LARGE-SCALE INFERENCE IN GAUSSIAN PROCESS MODELS

EDWIN V. BONILLA AUGUST 21ST, 2014

A HISTORICAL NOTE

- How old are Gaussian processes (GPs)?
 - a) 1970s
 - b) 1950s
 - c) 1940s
 - d) 1880s

Thorvald Nicolai Thiele

- [T. N. Thiele, 1880] "Om Anvendelse af mindste Kvadraters Methode i nogle Tilfælde, hvor en Komplikation af visse Slags uensartede tilfælde Fejlkilder giver Fejlene en 'systematisk' Karakter", Vidensk. Selsk. Skr. 5. rk, naturvid. og mat. Afd., 12, 5, 381–40.
 - First mathematical theory of Brownian motion
 - EM algorithm (Dempster et al, 1977)?

SOME APPLICATIONS OF GP MODELS

Spatio-temporal modelling

7210414959 0690159734 9665407401 3134727121 1742351244

Classification

Robot inverse dynamics

Data fusion / multi-task learning

Style-based inverse kinematics

Preference learning

Bayesian optimization

Bayesian quadrature

HOW CAN WE 'SOLVE' ALL THESE PROBLEMS WITH THE HUMBLE GAUSSIAN DISTRIBUTION?

- Key components of GP models
 - Non-parametric prior
 - Bayesian
 - Kernels (covariance functions)

What do we pay?

- Bayesian non-linear regression
- 'Intractability' for non-Gaussian likelihoods
 - E.g. a sigmoid likelihood for classification
- High Computational cost with # data-points
 - In time and memory

This talk is about approaches for scalability to large datasets when having Gaussian likelihoods (i.e. regression problems)

THIS TALK AT A GLANCE: A JOURNEY THROUGH GP APPROXIMATIONS

GAUSSIAN PROCESSES (GPS)

Definition: Gaussian Process

 $f(\mathbf{x})$ is a Gaussian process if for any subset of points $\mathbf{x}_1, \dots, \mathbf{x}_N$, the function values $f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)$ follow a **consistent** Gaussian distribution.

- Consistency: marginalization property
- Notation $f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'))$ Mean function $\mu(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ Covariance $\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \mathbb{E}[(f(\mathbf{x}) \mu(\mathbf{x}))(f(\mathbf{x}') \mu(\mathbf{x}'))]$ Hyper-parameters
 - A GP is a distribution over functions
 - There is not such a thing as the GP method

SAMPLES FROM A GAUSSIAN PROCESS

THE STANDARD GP REGRESSION SETTING

- Data: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N; \quad \mathbf{x} \in \mathbb{R}^D, \ y \in \mathbb{R}$
- Input: $(\mathbf{X})_{D\times N}$ Targets: $(\mathbf{y})_{N\times 1}$
- Model
 - Prior: $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$
 - Likelihood: $y_i = f(\mathbf{x}_i) + \epsilon_i,$ $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Tasks:
 - Prediction: $p(\mathbf{f}_*|\mathbf{y},\mathbf{X},\mathbf{X}_*)$
 - Hyper-parameter learning: $oldsymbol{ heta}$ and σ^2
- Graphical model for GPs?

INFERENCE IN STANDARD GP REGRESSION

$$\bullet \ \, \text{GP prior:} \left[\begin{array}{c} \mathbf{f} \\ \mathbf{f}_* \end{array} \right] \sim \mathcal{N} \left(\mathbf{0}, \left[\begin{array}{cc} \mathbf{K_{f,f}} & \mathbf{K_{f,*}} \\ \mathbf{K_{*,f}} & \mathbf{K_{*,*}} \end{array} \right] \right)$$

• Likelihood: $\mathbf{y}|\mathbf{f}\sim\mathcal{N}\left(\mathbf{f},\sigma^2\mathbf{I}\right)$

Posterior predictive:

$$p(\mathbf{f}_{*}|\mathbf{y}) = N_{p(\mathbf{y})}^{1} + N_{p(\mathbf{f})} + N_{p($$

- Computational cost: $O(N^3)$ in time and $O(N^2)$ in memory
- Similarly for hyper-parameter learning
 - Via maximization of the marginal likelihood

SIMPLE / OLD APPROXIMATIONS

- Simplest approach: Throw data away
 - Exact GP on M < N data-points $\rightarrow O(M^3)$
 - Can be selected at random or more smartly
 - E.g. Lawrence et al (NIPS, 2003)
 - Very hard to get a good picture of uncertainties

- Iterative solution of linear systems
 - Exact when run for N iterations
 - Approximate when run for I < N iterations → O(IN²)
- ML approach: Approximate/decompose $ilde{\mathbf{K}}_{\mathbf{f},\mathbf{f}}$
 - E.g. use M inducing points
 - Apply mathematical tricks (e.g. Woodbury's formula)
 - Computation usually O(M²N)
 - This uses all the data

INDUCING VARIABLES & UNIFYING FRAMEWORK

WHAT ARE THE INDUCING POINTS?

- Inducing variables u
 - Latent values of the GP (as f and f*)
 - Usually marginalized
- Inducing inputs z
 - Corresponding input locations (as x)
 - Imprint on final solution

- Generalization of "support points", "active set", "pseudo-inputs"
 - 'Good' summary statistics → induce statistical dependencies
 - · Can be a subset of the training set
 - Can be arbitrary inducing variables

A Unifying Framework for GP Approximations

(Quiñonero-Candela & Rassmussen, 2005)

The joint prior is modified through the inducing variables:

$$p(\mathbf{f}_*, \mathbf{f}) \approx q(\mathbf{f}_*, \mathbf{f}) \stackrel{\mathrm{def}}{=} \int q(\mathbf{f}_* | \mathbf{u}) q(\mathbf{f} | \mathbf{u}) p(\mathbf{u}) \, \mathrm{d}\mathbf{u}$$
Test conditional Training conditional GP prior with $\mathbf{K}_{\mathbf{u}\mathbf{u}}$

- Most (previously proposed) approx. methods:
 - Different specifications of these conditionals
 - Different **Z**: Subset of training/test inputs, new **z** inputs

SOR: SUBSET OF REGRESSORS

(SILVERMAN, 1985; WAHBA, 1999; SMOLA & BARTLETT, 2001)

The mean predictor can be obtained with:

$$f(\mathbf{x}_*) = \sum_{i=1}^{N} \alpha_i \kappa(\mathbf{x}_*, \mathbf{x}_i) \qquad \boldsymbol{\alpha} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{\mathbf{f}, \mathbf{f}}^{-1}\right)$$

SoR truncates the number of regressors needed:

$$f_{\mathrm{SoR}}(\mathbf{x}_*) = \mathbf{k}_*^T \boldsymbol{\alpha}_u \quad \boldsymbol{\alpha}_u \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1}) \rightarrow \mathbf{u} = \mathbf{K}_{\mathbf{u}, \mathbf{u}} \boldsymbol{\alpha}_u$$
 Deterministic relation

- Training conditional: $q_{\mathrm{SoR}}(\mathbf{f}|\mathbf{u}) = \mathcal{N}\left(\mathbf{K_{f,u}K_{u,u}^{-1}u},\mathbf{0}\right)$
 - Similar for the test conditional
- Prediction complexity: O(M²N)
- Projected Processes (Csató & Opper, 2002; Seeger et al, 2003)
 - Similar to SoR but it uses the 'exact' test conditional
 - Usually better predictive variances than SoR
 - Not really a GP!

FITC, PITC, BCM

(Snelson & Ghahramanai, 2006; Quiñonero-Candela & Rassmussen, 2005; Tresp, 2000)

FITC: Fully independent training conditionals

PITC: Partially independent training conditionals

Diagonal ('true') covariance for training conditionals

Block diagonal covariance for training conditionals

- BCM: Bayesian Committee Machine
 - Same as PITC but selection of inducing variables depends on test points
 - Transductive setting
 - Transduction cannot really occur in exact GPs
- Same cost as SoR

LEARNING THE INDUCING POINTS

SGP: Sparse GPs

(SNELSON & GHAHRAMANI, 2006)

- FITC model but inducing points do not belong to training or test test
 - Instead they are 'free' parameters of the model
 - This facilitates continuous optimization (cf. selecting a subset)
 - Both the locations of the inducing inputs and the GP hyperparameters are learned by optimization of the approximate marginal likelihood

VARIATIONAL STUFF

VFE: VARIATIONAL FREE ENERGY OPTIMIZATION

(TITSIAS, 2009)

- Inducing-point model
 - Do not modify the (prior) model
 - Approximate posterior over inducing variables
- ELBO: Single consistent objective function
 - Inducing variables are 'marginalized' variationally
 - Inducing inputs are additional variational parameters
 - Joint learning of posterior and variational parameters
 - Additional regularization term appears naturally
- Predictive distribution
 - Equivalent to PP
 - $O(M^2N) \rightarrow Good enough$?

SVI-GP: STOCHASTIC VARIATIONAL INFERENCE

(HENSMAN ET AL, 2013)

SVI for 'big data'

Decomposition across data-points through global variables

GPs

Fully coupled by definition

Large scale GPs

Inducing variables can be such global variables

- Maintain an explicit representation of inducing variables in lower bound (cf. Titsias)
 - Lower bound decomposes across inputs
 - Use stochastic optimization
 - Cost O(M³) in time → Can scale to very large datasets!

FAGP: FAST ALLOCATION OF GPS

(NGUYEN & BONILLA, 2014)

Mixture of GPs

Variational inference

- A single GP for big data is undesirable (why?)
- Mixture of (local) sparse GP experts
 - Allocation is a function of inducing variables
 - Variational inference (learn everything)
 - Non-stationarity for 'free'
 - Cost $O(NM_k^2) \rightarrow Can afford many more inducing points!$

COGP: COLLABORATIVE MULTI-OUTPUT GPS

(NGUYEN & BONILLA, 2014)

Data fusion / multi-task learning

- True 'big data' GP
 - Learning from multiple sources
 - Mixture of Sparse latent GPs
 - Sharing of additional inducing points
- Variational inference: O(M_i³)
 - Scalable to a large number of inputs and outputs
 - Affords much larger # of inducing inputs

SUMMARY / ACKNOWLEDGEMENTS

