Enhancing Imaging Resolution and Depth with Adaptive Optics Focal Modulation Two-Photon Microscopy

Andrew Chen

Introduction

Photo source: Google Images

Image is distorted due to aberrations from rain

Photo source: Google Images

Image far away is lost due to absorption and scattering through fog

Image quality is determined by the aberrations and scattering in the optical path

Issues and Challenges

Picture source: UCSC

Deep tissue imaging is critical for scientific discovery and real-time monitoring of drug delivery and medical treatment

In 2014, Eric Betzig, Stefan Hell, and William Moerner won the Nobel Prize for their pioneer research in optical microscopy for bio-imaging

- Biological tissues introduce both aberrations and scattering
- If background noise from scattering is stronger than the signal of the biological sample itself, no structure is observed.
- Scattering increases with increasing depths

Theory and Hypothesis

- Optical wavefront can be described by an electromagnetic wave
- When the illumination light is modulated with certain frequency, the resulting image is also modulated with the same frequency
- The random scattered light is not modulated.
- By separating the oscillatory signal from the nonoscillatory component, the background noise is effectively eliminated

Prior Art – Focal Modulation

- Focal modulation microscopy was developed to suppress the background noise
- Piezoelectric actuator was used to modulate the optical path length by moving the mirror

Adaptive Optics Focal Modulation Two-Photon Microscopy (AOFMTPM)

Proposed method:

- Modulate phase at the focal point instead of modulating focal distance
- Apply spatial time-dependent phase modulation with the deformable mirror in additional to aberration correction

$$P_{mod}(x, y, z_0, t) = A(t) \frac{2r\theta}{R}$$

where R is the aperture size of the DM,

$$\theta = \arctan\left(\frac{y}{x}\right), \ r = \sqrt{x^2 + y^2} \text{ and}$$

$$A(t) = \begin{cases} t, 0 < t \le 0.5\\ 1 - t, 0.5 < t \le 1 \end{cases}$$

where t is the modulation time in seconds

Experimental Setup

X. Tao, A. Norton, M. Kissel, O. Azucena, and J. Kubby, "Adaptive optical two-photon microscopy using autofluorescent guide stars", Opt. Lett., **38**(23), 5075-5078, (2013)

Voltages were applied to actuators of the deformable mirror to shape the membrane to generate desired phase correction

- Proof-of-concept experiments were performed using the Adaptive Optics Two-Photon Microscope developed by Tao and Kubby in 2013
- Tao and Kubby used a deformable mirror to correct the aberrations real-time to improve imaging resolution of live tissues with adaptive optics two-photon microscope
- I used a deformable mirror to provide additional phase modulation in my experiment

Image Acquisition

- Artificial tissue sample (1 μm fluorescent microbeads in 5% agarose gel) was imaged from the depth of 200 μm to 600 μm
- 10 image frames were taken in a 1 second period at each depth with phase modulation
- Each image consisted of 512 x 512 pixels

Images at 200 µm

- Ten images were acquired at the time interval of 0.1 seconds from (a) to (j) at the depth of 200 μ m with time-dependent phase modulation
- As more aberrations were applied from (a) to (f), images got more blurry
- Applied aberrations were reduced from (f) to (j), and one full cycle of image acquisition was completed

Images at 500 µm

- Images of the microbeads are blurrier compared to those at 200 μm
- Background and random noises were more severe when imaging deeper into the tissue

Image Processing

Intensity

- Fast Fourier Transforms were performed on the images
- The first AC component, associated with the sampling frequency, was saved.
 The DC component and high-order AC components were eliminated
- This process removed the undesirable out-of-focus fluorescent background and scattering noises
- Several processing algorithms were developed in MATLAB, C++, and finally in CUDA, which enabled parallel processing to increase image analysis speed

Imaging results at 200 μm

- The out-of-focus fluorescent noise in the highlighted areas was almost completely removed after applying AOFMTPM
- Random background noise was suppressed
- Final image was much sharper
- The full width at half maximum (FWHM) for imaged beads was reduced to about half

Imaging results at 500 μm

- Random background was effectively suppressed with AOFMTPM at 500 μm
- The signal-to-noise ratio was improved by 7 dB
- The ratio of the FWHM without and with AOFMTPM is about 2.1 for ten beads
- Resolution is effectively doubled

Conclusions

- Successfully developed and experimentally demonstrated a novel microscopy method to enhance imaging resolution and imaging depth through a highly scattering medium.
- By introducing spatial time-variant phase modulation at the focal plane of a two-photon microscope with adaptive optics, the background fluorescence and scattering noises were effectively suppressed.
- Developed a fast algorithm with CUDA to separate the desired science signal from background noise. Imaging process time was reduced from 15 seconds to 0.5 seconds.
- Lateral resolution was doubled and signal-to-noise ratio was improved by 7dB at the depth of 500 μm.
- Fluorescent microbeads up to a depth of 600 μm were successfully measured in an artificial tissue sample.

Future works

- Investigate the phase modulation functions and find the function which optimizes the signal-to-noise ratio and provides the best image
- Explore the depth limitation of this method with biological tissues
- Further improve the speed of data acquisition and data analysis for real-time imaging of a live tissue, possibility for video
- Develop a 3D reconstruction tool for a 3D illustration of the tissue sample

References

- 1) Nobelprize.org, http://www.nobelprize.org/nobel-prizes/chemistry/laureates/2014.
- 2) "Optical and Digital Image Processing", G. Cristobal, P. Schelkens, and H. Thienpont, Wiley, (2011).
- 3) A. Roorda, F. Boria, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy", Opt. Express **10**(9), 405-412, (2002).
- 4) X. Tao, Z. Dean, C. Chien, O. Azucena, D. Bodington and J. Kubby, "Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars", Opt. Express **21**(25), 31282-31292 (2013).
- 5) X. Tao, A. Norton, M. Kissel, O. Azucena, and J. Kubby, "Adaptive optical two-photon microscopy using autofluorescent guide stars", Opt. Lett., **38**(23), 5075-5078, (2013).
- 6) C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, "Focusing through dynamic scattering media," Opt. Express **20**(14), 15086–15092 (2012).
- 7) M. Cui, "A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media," Opt. Express **19**(4), 2989–2995 (2011).
- 8) A. Leray, K. Lillis, and J. Mertz, "Enhanced background rejections in thick tissue with differential-aberration two-photon microscopy", Bio. Phy. J., 94, 1449-1458 (2008).
- 9) D. Conkey, A. Caravaca-Aguirra, and E. Piestun, "High-speed scattering medium characterization with application to focusing light through turbid media", Opt. Express **20**(2), 1733-1740 (2012).
- 10) N. Chen, C. Wong, and C. Sheppard, "Focal modulation microscopy", Opt. Express **16** (23), 18747-18769 (2008).
- 11) W. Denk, J.H. Strickler and W.W. Webb, "Two-photon laser scanning fluorescence microscopy", *Science* 248, 73–76 (1990).
- 12) J. Goodman, "Introduction to Fourier Optics", Roberts & Company Publishers, (2005).

Acknowledgements

- National Science Foundation Center for Adaptive Optics
- W.M. Keck Center for Adaptive Optical Microscopy
- Prof. Joel Kubby and Dr. Xiaodong Tao for technical guidance and support
- My high school teacher Dr. Lazar and high school principal and counselor for their encouragement

Thank you!