

Accelerate your pandas workload using FireDucks at zero manual effort

Oct 03, 2024, Thursday Sourav Saha (NEC)

Workflow of a Data Scientist

almost 75% efforts of a Data Scientist spent on data preparation

Anaconda:

The State of Data Science 2020

About Pandas

Most popular Python library for data analytics.

The way of implementing a query in pandas-like library (that does not support query optimization) heavily impacts its performance!!

- We will discuss a couple of approaches to improve the performance related to computational time and memory of a query written in pandas, when processing large-scale data.
- We will also discuss how those approaches can be automated using compiler technologies.

Performance Challenges & Best Practices to follow

(1) importance of chained expression


```
def foo(filename):
    return (
    pd.read_csv(filename)
        .drop_duplicates()
        .sort_values("B")
        .head(2)
)
```

df: ~16 GB

Α	В	С										
u	0.91	1										
а	1.00	4	Δ	В	С	ı	Δ	В	С			
а	1.00	4		0.91	1		^	1.00	4			
0	0.24	0	u	1.00	4		a	0.91	1	Α	В	(
0	0.24	0	а		0		u		1	а	1.00	4
е	0.43	1	0	0.24	_		е	0.43	1	u	0.91	1
u	0.91	1	е	0.43	1		0	0.24	0			
е	0.20	2	е	0.20	2		е	0.20	2			
0	0.24	0										
а	1.00	4										
	7	droj	p_duplica	ates	Ŋ	_	sort	<i></i>		head(2	2)	

(2) importance of execution order

```
df.sort_values("A")
  1.query("B > 1")["E"]
  .head(2)
          % sort-order: yellow->red->green->blue
          X B=1for darker shade, B=2 for lighter
          shade
                                   not required
            A B C D E
                             A B C D E
                                               Е
                                      projection 4
                          filter
           sort
```

SAMPLE QUERY

Exercise: Query #3 from TPC-H Benchmark (SQL -> pandas)

query to retrieve the 10 unshipped orders with the highest value.

```
SELECT 1_orderkey,
                sum(l_extendedprice * (1 - l_discount)) as revenue,
               o_orderdate.
               o_shippriority
FROM customer, orders, lineitem
WHERE
    c_mktseqment = 'BUILDING' AND
    c_custkey = o_custkey AND
    1_orderkey = o_orderkey AND
    o orderdate < date '1995-03-15' AND
    1_shipdate > date '1995-03-15'
GROUP BY 1_orderkey, o_orderdate, o_shippriority
ORDER BY revenue desc. o_orderdate
LIMIT 10:
rescols = ["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
  .merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
  .pipe(lambda df: df[df["c_mktsegment"] == "BUILDING"])
  .pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
  .pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
  .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
  .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
  .agg({"revenue": "sum"})[rescols]
  .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
  .head(10)
```


Exercise: Query #3 from TPC-H Benchmark (pandas -> optimized pandas)

```
rescols = ["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
.merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
.pipe(lambda df: df[df["c_mktsegment"] == "BUILDING"])
.pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
.pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum"})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)
)
```

Hands-on

Computational Memory: ~3 GB; Exec-time: ~20 s

Computational Memory: ~0.1 GB; Exec-time: ~1 s

```
# projection-filter: to reduce scope of "customer" table to be processed
cust = customer[["c_custkey", "c_mktsegment"]] # (2/8)
f_cust = cust[cust["c_mktsegment"] == "BUILDING"]
# projection-filter: to reduce scope of "orders" table to be processe
ord = orders[["o_custkey", "o_orderkey", "o_orderdate", "o_shippriority"]] # (4/9)
f_ord = ord[ord["o_orderdate"] < datetime(1995, 3, 15)]</pre>
# projection-filter: to reduce scope of "lineitem" table to be processed
litem = lineitem[["l_orderkey", "l_shipdate", "l_extendedprice", "l_discount"]] # (4/16)
f_litem = litem[litem["l_shipdate"] > datetime(1995, 3, 15)]
rescols = ["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]
result = ( f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")
  .merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")
  .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
  .pipe(lambda df: df[rescols])
  .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
  .agg({"revenue": "sum"})[rescols]
  .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
  .head(10)
```


Introducing FireDucks

XIR: Intermediate Representation

FireDucks (Flexible IR Engine for DataFrame) is a high-performance compiler-accelerated

DataFrame library with highly compatible pandas APIs.


```
result = df.sort_values("A")
      .query("B > 1")["E"]
       .head(2)
%v2 = "sort_values_op"(%v1, "A")
%v3 = "filter_op"(%v2, "B > 1")
%v4 = "project_op"(%v3, ["E"])
%v5 = "slice_op"(%v4, 2)
                       print (result)
%t1 = "project_op"(%v1, ["A", "B", "E"])
%t2 = "filter_op"(%t1, "B > 1")
%t3 = "sort_values_op"(%t2, "A")
%t4 = "project_op"(%t3, ["E"])
%t5 = "slice_op"(%t4, 2)
    result = df.loc[:, ["A", "B", "E"]]
      .query("B > 1")
      .sort_values("A")["E"]
      .head(2)
```

Why FireDucks?

XIR: Intermediate Representation

FireDucks (Flexible **IR** Engine for DataFrame) is a high-performance compiler-accelerated DataFrame library with highly compatible pandas APIs.

- FireDucks is multithreaded to fully exploit the modern processor
- Lazy execution model with Just-In-Time optimization using a defined-by-run mechanism supported by MLIR (a subproject of LLVM).
- **₿** MLIR
- supports <u>both lazy and non-lazy execution</u> models without modifying user programs (same API).

JIT optimization

- FireDucks is highly compatible with pandas API
 - <u>seamless integration is possible</u> not only for an existing pandas program but also for any external libraries (like seaborn, scikitlearn, etc.) that internally use pandas dataframes.
- No extra learning is required
- No code modification is required

Seamless Integration with pandas

Three most common challenges in switching from pandas:

- Needs to learn new library and their interfaces.
- Manual fallback to pandas when the target library doesn't support a method used in an existing pandas application.
- Performance can be evaluated, and results can be tested after the migration is completed.

Let's Have a Quick Demo!

pd.read_csv("data.csv").rolling(60).mean()["Close"].tail(1000).plot() the difference is only in the import FireDucks pandas Program to calculate JUDVter demo1f moving average View Run Kernel Settings Help JupyterLab [Python 3 (ipykernel) (JupyterLab [2] ... button to import pandas as pd import fireducks.pandas as pd import fireducks.pandas as pd import pandas as pd start execution pd.read_csv("data.csv").rolling(60).mean()["Close"].tail(1080).plot() pd.read_csv("data.csv").rolling(60).mean()["Close"].tail(1000).plot() CPU times: user 3.21 s, sys: 867 ms, total: 4.08 s CPU times: user 5.75 s, sys: 1.13 s, total: 6.88 s Wall time: 4.06 s Wall time: 275 ms [8]: <Axes: <Axes: 59200 59200 pandas: 4.06s 59000 59000 58800 58800 58600 58600 data.csv: 58400 58400 FireDucks: 275ms **Bitcoin Historical Data** 58200 58200 58000 58000 🐟 22°C 大雨 - ヘ 🖟 👄 🖂 🖫 100 👪 💹 arreday

Usage of FireDucks

1. Explicit Import

easy to import

```
# import pandas as pd
import fireducks.pandas as pd
```

simply change the import statement

2. Import Hook

FireDucks provides command line option to automatically replace "pandas" with "fireducks.pandas"

\$ python -m fireducks.pandas program.py

3. Notebook Extension

FireDucks provides simple import extension for interative notebooks.

```
%load_ext fireducks.pandas
import pandas as pd
```

zero code modification

simple integration in a notebook

Seamless integration with external library

```
%load_ext fireducks.pandas

r3 = df.groupby(["issue_weekday"])["Summons Number"].count().sort_values()

import seaborn as sns
sns.barplot(r3) # no need to convert r3 to a pandas instance sns.barplot(r3.to_pandas())
```


Optimization Features

- **1. Compiler Specific Optimizations**: Common Subexpression Elimination, Dead-code Elimination, Constant Folding etc.
- **2. Domain Specific Optimization**: Optimization at query-level: reordering instructions etc.
- **3. Pandas Specific Optimization**: selection of suitable pandas APIs, selection of suitable parameter etc.
- Multi-threaded Computation: Leverage all the available computational cores.
- 2. Efficient Memory Management: Data Structures backed by Apache Arrow
- **3. Optimized Kernels**: Patented algorithms for Database like kernel operations: like sorting, join, filter, groupby, dropna etc. developed in C++ from scratch.

IR-driven Lazy-execution addresses memory issue with intermediate tables

```
def foo(filename):
  df = pd.read_csv(filename)
  t1 = df.drop_duplicates()
  t2 = t1[t1["B"] > 0.20]
 t3 = t2.sort_values("B")
  t4 = t3.head(2)
  return t4
                                                             %t3 = read_csv_with_metadata('dummy.csv', ...)
                                                             %t4 = drop_duplicates(%t3, ...)
ret = foo("data.csv")
                                                             %t5 = project(%t4, 'B')
print(ret.shape)
                                                             %t6 = gt.vector.scalar(%t5, 0.20)
            example without chained
                                                             %t7 = filter(%t4, %t6)
                 expression
                                                             %t8 = sort_values(%t7, ['B'], [True])
                                                             %t9 = slice(%t8, 0, 2, 1)
def foo(filename):
                                                             %v10 = qet_shape(%t9)
 return (
                                                             return(%t9, %v10)
   pd.read_csv(filename)
     .drop_duplicates()
     .query("B > 0.20")
                                                                               IR Generated by FireDucks
     .sort_values("B")
                                                               (can be inspected when setting environment variable FIRE LOG LEVEL=3)
     .head(2)
ret = foo("data.csv")
print(ret.shape)
         example with chained expression
```

Compiler Specific Optimization (Example #1)

Find year and month wise average sales
df["year"] = pd.to_datetime(df["time"]).dt.year
df["month"] = pd.to_datetime(df["time"]).dt.month
r = df.groupby(["year", "month"])["sales"].mean()

s = pd.to_datetime(df["time"])
df["year"] = s.dt.year
df["month"] = s.dt.month
r = df.groupby(["year", "month"])["sales"].mean()

time	sales	year	month
2020-01-02	100	2020	1
2020-05-02	200	2020	5
2021-02-02	300	2021	2
2020-01-26	400	2020	1
2021-01-02	500	2021	1
2021-02-20	600	2021	2
2020-05-31	700	2020	5

year	month	sales
2020	1	250
2020	5	450
2021	1	500
2021	2	450

def func(x: pd.DataFrame, y: pd.DataFrame):
 merged = x.merge(y, on="key")
 sorted = merged.sort_values(by="key")
 return merged.groupby("key").max()

Dead Code Elimination

def func(x: pd.DataFrame, y: pd.DataFrame):
 merged = x.merge(y, on="key")
 return merged.groupby("key").max()

Have you ever thought of speeding up your data analysis in pandas with a compiler?

Pandas Specific Optimization – Parameter Tuning

department-wise average salaries sorted in descending order

```
_groupby("department", sort=True)
res = (
  employee.groupby("department")["salary"]
             .mean()
            .sort_values(ascending=False)
```

department	salary (USD)		
IT	85,000		
Admin	60,000		
Finance	100,000		
IT	81,000		
Finance	95,000		
Corporate	78,000		
Sales	80,000		

employee table

department	salary (USD)			
IT	85,000			
IT	81,000			
department	salary (USD)			
Admin	60,000			
department	salary (USD)			
Finance	100,000			
Finance	95,000			
department	salary (USD)			
Corporate	78,000			
department	salary (USD)			
Sales	80,000			
creating groups				

res = (
employee.groupby("department", sort=False)["salary"]
.mean()
.sort_values(ascending=False)
)

department	salary (USD)
IT	83,000
Admin	60,000
Finance	97,500
Corporate	78,000
Sales	80,000

group-wise average-salary

department	salary (USD)			
Admin	60,000			
Corporate	78,000			
Finance	97,500			
IT	83,000			
Sales 80,000				
group-wise average-salar sorted by "department"				

department	salary (USD)		
Finance	97,500		
IT	83,000		
Sales	80,000		
Corporate	78,000		
Admin	60,000		

group-wise average-salary sorted by "department"

```
df.groupby(["A", "B"])["C"]
 .mean()
 .sort_values(ascending=False)
```


df.groupby(["A", "B"], **sort=False**)["C"] .mean() .sort_values(ascending=False)

parameter tuning in pandas

100M samples with highcardinality

~50 sec

~30 sec

Domain Specific Optimization: projection/predicate pushdown

```
rescols = ["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
.merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
.pipe(lambda df: df[df["c_mktsegment"] == "BUILDING"])
.pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
.pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum"})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)
)
```

Hands-on

Computational Memory: ~0.1 GB; Exec-time: ~200 ms

Computational Memory: ~0.1 GB; Exec-time: ~200 ms

```
# projection-filter: to reduce scope of "customer" table to be processed
cust = customer[["c_custkey", "c_mktsegment"]] # (2/8)
f_cust = cust[cust["c_mktsegment"] == "BUILDING"]
# projection-filter: to reduce scope of "orders" table to be processe
ord = orders[["o_custkey", "o_orderkey", "o_orderdate", "o_shippriority"]] # (4/9)
f_ord = ord[ord["o_orderdate"] < datetime(1995, 3, 15)]</pre>
# projection-filter: to reduce scope of "lineitem" table to be processed
litem = lineitem[["l_orderkey", "l_shipdate", "l_extendedprice", "l_discount"]] # (4/16)
f_litem = litem[litem["l_shipdate"] > datetime(1995, 3, 15)]
rescols = ["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]
result = ( f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")
  .merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")
  .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
  .pipe(lambda df: df[rescols])
  .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
  .agg({"revenue": "sum"})[rescols]
  .sort_values(["revenue", "o_orderdate"], ascending=[False. True])
  .head(10)
```

Benchmark (1): DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

Benchmark (2): Speedup from pandas in TPC-H benchmark

FireDucks is ~345x faster than pandas at max

Server

Xeon Gold 5317 x2 (24 cores), 256GB

Comparison of DataFrame libraries (average speedup)

FireDucks 50x

Polars 39x

Modin 0.9x

Benchmark (3): Speedup from pandas in TPCx-BB benchmark

ETL(Extract, Transform, Load) and ML Workflow

FireDucks speedup from pandas

- pandas-2.1.4
- CPU: Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz x 2sockets (Total 48HW Threads)
- fireducks-0.9.3
- Main memory: 256GB

Resource on FireDucks

Web site (User guide, benchmark, blog)

https://fireducks-dev.github.io

X(twitter) (Release information)

https://x.com/fireducksdev (@fireducksdev)

https://github.com/fireducks-dev/fireducks

FireDucks

Compiler Accelerated DataFrame Library for Python with fully-compatible pandas API

import fireducks.pandas as pd

News

Release fileducks-1.0.5 (Sep 20, 2024)

Talk: Best practices to improve computational time and memory when writing pandas application at Tokyo Python September Meetup (Sep 11, 2024)

Updated TPC-H Benchmark: 50x average speedup over pandas, 1.3x average speedup over polars (Sep 10, 2024)

Article: Analyzing Amazon Reviews using FireDucks at lightning speed just like Amazon delivery (Sep 06, 2024)

Talk: August Meetup Events: MumPy, PyData OMR (Aug 31, 2024)

Talk: Accelerate Your Pandas Scripts with 1 Line of Code (FireDucks) at TDE Workshop (Aug 27, 2024)

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWIXO62Lu605pnBJ2w

Thank You!

◆Focus more on in-depth data exploration using "pandas".

◆Let the "FireDucks" take care of the optimization for you.

◆Enjoy Green Computing!

Let's go for a test drive!

https://colab.research.google.com/drive/1qpej-X7CZsleOqKuhBg4kq-cbGuJf1Zp?usp=sharing

Frequently Asked Questions

FAQ: Why FireDucks is highly compatible with pandas?

FireDucks

%load_ext fireducks.pandas ← notebook extension for importhook import pandas as pd import numpy as np

%%fireducks.profile ← notebook specific profiler df = pd.DataFrame({ "id": np.random.choice(list("abcdef"), 10000), "val": np.random.choice(100, 10000) })
<pre>r1 =(df.sort_values("id") .groupby("id") .head(2) .reset_index(drop=True)) pd.from_pandas(r1["val"].to_pandas().cumsum())</pre>
r1["val"] = r1["val"].cumsum()

profiling-summary:: total: 42.4832 msec (fallback: 1.1448 msec)

	name	type	n_calls	duration (msec)
0	groupby_head	kernel	1	16.696805
1	sort_values	kernel	1	16.684564
2	from_pandas.frame.metadata	kernel	2	3.641694
3	to_pandas.frame.metadata	kernel	2	2.237987
4	describe	kernel	1	2.021135
5	DataFramerepr_html_	fallback	1	1.021662
6	Series.cumsum	fallback	1	0.111802
7	setitem	kernel	1	0.010280
8	get_metadata	kernel	1	0.009650
9	reset_index	kernel	1	0.008050

When running a python script/program, you may like to set the environment variable to get fallback warning logs:

FIREDUCKS_FLAGS="-Wfallback"

Raise feature request when you encounter some expensive fallback hindering your program performance!

Directly <u>communicate</u> with us over our slack channel for any performance or API related queries!

FAQ: How to evaluate Lazy Execution?

```
def foo(employee, country):
    stime = time.time()
    m = employee.merge(country, on="C_Code")
    r = m[m["Gender"] == "Male"]
    print(f"fireducks time: {time.time() - stime} sec")
    return r
```



```
def foo(employee, country):
    employee._evaluate()
    country._evaluate()
    stime = time.time()
    m = employee.merge(country, on="C_Code")
    r = m[m["Gender"] == "Male"]
    r._evaluate()
    print(f"fireducks time: {time.time() - stime} sec")
    return r
```

fireducks time: 0.02372143 sec

IR Builder

create_data_op(···)
merge_op(···)
filter op(···)

FIREDUCKS_FLAGS="--benchmark-mode"

Use this to disable lazy-execution mode when you do not want to make any changes in your existing application during performance evaluation.

FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended number of cores to be used

Alternatively, you can use the Linux taskset command to bind your program with specific CPU cores.

\Orchestrating a brighter world

NECは、安全・安心・公平・効率という社会価値を創造し、 誰もが人間性を十分に発揮できる持続可能な社会の実現を目指します。

\Orchestrating a brighter world

