平衡和非平衡电桥

一、直流电桥测量电阻

1. 测量未知电阻的大小

- $(1)R_x \approx 4k\Omega, E = 3.046V$:
- ①直接测量法

 $R_1 = 5000.0\Omega$, $R_2 = 5000.0\Omega$, $R_0 = 4052\Omega$, 改变 R_0 的大小,得到 $\triangle R_0 = 3\Omega$, $\triangle n = 0.1$ 因此可以计算出:

$$\begin{split} R_x &= \frac{R_1}{R_2} R_0 = 4052\Omega, \; \delta R_x = \frac{0.2 R_1 \triangle R_0}{\triangle n \cdot R_2} = 5.8\Omega \\ \sigma_{R_x} &= \sqrt{(\delta R_x)^2 + (\frac{R_0}{R_2} \sigma_{R_1})^2 + (\frac{R_0 R_1}{R_2^2} \sigma_{R_2})^2 + (\frac{R_1}{R_2} \sigma_{R_0})^2} = 9\Omega \\ R_x &\pm \sigma_{R_x} = (4052 \pm 9)\Omega \end{split}$$

其中 R_1, R_2, R_0 的阻值的不确定度利用仪器给出的不确定度公式 [1] 计算,后面利用到电阻箱的 阻值时不确定度也都按照此公式计算.

②交换桥臂法

 $R_1 = 5000.0\Omega, R_2 = 4000.0\Omega$

第一次测量给出
$$R_10 = 3239\Omega$$
, $\triangle R_0 = 3\Omega$, $\triangle n = 0.1$, 有 $\delta R_{x1} = \frac{0.2R_1\triangle R_0}{\triangle n_1 R_2} = 5.3\Omega$

第一次测量给出
$$R_10=3239\Omega$$
, $\triangle R_0=3\Omega$, $\triangle n=0.1$, 有 $\delta R_{x1}=\frac{0.2R_1\triangle R_0}{\triangle n\cdot R_2}=5.3\Omega$ 第二次测量给出 $R_20=5059\Omega$, $\triangle R_0=3\Omega$, $\triangle n=0.1$, 有 $\delta R_{x2}=\frac{0.2R_1\triangle R_0}{\triangle n\cdot R_2}=5.8\Omega$

估计由电桥灵敏度带来的总不确定度为 $\delta R_x = \sqrt{\frac{1}{2}\delta R_{x1}^2 + \frac{1}{2}\delta R_{x2}^2} = 5.6\Omega$ 故有

$$R_x = \sqrt{R_{10}R_{20}} = 4048\Omega$$

$$\sigma_{R_x} = \sqrt{\delta R_x^2 + (\frac{\partial R_x}{\partial R_{10}}\sigma_{R_{10}})^2 + (\frac{\partial R_x}{\partial R_{20}}\sigma_{R_{20}})^2} = \sqrt{\delta R_x^2 + \frac{R_{20}}{R_{10}}(\frac{1}{2}\sigma_{R_{10}})^2 + \frac{R_{10}}{R_{20}}(\frac{1}{2}\sigma_{R_{20}})^2} = 6\Omega$$

$$R_x \pm \sigma_{R_x} = (4048 \pm 6)\Omega$$

- $(2)R_x \approx 360\Omega, E = 3.046V$:
- ①直接测量法

 $R_1 = 350.0\Omega$, $R_2 = 300, 0\Omega$, $R_0 = 318.5\Omega$, 改变 R_0 的大小,得到 $\triangle R_0 = 0.1\Omega$, $\triangle n = 0.4$ 因此可以计算出:

$$R_x = \frac{R_1}{R_2} R_0 = 371.6\Omega, \ \delta R_x = \frac{0.2 R_1 \triangle R_0}{\triangle n \cdot R_2} = 0.06\Omega$$

$$\sigma_{R_x} = \sqrt{(\delta R_x)^2 + (\frac{R_0}{R_2} \sigma_{R_1})^2 + (\frac{R_0 R_1}{R_2^2} \sigma_{R_2})^2 + (\frac{R_1}{R_2} \sigma_{R_0})^2} = 0.6\Omega$$

$$R_x \pm \sigma_{R_x} = (371.6 \pm 0.6)\Omega$$

②交换桥臂法

$$R_1 = 400.0\Omega, R_2 = 300.0\Omega$$

第一次测量给出
$$R_10=278.7\Omega,~ \triangle R_0=0.1\Omega,~ \triangle n=0.3,~ \uparrow \delta R_{x1}=\frac{0.2R_1\triangle R_0}{\triangle n\cdot R_2}=0.09\Omega$$
第二次测量给出 $R_20=495.5\Omega,~ \triangle R_0=0.1\Omega,~ \triangle n=0.5,~ \uparrow \delta R_{x2}=\frac{0.2R_1\triangle R_0}{\triangle n\cdot R_2}=0.03\Omega$

估计由电桥灵敏度带来的总不确定度为 $\delta R_x = \sqrt{\frac{1}{2}\delta R_{x1}^2 + \frac{1}{2}\delta R_{x2}^2} = 0.07\Omega$ 故有

$$R_x = \sqrt{R_{10}R_{20}} = 371.6\Omega$$

$$\sigma_{R_x} = \sqrt{\delta R_x^2 + (\frac{\partial R_x}{\partial R_{10}}\sigma_{R_{10}})^2 + (\frac{\partial R_x}{\partial R_{20}}\sigma_{R_{20}})^2} = \sqrt{\delta R_x^2 + \frac{R_{20}}{R_{10}}(\frac{1}{2}\sigma_{R_{10}})^2 + \frac{R_{10}}{R_{20}}(\frac{1}{2}\sigma_{R_{20}})^2} = 0.3\Omega$$

$$R_x \pm \sigma_{R_x} = (371.6 \pm 0.3)\Omega$$

 $(3)R_x \approx 47\Omega, E = 3.048V$:

①直接测量法

 $R_1 = 50.0\Omega$, $R_2 = 400.0\Omega$, $R_0 = 376.6\Omega$, 改变 R_0 的大小,得到 $\triangle R_0 = 0.1\Omega$, $\triangle n = 3.7$ 因此可以计算出:

$$R_x = \frac{R_1}{R_2} R_0 = 47.08\Omega, \ \delta R_x = \frac{0.2 R_1 \triangle R_0}{\triangle n \cdot R_2} = 0.007\Omega$$

$$\sigma_{R_x} = \sqrt{(\delta R_x)^2 + (\frac{R_0}{R_2} \sigma_{R_1})^2 + (\frac{R_0 R_1}{R_2^2} \sigma_{R_2})^2 + (\frac{R_1}{R_2} \sigma_{R_0})^2} = 0.4\Omega$$

$$R_x \pm \sigma_{R_x} = (47.1 \pm 0.4)\Omega$$

②交换桥臂法

$$R_1 = 50\Omega, R_2 = 45\Omega$$

第一次测量给出
$$R_10=42.4\Omega$$
, $\triangle R_0=0.1\Omega$, $\triangle n=4.3$, 有 $\delta R_{x1}=\frac{0.2R_1\triangle R_0}{\triangle n\cdot R_2}=0.005\Omega$ 第二次测量给出 $R_20=52.3\Omega$, $\triangle R_0=0.1\Omega$, $\triangle n=4.1$, 有 $\delta R_{x2}=\frac{0.2R_1\triangle R_0}{\triangle n\cdot R_2}=0.004\Omega$ 估计由电桥灵敏度带来的总不确定度为 $\delta R_x=\sqrt{\frac{1}{2}\delta R_{x1}^2+\frac{1}{2}\delta R_{x2}^2}=0.005\Omega$ 故有

$$R_x = \sqrt{R_{10}R_{20}} = 47.09\Omega$$

$$\sigma_{R_x} = \sqrt{\delta R_x^2 + (\frac{\partial R_x}{\partial R_{10}}\sigma_{R_{10}})^2 + (\frac{\partial R_x}{\partial R_{20}}\sigma_{R_{20}})^2} = \sqrt{\delta R_x^2 + \frac{R_{20}}{R_{10}}(\frac{1}{2}\sigma_{R_{10}})^2 + \frac{R_{10}}{R_{20}}(\frac{1}{2}\sigma_{R_{20}})^2} = 0.04\Omega$$

$$R_x \pm \sigma_{R_x} = (47.09 \pm 0.04)\Omega$$

2. 研究电桥灵敏度

电桥灵敏度的理论公式为

$$S = \frac{S_i E}{R_1 + R_2 + R_0 + R_x + R_g \left(2 + \frac{R_1}{R_x} + \frac{R_0}{R_2}\right)}$$

改变公式中的参数,探究各个条件对电桥灵敏度的影响.

(1) 电源电压 E:

控制 $R_1=400.0\Omega,\ R_2=400.0\Omega,\ R_x=371.6\Omega,$ 平衡时 $R_0=371.6\Omega.$ 其中,对 $\triangle n$ 和 $\triangle R_0$ 进行线性拟合,得到的斜率记为 k,则灵敏度可以表示为 $S=kR_0$

E/V		$\triangle n$				C	C
E/V	$\Delta R_0/\Omega$	0.1	0.2	0.3	k	S_{Exp}	S_{Thr}
3.060		0.3	0.7	1.1	4.0	1486	1483
4.561		0.6	1.1	1.8	6.0	2230	2210
6.123		0.8	1.7	2.5	8.5	3159	2968

表 1: 电桥灵敏度 S 随电源电压 E 的变化

$(2)R_2$ 大小:

控制 E = 5.035V, $R_1 = 400.0\Omega$, $R_x = 371.6\Omega$

R_2/Ω	R_0/Ω		$\triangle n$			l _a	C	
		$\Delta R_0/\Omega$	0.1	0.2	0.3	k	S_{Exp}	S_{Thr}
200.0	185.8		1.8	3.1	4.9	15.5	2878	3254
400.0	371.6		0.8	1.2	2.0	6.0	2230	2440
600.0	557.5		0.3	0.8	1.1	4.0	2230	1952

表 2: 灵敏度 S 随桥臂电阻 R_2 的变化

$(3)R_1$ 大小:

控制 E = 5.035V, $R_2 = 400.0\Omega$, $R_x = 371.6\Omega$

R_1/Ω	P /O		$\triangle n$			le C	C	
	R_0/Ω	$\triangle R_0/\Omega$	0.2	0.4	0.6	k	S_{Exp}	S_{Thr}
200.0	743.3		0.7	1.1	1.8	2.75	2044	2199
400.0	371.6		1.1	2.6	3.8	6.75	2508	2440
600.0	247.7		1.8	3.7	5.4	9.0	2230	2324

表 3: 灵敏度 S 随桥臂电阻 R_1 的变化

3. 思考题:

- ①电源电压大幅度下降会加大测量误差.
- ②电源电压稍有波动不会加大测量误差.
- ③导线电阻不可忽略会加大测量误差.
- ④检流计零点没有校准会加大测量误差.
- ⑤检流计灵敏度不够高会加大测量误差.

二、非平衡电桥测量铂电阻的温度系数

1. 将测量结果列表并作图

(1) 控制电流为 I = 4.000mA,在实验过程中保持不变.

在 T = 0.2 °C 时调节电桥平衡, 有 $R_p = 100.2\Omega$, $U_{out} = 0.03mV$.

(2) 在 0~100°C 的范围内进行测量:

对测量得到的 U_{out} 和 T 进行线性拟合 $U_{out} = aT + b$, 得到

$$a = 0.76065 mV / ^{\circ} C$$

 $b = -0.01 mV$
 $r = 0.999991$

根据最小二乘法的理论,可以算出斜率 a 的 A 类不确定度:

$$\sigma_{aA} = \sqrt{\frac{1 - \frac{1}{r^2}}{n - 2}} = 0.00073 mV / ^{\circ} \text{C}$$

由于万用电表的测量存在误差,所以每个 U_{out} 均存在误差,可根据万用电表的性能 [2] 估计为 $\sigma_{U_{out}B}=0.06mV$,所以斜率 a 的 A 类不确定度为

$$\sigma_{aB} = \sqrt{\sum_{i=1}^{n} (\frac{\partial a}{\partial U_{out}} \sigma_{U_{out}})^{2}} = \sqrt{\sigma_{U_{out}}^{2} \sum_{i=1}^{n} [\frac{U_{out} - \bar{U}_{out}}{\sum_{i=1}^{n} (U_{out} - \bar{U}_{out})^{2}}]^{2}} = \frac{\sigma_{U_{out}}}{\sqrt{\sum_{i=1}^{n} (U_{out} - \bar{U}_{out})^{2}}} = 0.00057 mV / ^{\circ} C$$

得到 a 的总不确定度 σ_a 为:

$$\sigma_a = \sqrt{\sigma_{aA}^2 + \sigma_{aB}^2} = 0.0009 mV / ^{\circ} C$$

$T/^{\circ}\mathrm{C}$	U_{out}/mV	$T/^{\circ}\mathrm{C}$	U_{out}/mV
5.0	3.72	55.0	41.94
10.0	7.54	60.0	45.75
15.0	11.37	65.0	49.51
20.0	15.22	70.0	53.25
25.0	19.02	75.0	57.08
30.0	22.92	80.0	60.90
35.0	26.47	85.0	64.60
40.0	30.48	90.0	68.39
45.0	34.30	95.0	72.01
50.0	38.18	100.2	76.18

表 4: 非平衡电压 U_{out} 与温度 T 的关系

图 1: 非平衡电压 U_{out} 与温度 T 的关系

2. 计算铂电阻的温度系数 A_1 及其不确定度

由理论公式 $U_{out}=\frac{I_0}{2}R_0A_1\triangle T$ 及 $U_{out}-T$ 的线性拟合得到 $A_1=\frac{2a}{I_0R_0}$,其中有 $\sigma_{I_0}=0.001mA,\ \sigma_{R_0}=0.1\Omega$,所以有

$$A_1 = \frac{2a}{I_0 R_0} = 3.796^{\circ} \text{C}^{-1}$$

$$\sigma_{A_1} = A_1 \cdot \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_{I_0}}{I_0}\right)^2 + \left(\frac{R_0}{R_0}\right)^2} = 0.006^{\circ} \text{C}^{-1}$$

$$A_1 \pm \sigma_{A_1} = (3.796 \pm 0.006)^{\circ} \text{C}^{-1}$$

3. 思考题

- (1)①两路电流不相等,措施: 选取 $R_1 = R_2 \gg R_T$; ② $\triangle R_T$ 与 $\triangle T$ 关系的非线性,措施: 将测温范围限制在 $0 \sim 100$ °C;
- (2) 若拟合时发现截距不为 0,则说明 $R_p \neq R_0$,这会使温度的测量拥有一个固定的系统误差.

参考文献

- [1] http://sdgchina.com/page14?product_id=284&brd=1
- [2] 吕斯骅段家低张朝晖. 新编基础物理实验 [M]. 第二版. 高等教育出版社, 2013.