Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 5 (6.11.2023 - 10.11.2023)

Aufgabe 1:

Welche der folgenden Funktionen f sind injektiv, surjektiv oder bijektiv? Bilden Sie für die bijektiven Funktionen auch die Umkehrfunktion.

- (a) $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = ax + b, $(a, b \in \mathbb{R}, a \neq 0)$ Was ist, wenn a = 0?
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = y + x^2$

(c)
$$f:[0,2\pi] \to \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\} \text{ mit } f(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

- (d) $f: \mathbb{Z} \to \mathbb{Z}$ mit f(x) = |x|
- (e) $f: \mathbb{N} \to \mathbb{N}$ mit f(x) = |x|
- (f) $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \sin x$
- (g) $f: \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\} \to \mathbb{R} \text{ mit } f(x) = \tan x$

Aufgabe 2:

(*) Welche der folgenden Tabellen definieren Funktionen der links stehenden Größen auf die rechts stehenden Größen?

	b		ι	b	a	b
	1.3	1.	0	1.0	1.0	1.0
	7.4	1.	4	1.4	1.4	
3	5.2	1.	4	1.4	1.4	1.5
	5.2	1.	5	1.2	1.5	1.2
5	5.2	1.	7	1.8	1.7	1.8

Aufgabe 3:

- (*) Welche der folgenden Funktionen sind injektiv? Bilden Sie für die als injektiv erkannten Funktionen jeweils die Umkehrfunktion - gegebenenfalls unter Einschränkung des Wertebereichs.
- (a) $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 12x^4 x^2$
- (b) $g: \mathbb{R} \to \mathbb{R}$ mit g(x) = 3x + 8
- (c) $h: \mathbb{R} \to \mathbb{R}$ mit $h(x) = e^x$
- (d) $l:(0,\infty)\to\mathbb{R}$ mit $l(x)=\log_2 x$

Aufgabe 4:

Zeigen Sie, dass die Mengen \mathbb{N} und \mathbb{Z} gleichmächtig sind.

Aufgabe 5:

- (*) Berechnen Sie die folgenden Summen und Produkte:
- (a) $\sum_{k=1}^{5} \frac{1}{k}$, (b) $\sum_{k=1}^{5} \frac{1}{6-k}$, (c) $\sum_{k=0}^{3} \frac{1}{2}$, (d) $\prod_{k=1}^{n} 2$, (e) $\prod_{k=1}^{4} k$.

Aufgabe 6:

(*) Sei $f: \mathbb{N} \to \mathbb{R}$ eine Funktion. Zeigen Sie: Für alle $n \in \mathbb{N}$ gilt: $\sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} f(n+1-k)$.

Aufgabe 7:

Beweisen Sie durch vollständige Induktion:

- (a) Für alle $n \in \mathbb{N}$ gilt $\sum_{k=1}^{n} (2k-1) = n^2$.
- (b) Für alle $n \in \mathbb{N}$ gilt $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$.
- (c) Für alle $n \in \mathbb{N}$ mit $n \ge 4$ gilt $2^n \ge n^2$.
- (d) Für alle $n \in \mathbb{N}$ mit $n \geq 2$ gilt: $n^3 n$ ist durch 6 teilbar. Zeigen Sie diese Aussage zusätzlich auf direktem Weg.

Aufgabe 8:

Für $n \in \mathbb{N} \cup \{0\}$ definiert man

$$n! = \begin{cases} 1 & \text{für } n = 0\\ \prod_{k=1}^{n} k & \text{sonst} \end{cases}.$$

Zeigen Sie, dass es für alle $n \in \mathbb{N}$ genau n! verschiedene Möglichkeiten gibt, die ersten n natürlichen Zahlen 1, ..., n hintereinander zu schreiben.