Machine Learning

General Information

Course Number	CSC-572	
Credit Hours	3 (Theory Credit Hour = 3, Lab Credit Hours = 0)	
Prerequisite	Databases and Programming	
Course	None	
Coordinator		

Course Objectives

This course is designed to introduce machine learning and its techniques, algorithms and models. Machine Learning is an interdisciplinary field consists of computer algorithms and data handling techniques. It is applied in many fields such as speech recognition, image processing, internet searching trends, computer vision, bioinformatics, business and any other field having large and complex datasets. Machine leaning is collection of tools to handle data sets and to learn from them to make decision. These techniques include supervised learning, un-supervised learning, Bayesian decision theory, nonparametric methods, multivariate analysis and statistical testing.

Evaluation

1.	Semester Project	10%
2.	Assignments	10%
3.	Quizzes	05%
4.	CP & CB	05%
5.	First Mid Term Exam	15%
6.	Second Mid Term Exam	15%
7.	Final Term Exam	40%

Text BOOK:

S. No	Book Title
1.	E. Alpaydin, (2014). Introduction to machine learning. MIT press

REFERENCE BOOKS:

S. No	Book Title
1.	T. M. Mitchell, Machine Learning, McGraw-Hill Education.

Detailed Course Outline

Week No.	Topic	Reference Material
Week No. 1	 Introduction to Machine Learning 	
(24-01-2019	 Need of Machine Learning 	
,	 Importance of Machine Learning 	
	 Types of Machine Learning 	
	 Supervised Machine Learning 	
	 Classification and Regression 	
	 Unsupervised Machine Learning 	Chapter 1 and Notes
	Clustering	
	Semi-Supervised Machine Learning	
	❖ Applications of Machine Learning	
	 Growth of Machine Learning 	
	 ❖ Machine Learning: State-of-the-art 	
Week No. 2	Classification	
(31-01-2019)	 Types of Classification Algorithms 	
(31-01-2017)	 Pypes of Classification Augorithms Binary or Binomial Classification 	
	 Multi Class or Multinomial Classification 	
	 With Class of Multinoffial Classification Linear Classifiers 	
	 Linear Classificis Logistic Regression 	Chapter 2 and Notes
	Naïve Bayes ClassifierPerceptron	
	=	
	Support Vector Machines	
W1-N-2	Least Squares Support Vector Machines One during Classification	
Week No. 3	• Quadratic Classifiers	
(07-02-2019)	❖ Kernel Estimation	
	❖ kNN	
	 Bagging and Boosting (Meta Algorithms) 	Chapter 8, 9, and
	Decision Trees	Notes
	Random Forest	
	❖ Iris Dataset Prediction	
	Scatter Plot of Iris Dataset	
	❖ Do we need to Hundreds of Classifiers?	
Week No. 4	 Introduction to Neural Networks 	
(14-02-2019)	 Transfer Function 	
	 Activation Function 	Chapter 11 and Notes
	 Single Layer Perceptron 	
	 Multi-layer Perceptron 	
	 Feed Forward Neural Network 	
Week No. 5	 Back Propagation Neural Network 	Chapter 11, 17, and
(21-02-2019)	 Stochastic Gradient Descent 	Notes
	 Ensemble Learning Techniques 	
	Voting and Averaging	
	Stacking	
	 Bootstrap Aggregating / Bagging 	

	❖ Boosting	
	❖ AdaBoost	
Week No. 6	 Introduction to Regression 	
(28-02-2019)	 Regression Theory 	
	❖ How Regression works?	
	 Regression- Features and Labels 	
	 Regression training and testing 	
	❖ Linear Regression	Chapter 2, 4, and
	 Regression- Forecasting and Prediction 	Notes
	❖ The best fit slope	
	❖ The best fit line	
	 Linear Regression - Cost Function 	
	 Linear Regression – Gradient Descent 	
Week No. 7	❖ Regression Types	
(07-03-2019)	 Multivariate Linear Regression 	
	 Polynomial Regression 	
	 Logistic Regression 	Chapter 4, 5, and
	❖ None Linear Regression	Notes
	 Multiple Features in Linear Regression 	
	Contour Plots	
	 Implementation of Regression 	
Week No. 8	Clustering	
(14-03-2019)	 Clustering, mixture models, k-means 	Chantan 7 and Matas
	clustering, hierarchical clustering,	Chapter 7 and Notes
	distributional clustering	
Week No. 9	 Dimensionality Reduction 	
(21-03-2019)	 Feature Selection and Reduction 	
	Chi-Square	Chanter 6 and Notes
	Information Gain	Chapter 6 and Notes
	❖ PCA	
	❖ Gini Index	
Week No. 10	❖ NLP	
(28-03-2019)	 Word and Sentence Tokenization 	
	 Stop words removal 	
	Stemming and Lemmatization	Notes
	❖ POS tagging	Notes
	 Named Entity Recognition 	
	Using Wordnet with NLP	
Week No. 11	❖ Text Classification	
(04-04-2019)	 Investigation Bias in Text Classification Task 	
	Sentiment Analysis	Notes
	 Twitter Sentiment Analysis 	
	❖ Graphing Live Twitter	
Week No. 12	 Image and Video Mining 	Notes
(11-04-2019)	 Image and Video Classification 	INOTES

Week No. 13 (18-04-2019)	❖ Speech Recognition	Notes
Week No. 14 (25-04-2019)	❖ Introduction to Deep Learning	Notes
Week No. 15 (02-05-2019)	 Introduction to Reinforcement Learning Introduction to Case Based Reasoning Introduction to Recommender Systems 	Chapter 18 and Notes
Week No. 16 (09-05-2019)	❖ Introduction to Large Scale Machine Learning	Chapter 18 and Notes