CSC236 Worksheet 3 Review

Hyungmo Gu

May 8, 2020

Question 2

Rough Work:

Define $P(e): S_1(e) = 3(s_2(e) - 1)$

I will use structural induction to prove $\forall \in \varepsilon$, P(e).

1. Basis

Let $\{x, y, z\} \in \varepsilon$.

In this step, there are following cases to consider: $e=x,\,e=y,$ and e=z. o

In each of the cases, we have $s_1(e) = 0$ and $s_2(e) = 1$.

Thus,

$$s_1(e) = 0 = 3(0) \tag{1}$$

$$=3(1-1)$$
 (2)

$$=3(s_2(e)-1) (3)$$

So, P(e) holds.

2. Inductive Step

Let $e_1, e_2 \in \varepsilon$. Assume $H(e): P(e_1)$ and $P(e_2)$. That is, $s_1(e_1) = 3(s_2(e_1) - 1)$ and $s_2(e_2) = 3(s_2(e_2) - 1)$.

I need to prove all possible combinations of e_1 and e_2 satisfy the statement. That is $P((e_1 + e_2))$ and $P((e_1 - e_2))$.

In each of the combination, the total number of variables of e is the sum of the number of variables in e_1 and e_2 , and the total number of parenthesis and operators in e is the sum of operators and parenthesis in e_1 and e_2 plus 3.

Then, using these facts, we have

$$s_2(e) = s_2(e_1) + s_2(e_2) \tag{4}$$

$$s_1(e) = s_1(e_1) + s_1(e_2) + 3$$
 (5)