Colle 2 Raisonnements, ensembles

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mercredi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Raisonnements

Exercice 2.1

Une fonction $f:\mathbb{R}\longrightarrow\mathbb{R}$ est dite polynomiale de degré $n\in\mathbb{N}$ lorsque :

$$\exists a_0,\ldots,a_n\in\mathbb{R}:\quad \forall x\in\mathbb{R},\quad f(x)=a_0+a_1x+\cdots+a_nx^n.$$

Déterminer l'ensemble des fonctions polynomiales de degré 4 paires.

Exercice 2.2

1. Déterminer les solutions r_1, r_2 de l'équation

$$x^2 - \frac{1}{6}x - \frac{35}{6} = 0.$$

2. Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \ u_{n+2} = \frac{1}{6}u_{n+1} + \frac{35}{6}u_n.$$

Montrer que :

$$\exists \lambda, \mu \in \mathbb{R} : \forall n \in \mathbb{N}, \ u_n = \lambda r_1^n + \mu r_2^n.$$

Exercice 2.3

Soient $p, q \in [1, +\infty[$ tels que $p \leqslant q$.

Soit $r \in [p, q]$.

Montrer que :

$$\exists \theta \in [0,1]: \quad \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

Exercice 2.4

Déterminer les solutions sur \mathbb{R} de l'équation $\sqrt{21-4x}=x$.

Exercice 2.5

Soit $a \in \mathbb{R}$. On pose, pour $x \in \mathbb{R}$, f(x) := ax. On suppose que :

$$\forall x \in \mathbb{R}, \quad f(f(x)) + f(x) = 2x.$$

- 1. Déterminer les valeurs possibles de a.
- **2.** Montrer que, pour tout $x \in \mathbb{R}$, il existe un unique couple $(x_1, x_2) \in \mathbb{R}^2$ tels que :

$$f(x_1) = x_1$$
, $f(x_2) = -2x_2$ et $x = x_1 + x_2$.

1

Ensembles

Exercice 2.6

Soit *E* un ensemble.

Soient A, B, C trois parties de E.

Montrer que :

$$\begin{cases}
A \cup B = A \cup C \\
A \cap B = A \cap C
\end{cases} \iff B = C.$$

Exercice 2.7

Soit E un ensemble.

Soient A, B, C trois parties de E.

Montrer que :

$$\left. \begin{array}{l}
B \cup C \subset A \cap C \\
A \subset B \cap C
\end{array} \right\} \quad \Longleftrightarrow \quad A = B = C.$$

Coefficients binomiaux

Exercice 2.8

Pour $n \in \mathbb{N}$, on pose $u_n := \frac{\sqrt{n+1}}{2^{2n}} \binom{2n}{n}$.

Montrer que la suite $(u_n^2)_n$ est monotone.

Exercice 2.9

Montrer que :

$$\forall n \in \mathbb{N}^*, \quad \frac{4^n}{2n} \leqslant \binom{2n}{n} \leqslant \frac{4^n}{2}.$$

Exercice 2.10

Soit $n \in \mathbb{N}^*$. Déterminer $u_n \in \mathbb{R}$ tel que :

$$\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\cdots\left(\frac{1}{2}-(n-1)\right)}{n!}=u_n\binom{2n}{n}.$$