MTX - 3.4

C ANSI/C++ BLAS-3 API

Developed by Eng. Juan Camilo Gómez Cadavid MSc.

${f Macro/Function/Keyword}$	Description	MATLAB Eq.		
	Generation			
matrix VAR=NULL	Matrix MTX type definition Keyword.	VAR=[];		
mtxdef(VAR)	matrix keyword, defines unallocated variables.			
	Always initialize matrix-type MTX variables to NULL			
	Use mtxdef to define an allocated empty MATRIX by default.			
M=mtx_new(n,m)	Returns a matrix M of $m \times n$ dimensions (initialized on 0)	M=zeros(n,m)		
M=mtx_init(n,m,initval)	Returns a matrix M of mxn dimensions initialized on $initval$	M=initval*ones(n,m)		
M=mtx_rand(n,m)	Returns a matrix M of $m \times n$ dimensions containing pseudorandom values drawn from	M=rand(n,m)		
	the standard uniform distribution on the open interval $(0,1)$			
M=mtx_1dtomtx(A)	Allocates a MTX matrix from the 1D array A			
M=mtx_1dtomtx(A)	Allocates a MTX matrix from the 2D array A			
M=mtx_eye(n,alpha)	Returns the $n \times n$ identity matrix $M = \alpha I$.	M=alpha*eye(n)		
	α is scalar and I represents the identity matrix			
mtx_del(M)	Releases the specified block of memory generated by M, back to the heap	clear M		
M=mtx_cpy(A)	Generates a copy of matrix A into M .	M=A		
mtx_memcpy(M,A)	Generates a copy of matrix A into M . (M is allocated, and has the same dimensions of	M=A		
	A)			
Indexing				
x=A->pos[r][c]	Get the element at index row - r and $column$ - c	x=A(r,c)		
A->pos[r][c] = value	Set a single element at index row-r and column-c	A(r,c)=value		
M=mtx_submatget(A,r1,r2,c1,c2)	Get submatrix $M \leftarrow A$ (M from A), from rows $r1$ to $r2$ and columns $c1$ to $c2$	A(r1:r2,c1:c2)		
M=mtx_getrow(A,r)	Get the r - row from matrix A	M=A(r,:)		
M=mtx_getcol(A,c)	Get the c -column from matrix A	M=A(:,c)		
M=mtx_getrows(A,r1,r2)	Get rows from matrix A. From rows $r1$ to $r2$	M=A(r1:r2,:)		
M=mtx_getcols(A,c1,c2)	Get columns from matrix A. From columns $c1$ to $c2$	M=A(:,c1:c2)		
<pre>mxt_submatset(M,A,r1,r2,c1,c2)</pre>	Put submatrix A into M from row $f1$ to row $f2$ and cols $c1$ to col $c2$	M(r1:r2,c1:c2)=A		

mtx_setrow(M,A,r)	Set the r -row from matrix M , with the row vector A	M(r,:)=A		
<pre>mtx_setcol(M,A,c)</pre>	Set the c -column from matrix M , with the column vector A	M(:,c)=A		
Basic information				
x=mtx_isempty(M)	TRUE if M is an empty matrix	isempty(M)		
x=mtx_isrow(M)	TRUE if M is a row vector	isrow(M)		
x=mtx_iscolumn(M)	TRUE if M is a column vector	iscolumn(M)		
x=mtx_isvector(M)	TRUE if M is vector	isvector(M)		
x=mtx_iseye(M)	TRUE if M is an identity matrix			
x=mtx_numel(M)	Number of elements in matrix M	x=numel(M)		
x=mtx_length(M)	Largest matrix dimension of M	x=length(M)		
x=mtx_det(M)	Determinant of matrix M	x=det(M)		
x=mtx_trace(M)	Trace of matrix M	x=trace(M)		
D=mtx_diag(M)	Returns a column vector with all diagonal elements of M	D=diag(M)		
M=mtx_produ(A)	Product of matrix elements - by columns	M=prod(A)		
x=mtx_cumprod(A)	Total product of matrix elements	x=prod(A(:))		
M=mtx_sum(A)	Sum of matrix elements - by columns	M=sum(A)		
x=mtx_cumsum(A)	Total sum of matrix elements	x=sum(A(:))		
M=mtx_mean(A)	Mean of matrix elements – by columns	M=mean(A)		
M=mtx_max(A)	If A is a vector, returns the largest element in A .	M=max(A)		
	If A is a matrix, treats the columns of A as vectors, returning a row vector containing			
	the maximum element from each column.			
x=mtx_cummax(A)	Largest element in matrix	x=max(A(:))		
M=mtx_min(A)	If A is a vector, returns the smallest element in A .	M=min(A)		
	If A is a matrix, treats the columns of A as vectors, returning a row vector containing			
	the smallest element from each column.			
x=mtx_cummin(A)	Smallest element in matrix	x=min(A(:))		
BLAS-Operations				
M=mtx_t(A)	Returns the transpose of A	M=A'		
<pre>M=mtx_gadd(alpha,A,beta,B)</pre>	Returns $M = \alpha A + \beta B$	M=alpha*A+beta*B		
	α and β are scalars, and A and B matrices.			

M=mtx_prod(alpha,A,B)	Returns matrix Multiplication $M=\alpha AB$	M=alpha*A*B
_, , , , , ,	α is scalar, A and B matrices.	· ·
<pre>ret=mtx_dgemm(alpha,A,TA,B,TB,beta,C)</pre>	Computes $C = \alpha AB + \beta C$ and related operations.	C = alpha*A*B + beta*C
	α and β are scalars, and A, B and C are matrices.	C = alpha*A'*B + beta*C
	$TA = {}^{\circ}\text{T'} \text{ or 't'} \rightarrow A \text{ is considered transposed } (A^T).$	C = alpha*A*B' + beta*C
	$TB = {}^{\circ}\text{T}{}^{\circ}\text{ or 't'} \rightarrow B \text{ is considered transposed } (B^T).$	C = alpha*A'*B' + beta*C
	On success, mtx_dgemm returns (0) and matrix C is overwritten, otherwise returns (-	
M=mtx_powui(A,n)	1). Returns A^n (Matrix power - n must be an unsigned int and A an square matrix)	M=A^n
M=mtx_ptpprod(A,B)	Returns A . (point by point product) (A and B must have the same dimensions)	M=A.*B
M=mtx_koper(A,Op,beta)	Returns standard scalar matrix operations.	M=A+beta
··· ··································	$C = A(Op)\beta$	M=A-beta
	Related operations (Op) = $+$, $-$, $+$, $+$, $+$, and $+$ (power)	M=A*beta
		M=A/beta
	<pre>Example: M=mtx_koper(A,'+',beta);</pre>	M=A^beta
M=mtx_inv(A)	Returns A. (Matrix inverse)	M=inv(A)
M=mtx_linsolve(A,B)	Returns $M = A^{-1}B$	M=inv(A)*B
		M=A\B
mtx_lu(L,U,A)	Expresses the matrix A , as the product of two essentially triangular matrices, one of	[L,U] = lu(A)
	them, a permutation of a lower triangular matrix and the other an upper triangular	
	matrix.	
	(L and U, must be allocated previously and must have the same dimensions of A)	
Q=mtx_qr(A,R)	Orthogonal-triangular decomposition. (R is allocated previously and must have the	[Q,R]=qr(A)
	same dimensions of A)	
M=mtx_rpinv(A)	Returns the Moore-Penrose right pseudoinverse	
M=mtx_lpinv(A)	Returns the Moore-Penrose left pseudoinverse	
M=mtx_expm(A, alpha)	Returns matrix exponential $e^{\alpha A}$. mtx_expm uses the Padé approximation with scaling	M=expm(alpha*A)
	and squaring.	
<pre>M=mtx_fxptp(A, fx)</pre>	Returns function fx evaluated for each element of matrix A	M=fx(A)
	Examples:	
	M=mtx_fxptp(A, sin); → Element-wise sine	
	M=mtx_fxptp(A, fabs); → Element-wise absolute value	
	•	

Manipulation				
M=mtx_vcat(A,B)	Returns [A; B] (Vertical concatenation - append by columns)	M=[A;B]		
M=mtx_hcat(A,B)	Returns $[A, B]$ (Horizontal concatenation - append by rows)	M=[A,B]		
<pre>M=mtx_vcatn(A,B,C,,X,Y,Z,NULL)</pre>	Return $[A; B; C;, X; Y; Z]$ (Vertical concatenation - append by columns)	M=[A;B;C;;X;Y;Z]		
M=mtx_hcatn(A,B,C,,X,Y,Z,NULL)	Return $[A, B, C,, X, Y, Z]$ (Horizontal concatenation - append by rows)	M=[A,B,C,,X,Y,Z]		
Visualization				
mtx_disp(A)	Display matrix A	disp(A)		
mtx_show(A)	Display matrix with variable name			