Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação Laboratório de Sistemas Distribuídos e Programação Concorrente

Notas de Aulas da Disciplina SSC0903 – Computação de Alto Desempenho

Módulo 2 – Arquiteturas Paralelas – Redes de Conexão

por Paulo Sérgio Lopes de Souza

Este material pode ser utilizado livremente para atividades de ensino desde que a autoria deste conteúdo seja explicitamente indicada durante o seu uso.

 $S\~{a}o Carlos/SP - Brasil - 2020$

Conteúdo

2 Arquiteturas Paralelas (continuação)	1
2.1 Redes de Conexão nas Arquiteturas Paralelas	1
2.1.1 Organização e Componentes Básicos	1
2.1.2 Propriedades das Redes de Conexão	1
2.1.2.1 Topologia	1
2.1.2.2 Diâmetro da rede	1
2.1.2.3 Grau do nó	1
2.1.2.4 Latência	1
2.1.2.5 Conectividade do nó e Conectividade de aresta	1
2.1.2.6 Largura da bisseção	1
2.1.2.7 Largura do Canal	1
2.1.2.8 Largura de banda da bisseção	1
2.1.2.9 Custo do hardware	2
2.1.2.10 Throughput da rede	2
2.1.2.11 Funções de Roteamento	2
2.1.2.12 Funções de chaveamento	2
2.1.2.13 Redes bloqueantes e não bloqueantes	2
2.1.2.14 Dimensão da Rede de Conexão	2
2.1.2.15 Broadcast e Multicast	2
2.1.3 Topologias de Redes em Arquiteturas Paralelas/Distribuídas	2
2.1.3.1. Topologias Dinâmicas	2
2.1.3.2. Topologias Estáticas	6
2.2 Considerações Finais de Arquitetura Paralelas	8
Referências	8

- 2 Arquiteturas Paralelas (continuação)
- 2.1 Redes de Conexão nas Arquiteturas Paralelas

2.1.1 Organização e Componentes Básicos

Figure 2.6. Classification of interconnection networks: (a) a static network; and (b) a dynamic network.

Definições de nós, links, switches e interfaces

Redes estáticas e dinâmicas:

2.1.2 Propriedades das Redes de Conexão

(Grama Seção 2.4.4, Unit 3, section 3.2, Caracterizam redes de conexão em termos de organização, funcionalidade, desempenho e custo.

- 2.1.2.1 Topologia
- 2.1.2.2 Diâmetro da rede
- 2.1.2.3 Grau do nó
- 2.1.2.4 Latência
- 2.1.2.5 Conectividade do nó e Conectividade de aresta
- 2.1.2.6 Largura da bisseção
- 2.1.2.7 Largura do Canal
- 2.1.2.8 Largura de banda da bisseção

- 2.1.2.9 Custo do hardware
- 2.1.2.10 Throughput da rede
- 2.1.2.11 Funções de Roteamento
- 2.1.2.12 Funções de chaveamento
- 2.1.2.13 Redes bloqueantes e não bloqueantes
- 2.1.2.14 Dimensão da Rede de Conexão
- 2.1.2.15 Broadcast e Multicast
- 2.1.3 Topologias de Redes em Arquiteturas Paralelas/Distribuídas
 - 2.1.3.1. Topologias Dinâmicas

Redes em Barramento

(Grama et al., 2003), Seção 2.4.3, Figura 2.7

Redes Crossbar

FIGURE 2.7

(a) A crossbar switch connecting four processors (P_i) and four memory modules (M_j) ; (b) configuration of internal switches in a crossbar; (c) simultaneous memory accesses by the processors

(Pacheco, 2011)

Redes Multiestágio

Rede ômega é um tipo de rede multiestágio

Figure 2.9. The schematic of a typical multistage interconnection network.

Figure 2.10. A perfect shuffle interconnection for eight inputs and outputs.

Figure 2.11. Two switching configurations of the 2 x 2 switch: (a)

Pass-through; (b) Cross-over.

Figure 2.13. An example of blocking in omega network: one of the messages (010 to 111 or 110 to 100) is blocked at link AB.

Rede borboleta (butterfly) é outro tipo de rede multiestágio

Figure 18: Butterfly permutation

Material WEB, Unit 3, pág 57, Figura 18

Redes Benes

(Rauber & Rünger, 2010) - Figura 2.20 Rede Benes não bloqueante

2.1.3.2. Topologias Estáticas

Redes Completamente Conectadas

Redes em Estrela

Figure 2.14. (a) A completely-connected network of eight nodes; (b) a star connected network of nine nodes.

Redes Arranjo Linear (em Linha)

Redes em Anel

Figure 2.15. Linear arrays: (a) with no wraparound links; (b) with wraparound link.

Redes em malha 2D (mesh 2D)

Redes Torus 2D

Redes em cubo ou hipercubo de dimensão k.

Figure 2.16. Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Figure 2.17. Construction of hypercubes from hypercubes of lower dimension.

(Grama et al. 2003)

Redes baseadas em árvore

Figure 2.18. Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree network.

Figure 2.19. A fat tree network of 16 processing nodes.

2.2 Considerações Finais de Arquitetura Paralelas

Referências

Flynn, M. J. Some Computer Organizations and their Effectiveness. IEEE Transactions on Computers, 21(9): 948-960, 1972.

Grama, A.; KUMAR, U.; Gupta, A.; KARYPIS, G. Introduction to Parallel Computing, 2nd Edition, 2003.

Patterson, D. A.; Hennessy, J. L.; Computer Organization and Design: the hardware / software interface. Fith Edition. Elsevier, 2014.

Rauber, T.; Rünger, G.; Prallel Programming for Multicore and Cluster Systems. Second Edition. Springer. 2013.

Stallings, W.; Computer Organization and Architecture: Designing for Performance. Ninth Edition. Pearson. 2013.

Tanenbaum, A. S.; Austin, T.; Structured Computer Organization. Sixth Edition. Pearson. 2013.