Prefix-Tuning: Optimizing Continuous Prompts for Generation

Mac Turner, Michael Ngo, Eric Hu, Neeraj Parihar Cornell University

Problem & Motivation

You want GPT to do a specific task it's not directly trained to do. What are your options?

Contribution of Paper

- Showed prefix tuning with 0.1% of model parameters of GPT-2, T5, BART is efficient and comparable to SOTA fine tuning.
- 2. Investigate prefix-length & position of prefix activations.

Our Goal

- Reimplement prefix tuning and fine tuning for GPT-2.
- 2. Evaluate performance on the E2E table-to-text dataset.

What is the prefix?

- **Tokens:** restricted to vocabulary, least expressive
- Word embeddings: more expressive
- Prefix activations (Learned keys + values): most expressive

Model Architecture

GPT-2 weights are frozen and prefix activations are learned via an MLP. Only the output of the MLP is saved.

Dataset

"E2E Dataset": Table-to-text dataset about restaurants

name	type	food	price	rating	area	fam. friendly
The Mill	pub	Fast food	high	average	suburb	no

"In the suburb is The Mill; a non-child friendly pub. Food is fast, price is high and average customer ratings."

Training

method	Learning rate	Epochs	Batch size	Prefix length	Training Time
Prefix(0.1%)	8e-05	5	10	5	10 m
Fine-tune	5e-05	5	10	-	17.5 m

Results

BLEU Scores with Different Prefix Lengths

Other Benchmarks

method	BLEU	NIST	METEOR	ROUGE-L	CIDEr
Prefix (0.1%)	68.5	8.71	44.3	70.4	2.34
Fine-tune	70.3	8.94	46.2	72.2	2.47
SOTA (2021)	68.6	8.70	45.3	70.8	2.37

Discussion

- Prefix-tuning did worse than fine-tuning not due to generation, hyperparameters, dataset.
- Prefix-tuning is ~1.5x faster to train than fine-tuning

Future Work

- 1. Combination of prefix tuning with other parameter efficient fine-tuning methods
- 2. Special tokens to append task-specific prefix activations.

Conclusion

References

Prefix-tuning uses only 0.1% of memory to achieve SOTA. This can be used to efficiently fine-tune LLMs on many tasks with less memory without sacrificing performance.

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li & Liang, ACL-IJCNLP 2021)