高等数理统计

张鑫航 国防科技大学

版本: 1.0

更新: 2023 年 12 月 24 日

1 基本概念

1.1 统计结构

例 1.1 对一物理量进行测量, 其真值 μ 未知, 测量值为 x, 但测量有误差, 故可认为

$$x = \mu + \varepsilon$$

 $\{x_1, x_2 \cdots, x_n\}$ 是测量值。

可加上一个假设,进一步设 $\varepsilon \sim N(0,\sigma^2)$,这就建立了一个统计结构。

定义 1.1 (统计结构) 设 (\mathcal{X} , \mathcal{B}) 为一可测空间, \mathcal{P} 为其上的一族概率分布,则成三元组 (\mathcal{X} , \mathcal{B} , \mathcal{P}) 为统计结构 (模型)。若 \mathcal{P} 仅依赖于某参数(向量) θ , 即 $\mathcal{P} = \{\mathcal{P}_{\theta} : \theta \in \Theta\}$,就称为参数结构,否则成为非参数结构。

定义 1.2 (乘积结构与重复抽样结构) 设 $(\mathcal{X},\mathcal{B},\mathcal{P})$ 与 $(\mathcal{X}',\mathcal{B}',\mathcal{P}')$ 为两个统计结构,则称 $(\mathcal{X}\otimes\mathcal{X}',\mathcal{B}\otimes\mathcal{B}',\mathcal{P}\otimes\mathcal{P}')$ 为二者的乘积结构,记为 $(\mathcal{X},\mathcal{B},\mathcal{P})\otimes(\mathcal{X}',\mathcal{B}',\mathcal{P}')$,特别的,n 个同样的统计结构的乘积称为重复抽样结构,记为 $(\mathcal{X},\mathcal{B},\mathcal{P})^n$ 或 $(\mathcal{X}^n,\mathcal{B}^n,\mathcal{P}^n)$ 。

定义 1.3 (样本分布函数) 设 $(\mathcal{X}, \mathcal{B}, \mathcal{P})^n$ 为一重复抽样结构, $\forall (X_1, X_2, \dots, X_n) \in X^n$, 定义

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{(X_i \le x)}$$

为经验分布函数 (样本分布函数)。

定义 1.4 (所控) 设 u 和 v 是可测空间上 (\mathcal{X},\mathcal{B}) 上的两个 σ -有限测度。若 $N \in \mathcal{B}$, $u(N) = 0 \Rightarrow v(N) = 0$, 则称v 关于 u 绝对连续, 或 v 被 u 所控, 记为 v << u。

定义 1.5 (可控结构) 设 $(\mathcal{X},\mathcal{B},\mathcal{P})$ 为一统计结构,若存在 u 为可测空间 $(\mathcal{X},\mathcal{B})$ 上的 σ — 有限测度,使得 $\forall P \in \mathcal{P}, \ P << u$,则称该结构为可控结构。进而 $p(x) = \frac{dP(x)}{du}$ 成为 p.r 密度。

1.2 常用分布族

1.2.1 Gamma 分布族

定义 1.6 (Gamma 分布族) 在 (R^+, \mathcal{B}_{R^+}) 上的密度函数形如

$$p(x; \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} I_{(0, +\infty)}(x), \ (\alpha > 0, \lambda > 0)$$

的分布称为参数为 α , λ 的Gamma 分布族, 记为 $Ga(\alpha,\lambda)$ 。其中, $\Gamma(\alpha)=\int_0^{+\infty}x^{\alpha-1}e^{-x}~dx$ 为 Gamma 函数。

注 因为 $\int_0^{+\infty} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} dx = \int_0^{+\infty} (\lambda x)^{\alpha-1} e^{-\lambda x} d(\lambda x) = \Gamma(\alpha)$,所以,

$$\int_{-\infty}^{+\infty} p(x; \alpha, \lambda) = \frac{\Gamma(\alpha)}{\Gamma(\alpha)} = 1$$

注 • 由图 1, α 影响 $Ga(\alpha, \lambda)$ 的形状, λ 影响 $Ga(\alpha, \lambda)$ 的尺寸

- $\alpha \le 1$ 时,严减; $1 < \alpha \le 2$ 时,先上凸,后下凸; $\alpha > 2$ 时,先下凸,再上凸,最后下凸,两个拐点
- λ 影响密度函数的胖瘦

图 1: α 和 λ 对 $Ga(\alpha, \lambda)$ 的影响

设 $Z \sim Ga(\alpha, \lambda)$, 则其 k 阶矩

$$EZ^{k} = \int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+k-1} e^{-\lambda x} dx$$

$$= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)\lambda^{k}} \int_{0}^{+\infty} \frac{\lambda^{\alpha+k}}{\Gamma(\alpha+k)} x^{\alpha+k-1} e^{-\lambda x} dx$$

$$= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)\lambda^{k}} = \frac{(\alpha+k-1)(\alpha+k-2)\cdots\alpha}{\lambda^{k}}$$

 $Ga(\alpha,\lambda)$ 的特征函数

$$f(t) = Ee^{ixt} = \int_0^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda(1 - \frac{it}{\lambda})x} dx$$

$$= (1 - \frac{it}{\lambda})^{-\alpha} \int_0^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} [(1 - \frac{it}{\lambda})x]^{\alpha - 1} e^{-\lambda(1 - \frac{it}{\lambda})x} d(1 - \frac{it}{\lambda})x$$

$$= (1 - \frac{it}{\lambda})^{-\alpha}$$

于是,设 $Z_1, Z_2, \dots, Z_n \sim Ga(\alpha, \lambda)$,且 Z_i 相互独立,则

$$Z_1 + Z_2 + \cdots + Z_n \sim Ga(\alpha_1 + \alpha_2 + \cdots + \alpha_n, \lambda)$$

两个特殊的 Gamma 分布

• 1)
$$Ga(1,\lambda) = Exp(\lambda), \ p(x,\lambda) = \lambda e^{-\lambda x}$$

• 2)
$$Ga(\frac{n}{2}, \frac{1}{2}) = \chi^2(n), \quad p(x, n) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}, x > 0$$

注 $Z \sim \chi^2(n)$, 则

$$EZ = \frac{n/2}{1/2} = n$$

$$EZ^2 = \frac{(n/2 + 1)(n/2)}{(1/2)^2} = n^2 + 2n$$

$$VarZ = EZ^2 - (EZ)^2 = 2n$$

例 1.2 电子产品的失效常常是由于外界的"冲击"引起。若在 (0,t) 内发生冲击的次数 N(t) 服从参数为 λt 的泊松分布,试证明第 n 冲击到来的时间服从伽马分布 $Ga(n,\lambda)$

证明.

$$\{S_n \leqslant t\} = \{N(t) \geqslant n\}$$

$$F_{S_n(t)} = P\{S_n \leqslant t\} = P\{N(t) \geqslant n\} = \sum_{k=n}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$F_{Ga(n,\lambda)}(t) = \int_0^t \frac{\lambda^n}{\Gamma(n)} x^{n-1} e^{-\lambda x} dx \stackrel{?}{=} 1 - \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t} = \sum_{k=n}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

1.2.2 Beta 分布族

定义 1.7 (Beta 分布) 设 D = (0,1),定义在 (D,\mathcal{B}_D) ,密度函数形如 $p(x;a,b) = \frac{1}{B(a,b)}x^{\alpha-1}(1-x)^{b-1}I_{(0,1)}(x)$,(a>0,b>0) 的分布成为参数为 a, b 的 Beta 分布,记为 Be(a,b)。其中 $B(a,b) = \int_0^1 x^{a-1}(1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

- a > 1 和 b > 1, p(x) 单峰状,在 x = (a-1)/(a+b-2) 处达到最大值
- a < 1 和 b < 1, p(x)U 形, 在 x = (a-1)/(a+b-2) 处达到最小值
- 当 a = b + 1/2 时,Beta 分布为反正弦分布
- a < 1 和 b > 1, p(x) 严减
- a > 1 和 b < 1, p(x) 严增

注 设 $Z \sim Be(a,b)$, 则 Z 的 k 阶矩

$$EZ^{k} = \int_{0}^{1} \frac{1}{B(a,b)} x^{a+k-1} (1-x)^{b-1} dx$$

$$= \frac{B(a+k,b)}{B(a,b)} \int_{0}^{1} \frac{1}{B(a+k,1)} x^{a+k-1} (1-x)^{b-1} dx$$

$$= \frac{B(a+k,b)}{B(a,b)} = \frac{\Gamma(a+k)\Gamma(b)}{\Gamma(a+k+b)} \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} = \frac{\Gamma(a+k)\Gamma(a+b)}{\Gamma(a)\Gamma(a+k+b)}$$

$$= \frac{(a+k-1)(a+k-2)\cdots(a)}{(a+b+k-1)(a+b+k-2)\cdots(a+b)}$$

特别的,

$$EZ = \frac{a}{a+b}, \quad EZ^2 = \frac{(a+1)a}{(a+b+1)(a+b)}, \quad VarZ = EZ^2 - (EZ)^2 = \left[(\frac{a+1}{a+b+1})^2 - 1 \right] (\frac{a}{a+b})^2$$

Beta 分布与 Gamma 分布的关系

设
$$X_1 \sim \Gamma(\alpha_1, \lambda), \ X_2 \sim \Gamma(\alpha, \lambda), \$$
且相互独立,则 $Y = \frac{X_1}{X_1 + X_2} \sim Be(\alpha_1, \alpha_2)$

证明. X_1 和 X_2 的联合分布为

$$p_{X_1,X_2}(x_1,x_2) = \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x_1^{\alpha_1-1} e^{-\lambda x_1} x_2^{\alpha_2-1} e^{-\lambda x_2}$$

令
$$U = X_1, \ V = \frac{X_1}{X_1 + X_2}$$
,则 $\left\{ \begin{array}{ll} X_1 = U \\ X_2 = U/V - U \end{array} \right.$,且变换的行列式为
$$\left| \begin{array}{ll} 1 & 0 \\ 1/v - 1 & -u/v^2 \end{array} \right|$$

U,V 的联合分布为

$$p_{U,V}(u,v) = p_{X_1,X_2}(u,v)|J|$$

$$= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1-1} e^{-\lambda u} (\frac{u}{v} - u)^{\alpha_2-1} e^{-\lambda(u/v-u)} \frac{u}{v^2}$$

则 V 的边缘分布为

$$p_{V}(v) = \int_{0}^{\infty} p_{U,V}(u,v) \ du = \frac{\Gamma(\alpha_{1} + \alpha_{2})}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} v^{\alpha_{1}-1} (1-v)^{\alpha_{2}-1}$$

即 $Y_2 \sim Be(\alpha_1, \alpha_2)$

Beta-Binomial 共轭性

证明. 假定二项分布 b(n,p) 的参数 p 服从 Be(a,b) 的先验分布。然后又做了 $n_1 + n_2$ 次伯努利试验

(记为W) 成功 n_1 次,失败 n_2 次,于是后验分布

$$P(p|W) = \frac{P(p,W)}{P(W)} = \frac{P(W|p)P(p)}{\int_0^1 P(W|p)P(p)dp}$$

$$\frac{C_{n_1+n_2}^{n_1}p^{n_1}(1-p)^{n_2}\frac{1}{B(a,b)}p^{a-1}(1-p)^{b-1}}{\int_0^1 C_{n_1+n_2}^{n_1}p^{n_1}(1-p)^{n_2}\frac{1}{B(a,b)}p^{a-1}(1-p)^{b-1}dp} = \frac{p^{n_1+a-1}(1-p)^{n_2+b-1}}{\int_0^1 p^{n_1+a-1}(1-p)^{n_2+b-1}dp}$$

$$= \frac{p^{n_1+a-1}(1-p)^{n_2+b-1}}{B(n_1+a-1,n_2+b-1)}$$

p 的后验分布为 $Be(n_1 + a, n_2 + b)$, $Be(a, b) + BinomCount(n_1, n_2) = Be(n_1 + a, n_2 + b)$ 。

1.2.3 Fisher 分布族

定义 1.8 (Fisher Z 分布) 定义在 (R^+, \mathcal{B}_{R^+}) 上的密度函数形如

$$p(x;a,b) = \frac{1}{B(a,b)} \frac{x^{a-1}}{(1+x)^{a+b}} I_{(0,+\infty)}(x), \ (a>0,b>0)$$

的分布承诺为参数为 a,b 的 Fisher Z 分布,记作 Z(a,b)。

设 $Z \sim Z(a,b)$,则 Z的 k阶矩

$$EZ^{k} = \int_{0}^{\infty} \frac{1}{B(a,b)} \frac{x^{a+k-1}}{(1+x)^{a+b}} dx$$

$$= \frac{B(a+k,b-k)}{B(a+b)} \int_{0}^{\infty} \frac{1}{B(a+k,b-k)} \frac{x^{a+k-1}}{(1+x)^{a+b}} dx$$

$$= \frac{B(a+k,b-k)}{B(a+b)}$$

特别的

$$EZ = \frac{a}{b-1}, b > 1$$
; $EZ^2 = \frac{(a+1)a}{(b-1)(b-2)}, b > 2$

Fisher 分布与 Beta 分布的关系

若
$$Z \sim Be(a,b)$$
,则 $Y = \frac{Z}{1-Z} \sim Z(a,b)$

证明. 有
$$Z = \frac{Y}{1+Y}$$
,那么, $|\frac{dz}{dy}| = (\frac{1}{1+y})^2$ 因此

$$f_Y(y) = f_Z(\frac{y}{1+y}) \left| \frac{dz}{dy} \right|$$

$$= \frac{1}{B(a,b)} \left(\frac{y}{1+y} \right)^{a-1} \left(\frac{1}{1+y} \right)^{b-1} \left(\frac{1}{1+y} \right)^2$$

$$= \frac{1}{B(a,b)} \frac{y^{a-1}}{(1+y)^{a+b}}$$

若
$$Z \sim Z(a,b)$$
,则 $Y = \frac{Z}{1+Z} \sim Be(a,b)$

证明. 有
$$Z = \frac{Y}{1-Y}$$
,那么, $|\frac{dz}{dy}| = (\frac{1}{1-y})^2$ 因此

$$f_Y(y) = f_Z(\frac{y}{1-y}) \left| \frac{dz}{dy} \right|$$

$$= \frac{1}{B(a,b)} \frac{\left(\frac{y}{1-y}\right)^{a-1}}{\left(1 + \frac{y}{1-y}\right)^{a+b}} \left(\frac{1}{1-y}\right)^2$$

$$= \frac{1}{B(a,b)} y^{a-1} (1-y)^{b-1}$$

Fisher 分布与 Gamma 分布的关系

设 $X_1 \sim \Gamma(\alpha_1, \lambda)$, $X_2 \sim (\alpha_2, \lambda)$, 且相互独立, 则

$$Y = X_1/X_2 \sim Z(\alpha_1, \alpha_2)$$

证明. 设
$$\left\{ egin{array}{ll} U=X_1 \\ V=X_1/X_2 \end{array}
ight.$$
,有 $\left\{ egin{array}{ll} X_1=U \\ X_2=U/V \end{array}
ight.$ 且变换的行列式为

$$J = \begin{vmatrix} 1 & 0 \\ 1/V & -U/V^2 \end{vmatrix}$$

U,V 的联合分布为

$$p_{U,V}(u,v) = p_{X,Y}(u,v)|J|$$

$$= \frac{\frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)}u^{\alpha_1-1}e^{-\lambda u}}{\frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)}(u/v)^{\alpha_2-1}e^{-\lambda u/v}}\frac{u}{v^2}$$

V 的边缘分布为

$$p_{V}(v) = \int_{0}^{+\infty} p_{U,V}(u,v) du$$

$$= \frac{\Gamma(\alpha_{1} + \alpha_{2})}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \frac{v^{\alpha_{1}-1}}{(1+v)^{\alpha_{1}+\alpha_{2}}} \int_{0}^{+\infty} \frac{1}{\Gamma(\alpha_{1} + \alpha_{2})} \left(\frac{\lambda(1+v)}{v}\right)^{\alpha_{1}+\alpha_{2}} u^{\alpha_{1}+\alpha_{2}-1} e^{-\lambda \frac{1+v}{v}u} du$$

$$= \frac{\Gamma(\alpha_{1} + \alpha_{2})}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \frac{v^{\alpha_{1}-1}}{(1+v)^{\alpha_{1}+\alpha_{2}}}$$

1.2.4 t 分布族

定义 1.9 (t 分布族) 在 (R, \mathcal{B}_R) 上的密度函数形如

$$p(x;\alpha) = \frac{\Gamma(\frac{\alpha+1}{2})}{\sqrt{\alpha\pi}\Gamma(\frac{\alpha}{2})} (1 + \frac{x^2}{\alpha})^{-\frac{\alpha+1}{2}}$$

的分布族称作自由度为 α 的 t 分布族, 记为 $t(\alpha)$

注 1°设 $X \sim t(\alpha)$,则由于其分布函数为偶函数,则 Z 的 k 阶矩为

$$E^{2k+1} = 0, \qquad \alpha > 2k+1$$

$$E^{2k} = \frac{\alpha^k}{\sqrt{\pi}} \frac{\Gamma(\frac{\alpha}{2} - k)\Gamma(k + \frac{1}{2})}{\Gamma(\frac{\alpha}{2})} \qquad \alpha > 2k$$

2° t 分布于标准正态分布的关系

$$\lim_{\alpha \to \infty} \frac{\Gamma(\frac{\alpha+1}{2})}{\sqrt{\alpha\pi}\Gamma(\frac{\alpha}{2})} = \frac{1}{2}$$

$$\lim_{\alpha \to \infty} (1 + \frac{x^2}{\alpha})^{-\frac{\alpha+1}{2}} = \lim_{\alpha \to \infty} [(1 + \frac{x^2}{\alpha})^{\frac{\alpha}{x^2}}]^{-\frac{x^2}{\alpha} \cdot \frac{\alpha+1}{2}} = e^{-\frac{x^2}{2}}$$

 3° 考虑 Cauchy 分布 $X \sim t(1)$ 的 k 阶矩 $k \ge 1$

$$E|X|^{k} = \int_{-\infty}^{\infty} |x|^{k} \cdot \frac{1}{\pi(1+x^{2})} dx = \int_{0}^{\infty} x^{k-1} \cdot \frac{2x}{\pi(1+x^{2})} dx$$
$$= \int_{0}^{\infty} \frac{x^{k-1}}{\pi} d[\ln(1+x^{2})] = \frac{x^{k-1} \ln(1+x^{2})}{\pi} \Big|_{0}^{\infty} - \frac{k-1}{\pi} \int_{0}^{\infty} \ln(1+x^{2}) x^{k-2} dx$$

$$k \geqslant 2$$
, $\lim_{x \to \infty} \frac{x^k}{\pi(1+x^2)} = \infty$, 不存在。

1.2.5 多元正态分布族

 1° 已知一元标准正态分布 N(0,1) 的随机变量为 U,也即

$$U \sim \phi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}, \ u \in R$$

对于任意的 $\mu \in R, \sigma > 0$,易有

$$X = \mu + \sigma U \sim p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$X \sim N(\mu, \sigma^2)$$

 2° 设 $U = (u_1, u_2, \dots, u_n)$ 满足 $u_i \sim N(0, 1), i = 1, 2, \dots, n$,且相互独立,则

$$U \sim p(u) = \frac{1}{(\sqrt{2\pi})^2} e^{\frac{1}{2}\boldsymbol{u}^{\mathrm{T}}\boldsymbol{u}}$$

且 $E(U) = 0, U = I_n$,称U 为 n 元标准正态分布,记为 $U \sim N_n(0, I_n)$ 。

3° 设 $\mu = (\mu_1, \mu_2, \dots, \mu_n)^{\mathrm{T}}$ 是常数向量, Σ 是一个 n 阶正定矩阵,则经特征值分解有 $\Sigma = AA^{\mathrm{T}}$,于 是 $\Sigma^{-1} = (A^{\mathrm{T}})^{-1}A^{-1}$, $|\Sigma|^{-\frac{1}{2}} = |A|^{-1}$ 。令 $X = \mu + AU$ 则可以算出

$$\boldsymbol{X} \sim p(\boldsymbol{x}) = \frac{1}{(\sqrt{2\pi})^n} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \ \boldsymbol{X} \in \boldsymbol{R}^n$$

此时, $E(X) = \mu$, $Var(X) = \Sigma$, 称 X 服从多元正态分布,记为 $X \sim N_n(\mu, \Sigma)$ 。

若 A 不是满秩的,定义多元正态分布 $X = \mu + AU$

 4° 考虑 X 的特征函数

$$f_{\mathbf{X}}(t) = Ee^{i\mathbf{t}^{\mathrm{T}}\mathbf{x}} = e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol{\mu}}Ee^{i\mathbf{t}^{\mathrm{T}}\mathbf{A}\mathbf{U}}$$

 $\mathbf{t}^{\mathrm{T}} \mathbf{A} = \mathbf{a}^{\mathrm{T}} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$ 于是后验分布

$$f_{AU}(\mathbf{t}) = Ee^{i\mathbf{t}^{\mathrm{T}}\mathbf{A}\mathbf{U}} = \prod_{i=1}^{n} Ee^{ia_{i}U_{i}} = \prod_{i=1}^{n} f_{U_{i}}(a_{i}) = \prod_{i=1}^{n} e^{-\frac{1}{2}a_{i}^{2}}$$
$$= e^{-\frac{1}{2}\mathbf{a}^{\mathrm{T}}\mathbf{a}} = e^{-\frac{1}{2}\mathbf{t}^{\mathrm{T}}\mathbf{A}\mathbf{A}^{\mathrm{T}}\mathbf{t}} = e^{-\frac{1}{2}\mathbf{t}^{\mathrm{T}}\mathbf{\Sigma}\mathbf{t}}$$

所以 $f_X(t) = \exp(i t^{\mathrm{T}} \boldsymbol{\mu} - \frac{1}{2} t^{\mathrm{T}} \boldsymbol{\Sigma} t)$, 与 \boldsymbol{A} 满秩时一致。

定义 1.10 (n 元正态分布) 设 $X = \begin{pmatrix} X_1 & X_2 & \cdots & X_n \end{pmatrix}$ 是一个 n 维随机向量,且 $EX = \mu$, $Var X = \Sigma$ (非负定),若其特征函数为 $f_X(t) = \exp(it^T \mu - \frac{1}{2}t^T \Sigma t)$,则称 X 为 n 元正态分布,记为 $X \sim N_n(\mu, \Sigma)$,而矩阵 Σ 的秩 $rank(\Sigma) = r$ 称为这个分布的秩。

注 若 $\operatorname{rank}(\Sigma) = n$, Σ^{-1} 存在, X 具有非奇的 n 元正态分布, 密度函数为

$$m{X} \sim p(m{x}) = rac{1}{(\sqrt{2\pi})^n} |m{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(m{x} - m{\mu})^{\mathrm{T}} m{\Sigma}^{-1}(m{x} - m{\mu})}, \ m{X} \in m{R}^n$$

若 $\operatorname{rank}(\Sigma) = r < n$, Σ^{-1} 不存在,则其密度函数形式又该如何?

定义 1.11 (多元正态分布) 设 $\boldsymbol{X} = \begin{pmatrix} X_1 & X_2 & \cdots & X_n \end{pmatrix}^T$ 是一个 n 维随机向量,若 \boldsymbol{X} 与 $\boldsymbol{\mu} + \boldsymbol{B}\boldsymbol{U}$ 具有相同的分布,其中 $\boldsymbol{\mu}$ 为 n 维向量, \boldsymbol{B} 是一个秩为 r 的 $n \times r$ 阶矩阵, $\boldsymbol{U} \sim N_r(0, \boldsymbol{I}_r)$,那么称 $\boldsymbol{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{B}\boldsymbol{B}^T)$

1.3 统计量及其分布

1.3.1 统计量的概念

定义 1.12 (统计量) 设 $(\mathcal{X}, \mathcal{B}, \mathcal{P})$ 是一个统计结构, $(\mathcal{T}, \mathcal{C})$ 是一个可测空间, 若 $T: \mathcal{X} \to \mathcal{T}$ 是一个可测映射, 且与 P 无关, 则称 T 是此结构的统计量。

对定义的理解:

- 注 1° T 是可测映射,即 σ 代数 C 中任一元素(集合)C 的原像 $T^{-1}(C) = \{x : T(x) \in C\}$ 是 σ 代数 B 中的元素(集合)。
- 2° T与 P 无关,即不含未知参数
- 3° T 可以是向量, $T(X) = \Big(T(X_1) \ T(X_2) \ \cdots \ T(X_k)\Big)$,也可以是一维的。统计量 T 的值域 T 一般常用 R 或者 R^k 。

1.3.2 统计量的分布(抽样分布)

定义 1.13 (抽样分布) 统计量的概率分布, 称为抽样分布, 也成为诱导分布。

设 $T: (X, B) \rightarrow (T, C)$,对任意 $C \in C$,概率

$$P^{T} = P(T(x) \in C) = \int_{x:T(x)\in C} dP = \int_{T^{-1}(C)} dP = P(T^{-1}(C))$$

其中 $P \in \mathbf{P}$, 称 P^{T} 是 P 的诱导测度, $P^{\mathrm{T}} = \{P^{\mathrm{T}} : P \in \mathbf{P}\}$ 成为诱导分布族,而 (Y, C, P^{T}) 称为 T 的诱导结构。

注 若 (X, B, P) 是可控结构,则诱导结构 (T, C, P^{T}) 也是可控结构。

证明. 因为 $(\boldsymbol{X}, \boldsymbol{B}, \boldsymbol{P})$ 是可控结构,则存在 σ 有限测度 μ ,使 $P << \mu \ (\forall P \ in \boldsymbol{P})$,令 $\mu^{\mathrm{T}}(C) = \mu(T^{-1}(C))$, $\forall C \in \boldsymbol{C}$ 。

若有 μ^{T} 的零测集 N, $\mu^{\mathrm{T}}(C)=\mu(T^{-1}(C))=0$,因为 $\forall P\in P$, $P<<\mu$,则 $P^{\mathrm{T}}(N)=P(T^{-1}(N))=0$,从而 $P^{\mathrm{T}}<<\mu^{\mathrm{T}}$

 1° 设 $T = T(X_1, X_2, \dots, X_n)$ 且为可微函数, 其梯度的模为正, 即

$$\|\operatorname{grad} T(x_1, x_2 \cdots, x_n)\| = \sqrt{\sum_{i=1}^n \left[\frac{\partial}{\partial x_i} T(x_1, x_2 \cdots, x_n)\right]^2} > 0$$

则此时 T 的分布函数为

$$F_T(t) = P\{T(x_1, \dots, x_n) \leqslant t\} = \int_D^{n\pm} \dots \int p(x_1, x_2, \dots, x_n) dx_1 \dots dx_n$$

其中 $D = \{(x_1, x_2 \cdots, x_n) : T(x_1, x_2 \cdots, x_n) \leq t\}$ 。可以计算出其密度函数为

$$p_T(t) = \int_{S_{n-1}}^{n-1} \cdots \int p(x_1, x_2 \cdots, x_n) \frac{dS_{n-1}}{\|\text{grad } T(x_1, x_2 \cdots, x_n)\|}$$

其中积分域是由方程 $T(x_1, x_2 \cdots, x_n) = t$ 所决定的 n-1 维曲面 S_{n-1}

 2° T 是 k 维统计量 (k < n)

$$p_T(t) = \int_{S_{n-k}}^{n-k} \cdots \int \frac{p(x_1, \dots, x_n)}{\left(\sum_{i_1 < \dots < i_n} \left[\frac{D(T_1, \dots, T_k)}{D(x_{i_1}, \dots, x_{i_k})} \right]^2 \right)^{\frac{1}{2}}} dS_{n-k}$$

其中积分域是由 k 个方程 $T_j(x_1, \dots, x_n) = t_j, j = 1, \dots, k$ 所决定的 n - k 维曲面 S_{n-k} ,而

$$\frac{D(T_1, \cdots, xT_k)}{D(x_{i_1}, \cdots, x_{i_k})} = \begin{vmatrix} \left(\frac{\partial T_1}{\partial x_{i_1}} & \cdots & \frac{\partial T_1}{\partial x_{i_k}} \\ \vdots & \vdots & \vdots \\ \frac{\partial T_k}{\partial x_{i_1}} & \cdots & \frac{\partial T_k}{\partial x_{i_k}} \end{pmatrix} \end{vmatrix} \mathcal{E}$$
 \mathcal{B} \mathcal{B} T_1, \cdots, T_k 对变量 x_{i_1}, \cdots, x_{i_k} 的雅可比行列式。

1.3.3 次序统计量及其分布

定义 1.14 (次序统计量) 设 X_1, \dots, X_n 是来自某总体的一个样本,将其按从小到大的次序排列成 $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$,称 $\left(X_{(1)} \ X_{(2)} \ \dots \ X_{(n)}\right)$ 为该样本的次序统计量。 $X_{(1)}$ 称为该样本的最小次序统计量, $X_{(n)}$ 称为样本的最大次序统计量。

"概率元方法"(p.r.)元法的引入

把 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ 的观察值记为 $y_1 \leq y_2 \leq \cdots \leq y_n$, 设总体 X 的密度函数为 p(x), 则连续随机变量落在很小区间 (x, x + dx) 的概率为

$$P(x < X < x + dx) = p(x)dx + x(dx)$$

p(x)dx 称为 X 的概率元;反正,若存在函数 p(x) 使上式成立,则 p(x) 就是 X 的密度函数。

次序统计量的分布

区间 $(-\infty, y_k)$, $[y_k, y_k + dy_k)$, $[y_k, +\infty)$

 $X_{(k)}$ 的概率函数 $g(y_k)$, 其中 $1 \leqslant k \leqslant n$

$$g(y_k)dy_k = \frac{n!}{(k-1)!(n-k)!} [F(y_k)]^{k-1} p(y_k) dy_k [1 - F(y_k + dy_k)]^{n-k}$$

两边约去 dy_k 后, 再让 $dy_k \rightarrow 0$

$$g(y_k) = \frac{n!}{(k-1)!(n-k)!} [F(y_k)]^{k-1} [1 - F(y_k)]^{n-k} p(y_k)$$

最小次序统计量 $g(y_1) = n[1 - F(y_1)]^{n-1}p(y_1)$

最大次序统计量 $g(y_n) = n[F(y_n)]^{n-1}p(y_n)$

例 1.3 【猜数游戏】一个魔盒上面有一个按钮,每按下按钮,就均匀地输出一个 [0,1] 之间的随机数,甲按 10 下得到 10 个数,要乙猜第 7 大的数是什么,偏离不超过 0.01 就算对。乙应该怎么猜呢?

- $X_1, X_2, \cdots, X_n \stackrel{\text{iid}}{\sim} U(0, 1)$
- •把这n个随机变量排序后得到顺序统计量 $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$
- $F(y) = y, \ p(y) = 1$

 $X_{(7)}$ 的分布 $g(y_7)$ 为

$$g(y_7) = \frac{10!}{(7-1)!(10-7)!}y_7^{7-1}(1-y_7)^{10-7} \times 1$$
$$= \frac{10!}{6!3!}y_7^6(1-y_7)^3$$

 $X_{(7)} \sim Be(7,4)$, 在 $y = \frac{7-1}{7+4-2} = \frac{2}{3}$ 时,概率最大。

例 1.4 设 X_1, \dots, X_n 是来自均匀分布 U(0,1) 的一个样本,要求该样本第 k 个次序统计量 $X_(k)$ 的分布与期望

$$g(y_k) = \frac{n!}{(k-1)!(n-k)!} y_k^{k-1} (1-y_k)^{n-k},$$

可以知道 $X_{(k)} \sim Be(k, n-k+1)$, 期望为 $E(X_{(k)}) = \frac{k}{n+1}$

 $X_{(k)}$ 与 $X_{(j)}$ 的联合密度函数 $g(y_k, y_j)$, 其中 $1 \leq k < j \leq n$

区间
$$(-\infty, y_k)$$
, $[y_k, y_k + dy_k)$, $[y_k + dy_k, y_j)$, $[y_j, y_j + dy_j)$, $[y_j + dy_j, +\infty)$

$$g(y_k, y_j)dy_k dy_j = \frac{n!}{(k-1)!(j-1-k)(n-j)!} [F(y_k)]^{k-1} p(y_k) dy_k \times [F(y_j) - F(y_k + dy_k)]^{j-1-k} p(y_j) dy_j [1 - F(y_j + dy_j)]^{n-j}$$

两边约去 dy_k , dy_i 后, 再让 $dy_k \rightarrow 0$, $dy_i \rightarrow 0$

$$g(y_k, y_j) = \frac{n!}{(k-1)!(j-1-k)!(n-j)!} [F(y_k)]^{k-1} \times [F(y_j) - F(y_k)]^{j-1-k} [1 - F(y_j)]^{n-j} p(y_k) p(y_j)$$

最小次序统计量与最大次序统计量的联合密度

$$g(y_1, y_n) = n(n-1)[F(y_n) - F(y_1)]^{n-2}p(y_1)p(y_n), \ y_1 \le y_n$$

前 r 个次序统计量 $X_{(1)}, X_{(2)}, \cdots, X_{(r)}$ 的联合密度函数

$$g(y_1, \dots, y_r) = \frac{n!}{(n-r)!} [1 - F(y_r)]^{n-r} \cdot p(y_1) \cdots p(y_2), \quad y_1 \leqslant \dots y_n$$

次序统计量的矩的存在性问题

定理 1.1 设 X_1, \dots, X_n 是来自于某总体 X 的一个样本,且对某个 a>0 有 $E|X|^a<\infty$ 。则当 n,k 和 r 满足

$$r \leqslant a \cdot \min(k, n - k + 1)$$

有 $E|X_{(k)}|^r < \infty$, 其中 $X_{(k)}$ 为该样本的第 k 个次序统计量。

证明. 要证明 $E|X_{(k)}|^r < \infty$,根据定义,会用到 $\int_{-\infty}^0 |x|^r dG_k(x) + \int_0^\infty x^r dG_k(x)$ 的值必须有界。而 $G_k(x)$ 与总体分布 F(x) 有关,故要转化

证明分三步:

1°证明: $|x|^a[1-F(x)]$ 有界

2° 证明: $|x|^a[F(x)]$ 有界

 $3^{\circ} X_{(k)}$ 代入计算 $E|X_{(k)}|^r$ 积分的值

$$\infty > E|X|^{a} = \int_{-\infty}^{+\infty} |x|^{a} dP\{|X| \leqslant x\} \geqslant \int_{|x|}^{+\infty} |x|^{a} dP\{|X| \leqslant x\}$$
$$\geqslant |x|^{a} \int_{|x|}^{+\infty} dP\{|X| \leqslant t\} = |x|^{\alpha} P\{|X| \geqslant t\}$$
$$= |x|^{a} \{ [1 - F(x)] + [F(-x)] \}$$

对于

$$\int_{|x|}^{+\infty} |x|^a dP\{|X| \leqslant x\} \geqslant |x|^a \{ [1 - F(x)] + [F(-x)] \}$$

= 两边让 $x \to +\infty$ 有

$$0 = \lim_{x \to \infty} \int_{|x|}^{+\infty} |x|^a dP\{|X| \leqslant x\} \geqslant \lim_{x \to +\infty} |x|^a [1 - F(x)] + \lim_{x \to +\infty} |x|^a [F(-x)] \geqslant 0$$

综上所述
$$\lim_{x \to +\infty} |x|^a [1 - F(x)] = 0$$
, $\lim_{x \to +\infty} |x|^a [F(-x)] = 0$

$$E|X_{(k)}|^{r} = \int_{-\infty}^{0} |x|^{r} \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1 - F(x)]^{n-k} p(x) dx + \int_{0}^{+\infty} |x|^{r} \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1 - F(x)]^{n-k} p(x) dx = \frac{n!}{(k-1)!(n-k)!} [(1) + (2)]$$

考虑 $(1) < \infty$

$$(1) = \int_{-\infty}^{0} |x|^{r} [F(x)]^{k-1} [1 - F(x)]^{n-k} p(x) dx$$
$$= \int_{-\infty}^{0} \{|x|^{a} [F(x)]\}^{\frac{r-a}{a}} [F(x)]^{k-1-\frac{r-a}{a}} [1 - F(x)]^{n-k} x^{a} p(x) dx$$

需要

$$k - 1 - \frac{r - a}{a} > 0 \rightarrow r < ak$$

考虑 $(2) < \infty$

$$(2) = \int_0^{+\infty} |x|^r [F(x)]^{k-1} [1 - F(x)]^{n-k} p(x) dx$$

$$= \int_0^{+\infty} \{|x|^a [1 - F(x)]\}^{\frac{r-a}{a}} [1 - F(x)]^{n-k-\frac{r-a}{a}} [F(x)]^{k-1} x^a p(x) dx$$

需要

$$n - k - \frac{r - a}{a} > 0 \to r < a(n - k + 1)$$

综上, $r \leq a \cdot \min(k, n - k + 1)$

例 1.5 设随机变量 X 服从 Cauchy 分布, 其密度函数为

$$p(x) = \frac{1}{\pi(1+x^2)}, \ x \in R$$

请考虑总体的 k 阶矩和次序统计量的 k 阶矩为:

因为 X 服从 Cauchy 分布,则 $E|X|^r = \infty$, $\forall r \leq 1$,然而对于任意小 $\varepsilon > 0$,有

$$E |X|^{1-\varepsilon} = \int_{-\infty}^{\infty} |x|^{1-\varepsilon} \cdot \frac{1}{\pi(1+x^2)} dx = \int_{0}^{\infty} x^{-\varepsilon} \cdot \frac{2x}{\pi(1+x^2)} dx$$

$$= \int_{0}^{\infty} \frac{x^{-\varepsilon}}{\pi} d[\ln(1+x^2)] = \frac{\ln(1+x^2)}{\pi x^{\varepsilon}} \Big|_{0}^{\infty} + \frac{\varepsilon}{\pi} \int_{0}^{\infty} \ln(1+x^2) x^{-\varepsilon-1} dx$$

$$= 0 + \frac{\varepsilon}{\pi} \int_{0}^{\infty} x^{-1-\varepsilon/2} \frac{\ln(1+x^2)}{x^{\varepsilon/2}} dx$$

由于 $\lim_{x \to \infty} \frac{\ln(1+x^2)}{x^{\varepsilon/2}} = 0$,故存在 $x_0 > 0$,使得当 $x > x_0$ 时, $\frac{\ln(1+x^2)}{x^{\varepsilon/2}} < M$,从而

$$E|X|^{1-\varepsilon} = \frac{\varepsilon}{\pi} \int_0^\infty x^{-1-\varepsilon/2} \frac{\ln(1+x^2)}{x^{\varepsilon/2}} dx$$

$$\leq \frac{\varepsilon}{\pi} \left[\int_0^{x_0} x^{-1-\varepsilon} \ln(1+x^2) dx + M \int_{x_0}^\infty x^{-1-\varepsilon/2} dx \right] < \infty$$

这表明: Cauchy 随机变量的 $1-\varepsilon$ 阶矩存在, 其中 $\varepsilon > 0$ 可以任意小。

评论

1.4 统计量的近似分布

1.4.1 随机变量序列的两种收敛性

定义 1.15 (依概率收敛) 设 $\{Z_n\}$ 为一随机变量序列, Z 为另一随机变量, 若 $\forall \varepsilon > 0$, 有 $P\{|Z_n - Z| > \varepsilon\} \to 0$, $n \to \infty$, 则称随机变量序列 $\{Z_n\}$ 依概率收敛于 Z, 记为 $Z_n \stackrel{P}{\to} Z$ 。

定义 1.16 (依分布收敛) 设 $\{Z_n\}$ 为一随机变量序列,Z 为另一随机变量,又 $F_n(x)$ 与 F(x) 分别是 $\{Z_n\}$ 和 Z 的分布函数,若对 F(x) 的每个连续点 x 有 $F_n(x)$ \to F(x), $n \to \infty$,则称随机变量序列 $\{Z_n\}$ 依分布收敛于 Z,记为 $Z_n \overset{L}{\to} Z$ 。

定理 1.2 设 $Z_n \stackrel{P}{\to} Z$, 则 $Z_n \stackrel{L}{\to} Z$.

证明. 对于 $\forall x, x' (x' < x)$, 由于

$$\{Z < x'\} = \{Z_n < x, Z < x'\} \cup \{Z_n \ge x, Z < x'\}$$
$$\subset \{Z_n < x\} \cup \{Z_n \ge x, Z < x'\}$$

因而有

$$F(x') \leqslant F_n(x) + P\{Z_n \geqslant x, Z < x'\}$$

另一方面,有 $Z_n \stackrel{p}{\rightarrow} Z$,当 $n \rightarrow \infty$

$$P\{Z_n \geqslant x, Z < x'\} \leqslant P\{|Z_n - Z| \geqslant x - x'\} \to 0$$

故而 $F(x') \leq \lim_{n \to \infty} \inf F_n(x)$ 。

同理, $\forall x, x''(x'' > x)$, 由于

$$\{Z_n < x\} = \{Z < x'', Z_n < x\} \cup \{Z \geqslant x'', Z_n < x\}$$
$$\subset \{Z < x''\} \cup \{Z_n \ge x, Z < x'\}$$

因而有

$$F(x'') \geqslant F_n(x) - P\{Z_n \geqslant x, Z < x''\}$$

另一方面,有 $Z_n \stackrel{p}{\to} Z$,当 $n \to \infty$

$$P\{Z < x'', Z_n \geqslant x\} \geqslant P\{|Z - Z_n| \geqslant x'' - x\} \to 0$$

故而

$$F(x'') \ge \lim_{n \to \infty} \sup F_n(x),$$

所以, $\forall x' < x < x''$,有

$$F(x') \le \lim_{n \to \infty} \inf F_n(x) \le \lim_{n \to \infty} \sup F_n(x) \le F(x'')$$

当 x 时 F(x) 的连续点,令 $x' \to x, x'' \to x$,则有

$$\lim_{n\to\infty} F_n(x) = F(x),$$

 $\mathbb{P} Z_n \xrightarrow{L} Z$

定理 1.3 设 c 为常数, 若 $Z_n \stackrel{L}{\rightarrow} c$, 则 $Z_n \stackrel{P}{\rightarrow} c$

证明. 对 $\forall \varepsilon > 0$,有

$$P\{|Z_n - c| \ge \varepsilon\} = P\{Z_n - c \ge \varepsilon\} + P\{Z_n - c \le -\varepsilon\}$$

$$= 1 - P\{Z_n < c + \varepsilon\} + P\{Z_n \le c - \varepsilon\} \le 1 - F_n(c + \frac{\varepsilon}{2}) + F_n(c - \varepsilon)$$

$$\to 1 - F(c + \frac{\varepsilon}{2}) + F(c - \varepsilon) = 1 - 1 + 0 = 0 \quad (n \to \infty)$$

定理 1.4 (Slutsky 定理) 设 $\{Z_n\}$ 和 $\{U_n\}$ 是两个随机变量序列, 若 $Z_n \stackrel{L}{\to} Z$, $U_n \stackrel{P}{\to} c(常数)$, 则有

- a) $Z_n + U_n \xrightarrow{L} Z + c$
- b) $Z_n U_n \xrightarrow{L} Zc$
- c) $Z_n/U_n \xrightarrow{L} Z/c \quad (c \neq 0)$

证明. a) 一方面

$$\begin{split} &P\{Z_n + U_n \leq x\} \\ &= P\{Z_n + U_n \leq x, |U_n - c| \leq \varepsilon\} + P\{Z_n + U_n \leq x, |U_n - c| > \varepsilon\} \\ &\leq P\{Z_n \leq x - c + \varepsilon, |U_n - c| \leq \varepsilon\} + P\{|U_n - c| > \varepsilon\} \\ &\leq P\{Z_n \leq x - c + \varepsilon\} + P\{|U_n - \varepsilon| > \varepsilon\} \end{split}$$

因此

$$\begin{split} &\lim_{n\to\infty}\sup P\{Z_n+U_n\leq x\}\\ &\leq \lim_{n\to\infty}P\{Z_n\leq x-c+\varepsilon\}+\lim_{n\to\infty}P\{|U_n-c|>\varepsilon\}\\ &=P\{Z\leq x-c+\varepsilon\}=F(x-c+\varepsilon) \end{split}$$

定理 1.5 设 $\{Z_n\}$ 为一随机变量序列,且 $Z_n \stackrel{P}{\to} c($ 常数),又函数 $g(\cdot)$ 在点 c 处连续,则 $g(Z_n) \stackrel{P}{\to} g(c)$ 例 1.6 设 $\{X_n\}$ 是独立同分布随机变量序列,其均值为 μ ,方差为 $\sigma^2 < \infty$ 。模仿正态总体下的 t 统计量,构造

$$t_n = \sqrt{n} \left(\bar{X} - \mu \right) S_n$$

常称 t_n 为 t 化统计量, 现求 t_n 的渐进分布。

由辛钦大数定律可知

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2 \xrightarrow{P} \sigma^2, \quad \bar{X}_n = \sum_{i=1}^{n}X_i \xrightarrow{P} \mu$$

因此由 Slutsky 定理可知,

$$\frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu) - (\bar{X} - \mu)^2 \right] \stackrel{P}{\to} \sigma^2$$

另一方面, 由中心极限定理

$$Z_n = \sqrt{n} \left(\bar{X}_n - \mu \right) / \sigma \stackrel{L}{\to} N(0, 1)$$

最后,由 Slutsky 定理可知 $t_n \stackrel{L}{\to} N(0,1)$

定理 1.6 设 $\{a_n\}$ 为一趋于 ∞ 的序列, b 为常数, 并且对随机变量序列 $\{Z_n\}$ 有

$$a_n (Z_n - b) \stackrel{L}{\to} Z$$

有设 $g(\cdot)$ 为可微函数,且 g' 在点 b 处连续,则有

$$a_n [g(Z_n) - g(b)] \xrightarrow{L} g'(b)Z$$

例 1.7

- 1.5 充分统计量
- 2 点估计
- 2.1 基本概念

定义 2.1 (点估计) 设参数 θ , X 为样本, 用统计量 $\hat{\theta}(X)$ 作为未知参数 θ 的"猜测"称为点估计。

该估计的均方误差 MSE 为

$$\begin{split} \mathrm{MSE}(\hat{\theta}) &= \mathrm{E}(\hat{\theta}(X) - \theta)^2 = \mathrm{E}\{[\hat{\theta}(X) - \mathrm{E}(\hat{\theta}(X))] - [\theta - \mathrm{E}(\hat{\theta}(X))]\}^2 \\ &= \mathrm{E}[\hat{\theta}(X) - \mathrm{E}(\hat{\theta}(X))]^2 + \mathrm{E}[\theta - \mathrm{E}(\hat{\theta}(X))]^2 \\ &= \mathrm{var}(\hat{\theta}) + \mathrm{bias}(\hat{\theta}) \end{split}$$

2.2 无偏估计及 UMVUE

2.2.1 无偏估计

定义 2.2 (无偏估计) 设 $(\mathcal{X}, \mathcal{B}, \{P_{\theta}, \theta \in \Theta\})$ 为可控参数统计结构, $g(\theta)$ 是未知参数, $X = (X_1, \dots, X_n)$ 是来自该统计结构的一个样本,若用 $\hat{g}(X)$ 估计 $g(\theta)$,且

$$E_{\theta}(\hat{g}(X)) = g(\theta), \forall \theta \in \Theta$$

则称 $\hat{g}(X)$ 为 $g(\theta)$ 的无偏估计。

评论 关于无偏估计, 我们有三点需要说明

- 1. 无偏估计不一定存在
- 2. 对可估参数, 无偏估计一般不唯一
- 3. 无偏估计并不一定是一个好估计

2.2.2 UMVUE

定义 2.3 设 $g(\theta)$ 是可估参数, $T(X) \in U_g$, 若对于 $\forall \phi(X) \in U_g$ 有

$$\operatorname{var}_{\theta} T(X) \leq \operatorname{var}_{\theta} \phi(X), \forall \theta \in \Theta$$

则称 T(X) 是 $g(\theta)$ 的一致最小方差无偏估计(UMVUE)。

引理 2.1 设 S(X) 是分布族 $\{p_{\theta}, \theta \in \Theta\}$ 的充分统计量, $\phi(X)$ 是 $g(\theta)$ 的无偏估计, 令 $T(X) = \mathrm{E}(\phi(X)|S(X))$, 则 T(X) 也是 $g(\theta)$ 的无偏估计, 且 $\mathrm{var}\,T(X) \leq \phi(X)$

评论 求 UMVUE 的方法

- 1. 寻找充分完备统计量的函数 S(X), 使其属于 U_q
- 2. 任取 $\hat{g}(X) \in U_q$, 令 $T(X) = \mathbb{E}(\hat{g}(X)|S(X))$

例 2.1 设 $X = (X_1, \cdot, X_n)$ 是来自 $b(1, \theta), \theta \in (0, 1)$ 的一个样本,由指数组性质知, $S(X) = \sum X_i$ 是 充分完备统计量。

- 1. 对 θ , 因为 $E(S(X)) = n\theta$, 则 $\bar{X} = S(X)/n$ 是 θ 的无偏估计, 从而也 θ 的 UMVUE。
- 2. 对于 $g(\theta) = \theta^k + (1-\theta)^{n-k}, 0 \le k \le n$, 如何找 $g(\theta)$ 的 UMVUE?

对于 $g(\theta) = \theta^k + (1 - \theta)^{n-k}, 0 \le k \le n$, 先找一个 $g(\theta)$ 的无偏估计 $\phi(X)$ 。令

$$\phi_1(X) = \begin{cases} 1, & \sum_{i=1}^k X_i = k \\ 0, & others \end{cases}, \quad \phi_2(X) = \begin{cases} 1, & \sum_{i=k+1}^n X_i = 0 \\ 0, & others \end{cases}$$

又令 $\phi(X) = \phi_1(X) + \phi_2(X)$, 则

$$E(\phi(X)) = E(\phi_1(X)) + E(\phi_2(X)) = \theta^k + (1 - \theta)^{n-k} = g(\theta)$$

所以 $\phi(X) \in U_g$ 。 故而 $T(X) = \mathrm{E}(\phi(X)|S(X))$ 是 $g(\theta)$ 的 UMVUE。 当 $k \leq s$ 时,

$$E(\phi_1(X)|S(X)) = P(\phi_1(X) = 1|S(X) = s)$$

$$= \frac{P(\phi_1(X) = 1, S(X) = s)}{P(S(X) = s)} = \frac{P(\sum_{i=1}^k X_i = k, \sum_{i=k+1}^n X_i = s - k)}{P(\sum_{i=1}^n X_i = s)}$$

$$= \frac{\theta^k \cdot C_{n-k}^{s-k} \theta^{s-k} (1 - \theta)^{n-s}}{C_n^s \theta^k (1 - \theta)^{n-k}} = \frac{C_{n-k}^{s-k}}{C_n^s}$$

当 $k \ge s$, $E(\phi_1(X)|S(X)) = 0$ 。

同理, 当
$$k \ge s$$
 时, $\mathrm{E}(\phi_2(X)|S(X)) = \frac{C_k^s}{C_n^s}$

当 k < s 时, $E(\phi_2(X)|S(X)) = 0$ 。

因此, $q(\theta)$ 的 UMVUE 为

$$T(X) = \begin{cases} \frac{C_{n-k}^{s-k}}{C_n^s} & k \le s \\ \frac{C_k^s}{C_n^s} & k > s \end{cases}$$

对于 $\phi(X)$

$$\phi(X) = \begin{cases} 1, & X_1 = 0 \\ 0, & others \end{cases}$$

有 $E(\phi(X)) = P_{\theta}(X_1 = 1) = (1 - \theta)^0 \theta = \theta$ 。且 $\sum_{i=1}^n X_i \sim Nb(n; s, \theta)$ 服从负二项分布。因此,

$$E(\phi(X)|S(X)) = P(\phi(X) = 1|S(X) = s)$$

$$= \frac{P(\phi_1(X) = 1, S(X) = s)}{P(S(X) = s)} = \frac{P(X_1 = 0, \sum_{i=2}^n X_i = s)}{P(\sum_{i=1}^n X_i = s)}$$

$$= \frac{\theta C_{s+n-2}^{n-2} \theta^{n-2} (1 - \theta)^s}{C_{s+n-1}^{n-1} \theta^{n-1} (1 - p)^s} = \frac{n-1}{s+n-1}$$

例 2.3 设 X_1, \cdot, X_n 独立同分布,均服从区间 $(0, \theta), \theta > 0$ 上的均匀分布,样本为 $X = (X_1, \cdots, X_n)$ 。 求参数 $g(\theta) = \theta^2$ 的 UMVUE。

首先,我们知道 $X_{(n)}$ 是为一个完全充分统计量。

直接方法: 找到一个合适的 $X_{(n)}$ 的函数 $\phi(X_{(n)})$,使得 $\phi(X_n)$ 称为 $g(\theta) = \theta^2$ 的无偏估计,即 $E_{\theta}(\phi(X_n)) = \theta^2$ 。为此,首先注意到 $X_{(n)}$ 的概率密度函数为

$$p(t;\theta) = \begin{cases} n \frac{t^{n-1}}{\theta^n}, & 0 < t < \theta \\ 0, others \end{cases}$$

我们看一下其期望

$$E_{\theta}X_{(n)} = n \int_{0}^{\theta} n \frac{t^{n-1}}{\theta^{n}} t \, dx = \frac{n}{n+1} \theta$$

$$E_{\theta}X_{(n)}^{2} = n \int_{0}^{\theta} n \frac{t^{n-1}}{\theta^{n}} t^{2} \, dt = \frac{n}{n+2} \theta^{2}$$

于是我们就有 $E_{\theta}\left(\frac{n+2}{n}X_{(n)}^2\right) = \theta^2$ 就得到 $\frac{n+2}{n}X_{(n)}^2$ 就是 θ^2 的无偏估计,进而是 UMVUE。

条件期望法: 我们先找到 θ^2 的一个无偏估计, $E_{\theta}X_1^2 = \int_0^{\theta} t^2 \frac{1}{\theta} dt = \frac{\theta^2}{3}$,课件 $3X_1^2$ 是 θ^2 的一个无偏估计,进而求期望 $E_{\theta} \left[3X_1^2 | X_{(n)} \right]$.

$$E_{\theta} \left[3X_1^2 | X_{(n)} = t \right] = \frac{1}{n} \cdot 3t^2 + (1 - \frac{1}{n}) \int_0^t 3u^2 \frac{1}{t} du$$
$$= \frac{3t^2}{n} + \frac{n-1}{n} t^2$$
$$= \frac{n+2}{n} t^2$$

可见, $\frac{n+2}{n}X_{(n)}^2$ 为 θ^2 的 UMVUE

2.3 极大似然估计(MLE)

极大似然估计在直观上可以这样解释: 使得出现所选样本最大概率的分布参数的估计。

定义 2.4 设 $X \sim f(x;\theta), \theta \in \Theta$, 把 $f(x;\theta)$ 是为 θ 的哈桑农户,则称它为 X 关于 θ 的似然函数, $L(\theta,X) = \ln f(x;\theta) = L(\theta)$ 称为对数似然函数,若 $\hat{\theta}$ 满足

$$f(x, \hat{\theta}(x)) = \max_{\theta \in \Theta} f(x; \theta)$$

 \hat{h} $\hat{\theta}$ 为 θ 的极大似然估计。

例 2.4 设 X_1, \dots, X_n 是来自 $b(1, \theta)$ 的一个样本, $0 < \theta < 1$

$$l(\theta; x) = \left(\sum x_i\right) \ln \theta + \left(n - \sum x_i\right) \ln(1 - \theta)$$

由
$$\frac{\partial l}{\partial \theta} = 0$$
 知

$$\hat{\theta} = \bar{x}$$

评论 MLE 还有一个非常有吸引力的性质: 如果 $\hat{\theta}$ 是 θ 的 MLE, $g(\cdot)$ 为可测函数, 那么 $g(\hat{\theta})$ 也是 $g(\theta)$ 的 MLE。

对于多参数指数族 $p(x;\theta) = \exp\{\sum_{j=1}^k \theta_j T_j(x) + c(\theta) + d(x)\}$, 似然方程化为

$$\sum T_j(x_i) = -n \frac{\partial c(\theta)}{\partial \theta_j}$$

定理 2.2 (MLE 的相合性) 设 $\{p_{\theta}(x;\theta):\theta\in\Theta\}$ 是可识别的,且 $p_{\theta}(x;\theta)$ 关于 θ 可微,则似然方程 在 $n\to\infty$ 时,以概率 1 有解,且此解关于 θ 时相合的。

定理 2.3 (MLE 的渐进正态性) 在一系列正则条件下,对于 $p(x;\theta)$ 的相合解 $\hat{\theta}_n$,有

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{L} N(0, I^{-1}(\theta_0))$$

其中 θ_0 为真值。

3 假设检验

3.1 N-P 基本引理

定义 3.1 (最优势检验) 在检验问题 (θ_0, θ_1) 中,若 ϕ 是一个 α 水平的检验,若对任意一切 α 水平的检验 ϕ' ,均有 $E_{\theta_1}\phi(X) \geq E_{\theta_1}\phi'(X)$,则称 ϕ 时最优势检验 MPT。

$$E_{\theta}\phi(X) = g_{\phi}(\theta) = \begin{cases} \alpha(\theta) & \theta \in \Theta_0 \\ 1 - \beta(\theta) & \theta \in \Theta_1 \end{cases}$$

定理 3.1 (N-P 引理) 对于问题 (θ_0, θ_1) , 设分布 $p_{\theta_0}, p_{\theta_1}$ 密度函数存在,则 $\forall \alpha \in (0,1)$

1. 存在一个 α 水平的检验 ϕ 及 $\lambda_0 > 0$ 使得 ϕ 形如

$$\phi(X) = \begin{cases} 1 & p(x; \theta_1) \ge \lambda_0 p(x; \theta_0) \\ 0 & p(x; \theta_1) < \lambda_0 p(x; \theta_0) \end{cases}$$

$$\mathbb{L} E_{\theta_0} \phi(X) = \alpha$$

- 2. 此 $\phi(X)$ 是一个 MPT
- 3. 反之,如果 $\phi(X)$ 是水平为 α 的 MPT,则一定存在常数 $\lambda_0 \geq 0$,使得 $\phi(X)$ 满足 1

似然比:

$$\lambda(X) = \frac{\prod_{i=1}^{n} p(x_i; \theta_1)}{\prod_{i=1}^{n} p(x_i; \theta_0)} = 2^n \left(\frac{\theta_1}{1 - \theta_1}\right)^{\sum_{i=1}^{n} x_i} (1 - \theta_1)^n$$

原假设成立条件下, $T=\sum_{i=1}^n X_i \sim b(n,\frac{1}{2})$,且 $\lambda(X)$ 是关于 T 递增的,那么 $\{\lambda \geq k\}=\{T \geq c\}$

$$\phi(X) = \begin{cases} 1 & T > c \\ r & T = c \\ 0 & T < c \end{cases}$$

$$\alpha = \mathcal{E}_{\theta_0} \phi(X) = P\{T > c\} + rP(T = c)$$

得到
$$c = u_{1-\alpha_1}, r = \frac{\alpha - \alpha_1}{G(c-0) - G(c)} = \frac{\alpha - \alpha_1}{F(c) - F(c-0)}$$

例 3.2 设 X_1, X_2, \dots, X_n 来自两点分布 $N(\mu, 1)$ 的样本,对于假设问题 $H_0: \mu = 0, H_1: \mu = \mu_1(\mu_1 > 0)$,试求其最优势检验

似然比:

$$\lambda(X) = \frac{\prod_{i=1}^{n} p(x_i; \theta_1)}{\prod_{i=1}^{n} p(x_i; \theta_0)} = \exp\{-\frac{1}{2}n\mu_1^2 + \sum_{i=1}^{n} x_i\mu\}$$

原假设成立条件下, $T = \bar{X} \sim N(0, \frac{1}{n})$, 且 $\lambda(X)$ 是关于 T 递增的, 那么 $\{\lambda \geq k\} = \{T \geq c\}$

$$\phi(X) = \begin{cases} 1 & T \ge c \\ 0 & T < c \end{cases}$$
$$\alpha = \mathcal{E}_{\theta_0} \phi(X) = P\{T \ge c\}$$

得到 $c = \frac{u_{1-\alpha}}{\sqrt{n}}$

例 3.3 设 $X = (X_1, \dots, X_n)$ 是来自均匀分布组 $\{R(0, \theta) : \theta > 0\}$ 的样本,考虑如下检验问题: $H_0: \theta = 1, H_1: \theta_1 = \theta_1(\theta_1 > 1)$,取水平为 $\alpha(0 < \alpha < 1)$ 。构造似然比统计量

$$\lambda(X) = \frac{\prod_{i=1}^{n} p(x_i; \theta_1)}{\prod_{i=1}^{n} p(x_i; \theta_0)} = \begin{cases} \theta_1^{-n} & 0 < x_{(n)} < 1\\ \infty & 1 \le x_{(n)} \le \theta_1 \end{cases}$$

 $\lambda(X)$ 为退化分布

取非随机化检验:

$$\phi(x) = \begin{cases} 1 & c \le x_{(n)} < \theta_1 \\ 0 & 0 < x_{(n)} < c \end{cases}$$

原假设 H_0 成立时, $T=X_{(n)}$ 的密度函数为 $nt^{n-1}, (1< t<1)$,故由 $\mathbf{E}_{\theta_0}\pi(X)=\alpha$ 得 $c=\sqrt[n]{1-\alpha}$

例 3.4 设 $X = (X_1, \dots, X_n)$ 是来自均匀分布组 $\{R(0,\theta): \theta > 0\}$ 的样本,考虑如下检验问题: $H_0: \theta = 1, H_1: \theta_1 = \theta_1(\theta_1 < 1)$,取水平为 $\alpha(0 < \alpha < 1)$ 。构造似然比统计量

$$\lambda(X) = \frac{\prod_{i=1}^{n} p(x_i; \theta_1)}{\prod_{i=1}^{n} p(x_i; \theta_0)} = \begin{cases} \theta_1^{-n} & 0 < x_{(n)} < \theta_1 \\ 0 & \theta_1 \le x_{(n)} < 1 \end{cases}$$

$\lambda(X)$ 为退化分布

取非随机化检验:

$$\phi(x) = \begin{cases} 1 & 0 \le x_{(n)} \le c \\ 0 & c < x_{(n)} < \theta_1 \end{cases}$$

原假设 H_0 成立时, $T = X_{(n)}$ 的密度函数为 nt^{n-1} , (1 < t < 1),故由 $E_{\theta_0}\phi(X) = \alpha$ 得 $c = \sqrt[n]{\alpha}$

例 3.5 设 $X_1, \dots, X_n \sim U(\theta, 1)$ 的样本,考虑如下检验问题: $H_0: \theta = 0, H_1: \theta_1 = \theta_1(\theta_1 < 0)$,取水平为 $\alpha(0 < \alpha < 1)$,试求其 MPT。

构造似然比统计量

$$\lambda(X) = \frac{\prod_{i=1}^{n} p(x_i; \theta_1)}{\prod_{i=1}^{n} p(x_i; \theta_0)} = \begin{cases} (1 - \theta_1)^{-n} & 0 < x_{(1)} < 1\\ \infty & \theta_1 \le x_{(1)} \le 0 \end{cases}$$

$\lambda(X)$ 为退化分布

取非随机化检验:

$$\phi(x) = \begin{cases} 1 & 0 \le x_{(1)} \le c \\ 0 & c < x_{(n)} < 1 \end{cases}$$

原假设 H_0 成立时, $T = X_{(1)}$ 的密度函数为 $n(1-t)^{n-1}$,(1 < t < 1),故由 $\mathbf{E}_{\theta_0} \phi(X) = \alpha$ 得 $c = 1 - \sqrt[n]{1-\alpha}$

例 3.6 电话交换台单位时间内接到的呼唤次数服从 Poisson 分布 $P(\lambda), \lambda > 0$. λ 为单位时间内接到的平均呼唤次数. 设 $x = (x_1, \cdots, x_{10})$ 是该电话交换台的 10 次记录. 考虑假设检验问题: 原假设 $H_0: \lambda \geqslant 1$ 对备择假设 $H_1: \lambda < 1$. 取水平为 $\alpha = 0.05$.

解: 取检验统计量为 λ 的完备充分统计量 $T(x) = \sum_{i=1}^{n} x_i$.

对于 $H_0: \lambda \ge 1$ 和 $H_1: \lambda < 1$, 其拒绝域为 $W = \{x: \sum_{i=1}^n x_i \le c\}$,

检验函数为:

$$\Phi(x) = \begin{cases} 1, & T(x) < c, \\ r, & T(x) = c, \\ 0, & T(x) > c. \end{cases}$$

势函数为:

$$g(\lambda) = P_{\lambda}(x \in W) = \sum_{k=0}^{c-1} \frac{(n\lambda)^k}{k!} e^{-n\lambda} + r \frac{(n\lambda)^c}{c!} e^{-n\lambda}$$

,

当 n=10 , $\lambda=1$ 时, 由

$$\begin{cases} \sum_{k=0}^{4} \frac{(n\lambda)^k}{k!} e^{(-n\lambda)} = 0.02921\\ \sum_{k=0}^{5} \frac{(n\lambda)^k}{k!} e^{(-n\lambda)} = 0.06704 \end{cases}$$

得 c=5.

即 $\sum_{k=0}^{4} \frac{(n\lambda)^k e^{(-n\lambda)}}{k!} + r \frac{(n\lambda)^c}{c!} e^{-n\lambda} = 0.05$, 解得 r = 0.5496. 故检验函数为:

$$\Phi(x) = \begin{cases} 1, & T(x) < c, \\ 0.5496, & T(x) = c, \\ 0, & T(x) > c. \end{cases}$$

例 3.7 设 $X = (X_1, \dots, X_n)$ 是来自正态分布族 $\{N(0, \sigma^2) : 0 < \sigma^2 < \infty\}$ 的样本,考虑原假设 $H_0: \sigma^2 = 1$ 对备择假设 $H_1: \sigma^2 = \sigma_1^2(\sigma_1^2 > 1)$ 的检验问题,取水平为 $\alpha(0 < \alpha < 1)$,试求其 MPT.

解:

密度函数: $p(x; \sigma^2) = (2\pi)^{-1/2} \sigma^{-1} \exp\{x^2/(2\sigma^2)\}$,

似然函数: $L(x; \sigma^2) = (2\pi)^{-n/2} \sigma^{-n} \exp\{-\sum_{i=1}^n x_i^2/(2\sigma^2)\}$,

由因子分解定理知, $T(x) = \sum_{i=1}^{n} x_i^2$ 为该分布的完备充分统计量.

构造似然比统计量:

$$\lambda(x) = \frac{\prod_{i=1}^{n} p(x_i; \sigma_1^2)}{\prod_{i=1}^{n} p(x_i; \sigma_0^2)} = \frac{\sigma_0^n}{\sigma_1^n} \exp\left\{\sum_{i=1}^{n} x_i^2 \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)\right\}$$
$$= \frac{\sigma_0^n}{\sigma_1^n} \exp\left\{T(x) \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)\right\},$$

 $\lambda(x)$ 关于 T(x) 严格单调上升, 根据 N-P 基本引理, MPT 的拒绝域形式为 $W=\{x:T(x)=\sum_{i=1}^n x_i^2\geqslant c\}$.

当 H_0 成立时, $T \sim \chi^2(n)$, 所以对给定的水平 α , $c = \chi^2_{1-\alpha}(n)$.

MPT 检验仅与水平 α 有关, 而与 σ_1^2 的具体数值无关, 只要求 $\sigma_1^2 > 1$ 就行了.

故 MPT 为:

$$\phi(x) = \begin{cases} 1, & T \geqslant \chi_{1-\alpha}^2(n), \\ 0, & T < \chi_{1-\alpha}^2(n). \end{cases}$$