政治学方法論 I 第3回:統計モデル

矢内 勇生

大学院法学研究科・法学部

2016年4月27日

沙神戸大学

今日の内容

- 1 可能世界の分岐
 - 可能世界を数える
 - 事前情報を利用する
 - 数え上げから確率へ
- ② 統計モデル
 - ベイズ統計分析
 - ベイズ統計モデルの構成要素
 - ベイズ統計モデルを使う

Garden of Forking Paths

Jorge Luis Borges. Garden of Forking Paths.

- 世界は可能性に満ちている
 - 法学部ではなく、経済学部を選んでいたら?
 - 政治学方法論 | を受講せず、その時間をアルバイトに使っていたら?
 - etc.
- 何かが起きる度に世界は分岐する
- 「今ここにある現実」とは異なる世界もあり得たはず

Garden of Forking Paths

Jorge Luis Borges. Garden of Forking Paths.

- 世界は可能性に満ちている
 - 法学部ではなく、経済学部を選んでいたら?
 - 政治学方法論 I を受講せず、その時間をアルバイトに使っていたら?
 - etc.
- 何かが起きる度に世界は分岐する
- ◉ 「今ここにある現実」とは異なる世界もあり得たはず
- 研究対象とする現象は、起こり得た世界の1つ
- その現象を生み出す経路が1つとは限らない

例題:袋の中のボールの色は?

例題の設定

- 中身が見えない袋がある
- 袋の中に4つのボールが入っている
- 各ボールの色は、白または赤である
- 赤いボールと白いボールはそれぞれいくつ?

```
仮説 1 { 赤 0, 白 4}
仮説 2 { 赤 1, 白 3}
仮説 3 { 赤 2, 白 2}
仮説 4 { 赤 3, 白 1}
仮説 5 { 赤 4, 白 0}
```

目標:どの仮説が最も妥当か判断する!

データ

- データを手に入れる
 - ① バッグを振って中身をよく混ぜる
 - ② バッグからボールを 1 つ取り出して、ボールの色を記録する
 - ③ ボールをバッグに戻す
- 以上の過程を3回繰り返して得た結果:(赤,白,赤)
- データを利用して、どの仮説が最も妥当か考える

2回目の分岐

3回目の分岐は?

3回目の分岐は? データ (赤, 白, 赤) に一致する経路はいくつある?

可能世界の検討:仮説2{赤1,白3}

3回目の分岐は? データ (赤, 白, 赤) に一致する経路はいくつある?

3つ!

2回目の分岐

3回目の分岐は?

3回目の分岐は? データ (赤, 白, 赤) に一致する経路はいくつある?

可能世界の検討:仮説3{赤2,白2}

3回目の分岐は? データ (赤, 白, 赤) に一致する経路はいくつある?

8つ!

可能にかって奴人で

可能世界の検討:観察されたデータを生み出す経路の数

		{ 赤, 白, 赤 } を生み出す経路の数
仮説	仮説の内容	(赤玉の数) × (白玉の数) × (赤玉の数)
1	(赤 0、白 4)	$0 \times 4 \times 0 = 0$
2	(赤 1、白 3)	$1 \times 3 \times 1 = 3$
3	(赤 2、白 2)	$2 \times 2 \times 2 = 8$
4	(赤3、白1)	$3 \times 1 \times 3 = 9$
5	(赤 4、白 0)	$4 \times 0 \times 4 = 0$
		-

● 経路の数を比較して、どの仮説が最も妥当だと推論する?

可能世界の検討:観察されたデータを生み出す経路の数

		{ 赤, 白, 赤 } を生み出す経路の数
仮説	仮説の内容	(赤玉の数) × (白玉の数) × (赤玉の数)
1	(赤 0、白 4)	$0 \times 4 \times 0 = 0$
2	(赤 1、白 3)	$1 \times 3 \times 1 = 3$
3	(赤 2、白 2)	$2 \times 2 \times 2 = 8$
4	(赤3、白1)	$3 \times 1 \times 3 = 9$
5	(赤4、白0)	$4 \times 0 \times 4 = 0$

- 経路の数を比較して、どの仮説が最も妥当だと推論する?
- その推論にはどのような前提がある?
 - どの仮説の妥当性も、事前(データを見る前)には等しいという前提がある場合:仮説4が最も妥当
 - それ以外の場合は?

事前情報 (prior information) の利用

- 各仮説の相対的な妥当性について、事前に情報を持っている ことがある
 - バッグに入れるボールの選び方を知っている
 - 過去の観察データを持っている:新しいデータを手に入れる 度に、それまでのデータを事前の知識として使う

妥当性の更新

- 1回目のボールの色を観察する前:すべての仮説の妥当性が 同程度だとする
- (赤,白,赤) というデータが得られた
- この時点で、最も妥当なのは仮説4だが、仮説3の妥当性も それに匹敵するくらい高い
- 新たなデータ:もう1度ボールを取り出したら、赤が出た
- この時点で、最も妥当な仮説はどれか?

データを事前情報と併せて使う

仮説	(赤) を生み出す 経路の数	事前に数えた 経路の数	新しい 経路数
1.{赤0,白4}	0	0	$0 \times 0 = 0$
2.{ 赤 1, 白 3}	1	3	$1 \times 3 = 3$
3.{ 赤 2, 白 2}	2	8	$2 \times 8 = 16$
4.{ 赤 3, 白 1}	3	9	$3 \times 9 = 27$
5.{ 赤 4, 白 0}	4	0	$4 \times 0 = 0$

- 経路数 = 事前の経路数 × 新しい経路数
- 掛け算:可能世界の分岐の数学的な表現
- 現時点で、仮説 4 の妥当性が最も高い
- 新しいデータと事前情報(古いデータ)を併せて利用したことで、仮説4の相対的な妥当性が高まった

異なる種類の情報を利用する(1)

- これまでの分析:同種の情報(同じ方法で行ったボールの色の観察)
- ボール入りバッグ製造・販売者からの情報提供:「赤玉は珍しい。ただし、ボール1色しかないバッグは販売しない」
 - 「赤玉3個入り1袋につき、赤玉2個入りは2袋、赤玉1個 入りは3袋が流通するはずだ」
- これを新しいデータ、これまでの経路のカウントを事前情報 として仮説の妥当性を再考する

異なる種類の情報を利用する(2)

仮説	新情報	事前情報	経路数
1.{赤0,白4}	0	0	$0 \times 0 = 0$
2.{ 赤 1, 白 3}	3	2	$3 \times 2 = 6$
3.{ 赤 2, 白 2}	2	16	$2 \times 16 = 32$
4.{ 赤 3, 白 1}	1	27	$1 \times 27 = 27$
5.{ 赤 4, 白 0}	0	0	$0 \times 0 = 0$

- この時点で、仮説3の妥当性が最も高くなった
- 種類の異なる情報でも、推論に利用できる
- この分析から、どの仮説が最も妥当か結論を出せる?
- その結論は、どの程度「確か (certain)」か?

妥当性の更新法

- 「経路数」で妥当性を(ある程度)判断できる
- 経路数そのものは不便
 - それぞれの数字に意味はない:「32 vs 27」も「320 vs 270」 も相対的妥当性は同じ
 - 「分岐」の回数が増えると、経路数がどんどん大きくなる

数え上げから確率へ

妥当性の更新法

- 「経路数」で妥当性を(ある程度)判断できる
- 経路数そのものは不便
 - それぞれの数字に意味はない:「32 vs 27」も「320 vs 270」 も相対的妥当性は同じ
 - 「分岐」の回数が増えると、経路数がどんどん大きくなる
- 妥当性の更新法:
 - 仮説: H_i , $i \in \{1,2,3,4,5\}$
 - データ: D=(赤,白,赤)

D を観察した後の H_i の妥当性

 \propto

 H_i が D を生み出す経路の数

Χ

 H_i の事前(D 観察前)の妥当性

仮説を数字で表す

袋に含まれる赤玉の割合を θ とする

仮説 1 { 赤 0, 白 4}
$$\rightarrow \theta = 0$$

仮説 2 { 赤 1, 白 3} $\rightarrow \theta = 1/4 = 0.25$
仮説 3 { 赤 2, 白 2} $\rightarrow \theta = 2/4 = 0.5$
仮説 4 { 赤 3, 白 1} $\rightarrow \theta = 3/4 = 0.75$
仮説 5 { 赤 4, 白 0} $\rightarrow \theta = 4/4 = 1$

D =(赤,白,赤)

数え上げから確率へ

妥当性を標準化する

妥当性を標準化して確率にする

$$D$$
 観察後の θ_i の妥当性 = $\frac{\theta_i$ の D への経路数 \times θ_i の事前の妥当性 $\sum_i (\theta_i$ の D への経路数 \times θ_i の事前の妥当性)

赤玉の割合 $ heta$	経路数	妥当性(確率)
0.00	0	0 / 20 = 0
0.25	3	3/20 = 0.15
0.50	8	8/20 = 0.4
0.75	9	9/20 = 0.45
1.00	0	0 / 20 = 0
合計	20	1
	0.00 0.25 0.50 0.75 1.00	0.00 0 0.25 3 0.50 8 0.75 9 1.00 0

数え上げから確率へ

妥当性を標準化する

妥当性を標準化して確率にする

$$D$$
 観察後の $heta_i$ の妥当性 $= \frac{ heta_i O\ D\ hickspace \cap D\ h$

仮説	赤玉の割合 $ heta$	経路数	妥当性(確率)
{赤0,白4}	0.00	0	0 / 20 = 0
{ 赤 1, 白 3}	0.25	3	3/20 = 0.15
{赤2,白2}	0.50	8	8/20 = 0.4
{赤3,白1}	0.75	9	9/20 = 0.45
{赤4,白0}	1.00	0	0 / 20 = 0
	合計	20	1

確率を使うことによって、推論しやすくなる!

専門用語の導入

- θ のように、推定の対象となる数(仮説の中身を構成するもの): 母数 (パラメタ、parameter)
- ある仮説が特定のデータを生み出す経路の相対的な数の大きさ: 尤度 (likelihood)
- データを観察する前の時点での特定の θ の妥当性:事前確率 (prior probability)
- データを使って更新された特定の θ の妥当性:事後確率 (posterior probability)

例題

地球儀問題:地球表面の水の割合は? (McElreath 2016: Ch.2)

手の平サイズの地球儀がある。地表のうち、水に覆われている割合を知りたい。そこで、次の方法で調べることにした。地球儀を投げ上げ、落ちてきた地球儀を両手でキャッチする。そのとき、右手人差し指の先端部が触れているのが水 (W) か陸地 (L) を記録する。この作業を何度か繰り返す。作業を 9 回実行した結果、 D=(W,L,W,W,W,L,W,L)

というデータが得られた。

ベイズ統計モデルによる推論

- ① データがどのように生み出されたかを考える
- ② データを使ってモデルを「教育」する
- ③ モデルを評価する

データ生成過程 (Data Generating Process)

- データ生成過程 (data generating process: DGP) を考える
 - 記述的なモデル (descriptive model)
 - 因果モデル (causal model)
- 問題の背景にある事実と、データがどのように収集、観察されたかを考慮に入れる
- 地球儀問題の場合
 - 地球儀表面の水の本当の割合:θ
 - 地球儀を 1 回投げ上げたとき、W が観察される確率は θ 、L が観察される確率は $1-\theta$
 - 地球儀の投げ上げを繰り返すとき、各投げ上げは互いに独立
- データ分析のために、DGP を数式で表現する

ベイズ更新 (Bayesian Updating)

複数の仮説のうち、どの仮説が相対的に妥当かを判断したい

- データ分析前
 - (事前の)妥当性をもっている
 - データ生成過程をモデル化する
- データによって、情報を更新する(学習)
- 更新の仕方はモデルに依存する
- 追加のデータを手に入れたら、さらに情報を更新する

W L W W W L W L W

モデルを評価する

ベイズ更新が終わっても、結果を過信せず、批判的に評価することが必要

- 推定の不確実性が低いモデルが正しいとは限らない
 - 観測数 n が大きくなれば、誤ったモデルでも「精度の高い」 (誤った) 推定結果を示す
 - 推定値はモデルに依存する:モデルを変えれば、推定値は変わり得る
- モデルが重大な見落としをしていないか考える
 - 厳密には、モデルの仮定はほぼ常に「正しく」ない
 - モデルの誤りが見つけられない ≠ モデルが正しい
 - 結果を変え得るような要因がモデルから抜け落ちていないか?
 - 一見すると瑣末な仮定の変更が、結果を大きく変える可能性はないか?
 - 例:データ内の W と L の順序は結果を左右するか?

ベイズ統計モデルの構成

データを分析する前に、以下の3つを用意する

- ① 尤度関数
- ② 1つ以上の母数
- ③ 事前確率
 - 通常は、この順番で用意する
 - これらの要素とデータを利用して、相対的に妥当性が高い仮 説を見つける

尤度 (Likelihood)

- 特定のデータがある仮説から生み出される妥当性を表す数式
- 各仮説について、相対的な妥当性を数字で表すことを可能に する
- データ生成過程に適した尤度関数を作る
 - 自分で尤度関数を定義する
 - よく使われる尤度関数を利用する

地球儀問題の尤度

- データ生成過程
 - 地球儀を投げ上げた結果:W または L
 - それぞれの投げ上げは独立
 - ullet 水の割合 heta はどの投げ上げでも同じ

地球儀問題の尤度

- データ生成過程
 - \bullet 地球儀を投げ上げた結果:W または L
 - それぞれの投げ上げは独立
 - \bullet 水の割合 θ はどの投げ上げでも同じ
- 二項分布 (binomial distribution)

$$w|n,\theta \sim \mathsf{Bin}(n,\theta)$$

$$\Pr(w|n,\theta) = \binom{n}{w} \theta^{w} (1-\theta)^{n-w} = L(\theta|w,n)$$

母数 (パラメタ, Parameter)

- 尤度関数の中で、異なる値を取り得るもの:二項分布の場合 n, w, θ
- これらのうち、どれか1つ以上を母数として扱う:問題に よって異なる
- 地球儀問題の場合
 - nとwはデータとして観察される
 - 直接観察されない θ を母数とする
- 母数:データ分析における推定の対象
- ギリシャ文字 (α,β,γ,...) で表されることが多い

事前確率 (Prior)

- ベイズ統計分析:すべての母数に事前確率を与える
- 事前確率:データ観察前の時点で、母数が取り得る値のそれ ぞれが、相対的にどの程度妥当かを表す
- 地球儀問題の場合
 - ullet 母数 eta は割合: $eta \in [0,1]$
 - 区間 [0,1] の各値が、どの程度妥当と言えるか表す必要がある
 - [0,1] の範囲で妥当性に差がない(妥当性が等しい)場合: ー 様分布で事前確率を表す

$$\theta \sim \mathsf{Unif}(0,1)$$

$$\Pr(\theta) = \frac{1}{1 - 0} = 1$$

事前確率の選び方は様々

事後確率 (Posterior)

● 尤度と事前確率が決まったら、ベイズの定理を用いて事後確率を求める

ベイズの定理 (Bayes Theorem)

$$Pr(\theta|w) = \frac{Pr(w|\theta) Pr(\theta)}{Pr(w)}$$
$$= \frac{L(\theta|w) Pr(\theta)}{\int Pr(w|\theta) Pr(\theta) d\theta}$$

地球儀問題の事後確率の一例*

• 尤度:
$$\Pr(w|n,\theta) = \frac{n!}{w!(n-w)!}\theta^w(1-\theta)^{n-w}$$

事前確率: θ = 1

$$\Pr(\theta|w,n) \propto \Pr(w|n,\theta) \propto \theta^{w} (1-\theta)^{n-w} \times 1$$

$$= \Pr(w|n,\theta) \propto \theta^{w} (1-\theta)^{n-w}$$

$$\theta|n,w \sim \text{Beta}(w+1,n-w+1)$$

事後確率の導出

- 問題が簡単なとき:解析的に答えを出せる
 - 地球儀問題はこれが可能
- 問題が複雑になると、解析的に答えを出すのが大変か実質的 に不可能
 - 母数の数が多いとき
 - 尤度関数が複雑なとき
- 近似的に答えを出す
 - グリッド近似
 - ② 二次近似
 - ③ マルコフ連鎖モンテカルロ法

グリッド近似 (Grid Approximation)

母数のグリッド(格子)を作り、各グリッドで事後確率を計算する 長所 事後確率を導出する仕組みがよくわかる(教育的) 短所 母数が増えると使えない(非実践的)

グリッド近似のプロセス(詳細は web 資料を参照)

- ① グリッドを定義する
- ② グリッド上の各点に、事前確率を与える(計算する)
- ③ グリッド上の各点で、尤度を計算する
- ④ 標準化されていない事後確率を計算する
- ⑤ 事後確率を標準化する

二次近似 (Quadratic Approximation)

- やや難しいので、とりあえず使わない
- 必要になったときに説明する
- 一言で言えば、事後分布を放物線(二次関数)に単純化して 考える方法
- こういう方法があるということは知っておいて欲しい

マルコフ連鎖モンテカルロ法 (MCMC)

- Markov chain Monte Carlo (MCMC)
- 実践的には、よく使われる方法
- 政治学方法論 Ⅱ で詳しく説明する予定
- こういう方法があるということは知っておいて欲しい