### អនុគមន៍

BY SOVANDALIN

## មេរៀន អនុគមន៍

- 🥕 រួមមាន មេរៀនសង្ខេប
- 💎 លំហាត់គំរូ និងអនុវត្តន៍
- 🔫 ចម្លើយ

$$3 \lim_{x \to A} \frac{ct_{9x-2}Q}{2\pi x^3}$$

$$x \to A = T - 3a$$

$$x$$

### អនុគមន៍

BY SOVANDALIN

## មេរៀន អនុគមន៍ ពហធា



#### ស្ងួដាអស់ង្គតខ្លុបសំខា

$$\Rightarrow$$
 ចំពោះអនុគមន៍  $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$   
និង  $y = ax^4 + bx^2 + c \ (a \neq 0)$ 

ដើម្បីសិក្សាអនុគមន៍ ឬសិក្សាអថេរភាពនិងសង់ក្រាបនៃអនុគមន៍ទាំងពីរគេត្រូវ អនុវត្តតាមប្លង់ ដូចខាងក្រោម:

- រកដែនកំណត់
- ទិសសដៅអថេរភាព
  - គណនាដេរីវេ
  - សិក្សាសញ្ញាដេរីវេ
  - រកតម្លៃបរមាធៀប
  - គណនាលីមីតចុងដែនកំណត់
  - សង់តារាងអថេរភាព
  - > ចំនុចរបត់
- ក្រាប
- រកចំនុចប្រសព្វរវាងក្រាប និងអ័ក្សទាំងពីរ
- រកបន្ទាត់ប៉ះត្រង់ចំនុចរបត់
- រកផ្ចិតឆ្លុះ (អនុគមន៍សេស) ឬអ័ក្សឆ្លុះ (អនុគមន៍គូ)
- សង់ក្រាប
  - សិត្យអថេវភាពនិចសច់គ្រាមនៃអនុគមន៍ពហុធានីគ្រេនី៣

**ឧទាហរណ៍១**: សិក្សាអថេរភាពនិងសង់ក្រាបនៃអនុគមន៍  $f(x) = -x^3 - 3x^2 + 4$  ។ ដំណោះស្រាយ

សិក្សាអថេរភាពនិងសង់ក្រាប គេមានអនុគមន៍  $f(x) = -x^3 - 3x^2 + 4$ 

- ullet ដែនកំណត់: អនុគមន៍fមានន័យចំពោះគ្រប់  $x\in\mathbb{R}$  នោះ  $D=\mathbb{R}$  ។
- ទិសដៅអថេរភាព:
- ដេរីវេ

គេមាន 
$$f(x) = -x^3 - 3x^2 + 4$$
  
គេមាន  $f'(x) = -3x^2 - 6x$   
បើ  $f'(x) = 0 \Leftrightarrow -3x^2 - 6x = 0 \Leftrightarrow x = 0; x = -2$ 

សញ្ញាដេរីវេf'(x)

| x     | -∞ | -2 |   | 0 | $+\infty$ |
|-------|----|----|---|---|-----------|
| f'(x) | 1  | 0  | + | 0 | -         |

តម្លៃបរមាធៀប

អនុគមន៍ 
$$f$$
 មានអប្បបរមាធៀបត្រង់  $x=-2$  ដែល  $f\left(-2\right)=0$  អនុគមន៍  $f$  មានអតិបរមាធៀបត្រង់  $x=0$  ដែល  $f\left(0\right)=4$ 

• លីមីត

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( -x^3 - 3x^2 + 4 \right) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left( -x^3 - 3x^2 + 4 \right) = -\infty$$

• តារាងអថេរភាព



• ចំណុចរបត់

ដោយ 
$$f'(x) = -3x^2 - 6x$$

គេបាន 
$$f''(x) = -6x - 6$$
បើ  $f''(x) = 0 \Leftrightarrow -6x - 6 = 0 \Leftrightarrow x = -1$ 
ចំពោះ  $x = -1 \Rightarrow f(-1) = 2$ 
តារាងសញ្ញា  $f''(x)$ 

| х      | $-\infty$ |   | -1 | $+\infty$ |
|--------|-----------|---|----|-----------|
| f''(x) |           | + | •  | -         |

តាមតារាងសញ្ញា f''(x) គេបានI(-1,2) ជាចំណុចរបត់ ។

#### ក្រាប

• ចំណុចប្រសព្វរវាងក្រាបនិងអ័ក្ស

$$(y'y): x = 0 \Rightarrow y = 4$$
  
 $(x'x): y = 0 \Rightarrow -x^3 - 3x^2 + 4 = 0 \Leftrightarrow -x^3 + x^2 - 4x^2 + 4 = 0$ 

$$(xx): y = 0 \Rightarrow -x^{2} - 3x^{2} + 4 = 0 \Leftrightarrow -x^{2} + x^{2} - 4x^{2} + 4$$

$$\Leftrightarrow -x^{2}(x-1) - 4(x^{2} - 1) = 0$$

$$\Leftrightarrow (x-1)(-x^{2} - 4x - 4) = 0$$

$$\Leftrightarrow (x-1)(x+2)^{2} = 0 \Leftrightarrow x = 1, x = -2$$

ullet ផ្ទិតឆ្លុះ តាមបំលែងកិល $\stackrel{
ightarrow}{OI}$  គេបាន

រូបមន្តប្តូរតម្រយ 
$$\begin{cases} x = X - 1 \\ y = Y + 2 \end{cases}$$
 គេមាន  $y = -x^3 - 3x^2 + 4$ 

គេបាន 
$$Y+2=-(X-1)^3-3(X-1)^2+4$$
  
 $Y+2=-(X^3-3X^2+3X-1)-3(X^2-2X+1)+4$ 

$$\Leftrightarrow Y + 2 = -X^3 + 3X + 2$$

ISI: 
$$Y = F(X) = -X^3 + 3X$$

$$\forall~X\in D_F\,, -X\in D_F$$

$$F(-X) = -(-X)^3 - X = -(-X^3 + X) = -F(X)$$

នោះ Y = F(X) ជាអនុគមន៍សេស ។

ដូចនេះ ចំណុច $I(-1\,,2)$  ជាផ្ទិតឆ្លុះនៃក្រាប ។

#### • សង់ក្រាប



#### សិត្យាអថេរភាពនិចសច់គ្រាមនៃអនុគមន៍ទីភាអ

**ឧទាហរណ៍១**: សិក្សាអថេរភាពនិងសង់ក្រាប នៃអនុគមន៍

$$y = f(x) = -x^4 + 2x^2 - 2$$

ដំណោះស្រាយ

សិក្សាអថេរភាព និងសង់ក្រាប គេមានអនុគមន៍  $y = f(x) = -x^4 + 2x^2 - 2$ 

- ullet ដែនកំណត់  $D=\mathbb{R}$
- ទិសដៅអថេរភាព
  - ដេរីវេ

គេមាន 
$$f(x)=-x^4+2x^2-2$$
 គេមាន  $f'(x)=-4x^3+4x$  បើ  $f'(x)=0 \Leftrightarrow -4x^3+4x=0 \Leftrightarrow x=0,-1,1$  សញ្ញាដេរីវេ

| X     | $-\infty$ | -1 |   | 0 |   | 1 | $+\infty$ |
|-------|-----------|----|---|---|---|---|-----------|
| f'(x) | +         | 0  | - | 0 | + | 0 | -         |

• តម្លៃបរមាធៀប

អនុគមន៍ f មានអតិបរមាធៀបពីរគឺត្រង់ x=-1 , x=1 ដែល

$$f(-1) = f(1) = -1 \qquad \forall$$

អនុគមន៍ f មានអប្បបរមាមួយត្រង់ x=0 ដែល f(0)=-2

• លីមីត

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} (-x^4 + 2x^2 - 2) = -\infty$$

• តារាងអថេរភាព

| х     | $-\infty$ | -1              | 0     |   | 1           |   | $+\infty$ |
|-------|-----------|-----------------|-------|---|-------------|---|-----------|
| f'(x) | +         | 0               | <br>0 | + | 0           | - |           |
| f(x)  | +∞        | <del>-</del> 1, | -2    |   | <u>-1</u> √ | \ |           |

#### • ចំណុចរបត់

ដោយ 
$$f'(x) = -4x^3 + 4x$$
  
គេបាន  $f''(x) = -12x^2 + 4$ 

បើ 
$$f''(x) = 0 \Leftrightarrow -12x^2 + 4 = 0 \Leftrightarrow x = \pm \sqrt{\frac{1}{3}} = \pm \frac{\sqrt{3}}{3}$$

លើ 
$$x = \frac{\sqrt{3}}{3} \Rightarrow f\left(\frac{\sqrt{3}}{3}\right) = -\frac{13}{9}$$

បើ 
$$x = -\frac{\sqrt{3}}{3} \Rightarrow f\left(-\frac{\sqrt{3}}{3}\right) = -\frac{13}{9}$$

តារាងសញ្ញា f''(x)

| x      | $-\infty$ | $-\frac{\sqrt{3}}{3}$ |   | $\frac{\sqrt{3}}{3}$ | +∞ |
|--------|-----------|-----------------------|---|----------------------|----|
| f''(x) | _         | 0                     | + | 0                    | -  |

តាមតារាងសញ្ញា 
$$f''(x)$$
 គេបាន  $I\!\left(-\frac{\sqrt{3}}{3}\,,\,-\frac{13}{9}\right)$  &  $I'\!\left(\frac{\sqrt{3}}{3}\,,\,-\frac{13}{9}\right)$  ជាចំណុចរបត់នៃក្រាប ។

- ក្រាប
- ចំណុចប្រសព្វរវាងក្រាបនិង អ័ក្ស  $(y'y): x = 0 \Rightarrow y = -2$

• អ័ក្សឆ្លុះ

គេមាន 
$$f(x) = -x^4 + 2x^2 - 2$$

$$\forall x \in D, -x \in D$$

$$f(-x) = -(-x)^4 + 2(-x)^2 - 2 = -x^4 + 2x^2 - 2 = f(x)$$
  
នោះ  $f$  ជាអនុគមន៍គួ ។

ដូចនេះ អ័ក្សអរដោនេ (y'y) ជាអ័ក្សឆ្លុះនៃក្រាប ។

• សង់ក្រាប



### អនុគមន៍

BY SOVANDALIN

### មេរៀន អនុគមន៍ សនិទាន



#### សិត្យាអនុគមន៍សនិនាន

1. សិក្សាអនុកមន៍ 
$$y = f(x) = \frac{ax + b}{cx + d}$$

a. ដែនកំណត់ 
$$D=\mathbb{R}-\left\{-rac{d}{c}
ight\}$$

b. ទិសដៅអថេរភាព

• 
$$\text{this } f'(x) = \frac{ad - bc}{(cx + d)^2}$$

 $\forall x \in D, (cx+d)^2 > 0 \Rightarrow f'(x)$  មានសញ្ញាដូច ad-bc

- បើ ad-bc=0 នោះ y=f(x) ជាអនុគមន៍ថេរ
- បើ  $ad-bc>0 \Rightarrow f'(x)>0$  នោះ y=f(x) ជាអនុគមន៍កើន
- បើ  $ad-bc < 0 \Rightarrow f'(x) < 0$  នោះ y = f(x) ជាអនុគមន៍ចុះ
- សម្គាល់ អនុគមន៍ដែលមានរាងបែបនេះគ្មានចំណុចបរមាធៀបទេ ។
- លីមីត និងអាស៊ីមតូត

$$\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} \frac{ax+b}{cx+d} = \frac{a}{c} \Rightarrow y = \frac{a}{c} \quad \text{ជាអាស៊ីមតូតដេក}$$
 
$$\lim_{x\to-\frac{d}{c}} f(x) = \lim_{x\to-\frac{d}{c}} \frac{ax+b}{cx+d} = \pm \infty \Rightarrow x = -\frac{d}{c} \quad \text{ជាអាស៊ីមតូតឈរ}$$

- តារាងអថេរភាព
- ករណី ad -bc > 0

| x     | $-\infty$ $-\frac{a}{a}$ | <u>d</u><br>-∞ |
|-------|--------------------------|----------------|
| f'(x) | +                        | +              |
| f(x)  | $\frac{a}{c}$ $+\infty$  | $\frac{a}{c}$  |

กรณ์ ad -bc < 0</li>

| x     | $-\infty$ $-\frac{\alpha}{\alpha}$ | <u>d</u><br>∞           |
|-------|------------------------------------|-------------------------|
| f'(x) | _                                  | -                       |
| f(x)  | $\frac{a}{c}$                      | $+\infty$ $\frac{a}{c}$ |

- c. ខ្សែកោង
  - ចំណុចប្រសព្វរវាងខ្សែកោង(C) និងអ័ក្ស

$$(x'x): y = 0 \Rightarrow x = -\frac{b}{a}$$

$$(y'y): x = 0 \Rightarrow y = \frac{b}{d}$$

ullet សង់ក្រាប ad-bc>0

ករណី ad-bc<0





• ចំពោះក្រាបនៃអនុគមន៍នេះមានផ្ទិតឆ្លុះជានិច្ច ដែលវាជាចំណុចប្រសព្វរវាង អាស៊ីមតូតឈរ និងអាស៊ីមតូតដេក គឺ  $I(-\frac{d}{c},\frac{a}{c})$  ។

### $\mathbf{g}$ ទាហរណ៍ $\mathbf{1}$ សិក្សាអថេរភាព និងសង់ខ្សែកោង(C) តាងអនុគមន៍ $y = \frac{2x-2}{2-x}$ ។

#### ដំណោះស្រាយ

គេមាន 
$$y = \frac{2x-2}{2-x}$$

- + ដែនកំណត់  $D=\mathbb{R}-\{2\}$
- + ទិសដៅអថេរភាព

- เมรีเซ 
$$y' = \frac{2(2-x)+(2x-2)}{(2-x)^2} = \frac{2}{(2-x)^2} > 0, \forall x \in D$$

នោះ  $y = \frac{2x-2}{2-x}$  ជាអនុគមន៍កើនជានិច្ច ហើយគ្មានចំណុចបរមាធៀបទេ ។

- លីមីត និងអាស៊ីមតូត

$$\lim_{x \to \pm \infty} y = \lim_{x \to \pm \infty} \frac{2x - 2}{2 - x} = -2 \implies y = -2$$
 ជាអាស៊ីមតួតដេក

$$\lim_{x\to 2} y = \lim_{x\to 2} \frac{2x-2}{2-x} = \pm \infty \implies x = 2$$
 ជាអាស៊ីមតូតឈរ

• តារាងអថេរភាព

| x  | -∞ 2  | 2 +∞ |
|----|-------|------|
| y' | +     | +    |
| y  | -2 +∞ |      |

- + ខ្សែកោង
- ចំណុចប្រសព្វរវាងខ្សែកោង (C) និងអ័ក្ស
- $(x'x): y=0 \Rightarrow x=1$
- $(y'y): x=0 \Rightarrow y=-1$

- តារាងតម្លៃលេខ

| х | -1   | 3/2 | 5/2 | 3  | 4  | 5    | 6              |
|---|------|-----|-----|----|----|------|----------------|
| У | -4/3 | 2   | -6  | -4 | -3 | -8/3 | $-\frac{5}{2}$ |

- I(2,-2) ជាផ្ចិតឆ្លុះនៃក្រាប ។
- សង់ក្រាប



2. សិក្សាអនុគមន៍ 
$$y = f(x) = \frac{ax^2 + bx + c}{a'x + b'}$$
 ;  $(a, a' \neq 0)$ 

ចំពោះអនុគមន៍ នេះគេអាចសរសេរជា  $y = f(x) = Ax + B + \frac{C}{a'x + b'}$ 

$$(A = \frac{a}{a'}, B = \frac{a'b - ab'}{a'}, C = \frac{a'^2c - a'bb' + ab'^2}{a'^2})$$

- a. ដែនកំណត់  $D=\mathbb{R}-\left\{-rac{b'}{a'}
  ight\}$
- b. ទិសដៅអថេរភាព

• ដៅពី 
$$f'(x) = A - \frac{a'C}{\left(a'x+b'\right)^2} = \frac{A\left(a'x+b'\right)^2 - a'C}{\left(a'x+b'\right)^2}$$

$$f'(x) = 0 \Leftrightarrow A\left(a'x+b'\right)^2 - a'C = 0$$

$$\Rightarrow \left(a'x+b'\right)^2 = \frac{a'C}{A}$$
 មានពីរករណីដែលកើតឡើងគឺ

> ករណី A & a'C មានសញ្ញាផ្ទុយគ្នា

ក្នុងករណីនេះសមីការ  $\left(a'x+b'\right)^2=\frac{a'C}{A}$  គ្មានឫស ដូចនេះ f'(x)>0 បើ A>0 និង f'(x)<0 បើ A<0 ហើយអនុគមន៍ គ្មានចំណុចបរមាទេ ។

ករណី A & a'C មានសញ្ញាដូចគ្នា

ក្នុងករណីនេះសមីការ  $(a'x+b')^2=\frac{a'C}{A}$  មានឫសពីរជាចំនួនពិតផ្សេងគ្នា

គឺ 
$$x_1 = -\frac{b'}{a'} - \frac{1}{a'} \sqrt{\frac{a'C}{A}}$$
 ,  $x_2 = -\frac{b'}{a'} + \frac{1}{a'} \sqrt{\frac{a'C}{A}}$  ។ ហើយ  $f'(x) = 0$ 

ចំពោះ  $x=x_1\,\,,x=x_2\,$ និងប្តូរសញ្ញា ដូចនេះអនុគមន៍ f មានតម្លៃបរមាធៀប ត្រង់ចំណុចដែលមានអាប់ស៊ីស  $x_1\,\,,x_2\,\,$ ។

• លីមីត និងអាស៊ីមតូត

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{ax^2 + bx + c}{a'x + b'} = \pm \infty$$

$$\lim_{x \to -\frac{b'}{a'}} f(x) = \lim_{x \to -\frac{b'}{a'}} \frac{ax^2 + bx + c}{a'x + b'} = \pm \infty$$

នោះបន្ទាត់  $x = -\frac{b'}{a'}$  ជាអាស៊ីមតូតឈរនៃក្រាប ។

$$\lim_{x \to \pm \infty} \left[ f(x) (Ax + B) \right] = \lim_{x \to \pm \infty} \frac{C}{a'x + b'} = 0$$

 $\Rightarrow y = Ax + B$  ជាអាស៊ីមតូតទ្រេតនៃក្រាប។

តារាងអថេរភាព

- ករណី A & a'C មានសញ្ញាផ្ទុយគ្នា
  - A > 0

| x     | $-\infty$ $-\frac{l}{c}$ | $\frac{b'}{a'}$ $+\infty$ |
|-------|--------------------------|---------------------------|
| f'(x) | +                        | +                         |
| f(x)  |                          |                           |

• A < 0



- ករណី A & a'C មានសញ្ញាដូចគ្នា
  - *A* > 0

| х     | $-\infty$ $x$ | $-\frac{b}{a}$            | $\frac{x'}{x'}$ $x_2$ | +∞                                     |
|-------|---------------|---------------------------|-----------------------|----------------------------------------|
| f'(x) | +             | -                         | -                     | +                                      |
| f(x)  | $-\infty$     | $\int_{-\infty}^{\infty}$ | +∞<br>                | , ************************************ |

| x     | $-\infty$ $x$ | $-\frac{b}{a}$ | $\frac{y'}{y'}$ $x_2$ | +∞ |
|-------|---------------|----------------|-----------------------|----|
| f'(x) | -             | +              | +                     | _  |
| f(x)  | +∞            | 1 + ∞          |                       | 1  |

- c. ខ្សែកោងតាងអនុគមន៍នេះ អាចមានមួយក្នុងចំណោមខ្សែកោងទាំងបូនខាង ក្រោម
  - A > 0







- ខ្សែកោងតាងអនុគមន៍អាចកាត់អ័ក្សអាប់ស៊ីស អ័ក្សអរដោនេ ឬ មិនកាត់ ។
- ចំណុចប្រសព្វនៃអាស៊ីមតូតឈរ និងអាស៊ីមតូតទ្រេតជាផ្ចិតឆ្លុះនៃខ្សែកោង។

3. សិក្សាអនុគមន៍ 
$$y = f(x) = \frac{ax^2 + bx + c}{a'x^2 + b'x + c'}$$
;  $(a, a' \neq 0)$ 

ខ្សែកោងតាងអនុគមន៍នេះមានលក្ខណៈដូចខាងក្រោម ៖

- គ្មានអាស៊ីមតូតទ្រេតទេ
- មានអាស៊ីមតូតដេកមួយជានិច្ច
- ចំនួនអាស៊ីមត្វតឈរអាស្រ័យនិងឫសនៃសមីការ  $a'x^2+b'x+c'=0$
- > បើ  $\Delta = (b')^2 (a')(c') = 0$  មានអាស៊ីមតូតឈរមួយគឺ  $x = -\frac{b'}{2a'}$

អនុគមន៍ 
$$f(x) = \frac{ax^2 + bx + c}{a'x^2 + b'x + c'}$$
 អាចសរសេរ

$$f(x) = A + \frac{Bx + C}{a'x^2 + b'x + c'}$$

ដូចនេះ ខ្សែកោងតាង  $f(x) = \frac{ax^2 + bx + c}{a'x^2 + b'x + c'}$  ដូចគ្នានិងខ្សែកោងតាង

$$f(x) = \frac{Bx + C}{a'x^2 + b'x + c'}$$

**ឧទាហរណ៍4** សិក្សាអថេរភាព និងសង់ក្រាបតាងអនុគមន៍  $f(x) = \frac{4x^2 + 4x - 9}{4(x^2 - 1)}$ 

#### ដំណោះស្រាយ

- lacktriangle ដែនកំណត់  $D=\mathbb{R}-\{-1,1\}$
- ទិសដៅអថេរភាព

• เมรีเร 
$$f'(x) = \frac{4(8x+4)(x^2-1)-8x(4x^2+4x-9)}{4(x^2-1)}$$

$$=\frac{-2x^2+5x-2}{2\left(x^2-1\right)^2}$$
  $\forall \ x \in D, 2\left(x^2-1\right)^2 > 0 \Rightarrow f'(x)$  មានសញ្ញាដូច  $-2x^2+5x-2$  ។ 
$$f'(x) = 0 \Leftrightarrow -2x^2+5x-2 = 0 \Leftrightarrow x = 2, x = -\frac{1}{2}$$

• ចំណុចបរមាធៀប

តារាងសញ្ញាដេរីវេ

អនុគមន៍ f មានតម្លៃអប្បបរមាធៀបត្រង់  $x=\frac{1}{2}$  គឺ  $f\left(\frac{1}{2}\right)=2$  ។ អនុគមន៍ f មានតម្លៃអតិបរមាធៀបត្រង់ x=2 គឺ  $f\left(2\right)=\frac{5}{4}$  ។

• លីមីត និងអាស៊ីមតូត

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{4x^2 + 4x - 9}{4(x^2 - 1)} = 1 \Rightarrow y = 1 \quad \text{ជាអាស៊ីមតូតដេក ៗ}$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{4x^2 + 4x - 9}{4(x^2 - 1)} = \pm \infty \Rightarrow x = -1$$
 ជាអាស៊ីមតូតឈរ ។

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{4x^2 + 4x - 9}{4(x^2 - 1)} = \pm \infty \Rightarrow x = 1$$
 ជាអាស៊ីមតូតឈរ ។

តារាងអថេរភាព

| x     |   | 1  | $\frac{1}{2}$ | 1   |   | 2                | +∞ |
|-------|---|----|---------------|-----|---|------------------|----|
| f'(x) | - | -  | 0             | +   | + | 0                | -  |
| f(x)  | 1 | +∞ | ×2/           | + 8 |   | ₹ <del>5</del> 4 |    |

#### 💠 ក្រាប

• ចំណុចប្រសព្វរវាងខ្សែកោង និងអ័ក្ស

$$(y'y): x = 0 \Rightarrow y = \frac{9}{4}$$

$$(x'x)$$
:  $y = 0 \Rightarrow 4x^2 + 4x - 9 = 0 \Rightarrow x = \frac{-1 \pm \sqrt{10}}{2}$ 

• ចំណុចប្រសព្វរវាងខ្សែកោង និងអាស៊ីមតូតដេក y=1

$$\frac{4x^2 + 4x - 9}{4(x^2 - 1)} = 1 \Rightarrow x = \frac{5}{4}$$
 \tag{7}

• សំណង់ក្រាប



### អនុគមន៍

BY SOVANDALIN

# មេរៀន អនុគមន៍ អិចស្ប៉ូណង់ស្យែល



#### ស្ងួងសង្គនស្ដាំខ្មែរ ទេវិសាស្

ប្លង់សិក្សាអនុគមន៍អ៊ិចស្ប៉ូណង់ស្យែល ៖

- ១. ដែនកំណត់
- ២. ទិសដៅអថេរភាព
  - ដេរីវេទី១
  - លីមីតចុងដែនកំណត់
  - អាស៊ីមតូត
  - តារាងអថេរភាព

#### ៣. ក្រាភិច

- ចំណុចប្រសព្វរវាងខ្សែកោង និងអ័ក្សទាំងពីរ និងចំណុចពិសេសខ្លះៗទៀត ។
- -ចំណុចរបត់ (ដេរីវេទី ២)

#### លំហាត់គំរួ ១ សិក្សាអនុគមន៍ $y=e^x$

- ១. ដែនកំណត់  $D=\mathbb{R}$
- ២. ទិសដៅអថេរភាព
- ដៅថែទី១  $y = e^x \Rightarrow y' = e^x$

ដោយ  $e^x>0$   $\forall x\in\mathbb{R}$  នាំឱ្យ  $y^{'}=e^x>0$   $\forall x\in\mathbb{R}$  មានន័យថា អនុគមន៍  $y=e^x$  ជាអនុគមន៍កើនជានិច្ច ។

-លីមីតចុងដែនកំណត់

$$+\lim_{x\to +\infty}e^x=+\infty$$
 ,  $\lim_{x\to -\infty}e^x=0$ 

ដោយ  $\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} e^x = 0$  នោះ y=0 គឺជាអាស៊ីមតូតដេក ។

-តារាងអថេរភាព

| x     |   | +∞          |
|-------|---|-------------|
| f'(x) | + |             |
| f(x)  |   | <b>→</b> +∞ |

៣. ក្រាប



លំហាត់គំរូ២ សិក្សាអនុគមន៍  $y=xe^x$ 

- ១. ដែនកំណត់នៃអនុគមន៍  $\,D=\mathbb{R}\,$
- ២. ទិសដៅអថេរភាព

- ដៅថ្ងឺ១ 
$$y' = (x)' e^x + (e^x)' x = e^x (x+1)$$

ដោយ  $e^x>0$  ចំពោះគ្រប់  $x\in\mathbb{R}$  , y' មានសញ្ញាដូច x+1 បើ  $x+1=0\Rightarrow x=-1$ 

| x  | -∞ | -1 | +∞ |
|----|----|----|----|
| y' | -  | 0  | +  |

-ត្រង់ x = -1 អនុគមន៍ y = f(x)មានតម្លៃអប្បបរមា

$$f(-1) = -e^{-1} = -0.36$$

-លីមីត

ដោយ  $\lim_{x\to -\infty} x = -\infty$  ហើយ  $\lim_{x\to -\infty} e^x = 0$  គេបាន  $\lim_{x\to -\infty} xe^x = 0$ 

ដូចនេះ បន្ទាត់សមីការ y=0 ជាអាស៊ីមតួតដេកនៃក្រាប ។

ដោយ  $\lim_{x\to +\infty} x = +\infty$  ហើយ  $\lim_{x\to +\infty} e^x = +\infty$  គេបាន  $\lim_{x\to +\infty} xe^x = +\infty$ 

- តារាងអថេរភាព

| x     | -∞ |          | -1    | +∞ |
|-------|----|----------|-------|----|
| f'(x) |    | -        | •     | +  |
| f(x)  | 0  | <b>\</b> | -0.36 | +∞ |

៣. ក្រាប 
$$y = xe^x$$

- ចំនុចប្រសព្វរវាងក្រាប នឹងអ័ក្ស

$$(x'x): y=0 \Rightarrow x=0$$

- ចំនុចរបត់ :  $y'' = (x+2)e^x$ 

ដោយ  $\forall x \in \mathbb{R}, e^x > 0 \implies y''$  មានសញ្ញាដូច x+2

| x          | ∞ | -2 |   | +∞ |
|------------|---|----|---|----|
| <i>y</i> " | - | ф  | + |    |

តាមតារាងដេរីវេទី២ គេបានអនុគមន៍ f មានចំនុចរបត់មួយ  $I\left(-2,-2e^{-2}
ight)$ ឬ I(-2,-0.27) ។

- សង់ក្រាប



### អនុគមន៍

BY SOVANDALIN

### មេរៀន អនុគមន៍ លោការីតនេពែ



#### សិត្សាអនុគមន៍លោភាគែនៅព

រូបមន្តលីមីតនៃអនុគមន៍លោការីតនេពែ

1). 
$$\lim_{x \to +\infty} \ln x = +\infty$$

1). 
$$\lim_{x \to +\infty} \ln x = +\infty$$
 2).  $\lim_{x \to 0^+} \ln x = -\infty$ 

3). 
$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$$
,  $n > 0$  4).  $\lim_{x \to +\infty} x \ln x = +\infty$ 

4). 
$$\lim_{x \to +\infty} x \ln x = +\infty$$

$$5).\lim_{x\to 0}\frac{\ln(x+1)}{x}=1$$

6). 
$$\lim_{x \to 0^+} x^n \ln x = 0$$
,  $n > 0$ 

រូបមន្តដេរីវេនៃអនុគមន៍លោការីតនេពែ

1. 
$$y = \ln x \implies y = \frac{1}{x}$$

2. 
$$y = \ln(u(x)) \implies y' = \frac{u'(x)}{u(x)}$$

3. 
$$y = \ln(ax + b) \implies y' = \frac{a}{ax + b}$$

- ប្លង់សិក្សាអនុគមន៍លោការីតនេពែ ដើម្បីសិក្សាអថេរភាពនៃអនុគមន៍លោការីតនេពែ
  - 1. រកដែនកំណត់នៃអនុគមន៍
  - 2. ទិសដៅអថេរភាព
    - រកដេរីវេ និងសិក្សាសញ្ញារបស់ដេរីវេ
    - សង់តារាងដេរីវេនិងតម្លៃបរិមា
    - រកលីមីតចុងដែនកំណត់
    - រកអាស៊ីមតូត
    - > ចំនុចរបត់( បើមាន )
    - សង់តារាងអថេរភាព
  - 3. សង់ក្រាប

### ចំនុចប្រសព្វរវាងខ្សែកោង និងអ័ក្ស រឺ តារាងជំនួយ ឧទាហរណ៍១ សិក្សានិងសង់ក្រាបនៃអនុគមន៍ f(x)=1+x ln x ។ ដំណោះស្រាយ

#### 1. ដែនកំនត់

អនុមន៍មានន័យកាលណា x>0

$$sn: D = (0, +\infty)$$

- 2. ទិសដៅអថេរភាព
- > ដេរីជ

គេមាន 
$$f(x) = 1 + x \ln x \implies f'(x) = (1 + x \ln x)'$$

$$\implies f'(x) = \ln x + 1$$

• 
$$\vec{v} f'(x) > 0 \Leftrightarrow \ln x + 1 > 0 \Leftrightarrow x > e^{-1} = \frac{1}{e}$$

• 
$$\vec{v} f'(x) = 0 \Leftrightarrow \ln x + 1 = 0 \Leftrightarrow x = e^{-1} = \frac{1}{e}$$

• 
$$\text{til} f'(x) < 0 \Leftrightarrow \ln x + 1 < 0 \Leftrightarrow x < e^{-1} = \frac{1}{e}$$

តារាងសញ្ញាដេរីវេទី១

| х   | 0  |   | $e^{-1}$ |   | $+\infty$ |
|-----|----|---|----------|---|-----------|
| f'( | x) | - | ø        | + |           |

> ចំណុចបរមាធៀប

អនុគមន៍ f មានតម្លៃអប្បបរមាធៀបត្រង់  $x=e^{-1}$  គឺ  $f\left(e^{-1}\right)=1-e^{-1}$  ។

 $\succ$  លីមីតចុងដែនកំណត់  $\lim_{x\to 0^+} f(x)$  និង  $\lim_{x\to +\infty} f(x)$ 

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1 + x \ln x) = 1 \quad \text{tim: } \lim_{x \to 0^+} x \ln x = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 + x \ln x) = +\infty \quad \text{tim: } \lim_{x \to +\infty} x \ln x = +\infty$$

> អាស៊ីមតូត

ដោយ  $\lim_{x\to +\infty}x\ln x=+\infty$  នោះនាំឱ្យបន្ទាត់ x=0 ជាអាស៊ីមតូតឈរនៃក្រាប ។

3. គេមានអនុគមន៍ 
$$f$$
 កំណត់ដោយ  $f(x) = x + 2 + \frac{4}{x - 1}$  និងមានក្រាប  $(C)$  ។

- a. រកដែនកំណត់នៃអនុគមន៍ f ។
- b. គណនា និងសិក្សាសញ្ញានៃដេរីវេ f'(x) ។ បង្ហាញថា f មានតម្លៃអតិបរមា មួយនិងអប្បបរមាមួយ រួចគណនាតម្លៃនោះ ។
- c. គណនាលីមីតចុងដែន។ រកសមីការអាស៊ីមតូតឈរ និងទ្រេតនៃក្រាប (C) ។
- d. សិក្សាទីតាំងរវាងអាស៊ីមតូតទ្រេត និងខ្សែកោង (C) ។
- e. សង់តារាងអថេរភាពនៃអនុគមន៍ f និងសង់ក្រាប (C) ។

#### ដំណោះស្រាយ

3. គេមានអនុគមន៍ 
$$f(x) = x + 2 + \frac{4}{x-1}$$

a. រកដែនកំណត់នៃអនុគមន៍ f

ដោយ 
$$f(x) = x + 2 + \frac{4}{x - 1}$$

អនុគមន៍ f មានន័យកាលណា  $x-1 \neq 0 \Rightarrow x \neq 1$ 

**ដូចនេះ** អនុកមន៍មានដែនកំណត់
$$D=\mathbb{R}-\{1\}$$
 ។

b. គណនា និងសិក្សាសញ្ញាដេរីវេ

$$\lim f(x) = x + 2 + \frac{4}{x - 1}$$

គេបាន 
$$f'(x) = (x+2)' + 4 \left[ -\frac{(x-1)'}{(x-1)^2} \right] = 1 - \frac{4}{(x-1)^2}$$

$$= \frac{(x-1)^2 - 4}{(x-1)^2} = \frac{x^2 - 2x - 3}{(x-1)^2}$$

ដោយ  $(x-1)^2 > 0$  ;  $\forall x \in D$  នោះ f'(x) មានសញ្ញាដូច  $x^2 - 2x - 3$  បើ  $f'(x) = 0 \Leftrightarrow x^2 - 2x - 3 = 0 \Leftrightarrow x = -1$  , x = 3

#### តារាងសញ្ញាដេរីវេទី១

| х     |   | 1 1        |     | 3 +∞ |  |
|-------|---|------------|-----|------|--|
| f'(x) | + | <b>o</b> – | _ ( | +    |  |

- បង្ហាញថា f មានអតិបរមាមួយនិងអប្បបរមាមួយ
- ត្រង់ x=-1 , f'(x)=0 ហើយប្តូរសញ្ញាពី (+) ទៅ (-) ។ ដូចនេះ អនុគមន៍ f មានតម្លៃអតិបរមាធៀបមួយត្រង់ x=-1 ។
- ត្រង់ x=3 , f'(x)=0 ហើយប្តូរសញ្ញាពី (-) ទៅ (+) ។ ដូចនេះ អនុគមន៍ f មានតម្លៃអប្បបរមាធៀបមួយត្រង់ x=3 ។
- គណនាតម្លៃបរមា
- តម្លៃអតិបរមា  $f(-1) = -1 + 2 + \frac{4}{-1 1} = -1$
- តម្លៃអប្បបរមា  $f(3) = 3 + 2 + \frac{4}{3-1} = 7$
- c. គណនាលីមីតចុងដែន

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x + 2 + \frac{4}{x - 1}) = -\infty \text{ time: } \lim_{x \to 1^{-}} \frac{4}{x - 1} = \frac{4}{0^{-}} = -\infty$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x + 2 + \frac{4}{x - 1}) = +\infty \text{ time: } \lim_{x \to 1^{+}} \frac{4}{x - 1} = \frac{4}{0^{+}} + \infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + 2 + \frac{4}{x - 1}) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + 2 + \frac{4}{x - 1}) = +\infty$$

ightarrowរកសមីការអាស៊ីមតូតឈរ និងទ្រេតនៃក្រាប(C)

ដោយ 
$$\lim_{x\to 1} f(x) = \pm \infty$$

ដូចនេះ បន្ទាត់ x=1 ជាអាស៊ីមតូតឈរនៃក្រាប (C)

$$\lim f(x) = x + 2 + \frac{4}{x - 1}$$

គេបាន 
$$\lim_{x \to \pm \infty} \frac{4}{x - 1} = 0$$

ដូចនេះ បន្ទាត់ y = x + 2 ជាអាស៊ីមតូតទ្រេតនៃក្រាប(C)

d. សិក្សាទីតាំងធៀបរវាងអាស៊ីមតូតទ្រេតនិងខ្សែកោង(C)

គេមាន ខ្សែកោង 
$$(C)$$
 :  $y = f(x) = x + 2 + \frac{4}{x - 1}$  អាស៊ីមត្តតទ្រេត $(\Delta)$  :  $y = x + 2$ 

គេបាន 
$$y_C - y_\Delta = (x+2+\frac{4}{x-1}) - (x+2) = \frac{4}{x-1}$$

តារាងសញ្ញានៃ  $y_C - y_{\Delta}$ 

| X                |   | 1 +∞ |
|------------------|---|------|
| $y_C - y_\Delta$ | _ | +    |

តាមតារាងសញ្ញានៃ  $y_C - y_\Delta$  គេបាន

បើ  $x>1 \Rightarrow y_C-y_\Delta>0 \Leftrightarrow y_C>y_\Delta$  ដូចនេះ ក្រាប (C) នៅខាងលើអាស៊ីម តូតទ្រេត  $\left(\Delta\right)$  ។

បើ  $x<1\Rightarrow y_C-y_\Delta<0\Leftrightarrow y_C< y_\Delta$  ដូចនេះ ក្រាប (C) នៅក្រោមអាស៊ីម តូតទ្រេត $\left(\Delta\right)$  ។

e. សង់តារាងអថេរភាព



• សង់ក្រាប

តារាងតម្លៃលេខ

| x                             | -2             | 0  | 2 | 4              |
|-------------------------------|----------------|----|---|----------------|
| $y = x + 2 + \frac{4}{x - 1}$ | $-\frac{4}{3}$ | -2 | 8 | $\frac{22}{3}$ |



### អនុគមន៍

BY SOVANDALIN

### ចង់បានលំហាត់មាន ដំណោះស្រាយបន្ថែម សូមchatចូលpage



#### តារាងអថេរភាព

| х     | 0 |   | $e^{-1}$                    |   | +∞          |
|-------|---|---|-----------------------------|---|-------------|
| f'(x) |   | _ | 0                           | + |             |
| f(x)  | 1 |   | $\rightarrow 1-\frac{1}{e}$ |   | <b>→</b> +∞ |





### អនុគមន៍

BY SOVANDALIN

## លំហាត់មាន ដំណោះស្រាយ



#### ផ្លែអលំមាាត់មានជំណោះស្រាយ

- 1. អនុគមន៍ f កំណត់លើ  $\mathbb R$  ដោយ  $y=f(x)=rac{4x}{x^2+4}$  និងមានក្រាប (C) ។
- a. គណនា  $\lim_{x \to -\infty} f(x)$  និង  $\lim_{x \to +\infty} f(x)$  ៗទាញរកសមីការអាស៊ីមតូតក្រាប (C) ៗ
- b. គណនាដេរីវេ f'(x)រួចបង្ហាញថា f មានតម្លៃអប្បបរមាមួយ និងអតិបរមាធៀប មួយ ។ គណនាតម្លៃបរមានោះ។ សង់តារាងអថេរភាពនៃ f ។
- c. បង្ហាញថាក្រាប (C) មានផ្ទិតឆ្លុះមួយ ។
- d. រកសមីការបន្ទាត់ប៉ះ (T)ត្រង់ចំណុច  $O(0\,,\,0)$  ។ សង់ (T) និង (C) ។
- e. រកតម្លៃ k ដោយប្រើក្រាប (C) ដើម្បីឲ្យសមីការ  $kx^2 4x + 4k = 0$  មានឫស ពីរផ្សេងគ្នាជាចំនួនវិជ្ជមាន ។

#### ដំណោះស្រាយ

- 1. គេមានអនុគមន៍  $y = f(x) = \frac{4x}{x^2 + 4}$  ;  $D = \mathbb{R}$
- a) គណនាលីមីត

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4x}{x^2 + 4} = \lim_{x \to -\infty} \frac{4x}{x^2 (1 + \frac{4}{x^2})} = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4x}{x^2 + 4} = \lim_{x \to +\infty} \frac{4x}{x^2 (1 + \frac{4}{x^2})} = 0$$

ទាញរកសមីការអាស៊ីមតូតនៃក្រាប (c)

$$\lim_{x \to \pm \infty} f(x) = 0$$

ដូចនេះ បន្ទាត់ y=0ជាអាស៊ីមត្តតដេកនៃក្រាប (C) ។

b) គណនាដេរីវេ

$$\lim f(x) = \frac{4x}{x^2 + 4}$$

$$\lim f'(x) = \frac{(4x)'(x^2 + 4) - (x^2 + 4)'4x}{(x^2 + 4)^2} = \frac{4(x^2 + 4) - 2x \times 4x}{(x^2 + 4)^2}$$

$$\Leftrightarrow f'(x) = \frac{4x^2 + 16 - 8x^2}{(x^2 + 4)^2} = \frac{16 - 4x^2}{(x^2 + 4)^2}$$

$$\lim f'(x) = \frac{16 - 4x^2}{(x^2 + 4)^2}$$

- បង្ហាញថា f មានតម្លៃអប្បបរមាមួយ និងអតិបរមាមួយ
- > សញ្ញានៃដេរីវេ

ដោយ 
$$f'(x) = \frac{16-4x^2}{(x^2+4)^2}$$
 
$$(x^2+4)^2 > 0; \forall x \in \mathbb{R}$$
 នោះ  $f'(x)$  មានសញ្ញាដូច  $16-4x^2$  បើ  $f'(x) = 0 \Leftrightarrow 16-4x^2 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = \pm 2$  តារាងសញ្ញា  $f'(x)$ 

| x     |   | -2 |   | 2 | +∞ |
|-------|---|----|---|---|----|
| f'(x) | - | 0  | + | 0 | -  |

តាមតារាងសញ្ញាដេរីវេ

• គ្រង់x = -2, f'(x) = 0 ហើយប្តូរសញ្ញាពី(-) ទៅ(+)

ដូចនេះ អនុគមន៍ f មានតម្លៃអប្បបរមាធៀបមួយត្រង់ x=-2 ។

• ត្រង់ x = 2 , f'(x) = 0 ហើយប្តូរសញ្ញាពី (+) ទៅ (-)

ដូចនេះ អនុគមន៍ f មានតម្លៃអតិបរមាធៀបមួយត្រង់ x=2 ។

• គណនាតម្លៃបរមាធៀប

> តម្លៃអប្បបរមាធៀប 
$$f(-2) = \frac{4(-2)}{(-2)^2 + 4} = \frac{-8}{8} = -1$$

$$Arr$$
 តម្លៃអតិបរមាធៀប  $f(2) = \frac{4.2}{2^2 + 4} = \frac{8}{8} = 1$ 

• តារាងអថេរភាព

| x     | -∞ | -2            |   | 2            | $+\infty$ |
|-------|----|---------------|---|--------------|-----------|
| f'(x) | -  | 0             | + | 0            | _         |
| f(x)  | 0  | <b>→</b> _1 - |   | <b>*</b> 1 \ |           |

c) បង្ហាញថាក្រាប(C)មានផ្ទិតឆ្លុះមួយ

ដោយ
$$(C)$$
:  $y = f(x) = \frac{4x}{x^2 + 4}$  ,  $D = \mathbb{R}$ 

ຶ່ງເm: 
$$\forall x \in D \Rightarrow -x \in D$$

គេបាន 
$$f(-x) = \frac{4(-x)}{(-x)^2 + 4} = -\frac{4x}{x^2 + 4} = -f(x)$$

នោះ ƒ ជាអនុគមន៍សេស ។

ដូចនេះ ក្រាប(C)មានផ្ទិតឆ្លុះមួយត្រង់ O(0,0) ។

d) រកសមីការបន្ទាត់ប៉ះ (T) ត្រង់ចំណុច O(0,0)

តាមរូបមន្ត 
$$(T)$$
:  $y = f'(x_0)(x - x_0) + y_0$ 

ដោយ 
$$x_0 = 0$$
 ,  $y_0 = 0$ 

ហើយ 
$$f'(x_0) = f'(0) = \frac{16-0}{(0+4)^2} = \frac{16}{16} = 1$$

គេបាន 
$$(T)$$
:  $y = 1 \times (x - 0) + 0 = x$ 

ដូចនេះ 
$$(T): y = x$$
 ។





e) រកតម្លៃ k ដើម្បីឲ្យសមីការ  $kx^2 - 4x + 4k = 0$  មានឫសពីរផ្សេងគ្នាជាចំនូន វិជ្ជមានដោយប្រើខ្សែកោង (C)

គេមានសមីការ  $kx^2-4x+4k=0$   $kx^2+4k=4x \Leftrightarrow k(x^2+4)=4x$   $\Leftrightarrow k=\frac{4x}{x^2+4} \ (1)$ 

(1) ជាសមីការអាប់ស៊ីសនៃចំណុចប្រសព្វរវាងក្រាប (C) និងបន្ទាត់  $(\Delta)$  : y=k ដើម្បីឲ្យសមីការ (E) មានឬសពីរផ្សេងគ្នាជាចំនូនវិជ្ជមានលុះត្រាតែ  $(\Delta)$  កាត់ (C) ត្រង់ពីរចំណុចផ្សេងគ្នាដែលមានអាប់ស៊ីសជាចំនូនវិជ្ជមាន ។

តាមក្រាប(C) គេបាន $k \in (0,1)$  ។

2. គេអោយអនុគមន៍ 
$$y = f(x) = \frac{x^2 + 1}{x}$$
ដែលមានក្រាប  $(C)$  ។

a. រកដែនកំណត់នៃអនុគមន៍ f ។

b. គណនាលីមីតត្រង់ចុងដែនកំណត់នៃអនុគមន៍ f ។

c. រកតម្លៃបរមាធៀបនៃអនុគមន៍ f ។ សង់តារាងអថេរភាពនៃ f ។

d. រកសមីការអាស៊ីមតូតឈរនិងទ្រេតនៃក្រាប (C) ។

e. បង្ហាញថា f ជាអនុគមន៍សេស។ បញ្ជាក់ផ្ទិតឆ្លុះនៃក្រាប (C) ។

f. បង្ហាញថា f ជាអនុគមន៍សេស។ បញ្ជាក់ផ្ចិតឆ្លុះនៃក្រាប (C) ។

g. សង់ក្រាប (C) ក្នុងតម្រុយអរត្វណរម៉ាល់ ។

h. ដោះស្រាយវិសមីការ $\frac{x^2+1}{x} > x$  តាមក្រាភិច ។

#### ដំណោះស្រាយ

2. គេមានអនុគមន៍ 
$$y = f(x) = \frac{x^2 + 1}{x}$$

a. រកដែនកំណត់នៃអនុគមន៍ f

ដោយ 
$$f(x) = \frac{x^2 + 1}{x}$$

អនុគមន៍ f មានន័យលុះត្រាតែ  $x \neq 0$ 

ដូចនេះ ដែនកំណត់នៃអនុគមន៍  $D=\mathbb{R}-\{0\}$  ។

b. គណនាលីមីតត្រង់ចុងដែនកំណត់នៃអនុគមន៍

• 
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 + 1}{x} = \lim_{x \to -\infty} \frac{x^2 (1 + \frac{1}{x^2})}{x} = -\infty$$

• 
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 1}{x} = \lim_{x \to +\infty} \frac{x^2 (1 + \frac{1}{x^2})}{x} = +\infty$$

• 
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x^{2} + 1}{x} = \frac{1}{0^{-}} = -\infty$$

• 
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2 + 1}{x} = \frac{1}{0^+} = +\infty$$

c. កេតម្លៃបរមាធៀបនៃអនុគមន៍ f

ដោយ 
$$f(x) = \frac{x^2 + 1}{x}$$

គោធាន  $f'(x) = \frac{(x^2 + 1)' \times x - x' \times (x^2 + 1)}{x^2} = \frac{2x \times x - (x^2 + 1)}{x^2}$ 

$$= \frac{2x^2 - x^2 - 1}{x^2} = \frac{x^2 - 1}{x^2}$$

ដោយ  $x^2>0$  ,  $\forall x\in D$  នោះ f'(x) មានសញ្ញាដូច  $x^2+1$  ។ បើ  $f'(x)=0 \Rightarrow x^2-1=0 \Leftrightarrow x=\pm 1$  តារាងសញ្ញាដេរីវេ

| x     |   | -1 | C | ) | 1 | $+\infty$ |
|-------|---|----|---|---|---|-----------|
| f'(x) | + | ø  | - | - | 0 | +         |

- អនុគមន៍ f មានតម្លៃអតិបរមាធៀបត្រង់ x=-1 គឺ  $f(-1)=rac{(-1)^2+1}{-1}=-2$  ។
- អនុគមន៍ f មានតម្លៃអប្បបរមាធៀបត្រង់ x = 1 គឺ  $f(1) = \frac{1^2 + 1}{1} = 2$  ។
- តារាងអថេរកាព

| х     |    | -1          | 0 | )  | 1            | +∞  |
|-------|----|-------------|---|----|--------------|-----|
| f'(x) | +  | 0           | - | -  | 0            | +   |
| f(x)  | -8 | <b>y</b> -2 |   | +∞ | <b>\</b> 2 - | + ∞ |

d. រកសមីការអាស៊ីមតូតឈរ និងទ្រេតនៃក្រាប(C)

ដោយ 
$$\lim_{x \to \pm \infty} f(x) = 0$$

ដូចនេះ បន្ទាត់ x=0 ជាអាស៊ីមតូតឈរនៃក្រាប (C)

$$\tan w f(x) = \frac{x^2 + 1}{x} = x + \frac{1}{x}$$

គេបាន 
$$\lim_{x \to \pm \infty} \frac{1}{x} = 0$$

ដូចនេះ ត់បន្ទា y=x ជាអាស៊ីមតូតទ្រេតនៃក្រាប (C)

e. បង្ហាញថា f ជាអនុគមន៍សេស

គេមាន 
$$f(x) = \frac{x^2+1}{x}$$
 ,  $D = \mathbb{R} - \{0\}$ 

គេហ៊ាន  $\forall x \in D$  ,  $-x \in D$ 

ជំនួសx ដោយ-x ចូលក្នុងអនុគមន៍ f

គេបាន 
$$f(-x) = \frac{(-x)^2 + 1}{-x} = -\frac{x^2 + 1}{x} = -f(x)$$

ដូចនេះ ƒ ជាអនុគមន៍សេស ។

• បញ្ជាក់ផ្ចិតឆ្លុះនៃក្រាប(C)

ដោយ f ជាអនុគមន៍សេស

ដូចនេះ ចំណុចO(0,0)ជាផ្ចិតឆ្លុះនៃក្រាប(C) ។

f. សង់ក្រាប

តារាងតម្លៃលេខ

| x                       | -2             | $-\frac{1}{2}$ | $\frac{1}{2}$ | 2             |
|-------------------------|----------------|----------------|---------------|---------------|
| $y = \frac{x^2 + 1}{x}$ | $-\frac{5}{2}$ | $-\frac{5}{2}$ | $\frac{5}{2}$ | $\frac{5}{2}$ |



g. ដោះស្រាយវិសមីការ  $\frac{x^2+1}{x} > x$ 

គេមានវិសមីការ  $\frac{x^2+1}{x} > x$  (E)

ដោយ  $y = f(x) = \frac{x^2 + 1}{x}$ និង y = x ជាអាស៊ីមតូតទ្រេត

តាមក្រាបគេបាន ចម្លើយនៃវិសមីការ (E) គឺជាសំណុំនៃ x ដែលខ្សែកោង (C) ស្ថិត នៅលើអាស៊ីមតូតទ្រេត ។

ដូចនេះ  $x \in (0,+\infty)$  ។