Analyse d'Algorithmes et Programmation

Rattrapage

Christina Boura et Yann ROTELLA {christina.boura, yann.rotella}@uvsq.fr

16 juin 2021

1 Programmation Dynamique

On s'intéresse au problème des multiplications matricielles enchaînées. Étant donné une chaîne de n matrices M_1, M_2, \ldots, M_n on cherche à trouver le parenthésage optimal, c'est à dire celui qui minimise le nombre de multiplications scalaires pour l'opération $M_1 \times M_2 \times \cdots \times M_n$.

— Donner le nombre de parenthésages possibles pour la multiplication de n=5 matrices.

(1 point)

— Soit cinq matrices M_1, M_2, \ldots, M_5 , où chaque matrice M_i pour i allant de 1 à 5 est de dimension $p_{i-1} \times p_i$. On note $c_{i,j}$ pour $1 \le i \le j \le n$ le nombre minimal de multiplications scalaires nécessaires pour le calcul de la matrice $M_i \times M_{i+1} \times \cdots \times M_j$. Exprimer $c_{1,4}$ en fonction des coûts $c_{1,1}, c_{2,4}, c_{1,2}, c_{3,4}, c_{1,3}, c_{4,4}$ et des entiers p_i pour i allant de 0 à 5.

(1 point)

— On suppose maintenant que les dimensions des matrices M_1, M_2, \ldots, M_5 sont données par $(p_0, p_1, p_2, p_3, p_4, p_5) = (2, 3, 5, 1, 4, 3)$. Calculer le coût optimal $c_{1,5}$ pour la multiplication $M_1 \times M_2 \times M_3 \times M_5 \times M_5$ en sauvegardant les coûts pour la multiplication des chaînes plus petites. Montrer finalement le parenthésage optimal que vous obtenez.

(1.5 points)

— On suppose maintenant que les coefficients des matrices sont des entiers modulo un entier m et que l'on travail dans l'anneau $\mathbb{Z}/m\mathbb{Z}$. Quel est la complexité asymptotique du calcul précédent en nombre d'opérations binaires? (Justifiez avec l'algorithme de multiplication que vous utilisez)

(2 points)

2 Applications d'algorithmes sur les graphes

On considère le graphe orienté suivant.

— Le graphe est-il connexe? Fortement connexe?

(0.5 points)

— Donnez la représentation de ce graphe sous forme de liste d'adjacence.

(1 point)

— Combien de bits sont nécessaires à l'encodage de ce graphe sous forme de liste d'adjacence ? Et sous forme de matrice d'adjacence ? Justifiez.

(1.5 points)

— Détaillez les étapes du parcours en profondeur sur le graphe donné en exemple en commençant par le sommet de votre choix. En particulier détaillez la suite des sommets parcourus, et, à chaque étape, quels sommets sont marqués blancs, gris et noirs.

(2 points)

— Appliquez l'algorithme de Dijkstra au graphe et détaillez les étapes.

(2 points)