Datum 9. 10. 2019	SPŠ CHOMUTOV	Třída
J. 10. 2013	3F3 CHOMOTOV	A4-2
Číslo úlohy	MĚŘENÍ NA IMPULSNĚ SPÍNANÉM	Jméno
5	ZDROJI	PETŘÍK

Zadání

Změřte závislost výstupního napětí na poměru T_A/T_C , určete účinnost zdroje a naměřte průběhy napětí v různých částech zdroje.

Schéma

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo	
Stabilizovaný zdroj	U	ADL 310	LE2 1031	
Reostat	R _B	3500 Ω; 0,4 A	-	
Reostat	R _Z	1200 Ω; 0,63 A	LE1 372	
Voltmetr	V1	0-600 V, 5000 Ω/V —۩≝≉	LE2 411/6	
Voltmetr	V2	0-600 V, 5000 Ω/V →۩≌≉	LE2 2161/10	
Miliampermetr	mA1	0-600mA —□ º ★	LE2 2242/6	
Miliampermetr	mA2	0-600mA ¬ □ 🕏 🎓	LE2 2295/5	
Generátor	G	Siglent SDG 1020	LE 5080	
Tlumivka	TL	L = 4H	-	
Transformátor	T _R	600:600	-	
Usměrňovací dioda	D	KY 701 F	-	
Tranzistor	Т	KD 501 NPN bipolární tranzistor	-	
Osciloskop				

Teorie

Největší rozdíl impulzně spínaného zdrojem proti nespínanému zdroji je nespojitost výstupního signálu. Výstupní napětí Us je tedy stabilizováno výkonovým regulačním členem pouze v určitých časových intervalech Ta. U spojitého lineárního regulátoru ovládá odchylka výstupního napětí od jmenovité velikosti (k. Us – Uref) spojitě a proporcionálně okamžitý "odpor" výkonového regulačního členu tak, aby výstupní napětí Us bylo konstantní. Z toho vyplývá velká poměrná výkonová ztráta na regulačním členu a malá účinnost. U impulsní regulace pracuje regulační prvek (tranzistor) jako řízený spínač. Proud jím tedy prochází jen po určitý interval pracovního cyklu. Výkonová ztráta je tedy výrazně nižší.

Výhody a nevýhody impulsně spínaných zdrojů

Výhody impulsně spínaných zdrojů:

- Velká energetická účinnost (běžně přes 60% u moderních konstrukcí i přes 80%)
- Velké výstupní výkony (proudy až stovky A)
- Výhodné konstrukční parametry (impulsní transformátor měniče pracujícího s vysokým kmitočtem má pro stejný výkon mnohem menší rozměry a hmotnost)

Nevýhody impulsně spínaných zdrojů:

- Kmitočtové rušení (je důsledkem spínacího pracovního režimu)
- Dynamické parametry (při skokových změnách zatěžovacího proudu z I_{zmin} na I_{zmax} a opačně vznikají překmity resp. podkmity). Impulsní regulace je tedy vhodná především pro napájení zařízení s konstantní, málo nebo relativně pomalu proměnnou zátěží.

Můžou se u cívek měničů používat běžné transformátorové plechy?

Běžné plechy nelze použít kvůli cívce měniče. Výhradně se používá feritů, jejichž ztráty jsou výrazně menší. Ovšem i ferity mají nedostatek a to malé sycení a malou permeabilitu. Malé sycení se eliminuje volbou pracovního kmitočtu při němž je průřez jádra přijatelný $(S^{\sim}1/f)$.

Jaké nároky jsou kladeny na diody měničů?

Účinnost, vhodný pracovní kmitočet i mezní parametry (Us, Iz) měničů v zásadní míře ovlivňují diodové spínače. Kritickými parametry při jejich použití ve výkonové části jsou čelní napětí Uak a závěrná doba zotavení tr. Proto se používají velmi rychlé epitaxní a Schottkyho diody.

Jaké nároky jsou kladeny na výkonové spínací tranzistory měničů?

Výkonové spínací tranzistory: Většinou je měnič napájen přímo usměrněným síťovým napětím (horní tolerance 240V). $Uce_{max}=2*\sqrt{2}*240=680V$. S rezervou vynucenou možnými překmity je minimální přípustné napětí $Uce_{max}=750V$.

Naměřené hodnoty

Střída (%)	U ₁ (V)	I ₁ (mA)	U ₂ (V)	I ₂ (mA)	P ₁ (mW)	P ₂ (mW)	η
80	10,9	111,0	24,0	20,0	1209,9	480,0	39,7%
70	10,9	56,0	19,8	16,4	610,4	324,7	53,2%
60	10,9	28,0	15,0	12,4	305,2	186,0	60,9%
50	10,9	14,4	10,6	8,8	157,0	93,3	59,4%
40	10,9	7,4	7,6	6,4	80,7	48,6	60,3%
30	10,9	3,6	4,2	4,4	39,2	18,5	47,1%
20	10,9	1,4	3,4	2,8	15,3	9,5	62,4%

Grafy

Screenshoty z osciloskopu

Báze tranzistoru

Kolektor tranzistoru

Sekundární vinutí transformátoru

Nárazový kondenzátor

Zátěž

Závěr

Měření potvrdilo teoretické předpoklady. I přesto, že laboratorní zdroj určitě nebyl sestaven z nejvhodnějších komponentů dosahoval relativně vysoké účinnosti. Není tedy vůbec překvapením, že spínané zdroje postupně vytlačují z trhu lineární zdroje a to jak díky vyšší účinnosti tak i díky menším rozměrům a nižší hmotnosti.