Chapter 4

Curs 4

4.1 Valoarea medie a unei variabile aleatoare

4.1.1 Definiția integralei

Considerăm μ o măsură σ -finită¹ definită pe un spațiu măsurabil (Ω, \mathcal{F}) . Construcția integralei $\int_{\Omega} f d\mu$ se poate face constructiv, definind integrala în următoarele etape:

1. Integrala funcțiilor simple

O funcție $\varphi:\Omega\to\mathbb{R}$ se numește **simplă** dacă se poate scrie sub forma

$$\varphi = \sum_{i=1}^{n} a_i 1_{A_i},\tag{4.1}$$

unde $n \geq 1, a_1, \ldots, a_n \in \mathbb{R}$ și $A_1, \ldots, A_n \in \mathcal{F}$ sunt mulțimi disjuncte cu $\mu(A_i) < +\infty, i = 1, \ldots, n.$

Se definește în acest caz

$$\int \varphi d\mu := \sum_{i=1}^{n} a_{i} \mu \left(A_{i} \right),$$

și se arată că definiția este consistentă (nu depinde de reprezentarea lui φ sub forma (4.1), această reprezentare nefiind unică).

Se demonstrează apoi că integrala astfel definită (pentru functii simple) are proprietățile așteptate, adică are loc:

Lema 4.1.1 Fie φ şi ψ funcții simple.

¹Măsura μ este prin definiție σ -finită dacă există mulțimile A_1, A_2, \ldots cu $\mu(A_i) < +\infty$, $i=1,2,\ldots$ astfel încât $\Omega = \cup_{i\geq 1} A_i$. În particular, această condiție este îndeplinită dacă măsura μ este finită, adică dacă $\mu(\Omega) < +\infty$.

- (a) (Monotonia) Dacă $\varphi \leq \psi$ a.p.t. (în raport cu μ) atunci $\int \varphi d\mu \leq \int \psi d\mu$.
- (b) (Aditivitatea) $\int \varphi + \psi d\mu = \int \varphi d\mu + \int \psi d\mu$.
- (c) (Omogenitatea) $\int a\varphi d\mu = a \int \varphi d\mu$, oricare ar fi $a \in \mathbb{R}$.
- (d) (Egalitatea) Daca $\varphi = \psi$ a.p.t., atunci $\int \varphi d\mu = \int \psi d\mu$.
- 2. Integrala funcțiilor mărginite definite pe mulțimi de măsură finită Se consideră $f: \Omega \to \mathbb{R}$ cu proprietatea că există $M \in \mathbb{R}$ și $F \in \mathcal{F}$ cu $\mu(F) < +\infty$ astfel încât f(x) = 0 oricare ar fi $x \in F^c$ și

$$|f(x)| \le M, \qquad x \in \Omega.$$

Folosind definiția funcțiilor simple, se arată că în acest caz

$$\sup_{\substack{\varphi \leq f \\ \varphi - fct. \ simpl\check{a}}} \int \varphi d\mu = \inf_{\substack{f \leq \psi \\ \psi - fct. \ simpl\check{a}}} \int \psi d\mu,$$

și se definește

$$\int f d\mu := \sup_{\substack{\varphi \leq f \\ \varphi - fct. \ simpl a}} \int \varphi d\mu = \inf_{\substack{f \leq \psi \\ \psi - fct. \ simpl a}} \int \psi d\mu.$$

Se demonstrează că pentru integrala astfel definită, au loc propreitățile:

Lema 4.1.2 Fie $f, g: \Omega \to \mathbb{R}$ funcții mărginite, astfel încât există $F \in \mathcal{F}$ cu $\mu(F) < +\infty$ pentru care f(x) = g(x) = 0, oricare ar fi $x \in F^c$.

- (a) (Monotonia) Dacă $f \leq g$ a.p.t. (în raport cu μ) atunci $\int f d\mu \leq \int g d\mu$.
- (b) (Aditivitatea) $\int f + q d\mu = \int f d\mu + \int q d\mu$.
- (c) (Omogenitatea) $\int afd\mu = a \int fd\mu$, oricare ar fi $a \in \mathbb{R}$.
- (d) (Egalitatea) Daca f = g a.p.t., atunci $\int \varphi d\mu = \int \psi d\mu$.
- 3. Integrala funcțiilor ne-negative

Dacă $f: \Omega \to [0, +\infty)$ este o funcție ne-negativă, se definește

$$\int f d\mu := \sup \left\{ \int h d\mu : 0 \le h \le f, \ h \text{ bounded } \text{\Si μ} \left(\left\{ x \in \mathbb{R} : h \left(x \ne 0 \right) \right\} \right) < +\infty \right\}.$$

Se demonstrează că pentru integrala astfel definită, au loc propreitățile:

Lema 4.1.3 Fie $f, g: \Omega \to [0, +\infty)$ funcții ne-negtive.

- (a) (Monotonia) Dacă $f \leq g$ a.p.t. (în raport cu μ) atunci $\int f d\mu \leq \int g d\mu$.
- (b) (Aditivitatea) $\int f + g d\mu = \int f d\mu + \int g d\mu$.
- (c) (Omogenitatea) $\int afd\mu = a \int fd\mu$, oricare ar fi a > 0.
- (d) (Egalitatea) Daca f = g a.p.t., atunci $\int \varphi d\mu = \int \psi d\mu$.
- 4. Integrala funcțiilor integrabile

Dată fiind o funcție $f: \Omega \to \mathbb{R}$, se notează $f^+ = \max\{f, 0\}$ partea pozitivă a lui f, respectiv $f^- = \max\{-f, 0\}$ partea negativă a lui f.

Spunem că funcția f este integrabilă dacă $\int |f| d\mu < +\infty$ (sau echivalent $\int f^+ d\mu$, $\int f^- d\mu < +\infty$), și în acest caz definim integrala lui f prin

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu.$$

Se demonstrează că pentru integrala astfel definită, au loc proprietățile:

Teorema 4.1.4 (Proprietățile integralei) Fie $f, g: \Omega \to \mathbb{R}$ funcții integrabile.

- (a) (Monotonia) Dacă $f \leq g$ a.p.t. (în raport cu μ) atunci $\int f d\mu \leq \int g d\mu$.
- (b) (Aditivitatea) $\int f + g d\mu = \int f d\mu + \int g d\mu$.
- (c) (Omogenitatea) $\int afd\mu = a \int fd\mu$, oricare ar fi $a \in \mathbb{R}$.
- (d) (Egalitatea) Daca f = g a.p.t., atunci $\int \varphi d\mu = \int \psi d\mu$.

Demonstrație. Exercițiu.

4.1.2 Valoarea așteptată a unei variabile aleatoare

Considerăm (Ω, \mathcal{F}, P) un spațiu de probabilitate fixat.

Definiția 4.1.5 Dată fiind variabila aleatoare $X: \Omega \to \mathbb{R}$, pentru care cel puțin una din valorile $\int X^+ dP$ sau $\int X^- dP$ sunt finite, definim valoarea așteptată / valoarea medie / media variabilei aleatoare X prin

$$M(X) := \int XdP = \int X^{+}dP - \int X^{-}dP \in [-\infty, +\infty].$$

Dacă în plus media $M(X) \in (-\infty, +\infty)$ este finită, spunem că X este o variabilă aleatoare integrabilă / cu medie finită.

Pentru un eveniment $f \in \mathcal{F}$, vom nota

$$M(X;F) := M(X \cdot 1_F) = \int X \cdot 1_F dP = \int_F X dP,$$

 $media\ variabilei\ aleatoare\ X\ pe\ mulțimea\ F.$

Fiind definită prin valoarea unei integrale, rezultă că valoarea așteptată are proprietățile acesteia, adică are loc:

Teorema 4.1.6 (Proprietățile mediei) Dacă X, Y sunt variabile aleatoare integrabile, atunci au loc:

- 1. (Monotonia) Dacă $X \le Y$ atunci $M(X) \le M(Y)$.
- 2. (Aditivitatea) M(X + Y) = M(X) + M(Y).
- 3. (Omogenitatea)M(aX) = aM(X), oricare ar fi $a \in \mathbb{R}$.
- 4. (Egalitatea) Dacă X = Y a.s., atunci M(X) = M(Y).

Demonstrație. Rezultă din definiția mediei folosind Teorema 4.1.4. ■ Următoarea teoremă conține câteva inegalități importante referitoare la me-

Teorema 4.1.7 Fie $X, Y : \Omega \to \mathbb{R}$ variabile aleatoare integrabile.

1. (Inegalitatea lui Jensen) Dacă $\varphi : \mathbb{R} \to \mathbb{R}$ este o funcție convexă pentru care există și este finită media $M(\varphi(X))$, atunci

$$\varphi(M(X)) \leq M(\varphi(X))$$
.

2. (Inegalitatea lui Hölder) Pentru orice $p,q\in [1,+\infty)$ cu 1/p+1/q=1 are loc

$$M(|XY|) \le (M(|X|^p))^{1/p} (M(|Y|^q))^{1/q}$$
.

3. (Inegalitatea lui Cebâşev)Dacă $\varphi : \mathbb{R} \to [0, +\infty)$ atunci oricare ar fi $F \in \mathcal{F}$ are loc

$$P\left(X \in F\right) \inf_{x \in F} \varphi\left(x\right) \le M\left(\varphi\left(X\right); X^{-1}\left(F\right)\right) \le M\left(\varphi\left(X\right)\right).$$

În particular,

dia unei variabile aleatoare.

$$P(|X| \ge a) \le \frac{M(X^2)}{a^2}, \quad a > 0.$$

Demonstrație. 1). Cum φ este presupusă convexă, se poate arăta că oricare ar fi $x \in \mathbb{R}$ există $c \in \mathbb{R}$ astfel încât

$$\varphi(y) \ge \varphi(x) + c(y - x), \quad y \in \mathbb{R}.$$

În particular, pentru x = M(X) și $y = X(\omega)$, avem

$$\varphi(X(\omega)) > \varphi(M(X)) + c(X(\omega) + M(X)), \qquad \omega \in \Omega.$$

și deci

$$\begin{array}{ll} M\left(\varphi\left(X\right)\right) & \geq & M\left(\varphi\left(M\left(X\right)\right) + c\left(X - M\left(X\right)\right)\right) \\ & = & M\left(\varphi\left(M\left(X\right)\right)\right) + c\left(M\left(X\right) - M\left(M\left(X\right)\right)\right) \\ & = & M\left(\varphi\left(M\left(X\right)\right)\right) + c\left(M\left(X\right) - M\left(X\right)\right) \\ & = & M\left(\varphi\left(M\left(X\right)\right)\right). \end{array}$$

2) Fie $1 < p,q < +\infty$ cu1/p + 1/q = 1.

Dacă $M(|X|^p)=0$ sau $M(|Y|^q)=0$, atunci X=0 a.s. sau Y=0 a.s., şi deci XY=0 a.s. şi are loc egalitatea.

Dacă $M(|X|^p) = 0$ și $M(|Y|^q) = 0$, atunci folosind inegalitatea lui Young

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}, \qquad a, b \ge 0,$$

obţinem

$$M\left(\frac{X}{(M(|X|^{p}))^{1/p}}\frac{Y}{(M(|Y|^{q}))^{1/q}}\right)$$

$$\leq \frac{1}{p}M\left(\left(\frac{X}{(M(|X|^{p}))^{1/p}}\right)^{p}\right) + \frac{1}{q}M\left(\left(\frac{Y}{(M(|Y|^{q}))^{1/q}}\right)^{q}\right)$$

$$= \frac{1}{p}\frac{M(X^{p})}{M(X^{p})} + \frac{1}{q}\frac{M(Y^{q})}{M(Y^{q})}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1,$$

de unde eliminând numitorii se obține egalitatea din enunț.

3) Rezultă din monotonia integralei folosind dubla inegalitate

$$1_{\left\{X \in F\right\}} \inf_{x \in F} \varphi\left(x\right) \le \varphi\left(X\right) 1_{\left\{X \in F\right\}} \le \varphi\left(X\right).$$

Ultima parte a enunțului rezultă considerând cazul particular $\varphi(x) = x^2$ și $F = \{|X| \ge a\}, a \in \mathbb{R}$ fixat.

Următoarea teoremă conține rezultate trei rezultate importante privind trecerea la limită în valorii medii:

Teorema 4.1.8 Fie $(X_n)_{n>1}$ un şir de variabile aleatoare.

1. (Teorema convergenței monotone) Dacă $0 \le X_1 \le X_2 \le \dots$ un şir crescător de variabile aleatoare ne-negative. Atunci $X = \lim_{n\to\infty} X_n$ este o variabilă aleatoare și are loc

$$\lim_{n\to\infty}M\left(X_{n}\right)=M\left(X\right).$$

2. (Lema Fatou) Dacă $X_n \ge 0$ sunt variabile aleatoare ne-negative, atunci

$$M\left(\liminf X_n\right) \leq \liminf M\left(X_n\right)$$
.

3. (Teorema convergenței dominate) Dacă $X_n \to X$ a.s. și există o variabilă aleatoare integrabilă Y astfel încât $|X_n| \le Y$ pentru orice $n \ge 1$, atunci X este o variabilă aleatoare integrabilă și are loc

$$\lim_{n\to\infty} E\left(X_n\right) = E\left(X\right).$$

Demonstrație. 1) Cum șirul X_n este crescător, $X = \lim_{n\to\infty} X_n = \sup_{n\geq 1} X_n$ este o funcție măsurbailă. De asemenea, din monotonia integralei rezultă $M(X_1) \leq M(X_2) \leq \ldots \leq M(X)$, și deci

$$\lim_{n\to\infty} M\left(X_n\right) \le M\left(X\right).$$

Fie $\alpha \in (0,1)$ arbitrar fixat și $0 \leq \varphi \leq X$ o variabilă aleatoare simplă. Considerăm evenimentele $A_k = \{\omega \in \Omega : X_n(\omega) \geq \alpha \varphi(\omega)\} \in \mathcal{F}$, și observăm că șirul X_n fiind crescător la X, A_n formează un șir crescător de evenimente, cu $\bigcup_{n\geq 1} A_n = \Omega$ (deoarece $\lim_{n\to\infty} X_n(\omega) = X(\omega) \geq \varphi(\omega) > \alpha \varphi(\omega)$, oricare ar fi $\omega \in \Omega$ cu $\varphi(\omega) \neq 0$).

Avem

$$M(X_n) > M(X_n; A_n) > M(\alpha \varphi; A_n) = \alpha M(\varphi; A_n), \quad n > 1,$$

de unde trecând la limită obținem

$$\lim_{n\to\infty} M\left(X_{n}\right) \geq \alpha \lim_{n\to\infty} M\left(\varphi; A_{n}\right) = \alpha M\left(\varphi\right).$$

Trecând la supremum cu $0 \le \varphi \le f$, din definiția integrabilității obținem că X este integrabilă și avem

$$\lim_{n\to\infty}M\left(X_{n}\right)\geq\alpha M\left(X\right),$$

și cum $\alpha \in (0,1)$ este arbitrar, obținem inegalitatea contrară $\lim_{n\to\infty} M(X_n) \ge M(X)$, și deci

$$\lim_{n\to\infty}M\left(X_{n}\right)=M\left(X\right).$$

2) Fie $f = \liminf X_n = \sup_{n \ge 1} \inf_{k \ge n} X_k = \sup_{n \ge 1} Y_n$, unde $Y_n = \inf_{k \ge n} X_n$ este un şir crescător de variabile aleatoare ne-negative. Din teorema convergenței monotone obținem

$$M(X) = M\left(\lim_{n\to\infty} Y_n\right) = \lim_{n\to\infty} M(Y_n) \le \liminf M(X_n),$$

deoarece $Y_n = \inf_{k \ge n} X_k \le X_n$.

3) Să observăm că deoarece $X = \lim_{n \to \infty} X_n = \sup_{n \ge 1} \inf_{k \ge n} X_k$, X este de asemenea o variabilă aleatoare.

De asemenea, din ipoteză avem $|X_n| \leq Y$, sau echivalent $-Y \leq X_n \leq Y$. Deoarece $X_n + Y \geq 0$, din lema Fatou obținem

$$M\left(\liminf (Y + X_n)\right) \le \liminf M\left(Y + X_n\right)$$
,

şi deci obţinem M (lim inf X_n) \leq lim inf M (X_n). Similar, deoarece $Y-X_n\geq 0$, tot din lema Fatou obţinem

$$M\left(\liminf (Y - X_n)\right) < \liminf M\left(Y - X_n\right)$$

şi deci $\limsup M(X_n) \leq M(\limsup X_n)$. Am obţinut

$$M(\liminf X_n) \le \liminf M(X_n) \le \limsup M(X_n) \le M(\limsup X_n)$$

și cum lim inf $X_n=\limsup X_n=\lim_{n\to\infty}X_n=X$, rezultă că variabila aleatoare X este integrabilă și avem

$$\lim_{n\to\infty} M(X_n) = M\left(\lim_{n\to\infty} X_n\right) = M(X).$$

Pentru calculul valorilor medii este utilă următoarea:

Teorema 4.1.9 Dacă X este o variabilă aleatoare şi $\varphi : \mathbb{R} \to \mathbb{R}$ o funcție măsurabilă pentru care există media $M(\varphi(X))$ $(f \ge 0 \text{ sau } M(|\varphi(X)|) < +\infty)$, atunci are loc

$$M\left(\varphi\left(X\right)\right) = \int_{\mathbb{R}} \varphi\left(x\right) \mu\left(dx\right),$$

unde $\mu = \mu_X$ este distribuția variabilei aleatoare X (definită prin $\mu(B) = P(X \in B), B \in \mathcal{B}$).

Dacă în plus variabila aleatoare X are o densitate de distribuție $f=f_X$, atunci are de asemenea loc

$$M\left(\varphi\left(X\right)\right) = \int_{\mathbb{R}} \varphi\left(x\right) f\left(x\right) dx.$$

EXERCIŢII

Exercițiul 4.1.1 Să se demonstreze că definiția integralei unei funcții simple nu depinde de alegerea reprezentării.

Exercițiul 4.1.2 Să se demonstreze proprietățile integralei (în cazul funcțiilor simple, a funcțiilor ne-negative, a funcțiilor mărginite definite pe mulțimi de măsură finită, respectiv în cazul general al funcțiilor integrabile).

Exercițiul 4.1.3 (Principiul includerii şi excluderii) Fie evenimentele $A_1, \ldots, A_n \in \mathcal{F}$ şi $A = \bigcup_{i=1}^n A_i$.

- 1. Să se arate că $1_A = 1 \prod_{i=1}^{n} (1 A_i)$
- 2. Să se demonstreze egalitatea

$$P(A) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$$

Exercițiul 4.1.4 (Inegalitățile lui Bonferroni) Fie evenimentele $A_1, \ldots, A_n \in \mathcal{F}$ $\S i \ A = \bigcup_{i=1}^n A_i$.

1. Să se arate că $1_A \leq \sum_{i=1}^n 1_{A_i}$ și să se deducă relația

$$P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right).$$

2. Similar, să se deducă relațiile

$$P(\cup_{i=1}^{n} A_{i}) \geq \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j})$$

$$P(\cup_{i=1}^{n} A_{i}) \leq \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k})$$

Exercițiul 4.1.5 Să se demonstreze că dacă X este o variabilă aleatoare integrabilă, atunci

$$|M(X)| < M(|X|)$$
.

Exercițiul 4.1.6 Să se arate că dacă $X \ge 0$ este o variabilă aleatoare integrabilă pe spațiul de probabilitate (Ω, \mathcal{F}, P) cu medie M(X) > 0, atunci

$$\mu(A) := \frac{1}{M(X)} M(X; A), \qquad A \in \mathcal{F}$$

este o măsură de probabilitate pe spațiul măsurabil (Ω, \mathcal{F}) .

Exercițiul 4.1.7 Să se arate că dacă $X \ge 0$ este o variabilă aleatoare integrabilă cu M(X) = 0, atunci X = 0 a.s. $(P(X \ne 0) = 0)$.

Exercițiul 4.1.8 Să se arate că dacă X este o variabilă aleatoare integrabilă $\S i \ A_n \in \mathcal{F} \ cu \ \lim_{n \to \infty} P(A_n) = 0, \ atunci$

$$\lim_{n \to \infty} M\left(X; A_n\right) = 0.$$

În particular, să se deducă relația

$$\lim_{n \to \infty} M\left(X; \{|X| > n\}\right) = 0.$$

Exercițiul 4.1.9 Să se demonstreze că pentru orice funcție de distribuție F si orice $a \ge 0$ are loc

$$\int_{-\infty}^{+\infty} F(x+a) - F(x) dx = a.$$

Indicație: se scrie $\int_{-\infty}^{+\infty} F(x+a) - F(x) dx = \int_{-\infty}^{+\infty} M\left(1_{\{x < X \le x+a\}}\right) dx$ și se folosește teorema Fubini (se poate schimba ordinea integrării - media este o integrală!).

Exercițiul 4.1.10 Să se arate că dacă X este o variabilă aleatoare pentru care $E\left(\left|X\right|^{n}\right)<+\infty$, atunci pentru orice $m\geq n$ are loc $E\left(\left|X\right|^{m}\right)<+\infty$ și în plus are loc inegalitatea

$$(M(|X|^n))^{1/n} \le (M(|X|^m))^{1/m}$$

Exercițiul 4.1.11 Fie $x_1, \ldots, x_n, p_1, \ldots, p_m > 0$ numere reale pozitive astfel încât $p_1 + \ldots + p_n = 1$. Să se aplice inegalitatea Jensen funcției $\varphi(x) = e^x$ și variabilei aleatoare discrete X cu $P(X = \ln x_i) = p_i$, $1 \le i \le n$, pentru a deduce ingalitatea:

$$\prod_{i=1}^{n} y_i^{p_i} \le \sum_{i=1}^{n} p_i y_i.$$

În particular, pentru $p_i = \frac{1}{n}$, să se deducă inegalitatea dintre media geometrică și cea aritmetică.

Exercițiul 4.1.12 Să se arate că dacă X este o variabilă aleatoare integrabilă $\S i \ A_n, \ n \geq 1$, sunt evenimente disjuncte a căror reuniune este $A = \bigcup_{i \geq 1} A_i$, atunci

$$\sum_{n=1}^{\infty} M(X; A_n) = M(X; A).$$

Exercițiul 4.1.13 Dacă $(X_n)_{n\geq 1}$ este un şir de variabile aleatoare, $X_n\geq 0$, $n\geq 1$, atunci

$$M\left(\sum_{n=1}^{\infty} X_n\right) = \sum_{n=1}^{\infty} M(X_n).$$

Exercițiul 4.1.14 Să se arate că pentru o variabilă aleatoare ne-negativă $X \geq 0$ are loc

$$M\left(X^{p}\right) = \int_{0}^{\infty} px^{p-1}P\left(X > x\right)dx.$$

Indicaţie: $\int_0^\infty px^{p-1}P\left(X>x\right)dx=\int_0^\infty px^{p-1}M\left(1_{\{X>x\}}\right)dx$ şi se foloseşte teorema Fubini.

Exercițiul 4.1.15 Să se arate că dacă $M(|X|^p) < +\infty \ (p > 0)$, atunci

$$\lim_{x \to \infty} x^p P\left(|X| > x\right) = 0.$$

Exercițiul 4.1.16 Să se arate că pentru o variabilă aleatoare ne-negativă $X \geq$ 0 are loc

$$\sum_{n=1}^{\infty} nP\left(n \le X < n+1\right) = \sum_{n=1}^{\infty} P\left(X \ge n\right)$$

Exercițiul 4.1.17 Să se arate că pentru o variabilă aleatoare ne-negativă $X \geq$ are loc

$$\sum_{n=1}^{\infty} P\left(X \ge n\right) \le M\left(X\right) \le 1 + \sum_{n=1}^{\infty} P\left(X \ge n\right),$$

și deci o variabilă aleatoare $X \geq 0$ este integrabilă dacă și numai dacă seria

 $\sum_{n=1}^{\infty} P\left(X \geq n\right) \text{ este convergentă.}$ $Indicație: M\left(X\right) = \sum_{n=0}^{\infty} M\left(X; A_n\right), \text{ unde } A_n = \{\omega \in \Omega : n \leq X < n+1\}$ si se folosește monotonia mediei.