Name:

MATH 321: Homework 1

Due : Turn in a hard copy, neat and stapled.

- 1. Entrance exam scores of students at a certain college, X, are normally distributed with $X \sim N \, (\mu = 1300, \sigma^2 = 2500)$. Suppose an admissions officer selects a random sample of 30 students at this college and checks their entrance exam scores.
 - (a) If \bar{X} is the sample mean of the 30 exam scores, find the distribution of \bar{X} .
 - (b) Find $P(1290 \le \bar{X} \le 1310)$.
 - (c) Find $P(X \le 1230)$.
 - (d) Let Y be the number of random variables (exam scores) in the sample that have values of at most 1230. Find the probability that less than 5 of the random variables in the sample have scores of at most 1230, that is, P(Y < 5).

HINT: Think of $P(X \le 1230)$ as a success probability, and the result of checking this is for each random variable is either a success or failure.

(e) Let S^2 be the sample variance of the 30 exam scores. Find $P(S^2 > 2000)$.

HINT: Think about how to get the random variable of interest to follow a distribution we know.

- 2. Let $X_1 \sim \chi^2$ (10) and $X_2 \sim \chi^2$ (13) and $X_1 \perp \!\!\! \perp X_2$.
 - (a) Let $Y_1 = \frac{X_1/10}{X_2/13}$. Find the distribution of Y_1 and $P(Y_1 > 5)$.
 - (b) Let $Y_2 = 1/Y_1$. Find the distribution of Y_2 and the IQR of Y_2 .
- 3. Suppose we take independent random samples of sizes $n_1 = 6$ and $n_2 = 10$ from two normal populations with equal population variances ($\sigma_1^2 = \sigma_2^2$). Let S_1^2 and S_2^2 be the sample variances from populations 1 and 2, respectively.

Find $P(S_1^2/S_2^2 > 2)$.

4. **R simulation**: We are going to simulate a sampling distribution for a statistic and estimate some probabilities using empirical methods.

Guidelines: Complete each of the following steps for the following pairs of distribution and statistic: 1) Gamma distribution and median and 2) Your choice (be creative!). For example, Binomial / sample variance or χ^2 / minimum.

- (a) Plot the population distribution of interest that you will be sampling from.
- (b) Generate i = 10,000 random samples of size n = 30 from the population distribution.
- (c) Calculate the sample statistic $Y = T(X_1, \dots, X_{30})$ for each of the random samples.
- (d) Plot a histogram of the simulated sampling distribution of Y.
- (e) Calculate $\hat{\mu}_Y$ and $\hat{\sigma}_Y$, the estimated mean and standard deviation of the sampling distribution of the sample statistic based on the simulated results, respectively.
- (f) Calculate the estimated probability the sample statistic is within two standard deviations of its mean:

$$P(\hat{\mu}_Y - 2\hat{\sigma}_Y < Y < \hat{\mu}_Y + 2\hat{\sigma}_Y).$$

Restrictions: Do not use the normal distribution or the sample mean \bar{X} .

Submission: This problem will be worth 15 of the 30 points. Please submit your completed version of the starter .qmd file on canvas and rendered .html file.

Select answers

- 1. (a)
 - (b) $P(1290 \le \bar{X} \le 1310) \approx 0.7267$
 - (c) $P(X \le 1230) \approx 0.0808$
 - (d) $P(Y < 5) \approx 0.9097$
 - (e) $P(S^2 > 2000) \approx 0.7673$
- 2. (a) $P(Y_1 > 5) \approx 0.0042$
 - (b) IQR of $Y_2 \approx 0.8639$
- 3. $P(S_1^2/S_2^2 > 2) \approx 0.1727$

4.