Wizualizacja i edycja drzewa BST w C++ z użyciem Qt

Mikołaj Bieniek

Marzec 2025

Spis treści

1	$\mathbf{W}\mathbf{step}$	•
2	Opis struktury projektu	4
3	Opis implementacji drzewa BST 3.1 Wstawianie elementu 3.2 Usuwanie elementu 3.3 Wyszukiwanie elementu 3.4 Obliczanie głębokości drzewa 3.5 Inne metody pomocnicze	
4	Wizualizacja drzewa	
5	Interfejs użytkownika (Qt GUI)	;
6	Podsumowanie	;
7	Źródła	4

1 Wstęp

Projekt stanowi aplikację graficzną pozwalającą użytkownikowi na interakcję z drzewem binarnym poszukiwań (BST). Umożliwia dodawanie, usuwanie oraz przeszukiwanie elementów, przy czym wszystkie zaimplementowane operacje są natychmiast wizualizowane w interfejsie graficznym zbudowanym na frameworku Qt.

2 Opis struktury projektu

Projekt składa się z następujących plików:

- bst.cpp / bst.h implementacja struktury danych BST w C++.
- mainwindow.cpp / mainwindow.h logika interfejsu użytkownika oraz połączenie GUI z logiką drzewa.
- mainwindow.ui plik opisujący układ interfejsu graficznego (stworzony w Qt Designer).
- bsttree.pro plik konfiguracyjny Qt (projektowy).

3 Opis implementacji drzewa BST

3.1 Wstawianie elementu

Dodanie nowego elementu odbywa się iteracyjnie, zgodnie z klasycznymi zasadami BST:

- Elementy mniejsze trafiają do lewego poddrzewa.
- Elementy większe do prawego.

Po każdej operacji aktualizowana jest liczba elementów (size).

3.2 Usuwanie elementu

Usuwanie realizuje trzy przypadki:

- Węzeł nie ma dzieci usuwany bezpośrednio.
- Węzeł ma jedno dziecko dziecko przejmuje jego miejsce.
- Węzeł ma dwoje dzieci następuje zamiana z następnikiem (successor) i usunięcie go.

3.3 Wyszukiwanie elementu

Funkcja search(int key) zwraca wskaźnik na węzeł, jeśli znajdzie go w drzewie, lub nullptr, jeśli go nie ma.

3.4 Obliczanie głębokości drzewa

Zastosowano funkcję rekurencyjną calculateDepth(Node*), która dynamicznie oblicza wysokość drzewa. Wcześniejsze podejście z przechowywaną zmienną depth_ zostało usunięte na rzecz dokładniejszego i bezbłędnego obliczania.

3.5 Inne metody pomocnicze

- minimum() zwraca najmniejszy klucz.
- maximum() zwraca największy klucz.
- inorder() zwraca listę elementów w porządku inorder.

4 Wizualizacja drzewa

Wizualizacja odbywa się z użyciem QGraphicsScene. Węzły reprezentowane są jako białe koła z numerem wewnątrz. Dodatkowo białe koła zwiększają się, jeśli numer wewnątrz staje się zbyt duży. Krawędzie między rodzicami i dziećmi rysowane są jako linie. Po każdej operacji (insert, delete, delete whole tree) scena jest aktualizowana.

5 Interfejs użytkownika (Qt GUI)

Komponenty użyte w interfejsie graficznym:

- QLineEdit pole wprowadzania liczby.
- QPushButton przyciski do wstawiania, usuwania, szukania, czyszczenia drzewa.
- QGraphicsView wizualizacja drzewa.
- QLabel dynamiczne informacje o drzewie: liczba elementów, głębokość, minimum, maksimum, traversale.

6 Podsumowanie

Projekt ten ukazuje praktyczne zastosowanie struktury danych BST wraz z graficzną prezentacją jej działania. Obliczanie głębokości w czasie rzeczywistym, aktualizacja sceny i intuicyjny oraz prosty interfejs użytkownika sprawiają, że aplikacja nadaje się do praktycznego testowania oraz dydaktyki.

7 Źródła

- Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Wprowadzenie do algorytmów, PWN.
- https://www.geeksforgeeks.org/binary-search-tree-data-structure/
- https://doc.qt.io/
- https://www.programiz.com/dsa/binary-search-tree