HOMEWORK 4 REPORT

CSCI 677

PyTorch, LeNet

Parameter	Main Experiment	Variation 1- Batch Normalization	Variation 2- L2 regularization
Epochs	100	100	100
Initial learning rate	0.001	0.001	0.001
Batch size	128	128	128
Optimizer	Adam(decay_rate=0)	Adam(decay_rate=0)	Adam(decay_rate=1e-5)
Layer1	Conv—Relumaxpooling	Conv—batchNorm2dRelu maxpooling	Conv—Relumaxpooling
Layer2	Conv—Relumaxpooling	Conv—batchNorm2dRelu maxpooling	Conv—Relumaxpooling
Layer3	FCRelu	FC—batchNorm1dRelu	FCRelu
Layer4	FCRelu	FC—batchNorm1dRelu	FCRelu
Layer5	FC-logSoftMax	FC-logSoftMax	FC-logSoftMax

1) For your main experiment setting, show the evolution of training losses and validation losses with multiple steps.

2) Show the confusion matrix and per-class classification accuracy for this setting.

//Confusion Matrix//										
[[3	323	35	17	18	11	22	10	3	8	53]
[35	264	12	78	10	8	13	9	12	59]
[26	10	167	9	72	62	45	23	76	10]
[24	96	16	273	17	9	8	6	8	43]
[9	13	56	10	162	55	64	38	78	15]
[12	7	57	4	56	212	48	48	53	3]
[10	5	55	4	81	57	130	60	94	4]
[4	14	30	3	33	50	85	240	40	1]
[9	7	65	2	72	40	73	49	180	3]
[56	43	5	24	18	12	4	1	4	333]]

Class	Per-class classification accuracy
Airplane	0.646
truck	0.528
bird	0.334
car	0.546
cat	0.324
deer	0.424
dog	0.26
horse	0.48
monkey	0.36
ship	0.666

Classification Report:

	precision	recall	f1-score	support
airplane	0.64	0.65	0.64	500
truck	0.53	0.53	0.53	500
bird	0.35	0.33	0.34	500
car	0.64	0.55	0.59	500
cat	0.30	0.32	0.31	500
deer	0.40	0.42	0.41	500
dog	0.27	0.26	0.27	500
horse	0.50	0.48	0.49	500
monkey	0.33	0.36	0.34	500
ship	0.64	0.67	0.65	500
accuracy			0.46	5000
macro avg	0.46	0.46	0.46	5000
weighted avg	0.46	0.46	0.46	5000

3) Show some examples of failed cases, with some analysis if feasible.

ground truth label: 1, predicted label: 4

ground truth label: 2, predicted label: 8

ground truth label: 3, predicted label: 9

In general, macro accuracy for class prediction is low and hence we are getting wrong predictions in general. Also We have re-sized from 96*96 to 32*32, hence loosing key features

Some of the background attributes are being learned and wrongly interpreted.

4) Compare your results for the variations with the main experiment setting.

Observations:

- 1) Training time for the network was slightly more for Variation 1
- 2) The model starts overfitting after 18 epochs in Main settings; 10 epochs in Variation-1; 19 epochs in Variation-2
- 3) All the 3 settings perform and learn best for 'Airplane', 'car' and 'ship' classes.
- 4) All the 3 settings perform the worst on 'dog' class.
- 5) It can be easily seen that Batch Normalization speeds up the learning of the network.
- 6) L2-Normalization helps to smoothly settle the validation error until the model starts overfitting.