20240924 MATH 3301 Assignment 2 Part 2: 1.(a) Solution: If G is the general linear group BL(IR), H is the special linear group $SL_2(|R) = \{A \in GL_2(|R) : det(A) = 1\}$, $X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in GL_2(|R)$ and $h = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(|R)$, then 1 ha= (0-1)(11)(0-1)-= (0-1)(11)(01) $= \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = h$ YaleGL(IR), The GL(IR): and he a'HaH ⇒ Ih'eH, h= a'h' a'-1 \Rightarrow det $(x'h'x'^{-1}) = \det(x')\det(h')\det(x'^{-1}) = \det(x')\det(x')^{-1} = 1$ => h= aihiai-16H f) $h \in H \Rightarrow \det(h) = |\Rightarrow \det(x^{(-1)}hx^{(-1)}) = \det(x^{(-1)}) \det(h) \det(x^{(-1)})$ = det(x1) 1 | det(x1) = 1 =) x1 hx eH =) h= x1 (x1 hx1) x1 Ex1 Hx17 This implies x1Hx1- = H, so H=SL2(IR) is normal in G=GL2(IR). (b) Proof: We may divide our proof into two parts. Partl: Assume that His normalin Gine, YxeG, xt 1xt = H. For all xe Gifor all he G: heaH==heH, h=ah== aha=exHa=H, h=(aha+)a =) heHa hela = TheH, h=h'a=] athan = athan = H, h= n[athan] Hence, MH=HX

Part2: Assume that YXEB, AH=HX.
For all AEG for all he G:
$h \in \alpha H \alpha^{-1} \Rightarrow \exists h' \in H, h = \alpha h' \alpha^{-1} \Rightarrow h = \alpha h' \alpha^{-1} = h'' \in H$ $\alpha H = H \alpha \Rightarrow \exists h'' \in H, \alpha h' = h'' \alpha $
heH > xhe xH=Hx=)=IheH, xh=hx=) h=xhx=exHx= Hence, xHx=H, so H=snormal in G.
Combine the two parts above, we he proven the biconditional.
(c) Proof Assume that H≤G and YXEG, XHX-5H.
For all & GG, as & HATSH is provided, it remains to show & HAZ
Forall heG,
held = xth(xt) extH(xt) =H= xth(xt) eH
=) h= x[x-h(x-1)-]x=xHx-1
Hence, MHM=Hoso Hos normal in B
(d) Proof: Assume that $H=6$ and $[6:H]=2$.
On one hand, [G:H]=2 implies SeH, at 13 partitions & for some &= 61+
On the other hand, [G:H]=2 implies {He, Hx3 partitions G for some 12=G/f
For all $\alpha \in G$:
If action at = H= Hx;
If $\alpha \in G\backslash H$, then $\alpha H = G\backslash H = H\alpha$.
In both cases, xH=Hx, so H &s a mormal subgroup of G.
· · · · · · · · · · · · · · · · · · ·
lated .

	(e) Proof: In Tutorial 4, we've proven that:
	$\phi \in Hom(G,G')$ and $H \leq G' = \phi'(H') \leq G$
, i	It remains to prove \$ (H') is mormalin Gi.e. YAEG, A \$ (H') a = \$ (H')
	For all ix & G, for all he G:
	1 - 440 11 - 4 - 711 - 44011 1 - 114-1
	$ \varphi(h) = \varphi(xh'x^{-1}) = \varphi(x)\varphi(h')\varphi(x^{-1}) = \varphi(x)\varphi(h')\varphi(x) = \varphi(x)\varphi(x) = $
	=) hep-(H')
	Hence, & pt(H') & = pt(H'), which implies pt(H') is normaling.
	(f) Proof. In Tutorial 4, we've proven that:
	$\phi \in Hom(G,G')$ and $H \leq G \Rightarrow \phi(H) \leq G'(we can do better, \leq \phi(G))$
	It remains to prove $\phi(H)$ is mormal inp(6), i.e., $\forall \alpha \in \phi(G), \alpha \neq \phi(H), \alpha' \neq \phi(G)$
ale a	For all x'ex(6), for all h'e x (H) x'-1.
	$\frac{\chi'e\phi(G)\Rightarrow \exists \chi \in G, \chi'=\phi(\chi)}{7}$
7.63	h'e x'ø(H)x1-1=>= heH, h'= x'ø(h)x1-1}
	$\Rightarrow h = \chi(\phi(h)\chi(h) = \phi(\chi)\phi(h)\phi(\chi) = \phi(\chi)\phi(h)\phi(\chi^{-1})$
	$= \phi(\pi h \pi^{-1}) \in \phi(H) (a) I have a constraint of the second of th$
ő	of (10 = 6, 9 (10) = 10) = 100 = 100 (10) =
	Hence, $\alpha'\phi(H)\alpha'^{-1} \subseteq \phi(H)$, which implies $\phi(H)$ is mormal in $\phi(G)$.
5 (C)	$\frac{1}{160000000000000000000000000000000000$
	Ar Citi See Champhan and the City See
	Date / / /
	The gives a unique income plant of gross, all it is a second

2. Solution: $|S_3| = 6$, and we may list all its elements with corresponding orders. $e = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$, ord(e)=(; $\gamma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, ord(r)=3; $\gamma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, ord(r)=3; As all isomorphism $\phi: S_3 \rightarrow S_3$ preserves the order of each element in S_3 , we may pick o(r) from frir? and pick o(6) from \$6,76, 26? to construct o. Case |: $\phi(r) = r$ and $\phi(6) = 6$. $\phi(e)=e, \phi(r)=r, \phi(r^2)=\phi(r)^2=r^2, \phi(6)=6, \phi(r6)=\phi(r)\phi(6)=r6, \phi(r^2)=\phi(r)^2\phi(6)=r^26$ This gives a unique isomorphismog S3-353, xHexe; Case): $\phi(r)=r^2$ and $\phi(6)=6$. $\phi(e)=e, \phi(r)=r^2, \phi(r)=\phi(r)^2=r^4=r, \phi(e)=6, \phi(re)=\phi(e)\phi(e)=r^2e, \phi(r^2e)=\phi(r^2e)\phi(e)=r^4e+re$ This gives a unique isomorphismises, 753, 10006 Case 3: \$\phi(r)=r and \$\phi(6)=76 \$\frac{\phi(e)=e,\phi(r)=\gamma,\phi(r^2)=\phi(r^2=\gamma^2,\phi(6)=\gamma_6)=\gamma_6(\gamma^6)=\gamma_6,\phi(\gamma^2=\gamma^6)=\gamma_6\gamma^6=6 This gives a unique isomorphism (S2-S3, M+) 22 (62) Case 4: $\phi(r)=r^2$ and $\phi(6)=r6$ φ(e)=e,φ(r)=r3,φ(r²)=φ(r)=r5,φ(6)=r6,φ(r6)=φ(r)φ(6)=r6,ρ(r6)=φ(r)φ(6)=r6 This gives a unique isomorphism (S3 + S3, NH) r3(16) Case 5: $\phi(r) = r$ and $\phi(6) = r^2 6$ φ(e)=e,φ(r)=r, φ(r²)=φ(r)=r², φ(6)=r²6,φ(r6)=φ(r)φ(6)=r²6=6,φ(r²6)=φ(r)φ(6)=r²6+6 This gives a unique isomorphisms 3-83, A1-> rar-1; Case 6: \$\phi(r)=r^2 and \$\phi(6)=r^6\$, φ(e)=,e₀φ(r)=r²,φ(r²)=φ(r)²=r⁴=r,φ(6)=r²6,φ(r6)=φ(r)φ(6)=7⁴6=r6,φ(r²6)=φ(r)φ6)+δ⁶δ This gives a unique isomorphisms 3->5, 14 > rea(re)

Collect all somorphisms above in the following set. X= Aut(S3)= { \$6, \$1, \$1, \$1, \$6, \$16, \$16} If we equip this set with o, then Va, yes, Pay - Papy. This implies the bijective function 25: S-> Aut(S3), 25(4)= \$ xis an isomorphism. That is, Aut(S3) is not only a group under multiplication, it is isomorphic to S3. 3. Proof: Without loss of generality, assume that x: \(\(\mathcal{I}\), \(\mathcal{I}\), \(\mathcal{I}\) \(\mathcal{I}\), \(\ For all 6 & Sn, for all (m = n: Case |: If | = m < k, then 6 x 6 (6(m)) = 6 x (66(m)) = 6 x (m) = 6(m+1); Case 2: If m=k, then 6x6 (6(k)) = 6x(66(k)) = 6x(k) = 6(1); Case 3: If km<n, then 6x6 (6ch) = 6x(66ch) = 6x(h) = 6(h) Combine the three cases above, we've proven that $6 \times 6 = (6(1), 6(2), \cdots, 6(k))$. 4. Proof: We may divide our proof into two parts: if direction: Assume that 6=(M1, M2, ..., NK), T=(41142, ..., 412) huve the same length K Construct a ESn, such that $\alpha(y) = \frac{5}{1}$ arbitrary, of y = 4m for some k msk; and a strip extince. Notice that 6=dTd-1, so Gis conjugate to t. "only of direction. Assume that 6 is conjugate to tie. = ACSn, G=ATXT As |Sn |< +00, both ord 6 and ord t exists For all mez, ordo m=> 6 = e => t=(a = a) = a = a = a = a = e= ordo m Hence, the two positive integers ords, ord care equal, which implies 6, thave the same length Combine the two parts above, we've proven the biconditional.

). (a) (i) e					catal Malaya ya Michiga	Links
60 (1,2), (1,3),(1	,4),(2,3)),(2,4),(3,4)		6
	(3,4),(1,:					3
		11 11 11 11 11		(13,4),(4,3,	(), (2,3,4), (4,3,2)	8
				4	14,2,3),(1,4,3,2)	6
We get	1+6+3+	8+6=	24=4! dis	itinit eleme	nts intotal.	And.
(b) Proof: We	may divid	e Our proj	of onto four	parts.	lentity of S4.	Fore S
			(3,4),(1,3)(2,	5.W.S. 1.A.	A	14
Part2: Ir					er the group operati	on of Su
rilla e	xou-	е	(1,2)(3,4)	(1,3)(2,4)	(1,4)(2,3)	
	e	е	(1,2)(3,4)			1
	(1,2)(3,4)	([12)(3,4)	e	(4)(2,3)	(1,3)(2,4)	
The state of the	1	- A	(1,4)(2,3)	e	(1,2)(3,4)	NC)
	(1,4)(2,3)	(1,4)(2,3)	(1,3)(2,4)	(1,2)(3,4)		: Poofil
Part3:In	· e-1	= 6	e €V;[(1,3)(2,4)[=	-the group anwers (1,3)(2,4) & V (1,4)(2,3) & V	on of S ₄
Part4: In	this part, 1	ve prove-	that Vis A	belan.	> A . 1 \/> A	h. A
Combine :	its Cayley the four po	urts above,	we've proven	about themo that Vis	in Obigonal, Vis A an Abebun subgroup	pof S _{4.}
	4.			ΥΛ		
An Tar J			V 2000 19 10 10 10 10 10 10 10 10 10 10 10 10 10			

U	c) Solution:
	e V= {e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
-	(1,2)V={(1,2),(3,4), (1,3,2,4), (1,4,2,3)}
_	(1,3) V={(1,3), (1,2,3,4), (2,4), (1,4,3,2)}
	(14)V={(1,4),(1,2,43),(1,3,42),(2,3)}
	(1,2,3) V= {(1,2,3), (1,3,4), (4,3,2), (4,2,1)}
	(3,2,1)/= {(3,2,1), (2,3,4), (1,2,4), (4,3,1)}
	$\forall e = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\} = e $
	$V(l_{1})=\{(l_{1}^{2}),(3,4),(l_{1}+2,3),(l_{1}^{3},2,4)\}=(l_{1}^{2})\}$
	V(1,3)={(1,3),(1,4,3,2),(2,4),(1,2,3,4)} = (1,3)V
	$V(1,4)=\{(1,4),(1,3,4,2),(1,2,4,3),(2,3)\}=(1,4)V$
	$V(1,23)=\{(1,2,3),(4,3,2),(4,2,1),(1,3,4)\}=(1,2,3)$
	$V(3,2,1)=\{(3,2,1),(4,3,1),(2,3,4),(1,2,4)\}=(3,2,1)$
	As $\forall \alpha \in S_{\psi}$, $\alpha V = V\alpha$, V is an abelian mormal subgroup of S_{ψ} .