一、填充題 (每題 5 分,共計 40 分)

- 1. 求 2<sup>2015</sup> ÷ 104 的餘數。
- 2. 將大小形狀相同的 8 個藍球、8 個紅球、8 個綠球全分給甲、乙兩人,要求兩人的總球數要一樣,問有幾種分法?
- 3.  $\triangle ABC$  中,三邊  $\overline{BC}$  、  $\overline{CA}$  、  $\overline{AB}$  上分別有一點 D 、 E 、 F ,滿足  $\overline{AF}$  :  $\overline{FB}$  =  $\overline{BD}$  :  $\overline{DC}$  =  $\overline{CE}$  :  $\overline{EA}$  = 2:1 ,又  $\overline{AD}$  與  $\overline{EF}$  交於 G ,求  $\overline{\overline{GF}}$  。
- 5. 如圖,ABC 為正三角形,D、E 分別是 $\overline{AC}$  、 $\overline{BC}$  中點,直線 $\overline{DE}$  與 $\Delta ABC$  的外接圓交於 F 、G 兩點,試求 $\overline{\frac{AF}{BF}}$ 之值。



- 6. 給定橢圓 $\Gamma$ :  $4x^2 + y^2 8x 4y + 7 = 0$ 上的兩個點 Q(1,1)和  $R(\frac{1}{2},2)$ ,O 為橢圓中心。若動點 P 在較短的橢圓弧 RQ 上移動,則四邊形 ORPQ 的最大面積為何?
- 7.  $\Delta ABC$  中, $\Delta C = 90^{\circ}$ , $\overline{CH}$  為  $\overline{AB}$  上的高,若 $\Delta BCH$  的內切圓半徑是 $\Delta ACH$  的內切圓半徑的 3 倍,且  $\overline{AB} = 10$ ,求  $\overline{AC}$  長?
- 8. 若函數f(x)滿足f(x) + f(1-2x) = 3x-1, f(1) = 1, 求 $f(\frac{2^{2015}+1}{3})$  °

2015/09/24

- 二、計算證明題(沒有過程不予計分,部份過程給部份分數,每題12分,共計60分)
- 1. 設二次函數  $f(x) = ax^2 + bx + c$  的頂點座標為 (-1,0) ,且對任意實數 x ,不等式  $x \le f(x) \le \frac{1}{2}(x^2 + 1)$  恆成立,則 a 之值為何?

2. 在圓心為O、一條直徑為 $\overline{AB}$ 的半圓上有兩點C、D, $\Delta OCD$ 的外接圓與 $\overline{AB}$  交於O、E 兩相異點。若直線 $\overline{CD}$ 與直線 $\overline{AB}$  交於F點,求證: $\Delta DEF$ 的外接圓與 $\overline{OD}$ 切於D點。

- 3. 編號 1~20 的椅子依編號序順時針排在圓桌旁,10 男 10 女每個人各坐定於一張椅子上。求證:
  - (1) 若從編號 k 的椅子開始,依順時針方向的連續 4 張椅子上有  $a_k$  個女生,則  $a_1 + a_2 + \cdots + a_{20} = 40$ 。
  - (2) 必然有相鄰的 4 個人,其男女各半。

4. 求所有有序正整數組(n, a, b, c),使得  $3^n = a! + b! + c!$  且  $a \ge b \ge c$ 。(註: $k! = 1 \times 2 \times \cdots \times k$ , $k \in \mathbb{N}$ )

5. 三正數 a, b, c 滿足  $a^2 + b^2 + c^2 = 1$ 。證明: $a^2bc + ab^2c + abc^2 \le \frac{1}{3}$ 。

國立台灣師範大學一〇四學年度 附屬高級中學第一學期 高中科學實驗能力競賽【第二階段】數學科作答卷 | P.03 |

| 20  | 1 5 10 | 0/0   |
|-----|--------|-------|
| -70 | 1 7/1  | 19/24 |
|     |        |       |

| 題(每題5分     |          |         |          |         |    |      |
|------------|----------|---------|----------|---------|----|------|
|            | 1.       |         |          |         | 2. | <br> |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            | 3.       |         |          |         | 4. |      |
|            | <u> </u> |         |          |         | 4. |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            | 5.       |         |          |         | 6. |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            | _        |         |          |         |    |      |
|            | 7.       |         |          |         | 8. |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
| 登明題 ( 沒有 : | 過程不予計分,部 | 份過程給部份。 | 分數,每題12分 | ,共計60分) |    |      |
|            | ·        |         | 1.       | ·       |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         |          |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |
|            |          |         | 2.       |         |    |      |

| 或 | 立台 | 台灣 | 師 | 範 | 大 | 學 | _ | O E | 口學 | 年月 | 支 | 度 高中科學實驗能力競賽【第二階段】數學科作答卷   [        | P 0 1 |
|---|----|----|---|---|---|---|---|-----|----|----|---|-------------------------------------|-------|
| 附 | 屬  | 高  | 級 | 中 | 7 | 學 | 第 | _   | 學  | 其  | 钥 | 一向十杆字具概能力就套【另一階校】数字杆作合 <b>论</b>   1 |       |

2015/09/24

| 班級       | 座號    | 姓名 |  |
|----------|-------|----|--|
| 7) - W/L | /エ ‴し |    |  |

| 3. |
|----|
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
| 4. |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
| 5. |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |

2015/09/24

班級\_\_\_\_\_座號\_\_\_\_姓名\_

## 一、填充題(每題5分,共計40分)

| · 俱九越(每越 3 万 7 共 11 40 万 7 |                      |
|----------------------------|----------------------|
| 1.                         | 2.                   |
|                            |                      |
| 72                         | 61                   |
|                            |                      |
| 3.                         | 4.                   |
| J.                         | 4.                   |
| ,                          |                      |
| 4                          | 91                   |
|                            |                      |
| 5.                         | 6.                   |
| 2                          |                      |
| $\frac{3-\sqrt{5}}{2}$     | $\frac{\sqrt{2}}{4}$ |
| 2                          | 4                    |
| 7.                         | 8.                   |
|                            |                      |
| $\sqrt{10}$                | $3-2^{2015}$         |
| <b>√</b> 10                | 3 – 2                |
|                            |                      |

- 1. 由費馬小定理, $2^{12} \equiv 1 \pmod{13}$ ,所以 $2^{2015} \equiv (2^{12})^7 \times 2^{11} \equiv 2048 \equiv 7 \pmod{13}$ ,令 $2^{2015} \equiv 13t + 7$ , $t \in \mathbb{N} \Rightarrow 13t + 7 \equiv 0 \pmod{8}$   $\Rightarrow 13t \equiv -7 \pmod{8} \Rightarrow -3t \equiv -7 \pmod{8} \Rightarrow 3t \equiv 7 \pmod{8} \Rightarrow 9t \equiv 21 \pmod{8} \Rightarrow t \equiv 5 \pmod{8}$ ,令t = 8k + 5, $k \in \mathbb{N}$ ,则  $2^{2015} \equiv 13(8k + 5) + 7 \equiv 104k + 72$ ,即 $2^{2015}$  除以104 餘72。
- 2. 設甲分得 x 個藍球、y 個紅球、z 個綠球,則乙分得 8-x 個藍球、8-y 個紅球、8-z 個綠球, 令  $S = \{(x,y,z) \mid x+y+z=12$ ,x,y,z 為非負整數  $\}$  ,  $S_1 = \{(x,y,z) \mid x+y+z=12$  ,x,y,z 為非負整數 ,  $x \ge 9\}$  ,  $S_2 = \{(x,y,z) \mid x+y+z=12$  ,x,y,z 為非負整數 ,  $y \ge 9\}$  ,  $S_3 = \{(x,y,z) \mid x+y+z=12$  ,x,y,z 為非負整數 ,  $z \ge 9\}$  , 則由取捨原理知所求為  $n(S) n(S_1 \cup S_2 \cup S_3) = C_2^{14} C_1^3 C_2^5 = 61$  。
- 3. 法一:由向量的分點公式知

$$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{AG} = t\overrightarrow{AD} = \frac{t}{3}\overrightarrow{AB} + \frac{2t}{3}\overrightarrow{AC} = \frac{t}{3}(\frac{3}{2}\overrightarrow{AF}) + \frac{2t}{3}(3\overrightarrow{AE}) = \frac{t}{2}\overrightarrow{AF} + 2t\overrightarrow{AE}$$

$$\Rightarrow \frac{\overrightarrow{FG}}{\overrightarrow{GE}} = \frac{2t}{\frac{t}{2}} = 4 \circ$$



4. 依題意  $\begin{cases} \frac{\alpha}{1^2+2^2} + \frac{\beta}{1^2+4^2} + \frac{\gamma}{1^2+6^2} = 1 \\ \frac{\alpha}{3^2+2^2} + \frac{\beta}{3^2+4^2} + \frac{\gamma}{3^2+6^2} = 1 \end{cases}$ ,故 A 的方程式  $\frac{\alpha}{A+2^2} + \frac{\beta}{A+4^2} + \frac{\gamma}{A+6^2} = 1$  有根  $1^2$ ,  $3^2$ ,  $5^2$ ,同乘以分母在移項得  $\frac{a}{5^2+2^2} + \frac{\beta}{5^2+4^2} + \frac{\gamma}{5^2+6^2} = 1$ 

 $(A+2^{2})(A+4^{2})(A+6^{2}) - \alpha(A+4^{2})(A+6^{2}) - \beta(A+2^{2})(A+6^{2}) - \gamma(A+2^{2})(A+4^{2}) = 0,$ 整理得 $A^{3} + (2^{2}+4^{2}+6^{2}-\alpha-\beta-\gamma)A^{2} + pA + q = 0$ ,其中p,q為常數。而其三根為 $1^{2},3^{2},5^{2}$ ,故由根與係數關係得 $1^{2}+3^{2}+5^{2}=-(2^{2}+4^{2}+6^{2}-\alpha-\beta-\gamma)\Rightarrow \alpha-\beta-\gamma=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}=\frac{6\cdot(6+1)\cdot(2\cdot6+1)}{6}=91$ 。

5. 不妨令 $\triangle ABC$  的邊長為 2,再設 $\overline{EG} = \overline{DF} = x$ ,因為 $\overline{ED} = \overline{EC} = \overline{EB} = \frac{1}{2}\overline{BC} = 1$ ,由圓幂定理知 $\overline{FE} \times \overline{EG} = \overline{CE} \times \overline{EB}$   $\Rightarrow (1+x)x = 1 \times 1 \Rightarrow x^2 + x - 1 = 0 \Rightarrow x = \frac{-1 \pm \sqrt{5}}{2}$  (負不合)。又 $\angle FEB = 120^\circ$ ,  $\angle FDA = 60^\circ$ ,由餘弦定理知

$$\frac{\overline{AF}}{\overline{BF}} = \frac{\sqrt{x^2 + 1^2 - 2x\cos 60^{\circ}}}{\sqrt{(1+x)^2 + 1^2 - 2(1+x)\cos 120^{\circ}}} = \frac{\sqrt{x^2 - x + 1}}{\sqrt{x^2 + 3x + 3}} = \sqrt{\frac{3 - \sqrt{5}}{3 + \sqrt{5}}} = \frac{3 - \sqrt{5}}{2}$$

6. 整理得 $\Gamma$ :  $\frac{(x-1)^2}{(\frac{1}{2})^2} + \frac{(y-2)^2}{1^2} = 1$ , 略圖如右,可知Q與R分別為長軸與短軸上的一個頂點,

令 P 點坐標參數式  $P(1 + \frac{1}{2}\cos\theta, 2 + \sin\theta)$ ,則  $(ORPQ \ \text{面積}) = (\Delta OPR \ \text{面積}) + (\Delta OPQ \ \text{面積})$ 



$$=\frac{1}{2}\times\frac{1}{2}\times\sin\theta+\frac{1}{2}\times1\times\frac{1}{2}\cos\theta=\frac{1}{4}(\sin\theta+\cos\theta)=\frac{\sqrt{2}}{4}\sin(\theta+45^\circ)\leq\frac{\sqrt{2}}{4}\text{ ,故當}\theta=45^\circ\text{時 ,}ORPQ$$
面積有最大值 $\frac{\sqrt{2}}{4}$ 。

7. 由於 $\Delta BCH \sim \Delta CAH$ ,又其內切圓半徑比為 3:1,故兩三角形的相似比亦為 3:1 ⇒  $\overline{BH} = 3\overline{CH} = 9\overline{AH}$  ,而  $10 = \overline{AB} = \overline{BH} + \overline{AH} = 10\overline{AH}$  ⇒  $\overline{AH} = 1$  ⇒  $\overline{CH} = 3$  ⇒  $\overline{AC} = \sqrt{1^2 + 3^2} = \sqrt{10}$  。



8.  $\Leftrightarrow a_1 = 1 \; ; \; a_n = 1 - 2a_{n-1}, \; n \ge 2 \; ; \; \text{ and } \; a_n - \frac{1}{3} = -2(a_{n-1} - \frac{1}{3}) \Rightarrow a_n - \frac{1}{3} = (-2)^{n-1}(a_1 - \frac{1}{3}) \Rightarrow a_n = \frac{1 - (-2)^n}{3} \; \cdots$ 

 $n \ge 2$  時,以  $x = a_{n-1}$ 代入題目的方程式得  $f(a_{n-1}) + f(1 - 2a_{n-1}) = 3a_{n-1} - 1 \Rightarrow f(a_{n-1}) + f(a_n) = - (-2)^{n-1}$ ,再同除以(−1)<sup>n</sup>

$$\Rightarrow -\frac{f(a_{n-1})}{(-1)^{n-1}} + \frac{f(a_n)}{(-1)^n} = 2^{n-1} \Rightarrow \begin{cases} -\frac{f(a_{n-1})}{(-1)^{n-1}} + \frac{f(a_n)}{(-1)^n} = 2^{n-1} \\ -\frac{f(a_{n-2})}{(-1)^{n-2}} + \frac{f(a_{n-1})}{(-1)^{n-1}} = 2^{n-2} \\ \vdots \\ -\frac{f(a_1)}{(-1)^1} + \frac{f(a_2)}{(-1)^2} = 2^1 \end{cases}, \text{ if } \ln 2 = 2^{n-1} + 2^{n-2} + \cdots + 2^1 = 2^n - 2$$

$$\Rightarrow \frac{f(a_n)}{(-1)^n} = 2^n - 3 \Rightarrow f(a_n) = (-1)^n \cdot (2^n - 3)$$

最後 n 以 2015 代入得  $f(a_{2015}) = (-1)^{2015} \cdot (2^{2015} - 3)$ ,即  $f(\frac{1 + 2^{2015}}{3}) = 3 - 2^{2015}$ 。

## 二、計算證明題(沒有過程不予計分,部份過程給部份分數,每題12分,共計60分)

 $\underline{\underline{\mathbf{S}}}$ :  $a = \frac{1}{4}$  °

因為頂點在(-1,0),所以 $f(x) = a(x+1)^2 = ax^2 + 2ax + a \circ (2 分)$ 

依題意,
$$\begin{cases} f(x) \ge x \\ f(x) \le \frac{1}{2}x^2 + \frac{1}{2}, \forall x \in \mathbf{R} \end{cases}$$

$$\Rightarrow \begin{cases} ax^2 + (2a-1)x + a \ge 0\\ (2a-1)x^2 + 4ax + (2a-1) \le 0 \end{cases}, \forall x \in \mathbf{R}$$

$$\Rightarrow \begin{cases} a > 0 \land (2a-1)^2 - 4a^2 \ge 0 \\ 2a - 1 < 0 \land (4a)^2 - 4(2a-1)^2 \le 0 \end{cases}, \forall x \in \mathbf{R} (5 \ \%)$$

$$\Rightarrow \begin{cases} a > 0 \land a \ge \frac{1}{4}, \forall x \in \mathbf{R} \Rightarrow a = \frac{1}{4} \circ (5 \%) \ (\cancel{R} \ \mathbf{B} \ a = \frac{1}{4} \% \ 2 \%) \end{cases}$$

2

法一:由於 O, C, D, E 共圓且  $\overline{OC} = \overline{OD}$  ,所以 $\angle DEF = \angle OCD = \angle ODC$  ,

 $\Rightarrow \angle OFD = \angle ODC - \angle FOD = \angle DEF - \angle EOD = \angle ODE$ 

即 $\angle OFD = \angle ODE$ , 又 $\angle FOD = \angle DOE$ , 所以 $\triangle OFD \sim \triangle ODE$  (AA 相似)

 $\Rightarrow \overline{OF} : \overline{OD} = \overline{OD} : \overline{OE} \Rightarrow \overline{OD}^2 = \overline{OF} \times \overline{OE}$ 

⇒ $\overline{OD}$  為 $\Delta DEF$  外接圓的切線段(圓冪逆定理),得證。

法二:令半圓半徑為r,由共圓知 $\overline{FE} \times \overline{FO} = \overline{FC} \times \overline{FD} = \overline{FA} \times \overline{FB}$ 

$$\Rightarrow (\overline{OF} - \overline{OE}) \times \overline{OF} = (\overline{OF} + r) \times (\overline{OF} - r) \Rightarrow \overline{OE} \times \overline{OF} = r^2 = \overline{OD}^2$$

⇒OD 為△DEF 外接圓的切線段(圓冪逆定理),得證。

法三:反設 $\Delta DEF$  外接圓與 $\overline{OD}$ 交於D,D'兩相異點,(如右中與右下圖)

則陸續由 O, C, D, E 共圓、 $\overline{OC} = \overline{OD}$  且 D, D', E, F 共圓得

 $\angle DEF = \angle OCD = \angle ODC = \angle D'EF$ 

⇒D=D',矛盾,假設錯誤,故得證原命題。







班級 座號 姓名

3

- (1) 坐在編號 n 椅子上的女生會恰在考慮  $a_{n-3}$ ,  $a_{n-2}$ ,  $a_{n-1}$ ,  $a_n$  時被計算一次,共算了 4 次 (其中 n 為 1 到 20 的正整數,  $a_{-2}=a_{18}$ ,  $a_{-1}=a_{19}$ ,  $a_0=a_{20}$ )。所以對於總和  $a_1+a_2+\cdots+a_{20}$  而言,所有女生(共 10 位)共被計算了  $10\times 4=40$  次,即  $a_1+a_2+\cdots+a_{20}=40$ 。
- (2) 對於  $a_n$ 與  $a_{n+1}$ 來說,共同計算了編號 n+1, n+2, n+3 椅子上的女生人數(其中 n 為 1 到 20 的正整數,  $a_{21}=a_1$ , 編號 21, 22, 23, 24 的椅子依序指編號 1, 2, 3, 4 的椅子)。故若編號 n 與編號 n+4 椅子上的人性別相同,則  $a_n=a_{n+1}$ ; 若編號 n 與編號 n+4 椅子上的人性別不同,則  $|a_n-a_{n+1}|=1$ ,也就是說相鄰  $a_n$ 與  $a_{n+1}$ 最多相差 1。……(\*) 今反設不存在  $a_n=2$ , n=1, 2, …, 20。
  - ① 當  $a_1 = 0$  或 1 時,由結論(\*)與上述假設知  $a_2 = 0$  或 1,同理可得  $a_3 = 0$  或 1, $a_4 = 0$  或 1…,  $a_{20} = 0$  或 1。但這樣 有  $a_1 + a_2 + \cdots + a_{20} \le 20$ ,此與(1)的結果矛盾。
  - ② 當  $a_1 = 3$  或 4 時,由結論(\*)與上述假設知  $a_2 = 3$  或 4,同理可得  $a_3 = 3$  或 4, $a_4 = 3$  或 4…, $a_{20} = 3$  或 4。但這樣 有  $a_1 + a_2 + \cdots + a_{20} \ge 60$ ,此與(1)的結果矛盾。

綜合①,②知假設錯誤,故必然存在  $n \in \{1, 2, \dots, 20\}$ ,使得  $a_n = 2$ ,如此編號 n, n + 1, n + 2, n + 3 連續四張椅子上的人恰為兩男兩女(其中編號 21, 22, 23 的椅子依序指編號 1, 2, 3 的椅子),證畢。

4.

答:(n, a, b, c) = (1, 1, 1, 1), (2, 3, 2, 1), (3, 4, 2, 1)。

若  $c \ge 2$ ,則 a!, b!, c!皆為偶數,得 a! + b! + c!為偶數,即  $3^n$  為偶數,這不可能,故 c = 1。

- ② 若 b=2,則  $a!=3^n-3$  …(\*)  $\Rightarrow n \ge 2$ 。此時若  $a \ge 6$ ,則 a!為 9 的倍數,但  $3^n-3=3(3^{n-1}-1)$  不為 9 的倍數,不合,故有  $a \le 5$ 。將 a=5, 4, 3, 2 分別代入(\*)式得符合題意的(n,a)=(2,3), (3,4)。
- ③  $\dot{a}$   $b \geq 3$  ,則 a!, b! 皆為 3 的倍數 ,得 a! + b! + c! = a! + b! + 1 被 3 除餘 1,但 a'' 為 3 的倍數 ,不合。

綜合①,②,③得所有解(n, a, b, c) = (1, 1, 1, 1), (2, 3, 2, 1), (3, 4, 2, 1)。

5.

由算幾不等式,  $\frac{a^2+b^2+c^2}{3} \ge \sqrt[3]{a^2b^2c^2} \Rightarrow abc \le \frac{1}{\sqrt{27}}$  ……①

再由柯西不等式, $(a^2 + b^2 + c^2)(1^2 + 1^2 + 1^2) \ge (a + b + c)^2 \Rightarrow a + b + c \le \sqrt{3}$  ……②

①,②雨式相乘得  $abc(a+b+c) \le \frac{\sqrt{3}}{\sqrt{27}} \Rightarrow a^2bc + ab^2c + abc^2 \le \frac{1}{3}$  , 得證。