Actvidad 8

Saúl Francisco Vázquez del Río

2024-08-23

Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1: Hipotesis

$$H_0\mu = 11.7$$

$$H_1: \mu \neq 11.7$$

¿Como se distribuye \bar{X}

X se distribuye como una normal

n < 30

No conocemos sigma

Entonces la distribucion muestral es una t de student

Paso 2: Regla de decision

Nivel de confianza es de 0.98 Nivel de significaciona es de 0.02

Necesito encontrar a cuantas desviaciones estandar estar lejos el valor frontera

```
n = 21

alfa = 0.02
t_f = qt(alfa/2, n-1)
cat("t_f =", t_f)

## t_f = -2.527977
```

Rechazo H_0 si:

 $|t_e| > 2.53 \text{ valorp} < 0.01$

Paso 3: Analisis del resultado

 t_e : NUmero de desviaciones al que \bar{X} se encuntra lejos de $\mu=11.7$ Valor p: Probabilidad de obtener en la muestra o un valor mpas extremo

Estadistico de prueba

```
X = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4,
11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1)
xb = mean(X)
s = sd(X)
miu = 11.7
te = (xb-miu)/(s/sqrt(n))
cat("te =", te)
## te = -2.068884
valorp = 2*pt(te, n-1)
cat("Valor p =", valorp)
## Valor p = 0.0517299
t.test(X, mu= 11.7, alternative = "two.sided", conf.level = 0.98)
##
## One Sample t-test
##
## data: X
## t = -2.0689, df = 20, p-value = 0.05173
## alternative hypothesis: true mean is not equal to 11.7
## 98 percent confidence interval:
## 11.22388 11.74755
## sample estimates:
## mean of x
## 11.48571
sigma = sqrt((n-1)/(n-3))
x=seq(-4*sigma, 4*sigma, 0.01)
y=dt(x,n-1)
plot(x,y,type="l",col="blue",xlab="",ylab="",ylim=c(-
0.1,0.4), frame.plot=FALSE, xaxt="n", yaxt="n", main="Región de rechazo
(distribución t de Student, gl=20)")
abline(v=t_f,col="red",lty=5)
abline(v=-1*t_f,col="red",lty=5)
abline(h=0)
abline(v=0, col="blue", pch=19)
```

points(te, 0, pch=19, cex=1.1)

Región de rechazo (distribución t de Student, gl=2

Paso 4: Conclusion

Comparar: Regla de decision vs Analisis de resultado

 $|t_e| = 2.07 < 2.53$ -> No rechazo H0 Valor p = 0.05 > 0.02 -> No rechazo H0

En el contexto: Las latas de durazno tienen el peso requerido

La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23

Por experiencias anteriores, se sabe que σ =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Paso 1: Hipotesis

```
H_0\mu = 15
H_1: \mu < 15
```

¿Como se distribuye \bar{X}

X se distribuye como una normal

n > 35sigma = 4

Entonces la distribucion muestral es una Z

Paso 2: Regla de decision

Nivel de confianza es de 0.93 Nivel de significaciona es de 0.07

Necesito encontrar a cuantas desviaciones estandar estar lejos el valor frontera

```
alfa = 0.07
n = 35
sigma = 4
ds = sigma / sqrt(n)
Zf = qnorm(alfa)
cat("Zf =", Zf, "\n")
## Zf = -1.475791
cat("ds =", ds, "\n")
## ds = 0.6761234
```

Rechazo H0 si:

Z > -1.48

valorp < 0.07

Paso 3: Analisis del resultado

```
X = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20,
18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23)
miu = 15
sigma = 4
n = 35

xb = mean(X)

Ze = (xb - miu) / (sigma / sqrt(n))
cat("Z =", Ze, "\n")
```

```
## Z = 2.95804
valorp = pnorm(Ze)
cat("Valor p =", valorp, "\n")
## Valor p = 0.998452
t.test(X, mu= 15, alternative = "less", conf.level = 0.93)
##
## One Sample t-test
##
## data: X
## t = 2.6114, df = 34, p-value = 0.9933
## alternative hypothesis: true mean is less than 15
## 93 percent confidence interval:
        -Inf 18.15731
## sample estimates:
## mean of x
##
          17
sigma = sqrt((n-1)/(n-3))
x=seq(-4*sigma, 4*sigma, 0.01)
y=dt(x,n-1)
plot(x,y,type="l",col="blue",xlab="",ylab="",ylim=c(-
0.1,0.4), frame.plot=FALSE, xaxt="n", yaxt="n", main="Región de rechazo
(distribución Z)")
abline(v=Zf,col="red",lty=5)
abline(v=-1*Zf,col="red",lty=5)
abline(h=0)
abline(v=0, col="blue", pch=19)
points(te, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución Z)

Paso 4: Conclusion

 $|Z_e| = 2.95 > -1.48$ -> No rechazo H0 Valor p = 0.99 < 0.07 -> Rechazo H0

El tiempo promedio si es mayor de 15 minutos