Planning in Markov Decision Processes with Gap-Dependent Sample Complexity

Anders Jonsson¹, Emilie Kaufmann^{2,3,4}, Pierre Ménard⁴, Omar Darwiche Domingues⁴, Edouard Leurent^{4,5} & Michal Valko⁶

- 1. Universitat Pompeu Fabra 3.
 - 3. Université de Lille, CRIStAL4. Inria Lille, Scool team
- 5. Renault6. Deepmind Paris

- Monte-Carlo planning: recommend action in a given state s_1 .
- Monte-Carlo Tree Search (MCTS): sample trajectories using a *for-ward model* that simulates actions in the *current state*.

Contribution

- A new trajectory-based MCTS algorithm, MDP-GapE.
- Easy to implement, performs well in practice.
- Sample complexity bounds for the fixed confidence setting.
- \bullet Bounds depend on the *sub-optimality gaps* of actions in s_1 .
- → MDP-GapE does *not* explore trajectories uniformly.

Setting

A discounted, episodic MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r \rangle$, transitions $p = \{p_h\}_{h>1}$ and rewards $r = \{r_h\}_{h>1}$ bounded in [0, 1] with

- disount factor $\gamma \in (0, 1]$, horizon $H \in \mathbb{N}^*$,
- number of actions $K = |\mathcal{A}|$, finite branching factor B.

The optimal action-value function $Q = \{Q_h\}_{h>1}$ is defined as

$$Q_h(s, a) = r_h(s, a) + \gamma \sum_{s'} p_h(s'|s, a) \max_{a'} Q_{h+1}(s', a').$$

• Optimal action in step 1: $a^* = \underset{a \in A}{\operatorname{argmax}} Q_1(s_1, a)$.

Fixed confidence planning

Given ε and δ , output an action \hat{a}^{τ} that satisfies

$$\mathbb{P}\left(Q_1(s_1, a^*) - Q_1(s_1, \hat{a}^\tau) < \varepsilon\right) \ge 1 - \delta,$$

after generating the smallest possible number of episodes τ .

Algorithm	Setting	Sample complexity
Sparse Sampling [19]	Fixed confidence	$H^5(BK)^H/arepsilon^2$
OLOP [2]	Fixed budget	ε - $\max(2, \frac{\log \kappa}{\log(1/\gamma)})$
OP [3]	Anytime	$arepsilon^{-rac{\log \kappa}{\log(1/\gamma)}}$
BRUE [8]	Anytime	$H^4(BK)^H/\Delta^2$
StOP [28]	Fixed confidence	$\varepsilon^{-\left(2+\frac{\log\kappa}{\log(1/\gamma)}+o(1)\right)}$
TrailBlazer [13]	Fixed confidence	ε - $\max(2, \frac{\log(B\kappa)}{\log(1/\gamma)} + o(1))$
SmoothCruiser [14]	Fixed confidence	ε^{-4}
MDP-GapE (ours)	Fixed confidence	$\sum_{a_1 \in \mathcal{A}} \frac{H^2(BK)^{H-1}B}{(\Delta_1(s_1, a_1) \vee \Delta \vee \varepsilon)^2}$

Number of observed transitions n needed by existing algorithms to guarantee $Q_1(s_1, a^*) - Q_1(s_1, \hat{a}^n) < \varepsilon$.

The MDP-GapE Algorithm

2. CNRS

Based on data from the first t episodes, build

- Confidence bounds $[\ell_h^{t,\delta}(s,a), u_h^{t,\delta}(s,a)]$ on the rewards $r_h(s,a)$.
- Confidence sets $C_h^{t,\delta}(s,a)$ on the probability vectors $p_h(\cdot|s,a)$.

Confidence bounds on action values

Define confidence bounds on the action value $Q_h(s, a)$:

$$U_h^{t,\delta}(s,a) = u_h^{t,\delta}(s,a) + \gamma \max_{p \in \mathcal{C}_h^{t,\delta}(s,a)} \sum_{s'} p(s'|s,a) \max_{a'} U_{h+1}^{t,\delta}(s',a'),$$

$$L_h^{t,\delta}(s,a) = \ell_h^{t,\delta}(s,a) + \gamma \min_{p \in \mathcal{C}_h^{t,\delta}(s,a)} \sum_{s'} p(s'|s,a) \max_{a'} L_{h+1}^{t,\delta}(s',a').$$

Lemma 1. For each confidence level $\delta \in [0, 1]$, w.p. at least $1 - \delta$,

$$Q_h(s,a) \in [L_h^{t,\delta}(s,a), U_h^{t,\delta}(s,a)]$$

for each state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$, episode t and depth h.

• The policy $\pi^{t+1}=\left\{\pi_h^{t+1}\right\}_{h\geq 1}$ used in episode t+1 is $\pi_1^{t+1}(s_1)=\operatorname*{argmax}_{b\in\{b^t,c^t\}}\left[U_1^{t,\delta}(s_1,b)-L_1^{t,\delta}(s_1,b)\right],\quad \text{(UGapE)}$

$$\pi_h^{t+1}(s_h) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ U_h^{t,\delta}(s_h,a), \quad h > 1, \tag{UCB}$$

for a specific choice of best action b^t and challenger c^t in state s_1 :

$$b^t = \operatorname*{argmin}_b \left[\max_{a
eq b} U_1^{t,\delta}(s_1,a) - L_1^{t,\delta}(s_1,b)
ight], \ c^t = \operatorname*{argmax}_{c
eq b^t} U_1^{t,\delta}(s_1,c).$$

Output

Stopping rule $\tau = \inf\{t \in \mathbb{N} : U_1^{t,\delta}(s_1,c^t) - L_1^{t,\delta}(s_1,b^t) < \varepsilon\}$. After stopping, the algorithm outputs action $\hat{a}^{\tau} = b^{\tau}$.

Lemma [Correctness]

Since the confidence bounds hold w.p. $1-\delta$, the stopping rule implies

$$Q_1(s_1, a^*) - Q_1(s_1, \hat{a}^\tau) \le U_1^{\tau, \delta}(s_1, c^\tau) - L_1^{\tau, \delta}(s_1, b^\tau) < \varepsilon.$$

Define the sub-optimality gaps as

$$\Delta = \min_{a \neq a^*} [Q_1(s_1, a^*) - Q_1(s_1, a)],$$

$$\Delta_h(s, a) = \max_{s} Q_h(s, b) - Q_h(s, a), \quad 1 \le h \le H.$$

Theorem [Sample Complexity]

The number of episodes used by MDP-GapE satisfies

$$\tau = \mathcal{O}\left(\sum_{a} \frac{(BK)^{H-1}}{(\Delta_1(s_1, a) \vee \Delta \vee \varepsilon)^2} \left[\log \frac{1}{\delta} + BH \log(BK)\right]\right)$$

with probability at least $1 - \delta$.

Empirical scaling of sample complexity $n = O(1/\varepsilon^{3.0})$.

Fixed-budget comparison to other algorithms.