Math	8	111.1	10
Math	0	MW	1

Math 8	HW 19
A + a, b ∈ M: aRb ↔ alb :	2) TP A is a set and R is a total
· a Ra since ala, and thus	order, but not a well ordering of A
R is reflexive	then there exists an infinite sequence
· Let alb and blc.	Eanlne INB st. Yn GN, anGA, and
This implies be all and	. Since A 18 not well ordered, there only
C=bk Br some q & k G Z.	a monempty subset of A that doesn't
Now e= (ag) K	congets at least one element.
c= a q r	· Since S is not empty, elements are
⇒a c, this R	to be observed, such as a, ES.
18 transitive.	Bur because S does not have a least
· Let alb and a=b, since	element in 17, a, is not the least
$a \le b$ and $b \le a$, $R > 15$	element of S; Thus, I as such that
not symmetric, and so	$a_2 Ra_1 (a_2 \neq a_1)$
· R is a partial ordering	. This will result in an infinite sequence
but not total order	of distinct elements { an n EN}
	Such that any Ran for all nEN.