STA 35C: Statistical Data Science III

Lecture 10: Generative Models for Classification

Dogyoon Song

Spring 2025, UC Davis

Agenda

Last time: Logistic regression & classification assessment

Today:

- Generative vs. discriminative models
 - Why generative modeling?
- Linear discriminant analysis (LDA)
 - Basics: p=1 then general $p\geq 1$
 - A concrete example (p = 2)
 - Parameter estimation
- Naive Bayes
 - Conditional independence assumption
 - Parameter estimation & example usage

Discriminative vs. Generative Models

Discriminative (e.g. logistic regression):

- Directly model $Pr(Y \mid X)$, e.g., using a linear function
- Find a decision boundary in X-space that separates classes

Generative (e.g. LDA, Naive Bayes):

- Instead of modeling $Pr(Y \mid X)$ directly, model:
 - The *prior* probability $\pi_k := \Pr(Y = k)$ that a randomly chosen observation comes from the k-th class
 - The class-conditional density function $f_k(X) := \Pr(X \mid Y = k)^1$ of X for an observation that comes from the k-th class
- Then use Bayes' theorem to compute the posterior probability:

$$Pr(Y = k \mid X = x) = \frac{Pr(Y = k, X = x)}{Pr(X = x)} = \frac{\pi_k f_k(x)}{\sum_i \pi_i f_i(x)}$$

¹Strictly speaking, the equality holds only when X is discrete; if X is continuous, $f_k(x)$ gives density

Visualization of the workflow

Figure: A schematic contrast: discriminative approaches (**black**) directly learns Pr(Y|X), while generative (gray) models Pr(X|Y) and Pr(Y) first, then obtains Pr(Y|X) via Bayes.

Contrasting the two approaches

Both aim to estimate Pr(Y | X), but:

Discriminative workflow:

- Postulate a functional form for $Pr(Y = 1 \mid X)$
- Fit parameters from data
- Directly output p(x) = Pr(Y = 1|x)

Generative workflow:

- Postulate each class distribution $f_k(x)$
 - Key challenge: specifying X's distribution per class
- Estimate $\pi_k = P(Y = k)$ (often just the proportion in class k)
- Compute $p(x) = Pr(Y = k \mid x)$ via Bayes' theorem

Key difference: Generative methods must model each $f_k(x)$, which can be more demanding but can yield advantages if done correctly.

Why Generative Models?

Upsides:

- Well-separated classes: discriminative approaches (e.g., logistic regression) may become unstable, while generative can be more robust
- If model assumption is correct: fewer data are needed for good performance
- K-class extension: straightforward via Bayes

Downsides:

- Must specify $f_k(x)$: can be difficult in high dimensions $(p \gg 1)$
- If assumptions fail, performance may degrade

Pop-up Quiz #1: Generative vs. discriminative

Question: Which statement best describes a key advantage of a generative model (like LDA) over a discriminative one (like logistic regression)?

- A) Generative models need *no* distributional assumptions on X.
- B) Discriminative models cannot be extended to K > 2 classes.
- C) If the assumed $f_k(x)$ is correct, generative models can be data-efficient.
- D) Generative models ignore class priors π_k .

LDA Basics: The p = 1 Case

Assumptions:

- $Y \in \{1, ..., K\}$ classes, and $\pi_k = \Pr[Y = k]$
- $X \mid (Y = k) \sim \mathcal{N}(\mu_k, \sigma^2)$, with same σ^2 for all k
- Then the class-conditional density is

$$f_k(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(x - \mu_k)^2}{2\sigma^2}\right)$$

Figure: PDF of 1D Gaussian distribution (Image from Wikipedia^a).

a
https://en.wikipedia.org/wiki/Normal_distribution

Decision boundary for p = 1

By Bayes' theorem:

$$\Pr(Y = k \mid x) = \frac{\pi_k f_k(x)}{\sum_{j=1}^K \pi_j f_j(x)}.$$

Bayes classifier: choose k maximizing $Pr(Y = k \mid x)$

• We compare $\log (\pi_k f_k(x))$ to find maximizing k

Linear discriminant function: When σ^2 is common across classes, the *quadratic* terms cancel, leaving a *linear* function:

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \ln \pi_k.$$

We classify to the k with largest $\delta_k(x)$; the boundary between k and j is linear in x

From p = 1 to $p \ge 1$

General assumption:

- $X \in \mathbb{R}^p$ and $X \mid (Y = k) \sim \mathcal{N}(\mu_k, \Sigma)$
- Common covariance Σ , distinct μ_k
- $\pi_k = P(Y = k)$

Class-conditional density:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^{\top} \Sigma^{-1}(x - \mu_k)\right).$$

Discriminant function:

$$\delta_k(x) = x^{\top} \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^{\top} \Sigma^{-1} \mu_k + \log \pi_k.$$

Boundary between classes k and j is linear in x.

Visualization of a multivariate Gaussian

Goal: Illustrate shape of $\mathcal{N}(\mu_k, \Sigma)$ in 2D

- ullet Elliptical contours, reflecting Σ
- If Σ is the same for both classes, the ratio of densities is linear in x

e.g. if Σ has correlation terms, the ellipses tilt

Parameter Estimation in LDA

Given training data $\{(x_i, y_i)\}_{i=1}^n$:

- $\hat{\pi}_k = \frac{n_k}{n}$, $n_k = \#\{y_i = k\}$
- $\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$
- $\hat{\Sigma} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: y_i = k} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^{\top}$

Then

$$\hat{\delta}_k(x) = x^{\top} \hat{\Sigma}^{-1} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^{\top} \hat{\Sigma}^{-1} \hat{\mu}_k + \log \hat{\pi}_k,$$

and predict arg max_k $\hat{\delta}_k(x)$.

Concrete Example (p = 2, K = 2)

Scenario: Suppose K = 2 classes, $X \in \mathbb{R}^2$. We gather 8 total points:

User	X_1	X_2	Class
1	1.2	2.5	1
2	1.8	2.9	1
3	2.2	3.2	1
4	3.0	4.0	1
5	3.5	4.2	2
6	4.0	5.0	2
7	4.3	5.2	2
8	4.5	5.6	2

- We'll estimate $\pi_1, \pi_2, \mu_1, \mu_2$, and a common Σ .
- Then see how $\delta_1(x)$ vs. $\delta_2(x)$ forms a linear boundary in \mathbb{R}^2 .

Concrete Example: Parameter estimation

Class priors:

$$\hat{\pi}_1 = \frac{4}{8}, \quad \hat{\pi}_2 = \frac{4}{8}.$$

Means:

$$\hat{\mu}_1 = \begin{bmatrix} ar{x}_{1,1} \\ ar{x}_{1,2} \end{bmatrix}, \quad \hat{\mu}_2 = \begin{bmatrix} ar{x}_{2,1} \\ ar{x}_{2,2} \end{bmatrix}.$$

Covariance:

$$\hat{\Sigma} = \frac{1}{8-2} \sum_{k=1}^{2} \sum_{i \in \text{class } k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^{\top}.$$

Compute numerically (in practice, one might use R).

Concrete Example: Decision boundary

Discriminant functions:

$$\hat{\delta}_{1}(x) = x^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{1} - \frac{1}{2} \hat{\mu}_{1}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{1} + \log \hat{\pi}_{1},$$

$$\hat{\delta}_{2}(x) = x^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{2} - \frac{1}{2} \hat{\mu}_{2}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{2} + \log \hat{\pi}_{2}.$$

The boundary is where $\hat{\delta}_1(x) = \hat{\delta}_2(x)$, which rearranges to a linear equation in x_1, x_2 .

Hence:

$$\{\mathbf x: \hat{\delta}_1(\mathbf x) = \hat{\delta}_2(\mathbf x)\} \iff \text{(some linear function of } x_1, x_2) = 0.$$

A straight line in \mathbb{R}^2 dividing class 1 and class 2.

Extension to Quadratic discriminant analysis (QDA)

- If each class k has its own covariance Σ_k , then the log-ratio remains quadratic in x
- This yields *quadratic* decision boundaries
- QDA is more flexible but requires estimating more parameters

Pop-up quiz #2: LDA boundaries

Question: In LDA with p=2 and K=2 classes, why is the decision boundary *always* linear?

- A) Each class has its own covariance matrix, forcing a hyperplane boundary.
- B) We assume the same Σ , so the quadratic parts cancel in the log ratio.
- C) p = 2 is too small to allow curved boundaries.
- D) LDA only applies to data that are linear in X.

Naive Bayes: Another Generative Approach

Motivation:

- For high-dimensional or discrete X, specifying $f_k(x)$ is difficult
- Naive assumption: features X_j are conditionally independent given Y = k
- Then $f_k(x) = \prod_{j=1}^p f_{k,j}(x_j)$

Result:

$$\Pr(Y = k \mid x) \propto \hat{\pi}_k \prod_{j=1}^p \hat{f}_{k,j}(x_j).$$

- Popular in text classification (bag-of-words)
- Effective if feature independence is not *too* violated

Parameter Estimation in Naive Bayes

Discrete features:

- Estimate $\hat{P}(X_i = a \mid Y = k)$ from training frequencies
- e.g. text classification: count how often word w_i appears in each class k

Continuous features:

ullet Often assume $X_j \mid (Y=k)$ is Gaussian o estimate $\hat{\mu}_{k,j}, \hat{\sigma}_{k,j}$

Putting it all together:

$$\Pr(Y = k \mid x) \propto \hat{\pi}_k \prod_{i=1}^p \hat{f}_{k,j}(x_j).$$

Predict: $arg max_k Pr(Y = k \mid x)$.

Wrap-up

Generative models:

- We model $P(X \mid Y) \& P(Y)$, then use Bayes to get $P(Y \mid X)$
- If assumptions hold, can be data-efficient

LDA:

- ullet Gaussian class-conditional with common Σ
- Linear boundaries
- Detailed example: p = 1 and p = 2

Naive Bayes:

- Factorizes $f_k(x)$ under conditional independence
- Reduces complexity, helpful in high-dimensional or discrete settings

References