Redes Neurais Artificiais - Exercício 10

March 17, 2021

Aluno: Victor São Paulo Ruela

```
[1]: %load ext autoreload
     %autoreload 2
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import scipy as sp
     from timeit import default_timer as timer
     from sklearn.metrics import mean_squared_error, roc_auc_score, accuracy_score,_u
      ⇒r2 score
     from sklearn.neural_network import MLPRegressor, MLPClassifier
     from sklearn.preprocessing import MinMaxScaler
     from sklearn.datasets import load_boston
     from sklearn.model_selection import KFold, StratifiedKFold
     from tqdm import tqdm
     import matplotlib.pyplot as plt
     from pylab import cm
     import warnings
     warnings.filterwarnings("ignore")
     plt.style.use('ggplot')
```

1 Estudo do MLP para bases de dados multivariáveis

Neste trabalho é feita um estudo do algoritmo MLP para problemas de regressão e classificação multivariáveis. As bases de dados serão a Boston Housing e Statlog (Heart), ambas disponíveis no repositório da UCI Machine Learning.

Para cada base de dados, será feita uma análise do efeito dos seguintes parâmetros da arquitetura de uma rede MLP:

1. Função de ativação: serão avaliadas as funções logística, tangente hiperbólica e ReLU

- 2. Número de neurônios na camada escondida: considerando somente uma camada escondida, serão avaliados redes com 5, 500 e 5000 neurônios
- 3. Número de camadas escondidas: para um número fixo de 100 neurônios, será testada a rede com 1, 2 e 3 camadas escondidas

Será executa uma validação cruzada de 10 partições e os resultados de cada experimento serão comparados de acordo com a média da acurácia e erro quadrático médio (MSE).

```
[2]: # Carregamento das bases de dados
def load_heart_disease():
    data = pd.read_csv('heart.dat', sep=' ', header=None)
    data.dropna(inplace=True)
    data_np = data.to_numpy()
    X, y = data_np[:,:-1], data_np[:,-1]
    X = MinMaxScaler().fit_transform(X)
    y = pd.Series(y).map({1:-1,2:1}).to_numpy()
    return X,y

def load_boston_housing():
    X_bo, y_bo = load_boston(return_X_y = True)
    X_bo = MinMaxScaler().fit_transform(X_bo)
    y_bo = MinMaxScaler().fit_transform(y_bo.reshape(-1,1))
    return X_bo, y_bo.reshape(-1,)
```

```
[3]: X_bh, y_bh = load_boston_housing()
X_hd, y_hd = load_heart_disease()
```

```
[4]: # Definição dos modelos avaliados
    models_activation = []
    models_hidden_layer_size = []
    models_number_layers = []
    models_activation.append(('logistic', {'hidden_layer_sizes': (100,),__
    models_activation.append(('tanh', {'hidden_layer_sizes': (100,), 'activation':
    models_activation.append(('relu', {'hidden_layer_sizes': (100,), 'activation':

¬'relu' }))
    models_hidden_layer_size.append(('5x1', {'hidden_layer_sizes': (5,),__
    models_hidden_layer_size.append(('500x1', {'hidden_layer_sizes': (500,),__
    models_hidden_layer_size.append(('5000x1', {'hidden_layer_sizes': (5000,),_
```

```
models_number_layers.append(('100x2', {'hidden_layer_sizes': (100,100),__
     models_number_layers.append(('100x3', {'hidden_layer_sizes': (100,100,100),__
     models_number_layers.append(('100x4', {'hidden_layer_sizes': (100,100,100,100),__
     → 'activation': 'relu' }))
[5]: def plot_results(results, ylabel):
        fig, ax = plt.subplots(figsize=(8, 6))
        sns.boxplot(data=results, x='Arquitetura', y=ylabel, ax=ax)
        fig.show()
    def display_results_table(results, ylabel):
        display(results.groupby('Arquitetura')[ylabel].agg([np.mean, np.std]))
    def run_cross_validation(X, y, mlp, scoring, models, ylabel):
        results = []
        kfold = KFold(10)
        for name, model_params in models:
            mlp.set_params(**model_params)
            fold = 1
            for train_index, test_index in kfold.split(X, y):
                # create the T and k dataset
                X_t, X_k = X[train_index, :], X[test_index, :]
                y_t, y_k = y[train_index], y[test_index]
                start = timer()
                mlp.fit(X_t, y_t)
                y_hat = mlp.predict(X_k)
                end = timer()
                elapsed = end - start
                score = scoring(y_k, y_hat)
                results.append((name, fold, score, elapsed))
                fold = fold + 1
        score_data = pd.DataFrame(results, columns=['Arquitetura', 'fold', ylabel,__
     →'Tempo [s]'])
        plot_results(score_data, ylabel)
        display_results_table(score_data, ylabel)
        return score_data
```

1.1 Boston Housing

1.1.1 Função de Ativação

Os resultados deste experimento podem ser vistos abaixo, onde fica claro a influência da função utilizada. Embora as diferenças sejam muito pequenas entre o tangente hiperbólica e ReLU, nota-se que a função logística apresenta uma variabilidade muito maior.

```
[6]: results_bh = run_cross_validation(X_bh, y_bh, MLPRegressor(), 

→mean_squared_error, models_activation, 'MSE')
```

	mean	sta
Arquitetura		
logistic	0.021646	0.015934
relu	0.014274	0.015084
tanh	0.017292	0.018124

1.1.2 Tamanho da camada escondida

Conforme os resultados abaixo, é possível notar que aumentando a complexidade do modelo, a qualidade da aproximação obtido será melhor. Isto está de acordo com o comportamento esperado.

Destaca-se porém que para este problema em específico não foi observado o fenômeno de over-fitting, mesmo com 5000 neurônios na camada escondida.

```
[7]: results_bh = run_cross_validation(X_bh, y_bh, MLPRegressor(), 

→mean_squared_error, models_hidden_layer_size, 'MSE')
```

	mean	std
Arquitetura		
5000x1	0.010446	0.016498
500x1	0.011289	0.015091
5x1	0.050456	0.032212

1.1.3 Número de camadas escondidas

Através dos resultados abaixo, podemos notar que não houve muita diferença no MSE com o aumento da complexidade do modelo. Nota-se um leve aumento da métrica para 3 camadas, porém não podemos afirmar que isso é um reflexo de um possível aumento do over-fitting.

```
[8]: results_bh = run_cross_validation(X_bh, y_bh, MLPRegressor(), 

→mean_squared_error, models_number_layers, 'MSE')
```

mean	std
0.011003	0.015385
0.011326	0.016629
0.011950	0.016604
	0.011003 0.011326

1.2 Heart Disease

1.2.1 Função de Ativação

Através dos resultados abaixo, é possível ver que a escolha de função de ativação exerceu pouca influência sobre esta base de dados. Entretanto, é interessante ressaltar que os resultados obtidos estão bem próximos dos obtidos para o ELM nos trabalhos anteriores, mesmo usando um número padrão de neurônios.

```
[14]: def accuracy_function(x,y):
    return 100 * accuracy_score(x,y)

results_hd = run_cross_validation(X_hd, y_hd, MLPClassifier(),
    →accuracy_function, models_activation, 'Acurácia [%]')
```

	mean	std
Arquitetura		
logistic	83.703704	5.843042
relu	84.074074	3.923518
tanh	84.44444	3.825169

1.2.2 Tamanho da camada escondida

Conforme os resultados abaixo, é possível notar que aumentando a complexidade do modelo, começamos a observar um pouco de over-fitting. A tendência é que à medida em que aumentamos ainda mais sua complexidade, isso se torne mais acentuado. Vale ressaltar que foram obtidos resultados satisfatórios com somente 5 neurônios, embora o modelo seja bem simples.

```
[15]: results_hd = run_cross_validation(X_hd, y_hd, MLPClassifier(), → accuracy_function, models_hidden_layer_size, 'Acurácia [%]')
```

	mean	std
Arquitetura		
5000x1	81.111111	5.367177
500x1	84.074074	4.635798
5x1	79.629630	7.856742

1.2.3 Número de camadas escondidas

Através dos resultados abaixo, nota-se uma tendência de aumento da variabilidade do modelo com o aumento do número de camadas escondidas, o que está de acordo com o comportamento esperado.

```
[16]: results_hd = run_cross_validation(X_hd, y_hd, MLPClassifier(), → accuracy_function, models_number_layers, 'Acurácia [%]')
```

	mean	std
Arquitetura		
100x2	80.000000	6.579216
100x3	78.148148	8.086184
100x4	79.259259	5.576094

1.3 Conclusão

Neste trabalho foi feito um estudo sobre alguns parâmetros das redes neurais MLP sobre problemas de regressão e classificação multivariáveis. Foi possível constatar que o controle de tais parâmetros não é uma tarefa fácil, devido a enorme quantidade de fatores que precisam ser ajustados. Os resultados mostraram que a escolha de qual função de ativação utilizar, bem como o tamanho e estrutura da rede são essenciais para se obter uma modelagem adequada.