Community Analysis in Social Networks

Outline

- What?
- Why?
- How?
 - to obtain the structure
 - to evaluate the identified result

Community structure

- groups of vertices within which connections are dense but between which they are sparser.
 - a.k.a. group, community, cluster, module in different contexts
- Within-group(intra-group) edges.
 - High density
- Between-group(inter-group) edges.
 - Low density.

Community structure

Community

- Two types of groups in social media
 - Explicit Groups: formed by user subscriptions
 - Implicit Groups: implicitly formed by social interactions
- Network interaction provides rich information about the relationship between users
 - Can complement other kinds of information, e.g. user profile
 - Help network visualization and navigation
 - Provide basic information for other tasks, e.g.
 recommendation

The objective

- Divide the network into non-empty groups (communities) in such a way that every vertex belongs to one of the communities.
- Many possible divisions could be done.
- We need a good division.
- Measurement of good division.

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

Cliques

 Maximum Clique: a <u>maximum complete</u> subgraph in which all nodes are adjacent to each other

Straightforward implementation to find cliques is very expensive in time complexity

Clique Percolation Method (CPM)

- Clique is a very strict definition
- Normally use cliques as a core or a seed to find larger communities
- CPM is a method to find overlapping communities
 - Input
 - A parameter k, and a network
 - Procedure
 - Find out all cliques of size k in a given network
 - Construct a <u>clique graph</u>. Two cliques are adjacent if they share k-1 nodes
 - Each <u>connected</u> components in the clique graph form a community

CPM Example

Many Variants of CPM method

- k-clique: a maximal subgraph in which the largest distance between any two nodes <= k in the original graph
- k-club: a substructure of <u>diameter</u> <= k

- Clique is a very strict definition
- A subgraph $G_s(V_s, E_s)$ is a $\gamma dense$ quasi-clique if

$$\frac{2|E_s|}{|V_s|(|V_s|-1)} \ge \gamma$$

where the denominator is the maximum number of degrees.

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

KL ALGORITHM

Cut

- Most interactions are within group whereas interactions between groups are few
- community detection → minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut problem: find a graph partition such that the number of edges between the two sets is minimized

How to find a cut?

Kernighan-Lin (KL) algorithm

```
function Kernighan-Lin(G(V, E)) is
    determine a balanced initial partition of the nodes into sets A and B
    do
        compute D values for all a in A and b in B
        let qv, av, and bv be empty lists
        for n := 1 to |V| / 2 do
            find a from A and b from B, such that g = D[a] + D[b] - 2 \times c(a, b) is maximal
            remove a and b from further consideration in this pass
            add g to gv, a to av, and b to bv
            update D values for the elements of A = A \ a and B = B \ b
        end for
        find k which maximizes q max, the sum of qv[1], \ldots, qv[k]
        if q \max > 0 then
            Exchange av[1], av[2], ..., av[k] with bv[1], bv[2], ..., bv[k]
    until (g \max \leq 0)
    return G(V, E)
```


Swap a and b

Better or Not?

Let us define for each $a \in A$,

- An external cost
$$E_a = \sum_{y \in B} w_{ay}$$

- An internal cost
$$I_a = \sum_{x \in A} w_{ax}$$

- Let $D_r = E_r I_r$ for a node z;
- D_z is the difference between its external and internal costs for node z $D_a = E_a I_a = -3 \ (= 3 4 2)$

$$D_a = E_a - I_a = -3 \quad (= 3 - 4 - 2)$$

$$D_c = E_c - I_c = 0 \quad (= 1 + 2 + 4 - 4 - 3)$$

$$D_e = E_e - I_e = +1 \quad (= 6 - 2 - 3)$$

$$D_a = -3$$
 $D_b = +2$
 $D_c = 0$ $D_d = -1$
 $D_e = +1$ $D_f = +9$

cut-size = 16

Pair with maximum gain

$$g_{ab} = D_a + D_b - 2w_{ab} = -3 + 2 - 2 \cdot 3 = -7$$

$$g_{ad} = D_a + D_d - 2w_{ad} = -3 - 1 - 2 \cdot 0 = -4$$

$$g_{af} = D_a + D_f - 2w_{af} = -3 + 9 - 2 \cdot 0 = +6$$

$$g_{cb} = D_c + D_b - 2w_{cb} = 0 + 2 - 2 \cdot 1 = 0$$

$$g_{cd} = D_c + D_d - 2w_{cd} = 0 - 1 - 2 \cdot 2 = -5$$

$$g_{cf} = D_c + D_f - 2w_{cf} = 0 + 9 - 2 \cdot 4 = +1$$

$$g_{eb} = D_e + D_b - 2w_{eb} = +1 + 2 - 2 \cdot 0 = +1$$

$$g_{ed} = D_e + D_d - 2w_{ed} = +1 - 1 - 2 \cdot 0 = 0$$

$$g_{ef} = D_e + D_f - 2w_{ef} = +1 + 9 - 2 \cdot 6 = -2$$

Exchange nodes a and f

Then lock up nodes a and f

$$g_{af} = D_a + D_f - 2w_{af} = -3 + 9 - 2 \cdot 0 = +6$$

Min Cut?

 Minimum cut often returns an <u>imbalanced</u> partition, with one set being a singleton, e.g. node 9

Ratio Cut & Normalized Cut

Change the objective function to consider community size

Ratio
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{|C_i|},$$

Normalized
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{\operatorname{vol}(C_i)}$$

C_{i,}: a community

|C_i|: number of nodes in C_i vol(C_i): sum of degrees in C_i

Ratio Cut & Normalized Cut Example

For partition in red: π_1

Normalized Cut(
$$\pi_1$$
) = $\frac{1}{2} \left(\frac{1}{1} + \frac{1}{27} \right) = 14/27 = 0.52$

For partition in green: π_2

Ratio
$$Cut(\pi_2) = \frac{1}{2} \left(\frac{2}{4} + \frac{2}{5} \right) = 9/20 = 0.45 < Ratio $Cut(\pi_1)$
Normalized $Cut(\pi_2) = \frac{1}{2} \left(\frac{2}{12} + \frac{2}{16} \right) = 7/48 = 0.15 < Normalized $Cut(\pi_1)$$$$

Both ratio cut and normalized cut prefer a balanced partition

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

Clustering based on Vertex Similarity

- Apply k-means or similarity-based clustering to nodes
- Vertex similarity is defined in terms of the similarity of their neighborhood
- Structural equivalence: two nodes are structurally equivalent iff they are connecting to the same set of actors

Nodes 1 and 3 are structurally equivalent; So are nodes 5 and 6.

Vertex Similarity

- Jaccard Similarity $Jaccard(v_i, v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$
- Cosine similarity $Cosine(v_i, v_j) = \frac{|N_i \cap N_j|}{\sqrt{|N_i| \cdot |N_j|}}$

1. User set up the number of clusters they'd like. (e.g. k=5)

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess K cluster Center locations

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess *K* cluster Center locations
- Each data point finds out which Center it's closest to. (Thus each Center "owns" a set of data points)

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess *K* cluster centre locations
- 3. Each data point finds out which centre it's closest to. (Thus each Center "owns" a set of data points)
- 4. Each centre finds the centroid of the points it owns

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess K cluster centre locations
- 3. Each data point finds out which centre it's closest to. (Thus each centre "owns" a set of data points)
- Each centre finds the centroid of the points it owns
- 5. ...and jumps there

- 1. User set up the number of clusters they'd like. (e.g. *K=5*)
- 2. Randomly guess *K* cluster centre locations
- 3. Each data point finds out which centre it's closest to. (Thus each centre "owns" a set of data points)
- 4. Each centre finds the centroid of the points it owns
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Graph/Vertex Embedding

Vertex Embedding

from a graph representation ...

to real vector representation

Idea behind the Neural Embedding Representation

Encode a word into a vector representation

- A possible way is one-hot-encoding form
 - That is, we represent the word w by

$$[0,0,\ldots,1,\ldots,0,0]$$

 where the 1 is in a location unique to w. Any other word will have a 1 in some other location, and a 0 everywhere else.

Main Problem (1/2)

- •The mathematician ran to the coffee store.
- •The physicist ran to the coffee store.
- •The mathematician and physicist ran into the open problem.

Let's think one-hot-form of "mathematician" and "physicist"?

```
Physicist = [0, 0, 0, 0, 0, 0, 1]

mathematician = [0, 0, 0, 0, 1, 0]

ran=[0, 0, 0, 1, 0, 0, 0]

store=[0, 0, 1, 0, 0, 0, 0]

coffee=[0, 1, 0, 0, 0, 0, 0]

problem=[1, 0, 0, 0, 0, 0, 0]
```

Semantic Similarity?

Main Problem (2/2)

- How can we solve this problem? That is, how could we actually encode semantic similarity in words? Maybe we think up some semantic attributes.
- For example, we see that both mathematicians and physicists can run, so maybe we give these words a high score for the "is able to run" semantic attribute
- If each attribute is a dimension, then we might give each word a vector, like this:

$$q_{\text{mathematician}} = \begin{bmatrix} \text{can run likes coffee majored in Physics} \\ 2.3 & 9.4 \end{bmatrix}$$

$$q_{\mathrm{physicist}} = \begin{bmatrix} \mathrm{can\ run\ likes\ coffee} & \mathrm{majored\ in\ Physics} \\ 2.5 & 9.1 & 6.4 & , \dots \end{bmatrix}$$

Similarity(physicist, mathematician) =
$$\frac{q_{\text{physicist}} \cdot q_{\text{mathematician}}}{\|q_{\text{physicist}}\| \|q_{\text{mathematician}}\|} = \cos(\phi)$$

A Matrix can help!

$$\mathbf{w}_{\text{word}} \cdot \mathbf{V} = \mathbf{e}_{\text{word}}$$

Q: How to get V?

A: Learning from Data

Objective Function

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log p(w_{t+j}|w_t)$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t) \qquad p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v'_w^\top v_{w_I}\right)}$$

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)} = \frac{\mathsf{e}}{\mathsf{e}} + \mathsf{e}$$

DeepWalk: Online Learning of Social Representations, KDD 2014

GRAPH EMBEDDING

```
Algorithm 1 DeepWalk(G, w, d, \gamma, t)
Input: graph G(V, E)
    window size w
     embedding size d
    walks per vertex \gamma
    walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}
 1: Initialization: Sample \Phi from \mathcal{U}^{|V| \times d}
 2: Build a binary Tree T from V
                                                              Algorithm 2 SkipGram(\Phi, W_{v_i}, w)
 3: for i = 0 to \gamma do
                                                               1: for each v_i \in \mathcal{W}_{v_i} do
       \mathcal{O} = \text{Shuffle}(V)
                                                                     for each u_k \in \mathcal{W}_{v_i}[j-w:j+w] do
       for each v_i \in \mathcal{O} do
 5:
                                                               3:
                                                                        J(\Phi) = -\log \Pr(u_k \mid \Phi(v_j))
 6:
         \mathcal{W}_{v_i} = RandomWalk(G, v_i, t)
                                                                  \Phi = \Phi - \alpha * \frac{\partial J}{\partial \Phi}
          SkipGram(\Phi, W_{v_i}, w)
                                                                     end for
       end for
                                                               6: end for
```

9: end for

$$\Pr(u_k \mid \Phi(v_j)) = \prod_{l=1}^{\lceil \log |V|
ceil} \Pr(b_l \mid \Phi(v_j))$$

$$\Pr(b_l \mid \Phi(v_j) = 1/(1 + e^{-\Phi(v_j) \cdot \Psi(b_l)})$$

(a) Random walk generation.

(b) Representation mapping.

(c) Hierarchical Softmax.

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

Edge Removal Algorithm

Edge Removal Algorithm

By **defining a measure** to rank the nodes

- By degree ?
- By clustering coefficient?
- By betweeness?

By Detweeness

ratio of the number of shortest paths passing through a node *v* out of all shortest paths between all node pairs in a network

betweenness of vertex i

shortest paths between j and k that pass through i

$$C_B(n_i) = \sum_{i,k} g_{jk}(i)/g_{jk}$$

all shortest paths between j and k

By Detweeness?

Bridging coefficient

$$\delta(i) = |N(i)-N(v)-v|$$

– For node v:

The probability of leaving the direct neighbors of a node v.

$$\Psi(v) = \frac{1}{d(v)} \sum_{i \in N(v)} \frac{\delta(i)}{d(i) - 1}$$

Bridging Coefficient: a measurement that measuring the extent how well a node or edge is located between well connected regions.

Experiment

Examples of

- A) Betweenness centrality,
- B) Closeness centrality,
- C) Eigenvector centrality,
- D) Degree centrality,
- E) Harmonic centrality
- F) <u>Katz centrality</u> of the same graph

Edge Betweenness

- The strength of a tie can be measured by edge betweenness
- Edge betweenness: the number of shortest paths that pass along with the edge

The edge betweenness of e(1, 2) is 4 (=6/2 + 1), as all the shortest paths from 2 to $\{4, 5, 6, 7, 8, 9\}$ have to either pass e(1, 2) or e(2, 3), and e(1,2) is the shortest path between 1 and 2

• The edge with higher betweenness tends to be the <u>bridge</u> between two communities.

Divisive clustering based on edge betweenness

Initial betweenness value

Table 3.3: Edge Betweenness									
	1	2	3	4	5	6	7	8	9
1	0	4	1	9	0	0	0	0	0
2	4	0	4	0	0	0	0	0	0
3	1	4	0	9	0	0	0	0	0
4	9	0	9	0	10	10	0	0	0
5	0	0	0	10	0	1	6	3	0
6	0	0	0	10	1	0	6	3	0
7	0	0	0	0	6	6	0	2	8
8	0	0	0	0	3	3	2	0	0
9	0	0	0	0	0	0	8	0	0

After remove e(4,5), the betweenness of e(4, 6) becomes 20, which is the highest;

After remove e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

Agglomerative Hierarchical Clustering

- Initialize each node as a community
- Merge communities successively into larger communities following a certain criterion

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

What is a Random Walk?

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor;
- Then we select a neighbor of this node and move to it, and so on;
- The (random) sequence of nodes selected this way is a random walk on the graph

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

Transition matrix P

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

Random walk with restart

Random walk with restart

	Node 4
Node 1	0.13
Node 2	0.10
Node 3	0.13
Node 4	0.22
Node 5	0.13
Node 6	0.05
Node 7	0.05
Node 8	0.08
Node 9	0.04
Node 10	0.03
Node 11	0.04
Node 12	0.02

Nearby nodes, higher scores More red, more relevant

Ranking vector

Community Detection Algorithms

- Graph partitioning Algorithm
 - The Clique Percolation Method
 - The Kernighan-Lin (KL) algorithm
- Structural Similarity Algorithm
- Edge Removal Algorithm
- Randomized Algorithm

Measuring a clustering/community Result

- The number of communities after grouping can be different from the ground truth
- No clear community <u>correspondence</u> between clustering result and the ground truth

Accuracy of Pairwise Community Memberships

- Consider all the possible pairs of nodes and check whether they reside in the same community
- An error occurs *if*
 - Two nodes belonging to the same community are assigned to different communities after clustering
 - Two nodes belonging to different communities are assigned to the same community
- Construct a contingency table or confusion matrix

		Ground Truth		
		$C(v_i) = C(v_j)$	$C(v_i) \neq C(v_j)$	
Clustering	$C(v_i) = C(v_j)$	a	b	
Result	$C(v_i) \neq C(v_j)$	С	d	

$$accuracy = \frac{a+d}{a+b+c+d}$$