

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Vorgehensweise bei dynamischer Programmierung

- Bestimme rekursive Struktur einer optimalen Lösung.
- Entwerfe rekursive Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 3. Transformiere rekursiv Methode in eine iterative (bottom-up) Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 4. Bestimmen aus dem Wert einer optimalen Lösung und in 3. ebenfalls berechneten Zusatzinformationen eine optimale Lösung.

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

Objekt 1 und 3 passen in den Rucksack und haben Gesamtwert 13

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

- Objekt 1 und 3 passen in den Rucksack und haben Gesamtwert 13
- Objekt 2,3 und 4 passen und haben Gesamtwert 15

Das Rucksackproblem

- Eingabe: Anzahl der Objekte n
 Für jedes Objekt i seine ganzzahlige Größe g[i] und seinen
 ganzzahligen Wert v[i]
 Rucksackgröße W
- Ausgabe: S⊆{1,...,n}, so dass $\sum_{i \in S} g[i] \le W$ und $\sum_{i \in S} v[i]$ maximal ist

Lösungsansatz

- Bestimme zunächst den Wert einer optimalen Lösung
- Leite dann die Lösung selbst aus der Tabelle des dynamischen Programms her

Herleiten der Rekursion

- Sei O⊆{1,..,i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,..,i und Rucksackgröße j
- Sei Opt(i,j) der Wert einer solchen optimalen Lösung
- Gesucht: Opt(n,W)

Lemma 25 (Struktur einer optimalen Lösung des Rucksackproblems)

- Sei O⊆{1,..,i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,..,i und Rucksackgröße j. Es bezeichne Opt(i,j) den Wert dieser optimalen Lösung. Dann gilt:
- (a) Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=v[i] + Opt(i-1, j-g[i]).
- (b) Ist Objekt i nicht in O enthalten, so ist O eine optimale Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j. Insbesondere gilt Opt(i,j) = Opt(i-1, j).

Beweis

(a) z.z.: Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=v[i] + Opt(i-1, j-g[i]).

- (a) z.z.: Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=v[i] + Opt(i-1, j-g[i]).
- Für i=1 ist die Aussage offensichtlich korrekt. Sei also i>1.

- (a) z.z.: Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=v[i] + Opt(i-1, j-g[i]).
- Für i=1 ist die Aussage offensichtlich korrekt. Sei also i>1.
- Sei O eine optimale Lösung mit Kosten Opt(i,j), die Objekt i enthält. Da Objekt i Größe g[i] hat, gilt sicher, dass O \ {i} eine Gesamtgröße von höchstens j-g[i] hat. Damit ist O \ {i} eine gültige Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i].

- (a) z.z.: Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=v[i] + Opt(i-1, j-g[i]).
- Für i=1 ist die Aussage offensichtlich korrekt. Sei also i>1.
- Sei O eine optimale Lösung mit Kosten Opt(i,j), die Objekt i enthält. Da Objekt i Größe g[i] hat, gilt sicher, dass O \ {i} eine Gesamtgröße von höchstens j-g[i] hat. Damit ist O \ {i} eine gültige Lösung für das Rucksackproblem mit Objekten 1,...,i-1 und Rucksackgröße j-g[i].

Beweis

 Annahme: O \ {i} hat Kosten R = Opt(i,j) - v[i] und ist keine optimale Lösung für das Rucksackproblem mit Objekten 1,..,i-1 und Rucksackgröße j-g[i].

- Annahme: O \ {i} hat Kosten R = Opt(i,j) v[i] und ist keine optimale Lösung für das Rucksackproblem mit Objekten 1,..,i-1 und Rucksackgröße j-g[i].
- Dann gibt es eine bessere Lösung O* für dieses Problem mit Kosten R*>R. Weiterhin ist O*∪ {i} eine gültige Lösung für das Rucksackproblem mit Objekten 1,...,i und Rucksackgröße j. Die Kosten dieser Lösung sind R*+v[i] > R + v[i] = Opt(i,j). Widerspruch zur Optimalität von O.

- Annahme: O \ {i} hat Kosten R = Opt(i,j) v[i] und ist keine optimale Lösung für das Rucksackproblem mit Objekten 1,..,i-1 und Rucksackgröße j-g[i].
- Dann gibt es eine bessere Lösung O* für dieses Problem mit Kosten R*>R. Weiterhin ist O*∪ {i} eine gültige Lösung für das Rucksackproblem mit Objekten 1,...,i und Rucksackgröße j. Die Kosten dieser Lösung sind R*+v[i] > R + v[i] = Opt(i,j). Widerspruch zur Optimalität von O.
- Damit ergibt sich sofort Opt(i,j)= v[i] + Opt(i-1,j-g[i]).

- Annahme: O \ {i} hat Kosten R = Opt(i,j) v[i] und ist keine optimale Lösung für das Rucksackproblem mit Objekten 1,..,i-1 und Rucksackgröße j-g[i].
- Dann gibt es eine bessere Lösung O* für dieses Problem mit Kosten R*>R. Weiterhin ist O*∪ {i} eine gültige Lösung für das Rucksackproblem mit Objekten 1,...,i und Rucksackgröße j. Die Kosten dieser Lösung sind R*+v[i] > R + v[i] = Opt(i,j). Widerspruch zur Optimalität von O.
- Damit ergibt sich sofort Opt(i,j)= v[i] + Opt(i-1,j-g[i]).

Beweis

(b) analog zu (a).

Korollar 26 (Rekursion zur Berechnung der Kosten einer opt. Lösung)

- Es gilt
- Opt(0,j)= 0 für $0 \le j \le W$,
- Opt(i,j) = max{Opt(i-1,j), v[i] + Opt(i-1,j-g[i])}, falls i>0 und g[i]≤j, und
- Opt(i,j) = Opt(i-1,j), sonst.

Korollar 26 (Rekursion zur Berechnung der Kosten einer opt. Lösung)

- Es gilt
- Opt(0,j)= 0 für $0 \le j \le W$,
- Opt(i,j) = max{Opt(i-1,j), v[i] + Opt(i-1,j-g[i])}, falls i>0 und g[i]≤j, und
- Opt(i,j) = Opt(i-1,j), sonst.

Beweis

• Aufgrund von Lemma 25 wissen wir, dass die Kosten einer optimalen Lösung entweder durch Opt(i-1,j) oder durch v[i] + Opt(i-1, j-g[i]) gegeben sind. Letzterer Fall kann nur auftreten, wenn g[i]≤j ist. Beide Werte entsprechen außerdem den Kosten einer zulässigen Lösung. Dies zeigt die Korrektheit der Rekursion.

Rekursion

- Wenn j<g[i] dann Opt(i,j) = Opt(i-1,j)</p>
- Sonst, Opt(i,j) = max{Opt(i-1,j), v[i] + Opt(i-1,j-g[i])}

Rekursionsabbruch

• Opt(0,j)= 0 für $0 \le j \le W$

Wenn Objekt i nicht in den Rucksack, sind in der optimalen Lösung nur Objekte aus {1,..,i-1}

Rekursion

- Wenn j<g[i] dann Opt(i,j) = Opt(i-1,j)</p>
- Sonst, Opt(i,j) = max{Opt(i-1,j), v[i] + Opt(i-1,j-g[i])}

Sonst ist entweder i in der optimalen Lösung oder die beste Lösung besteht aus Objekten aus {1,...,i-1}

Rekursionsabbruch

• Opt(0,j)= 0 für $0 \le j \le W$

Rekursion

- Wenn j<g[i] dann Opt(i,j) = Opt(i-1,j)</p>
- Sonst, Opt(i,j) = max{Opt(i-1,j), v[i]

Gibt es keine Objekte, so kann auch nichts in den Rucksack gepackt werden

Rekursionsabbruch

Opt(0,j)= 0 für 0≤j≤W

Rucksack(n,g,v,W)

- 1. **new array** Opt[0,..,n][0,..,W]
- 2. for $j \leftarrow 0$ to W do
- 3. Opt $[0,j] \leftarrow 0$
- 4. for $i \leftarrow 0$ to n do
- 5. for $j \leftarrow 0$ to W do
- 6. Berechne Opt[i,j] nach Rekursion
- 7. return Opt[n,W]

Rucksack(n,g,v,W)

- 1. **new array** Opt[0,..,n][0,..,W]
- 2. for $j \leftarrow 0$ to W do
- 3. Opt $[0,j] \leftarrow 0$
- 4. for $i \leftarrow 0$ to n do
- 5. for $j \leftarrow 0$ to W do
- 6. Berechne Opt[i,j] nach Rekursion
- return Opt[n,W]

Laufzeit

O(nW)

n									
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

n									
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

n									
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

n									
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

n	0	2	3	5	7	9	10	12	13
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

Optimaler Lösungswert für W=8

n	0	2	3	5	7	9	10	12	13
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

iße	Wert
g	V
5	2
3	4
1	1
2	3
1	2
7	3
4	7
3	3
	g 5 3 1 2 1 7 4

Beobachtung:

- Sei R der Wert einer optimalen Lösung für die Elemente 1,..,i
- Falls g[i]≤j und Opt[i-1,j-g[i]] +v[i]= R, so ist Objekt i in mindestens einer optimalen Lösung enthalten

Wie kann man eine optimale Lösung berechnen?

- Idee: Verwende Tabelle der dynamischen Programmierung
- Fallunterscheidung + Rekursion:
 - Falls das i-te Objekt in einer optimalen Lösung für Objekte 1 bis i und Rucksackgröße j ist, so gib es aus und fahre rekursiv mit Objekt i-1 und Rucksackgröße j-g[i] fort
 - Ansonsten fahre mit Objekt i-1 und Rucksackgröße j fort

RucksackLösung(Opt,g,v,i,j)

- 1. if i=0 return \emptyset
- 2. else if g[i]>j then return RucksackLösung(Opt,g,v,i-1,j)
- 3. else if Opt[i,j]=v[i] + Opt[i-1,j-g[i]] then return {i} ∪ RucksackLösung(Opt,g,v,i-1,j-g[i])
- 4. else return RucksackLösung(Opt,g,v,i-1,j)

RucksackLösung(Opt,g,v,i,j)

- 1. if i=0 return \emptyset
- 2. else if g[i]>j then return RucksackLösung(Opt,g,v,i-1,j)
- 3. else if Opt[i,j]=v[i] + Opt[i-1,j-g[i]] then return {i} ∪ RucksackLösung(Opt,g,v,i-1,j-g[i])
- 4. else return RucksackLösung(Opt,g,v,i-1,j)

Aufruf

- Nach der Berechnung der Tabelle Opt von Rucksack wird RucksackLösung mit Opt, g,v, i=n und j=W aufgerufen.
- Nach dem Lemma wird dann die optimale Lösung konstruiert

ert

4

3

2

3

3

Dynamische Programmierung

Opt[i,j]=13, j=8, i=8: Es gilt Opt[i,j] > v[i]+Opt[i-1,j-g[i]]

											4
n	0	2	3	5	7	9	10	12	13 ^		g
	0	2	3	5	7	9	10	12	13	1	5
	0	2	3	5	6	7	9	10	10	2	3
	0	2	3	5	6	7	9	10	10		1
	0	1	3	4	5	7	8	8	8		2
	0	1	1	4	5	5	5	5	6		1
	0	0	0	4	4	4	4	4	6		7
1	0	0	0	0	0	2	2	2	2		4
0	0	0	0	0	0	0	0	0	0	n	3
	0	1							W		

Opt[i,j]=13, j=8, i=7:Es gilt Opt[i,j] = v[i]+Opt[i-1,j-g[i]]

											*		
n	0	2	3	5	7	9	10	12	13		g	V	
	0	2	3	5	7	9	10	12	, 13	1	5	2	
	0	2	3	5	6	7	9	10	10	2	3	4	
	0	2	3	5	6	7	9	10	10		1	1	
	0	1	3	4	5	7	8	8	8		2	3	
	0	1	1	4	5	5	5	5	6		1	2	
	0	0	0	4	4	4	4	4	6		7	3	
1	0	0	0	0	0	2	2	2	2		4	7	
0	0	0	0	0	0	0	0	0	0	n	3	3	
	0	1							W				

Dynamische Programmierung

Opt[i,j]=6, j=4, i=6: Es gilt g[i]>j

Beispiel

0 2 3 5 7 9 10 12 13 0 2 3 5 7 9 10 12 13 0 2 3 5 6 7 9 10 10 0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 0 1 1 4 5 5 5 6 0 0 0 4 4 4 4 4 6
0 2 3 5 6 7 9 10 10 0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 8 0 1 1 4 5 5 5 5 6
0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 0 1 1 4 5 5 5 6
0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 8 0 1 1 4 5 5 5 5 6
0 1 1 4 5 5 5 6
0 0 0 4 4 4 4 6
0 0 0 0 2 2 2 2
0 0 0 0 0 0 0 0 0 n

ert

Dynamische Programmierung

Opt[i,j]=6, j=4, i=5: Es gilt Opt[i,j] = v[i] + Opt[i-1,j-g[i]]

Beispiel

n	0	2	3	5	7	9	10	12	13
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	₇ 6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

	¥	¥
	g	V
1	5	2
2	3	4
	1	1
	2	3
	1	2
	7	3
	4	7
n	3	3

rt

Dynamische Programmierung

Opt[i,j]=6, j=4, i=5: Es gilt Opt[i,j] = v[i]+Opt[i-1,j-g[i]]

n	0	2	3	5	7	9	10	12	13		
	0	2	3	5	7	9	10	12	13		
	0	2	3	5	6	7	9	10	10		
	0	2	3	5	6	7	9	10	10		
	0	1	3	4	5	7	8	8	8		
	0	1	1	4	5	5	5	5	6		
	0	0	0	4	4	4	4	4	6		
1	0	0	0	0	0	2	2	2	2		
0	0	0	0	0	0	0	0	0	0		
	0	1							W		

	*	
	g	V
1	5	2
2	3	4
	1	1
	2	3
	1	2
	7	3
	4	7
n	3	3

Opt[i,j]=4, j=3, i=4: Es gilt Opt[i,j = v[i] + Opt[i-1,j-g[i]]

Beispiel

1	0	2	3	5	7	9	10	12	13		g
	0	2	3	5	7	9	10	12	13	1	5
	0	2	3	5	6	7	9	10	10	2	3
	0	2	3	5	6	7	9	10	10		1
	0	1	3	4	5	7	8	8	8		2
	0	1	1	4	5	5	5	5	6		1
	0	0	0	4	4	4	4	4	6		7
	0	0	0	0	0	2	2	2	2		4
	0	0	0	0	0	0	0	0	0	n	3
	0	1							W		

ert

Dynamische Programmierung

Opt[i,j]=1, j=1, i=3: Es gilt Opt[i,j] = v[i] + Opt[i-1,j-g[i]]

Beispiel

n	0	2	3	5	7	9	10	12	13
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	₇ 1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

	¥	¥	
	g	V	
1	5	2	
2	3	4	
	1	1	
	2	3	
	1	2	
	7	3	
	4	7	
n	3	3	

Dynamische Programmierung

Opt[i,j]=0, j=0, i=1: Es gilt g[i]>j

											*	
n	0	2	3	5	7	9	10	12	13		g	
	0	2	3	5	7	9	10	12	13	1	5	
	0	2	3	5	6	7	9	10	10	2	3	
	0	2	3	5	6	7	9	10	10		1	
	0	1	3	4	5	7	8	8	8		2	
	0	1	1	4	5	5	5	5	6		1	
	R	0	0	4	4	4	4	4	6		7	
	0	0	0	0	0	2	2	2	2		4	
)	0	0	0	0	0	0	0	0	0	n	3	
J	0	1	J				J		W			

Dynamische Programmierung

Opt[i,j]=0, j=0, i=1: Es gilt g[i]>j

Beispiel

											4	•
0	2	3	5	7	9	10	12	13			g	V
0	2	3	5	7	9	10	12	13		1	5	2
0	2	3	5	6	7	9	10	10		2	3	4
0	2	3	5	6	7	9	10	10			1	1
0	1	3	4	5	7	8	8	8			2	3
0	1	1	4	5	5	5	5	6			1	2
0	0	0	4	4	4	4	4	6			7	3
Q	0	0	0	0	2	2	2	2			4	7
0	0	0	0	0	0	0	0	0		n	3	3
0	1							W				
	0 0 0 0 0	0 2 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 0 2 3 0 2 3 0 1 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 5 0 2 3 5 0 2 3 5 0 1 3 4 0 1 1 4 0 0 0 4 0 0 0 0 0 0 0 0	0 2 3 5 7 0 2 3 5 6 0 2 3 5 6 0 1 3 4 5 0 1 1 4 5 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0	0 2 3 5 7 9 0 2 3 5 6 7 0 2 3 5 6 7 0 1 3 4 5 7 0 1 1 4 5 5 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 5 7 9 10 0 2 3 5 6 7 9 0 2 3 5 6 7 9 0 1 3 4 5 7 8 0 1 1 4 5 5 5 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 5 7 9 10 12 0 2 3 5 6 7 9 10 0 2 3 5 6 7 9 10 0 1 3 4 5 7 8 8 0 1 1 4 5 5 5 5 0 0 0 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 5 7 9 10 12 13 0 2 3 5 6 7 9 10 10 0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 8 0 1 1 4 5 5 5 5 6 0 0 0 4 4 4 4 4 6 0 0 0 0 0 0 0 0 0	0 2 3 5 7 9 10 12 13 0 2 3 5 6 7 9 10 10 0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 8 0 1 1 4 5 5 5 5 6 0 0 0 4 4 4 4 4 6 0 0 0 0 0 0 0 0	0 2 3 5 7 9 10 12 13 1 0 2 3 5 6 7 9 10 10 0 2 3 5 6 7 9 10 10 0 1 3 4 5 7 8 8 8 0 1 1 4 5 5 5 6 0 0 0 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 5 7 9 10 12 13 1 5 0 2 3 5 6 7 9 10 10 2 3 0 2 3 5 6 7 9 10 10 1 1 2 3 1 1 2 3 3 1 1 1 2 3 3 3 4 5 7 9 10 10 10 1 1 2 3 3 4 5 7 8 8 8 8 8 8 8 8 9 1 1 4 4 4 4 4 4 6 7 4

Dynamische Programmierung

Opt[i,j]=0, j=0, i=0: Es gilt i=0

												4
n	0	2	3	5	7	9	10	12	13			g
	0	2	3	5	7	9	10	12	13		1	5
	0	2	3	5	6	7	9	10	10		2	3
	0	2	3	5	6	7	9	10	10			1
	0	1	3	4	5	7	8	8	8			2
	0	1	1	4	5	5	5	5	6			1
	0	0	0	4	4	4	4	4	6			7
1	0	0	0	0	0	2	2	2	2			4
0	0	0	0	0	0	0	0	0	0		n	3
	0	1							W			

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑_{i∈S} g[i] ≤ j und ∑_{i∈S} v[i] = Opt(i,j) ist.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

Beweis:

 Aufgrund von Korollar 26 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1,..,i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑_{i∈S} g[i] ≤ j und ∑_{i∈S} v[i] = Opt(i,j) ist.

Beweis:

 Aufgrund von Korollar 26 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1,..,i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.

Lemma 27

• Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- Aufgrund von Korollar 26 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1,..,i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.
- Beweis per Induktion über i.
- (I.A.) Ist i=0, so gibt der Algorithmus die leere Menge zurück. Dies ist korrekt, da kein Objekt in den Rucksack gepackt werden kann.

Lemma 27

• Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- Aufgrund von Korollar 26 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1,..,i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.
- Beweis per Induktion über i.
- (I.A.) Ist i=0, so gibt der Algorithmus die leere Menge zurück. Dies ist korrekt, da kein Objekt in den Rucksack gepackt werden kann.
- (I.V.) Die Aussage stimmt f
 ür i-1.

Lemma 27

• Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- Aufgrund von Korollar 26 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1,..,i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.
- Beweis per Induktion über i.
- (I.A.) Ist i=0, so gibt der Algorithmus die leere Menge zurück. Dies ist korrekt, da kein Objekt in den Rucksack gepackt werden kann.
- (I.V.) Die Aussage stimmt f
 ür i-1.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

Beweis:

 (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) und Lemma 25 korrekt.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) und Lemma 25 korrekt.
- Ist g[i] ≤ j und Opt[i,j]=v[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) und Lemma 25 korrekt.
- Ist g[i] ≤ j und Opt[i,j]=v[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält. In diesem Fall gibt der Algorithmus {i} ∪ RucksackLösung(Opt,g,v,i-1,j-g[i]) zurück. Dies ist nach (I.V.) korrekt.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) und Lemma 25 korrekt.
- Ist g[i] ≤ j und Opt[i,j]=v[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält. In diesem Fall gibt der Algorithmus {i} ∪ RucksackLösung(Opt,g,v,i-1,j-g[i]) zurück. Dies ist nach (I.V.) korrekt.
- Ist g[i] ≤ j und Opt(i,j)>v[i] + Opt[i-1,j-g[i]], so kann Objekt i nicht zu einer optimalen Lösung gehören.

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

- (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) und Lemma 25 korrekt.
- Ist g[i] ≤ j und Opt[i,j]=v[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält. In diesem Fall gibt der Algorithmus {i} ∪ RucksackLösung(Opt,g,v,i-1,j-g[i]) zurück. Dies ist nach (I.V.) korrekt.
- Ist g[i] ≤ j und Opt(i,j)>v[i] + Opt[i-1,j-g[i]], so kann Objekt i nicht zu einer optimalen Lösung gehören. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) korrekt.

Dynamische Programmierung

Lemma 27

Hat die optimale Lösung für Objekte 1,..,i und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus Rucksacklösung eine Teilmenge S von {1,..,i}, so dass ∑ g[i] ≤ j und ∑ v[i] = Opt(i,j) ist.

Beweis:

- (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) und Lemma 25 korrekt.
- Ist g[i] ≤ j und Opt[i,j]=v[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält. In diesem Fall gibt der Algorithmus {i} ∪ RucksackLösung(Opt,g,v,i-1,j-g[i]) zurück. Dies ist nach (I.V.) korrekt.
- Ist g[i] ≤ j und Opt(i,j)>v[i] + Opt[i-1,j-g[i]], so kann Objekt i nicht zu einer optimalen Lösung gehören. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,v,i-1,j) zurück. Dies ist nach (I.V.) korrekt.

Dynamische Programmierung

RucksackKomplett(n,g,v,W)

- 1. Rucksack(n,g,v,W)
- return RucksackLösung(Opt,g,v,n,W)

Dynamische Programmierung

Satz 28

Algorithmus RucksackKomplett berechnet in ⊕(nW) Zeit den Wert einer optimalen Lösung, wobei n die Anzahl der Objekte ist und W die Größe des Rucksacks.

Beweis:

 Die Laufzeit wird durch Algorithmus Rucksack dominiert und ist somit ⊕(nW). Die Korrektheit folgt aus den beiden Lemmas.

Was ist eine Datenstruktur?

- Eine Datenstruktur ist eine Anordnung von Daten, die effizienten Zugriff auf die Daten ermöglicht
- Datenstrukturen f
 ür viele unterschiedliche Anfragen vorstellbar

Ein grundlegendes Datenbank-Problem

Speicherung von Datensätzen

Beispiel

 Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen,...)

Anforderungen

- Schneller Zugriff
- Einfügen neuer Datensätze
- Löschen bestehender Datensätze

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel)

Beispiel

- Kundendaten (Name, Adresse, Kundennummer)
- Schlüssel: Name
- Totale Ordnung: Lexikographische Ordnung

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel)

Beispiel:

- Kundendaten (Name, Adresse, Kundennummer)
- Schlüssel: Kundennummer
- Totale Ordnung: ,≤⁶

Problem:

Gegeben sind n Objekte O₁,..., O_n mit zugehörigen Schlüsseln s(O_i)

Operationen:

- Suche(x); Ausgabe O mit Schlüssel s(O) =x;
 nil, falls kein Objekt mit Schlüssel x in Datenbank
- Einfügen(O); Einfügen von Objekt O in Datenbank
- Löschen(O); Löschen von Objekt O mit aus der Datenbank

Vereinfachung:

- Schlüssel sind natürliche Zahlen
- Eingabe nur aus Schlüsseln

Analyse von Datenstrukturen

- Platzbedarf in Θ- bzw. O-Notation
- Laufzeit der Operationen in Θ- bzw. O-Notation

Einfaches Feld

- Feld A[1,...,max]
- Integer n, $1 \le n \le max$
- n bezeichnet Anzahl Elemente in Datenstruktur

Einfügen(s)

- 1. **if** n=max **then** Ausgabe "Fehler: Kein Platz in Datenstruktur"
- 2. else
- 3. $n \leftarrow n+1$
- 4. $A[n] \leftarrow s$

Einfügen(s)

- 1. **if** n=max **then** Ausgabe "Fehler: Kein Platz in Datenstruktur"
- 2. else
- 3. $n \leftarrow n+1$
- 4. $A[n] \leftarrow s$

Einfügen(s)

- if n=max then Ausgabe "Fehler: Kein Platz in Datenstruktur"
- 2. else
- 3. $n \leftarrow n+1$
- 4. $A[n] \leftarrow s$

Suche(x)

- 1. for $i \leftarrow 1$ to n do
- 2. if A[i] = x then return i
- 3. return nil

Löschen(i)

1. $A[i] \leftarrow A[n]$

2. $A[n] \leftarrow nil$

3. $n \leftarrow n-1$

Annahme:

Wir bekommen Index i des zu löschenden Objekts

Löschen(i)

- 1. $A[i] \leftarrow A[n]$
- 2. $A[n] \leftarrow nil$
- 3. $n \leftarrow n-1$

Löschen(i)

- 1. $A[i] \leftarrow A[n]$
- 2. $A[n] \leftarrow nil$
- 3. $n \leftarrow n-1$

Datenstruktur Feld

- Platzbedarf ⊕(max)
- Laufzeit Suche: Θ(n)
- Laufzeit Einfügen/Löschen: Θ(1)

Vorteile

Schnelles Einfügen und Löschen

Nachteile

- Speicherbedarf abhängig von max (nicht vorhersagbar)
- Hohe Laufzeit für Suche

Datenstruktur "sortiertes Feld"

- Sortiertes Feld A[1,...,max]
- Integer n, $1 \le n \le max$
- n bezeichnet Anzahl Elemente in Datenstruktur

Einfügen(s)

- 1. $n \leftarrow n+1$
- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. $A[i] \leftarrow s$

Einfügen(s)

- 1. n ← n+1
- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. $A[i] \leftarrow s$

Einfügen(s)

- 1. $n \leftarrow n+1$
- 2. [i ← n
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. $A[i] \leftarrow s$

Einfügen(s)

- 1. n ← n+1
- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. i ← i -1
- 6. $A[i] \leftarrow s$

Laufzeit O(n)

Datenstrukturen

Einfügen(s)

- 1. $n \leftarrow n+1$
- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. A[i] ← s

Löschen(i)

- 1. for $j \leftarrow i$ to n-1 do
- 2. $A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow nil$
- 4. $n \leftarrow n-1$

Parameter ist der Index des zu löschenden Objekts

Löschen(i)

- 1. for $j \leftarrow i$ to n-1 do
- $2. \qquad A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow nil$
- 4. $n \leftarrow n-1$

Parameter ist der Index des zu Iöschenden Objekts

Löschen(i)

- 1. for $j \leftarrow i$ to n-1 do
- 2. $A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow nil$
- 4. $n \leftarrow n-1$

Löschen(i)

- 1. **for** $j \leftarrow i$ **to** n-1 **do**
- $2. \qquad \mathsf{A[j]} \leftarrow \mathsf{A[j+1]}$
- 3. $A[n] \leftarrow nil$
- 4. $n \leftarrow n-1$

Löschen(i)

- 1. for $j \leftarrow i$ to n-1 do
- 2. $A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow nil$
- 4. $n \leftarrow n-1$

Löschen(i)

- 1. for $j \leftarrow i$ to n-1 do
- $2. \qquad A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow nil$
- 4. n ← n-1

Suchen(x)

- Binäre Suche
- Laufzeit O(log n)

Datenstruktur sortiertes Feld

- Platzbedarf ⊕(max)
- Laufzeit Suche: Θ(log n)
- Laufzeit Einfügen/Löschen: Θ(n)

Vorteile

Schnelles Suchen

Nachteile

- Speicherbedarf abhängig von max (nicht vorhersagbar)
- Hohe Laufzeit für Einfügen/Löschen

Doppelt verkettete Listen

- Listenelement x ist Objekt bestehend aus Schlüssel und zwei Zeigern prev und next
- next verweist auf Nachfolger von x
- prev verweist auf Vorgänger von x
- prev/next sind nil, wenn Vorgänger/Nachfolger nicht existiert
- head[L] zeigt auf das erste Element

Einfügen(L,x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] \leftarrow x
- 4. $prev[x] \leftarrow nil$

Einfügen(L,x)

- 1. $next[x] \leftarrow head[L]$
- 2. if head[L] \neq nil then prev[head[L]] \leftarrow x
- 3. head[L] \leftarrow x
- 4. $prev[x] \leftarrow nil$

Einfügen(L,x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] \leftarrow x
- 4. $prev[x] \leftarrow nil$

Einfügen(L,x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. $head[L] \leftarrow x$
- 4. $prev[x] \leftarrow nil$

Einfügen(L,x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] \leftarrow x
- 4. $prev[x] \leftarrow nil$

Einfügen(L,x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] \leftarrow x
- 4. $prev[x] \leftarrow nil$

Laufzeit

• O(1)

- if prev[x] ≠ nil then next[prev[x]] ← next[x]
- 2. **else** head[L] \leftarrow next[x]
- 3. if next[x] ≠ nil then prev[next[x]] ← prev[x]
- 4. delete x

- 1. if $prev[x] \neq nil then next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. if next[x] ≠ nil then prev[next[x]] ← prev[x]
- 4. delete x

- if prev[x] ≠ nil then next[prev[x]] ← next[x]
- 2. **else** head[L] \leftarrow next[x]
- 3. if next[x] ≠ nil then prev[next[x]] ← prev[x]
- 4. delete x

- if prev[x] ≠ nil then next[prev[x]] ← next[x]
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil$ then $prev[next[x]] \leftarrow prev[x]$
- 4. delete x

- 1. if $prev[x] \neq nil then next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. if next[x] ≠ nil then prev[next[x]] ← prev[x]
- 4. delete x

Löschen(L,x)

- if prev[x] ≠ nil then next[prev[x]] ← next[x]
- 2. **else** head[L] \leftarrow next[x]
- 3. if next[x] ≠ nil then prev[next[x]] ← prev[x]
- 4. delete x

Laufzeit

• O(1)

Suche(L,k)

- 1. $x \leftarrow head[L]$
- 2. while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Suche(L,k)

- 1. $x \leftarrow head[L]$
- while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Suche(L,k)

- x ← head[L]
- 2. while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Suche(L,k)

- 1. $x \leftarrow head[L]$
- 2. while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Suche(L,k)

- 1. $x \leftarrow head[L]$
- 2. while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Suche(L,k)

- 1. $x \leftarrow head[L]$
- 2. while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Suche(L,k)

- 1. $x \leftarrow head[L]$
- while x≠nil and key[x]≠k do
- 3. $x \leftarrow next[x]$
- 4. return x

Laufzeit

• O(n)

Datenstruktur Liste:

- Platzbedarf Θ(n)
- Laufzeit Suche: Θ(n)
- Laufzeit Einfügen/Löschen: Θ(1)

Vorteile

- Schnelles Einfügen/Löschen
- O(n) Speicherbedarf

Nachteile

Hohe Laufzeit für Suche