PyTorch Fundementals

Prepared By:

H. Fuat Alsan

PyTorch

- Very Pythonic
- Efficient Tensor operations
- Autograd (Automatic Differentiation)
- Ready-to-use deep learning layers and functions
- Handles complex CUDA operations for us
- Uses cuDNN (CUDA Deep Neural Network)

PyTorch Important Components

- Tensors
 - Represent data and math operations
 - Very similar to NumPy arrays
- Dataset
 - Represent all available data
 - Transforms (data augmentation)
- Dataloader
 - Creates batches from the datasets
- Autograd (Automatic Differentiation)
 - Useful for gradient descent, backpropagation
- Model and Layers (nn.Module)
- Optimizers
- Loss Functions
- Learning Rate (LR) schedulers

Datasets

- torch.utils.data.Dataset
- Built-in Datasets (torchvision.datasets)
 - MNIST
 - CIFAR10
- Imagefolder
 - Useful for classification
- Custom Dataset Class
 - Most flexiable
- See: https://pytorch.org/tutorials/beginner/basics/data-tutorial.html

Datasets

• Train/validation/test split

Data transformation & augmentations

Download & load built-in dataset for training and testing

```
from torchvision import datasets, transforms
transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,)),
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform-transform
test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
```

ImageFolder

(Root data folder structure)

ImageFolder

```
root_folder/train/dogs/001.png
root folder/train/dogs/002.png
...
root folder/val/dogs/001.png
root folder/val/dogs/002.png
root folder/train/cats/001.png
root folder/train/cats/002.png
root folder/val/cats/001.png
root folder/val/cats/002.png
```

train_dataset = torchvision.datasets.ImageFolder(root='train', train_transforms) valid_dataset = torchvision.datasets.ImageFolder(root='val', val_transforms) (AUTOMATICALLY ASSINGS CLASS LABELS USING FOLDER STRUCTURE)

Custom Dataset Class

Subclass of Dataset

Total lenght of dataset

Function used for fetching data

Reading image file

Convert to tensors

Apply data augmentation

```
class BasicSegmentationDataset(Dataset):
  def __init__(self, df_full, class_colors, class_mapping, transform=None, reverse=True):
       self.df_full = df_full
       self.class_colors = class_colors
       self.class_mapping = class_mapping
       self.transform = transform
       self.reverse = reverse
       self.xml_files = df_full.filename.unique()
   def __len__(self):
       return len(self.xml_files)
   def __getitem__(self, idx):
       selected_xml_file = self.xml_files[idx]
       selected_img_file = selected_xml_file[:-4] + '.tiff'
       image_1 = Image.open(selected_img_file).convert('RGB')
       image_1 = np.array(image_1).astype(np.float32) # ORIGINAL IMAGE
      _df = self.df_full[self.df_full.filename == selected_xml_file]
       image_2 = self.draw_masks(image_1.copy(), _df)
       image_1 = normalize_image(image_1)
       image_2 = normalize_image(image_2)
       image_1 = torch.from_numpy(image_1.copy().transpose((2,0,1)))
       image_2 = torch.from_numpy(image_2.copy().transpose((2,0,1)))
       if self.transform is not None:
           both_images = torch.cat((image_1.unsqueeze(0), image_2.unsqueeze(0)), 0)
           transformed_images = self.transform(both_images)
           image_1 = transformed_images[0]
           image_2 = transformed_images[1]
      return image_1, image_2
```

Dataset Bacthing

train_loader = torch.utils.data.DataLoader(dataset=train dataset, Pass dataset batch size=32, shuffle=True, num_workers=6, Batch size pin memory=False, test loader = torch.utils.data.DataLoader dataset=test dataset, shuffle=True, Add batch dimension to the data

Original: (1, 28, 28)

Batched: (32, 1, 28, 28)

```
batch_size=32,
       num workers=6,
       pin memory=False,
   ex_img_batch, ex_target_batch = next(iter(train_loader))
   print(ex img batch.shape)
   print(ex_target_batch.shape)
torch.Size([32, 1, 28, 28])
torch.Size([32])
```

PyTorch nn. Module Hierarchy

- nn.Module is the base class for everything in PyTorch
- nn.Module2 (contains) nn.Module1 (contains) nn.Parameter (contains) tensors
- Commonly used layers:
 - nn.Linear
 - nn.Conv2d
 - nn.ConvTranspose2d
 - nn.ReLU
 - nn.Sigmoid

Basic nn. Module

```
Subclass of nn. Module
                                                      class SimpleLinear(nn.Module):
super().__init__() must be called!
                                                          def __init (self, in_features, out_features):
                                                              super().__init__()
                                                              self.in features = in features
               init () is special
                                                              self.out features = out features
             function that defines the
             module itself
                                                              self.fc1 = nn.Linear(in_features, out_features)
               nn.Module can contain
                                                              self.act_fn = nn.ReLU()
               other nn.Module(s)
                                                          def forward(self, x):
               Forward function is called
                                                              x = self.fc1(x)
               when forward pass on this
                                                              x = self.act_fn(x)
               module is done
                                                              return x
```

There is no need for defining backward pass function, autograd handles that for us

Another nn. Module

__init__() function takes arguments to define the module

Other nn.Modules

Forward pass

```
class DownsampleBlock(nn.Module):
   def __init__(self, in_channels, out_channels, down_ratio):
       super().__init__()
        # Conv layer with kernel size=(3, 3) and padding=1
        # This layer normally doesn't change the width and heigth
        # Also: channels are converted fro in channels to out channels
        self.conv = nn.Conv2d(
           in_channels=in_channels,
           out channels=out channels,
           kernel_size=3,
            stride=down_ratio, # divide by down_ratio
           padding=1,
            bias=False
       self.norm = nn.BatchNorm2d(out channels)
       self.relu = nn.ReLU()
   def forward(self, x in):
       x_features = self.conv(x_in)
        # (N, out channels, H//down ratio, W//down ratio)
       x_features = self.norm(x_features)
       x_features = self.relu(x_features)
        # final dims: (N, out channels, H//down ratio, W//down ratio)
        return x features
```

nn. Module with No Learnable Parameters

nn. Module with No Learnable Parameters

```
class UpscaleLayer(nn.Module):
    def __init__(self, scale_factor):
        super().__init__()
        self.scale_factor = scale_factor

def forward(self, x):
    # (N, CHANNELS, HEIGHT, WIDTH)
    # Perform nearest-neighbor interpolation to upscale the input
    # Assigns the value of the nearest input pixel
    x_upscaled = nn.functional.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
    # x_upscaled dims:
    # (N, CHANNELS, HEIGHT*scale_factor, WIDTH*scale_factor)
    return x_upscaled
```

Same as before but different forward pass operation

Full Model

Each of these are nn.Module layers Convolutional part

Fully connected (nn.Linear) part

```
class ConvNet(nn.Module):
   def __init__(self):
       super().__init__()
       self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3)
       self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3)
       self.max pool = nn.MaxPool2d(kernel size=2)
       self.relu = nn.ReLU()
       self.fc1 = nn.Linear(9216, 128)
       self.fc2 = nn.Linear(128, 10)
   def forward(self, x):
       print(f'Input dims: {x.shape}')
       x = self.conv1(x) # (N, 1, 28, 28) \rightarrow (N, 32, 26, 26)
       print(f'After conv1 {x.shape}')
       x = self.relu(x) # no dim change
       x = self.conv2(x) # (N, 32, 26, 26) \rightarrow (N, 64, 24, 24)
       print(f'After conv2 {x.shape}')
       x = self.relu(x) # no dim change
       x = self.max pool(x) # (N, 64, 24, 24) -> (N, 64, 12, 12)
       print(f'After maxpool {x.shape}')
       x = \text{torch.flatten}(x, 1) \# (N, 64, 12, 12) \rightarrow (N, 64*12*12) \rightarrow (N, 9216)
       x = self.fc1(x) # (N, 9216) \rightarrow (N, 128)
       x = self.relu(x) # no dim change
       logits = self.fc2(x) # (N, 128) - (N, 10)
       return logits
```

Classification Model

Image Classifier for MNIST Dataset

A Modern Image Classifier (VGG16)

Training Classifiers

- In regression we had continuos values, we used MSE
- However, this is not the case in classification
- In classification, we have fixed classes
 - Each class is represented by an ingeter ID
 - For ex: Cat/Dog classifier
 - Cat -> 0
 - Dog -> 1
- In classification, we use a loss function called cross entropy
 - Actually it is negative log-likelihood loss

Training Classifiers

- Batch iteration: single cycle of batch data
 - batch_size amount of data is used for every iteration
 - Last iteration might have less data (dataset is not fully divisible by batch size)
 - (Use **drop_last=True** in dataloader to ignore this)
- **Epoch:** single cycle of full dataset
 - All batch iterations are completed
- Backpropagation
 - Foward pass: Model predicts, loss is computed
 - Backward pass: Using loss, gradients are computed and parameters are updated

Training Loop

parameters

Test/Vadilation Loop

There is no backward pass in testing/validation

Loss & Optimizer

```
# ConvNet() is defined somewhere
                                 model = ConvNet()
                                 optimizer = torch.optim.SGD(
 Pass model parameters
                                      model.parameters(),
                                      1r=0.02
        Learning rate
                                 # Negative log-likehood with softmax
                                 criterion = nn.CrossEntropyLoss()
Initialize loss function
(called criterion)
```

Epoch Loop

```
NUM_EPOCHS = 10

# Move model to GPU (if available)
model.to(device)

for epoch in range(1, NUM_EPOCHS+1):
    train_loss, train_acc = train(model, train_loader, optimizer, criterion, epoch)
    test_loss, test_acc = test(model, test_loader, criterion)

    print(f'Epoch: {epoch}, Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}, Test Loss: {test_loss:.4f}, Test Acc: {test_acc:.2f}')
```

Likelihood Function As Loss

- We wish to increase the probabilty of predicting a class
- Likelihood function is useful for measuring that
- Log likelihood: turns multiplication into addition
 - Faster computation -> Negative log likelihood
- Negative log likelihood
 - Likelihood: better when increased
 - Gradient descent is designed for reducing
 - Hence we add «negative sign» to log likehood
 - This way, we increase the likelihood

Loss vs Likelihood

Loss vs Likelihood

Classification Loss Function

- Binay Case:
- y_i : class id (0 or 1, each indicating a class)
- \hat{y}_i : probability of class (predicted by the model)

$$ext{Loss} = -rac{1}{rac{ ext{output}}{ ext{size}}} \sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i + (1-y_i) \cdot \log \, (1-\hat{y}_i)$$

BCE PyTorch Implementation

- Binary Cross Entropy (BCE)
- Automically flattens the data if tensor.dim() > 2
 - For ex: segmentation mask have (N, 10, height, width)
 - Useful for computing loss on segmentation masks
 - (N, flatted_mask_actual), (N, flatted_mask_predected)

Multiclass Classification (Cont.)

$$logloss = -\frac{1}{N} \sum_{i}^{N} \sum_{j}^{M} y_{ij} \log(p_{ij})$$

- N is the number of rows
- M is the number of classes

Save & Load Model

```
# SAVE MODEL AND OPTIMIZER STATE DICT
                                                            # SAVE FILENAME 'convnet checkpoint.pt'
                                                            torch.save({
        Model parameters represented as
                                                                'model state dict': model.state_dict(),
        Python dictionary
                                                                 'optimizer state dict': optimizer.state dict()
    Optimizer inner state represented as
                                                                 'convnet checkpoint.pt'
    Python dictionary
                            Filename
                                                            # LOAD PRE-TRAINED MODEL
                                                           model = ConvNet()
                                                           checkpoint = torch.load('convnet checkpoint.pt')
                  Load model state dict
                                                           model.load state dict(checkpoint['model state dict'], strict=True)
                                                             SWITCH MODEL TO PREDICTION ONLY MODE
                                                           # (OPTIONAL)
                                                            model.eval()
Do this only if training will NOT continue
```