	Paganain Ag
	10 gram (Orrectne (1 21/481767/7K/53176
	Wednesday, 13 October 2021 18.41 hal 398 m 1 2 4
	Prone the program statement
	u;=1) 0
	y:= 1 Z:= x+y- } }
	is correct with respect to the initial
	a ssertion x = 0 and the final assertion
	2 = 1
*	Prove: The innitral aurtion of the program is x = 6.
	First the program will assign y=1. Because
	Z = x+y and $x=0$; $y=1$; so:
	Z = 0+ \ = 1
	The final axertion is Z = 1; thus the program is
	true and statisfied. So, y { S} z is true
171	
	Verify that the program segment
	۲۲ ا بر ۱۱ الم
	if x < y then
	else
	min := y
	is correct with respect to the initial assertion T and the final
	assertion $(X \subseteq y \land min = x) \lor (X \supset y \land mm = y)$

*	Prov	٤ :	Ĩf	+1	e i	nniti	ial	al	sertic	'n	ί¢	tr	we.	,	S 0	tho	ιŧ	×	Ly	. –	-ე	ก เก	:=	× ,	
			The		iral														min						
				x	≤ y	. ,	\ 1	Nin	= *	ξ.	ĩs	true	o	ınd											
												also													
				Th	ul,	ţı	rve	٧	tr	uŁ	įς	†	re	•											
																			× >,						
				. fi aur		مړډو	دلئه	Λ (·f	(x	≦y	Λ n	nin :	? ★ູ້) V	(X	フサ	· ^	Mi	ባ =	رلا	is	aly	o tru	e
			•>			_					_	il Tent				hen	iŁ	is	a p	art	d	ŀ Ļ	mi	n = x	(
			•)										_						is s al				.n	it is	a
				,								ł										•			
			Hen	æ,	win	y	the	יט ב	de	of	inf	eren	L	for	P.	ogra	M	Je	s men	ts (of	this	ty	pe, assert	
			this	Se	g m	nt.	is	Con	ect	Ψ	ith	rel	pect	to	+L	د و:	iven	in	itial	(a	nd	fin	-a\	assert	ion .