaces d'onde relatives à cette source, la surface d'onde étant le lieu des points d'égal chemin optique par rapport à la source.

Entraînement 8.4 — Action d'une lentille inconnue sur des surfaces d'onde.

On considère ici des surfaces d'onde issues d'un point objet (en tirets) et celles de son image (en pointillés) par une lentille inconnue. Pour chaque situation, déterminer si la lentille est « convergente » ou « divergente ».

Entraînement 8.5 — Action d'une lentille divergente sur des surfaces d'onde.

On construit l'image, par une lentille divergente $\mathcal{L},$ d'une source lumineuse

placée à l'infini sur l'axe optique. Une ou plusieurs réponses sont possibles.

- a) En amont de la lentille, les surfaces d'onde sont :
 - (a) perpendiculaires à l'axe optique

- (c) des plans parallèles entre eux
- (b) des cercles concentriques centrés sur F

- b) En aval de la lentille, les surfaces d'onde sont :
 - (a) des cercles concentriques centrés sur F
- (c) des cercles concentriques centrés sur F'
- (b) des plans perpendiculaires à l'axe optique

1	-	•	-	-																		_			_
 				•	 	 	٠.	 ٠.	٠.	 	•	 	•	 	٠	 	 •	٠.	 		٠.	 ٠ ا			

Entraînement 8.6 — Une loi bien connue...

Une onde plane arrive sur un dioptre plan séparant deux milieux d'indices n_1 et n_2 .

On note H_1 le projeté orthogonal de I_2 sur le rayon (2) et H_2 le projeté orthogonal de I_1 sur le rayon (1).

On note $I_1I_2 = a$.

a) Quels couples de points appartiennent à la même surface d'onde?

b) Que vaut l'angle α ?

$$(a) \frac{\pi}{2} - i$$

$$\bigcirc \frac{\pi}{2} + i_1$$

c) Exprimer le chemin optique (H_1I_1) en fonction de n_1 , a et α .

d) Que vaut l'angle β ?

$$\bigcirc$$
 i_2

$$\bigcirc \frac{\pi}{2} + i_1$$

e) Exprimer le chemin optique (I_2H_2) en fonction de n_2 , a et β

Retard de phase

Le retard de phase (ou, plus simplement, la phase) d'un rayonnement en un point M par rapport à sa source au point S est défini par $\phi(M) = \frac{2\pi}{\lambda_0}(SM)$, où (SM) est le chemin optique entre les deux points.

Entraı̂nement 8.7 — Surface d'onde et déphasage.

Un point source S émettant un rayonnement monochromatique de longueur d'onde λ_0 est placé au foyer objet d'une lentille mince convergente. Une lame d'indice n et d'épaisseur e est placée à une distance d de la lentille et recouvre une partie du faisceau. On considère que les points A et A', à équidistance de S, se situent juste après la lentille. On prendra l'indice de l'air égal à 1.

0000

- a) Quels couples de points appartiennent à la même surface d'onde?
- (a) A et A'

(b) B et B'

- \bigcirc C et C'
- b) Exprimer la phase $\phi(C')$ en fonction de λ_0 , (SA'), d et e.

c) Exprimer la phase $\phi(C)$ en fonction de λ_0 , (SA), d, n et e.

d) En déduire le déphasage $\Delta \phi = \phi(\mathbf{C}) - \phi(\mathbf{C}')$ en fonction de λ_0 , n et e.

.....

a

Entraînement 8.8 — Phases et déphasage.

Un signal lumineux de longueur d'onde dans le vide λ_0 est émis depuis une source en S. On considère que le point d'incidence A se situe juste avant le miroir, et on rappelle qu'une réflexion sur un miroir métallique produit un retard de phase de π .

- a) $\phi_1(A)$
- b) $\phi_1(M)$
- d) Exprimer la distance EB en fonction de e, h et θ_2
- e) Quelle est l' expression correcte de $\phi_2(B)$, la phase du rayon de droite au point B ?

(a)
$$\frac{2\pi}{\lambda_0} \left(\frac{h}{2n\sin(\theta_1)} - \frac{e}{\cos(\theta_2)} \right)$$
 (b) $\frac{2\pi}{\lambda_0} \left(\frac{h}{2\sin(\theta_1)} - \frac{e}{n\cos(\theta_2)} \right)$ (c) $\frac{2\pi}{\lambda_0} \left(\frac{e}{\cos(\theta_2)} - \frac{h}{2n\sin(\theta_1)} \right)$

f) Exprimer la phase de ce rayon en M, $\phi_2(M)$, en fonction de h, e, n, θ_1 et $\cos(\theta_2)$.

Exprimer le déphasage $\Delta \phi = \phi_2(M) - \phi_1(M)$ en fonction de e, n et $\cos(\theta_2)$.

h) Quelle est l'expression correcte de $\Delta \phi$? On rappelle que $\sin^2(a) + \cos^2(a) = 1$.

(a)
$$\frac{4\pi}{\lambda_0} \frac{e(n^2 - 1)}{\sqrt{n^2 - \sin^2(\theta_1)}} - \pi$$

(b)
$$\frac{4\pi}{\lambda_0} \frac{e(n^2-1)}{\sqrt{n^2-\sin^2(\theta_1)}} + \pi$$
 (c) $\frac{2\pi}{\lambda_0} \frac{e(n^2-1)}{\sqrt{n^2-\sin^2(\theta_1)}} + \pi$

$$\bigcirc \frac{2\pi}{\lambda_0} \frac{e(n^2 - 1)}{\sqrt{n^2 - \sin^2(\theta_1)}} + \tau$$

Entraînement 8.9 — Déphasage dû à une lame.

On souhaite exprimer les différences de phase $\Delta \phi = \phi(N) - \phi(M)$ entre le rayon passant par N et le rayon passant par M issus de la même source à l'infini S de longueur d'onde dans le vide λ_0 .

L'indice de l'air est pris égal à 1.

a) Pour le cas 1, exprimer le déphasage $\Delta \phi = \phi(N) - \phi(M)$ selon e, λ_0 et n.

On considère maintenant le cas 2.

Exprimer la distance H_1H_2 en fonction de I_1I_2 et $\theta_1 - \theta_2$

d) Exprimer le déphasage $\Delta \phi = \phi(N) - \phi(M)$ en fonction de $e, \lambda_0, n, \theta_2$ et $\theta_1 - \theta_2$.

e) Quelle est l'expression correcte de $\cos(\theta_1 - \theta_2)$?

On rappelle que $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ et que $\sin^2(a) + \cos^2(a) = 1$.

(a) $\cos(\theta_1)\cos(\theta_2) - n + n\sin^2(\theta_2)$

(c) $\cos(\theta_1)\cos(\theta_2) + n - n\cos^2(\theta_2)$

(b) $\sin(\theta_1)\sin(\theta_2) + n - n\sin^2(\theta_2)$

.....

f) En déduire une expression de $\Delta \phi$ fonction de e, λ_0 , n, $\cos(\theta_2)$ et $\cos(\theta_1)$.

Entraı̂nement 8.10 — Lame séparatrice.

Un signal lumineux de longueur d'onde dans le vide λ_0 est émis depuis une source en S. Il est séparé en deux rayons par une lame semi-réfléchissante inclinée d'un angle $\theta_1=45^\circ$. On cherche à déterminer le déphasage $\Delta\phi$ entre les deux rayons en sortie de la lame après réflexion sur les deux miroirs en M_1 et M_2 . On rappelle qu'un rayon subit un déphasage de π après réflexion sur un miroir métallique, ou sur un dioptre si le rayon incident se propage dans le milieu le moins réfringent (celui d'indice de réfraction le plus faible).

- a) Déterminer le déphasage du rayon réfléchi par \mathcal{M}_1 dû aux différentes réflexions . .
- b) Déterminer le déphasage du rayon réfléchi par M_2 dû aux différentes réflexions . .

Largeur spectrale et cohérence temporelle

Entraînement 8.11 — Différentes sources.

Une onde lumineuse est émise par des trains d'onde successifs de durée individuelle moyenne τ_c (temps de cohérence) et de longueur individuelle moyenne $\ell_c = c \times \tau_c$ (longueur de cohérence) dans le vide. D'après l'analyse de Fourier, à cette onde de durée finie correspond un spectre de largeur $\Delta f \simeq \frac{1}{\tau_c}$ (en fréquence).

On considère trois sources :

- une lampe spectrale basse pression à vapeur de mercure telle que $\tau_{\rm c} \simeq 10\,{\rm ps}$ (source (1)),
- un laser de TP tel que $\tau_c \simeq 0.1 \, \mu s$ (source (2)),
- et une source de lumière blanche munie d'un filtre ayant une bande passante $\Delta \lambda = 50 \, \text{nm}$ autour de la longueur d'onde $\lambda = 820 \, \text{nm}$ (source (3)).

On rappelle que la cohérence temporelle d'une source est d'autant meilleure que son temps de cohérence est important.

- a) Estimer Δf en hertz pour la source $\widehat{\mathbb{1}}$
- b) Estimer Δf en hertz pour la source (2)
- c) En utilisant la relation $\frac{\Delta \lambda}{\lambda} = \frac{\Delta f}{f}$, estimer τ_c en picosecondes pour la source (3)
- d) Classer les sources, de celle possédant la meilleure cohérence temporelle à la moins bonne.

Photométrie

Entraînement 8.12 — Intensité lumineuse.

Un signal $s(t) = S_0 \cos(\omega t)$ de période T est détecté par deux capteurs de temps de réponse $\tau = 1$ ns.

Les capteurs A et B délivrent des signaux de tension u_1 et u_2 respectivement proportionnels à la moyenne de s et au carré de la moyenne de s^2 : on a

$$u_1 = K_1 \langle s(t) \rangle$$
 et $u_2 = K_2 \langle s^2(t) \rangle$,

où K_1 et K_2 sont des constantes.

On considère que les signaux u_1 et u_2 émergent du bruit de mesure lorsque leur valeur absolue est respectivement supérieure à $\frac{K_1S_0}{2\pi \times 100}$ et $\frac{K_2S_0^2}{2}$.

On indique que la moyenne temporelle d'un signal f(t) mesuré pendant une durée τ est

$$\langle f(t) \rangle = \frac{1}{\tau} \int_0^{\tau} f(t) \, \mathrm{d}t.$$

a) Exprimer u_1 en fonction de K_1 , S_0 , τ et T.

- b) Quelle est la valeur maximale de u_1 fonction de $\frac{\tau}{T}$?
 - (a) $2\pi K_1 S_0 \frac{T}{\tau}$

 $\begin{array}{c}
\text{(c)} \ K_1 S_0 \frac{\tau}{2\pi T} \\
\text{(d)} \ K_1 S_0 \frac{T}{2\pi \tau}
\end{array}$

(b) $2\pi K_1 S_0 \frac{1}{T}$

c) En déduire la fréquence maximale du signal exploitable par le capteur A.

d) Exprimer u_2 en fonction de K_2 , S_0 , τ et T.

On rappelle que $\cos^2 a = \frac{1 + \cos(2a)}{2}$.

- e) Quelle est la valeur maximale de u_2 fonction de $\frac{\tau}{T}$?
- (a) $\frac{K_2S_0^2}{2\tau}\left(T+\frac{\tau}{4\pi}\right)$

 $(c) \frac{K_2 S_0^2}{\tau} \left(\tau + \frac{T}{4\pi}\right)$

Existe-t-il une fréquence maximale du signal exploitable par le capteur B?

\blacksquare Entraînement 8.13 — Choix d'une photodiode.

La sensibilité d'une photodiode s est, au cours d'une mesure de durée τ , le rapport de proportionnalité entre l'intensité du courant électrique produit I_{mes} et la puissance lumineuse mesurée \mathcal{P}_{mes} : on a

$$s = I_{\text{mes}}/\mathcal{P}_{\text{mes}}.$$

De plus, l'intensité du courant d'obscurité $I_{\rm obs}$ d'une photodiode correspond à l'intensité électrique minimale que doit dépasser le courant produit au cours d'une mesure.

On dispose de trois photodiodes détectant respectivement trois radiations de longueurs d'onde dans le vide différentes. Les caractéristiques des photodiodes et des radiations sont données ci-dessous.

photodiode 1	$\lambda_1 = 470 \mathrm{nm}$	$s_1 = 0.300 \mathrm{A \cdot W}^{-1}$	$I_{\rm obs\ 1} = 3{,}00 \times 10^{-5}\mu{\rm A}$	$\tau_1 = 2,00 \times 10^{-4} \mathrm{ms}$
photodiode 2	$\lambda_2 = 550 \times 10^3 \mathrm{pm}$	$s_2 = 200 \mathrm{mA \cdot W}^{-1}$	$I_{\rm obs~2}=150{\rm pA}$	$\tau_2 = 0.450 \mu s$
photodiode 3	$\lambda_3 = 0,660 \mu \text{m}$	$s_3 = 300 \mathrm{A \cdot kW}^{-1}$	$I_{\rm obs~3} = 2{,}00{\rm nA}$	$\tau_3 = 50.0 \text{ns}$

Calculer en watts les puissances lumineuses minimales détectables par les photodiodes.

a)
$$\mathcal{P}_{\min 1}$$

b)
$$\mathcal{P}_{\min 2}$$

c)
$$\mathcal{P}_{\min 3}$$

Calculer en joules les énergies minimales détectables au cours d'une durée τ par les photodiodes.

d)
$$E_{\min 1} \ldots$$

e)
$$E_{\min 2}$$
 f) $E_{\min 3}$

f)
$$E_{\min 3} \ldots$$

g) Sachant que l'énergie d'un photon est donnée par $E = h\nu$, où $h = 6.63 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$ est la constante de Planck, quelle photodiode permet de mesurer le plus petit nombre de photons?

Réponses mélangées

$$\frac{2\pi}{\lambda_0}((SA) + d + ne) \qquad 2e \tan(\theta_2) \qquad \textcircled{b} \qquad \frac{h}{2} - e \tan(\theta_2) \qquad n_{air} \times h + n_{eau} \times H$$

$$\Delta f = 1,0 \times 10^{11} \, \text{Hz} \qquad \frac{2\pi}{\lambda_0} e(n-1) \qquad \text{I}_1 \text{I}_2 \cos(\theta_1 - \theta_2) \qquad \pi \qquad n_2 a \sin(\beta)$$

$$n_{air} \times h \qquad \text{non} \qquad n \times e \qquad \Delta f = 1,0 \times 10^7 \, \text{Hz} \qquad \text{Divergente} \qquad \textcircled{d}$$

$$2), \ (1) \, \text{puis} \ (3) \qquad \frac{2\pi}{\lambda_0} \frac{h}{\sin(\theta_1)} + \pi \qquad \textcircled{b} \ \text{et} \ \textcircled{c} \qquad \textcircled{b} \qquad 6,67 \times 10^{-9} \, \text{W}$$

$$K_1 S_0 \frac{T}{2\pi \tau} \sin\left(2\pi \frac{\tau}{T}\right) \qquad \textcircled{b} \qquad \text{Convergente} \qquad 100 \, \text{GHz} \qquad \frac{2\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} (n - \cos(\theta_1 - \theta_2))$$

$$7,50 \times 10^{-10} \, \text{W} \qquad \tau_c = 45 \times 10^3 \, \text{ps} \qquad \frac{2\pi}{\lambda_0} ((SA') + d + e) \qquad n_1 a \sin(\alpha)$$

$$2\pi \qquad \textcircled{a} \qquad \textcircled{c} \qquad \textcircled{a} \ \text{et} \ \textcircled{c} \qquad -AB \sin(\alpha) \qquad \frac{e}{\cos(\theta_2)} \qquad \frac{2\pi}{\lambda_0} (n - 1)e$$

$$\frac{4\pi}{\lambda_0} \left(\frac{h}{2\sin\theta_1} + \left(n - \frac{1}{n}\right) \frac{e}{\cos(\theta_2)}\right) \qquad AB \sin(\alpha) \qquad \textcircled{c} \qquad \textcircled{a} \qquad \frac{e}{\cos(\theta_2)} \qquad \text{Convergente}$$

$$\frac{4\pi}{\lambda_0} \frac{h}{\sin(\theta_1)} \qquad 1 \times (AA' - e) \qquad n_1 \sin(i_1) = n_2 \sin(i_2) \qquad \text{Convergente} \qquad \textcircled{a} \ \text{et} \ \textcircled{b}$$

$$\frac{4\pi}{\lambda_0} \frac{ne}{\cos(\theta_2)} - \pi \qquad 1,00 \times 10^{-10} \, \text{W} \qquad n_{eau} \times H \qquad \frac{4\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} \left(n - \frac{1}{n}\right) - \pi$$

$$\frac{K_2 S_0^2}{2\tau} \left(\tau + \frac{T}{4\pi} \sin\left(4\pi \frac{\tau}{T}\right)\right) \qquad 3,33 \times 10^{-16} \, \text{J} \qquad \frac{2\pi}{\lambda_0} e(n \cos(\theta_2) - \cos(\theta_1))$$

$$\textcircled{a} \qquad 3,38 \times 10^{-16} \, \text{J} \qquad 1 \times h + n_{eau} \times H \qquad AA' + (n - 1)e \qquad 2 \times 10^{-17} \, \text{J}$$

► Réponses et corrigés page 262

Interférences à deux ondes

Prérequis

Fonctions trigonométriques. Signaux (fréquence, période, pulsations temporelle et spatiale, nombre d'onde, longueur d'onde, phase).

Constantes utiles

 \rightarrow Célérité de la lumière $c = 3.00 \times 10^8 \,\mathrm{m\cdot s^{-1}}$

Pour commencer

Entraînement 9.1 — Des relations trigonométriques.

On donne les relations trigonométriques suivantes :

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

(1)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$
 (2)
(3) $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$ (4)

$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b) \tag{4}$$

a)	Sommer les relations (1) et (2) et isoler $\cos(a)\cos(b)$

b) Réécrire la relation précédente pour
$$a = b$$

c)	Soustraire les relations	(1)	et (2) ,	isoler	$\sin(a)$	$)\sin(b)$	puis	réécrire	la	relation	obtenue	pour	a =	b.
----	--------------------------	-----	------------	--------	-----------	------------	------	----------	----	----------	---------	------	-----	----

Entraînement 9.2 — Somme de signaux périodiques.

On définit deux signaux lumineux : $s_1(x,t) = S_0 \cos(\omega t - kx)$ et $s_2(x,t) = S_0 \cos(\omega t - kx + \varphi)$ avec ω leur pulsation temporelle, k leur pulsation spatiale et φ une phase à l'origine. La superposition s(x,t) de ces deux vibrations peut se mettre sous la forme :

$$s(x,t) = s_1(x,t) + s_2(x,t) = S_0\Big(f(x,t) (1 + \cos(\varphi)) + g(x,t) \sin(\varphi)\Big).$$

On utilisera la relation trigonométrique: $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$.

Exprimer les fonctions suivantes :

c) Pour quelle valeur de phase φ le signal s(x,t) s'annule-t-il?

(a)
$$\varphi = 0$$
 (b) $\varphi = \frac{\pi}{2}$ (c) $\varphi = \pi$

Entraînement 9.3 — Valeurs moyennes (I).

Un détecteur mesure la moyenne temporelle d'un signal périodique s(t) de période T.

Cette moyenne, notée $\langle s(t) \rangle$, est définie par :

$$\langle s(t) \rangle = \frac{1}{T} \int_0^T s(t) \, \mathrm{d}t.$$

On donne les relations trigonométriques suivantes :

•
$$\cos(a)\cos(b) = \frac{\cos(a-b) + \cos(a+b)}{2}$$

•
$$\sin(a)\cos(b) = \frac{\sin(a-b) - \sin(a+b)}{2}$$
.

•
$$\cos(a)\cos(b) = \frac{\cos(a-b) + \cos(a+b)}{2}$$

• $\sin(a)\sin(b) = \frac{\cos(a-b) - \cos(a+b)}{2}$

On étudie les signaux suivants :

$$s_1(t) = S_1 \cos(\omega_1 t - k_1 x)$$
 et $s_2(t) = S_2 \sin(\omega_2 t - k_2 x + \varphi_2)$.

a) Exprimer la période T_1 de $s_1(t)$ en fonction de ω_1 .

b) À partir de la définition fournie, calculer $\langle s_1(t) \rangle$ sur T_1 .

c) Exprimer la période T_2 de $s_2(t)$ en fonction de ω_2 .

d) À partir de la définition fournie, calculer $\langle s_2(t) \rangle$ sur T_2 .

e) Exprimer la période T_3 de $f_1(t)=s_1^2(t)$ en fonction de ω_1 .

f) À partir de la définition fournie, calculer $\langle f_1(t) \rangle$ sur T_3 .

g) Exprimer la période T_4 de $f_2(t)=s_2^2(t)$ en fonction de $\omega_2.$

h) À partir de la définition fournie, calculer $\langle f_2(t) \rangle$ sur T_4 .

Entraînement 9.4 — Valeurs moyennes (II).

Les moyennes temporelles des fonctions cosinus et sinus pour un nombre entier de périodes vérifient :

$$\langle A\cos(a\omega t + b)\rangle = 0$$
 et $\langle A\sin(a\omega t + b)\rangle = 0$,

avec A, a, ω et b des constantes.

On donne les relations trigonométriques suivantes :

•
$$\cos(a)\cos(b) = \frac{\cos(a-b) + \cos(a+b)}{2}$$

•
$$\sin(a)\sin(b) = \frac{\cos(a-b) - \cos(a+b)}{2}$$

•
$$\sin(a)\cos(b) = \frac{\sin(a-b) + \sin(a+b)}{2}$$
.

Calculer la moyenne temporelle, sur un nombre entier de périodes, des fonctions ci-dessous.

a)
$$\left\langle \left[\cos(\omega_0 t + \varphi_1) + \cos(\omega_0 t + \varphi_2)\right]^2 \right\rangle$$

.....

b)
$$\left\langle \left[A\cos(3\omega_0 t + \varphi_1) + A\cos(\omega_0 t + \varphi_2) \right]^2 \right\rangle$$

.....

c)
$$\left\langle \left[A\cos(42\omega_0 t + \varphi_1) + B\sin(43\omega_0 t + \varphi_2) \right]^2 \right\rangle$$

.....

d)
$$\left\langle \left[\frac{A}{4} \sin \left(\frac{\omega_0}{2} t + \varphi_0 \right) + \frac{A}{2} \sin \left(\frac{\omega_0}{2} t + 2\varphi_0 \right) \right]^2 \right\rangle$$

(\blacksquare) Entraı̂nement 9.5 — Bataille de contrastes.

On mesure les maxima et les minima d'éclairement de différentes figures d'interférence.

Étant donné les mesures d'intensité I_{max} et I_{min} suivantes, quelle figure présente le contraste $C = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$ le plus élevé ?

On rappelle que $1 \text{ pW} = 1 \times 10^{-12} \text{ W}.$

(a)
$$I_{\text{max}} = 10.0 \times 10^6 \,\text{W} \cdot \text{m}^{-2} \text{ et } I_{\text{min}} = 1.00 \,\text{MW} \cdot \text{m}^{-2}$$

(b)
$$I_{\text{max}} = 660 \,\text{mW} \cdot \text{mm}^{-2} \text{ et } I_{\text{min}} = 0.220 \,\text{kW} \cdot \text{dm}^{-2}$$

(c)
$$I_{\rm max} = 5{,}00\,{\rm mW\cdot mm^{-2}}$$
 et $I_{\rm min} = 2{,}00\,{\rm mW\cdot cm^{-2}}$

(d)
$$I_{\rm max}=72.0\,{\rm pW}\cdot{\rm \mu m}^{-2}$$
 et $I_{\rm min}=3.00\,{\rm MW}\cdot{\rm km}^{-2}$

 $\frac{\text{(d)}}{I_{\text{max}}} = I2.0 \text{ pW} \cdot \text{pm} \quad \text{et } I_{\text{min}} = 5.00 \text{ WW} \cdot \text{km}$

Entraînement 9.6 — Signaux isophases.

Une source émet deux vibrations lumineuses $s(x,t) = S_0 \cos(\omega t - kx)$ et $s'(x',t') = S_0 \cos(\omega t' - kx')$ de période temporelle T (associée à la pulsation $\omega=\frac{2\pi}{T}$ et à la fréquence $f=\frac{1}{T}$) et de longueur d'onde λ (associée à la pulsation spatiale $k = \frac{2\pi}{\lambda}$). On note $n \in \mathbb{Z}$.

- a) Exprimer $\Delta \varphi$ le retard de phase entre s et s' pour $t = t' = t_0 \ldots \ldots$
- b) Pour $t = t' = t_0$, comment s'expriment les écarts de position Δx_n lorsque s et s' ont la même excitation lumineuse?
 - (a) $\Delta x_n = n\lambda$

- $\bigcirc \Delta x_n = n \frac{\lambda}{2}$

Exprimer $\Delta \varphi$ le retard de phase entre s et s' pour $x = x' = x_0 \ldots \ldots$

- d) Pour $x = x' = x_0$, comment s'expriment les écarts d'instant Δt_n lorsque s et s' ont la même excitation lumineuse?
 - (a) $\Delta t_n = nT$

Études d'éclairements

Entraînement 9.7 — Fentes de Young.

L'éclairement I(x) obtenu en un point M d'un écran à une distance D des fentes de Young est représenté sur la figure ci-contre. Il vérifie :

$$I(x) = f(x) \left[1 + \cos\left(\frac{2\pi nax}{\lambda D}\right) \right],$$

où f(x) est une fonction dont nous ne tiendrons pas compte, où a est la distance entre les deux fentes, où n est l'indice du milieu et où λ est la longueur d'onde du signal.

- a) Identifier, grâce à la formule fournie, l'interfrange i (c'est-à-dire la distance entre deux maxima d'éclairement consécutifs).
 - (a) $i = \frac{na}{\lambda D}$

- (b) $i = \frac{2\pi na}{\lambda D}$ (c) $i = \frac{\lambda D}{na}$ (d) $i = \frac{\lambda D}{2\pi na}$

b) Mesurer, à partir de la figure, l'interfrange i

En déduire a, sachant que n=1,0, que D=1,0 m et que $\lambda=630$ nm

Entraînement 9.8 — Doublet spectral.

On éclaire des fentes de Young verticales espacées d'une distance a, avec un doublet spectral de longueurs d'onde λ_1 et λ_2 (on pose $\Delta\lambda=\lambda_2-\lambda_1$ et $\lambda_{\text{moy}}=\frac{\lambda_2+\lambda_1}{2}$). L'éclairement I(x), obtenu en un point M d'un écran à une distance D des fentes, est représenté sur la figure ci-dessous. Il vérifie :

$$I(x) = I_{\text{moy}} \left[1 + C(x) \cos \left(\frac{2\pi nax}{\lambda_{\text{mov}} D} \right) \right],$$

où C(x), appelé $terme\ de\ contraste$, est défini par $C(x)=\cos\left(\frac{\pi nax\Delta\lambda}{\lambda_{\rm mov}^2D}\right)$.

a) Identifier, grâce à la formule fournie, la période X du terme de contraste.

(a)
$$X = \frac{\lambda_{\text{moy}}^2 D}{na\Delta \lambda}$$

$$\bigcirc X = \frac{\lambda_{\text{moy}}^2 D}{2na\Delta\lambda}$$

) D

b) On rappelle que $i=\frac{\lambda_{\mathrm{moy}}D}{na}.$ Déterminer graphiquement l'interfrange i.

.....

c) En déduire λ_{moy} , sachant que n=1,0, que $D=1,5\,\text{m}$ et $a=0,20\,\text{mm}$.

.....

d) Déterminer graphiquement la période X du terme de contraste.

.....

e) En déduire l'écart spectral $\Delta \lambda$ du doublet.

Interférométrie

Dans cette section, nous exploiterons les trois figures d'interférence suivantes.

🖳 Entraînement 9.9 — Fentes « deux » Young.

On éclaire des fentes de Young en faisceau parallèle conformément au schéma ci-dessous. La différence de marche entre les deux rayons 1 et 2 est : $\delta_{SM} = \mathcal{L}_{SM,2} - \mathcal{L}_{SM,1} = \mathcal{L}_{S_2H}$.

On donne le développement limité suivant : $\sin(x) = x - \frac{x^3}{6} + o(x^4)$ quand $x \to 0$.

a) En étudiant le triangle S_1S_2H , exprimer la longueur S_2H en fonction de θ_1 et a.

b) En étudiant un autre triangle, exprimer l'angle θ_1 en fonction de y et f'_2 .

- Exprimer δ_{SM} en fonction de a, y et f_2' lorsque $\theta_1 \ll 1 \text{ rad} \dots$
- d) Exprimer l'interfrange i de la figure d'interférence au niveau de l'écran, sachant que l'éclairement y est tel que $I = 2I_0 \left[1 + \cos \left(\frac{2\pi}{\lambda} \delta_{\text{SM}} \right) \right] = 2I_0 \left[1 + \cos \left(2\pi \frac{y}{i} \right) \right].$

Quelle est la figure d'interférence observée sur l'écran?

(a) Figure 1 (b) Figure 2 (c) Figure 3

Entraînement 9.10 — Interféromètre de Mach-Zehnder.

On a positionné une lame d'épaisseur e et une lame prismatique d'épaisseur $e' = e - \alpha y$, toutes deux d'indice n, au niveau des bras d'un interféromètre de Mach-Zehnder (on ne tiendra pas compte de la réfraction en sortie de la lame prismatique).

Les lames séparatrices LS atténuent l'éclairement I_0 des rayons d'un facteur 2. On rappelle que l'amplitude S_0 d'un rayon est liée à son éclairement de telle manière que I_0 est proportionnel à S_0^2 . La différence de marche entre les deux rayons 1 et 2 est :

0000

$$\delta_{\mathrm{SM}} = \mathcal{L}_{\mathrm{SM},1} - \mathcal{L}_{\mathrm{SM},2} = \mathcal{L}_{\mathrm{LS}_1\mathcal{M}_1} - \mathcal{L}_{\mathcal{M}_2\mathrm{LS}_2}.$$

a) De combien est atténuée l'amplitude d'un seul rayon après la deuxième séparatrice?

(a) 1/2

(b)	1/4

b) Exprimer la différence de marche $\delta_{\rm SM}$ entre les deux bras en fonction de n, α et y..

c) Exprimer l'interfrange i de la figure d'interférence au niveau de l'écran, sachant que l'éclairement y est tel que $I = I'[1 + \cos(\Delta\varphi)] = I'\Big[1 + \cos\Big(2\pi\frac{y}{i}\Big)\Big]$

d) Quelle est la figure d'interférence observée sur l'écran?

(a) Figure 1

A.

Entraînement 9.11 — Interféromètre de Michelson en lame d'air.

Un interféromètre de Michelson en configuration lame d'air repose sur l'association de deux miroirs \mathcal{M}_1 et \mathcal{M}_2 dont le schéma optique équivalent est présenté ci-contre. Les rayons se propagent dans l'air, assimilé à un milieu d'indice optique n.

Dans ce cas, la différence de marche entre les deux rayons 1 et 2 est : $\delta_{SM} = \mathcal{L}_{SM,2} - \mathcal{L}_{SM,1} = \mathcal{L}_{IJ} + \mathcal{L}_{JK} - \mathcal{L}_{IH}.$

0000

a) Exprimer les longueurs IJ et JK en fonction de θ et e

b) Exprimer la longueur IK en fonction de θ et e

c) Exprimer la longueur IH en fonction de θ et IK

On rappelle l'identité trigonométrique : $\cos^2(x) + \sin^2(x) = 1$.

e) En déduire l'expression de la différence de marche δ_{SM} en fonction de $\cos(\theta), n$ et e.

.....

f) Quelle est la figure d'interférence observée sur l'écran?

(a) Figure 1

b Figure 2

© Figure 3

Entraînement 9.12 — Interféromètre de Fabry-Perot.

Un interféromètre de Fabry-Perot est constitué de deux miroirs séparés d'une distance e par un milieu d'indice n. On s'intéresse aux deux rayons ci-contre. En sortie de l'interféromètre, une lentille permet de les focaliser S afin qu'ils interfèrent en un point M d'un écran. Au niveau de chaque miroir, l'amplitude d'un rayon est multipliée par un coefficient r, qu'on approxime à $1/\sqrt{2}$, ou par un coefficient t=1+r selon qu'il est réfléchi ou transmis. On considérera que l'air et le milieu entre les miroirs sont d'indice n=1, et on notera i l'angle de réflexion tel que $\widehat{ABD}=2i$ et $\widehat{BEH}=i$.

On rappelle que l'éclairement est proportionnel au carré de l'amplitude.

- a) Quel est le rapport des éclairements entre le rayon du bas et celui du haut?
 - (a) 1/2

(b) 1/4

(c) 1/8

b) Exprimer la longueur BH en fonction de e et i

c) Exprimer la longueur BD en fonction de e et i

d) Exprimer la différence de marche $\delta_{\rm SM} = \mathcal{L}_{\rm SABDFM} - \mathcal{L}_{\rm SABHCM}$

e) Quelles formes auront les franges d'interférence sachant que $I(M) = 2I_0 \left[1 + \cos \left(\frac{\delta_{SM}}{2\pi} \right) \right]$?

(a) bandes rectilignes (b) carrés évidés (c) anneaux

Réponses mélangées

$$\arctan\left(\frac{y}{f_2'}\right) \quad a \sin(\theta_1) \qquad \omega(t-t') \qquad \bigcirc \qquad \frac{A^2}{8} \left(\frac{5}{4} + \cos(\varphi_0)\right) \qquad 0,57 \, \mathrm{cm}$$

$$\cos^2 a = \frac{1 + \cos(2a)}{2} \qquad 0,14 \, \mathrm{\mu m} \qquad -\sin(\omega t - kx) \qquad 1 + \cos(\pm \varphi_1 \mp \varphi_2)$$

$$\sin(a) \cos(a) = \frac{\sin(2a)}{2} \qquad \boxed{a} \qquad k(x'-x) \qquad \bigcirc \qquad \frac{\pi}{\omega_1} \qquad 2e \tan(\theta)$$

$$0 \qquad \boxed{b} \qquad \mathrm{IK} \sin(\theta) \qquad A^2 \qquad \boxed{a} \qquad 2e \frac{1 - \cos^2(\theta)}{\cos(\theta)} \qquad (n-1)\alpha y$$

$$\sin^2 a = \frac{1 - \cos(2a)}{2} \qquad \boxed{b} \qquad \cos(\omega t - kx) \qquad 0 \qquad \frac{2e \sin^2 i}{\cos(i)} \qquad 2ne \cos(\theta)$$

$$\boxed{a} \qquad 1,3 \, \mathrm{cm} \qquad \frac{A^2 + B^2}{2} \qquad 6,4 \, \mathrm{cm} \qquad \boxed{b} \qquad 48 \, \mathrm{\mu m} \qquad \frac{nay}{f_2'}$$

$$\cos(a) \cos(b) = \frac{\cos(a-b) + \cos(a+b)}{2} \qquad \frac{e}{\cos(i)} \qquad 0,76 \, \mathrm{\mu m} \qquad \boxed{b} \qquad \frac{2\pi}{\omega_2} \qquad \frac{\lambda_0}{(n-1)\alpha}$$

$$\frac{e}{\cos(\theta)} \qquad 2ne \cos(i) \qquad \frac{f_2'\lambda}{na} \qquad \frac{\pi}{\omega_2} \qquad \bigcirc \qquad \frac{S_2^2}{2} \qquad \frac{S_1^2}{2} \qquad \frac{2\pi}{\omega_1} \qquad \bigcirc \qquad \bigcirc$$

► Réponses et corrigés page 269

Interférences à N ondes

Prérequis

Nombres complexes et formules trigonométriques.

Avant toute chose

0000

Entraı̂nement 10.1 — Complexes et conjugués.

On considère le nombre complexe suivant :

$$\underline{Z}_1 = 1 + e^{j\theta}.$$

a) Quelle est l'expression de $\underline{Z}_1^*,$ le conjugué de $\underline{Z}_1\,?$

$$(a)$$
 $\underline{Z}_1^* = -1 + e^{j\theta}$

$$\widehat{\mathbf{b}}) \ \underline{Z}_1^* = 1 - \mathbf{e}^{\mathbf{j}\theta}$$

$$\widehat{\text{c}}) \ \underline{Z}_1^* = 1 + e^{-j\theta}$$

(a)
$$\underline{Z}_{1}^{*} = -1 + e^{j\theta}$$
 (b) $\underline{Z}_{1}^{*} = 1 - e^{j\theta}$ (c) $\underline{Z}_{1}^{*} = 1 + e^{-j\theta}$

b) En déduire $\underline{Z}_1\underline{Z}_1^*$ et le mettre sous la forme d'une fonction de $\cos(\theta)$ Reprenons l'étude avec le nombre complexe suivant :

$$\underline{Z}_2 = 1 - e^{-j\theta}.$$

c) Quelle est l'expression de $\underline{Z}_2^*,$ le conjugué de $\underline{Z}_2\,?$

(a) $\underline{Z}_2^* = 1 + e^{-j\theta}$ (b)

(b)	Z_2^*	=	1	_	$e^{j\theta}$
(D)	\underline{u}_2	_	T		C

(c)
$$\underline{Z}_{2}^{*} = -1 - e^{-j\theta}$$
 (d) $\underline{Z}_{2}^{*} = 1 + e^{+j\theta}$

(d)
$$\underline{Z}_{2}^{*} = 1 + e^{+j\theta}$$

- d) En déduire $\underline{Z}_2\underline{Z}_2^*$ et le mettre sous la forme d'une fonction de $\cos(\theta)$
- Entraînement 10.2 Des expressions complexes aux fonctions sinusoïdales (I). 0000 On considère le nombre complexe suivant :

$$\underline{Z}_1 = 1 + e^{j\theta}.$$

a) Écrire \underline{Z}_1 sous la forme suivante :

$$\underline{Z}_1 = \underline{f}\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right).$$

Donner l'expression de $\underline{f}\left(\frac{\theta}{2}\right)$

b) En déduire $\underline{Z}_1\underline{Z}_1^*$ et le mettre sous la forme d'une fonction de $\cos\left(\frac{\theta}{2}\right)$

Entraı̂nement 10.3 — Des expressions complexes aux fonctions sinusoïdales (II).

Reprenons l'étude avec le nombre complexe suivant :

$$\underline{Z}_2 = 1 - e^{-j\theta}$$
.

a) Écrire \underline{Z}_2 sous la forme suivante :

$$\underline{Z}_2 = \underline{g}\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right).$$

Donner l'expression de $\underline{g}\left(\frac{\theta}{2}\right)$

b) En déduire $\underline{Z}_2\underline{Z}_2^*$ et le mettre sous la forme d'une fonction de $\sin\left(\frac{\theta}{2}\right)$

Entraînement 10.4 — Deux calculs entre nombres complexes et trigonométrie.

Soit $R \in \mathbb{R}$. On considère le nombre complexe suivant :

$$\underline{s} = \frac{1}{1 - Re^{-j\varphi}}.$$

On admet que \underline{ss}^* peut se mettre sous la forme suivante :

$$\underline{ss}^* = \frac{a}{1 + m\sin^2(\varphi/2)}.$$

- a) Donner l'expression de a en fonction de R
- b) Donner l'expression de m en fonction de R

 \blacksquare Entraînement 10.5 - Résolution d'une équation trigonométrique (I).

Soit $\theta \in [-90^{\circ}, 0^{\circ}]$.

Nous cherchons l'ensemble des angles θ' avec $\theta' \in [-90^{\circ}, 90^{\circ}]$ vérifiant l'équation suivante :

$$\cos(\theta') = \cos(\theta).$$

L'ensemble des solutions s'écrit : $\theta' = \{a, b, c, d, ...\}$.

- Donner le plus petit élément de l'ensemble des solutions
- Donner le plus grand élément de l'ensemble des solutions

Entraînement 10.6 — Résolution d'une équation trigonométrique (II).

Soit $\theta \in [-90^{\circ}, 0^{\circ}]$.

Nous cherchons l'ensemble des angles θ' avec $\theta' \in [-90^{\circ}, 90^{\circ}]$ vérifiant l'équation suivante :

$$\sin(\theta') = \sin(\theta).$$

L'ensemble des solutions s'écrit : $\theta' = \{a, b, c, d, ...\}$.

Pour continuer...

Entraînement 10.7 — Suite géométrique.

On rappelle que la somme des n+1 premiers termes d'une suite géométrique u_k de raison $q \neq 1$ vérifie :

$$\sum_{k=0}^{n} u_k = u_0 + \dots + u_n = u_0(1 + q + \dots + q^n) = u_0 \frac{1 - q^{n+1}}{1 - q}.$$

Soit $\varphi \in \mathbb{R}$; on suppose que φ n'est pas un multiple de 2π .

Nous souhaitons écrire les sommes $\underline{s}(\varphi)$ sous la forme suivante :

$$\underline{s}(\varphi) = \underline{f}(\varphi) \frac{\sin\left(a\frac{\varphi}{2}\right)}{\sin\left(\frac{\varphi}{2}\right)}.$$

Déterminer a et $f(\varphi)$ pour $\underline{s}(\varphi) = 1 + e^{j\varphi} + e^{2j\varphi}$.

- a) *a*
- b) $\underline{f}(\varphi)$

Déterminer a et $f(\varphi)$ pour $\underline{s}(\varphi) = e^{j\varphi} + e^{2j\varphi} + e^{3j\varphi} + e^{4j\varphi} + e^{5j\varphi}$.

- c) *a*
- d) $\underline{f}(\varphi)$

Autour du réseau à N fentes

Entraînement 10.8 — Pas du réseau.

0000

Nous disposons d'un réseau présentant 600 traits par millimètre (600 traits/mm). Le pas du réseau a est la distance entre deux fentes successives (distance centre à centre).

Déterminer a en μ m

\blacksquare Entraînement 10.9 — Calcul de linéature en lpi.

La linéature d'un réseau est affichée, dans le système anglo-saxon, en lpi (line per inch). On rappelle qu'un pied (foot) correspond à un tiers de verge anglaise (yard), et qu'il est divisé en douze pouces (inches). Un yard vaut 91,44 cm.

- a) Donner la valeur du pouce (1 inch) en mm.
 - (a) 7,62 mm
- (b) 25,4 mm

.....

- (c) 39,3 mm
- $(d) 43.7 \, \text{mm}$

b) Calculer en traits par millimètre (résultat arrondi à la centaine la plus proche) la linéature d'un réseau comportant $n = 30\,000\,\mathrm{lpi}$

Entraînement 10.10 — À propos de la relation fondamentale des réseaux.

Un réseau de fentes de linéature $n=600\,\mathrm{traits/mm}$ est éclairé par une onde plane issue d'une source monochromatique de longueur d'onde dans l'air $\lambda = 546.1 \,\mathrm{nm}$ et on observe l'ordre 1 de diffraction par ce réseau en émergence normale.

On rappelle la relation fondamentale des réseaux par transmission entre l'angle d'incidence θ_0 et l'angle de diffraction θ par le réseau dans l'ordre p:

$$\sin(\theta) - \sin(\theta_0) = pn\lambda.$$

Que vaut l'angle d'incidence θ_0 (en degrés) de l'onde éclairant ce réseau?

\blacksquare Entraînement 10.11 — Brouillage des ordres.

Un réseau de fentes de linéature n=600 traits par mm est éclairé sous incidence normale par une lampe à vapeur de mercure émettant les raies de longueurs d'onde suivantes dans l'air :

λ (en nm)	404,7	407,8	435,8	491,6	546,1	577,0	579,1	623,4	690,7

On rappelle la condition d'interférences constructives entre les ondes planes diffractées dans l'ordre p par un réseau suivant la direction θ (angle mesuré par rapport à la normale au plan du réseau), éclairé par une onde plane incidente de longueur d'onde λ sous incidence normale : $\sin(\theta) = pn\lambda$.

a) En exploitant le tableau, donner en degrés l'intervalle $[\theta^{\min}, \theta^{\max}]$ des angles du spectre d'ordre 1 de

la lampe à vapeur de mercure diffracté par ce réseau

- b) Même question pour le spectre d'ordre 2
- c) Même question pour le spectre d'ordre 3
- d) On parle de chevauchement d'ordre quand au moins une raie d'un ordre donné s'intercale dans le spectre d'un ordre inférieur. Choisir la bonne réponse parmi les trois propositions ci-dessous :
 - (a) Tout le spectre d'ordre p=3 est mélangé à celui d'ordre p=2.
 - (b) Seules les trois dernières raies du mercure dans l'ordre p=3 ne chevauchent pas les raies du spectre d'ordre p=2.
 - \bigcirc Seules les trois premières raies du mercure dans l'ordre p=3 chevauchent les raies du spectre d'ordre p=2.

.....

Entraînement 10.12 — Cas où N=2.

On rappelle que l'expression de l'intensité diffractée par un réseau composé de N fentes vaut :

$$I = I_0 \frac{\sin^2\left(N\frac{\varphi}{2}\right)}{\sin^2\left(\frac{\varphi}{2}\right)},$$

où φ est le déphasage entre deux rayons travers ant deux fentes consécutives.

Dans cette application, nous allons prendre N=2.

- a) Écrire le numérateur en fonction de $\cos(\varphi)$
- b) Écrire le dénominateur en fonction de $\cos(\varphi)$
- c) Exprimer I en fonction de I_0 et $\cos(\varphi)$

Entraînement 10.13 — Différences de marche.

On dispose d'un réseau plan constitué de n traits transparents par millimètre. Il est positionné sur un goniomètre préalablement réglé à l'infini. Ainsi, il est éclairé par une onde plane et on observe les interférences ayant lieu à l'infini. Le dispositif est plongé dans le vide (indice 1).

Nous souhaitons déterminer la différence de marche δ du rayon (2) par rapport au rayon (1) dans les différents cas représentés :

Quatre différences de marche sont proposées :

(a)
$$\delta = a \Big(\sin(\theta) + \sin(\theta') \Big)$$

$$\delta = a \Big(\sin(\theta') + \sin(\theta) \Big)$$

$$b \delta = a \left(\sin(\theta) - \sin(\theta') \right)$$

$$\begin{array}{c}
\hline
\text{(c)} \ \delta = a \Big(\sin(\theta') + \sin(\theta) \Big) \\
\hline
\text{(d)} \ \delta = a \Big(\sin(\theta') - \sin(\theta) \Big)
\end{array}$$

Entraînement 10.14 — Différence de marche pour un réseau par réflexion.

On considère un réseau par réflexion sur les points O_1 et O_2 , de pas $a = O_1O_2$, éclairé par une onde plane sous l'angle d'incidence θ_0 , et on s'intéresse à l'onde plane diffractée sous l'angle d'émergence θ .

On prendra l'indice de réfraction de l'air égal à l'unité.

La différence de marche $\delta_{2/1}$ du rayon 2 par rapport au rayon 1 vaut :

(a)
$$\delta_{2/1} = a \Big(\sin(\theta) - \sin(\theta_0) \Big)$$

$$\delta_{2/1} = a \Big(\sin(\theta_0) + \sin(\theta) \Big)$$

$$(b) \delta_{2/1} = a (\sin(\theta_0) - \sin(\theta))$$

(d)
$$\delta_{2/1} = a \Big(\tan(\theta_0) + \tan(\theta) \Big)$$

Entraînement 10.15 — Périodicité de la fonction réseau.

On appelle fonction réseau, et on note \mathcal{R}_N , la fonction de la variable ϕ définie par :

$$\mathcal{R}_N(\phi) = \left(\frac{\sin\left(\frac{N\phi}{2}\right)}{N\sin\left(\frac{\phi}{2}\right)} \right)^2.$$

- b) En déduire la période, pour la variable ϕ , de la fonction $\sin^2\left(\frac{\phi}{2}\right)$
- c) Quelle est la période, pour la variable ϕ , de la fonction $\sin^2\left(\frac{N\phi}{2}\right)$?
- d) En déduire la période de la fonction réseau pour la variable ϕ .
 - (a) 2π

 \bigcirc $\frac{2\pi}{N}$

 \bigcirc 4π

 $(d) 2\pi N$

.....

Entraînement 10.16 — Propriétés de la fonction réseau.

On considère la fonction réseau, notée $\mathcal{R}_N,$ de la variable ϕ définie par $\mathcal{R}_N(\phi)=$

- a) Évaluer $\mathcal{R}_N(0)$. On rappelle que $\sin(x) \sim x$ quand $x \to 0$
- b) Exprimer en fonction de N le nombre de zéros de la fonction réseau pour $\phi \in [0, 2\pi]$.

.....

c) On considère le graphe de la fonction réseau sur la figure ci-dessous :

Déduire du graphe la valeur de N utilisée pour le tracé

Entraînement 10.17 — Largeur d'un pic principal.

0000

On rappelle l'expression de la fonction réseau. C'est la fonction \mathcal{R}_N de la variable ϕ définie par :

$$\mathcal{R}_N(\phi) = \left(rac{\sin\left(rac{N\phi}{2}
ight)}{N\sin\left(rac{\phi}{2}
ight)}
ight)^2.$$

Cette fonction admet des pics, appelés pics principaux, pour toute valeur de ϕ multiple entier de 2π .

La figure ci-contre montre l'évolution de \mathcal{R}_N autour de

a) Le premier zéro de la fonction réseau, juste après le pic principal situé en $\phi = 0$, est obtenu pour l'angle:

(a)
$$\phi = \frac{\pi}{2N}$$
 (b) $\phi = \frac{\pi}{N}$

$$\bigcirc \phi = \frac{2\pi}{N}$$

.....

b) En déduire, en fonction de N, la largeur $\delta \phi$ d'un pic principal défini comme la variation de ϕ entre les deux annulations de $\mathcal{R}_N(\phi)$ de part et d'autre du pic principal

Entraînement 10.18 — Mesure de longueur d'onde au goniomètre.

0000

Un réseau de pas $a_0 = 1,67 \,\mu\text{m}$, placé sur un goniomètre, est éclairé par une onde plane en incidence normale issue d'une lampe à vapeur de thallium. Le spectre ne comporte qu'une seule raie, de couleur verte, dont on souhaite mesurer la longueur d'onde λ .

On relève θ' dans les différents ordres d'interférence observés vérifiant la formule du réseau :

$$p\lambda = a_0 \sin(\theta').$$

Ordre p	-3	-2	-1	0	1	2	3
θ' en (rad)	-1,30	-0,70	-0,33	0	0,32	0,70	1,27

Afin de déterminer la longueur d'onde λ , nous allons tracer $a_0 \sin(\theta')$ en fonction de p et réaliser une régression linéaire. L'équation proposée pour la régression linéaire, que vous ferez à l'aide de votre calculatrice, se met sous la forme:

$$y = ax + b$$
.

Après avoir effectué une régression linéaire à l'aide d'un tableur (à la calculatrice ou à l'ordinateur),

déterminer la valeur de a en μ m

Déviation angulaire induite par un réseau

Entraînement 10.19 — Définition de la déviation.

Un réseau plan est éclairé par une onde plane, et des interférences sont observées à l'infini. L'angle de déviation D que le réseau fait subir au faisceau incident est défini sur chacun des schémas ci-dessous.

Trois expressions de D sont proposées :

(a)
$$D = \theta + \theta'$$

$$\widehat{\text{b}} \ D = \theta - \theta'$$

$$\bigcirc D = \theta' - \theta$$

b) À quelle expression de D correspond la déviation $D_{\rm B}$ pour la figure B?

Réponses mélangées

(b) (a)
$$4\cos^2\left(\frac{\theta}{2}\right)$$
 (d) $2(1+\cos\theta)$ $-19,1^{\circ}$ 1 $a=3$ (c) 67 µm $1-\cos^2(\alpha)$ (c) $2(1-\cos\theta)$ π $2I_2(1+\cos(\alpha))$ [14.1°: 24.5°

1,67 µm
$$1 - \cos^2(\varphi)$$
 © $2(1 - \cos\theta)$ π $2I_0(1 + \cos(\varphi))$ $[14,1^\circ; 24,5^\circ]$

$$[29,1^{\circ},56,0^{\circ}]$$
 $4\sin^2\left(\frac{\theta}{2}\right)$ 10 1200 traits/mm 534 nm \bigcirc \bigcirc $\frac{1}{(1-R)^2}$

(b)
$$\underline{f}(\varphi) = e^{j\varphi}$$
 (c) $0.534 \, \mu m$ (c) $\frac{1}{2}(1 - \cos(\varphi))$ $a = 5$ 1 $2e^{j\frac{\theta}{2}}$

► Réponses et corrigés page 276

Outils mathématiques pour la diffusion

Prérequis

Expression des surfaces usuelles (disque, sphère, ...). Expression des volumes usuels (parallélépipède, cylindre, sphère, ...).

Pour bien commencer

\blacksquare Entraı̂nement 11.1 — Calcul de volumes.

Dans chacun des cas suivants, exprimer le volume du solide en fonction des données.

Volume a)

Volume b)

Volume c)

Volume d)

Entraînement 11.2 — Signe des dérivées partielles.

On considère la fonction de deux variables f(x,y) représentée ci-contre. On étudie le signe des dérivées partielles au niveau des points A et B.

a) Quel est le signe de la dérivée partielle d'ordre 1 de fpar rapport à x au point A, notée $\frac{\partial f}{\partial x}(A)$?

b) Quel est le signe de la dérivée partielle d'ordre 1 de fpar rapport à y au point A, notée $\frac{\partial f}{\partial u}$ (A)?

On s'intéresse maintenant au comportement de f au voisinage du point B. Pour chacune des questions suivantes, choisir la bonne réponse.

c)

(a)
$$\frac{\partial f}{\partial x}(B) > 0$$

 $\bigcirc \frac{\partial f}{\partial x}(\mathbf{B}) < 0$

(a)
$$\frac{\partial^2 f}{\partial u^2}(B) > 0$$
 (c) $\frac{\partial^2 f}{\partial u^2}(B) < 0$

$$\bigcirc \frac{\partial^2 f}{\partial y^2}(\mathbf{B}) < 0$$

(a)
$$\frac{\partial f}{\partial y}(\mathbf{B}) > 0$$

$$\bigcirc \frac{\partial f}{\partial y}(\mathbf{B}) < 0$$

(a)
$$\frac{\partial^2 f}{\partial x^2}(B) > 0$$

(a)
$$\frac{\partial^2 f}{\partial x^2}(B) > 0$$
 (c) $\frac{\partial^2 f}{\partial x^2}(B) < 0$

0000

Entraı̂nement 11.3 — Volume d'un cône.

Le volume d'un cône de hauteur h et dont le rayon de la base est r vaut $V(r,h) = \frac{\pi r^2 h}{3}$.

a) Quelle est l'expression de $\frac{\partial V}{\partial r}(r,h)$? b) Quelle est l'expression de $\frac{\partial V}{\partial h}(r,h)$?

On souhaite comparer l'influence d'une même variation $d\ell$ de h ou de r sur la valeur du volume V.

c) À quelle condition sur h et r a-t-on $\frac{\partial V}{\partial h}(r,h) > \frac{\partial V}{\partial r}(r,h)$?

(a)
$$h/3 < r$$

$$\widehat{\text{(b)}} h < r$$

$$\bigcirc$$
 $2h < r$

$$\bigcirc$$
 3h < η

(a) h/3 < r (b) h < r

Entraînement 11.4 — Fabrication d'une casserole.

Les questions de cet entraînement ne concernent pas le manche de la casserole et ne concernent donc que la partie principale de la casserole. L'épaisseur de la tôle utilisée pourra être négligée.

Un industriel souhaite fabriquer une casserole à partir de plaques de métal d'épaisseur constante.

- a) Pour cela, quelle surface de tôle S(R, H) doit-il utiliser?
 - (a) $S(R, H) = 2\pi R^2 + \pi R H$
 - (b) $S(R, H) = \pi H^2 + 2\pi RH$
 - (c) $S(R, H) = \pi R^2 + 2\pi RH$
 - (d) $S(R, H) = 2\pi H^2 + \pi RH$

- b) Que vaut le volume utile V(R, H)?
- (a) $V(R,H) = 2\pi R^2 H$
- (b) $V(R, H) = \pi R^2 H$

.....

c) Exprimer S(R,V) la surface de tôle que l'on doit utiliser pour fabriquer la casserole en fonction du rayon R et du volume V.

...... Le fabricant souhaite fabriquer une casserole de volume $V=V_0$ donné, tout en minimisant la quantité de

- tôle utilisée. d) Il cherche donc une géométrie qui vérifie :
- (a) $\frac{\mathrm{d}S}{\mathrm{d}R}(R,V_0)=0$

- e) Déterminer l'expression de V_0 en fonction de R, puis celle de H en fonction de R permettant de minimiser la surface de tôle utilisée.
- (a) $V_0 = \pi R^3$
- (b) $V_0 = 2\pi R^3$ (c) H = R
- (d) H = 2R

\blacksquare Entraînement 11.5 — Quelques équations différentielles (I).

Résoudre les équations différentielles suivantes en tenant compte des conditions aux limites.

Les quantités n_0 , n_1 , j_0 et p sont des constantes.

a)
$$\frac{\partial^2 n}{\partial x^2}(x,t) = 0$$
 avec
$$\begin{cases} n(0,t) = n_0 \\ \frac{\partial n}{\partial x}(0,t) = j_0 \end{cases}$$

b)
$$\frac{\partial^2 n}{\partial x^2}(x,t) = 0$$
 avec
$$\begin{cases} n(0,t) = n_0 \\ n(L,t) = n_1 \end{cases}$$

c)
$$\frac{\partial^2 n}{\partial x^2}(x,t) = p$$
 avec
$$\begin{cases} n(0,t) &= n_0 \\ n(L,t) &= n_0 \end{cases}$$

Entraînement 11.6 — Quelques équations différentielles (II).

Résoudre les équations différentielles suivantes en tenant compte des conditions initiales (τ, n_0, n_c, p) et L sont des constantes):

c)
$$\frac{\partial n}{\partial t}(x,t) = -\frac{n}{\tau} + p$$
 avec $n(x,0) = n_0 \left(1 - \frac{x}{L}\right)$

Réponses mélangées

$$\frac{p}{2}x(x-L) + n_0 \qquad \pi R^2 + 2\frac{V}{R} \qquad \qquad n_0 \left(1 - \frac{x}{L}\right) \exp\left(-\frac{t}{\tau}\right) \\ + p\tau \left(1 - \exp\left(-\frac{t}{\tau}\right)\right) \qquad \qquad c$$

$$abc \qquad \frac{2\pi rh}{3} \qquad n(x,t) = n_0 \exp\left(\frac{t}{\tau}\right) \qquad \text{(b)} \qquad abc \sin(\alpha) \qquad \pi r^2 h \qquad \text{néga}$$

$$\text{(a)} \qquad n(x,t) = \frac{n_1 - n_0}{L}x + n_0 \qquad n(t) = \frac{n_0}{1 + \frac{n_0 t}{n_0 \tau}} \qquad n(x,t) = j_0 x + n_0 \qquad \text{(b)}$$

$$abc$$
 $\frac{2\pi rh}{3}$ $n(x,t) = n_0 \exp\left(\frac{t}{\tau}\right)$ (b) $abc \sin(\alpha)$ $\pi r^2 h$ négatif

(a)
$$n(x,t) = \frac{n_1 - n_0}{L}x + n_0$$
 $n(t) = \frac{n_0}{1 + \frac{n_0 t}{n_0 \tau}}$ $n(x,t) = j_0 x + n_0$ (b)

$$\frac{\pi r^2}{3}$$
 C a et C $\pi r^2 h \cos(\alpha)$ C positif b

► Réponses et corrigés page 283

Diffusion thermique

Prérequis

Premier principe et deuxième principe de la thermodynamique. Loi de Fourier : $\vec{j} = -\lambda \operatorname{grad} T$.

Dans toute la fiche, les caractéristiques du matériau homogène et isotrope étudié seront notées :

- D, le coefficient de diffusivité thermique ($m^2 \cdot s^{-1}$),
- μ , la masse volumique (kg·m⁻³),
- c, la capacité thermique massique du matériau $(J \cdot K^{-1} \cdot kg^{-1})$,
- λ , la conductivité thermique du matériau (W · m⁻¹ · K⁻¹).

Pour évaluer les ordres de grandeur caractéristiques du phénomène, on notera :

- τ , la durée caractéristique (s),
- L, la longueur caractéristique (m).

Étude de flux thermique

L Entraînement 12.1 − Bilan thermique en géométrie cartésienne.

On se place dans le cas d'une diffusion unidimensionnelle telle que les isothermes sont des plans x =cste.

On note S la section du conducteur et ℓ le périmètre de la section.

- a) Le vecteur densité de flux thermique $\overrightarrow{j_Q} = -\lambda \overrightarrow{\mathrm{grad}}(T)$ a pour unité possible :

.....

- $(c) W \cdot m^{-3}$

b) Dans le cadre de cet entraı̂nement, le vecteur densité de flux thermique $\overrightarrow{j_Q} = j_Q \overrightarrow{e_x}$ peut s'écrire :

(a) $\overrightarrow{j_Q} = -\lambda \frac{\partial T}{\partial t} \overrightarrow{e_x}$

$$(b) \vec{j_Q} = -\lambda \frac{\partial T}{\partial x} \vec{e_x}$$

On étudie un élément de volume du conducteur thermique de section S, et compris entre x et x + dx.

- c) L'énergie interne U(t) de la tranche considérée à l'instant t est :
 - (a) cS dxT(x,t) + C

(b) cS dtT(x,t) + C

 $(d) \mu c S dt T(x,t) + C$

- où C est une constante
- d) En déduire la variation d'énergie interne dU entre t et t + dt.

......

On souhaite maintenant évaluer les transferts thermiques entre la tranche et l'extérieur.

- e) En x, le transfert thermique algébriquement reçu par la tranche entre t et t + dt s'écrit :
 - (a) $-j_Q(x,t)S dt$

- f) En x + dx, le transfert thermique algébriquement reçu par la tranche entre t et t + dt s'écrit :
- (a) $-j_Q(x+dx,t)S dt$ (b) $j_Q(x+dx,t)S dt$

- g) Au niveau de la paroi latérale, le transfert thermique algébriquement reçu par la tranche entre t et $t+\mathrm{d}t$ s'écrit, en notant ℓ le périmètre de la section :

(e) $-j_Q(x+\mathrm{d}x,t)\ell\,\mathrm{d}x\,\mathrm{d}t$

- (a) $j_Q(x,t)\ell \,dx \,dt$ (c) 0 (b) $-j_Q(x,t)\ell \,dx \,dt$ (d) $j_Q(x+dx,t)\ell \,dx \,dt$

h) En déduire le transfert thermique total δQ algébriquement reçu par la tranche.

.....

\blacksquare Entraînement 12.2 — Équation de la chaleur.

On étudie une barre homogène de section S, de longueur L, dont la surface latérale est calorifugée et dont les extrémités gauche et droite sont mises en contact thermique parfait avec des thermostats de températures respectives T_1 et T_2 . On se place en coordonnées cartésiennes.

Initialement, l'ensemble de la barre est à la température T_0 .

a) Le champ de température	e est de la forme :	
(a) $T = T(x,t)$	\bigcirc $T = T(x)$	(e) $T = T(y,t)$
	$ \begin{array}{c} \hline{\text{C}} & T = T(x) \\ \hline{\text{d}} & T = T(x, y) \end{array} $	
b) Le vecteur de densité vol	umique de courant thermique $\overrightarrow{j_Q}$ es	et de la forme :
(a) $\overrightarrow{j_Q} = j_Q(x,t)\overrightarrow{e_x}$		$=j_Q(x)\overrightarrow{e_x}$
	$\stackrel{ ext{ e}}{=} \overrightarrow{j_Q}$	$=j_Q(y,t)\overrightarrow{e_y}$
$ \overrightarrow{j}_{Q} = j_{Qx}(x,y)\overrightarrow{e}_{x} + j_{Qy}(x,y)\overrightarrow{e}_{x} + j_{Qy}(x$	$(x,y)\overrightarrow{e_y}$ f $\overrightarrow{j_Q}$	$=j_Q(x,y,z,t)\overrightarrow{e_x}$
c) L'équation de la chaleur	$\frac{\partial T}{\partial t} = D\Delta T$ s'écrit ici :	
$ (a) \frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial y^2} $		$=D\left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right]$
	(d) 0 =	$=D\frac{\mathrm{d}^2T}{\mathrm{d}x^2}$
La diffusion : un p	rocessus lent	
Entraînement 12.3 — Étu	ıde qualitative.	0000
		fil de température dans un matériau. entre un temps caractéristique τ et une
-	· · · · · · · · · · · · · · · · · ·	st le coefficient de diffusion thermique.
Par combien est multipliée la	longueur caractéristique de diffusion	on lorsque l'on double :
a) la conductivité du matéri	au?	
b) la capacité thermique du	matériau?	
Par combien est multiplié le t	emps caractéristique de diffusion s	i on double :

Entraînement 12.4 — Nombre de Fourier : transformation adiabatique?

0000

Le nombre de Fourier Fo = $\frac{D\Delta t}{L^2}$ est un nombre sans dimension utilisé couramment en transfert thermique, avec $D = \frac{\lambda}{\mu c} \, (\mathrm{m}^2 \cdot \mathrm{s}^{-1})$ le coefficient de diffusion thermique, Δt (s) la durée étudiée et L (m) la longueur caractéristique d'étude.

Il se définit également comme le rapport entre la durée Δt d'un processus et un temps caractéristique de diffusion (qui est le temps nécessaire au transfert thermique pour diffuser sur une distance L).

a) Dans quel cas un processus peut-il être considéré comme adiabatique?

(a) Fo $\ll 1$

On considère la compression du mélange {air + carburant} dans un cylindre d'un moteur 4 temps en acier. Avec un régime moteur d'environ $2\,000\,\mathrm{tr}\cdot\mathrm{min}^{-1}$, la durée de la compression est de $1.5\times10^{-2}\,\mathrm{s}$. On considère que l'épaisseur du cylindre est de 5 mm.

On donne $\lambda_{\mathrm{acier}} = 13\,\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1},\,\mu_{\mathrm{acier}} = 7\,800\,\mathrm{kg}\cdot\mathrm{m}^{-3}$ et $c_{\mathrm{acier}} = 480\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{kg}^{-1}$.

- b) En exploitant les données ci-dessus, calculer la valeur du nombre de Fourier
- c) L'hypothèse d'une compression adiabatique habituellement utilisée est-elle valide? . .

En régime permanent : utilisation des résistances thermiques

Entraînement 12.5 — Champ de température en géométrie cartésienne.

On étudie une barre homogène de section S, de longueur L, dont la surface latérale est calorifugée et dont les extrémités gauche et droite sont mises en contact thermique parfait avec des thermostats de températures respectives T_1 et T_2 .

On se place en coordonnées cartésiennes et on étudie le régime permanent.

a) Le champ de température vérifie $\frac{\mathrm{d}^2T}{\mathrm{d}x^2}=0$. Exprimer T(x).

b) Quelle(s) hypothès c'est-à-dire ne dépenda		ssure(nt) que le f	flux thermique $\Phi(x)$	$) = \iint_{S} \overrightarrow{j_Q} \cdot \overrightarrow{dS} \text{ soit uniforme,}$
a barre homogène	1	(c parois latérales	calorifugées
(b) régime permaner	nt	\	· F	
c) En déduire le flux	thermique $\Phi(x)$ tr	aversant une sec	tion S de barre situ	lée à l'abscisse x
(a) $\frac{\lambda S}{L}(T_1 - T_2)$	onermique I (w) or		$\frac{\lambda L}{S}(T_1 - T_2)$	ace a rabbelste w.
$ \begin{array}{c} L \\ \hline \text{b)} \frac{\lambda S}{L}(T_2 - T_1) \end{array} $			$ \frac{\lambda L}{S}(T_2 - T_1) $	
\supset L			<u> </u>	
Entraînement 12.6	_	- •		0000
flux Φ . Ceci est analogu de potentiel électrique	ne au transport de c $V_1 - V_2$. Ainsi un	harges caractéris conducteur élect	sé par une intensité à trique élémentaire d	ort d'énergie caractérisé par le I causé par une inhomogénéité le section S , de longueur ℓ et
de conductivité électri	que γ est caractéri	sé par une résis	tance $R = \frac{\ell}{2S}$ peri	mettant grâce à la loi d'Ohm
$V_1 - V_2 = RI$ de déter			7,5	
Le flux thermique Φ en on peut définir une « r			me permanent. En	utilisant l'analogie électrique,
a) La contrainte impo- électrique :	sée au conducteur	thermique $T_1 - T_2$	T_2 est l'analogue de σ	celle imposée à un conducteur
$\widehat{\text{a}}$ γ	(b) $V_1 - V_2$	(c) I	$\stackrel{\textstyle \frown}{}$ d) R	
b) Quelle grandeur, d	ans la liste suivant	e, est l'analogue	électrique du flux	thermique Φ ?
\bigcirc γ	(b) $V_1 - V_2$	\bigcirc I	\bigcirc d R	
c) Pour caractériser l	e conducteur thern	nique, on introdu	uit une « résistance	thermique », analogue de :
(a) γ	(b) $V_1 - V_2$	(c) I	\bigcirc R	
d) Quelle grandeur, d	ans la liste suivant	e, est l'analogue	électrique de λ ?	
\bigcirc a) γ	(b) $V_1 - V_2$	© <i>I</i>	\bigcirc d R	

Entraînement 12.7 — Conducto-convectif en une dimension (I).

0000

Soit une vitre (surface $S=1\,\mathrm{m}^2$, épaisseur $L=5\,\mathrm{mm}$) fabriquée en verre, de conductivité thermique $\lambda = 1 \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1}$. Celle-ci sépare l'extérieur (à la température $T_1 = 9$ °C) de l'intérieur (à la température $T_2 = 19$ °C) d'une maison.

La situation est étudiée en régime permanent. La conduction thermique envisagée est telle que la résistance thermique de la vitre est $R_{\rm th,v} = \frac{L}{\sqrt{S}}$.

a) La résistance thermique de la vitre vaut :

(a)
$$5 \times 10^{-3} \,\mathrm{K \cdot W^{-1}}$$
 (b) $5 \times 10^{-3} \,\mathrm{W \cdot K^{-1}}$ (c) $2 \times 10^{3} \,\mathrm{K \cdot W^{-1}}$ (d) $2 \times 10^{3} \,\mathrm{W \cdot K^{-1}}$

(b)
$$5 \times 10^{-3} \,\mathrm{W} \cdot \mathrm{K}^{-1}$$

$$(c)$$
 2 × 10³ K · W⁻³

$$(d) 2 \times 10^3 \,\mathrm{W} \cdot \mathrm{K}^{-1}$$

.....

On rappelle que le flux thermique est relié à l'inhomogénéité de température par la relation $\Delta T = R_{\rm th}\Phi$.

b) Le flux thermique Φ à travers la vitre vaut :

$$\bigcirc$$
 $5 \times 10^{-3} \,\mathrm{W}$

(b)
$$5 \times 10^{-2} \,\text{W}$$

(c)
$$2 \times 10^3 \, \text{W}$$

$$(d) 2 \times 10^2 \,\mathrm{W}$$

(b) $5 \times 10^{-2} \,\mathrm{W}$ (c) $2 \times 10^3 \,\mathrm{W}$ (d) $2 \times 10^2 \,\mathrm{W}$

c) En réalité la température n'est pas totalement uniforme dans l'air à proximité des surfaces de contact avec la vitre. Les transferts thermiques à l'interface avec les thermostats sont régis alors par la relation de Newton : $\Phi = h_1 S(T_1 - T(0))$ et $\Phi = h_2 S(T(L) - T_2)$, où h_1 et h_2 sont les coefficients de transfert conducto-convectifs dans les deux couches limites.

Les résistances thermiques $R_{{\rm th},i}$ correspondantes sont de la forme :

(a)
$$R_{\text{th},i} = \frac{h_i}{S}$$

(a)
$$R_{\mathrm{th},i} = \frac{h_i}{S}$$
 (b) $R_{\mathrm{th},i} = \frac{S}{h_i}$ (c) $R_{\mathrm{th},i} = \frac{1}{h_i S}$

- d) Les résistances $R_{\rm th,v}$, $R_{\rm th,1}$ et $R_{\rm th,2}$ sont-elles en série ou en parallèle?
- e) Évaluer le flux thermique Φ' à travers la vitre en tenant compte des pertes conducto-convectives si

$$h_1 = h_2 = 5 \times 10^2 \,\mathrm{W \cdot K^{-1} \cdot m^{-2}}$$

Entraînement 12.8 — Conducto-convectif en une dimension (II).

On considère une vitre de section S et de résistance thermique $R_{\rm th}$ séparant l'extérieur de température T_1 et l'intérieur d'une maison (température T_2).

Les échanges thermiques aux interfaces en x = 0 et x = L sont régis par la relation de Newton. Avec une convection plus importante à l'extérieur due au vent, on peut considérer que $T(0) = T_1$.

Les températures et le flux thermique vérifient alors le système :

$$\begin{cases} \phi = h_2 S(T(L) - T_2) \\ T_1 - T(L) = R_{\text{th}} \phi. \end{cases}$$

Quelle est l'expression de T(L)?

Entraînement 12.9 — Isolation thermique d'un mur.

Un pan de mur de surface totale $S_{\rm tot}=7.5\,{\rm m}^2$ est composé d'un mur de brique d'épaisseur $e_{\rm b}=20\,{\rm cm}$, de conductivité thermique $\lambda_{\rm b}=0.70\,{\rm W\cdot m^{-1}\cdot K^{-1}}$, et d'un isolant en fibre de bois d'épaisseur $e_{\rm i}=12\,{\rm cm}$, de conductivité thermique $\lambda_{\rm i}=0.036\,{\rm W\cdot m^{-1}\cdot K^{-1}}$.

Une fenêtre de surface $S_{\rm f}=1.2\,{\rm m}^2$, de résistance thermique $R_{\rm f}=0.70\,{\rm K\cdot W^{-1}}$, est percée dans le mur.

La température intérieure est $T_{\rm int}=20\,{\rm ^{\circ}C},$ la température extérieure vaut $T_{\rm ext}=5\,{\rm ^{\circ}C}.$

La résistance thermique d'une surface S plane d'épaisseur e est $R_{\rm th, plan} = \frac{e}{\sqrt{S}}$.

Quelle est la valeur de la résistance thermique :

- a) $R_{\rm b}$ de la brique?
- b) R_i de l'isolant?
- c) Parmi les montages suivants, lequel correspond à la situation étudiée?

e) En considérant que les échanges thermiques ne peuvent se faire qu'à travers cette paroi, quelle puissance thermique ϕ doit développer le système de chauffage pour maintenir cet écart de température?

Quelle est la résistance thermique globale $R_{\rm th,tot}$ du mur?

(a) $47.5 \,\mathrm{W}$

(b) 475 W

Entraînement 12.10 — Igloo de survie.

Un alpiniste, surpris par le mauvais temps, décide de construire un igloo de survie.

Le volume de son igloo doit valoir 1 m^3 ; il le construit avec des blocs de neige d'épaisseur e = 10 cm et de conductivité thermique $\lambda_{\text{neige}} = 0.2 \,\mathrm{W \cdot m^{-1} \cdot K^{-1}}$.

Il hésite entre trois formes d'igloo : un igloo cubique, un igloo cylindrique dont la hauteur est égale à son rayon et un igloo hémisphérique.

Igloo cubique

Igloo cylindrique

Igloo hémisphérique

Pour les calculs numériques, on prendra : $\frac{1}{\sqrt[3]{\pi}} \approx 0.7$ et $\sqrt[3]{\frac{3}{2\pi}} \approx 0.8$.

Pour que le volume intérieur des igloos soit de 1 m³,

- a) quel doit être le rayon de l'igloo cylindrique?
- b) quel doit être le rayon de l'igloo hémisphérique?

- c) On souhaite déterminer la résistance thermique de chaque igloo. Associer à chaque igloo l'expression de sa résistance thermique.

$$I_{\bigodot{a}} = \int_{0,7}^{0,8} \frac{\mathrm{d}r}{3\pi\lambda r^2} \qquad \qquad I_{\bigodot{b}} = \int_{0,8}^{0,9} \frac{\mathrm{d}r}{2\pi\lambda r^2} \qquad \qquad I_{\bigodot{c}} = \int_{1}^{1,1} \frac{\mathrm{d}r}{5\lambda r^2}$$

$$I_{\text{(b)}} = \int_{0.8}^{0.9} \frac{\mathrm{d}r}{2\pi\lambda r^2}$$

$$I_{\bigcirc} = \int_{1}^{1,1} \frac{\mathrm{d}r}{5\lambda r^2}$$

.....

d) Après avoir calculé chacune des intégrales précédentes, quel igloo présente une résistance thermique approximative de $\frac{1}{8.9}$ K · W⁻¹?

e) L'alpiniste dégage une puissance thermique de $\phi = 100 \,\mathrm{W}$.

En déduire la différence de température entre l'intérieur de l'igloo hémisphérique et l'extérieur en régime permanent.

Entraînement 12.11 — Analogie électrique d'une habitation (I).

L'objectif de cet entraînement est d'approfondir l'analogie entre les phénomènes de conduction thermique et les phénomènes électriques en étudiant une habitation dans sa globalité.

On constate que:

- le flux thermique ϕ est l'analogue de l'intensité du courant électrique (flux de charge électrique);
- la température θ est l'équivalent du potentiel électrique;
- \bullet un matériau ayant une capacité thermique $C_{
 m th}$ peut être modélisé par un condensateur électrique;
- tout comme la résistance électrique traduit une relation de proportionnalité entre la différence de potentiel et le courant électrique, la résistance thermique traduit la relation de proportionnalité entre la différence de température et le flux thermique : $\Delta \theta = R_{\rm th} \phi$.

Une habitation est isolée de l'extérieur où règne une température $\theta_{\rm e}(t)$ par une enveloppe isolante de résistance thermique $R_{\rm th}$. À l'intérieur de l'habitation, un système de chauffage apporte un flux thermique ϕ_i permettant d'atteindre une température intérieure $\theta_i(t)$. L'intérieur de la maison possède une capacité thermique $C_{\rm th}$.

Parmi les circuits ci-dessous, lequel correspond à la situation étudiée?

\blacksquare Entraînement 12.12 — Analogie électrique d'une habitation (II).

a) Établir l'équation différentielle sur θ_i dans le cas du circuit (c) de l'entraînement précédent.

Du fait de l'alternance jour/nuit, la température extérieure θ_e peut s'écrire :

$$\theta_{\rm e}(t) = \theta_{\rm e0} + \theta_{\rm e1} \cos(\omega t).$$

b) Quelle doit être l'expression du flux ϕ_i fourni par le système de chauffage pour maintenir une température intérieure constante égale à θ_{i0} ?

Un mince tuyau métallique d'une longueur L et de rayon 1 cm transporte de la vapeur à 100 °C. Celui-ci est couvert par deux couches d'isolants :

- une couche (a) intérieure d'une épaisseur de 4 cm et de conductivité thermique $0.1\,\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$,
- une couche b extérieure d'une épaisseur de 2 cm et de conductivité thermique $0.3\,\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$.

La température extérieure est de 20 °C.

La résistance thermique dans le cas d'un flux radial est de la forme $R_{\rm th} = \frac{1}{2\pi\lambda L} \ln(r_2/r_1)$.

a) Parmi les deux montages électriques ci-dessous, lequel correspond au système étudié?

- b) Quelle est la température à l'interface entre les deux isolants?
- (a) 25,2 °C
- (b) 30,2 °C
- (c) 30,2 °C
- (d) 35,2 °C
- (e) 40,2 °C

Réponses mélangées

$$\frac{\mathrm{d}\theta_{\mathrm{i}}}{\mathrm{d}t} + \frac{\theta_{i}}{R_{\mathrm{th}}C_{\mathrm{th}}} = \frac{1}{R_{\mathrm{th}}C_{\mathrm{th}}} (R_{\mathrm{th}}\phi_{\mathrm{i}} + \theta_{\mathrm{e}}) \qquad \text{(a)} \qquad \mathrm{d}U = \mu c \frac{\partial T}{\partial t} S \, \mathrm{d}x \, \mathrm{d}t$$

$$\stackrel{\bullet}{\mathrm{C}} \qquad \text{(c)} \qquad \text{(b)} \, \mathrm{et} \, \stackrel{\bullet}{\mathrm{C}} \qquad T(x) = \frac{T_{2} - T_{1}}{L} x + T_{1} \qquad \mathrm{(a)}$$

$$\left(\mathrm{cub., c}\right) \left(\mathrm{cyl., a}\right) \left(\mathrm{sph., b}\right) \qquad \mathrm{(b)} \qquad 4 \qquad \mathrm{(c)} \qquad \mathrm{Sph\acute{e}rique} \qquad 0.53 \, \mathrm{K} \cdot \mathrm{W}^{-1}$$

$$\stackrel{\bullet}{\mathrm{C}} \qquad 1.1 \times 10^{3} \, \mathrm{W} \qquad \stackrel{\bullet}{\mathrm{C}} \qquad \mathrm{(d)} \qquad \sqrt{2} \qquad \mathrm{(a)} \qquad 3.2 \times 10^{-1} \, \mathrm{K} \cdot \mathrm{W}^{-1} \qquad \mathrm{oui}$$

$$-\frac{\partial j_{Q}}{\partial x} S \, \mathrm{d}x \, \mathrm{d}t \qquad \mathrm{(a)} \qquad \mathrm{(b)} \qquad 2 \times 10^{-3} \qquad 1/\sqrt{2} \qquad \mathrm{(a)} \qquad \mathrm{(d)} \qquad 0.7 \, \mathrm{m}$$

$$0.8 \, \mathrm{m} \qquad \mathrm{(a)} \qquad \mathrm{(c)} \qquad \mathrm{(b)} \qquad \mathrm{(c)} \qquad 11 \, \mathrm{^{\circ}C} \qquad \mathrm{en} \, \mathrm{s\acute{e}rie} \qquad \frac{T_{1} + R_{\mathrm{th}} h_{2} S T_{2}}{1 + R_{\mathrm{th}} h_{2} S}$$

$$4.5 \times 10^{-2} \, \mathrm{K} \cdot \mathrm{W}^{-1} \qquad 2 \qquad \mathrm{(a)} \qquad \mathrm{(b)} \qquad \frac{1}{R_{\mathrm{th}}} (\theta_{\mathrm{i}0} - \theta_{\mathrm{e}0} - \theta_{\mathrm{e}1} \cos(\omega t)) \qquad \mathrm{(a)}$$

$$\left(\text{cub.,}(\widehat{c})\right)\left(\text{cyl.,}(\widehat{a})\right)\left(\text{sph.,}(\widehat{b})\right)$$
 (\widehat{b}) 4 (\widehat{c}) Sphérique $0.53\,\text{K}\cdot\text{W}^{-1}$

$$-\frac{\partial j_Q}{\partial x} S \, dx \, dt$$
 (a) (b) 2×10^{-3} $1/\sqrt{2}$ (a) (d) $0.7 \, \mathrm{m}$

$$0.8 \,\mathrm{m}$$
 (a) (b) (c) $11 \,\mathrm{^{\circ}C}$ en série $\frac{T_1 + R_{\mathrm{th}} h_2 S T_2}{1 + R_{\mathrm{th}} h_2 S}$

$$4.5 \times 10^{-2} \,\mathrm{K \cdot W^{-1}}$$
 2 (a) (b) $\frac{1}{R_{\mathrm{th}}} (\theta_{\mathrm{i0}} - \theta_{\mathrm{e0}} - \theta_{\mathrm{e1}} \cos(\omega t))$ (a)

► Réponses et corrigés page 285

Transferts thermiques

Prérequis

Loi de Fourier : $\overrightarrow{j}_{th} = -\lambda \overrightarrow{\text{grad}} T$.

Vecteur densité de courant thermique

Entraînement 13.1 — Dans un calorimètre.

0000

Un système S_1 est constitué d'un vase parfaitement calorifugé contenant initialement une masse m_1 d'eau à la température $T_1 = 20$ °C. On y ajoute ensuite une masse m_2 d'eau à la température $T_2 = 80$ °C (système S_2). On attend que l'équilibre thermique soit réalisé.

- b) Quel est le signe du transfert thermique reçu par le système S_2 ?
- c) Quel est le signe du transfert thermique reçu par le système $S_1 \cup S_2$?

Entraînement 13.2 — Une dalle en béton.

On considère une dalle en béton d'épaisseur $e=20\,\mathrm{cm}$ et de conductivité thermique $\lambda=1,2\,\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$ séparant deux pièces d'une habitation.

La température de la face inférieure contenant A est $T_A = 8$ °C et celle de la face supérieure contenant C est $T_C = 18$ °C. La température en un point M(x, y, z) du béton ne dépend que de x en régime stationnaire.

Le vecteur densité de courant en M est $\vec{j}_{th}(M) = -\lambda \frac{dT}{dx} \vec{e_x}$.

- a) Parmi les propositions suivantes, lesquelles sont vraies?
 - (a) $\vec{j}_{th}(A) \cdot \vec{e_x} > 0$

(d) $\vec{j}_{th}(A) \cdot \vec{e_y} > 0$

(b) $\vec{j}_{th}(B) \cdot \vec{e_x} < 0$

 $(e) \vec{j}_{th}(B) \cdot \vec{e_y} = 0$

 $\overrightarrow{\jmath}_{\rm th}(\mathbf{C}) \cdot \overrightarrow{e_x} = 0$

(f) $\vec{j}_{th}(C) \cdot \vec{e_y} < 0$

b) Calculer $\|\vec{\jmath}_{th}(B)\|$

Entraînement 13.3 — Tuyau en cuivre.

0000

On considère un tuyau cylindrique en cuivre d'axe (Oz) et de conductivité thermique $\lambda = 400 \,\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$ séparant deux fluides de températures différentes.

En régime stationnaire, la température de la face interne contenant A est $T_{\rm A}=20\,{\rm ^{\circ}C}$ et celle de la face externe contenant C est $T_{\rm C}=10\,{\rm ^{\circ}C}.$ Le profil de température est alors, en coordonnées cylindriques,

$$T(r) = T_{\rm A} + \frac{T_{\rm C} - T_{\rm A}}{\ln\left(\frac{c}{a}\right)} \ln\left(\frac{r}{a}\right).$$

Les distances à l'axe sont a = 2 cm et c = 4 cm.

Le vecteur densité de courant thermique en un point M est noté $\vec{j}_{th}(M)$.

On donne $\overrightarrow{\text{grad}} f(r, \theta, z) = \frac{\partial f}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{e_\theta} + \frac{\partial f}{\partial z} \overrightarrow{e_z}$ en coordonnées cylindriques.

- a) La direction de $\vec{j}_{th}(A)$ est :

b) La direction de $\vec{j}_{th}(C)$ est :

- c) Donner le sens de $\vec{j}_{th}(A)$.
- e) Calculer $\|\overrightarrow{\jmath}_{th}(A)\|$

d) Donner le sens de $\vec{j}_{th}(C)$.

f) Calculer $\|\vec{\jmath}_{th}(C)\|$

Transferts thermiques conducto-convectifs

On considère une paroi solide fixe de température T_p en contact avec un fluide en mouvement de température différente T_f .

Les transferts thermiques de la paroi vers le fluide peuvent être modélisés par la loi de Newton donnant le vecteur densité de courant thermique conducto-convectif:

$$\vec{j}_{cc} = h(T_p - T_f) \vec{n}_{p \to f},$$

où h est nommé coefficient de transfert conducto-convectif.

La puissance transférée par la paroi Σ au fluide est $P_{p\to f} = \iint_{\Sigma} \vec{\jmath}_{cc} \cdot dS \vec{n}_{p\to f}$.

On rappelle que la résistance thermique $R_{\rm th}$ est le rapport entre la différence de température T_1-T_2 entre deux isothermes et la puissance thermique $P_{1\rightarrow 2}$ transférée. Elle vérifie :

$$R_{\rm th} = \frac{T_1 - T_2}{P_{1 \to 2}}.$$

En quelle unité s'exprime h?

Entraînement 13.5 — Puissance échangée par conducto-convection.

- a) La résistance thermique conducto-convective associée à une interface de surface S est :
- (a) hS

b) Un toit plat d'immeuble a une surface de 50 m². La température de l'air extérieur est de 25 °C et le coefficient de transfert conducto-convectif est h = 20 USI.

La puissance cédée par conducto-convection par le toit à l'air extérieur vaut 40 kW.

Calculer la température de la face du toit en contact avec l'air extérieur.

Entraînement 13.6 — Ailette de refroidissement.

Une tige conductrice cylindrique de rayon a, de section $S = \pi a^2$, de longueur $L \gg a$, de conductivité thermique λ , est en contact en x=0 avec un corps solide de température T_0 stationnaire. Cette tige est en contact avec l'air de température T_a stationnaire.

- a) L'élément de volume S dx de la tige situé entre x et x + dx reçoit une puissance de la part de l'air égale à :
 - (a) $h(T_a T(x))S$

(b) $h(T(x) - T_a)S$

 $\widehat{\mathrm{d}}$ $h(T(x) - T_a)2\pi a\,\mathrm{d}x$

b) En posant $b = \sqrt{\frac{\lambda a}{2h}}$, on montre que $T(x) = T_a + (T_0 - T_a)e^{-x/b}$.

Exprimer la puissance thermique P_0 reçue par la tige en $x=0^+$ en fonction de λ , a, b, T_0 et T_a .

......

Rayonnement thermique

Un corps noir de température T émet un rayonnement de puissance surfacique φ donnée par la loi de Stefan $\varphi = \sigma T^4$, où $\sigma = 5.67 \times 10^{-8} \,\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4}$ est la constante de Stefan.

Entraînement 13.7 — Le Soleil rayonne.

0000

On utilisera la loi de Stefan donnée en haut de la page.

Le Soleil, de rayon $R_{\odot}=696\times10^3\,\mathrm{km}$, rayonne comme un corps noir de température $T_S=5\,772\,\mathrm{K}$.

- a) Calculer la puissance surfacique φ_{\odot} à la surface du Soleil
- c) La puissance radiative traversant une sphère de centre S (centre du Soleil) et de rayon $r>R_{\odot}$ ne dépendant pas de r, la puissance surfacique radiative $\varphi(r)$ est :

d) La distance Soleil-Terre est $D_{\rm ST}=150\times10^6\,{\rm km}$. La puissance surfacique du rayonnement solaire reçu par la Terre est (en $W \cdot m^{-2}$):

- (a) 1.4×10^1
- (b) 1.4×10^2
- (c) 1,4 × 10³

Entraînement 13.8 — Radiateur convecto-radiatif.

On utilisera la loi de Stefan donnée en haut de la page.

On étudie un radiateur de chauffage central, dont la température de surface est $T_s = 60$ °C, en contact avec l'air ambiant de température $T_a=20\,^{\circ}\mathrm{C}$. On note S l'aire de l'interface radiateur-air.

Le radiateur et l'air rayonnent comme des corps noirs de températures respectives T_s et T_a . Seuls les échanges thermiques entre le radiateur et l'air sont pris en compte.

- a) La puissance cédée par le radiateur à l'air par rayonnement est :
 - (a) $\sigma(T_a^4 T_s^4)S$

 $\bigcirc \sigma (T_a^4 + T_s^4) S$

 $(b) \sigma (T_s^4 - T_a^4) S$

b) En notant $h = 10 \,\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-1}$ le coefficient de transfert conducto-convectif entre le radiateur et l'air, la puissance cédée par le radiateur à l'air par conducto-convection est :

(a) $h(T_a - T_s)S$

(c) $h(T_a + T_s)S$

 $(b) h(T_s - T_a)S$

(d) nulle

c) Calculer la surface S d'un radiateur fournissant une puissance totale de 1,0 kW à l'air.

Équation de la diffusion thermique

Δ.
~~~

### Entraînement 13.9 — Dimension du coefficient de diffusivité thermique.



Dans un matériau solide de diffusivité D, le champ de température T(M,t) en un point M à un instant tvérifie l'équation de la diffusion thermique  $\frac{\partial T}{\partial t} = D \Delta T$ .

Quelle est la dimension physique de D? .....



## Entraînement 13.10 — Échelles de longueur et de temps associées.



a) Les variations du champ de température T(M,t) au sein d'un matériau homogène de diffusivité D sont caractérisées par une longueur caractéristique L et une durée caractéristique  $\tau$ .

Quelle proposition est correcte?

(a) 
$$\tau = \frac{L}{D}$$

(a) 
$$\tau = \frac{L}{D}$$
 (b)  $\tau = \frac{L}{D^2}$  (c)  $\tau = \frac{L^2}{D}$ 

b) Un œuf de poule a une longueur comprise entre 5 et 6 cm et une masse entre 60 et 70 g alors qu'un œuf d'autruche a une longueur entre 15 et 20 cm et pèse environ 1,6 kg.

Sachant que la cuisson à la coque d'un œuf de poule dure 4 minutes, cuire un œuf d'autruche à la coque nécessite environ:

(a) 12 min

(b) 36 min

(c) 72 min

(d) 400 min

#### Entraînement 13.11 — Prise en masse d'un mur de béton.



Un mur de béton est coulé entre une paroi rocheuse de température stationnaire  $T_0 = 20\,^{\circ}\mathrm{C}$  et un coffrage métallique maintenu à la température  $T_1 = 10$  °C.

Le mur de béton est d'épaisseur  $L=1,0\,\mathrm{m}$  et de conductivité thermique  $\lambda = 1.2 \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1}$ . La prise en masse du béton est le siège d'une réaction chimique exothermique dégageant une puissance volumique  $p_{v}$ .



En régime stationnaire, la température T(x) à l'abscisse x vérifie l'équation différentielle  $\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = -\frac{p_v}{\lambda}$ .

a) Exprimer le profil de température T(x) dans le béton .....

b) La température est maximale à l'abscisse  $x_1 = 3L/10$ . L'expression de  $p_v$  est :

(a)  $3\lambda L(T_0-T_1)$ 

 $\begin{array}{c}
\text{(c)} 5\lambda L(T_0 - T_1) \\
\text{(d)} \frac{5\lambda}{L^2}(T_0 - T_1)
\end{array}$ 

c) Calculer  $p_v$  .....

### Entraînement 13.12 — Fusible en régime stationnaire.



Un câble métallique cylindrique d'axe (Ox), de rayon a, de section  $S = \pi a^2$ , de longueur L, de conductivité thermique  $\lambda$  et de conductivité électrique  $\gamma$ , est parcouru par un courant électrique d'intensité Istationnaire. Les deux extrémités en  $x=\pm\frac{L}{2}$  sont maintenues à la même température  $T_0$ .

Lorsque ce câble est latéralement calorifugé, la température T(x) à l'abscisse x vérifie, en régime stationnaire, l'équation différentielle :

$$\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = -\frac{I^2}{\lambda \gamma S^2}.$$

Exprimer le profil de température T(x) dans le câble.

b) Quelle est l'abscisse du lieu où la température est extrémale?

.....

c) Donner l'expression de cette température extrémale.

On note  $\vec{j}_{th}(x)$  le vecteur densité de courant thermique de conduction à l'abscisse x.

d) Quelles propositions sont vraies?

(a)  $\vec{j}_{th} \left( -\frac{L}{2} \right) \cdot \vec{e_x} > 0$  (c)  $\vec{j}_{th} \left( \frac{L}{2} \right) \cdot \vec{e_x} > 0$  (d)  $\vec{j}_{th} \left( \frac{L}{2} \right) \cdot \vec{e_x} < 0$ 

## Associations de résistances thermiques

Deux conducteurs thermiques (1) et (2) sont en association série lorsque la puissance thermique traverse le conducteur (1) puis le conducteur (2) avec une surface de jonction isotherme. La résistance thermique équivalente  $R_{\rm th}$  est alors la somme des résistances thermiques de chaque conducteur. On a

$$R_{\rm th} = R_{\rm th,1} + R_{\rm th,2}.$$

Deux conducteurs thermiques (1) et (2) en association parallèle ont des faces communes à la même température : ils sont donc soumis à la même différence de température. La conductance thermique  $G_{\rm th}$  équivalente est alors la somme des conductances thermiques de chaque conducteur. On a

$$G_{\rm th} = \frac{1}{R_{\rm th}} = G_{\rm th,1} + G_{\rm th,2}.$$

### Entraînement 13.13 — Mur de béton.



On considère un mur en béton d'épaisseur e=30 cm, de hauteur h=2.5 m et de longueur L=10 m.

Les deux faces verticales isothermes de ce mur sont en contact avec l'air et sont à des températures différentes  $T_1$  et  $T_2$ .

Lorsque  $|T_1 - T_2| = 10$  K, la puissance thermique traversant le béton est P = 1.0 kW.

On rappelle que la résistance thermique d'un matériau de même géométrie que ce mur est

$$R_{\rm th} = \frac{e}{\lambda S},$$

où e est l'épaisseur, S l'aire des sections isothermes et  $\lambda$  la conductivité thermique du matériau.

La résistance thermique  $R_{\rm th}$  est le rapport entre la différence de température  $T_1-T_2$  entre deux isothermes et la puissance thermique  $P_{1\rightarrow 2}$  transférée : on a

$$R_{\rm th} = \frac{T_1 - T_2}{P_{1 \to 2}}.$$

- Calculer la résistance thermique de conduction du mur ......

On isole ce mur avec une plaque de polystyrène de conductivité  $\lambda_2 = 4.0 \times 10^{-2} \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1}$  afin que la puissance thermique traversant le mur isolé soit divisée par 5 pour le même écart de température  $|T_1 - T_2|$ .

Calculer l'épaisseur d'isolant nécessaire .....

#### Entraînement 13.14 — Ouverture dans un mur.



On considère un mur de surface  $S_m$  et de conductance thermique  $G_m$ . On souhaite percer ce mur afin d'installer une fenêtre de surface  $S_f$  et de conductance thermique  $G_f$ . On rappelle que la conductance thermique est l'inverse de la résistance thermique :  $G = \lambda S/e$  pour un matériau de conductivité thermique  $\lambda$ , d'épaisseur e et de section S.

- a) La conductance thermique  $G_m'$  du mur percé (mur seul après installation de la fenêtre) est :
- (a)  $\frac{S_m S_f}{S_m} G_m$  (b)  $\frac{S_f}{S_m} G_m$  (c)  $G_m G_f$

b) La conductance thermique G du dispositif (mur et fenêtre) après installation de la fenêtre est :

(a)  $G_m + G_f$ 

 $\bigcirc G_m \left(1 - \frac{S_f}{S_m}\right) + G_f$ 

### Réponses mélangées

 $3.8\times10^{26}\,\mathrm{W}\qquad \ \ \, \textcircled{b}\qquad 62.9\,\mathrm{MW\cdot m^{-2}}\qquad \ \ \, \textcircled{b}\ \mathrm{et}\ \textcircled{c}\qquad \ \ \, L^2\cdot T^{-1}\qquad \ \ \, \textcircled{c}\qquad \mathrm{positif}$ 

 $1,4 \times 10^{5} \,\mathrm{W \cdot m^{-2}} \quad \boxed{c} \quad \boxed{b} \quad \text{Même sens que } \overrightarrow{e_r} \quad \frac{p_v}{2\lambda} x (L-x) + (T_1 - T_0) \frac{x}{L} + T_0$   $\mathrm{W \cdot K^{-1} \cdot m^{-2}} \quad \boxed{b} \quad \text{nul} \quad \lambda \frac{\pi a^2}{b} (T_0 - T_a) \quad 65 \,^{\circ}\mathrm{C} \quad T_0 + \frac{I^2}{2\gamma \lambda S^2} \left( \left( \frac{L}{2} \right)^2 - x^2 \right)$   $\boxed{b} \quad 1,5 \,\mathrm{m^2} \quad 60 \,\mathrm{W \cdot m^{-3}} \quad \boxed{a} \quad \boxed{b} \quad \text{négatif} \quad 60 \,\mathrm{W \cdot m^{-2}}$   $\boxed{b} \quad \boxed{c} \quad \boxed{c} \quad \text{Même sens que } \overrightarrow{e_r} \quad 2,9 \times 10^5 \,\mathrm{W \cdot m^{-2}} \quad 0 \quad \boxed{c}$   $1,0 \times 10^{-2} \,\mathrm{K \cdot W^{-1}} \quad T_0 + \frac{I^2}{\lambda \gamma S^2} \frac{L^2}{8} \quad \boxed{b} \text{ et } \boxed{e} \quad 4,0 \,\mathrm{cm} \quad 1,2 \,\mathrm{W \cdot K^{-1} \cdot m^{-1}} \quad \boxed{d}$ 

► Réponses et corrigés page 289

## Tables et diagrammes thermodynamiques

#### Prérequis

Notions d'additivité et d'extensivité de fonctions d'état. Transition de phase.

## Tables thermodynamiques

# $(\overline{\boxplus})$ Entraı̂nement 14.1 — Table de vapeur sèche (à double entrée).

0000

La table ci-dessous liste les propriétés de la vapeur d'eau sèche.

Le volume massique v est exprimé en  $\mathbf{m}^3 \cdot \mathbf{kg}^{-1}$ , l'enthalpie massique h en  $\mathbf{kJ} \cdot \mathbf{kg}^{-1}$  et l'entropie massique s en  $\mathbf{kJ} \cdot \mathbf{K}^{-1} \cdot \mathbf{kg}^{-1}$ .

p en kPa				Ten °C		
$(T_{\rm sat} \ {\rm en} \ {\rm ^{\circ}C})$		100	150	200	250	300
100	v	1,696 0	1,936 7	2,172 5	2,406 2	2,638 9
(99,606)	h	2 675,77	2 776,59	2 875,48	2 974,54	3 074,54
	s	7,361 0	7,614 7	7,835 6	8,034 6	8,217 1
200	v		0,969 89	1,080 5	1,198 9	1,316 2
(120,21)	h		2 769,09	2 870,78	2 971,26	3 072,08
	s		7,280 9	7,508 1	7,710 0	7,894 0
500	v			0,425 03	0,474 43	0,522 60
(151,84)	h			2 855,90	2 961,13	3 064,60
	s			7,061 1	7,272 6	7,461 4

a) En arrondissant le volume massique $v$ à deux ch		
$g \cdot mL^{-1}$ de la vapeur d'eau soumise à une pression d	e 200 kPa et à une tempér	rature de 200 °C.
b) Que vaut la température de saturation $T_{\rm sat}$ pour	une pression de 200 kPa?	
(a) 200 °C	© 99,606 °C	
(b) 120,21 °C	(d) 151,84 °C	
3 120,21	(d) 101,01 C	
	1 10000	1 20017
c) Quel est l'état d'équilibre du système à une tempér	rature de 100 °C et soumis	à une pression de 200 kPa?
(a) état liquide		
(b) état vapeur		
(c) état diphasé		



Les propriétés de l'eau sous forme diphasée sont données dans la table de vapeur saturante ci-dessous :

T	$p_{\mathrm{sat}}$	L	iquide sat	urant	Vapeur saturante			
(°C)	(MPa)	① ②		① ② ③		1	2	3
20	0,002 339	83,9	0,296 5	0,001 002	2 537,4	8,666 0	57,757	
40	0,007 385	167,5	$0,572\ 4$	0,001 008	2573,5	8,255 5	19,515	
60	0,019 946	251,2	0,831 3	0,001 017	2 608,8	7,908 1	7,667 2	
80	0,047 414	335,0	1,075 6	0,001 029	2 643,0	7,611 1	3,405 2	
100	0,101 420	419,2	1,307 2	0,001 043	2 675,6	7,354 1	1,671 8	

Les colonnes ①, ②, ③ sont respectivement exprimées en  $kJ \cdot kg^{-1}$ ,  $kJ \cdot K^{-1} \cdot kg^{-1}$  et  $m^3 \cdot kg^{-1}$ .

À l'aide d'une analyse des unités, attribuer chaque colonne à une de ces trois grandeurs : volume massique v, enthalpie massique h et entropie massique s.

d) Exprimer la valeur de la pression de saturation  $p_{\text{sat}}$  à 100 °C en millimètres de mercure (mmHg) en sachant que 1 mmHg = 133,3 Pa .....

e) Le volume massique de l'eau contenue dans un ballon d'eau chaude à  $60\,^{\circ}\text{C}$  est de  $v=1,03\,\text{cm}^3\cdot\text{g}^{-1}$ . Quel est l'état du système : liquide, diphasé ou vapeur? ......

Déterminer, par une lecture de la table à 60 °C, la valeur du volume massique de liquide saturant  $v_1$  et celle du volume massique de vapeur saturante  $v_{\rm g}$ .

h) Le théorème des moments donne la fraction massique de vapeur d'un mélange diphasé :  $x_g = \frac{v - v_l}{v_g - v_l}$ En raisonnant en termes d'ordres de grandeur, laquelle des propositions ci-dessous correspond à une ap-

proximation raisonnable de l'expression de  $x_{\rm g}$  si  $v=1\,030\,{\rm cm}^3\cdot{\rm g}^{-1}$  à 60 °C?

# Diagramme de Clapeyron (P, v) et diagramme de Watt (P, V)

Entraînement 14.3 — Schéma synoptique d'un cycle thermodynamique.



Soit n moles de gaz parfait qui décrivent le cycle ci-contre.

Attribuer aux transformations trois des quatre adjectifs suivants: isobare, adiabatique, isochore, isotherme.

Transformation (A) .....



- Transformation (B) .....
- $= 3V_1$
- Transformation (C) .....
- d) À l'aide de la relation PV = nRT, exprimer  $V_2$  en fonction de  $V_1$  ........

## Entraînement 14.4 — Un cycle dans le diagramme (P, V).



Les données nécessaires aux questions suivantes sont disponibles dans l'entraînement 14.3.

Pour rappel, un gaz parfait subissant une transformation isentropique vérifie la loi de Laplace :  $PV^{\gamma} = \text{cste}$ .

- a) Laquelle de ces relations est valable pour la transformation (B)?
- (a)  $\frac{P}{V} = \text{cste}$
- $\bigcirc$  PV = cste
- $\bigcirc P^{\gamma}V^{\gamma} = \text{cste}$
- b) Les échelles étant linéaires, déterminer lequel de ces tracés représente le cycle.



- c) Sachant que le travail des actions de pression reçu au cours du cycle est  $W=\oint_{\rm cycle} -P\,{\rm d}V,$  déterminer laquelle de ces affirmations est correcte.
  - (a) W > 0 donc le cycle est récepteur.
- (c) W = 0 car la transformation est un cycle.
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$
- (d) W < 0 donc le cycle est moteur.

## Entraînement 14.5 — Courbes iso d'un GP dans le diagramme (p, v).



Une courbe isochore, une courbe isotherme, une courbe adiabatique réversible (donc isentrope) et une courbe isobare ont été représentées ci-contre dans le diagramme (p, v) d'un gaz parfait.

Toutes ces courbes passent par le même état décrit par le point  $\mathcal{M}_0$  ayant pour coordonnées la pression  $p_0$  et le volume massique  $v_0$ .

Pour un gaz parfait :

- l'équation d'état massique est pv = rT, avec r = R/M la constante massique des gaz parfaits;
- la loi de Laplace dans le cas d'une transformation adiabatique réversible peut s'écrire  $pv^{\gamma}=$ cste, avec  $\gamma>1$  le coefficient adiabatique.



Exprimer la pente  $\frac{\partial p}{\partial v}$  au point  $M_0$  pour chaque courbe iso en fonction de  $p_0$ ,  $v_0$  et  $\gamma$ :

- a) iso-p .....
- c) iso-v .....
- b) iso-*T* .....
- d) iso-s .....

À l'aide d'une comparaison des pentes des courbes au point  $M_0$ , déterminer l'adjectif adapté à chaque courbe parmi la liste suivante : isobare, isotherme, isochore, isentrope.

- e) ① .....
- g) ③ .....
- f) ② .....
- h) ④ .....

# Diagramme entropique (T, s)

### Entraînement 14.6 — Courbes isobares d'un diagramme (T, s).



La 2^e identité thermodynamique est : dh = T ds + v dp. La seconde loi de Joule énonce que  $dh = c_P dT$ .

a) Établir l'équation différentielle vérifiée par T(s) le long d'une courbe isobare.

......

b) En déduire l'expression de T(s) vérifiée le long d'une courbe isobare parmi les relations suivantes :

 $(b) T_0 \exp\left(\frac{s-s_0}{c_n}\right) \qquad (c) T_0 \exp\left(\frac{s_0-s}{c_n}\right)$ 

La suite vise à déterminer la position relative de deux courbes isobares. Pour cela, la compression isentropique d'un gaz parfait, passant d'un état (1) à un état (2), est représentée par un trait plein dans le diagramme (T, s) ci-contre. Les courbes en tirets



c) La transformation vérifie une des lois de Laplace :  $p^{1-\gamma}T^{\gamma} = \text{cste}$ . En déduire laquelle des relations suivantes est une expression de  $p_2$  valide.

(a)  $p_1^{1-\gamma} \left(\frac{T_1}{T_2}\right)^{\gamma}$ 

 $\bigcirc p_1 \left(\frac{T_1}{T_2}\right)^{\gamma/(\gamma-1)}$ 

d) Sachant que  $\gamma > 1$ , que dire de la position relative d'une courbe isobare haute pression (HP) relativement à une courbe isobare basse pression (BP)?

(a) Les HP sont au-dessus des BP.

représentent deux courbes isobares  $p_1$  et  $p_2$ .

(b) Les HP sont en dessous des BP.

## Entraînement 14.7 — Estimation d'un transfert thermique.



Les transformations étudiées ici sont réversibles si bien qu'un transfert thermique reçu entre un état I et un état F est  $Q_{\text{IF}} = \int_{\Gamma}^{\Gamma} T \, dS$ . Estimer le transfert thermique reçu lors du cycle donné ci-contre.

(a)  $Q_{ABCDA} = 1.5 \times 10^5 \,\text{J}$ 

 $\bigcirc$  Q_{ABCDA} = 2,25 × 10² J

 $(b) Q_{ABCDA} = -1.5 \times 10^5 \,\mathrm{J}$ 

 $(c) Q_{ABCDA} = -1.5 \times 10^2 \,\mathrm{J}$ 

(d)  $Q_{\text{ABCDA}} = 2,25$ (e)  $Q_{\text{ABCDA}} = 2,25 \times 10^5 \,\text{J}$ (f)  $Q_{\text{ABCDA}} = -2,25 \times 10^2 \,\text{J}$ 

400 300



Pour rappel, un gaz parfait vérifie la seconde loi de Joule :  $dh = c_p dT$ . Pour un liquide, cette loi s'écrit sous la forme dh = c dT.

- a) Quelles sont les propositions vraies au point A?
  - (a) La pression est de 0,05 bar.
  - (b) L'enthalpie massique est de 2800 J.
- © Le corps pur est sous forme gazeuse et le modèle du gaz parfait est valable.
- (d) Le corps pur est sous forme liquide.


- b) Quelles sont les propositions vraies au point B?
  - (a) Le corps pur est sous forme liquide.
  - (b) Le corps pur est un mélange de liquide et de vapeur.
- (c) La température est de 450 °C.
- $\bigcirc$  L'entropie massique vaut  $600 \,\mathrm{J\cdot kg^{-1}\cdot K^{-1}}$ .



- c) Quelles sont les propositions vraies au point E?
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- (b) Le titre massique en vapeur est de 0,7.
- © Le titre massique en liquide est de 0,3.
- $\stackrel{-}{\text{(d)}}$  L'enthalpie massique est de  $1.9 \times 10^3 \,\text{J} \cdot \text{kg}^{-1}$ .



d) Quels termes est-il	possible d'associer	r à la transformation	n d'un système	passant de l'état E à l'état F
a vaporisation	(b) fusion		éfaction	(d) isobare
e) Quelle est la valeu	r de l'entropie mas	ssique au point F?		
f) Déterminer, à l'aid passant de l'état E à l'	_	phique, la valeur de	la variation d'é	entropie massique d'un systèm
g) Déterminer, à l'aide passant de l'état E à l'	état F.			nthalpie massique d'un systèm
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
Diagramme de	es frigoriste	$\mathrm{s}\;(P,h)$		
Entraînement 14.9 Différents réseaux de c			aes(P,h) ci-des	SOUS.
(ve) 10 ² (ve) 10 ¹ (ve) 10 ²	10 ² 10 ² 10 ² 10 ²	500 1000 1500 2000 25 Enthalpie massique h (	10- 10- 10- 10- 10- 10- 10- 10- 10-	
phases condensées inco	ompressibles et ind	lilatables, dont l'éq	uation d'état e	$-p  dv$ et $dh = T  ds + v  dp$ . Le est $v = \text{cste}$ , et les gaz parfait $u = c_V  dT$ et $dh = c_p  dT$ .
Pour chacun des trois courbes tracé :	diagrammes, choi	sir quel adjectif par	rmi la liste sui	vante correspond au réseau d
(a) isobare	(c)	) isotitre		(e) isenthalpe
(b) isotherme	$\stackrel{\bigcirc}{ ext{d}}$	) isentrope		
a) Diagramme ①		c) I	Diagramme 3	
b) Diagramme ②				

(b) Les courbes isothermes sont des demi-droites





a) Au point A, quelles sont les propositions vraies?	
(a) La pression est de $1,00 \times 10^7 \mathrm{Pa}$ .	© Le corps pur est sous forme gazeuse.
$\begin{tabular}{ll} \hline \end{tabular}$ La température est de 275 K.	d Le corps pur est sous forme liquide.
b) Au point B, quelles sont les propositions vraies?	
<ul><li>(a) La pression est de 1 Pa.</li><li>(b) La température est de 100 °C.</li></ul>	© Le corps pur est sous forme de mélange di- phasé contenant du liquide et de la vapeur.
b) La temperature est de 100 C.	$\bigcirc$ Le titre massique en liquide est de 0,6.
c) Pour rappel, un gaz parfait vérifie la seconde loi o propositions valides en phase vapeur si le fluide est assi	*
(a) Les courbes isothermes sont des segments ho-	(c) Les courbes isothermes sont confondues avec

rizontaux.

verticales.

(d) Les courbes isothermes sont confondues avec

les courbes isenthalpes.

les courbes isobares.

## Entraînement 14.11 — Courbes iso d'un GP dans le diagramme $(\log(p), h)$ . 0000 Quatre courbes iso ont été tracées dans le diagramme $(\log(p), h)$ $\log(p)$ ci-contre. Le fluide étudié est assimilé à un gaz parfait qui vérifie l'équation d'état pvM = RT et la $2^{\text{nde}}$ loi de Joule $dh = c_p dT$ . a) Le long d'une courbe isochore, la pente est $\frac{d \log(p)}{dh} =$ avec A une constante. Exprimer A en fonction de R, M, $c_p$ et v. **(4)** Par une étude qualitative des pentes des courbes, déterminer l'adjectif adapté à chaque courbe parmi la liste suivante : isobare, isotherme, isochore, isentrope. c) ② ..... b) ① ...... $(\blacksquare)$ Entraînement 14.12 — Vaporisation de l'eau. 0000 Le diagramme des frigoristes de l'eau est donné ci-dessus, dans l'entraînement 14.10. a) À l'aide d'une analyse visuelle, c'est-à-dire sans lecture de valeurs ni calculs, utiliser la position du point B sous la courbe de saturation pour déterminer laquelle de ces propositions est valide. On rappelle que l'échelle des abscisses est linéaire. (a) Il y a davantage de liquide que de vapeur. (c) Il y a autant de vapeur que de liquide. (b) Il y a davantage de vapeur que de liquide. (d) Il n'y a que du liquide. A l'aide de lectures graphiques, attribuer, parmi les valeurs de 2650, 1320, 420 et 1000 kJ·kg⁻¹ celles correspondant aux enthalpies massiques caractérisant l'état du fluide au point B.

- Quelle est l'écriture correcte du théorème des moments donnant  $x_{\rm B}$ , le titre en vapeur au point B?

(a) 
$$x_{\rm B} = \frac{h_{\rm v,B} - h_{\rm B}}{h_{\rm v,B} - h_{\rm l,B}}$$
 (b)  $x_{\rm B} = \frac{h_{\rm B} - h_{\rm l,B}}{h_{\rm v,B} - h_{\rm l,B}}$  (c)  $x_{\rm B} = \frac{h_{\rm v,B} - h_{\rm B}}{h_{\rm l,B} - h_{\rm v,B}}$  (d)  $x_{\rm B} = \frac{h_{\rm l,B} - h_{\rm B}}{h_{\rm B} - h_{\rm v,B}}$ 

- En déduire la valeur du titre vapeur au point B en prenant  $2230 \approx 2250 \dots$
- g) Par analyse de la forme de la courbe de saturation, comment évolue l'enthalpie de vaporisation  $\Delta_{\text{vap}}h = h_{\text{v}} - h_{\text{l}}$  lorsque la pression augmente?
- (a) elle reste constante (b) elle diminue (c) elle augmente

### Réponses mélangées

$$x_{\rm B} = 40\,\% \qquad \text{(b)} \qquad {\rm diphas\acute{e}} \qquad \frac{{\rm d}T}{{\rm d}s} - \frac{T}{c_p} = 0 \qquad 2\,650\,{\rm kJ\cdot kg^{-1}} \qquad 760,8\,{\rm mmHg}$$

$$7,6672\,{\rm m^3\cdot kg^{-1}} \qquad (a) \qquad -5\,000\,{\rm J\cdot K^{-1}\cdot kg^{-1}} \qquad \text{(b)}, \ \ {\rm c} \ {\rm et} \ {\rm d} \qquad \text{(d)} \qquad \text{(a)} \qquad b \qquad {\rm isobare} \qquad 1\,320\,{\rm kJ\cdot kg^{-1}} \qquad {\rm (a)} \qquad 9,1\times 10^{-4}\,{\rm g\cdot mL^{-1}}$$

$$-1\,650\,{\rm kJ\cdot kg^{-1}} \qquad {\rm isotherme} \qquad {\rm (a)} \ {\rm et} \ {\rm (d)} \qquad 1,017\times 10^{-3}\,{\rm m^3\cdot kg^{-1}} \qquad {\rm (b)} \qquad {\rm (b)}$$

$$\begin{array}{c} {\rm (b)}, \ \ {\rm (c)} \ {\rm et} \ {\rm (d)} \qquad {\rm (c)} \qquad {\rm isotherme} \qquad {\rm isentrope} \qquad 800\,{\rm J\cdot K^{-1}\cdot kg^{-1}} \qquad {\rm isotherme} \qquad {\rm isoth$$

► Réponses et corrigés page 293

## Thermodynamique industrielle

Fiche du « Cahier d'entraînement 1re année » pour se préparer

 $\longrightarrow$  Thermodynamique

#### Prérequis

Lois de Laplace. Principes sous forme industrielle. Diagramme (P, h).

Dans l'ensemble de la fiche, on se place en régime permanent.

## Principes industriels

Entraînement 15.1 — Composants des machines thermiques.



En négligeant les variations d'énergie mécanique, les premier et second principes industriels par unité de masse s'écrivent :

$$\Delta h = q + w_i \quad \text{et} \quad \Delta s = s_e + s_c \,, \tag{1}$$

où q est le transfert thermique massique,  $w_i$  est le travail indiqué massique,  $s_e$  est l'entropie massique échangée et  $s_c$  est l'entropie massique créée. Rappelons que l'entropie massique échangée avec un thermostat de température  $T_0$  constante est égale à  $s_e = q/T_0$ .

Pour chacun des composants suivants, on souhaite savoir comment ces deux principes se réécrivent.

Choisissez la bonne réponse à chaque fois.

- a) Un compresseur fonctionnant de manière adiabatique réversible avec des pièces mobiles.
  - (a)  $\Delta h = w_i$ ;  $\Delta s = 0$

 $\bigcirc \Delta h = 0 \; ; \; \Delta s = s_{\rm c}$ 

(b)  $\Delta h = w_i$ ;  $\Delta s = s_e$ 

- b) Un échangeur thermique dans lequel le fluide se liquéfie (condenseur).
- (a)  $\Delta h = w_i$ ;  $\Delta s = 0$

 $\bigcirc$   $\Delta h = 0$ ;  $\Delta s = s_c$ 

- (d)  $\Delta h = q$ ;  $\Delta s = s_e + s_c$
- c) Un détendeur idéal calorifugé et sans pièce mobile.
- (a)  $\Delta h = w_i$ ;  $\Delta s = 0$

 $\bigcirc$   $\triangle h = 0$ ;  $\triangle s = s_c$ 

(b)  $\Delta h = w_i$ ;  $\Delta s = s_e$ 

- (d)  $\Delta h = q$ ;  $\Delta s = s_e + s_c$
- d) Une turbine idéale réalisant une détente adiabatique réversible au travers de parties mobiles.
- (a)  $\Delta h = w_i$ ;  $\Delta s = 0$

 $\bigcirc \Delta h = 0 \; ; \; \Delta s = s_{\rm c}$ 

 $\widehat{\text{(b)}} \Delta h = w_{\text{i}} ; \Delta s = s_{\text{e}}$ 

(d)  $\Delta h = q$ ;  $\Delta s = s_e + s_c$ 

Entraînement 15.2	— Comparaison of	ies ainerentes iori	nes a´energie a´un syster	$\mathbf{me.}  00$
$v = 10 \mathrm{m \cdot s^{-1}}, \mathrm{travers}$	se une turbine. La ten e est de l'ordre du mè	npérature du gaz din	$c_{\rm p}=1{\rm kJ\cdot K^{-1}\cdot kg^{-1}},~{\rm alla}$ ninue de 10 °C entre l'entrée jies considérées sont massiqu	et la sorti
a) Estimer la variati	on d'enthalpie du sys	tème constitué des g	az à l'intérieur de la turbine	
$\bigcirc$ 10 J·kg ⁻¹	$\odot$ 50 J·kg ⁻¹	$\odot 10  \mathrm{kJ \cdot kg^{-1}}$	$\bigodot$ 50 kJ · kg ⁻¹	
b) Même question p	our son énergie cinéti	que dans le cas extr $\hat{\epsilon}$	eme où la vitesse de sortie es	st nulle.
$ (a) 10 \mathrm{J \cdot kg^{-1}} $	$ b) 10 \mathrm{kJ \cdot kg^{-1}} $			
c) Même question po	our son énergie potent	tielle en prenant le cl	namp de pesanteur terrestre	$g = 10 \mathrm{m} \cdot$
,	$ b) 50 \mathrm{J} \cdot \mathrm{kg}^{-1} $			
d) Comparer les terr	mes et indiquer celui o	qui prédomine.		
(a) la variation d'en	nthalpie $\Delta h$	© la	variation d'énergie potentiel	lle $\Delta e_{ m p}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Entraînement 15.3 L'air d'un réservoir $\mathcal{R}$ ne contenant aucune p d'indice adiabatique	$\mathcal{C}$ se détend dans une to pièce mobile. L'air est $\gamma=1,4$ et de capacité	nyère.  tuyère horizontale, is assimilable à un gaz thermique massique	/ -	eu extérieu $=29\mathrm{g}\cdot\mathrm{m}$
Entraînement 15.3 L'air d'un réservoir $\mathcal{R}$ ne contenant aucune p d'indice adiabatique $\mathcal{L}$ L'air entre dans la tu $T_1 = 273 \mathrm{K}$ . Il en sort	— Étude d'une tu è se détend dans une to pièce mobile. L'air est $\gamma = 1,4$ et de capacité nyère avec une vitesse animé d'une vitesse	tuyère.  tuyère horizontale, is assimilable à un gaz thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_2$	olée thermiquement du milie parfait de masse molaire $M$ e $c_{\rm p}=\frac{1}{M}\frac{\gamma R}{\gamma-1}.$ Table, sous la pression $p_1$ à la 2 à la température $T_2=200$	eu extérieu = 29 g·m
Entraînement 15.3 L'air d'un réservoir $\mathcal{R}$ ne contenant aucune p d'indice adiabatique $\mathcal{L}$ L'air entre dans la tu $T_1 = 273 \mathrm{K}$ . Il en sort a) Quelle est la form	— Étude d'une tu C se détend dans une to pièce mobile. L'air est C = 1,4 et de capacité uyère avec une vitesse animé d'une vitesse ne du premier principa	tuyère.  tuyère horizontale, is assimilable à un gaz thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_1$ e par unité de masse	olée thermiquement du milie parfait de masse molaire $M$ e $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ . Table, sous la pression $p_1$ à la $p_2$ à la température $p_2$ a la température $p_3$ pour le système étudié?	eu extérieu = 29 g·m
Entraînement 15.3 L'air d'un réservoir $\mathcal{R}$ ne contenant aucune p d'indice adiabatique $\mathcal{L}$ L'air entre dans la tu $T_1 = 273 \mathrm{K}$ . Il en sort a) Quelle est la form	— Étude d'une tu C se détend dans une to pièce mobile. L'air est C = 1,4 et de capacité uyère avec une vitesse animé d'une vitesse ne du premier principa	tuyère.  tuyère horizontale, is assimilable à un gaz thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_1$ e par unité de masse	olée thermiquement du milie parfait de masse molaire $M$ e $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ . Table, sous la pression $p_1$ à la $p_2$ à la température $p_2$ a la température $p_3$ pour le système étudié?	eu extérieu = 29 g·m
Entraînement 15.3 L'air d'un réservoir $\mathcal{R}$ ne contenant aucune p d'indice adiabatique $\mathcal{L}$ L'air entre dans la tu $T_1 = 273 \mathrm{K}$ . Il en sort	— Étude d'une tu è se détend dans une to pièce mobile. L'air est $\gamma = 1,4$ et de capacité nyère avec une vitesse animé d'une vitesse	tuyère.  tuyère horizontale, is assimilable à un gaz thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_1$ e par unité de masse	olée thermiquement du milie parfait de masse molaire $M$ e $c_{\rm p}=\frac{1}{M}\frac{\gamma R}{\gamma-1}.$ Table, sous la pression $p_1$ à la 2 à la température $T_2=200$	eu extérieu = 29 g·mo
Entraînement 15.3 L'air d'un réservoir $\mathcal{R}$ ne contenant aucune p d'indice adiabatique $\mathcal{L}$ L'air entre dans la tu $T_1 = 273 \mathrm{K}$ . Il en sort a) Quelle est la form	— Étude d'une tu C se détend dans une to pièce mobile. L'air est C = 1,4 et de capacité uyère avec une vitesse animé d'une vitesse ne du premier principa	tuyère.  tuyère horizontale, is assimilable à un gaz thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_1$ e par unité de masse	olée thermiquement du milie parfait de masse molaire $M$ e $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ . Table, sous la pression $p_1$ à la $p_2$ à la température $p_2$ a la température $p_3$ pour le système étudié?	eu extérieu = 29 g·m
Entraînement 15.3  L'air d'un réservoir $\mathcal{R}$ ne contenant aucune pure d'indice adiabatique $\mathcal{L}$ L'air entre dans la turu $T_1 = 273  \text{K}$ . Il en sort a) Quelle est la form (a) $\Delta h + \Delta e_c = w_i$ (b) $\Delta h + \Delta e_c = q$ (c)  b) En utilisant la set de l'air à la sortie de et de la constante $R$ (c)	— Étude d'une ture de la terme d'une d'une de la terme d'une vitesse d'une vitesse d'une vitesse d'une vites d'une vites d'une vitesse d'une vites d'une train d'une vitesse d'une vites d'	tuyère.  tuyère horizontale, is assimilable à un gaz e thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_2$ e par unité de masse $\Delta e_c = 0$ (e)  éterminer l'expression des températures $T_1$	olée thermiquement du milie parfait de masse molaire $M$ e $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ . Table, sous la pression $p_1$ à la $p_2$ à la température $p_2$ a la température $p_3$ pour le système étudié?	eu extérieu = 29 g · m la tempéra K.
Entraînement 15.3  L'air d'un réservoir $\mathcal{R}$ ne contenant aucune pure d'indice adiabatique $\mathcal{L}$ L'air entre dans la turu $T_1 = 273  \text{K}$ . Il en sort a) Quelle est la form (a) $\Delta h + \Delta e_c = w_i$ (b) $\Delta h + \Delta e_c = q$ (c)  b) En utilisant la set de l'air à la sortie de et de la constante $R$ (c)	— Étude d'une tu $\mathbb{C}$ se détend dans une to pièce mobile. L'air est $\gamma=1,4$ et de capacité ayère avec une vitesse animé d'une vitesse de du premier principe $\mathbb{C}$ $\Delta h + \Delta \mathbb{C}$ $\Delta h = u$ conde loi de Joule, de la tuyère en fonction	tuyère.  tuyère horizontale, is assimilable à un gaz e thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_2$ e par unité de masse $\Delta e_c = 0$ (e)  éterminer l'expression des températures $T_1$	olée thermiquement du milie parfait de masse molaire $M$ : $c_{\rm p}=\frac{1}{M}\frac{\gamma R}{\gamma-1}.$ cable, sous la pression $p_1$ à le pour le système étudié? $\Delta h=q$ $\Delta h=w_{\rm i}+q$ on de la variation d'enthalpie	eu extérieu = 29 g · mola tempéra K.
Entraînement 15.3  L'air d'un réservoir $R$ ne contenant aucune p d'indice adiabatique $R$ L'air entre dans la tu $T_1 = 273  \text{K}$ . Il en sort a) Quelle est la form  a) $\Delta h + \Delta e_c = w_i$ b) $\Delta h + \Delta e_c = q$ b) En utilisant la se de l'air à la sortie de et de la constante $R$ c  c) En déduire l'exp	$-$ Étude d'une tu $2$ se détend dans une to pièce mobile. L'air est $\gamma=1,4$ et de capacité nyère avec une vitesse $2$ animé d'une vitesse de du premier principe $2$ $2$ $2$ $2$ $2$ $2$ $3$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$	tuyère.  tuyère horizontale, is assimilable à un gaz thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_2$ e par unité de masse $\Delta e_c = 0$ (e)  éterminer l'expression des températures $T_1$	olée thermiquement du milie parfait de masse molaire $M$ : $c_{\rm p}=\frac{1}{M}\frac{\gamma R}{\gamma-1}.$ cable, sous la pression $p_1$ à le pour le système étudié? $\Delta h=q$ $\Delta h=w_{\rm i}+q$ on de la variation d'enthalpie	eu extérieu = 29 g · m la tempéra K.  e massique d de l'air,
Entraînement 15.3  L'air d'un réservoir $\mathcal{R}$ ne contenant aucune pure d'indice adiabatique $\mathcal{L}$ L'air entre dans la ture $T_1 = 273 \mathrm{K}$ . Il en sort a) Quelle est la form (a) $\Delta h + \Delta e_{\mathrm{c}} = w_{\mathrm{i}}$ (b) $\Delta h + \Delta e_{\mathrm{c}} = q$ (b) En utilisant la set de l'air à la sortie de et de la constante $R$ (c) En déduire l'exptempératures $T_1, T_2$ ,	$-$ Étude d'une tu $2$ se détend dans une to pièce mobile. L'air est $\gamma=1,4$ et de capacité nyère avec une vitesse $2$ animé d'une vitesse de du premier principe $2$ $2$ $2$ $2$ $2$ $2$ $3$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$	tuyère.  tuyère horizontale, is assimilable à un gaz e thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_2$ e par unité de masse $\Delta e_c = 0$ (e)  éterminer l'expression des températures $T_1$ $c_2$ d'éjection de l'ai $M$ de l'air, de $\gamma$ et de	olée thermiquement du milie parfait de masse molaire $M$ : $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ . Pable, sous la pression $p_1$ à la pour le système étudié?  (a) $\Delta h = q$ (b) $\Delta h = w_i + q$ (c) $\Delta h = w_i + q$ (d) $\Delta h = w_i + q$ (e) $\Delta h = w_i + q$ (f) $\Delta h = w_i + q$ (	eu extérieu = 29 g · mo la tempéra K.  e massique d de l'air,
Entraînement 15.3  L'air d'un réservoir $\mathcal{R}$ ne contenant aucune pure d'indice adiabatique $\mathcal{L}$ air entre dans la truit $T_1 = 273  \mathrm{K}$ . Il en sort a) Quelle est la form (a) $\Delta h + \Delta e_{\mathrm{c}} = w_{\mathrm{i}}$ (b) $\Delta h + \Delta e_{\mathrm{c}} = q$	- Étude d'une ture de la complexa de la masse molaire $I$ se détend dans une de la complexa de la complexa de la masse molaire $I$ $I$ se détend d'une vitesse de la masse molaire $I$ $I$ $I$ se de la vitesse de la masse molaire $I$ $I$ se détend d'une vitesse de la masse molaire $I$ $I$ se détend d'une vitesse de la masse molaire $I$ $I$ se détend d'une ture $I$ se de la contra $I$ se détend d'une ture $I$ se de la contra $I$ se	tuyère.  tuyère horizontale, is assimilable à un gaz e thermique massique $c_1$ supposée néglige $c_2$ sous la pression $p_2$ e par unité de masse $\Delta e_c = 0$ (e)  éterminer l'expression des températures $T_1$ $C_2$ d'éjection de l'ai $M$ de l'air, de $\gamma$ et de $M$	olée thermiquement du milie parfait de masse molaire $M$ : $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ . Pable, sous la pression $p_1$ à la pour le système étudié?  (a) $\Delta h = q$ (b) $\Delta h = w_i + q$ (c) $\Delta h = w_i + q$ (d) $\Delta h = w_i + q$ (e) $\Delta h = w_i + q$ (f) $\Delta h = w_i + q$ (	eu extérieu = 29 g · mo la tempéra K.  e massique d de l'air,  n fonction faits.
Entraînement 15.3  L'air d'un réservoir $\mathcal{R}$ ne contenant aucune pure d'indice adiabatique $\mathcal{L}$ L'air entre dans la ture $T_1 = 273 \mathrm{K}$ . Il en sort a) Quelle est la form (a) $\Delta h + \Delta e_{\mathrm{c}} = w_{\mathrm{i}}$ (b) $\Delta h + \Delta e_{\mathrm{c}} = q$	- Étude d'une ture de la complexa de la masse molaire $I$ se détend dans une de la complexa de la complexa de la masse molaire $I$ $I$ se détend d'une vitesse de la masse molaire $I$ $I$ $I$ se de la vitesse de la masse molaire $I$ $I$ se détend d'une vitesse de la masse molaire $I$ $I$ se détend d'une vitesse de la masse molaire $I$ $I$ se détend d'une ture $I$ se de la contra $I$ se détend d'une ture $I$ se de la contra $I$ se	tuyère.  tuyère horizontale, is assimilable à un gaz e thermique massique $c_2$ sous la pression $p_2$ e par unité de masse $\Delta c_2 = 0$ (e)  éterminer l'expression des températures $T_1$ $c_2$ d'éjection de l'air $\Delta c_2$ d'éjection de l'air $\Delta c_3$ de l'air, de $\Delta c_4$ et de l'air, de $\Delta c_5$ et de l'air à la	olée thermiquement du milie parfait de masse molaire $M$ $c_p = \frac{1}{M} \frac{\gamma R}{\gamma - 1}$ .  Pable, sous la pression $p_1$ à la 2 à la température $T_2 = 200$ pour le système étudié?  (a) $\Delta h = q$ (b) $\Delta h = w_i + q$ (c) $\Delta h = w_i + q$ (d) $\Delta h = w_i + q$ (e) a de la variation d'enthalpie $A$ (f) $A$ (g) $A$ (	e massique d de l'air,  n fonction faits.

# Modèle du gaz parfait : exemple d'un turbopropulseur

On considère un gaz parfait décrivant le cycle de Joule ci-dessous dans lequel la première et la troisième phases sont isentropiques.

La deuxième phase (combustion) et la quatrième phase (refroidissement) se font sans travail indiqué.

On néglige les variations d'énergies cinétique  $\Delta e_{\rm c}$  et potentielle  $\Delta e_{\rm p}$ .



### Entraînement 15.4 — Températures.



a) En utilisant la loi de Laplace sous la forme  $T^{\gamma}p^{1-\gamma}=$  este, exprimer le température  $T_2$ .

$$(a) T_2 = T_1 \left(\frac{p_1}{p_2}\right)^{1-2\gamma}$$

(b) 
$$T_2 = T_1 \left(\frac{p_1}{p_2}\right)^{(1-\gamma)/\gamma}$$

b) En utilisant maintenant la forme  $TV^{\gamma-1} = \text{cste}$ , exprimer  $T_4$ .

$$(a) T_4 = T_3 \left(\frac{V_3}{V_4}\right)^{\gamma - 1}$$

(b) 
$$T_4 = T_3^{1-\gamma} \frac{V_3}{V_4}$$

(d) 
$$T_4 = T_3 \left(\frac{V_3}{V_4}\right)^{1/(\gamma - 1)}$$

### Entraînement 15.5 — Rendement.



Le cycle précédent est utilisé dans une machine, fonctionnant sans travail indiqué pendant la deuxième et la quatrième phase. La première phase est une compression, la troisième phase une détente. On les suppose isentropiques, donc adiabatiques réversibles. Les travaux sont algébriques, de signe positif lorsqu'ils sont réellement reçus par le fluide.

a)	Indiquer	$\sin$	le	cycle	$\operatorname{est}$	moteur	ou	récepteur
----	----------	--------	----	-------	----------------------	--------	----	-----------

(a) moteur (b) récepteur

b) Quelle est l'expression du travail indiqué total reçu lors de ce cycle?

(a)  $w_1 + w_3$ 

 $(d) -w_1 - w_3$ 

(g)  $w_2 - w_4$ 

 $(b) -w_1 + w_3$ 

(e)  $w_2 + w_4$ 

 $(h) -w_2 - w_4$ 

 $(c) w_1 - w_3$ 

 $(f) -w_2 + w_2$ 

- c) Quelle est l'expression du transfert thermique reçu de la part de la source chaude?
  - (a)  $c_p(T_2 T_1)$

(c)  $c_p(T_4 - T_3)$ 

(b)  $c_p(T_3 - T_2)$ 

d) Quelle est l'expression du transfert thermique reçu de la part de la source froide?

(a)  $c_p(T_2 - T_1)$ 

 $(c) c_p(T_4 - T_3)$ 

(b)  $c_p(T_3 - T_2)$ 

- e) Quelle est l'expression du travail indiqué  $w_1$  reçu dans la première phase?
  - (a)  $c_p(T_2 T_1)$

 $c_p(T_4 - T_3)$ 

(b)  $c_p(T_3 - T_2)$ 

(d)  $c_{\rm p}(T_1 - T_4)$ 

f) Quelle est l'expression du travail indiqué  $w_3$  reçu dans la troisième phase?

(a)  $c_p(T_2 - T_1)$ 

 $c_p(T_4 - T_3)$ 

(b)  $c_p(T_3 - T_2)$ 

(d)  $c_p(T_1 - T_4)$ 

g) Exprimer le rendement de ce cycle moteur en fonction de  $w_1$ ,  $w_3$  et  $q_2$ .

.....

h) Exprimer le rendement en fonction des températures  $T_1$ ,  $T_2$ ,  $T_3$  et  $T_4$ .

.....

## Exploitation de diagrammes enthalpiques



Entraînement 15.6 — Efficacité d'une pompe à chaleur.



Considérons une pompe à chaleur dont le cycle est représenté ci-dessous.



a) Le fluide reçoit du travail dans le compresseur, ce qui a pour effet d'augmenter la pression ainsi que la température à une température supérieure à celle de la source chaude.

Quelle transformation du cycle correspond au compresseur? . . . . .

b) Calculer numériquement le travail massique algébrique  $w_{\rm compr}$  reçu par le fluide dans le compresseur.

.....

c) L'échange avec la source chaude a lieu dans le condenseur, où le fluide se liquéfie totalement.

Quelle transformation du cycle correspond au condenseur? .....

d) Calculer numériquement le transfert thermique algébrique  $q_{\mathrm{cond}}$  reçu par le fluide dans le condenseur.

.....

e) Calculer l'efficacité de la machine  $e=-\frac{q_{\rm cond}}{w_{\rm compr}}$  .....

### Entraînement 15.7 — Rendement isentropique d'un compresseur.

0000

Dans cet entraînement, on considère un compresseur adiabatique destiné à augmenter la pression d'une vapeur de propane de 1 à 10 bar.

Le fluide est dans l'état initial E indiqué sur le diagramme des frigoristes ci-contre en entrée du compresseur, on note S son état de sortie. Les valeurs lues sur le diagramme seront données avec deux chiffres significatifs; les entropies y sont données en  $kJ \cdot K^{-1} \cdot kg^{-1}$ .



- On suppose la compression réversible. Donner la valeur de  $s_{S,rév}$  en sortie . . . .
- b) Déterminer graphiquement la température du fluide  $T_{\rm S,r\acute{e}v}$  en sortie .......
- Calculer le travail massique  $w_{\text{rév}}$  fourni à la vapeur ......
- d) En réalité, la compression est irréversible, et la valeur de la température réelle en sortie du compresseur est  $T_{\rm S}=65\,^{\circ}{\rm C}$ . Déterminer le travail massique w réellement fourni lors du processus.

- Calculer le rendement isentropique du compresseur  $\eta = \frac{w_{\text{rév}}}{w}$  ......
- Calculer l'entropie massique créée lors de la compression .....

4 
$$c_2 = \sqrt{\frac{2}{M} \frac{\gamma R}{\gamma - 1} (T_1 - T_2)}$$
 0,78 b 100 J·K⁻¹·kg

(a) (c) 
$$-\frac{w_1+w_3}{a_2}$$
 (a) (d)  $1 \to 2$  (a)  $2 \to 3$ 

 $4 \qquad c_2 = \sqrt{\frac{2}{M}} \frac{\gamma R}{\gamma - 1} (T_1 - T_2) \qquad 0.78 \qquad \text{(b)} \qquad 100 \, \text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$   $50 \, \text{kJ} \cdot \text{kg}^{-1} \qquad \text{(d)} \qquad \text{(c)} \qquad \text{(a)} \qquad 2.50 \, \text{kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1} \qquad 110 \, \text{kJ} \cdot \text{kg}^{-1}$   $\text{(a)} \qquad \text{(c)} \qquad -\frac{w_1 + w_3}{q_2} \qquad \text{(a)} \qquad \text{(d)} \qquad 1 \rightarrow 2 \qquad \text{(a)} \qquad 2 \rightarrow 3$   $140 \, \text{kJ} \cdot \text{kg}^{-1} \qquad 383 \, \text{m} \cdot \text{s}^{-1} \qquad 1 - \frac{T_4 - T_1}{T_3 - T_2} \qquad \text{(c)} \qquad -200 \, \text{kJ} \cdot \text{kg}^{-1} \qquad \text{(c)}$   $\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(a)} \qquad \text{(a)} \qquad \text{(b)} \qquad 50 \, \text{°C} \qquad \text{(a)} \qquad \text{(c)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(a)} \qquad \text{(a)} \qquad \text{(b)} \qquad 50 \, \text{°C} \qquad \text{(a)} \qquad \text{(b)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(a)} \qquad \text{(a)} \qquad \text{(b)} \qquad 50 \, \text{°C} \qquad \text{(a)} \qquad \text{(b)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(a)} \qquad \text{(a)} \qquad \text{(b)} \qquad 50 \, \text{°C} \qquad \text{(a)} \qquad \text{(b)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(a)} \qquad \text{(a)} \qquad \text{(b)} \qquad 50 \, \text{°C} \qquad \text{(a)} \qquad \text{(b)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(a)} \qquad \text{(a)} \qquad \text{(b)} \qquad 50 \, \text{°C} \qquad \text{(a)} \qquad \text{(b)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(b)} \qquad \text{(b)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(c)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad \text{(d)} \qquad \text{(d)} \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad \text{(d)} \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) \qquad \text{(d)} \qquad -\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_$ 

$$\frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1)$$
 a a b  $50 \,^{\circ}\text{C}$  a d a

► Réponses et corrigés page 298

## Signaux

#### **Prérequis**

Continuités imposées par les bobines et condensateurs. Comportement des bobines et condensateur à HF et BF.

## Pour bien commencer



## $\clubsuit$ Entraı̂nement 16.1 — Un peu de calcul intégral.



Calculer les intégrales suivantes si  $T=2\pi/\omega$  est une constante homogène à un temps.

a) 
$$\frac{1}{T} \int_0^T \cos(\omega t) dt \dots$$

c) 
$$\frac{1}{T} \int_0^T t \cos(\omega t) dt \dots$$

b) 
$$\frac{1}{T} \int_0^T \cos^2(\omega t) dt \dots$$

## Régimes transitoires



## Entraı̂nement 16.2 — Premier/second ordre.



Soit les deux courbes  $s_1(t)$  et  $s_2(t)$  respectivement à gauche et à droite sur la figure ci-dessous.



Parmi les propositions suivantes,

(a) 
$$\frac{\mathrm{d}s}{\mathrm{d}t} - \frac{s}{\tau} = \frac{E}{\tau}$$

$$\bigcirc \frac{\mathrm{d}s}{\mathrm{d}t} + \frac{s}{\tau} = \frac{E}{\tau}$$

$$e) \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + \omega_0^2 s = \omega_0^2 E$$

$$\begin{array}{ccc}
\frac{\mathrm{d}s}{\mathrm{d}t} + \frac{s}{\tau} = \frac{E}{\tau} & \text{(e)} & \frac{\mathrm{d}^2s}{\mathrm{d}t^2} + \omega_0^2 s = \omega_0^2 E \\
\text{(d)} & \frac{\mathrm{d}^2s}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = \omega_0^2 E & \text{(f)} & \frac{\mathrm{d}^2s}{\mathrm{d}t^2} - \frac{\omega_0}{Q} \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = \omega_0^2 E
\end{array}$$

où  $(\tau, \omega_0, Q, E) \in (\mathbb{R}_+^*)^4$ , laquelle correspond à :

a) 
$$s_1(t)$$
? .....

b) 
$$s_2(t)$$
? .....



## Entraînement 16.3 — Stabilité d'un système linéaire continu invariant.



Qualifier de « stable » ou d'« instable » les systèmes décrits par les équations différentielles suivantes. Les signaux s, r et v sont les signaux de sortie des systèmes étudiés tandis que le signal e est un signal d'entrée. Toute autre notation renvoie à des constantes strictement positives.

a) 
$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = \omega_0^2 s \dots$$
 b) 
$$\tau \frac{\mathrm{d}s}{\mathrm{d}t} + s = -e \dots$$

b) 
$$\tau \frac{\mathrm{d}s}{\mathrm{d}t} + s = -e \dots$$

c) 
$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} - \omega_0^2 r = -g\cos\theta \text{ si } \theta > \pi/2$$

d) 
$$\frac{d^2s}{dt^2} + \frac{\omega_0}{Q}(1 - H_0A)\frac{ds}{dt} + \omega_0^2 s = \omega_0^2 e \text{ si } H_0A \leqslant 1 \dots$$

e) 
$$\frac{\mathrm{d}^2 v}{\mathrm{d}t^2} + \frac{1}{LC} \left( RC - \frac{L}{r} \right) \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{LC} \left( 1 - \frac{R}{r} \right) v = 0 \text{ si } R > r \text{ et } R < \frac{L}{rC} \dots$$

### Entraînement 16.4 — Continuité (I).



On considère le circuit ci-contre. L'interrupteur K est ouvert depuis très longtemps. On le ferme à l'instant t=0.

Trois étudiants comparent leurs analyses de ce circuit à l'instant  $t = 0^-$ , l'instant  $t = 0^+$  et lorsque  $t \to +\infty$ .



a) À  $t = 0^-$ , parmi les trois propositions ci-dessous, laquelle est correcte? ...........

Étudiant ⓐ:  

$$i(0^{-}) = 0$$
  
 $i_{R}(0^{-}) = 0$   
 $i_{C}(0^{-}) = 0$   
 $u_{C}(0^{-}) = 0$ 

Étudiant 
$$\textcircled{b}$$
:
$$i(0^{-}) = E/R$$

$$i_{R}(0^{-}) = 0$$

$$i_{C}(0^{-}) = E/R$$

$$u_{C}(0^{-}) = 0$$

Étudiant ©:  

$$i(0^{-}) = 0$$
  
 $i_{R}(0^{-}) = 0$   
 $i_{C}(0^{-}) = 0$   
 $u_{C}(0^{-}) = E$ 

b) À  $t = 0^+$ , parmi les trois propositions ci-dessous, laquelle est correcte? ......

Étudiant ⓐ:  

$$i(0^+) = 0$$

$$i_R(0^+) = E/R$$

$$i_C(0^+) = -E/R$$

$$u_C(0^+) = E$$

Étudiant 
$$\textcircled{b}$$
:
$$i(0^+) = E/R$$

$$i_R(0^+) = 0$$

$$i_C(0^+) = E/R$$

$$u_C(0^+) = 0$$

Étudiant ©:  

$$i(0^{+}) = 0$$

$$i_{R}(0^{+}) = E/R$$

$$i_{C}(0^{+}) = 0$$

$$u_{C}(0^{+}) = E$$

c) À  $t = +\infty$ , parmi les trois propositions ci-dessous, laquelle est correcte? ......

Étudiant ⓐ:  

$$i(\infty) = E/(R+r)$$

$$i_R(\infty) = E/(R+r)$$

$$i_C(\infty) = 0$$

$$u_C(\infty) = \frac{R}{R+r}E$$

Étudiant 
$$\textcircled{b}$$
: 
$$i(\infty) = E/R$$
$$i_R(\infty) = E/R$$
$$i_C(\infty) = 0$$
$$u_C(\infty) = 0$$

Étudiant 
$$\odot$$
:  
 $i(\infty) = E/r$   
 $i_R(\infty) = E/R$   
 $i_C(\infty) = E/r - E/R$   
 $u_C(\infty) = E$ 

## Entraînement 16.5 — Continuité (II).



On considère le circuit ci-dessous.

L'interrupteur K est ouvert depuis très longtemps. On le ferme à l'instant t=0.



Trois étudiants comparent leurs analyses de ce circuit :

- à l'instant  $t = 0^-$ ,
- à l'instant  $t = 0^+$ ,
- lorsque  $t \to +\infty$ .
- a) À  $t = 0^-$ , parmi les trois propositions ci-dessous, laquelle est correcte? ...........

$$\begin{array}{c}
\text{Étudiant (a) :} \\
\hline
i(0^{-}) = E_1/2R \\
i_1(0^{-}) = E_1/2R \\
i_2(0^{-}) = 0
\end{array}$$

Étudiant 
$$\textcircled{b}$$
:  
 $i(0^{-}) = E_1/R$   
 $i_1(0^{-}) = E_1/R$   
 $i_2(0^{-}) = E/R$ 

Étudiant ©:  

$$i(0^{-}) = E_1/2R$$

$$i_1(0^{-}) = 0$$

$$i_2(0^{-}) = 0$$

b) À  $t = 0^+$ , parmi les trois propositions ci-dessous, laquelle est correcte? ...........

$$\begin{aligned}
&\text{Étudiant } \textcircled{a} : \\
&i(0^{+}) = E_{1}/R \\
&i_{1}(0^{+}) = \frac{4E_{1} - 2E_{2}}{3R} \\
&i_{2}(0^{+}) = \frac{2E_{2} - E_{1}}{3R}
\end{aligned}$$

Étudiant 
$$\textcircled{b}$$
:
$$i(0^{+}) = E_{1}/2R$$

$$i_{1}(0^{+}) = E_{1}/4R$$

$$i_{2}(0^{+}) = E_{1}/4R$$

Étudiant ©:  

$$i(0^{+}) = E_{1}/2R$$

$$i_{1}(0^{+}) = \frac{3E_{1} - 2E_{2}}{4R}$$

$$i_{2}(0^{+}) = \frac{2E_{2} - E_{1}}{4R}$$

c) À  $t = +\infty$ , parmi les trois propositions ci-dessous, laquelle est correcte? .......

$$\underbrace{ \begin{aligned}
 & \text{Étudiant } \textcircled{a} : \\
 & i(\infty) = \frac{E_1 + E_2}{3R} \\
 & i_1(\infty) = E_1/3R \\
 & i_2(\infty) = E_2/3R \end{aligned}}$$

$$\underbrace{fitudiant \textcircled{b}:}$$

$$i(\infty) = \underbrace{\frac{E_1 + E_2}{2R}}_{i_1(\infty) = E_1/2R}$$

$$i_2(\infty) = E_2/2R$$

$$\frac{\text{Étudiant } \odot :}{i(\infty) = \frac{E_1 + E_2}{3R}}$$

$$i_1(\infty) = \frac{2E_1 - E_2}{3R}$$

$$i_2(\infty) = \frac{2E_2 - E_1}{3R}$$

# Régimes oscillants forcés

# Entraînement 16.6 — Qui est-ce (I)?

0000

Un étudiant a mesuré la tension et l'intensité électrique traversant un dipôle dont les mesures sont représentées ci-dessous.



Un peu étourdi, il a oublié si ces courbes correspondent à celles mesurées aux bornes d'un condensateur ou d'une bobine.

Aidez-le à le retrouver!

a)	Ouelle est	l'amplitude	de 12	intensité '



c)	Quelle est	la.	fréquence	des	signaux	- ?

- d) Comment est la tension par rapport à l'intensité électrique?



e) Le déphasage de la tension par rapport à l'intensité vaut :

$$\bigcirc$$
  $-\frac{\pi}{2}$ 

(b) 
$$+\frac{\pi}{2}$$

$$\bigcirc$$
  $-\pi$ 

$$\bigcirc$$
  $+\pi$ 



- f) Le dipôle étudié est alors :
- (a) une bobine d'impédance j $L\omega$
- (b) un condensateur d'admittance j $C\omega$



g) Le cas échéant, déterminer la valeur de la capacité ou de l'inductance de ce dipôle.

On prendra  $\frac{1}{\pi} \approx 0.32$ .



# Entraînement 16.7 — Qui est-ce (II) ?

0000

Un étudiant a mesuré la tension et l'intensité électrique traversant un dipôle dont les mesures sont représentées ci-contre.

Un peu étourdi, il a oublié si ces courbes correspondent à celles mesurées aux bornes d'un condensateur ou d'une bobine.

Aidez-le à le retrouver!



a) Comment est la tension par rapport à l'intensité électrique?

(a) en avance

(b) en retard

b) Le déphasage de la tension par rapport à l'intensité électrique vaut :

c) Le dipôle étudié est donc :

(a) une bobine d'impédance j $L\omega$ 

(b) un condensateur d'admittance j $C\omega$ 

d) Le cas échéant, déterminer la valeur de la capacité ou de l'inductance de ce dipôle.

On prendra  $\frac{1}{2\pi} \approx 0.16$ .

# Entraînement 16.8 — Caractéristiques d'un montage RL (I).



On considère l'association de dipôles ci-contre.



a) L'impédance de cette association est de la forme :

(a) 
$$\underline{Z} = \frac{R + jL\omega}{jLR\omega}$$

(b) 
$$\underline{Z} = R + jL\omega$$
 (c)  $\underline{Z} = R + \frac{1}{jL\omega}$ 

On note  $U_0$  et  $I_0$  les amplitudes respectives de la tension u(t) et de l'intensité électrique i(t). On note  $\varphi$  le déphasage de la tension par rapport à l'intensité électrique (c'est l'argument de  $\underline{Z}$ ).

b) Les grandeurs L et R vérifient le système :

(a) 
$$\begin{cases} \frac{R^2 + (L\omega)^2}{(LR\omega)^2} = \left(\frac{U_0}{I_0}\right)^2 \\ \frac{L\omega}{R} = \tan\left(\frac{\pi}{2} + \varphi\right) \end{cases}$$
 (b) 
$$\begin{cases} R^2 + \frac{1}{(L\omega)^2} = \left(\frac{U_0}{I_0}\right)^2 \\ \frac{1}{RL\omega} = \tan(\varphi) \end{cases}$$
 (c) 
$$\begin{cases} R^2 + (L\omega)^2 = \left(\frac{U_0}{I_0}\right)^2 \\ \frac{L\omega}{R} = \tan(\varphi) \end{cases}$$

$$\stackrel{\bigcirc}{\mathbb{C}} \begin{cases} R^2 + (L\omega)^2 = \left(\frac{U_0}{I_0}\right)^2 \\ \frac{L\omega}{R} = \tan(\varphi) \end{cases}$$





La tension u(t) et l'intensité électrique i(t) de l'association série d'une bobine et d'un conducteur ohmique sont mesurées expérimentalement (courbes ci-contre). L'impédance de ce montage est

$$\underline{Z} = R + jL\omega.$$

On peut montrer que R, L et  $\omega$  vérifient le système :

$$\begin{cases} R^2 + (L\omega)^2 = \left(\frac{U_0}{I_0}\right)^2 \\ \frac{L\omega}{R} = \tan(\varphi), \end{cases}$$

où  $U_0$  et  $I_0$  sont respectivement les amplitudes de la tension u(t) et de l'intensité électrique i(t) tandis que  $\varphi$  est le déphasage de la tension par rapport à l'intensité électrique.

a) La pulsation des signaux est:

(a)  $8.98 \times 10^2 \,\mathrm{rad \cdot s^{-1}}$  (b)  $8.98 \times 10^3 \,\mathrm{rad \cdot s^{-1}}$  (c)  $8.98 \times 10^4 \,\mathrm{rad \cdot s^{-1}}$ 

b) Quelle est la valeur du décalage temporel  $\delta t$  entre l'extinction de la tension et celle de l'intensité électrique?

(a) -0.1 ms (b) -0.2 ms (c) 0.1 ms (d) 0.2 ms

c) Le déphasage  $\varphi$  de la tension par rapport à l'intensité électrique vaut :

(a)  $\frac{\pi}{3}$  rad (b)  $-\frac{\pi}{3}$  rad (c)  $\frac{2}{7}\pi$  rad (d)  $-\frac{2}{7}\pi$  rad

En résolvant le système, déterminer :

d) la valeur de la résistance R ...... e) la valeur de l'inductance L ......

# Entraı̂nement 16.10 — Équivalents.



On considère les trois fonctions de transfert suivantes :

$$\underline{H_1}({\rm j} x) = \frac{4}{1-x^2+3{\rm j} x}, \quad \underline{H_2}({\rm j} x) = \frac{1+2{\rm j} x}{1-3{\rm j} x} \quad {\rm et} \quad \underline{H_3}({\rm j} x) = \frac{2+3{\rm j} x}{1+5{\rm j} \left(x-\frac{1}{x}\right)}.$$

Pour chacune des fonctions de transfert, trouver un équivalent de la forme  $Ax^n$  au module des fonctions de transfert, où  $A \in \mathbb{R}$  et  $n \in \mathbb{Z}$  sont deux constantes à déterminer.

 $|H_1(jx)|$  pour  $x \to 0$  ....

d)  $|\underline{H_2}(jx)|$  pour  $x \to \infty$  ....

 $|\underline{H_1}(jx)| \text{ pour } x \to \infty \dots$ 

e)  $|H_3(jx)|$  pour  $x \to 0$  .....

 $|H_2(jx)|$  pour  $x \to 0$  .....

f)  $|H_3(ix)|$  pour  $x \to \infty$  ....

# Analyse spectrale

## Entraînement 16.11 — DSF d'un signal triangulaire.

0000

L'oscillogramme d'un signal triangulaire u(t), d'amplitude U et de période T, est représenté ci-dessous.



Par lecture graphique, déterminer les propriétés du signal:

- Quelle est la valeur de la fréquence fondamentale f du signal? .....
- d) Laquelle des propositions ci-dessous décrit le signal triangulaire sur l'intervalle  $\left[-\frac{T}{2}, \frac{T}{2}\right]$

(b) 
$$u(t) = \begin{cases} U(1 - 4t/T) & \text{si } t \in [0, T/2] \\ U(1 + 4t/T) & \text{si } t \in [-T/2, 0] \end{cases}$$

(d) 
$$u(t) = \begin{cases} U(1+2t) & \text{si } t \in [0, T/2] \\ U(1-2t) & \text{si } t \in [-T/2, 0] \end{cases}$$

Le signal triangulaire peut se décomposer en série de Fourier :

$$u(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi n f t) + b_n \sin(2\pi n f t),$$

avec  $a_0$  la moyenne de u(t),  $a_n$  et  $b_n$  les coefficients des harmoniques définis par :

$$a_n = \frac{2}{T} \int_0^T u(t) \cos(n 2\pi f t) dt$$
 et  $b_n = \frac{2}{T} \int_0^T u(t) \sin(n 2\pi f t) dt$ .

e) Que vaut  $a_0$ ? .....

Ici, il est admis que, pour tout  $n \in \mathbb{N}$ ,  $b_n = 0$  et

$$a_n = \frac{4}{T} \int_0^{T/2} u(t) \cos(2\pi f n t) dt.$$

f) À l'aide d'une intégration par parties, déterminer lesquelles des propositions suivantes sont correctes:

(a) 
$$a_n = 0$$
 si  $n$  pair

$$\bigcirc$$
  $a_n = 0$  si  $n$  impair

(d) 
$$a_n = 0$$
 si  $n$  impair  
(d)  $a_n = \frac{8U}{\pi^2} \frac{1}{n^2}$  si  $n$  impair

g) Lequel des spectres ci-dessous correspond au spectre en amplitude du signal triangulaire?









0000

### Entraînement 16.12 — Spectre d'un signal carré.

L'oscillogramme d'un signal carré s(t), de moyenne  $s_0$ , d'amplitude  $S_{\rm m}$  et de période T, est représenté ci-contre.

Par lecture graphique, déterminer les propriétés du signal :





Le signal carré peut se décomposer en série de Fourier :

$$s(t) = \sum_{n=-\infty}^{\infty} \underline{c_n} e^{in 2\pi \nu t},$$

avec  $\underline{c_n}$  les coefficients complexes des harmoniques définis par :

$$\underline{c_n} = \frac{1}{T} \int_0^T s(t) e^{-in 2\pi \nu t} dt \quad \text{pour } n \in \mathbb{Z}.$$

À l'aide de la définition de la valeur moyenne, déterminer la valeur de  $\underline{c_0}$  ......

En remarquant que  $s(t \in [T/2, T]) = 0$ , déterminer lesquelles des propositions suivantes sont correctes pour  $n \neq 0$ :

(a) 
$$\underline{c_n} = 0$$
 si  $n$  impair

$$\bigcirc$$
  $\underline{c_n} = 0$  si  $n$  pair

$$\label{eq:cn} \begin{picture}(b) \hline \end{picture} \underline{c_n} = \frac{2S_{\rm m}}{{\rm i}\pi}\frac{1}{n} \mbox{ si } n \mbox{ impair}$$

g) Lequel des spectres ci-dessous correspond au spectre en amplitude du signal carré? . . . .







(E) Entraînement 16.13 — Fréquence d'échantillonnage.

équidistants répartis

L'acquisition du signal s(t) ci-dessous est effectuée en l'échantillonnant en N points équidistants répartis sur un intervalle  $[0, t_{\text{max}}]$ .



....

On effectue cette acquisition sur trois durées  $t_{\rm max}$  différentes.

Les spectres ainsi obtenus, similaires mais pas parfaitement identiques, sont représentés ci-dessous.











(c) N = 500;  $T_{\text{max}} = 52.0 \,\text{s}$ 

Quelle est la fréquence d'échantillonnage  $f_e = \frac{N}{T_{\text{max}}}$  dans les conditions expérimentales du spectre :

b) (a)? ......

c) (b)? .....

d) ©? .....

D'après l'analyse de Fourier, un signal périodique se décompose en une somme de signaux sir les fréquences sont des multiples de la fréquence du fondamental, fréquence du signal.							
e) Lequel des spectres ((a), (b) ou (c)) vérifie cette propriété?							

e)	Lequel des spectres ((a), (b) ou (c)) vérifie cette propriété ?	
f)	Comment s'appelle l'effet responsable des différences entre ces spectres?	
g)	Quelle condition doit être remplie pour ne pas observer ce phénomène?	





# $\blacksquare$ Entraı̂nement 16.14 — Filtrage numérique.



Un filtre, d'entrée e(t) et de sortie s(t), possède une fonction de transfert  $\underline{H} = \frac{H_0}{1 + \mathrm{j}\frac{\omega}{\omega_0}}$ , avec  $H_0 > 0$  un terme identifié au gain statique et  $\omega_0$  la pulsation caractéristique du filtre.

a) À l'aide d'une analyse qualitative de la fonction de transfert, déterminer la nature et l'ordre du filtre :

b) Utiliser la fonction de transfert pour déterminer l'équation différentielle liant e et s.

Une chaîne d'acquisition permet de numériser respectivement les signaux analogiques e et s en des signaux numériques  $e_n$  et  $s_n$  définis par :

$$e_n = e(t = t_n)$$
 et  $s_n = s(t = t_n)$ ,

où  $t_n = nT_{\rm e}$  et où  $T_{\rm e}$  est la période d'échantillonnage et n le numéro d'un échantillon.

c) En approximant la dérivée par un taux de variation entre  $t_{n+1}$  et  $t_n$  (schéma d'Euler explicite), laquelle des relations de récurrence proposées ci-dessous permet de calculer la suite  $s_n$  pour tout n si  $s_0$  est connue?

(a) 
$$s_n = (1 - T_e \omega_0) s_{n+1} + T_e \omega_0 H_0 e_{n+1}$$

(b) 
$$s_{n+1} = (1 - T_e \omega_0) s_n + T_e \omega_0 H_0 e_n$$

(c) 
$$s_{n+1} = s_n + T_e \omega_0 H_0 e_{n+1}$$

Fiche nº 16. Signaux

## Entraînement 16.15 — Démodulation d'amplitude.



Le signal u(t) modulé en amplitude est émis sous forme d'onde radio contenant les fréquences  $f_{\rm p},\,f_{\rm p}+f_{\rm m}$ ainsi que  $f_{\rm p} - f_{\rm m}$ .

Une antenne capte ce signal, mais également du bruit contenant les fréquences  $f_a$ ,  $f_b$ ,  $f_c$ ,  $f_d$  et  $f_e$ .

Le spectre du signal  $u_1(t)$  généré par l'antenne est tracé ci-dessous.



Le signal  $u_1(t)$  capté est envoyé successivement au travers :

- d'un pré-amplificateur de gain A = 10,
- d'un filtre passe-bande idéal de bande passante [175 kHz, 225 kHz],
- d'un mélangeur produisant un signal  $u_4(t) = ku_3(t) \times u_3'(t)$  avec  $k = 0.1 \,\mathrm{V}^{-1}$  et  $u_3'(t) = U_\mathrm{p} \cos(2\pi f_\mathrm{p} t)$ ,
- d'un filtre passe-bas idéal de fréquence de coupure  $f_{\rm c}=60\,{\rm kHz}.$

Les spectres des signaux  $u_2(t)$ ,  $u_3(t)$ ,  $u_3'(t)$ ,  $u_4(t)$  et  $u_5(t)$  sont représentés ci-dessous. Les titres des axes ont été retirés pour plus de clarté.



Attribuer un des spectres proposés ci-dessus à chaque signal:

- a)  $u_2(t)$  ......
- c)  $u_3'(t)$  ......
- e)  $u_5(t)$  .....

- b)  $u_3(t)$  ......
- d)  $u_4(t)$  ......



## Entraînement 16.16 — Figure de battements, modulation d'amplitude.



Une station de radio émet un signal modulé en amplitude :

$$u(t) = U_{\rm p}\cos(2\pi f_{\rm p}t) \times (1 + m\cos(2\pi f_{\rm m}t))$$

avec  $f_{\rm m}$  la fréquence du message sonore transporté par la porteuse, de fréquence  $f_{\rm p}$  et d'amplitude  $U_{\rm p}$ , avec un taux de modulation 0 < m < 1.

Numériquement,  $f_{\rm p}$  est très grande devant  $f_{\rm m}$ ; ainsi, u(t) peut être vu comme un signal oscillant « rapidement » à la période  $T_{\rm p}$  entre les enveloppes

$$u_+(t) = + U_{\rm p}[1 + m\cos(2\pi f_{\rm m}t)] \qquad {\rm et} \qquad u_-(t) = - U_{\rm p}[1 + m\cos(2\pi f_{\rm m}t)],$$

des fonctions oscillant « lentement » à la période  $T_{\rm m}$ .



À l'aide d'une lecture graphique de l'oscillogramme, déterminer la valeur des grandeurs suivantes:

a) 
$$T_{\rm m}$$
 ...

c) 
$$U_{p}$$
 ...

En déduire les fréquences caractéristiques du signal u(t) modulé en amplitude :

Réponses mélangées													
$\frac{2}{3}x^0$ b c	) 4V (c		$1x^0$ 0,1	ms a	a								
$\bigcirc$ a et $\bigcirc$ 7 mH	© 2001	kHz $\frac{3}{5}x^0$	(a) 0	$0{,}75\mathrm{A}$	$0.1\mathrm{V}$								
$12,5\mathrm{Hz}$ $10\mathrm{kHz}$	$4x^0$ a	1 kHz	$D = 1 \mathrm{ms}$	2V 0,	$6 \qquad \frac{1}{2}$								
instable $\frac{2}{5}x^1$ (a)	<u>(d)</u> <u>(a)</u>	10 V (	(b) et (	C Replie	ement de spectre								
(b) B 0	© 0,005	ms (b)	$9{,}61\mathrm{Hz}$	A c	$\bigcirc$								
$\frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0 s = H_0 \omega_0 e$	© stabl	e 1 Hz	(b) 3331	$\mathrm{Hz}$ 50 $\Omega$	<b>(b)</b>								
stable instable	0,1 V (a	instable	(a) (	(b)	$0.1\mathrm{V}$								
(a) 50 Hz E	$2,56\mathrm{mH}$ (	(a) (a)	$20\mathrm{ms}$ 16	5,7 Hz 1,6	βµF 0								

► Réponses et corrigés page 301

0000

## **ALI**

#### Prérequis

Modèle de l'ALI idéal de gain infini. Impédances complexes. Impédance d'entrée d'un quadripôle :  $\underline{Z}_{\mathrm{e}} = \frac{\underline{v}_{\mathrm{e}}}{\underline{i}_{\mathrm{e}}}$ .

# Régime de fonctionnement

### Entraînement 17.1 ─ Circuit en régime linéaire.

Pour chacun des circuits ci-dessous, choisir la phrase qui convient.

- (a) L'ALI fonctionne vraisemblablement en régime linéaire.
- (b) L'ALI fonctionne vraisemblablement en régime saturé.
- On ne peut pas répondre.

a)



c)



b)



d)



Fiche nº 17. ALI

## Loi des nœuds et pont diviseur de tension

## Entraînement 17.2 — Intensités sens dessus dessous.



L'amplificateur linéaire intégré suivant est idéal et fonctionne en régime linéaire.



- a) Exprimer la loi des nœuds au point D en fonction des intensités  $i_1$ ,  $i_2$  et  $i'_1$ . .....
- b) Exprimer la loi des nœuds au point D en fonction des tensions  $u_1, u_2, u'_1$ , des résistances  $R_1, R_2$  et de la capacité  $C_1$  du condensateur supérieur.

c) Indiquer la relation entre les intensités  $i_1$  et  $i_2'$ .

d)	En déduire l'expression de l'intensité $i_2'$ en fonction de $V_A$ , $V_D$ et $R_1$ ainsi que de $C_2$ et $V_A$ .

#### Entraînement 17.3 — Montage à plusieurs ALI.



On considère le montage amplificateur d'instrumentation suivant, dans lequel tous les ALI sont considérés comme idéaux :



- a) Pourquoi n'est-il pas intéressant d'écrire la loi des nœuds en B?
  - (a) L'intensité de sortie de l'ALI est nulle.
    - (c) La sortie de l'ALI est reliée à la masse.

(b) L'intensité de sortie de l'ALI est inconnue.	

b)	Exprimer	la loi	des	nœuds en	termes	d'intensité	au	point	A	en	fonction	des	courants	donnés	sur	le
sche	$ m \acute{e}ma.$															
											l l					

150 Fiche nº 17. ALI c) En appliquant la loi d'Ohm, quelle égalité obtient-on?

$$(a) \frac{V_{\rm B} - V_{\rm A}}{R} + \frac{V_{\rm A}}{R'} = 0$$

d) Exprimer la loi des nœuds en termes d'intensité au point C en fonction des courants donnés sur le schéma.

e) En utilisant la loi d'Ohm, quelle égalité obtient-on?

(a) 
$$\frac{V_{\rm C} - V_{\rm S}}{R} + \frac{V_{\rm B} - V_{\rm C}}{R} = 0$$

$$\bigcirc 2V_{\rm C} = V_{\rm B} + V_{\rm S}$$

(b) 
$$\frac{V_{\rm C} - V_{\rm A}}{2R} + \frac{V_{\rm C} - V_{\rm S}}{R} = 0$$

(d) 
$$\frac{V_{\rm C} - V_{\rm S}}{R} + \frac{V_{\rm C} - V_{\rm B}}{R} + \frac{V_{\rm C} - V_{\rm A}}{R} = 0$$

#### 🖳 Entraînement 17.4 — Oscillateur de Wien.



L'amplificateur linéaire intégré suivant est idéal et fonctionne en régime linéaire.



a) Le pont diviseur de tension du cadre de gauche permet d'écrire une relation entre  $u_1$  et  $u_s$ . Écrire cette relation.

b) Écrire la loi des nœuds en A.

c) Exprimer  $i_2$  en fonction de  $u_e$  et R.

- Exprimer l'intensité  $i_3$  en fonction de  $u_e$  et C .....
- Écrire la loi des mailles vérifiée par la partie de droite du montage délimitée par des tirets.

Dériver cette relation et donner la relation liant  $\frac{du_e}{dt}$ ,  $\frac{du_s}{dt}$ ,  $i_1$ ,  $\frac{di_1}{dt}$ , R et C.

En déduire une équation différentielle liant R, C,  $\frac{\mathrm{d}u_{\mathrm{s}}}{\mathrm{d}t}$ ,  $\frac{\mathrm{d}^{2}u_{\mathrm{e}}}{\mathrm{d}t^{2}}$ ,  $\frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t}$  et  $u_{\mathrm{e}}$ .

# Entraînement 17.5 — Montage sommateur inverseur.



L'amplificateur linéaire intégré suivant est idéal et fonctionne en régime linéaire.



a) Exprimer la loi des nœuds au point A en fonction des intensités  $i_1$ ,  $i_2$  et  $i_3$ .

.....

b) À l'aide de l'expression précédente, déterminer une relation liant les tensions  $u_1$ ,  $u_2$  et  $u_s$  ainsi que les résistances  $R_1$ ,  $R_2$  et  $R_3$ .

## Entraînement 17.6 — Montage soustracteur.



L'amplificateur linéaire intégré suivant est idéal et fonctionne en régime linéaire.



- b) Donner la relation entre les intensités  $i_2$  et  $i_4$  ......
- c) Exprimer le potentiel  $V_+$  en fonction de  $R_2,\,R_4$  et  $u_2,\,\grave{\rm a}$  l'aide d'un pont diviseur de tension.

.....

d) Exprimer le potentiel  $V_-$  en fonction de  $R_1$ ,  $R_3$ ,  $u_1$  et  $u_s$ , à l'aide d'un autre pont diviseur de tension.

.....

Fiche nº 17. ALI

### Entraînement 17.7 — Impédance d'un dipôle.



On considère le montage suivant dans lequel l'ALI est idéal et fonctionne en régime linéaire.



On se place en régime sinusoïdal forcé de pulsation  $\omega$ .

\	-		1	1 .	1	1					c	1		1 /		1 1	,
a)	Ex	primer	la	loı	des	nœuds	au	point	Α	$_{ m en}$	tonction	des	courants	donnes	sur	le sch	ema.

.....

b) Exprimer la loi des nœuds au point C en fonction des courants donnés sur le schéma.

c) En écrivant la loi d'Ohm en notation complexe sur  $R_2$  et  $C_1$ , en déduire une relation entre  $v_{\rm e},\,V_{\rm B},\,V_{\rm C},\,i_{\rm e},\,C_1,\,R_2$  et  $\omega$ .

 $i_{\mathrm{e}},\,C_{1},\,R_{2}\,\,\mathrm{et}\,\,\omega.$ 

On cherche désormais à établir l'expression de l'impédance d'entrée du montage. Pour cela, il faut simplifier l'équation obtenue.

- d) Quelle(s) relation(s) supplémentaire(s) est-il alors intéressant d'utiliser?
  - (a) La loi des nœuds en B

 $\bigcirc$   $V_{\rm B} = v_{\rm s}$ 

(b) La loi des nœuds en C

 $\stackrel{\frown}{\text{(d)}} V_{\text{B}} = V_{\text{C}}$ 

.....

- e) Pourquoi n'est-il pas intéressant d'écrire la loi des nœuds en B?
- (a) Le point B est relié à la borne  $\ominus$ .
- (b) Le courant  $i_3$  est nul.
- $\bigcirc$  Le courant  $i_3$  est inconnu.

.....

# Filtrage

## Entraînement 17.8 — Étude d'un montage intégrateur.

0000

On considère le montage intégrateur ci-dessous. L'ALI est idéal et fonctionne en régime linéaire.



a) À l'aide d'une des propriétés de l'ALI idéal en régime linéaire, exprimer le potentiel  $V_-$ .



b) Exprimer une relation entre  $\underline{u_{\rm e}}$  et  $\underline{u_{\rm s}}$  à l'aide d'une loi des nœuds en notation complexe au point  $\overline{\rm A}$ .



c) En déduire l'expression de la fonction de transfert du montage  $\underline{H}=\frac{u_{\rm s}}{u_{\rm e}}.$ 



d) Donner l'équation différentielle qui relie  $u_{\rm e}(t)$  et  $u_{\rm s}(t)$  ......

e) On envoie un signal créneau (en pointillés) en entrée du montage intégrateur.

Parmi les courbes de sortie (en traits pleins) suivantes, laquelle est compatible avec ce montage?





.....

# Entraînement 17.9 — Étude d'un montage dérivateur.



On considère le montage dérivateur ci-dessous. L'ALI est idéal et fonctionne en régime linéaire.



a) À l'aide des propriétés de l'ALI idéal en régime linéaire, exprimer le potentiel  $V_-$ .



b) Exprimer une relation entre  $\underline{u_e}$  et  $\underline{u_s}$  à l'aide d'une loi des nœuds en notation complexe au point A.

c) En déduire l'expression de la fonction de transfert du montage  $\underline{H}=\frac{u_{\rm s}}{2}$ .

$\underline{u_{\mathrm{e}}}$	

d) Exprimer l'équation différentielle qui relie  $u_{\rm e}(t)$  et  $u_{\rm s}(t)$  ......

e) On envoie un signal triangulaire (en pointillés) en entrée du montage dérivateur.

Parmi les courbes de sortie (en traits pleins) suivantes, laquelle est compatible avec ce montage?







## Entraînement 17.10 — Étude qualitative à hautes et basses fréquences (I).



On considère le même montage que dans l'entraînement 17.7, où l'ALI est considéré idéal et fonctionne en régime linéaire.

- a) En modélisant le condensateur par un interrupteur ouvert ou fermé, à quel dipôle le montage est-il équivalent à basses fréquences?
- b) En modélisant le condensateur par un interrupteur ouvert ou fermé, à quel dipôle le montage est-il équivalent à hautes fréquences?

(a)  $R_1$ (b)  $R_2$ 

								(	c	)	C	7	1	

	$\cup$
D	
$n_2$	

(c)  $C_1$ 

## Entraînement 17.11 — Étude qualitative à hautes et basses fréquences (II).



On considère maintenant le montage déphaseur suivant où l'ALI est toujours considéré idéal et fonctionne en régime linéaire.



a) En modélisant le condensateur par un interrupteur ouvert ou fermé, quelle relation lie  $v_s$  et  $v_e$  à basses fréquences?

b) En modélisant le condensateur par un interrupteur ouvert

.....

ou fermé, quelle relation lie  $v_{\rm s}$  et  $v_{\rm e}$  à hautes fréquences?

## Entraînement 17.12 — Montage déphaseur.



On considère un filtre déphaseur, contenant un ALI, pour lequel on donne l'expression de la fonction de transfert:

$$\underline{H}(\omega) = \frac{\underline{v}_{s}}{\underline{v}_{e}} = \frac{1 - jRC\omega}{1 + jRC\omega}.$$

- Quelle est la fonction de transfert équivalente à basses fréquences? ......
- b) Quelle est la fonction de transfert équivalente à hautes fréquences? ......
- c) Exprimer le gain du montage ......

On donne  $R=800\,\Omega$  et  $C=100\,\mathrm{nF}.$ 

e) On envoie une tension de la forme  $v_{\rm e}(t)=E\cos(\omega t)$  de fréquence  $f=\frac{\omega}{2\pi}=2.0\,{\rm kHz}$  et  $E=1.0\,{\rm V}$ . Donner l'expression de la tension de sortie  $v_s$ .

#### Réponses mélangées

► Réponses et corrigés page 306

Fiche nº 17. ALI

0000

## ALI saturé

#### **Prérequis**

Modèle de l'ALI idéal de gain infini : courants de polarisation nuls, tension différentielle nulle en régime linéaire. Stabilité des systèmes linéaires (équation différentielle du deuxième ordre). Conditions suffisantes de saturation de l'ALI: absence de rétroaction ou rétroaction positive.

#### Constantes utiles

- $\rightarrow$  Gain de l'ALI :  $\mu_0 \approx 10^5$
- $\rightarrow$  Tension de saturation de l'ALI :  $V_{\rm sat} = 15\,\rm V$
- ightarrow Vitesse limite de balayage :  $\left. \frac{\mathrm{d}v_s}{\mathrm{d}t} \right|_{\mathrm{lim}} \approx 10\,\mathrm{V/\mu s}$

## Avant toute chose

### Entraı̂nement 18.1 — ALI en régime saturé.

Parmi les montages suivants, indiquer si l'ALI utilisé est en régime saturé de manière certaine.









158 Fiche nº 18. ALI saturé

# Utilisation du modèle du premier ordre

### $\blacksquare$ Entraînement 18.2 - Modèle du premier ordre.



Pour étudier la stabilité d'un montage à ALI, il faut passer par son modèle du premier ordre. On donne l'équation différentielle reliant le potentiel de sortie s à ceux des deux entrées  $v_+$  et  $v_-$ :

$$v_{-} \triangleright \infty$$

$$v_{+} + v_{+}$$

$$\tau \frac{\mathrm{d}s}{\mathrm{d}t} + s = \mu_0(v_+ - v_-)$$

a) Écrire la fonction de transfert définie en régime harmonique par  $\underline{\mu} =$ 

- b) Identifier le type de filtre associé; c'est un filtre...
  - passe-bas

passe-bande

passe-haut

coupe-bande

Quelle est l'expression de la pulsation de coupure de ce filtre  $\omega_c$ ? ......

Quelle est l'expression du gain statique de ce filtre  $H_0$ ? ......

Quelle est la fonction de transfert équivalente du filtre à basse fréquence?

Quelle est la fonction de transfert équivalente du filtre à haute fréquence?

g) Parmi les diagrammes de Bode suivants, lequel correspond à celui de  $\mu$ ?

On a noté  $x=\dfrac{\omega}{\omega_c}$ ; l'abréviation « Asy » correspond au diagramme asymptotique.







## Entraînement 18.3 — Stabilité de l'ALI d'un comparateur simple.



On rappelle, pour les besoins de l'exercice, la fonction de transfert entre le potentiel de sortie  $\underline{s}$  et l'entrée différentielle  $v_+-v_-$  de l'ALI :

$$\underline{\mu} = \frac{\underline{s}}{v_+ - v_-} = \frac{\mu_0}{1 + \mathrm{j}\omega\tau}.$$



a) Établir l'équation différentielle reliant s à e en régime linéaire.

.....

b) On considère une entrée nulle avant t = 0 et constante de valeur  $E_0$  pour t > 0. Quelle est l'expression de s en régime permanent?

(a) $\tau \mu_0 E_0$	(b) 0	$(c) \mu_0 E_0$	

## Entraı̂nement 18.4 — Stabilité de l'ALI d'un comparateur à hystérésis.



On rappelle, pour les besoins de l'exercice, la fonction de transfert entre le potentiel de sortie  $\underline{s}$  et l'entrée différentielle  $v_+-v_-$  de l'ALI :

$$\underline{\mu} = \frac{\underline{s}}{\underline{v_+} - \underline{v_-}} = \frac{\mu_0}{1 + \mathrm{j}\omega\tau}.$$



a) À l'aide d'une loi des nœuds appliquée à l'entrée non inverseuse, déterminer laquelle de ces relations est valide.

(a) 
$$\frac{v_+ - e}{R} + \frac{v_+ - s}{R'} = 0$$

$$\bigcirc \frac{e}{R} + \frac{s}{R'} = 0$$

 $\widehat{\text{(b)}} e = s$ 

(b) e = s

- b) Exprimer la tension différentielle  $\varepsilon = v_+ v_-$  ......
- c) Établir l'équation différentielle reliant s à e en régime linéaire.



## Entraînement 18.5 — Stabilité de l'ALI du montage « résistance négative ».



On rappelle, pour les besoins de l'exercice, la fonction de transfert entre le potentiel de sortie  $\underline{s}$  et l'entrée différentielle  $\underline{v_+}-v_-$  de l'ALI :

$$\underline{\mu} = \frac{\underline{s}}{\underline{v_+} - \underline{v_-}} = \frac{\mu_0}{1 + \mathrm{j}\omega\tau}.$$

On considère le montage suivant :



- a) À l'aide d'une loi des nœuds appliquée à l'entrée inverseuse, déterminer laquelle parmi les relations suivantes est valide.
  - (a)  $v_{-} = e + s$
  - $b) v_{-} = \frac{e+s}{R}$
- b) À l'aide d'une loi des nœuds appliquée à l'entrée non inverseuse, déterminer laquelle de ces relations est valide.
  - (a)  $3v_{+} = s$
  - (b)  $\frac{v_+ s}{R} + 2\frac{v_+ e}{R} = 0$
- (c)  $3v_{+} = e + s$
- c) Exprimer la tension différentielle  $\varepsilon = v_+ v_-$  ......
- d) Établir l'équation différentielle reliant s à e en régime linéaire.

.....

# Exploitation de caractéristiques

#### Entraînement 18.6 — Condition de basculement (I).



On considère le montage comparateur simple.

On rappelle que la saturation haute d'un ALI est caractérisée par un potentiel de sortie  $s=V_{\rm sat}$  et une tension différentielle  $\varepsilon=v_+-v_-$  positive. De même, la saturation basse d'un ALI est caractérisée par un potentiel de sortie  $s=-V_{\rm sat}$  et une tension différentielle  $\varepsilon$  négative.



a)	Exprimer $v_+$ en fonction de $e$	

b) En saturation haute, quelle condition sur e assure de rester dans cet état de saturation?



c) En saturation basse, quelle condition sur e assure de rester dans cet état de saturation?



d) Laquelle des deux caractéristiques suivantes correspond à celle du montage comparateur simple?





162 Fiche nº 18. ALI saturé

### Entraînement 18.7 — Condition de basculement (II).



On considère le montage comparateur à hystérésis à double seuil. On rappelle que la saturation haute d'un ALI est caractérisée par un potentiel de sortie  $s=V_{\rm sat}$  et une tension différentielle  $\varepsilon=v_+-v_->0$ . De même, la saturation basse d'un ALI est caractérisée par un potentiel de sortie  $s=-V_{\rm sat}$  et une tension différentielle  $\varepsilon=v_+-v_-<0$ .



- b) En saturation haute, quelle relation lie les paramètres  $R,\,R',\,e,\,V_{\rm sat}$  et  $v_{\rm réf}$ ?

.....

c) En saturation basse, quelle relation lie les paramètres  $R, R', e, V_{\text{sat}}$  et  $v_{\text{réf}}$ ?

.....

d) Laquelle des deux caractéristiques suivantes correspond à celle du montage comparateur à hystérésis à double seuil?



.....

### Entraı̂nement 18.8 — Association caractéristiques/chronogrammes.



On considère des montages à ALI fonctionnant en régime saturé. Les relations entre leurs tensions d'entrée e et de sortie s sont représentées sur les caractéristiques suivantes :



Associer un chronogramme à chacune des caractéristiques données ci-dessus.



# Approche expérimentale

## Entraînement 18.9 — Étude expérimentale du comparateur à hystérésis.



On considère un montage comparateur à hystérésis dont le circuit est donné ci-contre. On rappelle que l'ALI bascule d'une saturation à l'autre lorsque la tension d'entrée atteint une valeur limite  $\pm V_{\rm lim}$  telle que :

$$V_{\rm lim} = \frac{R}{R'} V_{\rm sat},$$



où  $V_{\rm sat}$  est la tension de saturation positive de l'ALI.

On connaît  $R = 100 \Omega$  et on cherche à mesurer la valeur de R'.

Une première acquisition donne le chronogramme ci-contre :



 $\triangleright$  pour e(t) 1 carreau  $\leftrightarrow$  5 V;

 $\triangleright$  pour s(t) 1 carreau  $\leftrightarrow$  15 V.





a) Quelle est la valeur de la tension de saturation de l'ALI?

b) Pour quelle valeur de la tension d'entrée l'état de saturation bascule-t-il? ......



Une deuxième acquisition donne le chronogramme ci-contre :



 $\triangleright$  pour e(t) 1 carreau  $\leftrightarrow$  1 V;

 $\triangleright$  pour s(t) 1 carreau  $\leftrightarrow$  15 V.

• Échelle horizontale : 1 carreau  $\leftrightarrow$  10 µs.



d) Pourquoi l'ALI reste-t-il bloqué en saturation haute?

(a) La tension d'entrée n'atteint jamais la valeur  $\pm V_{\rm sat}$ .

(b) La tension d'entrée n'est pas suffisante pour saturer en courant de sortie.

(c) La tension d'entrée n'atteint jamais la valeur  $\pm V_{\text{lim}}$ .

# Entraînement 18.10 — Chronogrammes.



On considère le montage amplificateur inverseur ci-contre pour lequel les résistances valent  $R_1 = 1.0 \,\mathrm{k}\Omega$  et  $R_2 = 10 \,\mathrm{k}\Omega$ .

La loi entrée-sortie du montage est donnée par :

$$\frac{s}{e} = -\frac{R_2}{R_1}.$$

Ce montage est alimenté par une tension e sinusoïdale d'amplitude U et de fréquence f.

 $R_1$  $\triangleright \infty$ 7///

On considère les chronogrammes suivants :



a) Lequel de ces signaux ne présente pas de saturation?

.....

Associer les chronogrammes précédents aux paramètres d'alimentation donnés ci-après.

b) 
$$U = 1.0 \text{ V et } f = 1.0 \text{ kHz}$$

c) 
$$U = 2.0 \text{ V et } f = 1.0 \text{ kHz}$$

d) 
$$U = 1.0 \,\text{V} \,\text{et} \, f = 10 \,\text{MHz}$$



On rappelle que plus un signal présente de discontinuités de tensions, plus son spectre est riche en hautes fréquences.

Associer les spectres suivants aux chronogrammes donnés précédemment.

e)



f)



g)





#### Réponses mélangées

► Réponses et corrigés page 311

Fiche nº 18. ALI saturé

# Oscillateurs électroniques

#### **Prérequis**

Propriétés de l'amplificateur linéaire intégré (ALI) idéal en régime linéaire.

# Équations différentielles et complexes

La pulsation d'un signal sinusoïdal est notée  $\omega$ . Les grandeurs  $\omega_0$ ,  $\tau$ , R, L, C et A sont des constantes.

₽.
E L

Entraînement 19.1 — Des équations complexes aux équations différentielles.



Pour chacune des équations complexes suivantes, exprimer l'équation différentielle associée.

a) 
$$j\omega\underline{u} + \frac{\underline{u}}{\tau} = 0$$

c) $jRC\omega\underline{u} + \omega_0^2\underline{u} + \omega^2\underline{u} = A$
-----------------------------------------------------------------------------------

b) 
$$\frac{\mathrm{j}\omega}{\tau}\underline{u} + \omega_0^2\underline{u} + (\mathrm{j}\omega)^2\underline{u} = 0$$

d) 
$$\frac{1}{\omega_0 \tau} \underline{u} - j \frac{\omega_0}{\omega} \underline{u} + j \frac{\omega}{\omega_0} \underline{u} = A$$



 $\blacksquare$  Entraînement 19.2 — Des équations différentielles aux équations complexes.



Pour chacune des équations différentielles suivantes, exprimer l'équation complexe associée.

a) 
$$\frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{i}{RC}$$

b) 
$$\frac{1}{\tau} \frac{di}{dt} + L^2 C^2 i - \frac{d^2 i}{dt^2} = A$$



# Conditions d'oscillations

Entraînement 19.3 — Type de filtre.



- a) Pour réaliser un oscillateur quasi sinusoïdal, quel filtre faut-il utiliser préférentiellement?
- (a) passe-haut

passe-bande

(e) peu importe

(b) passe-bas

d coupe-bande

- (f) aucun ne convient
- b) Avec l'aide de quel autre montage ce filtre doit-il être bouclé?
  - (a) comparateur à hystérésis
- (c) passe-bande

(e) amplificateur

(b) passe-bas

- (d) filtre passe-haut
- (f) aucun ne convient

# $\blacksquare$ Entraînement 19.4 — Stabilité.



On considère des systèmes décrits par les équations différentielles suivantes. Les constantes  $\omega_0$ ,  $\tau$  et Q sont réelles positives. Indiquer dans chaque cas si l'équation décrit un système stable ou instable.

a)  $\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{\tau} = 0$ 

c)  $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = 0$ 

- (a) stable
- (b) instable
- (a) stable
- (b) instable

b)  $-\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{\tau} = 0$ 

d)  $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} - \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = 0$ 

- (a) stable
- (a) stable
- (b) instable

Entraînement 19.5 — Critère d'oscillations sinusoïdales (critère de Barkhausen).



On considère un oscillateur constitué d'un filtre passe-bande et d'un amplificateur bouclés l'un sur l'autre.

La fonction de transfert de l'amplificateur est  $\underline{H_{\rm a}} = A$  et celle du filtre est  $\underline{H_{\rm f}} = \frac{H_0}{1 + {\rm j}Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$ .

L'équation différentielle associée s'écrit alors :  $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{O} (1 - H_0 A) \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = 0.$ 

- a) Pour que des oscillations apparaissent, indiquer l'état que doit avoir le montage bouclé.
  - (a) stable

(b) instable

- b) Indiquer la condition pratique de démarrage des oscillations.
- (a)  $H_0A > 1$

(b)  $H_0A = 1$ 

(c)  $H_0A < 1$ 

- c) Que vaut alors la pulsation des oscillations si celles-ci sont quasi sinusoïdales?
- (a)  $\omega_0(1 H_0 A)$

......

- d) Quelles sont les conditions pour que le système soit le siège d'oscillations parfaitement sinusoïdales?
- (a)  $H_0A > 1$  et  $\omega = \omega_0$
- (c)  $H_0A < 1$  et  $\omega = \omega_0$
- (e)  $H_0A = 1$  et  $\omega \neq \omega_0$

- (b)  $H_0A = 1$  et  $\omega = \omega_0$
- (d)  $H_0A > 1$  et  $\omega \neq \omega_0$
- (f)  $H_0A < 1$  et  $\omega \neq \omega_0$

## Entraînement 19.6 — Chaîne de rétroaction.



On considère le montage ci-contre.

Pour chaque affirmation, répondre par « vrai » ou « faux ».



a) 
$$\underline{u}_{\underline{s}} = \underline{A} \, \underline{u}_{\underline{e}}$$
 et  $\underline{u}_{\underline{e}} = \underline{B} \, \underline{u}_{\underline{s}}$  .....

b) 
$$\underline{u_e} = \underline{\underline{A}} \underline{u_s}$$
 et  $\underline{u_s} = \underline{\underline{B}} \underline{u_e}$  .....

Le critère de Barkhausen correspond à la limite de la convergence et de la divergence des oscillations. On en déduit un gain de boucle AB qui doit alors être égal à l'unité.

- c) Parmi les propositions suivantes, indiquer celle qui est correcte.
- (a)  $|\underline{A}||\underline{B}| = 0$  et  $\arg(\underline{A}) + \arg(\underline{B}) \equiv 0$   $[2\pi]$
- (b)  $|\underline{A}||\underline{B}| = 1$  et  $\arg(\underline{A}) + \arg(\underline{B}) \equiv 0$   $[2\pi]$
- (c)  $|\underline{A}||\underline{B}| = 1$  et  $\arg(\underline{A}) \times \arg(\underline{B}) \equiv 0$   $[2\pi]$
- (d)  $|\underline{A}||\underline{B}| = 0$  et  $\arg(\underline{A}) \times \arg(\underline{B}) \equiv 0$   $[2\pi]$

# Oscillateur à pont de Wien

# La Entraînement 19.7 — Oscillateur à pont de Wien. €



- a) Pour observer des oscillations avec ce circuit, comment l'ALI doit-il fonctionner?
  - (a) en régime linéaire
  - (b) en régime saturé
- (c) alternativement en régime linéaire et saturé





b) Le pont diviseur de tension du cadre de gauche permet d'écrire une relation entre  $u_1$  et  $u_8$ .

Écrire cette relation en posant  $A = \frac{R_1 + R_2}{R_1}$  .....

- c) Quelle est l'impédance équivalente  $\underline{Z_1}$  du système  $\{R-C\}$  série situé entre S et A ?
- (a)  $R + Z_C$
- $\bigcirc \frac{1}{R} + \frac{1}{Z_C}$

d) Quelle est l'impédanc	co áquivalento Z. du evetà	umo $\{R-C\}$ sório parallàlo sit	uá antro AE at la massa
(a) $R + \underline{Z_C}$	$ \begin{array}{c} \text{b}  \frac{RZ_C}{R + Z_C} \end{array} $	eme $\{R-C\}$ série parallèle sit	$ \frac{\text{d}}{R + \underline{Z_C}} $
e) En utilisant des impé	edances équivalentes $\underline{Z_1}$ et	$\underline{Z_2}$ , déterminer le rapport $\underline{u_s}$	– en fonction de $\underline{Z_C}$ et $R$
f) Parmi les équations s	suivantes, déterminer celle	e qui est vérifiée par $u_{\rm s}$ .	
(a) $ \left[ (j\omega)^2 - \frac{1}{R^2C^2} + \frac{1}{R^2C^2} \right] $ (b) $ \left[ (j\omega)^2 + \frac{1}{R^2C^2} - \frac{1}{R^2C^2} \right] $		$ \begin{array}{c} \text{(c)} \left[ \left( j\omega \right)^2 - \frac{1}{R^2 C^2} - \frac{j}{R} \right] \\ \text{(d)} \left[ \left( j\omega \right)^2 + \frac{1}{R^2 C^2} + \frac{j}{R} \right] \\ \end{array} $	$\frac{\omega}{3C}(3-A) \underbrace{\left[ \underline{u_s} = 0 \right]}_{C} \underline{u_s} = 0$ $\underbrace{\left[ \underline{u_s} = 0 \right]}_{C} \underline{u_s} = 0$
g) Transposer l'équation	n complexe précédente et	en déduire une équation différ	entielle portant sur $u_{\rm s}(t)$
Entraînement 19.8 —	Conditions d'oscillation	ons.	0000
Pour l'oscillateur à pont	de Wien précédent, on do	onne l'équation différentielle su	ivante:
	$\frac{\mathrm{d}^2 u_{\mathrm{s}}}{\mathrm{d}t^2} + \frac{3 - A}{RC}$	$\frac{\mathrm{d}u_{\mathrm{s}}}{\mathrm{d}t} + \frac{1}{R^2 C^2} u_{\mathrm{s}} = 0.$	
a) Indiquer la condition	théorique pour obtenir d	es oscillations sinusoïdales.	
(a) A = 3	$\bigcirc$ $A < 3$	© A	1 > 3
b) Dang so sag indiguo	la fráguence de cos oscill	ations sinussidales	
	la fréquence de ces oscill $RC$		1
(a) $\frac{1}{2\pi}\sqrt{\frac{(3-A)}{RC}}$	$\bigcirc \frac{RC}{2\pi(3-1)}$	$\overline{A}$ ) $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$	$\frac{1}{2\pi RC}$
		$\frac{A)}{2}$	$\frac{1}{2\pi\sqrt{RC}}$
c) Si $A < 3$ , indiquer le	comportement ultérieur.	d) Si $A > 3$ , indiquer le	comportement ultérieur.
(a) oscillations amortie		(a) oscillations amortie	S
(b) saturation		(b) saturation	

 $\bigcirc$  oscillations sinusoïdales

(c) oscillations sinusoïdales

# Oscillateurs à relaxation

#### Entraînement 19.9 — Multivibrateur astable.



Dans le circuit ci-contre, l'amplificateur linéaire intégré (ALI) est supposé idéal.

- a) A priori, quel est le régime de fonctionnement de l'ALI?
- (a) régime linéaire
- (c) impossible de répondre
- (b) régime saturé



Supposons que l'ALI fonctionne en régime saturé avec, à l'instant initial t = 0,  $u_s = V_{sat}$ .

- b) Exprimer la tension  $u_1$  en fonction des résistances  $R_1$ ,  $R_2$  et de la tension de saturation  $V_{\rm sat}$  .....
- Écrire la relation entre l'intensité i et la tension  $u_C$  ......
- Écrire la relation entre l'intensité i, les tensions  $u_C$  et  $V_{\text{sat}}$  et la résistance R.

.....

e) Déduire des deux relations précédentes l'équation différentielle liant  $R, C, u_C$  et  $V_{\text{sat}}$ .

(a) 
$$\frac{\mathrm{d}u_C}{\mathrm{d}t} - \frac{u_C}{RC} = \frac{V_{\mathrm{sat}}}{RC}$$

$$(b) \frac{\mathrm{d}u_C}{\mathrm{d}t} - \frac{u_C}{RC} = -\frac{V_{\text{sat}}}{RC}$$

f) Quelle est la solution de l'équation homogène (sans second membre), avec A constante?

(a) 
$$u_C = A \exp(-RCt)$$

$$(b) u_C = A \exp(RCt)$$

(c) 
$$u_C = A \exp\left(-\frac{t}{RC}\right)$$
  
(d)  $u_C = A \exp\left(\frac{t}{RC}\right)$ 

- g) Que dire de la solution particulière de l'équation?
  - (a) Elle est nulle.

(c) C'est une variable.

(b) C'est une constante.

On ne peut pas savoir.

- h) Supposons qu'à l'instant initial t=0, le condensateur soit déchargé. Indiquer son comportement.
  - (a) Il se charge.

(b) Il se décharge.

(c) Rien ne se passe.

i)	Comment	évolue la	tension	différentielle	d'entrée $\varepsilon =$	$V_{\perp}$ –	$V_{-}$ si	le condensateur	se charge?
-)						· T			

(a) Elle n'évolue pas.

(b) Elle augmente.

(c) Elle diminue.

Que va-t-il se passer pour l'amplificateur linéaire intégré au bout d'un certain temps?

(a) Il va claquer.

(b) Il va basculer en saturation négative.

(c) Il va passer en fonctionnement linéaire.

Oscillateur à résistance négative

## Entraînement 19.10 — Résistance négative.



On utilise le dipôle ci-contre dans lequel l'amplificateur linéaire intégré est idéal.

a) En supposant le régime linéaire, déterminer le rapport  $\frac{u_{\rm e}}{}$ en fonction des résistances  $R_0$  et  $R_2$ .





c) En supposant le régime linéaire, en déduire l'expression de  $u_{\rm e}$  en fonction de  $i_{\rm e}$ , ainsi que des résistances  $R_0$ ,  $R_1$  et  $R_2$ .

d) À quelle condition le régime reste-t-il linéaire?



$$\widehat{\mathrm{(b)}} |u_{\mathrm{s}}| > V_{\mathrm{sat}}$$

$$(c) |u_{\rm e}| < V_{\rm sat}$$

(d)  $|u_{\rm e}| > V_{\rm sat}$ 



e) Supposons que le régime est linéaire tant que  $|u_s| < V_{\text{sat}}$ . Que peut-on en déduire?

(a) 
$$|u_{\rm e}| > \frac{R_0}{R_0 + R_2} V_{\rm sat}$$

(b) 
$$|u_{\rm e}| < \frac{R_0}{R_0 + R_2} V_{\rm sat}$$



f) En supposant le régime en saturation haute, déterminer  $u_e$  en fonction de  $i_e$ ,  $R_1$  et  $V_{\text{sat}}$ .

On donne les caractéristiques suivantes :



Caractéristique (1)



Caractéristique (2)



Caractéristique (3)

Sachant que, même en régime de saturation,  $|u_{\rm e}|<\frac{R_0}{R_0+R_2}V_{\rm sat}$ , indiquer celle qui correspond au dipôle précédent .....

On donne les caractéristiques  $i_e = g(u_e)$  suivantes.



Caractéristique (1)



Caractéristique (2)



Caractéristique (3)

- h) Indiquer celle qui correspond au dipôle précédent ......
- Dans quel intervalle de tension ce dipôle se comporte-t-il comme une résistance négative?

(a) 
$$u_{\rm e} < -\frac{R_0}{R_0 + R_2} V_{\rm sat}$$

(c) 
$$|u_{\rm e}| < \frac{R_0}{R_0 + R_2} V_{\rm sat}$$

(b) 
$$u_{\rm e} > \frac{R_0}{R_0 + R_2} V_{\rm sat}$$

#### Réponses mélangées

- (a) (d) (c) (b) (b)  $u_{e} u_{s} = R_{1}i_{e}$  (a) (e) (d)  $\frac{1}{\tau} \frac{du}{dt} + \omega_{0}^{2}u + \frac{d^{2}u}{dt^{2}} = 0 \quad \text{(b)} \quad \frac{u_{e}}{u_{s}} = \frac{R_{0}}{R_{0} + R_{2}} \quad \text{(a)} \quad \text{Caractéristique (1)}$ (c)  $i = C \frac{du_{C}}{dt} \quad \text{(c)} \quad u_{e} = R_{1}i_{e} + V_{sat} \quad \frac{j\omega}{\tau} \underline{i} + L^{2}C^{2}\underline{i} (j\omega)^{2}\underline{i} = A \quad \text{Vrai}$ (a)  $u_{1} = \frac{u_{s}}{A} \quad \text{Caractéristique (3)} \quad \text{(b)} \quad \frac{d^{2}u_{s}}{dt^{2}} + \frac{3 A}{RC} \frac{du_{s}}{dt} + \frac{1}{R^{2}C^{2}}u_{s} = 0$   $\frac{1}{\tau} \frac{du}{dt} + \omega_{0}^{2}u + \frac{d^{2}u}{dt^{2}} = 0 \quad \text{(b)} \quad \text{(a)} \quad \text{(b)} \quad \text{(a)} \quad \text{(e)} \quad \text{(b)} \quad i = \frac{V_{sat} u_{C}}{R}$   $Faux \quad \frac{R_{1}}{R_{1} + R_{2}}V_{sat} \quad \text{(a)} \quad j\omega\underline{i} = -\frac{\underline{i}}{RC} \quad \frac{du}{dt} + \frac{u}{\tau} = 0 \quad \text{(c)} \quad u_{e} = -R_{0}\frac{R_{1}}{R_{2}}i_{e}$ (c) (c)  $RC \frac{du}{dt} + \omega_{0}^{2}u \frac{d^{2}u}{dt^{2}} = A \quad \text{(b)} \quad \text{(a)} \quad \frac{(R + Z_{C})^{2} + RZ_{C}}{RZ_{C}} \quad \text{(c)} \quad \text{(a)}$

(b)

► Réponses et corrigés page 316

# Bilans en mécanique des fluides

#### **Prérequis**

Débits massique et volumique. Forces pressantes. Moment de force. Puissance d'une force.

#### Constantes utiles

- → Masse volumique de l'eau liquide dans les conditions standard de pression et température :  $\mu = 1.0 \times 10^3 \,\mathrm{kg \cdot m}^{-3}$
- $\rightarrow$  Accélération de la pesanteur :  $q = 9.81 \,\mathrm{m \cdot s}^{-2}$

# Bilans d'énergie



### $\blacksquare$ Entraînement 20.1 — Quelle est la bonne formule?



Dans ces expressions,  $w_i$  représente un travail indiqué massique,  $\mathcal{P}_i$  une puissance indiquée,  $\Delta P$  une perte de charge en pression et  $\Delta h$  une perte de charge en hauteur.

Les équations suivantes sont-elles homogènes?

a) 
$$\left(\frac{v_{\rm s}^2}{2}\right) = \rho w_i$$
 .....

b) 
$$D_{\rm m} \Big( \frac{P_{\rm s}}{\rho} \Big) = \mathcal{P}_i$$
 .....

c) 
$$D_{\rm m} \left( \frac{P_{\rm s}}{\rho} + \frac{v_{\rm s}^2}{2} + gz_{\rm s} \right) - D_{\rm m} \left( \frac{P_{\rm e}}{\rho} + \frac{v_{\rm e}^2}{2} + gz_{\rm e} \right) = -D_{\rm m} \Delta P \dots$$

d) 
$$\left(\frac{P_{\rm s}}{\rho a} + \frac{v_{\rm s}^2}{2a} + z_{\rm s}\right) - \left(\frac{P_{\rm e}}{\rho a} + \frac{v_{\rm e}^2}{2a} + z_{\rm e}\right) = -\Delta h$$
 .....



#### Entraînement 20.2 — Perte de charge et conversion.



On rappelle la relation de Bernoulli généralisée :

$$\frac{1}{2}\Delta v^2 + \frac{\Delta P}{\mu_0} + g\Delta z = w_u - gh_{pc}.$$

a) On donne  $h_{\rm pc}=3.0\,\mathrm{m}$ . Sachant que  $\mu_0=2.0\times10^3\,\mathrm{kg\cdot m^{-3}},\ g=9.8\,\mathrm{m\cdot s^{-1}},\ \mathrm{calculer\ la\ perte\ de}$ pression  $\Delta P_{\rm pc}$  correspondant à cette perte de charge.

......

b) La perte de charge précédente est due à la montée du fluide dans un tuyau vertical de hauteur  $L=10\,\mathrm{m}$ . Au milieu de ce tuyau se situe une pompe qui fournit un travail massique utile  $w_u$  au fluide.

Quelle doit être la valeur de ce travail massique pour qu'il n'y ait ni variation de vitesse ni variation de pression du fluide entre l'entrée et la sortie du tuyau?

# Entraînement 20.3 — Hypothèses sur l'écoulement.

0000

Étudions la vidange d'un réservoir rempli d'eau. Le liquide, s'écoule par un orifice de section s très inférieure à la section S du réservoir. La hauteur de fluide, comptée à partir de l'orifice de sortie, est notée h(t) à l'instant t.

À l'instant initial, elle vaut  $h_0$ . On négligera toute perte de charge.



Indiquer si les caractéristiques ci-dessous conviennent à la situation.

- Écoulement incompressible .....
- c) Écoulement parfait .....
- b) Écoulement quasi stationnaire ...
- d) Fluide homogène .....



## Entraînement 20.4 — Vidange d'un réservoir.

On étudie la vidange d'un réservoir rempli d'eau. Le liquide s'écoule par un orifice de section s très inférieure à la section S du réservoir. On négligera toute perte de charge. On considère une ligne de courant passant par les points A et B représentés sur le schéma. La relation de Bernoulli s'écrit sur cette ligne de courant :

$$\frac{P_{\rm A}}{\mu} + \frac{v_{\rm A}^2}{2} + gz_{\rm A} = \frac{P_{\rm B}}{\mu} + \frac{v_{\rm B}^2}{2} + gz_{\rm B}.$$

a) Que peut-on dire des pressions aux points A et B?

(a) 
$$P_{\rm A} < P_{\rm B}$$

$$(c)$$
  $P_{\rm A} = P_{\rm B}$ 

$$(b)$$
  $P_{\rm A} > P_{\rm B}$ 

$$\stackrel{\bigcirc}{\text{d}} P_{\text{B}} = P_{\text{A}} + \mu g(z_{\text{A}} - z_{\text{B}})$$

b) Le débit volumique au point A s'écrit :

$$\bigcirc$$
  $D_{v,A} = \mu S v_A$ 

$$(b) D_{v,A} = Sv_A$$

c) Le débit volumique au point B s'écrit :

(a) 
$$D_{v,B} = \mu s v_B$$

$$\widehat{\text{b}}$$
  $D_{v,B} = sv_{I}$ 

$$\begin{array}{cc} \text{(b)} \ D_{v,\mathrm{B}} = sv_{\mathrm{B}} \\ \text{(c)} \ D_{v,\mathrm{B}} = \frac{sv_{\mathrm{B}}}{\mu} \end{array}$$

d) Le fluide étant incompressible, il y a conservation du débit volumique. Que peut-on en déduire sur les vitesses en A et en B?

(a) 
$$v_{\rm A} = v_{\rm B}$$

$$(b) v_A \gg v_B$$

$$(c) v_{\rm A} \ll v_{\rm B}$$

e) On donne  $h(t) = z_A - z_B$ . En utilisant la relation de Bernoulli et les résultats précédents, quelle expression de  $v_{\rm B}$  est correcte?

(a) 
$$v_{\rm B} = \sqrt{2\frac{P_{\rm A}}{\mu} + 2gh(t)}$$
 (b)  $v_{\rm B} = \sqrt{2gh(t)}$  (c)  $v_{\rm B} = v_{\rm A} + \sqrt{2gh(t)}$ 

$$(c) v_{\rm B} = v_{\rm A} + \sqrt{2gh(t)}$$

# Entraînement 20.5 — Simplifier la relation de Bernoulli.



On donne l'expression usuelle de la formule de Bernoulli  $\frac{v^2}{2} + gz + \frac{P}{\mu} = \text{cste.}$ 

a) Comment se simplifie-t-elle si l'écoulement est horizontal?

b) Comment se simplifie-t-elle si l'écoulement est lent?

c) On admet qu'elle s'écrit  $\frac{v^2}{2} = gh$  à la sortie d'une citerne de hauteur h = 5 cm.

À quelle vitesse v le fluide est-il éjecté?

## Entraînement 20.6 — Quelle pompe choisir?







0000

 $\frac{1}{2}\Delta v^2 + \frac{\Delta P}{\mu} + g\Delta z = w_u - \Delta e_{\text{pcr}}.$ 

a) On souhaite une vitesse  $U = 7.0 \,\mathrm{m\cdot s^{-1}}$ , calculer le débit volumique nécessaire  $D_v$  en  $\mathrm{L\cdot s^{-1}}$ .

b) Choisir la bonne façon d'appliquer la relation de Bernoulli généralisée au fluide parcourant ce circuit le long d'une ligne de courant AB, A étant avant la pompe et B après le robinet :

(a) 
$$\frac{1}{2}U^2 + gL = w_u - \frac{1}{2}\xi\mu g\frac{L}{D}U^2$$

(d) 
$$\frac{1}{2}U^2 + \frac{P_0}{\mu} + gL = w_u - \frac{1}{2}\xi \frac{L}{D}U^2$$

c) Pour obtenir un bilan de puissance à partir de la relation précédente, il faut la multiplier par :





d) Quelle puissance la pompe doit-elle fournir pour atteindre le débit volumique souhaité?

e) Pour atteindre le débit volumique souhaité, on a le choix entre plusieurs pompes de différentes puissances  $\mathcal{P}_i$ . Laquelle choisir?



$$\bigcirc$$
  $\mathcal{P}_3 = 500 \,\mathrm{W}$ 

#### Entraînement 20.7 — Lecture d'un diagramme de Moody.



On donne ci-dessous le diagramme de Moody d'un fluide en écoulement de pleine section dans une conduite cylindrique de longueur  $\ell$  et de diamètre D.



a) On donne Re =  $2 \times 10^4$  le nombre de Reynolds de l'écoulement, D=20 cm le diamètre de la canalisation et  $\varepsilon=4$  mm la rugosité absolue de la conduite.

En déduire, par lecture graphique, le coefficient de perte de charge  $\xi$  dans la canalisation.

.....

b) On donne  $\rho = 1 \times 10^3 \, \text{kg} \cdot \text{m}^{-3}$  la masse volumique du fluide.

Calculer la perte de charge  $\Delta P = \frac{1}{2}\rho U^2 \xi \frac{\ell}{D}$  dans la canalisation pour une vitesse débitante  $U = 0.5 \,\mathrm{m\cdot s^{-1}}$  et une longueur  $\ell = 10 \,\mathrm{m}$ .

.....

c) Pour un autre écoulement, de nombre de Reynolds Re =  $8 \times 10^5$  et de coefficient de perte de charge  $\xi = 0.015$ , déterminer la rugosité relative  $\varepsilon/D$  par lecture graphique.

.....

d) En déduire la rugosité absolue  $\varepsilon$  de la conduite si son diamètre est  $D=30\,\mathrm{cm}.$ 

#### Entraînement 20.8 — Pression dans un immeuble.

On étudie le circuit d'eau d'un immeuble. Il comprend un tuyau T de longueur  $L=19\,\mathrm{m}$  permettant d'amener de l'eau jusqu'au dernier étage. Son diamètre est  $D=10\,\mathrm{mm}$ . À l'extrémité de ce tube se trouve un coude C permettant l'accès à un robinet  $R_0$ .

Au passage dans le coude et dans le robinet, le fluide subit les pertes de charge singulières  $\Delta P_C = \frac{1}{2}k_1\mu U_1^2$  et  $\Delta P_{R_0} = \frac{1}{2}k_2\mu U_2^2$  correspondant à des pertes de pression. On note  $U_1$  et  $U_2$  les vitesses débitantes respectivement en amont du coude et du robinet. On donne  $k_1 = 1,3$  et  $k_2 = 1,5$ .

On rappelle que le débit volumique s'écrit :  $D_v = SU$  avec S la section de l'écoulement. On donne la relation de Bernoulli généralisée permettant de prendre en compte les chutes de pression liées à la dissipation d'énergie mécanique au sein d'un écoulement réel (pertes de charge) :



0000

$$\frac{1}{2}\Delta v^2 + \frac{\Delta P}{\mu} + g\Delta z = w_u - \frac{\Delta P_{\rm pc}}{\mu}.$$

- a) Le débit volumique voulu est de  $0.25\,\mathrm{L\cdot s^{-1}}$ , calculer les vitesses  $U_1$  et  $U_2$  ......
- Quelle pression  $P_i$  faut-il imposer en amont du circuit d'eau, sachant que  $P_0 = 1.0$  bar?

### Entraînement 20.9 — Puissance d'une installation.

Une hélice d'hydrolienne est placée dans un écoulement d'eau unidimensionnel à symétrie cylindrique. On note  $(S^*)$ le système fermé représenté sur le schéma. Dans la suite,  $P_1, P_2, S_1$  et  $S_2$  représentent les pressions et sections des systèmes (1) et (2). On a, de plus,  $P_1 = P_2$ .

a) La pression autour du tube de courant est supposée uniforme. Que vaut la résultante des forces pressantes qui s'exercent sur  $(S^*)$ ?

(a) 
$$\vec{F} = (P_1 S_1 - P_2 S_2) \vec{u}_x$$

$$(\vec{c}) \vec{F} = \vec{0}$$

(a) 
$$\vec{F} = (P_1 S_1 - P_2 S_2) \vec{u}_x$$
 (c)  $\vec{F} = \vec{0}$   
(b)  $\vec{F} = (P_2 S_2 - P_1 S_1) \vec{u}_x$ 



b) Quelle puissance développe cette force?

(a) 
$$\mathcal{P}(\vec{F}_P) = P_1 S_1 v_1 - P_2 S_2 v_2$$
 (b)  $\mathcal{P}(\vec{F}_P) = P_2 S_2 v_2 - P_1 S_1 v_1$  (c)  $\mathcal{P}(\vec{F}_P) = 0$ 

(b) 
$$\mathcal{P}(\vec{F}_P) = P_2 S_2 v_2 - P_1 S_1 v_2$$

$$\bigcirc \mathcal{P}(\vec{F}_P) = 0$$

- c) On note  $\mathcal{P}$  la puissance reçue par l'hélice. Quelle puissance est reçue par  $(S^*)$ ? .......
- d) On note  $D_{\rm m}$  le débit massique, l'écoulement étant stationnaire.

Exprimer l'énergie cinétique qui sort de  $(S^*)$  pendant une durée élémentaire dt.



e)	Exprimer l'énergie cinétique qui entre dans $(S^*)$ pendant une durée élémentaire $\mathrm{d}t.$
f) est	Par application du théorème de la puissance cinétique $\frac{dE_c^*}{dt} = \sum \mathcal{P}_{\text{ext}} \grave{a}(S^*)$ , exprimer $\mathcal{P}$ si l'écoulement horizontal.
	rappelle que les actions intérieures ne travaillent pas lorsqu'on suppose l'écoulement parfait et incomessible.
g)	On suppose $v_2 \ll v_1$ et on donne $v_1 = 1{,}00 \mathrm{m \cdot s^{-1}}$ et $D_{\mathrm{m}} = 200 \mathrm{kg \cdot s^{-1}}$ , calculer $\mathcal{P}$
$\mathbf{B}$	ilans de masse
$\mathbf{E}$ n	ttraînement 20.10 — Effectuer un bilan de masse sur un système ouvert et fixe. $ ho$ 0 0 $ ho$ $ ho$
	t (S) une surface de contrôle, délimitant un système ouvert et fixe de masse $m$ . Un fluide s'écoule à vers, depuis la canalisation d'entrée (1) jusqu'à la canalisation de sortie (2).
	(S) (2)
a) ma	Exprimer la masse de fluide $dm_1$ qui entre dans (S) pendant la durée élémentaire $dt$ , à l'aide du débit ssique entrant $D_{m_1}$ .
	Exprimer la masse de fluide $dm_2$ qui sort de (S) pendant la durée élémentaire $dt$ à l'aide du débit ssique sortant $D_{m_2}$ .
c)	Exprimer la variation de masse d $m$ de (S) en fonction de d $m_1$ et d $m_2$
d)	En régime stationnaire, on a $dm = 0$ . En déduire la relation entre $D_{m1}$ et $D_{m2}$ .

On définit le système (S*) fermé et mobile constitué :

- de (S) et de la masse  $dm_1$  qui y entre, à l'instant t;
- de (S) et de la masse  $dm_2$  qui en sort, à l'instant t + dt.

On note m(t) la masse de (S) à l'instant t.

a) Exprimer la masse de fluide  $m^*(t)$  de  $(S^*)$  en fonction de m(t) et  $dm_1$ .



b) Exprimer la masse de fluide  $m^*(t + dt)$  de  $(S^*)$  en fonction  $de m(t+dt) et dm_2$ .



c) Exprimer la variation de masse  $dm^*$  de  $(S^*)$ .



d) En régime stationnaire, on a m(t) = m(t + dt). En déduire la relation entre  $dm_1$  et  $dm_2$ .

## Réponses mélangées

 $5.9 \times 10^4 \,\mathrm{Pa}$   $3.1 \times 10^2 \,\mathrm{Pa}$  (c)  $m^*(t) = m(t) + \mathrm{d}m_1$   $\mathcal{P} = 100 \,\mathrm{W}$ oui

 $3.0 \, \mathrm{bar}$ 

 $\xi = 0.05$   $U_1 = U_2 = 3.2 \,\mathrm{m \cdot s^{-1}}$   $2 \times 10^{-4}$   $\frac{v^2}{2} + \frac{P}{\mu} = \mathrm{cste}$  b

 $m^*(t+dt) = m(t+dt) + dm_2$  60 µm  $v = 1 \text{ m} \cdot \text{s}^{-1}$  homogène  $D_{m1} = D_{m2}$ 

non homogène © ©  $\frac{1}{2}D_{\mathrm{m}}v_{1}^{2}\,\mathrm{d}t$  oui © non homogène ©  $\frac{1}{2}D_{\mathrm{m}}v_{2}^{2}\,\mathrm{d}t$  ©  $-\mathcal{P}$   $\mathcal{P}=\frac{1}{2}D_{\mathrm{m}}(v_{1}^{2}-v_{2}^{2})$   $\mathrm{d}m_{1}=D_{m1}\,\mathrm{d}t$   $\mathrm{d}m_{1}=\mathrm{d}m_{2}$ 

 $D_v = 0.55 \,\mathrm{L \cdot s^{-1}}$   $\mathcal{P} = 3.6 \times 10^2 \,\mathrm{W}$   $1.3 \times 10^2 \,\mathrm{J/kg}$   $\mathrm{d}m_2 = D_{m2} \,\mathrm{d}t$ 

homogène  $dm = dm_1 - dm_2$   $gz + \frac{P}{u} = cste$  © oui

 $dm^* = 0$ 

► Réponses et corrigés page 321

0000

# Transformations chimiques

#### Prérequis

Enthalpie, entropie, enthalpie libre. Premier et second principes de la thermodynamique. Loi de Hess. Grandeurs de réaction, constante d'équilibre, déplacements d'équilibre. Énergie de liaison.

#### Constantes utiles

 $\rightarrow$  Constante des gaz parfaits :  $R = 8.314 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1}$ 

Dans cette fiche,  $\nu_i$  désigne les nombres stæchiométriques algébriques, c'est-à-dire pris positivement pour les produits et négativement pour les réactifs.

## Utilisation des relations fondamentales

# $(\blacksquare)$ Entraînement 21.1 — Déterminer une enthalpie standard de réaction (I).

La loi de Hess permet d'exprimer une enthalpie standard de réaction  $\Delta_{\rm r} H^{\circ}$  en fonction des enthalpies standard de formation  $\Delta_{\rm f} H_i^{\circ}$  des composés impliqués dans la réaction selon la relation :

$$\Delta_{\mathrm{r}}H^{\circ} = \sum_{i} \nu_{i} \Delta_{\mathrm{f}}H_{i}^{\circ}.$$

Ci-dessous sont données quelques enthalpies standard de formation à 298 K.

	$\mathrm{CH_{3}COOH}(\ell)$	$CO_2(g)$	$\mathrm{H}_2\mathrm{O}(\ell)$	$H_2O(g)$	$\mathrm{CH_3OH}(\ell)$	CH ₄ (g)	$O_2(g)$	$H_2(g)$
$\Delta_{\mathrm{f}}H^{\circ} \; (\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	-485	-400	-300	-250	-240	-70	0	0

Exprimer puis calculer l'enthalpie standard de réaction  $\Delta_r H^{\circ}$  (en kJ·mol⁻¹) en fonction des enthalpies standard de formation des composés impliqués dans chacune des réactions suivantes, réalisées à une température de 298 K et à la pression standard  $P^{\circ} = 1$  bar.

- a) Synthèse de l'eau sous forme gazeuse :  $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ .
- .....
- b) Synthèse du méthane :  $\mathrm{CH_3OH}(\ell) + \mathrm{H_2}(\mathrm{g}) = \mathrm{CH_4}(\mathrm{g}) + \mathrm{H_2O}(\ell).$
- c) Combustion de l'acide éthanoïque :  $\mathrm{CH_3COOH}(\ell) + 2\,\mathrm{O}_2(g) = 2\,\mathrm{CO}_2(g) + 2\,\mathrm{H}_2\mathrm{O}(\ell).$
- .....

## ( Entraînement 21.2 — Déterminer une enthalpie standard de réaction (II).



On considère les équations de réaction (1) et (2) suivantes, dont les enthalpies standard de réaction valent respectivement  $\Delta_{\rm r} H_1^{\circ} = -562,6\,{\rm kJ\cdot mol^{-1}}$  et  $\Delta_{\rm r} H_2^{\circ} = -1\,075,2\,{\rm kJ\cdot mol^{-1}}$ :

$$(1) \quad H_2S(g) + \frac{3}{2}O_2(g) = H_2O(\ell) + SO_2(g) \qquad \quad \text{et} \qquad (2) \quad CS_2(\ell) + 3O_2(g) = CO_2(g) + 2SO_2(g).$$

On s'intéresse à l'équation de réaction :

(3) 
$$CS_2(\ell) + 2H_2O(\ell) = CO_2(g) + 2H_2S(g)$$
.

On rappelle que si une réaction (3) peut s'écrire comme combinaison linéaire de deux réactions (1) et (2) telle que (3) =  $\alpha \times (1) + \beta \times (2)$ , alors la loi de Hess s'écrit  $\Delta_r H_3^{\circ} = \alpha \Delta_r H_1^{\circ} + \beta \Delta_r H_2^{\circ}$ .

a) Déterminer les valeurs de  $\alpha$  et  $\beta$  telles que  $(3) = \alpha \times (1) + \beta \times (2)$ .



#### Entraînement 21.3 — Déterminer une entropie standard de réaction (III).



De la relation d'Euler découle une relation permettant d'exprimer une entropie standard de réaction  $\Delta_{\rm r} S^{\circ}$  en fonction des entropies molaires standard  $S^{\circ}_{{\rm m},i}$  des composés impliqués dans la réaction selon la relation :

$$\Delta_{\mathbf{r}} S^{\circ} = \sum_{i} \nu_{i} S_{\mathbf{m},i}^{\circ}.$$

Ci-dessous sont données quelques entropies molaires standard à 298 K.

	$\mathrm{H}_2\mathrm{O}(\ell)$	CH ₄ (g)	$\mathrm{CH_3OH}(\ell)$	$H_2(g)$	$\mathrm{CH_3COOH}(\ell)$	$H_2O(g)$	$O_2(g)$	$CO_2(g)$
$S_{\mathrm{m}}^{\circ} \left( \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1} \right)$	65	70	128	131	160	189	205	214

Exprimer puis calculer l'entropie standard de réaction  $\Delta_r S^{\circ}$  (en  $J \cdot K^{-1} \cdot mol^{-1}$ ) en fonction des entropies molaires standard des composés impliqués dans chacune des réactions suivantes, réalisées à une température de 298 K et à la pression standard  $P^{\circ} = 1$  bar.

a) Synthèse de l'eau sous forme gazeuse :  $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ .

b) Synthèse du méthane :  $\mathrm{CH_3OH}(\ell) + \mathrm{H_2(g)} = \mathrm{CH_4(g)} + \mathrm{H_2O}(\ell).$ 

.....

c) Combustion de l'acide éthanoïque :  $\mathrm{CH_3COOH}(\ell) + 2\,\mathrm{O}_2(\mathrm{g}) = 2\,\mathrm{CO}_2(\mathrm{g}) + 2\,\mathrm{H}_2\mathrm{O}(\ell).$ 



## Entraînement 21.4 — Autour des enthalpies libres standard de réaction.



Pour une réaction se produisant à température T constante sous 1 bar, l'enthalpie libre standard de réaction  $\Delta_{\rm r}G^{\circ}$  est définie par  $\Delta_{\rm r}G^{\circ} = \Delta_{\rm r}H^{\circ} - T \times \Delta_{\rm r}S^{\circ}$  et  $\Delta_{\rm r}G^{\circ} = -RT \ln K^{\circ}$ , où  $\Delta_{\rm r}H^{\circ}$ ,  $\Delta_{\rm r}S^{\circ}$  et  $K^{\circ}$  sont respectivement l'enthalpie standard de réaction, l'entropie standard de réaction et la constante d'équilibre de la réaction considérée.

On se propose de calculer l'enthalpie libre standard de réaction  $\Delta_r G^{\circ}$  ainsi que la constante d'équilibre  $K^{\circ}$ de plusieurs réactions, présentées dans le tableau ci-dessous. Pour chacune d'elles sont données les valeurs numériques de l'enthalpie standard de réaction et de l'entropie molaire standard de réaction, à 298 K.

	Équation de réaction	$\Delta_{\rm r} H^{\circ} \; ({\rm kJ \cdot mol^{-1}})$	$\Delta_{\rm r} S^{\circ} \ ({\rm J} \cdot {\rm K}^{-1} \cdot {\rm mol}^{-1})$
(1)	$H_2(g) + \frac{1}{2} O_2(g) = H_2 O(g)$	-250	-44,5
(2)	$CH_3OH(\ell) + H_2(g) = CH_4(g) + H_2O(\ell)$	-130	-124
(3)	$CH_3COOH(\ell) + 2O_2(g) = 2CO_2(g) + 2H_2O(\ell)$	-915	-12

a) Calculer $\Delta_{\rm r} G_1^{\circ}$ à 298 K, en kJ·mol ⁻¹ .	
-----------------------------------------------------------------------------	--

d)	Calculer	$K_2^{\circ}$	à 298 K.	
				_

• • •			• • • • •		
1 \	~ 1	,	T.F.O.	\ 000 TT	

•	

b) Calculer 
$$K_1^{\circ}$$
 à 298 K.

e) Calculer 
$$\Delta_{\rm r} G_3^{\circ}$$
 à 298 K, en kJ·mol⁻¹.

c) Calculer 
$$\Delta_{\rm r} G_2^{\circ}$$
 à 298 K, en kJ·mol⁻¹.

f) Calculer 
$$K_3^{\circ}$$
 à 298 K.



## Entraînement 21.5 — Calculer des grandeurs thermodynamiques liées.



La loi de Hess généralisée permet d'exprimer une enthalpie libre standard de réaction  $\Delta_{\rm r}G^{\circ}$  en fonction des enthalpies libres standard de formation  $\Delta_{\rm f}G_i^{\circ}$  des composés impliqués dans la réaction selon la relation :

$$\Delta_{\mathbf{r}}G^{\circ} = \sum_{i} \nu_{i} \Delta_{\mathbf{f}}G_{i}^{\circ}.$$

En outre, on rappelle la relation suivante :  $\Delta_{\mathbf{r}}G^{\circ} = \Delta_{\mathbf{r}}H^{\circ} - T \times \Delta_{\mathbf{r}}S^{\circ}$ , où  $\Delta_{\mathbf{r}}H^{\circ}$  et  $\Delta_{\mathbf{r}}S^{\circ}$  sont respectivement l'enthalpie standard de réaction et l'entropie standard de réaction.

L'équilibre de Deacon correspond à l'équation de réaction  $O_2(g) + 4 HC\ell(g) = 2 H_2O(g) + 2 C\ell_2(g)$ . Son enthalpie standard de réaction à 298 K vaut  $\Delta_r H^{\circ} = -114.8 \,\mathrm{kJ \cdot mol^{-1}}$ . Quelques enthalpies libres standard de formation sont données ci-dessous à 298 K.

	$O_2(g)$	$\mathrm{C}\ell_2(\mathrm{g})$	HCℓ(g)	$H_2O(g)$
$\Delta_{\rm f} G^{\circ} \; ({\rm kJ \cdot mol^{-1}})$	0	0	-95	-229

a) Calculer 
$$\Delta_{\mathbf{r}} G^{\circ}$$
à 298 K, en k  
J $\cdot$ mol $^{-1}$  .....

b) Calculer 
$$\Delta_{\rm r} S^{\circ}$$
 à 298 K, en J · K  $^{-1}$  · mol  $^{-1}$  . . . . . .

a) Calculer 
$$\Delta_{\rm r} G^{\circ}$$
 à 298 K, en kJ·mol $^{-1}$  ......

# Entraı̂nement 21.6 — Exploiter une régression linéaire.



On considère la réaction de décomposition du peroxyde d'hydrogène, d'équation :

$$H_2O_2(\ell) = H_2O(\ell) + \frac{1}{2}\,O_2(g).$$

On donne ci-dessous la courbe représentant l'évolution de l'enthalpie libre standard de réaction  $\Delta_r G^{\circ}$  en fonction de la température T ainsi qu'une régression linéaire de cette courbe.



On suppose que  $\Delta_r H^{\circ}$  et  $\Delta_r S^{\circ}$  sont indépendants de la température (approximation d'Ellingham) et on rappelle la relation  $\Delta_{\rm r}G^{\circ} = \Delta_{\rm r}H^{\circ} - T \times \Delta_{\rm r}S^{\circ}$ .

- a) Déterminer le coefficient directeur de la droite a en précisant son unité ...
- b) Déterminer l'ordonnée à l'origine b en précisant son unité ..........
- c) Identifier les grandeurs thermodynamiques correspondant à a et b.

(a) 
$$a = \Delta_{\rm r} H^{\circ}$$

$$(c) a = \Delta_{\rm r} S^{\circ}$$

$$(e)$$
  $b = \Delta_{\rm r} H^{\circ}$ 

$$\bigcirc$$
  $b = \Delta_{\rm r} S^{\circ}$ 

$$(b) a = -\Delta_{\rm r} H^{\rm c}$$

$$\widehat{\mathrm{d}}$$
  $a = -\Delta_{\mathrm{r}} S$ 

$$(f) b = -\Delta_{\rm r} H^{\rm c}$$

$$\widehat{\mathbf{h}}$$
  $b = -\Delta_{\mathbf{r}} S$ 

- En déduire la valeur de  $\Delta_{\rm r} H^{\circ}$ , en kJ·mol⁻¹ .....
- En déduire la valeur de  $\Delta_{\rm r} S^{\circ}$ , en  $J \cdot K^{-1} \cdot {\rm mol}^{-1} \cdot \dots$

# Entraînement 21.7 — Exploiter la relation de van 't Hoff.



Parmi les expressions fausses suivantes, indiquer celles qui ont au moins le mérite d'être homogènes.

(a) 
$$\frac{\mathrm{d}K^{\circ}}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\circ}}{RT^{2}}$$

(a) 
$$\frac{\mathrm{d}K^{\circ}}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\circ}}{RT^{2}}$$
 (b)  $\frac{\mathrm{d}K^{\circ}}{\mathrm{d}T} = -\frac{\Delta_{\mathrm{r}}H^{\circ}}{RT}$  (c)  $\frac{\mathrm{d}\ln K^{\circ}}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}S^{\circ}}{RT}$  (d)  $\frac{\mathrm{d}K^{\circ}}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}G^{\circ}}{RT^{2}}$ 

$$\bigcirc \frac{\mathrm{dln}K^{\circ}}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}S^{\circ}}{RT}$$

Entraîner	${ m nent} { m 21.8} - { m \acute{E}tudier} { m l'influence}$	e de la	tempér	ature s	sur un é	quilibr	e.	0000
Soit la réad	ction de formation de l'ammoniac ga	azeux, d	l'équatio	$\frac{1}{2} N_2($	$(g) + \frac{3}{2}H$	$f_2(g) = 1$	$NH_3(g)$ . L	'enthalpie
Soit la réaction de l'ammoniac gazeux, d'équation $\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) = NH_3(g)$ . L'enthalpie standard de formation de l'ammoniac gazeux à 298 K vaut $\Delta_f H^{\circ}(NH_3(g)) = -46,1  \text{kJ} \cdot \text{mol}^{-1}$ et les autres sont nulles. La constante d'équilibre à $T_1 = 400  \text{K}$ vaut $K_1^{\circ} = 6,8$ .								
	er à 298 K l'enthalpie standard de ré				$ol^{-1}$ .			
,								
$T_2$ , en supp	er la relation de van 't Hoff $\frac{\mathrm{dln}K^{\circ}}{\mathrm{d}T}$ posant que l'enthalpie standard de r.n.). Les constantes d'équilibre associ	éaction	$\operatorname{est}$ indép	pendant	$_{ m e}$ de la t $_{ m e}$	e tempé empérat	rature no ure (appr	tées $T_1$ et oximation
c) Calcule	er $K_2^{\circ}$ à $T_2 = 500 \mathrm{K}$							
Utilisa	tion de cycles thermo	dynai	mique	es				
Entroînor	nent 21.9 — Avec des énergies	do lini	con					0000
	sse à la formation d'éthanol liquide			portir d	og gorng	gimpleg	pris done	lour état
	e référence. Quelques énergies de lia					simples	pris dans	s leur etat
	Liaison	C-C	С-Н	С-О	О-Н	11 11	O = O	
						H-H		
	Énergie de liaison $\mathcal{E}$ (kJ·mol ⁻¹ )	346	411	358	459	435	502	
	e liaison $\mathcal{E}(A-B)$ est l'énergie à four le, c'est-à-dire de telle sorte que les de							
a) Parmi	les corps simples suivants, identifier	ceux in	npliqués	dans la	formation	on de l'é	thanol.	
$\bigcirc$ O ₂ (g)	(b) $H_2(g)$ (c) $N_2(g)$	g)	(d) C	$S(\mathbf{s})$				
b) En supposant une stœchiométrie de 1 pour l'éthanol, établir l'équation de la réaction de formation de l'éthanol à partir des corps simples identifiés à la question précédente.								
		L						
c) Donner	e le schéma de Lewis de l'éthanol							
, Dénom	brer le nombre de liaisons et remplir		liai	son	C-0	С-І	H C-O	О-Н
	eau suivant.	n	ombre d	le liaisor	ns			
e) Exprimer et calculer, en $kJ \cdot mol^{-1}$ , l'enthalpie standard de formation de l'éthanol liquide.								

**&** 

## Entraînement 21.10 — Établir un cycle thermodynamique.



On considère la réaction de formation de l'ammoniac liquide  $NH_3(\ell)$  à 208 K, dont l'équation est :

$$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(\ell).$$

L'enthalpie standard de formation associée est notée  $\Delta_{\rm f} H^{\circ}({\rm NH_3}(\ell))$ . L'enthalpie standard de vaporisation de l'ammoniac liquide est  $\Delta_{\rm vap} H^{\circ}({\rm NH_3}(\ell)) = 20\,{\rm kJ\cdot mol^{-1}}$ . Quelques énergies de liaison sont données ci-dessous.

Liaison	H-H	N-H	$N \equiv N$
Énergie de liaison $\mathcal{E}$ (kJ·mol ⁻¹ )	450	400	960

L'énergie de liaison, notée  $\mathcal{E}(A-B)$ , est définie comme étant l'énergie à fournir pour rompre la liaison A-B en phase gazeuse de manière homolytique, c'est-à-dire de telle sorte que les deux électrons de la liaison covalente se partagent entre A et B.

- a) Indiquer les réponses exactes.
  - (a) L'énergie de liaison  $\mathcal{E}(H-H)$  est l'énergie à fournir pour rompre une liaison simple H-H.
- (b) Pour former une mole de  $N_2(g)$  à partir de deux moles de N(g), il faut fournir une énergie égale à  $2 \times \mathcal{E}(N \equiv N)$ .
- (c) Pour former une mole de NH₃(g), il faut disposer d'une mole de N(g) et de trois moles de H(g).
- d La formation d'une mole de  $NH_3(g)$  à partir d'une mole de N(g) et de trois moles de H(g) libère une énergie égale à  $3 \times \mathcal{E}(N-H)$ .

.....

b) Indiquer les expressions des énergies associées aux étapes (1) et (2) du cycle ci-après.

$$\begin{array}{c|c} N_2(g) + 3 \, H_2(g) & \longrightarrow & 2 \, NH_3(\ell) \\ \mathcal{E}(N \equiv N) + 3 \times \mathcal{E}(H - H) & & & & & \\ & & & & & \\ 2 \, N(g) + 6 \, H(g) & \longrightarrow & 2 \, NH_3(g) \end{array}$$

- (a)  $(1) = \Delta_f H^{\circ}(NH_3(\ell))$  et  $(2) = -\Delta_{vap} H^{\circ}(NH_3(\ell))$
- (b) (1) =  $2\Delta_{\rm f}H^{\circ}({\rm NH_3}(\ell))$  et (2) =  $2\Delta_{\rm vap}H^{\circ}({\rm NH_3}(\ell))$
- (c) (1) =  $\Delta_f H^{\circ}(NH_3(\ell))$  et (2) =  $\Delta_{vap} H^{\circ}(NH_3(\ell))$
- (d) (1) =  $2\Delta_{\rm f} H^{\circ}({\rm NH_3}(\ell))$  et (2) =  $-2\Delta_{\rm vap} H^{\circ}({\rm NH_3}(\ell))$

.....

c) Calculer  $\Delta_{\rm f} H^{\circ}({\rm NH_3}(\ell))$  à 298 K, en kJ·mol⁻¹ .....



## Entraînement 21.11 — Cas d'un réacteur monobare et adiabatique.



On considère la combustion de l'éthanol  $C_2H_5OH(\ell)$ , supposée adiabatique et monobare, dont l'équation de réaction est  $C_2H_5OH(\ell) + 3O_2(g) \longrightarrow 3H_2O(g) + 2CO_2(g)$ . L'éthanol et le dioxygène sont introduits en proportions stœchiométriques. On note  $n_0$  la quantité de matière initiale en éthanol. L'enthalpie standard de la réaction à 298 K vaut  $\Delta_r H^{\circ} = -1\,236\,\mathrm{kJ}\cdot\mathrm{mol}^{-1}$ . Quelques capacités molaires standard, supposées indépendantes de la température, sont données ci-dessous.

	$C_2H_5OH(\ell)$	$O_2(g)$	$CO_2(g)$	$H_2O(g)$
$C_{\mathbf{p},\mathbf{m},k}^{\circ} \left( \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1} \right)$	111	29,9	37,1	33,6

- a) Parmi les affirmations, indiquer celles qui sont correctes.
  - (a) Lors d'une transformation monobare, la pression du système est constante à tout instant.
  - (b) Lors d'une transformation adiabatique, la température du système est constante à tout instant.
  - (c) Lors d'une transformation adiabatique, le système n'échange pas de chaleur.
- d Pour une transformation adiabatique et monobare sans travail autre que celui des forces de pression, la variation d'enthalpie du système est nulle :  $\Delta H = 0$ .

.....

- b) On décompose la transformation précédente en deux étapes :
  - une étape chimique isobare et isotherme d'avancement  $\xi$  dont la variation d'enthalpie est notée  $\Delta H_{\rm chi}$ ;
  - une étape physique isobare et isoavancement durant laquelle la température varie et dont la variation d'enthalpie est notée  $\Delta H_{\rm phy}$ .

Attribuer les variations d'enthalpies  $\Delta H_{\rm chi}$  et  $\Delta H_{\rm phy}$  aux étapes (1) et (2) du schéma ci-dessous.



c) Exprimer  $\Delta H_{\rm chi}$  en fonction de l'enthalpie standard de réaction  $\Delta_{\rm r} H^{\circ}$  et de  $n_0$ . On pourra s'aider

d'une analyse dimensionnelle .....

d) Exprimer  $\Delta H_{\rm phy}$  en fonction de  $T_{\rm i}$ ,  $T_{\rm f}$ ,  $n_0$  et des capacités thermiques molaires  $C_{\rm p,m,k}^{\circ}$ .

- e) Établir la relation entre  $\Delta H, \Delta H_{\rm phy}$  et  $\Delta H_{\rm chi}$  ......
- f) Exprimer puis calculer  $T_{\rm f}$  en °C .....

# Déplacements d'équilibre

# Entraînement 21.12 — Étudier l'influence de paramètres sur un équilibre. 0000 On considère une transformation chimique endothermique, dont l'équation de réaction est : $CH_4(g) + H_2O(g) = CO(g) + 3H_2(g).$ La loi de van 't Hoff précise qu'une augmentation isobare de température appliquée à un système physicochimique initialement dans un état d'équilibre provoque une évolution dans le sens endothermique de la réaction modélisant la transformation. Le système a donc tendance à réagir de façon à s'opposer aux changements imposés afin de compenser cette perturbation, jusqu'à l'établissement d'un nouvel état d'équilibre. De même, une augmentation isotherme de la pression déplace l'équilibre dans le sens d'une diminution de la quantité de matière totale de gaz. a) Déterminer le sens d'évolution du système lors d'une augmentation isobare de la température. (b) sens direct (a) sans évolution (c) sens inverse b) Indiquer l'expression correcte du quotient de réaction de l'équilibre précédent. (a) $Q = \frac{x_{\text{H}_2}^3 x_{\text{CO}}}{x_{\text{CH}_4} x_{\text{H}_2} \Omega} \left(\frac{P_{\text{tot}}}{P^{\circ}}\right)^2$ $\bigcirc Q = \frac{x_{\text{CH}_4} x_{\text{H}_2\text{O}}}{x_{\text{H}_4}^3 x_{\text{CO}}} \left(\frac{P_{\text{tot}}}{P^{\circ}}\right)^2$ $(b) Q = \frac{x_{\text{H}_2}^3 x_{\text{CO}}}{x_{\text{CH}_4} x_{\text{H}_2} O} \left(\frac{P^{\circ}}{P_{\text{tot}}}\right)^2$ c) Indiquer le sens d'évolution du système lors d'une augmentation isotherme de la pression. (a) sans évolution (b) sens direct (c) sens inverse d) Indiquer l'expression correcte du quotient de réaction de l'équilibre précédent. (a) $Q = \frac{n_{\text{H}_2}^3 n_{\text{CO}}}{n_{\text{CH}_4} n_{\text{H}_2 \text{O}} n_{\text{tot}}^2} \left(\frac{P_{\text{tot}}}{P^{\circ}}\right)^2$ $\bigcirc Q = \frac{n_{\text{H}_2}^3 n_{\text{CO}} n_{\text{tot}}^2}{n_{\text{CH}_2} n_{\text{H}_2} O} \left(\frac{P_{\text{tot}}}{P^{\circ}}\right)^2$ En déduire le sens d'évolution du système lors de l'ajout isotherme et isobare de dihydrogène H₂. (a) sans évolution (b) sens direct (c) sens inverse f) En déduire le sens d'évolution du système lors de l'ajout isotherme et isobare d'eau H₂O. (a) sans évolution (b) sens direct (c) sens inverse ...... g) Déterminer le sens d'évolution du système lors de l'ajout isotherme et isobare de diazote N₂.

(b) sens direct

(a) sans évolution

(c) sens inverse

#### Réponses mélangées

► Réponses et corrigés page 325

# Courbes intensité-potentiel

#### **Prérequis**

Pour la demi-équation électronique du couple  $Ox/Red : \alpha Ox + ne^- = \beta Red$ , le potentiel de Nernst

$$E = E^{\circ} + \frac{0.06}{n} \log \left( \frac{a_{\text{ox}}^{\alpha}}{a_{\text{red}}^{\beta}} \right).$$

## Avant toute chose

## La Entraînement 22.1 — Potentiel à l'abandon. €



À l'aide du montage à trois électrodes, la courbe intensité-potentiel ci-dessous est obtenue à 25 °C pour le couple Cu²⁺/Cu.



L'électrode de travail est en cuivre et la concentration en ions cuivrigues Cu²⁺ présents dans la solution électrolytique est notée C à l'instant initial.

Le potentiel à l'abandon  $E_{ab}$  (également appelé potentiel à courant nul, ou potentiel à l'équilibre) est le point de la courbe i(E) pour lequel le courant est nul. La valeur de ce potentiel est donnée par le potentiel de Nernst.

On donne  $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = 0.34 \,\text{V}.$ 

- Déterminer la concentration C des ions cuivriques dans la solution électrolytique  $\ldots$
- b) La mesure du potentiel  $E_{\rm ab}$  est effectuée à l'aide d'un voltmètre dont la borne «  $\rm V$  » est reliée à l'électrode de travail en cuivre et la borne « COM » à une électrode de référence au calomel dont le potentiel est 0,25 V.

Quelle est la tension lue sur le voltmètre? .....

## Entraînement 22.2 — Domaine de prédominance/Domaine d'existence.



La courbe intensité-potentiel du couple Cu²⁺/Cu est donnée ci-contre.

Cette courbe délimite deux domaines :

- (a) Domaine du réducteur
- (b) Domaine de l'oxydant



a) À quel domaine correspond le domaine (1)?



b) À quel domaine correspond le domaine (2)?



Le couple concerné est  $Cu^{2+}/Cu$ . Au niveau de la courbe i(E) sont indiqués les éléments A et B réagissant.

- c) Quelle est l'espèce A? ......
- d) Quelle est l'espèce B? ......



Entraînement 22.3 — Parties anodique et cathodique de la courbe i(E).



La courbe intensité-potentiel du couple Fe²⁺/Fe est donnée ci-contre.

La partie anodique de la courbe i(E) est la portion de courbe pour laquelle l'intensité du courant arrivant au niveau de l'électrode de travail est positive. Dans ces conditions, l'électrode de travail se comporte en anode.



- a) Quelle réaction se produit sur l'électrode de travail lorsque le courant est positif?
- b) En ①, nous devons placer une flèche indiquant le sens de la réaction se produisant.

Laquelle choisir?

La partie cathodique de la courbe i(E) est la portion de courbe pour laquelle l'intensité du courant arrivant au niveau de l'électrode de travail est négative. Dans ces conditions, l'électrode de travail se comporte en cathode.

c) Quelle réaction se produit sur l'électrode de travail lorsque le courant est négatif?



d) En ②, nous devons placer une flèche indiquant le sens de la réaction se produisant.

Laquelle choisir?

## Entraînement 22.4 — Courbe i(E) de $Fe^{3+}/Fe^{2+}$ .









.....

# Calcul de surpotentiel

Le surpotentiel est également appelé surtension.

Entraı̂nement 22.5 — Surpotentiels anodique et cathodique.

0000

La courbe intensité-potentiel du couple Ox/Red est présentée ci-contre.

Le surpotentiel anodique est défini pour un courant de fonctionnement anodique  $i_0>0$  par la relation suivante :

$$\eta_a(i_0) = E(i_0) - E_{ab}.$$

Le surpotentiel cathodique est défini pour un courant de fonctionnement cathodique  $i_0^\prime<0$  par la relation suivante :

$$\eta_c(i_0') = E(i_0') - E_{ab}.$$



- a) Évaluer le surpotentiel anodique pour  $i_0 = 20 \,\mathrm{mA}$  ......
- b) Évaluer le surpotentiel cathodique pour  $i_0' = -20 \,\mathrm{mA}$  ......
- c) Estimer le surpotentiel anodique à courant nul :  $\eta_{a,0} = \lim_{i_0 \to 0^+} \eta_a(i_0)$  ......
- d) Estimer le surpotentiel cathodique à courant nul :  $\eta_{c,0} = \lim_{i'_0 \to 0^-} \eta_c(i'_0)$  ......

# ( Entraînement 22.6 — Calcul de surpotentiels à partir du potentiel à l'abandon.



On fait l'acquisition, à 25 °C, de la courbe i-E du couple  $\mathrm{HSO_4}^-/\mathrm{SO_2}$  dans une solution où :

$$[HSO_4^{-}] = 0.100 \,\text{mol} \cdot L^{-1},$$
  
 $[SO_2] = 0.001 \,\text{mol} \cdot L^{-1}$   
et pH = 4.

Le potentiel standard du couple considéré est  $E^{\circ} = 0.16 \,\mathrm{V}$ .

- On constate que le courant en oxydation devient non nul quand le potentiel de l'électrode devient supérieur à  $V_{\rm ox}=0.2\,{\rm V}.$
- De même, son potentiel devient non nul en réduction quand le potentiel de l'électrode devient inférieur à  $V_{\rm red} = -0.5 \, \rm V$ .
- a) Dans les conditions de l'expérience, le couple  ${\rm HSO_4}^-/{\rm SO_2}$  est-il lent ou rapide?

b)	Écrire la demi-équation d'oxydoré duction associée au couple $\mathrm{HSO_4}^-/\mathrm{SO_2}.$	
c)	Calculer la valeur du potentiel de Nernst dans les conditions de l'expérience	).
d)	Déterminer le surpotentiel anodique à courant nul $\eta_{a,0}$ dans les conditions e	expérimentales proposées.

- ......
- e) Déterminer le surpotentiel cathodique à courant nul  $\eta_{c,0}$  dans les conditions expérimentales proposées.

# Domaine d'électroactivité

## Entraînement 22.7 — Courbe i(E) de l'eau.

0000

Le domaine d'électroactivité est le domaine de potentiel dans lequel il est possible d'étudier des couples rédox. Ce domaine est limité par les deux « murs du solvant » ou « fronts du solvant ».

Voici la courbe i-E de l'eau obtenue avec des électrodes de platine Pt.



- a) Que doit-on écrire sur la partie ①?
  - $(a) H^+ \longrightarrow H_2$
- $\bigodot \ H_2O \ \longrightarrow O_2$
- (b) Pt  $\longrightarrow$  Pt²⁺
- d pas de réaction

İ
İ
İ
 İ
İ
ĺ

- b) Que doit-on écrire sur la partie ②?
  - $(a) H^+ \longrightarrow H_2$
- (d) pas de récet.



- c) Que doit-on écrire sur la partie ③?

  - (b) palier de diffusion
- d pas de réaction



- d) Quels sont les couples que l'on pourrait éventuellement observer dans l'eau dans les conditions de l'expérience?
  - (a)  $Ag^{+}/Ag$ ,  $E^{\circ} = 0.80 \,\mathrm{V}$
  - (b)  $I_2/I^-, E^{\circ} = 0.54 \,\mathrm{V}$
  - (c)  $Mg^{2+}/Mg$ ,  $E^{\circ} = -2.37 V$
  - (d)  $Ag^{2+}/Ag$ ,  $E^{\circ} = 1.98 V$



On a placé un des couples précédents dans l'eau et on fait l'acquisition de la courbe ci-dessous.



- e) De quel couple s'agit-il?

## Palier de diffusion

# Entraînement 22.8 — Courbe i(E) de $Cu^{2+}/Cu$ .

0000

Les phénomènes de diffusion entraînent une limitation du courant selon la relation :

$$i_{\text{diff}} = nKS[\text{réactif}],$$

οù

- n est le nombre d'électrons échangés,
- K une constante,
- S la surface de l'électrode
- et [réactif] la concentration du réactif.

Cela se manifeste sur la courbe par un palier horizontal de valeur  $i_{\rm diff}.$ 

Ci-contre, on donne la courbe i-E pour le couple  $\mathrm{Cu}^{2+}/\mathrm{Cu}$  en milieu aqueux.



a) Quelle espèce est soumise à un phénomène de diffusion?

- (a) H⁺
- (b) Cu
- $\bigcirc$  Cu²⁺
- $\widehat{(d)}$  H₂O

b) Que vaut  $i_{\text{diff}}$  pour cette réaction?

.....

c) Que vaut  $i_{\text{diff}}$  si on dilue la solution d'un facteur 10?

.....

Entraînement 22.9 — Détermination graphique d'un couple.

.....



Le graphe ci-dessous présente les courbes anodiques des couples  $\mathrm{O_2}\,/\mathrm{H_2O}$  et  $\mathrm{Cl_2}\,/\mathrm{Cl}^-$ . Le solvant est l'eau.



a) Quelle est la réaction associée à la courbe ①?

.....

b) Quelle est la réaction associée à la courbe ②?

# Entraînement 22.10 — Courbe i(E) du couple $IO_3^-/I_2$ .

La courbe i-E du couple  $IO_3^-/I_2$  en milieu aqueux, obtenue avec des électrodes de platine Pt, est donnée ci-dessous. Dans les conditions expérimentales du tracé, on a  $E(IO_3^-/I_2) = E^{\circ}(IO_3^-/I_2) = 1,19 \,\text{V}$ .



- a) Écrire la demi-équation rédox associée au couple  $IO_3^-/I_2$  ......
- b) Sur quelle partie de la courbe doit-on écrire  $IO_3^- \longrightarrow I_2$ ? .......
- Sur quelle partie de la courbe doit-on écrire  $I_2 \longrightarrow IO_3^-$ ? .......
- Sur quelle(s) partie(s) de la courbe se manifeste le phénomène de diffusion?
- f) Estimer le surpotentiel à i = 0 cathodique. e) Estimer le surpotentiel à i = 0 anodique.
- g) Comment appelle-t-on les parties (1) et (8)?
- (a) mur de l'eau

(c) front du solvant

(b) palier de diffusion

(d) surpotentiel à  $i \neq 0$ 

## Réponses mélangées

 $2\,{\rm H_2O}\,
ightarrow{
m O_2} + 4\,{\rm H^+} + 4\,{\rm e^-} \qquad -0.1\,{
m V} \qquad \ \ \, \ \, (c) \qquad -0.14\,{
m V} \qquad 10^{-3}\,{
m mol/L}$  $0.4\,\mathrm{V}$ 

 $0\, {\rm V} \qquad \hbox{(a) et (b)} \qquad \hbox{(a) et (c)} \qquad \hbox{(a)} \qquad 2\, {\rm Cl}^- \, \rightarrow {\rm Cl}_2 + 2\, {\rm e}^-$ 

Oxydation  $HSO_4^- + 3H^+ + 2e^- = SO_2 + 2H_2O$  lent (a)

 $0.34 \, V$ 

 $-0.3\,\mathrm{mA}\qquad -0.3\,\mathrm{V}\qquad \ \ \, \mathrm{(b)}\qquad \ \, 2\,\mathrm{IO_3}^- + 12\,\mathrm{H}^+ + 10\,\mathrm{e}^- = \mathrm{I_2} + 6\,\mathrm{H_2O}$ 

(3)

 $0.2 \, {
m V}$ (6)

(2) et (7)

Cu Réduction  $0.15 \, V$ 

► Réponses et corrigés page 331

## Phénomène de corrosion

#### **Prérequis**

Loi de Nernst : pour  $\alpha \operatorname{Ox} + n e^{-} + \beta \operatorname{H}^{+} = \gamma \operatorname{Red} + \delta \operatorname{H}_{2} \operatorname{O}$ , on a

$$E_{\mathrm{Nernst}} = E^{\circ} + \frac{0.06}{n} \log \Biggl( \frac{a_{\mathrm{Ox}}^{\alpha} \left[ \mathrm{H}^{+} \right]^{\beta}}{a_{\mathrm{Red}}^{\gamma}} \Biggr).$$

Diagrammes potentiel-pH. Courbes courant-potentiel.

#### Constantes utiles

- $\rightarrow$  Constante d'Avogadro :  $\mathcal{N}_A = 6.02 \times 10^{23} \,\mathrm{mol}^{-1}$
- $\rightarrow$  Charge élémentaire :  $e = 1.6 \times 10^{-19} \,\mathrm{C}$
- $\rightarrow$  Constante de Faraday :  $\mathcal{F} = e \times \mathcal{N}_A = 96500 \,\mathrm{C} \cdot \mathrm{mol}^{-1}$

# Outils d'étude des réactions d'oxydoréduction

-	
ė	₩.

Entraînement 23.1 — Pile Daniell.



Zn

Considérons la pile Daniell ci-contre. L'intensité du courant traversant la résistance R dans le sens indiqué sur le schéma est constante et vaut  $I = 100 \,\mu\text{A}$ .

Donnée :  $M_{\rm Zn} = 65.4 \,\mathrm{g \cdot mol^{-1}}$ .



- (a) de l'électrode de cuivre vers celle de zinc



Cu

- b) Quelle électrode joue le rôle de cathode?
- (a) celle de zinc .....



 $K^+ + NO_3$ 

- c) Quel métal est oxydé?
- (b) le cuivre (a) le zinc
- d) Déterminer la quantité d'électricité (en mC) échangée entre les deux couples en une durée  $\tau = 10 \, \mathrm{min}$ .

e) En déduire la masse (en  $\mu g$ ) de zinc oxydée pendant la durée  $\tau$  ..........

## Entraînement 23.2 — Détermination d'un surpotentiel.



À l'aide d'un montage à trois électrodes, on mesure la courbe ci-dessous dans une solution de pH = 4 dans laquelle la seule espèce électroactive est l'eau. On rappelle les couples de l'eau :  $H_2O/H_2$  (potentiel standard  $0\,V$ ) et  $O_2/H_2O$  (potentiel standard  $1,23\,V$ ).



- a) Quel couple de l'eau est responsable de la courbe observée? ......
- b) En déduire les espèces X et Y à faire apparaître sur la courbe.

$$(a) H_2O \longrightarrow O_2$$

$$\stackrel{\frown}{\text{(c)}} \text{H}_2 \longrightarrow \text{H}_2\text{O}$$

$$\bigcirc$$
 O₂  $\longrightarrow$  H₂O

$$(d)$$
 H₂O  $\longrightarrow$  H₂

.....

c) Exprimer le potentiel de Nernst du couple.

(a) 
$$E^{\circ} + \frac{0.06}{4} \log \left[ \frac{p_{\text{H}_2}}{p^{\circ}} \left( \frac{[\text{H}_2\text{O}]}{c^{\circ}} \right)^2 \right]$$

(d) 
$$E^{\circ} + \frac{0.06}{4} \log \left[ \frac{p_{\text{O}_2}}{p^{\circ}} \left( \frac{[\text{H}^+]}{c^{\circ}} \right)^4 \left( \frac{c^{\circ}}{[\text{H}_2\text{O}]} \right)^2 \right]$$

(e) 
$$E^{\circ} + \frac{0.06}{4} \log \left[ \frac{p_{\text{O}_2}}{p^{\circ}} \left( \frac{[\text{H}^+]}{c^{\circ}} \right)^4 \right]$$

$$\widehat{\text{(f)}} \ E^{\circ} + \frac{0.06}{2} \log \! \left[ \frac{p^{\circ}}{p_{\text{O}_2}} \left( \frac{[\text{H}^+]}{c^{\circ}} \right)^2 \right]$$

- d) Le calculer numériquement pour une pression partielle de 1 bar ......
- e) En déduire le surpotentiel anodique à vide  $\eta_a$ , défini à partir du point où la courbe décroche de l'axe des abscisses.

#### Entraînement 23.3 — Charge échangée au cours d'une réaction.



Un morceau de fer de masse  $m_1 = 1 \,\mathrm{mg}$  s'oxyde sous l'action de l'oxygène en milieu acide selon la réaction

$$\alpha \text{ Fe} + \text{O}_2 + \beta \text{ H}^+ = \gamma \text{ Fe}^{2+} + \delta \text{ H}_2\text{O}.$$

Données :

• Potentiels standard :

$$ightharpoonup E^{\circ}(\text{Fe}^{2+}/\text{Fe}) = -0.44 \,\text{V};$$

- $\triangleright E^{\circ}(O_2/H_2O) = 1,23 \text{ V}.$
- Masse molaire du Fe :  $M_{\text{Fe}} = 55.8 \,\text{g} \cdot \text{mol}^{-1}$ .
- a) Déterminer les valeurs correctes du quadruplet  $(\alpha, \beta, \gamma, \delta)$ .
  - (a) (1,2,1,1)
  - (b) (2, 2, 2, 2)
  - (c) (2,4,2,2)
  - (d) (1,4,1,2)

b) Au bout d'un temps  $\tau=1\,\mathrm{h},$  il ne reste que 45 % de la masse initiale de fer.

Après avoir dressé un tableau d'avancement, déterminer l'avancement  $\xi$  de la réaction.

.....

- c) En raisonnant sur la demi-équation électronique du couple  ${\rm Fe}^{2+}/{\rm Fe}$ , déterminer le nombre de moles d'électrons échangées en fonction de l'avancement  $\xi$ .
  - $(a) \xi$
  - $\bigcirc$   $2\xi$
  - $\bigcirc$  3 $\xi$

 $\stackrel{\smile}{\text{(d)}} 4\xi$ 

.....±¢

d) En déduire Q, la quantité d'électricité (ou charge) échangée entre les deux couples durant le temps  $\tau$ . On exprimera Q en coulombs.

# Corrosion, passivation, protection

## Entraînement 23.4 — Thermodynamique de la corrosion.



On représente ci-dessous le diagramme potentiel-pH de corrosion de l'aluminium, en traits pleins, auquel est superposé celui de l'eau, en traits pointillés.



Certaines questions peuvent admettre plusieurs réponses.

- a) L'aluminium est-il stable dans l'eau du point de vue thermodynamique?
  - (a) Oui, toujours

(c) Cela dépend de la teneur en dioxygène.

(b) Non, jamais

(d) Cela dépend du pH.

b) On dit qu'un métal se passive lorsque son oxydation forme un solide à sa surface.

L'aluminium peut-il se passiver dans l'eau?

(a) Oui, sous forme de Al³⁺

(c) Oui, sous forme de AlO₂

(b) Oui, sous forme de Al₂O₃

d) Non

.....

c) On laisse une plaque d'aluminium dans une solution maintenue à pH = 3.

Si l'on attend suffisamment longtemps, que va-t-il se passer?

- (a) La plaque va rester stable sans modification.
- (b) L'épaisseur de la plaque va diminuer, mais elle ne disparaîtra jamais complètement.
- (c) La plaque va totalement se dissoudre.

(d) Un dépôt solide va se former à la surface de la plaque.

......

d) Même question, avec les mêmes propositions, pour l'eau du robinet.

On rappelle que l'eau du robinet vérifie pH  $\approx 7.5$  et contient du dioxygène dissous.

#### Entraînement 23.5 — Passivation.



On considère un morceau de zinc en présence d'eau aérée.

Le processus électrochimique qui a lieu est schématisé ci-dessous.



Les deux couples rédox intervenant dans la réaction d'oxydoréduction sont  $O_2/HO^-$  et  $Zn^{2+}/Zn$ .

- c) Écrire la réaction d'oxydoréduction se produisant.

On choisira comme nombres stæchiométriques les plus petits entiers possibles.

.....

- d) Au cours de la réaction d'oxydoréduction, comment varie le pH?
- (a) Le pH augmente.
- (b) Le pH reste constant.
- (c) Le pH diminue.

e) En présence de  $\mathrm{HO}^-$ , les ions  $\mathrm{Zn}^{2+}$  précipitent sous forme de  $\mathrm{Zn}(\mathrm{OH})_2$ . Cet oxyde de zinc forme à la surface du zinc une couche imperméable.

Quelle phrase est juste?

- (a) Le zinc se passive progressivement.
- (b) Le zinc s'oxyde toujours même s'il est entièrement recouvert d'oxyde de zinc.
- (c) La couche d'oxyde va se dissoudre progressivement car le milieu devient acide.
- (d) Le zinc cesse de s'oxyder mais le dioxygène se réduit toujours.

## Entraînement 23.6 — Corrosion d'une lame de magnésium.



Le but de l'exercice est de déterminer si le magnésium métallique est susceptible d'être corrodé par une solution aqueuse acidifiée de pH=4.

a) Exprimer le potentiel de Nernst  $E_{\text{Mg}^{2+}/\text{Mg}}$  en fonction du potentiel standard  $E_{\text{Mg}^{2+}/\text{Mg}}^{\circ}$  et de [Mg²⁺].

.....

b) On donne  $E_{\text{Mg}^{2+}/\text{Mg}}^{\circ} = -2.37 \,\text{V}$  et  $[\text{Mg}^{2+}] = 1 \times 10^{-6} \,\text{mol} \cdot \text{L}^{-1}$ .

Calculer sa valeur numérique.

.....

c) Exprimer le potentiel de Nernst  $E_{\mathrm{H^+/H_2}}$  en fonction du potentiel standard  $E_{\mathrm{H^+/H_2}}^{\circ}$ , du pH et de la pression partielle en dihydrogène  $p_{\mathrm{H_2}}$ .

.....

d) On rappelle  $E^{\circ}_{\mathrm{H^+/H_2}} = 0\,\mathrm{V}$  et on suppose  $p_{\mathrm{H_2}} = 1\,\mathrm{bar}.$ 

Calculer sa valeur numérique.

a). La grupo atential catho digue du couple  $\Pi^+/\Pi$  cup une électre de de magnégium est de l'andre de . 0.1 V

e) Le surpotentiel cathodique du couple  $\mathrm{H^+/H_2}$  sur une électrode de magnésium est de l'ordre de  $-0.1\,\mathrm{V}$ . Parmi les diagrammes intensité-potentiel représentés ci-dessous, lequel correspond à la situation étudiée?









.....

(d)

f) En cherchant sur le diagramme courant-potentiel s'il existe un éventuel potentiel de corrosion, déterminer si la lame de magnésium sera corrodée.

#### Entraînement 23.7 — Corrosion différentielle.



On met en contact dans une solution une lame de zinc et une lame de fer.

Les couples intervenant sont  $Zn^{2+}/Zn$  (potentiel standard  $-0.76\,V$ ),  $Fe^{2+}/Fe$  (potentiel standard  $-0.45\,V$ ) et  $H_2O/H_2$  (potentiel standard  $0\,V$ ).

La figure ci-dessous représente le diagramme courant-potentiel associé, avec comme échelle  $0.2\,\mathrm{V/div}$  en abscisse et  $10\,\mathrm{mA/div}$  en ordonnée.



Le surpotentiel cathodique du couple  $H_2O/H_2$  n'est pas le même sur les deux métaux : un phénomène de corrosion différentielle peut apparaître, où la réduction de l'eau n'a pas lieu sur le métal qui est oxydé. On rappelle que le potentiel de corrosion (ou potentiel mixte) est celui pour lequel le courant anodique est égal au courant cathodique, sa valeur absolue est alors appelée courant de corrosion.

- a) En raisonnant sur les potentiels standard, identifier le métal qui s'oxyde ........
- b) En supposant que la réduction de l'eau a lieu sur le zinc, déterminer graphiquement le potentiel de corrosion et le courant de corrosion.
  - (a)  $-0.85 \,\mathrm{V} \,\mathrm{et} \,2\,\mathrm{mA}$

 $\bigcirc$   $-0.60\,\mathrm{V}$  et  $10\,\mathrm{mA}$ 

(b)  $-0.65 \,\mathrm{V}$  et  $18 \,\mathrm{mA}$ 

(d) -0.40 V et 2 mA

c) Même question et mêmes valeurs proposées en supposant que la réduction de l'eau a lieu sur le fer.

.....

- d) Finalement, sur quel métal la réduction de l'eau a-t-elle lieu? .....
- e) Comment se déplacent les électrons lors de la réaction?
  - (a) Ils restent dans le zinc.

(c) Du fer vers le zinc.

(b) Ils restent dans le fer.

d Du zinc vers le fer.

# Vitesse et courant de corrosion



Entraînement 23.8 — Détermination d'un courant de corrosion.





Une lame de magnésium est plongée dans une solution aqueuse acidifiée, maintenue à pH = 4. Le magnésium (couple  $Mg^{2+}/Mg$ ) est alors corrodé par les ions H⁺ (couple H⁺/H₂).

On donne la constante des gaz parfaits  $R = 8.3 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$ .

- Écrire l'équation de la réaction de corrosion .....
- Déterminer graphiquement le potentiel de corrosion, pour lequel il y a égalité des courants anodique et cathodique .....
- En raisonnant sur la demi-équation électronique appropriée, exprimer la charge électrique échangée lorsqu'il y a production de n moles de dihydrogène ......
- d) À 25 °C et sous 1,0 bar, la réaction produit 1,0 mL de dihydrogène (gaz parfait) en dix minutes. Calculer numériquement la charge échangée pendant cette durée.
- e) En déduire la valeur numérique du courant de corrosion ......

## Entraînement 23.9 — Vitesse de corrosion d'une pièce en fer.



Une pièce en fer de masse  $m_0$  à l'instant initial se corrode en présence de dioxygène pour former de l'hydroxyde de fer  $Fe(OH)_2$  suivant la réaction  $Fe + \frac{1}{2}O_2 + H_2O = Fe(OH)_2$ .

Le courant de corrosion est défini par  $i_c = \alpha \mathcal{F} \frac{\mathrm{d}\xi}{\mathrm{d}t} > 0$  où  $\alpha$  est la variation du nombre d'oxydation du fer lors de la réaction (égal au nombre d'électrons échangés) et  $\xi$  l'avancement de la réaction. On cherche à le relier à la variation de la masse de la pièce de fer  $\frac{\mathrm{d}m}{\mathrm{d}t}$ 

- Déterminer la valeur de  $\alpha$  ......
- b) Exprimer  $\frac{dm}{dt}$  en fonction de  $\frac{d\xi}{dt}$  et de la masse molaire du fer ........
- c) En déduire la relation entre le courant de corrosion  $i_{\rm c}$  et  $\frac{{\rm d}m}{{\rm d}t}$ .

  (a)  $i_{\rm c}=-\frac{2M_{\rm Fe}}{\mathcal{F}}\frac{{\rm d}m}{{\rm d}t}$ (b)  $i_{\rm c}=-\frac{M_{\rm Fe}}{2\mathcal{F}}\frac{{\rm d}m}{{\rm d}t}$ (c)  $i_{\rm c}=-\frac{\mathcal{F}}{2M_{\rm Fe}}\frac{{\rm d}m}{{\rm d}t}$ (d)  $i_{\rm c}=-\frac{2\mathcal{F}}{M_{\rm Fe}}\frac{{\rm d}m}{{\rm d}t}$

(a) 
$$i_{\rm c} = -\frac{2M_{\rm Fe}}{\mathcal{F}} \frac{\mathrm{d}m}{\mathrm{d}t}$$

$$b) i_{\rm c} = -\frac{M_{\rm Fe}}{2\mathcal{F}} \frac{\mathrm{d}m}{\mathrm{d}t}$$

$$\begin{array}{c}
\operatorname{d}t \\
i_{c} = -\frac{\mathcal{F}}{2M_{\mathrm{Fe}}} \frac{\mathrm{d}m}{\mathrm{d}t}
\end{array}$$

$$(d) i_{c} = -\frac{2\mathcal{F}}{M_{Fe}} \frac{\mathrm{d}m}{\mathrm{d}t}$$

#### Entraînement 23.10 — Vitesse de corrosion d'une lamelle de cuivre.



En milieu acide, le cuivre se corrode en ion cuivreux  $\mathrm{Cu}^{2+}$ . La vitesse de corrosion est proportionnelle au courant de corrosion :  $i_{\mathrm{corr}} = 2\mathcal{F}\frac{\mathrm{d}\xi}{\mathrm{d}t}$ , en notant  $\xi$  l'avancement de la réaction.

Données :

- masse volumique  $\rho_{\text{Cu}} = 8.96 \,\text{g} \cdot \text{cm}^{-3}$ ;
- masse molaire  $M_{\text{Cu}} = 63.5 \,\text{g} \cdot \text{mol}^{-1}$ .
- a) En supposant le courant de corrosion constant, déterminer le temps  $\tau$  nécessaire à la corrosion d'une masse  $m_0$  de cuivre en fonction de  $i_{\text{corr}}$ ,  $M_{\text{Cu}}$ ,  $\mathcal{F}$  et  $m_0$ .

.....

- b) Une plaque de cuivre de surface  $S=2\,\mathrm{cm}^2$  voit son épaisseur passer de  $e_1=5{,}00\,\mathrm{mm}$  à  $e_2=4{,}98\,\mathrm{mm}$  en un temps  $\tau$ . Déterminer  $\tau$  sachant que le courant de corrosion est de  $65\,\mu\mathrm{A}$ .
  - (a) 19 jours et 4 heures

(c) 193 jours et 23 heures

(b) 19 jours et 10 heures

d 1 jour et 22 heures

c) Une seconde électrode perd 0,1 mg en 1 heure et 45 minutes. L'intensité du courant de corrosion est de 55 µA. Peut-elle être en cuivre?

# .....

.....

# Réponses mélangées

60 mC (a)  $O_2$  20  $\mu g$  (e) non  $E_{\mathrm{Mg}^{2+}/\mathrm{Mg}}^{\circ} + 0.03 \log \left(\frac{[\mathrm{Mg}^{2+}]}{C^{\circ}}\right)$ 

Le fer (d) (a) (a)  $13 \,\mathrm{mA}$   $0.36 \,\mathrm{V}$   $-2.55 \,\mathrm{V}$  2  $\mathrm{Zn}$ 

 $2n\mathcal{F}$  -1 V Le zinc (a) 0,99 V oui  $O_2/H_2O$  (b) 7,8 C

 $2 \operatorname{Zn} + \operatorname{O}_2 + 2 \operatorname{H}_2 \operatorname{O} = 2 \operatorname{Zn}^{2+} + 4 \operatorname{HO}^ 5 \times 10^{-6} \operatorname{mol}$   $-M_{\operatorname{Fe}} \frac{\mathrm{d}\xi}{\mathrm{d}t}$   $\stackrel{\bullet}{\text{b}}$   $\stackrel{\bullet}{\text{b}}$ 

(b)  $E_{\text{H}^+/\text{H}_2}^{\circ} - 0.06 \,\text{pH} - 0.03 \log \frac{p_{\text{H}_2}}{p^{\circ}} \qquad \frac{2\mathcal{F}m_0}{i_{\text{corr}} M_{\text{Cu}}}$  (b) (a)  $-0.24 \,\text{V}$ 

► Réponses et corrigés page 334

## Piles et accumulateurs

#### **Prérequis**

Équation d'état des gaz parfaits. Notion d'équilibre chimique. Couple oxydant/réducteur. Demi-équation électronique. Réaction d'oxydoréduction. Relation de Nernst. Tension à vide. Loi de Hess.

#### Constantes utiles

- $\rightarrow$  Constante d'Avogadro :  $\mathcal{N}_A = 6.02 \times 10^{23} \, \text{mol}^{-1}$
- $\rightarrow$  Constante de Faraday :  $\mathcal{F} = 96500 \,\mathrm{C} \cdot \mathrm{mol}^{-1}$
- $\rightarrow$  Constante des gaz parfaits :  $R = 8.314 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1}$

# Pour bien commencer



Entraînement 24.1 — Durée de fonctionnement et capacité électrique d'une pile.



Lors de la décharge d'une pile à travers un conducteur ohmique de résistance  $R = 15 \Omega$ , la tension u aux bornes de la pile (et de la résistance) est mesurée via un voltmètre.



La tension maximale relevée pendant la décharge, l'intensité maximale du courant circulant à travers la résistance et la durée de fonctionnement (autonomie) de cette pile sont respectivement notées U, I et  $\Delta t$ .



- a) Quelles sont les propositions correctes?
- $(b) I = \frac{U}{R}$

b) Par définition, la capacité électrique d'une pile est la charge électrique maximale Q échangée entre les électrodes de la pile lors de sa décharge. D'une certaine facon, c'est une mesure de la quantité d'électricité que la pile peut stocker ou fournir. Comment s'exprime alors la capacité électrique d'une pile?

Calculer en ampères-heures la capacité électrique de cette pile ......

### Entraînement 24.2 — Au bout d'une heure de fonctionnement.

0000

La pile ci-contre (deux demi-piles, reliées par un pont salin) débite un courant d'intensité constante I pendant la durée  $\Delta t$ .

Le compartiment de gauche correspond à une lame d'argent plongeant dans une solution de nitrate d'argent (volume  $V_1=100,0\,\mathrm{mL}$  et concentration  $C_1=0,100\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ ), mettant en jeu le couple  $\mathrm{Ag}^+/\mathrm{Ag}$ . Celui de droite correspond à une lame de plomb plongeant dans une solution de nitrate de plomb ( $V_2=V_1$  et  $C_2=C_1$ ), mettant en jeu le couple  $\mathrm{Pb}^{2+}/\mathrm{Pb}$ .



Les ions argent sont réduits sur l'électrode d'argent :  $Ag^+ + e^- = Ag$ . Le plomb est oxydé sur l'électrode de plomb :  $Pb = Pb^{2+} + 2e^-$ . Finalement, l'équation de réaction est :

$$2 \text{ Ag}^+(\text{aq}) + \text{Pb}(\text{s}) = 2 \text{ Ag}(\text{s}) + \text{Pb}^{2+}(\text{aq}).$$

- a) Exprimer la quantité d'électricité Q échangée pendant  $\Delta t$  en fonction de I et  $\Delta t$
- b) Quelle(s) relation(s) correspond(ent) à la quantité de matière d'électrons  $n_{\rm e}$  échangée pendant  $\Delta t$ ?
  - (a)  $n_{\rm e} = Qe/\mathcal{N}_{\rm A}$
- $(b) n_{\rm e} = Q\mathcal{F}$
- (c)  $n_{\rm e} = I\Delta t/\mathcal{N}_{\rm A}$
- (d)  $n_{\rm e} = Q/\mathcal{F}$

c) Exprimer la quantité de matière  $n_{\mathrm{Ag}^+}$  consommée pendant  $\Delta t$  en fonction de  $n_{\mathrm{e}}$ 

d) Exprimer la quantité de matière  $n_{\mathrm{Pb}^{2+}}$  formée pendant  $\Delta t$  en fonction de  $n_{\mathrm{e}}$  ....

e) Calculer la concentration finale  $[Ag^+]_f$  pour  $\Delta t = 1{,}00\,\mathrm{h}$  et  $I = 65{,}0\,\mathrm{mA}$  ......

f) Calculer la concentration finale  $\left[ \mathrm{Pb}^{2+} \right]_{\mathrm{f}}$  pour  $\Delta t = 1{,}00\,\mathrm{h}$  et  $I = 65{,}0\,\mathrm{mA}$  . . . . . . .

## Entraı̂nement 24.3 — Demi-équations et équation de fonctionnement.



On considère une pile zinc-argent. Le compartiment de gauche correspond à une lame de zinc plongeant dans une solution de sulfate de zinc  $(Zn^{2+}(aq) + SO_4^{2-}(aq))$ . Celui de droite correspond à une lame d'argent plongeant dans une solution de nitrate d'argent  $(Ag^+(aq) + NO_3^-(aq))$ .

a) Écrire la demi-équation électronique associée au couple  $\mathrm{Zn^{2+}/Zn}$  ......

b) Écrire la demi-équation électronique associée au couple  $\mathrm{Ag^+/Ag}$  ......

c) Sachant que la réaction électrochimique se fait entre le zinc Zn(s) et les ions argent Ag⁺(aq), écrire l'équation de la réaction d'oxydoréduction ayant lieu dans cette pile .......................

d) Quelles sont les propositions correctes?

(a) L'électrode d'argent s'épaissit.

(c) L'électrode d'argent s'amincit.

(b) L'électrode de zinc s'épaissit.

d L'électrode de zinc s'amincit.

# Autour de la pile Daniell

#### Entraînement 24.4 — Polarité et tension à vide.

0000

Soit une pile Daniell cuivre-zinc. Le compartiment de gauche correspond à une lame de zinc plongeant dans une solution de sulfate de zinc  $(\mathrm{Zn^{2+}(aq)} + \mathrm{SO_4^{2-}(aq)})$  à  $0.1\,\mathrm{mol}\cdot\mathrm{L^{-1}}$ . Celui de droite correspond à une lame de cuivre plongeant dans une solution de sulfate de cuivre  $(\mathrm{Cu^{2+}(aq)} + \mathrm{SO_4^{2-}(aq)})$  à  $0.25\,\mathrm{mol}\cdot\mathrm{L^{-1}}$ . On donne :  $E^{\circ}(\mathrm{Zn^{2+}/Zn}) = -0.76\,\mathrm{V}$  et  $E^{\circ}(\mathrm{Cu^{2+}/Cu}) = 0.34\,\mathrm{V}$ .

La relation de Nernst pour un couple  $\mathrm{M}^{n+}/\mathrm{M}$  (cation métallique/métal) de potentiel standard  $E^{\circ}$  est :  $E = E^{\circ} + \frac{RT}{n\mathcal{F}} \ln \frac{a(\mathrm{M}^{n+})}{a(\mathrm{M})}$ , avec n le nombre d'électrons échangés. Si  $T = 298\,\mathrm{K}$  (25 °C), on peut utiliser l'approximation  $\frac{RT\ln(10)}{\mathcal{F}} \approx 0,059\,\mathrm{V}$ . La concentration standard, égale à  $1\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ , est notée  $C^{\circ}$ .

On rappelle également que la relation entre  $\Delta_{\rm r}G$ , l'enthalpie libre de la réaction de fonctionnement d'une pile, et la tension à vide  $U_{\rm co}$  (en circuit ouvert) est :  $\Delta_{\rm r}G = -n\mathcal{F}U_{\rm co}$ .

- c) Indiquer la polarite (+ ou –) de chaque demi-pile .....
- d) Identifier alors l'anode et la cathode .....
- e) Quelles propositions indiquent correctement le sens de déplacement des porteurs de charge?
  - (a) Dans les fils, les électrons se déplacent de la cathode vers l'anode.

    (c) Dans les fils, les électrons se déplacent de l'anode vers la cathode.
  - b Dans le pont salin, les anions se déplacent du compartiment de gauche vers celui de droite.

    d Dans le pont salin, les cations se déplacent du compartiment de gauche vers celui de droite.
- f) Calculer la tension à vide  $U_{co}$  de la pile (différence de potentiel à ses bornes) .
- g) Calculer l'enthalpie libre de réaction à 25 °C .....

## Entraînement 24.5 — Constante d'équilibre et potentiels standard.



On considère une pile Daniell cuivre-zinc, d'équation de fonctionnement :

$$Cu^{2+}(aq) + Zn(s) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

et de constante d'équilibre  $K^{\circ}$ . On donne :  $E^{\circ}(\operatorname{Zn^{2+}/Zn}) = -0.76\,\mathrm{V}$  et  $E^{\circ}(\operatorname{Cu^{2+}/Cu}) = 0.34\,\mathrm{V}$ .

- b) Exprimer  $K^{\circ}$  en fonction des concentrations des solutés à l'équilibre . . . . . . .
- c) Écrire la relation de Nernst à  $25\,^{\circ}$ C pour le couple  $\mathrm{Zn^{2+}/Zn}$  .....
- d) Écrire la relation de Nernst à 25 °C pour le couple Cu²⁺/Cu .....

e) L'unicité du potentiel à l'équilibre implique une ég d'oxydoréduction. Appliquer l'unicité du potentiel à l'e (a) $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} - E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = \frac{0,059}{2} \log \frac{[\text{Zn}^{2+}]_{\text{éq}}}{[\text{Cu}^{2+}]_{\text{éq}}}$ (b) $E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} - E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = \frac{0,059}{2} \log \frac{[\text{Zn}^{2+}]_{\text{éq}}}{[\text{Cu}^{2+}]_{\text{éq}}}$	alité entre les potentiels de Nernst des deux couples équilibre pour en déduire les relations correctes.  (c) $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} - E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = \frac{0,059}{2} \log \frac{[\text{Cu}^{2+}]_{\text{éq}}}{[\text{Zn}^{2+}]_{\text{éq}}}$ (d) $E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} - E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = \frac{0,059}{2} \log \frac{[\text{Cu}^{2+}]_{\text{éq}}}{[\text{Zn}^{2+}]_{\text{éq}}}$		
f) En déduire l'expression correcte de $K^{\circ}$ en fonction (a) $K^{\circ} = 10^{\frac{2}{0.059}(E^{\circ}(\text{Cu}^{2+}/\text{Cu}) - E^{\circ}(\text{Zn}^{2+}/\text{Zn}))}$ (b) $K^{\circ} = 10^{\frac{0.059}{2}(E^{\circ}(\text{Cu}^{2+}/\text{Cu}) - E^{\circ}(\text{Zn}^{2+}/\text{Zn}))}$ g) Calculer $K^{\circ}$ à 25 °C	$\begin{array}{c} \text{(c)} \ \ K^{\circ} = 10^{\frac{2}{0.059}(E^{\circ}(\operatorname{Zn^{2+}/Zn}) - E^{\circ}(\operatorname{Cu^{2+}/Cu}))} \\ \text{(d)} \ \ K^{\circ} = 10^{\frac{2}{0.059}(E^{\circ}(\operatorname{Zn^{2+}/Zn}) - E^{\circ}(\operatorname{Cu^{2+}/Cu}))} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots & \dots & \dots \end{array}$		
Détermination d'un potentiel star	ndard		
Entraînement 24.6 — Expression d'un potentie La relation entre l'enthalpie libre standard de demi-réa considéré est : $\Delta_{1/2}G^{\circ} = -n \times \mathcal{F} \times E^{\circ}$ , avec $n$ le nombr On donne les potentiels standard suivants : $E_1^{\circ}(\operatorname{Cu}^{2+}/\operatorname{Celui})$ du couple $\operatorname{Cu}^+/\operatorname{Cu}$ est noté $E_3^{\circ}$ . a) Écrire la demi-équation électronique, notée (1), asse b) Écrire la demi-équation électronique, notée (2), asse	action $\Delta_{1/2}G^{\circ}$ et le potentiel standard $E^{\circ}$ du couple le d'électrons échangés et $\mathcal{F}$ la constante de Faraday. $C(Cu) = 0.34\mathrm{V}$ et $E_2^{\circ}(Cu^{2+}/Cu^{+}) = 0.16\mathrm{V}$ . Sociée au couple $Cu^{2+}/Cu$		
c) Écrire la demi-équation électronique, notée (3), ass	sociée au couple Cu ⁺ / Cu		
d) Quelle est la combinaison linéaire reliant ces trois			
(a) $(1) = (2) + (3)$ (b) $(1) = (3) -$	(2) $(1) = 2 \times ((2) + (3))$		
e) Quelle est la relation entre les trois enthalpies libre (a) $\Delta_{1/2}G_1^{\circ} = \Delta_{1/2}G_2^{\circ} + \Delta_{1/2}G_3^{\circ}$ (b) $\Delta_{1/2}G_1^{\circ} = \Delta_{1/2}G_2^{\circ} - \Delta_{1/2}G_3^{\circ}$	es standard de demi-réaction? $ \begin{array}{ccc} \hline \text{(c)} & \Delta_{1/2}G_1^\circ = \Delta_{1/2}G_3^\circ - \Delta_{1/2}G_2^\circ \\ \hline \text{(d)} & \Delta_{1/2}G_1^\circ = 2 \times (\Delta_{1/2}G_2^\circ + \Delta_{1/2}G_3^\circ) \\ \hline \end{array} $		
f) En déduire une relation entre les trois potentiels standard et calculer $E_3^\circ$ .  (a) $E_3^\circ = 2E_2^\circ - E_1^\circ = -0.02\mathrm{V}$ (b) $E_3^\circ = 2E_1^\circ - E_2^\circ = 0.52\mathrm{V}$ (c) $E_3^\circ = E_1^\circ - E_2^\circ = 0.18\mathrm{V}$ (d) $E_3^\circ = E_2^\circ - E_1^\circ = -0.18\mathrm{V}$			

# Autour de l'électrolyse

Entraı̂nement 24.7 — Écriture de la réaction d'une électrolyse.
On s'intéresse à la production de dichlore et de soude par électrolyse de l'eau salée en milieu très basique à l'électrode (1), les ions chlorure sont transformés en dichlore (couple $\mathrm{Cl}_2/\mathrm{Cl}^-$ ) et, à l'électrode (2), l'eau se transforme en dihydrogène en libérant des ions $\mathrm{HO}^-$ (couple $\mathrm{H}_2\mathrm{O}/\mathrm{H}_2$ en milieu basique).
a) Écrire l'équation de la réaction électrochimique ayant lieu à l'électrode (1)
b) Écrire l'équation de la réaction électrochimique ayant lieu à l'électrode (2)
c) En déduire l'équation de la réaction d'électrolyse
Entraînement 24.8 — Bilan de matière d'une électrolyse.
On s'intéresse à la production de dichlore et de soude par électrolyse de l'eau salée en milieu très basique à l'électrode (1), les ions chlorure sont transformés en dichlore (couple $\mathrm{Cl}_2/\mathrm{Cl}^-$ ) et, à l'électrode (2), l'eau se transforme en dihydrogène en libérant des ions $\mathrm{HO}^-$ (couple $\mathrm{H}_2\mathrm{O}/\mathrm{H}_2$ en milieu basique). L'équation de la réaction d'électrolyse est :
$2 \operatorname{H}_2 O(\ell) + 2 \operatorname{Cl}^-(\operatorname{aq}) \longrightarrow \operatorname{Cl}_2(\operatorname{g})^+ \operatorname{H}_2(\operatorname{g}) + 2 \operatorname{HO}^-(\operatorname{aq}).$
Ainsi, il y a un échange de deux électrons.
L'électrolyse est réalisée avec une densité de courant par unité de surface d'électrode $j=6,00\mathrm{kA\cdot m^{-2}}$ l'électrolyseur possédant une surface totale $S=100\mathrm{m^2}$ d'électrodes.
a) Déterminer la charge électrique échangée entre les électrodes en une heure
b) En supposant que tous les électrons participent à la réaction d'électrolyse, déterminer la quantité de
matière de dichlore produite pendant cette durée
c) En utilisant l'équation d'état des gaz parfaits, en déduire le volume correspondant à $0^{\circ}\mathrm{C}$ et sous $1\mathrm{bar}$
L'exprimer en m ³
d) On n'obtient en réalité que $233\mathrm{m}^3.$ Déterminer le rendement faradique de l'électrolyse.
Entraînement 24.9 — Bilan énergétique d'une électrolyse.
On s'intéresse à la production de dichlore et de soude par électrolyse de l'eau salée en milieu très basique à l'électrode (1), les ions chlorure sont transformés en dichlore (couple $\text{Cl}_2/\text{Cl}^-$ ) et, à l'électrode (2), l'eau se transforme en dihydrogène en libérant des ions $\text{HO}^-$ (couple $\text{H}_2\text{O}/\text{H}_2$ en milieu basique). L'équation de la réaction d'électrolyse est : $2\text{H}_2\text{O}(\ell) + 2\text{Cl}^-(\text{aq}) \longrightarrow \text{Cl}_2(\text{g}) + \text{H}_2(\text{g}) + 2\text{HO}^-(\text{aq})$ .
L'électrolyse est réalisée sous une tension $U=3{,}00\mathrm{V}$ et avec une densité de courant par unité de surface d'électrode $j=6{,}00\mathrm{kA\cdot m^{-2}}$ , l'électrolyseur possédant une surface totale $S=100\mathrm{m^2}$ d'électrodes. Le volume de dichore obtenu est égal à $233\mathrm{m^3}$ .
a) Déterminer l'énergie électrique consommée par heure d'électrolyse
b) Déterminer l'énergie électrique consommée par m ³ de dichlore produit

### Entraînement 24.10 — Récupération d'or par électrolyse.

0000

Une électrolyse permet d'obtenir de l'or solide Au par réduction des ions aurocyanure Au(CN)₂⁻ à la cathode, notée (1). Des ions cyanure CN⁻ sont également produits à cette électrode. À l'anode, notée (2), se produit l'oxydation de l'eau.

Dans ce procédé, le surpotentiel cathodique du couple Au(CN)₂⁻ / Au est nul alors que le surpotentiel anodique du couple  $O_2 / H_2O$  vaut  $+0.60 \, V$ .

On donne les potentiels standard à pH = 0 suivants :

$$E^{\circ}(H_3O^+/H_2) = 0 \text{ V}, E^{\circ}(Au(CN)_2^-/Au) = -0.60 \text{ V} \text{ et } E^{\circ}(O_2/H_2O) = 1.23 \text{ V}.$$



- a) Écrire la réaction électrochimique se produisant sur (1) .......
- b) Préciser alors le sens réel de déplacement des porteurs de charge dans les fils (électrons).
- (a) (1) vers (2)
  - (1) (1) (2) (2) (1)
- c) En déduire le signe (+ ou -) de l'intensité I du courant électrique mesurée par le milliampèremètre.

d) La solution est basique. Écrire alors la réaction électrochimique se produisant sur (2).

.....

e) La demi-équation associée au couple de l'eau à l'anode est :  $2 H_2 O = 4 H^+ + O_2 + 4 e^-$ .

Calculer le potentiel de Nernst associé pour pH = 14 .....



- f) Sachant que le potentiel de Nernst du couple  $Au(CN)_2^-$  Au est ici approximativement égal à son potentiel standard, choisir la tension qu'il faut a minima imposer pour démarrer l'électrolyse.
  - (a) 0,60 V
- (b) 0,99 V

g) En pratique, que risque-t-il d'arriver si la tension imposée dépasse une certaine valeur limite?

(a) Le générateur va se détériorer.

(c) L'or récupéré sera de mauvaise qualité.

(b) Le solvant va se réduire.

(d) La solution va chauffer puis bouillir.

## Courbes courant-potentiel

L'introduction ci-dessous concerne les trois entraînements suivants.

On réalise l'électrolyse d'une solution contenant des ions étain Sn⁴⁺, argent Ag⁺ et plomb Pb²⁺ entre deux électrodes inertes. La figure ci-dessous donne l'allure schématique des courbes courant-potentiel relatives à l'expérience. L'échelle n'est pas respectée sur l'axe des abscisses. Les valeurs indiquées correspondent aux potentiels d'équilibre calculés à partir de la loi de Nernst. Dans les conditions de l'expérience, les surpotentiels des couples de l'eau valent respectivement  $0.70 \,\mathrm{V}$  en oxydation et  $-0.30 \,\mathrm{V}$  en réduction.



Entraînement 2	24.11 —	Analyse o	du (	diagramme	courant-	potentiel.



- a) Que vaut le potentiel au point A indiqué à gauche du diagramme courant-potentiel?
- (b)  $-0.70 \,\mathrm{V}$  (c)  $-0.50 \,\mathrm{V}$  (d)  $-0.30 \,\mathrm{V}$

- b) Pourquoi représenter la branche anodique Ag  $\longrightarrow$  Ag⁺ n'est-il pas nécessaire dans ce contexte?
- (a) Il n'y a pas d'argent métallique qui puisse s'oxyder dans le système.
- (b) L'argent est un métal noble, inattaquable chimiquement.
- (c) L'oxydation de l'argent est thermodynamiquement impossible.
- (d) Cette branche est confondue avec la branche cathodique  $Ag^+ \longrightarrow Ag$ .

## Entraînement 24.12 — Identification de la réaction d'électrolyse.



La tension imposée par le générateur augmente progressivement jusqu'à observation d'une réaction.

- a) Qu'observe-t-on à l'anode?
- (a) Du dihydrogène gazeux se dégage.
- (c) Un métal se dépose.

(b) Du dioxygène gazeux se dégage.

(d) Un métal se dissout.

- b) Qu'observe-t-on à la cathode?
  - (a) Du dihydrogène gazeux se dégage.
- (c) Un dépôt d'étain apparaît.

(b) Un dépôt de plomb apparaît.

- (d) Un dépôt d'argent apparaît.
- En déduire l'équation de la réaction observée .....
- À partir de quelle valeur de tension commence-t-on à observer cette réaction?

### Entraînement 24.13 — Application à la métallurgie.



L'électrolyse est réalisée dans le contexte de la production d'étain par hydrométallurgie : le but est d'obtenir un dépôt d'étain à la cathode, l'argent et le plomb étant des impuretés qui ne doivent pas se déposer.

a) Écrire l'équation de la réaction d'électrolyse que l'on souhaite réaliser

b) Quelle(s) impureté(s) doivent impérativement être éliminée(s) avant l'électrolyse?

(a)  $Ag^+$  et  $Pb^{2+}$  (b)  $Pb^{2+}$  seulement (c)  $Ag^+$  seulement (d) Aucune

c) Quelle est la tension minimale à imposer pour que la réaction souhaitée ait lieu?

(a) 0.25 V (b) 0.55 V (c) 1.00 V (d) 1.70 V

d) En pratique, la tension à imposer est supérieure à cette valeur seuil. Pourquoi?

(a) Le rendement de l'électrolyse n'est pas de 100 %.

(b) Accélérer la réaction demande une tension plus élevée.

(c) La solution électrolytique se comporte comme une résistance, ce qui ajoute une contribution ohmique.

(d) Des réactions parasites sont à prendre en compte.

#### Réponses mélangées

 $U_{\rm co} = 1.11 \,\mathrm{V}$   $2.78 \times 10^7 \,\mathrm{J} \cdot \mathrm{m}^{-3}$   $1.12 \times 10^4 \,\mathrm{mol}$   $\mathrm{Cu}^+ + \mathrm{e}^- = \mathrm{Cu}$ 

(a)  $4 \text{ Ag}^+ + 2 \text{ H}_2 \text{O} \longrightarrow 4 \text{ Ag} + \text{O}_2 + 4 \text{ H}^+$   $E_{\text{Cu}} = 0.32 \text{ V}$   $E(\text{O}_2 / \text{H}_2 \text{O}) = 0.39 \text{ V}$ 

 $\begin{array}{llll} & & & \\ & & \\ \hline \text{(b)} & & 6,48\times 10^9\,\text{J} & & K^\circ = \frac{[\text{Zn}^{2+}]_{\text{éq}}}{[\text{Cu}^{2+}]_{\text{éq}}} & & 2\,\text{Cl}^- \longrightarrow \text{Cl}_2 + 2\,\text{e}^- & \text{Cu}^{2+} + 2\,\text{e}^- = \text{Cu} \\ & & & \\ \hline n_{\text{Ag}^+} = n_{\text{e}} & & \\ \hline \text{(b)} & & & \\ \hline \text{(c)} & & & \\ \hline \text{(c)} & & & \\ \hline \text{(c)} & & & \\ \hline \text{(c)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & & \\ \hline \text{(d)} & & \\ \hline \text{(d)} & & \\$ 

(d) + (cathode) : Cu; - (anode) : Zn  $2 H_2O + 2 e^- \longrightarrow H_2 + 2 HO^-$  (b)

 $Zn + 2 Ag^{+} \longrightarrow Zn^{2+} + 2 Ag$   $Cu^{2+} + e^{-} = Cu^{+}$  91.7%  $Ag^{+} + e^{-} = Ag$ 

 $2 H_2 O + 2 C I^- \longrightarrow C I_2 + H_2 + 2 H O^-$  (a) et (d)  $4 H O^- = 2 H_2 O + O_2 + 4 e^-$ 

(a)  $E = E^{\circ}(\mathrm{Zn^{2+}/Zn}) + \frac{0{,}059}{2}\log\left(\frac{[\mathrm{Zn^{2+}}]}{C^{\circ}}\right) \qquad \Delta_{\mathrm{r}}G = -2{,}12\times10^{2}\,\mathrm{kJ\cdot mol^{-1}}$ 

 $\text{Sn}^{4+} + 2 \,\text{H}_2 \text{O} \longrightarrow \text{Sn} + \text{O}_2 + 4 \,\text{H}^+$  b et d c  $K^{\circ} = 10^{37} > 1$ 

► Réponses et corrigés page 340

## Fiche nº 1. Opérateurs vectoriels

## Réponses

**1.2** a) .... 
$$\left| \begin{array}{c} \left(z+y+\frac{yz}{a}\right)\overrightarrow{e_x} + \left(x+z+\frac{xz}{a}\right)\overrightarrow{e_y} \\ + \left(x+y+\frac{yx}{a}\right)\overrightarrow{e_z} \end{array} \right|$$

**1.2** b) ..... 
$$6x\overrightarrow{e_x} + 2a\overrightarrow{e_y} - 2a\overrightarrow{e_z}$$

**1.2** c) . . . . . . . 
$$(2xy+z^2)\overrightarrow{e_x} + (2yz+x^2)\overrightarrow{e_y} + (2xz+y^2)\overrightarrow{e_z}$$

1.2 d) ..... 
$$2y\vec{e_x} + 2x\vec{e_y} + 4\frac{a^2}{b}e^{z/(2b)}\vec{e_z}$$

**1.2** e) ...... 
$$16xy\overrightarrow{e_x} + \left(8x^2 - \frac{6a^4}{y^2}\right)\overrightarrow{e_y} - 5b^2\overrightarrow{e_z}$$

**1.3** a)..... 
$$\left[\left(-\frac{2r}{a} - 2\theta\right) \overrightarrow{e_r} - 2\overrightarrow{e}_\theta + 3\overrightarrow{e_z}\right]$$

**1.3** b) ..... 
$$-\frac{2a^2}{r^3} e^{5\theta} \overrightarrow{e_r} + \frac{5a^2}{r^3} e^{5\theta} \overrightarrow{e_\theta}$$

**1.3** c) . . . . . . . . . 
$$\frac{r}{\sqrt{r^2 - a^2}} \vec{e_r}$$

**1.3** e) ..... 
$$-\frac{z\sin(\theta)}{r^2} \overrightarrow{e_r} + \frac{z\cos\theta}{r^2} \overrightarrow{e_\theta} + \frac{\sin(\theta)}{r} \overrightarrow{e_z}$$

**1.7** b) . . . . . . . . . . . . . 
$$2x + 4\frac{a^2}{b}e^{\frac{z}{2b}}$$

**1.7** e) . . . . . . . . 
$$x(2y-x)$$

1.11 b) ..... 
$$\boxed{-4ce^{\frac{z}{2c}}\overrightarrow{e_x} - 2x\overrightarrow{e_z}}$$

**1.11** c) ...... 
$$\frac{8x^2}{y}(3x-y)\overrightarrow{e_z}$$

**1.12** a) . . . . . 
$$-4\theta \vec{e_z}$$



## Corrigés

1.1 Calculons les trois composantes du vecteur gradient dans le système de coordonnées cartésiennes (x, y, z).

On a

$$\frac{\partial V}{\partial x} = yz, \quad \frac{\partial V}{\partial y} = xz \quad \text{et} \quad \frac{\partial V}{\partial z} = xy.$$

Parmi les solutions proposées, la © est donc exclue.

Les solutions (a), (b) et (d) sont possibles (termes de droite corrects) mais les notations des gradients (termes de gauche) ne sont pas tous valables.

La notation  $\overrightarrow{\nabla}$  comme grad doit être surmontée d'une flèche pour qualifier la nature vectorielle de l'opérateur gradient, donc les réponses (a) et (b) sont exclues. Précisons que le gradient s'applique à un champ scalaire donc un champ dont la notation ne doit pas être surmontée d'une flèche : deuxième manière d'exclure la réponse (b).

La réponse (d) est l'ultime solution restante, on constate bien qu'elle ne comporte aucune erreur de notation.

70.00

**1.2** a) Posons 
$$f(x, y, z) = xy + yz + zx + \frac{xyz}{a}$$
. Calculons les dérivées partielles : on a

$$\frac{\partial f}{\partial x} = y + z + \frac{yz}{a}, \quad \frac{\partial f}{\partial y} = x + z + \frac{xz}{a} \quad \text{et} \quad \frac{\partial f}{\partial z} = y + x + \frac{xy}{a}.$$

Donc le vecteur gradient de f s'écrit  $\left(z+y+\frac{yz}{a}\right)\overrightarrow{e_x}+\left(x+y+\frac{xz}{a}\right)\overrightarrow{e_y}+\left(x+y+\frac{yx}{a}\right)\overrightarrow{e_z}$ .

La réponse attendue est bien un vecteur!

1.2 b) Posons  $f(x, y, z) = 3x^2 + 2a(y - z) + b^2$ . Calculons les dérivées partielles : on a

 $\frac{\partial f}{\partial x} = 6x$ ,  $\frac{\partial f}{\partial y} = 2a$  et  $\frac{\partial f}{\partial z} = -2a$ .

Donc le vecteur gradient de f s'écrit  $6x\vec{e_x} + 2a\vec{e_y} - 2a\vec{e_z}$ .

.....

Posons  $f(x, y, z) = x^2y + y^2z + z^2x + a^3$ . Calculons les dérivées partielles : on a **1.2** c)

$$\frac{\partial f}{\partial x} = 2xy + z^2$$
,  $\frac{\partial f}{\partial y} = x^2 + 2yz$  et  $\frac{\partial f}{\partial z} = y^2 + 2zx$ .

Donc le vecteur gradient de f s'écrit  $(2xy+z^2)\overrightarrow{e_x}+(2yz+x^2)\overrightarrow{e_y}+(2xz+y^2)\overrightarrow{e_z}$ .

**1.2** d) Posons 
$$f(x, y, z) = 2xy + 8a^2 e^{z/(2b)} - 6c^2$$
. Calculons les dérivées partielles : on a

$$\frac{\partial f}{\partial x} = 2y, \quad \frac{\partial f}{\partial y} = 2x \quad \text{et} \quad \frac{\partial f}{\partial z} = 4\frac{a^2}{b} e^{z/(2b)}.$$

Donc le vecteur gradient de f s'écrit  $2y\overrightarrow{e_x} + 2x\overrightarrow{e_y} + 4\frac{a^2}{b}e^{z/(2b)}\overrightarrow{e_z}$ .

Posons  $f(x, y, z) = 8x^2y + \frac{6a^4}{y} - 5b^2z$ . Calculons les dérivées partielles : on a

$$\frac{\partial f}{\partial x} = 16xy, \quad \frac{\partial f}{\partial y} = (8x^2 - \frac{6a^4}{y^2}) \quad \text{et} \quad \frac{\partial f}{\partial z} = -5b^2.$$

Donc le vecteur gradient de f s'écrit  $16xy\vec{e_x} + \left(8x^2 - \frac{6a^4}{y^2}\right)\vec{e_y} - 5b^2\vec{e_z}$ .

Posons  $f(r, \theta, z) = 3z - \frac{r^2}{c} - 2r\theta$ . Calculons les dérivées partielles : on a 1.3 a)

$$\frac{\partial f}{\partial r} = -\frac{2r}{a} - 2\theta, \quad \frac{\partial f}{\partial \theta} = -2r \quad \text{et} \quad \frac{\partial f}{\partial z} = 3.$$

Donc le vecteur gradient de f s'écrit  $-\left(\frac{2r}{a}+2\theta\right)\vec{e_r}-2\vec{e_\theta}+3\vec{e_z}$ .

Posons  $f(r,\theta,z)=\frac{a^2}{r^2}\mathrm{e}^{5\theta}.$  Calculons les dérivées partielles : on a **1.3** b)

$$\frac{\partial f}{\partial r} = -\frac{2a^2}{r^3} e^{5\theta}, \quad \frac{\partial f}{\partial \theta} = \frac{5a^2}{r^2} e^{5\theta} \quad \text{et} \quad \frac{\partial f}{\partial z} = 0.$$

Donc le vecteur gradient de f s'écrit  $-\frac{2a^2}{r^3}e^{5\theta}\overrightarrow{e_r} + \frac{5a^2}{r^3}e^{5\theta}\overrightarrow{e_\theta}$ .

Posons  $f(r, \theta, z) = \sqrt{r^2 - a^2}$ . Calculons les dérivées partielles : on a **1.3** c)

$$\frac{\partial f}{\partial r} = \frac{r}{\sqrt{r^2 - a^2}}, \quad \frac{\partial f}{\partial \theta} = 0 \quad \text{et} \quad \frac{\partial f}{\partial z} = 0.$$

Donc le vecteur gradient de f s'écrit  $\frac{r}{\sqrt{r^2-a^2}} \overrightarrow{e_r}$ .

Posons  $f(r,\theta,z) = 7\left(\frac{r}{a}\right)^4\theta + \ln(z/b)$ . Calculons les dérivées partielles : on a **1.3** d)

$$\frac{\partial f}{\partial r} = 28 \frac{\theta r^3}{a^4}, \quad \frac{\partial f}{\partial \theta} = 7 \frac{r^2}{a^4} \quad \text{et} \quad \frac{\partial f}{\partial z} = \frac{1}{z}.$$

Donc le vecteur gradient de f s'écrit  $28 \frac{\theta r^3}{a^4} \vec{e_r} + 7 \frac{r^3}{a^4} \vec{e_\theta} + \frac{1}{z} \vec{e_z}$ .

**1.3** e) Posons  $f(r, \theta, z) = \frac{z}{r} \sin(\theta)$ . Calculons les dérivées partielles : on a

$$\frac{\partial f}{\partial r} = -\frac{z\sin(\theta)}{r^2}, \quad \frac{\partial f}{\partial \theta} = \frac{z\cos\theta}{r} \quad \text{et} \quad \frac{\partial f}{\partial z} = \frac{\sin(\theta)}{r}$$

Donc le vecteur gradient de f s'écrit  $-\frac{z\sin(\theta)}{r^2}\overrightarrow{e_r} + \frac{z\cos\theta}{r^2}\overrightarrow{e_\theta} + \frac{\sin(\theta)}{r}\overrightarrow{e_z}$ .

Considérons la notation du gradient (terme de gauche des équations proposées). La réponse d est exclue car la notation nabla d'un gradient ne fait pas intervenir le produit scalaire. La réponse c est exclue car le couple de variables ne correspond à aucun de ceux proposés par l'énoncé. Considérons donc la formule cartésienne du gradient (terme de droite des équations proposées) pour les deux options restantes. La réponse b fait une interversion des coordonnées de dérivation et de celles de direction, elle est donc exclue. La bonne réponse est (a).

.....

.....

**1.5** a) On a 
$$g(A) = g(-1, 1, 2) = (-1 - 2)^2 + (1 + 1)^2 + 2^2 - 1 = 9 + 4 + 4 - 1 = 16$$
.

**1.5** b) Exprimons le gradient de la fonction scalaire g. On a

$$\overrightarrow{\operatorname{grad}}(g(x,y,z)) = \frac{\partial g}{\partial x} \overrightarrow{e_x} + \frac{\partial g}{\partial y} \overrightarrow{e_y} + \frac{\partial g}{\partial z} \overrightarrow{e_z} = (2(x-2)) \overrightarrow{e_x} + (2y+2) \overrightarrow{e_y} + 2z \overrightarrow{e_z}.$$

Par projection sur l'axe de direction  $\overrightarrow{e_z}$ , on obtient la quantité 2z. Réponse (c).

**1.5** c) Exprimons le gradient de la fonction scalaire g. On a

$$\overrightarrow{\operatorname{grad}}(g(x,y,z)) = \frac{\partial g}{\partial x} \overrightarrow{e_x} + \frac{\partial g}{\partial y} \overrightarrow{e_y} + \frac{\partial g}{\partial z} \overrightarrow{e_z} = (2(x-2)) \overrightarrow{e_x} + (2y+2) \overrightarrow{e_y} + 2z \overrightarrow{e_z}.$$

Par projection sur l'axe de direction  $\overrightarrow{e_y}$  on obtient la quantité 2y + 2. Réponse (c).

**1.5** d) Exprimons le gradient de la fonction scalaire g. On a

$$\overrightarrow{\operatorname{grad}}(g(x,y,z)) = \frac{\partial g}{\partial x} \overrightarrow{e_x} + \frac{\partial g}{\partial y} \overrightarrow{e_y} + \frac{\partial g}{\partial z} \overrightarrow{e_z} = (2(x-2)) \overrightarrow{e_x} + (2y+2) \overrightarrow{e_y} + 2z \overrightarrow{e_z}.$$

Par projection sur l'axe de direction  $\overrightarrow{e_x}$  on obtient la quantité 2x-4. Réponse (a).

**1.5** e) Exprimons le gradient de la fonction scalaire g. On a

$$\overrightarrow{\operatorname{grad}}(g(x,y,z)) = \frac{\partial g}{\partial x} \overrightarrow{e_x} + \frac{\partial g}{\partial y} \overrightarrow{e_y} + \frac{\partial g}{\partial z} \overrightarrow{e_z} = (2(x-2))\overrightarrow{e_x} + (2y+2)\overrightarrow{e_y} + 2z\overrightarrow{e_z}.$$

Cette notation est équivalente au vecteur colonne de la réponse (c).

Connaissant les composantes du gradient d'après les réponses précédentes, on peut exprimer la norme du vecteur gradient  $\|\vec{\nabla}g(x,y,z)\|$  en un point quelconque. On a

$$\|\overrightarrow{\nabla}g(x,y,z)\| = \sqrt{(2x-4)^2 + (2y+2)^2 + 4z^2}.$$

On réalise l'application numérique au point A(-1,1,2): on a

$$\left\| \overrightarrow{\nabla} g(\mathbf{A}) \right\| = \left\| \overrightarrow{\nabla} g(-1, 1, 2) \right\| = \sqrt{(-2 - 4)^2 + (2 + 2)^2 + 4 \times 2^2} = \sqrt{36 + 16 + 16} = \sqrt{68} = 2\sqrt{17}.$$

.....

1.6 a) Rappelons l'expression du gradient en coordonnées cartésiennes : on a

$$\overrightarrow{\operatorname{grad}}(f(x,y,z)) = \frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y} + \frac{\partial f}{\partial z} \overrightarrow{e_z}.$$

Or, ici  $\overrightarrow{\text{grad}} f = 2xy\overrightarrow{e_x} + x^2\overrightarrow{e_y} + a^2\overrightarrow{e_z}$ ; donc, par identification :  $\frac{\partial f}{\partial x} = 2xy$ ,  $\frac{\partial f}{\partial y} = x^2$  et  $\frac{\partial f}{\partial z} = a^2$ . Réponse (a).

**1.6** b) On a  $\frac{\partial f}{\partial x} = 2xy$  donc, par intégration par rapport à la variable x, il vient  $f(x, y, z) = x^2y + \text{cste}$  avec cste = g(y, z) une fonction des coordonnées y et z car  $\frac{\partial g(y, z)}{\partial x} = 0$ . Réponse (b)

1.6 c) On a  $f(x, y, z) = x^2 y + g(y, z)$  donc  $\frac{\partial f(x, y, z)}{\partial y} = x^2 + \frac{\partial g(y, z)}{\partial y}$ . Or, d'après l'énoncé, on a  $\frac{\partial f(x, y, z)}{\partial y} = x^2.$ 

On déduit de ces deux équations que l'on a nécessairement  $\frac{\partial g}{\partial y} = 0$ . Réponse (a).

**1.6** d) On a  $\frac{\partial g(y,z)}{\partial y} = 0$  donc, par intégration par rapport à la variable y, il vient g(y,z) = cste avec cste = h(z) une fonction de la seule coordonnée z car  $\frac{\partial h(z)}{\partial y} = 0$ .

On a  $f(x,y,z)=x^2y+g(y,z)=x^2y+h(z)$  donc  $\frac{\partial f(x,y,z)}{\partial z}=\frac{\partial h}{\partial z}$ . Or, on sait d'après l'énoncé que  $\frac{\partial f}{\partial z}=a^2$ . On déduit de ces deux équations que l'on a nécessairement  $\frac{\partial h}{\partial z}=a^2$  donc  $h(z)=a^2z+$  este, soit finalement  $g=a^2z+$  este. Réponse (b).

**1.6** e) On a  $f(x, y, z) = x^2y + g(y, z) = x^2y + h(z) = x^2y + a^2z + cste$ . On a donc f(0, 0, 0) = cste, or f(0, 0, 0) = 0 donc cste = 0. Réponse (a).

1.7 a) Pour éviter les étourderies, vous pouvez vérifier que les trois termes de la somme ont bien la même dimension et que cette dimension correspond à la dimension de l'argument de l'opérateur divergence divisée par une longueur.

- **1.7** b) On a  $0 + 2x + 8\frac{a^2}{2b}e^{\frac{z}{2b}} = 2x + 4\frac{a^2}{b}e^{\frac{z}{2b}}$ .
- **1.7** c) On a  $8 \times 2xy \frac{6x^4}{y^2} + 0 = 16xy \frac{6x^4}{y^2}$ .
- **1.7** d) On a 0 + 0 = 0.
- **1.7** e) On a  $2xy x^2 = x(2y x)$ .
- **1.8** a) On a  $-3\frac{r}{a} 2 + 3 = -3\frac{r}{a} + 1$ .
- **1.8** b) La composante  $A_{\theta}$  ne dépend pas de  $\theta$ !

- 1.9 Il faut calculer chacune des divergences au point A.
  - Cas (a): on a div  $(x^2 \overrightarrow{e_x} + y^2 \overrightarrow{e_y} + z^2 \overrightarrow{e_z}) = 2x + 2y + 2z$  donc la valeur de divergence en A vaut

$$2 \times (-1) + 2 \times (-1) + 2 \times 1 = -2.$$

- Cas (b): on a div  $(y^2 \vec{e_x} + x^2 \vec{e_y} + z^2 \vec{e_z}) = 2z$  donc la valeur de divergence en A vaut  $2 \times 1 = +2$ .
- Cas (c): on a div $(z^2\vec{e_x} + x^2\vec{e_y} + y^2\vec{e_z}) = 0$  donc la valeur de divergence en A vaut 0.
- Cas (d): on a div $(y^2\vec{e_x} + x^2\vec{e_z} + z^2\vec{e_y}) = 0$  donc la valeur de divergence en A vaut 0.

La valeur de divergence maximale est dans le cas (b).

**1.10** a) On a 
$$1 + 1 + 1 = 3$$
.

**1.10** b) On a 
$$\frac{1}{r^2} \frac{\partial (r^2 \cdot r)}{\partial r} + 0 + 0 = \frac{3r^2}{r^2} = 3.$$

**1.10** c) On a 
$$\frac{1}{r} \frac{\partial (r.r)}{\partial r} + 0 + 0 = \frac{2r}{r} = 2$$
. Réponse **(b)**.

**1.11** a) On a 
$$(0-0)\vec{e_x} + (0-0)\vec{e_y} + (0-0)\vec{e_z} = \vec{0}$$
.

1.11 b) On a 
$$\left(0 - \frac{8c^2}{2c}e^{\frac{z}{2c}}\right)\overrightarrow{e_x} + (0-0)\overrightarrow{e_y} + (0-2x)\overrightarrow{e_z} = -4ce^{\frac{z}{2c}}\overrightarrow{e_x} - 2x\overrightarrow{e_z}.$$

**1.11** c) On a 
$$(0-0)\vec{e_x} + (0-0)\vec{e_y} + \left(\frac{24x^3}{y} - 8x^2\right)\vec{e_z} = \frac{8x^2}{y}(3x-y)\vec{e_z}$$
.

**1.11** d) On a 
$$(0-0)\vec{e_x} + (1-(-1))\vec{e_y} + (0-0)\vec{e_z} = 2\vec{e_y}$$
.

**1.11** e) On a 
$$(x^2 - 0)\vec{e_x} + (0 - 2xy)\vec{e_y} + (-2xy - x^2)\vec{e_z} = x^2\vec{e_x} - 2xy(\vec{e_y} + \vec{e_z}) - x^2\vec{e_z}$$
.

**1.12** a) On a 
$$\left(\frac{1}{r} \times (0) - 0\right) \overrightarrow{e_r} + (0 - 0) \overrightarrow{e_\theta} + \left(\frac{1}{r} \frac{\partial (-2r^2\theta)}{\partial r} - 0\right) \overrightarrow{e_z} = -4\theta \overrightarrow{e_z}$$
.

**1.12** b) On a 
$$\left(\frac{1}{r} \times (0) - 0\right) \overrightarrow{e_r} + (0 - 0) \overrightarrow{e_\theta} + \left(\frac{1}{r} \frac{\partial (r^2)}{\partial r} - 0\right) \overrightarrow{e_z} = 2\overrightarrow{e_z}$$
.

1.13 a) Par définition du potentiel, on a  $d\Phi = \overrightarrow{\text{grad}} \Phi \cdot d\overrightarrow{\ell} = \overrightarrow{v} \cdot d\overrightarrow{\ell}$ . Cette quantité étant nulle sur une équipotentielle par définition, le vecteur  $\overrightarrow{v}$  doit être nécessairement orthogonal au vecteur  $d\overrightarrow{\ell}$  en tout point de l'équipotentielle. Réponse  $\overleftarrow{b}$ .

**1.13** b) Au premier ordre, on peut écrire que 
$$v(C) \approx \frac{\Delta \Phi}{\Delta \ell}$$
. Graphiquement, au niveau du point C, on a : 
$$\Delta \Phi = 1,60 \, \text{UA} - 1,20 \, \text{UA} = 0,40 \, \text{UA} \qquad \text{et} \qquad \Delta \ell = \text{AC} = 0,50 \, \text{m} \quad \text{donc} \quad v(C) \approx 0,80 \, \text{UA/m}.$$

1.13 c) Le champ demandé est orienté dans le sens du gradient de  $\Phi$ , c'est-à-dire dans le sens des potentiels croissants. Réponse (a).

.....

**1.13** d) Les deux points C et D sont sur une même ligne de champ. En considérant un tube de champ centré sur cette ligne de champ commune et qui s'appuie sur les deux autres lignes de champ de la figure, on peut écrire que :  $S_{\rm C}v_{\rm C} = S_{\rm D}v_{\rm D}$ . Les valeurs de S sont proportionnelles à la distance sur le graphe entre les deux lignes de champ délimitant le tube ; donc, en mesurant ces distances au niveau des points C et D, on a :  $\frac{S_{\rm D}}{S_{\rm C}} \approx \frac{1,6\,{\rm cm}}{0,8\,{\rm cm}} = 2,0$ . L'intensité du champ  $\vec{v}$  est environ 2 fois plus importante en C qu'en D. On retrouve le fait que plus les lignes de champ sont resserrées, plus le champ est intense.

1.14 a) Posons 
$$f(x, y, z) = \frac{x^2 y}{a} + bz + c^2$$
. Calculons les dérivées partielles secondes : on a  $\frac{\partial^2 f}{\partial x^2} = \frac{2y}{a}$ ,  $\frac{\partial f}{\partial y} = 0$  et  $\frac{\partial f}{\partial z} = 0$ .

Donc le laplacien scalaire de f s'écrit  $\frac{2y}{a}$ .

.....

**1.14** b) Posons  $f(x, y, z) = y^2 - 5az$ . Calculons les dérivées partielles secondes : on a

$$\frac{\partial^2 f}{\partial x^2} = 0$$
,  $\frac{\partial f}{\partial y} = 2$  et  $\frac{\partial f}{\partial z} = 0$ .

Donc le laplacien scalaire de f s'écrit 2.

.....

**1.14** c) Posons  $f(x, y, z) = b^2 \ln(\frac{z}{a}) + 3x^2$ . Calculons les dérivées partielles secondes : on a

$$\frac{\partial^2 f}{\partial x^2} = 6, \quad \frac{\partial f}{\partial y} = 0 \quad \text{et} \quad \frac{\partial f}{\partial z} = -\frac{b^2}{z^2}.$$

Donc le laplacien scalaire de f s'écrit  $6 - \frac{b^2}{z^2}$ .

Posons  $A_x(x, y, z) = \frac{x^2y}{a} + bz + c^2$  puis  $A_y = y^2 - 5az$  et  $A_z = b^2 \ln(\frac{z}{a}) + 3x^2$ . On calcule les laplaciens scalaires de ces trois fonctions selon la formule :  $\Delta(f(x, y, z)) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ .

On obtient  $\Delta A_x = \frac{2y}{a}$ ,  $\Delta A_y = 2$  et  $\Delta A_z = 6 - \frac{b^2}{z^2}$ . Le laplacien vectoriel s'écrit donc :  $\frac{2y}{a}\overrightarrow{e_x} + 2\overrightarrow{e_y} + 6 - \frac{b^2}{z^2}\overrightarrow{e_z}$ , que l'on peut aussi mettre sous la forme du vecteur colonne proposé en réponse.

- **1.16** a) Ne pas oublier d'indiquer qu'il s'agit d'un opérateur vectoriel :  $\overrightarrow{\text{grad}} A$  et non  $\overrightarrow{\text{grad}}(A)$ !!
- .....
- 1.16 b) L'argument est un vecteur, pensez à choisir la base de projection de façon à faciliter le calcul.
- **1.16** c) Ne pas oublier d'indiquer qu'il s'agit d'un opérateur vectoriel :  $\overrightarrow{rot} \vec{A}$  et non  $rot(\vec{A})$ !!
- 1.16 d) Vérifiez l'homogénéité des trois termes : homogénéité de l'argument du laplacien divisé par le carré d'une longueur !
- 1.16 e) Neuf termes à calculer ! Heureusement souvent beaucoup sont nuls du fait des symétries et invariances...

# Fiche nº 2. Électrostatique

Réponses	
<b>2.1</b> a)	2.8  b)
<b>2.1</b> b)	<b>2.8</b> c)
<b>2.1</b> c) $r dr d\theta$	$2.9 \text{ a}$ ) $\overrightarrow{e_y}$
<b>2.1</b> d) $\pi R^2$	$2.9 \text{ b}$ ) $\overrightarrow{e_z}$
<b>2.1</b> e)	<b>2.9</b> c)
<b>2.2</b> a) $\lambda_0 \ell$	<b>2.10</b>
<b>2.2</b> b)	
<b>2.3</b> a) $+1000 \times e$	2.11 a)
$[L \times \ell]$	<b>2.11</b> b)
<b>2.3</b> c)	<b>2.12</b>
<b>2.4</b> a) $(O, \overrightarrow{e_x} + \overrightarrow{e_y}, \overrightarrow{e_z}), (O, \overrightarrow{e_x} - \overrightarrow{e_y}, \overrightarrow{e_z})$ et $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$	<b>2.13</b> a)
<b>2.4</b> b)	<b>2.13</b> b)
<b>2.5</b> a)	<b>2.13</b> c)
<b>2.5</b> b)	<b>2.13</b> d) $\boxed{\frac{\sigma}{2\varepsilon_0} \left( 1 - \sqrt{\frac{z^2}{z^2 + R^2}} \right)}$
<b>2.5</b> d) $6 \times 10^{-6}$ C	<b>2.13</b> e) $ \frac{\sigma}{2\varepsilon_0} $
<b>2.6</b> a)	<b>2.13</b> f) $ \frac{Q_0}{4\pi\varepsilon_0 z^2} $
<b>2.6</b> b)	<b>2.14</b> a)
<b>2.6</b> c)	<b>2.14</b> b)
<b>2.7</b> a)	2.15 a)
<b>2.7</b> b)	
<b>2.7</b> c)	<b>2.15</b> b)
<b>2.7</b> d)	<b>2.15</b> c) $\left  \frac{q}{2\varepsilon_0} (1 - \cos \alpha) \right $
<b>2.8</b> a) $\boxed{-2\overrightarrow{e_x} + 8\overrightarrow{e_y}}$	<b>2.15</b> d) $1.8 \times 10^{-8} \mathrm{V \cdot m}$



### Corrigés

**2.1** a) Comme r et z sont constants, dr et dz sont nuls; ainsi  $d\mathcal{C} = R d\theta$ .

**2.1** b) On a 
$$C = \int_0^{2\pi} R \, d\theta = R \int_0^{2\pi} d\theta = R[\theta]_0^{2\pi} = 2\pi R.$$

**2.1** d) On a 
$$S = \int_{r=0}^{r=R} \int_{\theta=0}^{\theta=2\pi} r \, dr \, d\theta = \int_{0}^{R} r \, dr \int_{0}^{2\pi} d\theta = \left[\frac{r^2}{2}\right]_{0}^{R} [\theta]_{0}^{2\pi} = \frac{R^2}{2} \times 2\pi = \pi R^2.$$

On a 
$$\mathcal{V} = \int_{r=0}^{r=R} \int_{\theta=0}^{\theta=\pi} \int_{\varphi=0}^{\varphi=2\pi} r^2 \sin(\theta) \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\varphi = \int_0^R r^2 \, \mathrm{d}r \int_0^{\pi} \sin(\theta) \, \mathrm{d}\theta \int_0^{2\pi} \, \mathrm{d}\varphi$$
$$= \left[\frac{r^3}{3}\right]_0^R \times \left[-\cos(\theta)\right]_0^{\pi} \times \left[\varphi\right]_0^{2\pi} = \frac{R^3}{3} \times \left(-(-1-1)\right) \times 2\pi = \frac{4}{3}\pi R^3.$$

**2.2** a) On a 
$$Q = \int_0^{\ell} \lambda_0 \, \mathrm{d}x = \lambda_0 \int_0^{\ell} \mathrm{d}x = \lambda_0 \big[x\big]_0^{\ell} = \lambda_0 \ell.$$

**2.2** b) On a 
$$Q = \int_0^{2\pi} \lambda(\theta) a \, d\theta = \int_0^{2\pi} q_0 \frac{\theta}{a} a \, d\theta = q_0 \int_0^{2\pi} \theta \, d\theta = q_0 \left[ \frac{\theta^2}{2} \right]_0^{2\pi} = 2\pi^2 q_0.$$

**2.3** a) Chaque électron porte la charge (négative) -e. En arrachant N électrons de la feuille, celle-ci se charge positivement : on a  $Q = +N \times e$ , avec  $N = 1\,000$ .

**2.3** b) La feuille est modélisée par un rectangle d'aire  $S = L \times \ell$ .

224 Réponses et corrigés

.....

- **2.3** c) Il suffit de faire l'application numérique :  $\sigma = 2.57 \times 10^{-15} \,\mathrm{C \cdot m}^{-2}$ .
- **2.5** a) On a  $V = \frac{4}{3}\pi R^3 = 6.5 \times 10^{-2} \,\mathrm{m}^3$ , en écriture scientifique, et en gardant deux chiffres significatifs.

.....

2.5 b) La densité volumique de charge est uniforme donc la charge totale est donnée par

$$Q = \rho_0 V = 3.3 \times 10^{-9} \,\mathrm{C},$$

en écriture scientifique, et en ne gardant que deux chiffres significatifs.

- **2.5** c) On a  $A = 4\pi R^2 = 7.9 \times 10^{-1} \text{ m}^2$ , en écriture scientifique, et en gardant deux chiffres significatifs.
- **2.5** d) La densité surfacique de charge étant uniforme,  $Q = \sigma A = 6 \times 10^{-6}$  C, en écriture scientifique, et en ne gardant qu'un chiffre significatif (autant que la donnée qui possède le moins de chiffres significatifs).

**2.6** a) L'élément de surface  $dS = R d\theta dz$  est la multiplication du déplacement élémentaire  $R d\theta$  le long de la circonférence d'un cercle de rayon R et d'axe (Oz) du tube par le déplacement élémentaire dz le long de l'axe (Oz).

- **2.6** b) On a  $Q = \int_{\theta=0}^{2\pi} \int_{z=0}^{H} \sigma(\theta) R \, \mathrm{d}\theta \, \mathrm{d}z$ .
- **2.6** c) On a  $Q = \sigma_0 RH \int_{\theta=0}^{2\pi} \cos(\theta) d\theta = 0$ . Le tube n'est globalement pas chargé. Ce résultat était attendu puisque la densité surfacique de charge est  $\sigma(\theta) = \sigma_0 \cos(\theta)$  (les charges positives et négatives se répartissent de manière égale sur sa surface).
- **2.7** d) Le cylindre étant désormais infini, la distribution devient invariante par translation suivant (Oz).
- 2.8 a) Le principe de superposition assure que le champ électrostatique total en  $M_1$  est la somme des champs produits par les deux sources.

.....

- **2.8** c) Le point  $M_3$  est le symétrique du point  $M_1$  par rapport au plan  $\mathcal{P}$ . Ainsi, le vecteur-champ en  $M_3$  est le symétrique du vecteur-champ en  $M_1$  par rapport au plan  $\mathcal{P}$ . Enfin, le point  $M_2$  appartient à ce plan de symétrie donc le vecteur-champ au point  $M_2$  appartient également à ce plan de symétrie.
- .....
- **2.9** a) La projection du vecteur  $\overrightarrow{e_y}$  est nulle sur le plan  $(\Pi_1)$ , donc  $\overrightarrow{e_y}$  est normal à ce plan.
- **2.9** b) La projection du vecteur  $\overrightarrow{e_z}$  est nulle sur le plan  $(\Pi_2)$ , donc  $\overrightarrow{e_z}$  est normal à ce plan.
- **2.9** c) En un point M d'un plan d'antisymétrie de la distribution de charge, le champ électrostatique est perpendiculaire à ce plan. Par exemple, si le point M est sur l'axe (Ox), appartenant au plan  $(\Pi_2)$ , le champ électrostatique est suivant l'axe (Oz):  $\vec{E}(M) = E(M)\vec{e_z}$ .

Le plan  $(M, \overrightarrow{e_x}, \overrightarrow{e_y})$  est un plan de symétrie donc  $\overrightarrow{E}(M) = E_x(x, y, z)\overrightarrow{e_x} + E_y(x, y, z)\overrightarrow{e_y}$ . Enfin, l'invariance par translation selon  $\overrightarrow{e_z}$  permet d'affirmer que les composantes  $E_x$  et  $E_y$ , et donc la norme  $\|\overrightarrow{E}\|$ , de  $\overrightarrow{E}(M)$  ne dépendent pas de z.

.....

**2.13** a) En repérage cylindrique, le déplacement élémentaire est  $\overrightarrow{d\ell} = dr\overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta} + dz \overrightarrow{e_z}$ . Sur le disque, z est fixé (à 0) donc l'aire s'obtient en multipliant les deux composantes non nulles du vecteur déplacement élémentaire  $dS = r dr d\theta$ .

.....

- **2.13** b) Par relation de Chasles, on a  $\overrightarrow{PM} \cdot \overrightarrow{e_z} = (\overrightarrow{PO} + \overrightarrow{OM}) \cdot \overrightarrow{e_z} = r\overrightarrow{e_r} \cdot \overrightarrow{e_z} + z\overrightarrow{e_z} \cdot \overrightarrow{e_z} = 0 + z$ .
- **2.13** c) On a  $\overrightarrow{PM} = \overrightarrow{PO} + \overrightarrow{OM} = r\overrightarrow{e_r} + z\overrightarrow{e_z}$  donc  $PM = \sqrt{\overrightarrow{PM}^2} = \sqrt{\overrightarrow{PM} \cdot \overrightarrow{PM}} = \sqrt{z^2 + r^2}$ .
- **2.13** d) En séparant les variables et en effectuant le changement de variable  $u=r^2$  (d'où  $du=2r\,dr$ ), il vient :

$$E_z = \frac{\sigma z}{8\pi\varepsilon_0} \int_{\theta=0}^{\theta=2\pi} d\theta \times \int_{u=0}^{u=R^2} (u+z^2)^{-3/2} du = \frac{\sigma z}{4\varepsilon_0} \left[ -2(u+z^2)^{-1/2} \right]_{u=0}^{u=R^2} = \frac{\sigma}{2\varepsilon_0} \left( 1 - \frac{1}{\sqrt{1+R^2/z^2}} \right).$$

- **2.13** e) On a  $\sqrt{1+R^2/z^2} \xrightarrow[R/z\to+\infty]{} \infty$  donc  $\frac{1}{\sqrt{1+R^2/z^2}} \xrightarrow[R/z\to\infty]{} 0$ . Ainsi,  $E_z \xrightarrow[R/z\to\infty]{} \frac{\sigma}{2\varepsilon_0}$ .
- **2.13** f) Le développement limité fourni permet d'écrire :

$$\frac{1}{\sqrt{1 + \frac{R^2}{z^2}}} = \left(1 + \frac{R^2}{z^2}\right)^{-1/2} \underset{R/z \to 0}{=} 1 - \frac{R^2}{2z^2} \quad \text{d'où} \quad E_z = \frac{\sigma}{2\varepsilon_0} \left[1 - 1 + \frac{R^2}{2z^2}\right] = \overbrace{\pi R^2 \sigma}^{Q_0} \frac{1}{4\pi\varepsilon_0 z^2},$$

ce qui correspond bien au champ créé par une charge ponctuelle  $Q_0$ , distante de z du point d'observation.

**2.15** a) L'aire d'un élément de surface d'une sphère de rayon r est  $dS = r^2 \sin(\theta) d\theta d\varphi$ . Ici, le rayon de la calotte est R donc la variable r est fixée à R. En conclusion,  $dS = R^2 \sin(\theta) d\theta d\varphi$ .

**2.15** b) Pour rappel, la colatitude  $\theta$  est définie sur  $[0, \pi]$  quand la longitude  $\varphi$  est décrite sur  $[0, 2\pi]$ .

Pour décrire/paramétrer la calotte, on peut procéder de la sorte : on considère un point  $M(R, \theta, \varphi)$  sur la calotte, et on lui fait faire un tour complet autour de l'axe (Oz);  $\varphi$  a alors parcouru l'intervalle  $[0, 2\pi]$  en décrivant un cercle. Ensuite, la calotte peut être vue comme un « accolage » de cercles de rayon allant de  $R \sin \alpha$  à 0 (le cercle de rayon nul étant confondu avec un point de l'axe (Oz)). En d'autres termes, cela implique que  $\theta \in [\pi - \alpha, \pi]$ . Ainsi, pour totalement parcourir la calotte, il faut  $\varphi \in [0, 2\pi]$  et  $\theta \in [\pi - \alpha, \pi]$ . Il vient

 $\phi = \int_{\theta = \pi - \alpha}^{\pi} \int_{\varphi = 0}^{2\pi} \vec{E} \cdot R^2 \sin(\theta) \, d\theta \, d\varphi \, \vec{e}_r.$ 

**2.15** c) Le champ  $\vec{E}$  est celui sur la calotte sphérique, soit en r=R. Ainsi, on a

$$\phi = \frac{1}{4\pi\varepsilon_0 R^2} \times R^2 \int_{\theta=\pi-\alpha}^{\pi} \sin(\theta) \, d\theta \int_{\varphi=0}^{2\pi} d\varphi \quad donc \quad \phi = \underbrace{\frac{q}{2\varepsilon_0}}_{K} (1 - \cos\alpha).$$

- **2.15** d) Pour  $\alpha = \pi$  et q = e, on a  $\phi = \frac{e}{\varepsilon_0}$ . Donc, après calcul,  $\phi = 1.8 \times 10^{-8} \,\text{V} \cdot \text{m}$ .
- **2.16** a) On a  $\phi(\vec{E}) = \iint_{\mathcal{S}} \vec{E} \cdot \vec{dS} = 4\pi r^2 E(r)$ .
- **2.16** b) Le théorème de Gauss assure que  $\phi(\vec{E}) = Q/\varepsilon_0$  donc  $Q = \varepsilon_0 \phi(\vec{E}) = \varepsilon_0 4\pi r^2 E(r) = q \left(1 + \frac{r}{a}\right) e^{-r/a}$ .

- 2.18 a) Le gradient est dirigé dans le sens des potentiels croissants, orthogonalement aux équipotentielles.
- **2.18** b) Comme  $\vec{E} = -\overrightarrow{\text{grad}}V$ , la direction du champ est opposée à celle du gradient.

**2.19** a) Le segment AB a une pente constante  $\frac{y_B - y_A}{x_B - x_A} = \frac{2a - 0}{2a - a} = 2$ . Or, cette dernière correspond à  $\frac{dy}{dx}$ . Ainsi, dy = 2 dx.

.....

.....

**2.19** b) Pour x > 0, le champ  $\overrightarrow{E}$  est orienté suivant  $+\overrightarrow{e_x}$ . Il s'agit donc du sens des potentiels décroissants. Comme 2a > a, V(2a) < V(a). V(a) est donc le potentiel le plus élevé.

.....

**2.19** c) Le champ étant porté par  $\overrightarrow{e_x}$ , on a  $\overrightarrow{E} \cdot \overrightarrow{d\ell} = E_x dx$ . On a alors

$$V(A) - V(B) = \int_{a}^{2a} E_0 (1 - e^{-x/a}) dx = E_0 \left[ x + a e^{-x/a} \right]_{a}^{2a} = E_0 a (1 + e^{-2} - e^{-1}).$$

- **2.20** a) On a  $AM^2 = \|\overrightarrow{OM} + \overrightarrow{AO}\|^2 = \|\overrightarrow{OM}\|^2 + \|\overrightarrow{AO}\|^2 + 2\overrightarrow{OM} \cdot \overrightarrow{AO} = r^2 + \left(\frac{a}{2}\right)^2 ar\cos(\theta)$ .
- **2.20** b) On a  $\frac{1}{\text{AM}} = \frac{1}{r} \left( 1 + \left( \frac{a}{2r} \right)^2 \frac{a \cos(\theta)}{r} \right)^{-1/2}$ . On utilise ensuite l'approximation  $(1 + \varepsilon)^{\alpha} = 1 + \alpha \varepsilon$  à

l'ordre 1 en  $\varepsilon$  autour de 0. À l'ordre 1 en  $\frac{a}{r}$ , on trouve  $\frac{1}{\mathrm{AM}} \simeq \frac{1}{r} \left( 1 + \frac{a \cos(\theta)}{2r} \right)$ .

- **2.20** c) De manière similaire,  $BM^2 = r^2 + \left(\frac{a}{2}\right)^2 + ar\cos(\theta)$  donc  $\frac{1}{BM} = \frac{1}{r}\left(1 + \left(\frac{a}{2r}\right)^2 + \frac{a\cos(\theta)}{r}\right)^{-1/2}$  et, à l'ordre 1 en  $\frac{a}{r}$ , on trouve  $\frac{1}{BM} \simeq \frac{1}{r}\left(1 \frac{a\cos(\theta)}{2r}\right)$ .
- $\mathbf{2.20} \text{ d)} \quad \text{On a } V(\mathbf{M}) = \frac{q}{4\pi\varepsilon_0} \left( \frac{1}{\mathbf{AM}} \frac{1}{\mathbf{BM}} \right) = \frac{q}{4\pi\varepsilon_0 r} \left( 1 + \frac{a\cos(\theta)}{2r} 1 + \frac{a\cos(\theta)}{2r} \right) = \frac{qa\cos(\theta)}{4\pi\varepsilon_0 r^2}.$
- **2.21** a) Les lignes de champ électrostatique sont orientées vers les charges négatives.

**2.21** b) Sachant que  $\overrightarrow{E} = -\overrightarrow{\text{grad}}V$ , le champ électrostatique pointe vers les valeurs de potentiel décroissantes, d'où le signe +.

**2.21** c) En appelant A₁₀₀ et A₂₀₀ les projetés respectifs de A sur les équipotentielles de 100 V et 200 V, alors la relation  $\vec{E} = -\overrightarrow{\text{grad}} V = -\frac{\partial V}{\partial z} \vec{e_z}$  (car ici  $\vec{E}(A)$  est selon  $\vec{e_z}$ ) permet d'approximer la norme du champ en A :

$$E(\mathbf{A}) = \frac{V(\mathbf{A}_{200}) - V(\mathbf{A}_{100})}{z_{\mathbf{A}_{200}} - z_{\mathbf{A}_{100}}} = \frac{200 - 100}{2,5 \, \text{division} \times 40 \, \text{cm} \cdot \text{division}^{-1}} = 1 \times 10^2 \, \text{V} \cdot \text{m}^{-1}.$$

**2.21** d) Du fait de la verticalité de l'individu par rapport à l'horizontalité du sol, les équipotentielles sont davantage resserrées en B qu'en A; ainsi, le champ électrostatique est plus intense en B qu'en A : c'est l'effet de pointe.

.....

## Fiche nº 3. Magnétostatique

#### Réponses **3.13** a)..... (a) et (d) **3.13** b)..... **3.1** c)..... **3.13** d)..... $2j_0S\frac{b}{-}$ **3.14** a)..... 3.2 ...... **3.14** b)..... 3.3 ...... $j_{\mathrm{s},0}\ell$ **3.15** a)..... **3.15** b)..... $4\pi R^2 j_r(R)$ **3.4** b)..... $-Ba^2$ 3.5 ...... (b) et (c) $\mu_0 NI$ **3.6** a)..... (a), (c) et (d) **3.16** b)..... $2\pi r$ **3.6** b)..... (b), (c) et (d) $\frac{\overline{\mu_0}NIa}{\ln}$ **3.17** a)..... $1 \times 10^1 \,\mathrm{T}$ $4d\ell j_0$ **3.17** b)..... $4 \times 10^2 \,\mathrm{Wb}$ **3.7** b)..... $3 \times 10^2 \,\mathrm{Wb}$ **3.7** c)..... **3.8** a)..... $\mu_0 \overrightarrow{\mathcal{M}}$ 3.19 ..... 3.9 ..... **3.20** a)..... $mB_{\rm ext}$ 3.10 ..... $mB_{\rm ext}$ Mg-2Bd $\frac{n}{2}Bd$

## Corrigés

3.1 a) L'intensité du courant s'exprime en fonction des densités surfacique et volumique de courant grâce aux relations  $I = \iint \vec{j} \cdot \vec{dS}$  et  $I = \int \vec{j}_s \cdot \vec{d\ell}$ .

- **3.1** b) On note j la norme du vecteur  $\vec{j}$ . On a  $I = \iint \vec{j} \cdot d\vec{S}$  donc  $I = [j] \times L^2$  et donc  $[j] = I \cdot L^{-2}$ .
- **3.1** c) On note  $j_s$  la norme du vecteur  $\overrightarrow{j_s}$ . On a  $I = \int \overrightarrow{j_s} \cdot \overrightarrow{d\ell}$  donc  $I = [j_s] \times L$  et donc  $[j_s] = I \cdot L^{-1}$ .
- On a  $I = \iint \overrightarrow{j} \cdot \overrightarrow{dS} = \iint j_0 \overrightarrow{e_z} \cdot dS \overrightarrow{e_z} = \int_0^a j_0 \frac{b}{r} 2\pi r dr = 2\pi j_0 b \times a$ , soit  $I = 2j_0 S \frac{b}{a}$ , avec  $S = \pi a^2$ .
- 3.3 On a  $I = \int \vec{j_s} \cdot \vec{d\ell} = \int_0^\ell j_{s,0} \vec{e_\theta} \cdot dz \vec{e_\theta} = \int_0^\ell j_{s,0} dz = j_{s,0} \ell.$
- **3.4** a) Le courant de particules chargées est radial : le vecteur densité de courant électrique  $\vec{j}$  est radial, c'està-dire porté par  $\vec{e_r}$  :  $\vec{j} = j_r(r, \theta, \varphi)$ . Aussi, l'émission est isotrope donc il y a invariance de la distribution de courant électrique par rotation autour du point O : la composante  $j_r$  n'est une fonction que de r. Il vient :  $\vec{j} = j_r(r)\vec{e_r}$ .

3.4 b) L'intensité du courant électrique traversant une surface élémentaire de vecteur surface élémentaire  $\overrightarrow{dS} = r^2 \sin(\theta) d\theta d\varphi \overrightarrow{e_r}$  est  $dI_r = \overrightarrow{j} \cdot \overrightarrow{dS} = j_r(r)r^2 \sin(\theta) d\theta d\varphi$ . Cette grandeur est uniforme sur une sphère de rayon R (de surface  $4\pi R^2$ ) donc  $I_R = 4\pi R^2 j_r(R)$ .

Les plans (xOy) et (xOz) sont des plans d'antisymétrie de la distribution car les courants de la distribution sont répartis de manière strictement opposée de part et d'autre de chacun de ces plans. Par ailleurs, la longueur du solénoïde n'intervient pas dans l'étude des symétries d'une distribution, mais doit être considérée lors d'une étude de ses invariances.

.....

**3.6** a) En tout point M du plan (xOy), plan d'antisymétrie pour la distribution, le champ magnétostatique appartient à ce plan. C'est bien le cas pour le point O et les différents points  $P_i$ . Il est alors possible d'écrire :  $\overrightarrow{B}(M) = B_x(M)\overrightarrow{e_x} + B_y(M)\overrightarrow{e_y}$ . Par ailleurs, le vecteur  $\overrightarrow{e_z}$  est bien normal au plan (xOy).

.....

**3.6** b) Le vecteur  $\overrightarrow{e_x}$  est bien normal au plan (yOz). En tout point M du plan (yOz), plan de symétrie pour la distribution, le champ magnétostatique est perpendiculaire à ce plan, donc est selon  $\pm \overrightarrow{e_x}$ . Il est alors possible d'écrire :  $\overrightarrow{B}(M) = B_x(M)\overrightarrow{e_x}$ . Les différents points  $P_i$  n'appartiennent pas à ce plan, donc rien ne peut en être déduit sur le champ en ces points.

**3.6** c) Il faut bien préciser que c'est en tout point M du plan (xOz), plan de symétrie pour la distribution, que le champ magnétostatique est perpendiculaire à ce plan. C'est bien le cas pour le point O mais pas pour les différents points  $P_i$  (qui n'appartiennent pas à ce plan). Il est alors possible d'écrire :  $\vec{B}(M) = B(M)\vec{e_y}$ .

Le point O appartient aux plans de symétrie (xOz) et (yOz) donc le champ en ce point doit être perpendiculaire à ces deux plans : il est nécessairement nul.

Puisque le plan (xOy) est un plan d'antisymétrie pour la distribution, en tout point de ce plan le champ magnétostatique appartient à ce plan. C'est bien le cas pour les différents points  $P_i$ . Il est alors possible d'écrire :

$$\vec{B}(P_i) = B_x(P_i)\vec{e_x} + B_y(P_i)\vec{e_y}.$$

De plus, puisque le plan (yOz) est un plan de symétrie pour la distribution, c'est un plan d'antisymétrie pour le champ magnétostatique. Tout cela permet alors d'écrire :  $B_y(P_2) = -B_y(P_1)$  et  $B_x(P_2) = B_x(P_1)$ , mais pas  $\vec{B}(P_2) = -\vec{B}(P_1)$ ! En bref, il est aussi possible d'écrire :  $\vec{B}(P_2) = -\text{sym}(\vec{B}(P_1))$ , où « sym » représente l'opération de symétrie par rapport au plan (yOz).

**3.7** a) On a 
$$I = \iint_{\Sigma} \overrightarrow{j} \cdot \overrightarrow{dS} = \iint_{S} j_0 \overrightarrow{e_x} \cdot dy \, dz \overrightarrow{e_x} = j_0 \times 2\ell \times 2d = 4j_0 \ell d.$$

**3.7** b) Le vecteur densité volumique de courant est  $\overrightarrow{j} = j_0 \overrightarrow{e_x}$  et  $j_0$  est constant donc la distribution est invariante par translation suivant (Ox) et (Oy). La couche étant finie, elle n'est pas invariante par translation suivant (Oz), et encore moins par rotation autour de cet axe, le vecteur  $\overrightarrow{j}$  étant porté par  $\overrightarrow{e_x}$ .

.....

**3.7** c) La distribution est invariante par translation suivant les axes (Ox) et (Oy), donc la composante  $B_y$  du champ ne dépend que de z.

- **3.8** a) En tenant compte du sens du courant, on a  $\overrightarrow{B_2}(O) = -\mu_0 n_2 I_2 \overrightarrow{e_y}$ , où  $n_2$  est le nombre de spires par unité de longueur du solénoïde (2).
- 3.8 b) D'après le théorème de superposition, on a  $\overrightarrow{B}(O) = \overrightarrow{B_1}(O) + \overrightarrow{B_2}(O)$  donc  $\overrightarrow{B}(O) = \mu_0(n_1I_1\overrightarrow{e_x} n_2I_2\overrightarrow{e_y})$ .
- Sachant que la force magnétique s'exprime comme  $\overrightarrow{F} = q\overrightarrow{v} \wedge \overrightarrow{B}$  alors le produit qvB est homogène à une force. Si l'égalité  $B = \frac{mv}{qR}$  est vraisemblable alors  $qv \times B = qv \times \frac{mv}{qR} = \frac{mv^2}{R}$  serait homogène à une force. Or,  $mv^2$  est homogène à une énergie puisque l'énergie cinétique s'exprime comme  $\frac{mv^2}{2}$ . De plus, d'après l'expression du travail élémentaire  $\delta W = \overrightarrow{F} \cdot \overrightarrow{d\ell}$  d'une force  $\overrightarrow{F}$ , une énergie divisée par une longueur correspond à une force. Finalement, le rapport  $\frac{mv^2}{R}$  est donc bien homogène à une force et la relation  $B = \frac{mv}{qR}$  est vraisemblable du point de vue de l'analyse dimensionnelle. Bien sûr, d'autres raisonnements sont possibles en se fondant sur d'autres relations !

**3.10** Le champ magnétique est linéaire pour 0 < r < a et hyperbolique pour r > a.

3.11 a) Sachant que  $B_y = kx \neq 0$  pour tout M(x, y, z) alors le vecteur champ magnétostatique ne peut pas être constamment parallèle à  $\overrightarrow{e_x}$ , ce qui élimine la carte de champ (3). En prenant les points de l'espace où x = 0, le vecteur champ magnétostatique doit s'écrire comme  $\overrightarrow{B}(M) = ky\overrightarrow{e_x}$ : les vecteurs champs le long de cette ligne doivent être perpendiculaires à cette ligne. Parmi les cartes de champ (1), (2) et (4) restantes, seule la (2) possède cette propriété.

.....

Autre méthode possible : En prenant les points de l'espace où y=0, le vecteur champ magnétostatique doit s'écrire comme  $\vec{B}(\mathbf{M})=kx\vec{e_y}$  : les vecteurs champs le long de cette ligne doivent être perpendiculaires à cette ligne. Seule la carte de champ (2) possède cette propriété.

.....

**3.11** b) Le flux magnétostatique est conservatif donc le resserrement des lignes de champ constaté de M à N permet d'affirmer que le champ magnétostatique est plus intense au point N qu'au point M.

- 3.12 a) Le calcul de la circulation du champ magnétostatique de A à C se décompose en deux.
  - D'une part, sur [AB] : on a  $\mathcal{C}_{AB} = \int_A^B \overrightarrow{B} \cdot \overrightarrow{d\ell} = 0$  (chemin perpendiculaire aux lignes de champ).
  - D'autre part, sur [BC] : on a  $\mathcal{C}_{BC} = \int_B^C \overrightarrow{B} \cdot \overrightarrow{d\ell} = 4Bd \text{ (chemin parallèle aux lignes de champ)}.$
- **3.12** b) D'une part, sur [AB] :  $\mathcal{C}_{AB} = \int_A^B \overrightarrow{B} \cdot \overrightarrow{d\ell} = -8Bd$ . Seule la projection de  $\overrightarrow{AB}$  sur la ligne de champ doit être prise en compte. Le signe moins provient du sens de  $\overrightarrow{B}$  par rapport à celui de la projection de  $\overrightarrow{AB}$ . D'autre part, sur [BC] :  $\mathcal{C}_{BC} = \int_B^C \overrightarrow{B} \cdot \overrightarrow{d\ell} = 6Bd$ .
- **3.12** c) D'une part, sur [AB] :  $\mathcal{C}_{AB} = \int_A^B \vec{B} \cdot \vec{d\ell} = \frac{7\pi d}{2}B$ . Le chemin [AB] est un demi-cercle de longueur  $\frac{7\pi d}{2}$ . D'autre part, sur [BC] :  $\mathcal{C}_{BC} = \int_B^C \vec{B} \cdot \vec{d\ell} = 0$  (chemin perpendiculaire aux lignes de champ).
- **3.13** a) Le contour enlace le fil. L'orientation du contour et le sens de I sont tels que  $I_{\text{enl}} = +I$ .
- 3.13 b) Le contour n'enlace pas le fil donc  $I_{\text{enl}} = 0$ , quels que soient l'orientation du contour et le sens de I.
- 3.13 c) Le contour enlace le fil. L'orientation du contour et le sens de I sont tels que  $I_{\rm enl}=-I$ .
- 3.13 d) Le fil est positionné de façon telle que le courant passe quatre fois « à l'intérieur » du contour. L'orientetion du contour et le core de L'orientetie que le courant passe quatre fois « à l'intérieur » du contour. L'orientetien du contour et le core de L'orientetie que le courant passe quatre fois « à l'intérieur » du contour. L'orientetien du contour et le core de L'orientetie que le courant passe quatre fois « à l'intérieur » du contour. L'orientetien du contour et le core de L'orientetie que le courant passe quatre fois « à l'intérieur » du contour. L'orientetien du contour et le core de L'orientetie que le courant passe quatre fois « à l'intérieur » du contour. L'orientetien du contour et le core de L'orientetie que le courant passe quatre fois « à l'intérieur » du contour et le core de l'orientetie que le courant passe quatre fois « à l'intérieur » du contour et le core de l'orientetie que le courant passe quatre fois « à l'intérieur » du contour et le core de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'oriente de l'or

tation du contour et le sens de I sont tels que  $I_{\rm enl} = +4I$ .

- **3.14** a) Le produit scalaire  $\overrightarrow{B} \cdot \overrightarrow{dS}$  est positif lorsque le champ  $\overrightarrow{B}$  et le vecteur surface élémentaire  $\overrightarrow{dS}$  (donné par l'orientation de la surface) pointent globalement dans la même direction (ils forment ainsi un angle aigu, c'est-à-dire compris entre 0 et 90°).
- Pour le cas  $\widehat{\mathbf{a}}$ , le champ  $\overrightarrow{B}$  est vertical et vers le haut. De même, le vecteur surface élémentaire  $\overrightarrow{\mathbf{dS}}$  est vertical et orienté vers le haut (d'après l'orientation du contour). Finalement :  $\overrightarrow{B} \cdot \overrightarrow{\mathbf{dS}} > 0$ , soit  $\phi > 0$ .
- Pour le cas b, le champ  $\overrightarrow{B}$  est vertical et vers le bas. Par contre, le vecteur surface élémentaire  $\overrightarrow{dS}$  est vertical et orienté vers le haut (d'après l'orientation du contour). Finalement :  $\overrightarrow{B} \cdot \overrightarrow{dS} < 0$ , soit  $\phi < 0$ .
- Pour le cas  $\overrightarrow{\mathbf{c}}$ , le champ  $\overrightarrow{B}$  est vertical et vers le haut. Par contre, le vecteur surface élémentaire  $\overrightarrow{\mathbf{dS}}$  est vertical et orienté vers le bas (d'après l'orientation du contour). Finalement :  $\overrightarrow{B} \cdot \overrightarrow{\mathbf{dS}} < 0$ , soit  $\phi < 0$ .
- Pour le cas  $\stackrel{\frown}{e}$ , le champ  $\vec{B}$  pointe globalement vers le bas. Par ailleurs, le vecteur surface élémentaire  $\vec{dS}$  est vertical et orienté vers le bas (d'après l'orientation du contour). Finalement :  $\vec{B} \cdot \vec{dS} > 0$ , soit  $\phi > 0$ .
- Pour le cas (f), le champ  $\vec{B}$  pointe globalement vers le haut. Par ailleurs, le vecteur surface élémentaire  $\vec{dS}$  est vertical et orienté vers le bas (d'après l'orientation du contour). Finalement :  $\vec{B} \cdot \vec{dS} < 0$ , soit  $\phi < 0$ .

**3.14** b) Pour le cas  $\overrightarrow{d}$ , le champ  $\overrightarrow{B}$  est horizontal. Par contre, le vecteur surface élémentaire  $\overrightarrow{dS}$  est vertical. Finalement :  $\overrightarrow{B} \cdot \overrightarrow{dS} = 0$ , soit  $\phi = 0$ . Aucune ligne de champ ne passe à travers la surface orientée, donc le flux est nécessairement nul.

3.15 a) À ce sens de parcours de la spire est associé le vecteur normal  $\vec{n}$  opposé au champ magnétostatique. D'où  $\phi(\vec{B}) = \iint_{\Sigma} \vec{B} \cdot \vec{n} \, dS = -\iint_{\Sigma} B \, dS$  en notant  $\Sigma$  l'intersection entre le plan de la spire et la zone de champ.

Pour x < 0, on a donc  $\phi(\vec{B}) = 0$ .

- → →
- **3.15** b) Le champ  $\vec{B}$  est uniforme donc on a  $\phi(\vec{B}) = -B\Sigma = -Bax$ .
- **3.15** c) Ici, on a  $\phi(\vec{B}) = -B\Sigma = -Ba^2$ .
- 3.16 a) Les N spires du tore traversent la surface délimitée par le cercle de centre O et de rayon  $R \frac{a}{2} < r < R + \frac{a}{2}$ . Le courant enlacé vaut donc  $I_{\text{enl}} = NI$ .
- **3.16** b) Sur le contour fermé choisi, r et B(r) sont constants. Il vient :

$$\oint \vec{B} \cdot \vec{dl} = \oint B(r) \vec{e_{\theta}} \cdot r \, d\theta \vec{e_{\theta}} = 2\pi r B(r).$$

D'après le théorème d'Ampère, on a  $2\pi rB(r) = \mu_0 I_{\rm enl}$  et donc  $B(r) = \frac{\mu_0 NI}{2\pi r}$ .

- **3.16** c) On a  $\phi(\vec{B}) = \iint \vec{B} \cdot \vec{n} \, dS = \int_{R-a/2}^{R+a/2} \frac{\mu_0 NI}{2\pi r} \, dr \int_{-a/2}^{a/2} dz = \frac{\mu_0 NIa}{2\pi} \ln\left(\frac{R+a/2}{R-a/2}\right).$
- **3.17** a) On a  $B = \mu_0 \mu_r \frac{N}{\ell} I$ . Donc,  $B = 4\pi \times 10^{-7} \,\mathrm{H \cdot m^{-1}} \times 4000 \times \frac{1000}{10 \times 10^{-2} \,\mathrm{m}} \times 200 \times 10^{-3} \,\mathrm{A} \approx 1 \times 10^1 \,\mathrm{T}$ .
- **3.17** b) On a  $\phi = NBS$ . Donc,  $\phi = 1000 \times 1 \times 10^{1} \text{ T} \times (20 \times 10^{-2} \text{ m})^{2} = 4 \times 10^{2} \text{ Wb}$ .
- **3.17** c) Le champ magnétostatique est un champ à flux conservatif. Or, le circuit magnétique joue le rôle d'un tube de champ, donc la « loi des nœuds magnétique » appliquée à la jonction qui surmonte  $(S_1)$  donne :  $\phi = \phi_1 + \phi_2$ , soit  $\phi_1 = \phi \phi_2 = \phi \frac{1}{4}\phi = \frac{3}{4}\phi$ . Donc,  $\phi_1 = \frac{3}{4} \times 4 \times 10^2 \,\text{Wb} = 3 \times 10^2 \,\text{Wb}$ .
- 3.18 a) Pour une boucle de courant plane, de surface S et parcourue par un courant d'intensité I (ce qui permet de définir le vecteur surface  $\vec{S}$ ), le moment magnétique est défini par la relation  $\vec{\mathcal{M}} = I\vec{S}$ . Pour une spire de rayon R et d'axe (Oz), le vecteur surface a alors pour expression  $\vec{S} = S\vec{e_z} = \pi R^2 \vec{e_z}$ , donc  $\vec{\mathcal{M}} = \pi R^2 I\vec{e_z}$ .
- **3.18** b) Dans le cadre de l'approximation dipolaire :  $z \gg R$  donc  $R^2 + z^2 = z^2$ . Le champ magnétostatique s'écrit alors :  $\vec{B}(M) = \frac{\mu_0 I R^2}{2z^3} \vec{e_z}$  ou encore  $\vec{B}(M) = \frac{\mu_0 \vec{\mathcal{M}}}{2\pi z^3}$ .
- 3.19 Des valeurs particulières de  $\theta$ , telles  $\theta = 0$  ou  $\theta = \pi/2$ , et l'étude de l'orientation du champ magnétostatique pour ces angles, permettent de conclure que  $\vec{B}(M) = \frac{\mu_0 m}{4\pi r^3} (2\cos(\theta)\vec{e_r} + \sin(\theta)\vec{e_\theta})$ .

**3.20** a) Le moment du couple magnétique s'exprime comme  $\Gamma_z = +mB_{\rm ext}$  à l'équilibre, car  $\overrightarrow{m}$  et  $\overrightarrow{B}_{\rm ext}$  sont orthogonaux.

.....

- **3.20** b) À l'équilibre, le théorème du moment cinétique donne :  $0 = mB_{\text{ext}} dMg$ , soit  $d = \frac{mB_{\text{ext}}}{Mg}$ .
- **3.21** a) D'après la relation  $\overrightarrow{\Gamma} = \overrightarrow{m} \wedge \overrightarrow{B}$ , le moment  $\overrightarrow{\Gamma}$  est colinéaire à  $-\overrightarrow{e_z}$  et de même sens.
- **3.21** b) D'après la relation  $\vec{\Gamma} = \vec{m} \wedge \vec{B}$ , le moment  $\vec{\Gamma}$  est colinéaire à  $+\vec{e_z}$  et de même sens.
- **3.21** c) D'après la relation  $\vec{\Gamma} = \vec{m} \wedge \vec{B}$ , le moment  $\vec{\Gamma}$  est colinéaire à  $+\vec{e_z}$  et de même sens.
- 3.21 d) D'après la relation  $\vec{\Gamma} = \vec{m} \wedge \vec{B}$ , le moment  $\vec{\Gamma}$  est colinéaire à  $+\vec{e_z}$  et de même sens.
- 3.22 a) Lorsque le dipôle est aligné sur le champ (même direction et même sens) :  $\overrightarrow{m} \cdot \overrightarrow{B}_{\text{ext}} = m \|\overrightarrow{B}_{\text{ext}}\|$ , soit  $\overrightarrow{F} = + \overrightarrow{\text{grad}} \left( \frac{\mu_0 I m}{2\pi r} \right) = -\frac{\mu_0 I m}{2\pi r^2} \overrightarrow{e_r}$ .
- **3.22** b) La force  $\vec{F}$  est dirigée dans la direction et le sens du gradient de la norme du champ magnétostatique. Le dipôle est donc attiré vers les régions de champ plus intense. On peut aussi remarquer que le dipôle a tendance à se déplacer de manière à minimiser son énergie potentielle.

# Fiche nº 4. Équations de Maxwell

## Réponses

•	
<b>4.1</b> a)	<b>4.6</b> a) $\mu_0 \operatorname{div} \overrightarrow{j} + \varepsilon_0 \mu_0 \frac{\partial \operatorname{div} \overrightarrow{E}}{\partial t}$
<b>4.1</b> b)	
<b>4.1</b> c) $\frac{M}{I \cdot T^2}$	<b>4.6</b> b) $\mu_0 \operatorname{div} \overrightarrow{j} + \mu_0 \frac{\partial \rho}{\partial t}$
<b>4.1</b> d) $\frac{M \cdot L}{I \cdot T^3}$	<b>4.6</b> c)
$I \cdot T^3$	<b>4.7</b> a)
<b>4.1</b> e) $\frac{M \cdot L}{I \cdot T^3}$	<b>4.7</b> b)
40.)	<b>4.7</b> C)
<b>4.2</b> a)	<b>4.7</b> d)
<b>4.2</b> b)	<b>4.7</b> e)
<b>4.2</b> c)	<b>4.8</b> a)
<b>4.2</b> d)	<b>4.8</b> b) $\left[ -\omega y \overrightarrow{e_x} + \omega x \overrightarrow{e_y} \right]$
<b>4.2</b> e) $1.1 \times 10^{-8}$	<b>4.8</b> c)
<b>4.3</b> a) $E_0 \cos[\omega t - kx] \overrightarrow{e_y} + E_0 \sin[\omega t - kx] \overrightarrow{e_z}$	$4.8 \; \mathrm{d}) \dots \qquad \qquad \boxed{r\omega}$
<b>4.3</b> b) $ -E_0 \exp[i(\omega t + kz)] \overrightarrow{e_x} $ $+iE_0 \exp[i(\omega t + kz)] \overrightarrow{e_y} $	<b>4.8</b> e) $\left\lfloor \frac{a^2}{r} \omega \right\rfloor$
	<b>4.9</b> a)
<b>4.4</b> a)	4 <b>9</b> b)
<b>4.4</b> b) Positive	<b>4.9</b> b)
<b>4.4</b> c)	<b>4.9</b> c)
<b>4.4</b> d)	<b>4.9</b> d)
<b>4.4</b> e)	<b>4.9</b> e) $4\pi R^3(a - bR^2)$
<b>4.4</b> f)	<b>4.10</b> a)
<b>4.5</b> a)	<b>4.10</b> b)
<b>4.5</b> b) Positive	
	<b>4.10</b> c)
<b>4.5</b> d)	<b>4.11</b> a) $E_0 \frac{k}{\omega} \cos(\omega t - kz + \varphi) \overrightarrow{e_y}$
·	<b>4.11</b> b) $E_0\sqrt{\varepsilon_0\mu_0}\sinh(\sqrt{\varepsilon_0\mu_0}\alpha z)\exp(-\alpha t)\overrightarrow{e_y}$
<b>4.5</b> e)	Συγουρουπη(γουρουπ) στρ( αυ)ση
<b>4.5</b> f) Négative	<b>4.11</b> c) $ -\frac{2E_0}{k^2r^3} \int \cos(\omega t) \overrightarrow{e_\theta} dt $

## Corrigés

**4.1** a) Les trois premières équations correspondent aux équations de Maxwell-Gauss, Maxwell-Faraday et Maxwell-Ampère. La dernière est une formulation de l'équation de conservation de la charge, qui n'est pas une des équations de Maxwell mais une conséquence de deux d'entre elles.

.....

- **4.1** b) La définition de l'intensité du courant électrique est :  $i(t) = \frac{dq}{dt}$ , donc dim $(q) = I \cdot T$ .
- **4.1** c) Par analyse dimensionnelle de la force de Lorentz, on a :

$$\dim(\overrightarrow{B}) = \frac{\dim(\overrightarrow{F})}{\dim(q)\dim(\overrightarrow{v})} = \frac{M \cdot L \cdot T^{-2}}{I \cdot T \cdot L \cdot T^{-1}} = \frac{M}{I \cdot T^{2}}.$$

**4.1** d) Par analyse dimensionnelle de la force de Lorentz, on a :  $\dim(\overrightarrow{E}) = \frac{\dim(\overrightarrow{F})}{\dim(q)} = \frac{M \cdot L \cdot T^{-2}}{I \cdot T} = \frac{M \cdot L}{I \cdot T^3}$ .

**4.1** e) Par analyse dimensionnelle de l'équation de Maxwell-Faraday, on a :

$$\dim(\overrightarrow{\mathrm{rot}}(\overrightarrow{E})) = \frac{\dim(\overrightarrow{E})}{L} = \frac{\dim(\overrightarrow{B})}{T} \qquad \mathrm{donc} \qquad \dim(\overrightarrow{E}) = \frac{\dim(\overrightarrow{B}) \cdot L}{T} = \frac{M \cdot I^{-1} \cdot T^{-2} \cdot L}{T} = \frac{M \cdot L}{I \cdot T^{3}}$$

**4.2** a) On a 
$$\|\vec{j}_{\text{cond}}\| = \|\sigma E_0 \cos(\omega t + \varphi)\| < \|\sigma E_0\| \text{ et } \|\vec{j}_{\text{dépl}}\| = \|-\varepsilon_0 \omega E_0 \sin(\omega t + \varphi)\| < \|\varepsilon_0 \omega E_0\|.$$
 Donc,

$$\alpha$$
 a pour ordre de grandeur  $\frac{\sigma E_0}{\varepsilon_0 \omega E_0} = \frac{\sigma}{\varepsilon_0 \omega}.$ 

**4.2** b) On a 
$$\alpha \gg 1 \iff f \ll \frac{\sigma}{2\pi\varepsilon_0} = \frac{1 \times 10^7 \,\mathrm{S \cdot m^{-1}}}{2\pi \times 8.8 \times 10^{-12} \,\mathrm{F \cdot m^{-1}}} = 1.8 \times 10^{17} \,\mathrm{Hz}.$$

4.2 c) On a 
$$\alpha = \frac{\sigma}{\varepsilon_0 \omega} = \frac{1.0 \times 10^7 \,\mathrm{S \cdot m^{-1}}}{8.8 \times 10^{-12} \,\mathrm{F \cdot m^{-1}} \times 1.0 \times 10^6 \,\mathrm{rad \cdot s^{-1}}} = 1.1 \times 10^{12} \gg 1.$$

4.2 d) On a 
$$\alpha = \frac{\sigma}{\varepsilon_0 \omega} = \frac{1.0 \times 10^{-4} \,\mathrm{S \cdot m^{-1}}}{8.8 \times 10^{-12} \,\mathrm{F \cdot m^{-1}} \times 1.0 \times 10^6 \,\mathrm{rad \cdot s^{-1}}} = 1.1 \times 10^1$$
, dont l'ordre de grandeur est 10.

$$\textbf{4.2 e)} \hspace{0.5cm} \text{On a } \alpha = \frac{\sigma}{\varepsilon_0 \omega} = \frac{1,0 \times 10^{-13} \, \mathrm{S \cdot m^{-1}}}{8,8 \times 10^{-12} \, \mathrm{F \cdot m^{-1}} \times 1,0 \times 10^6 \, \mathrm{rad \cdot s^{-1}}} = 1,1 \times 10^{-8} \ll 1.$$

**4.3** a) On a :

$$\underline{\vec{E}}_1 = E_0 \exp[i(\omega t - kx)] \vec{e_y} - iE_0 \exp[i(\omega t - kx)] \vec{e_z} 
= E_0(\cos(\omega t - kx) + i\sin(\omega t - kx)) \vec{e_y} - iE_0(\cos(\omega t - kx) + i\sin(\omega t - kx)) \vec{e_z}.$$

Donc,  $\vec{E}_1 = \text{Re}(\vec{E}_1) = E_0 \cos[\omega t - kx] \vec{e_y} + E_0 \sin[\omega t - kx] \vec{e_z}$ .

4.5 a) On peut estimer le rotationnel selon un axe en observant si le champ de vecteurs « tourne » dans le sens direct ou indirect. Si le champ de vecteurs ne « tourne » pas autour d'un axe alors le rotationnel est nul. Si le champ de vecteurs semble « tourner » dans le sens direct alors le rotationnel est positif; dans le cas contraire, il est négatif.

.....

**4.6** a) Avec la relation de Maxwell-Ampère et le théorème de Schwarz, on a :

$$\operatorname{div}(\overrightarrow{\operatorname{rot}}\,\overrightarrow{B}) = \operatorname{div}\left(\mu_0\,\overrightarrow{j} + \varepsilon_0\,\mu_0\,\frac{\partial \overrightarrow{E}}{\partial t}\right) = \mu_0\,\operatorname{div}\,\overrightarrow{j} + \varepsilon_0\,\mu_0\,\frac{\partial\operatorname{div}\overrightarrow{E}}{\partial t}.$$

**4.6** b) Avec la relation de Maxwell-Gauss, on a :

$$\operatorname{div}(\overrightarrow{\operatorname{rot}}\,\overrightarrow{B}) = \mu_0 \,\operatorname{div}\,\overrightarrow{j} + \varepsilon_0\,\mu_0\,\frac{\partial(\frac{\rho}{\varepsilon_0})}{\partial t} = \mu_0\,\Big(\operatorname{div}\,\overrightarrow{j} + \frac{\partial\rho}{\partial t}\Big).$$

**4.6** c) Comme div
$$(\overrightarrow{rot} \overrightarrow{B}) = 0$$
, on obtient : div  $\overrightarrow{j} + \frac{\partial \rho}{\partial t} = 0$ .

**4.7** a) En utilisant l'homogénéité, on voit que a est une longueur, en mètres (m).

**4.7** b) On a 
$$\Delta V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = \frac{V_0}{a^2} (2 + 4 - 6) = 0.$$



**4.7** d) On a  $V(x,0,0) = \frac{V_0}{a^2}x^2$ : c'est une parabole. L'allure en est donnée ci-contre:



**4.7** e) Le champ électrique est donné par :

$$\overrightarrow{E} = -\overrightarrow{\text{grad}} V = -\frac{\partial V}{\partial x} \overrightarrow{e_x} - \frac{\partial V}{\partial y} \overrightarrow{e_y} - \frac{\partial V}{\partial z} \overrightarrow{e_z} = 2\frac{V_0}{a^2} (-x\overrightarrow{e_x} - 2y\overrightarrow{e_y} + 3z\overrightarrow{e_z}).$$

En O, origine du repère, ce champ est nul.

.....

**4.8** a) On a 
$$\overrightarrow{v} = \omega \overrightarrow{e_z} \wedge (r\overrightarrow{e_r} + z\overrightarrow{e_z}) = r\omega \overrightarrow{e_\theta}$$
.

**4.8** b) On a 
$$\overrightarrow{v} = \omega \overrightarrow{e_z} \wedge (x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}) = -\omega y\overrightarrow{e_x} + \omega x\overrightarrow{e_y}$$
.

**4.8** c) En coordonnées cartésiennes, on obtient :  $\overrightarrow{rot} \overrightarrow{v} = 2\omega \overrightarrow{e_z}$ .

**4.8** d) On simplifie l'expression 
$$\oint_{\Gamma} \overrightarrow{v}_{(\mathrm{M})} \cdot \overrightarrow{\mathrm{d}} \ell_{(\mathrm{M})} = \iint_{\Sigma} \overrightarrow{\mathrm{rot}}(\overrightarrow{v})_{(\mathrm{M})} \cdot \overrightarrow{n} \, \mathrm{d} S_{(\mathrm{M})}$$
 en considérant  $\overrightarrow{\mathrm{d}} \ell = r \, \mathrm{d} \theta \overrightarrow{e_{\theta}}$  et  $\overrightarrow{n} \, \mathrm{d} S_{(\mathrm{M})} = r \, \mathrm{d} r \, \mathrm{d} \theta \overrightarrow{e_{z}}$ ; d'où  $v 2\pi r = \int_{0}^{r} 4\omega \pi r \, \mathrm{d} r$ , soit  $v = r\omega$ .

**4.8** e) On simplifie l'expression  $\oint_{\Gamma} \overrightarrow{v}_{(\mathrm{M})} \cdot \overrightarrow{\mathrm{d}\ell}_{(\mathrm{M})} = \iint_{\Sigma} \overrightarrow{\mathrm{rot}}(\overrightarrow{v})_{(\mathrm{M})} \cdot \overrightarrow{n} \, \mathrm{d}S_{(\mathrm{M})}$  en considérant  $\overrightarrow{\mathrm{d}\ell} = r \, \mathrm{d}\theta \overrightarrow{e_{\theta}}$  et  $\overrightarrow{n} \, \mathrm{d}S_{(\mathrm{M})} = r \, \mathrm{d}r \, \mathrm{d}\theta \overrightarrow{e_z}$ ; d'où  $v2\pi r = \int_0^a 4\omega \pi r \, \mathrm{d}r + \int_a^r 0 \times 2\pi r \, \mathrm{d}r$ , soit  $v = \frac{a^2}{r}\omega$ .

 $J_0$   $J_a$  r

**4.9** a) On a div 
$$\vec{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} = \frac{1}{r^2} (3ar^2 - 5br^4) = 3a - 5br^2$$
.

**4.9** c) On a :

$$\oint \int_{\text{sphère}} \vec{A} \cdot \vec{dS} = \iint_{\text{boule}} \operatorname{div} \vec{A} \, d\tau$$

$$= \int_{r=0}^{r=R} \int_{\varphi=0}^{\varphi=2\pi} \int_{\theta=0}^{\theta=\pi} (3a - 5br^2)r^2 \sin(\theta) \, dr \, d\varphi \, d\theta$$

$$= \left[ \varphi \right]_0^{2\pi} \times \left[ -\cos(\theta) \right]_0^{\pi} \times \left[ ar^3 - br^5 \right]_0^R$$

$$= 4\pi R^3 (a - bR^2).$$

**4.9** e) On a :

$$\oint \int_{\text{sphère}} \overrightarrow{A} \cdot \overrightarrow{dS} = \int_{\varphi=0}^{\varphi=2\pi} \int_{\theta=0}^{\theta=\pi} (aR - bR^3) R^2 \sin(\theta) d\varphi d\theta = 4\pi R^3 (a - bR^2).$$

On retrouve bien le résultat de la question c).

.....

4.10 a) Il faut vérifier que les équations de Maxwell sont respectées les unes après les autres. On a :

• div 
$$\vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

• 
$$\operatorname{div} \vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

• 
$$\overrightarrow{\operatorname{rot}} \vec{E} = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) \vec{e_x} + \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \vec{e_y} + \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \vec{e_z} = \frac{\partial E_y}{\partial x} \vec{e_z} = E_0 k \sin(\omega t - kx + \varphi_0) \vec{e_z}$$

et 
$$\frac{\partial \vec{B}}{\partial t} = -E_0 k \sin(\omega t - kx + \varphi_0) \vec{e_z}$$

• Enfin

$$\overrightarrow{rot} \overrightarrow{B} = \left(\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y}\right) \overrightarrow{e_z}$$
$$= -\frac{\partial B_z}{\partial x} \overrightarrow{e_y} = -\frac{E_0 k^2}{\omega} \sin(\omega t - kx + \varphi_0) \overrightarrow{e_y}$$

et 
$$\frac{\partial \vec{E}}{\partial t} = -E_0 \omega \sin(\omega t - kx + \varphi_0) \vec{e_y} \text{ donc } \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} = -\frac{E_0 k^2}{\omega} \sin(\omega t - kx + \varphi_0) \vec{e_y}$$

Les quatre équations de Maxwell sont respectées donc le champ électromagnétique peut exister.

**4.10** b) On a :

$$\operatorname{div} \vec{E} = \frac{\partial E_y}{\partial y} = -E_0 k \sin(\omega t + ky).$$

L'équation de Maxwell-Gauss dans le vide n'est pas respectée donc ce champ électromagnétique ne peut pas exister.

**4.10** c) On a

• 
$$\operatorname{div} \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

• 
$$\operatorname{div} \vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

$$\overrightarrow{rot} \overrightarrow{E} = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \overrightarrow{e_z} = -\frac{\partial E_y}{\partial z} \overrightarrow{e_x} + \frac{\partial E_x}{\partial z} \overrightarrow{e_y}$$
$$= E_2 k \sin(\omega t + kz + \varphi_2) \overrightarrow{e_x} - E_1 k \sin(\omega t + kz + \varphi_1) \overrightarrow{e_y}$$

et 
$$\frac{\partial \vec{B}}{\partial t} = -E_2 k \sin(\omega t + kz + \varphi_2) \vec{e_x} + E_1 k \sin(\omega t + kz + \varphi_1) \vec{e_y}$$

• Enfin.

$$\overrightarrow{\operatorname{rot}} \overrightarrow{B} = \left(\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y}\right) \overrightarrow{e_z} = -\frac{\partial B_y}{\partial z} \overrightarrow{e_x} + \frac{\partial B_x}{\partial z} \overrightarrow{e_y}$$

$$= -\frac{E_1 k^2}{\omega} \sin(\omega t + kz + \varphi_1) \overrightarrow{e_x} + \frac{E_2 k^2}{\omega} \sin(\omega t + kz + \varphi_2) \overrightarrow{e_y}$$

et 
$$\frac{\partial \vec{E}}{\partial t} = -E_1 \omega \sin(\omega t + kz + \varphi_1) \vec{e_x} - \omega E_2 \sin(\omega t + kz + \varphi_2) \vec{e_y}$$
 donc

$$\varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} = -\frac{E_1 k^2}{\omega} \sin(\omega t + kz + \varphi_1) \vec{e_x} - \frac{E_2 k^2}{\omega} \sin(\omega t + kz + \varphi_2) \vec{e_y}$$

Les quatre équations de Maxwell sont respectées donc le champ électromagnétique peut exister.

.....

**4.11** a) Le champ électrique est de la forme  $\vec{E} = E_x(z,t)\vec{e_x}$  avec  $E_x(z,t) = E_0\cos(\omega t - kz + \varphi)$ .

D'après l'expression du rotationnel en coordonnées cartésiennes, on a :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{E}) = \frac{\partial E_x}{\partial z} \overrightarrow{e_y} = E_0 k \sin(\omega t - kz + \varphi) \overrightarrow{e_y}.$$

D'après l'équation de Maxwell-Faraday :

$$\vec{B} = \int -\vec{\cot}(\vec{E}) dt = -E_0 k \vec{e_y} \int \sin(\omega t - kx + \varphi) dt = E_0 \frac{k}{\omega} \cos(\omega t - kz + \varphi) \vec{e_y} + \vec{\text{cste}}.$$

Comme le milieu est vide de charge et de courant, il n'y a aucun champ statique donc  $\overrightarrow{\text{cste}} = \overrightarrow{0}$ .

**4.11** b) Le champ électrique est de la forme  $\vec{E} = E_x(z,t)\vec{e_x}$  avec  $E_x(z,t) = E_0 \cosh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t)$ .

D'après l'expression du rotationnel en coordonnées cartésiennes, on a :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{E}) = \frac{\partial E_x}{\partial z} \overrightarrow{e_y} = E_0 \sqrt{\varepsilon_0 \mu_0} \alpha \sinh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \overrightarrow{e_y}.$$

D'après l'équation de Maxwell-Faraday :

$$\vec{B} = \int -\vec{\operatorname{rot}}(\vec{E}) \, \mathrm{d}t = -E_0 \sqrt{\varepsilon_0 \mu_0} \alpha \sinh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \vec{e_y} \int \exp(-\alpha t) \, \mathrm{d}t = E_0 \sqrt{\varepsilon_0 \mu_0} \sinh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \vec{e_y} + \overrightarrow{\operatorname{cste}}.$$

Comme le milieu est vide de charge et de courant, il n'y a aucun champ statique donc  $\overrightarrow{\text{cste}} = \overrightarrow{0}$ .

.....

**4.11** c) Le champ électrique est de la forme  $\vec{E} = E_z(r,t)\vec{e_z}$  avec :

$$E_x(z,t) = \frac{E_0}{(kr)^2} \cos(\omega t).$$

D'après l'expression du rotationnel en coordonnées cylindriques, on a :

$$\overrightarrow{\operatorname{rot}}(\vec{E}) = -\frac{\partial E_z}{\partial r} \vec{e_\theta} = \frac{2E_0}{k^2 r^3} \cos(\omega t) \vec{e_\theta}.$$

D'après l'équation de Maxwell-Faraday :

$$\vec{B} = \int -\vec{\cot}(\vec{E}) dt = -\frac{2E_0}{k^2 r^3} \int \cos(\omega t) \vec{e_\theta} dt.$$

Comme  $\overrightarrow{e_{\theta}}$  est un vecteur dont l'orientation dépend du temps (base cylindrique), on ne peut développer davantage le calcul car on ne connaît pas l'évolution temporelle de l'angle  $\theta$ .

.....

**4.12** a) Le champ magnétique est de la forme  $\vec{B} = B_y(z,t)\vec{e_y}$  avec  $B_y(z,t) = B_0 \sin(\omega t - kz + \varphi)$ .

D'après l'expression du rotationnel en coordonnées cartésiennes, on a :

$$\overrightarrow{\operatorname{rot}}(\vec{B}) = -\frac{\partial B_y}{\partial z} \vec{e_x} = B_0 k \cos(\omega t - kz + \varphi) \vec{e_x}.$$

D'après l'équation de Maxwell-Ampère vide de courant  $(\overrightarrow{j}=\overrightarrow{0})$  :

$$\vec{E} = \frac{1}{\varepsilon_0 \mu_0} \int \vec{\operatorname{rot}}(\vec{B}) \, dt = \frac{B_0 k}{\varepsilon_0 \mu_0} \vec{e_x} \int \cos(\omega t - kz + \varphi) \, dt = \frac{B_0 k}{\varepsilon_0 \mu_0 \omega} \sin(\omega t - kz + \varphi) \vec{e_x} + \vec{\operatorname{cste}}.$$

Comme le milieu est vide de charge et de courant, il n'y a aucun champ statique donc  $\overrightarrow{cste} = \overrightarrow{0}$ .

.....

**4.12** b) Le champ magnétique est de la forme  $\vec{B} = B_y(z,t)\vec{e_y}$  avec  $B_y(z,t) = B_0 \sinh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t)$ .

D'après l'expression du rotationnel en coordonnées cartésiennes, on a :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{B}) = -\frac{\partial B_y}{\partial z} \overrightarrow{e_x} = -B_0 \sqrt{\varepsilon_0 \mu_0} \alpha \cosh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \overrightarrow{e_x}.$$

D'après l'équation de Maxwell-Faraday :

$$\vec{E} = \frac{1}{\varepsilon_0 \mu_0} \int \vec{\text{rot}}(\vec{B}) \, dt = -\frac{1}{\varepsilon_0 \mu_0} B_0 \sqrt{\varepsilon_0 \mu_0} \alpha \cosh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \vec{e_x} \int \exp(-\alpha t) \, dt$$
$$= \frac{B_0}{\sqrt{\varepsilon_0 \mu_0}} \cosh(\sqrt{\varepsilon_0 \mu_0} \alpha z) \exp(-\alpha t) \vec{e_x} + \vec{\text{cste}}.$$

Comme le milieu est vide de charge et de courant, il n'y a aucun champ statique donc  $\overrightarrow{\text{cste}} = \overrightarrow{0}$ .

Ce champ électromagnétique  $(\vec{E}, \vec{B})$  est le même que celui de la question b) de l'entraînement précédent, en posant  $E_0 = \frac{B_0}{\sqrt{\varepsilon_0 \mu_0}}$ .

**4.12** c) Le champ magnétique est de la forme  $\vec{B} = B_{\theta}(r,t)\vec{e_{\theta}}$  avec  $B_{\theta}(r,t) = \frac{cB_0}{(t_{rr})^2}\sin(\omega t)$ .

D'après l'expression du rotationnel en coordonnées cylindriques, on a :

$$\overrightarrow{\operatorname{rot}}(\vec{B}) = \frac{1}{r} \frac{\partial rB_{\theta}}{\partial r} \vec{e_z} = -\frac{cB_0}{k^2 r^3} \sin(\omega t) \vec{e_z}.$$

D'après l'équation de Maxwell-Faraday :

$$\vec{E} = \frac{1}{\varepsilon_0 \mu_0} \int \vec{\text{rot}}(\vec{B}) \, dt = -\frac{cB_0}{\varepsilon_0 \mu_0 k^2 r^3} \vec{e_z} \int \sin(\omega t) \, dt = \frac{c^3 B_0}{k^2 \omega r^3} \cos(\omega t) \vec{e_z} + \vec{\text{cste}}.$$

Comme le milieu est vide de charge et de courant, il n'y a aucun champ statique donc  $\overrightarrow{cste} = \overrightarrow{0}$ . Contrairement aux cas précédents, on ne retrouve pas le champ de la question c) de l'entraînement précédent : ces champs électromagnétiques  $(\overrightarrow{E}, \overrightarrow{B})$  ne sont solutions ni d'une seule équation de Maxwell, ni de l'ensemble (équation de propagation !) donc il ne s'agit pas de champs électromagnétiques qui se propagent.

.....

**4.13** a) Le solénoïde étant invariant par rotation autour de l'axe (Oz) et par translation le long du même axe, la norme du champ électrique ne dépend que de r.

**4.13** b) L'équation de Maxwell-Faraday est  $\overrightarrow{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ . On calcule d'abord le rotationnel de  $\vec{E}$ . Le champ magnétique étant porté par (Oz), il reste :  $\overrightarrow{rot} \vec{E} = \frac{1}{r} \frac{\partial r E_{\theta}}{\partial r} \vec{e_z}$ .

On calcule la dérivée du champ magnétique par rapport au temps pour r < R:  $\frac{\partial \vec{B}}{\partial t} = \mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \vec{e}_z$ .

Enfin, on a  $rE_{\theta} = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{r^2}{2}$  donc  $E_{\theta} = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{r}{2}$ .

4.13 c) Le champ magnétique étant nul à l'extérieur du solénoïde, on a :

$$\frac{1}{r}\frac{\partial rE_{\theta}}{\partial r} = 0 \qquad \text{donc} \qquad E_{\theta} = \frac{C}{r}$$

avec C une constante. Il reste à déterminer cette constante. Par continuité du champ électrique en r=R, on a :

$$\frac{C}{R} = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{R}{2} \qquad \text{donc} \qquad C = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{R^2}{2}.$$

Ainsi, on a  $\vec{E} = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{R^2}{2r} \vec{e_\theta}$ .

**4.13** d) La forme intégrale de l'équation de Maxwell-Faraday est  $\oint_{\Gamma} \vec{E} \cdot \vec{d\ell} = -\iint_{\Sigma} \frac{\partial \vec{B}}{\partial t} \cdot \vec{dS}$ .

Nous sommes donc amenés à calculer la circulation de  $\overrightarrow{E}$  sur le contour délimitant la surface  $\Sigma$  que l'on va choisir et à calculer le flux de  $\overrightarrow{B}$  à travers cette même surface.

Pour que le calcul de la circulation soit simple, il faut trouver une surface dont le contour ne dépend pas de r, ainsi le champ électrique sera constant sur ce contour.

Pour que le calcul du flux soit simple, il faut dans un premier temps trouver une surface dont la surface élémentaire ne s'exprime pas en fonction des variables de B:B étant constant ici, la question ne se pose pas. Dans un deuxième temps, on choisit une surface telle que  $\overrightarrow{B}$  et le vecteur normal à la surface soient colinéaires afin que le produit scalaire se calcule facilement : on choisit une surface perpendiculaire à  $\overrightarrow{e_z}$ .

On souhaite donc une surface de rayon constant r, perpendiculaire à  $\overrightarrow{e_z}$ : il s'agit donc d'un disque de rayon r et d'axe (Oz).

.....

**4.13** e) La forme intégrale de l'équation de Maxwell-Faraday est 
$$\oint_{\Gamma} \vec{E} \cdot \vec{d\ell} = -\iint_{\Sigma} \frac{\partial \vec{B}}{\partial t} \cdot \vec{dS}$$

On choisit comme surface  $\Sigma$  le disque de rayon r et donc comme contour  $\Gamma$  le cercle de rayon r. La circulation de  $\overrightarrow{E}$  donne :

$$\oint_{\Gamma} \vec{E} \cdot d\ell = 2\pi r E(r, t).$$

Le flux de la dérivée du champ magnétique donne :  $\iint_{\Sigma} \frac{\partial \overrightarrow{B}}{\partial t} \cdot \overrightarrow{\mathrm{d}S} = \pi r^2 \mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t}. \text{ Finalement, } \overrightarrow{E} = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{r}{2} \overrightarrow{e_{\theta}}.$ 

**4.13** f) La forme intégrale de l'équation de Maxwell-Faraday est  $\oint_{\Gamma} \vec{E} \, d\ell = -\iint_{\Sigma} \frac{\partial \vec{B}}{\partial t} \cdot \vec{dS}$ .

On choisit comme surface  $\Sigma$  le disque de rayon r et donc comme contour  $\Gamma$  le cercle de rayon r. La circulation de  $\overrightarrow{E}$  donne :

$$\oint_{\Gamma} \overrightarrow{E} \, \mathrm{d} \ell = 2\pi r E(r,t).$$

Le flux de la dérivée du champ magnétique donne :  $\iint_{\Sigma} \frac{\partial \overrightarrow{B}}{\partial t} \cdot \overrightarrow{\mathrm{d}S} = \pi R^2 \mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t}. \text{ Finalement, } \overrightarrow{E} = -\mu_0 n \frac{\mathrm{d}i}{\mathrm{d}t} \frac{R^2}{2r} \overrightarrow{e_{\theta}}.$ 

**4.14** a) On a :

$$\overrightarrow{\Pi} = \frac{1}{\mu_0} E_0 \cos(\omega t - kz + \varphi) \overrightarrow{e_x} \wedge B_0 \sin(\omega t - kz + \varphi) \overrightarrow{e_y} = \frac{E_0 B_0}{\mu_0} \cos(\omega t - kz + \varphi) \sin(\omega t - kz + \varphi) \overrightarrow{e_z}$$

L'énergie se propage dans une direction orthogonale à celles des champs électrique et magnétique.

.....

**4.14** b) On a :

$$\overrightarrow{\Pi} = \frac{1}{\mu_0} E_0 \cosh(\beta z) \exp(-\alpha t) \overrightarrow{e_z} \wedge B_0 \sinh(\beta z) \exp(-\alpha t) \overrightarrow{e_y} = -\frac{E_0 B_0}{\mu_0} \cosh(\beta z) \sinh(\beta z) \exp(-2\alpha t) \overrightarrow{e_x}.$$

L'énergie se propage dans une direction orthogonale à celles des champs électrique et magnétique.

**4.15** a) Pour une onde plane progressive, on a la relation de structure :

$$\overrightarrow{B} = \frac{\overrightarrow{k} \wedge \overrightarrow{E}}{\omega} = \frac{\overrightarrow{e_z} \wedge \overrightarrow{E}}{c} = \frac{1}{c} \left| \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right| \left| \begin{array}{c} E_x \\ E_y \\ E_z \end{array} \right| = \frac{1}{c} \left| \begin{array}{c} -E_y \\ E_x \\ 0 \end{array} \right|.$$

On en déduit :  $\vec{B} = -\frac{E_{0y}}{c} \cos(kz - \omega t + \psi_2) \vec{e_x} + \frac{E_{0x}}{c} \cos(kz - \omega t + \psi_1) \vec{e_y}$ .

**4.15** b) Le vecteur de Poynting est donné par :

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{1}{\mu_0 c} \begin{vmatrix} E_x \\ E_y \\ 0 \end{vmatrix} \wedge \begin{vmatrix} -E_y \\ E_x \\ 0 \end{vmatrix} = \frac{1}{\mu_0 c} \begin{vmatrix} 0 \\ 0 \\ E_x^2 + E_y^2 \end{vmatrix} = \frac{E_x^2 + E_y^2}{\mu_0 c} \vec{e_z}.$$

**4.15** c) En notation complexe, avec  $\vec{r} = \overrightarrow{OM}$  et  $\vec{k}$  le vecteur d'onde, le champ électrique peut s'écrire :

$$\vec{\underline{E}} = \vec{\underline{E}}_0 \exp[i(\vec{k} \cdot \vec{r} - \omega t)] = \vec{\underline{E}}_0 \exp[i(kz - \omega t)],$$

avec  $\underline{\vec{E}_0} = E_{0x} e^{\mathrm{i} \, \psi_1} \, \overrightarrow{e_x} + E_{0y} \, e^{\mathrm{i} \, \psi_2} \, \overrightarrow{e_y} \, ; \, \underline{\underline{\vec{E}_0}} \,$  est l'amplitude complexe du champ électrique.

**4.15** d) L'équation de Maxwell-Faraday  $\overrightarrow{\text{rot}} \ \underline{\vec{E}} = -\frac{\partial \underline{\vec{B}}}{\partial t} \text{ donne : } i \ \overrightarrow{k} \land \underline{\vec{E}} = +i \omega \ \underline{\vec{B}}. \text{ Donc,}$ 

$$\underline{\vec{B}} = \frac{\overrightarrow{k}}{\omega} \wedge \underline{\vec{E}} = \frac{\overrightarrow{e_z}}{c} \wedge \left( E_{0x} e^{i(kz - \omega t + \psi_1)} \overrightarrow{e_x} + E_{0y} e^{i(kz - \omega t + \psi_2)} \overrightarrow{e_y} \right) = \frac{1}{c} \left( E_{0x} e^{i(kz - \omega t + \psi_1)} \overrightarrow{e_y} - E_{0y} e^{i(kz - \omega t + \psi_2)} \overrightarrow{e_x} \right).$$

**4.15** e) On en déduit le conjugué : 
$$\underline{\vec{B}}^* = \frac{1}{c} \left( E_{0x} e^{-i(kz - \omega t + \psi_1)} \overrightarrow{e_y} - E_{0y} e^{-i(kz - \omega t + \psi_2)} \overrightarrow{e_x} \right)$$
.

**4.15** f) Le produit vectoriel  $\vec{\underline{E}} \wedge \vec{\underline{B}}^*$  vaut :

$$\underline{\overrightarrow{E}} \wedge \underline{\overrightarrow{B}}^* = \left( E_{0x} e^{i(kz - \omega t + \psi_1)} \overrightarrow{e_x} + E_{0y} e^{i(kz - \omega t + \psi_2)} \overrightarrow{e_y} \right) \wedge \left( \frac{1}{c} \left( E_{0x} e^{-i(kz - \omega t + \psi_1)} \overrightarrow{e_y} - E_{0y} e^{-i(kz - \omega t + \psi_2)} \overrightarrow{e_x} \right) \right)$$

$$= \underbrace{E_{0x}^2}_{c} \overrightarrow{e_z} + \underbrace{E_{0y}^2}_{c} \overrightarrow{e_z} = \underbrace{\left( E_{0x}^2 + E_{0y}^2 \right) \overrightarrow{e_z}}_{c}.$$

On en déduit le vecteur complexe  $\frac{1}{2\mu_0} \vec{\underline{E}} \wedge \vec{\underline{B}}^* = \frac{E_{0x}^2 + E_{0y}^2}{2\mu_0 c} \vec{e_z}$ .

**4.15** g) Avec  $\langle \cos^2 \rangle = \frac{1}{2}$ , la valeur moyenne du vecteur de Poynting  $\overrightarrow{\Pi}$  vaut :

$$\left\langle \vec{\Pi} \right\rangle = \left\langle \frac{(E_{0x} \cos(kz - \omega t + \psi_1))^2 + (E_{0y} \cos(kz - \omega t + \psi_2))^2}{\mu_0 c} \vec{e_z} \right\rangle = \frac{E_{0x}^2 + E_{0y}^2}{2 \mu_0 c} \vec{e_z}.$$

La valeur moyenne du vecteur  $\left\langle \frac{\overrightarrow{\underline{E}} \wedge \overrightarrow{\underline{B}}^*}{2\,\mu_0} \right\rangle$  est identique : on peut donc choisir l'une ou l'autre des deux méthodes.

**4.16** a) On intègre la densité volumique d'énergie électromagnétique dans tout le volume  $\mathcal V$  séparant les deux armatures :

$$\mathcal{E} = \iiint_{\mathcal{V}} \frac{\varepsilon_0 E^2}{2} d\tau = \iiint_{\mathcal{V}} \frac{Q^2}{2\varepsilon_0 S^2} d\tau = \frac{Q^2}{2\varepsilon_0 S^2} LS = \frac{LQ^2}{2\varepsilon_0 S}.$$

**4.16** b) On a  $\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{\frac{Q}{\varepsilon_0 S} \vec{e_z} \cdot \frac{\mu_0}{2S} \frac{dQ}{dt} R \vec{e_\theta}}{\mu_0} = -\frac{R}{2\varepsilon_0 S^2} Q \frac{dQ}{dt} \vec{e_r}.$ 

**4.16** c) On cherche le flux sortant du vecteur de Poynting à travers la surface  $\Sigma$  du cylindre de rayon R et de hauteur L formé par les deux armatures du condensateur, soit :

$$\iint_{\Sigma} \overrightarrow{\mathrm{II}} \cdot \overrightarrow{\mathrm{dS}} = -\frac{R}{2\varepsilon_0 S^2} Q \frac{\mathrm{d}Q}{\mathrm{d}t} \times 2\pi RL = -\frac{L\pi R^2}{\varepsilon_0 S^2} Q \frac{\mathrm{d}Q}{\mathrm{d}t} = -\frac{L}{\varepsilon_0 S} Q \frac{\mathrm{d}Q}{\mathrm{d}t}.$$

**4.16** d) On a 
$$\frac{\partial \mathcal{E}}{\partial t} = \frac{\partial \left(\frac{LQ(t)^2}{2\varepsilon_0 S}\right)}{\partial t} = \frac{L}{2\varepsilon_0 S} 2Q(t) \frac{dQ}{dt}(t) = \frac{L}{\varepsilon_0 S} Q \frac{dQ}{dt} = -\phi.$$
**4.16** e) On a  $\frac{\partial \mathcal{E}}{\partial t} + \phi = 0.$ 

En utilisant le théorème de Green-Ostrogradski, qui dit  $\iint_{\Sigma} \overrightarrow{\Pi} \cdot \overrightarrow{dS} = \iiint_{\mathcal{V}} \operatorname{div} \overrightarrow{\Pi} \, d\tau$ , et en utilisant que  $\mathcal{E} = \iiint_{\mathcal{V}} e \, d\tau$ , on obtient :

 $\iiint_{\mathcal{V}} \frac{\partial e}{\partial t} \,\mathrm{d}\tau + \iiint_{\mathcal{V}} \mathrm{div} \, \overrightarrow{\Pi} \,\mathrm{d}\tau = 0 \qquad \mathrm{donc} \qquad \frac{\partial e}{\partial t} + \mathrm{div} \, \overrightarrow{\Pi} = 0,$ 

ce qui correspond au théorème de Poynting en l'absence de courant de conduction.

## Fiche no 5. Induction

## Réponses

rteponses	
<b>5.1</b> a) $\vec{e_z}$	<b>5.5</b> c) $dS = r d\theta dr$
<b>5.1</b> b)	<b>5.5</b> d) $2\pi B_0 \left(\frac{R^2}{2} - \frac{R^3}{3a}\right)$
<b>5.1</b> c) $\overrightarrow{e_y}$	
$\overline{5.1} \; \mathrm{d}) \ldots \overline{\left[ \overrightarrow{e_y} \right]}$	<b>5.5</b> e)
<b>5.1</b> e) $\boxed{\frac{\sqrt{2}}{2}(\overrightarrow{e_y} + \overrightarrow{e_z})}$	<b>5.6</b> a) $B\pi R^2 \cos(\omega t)$
<b>5.1</b> f)	<b>5.6</b> b)
	<b>5.6</b> c) $\left[ -\frac{B\pi R^2}{2} \right]$
<b>5.2</b> a)	<b>5.6</b> d) $\sqrt{\frac{\sqrt{3}}{2}} B \pi R^2$
<b>5.2</b> c)	5.6  e)
<b>5.2</b> d)	<b>5.7</b> a)
<b>5.3</b> a)	<b>5.7</b> b)
<b>5.3</b> b) oui	
<b>5.3</b> c)non	<b>5.7</b> c) $\left  \frac{\mu_0 NIa}{2\pi} \ln \left( \frac{d+a}{d} \right) \right $
<b>5.3</b> d)non	
<b>5.3</b> e)	<b>5.7</b> d) $\left  \frac{\mu_0 N^2 a}{2\pi} \ln \left( \frac{d+a}{d} \right) \right $
<b>5.3</b> f) non	<b>5.8</b> a)
<b>5.4</b> a)	
	<b>5.8</b> b) $B_0 \omega \sin(\omega t) \frac{r}{2}$
5.4 c)	<b>5.9</b> a)
<b>5.4</b> d)	<b>5.9</b> b)
$5.4 \text{ f}$ ) $\boxed{-Bv\ell}$	<b>5.10</b> a)
,	
<b>5.4</b> g)       0 <b>5.4</b> h) $Bv\ell$	<b>5.10</b> b) $ \left  \frac{-\alpha B\underline{I}}{h + \mathrm{j}(m\omega - \frac{k}{\omega})} \right  $
<b>5.5</b> a) $\pi R^2 B_{\rm m} \cos(\omega t)$	<b>5.10</b> c)
<b>5.5</b> b) $\pi a^2 B_{\rm m} \cos(\omega t)$	<b>5.11</b> a)

## Corrigés

**5.1** e)



#### **5.1** f)



**5.3** a) Il y a trois façons de modifier un flux : modifier la surface, modifier le champ, changer l'angle entre le vecteur normal à la surface et le champ. Ici, comme  $\vec{B} \wedge \vec{n} = \vec{0}$  à t = 0, les deux vecteurs sont colinéaires. Comme

vecteur normal à la surface et le champ. Ici, comme  $B \wedge \vec{n} = 0$  à t = 0, les deux vecteurs sont colinéaires. Comme le cadre tourne autour d'un de ses côtés, l'angle entre  $\vec{n}$  et  $\vec{B}$  varie au cours du temps.

**5.3** b) La surface où le champ est non nul augmente au cours du temps tant que le cadre n'est pas entièrement dans la zone où règne le champ.

.....

**5.3** c) Le produit scalaire entre  $\vec{B}(t)$  et  $\vec{n}$  est nul.

**5.3** d) Ni la surface ni l'angle entre  $\vec{B}$  et  $\vec{n}$  ne varie.

**5.3** e) La surface varie.

**5.3** f) Il ne faut pas confondre les termes « uniforme » (ne varie pas dans l'espace) et « constant » (ne varie pas dans le temps).

#### **5.4** b)



.....

#### **5.4** c)



.....

**5.4** d)



**5.5** a) On a  $\Phi = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} B_{\rm m} \cos(\omega t) r \, \mathrm{d}r \times \mathrm{d}\theta = B_{\rm m} \cos(\omega t) \int_{r=0}^{R} \int_{\theta=0}^{2\pi} r \, \mathrm{d}r \times \mathrm{d}\theta.$ 

- **5.5** b) On a  $\Phi = \int_{r=0}^{a} \int_{\theta=0}^{2\pi} B_{\rm m} \cos(\omega t) r \, \mathrm{d}r \times \mathrm{d}\theta = B_{\rm m} \cos(\omega t) \int_{r=0}^{a} \int_{\theta=0}^{2\pi} r \, \mathrm{d}r \times \mathrm{d}\theta.$
- **5.5** d) On a  $\Phi' = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} B_0 \left(1 \frac{r}{a}\right) r \, dr \times d\theta = B_0 \int_{r=0}^{R} \int_{\theta=0}^{2\pi} \left(r \frac{r^2}{a}\right) dr \times d\theta = 2\pi B_0 \left[\frac{R^2}{2} \frac{R^3}{3a}\right].$
- **5.5** e) On a  $\Phi' = \int_{r=0}^{a} \int_{\theta=0}^{2\pi} B_0 \left(1 \frac{r}{a}\right) r \, dr \times d\theta = B_0 \int_{r=0}^{a} \int_{\theta=0}^{2\pi} \left(r \frac{r^2}{a}\right) dr \times d\theta = 2\pi B_0 \frac{a^2}{6}$ .
- 5.6 a) L'angle entre la normale à la spire et le champ magnétique  $\vec{B}$  étant  $\omega t$ , le calcul du flux s'écrit :

$$\Phi = \iint_S \vec{B} \cdot \vec{n} \, dS = \iint_S B \cos(\omega t) \, dS = B \cos(\omega t) \iint_S dS = B\pi R^2 \cos(\omega t).$$

- **5.7** d) Le flux propre à travers les N spires sera  $\frac{\mu_0 N^2 Ia}{2\pi} \ln\left(\frac{d+a}{d}\right) = LI$ .
- **5.8** b) On a  $\frac{\mathrm{d}(rE(r))}{\mathrm{d}r} = B_0 r \omega \sin(\omega t)$ . Donc,  $E = \int_{r'=0}^{r} B_0 r' \omega \sin(\omega t) \, \mathrm{d}r' = B_0 \omega \sin(\omega t) \int_{r'=0}^{r} r' \, \mathrm{d}r'$ .
- **5.9** b) Chaque terme de l'équation doit avoir même dimension. Or  $\frac{\mathrm{d}v}{\mathrm{d}t}$  a pour dimension  $\frac{\mathrm{L}\cdot\mathrm{T}^{-1}}{\mathrm{T}}$ , donc  $\frac{a^2B^2v}{Rm}$  a pour dimension  $\mathrm{L}\cdot\mathrm{T}^{-2}$ . On déduit la dimension de  $\frac{a^2B^2}{Rm}$  en divisant  $\mathrm{L}\cdot\mathrm{T}^{-2}$  par la dimension de la vitesse  $\mathrm{L}\cdot\mathrm{T}^{-1}$ . Donc  $\frac{a^2B^2}{Rm}$  a pour dimension  $\mathrm{T}^{-1}$ .
- **5.11** a) On a  $e \times i = Ri \times i$  donc  $-Bav \times i = Ri^2$  donc  $Bavi = -Ri^2$
- **5.11** b) On a  $m \frac{dv}{dt} \times v = f \times v + f_{L} \times v$  donc  $mv \frac{dv}{dt} = f \times v + Bai \times v$  donc  $Bavi = mv \frac{dv}{dt} fv$ .
- $\mathbf{5.11}$  c) D'après les questions précédentes, on peut égaliser les deux expressions de Bavi; on a donc :

$$-Ri^2 = mv\frac{\mathrm{d}v}{\mathrm{d}t} - fv \qquad \text{donc} \qquad fv = mv\frac{\mathrm{d}v}{\mathrm{d}t} + Ri^2 = \frac{1}{2}m\frac{\mathrm{d}v^2}{\mathrm{d}t} + \mathcal{P}_{\mathrm{J}} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}mv^2\right) + \mathcal{P}_{\mathrm{J}} = \frac{\mathrm{d}E_{\mathrm{c}}}{\mathrm{d}t} + \mathcal{P}_{\mathrm{J}}.$$

5.12 e) Dans le cas d'un champ uniforme (égal à la même valeur en tout point de l'espace), la résultante des forces de Laplace s'exerçant sur un circuit fermé est nulle.

.....

**5.13** a) Le champ magnétique  $\overrightarrow{B}$  et le vecteur  $\overrightarrow{QR}$  sont tous deux portés par  $\overrightarrow{e_x}$ . Le produit vectoriel  $\overrightarrow{QR} \wedge \overrightarrow{B}$  étant nul, on a  $\overrightarrow{F_L} = \overrightarrow{0}$ .

**5.13** b) Le courant étant uniforme, la force de Laplace s'écrit :  $\overrightarrow{F_L} = i \overrightarrow{RS} \wedge \overrightarrow{B}$ . On a :

$$\overrightarrow{\mathrm{RS}} = a \left( \cos \left( \frac{\pi}{3} \right) \overrightarrow{e_y} + \sin \left( \frac{\pi}{3} \right) \overrightarrow{e_z} \right) = \frac{a}{2} \left( \overrightarrow{e_y} + \sqrt{3} \overrightarrow{e_z} \right) \qquad \mathrm{donc} \qquad \overrightarrow{F_\mathrm{L}} = i \frac{a}{2} \left( \overrightarrow{e_y} + \sqrt{3} \overrightarrow{e_z} \right) \wedge \left( B \overrightarrow{e_y} \right) = -i \frac{\sqrt{3}}{2} a B \overrightarrow{e_z}.$$

**5.13** c) Le courant étant uniforme, la force de Laplace s'écrit :  $\overrightarrow{F_L} = i\overrightarrow{SQ} \wedge \overrightarrow{B}$ . On a :

$$\overrightarrow{\mathrm{SQ}} = a \Big( \cos \Big( \frac{\pi}{3} \Big) \overrightarrow{e_y} - \sin \Big( \frac{\pi}{3} \Big) \overrightarrow{e_z} \Big) = \frac{a}{2} \Big( \overrightarrow{e_y} + \sqrt{3} \overrightarrow{e_z} \Big) \qquad \mathrm{donc} \qquad \overrightarrow{F_\mathrm{L}} = i \frac{a}{2} \Big( \overrightarrow{e_y} - \sqrt{3} \overrightarrow{e_z} \Big) \wedge (B \overrightarrow{e_y}) = i \frac{\sqrt{3}}{2} a B \overrightarrow{e_x}.$$

- **5.14** a) D'après la règle de la main droite, le sens de circulation du courant d'intensité I impose que  $\vec{S} = S\vec{e_y}$ .
- **5.14** b) D'après l'expression du couple des forces de Laplace, on a  $\overrightarrow{\Gamma}_L = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B_1} = IS\overrightarrow{e_y} \wedge B\overrightarrow{e_x} = -IBS\overrightarrow{e_z}$ .

- **5.14** c) D'après l'expression du couple des forces de Laplace, on a  $\overrightarrow{\Gamma}_{L} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B_{1}} = IS\overrightarrow{e_{y}} \wedge B\overrightarrow{e_{y}} = \overrightarrow{0}$ .
- **5.14** d) D'après l'expression du couple des forces de Laplace, on a  $\overrightarrow{\Gamma}_{L} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B_{1}} = IS\overrightarrow{e_{y}} \wedge B\overrightarrow{e_{z}} = IBS\overrightarrow{e_{x}}$ .
- **5.14** e) Le couple des forces de Laplace produit par  $\overrightarrow{B_3}$  est orienté selon les x > 0, d'après la règle de la main droite, la spire va donc tourner autour de l'axe (Ox) dans le sens direct.

5.14 f) Aucun couple calculé plus tôt n'est orienté selon  $\overrightarrow{e_y}$ , il n'y a donc pas de champ magnétique qui provoque une rotation de la spire autour de l'axe (Oy).

**5.14** g) Le couple des forces de Laplace produit par  $\overrightarrow{B_1}$  est orienté selon les z < 0, d'après la règle de la main droite, la spire va donc tourner autour de l'axe (Oz) dans le sens indirect. Il n'y a donc pas de champ magnétique qui provoque une rotation de la spire autour de l'axe (Oz) dans le sens direct.

**5.15** a) L'équation électrique permet d'établir que  $i(t) = \frac{B\ell v}{R}$ . En injectant cette relation dans l'équation mécanique, on obtient :  $\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{B^2\ell^2}{mR}v = 0.$ 

.....

**5.15** b) La résolution de l'équation différentielle sur v donne  $v(t) = A \exp\left(-\frac{B^2\ell^2}{mR}t\right)$ . À l'instant t = 0, on a  $v(t) = v_0$ , donc  $A \exp(0) = v_0$  et donc  $A = v_0$ . Ainsi, on a  $v(t) = v_0 \exp\left(-\frac{B^2\ell^2}{mR}t\right)$ .

**5.16** a) On isole i(t) dans l'équation électrique pour obtenir  $i = \frac{B\ell v(t)}{r} + \frac{E}{r}$ . En injectant ce résultat dans l'équation mécanique, on obtient :

$$m\frac{\mathrm{d}v(t)}{\mathrm{d}t} = -\frac{B^2\ell^2}{r}v(t) - \frac{B\ell E}{r} \qquad \text{donc} \qquad \frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{B^2\ell^2}{mr}v(t) = -\frac{B\ell E}{mr}.$$

**5.16** b) La vitesse limite  $v_{\text{lim}}$  correspond à la vitesse atteinte en régime permanent, soit quand  $\frac{dv(t)}{dt} = 0$ .

On a donc 
$$\frac{B^2\ell^2}{r}v_{\text{lim}} = -\frac{B\ell E}{r}$$
. On en déduit  $v_{\text{lim}} = -\frac{E}{B\ell}$ .

**5.17** a) À partir de l'équation électrique, on a  $v = \frac{1}{B\ell} \left( L \frac{\mathrm{d}i(t)}{\mathrm{d}t} + ri(t) \right)$ , qu'on injecte dans l'équation mécanique.

On obtient 
$$\frac{m}{B\ell}\frac{\mathrm{d}}{\mathrm{d}t}\Big(L\frac{\mathrm{d}i}{\mathrm{d}t}+ri\Big)=-B\ell i$$
, et ainsi  $\frac{\mathrm{d}^2i}{\mathrm{d}t^2}+\frac{r}{L}\frac{\mathrm{d}i}{\mathrm{d}t}+\frac{B^2\ell^2}{mL}i=0$ .

**5.17** c) On calcule son discriminant 
$$\Delta = \frac{r^2}{L^2} - 4\frac{B^2\ell^2}{mL} = \frac{1}{0,25} - 4 \times \frac{1 \times 10^{-2}}{0,01 \times 0,5} = 4 - 4 \times 2 = -4.$$

**5.17** d) Le discriminant étant négatif, les racines complexes sont :

$$\rho_{1/2} = -\frac{r}{2L} \pm \mathrm{j} \frac{1}{2} \sqrt{4 \frac{B^2 \ell^2}{mL} - \frac{r^2}{L^2}} = -\frac{r}{2L} \pm \mathrm{j} \omega,$$

avec 
$$\omega = \frac{1}{2} \sqrt{4 \frac{B^2 \ell^2}{mL} - \frac{r^2}{L^2}}$$
. On obtient  $i(t) = e^{-\frac{r}{2L}t} (\alpha \cos(\omega t) + \beta \sin(\omega t))$ .

5.18 a) Avec la règle de la main droite, en utilisant l'orientation du contour, on oriente la surface pour le calcul du flux (suivant  $-\overrightarrow{e_z}$ ). La source de tension induite de fém e a une polarité (sa flèche tension) dans le même sens que l'orientation du contour.

**5.18** b) D'après la loi des mailles, on a E + e = u + Ri, donc  $E - Ba\dot{x} = u + Ri$ , et donc  $u = E - Ba\dot{x} - Ri$ .

**5.18** c) D'après la question précédente,  $\frac{du}{dt} = \frac{d}{dt}(E - Ba\dot{x} - Ri) = -Ba\ddot{x} - R\frac{di}{dt}$ . Comme  $\ddot{x} = \frac{Ba}{m}i$ , on a :

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{(Ba)^2}{m}i - R\frac{\mathrm{d}i}{\mathrm{d}t}.$$

**5.18** d) Le dipôle 1 est un fil, sa tension u est donc nulle, ainsi  $-\frac{(Ba)^2}{m}i - R\frac{\mathrm{d}i}{\mathrm{d}t} = 0$ , ou  $R\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{(Ba)^2}{m}i = 0$ .

**5.18** e) Le dipôle 2 est un condensateur traversé par un courant d'intensité  $i = C \frac{du}{dt}$ , soit  $\frac{du}{dt} = \frac{i}{C}$ . D'où :

$$\frac{i}{C} = -\frac{(Ba)^2}{m}i - R\frac{\mathrm{d}i}{\mathrm{d}t} \qquad \text{et donc} \qquad R\frac{\mathrm{d}i}{\mathrm{d}t} + \left(\frac{(Ba)^2}{m} + \frac{1}{C}\right)i = 0.$$

**5.18** f) Le dipôle 4 est une association série d'une bobine et d'un condensateur. La tension à ses bornes est donc  $u = L \frac{\mathrm{d}i}{\mathrm{d}t} + u_C$ , avec  $u_C$  la tension aux bornes du condensateur. Donc  $\frac{\mathrm{d}u}{\mathrm{d}t} = L \frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{\mathrm{d}u_C}{\mathrm{d}t} = L \frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{i}{C}$ . D'où :

$$L\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \frac{i}{C} = -\frac{(Ba)^2}{m}i - R\frac{\mathrm{d}i}{\mathrm{d}t} \qquad \text{et donc} \qquad L\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + R\frac{\mathrm{d}i}{\mathrm{d}t} + \left(\frac{(Ba)^2}{m} + \frac{1}{C}\right)i = 0.$$

# Fiche n° 6. Ondes électromagnétiques I

# Réponses

•					
<b>6.1</b> a) $3 \times 10^8 \mathrm{m\cdot s^{-1}}$	<b>6.6</b> c)				
<b>6.1</b> b) $5 \times 10^{14} \mathrm{Hz}$	<b>6.7</b> a) $A_0 \sin\left(\frac{\pi y}{a}\right) \left(-\frac{\pi}{a}\cos(\omega t - kz)\right)$				
<b>6.1</b> c) $1 \times 10^{-1}$ m	<b>6.7</b> a) $A_0 \sin\left(\frac{-a}{a}\right) \left(\frac{-a\cos(\omega t - kz)}{a} + k\alpha\sin(\omega t - kz)\right)$				
<b>6.1</b> d) $1 \times 10^{-20}$ s	$A_{\alpha}\cos\left(\frac{\pi y}{x}\right)\left(\frac{\pi}{x}\cos\left(xt-kx\right)\right)$				
<b>6.2</b> a) $ \frac{E_0^2 S}{2\mu_0 c} $	<b>6.7</b> b)				
<b>6.2</b> b) $1 \times 10^{-5} \mathrm{W}$	<b>6.7</b> c) $ -A_0 \cos(\omega t - kz) \left( \left( \frac{\pi}{a} \right)^2 + k^2 \right) \times \left( \cos\left( \frac{\pi y}{a} \right) + \alpha \sin\left( \frac{\pi y}{a} \right) \right) \overrightarrow{e_x} $				
<b>6.2</b> c)	$\left(\cos\left(\frac{\pi y}{a}\right) + \alpha\sin\left(\frac{\pi y}{a}\right)\right)\overrightarrow{e_x}$				
<b>6.3</b> a)	<b>6.8</b> a)				
<b>6.3</b> b)	<b>6.8</b> b)				
<b>6.4</b> a) $\left[-\omega E_0 \sin(\omega t - kx)\vec{e_z}\right]$	<b>6.8</b> c)				
<b>6.4</b> b) $kE_0 \sin(\omega t - kx) \overrightarrow{e_z}$	<b>6.9</b> a)				
<b>6.4</b> c)	<b>6.9</b> b)				
<b>6.4</b> d) $-k^2 E_0 \cos(\omega t - kx) \overrightarrow{e_z}$	<b>6.9</b> c) signal nº 3				
<b>6.4</b> e) $ \boxed{-\omega^2 E_0 \cos(\omega t - kx) \overrightarrow{e_z}} $	<b>6.10</b> a) Progressive				
<b>6.5</b> a) $ -\omega B_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kx) \overrightarrow{e_z} $	6.10 b) Stationnaire, donc non progressive et harmonique				
<b>6.5</b> b) $kB_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kx) \overrightarrow{e_z}$	6.10 c) Progressive et harmonique				
<b>6.5</b> c)	<b>6.11</b> a				
<b>6.5</b> d) $ \boxed{ -\omega^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kx) \overrightarrow{e_z} } $	<b>6.12</b> a)				
	<b>6.12</b> b)				
<b>6.5</b> e) $-k^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kx) \overrightarrow{e_z}$	<b>6.12</b> c)				
<b>6.5</b> f) $\left  -\left(\frac{\pi}{a}\right)^2 B_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kx) \overrightarrow{e_z} \right $	<b>6.12</b> d) oui				
<b>6.6</b> a)	<b>6.13</b> a) $ \frac{ak}{r}\sin(\omega t - kr)\overrightarrow{e_{\varphi}} $				
<b>6.6</b> b)					

## Corrigés

(a) La puissance rayonnée par le laser a alors pour expression  $P = \iint \vec{\Pi} \cdot \vec{dS} = \Pi S$ . Le vecteur de Poynting vaut  $\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = -\frac{E_0^2}{\mu_0 c} \cos^2(\omega t - kx) \vec{e_z} \wedge \vec{e_y} = \frac{E_0^2}{\mu_0 c} \cos^2(\omega t - kx) \vec{e_x}.$ 

En moyenne, puisque  $\langle \cos^2 \rangle = \frac{1}{2}$ , on a alors :  $\langle P \rangle = \frac{E_0^2 S}{2\mu_0 c}$ .

**6.16** a) . . . . . . . .  $v_{\varphi} = \frac{c}{\sqrt{1 - \left(\frac{\omega_0}{2}\right)^2}}$ 

**6.2** b) Numériquement, on a  $\langle P \rangle = \frac{1 \times 10^2 \,\mathrm{V}^2 \cdot \mathrm{m}^{-1} \cdot 1 \times 10^{-6} \,\mathrm{mm}^2}{2(4\pi \times 10^{-7} \,\mathrm{H} \cdot \mathrm{m}^{-1})(3 \times 10^8 \,\mathrm{m} \cdot \mathrm{s}^{-1})} = \frac{10^{-4}}{750} \mathrm{W} = 1 \times 10^{-5} \,\mathrm{W}.$ 

**6.2** c) Contrairement à ce que l'on pourrait penser, c'est l'ampoule classique à filament qui est la plus puissante.

**6.3** a) La puissance moyenne de l'onde s'exprime en fonction de la norme de  $B_0$ :

$$\langle P \rangle = \frac{E_0^2 S}{2\mu_0 c} = \frac{c B_0^2 S}{2\mu_0}$$
 donc  $B_0 = \sqrt{\frac{2\mu_0 \langle P \rangle}{cS}}$ .

.....

Numériquement, on a  $B_0 = \sqrt{\frac{2(4\pi \times 10^{-7} \,\mathrm{H\cdot m^{-1}})(1\,\mathrm{W})}{1\,\mathrm{m}^2 \cdot 3 \times 10^8 \,\mathrm{m\cdot s^{-1}}}} = 1 \times 10^{-8} \,\mathrm{T}$ . Le champ terrestre est plus intense que le champ de l'onde radiofréquence.

.....

**6.6** a) L'unique composante de  $\vec{E}$ , ici suivant  $\vec{e_z}$ , ne dépend pas de z, donc :

$$\operatorname{div} \overrightarrow{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0 + 0 + 0 = 0.$$

**6.6** b) On a 
$$\overrightarrow{rot} \vec{E} = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \overrightarrow{e_z}$$
, ce qui donne : 
$$\overrightarrow{rot} \vec{E} = (0 - 0) \overrightarrow{e_x} + \left(0 - \frac{\partial E_z}{\partial x}\right) \overrightarrow{e_y} + (0 - 0) \overrightarrow{e_z} = -kE_0 \sin(\omega t - kx) \overrightarrow{e_y}.$$

**6.6** c) On a  $\overrightarrow{\Delta E} = \Delta E_x \overrightarrow{e_x} + \Delta E_y \overrightarrow{e_y} + \Delta E_z \overrightarrow{e_z}$ . Ici, comme  $E_y = E_x = 0$ , il reste donc :

$$\overrightarrow{\Delta E} = \Delta E_z \overrightarrow{e_z} = \left(\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2}\right) \overrightarrow{e_z} = \left(\frac{\partial^2 E_z}{\partial x^2} + 0 + 0\right) \overrightarrow{e_z}.$$

Enfin, comme on a  $\frac{\partial^2 E_z}{\partial x^2} = (-k)^2 E_0 \cos(\omega t - kx) = k^2 E_0 \cos(\omega t - kx)$ , on a  $\overrightarrow{\Delta E} = k^2 E_0 \cos(\omega t - kx) \overrightarrow{e_z} = k^2 \overrightarrow{E}$ .

**6.7** a) On a :

$$\operatorname{div} \overrightarrow{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = -\frac{\pi}{a} A_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) + k\alpha A_0 \sin\left(\frac{\pi y}{a}\right) \sin(\omega t - kz)$$
$$= A_0 \sin\left(\frac{\pi y}{a}\right) \left(-\frac{\pi}{a} \cos(\omega t - kz) + k\alpha \sin(\omega t - kz)\right).$$

**6.7** b) On a :

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \overrightarrow{e_z}$$

$$= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \overrightarrow{e_x} + (0 - 0) \overrightarrow{e_y} + (0 - 0) \overrightarrow{e_z} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \overrightarrow{e_x}.$$

En calculant les dérivées partielles, on trouve :

$$\overrightarrow{\cot A} = \left(\frac{\pi}{a}\alpha A_0 \cos\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) + kA_0 \cos\left(\frac{\pi y}{a}\right) \sin(\omega t - kz)\right) \overrightarrow{e_x}$$
$$= A_0 \cos\left(\frac{\pi y}{a}\right) \left(\frac{\pi}{a}\alpha \cos(\omega t - kz) + k\sin(\omega t - kz)\right) \overrightarrow{e_x}.$$

**6.7** c) On a  $\overrightarrow{\Delta A} = \Delta A_x \overrightarrow{e_x} + \Delta A_y \overrightarrow{e_y} + \Delta A_z \overrightarrow{e_z}$ . Ici,  $A_x = 0$ , il reste donc :

$$\begin{split} \overrightarrow{\Delta A} &= \Delta A_y \overrightarrow{e_y} + \Delta A_z \overrightarrow{e_z} = \left( \frac{\partial^2 A_y}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \right) \overrightarrow{e_y} + \left( \frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2} \right) \overrightarrow{e_z} \\ &= \left( 0 + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \right) \overrightarrow{e_y} + \left( 0 + \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2} \right) \overrightarrow{e_z} = \left( \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \right) \overrightarrow{e_y} + \left( \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2} \right) \overrightarrow{e_z}. \end{split}$$

En calculant les dérivées partielles,

$$\begin{split} \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} &= -\left(\frac{\pi}{a}\right)^2 A_0 \cos\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) - k^2 A_0 \cos\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \\ &= -\left(\left(\frac{\pi}{a}\right)^2 + k^2\right) A_0 \cos\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \\ \text{et} \quad \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2} &= -\left(\frac{\pi}{a}\right)^2 \alpha A_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) - k^2 \alpha A_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz) \\ &= -\left(\left(\frac{\pi}{a}\right)^2 + k^2\right) \alpha A_0 \sin\left(\frac{\pi y}{a}\right) \cos(\omega t - kz), \end{split}$$

on obtient  $\overrightarrow{\Delta A} = -A_0 \cos(\omega t - kz) \left( \left( \frac{\pi}{a} \right)^2 + k^2 \right) \left( \cos\left( \frac{\pi y}{a} \right) + \alpha \sin\left( \frac{\pi y}{a} \right) \right) \overrightarrow{e_x}$ .

**6.8** a) L'équation de Maxwell-Faraday s'écrit  $\overrightarrow{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ . En lui appliquant le rotationnel, on obtient :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{rot}}\,\overrightarrow{E}) = -\frac{\partial}{\partial t}\,\overrightarrow{\operatorname{rot}}\,\overrightarrow{B} = -\frac{\partial}{\partial t}\left(\mu_0\varepsilon_0\frac{\partial\overrightarrow{E}}{\partial t}\right) = -\mu_0\varepsilon_0\frac{\partial^2\overrightarrow{E}}{\partial t^2},$$

où l'on a utilisé l'équation de Maxwell-Ampère dans le vide. Ainsi,  $\alpha = -\mu_0 \varepsilon_0$ .

**6.8** b) Grâce à la formule du double rotationnel, on obtient :  $\overrightarrow{rot}(\overrightarrow{rot} \vec{E}) = \overrightarrow{grad}(\overrightarrow{div} \vec{E}) - \overrightarrow{\Delta E}$ . Or, d'après l'équation de Maxwell-Gauss dans le vide, on a div  $\vec{E} = 0$ . Donc,  $\overrightarrow{rot}(\overrightarrow{rot} \vec{E}) = -\overrightarrow{\Delta E}$ .

**6.8** c) Les deux formules obtenues précédemment donnent :

$$-\overrightarrow{\Delta}\overrightarrow{E} = -\mu_0 \varepsilon_0 \frac{\partial^2 \overrightarrow{E}}{\partial t^2} \quad \text{soit} \quad \overrightarrow{\Delta}\overrightarrow{E} = \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2} \quad \text{avec} \quad \frac{1}{c^2} = \mu_0 \varepsilon_0 \quad \text{d'où} \quad c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}.$$

**6.12** a) Le champ électrique n'a qu'une composante selon  $\overrightarrow{e_y}$ , qui dépend de x et de z.

Ainsi, le laplacien vectoriel s'écrit :

$$\overrightarrow{\Delta E} = \frac{\partial^2 E_y}{\partial x^2} \overrightarrow{e_y} + \frac{\partial^2 E_y}{\partial z^2} \overrightarrow{e_y} = E_0 \cos(\alpha z) \frac{\mathrm{d}^2}{\mathrm{d}x^2} (\sin(\omega t - kx)) \overrightarrow{e_y} + E_0 \sin(\omega t - kx) \frac{\mathrm{d}^2}{\mathrm{d}z^2} (\cos(\alpha z)) \overrightarrow{e_y},$$

avec 
$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(\sin(\omega t - kx)) = -k^2\sin(\omega t - kx)$$
 et  $\frac{\mathrm{d}^2}{\mathrm{d}z^2}(\cos(\alpha z)) = -\alpha^2\cos(\alpha z)$ . Ainsi,  $\Delta \vec{E} = (-k^2 - \alpha^2)\vec{E} = -(k^2 + \alpha^2)\vec{E}$ .

**6.12** b) On a : 
$$\frac{\partial^2 \vec{E}}{\partial t^2} = E_0 \cos(\alpha z) \frac{\partial^2}{\partial t^2} (\sin(\omega t - kx)) \vec{e_y} = -\omega^2 E_0 \cos(\alpha z) \sin(\omega t - kx) \vec{e_y} = -\omega^2 \vec{E}$$
.

6.12 c) On utilise l'équation de d'Alembert avec les deux termes calculés précédemment, on obtient :

$$-(\alpha^2+k^2)\vec{E} = -\frac{\omega^2}{c^2}\vec{E}$$
 soit  $\alpha^2+k^2 = \frac{\omega^2}{c^2}$  d'où  $k^2 = \frac{\omega^2}{c^2} - \alpha^2$ .

**6.12** d) La relation de dispersion précédente se réécrit : 
$$\frac{\omega^2}{k^2} = \frac{\omega^2 c^2}{\omega^2 - c^2 \alpha^2}$$
; d'où  $v_{\varphi} = \frac{\omega}{k} = c \frac{1}{\sqrt{1 - \left(\frac{c\alpha}{\omega}\right)^2}}$ .

La vitesse de phase  $v_{\varphi}$  dépend ici de la pulsation  $\omega$  : il y a donc dispersion.

**6.13** a) On a 
$$\overrightarrow{rot} \overrightarrow{E} = \frac{1}{r} \frac{\partial (rE_{\theta})}{\partial r} \overrightarrow{e_{\varphi}} = \frac{a}{r} \frac{\partial}{\partial r} \cos(\omega t - kr) \overrightarrow{e_{\varphi}} = \frac{a}{r} k \sin(\omega t - kr) \overrightarrow{e_{\varphi}}.$$

**6.13** b) Avec Maxwell-Faraday, on a 
$$\overrightarrow{rot} \vec{E} = \frac{a}{r} k \sin(\omega t - kr) \overrightarrow{e_{\varphi}} = -\frac{\partial \vec{B}}{\partial t}$$
. Donc,  $\vec{B} = \frac{ak}{\omega r} \cos(\omega t - kr) \overrightarrow{e_{\varphi}}$ .

**6.13** c) Les vecteurs  $(\vec{k}, \vec{E}, \vec{B})$  sont respectivement colinéaires aux vecteurs  $(\vec{e_r}, \vec{e_\theta}, \vec{e_\varphi})$  donc le champ est transverse électromagnétique et forme un trièdre direct.

**6.14** a) Pour que 
$$\cos(\omega t - kz) = 0$$
, il faut que  $\omega t - kz = (2p+1)\frac{\pi}{2}$  avec  $p \in \mathbb{Z}$  et donc que  $z = \frac{\omega}{k}t - (2p+1)\frac{\pi}{2k}$ . Or, dans le vide,  $k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$  d'où  $z = ct - (2p+1)\frac{\lambda}{4}$ . La structure est analogue à une onde progressive selon  $z$ .

**6.14** b) Pour que  $\sin\left(\frac{\pi x}{a}\right) = 0$ , il faut que  $\frac{\pi x}{a} = q\pi$ , avec  $q \in \mathbb{Z}$ , et donc que x = qa. Ces plans sont indépendants du temps comme une onde stationnaire selon x.

**6.15** a) On a 
$$\frac{\partial \vec{\underline{E}}}{\partial t} = j\omega \vec{\underline{E}}$$
.

**6.15** b) La seule composante non nulle de  $\vec{E}$  est la composante  $E_x$  sur l'axe x. On a donc :

$$\operatorname{div} \overrightarrow{\underline{E}} = \frac{\partial \underline{E}_0 \exp[\mathrm{j}(\omega t - k_x x - k_y y - k_z z)]}{\partial x} = -\mathrm{j} k_x \underline{E}_x.$$

**6.15** c) Seule la composante 
$$E_x$$
 de  $\vec{E}$  est non nulle. Donc,  $\overrightarrow{\text{rot}} \, \underline{\vec{E}} = -\mathrm{j} k_z \underline{E}_x \overrightarrow{e_y} + \mathrm{j} k_y \underline{E}_x \overrightarrow{e_z}$ .

**6.15** d) La seule composante non nulle de  $\vec{E}$  est la composante  $E_x$  sur l'axe x. Donc,

$$\Delta \underline{\vec{E}} = \Delta(\exp[-j(k_x x + k_y y + k_z z)]) \underline{E}_0 \exp(j\omega t) \overline{e_x}$$

$$= [(-jk_x)^2 + (-jk_y)^2 + (-jk_z)^2] \exp[-j(k_x x + k_y y + k_z z)] \underline{E}_0 \exp(j\omega t) \overline{e_x} = -k^2 \underline{\vec{E}}.$$

**6.15** e) On a 
$$\frac{\partial \vec{E}}{\partial t} = j\omega \vec{E}$$
.

**6.15** f) On a div 
$$\vec{E} = -j \vec{k} \cdot \vec{E}$$
.

**6.15** g) On a 
$$\overrightarrow{rot} \vec{\underline{E}} = -j \vec{k} \wedge \vec{\underline{E}}$$
.

**6.15** h) On a 
$$\vec{\Delta} \vec{\underline{E}} = -k^2 \vec{\underline{E}}$$
.

**6.16** a) On divise la relation de dispersion par 
$$\omega^2$$
: on obtient  $\frac{k^2}{\omega^2} = \frac{1 - \left(\frac{\omega_0}{\omega}\right)^2}{c^2}$  donc  $v_{\varphi} = \frac{\omega}{k} = \frac{c}{\sqrt{1 - \left(\frac{\omega_0}{\omega}\right)^2}}$ .

**6.16** b) On différentie la relation de dispersion donnée : on a  $d(k^2) = d\left(\frac{\omega^2 - \omega_0^2}{c^2}\right)$ , donc  $2k dk = \frac{2\omega}{c^2} d\omega$ , donc  $\frac{d\omega}{dk} = c^2 \frac{k}{\omega} = \frac{c^2}{v_{\varphi}}$ . On en déduit ainsi, grâce à la vitesse de phase trouvée précédemment :  $v_{\rm g} = c\sqrt{1 - \left(\frac{\omega_0}{\omega}\right)^2}$ .

**6.17** a) On a 
$$\overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} = \frac{E_0^2}{\mu_0 c} \cos^2(\omega t - ky) \overrightarrow{e_z} \wedge \overrightarrow{e_x} = \varepsilon_0 c E_0^2 \cos^2(\omega t - ky) \overrightarrow{e_y}$$
, avec  $\mu_0 \varepsilon_0 c^2 = 1$ .

**6.17** b) On a 
$$w_{\text{em}} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0} = \frac{\varepsilon_0 E_0^2}{2} \cos^2(\omega t - ky) + \frac{E_0^2}{2\mu_0 c^2} \cos^2(\omega t - ky) = \varepsilon_0 E_0^2 \cos^2(\omega t - ky)$$
, avec  $\mu_0 \varepsilon_0 c^2 = 1$ .

.....

**6.18** a) On a 
$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{a^2}{\mu_0 c r^2} \cos^2(\omega t - kr) \vec{e_\theta} \wedge \vec{e_\varphi} = \frac{\varepsilon_0 c a^2}{r^2} \cos^2(\omega t - kr) \vec{e_r}$$
, avec  $\mu_0 \varepsilon_0 c^2 = 1$ .

**6.18** b) On a 
$$w_{\text{em}} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0} = \frac{\varepsilon_0 a^2}{2r^2} \cos^2(\omega t - kr) + \frac{a^2}{2\mu_0 c^2 r^2} \cos^2(\omega t - kr) = \frac{\varepsilon_0 a^2}{r^2} \cos^2(\omega t - kr)$$
, avec  $\mu_0 \varepsilon_0 c^2 = 1$ .

**6.18** c) On calcule la puissance rayonnée, avec  $\overrightarrow{dS} = r^2 \sin(\theta) d\theta d\varphi \overrightarrow{e_r}$ :

$$P = \iint \frac{\varepsilon_0 c a^2}{r^2} \cos^2(\omega t - kr) \vec{e}_r \cdot r^2 \sin(\theta) d\theta d\varphi \vec{e}_r = \iint \frac{\varepsilon_0 c a^2}{r^2} \cos^2(\omega t - kr) r^2 \sin(\theta) d\theta d\varphi$$
$$= \frac{\varepsilon_0 c a^2}{r^2} \cos^2(\omega t - kr) r^2 \iint \sin(\theta) d\theta d\varphi = \frac{\varepsilon_0 c a^2}{r^2} \cos^2(\omega t - kr) r^2 \int_0^{\pi} \sin(\theta) d\theta \int_0^{2\pi} d\varphi.$$

La double intégrale donne  $4\pi$ , donc l'expression de la puissance est

$$P = 4\pi \frac{\varepsilon_0 ca^2}{r^2} \cos^2(\omega t - kr)r^2 = 4\pi \varepsilon_0 ca^2 \cos^2(\omega t - kr).$$

**6.19** a) Avec l'équation de Maxwell-Faraday, on a :

$$\overrightarrow{\cot E} = -\frac{\partial E_y}{\partial z} \overrightarrow{e_x} + \frac{\partial E_y}{\partial x} \overrightarrow{e_z} = -kE_0 \sin\left(\frac{\pi x}{a}\right) \sin(\omega t - kz) \overrightarrow{e_x} + \frac{\pi}{a} E_0 \cos\left(\frac{\pi x}{a}\right) \cos(\omega t - kz) \overrightarrow{e_z} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$\operatorname{donc} \overrightarrow{B} = -\frac{k}{\omega} E_0 \sin\left(\frac{\pi x}{a}\right) \cos(\omega t - kz) \overrightarrow{e_x} - \frac{\pi}{a\omega} E_0 \cos\left(\frac{\pi x}{a}\right) \sin(\omega t - kz) \overrightarrow{e_z}.$$

**6.19** b) On a :

$$\begin{split} \overrightarrow{\Pi} &= \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} = \frac{E_y \overrightarrow{e_y}}{\mu_0} \wedge \left(B_x \overrightarrow{e_x} + B_z \overrightarrow{e_z}\right) = -\frac{E_y B_x}{\mu_0} \overrightarrow{e_z} + \frac{E_y B_z}{\mu_0} \overrightarrow{e_x} \\ &= \frac{E_0^2}{\mu_0} \left[\frac{1}{c} \sin^2 \left(\frac{\pi x}{a}\right) \cos^2 (\omega t - kz) \overrightarrow{e_z} - \frac{\pi}{a\omega} \cos \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi x}{a}\right) \cos (\omega t - kz) \sin (\omega t - kz) \overrightarrow{e_x}\right] \\ &= \frac{E_0^2}{\mu_0} \sin \left(\frac{\pi x}{a}\right) \left[\frac{1}{c} \sin \left(\frac{\pi x}{a}\right) \cos^2 (\omega t - kz) \overrightarrow{e_z} - \frac{\pi}{a\omega} \cos \left(\frac{\pi x}{a}\right) \cos (\omega t - kz) \sin (\omega t - kz) \overrightarrow{e_x}\right]. \end{split}$$

**6.19** c) On a 
$$\langle \vec{\Pi} \rangle = \frac{E_0^2}{2\mu_0 c} \sin^2 \left( \frac{\pi x}{a} \right) \vec{e_z} = \frac{\varepsilon_0 c E_0^2}{2} \sin^2 \left( \frac{\pi x}{a} \right) \vec{e_z}$$
 avec  $\mu_0 \varepsilon_0 c^2 = 1$ .

## Fiche nº 7. Ondes électromagnétiques II

## Réponses

$$\sqrt{\omega^2 - \omega_p^2}$$
 7.11 d)

**7.6** c) ......  $\frac{\varepsilon_0 E_0^2}{2} (1 + n^2) \cos^2(\omega t - kz)$ 

7.15 a) 
$$\begin{bmatrix}
r + 1 = t \\
n_1 - rn_1 = tn_2
\end{bmatrix}$$
7.16 d) 
$$\begin{bmatrix}
r = \frac{n_1 - n_2}{n_1 + n_2} \\
t = \frac{2n_1}{n_1 + n_2}
\end{bmatrix}$$
7.17 a) 
$$\begin{bmatrix}
\frac{|\underline{E}|^2}{2\mu_0 \omega} \operatorname{Re}(\underline{\vec{k}}_1) \\
-\frac{|\underline{E}|^2|\underline{t}|^2}{2\mu_0 \omega} \operatorname{Re}(\underline{\vec{k}}_2)
\end{bmatrix}$$
7.16 b) 
$$\begin{bmatrix}
\frac{1}{3} \operatorname{et} \frac{4}{3} \\
\hline
\end{array}$$
7.17 c) 
$$\begin{bmatrix}
\underline{r}|^2 \operatorname{et} |\underline{t}|^2 \operatorname{Re}(\underline{\underline{k}}_2) \\
\underline{r}|^2 \operatorname{et} |\underline{t}|^2 \operatorname{Re}(\underline{\underline{k}}_2)
\end{bmatrix}$$
7.16 c)

## Corrigés

La première équation indique que  $\vec{a}$  et  $\vec{b}$  doivent être orthogonaux. Les deux équations suivantes indiquent que  $\vec{a}$  et  $\vec{c}$  sont orthogonaux et de même pour  $\vec{b}$  et  $\vec{c}$ .

Les trois vecteurs doivent être orthogonaux et le sens de  $\vec{c}$  doit respecter la règle de la main droite, ce

Les vecteurs  $\vec{a}$  et  $\vec{b}$  doivent être colinéaires et orthogonaux à  $\vec{c}$ . **7.1** c)

On a  $\frac{\partial \vec{E}}{\partial t} = i\omega \vec{E}$  et  $\frac{\partial^2 \vec{E}}{\partial z^2} = -\underline{k}^2 \vec{E}$ .

On peut écrire  $\frac{\partial^3 \vec{\underline{E}}}{\partial t^3} = -i\omega^3 \vec{\underline{E}}$  et  $\frac{\partial^3 \vec{\underline{E}}}{\partial z^3} = -i\underline{k}^3 \vec{\underline{E}}$ .

On a  $\frac{\partial^2 \vec{\underline{E}}}{\partial t^2} = -\omega^2 \vec{\underline{E}}$ . **7.2** c)

En régime sinusoïdal forcé, l'équation de conservation de la charge devient, en tenant compte de la loi **7.3** a) d'Ohm locale, i  $\omega \underline{\rho} + \underline{\alpha} \operatorname{div} \overrightarrow{\underline{E}} = 0$ . Avec l'équation de Maxwell-Gauss, on a  $\underline{\rho} \left( \frac{\underline{\alpha}}{\varepsilon_0} + \mathrm{i} \, \omega \right)$ .

**7.3** b) En injectant l'expression de la conductivité complexe, l'équation précédente devient :

$$\underline{\rho}\left(\frac{N\,e^2}{\mathrm{i}\,m\,\omega\,\varepsilon_0} + \mathrm{i}\,\omega\right) = \mathrm{i}\,\omega\,\underline{\rho}\left(1 - \frac{N\,e^2}{m\,\varepsilon_0\,\omega^2}\right) = \mathrm{i}\,\omega\,\underline{\rho}\left(1 - \frac{\omega_p^2}{\omega^2}\right) = 0.$$

.....

**7.4** a) Si  $\omega \ll \frac{1}{\tau} \ll \omega_p$ , alors :

$$\underline{k}^2 = \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{\omega \, \tau \, (1 - \mathrm{i} \, \omega \, \tau)} \right] \sim \frac{\omega^2}{c^2} \, \mathrm{i} \, \frac{\omega_p^2 \, \tau}{\omega} = \mathrm{i} \, \frac{\omega_p^2 \, \tau}{c^2} \, \omega = \mathrm{i} \, \alpha_0 \, \mu_0 \, \omega.$$

En utilisant  $i=\frac{\left(1+i\right)^2}{2},$  on en déduit  $\underline{k}=\pm\frac{1+i}{\sqrt{2}}\sqrt{\alpha_0\,\mu_0\,\omega}=\pm\frac{1+i}{\delta}.$ 

**7.4** b) Si  $\frac{1}{2} \ll \omega < \omega_p$ , alors :

$$\underline{k}^2 = \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{\omega \, \tau \, (1 - \mathrm{i} \, \omega \, \tau)} \right] \sim \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{-\mathrm{i} \, \omega^2 \, \tau^2} \right] = \frac{\omega^2}{c^2} \left[ 1 - \frac{\omega_p^2}{\omega^2} \right].$$

Il vient ainsi  $\underline{k} = \pm i \frac{\omega}{c} \sqrt{-1 + \frac{\omega_p^2}{\omega^2}}$ .

**7.4** c) Si  $\frac{1}{\tau} \ll \omega_p < \omega$ , alors :

$$\underline{k}^2 = \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{\omega \, \tau \, (1 - \mathrm{i} \, \omega \, \tau)} \right] \sim \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{-\mathrm{i} \, \omega^2 \, \tau^2} \right] = \frac{\omega^2}{c^2} \left[ 1 - \frac{\omega_p^2}{\omega^2} \right] = \frac{\omega^2 - \omega_p^2}{c^2}.$$

Il vient ainsi :  $\underline{k} = \pm \frac{\sqrt{\omega^2 - \omega_p^2}}{c}$ .

**7.4** d) Si  $\frac{1}{\pi} \ll \omega_p \ll \omega$ , alors :

$$\underline{k}^2 = \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{\omega \, \tau \, (1 - \mathrm{i} \, \omega \, \tau)} \right] \sim \frac{\omega^2}{c^2} \left[ 1 + \mathrm{i} \frac{\omega_p^2 \, \tau^2}{-\mathrm{i} \, \omega^2 \, \tau^2} \right] \sim \frac{\omega^2}{c^2}.$$

Il vient ainsi :  $\underline{k} = \pm \frac{\omega}{c}$ .

**7.5** a) Si  $\omega > \omega_p$ , alors  $\underline{k}^2 > 0$ : le nombre d'onde est réel. On a k'' = 0 et  $k' = \frac{\sqrt{\omega^2 - \omega_p^2}}{c}$ 

Le champ en notation réelle a pour expression  $\vec{E} = E_0 \cos(\omega t - k'z) \vec{e_x}$ . L'onde est progressive et sa vitesse de phase vaut :

$$v_{\varphi} = \frac{\omega}{k'} = \frac{c}{\sqrt{1 - \frac{\omega_p^2}{\omega^2}}}.$$

**7.5** b) La vitesse de groupe est définie par  $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k'}$ . En dérivant la relation de dispersion, on obtient :

$$v_g = c^2 \frac{k'}{\omega} = c \sqrt{1 - \frac{\omega_p^2}{\omega^2}}.$$

7.6 a) On a  $\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{nE_0^2}{\mu_0 c} \cos^2(\omega t - kz)\vec{e_z}$ .

**7.6** b) On peut écrire  $\langle \overrightarrow{\Pi} \rangle = \frac{nE_0^2}{\mu_0 c} \langle \cos^2(\omega t - kz) \rangle \overrightarrow{e_z} = \frac{nE_0^2}{2\mu_0 c} \overrightarrow{e_z}$ .

**7.6** c) On a  $w_{EM} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0} = \left(\frac{\varepsilon_0 E_0^2}{2} + \frac{n^2 E_0^2}{2\mu_0 c^2}\right) \cos^2(\omega t - kz) = \frac{\varepsilon_0 E_0^2}{2} (1 + n^2) \cos^2(\omega t - kz).$ 

**7.6** d) On peut écrire 
$$\langle w_{EM} \rangle = \frac{\varepsilon_0 E_0^2}{2} (1 + n^2) \langle \cos^2(\omega t - kz) \rangle = \frac{\varepsilon_0 E_0^2}{4} (1 + n^2)$$
.

-

**7.7** a) On a :

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{E_0^2}{\mu_0 \omega \delta} e^{-\frac{2x}{\delta}} \left[ \cos \left( \omega t - \frac{x}{\delta} \right) \sin \left( \omega t - \frac{x}{\delta} \right) + \cos^2 \left( \omega t - \frac{x}{\delta} \right) \right] \vec{e_x}.$$

Donc, on a  $\left\langle \overrightarrow{\Pi} \right\rangle = \frac{E_0^2}{2\mu_0\omega\delta} \mathrm{e}^{-\frac{2x}{\delta}} \overrightarrow{e_x}.$ 

**7.7** b) On peut écrire 
$$\langle p_J \rangle = \langle \vec{j} \cdot \vec{E} \rangle = \langle \gamma | \vec{E} |^2 \rangle = \gamma E_0^2 e^{-\frac{2x}{\delta}} \langle \cos^2(\omega t - \frac{x}{\delta}) \rangle = \frac{\gamma E_0^2}{\delta} e^{-\frac{2x}{\delta}}.$$

7.8 On a 
$$\langle \vec{\Pi} \rangle = \frac{1}{2\mu_0} \operatorname{Re} \left( \underline{E}_0^* e^{-\mathrm{i}(\omega t - kz)} \overrightarrow{e_x} \wedge \frac{n\underline{E}_0}{c} e^{\mathrm{i}(\omega t - kz)} \overrightarrow{e_y} \right) = \frac{1}{2\mu_0 c} \operatorname{Re} (|\underline{E}_0|^2 \underline{n} \overrightarrow{e_z}) = \frac{|\underline{E}_0|^2}{2\mu_0 c} \operatorname{Re} (\underline{n}) \overrightarrow{e_z}.$$

7.9 Le laplacien  $\Delta \underline{\vec{E}}$  se réduit ici à  $\frac{\partial^2 \underline{\vec{E}}}{\partial z^2}$ . La dérivée partielle de  $\underline{\vec{E}}$  par rapport à z vaut  $-\underline{k}^2 \underline{\vec{E}}$ . La dérivée partielle de  $\underline{\vec{E}}$  par rapport à t vaut  $-\omega^2 \underline{\vec{E}}$ . La dérivée partielle  $\frac{\partial \underline{\vec{j}}}{\partial t}$  vaut i $\omega \underline{\alpha} \underline{\vec{E}}$ .

Il vient ainsi :  $-\underline{\underline{k}}^2 \underline{\vec{E}} + \frac{1}{c^2} \omega^2 \underline{\vec{E}} = \mathrm{i} \, \omega \, \underline{\alpha} \, \mu_0 \, \underline{\vec{E}} = \frac{n \, e^2}{m} \, \underline{\alpha} \, \mu_0 \, \underline{\vec{E}}$ . En posant  $\omega_p^2 = \frac{n \, e^2}{m} \, \underline{\alpha} \, \mu_0 \, c^2 = \frac{n \, e^2}{m} \, \underline{\alpha} \, \underline{\mu}_0 \, c^2 = \frac{n \, e^2}{m} \, \underline{\alpha} \, \underline{\mu}_0 \, \underline{\vec{E}}$  et avec  $\underline{\vec{E}}$  non nul, on obtient :

$$k^2 = \frac{\omega^2 - \omega_p^2}{c^2}.$$

**→** 

**7.10** a) Les équations de Maxwell s'écrivent div 
$$\vec{E} = 0$$
 et  $\overrightarrow{rot} \vec{B} = \mu_0 \gamma \vec{E} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ .

**7.10** c) On exprime le rotationnel  $\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{rot}}\vec{E}) = \overrightarrow{\operatorname{grad}}(\operatorname{div}\vec{E}) - \Delta \vec{E} = -\Delta \vec{E}$ . On peut alors écrire :

$$\overrightarrow{\mathrm{rot}}(\overrightarrow{\mathrm{rot}}\,\overrightarrow{E}) = \overrightarrow{\mathrm{rot}}\bigg(-\frac{\partial \overrightarrow{B}}{\partial t}\bigg) = -\frac{\partial}{\partial t}(\overrightarrow{\mathrm{rot}}\,\overrightarrow{B}) = -\frac{\partial}{\partial t}\bigg(\mu_0\gamma\overrightarrow{E} + \frac{1}{c^2}\frac{\partial \overrightarrow{E}}{\partial t}\bigg).$$

Donc,  $\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \gamma \frac{\partial \vec{E}}{\partial t}.$ 

**7.11** a) On a div 
$$\vec{E} = \frac{\partial E}{\partial z} \neq 0$$
.

**7.11** b) On a 
$$\overrightarrow{rot} \vec{E} = \vec{0} \neq -\frac{\partial \vec{B}}{\partial t}$$

**7.11** c) On peut écrire 
$$\overrightarrow{rot} \vec{B} = -\frac{\omega E_0}{c^2} \cos(\omega t - kz) \vec{e_y}$$
 et  $\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} = \frac{\omega E_0}{c^2} \cos(\omega t - kz) \vec{e_z}$ .

**7.11** d) On a div 
$$\vec{B} = \frac{\partial B}{\partial x} = 0$$
.

**7.12** a) On a div 
$$\vec{\underline{E}} = \frac{\partial \underline{E}}{\partial x} = 0$$
.

**7.12** b) On peut écrire 
$$\overrightarrow{\text{rot}} \cdot \overrightarrow{\underline{E}} = -kE_0 \exp[i(\omega t - kz)] \overrightarrow{e_y} \cdot \text{et} - \frac{\partial \overrightarrow{B}}{\partial t} = -kE_0 \exp[i(\omega t - kz)] \overrightarrow{e_y}$$
.

**7.12** c) On a 
$$\overrightarrow{\operatorname{rot}} \underline{\overrightarrow{B}} = \frac{\omega E_0}{c^2} \exp[\mathrm{i}(\omega t - kz)] \overrightarrow{e_x} \text{ et } \mu_0 \epsilon_0 \frac{\partial \underline{\overrightarrow{E}}}{\partial t} = \frac{\omega E_0}{c^2} \exp[\mathrm{i}(\omega t - kz)] \overrightarrow{e_x}.$$

**7.12** d) On a div 
$$\vec{B} = \frac{\partial B}{\partial y} = 0$$
.

**7.13** a) On a  $\underline{k}^2$  complexe donc  $\underline{k} = k + ik''$ .

**7.13** b) On a  $k^2 > 0$  donc k est réel et k = k'.

**7.13** c) On a  $\underline{k}^2 < 0$  donc  $\underline{k}$  est un imaginaire pur et  $\underline{k} = \mathrm{i}k''$ .

**7.14** a) La norme de  $\vec{E}$  est une fonction sinusoïdale de x et de t.

**7.14** b) La norme de  $\overrightarrow{E}$  est une fonction sinusoïdale de t et décroît exponentiellement avec x.

**7.14** c) La norme de  $\overrightarrow{E}$  est une fonction sinusoïdale de t. Elle décroît exponentiellement avec x mais en présentant des oscillations.

.....

**7.15** a) La continuité du champ électrique impose :

$$\vec{E}_i(0,t) + \vec{E}_r(0,t) = \vec{E}_t(0,t) \qquad \text{donc} \qquad E_0 \cos(\omega t) + rE_0 \cos(\omega t) = tE_0 \cos(\omega t) \qquad \text{donc} \qquad 1 + r = t.$$

La continuité du champ magnétique impose :

$$\vec{B}_i(0,t) + \vec{B}_r(0,t) = \vec{B}_t(0,t)$$
 donc  $\frac{n_1 E_0}{c} \cos(\omega t) - \frac{n_1 r E_0}{c} \cos(\omega t) = \frac{n_2 t E_0}{c} \cos(\omega t)$  donc  $n_1 - r n_1 = t n_2$ .

**7.15** b) On déduit de la question précédente :

$$n_1 - rn_1 = tn_2 = n_2 + rn_2$$
 donc  $n_1 - n_2 = r(n_1 + n_2)$  donc  $r = \frac{n_1 - n_2}{n_1 + n_2}$ 

 $_{
m et}$ 

$$t = 1 + r = \frac{n_1 + n_2 + n_1 - n_2}{n_1 + n_2} = \frac{2n_1}{n_1 + n_2}.$$

**7.16** a) Dans le vide,  $\lambda_1 = 2$  m et, dans le plasma,  $\lambda_2 = 4$  m.

**7.16** b) On lit sur la figure 
$$r = \frac{E_r}{E_i} = \frac{1}{3}$$
 et  $t = \frac{E_t}{E_i} = \frac{4}{3}$ .

**7.16** c) On peut écrire :

$$r = \frac{1 - n_2}{1 + n_2} = \frac{1}{3}$$
 donc  $3 - 3n_2 = 1 + n_2$  donc  $2 = 4n_2$  donc  $n_2 = \frac{1}{2}$ .

On peut aussi écrire :

$$t = \frac{2}{1+n_2} = \frac{4}{3}$$
 donc  $6 = 4+4n_2$  donc  $n_2 = \frac{1}{2}$ .

.....

**7.16** d) On écrit 
$$R = |r|^2 = \frac{1}{9}$$
 et  $T = |t|^2 n_2 = \frac{16}{9} \times \frac{1}{2} = \frac{8}{9}$ .

**7.17** a) On a :

$$\left\langle \overrightarrow{\Pi} \right\rangle = \frac{1}{2\mu_0} \operatorname{Re}(\underline{\underline{\vec{E}}}^* \wedge \underline{\underline{\vec{B}}}) = \frac{1}{2\mu_0} \operatorname{Re}\left[\underline{\underline{\vec{E}}}^* \wedge \left(\frac{\underline{\vec{k}}_1 \wedge \underline{\underline{\vec{E}}}}{\omega}\right)\right] = \frac{1}{2\mu_0 \omega} \operatorname{Re}\left[(\underline{\underline{\vec{E}}}^* \boldsymbol{\cdot} \underline{\underline{\vec{E}}}) \underline{\vec{k}}_1 - (\underline{\underline{\vec{E}}}^* \boldsymbol{\cdot} \underline{\underline{\vec{k}}}_1) \underline{\underline{\vec{E}}}\right].$$

On en déduit  $\left\langle \overrightarrow{\Pi} \right\rangle = \frac{|\underline{E}|^2}{2\mu_0 \omega} \operatorname{Re} \left( \overrightarrow{\underline{k}}_1 \right)$ .

**7.17** b) On écrit 
$$\langle \overrightarrow{\Pi}_r \rangle = -\frac{|\underline{E}|^2 |\underline{r}|^2}{2\mu_0 \omega} \operatorname{Re}(\overrightarrow{\underline{k}}_1) \operatorname{et} \langle \overrightarrow{\Pi}_t \rangle = \frac{|\underline{E}|^2 |\underline{t}|^2}{2\mu_0 \omega} \operatorname{Re}(\overrightarrow{\underline{k}}_2).$$

**7.17** c) On a 
$$R = |\underline{r}|^2$$
 et  $T = |\underline{t}|^2 \operatorname{Re}\left(\frac{\underline{k}_2}{\underline{k}_1}\right)$ .

# Fiche nº 8. Modèle scalaire de la lumière

## Réponses

Reponses	
8.1 a) $n_{\text{air}} \times h$	<b>8.7</b> d) $\left[\frac{2\pi}{\lambda_0}(n-1)e\right]$
8.1 b)	<b>8.8</b> a) $ \frac{\pi}{\lambda_0} \frac{h}{\sin(\theta_1)} $
<b>8.1</b> d) $1 \times h + n_{\text{eau}} \times H$	
<b>8.2</b> a)	<b>8.8</b> b) $ \frac{2\pi}{\lambda_0} \frac{h}{\sin(\theta_1)} + \pi $
<b>8.2</b> b) $1 \times (AA' - e)$	<b>8.8</b> c)
<b>8.2</b> c)	8.8 d)
<b>8.3</b> a)	
<b>8.3</b> b)	<b>8.8</b> e)
<b>8.4</b> a)	<b>8.8</b> f) $\left  \frac{4\pi}{\lambda_0} \left( \frac{h}{2\sin\theta_1} + \left( n - \frac{1}{n} \right) \frac{e}{\cos(\theta_2)} \right) \right $
<b>8.4</b> b)	$4\pi$ $e$ $\begin{pmatrix} 1 \end{pmatrix}$
<b>8.4</b> c)	<b>8.8</b> g) $\frac{4\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} \left( n - \frac{1}{n} \right) - \pi$
<b>8.4</b> d)	8.8 h)
8.5 a)	<b>8.9</b> a) $\left[\frac{2\pi}{\lambda_0}e(n-1)\right]$
8.6 a)	<b>8.9</b> b)
<b>8.6</b> b)	<b>8.9</b> c) $\boxed{I_1I_2\cos(\theta_1-\theta_2)}$
8.6 c) $n_1 a \sin(\alpha)$	<b>8.9</b> d) $ \frac{2\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} (n - \cos(\theta_1 - \theta_2)) $
<b>8.6</b> d)	<b>8.9</b> e)
<b>8.6</b> e) $n_2 a \sin(\beta)$	$2\pi$ (2)
<b>8.6</b> f) $n_1 \sin(i_1) = n_2 \sin(i_2)$	<b>8.9</b> f) $\frac{2\pi}{\lambda_0}e(n\cos(\theta_2)-\cos(\theta_1))$
8.7 a)	8.10 a) $2\pi$ 8.10 b) $\pi$
<b>8.7</b> b) $ \frac{2\pi}{\lambda_0} ((SA') + d + e) $	<b>8.10</b> c) $\frac{e}{\cos(\theta_2)}$
<b>8.7</b> c) $ \frac{2\pi}{\lambda_0}((SA) + d + ne) $	<b>8.10</b> d) $\left[\frac{4\pi}{\lambda_0} \frac{ne}{\cos(\theta_2)} - \pi\right]$

<b>8.11</b> a) $\Delta f = 1.0 \times 10^{11} \mathrm{Hz}$	<b>8.12</b> e)
<b>8.11</b> b)	<b>8.12</b> f)non
<b>8.11</b> c) $\tau_c = 45 \times 10^3  \mathrm{ps}$	<b>8.13</b> a)
<b>8.11</b> d)	<b>8.13</b> b)
	<b>8.13</b> c)
<b>8.12</b> a) $\left[K_1 S_0 \frac{T}{2\pi\tau} \sin\left(2\pi\frac{\tau}{T}\right)\right]$	<b>8.13</b> d) $2 \times 10^{-17} \mathrm{J}$
<b>8.12</b> b)	<b>8.13</b> e) $3,38 \times 10^{-16} \mathrm{J}$
<b>8.12</b> c)	<b>8.13</b> f) $3,33 \times 10^{-16} \mathrm{J}$
<b>8.12</b> d) $\left  \frac{K_2 S_0^2}{2\tau} \left( \tau + \frac{T}{4\pi} \sin\left(4\pi \frac{\tau}{T}\right) \right) \right $	<b>8.13</b> g)

## Corrigés

- **8.1** a) L'air a pour indice optique  $n_{air}$ . Du point S au point I, le rayon lumineux parcourt la distance h.
- **8.1** b) L'eau a pour indice optique  $n_{\text{eau}}$ . Du point I au point F, le rayon lumineux parcourt la distance H.

.....

- **8.1** c) Les chemins optiques se somment :  $(SF) = (SI) + (IF) = n_{air} \times h + n_{eau} \times H$ .
- **8.1** d) L'indice optique du vide est égal à 1.
- 8.2 a) Entre les points B et C, le rayon confondu avec l'axe optique parcourt la distance géométrique e.
- **8.2** b) L'indice optique du vide est égal à 1. De plus, à la distance totale AA', il faut retrancher l'épaisseur e de la lentille pour obtenir la distance géométrique parcourue par le rayon lumineux dans l'air.
- 8.2 c) Les chemins optiques se somment :  $(AA') = n \times e + 1 \times (AA' e) = AA' + (n-1)e$ . Cette expression est valable quel que soit le rayon issu de A et arrivant en A' puisque les points A et A' sont conjugués !
- 8 3 a) En décomposant le chemin optique de la source S jusqu'au point A la différence de chemin optique
- 8.3 a) En décomposant le chemin optique de la source S jusqu'au point A, la différence de chemin optique demandée s'écrit : (SA) (SB) = (SH) + (HA) (SB). Par ailleurs, le plan passant par H et B étant une surface d'onde issue de S, il vient : (SA) (SB) = (HA). Dans l'air, cela donne :  $(SA) (SB) = HA = AB \sin(\alpha)$ .
- **8.3** b) Il y a égalité des chemins optiques : (SAS') = (SBS'), c'est-à-dire (SA) + (AS') = (SB) + (BS'). On en déduit :  $(AS') - (BS') = (SB) - (SA) = -AB\sin(\alpha)$ .

.....

### **8.4** a)

En vertu du théorème de Malus, les rayons en aval de la lentille sont parallèles à l'axe optique. En amont, les surfaces d'onde sont des cercles concentriques centrés sur un point (lui aussi en amont), qui est donc le conjugué d'une image à l'infini sur l'axe optique, à savoir le foyer principal objet. Ainsi,  $\mathcal{L}_1$  est convergente.



#### **8.4** b)

Les surfaces d'onde permettent de voir qu'il y a conjugaison entre un objet réel et une image réelle (de même taille, et renversée) :  $\mathcal{L}_2$  est donc nécessairement convergente.



## **8.4** c)

Les surfaces d'onde incidentes sont des cercles concentriques centrés sur un point en aval de la lentille. De plus, en vertu du théorème de Malus, les rayons émergents sont parallèles à l'axe optique. Le point en question est donc le foyer objet de la lentille, situé après son centre optique :  $\mathcal{L}_3$  est donc divergente.



### **8.4** d)

En vertu du théorème de Malus, les rayons incidents, parallèles entre eux, proviennent d'un objet à l'infini, qui est conjugué par la lentille d'un point hors de l'axe optique : il s'agit d'un foyer image secondaire, situé après le centre optique.  $\mathcal{L}_4$  est donc convergente.



**8.5** a) Les rayons incidents étant parallèles à l'axe optique, d'après le théorème de Malus, les surfaces d'onde sont perpendiculaires à l'axe optique.

**8.5** b) Tout se passe comme si F' était une source ponctuelle émettant une onde sphérique : les surfaces d'onde sont donc des cercles concentriques centrés sur F'.

**8.6** a) Le point  $H_1$  est le projeté orthogonal de  $I_2$ : d'après le théorème de Malus, ils se situent donc sur la même surface d'onde. De même,  $H_2$  et  $I_1$  appartiennent à un même front d'onde issu de  $M_{\infty}$  (principe du retour inverse de la lumière).

**8.6** b) On voit sur le schéma que  $i_1 + \left(\frac{\pi}{2} - \alpha\right) = \frac{\pi}{2}$ ; d'où, directement,  $\alpha = i_1$ .

**8.6** c) Dans le triangle  $H_1I_1I_2$ , on a  $\sin(\alpha) = \frac{H_1I_1}{a}$ . De plus,  $(H_1I_1) = n_1H_1I_1$ , d'où  $(H_1I_1) = n_1a\sin(\alpha)$ .

Dans le triangle  $H_2I_1I_2$ , on a  $\beta + \frac{\pi}{2} + \left(\frac{\pi}{2} - i_2\right) = \pi$ ; d'où  $\beta = i_2$ . 8.6 d)

Dans le triangle  $H_2I_1I_2$ , on a  $\sin(\beta) = \frac{I_2H_2}{a}$ . De plus,  $(I_2H_2) = n_2I_2H_2$ , d'où  $(I_2H_2) = n_2a\sin(\beta)$ . **8.6** e)

**8.6** f) Les chemins optiques (H₁I₁) et (I₂H₂) étant identiques, on retrouve la loi de la réfraction de Snell-Descartes:  $n_1 \sin(i_1) = n_2 \sin(i_2)$ .

L'indice de la lame étant différent de celui de l'air, C et C' ne sont pas sur la même surface d'onde.

**8.7** a)

**8.7** b) On a 
$$\phi(C') = \frac{2\pi}{\lambda_0}(SC') = \frac{2\pi}{\lambda_0}(SA') + \frac{2\pi}{\lambda_0}(A'B') + \frac{2\pi}{\lambda_0}(B'C') = \frac{2\pi}{\lambda_0}((SA') + d + e).$$

**8.7** c) On a 
$$\phi(C) = \frac{2\pi}{\lambda_0}(SC) = \frac{2\pi}{\lambda_0}(SA) + \frac{2\pi}{\lambda_0}(AB) + \frac{2\pi}{\lambda_0}(BC) = \frac{2\pi}{\lambda_0}((SA) + d + ne).$$

Les points A et A' appartenant à la même surface d'onde, les chemins optiques (SA) et (SA') sont égaux donc le déphasage est  $\Delta \phi = \frac{2\pi}{\lambda_0}(n-1)e$ .

D'après la loi de la réflexion de Snell-Descartes, au niveau du point d'incidence A, l'angle réfléchi est **8.8** a) égal à l'angle incident en valeur absolue. Le triangle SAM est donc un triangle isocèle qu'on peut subdiviser en deux triangles rectangles. Ainsi, en se plaçant dans celui d'hypoténuse SA et de côté h/2, le chemin optique (SA) est tel que :

(SA) = 
$$n_{air} \times SA = 1 \times \frac{h}{2\sin(\theta_1)} = \frac{h}{2\sin(\theta_1)}$$

donc la phase  $\phi_1(A)$  vérifie  $\phi_1(A) = \frac{2\pi}{\lambda_0} \frac{h}{2\sin(\theta_1)} = \frac{\pi}{\lambda_0} \frac{h}{\sin(\theta_1)}$ .

Le chemin optique (AM) est égal au chemin optique (SA), ainsi (SM) =  $2 \times$  (SA). Donc, avec le déphasage 8.8 b) induit par la réflexion, la phase est telle que  $\phi_1(M) = 2 \times \phi_1(A) + \pi = \frac{4\pi}{\lambda_0} \frac{h}{2\sin(\theta_1)} + \pi = \frac{2\pi}{\lambda_0} \frac{h}{\sin(\theta_1)} + \pi$ .

**8.8** c) En se plaçant dans le triangle rectangle d'hypoténuse BC, on constate que :

$$\tan(\theta_2) = \frac{\mathrm{BD}/2}{e}$$
 donc  $\mathrm{BD} = 2e\tan(\theta_2)$ .

- La distance EB est telle que EB =  $\frac{h \text{BD}}{2} = \frac{h}{2} e \tan(\theta_2)$ .
- En se plaçant dans le triangle rectangle SEB, le chemin optique (SB) est tel que:

$$(\mathrm{SB}) = n_{\mathrm{air}} \times \mathrm{SB} = 1 \times \frac{\mathrm{EB}}{\sin(\theta_1)} = \frac{h}{2\sin(\theta_1)} - \frac{e\tan(\theta_2)}{\sin(\theta_1)} = \frac{h}{2\sin(\theta_1)} - \frac{e\sin(\theta_2)}{\cos(\theta_2)\sin(\theta_1)} = \frac{h}{2\sin(\theta_1)} - \frac{e}{n\cos(\theta_2)}$$

donc la phase  $\phi_2(B)$  vérifie  $\phi_2(B) = \frac{2\pi}{\lambda_0} \left( \frac{h}{2\sin(\theta_1)} - \frac{e}{n\cos(\theta_2)} \right)$ .

8.8 f) En se plaçant dans le triangle rectangle d'hypoténuse BC, le chemin optique (BC) est tel que :

$$(BC) = n \times BC = \frac{ne}{\cos(\theta_2)}.$$

Le chemin optique (SC) est donc tel que :

$$(SC) = (SB) + (BC) = \frac{h}{2\sin\theta_1} - \frac{e}{n\cos(\theta_2)} + \frac{ne}{\cos(\theta_2)} = \frac{h}{2\sin\theta_1} + \left(n - \frac{1}{n}\right)\frac{e}{\cos(\theta_2)}.$$

Le chemin optique (SM) est égal au double de (SC). Ainsi la phase est  $\phi_2(M) = \frac{4\pi}{\lambda_0} \left( \frac{h}{2\sin\theta_1} + \left( n - \frac{1}{n} \right) \frac{e}{\cos(\theta_2)} \right)$ .

**8.8** g) On a :

$$\Delta \phi = \phi_2(\mathbf{M}) - \phi_1(\mathbf{M}) = \frac{4\pi}{\lambda_0} \left( \frac{h}{2\sin\theta_1} + \left( n - \frac{1}{n} \right) \frac{e}{\cos(\theta_2)} \right) - \frac{4\pi}{\lambda_0} \frac{h}{2\sin(\theta_1)} - \pi = \frac{4\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} \left( n - \frac{1}{n} \right) - \pi.$$

8.8 h) On a:

$$\Delta \phi = \frac{4\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} \left( n - \frac{1}{n} \right) - \pi = \frac{4\pi}{\lambda_0} \frac{e}{\sqrt{1 - \sin^2(\theta_2)}} - \pi.$$

Or, d'après la loi de la réflexion de Snell-Descartes, il vient que :

$$\Delta \phi = \left(n - \frac{1}{n}\right) = \frac{4\pi}{\lambda_0} \frac{ne}{\sqrt{n^2 - \sin^2(\theta_1)}} \left(n - \frac{1}{n}\right) - \pi = \frac{4\pi}{\lambda_0} \frac{e(n^2 - 1)}{\sqrt{n^2 - \sin^2(\theta_1)}} - \pi.$$

**8.9** a) Les chemins optiques  $(SI_1)$  et  $(SH_1)$ , ainsi que  $(I_2N)$  et  $(H_2M)$  sont égaux, on peut donc écrire :

$$\Delta \phi = \phi(N) - \phi(M) = \frac{2\pi}{\lambda_0} ((SM) - (SN)) = \frac{2\pi}{\lambda_0} (nI_1I_2 - H_1H_2) = \frac{2\pi}{\lambda_0} (ne + d - e) - \frac{2\pi}{\lambda_0} d = \frac{2\pi}{\lambda_0} e(n - 1).$$

**8.9** b) Dans le triangle rectangle d'hypoténuse  $I_1I_2$ , on a  $cos(\theta_2) = \frac{e}{I_1I_2}$ .

8.9 c) On identifie un triangle rectangle  $I_1I_2H_3$  d'hypoténuse  $I_1I_2$  avec un angle  $\theta_1 - \theta_2$  de côté adjacent  $H_1H_2$ . Il vient que  $H_1H_2 = I_1I_2\cos(\theta_1 - \theta_2)$ .



.....

**8.9** d) Les chemins optiques (SI₁) et (SH₁), ainsi que (I₂N) et (H₂M) sont égaux, on peut donc écrire :

$$\Delta \phi = \phi(N) - \phi(M) = \frac{2\pi}{\lambda_0} ((SM) - (SN)) = \frac{2\pi}{\lambda_0} (nI_1I_2 - H_1H_2).$$

En utilisant les expressions obtenues précédemment, on a :

$$\Delta \phi = \frac{2\pi}{\lambda_0} (n I_1 I_2 - I_1 I_2 \cos(\theta_1 - \theta_2)) = \frac{2\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} (n - \cos(\theta_1 - \theta_2)).$$

8.9 e) En utilisant l'identité trigonométrique, il vient que  $\cos(\theta_1 - \theta_2) = \cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)$ . De plus, la loi de Snell-Descartes de la réfraction nous permet d'écrire  $\cos(\theta_1 - \theta_2) = \cos(\theta_1)\cos(\theta_2) + n\sin^2(\theta_2)$ . Enfin, en utilisant l'identité trigonométrique  $1 = \sin^2(\theta_2) + \cos^2(\theta_2)$ , il vient que :

$$\cos(\theta_1 - \theta_2) = \cos(\theta_1)\cos(\theta_2) + n - n\cos^2(\theta_2).$$

**8.9** f) En utilisant les expressions obtenues précédemment, on a :

$$\Delta \phi = \frac{2\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} (n - \cos(\theta_1 - \theta_2)) = \frac{2\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} (n - \cos(\theta_1) \cos(\theta_2) - n + \cos^2(\theta_2))$$
$$= \frac{2\pi}{\lambda_0} \frac{e}{\cos(\theta_2)} (-\cos(\theta_1) \cos(\theta_2) + n \cos^2(\theta_2)).$$

Donc,  $\Delta \phi = \frac{2\pi}{\lambda_0} e(n\cos(\theta_2) - \cos(\theta_1)).$ 

8.10 a) Le rayon est d'abord réfléchi par la lame semi-réfléchissante. L'indice de réfraction de la lame est supérieur

**8.10** a) Le rayon est d'abord réfléchi par la lame semi-réfléchissante. L'indice de réfraction de la lame est supérieur à celui de l'air, il y a donc un déphasage de  $\pi$ . Puis, le rayon est réfléchi par le miroir et est donc, de nouveau, déphasé de  $\pi$ .

**8.10** b) Le rayon passe une première fois dans la lame, puis est réfléchi par  $M_2$ : le rayon est déphasé de  $\pi$ . Il traverse une deuxième fois la lame et est réfléchi une seconde fois par la lame. Dans ce cas, le milieu de propagation du rayon incident est le plus réfringent : il n'y a pas de déphasage supplémentaire.

.....

8.10 c) On considère le triangle rectangle d'hypoténuse  $I_1I_2$  et on utilise la relation trigonométrique  $\cos(\theta_2) = \frac{e}{I_2I_2}$ .

**8.10** d) Le rayon réfléchi par  $M_1$  traverse la lame entre  $I_1$  et  $I_3$  après la réflexion par  $M_1$ . Le rayon réfléchi par  $M_2$  traverse la lame entre  $I_1$  et  $I_2$  avant la réflexion par  $M_2$ , puis entre  $I_2$  et  $I_1$  après la réflexion par  $M_2$ , puis entre  $I_1$  et  $I_3$ . En tenant compte du déphasage dû aux réflexions, et comme  $I_1I_2 = I_1I_3$ , il vient que :

$$\Delta \phi = \frac{2\pi}{\lambda_0} (3nI_1I_2) + \pi - \frac{2\pi}{\lambda_0} (nI_1I_2 + 2\pi) = \frac{4\pi}{\lambda_0} nI_1I_2 - \pi = \frac{4\pi}{\lambda_0} \frac{ne}{\cos(\theta_2)} - \pi.$$

**8.11** a) Attention à la conversion des picosecondes en secondes : on a 1 ps =  $1 \times 10^{-12}$  s.

**8.11** b) Attention à la conversion des microsecondes en secondes : on a  $1 \,\mu s = 1 \times 10^{-6} \, s$ .

.....

**8.11** c) La relation  $\frac{\Delta \lambda}{\lambda} = \frac{\Delta f}{f}$  se réécrit  $\frac{\Delta \lambda}{\lambda} = \frac{1}{\tau_{\rm c} f}$ , soit  $\tau_{\rm c} = \frac{\lambda^2}{c \Delta \lambda}$ . Ainsi, on a :

$$\tau_{\rm c} = \frac{\left(820 \times 10^{-9} \, {\rm m}\right)^2}{3 \times 10^8 \, {\rm m} \cdot {\rm s}^{-1} \times 50 \times 10^{-9} \, {\rm m}} = 45 \times 10^{-15} \, {\rm s} = 45 \times 10^3 \, {\rm ps}.$$

**8.11** d) Une source possède une cohérence temporelle d'autant plus forte que le temps de cohérence est long (trains d'onde avec une durée importante). Parmi les trois sources, c'est le laser qui possède la meilleure cohérence temporelle. La source de lumière blanche munie du filtre possède la moins bonne cohérence temporelle.

**8.12** a) La tension  $u_1$  vérifie :

$$u_1 = K_1 \langle s(t) \rangle = \frac{K_1}{\tau} \int_0^{\tau} s(t) dt = \frac{K_1}{\tau} \int_0^{\tau} S_0 \cos(\omega t) dt = \frac{K_1 S_0}{\tau} \left[ \frac{\sin(\omega t)}{\omega} \right]_0^{\tau}$$
$$= K_1 S_0 \frac{1}{\omega \tau} \sin(\omega \tau) = K_1 S_0 \frac{T}{2\pi \tau} \sin\left(2\pi \frac{\tau}{T}\right).$$

- **8.12** b) La valeur maximale de la fonction  $\sin\left(2\pi\frac{\tau}{T}\right)$  est 1, donc la valeur maximale de  $u_1$  est  $K_1S_0\frac{T}{2\pi\tau}$ .
- **8.12** c) La valeur maximale du signal  $u_1$  est  $K_1S_0\frac{T}{2\pi\tau}$ . Ce signal est exploitable lorsque

$$K_1 S_0 \frac{T}{2\pi\tau} \geqslant \frac{K_1 S_0}{2\pi \times 100}$$
 soit  $T \geqslant \frac{\tau}{100}$  soit  $f \leqslant \frac{100}{\tau}$ .

Ainsi la fréquence maximale du signal exploitable par le capteur A est  $f = \frac{100}{1 \times 10^{-9}} = 1 \times 10^{11} \,\text{Hz} = 100 \,\text{GHz}.$ 

**8.12** d) La tension  $u_2$  vérifie :

$$u_{2} = K_{2} \langle s^{2}(t) \rangle = \frac{K_{2}}{\tau} \int_{0}^{\tau} s^{2}(t) dt = \frac{K_{2} S_{0}^{2}}{\tau} \int_{0}^{\tau} \cos^{2}(\omega t) dt = \frac{K_{2} S_{0}^{2}}{2\tau} \left( \int_{0}^{\tau} dt + \int_{0}^{\tau} \cos(2\omega t) dt \right)$$
$$= \frac{K_{2} S_{0}^{2}}{2\tau} \left( \tau + \frac{T}{4\pi} \sin\left(4\pi \frac{\tau}{T}\right) \right).$$

- **8.12** e) La valeur maximale de la fonction  $\sin\left(4\pi\frac{\tau}{T}\right)$  est 1, donc la valeur maximale de  $u_2$  est  $\frac{K_2S_0^2}{2\tau}\left(\tau + \frac{T}{4\pi}\right)$ .
- **8.12** f) La valeur maximale du signal  $u_2$  est  $\frac{K_2S_0^2}{2\tau}\left(\tau + \frac{T}{4\pi}\right)$ . Ce signal est exploitable lorsque

$$\frac{K_2 S_0^2}{2\tau} \left(\tau + \frac{T}{4\pi}\right) \geqslant \frac{K_2 S_0^2}{2} \quad \text{soit} \quad K_2 S_0^2 \frac{T}{8\pi\tau} \geqslant 0 \quad \text{soit} \quad f < +\infty.$$

Ainsi, théoriquement, il n'y a pas de limite à la fréquence du signal exploitable par le capteur B.

**8.13** a) On a 
$$\mathcal{P}_{\min 1} = \frac{I_{\text{obs } 1}}{s_1} = \frac{3 \times 10^{-11} \text{ A}}{0.3 \text{ A} \cdot \text{W}^{-1}} = 1,00 \times 10^{-10} \text{ W}.$$

**8.13** d) On a 
$$E_{\min 1} = \mathcal{P}_{\min 1} \times \tau = 1,00 \times 10^{-10} \,\mathrm{W} \times 2,00 \times 10^{-7} \,\mathrm{s} = 2,00 \times 10^{-17} \,\mathrm{J}.$$

**8.13** g) Le nombre minimal de photons reçus par une photodiode  $N_{\min}$  vérifie  $N_{\min} = \frac{E_{\min}}{h\nu} = \frac{E_{\min}\lambda_0}{hc}$ .

Ainsi, on a  $N_{\min 1} = 47$ ,  $N_{\min 2} = 935$  et  $N_{\min 3} = 1104$ .

# Fiche nº 9. Interférences à deux ondes

# Réponses

reponses	
<b>9.1</b> a) $\cos(a)\cos(b) = \frac{\cos(a-b) + \cos(a+b)}{2}$	<b>9.6</b> a)
<b>9.1</b> b) $\cos^2 a = \frac{1 + \cos(2a)}{2}$	9.6 b)
<b>9.1</b> c) $\sin^2 a = \frac{1 - \cos(2a)}{2}$	<b>9.6</b> c)
<b>9.1</b> d) $\sin(a)\cos(a) = \frac{\sin(2a)}{2}$	9.7 a) ©
	<b>9.7</b> b)
9.2 a) $\left  \cos(\omega t - kx) \right $ 9.2 b) $\left  -\sin(\omega t - kx) \right $	<b>9.7</b> c)
9.2 c)	9.8 a)
<b>9.3</b> a)	<b>9.8</b> c)
<b>9.3</b> b)	<b>9.8</b> d)
<b>9.3</b> c) $ \frac{2\pi}{\omega_2} $	9.8 e) $0.14  \mu m$ 9.9 a) $a \sin(\theta_1)$
<b>9.3</b> d)	<b>9.9</b> b) $\arctan\left(\frac{y}{f_2'}\right)$
<b>9.3</b> e)	nau
<b>9.3</b> f)	$f_2'$
$9.3 \; \mathrm{g}) \ldots \qquad \qquad \boxed{\frac{\pi}{\omega_2}}$	$9.9 \text{ d}) \dots \qquad \qquad \frac{f_2' \lambda}{na}$
$\begin{array}{c c} & & & & \\ \hline 9.3 \text{ h}) & & & & \\ \hline \end{array}$	<b>9.9</b> e)
9.4 a)	9.10 a)
<b>9.4</b> b)	9.10 b) $(n-1)\alpha y$
<b>9.4</b> c)	9.10 c)
$9.4 \text{ d)} \dots \qquad \boxed{\frac{A^2}{8} \left(\frac{5}{4} + \cos(\varphi_0)\right)}$	9.10 d)
9.5	9.11 a) $\frac{e}{\cos(\theta)}$



## Corrigés

**9.1** a) Si on somme les relations (1) et (2), il vient que :

$$\cos(a - b) + \cos(a + b) = \cos(a)\cos(b) + \sin(a)\sin(b) + \cos(a)\cos(b) - \sin(a)\sin(b) = 2\cos(a)\cos(b).$$

Donc, 
$$cos(a) cos(b) = \frac{cos(a-b) + cos(a+b)}{2}$$
.

**9.1** b) En remplaçant b par a dans la relation précédente, il vient que :

$$\cos(a)\cos(a) = \frac{\cos(a-a) + \cos(a+a)}{2} \qquad \text{donc} \qquad \cos^2 a = \frac{1 + \cos(2a)}{2}.$$

**9.2** a) On a :

$$s(x,t) = S_0 \cos(\omega t - kx) + S_0 \cos(\omega t - kx + \varphi) = S_0 \left(\cos(\omega t - kx) + \cos(\omega t - kx + \varphi)\right)$$

$$= S_0 \left(\cos(\omega t - kx) + \cos(\omega t - kx)\cos(\varphi) - \sin(\omega t - kx)\sin(\varphi)\right)$$

$$= S_0 \left(\cos(\omega t - kx)\left(1 + \cos(\varphi)\right) - \sin(\omega t - kx)\sin(\varphi)\right)$$

$$= S_0 \left(f(x,t)\left(1 + \cos(\varphi)\right) + g(x,t)\sin(\varphi)\right).$$

Par identification, on a  $f(x,t) = \cos(\omega t - kx)$  et  $g(x,t) = -\sin(\omega t - kx)$ .

.....

**9.2** c) La fonction s(x,t) s'annule si, et seulement si,

$$\begin{cases} 1 + \cos(\varphi) = 0 \\ \sin(\varphi) = 0 \end{cases} \quad \text{soit} \quad \begin{cases} \varphi = \pi \ [2\pi] \\ \varphi = \pi \ [\pi]. \end{cases}$$

On en déduit que l'unique condition d'annulation est  $\varphi = \pi$  [2 $\pi$ ].

9.3 a) La pulsation du signal  $s_1(t) = S_1 \cos(\omega_1 t - k_1 x)$  est  $\omega_1$  donc sa période est  $T_1 = \frac{2\pi}{\omega_1}$ .

.....

**9.3** b) On a :

$$\langle s_1(t) \rangle = \frac{1}{T_1} \int_0^{T_1} S_1 \cos(\omega_1 t - k_1 x) dt = \frac{1}{T_1} \frac{1}{\omega_1} S_1 \left[ \sin(\omega_1 t - k_1 x) \right]_0^{T_1}$$

$$= \frac{\omega_1}{2\pi} \frac{1}{\omega_1} S_1 (\sin(\omega_1 T_1 - k_1 x) - \sin(-k_1 x)) = \frac{1}{2\pi} S_1 (\sin(2\pi - k_1 x) - \sin(-k_1 x)).$$

Comme  $\sin(2\pi - k_1 x) = \sin(-k_1 x)$ , on voit que  $\langle s_1(t) \rangle = 0$ .

**9.3** d) On a :

$$\langle s_2(t) \rangle = \frac{1}{T_2} \int_0^{T_2} S_2 \sin(\omega_2 t - k_2 x + \varphi_2) dt = -\frac{1}{T_2} \frac{1}{\omega_2} S_2 \left[ \cos(\omega_2 t - k_2 x + \varphi_2) \right]_0^{T_2}$$

$$= -\frac{\omega_2}{2\pi} \frac{1}{\omega_2} S_2 (\cos(\omega_2 T_2 - k_2 x + \varphi_2) - \cos(-k_2 x + \varphi_2)) = -\frac{1}{2\pi} S_2 (\cos(2\pi - k_2 x + \varphi_2) - \cos(-k_2 x + \varphi_2)).$$

Comme  $\cos(2\pi - k_2x + \varphi_2) = \cos(-k_2x + \varphi_2)$ , on voit que  $\langle s_2(t) \rangle = 0$ .

.....

**9.3** e) Le signal  $f_1(t) = s_1^2(t) = S_1^2 \cos^2(\omega_1 t - k_1 x)$ . Or, on a

$$\cos(a)\cos(a) = \frac{\cos(a-a) + \cos(a+a)}{2} \qquad \text{donc} \qquad \cos^2(a) = \frac{1 + \cos(2a)}{2}.$$

Donc,  $f_1(t) = \frac{S_1^2}{2} + \frac{S_1^2}{2} \cos(2\omega_1 t - 2k_1 x).$ 

Ainsi, la pulsation du signal  $f_1(t)$  est  $2\omega_1$  donc sa période est  $T_3 = \frac{2\pi}{2\omega_1} = \frac{\pi}{\omega_1}$ .

**9.3** f) On a :

$$\langle f_1(t) \rangle = \frac{1}{T_3} \int_0^{T_3} \frac{S_1^2}{2} + \frac{S_1^2}{2} \cos(2\omega_1 t - 2k_1 x) dt = \frac{1}{T_3} \frac{S_1^2}{2} \left( \int_0^{T_3} dt + \int_0^{T_3} \cos(2\omega_1 t - 2k_1 x) dt \right)$$

$$= \frac{1}{T_3} \frac{S_1^2}{2} \left( [t]_0^{T_3} + \frac{1}{2\omega_1} [\sin(2\omega_1 t - 2k_1 x)]_0^{T_3} \right) = \frac{1}{T_3} \frac{S_1^2}{2} \left( T_3 + \frac{1}{2\omega_1} (\sin(2\omega_1 T_3 - 2k_1 x) - \sin(-2k_1 x)) \right)$$

$$= \frac{S_1^2}{2} \left( 1 + \frac{\omega_1}{\pi} \frac{1}{2\omega_1} (\sin(2\pi - 2k_1 x) - \sin(-2k_1 x)) \right).$$

Comme  $\sin(2\pi - 2k_1x) = \sin(-2k_1x)$ , on voit que  $\langle f_1(t) \rangle = \frac{S_1^2}{2}$ .

**9.3** g) Le signal  $f_2(t) = s_2^2(t) = S_2^2 \sin^2(\omega_2 t - k_2 x + \varphi_2)$ . Or, on a

$$\sin(a)\sin(a) = \frac{\cos(a-a) - \cos(a+a)}{2} \qquad \text{donc} \qquad \sin^2 a = \frac{1 - \cos(2a)}{2}.$$

Donc,  $f_2(t) = \frac{S_2^2}{2} - \frac{S_2^2}{2} \cos(2\omega_2 t - 2k_2 x + 2\varphi_2).$ 

Ainsi, la pulsation du signal  $f_2(t)$  est  $2\omega_2$  donc sa période est  $T_4 = \frac{2\pi}{2\omega_2} = \frac{\pi}{\omega_2}$ 

2w2 w2

**9.3** h) On a :

$$\langle f_2(t) \rangle = \frac{1}{T_4} \int_0^{T_4} \frac{S_2^2}{2} - \frac{S_2^2}{2} \cos(2\omega_2 t - 2k_2 x + 2\varphi_2) dt = \frac{1}{T_4} \frac{S_2^2}{2} \left( \int_0^{T_4} dt - \int_0^{T_4} \cos(2\omega_2 t - 2k_2 x + 2\varphi_2) dt \right)$$

$$= \frac{1}{T_4} \frac{S_2^2}{2} \left( \left[ t \right]_0^{T_4} - \frac{1}{2\omega_2} \left[ \sin(2\omega_2 t - 2k_2 x + 2\varphi_2) \right]_0^{T_4} \right)$$

$$= \frac{1}{T_4} \frac{S_2^2}{2} \left( T_4 - \frac{1}{2\omega_2} \left( \sin(2\omega_2 T_4 - 2k_2 x + 2\varphi_2) - \sin(-2k_2 x + 2\varphi_2) \right) \right)$$

$$= \frac{S_2^2}{2} \left( 1 - \frac{\omega_2}{\pi} \frac{1}{2\omega_2} \left( \sin(2\pi - 2k_2 x + 2\varphi_2) - \sin(-2k_2 x + 2\varphi_2) \right) \right).$$

Comme  $\sin(2\pi - 2k_2x + 2\varphi_2) = \sin(-2k_2x + 2\varphi_2)$ , on voit que  $\langle f_2(t) \rangle = \frac{S_2^2}{2}$ .

**9.4** a) On a :

$$\begin{split} &\left\langle \left[\cos(\omega_{0}t + \varphi_{1}) + \cos(\omega_{0}t + \varphi_{2})\right]^{2} \right\rangle \\ &= \left\langle \left[\cos(\omega_{0}t + \varphi_{1})\right]^{2} + 2\cos(\omega_{0}t + \varphi_{1})\cos(\omega_{0}t + \varphi_{2}) + \left[\cos(\omega_{0}t + \varphi_{2})\right]^{2} \right\rangle \\ &= \left\langle \frac{\cos(0) + \cos(2\omega_{0}t + 2\varphi_{1})}{2} \right\rangle + \left\langle 2\frac{\cos(\varphi_{1} - \varphi_{2}) + \cos(2\omega_{0}t + \varphi_{1} + \varphi_{2})}{2} \right\rangle + \left\langle \frac{\cos(0) + \cos(2\omega_{0}t + 2\varphi_{2})}{2} \right\rangle \\ &= \frac{1}{2} + 0 + \cos(\varphi_{1} - \varphi_{2}) + 0 + \frac{1}{2} + 0 = 1 + \cos(\pm\varphi_{1} \mp \varphi_{2}). \end{split}$$

**9.4** b) On a :

$$\begin{split} \left\langle \left[ A \cos(3\omega_0 t + \varphi_1) + A \cos(\omega_0 t + \varphi_2) \right]^2 \right\rangle \\ &= \left\langle \left[ A \cos(3\omega_0 t + \varphi_1) \right]^2 + 2A^2 \cos(3\omega_0 t + \varphi_1) \cos(\omega_0 t + \varphi_2) + \left[ A \cos(\omega_0 t + \varphi_2) \right]^2 \right\rangle \\ &= \left\langle A^2 \frac{\cos(0) + \cos(6\omega_0 t + 2\varphi_1)}{2} \right\rangle + \left\langle 2A^2 \frac{\cos(2\omega_0 t + \varphi_1 - \varphi_2) + \cos(4\omega_0 t + \varphi_1 + \varphi_2)}{2} \right\rangle \\ &+ \left\langle A^2 \frac{\cos(0) + \cos(2\omega_0 t + 2\varphi_2)}{2} \right\rangle \\ &= A^2 \left[ \frac{1}{2} + 0 + 0 + 0 + \frac{1}{2} + 0 \right] = A^2. \end{split}$$

**9.4** c) On a :

$$\begin{split} \left\langle \left[ A \cos(42\omega_{0}t + \varphi_{1}) + B \sin(43\omega_{0}t + \varphi_{2}) \right]^{2} \right\rangle \\ &= \left\langle \left[ A \cos(42\omega_{0}t + \varphi_{1}) \right]^{2} + 2AB \cos(42\omega_{0}t + \varphi_{1}) \sin(43\omega_{0}t + \varphi_{2}) + \left[ B \sin(43\omega_{0}t + \varphi_{2}) \right]^{2} \right\rangle \\ &= \left\langle A^{2} \frac{\cos(0) + \cos(84\omega_{0}t + 2\varphi_{1})}{2} \right\rangle + \left\langle 2AB \frac{\sin(\omega_{0}t - \varphi_{1} + \varphi_{2}) + \sin(85\omega_{0}t + \varphi_{1} + \varphi_{2})}{2} \right\rangle \\ &+ \left\langle B^{2} \frac{\cos(0) - \cos(86\omega_{0}t + 2\varphi_{2})}{2} \right\rangle \\ &= \left[ \frac{A^{2}}{2} + 0 + 0 + 0 + \frac{B^{2}}{2} - 0 \right] = \frac{A^{2} + B^{2}}{2}. \end{split}$$

9.4 d) On a: 
$$\left\langle \left[ \frac{A}{4} \sin \left( \frac{\omega_0}{2} t + \varphi_0 \right) + \frac{A}{2} \sin \left( \frac{\omega_0}{2} t + 2\varphi_0 \right) \right]^2 \right\rangle$$

$$= \left\langle \left[ \frac{A}{4} \sin \left( \frac{\omega_0}{2} t + \varphi_0 \right) \right]^2 + \frac{A^2}{4} \sin \left( \frac{\omega_0}{2} t + \varphi_0 \right) \sin \left( \frac{\omega_0}{2} t + 2\varphi_0 \right) + \left[ \frac{A}{2} \sin \left( \frac{\omega_0}{2} t + 2\varphi_0 \right) \right]^2 \right\rangle$$

$$= \left\langle \frac{A^2}{16} \frac{\cos(0) - \cos(\omega_0 t + 2\varphi_0)}{2} \right\rangle + \left\langle \frac{A^2}{4} \frac{\cos(\varphi_0) - \cos(\omega t + 3\varphi_0)}{2} \right\rangle + \left\langle \frac{A^2}{4} \frac{\cos(0) - \cos(\omega_0 t + 4\varphi_0)}{2} \right\rangle$$

$$= \left[ \frac{A^2}{32} - 0 + \frac{A^2}{8} \cos(\varphi_0) - 0 + \frac{A^2}{8} - 0 \right] = \frac{A^2}{8} \left( \frac{1}{4} + \cos(\varphi_0) + 1 \right) = \frac{A^2}{8} \left( \frac{5}{4} + \cos(\varphi_0) \right).$$

• Pour (a), on a 
$$C = \frac{10.0 \times 10^6 \text{ W} \cdot \text{m}^{-2} - 1.00 \text{ MW} \cdot \text{m}^{-2}}{10.0 \times 10^6 \text{ W} \cdot \text{m}^{-2} + 1.00 \text{ MW} \cdot \text{m}^{-2}} = \frac{1.00 \times 10^7 \text{ W} \cdot \text{m}^{-2} - 1.00 \times 10^6 \text{ W} \cdot \text{m}^{-2}}{1.00 \times 10^7 \text{ W} \cdot \text{m}^{-2} + 1.00 \times 10^6 \text{ W} \cdot \text{m}^{-2}} = 0.82.$$

• Pour ©, on a 
$$C = \frac{660 \text{ mW} \cdot \text{mm}^{-2} - 0.220 \text{ kW} \cdot \text{dm}^{-2}}{660 \text{ mW} \cdot \text{mm}^{-2} + 0.220 \text{ kW} \cdot \text{dm}^{-2}} = \frac{6.60 \times 10^{5} \text{ W} \cdot \text{m}^{-2} - 2.20 \times 10^{4} \text{ W} \cdot \text{m}^{-2}}{6.60 \times 10^{5} \text{ W} \cdot \text{m}^{-2} + 2.20 \times 10^{4} \text{ W} \cdot \text{m}^{-2}} = 93.5.$$
• Pour ©, on a  $C = \frac{5.00 \text{ mW} \cdot \text{mm}^{-2} - 2.00 \text{ mW} \cdot \text{cm}^{-2}}{5.00 \text{ mW} \cdot \text{mm}^{-2} + 2.00 \text{ mW} \cdot \text{cm}^{-2}} = \frac{5.00 \times 10^{3} \text{ W} \cdot \text{m}^{-2} + 2.20 \times 10^{4} \text{ W} \cdot \text{m}^{-2}}{5.00 \times 10^{3} \text{ W} \cdot \text{m}^{-2} + 2.00 \text{ W} \cdot \text{m}^{-2}} = 99.2.$ 
• Pour ©, on a  $C = \frac{72.0 \text{ pW} \cdot \text{pm}^{-2} - 3.00 \text{ MW} \cdot \text{km}^{-2}}{72.0 \text{ pW} \cdot \text{pm}^{-2} + 3.00 \text{ MW} \cdot \text{km}^{-2}} = \frac{72.0 \text{ W} \cdot \text{m}^{-2} - 3.00 \text{ W} \cdot \text{m}^{-2}}{72.0 \text{ W} \cdot \text{m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2}} = 99.2.$ 

• Pour ©, on a 
$$C = \frac{5,00 \text{ mW} \cdot \text{mm}^{-2} - 2,00 \text{ mW} \cdot \text{cm}^{-2}}{5,00 \text{ mW} \cdot \text{mm}^{-2} + 2,00 \text{ mW} \cdot \text{cm}^{-2}} = \frac{5,00 \times 10^3 \text{ W} \cdot \text{m}^{-2} - 20,0 \text{ W} \cdot \text{m}^{-2}}{5,00 \times 10^3 \text{ W} \cdot \text{m}^{-2} + 20,0 \text{ W} \cdot \text{m}^{-2}} = 99,200 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times$$

• Pour (d), on a 
$$C = \frac{72.0 \text{ pW} \cdot \text{µm}^{-2} - 3.00 \text{ MW} \cdot \text{km}^{-2}}{72.0 \text{ pW} \cdot \text{µm}^{-2} + 3.00 \text{ MW} \cdot \text{km}^{-2}} = \frac{72.0 \text{ W} \cdot \text{m}^{-2} - 3.00 \text{ W} \cdot \text{m}^{-2}}{72.0 \text{ W} \cdot \text{m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2}} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W} \cdot \text{m}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W}^{-2} + 3.00 \text{ W}^{-2} = 92.0 \text{ m}^{-2} + 3.00 \text{ W}^{-2} = 92.0 \text{ m}^{-2} = 92.0 \text{$$

**9.6** a) On a 
$$\Delta \varphi = \omega t_0 - kx - (\omega t_0 - kx') = k(x' - x)$$
.

**9.6** b) Le déphasage  $\Delta \varphi_n$  entre deux positions successives est constant si  $k(x_n - x_{n+1}) = 0$   $[2\pi] = n2\pi$ .

Autrement dit, on a  $\Delta x_n = n \frac{2\pi}{k} = n \frac{2\pi\lambda}{2\pi} = n\lambda$ . Pour un instant donné, les positions distantes d'un nombre entier de fois la longueur d'onde de la vibration lumineuse sont en phase : réponse (a)

**9.6** c) On a 
$$\Delta \varphi = \omega t - kx_0 - (\omega t' - kx_0) = \omega (t - t')$$
.

Le déphasage  $\Delta \varphi_n$  entre deux instants successifs est constant si  $\omega(t_n - t_{n+1}) = 0$   $[2\pi] = n2\pi$ .

Autrement dit, on a  $\Delta t_n = n \frac{2\pi}{\omega} = n \frac{2\pi T}{2\pi} = nT$ . Pour une position donnée, les instants séparés d'un nombre entier de fois la période de la vibration lumineuse sont en phase : réponse (a).

**9.7** a) On a 
$$I(M) = 2I_0 \left( 1 + \cos \left( \frac{2\pi x}{i} \right) \right)$$
; on identifie donc  $i = \frac{\lambda D}{na}$ .

Par lecture graphique, on constate qu'entre  $x = -20 \,\mathrm{mm}$  et  $x = +20 \,\mathrm{mm}$  se trouvent trois interfranges. Donc, on a  $i = \frac{4.0 \text{ cm}}{3} = 1.3 \text{ cm}.$ 

9.7 c) On a 
$$a = \frac{\lambda D}{ni}$$
. Donc,  $a = \frac{630 \times 10^{-9} \text{ m} \times 1.0 \text{ m}}{1.0 \times 1.3 \times 10^{-2} \text{ m}} = 48 \, \mu\text{m}$ .

9.8 a) On a 
$$C(x) = \cos\left(\frac{2\pi x}{X}\right)$$
; on identifie donc  $X = \frac{2\lambda_{\text{moy}}^2 D}{na\Delta\lambda}$ .

9.8 c) On a 
$$\lambda_{\text{moy}} = \frac{ina}{D}$$
. Donc,  $\lambda_{\text{moy}} = \frac{0.57 \times 10^{-3} \text{ m} \times 1.0 \times 0.20 \times 10^{-3} \text{ m}}{1.5 \text{ m}} = 0.76 \, \mu\text{m}$ .

**9.8** e) On a 
$$\Delta \lambda = \frac{2\lambda_{\text{moy}}^2 D}{naX}$$
. Donc,  $\Delta \lambda = \frac{2 \times (0.76.10^{-6})^2 \times 1.5}{1.0 \times 0.20.10^{-3} \times 6.4.10^{-2}} = 0.14 \, \mu\text{m}$ .

**9.9** a) On a 
$$\sin(\theta_1) = \frac{S_2H}{a}$$
 donc  $S_2H = a\sin(\theta_1)$ .

**9.9** b) À l'aide du tracé en tirets, on obtient un triangle avec :  $\tan(\theta_1) = \frac{y}{f_2'}$ . On en déduit  $\theta_1 = \arctan(\frac{y}{f_2'})$ .

**9.9** c) On sait que 
$$\delta_{\text{SM}} = \mathcal{L}_{\text{S}_2\text{H}} = nS_2\text{H} = na\sin(\theta_1)$$
. À l'ordre 1, on a  $\sin(\theta_1) = \theta_1$  et  $\tan(\theta_1) = \theta_1 = \frac{y}{t'}$ .

Donc, on a  $\delta_{\rm SM} = \frac{nay}{f_2'}$ .

 $J_2$ 

**9.9** d) En identifiant, on a : 
$$\frac{y}{i} = \frac{\delta_{\text{SM}}}{\lambda} = \frac{nay}{f_2'\lambda}$$
. Donc :  $i = \frac{\lambda f_2'}{na}$ .

**9.9** e) L'éclairement ne dépend que de la variable y. Ainsi, pour une valeur de y fixée, l'éclairement doit être constant, ce qui est seulement le cas pour la figure 2. La bonne réponse est (b).

**9.10** a) Dans l'interféromètre, un rayon est atténué par deux lames séparatrices, ainsi son éclairement en sortie I' est tel que  $I' = I_0/4$ . Donc son amplitude en sortie S' est telle que  $S'^2 = S_0^2/4$ , soit  $S' = S_0/2$ .

.....

**9.10** b) En considérant l la distance parcourue par un rayon dans un des bras de l'interféromètre de S jusqu'à l'écran, la différence de marche entre les rayons passant par les deux bras de l'interféromètre est :

$$\delta = n_{\text{air}}(l-e) + ne - \left(n_{\text{air}}(l-e') + ne'\right) = l + (n-1)e - l - (n-1)e' = (n-1)\left(e - e'\right) = (n-1)\alpha y.$$

**9.10** c) Le déphasage entre les deux rayons est  $\Delta \varphi = \frac{2\pi}{\lambda_0} \delta = \frac{2\pi}{\lambda_0} (n-1) \alpha y$ . Par identification, on a :

$$2\pi \frac{y}{i} = \frac{2\pi}{\lambda_0}(n-1)\alpha y$$
 donc  $i = \frac{\lambda_0}{(n-1)\alpha}$ .

**9.10** d) L'éclairement ne dépend que de la variable y. Ainsi, pour une valeur de y fixée, l'éclairement doit être constant, ce qui est seulement le cas pour la figure 2. La bonne réponse est (b).

**9.11** a) On a 
$$\cos(\theta) = \frac{e}{IJ} = \frac{e}{JK}$$
; donc,  $IJ = JK = \frac{e}{\cos(\theta)}$ .

**9.11** b) On a 
$$\tan(\theta) = \frac{\frac{IK}{2}}{e} = \frac{IK}{2e}$$
; donc,  $IK = 2e \tan(\theta)$ .

**9.11** c) On a 
$$\sin(\theta) = \frac{IH}{IK}$$
; donc,  $IH = IK \sin(\theta)$ .

**9.11** d) On a IH = IK 
$$\sin(\theta) = 2e \tan(\theta) \sin(\theta) = 2e \frac{\sin^2(\theta)}{\cos(\theta)} \cot(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$
. Or,  $\sin^2(\theta) = 1 - \cos^2(\theta)$ .

Donc, IH = 
$$2e \frac{1 - \cos^2(\theta)}{\cos(\theta)}$$
.

.....

9.11 e) On a  $\delta_{\text{SM}} = \mathcal{L}_{\text{IJ}} + \mathcal{L}_{\text{JK}} - \mathcal{L}_{\text{IH}} = n(\text{IJ} + \text{JK} - \text{IH})$ . En injectant les résultats précédents, on obtient :

$$\delta_{\rm SM} = n \left( 2 \frac{e}{\cos(\theta)} - 2e \frac{1 - \cos^2(\theta)}{\cos(\theta)} \right) = \frac{2ne}{\cos(\theta)} \left[ 1 - \left( 1 - \cos^2(\theta) \right) \right] = \frac{2ne}{\cos(\theta)} \cos^2(\theta) = 2ne\cos(\theta).$$

**9.11** f) La différence de marche ne dépend que de la variable  $\theta$ . Or l'éclairement dépend de la différence de marche (formule de Fresnel) donc l'éclairement dépend uniquement de la variable  $\theta$ . Cela signifie que l'on retrouve une valeur fixée d'éclairement pour une valeur fixée de  $\theta$ ! Autrement dit, l'ensemble des points de même éclairement correspond à un cercle, conformément à ce qui est observé dans la figure 3. Réponse (c).

.....

**9.12** a) Le rayon inférieur d'amplitude S' en M est réfléchi deux fois de plus que le rayon supérieur d'amplitude S en M. Ainsi  $S' = r^2 S$ . Comme l'éclairement I est proportionnel au carré de l'amplitude, on a  $I' = r^4 I$  et

$$I' = \left(\frac{1}{\sqrt{2}}\right)^4 I = \frac{I}{4}$$
 donc  $\frac{I'}{I} = \frac{1}{4}$ .

**9.12** b) D'après la loi de la réflexion, on a  $\tan(i) = \frac{\frac{1}{2}BE}{e}$  et donc  $BE = 2e \tan(i)$ . Par ailleurs, on a  $\sin(i) = \frac{BH}{BE}$  d'où  $BH = BE \sin(i)$ . En injectant la première relation dans la seconde, il vient :

BH = 
$$2e \tan(i) \sin(i) = \frac{2e \sin^2 i}{\cos(i)}$$
.

**9.12** c) D'après la loi de la réflexion, il vient  $\cos(i) = \frac{e}{BD}$ . On en déduit  $BD = \frac{e}{\cos(i)}$ .

**9.12** d) On a :

$$\delta_{\text{SM}} = \mathcal{L}_{\text{SABDFM}} - \mathcal{L}_{\text{SABHCM}}$$
  
=  $(\text{SA} + n\text{AB} + n\text{BD} + n\text{DE} + \text{EF} + \text{FM}) - (\text{SA} + n\text{AB} + \text{BH} + \text{HC} + \text{CM}).$ 

Or, on a BD = DE, EF = HC et FM = CM donc :

$$\delta_{\text{SM}} = 2n\text{BD} - \text{BH} = 2n\frac{e}{\cos(i)} - \frac{2e\sin^2 i}{\cos(i)} = 2ne\frac{1-\sin^2 i}{\cos(i)} = 2ne\frac{\cos^2 i}{\cos(i)} = 2ne\cos(i).$$

**9.12** e) Les franges d'interférence sont isophases, donc telles que  $\delta_{\text{SM}}$  est constant. Or  $\delta_{\text{SM}}$  ne dépend que de l'angle i, donc les franges d'interférence coïncident avec des cercles épais concentriques. Réponse (c).

.....

## Fiche no 10. Interférences à N ondes

## Réponses

200 <b>p</b> 022500		
<b>10.1</b> a)	<b>10.7</b> c) $a = 5$	10.14
<b>10.1</b> b) $2(1 + \cos \theta)$	$10.7 \text{ d)} \dots \dots \qquad \underline{f}(\varphi) = e^{j3\varphi}$	<b>10.15</b> a)
<b>10.1</b> c)	<b>10.8</b> 1,67 μm	<b>10.15</b> b) $2\pi$
$10.1 \text{ d)} \dots \dots \boxed{2(1-\cos\theta)}$	<b>10.9</b> a)	<b>10.15</b> c)
10.2 a) $2e^{j\frac{\theta}{2}}$	<b>10.9</b> b)	<b>10.15</b> d)
(0)	<b>10.10</b>	<b>10.16</b> a)
<b>10.2</b> b) $4\cos^2\left(\frac{\theta}{2}\right)$	<b>10.11</b> a) [[14,1°; 24,5°]]	<b>10.16</b> b) $N-1$
<b>10.3</b> a)	<b>10.11</b> b) [[29,1°, 56,0°]]	<b>10.16</b> c)
( )	<b>10.11</b> c)	<b>10.17</b> a)
$10.3 \text{ b)} \dots \qquad \boxed{4\sin^2\left(\frac{\theta}{2}\right)}$	<b>10.11</b> d)	<b>10.17</b> b)
<b>10.4</b> a) $\left  \frac{1}{(1-R)^2} \right $	<b>10.12</b> a) $1 - \cos^2(\varphi)$	
<b>10.4</b> b)	<b>10.12</b> b) $\boxed{\frac{1}{2}(1-\cos(\varphi))}$	<b>10.18</b> a) $x = p$ et $y = a_0 \sin(\theta')$
$(1-R)^2$		<b>10.18</b> b) 0,534 μm
<b>10.5</b> a)	<b>10.12</b> c) $2I_0(1 + \cos(\varphi))$	<b>10.18</b> c)
<b>10.5</b> b)	<b>10.13</b> a)	<b>10.19</b> a)
<b>10.5</b> c)	<b>10.13</b> b)	<b>10.19</b> b)
10.6	<b>10.13</b> c)	<b>10.19</b> c)
<b>10.7</b> a) $a = 3$		
<b>10.7</b> b) $\underline{f}(\varphi) = e^{j\varphi}$	<b>10.13</b> d)	<b>10.19</b> d)

## Corrigés

10.1 a) On a 
$$\underline{Z}_1 = 1 + e^{j\theta} = (1 + \cos \theta) + j \sin \theta$$
. Ainsi, 
$$\underline{Z}_1^* = (1 + \cos(\theta)) - j \sin(\theta) = (1 + \cos(-\theta)) + j \sin(-\theta) = 1 + e^{-j\theta}.$$

**10.1** b) On a 
$$\underline{Z}_1 \underline{Z}_1^* = (1 + e^{j\theta}) \times (1 + e^{-j\theta}) = 2 + e^{j\theta} + e^{-j\theta}$$
. Ainsi,  $\underline{Z}_1 \underline{Z}_1^* = 2(1 + \cos(\theta))$ .

**10.1** c) On a 
$$\underline{Z}_2 = 1 - e^{-j\theta} = (1 - \cos(-\theta)) - j\sin(-\theta)$$
.

Ainsi, 
$$\underline{Z}_2^* = (1 - \cos(-\theta)) + j\sin(-\theta) = (1 - \cos(\theta)) - j\sin(\theta) = 1 - e^{j\theta}$$
.

**10.1** d) On a 
$$\underline{Z}_2\underline{Z}_2^* = (1 - e^{-j\theta}) \times (1 - e^{j\theta}) = 2 - e^{j\theta} - e^{-j\theta}$$
. Ainsi,  $\underline{Z}_2\underline{Z}_2^* = 2(1 - \cos(\theta))$ .

**10.2** a) On a 
$$\underline{Z}_1 = e^{j\frac{\theta}{2}} \left( e^{-j\frac{\theta}{2}} + e^{j\frac{\theta}{2}} \right) = 2e^{j\frac{\theta}{2}} \cos\left(\frac{\theta}{2}\right)$$
. Ainsi,  $\underline{f}\left(\frac{\theta}{2}\right) = 2e^{j\frac{\theta}{2}}$ .

**10.2** b) On a 
$$\underline{Z}_1\underline{Z}_1^* = \left(2e^{i\frac{\theta}{2}}\cos\left(\frac{\theta}{2}\right)\right) \times \left(2e^{-i\frac{\theta}{2}}\cos\left(\frac{\theta}{2}\right)\right) = 4\cos^2\left(\frac{\theta}{2}\right)$$
.

$$\mathbf{10.3 \; a)} \quad \text{On a } \underline{Z}_2 = \mathrm{e}^{-\mathrm{j}\frac{\theta}{2}} \left( \mathrm{e}^{\mathrm{j}\frac{\theta}{2}} - \mathrm{e}^{-\mathrm{j}\frac{\theta}{2}} \right) = 2\mathrm{j} \; \mathrm{e}^{-\mathrm{j}\frac{\theta}{2}} \sin \left( \frac{\theta}{2} \right). \; \mathrm{Ainsi}, \; \underline{g} \left( \frac{\theta}{2} \right) = 2\mathrm{j} \; \mathrm{e}^{-\mathrm{j}\frac{\theta}{2}}.$$

**10.3** b) On a 
$$\underline{Z}_2\underline{Z}_2^* = \left(2j e^{-j\frac{\theta}{2}} \sin\left(\frac{\theta}{2}\right)\right) \times \left(-2j e^{j\frac{\theta}{2}} \sin\left(\frac{\theta}{2}\right)\right) = 4\sin^2\left(\frac{\theta}{2}\right).$$

**10.4** a) On a 
$$\underline{ss}^* = \frac{1}{1 - Re^{-j\varphi}} \times \frac{1}{1 - Re^{j\varphi}} = \frac{1}{1 + R^2 - R(e^{-j\varphi} + e^{j\varphi})} = \frac{1}{1 + R^2 - 2R(\cos\varphi)}$$
.

Or,  $\cos \varphi = 1 - 2\sin^2(\varphi/2)$ . Ainsi,

$$\underline{ss}^* = \frac{1}{1 + R^2 - 2R(1 - 2\sin^2(\varphi/2))} = \frac{1}{(1 - R)^2 + 4R\sin^2(\varphi/2)} = \frac{1}{(1 - R)^2} \frac{1}{1 + \frac{4R}{(1 - R)^2}\sin^2(\varphi/2)}.$$

Par identification, on trouve  $a = \frac{1}{(1-R)^2}$  et  $m = \frac{4R}{(1-R)^2}$ .

**10.5** a) On sait que 
$$\cos(\theta') = \cos(\theta) \implies \theta' = \theta + 2k\pi$$
 ou  $\theta' = -\theta + 2k'\pi$ , avec  $k \in \mathbb{Z}$  et  $k' \in \mathbb{Z}$ .

Les valeurs k=0 et k'=0 sont les seules permettant de respecter l'ensemble de définition de  $\theta'$ . Nous en déduisons  $\theta'=\{-\theta,\theta\}$ .

Il y a donc deux éléments dans l'ensemble des solutions.

.....

- **10.5** b) On a  $\theta \in [-90^{\circ}, 0^{\circ}]$ . Ainsi,  $\theta < -\theta$ . Le plus petit élément de l'ensemble des solutions est  $\theta$ .
- **10.5** c) Le plus grand élément de l'ensemble des solutions est  $-\theta$ .

.....

**10.6** On sait que 
$$\sin(\theta') = \sin(\theta) \Rightarrow \theta' = \theta + 2k\pi$$
 ou  $\theta' = \pi - \theta + 2k'\pi$ , avec  $k \in \mathbb{Z}$  et  $k' \in \mathbb{Z}$ .

Il existe une seule possibilité pour avoir une solution comprise dans l'intervalle  $[-90^{\circ}, 90^{\circ}]$ . Nous en déduisons  $\theta' = \{\theta\}$ . Il n'y a qu'un élément dans l'ensemble des solutions.

**10.7** a) On a  $\underline{s}(\varphi) = 1 + e^{j\varphi} + e^{2j\varphi} = \frac{1 - e^{3j\varphi}}{1 - e^{j\varphi}} = \frac{e^{3j\varphi/2}}{e^{j\varphi/2}} \left( \frac{e^{-3j\varphi/2} - e^{3j\varphi/2}}{e^{-j\varphi/2} - e^{j\varphi/2}} \right)$ . Ainsi,  $\underline{s}(\varphi) = e^{j\varphi} \frac{\sin\left(3\frac{\varphi}{2}\right)}{\sin\left(\frac{\varphi}{2}\right)}$ .

Nous en déduisons a = 3 et  $f(\varphi) = e^{j\varphi}$ .

**10.7** c) On a 
$$\underline{s}(\varphi) = e^{j\varphi} \left( 1 + e^{j\varphi} + e^{2j\varphi} + e^{3j\varphi} + e^{4j\varphi} \right) = e^{j\varphi} \frac{1 - e^{5j\varphi}}{1 - e^{j\varphi}} = e^{j\varphi} \frac{e^{5j\varphi/2}}{e^{j\varphi/2}} \left( \frac{e^{-5j\varphi/2} - e^{5j\varphi/2}}{e^{-j\varphi/2} - e^{j\varphi/2}} \right).$$

Ainsi,  $\underline{s}(\varphi) = e^{3j\varphi} \frac{\sin\left(5\frac{\varphi}{2}\right)}{\sin\left(\frac{\varphi}{2}\right)}$ . Nous en déduisons a = 5 et  $\underline{f}(\varphi) = e^{3j\varphi}$ .

10.8 On a 
$$a = \frac{1 \text{ mm}}{600 \text{ traits}} = \frac{1 \times 10^{-3} \text{ m}}{600 \text{ traits}} = 1,67 \text{ µm}.$$

**10.9** a) On a 1 pied = 
$$\frac{1 \text{ yard}}{3}$$
 et 1 inch =  $\frac{1 \text{ pied}}{12}$ . De plus, 1 inch =  $\frac{1 \text{ yard}}{3 \times 12} = \frac{91,44 \text{ cm}}{3 \times 12}$ , donc 1 inch = 25,4 mm.

**10.9** b) La linéature du réseau vaut 
$$n = \frac{30\,000\,\mathrm{traits}}{1\,\mathrm{inch}} = \frac{30\,000\,\mathrm{traits}}{25,4\,\mathrm{mm}}$$
, soit  $n = 1\,200\,\mathrm{traits/mm}$ .

**10.10** En observant l'ordre p=1 sous émergence normale, on a  $\theta=0$ .

On en déduit 
$$\sin(\theta_0) = -1 \times \frac{600 \text{ traits}}{1 \text{ mm}} \times 546,1 \text{ nm} = -\frac{600 \text{ traits}}{1 \times 10^{-3} \text{ m}} \times 546,1 \times 10^{-9} \text{ m}$$
; d'où  $\theta_0 = -19,1^{\circ}$ .

10.11 a) Le spectre de la source diffracté dans l'ordre 1 s'étale entre les angles :

•  $\theta_1^{\min}$  tel que

$$\sin(\theta_1^{\min}) = 1 \times \frac{600 \text{ traits}}{1 \times 10^{-3} \text{ m}} \times 404,7 \times 10^{-9} \text{ m donc } \theta_1^{\min} = 14,1^{\circ};$$

•  $\theta_1^{\text{max}}$  tel que

$$\sin(\theta_1^{\rm max}) = 1 \times \frac{600\,{\rm traits}}{1 \times 10^{-3}\,{\rm m}} \times 690, 7 \times 10^{-9}\,{\rm m~donc}~\theta_1^{\rm max} = 24,5^\circ.$$

10.11 b) Le spectre de la source diffracté dans l'ordre 2 s'étale entre les angles :

•  $\theta_2^{\min}$  tel que

$$\sin(\theta_2^{\rm min}) = 2 \times \frac{600\,{\rm traits}}{1 \times 10^{-3}\,{\rm m}} \times 404.7 \times 10^{-9}\,{\rm m~donc}~\theta_2^{\rm min} = 29.1^\circ~;$$

•  $\theta_2^{\text{max}}$  tel que

$$\sin(\theta_2^{\max}) = 2 \times \frac{600 \text{ traits}}{1 \times 10^{-3} \text{ m}} \times 690.7 \times 10^{-9} \text{ m donc } \theta_2^{\max} = 56.0^{\circ}.$$

10.11 c) Le spectre de la source diffracté dans l'ordre 3 s'étale entre les angles :

•  $\theta_3^{\rm min}$  tel que

$$\sin(\theta_3^{\min}) = 3 \times \frac{600 \text{ traits}}{1 \times 10^{-3} \text{ m}} \times 404,7 \times 10^{-9} \text{ m donc } \theta_3^{\min} = 46,8^{\circ};$$

•  $\theta_3^{\rm max}$  tel que

$$\sin(\theta_3^{\rm max}) = 3 \times \frac{600\,{\rm traits}}{1 \times 10^{-3}\,{\rm m}} \times 546, 1 \times 10^{-9}\,{\rm m~donc}~\theta_3^{\rm max} = 79, 4^\circ.$$

Pour les longueurs d'onde supérieures à  $546.1 \times 10^{-9}$  m, l'angle de diffraction n'est pas défini. Les raies correspondantes ne sont donc pas observables.

**10.11** d) Compte tenu des angles limites des spectres précédents, on constate un premier chevauchement des ordres dès l'ordre 2, pour les longueurs d'onde  $\lambda$  telles que :  $3 \times n \times \lambda \le 2 \times n \times 690, 7 \times 10^{-9}$ , soit pour  $\lambda \le 460, 5$  nm. Ainsi, les trois premières raies du mercure diffractées dans l'ordre 3 se mélangent avec le spectre d'ordre 2. La bonne réponse est la réponse (c).

**10.12** a) Comme 
$$N = 2$$
, on a  $\sin^2(N\frac{\varphi}{2}) = \sin^2(\varphi) = 1 - \cos^2(\varphi)$ .

**10.12** b) Comme 
$$\cos(\varphi) = \cos^2\left(\frac{\varphi}{2}\right) - \sin^2\left(\frac{\varphi}{2}\right)$$
, on a  $\sin^2\left(\frac{\varphi}{2}\right) = \frac{1}{2}(1 - \cos(\varphi))$ .

**10.12** c) On a :

$$I = 2I_0 \frac{1 - \cos^2(\varphi)}{1 - \cos(\varphi)} = 2I_0 \frac{(1 - \cos(\varphi))(1 + \cos(\varphi))}{(1 - \cos(\varphi))} = 2I_0(1 + \cos(\varphi)).$$

Nous retrouvons la formule de Fresnel donnant l'expression de l'intensité pour un interféromètre à deux ondes.

.....

#### **10.13** a)

La différence de marche se réduit, dans ce cas précis, à :

$$\delta_A = \left\lceil T_2 H' \right\rceil - [HT_1].$$

Notons par ailleurs que  $\theta$  et  $\theta'$  sont deux angles positifs au vu de la convention adoptée.

Nous retrouvons l'angle  $\theta$  au sommet T₂ du triangle rectangle T₁HT₂.

Ainsi,  $[HT_1] = a \sin(\theta)$  car l'indice optique est pris égal à 1.

De la même façon, nous trouvons :  $[T_2H'] = a\sin(\theta')$ .

Ainsi, on a

$$\delta_{A} = a(\sin(\theta') - \sin(\theta)).$$



### **10.13** b)

La différence de marche se réduit, dans ce cas précis, à :

$$\delta_B = -[HT_1] - \left[T_1H'\right].$$

Notons par ailleurs que  $\theta$  est un angle positif alors que  $\theta'$  est négatif au vu de la convention adoptée.

Nous retrouvons l'angle  $\theta$  au sommet  $T_2$  du triangle rectangle  $T_1HT_2$ . Ainsi,  $[HT_1] = a\sin(\theta)$  car l'indice optique est pris égal à 1.

De la même façon, nous trouvons :  $[T_1H'] = a\sin(|\theta'|) = -a\sin(\theta')$ .

Ainsi, on a:

$$\delta_{\rm B} = a(\sin(\theta') - \sin(\theta)).$$



#### **10.13** c)

La différence de marche se réduit, dans ce cas précis, à :

$$\delta_{\mathrm{C}} = \left[ \mathrm{T}_{2}\mathrm{H}' \right] - [\mathrm{H}\mathrm{T}_{1}].$$

Notons par ailleurs que  $\theta$  et  $\theta'$  sont négatifs au vu de la convention adoptée. Nous retrouvons l'angle  $|\theta|$  au sommet  $T_2$  du triangle rectangle  $T_1HT_2$ . Ainsi,  $[HT_1] = a\sin(|\theta|) = -a\sin(\theta)$  car l'indice optique est pris égal à 1.

De la même façon, nous trouvons :  $[T_2H'] = a\sin(|\theta'|) = -a\sin(\theta')$ .

Conclusion:  $\delta_{\rm C} = a \left( \sin(\theta) - \sin(\theta') \right)$ .



## **10.13** d)

La différence de marche se réduit, dans ce cas précis, à :

$$\delta_{\mathrm{D}} = -[\mathrm{HT_1}] - [\mathrm{T_1H'}].$$

Notons par ailleurs que  $\theta$  est un angle négatif alors que  $\theta'$  est positif au vu de la convention adoptée.

Nous retrouvons l'angle  $|\theta|$  au sommet  $T_2$  du triangle rectangle  $T_1HT_2$ . Ainsi,  $[HT_1] = a\sin(|\theta|) = -a\sin(\theta)$  car l'indice optique est pris égal à 1.

De la même façon, nous trouvons :  $[T_1H'] = a\sin(\theta')$ .

Conclusion :  $\delta_{\rm D} = a(\sin(\theta) - \sin(\theta'))$ .



### 10.14

Notons  $H_2$  le projeté orthogonal de  $O_1$  sur le rayon incident 2 et  $K_2$  le projeté orthogonal de  $O_1$  sur le rayon émergent 2.

En application du théorème de Malus-Dupin, les chemins optiques de moins l'infini jusqu'à  $O_1$  sur le rayon 1 et de moins l'infini jusqu'à  $H_2$  sur le rayon 2 sont identiques.



Il en est de même pour le chemin optique de  $O_1$  jusqu'à l'infini sur le rayon émergent 1 et pour celui de  $K_2$  jusqu'à l'infini sur le rayon émergent 2.

La différence de marche du rayon 2 par rapport au rayon 1 vaut donc :  $\delta_{2/1} = n_{\rm air} [{\rm H}_2{\rm O}_2 + {\rm K}_2{\rm O}_2]$ .

Compte tenu des angles sur la figure, on a  $H_2O_2 = a\cos\left(\frac{\pi}{2} - \theta_0\right) = \sin(\theta_0)$  et  $K_2O_2 = a\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$ .

On en déduit  $\delta_{2/1} = a(\sin(\theta_0) + \sin(\theta))$ , soit la réponse (c).

**10.15** a) La fonction  $\sin(x)$  est  $2\pi$ -périodique en x mais  $\sin(x+\pi) = -\sin(x)$ , d'où  $\sin^2(x+\pi) = \sin^2(x)$ , montrant

que la fonction  $\sin^2(x)$  est  $\pi$ -périodique en x.

**10.15** b) Posons  $x = \frac{\phi}{2}$ . La fonction  $\sin^2(x)$  est  $\pi$ -périodique en x, donc  $2\pi$ -périodique en variable  $\phi$ .

**10.15** c) Posons  $x = \frac{N\phi}{2}$ . La fonction  $\sin^2(x)$  est  $\pi$ -périodique en x, donc  $\frac{2\pi}{N}$ -périodique en variable  $\phi$ .

**10.15** d) La période de la fonction réseau est le p.p.c.m. des périodes des fonctions  $\sin^2\left(\frac{\phi}{2}\right)$  et  $\sin^2\left(\frac{N\phi}{2}\right)$ , soit le p.p.c.m. de  $2\pi$  et de  $\frac{2\pi}{N}$ . La fonction réseau est donc  $2\pi$ -périodique en variable  $\phi$ .

**10.16** a) Quand  $\phi \to 0$ , la fonction réseau présente une forme indéterminée de type  $\frac{0}{0}$ . On lève cette indétermination en formant un développement limité du numérateur et du dénominateur à l'ordre 1.

D'où  $\mathcal{R}_N(\phi) \sim \left(\frac{N\phi}{2}\right)^2 = 1$ . La fonction réseau admet une limite finie en 0. On la prolonge par continuité en posant  $\mathcal{R}_N(0) = 1$ . La fonction réseau est alors continue et dérivable sur tout  $\mathbb{R}$ .

.....

**10.16** b) La fonction réseau s'annule pour  $\sin\left(\frac{N\phi}{2}\right) = 0$  avec  $\sin\left(\frac{\phi}{2}\right) \neq 0$ , soit pour  $\frac{N\phi}{2} = q\pi$  avec  $\phi \neq 0$  et  $\phi \neq 2\pi$ . Sur l'intervalle  $[0, 2\pi]$ , les zéros de la fonction réseau correspondent aux valeurs  $\phi = q\frac{2\pi}{N}$ , avec q entier compris entre 1 et (N-1), soit N-1 valeurs par période.

.....

**10.16** c) On sait qu'on a N-1 zéros de la fonction réseau sur une période, soit ici 9 valeurs. On a donc N=10.

**10.17** a) Le terme  $\sin\left(\frac{N\phi}{2}\right)$  s'annule la première fois après  $\phi = 0$  pour  $\frac{N\phi}{2} = \pi$ , soit pour  $\phi = \frac{2\pi}{N}$ , d'où la réponse  $\widehat{C}$ .

**10.17** b) Plaçons-nous autour du pic principal en  $\phi = 0$ . Les premiers zéros autour de  $\phi = 0$  sont obtenus pour  $\phi = \pm \frac{2\pi}{N}$  d'où  $\delta \phi = \frac{4\pi}{N}$ .

.....

**10.18** a) L'équation y = ax + b est une modélisation de la relation  $a_0 \sin \theta' = p\lambda$ .

Par identification, on trouve x = p et  $y = a_0 \sin(\theta')$ .

10.18 b) Afin de réaliser la régression linéaire, il est nécessaire d'établir le tableau suivant :

p	-3	-2	-1	0	1	2	3
$a_0 \sin(\theta')$ (en $\mu$ m)	-1,61	-1,07	-0,54	0	0,52	1,07	1,59

Il ne reste qu'à faire la régression linéaire à la calculatrice.



La quantité  $a_0 \sin(\theta)$  est homogène à une longueur alors que p est sans dimension. Ainsi, a est homogène à une longueur.

On a  $a = 0.534 \,\mu\text{m}$ .

.....

**10.18** c) Par identification  $\lambda = a = 0.534 \, \mu \text{m} = 534 \, \text{nm}$ .

.....

## **10.19** a)

Les angles  $D_A$ ,  $\theta$  et  $\theta'$  sont positifs au vu de la convention adoptée. À l'aide du schéma, nous comprenons que  $|D_A| = |\theta'| - |\theta|$ . Ainsi,  $D_A = \theta' - \theta$ .



### **10.19** b)

L'angle  $\theta$  est négatif, alors que  $\theta'$  et  $D_{\rm B}$  sont négatifs au vu de la convention adoptée.

À l'aide du schéma, nous comprenons que  $|D_B| = |\theta'| + |\theta|$ . Ainsi,  $D_B = \theta' - \theta$ .



#### **10.19** c)

Les angles  $\theta$ ,  $\theta'$  et  $D_{\rm C}$  sont négatifs au vu de la convention adoptée. À l'aide du schéma, nous comprenons que  $|D_{\rm C}|=|\theta'|-|\theta|$ . Ainsi,  $D_{\rm C}=\theta'-\theta$ .



#### **10.19** d)

L'angle  $\theta$  est négatif alors que  $\theta'$  et  $D_{\rm D}$  sont positifs au vu de la convention adoptée.

À l'aide du schéma, nous comprenons que  $|D_D| = |\theta'| + |\theta|$ . Ainsi,  $D_D = \theta' - \theta$ .



## Fiche nº 11. Outils mathématiques pour la diffusion

## Réponses



## Corrigés

**11.2** e) Le point B est au niveau d'un col de la fonction f(x,y). À partir du point B, en se déplaçant dans la direction y croissant et en gardant x fixe à  $x=x_{\rm B}$ , la quantité  $f(x_{\rm B},y)$  décroît de plus en plus. La dérivée seconde par rapport à y est donc négative.

**11.2** f) De même, en se déplaçant dans la direction x croissant à y fixe à  $y = y_B$ , la quantité  $f(x, y_B)$  croît de plus en plus. La dérivée seconde par rapport à x est donc positive.

.....

**11.3** c) On a les équivalences suivantes :

$$\frac{\partial V}{\partial h} > \frac{\partial V}{\partial r} \iff \frac{\pi r^2}{3} > \frac{2\pi rh}{3} \iff r > 2h.$$

11.4 a) Il faut sommer la surface du fond de la casserole et la surface latérale.

11.4 b) C'est le volume d'un cylindre de rayon R et de hauteur H.

11.4 c) Il faut utiliser les deux résultats précédents.

.....

11.4 d) On fait varier le rayon R pour une valeur de V fixée à  $V_0$ . La notation  $\frac{\mathrm{d}S}{\mathrm{d}R}(R,V_0)$  n'est pas adéquate, la notation « d » étant réservée aux fonctions d'une seule variable.

11.4 e) Pour minimiser la surface, on cherche :  $\left(\frac{\partial S}{\partial R}\right)_{V_0} = 2\pi R + 2V(-\frac{1}{R^2}) = 0$ , soit  $V = \pi R^3$ . Or  $V = \pi R^2 H$ , on en déduit donc R = H par identification. On peut vérifier dans sa cuisine que cela correspond bien au choix « standard » des industriels.

.....

**11.5** c) Par intégrations successives, on obtient :

$$\frac{\partial n}{\partial x}(x,t) = px + A$$
 donc  $n(x,t) = \frac{px^2}{2} + Ax + B$ .

Les conditions aux limites imposent :

$$\begin{cases} n(0,t) = B & = n_0 \\ n(L,t) = \frac{pL^2}{2} + AL + B & = n_0 \end{cases} \quad \text{donc} \quad \begin{cases} B & = n_0 \\ A & = -\frac{pL}{2} \end{cases}.$$

La fonction n s'écrit alors :

$$n(x,t) = \frac{px^2}{2} - \frac{pL}{2}x + n_0 = \frac{p}{2}x(x-L) + n_0.$$

**11.6** b) On a une fonction qui ne dépend que de t. On sépare les variables, en écrivant :

$$-\frac{\mathrm{d}n}{n^2} = \frac{\mathrm{d}t}{n_c \tau} \quad \text{donc} \quad \mathrm{d}\left(\frac{1}{n}\right) = \mathrm{d}\left(\frac{t}{n_c T}\right).$$

On intègre:

$$\frac{1}{n(t)} - \frac{1}{n_0} = \frac{t}{n_c \tau}$$
 donc  $n(t) = \frac{n_0}{1 + \frac{n_0 t}{n_c \tau}}$ .

**11.6** c) On a une équation différentielle sur  $t: \frac{\partial n}{\partial t}(x,t) + \frac{n(x,t)}{\tau} = p$ . C'est une équation linéaire dont la solution est de la forme  $n(x,t) = A \exp\left(-\frac{t}{\tau}\right) + p\tau$ . La condition initiale impose  $n(x,0) = n_0\left(1 - \frac{x}{L}\right)$ . On a donc :

$$A = n_0 \left( 1 - \frac{x}{L} \right) - p\tau = A(x).$$

La solution est donc de la forme :

$$n(x,t) = n_0 \left(1 - \frac{x}{L}\right) \exp\left(-\frac{t}{\tau}\right) + p\tau\left(1 - \exp\left(-\frac{t}{\tau}\right)\right).$$

.....

# Fiche $n^o$ 12. Diffusion thermique

# Réponses

<b>100P</b> 0 <b>11</b> 505	
<b>12.1</b> a)	<b>12.6</b> c)
<b>12.1</b> b)	<b>12.6</b> d)
<b>12.1</b> c)	<b>12.7</b> a)
<b>12.1</b> d) d $U = \mu c \frac{\partial T}{\partial t} S  dx  dt$	<b>12.7</b> b)
<b>12.1</b> e)	<b>12.7</b> c)
<b>12.1</b> f)	<b>12.7</b> d) en série
<b>12.1</b> g)	<b>12.7</b> e)
<b>12.1</b> h) $-\frac{\partial j_Q}{\partial x} S  \mathrm{d}x  \mathrm{d}t$	12.8 $\frac{T_1 + R_{\rm th}h_2ST_2}{1 + R_{\rm th}h_2S}$
	<b>12.9</b> a) $\boxed{4.5 \times 10^{-2} \mathrm{K}\cdot\mathrm{W}^{-1}}$
12.2 a)	<b>12.9</b> b) $0.53 \mathrm{K}\cdot\mathrm{W}^{-1}$
<b>12.2</b> b)	<b>12.9</b> c)
<b>12.2</b> c)	<b>12.9</b> d) $3.2 \times 10^{-1} \mathrm{K \cdot W^{-1}}$
12.3 a)	<b>12.9</b> e)
<b>12.3</b> b)	<b>12.10</b> a)
<b>12.3</b> c)	<b>12.10</b> b) 0,8 m
12.3 d)	$12.10 \ c) \dots \qquad \boxed{\left(\text{cub.,}\bigcirc\right) \left(\text{cyl.,}\bigcirc\right) \left(\text{sph.,}\bigcirc\right)}$
12.4 a)	<b>12.10</b> d)
<b>12.4</b> b) $2 \times 10^{-3}$	<b>12.10</b> e)
<b>12.4</b> c)	12.11
<b>12.5</b> a) $T(x) = \frac{T_2 - T_1}{L}x + T_1$	
<b>12.5</b> b)	<b>12.12</b> a) $ \frac{\mathrm{d}\theta_{\rm i}}{\mathrm{d}t} + \frac{\theta_{i}}{R_{\rm th}C_{\rm th}} = \frac{1}{R_{\rm th}C_{\rm th}}(R_{\rm th}\phi_{\rm i} + \theta_{\rm e}) $
<b>12.5</b> c)	<b>12.12</b> b) $\boxed{\frac{1}{R_{\rm th}}(\theta_{\rm i0} - \theta_{\rm e0} - \theta_{\rm e1}\cos(\omega t))}$
<b>12.6</b> a)	<b>12.13</b> a)
<b>12.6</b> b)	<b>12.13</b> b)

#### Corrigés

**12.1** a) On utilise l'analyse dimensionnelle.

12.1 c) Il faut utiliser la première loi de Joule, en supposant la tranche suffisamment fine pour considérer la température uniforme. À l'instant t, l'énergie interne de l'élément de volume de section S et de longueur dx peut s'écrire :  $U(t) = \mu(S \, \mathrm{d} x) c T(x, t)$ .

**12.1** d) On exprime l'énergie interne à l'instant t + dt:  $U(t + dt) = \mu c S dx T(t + dt)$  puis on calcule la différence dU = U(t + dt) - U(t).

12.1 e) On considère dt suffisamment court pour considérer  $\overrightarrow{j_Q}$  constant entre t et t+dt. Le vecteur  $\overrightarrow{S}$  entrant est orienté suivant  $\overrightarrow{e_x}$ .

12.1 f) Attention aux conventions de signe! Le vecteur  $\vec{S}$  entrant est orienté dans le sens  $-\vec{e_x}$ .

12.1 g) Il n'y a pas de transfert thermique au niveau de la surface latérale du fait des orientations réciproques de  $\overrightarrow{j_Q}$  et de la surface considérée.

**12.1** h) On a  $j_Q(x,t)S dt - j_Q(x+dx,t)S dt = -\frac{\partial j_Q}{\partial x}S dt dx$ . On peut vérifier qualitativement le signe pour éviter les étourderies.

.....

_____

.....

12.2 a) La situation est unidimensionnelle : la température ne dépend spatialement que de x.

12.2 b) Le courant thermique  $\overrightarrow{j_Q} = -\lambda \overrightarrow{\text{grad}} T$  est donc dirigé seulement selon  $\overrightarrow{e_x}$ .

**12.2** c) La variation d'énergie interne pendant  $\mathrm{d}t$  est  $\mathrm{d}U = \mu(S\,\mathrm{d}x)c\frac{\partial T}{\partial t}\,\mathrm{d}t$ . Cette variation est due au flux thermique  $\Phi\,\mathrm{d}t = j_Q(x,t)S\,\mathrm{d}t - j_Q(x+\mathrm{d}x,t)S\,\mathrm{d}t = -\frac{\partial j_Q}{\partial x}S\,\mathrm{d}t\,\mathrm{d}x$ . Comme  $j_Q = -\lambda\frac{\partial T}{\partial x}$ , on a :

$$\mu(S dx)c\frac{\partial T}{\partial t} dt = \lambda \frac{\partial^2 T}{\partial x^2} S dt dx,$$

qui se simplifie en  $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$  avec  $D = \frac{\lambda}{\mu c}$ . On vérifie donc l'équation de diffusion libre à une dimension sans source.

12.4 a) Lorsque Fo  $\ll 1$ , il ne s'est pas écoulé suffisamment de temps pour que la diffusion ait eu lieu : le processus peut être considéré comme adiabatique.

Lorsque Fo  $\gg 1$ , suffisamment de temps s'est écoulé pour que la diffusion ait eu lieu.

**12.4** c) Le nombre de Fourier vaut :

$$Fo = \frac{13\,\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}\times 1.5\times 10^{-2}\,\mathrm{s}}{7\,800\,\mathrm{kg}\cdot\mathrm{m}^{-3}\times 480\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{kg}^{-1}\times \left(5\times 10^{-3}\,\mathrm{m}\right)^2} = 2\times 10^{-3} \ll 1.$$

.....

L'hypothèse d'une transformation adiabatique est donc valide.

.....

12.5 a) L'équation de la diffusion devient  $\frac{d^2T}{dx^2} = 0$ , soit T(x) = Ax + B. On utilise enfin les conditions limites  $T(0) = T_1$  et  $T(L) = T_2$ . Le profil de température est donc linéaire dans la barre en régime permanent.

12.5 b) L'hypothèse de barre homogène permet d'affirmer que la conductivité est identique dans toute la barre. L'hypothèse de régime permanent permet d'affirmer que  $\overrightarrow{j_Q}$  est à flux conservatif. L'hypothèse des parois latérales calorifugées permet d'affirmer que le flux n'est orienté que suivant  $\overrightarrow{e_x}$ .

.....

**12.5** c) On a 
$$\Phi(x) = \iint_S \overrightarrow{j_Q}(x) \cdot \overrightarrow{dS} = j(x)S = -\lambda S \frac{dT}{dx} = \frac{\lambda S}{L} (T_1 - T_2).$$

12.6 a) La contrainte est due à l'inhomogénéité spatiale d'une grandeur intensive.

12.6 b) La réponse correspond au flux d'une grandeur, le processus tendant à diminuer l'inhomogénéité spatiale liée à la contrainte.

.....

- 12.6 c) Le modèle proposé correspond donc au cas où l'on fait l'hypothèse d'une réponse linéaire du système.
- 12.6 d) C'est donc une propriété intrinsèque du milieu.

**12.7** a) On a 
$$R_{\rm th,v} = \frac{L}{\lambda S} = \frac{5 \times 10^{-3} \,\mathrm{m}}{1 \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1} \times 1 \,\mathrm{m}^2} = 5 \times 10^{-3} \,\mathrm{K} \cdot \mathrm{W}^{-1}.$$

**12.7** b) On a 
$$\Delta T = 19 \,^{\circ}\text{C} - 9 \,^{\circ}\text{C} = 10 \,^{\circ}\text{C}$$
. Le flux  $\Phi$  vaut donc  $\Phi = \frac{\Delta T}{R_{\rm th}} = \frac{10}{5 \times 10^{-3}} \text{W} = 2 \times 10^{3} \,\text{W}$ .

**12.7** c) On a 
$$\Phi = \frac{T_1 - T(0)}{R_{\text{th},1}} = h_1 S(T_1 - T(0))$$
 et  $\Phi = \frac{T(L) - T_2}{R_{\text{th},2}} = h_2 S(T(L) - T_2)$ .

- 12.7 d) Les couches sont traversées par le même flux thermique : ainsi, les résistances thermiques sont en série.
- **12.7** e) On a  $\Phi' = \frac{1}{R'_{\rm th}} (T_1 T_2)$ . Les résistances thermiques sont en série; donc

$$R'_{\rm th} = R_{\rm th} + R_{\rm th,1} + R_{\rm th,2} = \frac{L}{\lambda S} + 2 \times \frac{1}{hS} = 9 \times 10^{-3} \,\mathrm{K \cdot W}^{-1}.$$

On a donc  $\Phi' = \frac{10 \, \mathrm{K}}{9 \times 10^{-3} \, \mathrm{K} \cdot \mathrm{W}^{-1}} \approx 1.1 \times 10^3 \, \mathrm{W}$ . Les pertes sont presque deux fois plus faibles que dans le cas du premier modèle : des conditions limites peu réalistes peuvent conduire à surestimer fortement les pertes thermiques.

Par substitution, on élimine 
$$\phi$$
: on a  $T_1 - T(L) = R_{\text{th}} h_2 S(T(L) - T_2)$  puis on isole  $T(L)$ . Ainsi,  $T_1 + R_2$ ,  $h_2 ST_2$ 

$$T(L) = \frac{T_1 + R_{\rm th} h_2 S T_2}{1 + R_{\rm th} h_2 S}.$$

12.9 a) La surface du mur en brique est de  $7.5 \,\mathrm{m}^2 - 1.2 \,\mathrm{m}^2 = 6.3 \,\mathrm{m}^2$ . La résistance de la brique est :

$$R_{\rm b} = \frac{e_{\rm b}}{\lambda_{\rm b}(S_{\rm tot} - S_{\rm f})} = 4.53 \times 10^{-2} \,\rm K \cdot W^{-1}.$$

**12.9** b) La résistance de l'isolant est 
$$R_i = \frac{e_i}{\lambda_i(S_{\text{tot}} - S_f)} = 5.29 \times 10^{-1} \,\text{K} \cdot \text{W}^{-1}$$
.

**12.9** d) La résistance de la brique et celle de l'isolant sont en série ; d'où  $R_{\rm mur} = R_{\rm b} + R_{\rm i} = 5.74 \times 10^{-1} \, {\rm K \cdot W^{-1}}$ .

Les résistances  $R_{\text{mur}}$  et  $R_{\text{f}}$  sont en parallèle. La résistance équivalente du mur est alors :

$$R_{\rm eq} = \frac{R_{\rm mur} R_{\rm f}}{R_{\rm mur} + R_{\rm f}} = 3.16 \times 10^{-1} \, {\rm K \cdot W}^{-1}.$$

**12.9** e) Pour maintenir cet écart, le système de chauffage doit fournir un flux thermique  $\phi$  tel que :

$$\phi = \frac{\Delta T}{R_{\rm eq}} = \frac{15\,{\rm K}}{3.16\times 10^{-1}\,{\rm K}\cdot{\rm W}^{-1}} = 47.5\,{\rm W}.$$

**12.10** c) Il faut calculer les surfaces d'échange pour les différents igloos afin d'identifier le dénominateur des intégrales. En notant r la variable d'espace, on a  $S_{\text{cub.}} = 5r^2$ ,  $S_{\text{cyl.}} = \pi r^2 + 2\pi r \times r = 3\pi r^2$  et  $S_{\text{sph.}} = 2\pi r^2$ .

.....

**12.10** d) Toutes les résistances thermiques sont de la forme 
$$R_{\text{th}} = \int_{0}^{a+e} \frac{dr}{\alpha r^2} = \frac{1}{\alpha} \left[ \frac{1}{a} - \frac{1}{a+e} \right] = \frac{e}{\alpha a(a+e)}$$
.

On peut alors facilement calculer les résistances thermiques pour les différents igloos en identifiant pour chacun la valeur de  $\alpha$  et a. D'où :

$$\begin{split} R_{\rm th,\;cub.} &= \frac{0.1\,\mathrm{m}}{5\times0.2\,\mathrm{W\cdot m^{-1}\cdot K^{-1}\times 1\,m\times 1,1\,m}} = \frac{1}{55\times0.2}\mathrm{K\cdot W^{-1}} = \frac{1}{11}\mathrm{K\cdot W^{-1}} \\ R_{\rm th,\;cyl.} &= \frac{0.1\,\mathrm{m}}{3\pi\times0.2\,\mathrm{W\cdot m^{-1}\cdot K^{-1}\times 0,7\,m\times 0,8\,m}} = \frac{1}{52.1\times0.2}\mathrm{K\cdot W^{-1}} = \frac{1}{10.4}\mathrm{K\cdot W^{-1}} \\ R_{\rm th,\;sph.} &= \frac{0.1\,\mathrm{m}}{2\pi\times0.2\,\mathrm{W\cdot m^{-1}\cdot K^{-1}\times 0,8\,m\times 0,9\,m}} = \frac{1}{44.6\times0.2}\mathrm{K\cdot W^{-1}} = \frac{1}{8.9}\mathrm{K\cdot W^{-1}}. \end{split}$$

**12.10** e) On a 
$$\Delta T = R_{\text{th,C}}\phi = \frac{100 \text{ W}}{8.9 \text{ W} \cdot \text{K}^{-1}} = 11.2 \,^{\circ}\text{C}.$$

12.12 a) La loi des nœuds en termes de potentiels appliquée en N donne :

$$C_{\rm th} \frac{\mathrm{d}\theta_{\rm i}}{\mathrm{d}t} = \phi_{\rm i} + \frac{1}{R_{\rm th}} (\theta_{\rm e} - \theta_{\rm i}) \qquad \mathrm{donc} \qquad \frac{\mathrm{d}\theta_{\rm i}}{\mathrm{d}t} + \frac{\theta_{\rm i}}{R_{\rm th}C_{\rm th}} = \frac{1}{R_{\rm th}C_{\rm th}} (R_{\rm th}\phi_{\rm i} + \theta_{\rm e}).$$

**12.12** b) Si  $\theta_i$  est une constante, l'équation différentielle se simplifie en :  $\phi_i(t) = \frac{1}{R_{\rm th}}(\theta_{i0} - \theta_{e0} - \theta_{e1}\cos(\omega t))$ .

Le chauffage est donc en opposition de phase avec la température extérieure.

12.13 b) Les résistances thermiques des isolants (a) et (b) s'écrivent respectivement :

$$R_{\rm a} = \frac{1}{2\pi\lambda_{\rm a}L}\ln\left(\frac{5}{1}\right) = \frac{1}{2\pi L}\left(\frac{1}{\lambda_{\rm a}}\ln(5)\right) \qquad {\rm et} \qquad R_{\rm b} = \frac{1}{2\pi\lambda_{\rm b}L}\ln\left(\frac{7}{5}\right) = \frac{1}{2\pi L}\left(\frac{1}{\lambda_{\rm b}}[\ln(7) - \ln(5)]\right).$$

Les deux résistances étant en série et comme on cherche la température à l'interface entre ces deux isolants, la formule du pont diviseur de tension appliquée au potentiel donne :

$$\theta_{M} = 20 \,^{\circ}\text{C} + \frac{R_{\text{b}}}{R_{\text{a}} + R_{\text{b}}} \times 80 \,^{\circ}\text{C} = 20 \,^{\circ}\text{C} + \frac{80 \,^{\circ}\text{C}}{1 + \frac{\lambda_{\text{b}}}{\lambda_{\text{a}}} \frac{\ln(5)}{\ln(7) - \ln(5)}} = 20 \,^{\circ}\text{C} + \frac{80 \,^{\circ}\text{C}}{1 + 3\frac{1}{\frac{\ln(7)}{\ln(5)} - 1}}$$

$$= 20 \,^{\circ}\text{C} + \frac{80 \,^{\circ}\text{C}}{1 + 3\frac{1}{\frac{\ln(7)}{\ln(7)} - 1}} = 20 \,^{\circ}\text{C} + \frac{80 \,^{\circ}\text{C}}{1 + \frac{1}{0.07}} = 20 \,^{\circ}\text{C} + \frac{7 \times 80 \,^{\circ}\text{C}}{107} \approx 25.2 \,^{\circ}\text{C}.$$

.....

# Fiche no 13. Transferts thermiques

## Réponses

<b>13.1</b> a)	<b>13.8</b> a)
<b>13.1</b> b)	<b>13.8</b> b)
13.1 c)	<b>13.8</b> c)
<b>13.2</b> a)	13.9 $L^2 \cdot T^{-1}$
<b>13.2</b> b) $\boxed{60 \mathrm{W}\cdot\mathrm{m}^{-2}}$	13.10 a)
<b>13.3</b> a)	<b>13.10</b> b)
<b>13.3</b> b)	
13.3 c) Même sens que $\overrightarrow{e_r}$	<b>13.11</b> a) $\left[\frac{p_v}{2\lambda}x(L-x) + (T_1 - T_0)\frac{x}{L} + T_0\right]$
<b>13.3</b> d) Même sens que $\overrightarrow{e_r}$	<b>13.11</b> b)
<b>13.3</b> e) $2.9 \times 10^5 \mathrm{W}\cdot\mathrm{m}^{-2}$	<b>13.11</b> c)
13.3 f)	<b>13.12</b> a) $T_0 + \frac{I^2}{2\gamma\lambda S^2} \left( \left(\frac{L}{2}\right)^2 - x^2 \right)$
13.4 $W \cdot K^{-1} \cdot m^{-2}$	<b>13.12</b> b)
<b>13.5</b> a)	
<b>13.5</b> b)	<b>13.12</b> c) $T_0 + \frac{I^2}{\lambda \gamma S^2} \frac{L^2}{8}$
13.6 a)	<b>13.12</b> d)
<b>13.6</b> b) $\lambda \frac{\pi a^2}{b} (T_0 - T_a)$	<b>13.13</b> a) $1,0 \times 10^{-2} \mathrm{K \cdot W^{-1}}$
<b>13.7</b> a)	<b>13.13</b> b)
<b>13.7</b> b) $3.8 \times 10^{26} \mathrm{W}$	<b>13.13</b> c)
13.7 c)	<b>13.14</b> a)
13.7 d)	<b>13.14</b> b)

### Corrigés

13.2 a) Le profil de température dans le mur est une fonction affine en régime stationnaire.

On a alors  $\overrightarrow{\text{grad}}T = \frac{\mathrm{d}T}{\mathrm{d}x}\overrightarrow{e_x}$  indépendant de x. La loi de Fourier donne alors  $\overrightarrow{j}_{\text{th}} = -\lambda \overrightarrow{\text{grad}}T = -\lambda \frac{T_{\text{C}} - T_{\text{A}}}{e}\overrightarrow{e_x}$  pour tous les points de la dalle. Ici,  $\overrightarrow{\text{grad}}T = \frac{T_{\text{C}} - T_{\text{A}}}{e}\overrightarrow{e_x}$  avec  $\frac{T_{\text{C}} - T_{\text{A}}}{e} = 50\,\text{K}\cdot\text{m}^{-1}$ .

**13.2** b) On a 
$$\|\vec{j}_{th}(B)\| = \lambda \frac{|T_C - T_A|}{e} = 1.2 \,\mathrm{W \cdot m^{-1} \cdot K^{-1}} \times \frac{10 \,\mathrm{K}}{0.2 \,\mathrm{m}} = 60 \,\mathrm{W \cdot m^{-2}}.$$

13.3 a) La température ne dépend spatialement que de la distance r à l'axe (Oz). Par conséquent, on a :

$$\overrightarrow{\operatorname{grad}} T = \frac{\mathrm{d}T}{\mathrm{d}r} \overrightarrow{e_r}.$$

13.3 b) La température ne dépend spatialement que de la distance r à l'axe (Oz). Par conséquent, on a :

$$\overrightarrow{\operatorname{grad}} T = \frac{\mathrm{d}T}{\mathrm{d}r} \overrightarrow{e_r}.$$

- **13.3** c) On constate que  $\overrightarrow{\text{grad}} T \cdot \overrightarrow{e_r} = \frac{dT}{dr} < 0 \text{ donc } \overrightarrow{j}_{\text{th}} \cdot \overrightarrow{e_r} > 0.$
- **13.3** d) On constate que  $\overrightarrow{\text{grad}} T \cdot \overrightarrow{e_r} = \frac{dT}{dr} < 0 \text{ donc } \overrightarrow{j}_{\text{th}} \cdot \overrightarrow{e_r} > 0.$
- **13.3** e) On a  $\frac{dT}{dr} = \frac{T_C T_A}{\ln\left(\frac{c}{a}\right)} \frac{1}{r}$  donc  $\|\vec{j}_{th}(A)\| = \vec{j}_{th}(A) \cdot \vec{e_r} = -\lambda \frac{T_C T_A}{\ln\left(\frac{c}{a}\right)} \frac{1}{a}$ . Donc,

$$\lambda \frac{T_{\rm A} - T_{\rm C}}{\ln\left(\frac{c}{a}\right)} \frac{1}{a} = 400 \,\rm W \cdot m^{-1} \cdot K^{-1} \times \frac{10 \,\rm K}{\ln(2)} \frac{1}{2 \times 10^{-2} \,\rm m} = 2.9 \times 10^5 \,\rm W \cdot m^{-2}.$$

- **13.3** f) On obtient  $\vec{j}_{th}(C) \cdot \vec{e_r} = -\lambda \frac{T_C T_A}{\ln(\frac{c}{a})} \frac{1}{c} = \frac{1}{2} \vec{j}_{th}(A) \cdot \vec{e_r}$ .
- 13.5 a) La puissance transmise par la paroi au fluide est  $P_{p\to f} = hS(T_p T_f)$ . Par définition de la résistance thermique, on a  $R_{cc} = \frac{T_p T_f}{P_{n\to f}}$  donc  $R_{cc} = \frac{1}{hS}$ .

.....

.....

- **13.5** b) On a  $T_{\text{toit}} T_{\text{air}} = \frac{P_{\text{toit} \to \text{air}}}{hS} = \frac{40 \times 10^3 \text{ W}}{20 \text{ W} \cdot \text{K}^{-1} \cdot \text{m}^{-2} \times 50 \text{ m}^2} = 40 \text{ K}.$
- **13.6** b) On obtient  $P_0 = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x}(0)\pi a^2$  avec  $\frac{\mathrm{d}T}{\mathrm{d}x}(0) = \frac{T_a T_0}{b}$ .
- **13.7** a) On calcule  $\varphi_{\odot} = 5.67 \times 10^{-8} \,\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4} \times (5772 \,\mathrm{K})^4 = 6.29 \times 10^7 \,\mathrm{W} \cdot \mathrm{m}^{-2}$ .
- **13.7** b) On a  $P_S = \varphi_{\odot} 4\pi R_{\odot}^2 = 6.29 \times 10^7 \,\mathrm{W \cdot m^{-2}} \times 4\pi \left(696 \times 10^6 \,\mathrm{m}\right)^2 = 3.83 \times 10^{26} \,\mathrm{W}.$

13.7 c) La puissance  $\varphi(r)4\pi r^2$  traversant la sphère de rayon r étant identique à celle émise par le Soleil  $\varphi_{\odot}4\pi R_{\odot}^2$ , il vient  $\varphi(r) = \varphi_{\odot}\left(\frac{R_{\odot}}{r}\right)^2$ .

**13.7** d) On trouve 
$$\varphi(D_{ST}) = \varphi_{\odot} \left(\frac{R_{\odot}}{D_{ST}}\right)^2$$
. Donc,

$$\varphi(D_{ST}) = 6.29 \times 10^7 \,\mathrm{W} \cdot \mathrm{m}^{-2} \times \left(\frac{696 \times 10^3 \,\mathrm{km}}{150 \times 10^6 \,\mathrm{km}}\right)^2 = 1.35 \times 10^3 \,\mathrm{W} \cdot \mathrm{m}^{-2} \quad \mathrm{arrondi \ \grave{a}} \quad 1.4 \times 10^3 \,\mathrm{W} \cdot \mathrm{m}^{-2}.$$

13.8 a) Le radiateur rayonne vers l'air la puissance  $P_r = \sigma T_s^4 S$  et reçoit la puissance  $P_a = \sigma T_a^4 S$  de la part de l'air. La puissance cédée par le radiateur à l'air est donc  $P = P_r - P_a$ .

.....

13.8 b) La loi de Newton rappelée dans la fiche donne le résultat.

**13.8** c) La puissance totale cédée par le radiateur à l'air est  $P = (\sigma(T_s^4 - T_a^4) + h(T_s - T_a))S$ .

On a:

$$\sigma(T_s^4 - T_a^4) + h(T_s - T_a) = 5.67 \times 10^{-8} \,\mathrm{W \cdot m^{-2} \cdot K^{-4}} \times (333^4 - 293^4) \,\mathrm{K}^4 + 10 \,\mathrm{W \cdot m^{-2} \cdot K^{-1}} \times 40 \,\mathrm{K}$$
$$= 679 \,\mathrm{W \cdot m^{-2}}.$$

Donc 
$$S = \frac{P}{\sigma(T_s^4 - T_a^4) + h(T_s - T_a)} = \frac{1.0 \times 10^3 \text{ W}}{679 \text{ W} \cdot \text{m}^{-2}} = 1.5 \text{ m}^2.$$

**13.10** b) La durée caractéristique  $\tau$  de la diffusion thermique est liée à la longueur caractéristique L de l'œuf et à sa diffusivité thermique D par  $\tau = \frac{L^2}{D}$ . On en déduit que  $\frac{\tau_a}{\tau_p} = \left(\frac{L_a}{L_p}\right)^2 \approx 3^2$  (où l'indice « a » est pour l'œuf d'autruche et « p » pour l'œuf de poule).

.....

**13.11** a) En intégrant 
$$\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = -\frac{p_v}{\lambda}$$
 par rapport à  $x$ , on obtient  $\frac{\mathrm{d}T}{\mathrm{d}x} = -\frac{p_v}{\lambda}x + A$  puis  $T(x) = -\frac{p_v}{\lambda}\frac{x^2}{2} + Ax + B$ . Les conditions aux limites  $T(0) = T_0$  et  $T(L) = T_1$  mènent à  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T(0) = T_0$  et  $T$ 

**13.11** b) On pose  $A = \frac{p_v L}{2\lambda} + \frac{T_1 - T_0}{L}$ . La température est maximale en  $x_1 = 3L/10$ . Or  $\frac{\mathrm{d}T}{\mathrm{d}x} = -\frac{p_v}{\lambda}x + A$ . On a donc  $\frac{\mathrm{d}T}{\mathrm{d}x} = 0$  pour  $x_1 = \frac{\lambda A}{p_v}$ . Après calculs, on obtient  $p_v = \frac{5\lambda}{L^2}(T_0 - T_1)$ .

**13.11** c) On a 
$$p_v = \frac{5 \times 1.2 \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1}}{1 \,\mathrm{m}^2} \times 10 \,\mathrm{K} = 60 \,\mathrm{W} \cdot \mathrm{m}^{-3}.$$

**13.12** a) On note 
$$A = \frac{I^2}{\lambda \gamma S^2}$$
. En intégrant  $\frac{\mathrm{d}^2 T}{\mathrm{d} x^2} = -A$  par rapport à  $x$ , on obtient  $\frac{\mathrm{d} T}{\mathrm{d} x} = -Ax + B$  puis  $T(x) = -A\frac{x^2}{2} + Bx + C$ . Les conditions aux limites  $T\left(\pm \frac{L}{2}\right) = T_0$  mènent à  $B = 0$  et  $C = T_0 + AL^2/8$ .

On peut aussi justifier B=0 par un argument de symétrie du profil de température par rapport au plan x=0. Le profil parabolique et le fait qu'on ait  $T\left(\pm\frac{L}{2}\right)=T_0$  prouvent que  $x\longmapsto T(x)$  est une fonction paire; on en déduit que  $\frac{\mathrm{d}T}{\mathrm{d}x}(0)=0$ .

.....

 $\begin{array}{c|c} \textbf{13.12 d)} \text{ On a } \overrightarrow{\jmath}_{\text{th}} \left( -\frac{L}{2} \right) \boldsymbol{\cdot} \overrightarrow{e_x} = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x} \Big|_{-L/2} < 0 \text{ car } \frac{\mathrm{d}T}{\mathrm{d}x} \Big|_{-L/2} > 0 \text{ et } \overrightarrow{\jmath}_{\text{th}} \left( \frac{L}{2} \right) \boldsymbol{\cdot} \overrightarrow{e_x} = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x} \Big|_{-L/2} > 0 \text{ car } \frac{\mathrm{d}T}{\mathrm{d}x} \Big|_{-L/2} < 0.$ 

_____

- **13.13** a) Par définition de la résistance thermique du mur, on a  $R = \frac{T_1 T_2}{P_{1\rightarrow 2}} = \frac{10}{10^3} = 1.0 \times 10^{-2} \,\mathrm{K} \cdot \mathrm{W}^{-1}$ .
- **13.13** b) En notant  $S = hL = 25 \text{ m}^2$ , la conductivité du béton est alors  $\lambda_1 = \frac{e}{SR} = \frac{0.3}{25 \times 10^{-2}} = 1.2 \text{ W} \cdot \text{K}^{-1} \cdot \text{m}^{-1}$ .

13.13 c) Les deux matériaux sont associés en série. Afin que la puissance traversant le mur isolé soit divisée par 5 pour la même différence de température, il faut que la résistance thermique soit multipliée par 5. En notant  $R_1$  la résistance du mur de béton et  $R_2$  celle de la plaque de polystyrène,  $R_1 + R_2 = 5R_1$ , soit  $R_2 = 4R_1$ .

Ceci s'écrit alors  $\frac{e_2}{\lambda_2 S}=4\frac{e_1}{\lambda_1 S}$ . L'épaisseur  $e_2$  de polystyrène est donc  $e_2=4e_1\frac{\lambda_2}{\lambda_1}=4,0\,\mathrm{cm}$ .

13.14 a) La conductance est proportionnelle à la surface du mur. En écrivant que  $G_m = KS_m$ , on en déduit que  $G'_m = K(S_m - S_f)$  et donc  $G'_m = \frac{S_m - S_f}{S_m}G_m$ .

13.14 b) Le mur percé et la fenêtre sont associés en parallèle. La conductance thermique équivalente est la somme de la conductance de la fenêtre  $G_f$  et de celle du mur percé  $G'_m$  différente de  $G_m$ . Donc, on a :

$$G = G_f + \frac{S_m - S_f}{S_m} G_m = G_m \left( 1 - \frac{S_f}{S_m} \right) + G_f.$$

# Fiche nº 14. Tables et diagrammes thermodynamiques

## Réponses

rteponses		
<b>14.1</b> a) $9.1 \times 10^{-4} \mathrm{g \cdot mL^{-1}}$	14.5 c)	<b>14.9</b> a)
<b>14.1</b> b)	<b>14.5</b> d) $-\gamma \frac{p_0}{v_0}$	<b>14.9</b> b)
<b>14.1</b> c)	<b>14.5</b> e) [isochore]	<b>14.9</b> c)
<b>14.2</b> a)	<b>14.5</b> f) isobare	14.10 a)
<b>14.2</b> b)	<b>14.5</b> g) isotherme	
<b>14.2</b> c)	<b>14.5</b> h) [isentrope]	<b>14.10</b> b)
<b>14.2</b> d)	$14.6 \text{ a}) \dots \left[ \frac{\mathrm{d}T}{\mathrm{d}s} - \frac{T}{c_n} = 0 \right]$	<b>14.10</b> c)
<b>14.2</b> e) diphasé	P	<b>14.10</b> d)
<b>14.2</b> f) $1,017 \times 10^{-3} \mathrm{m}^3 \cdot \mathrm{kg}^{-1}$	<b>14.6</b> b)	R
<b>14.2</b> g) $7,6672 \mathrm{m}^3 \cdot \mathrm{kg}^{-1}$	<b>14.6</b> c)	<b>14.11</b> a) $\left  \frac{n}{\ln(10)Mvc_p} \right $
<b>14.2</b> h)	<b>14.6</b> d)	<b>14.11</b> b) isotherme
<b>14.3</b> a) isobare	14.7 (a)	<b>14.11</b> c) isentrope
,		<b>14.11</b> d) isochore
<b>14.3</b> b) isotherme	<b>14.8</b> a)	<b>14.11</b> e) isobare
14.3 c) isochore	<b>14.8</b> b)	<b>14.12</b> a)
<b>14.3</b> d) $2V_1$		
<b>14.4</b> a)	<b>14.8</b> c)	<b>14.12</b> b) $1320 \mathrm{kJ \cdot kg^{-1}}$
<b>14.4</b> b)	<b>14.8</b> d)	<b>14.12</b> c) $2650 \mathrm{kJ \cdot kg^{-1}}$
<b>14.4</b> c)	<b>14.8</b> e) $800 \mathrm{J \cdot K^{-1} \cdot kg^{-1}}$	$14.12  \mathrm{d}) \dots \qquad \boxed{420  \mathrm{kJ} \cdot \mathrm{kg}^{-1}}$
<b>14.5</b> a) 0	<b>14.8</b> f) $-5000 \mathrm{J\cdot K^{-1}\cdot kg^{-1}}$	<b>14.12</b> e)
$n_0$		<b>14.12</b> f) $x_B = 40 \%$
<b>14.5</b> b) $\left  -\frac{p_0}{v_0} \right $	<b>14.8</b> g) $\left[ -1650 \mathrm{kJ \cdot kg^{-1}} \right]$	<b>14.12</b> g)
		5)

#### Corrigés

**14.1** a) On a  $v(T = 200 \,^{\circ}\text{C}, p = 200 \,^{\circ}\text{kPa}) = 1,0805 \,^{\circ}\text{m}^3 \cdot \text{kg}^{-1} = 1,0805 \times 10^6 \,^{\circ}\text{mL} \cdot \text{kg}^{-1} = 1,0805 \times 10^3 \,^{\circ}\text{mL} \cdot \text{g}^{-1}$  $\approx 1,1 \times 10^3 \,^{\circ}\text{mL} \cdot \text{g}^{-1} \,^{\circ}\text{donc} \, \rho = \frac{1}{v} = \frac{1}{1,1 \times 10^3} = 0,9090 \cdots \times 10^{-3} \,^{\circ}\text{g} \cdot \text{mL}^{-1} \approx 9,1 \times 10^{-4} \,^{\circ}\text{g} \cdot \text{mL}^{-1}.$ 

Remarque : La division ci-dessus « se pose à la main ». Il est aussi possible d'utiliser le développement limité autour de 0 de  $(1+x)^{\alpha}=1+\alpha x$  à l'ordre  $1:\frac{1}{1,1\times 10^3}=(1+0,1)^{-1}\times 10^{-3}\approx (1-0,1)\times 10^{-3}=9\times 10^{-4}$ .

**14.1** b) Par lecture de la table, on a  $T_{\text{sat}}(200 \,\text{kPa}) = 120,21 \,^{\circ}\text{C}$ .

14.1 c) Par lecture de la table, on a  $100\,^{\circ}\text{C} < T_{\text{sat}}(200\,\text{kPa}) = 120,21\,^{\circ}\text{C}$ : le fluide est donc monophasé sous forme de liquide.

.....

**14.2** d) À 100 °C, on a :

 $p_{\rm sat} = 0.10142\,{\rm MPa} = 0.10142\times 10^6\times 1\,{\rm Pa} = 0.10142\times 10^6\times \frac{1}{133.3}\,{\rm mmHg} = 760.8\,{\rm mmHg}.$ 

**14.2** e) On a  $v = 1,03 \,\mathrm{cm}^3 \cdot \mathrm{g}^{-1} = 1,03 \times 10^{-3} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$ . Or, par lecture de la table, le volume massique du liquide saturant est  $v_\ell(60\,^{\circ}\mathrm{C}) = 1,017 \times 10^{-3} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$  et celui de la vapeur saturante est  $v_g(60\,^{\circ}\mathrm{C}) = 7,6672 \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$ . Il vient que  $v_\ell(60\,^{\circ}\mathrm{C}) \leq v \leq v_g(60\,^{\circ}\mathrm{C})$ : le système est alors diphasé, c'est-à-dire un mélange de vapeur et de liquide.

**14.2** h) Le volume massique vaut  $v = 1030 \,\mathrm{cm}^3 \cdot \mathrm{g}^{-1}$ , soit  $v = 1{,}030 \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$ .

Or,  $v_{\rm g} = 7,6672\,{\rm m}^3\cdot{\rm kg}^{-1} \approx 7v \approx 7\times 10^3v_{\rm l}$  donc il est numériquement raisonnable de considérer que  $v_{\rm g} - v_{\rm l} \approx v_{\rm g}$  et  $v - v_{\rm l} \approx v$ , d'où  $x_{\rm g} \approx v/v_{\rm g}$ . La réponse est donc la (c).

T.V.

**14.3** d) La transformation est isobare donc  $V_2 = \frac{T_2V_1}{T_1} = 2V_1$ .

**14.4** a) La transformation est isotherme donc PV = nRT est une constante.

**14.4** b)

- Lors de la transformation (A) isobare, le volume augmente donc b ne convient pas. Dans le cas de d, la transformation (C) isochore a lieu au volume minimal, ce qui est en contradiction avec la fiche synoptique où le volume prend sa valeur maximale pendant cette transformation  $(V = 3V_1)$ : la d ne convient donc pas.
- Pour la transformation (B) isotherme, la pression et le volume vérifient la relation  $P = \frac{\text{cste}}{V}$  donc, en échelle linéaire, la représentation graphique de P = f(V) est une branche d'hyperbole, ce qui ne peut que correspondre à (a).

14.4 c) Le sens de rotation est horaire : le travail total reçu au cours du cycle est négatif, le cycle est moteur.

14.5 h) La courbe isobare est de pente nulle donc il s'agit de la courbe ①.

La courbe isochore est de pente infinie donc il s'agit de la courbe ②.

Il reste deux courbes à identifier : la courbe isotherme vérifiant  $p_{iso-T} = \frac{A}{v}$  et la courbe isentropique vérifiant  $p_{iso-s} = \frac{B}{v^{\gamma}}$ , où  $A = nrT = p_0v_0$  et  $B = p_0v_0^{\gamma}$  sont des constantes. L'identification des courbes se fait par un calcul de dérivée au point  $M_0$  de coordonnées  $(p_0, v_0)$ :

$$\left(\frac{\mathrm{d}p_{\mathrm{iso}-T}}{\mathrm{d}v}\right)(v_0) = -\frac{A}{v_0^2} = -\frac{p_0}{v_0} \qquad \text{et} \qquad \left(\frac{\mathrm{d}p_{\mathrm{iso}-s}}{\mathrm{d}v}\right)(v_0) = -\gamma \frac{B}{v_0^{\gamma+1}} = -\gamma \frac{p_0}{v_0} = \gamma \left(\frac{\mathrm{d}p_{\mathrm{iso}-T}}{\mathrm{d}v}\right)(v_0).$$

Au point  $M_0$ , la courbe isentrope est donc la courbe la plus pentue : la courbe 4 est la courbe isentrope et la courbe 3 est la courbe isotherme.

.....

**14.6** a) En combinant la 2° identité thermodynamique et la seconde loi de Joule, il vient :  $c_P dT = T ds + v dp$ . Le long d'une courbe isobare, dp = 0. L'équation différentielle en T(s) s'obtient en réorganisant les variables s et T de telle sorte qu'une dérivée  $\frac{dT}{ds}$  apparaisse :  $\frac{dT}{ds} - \frac{T}{c_p} = 0$ .

r

14.6 b) L'équation différentielle  $\frac{dT}{ds} - \frac{T}{c_p} = 0$  est une équation différentielle linéaire du premier ordre à coefficients constants et sans second membre dont la solution est de la forme  $T(s) = A \exp\left(\frac{s}{c_p}\right)$ . Le choix (arbitraire) de la constante d'intégration A est ici fait de telle sorte que la courbe isobare passe par un état de référence  $(s_0, T_0)$ :  $A = T_0 \exp\left(-\frac{s_0}{c_p}\right)$ , d'où  $T(s) = T_0 \exp\left(\frac{s - s_0}{c_p}\right)$ .

Conseil: Tester la vraisemblance en remarquant que, d'une part,  $T(s = s_0) = T_0$  et, d'autre part,  $\dim(s - s_0) = \dim(c_p)$ : l'argument d'exponentielle est bien sans dimension.

(-p)

**14.6** c) La loi de Laplace donne 
$$p_1^{1-\gamma}T_1^{\gamma} = p_2^{1-\gamma}T_2^{\gamma}$$
, soit  $p_2^{1-\gamma} = \left(\frac{T_1}{T_2}\right)^{\gamma}p_1^{1-\gamma}$ ; d'où  $p_1\left(\frac{T_1}{T_2}\right)^{\gamma/(1-\gamma)}$ .

**14.6** d) Graphiquement,  $T_1 < T_2$ , soit  $\frac{T_1}{T_2} < 1$ . Or,  $\frac{p_2}{p_1} = \left(\frac{T_1}{T_2}\right)^{\gamma/(1-\gamma)}$  avec  $\gamma > 1$ , c'est-à-dire que  $\frac{\gamma}{1-\gamma} < 0$ .

 $\overline{\text{Ainsi, } \frac{T_1}{T_2}} < 1 \text{ implique que } \left(\frac{T_1}{T_2}\right)^{\gamma/(1-\gamma)} > 1. \text{ Autrement dit, } \frac{p_2}{p_1} > 1 \text{ donc } p_2 > p_1.$ 

14.7 Le transfert thermique correspond géométriquement à l'aire du cycle parcouru dans le diagramme entropique. Il est compté positivement si le cycle est parcouru dans le sens horaire (moteur) et négativement si le cycle est parcouru dans le sens trigonométrique (récepteur). Attention ici, l'entropie est donnée en kJ·K⁻¹ donc  $Q_{ABCDA} = (T_B - T_A)(S_C - S_B) = 100 \cdot 1,5 \times 10^3 = 1,5 \times 10^5 \text{ J}.$ 

14.8 a) Une enthalpie massique est indiquée en  $J \cdot kg^{-1}$ , et non en J. Le point A est à droite de la courbe de saturation et en dessous du point critique donc le fluide est à l'état gazeux. Les courbes isenthalpes (dh = 0) sont quasi horizontales, c'est-à-dire presque confondues avec des courbes isothermes (dT = 0): le modèle du gaz parfait peut être considéré comme valide au point A car la relation dh = c dT n'est pas mise en défaut au point A. Enfin, le point A passe par la courbe isobare 0,05 bar représentée en pointillés.

**14.8** b) Le point B est à gauche de la courbe de saturation et en dessous du point critique donc le fluide est à l'état liquide. Une lecture graphique, réalisée à l'aide d'une règle graduée, puis l'application d'une « règle de trois », conduit à évaluer l'abscisse du point B comme étant égale à  $600 \, \mathrm{J \cdot kg^{-1} \cdot K^{-1}}$ .

.....

14.8 c) La grandeur x représente le titre massique en vapeur dans le mélange. Le point E se situe à équidistance (le long de la courbe isotherme passant par le point E) des courbes isotitres x = 0.6 et x = 0.8. Ainsi,  $x_E = 0.7$ . Comme le titre en vapeur est de 0.7, celui en liquide est de 0.3.

14.8 d) En passant de l'état E à l'état F (situé sur la courbe d'ébullition), le système passe d'un état diphasé à un état de liquide juste saturant : la vapeur saturante se liquéfie. De plus, cette transformation est isotherme; or, l'eau étant un corps pur, elle est également isobare.

.....

**14.8** f) Par lecture graphique,  $s_F = 800 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$ . Ainsi,  $s_F - s_E = 800 - 5800 = -5000 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$ .

**14.8** g) L'incrément des courbes isenthalpes est de  $200 \,\mathrm{J \cdot kg^{-1}}$ . Aussi, le point E étant situé à équidistance (le long de la courbe isotherme passant par le point E) des courbes isenthalpes  $1800 \,\mathrm{et} \, 2\,000 \,\mathrm{kJ \cdot kg^{-1}}$ , il vient que  $h_{\mathrm{E}} = 1\,900 \,\mathrm{kJ \cdot kg^{-1}}$ . De même,  $h_{\mathrm{F}} = 250 \,\mathrm{kJ \cdot kg^{-1}}$ , d'où  $h_{\mathrm{F}} - h_{\mathrm{E}} = 250 - 1900 = -1\,650 \,\mathrm{kJ \cdot kg^{-1}}$ .

Pour une phase condensée incompressible indilatable (domaine liquide, à gauche de la courbe de saturation),  $dh = c_p dT$  donc, à T constante, h est constante. Une courbe isotherme doit donc être verticale dans cette zone.

Pour un mélange liquide-vapeur d'un corps pur (zone sous la courbe de saturation) à l'équilibre, si T est fixée alors p est fixée aussi. Une courbe isotherme doit donc être horizontale dans cette zone.

Pour un gaz parfait (domaine vapeur, à droite de la courbe de saturation, et pour une faible pression),  $dh = c_p dT$  donc, à T constante, h est constante. Une courbe isotherme doit donc être verticale dans cette zone.

**14.9** b) On peut procéder par élimination :

- Il ne s'agit pas d'isobares car nous aurions alors des droites horizontales.
- Il ne s'agit pas d'isenthalpes car nous aurions alors des droites verticales.
- Il ne s'agit pas d'isothermes car, dans la zone gaz à faible pression (domaine de validité de l'hypothèse gaz parfait), nous aurions alors des droites verticales.
- Il ne s'agit pas d'isotitres car certaines courbes sont en dehors du domaine liquide + vapeur.

Il s'agit donc nécessairement d'isentropes.

.....

14.9 c) Ces courbes n'existent que dans le domaine « Liquide + Vapeur » et se rejoignent toutes au point critique, il s'agit donc d'isotitres.

**14.10** a) La pression est de 100 bar donc  $100 \times 1,00 \times 10^5 \text{ Pa} = 1,00 \times 10^7 \text{ Pa}$ .

La température est indiquée en °C donc la réponse (b) ne convient pas. Le point A est à gauche de la courbe de saturation et en dessous du point critique donc le fluide est à l'état liquide.

**14.10** b) Par lecture graphique, la pression est de  $10^0$ bar = 1 bar  $\neq 1$  Pa donc la réponse ⓐ ne convient pas. Le point B est sous la courbe de saturation donc la réponse ⓑ convient. La valeur de x indiquée correspond au titre massique en vapeur. Sa valeur est de 0,4 donc le titre en liquide est 1-0,4=0,6.

.....

**14.10** c) Le long d'une isotherme, on a dT = 0; avec la seconde loi de Joule, cela implique : dh = 0.

Les courbes isenthalpes sont donc des portions de droites parallèles à l'axe des ordonnées (puisque h est la grandeur en abscisses).

.....

14.10 d) Le modèle du gaz parfait est une bonne approximation lorsque les courbes isothermes (dT = 0) sont également des courbes isenthalpes ( $dh = c_p dT = 0$ ), ce qui tend à être le cas en zone (a).

**14.11** a) L'équation d'état donne  $p = \frac{R}{Mv}T$  donc, en différentiant à v fixé, il vient  $dp = \frac{R}{Mv}dT$ . L'utilisation de la  $2^{\text{nde}}$  loi de Joule puis la division par  $p \ln(10)$  permet d'écrire :

$$\frac{\mathrm{d}p}{p}\frac{1}{\ln(10)} = \frac{R}{Mv}\frac{1}{p\ln(10)}\frac{\mathrm{d}h}{c_p} \quad \text{soit} \quad \frac{\mathrm{d}(\ln(p)/\ln(10))}{\mathrm{d}h} = \frac{R}{c_pMv\ln(10)}\frac{1}{p} \quad \text{d'où} \quad \frac{\mathrm{d}\log(p)}{\mathrm{d}h} = \frac{A}{p} \text{ avec } A = \frac{R}{\ln(10)Mvc_p}$$

une constante pour une transformation isochore (v = cste).

.....

14.11 e) La courbe isobare est de pente nulle; donc il s'agit de la courbe ④.

Du fait de la seconde loi de Joule, la courbe isotherme est également une courbe isenthalpe, c'est-à-dire de pente infinie. Ainsi, la courbe isotherme est la courbe  $\odot$ .

Pour une courbe isochore, il a été montré que  $\frac{\mathrm{d}\log(p)}{\mathrm{d}h} = \frac{A}{p}$  avec A une constante.

Ainsi, dans un diagramme  $(\log(p), h)$ , il apparaît que la pente n'est pas constante; elle tend vers l'infini lorsque h tend vers 0: la courbe @ est donc la courbe isochore et, par élimination, la courbe @ est la courbe isochore.

.....

14.12 a) L'échelle des abscisses étant linéaire, il est possible d'utiliser la position du point B par rapport à la courbe de saturation pour déterminer si le fluide contient plus de liquide ou plus de vapeur. Ici, le point B est plus proche de la courbe de bulle (isotitre x = 0 en trait plein) que de la courbe de rosée (isotitre x = 1 en trait plein) donc il y a davantage de liquide que de vapeur.

.....

- **14.12** b) L'enthalpie massique du fluide diphasé correspond à l'abscisse du point B :  $h_{\rm B} = 1\,320\,{\rm kJ\cdot kg}^{-1}$ .
- 14.12 c) L'enthalpie massique de la vapeur saturante de l'état représenté par le point B correspond à l'abscisse du projeté de B sur la courbe de rosée :  $h_{v,B} = 2\,650\,\mathrm{kJ}\cdot\mathrm{kg}^{-1}$ .

.....

14.12 d) L'enthalpie massique du liquide saturant de l'état représenté par le point B correspond à l'abscisse du projeté de B sur la courbe de bulle :  $h_{l,B} = 420 \,\mathrm{kJ} \cdot \mathrm{kg}^{-1}$ .

.....

**14.12** f) On a

$$x_{\rm B} = \frac{h_{\rm B} - h_{\rm l,B}}{h_{\rm v,B} - h_{\rm l,B}} = \frac{1320 - 420}{2650 - 420} = \frac{900}{2230} \approx \frac{900}{2250} = \frac{9000}{2250} \times 10^{-1} = 0,40,$$

ce qui est cohérent avec le fait que le point B soit placé sur la courbe isotitre x=0,4.

.....

14.12 g) Pour rappel, l'enthalpie massique du liquide saturant d'un mélange diphasé correspond à l'abscisse du projeté de cet état sur la courbe de bulle tandis que l'enthalpie massique de la vapeur saturante correspond à l'abscisse du projeté sur la courbe de rosée. Dans le diagramme  $(\log(p), h)$ , la distance entre ces deux projetés est  $h_v - h_l = \Delta_{vap} h$ .

Graphiquement, il apparaît que  $h_v$  diminue et que  $h_l$  augmente avec la pression, d'où une enthalpie de vaporisation  $\Delta_{vap}h$  qui diminue lorsque la pression augmente.

.....

## Fiche nº 15. Thermodynamique industrielle

#### Réponses

Repolises	
<b>15.1</b> a)	<b>15.5</b> c)
<b>15.1</b> b)	<b>15.5</b> d)
<b>15.1</b> c)	<b>15.5</b> e)
<b>15.1</b> d)	<b>15.5</b> f)
<b>15.2</b> a)	<b>15.5</b> g) $-\frac{w_1 + w_3}{q_2}$
<b>15.2</b> b)	<b>15.5</b> h) $1 - \frac{T_4 - T_1}{T_3 - T_2}$
<b>15.2</b> c)	
<b>15.2</b> d)	<b>15.6</b> a)
	<b>15.6</b> b)
15.3 a)	<b>15.6</b> c)
<b>15.3</b> b) $ \frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1) $	<b>15.6</b> d)
	<b>15.6</b> e)
<b>15.3</b> c) $c_2 = \sqrt{\frac{2}{M} \frac{\gamma R}{\gamma - 1}} (T_1 - T_2)$	<b>15.7</b> a) $2,50 \mathrm{kJ \cdot K^{-1} \cdot kg^{-1}}$
	<b>15.7</b> b)
<b>15.3</b> d)	<b>15.7</b> c)
<b>15.4</b> a)	<b>15.7</b> d)
<b>15.4</b> b)	<b>15.7</b> e)
<b>15.5</b> a)	<b>15.7</b> f)
<b>15.5</b> b)	

## Corrigés

**15.1** a) La transformation est adiabatique donc q = 0 et  $s_e = q/T = 0$ ; la transformation est réversible donc  $s_c = 0$ . Finalement,  $\Delta h = w_i$  et  $\Delta s = 0$ .

**15.1** b) Il n'y a pas de pièce mobile donc  $w_i = 0$  et donc  $\Delta h = q$ ; on a  $\Delta s = s_e + s_c$ .

**15.1** c) La transformation est adiabatique donc q=0 et  $s_e=q/T=0$ ; il n'y a pas de pièce mobile donc  $w_i=0$  et ainsi  $\Delta h=0$ . On a  $\Delta s=s_c$ .

**15.1** d) La transformation est adiabatique donc q = 0 et  $s_e = q/T = 0$ ; la transformation est réversible donc  $s_c = 0$  et ainsi  $\Delta h = w_i$ ;  $\Delta s = 0$ .

**15.2** a) On a 
$$\Delta h = c_p \Delta T \approx 1 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1} \times 10 \text{ K} = 10 \text{ kJ} \cdot \text{kg}^{-1}$$
.

**15.2** b) On a 
$$e_c = \frac{1}{2}v^2 \approx 0.5 \times (10 \,\mathrm{m \cdot s^{-1}})^2 = 50 \,\mathrm{J \cdot kg^{-1}}.$$

**15.2** c) On a 
$$\Delta e_{\rm p} = q \Delta z \approx 10 \,\mathrm{m \cdot s}^{-2} \times 1 \,\mathrm{m} = 10 \,\mathrm{J \cdot kg}^{-1}$$
.

15.3 a) On a  $\Delta h + \Delta e_p + \Delta e_c = q_e + w_i$ . Ici,  $\Delta e_p = 0$ ,  $q_e = 0$  (adiabatique car isolée thermiquement) et  $w_i = 0$  (tuyère indéformable). On en déduit :  $\Delta h + \Delta e_c = 0$  (donc  $h + e_c = \text{cste}$ ).

**15.3** b) La deuxième loi de Joule s'écrit : 
$$\Delta h = c_p(T_2 - T_1) = \frac{1}{M} \frac{\gamma R}{\gamma - 1} (T_2 - T_1)$$
.

**15.3** c) Comme  $c_1$  est négligable, on en déduit des questions précédentes :

$$\frac{1}{2}c_2^2 = -\Delta h = -\frac{1}{M}\frac{\gamma R}{\gamma - 1}(T_2 - T_1) \qquad \text{et} \qquad c_2 = \sqrt{\frac{2}{M}\frac{\gamma R}{\gamma - 1}(T_1 - T_2)}.$$

**15.3** d) La vitesse d'éjection est alors 
$$c_2 = 383 \,\mathrm{m \cdot s}^{-1}$$
.

15.4 a) La première phase étant isentropique, les températures sont liées par la loi de Laplace :

$$T_1^{\gamma}p_1^{1-\gamma}=\mathrm{cste}=T_2^{\gamma}p_2^{1-\gamma}\quad \mathrm{donc}\quad T_2^{\gamma}=T_1^{\gamma}\bigg(\frac{p_1}{p_2}\bigg)^{1-\gamma},$$

ce qui conduit au résultat en prenant la puissance  $1/\gamma$  de l'ensemble.

.....

**15.5** a) Parcouru dans le sens horaire, le cycle est moteur.

.....

**15.5** b) Les travaux  $w_2$  et  $w_4$  sont nuls. Les travaux reçus pendant le cycle sont  $w_1$  et  $w_3$ .

.....

**15.5** c) La deuxième phase est isobare, d'où :  $q_2 = \Delta h = c_p(T_3 - T_2)$ .

.....

**15.5** d) La quatrième phase est isobare, d'où : 
$$q_4 = \Delta h = c_p(T_1 - T_4)$$
.

**15.5** e) Le transfert thermique est nul pour cette transformation (isentropique). Le premier principe pour les systèmes en écoulement permanent s'écrit donc ici :  $\Delta h = w_1$ . d'où :  $w_1 = h_2 - h_1 = c_p(T_2 - T_1) > 0$ .

.....

**15.5** f) De même, on a 
$$w_3 = h_4 - h_3 = c_p(T_4 - T_3) < 0$$
.

**15.5** g) Les échanges énergétiques étant algébriques, le rendement du cycle est défini par  $\rho = -\frac{w_{\rm i}}{q_{\rm c}} = -\frac{w_1 + w_3}{q_2}$ .

**15.5** h) Le rendement du turbopropulseur est alors :  $\rho = -\frac{c_p(T2 - T_1 + T_4 - T_3)}{c_p(T_3 - T_2)} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$ .

**15.6** a) Le compresseur a pour effet d'augmenter la pression et la température du fluide : ici, il s'agit donc de l'étape  $1 \rightarrow 2$ .

.....

**15.6** b) D'après le premier principe industriel, on a  $w_{\text{compr}} = h_2 - h_1 = 450 - 400 = 50 \text{ kJ} \cdot \text{kg}^{-1}$ .

**15.6** c) Le domaine de la vapeur est à droite du diagramme, celui du liquide à gauche, la liquéfaction correspond donc à l'étape  $2 \rightarrow 3$ .

.....

**15.6** d) D'après le premier principe industriel,  $q_{\text{cond}} = h_3 - h_2 = 250 - 450 = -200 \,\text{kJ} \cdot \text{kg}^{-1}$ .

l'isobare à  $P_{\rm S}=10\,{\rm bar}$ , comme schématisé ci-dessous.

**15.7** a) La compression étant réversible, et en l'absence d'échange thermique, la compression est isentropique donc  $s_{S,rév} = s_E = 2,50 \,\mathrm{kJ} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$ .

15.7 b) L'état de sortie « S,rév » du compresseur se trouve à l'intersection entre l'isentrope passant par E et



**15.7** c) D'après le premier principe industriel, on a  $w_{\text{rév}} = h_{\text{S,rév}} - h_{\text{E}} = 650 - 540 = 110 \,\text{kJ} \cdot \text{kg}^{-1}$ .

15.7 d) La donnée de la température permet de placer le point S sur le diagramme. D'après le premier principe industriel, on a  $w = h_S - h_E = 680 - 540 = 140 \,\mathrm{kJ \cdot kg^{-1}}$ .

**15.7** f) La compression est adiabatique, il n'y a donc pas d'entropie échangée. Toute la variation d'entropie correspond à une création, d'où  $s_{créée} = s_S - s_E = 2,60 - 2,50 = 0,1 \,\mathrm{kJ} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$ .

.....

# Fiche nº 16. Signaux

# Réponses

reponses		
<b>16.1</b> a)	<b>16.7</b> c)	<b>16.12</b> c)
<b>16.1</b> b) $\left  \frac{1}{2} \right $	$\textbf{16.7} \; d) \dots \qquad \boxed{1,6  \mu F}$	<b>16.12</b> d)
<b>16.1</b> c)	<b>16.8</b> a)	<b>16.12</b> e)
<b>16.2</b> a)	<b>16.8</b> b)	<b>16.12</b> f)
<b>16.2</b> b)	<b>16.9</b> a)	<b>16.12</b> g)
<b>16.3</b> a) instable	<b>16.9</b> b)	<b>16.13</b> a)
<b>16.3</b> b) stable		<b>16.13</b> b)
<b>16.3</b> c) instable	<b>16.9</b> c)	<b>16.13</b> c)
<b>16.3</b> d) stable	<b>16.9</b> d) $50 \Omega$	<b>16.13</b> d)
<b>16.3</b> e)	<b>16.9</b> e)	<b>16.13</b> e)
<b>16.4</b> a)	<b>16.10</b> a) $4x^0$	16.13 f) Repliement de spectre
<b>16.4</b> b)	<b>16.10</b> b)	<b>16.13</b> g)
	<b>16.10</b> c) $1x^0$	
<b>16.4</b> c)	<b>16.10</b> d) $\left  \frac{2}{3} x^0 \right $	16.14 a)
<b>16.5</b> a)		<b>16.14</b> b) $ \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0 s = H_0 \omega_0 e $
<b>16.5</b> b)	<b>16.10</b> e) $\left[\frac{2}{5}x^1\right]$	<b>16.14</b> c)
<b>16.5</b> c)	<b>16.10</b> f) $\frac{3}{5}x^0$	<b>16.15</b> a)
<b>16.6</b> a)	<b>16.11</b> a)	<b>16.15</b> b)
<b>16.6</b> b)	<b>16.11</b> b)	<b>16.15</b> c)
<b>16.6</b> c)	<b>16.11</b> c)	<b>16.15</b> d) E
<b>16.6</b> d)	<b>16.11</b> d)	<b>16.15</b> e)
<b>16.6</b> e)	<b>16.11</b> e)	<b>16.16</b> a)
	<b>16.11</b> f)	<b>16.16</b> b)
<b>16.6</b> f)		<b>16.16</b> c)
$\textbf{16.6} \hspace{0.1cm} g) \ldots \ldots \hspace{0.1cm} \boxed{2,56 \hspace{0.1cm} mH}$	<b>16.11</b> g)	<b>16.16</b> d)
<b>16.7</b> a)	<b>16.12</b> a)	<b>16.16</b> e)
<b>16.7</b> b)	<b>16.12</b> b) 0,1 V	<b>16.16</b> f)

#### Corrigés

**16.1** a) On a 
$$\frac{1}{T} \int_0^T \cos(\omega t) dt = \left[\frac{\sin(\omega t)}{\omega}\right]_0^T = 0$$
 car la fonction  $t \mapsto \sin(\omega t)$  est  $T$ -périodique.

**16.1** b) Il faut commencer par linéariser le  $\cos^2$ :

$$\frac{1}{T} \int_{0}^{T} \cos^{2}(\omega t) dt = \frac{1}{T} \int_{0}^{T} \frac{1 + \cos(2\omega t)}{2} dt = \frac{1}{2}$$

comme la fonction  $\cos(2\omega t)$  est périodique de période  $\frac{T}{2}$ .

.....

**16.1** c) Il faut faire une intégration par parties. On a :

$$\frac{1}{T} \int_0^T t \cos(\omega t) dt = \frac{1}{T} \left[ \frac{t}{\omega} \sin(\omega t) \right]_0^T - \frac{1}{T} \int_0^T \frac{1}{\omega} \sin(\omega t) dt = 0.$$

On commence par remarquer que les deux graphiques tendent vers une valeur non nulle : cela élimine la proposition (b) et les propositions (a) et (f), qui ne sont pas stables.

La proposition (e) est l'équation d'un oscillateur harmonique : elle ne correspond pas aux graphiques.

Le signal  $s_1(t)$  présente une discontinuité de sa pente : il est donc régi par une équation différentielle du premier ordre : c'est la proposition (c).

On en déduit que le signal  $s_2(t)$  est associé à la proposition (d).

16.3 Pour une équation différentielle linéaire à coefficients constants homogène, une condition nécessaire de stabilité, et suffisante pour les systèmes du premier et du second ordre, est que tous les coefficients de l'équation différentielle soient de même signe.

.....

En régime permanent, le condensateur se comporte comme un interrupteur ouvert et la bobine comme un fil : on a  $u_C(0^-) = E$ ,  $i(0^-) = i_C(0^-) = 0$ .

La bobine impose la continuité de l'intensité électrique qui la traverse et le condensateur la tension à ses bornes : on a  $u_C(0^+) = E, i(0^-) = 0$ . Comme  $u_R = u_C$ , on a donc  $i_R(0^+) = \frac{E}{R}$ , soit, d'après la loi des nœuds :

$$i_C(0^+) = -i_R(0^+) = -\frac{E}{R}.$$

En régime permanent, le condensateur se comporte comme un interrupteur ouvert et la bobine comme un fil : ainsi, on a  $u_C(+\infty) = \frac{R}{R+r}E$ ,  $i(0^-) = i_R(0^-) = \frac{E}{R+r}$  et  $i_C(0^-) = 0$ .

16.5 L'interrupteur étant ouvert et le régime permanent étant atteint :  $i_2(0^-) = 0$  et  $i_1(0^-) = i(0^-) = \frac{E_1}{2R}$ 

La bobine impose la continuité du courant qui la traverse :  $i(0^+) = i(0^-) = \frac{E_1}{2R}$ . Pour déterminer  $i_1$  et  $i_2$ , il nous faut deux équations ; on utilise la loi des mailles dans la grande maille et la loi des nœuds :

$$\begin{cases} i_1(0^+) + i_2(0^+) = \frac{E_1}{2R} \\ E_1 - Ri_1(0^+) = E_2 - Ri_2(0^+) \end{cases} \quad \text{donc} \quad \begin{cases} i_1(0^+) + i_2(0^+) = \frac{E_1}{2R} \\ i_1(0^+) - i_2(0^+) = \frac{E_1 - E_2}{R} \end{cases} \quad \text{donc} \quad \begin{cases} i_1(0^+) = \frac{3E_1 - 2E_2}{4R} \\ i_2(0^+) = \frac{2E_2 - E_1}{4R} \end{cases}.$$

En régime permanent, la bobine se comporte comme un fil. On a donc directement  $i_1(+\infty) = \frac{E_1}{R}$ ,  $i_2(+\infty) = \frac{E_2}{R}$ donc  $i(+\infty)=\frac{E_1+E_2}{R}.$  On a donc le système :

$$\begin{cases} i_1(+\infty) + i_2(+\infty) &= i(+\infty) \\ E_1 - Ri_1(+\infty) &= Ri(+\infty) \\ E_2 - Ri_2(+\infty) &= Ri(+\infty). \end{cases}$$

En sommant les deux dernières lignes, on a directement  $i(+\infty) = \frac{E_1 + E_2}{3R}$ . On a alors le système :

$$\begin{cases} i_1(+\infty) + i_2(+\infty) &= \frac{E_1 + E_2}{3R} \\ i_1(+\infty) - i_2(+\infty) &= \frac{E_1 - E_2}{R}. \end{cases}$$

On a alors  $i_1(+\infty) = \frac{2E_1 - E_2}{3R}$  et  $i_2(+\infty) = \frac{2E_2 - E_1}{3R}$ 

**16.6** g) Le module de  $\underline{Z}$  est tel que  $|\underline{Z}| = \left| \frac{\underline{U}}{\underline{I}} \right| = \frac{4 \text{ V}}{0.75 \text{ A}} = \frac{16}{3} \Omega$ . Or, on a  $|\underline{Z}| = L\omega$ ; donc:

$$L = \frac{|\underline{Z}|}{\omega} = \frac{16/3\,\Omega}{2\pi \frac{1\,000}{3}} = \frac{8 \times 10^{-3}}{\pi} = 2,56 \times 10^{-3}\,\mathrm{H} = 2,56\,\mathrm{mH}.$$

Graphiquement, on trouve T=1 ms. Le module de l'impédance est  $|\underline{Z}|=\left|\frac{\underline{U}}{\underline{I}}\right|=\frac{2\,\mathrm{V}}{0.02\,\mathrm{A}}=100\,\Omega$ . Donc,  $C=\frac{1}{|\underline{Z}|\omega}=\frac{T}{2\pi|\underline{Z}|}\approx 0.16\frac{10^{-3}\mathrm{s}}{100\,\Omega}=1.6\,\mathrm{\mu F}.$ 

On a une association de dipôles en série :  $\underline{Z}=R+\mathrm{j}L\omega$ . Comme  $|\underline{Z}|$  est le rapport des amplitudes 16.8 de la tension et de l'intensité électrique, on a  $|\underline{Z}|^2=R^2+(L\omega)^2=\left(\frac{U_0}{I_0}\right)^2$ . L'argument de l'impédance vaut  $\varphi = \arctan\left(\frac{L\omega}{R}\right).$ 

16.9 L'analyse graphique donne:

$$U_0 = 8 \,\mathrm{V}, \quad I_0 = 100 \,\mathrm{mA}, \quad T = 0.7 \,\mathrm{ms} \quad \mathrm{et} \quad \delta t_{u/i} = -100 \,\mathrm{\mu s}.$$

La pulsation est donc  $\omega = \frac{2\pi}{T} = \frac{2\pi}{7} \cdot 10^4 = 8,97 \times 10^3 \,\mathrm{rad \cdot s^{-1}}$ . La tension est en avance sur i donc  $\varphi > 0$ ; donc le déphasage de la tension par rapport à l'intensité du courant électrique est égale à :

$$\varphi = -2\pi \frac{\delta t}{T} = 2\pi \frac{1/10}{0.7} = \frac{2\pi}{7} = \frac{2}{7}\pi.$$

À partir des relevés graphiques, on a le système :

$$\begin{cases} R^2 + (L\omega)^2 &= (80)^2 \\ \frac{L\omega}{R} &= \tan\left(\frac{2}{7}\pi\right). \end{cases}$$

On a donc  $R^2 \left[ 1 + \tan^2 \left( \frac{2\pi}{7} \right) \right] = \left( \frac{U_0}{I_0} \right)^2 = \left( \frac{8}{0,1} \right)^2$  donc  $R = \frac{U_0/I_0}{\sqrt{1 + \tan^2 \left( \frac{2\pi}{7} \right)}} = \frac{U_0}{I_0} \cos \left( \frac{2\pi}{7} \right) = 50 \Omega.$ 

On en déduit  $L = 7 \,\mathrm{mH}$ .

**16.11** c) La période étant de  $T=1\,\mathrm{ms},$  la fréquence du fondamental est  $f=\frac{1}{T}=1\,\mathrm{kHz}.$ 

**16.11** d) La fonction u(t) est décroissante sur l'intervalle [0, T/2] : cela élimine les propositions (a) et (d).

En T/2, on a u(T/2) = -U: c'est donc la réponse (b).

**16.11** e) La valeurs  $a_0$  correspond à la valeur moyenne : elle est donc nulle ici.

**16.11** f) Par intégration par parties, on trouve :

$$a_n = \frac{4}{T} \int_0^{T/2} U \left( 1 - \frac{4t}{T} \right) \cos(2\pi f n t) dt = \frac{4U}{T} \left( \left[ \left( 1 - \frac{4t}{T} \right) \frac{\sin(2\pi f n t)}{2\pi f n} \right]_0^{T/2} + \frac{4}{T} \int_0^{T/2} \frac{\sin(2\pi f n t)}{2\pi f n} dt \right)$$

$$= \frac{4U}{T} \left( 0 + \frac{4}{T} \left[ -\frac{\cos(2\pi f n t)}{(2\pi f n)^2} \right]_0^{T/2} \right) = \frac{16U}{4\pi^2 T^2 f^2 n^2} \times (-\cos(\pi n) + 1) = \frac{4U}{\pi^2 n^2} (1 - \cos(\pi n)).$$

On a donc  $a_n = 0$  si n est pair et  $a_n = \frac{8U}{\pi^2 n^2}$ .

**16.12** d) La fréquence fondamentale est  $\nu = \frac{1}{T} = \frac{1}{20 \, \text{ms}} = 50 \, \text{Hz}.$ 

**16.12** e) Par définition, on a  $\underline{c_0} = \frac{1}{T} \int_0^T s(t) dt = s_0 = 0.1 \text{ V}.$ 

**16.12** f) Pour ce signal carré particulier, numériquement,  $s_0 = S_{\rm m}$ . Ainsi,  $s(t \in [0, T/2]) = s_0 + S_{\rm m} = 2S_{\rm m}$  et  $s(t \in [T/2, T]) = 0$ . Il vient alors :

$$\underline{c_n} = \frac{1}{T} \int_0^{T/2} 2S_m e^{-in 2\pi\nu t} dt = \frac{2S_m}{-in 2\pi\nu} \left[ e^{-in 2\pi\nu t} \right]_0^{T/2}$$

$$= \frac{2S_m}{-in 2\pi\nu} \left[ e^{-i n\pi} \underbrace{\int_{\nu T}^{-in 2\pi\nu} (-1)^n - 1}_{-in 2\pi\nu} \right] = \frac{2S_m}{-in 2\pi\nu} (-1)^n - 1 = \begin{cases} 0 & \text{si } n \text{ pair} \\ \frac{2S_m}{in\pi\nu} & \text{si } n \text{ impair.} \end{cases}$$

16.12 g) Les harmoniques de rang pair doivent êtres nulles, ce qui exclut le cas (b).

De plus, numériquement, on a  $s_0 = S_{\rm m}$  et  $2/\pi \approx 0.64 < 1$ , d'où  $s_0 > 2s_0/\pi = 2S_{\rm m}/\pi$ : cette relation n'est pas vérifiée dans le cas du spectre (c).

16.13 b) La période  $T_e$  d'échantillonnage est la durée entre deux points d'acquisition successifs. La fréquence d'échantillonnage  $f_e$  vaut donc :

$$f_e = \frac{1}{T_e} = \frac{N}{T_{\text{max}}} = \frac{500}{30} = 16,7 \,\text{Hz}.$$

**16.13** e) Il d'agit du spectre (a) car les autres font apparaître des pics « fantômes » vu que la fréquence  $\frac{f_e}{2}$  est inférieure à la fréquence des harmoniques.

16.13 g) C'est le critère de Shannon-Nyquist.

**16.14** a) On a  $\underline{H} \xrightarrow[\omega \to 0]{} H_0$  et  $\underline{H} \xrightarrow[\omega \to +\infty]{} \frac{\omega_0 H_0}{\mathrm{j}\omega} \xrightarrow[\omega \to +\infty]{} 0$ ; le filtre est donc un passe-bas. Le dénominateur étant d'ordre 1, c'est un passe-bas d'ordre 1.

**16.14** b) On a:

$$\frac{\underline{s}}{\underline{e}} = \frac{H_0}{1 + j\frac{\omega}{\omega_0}} \quad \text{donc} \quad \left(1 + j\frac{\omega}{\omega_0}\right)\underline{s} = H_0\underline{e}.$$

Multiplier par j $\omega$  est équivalent à dériver en réel; on trouve donc l'équation différentielle  $s + \frac{1}{\omega_0} \frac{\mathrm{d}s}{\mathrm{d}t} = H_0 e$ .

16.15 a) Le pré-amplificateur ne change que l'amplitude du signal, pas son spectre : le spectre B correspond à

 $u_2(t)$ .

**16.15** b) Le filtre passe-bande a une bande passante assez étroite pour ne garder que  $f_p - f_m$ ,  $f_p$  et  $f_p + f_m$ : le spectre A correspond donc à  $u_3(t)$ .

16.15 d) Le multiplieur donne en sortie :

• pour une fréquence en entrée de  $f_p$ :

$$k(A\cos(2\pi f_p t)) \times U_p\cos(2\pi f_p t) = kAU_p\cos^2(2\pi f_p t) = kAU_p\frac{1+\cos(2\pi [2f_p]t)}{2}$$
;

• pour une fréquence en entrée de  $f_p \pm f_m$  :

$$\begin{split} k(A\cos(2\pi[f_p \pm f_m]t)) \times U_p\cos(2\pi f_p t) &= kAU_p\cos(2\pi[f_p \pm f_m]t)\cos(2\pi f_p t) \\ &= kAU_p\frac{\cos(2\pi[f_m]t) + \cos(2\pi[2f_p + f_m]t)}{2}. \end{split}$$

Le signal  $u_4(t)$  correspond au spectre E.

**16.16** d) La tension  $u_+(t)$  oscille entre 4 V et 16 V. En identifiant les valeurs extrêmes à partir de son expression, on a le système :

$$\begin{cases} U_p(1+m) = 16 \,\mathrm{V} \\ U_p(1-m) = 4 \,\mathrm{V} \end{cases} \quad \mathrm{donc} \quad \begin{cases} U_p = 10 \,\mathrm{V} \\ m = 0.6. \end{cases}$$

### Fiche nº 17. ALI

#### Réponses

**17.2** a) . . . . . . . . . . . 
$$i_1 = i_2 + i'_1$$

**17.2** b)..... 
$$\frac{u_1}{R_1} = \frac{u_2}{R_2} + C_1 \frac{du_1'}{dt}$$

**17.2** c) . . . . . . . . . . . 
$$i_1 = -i'_2$$

**17.2** d) . . . . . . . . 
$$V_D - V_A \over R_1 = i_2' = C_2 \frac{dV_A}{dt}$$

**17.3** b) . . . . . . . . . . 
$$i_2 + i_4 = 0$$

**17.3** d) . . . . . . . . . 
$$i_5 + i_6 = 0$$

**17.4** a) . . . . . . . . . . . 
$$\frac{u_1}{R_1} = \frac{u_s}{R_1 + R_2}$$

**17.4** d) . . . . . . . . . . 
$$i_3 = C \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t}$$

**17.4** e) .... 
$$u_s = u_R + u_C + u_e = Ri_1 + u_C + u_e$$

17.4 f) ..... 
$$\frac{\mathrm{d}u_{\mathrm{s}}}{\mathrm{d}t} = R\frac{\mathrm{d}i_{1}}{\mathrm{d}t} + \frac{i_{1}}{C} + \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t}$$

17.4 g) ...... 
$$\frac{\mathrm{d}u_{\mathrm{s}}}{\mathrm{d}t} = RC\frac{\mathrm{d}^{2}u_{\mathrm{e}}}{\mathrm{d}t^{2}} + 3\frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t} + \frac{1}{RC}u_{\mathrm{e}}$$

**17.5** a) . . . . . . . . . . . 
$$i_1 + i_2 = i_3$$

**17.5** b) ...... 
$$\frac{u_1}{R_1} + \frac{u_2}{R_2} = -\frac{u_s}{R_3}$$

**17.6** a) . . . . . . . . . . . 
$$i_1 = i_3$$

**17.6** c) . . . . . . . . 
$$V_{+} = \frac{R_4}{R_2 + R_4} u_2$$

**17.6** d) . . . . . . 
$$V_{-} = \frac{R_3}{R_1 + R_3} u_1 + \frac{R_1}{R_1 + R_3} u_s$$

**17.7** a)..... 
$$i_e + i_C + i_2 = 0$$

**17.7** b) . . . . . . . . . 
$$i_C + i_1 = 0$$

17.7 c).... 
$$-i_e + \frac{v_e - V_B}{R_2} + j\omega C_1(v_e - V_C) = 0$$

**17.8** b) . . . . . . . . . 
$$\left| \frac{u_{\rm e}}{\overline{R}} + jC\omega \underline{u_{\rm s}} \right| = 0$$

**17.8** d) ...... 
$$u_e(t) + RC \frac{du_s}{dt}(t) = 0$$

17.9 c) . . . . . 
$$LC\omega^2$$



## Corrigés

- 17.1 a) La rétroaction est négative donc l'ALI fonctionne en régime linéaire.
- 17.1 b) La rétroaction est positive donc l'ALI fonctionne en régime saturé.
- 17.1 c) La rétroaction est négative donc l'ALI fonctionne en régime linéaire.
- 17.1 d) Il y a une double rétroaction donc on ne peut pas prédire le régime de fonctionnement de l'ALI.

.....

.....

.....

- **17.2** a) La loi des nœuds en D s'écrit bien sûr  $i_1 = i_2 + i'_1$ .
- **17.2** b) La loi des nœuds en D s'écrit alors  $\frac{u_1}{R_1} = \frac{u_2}{R_2} + C_1 \frac{\mathrm{d}u_1'}{\mathrm{d}t}$ .
- **17.2** c) L'intensité  $i_+$  est nulle et  $i_1 = -i'_2$ .
- **17.2** d) On a ainsi :  $\frac{V_{\mathrm{D}}-V_{\mathrm{A}}}{R_{1}}=i_{2}^{\prime}=C_{2}\frac{\mathrm{d}V_{\mathrm{A}}}{\mathrm{d}t}$
- 17.3 b) Dans le modèle de l'ALI idéal, les courants de polarisation sont nuls. Ainsi,  $i_1 = i_3 = 0$ .
- 17.3 d) Dans le modèle de l'ALI idéal, les courants de polarisation sont nuls. Ainsi,  $i_7 = 0$ .
- **17.3** e) La loi d'Ohm donne  $\frac{V_{\rm C} V_{\rm B}}{R} + \frac{V_{\rm C} V_{\rm S}}{R} = 0.$
- 17.4 a) L'intensité est nulle à l'entrée non inverseuse et l'intensité du courant est donc identique dans  $R_1$  et  $R_2$ . On reconnaît donc un pont diviseur de tension. La relation demandée est donc :  $\frac{u_1}{R_1} = \frac{u_s}{R_1 + R_2}$ .

.....

- **17.4** b) On a  $i_1 = i_2 + i_3$ .
- **17.4** c) Cette fois, on a  $i_2 = \frac{u_e}{R}$ .
- **17.4** d) Ici, on a  $i_3 = C \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t}$

**17.4** g) La relation précédente fournit :  $\frac{\mathrm{d}u_{\mathrm{s}}}{\mathrm{d}t} = R \frac{\mathrm{d}i_2 + i_3}{\mathrm{d}t} + \frac{i_2 + i_3}{C} + \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t}$ , dont on déduit :

$$\frac{\mathrm{d}u_{\mathrm{s}}}{\mathrm{d}t} = \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t} + RC\frac{\mathrm{d}^{2}u_{\mathrm{e}}}{\mathrm{d}t^{2}} + \frac{1}{RC}u_{\mathrm{e}} + \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t} + \frac{\mathrm{d}u_{\mathrm{e}}}{\mathrm{d}t}$$

Finalement, on obtient :  $\frac{du_s}{dt} = RC\frac{d^2u_e}{dt^2} + 3\frac{du_e}{dt} + \frac{1}{RC}u_e$ .

L'intensité du courant à l'entrée inverseuse étant nulle, la loi des nœuds en D s'écrit  $i_1 + i_2 = i_3$ .

17.5 b) L'ALI étant idéal, le potentiel de l'entrée inverseuse est égal à celui de l'entrée non inverseuse, donc nul. Ainsi, la relation précédente s'écrit :  $\frac{u_1}{R_1} + \frac{u_2}{R_2} = -\frac{u_s}{R_3}$ .

.....

- L'intensité entrant à la borne inverseuse étant nulle, on a  $i_1 = i_3$ .
- L'intensité entrant à la borne non inverseuse étant nulle, on a  $i_2 = i_4$ .
- Le pont diviseur du bas permet d'écrire :  $i_2=\frac{u_2}{R_2+R_4}=\frac{V_+-0}{R_4},$  soit  $V_+=\frac{R_4}{R_2+R_4}u_2.$
- **17.6** d) Le pont diviseur du haut permet d'écrire :  $i_1 = \frac{u_1 V_-}{R_1} = \frac{V_- u_s}{R_3}$ , soit  $V_- = \frac{R_3}{R_1 + R_3} u_1 + \frac{R_1}{R_1 + R_3} u_s$ .
- Les courants de polarisation sont nuls dans l'hypothèse de l'ALI idéal. Ainsi,  $i_e + i_C + i_2 = 0$ .
- 17.7 b) Les courants de polarisation sont nuls dans l'hypothèse de l'ALI idéal. Ainsi,  $i_C + i_1 = 0$ .
- **17.7** c) On a  $-i_e + \frac{v_e V_B}{R_2} + j\omega C_1(v_e V_C) = 0$ .

17.7 d) La tension  $v_s$  n'est pas connue, ce qui élimine la (c) et, comme on peut le voir en question suivante, la loi des nœuds en B ((a)) n'est pas utile.

- ...... Le courant  $i_3$  est inconnu.
- 17.8 a) On sait que, pour un ALI idéal en régime linéaire, on a  $V_- = V_+$ .

Or  $V_{+}=0$  car la borne positive est reliée directement à la masse. Donc  $V_{-}=0$ .

D'après la loi des nœuds appliquée au point A, on a :  $\underline{i_e} + \underline{i_C} = \underline{i_-}$ . Comme  $\underline{u_R} = \underline{u_e}$ , on en déduit :

$$\underline{i_{\mathrm{e}}} = \frac{u_{\mathrm{R}}}{\overline{Z_{\mathrm{R}}}} = \frac{u_{\mathrm{e}} - V_{\mathrm{A}}}{R}$$
 et  $\underline{i_{\mathrm{C}}} = \frac{u_{\mathrm{C}}}{\overline{Z_{\mathrm{C}}}} = (\underline{u_{\mathrm{s}}} - \underline{V_{\mathrm{A}}}) \mathrm{j} C \omega$ .

De plus, on sait que, pour un ALI idéal,  $\underline{i_-}=0$  et on a vu précédemment que  $\underline{V_-}=0=\underline{V_{\mathrm{A}}}$ . D'où  $\frac{u_{\mathrm{e}}}{R}+\mathrm{j}C\omega\underline{u_{\mathrm{s}}}=0$ .

**17.8** c) Comme  $\frac{u_e}{R} = -jC\omega\underline{u}_s$ , on a  $\underline{H} = \frac{u_s}{\underline{u}_e} = -\frac{1}{jRC\omega}$ 

**17.8** d) En utilisant la relation de la question b) et en passant dans le domaine temporel, on obtient l'équation différentielle suivante :  $u_e(t) + RC \frac{du_s}{dt}(t) = 0$ .

.....

17.8 e) Le montage est un intégrateur. L'intégration d'un signal en créneau fournit un signal triangulaire : c'est le signal (b) qui est la bonne réponse.

**17.8** f) D'après la loi d'Ohm, on a  $u_e = Ri_e$ . Donc  $Z_e = R$ .

17.9 a) On sait que, pour un ALI idéal en régime linéaire, on a  $V_- = V_+$ . De plus, l'ALI est idéal, donc  $i_+ = 0$ . Or  $V_+ = Ri_+$  d'après la loi d'Ohm. Donc  $V_+ = 0$  et  $V_- = 0$ .

.....

**17.9** b) D'après la loi des nœuds appliquée au point A, on a :  $i_e + i_L = i_-$ . Or, on a :

$$\underline{i_{\rm e}} = \frac{\underline{u_C}}{\underline{Z_C}} = \left(\underline{u_{\rm e}} - \underline{V_{\rm A}}\right) {\rm j} C \omega \qquad {\rm et} \qquad \underline{i_L} = \frac{\underline{u_L}}{\underline{Z_L}} = \frac{\underline{u_{\rm s}} - \underline{V_{\rm A}}}{{\rm j} L \omega}.$$

De plus, on sait que, pour un ALI idéal,  $\underline{i_-}=0$  et, comme on a vu précédemment, que  $\underline{V_-}=0=\underline{V_A}$ . D'où, j $C\omega\underline{u_e}+\frac{\underline{u_s}}{iI_{dd}}=0$ .

**17.9** c) Comme  $\frac{u_s}{jL\omega} = -jC\omega\underline{u_e}$ , on a  $\underline{H} = \frac{\underline{u_s}}{\underline{u_e}} = -j^2LC\omega^2 = LC\omega^2$ .

.....

**17.9** d) On a  $\underline{u}_{\rm s} = -LC(\mathrm{j}\omega)^2\underline{u}_{\rm e}$ . En passant en régime temporel, on obtient :  $u_{\rm s}(t) = -LC\frac{\mathrm{d}^2u_{\rm e}}{\mathrm{d}t^2}$ .

17.9 e) Le montage suivant est un double dérivateur. Or si on dérive une première fois le signal triangle, cela donne un signal créneau. Si on dérive un signal créneau, cela donne un signal nul sauf aux points où le créneau avait des pentes non nulles. Cela correspond au signal (c).

**17.9** f) D'après la définition de l'impédance, on a  $\underline{Z_e} = \frac{\underline{u_e}}{\underline{i_e}} = \underline{Z_C} = \frac{1}{\mathrm{j}C\omega}$ .

17.10 a) Le condensateur est équivalent à un interrupteur ouvert à basses fréquences. On en déduit donc que  $i_C = i_1 = 0$ , ainsi, le potentiel du point C est nul d'après la loi d'Ohm. L'ALI étant considéré idéal et étudié en régime linéaire, on en déduit que  $V_B = 0$ .  $R_2$  est donc parcourue par  $i_e$  et soumise à une tension  $v_e$ . Le montage est donc équivalent à  $R_2$ .

17.10 b) Le condensateur est équivalent à un fil à basses fréquences. On en déduit donc que  $V_{\rm C}=v_{\rm e}$ . Ainsi, l'ALI étant considéré comme idéal et étudié en régime linéaire,  $V_{\rm B}=v_{\rm e}$ , la résistance  $R_2$  est soumise à une tension nulle, elle n'est donc parcourue par aucun courant. Tout le courant  $i_{\rm e}$  passe dans  $R_1$  qui est alors soumise à la tension  $v_{\rm e}$ . Le montage est donc équivalent à  $R_1$ .

.....

17.11 a) À basses fréquences, C est équivalent à un interrupteur ouvert et n'est donc parcouru par aucun courant. On en déduit donc, par une loi des nœuds au point B, que la résistance qui lui est reliée n'est parcourue par aucun courant non plus. On en déduit donc que  $V_{\rm B}=v_{\rm e}$  et donc, l'ALI étant idéal et fonctionnant en régime linéaire,  $V_{\rm A}=v_{\rm e}$ , soit  $v_{\rm s}=v_{\rm e}$ , les courants circulant dans les résistances étant nuls.

17.11 b) À hautes fréquences, C est équivalent à un fil. L'ALI étant idéal et fonctionnant en régime linéaire, on en déduit donc que  $V_A = V_B$ . On en déduit donc que  $v_s = -v_e$ .

.....

17.12 a) À basses fréquences, la fonction de transfert devient  $\underline{H}(\omega) = 1$ .

17.12 b) À hautes fréquences, la fonction de transfert devient  $\underline{H}(\omega) = \frac{-jRC\omega}{jRC\omega} = -1$ .

17.12 c) Le gain est donné par le module de la fonction de transfert :

$$G(\omega) = |\underline{H}(\omega)| = \frac{|1 - jRC\omega|}{|1 + jRC\omega|} = \frac{\sqrt{1 + (RC\omega)^2}}{\sqrt{1 + (RC\omega)^2}} = 1.$$

17.12 d) Le déphasage est donné par l'argument de la fonction de transfert :

$$\varphi(\omega) = \arg(\underline{H}(\omega)) = \arg(1 - \mathrm{j}RC\omega) - \arg(1 + \mathrm{j}RC\omega) = -2\arctan(RC\omega).$$

.....

17.12 e) La pulsation du signal est  $\omega = 1.3 \times 10^4 \,\mathrm{rad \cdot s^{-1}}$ . À cette pulsation, le déphasage vaut :

$$\varphi(\omega) = -2\arctan(RC\omega) = -2\arctan(800\,\Omega\times100\,\mathrm{nF}\times1.3\times10^4\,\mathrm{rad\cdot s^{-1}}) = -\frac{\pi}{2}.$$

On en déduit donc l'expression :  $v_s = E \cos\left(\omega t - \frac{\pi}{2}\right) = E \sin(\omega t)$ .

# Fiche nº 18. ALI saturé

# Réponses

Reponses	
<b>18.1</b> a)	<b>18.6</b> b)
<b>18.1</b> b) non	<b>18.6</b> c)
<b>18.1</b> c)	<b>18.6</b> d)
<b>18.2</b> a) $\frac{\mu_0}{1 + j\omega\tau}$	<b>18.7</b> a) $v_{+} = \frac{R'e + Rs}{R + R'}$
<b>18.2</b> b)	
<b>18.2</b> c)	18.7 b) $e > v_{\text{réf}} \frac{R + R'}{R'} - V_{\text{sat}} \frac{R}{R'}$
<b>18.2</b> d)	<b>18.7</b> c) $e < v_{\text{réf}} \frac{R+R'}{R'} + V_{\text{sat}} \frac{R}{R'}$
<b>18.2</b> e)	<b>18.7</b> d)
<b>18.2</b> f) $\left[-j\mu_0\frac{\omega_c}{\omega}\right]$	<b>18.8</b> a)
<b>18.2</b> g)	<b>18.8</b> b)
<b>18.3</b> a) $\frac{\mathrm{d}s}{\mathrm{d}t} + \frac{s}{\tau} = \frac{\mu_0 e}{\tau}$	<b>18.8</b> c)
18.3 b)	<b>18.8</b> d)
<b>18.3</b> c)non	<b>18.8</b> e)
18.4 a)	<b>18.8</b> f)
aD' + aD	<b>18.9</b> a)
<b>18.4</b> b) $\frac{eR + sR}{R + R'}$	18.9 b)
<b>18.4</b> c) $ \frac{ds}{dt} + \frac{R + R' - \mu_0 R}{R + R'} \frac{s}{\tau} = \mu_0 \frac{R'}{R + R'} \frac{e}{\tau} $	<b>18.9</b> c)
	<b>18.9</b> d)
<b>18.4</b> d)	<b>18.10</b> a)
18.5 a)	<b>18.10</b> b)
<b>18.5</b> b)	<b>18.10</b> c)
<b>18.5</b> c) $\varepsilon = -\frac{3e+s}{6}$	<b>18.10</b> d)
<b>18.5</b> d) $ \frac{\mathrm{d}s}{\mathrm{d}t} + \left(\frac{\mu_0}{6} + 1\right)\frac{s}{\tau} = -\mu_0\frac{e}{2\tau} $	<b>18.10</b> e)
	<b>18.10</b> f)
18.5 e) oui	<b>18.10</b> g)
<b>18.6</b> a) $v_+ = e$	

### Corrigés

18.1 a) L'ALI n'est pas bouclé, la saturation s'impose.

**18.1** b) La rétroaction a lieu sur la borne inverseuse, l'ALI peut donc *a priori* fonctionner en régime linéaire (il s'agit d'un montage suiveur).

18.1 c) La rétroaction a lieu sur la borne non inverseuse, l'ALI fonctionne donc en régime saturé (il s'agit d'un montage comparateur à hystérésis non inverseur).

**18.2** a) En régime harmonique, cela devient  $\frac{\underline{s}}{(\underline{v}_+ - \underline{v}_-)} = \underline{\mu} = \frac{\mu_0}{1 + j\omega\tau}$ .

**18.2** b) La fonction de transfert canonique associée est  $\underline{H} = \frac{H_0}{1 + \mathrm{j} \frac{\omega}{\omega_c}}$  où  $H_0$  et  $\omega_c$  sont respectivement le gain statique et la pulsation de coupure du filtre. Le filtre est donc un passe-bas, la réponse correcte est la (a).

.....

- **18.2** c) On identifie  $\omega_c = \frac{1}{\tau}$  la pulsation de coupure de ce filtre.
- **18.2** d) On identifie  $H_0 = \mu_0$ .
- **18.2** e) À basse fréquence, la fonction de transfert est équivalente à  $\mu_{\rm BF} = \mu_0$ .
- **18.2** f) À haute fréquence, la fonction de transfert est équivalente à  $\mu_{\rm HF} = -j\mu_0 \frac{\omega_c}{\omega_c}$ .

18.2 g) À basse fréquence, le gain en décibels est constant et vaut  $G_{\text{dB,BF}} = 20 \log(\mu_0)$ . À haute fréquence, il est de la forme  $G_{\text{dB,BF}} = 20 \log(\mu_0) - 20 \log(\frac{\omega}{\omega_c})$ , la courbe suit donc une droite de pente  $-20 \,\text{dB}$  par décade. Le diagramme (2) est donc éliminé.

Enfin, le filtre étant du premier ordre, le gain réel à  $\omega_c$  vaut  $-3\,\mathrm{dB}$ , le diagramme (3) est donc éliminé.

18.3 a) La tension différentielle est donnée, en régime linéaire, par :  $\underline{v_+} - \underline{v_-} = \underline{e}$ . D'après l'expression de la fonction de transfert donnée dans l'énoncé, on obtient  $(1 + \mathrm{j}\omega\tau)\underline{s} = \mu_0\underline{e}$ . On en déduit donc  $\frac{\mathrm{d}s}{\mathrm{d}t} + \frac{s}{\tau} = \frac{\mu_0e}{\tau}$  en régime linéaire.

**18.3** b) En régime permanent, la dérivée de s(t) est nulle ; donc l'équation différentielle donne :

$$\frac{s(t)}{\tau} = \frac{\mu_0 e(t)}{\tau} \quad \text{avec } e(t) = E_0 \text{ pour } t > 0.$$

La réponse correcte est la ©.

18.3 c) La tension de sortie tend donc vers  $\mu_0 E_0$  en régime permanent. Au vu de la valeur de  $\mu_0$  donnée dans les prérequis, s tend donc vers une valeur qui dépassera la tension de saturation. Le montage est stable mais il sature quelle que soit la valeur de  $E_0$ .

.....

- 18.4 a) L'ALI étant idéal, l'intensité du courant entrant dans la borne non inverseuse est nulle. On en déduit donc, en appliquant la loi des nœuds et la loi d'Ohm  $\frac{v_+ e}{R} + \frac{v_+ s}{R'} = 0$ . La réponse correcte est donc la ⓐ.
- **18.4** b) D'après la question précédente :  $\frac{e-v_+}{R} + \frac{s-v_+}{R'} = 0$ . Ainsi, on isole  $v_+ = \frac{eR' + sR}{R + R'}$ . Par définition, on a  $\varepsilon = v_+ v_-$  et l'entrée inverseuse est reliée à la masse. On a donc  $\varepsilon = \frac{eR' + sR}{R + R'}$ .

18.4 c) La fonction de transfert donnée dans l'énoncé permet d'écrire, en régime linéaire :

$$\frac{\underline{\underline{s}}}{\underline{\underline{e}R' + \underline{s}R}} = \frac{\mu_0}{1 + \mathrm{j}\omega\tau}.$$

On en déduit ainsi :  $\frac{\mathrm{d}s}{\mathrm{d}t} + \frac{R+R'-\mu_0R}{R+R'}\frac{s}{\tau} = \mu_0\frac{R'}{R+R'}\frac{e}{\tau}.$ 

18.4 d) Le gain de l'ALI étant très élevé, les coefficients de l'équation différentielle homogène ne sont pas de même signe, le système étudié est donc instable, l'ALI fonctionne donc en régime saturé.

18.5 a) L'ALI étant idéal, l'intensité du courant entrant dans la borne inverseuse est nulle. On en déduit donc, en appliquant la loi des nœuds et la loi d'Ohm, que  $\frac{v_- - e}{R} + \frac{v_- - s}{R} = 0$  et donc que  $v_- = \frac{e + s}{2}$ . La réponse correcte est la (c).

**18.5** b) L'ALI étant idéal, l'intensité du courant entrant dans la borne non inverseuse est nulle. On en déduit donc, en appliquant la loi des nœuds et la loi d'Ohm,  $\frac{v_+ - s}{R} + \frac{v_+}{R/2} = 0$  donc  $3v_+ = s$ . La réponse correcte est la (a).

.....

18.5 c) Les deux questions précédentes permettent d'établir l'expression suivante pour la tension différentielle :

$$v_{+} - v_{-} = \frac{s}{3} - \frac{e+s}{2} = -\frac{3e+s}{6}.$$

18.5 d) La fonction de transfert donnée dans l'énoncé permet d'écrire, en régime linéaire :  $\frac{6\underline{s}}{-3\underline{e}-\underline{s}} = \frac{\mu_0}{1+\mathrm{j}\omega\tau}$ .

Ainsi, l'équation différentielle décrivant le montage est, en régime linéaire :  $\frac{\mathrm{d}s}{\mathrm{d}t} + \left(\frac{\mu_0}{6} + 1\right)\frac{s}{\tau} = -\mu_0\frac{e}{2\tau}$ .

18.5 e) Le montage est stable car tous les coefficients de l'équation différentielle homogène sont de même signe. De plus, en régime permanent, la tension de sortie tend vers  $-\frac{3e}{2}$ , on en déduit donc que le régime linéaire est envisageable dès que la tension d'entrée ne dépasse pas  $-\frac{2V_{\rm sat}}{3}$ .

**18.6** a) On a directement  $v_+ = e$ .

**18.6** b) Pour rester dans cet état, l'entrée différentielle  $v_+ - v_-$  doit rester positive, soit : e > 0.

**18.6** c) Pour rester dans cet état, l'entrée différentielle  $v_+ - v_-$  doit rester négative, soit : e < 0.

**18.6** d) La caractéristique (a) correspond au comparateur simple, la (b) correspond à un comparateur à hystérésis. Il s'agit donc de la (a).

**18.7** a) Un pont diviseur de tension donne  $v_+ - e = \frac{R}{R + R'}(s - e)$ , soit  $v_+ = \frac{R'e + Rs}{R + R'}$ .

18.7 b) Pour rester dans cet état, l'entrée différentielle  $v_+ - v_-$  doit rester positive, soit :  $\frac{R'e + Rs}{R + R'} - v_{\text{réf}} > 0$ , soit, avec l'expression de s:

$$e > v_{\text{réf}} \frac{R + R'}{R'} - V_{\text{sat}} \frac{R}{R'}.$$

**18.7** c) Pour rester dans cet état, l'entrée différentielle  $v_+ - v_-$  doit rester négative, soit :  $\frac{R'e + Rs}{R + R'} - v_{\text{réf}} < 0$ , soit, avec l'expression de s:

$$e < v_{\text{réf}} \frac{R + R'}{R'} + V_{\text{sat}} \frac{R}{R'}.$$

18.7 d) La caractéristique (a) correspond au comparateur simple, la (b) correspond à un comparateur à hystérésis. Il s'agit donc de la (b).

18.8 a) Il n'y a qu'une tension de bascule non nulle, il s'agit donc d'un comparateur simple dont la tension de bascule est décalée par rapport à l'origine. Cela laisse le choix entre les caractéristiques (3) et (4).

Ici, s est positive lorsque e est supérieure à la tension de bascule, on en déduit donc que la caractéristique correspondante est la (3).

18.8 b) Il n'y a qu'une tension de bascule nulle, il s'agit donc d'un comparateur simple symétrique. Cela laisse le choix entre les caractéristiques (1) et (2).

Ici, s est positive lorsque e est supérieure à la tension de bascule, on en déduit donc que la caractéristique correspondante est la (1).

18.8 c) Il y a deux tensions de bascule, il s'agit donc d'un comparateur à hystérésis. Cela laisse le choix entre les caractéristiques (5) et (6).

Ici, s devient positive lorsque e atteint une tension de bascule positive en augmentant. On en déduit donc que la caractéristique correspondante est la (5).

18.8 d) Il y a deux tensions de bascule, il s'agit donc d'un comparateur à hystérésis. Cela laisse le choix entre

les caractéristiques (5) et (6). Ici, s devient négative lorsque e atteint une tension de bascule positive en augmentant. On en déduit donc que la

Ici, s devient negative forsque e atteint une tension de bascule positive en augmentant. On en deduit donc que la caractéristique correspondante est la (6).

18.8 e) Il n'y a qu'une tension de bascule non nulle, on en déduit donc que la caractéristique correspondante est la (4).

18.8 f) Il n'y a qu'une tension de bascule nulle, il s'agit donc d'un comparateur simple symétrique. La caractéristique correspondante est donc la (2).

.....

18.9 a) On lit, pour la tension en tirets, une amplitude de 1 carreau. Cette tension sature donc à 15 V compte tenu de l'échelle.

.....

18.9 b) On identifie une intersection entre les deux signaux lorsque e(t) atteint une valeur correspondant à  $\frac{2}{6}$  de carreau. Compte tenu de l'échelle, on en déduit donc que  $V_{\text{lim}} = 1,7 \text{ V}$ .

**18.9** c) D'après l'énoncé,  $V_{\rm lim}=\frac{R}{R'}V_{\rm sat}$ , or R,  $V_{\rm sat}$  et  $V_{\rm lim}$  sont connues. On peut donc écrire  $R'=\frac{V_{\rm sat}}{V_{\rm lim}}R$ . L'application numérique donne :  $R'=\frac{15\,{\rm V}}{\frac{5\,{\rm V}}{2}}\times 100\,\Omega=900\,\Omega$ .

3

- 18.9 d) La valeur de  $V_{\text{lim}}$  est de 1,7 V, soit 1,7 carreau d'après l'échelle. Or, l'amplitude est inférieure à 1,7 carreau, la valeur de bascule n'est donc pas atteinte par la tension d'entrée. La réponse correcte est donc la  $\bigcirc$ .
- 18.10 a) Le signal (1) met en évidence une saturation en amplitude de tension de sortie et le signal (3) met en évidence une saturation en vitesse de balayage.

.....

Le signal (2) est le seul qui présente une allure de sinusoïde.

.....

**18.10** b) Le montage (1) met en évidence une saturation en amplitude de tension de sortie et le montage (3) met en évidence une saturation en vitesse de balayage.

Le gain de l'amplificateur est de 10, on en déduit donc qu'une entrée d'amplitude  $1\,\mathrm{V}$  conduit à une sortie d'amplitude  $10\,\mathrm{V}$ . L'ALI ne sature donc pas.

De plus, la variation de tension de sortie sera donc de l'ordre de  $\frac{\mathrm{d}s}{\mathrm{d}t} \approx 10\,\mathrm{V} \times 2\,000\,\mathrm{Hz} \approx 20\,\mathrm{V/ms}$  en considérant une variation de  $10\,\mathrm{V}$  sur une demi-période. L'ALI ne sature donc pas en vitesse de balayage non plus.

18.10 c) Le gain de l'amplificateur conduit à une tension de sortie pouvant aller jusqu'à 20 V. L'ALI sature donc en amplitude de tension à  $V_{\text{sat}} = 15 \text{ V}$  d'après les prérequis.

.....

18.10 d) L'amplitude de sortie est de 10 V au vu du gain de l'amplificateur. Ainsi, la variation de tension de sortie sera donc de l'ordre de  $\frac{\mathrm{d}s}{\mathrm{d}t} \approx 10\,\mathrm{V} \times 2 \times 10^7\,\mathrm{Hz} \approx 200\,\mathrm{V/\mu s}$ . L'ALI sature donc en vitesse de balayage.

18.10 e) Ce premier spectre ne comporte qu'une composante spectrale, il correspond donc à un signal sinusoïdal, soit celui du chronogramme (2).

18.10 f) Ce spectre et le suivant comportent tous deux des harmoniques. Celui-ci est plus riche en hautes fréquences que le suivant, on en déduit donc qu'il correspond au signal présentant le plus de discontinuités de tension, cela correspond au chronogramme (1).

.....

18.10 g) Par élimination, ce spectre correspond au chronogramme (3), qui présente une allure globale conservée par rapport au signal sinusoïdal et moins de discontinuités que le spectre précédent.

.....

## Fiche nº 19. Oscillateurs électroniques

### Réponses

**19.1** a) ...... 
$$\left| \frac{du}{dt} + \frac{u}{\tau} = 0 \right|$$

**19.1** b) ..... 
$$\frac{1}{\tau} \frac{du}{dt} + \omega_0^2 u + \frac{d^2 u}{dt^2} = 0$$

**19.1** c) ..... 
$$RC\frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u - \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} = A$$

**19.1** d) ..... 
$$\left| \frac{1}{\tau} \frac{du}{dt} + \omega_0^2 u + \frac{d^2 u}{dt^2} \right| = 0$$

**19.2** a) . . . . . . . . . . 
$$j\omega\underline{i} = -\frac{\underline{i}}{RC}$$

**19.2** b) ..... 
$$\frac{\mathrm{j}\omega}{\tau}\underline{i} + L^2C^2\underline{i} - (\mathrm{j}\omega)^2\underline{i} = A$$

**19.7** b) . . . . . . . . . 
$$u_1 = \frac{u_s}{A}$$

**19.7** e) . . . . . . . . . 
$$\left| \frac{(R + Z_C)^2 + RZ_C}{RZ_C} \right|$$

**19.7** g) ...... 
$$\frac{d^2 u_s}{dt^2} + \frac{3 - A}{RC} \frac{du_s}{dt} + \frac{1}{R^2 C^2} u_s = 0$$

**19.9** b) . . . . . . . . . . 
$$\left| \frac{R_1}{R_1 + R_2} V_{\text{sat}} \right|$$

**19.9** c) . . . . . . . . . . . . 
$$i = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$$

**19.9** d) . . . . . . . . . . 
$$i = \frac{V_{\text{sat}} - u_C}{R}$$

**19.10** a) . . . . . . . . . . 
$$\frac{u_{\rm e}}{u_{\rm s}} = \frac{R_0}{R_0 + R_2}$$

 19.10 b)
  $u_e - u_s = R_1 i_e$  19.10 f)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 c)
  $u_e = -R_0 \frac{R_1}{R_2} i_e$  19.10 g)
 Caractéristique ①

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{sat}$  

 19.10 d)
  $u_e = R_1 i_e + V_{s$ 

#### Corrigés

- **19.1** a) On remplace une multiplication par j $\omega$  par une dérivée temporelle. On obtient :  $\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{\tau} = 0$ .
- **19.1** b) De même, on a ici :  $\frac{1}{\tau} \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u + \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} = 0$ .
- **19.1** c) Avec  $\omega^2 \underline{u} = -\mathrm{j}^2 \omega^2 \underline{u} = -(\mathrm{j}\omega)^2 \underline{u}$ , on obtient :  $RC \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} = A$ .
- **19.1** d) En multipliant par  $j\omega\omega_0$ , on obtient :  $\frac{j\omega}{\tau}\underline{u} + \omega_0^2\underline{u} + (j\omega)^2\underline{u} = j\omega_0\omega A$ . Il vient ensuite :

$$\frac{1}{\tau}\frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u + \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} = \omega_0 \frac{\mathrm{d}A}{\mathrm{d}t} = 0.$$

- **19.2** a) On remplace une dérivée temporelle par une multiplication par j $\omega$ : j $\omega \underline{i} = -\frac{\underline{i}}{RC}$ .
- 19.3 a) Seul le filtre passe-bande peut être utilisé.
- 19.3 b) Le filtre passe-bande atténue, donc il faut amplifier le signal pour compenser.
- **19.4** a) Les deux coefficients sont de même signe, donc le système est stable : solution en  $\exp\left(-\frac{t}{\tau}\right)$ .

19.4 b) Les deux coefficients sont de signes contraires, donc le système est instable : solution en  $\exp\left(+\frac{t}{\tau}\right)$ .

.....

- 19.4 c) Les trois coefficients sont de même signe, donc le système est stable.
- 19.4 d) Les trois coefficients sont de signes différents, donc le système est instable.
- 19.5 a) Si le système est stable, il y a amortissement, donc pas d'oscillations.
- 19.5 b) Pour démarrer, il faut qu'il y ait amplification et non amortissement, ce qui impose que le deuxième coefficient de l'équation différentielle soit négatif.

**19.5** c) Les oscillations sinusoïdales sont décrites par l'équation différentielle  $\frac{d^2u}{dt^2} + \omega_0^2 u = 0$  de pulsation  $\omega_0$ .

19.5 d) Pour avoir des oscillations parfaitement sinusoïdales, il faut que le produit  $\underline{H_aH_f}$  soit égal à 1, ce qui implique  $AH_0 = 1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)$ , soit  $H_0A = 1$  et  $\omega = \omega_0$ . C'est le critère de Barkhausen.

**19.6** c) Si le complexe  $\underline{AB}$  vaut 1, son module vaut 1 et son argument vaut 0.

19.7 a) Il y a rétroaction sur les deux bornes inverseuse et non inverseuse : l'ALI fonctionne alternativement en régime linéaire et en régime saturé.

19.7 b) L'intensité est nulle à l'entrée non inverseuse, et l'intensité du courant est donc identique dans  $R_1$  et  $R_2$ . On reconnaît donc un pont diviseur de tension. La relation demandée est donc :  $\frac{u_1}{R_1} = \frac{u_s}{R_1 + R_2}$ , soit  $u_1 = \frac{u_s}{A}$ .

**19.7** c) On a  $Z_1 = R + Z_C$ .

$$\textbf{19.7 d)} \quad \text{Ici, } \frac{1}{\underline{Z_2}} = \frac{1}{R} + \frac{1}{\underline{Z_C}} = \frac{R + \underline{Z_C}}{R\underline{Z_C}}, \, \text{d'où} : \underline{Z_2} = \frac{R\underline{Z_C}}{R + \underline{Z_C}}.$$

19.7 e) Pour le bloc de droite, on peut appliquer la relation du pont diviseur de tension. On a :

$$\frac{\underline{u_{\mathrm{s}}}}{\underline{u_{\mathrm{e}}}} = \frac{\underline{Z_1} + \underline{Z_2}}{\underline{Z_2}} = \frac{R + \underline{Z_C} + \frac{R\underline{Z_C}}{R + \underline{Z_C}}}{\frac{R\underline{Z_C}}{R + \underline{Z_C}}} = \frac{\left(R + \underline{Z_C}\right)^2 + R\underline{Z_C}}{R\underline{Z_C}}.$$

**19.7** f) La relation  $\frac{\underline{u}_{\rm s}}{\overline{u}_{\rm e}} = \frac{\left(R + \underline{Z_C}\right)^2 + R\underline{Z_C}}{RZ_C}$  s'écrit :

$$\frac{\underline{u_{\rm s}}}{\underline{u_{\rm e}}} = \frac{\left(R + \frac{1}{\mathrm{j}C\omega}\right)^2 + R\frac{1}{\mathrm{j}C\omega}}{R\frac{1}{\mathrm{j}C\omega}} = \frac{R^2 + \left(\frac{1}{\mathrm{j}C\omega}\right)^2 + 3\frac{R}{\mathrm{j}C\omega}}{R\frac{1}{\mathrm{j}C\omega}} = \frac{(\mathrm{j}\omega)^2R^2C^2 + 1 + 3\mathrm{j}\omega RC}{\mathrm{j}\omega RC}.$$

Comme  $u_1 = u_e$ , on obtient:

$$\underline{u_{\mathrm{s}}} = \frac{(\mathrm{j}\omega)^2 R^2 C^2 + 1 + 3\mathrm{j}\omega RC}{\mathrm{j}\omega RC} \underline{u_{\mathrm{e}}} = \frac{(\mathrm{j}\omega)^2 R^2 C^2 + 1 + 3\mathrm{j}\omega RC}{\mathrm{j}\omega RC} \frac{1}{A} \underline{u_{\mathrm{s}}}.$$

D'où:

$$\underline{u_{\mathrm{s}}} = \frac{(\mathrm{j}\omega)^2 R^2 C^2 + 1 + 3\mathrm{j}\omega RC}{\mathrm{j}\omega RC} \frac{1}{A} \underline{u_{\mathrm{s}}} \quad \text{donc} \quad \left[ (\mathrm{j}\omega)^2 + \frac{1}{R^2 C^2} + \frac{\mathrm{j}\omega}{RC} (3-A) \right] \underline{u_{\mathrm{s}}} = 0.$$

**19.7** g) En transposant en réels, on en déduit  $\frac{\mathrm{d}^2 u_\mathrm{s}}{\mathrm{d}t^2} + \frac{3-A}{RC} \frac{\mathrm{d}u_\mathrm{s}}{\mathrm{d}t} + \frac{1}{R^2C^2} u_\mathrm{s} = 0.$ 

**19.8** a) Il faut supprimer l'amortissement, donc le premier ordre, d'où A=3.

**19.8** b) On a alors 
$$\frac{d^2 u_s}{dt^2} + \omega_0^2 u_s = 0$$
, avec  $\omega_0 = \frac{1}{RC}$ , d'où  $f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi RC}$ .

19.8 c) Si 
$$A < 3$$
, la tension va s'amortir lors d'un régime pseudo-périodique jusqu'à une valeur nulle.

**19.8** d) Si 
$$A > 3$$
, la tension va s'amplifier jusqu'à saturation de l'ALI.

$$u_1 = \frac{R_1}{R_1 + R_2} u_{\rm s} = \frac{R_1}{R_1 + R_2} V_{\rm sat}.$$

**19.9** c) On a : 
$$i = C \frac{du_C}{dt}$$
.

**19.9** d) On a : 
$$i = \frac{u_{\rm s} - u_C}{R} = \frac{V_{\rm sat} - u_C}{R}$$

**19.9** e) On a 
$$i = \frac{V_{\text{sat}} - u_C}{R} = C \frac{du_C}{dt}$$
. On en déduit :  $\frac{du_C}{dt} + \frac{u_C}{RC} = \frac{V_{\text{sat}}}{RC}$ .

19.9 h) Le condensateur se charge sous la tension 
$$V_{\text{sat}}$$
.

**19.9** i) Lorsque le condensateur se charge, 
$$V_{-}$$
 augmente, donc  $\varepsilon$  diminue.

19.9 j) La tension différentielle  $\varepsilon$  diminue. Au moment où cette tension  $\varepsilon$  devient négative, l'ALI bascule en saturation négative.

.....

19.10 a) On a  $v_+ = v_- = u_e$  car l'ALI est en régime linéaire. Le pont diviseur de tension en bas donne :

$$v_+ = u_e = u_s \frac{R_0}{R_0 + R_2}.$$

**19.10** b) La relation est obtenue avec la loi d'Ohm aux bornes de  $R_1$ .

**19.10** c) Avec 
$$i_{\rm e} = \frac{u_{\rm e} - u_{\rm s}}{R_1}$$
, il vient :  $u_{\rm e} = -R_0 \frac{R_1}{R_2} i_{\rm e}$ .

**19.10** d) Pour éviter la saturation :  $|u_s| < V_{\text{sat}}$ .

**19.10** e) Les relations 
$$|u_e| = u_s \frac{R_0}{R_0 + R_2}$$
 et  $|u_s| < V_{\text{sat}}$  donnent  $|u_e| < \frac{R_0}{R_0 + R_2} V_{\text{sat}}$ .

**19.10** f) En prenant 
$$u_s = +V_{sat}$$
, on a  $u_e = R_1 i_e + V_{sat}$ .

Réponses et corrigés

.....

**19.10** g) En régime linéaire, la pente est négative  $\left(u_{\rm e}=-\frac{R_0R_1}{dR_2}\right)$ : toutes les caractéristiques sont possibles. En régime saturé,  $u_{\rm e}=R_1i_{\rm e}+V_{\rm sat}$ : la pente est positive et l'ordonnée à l'origine vaut  $V_{\rm sat}$ . Cela élimine la caractéristique (2).

- En saturation haute, on a  $V_+ > V_-$ ; donc  $u_e = V_- < V_+ = \frac{R_0}{R_0 + R_2} V_{\rm sat}$ .
- En saturation basse, on a  $V_+ < V_-$ ; donc  $u_e = V_- > V_+ = -\frac{R_0}{R_0 + R_2} V_{\text{sat}}$ .

D'où la condition indiquée dans l'énoncé  $|u_{\rm e}| < \frac{R_0}{R_0 + R_2} V_{\rm sat}$ .

Ces conditions imposent la caractéristique (1).

.....

19.10 h) On a toujours les propriétés suivantes :

• En saturation haute,  $u_s = +V_{\rm sat}$  et  $V_+ > V_-$ , donc  $u_e = V_- < V_+ = \frac{R_0}{R_0 + R_2} V_{\rm sat}$ . Dans ce cas,  $i_e = \frac{u_e - V_{\rm sat}}{R_1}$  (ordonnée à l'origine négative); cela correspond à :

$$i_{
m e} < rac{R_0}{R_0 + R_2} V_{
m sat} - V_{
m sat}}{R_1} = -rac{R_2}{R_1} rac{V_{
m sat}}{R_0 + R_2}.$$

• En saturation basse,  $u_{\rm s}=-V_{\rm sat}$  et  $V_+ < V_-$ , donc  $u_{\rm e}=V_- > V_+ = -\frac{R_0}{R_0+R_2}V_{\rm sat}$ . Dans ce cas,  $i_{\rm e}=\frac{u_{\rm e}+V_{\rm sat}}{R_1}$  (ordonnée à l'origine positive); cela correspond à :

$$i_{\rm e} > \frac{-\frac{R_0}{R_0 + R_2} V_{\rm sat} + V_{\rm sat}}{R_1} = + \frac{R_2}{R_1} \frac{V_{\rm sat}}{R_0 + R_2}.$$

Ces conditions imposent la caractéristique (3).

Plus simplement, on peut également effectuer une symétrie de la caractéristique (1) de la question précédente.

19.10 i) C'est bien sûr dans la zone centrale que le dipôle se comporte comme une résistance négative.

# Fiche nº 20. Bilans en mécanique des fluides

# Réponses

<b>20.6</b> e)
<b>20.7</b> a) $\xi = 0.05$
<b>20.7</b> b) $3.1 \times 10^2 \mathrm{Pa}$
<b>20.7</b> c)
<b>20.7</b> d)
<b>20.8</b> a) $U_1 = U_2 = 3.2 \mathrm{m\cdot s}^{-1}$
<b>20.8</b> b)
<b>20.9</b> a)
<b>20.9</b> b)
<b>20.9</b> c)
<b>20.9</b> d)
<b>20.9</b> e) $ \frac{1}{2} D_{\rm m} v_1^2  {\rm d}t $
<b>20.9</b> f)
$20.9 \text{ g}$ $\mathcal{P} = 100 \text{ W}$
<b>20.10</b> a)
<b>20.10</b> b)
<b>20.10</b> c) $dm = dm_1 - dm_2$
<b>20.10</b> d) $D_{m1} = D_{m2}$
<b>20.11</b> a) $m^*(t) = m(t) + dm_1$
<b>20.11</b> b)
<b>20.11</b> c)
<b>20.11</b> d) $dm_1 = dm_2$

### Corrigés

**20.1** a) Comme le membre de gauche est homogène à une énergie massique, on voit que le terme  $\rho$  est en trop dans le membre de droite.

.....

**20.1** b) Le membre de gauche est homogène à un débit massique (en kg/s) fois une énergie massique (en J/kg), ce qui revient à une puissance. Le terme de droite étant également une puissance, l'équation est homogène.

.....

- **20.1** c) Il manque un  $\rho$  au dénominateur dans le terme de droite :  $-D_{\rm m} \frac{\Delta P}{\rho}$ .
- **20.1** d) Le terme de gauche est homogène à une longueur : il mesure directement la perte de charge en hauteur. L'équation est homogène.
- **20.2** a) La perte de charge correspond au terme  $gh_{pc}$  sauf que, en l'état, elle correspond à une perte d'énergie massique. Pour obtenir une perte de pression, il faut multiplier par  $\mu_0$ . Ainsi,  $\Delta P_{pc} = \mu_0 gh_{pc}$ .
- .....
- **20.2** b) Sans variation de pression et de vitesse, la relation de Bernoulli généralisée s'écrit :

$$g\Delta z = w_u - gh_{pc}$$
 donc  $w_u = g(\Delta z + h_{pc}).$ 

- **20.3** a) Le fluide est ici un liquide. C'est un fluide incompressible donc l'écoulement est également incompressible.
- **20.3** b) Le fait que  $s \ll S$  permet de qualifier l'écoulement de quasi stationnaire car, par conservation du débit volumique, la vitesse de la surface libre de l'eau dans le réservoir est très faible devant la vitesse de sortie; autrement dit, on a  $\dot{h} \ll v_B$ .

.....

20.3 c) On néglige toute perte de charge, ce qui revient à dire que l'écoulement est parfait.

**20.3** d) Le fluide est de l'eau liquide, qu'on peut considérer comme une phase condensée incompressible et indilatable, c'est-à-dire de masse volumique uniforme.

20.4 a) Le récipient est ouvert sur l'extérieur en A et en B, la pression est donc égale à la pression atmosphérique en ces deux points.

- **20.4** b) Le débit volumique est défini comme  $D_v = \iint_S \overrightarrow{v} \cdot \overrightarrow{dS}$ . La réponse b est donc la seule correcte.
- **20.4** d) À partir de l'égalité des deux débits volumiques, on peut écrire  $v_A = \frac{sv_B}{S}$ . Comme  $s \ll S$ , on en déduit que  $v_A \ll v_B$ .
- **20.4** e) Avec les résultats des questions précédentes (égalité des pressions et vitesse négligeable en A), la relation de Bernoulli devient :  $gz_{\rm A} = \frac{v_{\rm B}^2}{2} + gz_{\rm B}.$

On obtient donc la réponse b avec  $h(t)=z_{\mathrm{A}}-z_{\mathrm{B}}.$ 

.....

**20.5** a) La cote z reste constante, les contributions de pesanteur gz se compensent.

**20.5** b) La vitesse v est faible, les contributions cinétiques  $\frac{v^2}{2}$  sont négligées.

**20.5** c) On obtient 
$$v = \sqrt{2gh} = \sqrt{2 \times 9.81 \,\mathrm{m \cdot s}^{-2} \times 5 \times 10^{-2} \,\mathrm{m}} = 1 \,\mathrm{m \cdot s}^{-1}$$
.

**20.6** a) Le débit volumique s'écrit :  $D_v = SU$  avec S la section de la canalisation. Soit  $D_v = U\pi \frac{D^2}{4}$ , d'où  $D_v = 7.0 \,\mathrm{m\cdot s^{-1}} \times \pi \times \frac{(10 \times 10^{-3} \,\mathrm{m})^2}{4} = 5.5 \times 10^{-4} \,\mathrm{m}^3 \cdot \mathrm{s}^{-1} = 0.55 \,\mathrm{L\cdot s}^{-1}$ .

.....

**20.6** b) La vitesse en A avant la pompe étant négligeable et celle en B valant U, on a  $\Delta v^2 = U^2$ .

Avant la pompe et après le robinet, la pression vaut  $P_0$ , pression atmosphérique, donc  $\Delta P = 0$ .

Le point B est situé à la distance L au-dessus de A donc  $\Delta z = L$ . Dans le terme de droite,  $w_u$  est le travail massique fourni par la pompe et  $gh_{\rm pc} = \Delta e_{\rm pcr}$  est la perte d'énergie massique due aux pertes régulières le long du tuyau de longueur L.

La relation de Bernoulli s'écrit donc :  $\frac{1}{2}U^2 + gL = w_u - \Delta e_{pcr} = w_u - \frac{1}{2}\xi \frac{L}{D}U^2$ .

**20.6** c) La relation de Bernoulli donnée est un bilan d'énergie massique. Il faut le multiplier par une masse et le diviser par un temps pour obtenir une puissance, c'est-à-dire multiplier par un débit massique.

**20.6** d) On déduit de la première question : 
$$w_u = \frac{1}{2}U^2 + gL + \frac{1}{2}\xi \frac{L}{D}U^2 = gL + \frac{1}{2}U^2(1 + \xi \frac{L}{D})$$
.

Or, on a  $\mathcal{P} = D_{\rm m} w_u = \mu D_v w_u$ . Donc:

$$\mathcal{P} = \mu D_v \left[ \frac{1}{2} U^2 + gL + \frac{1}{2} \xi \frac{L}{D} U^2 \right] = \mu D_v \left[ gL + \frac{1}{2} U^2 \left( 1 + \xi \frac{L}{D} \right) \right].$$

L'application numérique donne  $\mathcal{P} = 3.6 \times 10^2 \,\mathrm{W}.$ 

.....

- **20.6** e) Il faut que la puissance soit supérieure à  $\mathcal{P} = 3.6 \times 10^2 \,\mathrm{W}$ , on prend donc la pompe ayant une puissance immédiatement supérieure.
- **20.7** a) On calcule la rugosité relative  $\frac{\varepsilon}{D} = 0.02$  et on lit sur l'axe des ordonnées la valeur de  $\xi$ .

**20.7** b) On a 
$$\Delta P = \frac{1}{2}\rho U^2 \xi \frac{\ell}{D} = \frac{1}{2} \times 1 \times 10^3 \,\mathrm{kg \cdot m^{-3}} \times \left(0.5 \,\mathrm{m \cdot s^{-1}}\right)^2 \times 0.05 \times \frac{10 \,\mathrm{m}}{20 \times 10^{-2} \,\mathrm{m}} = 3.1 \times 10^2 \,\mathrm{Pa}.$$

- **20.8** a) Comme le diamètre de tout le circuit est constant, on a :  $U_1 = U_2 = \frac{D_v}{S} = \frac{4D_v}{\pi D^2}$ .
- **20.8** b) Réécrivons la relation de Bernoulli entre le début du tuyau vertical et un point en aval du robinet en la rendant homogène à une pression :

$$\frac{1}{2}\mu(U^2 - U^2) + P_0 - P_i + g\mu(L - 0) = -\frac{1}{2}\mu U^2(k_1 + k_2).$$

Donc, on a  $P_i = P_0 + g\mu L + \frac{1}{2}\mu U^2(k_1 + k_2)$ .

.....

20.9 a) La force volumique associée à la résultante des forces de pression s'écrit  $\vec{f_p} = -\overline{\text{grad}}\,P$ . La pression étant uniforme, la résultante des forces pressantes est nulle.

20.9 b) Les forces pressantes étant nulles, elles ne travaillent pas.

20.9 c) D'un point de vue énergétique, ce qui est fourni par un système est reçu par un autre.

20.9 d) La masse élémentaire  $D_{\rm m}\,dt$  sort à la vitesse  $\vec{v_2}$  en aval pendant la durée dt.

20.9 e) La masse élémentaire  $D_{\rm m}\,dt$  entre à la vitesse  $\vec{v_1}$  en amont pendant la durée dt.

20.9 f) En régime stationnaire la variation d'énergie cinétique est  $\frac{1}{2}D_m(v_2^2-v_1^2)\,dt$ . Le théorème de la puissance cinétique donne alors  $\frac{1}{2}D_m(v_2^2-v_1^2)=-\mathcal{P}$ .

20.11 c) Le système (S*) étant fermé, sa masse ne varie pas, donc  $dm^*=0$ .

Comme m(t + dt) = m(t) en régime stationnaire, il reste  $dm_1 = dm_2$ .

# Fiche no 21. Transformations chimiques

# Réponses

reponses	
<b>21.1</b> a) $\left[ -250 \mathrm{kJ \cdot mol^{-1}} \right]$	<b>21.9</b> a)
<b>21.1</b> b)	<b>21.9</b> b) $2 C(s) + 3 H_2(g) + \frac{1}{2} O_2(g) \rightarrow C_2 H_5 OH(\ell)$
<b>21.1</b> c) $-915 \mathrm{kJ \cdot mol^{-1}}$	
<b>21.2</b> a) $\alpha = -2 \text{ et } \beta = 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<b>21.2</b> b) $50.0 \mathrm{kJ \cdot mol^{-1}}$	, Н Н
<b>21.3</b> a) $-44,5 \mathrm{J\cdot K^{-1}\cdot mol^{-1}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
<b>21.3</b> b) $-124 \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$	<b>21.9</b> d)
<b>21.3</b> c) $-12 \mathrm{J\cdot K^{-1}\cdot mol^{-1}}$	<b>21.9</b> e) $\Delta_{\rm f} H^{\circ}({\rm C}_{2}{\rm H}_{5}{\rm OH}(\ell)) = $
<b>21.4</b> a)	$-1,66 \times 10^3 \mathrm{kJ \cdot mol^{-1}}$
<b>21.4</b> b)	<b>21.10</b> a)
<b>21.4</b> c) $-93.0 \mathrm{kJ \cdot mol^{-1}}$	<b>21.10</b> b)
<b>21.4</b> d)	<b>21.10</b> c) $-65 \mathrm{kJ \cdot mol^{-1}}$
<b>21.4</b> e)	<b>21.11</b> a)
<b>21.4</b> f)	<b>21.11</b> b) $\Delta H_{\text{chi}}$ pour (1) $\Delta H_{\text{chi}}$ pour (2)
<b>21.5</b> a) $-78 \mathrm{kJ \cdot mol^{-1}}$	$\Delta H_{\rm phy} \ { m pour} \ (2)$
<b>21.5</b> b)	<b>21.11</b> c)
<b>21.6</b> a) $-28 \mathrm{J \cdot K^{-1} \cdot mol^{-1}}$	21.11 d) $ \frac{\Delta H_{\text{phy}}}{(3C_{\text{p,m,H}_2\text{O}}^{\circ} + 2C_{\text{p,m,CO}_2}^{\circ})n_0(T_{\text{f}} - T_{\text{i}})} $
<b>21.6</b> b) $-99 \mathrm{kJ \cdot mol^{-1}}$	
<b>21.6</b> c)	<b>21.11</b> e) $\Delta H = \Delta H_{\text{phy}} + \Delta H_{\text{chi}}$ <b>21.11</b> f)
<b>21.6</b> d) $-99 \mathrm{kJ \cdot mol^{-1}}$	21.12 a)
<b>21.6</b> e)	<b>21.12</b> b)
21.7 (a), (c) et (d)	<b>21.12</b> c)
<b>21.8</b> a) $\left[ -46,1 \mathrm{kJ \cdot mol^{-1}} \right]$	
<b>21.8</b> b) $\ln\left(\frac{K_2^{\circ}}{K_1^{\circ}}\right) = \frac{\Delta_r H^{\circ}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	<b>21.12</b> d)
<b>21.8</b> c)	

#### Corrigés

**21.1** a) On applique la loi de Hess à l'enthalpie de réaction. On a :

$$\begin{split} \Delta_{\rm r} H^{\circ} &= \Delta_{\rm f} H^{\circ}(H_2 O(g)) - \frac{1}{2} \times \Delta_{\rm f} H^{\circ}(O_2(g)) - \Delta_{\rm f} H^{\circ}(H_2(g)) \\ &= -250 \, {\rm kJ \cdot mol}^{-1} - \frac{1}{2} \times 0 \, {\rm kJ \cdot mol}^{-1} = -250 \, {\rm kJ \cdot mol}^{-1}. \end{split}$$

**21.1** b) On applique la loi de Hess à l'enthalpie de réaction. On a :

$$\begin{split} \Delta_{r} H^{\circ} &= \Delta_{f} H^{\circ}(\mathrm{CH_{4}(g)}) + \Delta_{f} H^{\circ}(\mathrm{H_{2}O(\ell)}) - \Delta_{f} H^{\circ}(\mathrm{CH_{3}OH(\ell)}) - \Delta_{f} H^{\circ}(\mathrm{H_{2}(g)}) \\ &= 1 \times \left( -70\,\mathrm{kJ}\cdot\mathrm{mol}^{-1} \right) + 1 \times \left( -300\,\mathrm{kJ}\cdot\mathrm{mol}^{-1} \right) - 1 \times \left( -240\,\mathrm{kJ}\cdot\mathrm{mol}^{-1} \right) - 1 \times 0\,\mathrm{kJ}\cdot\mathrm{mol}^{-1} \\ &= -130\,\mathrm{kJ}\cdot\mathrm{mol}^{-1}. \end{split}$$

On applique la loi de Hess à l'enthalpie de réaction. On a : **21.1** c)

$$\begin{split} \Delta_r H^\circ &= 2 \times \Delta_f H^\circ(\mathrm{CO}_2(g)) + 2 \times \Delta_f H^\circ(\mathrm{H}_2\mathrm{O}(\ell)) - \Delta_f H^\circ(\mathrm{CH}_3\mathrm{COOH}(\ell)) - 2\Delta_f H^\circ(\mathrm{O}_2(g)) \\ &= 2 \times (-400\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}) + 2 \times (-300\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}) - (-485\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}) \\ &= -915\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}. \end{split}$$

La réaction (3) s'écrit comme combinaison linéaire des réactions (1) et (2) selon la relation :

$$(3) = 1 \times (2) - 2 \times (1).$$

On a donc  $\alpha = -2$  et  $\beta = 1$ .

**21.2** b) On a  $\Delta_r H_3^{\circ} = -2 \times \Delta_r H_1^{\circ} + \Delta_r H_2^{\circ}$ . Donc,

$$\Delta_{\rm r} H_3^{\circ} = -2 \times (-562,6 \,\mathrm{kJ \cdot mol}^{-1}) + (-1075,2 \,\mathrm{kJ \cdot mol}^{-1}) = 50,0 \,\mathrm{kJ \cdot mol}^{-1}.$$

**21.3** a) On applique la relation donnée à l'entropie :  $\Delta_r S^\circ = S_m^\circ(H_2O(g)) - S_m^\circ(H_2(g)) - \frac{1}{2}S_m^\circ(O_2(g))$ . D'où :

$$\Delta_r S^\circ = 189 \, J \cdot K^{-1} \cdot mol^{-1} - 131 \, J \cdot K^{-1} \cdot mol^{-1} - \frac{205 \, J \cdot K^{-1} \cdot mol^{-1}}{2} = -44,5 \, J \cdot K^{-1} \cdot mol^{-1}.$$

**21.3** b) On applique la relation donnée à l'entropie. On a :

$$\Delta_{\mathbf{r}} S^{\circ} = S^{\circ}_{\mathbf{m}}(\mathrm{H}_{2}\mathrm{O}(\ell)) + S^{\circ}_{\mathbf{m}}(\mathrm{CH}_{4}(\mathbf{g})) - S^{\circ}_{\mathbf{m}}(\mathrm{H}_{2}(\mathbf{g})) - S^{\circ}_{\mathbf{m}}(\mathrm{CH}_{3}\mathrm{OH}(\ell)).$$

Donc,

$$\Delta_r S^\circ = 65\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1} + 70\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1} - 131\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1} - 128\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1} = -124\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}.$$

On applique la relation donnée à l'entropie. On a : **21.3** c)

$$\Delta_r S^\circ = 2 \times S^\circ_m(H_2O(\ell)) + 2 \times S^\circ_m(CO_2(g)) - S^\circ_m(CH_3COOH(\ell)) - 2 \times S^\circ_m(O_2(g)).$$

Donc,

$$\begin{split} \Delta_r S^\circ &= 2 \times 65 \, J \cdot K^{-1} \cdot mol^{-1} + 2 \times 214 \, J \cdot K^{-1} \cdot mol^{-1} - 160 \, J \cdot K^{-1} \cdot mol^{-1} - 2 \times 205 \, J \cdot K^{-1} \cdot mol^{-1} \\ &= -12 \, J \cdot K^{-1} \cdot mol^{-1}. \end{split}$$

**21.4** a) On applique la relation donnée, avec  $\Delta_r H_1^{\circ} = -250 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$  et  $\Delta_r S_1^{\circ} = -44.5 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$ . On a :

$$\Delta_{\rm r} G_1^{\circ} = \Delta_{\rm r} H_1^{\circ} - T \times \Delta_{\rm r} S_1^{\circ} = -250\,{\rm kJ\cdot mol}^{-1} - 298\,{\rm K} \times (-44.5\times 10^{-3}\,{\rm kJ\cdot K}^{-1}\cdot {\rm mol}^{-1}) = -236.7\,{\rm kJ\cdot mol}^{-1}.$$

.....

**21.4** b) La constante d'équilibre s'exprime par la relation  $\Delta_{\rm r} G_1^{\circ} = -RT \ln K_1^{\circ}$ . Donc,

$$K_1^\circ = \exp\biggl(-\frac{\Delta_{\rm r} G_1^\circ}{RT}\biggr) = \exp\biggl(\frac{236.7 \times 10^3 \, {\rm J \cdot mol}^{-1}}{8.314 \, {\rm J \cdot K}^{-1} \cdot {\rm mol}^{-1} \times 298 \, {\rm K}}\biggr) = 3.15 \cdot 10^{41}.$$

**21.4** c) On applique la relation donnée, avec  $\Delta_r H_2^{\circ} = -130 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$  et  $\Delta_r S_2^{\circ} = -124 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$ . On a :

$$\Delta_{\rm r} G_2^{\circ} = \Delta_{\rm r} H_2^{\circ} - T \times \Delta_{\rm r} S_2^{\circ} = -130\,{\rm kJ\cdot mol}^{-1} - 298\,{\rm K} \times (-124\times 10^{-3}\,{\rm kJ\cdot K}^{-1}\cdot {\rm mol}^{-1}) = -93,0\,{\rm kJ\cdot mol}^{-1}.$$

**21.4** d) La constante d'équilibre s'exprime par la relation  $\Delta_r G_2^{\circ} = -RT \ln K_2^{\circ}$ . Donc,

$$K_2^\circ = \exp\biggl(-\frac{\Delta_{\rm r} G_2^\circ}{RT}\biggr) = \exp\biggl(\frac{93.0\times 10^3\;{\rm J\cdot mol^{-1}}}{8.314\;{\rm J\cdot K^{-1}\cdot mol^{-1}}\times 298\,{\rm K}}\biggr) = 2.04\cdot 10^{16}.$$

**21.4** e) On applique la relation donnée, avec  $\Delta_{\mathbf{r}}H_3^{\circ} = -915\,\mathrm{kJ}\cdot\mathrm{mol}^{-1}$  et  $\Delta_{\mathbf{r}}S_3^{\circ} = -12\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$ . On a :

$$\Delta_{\rm r} G_3^{\circ} = \Delta_{\rm r} H_3^{\circ} - T \times \Delta_{\rm r} S_3^{\circ} = -915\,{\rm kJ\cdot mol^{-1}} + 298\,{\rm K} \times 12 \times 10^{-3}\,{\rm kJ\cdot K^{-1}\cdot mol^{-1}} = -911\,{\rm kJ\cdot mol^{-1}}.$$

**21.4** f) La constante d'équilibre s'exprime par la relation  $\Delta_r G_3^{\circ} = -RT \ln K_3^{\circ}$ . Donc,

$$K_3^{\circ} = \exp\left(-\frac{\Delta_{\rm r} G_3^{\circ}}{RT}\right) = \exp\left(\frac{911 \times 10^3 \, \rm J \cdot mol^{-1}}{8{,}314 \, \rm J \cdot K^{-1} \cdot mol^{-1} \times 298 \, \rm K}\right) = 4{,}89 \cdot 10^{159}.$$

21.5 a) La loi de Hess généralisée appliquée à l'enthalpie libre donne la relation :

$$\Delta_{\mathbf{r}}G^{\circ} = 2 \times \Delta_{\mathbf{f}}G^{\circ}(\mathbf{H}_{2}O) + 2 \times \Delta_{\mathbf{f}}G^{\circ}(C\ell_{2}) - \Delta_{\mathbf{f}}G^{\circ}(O_{2}) - 4 \times \Delta_{\mathbf{f}}G^{\circ}(\mathbf{H}C\ell).$$

Donc,

$$\Delta_{\rm r} G^{\circ} = 2 \times -229 \,\mathrm{kJ \cdot mol^{-1}} + 2 \times 0 \,\mathrm{kJ \cdot mol^{-1}} - 0 \,\mathrm{kJ \cdot mol^{-1}} - 4 \times (-95 \,\mathrm{kJ \cdot mol^{-1}}) = -78 \,\mathrm{kJ \cdot mol^{-1}}.$$

.....

**21.5** b) On a  $\Delta_{\rm r} G^{\circ} = \Delta_{\rm r} H^{\circ} - T \Delta_{\rm r} S^{\circ}$ . Donc,

$$\Delta_{\rm r} S^{\circ} = \frac{\Delta_{\rm r} H^{\circ} - \Delta_{\rm r} G^{\circ}}{T} = \frac{-114.8 \, {\rm kJ \cdot mol}^{-1} + 78.0 \, {\rm kJ \cdot mol}^{-1}}{298 \, {\rm K}} = -123.5 \, {\rm J \cdot K}^{-1} \cdot {\rm mol}^{-1}.$$

**21.6** a) On détermine graphiquement le coefficient directeur a en prenant deux points, par exemple le point A(600; -115, 5) et le point B(300; -107). Ainsi, on a

$$a = \frac{\Delta_{\rm r} G^{\circ}(A) - \Delta_{\rm r} G^{\circ}(B)}{T(A) - T(B)} = \frac{(-115, 5 + 107) \times 10^3 \,{\rm kJ \cdot mol^{-1}}}{600 \,{\rm K} - 300 \,{\rm K}} = -28 \,{\rm J \cdot K^{-1} \cdot mol^{-1}}.$$

**21.6** b) L'équation est de la forme y = ax + b, avec  $a = -28 \,\mathrm{J \cdot K^{-1} \cdot mol^{-1}}$ . On détermine graphiquement l'ordonnée à l'origine b en choisissant un point particulier, par exemple le point B(300; -107).

On a donc  $b = \Delta_r G^{\circ}(B) - a \cdot T(B)$ . Donc,

$$b = -107 \times 10^{3} \,\mathrm{J \cdot mol}^{-1} + 28 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1} \times 300 \,\mathrm{K} = -99 \times 10^{3} \,\mathrm{J \cdot mol}^{-1}$$

.....

**21.6** c) On a  $\Delta_r G^{\circ} = \Delta_r H^{\circ} - T \Delta_r S^{\circ}$  et on suppose l'approximation d'Ellingham vérifiée. Donc, le coefficient directeur de la droite représentant  $\Delta_r G^{\circ}$  en fonction de T est  $-\Delta_r S^{\circ}$  et l'ordonnée à l'origine est  $\Delta_r H^{\circ}$ .

- **21.6** d) D'après les questions précédentes, on a  $\Delta_r H^{\circ} = b = -99 \times 10^3 \,\mathrm{J \cdot mol^{-1}} = -99 \,\mathrm{kJ \cdot mol^{-1}}.$
- **21.6** e) D'après les questions précédentes, on a  $a = -\Delta_{\rm r} S^{\circ}$  donc  $\Delta_{\rm r} S^{\circ} = -a = 28 \, {\rm J \cdot K}^{-1} \cdot {\rm mol}^{-1}$ .

21.7 Une constante d'équilibre est sans dimension, les enthalpies libres standard de réaction et les enthalpies standard de réaction s'expriment en  $J \cdot \text{mol}^{-1}$ , les entropies standard de réaction s'expriment en  $J \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ ; de plus, T s'exprime en K et R en  $J \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ . Les expressions homogènes sont donc (a), (c) et (d).

.....

- **21.8** a) On a  $\Delta_r H^{\circ} = \Delta_f H^{\circ}(NH_3(g)) = -46.1 \text{ kJ} \cdot \text{mol}^{-1}$ .
- **21.8** b) Par intégration de la relation de van 't Hoff, on obtient  $\ln K_2^{\circ} \ln K_1^{\circ} = -\frac{\Delta_{\rm r} H^{\circ}}{R T_2} \left(-\frac{\Delta_{\rm r} H^{\circ}}{R T_1}\right)$ , ou encore  $\ln \left(\frac{K_2^{\circ}}{K_1^{\circ}}\right) = \frac{\Delta_{\rm r} H^{\circ}}{R} \left(\frac{1}{T_1} \frac{1}{T_2}\right)$ .
- $\begin{array}{l} \textbf{21.8 c)} \quad \text{D'après l'expression intégrée de la relation de van 't Hoff, } \ln\left(\frac{K_2^\circ}{K_1^\circ}\right) = \frac{\Delta_{\text{r}} H^\circ}{R} \left(\frac{1}{T_1} \frac{1}{T_2}\right). \text{ On en déduit donc } \\ \text{donc } K_2^\circ = K_1^\circ \times \exp\left(\frac{\Delta_{\text{r}} H^\circ}{R} \left(\frac{1}{T_1} \frac{1}{T_2}\right)\right) = 6.8 \times \exp\left(\frac{-46.1 \times 10^3 \, \text{J} \cdot \text{mol}^{-1}}{8.314 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}} \left(\frac{1}{400 \, \text{K}} \frac{1}{500 \, \text{K}}\right)\right) = 0.42. \end{aligned}$

21.9 a) La réaction de formation d'un corps est définie à partir de ses éléments pris dans leur état standard sous forme de corps simples (constitués d'un seul élément). L'éthanol étant constitué de carbone, d'hydrogène et d'oxygène, sont impliqués dans sa formation le carbone C(s), le dihydrogène  $H_2(g)$  et le dioxygène  $O_2(g)$ .

**21.9** b) On considère la formation d'une mole d'éthanol  $C_2H_5OH(\ell)$ , constitué de 2 atomes de carbone, 6 atomes d'hydrogène et 1 atome d'oxygène. Pour ce faire, il faut donc 2 moles de carbone C(s), 3 moles de dihydrogène  $H_2(g)$  et  $\frac{1}{2}$  mole de dioxygène  $O_2(g)$ .

La réaction de formation de l'éthanol est donc :  $2\,C(s) + 3\,H_2(g) + \frac{1}{2}\,O_2(g) \longrightarrow C_2H_5OH(\ell).$ 

- **21.9** c) Le schéma de Lewis de l'éthanol est :  $\mathbf{H} \mathbf{C} \mathbf{C} \mathbf{\overline{Q}} \mathbf{H}$ .
- **21.9** d) Le schéma de Lewis précédent montre que l'éthanol est constitué de cinq liaisons C-H, une liaison C-C, une liaison C-O et une liaison O-H.

**21.9** e) On exprime l'enthalpie standard de formation de l'éthanol liquide en sommant les énergies des liaisons rompues et en retranchant les énergies des liaisons formées. On a :

$$\Delta_{f}H^{\circ}(C_{2}H_{5}OH(\ell)) = 3 \times \mathcal{E}(H-H) + \frac{1}{2} \times \mathcal{E}(O=O) - (5 \times \mathcal{E}(C-H) + \mathcal{E}(C-C) + \mathcal{E}(C-O) + \mathcal{E}(O-H))$$

$$= 3 \times 435 + \frac{1}{2} \times 502 - (5 \times 411 + 346 + 358 + 459) = -1,66 \times 10^{3} \text{ kJ} \cdot \text{mol}^{-1}.$$

**21.10** a) Par définition, l'énergie de liaison est l'énergie à fournir pour rompre une liaison donnée (ou une mole de cette liaison) : la réponse a est correcte. La réponse b est fausse car la formation d'une mole de  $N_2(g)$  à partir de deux moles de N(g) libère une énergie égale à  $\mathcal{E}(N \equiv N)$ . Les réponses c et d sont exactes d'après la définition donnée.

**21.10** b) Lors de l'étape (1), on forme deux moles d'ammoniac liquide donc (1) =  $2 \times \Delta_f H^{\circ}(NH_3(\ell))$ .

Lors de l'étape (2), on forme deux moles d'ammoniac liquide à partir d'ammoniac gazeux donc cette liquéfaction (inverse de la vaporisation) libère une énergie égale à  $-2 \times \Delta_{\rm vap} H^{\circ}({\rm NH_3}(\ell))$  : (2) =  $-2 \times \Delta_{\rm vap} H^{\circ}({\rm NH_3}(\ell))$ . C'est donc la réponse (d) qui est correcte.

.....

**21.10** c) On utilise le cycle pour écrire une égalité entre l'énergie du chemin (1) et celle du chemin (2) $\rightarrow$ (3) $\rightarrow$ (4). On a ainsi :

$$2 \times \Delta_f H^{\circ}(NH_3(\ell)) = \mathcal{E}(N \equiv N) + 3 \times \mathcal{E}(H - H) - 6 \times \mathcal{E}(N - H) - 2 \times \Delta_{vap} H^{\circ}(NH_3(\ell))$$
$$= 960 + 3 \times 450 - 6 \times 400 - 2 \times 20 = -130 \text{ kJ} \cdot \text{mol}^{-1}.$$

Donc,  $\Delta_f H^{\circ}(NH_3(\ell)) = -65 \text{ kJ} \cdot \text{mol}^{-1}$ .

**21.11** a) Lors d'une transformation monobare, la pression initiale du système est égale à la pression finale mais elle peut varier durant la transformation : la réponse (a) est donc fausse. Lors d'une transformation adiabatique, le système n'échange pas de chaleur avec l'extérieur mais la température peut tout de même varier : la réponse (b) est donc fausse mais la réponse (c) est exacte. Enfin, pour une transformation adiabatique et monobare, la variation d'enthalpie du système est nulle : la réponse (d) est exacte.

**21.11** b) L'étape (1) correspond au passage des réactifs aux produits mais sans variation de température : c'est donc une transformation chimique isotherme, dont la variation d'enthalpie est  $\Delta H_{\rm chi}$ . L'étape (2) correspond à l'évolution de la température du système de la température  $T_{\rm i}$  à la température  $T_{\rm f}$ , sans modification de l'avancement. La variation d'enthalpie est donc  $\Delta H_{\rm phy}$ .

**21.11** c) On a 
$$\Delta H_{\text{chi}} = \int_0^{n_0} \Delta_{\mathbf{r}} H \, \mathrm{d}\xi \approx \Delta_{\mathbf{r}} H^\circ \times n_0.$$

**21.11** d) On a 
$$\Delta H_{\text{phy}} = \int_{T_{\text{i}}}^{T_{\text{f}}} C_{\text{p}} dT$$
 avec  $C_{\text{p}} = \sum_{k} n_{k} \times C_{\text{p,m,k}}^{\circ} = 3n_{0} \times C_{\text{p,m,H}_{2}O(g)}^{\circ} + 2n_{0} \times C_{\text{p,m,CO}_{2}(g)}^{\circ}$ .

On obtient donc:

$$\Delta H_{\rm phy} = \int_{T_{\rm i}}^{T_{\rm f}} (3n_0 \times C_{\rm p,m,H_2O(g)}^{\circ} + 2n_0 \times C_{\rm p,m,CO_2(g)}^{\circ}) \, dT = (3C_{\rm p,m,H_2O(g)}^{\circ} + 2C_{\rm p,m,CO_2(g)}^{\circ}) \times n_0 \times (T_{\rm f} - T_{\rm i}).$$

**21.11** e) On a  $\Delta H = \Delta H_{\text{phy}} + \Delta H_{\text{chi}}$ .

 $\mbox{L'application numérique donne} \ T_{\rm f} = 25\,{\rm ^{\circ}C} + \frac{1\,236\times10^3\,{\rm J\cdot mol}^{-1}}{3\times33.6\,{\rm J\cdot K}^{-1}\cdot{\rm mol}^{-1} + 2\times37.1\,{\rm J\cdot K}^{-1}\cdot{\rm mol}^{-1}} = 7\,088\,{\rm ^{\circ}C}.$ 

**21.12** a) Une transformation endothermique est favorisée par une augmentation de la température : (b).

21.12 b) Par définition du quotient de réaction pour des espèces chimiques en phase gazeuse, on a :

$$Q = \frac{P_{\mathrm{H_2}}^3 \times P_{\mathrm{CO}}}{P_{\mathrm{CH_4}} \times P_{\mathrm{H_2O}} \times (P^{\circ})^2} = \frac{x_{\mathrm{H_2}}^3 \times x_{\mathrm{CO}}}{x_{\mathrm{CH_4}} \times x_{\mathrm{H_2O}}} \times \left(\frac{P_{\mathrm{tot}}}{P^{\circ}}\right)^2.$$

Ainsi, seule l'expression de la réponse (a) est correcte.

**21.12** c) Une augmentation isotherme de la pression totale entraı̂ne une augmentation de la valeur du quotient de réaction Q. Pour retrouver l'état d'équilibre, Q doit diminuer, la réaction évolue donc dans le sens de la diminution de la quantité de matière de gaz, soit le sens inverse : (c).

.....

21.12 d) Par définition du quotient de réaction pour des espèces chimiques en phase gazeuse, on a :

$$Q = \frac{P_{\rm H_2}^3 \times P_{\rm CO}}{P_{\rm CH_4} \times P_{\rm H_2O} \times (P^\circ)^2} = \frac{x_{\rm H_2}^3 \times x_{\rm CO}}{x_{\rm CH_4} \times x_{\rm H_2O}} \times \left(\frac{P_{\rm tot}}{P^\circ}\right)^2.$$

En remplaçant pour chaque constituant la fraction molaire  $x_i$  par  $\frac{n_i}{n_{tot}}$ , on obtient :

$$Q = \frac{n_{\rm H_2}^3 \times n_{\rm CO}}{n_{\rm CH_4} \times n_{\rm H_2O} \times n_{\rm tot}^2} \times \left(\frac{P_{\rm tot}}{P^{\circ}}\right)^2.$$

Seule l'expression de la réponse (a) est correcte.

**21.12** e) D'après l'expression du quotient de réaction, l'ajout de dihydrogène fait augmenter  $n_{\rm H_2}$  mais aussi  $n_{\rm tot}$ . L'augmentation de  $n_{\rm H_2}$  étant plus importante que celle de  $n_{\rm tot}$ , cela mène à une augmentation du quotient de réaction. Le retour à l'état d'équilibre implique que le quotient de réaction diminue, l'évolution se fait donc dans le sens inverse : (c).

.....

**21.12** f) D'après l'expression du quotient de réaction, l'ajout d'eau fait augmenter  $n_{\text{H}_2\text{O}}$  et  $n_{\text{tot}}$ , qui apparaissent tous les deux au dénominateur, donc cela mène à une diminution du quotient de réaction. Le retour à l'état d'équilibre implique que le quotient de réaction augmente, l'évolution se fait dans le sens direct : (b).

**21.12** g) Le diazote est spectateur donc son ajout ne participe qu'à l'augmentation de la quantité de matière totale d'espèces gazeuses  $n_{\text{tot}}$ : cela mène à une diminution du quotient de réaction. Le retour à l'état d'équilibre implique que le quotient de réaction augmente, l'évolution se fait dans le sens direct : (b).

.....

### Fiche nº 22. Courbes intensité-potentiel

### Réponses

reponses	
<b>22.1</b> a)	<b>22.6</b> e)
<b>22.1</b> b)	<b>22.7</b> a)
<b>22.2</b> a)	<b>22.7</b> b)
<b>22.2</b> b)	<b>22.7</b> c)
<b>22.2</b> c)	<b>22.7</b> d)
<b>22.2</b> d)	
<b>22.3</b> a)	<b>22.7</b> e)
<b>22.3</b> b)	<b>22.8</b> a)
<b>22.3</b> c)	<b>22.8</b> b)
<b>22.3</b> d)	<b>22.8</b> c)
<b>22.4</b>	$22.9 \text{ a}) \dots \qquad \boxed{2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-}$
<b>22.5</b> a)	<b>22.9</b> b) $2 H_2 O \rightarrow O_2 + 4 H^+ + 4 e^-$
	<b>22.10</b> a) $2 IO_3^- + 12 H^+ + 10 e^- = I_2 + 6 H_2 O$
<b>22.5</b> b)	<b>22.10</b> b)
<b>22.5</b> c)	<b>22.10</b> c)
<b>22.5</b> d)	<b>22.10</b> d)
<b>22.6</b> a)	<b>22.10</b> e)
<b>22.6</b> b) $HSO_4^- + 3H^+ + 2e^- = SO_2 + 2H_2O$	<b>22.10</b> f)
<b>22.6</b> c)	<b>22.10</b> g)
<b>22.6</b> d)	<b>22.10</b> g)

### Corrigés

22.1 a) La demi-équation électronique du couple rédox  $Cu^{2+}/Cu$  s'écrit  $Cu^{2+} + 2e^- = Cu$ . Le potentiel de l'électrode de travail à courant nul s'identifie au potentiel de Nernst, à savoir :

$$E_{\rm ab} = E_{\rm Cu^{2+}/Cu}^{\circ} + \frac{0.06}{2} \log \left( \frac{[{\rm Cu^{2+}}]}{C^{\circ}} \right) = E_{\rm Cu^{2+}/Cu}^{\circ} + \frac{0.06}{2} \log \left( \frac{C}{C^{\circ}} \right).$$

Sur le graphique, nous lisons  $E_{\rm ab}=0{,}25\,{\rm V}.$  Nous obtenons donc :

$$C = C^{\circ} \times 10^{\frac{2(E_{\rm ab} - E^{\circ})}{0.06}} = 1\,{\rm mol/L} \times 10^{\frac{2(0.25\,{\rm V} - 0.34\,{\rm V})}{0.06\,{\rm V}}} = 10^{-3}\,{\rm mol/L}.$$

**22.1** b) La tension lue au voltmètre est  $U = E_{\text{Cu}^{2+}/\text{Cu}} - E_{\text{ECS}} = 0.25 \,\text{V} - 0.25 \,\text{V} = 0 \,\text{V}.$ 

.....

- 22.2 a) Plus le potentiel est faible, plus le milieu est réducteur. Le domaine ① est le domaine du réducteur.
- 22.2 b) Plus le potentiel est élevé, plus le milieu est oxydant. Le domaine ② est le domaine de l'oxydant.
- **22.2** c) Dans  $Cu^{2+}/Cu$ , Cu est le réducteur. L'espèce A appartient au domaine du réducteur : c'est Cu.
- **22.2** d) Dans  $Cu^{2+}/Cu$ ,  $Cu^{2+}$  est l'oxydant. L'espèce B appartient au domaine de l'oxydant : c'est  $Cu^{2+}$ .

- **22.3** a) Au niveau de l'anode se produit une oxydation. La réaction est alors : Fe  $\rightarrow$  Fe²⁺ + 2 e⁻.
- **22.3** c) Au niveau de la cathode se produit une réduction. La réaction est alors :  $Fe^{2+} + 2e^{-} \rightarrow Fe$ .
- **22.4** On considère la réaction  $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ .

Comme Fe²⁺ est le réducteur, il est à droite de la courbe; comme Fe³⁺ est l'oxydant, il est à gauche de la courbe. Au niveau de la partie anodique de la courbe (i > 0), une oxydation est observée. La flèche va donc du réducteur vers l'oxydant. Au niveau de la partie cathodique de la courbe (i < 0), une réduction est observée. La flèche va donc de l'oxydant vers le réducteur. Seule la figure a convient.

.....

- **22.5** a) On a  $E(20 \,\text{mA}) = 0.6 \,\text{V}$  et  $E_{ab} = 0.2 \,\text{V}$ . Nous avons donc  $\eta_a = E(20 \,\text{mA}) E_{ab} = 0.4 \,\text{V}$ .
- **22.5** b) On a  $E(-20 \,\text{mA}) = -0.1 \,\text{V}$  et  $E_{ab} = 0.2 \,\text{V}$ . Nous avons donc  $\eta_c = E(-20 \,\text{mA}) E_{ab} = -0.3 \,\text{V}$ .
- **22.5** c) On a  $\lim_{i_0 \to 0^+} E(i_0) = 0.4 \,\text{V}$  et  $E_{ab} = 0.2 \,\text{V}$ . Nous avons donc  $\eta_a = 0.2 \,\text{V}$ .
- **22.5** d) On a  $\lim_{i'_0 \to 0^-} E(i'_0) = 0.1 \text{ V et } E_{ab} = 0.2 \text{ V. Nous avons donc } \eta_c = -0.1 \text{ V.}$
- **22.6** a) On a  $V_{\text{ox}} \neq V_{\text{red}}$ ; le couple est donc lent.
- **22.6** c) On a  $E(\text{HSO}_4^-/\text{SO}_2) = E^{\circ}(\text{HSO}_4^-/\text{SO}_2) + \frac{0.06}{2} \log \left( \frac{[\text{HSO}_4^-][\text{H}^+]^3}{[\text{SO}_2].C^{\circ 3}} \right)$ . Ainsi,

$$E(\mathrm{HSO_4}^-/\mathrm{SO_2}) = 0.16\,\mathrm{V} + 0.03\,\mathrm{V} \cdot \log \left(\frac{10^{-1}\,\mathrm{mol/L} \cdot (10^{-4}\,\mathrm{mol/L})^3}{10^{-3}\,\mathrm{mol/L} \cdot (1\,\mathrm{mol/L})^3}\right) = -0.14\,\mathrm{V}.$$

.....

- **22.6** d) Le surpotentiel anodique s'écrit :  $\eta_a = V_{\text{ox}} E(\text{HSO}_4^-/\text{SO}_2) = 0.2 \text{ V} (-0.14 \text{ V}) = 0.34 \text{ V}.$
- **22.6** e) Le surpotentiel cathodique s'écrit :  $\eta_c = V_{\text{red}} E(\text{HSO}_4^-/\text{SO}_2) = -0.5 \text{ V} (-0.14 \text{ V}) = -0.36 \text{ V}.$
- **22.7** a) Le courant est non nul donc on a réaction. Il est négatif donc on a une réduction. La seule réduction proposée est  $H^+ \longrightarrow H_2$ .
- **22.7** b) Le courant est nul donc absence de réaction. Pour un palier de diffusion, la cinétique est limitée ; toutefois, une réaction est observée. Si c'était un palier, le courant serait non nul.



# Fiche nº 23. Phénomène de corrosion

# Réponses

<b>23.1</b> a)	<b>23.6</b> a) $E_{\text{Mg}^{2+}/\text{Mg}}^{\circ} + 0.03 \log \left( \frac{[\text{Mg}^{2+}]}{C^{\circ}} \right)$
<b>23.1</b> b)	<b>23.6</b> b)
<b>23.1</b> c)	<b>23.6</b> c) $E_{\text{H}^+/\text{H}_2}^{\circ} - 0.06  \text{pH} - 0.03  \text{log}  \frac{p_{\text{H}_2}}{p^{\circ}}$
<b>23.1</b> d)	
<b>23.1</b> e)	<b>23.6</b> d)
<b>23.2</b> a)	<b>23.6</b> e)
<b>23.2</b> b)	23.6 f) oui
<b>23.2</b> c)	23.7 a) Le zinc
<b>23.2</b> d)	<b>23.7</b> b)
<b>23.2</b> e)	<b>23.7</b> c)
<b>23.3</b> a)	$23.7 \; \mathrm{d}) \ldots \ldots \qquad \boxed{\text{Le fer}}$
<b>23.3</b> b) $5 \times 10^{-6}$ mol	<b>23.7</b> e)
<b>23.3</b> c)	<b>23.8</b> a) $Mg + 2H^{+} = Mg^{2+} + H_{2}$
<b>23.3</b> d)	<b>23.8</b> b)
<b>23.4</b> a)	<b>23.8</b> c)
	<b>23.8</b> d)
<b>23.4</b> b)	23.8 e)
<b>23.4</b> c)	23.9 a)
<b>23.4</b> d)	<b>23.9</b> b) $-M_{\text{Fe}} \frac{\mathrm{d}\xi}{\mathrm{d}t}$
<b>23.5</b> a)	<b>23.9</b> c)
<b>23.5</b> b) O ₂	<b>23.10</b> a)
<b>23.5</b> c) $2 \operatorname{Zn} + O_2 + 2 \operatorname{H}_2 O = 2 \operatorname{Zn}^{2+} + 4 \operatorname{HO}^-$	$\overline{i_{ m corr}} M_{ m Cu}$
<b>23.5</b> d)	<b>23.10</b> b)
<b>23.5</b> e)	<b>23.10</b> c)

#### Corrigés

**23.1** a) Le courant circule de l'électrode de cuivre vers l'électrode de zinc. Les électrons sont donc produits au niveau de l'électrode de zinc et migrent vers l'électrode de cuivre pour y être consommés.

**23.1** b) La cathode est donc l'électrode de cuivre, lieu de la réduction : on a  $Cu^{2+} + 2 e^{-} = Cu$ .

**23.1** c) Le sens du courant permet de comprendre que le zinc s'oxyde. Nous observerons la réaction suivante :  $Zn = Zn^{2+} + 2 e^{-}$ .

**23.1** d) D'après la définition du courant, on a  $I = \frac{Q}{\tau}$  et donc  $Q = I \times \tau = 100 \times 10^{-6} \,\text{A} \times 10 \times 60 \,\text{s} = 60 \,\text{mC}$ .

**23.1** e) La seule réaction se produisant est  $Zn + Cu^{2+} = Zn^{2+} + Cu$ .

Au cours de cette réaction, lorsque deux moles d'électrons sont échangées entre les deux couples rédox, une mole de zinc est consommée.

Durant le temps  $\tau$ ,  $n = \frac{Q}{\mathcal{F}}$  moles d'électrons sont échangées. Donc la masse de zinc consommée est :  $m = M_{\rm Zn} \frac{Q}{2\mathcal{F}}$ .

On trouve finalement :  $m = 65.4 \,\mathrm{g \cdot mol^{-1}} \times \frac{60 \times 10^{-3} \,\mathrm{C}}{2 \times 96500 \,\mathrm{C \cdot mol^{-1}}} = 20 \,\mathrm{\mu g}.$ 

23.2 a) Il s'agit d'une courbe à courant positif, donc d'une oxydation. Le couple à considérer est donc celui dans

23.2 a) Il s'agit d'une courbe à courant positif, donc d'une oxydation. Le couple à considérer est donc celui dans lequel l'eau est le réducteur, c'est-à-dire  $O_2/H_2O$ .

23.2 c) La demi-équation du couple s'écrit :  $O_2 + H^+ + 4e^- = 2H_2O$ . On en déduit :

$$E_{\rm N} = E^{\circ} + \frac{0.06}{4} \log \frac{(p_{\rm O_2}/p^{\circ}) ([{\rm H^+}]/c^{\circ})^4}{1^2}.$$

- **23.2** d) Le calcul conduit à  $E_N = 0.99 \,\mathrm{V}$ .
- **23.2** e) On a  $\eta_a = 1.35 \,\mathrm{V} E_{\mathrm{N,O_2/H_2O}} = 0.36 \,\mathrm{V}.$
- 23.3 b) Dressons le tableau d'avancement pour la réaction d'oxydoréduction considérée :

	2 Fe -	+ O ₂ -	+ 4 H ⁺ =	$= 2 \text{ Fe}^{2+} -$	- 2 H ₂ O
État initial	$n_1$	$n_2$	$n_3$	0	/
Après un temps $ au$	$n_1-2\xi$	$n_2 - \xi$	$n_3-4\xi$	2ξ	/

où  $n_1, n_2$  et  $n_3$  sont des quantités de matière à l'instant initial.

Au bout du temps  $\tau$ , la masse restante de Fe est  $m_1' = \frac{45}{100} m_1$ .

À la lecture du tableau d'avancement, nous avons  $n_1' = n_1 - 2\xi$ , ce qui peut s'écrire sous la forme :

$$m_1' = M_{Fe}n_1' = M_{Fe}(n_1 - 2\xi) = m_1 - 2M_{Fe}\xi.$$

Nous obtenons ainsi :  $2M_{Fe}\xi = \frac{100-45}{100}m_1$ . Finalement  $\xi = \frac{55}{200}\frac{m_1}{M_{Fe}} = \frac{55\times1\times10^{-3}\,\mathrm{g}}{200\times55,8\,\mathrm{g\cdot mol^{-1}}} = 5\times10^{-6}\,\mathrm{mol}$ .

.....

**23.3** c) On a Fe = Fe²⁺ + 2 e⁻. Au bout d'un temps  $\tau$ ,  $2\xi$  moles de fer sont consommées. Il y a donc  $4\xi$  moles d'électrons échangées.

.....

- **23.3** d) D'après les questions précédentes,  $Q = 4\xi \mathcal{N}_A e = 4\xi \mathcal{F} = 4 \times 5 \times 10^{-6} \text{ mol} \times 96500 \text{ C} \cdot \text{mol}^{-1} = 1,9 \text{ C}.$
- 23.4 a) Il n'existe aucun domaine commun entre Al et H₂O, donc Al n'est jamais stable dans l'eau.
- 23.4 b) La passivation se fait toujours sous forme d'oxyde solide, les ions ne sont pas des espèces passivantes car ils ne peuvent pas rester accrochés en surface du métal et le protéger de la corrosion.

**23.4** c) En milieu acide, l'espèce stable est l'ion Al³⁺. L'aluminium passe en solution, la plaque va donc se dissoudre progressivement.

.....

**23.4** d) En milieu neutre ou légèrement basique, l'espèce stable est le solide Al₂O₃, qui peut rester accroché en surface et protéger la plaque : c'est la passivation. Une partie de l'aluminium est néanmoins consommée pour former l'oxyde.

.....

- 23.5 a) Le zinc s'oxyde sous l'action du dioxygène. Il va donc se corroder.
- **23.5** b) Le dioxygène se réduit en HO⁻.

**23.5** c) La réaction de réduction du dioxygène s'écrit :  $O_2 + 2H_2O + 4e^- = 4HO^-$ .

.....

La réaction d'oxydation du zinc s'écrit :  $Zn = Zn^{2+} + 2e^{-}$ .

La réaction d'oxydoréduction est donc :  $2 \operatorname{Zn} + \operatorname{O}_2 + 2 \operatorname{H}_2 \operatorname{O} = 2 \operatorname{Zn}^{2+} + 4 \operatorname{HO}^-$ .

- **23.5** d) La production de HO⁻ assure une augmentation du pH.
- **23.6** a) Il y a deux électrons échangés, donc la loi de Nernst s'écrit  $E_{\text{Mg}^{2+}/\text{Mg}} = E_{\text{Mg}^{2+}/\text{Mg}}^{\circ} + \frac{0.06}{2} \log \left( \frac{[\text{Mg}^{2+}]}{c^{\circ}} \right)$ .
- **23.6** c) La loi de Nernst s'écrit :

$$E_{\rm H^+/H_2} = E_{\rm H^+/H_2}^{\circ} + \frac{0.06}{2}\log\frac{[{\rm H^+}]^2/(c^{\circ})^2}{p_{\rm H_2}/p^{\circ}} = E_{\rm H^+/H_2}^{\circ} - 0.06\,{\rm pH} - 0.03\log\frac{p_{\rm H_2}}{p^{\circ}}.$$

23.6 e) Le couple  $\mathrm{Mg}^{2+}/\mathrm{Mg}$  est rapide alors que le couple  $\mathrm{H}^+/\mathrm{H}_2$  est lent, c'est donc sur la courbe de ce dernier que doit se retrouver le surpotentiel, ce qui élimine la proposition  $\stackrel{\frown}{\mathbb{Q}}$ . L'intensité est toujours une fonction croissante du potentiel, ce qui élimine la proposition  $\stackrel{\frown}{\mathbb{Q}}$ . Un courant d'oxydation (courant anodique) est toujours positif. Notons que, dans notre cas, le magnésium est oxydé  $(E_{\mathrm{H}^+/\mathrm{H}_2} > E_{\mathrm{Mg}^2+/\mathrm{Mg}})$ , ce qui élimine la proposition  $\stackrel{\frown}{\mathbb{Q}}$ . Le bon diagramme est donc celui de la proposition  $\stackrel{\frown}{\mathbb{Q}}$ .

.....

#### **23.6** f)



23.7 a) Le métal le plus facilement corrodable (c'est-à-dire susceptible d'être oxydé) d'un point de vue thermodynamique est le réducteur le plus fort, donc celui de potentiel standard le plus faible, soit ici le zinc.

.....

#### **23.7** b)

Dans cette question, les courbes à considérer sont d'une part  $\operatorname{Zn} \longrightarrow \operatorname{Zn}^{2+}$  et d'autre part  $\operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{H}_2$  sur  $\operatorname{Zn}$ , les seules représentées en trait plein sur la figure ci-contre.

On lit graphiquement :

$$E_{\rm c} \approx -0.85 \, {\rm V}$$
 et  $i_{\rm c} \approx 2 \, {\rm mA}$ .



#### **23.7** c)

Les courbes à considérer sont cette fois d'une part Zn  $\longrightarrow$  Zn²⁺ et d'autre part H₂O  $\longrightarrow$  H₂ sur Fe, comme indiqué sur la figure ci-contre.

On lit graphiquement :

$$E_{\rm c} \approx -0.65 \, {\rm V}$$
 et  $i_{\rm c} \approx 18 \, {\rm mA}$ .



23.7 d) La réduction de l'eau est beaucoup plus rapide sur le fer, c'est donc là qu'elle a (majoritairement) lieu.

**23.7** e) Les électrons sont libérés du côté zinc de la jonction, car c'est Zn qui est oxydé, et consommés du côté fer, car c'est là que H₂O est réduite. Ainsi, ils se déplacent globalement du zinc vers le fer.

#### **23.8** b) Le potentiel pour lequel les courants sont égaux en valeur absolue est $E_c = -1 \,\mathrm{V}$ .



**23.8** c) La demi-équation électronique s'écrit  $2H^+ + 2e^- = H_2$ , il faut donc échanger 2 moles d'électrons pour former 1 mole de dihydrogène. Ainsi, pour la formation de n moles de  $H_2$ , il faut 2n moles d'électrons, d'où une charge totale  $2n\mathcal{F}$ .

23.8 d) D'après l'équation d'état des gaz parfaits, la quantité de matière de dihydrogène formée est :

$$n = \frac{PV}{RT} = \frac{1 \times 10^5 \,\text{Pa} \times 1 \times 10^{-6} \,\text{m}^3}{8.3.1 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 298 \,\text{K}} = 4.0 \times 10^{-5} \,\text{mol}\,,$$

ce qui donne une charge échangée :  $Q = 2n\mathcal{F} = 2 \times 4.0 \times 10^{-5} \,\mathrm{mol} \times 9.65 \times 10^4 \,\mathrm{C} \cdot \mathrm{mol}^{-1} = 7.8 \,\mathrm{C}.$ 

**23.8** e) Nous obtenons :  $i = \frac{Q}{\Delta t} = \frac{7.8 \text{ C}}{600 \text{ s}} = 13 \text{ mA}.$ 

**23.9** a) Le nombre d'oxydation du fer sous sa forme réduite Fe est nul. Celui du fer sous sa forme d'oxyde  $Fe(OH)_2$  est +II. Nous en déduisons :  $\alpha = 2$ .

23.9 b) Dressons le tableau d'avancement pour la réaction d'oxydoréduction considérée :

	Fe -	$+ \frac{1}{2}O_2 +$	- H ₂ O =	= Fe(OH) ₂
État initial	$n_1$	$n_2$	/	0
À l'instant $t$	$n_1 - \xi$	$n_2 - \frac{\xi}{2}$	/	ξ

où  $n_1$  et  $n_2$  sont les quantités de matière à l'instant initial.

On a 
$$n_1 = \frac{m_0}{M_{\rm Fe}}$$
 et, à l'instant  $t, n_1' = \frac{m(t)}{M_{\rm Fe}} = n_1 - \xi$ . On a donc  $m(t) = M_{\rm Fe}(n_1 - \xi) = m_0 - M_{\rm Fe}\xi$ . Ainsi,

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -M_{\mathrm{Fe}} \frac{\mathrm{d}\xi}{\mathrm{d}t}.$$

**23.10** a) À l'aide de la définition du courant de corrosion, on a  $\int_0^{\tau} dt = \int_0^{\xi_f} \frac{2\mathcal{F}}{i_{\text{corr}}} d\xi$ , ce qui conduit à :  $\tau = \frac{2\mathcal{F}}{i_{\text{corr}}} \xi_f$ . Au bout du temps  $\tau$ , une masse  $m_0$  de cuivre est consommée. On a donc  $\xi_f = \frac{m_0}{M_{\text{Cu}}}$  et donc  $\tau = \frac{2\mathcal{F}m_0}{i_{\text{corr}}M_{\text{Cu}}}$ .

**23.10** b) La masse de cuivre corrodé est  $m_0 = \rho_{\text{Cu}} S(e_1 - e_2)$ . Le temps  $\tau$  vérifie :

$$\tau = \frac{2\mathcal{F}}{i_{\text{corr}} M_{\text{Cu}}} \rho_{\text{Cu}} S(e_2 - e_1)$$

$$= \frac{2 \times 96500 \,\text{C} \cdot \text{mol}^{-1}}{65 \times 10^{-6} \,\text{A} \times 63,5 \,\text{g} \cdot \text{mol}^{-1}} \times 8,96 \,\text{g} \cdot \text{cm}^{-3} \times 2 \,\text{cm}^2 \times (0,500 \,\text{cm} - 0,498 \,\text{cm})$$

$$= 16,75 \times 10^5 \,\text{s}.$$

Le temps  $\tau$  correspond donc à 19 jours et 10 heures.

**23.10** c) On a  $\tau = 1 \times 3600 \,\mathrm{s} + 45 \times 60 \,\mathrm{s} = 6300 \,\mathrm{s}$  et

$$\tau = \frac{2\mathcal{F}}{i_{\text{corr}} M_{\text{Cu}}} m_0,$$

$$M_{\text{Cu}} = \frac{2\mathcal{F}}{i_{\text{corr}} \tau} m_0,$$

$$M_{\text{Cu}} = \frac{2 \times 96500 \,\text{C} \cdot \text{mol}^{-1}}{55 \times 10^{-6} \,\text{A} \times 6300 \,\text{s}} \times 0.1 \times 10^{-3} \,\text{g}$$

$$= 55.8 \,\text{g} \cdot \text{mol}^{-1} \neq 63.5 \,\text{g} \cdot \text{mol}^{-1}.$$

L'électrode n'est donc pas en cuivre.

.....

# Fiche nº 24. Piles et accumulateurs

# Réponses

•	
<b>24.1</b> a)	<b>24.5</b> c) $E = E^{\circ}(\text{Zn}^{2+}/\text{Zn}) + \frac{0,059}{2} \log \left(\frac{[\text{Zn}^{2+}]}{C^{\circ}}\right)$
<b>24.1</b> b)	
<b>24.1</b> c) $Q = 0.52 \mathrm{A \cdot h}$	<b>24.5</b> d) $E = E^{\circ}(Cu^{2+}/Cu) + \frac{0.059}{2} \log\left(\frac{[Cu^{2+}]}{C^{\circ}}\right)$
<b>24.2</b> a) $Q = I\Delta t$	<b>24.5</b> e)
<b>24.2</b> b)	<b>24.5</b> f)
<b>24.2</b> c)	<b>24.5</b> g) $K^{\circ} = 10^{37} > 1$
<b>24.2</b> d) $n_{\text{Pb}^{2+}} = \frac{n_{\text{e}}}{2}$	<b>24.6</b> a) $Cu^{2+} + 2e^{-} = Cu$
$24.2 \text{ e})\left[\left[Ag^{+}\right]_{f} = 75.8  \text{mmol} \cdot L^{-1}\right]$	<b>24.6</b> b) $Cu^{2+} + e^{-} = Cu^{+}$
<b>24.2</b> f) $\left[ \left[ Pb^{2+} \right]_f = 112  mmol \cdot L^{-1} \right]$	<b>24.6</b> c)
<b>24.3</b> a) $Zn^{2+} + 2e^{-} = Zn$	<b>24.6</b> d)
<b>24.3</b> b)	<b>24.6</b> e)
$24.3  \mathrm{c}) \ldots \ldots \qquad \boxed{\mathrm{Zn} + 2  \mathrm{Ag}^+ \longrightarrow \mathrm{Zn}^{2+} + 2  \mathrm{Ag}}$	<b>24.6</b> f)
<b>24.3</b> d)	<b>24.7</b> a) $2 \operatorname{Cl}^- \longrightarrow \operatorname{Cl}_2 + 2 \operatorname{e}^-$
<b>24.4</b> a) $E_{\rm Zn} = -0.79  { m V}$	$24.7 \text{ b}) \dots \dots \qquad \boxed{2 \text{ H}_2 \text{O} + 2 \text{ e}^- \longrightarrow \text{H}_2 + 2 \text{ HO}^-}$
<b>24.4</b> b)	<b>24.7</b> c) $2 H_2O + 2 Cl^- \longrightarrow Cl_2 + H_2 + 2 HO^-$
<b>24.4</b> c)	<b>24.8</b> a)
$24.4 \; \mathrm{d)} \ldots $ + (cathode) : Cu; - (anode) : Zn	<b>24.8</b> b)
<b>24.4</b> e)	<b>24.8</b> c)
<b>24.4</b> f) $U_{co} = 1.11  V$	<b>24.8</b> d)
24.4 g) $\Delta_{\rm r}G = -2.12 \times 10^2 \mathrm{kJ \cdot mol^{-1}}$	<b>24.9</b> a) $\boxed{6,48 \times 10^9 \mathrm{J}}$
	<b>24.9</b> b) $2.78 \times 10^7 \mathrm{J\cdot m^{-3}}$
<b>24.5</b> a) $ K^{\circ} = \frac{a(\operatorname{Cu})_{\operatorname{\acute{e}q}} \times a(\operatorname{Zn}^{2+})_{\operatorname{\acute{e}q}}}{a(\operatorname{Zn})_{\operatorname{\acute{e}q}} \times a(\operatorname{Cu}^{2+})_{\operatorname{\acute{e}q}}} $	<b>24.10</b> a) $Au(CN)_2^- + e^- = Au + 2CN^-$
<b>24.5</b> b)	<b>24.10</b> b)
[Cu ⁻⁺ ]éq	<b>24.10</b> c)

#### Corrigés

- **24.1** a) Lorsque les valeurs maximales sont atteintes pour u et i, la loi d'Ohm donne :  $I = \frac{U}{R} = \frac{0.40 \text{ V}}{15 \Omega} = 27 \text{ mA}$ .
- **24.1** b) La quantité d'électricité Q correspond à la charge électrique échangée entre les électrodes pendant la durée  $\Delta t$ . Pour une intensité constante  $I = \frac{U}{R}$ , il vient :  $Q = I \Delta t = \frac{U \Delta t}{R}$ .

---

**24.1** c) On a 
$$Q = \frac{0.40 \text{ V} \times 70 \times 10^3 \text{ s}}{15 \Omega} = 1.9 \times 10^3 \text{ C} = 0.52 \text{ A} \cdot \text{h} \text{ puisque } 1 \text{ A} \cdot \text{h} = 3600 \text{ C}.$$

**24.2** a) La quantité d'électricité Q correspond à la charge électrique échangée entre les électrodes pendant la durée  $\Delta t$ . Pour une intensité constante I, il vient :  $Q = I \Delta t$ .

.....

- 24.2 b) Chaque électron porte, en valeur absolue, la charge e, d'où la charge électrique échangée :  $Q = n_e \times \mathcal{N}_A \times e$ . Il vient :  $n_e = \frac{Q}{\mathcal{N}_A e}$  ou encore  $n_e = \frac{Q}{\mathcal{F}}$  ou encore  $n_e = \frac{I\Delta t}{\mathcal{F}}$ .
- **24.2** c) D'après la demi-équation à la cathode :  $n_{Ag^+} = n_e$ .
- **24.2** d) D'après la demi-équation à l'anode :  $n_{\text{Pb}^{2+}} = \frac{n_{\text{e}}}{2}$ .
- 24.2 e) Dans le bécher (1), les ions argent sont consommés :  $\left[Ag^{+}\right]_{f} = C_{1} \frac{n_{Ag^{+}}}{V_{1}}$ , soit  $\left[Ag^{+}\right]_{f} = C_{1} \frac{I\Delta t}{V_{1}\mathcal{F}}$ . Il vient :  $\left[Ag^{+}\right]_{f} = 0,100 \text{ mol} \cdot L^{-1} \frac{65,0 \times 10^{-3} \text{ A} \times 1,00 \times 3600 \text{ s}}{100,0 \times 10^{-3} \text{ L} \times 96500 \text{ C} \cdot \text{mol}^{-1}} = 7,58 \times 10^{-2} \text{ mol} \cdot L^{-1}.$
- Dans le bécher (2), les ions plomb sont formés :  $\left[ \text{Pb}^{2+} \right]_{\text{f}} = C_2 + \frac{n_{\text{Pb}^{2+}}}{V_2}$ , soit  $\left[ \text{Pb}^{2+} \right]_{\text{f}} = C_2 + \frac{I\Delta t}{2V_2\mathcal{F}}$ . Il vient :  $\left[ \text{Pb}^{2+} \right]_{\text{f}} = 0,100 \, \text{mol} \cdot \text{L}^{-1} + \frac{65,0 \times 10^{-3} \, \text{A} \times 1,00 \times 3600 \, \text{s}}{2 \times 100,0 \times 10^{-3} \, \text{L} \times 96500 \, \text{C} \cdot \text{mol}^{-1}} = 1,12 \times 10^{-1} \, \text{mol} \cdot \text{L}^{-1}.$

- **24.3** a) Dans le sens de la réduction :  $Zn^{2+} + 2e^{-} = Zn$ .
- **24.3** b) Dans le sens de la réduction :  $Ag^+ + e^- = Ag$ .

**24.3** c) La première demi-équation fait intervenir deux électrons alors que la deuxième n'en fait intervenir qu'un : il faut multiplier cette dernière par deux, soit  $2 \operatorname{Ag}^+ + 2 \operatorname{e}^- = 2 \operatorname{Ag}$ . Il suffit ensuite de sommer les deux équations en prenant garde de placer les réactifs à gauche (Zn et  $\operatorname{Ag}^+$ ) pour tenir compte du sens de la réaction. En précisant les états physico-chimiques, cela donne :  $\operatorname{Zn}(s) + 2 \operatorname{Ag}^+(aq) \longrightarrow \operatorname{Zn}^{2+}(aq) + 2 \operatorname{Ag}(s)$ . Les électrons n'apparaissent pas dans l'équation de la réaction.

.....

**24.3** d) D'après l'équation précédente, le zinc est consommé alors que de l'argent est formé. C'est donc l'électrode de zinc qui s'amincit et celle d'argent qui s'épaissit.

- 24.4 a) On note  $E_{\rm Zn}$  le potentiel de la demi-pile de zinc. Avec l'approximation  $\frac{RT \ln(10)}{\mathcal{F}} \approx 0,059 \,\mathrm{V}$  à 25 °C, la loi de Nernst donne :  $E_{\rm Zn} = E^{\circ}(\mathrm{Zn^{2+}}/\mathrm{Zn}) + \frac{0,059}{2} \log\left(\frac{[\mathrm{Zn^{2+}}]}{C^{\circ}}\right) = -0,76 \,\mathrm{V} + \frac{0,059 \,\mathrm{V}}{2} \log\left(\frac{0,1 \,\mathrm{mol} \cdot \mathrm{L^{-1}}}{1 \,\mathrm{mol} \cdot \mathrm{L^{-1}}}\right) = -0,79 \,\mathrm{V}.$
- 24.4 b) On note  $E_{\text{Cu}}$  le potentiel de la demi-pile de cuivre. Avec l'approximation  $\frac{RT \ln(10)}{\mathcal{F}} \approx 0,059 \,\text{V}$ , la loi de Nernst donne :  $E_{\text{Cu}} = E^{\circ}(\text{Cu}^{2+}/\text{Cu}) + \frac{0,059}{2} \log \left(\frac{[\text{Cu}^{2+}]}{C^{\circ}}\right) = 0,34 \,\text{V} + \frac{0,059 \,\text{V}}{2} \log \left(\frac{0,25 \,\text{mol} \cdot \text{L}^{-1}}{1 \,\text{mol} \cdot \text{L}^{-1}}\right) = 0,32 \,\text{V}.$
- **24.4** c) On a  $E_{\rm Zn} = -0.79 \, {\rm V}$  et  $E_{\rm Cu} = 0.32 \, {\rm V}$  donc  $E_{\rm Zn} < E_{\rm Cu}$ . On en déduit que le pôle + est à droite (cuivre) et que le pôle est à gauche (zinc).
- **24.4** d) Le pôle + est à droite (cuivre) et correspond à la cathode (siège de la réduction). Le pôle est à gauche (zinc) et correspond à l'anode (siège de l'oxydation).
- Dans les fils, les électrons se déplacent de l'électrode de zinc (anode) vers l'électrode de cuivre (cathode). Dans le pont salin, les cations (ions ammonium  $\mathrm{NH_4}^+$ ) se déplacent du compartiment de gauche (zinc) vers le compartiment de droite (cuivre) alors que les anions (ions nitrate  $\mathrm{NO_3}^-$ ) se déplacent du compartiment de droite (cuivre) vers le compartiment de gauche (zinc).

.....

- **24.4** f) La tension à vide, choisie positive, est  $U_{co} = E_{Cu} E_{Zn} = 0.32 \text{ V} + 0.79 \text{ V} = 1.11 \text{ V}.$
- **24.4** g) On a  $\Delta_{\rm r}G = -eFU_{\rm co} = -2FU_{\rm co} = -2 \times 96\,500\,{\rm C\cdot mol}^{-1} \times 1,11\,{\rm V} = -2,1 \times 10^2\,{\rm kJ\cdot mol}^{-1}$ .
- **24.5** a) Par définition, on a  $K^{\circ} = \frac{a(\operatorname{Cu})_{\text{\'eq}} \times a(\operatorname{Zn}^{2+})_{\text{\'eq}}}{a(\operatorname{Zn})_{\text{\'eq}} \times a(\operatorname{Cu}^{2+})_{\text{\'eq}}}$
- **24.5** c) D'après la relation de Nernst :  $E = E^{\circ}(\operatorname{Zn}^{2+}/\operatorname{Zn}) + \frac{0.059}{2} \log \left(\frac{[\operatorname{Zn}^{2+}]}{C^{\circ}}\right)$ .

**24.5** d) D'après la relation de Nernst : 
$$E = E^{\circ}(Cu^{2+}/Cu) + \frac{0.059}{2}\log\left(\frac{[Cu^{2+}]}{C^{\circ}}\right)$$
.

**24.5** e) On a :

$$E_{\text{\'eq}} = E^{\circ}(\text{Zn}^{2+}/\text{Zn}) + \frac{0{,}059}{2}\log\left(\frac{[\text{Zn}^{2+}]_{\text{\'eq}}}{C^{\circ}}\right) = E^{\circ}(\text{Cu}^{2+}/\text{Cu}) + \frac{0{,}059}{2}\log\left(\frac{[\text{Cu}^{2+}]_{\text{\'eq}}}{C^{\circ}}\right).$$

Donc, on a:

$$E^{\circ}(\mathrm{Cu^{2+}/Cu}) - E^{\circ}(\mathrm{Zn^{2+}/Zn}) = \frac{0{,}059}{2}\log\left(\frac{[\mathrm{Zn^{2+}}]_{\mathrm{\acute{e}q}}}{C^{\circ}}\right) - \frac{0{,}059}{2}\log\left(\frac{[\mathrm{Cu^{2+}}]_{\mathrm{\acute{e}q}}}{C^{\circ}}\right) = \frac{0{,}059}{2}\log\frac{[\mathrm{Zn^{2+}}]_{\mathrm{\acute{e}q}}}{[\mathrm{Cu^{2+}}]_{\mathrm{\acute{e}q}}}$$

On peut également écrire cette égalité :

$$E^{\circ}(\mathrm{Zn^{2+}/Zn}) - E^{\circ}(\mathrm{Cu^{2+}/Cu}) = \frac{0{,}059}{2}\log\left(\frac{[\mathrm{Cu^{2+}}]_{\mathrm{\acute{e}q}}}{C^{\circ}}\right) - \frac{0{,}059}{2}\log\left(\frac{[\mathrm{Zn^{2+}}]_{\mathrm{\acute{e}q}}}{C^{\circ}}\right) = \frac{0{,}059}{2}\log\frac{[\mathrm{Cu^{2+}}]_{\mathrm{\acute{e}q}}}{[\mathrm{Zn^{2+}}]_{\mathrm{\acute{e}q}}}.$$

**24.5** f) On a 
$$E^{\circ}(Cu^{2+}/Cu) - E^{\circ}(Zn^{2+}/Zn) = \frac{0,059}{2}\log\frac{[Zn^{2+}]_{\text{\'eq}}}{[Cu^{2+}]_{\text{\'eq}}} = \frac{0,059}{2}\log K^{\circ}$$
. On en déduit :

$$K^{\circ} = 10^{\frac{2}{0.059}(E^{\circ}(Cu^{2+}/Cu)-E^{\circ}(Zn^{2+}/Zn))}$$
.

**24.5** g) On a 
$$K^{\circ} = 10^{\frac{2}{0.059}(0.34+0.76)} = 10^{37}$$
.

**24.5** g) On a  $K^{\circ} = 10^{0.059} (0.054 + 0.10) = 10^{37}$ .

La constante d'équilibre est supérieure à 1 donc la réaction est favorisée thermodynamiquement.

- **24.6** a) L'équation (1) est  $Cu^{2+} + 2e^{-} = Cu$ .
- **24.6** b) L'équation (2) est  $Cu^{2+} + e^{-} = Cu^{+}$ .
- **24.6** c) L'équation (3) est  $Cu^+ + e^- = Cu$ .
- **24.6** d) On a (1) = (2) + (3).
- **24.6** e) D'après la loi de Hess : (1) = (2) + (3), soit  $\Delta_{1/2}G_1^{\circ} = \Delta_{1/2}G_2^{\circ} + \Delta_{1/2}G_3^{\circ}$ .
- **24.6** f) Dans la relation précédente, on remplace  $\Delta_{1/2}G^{\circ}$  par  $-n \times \mathcal{F} \times E^{\circ}$ , où n est le nombre d'électrons échangés pour chaque demi-équation. On obtient alors l'égalité suivante :  $-2 \times \mathcal{F} \times E_1^{\circ} = -\mathcal{F} \times E_2^{\circ} \mathcal{F} \times E_3^{\circ}$ , soit  $2E_1^{\circ} = E_2^{\circ} + E_3^{\circ}$ , ou encore  $E_3^{\circ} = 2E_1^{\circ} E_2^{\circ} = 0.52 \text{ V}$ .

**24.7** b) La nature fortement basique du milieu complexifie légèrement l'écriture de la réaction : le plus simple est alors de commencer par l'écrire en milieu acide, puis d'ajouter autant de HO⁻ que nécessaire à droite et à gauche pour faire disparaître les H⁺.

**24.7** c) Il suffit de sommer les deux demi-équations précédentes. En précisant les états physico-chimiques, cela donne :  $2 H_2O(\ell) + 2 Cl^-(aq) \longrightarrow Cl_2(g) + H_2(g) + 2 HO^-(aq)$ .

**24.8** a) On a  $Q_{\text{éch}} = jS\Delta t = 6{,}00 \times 10^3 \,\text{A} \cdot \text{m}^{-2} \times 100 \,\text{m}^2 \times 3600 \,\text{s} = 2{,}16 \times 10^9 \,\text{C}.$ 

**24.8** b) D'après l'équation de réaction électrochimique, il faut deux moles d'électrons pour former une mole de dichlore. Autrement dit, une mole d'électrons échangés permet de former une demi-mole de dichlore. La charge utile à la réaction est par hypothèse égale à la charge échangée donc  $n_{\text{Cl}_2} = 0.5 \times \frac{Q_{\text{éch}}}{\mathcal{F}}$ , avec  $\mathcal{F}$  la charge portée, en valeur absolue, par une mole d'électrons (constante de Faraday). Il vient :  $n_{\text{Cl}_2} = 0.5 \times \frac{2.16 \times 10^9 \text{ C}}{96\,500 \text{ C} \cdot \text{mol}^{-1}} = 1.12 \times 10^4 \text{ mol}$ .

.....

24.8 c) L'équation d'état des gaz parfaits donne :

$$V_{\text{Cl}_2} = \frac{1{,}12 \times 10^4 \, \text{mol} \times 8{,}314 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 273 \, \text{K}}{1{,}00 \times 10^5 \, \text{Pa}} = 254 \, \text{m}^3.$$

24.8 d) Le rendement faradique est le rapport entre la charge utile et la charge échangée, et donc également le rapport entre les quantités de matière réelle et maximale formées, et de même entre les volumes.

.....

**24.9** a) On a  $\mathcal{E} = 3,00 \text{ V} \times 6,00 \times 10^3 \text{ A} \cdot \text{m}^{-2} \times 100 \text{ m}^2 \times 3600 \text{ s} = 6,48 \times 10^9 \text{ J}.$ 

.....

**24.9** b) En raisonnant sur une heure d'électrolyse, on trouve  $\frac{6.48 \times 10^9 \text{ J}}{233 \text{ m}^3} = 2.78 \times 10^7 \text{ J} \cdot \text{m}^{-3}$ .

**24.10** a) À la cathode, la réduction des ions aurocyanure mène à la production d'or et d'ions cyanure : on a donc  $Au(CN)_2^- + e^- = Au + 2CN^-$ . Il suffit de bien lire l'énoncé et d'équilibrer la demi-équation.

.....

**24.10** b) Les électrons sont « consommés » au niveau de l'électrode (1), là où ils permettent aux ions aurocyanure d'être réduits : les électrons se déplacent réellement de l'électrode (2) vers l'électrode (1).

.....

**24.10** c) Le sens conventionnel du courant est opposé au sens réel de déplacement des électrons donc, en tenant compte de l'orientation choisie pour I, on en déduit que I < 0. On retrouve bien le fait que, sur une courbe intensité-potentiel, le fonctionnement cathodique correspond à I < 0.

.....

**24.10** d) La demi-équation électronique de l'oxydation de l'eau est :  $2 H_2 O = 4 H^+ + O_2 + 4 e^-$ . Le pH étant ici fixé à 14, la demi-équation doit être équilibrée en milieu basique :  $4 HO^- = 2 H_2 O + O_2 + 4 e^-$ .

**24.10** e) Chaque potentiel standard est donné à pH = 0, donc il faut commencer par écrire la demi-équation associée au couple de l'eau à l'anode en milieu acide :  $2 H_2 O = 4 H^+ + O_2 + 4 e^-$ . Il vient :

$$E(O_2/H_2O) = E^{\circ}(O_2/H_2O) - 0.059 \,\text{pH} = 1.23 \,\text{V} - 0.059 \,\text{V} \times 14 = 0.40 \,\text{V}.$$

**24.10** f) La tension minimale à imposer est la différence de potentiel entre celui du couple de l'eau en oxydation et celui du couple de l'or en réduction : (0.40 V + 0.60 V) - (-0.60 V) = 1.60 V.

.....

24.10 g) Au-delà d'une certaine valeur, le solvant pourrait être réduit.

**24.11** a) Il s'agit d'une courbe à courant négatif, donc de réduction. Pour le couple  $H^+/H_2$ , le surpotentiel égal à  $-0.30 \,\mathrm{V}$  doit être ajouté au potentiel d'équilibre valant  $-0.20 \,\mathrm{V}$ . Il y a donc un décalage de la courbe vers la gauche, par rapport au potentiel d'équilibre.

_____

.....

24.11 b) Initialement, seuls les cations sont présents dans la solution. Au cours de l'électrolyse, certains métaux au moins vont se déposer à la cathode, mais ils ne pourront alors pas s'oxyder. En revanche, compte tenu du potentiel de Nernst, l'oxydation de l'argent serait parfaitement envisageable... s'il y en avait. Le raisonnement serait le même pour les autres métaux.

24.12 a) Puisqu'il s'agit de l'anode, la réaction électrochimique est forcément une oxydation... or la seule oxydation possible ici est celle de l'eau en dioxygène.

24.12 b) Puisqu'il s'agit de la cathode, la réaction électrochimique est forcément une réduction, si bien qu'ici les quatre processus proposés sont théoriquement possibles et entrent en compétition. Celui qui a lieu en pratique est celui pour lequel la tension seuil d'électrolyse, c'est-à-dire la tension pour laquelle les réactions ont lieu avec un courant non nul, est la plus faible. On constate graphiquement qu'il s'agit ici de la réduction de Ag⁺ en Ag.



**24.12** c) En précisant les états physico-chimiques :  $4 \operatorname{Ag}^+(\operatorname{aq}) + 2 \operatorname{H}_2\operatorname{O}(\ell) \longrightarrow 4 \operatorname{Ag}(\operatorname{s}) + \operatorname{O}_2(\operatorname{g}) + 4 \operatorname{H}^+(\operatorname{aq})$ .

24.12 d) La réaction est observée si la tension appliquée est supérieure à la tension seuil discutée précédemment :  $U_{s,Ag} = 1.05 \text{ V} + 0.70 \text{ V} - 0.6 \text{ V} = 1.15 \text{ V}.$ 

24.13 a) La réaction électrochimique qui doit forcément avoir lieu à la cathode est la réduction de  $\operatorname{Sn}^{4+}$  pour que de l'étain métallique s'y dépose; la réaction anodique n'est en revanche pas modifiée. En précisant les états physico-chimiques, cela donne :  $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{H}_2\operatorname{O}(\ell) \longrightarrow \operatorname{Sn}(\operatorname{s}) + \operatorname{O}_2(\operatorname{g}) + 4\operatorname{H}^+(\operatorname{aq})$ .

.....

24.13 b) Comme discuté dans l'entraînement précédent, le dépôt d'argent se forme pour une tension plus faible que le dépôt d'étain : s'il reste des impuretés d'argent dans la solution, alors elles se déposeront avant l'étain et il faut donc les éliminer. En revanche, le plomb se dépose à la cathode pour une tension supérieure à l'étain, ces impuretés ne sont donc pas gênantes pour réaliser l'électrolyse.

24.13 c) La réaction est observée si la tension appliquée est supérieure à la tension seuil discutée précédemment :  $U_{\text{s.Sn}} = 1.05 \,\text{V} + 0.70 \,\text{V} - 0.05 \,\text{V} = 1.70 \,\text{V}.$ 

.....

24.13 d) La tension seuil est celle pour laquelle le courant est (quasi) nul, donc la vitesse de réaction aussi. Comme on peut le voir sur l'allure des courbes courant-potentiel, obtenir un courant plus élevé nécessite une tension plus élevée. À ce phénomène s'ajoute la chute ohmique, liée à la conductivité électrique imparfaite de la solution. En revanche, les réactions parasites affectent le rendement de l'électrolyse mais ne modifient pas la tension à imposer.