

Current text generation techniques

Sambuddha Roy

March 27, 2020

Sambuddha Roy, Microsoft, March 27, 2020 1/

- ► Scope of problem: language generation.
- ▶ Open ended/closed ended generation.
- ▶ Main objectives of generation: modeling human language.
- Previous approaches: how they optimize for one or the other of the objectives.
- ► The approach of the Nucleus sampling paper.

Overall topic: we are going to discuss language models. Specifically, how do we use language models to *generate* text? There are two aspects to such language models:

- training
- inference

Here, we are concerned with the second part - inference (i.e. decoding).

So... how does a language model work? It models the next token prediction process, i.e. maximizes likelihood of the next token. Can we use that for generating a sentence? Will the sentences be like "human" sentences?

Natural way: use the context to generate next token (according to the likelihoods) then incorporate that token into the context, and continue.

- ► This is also called an *auto-regressive* (AR) approach.
- ► Here is a nice definition of "auto-regressive" from the XLNet paper:
- AR language modeling factorizes the likelihood into a forward product

$$p(x) = \prod_{t=1}^{T} p(x_t | x_{< t})$$

and then a parametric model (e.g. a neural network) is trained to model each conditional distribution.

Main desiderata of Language Generation

There are two aspects to language generation:

- Quality
- Diversity

Human beings use language, while quality is a "need", diversity is a "want".

We want to pack in information content in our language, and to this effect, we (as in humans) add in an "element of surprise" in our language.

How do we attain quality?

- Answer: maximum likelihood decoding. Essentially greedy. At least we can hope that the language generated will be grammatical.
- ► We essentially want the *sentence* that has the highest probability/likelihood under the language model.

Sambuddha Roy, Microsoft, March 27, 2020 7/14

How do we obtain diversity?

- ► *Answer*: usually, by some kind of sampling.
- ► I.e. We consider the probability distribution of the next token, and sample from that distribution.
- ► At least in this way, we are giving different candidates a chance (a step in the direction of diversity)

- ► Maximum likelihood decoding is perhaps too suboptimal. How about some *approximations* to the actual optimum?
- ► Enter Beam Search. At every step, you have a beam of candidate extensions.
 - At the end pick up the top k beams.
 - We will gloss over details: length normalization, etc.

(Courtesy: geekyisawesome blog)

- ► Sampling. While we do get diversity here, we sacrifice quality. Why?
- ▶ If at some point there is a (slightly) heavy tail, and we end up sampling a low-probability token (word), then that might steer the generated text far away from optimum.
- ► So how do we disincentivize sampling from the tail? A couple of approaches:
 - Temperature *T*:

$$logits \leftarrow logits/T$$

and imagine T < 1. Thin out the tail: *rich get richer* effect.

▶ Top-*k* sampling: fix *k*, send the probability mass of the tail (beyond the top *k* probability tokens) to 0.

▶ Ok... so we understand that sampling can get us diversity, perhaps we believe that it might cause a loss in quality.

- ▶ Ok... so we understand that sampling can get us diversity, perhaps we believe that it might cause a loss in quality.
- ► But maybe Beam Search is good enough it gets us quality, perhaps diversity too, right?

- ▶ Ok... so we understand that sampling can get us diversity, perhaps we believe that it might cause a loss in quality.
- ► But maybe Beam Search is good enough it gets us quality, perhaps diversity too, right?
- Wrong.

- ▶ Ok... so we understand that sampling can get us diversity, perhaps we believe that it might cause a loss in quality.
- ► But maybe Beam Search is good enough it gets us quality, perhaps diversity too, right?
- ▶ Wrong.
- ▶ Beam Search tends to keep repeating itself.

And some examples...

► Example of nucleus sampling

THANK YOU

Sambuddha Roy, Microsoft, March 27, 2020 14/14