世界知的所有権機関 国際事務局

特許協力条約に基づいて公開された国際出願

WO97/13872 (11) 国際公開番号 (51) 国際特許分類6 A1 C12Q 1/26 1997年4月17日(17.04.97) (43) 国際公開日

JP

(21) 国際出願番号

PCT/JP96/02964

(22) 国際出願日

1996年10月14日(14.10.96)

(30) 優先権データ

特願平7/264387 特願平8/192003 1995年10月12日(12.10.95)

1996年7月22日(22.07.96)

(71) 出願人 (米国を除くすべての指定国について)

株式会社 京都第一科学

(KYOTO DAIICHI KAGAKU CO., LTD.)[JP/JP]

〒601 京都府京都市南区東九条西明田町57番地 Kyoto, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

八木雅之(YAGI, Masayuki)[JP/JP] 船津文代(FUNATSU, Fumiyo)[JP/JP]

酒井敏克(SAKAI, Toshikatsu)[JP/JP]

石丸 香(ISHIMARU, Kaori)[JP/JP]

福家博司(FUKUYA, Hiroshi)[JP/JP]

吉津 博(YOSHIZU, Hiroshi)[JP/JP]

大石勝隆(OISHI, Katsutaka)[JP/JP]

〒601 京都府京都市南区東九条西明田町57番地

株式会社 京都第一科学内 Kyoto, (JP)

(74) 代理人

弁理士 青山 葆, 外(AOYAMA, Tarnotsu et al.) 〒540 大阪府大阪市中央区城見1丁目3番7号 IMPビル 青山特許事務所 Osaka, (JP)

JP, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, (81) 指定国 FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

請求の範囲の補正の期限前であり、補正書受領の際には再公 開される。

METHOD AND ASSAYING AMODORI COMPOUNDS (54)Title:

アマドリ化合物の測定方法 (54)発明の名称

Absorbanca (505 nm)

Fructosamina content (µmol/1)

A method for enzymatically assaying Amadori compounds in biological components or foods, which comprises measuring the (57) Abstract saccharification rate of a sample, determining the amount of fructosylamine, or measuring the concentration of saccharified matters.

(57) 要約

生体成分又は食品中のアマドリ化合物の酵素的な測定法であって、該方法は、試料の糖化率の測定、フルクトシルアミンの定量、又は糖化物濃度の測定により行うことを特徴とする。

明細書

アマドリ化合物の測定方法

技術分對

本発明は、酵素を用いるアマドリ化合物の測定方法、さらに詳しくは、 フルクトシルアミノ酸オキシダーゼによる新規なアマドリ化合物の測定方 法、及び該方法に用いられる試薬及びキットに関する。

背景技術

アマドリ化合物は、タンパク質、ペプチド及びアミノ酸のようなアミノ基を有する物質と、アルドースのような還元性の糖が共存する場合、アミノ基とアルデヒド基が非酵素的かつ非可逆的に結合し、アマドリ転移することにより生成される。アマドリ化合物の生成速度は反応性物質の濃度、接触時間、温度などの関数で表される。従って、その生成量から、それら反応性物質を含有する物質に関する様々な情報を得ることができると考えられている。アマドリ化合物を含有する物質としては、醤油等の食品、及び血液等の体液がある。

生体では、グルコースとアミノ酸が結合したアマドリ化合物であるフルクトシルアミン誘導体が生成している。例えば、血液中のヘモグロビンが糖化されたフルクトシルアミン誘導体はグリコヘモグロビン、アルブミンが糖化された誘導体はグリコアルブミン、血液中のタンパクが糖化された誘導体の還元能はフルクトサミンと呼ばれる。これらの血中濃度は、過去の一定期間の平均血糖値を反映しており、その測定値は、糖尿病の症状の診断及び症状の管理の重要な指標となり得るために、測定手段の確立は臨床上、極めて有用である。また、食品中のアマドリ化合物を測定することにより、その食品の製造後の保存状況や期間を知ることができ、品質管理に役立つと考えられる。このように、アマドリ化合物の分析は医学及び食

WO 97/13872 PCT/JP96/02964

品を含む広範な分野で有用である。

従来、アマドリ化合物の測定法としては、高速液体クロマトグラフィーを利用する方法 [Chromatogr. Sci. 10:659(1979)] 、ホウ酸を結合させた固体をつめたカラムを用いる方法 [Clin. Chem. 28:2088-2094(1982)] 、電気泳動 [Clin. Chem. 26:1598-1602(1980)]、抗原一抗体反応を利用する方法 [JJCLA 18: 620(1993). 機器・試薬 16: 33-37(1993)]、フルクトサミンの測定法 [Clin. Chim. Acta 127: 87-95 (1982)]、チオバルビツール酸を用いて酸化後比色定量する方法[Clin. Chim. Acta 112: 197-204 (1981)]などが知られているが、高価な機器が必要であったり、必ずしも正確で迅速な方法ではなかった。

近年、酵素の有する特性(基質、反応、構造、位置などの特異性)に起因して、選択的に目的物質を迅速かつ正確に分析することができることから 酵素反応を利用する方法が臨床分析や食品分析の分野で普及してきた。

既に、アマドリ化合物に酸化還元酵素を作用させ、その反応における酸素の消費量又は過酸化水素の発生量を測定することにより、アマドリ化合物を測定する分析法が提案されている(例えば、特公平5-33997号公報、特別平4-65300号公報、特別平2-195900号公報、特別平3-155780号公報、特別平4-4874号公報、特別平5-192193号公報、特別平6-46846号公報)。さらに、糖尿病の診断のための糖化タンパクの測定法も開示されている(特別平2-195899号公報、特別平2-195900号公報、特別平5-192193号公報(EP 0 526 150 A)、特別平6-46846号公報(EP 0 576 838 A))。

アマドリ化合物の酸化還元酵素による分解反応は下記の一般式で表すことができる。

$$R^{1}-CO-CH_{2}-NH-R^{2} + O_{2} + H_{2}O \rightarrow R^{1}-CO-CHO + R^{2}-NH_{2} + H_{2}O_{2}$$

(式中、R¹はアルドース残甚、R²はアミノ酸、タンパク質又はペプチド 残基を表す)

上記の反応を触媒する酵素として以下のものが知られている。

- 1. フルクトシルアミノ酸オキシダーゼ:コリネバクテリウム (<u>Coryneb acterium</u>) 属 (特公平5-33997号公報、特公平6-65300号公報)、アスペル ギルス属 (<u>Aspergillus</u>) (特開平3-155780号公報)。
- 2. フルクトシルアミンデグリカーゼ:カンジダ属 (<u>Candida</u>) (特開平 6-46846号公報)。
- 3. フルクトシルアミノ酸分解酵素:ペニシリウム属 (Penicillium) (特開平4-4874号公報)。
- 4. ケトアミンオキシダーゼ: コリネバクテリウム属、フサリウム属、 アクレモニウム属又はデブリオマイセス属(特開平5-192193号公報)
- フルキルリジナーゼ: J. Biol. Chem. 239巻、第 3790-3796頁(196
 239巻、第 3790-3796頁(196
 34年)記載の方法で調製。

しかしながら、これらの酵素を用いる従来法には、下記の問題点があった。即ち、糖尿病の診断における指標には糖化アルブミン、糖化ヘモグロビン及びフルクトサミンがある。糖化アルブミンはタンパク分子中のリジン残基のを位にグルコースが結合して生成される [J. Biol. Chem. 26 1:13542-13545(1986)]。糖化ヘモグロビンは、ヘモグロビンβ鎖のN末端バリンにもグルコースが結合している [J. Biol. Chem. 254:3892-3 898(1979)]。従って糖尿病の指標となる糖化タンパクの測定には、フルクトシルリジン及び/又はフルクトシルバリンを正確に測定する必要があった。しかし、特公平5-33997号公報及び特公平6-65300号公報記載の方法ではフルクトシルリジンは正確に測定できず、特開平3-155780号公報は、糖化タンパク又はその加水分解物に対する作用について明らかにしていない。

他方、特開平5-192193号公報記載の方法ではリジン残基に糖が結合している糖化タンパクを正確に測定することはできない。特開平6-46846号公報記載の方法ではリジン残基の ε 位の糖化物を特異的に測定することができず、またバリン残基の糖化物を特異的に測定することもできない。さらに J. Biol. Chem. 239巻、第 3790-3796頁(1964年)記載の酵素を用いる特 開平2-195900号公報記載の方法は糖類以外の残基がリジンに結合した物質も測定され、糖化物に対する特異性が低いという問題があり、正確な測定 か期待できなかった。特開平4-4874号記載の方法ではフルクトシルリジンとフルクトシルアラニンのみが測定可能である。

しかも、これら従来法では、アマドリ化合物(通常タンパク質)をアミノ酸に分解させ、その後、遊離された糖化部位であるアミノ酸残基と酵素との反応により生成する過酸化水素又は消費される酸素の量を測定する必要があり、迅速に処理することができなかった。 さらに、糖化部位の異なるアマドリ化合物を特異的に測定することができなかった。

このように従来法は糖化タンパクの正確な測定には適さず、フルクトシルリジン及び/又はフルクトシルバリン及びこれらのうち少なくとも一方を含有するペプチドを迅速かつ特異的に測定する方法の開発が待たれていた。

発明の開示

即ち、本発明は酵素を用いて測定することを特徴とする、アマドリ化合

WO 97/13872 PCT/JP96/02964

物含有試料中のアマドリ化合物の測定方法を提供するものである。

本発明の方法の対象は、アマドリ化合物を含有し得る限り、任意であるが、通常は生体成分又は食品である。

本発明方法では、アマドリ化合物を、試料の糖化率の測定、フルクトシルアミンの定量、又は糖化物濃度の測定により行うことが好ましい。なかでも、酵素を用いた糖化率の測定によるアマドリ化合物の分析は新規である。アマドリ化合物、特に糖化タンパクを測定するとき、その糖化タンパクの絶対量(濃度)を測定する方法と、どれだけの割合のタンパクが糖化したのか(糖化率)を測定する方法が考えられる。

測定対象となるタンパク成分の糖化した量のみを測定する場合、その増減が、対象となるタンパク成分の全量の変化に由来するものであるのか、血糖値の変化を反映するものであるのかが不明である。糖化率を測定する場合、対象タンパク成分の全量中の糖化タンパクの量の比率で表すので、タンパク量の変化とは無関係に、血糖値に由来する変化、すなわち糖尿病の病状の変化のみを反映した値を示すことができる。従来法であるフルクトサミン法やチオバルビツール酸を用いて比色定量する方法では、還元能を測定するため、共存する物質の影響をうけ、正確な糖化物量の情報が得られない。しかし、本法で得られる糖化物量は、タンパクを構成するアミノ酸残基とグルコースとの結合の絶対量を測定するため、アミノ酸の糖化の数に関する正確な情報が得られる。

また、本法で糖化率を測定する場合、測定対象となるタンパク成分の全量と糖化量を別々に測り、演算によって糖化率を求めるため、糖化率だけでなくタンパク量の情報も同時に得ることができ、臨床的意義が大きい。 高速液体クロマトグラフィー、ホウ酸を結合させた固体をつめたカラムを用いる方法、電気泳動、抗原-抗体反応を利用する方法では、非糖化タン バク量と糖化タンパク量の相対比から糖化率を求めることになるので、量に関する情報が得られないという欠点がある。本法では、タンパクの代謝や量の影響をうけずに糖尿病診断の指標となる糖化率を測定することができるとともに、栄養状態や、肝障害などの程度を判定する総タンパク量の測定も同時に行うことができる。このことは、本法がタンパク量の変動を伴う疾病を有する患者の糖尿病の病状診断にも有効であることを示している。

また、酵素を用いた糖化タンパクの測定は、特異性が高く、従来の生化 学的測定と同様の方法をもちいることが可能なため、操作が容易で試薬も 扱いやすく、さらに他の項目との同時測定が可能という利点がある。

図面の簡単な説明

第1図は、フルクトサミン値と、FAOD作用により生成された過酸化水素量との関係を示すグラフである。

第2図は、糖化ヒト血清アルブミンの濃度とフサリウム・オキシスポルムS-1F4由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第3図は、糖化ヒト血清アルブミンの濃度とギベレラ・フジクロイ由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第4図は、糖化ヒト血清アルブミンの濃度とフサリウム・オキシスポルム・f.sp・リニ由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第5図は、糖化ヒト血清アルブミンの濃度とアスペルギルス・テレウス・GP1由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第6図は、ヒト血清アルブミンの糖化率とフサリウム・オキシスポルム・ f. sp・リニ由来のFAODの作用により生成された過酸化水素量との関係 を示すグラフである。

第7図は、ヒト血清アルブミンの糖化率とアスペルギルス・テレウス・GP1由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第8図は、ヒト血清アルブミンの糖化率とギベレラ・フジクロイ由来の FAODの作用により生成された過酸化水素量との関係を示すグラフである。

第9図は、ヒト血清アルブミンの糖化率とフサリウム・オキシスポルム S-1F4由来のFAODの作用により生成された過酸化水素量との関係 を示すグラフである。

第10図は、糖化ヘモグロビンの濃度とフサリウム・オキシスポルム・f. sp. ・リニ由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第11図は、糖化ヘモグロビンの濃度とアスペルギルス・テレウス・G P1由来のFAODの作用により生成された過酸化水素量との関係を示す グラフである。

第12図は、糖化ヘモグロビン量とペニシリウム・ヤンシネルムS-3 413由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第13図は、糖化ヘモグロビン量とペニシリウム・ヤンシネルムS-3 413由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第14図は、全ヘモグロビン量(415nmの吸光度)に対するバリン

の糖化量(727nmの吸光度)の割合と、ヘモグロビンA1c値との関係を示すグラフである。

第15図は、ヘモグロビンA1c値とペニシリウム・ヤンシネルムS-3413由来のFAODの作用により生成された過酸化水素量との関係を示すグラフである。

第16図は、フルクトシルバリンの濃度と、電気化学的手法によって検出された、ペニシリウム・ヤンシネルムS-3413由来のFAODの作用により生成された過酸化水素の量との関係を示すグラフである。

第17図は、フルクトシルリジンの濃度と、固定化された、フサリウム・オキシスポルムS-1F4由来のFAODの作用により生成された過酸化水素の量との関係を示すグラフである。

発明を実施するための最良の形態

基質の糖化部位に作用する酵素として、フルクトシルアミノ酸オキシダーゼを挙げることができる。フルクトシルアミノ酸オキシダーゼを用いる場合、アマドリ化合物の測定は、反応混合物における酸素の消費量又は生成物の量を測定することにより行う。生成物としては、過酸化水素及びグルコソンがある。過酸化水素の定量は、通常、過酸化水素のペルオキシダーゼ又はペルオキシダーゼ様活性を有する触媒による分解に伴って色素を生成する色原体を用いて測定するか、電気化学的手法によって測定することができる。または、カタラーゼとアルコールの存在下で生成されたアルデヒドの量を測定することによっても過酸化水素の発生量を定量することができる。

本発明方法には、真菌類をフルクトシルリジン及び/又はフルクトシル N°-Z-リジン含有培地で培養することによって生成される酵素を用い ることができる。なお、本明細書中では、本発明方法に用いるフルクトシ WO 97/13872 PCT/JP96/02964

ルアミノ酸オキシダーゼをFAODと称する。

本発明方法に用いられるFAODは、フルクトシルアミノ酸オキシダー ゼ生産能を有する真菌類をフルクトシルリジン及び/又はフルクトシルN" - Z-リジン (以下、FZLと略称することもある) 含有培地で培養する ことにより生産することができる。そのような菌として、フサリウム属(F usarium) 、ギベレラ属 (Gibberella) 、ペニシリウム属 (Penicillium) 、 アルミラリア属 (Armillaria) 、カルダリオマイセス属 (Caldarionyces)、 ガノデルマ属 (Ganoderma)、アスペルギルス属 (Aspergillus) などに属 する菌を挙げることができる。具体例には、フサリウム・オキシスポルム S-1F4(Fusarium oxysporum_S-1F4)(茨城県つくば市東1丁目 1丁目3号の通商産業省工業技術院生命工学工業技術研究所にFERM BP-5010 の下で寄託されている(原寄託日:1994年2月24日:国際寄託への移管日:19 95年2月22日)、フサリウム・オキシスポルム・f. sp. リニ(IFO NO. 5880)(F usarium oxysporum f. sp. lini)、フサリウム・オキシスポルム・f. sp. バ タタス(IFO NO. 4468)(Fusarium oxysporum f. sp. batatas)、フサリウム・ オキシスポルム・f. sp. ニベウム(IFO NO. 4471)(Fusarium oxysporum f. sp. niveum)、フサリウム・オキシスポルム・f. sp. ククメリニウム(IFO NO. 63 84)(Fusarium oxysporum f. sp. cucumerinum)、フサリウム・オキシスポル ム・f.sp.メロンゲナエ(IFO NO.7706)(Fusarium oxysporum f.sp.melonge nae)、フサリウム・オキシスポルム・f. sp. アピ(IFO NO. 9964)(Fusarium oxysporum f. sp. apii)、フサリウム・オキシスポルム・f. sp. ピニ(IFO NO. 9971)(Fusarium oxysporum f. sp. pini)及びフサリウム・オキシスポルム・ f. sp. フラガリエ(IFO NO. 31180)(Fusarium oxysporum f. sp. fragariae); 半ベレラ・フジクロイ(IFO NO. 6356. 6605)(Gibberella fujikuroi):ペニ シリウム・ヤンシネルムS-3413(Penicillium janthinellum S-3413) (受

託機関:上記住所の通商産業省工業技術院生命工学工業技術研究所: 寄託番号: FERN BP-5475、原寄託日:1995年3月28日:国際寄託への移管日:1996年3月14日)、ペニシリウム・ヤンシネルム(IFO NO. 4651, 6581, 7905)(Peni cillium janthinellum)、ペニシリウム・オキサリクム(IFO NO. 5748) (Penicillium oxalicum)、ペニシリウム・ヤバニクム(IFO NO. 4639)(Penicil lium javanicum)、ペニシリウム・ウリンゲヌム(IFO NO. 4639)(Penicil lium javanicum)、ペニシリウム・シアネウム(IFO NO. 4897)(Penicilli um chrysogenum)、ペニシリウム・シアネウム(IFO NO. 5337)(Penicilli um chrysogenum): アスペルギルス・テレウス(IFO 6365) (Aspergillus terre us)、アスペルギルス・テレウスGP-1 (受託機関:上記住所の通商産業省工業技術研究所: 寄託番号: FERN BP-5684:原寄託日:1996年5月31日:国際寄託への移管日:1996年9月30日) (Aspergillus terre us GP-1)、アスペルギルス・オリザ (IFO 4242)(Aspergillus oryzae)、アスペルギルス・オリザ (IFO 5710) (Aspergillus oryzae) 等を挙げることができるが、これらに限定されない。

上記の方法で生産されたFAOD類は、一般に、酸素の存在下でアマドリ化合物を酸化し、 α - ケトアルデヒド、アミン誘導体及び過酸化水素を生成する反応を触媒する。

本発明方法に用いられるFAODの生産に用いるフルクトシルリジン及び/又はFZLは、グルコース $0.01\sim50$ 重量%とリジン及び/又は N^a-Z- リジン $0.01\sim20$ 重量%とを溶液中で、 $100\sim150$ でにおいて $3\sim60$ 分間オートクレーブ処理する方法で製造される。具体的には、全量1000mlの溶液中にグルコース200g、 N^a-Z- リジン10gを溶解させ、通常120C、20分間オートクレーブ処理することができる。

また、本発明方法に用いられるFAODの生産のためのフルクトシルリ

WO 97/13872 PCT/JP96/02964

ジン及び/又はF2L含有培地(以下、F2L培地と称する)は、上記の方法で得られたフルクトシルリジン及び/又はF2Lを通常の培地に添加するか、例えば、グルコース0.01~50重量%、リジン及び/又はN°ー2ーリジン0.01~20重量%、K2HPO40.1重量%、NaH2PO40.1重量%、MgSO4・7H2O0.05重量%、CaCl2・2H2O0.01重量%及び酵母エキス0.2重量%を含有する混合物(好ましくはpH5.6-6.0)を100~150℃において3~60分間オートクレーブ処理することによって得ることができる。

本発明方法に用いられるFAODの生産に用いる培地は、炭素源、窒素源、無機物、その他の栄養源を含有する通常の合成あるいは天然の培地であってよく、炭素源としては、例えば、グルコース、キシロース、グリセリン等、窒素源としては、ペプトン、カゼイン消化物、酵母エキス、等を用いることができる。さらに無機物としてはナトリウム、カリウム、カルシウム、マンガン、マグネシウム、コバルト等、通常の培地に含有されるものを用いることができる。

本発明方法に用いられるFAODは、フルクトシルリジン及び/又はF 2 Lを含有する培地で培養したとき、最もよく誘導される。好ましい培地 の例として、上記の方法で得られたFZLを単一の窒素源とし、炭素源と してグルコースを用いるFZL培地(1.0%グルコース、0.5%FZL、 0.1%K₂HPO₄、0.1%NaH₂PO₄、0.05%MgSO₄・7H₂ 〇、0.01%CaCl₂・2H₂O及び0.01%ビタミン混合物)を挙げ ることができる。特に好ましい培地は、全量1,000ml中にグルコース 20g(2%)、FZL 10g(1%)、K₂HPO₄ 1.0g(0.1%)、 NaH₂PO₄1.0g(0.1%)、MgSO₄・7H₂0 0.5g(0.0 5%)、CaCl₂・2H₂O 0.1g(0.01%)及び酵母エキス2.0

培養は、通常約 $25\sim37$ $\mathbb C$ 、好ましくは28 $\mathbb C$ で行われる。培地の $\mathbb D$ H は $4.0\sim8.0$ の範囲であり、好ましくは $5.5\sim6.0$ である。しかしながら、これらの条件はそれぞれの菌の状態に応じて適宜調製されるものであり上記に限定されない。

このようにして得られた培養物は、常法に従い、核酸、細胞壁断片等を 除去し、酵素標品を得ることができる。

本発明方法に用いられるFAODの酵素活性は、菌体中に蓄積されるので、培養物中の菌体を破砕し、酵素生産に用いる。

細胞の破砕は、機械的手段又は溶媒を利用した自己消化、凍結、超音波 処理、加圧などのいずれでもよい。

酵素の分離精製方法も既知であり、硫安などを用いる塩析、エタノール 等の有機溶媒による沈殿、イオン交換クロマトグラフィー、疎水クロマト グラフィーやゲルろ過、アフィニティークロマトグラフィーなどを組み合 わせて精製する。

例えば、培養物を、遠心又は吸引ろ過して菌糸体を集め、洗浄後、0.1Mトリスー塩酸緩衝液(pH8.5)に懸濁し、Dyno-Nillによって菌糸体を破砕する。次いで、遠心分離して得た上清を無細胞抽出液として、硫安分画、フェニルーセファロース疎水クロマトグラフィーで処理すること

により精製する。

しかしながら、本発明の目的から、本発明方法に用いられるFAODは 精製度にかかわらず、アマドリ化合物の酸化反応を触媒することができる 限り、培養液をはじめとする、あらゆる精製段階の酵素含有物及び溶液を 包含する。また、酵素分子の内、触媒活性に関与する部位のみでも、本発 明目的を達成することができることから、任意の、アマドリ化合物酸化活 性を有するフラグメントをも包含するものとする。このようにして得られ たFAODは、アマドリ化合物の測定、特に糖尿病の診断のための糖化タ ンパクの測定に有用であるばかりか、本発明が解決すべき技術的な課題の 解決にも有用である。

さらに、本発明方法にはFAODをコードするDNAを含有する発現ベクターにより形質転換された微生物を培養することによって得られる酵素も用いることができる。このようにして得られたFAODも、アマドリ化合物の測定、特に糖尿病の診断のための糖化タンパクの測定に有用であるばかりか、本発明が解決すべき技術的な課題の解決にも有用である。

以下に本発明方法に用いられるFAODの特性を詳細に説明する。

1. 一般的な誘導特性

本発明方法に用いられるFAODはフルクトシルリジン及び/又はFZ Lによって誘導される誘導酵素であり、フルクトシルリジン及び/又はF ZLを窒素源とし、グルコースを炭素源とするフルクトシルリジン及び/ 又はFZL培地で、真菌類のフルクトシルアミノ酸オキシダーゼ生産菌を 培養することにより生産される。

FAODは、グルコースとリジン及び/又はN°-2-リジンを共にオートクレーブして得られる<math>GL福変化培地で誘導されるが、グルコースとリジン及び/又はN°-2-リジンを別々にオートクレイブ処理して調製

した培地では誘導されないことから、該酵素はアマドリ化合物に特異的に 作用するものである。

2. 諸性質及び基質特異性

本発明方法に用いられるFAODは、式:

 $R^1-CO-CH_2-NH-R^2 + O_2 + H_2O \rightarrow$

 $R^{1}-CO-CHO + R^{2}-NH_{2} + H_{2}O_{2}$

(式中、R¹はアルドース残基、R²はアミノ酸、タンパク質又はペプチド 残基を表す)

で示される反応における触媒活性を有する。上記の反応式において、 R^1 が-OH、 $-(CH_2)$ $_n$ --又は-[CH(OH)] $_n$ --CH $_2$ OH (式中、nは0-6の整数)であり、 R^2 が-CH R^3 - $[CONHR^3]$ $_n$ COOH (式中、 R^3 は α --アミノ酸側鎖残基、mは1-480の整数を表す)で示されるアマドリ化合物が基質として好ましい。中でも、 R^3 がリジン、ポリリジン、バリン、アスパラギンなどから選択されるアミノ酸の側鎖残基であり、またnか5 \sim 6、mが55以下である化合物が好ましい。

本発明方法に用いられるFAODの諸性質を以下の第1表に示す。

第1表

生産競	Gibberella fujikuroi <1F06356>	Fusarium oxysporum S-14F <fern bp-5010=""></fern>	F. oxysporum f. sp. lini <if05880></if05880>	janthinellum S-3413 <perm bp-5475=""></perm>	Aspergillus terraus GP1 <fern bp-5684=""></fern>
分子量 (ゲルろ過) (SDS-PAGE)	47, 000	45, 000	106, 000	38, 700 48, 700	94, 000 48, 000
補酵素	FADと共有結合	FADと共有結合	FADと共有結合	FADと共有結合	FADと共有結合
基質特異性 (U/mg·protein) (フルクトシルリシン) (フルクトシルイリン)	16. 7 N. D. *1	48.9 N.D.	32. 0 9. 62	4. 18 18. 6	30.6 10.4
ミハエリス定数 (αF2L)*² (εF2L)*³	0. 45mM 0. 13mM	1.37mN 0.22mN	0.51mM 0.37mM	0. 62mN 0. 192mN	-
specificity contant (Km/Vmax) (αF2L) (εF2L)	86	94 555	131 107	240 26. 8	1 1
至適pH	8.0	8.0	8.5	7.5	8. 0
至適温度(°C)	35	45	35	25	.,5~30
等電点	•	4.8	& %	ŧ	1
SH試薬による影響	あり	あり	あり	あり	35 9

*1:検出されず

* 2 : N°-フルクトシル-N'-Z-リジン

第1表から、本発明方法に用いるFAODは、フルクトシルリジン及び /又はフルクトシルバリンに対して高い特異性を有することが分かる。さ らに、FAODの各基質に対する活性を以下の第2表に示す。

第2表

FAODの基質特異性

展	養度			相対活性(%)		
		Gibberella fujikuroi <1F0 NO. 6356>	Fusarium oxysporum S-1F4 > <fern bp-5010=""></fern>	F. oxysporum f. sp. lini <ifo 5880="" no.=""></ifo>	Penicillium Aspergillus janthinellum terreus GP1 S-3413 <fern bp-5475=""> <fern bp-5684=""></fern></fern>	Aspergillus terreus GP1 <fern bp-5684=""></fern>
N'-Fructosyl N"-Z-lysine 1.67m (FZL)	1. 67mM	100	100	100	100	100
Fructosyl valine	1.67	N. D. *1	N. D.	30.1	446	32. 1
N'-Methyl-L-lysine	1.67	N. D.	N. D.	N. O.	N. D.	N, D,
Fructosyl poly-L-lysine (FPL)	0.02%	1.0	2.3	0.24	N D	0.30
Poly-L-lysine	0.05	N. D.	N. D.	N. D.	N. D.	N. D.
FBSA*2	0.17	N. D.	N, D.	N. D.	N. D.	N. D.
FIISA*3	0.17	N. D.	N. D.	N. D.	N. D.	N. D.
Tryptic FBSA	0.17	0.19	4.6	0.62	N, D.	0.58
Tryptic FHSA	0.17	Z. O.	2.3	N. D.	N. D.	N. D.
Tryptic FPL	0.17	59. 7	-		1	-

*1:検出されず

*2:フルクトシル牛血清アルブミン

*3:フルクトシルヒト血清アルブミン

第2表に示されているように、本発明方法に用いられるFAODはフルクトシルリジン及び/又はフルクトシルポリリジンに対する活性を有し、このことは該FAODが糖化アルブミンの測定に有用であることを示している。また、本発明方法に用いられるフサリウム・オキシスポルム・fsp.・リニ、アスペルギルス・テレウス・GP1及びペニシリウム・ヤンシネルムS-3413由来のFAODは、フルクトシルバリンに対して活性を有しており、このことは、該FAODが糖化ヘモグロビンの測定にも有用であることを示している。さらに本発明方法に用いられるFAODは、糖化タンパクのプロテアーゼ消化物に対する活性もある。

3. 力価の測定

酵素の力価測定は下記の方法で行った。

(1) 生成する過酸化水素を比色法により測定する方法。

A 速度法

 $100 \, \mathrm{mM} \; \mathrm{FZL}$ 溶液はあらかじめ得られた FZL を蒸留水で溶解することによって調製した。 $45 \, \mathrm{mM} \; 4-\mathrm{F}$ ミノアンチピリン、 $60 \, \mathrm{J}$ ニット/ m ルパーオキンダーゼ溶液、及び $60 \, \mathrm{mM} \; \mathrm{J}$ ェノール溶液それぞれ $100 \, \mathrm{m}$ 1と、 $0.1 \, \mathrm{M} \; \mathrm{h}$ リスー塩酸緩衝液(p $\mathrm{H8}.0$) $1 \, \mathrm{m}$ 1、及び酵素溶液 $50 \, \mathrm{m}$ 1を混合し、全量を蒸留水で $3.0 \, \mathrm{m}$ 1 とする。 $30 \, \mathrm{m}$ で $2 \, \mathrm{m}$ 3 m 1 を混合し、全量を蒸留水で $3.0 \, \mathrm{m}$ 1 とする。 $30 \, \mathrm{m}$ 2 分間インキュベートした後、 $100 \, \mathrm{mM} \; \mathrm{FZL}$ 溶液 $50 \, \mathrm{m}$ 1 を添加し、 $50 \, \mathrm{m}$ 1 における吸光度を経時的に測定した。生成するキノン色素の分子吸光係数($5.16 \, \mathrm{m}$ 10 m 3 $\mathrm{M}^{-1} \, \mathrm{cm}^{-1}$)から、 $10 \, \mathrm{m}$ 1 分間に生成する過酸化水素のマイクロモルを算出し、この数字を酵素活性単位(ユニット: U)と

する。

B. 終末法

上記 A 法と同様に処理し、基質添加後、30分間30℃でインキュベートした後の505 n mにおける吸光度を測定し、あらかじめ標準過酸化水素溶液を用いて作成した検量線から生成した過酸化水素量を算出することにより、酵素活性を測定する。

- (2) 酵素反応による酸素吸収を測定する方法
- $0.1\,\mathrm{M}$ トリス-塩酸緩衝液($\mathrm{pH8.0}$) $1\mathrm{m}$] と酵素溶液 $50\,\mu$] を混合し、蒸留水で全量を $3.0\,\mathrm{m}$] とし、ランク ブラザーズ社の酸素電極のセルに入れる。 $30\,\mathrm{C}$ で撹拌し、溶存酸素と温度を平衡化した後、 $50\,\mathrm{m}$ M F Z L $100\,\mu$] を添加し、酸素吸収を記録計で連続的に計測し、初速度を得る。標準曲線から $1\,\mathrm{fm}$ 分間に吸収された酸素量を求め、これを酵素単位とする。

上記のごとく、FAODは、アマドリ化合物の測定に有用であり、従って、本発明は、アマドリ化合物を含有する試料と、FAODとを接触させ酸素の消費量又は反応生成物を測定することを特徴とする、試料中のアマドリ化合物の測定方法を提供するものである。本発明の方法は、生体成分又は食品中の糖化タンパクの量及び/又は糖化率の測定、あるいはフルクトシルアミンの定量に基づいて行われる。

FAODの酵素活性は下記の反応に基づいて測定される。

$$R^{1}-CO-CH_{2}-NH-R^{2} + O_{2} + H_{2}O \rightarrow$$

 $R^{1}-CO-CHO + R^{2}-NH_{2} + H_{2}O_{2}$

(式中、R¹はアルドース残基、R²はアミノ酸、タンパク質又はペプチド 残基を表す)

被検液としては、アマドリ化合物を含有する任意の試料溶液を用いるこ

とができ、例えば、血液(全血、血漿又は血清)、尿等の生体由来の試料 の外、醤油等の食品が挙げられる。

本発明の分析法では、下記のいずれかのアマドリ化合物の測定法を用いる。

(1) 反応生成物の量に基づく方法

FAODの作用により、過酸化水素及びグルコソンが生成される。過酸化水素の測定には、当該技術分野で既知の方法、例えば、発色法、過酸化水素電極を用いる方法等で測定し、過酸化水素及びアマドリ化合物の量に関して作成した標準曲線と比較することにより、試料中のアマドリ化合物を測定する。具体的には、上記3の力価の測定に準じる。ただし、FAOD量は1ユニット/mlとし、適当に希釈した試料を添加し、生成する過酸化水素量を測定する。過酸化水素の比色法における発色系としては、ペルオキシダーゼの存在下で4ーアミノアンチビリン(4AA)、3ーメチルー2ーベンゾチアゾリノンヒドラゾン(MBTH)等のカップラーとフェノール等の色原体との酸化縮合により色素を生成する系を用いることができる。

色原体として、フェノール誘導体、アニリン誘導体、トルイジン誘導体等があり、例えば、NーエチルーNー(2ーヒドロキシー3ースルホプロピル)ーmートルイジン、N.Nージメチルアニリン、N.Nージエチルアニリン、2.4ージクロロフェノール、NーエチルーNー(2ーヒドロキシー3ースルホプロピル)ー3.5ージメトキシアニリン、NーエチルーNー(3ースルホプロピル)ー3.5ージメチルアニリン(MAPS)、NーエチルーNー(2ーヒドロキシー3ースルホプロピル)ー3.5ージメチルアニリン(MAOS)等が挙げられる。又ペルオキシダーゼの存在下で酸化されて呈色するロイコ型発色試薬も用いることができ、そのよう

なロイコ型発色試薬は、当業者に既知であり、ロージアニシジン、ロートリジン、3.3-ジアミノベンジジン、3.3.5.5-テトラメチルベンジジン、Nー(カルボキシメチルアミノカルボニル)ー4.4ービス(ジメチルアミノ)ビフェニルアミン(DA64)、10ー(カルボキシメチルアミノカルボニル)ー3.7ービス(ジメチルアミノ)フェノチアジン(DA67)、等が挙げられる。

色原体を用いる過酸化水素の測定には、比色法のほか、蛍光法、化学発光法も挙げられる。蛍光法には、酸化によって蛍光を発する化合物、例えば、ホモバニリン酸、4-ヒドロキシフェニル酢酸、チラミン、パラクレゾール、ジアセチルフルオレスシン誘導体などを用いることができる。化学発光法には、触媒としてペルオキシダーゼ、フェリシアン化カリウム、ヘミン等を、基質としてルミノール、ルシゲニン、イソルミノール、ピロガロール等を用いることができる。

さらに、過酸化水素の測定には、アルコール(例、メタノール)の存在下でカタラーゼを作用させ、生成するアルデヒドをハンチ反応や、MBTHとの縮合反応により発色させる系も利用できる。このアルデヒドをアルデヒドデヒドロゲナーゼと共役させ、NAD(NADH)の変化を測定することもできる。

グルコソンの測定には、ジフェニルアミン等のアルドース試薬を用いる ことができる。

過酸化水素を電極を用いて測定する場合、電極には、過酸化水素との間で電子を授受することのできるものであれば何でも使用しうるが、例えば白金、金、銀などが好ましい。測定は、アンペロメトリー、ポテンショメトリー、クーロメトリー等、当業者既知の方法で行うことができる。

また、FAOD又は基質と電極との間の反応に電子伝達体を介在させ、

得られる酸化、還元電流あるいはその電気量を測定することもできる。電子伝達体としては、フェロセン誘導体、キノン誘導体等、当業者に既知の 物質、又は当業者が通常考え得る電子伝達機能を有する任意の物質であって良い。

さらに、FAOD反応により生成する過酸化水素と電極との間に電子伝達体を介在させ、得られる酸化、還元電流あるいはその電気量を測定することもできる。

(2)酸素の消費量に基づく方法。

反応開始時の酸素量から反応終了時の酸素量を差し引いた値(酸素消費量)を測定し、酸素消費量とアマドリ化合物の量に関して作成した標準曲線と比較することにより、試料中のアマドリ化合物を測定する。具体的には、上記3の力価の測定に準じて行う。但し用いるFAOD量は1ユニット/mlとし、適当に希釈した試料を添加し消費される酸素量を求める。

本発明方法は試料溶液をそのまま用いて行うこともできるが、対象となるアマドリ化合物によっては、試料をFAODが反応しやすい状態に処理しながら、又は処理してから行うことが好ましい。

そのような目的には、プロテアーゼを用いる場合(酵素法)と、トリクロロ酢酸等の化学物質を用いる場合(化学法)、熱等の物理的手法を用いる場合(物理法)がある。酵素法には、当業者に既知である、エンド型及びエキソ型のプロテアーゼを単独であるいは組み合わせて用いることができる。エンド型のプロテアーゼは、タンパク質の内部から分解する酵素であり、例えばトリプシン、αーキモトリプシン、スブチリシン、プロティナーゼK、パパイン、カテプシンB、ペプシン、サーモリシン、プロテアーゼXIV、プロテアーゼXVII、プロテアーゼXXI、リジルエンドペプチダーゼ、プロレザー、ブロメライン下等がある。一方、エキソ型のブ

ロテアーゼはペプチド鎖の端から順に分解する酵素であり、アミノペプチ ダーゼ、カルボキシペプチダーゼ等が挙げられる。酵素処理の方法も既知 であり、別えば下記実施例に記載の方法で行うことができる。

これらのエンド型、エキソ型のプロテアーゼは、その特性を利用し、測定対象となるアマドリ化合物の糖化部位に応じて使い分けることが好ましい。例えば、糖化アルブミンは内部のリジン残基が糖化されているため、エンド型のプロテアーゼで、ヘモグロビンA1cは、β鎖N末端のバリン残基が糖化されているため、エキソ型のプロテアーゼで、より効率良く処理することができる。これらのことは、以下の第3表及び第4表から読み取ることができる。

PCT/JP96/02964

第3表 糖化ヒトアルブミンに対する処理方法

プロテアーゼ	FAOD活性 (11/m1)	相対活性 (%)
エンド型プロテアーゼ		
特異的		
トリプシン	2.5	100
リジルエンドペプチダーゼ	6.3	250
非特異的		
プロティナーゼル	5.0	200
ズブチリシン	5.7	230
ヒトカテプシン	4.2	170
プロテアーゼXIV	7.7	3 1 0
プロナーゼ	5.8	230
プロナーゼE	8.4	3 4 0
プロティナーゼK	3.1	120
プロテアーゼP	3.0	120
プロテアーゼN	4.4	180
プロレザー	3.0	1 2 0
パパイン	5.0	200
プロテアーゼA	5.9	2 4 0
ブロメラインF	4.0	160
エキソ型プロ <u>テアーゼ</u>		
カルボキシペプチダーゼY	0.82	3 2
アミノペプチダーゼT	0.73	3 0
アミノペプチダーゼI	0.86	3 4
アミノペプチダーゼN	0.89	3 6
アミノペプチダーゼC	0.54	2 2

WO 97/13872 PCT/JP96/02964

第4表 ヘモグロビンA1cに対する処理方法

プロテアーゼ	FAOD活性 (U/m1)	相対活性 (%)
エンド型プロテアーゼ		
<u>特異的</u>		
トリプシン	0.22	5.8
非特異的		
ペプシン	0.20	5.3
プロティナーゼA	0.13	3.5
ズブチリシン	0.04	1.1
ウシカテプシン	0.07	1.9
ヒトカテプシン	0.10	2.6
プロナーゼ	0.05	1.4
プロテアーゼN	0.06	1.6
プロテアーゼA	0.14	3.7
パパイン	0.06	1.6
エキソ型プロテアーゼ		
カルボキシペプチダーゼB	1.27	33.3
アミノペプチダーゼ	3.82	100.0
アミノペプチダーゼN	0.43	11.2

さらに、本発明方法によれば、従来法と異なり、酵素法による処理において、アマドリ化合物を、必ずしも完全にアミノ酸に分解し、糖化されたアミノ酸残基を遊離する必要がない。FAODが反応しやすいような状態の糖化ペプチドにすればよいため、処理時間が短縮できる。

化学法では、酸、アルカリ、界面活性剤、タンパク変性剤等を単独又は 組み合わせて用いることができる。物理法では、熱、マイクロウェーブ、 圧力等を単独又は組み合わせて用いることができる。

また、酵素法、化学法、物理法は、それぞれ単独で用いることができるが、適宜組み合わせて用いてもよい。さらに、これらの処理はFAOD反応の前または同時に行うことができる。従来法では、試料を処理した後、測定する必要があったが、本発明方法では、試料の処理とFAOD反応とを同時に行うことができるので、従来法に比べ、操作が簡便で手間がかからず、短時間で測定することができる。

上記の如く、本発明方法に用いられるFAODは、糖化タンパクに含まれるフルクトシルリジンに高い基質特異性を有するものであることから、血液試料中の糖化アルブミンを測定することを含む、糖尿病の診断などに有用である。また、フルクトシルバリンにも特異性を有することから、ヘモグロビンA1cの測定にも有用である。

なお、検体として血液試料(全血、血漿又は血清)を用いる場合、採血 した試料をそのまま、あるいは透折等の処理をした後用いる。

試料が全血や溶血検体である場合、試料はヘモグロビンの存在によって 特有の吸収スペクトルを示す。比色法で測定する際に、検出する波長によっ てはヘモグロビンの吸収と重なり、正確な測定を行うことができない。従っ て、あらかじめ測っておいたヘモグロビンのスペクトルをFAOD反応後 のスペクトルから引き、その差によって測定する必要がある。しかしなが ら、この方法は、必ずしも正確でなく、しかも面倒である。本発明では、 比色法で測定を行う際に、ヘモグロビン自身の吸収を避け、長波長域(60 ①~800nm)で測定することができ、そうすることによって、試料中のヘモ グロビンの影響を受けず、より正確な測定が可能となる。例えばFAOD の作用により生成する過酸化水素を、ペルオキシダーゼの存在下、DA6 4、DA67、4AA/MAOS、4AA/MAPSなどの酸化発色や、 カタラーゼの作用により生成したアルデヒドとMBTHの縮合反応による 発色などによって検出する。この方法により、全血や溶血検体中のヘモグロビンA1cを含むアマドリ化合物はもちろん、糖化アルブミンの測定も可能である。ただし、検出波長は、これに限定されるものではなく、ヘモグロビンの吸収と重なる波長域であっても、上記のごとく、あらかじめ測っておいたヘモグロビンのスペクトルをFAOD反応後のスペクトルから引き、その差によって測定する方法も本発明方法に含まれる。

さらに、本発明方法に用いられるFAOD、ペルオキシダーゼ、カタラーゼ、プロテアーゼ等の酵素は、溶液状態で用いてもよいが、適当な固体支持体に固定化してもよい。例えば、ビーズに固定化した酵素をカラムに充填し、自動化装置に組み込むことにより、臨床検査など、多数の検体の日常的な分析を効率的に行うことができる。しかも、固定化酵素は再使用が可能であることから、経済効率の点でも好ましい。

さらには、酵素と発色色素と処理試薬とを適宜組み合わせ、臨床分析の みならず、食品分析にも有用なアマドリ化合物の分析のためのキットを得 ることができる。

酵素の固定化は当該技術分野で既知の方法により行うことができる。例 えば、担体結合法、架橋化法、包括法、複合法等によって行う。担体とし ては、高分子ゲル、マイクロカプセル、アガロース、アルギン酸、カラギ ーナン、などがある。結合は共有結合、イオン結合、物理吸着法、生化学 的親和力を利用し、当業者既知の方法で行う。

固定化酵素を用いる場合、分析はフロー又はバッチ方式のいずれでもよい。上記のごとく、固定化酵素は、血液試料中の糖化タンパクの日常的な分析(臨床検査)に特に有用である。

臨床検査が糖尿病診断を目的とする場合、診断の基準としては、結果を糖化タンパク濃度として表すか、試料中の全タンパク質濃度に対する糖化タンパク質濃度の比率(糖化率)又はフルクトシルアミン量で表す。全タンパク質濃度は、当業者既知の通常の方法(280mmの吸光度、ブラッドフォード法、Lowly法、ビュレット法など)で測定することができる。測定対象となるアマドリ化合物(糖化タンパク)が糖化アルブミンの場合、全アルブミン濃度はブロムクレゾールグリーン(BCG)、ブロムクレゾールパーブル(BCP)、ブロムフェノールブルー(BPB)などのフタレイン色素を用いる方法、メチルオレンジ、2ー(4'ーヒドロキンベンゼンアゾ)安息香酸(HAB(C)A)などのアゾ色素を用いる方法、ネフェロメトリー法、アルブミンの自然蛍光を利用する方法などによって測定できる。また、測定対象が糖化へモグロビンの場合、全ヘモグロビン法、ヘモグロビン自身の吸光度を利用する方法などによって測定できるがいずれの場合もこれに限定されるものではない。

本発明はまた、FAODと、試料中のアマドリ化合物の糖化部位がFAODと反応しやすい状態になるよう、試料を処理するための処理用試薬とを含む、試料中のアマドリ化合物の測定のための試薬又はキットを提供するものである。

試薬中のFAODの量は、終点分析を行う場合、試料あたり、通常1~

WO 97/13872 PCT/JP96/02964

100ユニット/ml、緩衝液はトリス-塩酸(pH8.0)が好ましい。 一過酸化水素の生成量に基づいてアマドリ化合物を測定する場合、発色系 としては、先述の「(1)反応生成物の量に基づく方法」に記載の酸化縮合に より発色する系、並びにロイコ型発色試薬等を用いることができる。

本発明のアマドリ化合物の測定試薬と、適当な発色剤ならびに比較のための色基準あるいは標準物質を組み合わせてキットとすることもできる。 そのようなキットは、予備的な診断、検査に有用であると考えられる。

上記の測定試薬及びキットは生体成分又は食品中の糖化タンパク量及び /又は糖化率の測定、あるいは、フルクトシルアミンを定量するために、 用いられるものである。

以下に実施例を挙げて本発明をさらに詳しく説明する。

製造例1 ギベレラ属由来のFAODの製造

ギベレラ・フジクロイ (IFO NO.6356) (Gibberella fujikuroi) をF ZL 0.5%、グルコース 1.0%、リン酸二カリウム 0.1%、リン酸ーナトリウム 0.1%、硫酸マグネシウム 0.05%、塩化カルシウム 0.01%、イーストエキス 0.2%を含有した培地(pH6.0)10Lに植菌し、ジャーファーメンターを用いて通気量 2L/分、攪拌速度 400 rpmの条件で28℃、24時間攪拌培養した。培養物は瀘過して集めた。

菌糸体170g(湿重量)を、2mMのDTTを含む、0.1M トリスー塩酸緩衝液(pH8.5)1Lに懸濁し、Dyno-Nillにより菌糸体を破砕した。破砕液を10.000rpmで15分間遠心分離し得られた液を粗酵素液(無細胞抽出液)とした。粗酵素液に40%飽和になるように硫酸アンモニウム(以下、硫安と略す)を加え、攪拌し、12.000rpmで10分間遠心分離した。得られた上清に75%飽和になるように硫安を加え、撹拌し、12.000rpmで10分間遠心分離した。沈殿を2mMのDTTを含

有する50mM トリスー塩酸緩衝液(pH8.5)(緩衝液A)に溶解し、 緩衝液Aにて一晩透析した。透析物を緩衝液Aにて平衡化したDEAE-セファセルカラムに吸着した。緩衝液Aにて洗浄した後、0-0.5Mの 塩化カリウム直線濃度勾配で溶出した。活性画分を集め、55%から75 %の硫安分画に供し、緩衝液Aにて一晩透析した。透析物に25%飽和に なるように硫安を加え、25%飽和硫安を含む緩衝液Aで平衡化したフェ ニルートヨパールカラムに吸着した。同緩衝液にて洗浄した後、硫安濃度 25-0%飽和の直線勾配で溶出した。活性画分を集め、40%飽和にな るように硫安を添加し、40%飽和硫安を含む緩衝液Aで平衡化したブチ ルートヨパールカラムに吸着した。同緩衝液にて洗浄した後、硫安濃度4 0-0%飽和の直線濃度勾配にて溶出した。活性画分を集め、80%飽和 となるように硫安を添加し、攪拌後、12.000rpm、10分間遠心分離 し、得られた沈殿を $0.1 \, \mathrm{M}$ の緩衝液 A に溶解した。その酵素溶液を $0.1 \, \mathrm{M}$ M塩化カリウムを含有する、0.1M緩衝液Aで平衡化したセファクリル S-200ゲル濾過クロマトクラフィーに供した。活性画分を集め、限外 瀘過で盪縮した。濃縮物をファルマシアFPLCシステムでMono Qカラ ムを用いて処理すること(緩衝液Aを用いた塩化カリウムの0-0.5M 直線濃度勾配による溶出)により、30~60ユニットの精製酵素を得た。

製造例2 フサリウム属由来のFAODの製造

フサリウム・オキシスポルムS-1F4 (FERM BP-5010) (Fusarium ox ysporum S-1F4)をFZL 0.5%、グルコース 1.0%、リン酸二カリ ウム0.1%、リン酸ーナトリウム 0.1%、硫酸マグネシウム 0.05%、塩化 カルシウム 0.01%, イーストエキス0.2%を含有する培地 (pH6.0)1 0 L に植菌し、ジャーファーメンターを用いて通気量2 L / 分、攪拌速度 400rpmの条件で28℃、24時間攪拌培養した。培養物はろ過して集

めた。 菌糸体の一部 (200g) を、2mMのDTTを含む、0.1M ト リスー塩酸緩衝液 (pH8.5)1 Lに懸濁し、Dyno-Millにより菌糸体を 破砕した。破砕液を10,000で15分間塩心分離し、得られた液を 粗酵素液 (無細胞抽出液) とした。粗酵素液に40%飽和になるように硫 酸アンモニウム(以下、硫安と略す)を加え、攪拌し、12,000rpmで 10分間遠心分離した。得られた上清に75%飽和になるように硫安を加 え、撹拌し、12.000rpmで10分間遠心分離した。沈殿を2mMのD TTを含有する50mM トリスー塩酸緩衝液(pH8.5)(以下、緩衝 液Aと略す)に溶解し、緩衝液Aにて一晩透析した。透析物を緩衝液Aに て平衡化したDEAE-セファセルカラムに吸着した。同緩衝液Aにて洗 浄した後、0-0.5 Mの塩化カリウム直線濃度勾配で溶出した。活性画 分を集め、55%から75%の硫安分画に供し、緩衝液Aにて一晩透析し た。透析物に25%飽和になるように硫安を加え、25%飽和硫安を含む 緩衝液Aで平衡化したフェニルートヨパールカラムに吸着した。同緩衝液 にて洗浄した後、硫安濃度25-0%飽和の直線勾配で溶出した。活性画 分を集め、40%飽和になるように硫安を添加し、40%飽和硫安を含む 緩衝液Aで平衡化したブチルートヨパールカラムに吸着した。同緩衝液に て洗浄した後、硫安濃度40-0%飽和の直線濃度勾配にて溶出した。活 性画分を集め、80%飽和となるように硫安を添加し、攪拌後、12.000rp m、10分間遠心分離し、得られた沈殿を0.1Mの緩衝液Aに溶解した。 その酵素溶液を0.1M塩化カリウムを含有する、0.1M緩衝液Aで平衡 化したセファクリルS-200ゲルろ過クロマトクラフィに供した。活性 画分を集め、限外瀘過で濃縮した。濃縮物をファルマシアFPLCシステ ムでMono Qカラムを用いて処理すること(緩衝液Aを用いた塩化カリウ LOO-0.5 M直線濃度勾配による溶出)により、30-60 ユニット

の精製酵素を得た。

製造例3 フサリウム又はアスペルギルス属由来のFAODの製造 フサリウム・オキシスポルム・f. sp.・リニ (IFO NO. 5880) (Fusarium oxysporum f. sp. lini) 又はアスペルギルス・テレウスGP1 (FERM BP-5684) (Aspergillus terreus GP1)をFZL 0.5%、グルコース 1.0%、リン酸ニカリウム 0.1%、リン酸ーナトリウム 0.1%、硫酸マグネシウム 0.05%、塩化カルシウム 0.01%、イーストエキス 0.2%を含有した培地 (pH6.0)10Lに植菌し、ジャーファーメンターを用いて通気量2L/分、攪拌速度400грmの条件で28℃、80時間攪拌培養した。培養物は濾過して集めた。

次いで、菌糸体270g(湿重量)を、2mMのDTTを含む、0.1 Mトリスー塩酸緩衝液(pH8.5)800mlに懸濁し、Dyno-Millにより菌糸体を破砕した。破砕液を9.500rpmで20分間遠心分離し、得られた上清(無細胞抽出液)を粗酵素液として、以下の方法で精製した。

ステップ1:硫安分画

粗酵素液に4.0%飽和になるように硫酸アンモニウム(以下、硫安と略す)を加え、遠心分離(4%、1.2.000 rpm)して余分なタンパクを除去した。さらに、上清に硫安を7.5%飽和になるように添加して沈殿を回収した。

ステップ2:疎水クロマトグラフィー (バッチ法)

ステップ1で得られた沈殿を、 $2 \, \text{mMoDTT}$ を含有する $50 \, \text{mM}$ トリスー塩酸緩衝液($p \, H \, 8.5$)(以下、緩衝液 $A \, c$ 路す)に溶解し、等量の硫安 $40 \, \text{%を含む緩衝液} \, A \, c$ 添加した。同粗酵素液にブチルトヨパール(butyl-TOYOPEARL)樹脂 $200 \, \text{ml}$ を加えて、バッチ法による吸着を行った。溶出も、緩衝液 $A \, c$ 用いたバッチ法で行い、活性画分は硫

安沈殿により濃縮した。

ステップ3:疎水クロマトグラフィー

25%硫安を含む緩衝液Aで平衡化したフェニルトヨパール(phenyl-TOYOPEARL)カラムに濃縮した活性画分を吸着させ、同緩衝液で洗浄後、25~0%硫安の直線勾配で溶出した。回収した活性画分は硫安沈殿により濃縮し、次のステップに用いた。

ステップ4:疎水クロマトグラフィー(カラム法)

回収した活性画分をブチルトヨパールカラム(40%硫安を含む緩衝液 Aで平衡化)に用いた。濃縮液を吸着させ、同緩衝液で洗浄した。活性画 分は40~0%硫安の直線勾配で得られた。

ステップ5:イオン交換クロマトグラフィー

次に、DEAE-トヨパール(DEAE-TOYOPEARL)カラム クロマトグラフィーを行った(緩衝液Aで平衡化)。洗浄画分にFAOD 活性が認められたため、これを回収して硫安で濃縮してから、次のステップに用いた。

ステップ6:ゲル濾過

最後にセファクリルー300によるゲル瀘過をおこなった(0.1M N a C1, 2mM DTTを含む0.1Mトリスー塩酸緩衝液(pH8.5)で平衡化)。これにより、70~100ユニットの酵素標品を得た。

製造例4 ペニシリウム属由来のFAODの製造

ペニシリウム・ヤンシネルムS-3413(FERN BP-5475)(Penicill ium janthinellum S-3413)をF2L 0.5%、グルコース 1.0%、リン酸ニカリウム 0.1%、リン酸ーナトリウム 0.1%、硫酸マグネシウム 0.05%、塩化カルシウム 0.01%、イーストエキス 0.2%を含有した培地(pH6.0)10Lに植菌し、ジャーファーメンターを用いて

通気量2L/分、攪拌速度500rpmの条件で28℃、36時間攪拌培養した。培養物は濾過して集めた。

菌糸体 $4\,1\,0\,g$ (湿重量)を、 $0.1\,m$ MのDTTを含む、 $0.1\,M$ リン酸カリウム緩衝液($p\,H\,7.5$) $\hat{8}\,\hat{0}\,\hat{0}$ miに懸濁し、 $\hat{0}$ yno-Millicより菌糸体を破砕した。破砕液を $9.5\,0\,0$ rpmで $2\,0$ 分間遠心分離し、得られた液を粗酵素液(無細胞抽出液)とし、以下の方法で精製した。

知酵素液に40%飽和になるように硫酸アンモニウム(以下、硫安と略 す) を加え、攪拌し、12.000rpmで10分間遠心分離した。得られた 上清に75%飽和になるように硫安を加え、撹拌し、12.000rpmで10分 間遠心分離した。沈殿を0.1mMのDTTを含有する50mM リン酸カ リウム緩衝液 (pH7.5)(以下、緩衝液Aと略す) に溶解した。得られ た酵素溶液を緩衝液Aに対し一晩透折した。外液の交換は2回行った。透 析後の酵素溶液は緩衝液Aで平衡化したDEAE-セファセルカラム(4. 2×26 cm) にアプライした。活性画分は同緩衝液による洗浄画分に認 められたので、これを集め、0-55%飽和の硫安分画に供した。次に2 5%飽和硫安を含む緩衝液Aで平衡化したフェニルーセファロース6FF (Low Substitute) カラム (HR10/10) に吸着した。同緩衝液にて 洗浄した後、硫安濃度25-0%飽和の直線勾配で溶出した。活性画分を 集め、硫安濃縮後、得られた酵素溶液を 0.1 mM DTTを含む 0.2 Mリ ン酸カリウム緩衝液 (pH7.5) にて平衡化したスーパーデックス20 Opgカラムによりゲル瀘過を行い、70~100ユニットの精製酵素を 得た。

実施例1

本実施例では製造例1で得たギベレラ属由来のFAODを用いた。

0.1%のフルクトシルポリリジン溶液をBMY・NBT検定法を用い

て検定したところ、 $750 \mu mol/1$ のフルクトサミン値を示すことが分かった。

この溶液を蒸留水で希釈することにより、 $0\sim750~\mu\,\mathrm{mol}/1$ の範囲で変化する一連の試料を作成した。 FAOD 反応液は、以下のように調製した。

4 5 mM 4 - アミノアンチピリン溶液	50μ1
6 0 ■M フェノール溶液	50μ1
6 0 ユニット/ml ペルオキシダーゼ溶液	50μ1
0.1M トリスー塩酸緩衝液(pH8.0)	500μ1
7.6ユニット/ml FAOD溶液	3 0 μ1
0.05% トリプシン(エンド型プロテアーゼ) 溶液	100μ1
蒸留水で全量を1400μ1とした。	

7.6ユニット/mlFAOD溶液は、製造例1で得たギベレラ・フジクロイ (IFO NO.6356) (<u>Gibberella fujikuroi</u>) 由来のFAODを7.6ユニット/mlになるよう、0.1M トリスー塩酸緩衝液 (pH8.0) で希釈して調製した。

この反応液を30℃でインキュベートし、作成したフルクトシルポリリジン溶液各100μ1を加え、30分後の505nmにおける吸光度を測定した。この方法で得られるフルクトサミン値と吸光度との関係を第1図に示す。図中、縦軸は505nmの吸光度(過酸化水素の量に対応)、横軸はフルクトサミン値を表す。図は、フルクトサミン値と過酸化水素発生量が相関関係にあることを示している。

実施例2 糖化ヒト血清アルブミン濃度の測定

本実施例では製造例2で得たフサリウム属由来のFAODを用いた。糖化ヒト血清アルブミン(シグマ社)を0.9%塩化ナトリウム水溶液で溶

解させ、 $0\sim10\%$ の範囲で濃度の異なる糖化ヒト血清アルブミン溶液を調製した。

これらの溶液を用いて以下の操作を行った。

1) 試料の処理・

糖化アルブミン溶液

 $60 \mu 1$

12.5 mg/ml プロテアーゼXIV (シグマ社)

(エンド型プロテアーゼ) 溶液

 $60 \mu 1$

 $20 \mu 1$

この混合液を37℃で30分間インキュベートし、その後、約90℃で 5分間、加熱して熱変性させた。

2) 活性測定

FAOD反応液は以下のようにして調製した。

45mM 4ーアミノアンチピリン溶液	3 0 μ 1
60mM N-エチル-N-(2-ヒドロキシー	
3ースルホプロピル)-=-トルイジン溶液	30μ1
60ユニット/ml ペルオキシダーゼ溶液	3 O μ 1
0.1M トリスー塩酸緩衝液 (pH8.0)	300μ1

蒸留水で全量を1mlとした。

10 3ユニット/ml FAOD溶液

10.3ユニット/ml FAOD溶液は、製造例2で得たフサリウム・オキシスポルムS-1F4 (FERM BP-5010) (<u>Fusarium oxysporum S-1F4</u>) 由来のFAODを10.3ユニット/mlになるよう、0.1Mトリス-塩酸緩衝液 (pH 8.0) で希釈して調製した。

FAOD反応液を30℃で2分間インキュベートした後、上記の各処理 溶液を $100\mu1$ 加え、30分後の555mにおける吸光度を測定した。 この方法で得られる糖化アルブミンの濃度と吸光度との関係を第2図に示 す。図中の縦軸は555mmの吸光度(過酸化水素の量に対応)、横軸は糖 化アルブミンの濃度を表す。図は、糖化アルブミンの濃度と過酸化水素発 生量が相関関係にあることを示している。

実施例3 糖化ヒト血清アルブミン濃度の測定

本実施例では製造例1で得たギベレラ属由来のFAODを用いたことを除いては、実施例2と同様の操作を繰り返した。FAOD溶液は、製造例1で得たギベレラ・フジクロイ (IFO No. 6356)(Gibberella fujikuroi)由来のFAODを6. 6ユニット/mlになるよう0. 1Mトリスー塩酸緩衝液 (pH8. 0)で希釈して調製した。

この方法で得られる糖化アルブミンの濃度(図中の横軸)と吸光度(過酸化水素量に対応:縦軸)との関係を第3図に示す。図は、糖化アルブミンの濃度と過酸化水素発生量が相関関係にあることを示している。

実施例4 糖化ヒト血清アルブミン濃度の測定

本実施例では製造例 3 で得たフサリウム属由来のFAODを50 μ1用いたことを除いては、実施例 2 と同様の操作を繰り返した。FAOD溶液は、製造例 3 で得たフサリウム・オキシスポルム・f. sp.・リニ (IFO NO. 5880) (Fusarium oxysporum f. sp. lini) 由来のFAODを6. 0ユニット/mlになるよう0. 1 Mトリスー塩酸緩衝液 (pH8. 0) で希釈して調製した。

この方法で得られる糖化アルブミンの濃度(図中の横軸)と吸光度(過酸化水素量に対応:縦軸)との関係を第4図に示す。図は、糖化アルブミンの濃度と過酸化水素発生量が相関関係にあることを示している。

実施例5 糖化ヒト血清アルブミン濃度の測定

本実施例では製造例3で得たアルベルギルス属由来のFAODを用いたことを除いては、実施例2と同様の操作を繰り返した。すなわち、FAO

D溶液は、アスペルギルス・テレウスGP1 (FERN BP-5684) (Aspergil lus terreus GP1)由来のFAODを6.0ユニット/町になるように0.1 Mトリスー塩酸緩衝液 (pH8.0) で希釈して調製した。

この方法で得られる糖化アルブミンの濃度(図中の横軸)と吸光度(過酸化水素量に対応:縦軸)との関係を第5図に示す。図は、糖化アルブミンの濃度と過酸化水素発生量が相関関係にあることを示している。

実施例6 ヒト血清アルブミンの糖化率の測定

本実施例では、製造例3で得たフサリウム属由来のFAODを用いた。 0.9%塩化ナトリウム水溶液 3m1に、糖化ヒト血清アルブミン (シグマ社) 150m8、ヒト血清アルブミン(シグマ社) 150m8をそれぞれ溶解した。これらの溶液を混合することにより糖化率の異なる溶液を作製し、自動グリコアルブミン測定装置(京都第一科学)を用いて検定したところ、その糖化率は、 $24.6\%\sim61.1\%$ であった。

これらの溶液を用いて以下の操作を行った。

1) 試料の処理

糖化アルブミン溶液

 $60\mu1$

12.5 mg/ml プロテアーゼXIV (シグマ社)

(エンド型プロテアーゼ) 溶液

 $60 \mu 1$

この溶液を37℃で30分間インキュベートし、その後、約90℃で5分間加熱して熱変性させた。

2) 活性測定

FAOD反応液は以下のようにして調製した。

4.5mM 4ーアミノアンチピリン溶液

 $30 \mu 1$

60mM N-エチルーN-(2-ヒドロキシー

3-スルホプロピル) -m-トルイジン溶液

30 µ 1

6 0 ユニット/ml ペルオキシダーゼ溶液3 0 μ 10. 1 M トリスー塩酸緩衝液 (pH 8. 0)3 0 0 μ 16 ユニット/ml FAOD溶液5 0 μ 1

蒸留水で全量を1回とした。

6ユニット/ml FAOD溶液は、製造例3で得たフサリウム・オキシスポルム・f.sp.・リニ (IFO NO.5880) (<u>Fusarium oxysporum f.sp.lini</u>) 由来のFAODを6ユニット/mlになるよう、0.1Mトリスー塩酸緩衝液 (pH 8.0) で希釈して調製した。

FAOD反応被を30%で2分間インキュベートした後、上記の各処理 溶液を100 μ 1加え、30分後の555 nmにおける吸光度を測定した。こ の方法で得られるアルブミンの糖化率と吸光度との関係を第6図に示す。 図中の縦軸は555 nmの吸光度(過酸化水素の量に対応)、横軸はアルブ ミンの糖化率を表す。図は、アルブミンの糖化率と過酸化水素発生量が相 関関係にあることを示している。

実施例7 ヒト血清アルブミンの糖化率の測定

本実施例では製造例3で得たアルベルギルス属由来のFAODを用いたことを除いては、実施例6と同様の操作を繰り返した。すなわち、FAOD溶液は、アスベルギルス・テレウスGP1 (FERM BP-5684) (Aspergil lus terreus GP1)由来のFAODを6.0ユニット/mlになるように0.1 Mトリスー塩酸緩衝液 (pH8.0) で希釈して調製した。

この方法で得られるアルブミンの糖化率(図中の横軸)と吸光度(過酸化水素量に対応:縦軸)との関係を第7図に示す。図は、アルブミンの糖化率と過酸化水素発生量が相関関係にあることを示している。

実施例8 ヒト血清アルブミンの糖化率の測定

本実施例では、製造例1で得たギベレラ属由来のFAODを20μ1用

いたことを除いては、実施例6と同様の操作を繰り返した。FAOD溶液は、製造例1で得たギベレラ・フジクロイ(IFO No. 6356)(Gibberella fu jikuroi)由来のFAODを6. 6ユニット/mlになるよう0. 1Mトリスー塩酸緩衝液(pH8.0)で希釈して調製した。

この方法で得られるアルブミンの糖化率(図中の横軸)と吸光度(過酸化水素量に対応:縦軸)との関係を第8図に示す。図は、アルブミンの糖化率と過酸化水素発生量が相関関係にあることを示している。

実施例9 ヒト血清アルブミンの糖化率の測定

本実施例では製造例2で得たフサリウム属由来のFAODを20μ1用いたことを除いては、実施例6と同様の操作を繰り返した。FAOD溶液は、製造例2で得たフサリウム・オキシスポルム・S-1F4 (FERN BP-5010) (Fusarium oxysporum S-1F4) 由来のFAODを10. 3ユニット/mlになるよう0.1Mトリスー塩酸緩衝液 (pH8.0) で希釈して調製した。

この方法で得られるアルブミンの糖化率(図中の横軸)と吸光度(過酸化水素量に対応:縦軸)との関係を第9図に示す。図は、糖化アルブミンの濃度と過酸化水素発生量が相関関係にあることを示している。

実施例10 糖化ヘモグロビン濃度の測定

本実施例では、製造例3で得たフサリウム属由来のFAODを用いた。 グリコヘモグロビンコントロール(シグマ社)を蒸留水で溶解させ、0~ 30%の範囲で濃度の異なる糖化ヘモグロビン溶液を調製した。 これらの溶液を用いて以下の操作を行った。

1) 試料の処理

糖化ヘモグロビン溶液

 $\cdot 25 \mu 1$

500ユニット/ml アミノペプチダーゼ

(エキソ型プロテアーゼ) 溶液

 $5\mu1$

0.1M トリスー塩酸緩衝液 (pH8.0)

 $20 \mu 1$

この混合液を3.0で3.0分間インキュベートした。その後、1.0%トリクロロ酢酸を5.0 μ 1加えて撹拌し、0 $\mathbb C$ で 3.0 分間静置した後 1.2.0 0 $\mathbb C$ \mathbb

2) 活性測定

FAOD反応液は以下のようにして調製した。

3 mM N- (カルボキシメチルアミノカルボニル) -

4,4ビス (ジメチルアミノ) ビフェニルアミン溶液 (DA64) 30 μ1

60ユニット/回 ペルオキシダーゼ溶液

 $30 \mu 1$

0.1M トリスー塩酸緩衝液 (pH8.0)

300 41

4ユニット/ml FAOD溶液

10 41

蒸留水で全量を1mlとした。

4ユニット/ml FAOD溶液は、製造例3で得たフサリウム・オキシスポルム・f. sp.・リニ (IFO NO. 5880) (Fusarium oxysporum f. sp. lini) 由来のFAODを4ユニット/mlになるよう、0.1Mトリスー塩酸緩衝液 (pH 8.0) で希釈して調製した。

FAOD反応液を30℃で2分間インキュベートした後、上記の各処理 溶液を80μ1加え、30分後の727mmにおける吸光度を測定した。こ の方法で得られる糖化ヘモグロビンの濃度と吸光度との関係を第10図に 示す。図中の縦軸は727mmの吸光度(過酸化水素の量に対応)、横軸は 糖化ヘモグロビンの濃度を表す。図は、糖化ヘモグロビンの濃度と過酸化 水素発生量が相関関係にあることを示している。

実施例11 糖化ヘモグロビン濃度の測定

本実施例では製造例 3 で得たアルベルギルス属由来のFAODを用いたことを除いては、実施例 1 0 と同様の操作を繰り返した。すなわち、FAOD溶液は、アスペルギルス・テレウス G P 1 (FERM BP-5684) (Aspergillus terreus GP1)由来のFAODを 4. 0 ユニット/mlになるように Û. 1 Mトリスー塩酸緩衝液 (p H 8. 0) で希釈して調製した。

この方法で得られる糖化ヘモグロビンの濃度と吸光度との関係を第11 図に示す。図中の縦軸は727nmの吸光度(過酸化水素の量に対応)、横軸は糖化ヘモグロビンの濃度を表す。図は、糖化ヘモグロビンの濃度と過酸化水素発生量が相関関係にあることを示している。

実施例12 糖化ヘモグロビン量の測定

1) 試料の処理

 $0\sim 15$ mgのグリコヘモグロビンコントロール $E(\nu)$ グマ社)を 100μ 1の蒸留水で溶解した。これらの試料に塩酸アセトン(1N 塩酸/アセトン1/1001 mlを加え、12000回転で10分間遠心分離した。沈殿物をジェチルエーテル 500μ 1で洗浄し、減圧乾固した。さらに8M 尿素 100μ 1を加え、20分間沸騰水中で加熱後冷却し、5.2 ユニット/mlトリブシン 300μ 1と混合、37 で3 時間インキュベートした。その後、沸騰水中で5分間加熱し、試料を調製した。

2)活性測定

FAOD反応液は以下のようにして調製した。

3 mM N- (カルボキシメチルアミノカルボニル) -

4.4ーピス(ジメチルアミノ)ビフェニルアミン溶液	3 0 μ1
60ユニット/町 ペルオキシダーゼ溶液	3 0 μ1
0.1M トリスー塩酸緩衝液 (pH 8.0)	3 0 0 μ 1
25ユニット/ml FAOD溶液	10 41

蒸留水で全量を1回とした。

25ユニット/m1 FAOD溶液は、製造例4の方法で得たFAODを 25ユニット/m1になるよう、0.1 Mリン酸カリウム緩衝液(pH7.5)で希釈して調製した。

このFAOD反応液に上記の各処理基質を150μ1加え、30℃でインキュベートし、30分後の727mmにおける吸光度を測定した。この方法で得られる糖化ヘモグロビンの量と吸光度との関係を第12図に示す。図中の縦軸は727nmの吸光度(過酸化水素の量に対応)、横軸は糖化ヘモグロビンの濃度を表す。図は、糖化ヘモグロビンの量と過酸化水素発生量が相関関係にあることを示している。

実施例13 糖化ヘモグロビン量の測定

1) 試料の処理

 $30 \, \mathrm{mg}$ のグリコヘモグロビンコントロールE(シグマ社)を蒸留水 $200 \, \mathrm{m}$ の $\mu 1$ で溶解し、 $8 \, \mathrm{M}$ 尿素、 $0.2\% \, \mathrm{EDTA} \cdot 2$ ナトリウムを含む $570 \, \mathrm{m}$ トリスー塩酸緩衝液(p H 8.8) $1 \, \mathrm{m}$ と $2 \, \mathrm{m}$ ン $2 \, \mathrm{m}$ と $2 \, \mathrm{m}$ ン $2 \, \mathrm{m}$ と $2 \, \mathrm{m}$ の $2 \, \mathrm{m}$ と $2 \, \mathrm{m}$ を $2 \, \mathrm{m}$ と $2 \, \mathrm{m}$

2)活性測定

FAOD反応液は以下のようにして調製した。

3mM N- (カルボキシメチルアミノカルボニル) ー

4,4ービス(ジメチルアミノ)ビフェニルアミン溶液

3 0 μ 1

6 0 ユニット/ml ペルオキシダーゼ溶液

 $30 \mu 1$

0.1M トリスー塩酸緩衝液 (pH8.0)

300 41

25ユニット/ml FAOD溶液

 $10 \mu 1$

処理試料

 $0 \sim 13.2 mg$

蒸留水で全量を900μ1とした。

25ユニット/ml FAOD溶液は、製造例 4の方法で得たFAODを 25ユニット/mlになるよう、0.1 Mリン酸カリウム緩衝液(pH7.5)で希釈して調製した。

このFAOD反応液を30℃でインキュベートし、30分後の727mmにおける吸光度を測定した。この方法で得られる糖化ヘモグロビンの量と吸光度との関係を第13図に示す。図中の縦軸は727nmの吸光度(過酸化水素の量に対応)、横軸は糖化ヘモグロビンの濃度を表す。図は、糖化ヘモグロビンの量と過酸化水素発生量とが相関関係にあることを示している。

実施例14 ヘモグロビンA1c値の側定

本実施例では、製造例4に記載の方法で得たペニシリウム属由来のFAODを用いた。グリコヘモグロビンコントロールN及びE(シグマ社)を蒸留水で溶解した。これらの溶液を混合することにより、ヘモグロビンA1c値の異なる溶液を作成し、自動グリコヘモグロビン測定装置(京都第一科学)を用いて検定したところ、その値は5.1%~9.2%であった。

これらの溶液を用いて以下の操作を行った。

1) 試料の処理

グリコヘモグロビン溶液 25 μ1 5 0 0 ユニット/ml アミノペプチダーゼ (エキソ型プロテアーゼ) 溶液 5 μ1 0 . 1 M トリスー塩酸緩衝液 (pH 8 . 0) 20 μ1

この混合液を30 \mathbb{C} で30 \mathcal{O} 間インキュベートした。その後、10 %トリクロロ酢酸を50 μ 1加えて撹拌し、0 \mathbb{C} \mathbb{C} 30 \mathcal{O} 間静置した後 120 0 0 \mathbb{C} \mathbb{C}

2) 活性測定

FAOD反応液は以下のようにして調製した。

3mM N-(カルボキシメチルアミノカルボニル)-

4.4-ビス (ジメチルアミノ) ビフェニルアミン溶液 (DA64) 3 0 μl

60ユニット/ml ペルオキシダーゼ溶液

 $30 \mu 1$

0.1M トリスー塩酸緩衝液(pH8.0)

3 0 0 µ1

12ユニット/ml FAOD溶液

 $10 \mu 1$

蒸留水で全量を1回とした。

12ユニット/ml FAOD溶液は、製造例4で得たペニシリウム・ヤンシネルムS-3413 (FERM BP-5475) (Penicillium janthinellum S-3413) 由来のFAODを12ユニット/mlになるよう、0.1Mリン酸カリウム緩衝液 (pH7.5) で希釈して調製した。

FAOD反応液を30℃で2分間インキュベートした後、上記の各処理 溶液を80μ1加え、30分後の727mにおける吸光度(過酸化水素量 に対応)を測定した。あらかじめ全へモグロビン量を415nmにおける 吸光度で測定し、全へモグロビン量(415nmの吸光度)に対するバリンの糖化量(727nmの吸光度)の割合を算出した。この方法で得られる全へモグロビンに対するバリンの糖化量の割合(縦軸)と、ヘモグロビンA1c値(横軸)との関係を第14図に示す。図はヘモグロビンA1c値とFAODを用いて測定したヘモグロビン中のバリンの糖化量の割合が 相関関係にあることを示している。

実施例15 ヘモグロビンA1c値の測定

へモグロビンA 0 試薬(シグマ社)を蒸留水で2.3 Mになるように溶解した。この溶液を自動へモグロビン測定装置(京都第一科学)を用いて分画し、ヘモグロビンA 1 c 画分とヘモグロビンA 0 画分を分取、精製した。両画分を比率混合することにより、ヘモグロビンA 1 c 値 0 %~5 2.0%の基質試料を得た。

1) 試料の処理

基質試料	250 μg
500ユニット/ml アミノペプチダーゼ溶液	5 μ1
1.0M トリスー塩酸緩衝液(pH8.0)	15μ1

これらを混合し、蒸留水で全量を 200μ 1とした。その後、10%トリクロロ酢酸を 200μ 1加えて撹拌し、0%で20分間静置した後、<math>12000rpmで10分間遠心分離を行った。得られた上清に<math>5M NaOH を約 40μ 1加え中性溶液にした。

2)活性測定

FAOD反応液は以下のようにして調製した。

3 mM N- (カルボキシメチルアミノカルボニル) -

4,4-ビス(ジメチルアミノ)ビフェニルアミン溶液	100 41
6 0 ユニット/ml ペルオキシダーゼ溶液	30 41
0.1M トリスー塩酸緩衝液 (pH8.0)	1000 41
16ユニット/ml FAOD溶液	15 41

蒸留水で全量を2.6回とした。

16ユニット/m1 FAOD溶液は、製造例 4 で得たFAODを16 ユット/m1になるよう、0.1 Mリン酸カリウム緩衝液(pH7.5)で希釈して調製した。

FAOD反応液を30℃で2分間インキュベートした後、上記の各処理 溶液を400μ1加え、さらに30分インキュベートした後の727mmに おける吸光度を測定した。この方法で得られる基質のヘモグロビンA1 c 値と基質の関係を第15図に示す。図中の縦軸は727mmにおける吸光度 (過酸化水素量に対応)、横軸はヘモグロビンA1 c 値を表す。図は、ヘ モグロビンA1 c 値と過酸化水素の発生量が相関関係にあることを示して いる。

実施例16 フルクトシルバリン濃度の電極測定

作用極、対極に白金、参照極に銀/塩化銀電極を用いた。これらの電極を0.1Mリン酸カリウム緩衝液(pH7.5) 5mlに12ユニット/mlFAOD溶液は、0.1Mリン酸カリウム緩衝液(pH7.5) 5mlに12ユニット/mlFAOD溶液は、製造例4で得たペニシリウム・ヤンシネルムS-3413由来のFAODを12ユニット/mlになるよう、0.1Mリン酸カリウム緩衝液(pH7.5)で希釈して調製した。この反応液に、フルクトシルバリンを添加し、30℃、600mV定電圧での電流値を測定した。この方法で得られるフルクトシルバリン濃度と電流値との関係を第16図に示す。図中の縦軸は600mV定電圧での電流値(過酸化水素の量に対応)、横軸はフルクトシルバリン濃度を表す。図はフルクトシルバリンと過酸化水素発生量が相関関係にあることを示している。

実施例17 FAOD固定化酵素を用いたフルクトシルリジンの測定

10.32 コニット/ml FAOD 溶液 10 mlに 3% アルギン酸ナトリウム 水溶液 20 mlを加えた。この混合液を注射器に入れ、37 ℃に保った 0.5 M塩化カルシウム溶液(pH6~8)中に一定速度で適下するとビーズが得られた。このビーズを硬化させ固定化酵素を得た。10.32 ニット/ml FAOD 溶液は、製造例 2 で得たフサリウム・オキシスポルム 5 ー

1 F 4 由来の F A O D を 1 0.3 ユニット/mlになるよう、 0.1 M トリスー 塩酸緩衝液 (p H 8.0) で希釈して調製した。

この固定化酵素を用い、以下の方法でフルクトシルリジン濃度を測定した。

反応液

0.1M トリスー塩酸緩衝液(pH8.0)	3 0 0 μ 1
45mM 4-アミノアンチピリン溶液	3 0 μ 1
60mM N-エチル-N-(2-ヒドロキシ-	:
3-スルホプロピル) -m-トルイジン溶液	3 O µ 1
6 0 ユニット/ml ペルオキシダーゼ溶液	3 O µ 1
FAOD固定化酵素	4 0 mg

蒸留水で全量を1 mlとした。

この反応液にフルクトシルリジンを添加し、30℃、3分後の555nmにおける吸光度を測定した。この方法で得られるフルクトシルリジン機度と吸光度との関係を第17図に示す。図中の縦軸は555nmの吸光度(過酸化水素の量に対応)、横軸はフルクトシルリジンの濃度を表す。図は、フルクトシルリジンの濃度と過酸化水素発生量が相関関係にあることを示している。

実施例18 糖化アルブミン測定用キット

発色試薬

B: $180 \mu mol$ N-エチル-N-(2-ヒドロキシ-3-スルホプロピル) -m-トルイジン/40ml

C:50ユニット FAOD+180ユニット ペルオキシダーゼ/3 Oml O.1Mトリスー塩酸緩衝液 (pH8.0)

処理試薬

_D: 75mg プロテアーゼXIV/6ml

測定に際しては、ヒト血清試料 50μ 1に対しD被 50μ 1、ABCの混合被 1m1を使用する。

実施例19 ヘモグロビンA1c測定用キット

発色試薬

B:30ユニット FAOD+180ユニット ペルオキシダーゼ/3 0ml 0.1Mトリス-塩酸緩衝液 (pH8.0)

処理試薬

C:250ユニット アミノペプチダーゼ/2.5ml 0.1Mトリスー塩酸緩衝液(pH8.0)

D:500mg トリクロロ酢酸/5ml

E: 10 mmol NaOH/5ml

測定に際しては、ヒト血清試料 25μ 1 に対し C 液 25μ 1、D · E 液 50μ 1、A B の混合液 1 π 1を使用する。

請求の範囲

- 1. 酵素を用いて測定することを特徴とする、アマドリ化合物含有試料中のアマドリ化合物の測定方法。
- 2. 試料が生体成分又は食品である請求項1記載の方法。
- 3. 試料の糖化率を測定することにより行うことを特徴とする、請求項1 又は2記載の方法。
- 4. 試料中のフルクトシルアミンの定量により行うことを特徴とする、請求項1又は2記載の方法。
- 5. 試料中の糖化物濃度の測定により行うことを特徴とする、請求項1又は2記載の方法。
- 6. 酵素がフルクトシルアミノ酸オキシダーゼであることを特徴とする、 請求項1~5のいずれかに記載の方法。
- 7. フルクトシルアミノ酸オキシダーゼが真菌類をフルクトシルリジン及び/又はフルクトシルN°-Z-リジン含有培地で培養することによって得られることを特徴とする、請求項6記載の方法。
- 8. 試料中のアマドリ化合物の糖化部位がフルクトシルアミノ酸オキシダーゼと反応しやすい状態になるよう、試料を処理した後、あるいは処理しながら、フルクトシルアミノ酸オキシダーゼを作用し、反応混合物における酸素の消費量又は生成物の量を測定することを特徴とする、請求項6~7のいずれかに記載の方法。
- 9. 試料の処理方法が、プロテアーゼ処理及び/又は化学的、物理的処理であることを特徴とする、請求項8記載の方法。
- 10. プロテアーゼがエキソ型プロテアーゼ及び/又はエンド型プロテアーゼであることを特徴とする、請求項9記載の方法。
- 11. 化学的、物理的処理が酸、アルカリ、界面活性剤、変性剤、熱、マ

イクロウエーブ及び圧力による処理である請求項9記載の方法。

12. 試料をエキソ型プロテアーゼで処理したのち、あるいは処理しながら、フルクトシルアミノ酸オキシダーゼを作用させて、酸素の消費量又は反応生成物の量を測定することを特徴とする、該試料中のペプチド鎖末端に糖化部位を有するアマドリ化合物の分析方法。

- 13. アマドリ化合物がヘモグロビンAlcである請求項12記載の方法。
- 14. 試料をエンド型プロテアーゼで処理したのち、あるいは処理しながら、フルクトシルアミノ酸オキシダーゼを作用させて、酸素の消費量又は反応生成物の量を測定することを特徴とする、該試料中のペプチド鎖内部に糖化部位を有するアマドリ化合物の分析方法。
- 15. アマドリ化合物が糖化アルブミンである請求項14記載の方法。
- 16. 試料中にヘモグロビンを含有する場合には、アマドリ化合物を600~800nmにおける吸光度によって測定することを特徴とする、請求項1~15のいずれかに記載の方法。
- 17. 反応混合物に、ペルオキシダーゼと酸化されて色素を生成する試薬を作用し、反応混合物中の過酸化水素の発生量を測定することを特徴とする、請求項16記載の方法。
- 18. 試薬が、N-(カルボキシメチルアミノカルボニル)-4.4-ビス(ジメチルアミノ)ビフェニルアミン(DA64)、10-(カルボキシメチルアミノカルボニル)-3.7-ビス(ジメチルアミノ)フェノチアジン(DA67)、4-アミノアンチピリン(4AA)/<math>N-エチルーN-(2-ヒドロキシー3-スルホプロピル)-3、5-ジメチルアニリン(MAOS)、4-アミノアンチピリン(4AA)/N-エチルーN-スルホプロピル-3、5-ジメチルアニリン(MAPS)からなる群から選択されるものである請求項17記載の方法。

- 1.9. 反応混合物に、カタラーゼを作用し、生成するアルデヒドの量を測定することを特徴とする請求項1.6 記載の方法。
- 20. アマドリ化合物を電気化学的に測定することを特徴とする、請求項1~15のいずれかに記載の方法。
- 21. フルクトシルアミノ酸オキシダーゼの作用で消費する、酸素量を電極で測定することを特徴とする請求項20記載の方法。
- 22. フルクトシルアミノ酸オキシダーゼの作用により生成する、過酸化水素量を電極で測定することを特徴とする請求項20記載の方法。
- 23. フルクトシルアミノ酸オキシダーゼと電極との間に少なくとも1つ以上の電子伝達体を介在させ、得られる酸化、遠元電流あるいはその電気量を測定することを特徴とする請求項20記載の方法。
- 24. フルクトシルアミノ酸オキシダーゼの作用により生成する、過酸化水素と電極との間に少なくとも1つ以上の電子伝達体を介在させ、得られる酸化、還元電流あるいはその電気量を測定することを特徴とする請求項20記載の方法。
- 25. フルクトシルアミノ酸オキシダーゼと、試料中のアマドリ化合物の 糖化部位がフルクトシルアミノ酸オキシダーゼと反応しやすい状態になる よう、試料を処理するための試薬とを含む、試料中のアマドリ化合物の測 定のための試薬又はキット。
- 26. 生体成分中の糖化タンパクの量及び/又は糖化率の測定、あるいは フルクトシルアミンの定量に用いられることを特徴とする、請求項25記 載の試薬又はキット。

1/17

第 3 図

第 4 図

第 5 図

第 6 図

第 7 図

第 8 図

第 9 図

第10 図

第 11 図

第 12 図

第 13 図

第14 図

第 15 図

第 16 図

第17 図

International application No.

PCT/JP96/02964

A. CLASSIFICATION OF SUBJECT MATTER						
Int. Cl ⁶ Cl2Q1/26						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed	by classification symbols)	•				
int. Cl ⁵ Cl2Q1/26, Cl2N9/06						
Documentation searched other than minimum documentation to the	extent that such documents are included in the	ne fields searched				
Electronic data base consulted during the international search (name	e of data base and, where practicable, search i	erms used)				
BIOSIS PREVIEWS		,				
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
	appropriate of the relevant passages	Relevant to claim No.				
X Bioscience Biotechnology a Vol. 59, No. 3, (March 199	nd Biochemistry, 5) Sakai Y. et al.	1 - 7				
"Purification and properti	es of fructosyl					
lysine oxidase from Fusari	um oxysporum S-1F4"					
p. 487-491						
X JP, A, 4-4874 (Nakano Vine	gar Co., Ltd.),	1 - 7				
January 9, 1992 (09. 01. 9	2) (Family: none)					
X JP, A, 61-280297 (Zaidan H	ojin Nođa Sangyo	1 - 6				
Y Kagaku Kenkyusho),	Y Kagaku Kenkyusho), 7					
December 10, 1986 (10. 12.	December 10, 1986 (10. 12. 86) (Family: none)					
X JP, A, 3-155780 (Zaidan Ho	JP, A, 3-155780 (Zaidan Hojin Noda Sangyo 1 - 6					
<pre>Kagaku Kenkyusho), July 3, 1991 (03. 07. 91) (Family: none)</pre>						
July 3, 1991 (03. 07. 91) (ramity: none)					
X JP, A, 5-192193 (Genzyme L						
Y August 3, 1993 (03. 08. 93) 7 & EP, A1, 526150 & US, A, 5370990						
d Er, AI, 320130 d 65, A,	33,0330	,				
X Further documents are listed in the continuation of Box C.	See patent family annex.					
Special categories of cited documents:	"T" later document published after the inter date and not in conflict with the applic					
"A" document defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying the	invention				
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(a) or which is	considered novel of cannot be conside	ered to involve an inventive				
cited to establish the publication date of another citation or other special reason (as specified) special reason (as specified) special reason (as specified) special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be						
O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination						
being obvious to a person skilled in the art being obvious to a person skilled in the art being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family						
Date of the actual completion of the international search	Date of mailing of the international sear	ch report				
January 24, 1997 (24. 01. 97)	February 4, 1997 (04. 02. 97)				
Name and mailing address of the ISA/	lame and mailing address of the ISA/ Authorized officer					
Japanese Patent Office		į				
Facsimile No.	Telephone No.					

Form PCT/ISA/210 (second sheet) (July 1992)

International application No.

PCT/JP96/02964

		PCT/J	296/02964
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
х	JP, A, 6-46846 (Nakano Vinegar Co., Lt February 22, 1994 (22. 02. 94) CEP, A2, 576838 & US, A, 5387109	d.),	1 - 5
P L	JP, A, 7-289253 (Kyoto Daiichi Kagaku Ltd.), November 7, 1995 (07. 11. 95) & EP, A2, 678576 (Regarding the invention using fructos acid oxidase derived by Fusarium and G Japanese patent applications No. 33488 and No. 42880/1995 are the first inven	yl amino ifferella, /1994	1 - 7
P L	JP, A, 8-154672 (Kyoto Daiichi Kagaku Ltd.), June 18, 1996 (18. 06. 96) & EP, Al, 709457 (Regarding the invention using fructos acid oxidase derived by Fusarium. oxys sp. lini (IFO No. 5880), Japanese pate applications No. 241556/1994 and 24942 are the first inventions.)	yl amino porum f. nt	1 - 7
L	JP, A, 8-336386 (Kyoto Daiichi Kagaku Ltd.), December 24, 1996 (24. 12. 96) & EP, Al, 737744 (Regarding the invention using fructos acid oxidase derived by Penicillium, Jpatent applications No. 85261/1995 are first inventions.)	yl amino apanese	
P	Applied and Environmental Microbiology No. 12, (December, 1995) Yoshida N. et "Distribution and Properties of Fructo Acid Oxidase in Fungi" p. 4487-4489	al.	1 - 7
P	Bioscience Biotechnology and Biochemis Vol. 61, No. 1, (January, 1996) Sakai "Production of fructosyl lysine oxidas Fusarium oxysporum S-1F4 on autoclavemedium" p. 150-151	Y. et al. e from	1 - 7
·			

International application No.
PCT/JP96/02964

	Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
_	This is	nternational search report bas not been established in respect of certain claims under Article 17(2)(a) for the following reasons
-	1. [Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	2. [Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
	Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
:	it i the assu usin to a meth comp Claim 24 po	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional search fees were timely paid by the applicant, this international search report covers only those claims could be search paid, specifically claims Nos.:
4.	X,	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Re		n Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP96/02964

Continuation of	Box	No.	п	of	continuation	of	first	sheet	(1)	

considered as relating to a group of inventions so linked as to form a single general inventive concept.

Form PCT/ISA/210 (extra sheet) (July 1992)

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl C12Q1/26

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12Q1/26, C12N9/06

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

BIOSIS Previews

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
х	Bioscience Biotechnology and Biochemistry,第59卷,第3号,(3月.1995)Sakai Y. et al 「Purificcation and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4」p. 487-491	1 - 7
x	JP. A. 4-4874(株式会社中埜酢店) 09. 1月. 1992 (09. 01. 1992) (ファミリーなし)	1 - 7
X Y	JP. A. 61-280297 (財団法人野田産業科学研究所) 10. 12月. 1986 (10. 12. 1986) (ファミリーなし)	1 — 6 7
X Y	JP, A, 3-155780(財団法人野田産業科学研究所) 3.7月.1986(03.07.1991)(ファミリーなし)	1 — 6 7

▼ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「1」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に含及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 24. <i>い</i> 1. 午 つ	国際開査報告の発送日 04.02.97
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP)	特許庁審査官(権限のある職員) 4 B 7 8 2 3
郵便番号100 東京都千代田区霞が関三丁目4番3号	平 田 和 男 電話番号 03-3581-1101 内線 3448

別文飲み 3月以飲本 及び一部の態所が関連するときは、その関連する態所の表示 特求の窓間の第	用文献の		
Y		引用文幹を 及び一部の体帯が利害ナストをは、マスキャー・・・	
 Y S,A,5370990 ブP,A,6-46846(株式会社中埜酢店) 22. 2月. 1994(22. 02. 1994)&EP, A2,576838&US,A,5387 1-5 109 プP,A,7-289253(株式会社京都第一科学) 7. 11月. 1995(07. 11. 1995) &EP, A2,678576 (Fusarium及びGibberella由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願6-33488及び7-42880が最初の出願である。) プP,A,8-154672(株式会社京都第一科学) 18. 6月. 1996(18. 06. 1996) &EP, A1,709457 (Fusarium oxysporum f. sp. lini (IFO NO. 5880) 由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願6-241556及び7-249421が最初の出願である。) プP,A,8-336386(株式会社京都第一科学) 24. 12月. 1996(24. 12. 1996) &EP, A1,737744 (Penicillium由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願7-85261が最初の出願である。) Applied and Enviromental Microbiology, 第61巻、第12号、(12月1995) Yoshida N. et al 「Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi」 p.4487-4489 Bioscience Biotechnology and Biochemistry, 第60巻、第1号、(1月. 1996) Sakai Y. et al 「Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on 		17/1/102103(ジェンザイト・) ミティド)2 9月 1002/02 02 1002/4FD 41 502/503	
ア、A、6-46846 (株式会社中埜酢店) 22. 2月. 1994 (22. 02. 1994) &EP, A2, 576838&US, A, 5387 109 P		I S. A. 5370990	
P	•	5,15,001,000	7
Comparison Compari	X	JP, A, 6-46846(株式会社中埜酢店)22.2月.1994(22.02.1994)&EP, A2, 576838&US, A, 5387	1-5
Comparison Compari	P	TP A 7-289253(株式会社宣釈第一科学)7 11日 1005(07 11 1005)4FD 40 c70576	
L (Fusarium oxysporum f. sp. lini (IFO NO. 5880) 由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願6-241556及び7-249421が最初の出願である。) L JP, A. 8-336386 (株式会社京都第一科学) 24. 12月. 1996 (24. 12. 1996) &EP, A1. 737744 (Penicillium由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願7-85261が最初の出願である。) P Applied and Environmental Microbioloogy, 第61巻, 第12号, (12月1995) Yoshida N. et al 「Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi」 p. 4487-4489 P Bioscience Biotechnology and Biochemistry, 第60巻, 第1号, (1月. 1996) Sakai Y. et al 「Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on	Ĺ	(Fusarium及びGibberella由来のフルクトシルアミノ酸オキシダーゼを用いる祭明に	1 – 7
L (Fusarium oxysporum f. sp. lini (IFO NO. 5880) 由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願6-241556及び7-249421が最初の出願である。) L JP, A. 8-336386 (株式会社京都第一科学) 24. 12月. 1996 (24. 12. 1996) &EP, A1. 737744 (Penicillium由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願7-85261が最初の出願である。) P Applied and Environmental Microbioloogy, 第61巻, 第12号, (12月1995) Yoshida N. et al 「Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi」 p. 4487-4489 P Bioscience Biotechnology and Biochemistry, 第60巻, 第1号, (1月. 1996) Sakai Y. et al 「Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on	P	JP, A, 8-154672 (株式会社京都第一科学) 18.6月, 1996 (18.06, 1996) AFP, A1.709457	1 - 7
(Penicillium由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出願7-85261が最初の出願である。) P Applied and Environmental Microbioloogy, 第61巻, 第12号, (12月1995) Yoshida N. et al 「Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi」p. 4487-4489 P Bioscience Biotechnology and Biochemistry, 第60巻, 第1号, (1月.1996) Sakai Y. et al 「Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on	L ,	(Fusarium oxysporum f. sp. lini(IFO NO. 5880)由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日本特許出顧6-241556及び7-249421が最初の出願であ	
al 「Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi」p. 4487-4489 P Bioscience Biotechnology and Biochemistry,第60巻,第1号,(1月.1996)Sakai Y. et al 「Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on	L	(Penicillium由来のフルクトシルアミノ酸オキシダーゼを用いる発明に関しては、日	
al [Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on	P	al [Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi] p.	1 7
	P	al [Production of fructoosyl lysine oxidase from Fusarium oxysporum S-1F4 on	1 – 7
		·	
		7	
	1	·	
	1		
	1		
			· .

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの1の続き)	
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部につい成しなかった。	て作
1. 請求の範囲 は、この国際関査機関が調査をすることを要しない対象に係るものである つまり、	5.
-	
2. 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてない国際出願の部分に係るものである。つまり、	こい
3. □ 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定 従って記載されていない。	eic
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの2の続き)	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
明細書第2頁第14行〜第3頁第14行に記載されるように、フルクトシルアミノ酸オキシダーゼなどの酵素を用いて、アマドリ化合物含有試料中のアマドリ化合物を測定することは従来技術であるので、フルクトシルアミノ酸オキシダーゼなどの酵素を用いて、アマドリ化合物含有試料中のアマドリ化合物を測定するという前提のもと、請求の範囲7は、酵素の製造に関するものであり、請求の範囲8~12、14、25~26は、試料の処理方法に関するものであり、請求の範囲16は、アマドリ化合物の検出方法に関するものであり、請求の範囲17~18は、過酸化水素の検出方法に関するものであり、請求の範囲19は、過酸化水素を検出する酵素に関するものであり、請求の範囲20~24は、電極を用いて直接フルコトシルアミノ酸オキシダーゼの反応を測定する方法に関するものである。そして、これらの六つの発明群が単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。	· 文 · · · · · · · · · · · · · · · · · ·
1. 出願人が必要な追加爾査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請 の範囲について作成した。	求
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、 加調査手数料の納付を求めなかった。	迫
3. 出版人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の付のあった次の請求の範囲のみについて作成した。	納
4. X 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記されている発明に係る次の請求の範囲について作成した。	較
請求の範囲 1 - 7	
追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の納付と共に出願人から異議申立てがあった。 □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。	
	Ī

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.