Introduction to Supervised Learning

B. Michel

Ecole Centrale de Nantes

The supervised learning problem

- Outcome measurement Y (also called dependent variable, response, target).
- Input: vector of *p* measurements *X* (also called regressors, covariates, features).
- In the regression problem, $Y \in \mathbb{R}$ is quantitative (e.g. price).
- In the classification problem, Y takes values in a finite, unordered set (e.g. digit 0-9, image classification).
 Binary classification: Y ∈ {0,1} or {-1,1}.
- Structured prediction: Y is a more complex quantity: vector (multivariate regression) graph, tree, string, image ...

The supervised learning problem

- We have training data $\mathcal{D}_n = (X_1, Y_1), \dots, (X_n, Y_n)$.
- Probabilistic framework: (X_i, Y_i) : i.i.d. replications of some random variable $(X, Y) \in \mathcal{X} \times \mathcal{Y}$.
- \bullet \mathcal{X} and \mathcal{Y} are assumed to be measurable sets.
- Let P be the joint probability of (X, Y).
- We want to infer the link between the input variables X and the outcome Y.
- A predictor is a function $f: \mathcal{X} \to \mathcal{Y}$.
- Our goal : use \mathcal{D}_n to build up a predictor \hat{f} such that $\hat{f}(X) \approx Y$.

Statistical Learning in practice (regression / classification)

- Data Collection
- Feature engineering (sampling, feature extraction, feature transformation ...)
- 3 Choose a statistical model (parametric or not) or an algorithm to find a learning rule \hat{f}
- **§** Fit (statistics and optimization) the learning rule \hat{f} or a collection of learning rules $(\hat{f})_{\lambda \in \Lambda}$.
- Tune the parameters (typically by cross validation)
- Make prediction with the final model.

Generalization error

- We consider a loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ s.t. $\ell(y,y) = 0$ and $\ell(y,y') \geq 0$.
- Risk of a predictor $f: \mathcal{X} \to \mathcal{Y}$, also called **generalization error** or **prediction error**:

$$\mathcal{R}(f) = \mathbb{E}\ell(f(X), Y)$$

where the expectation is under *P*.

Generalization error

- We consider a loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ s.t. $\ell(y,y) = 0$ and $\ell(y,y') \geq 0$.
- Risk of a predictor $f: \mathcal{X} \to \mathcal{Y}$, also called **generalization error** or prediction error:

$$\mathcal{R}(f) = \mathbb{E}\ell(f(X), Y)$$

where the expectation is under P.

- Loss functions for regression :
 - Quadratic loss : $\ell(a, b) = (a b)^2$.
 - ▶ Absolute loss : $\ell(a, b) = |a b|$.

Generalization error

- We consider a loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ s.t. $\ell(y,y) = 0$ and $\ell(y,y') \geq 0$.
- Risk of a predictor $f: \mathcal{X} \to \mathcal{Y}$, also called **generalization error** or **prediction error** :

$$\mathcal{R}(f) = \mathbb{E}\ell(f(X), Y)$$

where the expectation is under P.

- Loss functions for Classification :
 - 0-1 loss : $\ell(a,b) = 1_{a \neq b}$.
 - ► Hinge loss : $\ell(a,b) = \max(0,1-ab)$
 - Logistic loss : $\ell(a,b) = \log[1 + \exp(-ab)]$

Bayes risk

Optimal risk or Bayes risk

$$\mathcal{R}^{\star} = \inf_{f \in \mathcal{F}} \mathcal{R}(f)$$

where \mathcal{F} is the set of all possible predictors.

- \mathcal{R}^* depends on ℓ and P.
- Optimal predictor or Bayes predictor f*:

$$\mathcal{R}(f^{\star}) = \mathcal{R}^{\star}$$

- In most cases $\mathcal{R}(f^*) > 0$.
- Bayes predictor: not unique and does not always exists.

Learning rule

- We use the observations \mathcal{D}_n to find a **learning rule** (or decision rule) \hat{f} s.t. $\mathcal{R}(\hat{f})$ is as small as possible.
- The risk is conditional to \mathcal{D}_n :

$$\mathcal{R}(\hat{f}) = \mathbb{E}\left[\ell(\hat{f}(X), Y)|\mathcal{D}_n\right]$$

We also consider the mean risk :

$$\mathbb{E}\mathcal{R}(\hat{f}) = \mathbb{E}\left[\ell(\hat{f}(X), Y)\right].$$

Regression

- Here we assume that $\mathcal{Y} = \mathbb{R}$.
- $\mathcal{Y} = \mathbb{R}^d$ corresponds to multivariate regression (régression multivariée).
- Learning rules for regression :
 - Linear predictors
 - Decision trees
 - neural networks
 - **•** ...

Regression

- Here we assume that $\mathcal{Y} = \mathbb{R}$.
- $\mathcal{Y} = \mathbb{R}^d$ corresponds to multivariate regression (régression multivariée).
- Learning rules for regression :
 - Linear predictors
 - Decision trees
 - neural networks
 - **>** ...
- If $\mathbb{E}|Y| < \infty$, we introduce the **regression function** $\eta : \mathcal{X} \to \mathbb{R}$:

$$\eta(X) := \mathbb{E}[Y|X]$$
 a.s.

and the error $\varepsilon = Y - \eta(X)$. Finally :

$$Y = \eta(X) + \varepsilon$$

where $\mathbb{E}[\varepsilon|X] = 0$ a.s.

Regression

- For the quadratic loss $\ell(a,b)=(b-a)^2$, the risk $\mathcal{R}(f)$ is called the quadratic risk.
- The regression function η is "the" best predictor:

Proposition (Quadratric regression)

Assume that $\mathcal{Y} = \mathbb{R}$ and $\mathbb{E}(\varepsilon^2) < \infty$. Then the regression function η is a Bayes predictor $(= f^*)$.

• Of course η is unknown in practice so we will have to use learning rules.

Binary classification

- We assume that $\mathcal{Y} = \{0, 1\}$
- Learning rules for Classification :
 - Linear classifiers
 - Decision trees
 - neural networks
 - **.**..

Binary classification

- We assume that $\mathcal{Y} = \{0, 1\}$
- Learning rules for Classification :
 - Linear classifiers
 - Decision trees
 - neural networks
 - **...**
- We also define the regression function $\eta: \mathcal{X} \to \mathbb{R}$:

$$\eta(X) := \mathbb{E}[Y|X] = P(Y = 1|X)$$

• For the 0-1 loss $\ell(a,b) = \mathbb{1}_{a\neq b}$:

$$\mathcal{R}(f) = \mathbb{E}(\mathbb{1}_{Y \neq f(X)}) = P(f(X) \neq Y).$$

Proposition

The classifier $f(x) = \mathbb{1}_{\eta(x)>1/2} = f^*(x)$ is a Bayes classifier.

Empirical risk

- Data $\mathcal{D}_n = (X_1, Y_1), \dots, (X_n, Y_n).$
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$
- The risk $\mathcal{R}(f) = \mathbb{E}[\ell(f(X), Y)]$ of a predictor f is unknown.
- A natural approach : estimate $\mathcal{R}(f)$ with the empirical risk

$$\hat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i).$$

• $\hat{\mathcal{R}}_n(f)$ is an unbiased estimator of $\mathcal{R}(f)$.

Empirical Risk Minimization (ERM)

- S: a set of predictors (i.e. $S \subset \mathcal{F}$)
- We say that $\hat{f} \in S$ is a minimizer of the empirical risk over S if

$$\hat{f} \in \operatorname*{argmin} \hat{\mathcal{R}}_n(g).$$
 $g \in \mathcal{S}$

- ERM : no existence and uniqueness.
- It is not always possible to compute the ERM.
- Example: linear regression provides an ERM for the loss ℓ_2 in the space of predictors which can be written as linear combinations of the variables.

Discriminative vs Generative Methods

- Generative Approaches (rather for classification) :
 - ▶ Based on the **conditional distribution** (X|Y) distribution and the Bayes Theorem.
 - "Generative" because it is based on the joint distribution (X, Y) that generates the observations.
 - Popular models: Gaussians, Naive Bayes, Linear / Quadratic Discriminant Analysis, Hidden Markov Models (HMM), Bayesian networks, Markov random fields ...
- Discriminative Approaches: Directly optimize over a class of predictor.
 - ▶ based on the conditional likelihood (Y|X), and least squares approaches (or other) to fit the model
 - Popular models: Linear regression, Logistic regression, SVMs, neural networks, Nearest neighbour, Conditional Random Fields (CRF), Random Forests, boosting...