Program: B.Tech

Course Code & Title: 21CYB101J & Chemistry

Year & Sem: | Year & | Sem

Date: 11/09/2023 Duration: 12.30-1.20pm Max. Marks: 25 marks

Part - A (5 x 1 = 5 Marks)

Answer ALL The Questions

- 1 The non-axial d-orbitals are
 - (b) dxy and dxz
- The electronic transition of octahedral $[Ti(H_2O)_6]^{3+}$ is
 - (a) d-d transition
- The CFSE for d^3 configuration of the central metal ion in tetrahedral complex is (c) -0.36 Δo
- Between these two complexes Ni(CO)₄ and [Ni(CN)₄]²⁻ which of the following statement is correct
 - (d) have tetrahedral and square planar geometry respectively
- The magnetic moment of strong field chromium (III) octahedral complex is (d) 3.87 BM

Part - B (2 x 10 = 20 Marks)

6. a. Discuss spectrochemical series and its importance? Explain the influence of cyanide and amine ligands on octahedral chromium (II) complexes and Δ_o variation. Spectrochemical series importance with examples – 4 marks
Diagram of Δ_o variation [Cr(CN)₆]³⁻ and [Cr(NH₃)₆]³⁺ based on weak and strong field ligands with explanation - 6 marks

(OR)

- b. i. Write short note on structural and ionization isomerism in coordination compounds. (5 Marks)
 Discussion on structural & ionization isomerism (1.5 * 2) 3 marks
 Examples 2 marks
 - ii. Calculate the shielding constant and effective nuclear charge for a valence electron in fluorine. (5 Marks)
 Calculation of Z* for a valence electron in F

- F: (1s²)(2s²,2p⁵) 1 Mark
- Rule 2 does not apply 1 Mark
- Shielding constant S = (6 x 0.35) + (2 x 0.85) = 3.8 (2 Marks)
- Z* = Z-S = 9 3.8 = 5.2 (1 Mark)
- 7 a. i Calculate the wavelength of the light absorbed by [Ni(H₂O)₆]²⁺ complex with a wave number of 25,000 cm⁻¹? (5 Marks)

Wavelength (Å) = 10^8 /wave number in cm⁻¹ = 10^8 /25,000 = 4000 Å (4 marks) Unit- 1 mark

ii. Calculate the magnetic moment of $K_3[Fe(oxalate)_3]$ $3H_2O$ and K_2CuCl_4 complexes. (5 Marks)

Magnetic moment of $K_3[Fe(oxalate)_3]$ $3H_2O$; d^5 , e^- distribution - t^3_{2g} e^2_g , 5 unpaired e^- ; Magnetic moment: 5.91 BM (2 marks)

Magnetic moment of K_2CuCl_4 ; d^9 , e^- distribution $-e^4_g$ t^5_{2g} , 1 unpaired e^- ;

Magnetic moment: 1.73 BM (2 marks)

Units: 1 Mark

(OR)

- b. i. Draw the cis and trans isomers of [Co(en)₂Cl₂] complexes. (4 Marks)
 Diagram of [Co(en)₂Cl₂] complex showing cis isomerism 2 marks
 Diagram of [Co(en)₂Cl₂] complex showing trans isomerism 2 marks
 - Explain briefly about high spin and low spin complexes with examples. (5 Marks)
 Explanation based on strong field and weak field ligands influencing magnetic properties of transition metal complexes 3 marks
 Examples 2 marks

SRM Institute of Science and Technology Kattankulathur – 603203

INTERNAL ASSESSMENT - I (CLA1-T1)

Program: B.Tech
Course Code & Title: 21CYB101J & Chemistry
Year & Sem: 1 Year & I Sem

Date: 11/09/2023 Duration: 12.30-1.20pm Max. Marks: 25 marks

Part - A (5 x 1 = 5 Marks)

Answer ALL The Questions

- When the valence d orbitals of the central metal ion in octahedral complex are split in energy levels in CFT, which orbitals are raised to higher energy?
 (d) d_x²-_v² and d_z²
- The crystal field splitting energy (Δο) is inversely proportional to (b) number of d-electrons
- In which of the following octahedral complexes of chromium, will the magnitude of Δ_0 be the lowest?

 (a) $[CrCl_6]^{3-}$
- 4 How many geometrical isomers are possible for [Co(NH₃)₃(NO₂)₃] complex a) 2
- 5 The number of unidentate ligands in the complex ion is called b) Coordination number

$$Part - B (2 \times 10 = 20 Marks)$$

6. a. i. Calculate the CFSE of d^4 and d^7 in high spin tetrahedral complexes in terms of Δo (6 Marks)

Energy level diagram showing electrons distribution over e_g and t_{2g} sets for d^4 and $d^7 - 2$ marks

CFSE calculation for d^4 ion, $d e^-$ distribution $- e^2_g t^2_{2g}$; CFSE $- 0.18 \Delta o$ (2 Marks) CFSE calculation for d^7 ion, $d e^-$ distribution $- e^4_g t^3_{2g}$; CFSE $- 0.54 \Delta o$ (2 Marks)

ii. Write short note on linkage and hydrate isomerism in coordination compounds. (4 Marks)

Explanation on linkage isomerism with examples - 2 marks Explanation on hydrate isomerism with examples - 2 marks

(OR)

b. i. Calculate the energy of the $[Ti(H_2O)_6]^{3+}$ complex with a wavenumber of 20,000 cm⁻¹? (5 Marks)

DEPARTMENT OF CHEMISTRY

SET - H

College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur – 603203

INTERNAL ASSESSMENT - I

Program: B.Tech Course Code & Title:21CYB101J & Chemistry Year & Sem: I Year & I Sem Date: 13/09/2023 Duration: 08:00 – 08:50 AM Max. Marks: 25 marks

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

- Among the following complexes, the one which shows zero crystal field stabilization energy (CFSE) is
 - (b) [Fe(H2O)6]3+
- 2. In which of the following octahedral complexes of chromium, will the magnitude of Δo be the lowest?
 - (a) [CrCl6]3-
- The Sc³⁺ complex is colourless in nature which is mainly due to
 - (c) Empty d-orbitals
- 4. The spin only magnetic moment of K₃[Mn(NO₂)₆] is
 - $(d) \sim 2.83$
- 5. Shielding constant for a 2p electron in Nitrogen atom is _____

(a) 3.1

$Part - B (2 \times 10 = 20 Marks)$

6. a. Based on CFT, find out the number of unpaired electrons for a Mn²+ complex in strong and weak octahedral field. Calculate CFSE (Δ₀) and magnetic moment for both the situation. Explain your answer with appropriate energy level diagrams. (10 Marks)
 For mentioning the number of d electrons and drawing proper splitting diagram: 4 marks

Calculation of CFSE and magnetic moment for strong octahedral field: 3 marks Calculation of CFSE and magnetic moment for weak octahedral field: 3 marks

```
1 kJ/mol = 83.6 cm<sup>-1</sup> - 1 mark

1 cm<sup>-1</sup> = 1/83.6 kJ/mol - 1 mark

So, 20,000 cm<sup>-1</sup> = 20,000/83.6 kJ/mol = 239.23 kJ/mol - 2 marks

Unit - 1 mark
```

- Which among the following complexes have large crystal field splitting in each pair with appropriate justification? (5 Marks)
 - (1) $[Co(H_2O)_6]^{2+}$ and $[Co(H_2O)_6]^{3+}$ (2) $[Co(CN)_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$
 - (1) $[Co(H_2O)_6]^{3+} 1$ mark

Explanation based on cation with higher oxidation state has larger value of $\Delta_{\rm o}=1.5$ marks

(2) [Co(CN)₆]³⁻ - 1 mark

Explanation based on Δ_o increasing with increase of ligand field strength – 1.5 marks

7 a. Give the steps for Slater's rule and using it, calculate Zeff for an electron residing in 2p level for F ion (Z for Fluorine atom is 9).

Slater rule steps : 5 marks

- Calculation of Z* for a 2p electron in F⁻ ion
 F: (1s²)(2s²,2p⁶) 1 Mark
 - Rule 2 does not apply 1 Mark
 - Shielding constant S = (7 x 0.35) + (2 x 0.85) = 4.15 (2 Marks)

 $Z^* = Z-S = 9 - 4.15 = 4.85$ (1 Mark)

(OR)

- b. i. Draw the cis and trans isomers of [Co(NH₃)Br(en)₂]²⁺ complexes. (5 Marks)

 Diagram of [Co(NH₃)Br(en)₂]²⁺ complex showing cis isomerism 2.5 marks

 Diagram of [Co(NH₃)Br(en)₂]²⁺ complex showing trans isomerism 2.5 marks
 - ii. Calculate the magnetic moment of (Et₄N)₂[FeCl₄]²⁻ and [Ni²⁺(H₂O)₆]Cl₂ complexes. (5 Marks)
 Magnetic moment of (Et₄N)₂[FeCl₄]²⁻; d⁶, e⁻ distribution e³_g t³_{2g}, 4 unpaired e⁻, Magnetic moment: 4.9 BM (2 Marks)
 Magnetic moment of [Ni²⁺(H₂O)₆]Cl₂ d⁸, e⁻ distribution t⁶_{2g} e²_g, 2 unpaired e⁻,

Magnetic moment: 2.82 BM (2 Marks)

Units: 1 Mark

ANSWER KEY, INTERNAL ASSESSMENT - I (T-1)

Program: B.Tech

Course Code & Title:21CYB101J & Chemistry

Year & Sem: I Year & I Sem

Date: 13/09/2023

Duration: 08.00 - 08.50 AM

Max. Marks: 25 marks

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

- In CFT, the strong field ligand such as CO usually produces:
 - (c) low spin complexes and high crystal field splitting
- CFSE for e^pt₂^q configuration of tetrahedral complex is
 - (b) $[-0.27p + 0.18q] \Delta_0$
- 3. How many unpaired electrons are present in a strong field Mn(II) octahedral complex?
 - (b) 1
- 4. The effective nuclear charge realized by a 1s electron of Helium atom is
 - (d) 1.7
- 5. The spin only magnetic moment of K₃[Fe(C₂O₄)₃] is
 - (b) ~ 5.9

$Part - B (2 \times 10 = 20 Marks)$

- 6. a. i Write a short note on spectrochemical series? Explain with a suitable example, the influence of ligands in the formation of high and low spin complexes. (6 Marks) Definition and series of ligands 2 Marks
 Splitting diagram of HS and LS complex with explanation of an example 4 Marks
 - ii. [Ti(H₂O)₆]³⁺ is coloured, while [Sc(H₂O)₆]³⁺ is colourless Explain. (4 marks)
 Ti³⁺ 3d¹ configuration; d d transition is possible. So, coloured complex.
 2 Marks
 Sc³⁺ 3d⁰ configuration; d d transition is not possible. So, colourless

Sc³⁺ - 3d⁰ configuration; d – d transition is not possible. So, colourless complex. –2 Marks

- i. Elucidate which of the following complexes in each pair given below will have large crystal field splitting of d-orbitals (4 Marks)
 - (a). $[Fe(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{3+}$ (b). $[Mn(H_2O)_6]^{2+}$ and $[Mn(CN)_6]^{4-}$

Correct answer: 2marks

Explanation: 2 marks

ii. Discuss in detail any two factors that influence the magnitude of crystal field splitting, Δo . (6 Marks)

Any two factors with example: 2×3 Marks (each) = 6 Marks

7 a. i Predict the possible type of isomerism that can exist for the octahedral complex having the formula CoBrSO₄.5NH₃. Write down the isomers and elucidate how the isomers can be differentiated? (6 Marks)

Definition of ionisation isomerism: 1 mark

Writing the two isomers: 2 marks

Explaining any one test to differentiate the isomers: 3 marks ii. Calculate Z* for a 4s electron in Iron (Z of Iron is 26) (4 Marks)

Correct answer: Zem for a 4s electron is 3.75 (4 marks)

(OR)

b. i. Draw the crystal field splitting diagrams for an octahedral crystal field and a tetrahedral crystal field of Cu²⁺ coordination complex. Label the d-orbitals and comment on the magnetic behaviour. (6 Marks)

Crystal field splitting diagrams: 3 marks

Magnetic behaviour with justification: 3 marks

- ii. Which of the following complexes will exhibit maximum attraction to an applied magnetic field? Rationalise your answer. (4 Marks)
 - A. [Ni(H₂O)₆]²⁺
 - B. $[Co(H_2O)_6]^{2+}$
 - C. $[Co(en)_3]^{3+}$
 - D. $[Zn(H_2O)_6]^{2+}$

Correct answer: Based on the number of unpaired electrons, the complex with the maximum attraction to an applied magnetic field is $[Co(H_2O)_6]^{2+}$ (Option B), as it has 3 unpaired electrons. 4 marks

INTERNAL ASSESSMENT - I

Program: B.Tech Course Code & Title:21CYB101J & Chemistry Year & Sem: I Year & I Sem Date: 11/10/2022 Duration: 08:00 - 08:50 AM Max. Marks: 25 marks

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

- CFSE for t_{2g}^p e_g^q configuration of octahedral complex is
 - (a) $[-0.4p + 0.6q] \Delta_0$
- 2. Among the following, which is the π donor ligand?
 - (d) Cl
- 3. In which of the following octahedral complexes of chromium, will the magnitude of Δo be the lowest?
 - (a) [CrCl₆]3-
- 4. The effective nuclear charge realised by 1s electron of helium atom is____
 - (b) 0.30
- 5. Which of the following metal ions form sulphides?
 - (b) Ag+ and Hg2+

$Part - B (2 \times 10 = 20 Marks)$

6. a. The energy gap between t_{2g} and e_g of an octahedral complex is 239.23 kJ/mol (1kJ/mol = 83.6 cm⁻¹). Find the wavelength absorbed by the complex for d-d transition and predict colour of the sample based on complementary colour. (10 Marks)

 $1 \text{kJ/mol} = 83.6 \text{ cm}^{-1}$ So, 239.23 kJ/mol = 20000 cm⁻¹ - 2 marks

Wavelength (Å) = 10^8 /wave number in cm⁻¹ = 10^8 /20000 cm⁻¹ = 5000 Å = 500 nm – 5 marks

Colour absorbed – Green /Colour of the sample based on complementary colour – Violet/Purple – 3 Marks

(OR)

- b. i. Write down the salient features of Crystal Field Theory. (4 Marks)

 Salient features 4 Marks
 - ii. Determine CFSE and magnetic moment of a d^6 octahedral complex having $\Delta_0 = 25000 \text{ cm}^{-1}$ and $P = 15000 \text{ cm}^{-1}$. (6 Marks)

Mentioning that the complex is low spin due to high Δ_O as comparing to P value and drawing the energy diagram and mentioning the number of electrons in t_{2g} and e_g-2 Marks

00 LP

 b. i. Give proper justification for the statement "Only high spin tetrahedral complexes are known". (6 Marks)

Splitting pattern -3 marks; Explanation: In case of tetrahedral complex, since $\Delta_t < P$, the electrons tend to remain unpaired and hence only high spin tetrahedral complexes are known -3 marks

ii. A tetrahedral complex absorbs at 545 nm. What is the respective octahedral crystal field splitting (Δ_0) ? (4 Marks)

Calculation of Δ_t : 3.65 x 10⁻¹⁹ J, However, the tetrahedral splitting (Δ_t) is ~4/9 that of the octahedral splitting (Δ_0): 2 Marks

 $\Delta o = \Delta_t/0.44$ and hence answer is 8.3 x 10^{-18} J: 2 Marks

7 a. i Predict the possible type of isomerism that can exist for the octahedral complex CrCl₃.6H₂O. Write down the isomers and elucidate how the isomers can be differentiated? (6 Marks)

Definition of hydrate isomerism: 1 mark

Writing the three isomers: 3 marks

Explaining any one test to differentiate the isomers: 2 marks

- ii. Calculate Z* for a 4s electron in Zinc (Z of Zinc is 30) (4 Marks)(OR)
 - 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²
 - (1s²)(2s²,2p⁶)(3s²,3p⁶) (3d¹⁰) (4s²)
 - $(0.35 \times 1) + (0.85 \times 18) + (10 \times 1.00) = 25.65$

 $Z^* = 30 - 25.65 = 4.35$ for a valence electron (4 marks)

b. i. $[Co(NH_3)_6]^{3+}$ is diamagnetic and orange yellow. $[CoF_6]^{3-}$ on the other hand is paramagnetic and blue. Justify. (5 Marks)

Electron configuration and splitting pattern: 2.5 marks

Justification based on above: 2.5 marks

ii. Explain the salient features and the limitations of CFT. (5 Marks)

Salient features: 2.5 Marks

Limitations: 2.5 Marks

DEPARTMENT OF CHEMISTRY

SET - II

College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur – 603203

INTERNAL ASSESSMENT - I

Date: 11/10/2022 Program: B.Tech Duration: 08:00 - 08:50 AM Course Code & Title:21CYB101J & Chemistry Max. Marks: 25 marks Year & Sem: I Year & I Sem

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

- The crystal field splitting energy (Δo) is directly proportional to (d) oxidation state
- 2. In spectrochemical series, the order of ligands is (c) π donor $< \sigma$ donor $< \pi$ acceptor
- 3. The Sc3+ complex is colourless in nature which is mainly due to
 - (c) Empty d-orbitals
- 4. The second ionisation energy is always higher than the first ionization energy because the (b) electron is more tightly bound to the nucleus in an ion
- 5. All cations and molecules that are short of an electron pair act as ______ (a) Lewis acids

$Part - B (2 \times 10 = 20 Marks)$

Find out the number of unpaired electrons in strong and weak octahedral field for 6. a. Mn2+ complex based on CFT. Calculate CFSE and magnetic moment for both the situation with energy level diagrams. (10 Marks) For mentioning number of d electrons (Mn2+ - d5) and d-orbital splitting

diagram with electron filling for strong and weak octahedral field - 2 Marks CFSE and Magnetic moment calculation and answer for strong octahedral field - 4 marks

CFSE and Magnetic moment calculation and answer for weak octahedral field -4 marks

(OR)

- Which of the following complexes have large crystal field splitting of d-orbitals in b. i. each pair and why? (5 Marks)
 - (a). $[Fe(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{3+}$ 2.5 marks

Explanation on the influence of oxidation number on the crystal field splitting have large crystal field splitting and [Fe(H2O)6]3+

(b). $[Fe(CN)_6]^{3-}$ and $[Fe(NH_3)_6]^{3+}$ - 2.5 marks

narks

Co = 27

ctroch

f foll

ith !

no

50 AM

- CFSE and Magnetic moment calculation and answer 4 Marks
- Calculate the magnetic moment of [Co(NH₃)₆]³⁺ and [CoF₆]³⁻ complexes. (4 Marks) Magnetic moment of [Co(NH₃)₆]³⁺ - d⁶ low spin- 0 BM - 2 Marks a. i 7
 - Magnetic moment of [CoF₆]³⁻ d⁶ high spin-4.9 BM 2 Marks What is the shielding constant experienced by a 3d electron in the bromine atom (Number of Protons = 35)? Calculate the effective nuclear charge for the same. (6 Marks)
 - Br: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5 1$ Mark
 - Br: (1s2)(2s2,2p6)(3s2,3p6)(3d10)(4s2,4p5) 1 Mark
 - Ignore the group to the right of the 3d electrons. These do not contribute to the shielding constant - 1 Mark
 - S = 1.00(18) + 0.35(9) = 21.15 2 Mark
 - $Z^* = Z S = 35 21.15 = 14.85$ for a valence electron 1 Mark (OR)
 - Define atomic radii? Give its variation along the period and down the group taking b. i. examples. Arrange the following in the increasing order of atomic radii and give reasons: N, S, P and O. (5 Marks)

Definition of Atomic radii - 3 Marks

Atomic radii: O < N < S < P - explanation with effective nuclear charge - 3 Marks

- Explain complex formation of thiocyanate ligand with Fe3+ and Au+ ions using HSAB concept. (5 Marks)
 - SCN- vs. NCS- Thiocyanate (SCN-) is an ambidentate ligand. It can bind to metal ions either through the S or the N. It prefers to bind to soft metal ions through the S, and to hard metal ions through the N.
 - N-bonding in the [Fe(NCS)6]3- complex with the hard Fe(III) ion
 - S-bonding in the [Au(SCN)2] complex with the soft Au(I) ion

ANSWEP-YEY INTERNAL ASSESSMENT – I

Program: B.Tech
Course Code & Title:21CYB101J & Chemistry

Year & Sem: I Year & II Sem

Date: 13/02/2023 Duration: 8.00 – 8.50 AM Max. Marks: 25 marks

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

- 1. Which of the following complex is paramagnetic? (Z of Cu = 29, Fe = 26, Co = 27)
 - (c) [CoBr]42
- The correct increasing order of splitting power of ligands according to spectrochemical series is
- (a) Cl⁻ < OH⁻ < CN⁻
- 3. Which one of the following ions exhibits colour in aqueous solution?

 (b) Ni²⁺
- 4. Which of the following order is correct for the first ionization energies of following elements?
 - (c) B < Be < O < N
- According to HSAB theory, which option shows negative correlation with hardness?
 (b) Polarizability

$Part - B (2 \times 10 = 20 Marks)$

6. a. Explain crystal field splitting of d orbitals, calculation of CFSE and magnetic moment in case of tetrahedral complexes? (10 Marks)

Crystal Field Splitting Diagram- 3 Marks, Explanation – 3 Marks, CFSE formula – 2 marks Magnietic moment – 2 marks

(OR)

b. i. For Mn^{2+} ion, P = 28,000 cm⁻¹ and Δ_0 value for $[Mn(CN)_6]^{3-}$ ion is 38,500 cm⁻¹. Predict whether the complex is high spin or low spin. Write the configuration and calculate CFSE in cm⁻¹.

Ans: Low spin, CFSE = -33600 cm⁻¹

$$[Mn(cn)_{6}]^{3}$$
 has $t_{4}g^{4}e_{9}^{0}$ (6 Marks)

 $[CFSE = -\frac{2}{5}x_{4}x_{38}5\sigma_{5} + 28000x_{1} = -33,600cm^{-1}]$

Explanation on the influence of ligands (spectrochemical series) on the crystal field splitting and [Fe(CN)₆]³⁻ have large crystal field splitting

ii. Calculate the wavelength of the light absorbed by octahedral complex with a frequency of 24,000 cm⁻¹? (5 Marks)

Wavelength (Å) = 10^8 /wave number in cm⁻¹ = 10^8 /17,830 = 5609 Å = 560.9 nm

7 a. i Predict the possible type of isomerism can exist for the octahedral complex when the central metal ion is Co²⁺ surrounded by 5 NH₃ molecule, 1 Br and 1 SO₄²⁻ ions. Write down the isomers and how to test the difference among the isomers? (6 Marks) Ionization Isomerism – 1 Mark

 $[Co(NH_3)_5Br]SO_4 \& [Co(NH_3)_5SO_4]Br Isomers - 3 Marks$

Mentioning the test to differentiate - 2 Mark

- [Co(NH₃)₅Br]SO₄ gives white ppt. of BaSO₄ with aq. BaCl₂ while Co(NH₃)₅ SO₄]Br does not.
- Similarly [Co(NH₃)₅SO₄]Br gives yellow ppt. of AgBr with aq. silver nitrate, while [Co(NH₃)₅Br]SO₄ does not.
- ii. Explain why electron affinity of chlorine is more than that of fluorine. (4 Marks)

 Due to smaller size of F and electron electron repulsion 4 Marks

 (OR)
- b. i. Why Cl⁻ ion will be bigger than Cl (Atomic Number = 17)? Justify using Slater's Rule. (6 Marks)

Slater's rule step by step approach - 1 Mark

Calculate effective nuclear charge for Cl - 2 Marks

Calculate effective nuclear Charge for Cl - 2 Marks

Discussion about size difference by comparing effective nuclear charge of Cl and Cl-1 Mark

ii. Give the differences between hard and soft acids. (4 Marks)

Any four differences - 4 Marks

- b. i. Calculate CFSE values in terms of Δ₀ and P for high and low spin octahedral complexes of Fe (II). Predict whether the complexes are paramagnetic or diamagnetic? (4 Marks)
 - Ans: High spin: $-0.4 \Delta_0 + P$, paramagnetic -2 marks Low spin: $-2.4 \Delta_0 + 3P$, diamagnetic -2 marks
- ii. Which of the following complexes have large crystal field splitting of d-orbitals in each pair and why?
 - (a) $[Fe(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{3+}$ (b) $[Co(H_2O)_6]^{2+}$ and $[Ni(H_2O)_6]^{2+}$
 - (c) $[Co(NH_3)_6]^{3+}$ and $[Rh(NH_3)_6]^{3+}$ (6 Marks)
 - Ans: (a) [Fe(H2O)6]3+- Higher oxidation state 2 marks
 - (b) $[C_0(H_2O)_6]^{2+}$ lower number of d electrons 2 marks
 - (c) [Rh(NH₃)₆]³⁺ higher quantum number of d orbital of metal centre 2
 - marks
- 7 a. i Define 'Ionization Energy', discuss factors affecting it and its variation across the period & down the group in a periodic table. (10 Marks)
 - Ans: Definition 2 marks, any four factors 4 marks, variation across period
 - -2 marks, variation down the group -2 marks

(OR)

- b. i. Calculate Effective Nuclear Charge (Z_{eff}) for 3d electron of V (Z=23) (6 Marks)
 - Ans: 4.30

Electronic configuration – 1 marks, Formula for Z_{eff} – 1 mark, calculation of screening constant – 3 marks, calculation of Z_{eff} – 2 marks.

- ii. Explain complex formation of SCN⁻ with Pt²⁺ and Cr³⁺. (4 Marks)
 - Ans: Explanation based on HSAB principle 4 marks

Kattankulathur – 603203 ANSWER- KEY INTERNAL ASSESSMENT – I

Program: B.Tech

Course Code & Title:21CYB101J & Chemistry

Year & Sem: I Year & Il Sem

Date: 13/02/2023

Duration: 8.00 - 8.50 AM

Max. Marks: 25 marks

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

- Which of the following complexes has a magnetic moment of 1.73 BM?
 (Z of Ni = 28, Ti = 22, Cu = 29, Co = 27)
 (c) [Cu(NH₃)₄]²⁺
- The correct electronic configuration of the central atom in K₄[Fe(CN)₆] based on crystal field theory is

(c) $t_{2g}^{6} e_{g}^{0}$

3. Out of TiF6²⁻, CoF6³⁻, Fe(CN)6⁴⁻ and NiCl4²⁻ (Z of Ti = 22, Co = 27, Fe = 26, Ni = 28), the colourless species is :

(a) TiF62-

The electron affinity for the inert gases is(a) 0

- 5. According to hard and soft acid base principle, hard acid
 - (a) is not polarizable

$Part - B (2 \times 10 = 20 Marks)$

6. a. Describe structural isomerism in co-ordination compounds with suitable examples.

(10 Marks)

Ans: Ionization isomerism, Hydrate isomerism, Linkage isomerism, Coordination isomerism – explanation with example – each 2.5 marks (OR)

Ans: Features of HA, SA, HB, SB, HSAB principle with explanation - 6 marks
Two applications - 2 marks
Two limitations - 2 marks

(OR)

- b. i. Calculate the octahedral crystal field splitting energy in kJ for [Fe(CN)₆]⁴⁻, if the wavelength of the most intensely absorbed light is 305 nm.
 (h = 6.626 × 10⁻³⁴ Js, c = 2.99 x 10⁸ m/s)
 Ans: 6.513 x 10⁻²² kJ or 392 kJ/mol
 - ii. Atomic size decreases from Li to F in a second period, however from F to Ne it increases, explain. (4 Marks)

Ans: Explanation for decrease in size from Li to F - 2 marks

Explanation for increase from F to Ne (mention of atomic and Van der Waals radius) - 2 marks