第二单元学习笔记

yinxuhao [xuhao_yin@163.com]

December 16, 2022

${\bf Contents}$

1	引言	2
	信息存储	2
	2.1 十六进制表示法	2
	2.2 字数据大小	3

信息的表示和处理

1 引言

孤立地讲,**单个的位不是非常有用,将位组合在一起,再加上某种解释** (interpretation),即赋予不同的可能位模式以含意。我们就能表示任何有限 集合的元素。

- 三种重要的数字表示:
- 1. 无符号unsigned编码给予传统的二进制表示法
- 2. 补码two's-complement编码是表示有符号整数的最常见的方式。
- 3. **浮点数**floating-point编码是表示实数的科学计数法的以 2 为基数的版本。数据**溢出overflow**是产生 bug 的一大原因。负数下溢产生极大的正数;正数上溢产生极小的负数。

浮点运算有完全不同的数学属性。

1. 由于表示的精度有限,浮点运算是不可结合的。例如

$$(3.14 + 1e_{20}) - 1e_{20} = 0.0$$

but

$$(3.14 + 1e_{20} - 1e_{20}) = 3.14$$

2. 该属性不同的原因,是处理数字表示有限性的方式不同——

整数虽只能编码一个相对较小的数值范围,然该表示法是精确的;

浮点数虽可以编码宇哥怀大的数值范围,但这种表示只是近似的。

书中建议的本章学习方式: <u>深</u> 入学习数学语言,编写公式和方程式,以及重要属性的推导。

2 信息存储

大多数计算机**使用 8 位的块或者字节作为最小的可寻址内存单位**,而不是内存中单独的比特。

机器级程序将内存视为一个非常大的字节数组,称为**虚拟内存**,所有可能的 地址的集合称为**虚拟地址空间**virtual address space.

每个程序对象可以简单地视为一个字节块,而程序本身就是一个字节序列。

2.1 十六进制表示法

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
TTom dinis	0	0		В	C	Ъ	E	F
Hex digit	8	9	Α	ь	C	D	E	Г
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Figure 1: 十六进制表示法。每个十六进制数字都对 16 个值中的一个进行了编码

十六进制转二进制:将十六进制的每一位转换为二进制格式,然后拼接。例如:

十六进制 $1 \qquad 7 \qquad 3$ Α $0001 \quad 0111 \quad 0011 \quad 1010 \quad 0100 \quad 1100$ 二进制

所以 $binary_{0x173a4c_{16}}=00010111001110110101100_2$ 。 二进制转十六进制:将二进制从右到左做 4 个一组的划分,如最左侧不足 4 位则以0补之。然后将每个4位转换为对应的十六进制数字拼接即可。例如:

二进制 1100 1010 1101 11 1011 0011 十六进制 3 С A D В

所以, $hex_{1111001010110110110011_2} = 3cadb3_{16}$

2.2 字数据大小

每台计算机都有一个字长,指明指针数据的标称大小。 C 数据类型的典型大小见下图:

C dec	Bytes			
Signed	Unsigned	32-bit	64-bit	
[signed] char	unsigned char	1	1	
short	unsigned short	2	2	
int	unsigned	4	4	
long	unsigned long	4	8	
int32_t	uint32_t	4	4	
int64_t	uint64_t	8	8	
char *		4	8	
float		4	4	
double		8	8	

Figure 2: 基本 C 数据类型的典型大小 (以字节为单位)