Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network

W. Cai, Y. Chen, J. Guo, and others Aug 2019 Published by Elsevier Ltd

Objective:-

In AF, the electrical impulses of the atria are disorganized and unsynchronized with the ventricles. A normal waveform is composed of the P wave, QRS complex, and T wave. However, in an AF waveform, the P wave is replaced by many inconsistent fibrillatory waves (F waves) and R–R irregularities.

The proposed method constructed a novel one-dimensional deep densely connected neural network (DDNN) to detect AF in ECG waveforms with a length of 10s.

Fig. 1. Representations of a healthy heart and a heart with atrial fibrillation, a normal ECG waveform and an ECG waveform with atrial fibrillation (image adapted from Centers for Disease Control and Prevention) [22].

Table 1
Summary of the subjects and the ECG recordings.

Characteristics	n	
Number of ECG recordings	16,557	
Patient demographics		
Number of unique subjects	11,994	
Age, mean ± SD	57.0 ± 18.7	
Male, n ₁ /N ₁ (%)	5620/11,856 (47.4%)	
ECG rhythm diagnosis, n ₂ /N ₂ (%)		
Normal	5650/16,557 (34.1%)	
Atrial fibrillation	3353/16,557 (20.3%)	
Other	7554/16,557 (45.6%)	

 n_1 , number of males in total subject; N_1 , total subject (loss of gender information in some subjects); n_2 , number of subsamples; N_2 , total sample.

A large set of 16,557 12-lead ECG recordings collected from multiple hospitals and wearable ECG devices were used to evaluate the performance of the DDNN.

Preprocessing:-

- 1. All 12-lead ECG recordings were filtered by using a band-pass filter (0.5–35 Hz, an elliptical band-pass filter with filter order of 10) to remove baseline wander and high frequency components.
- 2. The ECG signal in each lead is normalized to address the problem of amplitude scaling and eliminate the offset effect.
- 3. All ECG recordings were divided into segments of 10 s.

Neural network architecture:-

- The neural network takes as input a 12-lead ECG waveform of 10s long (12 × 10 s, the 12 channels are fed in parallel) and outputs a label prediction of two (AF and normal, AF and non-AF) or three (AF, normal, and other) classes.
- A densely connected DDNN architecture is designed with four dense blocks (a total of 36 layers) and a growth rate of 6.
- The block sizes (the numbers of convolutional layers) of the four dense blocks are 2, 4, 6, and 4, respectively.

• Inspired by inception module in the GoogLeNet, the network starts with the filter concatenation module, which uses convolutions of different sizes in parallel to capture details at varied scales (1×8 , 1×16 , 1×24), and the other convolutional layers all have a filter length of 16.

- To improve the computational efficiency and model compactness, bottleneck (1×1 convolution) and transition layers (convolution and pooling, placed between two adjacent dense blocks) in the DDNN.
- Before the fully connected layer they applied global average pooling (GAP).

- The squeeze-and-excitation (SE) module was employed to improve the representational power of a network by enabling it to perform dynamic channel-wise feature recalibration.
- In the DDNN, the SE module was placed before each dense block and each transition layer.

Results:-

- The DDNN model consists of a total of 69,087 trainable parameters and only requires 0.6 MB of storage space.
- After training model from scratch on the 12-lead ECG training subset by adopting weight initialization and using Adam optimizer with the default parameters for a total of 60 epochs, the performance of the model is in following table:

Performance of the DDNN for binary and three-class classifications on test subset (means ± SDs).

Classification		Accuracy (%)	Sensitivity (%)	Specificity (%)	F ₁ score (%)
Binary	AF and Normal	99.35 ± 0.06	99.44 ± 0.06	99.19 ± 0.24	99.06 ± 00.09
	AF and Non-AF	98.21 ± 0.09	98.63 ± 0.28	97.04 ± 0.88	96.45 ± 00.12
Three-class	Normal	92.96 ± 0.28	93.18 ± 0.97	92.56 ± 1.05	90.86 ± 00.34
	AF	97.74 ± 0.30	98.38 ± 0.14	95.85 ± 0.89	95.36 ± 00.41
	Other	91.12 ± 0.18	94.12 ± 0.70	85.47 ± 2.13	85.90 ± 00.69

Non-AF, normal and other, the highest score is indicated in bold.

Conclusion:-

This method DDNN to detect AF from raw 12-lead ECG recordings can achieve promising performance. This new network is very suitable for automatic and accurate diagnosis of AF using 12-lead ECG.