

Model podataka tipova entiteta i poveznika

ER model podataka

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- ► Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

Realni sistem

Model realnog sistema

Konceptualno projektovanje

- Konceptualno projektovanje baze podataka
 - projekat konceptualne šeme
 - projekat eksternih šema
- Konceptualno projektovanje aplikativne softverske podrške
 - konceptualni projekat transakcionih programa
 - konceptualni projekat aplikacija IS

Konceptualno projektovanje BP

- Konceptualno projektovanje BP
 - putem modela podataka koji poseduje
 - semantičko bogatstvo
 - izražajnost
 - jednostavnost
 - minimalnost
 - dijagramsku reprezentaciju
 - formalnost
 - pogodan izbor

Prošireni model tipova entiteta i poveznika

(Extended Entity Relationship Model)

Model tipova entiteta i poveznika

- Entity-Relationship data model (ER model)
 - ► Rodonačelnik P. P. Chen (1976)
 - ► Chen, Peter Pin-Shan: *The entity-relationship model toward a unified view of data*, ACM Transactions on Database Systems, Vol. 1, No. 1, 1976.
 - Kasnija proširenja
 - semantička Extended ER model (EER model)
 - ▶ 00 proširenja složeni tipovi podataka (domeni)
- Osnovni pojmovi ER modela
 - obeležje i domen
 - tip entiteta i pojava tipa entiteta
 - tip poveznika i pojava tipa poveznika

Entitet i klasa entiteta

- Entitet (realni entitet)
 - jedinica posmatranja
 - činilac (resurs) poslovanja u realnom sistemu
- Klasa realnih entiteta
 - skup "sličnih" entiteta
 - skup entiteta koji poseduje zajedničko svojstvo
 - ► formalno: $E = \{e_i \mid P(e_i)\}$

Studenti

Entitet i klasa entiteta

- Primer
 - neka realni sistem predstavlja jedan fakultet
 - ▶ neka je $P(e_i) ::= "e_i$ je STUDENT"
 - skupu (klasi entiteta) Student pripadaju samo studenti, a ne i ostali ljudi (činioci) fakulteta

Klasa nastavnika

Klasa predmeta

- Entiteti realnog sistema nalaze se u međusobnim odnosima (vezama)
- Poveznik (veza)
 - reprezentuje odnos dva ili više realnih entiteta, ili prethodno uspostavljenih poveznika

Poveznik (veza)

reprezentuje odnos dva ili više realnih entiteta, ili prethodno uspostavljenih poveznika

Baze podataka

Baze podataka

Klasa poveznika

- skup veza između klasa realnih entiteta ili prethodno identifikovanih klasa poveznika
- skup poveznika koji poseduje ist svojstvo
- formalno:

$$S = \{(e_1, ..., e_m) \mid P(e_1, ..., e_m)\}$$

- $ightharpoonup e_i \ (i \in \{1,..., m\})$
 - jedan realni entitet ili prethodno uspostavljeni poveznik

- Primer
 - Klase entiteta
 - ► Radnik = {Ana, Aco, Eva},
 - Radno_mesto = {Programer, Projektant, Operater}
 - Uočena osobina
 - $ightharpoonup P(e_i, e_i) ::=$ "Radnik e_i radi na radnom mestu e_i "
 - $ightharpoonup P(e_i, e_i)$ definiše klasu poveznika *Radi*
 - ▶ Jedan poveznik klase *Radi*: (*Ana*, *Programer*)

- Primer
 - Klase entiteta
 - ► Radnik = {Ana, Aco, Eva},
 - ▶ Projekat = {Lido, Osig, RazvojIS}
 - Uočene osobine
 - $ightharpoonup P_1(e_i, e_i) ::=$ "Radnik e_i radi na projektu e_i "
 - $ightharpoonup P_2(e_i, e_i) ::=$ "Radnik e_i rukovodi projektom e_i "
 - $ightharpoonup P_1(e_i, e_j)$ definiše klasu poveznika *Radi*
 - $ightharpoonup P_2(e_i, e_j)$ definiše klasu poveznika *Rukovodi*

- Primer
 - ► Klase entiteta
 - ► Radnik = {Ana, Aco, Eva},
 - ► Projekat = {Lido, Osig, RazvojIS}
 - ► Radi = {(Ana, Lido), (Aco, Lido), (Aco, Osig)}
 - Rukovodi = {(Ana, RazvojIS), (Eva, Lido)}

Obeležje (Atribut)

- $P(e_i), P(e_1,..., e_m)$
 - predikat (svojstvo) klase entiteta/poveznika
 - ▶ iskazuje osobine klase E, tj. klase S

Obeležje (atribut)

- osobina klase realnih entiteta, ili poveznika
- ightharpoonup proističe iz semantike predikata $P(e_i)$
- Oznake:
 - ► A, B, X, W
 - ▶ BRI, Datum_Prispeća, JMBG, Prz, Ime

Obeležje (Atribut)

- Vrste obeležja
 - prema mogućnosti dekomponovanja na celine nižeg reda
 - **▶** Elementarno
 - ▶ ne dekomponuje se
 - reprezentuje atomičnu (elementarnu vrednost)
 - ► Primer: Grad, Ulica, Broj, Stan

Složeno

- može se dekomponovati na druga obeležja
- reprezentuje složenu vrednost
- Primer:
 ADRESA = (Grad, Ulica, Broj, Stan)

Skupovno

reprezentuje skup vrednosti istog tipa

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

Strukturalna komponenta

- Primitivni koncepti strukturalne komponente ER modela podataka
 - vrednost
 - ► (predefinisani) domen
 - obeležje

Vrednost

Vrednost

▶ bilo koja konstanta, iz bilo kog skupa

Domen

Domen

- specifikacija skupa mogućih vrednosti obeležja
 - > sa definisanim dozvoljenim relacijama i operacijama nad datim skupom
- vrste
 - predefinisani (primitivni)
 - korisnički definisani (izvedeni)

Domen

Predefinisani (primitivni) domen

- predstavlja predefinisani, atomični tip podataka
 - ugrađen u definiciju modela podataka
 - praktično, zavisi od softverskog okruženja koje podržava izabrani (ER) model podataka
- primeri
 - ▶ teoretski: N, Z, Q, R, neograničeni znakovni, boolean
 - praktični: integer, float, double, decimal, boolean, string

Domen

- Korisnički definisani (izvedeni) domen
 - definiše se
 - korišćenjem već postojećeg domena
 - predefinisanog, ili
 - korisnički definisanog
 - putem pravila za definisanje domena, ugrađenih u definiciju (ER) modela podataka
 - može predstavljati skup
 - ► atomičnih podataka, ili
 - složenih podataka
 - primeri
 - **▶** *DOCENA* ::= $\{d \in \mathbb{N} \mid d \ge 5 \land d \le 10\}$
 - ► DNAZIV ::= String(30)
 - ▶ DMONEY ::= Decimal(12, 2)

Domen obeležja

- Pravilo ER modela podataka
 - Svakom obeležju se pridružuje tačno jedan domen
 - Notacija
 - ► *Dom*(*A*), ili (*A* : *D*)
 - oznaka za domen obeležja A
 - obeležju A pridružen je domen D
 - ▶ dom(A)
 - oznaka za skup mogućih vrednosti obeležja, definisan sa D
 - primeri
 - ▶ Dom(Ocena) = DOCENA
 - ▶ Ocena prima vrednost iz dom(Ocena) = {5, 6, 7, 8, 9, 10}
 - ► (PPNaziv : DNAZIV)
 - ► PPNAZIV prima vrednost iz skupa, predstavljenog sa String(30)
 - skupa svih nizova znakova, nad propisanim kodnim rasporedom, do maksimalne dužine 30

Strukturalna komponenta

- ► Izvedeni koncepti strukturalne komponente ER modela podataka
 - podatak
 - ▶ tip entiteta
 - pojava tipa entiteta
 - ▶ tip poveznika
 - pojava tipa poveznika

Podatak

Podatak - uređena četvorka

(Entitet, Obeležje, Vreme, Vrednost)

- ► Entitet
 - ▶ identifikator (oznaka) entiteta
- Obeležje
 - oznaka (mnemonik) obeležja
- Vreme
 - vremenska odrednica
- Vrednost
 - ▶ jedna vrednost iz dom(A)

Podatak

- Kontekst podatka
 - > semantička (smisaona) komponenta podatka
 - predstavlja trojku:

(Entitet, Obeležje, Vreme)

Ako se eksplicitno navede samo *vrednost*, a *obeležje*, *entitet*, ili *vreme* nije ni implicitno zadato, to nije podatak, jer smisao nije određen

Podatak

- ▶ Vreme, kao komponenta podatka, može se izostaviti, ako se
 - uvede konvencija da se podatak, u tom slučaju, odnosi na vremenski trenutak u kojem se tim podatkom manipuliše, ili
 - identifikuje posebno obeležje, čija vrednost predstavlja vremensku odrednicu posmatranog podatka.
- Podatak činjenica iz realnog sistema

Tip entiteta

Tip entiteta (TE)

- Model klase realnih entiteta u IS
- Nastaje od obeležja klase realnih entiteta, bitnih za realizaciju ciljeva IS
- Predstavlja uređenu strukturu:

N(Q, C)

- ► N naziv TE
- $ightharpoonup Q = \{A_1, ..., A_n\}$ skup obeležja TE
- ► C skup ograničenja TE
- ► $K = \{K_1, ..., K_m\} \subseteq C$ skup ključeva TE $(K \neq \emptyset)$

Tip entiteta

Primer:

Radnik({Mbr, Ime, Prz, Zan, JMBG})

Pojava tipa entiteta

Pojava tipa entiteta

- model jednog realnog entiteta u IS
- > za tip entiteta N(Q, C), $Q = \{A_1, ..., A_n\}$, pojava p(N) predstavlja skup podataka:

$$p(N) = \{(A_1, a_1), ..., (A_n, a_n)\}$$

- ightharpoonup za svaki $A_i \in Q$ mora biti $a_i \in dom(A_i)$
- ightharpoonup skup svih pojava p(N) mora zadovoljavati skup ograničenja C
- ▶ ako se u Q uvede linearno uređenje obeležja, tada

$$p(N) = (a_1, ..., a_n)$$

Pojava tipa entiteta

Identifikator tipa entiteta

- Identifikator tipa entiteta
 - skup obeležja
 - ima ulogu da obezbedi način za jedinstveno (nedvosmisleno) označavanje (identifikaciju) bilo koje pojave tipa entiteta
- Bilo koja vrednost identifikatora TE
 - označava najviše jednu pojavu tipa entiteta
 - naziva se identifikator pojave TE
 - predstavlja jednu od četiri komponente podatka

Ključ tipa entiteta

- Ključ TE
 - minimalni interni identifikator tipa entiteta
- Formalno
 - skup obeležja tipa entiteta N
 - $X \subseteq Q$, $Q = \{A_1, ..., A_n\}$, takav da
 - **▶** (1⁰)
 - ▶ ne postoje dve pojave TE N s istom x-vrednošću (za X) i svaka pojava TE mora imati zadatu x-vrednost
 - svojstvo jednoznačne identifikacije
 - **▶** (2⁰)
 - ▶ ne postoji $X' \subset X$, za koji važi (1 0)
 - svojstvo minimalnosti

Ključ tipa entiteta

- Svaki tip entiteta poseduje bar jedan ključ
 - predstavlja uređenu strukturu:

N(Q, C)

- ► N naziv TE
- $ightharpoonup Q = \{A_1, ..., A_n\}$ skup obeležja TE
- ► C skup ograničenja TE
- ► $K = \{K_1, ..., K_m\} \subseteq C$ skup ključeva TE $(K \neq \emptyset)$
 - ightharpoonup skup svih pojava TE SP(N) mora zadovoljavati C
- Primer
 - Radnik({Mbr, Ime, Prz, JMBG}, {Mbr, JMBG})
 - ► Mbr i JMBG su dva, ekvivalentna ključa TE Radnik

Ključ tipa entiteta

Primarni ključ

- > jedan, izabrani, ključ iz skupa ključeva TE
- često se označava podvlačenjem

Primer

- ► Radnik({Mbr, Ime, Prz, JMBG}, {Mbr, JMBG})
- ► Radnik(Mbr, Ime, Prz, JMBG)
 - skraćena, nepotpuna notacija

- Tip poveznika (TP)
 - model veza između pojava povezanih TE ili TP
 - uređena struktura:

$$N(N_1, N_2, ..., N_m, Q, C)$$

- ► N naziv tipa poveznika
- \triangleright N_i ($i \in \{1,..., m\}$) povezani tip
 - ▶ tip entiteta, ili
 - prethodno definisani tip poveznika
- $ightharpoonup Q = \{B_1, ..., B_n\}$ skup obeležja TP
- ► C skup ograničenja TP
- ► $K = \{K_1, ..., K_k\} \subseteq C$ skup ključeva TP $(K \neq \emptyset)$

Tip poveznika

- Identifikator tipa poveznika predstavlja
 - niz

$$(N_1, N_2, ..., N_m)$$

ightharpoonup ili neki neprazan podniz niza $(N_1, N_2, ..., N_m)$

Ključ tipa poveznika

- ightharpoonup izveden na osnovu ključeva povezanih tipova $(N_1, N_2, ..., N_m)$
- Neka je K₁ ključ tipa N₁
- ▶ Ključ tipa poveznika je vrlo često, ali ne uvek, pravi ili nepravi podskup unije ključeva $K_1 \cup ... \cup K_m$
 - videti integritetnu komponentu ER modela podataka

Tip poveznika

- \triangleright $N_1, N_2,..., N_m$ ne moraju biti međusobno različiti tipovi
- Svaki tip N_i u okviru tipa poveznika N ima svoju ulogu
- Nad istim tipovima N_1 , N_2 ,..., N_m se može definisati više različitih tipova poveznika
- ► *m* arnost poveznika
- \rightarrow m = 2 binarni tip poveznika

Pojava tipa poveznika

Pojava tipa poveznika

$$N(N_1, N_2, ..., N_m, \{B_1, ..., B_k\}, C)$$

- reprezentuje jedan poveznik u realnom sistemu
- oznaka:
 - \triangleright p(N, Vreme), u zadatom trenutku vremena, ili samo
 - \triangleright p(N), ako se vremenska odrednica ne navodi
- predstavlja skup podataka:

$$p(N) = (p_1, ..., p_m)(N) = \{(B_1, b_1), ..., (B_k, b_k)\}$$

- ightharpoonup Za svaki B_i mora biti $b_i \in dom(B_i)$
- ightharpoonup skup svih pojava p(N) mora zadovoljavati skup ograničenja C

- Primer:
 - tip poveznika nad TE Student i Predmet:

Sluša(Student, Predmet, {Semestar}, C_1)

▶ tip poveznika nad TE *Nastavnik* i *Predmet*:

Predaje(Nastavnik, Predmet, {BrojCasova}, C_2)

▶ tip poveznika nad TP *Sluša* i *Predaje*:

PolažePredmet(Sluša, Predaje, {Ocena, Datum}, C₃)

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- ▶ Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

- Pogodna dijagramska tehnika za predstavljanje modela statičke strukture realnog sistema
- ER model podataka uživa popularnost zbog dijagramskog načina prikaza šeme BP
- Postoji više različitih načina za označavanje koncepata ER modela podataka

► Tip entiteta:

Naziv_TE

► Tip poveznika:

Domen:

Obeležje:

Kada se domeni na dijagramu ne prikazuju, vizuelna reprezentacija obeležja je:

Obeležja primarnog ključa TE se podvlače

- Nivoi detaljnosti prikaza ER dijagrama
 - nivo naziva tipova
 - ▶ globalni nivo prikaza
 - nivo naziva obeležja (i domena)
 - detaljni nivo prikaza

- Nivo detaljnosti naziva
 - dva tipa poveznika između istih tipova entiteta

- Nivo detaljnosti naziva
 - ▶ tip poveznika reda 3 (n-arni tip poveznika)

- Nivo detaljnosti naziva
 - rekurzivni, binarni tip poveznika

- Nivo detaljnosti obeležja (i domena)
 - skup obeležja jednog tipa entiteta

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

Integritetna komponenta

- Tipovi ograničenja u ER modelu podataka
 - ograničenje domena
 - ograničenje vrednosti obeležja
 - ograničenje pojave tipa
 - kardinalitet tipa poveznika
 - ograničenje ključa (integritet tipa)
 - > za tip entiteta i
 - ▶ tip poveznika

- Specifikacija domena
 - struktura

D(id(D), Predef)

- ► D
- naziv domena
- ▶ *id*(*D*)
 - ograničenje domena
- Predef
 - predefinisana vrednost domena

- Ograničenje domena id(D)
 - definiše se primenom izabranog pravila za specificiranje korisnički definisanog domena
 - pravila nasleđivanja
 - pravila tipa sloga
 - pravila tipa skupa (kolekcije)
 - pravila tipa izbora
 - izabrani slučaj u ovoj temi
 - definisanje ograničenja domena primenom pravila nasleđivanja

- Pravilo nasleđivanja i id(D)
 - ograničenje "nasleđenog" domena je struktura

$$id(D) = (Tip, Dužina, Uslov)$$

- ► Tip
 - ▶ tip podatka
 - oznaka primitivnog domena, ili
 - oznaka prethodnog, korisnički definisanog domena
- Dužina
 - dužina tipa podatka
- ▶ Uslov
 - logički uslov koji svaka vrednost domena mora da zadovolji

- ► Tip
 - jedina obavezna komponenta specifikacije
 - nasleđuju se sva ograničenja, relacije i operacije, definisane nad izabranim tipom
- Dužina
 - navodi se samo za tipove podataka (primitivne domene) koji to zahtevaju
- Uslov
 - u (ER) modelu podataka mora biti definisana sintaksa za zadavanje logičkih uslova
- Predef
 - mora da zadovolji ograničenja tipa, dužine i uslova

- Interpretacija integriteta domena
 - moguća za bilo koju vrednost konstantu
- Primeri
 - ▶ DPREZIME((String, 30, \triangle), \triangle)
 - ▶ $DDATUM((Date, \Delta, d \geq '01.01.1900'), \Delta)$
 - ▶ DOCENA((Number, 2, $d \ge 5 \land d \le 10$), Δ)
 - ▶ DPOZOCENA((DOCENA, \triangle , $d \ge 6$), 6)

Nula vrednost

Nula (nedostajuća) vrednost

- specijalna vrednost obeležja
- \triangleright označava se simbolom ω
 - ▶ u praksi, to je oznaka NULL
- formalna interpretacija nula vrednosti
 - "vrednost obeležja nedostaje nije zadata"
- moguća značenja nula vrednosti
 - nepoznata postojeća vrednost obeležja
 - nepostojeća vrednost obeležja
 - neinformativna vrednost obeležja
- lacktriangle nekada se javlja potreba da obeležje, umesto vrednosti iz domena, poprimi vrednost ω

Ograničenje vrednosti obeležja

- Specifikacija obeležja
 - ▶ obeležje $A \in Q$, datog tipa N
 - struktura

(id(N, A), Predef)

- ▶ *id*(*N*, *A*)
 - ograničenje vrednosti obeležja
- ► Predef
 - predefinisana vrednost obeležja

Ograničenje vrednosti obeležja

- Ograničenje vrednosti obeležja id(N, A)
 - definiše se za svako obeležje tipa
 - struktura

$$id(N, A) = (Domen, Null)$$

- Domen
 - oznaka (naziv) pridruženog domena obeležja
- ▶ Null \in {T, \bot }
 - ► T dozvola dodele nula vrednosti obeležju unutar N
 - ightharpoonup zabrana dodele nula vrednosti obeležju unutar N

Ograničenje vrednosti obeležja

- Domen i Null
 - obavezne komponente specifikacije
- Predef
 - ako se navede, onda je on važeći
 - u protivnom, važeći je *Predef* odgovarajućeg *Domena*, ili
 - prvog sledećeg nasleđenog domena, za koji je Predef definisan
- Interpretacija ograničenja
 - moguća za bilo koju vrednost obeležja

- definiše ograničenja na moguće vrednosti podataka unutar iste pojave TE ili TP
- predstavlja skup ograničenja vrednosti obeležja, kojem je pridodat logički uslov
- ► formalno, za tip *N*:

$$id(N) = (\{id(N, A) \mid A \in Q\}, Uslov)$$

- Q´ prošireni skup obeležja tipa
 - ▶ za TE je Q′ = Q
 - ightharpoonup za TP je $Q' = Q \cup K_p$, gde je K_p skup obeležja primarnog ključa TP

$$id(N) = (\{id(N, A) \mid A \in Q\}, Uslov)$$

- **▶** Uslov
 - logički uslov koji svaka pojava tipa mora da zadovolji
 - može, u ulozi operanda, da sadrži bilo koje obeležje proširenog skupa obeležja datog tipa
 - u (ER) modelu podataka mora biti definisana sintaksa za zadavanje logičkih uslova
- Interpretacija ograničenja pojave tipa
 - moguća za bilo koju pojavu tipa nad skupom obeležja, nad kojim je definisano

- Primer
 - ► Radnik({MBR, PRZ, IME, ZAN, BPJZ}, {MBR})

Radnik	Domen	Null	Predef		
MBR	DMBR		Δ		
PRZ	DPRZ		Δ		
IME	DIME		Δ		
ZAN	DZAN		Δ		
BPJZ	DBPJZ	Т	Δ		
Uslov: $ZAN = 'prg' \Leftrightarrow BPJZ <> \omega$					

- Primer
 - ► Radnik({MBR, PRZ, IME, ZAN, BPJZ}, {MBR})

Domen	Tip	Dužina	Uslov	Predef
DMBR	Number	4	<i>d</i> ≥ 1	Δ
DPRZ	String	30	Δ	Δ
DIME	String	15	Δ	Δ
DZAN	String	3	Δ	Δ
DBPJZ	Number	2	<i>d</i> ≥ 0	0

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

- Kardinalitet TP prema povezanom tipu
 - par

(a, b)

- ▶ $a \in \{0, 1\}$
 - minimalni kardinalitet
- ▶ $b \in \{1, N\}, N \ge 2$
 - maksimalni kardinalitet
- ograničava u koliko pojava tipa poveznika može učestvovati jedna, bilo koja pojava povezanog tipa
 - ▶ minimalno (a) i
 - maksimalno (b)
- definiše se za svaki povezani tip

Primer

- ► Kardinaliteti prikazanog TP formalizuju ograničenja
 - **▶** (1, 1)
 - ▶ jedan radnik mora biti raspoređen na tačno jedno radno mesto
 - ► (0, N)
 - na jedno radno mesto može biti raspoređeno više radnika, ali ne mora ni jedan

- Tri opšte grupe maksimalnih kardinaliteta
 - ► M : N
 - ▶ N:1
 - **1**:1
 - uticaj na formiranje ključeva tipa poveznika
- Primeri pravila definisanja i pisanja kardinaliteta na dijagramima
 - binarni tipovi poveznika

Grupa M : N (više prema više):

Grupa M : N (više prema više):

Grupa M : N (više prema više):

► Grupa 1 : 1 (jedan prema jedan):

► Grupa 1 : 1 (jedan prema jedan):

Grupa 1 : 1 (jedan prema jedan):

Rekurzivni tip poveznika:

Rekurzivni tip poveznika:

► Tip veze M : N

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- ► Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

Integritet tipa

- Integritet tipa entiteta
 - ograničenje ključa
- Integritet tipa poveznika
 - niz naziva povezanih tipova, ili njegov neprazan podniz
 - ograničenje ključa

Tri opšte grupe maksimalnih kardinaliteta

► M : N

▶ N : 1

1 : 1

uticaj na formiranje ključeva tipa poveznika

Grupa M : N (više prema više):

- ► Integritet TP (identifikator TP) *Radi*:
 - ► (Radnik, Projekat)
 - $ightharpoonup K_p = Mbr + Spr$

- ► Integritet TP (identifikator TP) Raspoređen:
 - ► (Radnik)
 - $ightharpoonup K_p = Mbr$

Grupa 1 : 1 (jedan prema jedan):

- ► Integritet TP (identifikator TP) *JeOsiguran*:
 - ► (Radnik) i (PolisaOsiguranja)
 - $ightharpoonup K_1 = MBR i K_2 = BrPol$

► Grupa M : N (više prema više) i rekurzivni TP:

- Integritet TP (identifikator TP) Sastoji se:
 - ▶ (Deo, Deo), tj.
 - ▶ (Deo(Ima komponente), Deo(Je komponenta za))
 - $ightharpoonup K_p = DelD+DelDkom$
 - DelDkom preimenovano obeležje DelD
 - ▶ Semantika: *DeID* sa ulogom komponente ugradnje

Zadatak 1.

Nacrtati ER konceptualnu šemu baze podataka FILM, na osnovu tekstualnog opisa realnih entiteta, njihovih odnosa i identifikovanog skupa obeležja. Tekstualni opis:

- Film ima svoj ID broj (IDF), naziv (NAZF), trajanje (TRAJANJE). Film pripada tačno jednom žanru filma, a jedan žanr može da ima nula ili više filmova koji mu pripadaju. Žanr ima svoj ID žanra (IDZ) i naziv žanra (NAZZANR).
- ▶ Glumac ima svoju šifru (SIFG), ime (IMEG), prezime (PRZG). Jedan glumac je glumio u jednom ili više filmova, a u jednom filmu može da ne glumi ni jedan glumac, a može da glumi više glumaca.
- Režiser ima svoju šifru (SIFR), ime (IMER), prezime (PRZR). Jedan film je režirao tačno jedan režiser, a jedan režiser može da režira i više filmova.
- Film može da učestvuje na festivalima (nijednom ili više), a na festivalu učestvuje jedan ili više filmova. Festival se identifikuje preko ID broja (SIFFEST), a postoji i naziv festivala (NAZFEST). Ukoliko je film osvojio neku nagradu, podatak se čuva u obeležju NAGRADA.

Zadatak 1.

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- ► Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

- glagolska imenica
- ▶ u ER modelu
 - ▶ tip entiteta dobijen transformacijom tipa poveznika, tj.
 - ▶ tip poveznika, koji predstavlja povezani tip u nekom drugom tipu poveznika
- dvojaka uloga gerunda, kao tipa
 - ▶ istovremeno i tip entiteta i tip poveznika
 - ▶ tip poveznika za neke druge, povezane tipove
 - ▶ tip entiteta u nekim drugim tipovima poveznika

- ▶ Dat je TP $N(N_1, N_2, ..., N_m, \{B_1, ..., B_k\}, C)$
 - ightharpoonup neka je neki N_i , takođe, tip poveznika
 - \triangleright N_i predstavlja gerund
 - \triangleright N_i se ponaša kao TE u odnosu na N
- Geometrijska predstava gerunda u ER dijagramima

- Upotreba gerunda
 - kada ne mogu proizvoljne kombinacije pojava nekih tipova biti sadržane u pojavi posmatranog tipa poveznika i
 - postoji pravilo koje kombinacije pojava tih tipova mogu biti sadržane u pojavi posmatranog tipa poveznika
 - tip poveznika gerund uvodi se s ciljem modeliranja tog pravila

- Upotreba gerunda
 - Primer
 - ▶ entiteti klasa A, B i C su u međusobnim vezama tipa (a, b, c)
 - ▶ uvodi se tip poveznika ABC, između A, B i C
 - ▶ ne mogu svi (a, b) parovi entiteta iz A i B učestvovati u vezama (a, b, c), nad tipom ABC
 - ▶ postoji pravilo koji (a, b) parovi iz A i B mogu učestvovati u vezama (a, b, c), nad tipom ABC
 - uvodi se tip poveznika gerund AB
 - ▶ tip poveznika ABC povezuje AB i C
 - pojave tipa poveznika ABC zavise od egzistencije pojava tipa poveznika AB

- Upotreba gerunda
 - Primer

- Upotreba gerunda
 - Primer

Primer

- Semantika
 - ▶ entiteti klase A su u vezi sa entitetima klase B
 - ▶ dobijaju se (*a*, *b*) parovi
 - neki (a, b) parovi su povezani sa nekim od (a, c) parova
 - b dobijaju se (a, b, c) trojke, povezivanjem određenih (a, b) i (a, c) parova sa istim a komponen<mark>tama</mark>

Primer

- ► Naizgled alternativni ER dijagram
 - ▶ isti ključevi svih TP, ali
 - različita semantika
 - ▶ pojave TP ABC ne zavise od egzistencije pojava TP AB i AC

- Primer
 - Klase entiteta
 - ► Radnik, Mašina i Deo
 - Odnosi:
 - radnik *r* je osposobljen za rad na mašini *m*
 - ▶ na mašini *m* se može proizvesti deo *d*
 - radnik r, na nekim od onih mašina m, za koje je osposobljen, izrađuje neke od onih delova d, koji se na mašini m mogu proizvesti
 - radnik *r* održava mašinu *m*
 - radnici na održavanju mogu, a ne moraju da rade na proizvodnji delova

- Napomena
 - radnik r, koji je osposobljen za mašinu m i radnik koji održava mašinu m, mogu biti različiti, jer su TP *Održava* i gerund *Osposobljen* međusobno nezavisni

Agregacija

Agregacija

- obezbeđuje objedinjavanje složenijih ER struktura
- cela ER struktura se posmatra kao jedan tip entiteta
 - predstavlja povezani tip za neki TP
 - može predstavljati korisnički pogled na BP ("virtuelni" TE)
- najjednostavniji primer agregacije
 - gerund
- ► Geometrijska predstava agregacije u ER dijagramima

Agregacija

Primer

▶ alternativni dijagram u ovom primeru:

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

Slabi tip entiteta

- Slabi tip entiteta
 - tip entiteta čije su pojave zavisne od pojava nekog drugog TE
- Vrste zavisnosti slabih TE
 - egzistencijalna
 - identifikaciona

Egzistencijalna zavisnost

- Egzistencijalna zavisnost
 - između pojava dva tipa entiteta
 - postoji kada je minimalni kardinalitet tipa poveznika (a) jednak 1
- Regularni tip entiteta
 - ▶ tip entiteta koji nije u egzistencijalnoj zavisnosti

Egzistencijalna zavisnost

Primer:

- ► Regularni TE: *Radno_mesto*
- ► Slabi TE: Radnik
 - egzistencijalno zavisan od TE Radno_mesto
 - ▶ Ako se ukine radno mesto, radnik gubi posao
 - ► Radnik egzistencijalno zavisni TE

Identifikaciona zavisnost slabog tipa entiteta

- poseban slučaj egzistencijalne zavisnosti
- postoji ako su i minimalni i maksimalni kardinalitet TP prema slabom TE jednaki 1
 - \triangleright (a, b) = (1, 1)
- u semantičkom smislu, poseban koncept u ER modelu podataka
- uvodi klasifikaciju tipova poveznika
 - neidentifikacioni TP
 - ▶ identifikacioni TP

Identifikacioni tip poveznika

- reprezentuje identifikacionu zavisnost slabog TE
- ukazuje da se svaka pojava zavisnog TE može identifikovati samo uz pomoć identifikatora nadređenog TE
- identifikator (ključ) zavisnog TE formira se korišćenjem identifikatora (ključa) nadređenog TE

- Identifikacioni tip poveznika
 - geometrijska predstava u ER dijagramima

opcionalno, id-zavisni TE se može predstaviti oblikom

- ▶ navođenje kardinaliteta (1, 1) nije obavezno
 - podrazumeva se i često se izostavlja

Primer:

- Upisuje identifikacioni TP
- Student identifikaciono zavisni TE
- StudijskiProgram nadređeni (regularni) TE

- Identifikaciono zavisni TE može posedovati neprazan skup sopstvenih identifikacionih obeležja
 - primer za TE Student: BrIndeksa, GodinaUpisa
- ▶ Bilo koja pojava id-zavisnog TE se može identifikovati isključivo navođenjem:
 - vrednosti njegovih identifikacionih obeležja i
 - vrednosti identifikatora (ključa) nadređenog TE

Identifikator id-zavisnog TE N_i

(N, X)

- ► N- naziv nadređenog TE
- \triangleright X skup identifikacionih obeležja TE N_i
- ► Ključ id-zavisnog TE N_i

$$K_i = K \cup X$$

► *K* - ključ nadređenog TE

- Primer
 - Identifikator id-zavisnog TE Student

(StudijskiProgram, {BrIndeksa, GodinaUpisa})

► Ključ id-zavisnog TE *Student*

 $K_i = IdStudProg+BrIndeksa+GodinaUpisa$

- Napomene
 - regularni TE može učestvovati kao id-zavisan povezani tip u nekom drugom TP
 - id-zavisni TE može učestvovati i kao id-zavisan i kao regularan u više različitih TP

- Tip poveznika IS-A hijerarhija
 - poseban koncept tip poveznika u EER modelu
 - zahteva uvođenje superklase i potklase
- Superklasa (nadtip) i potklasa (podtip)
 - predstavljaju posebne vrste tipova
 - pojmovi vezani za postupak specijalizacije, odnosno generalizacije, svojstvene semantičkim modelima podataka

Specijalizacija

- primenjuje se kada neki skup entiteta ili poveznika superklasa poseduje prepoznatljive podskupove (potklase) sa:
 - > samo sebi svojstvenim obeležjima, ili
 - > samo sebi svojstvenim vezama sa drugim klasama entiteta ili poveznika

- Date su klase:
 - $E_1 = \{e_i \mid P_1(e_i)\}$
 - $ightharpoonup E_2 = \{e_i \mid P_2(e_i)\}$
- Uočava se implikacija:

$$P_2(e_i) \Rightarrow P_1(e_i)$$

► Tada važi:

$$E_2 \subseteq E_1$$

- \triangleright E_1 se naziva superklasom (nadtipom)
- \triangleright E_2 se naziva potklasom (podtipom)

- Pojmovi superklase i potklase se uvode
 - ▶ da bi model statičke strukture realnog sistema bio semantički bogatiji
 - da bi se izbegle nula vrednosti u ekstenziji
 - ▶ da bi se izbeglo definisanje tipa poveznika, koji nema mnogo smisla

- Specijalizacija se vrši na osnovu vrednosti nekog skupa klasifikacionih obeležja
- U tipu entiteta superklase ostaju
 - sva zajednička obeležja i
 - primarni ključ
- U tipove entiteta potklase distribuiraju se samo svojstvena, specifična obeležja

- Tip poveznika IS-A hijerarhija
 - geometrijska predstava u ER dijagramima

- opcionalno, TE potklasa se može predstaviti oblikom
- ▶ navođenje kardinaliteta (a, b) je obavezno tip IS-A
- ► Kardinaliteti (1, 1) prema potklasama mogu se izostaviti

- Tip IS-A hijerarhije
 - b definiše se kardinalitetima tipa poveznika IS-A hijerarhija na strani superklase
- Minimalni kardinalitet (a)
 - ▶ 1 Totalna IS-A hijerarhija
 - 0 Parcijalna IS-A hijerarhija
- Maksimalni kardinalitet (b)
 - 1 Nepresečna IS-A hijerarhija
 - N Presečna IS-A hijerarhija

- Primer:
 - inicijalni tip entiteta superklasa

Radnik({Mbr, Ime, Prz, Zan, Kategorija, Spec, BrPJz},{Mbr})

- klasifikaciono obeležje
 - ► Zan zanimanje radnika

- Bitne karakteristike
 - ▶ Nasleđivanje osobina superklase
 - Ključ (identifikator) svake potklase je primarni ključ (identifikator) superklase - nasleđivanje ključeva
 - pojave potklase se identifikuju putem vrednosti primarnog ključa odgovarajuće pojave superklase
 - Potklase mogu imati svoje sopstvene ključeve
 - Identifikaciona zavisnost svake potklase prema superklasi
 - Potklasa može imati ulogu superklase u drugoj IS-A hijerarhiji
 - Nad jednim tipom može se napraviti više različitih IS-A hijerarhija, koristeći različite kriterijume

Tip poveznika kategorizacije

- poseban koncept tip poveznika u EER modelu
- pojam vezan za postupak klasifikacije (tipizacije), svojstvene semantičkim modelima podataka
- zahteva uvođenje pojma kategorije

Kategorija

- predstavlja posebnu vrstu tipa (TE, ili TP gerunda)
- jedan TE se povezuje s više kategorija (barem dve)
- svaka pojava posmatranog TE pripada najviše jednoj kategoriji
 - "ekskluzivni tip poveznika" prema kategorijama
- ne postoji id-zavisnost posmatranog TE od kategorija, ili obratno
 - posmatrani TE i kategorije su međusobno nezavisni (regularni) tipovi
- može, a ne mora postojati skup klasifikacionih obeležja kategorije

- ► Tip poveznika kategorizacije
 - geometrijska predstava u ER dijagramima

- ▶ navođenje kardinaliteta (*a*, 1) je obavezno
 - ► *a*₂ definiše **tip kategorizacije**
 - ▶ 0 parcijalna kategorizacija
 - ▶ 1 totalna kategorizacija

Primer:

- Semantika
 - ▶ član kluba mora biti ili pravno, ili fizičko lice
 - pravno ili fizičko lice može ostvariti više, a ne mora ostvariti ni jedno članstvo u klubu

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

- Tip poveznika može da povezuje više od dva druga tipa
- N-arni tip poveznika
 - Određivanje kardinaliteta tipa poveznika reda n > 2:
 - > za svaki od *n* povezanih tipova,
 - > za bilo koju odabranu pojavu tipa,
 - utvrđuje se koliko se minimalno i koliko se maksimalno puta javlja kao komponenta u pojavama tipa poveznika

- Primer:
 - ► Tipovi entiteta: *Student*, *Nastavnik*, *Predmet*
 - Ograničenja:
 - jedan nastavnik može predavati više predmeta za više studenata
 - jedan student može slušati više predmeta kod više nastavnika
 - > jedan predmet može predavati više nastavnika za više studenata
 - postoje nastavnici, koji ne predaju ni jedan predmet bilo kom studentu
 - postoje studenti koji ne slušaju ni jedan predmet kod bilo kog nastavnika
 - ▶ ne postoje predmeti koje ne predaje ni jedan nastavnik ni jednom studentu

► ER-dijagram:

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

- Pogodan za rane korake projektovanja
- Pojam konceptualne i implementacione šeme
- Dijagramska tehnika pogodna je za komunikaciju sa korisnicima
- Postoje heuristička pravila projektovanja konceptualne šeme BP
 - na osnovu deskriptivnog opisa strukture i ograničenja u realnom sistemu
- Ne postoje standardi dijagramske reprezentacije

- Neka heuristička pravila
 - Imenice ukazuju na potrebu uvođenja tipova entiteta
 - Glagolski oblici ukazuju na potrebu uvođenja tipova poveznika ili gerunda
 - Fraze oblika "bar jedan", "više", "najmanje jedan" i slične, ukazuju na kardinalitete tipova poveznika ili gerunda
 - Postojanje različitih uloga entiteta jednog skupa u vezama sa entitetima drugih skupova, ukazuje na potrebu uvođenja više tipova poveznika između odgovarajućih tipova entiteta

- Neka heuristička pravila
 - Preporučljivo je da se uloge entiteta u vezama eksplicitno navedu
 - Veze između entiteta jednog skupa ukazuju na potrebu uvođenja rekurzivnog tipa poveznika
 - Kod rekurzivnih veza je posebno važno da se uloge entiteta eksplicitno navedu
 - Vremensko prethođenje entiteta jednog skupa u odnosu na entitete nekog drugog skupa, ukazuje na egzistencijalnu zavisnost entiteta drugog skupa od entiteta prvog skupa i potrebu uvođenja minimalnog kardinaliteta a = 1

- Neka heuristička pravila
 - Potreba takvog selektivnog povezivanja entiteta tri ili više skupova, kod kojeg u vezi mogu učestvovati samo entiteti koji su već u nekoj drugoj vezi sa entitetima jednog ili više drugih skupova, ukazuje na neophodnost korišćenja gerunda
 - Postojanje entiteta jednog skupa sa specifičnim osobinama ili vezama sa entitetima drugih skupova, ukazuje na potrebu uvođenja IS-A hijerarhije

- Neka heuristička pravila
 - Svako obeležje može pripadati samo jednom tipu entiteta, ili samo jednom tipu poveznika
 - Nasleđena obeležja ključa tipa poveznika se ne uključuju u sam skup obeležja tipa poveznika
 - ► Tip entiteta ili tip poveznika sadrži samo ona obeležja realnog skupa entiteta, ili realnog skupa poveznika, koja su bitna za realizaciju ciljeva postavljenih pred informacioni sistem

Primer

Nacrtati ER konceptualnu šemu baze podataka STUDSLUZBA, na osnovu tekstualnog opisa realnih entiteta i njihovih odnosa i identifikovanog skupa obeležja. Tekstualni opis:

- Student sluša jedan ili više predmeta, a predmet sluša jedan ili više studenata. Žna se ocena koju student ima iz predmeta i datum polaganja ispita, ali može i da nema ocenu, ako predmet još nije položio. Student ima broj indeksa, ime i prezime i godinu studija.
- Nastavnik ne mora da predaje ni jedan predmet, a može da predaje i više predmeta. Predmet ne mora da predaje ni jedan nastavnik a mogu da ga predaju i više nastavnika. Predmet ima šifru, naziv i broj časova. Neki predmeti mogu da imaju uslovne predmete.
- Svaki predmet pripada jednoj katedri. Katedra mora imati makar jedan predmet a može ih imati i više. Svaka katedra ima svoju šifru i naziv.
- ► Katedra pripada tačno jednom departmanu, dok departman pripada tačno jednom fakultetu. Fakultet može da ima više departmana, dok departman može da ima više katedri. Fakultet i departman imaju svoju šifru i naziv.

Primer

- Nastavnik može da radi samo na jednoj katedri. Svaki nastavnik ima šifru, ime, prezime, zvanje i platu. Zvanja mogu da budu: asistent, asistent sa doktoratom, docent, vanredni profesor i redovni profesor.
- Za svakog nastavnika se vodi evidencija o svim prethodnim zvanjima ako ih ima. Svaki izbor u zvanje ima naziv zvanja, datum izbora, naučnu oblast, ustanovu izbora i izborni period (broj godina).
- Za svakog nastavnika se vodi evidencija o akademskoj karijeri tj. o svim diplomama koje je stekao. Svaka diploma ima vrstu, naziv teze, godinu odbrane, naučnu oblast i ustanovu na kojoj je stečena.
- Studenti su podeljeni u grupe za vežbe i grupe za predavanja. Svaki student pripada tačno jednoj grupi za predavanja. Takođe, svaki student pripada tačno jednoj grupi za vežbe.
- Asistenti mogu da drže vežbe u više grupa na predmetima na kojima su rapoređeni, dok profesori mogu da drže predavanja u više grupa na predmetima koji su im povereni.
- Predmeti imaju realizaciju u svakoj školskoj godini.

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ► ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- N-arni tip poveznika
- Završne napomene

Pitanja i komentari

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA PRIMENJENE RAČUNARSKE NAUKE

Model podataka tipova entiteta i poveznika

ER model podataka