INFORMATION RETRIEVAL

LO9. LEARNING TO RANK

SUZAN VERBERNE 2022

REFLECTION ON CRITICAL REVIEWS

- I hope you got a taste of the range of research in the field
- SIGIR is more than IR
 - and IR is more than this course can cover
 - E.g. there is quite some work on recommender systems published at IR conferences
- ➤ I also hope you recognized some of the topics from the first half of the course in the paper you studied
 - Evaluation metrics?
 - A BM25 baseline?
 - BERT-based encoders?

TODAY'S LECTURE

- Presentation by group 38
- Machine learning for IR
- Learning to rank strategies
- Query and document representations
- Learning from implicit feedback

INTRODUCTION TO RANK LEARNING

RELEVANCE CRITERIA

- Query-document similarity (content overlap) is central in IR:
 - Word-based: BM25, LM
 - Embeddings-based: neural rankers (e.g. ColBERT)
- But similarity is not the only relevance criterion:
 - Document popularity on the web (PageRank)
 - Document popularity in the search engine
 - Source (domain)
 - Recency
 - ---
- Multiple features for one document -> learn a ranking

LEARN A RANKING

- Given
 - A set of queries
 - A set of 100 documents pre-retrieved for each query
 - Relevance assessments (binary) for all these query-document pairs
 - We want to re-rank the documents so that the relevant documents are on top of the list
 - Each query-document pair is represented by a vector
- How do we learn a ranking model? (learning problem, optimization)
- How do we apply the model to rank documents for a new query?
- Discuss with your neighbour

LEARN A RANKING

		f_1	f_2	f_3	 f _k	label
Q_1	D_1					0
	D ₂					1
						•••
	D _n					0
Q_2	D_1					1
	D _n					0

LEARN A RANKING

What did you come up with?

- 1. Learn a (probabilistic) classifier or regression model on querydocument pairs with relevance labels
- 2. Apply to unseen pairs, get a score for each query-document pair
- 3. Rank documents per query by prediction score

We see later how that works and what alternatives we have

MACHINE LEARNING FOR IR

IIR CHAPTER 15, SECTION 15.4

CLASSIFICATION FOR RELEVANCE

Simplest approach, as explained in the IIR book:

- ➤ IR can be considered a binary classification problem with labels 'relevant' and 'nonrelevant'
- Toy example with 2 features:
 - \geq (1) the vector space cosine similarity (α) between query and document
 - \geq (2) the minimum window width ω within which the query terms lie

Example	DocID	Query	Cosine score	ω	Judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant

CLASSIFICATION FOR RELEVANCE

Simple linear classifier:

Score
$$(d,q) = Score(\alpha,\omega) = a\alpha + b\omega + c$$

> with the coefficients a, b, c to be learned from the training data

CLASSIFICATION FOR RELEVANCE

Thresholding:

- \triangleright Pick a threshold value au
- If $Score(\alpha, \omega) > \tau$ we declare the document to be relevant, else we declare the document to be nonrelevant
- All points that satisfy $Score(\alpha, \omega) = \tau$ form a line
- We have a linear classifier that separates relevant from nonrelevant instances

MACHINE LEARNING FOR RANKING

- Supervised machine learning problems:
 - classification problems: predict a categorical variable
 - regression problems: predict a numerical variable

- Ranking is different from classification or regression
 - documents are grouped per query
 - for ranking their relative relevance matters, not their absolute

LEARNING TO RANK APPROACHES

MITRA & CRASWELL CHAPTER 5

STRATEGIES FOR LEARNING A RANKING

- Strategies are loss functions
 - This is largely independent of the model or the features
 - In all strategies: each document gets a score given a query, then we sort the documents by those scores
 - The loss function is used during learning/optimization

- > The strategy that we discussed earlier is called pointwise learning
 - learning the relevance value per query-document pair

TRAINING APPROACHES

- \triangleright Pointwise: learning a ranking from individual (q, d, rel) pairs
 - ightharpoonup Train a model for the labels $rel \in \{0,1\}$
 - Optimize for the difference between the true and assigned score
 - Example loss function: regression loss

$$\mathcal{L}_{squared} = \|rel_q(d) - score(q, d)\|^2$$
 (eq. 5.1)

Then average the loss over all query-document pairs:

$$\frac{1}{N}\sum_{i=1}^{N}\mathcal{L}_{squared}$$

 \triangleright On inference, let the classifier assign a score to each (q,d) pair and rank the documents for each query

POINTWISE LEARNING

	True: $rel_q(d)$	Model A output: $score_A(q,d)$	$\mathcal{L}_{ extit{squared},A}$	Model B output: $score_B(q,d)$	$\mathcal{L}_{squared,B}$
d1	1	0.2		0.9	
d2	0	0.3		0.5	
d3	0	0.1		0.5	
d4	0	0.1		0.5	
d5	0	0.1		0.5	
		Average Loss:			

Example of regression loss for pointwise learning

POINTWISE LEARNING

	True: $rel_q(d)$	Model A output: $score_A(q,d)$	$\mathcal{L}_{squared,A}$	Model B output : $score_B(q,d)$	$\mathcal{L}_{squared,B}$
d1	1	0.2	0.64	0.9	0.01
d2	0	0.3	0.09	0.5	0.25
d3	0	0.1	0.01	0.5	0.25
d4	0	0.1	0.01	0.5	0.25
d5	0	0.1	0.01	0.5	0.25
		Average Loss:	0.152		0.202

$$\mathcal{L}_{squared} = \|rel_q(d) - score(q, d)\|^2$$

POINTWISE LEARNING

	True: $rel_q(d)$	Model A output: $score_A(q,d)$	$\mathcal{L}_{squared,A}$	Model B output: $score_B(q, d)$	$\mathcal{L}_{squared,B}$
d1	1	0.2	0.64	0.9	0.01
d2	0	0.3	0.09	0.5	0.25
d3	0	0.1	0.01	0.5	0.25
d4	0	0.1	0.01	0.5	0.25
d5	0	0.1	0.01	0.5	0.25
		Average Loss:	0.152		0.202

- Limitation of pointwise learning: loss function does not consider relative ranking between items in the same list, only absolute numbers
- We do not need to estimate the true relevance label as long as our model ranks the relevant documents over the nonrelevant documents

TRAINING APPROACHES

Pairwise:

- Consider pairs of relevant and nonrelevant documents for the same query
- Minimize the number of incorrect inversions in the ranking
 - \succ i.e., d_i is more relevant for q than d_j but d_j is ranked higher than d_i
- Example loss function: hinge loss

$$\mathcal{L}_{hinge} = \max \left(0.1 - \left(score(q, d_i) - score(q, d_j) \right) \right)$$

Then sum the loss over all pairs (d_i, d_j) with d_i more relevant than d_j :

$$\sum_{y(d_i)>y(d_i)} \mathcal{L}_{hinge}$$

	True: $rel_q(d)$	Model A output: $score_A(q,d)$	$\mathcal{L}_{hinge,A}$	Model B output: $score_B(q, d)$	$\mathcal{L}_{hinge,B}$
d1	1	0.2		0.9	
d2	0	0.3		0.5	
d3	0	0.1		0.5	
d4	0	0.1		0.5	
d5	0	0.1		0.5	
		Sum Loss:			

	True: $rel_q(d)$	Model A output: $score_A(q,d)$	$\mathcal{L}_{hinge,A}$	Model B outpose $score_B(q,d)$	ut:	$\mathcal{L}_{m{hinge,B}}$
d1	1	0.2		0.9		
d2	0	0.3		0.5		
d3	0	0.1		0.5		
d4	0	0.1		0.5		
d5	0	0.1		0.5		
		Sum Loss:				

- $\max(0.1 (0.2 0.3)) = 1.1$
- $\max(0.1 (0.2 0.1)) = 0.9$
- \triangleright etc. for all pairs (d_i, d_j) with d_i more relevant than d_j

	True: $rel_q(d)$	Model A output: $score_A(q, d)$	$\mathcal{L}_{m{hinge,A}}$	Model B output: $score_B(q, d)$	$\mathcal{L}_{hinge,B}$
d1	1	0.2		0.9	
d2	0	0.3	1.1	0.5	0.6
d3	0	0.1	0.9	0.5	0.6
d4	0	0.1	0.9	0.5	0.6
d5	0	0.1	0.9	0.5	0.6
		Sum Loss:	3.8		2.4

$$\max(0.1 - (0.2 - 0.3)) = 1.1$$

- $\max(0.1 (0.2 0.1)) = 0.9$
- \triangleright etc. for all pairs (d_i, d_j) with d_i more relevant than d_j

Successful methods for pairwise learning

- RankSVM (Joachims et al. 2002)
- RankNet (Burges et al., 2005)
 - has been a popular choice for training neural ranking models
 - was an industry favourite for web search for many years

(see Mitra & Craswell p. 59 for more details)

- Limitation of pairwise learning: every document pair is treated equally important, but misrankings in higher positions are more severe than misrankings in lower positions
- Left: 13 pairwise errors
- Right: 11 pairwise errors
- But for IR metrics like nDCG or MAP, the left ranking is preferable

RANK-BASED OPTIMIZATION

- ➤ Idea: a loss function that optimizes for the order of the complete ranking
- > Solution: add an evaluation metric, e.g. DCG, to the loss function

$$DCG(L) = r_1 + \sum_{i=2}^{n} \frac{r_i}{\log_2 i}$$

RANK-BASED OPTIMIZATION

- LambdaRank: a pairwise method
 - but with the addition of nDCG to the loss
 - multiplying the RankNet loss by the size of the change in nDCG given by swapping the rank positions

$$\lambda_{LambdaRank} = \lambda_{RankNet} \cdot |\Delta nDCG|$$

It was shown empirically that this optimizes nDCG directly

QUERY AND DOCUMENT REPRESENTATIONS

FEATURE-BASED LEARNING TO RANK

- LtR models can be used to combine multiple relevance criteria
 - > Features:
 - Query-independent features (e.g., PageRank, document length)
 - Query-dependent features (e.g., BM25, cosine similarity)
 - Query-level features (e.g., query length, iDFs of query terms)
 - Much more: http://research.microsoft.com/en-us/projects/mslr/feature.aspx

- Or to combine multiple rankers
 - Get a score for each ranker, then supervised re-ranking

EMBEDDINGS-BASED RANK LEARNING

Pairwise ranking loss can also be added on top of BERT-based encoders to learn a ranking

Contrastive loss:

- used for representation learning
- minimizes the distance between a relevant pair, while increasing the distance between a non-relevant pair

(see Mitra and Craswell, p. 54)

Abolghasemi, A., Verberne, S., Azzopardi, L. (2022). Improving BERT-based Query-by-Document Retrieval with Multi-task Optimization

LEARNING FROM IMPLICIT FEEDBACK

CREDITS TO HARRIE OOSTERHUIS

- What if we don't have explicit relevance assessments?
- Solution: use interaction data in the search engine instead
 - Interactions are virtually free if you have users
 - User behaviour is indicative of their preferences
 - = Implicit feedback

> Assumption: when someone clicks on a result, it is relevant to them

- Implicit feedback is noisy:
 - A non-relevant document might be clicked
 - A relevant document might not be clicked

- Implicit feedback is biased: clicks for reasons other than relevance
 - Position bias: higher ranked documents get more attention.
 - Selection bias: interactions are limited to the presented documents.
 - Presentation bias: results that are presented differently will be treated differently

- What is the interpretation of a non-click?
 - Either the document didn't seem relevant to the user
 - Or the user did not see (observe) the document

Generally, the lower in the list, the lower the chance that the document is observed by the user

Eye-tracking data: where do users look on the result page?

POSITION BIAS

Position bias:

- Documents lower in the list have a smaller probability to be observed
- hence a smaller probability to be clicked
- hence a smaller probability to be recorded as being relevant
- We want to learn relevance preferences and not the bias

PROBABILISTIC MODEL OF USER CLICKS

Joachims et al. (2017): model user clicks as:

```
P(clicked(d)|relevance(d), position(d)) =
P(clicked(d)|relevance(d), observed(d)) \times
P(observed(d)|position(d))
```

Ranking should be based on the unbiased part:

P(clicked(d)|relevance(d), observed(d))

This can be estimated from clicks if we know the effect of position bias: P(observed(d)|position(d))

ESTIMATION OF POSITION BIAS

- How to measure the effect of the position bias?
- ldea: if we change the position of a document then we don't change its relevance. So all changes in click behaviour come from the position bias
- Measure the position bias by intervention in the ranking:
 - 1. swap two documents in the ranking
 - 2. present the modified ranking to some users (A/B test)
 - 3. record the clicks on the document in both original and modified rankings
 - 4. measure the probability of a document being observed based on the clicks
- This can be done in environments with large numbers of interactions (e.g. Google, Bol.com, Amazon.com)

CORRECT FOR POSITION BIAS

- Inverse Propensity Scoring (IPS) estimators can remove bias
- Propensity of observation = probability that a document is observed by the user

- Main idea: weight clicks depending on their observation probability
 - Clicks near the top of the ranked list: have high observation probability, get assigned small weight
 - Clicks near the bottom of the ranked list: have low observation probability, get assigned large weight

CORRECT FOR POSITION BIAS

$$\mathcal{L}_{IPS}(f_{\theta}, D, c) = \sum_{d_i \in D} \frac{\lambda (rank(d_i | f_{\theta}, D))}{P(o_i = 1 | R, d_i)} \cdot c_i$$

 λ $(rank(d_i|f_{\theta},D))$: score function based on rank of document d_i by ranker f_{θ} on the document set D

divided by

 $P(o_i = 1 | R, d_i)$: probability that d_i is observed in ranking R

 $\succ c_i$: observed click of the document in the search engine log (0 or 1)

EFFECT OF PROPENSITY BASED LEARNING

- > Joachims et al. did a real-world experiment
 - trained the model on real-world click logs
 - deployed it in Google Scholar

Table 1: Per-query balanced interleaving results for detecting relative performance between the hand-crafted production ranker used for click data collection (Prod), Naive SVM-Rank and Propensity SVM-Rank.

1975	Propensity SVM-Rank		
Interleaving Experiment	wins	loses	ties
against Prod	87	48	83
against Naive SVM-Rank	95	60	102

Evaluation
method where
results from
multiple rankers
are combined in
one list and clicks
are recorded as
votes

CONCLUSIONS

SUZAN VERBERNE 2022

HOMEWORK (1)

- > Read:
 - IIR book: section 15.4
 - Mitra and Craswell, Introduction to Neural IR, chapter 5

HOMEWORK (2)

- IIR exercise 15.7, 15.8, 15.9
- A computation and comparison of pointwise and pairwise loss for two example rankings
- See Brightspace -> assignments
- Deadline: Sunday April 24, 23.59

AFTER THIS LECTURE...

- You can explain the procedure for pointwise ranking
- You can explain the procedure for pairwise ranking
- You can compute regression loss for pointwise ranking
- You can compute hinge loss for pairwise ranking
- You can explain the rationale behind rank-based optimization
- You can list three types of bias in interaction data
- > You can explain how position bias can be estimated through interventions
- You can explain inverse propensity scoring on a conceptual level

