CIRCUITO RC PASA ALTO

$$V_0 = V_f + (V_s - V_f) e^{-t/\tau}$$

Vs: VALOR INICIAL, Vf: VALOR FINAL

$$t = RC In[(V_f-V_s)/(V_f-V_0)]$$

CALCULO DE V_s y V_f

SI
$$t \rightarrow \infty$$
 $V_0 = V_f = 0$

SI
$$t = 0^+ V_0 = V_s = V$$

REEMPLAZANDO

$$V_0 = Ve^{-t/\tau}$$

$$t = \tau \ln(V/V_0)$$

CIRCUITO RC PASA BAJO

Vs: VALOR INICIAL

Vf: VALOR FINAL

CALCULO DE Vs y Vf

$$SIt \rightarrow \infty$$
 $Vo = Vf = V$

SI
$$t = 0^{\dagger}$$
 Vo = Vs = 0

0.95V 0.86V 0.86V 0.86V 0.86V 0.86V 0.86V 0.95V 0.95V

REEMPLAZANDO

Vo = V
$$(1 - e^{-t/\tau})$$

$$t = \tau \ln \left(\frac{V}{V - Vo} \right)$$

CIRCUITOS COMBINADOS – PASABAJO/ALTO

SI EN t=t1 CONMUNTAMOS L2 (POSICIÓN 'b')

Si en t = t₂ conmutamos L₂ (posición 'a')

Si la conmutación se realiza por niveles de tensión, por ejemplo: cada vez que Vo = Vcc/2, se tiene

OSCILADORES CON RED 'RC'

Sabemos que la FT de un inversor CMOS es:

Además que $Z_i \rightarrow \infty$ y Z_0 es aproximadamente $1K\Omega$ Analicemos el siguiente circuido; en donde:

Vc > VDD/2

Para $V_c < V_{DD}/2$:

Redibujemos el circuito

La entrada de un CMOS posee diodos de protección

Con lo que el valor máx. de VI=VDD + Vo y el min. VI= -VD

Por lo tanto el diagrama temporal será:

ECUACIONES

$$VC = Vf + (Vs - Vf) * e^{-t/T}$$

Para t = T1

$$Vc = Vt = VDD/2$$

$$Vs = VDD + VD$$

$$Vf = 0V$$

T1= Rc*Ln
$$\frac{VDD + Vd}{VDD/2}$$

Para t = T2

$$Vc = Vt = VDD/2$$

$$Vs = -VD$$

$$T2 = Rc*Ln \frac{VDD + VD}{VDD - VDD/2}$$

$$T = T1 + T2 = Rc*Ln = \frac{(VDD + VD)^{2}}{(VDD - VDD/2)^{*} VDD/2} = 1.4 RC = T$$

$$F = 1/T = 0.7 / RC$$

OSCILADOR CON INVERSORES

Cualquier número impar de inversores lógicos oscilara si se conectan en ANILLO, según se muestra la fig.

TRIGGER DE SCHMITT

CIRCUITOS DE TIEMPO

OSCILADOR CON TRIGGER DE SCHMITT

PARA
$$t = T_1$$

$$V_f = 0$$
; $V_S = V_{TU}$; $V_C = V_{TL}$

PARA $t = T_2$

$$V_f = V_{DD}$$
; $V_S = V_{TL}$; $V_C = V_{TU}$

$$T = T_1 + T_2 = RC \ln \left[\left(\frac{V_{TU}}{V_{TL}} \right) \left(\frac{V_{DD} - V_{TL}}{V_{DD} - V_{TU}} \right) \right]$$

VALORES TIPICOS DE TENSION UMBRAL

	VDD = 5V	VDD = 10V	VDD = 15V
VTL	1.4 V	3.2 V	5.0 V
Vтu	3.0 V	6.0 V	9.0 V

Osciladores con entrada de habilitación

El oscilador implementado con dos inversores puede ser modificado a los efectos de que oscile o no según una entrada de control. Tal circuito se observa en a figura 4.25.

Comencemos el análisis para t=tO. A la salida de la compuerta NAND tenemos un '1' (VDD), por lo que V1= 0 V, en esas condiciones el capacitor se encuentra cargado a VDD. Cuando la entrada 'E'20 de la compuerta NAND se hace "1", el circuito conmuta y la salida de a compuerta NAND, tenemos un cero (V0=0 y en V1=1, (VDD). A salida de V1=VDD se suma a potencia de capacitor, obteniendo en Vc a suma de ambos, es decir:

Vc=2VDD

Figura 4.25

CIRCUITIOS DE TIEMPO

OSILADORES A CRISTAL

SIMBOLO CIRCUITO EQUIVALENTE

R₁, L₁, C₁ PROPIEDADES ELECTRICAS, DEPENDE DE LAS PROPIEDADES MECANICAS

C₀ CAPACIDAD DE LOS ELECTRODOS

RESONANCIA PARALELO

RESONANCIA SERIE

TIPICOS DE R

TTL 330 TL-LS 1K CMOS 1M

MONOESTABLE - PULSO POSITIVO

Para Vi = 0 y el circuito en reposo la corriente por R es cero (IR =0), con lo que :

$$Vo = 0$$

En este caso la carga del capacitor es de 0 volts

MONOESTABLE - PULSO NEGATIVO

Para Vi = VDD, y el circuito en reposo la corriente por R es cero (IR =0), con lo que:

$$VR = 0 V = "0"$$

$$Vc = 0 V = "0"$$

En este caso la carga del capacitor es de 0 volts

DISCRIMINADOR DE ANCHO DE PULSO

DETECTOR DE FLANCO CON TRIGGER DE SCHMITT

CIRCUITOS DE RETARDOS CON COMPUERTAS

DOBLADOR DE FRECUENCIA

DOBLADOR DE FRECUENCIA II

