Curso de Graduação em Engenharia Mecatrônica Departamento de Engenharia Elétrica - FT - UnB Disciplina: Dispositivos e Circuitos Eletrônicos - Período 2003.2

Nota:

Professor: Geovany Araújo Borges

Prova 1: Diodos semicondutores - Data: $22/09/2003$	
Nome:	Matrícula:

Instruções:

- Tempo máximo de duração: 2 horas.
- Explique o desenvolvimento das questões. Resultados sem explicações e sem desenvolvimentos não serão aceitos;
- Não use aproximações, exceto quando explicitamente indicado;
- Não é permitido o uso de máquina calculadora;
- Quando forem solicitados resultados analíticos (i.e., fórmulas literais), estes devem ser desenvolvidos envolvendo as variáveis de interesse e os parâmetros do modelo. Outras variáveis dependentes não devem estar presentes nas fórmulas.

Principais fórmulas:

- Modelos físicos de diodo:
 - Modelo físico completo: $i_d = I_S \exp(\frac{v_d}{nV_T}) I_S$ Modelo físico aproximado: $i_d = I_S \exp(\frac{v_d}{nV_T})$
- Modelos elétricos aproximados (diodo retificador):
- Modelo ideal: curto-circuito para $i_d > 0$ e curto-aberto para $v_d < 0$.
- Modelo queda de tensão constante: V_{DO} correspondente à queda de tensão pelo diodo quando em condução direta.
- Modelo bateria mais resistência: parâmetro V_{DO} correspondente à tensão da bateria e r_D é a resistência interna em série com a bateria.
- Modelos elétricos aproximados (diodo Zener):
- Modelo queda de tensão constante: parâmetro V_{DO} correspondente à queda de tensão pelo diodo quando em condução direta, parâmetro V_{ZO} correspondente à queda de tensão reversa pelo diodo quando na
- Modelo bateria mais resistência: Na polarização direta, parâmetro V_{DO} correspondente à tensão da bateria e r_D é a resistência interna em série com a bateria. Na ruptura, parâmetro V_{ZO} correspondente à tensão da bateria na ruptura e r_Z é a resistência interna.

Questões:

1. No diodo semicondutor, os parâmetros dependentes da temperatura são V_T e I_S . Sabe-se que V_T varia linearmente com a temperatura, ou seja, $V_T = kT/q$, com k sendo a constante de Boltzmann, q sendo o valor da carga do elétron e T sendo a temperatura em Kelvin. Por outro lado, I_S depende de forma não-linear com a temperatura: $I_S(T) = f(T)$, com $f(\cdot)$ sendo uma função não-linear. Uma forma de medir a temperatura usando diodo de junção baseia-se na medição das tensões diretas v_1 e v_2 obtidas sob a passagem de duas correntes distintas i_1 e i_2 , respectivamente (uma medição por vez). Demonstre matematicamente como determinar a temperatura T a partir de v_1 e v_2 e indique a influência de I_S nesta técnica. Para tanto, use o modelo físico aproximado e explique também sob que condições este modelo se aplica (pontos: 2,0)

- 2. O circuito da Figura 1 serve de base para conformadores de onda. Responda:
 - (a) Analisar o circuito e determinar a corrente i considerando que este contenha K=2 diodos que podem ser aproximados pelo modelo queda de tensão constante com parâmetro V_{DO} . Considerar que v_E possa assumir valores tanto positivos como negativos (pontos: 1,0).
 - (b) Analisar o circuito e determinar a corrente i considerando que este contenha K > 0 diodos que podem ser aproximados pelo modelo queda de tensão constante com parâmetro V_{DO} . Considerar que v_E possa assumir valores tanto positivos como negativos (pontos: 2,0).

Figura 1: Circuito da questão 2.

3. O circuito da Figura 2 usa um amplificador de transresistência como regulador de tensão com o auxílio do diodo Zener D_1 . Em amplificadores comerciais, a tensão $V_1 > 0$ é um parâmetro intrínseco de dispositivos como o LM3900, da National Semiconductors. Pede-se determinar a fórmula da tensão de saída v_o supondo que o diodo zener se encontra na região de ruptura e que ele pode ser aproximado pelo modelo bateria mais resistência com parâmetros V_{ZO} e r_Z . Lembra-se que o resultado deve ser dado em função dos parâmetros, que no caso são V_1 , R, R_m , R_e , V_{ZO} e r_Z (pontos: 2,0)

Figura 2: Circuito da questão 3.

BOA PROVA!