YevseevAD 30112024-110017

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1950 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 8 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 301 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза $4250~\mathrm{MГц}$. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от $1650~\mathrm{MГц}$ до $1700~\mathrm{MГц}$.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -71 дБм 2) -74 дБм 3) -77 дБм 4) -80 дБм 5) -83 дБм 6) -86 дБм 7) -89 дБм
- 8) -92 дБм 9) -95 дБм

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 491 МГц, частота ПЧ 50 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 1423 MΓ_{ΙΙ}
- 2) 50 MΓ_H
- 3) 982 МГц
- 4) 541 МГц.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = 0.4297 + 0.29909i$, $s_{31} = 0.30177 - 0.43356i$.

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -33 дБн 2) -35 дБн 3) -37 дБн 4) -39 дБн 5) -41 дБн 6) -43 дБн 7) -45 дБн
- 8) -47 дБн 9) 0 дБн

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 23 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 116 М Γ μ ?

Варианты ОТВЕТА:

1) $74.5 \text{ н}\Gamma\text{H}$ 2) $45.4 \text{ н}\Gamma\text{H}$ 3) $63.1 \text{ н}\Gamma\text{H}$ 4) $103.6 \text{ н}\Gamma\text{H}$

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r+mf_{\Pi^q}|$ Какой комбинацией $\{n;m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 4?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

1)
$$\{7; -9\}$$
 2) $\{7; -9\}$ 3) $\{9; -14\}$ 4) $\{7; -9\}$ 5) $\{13; -24\}$ 6) $\{13; -9\}$

7)
$$\{13; -24\}$$
 8) $\{5; -4\}$ 9) $\{11; -19\}$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 0.2 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 18 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 10.1 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

- 1) 2.3 дБ 2) 2.9 дБ 3) 3.5 дБ 4) 4.1 дБ 5) 4.7 дБ 6) 5.3 дБ 7) 5.9 дБ
- 8) 6.5 дБ 9) 7.1 дБ