Session 3: Statistical inference using R

Overview

Statistical inference using parametric methods: Confidence intervals and hypothesis tests

Computational methods

• Permutation tests (example correlation)

Simple linear regression

Multiple linear regression

What is statistical inference?

π, μ, σ, ρ, β

Parameter: a number characterizing a property of a population

Statistic: A number computed from a sample

Basic hypothesis test logic

We start with a claim about a population parameter

This claim implies we should get a certain distribution of statistics

If our observed statistic is highly unlikely, we reject the claim

The big picture: There is only one hypothesis test!

Just need to follow 5 steps!

What are confidence intervals?

What are Confidence intervals?

 Range of plausible values that capture the parameter a fixed % of the time

How can we create confidence intervals?

- Use the bootstrap (to estimate the SE)
- Use formulas (to estimate the SE)

The big picture: There is only one hypothesis test!

Zoo of hypothesis tests...

Parametric methods

t-tests for a single mean

- H_0 : $\mu = v$
- H_A : $\mu = v$

t-tests for two means

- H_0 : $\mu_{Treatment} = \mu_{Control}$ or $\mu_{Treatment} \mu_{Control} = 0$
- H_A : $\mu_{Treatment} > \mu_{Control}$ or $\mu_{Treatment} \mu_{Control} > 0$

We can run these tests using the function t.test()

Parametric methods

Hypothesis test for proportions

- H_0 : $\pi = v$
- H_A : $\mu = v$

In R: prop.test()

Hypothesis test for correlation

- H_0 : $\rho = 0$
- H_A : $\rho > 0$

In R: cor.test()

There are other hypothesis test functions

• chisq.test(), wilcox.test(), etc.

Simulation methods

Permutation/randomization tests are hypothesis tests that work by randomly shuffling the data

The bootstrap is a computational way to create confidence intervals

Advantages:

- They rely on fewer "assumptions" than parametric tests
- They can be applied to many more situations where parametric tests are unknown

Linear regression

Regression is method of using one variable **x** to predict the value of a second variable **y**

$$\hat{y} = f(x)$$

In **linear regression** we fit a <u>line</u> to the data, called the **regression line**

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

Approval rating vote margin regression line

From previous 12 US president's running for reelection

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

R:
$$lm(y \sim x)$$

$$\hat{\beta}_0 = -36.76$$

$$\hat{\beta}_1$$
 = 0.84

$$\hat{y} = -36.76 + 0.84 \cdot x$$

Inference for linear regression

The Greek letter β is used to denote the slope of the population

The letter $\hat{\beta}$ is typically used to denote the slope **of the sample**

True line Estimated line

Hypothesis test for regression coefficients

We can run hypothesis tests to assess whether there is a relationship between y and x, and calculate p-values

- H_0 : $\beta_1 = 0$ (slope is 0, so no relationship between x and y
- H_A : $\beta_1 \neq 0$

One type of hypothesis test we can run is based on a t-statistic: $t=\frac{\beta_1-0}{\hat{SE}_{\hat{\beta_1}}}$ • The t-statistic comes from a t-distribution with n - 2 degrees of freedom

$$\hat{SE}_{\hat{\beta}_{1}} = \frac{\hat{\sigma}_{\epsilon}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \qquad \hat{SE}_{\hat{\beta}_{0}} = \hat{\sigma}_{\epsilon} \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}$$

Inference using parametric methods

When using parametric methods, we make the following (LINE) assumptions:

- Linearity: A line can describe the relationship between x and y
- Independence: each data point is independent from the other points
- Normality: errors are normally distributed
- Equal variance (homoscedasticity): constant variance of errors over the whole range of x values

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
$$\epsilon_i \sim N(0, \sigma_{\epsilon})$$

These assumptions are usually checked after the models are fit using 'regression diagnostic' plots.

Regression diagnostics

Linearity, Independence, Normality, Equal variance of errors Nonlinear Heteroscedasticity Normal data quantiles Normal theoretical quantiles -0.4-0.2

Let's try it in R...

Let's try to predict faculty salary's based on a school's endowment

Multiple regression

In multiple regression we try to predict a quantitative response variable y using several predictor variables $x_1, x_2, ..., x_k$

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} \cdot x_1 + \hat{\beta_2} \cdot x_2 + \dots + \hat{\beta_k} \cdot x_k$$

There are many uses for multiple regression models including:

- To make predictions as accurately as possible
- To understand which predictors (x) are related to the response variable (y)

Multiple regression

salary =
$$\hat{\beta}_0 + \hat{\beta}_1 \cdot f(endowment) + \hat{\beta}_2 \cdot g(enrollment)$$

Let's explore this in R...

