CAPSTONE PROJECT NSAP ELIGIBILITY PREDICTION USING IBM WATSONX.AI

Presented By:

Shubham Kumar Sharma-Engineering College, Ajmer Computer Science Department

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- The National Social Assistance Program (NSAP) is a flagship social security and welfare program by the Government of India. It aims to provide financial assistance to the elderly, widows, and persons with disabilities belonging to below-poverty-line (BPL) households. The program consists of several sub-schemes, each with specific eligibility criteria.
- Manually verifying applications and assigning the correct scheme can be a timeconsuming and error-prone process. Delays or incorrect allocation can prevent deserving individuals from receiving timely financial aid.
- Your task is to design, build, and evaluate a multi-class classification model that can accurately predict the most appropriate NSAP scheme for an applicant based on their demographic and socio-economic data. The goal is to create a reliable tool that could assist government agencies in quickly and accurately categorizing applicants, ensuring that benefits are delivered to the right people efficiently.

PROPOSED SOLUTION

 To automate the classification of applicants into the correct NSAP sub-scheme using a machine learning model trained on demographic and socio-economic data, thereby reducing manual errors and accelerating benefit delivery

Data Collection:

- Gathered synthetic or real applicant data with features such as:
- Age , Gender, Maritial State, Disability Status etc.

Data Preprocessing:

- Clean and preprocess the collected data to handle missing values, outliers, and inconsistencies.
- Feature engineering to extract relevant features from the data that might impact relevant schems.

Machine Learning Algorithm:

- Explored multiple machine learning algorithm :
 - Snap Random Forest Classifier
 - Random Forest Classifier

PROPOSED SOLUTION

Deployment:

- Algorithm Chosen:
 - Decision Tree Classifier (with HPO and FE)
 - Achieved highest accuracy of 0.967
 - Snap Decision Tree Classifier also performed well
- Model deployed in Watsonx.ai
- Input interface supports table & JSON
- Predictions exported in table and JSON format

Training Process:

- Used supervised learning on labeled scheme data
- Hyperparameter optimization (HPO-1 & HPO-2) and Feature Engineering (FE) applied

SYSTEM APPROACH

- System Requirements:
 - IBM Cloud (Lite Mandatory)
 - IBM Watsonx.ai Studio
 - IBM Cloud Object Storage
- Steps Followed:
 - Data preprocessing and labeling
 - AutoAl experiment to train multiple pipelines
 - Model selection based on cross-validated accuracy
 - Real-time prediction using Watson UI

ALGORITHM & DEPLOYMENT

Algorithm Selection:

- Decision Tree Classifier (with HPO and FE)
- Achieved highest accuracy of 0.967
- Snap Decision Tree Classifier also performed well

Data Input:

- Age , Gender, Marital status, Aadhar number (optional), Mobile number , Category (obc, gen , sc and at).
- These features were selected because they directly correlate with eligibility conditions across various NSAP sub-schemes like:
 - IGNOAPS (Old Age Pension)
 - IGNWPS (Widow Pension)
 - IGNDPS (Disability Pension)

ALGORITHM & DEPLOYMENT

- Training Process :
 - Platform Used: IBM Watsonx.ai AutoAl
 - Dataset Split: AutoAI handled training/validation split internally (typically 80:20 or with K-fold cross-validation)
 - Preprocessing:
 - Categorical encoding (e.g., gender, pension type)
 - Handling of missing values
 - Automatic feature transformation by AutoAI

Model Selection: The pipeline with highest accuracy (96.7%) using Decision Tree Classifier was selected

RESULT

- 8 ML Pipelines trained using AutoAl in 3 minutes.
- Best Model: Batched Tree Ensemble Classifier (Snap Random Forest Classifier)
- Example Prediction: IGNDPS with probability [1.0, 0.0, 0.0]

Prediction results

Display format for prediction results Table view JSON view			Show input	Show input data ①	
	Prediction	Confidence	Age	G	
1	IGNDPS	100%	24	M	
2	IGNDPS	70%	65	fe	
3	IGNDPS	100%	37	M	
4	IGNDPS	100%	23	fe	
5	IGNDPS	50%	85	fe	
6	IGNDPS	100%	52	M	
7	IGNWPS	77%	55	fe	
8	IGNDPS	100%	44	l,	
1 -	TOTALING	FZAZ	77		

Download JSON file

RESULT

Prediction results

X

CONCLUSION

- Automated prediction improves efficiency and reduces manual errors.
- Watsonx.ai supports scalable deployment and real-time predictions.
- Model helps ensure timely scheme allocation to eligible citizens.

FUTURE SCOPE

- Expand to cover more NSAP schemes and complex eligibility rules.
- Hybrid ML + Rule-based logic integration.
- Aadhaar and real-time ID verification integration.
- API-based bulk processing and feedback loop for retraining.

REFERENCES

- Al Kosh Dataset: https://aikosh.indiaai.gov.in
- IBM Watson Studio & Cloud Documentation
- NSAP Guidelines Ministry of Rural Development
- IBM AutoAl Technical Docs

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Shubham Kumar Sharma

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/5b8e9078-c972-48ca-923d-3210085bc9db

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Shubham Kumar Sharma

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/ae2ebdcd-ac08-4f66-87af-030fcd5204f2

IBM CERTIFICATIONS

23/07/2025, 22:06

Completion Certificate | SkillsBuild

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Shubham Kumar Sharma

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 23 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

