Math 110B - Calculus II Prof. Jamey Bass

Homework 2

Aaron W. Tarajos September 15, 2024

6.3 Question 41

The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method.

$$x^{2} + (y - 1)^{2} = 1$$
; about the y-axis (1)

Solution

The given curve is a unit circle shifted upwards by one unit and therefore the volume of the shape rotated about the y-axis is the volume of a sphere with a radius of length 1. Let v equal the volume of a sphere as a function of the radius such that;

$$v(r) = \frac{4}{3}\pi r^3 \tag{2}$$

where r is the radius from the center of the sphere to the surface. Then the volume of sphere created by the revolution of equation (1) about the y-axis is;

$$v(1) = \frac{4}{3}\pi(1)^3 = \boxed{\frac{4\pi}{3}}$$

Proof

The equation of a circle is $(x-a)^2 + (y-b)^2 = r^2$. Given a = 0, b = 1, and r = 1 we obtain equation (1);

$$(x-0)^2 + (y-1)^2 = 1^2$$
$$x^2 + (y-1)^2 = 1$$

Revolve the curve described by the equation of the circle $y = \sqrt{r^2 - x^2}$ (for $x \in [-r, r]$) around the y-axis. By disc integration, the equation for the volume of revolution about the y-axis is:

$$V = \pi \int_{a}^{b} \left[f(y)^{2} - g(y)^{2} \right] dy.$$
 (3)

Therefore

$$V = \pi \int_{-r}^{r} \left[\sqrt{r^2 - x^2} - (0)^2 \right] dy$$

$$V = \pi \left(\left[r^2(r) - \frac{r^3}{3} \right] - \left[r^2(-r) - \frac{(-r)^3}{3} \right] \right)$$

$$V = \pi \left(2 \left(r^3 - \frac{r^3}{3} \right) \right)$$

$$V = \pi \left(2 \cdot \frac{2r^3}{3} \right)$$

$$= \frac{4}{3} \pi r^3 \quad \blacksquare$$