

Department of Mechanical & Industrial Engineering

Faculty of Engineering & Architectural Science

Department of Mechanical and Industrial Engineering

riease select voul current brogram belov	your current program below	select v	Please
--	----------------------------	----------	--------

☐ Mechanical Engineering

✓ Industrial Engineering

Course Number	IND 605
Course Title	Experimental Design & Quality Assurance
Semester/Year	Semester 5/Year 3
Section Number	Section 1
Group Number	Group 5

Factors Affecting Quality of a Co-op Placement in Engineering at TMU

Assignment Title	IND 605 Final Report
Submission Date	Nov 21, 2024
Due Date	Nov 21, 2024

Student Name	Student ID (xxxx1234)	Signature*
Mark Ziannis	5357	M3-c
Wasif Syed	3998	
Rakan Shukri	5446	R.S.N
Yasaman	64906	
Zahedimoghaddan		416
Youssouf	8343	YK
Koulamallah		

*By signing above you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at: http://www.ryerson.ca/senate/policies/pol60.pdf

Table of Contents

Abstract	4
Terminology	4
Introduction	5
Approach	5
Main Body	6
Cause And Effect Diagram:	6
Data Summary	7
Data Variables Description	8
Establishing Statistical Control Configurations	8
Achieving Statistical Control	9
Design of Experiment (DOE) and ANOVA	10
Mean Affect & Plots	12
Discussion	13
Conclusions	14
References \rightarrow APA style	15
Appendix	16
Appendix A: Datasets	
Table A.1: Initial Dataset	16
Table A.2 Controlled Dataset	23
Appendix B: Normality Tests	30
Initial Normality Tests	30
Controlled Normality Tests	32
Appendix C: Control Charts	34
Initial Control Charts	34
Configuration 1	34
Configuration 2	35
Configuration 3	35
Configuration 4	35
Configuration 5	36
Configuration 6	36
Configuration 7	36
Configuration 8	37
Configuration 9	37
Revised Control Charts	37
Configuration 2	37
Configuration 6	38
Configuration 8	38
Appendix D: DOE and ANOVA Results	38

Salary/Year Quality Characteristic #1	38
Number of Students Who Returned Quality Characteristic #2	39
Appendix E: Interaction & Main Effect Plots	40
Salary/Year Quality Characteristic #1	40
Number of Students Who Returned Quality Characteristic #2	41
Appendix F: DOE Schematic and Filtered Treatment Data	41
Doe Schematics	41
Factor Level Coding Chart	42
DOE Data Setup	42
Appendix G: Calculations	44
Main Effect Calculations Salary/Year QC #1	

Abstract

This project investigates the factors influencing the quality of co-op placements for engineering students at Toronto Metropolitan University. The study focuses on two quality characteristics: annual salary and the number of students returned to the same company. Using data from the last three co-op cycles for three engineering disciplines (Industrial, Mechanical, Computer), we will analyze how CGPA and field of study correlate with the perceived quality of placements. The findings show that, while CGPA and field of study have no significant impact on the likelihood of returning to the same company, they do influence annual salary. Computer and Industrial Engineering disciplines emerged as leading fields for securing higher salaries, and students with medium CGPAs (2.56-3.44) were found to achieve better pay than High and Low CGPAs. These results suggest that while academic performance and discipline selection influence pay outcomes, students should also prioritize personal and professional development outside the classroom. This research intends to guide first-year students and inform TMU's co-op office in fostering better co-op experiences and outcomes.

Terminology

QC: Quality Characteristic

Configuration: Combination of factors and levels

Introduction

One of the most critical parts for any Engineering student during their Undergraduate education is the co-op job placement which takes place at the end of third year. Co-op is considered a crucial part of a student's education. It guides the students in the program to success by giving them real-world experience that will help them succeed once they graduate. In first year many undergraduate students are in the undeclared stream, this means they have not selected their engineering discipline. For some students it's very difficult to choose an engineering discipline. Many students have the goal of achieving a high quality co-op placement and are faced with such a tough choice selecting an engineering discipline. The following analysis will help to guide first year students in that decision. After completing first year engineering students have not necessarily developed enough technical or softs skills and don't have enough experience making it hard to analyze many of the factors in the cause and effect diagram. However what a student does know is their CGPA. The analysis aims to help students understand based on their current CGPA along with the engineering discipline, what they should choose to have the best opportunity to get a high quality co-op.

The data used in the statistical analysis was retrieved from the TMU FEAS Co-op Office; it included student co-op information from 2023. The choice to select data from only the past year is because of the impact of COVID-19 on the job market and students. Data from years previous to 2023 would be biased or skewed and not represent a close relationship to the current state of engineering education at TMU and the job market.

The data set from the Co-op Office comprises data for 111 students across 3 engineering disciplines, it also includes the students CGPA the company they worked at and the number of students who have returned to the company after completing a co-op placement in the last 5 years.

Approach

This project aims to define and analyze the factors that influence the quality of co-op placements for engineering students specifically in industrial engineering, mechanical engineering, and computer engineering at Toronto Metropolitan University. The analysis will provide insight that can help first-year students in engineering in preparing for co-op. Understanding how Engineering Discipline and their CGPA contribute to a high-quality co-op

placement can greatly assist students and the TMU co-op office. The main body of this paper presents the findings and analysis derived from collected data. This process follows a normal distribution, ensuring the data can be effectively analyzed using statistical techniques outlined in the report. Statistical quality control was assessed through the use of control charts, while design of experiments (DOE) and ANOVA were used to determine the statistical significance of the factors. Microsoft Excel was used for organizing the data, while Minitab software facilitated the execution of statistical tests, including the Design of Experiments (DOE) and Analysis of Variance (ANOVA).

The quality of co-op placement will be assessed based on two characteristics: Salary per year and the number of students who return to the same company. Salary per year, which is a continuous characteristic, provides a quantitative measure of the monetary value associated with each co-op placement. The number of students who return to the same company is an attribute characteristic, offering a qualitative indicator of student satisfaction and the perceived quality of the placement experience.

Assumptions made:

- Co-op placements are uniformly available across all engineering disciplines (Industrial, Mechanical, Computer)
- Students honestly and accurately report their earnings, satisfaction, and other relevant data to the co-op office.
- Individual factors such as the number of applications submitted, the effort invested by each student, and the development of job application skills vary and are not controlled in this study as we aim to provide information to first year students that are choosing between
- GPA ranges and engineering disciplines are significant predictors of placement quality and will yield meaningful patterns for analysis.

Main Body

Cause And Effect Diagram:

The initiation of the project was based on the creation of a Cause and Effect Diagram, this was used to breakdown the topic of the project and define the factors that contribute to getting a high quality co-op placement.

The cause and effect diagram has a lot of different factors below you will find a short summary of each branch:

Student Application Characteristics: A large part of achieving a high quality co-op placement is a students ability to succeed during the application process these factors are captured here.

Student Characteristics: These are qualities unique to each student that reflect skills and abilities relevant to potential co-op placements.

Job Characteristics: These are specific factors that change from job to job and may influence whether or not a student can get a co-op placement.

Co-op Office Support: These factors encompass the support that a co-op office can provide to students during their job search.

External Factors: These are factors that are outside of the students control that may influence their ability to get a co-op placement.

Student Experience: Every student has unique experiences and employers rely heavily on students previous experiences to evaluate whether or not they are good candidates.

Data Summary

The data set collected for our project focuses on factors influencing the quality of co-op placements for engineering students at TMU, as outlined in the project scope. The key variables

in the data set include the Student ID, Engineering Discipline, CGPA, CGPA Levels (categorized into Low, Medium, and High), Company, Annual Salary, and the Number of Students Who Returned to the Company in the Last 5 Years. The quality characteristics used to measure the quality of a co-op placement are the Annual Salary and the Number of Students Who Returned to the Company in the Last 5 Years. The factors chosen for analysis are the engineering discipline of the student and their CGPA Level. It is also important to note that the Student ID represents the timeline of each student accepting their co-op placement with number 1 being the first person.

Data Variables Description

- 1. **Engineering Discipline (Factor):** The dataset contains data from Industrial, Mechanical and Computer Engineering students, allowing us to draw preliminary insights into these specific disciplines. Expanding the data set to other disciplines will provide further comparative insights as per the project approach.
- 2. **CGPA and CGPA Level (Factor):** Students are grouped into three performance categories: **Low** (1.67 2.55), **Medium** (2.56 3.44), and **High** (3.45 4.33). This classification helps analyze the relationship between academic performance and co-op quality.
- 3. **Annual Salary (Quality Characteristic #1):** Compensation data, expressed as annual salary, provides a direct measure of the quality of placements. Salaries range from approximately \$49,400 to \$64,200 in this sample.
- 4. Return Rate/Number of Students Who Returned (Quality Characteristic #2): The number of students who have returned to the company within the last five years serves as an indirect measure for employee satisfaction, opportunities for development, networking opportunities, employee benefits and much more.

Establishing Statistical Control Configurations

The selected factors each have 3 levels, this means that there are 9 factor configurations for each quality characteristic. For Engineering Discipline the levels analyzed in this report are Industrial (Indy), Mechanical (Mech) and Computer (Comp) Engineering, the CGPA of each student also has 3 levels which are Low, Medium (Med) and High. For reference of the CGPA intervals that correspond to each level please see the Data Description above. To assist in understanding the configurations for the DOE the structure is visually summarized below. It is important to note that these configurations will be applied twice once for each Quality Characteristic.

Configuration	Engineering Discipline	CGPA Level
Config 1	Indy	Low
Config 2	Indy	Med
Config 3	Indy	High
Config 4	Mech	Low
Config 5	Mech	Med
Config 6	Mech	High
Config 7	Comp	Low
Config 8	Comp	Med
Config 9	Comp	High

Table 1: Factor Configurations For DOE

Achieving Statistical Control

The initial analysis of the QC data determined that the process was out of statistical control. (Appendix C: Figures 2, 6, 8). The initial analysis was conducted using an IM-R Chart for the Salary/Year of each student because it is a continuous data type and the sample size is 1. A C-Chart was used to analyze the Number of Students Who Returned because the data represented the number of students and the sample size remained constant. The data points that were out of control in each instance are all a result of a Students Salary/Year being above the upper control limit. In these instances these students were working for tier-1 companies (Microsoft, Tesla) that have extremely high revenues are known to pay significantly more than other companies. The students that were outliers were removed from the dataset pushing the data into statistical control (Appendix C: Figures 10, 11, 12).

The data is subjected to normality tests to ensure that the data was fit for further analysis. First the data was formed into 2 histograms to assist in visualizing the normal distribution of the

data (Appendix B: Figures 5, 6). Then the data was plotted in Probability Plots to calculate the P-Value of the data (See Below)

Figure 2: Probability Plots For QC# 1 and #2

It is important to note the P-Values in each plot as it is used to assess the distribution of the data. The P-Value in each plot is greater than 0.005 this means it fails to reject the null hypothesis meaning that the data does not significantly deviate from the normal distribution.

Design of Experiment (DOE) and ANOVA

To determine the influence of the factors and their combination a two factor factorial analysis or a 3^2 design, the analysis includes 2 factors and 3 levels for each factor. A significance level of $\alpha = 0.05$ was used as the standard when evaluating the factors. The figure below shows the design schematic for a 3^2 design (Appendix F: DOE Schematics).

Figure 3: Doe Schematic for Salary/Year QC #1 (Left) for Number of Students Who

Returned QC #2 (Right)

The ANOVA test results shown below determined the statistical significance of the factors or their combination. The sample calculations for the ANOVA table for Quality Characteristic #1 Salary/Year can be found in Appendix G: ANOVA Calculations. The results from the ANOVA are represented in the figure below (Appendix D).

Analysis of Variance						Analysis of Variance					
Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adi SS	Adj MS	F-Value	P-Value
Model	8	740190185	92523773	3.80	0.001	Model	8	776.4	97.05	0.94	0.491
Linear	4	593185370	148296343	6.09	0.000	Linear	4	528.8	132.20	1.27	0.285
Engineering Discipline	2	379102407	189551204	7.79	0.001	Engineering Discipline	2	371.2	185.59	1.79	0.173
CGPA Level	2	214082963	107041481	4.40	0.015	CGPA Level	2	157.6	78.81	0.76	0.173
2-Way Interactions	4	147004815	36751204	1.51	0.205	2-Way Interactions	4	247.6	61.90	0.60	0.666
Engineering Discipline*CGPA Level	4	147004815	36751204	1.51	0.205	Engineering Discipline*CGPA Level	4	247.6	61.90	0.60	0.666
Error	99	2408764167	24330951			Error	99	10271.2	103.75	0.00	0.000
Total	107	3148954352				Total	107	110477	105.73		

Figure 4: ANOVA Tables for Salary/Year QC #1 (Left) for Number of Students Who

Returned QC #2 (Right)

Before analyzing the ANOVA tables the critical F-value must be calculated, this will be used to determine if the factors or their combination are statistically significant. Using Minitab the calculated critical F-values are as follows:

Critical F-value for independent factors:

$$F_{0.05,2,99} = 3.09$$

Critical F-value for interaction of factors:

$$F_{0.05,4.99} = 2.46$$

The result of the ANOVA test for Quality Characteristic #2 concluded that the factors and their interaction were not statistically significant. Firstly the calculated F-values for Engineering Discipline (1.79) and CGPA Level (0.76) were both less than the critical value for independent factors (3.09) which means they do not cause significant differences in the group response mean. The F-value for the interaction of the factors (0.6) was also less than the critical F-value (2.46) thus it also does not cause significant difference in the group response mean. The level of significance for this experiment is (0.05) and the p-value for factors and their combination is greater than 0.05 so the results are not statistically significant.

The ANOVA test for Quality Characteristic #1 did show an effect and statistical significance. The interaction of the factors (1.51) had an F-value less than the critical value (2.46) and a

p-value (0.205) greater than 0.05 therefore the interaction of the factors did not result in a large difference in the group mean and the result was not statistically significant. However the F-values for the factors, Engineering Discipline (7.79) and CGPA Level (4.40) were both greater than the critical value (3.09) thus each of the factors causes a large difference in the group response mean. Engineering discipline has a larger effect due to its higher F-value compared to the CGPA Level. The P-values for both of the factors are less than 0.05 meaning that difference in the group mean is statistically significant and can be considered for further analysis.

Mean Affect & Plots

The results of the ANOVA can be further investigated to determine the influence of the levels of each factor on the Salary/Year. To understand the individual effects of each level on the response the mean effect for each factor level is calculated. The results are summarized in the table below and the calculations can be found in Appendix G: Main Effect Calculations.

Factor	Level	Mean Effect
Engineering Discipline	Industrial Engineering	495.37
	Mechanical Engineering	-2501.85
	Computer Engineering	2006.48
	Low	-1962.96
CGPA Level	Med	1270.37
	High	692.59

Table 2: Mean Effect Data Summary

Based on the main effect calculations independently Computer Engineering and Med CGPA Level contributes to respectively about a \$2006.8 and \$1270.37 increase compared to the mean Salary/Year. Industrial Engineering and High CGPA Level also contribute to a Salary/Year higher than the average but less than that of Computer Engineering or a Med CPGA Level. Once again independently, Mechanical Engineering and Low CGPA level have a negative impact on the average Salary/Year. The results of these calculations can also be visualized in the figure below the gray dotted line represents the average Salary/Year.

Figure 5: Main Effect Plot for Salary/Year

Discussion & Conclusion

The conclusion of the statistical analysis in this report did not have the expected result, it was expected that the statistical analysis would reveal the combinations of engineering disciplines with a certain level of CGPA that lead to the highest quality co-op placement. The result of the analysis determined that the combination of CGPA Level and Engineering Discipline had no effect on the Salary/Year or working at a company where a large number of students return after their co-op term is complete. First, the analysis of Number of Students Who Returned showed no statistical significance between our factors or our levels. This conclusion could have a variety of different meanings however it is most important to acknowledge that this result reveals that there are other factors that are more influential and significant to working at a company where a large number of students return and thus a high quality co-op placement. This indicates that students should not worry about their CGPA Level or Engineering Discipline but rather spend time learning and developing themselves outside the classroom by developing different skills for example soft skills.

The result of the statistical analysis related to the Annual Salary revealed that independently a students Engineering Discipline or CGPA Level are significant. With this in mind it is important to look at the levels of each factor to determine the best Engineering Discipline and CGPA Level when it comes to earning a high salary. The experiment revealed that Computer and Industrial Engineering provide the best opportunity for students to achieve a high salary and thus a quality co-op placement, this is a useful piece of insight as it gives students a

general insight into the current engineering job market and which engineering disciplines make the most and are in highest demand. Notably, Industrial Engineering offers less competition due to lower enrollment in the stream, resulting in high demand and nearly all the Industrial Engineering students enrolled into the CO-OP program secure an internship, highlighting a surplus of opportunities compared to supply of students.

Perhaps our deduction above explains why those in the Medium Range for CGPA (2.56-3.44) are able to secure co-op placements with the largest salary. This verdict once again enables the inference that a student should not spend all of their time working towards a high CGPA Level but rather spend time developing in other aspects of their life and also choose the stream with the highest demand.

Overall the analysis did not provide the expected conclusion and aside from the statistical conclusion that the hierarchy for Annual Salary goes by Computer, Industrial, then Mechanical and that the students with a Medium CGPA Level have the highest Annual Salary. However it did provide the opportunity for an important inference for students and that is they should develop themselves inside of the classroom as well as outside of the classroom by participating in student clubs, workshops, while also networking and developing technical skills independently, will enhance their readiness for their future career.

References

Jila, A. (2024). *TMU FEAS Co-op Office*. Student Co-op Data. Retrieved September 27, 2024,. Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons, Inc. Graham, H. (2005). *University of Sussex*. F-Ratio Table. Retrieved from:

https://users.sussex.ac.uk/~grahamh/RM1web/F-ratio%20table%202005.pdf

National Institute of Standards and Technology. (n.d.). *US Department of Commerce*. Three-level full factorial designs. https://www.itl.nist.gov/div898/handbook/pri/section3/pri339.htm

Appendix

Appendix A: Datasets

Table A.1: Initial Dataset

Student ID	Engineering Discipline	CGPA	Company	Salary\Ye	Number of students who returned to the company in the last 5 years	CGPA Levels
4	Computer	0.00	Usada	50000	45	
1	0 0	2.22	Honda	56600	45	Low
2	Mechanical Engineering	2.38	Toyota	46100	54	Low
3	Computer Engineering	3.61	Ericsson	54500	59	High
4	Industrial Engineering	2.5	Celestica	46900	65	Low
5	Computer Engineering	2.1	Ericsson	50600	59	Low
6	Computer Engineering	2.52	Honda	55200	45	Low
7	Mechanical Engineering	3.74	Boeing	52200	48	High
8	Mechanical Engineering	2.31	Manulife	48400	42	Low
9	Computer Engineering	3.39	Apple	67300	28	Med
10	Computer Engineering	4.03	Wealthsimple	64300	47	High
11	Industrial Engineering	2.86	Coca-Cola	63600	55	Med

	Mechanical					
12	Engineering	2.25	Toyota	50000	54	Low
13	Mechanical Engineering	2 21	Rockwell Automation	60400	47	Med
13		3.31	Nockwell Automation	00400	47	IVICU
14	Computer Engineering	3.15	SAP	56900	55	Med
	Computer					
15	Engineering	2.15	Ericsson	47500	59	Low
	Industrial					
16	Engineering	3.71	Kraft Heinz	49400	40	High
	Computer					
17	Engineering	3.91	Scotiabank	64400	35	High
	Industrial					
18	Engineering	2.91	Pratt & Whitney	56200	55	Med
	Industrial					
19	Engineering	3.54	Sobeys	53700	39	High
	Computer					
20	Engineering	3.75	Honeywell Aerospace	62200	33	High
	Mechanical					
21	Engineering	3.69	Amazon	54800	33	High
	Mechanical					
22	Engineering	2.64	Nokia	56100	38	Med
	Mechanical					
23	Engineering	3.33	L3 Harris	45600	58	Med
	Industrial					
24	Engineering	2.44	Deloitte	44200	71	Low
	Computer					
25	Engineering	1.98	Bombardier Aerospace	59200	45	Low
	Industrial					
26	Engineering	3.81	Amazon	55100	33	High
	Industrial		Bombardier			
27	Engineering	2.34	Transportation	41200	41	Low

28	Industrial Engineering	2.08	Loblaws	55200	44	Low
29	Mechanical Engineering	2.31	De Havilland Aircraft	50300	40	Low
30	Mechanical Engineering	3.32	HP	45500	61	Med
	Mechanical Engineering		SAP	54800		High
31	Computer			34000		T light
32	Engineering	3.44	SOTI	53100	46	Med
33	Industrial Engineering	1.83	Bombardier Transportation	59400	41	Low
34	Industrial Engineering	2.83	Microsoft	84400	34	Med
35	Computer Engineering	4.07	Intel	56300	31	High
36	Mechanical Engineering	2.98	Toyota	47100	54	Med
37	Mechanical Engineering	2.54	Amazon	48100	33	Low
38	Industrial Engineering	2.94	Coca-Cola	60700	55	Med
39	Mechanical Engineering	2.2	Thales	51500	52	Low
40	Industrial Engineering	2.24	Deloitte	52500	71	Low
41	Mechanical Engineering	3.79	Siemens	56500	25	High
42	Mechanical Engineering	2.78	CIBC	51800	51	Med
43	Mechanical Engineering	4.24	Unilever	52600	56	High

44	Industrial Engineering	2.39	EllisDon	54000	68	Low
45	Mechanical Engineering	2.51	Bell	54300	52	Low
	Computer		-			
46	Engineering	3.85	Ford	48900	28	High
47	Industrial Engineering	4.25	Google	56500	44	High
48	Industrial Engineering	3.13	General Motors	63100	62	Med
49	Computer Engineering	3.14	Spin Master Ltd.	53600	44	Med
50	Mechanical Engineering	3.25	CAE Inc.	49100	34	Med
51	Computer Engineering	3.41	Coca-Cola	64500	55	Med
52	Industrial Engineering	3.57	Nestlé	53100	54	High
53	Industrial Engineering	4.27	Maple Leaf Foods	49900	37	High
54	Computer Engineering	3.21	Bombardier Aerospace	47900	45	Med
55	Mechanical Engineering	3.54	Bombardier Aerospace	51000	45	High
56	Computer Engineering	4.31	TD	62200	53	High
57	Industrial Engineering	2.12	Nestlé	60900	54	Low
58	Mechanical Engineering	2.18	General Motors	48000	62	Low
59	Computer		SOTI	50000		Low

	Industrial					
60	Engineering	3.53	Unilever	53400	56	High
61	Mechanical Engineering	1.99	Boeing	52900	48	Low
62	Computer Engineering	4.07	Toyota	48400	54	High
63	Computer Engineering	3.15	Nokia	64300	38	Med
64	Mechanical Engineering	2.47	MDA Space	56700	38	Low
65	Industrial Engineering	3.44	Canada Goose	62400	29	Med
66	Mechanical Engineering	2.67	OpenText	49800	28	Med
67	Industrial Engineering	3.08	Toyota	50600	54	Med
68	Computer Engineering	2.45	CGI Inc.	58200	36	Low
69	Computer Engineering	2.07	MDA Space	59200	38	Low
70	Mechanical Engineering	3.14	MDA (MacDonald, Dettwiler & Assoc.)	56900	52	Med
71	Computer Engineering	1.94	Safran	57700	65	Low
72	Industrial Engineering	2.27	Canadian Pacific Railway	52700	60	Low
73	Computer Engineering	3.74	Bell	60600	52	High
74	Industrial Engineering	3.49	Linamar Corporation	55300	47	High
75	Industrial Engineering	3.16	FGF Brands	62200	30	Med

	l					
76	Industrial Engineering	3 62	Celestica	62000	ee.	High
/0	-	3.08	Celestica	02000	05	ı ilgil
77	Mechanical	3 O4	Palantir Technologics	64400	ာာ	High
	Engineering	J.94	Palantir Technologies	04400	23	High
70	Mechanical	2 22	L3 Harris	50900	50	Low
76	Engineering	2.22	L3 Hallis	50900	36	LOW
70	Mechanical	4.05	Nokia	52400	20	Lligh
79	Engineering	4.05	INUKIA	52400	30	High
90	Mechanical	3.07	Intol	58300	21	Med
	Engineering	3.07	inter	36300	31	ivieu
91	Industrial Engineering	3 60	Accenture	64200	61	∐iah
01	-	3.09		04200	01	High
92	Computer	2 25	MDA (MacDonald,	64200	5 2	Med
82	Engineering	3.25	Dettwiler & Assoc.)	64200	52	ivied
0.0	Computer	2.67	OnenTout	F0200	20	l limb
83	Engineering	3.07	OpenText	59300	28	High
0.4	Computer	0.07	AMD (Advanced Micro	50500	5 4	1
84	Engineering	2.27	Devices)	59500	54	Low
0.5	Industrial	0.04	CIDC	F0100	F.4	1
85	Engineering	2.31	CIBC	50100	51	Low
00	Industrial	4.40	Dunalatan	E 4700	00	I II ada
86	Engineering	4.12	Purolator	54700	63	High
0.7	Computer	0.44	Toolo	00000	2-	Mod
87	Engineering	3.14	Tesla	60800	27	Med
22	Industrial	4.0-	Canadian Pacific	00400	22	118 - 1-
88	Engineering	4.07	Railway	62100	60	High
	Computer	0.44	N. 61-1-1-1-164	00000		NA o al
89	Engineering	3.11	Microsoft	96300	34	Med
	Industrial	0.07	0	50005		NA!
90	Engineering	3.07	Coca-Cola	59000	55	Med
	Industrial	0.15		-0:55		
91	Engineering	2.16	Suncor Energy	58400	48	Low

	Mechanical					
92	Engineering	3.56	Tesla	78500	27	High
	Industrial					
93	Engineering	2.34	Loblaws	56600	44	Low
	Industrial		Canadian National			
94	Engineering	3.25	Railway (CN)	56800	56	Med
	Industrial					
95	Engineering	3.34	Thermo Fisher Scientific	56600	32	Med
	Mechanical					
96	Engineering	3.34	Kinaxis	55400	29	Med
	Computer		AMD (Advanced Micro			
97	Engineering	3.39	Devices)	56700	54	Med
	Computer					
98	Engineering	4.02	Procter & Gamble	55600	53	High
	Mechanical					
99	Engineering	3.76	Rockwell Automation	57100	47	High
	Computer					
100	0 0	2.46	Scotiabank	64400	35	Low
101	Industrial				••	
101	Engineering	3.44	FGF Brands	57900	30	Med
	Mechanical					
102	Engineering	3.82	Maple Leaf Foods	53400	37	High
100	Mechanical	4.00		= 4000		
103	Engineering	4.09	OpenText	54800	28	High
101	Computer	0.40				
104	Engineering	3.18	GE Aviation	53700	56	Med
	Mechanical					
105	0	3.22	Siemens	52600	25	Med
	Computer	0.51		10-25	<u> </u>	
106	Engineering	3.91	Unilever	46500	56	High
	Mechanical	<u></u>		_,	_	
107	Engineering	2.17	Scotiabank	51800	35	Low

108	Computer Engineering	1.99	Sunlife	58700	32	Low
109	Mechanical Engineering	3.79	Unilever	56900	56	High
110	Computer Engineering	3.22	Canadian Pacific Railway	57800	60	Med
111	Industrial Engineering	3.44	Loblaws	55800	44	Med

Table A.2 Controlled Dataset

Student ID	Engineering Discipline	CGPA	Company	Salary\Ye ar	Number of students who returned to the company in the last 5 years	CGPA Levels
	Computer					
1	Engineering	2.22	Honda	56600	45	Low
	Mechanical					
2	Engineering	2.38	Toyota	46100	54	Low
	Computer					
3	Engineering	3.61	Ericsson	54500	59	High
	Industrial					
4	Engineering	2.5	Celestica	46900	65	Low
	Computer					
5	Engineering	2.1	Ericsson	50600	59	Low
	Computer					
6	Engineering	2.52	Honda	55200	45	Low
	Mechanical					
7	Engineering	3.74	Boeing	52200	48	High
	Mechanical					
8	Engineering	2.31	Manulife	48400	42	Low

	Computer					
9	Engineering	3.39	Apple	67300	28	Med
	Computer					
10	Engineering	4.03	Wealthsimple	64300	47	High
	Industrial					
11	Engineering	2.86	Coca-Cola	63600	55	Med
12	Mechanical	2.25	Toyota	50000	E.1	Low
12	Engineering	2.25	Toyota	50000	54	LOW
13	Mechanical Engineering	3 31	Rockwell Automation	60400	47	Med
	Computer	0.01	Trookwon / tatomation	00.00	••	
14	Engineering	3.15	SAP	56900	55	Med
	Computer					
15	Engineering	2.15	Ericsson	47500	59	Low
	Industrial					
16	Engineering	3.71	Kraft Heinz	49400	40	High
	Computer					
17	Engineering	3.91	Scotiabank	64400	35	High
	Industrial					
18	Engineering	2.91	Pratt & Whitney	56200	55	Med
1.0	Industrial	o = 4				
19	Engineering	3.54	Sobeys	53700	39	High
20	Computer Engineering	3 7E	Honeywell Acrospose	62200	າາ	High
20	0	3.73	Honeywell Aerospace	02200	33	riigii
21	Mechanical Engineering	3.69	Amazon	54800	33	High
	Mechanical	0.00		3 1000		
22	Engineering	2.64	Nokia	56100	38	Med
	Mechanical					
23	Engineering	3.33	L3 Harris	45600	58	Med
	Industrial					
24	Engineering	2.44	Deloitte	44200	71	Low

	Computer					
25	Computer Engineering	1.98	Bombardier Aerospace	59200	45	Low
26	Industrial Engineering	3.81	Amazon	55100	33	High
27	Industrial Engineering	2.34	Bombardier Transportation	41200	41	Low
	Industrial Engineering		Loblaws	55200	44	Low
	Mechanical Engineering		De Havilland Aircraft	50300		Low
29	Mechanical	2.31	De Havilland All Clait	30300	40	LOW
30	Engineering	3.32	HP	45500	61	Med
31	Mechanical Engineering	3.46	SAP	54800	55	High
32	Computer Engineering	3.44	SOTI	53100	46	Med
33	Industrial Engineering	1.83	Bombardier Transportation	59400	41	Low
35	Computer Engineering	4.07	Intel	56300	31	High
36	Mechanical Engineering	2.98	Toyota	47100	54	Med
37	Mechanical Engineering	2.54	Amazon	48100	33	Low
38	Industrial Engineering	2.94	Coca-Cola	60700	55	Med
39	Mechanical Engineering	2.2	Thales	51500	52	Low
40	Industrial Engineering	2.24	Deloitte	52500	71	Low
41	Mechanical Engineering	3.79	Siemens	56500	25	High

	Mechanical					
42	Engineering 2	.78	CIBC	51800	51	Med
	Mechanical					
43	Engineering 4	.24	Unilever	52600	56	High
	Industrial					
44	Engineering 2	.39	EllisDon	54000	68	Low
	Mechanical					
45	Engineering 2	.51	Bell	54300	52	Low
	Computer					
46		.85	Ford	48900	28	High
	Industrial					
47		.25	Google	56500	44	High
	Industrial					
48		13	General Motors	63100	62	Med
40	-	. 10	General Motors	00100	02	Wica
40	Computer	11	Chin Moster Ltd	F2600	4.4	Med
49	-	. 14	Spin Master Ltd.	53600	44	Med
	Mechanical					
50	Engineering 3	.25	CAE Inc.	49100	34	Med
	Computer					
51	Engineering 3	.41	Coca-Cola	64500	55	Med
	Industrial					
52	Engineering 3	.57	Nestlé	53100	54	High
	Industrial					
53	Engineering 4	.27	Maple Leaf Foods	49900	37	High
	Computer					
54		.21	Bombardier Aerospace	47900	45	Med
	Mechanical					
55		.54	Bombardier Aerospace	51000	45	High
	Computer					_
56		.31	TD	62200	53	High
			-	02200	30	
57	Industrial Engineering 2	10	Nestlé	60900	EA	Low
37	Lingineering 2	. 12	เพองแอ	00900	54	LOW

58	Mechanical Engineering	2.18	General Motors	48000	62	Low
59	Computer Engineering	1.89	SOTI	50000	46	Low
60	Industrial Engineering	3.53	Unilever	53400	56	High
61	Mechanical Engineering	1.99	Boeing	52900	48	Low
	Computer Engineering		Toyota	48400	54	High
	Computer		-			
63	Engineering Mechanical	J.15	Nokia	64300	38	Med
64	Engineering Industrial	2.47	MDA Space	56700	38	Low
65	Engineering	3.44	Canada Goose	62400	29	Med
66	Mechanical Engineering	2.67	OpenText	49800	28	Med
67	Industrial Engineering	3.08	Toyota	50600	54	Med
68	Computer Engineering	2.45	CGI Inc.	58200	36	Low
69	Computer Engineering	2.07	MDA Space	59200	38	Low
70	Mechanical Engineering	3.14	MDA (MacDonald, Dettwiler & Assoc.)	56900	52	Med
71	Computer Engineering	1.94	Safran	57700	65	Low
72	Industrial Engineering	2.27	Canadian Pacific Railway	52700	60	Low
	Computer Engineering	3.74	Bell	60600	52	High

	Industrial					
74	Engineering	3.49	Linamar Corporation	55300	47	High
75	Industrial Engineering	3.16	FGF Brands	62200	30	Med
	-	0		32233		
76	Industrial Engineering	3.68	Celestica	62000	65	High
77	Mechanical Engineering	3.94	Palantir Technologies	64400	23	High
	Mechanical		_			_
78	Engineering	2.22	L3 Harris	50900	58	Low
	Mechanical					
79	Engineering	4.05	Nokia	52400	38	High
	Mechanical					
80	Engineering	3.07	Intel	58300	31	Med
	Industrial					
81	Engineering	3.69	Accenture	64200	61	High
	Computer		MDA (MacDonald,			
82	Engineering	3.25	Dettwiler & Assoc.)	64200	52	Med
	Computer					
83	Engineering	3.67	OpenText	59300	28	High
	Computer		AMD (Advanced Micro			
84	Engineering	2.27	Devices)	59500	54	Low
	Industrial					
85	Engineering	2.31	CIBC	50100	51	Low
	Industrial					
86	Engineering	4.12	Purolator	54700	63	High
	Computer					
87	Engineering	3.14	Tesla	60800	27	Med
	Industrial		Canadian Pacific			
88	Engineering	4.07	Railway	62100	60	High
	Industrial					
90	Engineering	3.07	Coca-Cola	59000	55	Med

			I			
91	Industrial Engineering 2	.16	Suncor Energy	58400	48	Low
03	Industrial Engineering 2	3/1	Loblaws	56600	44	Low
95	Lingineering 2	.54	Lobiaws	30000		LOW
	Industrial		Canadian National			
94	Engineering 3	.25	Railway (CN)	56800	56	Med
	Industrial					
95	Engineering 3	.34	Thermo Fisher Scientific	56600	32	Med
	Mechanical					
96	Engineering 3	.34	Kinaxis	55400	29	Med
	Computer		AMD (Advanced Micro			
97		.39	Devices)	56700	54	Med
	Computer					
98		.02	Procter & Gamble	55600	53	High
	Mechanical					
99		.76	Rockwell Automation	57100	47	High
	Computer					
100		16	Scotiabank	64400	35	Low
100		.+0	Occilabatik	04400		LOW
404	Industrial	4.4	EOE Day da	57000	00	N 41
101	Engineering 3	.44	FGF Brands	57900	30	Med
	Mechanical					
102	Engineering 3	.82	Maple Leaf Foods	53400	37	High
	Mechanical					
103	Engineering 4	.09	OpenText	54800	28	High
	Computer					
104	Engineering 3	.18	GE Aviation	53700	56	Med
	Mechanical					
105	Engineering 3	.22	Siemens	52600	25	Med
	Computer					
106	·	.91	Unilever	46500	56	High
	Mechanical					
107		.17	Scotiabank	51800	35	Low
	J	•		2.000		

108	Computer Engineering	1.99	Sunlife	58700	32	Low
109	Mechanical Engineering	3.79	Unilever	56900	56	High
110	Computer Engineering	3.22	Canadian Pacific Railway	57800	60	Med
111	Industrial Engineering	3.44	Loblaws	55800	44	Med

Appendix B: Normality Tests

Initial Normality Tests

Figure B.1: Histogram for QC #1 Salary/Year

Figure B.2: Histogram for QC #2 Number of Students Who Returned

Figure B.3: Probability Plot for QC #1 Salary/Year

Figure B.4: Probability Plot for QC #2 Number of Students Who Returned

Controlled Normality Tests

Figure B.5: Histogram for QC #1 Salary/Year

Figure B.6: Histogram for QC #2 Number of Students Who Returned

Figure B.7: Probability Plot for QC #1 Salary/Year

Figure B.8: Probability Plot for QC #2 Number of Students Who Returned

Appendix C: Control Charts

Initial Control Charts

Figure C.1: Config #1 - IM-R Chart for QC #1 and C Chart for QC #2

Figure C.2: Config #2 - IM-R Chart for QC #1 and C Chart for QC #2

Configuration 3

Figure C.3: Config #3 - IM-R Chart for QC #1 and C Chart for QC #2

Configuration 4

Figure C.4: Config #4 - IM-R Chart for QC #1 and C Chart for QC #2

Figure C.5: Config #5 - IM-R Chart for QC #1 and C Chart for QC #2

Configuration 6

Figure C.6: Config #6 - IM-R Chart for QC #1 and C Chart for QC #2

Configuration 7

Figure C.7: Config #7 - IM-R Chart for QC #1 and C Chart for QC #2

Figure C.8: Config #8 - IM-R Chart for QC #1 and C Chart for QC #2

Configuration 9

Figure C.9: Config #9 - IM-R Chart for QC #1 and C Chart for QC #2

Revised Control Charts

Figure C.10: Revised Config #2 - IM-R Chart for QC #1 and C Chart for QC #2

Figure C.11: Revised Config #6 - IM-R Chart for QC #1 and C Chart for QC #2

Configuration 8

Figure C.12: Revised Config #8 - IM-R Chart for QC #1 and C Chart for QC #2

Appendix D: DOE and ANOVA Results

Salary/Year Quality Characteristic #1

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	8	740190185	92523773	3.80	0.001
Linear	4	593185370	148296343	6.09	0.000
Engineering Discipline	2	379102407	189551204	7.79	0.001
CGPA Level	2	214082963	107041481	4.40	0.015
2-Way Interactions	4	147004815	36751204	1.51	0.205
Engineering Discipline*CGPA Level	4	147004815	36751204	1.51	0.205
Error	99	2408764167	24330951		
Total	107	3148954352			

Figure D.1: ANOVA Table for QC #1

Figure D.2: Pareto Chart for QC #1

Number of Students Who Returned Quality Characteristic #2

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	8	776.4	97.05	0.94	0.491
Linear	4	528.8	132.20	1.27	0.285
Engineering Discipline	2	371.2	185.59	1.79	0.173
CGPA Level	2	157.6	78.81	0.76	0.471
2-Way Interactions	4	247.6	61.90	0.60	0.666
Engineering Discipline*CGPA Level	4	247.6	61.90	0.60	0.666
Error	99	10271.2	103.75		
Total	107	11047.7			

Figure D.3: ANOVA Table for QC #2

Pareto Chart of the Standardized Effects

(response is Number of Students Who Returned, $\alpha = 0.05$)

Figure D.4: Pareto Chart for QC #2

Appendix E: Interaction & Main Effect Plots

Salary/Year Quality Characteristic #1

Figure E.1: Plots for QC #1

Number of Students Who Returned Quality Characteristic #2

Figure E.2: Plots for QC #2

Appendix F: DOE Schematic and Filtered Treatment Data *Doe Schematics**

Figure F.1: Design Schematic for QC #1 Salary/Year

Figure F.2: Design Schematic for QC #2 Number of Students Who Returned

Factor Level Coding Chart

CGPA Level	Coded Factors
Low	0
Med	1
High	2
Engineering Discipline	Coded Factors
Indy	0
Mech	1
IVICOIT	· I

Table F.1: Factor Level Coding

DOE Data Setup

Factors		Salary	Salary/Year - Replications												
Engineering Discipline		Treatment Combinatio ns	1	2	3	4	5	6	7	8	9	10	11	12	Totals
			4690	4420	4120	5520	5940	5250	5400	6090	5270	5010	5840	5660	
0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	632100

		40	4610	4840	5000	5030	4810	5150	5430	4800	5290	5670	5090	5180	22222
1	0	10	0	0	0	0	0	0	0	0	0	0	0	0	609000
2	0	20	5660 0	5060 0	5520 0	4750 0	5920 0	5000 0	5820 0	5920 0	5770 0	5950 0	6440 0	5870 0	676800
			0000	_	_	-	_	_			_	-	-		0.0000
0	1	01	6360 0	5620 0	6070 0	6310 0	6240 0	5060	6220 0	5900 0	5680 0	5660 0	5790 0	5580 0	704900
1	1	11	6040 0	5610 0	4560 0	4550 0	4710 0	5180 0	4910 0	4980 0	5690 0	5830 0	5540 0	5260 0	628600
2	1	21	6730 0	5690 0	5310 0	5360 0	6450 0	4790 0	6430 0	6420 0	6080 0	5670 0	5370 0	5780 0	700800
0	2	02	4940 0	5370 0	5510 0	5650 0	5310 0	4990 0	5340 0	5530 0	6200 0	6420 0	5470 0	6210 0	669400
1	2	12	5220 0	5480 0	5480 0	5650 0	5260 0	5100 0	6440 0	5240 0	5710 0	5340 0	5480 0	5690 0	660900
2	2	22	5450 0	6430 0	6440 0	6220 0	5630 0	4890 0	6220 0	4840 0	6060 0	5930 0	5560 0	4650 0	683200
		Totals	4970 00	4852 00	4801 00	4904 00	5027 00	4541 00	5221 00	4972 00	5175 00	5148 00	5058 00	4988 00	5965700

Table F.2: DOE Data Setup for QC #1 Salary/Year

Factors	actors Number of Students Who Returned - Replications														
Engin eering Discip line	I	Treat ment Combi nation s	1	2	3	4	5	6	7	8	9	10	11	12	Totals
0	0	00	65	71	41	44	41	71	46	54	60	51	48	44	636
1	0	10	46	42	46	40	33	52	52	62	48	38	58	35	552
2	0	20	45	59	45	59	45	46	36	38	65	54	35	32	559
0	1	01	55	51	55	62	29	46	30	55	56	32	30	44	545
1	1	11	47	48	58	61	46	51	48	43	52	31	29	25	539
2	1	21	28	55	46	44	55	45	48	52	31	54	49	60	567
0	2	02	51	39	33	44	54	37	50	47	65	49	63	60	592
1	2	12	48	33	55	25	50	45	39	48	47	37	43	50	520
2	2	22	59	47	35	33	31	45	53	46	52	43	53	50	547
		Totals	444	445	414	412	384	438	402	445	476	389	408	400	5057

Appendix G: Calculations

Main Effect Calculations Salary/Year QC #1

Grand Mean =
$$\frac{1}{y}$$
 = $\frac{Total Sum}{Total Count}$ = $\frac{5965700}{108}$ = 55237.96

Industrial Engineering Mean = $\frac{Total Sum}{Total Count}$ = $\frac{632100+704900+669400}{36}$ = 55733.33

Mechanical Engineering Mean = $\frac{Total Sum}{Total Count}$ = $\frac{609000+62860+660900}{36}$ = 52736.11

Computer Engineering Mean = $\frac{Total Sum}{Total Count}$ = $\frac{676800+700800+683200}{36}$ = 57244.44

CGPA Low Mean = $\frac{Total Sum}{Total Count}$ = $\frac{632100+609000+676800}{36}$ = 53275

CGPA Med Mean = $\frac{Total Sum}{Total Count}$ = $\frac{704900+628600+700800}{36}$ = 56508.33

CGPA High Mean = $\frac{Total Sum}{Total Count}$ = $\frac{669400+660900+683200}{36}$ = 55930.55

Main Effect Industrial Engineering = Industrial Engineering Mean - Grand Mean = 55733.33 - 55237.96 = 495.37

Main Effect Mechanical Engineering = Mechanical Engineering Mean - Grand Mean = 52736.11 - 55237.96 = -2501.85

Main Effect Computer Engineering = Computer Engineering Mean - Grand Mean = 57244.44 - 55237.96 = 2006.48

Main Effect CGPA Low = CGPA Low Mean - Grand Mean = 53275 - 55237.96 = -1962.96 Main Effect CGPA Med = CGPA Med Mean - Grand Mean = 56508.33 - 55237.96 = 1270.37 Main Effect CGPA High = CGPA High Mean - Grand Mean = 55930.55 - 55237.96 = 692.59

Sample ANOVA Calculations for Salary/Year QC #1

Sum of Squares for Total and Error:

$$SS_{Total} = \Sigma (Y_i - \overline{y)^2}$$

$$SS_{Total} = 3148954352$$

$$SS_{Engineering \ Discipline} = \frac{(Engineering \ Discipline)^{2}}{3^{3} x n}$$

$$SS_{Engineering \ Discipline} = 379102407$$

$$SS_{CGPA \ level} = \frac{(Contrast \ CGPA \ level)^{2}}{3^{k} \ x \ n}$$

$$SS_{CGPA \, level} = 214082963$$

$$SS_{Error} = SS_{Total} - (SS_{Engineering\ Discipline} + SS_{CGPA\ level} + SS_{Engineering\ Disciple*CGPA\ level})$$

$$SS_{Error} = 3148954352 - 740190185$$

$$SS_{Error} = 2408764167$$

$$SS_{Interaction} = SS_{Total} - (SS_{Engineering Discipline} + SS_{CGPA level} + SS_{Error})$$

$$SS_{Interaction} = 3148954352 - (379102407 + 214082963 + 2408764167)$$

$$SS_{Interaction} = 147004815$$

$$Df_{Total} = n - 1$$

$$Df_{Total} = 108 - 1$$

$$Df_{Total} = 107$$

$$Df_{\mathit{Error}} = \ Df_{\mathit{Total}} - (Df_{\mathit{Engineering Discipline}} + Df_{\mathit{CGPA level}} + Df_{\mathit{Engineering Disciple*CGPA level}})$$

$$Df_{Error} = 107 - (2 + 2 + 4)$$

$$Df_{Error} = 99$$

$$Df_{Engineering Discipline} = 2$$

$$Df_{CGPA Level} = 2$$

$$Df_{Interaction} = (a-1)(b-1) = (3-1)(3-1) = 4$$

$$MS_{Engineering\ Discipline} = \frac{SS_{Engineering\ Discipline}}{Df}$$
 $MS_{Engineering\ Discipline} = \frac{379102407}{2}$
 $Ms_{Engineering\ Discipline} = 189551204$

$$MS_{CGPA \, level} = \frac{SS_{CGPA \, level}}{Df}$$
 $MS_{CGPA \, level} = \frac{214082963}{2}$
 $MS_{CGPA \, level} = 107041481$

$$MS_{Error} = \frac{SS_{Error}}{Df_{Error}}$$
 $MS_{Error} = \frac{2408764167}{99}$
 $MS_{Error} = 24330951.18$

$$MS_{Interaction} = \frac{SS_{Interaction}}{df_{Interaction}} = \frac{147004815}{4} = 36751203.75$$

F-value Calculations:

$$F_{Engineering \ Discipline} = \frac{MS_{Engineering \ Discipline}}{MS_E}$$

$$F_{Engineering \ Discipline} = \frac{189551204}{24330951.18}$$

$$F_{Engineering \ Discipline} = 7.79$$

$$\begin{split} F_{CGPA\ Level} &= \frac{{}^{MS}_{CGPA\ level}}{{}^{MS}_{E}} \\ F_{CGPA\ Level} &= \frac{107041481}{24330951.18} \end{split}$$

$$F_{CGPA\ Level} = 4.4$$

$$F_{Interaction} = \frac{MS_{Interaction}}{MS_{E}} = 1.51$$

$$F_{Interaction} = \frac{36751203.75}{24330951.18}$$

$$F_{Interaction} = 1.51$$