

Fondamentaux Mathématiques

Feuille d'indications n°3 Propositions quantifiées et Raisonnement

1 Quantificateurs universel et existentiel

Exercice 1.

- Valider ou invalider les propositions par un argument géométrique.
- Par exemple, on pourra traduire la proposition 2) en comparant la position de la droite d'équation y = -5 avec le graphe de f.

Exercice 2.

- Attention : cette équivalence est fausse! Par contre, une implication est vraie : laquelle ?
- Considérer la fonction $f: \mathbb{R} \to \mathbb{R}$ telle que f(x) = 1 pour tout $x \in [0, +\infty[$ et f(x) = 0 pour tout $x \in]-\infty, 0[$. Tracer son graphe, puis trouver une fonction g qui va mettre en défaut l'équivalence proposée.

Exercice 3.

On peut formellement noter C l'ensemble des élèves de la classe et introduire, pour un élève e, la proposition $y_b(e)$ qui est vraie lorsque l'élève e a les yeux bleus.

Exercice 4.

 $Transformer\ l'énoncé\ en\ une\ proposition\ quantifiée\ et\ se\ reporter\ \grave{a}\ la\ méthode\ "Comment\ montrer\ une\ proposition\ quantifiée".$

Exercice 5.

- 2) Une formulation équivalente en pseudo-français est : Tout le monde est non parfait.
- 3) Une formulation équivalente en pseudo-français est : Si un humain est un étudiant alors c'est l'ami d'un autre étudiant.
- 4) Une formulation équivalente en français est : Tous les absents n'ont pas tord.
- 5) Une formulation équivalente en français est : Il existe un absent qui n'a pas tord.

Exercice 6.

- Traduire les propositions avec deux quantificateurs.
- Etudier les propositions quantifiées en prenant garde à l'ordre des quantificateurs; se reporter si besoin à la méthode "Etudier une proposition quantifiée".
- En particulier, pour montrer qu'une proposition est fausse, on peut montrer que sa négation est vraie.

Exercice 7.

- Pour montrer qu'une proposition est fausse, on peut montrer que sa négation est vraie.
- Pour montrer que la proposition $\exists x P(x)$ est vraie, il suffit de trouver une valeur de x telle que P(x) est vraie.

Exercice 8.

Pour considérer les suites demandées on pourra s'aider du fait qu'une suite vérifiant la propriété de l'énoncé est dite bornée.

Exercice 9.

- Pour montrer qu'une proposition est fausse, on peut montrer que sa négation est vraie.
- Pour montrer que la proposition $\exists x P(x)$ est vraie, il suffit de trouver une valeur de x telle que P(x) est vraie.

Raisonnement 2

Exercice 10.

Voir le raisonnement par contraposition et la méthode pour établir une implication (pour montrer $A \implies B$, on suppose que A est vraie et on cherche à en déduire que B est vraie).

Exercice 11.

On peut procéder par disjonction de cas (suivant la parité de l'entier n), par contraposition ou alors par

Dans tous les cas, on rappelle que n est pair (resp. impair) s'il existe un entier p tel que n=2p (resp. n = 2p + 1).

Exercice 12.

- Méthode : Raisonnement par l'absurde.
- Supposer que $\sqrt{2} = p/q$ avec p et q deux entiers naturels premiers entre eux. On pourra utiliser le résultat de l'exercice 11.

Exercice 13.

- On note P_n la propriété $\sum_{k=0}^n (2k+1) = (n+1)^2$. On la démontre par récurrence sur n.

 Pour l'hérédité, on cherchera à mettre en relation les membres de gauche de l'égalité : à avoir exprimer $\sum_{k=0}^{n+1} (2k+1)$ en fonction de $\sum_{k=0}^{n} (2k+1)$.

Exercice 14.

- On note P_n la propriété $4^n + 5$ est divisible par 3. On la démontre par récurrence sur n.
- Pour l'hérédité, on cherchera à mettre en relation $a_n = 4^n + 5$ avec a_{n+1} . Pour cela, on calculera $4a_n$.

Exercice 15.

- Pour 1), commencer par montrer que, pour $n \ge 3$, on a $n^2 2n 1 \ge 0$.
- Pour l'hérédité, on cherchera à mettre en relation $(n+1)^2$ avec n^2 .

Exercice 16.

- On note P_n la propriété $\sum_{k=0}^n k = \frac{n(n+1)}{2}$. On la démontre par récurrence sur n.

 Pour l'hérédité, on cherchera à mettre en relation les membres de gauche de l'égalité : à avoir exprimer $\sum_{k=0}^{n+1} k$ en fonction de $\sum_{k=0}^{n} k$.

Exercice 17. — Le problème est que, si $u_n = -2$ pour une certaine valeur de n, alors u_{n+1} n'est pas défini.

— On note P_n la propriété : u_n est un nombre réel strictement positif. Lorsque $u_0 > 0$, on la démontre par récurrence sur n.

Exercice 18. On commence par calculer les premières valeurs de u_n pour conjecturer une formule que l'on démontre ensuite par récurrence.

— On note P_n la propriété : $u_n = (-2)^n + 3^n$.

- On la démontre par récurrence double (on peut aussi par récurrence forte) sur n. Pour l'hérédité, on suppose que P_n et P_{n+1} sont vraies et on cherche à en déduire que P_{n+2} est vraie.

Exercice 27.

Fondamentaux Mathématiques

Propositions quantifiées - Raisonnements : pour aller plus loin ...

Exercice 20.
Méthode : Étudier une proposition quantifiée
Exercice 21.
Méthode : Étudier une proposition quantifiée
Exercice 22.
Méthode : Étudier une proposition quantifiée
Exercice 23.
Méthode : Étudier une proposition quantifiée
Exercice 24.
Méthode : Étudier une proposition quantifiée
Exercice 25.
1. Méthode : raisonnement par l'absurde.
2. Dessiner C.
3. Supposer que $C = I \times J$ avec I et J deux sous-ensembles de \mathbb{R} . Du fait que $(1,0)$ et $(0,1)$ soient dans C , on peut déduire que I et J contiennent certains éléments. Lesquels ?
Exercice 26.