10.1. Soit $\sum_{n=0}^{\infty} x_n$ une série qui converge mais ne converge pas absolument.

Définissons $x'_n = \max\{0, x_n\}$ et $x''_n = \min\{0, x_n\}$; noter $x_n = x'_n + x''_n$.

Démontrer
$$\sum_{n=0}^{\infty} x'_n = +\infty$$
 et $\sum_{n=0}^{\infty} x''_n = -\infty$.

(Cette affirmation a été utilisée dans le théorème de Riemann, brièvement discuté au cours, qui montre qu'une permutation de cette série peut converger vers n'importe quel nombre donné.)

10.2. Etudier la convergence de

$$\sum_{n=0}^{\infty} \left(\frac{1}{(2n+1)!} + \frac{(-1)^n}{n^2 + n + 1} \right).$$

10.3. Déterminer si la série donnée converge ou diverge:

$$i) \sum_{n=0}^{+\infty} \frac{n^4}{3^n}$$

$$ii) \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2}$$

$$iii)$$
 $\sum_{n=1}^{+\infty} \left(\sqrt{n^2+7}-n\right)$

$$i) \sum_{n=0}^{+\infty} \frac{n^4}{3^n} \qquad ii) \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2} \qquad iii) \sum_{n=1}^{+\infty} \left(\sqrt{n^2+7} - n \right) \qquad iv) \sum_{n=0}^{+\infty} \left(1 - \cos \left(\frac{\pi}{n+1} \right) \right)$$