	l ópicos de Matemática Discreta			
	— exame de recurso — 1 de fevereiro de 2023 — duração: 2 horas —			
Nome: _	Nº: _			
	Grupo I			
(V) ou valores	upo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indifalsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída so ou <i>0 valores</i> , consoante a resposta esteja certa, errada, ou não seja assinalada resposta cão total neste grupo é no mínimo <i>0 valores</i> .	será 1 v	alor, -0,25	
		V	F	
1.	Para qualquer fórmula φ , φ é contradição se e só se $\varphi \wedge p_0$ é contradição.			
2.	2. A variável p_0 ter valor lógico verdadeiro é uma condição suficiente para a fórmula $p_0 o (p_1 \leftrightarrow p_0)$ ter valor lógico verdadeiro.			
3.	3. Para qualquer predicado hereditário $p(n)$ sobre os números naturais, se existe um natural k tal que $p(k)$ é uma proposição falsa, então $p(n)$ é falsa para todo o natural $n \leq k$.			
4.	Se o produto cartesiano de dois conjuntos tem exatamente 7 elementos, então um dos conjuntos tem um único elemento.			
5.	Para quaisquer relações binárias R , S e T num conjunto não vazio A , se $R\circ T\subseteq S\circ T$, então $R\subseteq S$.			
6.	Um cpo com dois elementos minimais não é um reticulado.			
	Grupo II			
Este gru	upo é constituído por 4 questões. Responda, <u>sem justificar</u> , no espaço disponibilizado a	seguir	à questão.	
us	eja $M(x)$ o predicado " x é multifacetado", relativo a números inteiros x . Escreva sando quantificadores, que traduza a afirmação "se algum número negativo é multidos os números são multifacetados".			
R	esposta:			
2. S	ejam p e q as proposições			
	$p: \ \forall_{x \in A} \exists_{y \in A} \ xy = 1 \qquad q: \ \exists_{y \in A} \forall_{x \in A} \ xy = 1.$			
In	ndique um subconjunto A de $\mathbb Q$ tal que $p o q$ seja verdadeira.			

Resposta:

3. Considere os conjuntos $A=\left\{n^2\in[0,2]:n\in\mathbb{N}_0\right\}$ e $B=\left\{n\in[0,2]:n^2\in\mathbb{N}_0\right\}$. Apresente $(A\cup B)\setminus(A\cap B)$ por extensão.

Resposta:

4. Considere o c.p.o. (X, \preceq) onde $X = \{0, 2, 4, 8, 16, 32, 64\}$ e \preceq é a relação de ordem parcial definida pelo diagrama de Hasse ao lado.

Indique (ou diga que não existe, se não existir) inf $\{0, 16, 64\}$ e máx $\{2, 4, 8, 16\}$.

Resposta:

Grupo III

Este grupo é constituído por 4 questões. Responda na folha de exame.

- 1. Considere as fórmulas $\varphi = p_0 \to \neg (p_1 \to p_2)$ e $\psi = \neg (p_2 \land p_0) \land (\neg p_0 \lor p_1)$.
 - (a) Indique, justificando, uma fórmula logicamente equivalente a $\neg \varphi$ que não tenha ocorrências do conetivo \neg .
 - (b) Diga, justificando, se $\varphi \leftrightarrow \psi$ é uma tautologia.
- 2. Mostre por indução nos naturais que: para todo $n\in\mathbb{N}$, $\sum_{i=1}^n (i(i+1))=\frac{1}{3}n(n+1)(n+2).$
- 3. Prove que, para quaisquer conjuntos A, B e C, se tem $(A \cup C) \setminus (B \cap \overline{C}) = (A \setminus B) \cup C$.
- 4. Seja R a relação de equivalência definida em $\mathbb R$ por $x\,R\,y$ se e só se $x^2-y^2=2(y-x)$.
 - (a) Determine $[0]_R$.
 - (b) Mostre que a relação R é, efetivamente, simétrica.
 - (c) Justifique que cada bloco da partição \mathbb{R}/R de \mathbb{R} tem, no máximo, 2 elementos.

Cotações	Ι	П	III
Cotações	6	4	3+2+2+3