PLSC 502 – Fall 2022 Linear Regression I

November 17, 2022

Random Variables

Recall that a (real-valued) random variable Y is:

$$Y_i = \underset{ ext{"systematic"}}{\mu} + \underset{ ext{"stochastic"}}{u_i}$$

Note that we typically require that:

$$Cov(\mu, u) = 0.$$

Linear Association

Allow μ to vary *linearly* with some other variable X:

$$\mu_i = \beta_0 + \beta_1 X_i$$

so that we get

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Goals:

- Point estimates of β_0 and β_1 (call them $\hat{\beta}_0$ and $\hat{\beta}_1$)
- ullet Estimates of their $\mathit{variability} o \mathit{inference}$

Estimating β_0 and β_1

Suppose we have some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$. Then:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

 \rightarrow estimated "residuals":

$$\hat{u}_i = Y_i - \hat{Y}_i
= Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

Intuition

"Loss Function"

Key Idea: Select $\hat{\beta}_0$ and $\hat{\beta}_1$ to make the \hat{u}_i s as small as possible.

Possibilities:

- Pick $\hat{\beta}_0$ and $\hat{\beta}_1$ so as to minimize $\sum_{i=1}^N \hat{u}_i$
- Pick $\hat{\beta}_0$ and $\hat{\beta}_1$ so as to minimize $\sum_{i=1}^N |\hat{u}_i|$ ("MAD")
- Pick $\hat{\beta}_0$ and $\hat{\beta}_1$ so as to minimize $\sum_{i=1}^N \hat{u}_i^2$ ("least squares")
- \rightarrow "ordinary least squares" ("OLS") regression...

The Simplest Regression In Human History

World's Simplest Regression

Recall:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.$$

So, for i = 1

$$\hat{Y}_1 = \hat{\beta}_0 + \hat{\beta}_1(1)$$

and for i = 2

$$\hat{Y}_2 = \hat{\beta}_0 + \hat{\beta}_1(2)$$

Means:

$$\hat{u}_i = Y_i - \hat{Y}_i$$

= $3 - [\hat{\beta}_0 + \hat{\beta}_1(1)]$ for $i = 1$, and
= $5 - [\hat{\beta}_0 + \hat{\beta}_1(2)]$ for $i = 2$

Sum of Squared Residuals

$$\hat{S} = u_1^2 + u_1^2$$

$$= [3 - \hat{\beta}_0 - \hat{\beta}_1(1)]^2 + [5 - \hat{\beta}_0 - \hat{\beta}_1(2)]^2$$

$$= (9 + \hat{\beta}_0^2 + \hat{\beta}_1^2 - 6\hat{\beta}_0 - 6\hat{\beta}_1 + 2\hat{\beta}_0\hat{\beta}_1) +$$

$$(25 + \hat{\beta}_0^2 + 4\hat{\beta}_1^2 - 10\hat{\beta}_0 - 20\hat{\beta}_1 + 4\hat{\beta}_0\hat{\beta}_1)$$

$$= 2\hat{\beta}_0^2 + 5\hat{\beta}_1^2 - 16\hat{\beta}_0 - 26\hat{\beta}_1 + 6\hat{\beta}_0\hat{\beta}_1 + 34$$

Choose $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize this...

Minimizing...

For:

$$\hat{S} = 2\hat{\beta}_0^2 + 5\hat{\beta}_1^2 - 16\hat{\beta}_0 - 26\hat{\beta}_1 + 6\hat{\beta}_0\hat{\beta}_1 + 34$$

We have:

$$\begin{array}{rcl} \frac{\partial \hat{S}}{\partial \hat{\beta}_0} & = & 4\hat{\beta}_0 + 6\hat{\beta}_1 - 16 \\ \\ \frac{\partial \hat{S}}{\partial \hat{\beta}_1} & = & 6\hat{\beta}_0 + 10\hat{\beta}_1 - 26 \end{array}$$

So for $\hat{\beta}_1$:

$$\begin{array}{lll} 4\hat{\beta}_0 + 6\hat{\beta}_1 - 16 = 0 & \Rightarrow & 2\hat{\beta}_0 = -3\hat{\beta}_1 + 8 \\ & \Rightarrow & \hat{\beta}_0 = -3/2\hat{\beta}_1 + 4 \end{array}$$

$$6\hat{\beta}_{0} + 10\hat{\beta}_{1} - 26 = 0 \quad \Rightarrow \quad 5\hat{\beta}_{1} - 3(-3/2\hat{\beta}_{1} + 4) - 13 = 0$$

$$\Rightarrow \quad 5\hat{\beta}_{1} - 9/2\hat{\beta}_{1} + 12 - 13 = 0$$

$$\Rightarrow \quad \frac{1}{2}\hat{\beta}_{1} - 1 = 0$$

$$\Rightarrow \quad \hat{\beta}_{1} = 2$$

And for $\hat{\beta}_0$:

$$4\hat{\beta}_0 + 6(2) - 16 = 0 \implies 4\hat{\beta}_0 = 4$$

 $\Rightarrow \hat{\beta}_0 = 1$

World's Simplest Regression

So:

$$Y_i = 1 + 2X_i + u_i$$

Note that, in this (N=2) case:

$$\hat{\beta}_1 = (5-3)/(2-1)$$

= 2, and

$$\hat{\beta}_0 = -2(2) + 5$$
 $= 1$

Least Squares with > 2 Observations

$$\hat{S} = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{N} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

$$= \sum_{i=1}^{N} (Y_i^2 - 2Y_i \hat{\beta}_0 - 2Y_i \hat{\beta}_1 X_i + \hat{\beta}_0^2 + 2\hat{\beta}_0 \hat{\beta}_1 X_i + \hat{\beta}_1^2 X_i^2)$$

Least Squares with > 2 Observations

Then:

$$\frac{\partial \hat{S}}{\partial \hat{\beta}_0} = \sum_{i=1}^{N} (-2Y_i + 2\hat{\beta}_0 + 2\hat{\beta}_1 X_i)$$

$$= -2\sum_{i=1}^{N} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)$$

$$= -2\sum_{i=1}^{N} \hat{u}_i$$

and

$$\frac{\partial \hat{S}}{\partial \hat{\beta}_1} = \sum_{i=1}^N (-2Y_i X_i + 2\hat{\beta}_0 X_i + 2\hat{\beta}_1 X_i^2)$$

$$= -2\sum_{i=1}^N (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) X_i$$

$$= -2\sum_{i=1}^N \hat{u}_i X_i$$

Least Squares with > 2 Observations

Next, set:

$$-2\sum_{i=1}^{N}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})=0$$

and

$$-2\sum_{i=1}^{N}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})X_{i}=0$$

... and solve...

Least Squares "Normal Equations"

(Algebra happens...):

$$\sum_{i=1}^{N} Y_{i} = N\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{N} X_{i}$$

and

$$\sum_{i=1}^{N} Y_i X_i = \hat{\beta}_0 \sum_{i=1}^{N} X_i + \hat{\beta}_1 \sum_{i=1}^{N} X_i^2$$

Least Squares: Solutions!

(More algebra...):

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2}$$

and

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

The intuition:

$$\hat{\beta}_1 = \frac{\text{Covariance of } X \text{ and } Y}{\text{Variance of } X}$$

Parsing Variation in Y: ANOVA

Note that the "total" variation in Y around its mean \bar{Y} is:

$$SS_{Total} = \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

which comprises:

$$SS_{Residual} = \sum_{i=1}^{N} (\hat{u}_i)^2$$
$$= \sum_{i=1}^{N} (Y_i - \hat{Y})^2$$

and:

$$SS_{Model} = \sum_{i=1}^{N} (\hat{Y}_i - \bar{Y})^2$$

SCOTUS Data, OT1946-2021

Data from the Supreme Court Database and the justices' Segal-Cover scores...

- Y is CivLibs = liberal voting percentage in civil rights & liberties cases
- X is IdeologyScore $\in [0,1] \to SCOTUS$ justice liberalism

> describe(SCOTUS,skew=FALSE,trim=0)								
	vars	n	mean	sd	min	max	range	se
justice	1	38	97.37	11.32	78.00	116.00	38.00	1.84
justiceName*	2	38	19.50	11.11	1.00	38.00	37.00	1.80
CivLibs	3	38	56.49	19.94	22.36	95.33	72.97	3.23
Nom.Order*	4	38	19.50	11.11	1.00	38.00	37.00	1.80
Nominee*	5	38	19.50	11.11	1.00	38.00	37.00	1.80
ChiefJustice*	6	4	1.00	0.00	1.00	1.00	0.00	0.00
SenateVote*	7	38	17.05	8.23	1.00	25.00	24.00	1.33
IdeologyScore	8	38	0.54	0.33	0.00	1.00	1.00	0.05
QualificationsScore*	9	38	16.45	7.91	1.00	25.00	24.00	1.28
Nominator (Party)*	10	38	7.03	3.72	1.00	13.00	12.00	0.60
Year	11	38	1969.74	24.70	1937.00	2018.00	81.00	4.01

Le Scatterplot

Le Labeled Scatterplot

Estimating $\hat{\beta}$

\hat{Y} , \hat{u} , etc.

> SCOTUS\$Yhats <- with(SCOTUS, Beta0 + Beta1*IdeologyScore) > SCOTUS\$Uhats <- with(SCOTUS, CivLibs - Yhats) > # V itself. > describe(SCOTUS\$CivLibs) vars n mean sd median trimmed mad min max range skew kurtosis se > # Predicted Vs. > describe(SCOTUS\$Yhats) vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 38 56.49 14.35 58.46 56.63 18.67 33.39 76.43 43.04 -0.11 -1.46 2.33 > # Residuals: > describe(SCOTUS\$Uhats) vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 38 0 13.84 2.46 -0.06 11.18 -26.43 29.66 56.09 -0.08 -0.59 2.24

\hat{Y} and \hat{u} Plots

What's a "typical" residual?

Note that because

$$\sum_{i=1}^{N} \hat{u}_i = 0$$

it's also true that:

$$\bar{\hat{u}} = \frac{\sum_{i=1}^{N} \hat{u}_i}{N}$$
$$= 0$$

Consider instead:

"Residual Standard Error" (RSE) =
$$\sqrt{\left(\frac{\sum_{i=1}^{N} \hat{u}_i^2}{N-1}\right)}$$

Sums of Squares, RSE, etc.

```
> # Sums of squares:
>
> TotalYVar <- with(SCOTUS, sum((CivLibs - mean(CivLibs))^2))
> TotalYVar
Γ17 14707
> TotalUVar <- with(SCOTUS, sum((Uhats)^2))
> TotalUVar
[1] 7086
> TotalModelVar <- with(SCOTUS, sum((Yhats - mean(CivLibs))^2))</pre>
> TotalModelVar
Γ1] 7621
> RSE <- with(SCOTUS, sqrt(TotalUVar / (nrow(SCOTUS)-2)))
> RSE
[1] 14.03
```

Estimating $\hat{\beta}$ via 1m

```
> fit<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summarv(fit)
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
   Min
           10 Median
                                  Max
                           30
-26.433 -10.587 2.460 7.858 29.655
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.389 4.354 7.669 4.44e-09 ***
IdeologyScore 43.044 6.917 6.223 3.51e-07 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 14.03 on 36 degrees of freedom
Multiple R-squared: 0.5182, Adjusted R-squared: 0.5048
F-statistic: 38.72 on 1 and 36 DF, p-value: 3.505e-07
```

ANOVA with 1m

Inference

Setup

Linear model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

OLS estimators:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

and

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$
$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i}}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

Variation in $\hat{\beta}_0$ and $\hat{\beta}_1$

 $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables...

- Q: Where does their variation come from?
- A: From the *stochastic* variation in Y...
- ...that is, from *u*.

Next question: What does the random variation in Y "look like"?

Getting To $Var(\hat{\beta}_1)$

An assumption:

$$u_i \sim \text{i.i.d. } N(0, \sigma^2)$$

Implies:

$$Var(Y|X,\beta) = \sigma^2$$

SO:

$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{Var}\left[\frac{\sum_{i=1}^{N}(X_{i}-\bar{X})Y_{i}}{\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}}\right]$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\operatorname{Var}(Y)$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum(X_{i}-\bar{X})^{2}}.$$

$\mathsf{Var}(\hat{eta}_0)$ and $\mathsf{Cov}(\hat{eta}_0,\hat{eta}_1)$

Similarly:

$$Var(\hat{\beta}_0) = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2$$

and:

$$\mathsf{Cov}(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2$$

Important Things

Note that:

- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto \sigma^2$ $\hookrightarrow Var(\hat{\beta}_s)$ increases as Y gets "noisier"...
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -\sum (X_i \bar{X})$ $\hookrightarrow Var(\hat{\beta}_s)$ decreases with greater variation in X...
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -N$ $\hookrightarrow Var(\hat{\beta}_s)$ decreases as N gets larger...
- $\operatorname{sign}[\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)] = \operatorname{sign}(\bar{X})$
 - \hookrightarrow The covariance between $\hat{\beta}_0$ and $\hat{\beta}_1$ is signed by the mean of X

The Gauss-Markov Theorem

"Given the assumptions of the classical linear regression model, the least squares estimators are the minimum variance estimators among the class of unbiased linear estimators. (They are BLUE)."

Gauss-Markov, continued

Imagine:

$$\hat{\beta}_{1} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$

Rewrite:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{N} (X_i - \bar{X})^2}.$$

k are "weights":

$$\hat{\beta}_1 = \sum k_i Y_i$$

with
$$k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$$
.

Gauss-Markov (continued)

Alternative (non-LS) estimator:

$$\tilde{\beta}_1 = \sum w_i Y_i$$

Unbiasedness requires:

$$E(\tilde{\beta}_1) = \sum w_i E(Y_i)$$

$$= \sum w_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum w_i + \beta_1 \sum w_i X_i$$

Gauss-Markov (continued)

Variance:

$$\begin{aligned} \mathsf{Var}(\tilde{\beta}_1) &= \mathsf{Var}\left(\sum w_i Y_i\right) \\ &= \sigma^2 \sum w_i^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} + \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 + \sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Gauss-Markov (continued)

Because $\sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right]$ is a constant, min[Var($\tilde{\beta}_1$)] minimizes

$$\sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2.$$

Minimized at:

$$w_i = \frac{X_i - X}{\sum (X_i - \bar{X})^2}.$$

implying:

$$Var(\tilde{\beta}_1) = \frac{\sigma^2}{\sum (X_i - \bar{X})^2}$$

= $Var(\hat{\beta}_1)$

Gauss-Markov Requirements

For the Gauss-Markov theorem to hold, it must be the case that:

- 1. E(u) = 0
- 2. Cov(X,u) = 0
- 3a. $Var(u) = \sigma^2 \forall i$
- 3b. $Cov(u_i, u_i) = 0$
- 4. $Rank(\mathbf{X}) = k$
- 5. $u \sim \text{i.i.d. } N(0, \sigma^2)$

(...don't sweat these too much for now...)

BLUE, BUE, and Linearity

BLUE vs. BUE:

- OLS has been BLUE since about 1821 (see, e.g., Plackett 1949).
- Hansen (2022): OLS is "BUE" most efficient among all unbiased estimators, linear or otherwise...
- Challenged by others; resolved by Portnoy (2022): Any unbiased estimator must be linear (so "BLUE" = "BUE").
- A pretty good nontechnical discussion of all this by Paul Allison is here.

If $u_i \sim N(0, \sigma^2)$, then:

$$\hat{\beta}_0 \sim N[\beta_0, Var(\hat{\beta}_0)]$$

and

$$\hat{eta}_1 \sim N[eta_1, \mathsf{Var}(\hat{eta}_1)]$$

Means:

$$z_{\hat{\beta}_1} = \frac{(\hat{\beta}_1 - \beta_1)}{\sqrt{\mathsf{Var}(\hat{\beta}_1)}}$$
$$= \frac{(\hat{\beta}_1 - \beta_1)}{\mathsf{s.e.}(\hat{\beta}_1)}$$
$$= \sim N(0, 1)$$

A Small Problem...

$$\sigma^2 = ???$$

Solution: use

$$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{N - k}$$

Gives:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = rac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2},$$

and

$$\widehat{\mathsf{Var}(\hat{\beta}_0)} = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \hat{\sigma}^2$$

Inference (continued)

$$\widehat{\text{s.e.}(\hat{\beta}_1)} = \sqrt{\widehat{\text{Var}(\hat{\beta}_1)}}$$

$$= \sqrt{\frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2}}$$

$$= \frac{\hat{\sigma}}{\sqrt{\sum (X_i - \bar{X})^2}}$$

implies:

$$t_{\hat{\beta}_1} \equiv \frac{(\hat{\beta}_1 - \beta_1)}{\widehat{\text{s.e.}}(\hat{\beta}_1)} = \frac{(\hat{\beta}_1 - \beta_1)}{\sqrt{\sum (X_i - \bar{X})^2}}$$
$$= \frac{(\hat{\beta}_1 - \beta_1)\sqrt{\sum (X_i - \bar{X})^2}}{\hat{\sigma}}$$
$$\sim t_{N-k}$$

Predictions and Variance

Point prediction:

$$\hat{Y}_k = \hat{\beta}_0 + \hat{\beta}_1 X_k$$

 Y_k is unbiased:

$$E(\hat{Y}_k) = E(\hat{\beta}_0 + \hat{\beta}_1 X_k)$$

$$= E(\hat{\beta}_0) + X_k E(\hat{\beta}_1)$$

$$= \beta_0 + \beta_1 X_k$$

$$= E(Y_k)$$

Variability:

$$\begin{aligned} \operatorname{Var}(\hat{Y}_k) &= \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2 + \left[\frac{\sigma^2}{\sum (X_i - \bar{X})^2} \right] X_k^2 + 2 \left[\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2 \right] X_k \\ &= \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Variability of Predictions

$$\operatorname{Var}(\hat{Y}_k) = \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]$$

means that $Var(\hat{Y}_k)$:

- Decreases in N
- Decreases in Var(X)
- Increases in $|X \bar{X}|$

Predictions and Inference

Standard error of the prediction:

$$\widehat{\text{s.e.}(\hat{Y}_k)} = \sqrt{\sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]}$$

 \rightarrow (e.g.) confidence intervals:

95% c.i.
$$(\hat{Y}_k) = \hat{Y}_k \pm [1.96 \times \widehat{\text{s.e.}(\hat{Y}_k)}]$$

Example: SCOTUS Liberalism

```
> with(SCOTUS, describe(CivLibs))
                   sd median trimmed
                                      mad
                                            min
                                                 max range skew kurtosis
X 1
     1 38 56.49 19.94 55.78 56.33 23.07 22.36 95.33 72.97 0.15
                                                                   -1.033.23
> with(SCOTUS, describe(IdeologyScore))
  vars n mean sd median trimmed mad min max range skew kurtosis
X 1
     1 38 0.54 0.33 0.58
                             0.54 0.43
                                           1
                                                  1 -0.11
                                                             -1.460.05
```

Scatterplot of SCOTUS Voting and Liberalism Scores

Example, Continued

```
> SCLib<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summary(SCLib) # regression
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median 30 Max
-26.43 -10.59 2.46 7.86 29.66
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.39 4.35 7.67 4.4e-09 ***
IdeologyScore 43.04 6.92 6.22 3.5e-07 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 14 on 36 degrees of freedom
Multiple R-squared: 0.518, Adjusted R-squared: 0.505
F-statistic: 38.7 on 1 and 36 DF, p-value: 3.51e-07
```

Example, Continued

> anova(SCLib) # ANOVA

Analysis of Variance Table

Response: CivLibs

Df Sum Sq Mean Sq F value Pr(>F)

IdeologyScore 1 7621 7621 38.7 3.5e-07 ***

Residuals 36 7086 197

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

```
Var(\hat{\beta}):
> vcov(SCLib)
              (Intercept) IdeologyScore
(Intercept)
           18.96 -25.67
IdeologyScore -25.67 47.85
95 percent c.i.s:
> confint(SCLib)
             2.5 % 97.5 %
(Intercept) 24.56 42.22
IdeologyScore 29.02 57.07
99 percent c.i.s:
> confint(SCLib,level=0.99)
             0.5 % 99.5 %
(Intercept) 21.55 45.23
IdeologyScore 24.23 61.85
```

Predictions

A Plot, With Cls

Scatterplot of SCOTUS Voting and Ideology Scores, along with Least-Squares Line and 95% Prediction Confidence Intervals

