Problem 1. Let V be a finite-dimensional \mathbb{K} -vector space with basis $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$. Let $\{\varphi_1, \dots, \varphi_n\}$ be a set of linear maps in $\mathcal{L}(V, \mathbb{K})$ satisfying

$$\varphi_j(\mathbf{v_k}) = \begin{cases} 1 & \text{when } j = k \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $\{\varphi_1, \ldots, \varphi_n\}$ is a basis for $\mathcal{L}(V, \mathbb{K})$.

The proof Lemma 3D.8 might be useful to you.

Problem 2. Give an example of two 2×2 matrices A and B for which $AB \neq BA$.

Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then $AB = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$

Problem 3. Recall that the Fibonacci sequence $\{F_n\} = \{0, 1, 1, 2, 3, 5, 8, 13, \ldots\}$ is recursively-defined:

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Prove that, for all $n \geq 0$, the 3×3 matrix $A_n = \begin{pmatrix} F_n & F_{n+1} & F_{n+2} \\ F_{n+3} & F_{n+4} & F_{n+5} \\ F_{n+6} & F_{n+7} & F_{n+8} \end{pmatrix}$ formed by consecutive Fibonacci terms cannot have rank 3.

Challenge. Can you prove that A_n must always have rank 2?

Proof. To prove that the rank cannot be 3 it suffices to show that the nullity is always strictly greater then 0. So for any $n \in \mathbb{N}$ (0 is a natural number) we have $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \in \text{null} A_n$ this is shown as computing $A_n \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} F_n + F_{n+1} - F_{n+2} \\ F_{n+3} + F_{n+4} - F_{n+5} \\ F_{n+6} + F_{n+7} - F_{n+8} \end{bmatrix} = \begin{bmatrix} F_{n+2} - F_{n-2} \\ F_{n+5} - F_{n+5} \\ F_{n+8} - F_{n+8} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$ As we have the null space is a vector space and Span($\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$) = 1 and the Span($\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$)

is a subspace of $\operatorname{null} A_n$ then we have $3 \ge \operatorname{nullity} \ge 1$ by the fundamental theorem of linear algebra we get $\operatorname{rank} A_n = 3$

Problem 4. Let $\mathbb{K}^{m,n}$ and $\mathbb{K}^{n,m}$ denote the vector spaces of $m \times n$ and $n \times m$, respectively. Prove or disprove the following

$$T: \mathbb{K}^{m,n} \to \mathbb{K}^{n,m}$$
$$T(A) = A^t$$

is a linear map.

Proof. First to show scalar multiplication. Let $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^{m,n}$ then we have $T(\lambda A) = (\lambda A)^t = \lambda A^t = \lambda T(A)$. Now let $A, B \in \mathbb{K}^{m,n}$ then $T(A+B) = (A+B)^t = A^t + B^t = T(A) + T(B)$ hence we have T is linear.

Problem 5. Give an example of linear maps $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ and $S \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ for which exactly one of TS or ST is invertible.