Matroids and the greedy algorithm

Rudi Pendavingh

March 7, 2013

Spanning forests and -trees

Let G = (V, E) be an undirected graph, and let $F \subseteq E$

- F is a forest if (V, F) does not contain any cycles.
- F spans G if (V, F) and G have the same number of components.
- F is a tree if (V, F) is a forest with exactly one component.

The maximum spanning forest problem

Given: A graph G = (V, E), a weight function $w : E \to \mathbb{R}$.

Find: A spanning forest F such that w[F] is as large as possible.

◆ロト ◆個 ▶ ◆ 重 ト ◆ 重 ・ 夕 Q で 。

Kruskal's algorithm

Given are an undirected graph G = (V, E) and a weight function $w : E \to \mathbb{R}$.

Kruskal's algorithm

- Sort the edges by weight, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- \bullet $F \leftarrow \emptyset, i \leftarrow 1$
- **3** while i < |E|:
 - **1** if $F \cup \{e_i\}$ is a forest, put $F \leftarrow F \cup \{e_i\}$
 - $0 i \leftarrow i + 1$

Theorem

Kruskal's algorithm finds a maximum-weight spanning forest.

◆ロト ◆回 ト ◆ 直 ト ◆ 直 ・ り へ ②

A matroid is determined by a finite set E, the ground set, and a partition of the set of subsets of E in dependent and independent sets.

A matroid is determined by a finite set E, the ground set, and a partition of the set of subsets of E in dependent and independent sets.

Definition (Matroid)

A matroid is a pair (E, \mathcal{I}) , where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

 $10 \ \emptyset \in \mathcal{I}$

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$

12 if $I, J \in \mathcal{I}$ and |I| < |J|, then $\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

A matroid is determined by a finite set E, the ground set, and a partition of the set of subsets of E in dependent and independent sets.

Definition (Matroid)

A matroid is a pair (E, \mathcal{I}) , where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

$$\text{IO} \ \emptyset \in \mathcal{I}$$

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$

12 if $I, J \in \mathcal{I}$ and |I| < |J|, then $\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

Example (The Fano Matroid)

Let $E := \{a, b, c, d, e, f, g\}$ and let

$$\mathcal{I} := \{ I \subseteq E \mid |I| \le 3 \} \setminus \{ abc, cde, efa, adg, cfg, beg, bdf \}$$

Then $F_7 := (E, \mathcal{I})$ is the Fano matroid.

A matroid is determined by a finite set E, the ground set, and a partition of the set of subsets of E in dependent and independent sets.

Definition (Matroid)

A matroid is a pair (E, \mathcal{I}) , where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

- $\text{IO} \ \emptyset \in \mathcal{I}$
- I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- 12 if $I, J \in \mathcal{I}$ and |I| < |J|, then $\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

Example (Graphic matroid)

Let G = (V, E) be an undirected graph and let

$$\mathcal{I} := \{ F \subseteq E \mid (V, F) \text{ is a forest} \}.$$

Then $M(G) := (E, \mathcal{I})$ is a graphic matroid.

Rudi Pendavingh March 7, 2013 5 / 17

A matroid is determined by a finite set E, the ground set, and a partition of the set of subsets of E in dependent and independent sets.

Definition (Matroid)

A matroid is a pair (E, \mathcal{I}) , where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

- 10 $\emptyset \in \mathcal{I}$
- I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- 12 if $I, J \in \mathcal{I}$ and |I| < |J|, then $\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

Example (Linear matroid)

Let \mathbb{F} be a field and let $E \subseteq \mathbb{F}^k$ be a finite set of vectors. Let

$$\mathcal{I} := \{ F \subseteq E \mid F \text{ is linearly independent over } \mathbb{F} \}.$$

Then $M(E, \mathbb{F}) := (E, \mathcal{I})$ is a linear matroid.

The greedy algorithm

if $M = (E, \mathcal{I})$ is a matroid, then $F \subseteq E$ is a basis if F is an inclusionwise maximal independent set.

The maximum-weight basis problem

Given: A matroid $M = (E, \mathcal{I})$, a weight function $w : E \to \mathbb{R}$.

Find: A basis F such that w[F] is as large as possible.

The greedy algorithm

- Sort the edges by weight, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- \bigcirc $F \leftarrow \emptyset$. $i \leftarrow 1$
- while i < |E|:
 - **1** if $F \cup \{e_i\}$ is independent, put $F \leftarrow F \cup \{e_i\}$
 - $\mathbf{0}$ $i \leftarrow i + 1$

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, ' \Leftarrow '.

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, \leftarrow .

• Suppose $M=(E,\mathcal{I})$ is not a matroid. Then there exist $I,J\in\mathcal{I}$ such that |I|<|J|, but $\not\exists e\in J\setminus I$ such that $I\cup\{e\}\in\mathcal{I}$

Theorem

Let $M = (E, \mathcal{I})$ be such that

 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, \leftarrow .

- Suppose $M=(E,\mathcal{I})$ is not a matroid. Then there exist $I,J\in\mathcal{I}$ such that |I|<|J|, but $\not\exists e\in J\setminus I$ such that $I\cup\{e\}\in\mathcal{I}$
- Let k := |I|. Define $w : E \to \mathbb{R}_+$ by w(e) := k + 2 if $e \in I$, w(e) := k + 1 if $e \in J \setminus I$, w(e) := 0 if $e \notin J$.

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, \leftarrow .

- Suppose $M=(E,\mathcal{I})$ is not a matroid. Then there exist $I,J\in\mathcal{I}$ such that |I|<|J|, but $\not\exists e\in J\setminus I$ such that $I\cup\{e\}\in\mathcal{I}$
- Let k := |I|. Define $w : E \to \mathbb{R}_+$ by w(e) := k + 2 if $e \in I$, w(e) := k + 1 if $e \in J \setminus I$, w(e) := 0 if $e \notin J$.
- The greedy algorithm outputs $B \supseteq I$ with $w[B] = w[I] = k(k+2) < (k+1)(k+1) \le w[J]$. So B is not optimal.

Theorem

Let $M = (E, \mathcal{I})$ be such that

 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, \Rightarrow .

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, \Rightarrow .

• Suppose $M=(E,\mathcal{I})$ is a matroid. Let $w:E\to\mathbb{R}_+$ be a weight function.

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, \Rightarrow .

- Suppose $M=(E,\mathcal{I})$ is a matroid. Let $w:E\to\mathbb{R}_+$ be a weight function.
- Call an independent set $I \in \mathcal{I}$ greedy if there is a maximum-weight basis B so that $I \subseteq B$.

Theorem

Let $M = (E, \mathcal{I})$ be such that

10 $\emptyset \in \mathcal{I}$, and

I1 if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight w[B], for each weight function $w: E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, \Rightarrow .

- Suppose $M=(E,\mathcal{I})$ is a matroid. Let $w:E\to\mathbb{R}_+$ be a weight function.
- Call an independent set $I \in \mathcal{I}$ greedy if there is a maximum-weight basis B so that $I \subseteq B$.
- To prove: if I is greedy, and e attains the maximum in max{w(e) | I ∪ {e} ∈ I, e ∈ E \ I}, then I ∪ {e} is greedy.

Transversal matroids

Let E be a finite set, and let $\mathcal A$ be a finite set of subsets of E. A *transversal* of $\mathcal A$ is a set $F\subseteq E$ so that there exists an injection $\phi:F\to \mathcal A$ with $e\in \phi(e)$ for all $e\in F$.

Example (Transversal matroids)

Let E be a finite set, and let A be a finite set of subsets of E. Put

$$\mathcal{I}:=\{F\subseteq E\mid F\text{ is a transversal of }\mathcal{A}\}.$$

Then M(E, A) := (E, I) is a transversal matroid.

Gammoids

Let D = (V, A) be a directed graph and let $S, T \subseteq V$. Then a subset $F \subseteq T$ is *linked* to S in D if there is a set of vertex-disjoint directed paths with starting points in S and with endpoints F.

Example (Gammoids)

Let D = (V, A) be a directed graph, and let $S, T \subseteq V$. Let

$$\mathcal{I} := \{ F \subseteq T \mid F \text{ is linked to } S \text{ in } D \}.$$

Then $M(D, S, T) := (V, \mathcal{I})$ is a gammoid.

Algebraic matroids

Definition

Let \mathbb{K} be an extension field of \mathbb{F} . A set $\{x_1, \ldots, x_n\} \subseteq \mathbb{K}$ is algebraically dependent over \mathbb{F} if there exists a polynomial p with coefficients in \mathbb{F} such that $p(x_1, \ldots, x_n) = 0$.

Algebraic matroids

Definition

Let \mathbb{K} be an extension field of \mathbb{F} . A set $\{x_1, \ldots, x_n\} \subseteq \mathbb{K}$ is algebraically dependent over \mathbb{F} if there exists a polynomial p with coefficients in \mathbb{F} such that $p(x_1, \ldots, x_n) = 0$.

Example (Algebraic matroids)

Let $\mathbb K$ be an extension field of $\mathbb F$, and let $E\subseteq \mathbb K$ be finite. Let

$$\mathcal{I} := \{ F \subseteq E \mid F \text{ algebraically independent over } \mathbb{F} \}$$

Then $M(E, \mathbb{F}) := (E, \mathcal{I})$ is an algebraic matroid.

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

 Rudi Pendavingh
 Matroids I
 March 7, 2013
 12 / 17

Definition

Let $H := \{z \in \mathbb{C} \mid \Re(z) > 0\}$. A complex polynomial p in n variables has the half-plane property if $p(x_1, \dots, x_n) \neq 0$ for all $x_1, \dots, x_n \in H$.

 Rudi Pendavingh
 Matroids I
 March 7, 2013
 13 / 17

Definition

Let $H:=\{z\in\mathbb{C}\mid\Re(z)>0\}$. A complex polynomial p in n variables has the half-plane property if $p(x_1,\ldots,x_n)\neq 0$ for all $x_1,\ldots,x_n\in H$.

Let $\{x_e \mid e \in E\}$ be variables. For $F \subseteq E$, we write $x^F := \prod_{e \in F} x_e$.

Definition

Let $H:=\{z\in\mathbb{C}\mid\Re(z)>0\}$. A complex polynomial p in n variables has the half-plane property if $p(x_1,\ldots,x_n)\neq 0$ for all $x_1,\ldots,x_n\in H$.

Let $\{x_e \mid e \in E\}$ be variables. For $F \subseteq E$, we write $x^F := \prod_{e \in F} x_e$.

Theorem

Let $p = \sum_{F \subseteq E} p_F x^F$ be a homogeneous complex polynomial. If p has the half-plane property, then

$$\{F\subseteq E\mid p_F\neq 0\}$$

is the set of bases of a matroid on E.

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

Definition

Let $H := \{z \in \mathbb{C} \mid \Re(z) > 0\}$. A complex polynomial p in n variables has the half-plane property if $p(x_1, \ldots, x_n) \neq 0$ for all $x_1, \ldots, x_n \in H$.

Let $\{x_e \mid e \in E\}$ be variables. For $F \subseteq E$, we write $x^F := \prod_{e \in F} x_e$.

Theorem

Let $p = \sum_{F \subseteq F} p_F x^F$ be a homogeneous complex polynomial. If p has the half-plane property, then

$$\{F\subseteq E\mid p_F\neq 0\}$$

is the set of bases of a matroid on E.

... so these are the half-plane-property (HPP) matroids.

13 / 17

Definition

Let $H := \{z \in \mathbb{C} \mid \Re(z) > 0\}$. A complex polynomial p in n variables has the half-plane property if $p(x_1, \ldots, x_n) \neq 0$ for all $x_1, \ldots, x_n \in H$.

Let $\{x_e \mid e \in E\}$ be variables. For $F \subseteq E$, we write $x^F := \prod_{e \in F} x_e$.

Theorem

Let $p = \sum_{F \subseteq F} p_F x^F$ be a homogeneous complex polynomial. If p has the half-plane property, then

$$\{F\subseteq E\mid p_F\neq 0\}$$

is the set of bases of a matroid on E.

... so these are the half-plane-property (HPP) matroids.

13 / 17

The matroid polytope

If $A \subseteq E$, then its *incidence vector* $x^A \in \mathbb{R}^E$ is determined by

$$x_e^A = \left\{ \begin{array}{ll} 1 & \text{if } e \in A \\ 0 & \text{if } e \notin A \end{array} \right.$$

Definition (Matroid polytope)

Let $M = (E, \mathcal{I})$ be a matroid. The matroid polytope is

$$P(M) := \text{conv.hull}\{x^I \mid I \in \mathcal{I}\}.$$

The rank of $F \subseteq E$ in $M = (E, \mathcal{I})$ is $r_M(F) := \max\{|I| \mid I \in \mathcal{I}, I \subseteq F\}$.

Theorem

$$P(M) = \{x \in \mathbb{R}^E \mid x[F] \le r_M(F) \text{ for all } F \subseteq E, \ x \ge 0\}$$

4 D > 4 D > 4 E > 4 E > E 9 Q P March 7, 2013 14 / 17

Theorem

$$P(M) = \{x \in \mathbb{R}^E \mid x[F] \le r_M(F) \text{ for all } F \subseteq E, \ x \ge 0\}$$

Proof outline: It suffices to prove that for any $w: E \to \mathbb{R}$, the problem

$$\max\{w^Tx\mid x\in P(M)\}$$

has an optimal solution $x^* = x^I$, where I is an independent set of M.

- Let f_1, f_2, \ldots, f_m be the elements of E as chosen by the greedy algorithm.
- Let $F_i := \{e \in E \mid r_M\{f_1, \dots, f_i, e\} = r_M\{f_1, \dots, f_i\}\}.$
- Let $p = \max\{i \mid w(f_i) > 0\}$, and put $I := \{f_1, \dots, f_p\}$
- If $x \in P(M)$, then

$$w^T x \leq \sum_{i=1}^p u_i x[F_i] \leq \sum_{i=1}^p u_i r_M(F_i) \leq \sum_{i=1}^p w(f_i) = w^T x^T$$

for an appropriate choice of $u_i \ge 0$. So x^i is an optimal solution.

Some proof details

We choose $u_i := w(f_i) - w(f_{i+1})$ for $i = 1, ..., p-1, u_p := w(f_p)$.

- note: $r(F_i) = i$ for each i
- $\sum_{i=1}^{p} u_i r_M(F_i) = \sum_{i=1}^{p} w(f_i)$
- if $x \in P(M)$, then $x[F_i] \le r(F_i)$ by definition of P(M), hence

$$\sum_{i=1}^p u_i x[F_i] \le \sum_{i=1}^p u_i r_M(F_i)$$

• to prove $w^T x \leq \sum_{i=1}^p u_i x[F_i]$, we need to argue for each e that

$$w(e) \leq \sum_{i=k}^{p} u_i = w(f_k)$$

where $k := \min\{i \mid e \in F_i\}$. But if $e \in F_k \setminus F_{k-1}$, then $w(f_k) \ge w(e)$.

Matroids I March 7, 2013 16 / 17

Rudi Pendavingh

Homework

- Determine if the Fano matroid is graphic/ linear/ algebraic/ a gammoid/ transversal/ HPP.
- Read sections 10.1, 10.2, 10.3, and 10.7 (until Thm. 10.14) of the handout.
- Make exercises 10.1, 10.5, 10.18 of the handout.