Data Mining

Assignment 1

Wojciech Nagórka, Andrii Chmutov, Vasyl Korzavatykh, Kuba Czech

Dataset

Titanic

- Dataset contains information on passengers of a ship which sunk by hitting an iceberg in April 1912
- Survival is a target variable

Features in the dataset

- PassengerID
- Survived
- Pclass
- Lname
- Name
- Sex
- Age

- SibSp
- Parch
- Ticket
- Fare
- Cabin
- Embarked

Index: 891 entries, 1 to 891					
Data	columns (total	l 11 columns):	
#	Column	Non-	-Null Count	Dtype	
0	Survived	891	non-null	int64	
1	Pclass	891	non-null	int64	
2	Name	891	non-null	object	
3	Sex	891	non-null	object	
4	Age	714	non-null	float64	
5	SibSp	891	non-null	int64	
6	Parch	891	non-null	int64	
7	Ticket	891	non-null	object	
8	Fare	891	non-null	float64	
9	Cabin	204	non-null	object	
10	Embarked	889	non-null	object	

dtypes: float64(2), int64(4), object(5)

memory usage: 83.5+ KB

<class 'pandas.core.frame.DataFrame'>

Data analysis and problems at data

Missing values

- The first potential problem with the data
- Exist for attributes: Cabin, Age and Embarkment
- Could influence the result unpredictably

Survive	ed	0
Pclass		0
Name		0
Sex		0
Age		177
SibSp		0
Parch		0
Ticket		0
Fare		0
Cabin		687
Embarke	d	2
dtype:	int64	

Solution:

Cabin -> separate category

Age -> median

Embarkment -> mode

Continuous data

- Age [0.42, 80] and Fare [0, 512.3]
- wide range of values
- if used in raw form it may have negative effect on the results

Standardization

- changing the range of an attribute
- we used StandardScaler() from sklearn
- it results in reducing the impact of outliers

Further data analysis

Deck vs Survival

data['Cabin'].unique()

```
array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',
'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
'C148'], dtvpe=object)
```

Deck vs Survival

Title vs Survival

Braund, Mr. Owen Harris

Cumings, Mrs. John Bradley (Florence Briggs Th...

Heikkinen, Miss. Laina

Futrelle, Mrs. Jacques Heath (Lily May Peel)

Allen, Mr. William Henry

Title vs Survival

Name		
Mr	517	
Miss	182	
Mrs	125	
Master	40	
Dr	7	
Rev	6	
Col	2	
Mlle	2	
Major	2	
Ms	1	
Mme	1	
Don	1	
Lady	1	
Sir	1	
Capt	1	
the Countess	1	
Jonkheer	1	
Name: count,	dtype:	int64

Pre-processing techniques

1. Derived attributes

- information hidden in data
- Title, Deck, and FamilySize attributes

2. Binarization

- focus on the condition instead of the exact value
- Alone attribute

3. Label encoding

- convert categorical variable into dummy variables
- we used get_dummies() function from pandas

Features after pre-processing

- 1. Standardized
- Age
- Fare
- 2. Derived
 - Deck
- FamilySize
- 3. Binarization
- Alone
- 4. Label encoding
- Embarked_C, Embarked_Q, Embarked_S
- Title_Master, Title_Miss, Title_Mr, Title_Mrs, Title_Rare
- Sex_male, Sex_female

Repository structure

Files

Each file in the repository has it's own purpose.

File name	Meaning	
analysis.ipynb	Exploratory analysis of the features	
preprocessing.py	The library itself	
samples.ipynb	A set of use cases from the library	
tests.ipynb	The comparison of cross-validation metric with respect to how data was prepared	
train.csv	The training dataset. If you want to download or to play around with testing data as well, you should visit the following <u>section</u> of the competition.	
improved_dataset.csv	The improved dataset	

The code follows the schema of <u>Transformer Mixin</u> class from scikit-learn library to be support the Pipeline API.

Results

Before pre-processing

SVC

Scores: [0.68, 0.69, 0.67, 0.67, 0.7]

Mean score: 0.68

Perceptron

Scores: [0.73, 0.71, 0.66, 0.57, 0.61]

Mean score: 0.66

Random Forest

Scores: [0.84, 0.8, 0.75, 0.83, 0.82]

Mean score: 0.81

After pre-processing

SVC

Scores: [0.83, 0.8, 0.8, 0.84, 0.84]

Mean score: 0.82

Perceptron

Scores: [0.82, 0.8, 0.7, 0.78, 0.87]

Mean score: 0.79

Random Forest

Scores: [0.84, 0.81, 0.8, 0.85, 0.83]

Mean score: 0.83

Conclusions

Pre-processing techniques improved accuracy of classification on the dataset.

This highlights the importance of pre-processing in data analysis.