Driver Drowsiness Detection System using Facial Analysis

Francisco Lozano

Depaul University

CSC 481 section 701

Bio

- Masters in Data Science, Computational Methods Concentration
- I love the Outdoors
 - climbing/hiking mountains
 - Camping
 - Etc.
- I am a Software Engineer for a Research project called SAGE
- Socials
 - GitHub: https://github.com/FranciscoLozCoding
 - LinkedIn: https://www.linkedin.com/in/franlozdata/
 - Email: flozano2@depaul.edu

Introduction

Problem Statement: Develop an automated driver drowsiness detection system that uses facial analysis to identify signs of drowsiness, such as "droopy" eyes.

Objective: Create a classification system to determine Drowsy/Non-Drowsy based on one image.

Importance: Most driver drowsiness detection systems rely on video; using a single image for classification could speed up computation.

Background & Context

- In this project we will be looking at the Pupil, Sciera, Iris, and Eyelid
- Assuming when someone is drowsy their eyelid will cover more of their Pupil, Sciera, etc. (aka "Droopy" eyes)
- The Eye Aspect Ratio (EAR), closed eye has an EAR of 0

$$EAR = \frac{||P2 - P6|| + ||P3 - P5||}{2||P1 - P4||}$$

Fig. 5. The coordinates of an (a) opened eye and (b) closed eye

Methodology

- Tools and Technologies: Python, Kaggle, OpenCV, Dlib, NumPy, SciPy, and others
- Phases:

Dataset & Data Prepocessing

- Dataset Overview: <u>Driver</u>
 <u>Drowsiness Dataset (DDD)</u> Included
 41,790 RGB Images of cropped
 driver faces with two classes
 ["Drowsy", "Non-Drowsy"]
- Data Processing: Used Histogram Equalization and increased the images to 61.8k by adding images with Gaussian or Salt & Pepper noise. (Dataset Generated)
 - Before deciding to use Histogram Equalization I played around with Edge Filters but they gave bad results.

Drowsy Person

Algorithm 1

- Model/Algorithm Choice: Facial landmark can detect eyes, mouth, nose, etc.
- Why This Model: This algorithm can capture eye closure, so lower eye closure meant the eyes are starting to droop.
- Special Techniques: EAR calculation using Facial landmarks

Image Facial landmark detection

EAR Calculated Classification based on EAR

Algorithm 2

- Model/Algorithm Choice: When eyes are "droopy" eyelids are more visible
- Why This Model: This algorithm can capture eye closure and how much of the eye is covered by the eyelid more eyelid coverage meant the driver is drowsy.
- Special Techniques: Calculating Eyelid Coverage using Sobel and Contours.

Image Facial landmark detection

Crop the eyes with padding

Apply Sobel Filter

Find Contours

To identify entire
 Evelid

 Taking into fact the Entire Eyelid

Evaluation

- Algorithm 1 had an accuracy of 0.58, and performed better at identifying "Drowsy" instances
 - Hyper Parameters:
 - EAR Threshold of 0.30
- Algorithm 2 had an accuracy of 0.65 and was equally good in identifying "Drowsy" and "Non-Drowsy" instances.
 - Hyper Parameters:
 - Eyelid Coverage Threshold of 0.55
 - Eye Padding of 5 pixels
 - kernel size of 7 for Sobel Filter

Analysis & Future Work

Analysis

- Algorithm 1 performed worse; it is better used with a video stream to detect how long EAR stayed lower than the threshold
- Taking into factor eyelid coverage was able to increase the accuracy of the drowsiness classification

Future Work

- Other Body languages can be taken into factor to detect drowsiness in a single image such as head bending.
- Training A Support Vector Machine (SVM) on the Facial Landmark features and the Eyelid contours

For More Information

- GitHub Repo: <u>https://github.com/FranciscoLozCoding/csc481_Project/tree/main</u>
- Kaggle Dataset: https://www.kaggle.com/datasets/franciscolozdata sci/csc481-project-dataset

References

- Albadawi, Y., Takruri, M., & Awad, M. (2022). A review of recent developments in driver drowsiness detection systems. Sensors (Basel), 22(5), 2069. https://doi.org/10.3390/s22052069
- Daud, M. A. F., Ismail, A. P., Tahir, N. M., Daud, K., Kasim, N. M., & Mohamad, F. A. (2022). Real-time drowsy driver detection using image processing on Python. 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE), 131-136. https://doi.org/10.1109/ICCSCE54767.2022.9935627
- Guo, X. (2016). LIME: A method for low-light image enhancement. In *Proceedings of the 24th ACM International Conference on Multimedia*, 87-91. https://doi.org/10.1145/2964284.2967188
- Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an ensemble of regression trees. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1867-1874. https://www.semanticscholar.org/paper/One-millisecond-face-alignment-with-an-ensemble-of-Kazemi-Sullivan/d78b6a5b0dcaa81b1faea5fb0000045a62513567
- Kumar, A., & Patra, R. (2018). Driver drowsiness monitoring system using visual behaviour and machine learning. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 339-344. https://doi.org/10.1109/ISCAIE.2018.8405495
- Nasri, I., Karrouchi, M., Snoussi, H., Kassmi, K., & Messaoudi, A. (2022). Detection and prediction of driver drowsiness for the prevention of road accidents using deep neural networks techniques. In Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A., & Khamlichi, Y. (Eds.), WITS 2020: Lecture Notes in Electrical Engineering, Vol. 745. Springer, Singapore. https://doi.org/10.1007/978-981-33-6893-4_6
- Ni, F., Fu, Z., Cao, Q., & Zhao, Y. (2008). Image processing method for eyes location based on segmentation texture. Sensors and Actuators A: Physical, 143(2), 439-451. https://doi.org/10.1016/j.sna.2007.11.033
- Review of recent developments in driver drowsiness detection systems. (n.d.). National Center for Biotechnology Information. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914892/
- Driver drowsiness monitoring system using visual behaviour and machine learning. (n.d.). IEEE Xplore. Retrieved from https://ieeexplore.ieee.org/document/8405495
- Drivers drowsiness detection using image processing and I-Ear techniques. (n.d.). IEEE Xplore. Retrieved from https://ieeexplore.ieee.org/document/10142501