חלוקה הוגנת של חפצים בדידים Fair Indivisible Item Allocation

אראל סגל-הלוי

חלוקה הוגנת בקירוב

מקרה פשוט:

- **.** 99 חפצים זהים.
- 2 שחקנים עם זכויות שוות.

מה הן החלוקות שאפשר לקרוא להן "הוגנות בקירוב"?

- .49:50 או 50:49 •
- בכל חלוקה אחרת, יש חוסר-הוגנות
 שאי-אפשר להצדיק בכך שהחפצים בדידים.

חלוקה הוגנת בקירוב - הכללות

א. חפצים זהים – זכויות שונות.

ב. חפצים שונים – זכויות שוות.

ג. חפצים שונים – זכויות שונות.

חלוקה הוגנת בקירוב

הגדרה: חלוקה נקראת "ללא קנאה מלבד 1" Envy Free except 1, **EF1**) אם לכל שני משתתפים א,ב, קיים חפץ כלשהו, שאם נוריד מהסל של ב, אז שחקן א לא יקנא בו.

חלוקה הוגנת בקירוב

הגדרה: חלוקה נקראת "ללא קנאה מלבד 1" Envy Free except 1, **EF1**) אם לכל שני משתתפים א,ב, קיים חפץ כלשהו, שאם נוריד מהסל של ב, אז שחקן א לא יקנא בו.

המשמעות: רמת-הקנאה ניתנת להצדקה בהתחשב בעובדה שהחפצים בדידים.

?**EF1** האם תמיד קיימת חלוקה

(round robin) אלגוריתם הסֶבֶב

- .1מסדרים את השחקנים בסדר שרירותי כלשהו.
 - 2.כל שחקן לוקח, מבין החפצים שנשארו, את החפץ שהוא הכי רוצה.
 - .2 אם נשארו חפצים חוזרים לשלב.
 - משפט. אלגוריתם הסבב מחזיר חלוקה EF1.
- הוכחה. נוכיח את תנאי EF1 לכל שני שחקנים א,ב; נניח בה"כ ששחקן א מופיע בסבב לפני שחקן ב.
- ַאַ לאַ מקנאַ כלל: על כל חפץ ש-ב בחר, אַ בחר לפניו. ■
- עכשיו נניח שמורידים מהסל של א את החפץ הראשון
 שבחר. על כל חפץ שנשאר בסל של א, ב בחר לפניו.
 לכן החלוקה EF1 גם עבור שחקן ב. ***

חלוקה הוגנת בקירוב - הכללות

א. חפצים זהים – זכויות שונות.

ב. חפצים שונים – זכויות שוות.

ג. חפצים שונים – זכויות שונות.

דוגמה: חלוקת תיקים בממשלה בין מפלגות.

הגדרה: רמת הקנאה המוצדקת בין שני משתתפים \pm , \pm , \pm , \pm , היא:

$$V_{i}(X_{j})/w_{j} - V_{i}(X_{i})/w_{i}$$

חלוקה ddx קנאה מוצדקת (WEF) = רמת הקנאה המוצדקת היא 0 (לכל היותר).

דוגמה: לשחקן \pm זכות 1, לשחקן \pm זכות 2. שחקן \pm לא מקנא ב- \pm אם $V_{\pm}(X_{\pm}) >= V_{\pm}(X_{\pm})/2$ הוא מקבל לפחות חצי ממנו, כלומר:

- $V_{i}(X_{j})/2 V_{i}(X_{i})/1 <= 0$
- רמת הקנאה המוצדקת היא:

• $V_i(X_j)/2 - V_i(X_i)/1$

הגדרה: רמת הקנאה המוצדקת בין שני משתתפים \pm , \pm עם זכויות \pm , \pm , היא:

```
V_{i}(X_{j})/w_{j} - V_{i}(X_{i})/w_{i}
```

- בחלוקה EF1, כשהמשקלים 1 רמת הקנאה
 = g רמת היא לכל היותר (g), כאשר = g
 ∴ לכל היותר (שבור ביותר (עבור ביותר ביותר (עבור ביותר (עבור ביותר ביותר (עבור ביותר ב
- מה רמת הקנאה המותרת ב"חלוקה ללא קנאה
 מוצדקת עד-כדי חפץ אחד" ("WEF1")? -->

הגדרה: רמת הקנאה המוצדקת בין שני משתתפים \pm , \pm עם זכויות \pm , \pm , היא:

$$V_{i}(X_{j})/w_{j} - V_{i}(X_{i})/w_{i}$$

- .j אם הערך הגדול ביותר בסל של : g •
- מה רמת הקנאה המותרת ב"חלוקה ללא קנאה מוצדקת עד-כדי חפץ אחד" ("WEF1")?
 - ? הסרת חפץ מהסל של ל V_i (g) /w_j -
 - ?יב שיכפול חפץ לסל של V_{i} (g) / W_{i}
 - ממוצע של שני הביטויים הקודמים

אלגוריתם סֶבֵב משוקלל

•אתחול: כל שחקן מקבל 0 נבחר פונקציה :כל עוד יש חפצים• כלשהי f, •מחשבים, לכל שחקן: המייחסת לכל הזכות שלו מספר שלם s, מספר ממשי כלשהו בתחום

.[s, s+1]

(מספר החפצים נוכחי)

•השחקן, שהמנה שלו גדולה ביותר, בוחר, מבין החפצים שנשארו, את החפץ שהוא הכי רוצה.

משפט: אלגוריתם הסבב המשוקלל עם פונקציית-מחלק f(s)=s+y מחזיר חלוקה שבה פונקציית-מחלק $\pm x$, $\pm y$ עם זכויות $\pm x$, $\pm y$, עם זכויות $\pm x$, $\pm y$, רמת הקנאה המשוקללת היא לכל היותר:

$$y*V_{i}(g)/w_{i} + (1-y)*V_{i}(g)/w_{j}$$

- \sharp הסרת חפץ מהסל של $=s \bullet$
 - ;i שיכפול חפץ לסל של \sim f(s)=s+1
 - ממוצע שני הביטויים. $\sim f(s) = s + 0.5$

משפט: אלגוריתם הסבב המשוקלל עם פונקציית-מחלק f(s)=s+y מחזיר חלוקה שבה פונקציית-מחלק $\pm x$, $\pm y$ עם זכויות $\pm x$, $\pm y$, עם זכויות $\pm x$, $\pm y$, רמת הקנאה המשוקללת היא לכל היותר:

$$y*V_{i}(g)/w_{i} + (1-y)*V_{i}(g)/w_{j}$$

- דוגמה: לשחקן \pm זכות 1, לשחקן \pm זכות 2. רמת הקנאה המוצדקת של שחקן \pm בשחקן \pm היא לכל היותר:
- $y*V_i(g)/1 + (1-y)*V_i(g)/2 = (y+(1-y)/2)* V_i(g)$
 - $-y=0: V_{i}(g)/2 טוב יותר לשחקן טוב יותר לשחקן$
 - y=1: $V_{i}(g)$ טוב יותר לשחקן השני טוב יותר לשחקן השני
 - -y=0.5: 3* $V_{i}(g)/4$ ממוצע