Computer Graphics -Introduction

Junjie Cao @ DLUT Spring 2016

http://jjcao.github.io/ComputerGraphics/

About Me

- jjcao.github.io
- CGGI: cggi.dlut.edu.cn

Context

- History
- Applications
- What is CG
- Stuff
- Topics
- What would you achieve
- Trends

Computer Graphics

- One of the "core" computer science disciplines:
 - Algorithms and Theory
 - Artificial Intelligence
 - Computer Architecture
 - Computer Graphics
 - Computer Security
 - Computer Systems
 - Computer Vision
 - Databases
 - Machine Learning
 - Networks
 - Software Engineering

Computer Graphics vs. Vision

Computer Vision

Computer Graphics

Action!

Story

Computer Graphics

Image

Related to many Disciplines

What Is Computer Graphics?

Modeling

Computer Graphics Image Synthesis Viewing Modeling

- How to represent real environments
 - Geometry: curves, surfaces, volumes
 - Photometry: light, color, reflectance
- How to build these representations
 - Interactive: sculpt it
 - Algorithmic: let it grow (fractals, extraction)
 - Scanning: via 3D sensing
- Generate primitives
 - Lines, triangles, quads, patches
 - Cylinder, spheres
 - Higher-order primitives

Modeling: Interactive

Modeling: Scanning

- David
 - 480 individually aimed scans
 - 2 billion polygons
 - 7,000 color images
 - 32 gigabytes
 - 30 nights of scanning
 - 22 people

Modeling: Algorithmic and Procedural

fractals

Rendering

- What is an image?
 - Distribution of light energy on 2D "film"
- How do we represent and store images?
 - Sampled array of "pixels": p[x,y]
- How do we generate images from scenes?
 - Input: 3D description of scene, camera
 - Project to camera's viewpoint
 - Illumination

Realistic lighting environments

Hardware

• Example: NVIDIA GeForce 6800

Animation

- Model how things move
- Temporal change of
 - Objects (position, orientation, size, shape, color, etc.)
 - Camera (position, direction, angle, focus, etc.)
 - Illumination (position, direction, color, brightness)
- Represent motion
 - Sequence of stills
 - Parameter curves

Animation: modeling motion

https://www.youtube.com/watch?v=wYfYtV_2ezs

Physically-based simulation of motion

Uses Of Graphics

- Special effects
- Feature animation
- Computer Games
- Virtual environments
- Visualization (science, business, cartography, ...)
- Design
- Interaction

Goals in Computer Graphics

Creating a new reality (not necessarily scientific) Practical, aesthetically pleasing, in real time

Synthetic images indistinguishable from reality Practical, scientifically sounds, in real time

3D Computer Graphics Pipeline

SIGGRAPH & SIGGRAPH Asia

- Main computer graphics event
- Twice a year
- up to 30K attendees

Academia, industry, artists

SIGGRAPH & SIGGRAPH Asia

- SIGGRAPH 2014 Technical Papers Preview Trailer
- SIGGRAPH 2015 Technical Papers Preview Trailer

几何、图形、图像密不可分

- PDE method for Image processing
- Image interpolation
- Geometry Image
- Mesh filtering
- Segmentations
- Compression
-

Administrative Stuff

The team

- Instructor
 - Zhixun Su, zxsu@dlut.edu.cn
 - Junjie Cao, jjcao@dlut.edu.cn
- Assistants
 - Yan Wang, 479823436@qq.com

Course Information On-Line

- http://jjcao.github.io/ComputerGraphics/
 - Schedule (slides, readings)
 - Assignments (details, due dates)
 - Software (libraries, tutorial, links)
- https://piazza.com/
 - Submit assignments
 - Forum, Q/A

Prerequisites/What Is It I Expect?

- Coding
 - C/C++
 - Preferably some previous OpenGL exposure
 - Data structures, algorithms
- Math
 - Linear Algebra
 - Differential Equations
- Keeping up with the text(s) is very important

Textbooks

- Interactive Computer Graphics
 - A top-down approach with OpenGL, Fifth Edition, Edward Angel, Addison-Wesley
- OpenGL Programming Guide ("Red Book")

Grading

Assignments

As 1: 16 %?

As 2: 17 %?

As 3: 17 %?

Final Assignments

?

Academic Integrity

- Do not copy any parts of the assignments from anyone
- Do not look at other student's code
- Collaboration only for the project
- Don't cheat, mkay?

Assignment Policies

- Programming Assignments
 - Hand in via Piazza
 - Functionality and features
 - Style and documentation
 - Artistic impression
- Academic integrity policy applied rigorously

Introduction

- What is Computer Graphics?
 - Applications
 - History
 - Relations with other Disciplines
- Administrative Stuff
- Course Overview
- Research Trends

Topics / Course Overview

- Theory / Computer Graphics Disciplines
 - Image Processing: how to edit images
 - Modeling: how to represent objects
 - Rendering: how to create images of objects
 - Animation: how to control and represent motion
- Practice: OpenGL graphics library
- Not in this course:
 - Human-Computer Interaction
 - Graphic Design

The Quest for Visual Realism

Graphics Pipelines

- Graphics processes generally execute sequentially
- Typical 'pipeline' model
- There are two 'graphics' pipelines
 - The Geometry or 3D pipeline
 - The Imaging or 2D pipeline

Geometry Pipeline

Imaging Pipeline

An example

The scene we are trying to represent:

Wireframe model – Orthographic views

Perspective View

Depth Cue

Hidden Line Removal – add colour

Constant Shading – Ambient

Faceted Shading – Flat

Gouraud shading, no specular highlights

Specular highlights added

Phong shading

Texture mapping

Texture mapping

Reflections, shadows & Bump mapping

Research Trends

From Offline to Realtime

Unreal Engine Kite Demo (Epic Games 2015)

From Graphics to Vision

From Graphics to Fabrication

From Production to Consumers

online shopping

Realtime Facial Animation

Live Demo

Acknowledgements

Lecture based on material from:

- CSCI 420: Computer Graphics FS 2015, by Hao Li, execllent slides and assignments: image 2 height fields, Simulating a Roller Coaster, ray tracing
- CS 148 Introduction to Computer Graphics and Imaging (Fall 2015) @ stanford
- 6.837 Computer Graphics (fall 2011) @ MIT
- CMU 15-462/662 COMPUTER GRAPHICS (Fall 2015) @ CMU

Thank you