Substitute Specification JC05 Rec'd PCT/PTO 19 SEP 2005

TECHNICAL FIELD

The description relates to a user interface of a machine tool.

SUMMARY

In one general aspect, a user interface includes a display that is divided into at least a first display region and a second display region. The first display region permanently displays a main menu, and the main menu includes a menu bar that provides selection of different main modes of the user interface. Each main mode is associated with a main window that is opened in the second display region when a main mode is selected in the main menu. At least one of the main windows includes a permanently displayed submenu that provides selection of different submodes, with each submode being associated with a subwindow that is opened when an associated submode is selected. The user interface includes an input unit for selecting the individual modes and for processing the input fields provided in a window. The display permanently displays which one of the main modes is selected.

The user interface is configured in an activity-oriented manner, that is, information and functions are displayed on the user interface in such a manner that the activity of the user is displayed thereon. The user interface shows the information or functions that are required to fulfil the current task. And, this information is displayed oriented on the usual workflow. The user obtains access to the essential functionality of the machine through and using so-called main modes (main activities) that are permanently displayed on the display. The submodes (side activities) are oriented on the workflow (working process) of the respective main mode.

Main modes are, for example, production, setting, programming, technology, maintenance and start-up, diagnosis, and help. For instance, in a pipe bending machine, the submodes of the main mode "setting" are, for example, functional modules, individual functions, and preparations. The submodes of the main mode "programming" are bending part, pipe geometry, pipe data, tools, process flow, and corrections. The submodes of the main mode "technology" are, for example, pipe data, tool catalogue, and resqueezing. The submodes of the main mode "maintenance and start-up" are, for example, maintenance overview, maintenance plan, machine parameters, and machine options. The submodes of the main mode "diagnosis"

are, for example, upcoming messages, message history, E/A monitor and software versions, and the submodes of the main mode "help" are, for example, machine view, bending technology, manual, and spare part list.

One advantage of the user interface is that the user can always see in which main mode and submode he/she is at the moment due to the permanently displayed main menu with emphasized selected main mode, and due to the permanently displayed submenu. Moreover, the user can change from each window of a main mode to a different main window by selecting a main mode in the permanently displayed main menu. In this way, the user interface described herein has improved clarity.

The selected main mode may be marked, for example, be emphasized in a graphical or different manner in the main menu.

If required, a subwindow may include a permanently displayed sub-submenu for selecting different sub-submodes of the selected submode, and a sub-subwindow that is opened in response to the selected sub-submode.

Implementations can include one or more of the following features. For example, at least one of the windows may include a navigation menu for selecting different navigation modes each graphically representing a region of the machine tool. A navigation window is opened within the associated window in accordance with the selected navigation mode. The navigation menu, being a display-related access, may be based on a realistic illustration of the physical machine or machine part regions, and is used, for example, to select machine regions to be subjected to certain activities or settings. The realistic illustration permits direct transfer between the actual machine and the software, which permits efficient operation with little learning effort. Even special options, which may be contained due to customer-specific adjustments of the machine, can be selected through lists using the display-related access.

The subwindow, sub-subwindow, or navigation window, which was opened before switching-over to a different main mode, may be opened when returning into the original main mode. If the user changes the main mode while, for example, a subwindow is opened, this subwindow will still be open when he/she returns into the original main mode with the result that the user can switch-over to different main modes even when the subwindow is opened. In this case, the user can switch for example, from each position over to the main mode "diagnosis" to analyse possibly issued alarm or warning messages to switch-over to the main mode "help"

without having to close the windows concerned. In this manner, the user can even program a new part while automatic production is running. He/she can thereby change between the main modes "production" and "programming" without causing any interaction between them.

At least one of the windows may include at least one activity button, which is associated with an activity button window, for processing input fields provided therein. The activity button windows have the advantage that the action initiated through activation of the activity button must either be deliberately terminated by the operator or be continued to the end. When the activity button window is closed, the program returns to the window in which the activity button window was opened. The activity buttons can directly perform functions or start a corresponding subdialogue.

Switching-over to a different window of the same main mode may be blocked when an activity button window is opened. Thus, when an activity button window is opened, no other windows of the main mode associated with the activity button window can be processed.

The sequence of the individual submodes, sub-submodes, and navigation modes within one main mode is preferably oriented on the workflow of the machine tool. If a submenu is disposed in a horizontal direction as a tab, the access to the submode to be executed at first is shown on the tab on the very left. With the user progressing through the workflow, the corresponding tabs are further to the right hand side.

At least the submenus and/or the sub-submenus may be designed as tab menu bars.

The display and the input unit may be formed by a touch screen and navigation through the user interface is effected through touch screen operation. To ensure failure-free operation, navigation using keyboard and mouse is optionally possible.

Further advantages of the user interface can be extracted from the description, the drawings, and the claims. The features mentioned above and below can be used individually or collectively in arbitrary combination. The implementations shown and described are not to be understood as exhaustive enumeration but have exemplary character for describing the user interface.

DESCRIPTION OF THE DRAWINGS

Figs. 1 through 6 show different displays of a user interface for a machine tool. Like reference symbols in the various drawings may indicate like elements.

DETAILED DESCRIPTION

Referring to Fig. 1, a display 1 of a user interface of a machine tool is shown. The display 1 is divided into a right-hand display region 2, which displays a main menu 3 for selecting, for example, seven different main modes 3_1 to 3_7 of the user interface, and a left-hand display region 4. In the left-hand display region 4 different main windows 5_1 to 5_7 are opened one at a time depending on the main mode selected in the main menu 3. The main menu 3 is designed as a vertical menu bar that is permanently displayed. The vertical menu bar of the main menu 3 includes a set of selectable main modes 3_1 to 3_7 , with each main mode corresponding to a different main activity of the machine tool, such as, for example, production, setting, programming, maintenance/start-up/diagnosis.

As shown in Fig. 1, the main window 5_1 associated with the main mode 3_1 is opened. Because the main window 5_1 is a pure display window, it includes no submenu or data fields to be selected or filled in by the operator.

Referring to Fig. 2, the main window 5_2 associated with the main mode 3_2 is opened. At the top of the main window 5_2 , a submenu 6 having the form of a horizontal tab menu bar is permanently displayed for selecting, for example, four different submodes 6_1 to 6_4 of the selected main mode 3_2 . A subwindow 7_1 to 7_4 is associated with each submode 6_1 to 6_4 such that a subwindow is opened if its associated submode is selected. In the example shown in Fig. 2, the submode 6_1 is selected and the associated subwindow 7_1 is therefore opened. If the user changes from the selected (original) main mode 3_2 to another main mode while the subwindow 7_1 is opened, the subwindow 7_1 will still be open when he/she returns to the original main mode 3_2 .

Referring to Fig. 3, both the main window 5_2 , which is associated with the main mode 3_2 , and its subwindow 7_3 , which is associated with the submode 6_3 , are opened. The subwindow 7_3 permanently shows a sub-submenu 8 in the form of a horizontal tab menu bar for selecting, for example, three different sub-submodes 8_1 through 8_3 of the selected submode 6_3 . A subsubwindow 9_1 to 9_3 is associated with each sub-submode 8_1 to 8_3 such that a sub-subwindow is opened if its associated sub-submode is selected. In the example shown in Fig. 3, the subsubmode 8_1 is selected and hence the associated sub-subwindow 9_1 is opened.

Referring to Fig. 4, both the main window 5_2 , which is associated with the main mode 3_2 , and its subwindow 7_4 , which is associated with the submode 6_4 , are opened. The permanent

display on the left in the subwindow 7₄ shows a navigation menu 10 in the form of a vertical menu bar for selecting, for example, four different navigation modes 10₁ to 10₄ of the selected submode 6₄, and to the right of the navigation menu 10 a navigation window 11₁ to 11₄ that is opened when an associated navigation mode is selected. In the embodiment shown, the navigation mode 10₁ is selected and therefore, the associated navigation window 11₁ is opened. The navigation window 11₁ includes at the top a navigation submenu 12 in the form of a horizontal tab menu bar for selecting, for example, four different navigation submodes 12₁ to 12₃. A navigation subwindow is associated with each navigation submode 12₁ to 12₃ such that a navigation subwindow is opened if its associated navigation submode is selected. As shown, the navigation submode 12₁ is selected and the navigation submidow 13₁ is correspondingly opened. The individual navigation modes 10₁ through 10₄ each represent a region of the machine tool graphically.

Unless they are pure display windows, the main windows 5_1 through 5_7 , the subwindows 7_1 to 7_4 , the sub-subwindows 9_1 to 9_3 , the navigation windows 11_1 to 11_4 , and the navigation subwindows have input fields 14 that can be filled in by the operator. As is shown in Fig. 3, activity buttons 15_1 to 15_4 are provided on the lower edge of the sub-subwindow 9_1 , and the activity buttons support processing of the input fields 14 provided in the sub-subwindow 9_1 . The activity buttons may be, for example, "create new data", "process existing data", "delete existing data", and "import data".

Each activity button is associated with an activity button window. The activity button window 16_1 of the activity button 15_1 is exemplarily shown in Fig. 5, and has further activity buttons 17_1 to 17_3 in addition to the input fields 14, which have the functions "assistant", "take over the input data", and "terminate".

Upon activation of the assistant, that is, of the activity button 17₁, the assistant window 18₁ shown in Fig. 6 opens. The assistant window 18₁ includes, in addition to input fields 14, further activity buttons 19₁ to 19₃ with the functions "assistant forward", "assistant backward", and "terminate". The function "assistant forward" permits activation of a further assistant field, and the function "assistant backward" permits activation of the respectively preceding assistant window. The assistant thereby permits navigation of the user when entering the required data.

When the activity button window 16₁, 18₁ is opened, change to a different window of the same main mode is blocked, and therefore no other windows of the main mode associated with

the activity button window can be processed. Closing of the activity button window is followed by return to the window, in which the activity button window was opened. The activity button windows 16_1 , 18_1 have the advantage that the action initiated through activation of an activity button must either be deliberately terminated by the operator or continued to the end.

In addition to the display regions 2, 4 shown in the drawings, further display regions may be provided, such as, for example, an information window that displays, for example, a user name, warnings, etc.

Other implementations are within the scope of the following claims.

. . . .