

SPECIFICATION FOR APPROVAL

() Preliminary S	Specification
-------------------	---------------

(●) Final Specification

Title	Title 13.3" HD TFT LCD				
BUYER		SUPPLIER	LG Display Co., Ltd.		
MODEL		*MODEL	LP133WH2		
		Suffix	TLA2		

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE

Please return 1 copy for your confirmation with your signature and comments.

APPROVED BY	SIGNATURE
K. J. KWON / S.Manager	
REVIEWED BY	
G. J. Han / Manager	
PREPARED BY	
C. Y. Kim / Engineer S. C. Jung / Engineer	
Product Engineering LG Display Co., I	•

Contents

No	ITEM	Page
	COVER	
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	7
3-3	SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING WAVEFORMS	9
3-5	COLOR INPUT DATA REFERNECE	10
3-6	POWER SEQUENCE	11
4	OPTICAL SFECIFICATIONS	12
5	MECHANICAL CHARACTERISTICS	16
6	RELIABLITY	19
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	20
7-2	EMC	20
8	PACKING	
8-1	DESIGNATION OF LOT MARK	21
8-2	PACKING FORM	21
9	PRECAUTIONS	22
А	APPENDIX A. Enhanced Extended Display Identification Data	24

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	
1.0	29.Sep, 2009	-	Final CAS	1.0

1. General Description

The LP133WH2 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 13.3 inches diagonally measured active display area with HD resolution(1366 horizontal by 768 vertical pixel array). Each pixel is divided into Red, Green and Blue subpixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP133WH2 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP133WH2 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP133WH2 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	13.3 inches diagonal
Outline Dimension	306.3(Typ. H) × 177.7(Typ. V) × 3.6(D, Max.) mm
Pixel Pitch	0.2148 × 0.2148 mm
Pixel Format	1366 horiz. by 768 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	200 cd/m ² (Typ., @I _{LED} =20mA)
Power Consumption	Logic : 0.9 W (Max.@Mosaic), Back Light : 3.5W (Max.@ I _{LED} =20mA)
Weight	300g(Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Glare treatment of the front Polarizer (Haze 0%)

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter	Syllibol	Min	Max	Offics		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

3. Electrical Specifications

3-1. Electrical Characteristics

The LP33WH2 requires two power inputs. The first logic is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second backlight is the input about LED BL.with LED Driver.

Table 2. ELECTRICAL CHARACTERISTICS

Davamatar	Currely of	Symbol			1.1-54	Neter
Parameter	Symbol	Min	Тур	Max	Unit	Notes
LOGIC:						
Power Supply Input Voltage	Vcc	3.0	3.3	3.6	V	
Power Supply Input Current	Icc	-	260	305	mA	1
Power Consumption	Pcc	-	0.85	1.0	W	1
Power Supply Inrush Current	Icc_p	-	-	1800	mA	
LVDS Impedance	ZLVDS	90	100	110	Ω	2
BACKLIGHT : (with LED Driver)						
LED Power Input Voltage	VLED	7	12	20	V	
LED Power Input Current	ILED		265	290	mA	3
LED Power Comsumption	PLED	-	3.2	3.5	W	3
LED Power Inrush Current	ILED_P	-	-	1000	mA	
PWM Dimming (Duty) Ratio	-	6	-	100	%	4
PWM Frequency	Fрwм	200		1000	Hz	5
PWM High Level Voltage	V _{PWM_H}	3.0	-	5	V	
PWM Low Level Voltage	V_{PWM_L}	0	-	0.5	V	
LED_EN High Voltage	V _{LED_EN_H}	3.0	-	5	V	
LED_EN Low Voltage	$V_{LED_EN_L}$	0	-	0.5	V	
Life Time		12,000	-	-	Hrs	6

Note)

1. The specified Icc current and power consumption are under the Vcc = 3.3V , 25°C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.

- 3. The specified LED current and power consumption are under the Vled = 12.0V, $25^{\circ}C$, Dimming of Max luminance whereas White pattern is displayed and fv is the frame frequency.
- 4. The operation of LED Driver below minimum dimming ratio may cause flikering or relaibility issue.
- 5. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired.
- 6. The life time is determined as the time at which brightness of LCD is 50% compare to that of minimum value at Table 7. These LED backlight has 6 strings on it and the typical current of LED's string is base on Table 2.

3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model IS050-L40B-C10 manufactured by UJU.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	NC	No Connection	[Interface Chip]
2	VDD	Power Supply +3.3V	1. LCD :
3	VDD	Power Supply +3.3V	SW, Dual LVDS Receiver.
4	VEDID	EDID +3.3V Power	2. System : SiWLVDSRx or equivalent
5	NC	Reserved (BIST)	* Pin to Pin compatible with LVDS
6	CLKEDID	EDID Clock Input	_
7	DATAEDID	EDID Data Input	[Connector]
8	Odd Rx IN0-	-LVDS Differential Data INPUT(R0-R5,G0)	IS050-L40B-C10
9	Odd Rx IN0+	+LVDS Differential Data INPUT(R0-R5,G0)	[Mating Connector]
10	VSS	Ground	20453-040T-0x, I-PEX
11	Odd Rx IN1-	-LVDS Differential Data INPUT(G1-G5,B0-B1)	or equivalent.
12	Odd Rx IN1+	+LVDS Differential Data INPUT(G1-G5,B0-B1)	or equivalent.
13	VSS	Ground	
14	Odd Rx IN2-	-LVDS Differential Data INPUT(B2-B5,HS,VS,DE)	[Connector pin arrangement]
15	Odd Rx IN2+	+LVDS Differential Data INPUT(B2-B5,HS,VS,DE)	
16	VSS	Ground	
17	Odd Rx CKIN-	-LVDS Differential Clock INPUT	
18	Odd Rx CKIN+	+LVDS Differential Clock INPUT	
19	VSS	Ground	40 1
20	NC	No Connection	Lol House House House
21	NC	No Connection	
22	GND	Ground	
23	NC	No Connection	
24	NC	No Connection	
25	GND	Ground	
26	NC	No Connection	
27	NC	No Connection	
28	GND	Ground	
29	NC	No Connection	
30	NC	No Connection	
31	VLED_GND	LED Ground	
32	VLED_GND	LED Ground	
33	VLED_GND VLED_GND	LED Ground	
34		No Connection	
35	NC BLIM	PWM for luminance control	
36	BL on	Backlight On/Off Control (on: 2.5V~3.V, off: 0~0.5V)	
37	NC	Reserved	
	VLED	LED Power Supply 7V-20V	
38			
39	VLED VLED	LED Power Supply 7V-20V LED Power Supply 7V-20V	
40	VLED	LED LOWER Supply 1.4-70.6	

3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format

1) LVDS 1 Port

< LVDS Data Format >

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 4. TIMING TABLE

ITEM	Symbol		Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	f _{CLK}	-	69.3	-	MHz	
	Period	t _{HP}	1446	1470	1518		
Hsync	Width	t _{wH}	24	32	48	t CLK	
	Width-Active	t w _{HA}	1366	1366	1366		
	Period	t _{VP}	780	786	792		
Vsync	Width	t _{wv}	2	3	5	tHP	
	Width-Active	tw _{VA}	768	768	768		
	Horizontal back porch	t _{HBP}	32	40	56	+01.1/	
Data	Horizontal front porch	t _{HFP}	24	32	48	tCLK	
Enable	Vertical back porch	t _{VBP}	7	10	12	+UD	
	Vertical front porch	t _{VFP}	3	5	7	tHP	

3-5. Signal Timing Waveforms

Condition : $V_{CC} = 3.3V$ High: 0.7VCC Low: 0.3VCC t_{HP} Hsync t_{HFP} **t**WHA t_{HBP} Date Enable t_{VP} Vsync t_{VFP} **t**wva t_{VBP} Date Enable

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 5. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
	Color			RE	ΕD					GRE	EEN					BL	UE		
	50.0.	MSI	3					MSE					LSB	MSE					LSB
	T	R 5	R 4	R 3	R 2	R 1	R 0	G 5	G 4	G 3	G 2	G 1	G 0	B 5	B 4	В3	B 2	B 1	B 0
	Black	0	0			0	0	0			0	0	0	0		0		0	0
	Red	1	1	1		1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0		0	0	1	1	. 1 			1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	. 1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN																			
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE		ļ															 		
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	 1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

3-7. Power Sequence

Table 6. POWER SEQUENCE TABLE

Logic		Value		Lloito	LED		Value		Linita
Parameter	Min.	Тур.	Max.	Units Paramete		Min.	Тур.	Max.	Units
T ₁	0.5	-	10	ms	T ₈	10	1	-	ms
T ₂	0	ı	50	ms	T ₉	0	1	-	ms
T ₃	0	-	50	ms	T ₁₀	0	-	-	ms
T ₄	400	ı	-	ms	T ₁₁	10	1	-	ms
T ₅	200	ı	-	ms	T ₁₂	0.5	1	-	ms
T ₆	200	-	-	ms					
T ₇	3	-	10	ms					

Note)

- 1. Do not insert the mating cable when system turn on.
- 2. Valid Data have to meet "3-3. LVDS Signal Timing Specifications"
- 3. LVDS, LED_EN and PWM need to pull-down condition on invalid status.
- 4. LGD recommend the rising sequence of VLED after the Vcc and valid status of LVDS turn on.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 20 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 7. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 69.3MHz, ILED =20 mA

Cumbal		Values		Lloito	Notes
Symbol	Min	Тур	Max	Units	Notes
CR	300	500	-		1
L _{WH}	170	200	-	cd/m ²	2
δ_{WHITE}		1.4	1.6]	3
Tr _{R +} Tr _D		16	25	ms	4
]	
RX	0.555	0.585	0.615	1	
RY	0.320	0.350	0.380		
GX	0.305	0.335	0.365		
GY	0.515	0.545	0.575		
BX	0.130	0.160	0.190		
BY	0.105	0.135	0.165		
WX	0.283	0.313	0.343		
WY	0.299	0.329	0.359		
]	5
Θr	40		[degree	
Θl	40			degree	
Θu	10			degree	
Θd	30			degree	
]	6
		45			
	L _{WH} δ WHITE Tr _{R+} Tr _D RX RY GX GY BX BY WX WY Θ r Θ l Θ u	Min CR 300 L _{WH} 170 5 WHITE Tr _{R+} Tr _D - -	Symbol Min Typ CR 300 500 L _{WH} 170 200 δ _{WHITE} 1.4 Tr _{R+} Tr _D - 16 RX 0.555 0.585 RY 0.320 0.350 GX 0.305 0.335 GY 0.515 0.545 BX 0.130 0.160 BY 0.105 0.135 WX 0.283 0.313 WY 0.299 0.329 Θr 40 Θl Θu 10 Θd 30	Symbol Min Typ Max CR 300 500 - L _{WH} 170 200 - δ WHITE 1.4 1.6 Tr _{R+} Tr _D - 16 25 RX 0.555 0.585 0.615 RY 0.320 0.350 0.380 GX 0.305 0.335 0.365 GY 0.515 0.545 0.575 BX 0.130 0.160 0.190 BY 0.105 0.135 0.165 WX 0.283 0.313 0.343 WY 0.299 0.329 0.359 Θr 40 0 0 Θu 10 0 0 Θd 30 0 0	Symbol Min Typ Max Units CR 300 500 - cd/m² L _{WH} 170 200 - cd/m² δ WHITE 1.4 1.6 Tr _{R+} Tr _D - 16 25 ms RX 0.555 0.585 0.615 RY 0.320 0.350 0.380 GX 0.305 0.335 0.365 GY 0.515 0.545 0.575 BX 0.130 0.160 0.190 BY 0.105 0.135 0.165 WX 0.283 0.313 0.343 WY 0.299 0.329 0.359 Θr 40 degree degree Θu 10 degree Θd 30 degree

Note)

1. Contrast Ratio(CR) is defined mathematically as

Contrast Ratio =

Surface Luminance with all black pixels

Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, ... L_5)$$

3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{WHITE}} = \frac{\text{Maximum}(\textbf{L}_{1}, \textbf{L}_{2}, \ \dots \ \textbf{L}_{13})}{\text{Minimum}(\textbf{L}_{1}, \textbf{L}_{2}, \ \dots \ \textbf{L}_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- Gray scale specification

*
$$f_{V} = 60Hz$$

Gray Level	Luminance [%] (Typ)
LO	0.0
L7	0.8
L15	4.25
L23	10.9
L31	21.0
L39	34.8
L47	52.5
L55	74.2
L63	100

FIG. 2 Luminance

<Measuring point for Average Luminance & measuring point for Luminance variation>

H,V: ACTIVE AREA

A: H/4 mm B: V/4 mm C: 10 mm D: 10 mm

POINTS: 13 POINTS

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP133WH2. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	306.3 ± 0.50mm			
Outline Dimension	Vertical	177.7 ± 0.50mm			
	Depth	3.6mm(Max.)			
Bezel Area	Horizontal	296.62 mm			
bezei Area	Vertical	168.17 mm			
Active Dieplay Area	Horizontal	293.42mm			
Active Display Area	Vertical	164.97 mm			
Weight	300g(Max.)				
Surface Treatment	Hard Coating(3H) Glare treatment of the front Polarizer (Haze 0%)				

<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

<FRONT VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	 No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

[{] Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

А	В	С	D	Е	F	G	Н	I	J	K	L	М	
---	---	---	---	---	---	---	---	---	---	---	---	---	--

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 20 pcs

b) Box Size: 422X340X260

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 - Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm~200mV$ (Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

LP133WH2-TLA2 E-EDID DATA

2009-04-01

	Byte#	Byte#		Valu	ue.	Value	
0			Field Name and Comments		_		
1			Header	_	_		
A							
4	2	02		F	F	1111 1111	
S	3	03		F	F	1111 1111	Header
F F 1111 1111							
7							
B					,		
S	-		SIGN	_			
10			EISA manufacturer code = LGD				
11			Product code = 0017	-	_		
12	-						
13	$\overline{}$			-	_		Unadas/
14			32-Dit serial number	y	·····		-
15				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		Product ID
16				y	,		
17			What also also a second and the	_	_		
18				-	_		
19 13 EDID Revision # = 3 0 3 0000 0011 Revision 20 14 Video input definition = Digital I/p, non TMDS CRGB	$\overline{}$			-	_		===== · · ·
20					********		
21				_	-		Revision
22				_	_		Dienlau
23				-	_		
24				\rightarrow	-		raiametei
25				_	_		
26	$\overline{}$			_	_		
27							
Color				_	-		
30	28	1C		5	9		
31	29	1D	Green X Gx = 0.335	5	5	0101 0101	Color
32 20 Blue Y By = 0.135 2 2 0010 0010	30	1E	Green Y Gy = 0.545	8	В	1000 1011	Characteristic
33 21 White X Wx = 0.313 5 0 0101 0000	31	1F	Blue X Bx = 0.160	2	9	0010 1001	
34 22 White Y Wy = 0.329 5 4 0101 0100 35 23 Established Timing I 0 0 0000 0000 36 24 Established Timing II 0 0 0000 0000 37 25 Manufacturer's Timings 0 0 0000 0000 38 26 Standard Timing Identification 1 was not used 0 1 0000 0001 40 28 Standard Timing Identification 2 was not used 0 1 0000 0001 41 29 Standard Timing Identification 2 was not used 0 1 0000 0001 42 2A Standard Timing Identification 3 was not used 0 1 0000 0001 43 2B Standard Timing Identification 3 was not used 0 1 0000 0001 44 2C Standard Timing Identification 4 was not used 0 1 0000 0001 45 2D Standard Timing Identification 4 was not used 0 1 0000 0001 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 5 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 7 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	32	20	Blue Y By = 0.135	_	2	0010 0010	
35 23	33	21	White X Wx = 0.313	-	0	0101 0000	
Standard Timing Identification 3 was not used 0 1 0000 0001	34	22	White Y Wy = 0.329	5	4	0101 0100	
37 25 Manufacturer's Timings	35	23	Established Timing I	0	0		Established
38 26 Standard Timing Identification 1 was not used 0 1 0000 0001 39 27 Standard Timing Identification 1 was not used 0 1 0000 0001 40 28 Standard Timing Identification 2 was not used 0 1 0000 0001 41 29 Standard Timing Identification 2 was not used 0 1 0000 0001 42 2A Standard Timing Identification 3 was not used 0 1 0000 0001 43 2B Standard Timing Identification 4 was not used 0 1 0000 0001 44 2C Standard Timing Identification 4 was not used 0 1 0000 0001 45 2D Standard Timing Identification 5 was not used 0 1 0000 0001 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 7 was not used 0 1 0000 0001 <td>36</td> <td>24</td> <td>Established Timing II</td> <td>0</td> <td>0</td> <td>0000 0000</td> <td>Timings</td>	36	24	Established Timing II	0	0	0000 0000	Timings
39 27 Standard Timing Identification 1 was not used 0 1 0000 0001	37	25		0	0		
40 28 Standard Timing Identification 2 was not used 0 1 0000 0001 41 29 Standard Timing Identification 2 was not used 0 1 0000 0001 42 2A Standard Timing Identification 3 was not used 0 1 0000 0001 43 2B Standard Timing Identification 3 was not used 0 1 0000 0001 44 2C Standard Timing Identification 4 was not used 0 1 0000 0001 45 2D Standard Timing Identification 4 was not used 0 1 0000 0001 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 5 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001 50 50 30 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001			-	-			
41 29 Standard Timing Identification 2 was not used 0 1 0000 0001 42 2A Standard Timing Identification 3 was not used 0 1 0000 0001 43 2B Standard Timing Identification 3 was not used 0 1 0000 0001 44 2C Standard Timing Identification 4 was not used 0 1 0000 0001 45 2D Standard Timing Identification 4 was not used 0 1 0000 0001 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 6 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 7 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 8 was not used 0 1 0000 0001 <td></td> <td></td> <td>Standard Timing Identification 1 was not used</td> <td>-</td> <td>1</td> <td></td> <td></td>			Standard Timing Identification 1 was not used	-	1		
42 2A Standard Timing Identification 3 was not used 0 1 0000 0001 43 2B Standard Timing Identification 3 was not used 0 1 0000 0001 44 2C Standard Timing Identification 4 was not used 0 1 0000 0001 45 2D Standard Timing Identification 4 was not used 0 1 0000 0001 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 6 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 7 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 8 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001 <td>40</td> <td></td> <td>Standard Timing Identification 2 was not used</td> <td>-</td> <td>1</td> <td></td> <td></td>	40		Standard Timing Identification 2 was not used	-	1		
43 28 Standard Timing Identification 3 was not used 0 1 0000 0001 Standard Timing Identification 4 was not used 0 1 0000 0001 Timing ID 44 2C Standard Timing Identification 4 was not used 0 1 0000 0001 Timing ID 45 2D Standard Timing Identification 5 was not used 0 1 0000 0001 Timing ID 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 0000 0001 47 2F Standard Timing Identification 6 was not used 0 1 0000 0001 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 0000 0001 49 31 Standard Timing Identification 7 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 8 was not used 0 1 0000 0001				-	$\overline{}$		
Standard Timing Identification 4 was not used 0 1 0000 0001 0000 0001	42	2A	Standard Timing Identification 3 was not used	\rightarrow	1	0000 0001	
45 20 Standard Timing Identification 4 was not used 0 1 0000 0001 46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 5 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	43	2B	Standard Timing Identification 3 was not used	0	1	0000 0001	
46 2E Standard Timing Identification 5 was not used 0 1 0000 0001 47 2F Standard Timing Identification 5 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	44	2C	Standard Timing Identification 4 was not used	0	1	0000 0001	Standard
47 2F Standard Timing Identification 5 was not used 0 1 0000 0001 48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	45	2D	Standard Timing Identification 4 was not used	0	1	0000 0001	Timing ID
48 30 Standard Timing Identification 6 was not used 0 1 0000 0001 49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	46	2E	Standard Timing Identification 5 was not used	0	1	0000 0001	
49 31 Standard Timing Identification 6 was not used 0 1 0000 0001 50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	47	2F	Standard Timing Identification 5 was not used	0	1	0000 0001	
50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	48	30	Standard Timing Identification 6 was not used	0	1	0000 0001	
50 32 Standard Timing Identification 7 was not used 0 1 0000 0001 51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001	49	31	Standard Timing Identification 6 was not used	0	1	0000 0001	
51 33 Standard Timing Identification 7 was not used 0 1 0000 0001 52 34 Standard Timing Identification 8 was not used 0 1 0000 0001				0	1		
52 34 Standard Timing Identification 8 was not used 0 1 0000 0001				0	1	0000 0001	
				-	1		
55 55 Standard Hilling Identification 6 Was not deed	53	35	Standard Timing Identification 8 was not used	-	1	0000 0001	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

Byte#	Byte#	Field Name and Opposeds	Val	lue	Value	
(decimal)	(HEX)	Field Name and Comments	(HE	EX)	(binary)	
54	36	1600 X 900 @ 60Hz mode : pixel clock = 69.3MHz	1	2	0001 0010	
55	37	(Stored LSB first)	1	В	0001 1011	
56	38	Horizontal Active = 1366 pixels	5	6	0101 0110	
57	39	Horizontal Blanking = 104 pixels	6	8	0110 1000	
58	3A	Horizontal Active : Horizontal Blanking = 1366 : 104	5	0	0101 0000	
59	3B	Vertical Avtive = 768 lines	" 0	0	0000 0000	
60	3C	Vertical Blanking = 18 lines	1	2	0001 0010	
61	3D	Vertical Active: Vertical Blanking = 768: 18	3	0	0011 0000	Timing
62	3E	Horizontal Sync. Offset = 32 pixels	2	Ō	0010 0000	Descriptor
63	3F	Horizontal Sync Pulse Width = 32 pixels	<u>-</u>	ō	0010 0000	# 1
64	40	Vertical Sync Offset = 3 lines, Sync Width = 5 lines	3	5	0011 0101	•.
65	41	Horizontal Vertical Sync Offset/Width upper 2bits = 0	"Fō	0	0000 0000	
66	42	Horizontal Image Size = 293.42mm(293)	2	5	0010 0101	
67	43	Vertical Image Size = 164.97mm(165)	TA	5	1010 0101	
68	44	Horizontal & Vertical Image Size	1	ő	0001 0000	
69	45	Horizontal Border = 0	- r	Ö	0000 0000	
70	46	Vertical Border = 0	T _o	Ö	0000 0000	
71	46	Non-interlaced, Normal display, no stereo, Digital separate sync, HAV pol negatives		9	0000 0000	
-	48		0	0	0000 0000	
72 73	48 49	Detailed Timing Descriptor #2	T ö	Ö	0000 0000	
74	4A		řő	ŏ	0000 0000	
75	4B		řő	ŏ	0000 0000	
76	4C		Ō	Ō	0000 0000	
77	4D		0	0	0000 0000	
78	4E		0	0	0000 0000	Detailed
79	4F		0	0	0000 0000	Timing
80	50		0	0	0000 0000	Description
81	51		0	0	0000 0000	# 2
82	52		0	0	0000 0000	
83 84	53 55		0	0	0000 0000	
85	 55		Fö.	ŏ	0000 0000	
86	56		řő	ŏ	0000 0000	
87	57		Ĭ	Ŏ	0000 0000	
88	58		0	0	0000 0000	
89	59		0	0	0000 0000	
90	5A	Detailed Timing Descriptor #3	0	0	0000 0000	
91	5B		0	<u>.0</u>	0000 0000	
92	5C			<u></u>	0000 0000	
93	5D		F	E	1111 1110	
94 95	5E 5F		0	0	0000 0000 0000 0000	
96	<u>5</u> F		rö	ő	0000 0000	Detailed
97	61		řő	ő	0000 0000	Timing
98	62	L	4	Č	0100 1100	Description
99	63	G	4	7	0100 0111	#3
100	64	D	4	4	0100 0100	
101	65	i	6	9	0110 1001	
102	66	S	7	3	0111 0011	
103	67	P.	7	0	0111 0000	
104	68		6	<u>, </u>	0110 1100	
105 106	69 6A	<u>a</u>	6 7	9	0110 0001 0111 1001	
107	6B	LF	ró	<u>S</u>	0000 1010	
101	00	l u	10	Α	3000 1010	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

Byte# (decimal)	Byte# (HEX)	Field Name and Comments	Va. (HE	lue (X)	Value (binary)	
108	6C	Detailed Timing Descriptor #4	0	0	0000 0000	
109	6D		0	0	0000 0000	
110	6E		0	0	0000 0000	
111	6F		F	Е	1111 1110	
112	70		0	0	0000 0000	
113	71	L	4	С	0100 1100	
114	72	P	5	0	0101 0000	Detailed
115	73	1	3	1	0011 0001	Timing
116	74	3	3	3	0011 0011	Description
117	75	3	3	3	0011 0011	#4
118	76	₩	5	7	0101 0111	
119	77	Н	4	8	0100 1000	
120	78	2	3	2	0011 0010	
121	79	-	2	D	0010 1101	
122	7A	Т	5	4	0101 0100	
123	7B	L	4	С	0100 1100	
124	7C	A	4	1	0100 0001	
125	7D	2	σ	2	0011 0010	
126	7E	Extension flag = 00	0	0	0000 0000	Extension Flag
127	7F	Checksum	1	В	0001 1011	Checksum