João Emanuel da Silva Lins

Matricula: 162080263

Regressão Linear Múltipla

Carregando o Dataset Boston Houses

- 1. CRIM: per capita crime rate by town
- 2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS: proportion of non-residential acres per town
- 4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- 5. NOX: nitric oxides concentration (parts per 10 million)
- 6. RM: average number of rooms per dwelling
- 7. AGE: proportion of owner-occupied units built prior to 1940
- 8. DIS: weighted distances to five Boston employment centres
- 9. RAD: index of accessibility to radial highways
- 10. TAX: full-value property-tax rate per 10,000
- 11. PTRATIO: pupil-teacher ratio by town
- 12. B: 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- 13. LSTAT: % lower status of the population
- 14. TARGET: Median value of owner-occupied homes in \$1000's

h(x) = CRIM w1 + ZN w2 + ... + LSTAT * w13

In [51]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.datasets import load_boston
from sklearn import linear_model
from sklearn.metrics import r2_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
%matplotlib inline
```

In [52]:

```
# Gerando o dataset
boston = load_boston()
dataset = pd.DataFrame(boston.data, columns = boston.feature_names)
dataset['target'] = boston.target
```

In [53]:

dataset.head()

Out[53]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												>

In [54]:

len(dataset)

Out[54]:

506

Análise Descritiva

In [55]:

dataset.describe().T

Out[55]:

	count	mean	std	min	25%	50%	75%	
CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.
ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.
INDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.
CHAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.
NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.
RM	506.0	6.284634	0.702617	3.56100	5.885500	6.20850	6.623500	8.
AGE	506.0	68.574901	28.148861	2.90000	45.025000	77.50000	94.075000	100.
DIS	506.0	3.795043	2.105710	1.12960	2.100175	3.20745	5.188425	12.
RAD	506.0	9.549407	8.707259	1.00000	4.000000	5.00000	24.000000	24.
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.
target	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.
4								•

```
In [56]:
```

```
dataset.describe()['target'] # variável preditora ou Classe ou Label
Out[56]:
         506,000000
count
mean
          22.532806
std
           9.197104
min
           5.000000
25%
          17.025000
50%
          21.200000
75%
          25.000000
          50.000000
max
Name: target, dtype: float64
In [57]:
dataset.info()
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): Column Non-Null Count Dtype 0 **CRIM** 506 non-null float64 1 ZN 506 non-null float64 2 float64 **INDUS** 506 non-null 3 CHAS 506 non-null float64 4 NOX 506 non-null float64 5 RM506 non-null float64 6 float64 AGE 506 non-null 7 float64 DIS 506 non-null 8 RAD 506 non-null float64 9 TAX 506 non-null float64 10 PTRATIO 506 non-null float64 11 506 non-null float64 В 12 LSTAT 506 non-null float64 float64 13 target 506 non-null dtypes: float64(14) memory usage: 55.5 KB

Gerando número de observações

```
In [58]:
```

```
observations = len(dataset)
observations
```

Out[58]:

506

In [59]:

```
dataset.head()
```

Out[59]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												•

Coletando x e y

In [60]:

```
dataset.iloc[:,:-1][:3]
```

Out[60]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
4												•

In [61]:

```
X = dataset.iloc[:,:-1]
y = dataset['target'].values
```

In [62]:

X.head()

Out[62]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4)

In [63]:

```
# forma de remover
del X['PTRATIO']
del X['RAD']
```

In [64]:

```
# forma de remover
X = X[ ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX'] ] #
    'B', 'LSTAT'
X.head()
```

Out[64]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	TAX
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	296.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	242.0
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	242.0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	222.0
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	222.0

In [65]:

```
y[:5]
```

Out[65]:

```
array([24. , 21.6, 34.7, 33.4, 36.2])
```

Matriz de Correlação

In [66]:

<u> </u>					
CRIN	M ZN	INDUS	CHAS	NOX	RM
	9 -0.200469	0.406583	-0.055892	0.420972	-0.219247
0.352734 ZN -0.200469	9 1.000000	-0.533828	-0.042697	-0.516604	0.311991
-0.569537					
INDUS 0.406583 0.644779	3 -0.533828	1.000000	0.062938	0.763651	-0.391676
CHAS -0.055892 0.086518	2 -0.042697	0.062938	1.000000	0.091203	0.091251
	2 -0.516604	0.763651	0.091203	1.000000	-0.302188
0.731470 RM -0.219247	7 0.311991	-0 391676	0 091251	-0.302188	1.000000
-0.240265					
AGE 0.352734 1.000000	4 -0.569537	0.644779	0.086518	0.731470	-0.240265
DIS -0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246
-0.747881 RAD 0.625505	5 -0.311948	0.595129	-0.007368	0.611441	-0.209847
0.456022 TAX 0.582764	4 -0.314563	0 720760	-0.035587	0 668023	-0.292048
0.506456					
PTRATIO 0.289946 0.261515	5 -0.391679	0.383248	-0.121515	0.188933	-0.355501
	4 0.175520	-0.356977	0.048788	-0.380051	0.128069
-0.273534 LSTAT 0.455623	1 -0.412995	0.603800	-0.053929	0.590879	-0.613808
0.602339					
	S RAD		PTRATIO		LSTAT
CRIM -0.379670	0.625505	0.582764	0.289946	-0.385064	0.455621
ZN 0.664408	3 -0.311948	-0.314563	-0.391679	0.175520	-0.412995
INDUS -0.708027	7 0.595129	0.720760	0.383248	-0.356977	0.603800
	5 -0.007368	-0.035587	-0.121515	0.048788	-0.053929
	0.611441			-0.380051	
RM 0.205246		-0.292048	-0.355501	0.128069	-0.613808
AGE -0.747883		0.506456	0.261515	-0.273534	0.602339
DIS 1.000000		-0.534432	-0.232471	0.291512	-0.496996
RAD -0.494588		0.910228	0.464741	-0.444413	0.488676
TAX -0.534432		1.000000	0.460853	-0.441808	0.543993
PTRATIO -0.23247		0.460853	1.000000	-0.177383	0.374044
B 0.291512		-0.441808	-0.177383	1.000000	-0.366087
LSTAT -0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000
4					•

Visualizando a matriz de correlação (somente os atributos)

In [67]:

```
# Criando um Correlation Plot
def visualize_correlation matrix(data, hurdle = 0.0):
    fig = plt.figure(figsize=(12,9))
    ax = fig.add subplot(111)
    R = np.corrcoef(data, rowvar = 0)
    R[np.where(np.abs(R) < hurdle)] = 0.0
    heatmap = plt.pcolor(R, cmap = mpl.cm.coolwarm, alpha = 0.8)
    heatmap.axes.set frame on(False)
    heatmap.axes.set_yticks(np.arange(R.shape[0]) + 0.5, minor = False)
    heatmap.axes.set_xticks(np.arange(R.shape[1]) + 0.5, minor = False)
    heatmap.axes.set xticklabels(dataset.columns[:-1], minor = False)
    plt.xticks(rotation=90)
    heatmap.axes.set yticklabels(dataset.columns[:-1], minor = False)
    plt.tick params(axis = 'both', which = 'both', bottom = 'off', top = 'off',
left = 'off', right = 'off')
    plt.colorbar()
    plt.show()
```

In [68]:

```
# Visualizando o Plot
visualize_correlation_matrix(X, hurdle = 0.5)
```


In [69]:

target	1.000000
LSTAT	0.737663
RM	0.695360
PTRATIO	0.507787
INDUS	0.483725
TAX	0.468536
NOX	0.427321
CRIM	0.388305
RAD	0.381626
AGE	0.376955
ZN	0.360445
В	0.333461
DIS	0.249929
CHAS	0.175260

Name: target, dtype: float64

Feature Scaling

In [70]:

X.head()

Out[70]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												•

Podemos aplicar Feature Scaling através de Padronização ou Normalização.

Normalização aplica escala aos dados com intervalos entre 0 e 1.

A Padronização divide a média pelo desvio padrão para obter uma unidade de variância.

Vamos usar a Padronização (StandardScaler) pois nesse caso esta técnica ajusta os coeficientes e torna a superfície de erros mais "tratável".

Aplicando Padronização

In [71]:

```
standardization = StandardScaler()
Xst = standardization.fit_transform(X)
original_means = standardization.mean_
originanal_stds = standardization.scale_
print('Dataset Original')
X.head()
```

Dataset Original

Out[71]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												>

In [72]:

```
print('Dataset Padronizado')
dstd = pd.DataFrame(Xst, columns=boston.feature_names)
dstd.head()
```

Dataset Padronizado

Out[72]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
0	-0.419782	0.284830	-1.287909	-0.272599	-0.144217	0.413672	-0.120013	0.140214	-0.98
1	-0.417339	-0.487722	-0.593381	-0.272599	-0.740262	0.194274	0.367166	0.557160	-0.86
2	-0.417342	-0.487722	-0.593381	-0.272599	-0.740262	1.282714	-0.265812	0.557160	-0.86
3	-0.416750	-0.487722	-1.306878	-0.272599	-0.835284	1.016303	-0.809889	1.077737	-0.75
4	-0.412482	-0.487722	-1.306878	-0.272599	-0.835284	1.228577	-0.511180	1.077737	-0.75
4									•

In [73]:

X.max()

Out[73]:

CRIM 88.9762 ZN100.0000 **INDUS** 27.7400 1.0000 **CHAS** NOX 0.8710 RM8.7800 AGE 100.0000 DIS 12.1265 RAD 24.0000 TAX 711.0000 PTRATIO 22.0000 В 396.9000 **LSTAT** 37.9700 dtype: float64

In [74]:

dstd.max()

Out[74]:

CRIM 9.933931 ΖN 3.804234 **INDUS** 2.422565 **CHAS** 3.668398 NOX 2.732346 RM3.555044 AGE 1.117494 3.960518 DIS 1.661245 RAD TAX 1.798194 PTRATIO 1.638828 0.441052 В **LSTAT** 3.548771 dtype: float64

```
In [75]:
X.min()
Out[75]:
CRIM
              0.00632
ZN
              0.00000
INDUS
              0.46000
CHAS
              0.00000
NOX
              0.38500
RM
              3.56100
AGE
              2.90000
DIS
              1.12960
RAD
              1.00000
TAX
            187.00000
PTRATIO
             12.60000
В
              0.32000
LSTAT
              1.73000
dtype: float64
In [76]:
dstd.min()
Out[76]:
CRIM
           -0.419782
ZN
           -0.487722
INDUS
           -1.557842
CHAS
          -0.272599
NOX
          -1.465882
RM
           -3.880249
AGE
          -2.335437
          -1.267069
DIS
RAD
          -0.982843
           -1.313990
TAX
PTRATIO
          -2.707379
В
           -3.907193
LSTAT
           -1.531127
dtype: float64
In [77]:
y[:5]
Out[77]:
```

Desfazendo a Padronização

array([24. , 21.6, 34.7, 33.4, 36.2])

In [78]:

```
dfXst = pd.DataFrame(Xst, columns=boston.feature_names)
dfXst.head()
```

Out[78]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
0	-0.419782	0.284830	-1.287909	-0.272599	-0.144217	0.413672	-0.120013	0.140214	-0.98
1	-0.417339	-0.487722	-0.593381	-0.272599	-0.740262	0.194274	0.367166	0.557160	-0.86
2	-0.417342	-0.487722	-0.593381	-0.272599	-0.740262	1.282714	-0.265812	0.557160	-0.86
3	-0.416750	-0.487722	-1.306878	-0.272599	-0.835284	1.016303	-0.809889	1.077737	-0.75
4	-0.412482	-0.487722	-1.306878	-0.272599	-0.835284	1.228577	-0.511180	1.077737	-0.75

In [79]:

Xinv = standardization.inverse_transform(Xst)
dfinverser = pd.DataFrame(Xinv, columns=boston.feature_names)
dfinverser.head()

Out[79]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
■												•

In [80]:

dataset.head()

Out[80]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												•

Criar o modelo

```
In [81]:
```

```
# Criando um modelo
modelo = linear_model.LinearRegression()
modelo.fit(X,y)

Out[81]:
```

LinearRegression()

Mostrar os pesos dos Atributos (yprev = w1X1 + w2X2 + ... + wnXn)

```
In [82]:

for coef, var in sorted(zip(modelo.coef_, dataset.columns[:-1]), reverse = True
):
    print ("%6.3f %s" % (coef,var))

3.810 RM
2.687 CHAS
0.306 RAD
```

0.046 ZN

0.021 INDUS

0.009 B

0.001 AGE

-0.012 TAX

-0.108 CRIM

-0.525 LSTAT

-0.953 PTRATIO

-1.476 DIS

-17.767 NOX

h(x) = 3.810 RM + 2.687 CHAS + 0.306 RAD + 0.046 ZN + 0.021 INDUS + 0.009 B + 0.001 AGE -0.012 TAX -0.108 CRIM -0.525 LSTAT -0.953 PTRATIO -1.476 DIS -17.767 NOX

Avaliando o modelo com o R Squared (R2)

```
In [83]:

def r2_est(X,y):
    modelo = linear_model.LinearRegression(normalize = False, fit_intercept = Tr
ue)
    return r2_score(y, modelo.fit(X,y).predict(X))
```

```
In [84]:
print ('R2: %0.3f' % r2_est(X,y))
```

R2: 0.741

Gera o impacto de cada atributo no R²

In [85]:

```
r2_impact = list()
for j in range(X.shape[1]):
    selection = [i for i in range(X.shape[1]) if i!=j]
    r2_impact.append(((r2_est(X,y) - r2_est(X.values[:,selection],y)), dataset.c
olumns[j]))

for imp, varname in sorted(r2_impact, reverse = True):
    print ('%6.3f %s' % (imp, varname))
```

```
0.056 LSTAT
```

0.044 RM

0.029 DIS

0.028 PTRATIO

0.011 NOX

0.011 RAD

0.006 B

0.006 ZN

0.006 CRIM

0.006 TAX

0.005 CHAS

0.000 INDUS

0.000 AGE

Fazer Previsões

In [86]:

```
dataset.tail()
```

Out[86]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90
4												•

In [87]:

```
CRIM
                         ZN INDUS
                                         CHAS
                                                    NOX
                                                             RM
                                                                        AGE
DIS
         RAD
                TAX
                        PTRATIO
                                       В
                                                  LSTAT
Xteste = [ 1.,
                                            0.5,
                      0.0, 11,
                                    0.0,
                                                 6.,
                                                          80.2, 2.3, 1.0,
273.0,
        21.2,
                 396.1, 7.4
   ]
\#m = modelo.fit(X, y)
#Xteste norm = standardization.fit transform(X)
modelo.predict(np.array(Xteste).reshape(1, -1))[0]
```

Out[87]:

23.760829991455928

In [88]:

```
Xteste = [
               0.2, 7.01, 0.0,
                                 0.5, 7.1, 45.2, 6.1,
       0.02,
                                                         3.0,
                                                                  222,
                                                                        15.2
   [
      396.1,
               5.4],
               0.1,11.01,
                           0.0,
                                  0.6, 6.1, 80.2, 2.5, 1.0,
                                                                        21.2
      0.01,
                                                                  273,
      396.9,
               12.61.
modelo.predict(np.array(Xteste))
```

Out[88]:

array([30.36056954, 19.46052668])

Métricas para Algoritmos de Regressão

Gerando o dataset

In [89]:

```
dataset['y_prev'] = modelo.predict(dataset.iloc[:,:-1].values)
#dataset['Erro'] = dataset['y_prev'] - dataset['target']
dataset.head()
```

Out[89]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												>

In [90]:

```
dataset['Erro'] = abs (dataset['y_prev'] - dataset['target'] )
dataset.head()
```

Out[90]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
4												•

In [91]:

```
dataset.Erro.sum()
```

Out[91]:

1655.0565823155603

MAE - Mean Absolute Error

É a soma da diferença absoluta entre previsões e valores reais. Fornece uma ideia de quão erradas estão nossas previsões. Valor igual a 0 indica que não há erro, sendo a previsão perfeita (a exemplo do Logloss, a função cross_val_score inverte o valor)

In [92]:

MAE: -3.387 (0.667)

C:\Users\Dijay Lima\anaconda3\lib\site-packages\sklearn\utils\valida
tion.py:68: FutureWarning: Pass shuffle=True as keyword args. From v
ersion 0.25 passing these as positional arguments will result in an
error

warnings.warn("Pass {} as keyword args. From version 0.25 "

In [93]:

```
resultado
```

MSE - Mean Squared Error

Similar ao MAE, fornece a magnitude do erro do modelo.

Ao extrairmos a raiz quadrada do MSE convertemos as unidades de volta ao original, o que pode ser útil para descrição e apresentação.

Isso é chamado RMSE (Root Mean Squared Error)

In [94]:

```
# Definindo os valores para o número de folds
num_folds = 10
num_instances = len(X)
seed = 7

# Separando os dados em folds
kfold = model_selection.KFold(num_folds, True, random_state = seed)

resultado = model_selection.cross_val_score(modelo, X, y, cv = kfold, scoring = 'neg_mean_squared_error')

# Print do resultado
print("MSE: %.3f (%.3f)" % (resultado.mean(), resultado.std()))
```

```
MSE: -23.747 (11.143)
```

C:\Users\Dijay Lima\anaconda3\lib\site-packages\sklearn\utils\valida tion.py:68: FutureWarning: Pass shuffle=True as keyword args. From v ersion 0.25 passing these as positional arguments will result in an error

warnings.warn("Pass {} as keyword args. From version 0.25 "

Valor Original - MSE: -23.747 (11.143)

RMSE (Root Mean Squared Error)

Similar ao MAE, fornece a magnitude do erro do modelo.

Ao extrairmos a raiz quadrada do MSE convertemos as unidades de volta ao original, o que pode ser útil para descrição e apresentação.

In [95]:

```
from math import sqrt
print("RMSE: %.3f " % (sqrt(abs(resultado.mean()))))
```

RMSE: 4.873

R2

Essa métrica fornece uma indicação do nível de precisão das previsões em relação aos valores observados. Também chamado de coeficiente de determinação.

Valores entre 0 e 1, sendo 1 o valor ideal.

In [96]:

```
resultado = model_selection.cross_val_score(modelo, X, y, cv = kfold, scoring =
'r2')
# Print do resultado
print("R^2: %.3f (%.3f)" % (resultado.mean(), resultado.std()))
```

R^2: 0.718 (0.099)

R^2: 0.718 (0.099)

Exercício: Remover 2 atributos e executar o jupyter (armazenar o valor anterior das métricas)

```
In [ ]:
```