IFT 3515 Fonctions à plusieurs variables Optimisation avec contraintes Conditions d'optimalité

Fabian Bastin DIRO Université de Montréal

Lagrangien et fonction duale lagrangienne

Considérons à présent un problème ayant des contraintes d'égalité et d'inégalité :

$$\min_{x \in \mathbb{R}^n} f(x)$$
t.q. $g_i(x) \le 0, \ i = 1, \dots, m,$

$$h_j(x) = 0, \ j = 1, \dots, r.$$

Nous définissons le Lagrangien comme

$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{r} \mu_j h_j(x)$$

et la fonction duale lagrangienne

$$\mathcal{L}(\lambda,\mu) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x},\lambda,\mu)$$

Multiplicateurs de Lagrange : contraintes d'égalité

Considérons le problème de programmation mathématique suivant

$$\min_{x \in \mathcal{X}} f(x)$$

t.q. $g_i(x) = 0, \ i = 1, \dots, m.$

où
$$\mathcal{X} \subset \mathbb{R}^n$$
, $f: \mathbb{R}^n \to \mathbb{R}$, $g_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots, m$.

Le Lagrangien associé à ce problème est obtenu en associant un multiplicateur de Lagrange λ_i à chaque fonction de contrainte g_i :

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x).$$

Sans faire d'hypothèse particulière sur \mathcal{X} ou sur les fonctions f et g_i , nous pouvons obtenir des conditions très générales pour qu'un point x^* soit une solution optimale du problème.

Optimalité

Théorème

Supposons que le Lagrangien associé au problème

$$\min_{x \in \mathcal{X}} f(x)$$

$$t.q. g_i(x) = 0, i = 1, ..., m.$$

possède un minimum local $x^* \in \mathcal{X}$ lorsque le vecteur de multiplicateurs λ vaut λ^* . Si $g_i(x^*) = 0$, $i = 1, \ldots, m$, alors x^* est un minimum local de f(x).

Optimalité

Démonstration.

La preuve se fait par contradiction en supposant que x^* n'est pas un minimum local de f(x). Alors $\forall \epsilon > 0$, $\exists \, \overline{x} \in \mathcal{B}(x^*, \epsilon)$ tel que $g_i(\overline{x}) = 0$, $i = 1, \ldots, m$ et $f(\overline{x}) < f(x^*)$. Par conséquent, pour tout λ ,

$$\sum_{i=1}^m \lambda_i g_i(x^*) = \sum_{i=1}^m \lambda_i g_i(\overline{x}) = 0.$$

Dès lors,

$$f(\overline{x}) + \sum_{i=1}^{m} \lambda_i g_i(\overline{x}) < f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*).$$

En prenant $\lambda = \lambda^*$, la relation précédente contredit le fait que est un minimum local du Lagrangien lorsque $\lambda = \lambda^*$.

Multiplicateurs de Lagrange : contraintes d'inégalité

Considérons le problème de programmation mathématique suivant

$$\min_{x \in \mathcal{X}} f(x)$$

$$\text{t.q. } g_i(x) \leq 0, \ i = 1, \dots, m.$$
où $\mathcal{X} \subset \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, $g_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \dots, m$.

Théorème

Supposons que le Lagrangien associé au problème

$$\min_{x \in \mathcal{X}} f(x)$$

t.q. $g_i(x) \le 0, i = 1, ..., m,$

possède un minimum local $x^* \in \mathcal{X}$ lorsque le vecteur de multiplicateurs λ vaut λ^* . Si $g_i(x^*) \leq 0$, $\lambda_i^* \geq 0$ et $\lambda_i^* g_i(x^*) = 0$, $i = 1, \ldots, m$, alors x^* est un minimum local de f(x).

Multiplicateurs de Lagrange : contraintes d'inégalité Démonstration.

Comme précédemment, la preuve se fait par contradiction en supposant que x^* n'est pas un minimum local de f(x). Alors $\forall \epsilon > 0, \ \exists \, \overline{x} \in \mathcal{B}(x^*, \epsilon)$ tel que $g_i(\overline{x}) \leq 0, \ i = 1, \ldots, m$ et $f(\overline{x}) < f(x^*)$. Par conséquent, pour $\lambda = \lambda^* \geq 0$,

$$\sum_{i=1}^m \lambda_i g_i(\overline{x}) \leq 0 \text{ et } \sum_{i=1}^m \lambda_i g_i(x^*) = 0.$$

Dès lors,

$$f(\overline{x}) + \sum_{i=1}^{m} \lambda_i g_i(\overline{x}) < f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*).$$

La relation précédente contredit le fait que x^* est un minimum local du Lagrangien lorsque $\lambda=\lambda^*$.

Problème dual

Le problème dual est

$$\max_{\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^r} \mathcal{L}(\lambda, \mu)$$
 tel que $\lambda \geq 0$.

Propriétés importantes :

- Le problème dual est toujours convexe, i.e. \mathcal{L} est toujours concave (même si la problème primal n'est pas convexe).
- Les valeurs optimales (globales) primale et duale, f^* et \mathcal{L}^* , satisfont toujours la dualité faible : $f^* \geq \mathcal{L}^*$.
- Dualité forte : sous certaines conditions (qualifications de contraintes), f* = L*.

Saut de dualité

Étant donné une solution primale réalisable x et une solution duale réalisable (λ, μ) , la quantité $f(x) - \mathcal{L}(\lambda, \mu)$ est appelé le saut de dualité entre x et (λ, μ) . Notons que

$$f(x) - f^* \le f(x) - \mathcal{L}(\lambda, \mu)$$

de sorte que si le saut de dualité est nul, alors x est optimal primal (et similairement, λ et μ sont optimaux duaux).

D'un point de vue algorithmique, si la dualité forte tient, ceci fournit un critère d'arrêt : si $f(x) - \mathcal{L}(\lambda, \mu) \leq \epsilon$, nous avons alors la garantie que $f(x) - f^* \leq \epsilon$.

Saut de dualité : cas local

Désignons l'ensemble réalisable par

$$\mathcal{X} = \{x \mid g_i(x), i = 1, \dots, m, h_j(x), j = 1, \dots, r\}.$$

Considérons x^* un minimum local de $f(\cdot)$, i.e.

$$\exists \epsilon > 0 \text{ t.q. } \forall x \in \mathcal{B}(x^*, \epsilon) \cap \mathcal{X}, f(x^*) \leq f(x).$$

Nous pouvons également définir la fonction duale lagrangienne restreinte à la boule $\mathcal{B}(x^*,\epsilon)$:

$$\mathcal{L}_{\mathcal{B}(x^*,\epsilon)}(\lambda,\mu) = \min_{x \in \mathcal{B}(x^*,\epsilon)} L(x,\lambda,\mu).$$

Dans ce cas, la dualité faible tient toujours localement :

$$\mathcal{L}^*_{\mathcal{B}(x^*,\epsilon)} \leq f(x^*).$$

Sous certaines conditions, la dualité forte tient également :

$$\mathcal{L}^*_{\mathcal{B}(x^*,\epsilon)} = f(x^*).$$

Saut de dualité : cas local

Remarquons cependant que

$$\min_{x \in \mathbb{R}^n} L(x, \lambda, \mu) \le \min_{x \in \mathcal{B}(x^*, \epsilon)} L(x, \lambda, \mu)$$

et donc

$$\mathcal{L}^* \leq \mathcal{L}^*_{\mathcal{B}(x^*,\epsilon)}$$
.

Dès lors, si x^* est un minimum local et si la dualité forte tient localement,

$$\mathcal{L}^* \leq f(x^*),$$

l'inégalité pouvant être stricte.

Conditions de Karush-Kuhn-Tucker (KKT)

Soient
$$f,g_i,h_j\in C^1$$
, $i=1,\ldots,m,\,j=1,\ldots,r$, et le problème $\min_{x\in\mathbb{R}^n}f(x)$ t.q. $g_i(x)\leq 0,\,\,i=1,\ldots,m,$ $h_j(x)=0,\,\,j=1,\ldots,r.$

Conditions de Karush-Kuhn-Tucker (KKT) :

$$abla_x L(x,\lambda,\mu) = 0$$
 (stationarité)
 $\lambda_i g_i(x) = 0$ (écarts de complémentarités)
 $g_i(x) \leq 0, \ h_j(x) = 0 \ \forall i,j$ (faisabilité primale)
 $\lambda_i \geq 0 \ \forall i$ (faisabilité duale)

Nécessité

Soient x^* minimum pour $x \in \mathcal{B}(x^*, \epsilon)$, $\epsilon > 0$, et (λ^*, μ^*) solution du dual si x est restreint à $\mathcal{B}(x^*, \epsilon)$, avec un saut de dualité nul (la dualité forte tient). Alors

$$f(x^*) = \mathcal{L}(\lambda^*, \mu^*)$$

$$= \min_{x \in \mathcal{B}(x^*, \epsilon)} \left(f(x) + \sum_{i=1}^m \lambda_i^* g_i(x) + \sum_{i=1}^r \mu_i^* h_i(x) \right)$$

$$\leq f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{i=1}^r \mu_i^* h_i(x^*)$$

$$\leq f(x^*)$$

Dès lors, x^* est un minimum de $L(x, \lambda^*, \mu^*)$ sur $\mathcal{B}(x^*, \epsilon)$.

Par conséquent, $\nabla_x L(x^*, \lambda^*, \mu^*) = 0$.

Nécessité

Nous devons aussi avoir $\sum_{i=1}^{m} \lambda_i^* g_i(x^*) = 0$ puisque $\sum_{i=1}^{m} \lambda_i^* g_i(x^*) \leq 0$. Ceci implique que pour tout i, $\lambda_i^* g_i(x^*) = 0$.

Nous retrouvons les conditions de complémentarité.

Si x^* est un minimum global, nous pouvons remplacer $\mathcal{B}(x^*, \epsilon)$ par \mathbb{R}^n .

Nécessité

Théorème (Nécessité des conditions KKT)

Si x^* , (λ^*, μ^*) sont des solutions primale et duale avec un saut de dualité nul (i.e. la dualité forte tient), alors x^* , (λ^*, μ^*) satisfont les conditions KKT.

Dès lors, l'hypothèse de dualité forte apparaît importante. Elle sera garantie sous certaines conditions.

- Programme linéaire. La dualité forte tient toujours.
- Programme convexe. Condition de Slater : $\exists x$ tel que $g_i(x) < 0$, i = 1, ..., m et $h_i(x) = 0$, i = 1, ..., r.
- Programme non-convexe. Hypothèse de qualification de contraintes. La plus courante, mais aussi la plus forte, est la condition d'indépendance linéaire des gradients à la solution.

Nécessité (cas non convexe)

Théorème (Nécessité des conditions KKT)

Si x* est une solution locale de

$$\min_{x \in \mathcal{X}} f(x)$$

$$t.q. g_i(x) \le 0, i = 1, ..., m$$

$$h_i(x) = 0, i = 1, ..., r,$$

où les fonctions f, g_i et h_i , $i=1,\ldots,m$, sont continûment différentiables, et qu'une condition de qualification de contrainte tient en x^* . Alors, il existe un vecteur de multiplicateurs de Lagrange (λ^*,μ^*) tel que les conditions KKT sont satisfaites en (x^*,λ^*,μ^*) .

Démonstration.

Preuve : technique! Voir par exemple Nocedal & Wright,

"Numerical Optimization", Section 12.4.

Suffisance des conditions KKT

S'il existent x^* , (λ^*, μ^*) satisfaisant les conditions KKT, alors

$$L(\lambda^*, \mu^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*) + \sum_{i=1}^{r} \mu_i^* h_i(x^*)$$

= $f(x^*)$

Dès lors, le saut de dualité est nul (dualité forte).

Dans le cas convexe, cela implique que x^* et (λ^*, μ^*) sont des solutions globales primale et duale, respectivement.

Dans la cas non-convexe, x^* est un minimum local, pas nécessairement global, voire un point-selle.

Contraintes linéaires

Revenons à la méthode de projection. Un autre cas important de contraintes relativement faciles à traiter sont les contraintes d'égalité

$$Ax = b$$

avec $A \in \mathbb{R}^{m \times n}$ de rang plein.

Nous pouvons généraliser le problème de projection de y sur l'ensemble

$$\mathcal{X} = \{x \mid Ax = b\}$$

en considérant la norme-2 ou la norme engendré par une matrice H définie positive

$$\min_{x} \frac{1}{2} ||y - x||_{H} \text{ tel que } Ax = b.$$

Nous allons résoudre ce problème en utilisant les conditions d'optimalité de Karush-Kuhn-Tucker (KKT).

Projection sur contraintes linéaires

Considérons le problème

$$\min_{x} \frac{1}{2} ||y - x||_{H} \text{ tel que } Ax = b.$$

Le problème est convexe, et satisfait la condition de Slater s'il existe au moins un point réalisable.

Les conditions KKT s'écrivent

$$\nabla_{x} \frac{1}{2} \langle y - x, H(y - x) \rangle + \nabla_{x} (Ax - b)^{T} \lambda = 0$$
$$Ax - b = 0$$

ou

$$H(y-x) + A^{T}\lambda = 0$$
$$Ax = b$$

Projection sur contraintes linéaires

Le problème peut être réorganisé comme

$$Hx - A^{T}\lambda = Hy$$
$$Ax + 0\lambda = b$$

donnant lieu au système linéaire

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -\lambda \end{pmatrix} = \begin{pmatrix} Hy \\ b \end{pmatrix}$$

Si H est inversible, ce qui sera le cas dans nos problèmes comme nous prendrons H définie positive, nous pouvons résoudre le système en isolant x et en le susbtituant. Tout d'abord, nous avons

$$x = H^{-1}Hy + H^{-1}A^{T}\lambda = y + H^{-1}A^{T}\lambda$$

et donc

$$A\left(y + H^{-1}A^{T}\lambda\right) = b$$

Projection sur contraintes linéaires

On en tire

$$AH^{-1}A^T\lambda = b - Ay$$

puis, une fois λ déterminé

$$Hx = Hy + A^T\lambda$$

Application

Considérons le problème

$$\min_{x} f(x)$$

t.q. $Ax = b$

J. B. Rosen, "The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints", Journal of the Society for Industrial and Applied Mathematics, 8(1), pp. 181-217, 1960.

Supposons que nous avons un point de départ x_0 tel que $Ax_0 = b$. Nous souhaitons garder tous les itérés réalisables, i.e. $Ax_k = b$.

Étant donné la direction de recherche d_k , nous devons dès lors avoir $Ad_k=0$

Projection de la plus forte pente

Considérons $d_k = -\nabla f(x_k)$.

De ce qui précède, en prenant H=I, et en notant \overline{d}_k la projection de d_k ,

$$\overline{d}_k = d_k + A^T \lambda$$

$$= d_k - A^T (AA^T)^{-1} A d_k$$

$$= \left(I - A^T (AA^T)^{-1} A\right) d_k$$

$$= -\left(I - A^T (AA^T)^{-1} A\right) \nabla f(x_k)$$

Algorithme

- **Étape 0** Soit x_0 . Poser k = 0.
- Étape 1 Calcul de la direction de recherche :

$$\overline{d}_k = -\left(I - A^T(AA^T)^{-1}A\right)\nabla f(x_k).$$

Si $\|\overline{d}_k\| = 0$, arrêt : x_k est optimal. Sinon, aller à l'étape 2.

• Étape 2 Résoudre (approximativement)

$$\min_{\alpha\geq 0} f(x_k + \alpha \overline{d}_k)$$

Soit α_k la solution. Poser $x_{k+1} = x_k + \alpha_k \overline{d}_k$, et k := k+1. Retour à l'étape 1.

Remarques

Nous avons ici directement projeté la direction de recherche. Il est possible de montrer que \overline{d}_k est solution du problème

$$\min_{d} \nabla f(x_k)^T d$$
t.q. $Ad = 0, ||d|| = 1$.

L'article de Rosen considère le cas plus général de contraintes sous la forme

$$a_i x = b_i, i = 1, ..., m_1$$

 $a_i x \le b_i, i = m_1, ..., m$

L'algorithme doit alors considérer quelles sont les contraintes actives.

Ensemble actif

Définition (Ensemble actif)

L'ensemble actif A(x) du problème d'optimisation

$$\min_{x \in \mathcal{X}} f(x)
t.q. g_i(x) \le 0, i \in \mathcal{I}
g_i(x) = 0, i \in \mathcal{E},$$

en un point réalisable x est l'ensemble des indices des contraintes d'égalité et l'ensemble des indices i des contraintes d'inégalité telles que $g_i(x) = 0$, c'est-à-dire

$$\mathcal{A}(x) = \mathcal{E}U\{i \in \mathcal{I} \mid g_i(x) = 0\}$$

LICQ

Définition (LICQ)

Étant donné le point x et l'ensemble actif $\mathcal{A}(x)$, nous disons que la qualification de contraintes d'indépendance linéaire (linear independence constraint qualification – LICQ) tient si l'ensemble des contraintes actives $\nabla_x g_i(x)$, $i \in \mathcal{A}(x)$ est linéairement indépendant.

Lemme

Soit x^* un point du problème de programmation nonlinéaire où la LICQ tient et soit $d \in \mathbb{R}^n$ un vecteur tel que

$$d \neq 0$$

$$d^{T} \nabla g_{i}(x^{*}) = 0, \ i \in \mathcal{E}$$

$$d^{T} \nabla g_{i}(x^{*}) \leq 0, \ i \in \mathcal{A}(x^{*}) \cap \mathcal{I}$$

LICQ

Lemme (suite)

Alors pour $\epsilon > 0$ assez petit, il existe un chemin $x(\cdot) \in C^2((-\epsilon, \epsilon), \mathbb{R}^n)$ tel que

$$x(0) = x^*$$

$$\frac{d}{dt}x(0) = d$$

$$g_i(x(t)) = td^T \nabla g_i(x^*), \ i \in \mathcal{A}(x^*), \ t \in (-\epsilon, \epsilon)$$

de sorte que

$$g_i(x(t)) = 0, i \in \mathcal{E}, t \in (-\epsilon, \epsilon)$$

 $g_i(x(t)) \le 0, i \in \mathcal{I}, t \in [0, \epsilon)$

Preuve

Soit $\ell = \#A$. Puisque la LICQ tient, il est possible de choisir $Z \in \mathbb{R}^{(n-\ell) \times n}$ telle que

$$\begin{pmatrix} \nabla g_i(x^*)^T, & i \in \mathcal{A}(x^*) \\ Z \end{pmatrix}$$

soit une matrice nonsingulière.

Soit une fonction $h: \mathbb{R}^n \times \mathbb{R}$ définie par

$$h(x,t) = \begin{pmatrix} (g_i(x), i \in \mathcal{A}(x^*)) - t (\nabla g_i(x^*)^T, i \in \mathcal{A}(x^*)) d \\ Z(x - x^* - td) \end{pmatrix}$$

La matrice jacobienne de h en $(x^*, 0)$ vaut

$$Dh(x^*, 0) = (D_x h(x^*, 0) \quad D_t h(x^*, 0))$$

Rappel: matrice jacobienne

Soit

$$F:\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}\longmapsto\begin{pmatrix}f_1(x_1,\ldots,x_n)\\\vdots\\f_m(x_1,\ldots,x_n)\end{pmatrix}.$$

La matrice jacobienne de F est

$$DF = \begin{pmatrix} \nabla_x^T f_1 \\ \vdots \\ \nabla_x^T f_m \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}.$$

Si n = m, le jacobien de F est le déterminant de DF.

Preuve

Les éléments de

$$Dh(x^*,0) = (D_x h(x^*,0) \quad D_t h(x^*,0))$$

sont

$$D_{x}h(x^{*},0) = \begin{pmatrix} \left(\nabla g_{i}(x^{*})^{T}, i \in \mathcal{A}(x^{*})\right) \\ Z \end{pmatrix}$$

et

$$D_t h(x^*, 0) = -\left(\frac{\left(\nabla g_i(x^*)^T, i \in \mathcal{A}(x^*)\right) d}{Zd}\right) = -D_x h(x^*, 0) d$$

Puisque $D_x h(x^*,0)$ est non singulier, le théorème des fonctions implicites implique que pour $\delta>0$ assez petit, il existe une fonction unique $x\in C^2:(-\delta,\delta)\to \mathbb{R}^n$ et un voisinage $\mathcal{V}(x^*)$ tel que pour $x\in \mathcal{V}(x^*)$, $t\in (-\delta,\delta)$,

$$h(x, t) = 0 \Leftrightarrow x = x(t)$$

Rappel : théorème des fonctions implicites

Soit $F \in C^k : \Omega \subseteq \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p$, notée

$$F(x,y) = (F_1(x,y), F_2(x,y), \dots, F_p(x,y))$$

S'il existe (a, b) tel que F(a, b) = 0 et pour lequel le jacobien de $D_y F$ $(D_y F$ est inversible) est non nul, alors

1. il existe un voisinage A de a dans \mathcal{R}^n et un voisinage B de b dans \mathcal{R}^p , une fonction $f \in C^k(A, B)$, tels que $A \times B \subseteq \Omega$ et que $\forall (x, y) \in A \times B$,

$$F(x, y) = 0 \Leftrightarrow y = f(x).$$

2. la matrice jacobienne de f par rapport à x s'écrit

$$D_x f = -(D_y F(x, f(x)))^{-1} (D_x F(x, f(x))).$$

Preuve

En particulier, nous avons $h(x^*,0) = 0$, et donc $x(0) = x^*$. De plus, h(x(t),t) = 0 donne, par définition de h,

$$g_i(x(t)) = td^T \nabla g(x^*)$$

pour tout $i \in \mathcal{A}(x^*)$ et $t \in (-\delta, \delta)$. Les conditions du lemme sur d impliquent dès lors que

$$g_i(x(t)) = 0, i \in \mathcal{E}$$

 $g_i(x(t)) \le 0, i \in \mathcal{A}(x^*) \cap \mathcal{I}, t \in [0, \delta)$

D'autre part, puisque $g_i(x^*) < 0$, $i \notin \mathcal{A}(x^*)$, la continuité de x(t) implique qu'il existe $\epsilon \in (0, \delta)$ tel que

$$g_j(x^*) < 0, \ j \in \mathcal{I} \setminus \mathcal{A}(x^*), \ t \in (-\epsilon, \epsilon).$$

Finalement, du théorème des fonctions implicites, nous pouvons tirer que

$$\frac{d}{dt}x(0) = -(D_x h(x^*, 0))^{-1}D_t h(x^*, 0) = d$$

Retour au cône tangent

Il est également possible de montre que sous la LICQ, le cône tangent à l'ensemble réalisable $\mathcal X$ en x peut se réécrire comme

$$T_{\mathcal{X}}(x) = \{d \mid d^T \nabla g_i(x) = 0, i \in \mathcal{E}, \ d^T \nabla g_i(x) \leq 0, i \in \mathcal{A}(x) \cap \mathcal{I}\}$$

Dès lors,

$$\frac{d}{dt}x(0)\in T_{\mathcal{X}}(x^*).$$

Nous allons utiliser ce lemme pour introduire la notion de chemin réalisable, lequel nous permettra de davantage caractériser les conditions prévalentes à une solution du problème d'optimisation.

Chemin de sortie réalisable

Définition

Soit $x^* \in \mathbb{R}^n$ un point réalisable pour le PNL et définissons $x \in C^2((-\epsilon, \epsilon), \mathbb{R}^n)$ un chemin tel que

$$x(0) = x^*$$

$$d := \frac{d}{dt}x(0) \neq 0$$

$$g_i(x(t)) = 0, i \in \mathcal{E}, t \in (-\epsilon, \epsilon)$$

$$g_i(x(t)) \leq 0, i \in \mathcal{I}, t \in [0, \epsilon)$$

x(t) est un chemin de sortie réalisable à partir de x^* et le vecteur tangent $d = \frac{d}{dt}x(0)$ est une direction de sortie réalisable à partir de x^* .

Nous pouvons imaginer que x(t) est un morceau lisse de trajectoire d'une particule passant à travers x^* au temps t=0 avec une vitesse non nulle d et qui se déplace dans le domaine réalisable.