BE Électronique Numérique, 1ère séance

Réalisation de A, B et C

A partir de la table de vérité puis de la table de Karnaugh, on a donné les équations simplifiées de A, B et C :

<u>A</u>	xx00	xx01	xx11	xx10	<u>B</u>	xx00	xx01	xx11	xx10	<u>C</u>	xx00	xx01	xx11	xx10
00xx	0	1	0	0	00хх	0	0	0	0	00хх	0	0	0	1
01xx	1	0	0	0	01xx	0	1	0	1	01xx	0	0	0	0
11xx	0	1	0	0	11xx	1	0	1	1	11xx	1	0	1	1
10xx	0	0	1	0	10xx	0	0	1	0	10xx	0	0	0	0

 $A = \overline{a} \, \overline{b} \, \overline{c} \, d + \overline{a} \, b \, \overline{c} \, \overline{d} + a \, b \, \overline{c} \, d + a \, \overline{b} \, c \, d = \overline{a} \, \overline{c} \, (b \oplus d) + d \, (b \oplus (ac))$

 $B = \overline{a} b \overline{c} d + \overline{a} b \overline{c} \overline{d} + a b \overline{c} \overline{d} + a b \overline{c} d + a b \overline{c} d + a \overline{b} \overline{c} d = b \overline{c} (a \oplus d) + c (b \overline{d} + a d)$

 $C = \overline{a} \, \overline{b} \, c \, \overline{d} + a \, b \, \overline{c} \, \overline{d} + a \, b \, c \, \overline{d} + a \, b \, \overline{c} \, \overline$

Puis, on a effectué une schématique pour chaque équation :

PÉTILLAT Vincent & SAUREL Guilhem: BE Électronique Numérique, 1ère séance

Réalisation de D & E : Utilisation d'un MUX

On sélectionne les entrées sur 4bits, donc il faut un multiplexeur à 16 entrées.

On a donc effectué une schématique pour les sorties D & E :

Réalisation de D et E : Utilisation d'une LUT 4

D = 0b1000010010010010 = 0x8492E = 0b0000001010111010 = 0x02BA

