Name: _____ Caleb McWhorter — Solutions

MATH 308

Fall 2022 "Algebra is the intellectual instrument which has been created for

HW 12: Due 11/04 rendering clear the quantitative aspects of the world."

-Alfred North Whitehead

Problem 1. (10pt) Showing all your work, complete the following:

- (a) Find the last digit of 3^{300} .
- (b) Find the last two digits of 13^{100} .
- (c) Fermat's Little Theorem states that if p is prime, then $a^p \equiv a \mod p$. Verify this claim when p=5 and a=3.
- (d) A generalization of Fermat's Little Theorem states that $a^{\varphi(n)} \equiv 1 \mod n$ if a is coprime to n, where $\varphi(n)$ is the Euler Phi function. Verify this claim when p=3 and a=8.

Problem 2. (10pt) Showing all your work, compute the following:

- (a) Compute 147 modulo 3.
- (b) Compute 147 modulo 3 by writing $147 = 1 \cdot 100 + 4 \cdot 10 + 7 \cdot 1$.
- (c) Compute $a_2a_1a_0$ modulo 3 by writing $a_2a_1a_0=a_2\cdot 100+a_1\cdot 10+a_0\cdot 1$. When is $a_2a_1a_0$ divisible by 3? Explain.
- (d) Using the previous parts, give a necessary and sufficient condition for an integer to be divisible by 3.

Problem 3. (10pt) Use the Chinese Remainder Theorem to solve the following system of linear congruences

$$2x \equiv 1 \mod 3$$
$$x - 3 \equiv 0 \mod 4$$
$$3x + 2 \equiv 4 \mod 5$$

Problem 4. (10pt) Show that there are no integer solutions to $x^3 + 7y^2 = 5$.

Solution. If there is a solution pair, x, y, to the equation $x^3 + 7y^2 = 5$, then reducing both sides modulo 7, there must be a mod 7 solution pair, \overline{x} , \overline{y} . But reducing modulo 7, we have...

$$5 \equiv \overline{x}^3 + 7\overline{y}^2 \equiv \overline{x}^3 + 0 \cdot \overline{y}^2 \equiv \overline{x}^3$$

But then 5 is a cube modulo 7. However, observe...

$$0^3 \equiv 0 \mod 7$$

$$1^3 \equiv 1 \mod 7$$

$$2^3 \equiv 8 \equiv 1 \mod 7$$

$$3^3 \equiv 3^2 \cdot 3 \equiv 9 \cdot 3 \equiv 2 \cdot 3 \equiv 6 \mod 7$$

$$4^3 \equiv 4^2 \cdot 4 \equiv 16 \cdot 4 \equiv 2 \cdot 4 \equiv 8 \equiv 1 \mod 7$$

$$5^3 \equiv 5^2 \cdot 5 \equiv 25 \cdot 5 \equiv 4 \cdot 5 \equiv 20 \equiv 6 \mod 7$$

$$6^3 \equiv 6^2 \cdot 6 \equiv 36 \cdot 6 \equiv 1 \cdot 6 \equiv 6 \mod 7$$

But no cube modulo 7 is 5, i.e. 5 is not a cube modulo 7. Therefore, there is no solution modulo 7 so that there cannot be an integer solution pair x, y to the original equation.