

Markscheme

May 2021

Chemistry

Standard level

Paper 2

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject details: Chemistry standard level paper 2 markscheme

Candidates are required to answer **ALL** questions. Maximum total = **[50 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- **2.** The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- **5.** An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** *etc*. Either alternative can be accepted.
- **8.** Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are underlined are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- **12.** Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- 14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.

- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

C	uestic	on	Answers	Notes	Total
1.	а			Award [2] for correct final answer.	
			« $V = 5.55 \text{mol} \times 22.7 \text{dm}^3 \text{mol}^{-1} =$ » 126 «dm³» ✓	Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm ³) or 101.3 kPa (125 dm ³).	2
				Do not penalize use of 22.4 dm ³ mol ⁻¹ to obtain the volume (124 dm ³).	
1.	b		«∆ <i>H</i> =» (−635 «kJ» − 393.5 «kJ») − (−1207 «kJ») ✓	Award [2] for correct final answer.	
			«∆ <i>H</i> = + » 179 «kJ» ✓	Award [1 max] for –179 kJ.	
				Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol ⁻¹ x 5.55 mol = 993 kJ.	2
				Award [2] for an answer in the range 990 - 993« kJ».	

C	Questi	ion	Answers	Notes	Total
1.	C	i	Activation energy / Catalysed Progress of reaction lower activation energy curve between same reactant and product levels ✓	Accept curve with or without an intermediate. Accept a horizontal straight line below current line with the activation energy with catalyst/E _{cat} clearly labelled.	1
1.	С	ii	provides an alternative «reaction» pathway/mechanism ✓	Do not accept "lower activation energy" only.	1
1.	d	i	$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow 2H_2O(l) + CaCl_2(aq) \checkmark$		1

C	Questi	on	Answers	Notes	Total
1.	d	ii		Award [2] for correct final answer. Award [1 max] for 0.058 «dm³».	2
1.	d	iii	Alternative 1: $[OH^{-}] = \text{``} 2 \times 2.33 \times 10^{-2} \text{mol dm}^{-3} = \text{``} 0.0466 \text{``} \text{mol dm}^{-3} \text{``} \checkmark$ $\text{``} [H^{+}] = \frac{1.00 \times 10^{-14}}{0.0466} = 2.15 \times 10^{-13} \text{mol dm}^{-3} \text{``}$ $pH = \text{``} -\log(2.15 \times 10^{-13}) = \text{``} 12.668 \text{\'}$ $Alternative 2:$ $[OH^{-}] = \text{``} 2 \times 2.33 \times 10^{-2} \text{mol dm}^{-3} = \text{``} 0.0466 \text{``} \text{mol dm}^{-3} \text{``} \checkmark$ $\text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``}$ $\text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``}$ $\text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``}$ $\text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``} \text{``}$ $\text{``} \text{``} \text{``}$ $\text{``} \text{``} `$	Award [2] for correct final answer. Award [1 max] for pH =12.367.	2

C	Questi	on	Answers	Notes	Total
1.	e	i		Only award ECF for M2 if limiting reagent is used. Accept answers in the range 3.30 - 3.35 «g».	2
1.	е	ii	$\frac{2.85}{3.30} \times 100 = 86.4 \%$	Accept answers in the range 86.1-86.4 «%». Accept "71.3%" for using the incorrect given value of 4.00 g.	1
1.	f		«add» Ca(OH)₂/CaCO₃/CaO <i>AND</i> to «acidic» water/river/lake/soil <i>OR</i> «use» Ca(OH)₂/CaCO₃/CaO in scrubbers «to prevent release of acidic pollution» ✓	Accept any correct name for any of the calcium compounds listed.	1

	Questi	on	Answers	Notes	Total
2.	а	i	nuclear charge/number of protons/Z/Z _{eff} increases «causing a stronger pull on the outer electrons» ✓ same number of shells/«outer» energy level/shielding ✓		2
2.	а	ii	Na ⁺ has one less energy level/shell OR Na ⁺ has 2 energy levels/shells AND Na has 3 ✓ less shielding «in Na ⁺ so valence electrons attracted more strongly to nucleus» OR effective nuclear charge/Z _{eff} greater «in Na ⁺ so valence electrons attracted more strongly to nucleus» ✓	Accept "more protons than electrons «in Na ⁺ »" OR "less electron-electron repulsion «in Na ⁺ »" for M2.	2
2.	b	i	Cr: [Ar] 4s¹3d⁵ ✓ Cr³+: [Ar] 3d³ ✓	Accept "[Ar] 3d ⁵ 4s ¹ ". Accept "[Ar] 3d ³ 4s ⁰ ". Award [1 max] for two correct full electron configurations "1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ". Award [1 max] for 4s ¹ 3d ⁵ AND 3d ³ .	2

C	luesti	ion		Answers		Notes	Total
2.	b	ii	electrostatic a between «a la electrons ✓		o ions AND «a sea of» delocalized	Do not accept "nuclei" for "cations/positive ions" in M2. Accept "mobile/free" for "delocalized" electrons in M2.	
			OR	ons responsible for conductivity re when a voltage/potential differe	ence/electric field is applied ✓	Accept "electrons move when connected to a cell/battery/power supply" OR "electrons move when connected in a circuit" for M3.	3
2.	С		Species Lewis structure	SCl₂ ::Cl ::			2
			Molecular geometry	bent/V shaped/angular ✓			

C	Questio	Answers	Notes	Total
2.	d	H₂O forms hydrogen bonding «while SCl₂ does not» ✓ SCl₂ «much» stronger London/dispersion/«instantaneous» induced dipole- induced dipole forces ✓ Alternative 1: H₂O less volatile AND hydrogen bonding stronger «than dipole–dipole and dispersion forces» ✓ Alternative 2: SCl₂ less volatile AND effect of dispersion forces «could be» greater than hydrogen bonding ✓	Ignore reference to Van der Waals. Accept "SCl2 has «much» larger molar mass/electron density" for M2.	3
2.	е	pressure decrease «due to larger volume» ✓ reactant side has more moles/molecules «of gas» ✓ reaction shifts left/towards reactants ✓	Award M3 only if M1 OR M2 is awarded.	3

C	Questio	n Answers	Notes	Total
3.	a	Al/aluminium «electrode» <i>AND</i> aluminium nitrate/Al(NO₃)₃/Al³+ on left ✓ Sn/tin «electrode» <i>AND</i> tin«(II)» nitrate/Sn(NO₃)₂/Sn²+ on right ✓ salt bridge <i>AND</i> voltmeter/V/lightbulb ✓	Award [1] if M1 and M2 are reversed. Award [1] for two correctly labelled solutions OR two correctly labelled electrodes for M1 and M2. Accept a specific salt for "salt bridge". Accept other circuit components such as ammeter/A, fan, buzzer, resistor/heating element/R/Ω.	3
3.	b	$3Sn^{2+}(aq) + 2Al(s) \rightarrow 3Sn(s) + 2Al^{3+}(aq)$ <i>OR</i> $3Sn(NO_3)_2(aq) + 2Al(s) \rightarrow 3Sn(s) + 2Al(NO_3)_3(aq) \checkmark$	If half cells are reversed in part- question (a) then the equation must be reversed to award the mark. Do not penalize equilibrium arrows.	1

(Questio	n Answers	Notes	Total
4.	a	H-C-H H-C-H H-C-H H-C-H H-C-H H-C-H	Penalize missing hydrogens in displayed structural formulas once only. Accept condensed structural formulas: CH ₃ CH(OH)CH ₂ CH ₃ / CH ₃ CH ₂ CH ₂ CH ₃ or skeletal structures.	2
4.	b	Bonds broken: 2(C-C) + 1(C=C) + 8(C-H) + 6O=O / 2(346) + 1(614) + 8(414) + 6(498) / 7606 «kJ» ✓ Bonds formed: 8(C=O) + 8(O-H) / 8(804) + 8(463) / 10 136 «kJ» ✓ Enthalpy change: «Bonds broken – Bonds formed = 7606 kJ – 10 136 kJ =» –2530 «kJ» ✓	Award [3] for correct final answer. Award [2 max] for «+» 2530 «kJ».	3

C	Questi	on	Answers	Notes	Total
4.	С		Equation: CH₃CH₂OH + HCOOH ⇒ HCOOCH₂CH₃ + H₂O ✓ Product name: ethyl methanoate ✓	Accept equation without equilibrium arrows. Accept equation with molecular formulas $(C_2H_6O + CH_2O_2 \rightleftharpoons C_3H_6O_2 + H_2O)$ only if product name is correct.	2
4.	d		ethanal <i>AND</i> distillation ✓ ethanoic acid <i>AND</i> reflux «followed by distillation» ✓	Award [1 max] for both products OR both methods.	2
4.	е	i	m/z 58: molar/«relative» molecular mass/weight/M _r «is 58 g mol ⁻¹ /58» ✓ m/z 43: «loses» methyl/CH ₃ «fragment» OR COCH ₃ + «fragment» ✓	Do not penalize missing charge on the fragments. Accept molecular ion «peak»/ CH ₃ COCH ₃ +/C ₃ H ₆ O+. Accept any C ₂ H ₃ O+ fragment/ CH ₃ CH ₂ CH ₂ +/C ₃ H ₇ +.	2

C	Question		Answers	Notes	Total
4.	е	ii	C=O ✓	Accept carbonyl/C=C.	1
4.	е	iii	Information deduced from ¹H NMR: «one signal indicates» one hydrogen environment/symmetrical structure OR «chemical shift of 2.2 indicates» H on C next to carbonyl ✓ Compound: propanone/CH₃COCH₃ ✓	Accept "one type of hydrogen". O Accept R C C C H 2	2