Task 1 – 20MIP10033 – Chandan Thota

Data Preprocessing Stage 1

- 1. We are going to load the train dataset, check the shape and data types present in it
- 2. We are going to set the "date" column as index for this dataset
- 3. We are checking if any nulls are present in the dataset are not
- 4. We are going to check the percentage of nulls if present in the dataset

	Column	Null Count	Null Percentage
0	ID	0	0.000
1	Item Id	2	0.002
2	Item Name	1832	1.805
3	ad_spend	24187	23.832
4	anarix_id	0	0.000
5	units	17898	17.635
6	unit_price	0	0.000

- 5. We can see that the nulls exist in columns "Item Id", "Item Name", "ad_spend" and "units". So are going to 1st handle the nulls present in "Item Id", "Item Name" and "ad_spend". We would later look into "units" since it is our target variable
- 6. We are going to remove the 2 null rows present in the column "Item Id", since the whole row as nulls values.
- 7. We are going to fill the column "Item Name" by mapping the nulls with column "Item Id", since there is one to one mapping present between them. We are going 1st sort the dataset and then apply forward imputing.

	Column	Null Count	Null Percentage
0	ID	0	0.000
1	Item Id	0	0.000
2	Item Name	3	0.003
3	ad_spend	24187	23.832
4	anarix_id	0	0.000
5	units	17896	17.634
6	unit_price	0	0.000

8. We still have 3 nulls present which are off "ASIN_BLANK". Removing this rows from the dataset

	טו	Item Id	Item Name	ad_spend	anarix_id	units	unit_price	
date								
2023-09-25	2023-09-25_ASIN_BLANK	ASIN_BLANK	NaN	0.0	NAPQUEEN	NaN	0.0	
2023-10-10	2023-10-10_ASIN_BLANK	ASIN_BLANK	NaN	0.0	NAPQUEEN	NaN	0.0	
2023-11-02	2023-11-02_ASIN_BLANK	ASIN_BLANK	NaN	0.0	NAPQUEEN	NaN	0.0	

9. We are now going to fill the nulls present in column "ad_spend" using forward and backward imputing.

	Column	Null Count	Null Percentage
0	ID	0	0.000
1	Item Id	0	0.000
2	Item Name	0	0.000
3	ad_spend	0	0.000
4	anarix_id	0	0.000
5	units	17893	17.631
6	unit_price	0	0.000

EDA

Feature Engineering

- 10. We are going to create 2 dataframes one contains the values of column "units" and another with null values in column "units". [known df & unknown df]
- 11. We are going to create few more features using the column "date" like "year", "month", "day", "day of week", "is weekend", "quarter".
- 12. Now we are going to drop the unnecessary columns like 'ID', 'units', 'Item Id' and 'anarix id'.
- 13. We are going to split the known df into train and val datasets
- 14. We are going to train a ensemble learning model called random forest.
- 15. We are going to use the SHAP [SHapley Additive exPlanations] library to get the feature importance

16. We can see that the columns "unit_price", "ad_spend", "Item Name" and "month" have more importance in predicting the units.

Data Preprocessing Stage 2

- 17. Now we are going to predict the nulls in the column "nulls" using the trained random forest model [predictive imputing]
- 18. We are going to add these null values to the original train dataset

]:		Column	Null Count	Null Percentage
	0	ID	0	0.0
	1	Item Id	0	0.0
	2	Item Name	0	0.0
	3	ad_spend	0	0.0
	4	anarix_id	0	0.0
	5	units	0	0.0
	6	unit_price	0	0.0

- 19. Now we will convert the categorical columns to numeric values using one hot encoding
- 20. We will also normalization the numerical columns present using standard scaler
- 21. We are going do the above operations on both train and test dataset and also set the column "date" as index.
- 22. We are also going to do the memory optimization to decrease the size of the dataframe for fast training of models.

```
<class 'pandas.core.frame.DataFrame'>
                                                                                                                                                                                                      <class 'pandas.core.frame.DataFrame'>
  DatetimeIndex: 101485 entries, 2022-04-12 to 2024-05-3: DatetimeIndex: 101485 entries, 2022-04-12 to 2024-05-31
                                                                                                                              Data columns (total 10 columns):

# Columns
  Data columns (total 10 columns):
                                                     Non-Null Count
     # Column
# Column Non-Null Count Dtype # Column Non-Null Count Dtype

10 Item Name 101485 non-null int32 0 Item Name 101485 non-null int32
1 ad_spend 101485 non-null float64 1 ad_spend 101485 non-null float62
2 unit_price 101485 non-null int32 3 year 101485 non-null int32
4 month 101485 non-null int32 4 month 101485 non-null int32
5 day 101485 non-null int64 5 day 101485 non-null int8
6 day_of_week 101485 non-null int32 6 day_of_week 101485 non-null int32
7 is_weekend 101485 non-null int64 7 is_weekend 101485 non-null int8
8 quarter 101485 non-null int32 8 quarter 101485 non-null int32
9 units 101485 non-null float64 9 units 101485 non-null float32
dtypes: float64(3), int32(5), int64(2)
memory usage: 6.6 MB
None

# Column Non-Null Count Dtype

# Column Non-Null int32

# Item Name

101485 non-null int32

# month 101485 non-null int32

# day 101485 non-null int32

# month 101485 non-null int32

# 
                                                                                                                                                                                                     # Column Non-Null Count
                                                                                                                                                                                                    memory usage: 4.1 MB
None
  None
                                                                                                                                                                                                    <class 'pandas.core.frame.DataFrame'>
  <class 'pandas.core.frame.DataFrame'>
  DatetimeIndex: 2833 entries, 2024-07-01 to 2024-07-28 DatetimeIndex: 2833 entries, 2024-07-01 to 2024-07-28
                                                                                                                                                  Data columns (total 9 columns):
  Data columns (total 9 columns):
   # Column Non-Null Count Dtype # Column Non-Null Count Dtype

0 Item Name 2833 non-null int32 0 Item Name 2833 non-null int32
1 ad_spend 1382 non-null float64 1 ad_spend 1382 non-null float32
2 unit_price 2833 non-null int32 3 year 2833 non-null int32
4 month 2833 non-null int32 4 month 2833 non-null int32
5 day 2833 non-null int64 5 day 2833 non-null int8
6 day_of_week 2833 non-null int32 6 day_of_week 2833 non-null int82
7 is_weekend 2833 non-null int64 7 is_weekend 2833 non-null int8
8 quarter 2833 non-null int32 8 quarter 2833 non-null int32
dtypes: float64(2), int32(5), int64(2) memory usage: 166.0 KB
                                                                                                                                                                                                        # Column Non-Null Count Dtype
  dtypes: float64(2), int32(5), int64(2)
  memory usage: 166.0 KB
                                                                                                                                                                                                      None
  None
```

Model Training

- 23. We are going build and test 3 models which are as follows: -
 - Light Gradient-Boosting Machine
 - XGBoost
 - Long Short-Term Memory
- 24. We are train these models using the train data which is split into 80%

- 25. Later the model is validated using the val data which is 20% using MSE
- 26. So, the results are as follows: -

	Model	MSE
0	LGBM	3476.089708
1	XGBoost	3227.409424
2	LSTM	6162.423340

- 27. From the results we can clearly see that XGBoost model are more accuracy than other models.
- 28. So XGBoost model is used to predict the unseen test data
- 29. Later the predictions from the best model are saved to a .csv file.
- 30. GitHub Link: NapQueen--Anarix--VIT-Assignment