Regular orbits of primitive groups on power sets

Hong Yi Huang

Group Theory Seminar, SUSTech

19 Febrary 2022

Outline

- O'Nan-Scott
- Some observations
- Minimal degrees
- Distinguishing numbers
- Applications (bases, 2-arc-transitive graphs)

Name	Description	Condition	8-type
Affine	$G = \mathbb{Z}_p^d : H \leqslant AGL_d(p), \ H \leqslant GL_d(p) \ irr.$		НА

Name	Description	Condition	8-type
Affine	$G = \mathbb{Z}_p^d : H \leqslant AGL_d(p), \ H \leqslant GL_d(p) \ irr.$		НА
Almost simple	$T \leqslant G \leqslant Aut(T)$, T simple		AS

Name	Description	Condition	8-type
Affine	$G = \mathbb{Z}_p^d$: $H \leqslant AGL_d(p)$, $H \leqslant GL_d(p)$ irr.		НА
Almost simple	$T \leqslant G \leqslant Aut(T)$, T simple		AS
Diagonal type	$T^k \leqslant G \leqslant T^k.(Out(T) \times P)$	k = 2, P = 1	HS
		P primitive	SD

Name	Description	Condition	8-type
Affine	$G = \mathbb{Z}_p^d : H \leqslant AGL_d(p), \ H \leqslant GL_d(p) \ irr.$		НА
Almost simple	$T \leqslant G \leqslant Aut(T)$, T simple		AS
Diagonal type	$T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$	k = 2, P = 1	HS
		P primitive	SD
Product type	$soc(L)^k \triangleleft G \leqslant L \wr P, P$ transitive	L is AS	PA
		L is HS	НС
		L is SD	CD

Name	Description	Condition	8-type
Affine	$G = \mathbb{Z}_p^d : H \leqslant AGL_d(p), \ H \leqslant GL_d(p) \ irr.$		НА
Almost simple	$T \leqslant G \leqslant Aut(T)$, T simple		AS
Diagonal type	$T^k \leqslant G \leqslant T^k.(Out(T) \times P)$	k = 2, P = 1	HS
		P primitive	SD
Product type	$soc(L)^k \leqslant G \leqslant L \wr P$, P transitive	L is AS	PA
		L is HS	НС
		L is SD	CD
Twisted wreath	$G = T^k:P, P$ transitive		TW

Description	Structure	Condition
Intransitive	$S_m \times S_k$	$m \neq k, m + k = n$

Description	Structure	Condition
Intransitive	$S_m \times S_k$	$m \neq k, m + k = n$
Imprimitive	$S_m \wr S_k$	$m, k \geqslant 2, mk = n$

Description	Structure	Condition
Intransitive	$S_m \times S_k$	$m \neq k, m + k = n$
Imprimitive	$S_m \wr S_k$	$m, k \geqslant 2, mk = n$
НА	$AGL_d(p)$	p prime, $p^d = n$

Description	Structure	Condition
Intransitive	$S_m \times S_k$	$m \neq k, m+k=n$
Imprimitive	$S_m \wr S_k$	$m, k \geqslant 2, mk = n$
НА	$AGL_d(p)$	p prime, $p^d = n$
SD	$T^k.(\operatorname{Out}(T) \times S_k)$	T simple, $ T ^{k-1} = n$

Description	Structure	Condition
Intransitive	$S_m \times S_k$	$m \neq k, m + k = n$
Imprimitive	$S_m \wr S_k$	$m, k \geqslant 2, mk = n$
НА	$AGL_d(p)$	p prime, $p^d = n$
SD	$T^k.(\operatorname{Out}(T) \times S_k)$	T simple, $ T ^{k-1} = n$
PA	$S_m \wr S_k$	$m \geqslant 5, k \geqslant 2, m^k = n$

Description	Structure	Condition
Intransitive	$S_m \times S_k$	$m \neq k, m + k = n$
Imprimitive	$S_m \wr S_k$	$m, k \geqslant 2, mk = n$
НА	$AGL_d(p)$	p prime, $p^d = n$
SD	$T^k.(\operatorname{Out}(T) \times S_k)$	T simple, $ T ^{k-1} = n$
PA	$S_m \wr S_k$	$m \geqslant 5, k \geqslant 2, m^k = n$
AS	G	G primitive on $\{1,\ldots,n\}$

Let $G \leqslant \mathsf{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

Examples

 \bullet $\mathsf{Sym}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 3$

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

- Sym(Ω) has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega| \geqslant 3$
- \bullet $\mathsf{Alt}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 4$

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

- \bullet $\mathsf{Sym}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 3$
- \bullet $\mathsf{Alt}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 4$
- G regular $\implies G_{\{\alpha\}} = 1 \implies \{\alpha\}$ is in a regular G-orbit

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

- \bullet $\mathsf{Sym}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 3$
- \bullet $\mathsf{Alt}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 4$
- ullet G regular \Longrightarrow $G_{\{lpha\}}=1$ \Longrightarrow $\{lpha\}$ is in a regular G-orbit
- D_{2n} has a regular orbit on $\mathcal{P}(\Omega) \iff n \geqslant 6$

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

- \bullet $\mathsf{Sym}(\Omega)$ has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 3$
- ullet Alt (Ω) has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 4$
- ullet G regular \Longrightarrow $G_{\{lpha\}}=1$ \Longrightarrow $\{lpha\}$ is in a regular G-orbit
- D_{2n} has a regular orbit on $\mathcal{P}(\Omega) \iff n \geqslant 6$

Let $G \leq \operatorname{Sym}(\Omega)$ and $\mathcal{P}(\Omega)$ be the power set of Ω .

Note. G has a regular orbit on $\mathcal{P}(\Omega) \iff \exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

- ullet Sym (Ω) has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 3$
- ullet Alt (Ω) has no regular orbit on $\mathcal{P}(\Omega)$ iff $|\Omega|\geqslant 4$
- ullet G regular \Longrightarrow $G_{\{lpha\}}=1$ \Longrightarrow $\{lpha\}$ is in a regular G-orbit
- D_{2n} has a regular orbit on $\mathcal{P}(\Omega) \iff n \geqslant 6$

Throughout, let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| = n$.

Question. Can we classify the primitive groups with regular orbits on $\mathcal{P}(\Omega)$?

Throughout, let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| = n$.

Question. Can we classify the primitive groups with regular orbits on $\mathcal{P}(\Omega)$?

Theorem (Cameron, Neumann & Saxl, 1984; Seress 1997)

Let G be primitive. Then one of the following holds.

- $G = \operatorname{Sym}(\Omega)$ or $\operatorname{Alt}(\Omega)$;
- G has a regular orbit on $\mathcal{P}(\Omega)$;
- G is one of the 43 exceptions of degree at most 32.

Throughout, let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| = n$.

Question. Can we classify the primitive groups with regular orbits on $\mathcal{P}(\Omega)$?

Theorem (Cameron, Neumann & Saxl, 1984; Seress 1997)

Let G be primitive. Then one of the following holds.

- $G = \operatorname{Sym}(\Omega)$ or $\operatorname{Alt}(\Omega)$;
- G has a regular orbit on $\mathcal{P}(\Omega)$;
- G is one of the 43 exceptions of degree at most 32.

Problem. Classify the primitive groups with unique regular orbit on $\mathcal{P}(\Omega)$.

Throughout, let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| = n$.

Question. Can we classify the primitive groups with regular orbits on $\mathcal{P}(\Omega)$?

Theorem (Cameron, Neumann & Saxl, 1984; Seress 1997)

Let G be primitive. Then one of the following holds.

- $G = \operatorname{Sym}(\Omega)$ or $\operatorname{Alt}(\Omega)$;
- G has a regular orbit on $\mathcal{P}(\Omega)$;
- *G* is one of the 43 exceptions of degree at most 32.

Problem. Classify the primitive groups with unique regular orbit on $\mathcal{P}(\Omega)$.

Theorem (Burness & H, 2022)

G primitive and has a unique regular orbit on $\mathcal{P}(\Omega) \iff G = S_2$.

Define $X = \{\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|\} \subseteq \mathcal{P}(\Omega)$.

Define $X = \{\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|\} \subseteq \mathcal{P}(\Omega)$.

Observation. G has a regular orbit on $X \implies G$ has at least 2 regular orbits on $\mathcal{P}(\Omega)$.

Define $X = {\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|} \subseteq \mathcal{P}(\Omega)$.

Observation. G has a regular orbit on $X \implies G$ has at least 2 regular orbits on $\mathcal{P}(\Omega)$.

This eliminates the cases where $|\Omega|$ is odd.

Define $X = {\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|} \subseteq \mathcal{P}(\Omega)$.

Observation. G has a regular orbit on $X \implies G$ has at least 2 regular orbits on $\mathcal{P}(\Omega)$.

This eliminates the cases where $|\Omega|$ is odd.

Seress 1997: If $G = S_m \wr S_k$ is a product type primitive group, then G has a regular orbit on X.

Define $X = {\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|} \subseteq \mathcal{P}(\Omega)$.

Observation. G has a regular orbit on $X \implies G$ has at least 2 regular orbits on $\mathcal{P}(\Omega)$.

This eliminates the cases where $|\Omega|$ is odd.

Seress 1997: If $G = S_m \wr S_k$ is a product type primitive group, then G has a regular orbit on X.

This eliminates PA, HC, CD and TW.

Define $X = \{\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|\} \subseteq \mathcal{P}(\Omega)$.

Observation. G has a regular orbit on $X \implies G$ has at least 2 regular orbits on $\mathcal{P}(\Omega)$.

This eliminates the cases where $|\Omega|$ is odd.

Seress 1997: If $G = S_m \wr S_k$ is a product type primitive group, then G has a regular orbit on X.

This eliminates PA, HC, CD and TW.

Stirling's approximation:

$$\sqrt{2\pi m} \left(\frac{m}{e}\right)^m e^{1/(12m+1)} < m! < \sqrt{2\pi m} \left(\frac{m}{e}\right)^m e^{1/12m}.$$

Define $X = \{\Delta \subseteq \Omega : 2|\Delta| \neq |\Omega|\} \subseteq \mathcal{P}(\Omega)$.

Observation. G has a regular orbit on $X \implies G$ has at least 2 regular orbits on $\mathcal{P}(\Omega)$.

This eliminates the cases where $|\Omega|$ is odd.

Seress 1997: If $G = S_m \wr S_k$ is a product type primitive group, then G has a regular orbit on X.

This eliminates PA, HC, CD and TW.

Stirling's approximation:

$$\sqrt{2\pi m} \left(\frac{m}{e}\right)^m \mathrm{e}^{1/(12m+1)} < m! < \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \mathrm{e}^{1/12m}.$$

This implies $|X| = 2^n - \binom{n}{n/2} \ge 2^{n-1}$.

Let $\mu(G)$ be the minimal degree of G. That is,

$$\mu(G) = n - \max_{1 \neq g \in G} \{|\operatorname{Fix}(g, \Omega)|\}.$$

Let $\mu(G)$ be the minimal degree of G. That is,

$$\mu(G) = n - \max_{1 \neq g \in G} \{|\operatorname{Fix}(g, \Omega)|\}.$$

Notes.

ullet | Fix (g,Ω) | is the number of 1-cycles in the cycle shape of g

Let $\mu(G)$ be the minimal degree of G. That is,

$$\mu(G) = n - \max_{1 \neq g \in G} \{ |\operatorname{Fix}(g, \Omega)| \}.$$

Notes.

- $|\operatorname{Fix}(g,\Omega)|$ is the number of 1-cycles in the cycle shape of g
- $g \neq 1$ moves at least $\mu(G)$ points in Ω

Let $\mu(G)$ be the minimal degree of G. That is,

$$\mu(G) = n - \max_{1 \neq g \in G} \{ |\operatorname{Fix}(g, \Omega)| \}.$$

Notes.

- $|\operatorname{Fix}(g,\Omega)|$ is the number of 1-cycles in the cycle shape of g
- $g \neq 1$ moves at least $\mu(G)$ points in Ω

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Let $\mu(G)$ be the minimal degree of G. That is,

$$\mu(G) = n - \max_{1 \neq g \in G} \{ |\operatorname{Fix}(g, \Omega)| \}.$$

Notes.

- ullet | Fix (g,Ω) | is the number of 1-cycles in the cycle shape of g
- $g \neq 1$ moves at least $\mu(G)$ points in Ω

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Remark. $|G| < 2^{\mu(G)/2} \implies G$ has a regular orbit on $\mathcal{P}(\Omega)$.

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X.

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order.

Lemma

$$|G| < 2^{\mu(G)/2-1} \implies G$$
 has a regular orbit on X .

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} |\mathsf{Fix}(\sigma, X)|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Lemma

$$|G| < 2^{\mu(G)/2-1} \implies G$$
 has a regular orbit on X .

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} |\mathsf{Fix}(\sigma, X)|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Let $\sigma \in \mathcal{R}$ with cycle shape $[r^m, 1^{n-mr}]$ on Ω .

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} \left| \mathsf{Fix}(\sigma, X) \right|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Let $\sigma \in \mathcal{R}$ with cycle shape $[r^m, 1^{n-mr}]$ on Ω . Then $mr \geqslant \mu(G)$.

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} |\mathsf{Fix}(\sigma, X)|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Let $\sigma \in \mathcal{R}$ with cycle shape $[r^m, 1^{n-mr}]$ on Ω . Then $mr \geqslant \mu(G)$. Thus,

$$|\operatorname{Fix}(\sigma,X)| \leqslant 2^{n-(r-1)m}$$

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} \left| \mathsf{Fix}(\sigma, X) \right|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Let $\sigma \in \mathcal{R}$ with cycle shape $[r^m, 1^{n-mr}]$ on Ω . Then $mr \geqslant \mu(G)$. Thus,

$$|\operatorname{Fix}(\sigma, X)| \leq 2^{n-(r-1)m} \leq 2^{n-(r-1)\mu(G)/r}$$

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} |\mathsf{Fix}(\sigma, X)|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Let $\sigma \in \mathcal{R}$ with cycle shape $[r^m, 1^{n-mr}]$ on Ω . Then $mr \geqslant \mu(G)$. Thus,

$$|\operatorname{Fix}(\sigma, X)| \leq 2^{n-(r-1)m} \leq 2^{n-(r-1)\mu(G)/r} \leq 2^{n-\mu(G)/2}.$$

Lemma

 $|G| < 2^{\mu(G)/2-1} \implies G$ has a regular orbit on X.

Suppose G has no regular orbit on X. Then $\Delta \in X \implies G_{\{\Delta\}}$ contains an element of prime order. Thus,

$$|X| = \left| \bigcup_{\sigma \in \mathcal{R}} \mathsf{Fix}(\sigma, X) \right| \leqslant \sum_{\sigma \in \mathcal{R}} |\mathsf{Fix}(\sigma, X)|,$$

where $\mathcal{R} = \{\text{prime order elements in } G\}$.

Let $\sigma \in \mathcal{R}$ with cycle shape $[r^m, 1^{n-mr}]$ on Ω . Then $mr \geqslant \mu(G)$. Thus,

$$|\operatorname{Fix}(\sigma, X)| \leqslant 2^{n-(r-1)m} \leqslant 2^{n-(r-1)\mu(G)/r} \leqslant 2^{n-\mu(G)/2}.$$

The lemma follows by observing that

$$2^{n-1} \le |X| \le 2^{n-\mu(G)/2} |\mathcal{R}| \le 2^{n-\mu(G)/2} |G|.$$

Let $G = T^k \cdot (Out(T) \times S_k)$ be a diagonal type primitive group.

Let $G = T^k \cdot (Out(T) \times S_k)$ be a diagonal type primitive group.

Aim: Show that $|G| < 2^{\mu(G)/2-1}$, which eliminates HS and SD.

Let $G = T^k.(\operatorname{Out}(T) \times S_k)$ be a diagonal type primitive group.

Aim: Show that $|G| < 2^{\mu(G)/2-1}$, which eliminates HS and SD.

Notes.

•
$$n = |T|^{k-1}$$

Let $G = T^k.(\operatorname{Out}(T) \times S_k)$ be a diagonal type primitive group.

Aim: Show that $|G| < 2^{\mu(G)/2-1}$, which eliminates HS and SD.

Notes.

- $n = |T|^{k-1}$
- $|G| < |T|^{k+1}k!$ as $|\operatorname{Out}(T)| < |T|$

Let $G = T^k.(\operatorname{Out}(T) \times S_k)$ be a diagonal type primitive group.

Aim: Show that $|G| < 2^{\mu(G)/2-1}$, which eliminates HS and SD.

Notes.

- $n = |T|^{k-1}$
- $|G| < |T|^{k+1}k!$ as $|\operatorname{Out}(T)| < |T|$
- Burness & Guralnick, 2021: $\mu(G) \geqslant 2n/3$

Let $G = T^k.(\operatorname{Out}(T) \times S_k)$ be a diagonal type primitive group.

Aim: Show that $|G| < 2^{\mu(G)/2-1}$, which eliminates HS and SD.

Notes.

- $n = |T|^{k-1}$
- $|G| < |T|^{k+1}k!$ as |Out(T)| < |T|
- Burness & Guralnick, 2021: $\mu(G) \ge 2n/3$

It suffices to show that

$$f(|T|,k) := \frac{2^{\frac{1}{3}|T|^{k-1}-1}}{|T|^{k+1}k!} > 1.$$

Let $G = T^k \cdot (\operatorname{Out}(T) \times S_k)$ be a diagonal type primitive group.

Aim: Show that $|G| < 2^{\mu(G)/2-1}$, which eliminates HS and SD.

Notes.

- $n = |T|^{k-1}$
- $|G| < |T|^{k+1}k!$ as $|\operatorname{Out}(T)| < |T|$
- Burness & Guralnick, 2021: $\mu(G) \ge 2n/3$

It suffices to show that

$$f(|T|, k) := \frac{2^{\frac{1}{3}|T|^{k-1}-1}}{|T|^{k+1}k!} > 1.$$

Indeed,

$$f(|T|,k) \geqslant f(|T|,2) = \frac{2^{|T|/3-1}}{2|T|^3} > 1.$$

Let $G = AGL_d(p)$.

Let $G = AGL_d(p)$. It suffices to consider p = 2.

Let $G = AGL_d(p)$. It suffices to consider p = 2. Then $\mu(G) = 2^{d-1}$.

Let $G={\rm AGL}_d(p).$ It suffices to consider p=2. Then $\mu(G)=2^{d-1}.$ If $d\geqslant 9$, then $|G|<2^{d^2+d-1}<2^{\mu(G)/2-1}$

and so G has a regular orbit on X.

Let $G = AGL_d(p)$. It suffices to consider p = 2. Then $\mu(G) = 2^{d-1}$.

If $d \geqslant 9$, then

$$|G| < 2^{d^2+d-1} < 2^{\mu(G)/2-1}$$

and so G has a regular orbit on X.

Let
$$G \leqslant AGL_d(2)$$
 for $1 \leqslant d \leqslant 8$.

Let $G = AGL_d(p)$. It suffices to consider p = 2. Then $\mu(G) = 2^{d-1}$.

If $d \geqslant 9$, then

$$|G| < 2^{d^2+d-1} < 2^{\mu(G)/2-1}$$

and so G has a regular orbit on X.

Let $G \leq AGL_d(2)$ for $1 \leq d \leq 8$. By random search using MAGMA, one of the following holds.

- G has no regular orbit on $\mathcal{P}(\Omega)$;
- G has a regular orbit on X;
- $G = \frac{S_2}{2}$ or $2^4:O_4^-(2)$.

Let $G = AGL_d(p)$. It suffices to consider p = 2. Then $\mu(G) = 2^{d-1}$.

If $d \geqslant 9$, then

$$|G| < 2^{d^2+d-1} < 2^{\mu(G)/2-1}$$

and so G has a regular orbit on X.

Let $G \leq AGL_d(2)$ for $1 \leq d \leq 8$. By random search using MAGMA, one of the following holds.

- G has no regular orbit on $\mathcal{P}(\Omega)$;
- G has a regular orbit on X;
- $G = S_2 \text{ or } 2^4:O_4^-(2).$

Remark. By random search, $2^4:O_4^-(2)$ has two regular orbits on $\mathcal{P}(\Omega)$.

Random search

Let $G = AGL_8(2)$. Note that $n = 2^8$ is too large to use Subset($\{1..n\}$). We use the following code to obtain a regular G-orbit on X.

```
G:=AGL(8,2);
n:=Degree(G);
repeat
A := [];
for i in [1..20] do
Append(\simA,Random([1..n]));
end for;
A := \{x : x in A\};
m:=#Stabilizer(G,A);
[#A,m];
until #A ne (n div 2) and m eq 1;
```

This returns [19,1] in 118.360 seconds.

Theorem (CFSG)

A non-abelian finite simple group is isomorphic to one of the following.

- Alternating group A_n , $n \ge 5$;
- Classical simple group:

$$\mathsf{L}_n^\epsilon(q)$$
, $\mathsf{PSp}_{2n}(q)$, $\mathsf{P}\Omega_{2n+1}(q)$, $\mathsf{P}\Omega_{2n}^\epsilon(q)$;

Exceptional group of Lie type:

$$^{2}B_{2}(q)$$
, $^{3}D_{4}(q)$, $^{2}F_{4}(q)'$, $^{2}G_{2}(q)$, $E_{6}^{\epsilon}(q)$, $E_{7}(q)$, $E_{8}(q)$, $F_{4}(q)$, $G_{2}(q)$;

• One of the 26 sporadic groups.

Theorem (CFSG)

A non-abelian finite simple group is isomorphic to one of the following.

- Alternating group A_n , $n \ge 5$;
- Classical simple group:

$$\mathsf{L}_n^{\epsilon}(q)$$
, $\mathsf{PSp}_{2n}(q)$, $\mathsf{P}\Omega_{2n+1}(q)$, $\mathsf{P}\Omega_{2n}^{\epsilon}(q)$;

Exceptional group of Lie type:

$$^{2}B_{2}(q)$$
, $^{3}D_{4}(q)$, $^{2}F_{4}(q)'$, $^{2}G_{2}(q)$, $E_{6}^{\epsilon}(q)$, $E_{7}(q)$, $E_{8}(q)$, $F_{4}(q)$, $G_{2}(q)$;

• One of the 26 sporadic groups.

A group G is almost simple if soc(G) is non-abelian simple.

G is almost simple iff $T \leq G \leq Aut(T)$ for some non-abelian simple T.

Let G be an almost simple primitive group of degree n.

Let G be an almost simple primitive group of degree n.

Guralnick & Maggard, 1998; Burness & Guralnick, 2021:

- $soc(G) = A_m$, G_α imprimitive $\implies \mu(G) \geqslant n/2$
- $soc(G) = A_m$, G_α primitive $\implies \mu(G) \geqslant 2n/3$
- G classical $\implies \mu(G) \geqslant 3n/7$
- G exceptional $\implies \mu(G) \geqslant 2n/3$
- G sporadic $\implies \mu(G) \geqslant 2n/3$ or $(G, n, \mu(G)) = (M_{22}, 22, 14)$

Let G be an almost simple primitive group of degree n.

Guralnick & Maggard, 1998; Burness & Guralnick, 2021:

- $soc(G) = A_m$, G_α imprimitive $\implies \mu(G) \geqslant n/2$
- $soc(G) = A_m$, G_α primitive $\implies \mu(G) \geqslant 2n/3$
- *G* classical $\implies \mu(G) \geqslant 3n/7$
- G exceptional $\implies \mu(G) \geqslant 2n/3$
- G sporadic $\implies \mu(G) \geqslant 2n/3$ or $(G, n, \mu(G)) = (M_{22}, 22, 14)$

Lower bounds for n:

- $soc(G) = A_m$, G_α primitive: $n > |G|/3^m$ (Maróti, 2002)
- G Lie type: Guest, Morris, Praeger & Spiga, 2015
- G sporadic: Wilson, 2017, or Web Atlas

Assume $soc(G) = X_d(q)$ is a classical group, where $X \in \{L^{\epsilon}, \mathsf{PSp}, \mathsf{P}\Omega^{\epsilon}\}.$

Assume $soc(G) = X_d(q)$ is a classical group, where $X \in \{L^{\epsilon}, PSp, P\Omega^{\epsilon}\}$. Suppose $d \geqslant 4$. We have

• $|G| < q^{d^2}$

Assume $soc(G) = X_d(q)$ is a classical group, where $X \in \{L^{\epsilon}, \mathsf{PSp}, \mathsf{P}\Omega^{\epsilon}\}$. Suppose $d \geqslant 4$. We have

- $|G| < q^{d^2}$
- Guest, Morris, Praeger & Spiga, 2015: $n > q^{d-2}$

Assume $soc(G) = X_d(q)$ is a classical group, where $X \in \{L^{\epsilon}, \mathsf{PSp}, \mathsf{P}\Omega^{\epsilon}\}$. Suppose $d \geqslant 4$. We have

- $|G| < q^{d^2}$
- Guest, Morris, Praeger & Spiga, 2015: $n > q^{d-2}$
- Guralnick & Maggard, 1998: $\mu(G) \geqslant 3n/7 > 3q^{d-2}/7$

Assume $soc(G) = X_d(q)$ is a classical group, where $X \in \{L^{\epsilon}, \mathsf{PSp}, \mathsf{P}\Omega^{\epsilon}\}$. Suppose $d \geqslant 4$. We have

- $|G| < q^{d^2}$
- Guest, Morris, Praeger & Spiga, 2015: $n > q^{d-2}$
- Guralnick & Maggard, 1998: $\mu(G) \geqslant 3n/7 > 3q^{d-2}/7$

Thus, if $d \geqslant 12$ or $q \geqslant 19$ then

$$|G| < q^{d^2} < 2^{3q^{d-2}/14-1} < 2^{\mu(G)/2-1}.$$

Assume $soc(G) = X_d(q)$ is a classical group, where $X \in \{L^{\epsilon}, PSp, P\Omega^{\epsilon}\}$. Suppose $d \geqslant 4$. We have

- $|G| < q^{d^2}$
- Guest, Morris, Praeger & Spiga, 2015: $n > q^{d-2}$
- Guralnick & Maggard, 1998: $\mu(G) \geqslant 3n/7 > 3q^{d-2}/7$

Thus, if $d \geqslant 12$ or $q \geqslant 19$ then

$$|G| < q^{d^2} < 2^{3q^{d-2}/14-1} < 2^{\mu(G)/2-1}$$
.

Remark. Using above bounds, only a few almost simple primitive groups survive the cut $|G| < 2^{\mu(G)/2-1}$, which can all be handled by random search.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Distinguishing number D(G): min $\{m : G \text{ has a regular orbit on } \mathcal{P}_m(\Omega)\}$.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Distinguishing number D(G): min $\{m : G \text{ has a regular orbit on } \mathcal{P}_m(\Omega)\}$.

Note. $D(G) \leqslant 2 \iff G$ has a regular orbit on $\mathcal{P}(\Omega)$.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \, \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \, \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Distinguishing number D(G): min $\{m : G \text{ has a regular orbit on } \mathcal{P}_m(\Omega)\}$.

Note. $D(G) \leq 2 \iff G$ has a regular orbit on $\mathcal{P}(\Omega)$.

Recall. $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, or G is one of the 43 groups.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Distinguishing number D(G): min $\{m : G \text{ has a regular orbit on } \mathcal{P}_m(\Omega)\}$.

Note. $D(G) \leqslant 2 \iff G$ has a regular orbit on $\mathcal{P}(\Omega)$.

Recall. $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, or G is one of the 43 groups.

Dolfi, 2000: $G \neq A_n, S_n$ primitive $\implies D(G) \leqslant 4$.

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Distinguishing number D(G): min $\{m : G \text{ has a regular orbit on } \mathcal{P}_m(\Omega)\}$.

Note. $D(G) \leqslant 2 \iff G$ has a regular orbit on $\mathcal{P}(\Omega)$.

Recall. $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, or G is one of the 43 groups.

Dolfi, 2000: $G \neq A_n, S_n$ primitive $\implies D(G) \leqslant 4$.

• Unique regular orbit on $\mathcal{P}_m(\Omega)$, m=3,4: **Dolfi, 2000** \checkmark

Let

$$\mathcal{P}_m(\Omega) = \{(\pi_1, \dots, \pi_m) : \pi_i \subseteq \Omega, \ \pi_i \cap \pi_j = \emptyset \text{ for } i \neq j, \ \bigcup_i \pi_i = \Omega\}$$

be the set of ordered partitions of Ω into m parts. Note that

$$\mathcal{P}_2(\Omega) = \{(\pi_1, \Omega \setminus \pi_1) : \pi_1 \subseteq \Omega\}$$

can be identified with $\mathcal{P}(\Omega)$.

Distinguishing number D(G): min $\{m : G \text{ has a regular orbit on } \mathcal{P}_m(\Omega)\}$.

Note. $D(G) \leqslant 2 \iff G$ has a regular orbit on $\mathcal{P}(\Omega)$.

Recall. $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, or G is one of the 43 groups.

Dolfi, 2000: $G \neq A_n, S_n$ primitive $\implies D(G) \leqslant 4$.

- Unique regular orbit on $\mathcal{P}_m(\Omega)$, m=3,4: **Dolfi, 2000** \checkmark
- Unique regular orbit on $\mathcal{P}_2(\Omega)$: Burness & H, 2022 \checkmark

Let r(G) be the number of regular suborbits of G.

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leq 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leqslant 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Problem. Classify the primitive groups G with r(G) = 1.

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leqslant 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Problem. Classify the primitive groups G with r(G) = 1.

• G almost simple, G_{α} soluble: **Burness & H, 2021** \checkmark

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leqslant 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Problem. Classify the primitive groups G with r(G) = 1.

- G almost simple, G_{α} soluble: **Burness & H, 2021** \checkmark
- $G = L \wr P$ product type, $P \leqslant S_k$ transitive:

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leqslant 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Problem. Classify the primitive groups G with r(G) = 1.

- G almost simple, G_{α} soluble: **Burness & H, 2021** \checkmark
- $G = L \wr P$ product type, $P \leqslant S_k$ transitive:

Bailey & Cameron, 2013: $b(G) = 2 \iff r(L) \geqslant D(P)$.

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leqslant 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Problem. Classify the primitive groups G with r(G) = 1.

- G almost simple, G_{α} soluble: **Burness & H, 2021** \checkmark
- $G = L \wr P$ product type, $P \leqslant S_k$ transitive:

Bailey & Cameron, 2013: $b(G) = 2 \iff r(L) \geqslant D(P)$.

Theorem (Burness & H, 2022)

 $r(G) = 1 \iff r(L) = m \text{ and } P \text{ has unique regular orbit on } \mathcal{P}_m([k]).$

Let r(G) be the number of regular suborbits of G.

Note. $r(G) > 0 \iff b(G) \leqslant 2 \iff \exists \alpha, \beta \in \Omega \text{ such that } G_{\alpha} \cap G_{\beta} = 1.$

Problem. Classify the primitive groups G with r(G) = 1.

- G almost simple, G_{α} soluble: **Burness & H, 2021** \checkmark
- $G = L \wr P$ product type, $P \leqslant S_k$ transitive:

Bailey & Cameron, 2013: $b(G) = 2 \iff r(L) \geqslant D(P)$.

Theorem (Burness & H, 2022)

 $r(G) = 1 \iff r(L) = m \text{ and } P \text{ has unique regular orbit on } \mathcal{P}_m([k]).$

• $G \leq T^k$.(Out(T) \times P) diagonal type, $P \neq A_k$, S_k primitive: r(G) > 1 (Fawcett, 2013; H, in progress)

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Theorem (Fawcett, 2013)

$$P \neq S_2, A_3 \text{ and } D(P) = 2 \implies b(G) = 2.$$

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Theorem (Fawcett, 2013)

$$P \neq S_2, A_3 \text{ and } D(P) = 2 \implies b(G) = 2.$$

Let
$$\Delta$$
 be such that $P_{\{\Delta\}}=1$.

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Theorem (Fawcett, 2013)

$$P \neq S_2, A_3 \text{ and } D(P) = 2 \implies b(G) = 2.$$

Let Δ be such that $P_{\{\Delta\}}=1.$ Then there exists Δ_1 , Δ_2 such that

- ullet $\Delta=\Delta_1\cup\Delta_2$, $\Delta_1\cap\Delta_2=\emptyset$;
- $\bullet \ |\Delta_i| \neq |\Omega \setminus \Delta|.$

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Theorem (Fawcett, 2013)

$$P \neq S_2, A_3 \text{ and } D(P) = 2 \implies b(G) = 2.$$

Let Δ be such that $P_{\{\Delta\}}=1.$ Then there exists Δ_1 , Δ_2 such that

- ullet $\Delta=\Delta_1\cup\Delta_2$, $\Delta_1\cap\Delta_2=\emptyset$;
- $|\Delta_i| \neq |\Omega \setminus \Delta|$.

Recall. $T = \langle x, y \rangle$ for some $x, y \in T$.

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Theorem (Fawcett, 2013)

$$P \neq S_2, A_3 \text{ and } D(P) = 2 \implies b(G) = 2.$$

Let Δ be such that $P_{\{\Delta\}}=1$. Then there exists Δ_1 , Δ_2 such that

- ullet $\Delta=\Delta_1\cup\Delta_2$, $\Delta_1\cap\Delta_2=\emptyset$;
- $|\Delta_i| \neq |\Omega \setminus \Delta|$.

Recall. $T = \langle x, y \rangle$ for some $x, y \in T$.

Then $G_{\alpha} \cap G_{\alpha^g} = 1$, where $g = (t_1, \ldots, t_k) \in G$ is such that

$$t_i = \begin{cases} 1, & i \in \Delta_1 \\ x, & i \in \Delta_2 \\ y, & i \in \Omega \setminus \Delta. \end{cases}$$

Let $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$ be a diagonal type primitive group.

Theorem (Fawcett, 2013)

$$P \neq S_2, A_3 \text{ and } D(P) = 2 \implies b(G) = 2.$$

Let Δ be such that $P_{\{\Delta\}}=1$. Then there exists Δ_1 , Δ_2 such that

- $\Delta = \Delta_1 \cup \Delta_2$, $\Delta_1 \cap \Delta_2 = \emptyset$;
- $|\Delta_i| \neq |\Omega \setminus \Delta|$.

Recall. $T = \langle x, y \rangle$ for some $x, y \in T$.

Then $G_{\alpha} \cap G_{\alpha^g} = 1$, where $g = (t_1, \dots, t_k) \in G$ is such that

$$t_i = \begin{cases} 1, & i \in \Delta_1 \\ x, & i \in \Delta_2 \\ y, & i \in \Omega \setminus \Delta. \end{cases}$$

Remark. Indeed, $P \neq A_k, S_k \implies b(G) = 2$ (Fawcett, 2013)

Let G be a transitive group.

Let G be a transitive group.

Recall. *G* is called quasiprimitive if $1 \neq N \leqslant G \implies N$ transitive.

Let G be a transitive group.

Recall. G is called quasiprimitive if $1 \neq N \leqslant G \implies N$ transitive.

G is called semiprimitive if $1 \neq N \leqslant G \implies N$ transitive or semiregular.

Let G be a transitive group.

Recall. G is called quasiprimitive if $1 \neq N \leqslant G \implies N$ transitive.

G is called semiprimitive if $1 \neq N \leqslant G \implies N$ transitive or semiregular.

e.g. $G = \mathsf{GL}_d(q)$ and $\Omega = (\mathbb{F}_q^d)^*$.

Let G be a transitive group.

Recall. G is called quasiprimitive if $1 \neq N \leqslant G \implies N$ transitive.

 ${\it G}$ is called semiprimitive if $1 \neq {\it N} \leqslant {\it G} \implies {\it N}$ transitive or semiregular.

e.g. $G = \mathsf{GL}_d(q)$ and $\Omega = (\mathbb{F}_q^d)^*$.

Theorem (Devillers, Harper & Morgan, 2019)

G semiprimitive but not primitive $\implies D(G) = 2$, or $(G, n) = (GL_2(3), 8)$.

Let G be a transitive group.

Recall. G is called quasiprimitive if $1 \neq N \leqslant G \implies N$ transitive.

 ${\it G}$ is called semiprimitive if $1 \neq {\it N} \leqslant {\it G} \implies {\it N}$ transitive or semiregular.

e.g. $G = \mathsf{GL}_d(q)$ and $\Omega = (\mathbb{F}_q^d)^*$.

Theorem (Devillers, Harper & Morgan, 2019)

G semiprimitive but not primitive $\implies D(G) = 2$, or $(G, n) = (GL_2(3), 8)$.

e.g. $d \ge 5$ or $q \ge 4 \implies \mathsf{GL}_d(q)$ has a regular orbit on $\mathcal{P}((\mathbb{F}_q^d)^*)$.

Let $\Gamma \neq K_n$ be a 2-arc-transitive simple connected graph.

Let $\Gamma \neq K_n$ be a 2-arc-transitive simple connected graph.

Praeger, 1993: Either Γ is bipartite, or $Aut(\Gamma)$ is semiprimitive.

Let $\Gamma \neq K_n$ be a 2-arc-transitive simple connected graph.

Praeger, 1993: Either Γ is bipartite, or $Aut(\Gamma)$ is semiprimitive.

Theorem (Devillers, Harper & Morgan, 2019)

Let $\Gamma \neq K_n$ be 2-arc-transitive and not bipartite. Then either

- $D(Aut(\Gamma)) = 2$, or
- $\Gamma = C_5$, $K_3 \square K_3$, \mathbb{P} or $\overline{\mathbb{P}}$.

Let $\Gamma \neq K_n$ be a 2-arc-transitive simple connected graph.

Praeger, 1993: Either Γ is bipartite, or $Aut(\Gamma)$ is semiprimitive.

Theorem (Devillers, Harper & Morgan, 2019)

Let $\Gamma \neq K_n$ be 2-arc-transitive and not bipartite. Then either

- $D(\operatorname{Aut}(\Gamma)) = 2$, or
- $\Gamma = C_5$, $K_3 \square K_3$, \mathbb{P} or $\overline{\mathbb{P}}$.

$$G = Aut(\Gamma)$$
 and $D(G) > 2 \implies G = A_n, S_n$, or G is in a known finite list.

Let $\Gamma \neq K_n$ be a 2-arc-transitive simple connected graph.

Praeger, 1993: Either Γ is bipartite, or $Aut(\Gamma)$ is semiprimitive.

Theorem (Devillers, Harper & Morgan, 2019)

Let $\Gamma \neq K_n$ be 2-arc-transitive and not bipartite. Then either

- $D(Aut(\Gamma)) = 2$, or
- $\Gamma = C_5$, $K_3 \square K_3$, \mathbb{P} or $\overline{\mathbb{P}}$.

$$G = \operatorname{Aut}(\Gamma)$$
 and $D(G) > 2 \implies G = A_n, S_n$, or G is in a known finite list.

By inspection, either G is 2-transitive (which gives $\Gamma = K_n$), or

$$(G, |V\Gamma|) = (D_{10}, 5), (3^2:D_8, 9), (S_5, 10), (GL_2(3), 8)$$

has rank 3. This gives the graphs as stated.

Let $\Gamma \neq K_n$ be a 2-arc-transitive simple connected graph.

Praeger, 1993: Either Γ is bipartite, or $Aut(\Gamma)$ is semiprimitive.

Theorem (Devillers, Harper & Morgan, 2019)

Let $\Gamma \neq K_n$ be 2-arc-transitive and not bipartite. Then either

- $D(Aut(\Gamma)) = 2$, or
- $\Gamma = C_5$, $K_3 \square K_3$, \mathbb{P} or $\overline{\mathbb{P}}$.

$$G = \operatorname{Aut}(\Gamma)$$
 and $D(G) > 2 \implies G = A_n, S_n$, or G is in a known finite list.

By inspection, either G is 2-transitive (which gives $\Gamma = K_n$), or

$$(G, |V\Gamma|) = (D_{10}, 5), (3^2:D_8, 9), (S_5, 10), (GL_2(3), 8)$$

has rank 3. This gives the graphs as stated.

Note. $(G, |V\Gamma|) = (GL_2(3), 8) \implies \Gamma = K_{2,2,2,2}$ is not 2-arc-transitive.

Thank you!