(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

FΙ

(11)特許出顧公開番号

特開平6-346790

(43)公開日 平成6年(1994)12月20日

(51) Int.Cl.5 F02F 7/00 F 1 6 F 15/26 識別記号 庁内整理番号

301 F 8503-3G

K 9030-3 J

技術表示箇所

審査請求 未請求 請求項の数2 FD (全 3 頁)

(21)出願番号

特願平5-164125

(22)出願日

平成5年(1993)6月8日

(71)出願人 000006286

三菱自動車工業株式会社

東京都港区芝五丁目33番8号

(72)発明者 赤羽 敏和

東京都港区芝五丁目33番8号 三菱自動車

工業株式会社内

(72)発明者 大垣 容市

東京都港区芝五丁目33番8号 三菱自動車

工業株式会社内

(74)代理人 弁理士 木村 正巳

(54) 【発明の名称】 パランサシャフト付エンジンのクランクケース構造

(57)【要約】

【目的】 ロワーフレームの剛性向上と共に、バランサ シャフトの有無に対する部品の共通化を容易にする。

【構成】 ラダーフレーム型構造のロワーフレーム4 に、左右一対のパランサシャフト5、6を組込む。パラ ンサシャフト5,6は、各々クランクシャフト2の左右 外側に位置させ、かつ、上下方向にオフセット f を確保 する。

1

【特許請求の範囲】

【請求項1】上下方向にオフセットされた左右一対のパ ランサシャフトを備えているパランサシャフト付エンジ ンのクランクケース構造において、クランクシャフトの 軸中心に沿って上下に分割されたクランクケースのラダ ーフレーム型のロワーフレームに、前記左右一対のパラ ンサシャフトを、左右共に前記クランクシャフトより外 側に位置させ、かつ上下方向にオフセットして組込んだ ことを特徴とするパランサシャフト付エンジンのクラン クケース構造。

【請求項2】請求項1記載のクランクケース構造におい て、前記パランサシャフトの下側のみを前記ラダーフレ 一ム型のロワーフレームに組込むようにしたことを特徴 とするパランサシャフト付エンジンのクランクケース構 造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、バランサシャフトを備 えたエンジンに適用されるクランクケース構造に関す る。

[0002]

【従来の技術】エンジン回転により発生する二次起振力 (垂直方向の起振力及びローリング方向の起振力) を打 ち消し、より静粛な運転を可能にする目的で、パランサ シャフトを設けたエンジンが開発されている。このパラ ンサシャフトは、クランクシャフトの左右に2本配置さ れ、かつクランクシャフトの中心に対して上下方向にオ フセットして設けられるのが一般的である。

【0003】さて、上述したパランサシャフトは、通常 軸受が必要となる。このため、たとえば実開平2-83 352号公報に記載されているように、ラダーフレーム 型のメーンベアリングキャップにパランサシャフトを組 込み、パランサシャフトの軸受剛性を確保すると共にク ランクケース全体の剛性アップをも実現した従来技術が 考案されている。

[0004]

【発明が解決しようとする課題】ところで、前述した従 来技術は、メーンベアリングキャップの下部に左右一対 のパランサシャフトを組込むか、又は一体的に結合する 40 ことにより、ペアリングキャップの剛性を高めてクラン クケース全体の剛性が増大するようにしたものである。 このような構成では、パランサシャフトの位置が低くな ってオイルパンの油面に入ることが考えられ、オイルが パランサシャフトの回転の抵抗となってエンジン出力に 悪影響を与える恐れがある。

【0005】なお、上記従来技術は2本のパランサシャ フトを同レベルに並べたものであり、垂直方向の起振力 打ち消しを目的としている。

向上に加えて、パランサシャフトの有無に対する部品の 共通化及びローリング方向の起振力低減を目的とした、 パランサシャフト付エンジンのクランクケース構造を提 供するものである。

[0007]

【課題を解決するための手段】本発明は、前述の課題を 解決するもので、上下方向にオフセットされた左右一対 のパランサシャフトを備えているパランサシャフト付エ ンジンのクランクケース構造において、クランクシャフ 10 トの軸中心に沿って上下に分割されたクランクケースの ラダーフレーム型のロワーフレームに、前記左右一対の パランサシャフトを、左右共に前記クランクシャフトよ り外側に位置させ、かつ上下方向にオフセットして組込 んだことを特徴とするパランサシャフト付エンジンのク ランクケース構造である。

【0008】また、パランサシャフトの下側のみをラダ ーフレーム型のロワーフレームに組込んで、ローリング 方向の起振力に対するパランサシャフトの作用を向上さ せてもよい。

[0009]

【作用】前述の手段によれば、ラダーフレーム型構造に よる剛性向上に加えて、パランサシャフト用のジャーナ ルがロワーフレームの剛性を向上させる。 そして、バラ ンサシャフト付のロワーフレームと、パランサシャフト 無しのロワーフレームとを用意しておくことにより、エ ンジンのパランサシャフトの有無を容易に変更できるよ うになる。

【0010】また、ロワーフレームに下側の1本のパラ ンサシャフトだけを組込むようにすれば、ロワーフレー エンジン回転数の2倍の高速で回転するので、高剛性の 30 ムの高剛性化と共に、上下のオフセット量を充分に確保 できるようになる。

[0011]

【実施例】本発明によるパランサシャフト付エンジンの クランクケース構造の一実施例を図面に基づいて説明す

【0012】図2において、クランクケース1は、クラ ンクシャフト2の軸中心に沿って上下に、アッパフレー ム3とロワーフレーム4とに分割されている。ロワーフ レーム4には、図1に示す如く、ラダーフレーム型のも のを採用し、左右一対のパランサシャフト5、6を組込 んでいる。なお、パランサシャフト5,6の組込み位置 は、各々がクランクシャフト2の外側で、かつ、上下方 向にオフセット f が設定されるようになっている。

【0013】上述した構成のロワーフレーム4を採用す ることにより、ラダーフレーム構造による高剛性化に加 えて、パランサシャフト5,6も剛性の向上に貢献す る。すなわち、ロワーフレーム4にパランサシャフト 5, 6を組込むためには、図示省略のパランサジャーナ ルが不可欠であり、このパランサジャーナルがロワーフ 【0006】そこで、本発明は、ロワーフレームの剛性 50 レーム4内に設けられることによって、ロワーフレーム

4の剛性はさらに向上することになる。

【0014】また、パランサシャフト5、6を共にロワ ーフレーム4内に組込んだことにより、パランサシャフ ト付のエンジンとパランサシャフト無しのエンジンと を、ロワーフレームの交換だけで容易に設定できるよう になる。すなわち、図3に示す如く、パランサシャフト 無しのロワーフレーム4 a を用意しておけば、アッパフ レーム3等の部品をほとんど共用することができる。

【0015】なお、上述したロワーフレーム4にバラン ットfを確保してあるので、充分ではないもののローリ ング方向の起振力低減に対しても有効である。

【0016】次に、第2の発明を図4に示して説明す る。この発明では、2本のパランサシャフト5,6のう ち下側の1本、すなわちバランサシャフト6のみをラダ ーフレーム型のロワーフレーム4 bに組込んである。ま た、上側のパランサシャフト5は、クランクシャフト2 を挟んで反対側のアッパフレーム3 bに組込んである。

【0017】このような構成とすることにより、2本の パランサシャフト5,6には上下方向に充分なオフセッ 20 ト量を与えることができ、かつ、高剛性のパランサ室を 得ることができるようになる。また、ロワーフレーム4 bにパランサシャフト6を組込むことにより、エンジン 補器類の配置をコンパクト化することが可能になり、た とえばスカートにパランサシャフトを取付けた場合と比 較すれば振動や騒音を低減することも可能になる。

[0018]

【発明の効果】前述した本発明によれば、ラダーフレー ム型のロワーフレームに2本のパランサシャフトを組込 んだので、クランクケースの高剛性化を実現できると共 に、アッパフレーム側を共用してロワーフレーム側を交 換するだけでパランサ付エンジンとパランサ無しエンジ ンとを設定できるようになる。

【0019】また、バランサシャフトの下側の1本だけ サシャフト 5, 6 を組込む構造では、上下方向にオフセ 10 一スの高剛性化と共に、上下のオフセット量を充分に確 をロワーフレームに組込んだ構造にすれば、クランクケ 保してローリング方向の起振力にも対応可能となる。

【図面の簡単な説明】

【図1】本発明の一実施例を示すロワーフレーム構造の 斜視図である。

【図2】図1のロワーフレームを採用したエンジンのパ ランサシャフトの取付け位置を示す図である。

【図3】図2のロワーフレームをパランサシャフト無し に交換した場合を示す図である。

【図4】第2の発明の一実施例を示す図である。

【符号の説明】

- 1 クランクケース
- クランクシャフト
- 3, 3b アッパフレーム
- 4, 4a, 4b ロワーフレーム 5, 6 パランサシャフト

[図1] 【図2】 [図3] 2 タタンクシャフト 【図4】 6ペランサシ_{・フト}

46