Classification

(IIK172 Introduction to Data Analytics)

Classification

- One of the most frequent task in analytics
 - Without paying attention, we are all the time classifying things
 - We perform a classification task when:
 - Marking a comment as rude or polite
 - Adding someone to our social network
 - Telling our child if an animal in the zoo is a bear, bird, cat etc.
 - Reading numbers from a sheet of paper
- The main difference from Regression is that in classification the target is discrete

Classification

Classification Task

- Predictive task where a label to be assigned to a new, unlabeled, object, given the value of its predictive attributes, is a qualitative value representing a class or category.
- Classification is the problem of identifying to which of a set of categories a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.

Example

Name	Age	Company	
Andrew	51	Good	
Bernhard	43	Good	
Dennis	82	Good	
Eve	23	Bad	
Fred	46	Good	
Irene	29	Bad	
James	42	Good	
Lea	38	Good	
Mary	31	Bad	

If age < 32 Then company is Bad Else company is Good

Example

Name	Age	Education level	Company	
Andrew	51	1.0	Good	
Bernhar				
d	43	2.0	Good	
Dennis	82	3.0	Good	
Eve	23	3.5	Bad	
Fred	46	5.0	Good	
Irene	29	4.5	Bad	
James	42	4.0	Good	
Lea	38	5.0	Bad	
Mary	31	3.0	Good	

If person > decision border Then company is Bad Else company is Good

Classification Algorithms

- Dozens of algorithms exist and a lot of them have many variations
- The algorithms can be classified into 4 categories
 - Distance-based algorithms
 - Probability-based algorithms
 - Search-based algorithms
 - Optimization-based algorithms

Classification Algorithms: Distance-based

- Distance-based algorithms
 - K-nearest Neighbor
 - Case-based Reasoning

Classification Algorithms: Probability-based

- Probability-based algorithms
 - Logistic Regression
 - Naïve Bayes

Classification Algorithms: Search-based

- Search-based algorithms
 - Decision Tree
 - Random Forest

Classification Algorithms: Optimization-based

- Optimization-based algorithms
 - Support Vector Machines
 - Artificial Neural Networks

K-nearest Neighbor Algorithm

Algorithm K-NN test algorithm.

- 1: INPUT D_{train} , the training set
- 2: INPUT D_{test} , the test set
- 3: INPUT *d*, the distance measure
- 4: INPUT x_i objects in the test set
- 5: INPUT *K*, the number of neighbors
- 6: INPUT *n*, the number of objects in the test set
- 7: **for all** object x_i in D_{test} **do**
- 8: **for all** object x_i in D_{test} **do**
- Find the k objects from D_{train} closest to x_i according to the chosen distance measure d
- 10: Assign x_i the class label most frequent in the k closest objects

K-nearest Neighbor Algorithm

Pros

- Its simplicity
- Good predictive power in several problems
- It is inherently incremental

Cons

- k-NN can take a long time to classify a new object
- The use of only local information to classify new objects
- Sensitive to the presence of irrelevant attributes and outliers
- Predictive quantitative attributes need to be normalized

Decision Tree

What is it?

- A technique to create easily interpretable flowchart-like models
- The new (classifiable) object starts at the root node
- At each node, the object travels down based on the value of one of it's attribute
- The problem space is split by the node along the axis of the attribute
- Leaf nodes are output nodes, at each leaf node we have an assigned output value

	I	I	I	1
	crust		filling	
Example	size	shape	size	Class
<i>e</i> 1	big	circle	small	pos
<i>e</i> 2	small	circle	small	pos
<i>e</i> 3	big	square	small	neg
e4	big	triangle	small	neg
<i>e</i> 5	big	square	big	pos
<i>e</i> 6	small	square	small	neg
<i>e</i> 7	small	square	big	pos
<i>e</i> 8	big	circle	big	pos

Example from An Introduction to Machine Learning by Miroslav Kubat

Decision Tree

Pros

- Its simple and interpretable as flowchart or a set of rules
- Very robust: Can handle outliers and missing values, no need to normalize, does not care about attribute correlation (all thanks to handling one attribute at a node)

Cons

- Fails at complex models where attribute interrelations are important
- Can only split along an axis
- Only able to learn $x_i \le a$ rules, where x_i is a predictive attribute and a is a constant

What is it?

- A technique allowing us to create good generalizing models that separate the problem space
- Unlike logistic regression the model clearly decides the class label instead of probabilistic result
- Unlike Neural Networks we find the most optimal solution to split the data by finding the line that maximizes the margin with respect to the support vectors
- Introduces the kernel trick to transform data into linearly separable representation

Illustration

- The thick line is the class separator, the thin lines are the support vectors for each class
- The class separator is the best fit for maximizing margin size
- We can allow some slack variables inside the margin zone to increase margin size

- Out of the many possible separators
 SVM will find the most optimal one
- Greater margin means better generalized model

Kernel function

- A technique to increase dimensionality in order to transform a non-linear problem into a linear one
- There are also more advanced kernels that can solve non-linear problems these are Radial Basis Function (RBF) and Polynomial kernel

Pros

- Not random, same results achieved between runs (deterministic)
- Good performance in many problems
- Good theoretical foundations

Cons

- Very sensitive to hyperparameter values
- Sensitive to outliers, magnitude difference between variables (needs normalization)
- Training time grows at least quadratically with increased training samples

Measuring predictive performance

- Assess predictive performance of a classification model
 - How frequent the predicted labels are the true class labels?
 - Model predictive performance must be better than predicting in the majority class
 - Class with the largest number of objects

Measuring predictive performance

 Confusion matrix reports the predictive performance of a binary classifier

Predicted class

- True class
 - Positive class
 - Negative class
- Predicted class
- Each cell contains the count
- Can be easily extended to multiclass problems

p n

True positives (TP)

False positives (FP)

False negatives (FN)

True negatives (TN)

Measuring predictive performance

relevant elements

selected elements

How many relevant items are selected? e.g. How many sick people are correctly identified as having the condition.

Sensitivity= Specificity

How many negative selected elements are truly negative? e.g. How many healthy peple are identified as not having the condition

Specificity =

$$\frac{FP}{FP + TN}$$

 $\frac{FN}{TP + FN}$

False positive rate (FPR) = 1-TNR

False negative rate (FNR) = 1-TPR

 $\frac{TP}{TP + FN}$

 $\frac{TN}{TN + FP}$

True positive rate (TPR), also known as recall or sensitivity

True negative rate (TNR), also known as specificity

$$\frac{TP}{TP + FP}$$

 $\frac{TN}{TN + FN}$

Positive predictive value (PPV), also known as precision

Negative predictive value (NPV)

$$\frac{TP + TN}{TP + TN + FP + FN}$$
 Accuracy

 $\frac{2}{1/\operatorname{precision} + 1/\operatorname{recall}}$ F1-measure

Thank You!