Hazard Analysis: SE 4G06, TRON 4TB6

Team 26, STRONE
Jordan Bierbrier
Azriel Gingoyon
Taranjit Lotey
Udeep Shah
Abraham Taha

April 5, 2023

Revision History

Date	Version	Notes
10/14/2022	1.0	Added sections 1, 2, and 3
10/19/2022	1.1	Worked on Sections 5 / General Editing
4/4/2023	1.2	Updated according to Feedback and Formated Table

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components	1
4	Critical Assumptions	2
5	Failure Mode and Effect Analysis	2
6	Safety and Security Requirements 6.1 System Isolation Requirements	11 11 11 11 11
7	Roadmap	11
${f L}$	ist of Figures	
\mathbf{L}	ist of Tables	
	 Wearable Device Failure Modes and Effects Analysis Application Failure Modes and Effects Analysis 	3

Symbols, Abbreviations and Acronyms

symbol	description
Age groups	(15-30, 31-50, 51-75, 75+)

1 Introduction

This document is the hazard analysis for the entirety of Synesthesia Wear. For context, Synesthesia Wear is an inexpensive and non-intrusive hearing aid wearable device with a purpose of improving quality of life by providing users the users' auditory awareness with an alternate channel for sound recognition within their surroundings. Furthermore, this wearable device will have a corresponding application that will be made to be user-friendly so that users can easily access and configure their wearable devices to whatever settings they so desire. Lastly, for the purposes of this document, the Synesthesia Wear developers believe that the definition of a hazard is one that is derived from Nancy Leveson's work. With that in mind, a hazard is any property or condition within the Synesthesia Wear system where after pairing up with any conditions in the environment, a potential for loss to the system now exists.

2 Scope and Purpose of Hazard Analysis

The scope of this document is to identify any and all possible hazards within the system, clarify the mitigation steps of each identified hazard, determine the causes and effects of all failures, and define all safety and security requirements that have resulted from the overall analysis.

3 System Boundaries and Components

The hazard analysis will be conducted on the Synesthesia Wear system which will be comprised of the following components:

- 1. The wearable device consists of:
 - (a) Vibration Motor
 - (b) Microphone
 - (c) Microcontroller
 - (d) Bluetooth module
 - (e) Battery
- 2. The Application to be installed on the users' devices consists of:
 - (a) User Interface
 - (b) Wearable device Settings Configuration
- 3. The Device that runs the application
 - (a) Operating System

With the above in mind, the system boundary is limited to the above 3 components with each having their own respective subcomponents. Furthermore, it is important to note that not all components in the above list can be controlled (i.e. Device's Operating System) by the Synesthesia Wear developers. However, these components still needed to be listed down in the system boundary as the potential for a hazard can still be correlated to them.

4 Critical Assumptions

- CA1. The battery will not need to be replaced during product lifespan.
- CA2. Signal input devices will be consistent with the results they produce.
- CA3. Software application failure will not diminish usage of product.
- CA4. The microphone is not blocked and has full access to the environment.
- CA5. The device will be used in indoor conditions.

5 Failure Mode and Effect Analysis

Put the table in landscape mode

Sub-	Design	Failure	Effects of	Causes of	Recommended	Risk	Safety	\mathbf{Ref}
System	Func-	\mathbf{Mode}	Failure	Failure	Actions	Priority	Re-	
	tion					Number	quire-	
						(RPN)	ment	
Battery	Power	Battery	Device loses	1.Battery was	1.Inform users	Severity:	SIR4,	H1-1
	the	stops de-	all function-	not charged	of best charging	10	SIR2	
	various	livering	alities	1.Battery fails	practices to avoid	Occurrence		
	compo-	power to		and stops hold-	battery failure	Likeli-		
	nents	the device		ing charge	i.e (only charge	hood: 3		
	of the			2.Battery gets	to 80%, don't	Detection		
	device			disconnected	leave it plugged	Likeli-		
				from the con-	in when battery	hood: 1		
				troller	is full etc.)	Total: 30		
				3.Battery was	2.Microcontroller			
				not charged	should throw			
					error code if it			
					detects battery			
					disconnection			
					3.Have CMOS			
					battery in the			
					Micocontroller			
					incase of power			
					loss			

Table 1: Wearable Device Failure Modes and Effects Analysis

Sub- System	Design Func- tion	Failure Mode	Effects of Failure	Causes of Failure	Recommended Actions	RPN	SR	Ref
Battery	Power the various components of the device	Battery supplies incorrect power	Devices may lose some functionality or may work incorrectly. The internal components may get damaged	ure 2.Low charge in the battery 3.Issue in the battery management	1.Hardware should be able to cut off the battery in case of excess current draw 2.Microcontroller can signal the user in case of low battery	Total: 32	SIR2	H1-2
		Battery overheats	1.Device container can melt 2.Battery can melt other components of wearable device 3.Burn the user 4.Damage future battery performance	1.Device operates in temperatures outside the operating conditions of the battery 2.Battery failure 3.Excessive current draw 4.Loose connections	1.Insure proper cooling or heat dissipation of the microcontroller 2.Refer to H1-2 a 1) 3.Install a battery that can operate in the working conditions of the device 4.refer to H1-1 b 2)	Total: 40	SIR3	H1-3

Table 1 Continued: We
arable Device Failure Modes and Effects Analysis $\,$

 \circ

System: Wearable Device

Sub- System	Design Func-	Failure Mode	Effects of Failure	Causes of Failure	Recommended Actions	RPN	SR	Ref
Microphone	e Sound detec- tion	Sound is not detected	Device is not able to perform the primary functionDevice is unable to receive sounds	1.Loose connections 2.Microphone is damaged	1.Microcontroller can throw an error code in case of microphone disconnect 2.User can check the microphone output on the app to see if it is functioning correctly	Total: 30	IR6	H2-1
		Sound is falsely detected	Device functions incorrectly	1.Loose connections 2.Microphone is damaged	1.Refer to H2-1 b 1) 2.Refer to H2-1 2)	Total: 80	IR6	H2-2

Table 1 Continued: Wearable Device Failure Modes and Effects Analysis

Sub- System	Design Func- tion	Failure Mode	Effects of Failure	Causes of Failure	Recommended Actions	RPN	SR	Ref
Bluetooth Module	Provide a com- muni- cation stream be- tween mobile phone and wear- able device	Mobile device loses connection with bluetooth module	1.Sound processing capabilities are lost 2.Vibration motor wont receive signal to pro- vide/not provide hap- tic feedback	1.Signal between mobile phone and device is lost due to higher than rated distances 2.Signal is blocked due to external factors such as a faraday cage 3.Other signals such as wifi, microwave etc. cause interference with bluetooth signal 4.Connected phone loses power	1.Provide a notification to the user when the signal strength is diminished 2.Include autoreconnection with the device and phone when signal is found 3.Ensure final design of the product has adequate clearing for the bluetooth antennas such that it maximizes signal strength 4.Refer to H3-1 1)	Total: 20	NFR8 IR8	H3-1

 ${\it Table 1 Continued: We arable Device Failure Modes and Effects Analysis}$

Sub- System	Design Func- tion	Failure Mode	Effects of Failure	Causes of Failure	Recommended Actions	RPN	SR	Ref
Bluetooth Module	Provide a com- muni- cation stream be- tween mobile phone and wear- able device	Invalid message	1.Unexpected or incorrect output from device	1.Message corrupted during transmission 2.Message corrupted during reception	1.Add a check- sum into the bluetooth signal to check for mes- sage integrity 2.Only accept predefined mes- sages, discard foreign/ unde- fined messages	Total: 15	IR7	H3-2
Vibration Motor	Provide haptic notification to user	Vibrations not no- ticeable by user	1.User does not get alerted	1.Not enough power supplied	1.User can calibrate the intensity of the motor	Total: 7	ACR1	H4-1
		Motor does not vibrate	1.User does not get alerted	1.Loose connections 2.Defective vibration motor	1.Microcontroller can signal the user in case of motor disconnect 2.Refer to H4-2 1)	Total: 20	SIR4	H4-2

Table 1 Continued: We
arable Device Failure Modes and Effects Analysis $\,$

Sub- System	Design Func- tion	Failure Mode	Effects of Failure	Causes of Failure	Recommended Actions	RPN	SR	Ref
Vibration Motor	Provide haptic notification to user	Incorrect vibration	1.User incorrectly identifies the sound	1.Defective vibration motor	1.User can calibrate the vibration intensity and check the output	Total: 18	SIR4	H4-3
		Vibration too intense	1.Painful or annoying to the user	1.Motor drawing excess current	1.Refer to H4-3 2.1.Hardware connection is current limited	Total: 8	ACR1	H4-4
Signal Process- ing	Classify sound	Sound is incorrectly classified	1.Incorrectly notify user about sound 2.No notification for detected sound	1.Insufficient training data 2.Model parameters not fully optimized 3.Outlier sound received	1.User can help with calibration by adding more samples 2.Add more model training samples for better optimization 2. 3.Filter outlier noise	Total: 168	ACR2, IR6	S1-1 H5-1
		Sound is not classified	4.No notification for detected sound	1.Error/bug with signal processing code	1.Refer to S1-1 a H5-1 1)	Total: 105	IR6	S1-2 H5-2

Table 1 Continued: Wearable Device Failure Modes and Effects Analysis

System: Mobile Application Phase/Mode: System Requirements Sub-Design | Failure **Effects** Causes Recommended RPNSRRef of Mode Failure System Func-Failure Actions tion Graphical Give IncompatibilityFormatting 1.Button hit 1.Provide end Total: 20 NFR17 S2-1ACR4 User Invisual between errors when box detection users with a list S1-1 may of certified comterface repredifferent resizing -be lost/compromised patible devices mobile 2.Unable to senta-2.1.Mobile OS devices download 2.Code/Style tion of the application may not supapplication the of that appli-3.Loss port applicasuch recation functionality tion sizing is done to the or crashing 2.Button hit automatically as end detecbox the application tion may be detects user screen

lost/compromised size

may support 3. Update the

on a regular

basis to ensure

releases of the

compatibility
with latest

OS N/A

application

3.Processing

power of phone

may be too

inadequate for

required signal

bluetooth con-

processing 4.3. Mobile

phone

nections

not

Table 2: Application Failure Modes and Effects Analysis

System: Mobile Application

Sub- System	Design Func- tion	Failure Mode	Effects of Failure	Causes of Failure	Recommended Actions	RPN	SR	Ref
Graphical User In- terface	Give visual representation of the application to the end user	Combination of user inputs	a 1.Loss of saved data 2.Abrupt crashing of the application	1.User chooses incorrect blue-tooth device to connect to 2.User force closes application before applying changes	1.System should recognize invalid inputs from users and provide helpful error messages 2.Application should provide warning when entries are not saved before allowing a force close. Warnings should require user confirmation before allowing the event	Total: 48	ACR3	S2-2 S1-2
		Abnormal closing of application	1.Loss of saved data 2.Incorrect communication of data	1.User closes application while data is being transferred 2.System preemptively forces the application to close	1.Communication protocol between the device and the application should have error handling in case of errors in data transmission 2. Refer to S1-3 1)	Total: 40	IR3	S3-3 S1-3

Table 2 Continued: Application Failure Modes and Effects Analysis

6 Safety and Security Requirements

Bold statements are an extension of the SRS document safety requirements which should have been included in revision 1.

6.1 System Isolation Requirements

- SIR1. Product is isolated from electrical components at contact locations.
- SIR2. Auto shut-off when electrical malfunction detected.
- SIR3. Product has sufficient heat dissipation such that all the electrical components stay in their working temperatures.
- SIR4. System can perform a hard reboot to reset all hardware components.

6.2 Access Requirements

ACR1. Authorized users Users can access preferred vibration/sensitivity settings through application site.

ACR2. Authorized users can retrain the device through application site.

ACR3. ACR2. Users given error message if invalid inputs are entered in application.

ACR4. ACR3. Application will notify the user with an error message if application is installed on an incompatible device.

6.3 Integrity Requirements

- IR1. Only required variables will be given access to change.
- IR2. Data will be accessible by authorized users.
- IR3. After synchronization, a copy of data is loaded to system application. the Arduino signal data is loaded to system application.
- IR4. No pairs of modes allowed identical settings.
- IR5. Stored data overridden only at synchronization request.
- IR6. Application Device can detect if there is an issue with the microphone.
- IR7. Unknown messages from Bluetooth module prompt an error to the user and are rejected.
- IR8. Device will alert the user in the case of poor Bluetooth connection or if the phone has disconnected.

6.4 Privacy Requirements

PPR1. Personalized access code will be created for user application accessibility.

PRR2. Data is not transferable between accounts.

7 Roadmap

The requirements implemented according to the hardware research milestone created in the development plan are as listed, system isolation requirements and privacy requirements.

With access requirements, integrity requirements and privacy requirements being researched in the future development plan.