DIALOG(R)File 351:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

010777599 **Image available**
WPI Acc No: 1996-274552/199628
XRPX Acc No: N96-230944

Electron-emitting element for exposure system - has carbon material deposited in gap formed between electrodes on insulating substrate Patent Assignee: CANON KK (CANO)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 8115652 A 19960507 JP 94278556 A 19941019 199628 B

Priority Applications (No Type Date): JP 94278556 A 19941019 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes JP 8115652 A 17 H013-001/30

Abstract (Basic): JP 8115652 A

The element has an insulating substrate (1) on which a pair of electrodes (2,2') with opposite polarities are formed. The electrodes are sepd. by a gap, made by ion beam convergence, that is equal to or less than 500 nm. Carbon-material (3) is deposited in the gap. ADVANTAGE - Simplifies mfg. process with good emissions of electron with high reliability and uniform characteristics. Produces high quality image since irregularity in brightness of electron source is eliminated.

Deg. 1/12

Title Terms: ELECTRON; EMIT; ELEMENT; EXPOSE; SYSTEM; CARBON; MATERIAL; DEPOSIT; GAP; FORMING; ELECTRODE; INSULATE; SUBSTRATE

Derwent Class: V05

International Patent Class (Main): H01J-001/30

International Patent Class (Additional): H01J-029/46; H01J-031/12; H01J-031/15

File Segment: EPI

Manual Codes (EPI/S-X): V05-D01; V05-D05C5

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平8-115652

(43)公開日 平成8年(1996)5月7日

(51) Int.Cl.4		識別記号	庁内整理番号	F I	技術表示施所
H01J	1/30	A			
	29/46	В			
	31/12	В			
	31/15	c			

審査請求 未請求 請求項の数18 FD (全 17 頁)

(21)出願書号	特顧平6-278556	(71)出版人 000001007	
		キヤノン株式会社	
(22) 出順日	平成6年(1994)10月19日	東京都大田区下丸子3丁目30番2号	
		(72) 発明者 岸 文夫	
		東京都大田区下丸子3 丁目30番2 号	トヤ
		ノン株式会社内	
		(72)発明者 石崎 明美	
		東京都大田区下丸子3丁目30番2号 キ	トヤ
		ノン株式会社内	
		(72)発明者 養傷 利明	
		東京都大田区下丸子3丁目30番2号 キ	トヤ
		ノン株式会社内	
		(74)代理人 弁理士 豊田 菩雄 (外1名)	

(54) 【発明の名称】 電子放出素子及びその製造方法、装電子放出案子を用いた電子源並びに両像形成装置

(97)【契約】 [日的】 製造工程が繁雑でなく、均一な電子放出特性 を有する電子放出業子を提供する。 【構成】 起縁性基板1上に、業子電極2及び2'をつ ながった形状で形成し、収集(オンピームにより500 n 川以下の酸小同隙しを形成し、炭化水素パスを含む穿 肥気下で熱処理することにより炭素を主成分とする堆積

物3を上記微小間隙に堆積させてなる電子放出素子。

【特許請求の範囲】

【請求項1】 少なくとも、絶縁性基板と、該絶縁性基 板上に形成された微小間隙を介して対向する一対の電極 と、前記機小間隙に堆積された炭素を主成分とする堆積 物からなることを特徴とする電子放出業子。

【論求項2】 微小間隙が500nm以下であることを 特徴とする請求項1記載の電子放出索子。

【請求項3】 炭素を主成分とする堆積物が、繊維状力 ーポンの集合体であることを特徴とする請求項1又は2 記載の電子放出素子。

【請求項4】 繊維状カーボンが、グラファイト又はア モルファスカーボンもしくはこれらの混合物からなるこ とを特徴とする請求項3記載の電子放出業子。

【請求項5】 絶縁性基板上に 微小開陰を介して対向 する一対の電極を形成する工程と、該電極間間隙に炭素 を主成分とする堆積物を堆積させる工程を有することを 特徴とする電子放出素子の製造方法。

【請求項6】 炭素を主成分とする堆積物の堆積工程 が、炭素化合物の熱分解し程であることを特徴とする諸 求項5記載の電子放出素子の製造方法。

【請求項7】 炭素化合物が炭化水素であることを特徴 とする請求項6記載の電子放出素子の製造方法。

【請求項8】 炭化水素がエチレンであることを特徴と する請求項7記載の電子放出条子の製造方法。 【請求項9】 炭素化合物の熱分解工程が、炭素化合物

を含む雰囲気中で加熱する工程であることを特徴とする 請求項6~8のいずれかに記載の電子放出素子の製造方 法.

【請求項10】 炭素を主成分とする堆積物の堆積工程 が、電極間間除に金属微粒子を形成する工程と、炭素化 30 合物を熱分解して上記金属微粒子を核として繊維状カー ボンを堆積させる工程からなることを特徴とする請求項 5~9のいずれかに記載の電子放出素子の製造方法。

【請求項11】 金属微粒子の形成工程が、当該金属の 有機錯体溶液を電極間除に塗布する工程と、該有機金属 錯体を焼成して金属酸化物とする工程と、該金属酸化物 を週元凝集させる工程からなることを特徴とする請求項 10記載の電子放出素子の製造方法。

【請求項12】 金属酸化物の還元凝集工程が、水素ガ スを含む雰囲気に曝露、或いは該雰囲気中での熱処理工 40 程であることを特徴とする請求項11記載の電子放出業 子の製造方法。

【請求項13】 繊維状カーボンの堆積工程が、エチレ ンガスを含む雰囲気中でエチレンの熱分解温度以上で熱 処理する工程であることを特徴とする請求項10~12 のいずれかに記載の電子放出業子の製造方法。

【請求項14】 金属酸化物の還元凝集工程をエチレン ガスを含む雰囲気中でエチレンの熱分解温度未満で熱処 理して行ない、続けて同じ雰囲気中でエチレンの熱分解

ことを特徴とする請求項10~12のいずれかに記載の 電子放出素子の製造方法。

【請求項15】 請求項1~4のいずれかに記載の電子 放出素子を複数個並列に配置し結繰してなる素子列を少 なくとも1列以上有してなることを特徴とする電子源。 【請求項16】 請求項1~4のいずれかに記載の電子 放出素子を複数配偶列してなる素子列を少なくとも1列 以上有し、該素子を駆動するための配線がマトリクス配 置されていることを特徴とする電子源。

【請求項17】 少なくとも、請求項15記載の電子 源、画像形成部材、及び情報信号により各電子放出業子 から放出される電子線を制御する制御電極を有すること を特徴とする画像形成装置。

【請求項18】 少なくとも、請求項16記載の電子源 と画像形成部材とを有することを特徴とする画像形成装 蓮.

【発明の詳細な説明】

[0001]

れている.

【産業上の利用分野】本発明は、電子放出素子と、該素 20 子を複数個配置してなる電子源、及び該電子源を用いて 構成した表示装置や露光装置等の画像形成装置に関し、 更には、上記電子放出素子の製造方法に関する。 [0002]

【従来の技術】従来、電子放出素子として熱電子源と冷 陰極電子源の2種類が知られており、冷陰極電子源に は、電界放出型(以下FE型と記す)、金属/絶縁層/ 金属型(以下MIM型と記す)や表面伝導型等がある。 【0003】上記FE型の例としては、ダブリュービィ ダイク アンド ダブリュ ダブリュ ドラン著!フ ィールド エミッション」アドバンス イン エレクト

ロンフィジックス, 8, 89 (1956) (W. P. D yke & W. W. Dolan" Field emi ssion", Advance in electro n Physics)或いはシィ エィ スピント「フ ィジカル プロパティズ オブ シン・フィルム フィ ールド エミッション カソーズ ウィズモリブデニウ ム コーンズ」ジャーナル オブ アプライド フィジ 22, 47, 5248 (1976) (C. A. Spin dt" PHYSICAL Properties of thin-film field emission cathodes with molybdeniu m cones" J. Appl. Phys.)等が知ら

【0004】またMIM型の例としては、シィ エィ ミード「ザ トンネル・エミッション アンプリファイ ア」ジャーナル オブ アプライド フィジクス、3 2, 646 (1961) (C. A. Mead" The tunnel-emission amplifie r" J. Appl. Phys.) 等が知られている。 温度以上に加熱して繊維状カーボンの堆積工程を行なう 50 【0005】また、表面伝導型電子放出素子の例として は、エム アイ エリンソン、レィディオ エンジニア リング エレクトロン フィジクス, 10(1965) (M. I. Elinson, Radio Eng. El ectron Phys.)等がある。

[0006]

【発明が解決しようとする課題】上記に挙げたような電 子放出素子を複数個用いて表示装置等を形成する場合、 各素子の電子放出特性が均一であること、及び均一な素 子の作製に整確な工程を伴わないことが要求される。従 って、電子放出素子においては、こういった要求や更な 10 る製造工程の簡略化、より優れた素子を達成するべく鋭 意検討されている。

【0007】本発明の目的は、上記のような状況におい て、繁雑な工程を伴わずに均…な電子放出特性を示す信 類性の高い電子放出素子を提供することであり、更に、 該電子放出業子を用いて電子源、更には画像形成装置を 構成することにある、

[0008]

【課題を解決するための手段及び作用】請求項1~4の 緑性基板上に、微小間隙を介して一対の電極を設け、該 微小間隙に炭素を主成分とする堆積物を有することに特 徴を有する。

【0009】請求項5~14の発明は、上記電子放出素 子の製造方法であって、絶縁性基板上に、微小間隙を設 けて一対の電極を形成し、該微小問院に炭素を主成分と する堆積物を堆積させることを特徴とする。

【0010】請求項15及び16の発明は上記電子放出 素子を複数個配置したことを特徴とする電子源であり、 ことを特徴とする画像形成装置である。

【〇〇11】以下本発明を詳細に説明する。

【0012】図1は本発明の電子放出業子の基本的な構 成を示す例である。図中、1は絶縁性基板、2、2 は 素子電極、3は炭素を主成分とする堆積物である。

【0013】基板1としては、例えば石英ガラス、Na 等の不純物含有量を減少させたガラス、青板ガラス、青 折ガラスにスパッタ法等によりSiO₂を積層した積層 体、アルミナ等のセラミックス等が挙げられる。

【0014】対向する素子電極2,2°の材料として は、一般的導体材料が用いられ、例えばNi、Cr、A u、Mo、W、Pt、Ti、AI、Cu、Pd等の金属 あるいは合金及びPd、Ag、Au、RuOz、Pd-Ag等の金属あるいは金属酸化物とガラス等から構成さ れる印刷連体 I ii 2 Os - S n Oz 等の透明導電体及 びポリシリコン等の半導体導体材料等から適宜選択され 2, .

【0015】素子電極間隙し、素子電極長さWは、応用 される形態等によって設計される。

【0016】素子電極長さWは、電極の抵抗値や電子放 50 ーボン形成時の核となることを見出した。従って本発明

出特性を考慮すると、好ましくは数μm~数百μmであ り、また素子電極厚dは、数百A~数μmである。

【0017】素子電極間除しは、微小であり、好ましく は500 nm以下である。

【0018】本発明の電子放出素子の製造方法について 図2に基づいて説明する。尚、図2において図1と同じ 符号は同じ部材を示すものである。

【0019】(A)基板1を洗剤、純水及び有機溶剤に より十分に洗浄した後、真空蒸着法、スパッタ法等によ り素子電極材料を堆積させた後、フォトリソグラフィー 技術により基板1の面上に素子電極2、2°がつながっ

た状態を形成する(図2(a))。 【0020】(B)次に、収束イオンビーム(FIB) により、所定の間除しを素子電極2、21間に形成する (図2(b)), 間隙しの形成は、上記FIBの他に、

フォトリソグラフィーのプロセスを用いて形成する方 法、或いは、基板1に段差を設けておいて間隙を形成す る方法などが可能である。

【0021】(C)炭素を主成分とする堆積物を間隙し 発明は、上記目的を達成した電子放出素子であって、絶 20 に堆積する。本発明において、該堆積物は、好ましくは 繊維状カーボンであり、グラファイト或いはアモルファ スカーボンからなる。

【0022】繊維状カーボンは、ベンゼンなどの炭化水 素やC()を気相で微粒子を触媒として熱分解した時に生 成するもので、不規則な曲折を示したり、くびれを伴う 場合もある (例えば、アール ティ ケイ ベーカー アンド ビィ エス ハリス:ケミストリィ アンド フィジクス オブ カーボン Vol. 14 p84~ 165. フィリップ エル ウォーカー ジュニア ア 請求項17及び18の発明はそれぞれの電子源を用いた 30 ンド ピーター エィスローワー編,マーセル ディー カー インク (R. T. K. Baker and P. S. Harris: Chemistry and Ph vsics of Carbon, Philip L. Walker Jr. and Petere A. T hrower, MARCEL DEEKER, in c.)).

> 【0023】Feなどの金属表面の、炭化水素ガスの分 解反応における触媒活性は古くから研究されており、エ チレンの分解についても多くの報告がある(例えば、矢 ケ崎えり子・岩崎康裕「遷移金属表面におけるエチレン の化学」: 表面 第29巻879~891頁 1991 年).

【0024】Feの微粒子がある場合には、炭化水素の 存在する雰囲気中で熱処理することにより、微粒子を核 にして繊維状カーボンが形成されることは上記の通り良 く知られている、このFe微粒子はフェライト基板の一 部などのFe化合物を還元して形成したものである。本 発明者等は、電子放出素子の分野において広く用いられ ているPdからなる微粒子でも、Feと同様に繊維状力

において、Pdを繊維状カーボン形成の核として用いると、プロセス最高温度を450℃以下に仰えることができ(Feを用いた場合には950~1000℃である)、他の部材への影響や、製造コストの面から好まし

【0025】 具体的には、Pd等用いる金属の有機錯体 溶液を適布し、加熱焼成して金属酸化物とした後、水薬 ガスを含む雰囲気中に眺露するか感いは該雰囲気中で熱 処理することにより、金属酸化物を選元凝集させ金属做 粒子21とする(図2(c))。

【0026】本発明において、カーボンの形成核として は、上記FeやPdの他にNiが好ましく用いられ、ま た、飯種子の形状をとる必要もなく、突起等繊維状カー ボンの成長の特異点となる形状であれば同様の効果が得 られる。

【0027】上記金属版符子を核として、繊維状力・ボンを堆積させる(図2(d1))。準積方はは、前記したように、炭ル光素等炭素化合物を無分解すれば負く。例えば、エナレンガスを含む雰囲気中でエチレンの熱分解以上の温度で振過度を行なました。エチレンの他にも、メタン、プロパン、プロピレンなどの炭化水素ガス、残いはエクノールやアモレンなどの有機溶剤の蒸気を用いることも可能である。

【0029】また、上記金属微粒子の週元工程を、例え ばエチレンガンを含む雰囲気中でエチレンの熱分解温度 未満で行ない、他いてエチレンの熱分解温度と 理を行なうことにより、金属微粒子の週元1程と繊維状 カーボンの性質工程を連接して行なうことができ、製造 1程の簡素化の上で好ましい。

W.

【0030】尚、表面に熱酸化機を形成したシリコン基 板に検述する実施物と同様の工程でP(軟粒子を形成し でならPは哲子散機をエナレク第四気中熱処理した。 料を走音電子類的域で観察したところ、繊維状カーボン が観察された。これがカーボンであることはX線火電子 分光(XPS)分析、ラマン分光分析により確認した。 また、この機械状カーボンを、透電電子源微域により観 察したところ、格子像が観察され場出性を持つことがわ かった。但し、格子像は非常に乱れており、結晶性は悪い。

【0031】図3は、電子放出素子の電子放出特性を測定するための測定評価系の一例を示す機略構成図で、まずこの測定評価系を説明する。

【0032】図3において、図1と同じ符号は同じ部材を示す。また、31は素子に素子電圧リを印加するための電源、30は素子電路2、2、間を流れる素子電流しる視定するための電流計、34は放出電流1・を播程するためのアノード電極33は下ノード電極34に電圧を印加するための高圧電源、32は放出電流1・を選定するための電流計、35は真空装置、36は排気ボンブである。

【0033】電子飲出業子及びアノード電極34等は真 10 空装置35内に設置され、この真空装置35には不図示 の真空計等の必要な機器が具備されていて、所望の真空 下で電子放出素子の測定評価ができるようになってい え

【0034】排気ポンプ36は、ターボボンプ、ロータ リーボンブ等からなる通常の高鼻空装置系と、イオンボ ンプ等からなる超高変空装置をとから構成されている。 また、真空装置35全体及び電子放出業子の基板1は、 ヒーターにより200で程度まで加熱できるようになっ ている。

20 【0035】以下に述べる電子放出素子の基本特性は、 上記測定評極系のアノード電腦34の電圧を1kV~1 0kVとし、アノード電艦34と電子放出業子の廃離日 を2~8mmとして行った測定に基づくものである。 【0036】まず、放出電流1。及び素子電流1;と、 素子電圧V;との関係の典型的な例を図4に示す。尚、 別4において、放出電流1。は素子電流1;に比べて著 しくかさいので、任意単位で示されている。 【0037】図4方が5明らかなように、未発明の電子放 出帯行は、放出電流1。は対する次の3つの特徴的特性

2 付する。 [(0 3 3 8) まず第1 に、電子放出業子はある電圧(し さい値電圧と呼ぶ: 図5中のVts)以上の業子電圧Vt を印加すると急激に放出電流[t。が増加し、一方しさい 電電圧Vts以下では放出電流 [t。が始が検出されない。 即ち、放出電流 [t。 に対する明確なしきい値電圧Vtsを

持った非線形素子である。 (10039) 第2に、放出電流1。が素子電圧Vr に対 して単調増加する特性 (M1特性と呼ぶ)を有するた め、放出電流1。は素子電圧Vr で制御できる。

40 【0040】第3に、アノード電極34(図)多級)に 捕捉される放出電荷は、来下電圧Vrを印加する時間に 依存する。即ち、アノード電極34に精捉される電荷量 は、来下電圧Vrを印加する時間により制御できる。 【0041】放出電流1。水来下電圧Vrに対してM1 特性を有すると同時に、兼予電流1rも素で電圧Vr 対してM1特性を有する場合もある。このような電子放 出来子の特性の所が図った実体で示す事件である。 方、図4に破壊で示すように、来予電流1rは来下電圧 50 採りを示す場合もある。いずれの特性を示すかは、電 50 採りを示す場合もある。いずれの特性を示すかは、電 50 採りを示す場合もある。いずれの特性を示すかは、電 子放出素子の製法及び測定時の測定条件等に依存する。 但し、素子電流 Ir が素子電圧 Vr に対して VCNR特 性を有する電子放出素子でも、放出電流I。は素子電圧 V:に対してMI特性を有する。

【0042】次に、本発明の電子源における電子放出素 子の配列について説明する。

【0043】本発明の電子源における電子放出素子の配 列方式としては、並列に電子放出素子を配列し、個々の 素子の両端(両素子電極)を配線(共通配線とも呼ぶ) にて夫々結線した行を複数行配列した様型配置と、m本 10 は、その構成元素の一部あるいは全部が同一であって のX方向配線の上に五本のY方向配線を層間絶縁層を介 して設置し、電子放出素子の一対の素子電極に夫々N方 向配線、Y方向配線を接続した配置方式が挙げられる。 これを以後単純マトリクス配置と呼ぶ、まず、この単純 マトリクス配置について詳述する。

【0044】前述した電子放出素子の基本的特性によれ ば、単純マトリクス配置された電子放出素子における放 出電子は、しきい値電圧を超える電圧では、対向する素 子電極間に印加するバルス状電圧の液高値とバルス幅で 制御できる。一方、しきい債電圧以下では殆ど電子は放 20 る。 出されない。従って、複数の電子放出素子を配置した場 合においても、個々の素子に上記パルス状電圧を適宜印 加すれば、入力信号に応じて電子放出業子を選択し、そ の電子放出量が制御でき、単純なマトリクス配線だけで 個別の電子放出素子を選択して独立に駆動可能となる。 【0045】単純マトリクス配置はこのような原理に基 づくもので、本発明の電子源の一例である。この単純マ トリクス配置の電子源の構成について図5に基づいて更 に説明する。

【0046】図5において基板1は既に説明したような 30 を、図6~図8を用いて説明する。尚、図6は表示パネ ガラス板等であり、この基板1上に配列された電子放出 素子54の個数及び形状は用途に応じて適宜設定される ものである。

【0047】m本のX方向配線52は、夫々外部端子D 11, D12,, D10を有するもので、基板1上に、真 空蒸着法、印刷法、スパッタ法等で形成した導電性金属 等である。また、複数の電子放出素子54にほぼ均等に 電圧が供給されるように、材料、膜厚、配線幅が設定さ れている。

【0048】n本のY方向配線53は、大々外部端子D 40 2及びフェースプレート66にフリットガラス等を塗布 y., Dy., Dy. を有するもので、X方向配線52 と同様に作成される。

【0049】これらm本のX方向配線52とn本のY方 向配線53間には、不図示の層間絶縁層が設置され、電 気的に分離されて、マトリクス配線を構成している。 尚、このm、nは共に正の整数である。

【0050】不図示の層間絶縁層は、真空蒸着法、印刷 法、スパッタ法等で形成されたSiO2等であり、X方 向配線52を形成した基板1の全面或は一部に所望の形 状で形成され、特に、X方向配線52とY方向配線53 50 ている。しかし、リアプレート61は主に基板1の強度

の交差部の電位差に耐え得るように、膜厚、材料、製法 が適宜設定される。

【0051】更に、電子放出素子54の対向する素子電 様 (不図示)が、m本のX方向配線52と、n本のY方 向配線53と、真空蒸着法、印刷法、スパッタ法等で形 成された導電性金属等からなる結線55によって電気的 に接続されているものである。

【0052】ここで、m本のX方向配線52と、n本の Y方向配線53と、結線55と、対向する素子電極と

も、また夫々異なっていてもよく、前述の素子電極の材 科等より適宜選択される。これら素子電極への配線は、 素子電極と材料が同一である場合は素子電極と総称する 場合もある。また、電子放出素子54は、基板1或いは 不関示の層間絶縁層上どちらに形成してもよい。

【0053】また、詳しくは後述するが、前記X方向配 線52には、X方向に配列された電子放出素子5.4の行 を入力信号に応じて走査するために、走査信号を印加す る不図示の走査信号印加手段が電気的に接続されてい

【0054】一方、Y方向配線53には、Y方向に配列 された電子放出素子与4の列の各列を入力信号に応じて 変調するために、変調信号を印加する不図示の変調信号 発生手段が電気的に接続されている。更に、各電子放出 素子54に印加される駆動電圧は、当該電子放出素子5 4に印加される走査信号と変調信号の差電圧として供給 されるものである,

【0055】次に、以上のような単純マトリクス配置の 本発明の電子源を用いた本発明の画像形成装置の一例

ル81の基本構成図であり、図7は蛍光膜64を示す図 であり、図8は図6の表示パネル81で、NTSC方式 のテレビ信号に応じてテレビジョン表示を行うための駆 動回路の一例を示すプロック図である。

【0056】図6において、1は上述のようにして電子 放出素子を配置した電子源の基板、61は基板1を固定 したリアプレート、66はガラス基板63の内面に蛍光 膜64とメタルバック65等が形成されたフェースプレ ート、62は支持枠であり、リアプレト61、支持枠6

し、大気中あるいは窒素中で、400~500℃で10 分以上焼成することで封着して外囲器68を構成してい

【0057】図6において、52、53は、電子放出素 子54の一対の素子電極2、2°と接続されたX方向配 線及びY方向配線で、夫々外部端子Dr1~Dre, Dy:~ Dyaを有している。

【0058】外囲器68は、上述の如く、フェースープ レート66、支持枠62、リアプレート61で構成され 10

を補強する目的で設けられるものであり、基板1自体で 十分な強度を持つ場合は別体のリアプレート61は不要 で、基板1に直接支持枠62を封着し、フェースプレー ト66、支持枠62、基板1にて外囲器68を構成して もよい。また、フェースプレート66、リアプレート6 1の間にスペーサーと呼ばれる不図示の支持体を更に設 置することで、大気圧に対して十分な強度を有する外囲 翌68とすることもできる。

【0059】蛍光膜64は、モノクロームの場合は蛍光 体72のみからなるが、カラーの蛍光膜64の場合は、 蛍光体72の配列により、ブラックストライプ(図7 (a)) あるいはプラックマトリクス(図7(b))等 と呼ばれる黒色薄伝材71と蛍光体72とで構成され る。ブラックストライプ、ブラックマトリクスが設けら れる目的は カラー表示の場合必要となる三原色の各単 光体72間の塗り分け部を黒くすることで混色等を目立 たなくすることと、蛍光膜7寸における外光反射による コントラストの低下を抑制することである。黒色導伝材 71の材料としては、通常良く用いられている黒鉛を主 成分とする材料だけでなく、婆電性があり、光の透過及 20 び反射が少ない材料であれば他の材料を用いることもで 3 %.

【0060】ガラス基板73に蛍光体72を塗布する方 法としては、モノクローム、カラーによらず、沈麗法や 印刷法が用いられる。

【0061】また、図6に示されるように、蛍光膜64 の内面側には通常メタルバック65が設けられる。メタ ルバック65の目的は、蛍光体72(図7参照)の発光 のうち内面側への光をガラス基板63側へ鏡面反射する ことにより輝度を向上すること、電子ビーム加速電圧を 30 印加するための電極として作用すること、外囲器68内 で発生した負イオンの衝突によるダメージからの蛍光体 72の保護等である。メタルバック65は、蛍光膜64 の作製後、蛍光膜64の内面側表面の平滑化処理(通常 フィルミングと呼ばれる)を行い、その後AIを真空蒸 着等で堆積することで作製できる。

【0062】フェースプレート66には、更に蛍光膜6 4の導電性を高めるため、蛍光膜64の外面側に透明電 極(不図示)を設けてもよい。

蛍光体72と電子放出素子64とを対応させなくてはい けないため、十分な位置合わせを行なう必要がある。 【0064】外開器68内は、不図示の排気管を通じ、 10の「torr程度の真空度にされ、封止される。ま た、外囲器68の封止を行う直前あるいは封止後に、ゲ ッター処理を行うこともある。これは、外囲器68内の 所定の位置に配置したゲッター (不図示)を加熱し、蒸 着膜を形成する処理である。ゲッターは通常Ba等が主 成分であり、該蒸着膜の吸着作用により、例えば1×1

のである.

【0065】上述の表示パネル81は、例えば図8に示 されるような駆動回路で駆動することができる。尚、図 8において、81は表示パネル、82は走査回路、83 は制御回路、84はシフトレジスタ、85はラインメモ リ、86は同期信号分離回路、87は変調信号発生器、 Vx及びV。は直流電圧源である。

【0066】図8に示されるように、表示パネル81 は、外部場子Dij~Dia、外部場子Dyi~Dya及び高圧 端子Hvを介して外部の電気回路と接続されている。こ の内、外部端子Dxi~Dxaには前記表示パネル81内に 設けられている電子放出素子、即ちm行n列の行列状に マトリクス配置された電子放出素子群を1行(n素子ず つ)順次駆動して行くための走査信号が印加される。 【0067】一方、外部端子Dvi~Dvaには、前記走査 信号により選択された1行の各電子放出素子の出力電子 ビームを制御するための変調信号が印加される。また、 高圧端子Hvには、直流電圧源V。より、例えば10k Vの直流電圧が供給される。これは電子放出素子より出 力される電子ビームに、蛍光体を励起するのに十分なエ ネルギーを付与するための加速電圧である。 【0068】走査回路82は、内部にm個のスイッチン

グ素子(図8中S)~S。で模式的に示す)を備えるも ので、各スイッチング素子S1~S。は、直流電圧電源 V₁の出力電圧もしくは0 V (グランドレベル) のいず れか一方を選択して、表示パネル81の外部端子D:1~ D:aと電気的に接続するものである。各スイッチング素 子S: ~S。は、制御回路83が出力する制御信号T scanに基づいて動作するもので、実際には、例えばFE Tのようなスイッチング機能を有する素子を組み合わせ ることにより容易に構成することが可能である。

【0069】本例における前記直流電圧源V,は、前記 電子放出素子の特性(しきい値電圧)に基づき、走査さ れていない電子放出素子に印加される駆動電圧がしきい 値電圧以下となるような一定電圧を出力するよう設定さ れている。

【0070】制御回路83は、外部より入力される画像 信号に基づいて適切な表示が行われるように、各部の動 作を整合させる働きを持つものである。次に説明する同 【0063】前述の封着を行う際、カラーの場合は各色 40 期信号分離回路86より送られる同期信号Tsyncに基づ いて、各部に対してTscan、Tsft 及びTary の各制御 信号を発生する。

【0071】同期信号分離回路86は、外部から入力さ れるNTSC方式のテレビ信号から、同期信号成分と輝 度信号成分を分離するための回路で、よく知られている ように、周波数分離(フィルター)回路を用いれば、容 易に構成できるものである。同期信号分離回路86によ り分離された同期信号は、これもよく知られるように、 乗直同期信号と水平同期信号よりなる。ここでは、説明 $0.6 \sim 1 \times 10^{-7}$ to r r の真空度を維持するためのも 50 の便宜上 T_{syno} として図示する。一方、前記テレビ信号 から分離された画像の輝度信号成分を便宜上DATA信 号と図示する。このDATA信号はシフトレジスタ84 に 入 かされる。

【0072】シフトレジスタ84は 時系列的にシリア ル人力される前記DATA信号を、画像の1ライン毎に シリアル/パラレル変換するためのもので、前記制御回 路83より送られる制御信号Tatt に基づいて作動す る。この制御信号Tute は、シフトレジスタ84のシフ トクロックであると言い換えてもよい。また、シリアル /パラレル変換された画像1ライン分(電子放出素子の 10 A/D変換器を設けることで行える。 n素子分の駆動データに相当する)のデータは、1a1~ Lanのn個の並列信号として前記シフトレジスタ84よ り出力される。

【0073】ラインメモリ85は、画像1ライン分のデ 一夕を必要時間だけ記憶するための記憶装置であり、制 御回路83より送られる制御信号Taty に従って適宜し n~ linの内容を記憶する。記憶された内容は、la: ~14° 。として出力され、変調信号発生器87に入力さ ns.

よこ~1よ。の各々に応じて、電子放出業子の各々を適 切に駆動変調するための信号源で、その出力信号は、端 子Dx:~Dx:を通じて表示パネル81内の電子放出業子 に印加される。

【0075】前述したように、電子放出素子は電子放出 に明確なしさい値電圧を有しており、しきい値電圧を超 える電圧が印加された場合にのみ電子放出が生じる。ま た しきい値電圧を超える電圧に対しては電子放出素子 への印加電圧の変化に応じて放出電流も変化して行く、 電子放出素子の材料、構成、製造方法を変えることによ 30 応じてレベルシフト回路等を付け加えてもよい。また、 り、しきい値電圧の値や印加電圧に対する放出電流の変 化度合いが変わる場合もあるが、いずれにしても以下の ことがいえる。

【0076】即ち、電子放出業子にパルス状の電圧を印 加する場合、例えばしきい値電圧以下の電圧を印加して も電子放出は生じないが、しきい値電圧を超える電圧を 印加する場合には電子放出を生じる。その際、第1には 電圧パルスの波高値を変化させることにより、出力され る電子ビームの強度を制御することが可能である。第2 れる電子ビームの電荷の総量を制御することが可能であ る.

【〇〇77】従って、入力信号に応じて電子放出素子を 変調する方式としては、常圧変調方式とパルス幅変調方 式とが挙げられる。電圧変調方式を行う場合、変調信号 発生器87としては、一定の長さの電圧パルスを発生す るが、入力されるデータに応じて適宜パルスの波高値を 変調できる電圧変調方式の回路を用いる。また、バルス 福変調方式を行う場合、変調信号発生器87としては、 一定の波高値の電圧パルスを発生するが、入力されるデ 50 はこれに限られるものではなく、PAL、SECAM方

ータに応じて適宜パルス幅を変調できるパルス幅変調方 式の回路を用いる。

【0078】シフトレジスタ84やラインメモリ85 は、デジタル信号式のものでもアナログ信号式のもので もよく、画像信号のシリアル/パラレル変換や記憶が所 定の速度で行えるものであればよい。

【0079】デジタル信号式を用いる場合には、同期信 号分離回路86の出力信号DATAをデジタル信号化す る必要がある。これは同期信号分離回路86の出力部に

【0080】また、これと関連して、ラインメモリ85 の出力信号がデジタル信号かアナログ信号かにより、変 測信号発生器87に設けられる回路が若干異なるものと なる.

【0081】即ち、デジタル信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている D/A変換回路を用い、必要に応じて増幅回路等を付け 加えればよい。また、デジタル信号でパルス幅変調方式 の場合、変調信号発生器87は、例えば高速の発振器及 【0074】変調信号発生器87は、前記阈像データ1 20 び発振器の出力する波数を計数する計数器(カウンタ) 及び計数器の出力値と前記メモリの出力値を比較する比 較器(コンパレータ)を組み合わせた回路を用いること で容易に構成することができる。更に、必要に応じて、 比較器の出力するパルス幅変調された変調信号を電子放 出案子の駆動電圧にまで電圧増幅するための増幅器を付 け加えてもよい。

> 【0082】一方、アナログ信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている オペアンプ等を用いた増幅回路を用いればよく、必要に

アナログ信号でパルス幅変調方式の場合、例えばよく知 られている電圧制御型発振回路 (VCO) を用いればよ く、必要に応じて電子放出業子の駆動電圧にまで電圧増 偏するための増編器を付け加えてもよい。

【0083】以上のような表示パネル81及び駆動回路 を有する本発明の画像形成装置は、端子Dii~Dii及び Dyl~Dynから電圧を印加することにより、必要な電子 放出素子から電子を放出させることができ、高圧端子H vを通じて、メタルバック55あるいは透明電極 (不図) には、電圧パルスの幅を変化させることにより、出力さ 40 示)に高電圧を印加して電子ビームを加速し、加速した 電子ビームを蛍光膜54に衝突させることで生じる励起 発光によって、NTSC方式のテレビ信号に応じてテ レビジョン表示を行うことができるものである。

> 【0084】尚、以上説明した構成は、表示等に用いら れる本発明の画像形成装置を得る上で必要な觀略構成で あり、例えば各部材の材料等、詳細な部分は上述の内容 に限られるものではなく、画像形成装置の用途に適する よう、適宜選択されるものである。また、入力信号とし てNTSC方式を挙げたが、本発明に係る画像形成装置

【0121】図中120はディスプレイパネル、121 はディスプレイパネルの駆動回路、122はディスプレ イコントローラ、123はマルチプレクサ、124はデ コーダ、125は入出力インターフェース回路、126 はCPU、127は画像生成回路、128、129及び 130は画像メモリインターフェース回路、131は両 像入力インターフェース回路、132及び133はTV 信号受信回路、134は入力部である。(尚、本表示装 置は、例えばテレビジョン信号のように映像情報と音声 情報の両方を含む信号を受信する場合には、当然映像の 10 表示と同時に音声を再生するものであるが、本発明の特 徴と直接関係しない音声情報の受信、分離、再生、処 理、記憶などに関する回路やスピーカーなどについては 説明を省略する。)

- 【0122】以下、画像信号の流れに沿って各部を説明 してゆく。
- 【0123】先ず、TV信号受信回路133は、例えば 電波や空間光通信などのような無線伝送系を用いて伝送 されるTV画像信号を受信するための回路である。受信 するTV信号の方式は特に限られるものではなく。例え 20 ば、NTSC方式、PAL方式、SECAM方式などの 諸方式でも良い。また、これらよりさらに多数の走査線 よりなるTV信号(例えばMUSE方式をはじめとする いわゆる高品位TV)は、大面積化や大画素数化に適し た前記ディスプレイパネルの利点を生かすのに好適な信 号源である。TV信号受信回路133で受信されたTV 信号は、デコーダ124に出力される。
- 【0124】また、画像TV信号受信回路132は、例 えば同軸ケーブルや光ファイバーなどのような有線伝送 系を用いて伝送されるTV画像信号を受信するための回 30 路である。前記TV信号受信回路133と同様に、受信 するTV信号の方式は特に限られるものではなく、また 本回路で受信されたTV信号もデコーダ124に出力さ
- 【0125】また、画像入力インターフェース回路13 1は、例えばTVカメラや画像読取スキャナーなどの画 像入力装置から供給される画像信号を取り込むための回 路で、取り込まれた画像信号はデコーダ124に出力さ ns.
- 【0126】また、画像メモリインターフェース回路1 40 図形情報を入力する。 30は、ビデオテープレコーダー (以下VTRと略す) に記憶されている画像信号を取り込むための回路で、取 り込まれた画像信号はデコーダ124に出力される。
- 【0127】また、画像メモリインターフェース回路1 29は、ビデオディスクに記憶されている画像信号を取 り込むための回路で、取り込まれた画像信号はデコーダ 124に出力される。
- 【0128】また、画像メモリ インターフェース回路 128は、いわゆる静止両ディスクのように、静止画像

- 1.8 の回路で、取り込まれた静止画像データはデコーダ12 4に出力される。
- 【0129】また、入出力インターフェース回路125 は、本表示装置と、外部のコンピュータ、コンピュータ ネットワークもしくはプリンタなどの出力装置とを接続 するための回路である。画像データや文字・図形情報の 入出力を行なうのはもちろんのこと、場合によっては本 表示装置の備えるCPU126と外部との間で制御信号 や数値データの入出力などを行なうことも可能である。 【0130】また、画像生成回路127は、前記入出力 インターフェース回路125を介して外部から入力され る画像データや文字・図形情報や、或いはCPU156 より出力される画像データや文字・図形情報に基づき表 示用画像データを生成するための回路である。本回路の 内部には、例えば画像データや文字・図形情報を蓄積す るための書き換え可能メモリや、文字コードに対応する 画像パターンが記憶されている読み出し専用メモリや、 画像処理を行なうためのプロセッサなどをはじめとして 画像の生成に必要な回路が組み込まれている。
- 【0131】本回路により牛成された表示用画像データ は、デコーダ124に出力されるが、場合によっては前 記入出力インターフェース回路12ラを介して外部のコ ンピュータネットワークやプリンターに出力することも 可能である。
- 【0132】また、CPU126は、主として木表示装 層の動作制御や、表示画像の生成、選択、編集に関わる 作業を行なう。
- 【0133】例えば、マルチプレクサ123に制御信号 を出力し、ディスプレイパネルに表示する画像信号を適 宣選択したり組み合わせたりする。また、その際には表 示する画像信号に応じてディスプレイパネルコントロー ラ122に対して制御信号を発生し、画面表示周波数や 走査方法(例えばインターレースかノンインターレース か)や一両面の走査線の数など表示装置の動作を適宜制 御する。
- 【0134】また、前記画像生成回路127に対して画 像データや文字・図形情報を直接出力したり、或いは前 記入出力インターフェース回路125を介して外部のコ ンピュータやメモリをアクセスして画像データや文字・
- 【0135】尚、CPU126は、むろんこれ以外の目 的の作業にも関わるものであっても良い。例えば、バー ソナルコンピュータやワードプロセッサなどのように、 情報を生成したり処理する機能に直接関わっても良い。 【0136】或いは、前述したように入出力インターフ ェース回路125を介して外部のコンピュータネットワ 一クと接続し、例えば数値計算などの作業を外部機器と 協同して行なっても良い。
- 【0137】また、入力部134は、前紀CPU126 データを記憶している装置から画像信号を取り込むため 50 に使用者が命令やプログラム、或いはデータなどを入力

するためのものであり、例えばキーボードやマウスの 他、ジョイスティック、バーコードリーダー、音声認識 装置など多様な入力機器を用いることが可能である。 【0138】また、デコーダ124は、前記127ない し133より入力される種々の画像信号を3原色信号、 または輝度信号とI信号、Q信号に逆変換するための回 路である。尚、同図中に点線で示すように、デコーダ1 2.4は内部に画像メモリを備えるのが望ましい。これ は、例えばMUSE方式をはじめとして、逆変換するに 際して画像メモリを必要とするようなテレビ信号を扱う ためである。また、画像メモリを備えることにより、静 止画の表示が容易になる、或いは前記画像生成回路 1 2 7及びCPU126と協同して画像の間引き、補間、拡 大、縮小、合成をはじめとする画像処理や編集が容易に 行なえるようになるという利点が生まれるからである。 【0139】また、マルチプレクサ123は前記CPU 126より入力される制御信号に基づき表示画像を適宜 選択するものである。即ち、マルチプレクサ123はデ コーダ124から入力される逆変換された画像信号のう ちから所望の画像信号を選択して駆動回路121に出力 20 する。その場合には、…画面表示時間内で画像信号を切 り換えて選択することにより、いわゆる多画面テレビの ように、一画面を複数の領域に分けて領域によって異な る画像を表示することも可能である。

- 【0140】また、ディスプレイパネルコントローラ1 22は、前記CPU126より人力される制御信号に基 づき駆動回路121の動作を制御するための回路であっ。
- 【0141】先ず、ディスプレイパネルの基本的な動作 に関わるものとして、例えばディスプレイパネルの駆動 30 用電源(不図示)の動作シーケンスを制御するための信 号を駆動回路121に対して出力する。
- 【0142】また、ディスアレイパネルの駆動方法に関 わるものとして、例えば画面表示周波数や走査方法(例 えばインターレースかノンインターレースか)を制御す るための信号を駆動回路121に対して出力する。
- 【0143】また、場合によっては表示面像の剪度、コントラスト、色別、シャープネスといった衝質の割整に 関わる制御信号を駆動回路121に対して出力する場合 もある。
- 【0144】また、原動回路 121は、ディスアレイバル120に印加する駆動信号を発生するための回路であり、前記デルチアレクサ123から入力される画像信号と、前記ディスプレイバネルコントローラ122より入力される制御信号に著った一数件するものである。 【0145】以上、各部の機能を説明したが、図12に阿示した情報により、本表示装置においては多様を画像情報を測りた方式を指令指数に入っている。

おいて運変換された後、マルチアレクサ123において 連宜選択され、原動回路121に入力された。一方、デ スプレイコントローラ122は、表示する画盤信号に 応じて駆動回路121の動件を制御するための制御信号 を発生する、駆動回路121は、上記画像信号と制御信号 号に基づいてディスプレイバネル120に駆動信号を印 加する。これにより、ディスプレイバネル120におい て画像が完示される。これらの一連の動件は、CPU1 26により抵抗的に制脚される。

2.0

- [0146]また、本表示装置においては、前記デコーダ124に内蔵する両線メモリや、画像生成回路127 及びCPU126が同かすることにより、単化物数の 俊情報の中から選択したものを表示するだけでなく、表 示する画像情報に対して、例えば拡大、格外、回転、移 カーエッ学機関、閉りき、補信、色変換、電の破解様比 変換などをはじめとする画像処理や、合成、消去、接 校、入れ替え、ほか込みなどをはじめとする画像編集を 行なったとも可能である。また、本実験例の即では、 特に触れなかったが、上記画像処理や画像編集と同様 に、音声情報に関しても処理や画像編集を行なうための専用 回路を設けてもほい。
- 【0147】続って、未表示装置は、テレビジョン放送の表示機器、テレビ会議の端末機器、静計画像及び動画 使を扱う前端線機器、コンヒューターの端末機器、 デンロセッサをはじめとする事務用端末機器。ゲーム 機能の機能を一台で兼は個えることが可能で、産業用 戦化は民生用して複数の工所が無限が
- 【0148】尚、上記図12は、電子放出素子を電子源とするディスプレイパネルを用いた表示装置の構成の一
- 何を示したに過ぎず、これのAに限定されるものでない。 とは言うまでもない。例えば図12の情度要素のうち 使用目的上必要のない機能に関わる回路は書いても差し 支えない。またこれとは逆に、使用目的によってはさら は構皮要素を追加しても良い、例えば、未未完整量をテ レビ電話機として応用する場合には、テレビカメラ、音 声マイク、照明機、モデムを含む送受信回路などを構成 要素に追加するのが好達である。
- 【0149】本表示装置においては、とりわけ電子放出 素子を電子源とするディスプレイパネルの薄型化が容易
- 40 なため、表示装置の現行さを小さくすることができる。 それに加えて、電子放出素子を電子渡とするディスプレイバネルは大画面化が容易で到度が高く現野角特性にも 優れるため、本表示装置は臨場恋あよれ迫力に富んだ画 像を視定性長く表示することが可能である。
 - 【0150】更に、本発明の電子源は各電子放出素子間での電子放出特性が均一であるため、形成される画像の両質が高く、また高精細な画像の表示も可能である。 【0151】
- 20に表示することが可能である。即ち、テレビジョン [発明の効果]以上説明したように、本発明によれば、 放送をはじめとする各種の画像信号はデコーダ124に 50 良好な電子放出特性を示す電子放出業子を信頼性高く提

21

供することができ、該素子の作製に当たり、特に繁雑な 工程や効果な素材を用いることもない。従って、当該素 子を複数用いてなる本発明の電子源、更に面像形成装置 においては、各業子によって形成される環点の態度が均 一でむらがないため、高品質な画像の形成が可能とな

【図面の簡単な説明】

【図1】本発明の電子放出素子の基本構成図である。

【図2】本発明の電子放出素子の製造工程例を示す図で ある。

【図3】本発明の電子放出素子の電子放出特性を評価す るための測定評価系を示す図である。

【図4】木発明の電子放出素子の電子放出特性を示す図 である.

【図5】本発明の単純マトリクス電子源の模式図であ

【図6】本発明の画像形成装置の一実施態様を示す図で

【図7】本発明の画像形成装置に用いる蛍光膜を示す図

【図8】本発明の画像形成装置の一実施態様のブロック

図である。

【図9】本発明の梯子型電子源の模式図である。 【図10】梯子型電子源を用いた本発明の画像形成装置

を示す図である。

【図11】本発明の電子源の測定評価系を示す図であ

【図12】本発明の実施例4の画像形成装置の応用例の ブロック図である。

【符号の説明】

1 絶縁性基板

2、2' 素子電極

3 炭素を主成分とする堆積物

21 金属微粒子

30 電流計

31 電源

32 電流計

33 高圧電源

34 アノード電極

35 真空装置 36 排気ポンプ

52 X方向配線

53 Y方向配線

54 電子放出素子

55 結線

61 リアプレート

62 支持枠

63 ガラス基板

64 蛍光膜

65 メタルバック

66 フェースプレート

68 外囲器

71 黑色導伝材

10 72 蛍光体

81 表示パネル 82 走査回路

83 制御回路

84 シフトレジスタ

85 ラインメモリ

86 同期信号分離回路

87 変調信号発生器

92 グリッド電極

93 開口

20 9.4 共通配線 111 高空槽

112 窓

114 素子本体

115 X方向駆動用配線

116 Y方向駆動用配線

117 ドライバー

118 引き出し電極 119 電源

120 ディスプレイパネル

30 121 駆動回路

122 ディスプレイパネルコントローラ

123 マルチプレクサ

124 デコーダ

125 入出力インターフェース

126 CPU 127 面像牛成同路

128 画像メモリーインターフェース

129 画像メモリーインターフェース

130 画像メモリーインターフェース

40 131 画像入力メモリーインターフェース

132 TV信号受信回路

133 TV信号受信回路

134 入力部

130 ディスプレイパネル

【図12】

