

Flooded Area Assessment using KMeans clustering technique

By Penny (Qian) Yin

Context

- Flooding -> damage, such as infrastructure destruction and water system pollution;
- The New England Region challenges from coastal and inland flooding;
- Crucial to quantify the impacts of flood events.

Story

Problem

 Precisely assessing the extent of flood can be challenging.

Proposal

- Satellite images straightforward
- Develop an approach to help automatically identify the flooded area

^{*} Image from The Great Vermont Flood of July 2023

- USGS: United States Geological Survey
- High-water marks: Visual clues of peak stream height or surveying equipment
- High-water level: Real-time water level above moderate flood stage value for specified gauges from USGS Water Data Services (e.g., https://water.noaa.gov/gauges/ASTM1)

Part I Flood Event

	High-water marks	High-water levels
Original Shape	53 x 3502	11 x 8326
Modified Shape	7 x 889	9 x 218
Top 3 Flood events	 2023 July MA NY VT Flood: 641 instances 2018 March Extratropical Cyclone: 115 instances 2018 January Extratropical Cyclone: 81instance 	2023-12:642023-07:272024-01:18
Top 3 States	VT:590MA:262CT:15	CT: 57VT: 56ME:40
Note	Based on the counts, the majority of collected images will be from 2023-07.	

Part II Satellite Image 2023-07

- Sentinel -2 satellite image:
 25 images during flood
 events (8 notable)
- Flowline from <u>National</u>
 Hydrography Dataset
- Normalized Difference
 Water Index (NDWI):
 threshold set to -0.1
- 4. Cloud Mask based on s2cloudless: urban area and high reflectance

Default

Image -> PCA

Clustered Image

Clustered Image

Image with NDWI feature -> PCA

SUMMARY - Optimal KMeans Clustering Result

Reduced noise

Discussion

- Satellite imagery can be a straightforward way to check the flooding situation in a specific area; however; not all flood events can be caught.
- Combining the satellite imagery and NDWI (Normalized Difference Water Index) helps the clustering algorithm.

Future work

- Flowline data from NHD includes all flowing water features -> noise.
- At the current stage, the evaluation part focuses on visual inspection -> quantitative evaluation.
- Ensure the reproducibility.
- Algorithm improvement: K-means clustering process is being killed (the process is running out of memory)

Acknowledgements

- Prof. Bogden (Supervisor)
- Sam from USGS (Stakeholder)

THANK YOU!