P1 Chapter 10: Trigonometry Equations

Trigonometric Identities

Trigonometric Identities

- Then $tan \ heta = rac{sin \ heta}{cos \ heta}$
- Pythagoras gives you...

$$sin^2\theta + cos^2\theta = 1$$

 $\sin^2 \theta$ is a shorthand for $(\sin \theta)^2$. It does NOT mean the sin is being squared – this does not make sense as sin is a function, and not a quantity that we can square!

Application of identities #1: Proofs

Prove that
$$1 - \tan \theta \sin \theta \cos \theta \equiv \cos^2 \theta$$

$$\tan x = \frac{\sin(x)}{\cos(x)}$$
$$\sin^2 x + \cos^2 x = 1$$

Recall that \equiv means 'equivalent to', and just means the LHS is <u>always</u> equal to the RHS for all values of θ .

From Chapter 7 ('Proofs') we saw that usually the best method is to manipulate one side (e.g. LHS) until we get to the other (RHS).

Application of identities #1: Proofs

Prove that $1 - \tan \theta \sin \theta \cos \theta \equiv \cos^2 \theta$

$$LHS = 1 - \frac{\sin \theta}{\cos \theta} \sin \theta \cos \theta$$

Tip #1: Turn any tan's into sin's and cos's.

$$\tan x = \frac{\sin(x)}{\cos(x)}$$
$$\sin^2 x + \cos^2 x = 1$$

$$= 1 - \frac{\sin^2 \theta \cos \theta}{\cos \theta}$$
$$= 1 - \sin^2 \theta$$
$$= \cos^2 \theta = RHS$$

Recall that \equiv means 'equivalent to', and just means the LHS is **always** equal to the RHS for all values of θ .

From Chapter 7 ('Proofs') we saw that usually the best method is to manipulate one side (e.g. LHS) until we get to the other (RHS).

More Examples

Edexcel C2 June 2012 Paper 1 Q16

Prove that
$$\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$

Fro Tip #2: In any addition/subtraction involving at least one fraction (with trig functions), always combine algebraically into one.

Simplify
$$5 - 5\sin^2\theta$$

?

Fro Tip #3: Look out for $1 - \sin^2 \theta$ and $1 - \cos^2 \theta$. Students often don't spot that these can be simplified.

More Examples

Edexcel C2 June 2012 Paper 1 Q16

Prove that
$$\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$

$$LHS \equiv \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$$

$$\equiv \frac{\sin^2 \theta}{\sin \theta \cos \theta} + \frac{\cos^2 \theta}{\sin \theta \cos \theta}$$

$$\equiv \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$$

$$\equiv \frac{1}{\sin\theta\cos\theta} \equiv RHS$$

Tip #2: In any addition/subtraction involving at least one fraction (with trig functions), always combine algebraically into one.

Simplify
$$5 - 5\sin^2\theta$$

$$\equiv 5(1 - \sin^2 \theta)$$
$$\equiv 5\cos^2 \theta$$

Tip #3: Look out for $1 - \sin^2 \theta$ and $1 - \cos^2 \theta$. Students often don't spot that these can be simplified.

Test Your Understanding

Prove that
$$\frac{\tan x \cos x}{\sqrt{1-\cos^2 x}} \equiv 1$$

?

Prove that
$$\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} \equiv 1 - \tan^2 \theta$$

ſ

AQA IGCSE Further Maths Worksheet

Prove that
$$\tan^2 \theta \equiv \frac{1}{\cos^2 \theta} - 1$$

Ż

Test Your Understanding

Prove that
$$\frac{\tan x \cos x}{\sqrt{1-\cos^2 x}} \equiv 1$$

$$LHS \equiv \frac{\frac{\sin x}{\cos x} \cos x}{\sqrt{\sin^2 x}} \equiv \frac{\sin x}{\sin x} \equiv 1$$

Prove that
$$\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} \equiv 1 - \tan^2 \theta$$

$$LHS \equiv \frac{(\cos^2 \theta + \sin^2 \theta)(\cos^2 \theta - \sin^2 \theta)}{\cos^2 \theta}$$
$$\equiv \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} \equiv \frac{\cos^2 \theta}{\cos^2 \theta} - \frac{\sin^2 \theta}{\cos^2 \theta}$$
$$\equiv 1 - \tan^2 \theta \equiv RHS$$

AQA IGCSE Further Maths Worksheet

Prove that
$$\tan^2 \theta \equiv \frac{1}{\cos^2 \theta} - 1$$

$$LHS \equiv \frac{\sin^2 \theta}{\cos^2 \theta}$$

$$\equiv \frac{1 - \cos^2 \theta}{\cos^2 \theta}$$

$$\equiv \frac{1}{\cos^2 \theta} - \frac{\cos^2 \theta}{\cos^2 \theta} \equiv \frac{1}{\cos^2 \theta} - 1 \equiv RHS$$

Exercise 10.3

Pearson Pure Mathematics Year 1/AS Page 79

Extension:

[MAT 2008 1C] The simultaneous equations in x, y,

$$(\cos \theta)x - (\sin \theta)y = 2$$

$$(\sin \theta)x + (\cos \theta)y = 1$$

are solvable:

- A) for all values of θ in range $0 \le \theta < 2\pi$
- B) except for one value of θ in range $0 \le \theta < 2\pi$
- C) except for two values of θ in range $0 \le \theta < 2\pi$
- D) except for three values of θ in range $0 \le \theta < 2\pi$

Exercise 10.3

Pearson Pure Mathematics Year 1/AS Page 79

Extension:

[MAT 2008 1C] The simultaneous equations in x, y, $(\cos \theta)x - (\sin \theta)y = 2$ $(\sin \theta)x + (\cos \theta)y = 1$

are solvable:

- A) for all values of θ in range $0 \le \theta < 2\pi$
- B) except for one value of θ in range $0 \le \theta < 2\pi$
- C) except for two values of θ in range $0 \le \theta < 2\pi$
- D) except for three values of θ in range $0 \le \theta < 2\pi$

For convenience let $s = sin \theta$ and $c = cos \theta$. As we'd usually do for simultaneous equations, we could make coefficients of x terms the same:

$$scx - s^2y = 2s$$
$$scx + c^2y = c$$

Then subtracting:

$$(s^2 + c^2)y = c - 2s$$

$$\therefore y = c - 2s$$

Similarly making y terms the same, we yield x = 2c + s

x,y are defined for every value of θ , so the answer is (A). Why might it have not been (A)? Suppose $x=\frac{2\cos\theta+\sin\theta}{\sin\theta}$. This would not be defined whenever $\sin\theta=0$.

Homework Exercise

1 Simplify each of the following expressions:

a
$$1 - \cos^2 \frac{1}{2}\theta$$

b
$$5\sin^2 3\theta + 5\cos^2 3\theta$$

c
$$\sin^2 A - 1$$

$$\mathbf{d} \ \frac{\sin \theta}{\tan \theta}$$

$$e^{\frac{\sqrt{1-\cos^2 x}}{\cos x}}$$

$$f \frac{\sqrt{1-\cos^2 3A}}{\sqrt{1-\sin^2 3A}}$$

$$g (1 + \sin x)^2 + (1 - \sin x)^2 + 2\cos^2 x$$

$$h \sin^4 \theta + \sin^2 \theta \cos^2 \theta$$

$$i \sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta$$

2 Given that $2 \sin \theta = 3 \cos \theta$, find the value of $\tan \theta$.

3 Given that $\sin x \cos y = 3 \cos x \sin y$, express $\tan x$ in terms of $\tan y$.

4 Express in terms of $\sin \theta$ only:

a
$$\cos^2 \theta$$

b
$$\tan^2 \theta$$

$$\mathbf{c} \cos \theta \tan \theta$$

$$d \frac{\cos \theta}{\tan \theta}$$

e
$$(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)$$

5 Using the identities $\sin^2 A + \cos^2 A \equiv 1$ and/or $\tan A = \frac{\sin A}{\cos A} (\cos A \neq 0)$, prove that:

$$\mathbf{a} (\sin \theta + \cos \theta)^2 \equiv 1 + 2\sin \theta \cos \theta$$

$$\mathbf{b} \ \frac{1}{\cos \theta} - \cos \theta \equiv \sin \theta \tan \theta$$

$$\mathbf{c} \quad \tan x + \frac{1}{\tan x} \equiv \frac{1}{\sin x \cos x}$$

$$\mathbf{d} \cos^2 A - \sin^2 A \equiv 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

e
$$(2\sin\theta - \cos\theta)^2 + (\sin\theta + 2\cos\theta)^2 \equiv 5$$
 f $(2 - (\sin\theta - \cos\theta)^2) \equiv (\sin\theta + \cos\theta)^2$

$$\mathbf{f} = 2 - (\sin \theta - \cos \theta)^2 \equiv (\sin \theta + \cos \theta)^2$$

$$\mathbf{g} \sin^2 x \cos^2 y - \cos^2 x \sin^2 y \equiv \sin^2 x - \sin^2 y$$

Homework Exercise

- 6 Find, without using your calculator, the values of:
 - **a** $\sin \theta$ and $\cos \theta$, given that $\tan \theta = \frac{5}{12}$ and θ is acute.
 - **b** $\sin \theta$ and $\cos \theta$, given that $\cos \theta = -\frac{3}{5}$ and θ is obtuse.
 - c $\cos \theta$ and $\tan \theta$, given that $\sin \theta = -\frac{7}{25}$ and $270^{\circ} < \theta < 360^{\circ}$.
- 7 Given that $\sin \theta = \frac{2}{3}$ and that θ is obtuse, find the exact value of: $\mathbf{a} \cos \theta + \mathbf{b} \tan \theta$
- **8** Given that $\tan \theta = -\sqrt{3}$ and that θ is reflex, find the exact value of: $\mathbf{a} \sin \theta = \mathbf{b} \cos \theta$
- 9 Given that $\cos \theta = \frac{3}{4}$ and that θ is reflex, find the exact value of: $\mathbf{a} \sin \theta = \mathbf{b} \tan \theta$
- 10 In each of the following, eliminate θ to give an equation relating x and y:

$$\mathbf{a} \quad x = \sin \theta, \ y = \cos \theta$$

b
$$x = \sin \theta, y = 2\cos \theta$$

$$\mathbf{c} \quad x = \sin \theta, \ y = \cos^2 \theta$$

d
$$x = \sin \theta$$
, $y = \tan \theta$

$$\mathbf{e} \ x = \sin \theta + \cos \theta, y = \cos \theta - \sin \theta$$

Problem-solving

In part **e** find expressions for x + y and x - y.

Homework Exercise

- 11 The diagram shows the triangle ABC with AB = 12 cm, BC = 8 cm and AC = 10 cm.
 - a Show that $\cos B = \frac{9}{16}$

(3 marks)

b Hence find the exact value of sin B.

(2 marks)

Hint

Use the cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A \leftarrow$ **Section 9.1**

- 12 The diagram shows triangle PQR with PR = 8 cm, QR = 6 cm and angle $QPR = 30^{\circ}$.
 - **a** Show that $\sin Q = \frac{2}{3}$

(3 marks)

b Given that Q is obtuse, find the exact value of cos Q

(2 marks)

Homework Answers

1 a
$$\sin^2\frac{\theta}{2}$$

b 5

c -cos2A

 $\mathbf{d} \cos \theta$

 $e \tan x$

f $\tan 3A$

 $h \sin^2 \theta$

$$2 \quad 1\frac{1}{2}$$

 $\tan x - 3 \tan y$

 $\mathbf{a} = 1 - \sin^2 \theta$

$$\mathbf{b} \quad \frac{\sin^2 \theta}{1 - \sin^2 \theta}$$

 $\mathbf{c} \sin \theta$

d
$$\frac{1-\sin^2\theta}{\sin\theta}$$

d $\frac{1-\sin^2\theta}{\sin\theta}$ e $1-2\sin^2\theta$

(One outline example of a proof is given)

a LHS =
$$\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta$$

= $1 + 2 \sin \theta \cos \theta$
= RHS

b LHS =
$$\frac{1 - \cos^2 \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta} = \sin \theta \times \frac{\sin \theta}{\cos \theta}$$

= $\sin \theta \tan \theta = \text{RHS}$

c LHS =
$$\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\sin x + \cos x}$$

= $\frac{1}{\sin x + \cos x}$ = RHS

d LHS =
$$\cos^2 A - (1 - \cos^2 A) = 2 \cos^2 A - 1$$

= $2(1 - \sin^2 A) - 1 = 1 - 2 \sin^2 A = \text{RHS}$

e LHS =
$$(4 \sin^2 \theta - 4 \sin \theta \cos \theta + \cos^2 \theta)$$

+ $(\sin^2 \theta + 4 \sin \theta \cos \theta + \cos^2 \theta)$
= $5 (\sin^2 \theta + \cos^2 \theta) = 5$ = RHS

f LHS =
$$2 - (\sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta)$$

= $2 (\sin^2 \theta + \cos^2 \theta) - (\sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta)$
= $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta$
= $(\sin \theta + \cos \theta)^2 = \text{RHS}$

g LHS =
$$\sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x) \sin^2 y$$

= $\sin^2 x - \sin^2 y = \text{RHS}$

6 a
$$\sin \theta = \frac{5}{13}, \cos \theta = \frac{12}{13}$$

b
$$\sin \theta = \frac{4}{5}$$
, $\tan \theta = -\frac{4}{3}$

$$\mathbf{c}$$
 $\cos \theta = \frac{24}{25}$, $\tan \theta = -\frac{7}{24}$

7 **a**
$$-\frac{\sqrt{5}}{3}$$
 b $-\frac{2\sqrt{5}}{5}$

b
$$-\frac{2\sqrt{5}}{5}$$

8 **a**
$$-\frac{\sqrt{3}}{2}$$
 b $\frac{1}{2}$

9 **a**
$$-\frac{\sqrt{7}}{4}$$
 b $-\frac{\sqrt{7}}{3}$

10 a
$$x^2 + y^2 = 1$$

b
$$4x^2 + y^2 = 4$$
 $\left(\text{or } x^2 + \frac{y^2}{4} = 1 \right)$

$$c x^2 + y = 1$$

d
$$x^2 = y^2 (1 - x^2)$$
 $\left(\text{or } x^2 + \frac{x^2}{y^2} = 1 \right)$

e
$$x^2 + y^2 = 2$$
 $\left(\text{or } \frac{(x+y)^2}{4} + \frac{(x-y)^2}{4} = 1 \right)$

11 a Using cosine rule:
$$\cos B = \frac{8^2 + 12^2 - 10^2}{2 \times 8 \times 12} = \frac{9}{16}$$

b
$$\frac{\sqrt{175}}{16}$$

12 a Using sine rule:
$$\sin Q = \frac{\sin 30}{6} \times 8 = \frac{2}{3}$$

b
$$-\frac{\sqrt{5}}{3}$$