CodelT

Lesson 3 Objectives:

To gain an understanding of:

- What are undirected / directed graphs and how we may represent and implement them
- 2. Depth-first / breadth-first traversal of graphs
- 3. The topological sort algorithm in an acyclic directed graph

Graphs

Graphs

Graphs are a useful data structure to represent network like relationships

Graphs

Graphs are a useful data structure to represent network like relationships

Graphs are made up of:

- vertices (nodes)
- edges (connections)

Graph Example: Social Network

vertices: Users (People)

edges: Friendships

vertices: Addresses (Schools)

edges: Roads

Why represent these as graphs?

Why represent these as graphs?

By using graphs to represent complex networks, we have a toolbox of algorithms to help answer important questions

nodes: Addresses (Schools)

edges: Roads

What is the shortest path from NTU to SUTD?

vertices: Addresses (Schools)

edges: Roads

Let's give each edge a weight representing the distance of the road

vertices: Addresses (Schools)

edges: Roads

What is the shortest path from NTU to SUTD?

vertices: Addresses (Schools)

edges: Roads

What is the shortest path from NTU to SUTD?

Representation of Graphs

Let's assume we have the following graph:

How might we represent this?

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	O	O	O	O	O
2	O	0	0	O	O	0	O
3	0	0	O	O	O	O	O
4	0	0	O	O	O	O	O
5	0	0	O	O	0	0	O
6	0	0	0	0	0	0	O

	0	1	2	3	4	5	6
0	0	1	0	0	0	0	0
1	1	0	O	O	O	O	O
2	0	O	O	O	O	O	O
3	0	0	O	O	O	0	O
4	0	0	O	O	O	0	O
5	0	0	0	O	O	0	O
6	O	O	O	O	O	O	O

	0	1	2	3	4	5	6
0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	O
2	O	0	0	O	0	0	O
3	O	1	0	O	O	0	O
4	O	0	0	O	O	0	O
5	0	0	0	O	O	0	O
6	0	0	0	О	0	0	0

	0	1	2	3	4	5	6
0	0	1	0	1	0	0	0
1	1	O	O	1	O	O	O
2	O	0	O	O	0	O	O
3	1	1	O	O	O	O	O
4	O	0	O	O	0	O	O
5	0	0	O	O	O	O	O
6	O	0	O	O	O	O	O

	0	1	2	3	4	5	6
0	O	1	0	1	0	1	O
1	1	0	O	1	0	O	O
2	O	O	O	O	O	O	O
3	1	1	O	O	O	O	O
4	O	O	O	O	O	O	O
5	1	O	O	O	O	O	O
6	0	0	0	0	0	0	0

	0	1	2	3	4	5	6
0	0	1	0	1	0	1	0
1	1	0	0	1	0	0	0
2	O	O	O	1	1	O	O
3	1	1	1	O	O	0	O
4	O	O	1	O	O	O	0
5	1 O	O	O	O	O	0	0
6	0	0	0	O	0	0	0

We can store the graph in a 2D list, where adjMatrix[i][j] is True if there is an edge between node i and j and False if not

	0	1	2	3	4	5	6
0	0	1	0	1	0	1	O
1	1	0	O	1	O	0	O
2	O	O	O	1	1	O	O
3	1	1	1	O	O	O	O
4	0	O	1	O	O	O	O
					O		
6	0	0	0	0	0	0	0

Let **V** be the number of vertices and **E** be the number of edges

Let V be the number of vertices and E be the number of edges

An adjacency matrix, whilst efficient for checking if edges exist (constant time), takes up V^2 space. This may be problematic for graphs with a huge number of nodes

0	1	O	1	0	1	0
1	O	O	1	0	0	O
0	O	O	1	1	O	O
1	1	1	0	0	0	O
0	0	1	0	0	O	O
1				0		
O	0	O	0	O	0	O

Additionally, note how many cells are empty. This is the problem with adjacency matrices. They are space inefficient

Adjacency matrices are useful when the number of edges are large

First, we initialise an empty linked list for each vertex

Since this is an undirected graph, an edge goes both ways, and thus we must add a node to both ends of the vertex linked list

Adjacency List: Advantage

Adjacency List representation of graphs are useful when the number of edges are small. This is because the space taken is **V** + **E** (number of vertices + number of edges).

However, in the worst case scenario, if each vertex is connected to every other vertex, then space taken will be V2, the same as an adjacency matrix

Adjacency List: Disadvantage

Adjacency Lists have the added disadvantage of edge access. To check for an edge between two vertices, one has to traverse that vertex's linked list, which can in worst case has V complexity

Throughout the lessons on graphs, we will usually stick to adjacency list representation, but do remember the difference!

Implementation of Graphs

```
class Graph:
    def __init__(self, V):
        self.adjList = [[] for i in range(V)]

    def addEdge(self, edge):
        src, dest = edge

        self.adjList[src].append(dest)
        self.adjList[dest].append(src)
```



```
def printGraph(self):
    for i in range(len(self.adjList)):
        print("vertex {}".format(i), end='')
        for dest in self.adjList[i]:
            print(" -> {}".format(dest), end="")
        print()
```



```
V = 7
graph = Graph(V)

edges = [(0, 1), (0, 3), (0, 5), (1, 3), (1, 4), (3, 2), (2, 4)]
for edge in edges:
    graph.addEdge(edge)

graph.printGraph()
```



```
V = 7
graph = Graph(V)

edges = [(0, 1), (0, 3), (0, 5), (1, 3), (1, 4), (3, 2), (2, 4)]
for edge in edges:
    graph.addEdge(edge)

graph.printGraph()
```

```
vertex 0 -> 1 -> 3 -> 5
vertex 1 -> 0 -> 3 -> 4
vertex 2 -> 3 -> 4
vertex 3 -> 0 -> 1 -> 2
vertex 4 -> 1 -> 2
vertex 5 -> 0
vertex 6
```


SIDEBAR: What if our graph wasn't made up of integer vertices:

How do we represent this?

Graph Traversals

Graph Traversals

To solve graph problems (e.g. shortest path from node A to B), we need traversal methods

Traversal is the act of visiting edges and vertices in a graph

Most graph problems rely on traversals

Depth First Search

Depth First Search

At a high level, you follow some random path until you reach a block

After that, retrace your steps to the earliest vertex with a next path

Repeat on that path

dfs

def dfs(graph, start)

0	
1	
2	
3	
4	
5	
6	

current

0	True
1	True
2	
3	
4	True
5	
6	

0	True
1	True
2	True
3	True
4	True
5	
6	

0	True
1	True
2	True
3	True
4	True
5	
6	

0	True
1	True
2	True
3	True
4	True
5	
6	

0	True
1	True
2	True
3	True
4	True
5	True
6	True

0	True
1	True
2	True
3	True
4	True
5	True
6	True

0	True
1	True
2	True
3	True
4	True
5	True
6	True

current

0	True
1	True
2	True
3	True
4	True
5	True
6	True

Implementation of DFS

dfs

```
def dfsRecurse(graph, v, visited):
    visited[v] = True
    print("visiting vertex {}".format(v))
    for dest in graph.adjList[v]:
        if not visited[dest]:
            dfsRecurse(graph, dest, visited)
    return
def dfs(graph, start):
    visited = [False] * len(graph.adjList)
    dfsRecurse(graph, start, visited)
```


dfs demo

```
V = 7
graph = Graph(V)

edges = [(0, 1), (0, 3), (0, 5), (1, 4), (1, 3), (3, 2), (5, 6)]
for edge in edges:
    graph.addEdge(edge)

dfs(graph, 0)
```


dfs demo

```
V = 7
graph = Graph(V)

edges = [(0, 1), (0, 3), (0, 5), (1, 4), (1, 3), (3, 2), (5, 6)]
for edge in edges:
    graph.addEdge(edge)

dfs(graph, 0)
```

```
visiting vertex 0
visiting vertex 1
visiting vertex 4
visiting vertex 3
visiting vertex 2
visiting vertex 5
visiting vertex 6
```


dfs demo


```
visiting vertex 0
visiting vertex 1
visiting vertex 4
visiting vertex 3
visiting vertex 2
visiting vertex 5
visiting vertex 6
```


Application of DFS

Application of DFS:

- 1. **BST**: Inorder, Postorder, Preorer Traversal
- 2. Graphs: Cyclic Detection
- 3. Acyclic Digraphs (Topological Sort) [You will learn this later on]

Cyclic Detection

Cyclic Detection

This is a cycle!

Pseudo code for cyclic detection:

- 1. dfs graph
- 2. keep track of nodes in current path
- 3. if visiting node in current path, cycle is detected

Cycle Check Visualisation (In Undirected Graphs)

current

visited

0	True
1	
2	
3	
4	
5	
6	

currentPath

0	True
1	
2	
3	
4	
5	
6	

visited

currentPath

0	True	
1	True	
2		
3		
4		
5		
6		

0	True
1	True
2	
3	
4	
5	
6	

visited

currentPath

0	True
1	True
2	
3	
4	True
5	
6	

0	True
1	True
2	
3	
4	True
5	
6	

risited currentPath True 0 True True 1 True 2 3 True 4 5

visitedcurrentPathTrue0TrueTrue1True22True3TrueTrue4

visited currentPath True True True True True True True 3 True True 4 5

6

0

2

3

4

5

6

visited currentPath 0 True True True True 2 True 3 True 3 True 4 True 4 5 5 6 6

	visited	C	urrentPat	h
0	True	0	True	
1	True	1	True	
2	True	2		
3	True	3	True	
4	True	4		
5		5		
6		6		

visited		currentPath		
0	True	0	True	—
1	True	1	True	
2	True	2		
3	True	3	True	
4	True	4		
5		5		
6		6		

0 is in current path!

visited		currentPath		
0	True	0	True	—
1	True	1	True	
2	True	2		
3	True	3	True	
4	True	4		
5		5		
6		6		

0 is in current path!

Breadth First Search

Breadth First Search

At each node, visit all it's edges

Repeat for each edge visited

We achieve this by using a queue ADT

bfs

def bfs(graph, start)

Queue start node

Queue

0

visited

Dequeue first item, and visit it's edges

Queue

visited

Implementation of BFS

bfs

```
def bfs(graph, start):
         enqueue: queue.append()
         dequeue: queue.pop(0)
     \mathbf{I} \cdot \mathbf{I} \cdot \mathbf{I}
    visited = [False] * len(graph.adjList)
    queue = []
    queue.append(start)
    visited[start] = True
    while len(queue) != 0:
         v = queue.pop(0)
         print("visiting vertex {}".format(v))
         for dest in graph.adjList[v]:
              if not visited[dest]:
                  visited[dest] = True
                  queue.append(dest)
```


bfs demo

```
V = 7
graph = Graph(V)

edges = [(0, 1), (0, 3), (0, 5), (1, 4), (1, 3), (3, 2), (5, 6)]
for edge in edges:
    graph.addEdge(edge)

bfs(graph, 0)
```


bfs demo

```
V = 7
graph = Graph(V)

edges = [(0, 1), (0, 3), (0, 5), (1, 4), (1, 3), (3, 2), (5, 6)]
for edge in edges:
    graph.addEdge(edge)

bfs(graph, 0)
```

```
visiting vertex 0
visiting vertex 1
visiting vertex 3
visiting vertex 5
visiting vertex 4
visiting vertex 2
visiting vertex 6
```


bfs demo


```
visiting vertex 0
visiting vertex 1
visiting vertex 3
visiting vertex 5
visiting vertex 4
visiting vertex 2
visiting vertex 6
```


Application of BFS

Application of BFS:

- 1. Hierachal Tree: Visit each level
- 2. **Unweighted Graphs**: Find shortest path from start node to every other node

Pseudo code for unweighted graph shortest path:

- Keep an array of shortest distance to each node and array of edge to each node (where the node was visited from)
- Every time you visit a node, shortest distance to that node is the shortest distance to prev node + 1
- 3. To construct shortest path, backtrack using edgeTo array

Shortest Path

visited

0	TRUE
1	
2	
3	
4	
5	
6	

shortest dist		dist e	dgeTo
0	0	0	-1
1		1	
2		2	
3		3	
4		4	
5		5	
6		6	

visited TRUE 0 TRUE 2 3 4 5 6

shortest dist		dist e	dgeTo
0	0	0	-1
1	1	1	0
2		2	
3		3	
4		4	
5		5	
6		6	

visited

)	TRUE
	TRUE
2	
3	TRUE
4	
5	
5	

shortest dist

|--|

visited TRUE

T	RUE	

shortest dist

90	ae	To
	90	

TRUE TRUE TRUE TRUE

0

2

3

4

5

6

0	0	0
1	1	1
2		2
3	1	3
4		4
5	1	5
6		6

shortest dist

0	-1	
1	0	
2		
3	0	
4		
5	0	
6		

edgeTo

visited TRUE 0 TRUE 2 3 TRUE 4 5 TRUE 6

shortest dist		dist (edgeTo
0	0	0	-1
1	1	1	0
2		2	
3	1	3	0
4		4	
5	1	5	0

TRUE 0 TRUE 2 3 TRUE 4 TRUE 5 TRUE 6

visited

shc	ortest (dist	edgeT
0	0	0	-1
1	1	1	0
2		2	
3	1	3	0
4	2	4	3
5	1	5	0

visited TRUE 0 TRUE 2 3 TRUE 4 TRUE 5 TRUE 6

0	0	0	
1	1	1	
2		2	
3	1	3	
4	2	4	
5	1	5	
6		6	

shortest dist

edgeTo

-1

0

0

3

0

visited TRUE 0 TRUE 2 3 TRUE 4 TRUE 5 TRUE 6

shc	ortest (dist e	edgeT	0
0	0	0	-1	
1	1	1	0	
2		2		
3	1	3	0	
4	2	4	3	
5	1	5	0	
6		6		

visited TRUE 0 TRUE 2 3 TRUE 4 TRUE TRUE 5 6

shortest dist		dist e	dgeTo
0	0	0	-1
1	1	1	0
2		2	
3	1	3	0
4	2	4	3
5	1	5	0
6		6	

0	TRUE
1	TRUE
2	
3	TRUE
4	TRUE
5	TRUE
6	

visited

shortest dist		dist e	dgeTo	
0	0	0	-1	
1	1	1	0	
2		2		
3	1	3	0	
4	2	4	3	
5	1	5	0	
6		6		

visited		sho	rtes
0	TRUE	0	0
1	TRUE	1	1
2	TRUE	2	2
3	TRUE	3	1
4	TRUE	4	2
5	TRUE	5	1
6		6	

shortest dist		dist e	edgeTc	
0	0	0	-1	
1	1	1	0	
2	2	2	3	
3	1	3	0	
4	2	4	3	
5	1	5	0	
6		6		

visited		sho	rtest
0	TRUE	0	0
1	TRUE	1	1
2	TRUE	2	2
3	TRUE	3	1
4	TRUE	4	2
5	TRUE	5	1
6		6	

shortest dist		dist e	dgeT	0
0	0	0	-1	
1	1	1	0	
2	2	2	3	
3	1	3	0	
4	2	4	3	
5	1	5	0	
6		6		

0	TRUE	
1	TRUE	
2	TRUE	
3	TRUE	
4	TRUE	
5	TRUE	
6		

isited	sho	ortest (dist ϵ	edgeT	0
TRUE	0	0	0	-1	
TRUE	1	1	1	0	
TRUE	2	2	2	3	
TRUE	3	1	3	0	
TRUE	4	2	4	3	
TRUE	5	1	5	0	
	6		6		

	visited	sho	rtest	dist e	edgeTc	
0	TRUE	0	0	0	-1	
1	TRUE	1	1	1	0	
2	TRUE	2	2	2	3	
3	TRUE	3	1	3	0	
4	TRUE	4	2	4	3	
5	TRUE	5	1	5	0	
6		6		6		

	visited	shortest dist		dist e	dgeT	
0	TRUE	0	0	0	-1	
1	TRUE	1	1	1	0	
2	TRUE	2	2	2	3	
3	TRUE	3	1	3	0	
4	TRUE	4	2	4	3	
5	TRUE	5	1	5	0	
6	TRUE	6	2	6	5	

Time complexity of DFS & BFS

Time complexity of DFS & BFS

DFS and BFS both have a time complexity of O (E + V)

In both DFS and BFS, we visit every node once and every edge twice, hence the time complexity!

Lab Session 1

- In this lab session, you will be implementing traversal.py
- Your task is to implement the DFS & BFS algorithms starting from a source
- Performing traversals starting from a source means that only those vertices with a path from the source will be visited
- To test, run `python utils/traversal_test.py`

Graph

- This class represents an undirected graph and has been implemented for you.
- This graph contains an attribute adjList where adjList[v] contains all adjacent vertices to vertex v. For instance, if adjList[0] = [1, 2, 3], then the edges (0, 1), (0, 2) and (0, 3) exist.

dfs solution

```
def dfsRecurse(v, graph, visited, result):
    visited[v] = True
    result.append(v)
    for dest in graph.adjList[v]:
        if not visited[dest]:
            dfsRecurse(dest, graph, visited, result)
def dfs(graph, start):
    visited = [False] * len(graph.adjList)
    result = []
    dfsRecurse(start, graph, visited, result)
    return result
```


bfs solution

```
def bfs(graph, start):
    visited = [False] * len(graph.adjList)
    pq = []
    pq.append(start)
    visited[start] = True
    result = [start]
   while (len(pq) != 0):
        v = pq.pop(0)
        for dest in graph.adjList[v]:
            if not visited[dest]:
                result.append(dest)
                visited[dest] = True
                pq.append(dest)
    return result
```