Ecuaciones diferenciales ordinarias

Índice general

Ín	dice d	e cuadı	ros	v
Ín	dice d	le figura	as	vii
Resumen Introducción 1. Ecuaciones diferenciales de primer orden y primer grado 1.1. Ecuaciones diferenciales de variable separable 1.2. Ecuaciones diferenciales reducible a variable separable 1.3. Ecuaciones diferenciales homogéneas 1.4. Ecuaciones diferenciales reducible a homogéneas 1.5. Ecuaciones diferenciales exactas		ix		
In	trodu	cción		xi
1.	1.1. 1.2. 1.3. 1.4. 1.5.	Ecuaci Ecuaci Ecuaci Ecuaci	iones diferenciales de variable separable	1 1 2 2 3 3
	1.6. 1.7. 1.8. 1.9.	Ecuaci Ecuaci Ecuaci	iones diefrenciales lineales de primer orden	3 3 3
	1.10.			3
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	Aplica Aplica Aplica Descon Aplica Aplica La med 2.7.1. 2.7.2. La mo 2.8.1.	es de las ecuaciones ordinarias ados a problemas geométricos	5 5 5 5 5 5 5 6 6 7 7
	2.9.		liana (Me)	8 8 8

iv	Contents
----	----------

3.	Ecuaciones diferenciales lineales de orden superior	9
	3.1. Ecuaciones diferenciales lineales homogeneas con coeficientes cons-	
	tantes	9
	3.2. Ecuaciones diferenciales lineales no homogeneas con coeficientes constantes	9
	3.3. Método de variación de parámetros	9
	3.4. Ecuaciones diferenciales de Euler	9
4.	Operadores diferenciales	11
5.	Ecuaciones diferenciales con coeficientes variables	13
6.	Solucion de ecuaciones diferenciales mediante la Trasformada de Laplace	15
Аp	péndice	15
A.	Operadores diferenciales	17
	A.1. ee	17
	A.2. eeeee	17
В.	Trasformada de Laplace	19
	B.1. Algebra de matrices	19
Bil	bliografía	21
Íno	dice alfabético	23

Índice de cuadros

Índice de figuras

Resumen

Este libro sobre ecuaciones diferenciales ordinarias y sus aplicaciones cuyo objetivo es demostrar resultados basicos muy útiles en el desarrollo de investigaciones.

$$\sum_{1}^{2}$$

Introducción

$$\sum_{1}^{2}$$

$$\vec{u} = (1,1) - \rho \int_2^3$$

Debido a la poca información estructurada de estadistica descriptiva se propone escribir este libro con un enfoque demostrativo.

$$x^2 + y^2$$

Ecuaciones diferenciales de primer orden y primer grado

Una ecuación ordinaria de primer orden y primer grado se representa como

$$F\left(x, y, \frac{dy}{dx}\right) = 0$$

donde F relaciona tres variables; una funcion y su variable independiente x y su derivada $\frac{dy}{dx}$, por ejemplo $\left(y^2+xy^2\right)\frac{dy}{dx}+x^2-x^2y=0$. Si se despeja $\frac{dy}{dx}$ de $F\left(x,y,\frac{dy}{dx}\right)=0$ obtenemos $\frac{dy}{dx}=g(x,y)$.

1.1. Ecuaciones diferenciales de variable separable

Si una ecuación ordinaria de primer orden y primer grado $\frac{dy}{dx} = f(x, y)$ se puede expresarse como M(x)dx + N(y)dy = 0 entonces la ecuación recibe el nombre de ecuación diferencial ordinaria de variable separable y la solución es por integración directa

$$\int M(x)dx + \int N(y)dy = 0$$

Ejercicio 1.1.
$$(y^2 + xy^2) \frac{dy}{dx} + x^2 - x^2y = 0$$

Solución.

$$0 = y^{2} (1 + x) dy + x^{2} (1 - y) dx$$
$$= \frac{y^{2}}{1 - y} dy + \frac{x^{2}}{1 + x} dx$$

integrando se tiene

$$\int \frac{y^2}{1-y} dy + \int \frac{x^2}{1+x} dx = \int 0$$
$$(x+y)(x-y-2) + 2\ln\left|\frac{1+x}{1-y}\right| = k$$

1 Ecuaciones diferenciales de primer orden y primer grado

Ejercicio 1.2.
$$(y^2 + xy^2) \frac{dy}{dx} + x^2 - x^2y = 0$$

Solución.

$$0 = y^{2} (1 + x) dy + x^{2} (1 - y) dx$$
$$= \frac{y^{2}}{1 - y} dy + \frac{x^{2}}{1 + x} dx$$

integrando se tiene

$$\int \frac{y^2}{1 - y} dy + \int \frac{x^2}{1 + x} dx = \int 0$$

$$(x + y)(x - y - 2) + 2 \ln \left| \frac{1+x}{1-y} \right| = k$$

1.2. Ecuaciones diferenciales reducible a variable separable

Ecuaciones de la forma

$$\frac{dy}{dx} = f(ax + by + c) \tag{1.1}$$

donde ax + by + c es la ecuación de una recta sobre el plano euclideo son reducibles a variables separables. Si se realiza la sustitución de la derivada de z = ax + by + c en la ecuación (1.1) se obtiene una ecuación de variable separable. En efecto de z = ax + by + c se tiene $\frac{dy}{dx} = \frac{1}{b} \left(\frac{dz}{dx} - a \right)$ esto en (1.1) genera $\frac{1}{b} \left(\frac{dy}{dx} - a \right) = f(z)$ que es una ecuación de variable separable

$$\frac{dy}{a+bf(z)} = dx.$$

1.3. Ecuaciones diferenciales homogéneas

Definición 1.1. Una función f(x, y) es **homogenea** de **grado** k si verifica

$$f(\lambda x, \lambda y) = \lambda^k f(x, y)$$

thm

1.4.	Ecuaciones diferenciales reducible a homogéneas
1.5.	Ecuaciones diferenciales exactas
1.6.	Ecuaciones diefrenciales lineales de primer orden
1.7.	Ecuaciones diefrenciales de Bernoulli
1.8.	Ecuaciones diferenciales de Riccati
1.9.	Ecuaciones diferenciales de Lagrange y Clairouts

1.10. Ecuaciones diferenciales no resueltas con respecto a la primera derivada

Ejercicio 1.3. Sean los datos

Solución. Entonces

Aplicaciones de las ecuaciones ordinarias

- 2.1. Aplicados a problemas geométricos
- 2.2. Aplicados atrayectorias ortogonales
- 2.3. Aplicaciones a la temperatura
- 2.4. Descomposición crecimiento y reacciones químicas
- 2.5. Aplicaciones a circuitos eléctricos simples

2.6. Aplicaciones a la economía

Son aquellas medidas que buscan un dato representtivo central de un conjunto de datos tales como la media, la moda y la mediana.

2.7. La media (\overline{x})

A veces llamada *promedio aritmético*, es la medida de tendencia central que pondera los datos.

2.7.1. Media de datos no agrupados

Los datos no están agrupados cuando no están ordenados sobre una tabla de distribución de frecuencias. Sean los n datos x_1, x_2, \ldots, x_n entonces la media o promedio aritmético se define como

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (2.1)

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e = \frac{d[P; F_2]}{d[P; \mathcal{L}_2]}$$
(2.2)

1.
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$

2.7.2. Media de datos agrupados

Considérese la siguiente tabla de distribucion de frecuencias entonces el promedio es

$$\overline{x} = \frac{y_1 f_1 + y_2 f_2 + \dots + y_n f_n}{n} = \frac{1}{n} \sum_{i=1}^n y_i f_i$$

Clase	Clase	f_i	F_i	F_i^*	h_i	H_i	H_i^*	
$< y_1 - y_2 >$	<i>y</i> ₁	f_1	F_1	F_1^*	$\frac{f_1}{n}$	$\frac{F_1}{n}$	$\frac{F_1^*}{n}$	
/ No. 10. No. No. No. No. No. No. No. No. No. No	31.	£.	\boldsymbol{F} .	F^*	f_2	F_2	F_2^*	
$\langle y_2 - y_3 \rangle$ $\langle y_3 - y_4 \rangle$:	<i>y</i> ₃	f_3	F_3	F_3^*	$\frac{f_3}{n}$	$\frac{F_3}{n}$	$\frac{F_3^*}{n}$	
:	÷	÷	÷	÷	÷	÷	÷	÷
$< y_{r-1} - y_r]$	y_r	f_r	F_r	F_r^*	$\frac{f_r}{n}$	$\frac{F_r}{n}$	$\frac{F_r^*}{n}$	•••

Ejercicio 2.1. Si el promedio de n datos es \overline{x} entonces el promedio del conjunto inicial más un dato adicional x_{n+1} es

$$\overline{x}' = \frac{n\overline{x} + x_{n+1}}{n+1}$$

en general si se adicionan r datos $y_1, y_2, \dots y_r$ entonces el nuevo promedio será

$$\overline{x}' = \frac{n\overline{x} + y_1 + y_2 + \ldots + y_r}{n+r}$$

2.9 La moda (Mo)

7

Solución. En efecto sea el promedio

$$\overline{x}' = \frac{x_1 + x_2 + \dots + x_{n+1}}{n+1}$$

$$= \frac{n \frac{x_1 + x_2 + \dots + x_n}{n} + x_{n+1}}{n+1}$$

$$= \frac{n \overline{x} + x_{n+1}}{n+1}$$

2.8. La moda (Mo)

2.8.1. Moda de datos no tabulados

En este caso es dato que más repite en un conjunto de datos dados.

La moda es el dato que más se repite por ejemplo sea el conjunto de datos x_1 , x_2 , x_2 , x_2 , x_3 entonces la moda $Mo = x_2$

2.8.2. Moda de datos tabulados

La moda es el dato que más se repite por ejemplo sea el conjunto de datos x_1, x_2, x_2, x_2, x_3 entonces la moda Mo = $Li + \frac{Li - Ls}{Li + Ls}r$

Clase	Clase	f_i	F_i	F_i^*	h_i	H_i	H_i^*	
$[y_1 - y_2 >$	<i>y</i> ₁	f_1	F_1	F_1^*	$\frac{f_1}{n}$	$\frac{F_1}{n}$	$\frac{F_1^*}{n}$	
$[y_1 - y_2 >$ $< y_1 - y_2 >$	<i>y</i> ₂	f_2	F_2	F_2^*	$\frac{f_2}{n}$	$\frac{F_2}{n}$	$\frac{F_2^*}{n_*}$	
$\langle y_1 - y_2 \rangle$ $\langle y_r - y_r \rangle$:	<i>y</i> ₃	f_3	F_3	F_3^*	$\frac{f_3}{n}$	$\frac{F_3}{n}$	$\frac{F_3^{r}}{n}$	
:	÷	:	:	:	:	:	÷	:
$\underline{< y_{r-1} - y_r]}$	y_r	f_r	F_r	F_r^*	$\frac{f_r}{n}$	$\frac{F_r}{n}$	$\frac{F_r^*}{n}$	

2.9. la mediana (Me)

2.9.1. Mediana de datos no tabulados

Obtener la mediana consiste en ordenar los datos de menor a mayor y considerar dos casos: El prmero si el numero de datos s impar entonces el dato $x_{\frac{n+1}{2}}$ del conjunto ordenado será la mediana es decir Me = $x_{\frac{n+1}{2}}$ de otro lado si el número de datos es par entonces la mediana es la semisuma de los dos datos intermedios es decir Me = $\frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}$

Ejercicio 2.2. Sean los conjuntos de datos 5, 6, 8, 2, 1, 5, 6, 7, 10, 0, 14 y 20, 25, 6, 5, 19, 5 obtener la mediana de estos conjuntos de datos.

Solución. Al ordenarlos se obtiene el siguiente arreglo 0, 1, 2, 5, 5, 6, 6, 7, 8, 10, 14 y considerando que $x_1 = 0$, $x_2 = 1$, ..., $x_{11} = 14$ en este caso el número de datos es impar entonces el dato $x_{\frac{11+1}{2}} = x_6 = 6$ el la mediana. De otro lado el segundo conjunto de datos al ser ordenados 5, 5, 6, 19, 20, 25 ademas considerando que $x_1 = 5$, $x_2 = 5$, ..., $x_6 = 25$ conducen a obtener la mediana $Me = \frac{x_6 + x_6}{2} + 1 = \frac{6+19}{2} = 12,5$.

2.9.2. Mediana de datos tabulados

Clase	Clase	f_i	F_i	F_i^*	h_i	H_i	H_i^*	
$[y_1 - y_2 > $ $< y_1 - y_2 >$	<i>y</i> ₁	f_1	F_1	F_1^*	$\frac{f_1}{n}$	$\frac{F_1}{n}$	$\frac{F_1^*}{n}$	
$< y_1 - y_2 >$	<i>y</i> ₂	f_2	F_2	F_2^*	$\frac{f_2}{n}$	$\frac{F_2}{n}$	$\frac{F_2^*}{n}$	
$\langle y_r - y_r \rangle$	<i>y</i> ₃	f_3	F_3	F_3^*	$\frac{f_3}{n}$	$\frac{F_3}{n}$	$\frac{F_3^{r}}{n}$	
÷	÷	:	:	÷	:	:	÷	:
$< y_{r-1} - y_r]$	y_r	f_r	F_r	F_r^*	$\frac{f_r}{n}$	$\frac{F_r}{n}$	$\frac{F_r^*}{n}$	

Los pasos son:

- Se halla $\frac{n}{2}$ luego
- \blacksquare χ_n

•

3

Ecuaciones diferenciales lineales de orden superior

- **3.1.** Ecuaciones diferenciales lineales homogeneas con coeficientes constantes
- **3.2.** Ecuaciones diferenciales lineales no homogeneas con coeficientes constantes
- 3.3. Método de variación de parámetros
- 3.4. Ecuaciones diferenciales de Euler

Operadores diferenciales

Ecuaciones diferenciales con coeficientes variables

Teorema 5.1. En la elipse se verifican las siguientes igualdades

1.
$$d[B_1; F_i] = d[B_2; F_i] = a$$

2.
$$d[V_1; C] = d[V_2; C] = a$$

3.
$$d[C; \mathcal{L}_1] = d[C; \mathcal{L}_2] = \frac{c}{a}$$

4.
$$c = d[P; F_1] = d[P; F_2]$$
 entonces $c = ae$

Demostración. 1. Ya que $d[B_1; F_1] + d[B_1; F_2] = 2a = d[B_2; F_1] + d[B_2; F_2]$ es decir $2d[B_1; F_i] = 2a = 2d[B_2; F_i]$ entonces $d[B_1; F_i] = a = d[B_2; F_i]$ i = 1, 2.

2. Por la definición (??) de la elipse se tiene

$$d[V_1; F_2] + d[V_1; F_1] = 2a (5.1)$$

además la diferencia

$$d[V_1; F_2] - d[V_1; F_1] = 2c (5.2)$$

restando las ecuaciones (5.1) y (5.2) se tiene

$$d[V_1; F_1] = a - c (5.3)$$

entonces haciendo uso de (5.3) en $d[V_1; C] = d[V_1; F_1] + d[F_1; C] = (a - c) + c = a$; de manera similar para el vértice V_2 .

3. En efecto

$$\frac{d\left[B;F_{i}\right]}{d\left[B;\mathcal{L}_{i}\right]}=e\Longleftrightarrow\frac{a}{d\left[B;\mathcal{L}_{i}\right]}=e$$

además $d[B_i; \mathcal{L}_i] = d[C; \mathcal{L}_i]$ por lo tanto $\frac{a}{d[C; \mathcal{L}_i]} = e$.

4. Pues

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e$$

implica $\frac{a-c}{\frac{a}{c}-a} = e$ es decir c = ae.

14	5 Ecuaciones diferenciales con coeficientes variables			
Por lo tanto				

Solucion de ecuaciones diferenciales mediante la Trasformada de Laplace

Example text outside R code here; we know the value of pi is In this section, we give a very brief introduction to Pandoc's Markdown. Readers who are familiar with Markdown can skip this section. The comprehensive syntax of Pandoc's Markdown can be found on the Pandoc website http://pandoc.org.

"I thoroughly disapprove of duels. If a man should challenge me, I would take him kindly and forgivingly by the hand and lead him to a quiet place and kill him."

In this section, we give a very brief introduction to Pandoc's Markdown. Readers who are familiar with Markdown can skip this section. The comprehensive syntax of Pandoc's Markdown can be found on the Pandoc website http://pandoc.org. \sum_{1}^{2}

I thoroughly disapprove of duels. If a man should challenge me, I would take him kindly and forgivingly by the hand and lead him to a quiet place and kill him.

- Mark Twain

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} - \frac{2}{3} \begin{pmatrix} \alpha_1 & \beta_2 \\ \gamma & \delta \end{pmatrix}$$

* La suma de dos matrices $A_{n\times m}$ y $B_{r\times s}$

$$A_{n\times m} \pm B_{n\times m} = [a_{ij} + b_{ij}]$$

* El producto de dos matrices $A_{n \times m}$ y $B_{r \times s}$

$$A_{n \times m} \cdot B_{n \times m} = [a_{ij} + b_{ij}]$$

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$x_{11}$$
 x_{12} x_{13} x_{21} x_{22} x_{23}

Operadores diferenciales

Una suma de números representados por x_1, x_2, \ldots, x_n se simboliza en forma compacta mediante el simbolo \sum (sigma) es decir la suma de los números anteriores se puede escribir del siguiente modo

$$x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i.$$

Algunas propiedades son

- 1. $k \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} k x_i$ 2. $\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$ 3. $\sum_{i=1}^{n} x_i$

$$\int_{1}^{3} = \lim_{n \to \infty} \sum_{i=0}^{n} f^{i}(x)$$

citado por (Xie, 2015)

A.1. ee

A.2. eeeee

Trasformada de Laplace

Una matriz es un arreglo de números distribuidos en filas y columnas por ejemplo la siguiente matriz

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{11} & a_{11} & \dots & a_{nm} \end{pmatrix}_{n \times n}$$

de **orden** $n \times m$ tiene **entradas** a_{ij} donde el primer subindice indica la fila y el segundo la columna; es usual representar por simplicidad una matriz por $A = [a_{ij}]_{n \times m}$. Si en el orden n = m entonces la matriz recibe el nombre de **matriz cuadrada** la suma de los elementos de la diagonal de una matriz cuadrada $\sum_{i=1}^{n} a_{ii}$ se llama **traza**. Si todas las a_{ij} son cero entonces la matriz A = 0 recibe el nombre matriz **nula**.

Dos matrices son iguales si tienen el **mismo orden** y cada una de las entradas respectivas son iguales es decir $A = [a_{ij}]_{n \times m}$ y $B = [b_{ij}]_{n \times m}$ son iguales si $a_{ij} = b_{ij}$, i = 1, 2, ..., n y j = 1, 2, ..., m

B.1. Algebra de matrices

Sean las matrices $A = [a_{ij}]_{n \times m}$ y $B = [b_{ij}]_{p \times q}$ entonces la suma y producto de matrices se definen

- 1. Sea k un escalar entonces se verifica que $kA = [ka_{ij}], i = 1, 2, ... n$ y j = 1, 2, ... m es decir el escalar k multiplica a cada una de las entradas de la matriz.
- 2. La suma o diferencia es posible si n = p y m = q es decir los ordenes de A y B son iguales, entonces la suma o diferencia resulta $A \pm B = [a_{ij} + b_{ij}]_{n \times m}$, i = 1, 2, ..., n y j = 1, 2, ..., m
- 3. El producto es posible si m=p es decir el número columnas de la primera matriz es igual al número de filas de la segunda matriz, el orden de la

matriz resultante es $n \times q$ además

$$A \cdot B = \left[\sum_{k=1}^{p} a_{ik} b_{kj} \right]_{n \times q}$$

$$= \left(\begin{array}{cccc} \sum_{k=1}^{m} a_{1k} b_{k1} & \sum_{k=1}^{m} a_{1k} b_{k2} & \dots & \sum_{k=1}^{m} a_{1k} b_{kq} \\ \sum_{k=1}^{m} a_{2k} b_{k1} & \sum_{k=1}^{m} a_{2k} b_{k2} & \dots & \sum_{k=1}^{m} a_{2k} b_{kq} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{m} a_{nk} b_{k1} & \sum_{k=1}^{m} a_{nk} b_{k2} & \dots & \sum_{k=1}^{m} a_{nk} b_{kq} \end{array} \right)_{n \times q}$$

donde i = 1, 2, ... n y j = 1, 2, ... m

Ejemplo B.1. Sean
$$\begin{pmatrix} 3 & -1 & 2 \\ 2 & -1 & 2 \\ 1 & -1 & 0 \\ 5 & 0 & 0 \end{pmatrix}$$
 $y \begin{pmatrix} 0 & -1 & 2 & 2 & 0 \\ 1 & -1 & -2 & 1 & 1 \\ 3 & -1 & -3 & 5 & 2 \end{pmatrix}$ entonces $A \cdot B = \begin{pmatrix} 5 & -4 & 2 & 15 & 3 \\ 5 & -3 & 0 & 13 & 3 \\ -1 & 0 & 4 & 1 & -1 \\ 0 & -5 & 10 & 10 & 0 \end{pmatrix}$

En caso de ser posible la multiplicación entre A, B y C entonces se verfican las siguientes propiedades

- A(B+C) = AB + AC
- \blacksquare (A+B)C
- A(BC) = (AB)C

Bibliografía

Xie, Y. (2015). *Dynamic Documents with R and knitr*. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Índice alfabético

traza, 19