Computer / Network

Network Layer I

School of Electric and Computer Engineering

Pusan National University, KOREA

Younghwan Yoo

Computer Networking

A Top-Down Approach

7th edition

Jim Kurose, Keith Ross

Pearson

April 2016

Contents

Computer Network introduction

01. Overview of Network Layer

02. Inside of Router

03. Internet Protocol Overview

04. IP Addressing

Contents

Computer Network introduction

05. Datagram Forwarding

06. Dynamic Host Config. Protocol

07. Network Address Translation

08. IPv6

01. Overview of Network Layer

- Transport segment from sending to receiving host
- Sending side encapsulates segments into datagrams and sends them
- Receiving side receives datagrams and delivers segments to transport layer
- Network layer protocols in every host and router
- Router examines header fields in all IP datagrams passing through it

Routing: determine route taken by packets from source to destination

- routing algorithms
- Forwarding: move packets from router's input to appropriate router output
 - i.e., packet delivery to the next node

Traditional vs. SDN Network

Traditional IP network

routing and forwarding at the same system

Software-defined network (SDN)

routing and forwarding separated at different systems

www.google.com/url?sa=i&rct=i&g=&esrc=s&source=images&cd=&c

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiDsaqCuP3bAhUZM94KHdm_Cp8QjRx6BAgBEAU&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FTraditional—Network-versus-SDN_fig1_319876305&psig=AOvVaw3Azn7yQLyweWfl2wFNRYhQ&ust=1530518464669003

02. Inside of Router

High-level view of generic router architecture

physical layer: bit-level reception

data link layer: e.g., Ethernet

see Chapter 5

Decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

- Fabric slower than input ports combined —> queuing may occur at input queues
 - queuing delay and loss due to input buffer overflow!
- Head—of—the—Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
 green packet
 experiences HOL
 blocking

- Transfer packet from input buffer to appropriate output buffer
- Switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- Three types of switching fabrics

first generation routers:

- Traditional computers with switching under direct control of CPU
- Packet copied to system's memory
- Speed limited by memory bandwidth (2 bus crossings per datagram)

- Datagram from input port memory to output port memory via a shared bus
- Bus contention: switching speedlimited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

Switching via Interconnection Network

- Banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

축처 -

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&s ource=images&cd=&cad=rja&uact=8&ved=2ahUKEwiKl MeL9lHcAhWVdt4KHWMDB68QjRx6BAgBEAU&url=https %3A%2F%2Fstackoverflow.com%2Fquestions%2F47519 15%2Fhow-to-generate-a-banyan-network-for-n-inputs&psig=AOvVaw0LLA5cPGMgn-1ZsLTtjPte&ust=1530672078267513

- Buffering required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

- Buffering when arrival rate via switch exceeds output line speed
- Queuing (delay) and loss due to output port buffer overflow!

- Scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
- Discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

- Send highest priority queued packet
- Multiple classes, with different priorities
- Class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.

- Multiple classes
- Cyclically scan class queues, sending one complete packet from each class (if available)

- Generalized Round Robin
- Each class gets weighted amount of service in each cycle

03. Internet Protocol Overview

Host, router network layer functions:

- RIP (routing information protocol)
- OSPF (open shortest path first)
- BGP (border gateway protocol)
- ICMP (Internet control message protocol)

IP Datagram Format

"type" of data

e.g. timestamp. taken, specify

how much overhead?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

- Network links have MTU (max transfer size)
 - largest possible link—level frame
 - different link types, different MTUs
- Large IP datagram divided ("fragmented")within network
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP Fragmentation & Reassembly

example:

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = 1480/8

length	ID	fragflag	offset	
=4000	=X	=0	=0	

one large datagram becomes several smaller datagrams

length	ID	fragflag	offset	
=1500		=1	=0	

length	ID	fragflag	offset	
=1500	=X	=1	=185	

length	ID	fragflag	offset	
=1040	=X	=0	=370	

처 -

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi8 oMXYyYLcAhXM62EKHYZyAmlQjRx6BAgBEAU&url=http%3A%2F%2Fwww.inacon.de%2Fph%2Fdata%2FlPv4%2 FHeader_fields%2FIP-Header-Field-Flags_OS_RFC-

791.htm&psig=AOvVaw2uflD8jt3ncstFh5tDEBqs&ust=1530695050103958

- TTL field (8 bits)
 - included to ensure that datagrams do not circulate forever (due to, for example, a long-lived routing loop) in the network
 - decremented by one each time the datagram is processed by a router
 - if reaching 0, a router must drop that datagram

축처 🗕

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjTravfzYLcAhWNQN4KHcFRA44QjRx6BAgBEAU&url=https%3A%2F%2Fopenmaniak.com%2Fping.php&psig=AOvVaw1kKBGCdMZwSzgWsJQYYB-1&ust=1530695604173111

04. IP Addressing

- IP address: 32-bit identifier for host, router interface
- Interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces
 (e.g., wired Ethernet, wireless 802.11)
- IP address associated with each interface

Korean postal code

출처 -

https://www.google.co,kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwidj-ru4lLcAhWCMN4KHT6ADjlQjRx6BAgBEAU&url=http%3A%2F%2Fwww.thedjnews.com%2Fnews%2FarticleView.html%3Fidxno%3D1493&psig=AOvVaw0Z4wtVpluH4N3PFxGbw2eQ&ust=1530701281466061

Telephone number

IP address

164.125.70.125

host id
Bldg. Comp. Eng.
Pusan National University

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj537vo44LcAhWVA4gKHWWiAPwQjRx6BAgBEAU&url=https%3A %2F%2Fwww.slideshare.net%2Fwelcometofacebook%2Fm06-35513859&psig=AOvVaw0kd7fRzS5vV-ls5QZC2_lB&ust=1530700263742351

- ICANN (Internet Corporation for Assigned Names and Numbers)
 - http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

Subnets

- Subnet: a logical subdivision of an IP network
- Why subnetworking?
 - Datagram forwarding performed by routers
 - Hosts in a same network can reach each other without intervening router
 - Too many hosts in a network increase maintenance overhead
 - "Divide and conquer"

축처 🗕

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjWr4q3s4TcAhXGFogKHTNuC2gQjRx6BAgBEAU&url=http%3A%2F%2Fwww.learncisco.net%2Fcourses%2Ficnd-1%2Flan-connections%2Fnetwork-addressing-scheme.html&psig=AOvVaw24-bw_TTDQV85Eh-H39lpq&ust=1530757596051182

- Division of IP address
 - subnet part: high order bits of host id
 - host part: low order bits of host id

- How to decide the size of subnet number?
 - subnet mask: indicating the bits that will be used as the network number
 - e.g., 255.255.255.0 => 24 bits are used
 as the network number

Subnetworking Example

- e.g., subnet ID is 5 bits long
 - $2^5 = 32$ subnets can exist
 - each subnet can include 2¹¹ hosts

■ subnet mask in r binary number

decimal number

출처 -

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjut7mQroTcAhVCdt4KHcr gD1AQjRx6BAgBEAU&url=http%3A%2F%2Fwww.tcpipguide.com%2Ffree%2Ft_IPSubnetMasksNotationandSubnetCalculations=2.htm&psig=AOvVaw2fWClcQMJzIPoe3PYzjIZn&ust=1530756208997926

- An IP network can be a subnet by itself
 - e.g., Class C network with subnet mask/24

subnet mask: /24

- A.k.a supernetting
- Address format: a_b_c_d/x, where x is # bits in network portion of address

	subnet		host	
	part		part	
11000000	10101000	00000000	0000000	192.168.0.0/22
11000000	10101000	00000001	00000000	192.168.1.0/22
11000000	10101000	00000010	00000000	192.168.2.0/22
11000000	10101000	00000011	00000000	192.168.2.0/22

We can reference all these networks with a single route entry 192,168,0,0/22

05. Datagram Forwarding

- No call setup at network layer
- Routers: no state about end—to—end connections
 - no network—level concept of "connection"

- Datagram forwarding
 - destination—based forwarding: forward based only on destination IP address (traditional)
 - generalized forwarding: forward based on any set of header field values (SDN)

4 billion IP addresses, so rather than list individual destination address list *range* of addresses (aggregate table entries)

IP destination address in arriving packet's header

forwarding table				
Destination Add	Link Interface			
11001000 000 through 11001000 000				0
11001000 000 through 11001000 000				1
11001000 000 through 11001000 000				2
otherwise				3

Q: but what happens if ranges don't divide up so nicely?

Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *****	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

06. Dynamic Host Config. Protocol

nt needs

- Host dynamically obtains its IP address from network server when it joins network
 - can renew its lease on address in use
 - allows reuse of addresses (only hold address while connected/"on")
 - support for mobile users who want to join network (more shortly)

DHCP server: 223.1.2.5

- 1) host broadcasts "DHCP discover"
- 2) DHCP server responds with "DHCP offer"
- 3) host requests IP address:"DHCP request"
- 4) DHCP server sends address:"DHCP ack"

- Connecting laptop needs its IP address, address of first-hop router, address of DNS server
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

- DCP server formulates DHCP ACK containing client's IP address, IP address of first—hop router for client, name & IP address of DNS server
- Encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- Client now knows its IP address, name and IP address of DSN server, IP address of its first—hop router

- Efficient use of IP addresses
 - one solution to the "IP address exhaustion" problem

출처 - https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiCprSz 74TcAhWKFogKHTn6AUcQjRx6BAgBEAU&url=https%3A%2F%2Froyal.pingdom.com%2F2009%2F03%2F06%2Fa-crisis-in-the-making-only-4-of-the-internet-supports-ipv6%2F&psig=AOvVaw2mAkJPtS508ebKIOCFWFZp&ust=1530773146360152

Allow the "plug & play" of a computer system

07. Network Address Translation

NAT (Network Address Translation)

- Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus)

축처 -

https://www.google.co,kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii9YPw74Tc AhWUZt4KHYuxABUQjRx6BAgBEAU&url=http%3A%2F%2Fwww.practicalnetworking.net%2Fseries%2Fnat%2Fwhy-nat%2F&psig=AOvVaw3Rck0oh7KTX3cP0a6Pv5w9&ust=1530773925619362

port numbers

- Client wants to connect to server at address 192,168,0,15
- However, client cannot use it as destination address because it is a private address
- Only one externally visible NATed address: 138,76,29,7

Port Forwarding

- Statically configure NAT to forward incoming connection requests at given port to server
- e.g., "138.76.29.7, port 80" alwaysforwarded to "192.168.0.15, port 80"

Setup V	Vireless Secu	ırity Stor	age Access / Policy	Applications & Gaming
Single Port Fo	rwarding P	ort Range For	warding Port F	Range Triggering
External Por	t Internal Port	Protocol	To IP Address	Enabled
			192 . 168 . 0. 0	
			192 . 168 . 0. 0	
			192 . 168 . 0. 0	
			192 . 168 . 0. 0	
			192 . 168 . 0 . 0	
53	53	Both 💌	192 . 168 . 0. 15	▽
80	80	TCP 💌	192 . 168 . 0. 15	▽
88	88	UDP 💌	192 . 168 . 0. 15	▽
3074	3074	Both 💌	192 . 168 . 0. 15	~
0	0	Both 💌	192 . 168 . 0. 0	

출처 -

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact= 8&ved=2ahUKEwj638Pw84TcAhXl7GEKHSSoDiMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.linksys.com%2Fus%2Fsupport-

article%3FarticleNum%3D136711&psig=AOvVaw09SlD6bZzholqucUCF2OVm&ust=15307750 24822632

08. IPv6

Initial motivation

- In the early 1990s, the IETF began an effort to develop a successor to the IPv4 protocol to respond to the depletion of IP addresses
- In Feb. 2011, IANA allocated out the last remaining pool of unassigned IPv4 addresses to a regional registry

Additional motivation

- header format changes to speed up processing/forwarding
- header changes to facilitate QoS

■ IPv6 datagram format

- fixed—length 40 byte header
- no fragmentation allowed

ver	pri	flow label			
ŗ	payloac	llen	next hdr hop limit		
	source address (128 bits)				
	destination address (128 bits)				
	data				
32 hits —					

- priority: identify priority among datagrams in flow
- flow Label: identify datagrams in same "flow"
- next header: identify upper layer protocol for data
- hop limit: same as TTL in IPv4
- options: allowed, but outside of header, indicated by "Next Header" field
- Checksum removed entirely to reduce processing time at each hop

- Not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Long (long!) time for deployment!

- Google: 8% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable
- in Korea: IPv6 implemented since 2008, but just less than 0.1% of the 3.4 million domains have been IPv6—enabled

In the future,

- In preparation for the IoT era, major international sites (such as Google, Facebook, Amazon, LinkedIn, YouTube, and Netflix) have completed and are servicing IPv6
- To facilitate the use of IPv6, KISA (Korea Internet & Security Agency) supports a total budget of
 billion won, mainly for mobile service providers with high adoption

Summary

01

Overview of Network layer

- two key functions of network layer: routing and forwarding
- architecture of traditional network & software—define network

02

Inside of Router

- components: input port, output port, switching fabric
- queuing and scheduling

03

Internet Protocol Overview

- IPv4 datagram format
- fragmentation and reassembly

04

IP Addressing

- hierarchical IP addressing
- subnet and CIDR

05

Datagram Forwarding

- destination—based forwarding
- longest prefix matching

06

Dynamic Host Configuration Protocol

- dynamic and automatic allocation of IP address to host
- advantages of DHCP

07

Network Address Translation

- translation between public and private address
- network address traversal

08

IPv6

- resolution for the IP address exhaustion
- header changes that help speed processing/forwarding