Salem Sets Avoiding Nonlinear Patterns

Jacob Denson

March 18, 2021

General Research Question

- ▶ Phenomenon: Structure appears in suitably large objects.
- Like Ramsey Theory, but with a more analytical foundation, e.g. Geometric Measure Theory / Harmonic Analysis.

Examples

- ▶ How large can a subset X of \mathbf{R}^d be such that there does not exist four distinct points $x_1, x_2, x_3, x_4 \in X$ which form a parallelogram, i.e. satisfy $x_2 x_1 = x_4 x_3$.
- ► How large can a subset X of \mathbf{R}^d be such that no three distinct points $x_1, x_2, x_3 \in X$ form a right angle, i.e satisfy $(x_2 x_1) \cdot (x_3 x_1) = 0$.
- ightharpoonup How large can a subset of $m {\bf R}^d$ be, such that the distances between any two points is irrational?

- ► The problem isn't well posed for these patterns
 - ▶ If $S \subset \mathbf{R}^d$ has positive measure, it cannot avoid these patterns.
 - ► We can find discrete sets of arbitrarily large cardinality avoiding these patterns.
 - ► Need a measure of size 'between' cardinality and Lebesgue measure.

Fractional Dimension

- Fractional dimensions measure largeness / thickness of sets. Standard fractional dimension are defined in terms of coverings.
 - ▶ Roughly speaking, a set $X \subset \mathbf{R}^d$ has *Minkowski dimension s* if it can be covered by at most r^{-s} balls of radius r, for arbitrarily small r > 0.
- $If |X| > 0, \dim_{\mathbf{H}}(X) = \underline{\dim}_{\mathbf{M}}(X) = d.$
- ▶ If $\#(X) < \infty$, $\dim_{\mathbf{H}}(X) = \underline{\dim}_{\mathbf{M}}(X) = 0$.

Fourier Dimension

A compact set X has Fourier dimension at least s if there exists a Borel probability measure μ supported on X such that

$$|\widehat{\mu}(\xi)| \lesssim |\xi|^{-s/2}$$

for $\xi \in \mathbf{R}^d$. Then $\dim_{\mathbf{F}}(X)$ is the supremum of such values s.

▶ If $s < \dim_{\mathbf{H}}(X)$, then $|\widehat{\mu}(\xi)| |\xi|^{s/2}$ is small for *most* ξ , i.e.

$$\frac{|\{\xi \in B_R : |\widehat{\mu}(\xi)| \ge |\xi|^{-s/2}\}|}{|B_R|} = o(1).$$

But a uniform bound is not always possible.

▶ In general $\dim_{\mathbf{F}}(X) \leq \dim_{\mathbf{H}}(X) \leq \dim_{\mathbf{M}}(X)$.

An Example

- Let C be the middle thirds Cantor set.
- ▶ For each n, C is covered by 2^n intervals of length $1/3^n$.
- Recall a set has Minkowski dimension s if it can be covered by r^{-s} intervals of length r. Here $r = 1/3^n$, and

$$2^n = 3^{n\log_3 2} = r^{-\log_3 2}.$$

This suggests that $\dim_{\mathbf{H}}(C) = \dim_{\mathbf{M}}(C) = \log_3 2 \approx 0.63$.

▶ On the other hand, $\dim_{\mathbf{F}}(C) = 0$, since C is highly correlated with waves of frequency 3^n .

Salem Sets

▶ If, at each stage of the Cantor set construction, instead of taking the middle third J from each length I interval I, we remove $I \cdot t_I + J$, where $t_I \in [-1/6, 1/6]$ is selected uniformly at random, then we find that

$$\dim_{\mathbf{F}}(X) = \dim_{\mathbf{H}}(X) = \dim_{\mathbf{M}}(X) = \log_3 2.$$

- ▶ A set is *Salem* if $\dim_{\mathbf{F}}(X) = \dim_{\mathbf{H}}(X)$.
- Main Focus of Talk: To construct Salem sets, the more probabilistic tools we can develop (especially concentration of measure / square root cancellation results) the better.

Now Let's Return to Pattern Avoidance

The General Problem

- ▶ Avoidance Problem: Given a set $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^d$ with large Fourier dimension such that for distinct points $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We say X avoids Z.
- ► Let $Z = \{(x, y, z) \in (\mathbf{R}^d)^3 : (x z) \cdot (y z) = 0\}.$ ► $X \subset \mathbf{R}^d$ avoids Z iff X does not contain any right angles.
- ▶ For each $m \in \mathbf{Z}^n \{0\}$ and $a \in \mathbf{Z}$, define

$$Z(m,a) = \{(x_1,\ldots,x_n) \in (\mathbf{R}^d)^n : m_1x_1 + \cdots + m_nx_n = a\}.$$

If $Z_n = \bigcup_{m \in \mathbf{Z}^n - \{0\}} \bigcup_{a \in \mathbf{Z}} Z(m, a)$, then $X \subset \mathbf{R}^d$ avoids Z_n for all n > 0 if and only if X generates a subgroup of \mathbf{R}^d disjoint from $\mathbf{Q}^d - \{0\}$.

- Fourier Dimension often gives much more structural information about a set than Minkowski dimension does.
- \triangleright (Keleti, 1998) There exist an 'independent' set $X \subset \mathbf{R}$ with

 $m \in \mathbf{Z}^n$ and some $x_1, \ldots, x_n \in X$ such that

 $m_1x_1+\cdots+m_nx_n=0.$

- $dim_{\mathbf{H}}(X) = 1$ such that there exists no nontrivial solutions to $m_1x_1+\cdots+m_nx_n=0$ for any $m\in \mathbf{Z}^n$ and $x_1,\ldots,x_n\in X$.
- ▶ (Rudin, 1960) If $\dim_{\mathbf{F}}(X) \ge 1/n$, then there exists some

- ► (Körner, 2009) There exists a Salem set X with $\dim_{\mathbf{F}}(X) = 1/(n-1)$ that contains no solutions to $m_1x_1+\cdots+m_nx_n=0$ for any $m\in \mathbf{Z}^n$.
- ► (Schmerkin, 2015) There exists a Salem set X with $dim_{\mathbf{F}}(X) = 1$ that contains no three term arithmetic progressions, i.e. no nontrivial solutions to the equation
- $x_2 x_1 = x_3 x_2$. \triangleright (Liang and Pramanik, 2019) There exists a Salem set X with

where $m_0, \ldots, m_n \geq 0$ and $m_1 + \cdots + m_n = m_0$.

 $\dim_{\mathbf{F}}(X) = 1$ that contains no solutions to a 'translation invariant' equation of the form $m_1x_1 + \cdots + m_nx_n = m_0x_0$,

Results in Literature

► How does the geometry of Z help us?

Author	Geometry of Z	$\dim_{\mathbf{H}}(X)$
Mathé (2012)	A degree r algebraic hy-	d/r
	persurface in R ^{dn}	
Fraser and Pramanik	An $nd - m$ dimensional	$\frac{m}{n-1}$
(2016)	surface in \mathbf{R}^{dn}	
Denson, Pramanik, and	A subset of \mathbf{R}^{dn} with	$\frac{dn-s}{n-1}$
Zahl (2019)	(lower) Minkowski di-	
	mension <i>s</i>	
Denson (2019)	A subset of \mathbf{R}^n such that	<u>m-s</u> m
	there exists a full rank	
	linear map $\pi: \mathbf{R}^n o \mathbf{R}^m$	
	where $\pi(Z)$ is s dimen-	
	sional	

► Can we modify these constructions to obtain Salem sets?

Salem Set Result

Theorem

If Z is a countable union of sets with (lower) Minkowski dimension bounded by s, we can find a Salem set X avoiding Z with

$$dim_{\mathsf{F}}(X) = \frac{nd-s}{n-1/2}.$$

▶ The previous results find a set X with

$$\dim_{\mathbf{H}}(X) = \frac{nd-s}{n-1}.$$

Salem Set Result

Theorem

If Z is a countable union of sets of the form

$$\{(x_1,\ldots,x_n)\in \mathsf{R}^{dn}: x_n=f(x_1,\ldots,x_{n-1})\}$$

where $f: \mathbb{R}^{d(n-1)} \to \mathbb{R}^d$ is smooth, and the matrix $D_{x_k} f(x_1, \dots, x_{n-1}) = \left(\frac{\partial f^i}{\partial x_{kj}}\right)$ is invertible for each k and distinct $x_1, \dots, x_n \in \mathbb{R}^d$, then we can find a Salem set X avoiding Z with

$$dim_{\mathsf{F}}(X) = \frac{d}{n-3/4}.$$

- ▶ The previous results find a set X with $\dim_{\mathbf{H}}(X) = \frac{d}{n-1}$.
- ▶ We will focus on the ideas behind this proof in this talk.

Applications

TODO

Isolating a Single Scale

- We apply Baire category techniques to isolate a 'single scale' of the problem at a time.
- We consider a complete metric space \mathcal{X}_s which consists of measures μ such that for each $\varepsilon > 0$,

$$\sup_{\xi \in \mathbf{R}^d} |\widehat{\mu}(\xi)| |\xi|^{s/2-\varepsilon} < \infty.$$

Thus $supp(\mu)$ is a set with Fourier dimension at least s.

• Our goal is to show that the set of measures μ such that $\operatorname{supp}(\mu)$ avoids the pattern Z is a set of first category in \mathcal{X}_s , where s = d/(n-3/4).

This means we must show that for any disjoint closed cubes Q_1, \ldots, Q_n in $[0,1]^d$ with common sidelength s, the family

$$\mathcal{Y}_{Q_1,\ldots,Q_n} = \left\{ \mu \in \mathcal{X}_{\mathbf{s}} : \begin{array}{c} \mathsf{lf} \ x_1 \in Q_1 \cap \mathsf{supp}(\mu),\ldots, \\ x_n \in Q_n \cap \mathsf{supp}(\mu), x_n
eq f(x_1,\ldots,x_{n-1}) \end{array}
ight\}.$$

is dense in \mathcal{X}_s .

It suffices to show that for any disjoint family of closed cubes $Q_1, \ldots, Q_n \subset [0,1]^d$, and $\varepsilon_1, \varepsilon_2 > 0$, there exists a compactly supported measure μ such that

 $\sup_{\xi \in \mathbf{Z}^d} |\widehat{\mu}(\xi)| |\xi|^{s/2 - \varepsilon_1} \le \varepsilon_2.$

and if
$$x_1 \in Q_1 \cap \operatorname{supp}(\mu), \ldots, x_n \in Q_n \cap \operatorname{supp}(\mu)$$
, then

and if $x_1 \in Q_1 \cap \operatorname{supp}(\mu), \ldots, x_n \in Q_n \cap \operatorname{supp}(\mu)$, ther

$$x_n \neq f(x_1, \ldots, x_{n-1}).$$

(The uncertainty principle implies we only need to look at integer frequencies).

The Importance of Square Root Cancellation

- Fix K>0 and r>0. Let x_1,\ldots,x_K be points such that for $|\xi|\lesssim 1/r$, $|e^{2\pi i\xi\cdot x_1}+\cdots+e^{2\pi i\xi\cdot x_K}|\lesssim K^{1/2}$. A trivial bound (triangle inequality) is O(K), so we have 'square root cancellation'.
- Fix a mollifier $\phi \in C_c^{\infty}(\mathbf{R}^d)$, let $\phi_r(x) = r^{-d}\phi(x/r)$ and define

$$\mu(x) = \frac{\phi_r(x - x_1) + \dots + \phi_r(x - x_K)}{K}.$$

Then $supp(\mu)$ is covered by K radius r balls.

Then

$$\widehat{\mu}(\xi) = \mathcal{K}^{-1} \left(e^{2\pi i \xi \cdot \mathsf{x}_1} + \dots + e^{2\pi i \xi \cdot \mathsf{x}_K} \right) \widehat{\phi}(r\xi).$$

If $K = r^{-s}$ and r is sufficiently small, then

$$|\widehat{u}(\varepsilon)| < K^{-1/2} |\widehat{\phi}(r\varepsilon)| < r^{s/2} |\widehat{\phi}(r\varepsilon)|$$

So if $|\xi| \leq 1/r$, $|\widehat{\mu}(\xi)| \lesssim |\xi|^{-s/2}$, and if $|\xi| \geq 1/r$, $\widehat{\phi}(r\xi)$ decays fast.

▶ $K^{-1/2}$ error (or even $K^{-1/2}\log(K)^{100}$) is perfectly fine.

Concentration Bounds

- Heuristic: A function of many independant random variables is tightly concentrated about it's mean (plus or minus it's variance).
- ▶ Where this is true: A sum $X_1 + \cdots + X_K$ of i.i.d. random variables, where K is large.
- ▶ Where this fails: $\sum_{k=1}^{\infty} X_k/2^k$, where $\{X_k\}$ are independent and uniformly distributed $\{0,1\}$ valued Bernoulli random variables.
- The distribution of this sum is uniform on [0,1], so not tightly concentrated at all despite involving *infinitely many* random variables because X_k has much more influence on the overall result for small k vs for large k.

Concentration Bounds

Theorem (Hoeffding's Inequality)

Suppose X_1, \ldots, X_K are independent random variables with $|X_i| \le A$ for each i and $\sum E(X_i) = 0$, then

$$P(|X_1 + \cdots + X_K| \ge t) \le 4 \exp(-2t^2/KA^2)$$
.

Thus $|X_1 + \cdots + X_K| \lesssim AK^{1/2}$ with high probability.

Concentration Bounds

Theorem (McDiarmid's Inequality)

Suppose $f: \mathbb{R}^K \to \mathbb{R}$ is a function. Suppose that for each $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_K \in \mathbb{R}$, and any $x_i, x_i' \in \mathbb{R}$,

$$|f(x_1,\ldots,x_i,\ldots,x_K)-f(x_1,\ldots,x_i,\ldots,x_K)|\leq A$$

Then if X_1, \ldots, X_K are a family of independent random variables,

$$P(|f(X_1,...,X_K)) - E(f(X_1,...,X_N))|) \le 4 \exp(-t^2/2A^2K).$$

Thus $|f(X_1,...,X_K)) - \mathsf{E}(f(X_1,...,X_N))| \lesssim AK^{1/2}$ with high probability.

Thanks for listening!