Gestion de Portefeuille

TP-4: Impact de la matrice de covariance dans le modèle MV

Patrick Hénaff

Février-Mars 2021

```
library(xts)
library(hornpa)
library(lubridate)
library(xtable)
library(quantmod)
library(PerformanceAnalytics)
library(TTR)
library(lubridate)
library(roll)
library(Hmisc)
library(nFactors)
library(kableExtra)
library(broom)
get.src.folder <- function() {</pre>
  path.expand("../GP/src")
get.data.folder <- function() {</pre>
  path.expand("../GP/data")
source(file.path(get.src.folder(), 'utils.R'))
source(file.path(get.src.folder(), 'FileUtils.R'))
```

Données

On utilise la base de données "MultiAsset" du paquet FRAPO:

```
library(FRAPO)
data(MultiAsset)
R <- returnseries(MultiAsset, percentage=F, trim=T)</pre>
```

Quelques statistiques descriptives sont résumées ci-dessous:

Table 1: Résumé des données de marché

	mean	std dev	skewness	kurtosis
GSPC	0.0007196	0.0483492	-0.8809988	1.7602430
RUA	0.0011323	0.0503202	-0.8975063	1.8397675
GDAXI	0.0046327	0.0597951	-0.9841812	1.9749395
FTSE	0.0018748	0.0437702	-0.6912771	0.4962667
N225	-0.0030518	0.0623081	-1.0447685	2.8567460
EEM	0.0085561	0.0807882	-0.7309404	1.2765558
DJCBTI	0.0037850	0.0167642	0.7542986	2.7505223
GREXP	0.0037178	0.0101831	0.1244254	-0.4231236
BG05.L	0.0013854	0.0151824	0.2047405	1.1789559
GLD	0.0158004	0.0547407	-0.4762910	0.7606515

Etude de la matrice de covariance

On se propose d'étudier la matrice de covariance à l'aide de la formule de Stevens pour la matrice d'information $\mathcal{I} = \Sigma^{-1}$.

• Pour chaque actif, estimer le modèle

$$R_{i,t} = \beta_0 + \beta_i^T R_t^{(-i)} + \epsilon_{i,t}$$

avec $R_t^{(-i)}$ vecteur de rendement de tous les actifs sauf l'actif $i, \epsilon_{i,t} \sim \mathcal{N}(0, s_i^2)$

- Trier les modèles par R_i^2 décroissant. En déduire les actifs qui sont suceptibles de recevoir un poid important dans le portefeuille optimal MV
- Calculer les poids optimaux du modèle MV, et comparer avec les résultats des régressions.

Calculons les poids à partir de la formule de Stevens, et comparons avec les résultats d'une optimisation MV:

```
idx <- seq(ncol(R))
hedge.w <- matrix(NA, nrow=length(idx), ncol=length(idx))
resid <- vector("numeric", length(idx))
R2 <- vector("numeric", length(idx))
mu <- colMeans(R)
hedge.mu <- vector("numeric", length(idx))

for(i in idx) {
   idx2 <- idx[-i]
   res = summary(lm(as.formula(paste(names(R)[i], "~ . ")), data=R))
   hedge.w[i, idx2] = res$coefficients[,"Estimate"][-1]
   hedge.mu[i] <- sum(res$coefficients[,"Estimate"][-1] * mu[idx2])
   resid[i] <- res$sigma</pre>
```

```
R2[i] <- res$r.squared
}
w.star <- (mu - hedge.mu)/resid**2
w.star <- w.star / (sum(w.star+abs(w.star))/2)
# optimisation MV

mu <- colMeans(R)
Sigma <- cov(R)
w <- solve(Sigma, mu)
w <- w / (sum(w+abs(w)) / 2)</pre>
```

Le tableau ci-dessous résume les calculs. On constate en premier lieu que le poids calculé par la formule de Stevens (w^*) coincide comme attendu avec le résultat de l'optimisation. On constate ensuite qu'il existe des actifs presque redondants: on peut répliquer RUA à l'aide d'un portefeuille composé des autres actifs, avec un ecart-type résiduel de 0.3%. Pour RUA et GSPC, une différence de rendement entre le titre et le portefeuille de couverture de 0.01% motive un poids de l'ordre de 30% dans le portefeuille optimal. Ceci illustre l'extrême sensibilité du portefeuille optimal aux estimations de rendement et de covariance.

-	DITA	CCDC	EEM	PMCP	CDAVI	DICDEL	Moor	CDEVD	D.Cor I	CLD
	RUA	GSPC	EEM	FTSE	GDAXI	DJCBTI	N225	GREXP	BG05.L	GLD
RUA	NA	0.9944360	0.0152798	-0.0092317	-0.0527297	0.0133509	0.0141740	0.0304398	-0.0038081	0.0047265
GSPC	0.9786626	NA	-0.0144138	0.0188581	0.0616101	-0.0071170	-0.0080379	-0.0353573	-0.0053052	-0.0055844
EEM	2.3761407	-2.2776046	NA	0.3252629	-0.1569163	0.2901686	0.1109503	-0.1431530	0.1144624	0.0049203
FTSE	-0.3099280	0.6433106	0.0702194	NA	-0.0593744	0.2084721	0.1474742	0.1739383	0.1156949	-0.0523750
GDAXI	-0.5659893	0.6719678	-0.0108309	-0.0189834	NA	-0.0384100	-0.0290964	0.5384594	0.5012209	0.0671850
DJCBTI	0.9029563	-0.4891005	0.1261975	0.4199770	-0.2420182	NA	0.0802958	-0.6470762	0.5129561	-0.1310360
N225	1.6102497	-0.9278675	0.0810539	0.4990441	-0.3079558	0.1348772	NA	-0.0372976	0.0776519	0.3957284
GREXP	0.1537922	-0.1815166	-0.0046509	0.0261764	0.2534506	-0.0483384	-0.0016587	NA	0.1642189	-0.0066405
BG05.L	-0.0442393	-0.0626254	0.0085509	0.0400349	0.5424742	0.0881103	0.0079406	0.3776007	NA	-0.0200423
GLD	0.9262960	-1.1120692	0.0062008	-0.3057432	1.2266790	-0.3797045	0.6826637	-0.2575828	-0.3381080	NA
s_i	0.0032112	0.0031857	0.0342273	0.0186064	0.0264089	0.0105208	0.0400452	0.0072180	0.0109452	0.0449550
R_i^2	0.9963691	0.9961294	0.8399689	0.8388909	0.8260906	0.6488550	0.6317309	0.5520519	0.5366373	0.3987043
μ	0.0011323	0.0007196	0.0085561	0.0018748	0.0046327	0.0037850	-0.0030518	0.0037178	0.0013854	0.0158004
$\beta^T \mu^{(-i)}$	0.0008178	0.0010919	0.0075248	0.0018800	-0.0029217	0.0031710	0.0030652	0.0009505	0.0035703	0.0069553
w^*	0.2898145	-0.3485696	0.0083644	-0.0001404	0.1029122	0.0526963	-0.0362410	0.5046298	-0.1732855	0.0415829
w	0.2898145	-0.3485696	0.0083644	-0.0001404	0.1029122	0.0526963	-0.0362410	0.5046298	-0.1732855	0.0415829

Lien avec l'ACP

- Effectuer une ACP de la matrice de covariance des rendements.
- Identifier un vecteur propre qui est un facteur d'arbitrage charactérisé
- Faire le lien entre cette observation et les poids optimaux du modèle MV.

```
pc <- prcomp(cov(R))
pc.res <- rbind(pc$rotation, pc$sdev)
kbl(pc.res, booktabs=T, format="latex", digits=4) %>%
   kable_styling(latex_options=c("scale_down", "HOLD_position")) %>%
   pack_rows("Vecteurs propres", 1,10) %>%
   pack_rows("Valeurs propres", 11,11)
```

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Vecteurs propres										
GSPC	-0.3436	-0.0314	0.2247	0.1876	0.5112	0.1387	-0.1023	-0.0333	0.6972	0.1305
RUA	-0.3606	-0.0292	0.2128	0.1892	0.5073	0.1537	-0.0605	-0.0729	-0.7039	-0.0511
GDAXI	-0.4216	-0.2265	0.1044	0.5669	-0.6197	0.2131	-0.0182	0.0780	-0.0011	0.0531
FTSE	-0.3031	-0.0758	0.1088	0.0446	-0.0218	-0.9371	-0.0939	0.0267	-0.0127	0.0143
N225	-0.3991	-0.1345	-0.8936	-0.0827	0.1117	0.0357	-0.0546	0.0144	0.0079	0.0176
EEM	-0.5624	0.3617	0.2250	-0.6398	-0.2499	0.1453	0.0868	0.0215	0.0136	-0.0356
DJCBTI	0.0603	0.0614	0.0256	-0.0655	0.0034	0.0653	-0.7127	0.6838	-0.0301	-0.0829
GREXP	0.0444	0.0172	0.0040	-0.0794	-0.0121	0.0019	-0.0145	0.0850	-0.1309	0.9832
BG05.L	0.0331	-0.0016	0.0066	-0.0798	-0.1473	0.0380	-0.6766	-0.7140	-0.0051	0.0412
GLD	0.0062	0.8878	-0.1780	0.4153	-0.0067	-0.0740	-0.0136	-0.0382	0.0004	0.0217
Valeurs pr	Valeurs propres									
	0.0039	0.0011	0.0004	0.0002	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000

Le vecteur propre 9 revèle une possibilité d'arbitrage entre GSPC et RUA. Effectivement, ces deux titres assez sont fortement représentés dans le portefeuille optimal.