Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа №4 Сегментация изображений

Студенты: Бахтаиров Р.А.,

Сайфуллин Д.Р.

Поток: Tex.3p R23 1.1

Преподаватель: Шаветов С.В.

Содержание

1	Цель работы	2
2	Изображение, которое будем использовать для проверки функций	2
3	Изначальный код работы	5
4	Бинаризация изображений 4.1 Среднее арифметическое 4.2 На основе модуля градиента 4.3 Статистический метод Отсу 4.4 Адаптивный метод	5 5 6 7 8
5	Сегментация 1: по принципу Вебера	8
6	Сегментация 2: с помощью пространства CIA Lab	9
7	Сегментация 3: текстуры	11
8	Выводы	14
9	Ответы на вопросы	14

1 Цель работы

Целью этой работы будет изучение методов сегментации изображений по разным признакам

2 Изображение, которое будем использовать для проверки функций

Рис. 1: Изначальное изображение

Рис. 2: Изначальное изображение

Рис. 3: Изначальное изображение

Рис. 4: Изначальное изображение

3 Изначальный код работы

Весь код работы будет находится в прикреплённом файле. Далее в работе будут разбираться методы, которые мы применили в этом коде, но не он сам. В коде по ссылке приведены все разъяснения

https://github.com/RomanBakhtairov/CV-lab-4

4 Бинаризация изображений

Бинаризацию можно назвать довольно простым и прямолинейным методом преобразования изображения. В её основе лежит замена пикселей по следующему правилу.

$$I_{\text{new}}(x,y) = \begin{cases} 0, & I(x,y) \leqslant t, \\ 1, & I(x,y) > t \end{cases}$$

Как можно понять, если пиксель по интенсивности меньше нашего порога t, то он равне 0, иначе 1. Конечно, стоит понимать, что под 1 подразумевается максимальное значение интенсивности. В итоге мы получим чёрно-белое изображение без градации цвета. Стоит также отметить, что "зону выделения" можно ограничить не только снизу, но и сверху, причём сделать это одновременно. Достаточно лишь добавить ещё один порог:

$$I_{\text{new}}(x,y) = \begin{cases} 0, & I(x,y) \leq t_1, \\ 1, & t_1 < I(x,y) \leq t_2, \\ 0, & I(x,y) > t_2 \end{cases}$$

Вот пример применения данного метода

Посчитали ручками

функцией cv.threshold

Рис. 5: Сравнение разных реализаций определённого нами порога t=150

Как можно видеть, метод работает.

Наибольший интерес представляют методы подбора того самого порога, чтобы выделить то, что нам необходимо. Вот некоторые из таких методов

4.1 Среднее арифметическое

Для данного метода определим порог бинаризации как среднее африметическое итенсивности изображения:

$$t = \frac{I_{max} - I_{min}}{2}$$

Вот пример применения данного метода:

Бинаризация по среднему значению

Рис. 6: Получилось t = 128

У этого метода есть кое-какая проблема. Если изображение в целом тёмное, при этом имеет небольшой контрастный участок с очень высокой яркостью, то сущетвует немаленькая возможность полностью закрыть изображение.

4.2 На основе модуля градиента

Идея данного метода заключается в том, чтобы "выделить" интенсивности пикселей, рядом с которыми происходит резкий перепад значений градиента. Таким образом можно провести бинаризации по контуру двух сильно разных по интенсивности объектов. Таким образом мы определяем градиент:

$$G(x,y) = \max \{ |I(x+1,y) - I(x-1,y)|, |I(x,y+1) - I(x,y-1)| \}$$

Таким образом определяем значение порога

$$t = \frac{\sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} I(x,y)G(x,y)}{\sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} G(x,y)}.$$

Пример работы данного алгоритма:

Бинаризация по градиенту

Рис. 7: Получилось t = 101

4.3 Статистический метод Отсу

Данный метод обычно и применяют, когда необходимо выполнить бинаризацию изображения. Идея его заключается в создании двух классов, дисперсию внутри которых минимализируют, а между которыми максимизируют. Ниже представлен алгоритм работы:

- 1. Вычисление гистограммы интенсивностей изображения и вероятности $p_i = \frac{n_i}{N}$ для каждого уровня интенсивности, где n_i число пикселей с уровнем интенсивности i, N число пикселей в изображении.
- 2. Задание начального порога t=0 и порога $k\in(0,L)$, разделяющего все пиксели на два класса, где L максимальное значение интенсивности изображения. В цикле для каждого значения порога от k=1 до k=L-1:
 - (a) Вычисление вероятностей двух классов $\omega_j(k)$ и средних арифметических $\mu_j(k)$, где $j=\overline{1,2}$:

$$\omega_1(k) = \sum_{s=0}^k p_s,\tag{1}$$

$$\omega_2(k) = \sum_{s=k+1}^{L} p_s = 1 - \omega_1(k), \tag{2}$$

$$\mu_1(k) = \sum_{s=0}^k \frac{s \cdot p_s}{\omega_1},\tag{3}$$

$$\mu_2(k) = \sum_{s=k+1}^L \frac{s \cdot p_s}{\omega_2}.\tag{4}$$

(b) Вычисление межклассовой дисперсии $\sigma_b^2(k)$:

$$\sigma_b^2(k) = \omega_1(k)\omega_2(k) (\mu_1(k) - \mu_2(k))^2$$
.

- (c) Если вычисленное значение $\sigma_b^2(k)$ больше текущего значения t, то присвоить порогу значение межклассовой дисперсии $t = \sigma_b^2(k)$.
 - (d) Наилучший порог будет соответствовать максимуму межклассовой дисперсии

Условно можно воспринимать данный метод, как "кластеризацию"интенсивностей, порогом же будет граница между этими "кластерами". Ниже представлен пример работы этого алгоритма:

Рис. 8: Получилось t=113

4.4 Адаптивный метод

Идея работы адаптивного метода заключается в работе не со всем изображением, а лишь с его фрагментами.

Рис. 9: Локально по среднему

Как видем, получилось довольно интересно

5 Сегментация 1: по принципу Вебера

Данный способ сегментации идейно прост. Мы разделяем изображение на слои, используя функцию Вебера. Каждому слою мы присваиваем значение минимального элемента внутри него. Сам "шаг"разделения - функция Вебера - основана на идеи,

что человеческий глаз плохо воспринимает значенения серого между такими слоями, так что можно применять такие группировку без сильной потери в инофрмации на изображении.

Сама фукнция Вебера

$$W(I) = \begin{cases} 20 - \frac{12I}{88}, & 0 \le I \le 88, \\ 0.002(I - 88)^2, & 88 < I \le 138, \\ \frac{7(I - 138)}{117} + 13, & 138 < I \le 255. \end{cases}$$

Пример применения сегментации с помощью функции Вебера

Рис. 10: Гоголь

Видно разделение на слои, но также есть некоторая зернистость

6 Сегментация 2: с помощью пространства CIA Lab

В отличии от цветового профиля RGB в цветовом пространстве Lab цвет пикселей отделён от яркости. Это позволяет работать с объектам одного цвета, даже если они освещены по разному. L - яркость от 0 до 100, а - от зелёного(-128) до красного(127), b - от синего до жёлтого(в том же диапазоне). Для каждого пикселя мы вычисляем значения евклидовой нормы от разности необходимых параметорм а и b к тем, которые принадлежат пикселю. В итоге получается двухмерная карта значений расстояния между пикселем и цветом. Затем проводим тоже самое с другими наборами пробных цветов кластеризации (a,b)

В итоге мы сравниваем значения на каждой из этих карт расстояний до каждого цвета и присуждаем пиксель к тому классу, к которму он окажется ближе всех. Данный метод работает шире, чем, к примеру, подбор только красных пикселей. Он позволяет выделить пиксели, которые, к примеру, "скорее красные, чем синии". Что позоволяет выполнять менее ограниченную кластеризацию.

Для сегмента 1

Рис. 11: Выделили небо

Рис. 12: Выделили траву

Для сегмента 3

Рис. 13: Целились в дом

Данный метод справился хорошо, хотя метки пришлось выбирать вручную

7 Сегментация 3: текстуры

В данном разделе попытаемся сегментировать изображение, используя разделение по характеристикам текстур.

За эти самые характеристики текстур отвечают такие параметры, как дисперсия, среднее значение, энтропия, мера гладкости и т.д. Вот методы вычисления некоторых из них:

Центральный момент порядка п

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i),$$

где L — число уровней интенсивностей, m — среднее значение случайной величины z:

Среднее значение:

$$m = \sum_{i=0}^{L-1} z_i p(z_i).$$

Мера гладкости:

$$R = 1 - \frac{1}{1 + \sigma^2(z)},$$

Стандартное отклонение:

$$s = \sigma(z)$$
.

Энтропия:

$$E = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i).$$
(6)

Мера однородности:

$$U = \sum_{i=0}^{L-1} p^2(z_i).$$

Для изначальной сегментации по текстурам посчитаем любой из данных парамеров в ограниченной окрестности для каждого пикселя, после чего применим бинаризацию. В итоге получим маску, которая выражает место нахождения текстуры.

После такой сегментации обычно появляется довольно много шума, поэтому с помощью специальных функций мы удаляем все объекты с небольшой площадью и заполняем пикселями пустоты (где это необходимо)

Вот, что получилось у нас, используя сегментацию по мере относительной гладкости:

Сегментировали

Рис. 14: Найденная нами маска

Просто бинаризовали Отсу

Рис. 15: Просто применили Отсу

Данный метод сработал лучше, чем бинаризация по Отсу Как можем видеть данный метод довольно хорошо подцепил необходимую текстуру. Давайте теперь попобуем оценить некоторые параметры для каждой текстуры

- (а) По среднему(начальному моменту первого порядка) $m_{clouds} \approx 110$ грубо-переодическая $m_{sky} \approx 14$ очень гладкая
- (b) По квадратичному отклонению s $s_{clouds} \approx 76.4$ грубая $s_{sku} \approx 23.8$ переодически -гладкая
- (c) И то, что назвали 3-им моментом, но по факту должно быть коэффициентом ассиметрии(так как иначе получаются слишком большие значения) $\mu_{3_{clouds}} \approx -0.32 \text{ очень грубая}$ $\mu_{3_{sky}} \approx 1.16 \text{ сильно переодическая}$

Из чего можно сделать вывод, что облака - грубая текстура, а небо гладкая. Думаю, "неуверенность" некоторых коэффициентов связана с выбросами и тем, что тяжело разделить данное изображение только на 2 текстуры.

8 Выводы

В данной работе мы научились сегментировать изображения по нескольким приниципам: от отделения всех ненужных цветов по нижней границе до работы с цветами и их кластеризацией. Научились определять текстуры на изображениях, а также познакомились с эффективными методами бинаризации.

9 Ответы на вопросы

- (а) В каких случаях целесообразно использовать сегментацию по принципу Вебера?
 - -Когда в изображении нету перемешивание цветов с сильными контрастами, что может привести к появлению зернистостости. Данный метод также подходит, когда не страшны потери небольших деталей градации интенсивности цветов
- (b) Какие значения имеют цветовые координаты а и b цветового пространства СІЕ Lab в полутновом изображении?
 - -Значения этих параметров не должно влияеть на полутоновое изображение. Идея формата Lab в том, что за полутоновое изображение полностью отвечает канал L
- (c) Зачем производить сегментацию в цветовом пространстве СІЕ Lab, а не в исходном RGB?
 - -Иначе бы на нашу сегментацию очень сильно влияла бы освещённость объектов

(d) Что такое цветовое пространство и цветовой охват?

-цветовое пространство - пространство, с помощью которых мы описываем цвета реального мира в цифровых технологиях. K таким, к примеру, относятся RGB или Lab

цветовой охват - набор цветов, который может представить наше цветовое пространство. Например для RGB таких цветов 255^3