G complex reductive alg group, $\quad A\subseteq B\subseteq G$ Borel pair, X complex alg curve

nonabelian Hodge

HMS:
$$\operatorname{Coh}_S(\mathcal{M}_{G,B}) \stackrel{?}{\to} \operatorname{Fuk}(\mathcal{M}_{G^{\vee},\operatorname{Dol}}) \simeq \mathcal{D}(\mathcal{M}_{G^{\vee},\operatorname{Dol}})$$

2

 $\underline{\operatorname{Ex} 1} \quad G = \operatorname{GL}_n$

 \mathcal{M}_{B} local systems $\varrho: \pi_1(X) \to G$

 $\mathcal{M}_{\mathrm{dR}}$ flat connections $(E, \nabla : E \to E \otimes \Omega^1)$

 $\mathcal{M}_{\mathrm{Dol}}$ Higgs bundles $(E, \theta : E \to E \otimes \Omega^1)$

X of genus g, $G = GL_1$

$$\mathcal{M}_{\mathrm{B}} = (\mathbf{C}^{\times})^{2g}, \quad \mathcal{M}_{\mathrm{dR}} = \mathcal{M}_{\mathrm{Dol}} = T^{*}\mathrm{Jac}(X) \approx \mathbf{C}^{g} \times (S^{1})^{2g}$$

3

Ex 2 (BBMY) $X = \mathbf{P}^1 - \{0, \infty\}, \quad \gamma \in \mathfrak{g}[z]$ homogeneous

 \mathcal{M}_{B} "braid variety"

 $\mathcal{M}_{\mathrm{Dol}}$ {wild Higgs bundles with flag at 0, tail $\gamma \frac{dz}{z}$ at ∞ }

BBMY-Feng-Le Hung: for γ^{\vee} of "integral slope", a map

$$K_0(\operatorname{Coh}(\mathcal{M}_{G,B})) \to K_0(\operatorname{Fuk}(\mathcal{M}_{G^{\vee},\operatorname{Dol}}))$$

 $\approx \text{Breuil-M\'ezard} \quad \mathrm{K}_0(\mathrm{Rep}_{\bar{\mathbf{F}}_p}(G(\mathbf{F}_p))) \to \mathrm{Ch}_{\mathrm{mid}}(\mathcal{X}^{\mathrm{EG}})$

geometry of $\mathcal{M}_{\mathrm{Dol}}^{\mathrm{BBMY}}$:

- $\mathbf{C}^{ imes}$ -action contracting to Lagrangian central fiber $\mathcal{F}l_{\gamma}$
- $\mathcal{F}l_{\gamma}$ is an "Iwahori affine Springer fiber"
- $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$ is a $(\widetilde{W},\widetilde{W})$ -bimodule (for integral slope) BBMY expect mirror symmetry to be biequivariant F-L use biequivariance to make their analogy precise

5

Affine Springer Fibers (fpqc) affine flag variety

$$\mathcal{F}l := G((z))/I$$
, where $I \subseteq G((z))$ lifts $B \subseteq G$

 $\gamma \in \mathfrak{g}[\![z]\!]$ defines a vector field with fixed-point set

$$\mathcal{F}l_{\gamma} := \{gI \in \mathcal{F}l \mid \gamma \in \operatorname{Lie}(gIg^{-1})\}$$

 γ is regular semisimple iff $T := Z_{G((z))}^{\circ}(\gamma)$ is a max torus Kazhdan–Lusztig: if γ is reg ss, then $\mathcal{F}l_{\gamma}$ is finite-dim'l

6

as moduli of parabolic Higgs bundles over $D=\operatorname{Spec}\mathbf{C}[\![z]\!]$:

$$\mathcal{F}l_{\gamma} \simeq \left\{ (E, \theta, \tilde{E}_0, \iota) \left| \begin{array}{c} (E, \theta) \in \mathcal{M}_{\mathrm{Dol}}(D), \\ \tilde{E}_0 \text{ is a } \theta_0\text{-stable flag in } E_0, \\ \iota : (E, \theta)|_{D^{\circ}} \xrightarrow{\sim} (E^{\mathrm{triv}}, \gamma)|_{D^{\circ}} \end{array} \right\}$$

 $\mathcal{F}l_{\gamma} \hookrightarrow \mathcal{M}_{\mathrm{Dol}}^{\mathrm{BBMY}}$ defined by gluing bundles

for
$$\frac{d}{m} \in \mathbf{Q}_+$$
 in lowest terms, let $\mathbf{C}^{\times} \curvearrowright G(\!(z)\!), \mathfrak{g}(\!(z)\!)$ by

$$c \cdot g(z) = \operatorname{Ad}(c^{d
ho^{\vee}}) g(c^m z), \quad \text{where } \rho^{\vee} = \sum_i \omega_i^{\vee}$$

 γ is homogeneous of slope d/m iff $c^m \cdot \gamma(z) = c^d \gamma(z)$

Ex take
$$G = SL_2$$
 and B upper-triangular $\begin{pmatrix} 1 & 1 \\ & -1 \end{pmatrix}, \begin{pmatrix} z & 1 \\ & z \end{pmatrix}$ are reg ss: slopes $0, \frac{1}{2}, 1$

8

Symmetries
$$\mathfrak{c}_{d/m}^{rs} = \{\text{homog reg ss } \gamma \text{ of slope } \frac{d}{m}\} /\!\!/ G((z))_0$$

$$\mathcal{F}l_{\left(z_{-z}\right)} = \mathbf{P}^1 \sqcup_{\mathrm{pt}} \mathbf{P}^1 \sqcup_{\mathrm{pt}} \cdots \sqcup_{\mathrm{pt}} \mathbf{P}^1 \curvearrowleft \langle s_1, z^{\rho^{\vee}} \rangle = \widetilde{W}$$

— action of centralizer lattice
$$\pi_0(T)$$
 $z^{\rho^{\vee}}$

— action of monodromy group
$$\pi_1(\mathfrak{c}_{d/m}^{\mathrm{rs}})$$
 on $\mathrm{H}^*_{\mathbf{C}^{\times}}$ s_1

$$\underline{\operatorname{Conj}} \ (\operatorname{T-Xue}) \quad \text{formula for monodromy using } \operatorname{Irr}(G(\mathbf{F}_q))$$

9

$$W := N_G(A)/A$$
 is a rat'l refl group

$$C := N_{G((z))}(T)/T$$
 is a comp'x refl grp; $\operatorname{Br}_C = \pi_1(\mathfrak{c}_{d/m}^{rs})$

$$\underline{\operatorname{Ex}}$$
 if $G = \operatorname{SL}_n$, then $m \mid n$ and $C \simeq S_{n/m} \wr \mathbf{Z}/m\mathbf{Z}$

$$G_{\mathbf{C}(\!(z)\!)}, A_{\mathbf{C}(\!(z)\!)}, T_{\mathbf{C}(\!(z)\!)} \quad \Longleftrightarrow \quad G_{\mathbf{F}_q}, A_{\mathbf{F}_q}, T_{\mathbf{F}_q}$$

Deligne–Lusztig: induction
$$R_T^G: \mathrm{K}_0(T(\mathbf{F}_q)) \to \mathrm{K}_0(G(\mathbf{F}_q))$$

$$HC_T = {\rho \in Irr(G(\mathbf{F}_q)) \mid (\rho, R_T^G(1)) \neq 0}$$

Iwahori:
$$\chi : HC_A \xrightarrow{\sim} Irr(W)$$

Broué–Malle–Michel:
$$\psi : HC_T \xrightarrow{\sim} Irr(C)$$

BMM define a ring $\mathcal{H}_T(x) = \mathbf{C}[x^{\pm 1/m}][\mathrm{Br}_C]/\sim \mathrm{s.t.}$

- (1) $\mathcal{H}_T(e^{2\pi i/m}) \simeq \mathbf{C}C$
- (2) conjecturally, via $\psi_q : HC_T \xrightarrow{\sim} Irr(\mathcal{H}_T(q)),$

$$R_T^G(1) = \sum_{\rho \in \mathrm{HC}_T} \varepsilon(\rho) \rho \otimes \psi_q(\rho) \quad \text{for some $\varepsilon(\rho) \in \{\pm 1\}$}$$

11

take
$$G$$
 ss and $V_{\gamma}^* = \mathrm{H}^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})^{\pi_0(T)}|_{\epsilon \to 1} \quad (\epsilon \in \mathrm{H}^2_{\mathbf{C}^{\times}}(\mathrm{pt}))$

Conj 1 (T-Xue) Br_C
$$\sim V_{\gamma}^*$$
 factors through $\mathcal{H}_T(1)$

expect commutant of Br_C to be generated by:

- action of \widetilde{W} via Springer
- action of $H_B^*(pt) = \mathbf{C}[X^*(A)]$ via Chern classes

12

rational DAHA:
$$\mathcal{D}_A(\frac{d}{m}) = (\mathbf{C}[\mathfrak{g}^*] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathfrak{g}])/\sim$$

Oblomkov–Yun: for elliptic γ , perverse filtration $P_{\leq *}$,

$$\mathbf{C}\widetilde{W} \otimes \mathbf{C}[X^*(A)] \curvearrowright V_{\gamma}^* \quad \leadsto \quad \mathcal{D}_A(\frac{d}{m}) \curvearrowright \operatorname{gr}^{\mathbf{P}}_* V_{\gamma}^*$$

<u>Conj 2</u> (T–Xue) as virtual $(\mathcal{D}_A(\frac{d}{m}), \mathcal{H}_T(1))$ -bimodules,

$$\sum_{i} (-1)^{i} \operatorname{gr}_{*}^{P} V_{\gamma}^{i} = \sum_{\rho \in \operatorname{HC}_{A} \cap \operatorname{HC}_{T}} \varepsilon(\rho) \Delta_{d/m}(\chi(\rho)) \otimes \psi_{1}(\rho)$$

$$\Delta_{d/m}(\chi) = \operatorname{Ind}_{\mathbf{C}W \ltimes \mathbf{C}[\mathfrak{a}]}^{\mathcal{D}_A(d/m)}(\chi) \qquad \qquad \text{("Verma modules")}$$

Thm (T-Xue) Conj 2 is true for:

- (1) m the Coxeter number of W (C cyclic)
- (2) (twisted) G of rank 2

compare to virtual $(\mathcal{H}_A(q), \mathcal{H}_T(q))$ -bimodule

$$R_A^G(1) \otimes_{G(\mathbf{F}_q)} R_T^G(1) = \sum_{\rho \in \mathrm{HC}_A \cap \mathrm{HC}_T} \varepsilon(\rho) \chi_q(\rho) \otimes \psi_q(\rho)$$