Regression

Carlos Soares (partly using materials from Moreira, Carvalho & Horvath)

regression

x = family income

y = total purchases

plan & goals

- linear regression
 - interpretation
 - algorithm
- evaluation of regression models
- other algorithms

- regression concepts
 - interpretation of the linear model
 - evaluation measures
- common approaches to dapting learning algorithms for regression

linear regression

simple case: 2 variables
 x and y

liner equation

$$y = f(x)$$
$$= b_0 + b_1 x$$

interpretation of coefficients

$$y = b_0 + b_1 x$$

- b_0 : intersection of the line with the yy axis
 - often hard to interpret
- b_1 : slope of the line
 - variation in the value of y given a 1 unit increase of the value of x

exercise II: analyze linear regression model

- assumes that variables are not correlated
 - influence of each variable is explained separately
 - coefficients are not influenced by changing the set of explanatory variables
 - i.e. attributes
- variation depends on the degree of correlation
 - signal may change!
- ... but empirical results show robustness

```
Table View Text View Annotations
```

LinearRegression

```
-0.108 * CRIM
```

+ 0.045 * ZN

+ 0.018 * INDUS

+ 2.661 * CHAS

17.655 * NOX

+ 3.822 * RM

-1.459 * DIS

+ 0.304 * RAD

- 0.012 * TAX

0.978 * PTRATIO

+ 0.009 * B

- 0.521 * LSTAT

+ 36.696

Simple linear regression: estimating parameters

$$y = b_0 + b_1 x$$

$$\widehat{b}_1 = \frac{S_{XY}}{S_{XX}}$$

where \hat{b}_1 is an estimate of b

$$S_{XY} = \sum_{i=1}^{n} [(X_i - \overline{X}).(Y_i - \overline{Y})]$$

$$S_{XX} = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

- $\hat{b_1}$ should be statistically significantly different from zero
 - if not, there is no meaningful dependency between Y and X
 - this should be tested

$$\hat{b}_0 = \overline{Y} - \hat{\beta}.\overline{X}$$

where $\hat{b_0}$ is an estimate of b_0

- $\hat{b_0}$ may or may not be statistically significantly different from zero
 - If not there is no evidence that Y≠0 when X=0.
 - ... which could make sense
 - e.g. value of a customer with 0 income
 - ... or not...
 - e.g. minimum sales of a product without shelf space

Simple linear regression: assumptions

- Linear relationship between x and y
 - also additive
- Errors
 - i.e. unexplained variation in *y*
 - ... are independently and identically distributed
 - ... homoscedasticity
 - constant variance
 - ... normally distributed

gps

- linear regression
- evaluation of regression models
 - measures
 - methodology
 - bias-variance trade-off
- other algorithms

prediction and evaluation

- given the value of x
- ... the model estimates the value of y

$$\hat{y} = b_0 + b_1 x$$

but the estimate is not perfect!

- erro:
 - y: true value

$$\hat{y} - y$$

• \hat{y} : value estimated by the model

analysis of evaluation measures

- mean error
 - DO NOT USE!
- mean absolute error
 - estimates "typical" error

Х

- mean squared error
 - assigns more weight to larger errorsⁱ
 - ... may be dominated by a few cases
- values depend on the scale of the target variable
 - is the error good or bad?
 - business perspective?
 - does the relationship between x/y represented really exist?

baseline: trivial model

- if we know nothing about the cases
- what is the best prediction we can make?
 - random vs mean
- trivial model

$$\hat{y}_i = \overline{y}$$

regression is only useful if its error is lower than the one obtained with the triveal prediction

• eg. mean squared $\sum (\hat{y}_i - y_i)^2$ error

To if regression model is perfect

]0,1[if it is useful

1 if it is equivalent to the trivial model

>1 if it is worse than the trivial model

evaluation methodology: do not forget!

ex. MSE

remember?

x = family income

y = total purchases

gps

- linear regression
- evaluation of regression models
- other algorithms
 - -kNN
 - trees
 - neural networks
 - support vector machines
 - ... bias & variance

Nearest Neighbor Algorithm for Regression

- find kNN
 - just like for classification
- predict the average of their target values
 - instead of majority voting

Decision Trees for Regression

train

- splitting criterion based on the sum of the variances
 - instead of gini or entropy

prediction

- average of targets in the leaf
 - instead of majority voting

variants

- model trees
 - msing MLR or K-NN in the leaves instead of the average
- MARS
 - multivariate adaptive regression splines

Neural Nets for Regression

- single output node
 - predicted y = score
- continuous activation function
 - e.g. sigmoid
 - also used for classification

output nodes

hidden nodes

input nodes

carlos soares - AC

SVM for Regression

margin

- minimize the tube"around" the data
 - Instead of maximizing the distance to closest examples from each class

source: http://alex.smola.org/papers/2003/SmoSch03b.pdf

SVM for Regression

margin

- minimize the tube"around" the data
 - Instead of maximizing the distance to closest examples from each class

source: http://alex.smola.org/papers/2003/SmoSch03b.pdf

bias

- type of model an algorithm is able to learn given a set of training data
- related to hypothesis language
 - e.g. linear vs quadratic

... and variance

- variation in model an algorithm is able to learn, given different training data
 - ie. small changes

bias-variance trade-off

23

- Low bias implies high variance and vice-versa
- We would like to find a model with a good trade-off
 - Not too complex but with good predictive power

remember overfitting?

- trees obtained with different values of "minimum leaf size"
 - 4, 2 and 1

error (train)=18,18%

error (train)=9,09%

