数

数 学

~	~~~		~~~~~注	意~~~~~
	1	問題は 1 から	5 までで,	5ページにわたって印刷してあります。
		また、解答用紙は両	 面に印刷しっ	てあります。
	2	検査時間は50分で、	終わりは 午	前 11 時 10 分です。
	3	声を出して読んでは	いけません。	
	4	計算が必要なときは	, この問題月	用紙の余白を利用しなさい。
	5	答えは全て解答用紙	にHB又はE	Bの鉛筆(シャープペンシルも可)を使って
	明]確に記入し, 解答用	紙だけを提出	出しなさい。
	6	答えに分数が含まれ	るときは, そ	それ以上約分できない形で表しなさい。
		例えば、 $\frac{6}{8}$ と答え	るのではなく	く, $\frac{3}{4}$ と答えます。
	7	答えに根号が含まれ	るときは, 木	退号の中を最も小さい自然数にしなさい。
		例えば、 $3\sqrt{8}$ と答え	えるのではな	c く, $6\sqrt{2}$ と答えます。
	8	答えを選択する問題	i については	、特別の指示 のあるもののほかは、各問の
	ア	'・イ・ウ・エ のうち	から、最も追	適切なものをそれぞれ 1つずつ 選んで、 その
	記	見号の ○ の中を正	確に塗りつん	ぶしなさい。
	9	の中の数字を	答える問題	については,「 あ, い, う , …」に当てはまる
	数	(字を、下の〔例〕のよ	うに、0から	9 までの数字のうちから、それぞれ 1つずつ
	選	えんで、 その数字の (○ の中を፤	正確に塗りつぶしなさい。
	10	答えを記述する問題	(答えを選択	尺する問題, の中の数字を答える問題
	IJ	(外のもの) について	は,解答用	紙の決められた欄からはみ出さないように
	書	きなさい。		
	11	答えを直すときは,	きれいに消し	してから、消しくずを残さないようにして、
	新	「しい答えを書きなさ	V,0	
	12	受検番号を解答用紙	の表面と裏面	面の決められた欄に書き、表面については、
		の数字の の中		
	13	解答用紙は, 汚した	り, 折り曲い	ずたりしてはいけません。

〔例〕 **あい** に12と答えるとき

あ	0 • 2 3 4 5 6 7 8 9
()	0 1 • 3 4 5 6 7 8 9

問題は1ページからです。

1 次の各問に答えよ。

〔問1〕
$$4+6\times\left(-\frac{1}{2}\right)$$
 を計算せよ。

〔問 2〕
$$\frac{5a+b}{3} - \frac{8a+b}{9}$$
 を計算せよ。

〔問3〕
$$\sqrt{6}(4\sqrt{2}+1)$$
 を計算せよ。

〔問 4〕 一次方程式
$$7x-5=9x+3$$
 を解け。

〔問5〕 連立方程式
$$\begin{cases} y = -2x + 1 \\ 4x + y = 7 \end{cases}$$
 を解け。

[問 6] 二次方程式
$$x^2 + 9x + 8 = 0$$
 を解け。

[問7] 次の の中の「あ」「い」に当てはまる 数字をそれぞれ答えよ。

> 右の表は、ある中学校の生徒 40 人について、 自宅から A 公園まで歩いたときにかかる時間を 調査し、度数分布表に整理したものである。

自宅からA公園まで歩いたときにかかる 時間の最頻値は、**あい**分である。

階級(分)			度数(人)		
以上	_	未満			
0	\sim	4	3		
4	\sim	8	7		
8	\sim	12	7		
12	\sim	16	6		
16	\sim	20	9		
20	\sim	24	4		
24	\sim	28	3		
28	\sim	32	1		
	計		40		

[問8] 次の の中の「**う**」「**え**」に当てはまる数字をそれぞれ答えよ。

右の図1で、点Oは線分ABを直径とする円の中心であり、2点C、Dは円Oの周上にある点である。

4点A. B. C. Dは、図1のように、A. C.

B. Dの順に並んでおり、互いに一致しない。

点Aと点C, 点Aと点D, 点Cと点Dをそれぞれ結び、線GABと線GCDとの交点をEとする。

AD = CD, $\angle BAD = 25^{\circ}$ のとき,

xで示した \angle BEDの大きさは、**うえ** 度である。

〔問9〕 右の図2のように、直線ℓは半径の長さが等しい 円Aと円Bの接線であり、それぞれの接点は一致 している。

> 解答欄に示した図をもとにして、直線 ℓ を、 定規とコンパスを用いて作図し、直線 ℓ を示す 文字 ℓ も書け。

ただし、作図に用いた線は消さないでおくこと。

2 Sさんのクラスでは、先生が示した問題をみんなで考えた。 次の各問に答えよ。

[先生が示した問題] ――

右の**図1**は、縦と横がともに5マスである正方形の それぞれのマスに、左上から右に、自然数を1から順に 1つずつ書いた表である。

図1において、縦と横にそれぞれ3マスずつ並んだ9個のマスを で囲み、 で囲んだマスの四すみのうち、 左上のマスに書いた数を a、右上のマスに書いた数を b、 左下のマスに書いた数を d とする。

右の**図2**は、**図1**において、縦と横にそれぞれ3マスずつ並んだ9個のマスを で囲んだ1つの例で、a=7の場合を表している。

bc - ad の値を P とする。

a=2のときのPの値と、a=13のときのPの値をそれぞれ求めなさい。

図 1	1	2	3	4	5
	6	7	8	9	10
	11	12	13	14	15
	16	17	18	19	20
	21	22	23	24	25

図 2	1	2	3	4	5
	6	7	8	9	10
	11	12	13	14	15
	16	17	18	19	20
	21	22	23	24	25

[問1] 次の ① と ② に当てはまる数を、下のア~エのうちからそれぞれ選び、 記号で答えよ。

[先生が示した問題] で、a = 2 のときの P の値は ① 、a = 13 のときの P の値は ② である。

① ア 4 イ 20 ウ 76 エ 80 ② ア 20 イ 76 ウ 80 エ 380

Sさんのグループは、[先生が示した問題]をもとにして、次の問題を考えた。

「Sさんのグループが作った問題】 -

nを4以上の自然数とする。

右の図3は、縦と横がともにnマスである 正方形のそれぞれのマスに、左上から右に、 自然数を1から順に1つずつ書いた表に おいて、縦と横にそれぞれ4マスずつ並んだ 16個のマスを で囲み、 で囲んだ マスの四すみのうち、左上のマスに書いた 数をe、右上のマスに書いた数をf、左下の マスに書いた数をg、右下のマスに書いた 数をhとした場合を表している。

fg - eh の値をQとする。

Q = 9n となることを確かめてみよう。

[問2] [Sさんのグループが作った問題] で、f を e を用いた式で、g、h をそれぞれ e、n を用いた式で表し、Q=9n となることを証明せよ。

3 右の図1で、点Oは原点、点Aの座標は (-6,0), 点Bの座標は(0,8)であり, 曲線 ℓ は、関数 $y = \frac{1}{4} x^2$ のグラフを 表している。

> 曲線ℓ上にある点をPとする。 次の各問に答えよ。

当てはまる数を、下のア~クのうちから それぞれ選び、記号で答えよ。

点Pのx座標をa, y座標をbとする。 a のとる値の範囲が $-6 \le a \le 2$ の とき. bのとる値の範囲は.

 $\boxed{1} \leq b \leq \boxed{2}$ である。

$$1 - \frac{9}{4}$$

$$+\frac{3}{2}$$

[間2] 次の3 と4 に当てはまる数を、下のP~xのうちからそれぞれ選び、 記号で答えよ。

点Pのx座標が3のとき、2点A、Pを通る直線の式は、

$$y = \boxed{3} x + \boxed{4}$$

である。

③

$$\mathcal{P} - \frac{3}{4}$$
 $\mathcal{I} - \frac{1}{4}$
 $\mathcal{I} \frac{3}{4}$

 ④
 $\mathcal{P} \frac{5}{4}$
 $\mathcal{I} \frac{3}{2}$
 $\mathcal{I} \frac{3}{4}$

$$1 - \frac{1}{4}$$

ウ
$$\frac{1}{4}$$

$$\frac{3}{4}$$

$$\boxed{4}$$
 7 $\frac{5}{4}$

$$1 \quad \frac{3}{2}$$

$$rac{9}{2}$$

〔問3〕 右の図2は、図1において、点Pの x座標が正の数のとき、x軸上にあり 点Pとx座標が等しい点をQ. 2点P、Qを結び、線分PQ上にある 点をRとし、2点B、Pを通る直線、 2点O, Rを通る直線をそれぞれ 引いた場合を表している。

> 点Aと点R, 点Oと点Pをそれぞれ 結んだ場合を考える。

直線BPと直線ORの傾きが等しく, △BOPの面積が、△AORの面積の 8倍となるとき、点Pのx座標を求めよ。

4 右の図1で、△ABCはAB<ACの 三角形である。

∠BACの二等分線を引き、辺BCとの 交点をDとする。

点Pは、辺AC上にある点で、頂点A、 頂点Cのいずれにも一致しない。

点Dと点Pを結ぶ。

次の各間に答えよ。

[問1] 図1において、AB // PD、 $\angle ACB = 30^{\circ}$ 、 $\angle ADP = a^{\circ}$ とするとき、 $\angle PDC$ の大きさを表す式を、次の $P \sim$ エのうちから選び、記号で答えよ。

ア (150-2a)度 イ (150-a)度 ウ (30+2a)度 エ (30+a)度

図 1

 [問2] 右の図2は、図1において、 点Pを通り線分ADに平行な 直線を引き、辺BCとの交点をQ、 頂点Bと点Pを結び、線分ADと 線分BPとの交点をRとし、 DP=DQの場合を表している。 次の①、②に答えよ。

- ① $\triangle ABD \equiv \triangle APD$ であることを証明せよ。
- ② 次の の中の「お」「か」に当てはまる数字をそれぞれ答えよ。図2において、△ABDの面積と△CPDの面積の比が3:2のとき、線分ARの長さと線分RDの長さの比を最も簡単な整数の比で表すと、

AR:RD= お : か である。

5 右の**図 1** に示した立体ABCD-EFGHは、AB=8cm、AD=6cm、AE=10cmの 直方体である。

点 P は、頂点 E を出発し、辺 E F、辺 F B 上を毎秒 1 cm の速さで動き、18 秒後に頂点 B に到着する。

点Qは、点Pが頂点Eを出発するのと同時に 頂点Dを出発し、辺DC、辺CG上を毎秒1cm の速さで動き、18秒後に頂点Gに到着する。

点Pと点Qを結び、線分PQの中点をMとする。 次の各間に答えよ。

〔問 2 〕 次の \bigcirc の中の「 \dagger 」「 \Box 」に当てはまる数字をそれぞれ答えよ。

右の図2は、図1において、

点 P が頂点 E を出発してから 15 秒後のとき、頂点 A と頂点 C を結び、線分 A C の中点を N とし、頂点 E と点 M、頂点 E と点 N、頂点 E と点 Q、点 M と点 N、点 N と点 Q をそれぞれ結んだ場合を表している。立体 M - E Q N の体積は、

けこ cm³ である。

