Chapter 1 The PIC18 Microcontroller

Andrew Leung

1

Section 1.1 Von Neumann and Harvard Architectures

Andrew Leung

3

Objective

- Von Neumann and Harvard Architectures
- Compare the contrasts in microprocessors and microcontrollers.
- Explain the concept of embedded system.

Andrew Leung

2

Harvard vs von Neumann Architecture

- von Neumann uses the same address and data bus for code ROM space and data RAM space.
- Harvard uses different address and data buses to access code ROM space and data RAM space.
- von Neumann architecture is slow because ROM and RAM cannot be accessed simultaneously.
- Implementing Harvard architecture is expensive.

von Neumann

Harvard

Andrew Leung

Advantage of Harvard Architecture (easy for pipeline implementation)

General-purpose microprocessor

- CPU for Computers
- No RAM, ROM, I/O on CPU chip itself
- Example: Intel's x86, Motorola's 680x0

Figure 1-1 (a) General-Purpose Microprocessor System
Andrew Leung

9

Microcontrollers

- Support Devices (peripheral) a device attached to a computer
 - Timers (counting number of pulses)
 - A/D converter (Analog to Digital)
 - Serial I/O (example keyboard to main board)
- All components connected by common communication lines called the system bus.

Andrew Leuna

Leung

Microcontrollers

- Embedded Systems
 - Operations managed behind the scenes by a microcontroller
- Microcontroller (MCU)
 - An integrated electronic computing device that includes three major components on a single chip
 - Microprocessor (MPU)
 - Memory
 - I/O (Input/Output) ports

10

Microcontroller

Andrew Leung

- A smaller computer
- On-chip RAM, ROM, I/O ports...
- Example: Motorola's 6811, Intel's 8051, Zilog's Z8 and PIC 18

Figure 1-1 (b) Microcontroller Andrew Leung

11

Microprocessor v.s. Microcontroller

Microprocessor

- CPU is stand-alone, RAM, ROM, I/O, timer are separate
- the amount of ROM, RAM and I/O ports.
- General-purpose
- Expensive

Microcontroller

- CPU, RAM, ROM, I/O and timer are all on a single chip
- Designer can decide on Fix amount of on-chip ROM, RAM, I/O ports
 - Single-purpose
 - Cheap
 - For applications in which cost, power and Andrew Leung space are critical

13

Embedded System

- Embedded system means the processor is embedded into that application.
- An embedded product uses a microprocessor or microcontroller to do specified tasks only.
- In an embedded system, there is only one application software that is typically burned into ROM.
- Some embedded products using microcontrollers. Example: printer, keyboard, video game player, door opener, copier, ABS,

fax machine, camera, cellular phone, keyless entry, microwaye Leung

Section 1.3 **Embedded System**

Andrew Leung

14

Processors in Embedded Systems

- Which is your choice for an embedded product?
- microcontroller
 - cost down
 - embedded processor = microcontroller
 - In future, an entire computer on a chip
 - high-end embedded systems may use microprocessors

Andrew Leung

17

Basic Data Format (8-bit)

- Unsigned Integers: All eight bits (Bit7 to Bit0) represent the magnitude of a number
 - Range 00 to FF in Hex and 0 to 255 in decimal

Andrew Leuna

19

Three criteria in Choosing a Microcontroller

- 1. meeting the computing needs of the task efficiently and cost effectively
 - speed, the amount of ROM and RAM, the number of I/O ports and timers, size, packaging, power consumption
 - · easy to upgrade
 - · cost per unit
- 2. availability of software development tools
 - assemblers, debuggers, C compilers, emulator, simulator, technical support
- 3. wide availability and reliable sources of the microcontrollers. Andrew Leung

18

Basic Data Format (8-bit)

- Signed Integers: Seven bits (Bit6 to Bit0) represent the magnitude of a number.
 - The eighth bit (Bit7) represents the sign of a number. The number is positive when Bit7 is zero and negative when Bit7 is
 - Positive numbers: 00 to 7F (0 to 127)
 - Negative numbers: 80 to FF (-1 to -128)
 - All negative numbers are represented in 2's complement

Andrew Leuna

Basic Data Format (8-bit)

- Binary Coded Decimal Numbers (BCD)
 - 8 bits of a number divided into groups of four, and each group represents a decimal digit from 0 to 9
 - Four-bit combinations from A through F in Hex are invalid in BCD numbers
 - Example: 0010 0101 represents the binary coding of the decimal number 25 which is different in value from 25_H.

Andrew Leung 330 01

23

21

Section 1.4

Overview of PIC18

Andrew Leuna

Basic Data Format (8-bit)

- American Standard Code for Information Interchange (ASCII)
 - Seven-bit alphanumeric code with 128 combinations (00 to
 - Represents English alphabet, decimal digits from 0 to 9, symbols, and commands

Andrew Leung

22

PIC18F Microcontroller Families

- PIC microcontrollers are designed using the Harvard Architecture which includes:
 - Microprocessor unit (MPU)
 - Program memory for instructions
 - Data memory for data
 - I/O ports
 - Support devices such as timers

24

Andrew Leuna

23

Microprocessor Unit

- Includes Arithmetic Logic Unit (ALU), Registers, and Control Unit
 - Arithmetic Logic Unit (ALU)
 - · Instruction decoder
 - 16-bit instructions
 - · Status register that stores flags
 - 5-bits
 - WREG working register
 - 8-bit accumulator

Andrew Leung

25

PIC18F - Address Buses

25

- · Address bus
 - 21-bit address bus for program memory addressing capacity: 2 MB of memory
 - 12-bit address bus for data memory addressing capacity: 4 KB of memory

Andrew Leung

27

Microprocessor Unit

- Registers
 - Program Counter (PC)
 - 21-bit register that holds the program memory address while executing programs
 - Bank Select Register (BSR)
 - 4-bit register used in direct addressing the data memory
 - File Select Registers (FSRs)
 - 12-bit registers used as memory pointers in indirect addressing data memory
- Control unit
 - Provides timing and control signals to various Read and Write operations

Andrew Leung

26

26

Data Bus and Control Signals

- Data bus
 - 16-bit instruction/data bus for program memory
 - 8-bit data bus for data memory
- Control signals
 - Read and Write

Andrew Leung

PIC18F452/4520 Memory

• Program Memory: 32 K

- Address range: 000000 to 007FFF_H

• Data Memory: 4 K

- Address range: 000 to FFF_H

Data EEPROM

- Not part of the data memory space

- Addressed through special function registers

Andrew Leung 2

29

31

PIC18F452/4520 Memory • Program memory • Data memory Program Memory 32K Unused Memory Space Data Memory 4K

12-Bit

Address Bus

(Data Registers)

(File Registers)

(b)

30

32

PIC18F452 I/O Ports

• Five I/O ports

Address Bus

Andrew Leung

Read '00'

- Digital IO is the most fundamental mode of connecting a MCU to external world. The interface is done using what is called a PORT.
- The IO ports can be programmed as input or output.
- PORT A through PORT E
- Most I/O pins are multiplexed
- Generally have eight I/O pins with a few exceptions
- Addresses already assigned to these ports in the design stage

32

- Each port is identified by its assigned SFR

Andrew Leung

MCU Support Devices

- Timers
 - Capture, Compare and PWM (CCP Modules)
- Serial Communications
 - Master Synchronous Serial Port (MSSP)
 - Addressable USART
- A/D converter
- Parallel Slave Port (PSP)
- Data EEPROM

Andrew Leung

34

PIC18F Special Features

- Sleep mode
- Watchdog timer (WDT)
- Code protection
- In-circuit serial programming
- In-circuit debugger

Andrew Leung

35

37

PIC18F Instructions and Assembly Language

- Has 77 instructions
 - Earlier PIC family of microcontrollers have either 33 or 35 instructions
- In PIC18F instruction set, all instructions are 16-bit word length except four instructions that are 32-bit length

Andrew Leung

Part No. 10F200	Program EE OTP/Flash PROM		RAM	Total Pins	I/O Pins	ADC Comp.		Digital Timers Serial I/O WDT		ECCP ECCP	Max Speed MHz	Instruc- tion Size	Total Instrue- tions
	256x12 Flash		16	8	4			1-8 bit, 1-WDT			4	12-bit	33
10F220	256x12 Flash		16	8	04	2x8-bit	125	1-8 bit, 1-WDT			8	12-bit	33
12F510	1536x12 Flash		38	. 8	6	3x8-bit	1	1-8 bit 1-WDT			8	12-bit	33
16F506	1536x12 Flash		67	14	12	3x8-bit	2	1-8 bit 1-WDT			20	12-bit	33
16C55A	768x12 OTP		24	28	20			1-8 bit 1-WDT			40	12-bit	33
16CR58B	3072x12 ROM		73	18	12			1-8 bit 1-WDT			20	12-bit	33
12F683	2048x14 Flash	256	128	8	6	4x10-bit	1	1-16 bit, 2-8 bit, 1-WDT			20	14-bit	35
16F687	2048x14 Flash	256	128	20	18	12x10- bit	2	1-16 bit, 1-8 bit, 1-WDT	EU/I ² C/		20	14-bit	35
18F1230	2048x16 Enh Flash	128	256	18-28	16	4x10-bit	3	2-16 bit 1-WDT	EU		40:	16-bit	77
18F4520	16384x16 Enh Flash	256	1536	40-44	36	13x10- bit	2	1-8 bit, 3-16 bit, 1-WDT	EU/ MI ² C /SPI	1/1	40	16-bit	77
18F6527	24576x16 Enh Flash	1024	3936	64	54	12x10- bit	2	2-8 bit, 3-16 bit, 1-WDT	2EU/ 2 - MI ² C/SPI	2/3	40	16-bit	77
18F8622	32768x16 Enh Flash	1024	3936	80	70	16x10- bit	2	2-8 bit, 3-16 bit, 1-WDT	2EU/2- MI ² C/SPI	2/3	40	16-bit	77
18F96J60	32768x16 Flash		2048	100	72	16x10- bit	2	2-8 bit, 3-16 bit, 1-WDT	2EU/ 2 - MI ² C/SPI	2/3	42	16-bit	77
24FJ128GA+ 010	65536x16 Flash		8192	100- 128	86	16x10- bit	2	5-16 bit. 1-WDT	2-UART 2-I ² C/SPI	5	32	16-bit	77

38

Instruction Description and Illustrations

10) SPANdrew Leung Interface, 11) USART: Universal Synchronous Asya Phronous Receiver Transmitter, 11) WDT: Watchdog Timer

- Copy (Move) 8-bit number (Literal) into W register
 - Mnemonics: MOVLW 8-bit
 - Binary format:

0000 1110 XXXX XXXX (any 8-bit number)

- Copy (Move) contents of W register into PORTC (File)
 - Mnemonics: MOVWF PORTC, a
 - ('a' indicates that PORTC is in the Access Bank)
 - Binary format:

0110 1110 1000 0010 (82_H is PORTC address)

Andrew Leung

Illustrative Program: Displaying a Byte at an I/O Port

- Problem statement:
 - Write instructions to light up alternate LEDs at PORTC
- Hardware:
 - PORTC
 - bidirectional (input or output) port; should be setup as output port for display
 - Logic 1 will turn on an LED

Andrew Leung

41

Illustration

- Program (software)
 - Logic 0 to TRISC sets up PORTC as an output port
 - Byte 55_H turns on alternate LEDs
 - MOVLW 00 ;Load W register with 0
 MOVWF TRISC,0 ;Set up PORTC as output
 - MOVLW 0x55 ;Byte 55_H to turn on LEDS
 - MOVWF PORTC,0 ;Turn on LEDs

Andrew Leung

43

43

• Interfacing LEDs to PORTC from 8-Bit Data Bus TRISC LATCH Andrew Leung 42

You are able to

- Compare and contrast microprocessors and microcontrollers
- Describe the advantages of microcontrollers for some applications
- Explain the concept of embedded systems
- Discuss criteria to consider in choosing a microcontroller
- Explain the variations of speed, packaging, memory, and cost per unit and how these affect choosing a microcontroller
- Some basic feature of PIC18

Andrew Leung