Course Code BMAT102L

Course Title Differential Equations and Transforms

Module 1: Ordinary Differential Equations- CO1

Easy 1

1. Solve y'' - 2y' + 5y = 0 with y(0) = -3 and y'(0) = 1

Solution: The roots are $1 \pm 2i$

Particular solution is $y = e^x[-3\cos 2x + 2\sin 2x]$

2. Solve $y'' + 2y' + 4y = 13\cos(4x - 2)$ using method of undetermined coefficients

Solution: $y_c = e^{-x} [C_1 \cos \sqrt{3}x + C_2 \sin \sqrt{3}x]$ $y_p = -\frac{3}{4} \cos (4x - 2) + \frac{1}{2} \sin (4x - 2)$ The complete solution is $y = y_c + y_p$

$$v_n = -\frac{3}{4}\cos(4x-2) + \frac{1}{2}\sin(4x-2)$$

3. Solve $y'' - 2y' - 3y = xe^{-x}$ using method of variation of parameters.

Solution: The complete solution is $y = C_1 e^{-x} + C_2 e^{3x} - \frac{x^2}{8} e^{-x} + e^{3x} (-\frac{x}{16} e^{-4x} - \frac{1}{64} e^{-4x})$

4. Solve $x^2y'' - 2xy' - 4y = x^2 + 2\log x$

Solution: The complete solution is $y = C_1 x^{-1} + C_2 x^4 + \frac{3}{8} - \frac{\log x}{2} - \frac{x^2}{6}$

5. Solve $(2x+3)^2y'' - (2x+3)y' - 12y = 6x$

Solution: The complete solution is $y = C_1(2x+3)^{\frac{3+\sqrt{57}}{4}} + C_2(2x+3)^{\frac{3-\sqrt{57}}{4}} - \frac{3}{14}(2x+3) + \frac{3}{4}(2x+3) + \frac{3}{4}(2x$

2 Moderate

6. Solve the following initial value problems:

$$y'' - 2y' + 2y = 0, y(0) = 0, y'(0) = 1$$

Solution: $y(x) = e^x \sin x$

7. Find the general solution of the following differential equations using the method of undetermined coefficients

$$y'' - 2y' + y = e^x + x^2$$

Solution: $y(x) = (a + bx)e^x + \frac{1}{2}x^2e^x + 6 + 4x + x^2$

8. Solve $(3x+2)^2y'' + 3(3x+2)y' - 36y = 3x^2 + 4x + 3$ using the method of undetermined coefficients.

Solution: $y = a(3x+2)^2 + b(3x+2)^{-2} + (3x+2)^2 \frac{\log x}{108} + \frac{1}{108}$

9. Solve $(x^2D^2 - 3xD + 4)y = x^2\cos(\log x)$

Solution: $y = (a + b \log x)x^2 - x^2 \cos(\log x)$

10. Solve the differential equation $(x^2D^2 + xD - 1)y = x^2e^x$

Solution: $y = (ae^x + be^{-x}) + \left(e^x - \frac{e^x}{x}\right)$

3 Hard

11. An LCR circuit connected in series has a resistance of 5hms, an inductance of 0.05 henry, a capacitor of 4×10^4 farad, and an applied alternating emf of $200\cos 100$ tvolts. Find an expression for the current flowing through this circuit if the initial current and the initial charge on the capacitor are both zero.

Solution: $l = -2.35e^{-50t}\cos 50\sqrt{19}t + 22.13e^{-50t}\sin 50\sqrt{19}t + \frac{40}{17}\cos 100t - \frac{160}{17}\sin 100t$.

12. A body executes damped forced vibrations given by the equation

$$\frac{d^2x}{dt^2} + 2k\frac{dx}{dt} + b^2x = e^{-kt}\sin nt.$$

Solve the equation for both the cases, when $n^2 \neq b^2 - k^2$ and $n^2 = b^2 - k^2$.

Solution: (i)
$$x = Ae^{-kt}\cos\left\{t\sqrt{\left(b^2 - k^2\right)} + B\right\} + \left\{e^{-kt}/\left(b^2 + k^2 - n^2\right)\right\}\sin nt$$
. (ii) $x = Ae^{-kt}\cos\left\{t\sqrt{\left(b^2 - k^2\right)} + B\right\} - \left(te^{-kt}/2n\right)\cos nt$.

13. Use variation of parameters to find the general solution of the differential equation $x^2y'' - xy' = x^3e^x$ if two solutions to the associated homogeneous problem are known to be 1 and x^2 .

Solution:
$$y = c_1 + c_2 x^2 + x e^x - e^x$$
.

14. Solve $x^2y'' + 3xy' + y = \frac{1}{(1-x)^2}$.

Solution:
$$y = \frac{1}{x}(c_1 + c_2 \log x) + \frac{1}{x} \log \frac{x}{1-x}$$
.

15. Solve $(3x+2)^2y'' + 5(3x+2)y' - 3y = x^2 + x + 1$.

Solution:
$$y = c_1(3x+2)^{\frac{1}{3}} + c_2(3x+2)^{-1} + \frac{1}{27} \left[\frac{1}{15}(3x+2)^2 + \frac{1}{4}(3x+2) - 7 \right].$$

16. Find the complete solution of the differential equations: (i). $y'' - 2y' = 6x^2 - 3e^{\frac{x}{2}}$. (ii). $y'' + 4y = x \sin 2x + 8$.

Solution: (i).
$$y = c_1 + c_2 e^{2x} - x^3 - \frac{3}{2}x^2 - \frac{3}{2}x + 4e^{\frac{x}{2}}$$
. (ii). $y = c_1 \cos 2x + c_2 \sin 2x - \frac{1}{8}x^2 \cos 2x + \frac{1}{16}x \sin 2x + 2$.