Nonlinear Partial Differential Equations.
· Exterior Domain Problem.
$\begin{array}{c} (-\Delta w + (w \cdot \nabla) w + \nabla p = 0) \text{ in } \Omega \subseteq \mathbb{R}^2 \\ \nabla \cdot w = 0 \text{ in } \Omega \\ w \mid_{\partial \Omega} = 0 \end{array}$
$\nabla \cdot W = 0$ in Ω
$\mathcal{A} = 0$
$W(8) \rightarrow w_{\infty} = \lambda e_1 \approx 8 \Rightarrow \infty$
· Incompressible Navier-Stokes equations in three-dimensions.
· Incompressible Navier-Stokes equations in three-dimensions. 1 at V-SV+(V.7) V + PP=0 in D = IR3 × IR
$\nabla - V = 0$ in D .
· Monge-Ampère Equation.
det Du=f in BCIR"
for an unknown function u: D -> R
Existence results for solutions.
Localization theorems
Main Problems Geometry of sublevel sets
Regularity results in the interior and at the boundary
Classification of Global solutions
Spectral theory.
· Sine-Gordon equation
$\frac{\partial + u - \partial_x u + \sin(u) = 0}{\partial u + \partial_x u + \cos(u)} = 0$
One of the first PDEs found to admit a family of breathers., which is given explicitly by
$\frac{1}{(w+1)} = 4 \arctan \left(\frac{w}{w} \frac{8 i n (w+1)}{\cos h (w+1)} \right), m, w > 0, m \neq w = 1$
$(x,t) = 4 \arctan \left(\omega \cos \left((mx) \right) \right)$
· Klein-Gordon equations.
$\sf V$
where the nonlinearity f satisfies for $f(u) = 0$, $f(u) = 0$, $f(u) = 0$,
where the nonlinear by of subjects
and $f(u) = O(u^3)$ near o .
$+ (-Q = q uother, general form: (\partial_{\tau}^{2} v - \partial_{x}^{2}) v + F(v) = 0, where F(v)$

is a smooth real valued odd function F(v) with F'(0) >0 and F''(0) <0.
Burgers Equation $W = uux = Duxx.$
The above equation is nonlinear due to the product of NUz. This elleptic equation is a simple case of the liquid flow Diffusion-Reaction Equation (Fisher Equation).
$u_t = Duxx + f(u)$, wherein $f(u)$ is a polynomial of u , which denotes the reaction part of the equation, the diffusion part is $Duxx$.
Compressible Navier-Stokes equations
The compressible fluid dynamics equations describe a fluid flow whose expression is given as:
$\frac{\partial + \rho + \nabla \cdot (\rho \gamma) = 0}{\partial + (\epsilon + \rho v^2/2) + \nabla \cdot [(\rho + \epsilon + \rho v^2/2) v - v \cdot] = 0}$ where ρ is the mass density, v is the fluid velocity, ρ is the gas pressure, ϵ is an internal energy describle by the equation of state, σ is the viscous stress tensor, σ and σ are shear
and bulk viscosity, respectively. This equation can be applied to describe aerodynamics around airplan wings and interstellar gas dynamics.
Shallow - water Equations $2h + \forall h u = 0, \ \partial_{h} u + \forall (u^{2}h + \sum_{j} g_{r}h^{2}) = -g_{r}h \forall b$
wherein, $u=u,v$ being the velocities in the horizontal and vertical direction, he describing a spatially varying bathymetry.