Static-1

Title

Statically indeterminate structural analysis for reaction forces

Description

A prismatic bar with fixed ends is loaded axially at two intermediate points with forces P_1 and P_2 .

Determine the reaction forces at the supports.

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis (X-Z plane)

Unit System

m, kgf

Dimension

Length 10.0 m

Element

Beam element

Material

Modulus of elasticity $E = 3.0 \times 10^7 \text{ kgf/m}^2$

Section Property

$$B \times H = 1.0 \text{ m} \times 1.0 \text{ m}$$

Area $A = 1.0 \text{ m}^2$

Boundary Condition

Nodes 1 and 4; Constrain all DOFs.

Load Case

Axially concentrated loads P_1 and P_2 are applied at the nodes 3 and 2 respectively in the -Z direction.

$$P_1 = 1000.0 \text{ kgf}, P_2 = 500.0 \text{ kgf}$$

Results

Reaction Forces

Node	Load	FX (kgf)	FY (kgf)	FZ (kgf)	MX (kgf·m)	MY (kgf·m)	MZ (kgf·m)
1	CASE1	0,000000	0,000000	600,000000	0,000000	0,000000	0,000000
4	CASE1	0,000000	0,000000	900,000000	0,000000	0,000000	0,000000
SUMMATION OF REACTION FORCES PRINTOUT							
		FX (kgf)	FY (kgf)	FZ (kgf)			
	CASE1	0,000000	0,000000	1500,000000			

Comparison of Results

Unit: kgf

Node —	Reaction force		
node	Theoretical	MIDAS/Civil	
1	600.0	600.0	
4	900.0	900.0	

Reference

Timoshenko, S., "Strength of Materials, Parts I, Elementary Theory and Problems", 3rd Edition, D. Van Nostrand Co., Inc., New York, 1956, p. 26.