

Computational statistics, lecture 3

Frank Miller, Department of Computer and Information Science, Linköping University

February 4, 2025

Simulation in Statistics

- Computer-generated random variables
- Purpose:
 - Simulate a situation where a statistical model can be assumed
 - Simulate situation repeatedly to investigate properties of estimators, confidence intervals, significance tests
 - Example: power of a test in situations where assumptions are not fulfilled
 - Perform Monte Carlo integration
- Problem: Given a density f of a target distribution, generate random draws $X_1, ..., X_n$ which follow the target distribution

Random variables from familiar distributions

- Computer-generated random variables are not really random but deterministic (Gentle, 2009, Ch.7.1)
- Algorithms are used such that the deterministic nature is not visible, and variables seem random

- Deterministic algorithm generates values between 0 and 1 which follow well independent draws from Unif[0,1]
- Then, random variables following other familiar distributions can be generated from Unif[0,1] and are implemented in statistical software, see Givens and Hoeting (2013), Tab. 6.1

Generating Unif[0,1] random variables

- Linear congruential generator
 - x_0 is seed
 - $x_{k+1} = (ax_k + c) \mod m$
 - $r_k = x_k/m$ is the generated k-th random number
- Here, a, c, and m need to be chosen carefully (m large and often a prime)
- Sequences like that have a period (they repeat after some *k*)
- Another type of generator works on the bit-level, shifting o-1-sequences
- The "Mersenne twister" is a good generator used in **R**; it is based on shifting 0-1-sequences and twisting terms by some matrix multiplication
- The period of the Mersenne twister is $p = 2^{19937} 1$ (both p and 19937 are primes)

The seed

- If seed is fixed, the following generated sequence of random variables is fixed
- Therefore, the seed is determined often based on the system time by default
- For purposes of **reproducibility of results**, the user can choose a specific seed, which can be communicated to other users

```
• In R:
```

```
> set.seed(2025)
> sample(1:14)
[1] 13 12 4 10 1 7 6 3 2 5 11 9 14 8
```

• Note that there was a change in the method used by the **sample**-function from **R**-version 3.6.0 (but even later versions might still use the older method if they had been updated from older versions). You can then change between versions by

```
set.seed(2025, RNGkind="Rejection") (new)
set.seed(2025, RNGkind="Rounding") (old, use only for reproducing older results)
```


Random variables of familiar distributions in R

- In **R**, random variables can be generated for a number of distributions, e.g.:
- rbeta, rcauchy, rchisq, rexp, rf, rgamma, rlnorm, rnorm, rt, runif, rweibull
- rbinom, rgeom, rhyper, rmultinom, rnbinom, rpois

```
x < -rnorm(6, mean = 1.2, sd = 2)
X
    3.8839870 2.8328797 3.5344539 -2.5464309 3.2059822 0.1872261
rbinom(25, size = 3, prob = 0.25)
[1] 1 2 0 0 0 0 0 2 3 0 0 2 1 1 0 0 1 0 1 1 2 2 1 0 0
```


Random variables from non-familiar distributions

- Problem: Given a density f of a target distribution, generate random draws $X_1, ..., X_n$ which follow the target distribution
- Now: Density *f* of arbitrary form

- Methods we will consider:
 - Inverse cumulative distribution function (CDF) method
 - Rejection sampling
 - Generate normal distributed variables
 - Composition sampling (use of conditional distributions)
 - Markov chain Monte Carlo (MCMC) → Lecture 4

Inverse cumulative distribution function method

- Continuous random variable *X* with density *f* and distribution function *F*
- Then: F(X) is uniformly distributed on [0,1]

• Therefore: if we can generate uniformly distributed random variables U, we can compute $X = F^{-1}(U)$ and obtain the desired sample

Inverse CDF method

• Example 1: We want to generate random variables X with triangle distribution having density

$$f(x) = \begin{cases} 2 - 2x, & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise} \end{cases}$$

• We compute the distribution function:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0, & \text{if } x < 0, \\ 2x - x^2, & \text{if } 0 \le x \le 1, \\ 1, & \text{if } x > 1. \end{cases}$$

• The inverse distribution function is

$$F^{-1}(y) = 1 - \sqrt{1 - y}$$
since $y = 2x - x^2 \Leftrightarrow x^2 - 2x + y = 0 \Leftrightarrow$

$$x_{1,2} = 1 \pm \sqrt{1 - y} \Rightarrow 1 - \sqrt{1 - y}$$

Inverse cumulative distribution function method

• 1000 random numbers for the triangle distribution can be generated by:

```
u <- runif(1000)
x <- 1-sqrt(1-u)
hist(x)</pre>
```


Inverse CDF method - discrete random variables

• Example 2: We want to generate a random variable *X* being

o with probability 0.35,

1 with probability 0.05,

2 with probability 0.4,

3 with probability 0.2

• $F(x) = P(X \le x)$; how to apply the inverse cumulative distribution function method?

Inverse CDF method – discrete random variables

This is 1 if the condition in (...)

is true, otherwise it is o

• Example 2: We want to generate a random variable *X* being

```
o with probability 0.35,
1 with probability 0.05,
2 with probability 0.4,
3 with probability 0.2
```


- How to apply inverse transformation method?
- Generate $U \sim \text{Unif}[0,1]$
- If $U \le 0.35$, then X = 0, if $0.35 < U \le 0.4$, then X = 1, if $0.4 < U \le 0.8$, then X = 2, if 0.8 < U, then X = 3.

x < (u>0.35) + (u>0.4) + (u>0.8)

Inverse cumulative distribution function method

- Inverse cumulative distribution function method worked well in preceding examples
- In general, drawbacks are:
 - Computation of F^{-1} might be difficult
 - Difficult to generalize to multiple dimensions
 - Often less efficient as alternatives

Rejection sampling

- Problem: Given a density f of a target distribution, generate random draws $X_1, ..., X_n$ which follow the target distribution
- It can be difficult to sample with respect to f
- Situation: There is another density g which can be sampled from and which is after scaling larger than f for all x, $e(x)=g(x)/a \ge f(x)$ for all x and some a < 1
- e(x) is called "envelope"

Rejection sampling

- $e(x)=g(x)/a \ge f(x)$ for all x and some a < 1
- Rejection sampling algorithm:
- 1. Sample $Y \sim g$
- 2. Sample $U \sim \text{Unif}(0,1)$

Example (for picture above): Y=2.21; f(Y)=0.267, e(Y)=0.435, f(Y)/e(Y)=0.616; sample U; If U < 0.616, use Y, otherwise reject it

Rejection sampling

- 1. Sample $Y \sim g = ea$
- 2. Sample $U \sim \text{Unif}(0,1)$
- 3. If $U \le f(Y)/e(Y)$, acc. Y; set X = Y; otherw. reject it
- 4. If more samples desired, go to 1

Example (for picture):

$$(Y_1, U_1) = (2.21, 0.492) \rightarrow U_1 < 0.616 \rightarrow \operatorname{accept} Y_1$$

 $(Y_2, U_2) = (0.17, 0.952) \rightarrow U_2 > f(0.17)/e(0.17) \rightarrow \operatorname{reject} Y_2$
 $(Y_3, U_3) = (1.76, 0.250) \rightarrow U_3 < f(1.76)/e(1.76) \rightarrow \operatorname{accept} Y_3$
 $(Y_4, U_4) = (1.55, 0.880) \rightarrow U_4 > f(1.55)/e(1.55) \rightarrow \operatorname{reject} Y_4$
 $(Y_5, U_5) = (0.90, 0.619) \rightarrow U_5 < f(0.90)/e(0.90) \rightarrow \operatorname{accept} Y_5$
 $\rightarrow \operatorname{use} (2.21, 1.76, 0.90)$

Using the generated distribution

- We have now a way to generate an arbitrary distribution
- We can use it then for different purposes
- Example 3: We have now generated a vector \mathbf{x} in \mathbf{R} with 10^6 values according to this distribution with density f(x). What is the mean, the standard deviation, and P(X > 2) for this distribution?

```
hist(x, breaks=60)
mean(x)
[1] 1.205569
sd(x)
[1] 0.687377
mean((x>2))
[1] 0.142867
```


- R-function rnorm uses by default inverse transformation method
 - Inverse distribution function Φ^{-1} of normal distribution function used; no closed formula for Φ^{-1} exists; **R** uses approximation algorithm which is very precise
- Another method: Box-Muller (can be selected in **R**, too)
 - If (X_1, X_2) standard bivariate normally distributed (i.e., X_1 and X_2 independent standard normal), then $Y = X_1^2 + X_2^2$ has χ_2^2 -distribution; χ_2^2 equal to Exp(1/2)
 - Angle *A* uniformly distributed on $[0, 2\pi]$
 - Idea: Generate squared length *Y* with inverse transformation from one uniform dist. *U* and angle *A* from an independent uniform dist.

Generate a multivariate normal distribution

• A multivariate normal distribution $N(\mu, \Sigma)$ with mean vector μ and covariance matrix Σ has density

$$f(x) = \frac{1}{((2\pi)^p |\Sigma|)^{1/2}} e^{-(x-\mu)^T \Sigma^{-1} (x-\mu)/2}$$

- If *X* is a *p*-dimensional vector of independent standard normal variables (i.e. *X* is multivariate normal N(0, I)), then $Y = A^T X + \mu$ has a $N(\mu, \Sigma)$ -distribution with $\Sigma = A^T A$
- To generate $Y \sim N(\mu, \Sigma)$:
 - compute A with $\Sigma = A^T A$ (e.g. Cholesky decomposition),
 - generate $X \sim N(0, I)$ (by generating p independent N(0,1)-variables),
 - compute $Y = A^T X + \mu$

Generate a multivariate normal distribution

- Example 4: Generate one random vector according to the bivariate normal distribution with mean vector 0, variance 1 of each component and correlation ρ , $-1 \le \rho \le 1$ (this means that the covariance matrix is $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$)
- One can show that $\Sigma = A^T A$ with $A = \begin{pmatrix} 1 & \rho \\ 0 & \sqrt{1 \rho^2} \end{pmatrix}$
- Therefore:
 - Simulate two independent $X_1 \sim N(0,1)$; $X_2 \sim N(0,1)$
 - Compute $Y = A^T X$, which means: $Y_1 = X_1$, $Y_2 = \rho X_1 + \sqrt{1 - \rho^2} X_2$.
 - Vectors *Y* generated this way have then the desired distribution

Generate multivariate normal distribution in R

• Package mvtnorm supplies (besides densities, probabilities, and quantile functions) random generator rmvnorm for multivariate normal:

$$\Sigma = \begin{pmatrix} 1 & 0.5 & 0.25 \\ 0.5 & 1 & 0.5 \\ 0.25 & 0.5 & 1 \end{pmatrix}$$

Each row is one generated random vector

- Optionally, method of decomposition can be chosen
- Multivariate t distribution (same package): rmvt

Composition sampling (use of conditional distributions)

- If $f_i(x)$, i = 1, ..., n, are densities, a random variable X with density $\sum_i p_i \cdot f_i(x)$, where $\sum_i p_i = 1$, is called finite mixture; p_i =mixing parameters
- A finite mixture distribution can be generated by:
 - simulating the group-membership using the discrete distribution for mixing parameters
 - simulating the distribution of this group's distribution, i.e. the conditional distribution given the group
- Ex. 5: X normal mixture of N(0, 1) and $N(4, 1.5^2)$ with mixing parameter 0.7 and 0.3, respectively

```
g \leftarrow rbinom(100000, size = 1, prob = 0.3)

x \leftarrow rnorm(100000, mean = 4*g, sd = 1+0.5*g)

hist(x, breaks = 25)
```


Composition sampling (use of conditional distributions)

- More flexible code for simulating a finite mixture distribution (e.g., a finite normal mixture) with composition sampling:
 - Define mean, standard deviations and mixing parameters as vector:

```
mu <- c(-2, 5, 11)

sigma <- c(2.2, 1.4, 2.9)

prob <- c(0.4, 0.25, 0.35)

n <- 10000
```

• Generate mixture by:

```
g <- sample(length(mu), n, replace=TRUE, p=prob)
x <- rnorm(n, mean = mu[g], sd = sigma[g])
hist(x, breaks = 25)</pre>
```


Example 6:

You have the standard functions for generation of random variables available in **R**. With which method would you generate random variables for the following distributions?

- a) An equal mixture of N(-2,1) and N(2,1),
- b) Distribution with density: $f(x) = e^{-(x-1)} \mathbf{1} \{x > -1\}$
- c) Distribution with density: $f(x) = c \exp(-x^4)$,

Example 7:

Assume you have now generated a sample for the distribution with density: $f(x) = c \exp(-x^4)$ with an appropriate method and it is stored in vector **x**.

What is the variance and kurtosis of this distribution?

Kurtosis: $E\left(\left(\frac{X-\mu}{\sigma}\right)^4\right)$, where μ is the mean and σ the standard deviation

```
hist(x, breaks=60)
# variance
var(x)
[1] 0.337153
mean((x-mean(x))^2) # if we wouldn't have the var-function
[1] 0.3371526
# kurtosis
mean(((x-mean(x))/sd(x))^4)
[1] 2.187151
```

The kurtosis is 2.19 which is less than for the normal distribution (kurt.=3). This distribution has therefore thinner tails than the normal.

Histogram of x

