

Arithmetic-Geometric Progressions(AGP)

GATE PYQs

Which one of the following is a closed form expression for the generating function of the sequence $\{a_n\}$, where $a_n = 2n + 3$ for all n = 0, 1, 2, ...?

- A. $\frac{3}{(1-x)^2}$ B. $\frac{3x}{(1-x)^2}$ C. $\frac{2-x}{(1-x)^2}$ D. $\frac{3-x}{(1-x)^2}$

Let G(x) be the generating function for the sequence $\{a_n\}$.

Now, $A=\sum_{n=0}^{\infty}nx^n$. By expanding, it will look like: $0+1x+2x^2+3x^3+\ldots$ which is an AGP

So,
$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

 $= \sum_{n=0}^{\infty} (2n+3) x^n$
 $= \sum_{n=0}^{\infty} (2n) x^n + \sum_{n=0}^{\infty} (3) x^n$
 $= 2 \sum_{n=0}^{\infty} n x^n + 3 \sum_{n=0}^{\infty} x^n$
 $= 2A + 3B$

$$A = \sum_{n=0}^{\infty} n^{2}$$

$$= 1.x + 2.x + 3x^{3} + 4$$

 $x^{3} + \dots \text{ which is an AGP}$ $x = \chi \left(1 + 2\chi + 3\chi + 4\chi^{3} + \dots \right)$ $= \chi \left(1 + 2\chi + 3\chi + 4\chi^{3} + \dots \right)$

series with first term,
$$(a)=0,$$
 common difference, $(d)=1,$ ratio, $(r)=x.$ Sum of infinite AGP series $=\frac{a}{1-r}+\frac{dr}{(1-r)^2}.$

So,
$$A = rac{0}{1-x} + rac{x}{(1-x)^2} = rac{x}{(1-x)^2}$$

and
$$B=\sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+\ldots=rac{1}{1-x}$$

Therefore,
$$2A+3B=rac{2x}{(1-x)^2}+rac{3}{1-x}$$
 $=rac{2x+3-3x}{(1-x)^2}=rac{3-x}{(1-x)^2}$

$$= \chi \left(\frac{1}{1-\chi} + \frac{1}{1-\chi} \right)$$

Option (D) is correct.

GATE CSE 2002 | Question: 2.10

Consider the following algorithm for searching for a given number x in an unsorted array $A[1..\,n]$ having n distinct values:

- 1. Choose an i at random from 1...n
- 2. If A[i] = x, then Stop else Goto 1;

Assuming that x is present in A, what is the expected number of comparisons made by the algorithm before it terminates?

- A. n
- B. n 1
- C. 2n
- D. $\frac{n}{2}$

Aptitude

GATE CSE 2002 | Question: 2.10

Expected number of comparisons (E)=1 imes Probability of find on first comparison +2 imes Probability of find on second comparison $+\ldots+i imes$ Probability of find on ith comparison $+\ldots$

$$=$$
 $1 \times \frac{1}{n} + 2 \times \frac{n-1}{n^2} + 3 \times \frac{(n-1)^2}{n^3} + \dots$

$$=rac{(1).(1/n)}{1-rac{n-1}{n}}+rac{(1).(1/n)((n-1)/n)}{\left(1-rac{n-1}{n}
ight)^2} \left(ext{Sum to infinity of aritmetico-geometric series with}
ight)$$

$$a=d=1, r=rac{n-1}{n} ext{ and } b=rac{1}{n} ig)=1+n-1=n$$

