修改彭俊凯的那份 word 文档,仅仅一些细节的方法不同而已。

S0 indicates no '1' has been input yet. So the output at this state is '0'.

S1: only one '1' has been input; output '0'.

S2: input '11'; output '0'.

S3: input '110'; output '0'.

S4: input '1100'; output '0'.

S5: input '11001'; output '1'.

Denote X as the input and Y the output. The state diagram is shown as follow.

Sn/Y	S_{n+1}/Y	
	X = 0	X = 1
S ₀ /0	S_0	S_1
S ₁ /0	S_0	S_2
S ₂ /0	S_3	S_2
S ₃ /0	S_4	S_1
S ₄ /0	S_0	S_5
S ₅ /1	S_0	S_2

(注: S_5 不能删去,因为检测到 S_5 输出才为 1)

用 '000' 代表 S0; 用 '001' 代表 S1; 用 '010' 代表 S2; 用 '011' 代表 S3; 用 '100' 代表 S4; 用 '101' 代表 S5; 替他都为无效状态。下面是 next-sate Karnaugh map(表格中红色为无效状态)

Q_2Q_1	Q_0X	00	01	11	10
00		000	001	010	000
01		011	010	001	100
11		000	001	001	000

10 000 101 010 000	10	000	101	010	000
----------------------------	----	-----	-----	-----	-----

为了避免还要检验是否具有自启动功能,当 x=0 时,无效状态的下一状态直接填上 000,输出 y=0;当 x=1 时,无效状态的下一状态直接填上 001,输出 y=0

由上图可以得到

$$\begin{aligned} &Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n \overline{X} + Q_2^n \overline{Q_1^n} \overline{Q_0^n} X \\ &Q_1^{n+1} = \overline{Q_2^n} Q_1^n \overline{Q_0^n} + \overline{Q_1^n} Q_0^n X \\ &Q_0^{n+1} = \overline{Q_2^n} Q_1^n \overline{Q_0^n} \overline{X} + \overline{Q_2^n} \overline{Q_1^n} \overline{Q_0^n} X + Q_2^n \overline{Q_0^n} X + Q_1^n \overline{Q_0^n} X + Q_1^n \overline{Q_0^n} X \end{aligned}$$

摩尔电路输出与输入没有关系,至于当前状态有关,所以

$$Y = Q_2 \overline{Q1} Q_0$$

J-K Flip-Flop excite table

$Q_N \longrightarrow Q_{N+1}$	J	K
0 -> 0	0	X
0 -> 1	1	X
1 -> 0	X	1
1 -> 1	X	0

$$J_{2} = Q_{1}^{n} Q_{0}^{n} \overline{X} \qquad K_{2} = \overline{\overline{Q_{1}^{n} Q_{0}^{n}} X}$$

$$J_{1} = Q_{0} X \qquad K_{1} = \overline{\overline{Q_{2}^{n} Q_{0}^{n}}}$$

$$J_{0} = \overline{Q_{2}^{n} Q_{1}^{n} X} + \overline{Q_{2}^{n} Q_{1}^{n} X} + \overline{Q_{2}^{n} X} \qquad K_{0} = \overline{Q_{1}^{n} X}$$

连接图省略了...