Гипотезы компактности и непрерывности

Гипотеза непрерывности (для регрессии): близким объектам соответствуют близкие ответы.

Гипотеза компактности (для классификации): близкие объекты, как правило, лежат в одном классе.

Формализация понятия «близости»: задана функция расстояния $\rho\colon X\times X\to [0,\infty)$.

Пример. Евклидово расстояние и его обобщение:

$$\rho(x, x_i) = \left(\sum_{j=1}^n |x^j - x_i^j|^2\right)^{1/2} \quad \rho(x, x_i) = \left(\sum_{j=1}^n w_j |x^j - x_i^j|^p\right)^{1/p}$$

 $x = (x^1, ..., x^n)$ — вектор признаков объекта x_i $x_i = (x_i^1, ..., x_i^n)$ — вектор признаков объекта x_i .

Ещё примеры расстояний:

— между текстами (редакторское расстояние Левенштейна): CTGGGCTAAAAGGTCCCTTAGCC..TTTAGAAAAA.GGGCCATTAGGAAATTGC CTGGGACTAAA....CCTTAGCCTATTTACAAAAATGGGCCATTAGG...TTGC

между сигналами (энергия сжатий и растяжений):

Обобщённый метрический классификатор

Для произвольного $x \in X$ отранжируем объекты x_1, \ldots, x_ℓ :

$$\rho(x,x^{(1)}) \leqslant \rho(x,x^{(2)}) \leqslant \cdots \leqslant \rho(x,x^{(\ell)}),$$

 $x^{(i)}$ — i-й сосед объекта x среди $x_1, \dots, x_\ell;$ $y^{(i)}$ — ответ на i-м соседе объекта x.

Метрический алгоритм классификации:

$$a(x; X^{\ell}) = \arg \max_{y \in Y} \underbrace{\sum_{i=1}^{\ell} \left[y^{(i)} = y \right] w(i, x)}_{\Gamma_{V}(x)},$$

w(i,x) — вес, оценка сходства объекта x с его i-м соседом, неотрицательная, не возрастающая по i.

 $\Gamma_y(x)$ — оценка близости объекта x к классу y.

Метод k ближайших соседей (k nearest neighbors, kNN)

$$w(i,x)=[i\leqslant k].$$
 $w(i,x)=[i\leqslant 1]$ — метод ближайшего соседа.

Преимущества:

- простота реализации (lazy learning);
- параметр k можно оптимизировать по критерию скользящего контроля (leave-one-out):

$$\mathsf{LOO}(k,X^{\ell}) = \sum_{i=1}^{t} \left[a(x_i;X^{\ell} \setminus \{x_i\},k) \neq y_i \right] \to \min_{k}.$$

Проблемы:

- возможны ситуации, когда классификация не однозначна: $\Gamma_y(x) = \Gamma_s(x)$ для пары классов $y \neq s$
- учитываются не значения расстояний, а только их ранги

Пример зависимости LOO от числа соседей

Пример. Задача Iris.

- смещённое число ошибок, когда объект учитывается как сосед самого себя несмещённое число ошибок LOO
- В реальных задачах минимум редко бывает при k = 1.

Метод окна Парзена

$$w(i,x) = K\Big(rac{
ho(x,x^{(i)})}{h}\Big)$$
, где h — ширина окна, $K(r)$ — ядро, не возрастает и положительно на $[0,1]$.

Метод парзеновского окна фиксированной ширины:

$$a(x; X^{\ell}, \mathbf{h}, K) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] K\left(\frac{\rho(x, x_i)}{\mathbf{h}}\right)$$

Метод парзеновского окна переменной ширины:

$$a(x; X^{\ell}, \mathbf{k}, K) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] K\left(\frac{\rho(x, x_i)}{\rho(x, x^{(k+1)})}\right)$$

Оптимизация параметров — по критерию LOO:

- ullet выбор ширины окна h или числа соседей k
- выбор ядра К слабо влияет на качество классификации

$$a(x) = \arg\max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.05$$

$$a(x) = \arg\max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.2$$

$$a(x) = \arg\max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.3$$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.5$$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 1.0$$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 5.0$$

Метод потенциальных функций

$$w(i,x) = \gamma^{(i)} K\left(\frac{\rho(x,x^{(i)})}{h^{(i)}}\right)$$

Более простая запись (без ранжирования объектов):

$$a(x; X^{\ell}) = \arg \max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] \gamma_i K\left(\frac{\rho(x, x_i)}{h_i}\right),$$

где γ_i — веса объектов, $\gamma_i\geqslant 0$, $h_i>0$.

Физическая аналогия:

 γ_i — величина «заряда» в точке x_i ;

 h_i — «радиус действия» потенциала с центром в точке x_i ;

 y_i — знак «заряда» (в случае двух классов $Y = \{-1, +1\}$);

в электростатике $K(r) = \frac{1}{r}$ или $\frac{1}{r+a}$,

для задач классификации нет таких ограничений на K.

Два класса:
$$Y=\{-1,+1\}.$$

$$a(x;X^\ell)=\arg\max_{y\in Y}\Gamma_y(x)=\mathrm{sign}\big(\Gamma_{+1}(x)-\Gamma_{-1}(x)\big)=$$

$$=\mathrm{sign}\sum_{i=1}^\ell\gamma_iy_i\,\mathit{K}\left(\frac{\rho(x,x_i)}{h_i}\right).$$

Сравним с линейной моделью классификации:

$$a(x) = \operatorname{sign} \sum_{i=1}^{n} \gamma_{i} f_{j}(x).$$

- ullet функции $f_j(x) = y_j K\left(\frac{1}{h_i}
 ho(x, x_j)\right)$ признаки объекта x
- ullet γ_j веса линейного классификатора
- ullet $n=\ell$ число признаков равно числу объектов обучения

Резюме

- Метрические классификаторы одни из самых простых.
 Качество классификации определяется качеством метрики.
- Что можно обучать:
 - число ближайших соседей k или ширину окна h;
 - веса объектов;
 - набор эталонов (prototype selection);
 - метрику (distance learning, similarity learning);
 - веса признаков;
 - функцию ядра K(r).

Задачи регрессии и метод наименьших квадратов

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- $a(x) = f(x, \alpha)$ параметрическая модель зависимости, $\alpha \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

где w_i — вес, степень важности i-го объекта.

• **Недостаток:** надо иметь хорошую параметрическую модель $f(x, \alpha)$

Непараметрическая регрессия. Формула Надарая-Ватсона

Приближение константой $f(x, \alpha) = \alpha$ в окрестности $x \in X$:

$$Q(\alpha; X^{\ell}) = \sum_{i=1}^{\ell} w_i(x) (\alpha - y_i)^2 \to \min_{\alpha \in \mathbb{R}};$$

где $w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$ — веса объектов x_i относительно x; K(r) — ядро, невозрастающее, ограниченное, гладкое; h — ширина окна сглаживания.

Формула ядерного сглаживания Надарая-Ватсона:

$$a_h(x; X^{\ell}) = \frac{\sum_{i=1}^{\ell} y_i w_i(x)}{\sum_{i=1}^{\ell} w_i(x)} = \frac{\sum_{i=1}^{\ell} y_i K\left(\frac{\rho(x, x_i)}{h}\right)}{\sum_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)}.$$

Часто используемые ядра K(r)

$$\Pi(r) = \left[|r| \leqslant 1 \right]$$
 — прямоугольное $T(r) = \left(1 - |r| \right) \left[|r| \leqslant 1 \right]$ — треугольное $E(r) = \left(1 - r^2 \right) \left[|r| \leqslant 1 \right]$ — квадратичное (Епанечникова) $Q(r) = (1 - r^2)^2 \left[|r| \leqslant 1 \right]$ — квартическое $G(r) = \exp \left(-2r^2 \right)$ — гауссовское

$$h \in \{0.1, 1.0, 3.0\}$$
, гауссовское ядро $K(r) = \exp(-2r^2)$

Гауссовское ядро ⇒ гладкая аппроксимация Ширина окна существенно влияет на точность аппроксимации

$$h \in \{0.1, 1.0, 3.0\}$$
, треугольное ядро $K(r) = (1 - |r|) [|r| \leqslant 1]$

Треугольное ядро \Rightarrow кусочно-линейная аппроксимация Аппроксимация не определена, если в окне нет точек выборки

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

$$h \in \{0.1, 1.0, 3.0\}$$
, прямоугольное ядро $K(r) = [|r| \leqslant 1]$

Прямоугольное ядро \Rightarrow кусочно-постоянная аппроксимация Выбор ядра слабо влияет на точность аппроксимации

- Ядро K(r)
 - существенно влияет на гладкость функции $a_h(x)$,
 - слабо влияет на качество аппроксимации.
- Ширина окна *h* существенно влияет на качество аппроксимации.
- Переменная ширина окна h(x) по k ближайшим соседям:

$$w_i(x) = K\left(\frac{\rho(x,x_i)}{h(x)}\right),$$

где $h(x) = \rho(x, x^{(k+1)})$, $x^{(k)} - k$ -й сосед объекта x.

• Оптимизация ширины окна по скользящему контролю:

$$\mathsf{LOO}(h, X^{\ell}) = \sum_{i=1}^{\ell} \left(a_h \big(x_i; X^{\ell} \setminus \{ x_i \} \big) - y_i \right)^2 \to \min_{h}.$$

Резюме

- Непараметрическая регрессия избегает использования параметрической модели зависимости $f(x, \alpha)$.
- Неявно моделью является функция расстояния $\rho(x,x_i)$ между объектами.
- Что можно обучать:
 - число ближайших соседей k или ширину окна h;
 - веса объектов (обнаруживать выбросы);
 - метрику (distance learning, similarity learning);
 - в частности, веса признаков в метрике.
- Непараметрическая регрессия часто используется как инструмент предварительной обработки данных для сглаживания шумов в данных.

Проблема выбросов (эксперимент на синтетических данных)

 $\ell=100,\;\;h=1.0,\;$ гауссовское ядро $K(r)=\exp\left(-2r^2\right)$ Две из 100 точек — выбросы с ординатами $y_i=40$ и -40 Синяя кривая — выбросов нет

Проблема выбросов и локально взвешенное сглаживание

Проблема выбросов: большие случайные ошибки в значениях y_i сильно искажают оценку Надарая–Ватсона

$$a_h(x;X^{\ell}) = \frac{\sum_{i=1}^{\ell} y_i w_i(x)}{\sum_{i=1}^{\ell} w_i(x)}, \qquad w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right).$$

Идея:

чем больше величина невязки $\varepsilon_i = |a_h(x_i; X^{\ell} \setminus \{x_i\}) - y_i|$, тем меньше должен быть вес *i*-го объекта $w_i(x)$.

Эвристика:

домножить веса $w_i(x)$ на коэффициенты $\gamma_i = \tilde{K}(\varepsilon_i)$, где $\tilde{K}(\varepsilon)$ — ещё одно ядро, вообще говоря, отличное от K(r).

Рекомендация:

использовать квартическое ядро $\tilde{K}(\varepsilon)=K_Q(\frac{\varepsilon}{6\,\mathrm{med}\{\varepsilon_i\}})$, где $\mathrm{med}\{\varepsilon_i\}$ — медиана множества значений ε_i .

Алгоритм LOWESS (LOcally Weighted Scatter plot Smoothing)

Вход: X^{ℓ} — обучающая выборка; Выход: коэффициенты γ_i , $i=1,\ldots,\ell$;

- 1: инициализация: $\gamma_i := 1, i = 1, \ldots, \ell$;
- повторять
- 3: для всех объектов $i = 1, ..., \ell$
- 4: вычислить оценки скользящего контроля:

$$a_i := a_h(x_i; X^{\ell} \setminus \{x_i\}) = \frac{\sum\limits_{j=1, j \neq i}^{\ell} y_j \gamma_j K(\frac{\rho(x_i, x_j)}{h(x_i)})}{\sum\limits_{j=1, j \neq i}^{\ell} \gamma_j K(\frac{\rho(x_i, x_j)}{h(x_i)})};$$

- 5: для всех объектов $i=1,\ldots,\ell$
- 6: $\gamma_i := \tilde{K}(|a_i y_i|);$
- 7: **пока** коэффициенты γ_i не стабилизируются;

Пример работы LOWESS на синтетических данных

 $\ell=100,\;\;h=1.0,\;\;$ гауссовское ядро $K(r)=\exp\left(-2r^2\right)$ Две из 100 точек — выбросы с ординатами $y_i=40\;$ и $-40\;$ В данном случае LOWESS сошёлся за 2–3 итерации:

- В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются робастными. Мы рассмотрели простой робастный метод, устойчивый к наличию небольшого числа выбросов.
- В этом методе происходит обучение весов объектов.

Обучение регрессии — это оптимизация

Обучающая выборка: $X^\ell=(x_i,y_i)_{i=1}^\ell$, $x_i\in\mathbb{R}^n$, $y_i\in\mathbb{R}$

Модель регрессии — линейная:

$$a(x, w) = \langle x, w \rangle = \sum_{j=1}^{n} f_j(x) w_j, \qquad w \in \mathbb{R}^n$$

Функция потерь — квадратичная:

$$\mathscr{L}(a,y)=(a-y)^2$$

Метод обучения — метод наименьших квадратов:

$$Q(w) = \sum_{i=1}^{\ell} (a(x_i, w) - y_i)^2 \rightarrow \min_{w}$$

① Проверка по тестовой выборке $X^k = (\tilde{x}_i, \tilde{y}_i)_{i=1}^k$:

$$\bar{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} (a(\tilde{x}_i, w) - \tilde{y}_i)^2$$

Обучение классификации — тоже оптимизация

Обучающая выборка: $X^{\ell}=(x_i,y_i)_{i=1}^{\ell}$, $x_i\in\mathbb{R}^n$, $y_i\in\{-1,+1\}$

• Модель классификации — линейная:

$$a(x, w) = \operatorname{sign}\langle x, w \rangle$$

Непрерывная аппроксимация бинарной функции потерь:

$$\mathscr{L}(a,y) = [\langle x_i, w \rangle y_i < 0] \leqslant \mathscr{L}(\langle x_i, w \rangle y_i),$$

где $M_i(w) = \langle x_i, w \rangle y_i$ — *отступ* (margin) объекта x_i

Метод обучения — минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[a(x_i, w) y_i < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathscr{L} \left(\langle x_i, w \rangle y_i \right) \to \min_{w}$$

① Проверка по тестовой выборке $X^k = (\tilde{x}_i, \tilde{y}_i)_{i=1}^k$:

$$\bar{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} \left[\langle \tilde{x}_i, w \rangle \tilde{y}_i < 0 \right]$$

Непрерывные аппроксимации пороговой функции потерь

Часто используемые непрерывные функции потерь $\mathscr{L}(M)$:

$$V(M) = (1-M)_+$$
 — кусочно-линейная (SVM);
 $H(M) = (-M)_+$ — кусочно-линейная (Hebb's rule);
 $L(M) = \log_2(1+e^{-M})$ — логарифмическая (LR);
 $Q(M) = (1-M)^2$ — квадратичная (FLD);
 $S(M) = 2(1+e^M)^{-1}$ — сигмоидная (ANN);
 $E(M) = e^{-M}$ — экспоненциальная (AdaBoost);
 $M < 0$] — пороговая функция потерь.

Градиентный метод численной минимизации

Минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}(\langle x_i, w \rangle y_i) = \sum_{i=1}^{\ell} \mathscr{L}_i(w) \to \min_{w}.$$

Численная минимизация методом градиентного спуска:

 $w^{(0)} :=$ начальное приближение;

$$w^{(t+1)} := w^{(t)} - h \cdot \nabla Q(w^{(t)}), \qquad \nabla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j}\right)_{j=0}^n,$$

где h — градиентный шаг, называемый также темпом обучения.

$$w^{(t+1)} := w^{(t)} - h \sum_{i=1}^{\ell} \nabla \mathscr{L}_i (w^{(t)}).$$

Идея ускорения сходимости:

брать (x_i, y_i) по одному и сразу обновлять вектор весов.

Алгоритм SG (Stochastic Gradient)

```
Вход: выборка X^{\ell}, темп обучения h, темп забывания \lambda;
Выход: вектор весов w:
```

- **1** инициализировать веса w_i , j = 1, ..., n;
- 2 инициализировать оценку функционала: $ar{Q}:=rac{1}{\ell}\sum\limits_{i=1}^{\iota}\mathscr{L}_{i}(w)$;

повторять

- выбрать объект x_i из X^ℓ случайным образом;
- 5 6 вычислить потерю: $\varepsilon_i := \mathscr{L}_i(w)$;
- сделать градиентный шаг: $w:=w-h\nabla\mathscr{L}_i(w)$;
- оценить функционал: $\bar{Q}:=(1-\lambda)\bar{Q}+\lambda\varepsilon_i$;
- 8 пока значение \bar{Q} и/или веса w не сойдутся;

Robbins, H., Monro S. A stochastic approximation method // Annals of Mathematical Statistics, 1951, 22 (3), p. 400–407.

Откуда взялась такая оценка функционала?

Проблема: после каждого шага w по одному объекту x_i , не хотелось бы оценивать Q по всей выборке x_1, \ldots, x_ℓ .

Решение: использовать рекуррентную формулу.

Среднее арифметическое $\bar{Q}_m = \frac{1}{m} \sum_{i=1}^m \varepsilon_i$:

$$\bar{Q}_m = (1 - \frac{1}{m})\bar{Q}_{m-1} + \frac{1}{m}\varepsilon_m.$$

Экспоненциальное скользящее среднее

$$\bar{Q}_m := (1 - \lambda)\bar{Q}_{m-1} + \lambda \varepsilon_m;$$

$$\bar{Q}_m = \lambda \varepsilon_m + \lambda (1 - \lambda)\varepsilon_{m-1} + \lambda (1 - \lambda)^2 \varepsilon_{m-2} + \lambda (1 - \lambda)^3 \varepsilon_{m-3} + \dots$$

Чем больше λ , тем быстрее забывается предыстория ряда. Параметр $\lambda pprox rac{1}{m}$ называется *темпом забывания*.

Алгоритм SAG (Stochastic Average Gradient)

9

```
Вход: выборка X^{\ell}, темп обучения h, темп забывания \lambda;
   Выход: вектор весов w:
 1 инициализировать веса w_i, j = 1, ..., n;
2 инициализировать градиенты: G_i := \nabla \mathscr{L}_i(w), i = 1, ..., \ell;
3 инициализировать оценку функционала: ar{Q}:=rac{1}{\ell}\sum^{\ell}\mathscr{L}_i(w);
4 повторять
        выбрать объект x_i из X^{\ell} случайным образом;
5
       вычислить потерю: \varepsilon_i := \mathscr{L}_i(w);
6
       вычислить градиент: G_i := \nabla \mathscr{L}_i(w);
      сделать градиентный шаг: w := w - h \sum_{i=1}^{\ell} G_i;
8
       оценить функционал: \bar{Q} := (1 - \lambda)\bar{Q} + \lambda \varepsilon_i;
10 пока значение \bar{Q} и/или веса w не сойдутся;
```

Schmidt M., Le Roux N., Bach F. Minimizing finite sums with the stochastic average gradient // arXiv.org, 2013.

- Непрерывная аппроксимация пороговой функции потерь $[M < 0] \leqslant \mathcal{L}(M)$ позволяет использовать градиентную оптимизацию и повышает качество классификации благодаря увеличению зазора между классами.
- SG легко обобщается для нелинейных моделей g(x, w)
- ullet и для любых функций потерь, $\mathscr{L}_i(w)=\mathscr{L}ig(g(x_i,w),y_iig)$.
- SG допускает онлайновое (потоковое) обучение.
- SG подходит для больших данных, т. к. даёт неплохие решения, даже не обработав всю выборку (x_i, y_i) .

Метод стохастического градиента (Stochastic Gradient)

Достоинства:

- легко реализуется;
- применим к любым моделям и функциям потерь;
- допускает онлайновое (потоковое) обучение;
- **1** на сверхбольших выборках позволяет получать неплохие решения, даже не обработав все (x_i, y_i) ;
- 🗿 всё чаще применяется для Big Data.

Недостатки:

- возможно застревание в локальных экстремумах;
- 2 возможна расходимость или медленная сходимость;
- возможно переобучение;
- подбор комплекса эвристик является искусством.

Варианты инициализации весов

- $\mathbf{0} \ \, w_j := 0$ для всех $j = 0, \ldots, n$;
- $ext{@}$ небольшие случайные значения: $w_j := \operatorname{random} \left(-rac{1}{2n}, rac{1}{2n}
 ight);$
- $w_j := \frac{\langle y, f_j \rangle}{\langle f_j, f_j \rangle}$, $f_j = \left(f_j(x_i) \right)_{i=1}^\ell$ вектор значений признака; эта оценка w оптимальна при квадратичной функции потерь, если признаки некоррелированы, $\langle f_j, f_k \rangle = 0$, $j \neq k$.
- $w_j := \ln rac{\sum_i [y_i = +1] f_j(x_i)}{\sum_i [y_i = -1]} \sum_i [y_i = -1]};$ эта оценка w оптимальна для задач классификации, $Y = \{-1, +1\}$, если признаки независимы.
- **5** оценки *w_j* по небольшой случайной подвыборке объектов;
- мультистарт: многократные запуски из разных случайных начальных приближений и выбор лучшего решения.

Варианты порядка предъявления объектов

Возможны варианты:

- перетасовка объектов (shuffling): попеременно брать объекты из разных классов;
- ullet чаще брать те объекты, на которых была допущена бо́льшая ошибка (чем меньше M_i , тем больше вероятность взять объект) (чем меньше $|M_i|$, тем больше вероятность взять объект);
- ullet вообще не брать «хорошие» объекты, у которых $M_i > \mu_+$ (при этом немного ускоряется сходимость);
- **3** вообще не брать объекты-«выбросы», у которых $M_i < \mu_-$ (при этом может улучшиться качество классификации);

Параметры μ_+ , μ_- придётся подбирать.

Варианты выбора градиентного шага

🔾 сходимость гарантируется (для выпуклых функций) при

$$h_t \to 0, \quad \sum_{t=1}^{\infty} h_t = \infty, \quad \sum_{t=1}^{\infty} h_t^2 < \infty,$$

в частности можно положить $h_t=1/t$;

метод скорейшего градиентного спуска:

$$\mathscr{L}_i(w-h\nabla\mathscr{L}_i(w))\to \min_h,$$

позволяет найти *адаптивный шаг* h^* ;

при квадратичной функции потерь $h^* = \|x_i\|^{-2}$;

- периодически можно делать пробные случайные шаги для «выбивания» из локальных минимумов;
- метод Левенберга-Марквардта (второго порядка)

Диагональный метод Левенберга-Марквардта

Метод Ньютона-Рафсона, $\mathscr{L}_i(w) \equiv \mathscr{L}(\langle w, x_i \rangle y_i)$:

$$w := w - h(\mathcal{L}_i''(w))^{-1} \nabla \mathcal{L}_i(w),$$

где
$$\mathscr{L}_i''(w) = \left(\frac{\partial^2 \mathscr{L}_i(w)}{\partial w_j \partial w_{j'}} \right)$$
 — гессиан, $n \times n$ -матрица

Эвристика: считаем, что гессиан диагонален. Тогда

$$w_j := w_j - h \left(\frac{\partial^2 \mathscr{L}_i(w)}{\partial w_j^2} + \mu \right)^{-1} \frac{\partial \mathscr{L}_i(w)}{\partial w_j},$$

h — темп обучения, можно полагать h=1 — параметр, предотвращающий обнуление знаменателя.

Отношение h/μ есть темп обучения на ровных участках функционала $\mathscr{L}_i(w)$, где вторая производная обнуляется.

Проблема переобучения

Возможные причины переобучения:

- ① линейная зависимость (мультиколлинеарность) признаков: пусть построен классификатор: $a(x,w) = \text{sign}\langle w,x \rangle$; мультиколлинеарность: $\exists u \in \mathbb{R}^{n+1} \colon \forall x \ \langle u,x \rangle \equiv 0$; тогда $\forall \gamma \in \mathbb{R}$ $a(x,w) = \text{sign}\langle w + \gamma u,x \rangle$
- слишком мало объектов; слишком много признаков;

Проявления переобучения:

- lacktriangle слишком большие веса $|w_j|$ разных знаков;
- $oldsymbol{2}$ неустойчивость классификаций a(x,w) относительно погрешностей измерения признаков;
- $Q(X^{\ell}) \ll Q(X^k);$

Регуляризация (сокращение весов, weight decay)

Штраф за увеличение нормы вектора весов:

$$\widetilde{\mathscr{L}_i}(w) = \mathscr{L}_i(w) + \frac{\tau}{2} \|w\|^2 = \mathscr{L}_i(w) + \frac{\tau}{2} \sum_{i=1}^n w_i^2 \to \min_w.$$

Градиент:

$$\nabla \widetilde{\mathscr{L}}_i(w) = \nabla \mathscr{L}_i(w) + \tau w.$$

Модификация градиентного шага:

$$w := w(1 - h\tau) - h\nabla \mathcal{L}_i(w).$$

Подбор параметра au — по скользящему контролю

Резюме в конце лекции

- В методе стохастического градиента необходимы различные эвристики для улучшения сходимости и получения лучшего решения.
- *Регуляризация* решает проблему мультиколлинеарности и снижает риск переобучения.