Heaps

"Teachers open the door, but you must enter by yourself."

- Chinese Proverb

Binary Heaps

- A binary heap is a data structure that we can viewed as a mostly complete binary tree.
 - not to be confused with the runtime heap
 - portion of memory for dynamically allocated variables
 - all levels have maximum number of nodes, except deepest where nodes are filled in from left to right
 - implementation is usually array-based

Binary Heap

- Two kinds of binary heaps:
 - Max-Heap and Min-Heap
- Each maintains the *heap order property*
 - The Max-Heap satisfies the Max-Heap Property:

```
A[Parent[i]] \ge A[i]
```

– The Min-Heap satisfies the Min-Heap Property:

```
A[Parent[i]] \leq A[i]
```

- The Max-Heap is used in the *heapsort* algorithm
- Both types are used to implement priority queues

Example: Min-Heap

No – bottom level not filled in left to right

No – max value is not at the top

Yes, it is.

Binary Heap

The height of a node is the number of edges on the longest downward path from the node to a leaf.

- Not to be confused with the depth of a node, the number of edges between the node and the root.
- Also note, if the heap is not a complete tree, some nodes on the same of the level will not have the same height.

The height of a heap is the height of its root.

The height h of a heap of n elements is $h = \Theta(\log_2 n)$

A heap with height h has:

- at least 2^h elements
 - 1 + 2 + 2^2 + ... + 2^{h-1} + 1 = 2^h
- at most 2^{h+1} -1 elements

• 1 + 2 +
$$2^2$$
 + ... + 2^h = 2^{h+1} -1

Min-Heap: Insert Operation

- Add new element to next open spot at the bottom of the heap
- If new value is less than parent, swap with parent
- Continue swapping up the tree as long as the new value is less than its parent's value
- Procedure the same for Max-Heaps, except swap if new value is greater than its parent

Heap before inserting 15

Add 15 as next left-most node

▶ Because 15 < 52, swap

▶ Because 15 < 17, swap

▶ 15 > 12, so stop swapping

Min-Heap: Extract Operation

- Removes minimum value in the heap
 - Store value at the root (min value) for return
 - Replace value at root with last value in the heap;
 remove that last node
 - If new root is larger than its children, swap that value with its smaller child.
 - Continue swapping this value down the heap, until neither child is smaller than it is
- Procedure the same for Max-Heap, except replace value with larger of its two children

Original heap

▶ Replace 12 with 35, remove last node

• Because 35 > 15 and 16, swap with 15

Because 35 > 17 and 23, swap 17

▶ Because 35 > 21, swap

▶ 35 now at leaf, stop

Internal Storage

Interestingly, heaps are often implemented with an array instead of nodes

for element at position i:

- parent index: i / 2
- left child index: i * 2
 - right child index: i * 2 + 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
12	17	16	19	52	37	25	21	45	-	-	-	-	-	-	-

Max-Heap Algorithms

- ► MAX-HEAPIFY(A, i)
 - recursive procedure for maintaining Max-Heap property
 - assume binary trees rooted at Left(i) and Right(i) are max-heaps, but A[i] violates the Max-Heap property

```
MAX-HEAPIFY (A, i)

1  l = \text{LEFT}(i)

2  r = \text{RIGHT}(i)

3  \text{if } l \leq A.\text{heap-size} \text{ and } A[l] > A[i]

4  largest = l

5  \text{else } largest = i

6  \text{if } r \leq A.\text{heap-size} \text{ and } A[r] > A[largest]

7  largest = r

8  \text{if } largest \neq i

9  \text{exchange } A[i] \text{ with } A[largest]

10  \text{MAX-HEAPIFY}(A, largest)
```

Example: Maintaining Max-Heap Property

MAX-HEAPIFY (A, 2)

MA	X-Heapify (A, i)	
1	l = Left(i)	1 = 2 * 2
	r = RIGHT(i)	r = 2 * 2 + 1
3	if $l \leq A$. heap-size and $A[l] > A[i]$	A[4] > A[2]
4	largest = l	largest = 4
5	else $largest = i$	
6	if $r \leq A$. heap-size and $A[r] > A[largest]$	A[9] < A[4]
7	largest = r	no change
8	if $largest \neq i$	4 ≠ 2
9	exchange $A[i]$ with $A[largest]$	exchange A[2], A[4]
10	Max-Heapify $(A, largest)$	Max-Heapify(A, 4)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	4	10	14	7	9	3	2	8	1	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	14	10	4	7	9	3	2	8	1	-	-	-	-	-	-

Example: Maintaining Max-Heap Property

MAX-HEAPIFY (A, 4)

MAX	-HEAPIFY (A, i)		
1	l = Left(i)	1 = 4 * 2	
	r = RIGHT(i)	r = 4 * 2 + 1	
3 i	if $l \le A$. heap-size and $A[l] > A[i]$	A[4] > A[8]	
4	largest = l		
5 (else $largest = i$	<pre>largest = 4</pre>	
6 i	if $r \leq A$. heap-size and $A[r] > A[largest]$	A[9] > A[4]	
7	largest = r	largest = 9	
8 i	if $largest \neq i$	9 ≠ 4	
9	exchange $A[i]$ with $A[largest]$	exchange A[4],	A[9]
10	Max-Heapify(A, largest)	Max-Heapify(A,	9)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	14	10	4	7	9	3	2	8	1	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	14	10	8	7	9	3	2	4	1	-	-	-	-	-	-

Example: Maintaining Max-Heap Property

MAX-HEAPIFY (A, 9)


```
Max-Heapify(A, i)
 1 \quad l = \text{Left}(i)
                                              r = 9 * 2 + 1
 2 \quad r = RIGHT(i)
                                              18 > 16 (A.heap-size)
    if l \leq A. heap-size and A[l] > A[i]
         largest = l
                                              largest = 9
    else largest = i
    if r \leq A. heap-size and A[r] > A[largest] 19 > 16
         largest = r
                                              no change
    if largest \neq i
                                              9 = 9
        exchange A[i] with A[largest]
10
         MAX-HEAPIFY(A, largest)
                                              return
```

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	14	10	8	7	9	3	2	4	1	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	14	10	8	7	9	3	2	4	1	-	-	-	-	-	-

Runtime Max-Heapify

- Runtime based on number of recursive calls
- In the worst case, start at root and have to move value to a leaf.
 - At most, height of heap h calls
- So Max-Heapify (A, i) = O(h)
 - $-but h = log_2(n)$
- Therefore,

```
Max-Heapify(A, i) = O(log_2(n))
```

Building a Max-Heap

The leaves are the nodes indexed by:

$$\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \ldots, n.$$

We can convert an array A into a Max-Heap by using the following procedure

```
BUILD-MAX-HEAP(A)

1  A.heap-size = A.length

2  for i = \lfloor A.length/2 \rfloor downto 1

3  MAX-HEAPIFY(A, i)
```

Example: Building a Max-Heap

$$i = n / 2 = 5$$

$$i = 5 - 1 = 4$$

MAX-HEAPIFY (A, 5) MAX-HEAPIFY (A, 4)

No change

Swap 2 and 14

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	1	3	14	16	9	10	2	8	7	-	-	-	-	-	-

Example: Building a Max-Heap

$$i = 4 - 1 = 3$$

$$i = 3 - 1 = 2$$

MAX-HEAPIFY (A, 2)

Swap 3 and 10

Swap 1 and 16 Swap 1 and 7

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	16	10	14	7	9	3	2	8	1	-	-	-	-	-	-

Example: Building a Max-Heap

$$i = 2 - 1 = 1$$

$$MAX-HEAPIFY(A, 1)$$

Done

Swap 4 and 16 Swap 4 and 14

Swap 4 and 8

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	14	10	8	7	9	3	2	4	1	-	-	-	-	-	-

Runtime Build-Max-Heap

```
BUILD-MAX-HEAP(A)

1 A.heap-size = A.length

2 for i = \lfloor A.length/2 \rfloor downto 1

3 MAX-HEAPIFY(A, i)
```

- A simple upper bound on the running time of Build-Max-Heap is O(n*log₂n)
- However, we can prove that an asymptotically tighter bound is O(n)

Build Max-Heap Running Time

- An *n*-element heap has:
 - height $\lfloor \lg n \rfloor$
 - at most $\lceil n/2^{h+1} \rceil$ nodes at height h
 - runtime for Max-Heapify = O(h)
- Then, the running time is:

$$\mathbf{T(n)} = \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$
over each level of heap of nodes at each level

Build-Max-Heap Running Time

However, we can simplify this expression. Using summation formula (A.8), we get

$$T(n) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$
$$= O(2n) = O(n)$$

Therefore, we can build a heap from an unordered array in O(n) time.

Heapsort

```
HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = A.length downto 2

3 exchange A[1] with A[i]
```

Max-Heapify(A, 1)

A.heap-size = A.heap-size - 1

Begin after Build-Max-Heap

HEAPSORT(A)

```
BUILD-MAX-HEAP(A)
   for i = A. length downto 2
3
```

A.heap-size = A.heap-size = 5

Max-Heapify(A, 1)

i = 6

exchange A[1] with A[i] swap A[1], A[6]

Max-Heapify(A, 1)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
9	7	5	2	6	4	-	-	-	-	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
7	6	5	2	4	9	-	-	-	-	-	-	-	-	-	-

Begin after Build-Max-Heap

HEAPSORT(A)

- BUILD-MAX-HEAP(A)
- for i = A. length downto 2
- exchange A[1] with A[i] swap A[1], A[5] 3
- A.heap-size = A.heap-size = 4
- Max-Heapify(A, 1)

i = 5

Max-Heapify(A, 1)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
7	6	5	2	4	9	-	-	-	-	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	4	5	2	7	9	-	-	-	-	-	-	-	-	-	-

Begin after Build-Max-Heap

HEAPSORT(A)

- BUILD-MAX-HEAP(A)
- for i = A. length downto 2
- exchange A[1] with A[i]3
- A.heap-size = A.heap-size = 3
- Max-Heapify(A, 1)

- i = 4
- swap A[1], A[4]

 - Max-Heapify(A, 1)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	4	5	2	7	9	-	-	-	-	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
5	4	2	6	7	9	-	-	-	-	-	-	-	-	-	-

Begin after Build-Max-Heap

HEAPSORT(A)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
5	4	2	6	7	9	-	-	-	-	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	2	5	6	7	9	-	-	-	-	-	-	-	-	-	-

Begin after Build-Max-Heap

- HEAPSORT(A)
- BUILD-MAX-HEAP(A)
- for i = A. length downto 2
- exchange A[1] with A[i] swap A[1], A[2] 3
- A.heap-size = A.heap-size = 1
- Max-Heapify(A, 1)

i = 2

- Max-Heapify(A, 1)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	2	5	6	7	9	-	-	-	-	-	-	-	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	4	5	6	7	9	-	-	-	-	-	-	-	-	-	-

Heapsort Running Time

The heap-sort algorithm takes time

$$O(n*log_2n)$$

- Build-Max-Heap takes (n) time
- We do n calls to Max-Heapify which takesO(log₂n)