COL352 Problem Sheet 2

Himanshi Ghai (2019CS50433) Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399)

February 2022

Contents

1	Question 1	2
2	Question 2	4
3	Question 3	5
4	Question 4	6
5	Question 5	7
6	Question 6	8
7	Question 7	9
8	Question 8	10

Question 1

Question. Show that every infinite Turing-recognizable language has an infinite decidable subset.

Proof. Let the Turing-recognizable language be L. Consider an enumerator for this language E. Consider the following algorithm:

Algorithm 1 Return the first word of length n enumerated such that all words enumerated earlier are of shorter length else ϵ

```
1: procedure EnumerateFirst(E, n)
 2:
        w \leftarrow \epsilon
        curr_w \leftarrow \epsilon
 3:
        while |curr_w| < n do
 4:
             curr_w \leftarrow next(E)
 5:
             if |curr_w| > |w| then
 6:
 7:
                 w \leftarrow curr_w
             end if
 8:
        end while
 9:
        if |w| > n then
10:
11:
             w \leftarrow \epsilon
12:
        end if
        return w
13:
14: end procedure
```

We now define the following Turing machine $T_{decidable}$:

Algorithm 2 Turing machine of a decidable subset

```
1: procedure DECIDABLESUBSET(L, w)
2: E \leftarrow enumerator(L)
3: w' \leftarrow EnumerateFirst(E, |w|)
4: if w' = w then
5: return accept
6: else
7: return reject
8: end if
9: end procedure
```

We claim that $T_{decidable}$ is a Turing machine and decidable. For this, we first prove that Algorithm 1 is correct and terminates. For correctness, notice that the while loop exits only if $|curr_w| \geq n$ and thus the length of the string in w after the termination of the while loop is at least n. Therefore, the final returned value is the first string enumerated with length equal to n (such that all strings before are of smaller length) or ϵ .

For termination, notice that there are only a finite possibilities before E enumerates a string with length $\geq n$. Therefore, the while loop terminates after a finite number of iterations.

We have shown that Algorithm 1 is decidable since it halts. Therefore, the string w' in ALgorithm 2 is generated in finite number of steps. The comparison of w' and w also completes in finite steps. Therefore, Algorithm 2 accepts or rejects w in finite number of steps. Therefore, $T_{decidable}$ is a decidable Turing machine.

We also need to show that $T_{decidable}$ recognizes an infinite language. This is obvious since L is infinite and therefore the following set forms an infinite sequence:

$$\{i|\forall i \in \mathbb{N} : EnumerateFirst(E, i) \neq \epsilon\}$$
 (1)

This set is a bijection to the words recognised by $T_{decidable}$. Therefore, $L(T_{decidable})$ is also an infinite set.

Thus, we have shown that for every infinite Turing-recognizable language, we have an infinite decidable subset. \Box

Question 2	
Question. Show that single-tape TMs that cannot write on the portion of the tape of the input string recognize only regular languages.	containing
Solution. sol	

