DSGE 模型构建、参数校准与政策设置

1. DSGE 模型构建

构建包括家庭(区分对绿色和棕色产品厂商的劳动供给)、银行、厂商(区分最终产品厂商、绿色产品厂商、棕色产品厂商和资本品厂商)、政府(引入宏观审慎监管部门)四类主体在内的动态随机一般均衡模型。下面简要介绍各经济主体面临的约束条件以及目标函数。约束条件下经济主体最优化目标函数所得一阶条件,限于篇幅不再列出¹。

(1)家庭。代表型家庭均匀分布在[0,1]连续统上,满足理性假定。家庭成员中比例1为银行家,比例(1-1)为工人。其中,银行家管理银行,从银行获得利润分红,但同时有隐匿银行资产的动机;工人供职于厂商,通过提供劳动获得收入。

家庭目标效用函数为:

$$E_{0} \left\{ \sum_{t=0}^{\infty} \beta^{t} \frac{1}{1-\eta} \left(C_{t} - \varpi \frac{\left[\left(L_{t}^{b} \right)^{1+\rho_{L}} + \left(L_{t}^{g} \right)^{1+\rho_{L}} \right]^{\frac{1+\xi}{1+\rho_{L}}}}{1+\xi} \right)^{1-\eta} \right\}$$

$$(1)$$

家庭面临的预算约束为:

$$C_{t} + D_{t} = \omega_{t}^{b} L_{t}^{b} + \omega_{t}^{g} L_{t}^{g} + R_{t-1} D_{t-1} + \Xi_{t} + \Pi_{t} + T_{t}$$
(2)

其中, C_t 、 D_t 、 L_t^s 和 L_t^b 分别表示家庭消费、储蓄以及对绿色和棕色厂商的劳动供给。 ω_t^s 和 ω_t^b 分别表示绿色、棕色厂商的劳动工资, R_{t-1} 表示存款利率, Ξ_t 表示家庭从银行获得的利润分红, Π_t 表示从厂商获得的利润分红, Π_t 表示政府对家庭的转移支付。参数 $\beta \in (0.1)$ 为主观贴现因子, $\varpi > 0$ 为劳动相对效用权重, $\eta > 0$ 为风险厌恶系数, ξ 为 Frisch 劳动供给弹性的倒数。

¹ 课题组通过 Dynare 编程对模型进行求解,并将模型 37 个内生变量及 37 个均衡条件程序代码置于网址: http://gaolei786.github.io/YoungResearch/model/, 供有兴趣读者下载参考。

- (2)银行。银行面临的三种约束。
- 一是流动性约束。银行绿色、棕色资产会受到宏观审慎部门监管,宏观审慎政策包括绿色资产支持、棕色资产惩罚两种,分别会增加或减少资产稳态水平,因此,这两类工具可看作一种差异化资本要求。

银行流动性约束方程表示如下:

$$(1 + \tau_t^b) Q_t^b S_{j,t}^b + (1 + \tau_t^g) Q_t^g S_{j,t}^g + \Psi (Q_t^g S_{j,t}^g, W_{j,t}) = D_{j,t} + N_{j,t}$$
 (3)

其中, $N_{j,t}$ 、 $D_{j,t}$ 、 $S_{j,t}^i$, $i = \{g,b\}$ 分别表示银行净资产、存款和资本权益持有量, τ_t^i , $i = \{b,g\}$ 表示宏观审慎部门对棕色资产惩罚和绿色资产支持权重。 $\Psi(Q_t^s S_{j,t}^s, W_{j,t}) = \psi/2 \left(Q_t^s S_{j,t}^s / W_{j,t} - \bar{s}^s\right)^2 W_{j,t}$ 是二次成本函数,其中 $W_{j,t} = Q_t^b S_{j,t}^b + Q_t^s S_{j,t}^s$ 表示银行资产, \bar{s}^s 表示绿色资产在银行资产组合中的比重, $\psi > 0$ 表示银行资产管理成本系数。

二是资产净值约束。银行通过吸收存款、发放贷款获得一定收益。令 $R_{k,t}^b$ 和 $R_{k,t}^s$ 分别表示银行棕色、绿色资产收益率,银行资产净值约束方程为:

$$N_{j,t+1} = R_{k,t+1}^b Q_t^b S_{j,t}^b + R_{k,t+1}^g Q_t^g S_{j,t}^g - R_t D_{j,t}$$
(4)

三是激励约束(Incentive Constraint)。家庭仅在确信银行能够长期经营的情况下,才愿意存款。因此,银行将面临如下激励约束:

$$V_{j,t} \ge \kappa \underbrace{\left(Q_t^b S_{j,t}^b + Q_t^g S_{j,t}^g\right)}_{W_{j,t}} \tag{5}$$

其中, $V_{j,t}$ 表示银行长期经营获得收益的现值, κ 为银行隐匿资产比例。以上三种约束下,银行长期经营价值目标函数为:

$$V_{j,t} = E_t \left\{ \sum_{\tilde{\tau}=t+1}^{\infty} (1-\gamma) \gamma^{\tilde{\tau}-t-1} M_{t,\tilde{\tau}} N_{j,\tilde{\tau}} \right\}$$
(6)

其中, $M_{t,\tilde{t}} \equiv \beta^{\tilde{t}-t} \times U_{c,\tilde{t}} / U_{c,t}$ 表示随机贴现因子, $1-\gamma$ 为银行家退出概率。

(3) 厂商。一是最终产品厂商。最终产品厂商利用棕色产品 Y_t^b 和绿色产品 Y_t^s 生产最终产品 Y_t ,生产函数为:

$$Y_{t} = \left[\left(\pi^{b} \right)^{\frac{1}{\rho_{Y}}} \left(Y_{t}^{b} \right)^{\frac{\rho_{Y} - 1}{\rho_{Y}}} + \left(1 - \pi^{b} \right)^{\frac{1}{\rho_{Y}}} \left(Y_{t}^{g} \right)^{\frac{\rho_{Y} - 1}{\rho_{Y}}} \right]^{\frac{\rho_{Y}}{\rho_{Y} - 1}}$$

$$\tag{7}$$

其中, $\rho_Y > 0$ 为绿色、棕色产品之间的替代弹性, π^b 为棕色产品比重。 求解最终产品厂商利润最大化问题,可得其对绿色产品和棕色产品需求函数为:

$$Y_t^g = \left(1 - \pi^b\right) \frac{Y_t}{\left(p_t^g\right)^{\rho_Y}}, Y_t^b = \pi^b \frac{Y_t}{\left(p_t^b\right)^{\rho_Y}}$$

$$\tag{8}$$

二是棕色产品厂商。棕色产品厂商使用劳动 L_t^b 和资本 K_t^b 生产棕色产品 Y_t^b ,生产函数为柯布道格拉斯形式:

$$Y_{t}^{b} = \left[1 - d\left(X_{t}\right)\right] A_{t}\left(K_{t-1}^{b}\right)^{\alpha^{b}} \left(L_{t}^{b}\right)^{1 - \alpha^{b}}, 0 < \alpha^{b} < 1 \tag{9}$$

其中, A_i 表示技术水平, X_i 表示大气中二氧化碳存量, $d(\cdot) \in (0,1)$ 为边际递增的损减函数。式(9)说明,棕色厂商生产能力会受到碳排放负面影响。

棕色厂商在生产中会产生碳排放,导致大气中碳存量 X_t 按如下方程演变: $X_t = \delta_X X_{t-1} + e_t + e_t^{row}$ 。其中, e_t^{row} 为国外碳排放量, e_t 为国内棕色厂商碳排放量。 e_t 由棕色产品产量和减排系数共同决定: $e_t = (1 - \mu_t)h(Y_t^b)$ 。其中, $h(Y_t^b)$ 表示棕色产品生产导致的碳排放,参考 Nordhaus(2008)和 Heutel(2012),设定 $h(Y_t^b) = (Y_t^b)^c$; μ_t 为减排系数,取值在 0 至 1 之间。减排是有成本的,参考 Nordhaus(2008)和 Heutel(2012),设定减排成本函数为 $f(\mu_t) = \theta_t \mu_t^{\theta_2}$,减排总成本 $Z_t = f(\mu_t) Y_t^b$ 。

为从资本品厂商购入新资本, 棕色厂商需要向银行寻求外部融资。参

考 Gertler & Karadi (2011),t 时期末,棕色厂商以定价 Q_t^b 从资本品厂商购入资本 K_t^b ,同时向银行出售价格为 Q_t^b 的证券权益 S_t^b ,实现 $Q_t^bK_t^b=Q_t^bS_t^b$ 。

此外,棕色厂商还需向政府缴纳碳税,税率为 τ_t^e 。

综合以上, 棕色厂商利润函数为:

$$\Pi_{t}^{b} = p_{t}^{b} Y_{t}^{b} - \tau_{t}^{e} e_{t} - Z_{t} - \omega_{t}^{b} L_{t}^{b} - R_{k,t}^{b} Q_{t-1}^{b} K_{t-1}^{b} + (1 - \delta^{b}) Q_{t}^{b} K_{t-1}^{b}$$

$$(10)$$

三是绿色产品厂商。绿色产品厂商使用劳动 L^{s} 和资本 K^{s} 生产绿色产品 L^{s} ,生产函数为柯布道格拉斯形式:

$$Y_{t}^{g} = \left[1 - d\left(X_{t}\right)\right] A_{t} \left(K_{t-1}^{g}\right)^{\alpha^{g}} \left(L_{t}^{g}\right)^{1 - \alpha^{g}}, 0 < \alpha^{g} < 1$$

$$\tag{11}$$

与棕色产品厂商类似,绿色厂商从银行获得贷款筹集资金,以工资 ω_t^s 从家庭雇佣劳动 \mathcal{L}_t^s ,以价格 \mathcal{Q}_t^s 从资本厂商购买资本品 \mathcal{K}_t^s ,并且生产能力也会受到温室气体存量的负面影响。与棕色厂商不同的是,绿色厂商没有碳排放,不缴纳碳税。

综合以上,绿色厂商利润为:

$$\Pi_{t}^{g} = p_{t}^{g} Y_{t}^{g} - \omega_{t}^{g} L_{t}^{g} - R_{k,t}^{g} Q_{t-1}^{g} K_{t-1}^{g} + (1 - \delta^{g}) Q_{t}^{g} K_{t-1}^{g}$$

$$\tag{12}$$

四是资本品厂商。参考 Christiano et al. (2005),资本品厂商为提供 $I_t^i, i = \{g,b\}$ 的资本品,需要 $\left(1 + \frac{\phi^i}{2} \left(\frac{I_t^i}{I_{t-1}^i} - 1\right)^2\right) I_t^i$ 单位的部门产品,其中, $\phi^i > 0$

为投资调整成本系数。综合考虑成本因素,资本品厂商的目标函数为:

$$\max_{\left\{I_{t}^{i}\right\}_{i=\left\{g,b\right\}}} \mathbf{E}_{0} \sum_{t=0}^{\infty} M_{0,t} \sum_{i=\left\{g,b\right\}} \left[Q_{t}^{i} I_{t}^{i} - \left(1 + \frac{\phi^{i}}{2} \left(\frac{I_{t}^{i}}{I_{t-1}^{i}} - 1\right)^{2}\right) I_{t}^{i} \right]$$

$$\tag{13}$$

其中, Q_i^i $i = \{g,b\}$ 表示绿色和棕色资本品价格。

(4) 政府及监管部门。政府执行预算平衡,将碳税收入一次性转移支付给家庭:

$$T_{t} = \tau_{t}^{e} e_{t} + \tau_{t}^{b} Q_{t}^{b} S_{t}^{b} + \tau_{t}^{g} Q_{t}^{g} S_{t}^{g} \tag{14}$$

(5) 市场出清。为使模型达到均衡,需要对各市场出清,即在给定的政策序列 $(\tau_t^e, \tau_t^b, \tau_t^s)$ 和初始条件下,与各市场有关的 37 个内生变量满足 37 个均衡条件。

2. 参数校准

使用两种方法校准参数。一种方法是参考经典文献,主要从我国相关研究中选取模型参数,对于一些国内没有的参数校准值,选择国外经典文献中的参数进行校准;另一种方法是依据我国经济变量数据匹配标靶稳态变量,然后依据标靶稳态变量校准参数(见附表1)。

3. 政策设置

国内文献多基于 DSGE 模型开展脉冲响应模拟,然而,脉冲响应模拟不太适合气候相关政策分析。原因是,随着我国提出碳达峰、碳中和目标,气候相关政策具有长期性、稳定性。为分析这类政策效果,应基于 DSGE 模型开展确定性模拟。为此,本文将明确碳税和宏观审慎政策设置,为确定性模拟做准备。

(1) 碳稅政策设置。基于 DSGE 模型和决策者社会福利函数(式 15) 最大化求解碳稅稅率为 0.0399。

$$\max_{\tau_t^s} E_0 \left\{ \sum_{t=0}^{\infty} \boldsymbol{\beta}^t \frac{1}{1-\boldsymbol{\eta}} \left(C_t - \boldsymbol{\varpi} \frac{\left[\left(L_t^b \right)^{1+\rho_L} + \left(L_t^g \right)^{1+\rho_L} \right]^{\frac{1+\xi}{1+\rho_L}}}{1+\xi} \right)^{1-\eta} \right\}$$

$$\tag{15}$$

(2) 宏观审慎政策设置。本文根据棕色、绿色资产结构调整目标,设置棕色资产惩罚因子和绿色资产支持因子,调整目标为将棕色资产比例调低 10%,绿色资产比例调高 10%。本文同时考虑三种方案:单独使用棕色资产惩罚因子 τ ^b、单独使用绿色资产支持因子 τ ^b以及综合使用棕色资产惩罚因子 τ ^b和绿色资产支持因子 τ ^b。通过求解模型均衡条件,可得各种政策方案下 τ ^b和 τ ^b的取值(见附表 2)。

附表 1 DSGE 模型参数校准及取值依据/标靶

参数名	符号	参数设定	取值依据/标靶	
	家	R庭和厂商参数		
主观贴现因子	$oldsymbol{eta}$	0.99	王立勇和纪尧(2019)	
风险厌恶系数	η	2	马勇和陈雨露(2014)	
Frisch 劳动供给弹性的倒数	ξ	1	陆磊和刘学(2020)	
劳动时间替代弹性	$ ho_{\scriptscriptstyle m L}$	1	Carattini et al. (2021)	
劳动负效用权重	σ	7. 7863	劳动时长8小时	
绿色资本产出弹性	$lpha^{ ext{g}}$	0.33	略低于 0.35 (陆磊和刘学, 2020)	
棕色资本产出弹性	$lpha^{ ext{b}}$	0.37	略高于 0.35 (陆磊和刘学, 2020)	
资本折旧率	$\delta^{\scriptscriptstyle b}, \delta^{\scriptscriptstyle g}$	0.025	马勇和陈雨露(2014)	
投资调整成本系数	ϕ^b , ϕ^g	10	陆磊和刘学(2020)	
技术冲击自回归系数	$ ho_{\scriptscriptstyle A}$	0.8	卞志村等(2019) 卞志村和杨源源(2016)	
技术冲击标准差	$\sigma_{_{A}}$	0.0246	黄赜琳和朱保华(2015)	
		环境参数		
减排成本函数参数	$ heta_{\scriptscriptstyle 1}$	0.0326	Nordhaus (2018)	
	$ heta_{\scriptscriptstyle 2}$	2.6	Nordhaus (2018)	
损减函数参数	$d_{\scriptscriptstyle 0}$	-0.0076		
	$d_{_1}$	6. 1765×10^{-5}	依据 Gibson and Heutel(2020)并进行 调整得到	
	d_2	6. 1053×10^{-7}		
二氧化碳半衰期系数	$\delta_{\scriptscriptstyle X}$	0. 9917	程郁泰(2017)	
碳排放弹性系数	ϵ	0.843754	盛仲麟(2016)	
当期国外污染排放量	e^{row}	1.6232	2019 年中国碳排放量约占全球的 28%	
绿色、棕色产品间替代弹性	$ ho_{\scriptscriptstyle Y}$	2	Carattini et al. (2021)	
总产出中棕色产品比重	$\pi^{^b}$	0.3020	绿色资产在资产投资组合中的比重为60	
	ė	银行部门参数		
隐匿资产比例	K	0. 4828	银行杠杆率为 4.43	
银行存活概率	γ	0.972	Carattini et al. (2021)	
新加入银行获得资产的比例	5	0.0007	2021 年 6 月 11 日,LPR 基准利率与国债 的利差为 142BP	
资产投资组合管理成本	ψ	0.0001	Carattini et al. (2021)	

附表 2 DSGE 政策模拟宏观审慎政策设置

	宏观审慎政策内容		政策目标	
政策方案	棕色资产惩罚 $ au^b$	绿色资产支持 $ au^s$	调低棕色资产 比例 s^b	调高绿色资产 比例 s^s
无宏观审慎政策	0	0	0%	0%
单独使用棕色资产惩罚	0.0138	0	-10%	+10%
单独使用绿色资产支持	0	-0.0100	-10%	+10%
综合使用棕色资产惩罚和 绿色资产支持	0.0094	-0.0046	-10%	+10%