Lecture 2 Concentration Inequality

He Li Machine Learning Course 2017/10/10

1. Concentration Inequality

Chernoff bound

 $x_1...x_n$ independent, $\in [0,1]$, $\mathbb{E}\{x_i\} = p$. Then,

$$P(\frac{1}{n}\sum x_i - \mathbb{E}[\frac{1}{n}\sum x_i] \ge \epsilon) \le \exp\{-nD_B(p + \epsilon||p)\} \le \exp\{-2n\epsilon^2\}$$

Hoeffding Inequility

 $x_1...x_n$ independent, $\in [a_i, b_i], \mathbb{E}\{x_i\} = p$. Then,

$$P(\frac{1}{n}\sum x_i - \mathbb{E}[\frac{1}{n}\sum x_i] \ge \epsilon) \le \exp\{-\frac{2n^2\epsilon^2}{\sum (b_i - a_i)^2}\}$$

? without independence, is concentration exists?

2. Martingale

Definition

 $R.V. S_0...S_n..., \forall i, \text{ (fair game)}$

$$\mathbb{E}[S_i|S_{i-1},...S_0] = S_{i-1}$$

Denote $X_i = S_i - S_{i-1}$ martingale difference, then we have **Azuma's Inequality**:

 $x_1...x_n$ martingale difference, $|x_i| \leq C_i$, $S_0 = 0, \mathbb{E}\{x_i\} = p$. Then,

$$P(\frac{1}{n}\sum x_i - \mathbb{E}[\frac{1}{n}\sum x_i] \ge \epsilon) \le \exp\{-\frac{2n^2\epsilon^2}{\sum C_i^2}\}$$

Super Martingale

 $R.V. S_0...S_n..., \forall i$

$$\mathbb{E}[S_i|S_{i-1},...S_0] \le S_{i-1}$$

Then, $x_1...x_n$ super martingale difference, $|x_i| \leq C_i$, $S_0 = 0, \mathbb{E}\{x_i\} = p$. Then,

$$P(\frac{1}{n}\sum x_i - \mathbb{E}[\frac{1}{n}\sum x_i] \ge \epsilon) \le \exp\{-\frac{2n^2\epsilon^2}{\sum C_i^2}\}$$

3. McDiermid Lemma

 $x_1...x_n$ independent, function f satisfies that $\forall i, \forall x_1...x_n; x_1,...,x'_i,...,x_n$, then

$$|f(x_1,...,x_n) - f(x_1,...,x_i',...,x_n)| \le c_i$$

is called stable.

If f is stable, then

$$\mathbb{P}\left\{f(x_1, ..., x_n) - \mathbb{E}[f(x_1, ..., x_n)] \ge \epsilon\right\} \le \exp\left\{-\frac{2\epsilon^2}{\sum_i C_i^2}\right\}$$

4. Draw without replacement

 $a_1,...,a_N \in \{0,1\}$ uniformly random draw n numbers from $a_1,...,a_N$, denote $x_1,...,x_n$. Consider $P(\frac{1}{n}\sum x_i - \mathbb{E}[\frac{1}{n}\sum x_i] \geq \epsilon)$

- 1. Draw with replacement: $x_1, ..., x_n$ independent, Chernoff bound holds.
- 2. Draw without replacement: $x_1, ..., x_n$ not independent, Chernoff bound holds. Actually, this is more concentrated.