(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-187220 (P2000-187220A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl.7		識別記号	F I			テーマコード(<i>参考</i>)
G02F	1/13363		G 0 2 F	1/1335	610	2H091
	1/1335	520			520	

審査請求 未請求 請求項の数7 OL (全 15 頁)

(21)出願番号	特願平11-80586	(71)出願人	000005049
			シャープ株式会社
(22)出願日	平成11年3月24日(1999.3.24)		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	清水 雅宏
(31)優先権主張番号	特願平10-294311	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	大阪府大阪市阿倍野区長池町22番22号 シ
(32)優先日	平成10年10月15日(1998, 10, 15)		ャープ株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	伊藤 康尚
(OO) DE DIE LESSE	H-T- (V Z)	(,=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(74)代理人	100078282
		(は)「ひ生)へ	
			弁理士 山本 秀策
			最終頁に続く

(54) 【発明の名称】 液晶表示装置

(57)【要約】

【課題】 量産性にすぐれ、周囲光の明るさによらず、 良好な表示が可能な液晶表示装置を提供する。

【解決手段】 複数の絵素領域毎に、反射領域と透過領 域とを有し、該液晶層は、正の誘電率異方性を有する液 晶材料からなり、第1基板の液晶層とは反対側に設けら れた第1偏光素子と、第2基板の液晶層とは反対側に設 けられた第2偏光素子と、第1偏光素子と液晶層との間 に設けられた第1位相差補償素子と、第2偏光素子と液 晶層との間に設けられた第2位相差補償素子とを有し、 液晶層のツイスト角 θ_t は 0° 以上 90° 以下であり、 液晶層のリタデーションが反射領域と透過領域において 独立に最適化されている。

【特許請求の範囲】

【請求項1】 第1及び第2基板と、該第1基板と該第2基板との間に挟持された液晶層とを有し、該液晶層に電圧を印加する一対の電極によって規定される複数の絵素領域を有する液晶表示装置であって、

1

該複数の絵素領域毎に、反射領域と透過領域とを有し、 該液晶層は、正の誘電率異方性を有する液晶材料からなり、

該第1基板の該液晶層とは反対側に設けられた第1偏光 素子と

該第2基板の該液晶層とは反対側に設けられた第2偏光 素子と、

該第1偏光素子と該液晶層との間に設けられた第1位相 差補償素子と、

該第2偏光素子と該液晶層との間に設けられた第2位相*

*差補償素子とを有し、

該液晶層のツイスト角 θ_{t} は 0° 以上 90° 以下であり、

該反射領域の該液晶層の可視光領域のリタデーションR dとツイスト角 θ tが、式(1)と式(2)、式(3)と式(4)とでそれぞれ表される曲線で包囲される範囲、 $0^{\circ} \le \theta$ t $\le 54.3^{\circ}$ の範囲において、式(5)と式(6)および式(7)と式(8)とでそれぞれ表される曲線で包囲される範囲、および $54.3^{\circ} < \theta$ t $\le 1090^{\circ}$ の範囲において、式(5)と式(8)とでそれぞれ表される曲線で包囲される範囲であり、且つ、該透過領域の該液晶層の可視光領域のリタデーションR dとツイスト角 θ tが、式(9)と式(10)、式(11)と式(12)とでそれぞれ表される曲線で包囲される範囲であり、それぞれの式が

 $Rd = -0.0043 \cdot \theta_t^2 - 0.065 \cdot \theta_t + 1011.8$ (1) $Rd = -0.0089 \cdot \theta_{t^2} + 0.1379 \cdot \theta_{t} + 914.68$ (2) $Rd = -0.0015 \cdot \theta_{t^2} - 0.1612 \cdot \theta_{t} + 737.29$ (3) $Rd = -0.0064 \cdot \theta_{t^2} - 0.0043 \cdot \theta_{t} + 640.65$ (4) $Rd = -0.0178 \cdot \theta_{t^2} + 0.2219 \cdot \theta_{t} + 458.92$ (5) $Rd = -0.0405 \cdot \theta_t^2 + 0.4045 \cdot \theta_t + 364.05$ (6) $Rd = 0.0347 \cdot \theta_t^2 - 0.4161 \cdot \theta_t + 186.53$ (7) $Rd = 0.0098 \cdot \theta_t^2 - 0.1912 \cdot \theta_t + 89.873$ (8) $Rd = -0.0043 \cdot \theta_{t^2} - 0.065 \cdot \theta_{t} + 995.66$ (9) $Rd = -0.0058 \cdot \theta_{t^2} - 0.0202 \cdot \theta_{t} + 665.8$ (10) $Rd = -0.0248 \cdot \theta_t^2 + 0.6307 \cdot \theta_t + 439.58$ (11) $Rd = 0.0181 \cdot \theta_t^2 - 0.6662 \cdot \theta_t + 109.51$ (12)

である、液晶表示装置。

【請求項2】 前記リタデーションR dが、反射領域のツイスト角 θ tが $0^\circ \le \theta$ t $\le 54.3^\circ$ の範囲において、上記式(7)および上記式(8)で表される曲線で包囲される範囲、および前記リタデーションR dが、反射領域のツイスト角 θ t が $54.3^\circ < \theta$ t $\le 90^\circ$ の範囲において、上記式(5)および上記式(8)で表される曲線で包囲される範囲とし、且つ、

前記透過領域のツイスト角 θ tが0°以上90°以下の 範囲において、前記リタデーションが上記式(11)と 上記式(12)とで表される曲線で包囲される範囲にあ る、請求項1に記載の液晶表示装置。

【請求項3】 前記反射領域と前記透過領域は、同じ液 晶材料からなる液晶層を有し、

該反射領域の該液晶層の厚さは、該透過領域の該液晶層 の厚さよりも小さい、請求項1に記載の液晶表示装置。

【請求項4】 前記第1位相差補償素子は、第1の位相 差板を有し、前記液晶層のツイスト角 θ tが0°で、前記反射領域のリタデーションR dが90 n m \leq R d \leq 1 87 n m であり、前記透過領域のリタデーションR dが 110 n m \leq R d \leq 4 4 0 n m であり、かつ、該第1位 相差板のリタデーションR dが30 n m \leq R d \leq 2 5 0 n m の範囲である請求項2に記載の液晶表示装置。 ※50

※【請求項5】 前記第1位相差補償素子は、さらに第2の位相差板を有し、該第2位相差板のリタデーションR
 30 dが220nm≤Rd≤330nmの範囲である請求項4に記載の液晶表示装置。

【請求項6】 前記第2位相差補償素子は、第3の位相 差板を有し、該第3の位相差板のリタデーションR dが 120nm≦Rd≦150nmの範囲である請求項5に 記載の液晶表示装置。

【請求項7】 前記第2位相差補償素子は、さらに、第4の位相差板を有し、該第4の位相差板のリタデーションRdが240nm≤Rd≤310nmの範囲である請求項6に記載の液晶表示装置。

40 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶表示装置に関し、特に反射モードの表示と透過モードの表示を行うことが可能な、反射透過両用型の液晶表示装置に関する。 【0002】

【従来の技術】従来、液晶表示装置には、周囲光を利用する反射型表示装置、バックライト光を利用する透過型表示装置、ハーフミラーとバックライトを備えた半透過型表示装置があった。

【0003】反射型液晶表示装置は、薄暗い環境下では

表示が見えにくくなり、透過型液晶表示装置は、周囲光 が強い、例えば屋外など太陽光のもとでは、表示がかす んで見えにくくなるという欠点があった。どのような環 境下でも良好な表示ができるように、これらの両方の表 示モードを併用した液晶表示装置として、特開平7−3 33598号公報は、半透過型液晶表示装置を開示して いる。

[0004]

【発明が解決しようとする課題】しかしながら、上記の 従来の半透過型液晶表示装置には、下記の問題があっ た。従来の半透過型液晶表示装置は、反射型液晶表示装 置における反射板に代えてハーフミラーを用い、微少な 透過領域(例えば、金属薄膜中の微少な穴)を反射領域 内に設け、反射光とともに透過光を利用して表示を行っ ている。表示に用いられる反射光と透過光は同じ液晶層 を通過するので、反射光の光路は透過光の光路の2倍と なり、反射光と透過光に対する液晶層のリタデーション が大きく異なるので、良好な表示を得ることができなか った。また、反射モードと透過モードの表示が重畳され ているので、反射モードの表示と透過モードの表示を個 20 別に最適化できないので、カラー表示が困難であった り、ぼやけた表示になるという問題があった。

【0005】本発明は、上記課題を解決するためになさ れたものであり、本発明の目的は、量産性にすぐれ、周 囲光の明るさによらず、良好な表示が可能な液晶表示装 置を提供することにある。

* 【0006】

【課題を解決するための手段】本発明の液晶表示装置 は、第1及び第2基板と、該第1基板と第2基板との間 に挟持された液晶層とを有し、該液晶層に電圧を印加す る一対の電極によって規定される複数の絵素領域を有す る液晶表示装置であって、該複数の絵素領域毎に、反射 領域と透過領域とを有し、該液晶層は、正の誘電率異方 性を有する液晶材料からなり、該第1基板の該液晶層と は反対側に設けられた第1偏光素子と、該第2基板の該 10 液晶層とは反対側に設けられた第2偏光素子と、該第1 偏光素子と該液晶層との間に設けられた第1位相差補償 素子と、該第2偏光素子と該液晶層との間に設けられた 第2位相差補償素子とを有し、該液晶層のツイスト角母 tは0°以上90°以下であり、該反射領域の該液晶層 の可視光領域のリタデーションRdとツイスト角 θ tが、式(1)と式(2)、式(3)と式(4)とでそ れぞれ表される曲線で包囲される範囲、 $0^{\circ} \leq \theta_{t} \leq 5$ 4.3°の範囲において、式(5)と式(6)および式 (7)と式(8)とでそれぞれ表される曲線で包囲され る範囲、および54.3°<θt≦90°の範囲におい て、式(5)と式(8)で表される曲線で包囲される範 囲であり、且つ、該透過領域の該液晶層の可視光領域の リタデーションRdとツイスト角 θ_t が、式(9)と式 (10)、式(11)と式(12)でそれぞれ表される 曲線で包囲される範囲であり、上記のそれぞれの式が、

 $Rd = -0.0043 \cdot \theta_t^2 - 0.065 \cdot \theta_t + 1011.8$ (1) $Rd = -0.0089 \cdot \theta_{t^2} + 0.1379 \cdot \theta_{t} + 914.68$ (2) $Rd = -0.0015 \cdot \theta_t^2 - 0.1612 \cdot \theta_t + 737.29$ (3) $Rd = -0.0064 \cdot \theta_t^2 - 0.0043 \cdot \theta_t + 640.65$ (4) $Rd = -0.0178 \cdot \theta_{t}^{2} + 0.2219 \cdot \theta_{t} + 458.92$ (5) $Rd = -0.0405 \cdot \theta_t^2 + 0.4045 \cdot \theta_t + 364.05$ (6) $Rd = 0.0347 \cdot \theta_t^2 - 0.4161 \cdot \theta_t + 186.53$ (7) $Rd = 0.0098 \cdot \theta_t^2 - 0.1912 \cdot \theta_t + 89.873$ (8) $Rd = -0.0043 \cdot \theta_t^2 - 0.065 \cdot \theta_t + 995.66$ (9) $Rd = -0.0058 \cdot \theta_{t^2} - 0.0202 \cdot \theta_{t} + 665.8$ (10) $Rd = -0.0248 \cdot \theta_{t^2} + 0.6307 \cdot \theta_{t} + 439.58$ (11) $Rd = 0.0181 \cdot \theta_t^2 - 0.6662 \cdot \theta_t + 109.51$ (12)

であり、そのことによって上記目的が達成される。

イスト角 θ_t が $0^{\circ} \le \theta_t \le 54.3^{\circ}$ の範囲において、 上記式(7)および上記式(8)で表される曲線で包囲 される範囲、および前記リタデーションRdが、反射領 域のツイスト角 θ_t が54.3°< θ_t ≦90°の範囲に おいて、上記式(5)および上記式(8)で表される曲 線で包囲される範囲とし、且つ、前記透過領域のツイス ト角 θ_{t} が 0° 以上 90° 以下の範囲において、前記リ タデーションが上記式(11)と上記式(12)とで表 される曲線で包囲される範囲にあることが好ましい。

【0008】前記反射領域と前記透過領域は、同じ液晶※50 位相差板を有し、該第2位相差板のリタデーションRd

※材料からなる液晶層を有し、該反射領域の該液晶層の厚 【0007】前記リタデーションR dが、反射領域のツ 40 さは、該透過領域の該液晶層の厚さよりも小さいことが

> 【0009】前記第1位相差補償素子は、第1の位相差 板を有し、前記液晶層のツイスト角 θ tが0°で、前記 反射領域のリタデーションR dが90nm≦R d≦18 7 nmであり、前記透過領域のリタデーションRdが1 10nm≤Rd≤440nmであり、かつ、該第1位相 差板のリタデーションRdが30nm≤Rd≤250n mの範囲であってもよい。

> 【0010】前記第1位相差補償素子は、さらに第2の

が220nm≤Rd≤330nmの範囲であってもよい。

【0011】前記第2位相差補償素子は、第3の位相差板を有し、該第3の位相差板のリタデーションRdが1 20nm≤Rd≤150nmの範囲であってもよい。

【0012】前記第2位相差補償素子は、さらに、第4の位相差板を有し、該第4の位相差板のリタデーションRdが240nm \leq Rd \leq 310nmの範囲であってもよい。

【0013】以下、本発明の作用について説明する。まず、本願明細書で用いる用語の定義を説明する。反射透過両用型液晶表示装置において、透過光を用いて表示を行う領域を透過領域、反射光を利用して表示を行う領域を反射領域とそれぞれ呼ぶ。透過領域および反射領域は、それぞれ、基板上に形成された透過電極領域および反射電極領域と、一対の基板に挟持された液晶層とを含む。基板上の透過電極領域および反射電極領域が、反射領域および透過領域の2次元的な広がりをそれぞれ規定する。透過電極領域は、典型的には透明電極によって規定される。反射電極領域は、反射電極または、透明電極と反射電極との組み合わせによって規定され得る。

【0014】本発明の液晶表示装置は、絵素領域ごとに反射領域と透過領域とを有する。従って、反射領域と透過領域についてそれぞれ独立に液晶層のリタデーションを最適化することができる。具体的には、反射領域の液晶層のリタデーションを式(1)と式(2)、式(3)と式(4)、式(5)と式(6)、式(7)と式(8)でそれぞれ表される曲線で包囲される範囲(図5のハッチング領域(ダブルハッチング領域を含む))に設定し、透過領域の液晶層のリタデーションを式(9)と式(10)、式(11)と式(12)とで包囲される範囲に(図6中のハッチング領域(ダブルハッチング領域を含む))に設定することによって、反射領域の明るさ(反射率)を70%以上、透過領域の明るさ(透過率)を30%以上とすることができる。

【0015】これらのリタデーションの条件は、可視光の中心波長(視感度が高い)550nmの波長に対して満足することが好ましい。更に、可視光の全ての波長範囲(400nm以上800nm以下)について満足することがより好ましい。

【0016】さらに、ツイスト角θtは、0°~90°の範囲にあるので、1回のラビング処理で、液晶層の厚さが異なる反射領域および透過領域の両方の領域のツイスト角を同じにできる。反射領域と透過領域のツイスト角が異なるようにするには、2つの領域に別々にラビングをしなければならず、製造プロセスが複雑になるという問題が生じる。

【 $0 \, 0 \, 1 \, 7$ 】 さらに、前記リタデーションR dが、反射 領域のツイスト角 θ_t が $0^\circ \le \theta_t \le 5 \, 4$. 3° の範囲に おいて、上記式(7)および上記式(8)で表される曲 50

線で包囲される範囲、および前記リタデーションRd が、反射領域のツイスト角 θ tが54.3°< θ t≦90 [®] の範囲において、リタデーションを式(5)と式 (8)とで表される曲線で包囲される範囲(図5中のダ ブルハッチング領域)とし、且つ、透過領域のツイスト 角 θ_t が0。以上90。以下の範囲においてリタデーシ ョンを式(11)と式(12)とで表される曲線で包囲 される範囲(図6中のダブルハッチング領域)とするこ とによって、電圧印加時に、反射領域および透過領域の 液晶層のリタデーションは0となり、このとき黒表示と なるように設定すれば、反射領域および透過領域に同じ 電圧を印加することで、同時に良好な黒表示が実現され る。さらに、上記の条件は、白表示を実現するための条 件として、リタデーションが〇に最も近い白領域(図 7、図8における低リタデーション側から第1ピーク) を選択することに対応し、階調表示も良好に行える。す なわち、白表示から黒表示へ変化する中間状態におい て、明るさ(反射率および透過率)が単調減少するの で、良好な階調表示が得られる。もし、白表示を実現す る条件として、図7および図8における、低リタデーシ ョン側からの第2ピークに、白領域を設定すれば、中間 調表示領域に第1ピークが存在して、良好な階調表示と することができない。

【0018】透過領域と反射領域の液晶層を同一の液晶材料で構成した方が、液晶材料の種類を変える場合よりも、構成や製造方法が簡略される。反射領域と透過領域とでそれぞれ異なるリタデーションを設定するために、反射領域と透過領域の液晶層の厚さを変えるのが有効である。さらに、反射領域と透過領域とにおける表示に寄与する光に対する光路長を一致させるためには、透過領域の液晶層の厚さを反射領域の液晶層の厚さが反射領域の液晶層の厚さの2倍であることが最も好ましい。

【0019】第1位相差補償素子が第1の位相差板を有し、液晶層のツイスト角 θ tが0°で、反射領域のリタデーションRdが90nm \leq Rd \leq 187nmであり、透過領域のリタデーションRdが110nm \leq Rd \leq 40nmであり、かつ、第1位相差板のリタデーションRdが30nm \leq Rd \leq 250nmの範囲であれば、反射領域の表示を明るく、高コントラスト比を有するノーマリホワイトモードで実現することができる。

【0020】第1位相差補償素子が第1の位相差板に加えて、第2の位相差板を有し、この第2位相差板のリタデーションR dが 220nm \leq R d \leq 330nm の範囲であれば、反射領域の波長特性が緩和されるので、さらに高コントラストな表示を行うことができる。

【0021】第2位相差補償素子が第3の位相差板を有し、第3の位相差板のリタデーションRdが120nm ≦Rd≦150nmの範囲であれば、透過領域において も、暗時の最適化が行われるので、さらに高コントラス

トな表示を行うことができる。

【0022】第2位相差補償素子が第3の位相差板に加えて、第4の位相差板を有し、この第4の位相差板のリタデーションR dが240 n m \leq R d \leq d \leq d \leq d e

[0023]

【発明の実施の形態】本発明の実施形態1における反射 透過両用型液晶表示装置100の部分断面図を図1Aに 示す。また、図1Bに、液晶表示装置100のアクティ ブマトリクス基板70の上面図を示す。図1Aは図1B のA-A線に沿った断面図に相当する。

【0024】図1Aに示したように、液晶表示装置100は、アクティブマトリクス基板70と対向基板(カラーフィルタ基板)160と、これらの間に挟持された液晶層140とを有している。アクティブマトリクス基板70および対向基板160の液晶層140とは反対側の表面には、それぞれ位相差補償素子(位相差板や位相差フィルムおよびこれらの積層体など)170および180が設けられている。さらに、これらを挟持するように、位相差補償素子170および180の外側に偏光素子(偏光板や偏光フィルムなど)172および182が設けられている。

【0025】図1Aおよび図1Bに示したように、反射 透過両用型のアクティブマトリクス基板70は、絶縁基 板であるガラス基板61の上に、走査線としての複数の ゲートバスライン72および信号線としてのソースバス ライン74が交互に交差して設けられている。各ゲート バスライン72および各ソースバスライン74によって 囲まれた矩形状の領域内には、光反射効率の高い材料 (例えば、A1、Ag、Ta)からなる反射電極69 と、それとは別に、光透過効率の高い材料(例えば、I TO)からなる透明電極68とが配置されており、これ ら反射電極69と透明電極68とで画素電極を形成して いる。反射電極69の下には、高さの高い凸部64aと 高さの低い凸部64bとこれらの上に形成された高分子 樹脂膜65が形成されており、反射電極69の表面は連 続した波形になっている。凸部の高さは一種類でもよ V1.

【0026】反射電極69はTFT71のドレイン電極76とコンタクトホール79で接続されている。TFT71はゲート電極73を覆うゲート絶縁膜61a上に堆積された半導体層77で形成されている。TFT71のゲート電極73およびソース電極75は、それぞれゲートバスライン72およびソースバスライン74から分岐されて形成されている。

【0027】対向基板(カラーフィルタ基板)160は、絶縁基板であるガラス基板162上に、カラーフィルタ層164およびITO等からなる透明電極166が形成されている。両基板70及び160の液晶層140

._ . . .

側表面には、水平配向膜(不図示)が形成されている。配向膜の塗布後、ラビング等により希望のツイスト角度になるよう配向処理を施してある。液晶層140には、正の誘電異方性を有するネマチック液晶材料を用いる。液晶層140の液晶分子は、水平配向性の配向膜に対するラビング等の配向処理により、基板面に対して0.1°から5°程度のチルト角を持つ。液晶分子は、電圧無印加時に基板面に平行に配向し、電圧印加時に基板面の法線方向に傾く。

10 【0028】液晶表示装置100の最小の表示の単位と なる絵素は、反射電極69によって規定される反射領域 120Rと透明電極68によって規定される透過領域1 20Tとを有する。液晶層140の厚さは、反射領域1 20Rにおいてはdrであり、透過領域120Tではd t (dt>dr)となっている。これは、表示に寄与す る光(反射領域の反射光と透過領域の透過光)の光路長 をほぼ等しくするためである。dt=2drが好ましい が、表示特性との関係で適宜設定すればよい。少なくと も、dt>drであればよい。典型的には、dtは約4 20 $\sim 6 \mu \text{m}$ で、drは約2 $\sim 3 \mu \text{m}$ である。すなわち、ア クティブマトリクス基板70の絵素領域内に、約2~3 μmの段差が形成されている。なお、反射電極69が図 示したように凹凸を有している場合には、平均値をdr とすればよい。このように、反射透過両用型液晶表示装 置100においては、液晶層140の厚さの異なる領域 (反射領域と透過領域)が形成されている。この例で は、アクティブマトリクス基板70の液晶側表面に、高 さの異なる反射電極領域120Rと透過電極領域120 Tとを有する。

30 【0029】水平配向モードにおいてノーマリブラック モードの液晶表示装置を製造する場合、セルギャップの 制御が困難になる場合が多い。そこで、本実施例では、 プロセスマージンを広く取るためにノーマリーホワイト を採用している。

【0030】図1Aに示した液晶表装置100のノーマ リホワイトモードにおける表示原理の詳細を図2、図3 および図4を参照しながら説明する。なお、位相差補償 素子170および180が色補償用の位相差板(1/2 波長板)170aおよび180bと直線偏光を円偏光に 変換するための位相差板(1/4波長板)170bおよ び180aを有する場合を説明する。1/2波長板17 Oaおよび180bは表示の着色を押さえるためのもの であり、多少の着色を容認する場合は用いなくても良 く、またさらに無彩色な表示を実現する場合には2枚用 いるのが良い。これらは、液晶表示装置の用途に応じて 適宜設定すればよい。液晶をツイストさせると、透過領 域と反射領域とで液晶層の厚さが異なる場合、これらの 領域の境界となる段差部にディスクリネーションが発生 しやすい。従って、ツイスト角〇°の水平配向が最も好 50 ましい。

1.0

9 【0031】図2は、反射領域120Rで白表示を行った場合の各層での光の偏光状態を示す。

【0032】入射光は偏光板172によって直線偏光になり、色補償用の1/2波長板170aに入射する。1/2波長板170aでは偏光状態は変化せずに、直線偏光のの偏光軸の方向が変化する。その後で1/4波長板170bに入射した直線偏光は円偏光となり液晶層140に入射する。白表示状態の液晶層140の実効的な位相差は1/4波長に調整されているため、入射した円偏光は直線偏光になる。液晶層140を透過した直線偏光は反射板(反射電極69)によって、偏光状態を保ったまま反射され、再び液晶層140に入射する。液晶層140を再び透過した直線偏光は円偏光となり、さらに1/4波長板170bによって直線偏光に変換される。その後1/2波長板170aを通過した後、偏光板172を通して出射される。

【0033】図3は、反射領域120Rで黒表示を行った場合の各層での光の偏光状態を示す。

【〇〇34】入射光は偏光板172によって直線偏光に なり、色補償用の1/2波長板170aに入射する。1 ✓2波長板170aでは偏光状態は変化せずに、直線偏 光の偏光軸の方向が変化する。その後で1/4波長板1 706に入射した直線偏光は円偏光となり液晶層140 に入射する。黒表示のための電圧が印加されているので 液晶層140の実効的な位相差は0に調整されているた め、入射した円偏光はそのまま円偏光として通過する。 液晶層140を透過した円偏光は反射板69によって偏 光状態を保ったまま反射され、再び液晶層140に入射 する。円偏光は偏光状態を維持したまま液晶層140を 再び透過し、1/4波長板170bによって直線偏光に 変換される。このとき、直線偏光の偏光方向が白表示状 態とに比べて90度回転されている。1/2波長板17 Oaを通過した直線偏光は、偏光板172によって吸収 されるため液晶表示装置から出射されない。

【0035】図4に、透過領域120Tで白表示および 黒表示を行った場合の各層での光の偏光状態を示す。反 射透過両用型液晶表示装置の設計においては、反射領域 120 Rに対して、偏光板172の配置、位相差補償素 子170aおよび170bのリタデーションおよび遅相 軸の配置を決定し、その後で、透過領域120Tに対し て、位相差補償素子180aおよび180bのリタデー ションおよび遅相軸の配置、偏光板182の配置を決定 する。図4には、この設計の手順を反映させて、液晶表 示装置100の観察者側に設けられている上側偏光板1 72から光が入射した場合の各層での偏光状態を示して いる。なお、実際、透過領域120Tの表示に使用され る光はバックライトからの光であり、下側偏光板182 から入射するが、下側偏光板182から入射した光の各 層での偏光状態の変化も図4に示した変化と等価であ る。

【0036】透過領域120Tの基本的な構成は、反射領域120Rの構成と同じものを反射板69に対して鏡映対称像となるように配置されている。各層による偏光状態および偏光方向の変化は基本的に反射領域について説明したのと同じである。液晶層140の光学的なリタデーションは1/2波長(反射領域120Rのリタデーションの2倍)に調整されている。

【0037】上述のように、反射領域120Rおよび透過領域120Tを併用して表示を行う場合、最大の反射効率および透過効率を実現するためには、液晶層140の光学的リタデーションは、反射領域120Rで1/4波長以上、透過領域120Tで1/2波長以上、それぞれ必要で、且つ、黒表示のための電圧印加時のリタデーションと電圧無印加時のリタデーションとの差が、反射領域で1/4波長以上、透過領域で1/2波長以上である必要がある。

【0038】反射領域120Rと透過領域120Tで上述の光学的なリタデーションを実現するためには様々な形態が利用できる。例えば、ホモジニアス配向した液晶層、ツイスト配向した液晶層、ハイブリッド配向した液晶層等を用いることができる。

【0039】なお、電圧無印加時に液晶分子(少なくとも一部の液晶分子)が基板表面に対して水平方向に配向する液晶表示モードを用いると、十分な黒表示が実現できないという問題が生じることがある。この問題について以下に説明する。

【0040】液晶層を挟んで対向する電極間に十分高い電圧を印加すれば、液晶分子はほば基板表面に対して垂直(電界に対して平行)に立ち上がり、液晶層140の光学的リタデーションはほぼ0になる。しかし、黒表示時の印加電圧は有限(典型的には5V程度)であるため、液晶分子の配向が十分に変化できず、液晶層140に有限の光学的リタデーションが残る。特に配向膜の表面近傍の液晶分子は、配向膜のアンカリング効果のために、駆動のために印加される電圧程度では、垂直に配向せず、液晶層140のリタデーションは0とならない。その結果、電圧無印加時に液晶分子(少なくとも一部の液晶分子)が基板表面に対して水平方向に配向する液晶表示モードを用いると、十分な黒表示が実現できず、結40果として十分なコントラストが得られない。

【0041】この問題を解決するためには、反射領域120Rについては、1/4波長板の光学的なリタデーションを調整することで、実用的な電圧範囲でも黒表示ができるようにするのが有効である。具体的には、液晶層140にαのリタデーションが残存している場合、1/4波長板170bの遅相軸を液晶層140の実効的な遅相軸の方向にほぼ一致させ、1/4波長板170bの光学的なリタデーションを(λ/4-α)とすることで、電圧印加時に液晶層140に残る光学的リタデーションと併せて、液晶セル全体で1/4波長条件を満足できる

ようにする。他の方法として、1/4波長板170bの 遅相軸を液晶層140の実効的な遅相軸の方向と直交さ せ、1/4波長板170bの光学的なリタデーションを $(\lambda/4+\alpha)$ とすることで、電圧印加時に液晶層 1 4 Oに残る光学的リタデーションをキャンセルし、1/4 波長条件を満足できるようにすることができる。

1 1

【0042】透過領域120円に関しては、反射領域1 20日の構成を上述の様に設定した後、透過領域120 Tから出射される楕円偏光の長軸もしくは短軸に1/4 波長板180bの光軸(遅相軸)に合わせることによ り、楕円偏光を直線偏光に変換し、この直線偏光の偏光 軸に直交する方向に偏光板182の偏光軸を設定するこ とによって、上記の問題を解決することができる。

【0043】または、透過領域120Tにおいて、 β の リタデーションが残存している場合、1/4波長板18 ○ aの遅相軸を液晶層140の実効的な遅相軸の方向に ほぼ一致させ、1/4波長板180aの光学的なリタデ -ションを(λ / 4 - $(\beta - \alpha)$)とすることで、電圧 印加時に液晶層140に残る光学的リタデーションと併 せて1/2波長条件を満足できるようにする。あるい は、1/4波長板180aの遅相軸を液晶層140の実 効的な遅相軸の方向と直交させ、1/4波長板180a の光学的なリタデーションを $(\lambda/4+(\beta-\alpha))$ と* * することで、電圧印加時に液晶層140に残る光学的リ タデーションとキャンセルし、1/2波長条件を満足で きるようにしてもよい。

【0044】次に、本願発明の反射透過両用型液晶表示 装置の表示特性について説明する。図1に示した液晶表 示装置100において、位相差補償素子170および1 80が1/4波長板であるときの、液晶層140のツイ スト角 θ_t とリタデーションとの関係を、反射領域12 ORについて図5、透過領域120Tについて図6に示 10 す。

【0045】反射領域については、ツイスト角 θ_t が、 $0° \le \theta_t \le 90°$ の範囲において、図5のハッチング の範囲にあれば、70%以上の利用効率が得られる。図 5のハッチングの領域は、リタデーションRd(Rd= $\Delta n \cdot d$;液晶層の複屈折率 Δn 、それぞれの領域にお ける液晶層の厚さ d)が、式(1)と式(2)、式 (3)と式(4)とそれぞれ表される曲線で包囲される 範囲、 $0^{\circ} \leq \theta_t \leq 54.3^{\circ}$ の範囲において、式 (5)と式(6)および式(7)と式(8)とでそれぞ 20 れ表される曲線で包囲される範囲、および54.3°< $\theta_t \leq 90^\circ$ の範囲において、式(5)と式(8)で表 される曲線で包囲される範囲である。

(7)

一方、透過領域120Tについては、ツイスト角 θ $tが、0° \le \theta t \le 90°$ の範囲において、図6のハッチ ングの範囲にあれば、30%以上の利用効率が得られ ※ それぞれ表される曲線で包囲される範囲である。

※る。図6のハッチングの領域は、リタデーションRd が、式(9)と式(10)、式(11)と式(12)と

$$Rd = -0. \ 0.043 \cdot \theta_{t}^{2} - 0. \ 0.65 \cdot \theta_{t} + 9.95 \cdot 6.6$$

$$Rd = -0. \ 0.058 \cdot \theta_{t}^{2} - 0. \ 0.202 \cdot \theta_{t} + 6.65 \cdot 8$$

$$Rd = -0. \ 0.248 \cdot \theta_{t}^{2} + 0. \ 6.307 \cdot \theta_{t} + 4.39 \cdot 5.8$$

$$Rd = 0. \ 0.181 \cdot \theta_{t}^{2} - 0. \ 6.662 \cdot \theta_{t} + 1.09 \cdot 5.1$$

$$(12)$$

上述の条件のとき、液晶層に十分電圧を印加することに 表示が実現される。

【0046】さらに、リタデーションRdが、反射領域 のツイスト角 θ_t が $0^{\circ} \leq \theta_t \leq 54.3^{\circ}$ の範囲におい て、式(7)および式(8)で表される曲線で包囲され る範囲、およびリタデーションR dが、反射領域のツイ スト角 θ_t が54.3°< $\theta_t \leq 90$ °の範囲において、 式(5)と式(8)とで表される曲線で包囲される範囲 (図5中のダブルハッチング領域)とし、且つ、透過領 域のツイスト角 θ tが0°以上90°以下の範囲におい てリタデーションRdを式(11)と式(12)とで表★50

★される曲線で包囲される範囲(図6中のダブルハッチン よりリタデーションは0となり、コントラストの高い暗 40 グ領域)とすることによって、電圧印加時に、反射領域 および透過領域の液晶層のリタデーションは0となり、 このとき黒表示となるように設定すれば、反射領域およ び透過領域に同じ電圧を印加すれば、同時に良好な黒表 示が実現される。

> 【0047】それぞれのツイスト角 θ_t におけるリタデ ーションの反射率および透過率に対する影響をそれぞれ 図7および図8に示す。先の図5および図6は、図7お よび図8において、それぞれ反射率が70%以上および 透過率が30%以上の領域を示したものである。

> 【0048】さらに、上記の条件は、白表示を実現する

ための条件として、リタデーションが O に最も近い白領域、すなわち、図7、図8における低リタデーション側から第1ピークを選択することに対応しており、階調表示も良好に行える。すなわち、白表示から黒表示へ変化する中間状態において、明るさ(反射率および透過率)が単調減少するので、良好な階調表示が得られる。もし、白表示を実現する条件として、図7および図8における、低リタデーション側からの第2ピークを用いて白*

*表示を行えば、中間調表示領域に第1ピークが存在して、良好な階調表示とすることができない。

14

【0049】同様にして、反射率が90%以上となる範囲(図9)、透過率が50%以上の領域(図10)、透過率が70%以上の領域(図11)透過率が90%以上の領域(図12)が得られる。それぞれの領域を規定する曲線の式を以下に示す。

反射率90%以上

及射率90%以上	
$Rd = -0.0043 \cdot \theta_{t^2} - 0.065 \cdot \theta_{t} + 987.57$	(13)
$Rd = -0.0074 \cdot \theta_{t}^{2} + 0.049 \cdot \theta_{t} + 938.59$	(14)
$Rd = -0.0043 \cdot \theta_{t^2} + 0.0282 \cdot \theta_{t} + 712.36$	(15)
$Rd = -0.0061 \cdot \theta_{t^2} + 0.0564 \cdot \theta_{t} + 662.94$	(16)
$Rd = -0.0192 \cdot \theta_t^2 + 0.1721 \cdot \theta_t + 435.68$	(17)
$Rd = -0.0347 \cdot \theta_t^2 + 0.5085 \cdot \theta_t + 387.16$	(18)
$Rd = 0.0217 \cdot \theta_t^2 - 0.1589 \cdot \theta_t + 162.09$	(19)
式(18)と式(19)の交点はツイスト角 $ heta_{ m t}$ 69.5 $^\circ$	
$Rd = 0.0167 \cdot \theta_t^2 - 0.4884 \cdot \theta_t + 115.56$	(20)
透過率50%以上	
$Rd = -0.0046 \cdot \theta_t^2 - 0.0913 \cdot \theta_t + 959.69$	(21)
$Rd = -0.0037 \cdot \theta_t^2 - 0.076 \cdot \theta_t + 692.65$	(22)
$Rd = -0.0308 \cdot \theta_t^2 + 0.5971 \cdot \theta_t + 407.2$	(23)
$Rd = 0.0246 \cdot \theta_t^2 - 0.7079 \cdot \theta_t + 148.65$	(24)
式(23)と式(24)の交点はツイスト角 $ heta_{ m t}$ 81.0 $^\circ$	
透過率70%以上	
$Rd = -0.0074 \cdot \theta_{t}^{2} + 0.049 \cdot \theta_{t} + 922.41$	(25)
$Rd = -0.0043 \cdot \theta_t^2 + 0.0282 \cdot \theta_t + 728.54$	(26)
$Rd = -0.0419 \cdot \theta_t^2 + 0.5461 \cdot \theta_t + 371.27$	(27)
$Rd = 0.0347 \cdot \theta_t^2 - 0.5085 \cdot \theta_t + 179.14$	(28)
式(27)と式(28)の交点はツイスト角 $\theta_{ m t}$ 57.5 $^\circ$	
透過率90%以上	
$Rd = -0.0127 \cdot \theta_t^2 + 0.1931 \cdot \theta_t + 877.69$	(29)
$Rd = 0.0048 \cdot \theta_t^2 - 0.4527 \cdot \theta_t + 779.34$	(30)
$Rd = -0.0809 \cdot \theta_t^2 + 0.809 \cdot \theta_t + 323.6$	(31)
$Rd = 0.0404 \cdot \theta_t^2 - 0.4045 \cdot \theta_t + 226.52$	(32)
式(31)と式(32)の交点はツイスト角 $ heta_{ m t}$ 34.0 $^\circ$	

さらに、図9、図10、図11および図12のダブルハッチング領域に液晶層のリタデーションおよびツイスト角を設定することで、白表示から黒表示へ変化する中間状態において明るさが単調減少するので、良好な階調表示が得られる。

【0050】上記の説明ではツイスト配向について説明したが、ハイブリッド配向の場合も同様に考えることができる。ハイブリッド配向は片側基板を水平配向、もう一方を垂直配向にするが、このときの最適リタデーションは図5および図6においてツイスト角 θ tが0°の場合について考えれば良く、そのときの特性はツイスト角 θ tが0°の水平配向と同様の特性になる。

【0051】液晶層140の液晶材料として、屈折率異 $\alpha = 30$ nm程度の残留リタデーションがあるため、位 方性 \triangle n=0.06を有し、正の誘電率異方性を示す液%50 相差補償素子170bのリタデーションを110nmと

※晶材料を用いた。

【0052】図1に示した液晶表示装置100において、透過領域120Tの液晶層140のセルギャップd40 t=約5.50 μ m、反射領域120Rの液晶層140のセルギャップdr=約3.0 μ m、ツイスト角 θ t=0°、液晶層140の屈折率異方性 Δ n=0.06を有する正の誘電率異方性を示す液晶材料を用いたときの、垂直入射垂直受光時の電圧対透過率特性、電圧対反射率特性を図13に示す。

【0053】図13は、空気に対しての垂直入射垂直受 光時の分光透過を1としている。この場合、反射領域1 20Rにおいて印加電圧が5Vのとき、液晶層140に α =30nm程度の残留リタデーションがあるため、位 相差補償素子170bのリタデーションを110nmと

し、位相差補償素子170bの遅相軸を液晶層140の 遅相軸と一致させ、この遅相軸に対して45°回転させ た方向に直線偏光が入射するように位相差補償素子17 0aの遅相軸と偏光板172の偏光軸を設定した。位相 差補償素子180aのリタデーションは140nmと し、光軸の方向は液晶層140から出射された楕円偏光 の長軸に一致させ、変換された直線偏光を位相差補償素 子180bにより偏光方向を変換し、この直線偏光の偏 光軸に直交した方向に偏光板182の偏光軸を設定し た

【0054】図14に、得られた反射透過両用型液晶表示装置の白表示および黒表示状態における分光輝度(反射率と透過率)特性を示す。液晶層140に電圧を印加していない白表示と、電圧5V印加時の黒表示において、400nmから700nmの波長域全域で十分なコントラスト比が得られていることが、図14からわかる。このことからも、この表示方式は光の利用効率が高く反射透過両用型液晶表示装置に適していることがわかる。

【0055】従って、周囲の光が暗い場合はバックライトを用いて透明領域120Tを透過する光を利用して表示する透過型液晶表示装置として使用し、周囲光が明るい場合には、反射領域120Rでの反射光を利用して表示する反射型液晶表示装置として表示が可能になる。また、透過モードで表示を行う場合にも、反射領域は反射モードの表示を行うので、従来の透過型液晶表示装置で見られる、周囲光が画面で反射して表示が見難くなる現象が抑制される。

【0056】従って、1枚のパネルで周囲の光が暗い場合ではバックライトを用い、周囲光が明るい場合はバックライトを使わずに周囲光を利用する、あるいは、バックライトと反射光の両方を使用しても表示が可能な反射透過両用型液晶表示装置として用いることが可能になる。

【0057】よって、従来の透過型液晶表示装置よりも 周囲光が明るい場合にはバックライトを使わない分低消 費電力であり、周囲の光が暗い場合ではバックライトを 用いることで、従来の反射型液晶表示装置のように周囲 の光が暗いと十分な表示が得られないという欠点を克服 できる。

【0058】また、白表示と黒表示の場合について説明 したが、反射領域や透過領域の対応箇所に各色のカラー フィルターを設けてカラー表示を行うこともできる。

【0059】反射部および透過部で反射率および透過率の印加電圧依存性(いわゆる γ 特性)がほぼ同等であるのが望ましい。

【 $0\,0\,6\,0$ 】次に、反射領域 $1\,2\,0\,R$ の液晶層 $1\,4\,0\,0$ ました セルギャップ $d\,r$ =約3 . $0\,\mu\,m$ 、液晶層のツイスト角 θ t = 0° 、液晶層 $1\,4\,0\,0$ 屈折率異方性 $\triangle\,n$ = 0 . 0 3 3 6 を有する正の誘電率異方性を示す液晶材料を用いた場 50 る。

16

合の、反射領域120Rにおける1/4波長板170b(図4)のリタデーションRd対反射率の関係を図15(a)および(b)に示す。図15(a)は1/4波長板170bの遅相軸を液晶層140の遅相軸に対して平行な方向に設けた場合、および、図15(b)は1/4波長板170bの遅相軸を液晶層140の遅相軸に対して垂直な方向に設けた場合の結果を示す。なお、本検討は、光に対する視感度が最大となる550nmの波長について行われている。

10 【 0 0 6 1 】 ノーマリーホワイトの液晶表示装置において、電圧OFF時での明るさは理想的な反射率に対して約5 0 %以上であることが好ましいとされている。従って、図 1 5 (a) および (b) から、反射側位相差板 1 7 0 bのリタデーションR d は 3 0 n m以上 2 5 0 n m以下の範囲であることが好ましいことがわかる。この理由を下記に説明する。

【0062】位相差板の遅相軸および液晶相の遅相軸の設定角度Vと、位相差板のリタデーションと明るさ(反射率)の関係は、図17のようになる。理想的な反射率をピーク(100%)とした、上に凸型の曲線がそれぞれの設定温度(0 \le V \le 90)について存在し、曲線は、設定温度Vが大きくなれば、右方向(X軸の正の方向)にシフトする。最適なリタデーションの下限値は平行に配置した状態(V=0)で決まり、最適なリタデーションの上限値は垂直に配置した状態(V=90)で決まる。それぞれについて、詳細な検討を行った結果が図15(a)および図15(b)である。

【0063】すなわち、位相差板のリタデーションが30nm以上250nm以下の範囲であれば、位相差板の遅相軸と液晶相の遅相軸とを適当な角度に設定することにより、良好な白表示と黒表示とが可能になる。言い換えると、位相差板のリタデーションが30nm以下、あるいは、位相差板のリタデーションが250nm以上であれば、設定角度Vをどのように調整しても良好な白表示はできない。

【0064】続いて、コントラスト比を向上させるために、さらに位相差板を設けることが好ましいので、1/2波長板170aを上述の位相差板170bと偏光板172との間に挿入する。反射領域120Rにおける1/2波長板170aのリタデーションRd対コントラスト比の関係を図15(c)に示す。コントラスト比は、波長が380nmから780nmについて検討を行い、その結果に視感度曲線をかけあわせることによって視感度を考慮し、図15(c)の結果を得た。

【0065】視認性を考慮すれば、反射型液晶表示装置としては、コントラスト比は約10以上であることが好ましいとされる。従って、図15(c)から、1/2波長板170aのリタデーションRdは、220nm以上330nm以下の範囲であることが好ましいことがわかる

1.8

17

【0066】反射領域120Rの設定を上述のように優先的に行ったうえで、さらに、透過領域120Tにおける液晶表示装置の表示品位について検討を行った。透過領域120Tの液晶層140のセルギャップはt=約5.5 μ m、液晶層のツイスト角 θ t=0°、液晶層140の屈折率異方性 Δ n=0.06を有する正の誘電率異方性を示す液晶材料を用いた場合の、1/4波長板180a(図4)のリタデーションR d対コントラスト比の関係を図16(a)に示す。なお、図16(a)に示されるコントラスト比の算出結果は、上述の反射領域120Rと同様に行った。

【0067】視認性を考慮すれば、透過型液晶表示装置としては、コントラスト比が約100以上であることが好ましい。従って、図16(a)から、位相差板180aのリタデーションは120nm以上150nm以下に設定することが好ましいことが分かる。

【0068】透過領域120Tにおいてさらにコントラスト比を向上させるためには、1/4波長板180aと偏光板182との間(1/4波長板180aから出射された直線偏光の偏光軸と偏光板182の偏光軸との間)に、色補償用の1/2波長板180bのリタデーションRd対コントラスト比の関係を示す図16(b)から、コントラスト比が約100以上を満たすように、1/2波長板180bのリタデーションを240nm以上310nm以下に設定することが好ましいことが分かる。

【0069】上述したように、液晶分子のツイスト角が 0°であれば、絵素領域内にセル厚の段差があってもディスクリネーションが発生しにくく、液晶分子の配向が 良好になる。このように、液晶層のツイスト角が0°の 30 状態で、上記のような液晶層のリタデーションおよび、4種類の位相差板170a、170b、180aおよび 180bのリタデーションを設定すれば、液晶表示装置の反射モードと透過モードとのそれぞれの表示特性を最も向上させることができる。なお、上記4種類の位相差板の表示特性に寄与する優先順位は、位相差板170b、170a、180a、180bであり、位相差板170bが最も重要な構成要件である。上記優先順位から分かるように、反射モードにおける表示の改善を優先的 に行うことが好ましい。 40

[0070]

【発明の効果】上述したように、反射モードおよび透過モードを備えた表示装置においてコントラストの高い表示が可能となる。また、反射モードおよび透過モードを併用した場合に同時に黒表示が可能となり両方併用してもコントラストの高い表示が可能となる。また、印加電圧を変化させ、液晶層のリタデーション値を変化させることで、白表示から黒表示への階調表示が可能となる。また、反射領域と透過領域の液晶層のリタデーションを独立に最適化できるので、透過領域と反射領域の液晶層

を同時に同電圧で駆動することが可能となる。このため、周囲の環境に影響されることなく同一の駆動で、反射モードの表示と透過モードの表示を行うことができる。従って、周囲の環境に応じて、表示モードを切り替える必要がない。

【図面の簡単な説明】

【図1A】実施形態1における反射透過両用型液晶表示装置100の部分断面図である。

【図1B】液晶表示装置100のアクティブマトリクス 10 基板70の上面図である。

【図2】反射領域120Rで白表示を行った場合の各層での光の偏光状態を示す図である。

【図3】反射領域120Rで黒表示を行った場合の各層での光の偏光状態を示す図である。

【図4】透過領域120Tで表示を行った場合の各層での光の偏光状態を示す図である。

【図5】反射領域120Rについて、液晶層140のツイスト角とリタデーションとの関係(反射率70%以上の領域)を示す図である。

20 【図6】透過領域120Tについて、液晶層140のツイスト角とリタデーションとの関係(透過率30%以上の領域)を示す図である。

【図7】種々のツイスト角におけるリタデーションの反射率に対する影響を示すグラフである。

【図8】種々のツイスト角におけるリタデーションの透過率に対する影響を示すグラフである。

【図9】反射領域120Rについて、液晶層140のツイスト角とリタデーションとの関係(反射率が90%以上となる領域)を示す図である。

30 【図10】透過領域120Tについて、液晶層140の ツイスト角とリタデーションとの関係(透過率が50% 以上の領域)を示す図である。

【図11】透過領域120Tについて、液晶層140のツイスト角とリタデーションとの関係(透過率が70%以上の領域)を示す図である。

【図12】透過領域120Tについて、液晶層140のツイスト角とリタデーションとの関係(透過率が90%以上の領域)を示す図である。

【図13】実施形態の液晶表示装置の垂直入射垂直受光 40 時の電圧対透過率特性および電圧対反射率特性を示す図 である。

【図14】実施形態の液晶表示装置の白表示および黒表示状態における分光輝度(反射率と透過率)特性を示すグラフである。

【図15】(a)および(b)は、反射領域における1 /4波長板170bのリタデーションRd対反射率の結 果を示すグラフであり、(c)は、反射領域における1 /2波長板170aのリタデーションRd対コントラス ト比の関係を示すグラフである。

50 【図16】(a)は、透過領域における1/4波長板1

80aのリタデーションR d 対コントラスト比の関係を示し、(b)は、透過領域における1/2波長板180 bのリタデーションR d 対コントラスト比の関係を示す

【図17】位相差板の遅相軸および液晶相の遅相軸の設 定角度Vと、位相差板のリタデーションと明るさ(反射 率)の関係を示すグラフである。

【符号の説明】

グラフである。

68 透明電極

69 反射電極

70 アクティブマトリクス基板

100 液晶表示装置

120R 反射領域

120丁 透過領域

140 液晶層

160 対向基板(カラーフィルタ基板)

170、180 位相差補償素子

172、182 偏光板

【図1A】

【図1B】

黑表示状態

0 0r

10 20

30 40 50 60

Twist A (deg.)

70 80

90

0 40 50 Twist角(deg.)

60

70

80 90

200

10 20

フロントページの続き

(72)発明者 久保 真澄 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 F ターム(参考) 2H091 FA02Y FA08X FA08Z FA11X FA11Z FA14Y FA41Z FB08 GA13 KA02 KA03 KA04 KA05 LA12 LA17 LA18