3 数据拟合 Curve Fitting

何军辉 hejh@scut.edu.cn

插值与拟合

- □ 若给定的数据表表示的是一个量与另一个量的 关系,则可以使用单变量数据拟合法寻找一个 近似函数来代替函数*f*(*x*)
- □ 通常F(x)称为拟合函数, f(x)称为被拟合函数
 - 与插值法不同,数据拟合并不要求近似函数 F(x)通过已知数据点
 - \blacksquare 希望能找到一个最好的函数来近似代替f(x)
 - 好坏的标准?

定义: 若记 $\delta_i = f(x_i) - F(x_i)$, $i = 1, 2, \dots, n$, 则称 δ_i 为f(x)与F(x)在 x_i 的偏差.

定义:以"偏差的平方和最小"为原则选择近似函数的方法称为最小二乘法.

$$\min \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} [f(x_i) - F(x_i)]^2$$

- □ 单变量数据拟合法的一般步骤:
 - ① 按给定数据表画出散点图
 - ② 分析散点图,确定近似函数*F*(*x*)的类型,以反映给定数据的一般趋势
 - ③ 用最小二乘法确定近似函数F(x)的未知参数,从而得到最小二乘拟合函数F(x)

□ 最小二乘直线

定理: 给定y = f(x)的数据表 $(x_i, y_i)(i = 1, 2, \dots, n)$ 如下, 若点 (x_i, y_i) 大体上满足线性函数, 即最小二乘拟合函数为

$$F(x) = a + bx$$

则待定参数a和b是正规方程组方程组

$$\begin{cases} na + \left(\sum_{i=1}^{n} x_i\right)b = \sum_{i=1}^{n} y_i \\ \left(\sum_{i=1}^{n} x_i\right)a + \left(\sum_{i=1}^{n} x_i^2\right) = \sum_{i=1}^{n} x_i y_i \end{cases}$$

例:已知一组实验数据如表所示,试用单变量数据拟合法求其拟合函数.

ा										1.1	. 1.		٠.								٠.			٠.					_	-				٠.			Т.								 П	٠.						1.1	П									F							٠.						٠.				7
. 1																																																																							١.								1
1					~	٠.					- 1								- 1				. 7									_	-									_							_				- 1					-								_									_				4
· 1		-	_	-	-	÷	-	-	<u> </u>		+	-	-	-	-	-	-	<u> </u>	+	-	-	-	-	-	-	-	-	÷	÷	_	-	÷	÷	-	-	-	+	-	-	<u> </u>	÷	-	-	÷	 ۰	-	-	<u> </u>	-	-	-	-	+	<u> </u>	-	-	-	-	-	-	-	۰	-	-	÷	-	-	÷	-	-	÷	-	-	<u> </u>	-	-	-	<u> </u>	4
1						- 1			·		-1-					_												Н									-1-				_	_ :			Г								-1					_				Ŀ				_									٠.				- [
	1	7.	_	_		F	1	1	٠)										- 4				٠(٠	١.																	L								1				- 1				· 1.	,								7 • 1	١.								7				1
	٠. ا	/.	-	-	٠.,	1	Ţ.	х			- 1-					J			- 1					"								•										,							_				- 1					,								·								_	- 1				
. L						٠.	. `		•		1								. 1									1.									1								L																	1.																	1

$$F(x) = a + bx$$

□ 单变量线性拟合法算法

- ① 读入数据 x_i 和 y_i ($i = 1, 2, \dots, n$)
- ② 计算

$$S_x = \sum_{i=1}^n x_i$$
, $S_y = \sum_{i=1}^n y_i$, $S_{xx} = \sum_{i=1}^n x_i^2$, $S_{xy} = \sum_{i=1}^n x_i y_i$

③ 解正规方程组

$$\begin{cases} na + s_x b = s_y \\ s_x a + s_{xx} b = s_{xy} \end{cases}$$

4 输出a和b

$$a = \frac{s_{xx}s_y - s_xs_{xy}}{ns_{xx} - s_x^2}, b = \frac{ns_{xy} - s_xs_y}{ns_{xx} - s_x^2}$$

- □ 在实际问题中,很多问题反映的不是一个量与 一个量的关系,而是一个量与若干个量的关系.
 - 一个量由若干个量确定
 - 其中: 若干个量通常称为自变量, 由这些自变量 确定的量通常称为因变量
 - 记自变量为 x_1, x_2, \cdots, x_k , 因变量为y
 - n次实验或测量得到n组数据

次数		x_2	• •	x_k	$y = f(x_1, x_2, \cdots, x_k)$
1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1k}	y_1
2	<i>x</i> ₂₁	<i>x</i> ₂₂		x_{2k}	y_2
•	•	•		•	
n	x_{n1}	x_{n2}		x_{nk}	y_n

□ 多变量线性拟合

$$F(x_1, x_2, \dots, x_k) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k$$

- 使用最小二乘法确定待定参数a₀, a₁, ···, a_k
 - □ 偏差平方和

$$\varphi(a_0, a_1, \cdots, a_k)$$

$$= \sum_{m=1}^{\infty} (y_m - a_0 - a_1 x_{m1} - a_2 x_{m2} - \dots - a_k x_{mk})^2$$

□ 根据多元函数求极小值方法,对 $\varphi(a_0, a_1, \dots, a_k)$ 分别求关于 a_0, a_1, \dots, a_k 的偏导数并令其等于 $\mathbf{0}$

$$\frac{\partial \varphi}{\partial a_i} = 0 \ (i = 0, 1, \cdots, k)$$

 \square 解方程组得到 a_0, a_1, \cdots, a_k

□ 多变量线性拟合

$$F(x_1, x_2, \dots, x_k) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k$$

$$\begin{cases} n a_0 + a_1 \sum_{m=1}^{n} x_{m1} + a_2 \sum_{m=1}^{n} x_{m2} + \cdots + a_k \sum_{m=1}^{n} x_{mk} = \sum_{m=1}^{n} y_m \\ a_0 \sum_{m=1}^{n} x_{m1} x_{m1} + a_1 \sum_{m=1}^{n} x_{m1} + a_2 \sum_{m=1}^{n} x_{m2} x_{m1} + \cdots + a_k \sum_{m=1}^{n} x_{mk} x_{m1} = \sum_{m=1}^{n} y_m x_{m1} \\ a_0 \sum_{m=1}^{n} x_{m2} + a_1 \sum_{m=1}^{n} x_{m1} x_{m2} + a_2 \sum_{m=1}^{n} x_{m2} x_{m2} + \cdots + a_k \sum_{m=1}^{n} x_{mk} x_{m2} = \sum_{m=1}^{n} y_m x_{m2} \\ a_0 \sum_{m=1}^{n} x_{mk} + a_1 \sum_{m=1}^{n} x_{m1} x_{mk} + a_2 \sum_{m=1}^{n} x_{m2} x_{mk} + \cdots + a_k \sum_{m=1}^{n} x_{mk} x_{mk} = \sum_{m=1}^{n} y_m x_{mk} \end{cases}$$

例:已知一组测量数据,求其线性拟合函数.

测量次数	x_1	χ_2	$y = f(x_1, x_2)$
1	1	1	7
2	1	2	9
3	2	1	10
4	2	2	11
5	2	3	12

$$F(x_1, x_2) = a_0 + a_1 x_1 + a_2 x_2$$

- □ 原始数据之间并不呈现线性关系,无法直接应用最小二乘线性拟合.
- ① 直接应用最小二乘思想可能得到非线性方程组 , 不便于求解.
- ② 可以尝试将原始数据作一定的变换, 使经过变换后的数据呈现线性关系.

例: 钢包容量与使用次数之间关系的测试数据

i	次数	容量	i	次数	容量	i	次数	容量
1	2	6.42	6	7	10.00	11	12	10.60
2	3	8.20	7	8	9.93	12	13	10.80
3	4	9.58	8	9	9.99	13	14	10.60
4	5	9.50	9	10	10.49	14	15	10.90
5	6	9.70	10	11	10.59	15	16	10.76

$$\frac{1}{y} = a + b\frac{1}{x}$$
 (双曲线)
$$X = \frac{1}{x}, Y = \frac{1}{y}$$

$$Y = a + bX$$
 (直线)

例:已知一组数据如下,求一个经验函数,形如 $y = ae^{bx}(a,b)$ 常数),使之与数据相拟合.

. Here we have $oldsymbol{\gamma}$ and the second second	0		l: 2	1:3::::::::::::::::::::::::::::::::::::	
y = f(x)	1.5	2.5	3.5	5	7.5

$$y = ae^{bx}$$

$$\ln y = \ln a + bx$$

$$Y = \ln y, A = \ln a, B = b, X = x$$

			ĵ	ĸ					0										1	•										2)									• ,	3									4	4										
· 1	7	=======================================	=	l	r	ı	vi		0	4	- ()	5	,∠	1	6	5	• •	0).	9) [L	6	2	2 (9	1	•	1		2) I	5	2	7	7 (5	3		1	. (5	0	9	4	(:)	38	3	2	2	. ()	1	4	ļ	9	0) [3	

$$Y = A + BX$$

- □ 采用非线性数据线性化方法拟合多项式
 - 设有两个量*z*和*y*基本满足*m*次多项式,实验测量数据如下表:

$egin{array}{c ccccccccccccccccccccccccccccccccccc$			Ι.	1				ж.		
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	1									
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	7									
$egin{array}{c ccccccccccccccccccccccccccccccccccc$										
$egin{array}{c ccccccccccccccccccccccccccccccccccc$										
$egin{array}{c ccccccccccccccccccccccccccccccccccc$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	f			-		_				
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	٠,									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	7									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	\									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			ж.	11.			- 1	ж.		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{c ccccccccccccccccccccccccccccccccccc$										
$egin{array}{c ccccccccccccccccccccccccccccccccccc$										
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	1									
$egin{array}{c ccccc} z_2 & \cdots & z_n \\ \hline & v_2 & \cdots & v_n \end{array}$)]-	_ =	7. 1			7				
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		=_	L.							
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			т.			1		т.		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{c cccc} z_2 & \cdots & z_n \\ \hline y_2 & \cdots & y_n \\ \hline \end{array}$										
$egin{array}{c cccc} z_2 & \cdots & z_n \\ \hline y_2 & \cdots & y_n \\ \hline \end{array}$										
$egin{array}{cccccccccccccccccccccccccccccccccccc$										
$egin{array}{cccccccccccccccccccccccccccccccccccc$	ν									
$egin{array}{cccccccccccccccccccccccccccccccccccc$	7-		Z							
$egin{array}{ c c c c c c c c c c c c c c c c c c c$)	_	4 .							
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
$egin{array}{c cccc} & & & & & & & & & & & & & & & & & $						- 1		1.1		
$egin{array}{c cccc} & & & & & & & & & & & & & & & & & $										
$egin{array}{c cccc} & & & & & & & & & & & & & & & & & $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c cccc} \cdots & z_n \\ \hline \cdots & y_n \end{array}$										
$egin{array}{c c} \cdots & z_n \\ \cdots & y_n \end{array}$										
$egin{array}{c c} \cdots & z_n \\ \cdots & y_n \end{array}$										
$egin{array}{c c} \cdot & z_n \\ \cdot & \gamma_n \end{array}$										
$egin{array}{cccccccccccccccccccccccccccccccccccc$					•					
z_n y_n										
z_n γ_n										
$\frac{Z_n}{V_n}$										
$\frac{z_n}{v_n}$										
z_n y_n										
$egin{array}{c} Z_n \ & oldsymbol{\mathcal{V}}_n \end{array}$			- 1			- 1		- 1	. ц	
$\frac{z_n}{v_n}$										
Z_n V_n		_								
Z_n V_n										
Z_n V_n										
$\frac{Z_n}{V_n}$										
n In	1					_				
\imath	1,	_ =	- 1			7				
	ı		L.	つ						

$$y = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

$$x_1 = z, x_2 = z^2, \dots, x_m = z^m$$

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m$$

$$= F(x_1, x_2, \dots, x_m)$$

- □ 多项式拟合
 - 先把多项式拟合函数变成多变量拟合函数
 - 利用多变量拟合法求出多项式系数a_i
 - □ 需要求解一个正规方程组
 - □ 当多项式次数较高时,正规方程组可能会病态

定义:如果方程组Ax = b中的系数矩阵A和常数项b有微小变化,就会引起方程组的解很大变化,则方程组Ax = b称为病态方程组

□ m次多项式函数:

$$y^* = \Psi_m(x) = a_0 p_0(x) + a_1 p_1(x) + \dots + a_m p_m(x)$$
$$= \sum_{k=0}^{m} a_k p_k(x)$$

其中 a_i 为待定参数, $p_k(x)(k=0,1,\cdots,m)$ 是k次多项式.

□ 当 $x = x_i$ 时,产生的偏差为:

$$\delta_i = y_i - y_i^* = y_i - \sum_{k=0}^m a_k p_k(x_i)$$

■ 最小二乘法:偏差平方和最小

- lacksquare 由于从实验或测量中得到的不同数据精度不同,为了反映这种不同,通常在每一个 δ_i 前面乘上一个表示数据精度的权数 α_i
- 使加权偏差平方和最小

$$\sum_{i=1}^{n} (\alpha_i \delta_i)^2 = \sum_{i=1}^{n} \alpha_i^2 \delta_i^2 = \sum_{i=1}^{n} \omega_i \delta_i^2$$

其中 $\omega_i = \alpha_i^2$ 称为权因子.

$$\varphi(a_0, a_1, \cdots, a_m)$$

$$\stackrel{\text{def}}{=} \sum_{i=1}^{n} \omega_i \delta_i^2 = \sum_{i=1}^{n} \omega_i \left[y_i - \sum_{k=0}^{m} a_k p_k(x_i) \right]^2$$

- □ 选择 a_i 使加权偏差平方和 $\sum_{i=1}^n \omega_i \delta_i^2$ 最小的问题 转化为求函数 $\varphi(a_0, a_1, \dots, a_m)$ 极小值的问题
 - 对函数 $\varphi(a_0, a_1, \dots, a_m)$ 分别求关于 a_0, a_1, \dots, a_m 的导数,令其等于0,联立得到方程组:

$$\frac{\partial \varphi}{\partial \alpha_j} = -2 \sum_{i=1}^n \omega_i \left[y_i - \sum_{k=0}^m a_k p_k(x_i) \right] p_j(x_i) = 0$$

其中 $(j = 0,1,\cdots,m)$

$$\sum_{i=1}^n \omega_i \left[\sum_{k=0}^m a_k p_k(x_i) p_j(x_i) \right] = \sum_{i=1}^n \omega_i y_i p_j(x_i)$$

■ 交换求和顺序得到

$$\sum_{k=0}^{m} a_k \left[\sum_{i=1}^{n} \omega_i p_k(x_i) p_j(x_i) \right] = \sum_{i=1}^{n} \omega_i y_i p_j(x_i)$$

$$\diamondsuit c_{jk} = \sum_{i=1}^n \omega_i p_k(x_i) p_j(x_i), \quad b_j = \sum_{i=1}^n \omega_i y_i p_j(x_i)$$

■ 正规方程组

$$\sum_{k=0}^{m} c_{jk} a_k = b_j$$

定义:对数据 x_i 和加权因子 ω_i 的正交多项式簇.

$$c_{jk} = \sum_{i=1}^{n} \omega_i p_k(x_i) p_j(x_i) = 0 \quad (j \neq k)$$

$$c_{jj} = \sum_{i=1}^{n} \omega_i p_j(x_i)^2 > 0 \ (j, k = 0, 1, \dots, m)$$

$$\sum_{k=0}^{m} c_{jk} a_k = b_j$$
, $c_{kk} a_k = b_k$, $a_k = \frac{b_k}{c_{kk}}$

例: 正交多项式簇

- □ 假设给定一组n+1个等距节点 ξ_i ($i=0,1,\cdots,n$),间隔为h,选取加权因子 $\omega_i=1$
- □ 引入变换 $x = \frac{\xi \xi_0}{h}$,则 ξ_i 变为 $x_i = i$, x_i 是n + 1个整数等距节点
- □构造多项式

$$p_{m,n}(x) = \sum_{k=0}^{m} (-1)^k {m \choose k} {m+k \choose k} \frac{x^{(k)}}{n^{(k)}}$$

其中
$$x^{(k)} = x(x-1)\cdots(x-k+1)$$
且 $x^{(0)} = 1$

