Chapitre 4

Distribution des échantillons aléatoires

Université de Paris Ouest

2012-2013

Objectifs du chapitre

Rappel:

L'inférence statistique consiste à induire les caractéristiques inconnues d'une population à partir d'un échantillon.

- échantillon représentatif?
- ▶ échantillon suffisamment grand?

Sommaire

- 1 Un exemple pour comprendre
- 2 Distribution des échantillons aléatoires
- 3 Un exemple de calcul
- 4 Conclusion

Le score d'Agpar mesure la santé d'un nouveau-né. $\mathcal{P}=\{5 \text{ enfants}\}, \mu=8.$

Le score d'Agpar mesure la santé d'un nouveau-né. $\mathcal{P}=\{5 \text{ enfants}\}, \mu=8.$ **échantillon** de taille 2

éch. AB		
$\bar{x} = 8,5$		

Le score d'Agpar mesure la santé d'un nouveau-né. $\mathcal{P}=\{5 \text{ enfants}\}, \mu=8.$ **échantillon** de taille 2

éch. <i>AB</i>	éch. <i>AC</i>	
$\bar{x} = 8, 5$	$\bar{x}=9$	

Le score d'Agpar mesure la santé d'un nouveau-né. $\mathcal{P}=\{5 \text{ enfants}\}, \mu=8.$ **échantillon** de taille 2

éch. AB	éch. AC	 éch. <i>DE</i>
$\bar{x} = 8, 5$	$\bar{x}=9$	 $\bar{x} = 7,5$

Le score d'*Agpar* mesure la santé d'un nouveau-né. $\mathcal{P}=\{5 \text{ enfants}\}, \mu=8.$ **échantillon** de taille 2

éch. <i>AB</i>	éch. AC	 éch. <i>DE</i>
$\bar{x} = 8, 5$	$\bar{x}=9$	 $\bar{x} = 7,5$

Si l'échantillon est **tiré au sort**, alors la moyenne observée \bar{x} est **aléatoire**!

Suite de l'exemple : distribution des échantillons

Le score d'Agpar mesure la santé d'un nouveau-né.

 $\mathcal{P}=\{\text{5 enfants}\}, \mu=\text{8}.$

échantillon de taille 2

nb d'échantillons

Si l'échantillon est **tiré au sort**, alors la moyenne empirique \bar{x} est **aléatoire**!

Suite de l'exemple : distribution des échantillons

Le score d'Agpar mesure la santé d'un nouveau-né.

$$\mathcal{P} = \{ \text{5 enfants} \}, \mu = \text{8}.$$

échantillon de taille 2

Si l'échantillon est **tiré au sort**, alors la moyenne empirique \bar{x} est **aléatoire**!

Exemple : à retenir

Si l'échantillon est **tiré au sort**, alors la moyenne empirique \bar{x} est **aléatoire**.

- ightharpoonup On aimerait connaître la distribution de \bar{x}
- Si l'échantillon est grand, peu de chances d'avoir un échantillon "anormal"?

Notations : \bar{x} vs \bar{X}_n

En fonction du contexte, deux notations

- ightharpoonup : moyenne observée sur un **un échantillon fixé**
- $ightharpoonup \overline{X}_n$: moyenne empirique d'un **échantillon aléatoire**

Notations : \bar{x} vs \bar{X}_n

En fonction du contexte, deux notations

- ightharpoonup : moyenne observée sur un **un échantillon fixé**
- $ightharpoonup \overline{X}_n$: moyenne empirique d'un **échantillon aléatoire**

Pour l'échantillon AB, $\bar{x} = 8,5$ mais \bar{X}_n peut valoir 8.5/9/7.5/...

Sommaire

- 1 Un exemple pour comprendre
- 2 Distribution des échantillons aléatoires
 - Protocole d'échantillonnage
 - Échantillons aléatoires pour une variable quantitative
 - Échantillons aléatoires pour une variable qualitative
- 3 Un exemple de calcul
- 4 Conclusion

Protocole : qu'est-ce qu'un échantillon aléatoire?

On a besoin d'un modèle mathématique précis pour le tirage d'un échantillon de n personnes.

Hypothèses

- n tirages uniformes : chaque individu a la même chance d'être tiré au sort.
- Les tirages sont indépendants.
- Les tirages se font avec remise.

X variable continue, de moyenne μ et d'écart-type σ .

 \overline{X}_n désigne la moyenne empirique d'un échantillon **tiré au sort**.

Formule

Si $n \ge 30$, alors

$$\overline{X}_n \overset{\text{approx.}}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

X variable continue, de moyenne μ et d'écart-type σ . \overline{X}_n désigne la moyenne empirique d'un échantillon **tiré au sort**.

Formule

Si $n \ge 30$, alors

$$\overline{X}_n \overset{\text{approx.}}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

Exemple : X = "Âge", $\mu = 41$, $\sigma = 23$.

Si n = 30, \overline{X}_{30} est l'âge moyen de 30 Français tirés au hasard.

$$\overline{X}_{30} \overset{\mathsf{approx.}}{\sim} \mathcal{N}\left(41, \frac{23}{\sqrt{30}}\right) = \mathcal{N}\left(41; 4, 20\right).$$

Exemples de \bar{X}_n quand n varie

$$X=$$
 "Âge", $\mu=$ 41, $\sigma=$ 23.

Exemples de \bar{X}_n quand n varie

X= "Âge", $\mu=$ 41, $\sigma=$ 23. Si n= 30, \overline{X}_{30} est l'âge moyen de 30 Français tirés au hasard.

$$\overline{X}_{30} \sim \mathcal{N}(41; 4, 20)$$

Exemples de \bar{X}_n quand n varie

X= "Âge", $\mu=$ 41, $\sigma=$ 23.

Si n = 30, \overline{X}_{30} est l'âge moyen de 30 Français tirés au hasard. Si n = 80, \overline{X}_{80} est l'âge moyen de 80 Français tirés au hasard.

$$\overline{X}_{30} \sim \mathcal{N}(41; 4, 20)$$
 $\overline{X}_{80} \sim \mathcal{N}(41; 2, 57)$

X variable qualitative, de proportion p.

On note F_n la moyenne empirique d'un échantillon **tiré au sort**.

Formule

Si
$$n \ge 30$$
, $np \ge 5$ et $n(1-p) \ge 5$, alors

$$F_n \stackrel{\text{approx.}}{\sim} \mathcal{N}\left(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right).$$

X variable qualitative, de proportion p. On note F_p la moyenne empirique d'un échantillon **tiré au sort**.

Formule

Si $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$, alors

$$F_n \stackrel{\text{approx.}}{\sim} \mathcal{N}\left(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right).$$

Exemple : $\mathcal{P} =$ "utilisateurs de Facebook en France",X = "Sexe", p = "proportion de femmes" = 0.54. Soit F_n la proportion de femmes parmi 30 utilisateurs tirés au hasard.

X variable qualitative, de proportion p. On note F_n la moyenne empirique d'un échantillon **tiré au sort**.

Formule

Si $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$, alors

$$F_n \stackrel{\text{approx.}}{\sim} \mathcal{N}\left(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right).$$

Exemple : $\mathcal{P} =$ "utilisateurs de Facebook en France", X = "Sexe", p = "proportion de femmes" = 0.54.

Soit F_n la proportion de femmes parmi 30 utilisateurs tirés au hasard. Comme $30 \ge 30$, $30 \times 0.54 \ge 5$, $30 \times 0.46 \ge 5$,

$$F_n \overset{\text{approx.}}{\sim} \mathcal{N}\left(0.54, \frac{\sqrt{0.54 \times 0.46}}{\sqrt{30}}\right) = \mathcal{N}\left(0.54, 0.09\right).$$

 $\mathcal{P}=$ "utilisateurs de Facebook en France",X= "Sexe", p=0.54 $F_n=$ proportion de femmes parmi 30 utilisateurs tirés au hasard.

$$F_n \stackrel{\text{approx.}}{\sim} \mathcal{N}(0.54, 0.09)$$
.

2012-2013

Chapitre 4

Sommaire

- 1 Un exemple pour comprendre
- 2 Distribution des échantillons aléatoires
- 3 Un exemple de calcul
- 4 Conclusion

X= "Sexe", p= "proportion de femmes" = 0.54 $F_n=$ proportion de femmes dans un échantillon de 30 individus.

Question:

On tire 30 utilisateurs au hasard, quelle est la probabilité d'avoir plus de 60% d'hommes?

X = "Sexe", p = "proportion de femmes" = 0.54

 F_n = proportion de femmes dans un échantillon de 30 individus.

Question:

On tire 30 utilisateurs au hasard, quelle est la probabilité d'avoir plus de 60% d'hommes?

Cela revient à calculer $P(F_n \le 0.40)$.

Au transparent précédent, nous avons vu que $F_n \sim \mathcal{N}(0.54; 0.09)$.

X = "Sexe", p = "proportion de femmes" = 0.54

 F_n = proportion de femmes dans un échantillon de 30 individus.

Question:

On tire 30 utilisateurs au hasard, quelle est la probabilité d'avoir plus de 60% d'hommes ?

Cela revient à calculer $P(F_n \leq 0.40)$.

Au transparent précédent, nous avons vu que $F_n \sim \mathcal{N}(0.54; 0.09)$.

On centre et on réduit F_n :

$$P(F_n \le 0.40) = P\left(\frac{F_n - 0.54}{0.09} \le \frac{0.40 - 0.54}{0.09}\right)$$
$$= P(Z \le -1.56) = F(-1.56) = 1 - F(1.56) = 0.0594.$$

X = "Sexe", p = "proportion de femmes" = 0.54

 F_n = proportion de femmes dans un échantillon de 30 individus.

Question:

On tire 30 utilisateurs au hasard, quelle est la probabilité d'avoir plus de 60% d'hommes ?

Cela revient à calculer $P(F_n \leq 0.40)$.

Au transparent précédent, nous avons vu que $F_n \sim \mathcal{N}(0.54; 0.09)$.

On centre et on réduit F_n :

$$P(F_n \le 0.40) = P\left(\frac{F_n - 0.54}{0.09} \le \frac{0.40 - 0.54}{0.09}\right)$$
$$= P(Z \le -1.56) = F(-1.56) = 1 - F(1.56) = 0.0594.$$

Réponse :

On a environ 6% de chance de tomber sur un échantillon comptant plus de 60% d'hommes.

Sommaire

- 1 Un exemple pour comprendre
- 2 Distribution des échantillons aléatoires
- 3 Un exemple de calcul
- 4 Conclusion

Conclusion

- ► Échantillon **tiré au sort** ⇒ moyenne empirique/fréquence empirique **aléatoire**.
- ▶ Si $n \ge 30$, on connaît la distribution de \overline{X}_n , F_n .

Conclusion

- Échantillon tiré au sort ⇒ moyenne empirique/fréquence empirique aléatoire.
- ▶ Si $n \ge 30$, on connaît la distribution de \overline{X}_n , F_n .

Rappel

Les formules ne sont valables que si l'échantillon est **aléatoire** et **uniforme** : chaque individu de $\mathcal P$ a la même chance de faire partie de l'échantillon.