

## RAMNIRANJAN JHUNJHUNWALA COLLEGE GHATKOPAR (W), MUMBAI - 400 086

### DEPARTMENT OF INFORMATION TECHNOLOGY

2024 - 2025

## MSC (IT) PART- I SEM- I RJSPIT103 INTRODUCTION TO DATA SCIENCE

NAME: SUDESH DINESH RAJBHAR ROLL NO.:6623

# Hindi Vidya Prachar Samiti's Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

(Empowered Autonomous College)



This is to certify that Mr. <u>Rajbhar Sudesh Dinesh SushilaDevi</u>, Roll No. <u>6623</u> of MSc. IT Part-1 class has completed the required number of Experiments of Practical Introduction To Data Science, in partial fulfilment of the Requirements for the award of the degree of Bachelor of Science (Information Technology) during the academic year 2024-2025.



Prof. Bharati Bhole

College seal

Sign of Co-Ordinator

## INDEX

| Sr. No. | Details                                                                                                              | Date         |
|---------|----------------------------------------------------------------------------------------------------------------------|--------------|
| 1.      | NumPy, Pandas, Matplotlib and Seaborn Basics.                                                                        | Jul 15, 2024 |
| 2.      | Collecting and loading structured and unstructured data.                                                             | Aug 6, 2024  |
| 3.      | Using Data Wrangling processes: Data discovery, data pre-processing, data validation etc. for various types of data. | Aug 10, 2024 |
| 4.      | Basic utility design, Data auditing and Exploratory Data Analysis.                                                   | Aug 13, 2024 |
| 5.      | Retrieve Superstep.                                                                                                  | Aug 13, 2024 |
| 6.      | Access Superstep.                                                                                                    | Aug 20, 2024 |
| 7.      | Processing Data.                                                                                                     | Aug 20, 2024 |
| 8.      | Data Visualization.                                                                                                  | Aug 20, 2024 |
| 9.      | Data Analysis using Excel                                                                                            | Sep 3, 2024  |

#### Practical 1 - NumPy, Pandas, Matplotlib and Seaborn Basics

NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more.

NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers. In NumPy dimensions are called axes.

NumPy's array class is called ndarray. It is also known by the alias array. Note that numpy.array is not the same as the Standard Python Library class array.array, which only handles one-dimensional arrays and offers less functionality. The more important attributes of an ndarray object are:

#### ndarray.ndim

the number of axes (dimensions) of the array.

#### ndarray.shape

the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be (n,m). The length of the shape tuple is therefore the number of axes, ndim.

#### ndarray.size

the total number of elements of the array. This is equal to the product of the elements of shape.

#### ndarray.dtype

an object describing the type of the elements in the array. One can create or specify dtype using standard Python types. Additionally NumPy provides types of its own. numpy.int32, numpy.int16, and numpy.float64 are some examples.

#### ndarray.itemsize

the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.

#### ndarray.data

the buffer containing the actual elements of the array. Normally, we won't need to use this attribute because we will access the elements in an array using indexing facilities.

```
import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
    [5, 6, 7, 8, 9],
    [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>
```

### **NUMPY**

#### **Basic Operations**

```
import numpy as np
[2]: a = np.arange(15).reshape(3, 5)
 [3]: a
[3]: array([[ 0, 1, 2, 3, 4],
            [5, 6, 7, 8, 9],
            [10, 11, 12, 13, 14]])
[4]: a.shape
[4]: (3, 5)
[5]: a.ndim
[5]: 2
[6]: a.dtype.name
[6]: 'int32'
[7]: a.itemsize
[7]: 4
       type(a)
 [8]:
[8]: numpy.ndarray
[10]: b = np.array([6, 7, 8])
```

#### Array creation

```
In [11]: b = np.array([1,2,3])
In [12]: type(b)
Out[12]: numpy.ndarray
In [13]: b.ndim
Out[13]: 1
In [14]: b
Out[14]: array([1, 2, 3])
```

#### Changing the array dimensions

#### Array using tuple

```
In [20]: #Using a tuple to cretae a NUM Array

e = np.array((7,8,5,'w',6))

Out[20]: array(['7', '8', '5', 'w', '6'], dtype='<U11')

In [22]: e

Out[22]: array(['7', '8', '5', 'w', '6'], dtype='<U11')
```

#### 2D array

#### 3D array

#### Accessing array elements

#### Multidimensional array

#### Slicing an array

```
In [38]: # Slicing An Array
         k = np.array([1,2,3,4,5,6,7])
Out[38]: array([1, 2, 3, 4, 5, 6, 7])
In [39]: k[1:5]
Out[39]: array([2, 3, 4, 5])
In [40]: k[0:6]
Out[40]: array([1, 2, 3, 4, 5, 6])
In [41]: k[1:]
Out[41]: array([2, 3, 4, 5, 6, 7])
In [42]: k[:5]
Out[42]: array([1, 2, 3, 4, 5])
In [43]: k[1:5:2]
Out[43]: array([2, 4])
In [44]: k[:4:2]
Out[44]: array([1, 3])
In [45]: k[2::2]
Out[45]: array([3, 5, 7])
In [46]: k[::3]
Out[46]: array([1, 4, 7])
```

#### Creating identity and random matrix

```
In [53]: <a href="mailto:np.ones((3,3)">np.ones((3,3)">np.ones((3,3)")</a>

Out [53]: <a href="mailto:array([[1., 1., 1.], [1., 1., 1.]], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], [1., 1., 1.], [1., 1., 1.]])

In [55]: <a href="mailto:np.onepty((2,3)">np.onepty((2,3)">np.onepty((2,3)")</a>

Out [55]: <a href="mailto:array([[1.24038692e-311, 1.52768399e+301, 1.24038694e-311], [1.24041184e-311, 6.56971658e+047, 1.24038692e-311]))</a>

In [58]: <a href="mailto:np.onepty(10., 15., 20., 25]">np.onepty(10., 15., 20., 25]</a>)

In [59]: <a href="mailto:array([10., 15., 20., 25]">array([10., 15., 20., 25])</a>)

In [59]: <a href="mailto:array([0., 0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2.]">array([0., 0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2.])</a>)
```

#### Array in Trigonometric

```
x = np.linspace(0,2*pi,100)
          y = np.sin(x)
In [63]: y
Out[63]: array([ 0.00000000e+00, 6.34239197e-02, 1.26592454e-01, 1.89251244e-01,
                     2.51147987e-01, 3.12033446e-01, 3.71662456e-01, 4.29794912e-01,
                    4.86196736e-01, 5.40640817e-01, 5.92907929e-01, 6.42787610e-01, 6.90079011e-01, 7.34591709e-01, 7.76146464e-01, 8.14575952e-01,
                    8.49725430e-01, 8.81453363e-01, 9.09631995e-01, 9.34147860e-01, 9.54902241e-01, 9.71811568e-01, 9.84807753e-01, 9.93838464e-01,
                     9.98867339e-01, 9.99874128e-01, 9.96854776e-01, 9.89821442e-01,
                     9.78802446e-01, 9.63842159e-01, 9.45000819e-01, 9.22354294e-01,
                     8.95993774e-01, 8.66025404e-01, 8.32569855e-01, 7.95761841e-01,
                     7.55749574e-01, 7.12694171e-01, 6.66769001e-01, 6.18158986e-01,
                     5.67059864e-01, 5.13677392e-01, 4.58226522e-01, 4.00930535e-01,
                    3.42020143e-01, 2.81732557e-01, 2.20310533e-01, 1.58001396e-01,
                   9.50560433e-02, 3.17279335e-02, -3.17279335e-02, -9.50560433e-02, -1.58001396e-01, -2.20310533e-01, -2.81732557e-01, -3.42020143e-01,
                    -4.00930535e-01, -4.58226522e-01, -5.13677392e-01, -5.67059864e-01, -6.18158986e-01, -6.66769001e-01, -7.12694171e-01, -7.55749574e-01,
                    -7.95761841e-01, -8.32569855e-01, -8.66025404e-01, -8.95993774e-01,
                    -9.22354294e-01, -9.45000819e-01, -9.63842159e-01, -9.78802446e-01,
                    -9.89821442e-01, -9.96854776e-01, -9.99874128e-01, -9.98867339e-01,
                   -9.93838464e-01, -9.84807753e-01, -9.71811568e-01, -9.54902241e-01, -9.34147860e-01, -9.09631995e-01, -8.81453363e-01, -8.49725430e-01,
                    -8.14575952e-01, -7.76146464e-01, -7.34591709e-01, -6.90079011e-01,
                    -6.42787610e-01, -5.92907929e-01, -5.40640817e-01, -4.86196736e-01,
                    -4.29794912e-01, -3.71662456e-01, -3.12033446e-01, -2.51147987e-01,
                    -1.89251244e-01, -1.26592454e-01, -6.34239197e-02, -2.44929360e-16])
```

For more details: https://numpy.org/doc/stable/user/quickstart.html

## **Python**

#### Format String:

```
temp = "{0:s} got {1:.2f}% in class {2:s} last time."

temp.format("Sudesh",99,"TYBSCIT")

'Sudesh got 99.00% in class TYBSCIT last time.'
```

Write a python code to store the given values in tuples and display it in the given format by using user defined function printString.

```
tuple1 = ("Amit", 45, TY')
tuple2 = ("Sumit", 25, 'FY')
tuple3 = ("Anita", 65, 'SY')

def printString(str, tuple):
    print(str.format(tuple[0], tuple[1], tuple[2]))

listTuple=[tuple1, tuple2, tuple3]

for item in listTuple:
    printString(temp, item)
```

```
tuple1 =("Amit",45,'TY')
tuple2 =("Sumit",25,'FY')
tuple3 =("Anita",65,'SY')

def printString(str, tuple):
    print(str.format(tuple[0],tuple[1],tuple[2]))

listTuple=[tuple1,tuple2,tuple3]

for item in listTuple:
    printString(temp, item)

Amit has 45.00% in class TY.
Sumit has 25.00% in class FY.
Anita has 65.00% in class SY.
```

```
def printString(template_str, tuple):
    print(template_str.format(tuple[0], tuple[1], tuple[2]))

listTuple = [
    ("Amit", 45, 'TY'),
    ("Sumit", 25, 'FY'),
    ("Anita", 65, 'SY')
]

temp = "My Name is {} and i am of Age {} studing in Grade {}"

for item in listTuple:
    printString(temp, item)
```

```
def printString(template_str, tuple):
    print(template_str.format(tuple[0], tuple[1], tuple[2]))

listTuple = [
        ("Amit", 45, 'TY'),
        ("Sumit", 25, 'FY'),
        ("Anita", 65, 'SY')
]

temp = "My Name is {} and i am of Age {} studing in Grade {}"

for item in listTuple:
    printString(temp, item)

My Name is Amit and i am of Age 45 studing in Grade TY
My Name is Sumit and i am of Age 25 studing in Grade FY
My Name is Anita and i am of Age 65 studing in Grade SY
```

#### Bytes and Unicode:

```
# Encoding a Unicode string to bytes (UTF-8)
encoded_bytes = "My name is Sudesh".encode('utf-8')
print(encoded_bytes)

# Decoding bytes back to Unicode string
decoded_string = encoded_bytes.decode('utf-8')
print(decoded_string)
```

```
# Encoding a Unicode string to bytes (UTF-8)
encoded_bytes = "My name is Sudesh".encode('utf-8')
print(encoded_bytes)

# Decoding bytes back to Unicode string
decoded_string = encoded_bytes.decode('utf-8')
print(decoded_string)

b'My name is Sudesh'
My name is Sudesh
```

#### Typecasting:

```
# Convert an integer to a float
int_num = 42
float_num = float(int_num)
print(float_num)

# Convert a string to a float
str_num = "3.14"
float_str = float(str_num)
print(float_str)
```

```
42.0
3.14
```

#### Range:

```
list(range(5))

[0, 1, 2, 3, 4]

list(range(5,0,-1))

[5, 4, 3, 2, 1]
```

Write a code to store and display the squares of odd numbers. Generate odd numbers using range:

```
list=[]

for i in range(1,10,2):
    list.append(i*i)

print(list)
```

```
list=[]
for i in |range(1,10,2):
    list.append(i*i)
print(list)
[1, 9, 25, 49, 81]
```

Write a program to create python dictionary from sequences:

```
keyList= ['fy','sy','ty']
value =[[1,2,3],[4,5,6],[7,8,9]]

mapping = {}
for key,value in zip(keyList,value):
    mapping[key] =value
print(mapping)

{'fy': [1, 2, 3], 'sy': [4, 5, 6], 'ty': [7, 8, 9]}
```

Display the list of keys of resultant

```
print(mapping.keys())

dict_keys(['fy', 'sy', 'ty'])
```

Display the list of values of resultant

```
print(mapping.values())

dict_values([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
```

Change values of ty to 11,21,31

```
mapping['ty'] ={11,21,31}
print(mapping)
{'fy': [1, 2, 3], 'sy': [4, 5, 6], 'ty': {11, 21, 31}}
```

Get the value of sy using pop.

```
mapping.pop('sy')
print(mapping)
{'fy': [1, 2, 3], 'ty': {11, 21, 31}}
```

Sort the values pair into a dictionary to alphabetise a list of tuples for the following values.

```
words = ['apple', 'banana', 'blueberry', 'apricot', 'orange', 'pineapple']

by_letter = {}
for word in words:
    letter = word[0]
    if letter not in by_letter:
        by_letter[letter] = [word]
    else:
        by_letter[letter].append(word)

print(by_letter)
```

```
words = ['apple', 'banana', 'blueberry', 'apricot', 'orange', 'pineapple']

by_letter = {}
for word in words:
    letter = word[0]
    if letter not in by_letter:
        by_letter[letter] = [word]
    else:|
        by_letter[letter].append(word)

print(by_letter)

{'a': ['apple', 'apricot'], 'b': ['banana', 'blueberry'], 'o': ['orange'], 'p': ['pineapple']}
```

WRite code to perform add, clear, remove, pop, union, update, intertersection etc,

```
a = \{1, 2, 3, 4, 5\}
b = \{3, 4, 5, 6, 7, 8\}
a.add(6)
print("After adding 6 to set a:", a)
a.clear()
print("After clearing set a:", a)
b.remove(4)
print("removing 3 ", b)
element = b.pop()
print("Popped ", element, "after pop:", b)
union set = a.union(b)
print("Union of sets a and b:", union_set)
a.update(b)
print("Updated set a with union of itself and b:", a)
intersection_set = a.intersection(b)
print("Intersection:", intersection_set)
a.intersection_update(b)
print("Updated intersection", a)
```

```
After adding 6 to set a: {1, 2, 3, 4, 5, 6}
After clearing set a: set()
removing 3 {3, 5, 6, 7, 8}
Popped 3 after pop: {5, 6, 7, 8}
Union of sets a and b: {8, 5, 6, 7}
Updated set a with union of itself and b: {8, 5, 6, 7}
Intersection: {8, 5, 6, 7}
Updated intersection {8, 5, 6, 7}
```

#### Add the numbers above 10.

```
a= [8,9,11,23,34,10]
sum=0
for i in a:
    if i>10:
        sum=sum+i
print(sum)
```

```
list1 = [8, 9, 11, 23, 34, 10]
s = ([i for i in list1 if i > 10])
print(sum(s))
```



For the given list of strings store the length of each string in a set. 'Bharati', 'Asha', 'Easy', 'Code'

```
string= ['Bharati','Asha','Easy','Code']
set(len(item) for item in string)

{4, 7}
```

Print square and cubes of numbers using a user defined function calculate

```
def calculate (numList):
    squares = [num ** 2 for num in numList]
    cubes = [num ** 3 for num in numList]
    return squares,cubes

numList = [11,22,33]
squares,cubes = calculate(numList)
print("Sqaure",squares)
print("Cube",cubes)

Sqaure [121, 484, 1089]
Cube [1331, 10648, 35937]
```

```
import re

names = ['Anita12', 'Vishakha#', 'Ragini!', 'Venuka##', 'Rupa.', 'Rani Yadav']

def remove_punctuation(value):
    return re.sub('[ .!#?]', '', value)

result = [remove_punctuation(name) for name in names]
print(result)

['Anita12', 'Vishakha', 'Ragini', 'Venuka', 'Rupa', 'RaniYadav']
```

```
# Define the coefficients and the value of x
a = 1
b = -3
c = 2
x = 4

# Lambda function to calculate the quadratic equation value
quadratic_value = lambda a, b, c, x: a*x**2 + b*x + c

# Calculate and print the value
result = quadratic_value(a, b, c, x)
print(f"The value of the quadratic equation for x={x} is: {result}")
The value of the quadratic equation for x=4 is: 6
```

#### **Series**

```
import pandas as pd
```

```
name = pd.Series(['Kiran', 'Nitin', 'Kunal', 'Anjani', 'Amol', 'Ahmed'])
```

#### name

```
[5]: import pandas as pd
name = pd.Series(['Kiran', 'Nitin', 'Kunal', 'Anjani', 'Amol', 'Ahmed'])
name

[5]: Ø Kiran
1 Nitin
2 Kunal
3 Anjani
4 Amol
5 Ahmed
dtype: object
```

#### **DataFrame**

import pandas as pd

```
data = {
    'roll_no': [6623, 6621, 6622, 6624, 6625, 6626, 6627, 6628],
    'name': ['sudesh', 'shivam', 'keshav', 'chris', 'thor', 'ironman', 'captain', 'spiderman'],
    'class': ['MSC-IT', 'MSC-IT', 'MSC-IT', 'MSC-IT', 'MSC-IT', 'MSC-IT']
}
dataframe = pd.DataFrame(data)
```

dataframe

```
import pandas as pd

data = {
    'roll_no': [6623, 6621, 6622, 6624, 6625, 6626, 6627, 6628],
    'name': ['sudesh', 'shivam', 'keshav', 'chris', 'thor', 'ironman', 'captain', 'spiderman'],
    'class': ['MSC-IT', 'MSC-IT', 'MSC-IT', 'MSC-IT', 'MSC-IT', 'MSC-IT']
}

dataframe = pd.DataFrame(data)

dataframe
```

|   | roll_no | name      | class  |
|---|---------|-----------|--------|
| 0 | 6623    | sudesh    | MSC-IT |
| 1 | 6621    | shivam    | MSC-IT |
| 2 | 6622    | keshav    | MSC-IT |
| 3 | 6624    | chris     | MSC-IT |
| 4 | 6625    | thor      | MSC-IT |
| 5 | 6626    | ironman   | MSC-IT |
| 6 | 6627    | captain   | MSC-IT |
| 7 | 6628    | spiderman | MSC-IT |

## # Displaying the first 5 rows of the DataFrame dataframe.head()

|   | roll_no | name   | class  |
|---|---------|--------|--------|
| 0 | 6623    | sudesh | MSC-IT |
| 1 | 6621    | shivam | MSC-IT |
| 2 | 6622    | keshav | MSC-IT |
| 3 | 6624    | chris  | MSC-IT |
| 4 | 6625    | thor   | MSC-IT |

## # Displaying the last 5 rows of the DataFrame dataframe.tail()

|   | roll_no | name      | class  |
|---|---------|-----------|--------|
| 3 | 6624    | chris     | MSC-IT |
| 4 | 6625    | thor      | MSC-IT |
| 5 | 6626    | ironman   | MSC-IT |
| 6 | 6627    | captain   | MSC-IT |
| 7 | 6628    | spiderman | MSC-IT |

## # Generating descriptive statistics for numerical columns dataframe.describe()

|       | roll_no    |
|-------|------------|
| count | 8.00000    |
| mean  | 6624.50000 |
| std   | 2.44949    |
| min   | 6621.00000 |
| 25%   | 6622.75000 |
| 50%   | 6624.50000 |
| 75%   | 6626.25000 |
| max   | 6628.00000 |
|       |            |

## # Displaying data types of each column dataframe.dtypes

roll\_no int64 name object class object dtype: object

## # Displaying the index of the DataFrame dataframe.index

df.index
RangeIndex(start=0, stop=8, step=1)



|   | StudID | Name           | Percentage | Class   | Mail               |
|---|--------|----------------|------------|---------|--------------------|
| 0 | 1      | Sudesh Rajbhar | 55         | TYBSCIT | SUDESH@GMAIL.COM   |
| 1 | 2      | Devesh RAJBHAR | 55         | FYBSCIT | DEVESH@GMAIL.COM   |
| 2 | 3      | Vivek YADAV    | 75         | TYBSCIT | VIVEK@HOTMAIL.COM  |
| 3 | 4      | SWANAND SABALE | 63         | FYBSCIT | SABALE@TATAAIG.COM |
| 4 | 5      | prem Chopra    | NAN        | TYBSCIT | PREM@WAKODE.COM    |
| 5 | 6      | tAnmay bHaT    | 45         | SYBSCIT | TANMAY@GMAIL.COM   |

import pandas as pd

# Reading the CSV file into a DataFrame
df = pd.read\_csv("data.csv")

# Displaying the DataFrame df

#### print(df.head()) # First 5 rows

|   | StudID | Name           | Percentage | Class   | Mail               |
|---|--------|----------------|------------|---------|--------------------|
| 0 | 1      | Sudesh Rajbhar | 55         | TYBSCIT | SUDESH@GMAIL.COM   |
| 1 | 2      | Devesh RAJBHAR | 55         | FYBSCIT | DEVESH@GMAIL.COM   |
| 2 | 3      | Vivek YADAV    | 75         | TYBSCIT | VIVEK@HOTMAIL.COM  |
| 3 | 4      | SWANAND SABALE | 63         | FYBSCIT | SABALE@TATAAIG.COM |
| 4 | 5      | prem Chopra    | NAN        | TYBSCIT | PREM@WAKODE.COM    |
|   | CI ITO |                |            | - 2     | 11.11              |

#### print(df.tail()) # Last 5 rows

|   | StudID | Name           | Percentage | Class   | Mail               |
|---|--------|----------------|------------|---------|--------------------|
| 1 | 2      | Devesh RAJBHAR | 55         | FYBSCIT | DEVESH@GMAIL.COM   |
| 2 | 3      | Vivek YADAV    | 75         | TYBSCIT | VIVEK@HOTMAIL.COM  |
| 3 | 4      | SWANAND SABALE | 63         | FYBSCIT | SABALE@TATAAIG.COM |
| 4 | 5      | prem Chopra    | NAN        | TYBSCIT | PREM@WAKODE.COM    |
| 5 | 6      | tAnmay bHaT    | 45         | SYBSCIT | TANMAY@GMAIL.COM   |

#### print(df.columns) # Column names

```
Index(['StudID', 'Name', 'Percentage', 'Class', 'Mail'], dtype='object')
RangeIndex(start=0, stop=6, step=1)
```

#### print(df.index) # Index

```
Index(['StudID', 'Name', 'Percentage', 'Class', 'Mail'], dtype='object')
RangeIndex(start=0, stop=6, step=1)
```

#### print(df.values) # Data as a numpy array

```
[[1 'Sudesh Rajbhar' '55' 'TYBSCIT' 'SUDESH@GMAIL.COM']
[2 'Devesh RAJBHAR' '55' 'FYBSCIT' 'DEVESH@GMAIL.COM']
[3 'Vivek YADAV' '75' 'TYBSCIT' 'VIVEK@HOTMAIL.COM']
[4 'SWANAND SABALE' '63' 'FYBSCIT' 'SABALE@TATAAIG.COM']
[5 'prem Chopra' 'NAN' 'TYBSCIT' 'PREM@WAKODE.COM']
[6 'tAnmay bHaT' '45' 'SYBSCIT' 'TANMAY@GMAIL.COM']]
```

### print(df.describe()) # Descriptive statistics

|       | StudID   |  |
|-------|----------|--|
| count | 6.000000 |  |
| mean  | 3.500000 |  |
| std   | 1.870829 |  |
| min   | 1.000000 |  |
| 25%   | 2.250000 |  |
| 50%   | 3.500000 |  |
| 75%   | 4.750000 |  |
| max   | 6.000000 |  |

print(df.isna()) # Check for NaN values
print(df.isnull()) # Check for NaN values (similar to isna())
print(df.dtypes) # Data types of each column

```
StudID
         Name Percentage Class
                                Mail
   False False
                   False False False
1 False False
                  False False False
2 False False
                  False False False
3 False False
                  False False False
4 False False
                  False False False
5 False False False False
  StudID Name Percentage Class Mail
  False False False False
1 False False False False False 2 False False False False False False False
                  False False False
4 False False
5 False False False False
StudID
           int64
Name
           object
Percentage object
Class
           object
Mail
            object
dtype: object
```

### df[['Name', 'Class']].head(3)

| : | Name           | Class   |
|---|----------------|---------|
| 0 | Sudesh Rajbhar | TYBSCIT |
| 1 | Devesh RAJBHAR | FYBSCIT |
| 2 | Vivek YADAV    | TYBSCIT |

Q. Create the following dataframe from the given data.

```
Dataframe:
```

```
c1 c2 c3
row1 10 11 12
row2 13 14 15
row3 14 17 18
```

#### Given data:

10,11,12,13,14,15,14,17,18

```
data = {
    'c1' : [10, 13, 16],
    'c2' : [11, 14, 17],
    'c3' : [12, 15, 18],
}

data_df = pd.DataFrame(data, index=['row1', 'row2', 'row3'])
data_df

    c1 c2 c3

row1 10 11 12

row2 13 14 15

row3 16 17 18
```

Display the second row of the dataframe.

```
# Display the second row of the dataframe.
data_df.iloc[1]

c1    13
c2    14
c3    15
Name: row2, dtype: int64
```

Store the first, second and third row of the dataframe in the variable r1, r2 and r3 and add each individual element of all rows.

```
r1 = data_df.loc['row1']
r2 = data_df.loc['row2']
r3 = data_df.loc['row3']
print("Row1:\n", r1)
print("Row2:\n", r2)
print("Row3:\n", r3)
Row1:
 c1
       10
c2
      11
с3
      12
Name: row1, dtype: int64
Row2:
 c1
       13
      14
c2
с3
      15
Name: row2, dtype: int64
Row3:
 c1
      16
      17
c2
с3
      18
Name: row3, dtype: int64
```

#### **MATPLOTLIB**

import matplotlib.pyplot as plt

```
# Data
age = [1, 2, 3, 4, 5]
height = [1.5, 2, 2.5, 3, 3.5]

# Plotting
plt.plot(age, height)
plt.title('Age to Height Graph')
plt.xlabel('Age')
plt.ylabel('Height')
```



#### CSVFile.csv

| Column_1 | Column_2        | Column_3 | Column_4 |
|----------|-----------------|----------|----------|
| 1        | Sudesh Rajbhar  | 80       | 2000000  |
| 2        | Iron Man        | 35       | 3000000  |
| 3        | Spider Man      | 23       | 1500000  |
| 4        | Captain America | 45       | 2500000  |
| 5        | Tony stark      | 56       | 3000000  |

#### Processing a csv file:

```
import pandas as pd
InputData=pd.read_csv("D:\\New folder\\MSCIT_6623\\ids\\CSVFile.csv")
print("Original Data :")
print(InputData)
print("\n")
ProcessData=InputData
ProcessData.rename(columns={'Column_1':'EmpID','Column_2':'EmpName','Column_3':'
EmpAge','Column 4':'AnnnualPackage'}, inplace=True)
print("Renaming Columns :")
print(ProcessData)
print("\n")
ProcessData.set_index('EmpID', inplace=True)
print("Setting index as EmpID :")
print(ProcessData)
print("\n")
ProcessData.sort_values('AnnnualPackage', axis=0, ascending=False, inplace=True)
print("Annual Package in descending order :")
print(ProcessData)
print("\n")
ProcessData.drop('EmpAge', axis=1, inplace=True)
print("After deleting EmpAge column :")
print(ProcessData)
print("\n")
```

```
#to save your file
ProcessData.to_csv("D:\\New folder\\MSCIT_6623\\ids\\CSVFile.csv")
#sOutputFileName='FinalEmp.csv'
#OutputData.to_csv(sOutputFilaName, a)
```

### Output:

| Original Data : |                                                        |    |               |         |       |          |  |
|-----------------|--------------------------------------------------------|----|---------------|---------|-------|----------|--|
| -               | Column                                                 | _1 | Column        | _2 Colu | umn_3 | Column_4 |  |
| 0               |                                                        | 1  | Sudesh Rajbh  | ar      | 80    | 2000000  |  |
| 1               |                                                        | 2  | Iron M        | an      | 35    | 3000000  |  |
| 2               |                                                        | 3  | Spider M      | an      | 23    | 1500000  |  |
| 3               |                                                        | 4  | Captain Ameri | ca      | 45    | 2500000  |  |
| 4               |                                                        | 5  | Tony sta      | rk      | 56    | 3000000  |  |
|                 | Renaming Columns : EmpID EmpName EmpAge AnnnualPackage |    |               |         |       |          |  |
| 0               | 1                                                      | S  | udesh Rajbhar | 80      |       | 2000000  |  |
| 1               | 2                                                      |    | Iron Man      | 35      |       | 3000000  |  |
| 2               | 3                                                      |    | Spider Man    | 23      |       | 1500000  |  |
| 3               | 4                                                      | Ca | ptain America | 45      |       | 2500000  |  |
| 4               | 5                                                      |    | Tony stark    | 56      |       | 3000000  |  |
|                 |                                                        |    |               |         |       |          |  |

| Settir | ng index as EmpID  | :        |                |
|--------|--------------------|----------|----------------|
|        |                    |          | AnnnualPackage |
| EmpID  |                    |          |                |
| 1      | Sudesh Rajbhar     | 80       | 2000000        |
| 2      | Iron Man           | 35       | 3000000        |
| 3      | Spider Man         | 23       | 1500000        |
| 4      | Captain America    | 45       | 2500000        |
| 5      | Tony stark         | 56       | 3000000        |
| Annua] | l Package in desce | nding or | der :          |
|        | EmpName            | EmpAge   | AnnnualPackage |
| EmpID  |                    |          |                |
| 2      | Iron Man           | 35       | 3000000        |
| 5      | Tony stark         | 56       | 3000000        |
| 4      | Captain America    | 45       | 2500000        |
| 1      | Sudesh Rajbhar     | 80       | 2000000        |
| 3      | Spider Man         | 23       | 1500000        |
| After  | deleting EmpAge c  | olumn :  |                |
|        | EmpName            | Annnual  | Package        |
| EmpID  |                    |          |                |
| 2      | Iron Man           |          | 3000000        |
| 5      | Tony stark         |          | 3000000        |
| 4      | Captain America    |          | 2500000        |
|        | Sudesh Rajbhar     |          | 2000000        |
| 1      | Saacsii Majonai    |          |                |

#### XML to CSV:

```
import pandas as pd
import xml.etree.ElementTree as ET
def xml2df(xml_data):
  root = ET.XML(xml data)
  all_records = []
  for i, child in enumerate(root):
     record = {}
     for subchild in child:
       record[subchild.tag] = subchild.text
     all_records.append(record)
  return pd.DataFrame(all records)
sInputFileName="D:\\New folder\\MSCIT_6623\\ids\\csv.xml"
InputData = open(sInputFileName).read()
print(InputData)
ProcessDataXML=InputData
ProcessData=xml2df(ProcessDataXML)
print(ProcessData)
ProcessData.rename(columns={'Column_1':'EmpID','Column_2':'EmpName','Column_3':'
EmpAge','Column_4':'AnnnualPackage'}, inplace=True)
print(ProcessData)
ProcessData.set_index('EmpID', inplace=True)
print(ProcessData)
ProcessData.sort_values('AnnnualPackage', axis=0, ascending=False, inplace=True)
print(ProcessData)
ProcessData.drop('EmpAge', axis=1, inplace=True)
print(ProcessData)
OutputData=ProcessData
sOutputFileName="D:\\New folder\\MSCIT_6623\\ids\\xml.xml"
OutputData.to csv(sOutputFileName, index = False)
```

#### Output:

```
Column_1
                                                                          Column_2 Column_3 Column_4
                                                                   Sudesh Rajbhar 80 2000000
                                                                1
<Records>
                                                       1
                                                                2
                                                                         Iron Man
                                                                                        35 3000000
   <Record>
                                                                                       23 1500000
                                                       2
                                                                        Spider Man
       <Column_1>1</Column_1>
                                                                3
                                                                4 Captain America
                                                       3
                                                                                       45 2500000
       <Column_2>Sudesh Rajbhar</Column_2>
                                                       4
                                                                       Tony Stark
                                                                                        56 3000000
       <Column_3>80</Column_3>
                                                         EmpID
                                                                        EmpName EmpAge AnnnualPackage
       <Column_4>2000000</Column_4>
                                                       0
                                                                 Sudesh Rajbhar
                                                                                80
                                                                                             2000000
                                                            1
   </Record>
                                                       1
                                                                       Iron Man
                                                                                    35
                                                                                             3000000
   <Record>
                                                       2
                                                             3
                                                                     Spider Man
                                                                                   23
                                                                                             1500000
       <Column_1>2</Column_1>
                                                       3
                                                             4 Captain America
                                                                                   45
                                                                                             2500000
       <Column_2>Iron Man</Column_2>
                                                       4
                                                                     Tony Stark
                                                                                 56
                                                                                             3000000
       <Column_3>35</Column_3>
                                                                      EmpName EmpAge AnnnualPackage
       <Column_4>3000000</Column_4>
                                                       EmpID
   </Record>
                                                               Sudesh Rajbhar
                                                                                           2000000
                                                       1
                                                                                  80
    <Record>
                                                       2
                                                                    Iron Man
                                                                                  35
                                                                                           3000000
       <Column_1>3</Column_1>
                                                       3
                                                                   Spider Man
                                                                                  23
                                                                                           1500000
       <Column_2>Spider Man</Column_2>
                                                       4
                                                              Captain America
                                                                                  45
                                                                                           2500000
       <Column 3>23</Column 3>
                                                       5
                                                                   Tony Stark
                                                                                  56
                                                                                           3000000
       <Column_4>1500000</Column_4>
                                                                      EmpName EmpAge AnnnualPackage
   </Record>
                                                       EmpID
   <Record>
                                                                                  35
                                                                                           3000000
                                                       2
                                                                     Iron Man
       <Column_1>4</Column_1>
                                                       5
                                                                   Tony Stark
                                                                                  56
                                                                                           3000000
       <Column_2>Captain America</Column_2>
                                                       4
                                                              Captain America
                                                                                 45
                                                                                           2500000
       <Column_3>45</Column_3>
                                                               Sudesh Rajbhar
                                                                                           2000000
                                                       1
                                                                                  80
       <Column_4>2500000</Column_4>
                                                       3
                                                                   Spider Man
                                                                                23
                                                                                           1500000
   </Record>
                                                                      EmpName AnnnualPackage
   <Record>
                                                       EmpID
       <Column_1>5</Column_1>
                                                                                     3000000
                                                       2
                                                                    Iron Man
       <Column_2>Tony Stark</Column_2>
                                                       5
                                                                                     3000000
                                                                   Tony Stark
       <Column_3>56</Column_3>
                                                       4
                                                              Captain America
                                                                                     2500000
       <Column_4>3000000</Column_4>
                                                       1
                                                               Sudesh Rajbhar
                                                                                     2000000
    </Record>
                                                                   Spider Man
                                                       3
                                                                                    1500000
</Records>
```

#### Json to csv:

```
import pandas as pd
sInputFileName="D:\\New folder\\MSCIT_6623\\ids\\csv.json"
InputData=pd.read json(sInputFileName, encoding="latin-1")
print('Original Data :')
print(InputData)
print('\n')
ProcessData=InputData
ProcessData.rename(columns={'Column 1':'EmpID','Column 2':'EmpName','Column 3':'
EmpAge','Column_4':'AnnnualPackage'}, inplace=True)
print(ProcessData)
ProcessData.set_index('EmpID', inplace=True)
print(ProcessData)
ProcessData.sort_values('AnnnualPackage', axis=0, ascending=False, inplace=True)
print(ProcessData)
ProcessData.drop('EmpAge', axis=1, inplace=True)
print(ProcessData)
OutputData=ProcessData
sOutputFileName="D:\\New folder\\MSCIT_6623\\ids\\json.json"
OutputData.to_csv(sOutputFileName, index = False)
```

#### Output:

| и срои ст       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |
|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Original Data : |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |
| Column_1        | Col        | umn_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Column_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Column_4    |  |  |
| 1               | Sudesh Ra  | jbhar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000000     |  |  |
| . 2             | Iro        | n Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000000     |  |  |
| 2 3             | Spide      | r Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1500000     |  |  |
| 3 4             | Captain Am | erica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2500000     |  |  |
| 5               | Tony       | Stark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000000     |  |  |
|                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |
|                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |
| EmpID           | EmpNa      | me Emp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Age Annn                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nualPackage |  |  |
| ) 1 Su          | desh Rajbh | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000000     |  |  |
| 2               | Iron M     | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000000     |  |  |
|                 | Spider M   | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1500000     |  |  |
| 3 4 Cap         | tain Ameri | ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2500000     |  |  |
| 5               | Tony Sta   | rk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000000     |  |  |
|                 | EmpName    | EmpAge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Annnua]                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Package     |  |  |
| mpID            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |
| Sudes           | h Rajbhar  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000000     |  |  |
|                 | Iron Man   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000000     |  |  |
| S S             | pider Man  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1500000     |  |  |
| Captai          | n America  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2500000     |  |  |
| ; т             | ony Stark  | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000000     |  |  |
|                 | EmpName    | EmpAge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Annnua1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .Package    |  |  |
|                 | Column_1 1 | Column_1 Col Driginal Data: Column_1 Column_ | Driginal Data:  Column_1 Column_2  1 Sudesh Rajbhar  2 Iron Man  3 Spider Man  4 Captain America  5 Tony Stark  EmpID EmpName Emp  1 Sudesh Rajbhar  2 Iron Man  2 3 Spider Man  3 Spider Man  4 Captain America  5 Tony Stark  EmpName EmpAge  EmpID  1 Sudesh Rajbhar  2 Iron Man  3 Spider Man  4 Captain America  5 Tony Stark  EmpName EmpAge  EmpID  1 Sudesh Rajbhar  2 Iron Man  3 Spider Man  4 Captain America  4 Tony Stark  5 Tony Stark  6 Tony Stark  6 Tony Stark | Column_1    |  |  |

|       | EmpName         | EmpAge  | AnnnualPackage |  |
|-------|-----------------|---------|----------------|--|
| EmpID |                 |         |                |  |
| 2     | Iron Man        | 35      | 3000000        |  |
| 5     | Tony Stark      | 56      | 3000000        |  |
| 4     | Captain America | 45      | 2500000        |  |
| 1     | Sudesh Rajbhar  | 80      | 2000000        |  |
| 3     | Spider Man      | 23      | 1500000        |  |
|       | EmpName         | Annnual | Package        |  |
| EmpID |                 |         |                |  |
| 2     | Iron Man        |         | 3000000        |  |
| 5     | Tony Stark      |         | 3000000        |  |
| 4     | Captain America |         | 2500000        |  |
| 1     | Sudesh Rajbhar  |         | 2000000        |  |
| 3     | Spider Man      |         | 1500000        |  |

#### Image to csv:

```
import imageio.v3 as iio #pip install imageio
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
sInputFileName = "D:\\New folder\\MSCIT_6623\\ids\\greninja.jpg"
# Read the image
InputData = iio.imread(sInputFileName)
# Print the dimensions of the image
print('X: ', InputData.shape[0])
print('Y: ', InputData.shape[1])
# Check if the image has 2 dimensions (grayscale) or 3 dimensions (RGB)
if len(InputData.shape) == 3:
  # RGB Image
  num_channels = InputData.shape[2]
else:
  # Grayscale Image (treat it as having 1 channel)
  num channels = 1
  InputData = np.expand dims(InputData, axis=-1) # Add a channel dimension
ProcessRawData = InputData.flatten()
y = num channels + 2
x = int(ProcessRawData.shape[0] / y)
ProcessData = pd.DataFrame(np.reshape(ProcessRawData, (x, y)))
# Adjust column names based on the number of channels
if num channels == 3:
  sColumns = ['XAxis', 'YAxis', 'Red', 'Green', 'Blue']
elif num channels == 4:
  sColumns = ['XAxis', 'YAxis', 'Red', 'Green', 'Blue', 'Alpha']
else:
  sColumns = ['XAxis', 'YAxis', 'Gray']
ProcessData.columns = sColumns
ProcessData.index.names = ['ID']
print('Rows: ', ProcessData.shape[0])
print('Columns :', ProcessData.shape[1])
print('\n')
print('Process Data Values :')
```

```
plt.imshow(InputData.squeeze())
plt.show()
print('\n')
OutputData = ProcessData
sOutputFileName = "D:\\New folder\\MSCIT_6623\\ids\\greninja.csv"
OutputData.to_csv(sOutputFileName, index=False)
```

#### Output:



|    | Α     | В     | С   | D     | Е    |
|----|-------|-------|-----|-------|------|
| 1  | XAxis | YAxis | Red | Green | Blue |
| 2  | 255   | 255   | 255 | 255   | 255  |
| 3  | 255   | 255   | 255 | 255   | 255  |
| 4  | 255   | 255   | 255 | 255   | 255  |
| 5  | 255   | 255   | 255 | 255   | 255  |
| 6  | 255   | 255   | 255 | 255   | 255  |
| 7  | 255   | 255   | 255 | 255   | 255  |
| 8  | 255   | 255   | 255 | 255   | 255  |
| 9  | 255   | 255   | 255 | 255   | 255  |
| 10 | 255   | 255   | 255 | 255   | 255  |
| 11 | 255   | 255   | 255 | 255   | 255  |

#### Video to Frames:

```
import os
import shutil
import cv2 #pip install opency-python
sInputFileName = "D:\\New folder\\MSCIT 6623\\ids\\sample.mp4"
sDataBaseDir = 'D:\\New folder\\MSCIT_6623\\ids\\Frames'
# Check if the input video file exists
if not os.path.exists(sInputFileName):
  print(f"Error: The file {sInputFileName} does not exist.")
  raise FileNotFoundError(f"{sInputFileName} not found.")
# Remove the directory if it exists and recreate it
if os.path.exists(sDataBaseDir):
  shutil.rmtree(sDataBaseDir)
os.makedirs(sDataBaseDir)
print('\nStart Movie to Frames\n')
# Open the video file
vidcap = cv2.VideoCapture(sInputFileName)
success, image = vidcap.read()
if not success:
  print("Error: Failed to read the video file.")
else:
  count = 0
  while success:
     sFrame = os.path.join(sDataBaseDir, f'ocean-frame-{count:04d}.jpg')
     print('Extracted:', sFrame)
     cv2.imwrite(sFrame, image)
     # Check if the frame was written successfully
     if os.path.getsize(sFrame) == 0:
        count -= 1
        os.remove(sFrame)
        print('Removed:', sFrame)
     # Read the next frame
     success, image = vidcap.read()
     count += 1
  print('Generated:', count, 'Frames')
print('\nMovie to Frames HORUS - Done')
```

#### Output:

```
Start Movie to Frames
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0000.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0001.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0002.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0003.jpg
Extracted: D:\New folder\MSCIT 6623\ids\Frames\ocean-frame-0004.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0005.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0006.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0007.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0008.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0009.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0010.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0011.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0012.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0013.jpg
Extracted: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0014.jpg
```



#### Frame to CSV

```
import imageio.v2 as imageio
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
sDataBaseDir = 'D:\\New folder\\MSCIT 6623\\ids\\Frames'
f = 0
ProcessDataList = [] # To hold all DataFrames before concatenation
for file in os.listdir(sDataBaseDir):
  if file.endswith(".jpg"):
     f += 1
     sInputFileName = os.path.join(sDataBaseDir, file)
     print('Process:', sInputFileName)
     InputData = imageio.imread(sInputFileName)
     print('Input Data Values :')
     print('X: ', InputData.shape[0])
     print('Y: ', InputData.shape[1])
     print('RGBA: ', InputData.shape[2])
     ProcessRawData = InputData.flatten()
     v = InputData.shape[2] + 2
     x = int(ProcessRawData.shape[0] / y)
     ProcessFrameData = pd.DataFrame(np.reshape(ProcessRawData, (x, y)))
     ProcessFrameData['Frame'] = file
     print('Number of columns in ProcessFrameData:',
len(ProcessFrameData.columns))
     print('\n')
     print('Process Data Values :')
     print('\n')
     plt.imshow(InputData)
     plt.show()
     ProcessDataList.append(ProcessFrameData)
if f > 0:
  # Check column count for the first DataFrame
  print('Columns in the first DataFrame:', ProcessDataList[0].shape[1])
  # Concatenate DataFrames
  ProcessData = pd.concat(ProcessDataList, ignore index=True)
```

```
# Print column count after concatenation
  print('Columns in concatenated DataFrame:', ProcessData.shape[1])
  # Ensure the column names match the number of columns
  sColumns = ['XAxis', 'YAxis', 'Red', 'Green', 'Blue', 'Alpha', 'FrameName']
  if ProcessData.shape[1] == len(sColumns):
    ProcessData.columns = sColumns
  else:
    print(f'Column count mismatch: DataFrame has {ProcessData.shape[1]}
columns but {len(sColumns)} names provided.')
  print('\n')
  ProcessData.index.names = ['ID']
  print('Rows: ', ProcessData.shape[0])
  print('Columns :', ProcessData.shape[1])
  print('\n')
  OutputData = ProcessData
  sOutputFileName = "D:\\New folder\\MSCIT 6623\\ids\\sample.csv"
  OutputData.to_csv(sOutputFileName, index=False)
print('\n')
print('Processed ; ', f, ' frames')
```

#### Output:

```
Process: D:\New folder\MSCIT_6623\ids\Frames\ocean-frame-0000.jpg
Input Data Values:

X: 270

Y: 480

RGBA: 3

Number of columns in ProcessFrameData: 6

Process Data Values:

0-
50-
```

# Practical 3 - Data Processing for various types of data

#### Download iris.csv file



#### **Importing**

import pandas as pd
data = pd.read\_csv("D:\\New folder\\MSCIT\_6623\\ids\\iris.csv")
print("Original Data: ")
df=pd.DataFrame(data)
print(df)

```
[1]: import pandas as pd
                   data = pd.read csv("D:\\New folder\\MSCIT_6623\\ids\\iris.csv")
                   print("Original Data: ")
                   df=pd.DataFrame(data)
                   print(df)
                   Original Data:
                              sepal.length sepal.width petal.length petal.width variety

        Sal.length
        sepal.width
        petal.length
        petal.width
        variety

        5.1
        3.5
        1.4
        0.2
        Setosa

        4.9
        3.0
        1.4
        0.2
        Setosa

        4.7
        3.2
        1.3
        0.2
        Setosa

        4.6
        3.1
        1.5
        0.2
        Setosa

        5.0
        3.6
        1.4
        0.2
        Setosa

        ...
        ...
        ...
        ...
        ...

        6.7
        3.0
        5.2
        2.3
        Virginica

        6.3
        2.5
        5.0
        1.9
        Virginica

        6.5
        3.0
        5.2
        2.0
        Virginica

        6.2
        3.4
        5.4
        2.3
        Virginica

        5.9
        3.0
        5.1
        1.8
        Virginica

                   0
                  1
                   2
                   3
                  4
                  145
                  146
                  147
                   148
                  149
                   [150 rows x 5 columns]
```

```
import numpy as np
#Information
print("Information : ")
print(df.info())
print("\n")
#Description
print("Description : ")
print(df.describe())
```

```
print("\n")
#Data types of each column
print("Data types of each column : ")
print(df.dtypes)
print("\n")
#Total number of records
print("Total number of records : ")
print(df.count())
print("\n")
#Total number of rows and columns
print("Total number of rows and columns : ")
print(df.shape)
print("\n")
#Column names
print("Column names : ")
print(df.columns)
print("\n")
#Column values
print("Column values : ")
print(df.values)
print("\n")
#Dimension of dataframe
print("Dimension of dataframe : ")
print(df.ndim)
print("\n")
#Size of dataframe
print("Size of dataframe : ")
print(df.size)
print("\n")
#Checking null/missing/blank values
print("Checking null/missing/blank values : ")
print(df.isnull())
print("\n")
#Checking null/missing/blank values
print("Checking null/missing/blank values : ")
print(df.notnull())
print("\n")
#Checking null/missing/blank values and fill with given values
print("Checking null/missing/blank values and fill with given values: ")
print(df.fillna(1)) #1 can be replaced by anything
print("\n")
#Replace the NaN values with given values
print("Replace the NaN values with given values : ")
print(df.replace(to_replace=np.nan, value=0)) #0 can be replaced by anything
```

#### Output:

```
Information :
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
# Column
               Non-Null Count Dtype
                -----
0 sepal.length 150 non-null float64
1 sepal.width 150 non-null float64
2 petal.length 150 non-null float64
   petal.width 150 non-null
                            float64
4 variety
            150 non-null object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
None
```

```
Description :
     sepal.length sepal.width petal.length petal.width
     150.000000 150.000000 150.000000 150.000000
count
       5.843333
                  3.057333
                             3.758000
                                      1.199333
mean
        0.828066 0.435866
                             1.765298
                                       0.762238
std
        4.300000 2.000000
                             1.000000 0.100000
min
25%
       5.100000 2.800000
                             1.600000 0.300000
50%
       5.800000 3.000000
                             4.350000 1.300000
75%
       6.400000 3.300000
                             5.100000 1.800000
       7.900000 4.400000
                             6.900000 2.500000
max
```

```
Data types of each column :
sepal.length float64
sepal.width
             float64
petal.length float64
petal.width
             float64
              object
variety
dtype: object
Total number of records :
sepal.length 150
sepal.width
             150
petal.length 150
           150
petal.width
variety
             150
dtype: int64
```

```
Column values :

[[5.1 3.5 1.4 0.2 'Setosa']

[4.9 3.0 1.4 0.2 'Setosa']

[4.7 3.2 1.3 0.2 'Setosa']

[4.6 3.1 1.5 0.2 'Setosa']

[5.0 3.6 1.4 0.2 'Setosa']

[5.4 3.9 1.7 0.4 'Setosa']

[4.6 3.4 1.4 0.3 'Setosa']

[5.0 3.4 1.5 0.2 'Setosa']

[4.4 2.9 1.4 0.2 'Setosa']

[4.9 3.1 1.5 0.1 'Setosa']

[5.4 3.7 1.5 0.2 'Setosa']

[4.8 3.4 1.6 0.2 'Setosa']

[4.8 3.0 1.4 0.1 'Setosa']
```

```
Checking null/missing/blank values :
    sepal.length sepal.width petal.length petal.width variety
                                                False
0
         False
                   False
                             False
                                       False
1
         False
                    False
                                False
                                          False
                                                 False
2
         False
                    False
                               False
                                          False False
                                          False False
3
         False
                   False
                               False
         False
                   False
                               False
                                          False False
          . . .
                     ...
                                ...
                                           ...
                                                  . . . .
                                                False
145
         False
                   False
                               False
                                          False
146
         False
                    False
                               False
                                          False False
147
         False
                   False
                               False
                                          False False
148
         False
                   False
                              False
                                          False False
149
         False
                   False
                              False
                                          False False
[150 rows x 5 columns]
```

|     |      |      | petal.length | •    | variety |
|-----|------|------|--------------|------|---------|
| )   | True | True | True         | True | True    |
| L   | True | True | True         | True | True    |
| 2   | True | True | True         | True | True    |
| 3   | True | True | True         | True | True    |
| ļ   | True | True | True         | True | True    |
|     |      |      |              |      |         |
| 145 | True | True | True         | True | True    |
| 146 | True | True | True         | True | True    |
| L47 | True | True | True         | True | True    |
| 148 | True | True | True         | True | True    |
| 149 | True | True | True         | True | True    |

|     | sepal.length | sepal.width | petal.length | petal.width | variety   |
|-----|--------------|-------------|--------------|-------------|-----------|
| 0   | 5.1          | 3.5         | 1.4          | 0.2         | Setosa    |
| 1   | 4.9          | 3.0         | 1.4          | 0.2         | Setosa    |
| 2   | 4.7          | 3.2         | 1.3          | 0.2         | Setosa    |
| 3   | 4.6          | 3.1         | 1.5          | 0.2         | Setosa    |
| 4   | 5.0          | 3.6         | 1.4          | 0.2         | Setosa    |
|     |              |             |              |             |           |
| 145 | 6.7          | 3.0         | 5.2          | 2.3         | Virginica |
| 146 | 6.3          | 2.5         | 5.0          | 1.9         | Virginica |
| 147 | 6.5          | 3.0         | 5.2          | 2.0         | Virginica |
| 148 | 6.2          | 3.4         | 5.4          | 2.3         | Virginica |
| 149 | 5.9          | 3.0         | 5.1          | 1.8         | Virginica |

| Replac | ce the NaN va | lues with giv | en values :  |             |           |
|--------|---------------|---------------|--------------|-------------|-----------|
| 9      | sepal.length  | sepal.width   | petal.length | petal.width | variety   |
| 0      | 5.1           | 3.5           | 1.4          | 0.2         | Setosa    |
| 1      | 4.9           | 3.0           | 1.4          | 0.2         | Setosa    |
| 2      | 4.7           | 3.2           | 1.3          | 0.2         | Setosa    |
| 3      | 4.6           | 3.1           | 1.5          | 0.2         | Setosa    |
| 4      | 5.0           | 3.6           | 1.4          | 0.2         | Setosa    |
|        |               |               |              |             |           |
| 145    | 6.7           | 3.0           | 5.2          | 2.3         | Virginica |
| 146    | 6.3           | 2.5           | 5.0          | 1.9         | Virginica |
| 147    | 6.5           | 3.0           | 5.2          | 2.0         | Virginica |
| 148    | 6.2           | 3.4           | 5.4          | 2.3         | Virginica |
| 149    | 5.9           | 3.0           | 5.1          | 1.8         | Virginica |

Q. Create the data frame for the given data and process the data frame data for the null or missing values.

#create a dataframe

#### Output:

|   | EmpName | DOJ        | Ехр     | Pkg     | Manager | TEam      |
|---|---------|------------|---------|---------|---------|-----------|
| 0 | Sudesh  | 01-02-2000 | 10years | 4000000 | Sakpal  | Marketing |
| 1 | Dinesh  | 03-05-2010 | 5years  | 3000000 | Sanap   | Digital   |
| 2 | Devesh  | 01-02-2006 | NaN     | 4500000 | Sakpal  | Legal     |
| 3 | Ramesh  | 10-08-2004 | 15years | NaN     | Pankaj  | Marketing |
| 4 | Suresh  | None       | 30years | 4000000 | Sanika  | Legal     |

# Replace the string 'NaN' with np.nan f.replace('NaN', np.nan, inplace=True)

# Explicitly infer data types to prevent issues
f = f.infer\_objects()

|   | EmpName | DOJ        | Ехр     | Pkg       | Manager | TEam      |
|---|---------|------------|---------|-----------|---------|-----------|
| 0 | Sudesh  | 01-02-2000 | 10years | 4000000.0 | Sakpal  | Marketing |
| 1 | Dinesh  | 03-05-2010 | 5years  | 3000000.0 | Sanap   | Digital   |
| 2 | Devesh  | 01-02-2006 | NaN     | 4500000.0 | Sakpal  | Legal     |
| 3 | Ramesh  | 10-08-2004 | 15years | NaN       | Pankaj  | Marketing |
| 4 | Suresh  | None       | 30years | 4000000.0 | Sanika  | Legal     |

```
import pandas as pd
import numpy as np
# Create a new DataFrame
d = {
  'Col_1': [2, 3, np.nan, 7, 8],
  'Col_2': [np.nan, 3, 4, 5, 'None'],
  'Col_3': [45, 4, 23, 234, 2],
  'Col 4': [56, 'None', 342, 3, 34],
   'Col_5': [67, 34, 34, np.nan, 45],
f = pd.DataFrame(d)
# Print initial DataFrame
print("Initial DataFrame:")
print(f)
# Replace NaN in 'Col_1' with 0
f['Col_1'] = f['Col_1'].replace(to_replace=np.nan, value=0)
print("\nAfter replacing NaN in 'Col_1' with 0:")
print(f)
# Replace 'None' in 'Col_2' with np.nan, then fill NaN with -1
f['Col_2'] = f['Col_2'].replace('None', np.nan).fillna(-1)
print("\nAfter replacing 'None' in 'Col_2' with NaN and filling NaN with -1:")
print(f)
```

```
# Set all values in 'Col_3' to -2
f['Col 3'] = -2
print("\nAfter setting all values in 'Col 3' to -2:")
print(f)
# Store the first value of 'Col_4' and replace 'None' with np.nan, then fill NaN with
the stored value
v = f['Col_4'][0]
f['Col_4'] = f['Col_4'].replace('None', np.nan).fillna(v)
print("\nAfter replacing 'None' in 'Col_4' with NaN and filling NaN with the first value
of 'Col_4':")
print(f)
# Calculate the mean of 'Col_5', replace NaN with this mean
av_mean = f['Col_5'].mean()
f['Col_5'] = f['Col_5'].replace(to_replace=np.nan, value=av_mean)
print("\nAfter replacing NaN in 'Col_5' with the mean of 'Col_5':")
print(f)
```

#### Output:

```
Initial DataFrame:
  Col_1 Col_2 Col_3 Col_4 Col_5
  2.0 NaN 45 56 67.0
1 3.0 3 4 None 34.0
2 NaN 4 23 342 34.0
  7.0 5 234 3 NaN
   8.0 None 2
                  34 45.0
After replacing NaN in 'Col_1' with 0:
  Col_1 Col_2 Col_3 Col_4 Col_5
  2.0 NaN 45 56 67.0
   3.0 3
             4 None
                     34.0
1
  0.0 4 23 342 34.0
       5
             234 3
   7.0
                      NaN
   8.0 None 2
                  34 45.0
```

```
After replacing 'None' in 'Col_2' with NaN and filling NaN with -1:
  Col_1 Col_2 Col_3 Col_4 Col_5
   2.0 -1.0
                 45
                      56
                           67.0
   3.0
        3.0
                 4 None
                           34.0
1
          4.0
    0.0
                 23
                      342 34.0
3
   7.0
        5.0
                234
                      3
                           NaN
    8.0
        -1.0
                 2
                       34
                           45.0
After setting all values in 'Col_3' to -2:
  Col_1 Col_2 Col_3 Col_4 Col_5
   2.0
        -1.0
                 -2
                      56
                          67.0
          3.0
                 -2 None
    3.0
                           34.0
                      342 34.0
2
    0.0
        4.0
                 -2
3
    7.0
          5.0
                 -2
                      3
                           NaN
4
                 -2
                       34
                           45.0
    8.0
         -1.0
```

```
After replacing 'None' in 'Col_4' with NaN and filling NaN with the first value of 'Col_4':
  Col_1 Col_2 Col_3 Col_4 Col_5
  2.0 -1.0 -2 56.0 67.0
0
  3.0
       3.0 -2 56.0 34.0
1
2
  0.0
        4.0 -2 342.0 34.0
  7.0
             -2 3.0
3
         5.0
                        NaN
    8.0 -1.0
               -2 34.0 45.0
After replacing NaN in 'Col_5' with the mean of 'Col_5':
  Col_1 Col_2 Col_3 Col_4 Col_5
  2.0 -1.0
             -2 56.0 67.0
0
        3.0 -2 56.0 34.0
   3.0
1
2
    0.0
       4.0 -2 342.0 34.0
  7.0
       5.0 -2 3.0 45.0
3
               -2 34.0 45.0
    8.0 -1.0
```

# <u>Practical 4 - Basic Utility design, Data auditing and Exploratory Data</u> Analysis

| StudID   | Name   | Class | Elective | Msg          | Test Score | Date of Birth |
|----------|--------|-------|----------|--------------|------------|---------------|
| Student1 | Sudesh | Fy    | SBCM     | he\x00llo    | 20         | 06-09-2003    |
| Student2 | Devesh | fy    | sbcm     | My\nComputer | 8          | 02/02/24      |
| Student3 | Dinesh | FY    | Al       | Hello Guy\s  | 5          | 04-03-2006    |
| Student4 | Ramesh | fY    | Al       | Good morning | 11         | 03/31/2003    |
| Student5 | Shivam | Fy    | SBCM     | he\x00llo    | 18         | 01-01-2001    |
| Student6 | Vidit  | fy    | sbcm     | My\nComputer | 9          | 02/02/24      |
| Student7 | Vinit  | FY    | Al       | Hello Guy\s  | 50         | 04-03-2006    |
| Student8 | Hardik | fY    | Al       | Good morning | 10         | 03/31/2003    |

```
# Creating the dataframe
import pandas as pd
data = {
   'StudID': ['Student1', 'Student2', 'Student3', 'Student4', 'Student5', 'Student6',
'Student7', 'Student8'],
  'Name': [' Sudesh ', 'Devesh', 'Dinesh ', 'Ramesh ', 'Shivam ', 'Vidit', 'Vinit
', ' Hardik '],
  'Class': ['Fy', 'fy', 'FY', 'fY', 'Fy', 'fy', 'FY', 'fY'],
  'Elective': ['SBCM', 'sbcm', 'AI', 'AI', 'AI', 'SBCM', 'sbcm', 'AI', 'AI'],
  'Msg': ['he\x00llo', 'My\nComputer', 'Hello Guy\\s', 'Good morning', 'he\x00llo',
'My\nComputer', 'Hello Guy\\s', 'Good morning'],
   'Test Score': [20, 8, 5, 11, 18, 9, 50, 10],
  'Date of Birth': ['06-09-2003', '02/02/24', '04-03-2006', '03/31/2003', '01-01-2001',
'02/02/24', '04-03-2006', '03/31/2003']
df = pd.DataFrame(data)
print("Original Data : ")
print(df)
```

|   | StudID     | Name   | Class | Elective | Msg          | Test Score | \ |
|---|------------|--------|-------|----------|--------------|------------|---|
| 0 | Student1   | Sudesh | Fv    | SBCM     | _            | 20         |   |
| 1 | Student2   | Devesh |       |          | My\nComputer | 8          |   |
| 2 | Student3   | Dinesh |       |          | Hello Guy∖s  | 5          |   |
| 3 | Student4   | Ramesh | fY    | AI       | Good morning | 11         |   |
| 4 | Student5   | Shivam | Fy    | SBCM     | hello        | 18         |   |
| 5 | Student6   | Vidit  | fy    | sbcm     | My\nComputer | 9          |   |
| 6 | Student7   | Vinit  | FY    | AI       | Hello Guy∖s  | 50         |   |
| 7 | Student8   | Hardik | fY    | AI       | Good morning | 10         |   |
|   |            |        |       |          |              |            |   |
|   | Date of Bi | rth    |       |          |              |            |   |
| 0 | 06-09-2    | 003    |       |          |              |            |   |
| 1 | 02/02      | /24    |       |          |              |            |   |
| 2 | 04-03-2    | 006    |       |          |              |            |   |
| 3 | 03/31/2    | 003    |       |          |              |            |   |
| 4 | 01-01-2    | 001    |       |          |              |            |   |
| 5 | 02/02      | /24    |       |          |              |            |   |
| 6 | 04-03-2    | 006    |       |          |              |            |   |
| 7 | 03/31/2    | 003    |       |          |              |            |   |

# Basic Utility Design

# 1. Fixer Utility

Q. Remove leading and trailing spaces from the data of all columns.

```
df = df.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
print("After removing leading and trailing spaces from dataframe :")
df
```

| Af | ter remov | ing lead | ing an | d trailin | ng spaces from | dataframe  | :             |
|----|-----------|----------|--------|-----------|----------------|------------|---------------|
|    | StudID    | Name     | Class  | Elective  | Msg            | Test Score | Date of Birth |
| 0  | Student1  | Sudesh   | Fy     | SBCM      | hello          | 20         | 06-09-2003    |
| 1  | Student2  | Devesh   | fy     | sbcm      | My\nComputer   | 8          | 02/02/24      |
| 2  | Student3  | Dinesh   | FY     | Al        | Hello Guy\s    | 5          | 04-03-2006    |
| 3  | Student4  | Ramesh   | fY     | Al        | Good morning   | 11         | 03/31/2003    |
| 4  | Student5  | Shivam   | Fy     | SBCM      | hello          | 18         | 01-01-2001    |
| 5  | Student6  | Vidit    | fy     | sbcm      | My\nComputer   | 9          | 02/02/24      |
| 6  | Student7  | Vinit    | FY     | Al        | Hello Guy\s    | 50         | 04-03-2006    |
| 7  | Student8  | Hardik   | fY     | Al        | Good morning   | 10         | 03/31/2003    |
|    |           |          |        |           |                |            |               |

Q. Remove non-printable characters from the 'Msg' Column values.

```
# Removing non-printable characters from msg column
import re
df['Msg'] = df['Msg'].apply(lambda x: re.sub(r'[^\x20-\x7E]', ", x).replace('\\', "))
print("After removing non-printable characters in Msg column : ")
print(df['Msg'])
```

```
After removing non-printable characters in Msg column:

0 hello
1 MyComputer
2 Hello Guys
3 Good morning
4 hello
5 MyComputer
6 Hello Guys
7 Good morning
Name: Msg, dtype: object
```

Q. Reformat the 'Date of Birth' column with the format 'DD-MM-YYYY'

```
from datetime import datetime
def parse_dates(date):
    for fmt in ('%d-%m-%Y', '%d/%m/%y', '%m/%d/%Y', '%m/%d/%y'):
        try:
            return datetime.strptime(date, fmt).strftime('%d-%m-%Y')
        except ValueError:
            continue
    return pd.NaT # If none of the formats work, return NaT

df['Date of Birth'] = df['Date of Birth'].apply(parse_dates)
print("Data after reformatting 'Date of Birth' column:")
print(df['Date of Birth'])
```

```
Data after reformatting 'Date of Birth' column:

0  06-09-2003

1  02-02-2024

2  04-03-2006

3  31-03-2003

4  01-01-2001

5  02-02-2024

6  04-03-2006

7  31-03-2003

Name: Date of Birth, dtype: object
```

#### 2. Data Binning or Bucketing

Q. Classify the given data based on the students test score into three bins named 'poor', 'average' and 'best'.

```
bins = [0, 10, 15, 20]
labels = ['poor', 'average', 'best']
df['Score Category'] = pd.cut(df['Test Score'], bins=bins, labels=labels,
include_lowest=True)
print("Bins:")
print(df[['StudID', 'Test Score', 'Score Category']])
```

```
Bins:
   StudID Test Score Score Category
0 Student1 20
               8
1 Student2
                           poor
2 Student3
               5
                          poor
            11
18
3 Student4
                        average
4 Student5
                           best
5 Student6
                9
                           poor
6 Student7
               50
                           NaN
7 Student8
                10
                           poor
```

- 3. Averaging the Data
- Q. Get the average test score of the class 'fy'

```
#average of 'fy'
average_score_fy = df[df['Class'].str.lower() == 'fy']['Test Score'].mean()
print(f"Average Test Score for class 'fy': {average_score_fy}")
```

```
Average Test Score for class 'fy': 16.375
```

- 4. Outlier Detection
- Q. Check and display the test score Outliers.

```
#Outliers
Q1 = df['Test Score'].quantile(0.25)
Q3 = df['Test Score'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = df[(df['Test Score'] < lower_bound) | (df['Test Score'] > upper_bound)]
print("Outliers:")
print(outliers[['StudID', 'Test Score']])
```

```
Outliers :
StudID Test Score
6 Student7 50
```

- 5. Logging
- Q. Check the result with the value 1, -1 etc.

```
import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s -
%(message)s')
def perform_operation(value):
    if value < 0:
        raise ValueError("Invalid value: Value cannot be negative.")
    else:
        # Continue with normal execution
        logging.info("Operation performed successfully.")
try:
    input_value = int(input("Enter a value: "))
    perform_operation(input_value)
except ValueError as ve:
    logging.exception("Exception occurred: %s", str(ve))</pre>
```

```
Enter a value: 1

2024-08-14 15:45:09,895 INFO - Operation performed successfully.

Enter a value: 2

2024-08-14 15:51:52,762 INFO - Operation performed successfully.
```

#### Data auditing

Q. Check the student date of birth is in the range of 01-01-2000 to 01-01-2025.

```
start = pd.to_datetime('01-01-2000')
end = pd.to_datetime('01-01-2025')
df['Date of Birth'] = pd.to_datetime(df['Date of Birth'], errors='coerce')
dob = df[(df['Date of Birth'] >= start) & (df['Date of Birth'] <= end)]
print(dob[['Name', 'Date of Birth']])</pre>
```

```
Name Date of Birth

0 Sudesh 2003-06-09

1 Devesh 2024-02-02

2 Dinesh 2006-04-03

4 Shivam 2001-01-01

5 Vidit 2024-02-02

6 Vinit 2006-04-03
```

Q. Check for invalid or wrong test score values. The test score range should be from 0 to 20 only.  $d = df[\text{Test Score'}].values \\ v=d[(d<0) \mid (d>20)] \\ print("Invalid test score :",v)$ 

```
Invalid test score : [50]
```

```
import re
s = df['Name']
def removePunc(z):
    return re.sub('[ 1-9!#.]', " , z)
result = []
for x in map(removePunc, s):
    result.append(x)
print(result)
```

```
['Sudesh', 'Devesh', 'Dinesh', 'Ramesh', 'Shivam', 'Vidit', 'Vinit', 'Hardik']
```

#### Exploratory data analysis

Q. Describe students' data and check for average test scores. print("Description of data:") df.describe()

print("Average of Test Score column is :",df['Test Score'].mean())

```
Average of Test Score column is : 16.375
```

Q. Check for the data value distribution of the test score column by plotting boxplot.

```
import matplotlib.pyplot as plt
import seaborn as sns # pip install seaborn
plt.figure(figsize=(8, 6))
sns.boxplot(x=df['Test Score'])
plt.title('Boxplot of Test Scores')
plt.show()
```



```
#Distribution plot
plt.figure(figsize=(8, 6))
sns.histplot(df['Test Score'], kde=True, stat="density", label='Density')
plt.title('Distribution Plot of Test Scores')
plt.show()
```



```
# CDF Plot
plt.figure(figsize=(8, 6))
sns.ecdfplot(df['Test Score'])
plt.title('CDF of Test Scores')
plt.show()
```



Q. Draw the histogram for the test bad, average and best test score.

```
# Define score categories
def categorize_score(score):
    if score >= 40:
        return 'High'
    elif score >= 20:
        return 'Medium'
    else:
        return 'Low'
df['Score Category'] = df['Test Score'].apply(categorize_score)
# Plot the histogram
plt.figure(figsize=(8, 6))
sns.histplot(data=df, x='Test Score', hue='Score Category', multiple='stack')
plt.title('Histogram of Test Scores by Category')
plt.show()
```



```
# Scatter plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x='StudID', y='Test Score', data=df)
plt.title('Scatter Plot of Test Scores')
plt.show()
```



# Practical 5 - Retrieve Utility

#### Currency dataset:

https://github.com/Apress/practical-data-science/blob/master/VKHCG/01-Vermeule n/00-RawData/COUNTRY-CODES.csv

1. Load the raw data of Excel/csv file

```
import pandas as pd
import os
import sys
sFileDir='D:\\New folder\\MSCIT_6623\\ids'
if not os.path.exists(sFileDir):
    os.makedirs(sFileDir)
sFileName='D:\\New folder\\MSCIT_6623\\ids\\COUNTRY-CODES.csv'
print("Path:", sFileName)
```

```
Path : D:\New folder\MSCIT_6623\ids\COUNTRY-CODES.csv
```

2. Load given csv/Excel file in the pandas dataframe.

```
import pandas as pd

file_path = r"D:\\New folder\\MSCIT_6623\\ids\\COUNTRY-CODES.csv"

# List of encodings to try
encodings = ['utf-8', 'latin1', 'ISO-8859-1', 'utf-16', 'utf-32']

for encoding in encodings:
    try:
        CurrencyData = pd.read_csv(file_path, encoding=encoding)
        print(f"Successfully read file with encoding: {encoding}")
        print("Data : ")
        print(CurrencyData)
        break # Exit the loop if reading is successful
    except UnicodeDecodeError as e:
        print(f"Failed to read file with encoding: {encoding}. Error: {e}")
    except Exception as e:
        print(f"An unexpected error occurred with encoding {encoding}: {e}")
```

```
Successfully read file with encoding: latin1
Data :
  Code
            Country name Year country code top-level domain
  AD
              Andorra 1974.0
0
1 AE United Arab Emirates 1974.0
2 AF Afghanistan 1974.0
                                                   .af
3 AG Antigua and Barbuda 1974.0
                                                   .ag
4
    AI Anguilla 1983.0
                                                   .ai
. .
                     ... ...
                                                   . . .
258 NaN
                    NaN
                         NaN
                                                   NaN
259 YT
                Mayotte 1993.0
                                                   .yt
            South Africa 1974.0
260 ZA
                                                   .za
             Zambia 1974.0
261 ZM
                                                   .zm
262 ZW
                Zimbabwe 1980.0
                                                   .ZW
[263 rows x 4 columns]
```

#### 3. Rename the columns of the dataframe.

#### #Renaming Columns

```
CurrencyData.rename({'ISO-2-CODE': 'CountryCode1', 'ISO-3-Code': 'CountryCode2'}, axis=1, inplace=True)
```

CD = CurrencyData

print("After renaming columns : ")

CD

| Afte   | r rena  | ming columns :       |        |                               |
|--------|---------|----------------------|--------|-------------------------------|
|        | Code    | Country name         | Year   | country code top-level domain |
| 0      | AD      | Andorra              | 1974.0 | .ad                           |
| 1      | AE      | United Arab Emirates | 1974.0 | .ae                           |
| 2      | AF      | Afghanistan          | 1974.0 | .af                           |
| 3      | AG      | Antigua and Barbuda  | 1974.0 | .ag                           |
| 4      | Al      | Anguilla             | 1983.0 | .ai                           |
|        |         |                      |        |                               |
| 258    | NaN     | NaN                  | NaN    | NaN                           |
| 259    | YT      | Mayotte              | 1993.0 | .yt                           |
| 260    | ZA      | South Africa         | 1974.0 | .za                           |
| 261    | ZM      | Zambia               | 1974.0 | .zm                           |
| 262    | ZW      | Zimbabwe             | 1980.0 | .ZW                           |
| 263 rd | ows × 4 | columns              |        |                               |

4. Drop not required columns from the dataframe.

```
#Drop
CD.drop('Code', axis=1, inplace=True)
CD
```

|        | Country name         | Year   | country code top-level domain |
|--------|----------------------|--------|-------------------------------|
| 0      | Andorra              | 1974.0 | .ad                           |
| 1      | United Arab Emirates | 1974.0 | .ae                           |
| 2      | Afghanistan          | 1974.0 | .af                           |
| 3      | Antigua and Barbuda  | 1974.0 | .ag                           |
| 4      | Anguilla             | 1983.0 | .ai                           |
|        |                      |        |                               |
| 258    | NaN                  | NaN    | NaN                           |
| 259    | Mayotte              | 1993.0 | .yt                           |
| 260    | South Africa         | 1974.0 | .za                           |
| 261    | Zambia               | 1974.0 | .zm                           |
| 262    | Zimbabwe             | 1980.0 | .ZW                           |
| 263 rd | ows × 3 columns      |        |                               |

5. Save the retrieved file in the specified folder

CD.to\_csv("D:\\New folder\\MSCIT\_6623\\ids\\Datafile.csv") print("Saved successfully!!!")

```
CD.to_csv("D:\\New folder\\MSCIT_6623\\ids\\Datafile.csv")
print("Saved successfully!!!")
Saved successfully!!!
```

- 7. Retrieve different attributes of data
- Q. Retrieve country names from the dataframe CurrencyData.

```
#Retrieving Country name print("Country names : ")
CD['Country']
```

```
Country names :
                Andorra
1 United Arab Emirates
     Afghanistan
2
3 Antigua and Barbuda
              Anguilla
258
                   NaN
               Mayotte
259
260
          South Africa
261
                Zambia
262
               Zimbabwe
Name: Country name, Length: 263, dtype: object
```

Q. Data profile the data distribution (Skew, Histogram, Min, Max).

```
# skewness along the index axis
# Select only numeric columns
numeric_df = CD.select_dtypes(include=['number'])
# Calculate skewness for the numeric columns
skewness = numeric_df.skew(axis=0, skipna=True)
print("Skewness:")
print(skewness)
```

Skewness: Year 2.229908 dtype: float64

# Q. Histogram

# CurrencyData.hist(column='Year')



Q. Identify any loading characteristics (Columns Names, Data Types, Volumes). CurrencyData.columns

#### CurrencyData.dtypes

| Country       | object |
|---------------|--------|
| CountryCode2  | object |
| ISO-M49       | int64  |
| dtype: object |        |

## CurrencyData.shape

(247, 3)

CurrencyData.size

741

CurrencyData.min()

Country Afghanistan
CountryCode2 ABW
ISO-M49 4
dtype: object

# CurrencyData.max()

| Country       | Zimbabwe |
|---------------|----------|
| CountryCode2  | ZWE      |
| ISO-M49       | 894      |
| dtype: object |          |

# Practical 6 - Access Superstep.

import pandas as pd import numpy as np

df =

pd.DataFrame([[np.nan,2,np.nan,0],[3,4,np.nan,1],[np.nan,np.nan,np.nan,np.nan,np.nan],[n
p.nan,3,np.nan,4]], columns=list("ABCD"))
df



#Dropping columns including missing value
a = df.dropna(axis=1,how='any')

a



a = df.dropna(axis=1,how='all')

a

|   | Α   | В   | D   |
|---|-----|-----|-----|
| 0 | NaN | 2.0 | 0.0 |
| 1 | 3.0 | 4.0 | 1.0 |
| 2 | NaN | NaN | NaN |
| 3 | NaN | 3.0 | 4.0 |

a = df.dropna(axis=0,how='all')

a

|   | Α   | В   | С   | D   |
|---|-----|-----|-----|-----|
| 0 | NaN | 2.0 | NaN | 0.0 |
| 1 | 3.0 | 4.0 | NaN | 1.0 |
| 3 | NaN | 3.0 | NaN | 4.0 |

#dropping columns including a specific number of missing values
a = df[df.isnull().sum(axis=1) <=2]</pre>

a

|   | Α   | В   | С   | D   |  |
|---|-----|-----|-----|-----|--|
| 0 | NaN | 2.0 | NaN | 0.0 |  |
| 1 | 3.0 | 4.0 | NaN | 1.0 |  |
| 3 | NaN | 3.0 | NaN | 4.0 |  |

#Number of missing values in each row

a = df.isnull().sum()

a

| Α   | 3    |       |
|-----|------|-------|
| В   | 1    |       |
| C   | 4    |       |
| D   | 1    |       |
| dty | /pe: | int64 |

#replacing missing values with basic measures values like mean, median etc. a = df.fillna(df.mean())

a

|   | Α   | В   | С   | D        |
|---|-----|-----|-----|----------|
| 0 | 3.0 | 2.0 | NaN | 0.000000 |
| 1 | 3.0 | 4.0 | NaN | 1.000000 |
| 2 | 3.0 | 3.0 | NaN | 1.666667 |
| 3 | 3.0 | 3.0 | NaN | 4.000000 |

a = df.fillna(df.median())

a

|   | Α   | В   | С   | D   |
|---|-----|-----|-----|-----|
| 0 | 3.0 | 2.0 | NaN | 0.0 |
| 1 | 3.0 | 4.0 | NaN | 1.0 |
| 2 | 3.0 | 3.0 | NaN | 1.0 |
| 3 | 3.0 | 3.0 | NaN | 4.0 |

a = df.fillna(df.mode().iloc[0])

a

|   | Α   | В   | С   | D   |
|---|-----|-----|-----|-----|
| 0 | 3.0 | 2.0 | NaN | 0.0 |
| 1 | 3.0 | 4.0 | NaN | 1.0 |
| 2 | 3.0 | 2.0 | NaN | 0.0 |
| 3 | 3.0 | 3.0 | NaN | 4.0 |

## **Practical 8 - Data Visualization**

```
#Bar chart
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fruits = ['apple', 'blueberry', 'cherry', 'orange']
counts = [ 40, 100, 30, 55]
bar_labels = ['red', 'purple', 'yellow', 'orange']
bar_colors = ['red', 'purple', 'yellow', 'orange']
ax.bar(fruits, counts, label=bar_labels, color=bar_colors)
ax.set_ylabel('fruit supply')
ax.set_title('Fruit supply by kind and colour')
ax.legend(title='Fruit colour')
plt.show()
```



```
#Pie Chart
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15,30,45,10]
fig, ax = plt.subplots()
ax.pie(sizes, labels=labels)
```

```
#Line Graph
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time (s)', ylabel='voltage (mV)', title='About as simple as it gets, folks')
ax.grid()
fig.savefig("D:\\6626_Ariba\\test.png")
plt.show()
```



# Practical 9: Data Analysis using Excel

#### Create an excel sheet



Select the values from Student Name column -> Data tab -> Text to Columns -> Click Next



## Click Next



# Select \$B\$2 -> Click down arrow



### Select Text -> Click Finish



## Output:

| 4 | А                  | В      | С           |
|---|--------------------|--------|-------------|
| 1 | Student Name       | F_Name | L_Name      |
| 2 | Sudesh Rajbhar     | Sudesh | Rajbhar     |
| 3 | Shivam Vishwakarma | Shivam | Vishwakarma |
| 4 | Keshav Maharaj     | Keshav | Maharaj     |
| 5 | Dale steyn         | Dale   | steyn       |
| 6 | Kagiso Rabada      | Kagiso | Rabada      |
| 7 | Jofra Archer       | Jofra  | Archer      |
| 8 | Lasith Malinga     | Lasith | Malinga     |
| 9 | Zaheer Khan        | Zaheer | Khan        |

# Create U1 columns having A, B and C as sub columns -> CreateTotal Q1 column for sum value

| H3 <b>▼</b> (      | •      | $f_x$ =SUM(E3:0 | 33)     |     |    |    |       |
|--------------------|--------|-----------------|---------|-----|----|----|-------|
| Α                  | В      | С               | D       | D E |    | G  | Н     |
|                    |        |                 |         |     | U1 |    |       |
| Student Name       | F_Name | L_Name          | Roll no | S1  | S2 | S3 | TOTAL |
| Sudesh Rajbhar     | Sudesh | Rajbhar         | 101     | 15  | 15 | 20 | 50    |
| Shivam Vishwakarma | Shivam | Vishwakarma     | 102     | 18  | 17 | 16 | 51    |
| Keshav Maharaj     | Keshav | Maharaj         | 103     | 20  | 20 | 20 | 60    |
| Dale steyn         | Dale   | steyn           | 104     | 20  | 15 | 15 | 50    |
| Kagiso Rabada      | Kagiso | Rabada          | 105     | 20  | 16 | 15 | 51    |
| Jofra Archer       | Jofra  | Archer          | 106     | 17  | 17 | 16 | 50    |
| Lasith Malinga     | Lasith | Malinga         | 107     | 17  | 18 | 16 | 51    |
| Zaheer Khan        | Zaheer | Khan            | 108     | 15  | 15 | 16 | 46    |

# Similarly create a U2 and Total U2 columns

| А                  | В      | С           | D       | E  | F  | G  | Н        | 1  | J  | K  | L        |
|--------------------|--------|-------------|---------|----|----|----|----------|----|----|----|----------|
|                    |        |             |         |    | U1 |    |          |    | U2 |    |          |
| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U1 | S1 | S2 | S3 | TOTAL U2 |
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 16 | 20 | 19 | 55       | 20 | 17 | 15 | 52       |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 15 | 18 | 16 | 49       | 18 | 17 | 17 | 52       |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 16 | 16 | 19 | 51       | 20 | 18 | 15 | 53       |
| Dale steyn         | Dale   | steyn       | 104     | 17 | 20 | 20 | 57       | 17 | 20 | 15 | 52       |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 16 | 18 | 19 | 53       | 20 | 15 | 20 | 55       |
| Jofra Archer       | Jofra  | Archer      | 106     | 19 | 18 | 18 | 55       | 15 | 17 | 17 | 49       |
| Lasith Malinga     | Lasith | Malinga     | 107     | 19 | 16 | 17 | 52       | 15 | 19 | 16 | 50       |
| Zaheer Khan        | Zaheer | Khan        | 108     | 15 | 19 | 15 | 49       | 15 | 15 | 18 | 48       |

# Create a column named Average for calculating average value of U1 and U2

| Α                  | В      | С           | D       | Е  | F  | G  | Н        | 1  | J  | K  | L        | M        | N       |
|--------------------|--------|-------------|---------|----|----|----|----------|----|----|----|----------|----------|---------|
|                    |        |             |         |    | U1 |    |          |    | U2 |    |          |          |         |
| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U1 | S1 | S2 | S3 | TOTAL U2 | AVERAGE  |         |
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 20 | 16 | 19 | 55       | 18 | 16 | 17 | 51       | =AVERAGE | (H3,L3) |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 19 | 16 | 19 | 54       | 15 | 15 | 18 | 48       |          |         |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 18 | 18 | 16 | 52       | 15 | 15 | 16 | 46       |          |         |
| Dale steyn         | Dale   | steyn       | 104     | 18 | 19 | 20 | 57       | 20 | 19 | 20 | 59       |          |         |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 15 | 17 | 16 | 48       | 19 | 17 | 16 | 52       |          |         |
| Jofra Archer       | Jofra  | Archer      | 106     | 18 | 18 | 19 | 55       | 15 | 17 | 20 | 52       |          |         |
| Lasith Malinga     | Lasith | Malinga     | 107     | 16 | 18 | 20 | 54       | 19 | 16 | 19 | 54       |          |         |
| Zaheer Khan        | Zaheer | Khan        | 108     | 16 | 19 | 17 | 52       | 19 | 19 | 19 | 57       |          |         |

| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U1 | S1 | S2 | S3 | TOTAL U2 | AVERAGE |
|--------------------|--------|-------------|---------|----|----|----|----------|----|----|----|----------|---------|
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 18 | 15 | 19 | 52       | 17 | 15 | 18 | 50       | 51      |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 16 | 20 | 16 | 52       | 19 | 16 | 16 | 51       | 51.5    |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 15 | 17 | 19 | 51       | 20 | 19 | 18 | 57       | 54      |
| Dale steyn         | Dale   | steyn       | 104     | 19 | 20 | 19 | 58       | 16 | 16 | 15 | 47       | 52.5    |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 20 | 15 | 15 | 50       | 18 | 17 | 18 | 53       | 51.5    |
| Jofra Archer       | Jofra  | Archer      | 106     | 16 | 16 | 19 | 51       | 19 | 19 | 18 | 56       | 53.5    |
| Lasith Malinga     | Lasith | Malinga     | 107     | 17 | 15 | 15 | 47       | 20 | 17 | 17 | 54       | 50.5    |
| Zaheer Khan        | Zaheer | Khan        | 108     | 18 | 18 | 16 | 52       | 15 | 17 | 16 | 48       | 50      |

### Apply Conditional Formatting (Less than) on values of Q1



#### Enter a value -> Click OK



## Similarly apply Greater than on same values

| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U1 |
|--------------------|--------|-------------|---------|----|----|----|----------|
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 16 | 18 | 16 | 50       |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 16 | 17 | 20 | 53       |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 19 | 15 | 18 | 52       |
| Dale steyn         | Dale   | steyn       | 104     | 20 | 15 | 15 | 50       |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 19 | 15 | 15 | 49       |
| Jofra Archer       | Jofra  | Archer      | 106     | 18 | 20 | 17 | 55       |
| Lasith Malinga     | Lasith | Malinga     | 107     | 16 | 20 | 15 | 51       |
| Zaheer Khan        | Zaheer | Khan        | 108     | 19 | 19 | 20 | 58       |

## Do the same thing on values of Q2

|                    |        |             |         |    | U1 |    |          |    | U2 |    |          |         |
|--------------------|--------|-------------|---------|----|----|----|----------|----|----|----|----------|---------|
| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U1 | S1 | S2 | S3 | TOTAL U2 | AVERAGE |
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 16 | 18 | 16 | 50       | 16 | 15 | 19 | 50       | 50      |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 16 | 17 | 20 | 53       | 15 | 20 | 17 | 52       | 52.5    |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 19 | 15 | 18 | 52       | 17 | 16 | 15 | 48       | 50      |
| Dale steyn         | Dale   | steyn       | 104     | 20 | 15 | 15 | 50       | 15 | 15 | 18 | 48       | 49      |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 19 | 15 | 15 | 49       | 20 | 15 | 19 | 54       | 51.5    |
| Jofra Archer       | Jofra  | Archer      | 106     | 18 | 20 | 17 | 55       | 15 | 16 | 18 | 49       | 52      |
| Lasith Malinga     | Lasith | Malinga     | 107     | 16 | 20 | 15 | 51       | 19 | 20 | 18 | 57       | 54      |
| Zaheer Khan        | Zaheer | Khan        | 108     | 19 | 19 | 20 | 58       | 15 | 16 | 16 | 47       | 52.5    |

# Select values of Total Q1 -> Home tab -> Conditional Formatting -> Icon Sets (any desirable icon set)



## Similarly on Total Q2

|                    |        |             |         |    | U1 |    |             |    | U2   |    |             |         |
|--------------------|--------|-------------|---------|----|----|----|-------------|----|------|----|-------------|---------|
| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U     | S1 | S2 : | S3 | TOTAL U     | AVERAGE |
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 16 | 18 | 16 | <b>4</b> 50 | 16 | 15   | 19 | <b>J</b> 50 | 50      |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 16 | 17 | 20 | <b>5</b> 5  | 15 | 20   | 17 | <b>⇔</b> 5: | 2 52.5  |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 19 | 15 | 18 | <b>⇒</b> 52 | 17 | 16   | 15 | 4           | 3 50    |
| Dale steyn         | Dale   | steyn       | 104     | 20 | 15 | 15 | <b>4</b> 50 | 15 | 15   | 18 | ↓ 4:        | 3 49    |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 19 | 15 | 15 | 49          | 20 | 15   | 19 | <b>1</b> 5€ | 4 51.5  |
| Jofra Archer       | Jofra  | Archer      | 106     | 18 | 20 | 17 | <b>⇒</b> 55 | 15 | 16   | 18 | 49          | 9 52    |
| Lasith Malinga     | Lasith | Malinga     | 107     | 16 | 20 | 15 | <b>4</b> 5: | 19 | 20   | 18 | <b>1</b> 5  | 7 54    |
| Zaheer Khan        | Zaheer | Khan        | 108     | 19 | 19 | 20 | <b>1</b> 58 | 15 | 16   | 16 | 4           | 7 52.5  |

## Do the same thing for Average column



# Select values of the Average column -> Conditional Formatting (Home tab) -> Click Manage Rules



#### You can also edit from here



Select values of  $F_name \rightarrow Conditional Formatting (Home tab) \rightarrow Manage rules \rightarrow New Rule$ 



## Select the following and click Format



## Make changes as you want -> Click OK



## Click Ok



## Click Apply -> Click OK



Result:

|                    |        |             |         |    | U1 |    |             |    | U2    |    |                                                |          |      |
|--------------------|--------|-------------|---------|----|----|----|-------------|----|-------|----|------------------------------------------------|----------|------|
| Student Name       | F_Name | L_Name      | Roll no | S1 | S2 | S3 | TOTAL U1    | S1 | S2 S3 |    | TOTAL UZ                                       | AVE      | RAGE |
| Sudesh Rajbhar     | Sudesh | Rajbhar     | 101     | 18 | 15 | 17 | <b>4</b> 50 | 15 | 15    | 17 | 4                                              | 70       | 48.5 |
| Shivam Vishwakarma | Shivam | Vishwakarma | 102     | 15 | 18 | 15 | 48          | 19 | 16    | 18 | <b>⇒</b> 5:                                    | 3        | 50.5 |
| Keshav Maharaj     | Keshav | Maharaj     | 103     | 19 | 15 | 19 | <b>1</b> 53 | 15 | 17    | 16 | 4                                              | 3        | 50.5 |
| Dale steyn         | Dale   | steyn       | 104     | 20 | 15 | 15 | <b>4</b> 50 | 17 | 15    | 17 | 49                                             | 0        | 49.5 |
| Kagiso Rabada      | Kagiso | Rabada      | 105     | 16 | 19 | 20 | <b>1</b> 55 | 17 | 19    | 16 | ⇒ 5:                                           | •        | 53.5 |
| Jofra Archer       | Jofra  | Archer      | 106     | 18 | 15 | 19 | <b>⇒</b> 52 | 19 | 15    | 19 | ⇒ 5:                                           | 3        | 52.5 |
| Lasith Malinga     | Lasith | Malinga     | 107     | 15 | 18 | 18 | ⇒ 51        | 19 | 20    | 18 | <b>1</b> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | <b>•</b> | 54   |
| Zaheer Khan        | Zaheer | Khan        | 108     | 15 | 18 | 16 | 49          | 17 | 18    | 19 | <b>1</b> 54                                    | 1        | 51.5 |

### Employee data csv file:

https://gist.github.com/kevin336/acbb2271e66c10a5b73aacf82ca82784

#### Open the csv file



### 1. Total employee



# 2. List the Emp with region code 650 Do the following steps



#### Enter dot in Other



### Enter destination



## Give the column name as Region code

| Р   | Q   | R    |
|-----|-----|------|
| 650 | 507 | 9833 |
| 650 | 507 | 9844 |
| 515 | 123 | 4444 |
| 515 | 123 | 5555 |
| 603 | 123 | 6666 |
| 515 | 123 | 7777 |
| 515 | 123 | 8888 |
| 515 | 123 | 8080 |
| 515 | 123 | 8181 |
| 515 | 123 | 4567 |
| 515 | 123 | 4568 |
| 515 | 123 | 4569 |
| 590 | 423 | 4567 |
| 590 | 423 | 4568 |
| 590 | 423 | 4569 |
| 590 | 423 | 4560 |

Select values of Region code column -> Right click -> Filter -> Filter by Selected Cell's Value

### Click on Filter icon -> Select 650 -> Click OK



#### Results:



# 3. Highlight the emp with the joining date as 7 june 2002 Do the following steps



## 4. Get year wise salary trend Create a new column Year

| YEAR |
|------|
| 2010 |
| 2004 |
| 2005 |
| 2010 |
| 2008 |
| 2009 |
| 2004 |
| 2007 |
| 2006 |
| 2003 |
| 2005 |
| 2009 |

## Select entire sheet -> Insert tab -> Pivot Table -> From Table/Range

### Click OK



Drag Year column to rows and Salary column to Values



5. List Designations with Highest and Lowest Salary

## **Highest Salary**



| Highest Job Id                               |
|----------------------------------------------|
| AD_PRES                                      |
| INDEX(G2:G51, MATCH(MAX(H2:H51), H2:H51, 0)) |

6. List emp who are working under manager with manager id 114 Do the following steps (similar to steps of filter)



7. Count Employees in Each Department
Drag Department\_ID in rows and Count of Employee\_ID in values



8. Plot Employees of Each Department in a Pie Chart Insert tab -> Pie chart



9. Display all salaries with the data.

Displaying whole data without any filter or formatting

