121, 12 are convex, 13 is simply connected and simply but non convex

· wrlF=0 and { \$\int_{22}^{\Omega_1}\$ are } and lor from a potential on \$\int_{1,\Omega_2,\Omega_3}\$.

• Ω_1 : $F = \operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x^2 + y^2}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x^2 + y^2}$$

$$\frac{\partial f}{\partial y} = \frac{x}{x^2 + y^2}$$

$$\frac{\partial f}{\partial y} = \frac{x}{x^2 + y^2}$$

$$(2)$$

(1)
$$\rightarrow$$
 $f(x) = -arctg(\frac{x}{y}) + d(y)$
[perminder $\frac{d}{dx}(arctg(x)) = \frac{1}{1+x^2}$]

$$(2) \longrightarrow \frac{\partial f}{\partial y} = -\frac{\frac{-\times}{y^2}}{1+(\frac{\times}{y})^2} + \lambda'(y) = \frac{x}{\times^2 + y^2}$$

$$\frac{\times}{\times^{2}+y^{2}} + \alpha'(y) = \frac{\times}{\times^{2}+y^{2}} \rightarrow \alpha'(y) = 0$$

$$\alpha(y) = c_{1} \in \mathbb{R}, \ a \ constant.$$

The potential is $f(x,y) = -arctg(\frac{x}{y}) + c_i$

• Ω_2 : As the domain Ω_2 does not combain the line y=0,

the previous result for Ω_1 is extendable to Ω_2 . $f(x,y) = -\arctan\left(\frac{x}{n}\right) + C_2, \quad c_2 \in \mathbb{R}.$

• A3:

$$f(x,y) = \begin{cases} -\arctan\left(\frac{x}{y}\right) + C_1 & \text{if } y > 0 \\ -\arctan\left(\frac{x}{y}\right) + C_2 & \text{if } y < 0 \end{cases}$$

What hoppons in y=0, x>0.

$$\lim_{y\to 0^+} f(x,y) = \lim_{y\to 0^+} -\arctan\left(\frac{x}{y}\right) + C_1 = -\frac{\pi}{2} + C_1$$

$$\times > 0$$

$$\pi/2$$

$$\lim_{y\to 0^{-}} f(x,y) = \lim_{y\to 0^{-}} -\arctan \left(\frac{x}{y}\right) + C_2 = \frac{\pi}{2} + C_2$$

$$\times 70 \times 70 \times 70$$

$$\lim_{y\to 0^{-}} f(x,y) = \lim_{y\to 0^{-}} -\arctan \left(\frac{x}{y}\right) + C_2 = \frac{\pi}{2} + C_2$$

We impose lim fox,y) = lim fox,y) (continuity)

x>0

x>0

x>0

We impose
$$\lim_{y\to 0^+} f(x,y) = \lim_{y\to 0^-} f(x,y)$$
 (continuity)
 $-\frac{\pi}{2} + c_1 = \frac{\pi}{2} + c_2 \longrightarrow c_1 = \pi + c_2$
 $\int (x,y) = \int \frac{\pi}{2} + c_2 \longrightarrow \pi + \pi + c_2$ if $y > 0$.
 $\int (x,y) = \int \frac{\pi}{2} + c_2 \longrightarrow \pi + c_2$ if $y < 0$.

+cz if y<0 · szy: we won't to test if F + grad f in szy.

Then it is enough to find a closed were T s.t. I Fodl \$0.

A possible wree is T= ((x,y) e R2: x2 ty2=1).

$$\gamma(t) : [0,2\pi] \longrightarrow \mathbb{R}^2$$

$$t \longmapsto (\cot sint)$$

$$\int_{\Gamma} F \cdot dt = \int_{0}^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt$$

the obsure of Ω .

(the set of points that don't belong to the interior of IR2/22)

Definitions.

1) let ICIR? be an open domain bounded such that 2st is a doved (piecewise) regular cine.

we say that 2.2 is positively oriented if when we tour along the cone, the domain is on the left.

For a parameterization 1: La'P] → 3U $t \quad \longleftrightarrow \quad \chi(\mathfrak{t}) = (\chi_{\mathfrak{t}}(\mathfrak{t}), \chi_{2}(\mathfrak{t}))$ the normal rector of $\partial \Omega$ at x is given by $U(x) = (\chi_2'(t), -\chi_1'(t)). \text{ It is on external normal if } \partial \Omega$ is positively ariented.

- is a regular domain if there exist bounded open domains AcIR² domains As, As, Az, ..., An CIR² s.t.
 - · Āj c A o \ j=1,2,---, n.
 - · Ā; ΠĀ; = φ + i,j=1,--, n and i≠j.

· 2A = To UT, UTZU ... UTn

DA is positively oriented if the circulation source for each Ti, j=0,1,-..,n, is s.t. the domain A is on the left. I.e., the boundary To is positively oriented, and the boundaries T1, T2, --., Tu, are regolively oriented.

2.4.2 Green's theorem

a Theorem:

Let $A \subset \mathbb{R}^2$ be a regular domain whose boundary ∂A is posifively oriented. Let $F: \overline{A} \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto F(x,y)$

be a vector field $F \in C^1(\Omega_1 R^2)$. Then $\iint_A \omega_r d_r F(x,y) dxdy = \iint_{\partial A} F \cdot dl$ $= \iint_A \left[\frac{\partial F_2}{\partial x} (x,y) - \frac{\partial F_1}{\partial y} (x,y) \right] dxdy$