

第二章: 命题逻辑的 等值和推理演算

刻世實 shixia@tsinghua.edu.cn

主要内容

- 2.1 等值定理
- 2.2 等值公式
- 2.3 命题公式与真值表的关系
- 2.4 联接词的完备集
- 2.5 对偶式

- 2.6 范式
- 2.7 推理形式
- 2.8 基本的推理公式
- 2.9 推理演算
- 2.10 归结推理法

复习: 常用的等值公式

- 蕴涵等值式 $P \rightarrow Q = \neg P \lor Q$
- 前提合取合并 $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$
- 等价等值式: $P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$
- 假言易位: $P \rightarrow Q = \neg Q \rightarrow \neg P$
- 等价否定等值式: $P \leftrightarrow Q = \neg P \leftrightarrow \neg Q$
- 归谬论: $(P \rightarrow Q) \land (P \rightarrow \neg Q) = \neg P$

复习: 常用的等值公式

- $P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$ 从取真来描述双条件
- $P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$ 从取假来描述双条件
- $P \rightarrow (Q \rightarrow R) = Q \rightarrow (P \rightarrow R)$ 前提交换
- $(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$ 前提析取合并

证明其他等值式

2.3 命题公式与真值表的关系

1. 从取1的行来列写

考查命题公式 A的真值表中取1的行,若取1的行数共有m行,则命题公式 A可以表示成如下形式:

$$A = Q_1 \ \lor \ Q_2 \ \lor \cdots \ \lor \ Q_m$$

其中 $Qi = (R_1 \land R_2 \land ... \land R_n)$,
 $R_i = P_i$ 或 $\neg P_i \ (i = 1, 2, ..., n)$
若该行的 $P_i = 1$,则 $R_i = P_i$;否则 $R_i = \neg P_i$

2.3 命题公式与真值表的关系

例1: 从取1的行来列写

$$A = (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

	P	Q	A	B
)	F	F	T	T
	F	T	Т	Т
	T	F	F	F
	T	T	T	F

$$B = (\neg P \land \neg Q) \lor (\neg P \land Q)$$

从取0的行来列写

• 从取1的行来列写

• 故从取0的行来列写

例2: 从取0的行来列写

$$A = (\neg P \lor Q)$$

$$\mathbf{B} = (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

P	Q	A	В
F	F	T	T
F	T	T	T
T	F	F	F
T	T	T	F

2.4 联接词的完备集

2.4.2 联接词的完备集

C是一个联结词的集合,如果任何n元($n \ge 1$)真值函项都可以由仅含C中的联结词构成的公式表示,则称C是完备的联结词集合,或说C是联结词的完备集。

联结词的完备集

定理2.4.1

{ ¬, ∨, ∧}是完备的联结词集合。

- 从前面介绍的由真值表列写命题公式的过程可知, 任一公式都可由¬, ∨, ∧表示, 从而{¬, ∨, ∧} 是完备的。
- 一般情形下,该定理的证明应用数学归纳法,施 归纳于联结词的个数来论证。

定理 $2.4.1 \{ \neg, \lor, \land \}$ 是完备的联结词集合

另一证法,因为任何 $n(n\geq 1)$ 元真值函数都与唯一的一个主析取范式(后面介绍)等值,而在主析取范式中仅含联结词 \neg , \lor , \land , 所以 $S = \{\neg$, \lor , \land } 是联结词的完备集。

以下哪些联结词集是完备集

- $S_1 = \{\neg, \land\}$
- $S_2 = \{\neg, \lor\}$
- $S_3 = \{ \uparrow \}$
- $\mathsf{D} \mid \mathsf{S}_4 = \{ \land, \lor \}$

联结词的完备集

推论: 以下联结词集都是完备集:

$$(1) S_1 = \{\neg, \land\}$$

$$(2) S2 = {\neg, \lor}$$

$$(3) S_3 = \{\neg, \rightarrow\}$$

$$(4) S_4 = \{\uparrow\}$$

$$(5) S_5 = \{\downarrow\}$$

证明{↑}, {↓}都是联结词完备集

• 已知{¬, ∨, ∧} 是完备集, 证明其中每个联结词都可以由[↑]来表示

$$\neg P = \neg (P \land P)$$

$$= P \uparrow P$$

$$P \land Q \qquad (P \land Q) \qquad (P \uparrow Q)$$

$$P \land Q = \neg \neg (P \land Q) = \neg (P \uparrow Q) = (P \uparrow Q) \uparrow (P \uparrow Q)$$
 $P \lor Q = \neg (\neg P \land \neg Q) = \neg P \uparrow \neg Q = (P \uparrow P) \uparrow (Q \uparrow Q)$
证毕

一些重要的全功能联结词集合

- {¬, ^}, {¬, '}可以构成功能联结词集合。使用上述全功能联结词集合表达的命题公式类的系统常称为Boole代数系统。
- {¬,→}也可构成全功能联结词集合。该全功能联结词集合在研究逻辑系统的演绎与推理,以及在程序系统的研究中经常遇到。
- {[↑]}, {[↓]}是全功能联结词集合。在大规模集成电路中有广泛的应用。

2.5 对偶式

8. 同一律:
$$P \lor F = P$$
 $P \land T = P$

对偶式

将给定的命题公式 A中出现的 \lor , \land , T, F 分别以 \land , \lor , F, T 代换,得到公式 A^* ,则称 A^* 是公式 A 的对偶式,或说 A和 A^* 互为对偶式。

在以下定理2.5.1~定理2.5.6中,记

$$A = A(P_1, P_2, \dots, P_n)$$

$$A^- = A(\neg P_1, \neg P_2, \dots, \neg P_n)$$

有关对偶式的定理

• 定理2.5.1

$$\neg (A^*) = (\neg A)^*, \quad \neg (A^-) = (\neg A)^-$$

• 定理2.5.2

$$(A^*)^* = A, \quad (A^-)^- = A$$

• 定理2.5.3

$$\neg A = A^*$$

2.5 对偶式

证明定理2.5.3: ¬*A* = *A**-

用数学归纳法,施归纳于A中出现的联结词个数n。

基始: 设n = 0, A中无联结词,便有

A = P, 从而 ¬A = ¬P

但 A*-=¬P

∴ n = 0时定理成立。

归纳:设n≤k时定理成立,

往证n = k+1时定理也成立。

∵n=k+1≥1, A中至少有一个联结词,可分为 三种情形:

 $A = \neg A_1$, $A = A_1 \land A_2$, $A = A_1 \lor A_2$

其中A₁, A₂中联结词个数≤k。

定理**2.5.1**: ¬(A*) = (¬A)*, ¬(A¬) = (¬A)¬ 2.5 対偶式

依归纳法假设,
$$\neg A_1 = A_1^{*-}$$
, $\neg A_2 = A_2^{*-}$
当 $A = \neg A_1$ 时 $\neg A = \neg (\neg A_1)$
 $= \neg (A_1^{*-})$ 归纳法假设
 $= \neg ((A_1^*)^-)$
 $= (\neg (A_1^*))^-$ 定理 2.5.1 (2)
由定理2.5.1 (2)先取逆再取非 = 先取非再取逆
 $= (\neg A_1)^{*-}$
由定理2.5.1 (1)先取对偶再取非 = 先取非再取对偶
 $= A^{*-}$ 由条件 $A = \neg A_1$

依归纳法假设, $\neg A_1 = A_1^{*-}, \neg A_2 = A_2^{*-}$

2.5 对偶式

当
$$A = A_1 \wedge A_2$$
时
$$\neg A = \neg (A_1 \wedge A_2)$$

$$= \neg A_1 \vee \neg A_2$$

$$= A_1^{*-} \vee A_2^{*-}$$

$$= (A_1^{*-} \vee A_2^{*-}) - A^{-}$$

$$= (A_1^{*-} \vee A_2^{*-}) - A^{-}$$

$$= (A_1^{*-} \wedge A_2^{*-}) - A^{*-}$$

$$= A^{*-}$$

$$= A^{*-}$$
定理证毕

类似可以证明 $A = A_1 \vee A_2$ 的情况该定理实为摩根律的另一种形式。它将-、*、-有机地联系起来。

DUNIVERSITY OF THE PROPERTY OF

有关对偶式的定理(续)

- 定理2.5.6
 A与A⁻同永真,同可满足; ¬A与A^{*}同永真,同可满足。

代入规则

• 定理2.5.3

$$\neg A = A^*$$

2.5 对偶式

定理 2.5.4 若 A = B 必有 A* = B*

证明: 因为 A = B 等价于 A↔B 永真。

从而 ¬A↔¬B 永真。

依定理2.5.3, ¬A = A*⁻, ¬B = B*⁻

于是 A*- ↔ B*- 永真

必有 A*↔ B*

故 A* = B*

永真 代入规则

2.5 对偶式

- 定理2.5.5 若 $A \rightarrow B$ 永真,必有 $B^* \rightarrow A^*$ 永真
- 证

$$A \rightarrow B$$

$$=$$
 $\neg B \rightarrow \neg A$

命题与逆否命题等值

$$=$$
 $B^* - \rightarrow A^* -$

定理2.5.3

$$=$$
 $B^* \rightarrow A^*$

代入规则

• 定理2.5.3

$$\neg A = A^* -$$

A为重言式 ⇒ A*必为矛盾式

• 若A为重言式,则A*必为矛盾式.

如果A = T,由对偶原理可知: $A^* = (T)^* = F$

• 例如,

定理2.5.4 若
$$A = B$$
,必有 $A^* = B^*$ (对偶原理)

沒
$$A = P \lor (\neg P \lor (Q \land \neg Q)),$$

別 $A * = P \land (\neg P \land (Q \lor \neg Q))$

$$A \Leftrightarrow P \lor (\neg P \lor 0) \Leftrightarrow P \lor \neg P \Leftrightarrow 1,$$

$$A * \Leftrightarrow 0.$$

2.6 范式

2.6.1 文字与互补对

命题变项及其否定式(如P与 $\neg P$)统称**文字**。 且P与 $\neg P$ 称为**互补对**。

2.6.2 合取式

由<u>文字</u>的合取所组成的公式称为**合取式**。由有限个文字构成的合取式称作简单合取式。

2.6.3 析取式

由<u>文字</u>的析取所组成的公式称为**析取式**。由有限个文字构成的析取式称作简单析取式。

补充: 析取式与合取式

- 令A₁,A₂,...,A_s表示s个简单析取式或s个简单合取式。
- 设 A_i 是含n个文字的简单析取式,若 A_i 中既含某个命题变项 P_i ,又含它的否定式 P_i ,即 P_i P_i ,则 P_i 则 P_i ,则 P_i 则 P_i 。
- 反之,若A_i为重言式,则它必同时含某个命题变项和它的否定式,否则,若将A_i中的不带否定符号的命题变项都取0值,带否定号的命题变项都取1值,此赋值为A_i的成假赋值,这与A_i是重言式相矛盾。
- 类似的讨论可知,若A_i是含n个命题变项的简单合取式, 且A_i为矛盾式,则A_i中必同时含某个命题变项及它的否 定式,反之亦然。

补充: 析取式与合取式

定理

(1) 一个简单<mark>析取式</mark>是重言式当且仅当它同时含有某个命题变项及它的否定式(一个互补对)。

$$A = P \vee \neg P \vee Q$$

(2) 一个简单<mark>合取式</mark>是矛盾式当且仅当它同时含有某个命题变项及它的否定式(一个互补对)。

$$A = P \land \neg P \land Q$$

2.6 范式

2.6.4 析取范式

析取范式是形如

$$A_1 \vee A_2 \vee ... \vee A_n$$

的公式,其中 A_i (i = 1,...,n)为<u>合取式</u>。

2.6.5 合取范式

合取范式是形如

$$A_1 \wedge A_2 \wedge ... \wedge A_n$$

的公式,其中 A_i (i = 1, ..., n)为<u>析取式</u>。

求范式举例

• $M_1 \times P \leftrightarrow Q$ 的析取范式与合取范式:

$$P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$
-----析取范式

$$P \leftrightarrow Q \Leftrightarrow (\neg P \lor Q) \land (P \lor \neg Q) - \cdots$$
 合取范式

范式不唯一,例如

$$P \leftrightarrow Q \Leftrightarrow (\neg P \lor Q) \land (Q \lor \neg Q) \land (P \lor \neg Q)$$

例2 求 $(P \rightarrow Q) \leftrightarrow R$ 的析取范式与合取范式

(1) 先求合取范式

$$(P \rightarrow Q) \leftrightarrow R$$

$$\Leftrightarrow (\neg P \lor Q) \leftrightarrow R \tag{消去} \rightarrow)$$

$$\Leftrightarrow ((\neg P \lor Q) \to R) \land (R \to (\neg P \lor Q)) \qquad (\mathring{\mathbf{H}} \to \bullet)$$

$$\Leftrightarrow (\neg (\neg P \lor Q) \lor R) \land (\neg R \lor (\neg P \lor Q)) \qquad (\mathring{\mathbf{1}} + \mathbf{4} + \mathbf{4})$$

$$\Leftrightarrow ((P \land \neg Q) \lor R) \land (\neg P \lor Q \lor \neg R)$$
 (否定符内移)

$$\Leftrightarrow (P \lor R) \land (\neg Q \lor R) \land (\neg P \lor Q \lor \neg R) (\lor 对 \land 的 分配律)$$

例2: 求析取范式

$$(P \rightarrow Q) \leftrightarrow R$$

$$\Leftrightarrow ((P \land \neg Q) \lor R) \land (\neg P \lor Q \lor \neg R)$$

(消去↔)

$$\Leftrightarrow ((P \land \neg Q) \land (\neg P \lor Q \lor \neg R)) \lor (R \land (\neg P \lor Q \lor \neg R))$$

$$\Leftrightarrow (P \land Q \land P) \lor (P \land Q \land Q) \lor (P \land \neg Q \land \neg R) \lor$$

$$(R \land \neg P) \lor (R \land Q) \lor (R \land R)$$

(人对\的分配律)

$$\Leftrightarrow (P \land \neg Q \land \neg R) \lor (\neg P \land R) \lor (Q \land R)$$
 (补余律和同一律)

$$P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$$
 从取假来描述双条件

2. 6. 6 范式存在定理

任一命题公式都存在与之等值的合取范式和析取范式。但命题公式的合取范式和析取范式并不唯一。

求范式的具体步骤

利用等值公式中的等值式和蕴涵等值式将公式中的→、→用联结词¬、 △、 ∨来取代;

$$P \rightarrow Q = \neg P \lor Q$$

$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

(多用于求析取范式)

$$P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$$

(多用于求合取范式)

- 利用摩根律将否定号 移到各个命题变元的前端;
- 利用结合律、分配律、吸收律、等幂律、交换律等将 公式化成其等值的析取范式和合取范式。

由于范式一般不唯一,所以有必要进一步研究主范式。

$$(P \rightarrow Q) \leftrightarrow R$$

$$\Leftrightarrow (P \land \neg Q) \lor R) \land (\neg P \lor Q \lor \neg R)$$
 (消去↔)

$$\Leftrightarrow (P \land \neg Q \land \neg P) \lor (P \land \neg Q \land Q) \lor (P \land \neg Q \land \neg R) \lor (R \land \neg P) \lor (R \land Q) \lor (R \land \neg R) \qquad (\land 对 \lor 的分配律)$$

$$\Leftrightarrow (P \land \neg Q \land \neg R) \lor (\neg P \land R) \lor (Q \land R)$$
 (补余律和同一律)

缺点是什么? 命题变元出现次数无约束 命题变元顺序无约束

例1: 从取1的行来列写

$$A = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \lor (P_1 \land P_2)$$

$$A = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \lor (P_1 \land P_2)$$

$$B = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \begin{vmatrix} P_1 & P_2 & A & B \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

真值表里的第i行

例2: 从取0的行来列写

$$A = (\neg P_1 \lor P_2)$$

$$\mathbf{B} = (\neg P_1 \lor P_2) \land (\neg P_1 \lor \neg P_2)$$

P_1	P_2	A	В
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	0

主范式——极小项和极大项

2.6.7 极小项

n 个命题变项 $P_1, P_2, ..., P_n$ 组成的合取式:

$$Q_1 \wedge Q_2 \wedge ... \wedge Q_n$$

其中 $Q_i = P_i$,或¬ P_i 。即每个命题变项与它的否定式不同时出现,但二者之一必出现且仅出现一次。则称合取式 $Q_1 \land Q_2 \land ... \land Q_n$ 为极小项,并以 m_i 表示。

2.6.8 极大项

n 个命题变项 $P_1,P_2,...,P_n$ 组成的析取式:

$$Q_1 \vee Q_2 \vee ... \vee Q_n$$

其中 $Q_i = P_i$,或¬ P_i 。即每个命题变项与它的否定式不同时出现,但二者之一必出现且仅出现一次。则称析取式 $Q_1 \vee Q_2 \vee ... \vee Q_n$ 为极大项,并以 M_i 表示。

主析取范式与主合取范式

主析取范式

设由*n* 个命题变项构成的析取范式中所有的合取式都是极小项,则称该析取范式为主析取范式 (仅由极小项构成的析取范式称为主析取范式)。

主合取范式

设由n个命题变项构成的合取范式中所有的析取 式都是极大项,则称该合取范式为主合取范式 (仅由极大项构成的合取范式称为主合取范式)。

2. 6. 9 主析取范式定理

任一含有n个命题变项的公式,都存在唯一的 与之等值的且恰仅含这n个命题变项的主析取范式。

2. 6. 10 主合取范式定理

任一含有n个命题变项的公式,都存在唯一的 与之等值的且恰仅含这n个命题变项的主合取范式。

主范式——极小项的性质

- (1) 任一含有n 个命题变项的公式,所有可能的极小项的个数和该公式的解释个数相同,都是 2^n 。
- (2) 排列顺序与 P_1 , P_2 , …, P_n 一致;
- (3) 每个极小项只在一个解释下为真。
- (4) 极小项两两不等值,并且 $m_i \wedge m_j = F(i \neq j)$ 。
- (5) 任一含有n 个命题变项的公式,都可由k 个($k \leq 2^n$) 极小项的析取来表示。

A是由k个极小项的析取来表示,剩余 2^n -k极小项的析取是 $\neg A$

(6) 恰由 2^n 个极小项的析取构成的公式必为重言式。即 $\bigvee_{i=0}^{2^n-1} m_i = T$

主范式——极大项的性质

- (1)任一含有n 个命题变项的公式,所有可能的极大项的个数与该公式的解释个数相同,都是 2^n 。
- (2) 排列顺序与 P_1 , P_2 , …, P_n 一致;
- (3) 每个极大项只在一个解释下为假。
- (4) 极大项两两不等值,并且 $M_i \vee M_j = T$ $(i \neq j)$ 。
- (5) 任一含有n个命题变项的公式,都可由k个($k \le 2^n$)极大项的合取来表示。

A是由k个极大项的合取来表示,剩余 2^n -k极大项的合取是 $\neg A$

(6) 恰由 2^n 个极大项的合取构成的公式必为矛盾式。即 $\Lambda_{i=0}^{2^n-1} M_i = F$

主析取范式与主合取范式的求法

求主析取范式的方法

- 1. 先求析取范式
- 2. 再填满变项

主析取范式与主合取范式的求法

1
$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

 $m_3 \qquad m_0$
 $= m_0 \lor m_3 = \lor_{0.3}$

2 填满命题变项

$$P \rightarrow Q = \neg P \lor Q$$

因为 $\neg P = \neg P \land (Q \lor \neg Q)$
 $= (\neg P \land Q) \lor (\neg P \land \neg Q)$
因为 $Q = Q \land (P \lor \neg P)$
 $= (P \land Q) \lor (\neg P \land Q)$
 $P \rightarrow Q = (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$
 $m_1 \quad m_0 \quad m_3$
 $= m_0 \lor m_1 \lor m_3$
 $= \lor_{0,1,3}$

填满变项的简便方法

$$\neg P \lor Q$$

$$= m^{0x} \lor m^{x1}$$

$$= m_0 \lor m_1 \lor m_3$$

极小项和极大项的关系

•
$$\neg m_i = M_{(2^n-1-i)}^n = M_{(i)}$$
 $\neg M_i = m_{(2^n-1-i)}^n = m_{(i)}$

$$\neg M_i = m_{(2^{n-1-i})} = m_{(i)}$$

公式	名称
$\neg P_1 \land \neg P_2$	m_0
$\neg P_1 \land P_2$	m_1
$P_1 \land \neg P_2$	m_2
$P_1 \wedge P_2$	m_3

公式	名称
$\neg P_1 \lor \neg P_2$	M_0
$\neg P_1 \lor P_2$	M_1
$P_1 \lor \neg P_2$	M_2
$P_1 \vee P_2$	M_3

P_{1}	P_2	极小项	名称	极大项	名称
0	0	$\neg P_1 \land \neg P_2$	m_0	$P_1 \vee P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \lor \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_1
1	1	$P_1 \wedge P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_{O}

主析取范式与主合取范式转换

• 主范式之间的转换

A是由k个极大项的合取来表示,剩余 2^n -k极大项的合取是 $\neg A$

$$\neg m_i = M_{(2^n-1-i)}^n = M_{(i)} + \qquad \neg M_i = m_{(2^n-1-i)}^n = m_{(i)} + \qquad$$

主范式的求法与举例

综合举例

$$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$$
 求主析与主合取范式
原式 = $\neg (P \lor \neg Q) \lor ((\neg P \land (Q \land \neg R)) \lor (P \land (\neg Q \lor R)))$
= $(\neg P \land Q) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q) \lor (P \land R)$
= $m^{01X} \lor m^{010} \lor m^{10X} \lor m^{1XI}$

主范式的求法与举例

$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$

列写真值表验算

P_{I}	P_2	极小项	名称	极大项	名称
0	0	$\neg P_1 \land \neg P_2$	m_0	$P_1 \vee P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \vee \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_{l}
1	1	$P_1 \land P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_0

P	Q	R	$P \lor \neg Q$	$Q \land \neg R$	$\neg P \leftrightarrow (Q \land \neg R)$	原式	
0	0	0	1	0	0	0	M_7
0	0	1	1	0	0	0	M_6
0	1	0	0	1	1	1	m_2
0	1	1	0	0	0	1	m_3
1	0	0	1	0	1	1	m_4
1	0	1	1	0	1	1	m_5
1	1	0	1	1	0	0	M_1
1	1	1	1	0	1	1	m_7

$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$

列写真值表验算

P_{I}	P_2	极小项	名称	极大项	名称
		$\neg P_1 \land \neg P_2$		$P_1 \vee P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \vee \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_{l}
1	1	$P_1 \land P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_0

P	Q	R	$P \lor \neg Q$	$Q \land \neg R$	$\neg P \leftrightarrow (Q \land \neg R)$	原式	
0	0	0	1	0	0	0	M_7
0	0	1	1	O	0	0	M_6
0	1	0	0	1	1	1	m_2
0	1	1	0	O	0	1	m_3
1	0	0	1	O	1	1	m_4
1	0	1	1	O	1	1	m_5
1	1	0	1	1	0	0	M_1
1	1	1	1	0	1	1	m_7

$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$

列写真值表验算

P_1	P_2	极小项	名称	极大项	名称
0	0	$\neg P_1 \land \neg P_2$	m_0	$P_1 \vee P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \vee \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_{l}
1	1	$P_1 \land P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_0

P	Q	R	$P \lor \neg Q$	$Q \land \neg R$	$\neg P \leftrightarrow (Q \land \neg R)$)原式	
0	0	0	1	0	0	0	M_7
0	0	1	1	0	0	0	M_6
0	1	0	0	1	1	1	m_2
0	1	1	0	0	0	1	m_3
1	O	0	1	0	1	1	m_4
1	0	1	1	0	1	1	m_5
1	1	0	1	1	0	0	M_1
1	1	1	1	0	1	1	m_7

$$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$$

列写真值表验算

P_{I}	P_2	极小项	名称	极大项	名称
0	0	$\neg P_1 \land \neg P_2$	m_0	$P_1 \vee P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \vee \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_{l}
1	1	$P_1 \land P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_0

P	Q	R	$P \lor \neg Q$	$Q \land \neg F$	$P \hookrightarrow (Q \land \neg R)$)原式	
0	0	0	1	0	0	0	M_7
0	0	1	1	0	0	0	M_6
0	1	0	0	1	1	1	m_2
0	1	1	0	0	0	1	m_3
1	0	0	1	0	1	1	m_4
1	0	1	1	0	1	1	m_5
1	1	0	1	1	0	0	M_1
1	1	1	1	0	1	1	m_7

清华大学软件学院 离散数学

主析范式 = $\bigvee_{2,3,4,5,7}$ 主合范式 = $\bigwedge_{1,6,7}$

主析与主合之间的转换(简化方法)

举例

$$A = \bigvee_{0,1,4,5,7}$$

$$= \bigwedge_{\{\{0,1,\ldots,7\}-\{0, 1, 4, 5, 7\} \nmid k\}\}}$$

$$= \bigwedge_{\{\{0,1,\ldots,7\}-\{7, 6, 3, 2, 0\}\}}$$

$$= \bigwedge_{1,4,5}$$

主析与主合之间的转换(简化方法)

已知
$$A = \bigwedge_{1,4,5}$$

$$= \bigvee_{\{0,1,\dots,7\}-\{1,4,5\}}$$

$$= \bigvee_{\{0,1,\dots,7\}-\{6,3,2\}\}}$$

$$= \bigvee_{0,1,4,5,7}$$

例: 求主范式

$$P \rightarrow Q$$

主合范式 =
$$\neg P \lor Q$$
 M_1 = \land_1

主析范式 =
$$\bigvee_{\{0,1,2,3\} - \{1\} \ \text{补}\}}$$
 = $\bigvee_{\{0,1,2,3\} - \{2\}}$ = $\bigvee_{0,1,3}$

2.6 空公式 (补充)

 $\mathbf{x}P \vee \mathbf{P}$ 的主析取和主合取范式

主析取范式: $P \vee \neg P$

主合取范式: 空公式

结论: 永真式的主合取范式为空公式

矛盾式的主析取范式为空公式

主(析取)范式的用途

• 求公式的成真赋值与成假赋值

• 判断公式的类型

• 判断两个命题公式是否等值

• 解决实际问题

求公式的成真(假)赋值

- 若公式A中含有n个命题变项
 - 若A的主析取范式含S个极小项,则A有S个成真赋值
 - 其余2ⁿ-s个赋值都是成假赋值

$$(P \lor \neg Q) \longrightarrow (\neg P \leftrightarrow (Q \land \neg R))$$
 $P Q R P \lor \neg Q Q \land \neg R \neg P \leftrightarrow (Q \land \neg R)$ 原式
 $0 0 0 1 0 0 0 M_7$
 $0 0 1 1 0 0 0 M_6$
 $0 1 0 0 1 1 1 m_2$
 $0 1 1 0 0 1 1 m_3$
 $1 0 0 1 1 0 1 1 m_5$
 $1 1 0 1 1 0 0 0 M_1$

判断公式的类型

- A为重言式当且仅当A的主析取范式含全部2ⁿ个极小项
- *A*为矛盾式当且仅当*A*的主析取范式不含任何极小 项
- *A*为可满足式当且仅当*A*的主析取范式中至少含一个极小项

结论:永真式的主合取范式为空公式 矛盾式的主析取范式为空公式

判断公式的类型-例1

$$\neg (P \rightarrow Q) \land Q$$

$$= \neg (\neg P \lor Q) \land Q$$

$$= (P \land \neg Q) \land Q$$

$$= F$$

矛盾式

判断公式的类型-例2

$$P \rightarrow (P \lor Q)$$

$$= \neg P \lor (P \lor Q)$$

$$= (\neg P \land (\neg Q \lor Q)) \lor (P \land (\neg Q \lor Q)) \land$$

$$(Q \land (\neg P \lor P))$$

$$= (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land \neg Q) \lor$$

$$(P \land Q) \lor (\neg P \land Q) \lor (P \land Q)$$

$$= \bigvee_{0, 1, 2, 3}$$

重言式

判断公式的类型: $(P \lor Q) \to R$

- A 矛盾式
- B 重言式
- 可满足
- □ 都不是

判断公式的类型-例3

$$(P \lor Q) \to R$$

$$= \neg (P \lor Q) \lor R \qquad 000$$

$$= (\neg P \land \neg Q) \lor R \qquad 001$$

$$= m^{00x} \lor m^{xy1} \qquad 011$$

$$= \bigvee_{0 \le 1, 3, 5, 7} \qquad 111$$

可满足

判断两个命题是否等值

• $(P \rightarrow Q) \rightarrow R = (P \land Q) \rightarrow R$

$$(P \rightarrow Q) \rightarrow R = \bigvee_{1, 3, 4, 5, 7}$$

 $(P \land Q) \rightarrow R = \bigvee_{0, 1, 2, 3, 4, 5, 7}$
 $(P \rightarrow Q) \rightarrow R \neq (P \land Q) \rightarrow R$

解决实际问题:例1

范式在逻辑设计方面有广泛的应用.

- 例1. 某科研所要从3名科研骨干A, B, C中挑选1~2名出国进修。由于工作需要,选派是要满足以下条件.
 - (1) 若A去,则C同去。
 - (2) 若B去,则C不能去。
 - (3) 若C不去,则A或B可以去。

解: $\Diamond P \setminus Q \setminus R$ 分别表示派A、B、或C去.

由已知条件可得公式

$$(P \rightarrow R) \land (Q \rightarrow \neg R) \land (\neg R \rightarrow (P \lor Q))$$

• $(P \rightarrow R) \land (Q \rightarrow \neg R) \land (\neg R \rightarrow (P \lor Q))$

该公式的成真赋值就是可行的选派方案

$$(P \to R) \land (Q \to \neg R) \land (\neg R \to (P \lor Q))$$

$$= (\neg P \lor R) \land (\neg Q \lor \neg R) \land (R \lor P \lor Q))$$

$$= (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q \land R)$$

$$= \lor_{1, 2, 5} \quad \Box \overline{n} \overline{a} 3 \overline{n} \overline{b} \overline{x} \overline{s} \overline{s}$$

- (1) C去, A, B都不去
- (1) B去, A, C都不去
- (1) A, C同去、B不去

解决实际问题:例2

范式在逻辑设计方面有广泛的应用.

例2. 安排课表,教语言课的教师希望将课程安排在第一或第三节;教数学课的教师希望将课程安排在第二或第三节;教原理课的教师希望将课程安排在第一或第二节.如何安排课表,使得三位教师都满意.

解:令 l_1 、 l_2 、 l_3 分别表示语言课排在第一、第二、第三节. m_1 、 m_2 、 m_3 分别表示数学课排在第一、第二、第三节. p_1 、 p_2 、 p_3 分别表示原理课排在第一、第二、第三节.

三位教师都满意的条件是:

 $(l_1 \lor l_3) \land (m_2 \lor m_3) \land (p_1 \lor p_2)$ 为真.

三位教师都满意的条件是:

$$(l_1 \lor l_3) \land (m_2 \lor m_3) \land (p_1 \lor p_2)$$
 为真.

将上式写成析取范式(用分配律)得:

$$((l_1 \land m_2) \lor (l_1 \land m_3) \lor (l_3 \land m_2) \lor (l_3 \land m_3)) \land (p_1 \lor p_2)$$

$$\Leftrightarrow \frac{(l_1 \wedge m_2 \wedge p_1)}{(l_1 \wedge m_3 \wedge p_1)} \vee$$

$$(l_3 \wedge m_2 \wedge p_1) \vee (l_3 \wedge m_3 \wedge p_1) \vee$$

$$(l_1 \wedge m_2 \wedge p_2) \vee (l_1 \wedge m_3 \wedge p_2) \vee$$

$$\frac{(l_3 \wedge m_2 \wedge p_2)}{(l_3 \wedge m_3 \wedge p_2)} \vee \frac{(l_3 \wedge m_3 \wedge p_2)}{(l_3 \wedge m_3 \wedge p_2)}$$

$$\Leftrightarrow (l_3 \land m_2 \land p_1) \lor (l_1 \land m_3 \land p_2)$$

可以取 $(l_3 \wedge m_2 \wedge p_1)$ 、 $(l_1 \wedge m_3 \wedge p_2)$ 为1,得到两种排法.

练习1: 谁是说谎者

张三说李四在说谎,李四说王五在说谎,王五说张三之李四都在说谎,请问三人到底谁说真话,谁说假话?

设P: 张三说真话; Q: 李四说真话; R: 王五说真话.

由题意有

$$E = (P \leftrightarrow \neg Q) \land (Q \leftrightarrow \neg R) \land (R \leftrightarrow (\neg P \land \neg Q))$$
$$= \neg P \land Q \land \neg R$$

即E的成真赋值为010, 故张三说假话, 李四说真话, 王五说假话.

选作题 (程序设计)

- 任给一命题公式,由命题公式列出真值表(通过键 盘输入公式并进行适当的语法检查,然后根据公式 列出(显示)相应的真值表。
 - 2. 由已知的真值表列写命题公式。
 - 3. 任给一命题公式, 计算命题公式的主析取范式和 主合取范式

提交日期: 2021年11月30日

2.7 推理形式

主要内容:

- 介绍推理形式的结构以及重言蕴涵的概念;
- 给出基本推理公式以及证明推理公式的几种不同方法 和途径;

2.7 推理形式

推理形式:

将以自然语句描述的推理关系引入符号,抽象化并以条件式的形式表示出来得到推理形式,推理形式由<mark>前</mark>提和结论部分组成。

前提真,结论必真的推理形式为正确的推理形式。

重言蕴含:

给定两个公式 A、B,如果当A取值为真时,B 就必取值为真,便称 A重言(永真)蕴涵B,或称B 是A的逻辑推论。并用符号 $A \Rightarrow B$ 表示。

2.7 推理形式

2.7.1 重言蕴含:

需注意重言蕴含⇒与普通蕴含→的区别

A重言蕴含B记作, $A \Rightarrow B$

注意: "⇒"不是逻辑联接词

 $A \Rightarrow B$ 当然也不同于A→B!

重言蕴含举例

UNIVERSITY TO THE PROPERTY OF THE PROPERTY O

例1. 如果今天是周五,那么我来上课。

今天是周五,

所以我来上课。

设 P: 今天是周五, Q: 今天我来上课

$$(P \rightarrow Q) \land P \Rightarrow Q$$

前提真,结论也为真,是正确的推理。

重言蕴含举例

例2. 如果今天是五,那么我来上课

今天不是周五

所以我不来上课

$$(P \rightarrow Q) \land \neg P \Rightarrow \neg Q$$

P	Q	$P \rightarrow Q$ 1	$\neg P$	¬Q 1
0	0	1	1	1
0	1	1	1	0
1	0	0	0	1
0 1 1	1	1	0	0

前提真,结论假!

不是正确的推理!

2.7.3 重言蕴含几个结果

- (1) 如果 $A \Rightarrow B$ 成立,若A为重言式,则B也是重言式。
- (2) 若 $A \Rightarrow B \perp B \Rightarrow A$ 同时成立,必有A = B;反之亦然。
- (4) 若 $A \Rightarrow B \perp A \Rightarrow C$ 同时成立,则 $A \Rightarrow B \land C$
- (5) 若 $A \Rightarrow C \perp B \Rightarrow C$ 同时成立,则 $A \vee B \Rightarrow C$

• $(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$ 前提析取合并

重言蕴含的充要条件

定理2.8.1

 $A \Rightarrow B$ 成立的充分必要条件是 $A \rightarrow B$ 为重言式。

定理2.8.2

 $A \Rightarrow B$ 成立的充分必要条件是 $A \land \neg B$ 为矛盾式。

定理2.8.2

 $A \Rightarrow B$ 成立的充分必要条件是 $A \land \neg B$ 为矛盾式。

证明:

由定理2.8.1和命题公式等值式

 $A \rightarrow B = \neg A \lor B = \neg (A \land \neg B)$, 因此,

" $A \rightarrow B$ 是重言式"即等价于" $A \land \neg B$ 是矛盾式"

注意: *A* ⇒ *B* 中 *A*自身不能必假! 若*A*永假, 则*A*→ *B* 肯定永真, 虽然*A*⇒*B* 也成立, 但已失去意义!

2.8 基本的推理公式

证明 $A \Rightarrow B$ 的几种方法:

- 1. 证 $A \rightarrow B$ 是重言式
- 2. 证 $A \land \neg B$ 为矛盾式
- 3. 真值表法
- 4. 证 $\neg B \Rightarrow \neg A$ 即反证法
- 5. 解释法
- 6.

基本推理公式

$$1. P \land Q \Rightarrow P$$
, $\not \square P \lor Q \neq P$

$$2. \neg (P \rightarrow Q) \Rightarrow P$$

1式的直接推论 $P \land \neg Q \Rightarrow P$

$$3. \neg (P \rightarrow Q) \Rightarrow \neg Q$$

 $3. \neg (P \rightarrow Q) \Rightarrow \neg Q$ 1式的直接推论 $P \land \neg Q = \neg Q$

$$4. P \Rightarrow P \lor Q$$

5.
$$\neg P \Rightarrow P \rightarrow Q$$

2式的逆否,4式的推论。

6.
$$Q \Rightarrow P \rightarrow Q$$

*3*式的逆否,4式的推论。

7.
$$\neg P \land (P \lor Q) \Rightarrow Q$$

 $7. \neg P \land (P \lor Q) \Rightarrow Q$ 非 P,而P \lor Q 又成立,只有Q成立

8.
$$P \land (P \rightarrow Q) \Rightarrow Q$$

8. $P \land (P \rightarrow Q) \Rightarrow Q$ *假言推理,分离规则,7式的变形

$$9. \neg Q \land (P \rightarrow Q) \Rightarrow \neg P$$
 7式的变形 $\frac{P}{Q}$ $\frac{Q}{\neg P}$

基本推理公式

10.
$$(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow P \rightarrow R$$

*三段论

11.
$$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow P \leftrightarrow R$$

类似10式

12.
$$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) \Rightarrow R$$

10式的推论

13.
$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) \Rightarrow Q \lor S$$

10式的推论

14.
$$(P \rightarrow Q) \land (R \rightarrow S) \land (\neg Q \lor \neg S) \Rightarrow \neg P \lor \neg R$$

9式的推论

15.
$$(Q \rightarrow R) \Rightarrow ((P \lor Q) \rightarrow (P \lor R))$$

P=F时左=右, *P*=T时右=T

16.
$$(Q \rightarrow R) => ((P \rightarrow Q) \rightarrow (P \rightarrow R))$$

P=T时左=右, *P*=F时右=T

证明:
$$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) =$$
 $(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q)$ 前提析取合并
$$= ((P \lor Q) \rightarrow R)) \land (P \lor Q)$$
 分离规则

 $\Rightarrow R$

•
$$(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$$
 前提析取合并

证明:
$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) => Q$$
 (P $\rightarrow Q$) $\land (R \rightarrow S) \land (P \lor R)$

$$= (P \rightarrow Q) \land (R \rightarrow S) \land (\neg P \rightarrow R)$$

$$=> (P \rightarrow Q) \land (\neg P \rightarrow S)$$

$$= (\neg Q \rightarrow \neg P) \land (\neg P \rightarrow S)$$

$$\Rightarrow \neg Q \rightarrow S$$

$$= Q \vee S$$

证明:
$$(P \rightarrow Q) \land (R \rightarrow S) \land (\neg Q \lor \neg S) \Rightarrow \neg P$$
 (P \rightarrow Q) \land (R \rightarrow S) \land (\sigma Q \vert \sigma S)

$$= (P \rightarrow Q) \land (R \rightarrow S) \land (S \rightarrow \neg Q)$$

$$= > (P \rightarrow Q) \land (R \rightarrow \neg Q)$$

$$= (\neg Q \rightarrow \neg P) \land (R \rightarrow \neg Q)$$

$$\Rightarrow R \rightarrow \neg P$$

$$= \neg P \lor \neg R$$

2.9 推理演算

出发点:

直观地看出由前提A到结论B 的推演过程,且便于在谓词逻辑中使用。

方法

- (1) 引入几条推理规则
- (2) 利用基本推理公式

从前提 A_1 , A_2 , ..., A_n 出发,配合使用推理规则和基本推理公式,逐步推演出结论B。

2.9 推理演算

主要的推理规则:

- (1) 前提引入规则;推理过程中可随时引入前提
- (2) 结论引入规则;中间结论可作为后续推理的前提
- (3) 代入规则;仅限于重言式中的命题变项
- (4) 置换规则;利用等值公式对部分公式进行置换
- (5) 分离规则; 由 $AQA \rightarrow B$ 成立, 可将B分离出来
- (6) 条件证明规则。 $A_1 \wedge A_2 \Rightarrow B = A_1 \Rightarrow A_2 \rightarrow B$ 等价 $P \rightarrow (Q \rightarrow R) = (P \wedge Q) \rightarrow R$

条件证明规则。 $A_1 \land A_2 \Rightarrow B = A_1 \Rightarrow A_2 \rightarrow B$ 等价

例1 证明P→R是P→Q, Q→R的逻辑推论。

证明:

- 1. P→Q 前提引入
- 2. P 附加前提引入(条件证明规则)
- 3. Q 1、2分离
- 4. Q→R 前提引入
- 5. R 3、4分离

注:此题可直接使用推理公式10(三段论), 以简化证明步骤。

 $(P \rightarrow Q) \land (Q \rightarrow R) = > P \rightarrow$

教材 例3: 证明 $(P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R$

证明:

1. PVQ 前提引入

2. ¬P→Q 1 置换

3. Q→S 前提引入

4. ¬P→S 2、3 三段论

5. ¬S→P 4置换

6. P→R 前提引入

7. ¬S→R 5、6三段论

8. SVR 7置换

由该例可见,将P∨Q置换成¬P→Q更便于推理

推理演算举例:

$$(\neg (P \rightarrow Q) \rightarrow \neg (R \lor S)) \land ((Q \rightarrow P) \lor \neg R) \land R \Rightarrow (P \rightarrow Q)$$

1.
$$(Q \rightarrow P) \bigvee \neg R$$

前提引入

2.
$$R \rightarrow (Q \rightarrow P)$$

1置换

3. R

前提引入

4. $Q \rightarrow P$

2、3分离

 $5. \quad \neg (P \rightarrow Q) \rightarrow \neg (R \lor S)$

前提引入

6. $(R \lor S) \rightarrow (P \rightarrow Q)$

5置换

7. $R \lor S$

3 + **基本公式4**

8. P→Q

6、7分离

9. $P \leftrightarrow Q$

4, 8

(注:教材中的证明用了15个步骤, 这里用一种更为简洁的方法)

推理演算举例:条件证明规则

例题6: $P \rightarrow (Q \rightarrow S)$, $\neg R \lor P$, $Q \Rightarrow R \rightarrow S$

证明 (1) R

$$(2) \neg R \lor P = R \rightarrow P$$

(3) P

$$(4) P \rightarrow (Q \rightarrow S)$$

 $(5) Q \rightarrow S$

(6) Q

(7) S

 $(8) R \rightarrow S$

附加前提引入

前提引入

(1)(2)分离规则

前提引入

(3)(4)分离规则

前提引入

(5)(6)分离规则

条件证明规则

• 出发点:

基于推理规则的方法,规则与公式较多,技巧较高。能否仅建立一条推理规则,便于机器证明与程序实现。

• 理论依据: 定理2.8.2

A⇒B 成立当且仅当A ∧ ¬B 是矛盾式。

- 归结法步骤:
 - 1. $A \land \neg B$ 出发(欲证A ⇒B, 等价于证 A $\land \neg B$ 是矛盾式)
 - 2. 建立子句集S,将A△¬B 化成合取范式:

$$C_1 \land C_2 \land ... \land C_n$$

其中 C_i 为析取式。由诸 C_i 构成子句集
 $S = \{ C_1, C_2, ..., C_n \}$

- 3. 对S 中的子句作归结(消互补对), 归结 结果(归结式)仍放入S 中。重复此步。
- 4. 直至归结出矛盾式(口)。

• 归结法推理规则

$$C1 = \neg L \rightarrow C1$$
'
 $C2 = \neg C2$ ' $\rightarrow \neg L$ 因而
新子句 R(C1,C2) = C1' \lor C2'

归结法推理规则(续)
 C1 △C2 => R(C1, C2)需证明。

$$C1 = L \lor C1'$$

 $C2 = \neg L \lor C2'$

证明:

 $C1 \land C2 \rightarrow C1' \lor C2'$ 为永真式(定理2.8.1) 设在任一解释下,C1和C2均为真 若L=T,则 $\neg L=F$,从而必有C2'=T ($\because C2$ 为真) 若L=F,则 $\neg L=T$,从而必有C1'=T (因为C1为真) 综合上述均有 $C1' \lor C2'$ 为真 因此, $C1 \land C2 \Longrightarrow R(C1, C2)$

2.10 归结法 证明举例

例1: 证明 $(P \rightarrow Q) \land P \Rightarrow Q$

证明: 1. 先将 $(P \rightarrow Q) \land P \land \neg Q$ 化成合取范式 $(\neg P \lor Q) \land P \land \neg Q$

2. 建立子句集 $S = {\neg P \lor Q, P, \neg Q}$

$$S = {\neg P \lor Q, P, \neg Q}$$

2.10 归结法 证明举例

归结过程:

- $(1) \neg P \lor Q$
- (2) P
- $(3) \neg Q$
- (4) Q

(1)(2)归结

 $(5) \square$

(3)(4)归结

归结出空子句□(矛盾式)证明结束。

例2

例2: 用归结法证明 $((P \rightarrow Q) \land (Q \rightarrow R)) \Rightarrow (P \rightarrow R)$

证明:

先将 $(P \rightarrow Q) \land (Q \rightarrow R) \land \neg (P \rightarrow R)$ 化成合取范式

$$(\neg P \lor Q) \land (\neg Q \lor R) \land P \land \neg R$$

建立子句集 $S = \{ \neg P \lor Q, \neg Q \lor R, P, \neg R \}$

$$S = \{ \neg P \lor Q, \neg Q \lor R, P, \neg R \}$$

归结过程:

- $(1) \neg P \lor Q$
- $(2) \neg Q \lor R$
- (3) P
- $(4) \neg R$
- $(5) \neg P \lor R$
- (1)(2)归结

(6) R

(3)(5)归结

(7)

(4)(6)归结

归结出空子句□(矛盾式) 证明结束。

例3 $(P \rightarrow (Q \rightarrow R)) \land (Q \rightarrow (R \rightarrow A)) \Rightarrow P \rightarrow (Q \rightarrow Q)$

证明: 先将

$$(P \rightarrow (Q \rightarrow R)) \land (Q \rightarrow (R \rightarrow A)) \land \neg (P \rightarrow (Q \rightarrow A))$$

= $(\neg P \lor \neg Q \lor R) \land (\neg Q \lor \neg R \lor A) \land P \land Q \land \neg A$ 。
建立子句集
 $S = \{\neg P \lor \neg Q \lor R, \neg Q \lor \neg R \lor A, P, Q, \neg A\}$

$S=\{\neg P \lor \neg Q \lor R, \neg Q \lor \neg R \lor A, P, Q,$

- 归结过程
 - (1) $\neg P \lor \neg Q \lor R$
 - (2) $\neg Q \lor \neg R \lor A$
 - (3) P
 - (4) Q
 - $(5) \neg A$
 - (6) ¬Q∨R (1) (3) 归结
 - (7) ¬R∨A (2) (4) 归结
 - (8) R (4) (6) 归结
 - (9) ¬R (5) (7) 归结
 - (10) □ (8) (9) 归结

2.10 归结法 证明举例

补充: 推理规则应用题, 构造下面推理的证明:

例1: 如果小张守第一垒并且小李向B队投球,

则A队将获胜。

或者A队未取胜,或者A队成为联赛第一名。

A队没有成为联赛第一名。小张守第一垒。

因此,小李没向B队投球。

如果小张守第一垒并且小李向B队投球,则A队将获胜。 或者A队未取胜,或者A队成为联赛第一名。 A队没有成为联赛第一名。小张守第一垒。

解: 先将简单命题符号化。

P: 小张守第一垒;

Q:小李向B队投球;

R: A队取胜;

S: A队成为联赛第一名。

前提: $(P \land Q) \rightarrow R$, $\neg R \lor S$, $\neg S$, P

结论: ¬Q

前提: (P∧Q)→R (¬(P∧Q)∨R), ¬R∨S,

结论: ¬Q

证明:

(1) Q 结论的否定引入

(2) ¬RVS 前提引入

(3) ¬S 前提引入

(4)¬R (2)(3)归结

(5)¬(PAQ)VR 前提引入

(6)¬(P∧Q) (4)(5)归结

(7)¬PV¬Q (6)置换

(8) P 前提引入

(9)¬Q (7)(8)归结

(10) Q∧¬Q (1)(9)合取

清华大学软件学院离散数学

例3: 请根据下面事实, 找出凶手;

- 1. 清洁工或者秘书谋害了经理。
- 2. 如果清洁工谋害了经理,则谋害不会发生在午夜前。
- 3. 如果秘书的证词是正确的,则谋害发生在午夜前。
- 4. 如果秘书的证词不正确,则午夜时屋里灯光未灭。
- 5. 如果清洁工富裕,则他不会谋害经理。
- 6. 经理有钱且清洁工不富裕。
- 7. 午夜时屋里灯灭了。

令 A:清洁工谋害了经理。

B:秘书谋害了经理。

C:谋害发生在午夜前。

D:秘书的证词是正确的.

E:午夜时屋里灯光灭了。H:清洁工富裕.

G:经理有钱.

命题符号为:

 $A \lor B, A \rightarrow \neg C, D \rightarrow C, \neg D \rightarrow \neg E, H \rightarrow \neg A, G \land \neg H, E \Rightarrow ?$

解: (1)E

前提引入

 $(2) \neg D \rightarrow \neg E$

前提引入

(3) D

(2) 逆否之后和(1) 分离

 $(4) D \rightarrow C$

结果是秘书谋害了经理

(5) C

(3)(4)分离

 $(6) A \rightarrow \neg C$

前提引入

 $(7) \neg A$

(6) 逆否之后和(5) 分离

 $(8) A \lor B (\neg A \rightarrow B)$

前提引入

(9) B

(7)(8)分离

例4: 判断下列推理是否正确。

若一个数是实数,则它是复数;若一个数是虚数,则它也是复数;一个数既不是实数,又不是虚数, 所以它不是复数。

P: 一个数是实数

R: 一个数是虚数

Q: 一个数是复数

则原题可符号化为:

$$P \rightarrow Q$$
, $R \rightarrow Q$, $\neg P \land \neg R \Rightarrow \neg Q$

$$P \rightarrow Q$$
, $R \rightarrow Q$, $-P \land -R \Rightarrow -Q$

证明:令

$$S=(P \rightarrow Q) \land (R \rightarrow Q) \land (\neg P \land \neg R) \rightarrow \neg Q$$

则

$$S = \neg((\neg P \lor Q) \land (\neg R \lor Q) \land (\neg P \land \neg R)) \lor \neg Q$$

$$= (P \land \neg Q) \lor (R \land \neg Q) \lor P \lor R \lor \neg Q$$

$$= P \lor R \lor \neg Q$$
 吸收律 $A \lor (A \land B) = A$

当Q取T, P、R取F时, S为F, 即S不是重言式,

所以, 推理不成立。

少了一个条件:一个复数不是实数就是虚数

第二章小结:主要内容

- 2.1 等值定理
- 2.2 等值公式
- 2.3 命题公式与真值表的关系
- 2.4 联接词的完备集
- 2.5 对偶式

- 2.6 范式
- 2.7 推理形式
- 2.8 基本的推理公式
- 2.9 推理演算
- 2.10 归结推理法

- 等值定理
 - 若在任一解释下,公式A和B的真值都相同,则称A和B是等值的
- 等值公式
 - 置换规则
 - 基本的等值公式
 - 常用等值公式
 - 等值演算及其应用
- 命题公式与真值表的关系
 - 从取T的行来写
 - 从取F的行来写

- 联结词的完备集
 - 可以证明, {¬, ∨}, {¬, ∧}, {¬, →}, {↑}, {↓}
 都是联结词功能完全组;
 - 而{¬, ↔}, {¬}, {∧}, {∨}, {∧, ∨}都不是联结词功能完全组;
 - 使用联结词集 {¬, ∧, ∨}.

- 对偶式
 - 定义: A中出现的 \lor , \land , T, F 分别以 \land , \lor , F, T 代 换
 - 6个定理
- 范式
 - 析取范式, 合取范式
 - 极小项, 主析取范式, 极大项, 主合取范式
 - 主范式的4个用途

- 推理形式
 - 自然语句描述的推理关系 引入符号,抽象化并以条件式表示出来
 - 重言蕴涵
 - 重言蕴涵的5个结果
- 基本推理公式
 - -16个? $P \wedge Q \Rightarrow P \qquad P \Rightarrow P \vee Q$ $P \wedge (P \rightarrow Q) \Rightarrow Q \quad (假言推理)$ $(P \rightarrow Q) \wedge (Q \rightarrow R) \Rightarrow P \rightarrow R (三段论)$

- 基本推理公式
 - -2个定理

 $A \Rightarrow B$ 成立的充分必要条件是 $A \rightarrow B$ 为重言式。

 $A \rightarrow B$ 成立的充分必要条件是 $A \land \neg B$ 为矛盾式。

推理演算

• 主要的推理规则

- (1) 前提引入规则;推理过程中可随时引入前提
- (2) 结论引入规则;中间结论可作为后续推理的前提
- (3) 代入规则; 仅限于重言式中的命题变项
- (4) 置换规则; *利用等值公式对部分公式进行置换*

归纳法

- 归结法步骤
 - 从A ∧¬B 出发(欲证A ⇒B,等价于证 A ∧¬B 是矛盾式)
 - 2. 建立子句集S,将A∧¬B 化成合取范式:
 C₁∧C₂∧…∧C_n
 其中C_i为析取式。由诸C_i构成子句集
 S = { C₁, C₂, …, C_n }
 - 3. 对S 中的子句作归结(消互补对), 归结 结果(归结式)仍放入S 中。重复此步。
 - 4. 直至归结出矛盾式(□)。

第二章小结与教学要求

- 掌握和理解命题公式等值的概念,掌握命题 公式等值的判别方法;
 - 列真值表
 - 公式的等价变换
 - 主范式
- 熟悉基本的等值公式,能在理解的基础上熟记并能在等值演算中灵活使用;
- 3. 理解命题公式与真值表的关系,能够由给定的真值表写出相应的命题公式;

第二章小结与教学要求

- 4. 了解联结词完备集的概念,掌握判别联结词完备集的方法;
- 5. 理解范式的概念和范式定理,能够将命题公式 熟练地化成相应的主析取范式和主合取范式;
- 6. 理解推理形式的基本结构,掌握重言蕴涵的概 念和主要结果;

第二章小结与教学要求

- 7. 熟悉基本的推理公式,掌握推理公式的不同 证明方法;
 - A→B 是重言式、A △ ¬B 为矛盾式、真值表法、¬B ⇒¬A 即反证法、解释法
- 8. 理解基本的推理规则,掌握使用推理规则进 行推理演算的方法;
- 9. 理解归结推理规则,掌握用归结推理法证明 的方法。

第一章和第二章 小结

刻世實 shixia@tsinghua.edu.cn