

### **Random Forest**

## Basic steps - Classification algorithms

Profiling Differentiation Classification

# Should I invest in a company – ask the experts

Employee of XYZ

Knows internal functionality

insider information

lacks a broader perspective on competitors

has been right 70% times.

Financial Advisor of XYZ

perspective on companies vs competition

lacks a view on internal policies

has been right 75% times.

Stock Market Trader

observed company's stock price over past 3 years

knows seasonality trends and market performance

has been right 70% times.

Employee of acompetitor

internal functionality of the competitor firms

lacks a sight of company in focus and the external factors

has been right 60% of times.

Market Research team

analyzes the customer preference of XYZsproduct

unaware of the changes XYZwill bring

have been right 75% of times.

Social Media Expert

understand product positioning

Changes in customer sentiment overtime

unaware of details beyond digital marketing

has been right 65% of times.

### Scenario1 - Combine all the info - informed decision



### Scenario 2 – info from similar sources



# Ensemble learning

- Machine learning technique that combines several base models in order to produce one optimal predictive model.
- Weak classifiers
- Different set of variables for each classifier
- Combine into single prediction



## What is a boot strapped dataset



## Using a random set of variables every time



### Basic idea of random forest

Draw multiple random samples, with replacement, from the data

• (this sampling approach is called the *bootstrap*).

Using a random subset of predictors at each stage, fit a classification (or regression) tree to each sample (and thus obtain a "forest").

Combine the predictions/dassifications from the individual trees to obtain improved predictions.

Use voting for classification and averaging for prediction.

# Steps in random forest algorithm



# Out of bag data points



| Sno | X1  | X2 | Х3  | X4 | Υ   |
|-----|-----|----|-----|----|-----|
| 1   | 432 | 29 | 313 | 6  | Yes |
| 2   | 529 | 34 | 379 | 2  | Yes |
| 3   | 125 | 67 | 317 | 4  | No  |
| 4   | 144 | 29 | 103 | 8  | No  |

| Sno | Х3  | X4 | Υ  |
|-----|-----|----|----|
| 3   | 317 | 4  | No |
| 4   | 103 | 8  | No |
| 4   | 103 | 8  | No |

| Sno | X1  | Х3  | ٧  |
|-----|-----|-----|----|
| 3   | 125 | ,   | No |
| 2   | 529 | 379 |    |
| 3   | 125 | 317 |    |

- When we create a bootstrapped dataset, ~1/3 of the original data does not end up in the boot strapped dataset
- This is called out-of-bag dataset

## How to calculate accuracy

- OOB samples used to measure how accurate our random forest is
- by the ratio of out of bag samples correctly classified by the random forest model
- Proportion of OOB samples incorrectly classified out of bag error

### How to decide on how many variables to use per step?

- Compare OOB error for using 2 variables per step, 3 variables and so on
- Choose the most accurate set of variables
- Typically we start by using square root of number of variables
- Then try a few settings above and below the value

# Summary of Random forest

Consists of a large number of individual decision trees that operate as an ensemble Each tree in the random forest spits out a class prediction

dass with most votes becomes model's prediction

fundamental concept - wisdom of crowds

Alarge number of relatively uncorrelated models (trees) operating as a committee will outperform any of the individual models.

## Overall flow of the RF classification process



