COMP9414: Artificial Intelligence

Lecture 7a: Grammars and Parsing

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

COMP9414 Grammars and Parsing

This Lecture

- Overview of Natural Languages
- Syntax and Grammar for Natural Languages
- (Simple) Semantics for Natural Languages
- Pragmatics for Natural Languages

COMP9414 Grammars and Parsing 2

Linguistics Landscape

COMP9414 Grammars and Parsing 3

Natural Language Processing

- Syntax
 - ► Linguistic Knowledge
 - Grammars and Parsing
 - Probabilistic Parsing
- Semantics
 - ► Semantic Interpretation and Logical Form
- Pragmatics

UNSW

- ▶ Discourse Processing
- ► Speech Act Theory
- ► (Spoken) Dialogue Systems

©W. Wobcke et al. 2019-2022

Related Disciplines

- Linguistics
 - ▶ Study of language in the abstract and particular languages
- Psycholinguistics
 - ▶ Psychological models of human language processing
- Neurolinguistics
 - ▶ Neural models of human language processing
- Logic
 - ► Study of formal reasoning

COMP9414 Grammars and Parsing

NLP Applications

- Chatbots
 - ► Customer service, e.g. CBA, Amtrak, Lyft, Spotify, Whole Foods
- Personal Assistants
 - ► Siri, Alexa, Google Assistant
- Information Extraction
 - ► Financial reports, news articles
- Machine (Assisted) Translation
 - ▶ Weather reports, EU contracts, Canada Hansard
- Social Robotics
 - ► Home care robots

Central Problem – Ambiguity

- Natural languages exhibit ambiguity
 - "The fisherman went to the bank" (lexical)
 - "The boy saw a girl with a telescope" (structural)
 - "Every student took an exam" (semantic)
 - "The table won't fit through the doorway because it is too [wide/narrow]" (pragmatic)
- Ambiguity makes it difficult to interpret meaning of phrases/sentences
 - ▶ But also makes inference harder to define and compute
- Resolve ambiguity by mapping to unambiguous representation

UNSW
©W. Wobcke et al. 2019–2022

COMP9414 Grammars and Parsing

Structural Ambiguity

"John saw Mary with a telescope"

- Different interpretation \rightarrow different representation
- "John sold a car to Mary" and "Mary was sold a car by John"
- \blacksquare Same interpretation \rightarrow same representation

UNSW

Syntax

- Linguistic Knowledge and Grammars
- Context Free Grammars
- Parsing
 - ► Top Down Parsing
 - ▶ Bottom Up Parsing
 - ► Chart Parsing
 - ▶ Deterministic Parsing
 - ▶ Probabilistic Parsing

Grammars and Parsing

Framework (Chomsky)

- descriptive vs prescriptive
 - ► Goal not to dictate use of language, but describe how language, especially spoken language, is actually used
- sentence vs utterance
 - ► Consider sentences (as an abstraction over utterances)
- competence vs performance
 - ▶ Focus on underlying linguistic knowledge
- descriptive vs explanatory adequacy
 - ▶ Aim to explain how linguistic knowledge is acquired

Methodology

Autonomy of Syntax

John promised to work
*John persuaded to work

VS

*John was promised to work (by someone else)
John was persuaded to work (by someone else)

■ Shows 'promise' and 'persuade' have different properties

* means ungrammatical

UNSW

©W. Wobcke et al. 2019–2022

COMP9414

Grammars and Parsing

Lexical Items (Basic Words)

- Open class
 - Nouns: denote objects (e.g. cat, John, justice)
 - ➤ Verbs: denote actions, events (e.g. buy, break, believe)
 - ► Adjectives: denote properties of objects (e.g. red, large)
 - ► Adverbs: denote properties of events (e.g. quickly)
- Closed class (function words)
 - ▶ Prepositions: at, in, of, on, . . .
 - Articles: the, a, an
 - ► Conjunctions: and, or, if, then, than, . . .

COMP9414

15

Sentence Forms

- Declarative (indicative)
 - ▶ Bart is listening.
- Yes/No question (interrogative)
 - ▶ Is Bart listening?
- Wh-question (interrogative)
 - ▶ When is Bart listening?
- Imperative
 - Listen, Bart!
- Subjunctive
 - ▶ If Bart were listening, he might hear something useful.

COMP9414 Grammars and Parsing 13

Noun Phrases

- Distribution over sentences
 - ▶ Noun phrases: occur as "subject" with a range of "predicates"
 - (noun phrase) ate the bone
 - (noun phrase) saw the bird in the sky
 - $\langle \text{noun phrase} \rangle$ believes that 2 + 2 = 4
 - Examples

John, The dog, The big ugly dog,

The man in the red car,

The oldest man in the world with a beard,

The oldest man who lives in China, . . .

■ Sentences need not "make sense"

Verb Phrases

- Distribution over sentences
 - ▶ Verb phrases: occur as "predicate" with a range of "subjects"

John (verb phrase)

The dog (verb phrase)

Any noun phrase (verb phrase)

Examples

. .

■ Notice ⟨verb phrase⟩ depends on ⟨noun phrase⟩

COMP9414

UNSW

Grammars and Parsing

Inside Noun Phrases

- Within noun phrase
 - ▶ Main item (the head of the phrase): noun
 - Optional specifiers
 - Determiners (articles, demonstratives, quantifiers)
 - Adjectives and other nouns
 - Mandatory arguments
 - Depend on head (e.g. capital (of France))
 - Optional modifiers
 - Adjectival phrases (e.g. larger than Spain)
 - Prepositional phrases (e.g. in the park)
 - Relative clauses (e.g. who likes beer)
 - ▶ Order specifiers, head, modifiers in English

COMP9414 Grammars and Parsing

COMP9414 Grammars and Parsing

Inside Verb Phrases

- Within verb phrase
 - ▶ Main item (the head of the phrase): verb
 - Optional specifiers
 - Auxiliary verbs (e.g. do, does, will, might, . . .)
 - Adverbs (e.g. quickly)
 - ► Mandatory arguments
 - depend on head (e.g. bought (Henry) (a book))
 - Optional modifiers
 - Adverbial phrases (e.g. more quickly than Henry)
 - ▶ Notice similar structure to noun phrases

COMP9414 Grammars and Parsing 17

Prepositional Phrases

- Within prepositional phrase
 - ▶ Main item (the head of the phrase): preposition
 - ► Mandatory arguments
 - (noun phrase) (e.g. in the park)
- Nouns, verbs, etc. are just the heads of phrases

Context Free Grammars

- Nonterminal symbols (grammatical categories)
- Terminal symbols (lexical items)
- Start symbol (a nonterminal) e.g. ⟨sentence⟩
- Rewrite rules
 - ▶ nonterminal \rightarrow sequence of nonterminals, terminals e.g. \langle sentence \rangle \rightarrow \langle noun phrase \rangle \langle verb phrase \rangle
- Open question: is English context free?

UNSW
©W. Wobcke et al. 2019–2022

COMP9414 Grammars and Parsing

Typical (Small) Grammar

```
\begin{split} S &\rightarrow NP \ VP \\ NP &\rightarrow [Det] \ Adj^* \ N \ [AP \ | \ PP \ | \ Rel \ Clause]^* \\ VP &\rightarrow V \ [NP] \ [NP] \ PP^* \\ AP &\rightarrow Adj \ PP \\ PP &\rightarrow P \ NP \\ Det &\rightarrow a \ | \ an \ | \ the \ | \ \dots \\ N &\rightarrow John \ | \ park \ | \ telescope \ | \ \dots \\ V &\rightarrow saw \ | \ likes \ | \ believes \ | \ \dots \\ Adj &\rightarrow hot \ | \ hotter \ | \ \dots \\ P &\rightarrow in \ | \ \dots \\ \end{split}
```

Special notation: * is "0 or more"; [. .] is "optional"

UNSW

Syntactic Structure

Syntactically ambiguous = more than one parse tree

COMP9414 Grammars and Parsing

(Leftmost) Derivation of Example

S

- \Rightarrow NP VP
- \Rightarrow N VP
- ⇒ John VP
- \Rightarrow John V NP PP
- ⇒ John saw NP PP
- \Rightarrow John saw N PP
- ⇒ John saw Mary PP
- \Rightarrow John saw Mary P NP
- ⇒ John saw Mary with NP
- \Rightarrow John saw Mary with Det N
- ⇒ John saw Mary with a N
- ⇒ John saw Mary with a telescope

⇒ means "rewrites as"

Rightmost Derivation

S

- \Rightarrow NP VP
- \Rightarrow NP V NP PP
- \Rightarrow NP V NP P NP
- \Rightarrow NP V NP P Det N
- ⇒ NP V NP P Det telescope
- \Rightarrow NP V NP P a telescope
- $\Rightarrow \dots$
- $\Rightarrow \dots$
- $\Rightarrow \dots$

UNSW

©W. Wobcke et al. 2019-2022

23

COMP9414

21

Grammars and Parsing

Parsing

- Aim is to compute a derivation of a sentence (hence tree)
- Methods
 - ► Top down
 - Start with S, apply rewrite rules until sentence reached
 - ▶ Bottom up
 - Start with sentence, apply rewrite rules "in reverse" until S is reached
 - Chart parsing
 - Chart records parsed fragments and hypotheses
 - Can mix top down and bottom up strategies

Top Down Parsing

- Use a stack to record working hypothesis
- Start with S as only symbol on stack
- At each step
 - ightharpoonup Rewrite top of stack T using grammar rule T ightharpoonup RHS i.e. replace T by RHS (in reverse order), OR
 - ▶ Match word on top of stack to next word in sentence
- Apply backtracking on failure
- Accept sentence when stack is empty and all words in sentence matched; reject sentence when no rules to try
- Produces leftmost derivation

UNSW

©W. Wobcke et al. 2019-2022

COMP9414

Grammars and Parsing

Grammars and Parsing

25

COMP9414

Grammars and Parsing

27

Example

STACK	INPUT
	John saw Mary with a telescope
John	saw Mary with a telescope
N	saw Mary with a telescope
NP	saw Mary with a telescope
NP saw	Mary with a telescope
NP V	Mary with a telescope
NP V Mary	with a telescope
NP V N	with a telescope
	•••

Bottom Up Parsing

- Use a stack to record parsed (left-right) fragment
- Start with stack empty
- At each step
 - ightharpoonup Rewrite sequence at top of stack using rule T ightharpoonup RHS i.e. replace RHS (in reverse) by T, OR
 - ▶ Move word from input to stack
- Apply backtracking on failure
- Accept sentence when input empty and stack contains S; reject sentence when no more rules to try
- Produces rightmost derivation (in reverse)

UNSW

©W. Wobcke et al. 2019-2022

Example

STACK	INPUT
S	John saw Mary with a telescope
VP NP	John saw Mary with a telescope
VP N	John saw Mary with a telescope
VP John	John saw Mary with a telescope
VP	saw Mary with a telescope
PP NP V	saw Mary with a telescope
PP NP saw	saw Mary with a telescope
PP NP	Mary with a telescope

Example Chart

S → NP•VP

Chart Parsing

- Use a chart to record parsed fragments and hypotheses
- Hypotheses $N \to \alpha \bullet \beta$ where $N \to \alpha \beta$ is a grammar rule means "trying to parse N as $\alpha\beta$ and have so far parsed α "

Grammars and Parsing

- One node in chart for each word gap, start and end
- One arc in chart for each hypothesis
- At each step, apply fundamental rule
 - ▶ If chart has $N \to \alpha \bullet B\beta$ from n_1 to n_2 and $B \to \gamma \bullet$ from n_2 to n_3 add N $\rightarrow \alpha B \bullet \beta$ from n_1 to n_3
- Accept sentence when $S \to \alpha \bullet$ is added from start to end
- Can produce any sort of derivation

Fundamental Rule

UNSW

©W. Wobcke et al. 2019-2022

COMP9414

Grammars and Parsing

29

COMP9414

UNSW

Grammars and Parsing

 $N \rightarrow John^{\bullet} V \rightarrow saw^{\bullet} N \rightarrow Mary^{\bullet} P \rightarrow with^{\bullet} Det \rightarrow a^{\bullet} N \rightarrow telescope^{\bullet}$

PP → P•NP

NP → N•

/P → V•NP PP

VP → V NP•PP

31

©W. Wobcke et al. 2019-2022

Top Down Chart Parsing

- Start with $S \to \bullet \alpha$ from start node to start node for all rules $S \to \alpha$ where S is start symbol
- When adding N \rightarrow α Bγ from n_1 to n_2
 - ▶ Also add B $\rightarrow \bullet \beta$ from n_2 to n_2 for each rule B $\rightarrow \beta$
 - Including the special case when α is empty and $n_1 = n_2$
- Exercise: Trace top down chart parser on example

 $B \rightarrow \gamma^{\bullet}$

 $N \rightarrow \alpha B \cdot \beta$

 $N \rightarrow \alpha \cdot B\beta$

UNSW

COMP9414 Grammars and Parsing

Bottom Up Chart Parsing

- Start with arcs for each lexical item
- When adding $C \rightarrow \alpha \bullet$ from n_1 to n_2
 - ► Also add B \rightarrow •C γ from n_1 to n_1 for each rule B \rightarrow C γ
- Exercise: Trace bottom up down chart parser on example

COMP9414 Grammars and Parsing

Compare and Contrast

- Top Down Parsing
 - ► Simple, Memory efficient
 - ▶ Much repeated work, may loop infinitely
- Bottom Up Parsing
 - Less repeated work, harder to control
- Chart Parsing
 - ▶ Memory inefficient (especially with features)
 - ▶ No repeated work, difficult to control

Deterministic Parsing

- Motivation
 - ▶ People don't notice ambiguity . . .
 - ▶ But sometimes have trouble
 - "The horse raced past the barn fell"
 - "We painted all the walls with cracks"
 - "The man kept the dog in the house"
- Can we do what the "human parser" does?

UNSW
©W. Wobcke et al. 2019–2022

COMP9414

Grammars and Parsing

35

Heuristics

Minimal Attachment

■ Minimize size of parse tree

Heuristics

Right Association

Grammars and Parsing

■ Always attach to rightmost (lower) nodes

COMP9414 Grammars and Parsing 37

Heuristics

Lexical Preference

■ Try to fill most common subcategorization frame

Probabilistic Context Free Grammars

- Associate probabilities with grammar rules
 - ► Requires parsed corpus (e.g. Penn Treebank)
 - ► Count number of times rule used in parsing corpus sentences
- Probability of parse tree
 - $ightharpoonup \Pi_r$ probability rule $r * \Pi_w$ probability of word w given category
 - ► Assuming independence (again)

COMP9414 Grammars and Parsing 39

Probabilistic Chart Parsing

- Start with probabilities calculated by part of speech tagger
- Multiply probabilities when applying fundamental rule
- Best-First Chart Parsing
 - ► Examine most likely constituents first (priority queue)
 - Various ways to estimate these probabilities!
 - ▶ When adding $A \to \alpha B \bullet \beta$, try to extend to $A \to \alpha B \beta^1 \bullet \beta^2$
 - ▶ Never constructs constituents with lower probability than parse

COMP9414 Grammars and Parsing

Summary

- Syntactic Knowledge
 - ▶ Grammatical categories defined by distribution
 - ▶ Much determined by properties of lexical items
- Context Free Grammars
 - ► Useful and powerful formalism
 - ► Relatively efficient parsers
 - ▶ Limited when dealing with complex phenomena
- Parsing
 - ▶ Top down method is easy to understand, but not efficient
 - ▶ Bottom up method is more efficient