Analyzing the Ringelmann Effect with the Repeated Measures ANOVA

Nikolas Höft Constantin Meyer-Grant Joachim Munch Quang Nguyen Duc Frederik Schreck

Statistical Programming Languages Humboldt-Universität zu Berlin

The Ringelmann Effect

- Maximilian Ringelmann (1861-1931):
 - ► French professor of agricultural ingeneering
- Work performance depends of number of group size
- Decreasing individual performance with increasing group size

Overview

- The Ringelmann Effect can be investigated with an experimental design
 - Dependent Variable: Indivual performance
 - Independent Variable / Factor: Group size
 - Realization of different factor levels
- For our purpose: Data simulation Q Quantlet Data Simulation

The Ringelmann Effect

- The Ringelmann Effect can be investigated with an experimental design
 - Dependent Variable: Indivual performance
 - Independent Variable / Factor: Group size
 - Realization of different factor levels

The Ringelmann Effect

Figure 1: Include a short, but meaningful caption.

The Repeated Measures ANOVA: The ANOVA model

- ANOVA: Analysis of Variance
- \Box Comparison of the k factor level means

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

$$H_1: \exists i \neq j: \mu_i \neq \mu_j$$

The Repeated Measures ANOVA: An Advantegeous Model

- Problem: In case of large variance between different subjects
 ⇒ High error variance ⇒ Loss of power in F-Test
- □ Repeated Measures ANOVA considers the between subject variance separately
 - \Rightarrow Relatively low error variance \Rightarrow Gain of power in F-Test
 - Reduction of error variance

The Repeated Measures ANOVA: An Advantegeous Model

Figure 2: Include a short, but meaningful caption.

The Repeated Measures ANOVA: An Advantegeous Model

 Design Requirement: Each subject hast to be measured under all factor levels

Title	Title
2.13	1.45
3.14	6.85

Table 1: Example Data Matrix

Table

The Repeated Measures ANOVA: Confidence Intervals

The Repeated Measures ANOVA: Confidence Intervals

Figure 3: Include a short, but meaningful caption.

The Repeated Measures ANOVA: Effect Size Measures

- $ightharpoonup \eta^2$
- $\rightarrow \eta_p^2$

Table

An Important Requirement

- Sphericity: The variance of differences are equal for each pair of factor levels
- $oxed{oxed}$ Measurement of sphericity $(\epsilon \in [0,1])$:
- ▶ Greenhouse & Geisser: ϵ_{GG}
- \blacktriangleright Box: ϵ_B
- lacksquare Huynh & Feldt: ϵ_{HF}
- These can be used to correct the degrees of freedom and therefore adjust the p-values if sphericity is violated

