

WHAT IS CLAIMED IS:

1. A thermal processing susceptor holding a substrate subjected to thermal processing, comprising:

5 a flat receiving surface having a region larger than the planar size of said substrate; and

 a tapered surface annularly enclosing the peripheral edge of said receiving surface for specifying said receiving surface, wherein

10 the lower end of said tapered surface is concatenated to said peripheral edge of said receiving surface and said tapered surface is formed to upwardly broaden while the gradient of said tapered surface with respect to said receiving surface is at least 5° and less than 30°.

2. The thermal processing susceptor according to claim 1, wherein

15 the average surface roughness of said tapered surface is not more than 1.6 μm .

3. A thermal processing susceptor holding a substrate subjected to thermal processing, comprising a cavity storing said substrate in thermal processing, wherein

20 said cavity has a flat bottom surface and an inclined surface annularly enclosing the peripheral edge of said bottom surface, and

 the gradient of said inclined surface with respect to said bottom surface is at least 5° and less than 30°.

4. The thermal processing susceptor according to claim 3, wherein

25 the average surface roughness of said inclined surface is not more than 1.6 μm .

5. A thermal processing apparatus irradiating a substrate with light thereby heating said substrate, comprising:

a light source having a plurality of lamps;

5 a chamber, provided under said light source, comprising a chamber window transmitting light emitted from said light source on its upper portion; and

a holding element substantially horizontally holding said substrate in said chamber, wherein

said holding element has a thermal processing susceptor comprising:

10 a flat receiving surface having a region larger than the planar size of said substrate, and

a tapered surface annularly enclosing the peripheral edge of said receiving surface for specifying said receiving surface, and

15 the lower end of said tapered surface is concatenated to said peripheral edge of said receiving surface and said tapered surface is formed to upwardly broaden while the gradient of said tapered surface with respect to said receiving surface is at least 5° and less than 30°.

6. The thermal processing apparatus according to claim 5, wherein

20 the average surface roughness of said tapered surface is not more than 1.6 μm .

7. The thermal processing apparatus according to claim 6, wherein

each of said plurality of lamps is a xenon flash lamp, and

25 said holding element further has an assistive heater preheating held said substrate.

8. A thermal processing susceptor holding a substrate subjected to thermal processing, comprising:

5 a flat receiving surface having a region larger than the planar size of said substrate;

 a first tapered surface annularly enclosing the peripheral edge of said receiving surface for specifying said receiving surface; and

 a second tapered surface annularly enclosing the peripheral edge of said first tapered surface, wherein

10 the lower end of said first tapered surface is concatenated to said peripheral edge of said receiving surface and the lower end of said second tapered surface is concatenated to the upper end of said first tapered surface while said first tapered surface is formed to upwardly broaden, an opening specified by the upper end of said second tapered surface is wider than said receiving surface, and the gradient of said second 15 tapered surface with respect to said receiving surface is larger than the gradient of said first tapered surface.

9. The thermal processing susceptor according to claim 8, wherein
the gradient of said first tapered surface with respect to said receiving surface is
20 at least 5° and less than 30°.

10. The thermal processing susceptor according to claim 9, wherein
the average surface roughness of said first tapered surface is not more than 1.6
μm.
25

11. The thermal processing susceptor according to claim 10, wherein
the gradient of said second tapered surface with respect to said receiving
surface is at least 45° and not more than 90°.

5 12. A thermal processing apparatus irradiating a substrate with light thereby
heating said substrate, comprising:

a light source having a plurality of lamps;

a chamber, provided under said light source, comprising a chamber window
transmitting light emitted from said light source on its upper portion; and

10 a holding element substantially horizontally holding said substrate in said
chamber, wherein

said holding element has a thermal processing susceptor comprising:

a flat receiving surface having a region larger than the planar size of said
substrate,

15 a first tapered surface annularly enclosing the peripheral edge of said receiving
surface for specifying said receiving surface, and

 a second tapered surface annularly enclosing the peripheral edge of said first
tapered surface, and

 the lower end of said first tapered surface is concatenated to said peripheral
20 edge of said receiving surface and the lower end of said second tapered surface is
concatenated to the upper end of said first tapered surface while said first tapered surface
is formed to upwardly broaden, an opening specified by the upper end of said second
tapered surface is wider than said receiving surface, and the gradient of said second
tapered surface with respect to said receiving surface is larger than the gradient of said
25 first tapered surface.

13. The thermal processing apparatus according to claim 12, wherein
each of said plurality of lamps is a xenon flash lamp, and
said holding element further has an assistive heater preheating held said
5 substrate.

14. A thermal processing susceptor receiving a substrate subjected to thermal
processing, comprising:
a flat receiving surface having a region larger than the planar size of said
10 substrate; and
a tapered surface annularly enclosing the peripheral edge of said receiving
surface for specifying said receiving surface, wherein
the lower end of said tapered surface is concatenated to said peripheral edge of
said receiving surface while said tapered surface is formed to upwardly broaden, and
15 said tapered surface has such a gradient that an end of said substrate slides up
along said tapered surface when said substrate thermally expands while said end is in
contact with said tapered surface.

15. The thermal processing susceptor according to claim 14, wherein
20 only the surface of said substrate expands and convexly warps when said
substrate thermally expands.

16. A thermal processing susceptor receiving a substrate subjected to thermal
processing, comprising:
25 a flat receiving surface having a region larger than the planar size of said

substrate; and

a tapered surface annularly enclosing the peripheral edge of said receiving surface for specifying said receiving surface, wherein

the lower end of said tapered surface is concatenated to said peripheral edge of
5 said receiving surface while said tapered surface is formed to upwardly broaden, and

said tapered surface has such a gradient that an end of said substrate slides up
along said tapered surface without restricting thermal expansion of said substrate when
said substrate received on said receiving surface thermally expands and said end comes
into contact with said tapered surface.