

Random unit vectors

- Let $\mathbf{X} = (X_1, X_2, \dots, X_d)$ be **random vector** with uniform distribution on **unit sphere** $S^{d-1} := \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 = 1\}.$
- Are X_1, X_2, \ldots, X_d independent?
 - ▶ No! But almost . . .
- ▶ What is $\mathbb{E}(X_1)$?
 - ▶ If σ is the pdf, then for any $\boldsymbol{u} = (u_1, u_2, \dots, u_d) \in S^{d-1}$,

$$\sigma(u_1, u_2, \ldots, u_d) = \sigma(-u_1, u_2, \ldots, u_d).$$

- ▶ So $\mathbb{E}(X_1) = 0$.
- ightharpoonup Similarly, $\mathbb{E}(X_1X_2) = \mathbb{E}(X_1X_2X_3) = \cdots = 0$.
- ▶ Also for any distinct $i_1, i_2, \ldots \in [d]$, $\mathbb{E}(X_{i_1}X_{i_2}\cdots) = 0$.

3

Random unit vectors

- ▶ What is $\mathbb{E}(X_1^2)$?
 - By linearity of expectation,

$$\mathbb{E} \|\boldsymbol{X}\|_2^2 = \sum_{i=1}^d \mathbb{E}(X_i^2).$$

- ▶ But $\|\boldsymbol{X}\|_2^2 = 1$ since \boldsymbol{X} is a random unit vector.
- ► So by symmetry,

$$\mathbb{E}(X_1^2) = \frac{1}{d}.$$

- ▶ Nothing special about direction $(1,0,\ldots,0) \in S^{d-1}$.
 - ▶ For any unit vector $\mathbf{u} \in S^{d-1}$,

$$\mathbb{E}(\langle \boldsymbol{u}, \boldsymbol{X} \rangle^2) = \frac{1}{d}.$$

Variance

► Variance is expected (squared) deviation of random variable from its mean:

$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2].$$

- ▶ Another formula: $var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$.
- ▶ Can deduce $(\mathbb{E}(X))^2 \leq \mathbb{E}(X^2)$ since variance is non-negative.
 - ▶ This is special case of *Jensen's inequality*: for any convex function f and any random vector \mathbf{X} , $f(\mathbb{E}(\mathbf{X})) \leq \mathbb{E}(f(\mathbf{X}))$.
- ▶ Applying to random variable $|X \mathbb{E}(X)|$,

$$\mathbb{E}|X - \mathbb{E}(X)| \leq \sqrt{\operatorname{var}(X)} =: \operatorname{stddev}(X).$$

▶ E.g., for uniform random unit vector \boldsymbol{X} , and any $\boldsymbol{u} \in S^{d-1}$, $\mathbb{E}\left|\langle \boldsymbol{u}, \boldsymbol{X} \rangle\right| \leq 1/\sqrt{d}$.

Covariance

▶ If X and Y are random variables, then for any scalars $a, b \in \mathbb{R}$,

$$var(aX + bY) = a^{2} var(X) + 2ab cov(X, Y) + b^{2} var(Y)$$

where

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))].$$

▶ If X and Y are independent, cov(X, Y) = 0, and hence

$$var(aX + bY) = a^2 var(X) + b^2 var(Y).$$

Variance of the sum of independent random variables is the sum of the variances.

Symmetric random walk on $\ensuremath{\mathbb{Z}}$

- ▶ Stochastic process $(S_t)_{t \in \mathbb{Z}_+}$.
 - $S_0 := 0$
 - ▶ For $t \ge 1$,

$$S_t := S_{t-1} + X_t$$

where $\mathbb{P}(X_t = -1) = \mathbb{P}(X_t = 1) = 1/2$. Also assume $\{X_t : t \in \mathbb{N}\}$ are independent. (Called **Rademacher** r.v.'s.)

- $S_n = \sum_{t=1}^n X_t$, sum of n iid Rademacher r.v.'s.
- $ightharpoonup \operatorname{var}(S_n) = \sum_{t=1}^n \operatorname{var}(X_t) = n.$
- ▶ So expected distance from origin is

$$\mathbb{E}|S_n| \leq \sqrt{\operatorname{var}(S_n)} \leq \sqrt{n}.$$

- Note: on some realizations, can have $|S_n| = \omega(\sqrt{n})$.
 - ▶ But how many?

7

Tail bounds

Tail bounds

▶ Markov's inequality: for any $t \ge 0$,

$$\mathbb{P}(|X| \geq t) \leq \frac{\mathbb{E}|X|}{t}.$$

Proof:

$$t \cdot \mathbb{1}\{|X| \ge t\} \le |X|. \quad \Box$$

Application to symmetric random walk:

$$\mathbb{P}(|S_n| \geq c\sqrt{n}) \leq \frac{\mathbb{E}|S_n|}{c\sqrt{n}} \leq \frac{1}{c}.$$

9

Tail bounds from higher-order moments

▶ Chebyshev's inequality: for any $t \ge 0$,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{var}(X)}{t^2}.$$

- ▶ Proof: Apply Markov's inequality to $(X \mathbb{E}(X))^2$.
- ▶ Application to symmetric random walk:

$$\mathbb{P}(|S_n| \geq c\sqrt{n}) \leq \frac{\operatorname{var}(S_n)}{c^2n} \leq \frac{1}{c^2}.$$

(Improvement over 1/c from Markov's.)

► Further improvements using higher-order moments.

Chernoff bounds

- ▶ Use all moments simultaneously to obtain tail bound.
- ▶ Moment generating function (mgf): M_X : $\mathbb{R} \to \mathbb{R} \cup \{+\infty\}$, defined by

$$M_X(\lambda) := \mathbb{E} \exp(\lambda X) = 1 + \lambda \mathbb{E}(X) + \frac{\lambda^2}{2} \mathbb{E}(X^2) + \frac{\lambda^3}{3!} \mathbb{E}(X^3) + \cdots$$

- ▶ If $M_X(\lambda)$ is finite for some $\lambda_1 < 0$ and $\lambda_2 > 0$, then:
 - $M_X(\lambda)$ is finite for all $\lambda \in [\lambda_1, \lambda_2]$.
 - ▶ $\mathbb{E}(X^p)$ is finite for all $p \in \mathbb{N}$.
 - Graph of M_X on $[\lambda_1, \lambda_2]$ determines the distribution of X.
- ▶ Often use logarithm of M_X (a.k.a. cumulant generating function or $log\ mgf$):

$$\psi_X(\lambda) := \ln M_X(\lambda).$$

11

Facts about log mgf

- $\psi_X(0) = 0$
- $\psi_{aX+b}(\lambda) = \psi_X(a\lambda) + b\lambda$
- ▶ If $X_1, X_2, ..., X_n$ are independent, and $\psi_{X_i}(\lambda)$ is finite for each i, then

$$\psi_{\sum_{i=1}^n X_i}(\lambda) = \sum_{i=1}^n \psi_{X_i}(\lambda).$$

▶ If ψ_X is finite on interval (λ_1, λ_2) for some $\lambda_1 < 0$ and $\lambda_2 > 0$, then it is infinitely differentiable on the same (open) interval.

Example of (log) mgfs

 \blacktriangleright $X \sim Poi(\mu)$ (Poisson):

$$\mathbb{P}(X=k) = \frac{e^{-\mu}\mu^k}{k!}, \quad k \in \mathbb{Z}_+.$$

- $\mathbb{E}(X) = \mu, \text{ var}(X) = \mu$ $M_X(\lambda) = \sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^k}{k!} e^{\lambda k} = \dots = e^{\mu(e^{\lambda} 1)}$ $\psi_X(\lambda) = \mu(e^{\lambda} 1)$
- $\psi_{X-\mu}(\lambda) = \mu(e^{\lambda} \lambda 1)$
- For $\lambda \approx 0$,

$$\psi_{X-\mu}(\lambda) \approx \mu \lambda^2/2$$
.

- \blacktriangleright $X \sim N(\mu, \sigma^2)$ (Normal)
 - \blacktriangleright $\mathbb{E}(X) = \mu$, $var(X) = \sigma^2$
 - $M_X(\lambda) = \int e^{\lambda x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx = \dots = e^{\mu\lambda + \sigma^2\lambda^2/2}.$
 - $\psi_{X-\mu}(\lambda) = \sigma^2 \lambda^2/2$.

13

Cramer-Chernoff inequality

ightharpoonup For any $t \in \mathbb{R}$,

$$\mathbb{P}(X \geq t) \leq \exp\left(-\sup_{\lambda \geq 0} \{t\lambda - \psi_X(\lambda)\}\right).$$

• Proof: apply Markov's inequality to $\exp(\lambda X)$,

$$\mathbb{P}(X \geq t) = \mathbb{P}(\exp(\lambda X) \geq \exp(\lambda t)) \leq \frac{\mathbb{E}\exp(\lambda X)}{\exp(\lambda t)},$$

and then "optimize" the choice of $\lambda \geq 0$.

▶ For any $t \ge \mathbb{E}(X)$,

$$\mathbb{P}(X \geq t) \leq \exp\left(-\sup_{\lambda \in \mathbb{R}} \{t\lambda - \psi_X(\lambda)\}\right).$$

▶ "Proof": when $t \ge \mathbb{E}(X)$, the optimal λ is always ≥ 0 .

Fenchel conjugate

▶ Fenchel conjugate of $f: \mathbb{R} \to \mathbb{R}$:

$$f^*(t) := \sup_{\lambda \in \mathbb{R}} \{t\lambda - f(\lambda)\}.$$

- E.g., $f(\lambda) = \lambda^2/2$ has $f^*(t) = t^2/2$.
- ► If f is bounded above by a quadratic ("strongly smooth"), then f* is bounded below by a quadratic ("strongly convex").
- \blacktriangleright Fenchel conjugate f^* is max of affine functions, hence convex.
- ▶ Cramer-Chernoff inequality: For any $t \ge \mathbb{E}(X)$,

$$\mathbb{P}(X \geq t) \leq \exp(-\psi_X^*(t))$$
.

Normal tail bound

▶ $N(\mu, \sigma^2)$ log mgf $\psi_{X-\mu}(\lambda) = \sigma^2 \lambda^2/2$ has

$$\psi_{X-\mu}^*(t) = t^2/(2\sigma^2).$$

- $\mathbb{P}(X \ge \mu + t) \le \exp(-t^2/(2\sigma^2)).$
- ▶ With probability at least 1δ ,

$$X \leq \mu + \sqrt{2\sigma^2 \ln(1/\delta)}$$
.

Subgaussian random variables

Many random variables have log mgf $\psi_{X-\mathbb{E}(X)}(\lambda)$ upper-bounded by that of N(0, v) for some v > 0, i.e.,

$$\psi_{X-\mathbb{E}(X)}(\lambda) \leq v\lambda^2/2$$
.

- ► Such random variables are called *v-subgaussian* (or *subgaussian* with variance proxy *v*).
- Hence,

$$\psi_{X-\mathbb{E}(X)}^*(t) \geq t^2/(2v).$$

- Example: Rademacher random variable is 1-subgaussian.
- ▶ If $X_1, X_2, ..., X_n$ are independent, and each X_i is v_i -subgaussian, then $S := \sum_{i=1}^n X_i$ is subgaussian with variance proxy $v := \sum_{i=1}^n v_i$.
 - ▶ Get tail bound for *S* as before.

Application to symmetric random walk

 $ightharpoonup S_n$ is subgaussian with variance proxy n, so

$$\mathbb{P}(S_n \geq t) \leq \exp(-t^2/(2n)).$$

▶ Using a union bound,

$$\mathbb{P}(|S_n| \ge c\sqrt{n}) \le 2\exp(-c^2/2).$$

▶ Improvement over 1/c from Markov's and $1/c^2$ from Chebyshev's (except when c is very small).

Hoeffding's inequality

▶ Suppose X is [0,1]-valued r.v. with $\mathbb{E}(X) = \mu$, and Y is $\{0,1\}$ -valued r.v. with $\mathbb{E}(Y) = \mu$. Then

$$\psi_{X-\mu}(\lambda) \leq \psi_{Y-\mu}(\lambda) \leq \frac{\lambda^2}{8}.$$

- "Proof": calculus . . .
- ▶ So [a, b]-valued random variables are $\frac{(b-a)^2}{4}$ -subgaussian.
 - lacktriangle E.g., [-1,+1]-valued random variables are 1-subgaussian.
- ► Tail bound for (sums of) such random variables also called *Hoeffding's inequality*.

19

Poisson tail bound

• (Centered) Poi(μ) log mgf $\psi_{X-\mu}(\lambda) = \mu(e^{\lambda} - \lambda - 1)$ has

$$\psi_{X-\mu}^*(t) = \mu \cdot h(t/\mu),$$

where $h(x) := (1+x) \ln(1+x) - x$.

► Interpretable approximation of *h*:

$$h(x) \geq \frac{x^2}{2(1+x/3)},$$

SO

$$\mathbb{P}(X \ge \mu + t) \le \exp(-\mu \cdot h(t/\mu)) \le \exp\left(-\frac{t^2}{2(\mu + t/3)}\right).$$

• With probability at least $1 - \delta$,

$$X \leq \mu + \sqrt{2\mu \ln(1/\delta)} + \ln(1/\delta)/3$$
.

Biased random walk

- ▶ Suppose $\mathbb{P}(X_t = -1) = \frac{1-\gamma}{2}$ and $\mathbb{P}(X_t = 1) = \frac{1+\gamma}{2}$.
 - ▶ Extreme cases: $\gamma = 1$ or $\gamma = -1$. Completely deterministic!
 - ▶ For γ close to 1 or -1, should also expect better concentration around the mean.
- ▶ Similar to Bin(n, p) for p close to zero or one (i.e., tossing a very biased coin n times).
 - Variance is small compared to maximal range.

21

Using variance information

▶ Let X satisfy $X - \mathbb{E}(X) \le 1$ and $\text{var}(X) \le v$. For any $\lambda \ge 0$,

$$\psi_{X-\mathbb{E}(X)}(\lambda) \leq v(e^{\lambda} - \lambda - 1).$$

- ▶ "Proof": exploit monotonicity of $x \mapsto (e^x x 1)/x^2$.
- $\psi_{X-\mathbb{E}(X)} \leq \psi_{\tilde{X}-\mathbb{E}(\tilde{X})}$ on \mathbb{R}_+ for $\tilde{X} \sim \text{Poi}(v)$.
- ▶ If $X_1, X_2, ..., X_n$ are independent, and each $X_i \mathbb{E}(X_i) \leq 1$, then log mgf of $S := \sum_{i=1}^n X_i$ is bounded above by log mgf of $\text{Poi}(\mu)$ on \mathbb{R}_+ , where $\mu := \sum_{i=1}^n \text{var}(X_i)$.
 - ▶ Get tail bound for *S* as before; called *Bennett's inequality* or *Bernstein's inequality*.

Poisson approximation

- $ightharpoonup S = \sum_{i=1}^n X_i$ where X_1, X_2, \dots, X_n are iid Bern(p).
- Using Bennett's inequality:

$$\mathbb{P}(S \geq np + t) \leq \exp\left(-np(1-p) \cdot h\left(\frac{t}{np(1-p)}\right)\right).$$

- ▶ Poisson heuristic: if p = O(1/n), then Bin $(n, p) \approx Poi(np)$.
- ▶ Poi(np) tail bound:

$$\mathbb{P}(S \geq np + t) \leq \exp\left(-np \cdot h\left(\frac{t}{np}\right)\right).$$

▶ So for p = O(1/n), with probability at least $1 - \delta$,

$$\frac{S}{n}-p \leq O\left(\frac{\log(1/\delta)}{n}\right).$$

23

Why does this work?

▶ log mgf bounded by that of Gaussian for λ around zero:

$$X \sim \mathsf{Poi}(\mu): \ \psi_{X-\mu}(\lambda) = \mu(e^{\lambda} - \lambda - 1), \ X \sim \mathsf{Bern}(p): \ \psi_{X-p}(\lambda) \leq p(1-p)(e^{\lambda} - \lambda - 1).$$

Another example:

$$X \sim \mathsf{N}(0,1): \;\; \psi_{X^2-1}(\lambda) \;=\; -rac{1}{2} \, \mathsf{In}(1-2\lambda) - \lambda \,.$$

▶ In above cases, there exist $v,c \ge 0$ such that, for all $\lambda \in [0,1/c)$,

$$\psi_{X-\mathbb{E}(X)}(\lambda) \leq \frac{v\lambda^2}{2} \cdot \frac{1}{1-c\lambda}.$$

- Such random variables are called (v, c)-subgamma or subgamma with variance proxy v and scale factor c.
- ▶ If $(1-c\lambda)^{-1}$ factor omitted, then called (v,c)-subexponential.

Fenchel conjugate of log mgf for subexponential

For (v, c)-subexponential random variable X:

$$\psi_{X-\mathbb{E}(X)}^*(t) = \sup_{\lambda \in \mathbb{R}} \left\{ t\lambda - \psi_{X-\mathbb{E}(X)}(\lambda) \right\} \ge \sup_{\lambda \in [0,1/c)} \left\{ t\lambda - v\lambda^2/2 \right\}.$$

▶ If t < v/c, then can plug-in $\lambda := t/v$ to obtain

$$\psi_{X-\mathbb{E}(X)}^*(t) \geq t^2/(2v).$$

▶ If $t \ge v/c$, then $t\lambda - v\lambda^2/2$ is increasing for $\lambda \in [0, 1/c)$, so plug-in $\lambda := 1/c$ to obtain

$$\psi_{X-\mathbb{E}(X)}^*(t) \geq t/(2c).$$

Conclusion:

$$\psi_{X-\mathbb{E}(X)}^*(t) \geq \min\left\{\frac{t^2}{2v}, \frac{t}{2c}\right\}.$$

25

Chi-squared distribution

- ▶ If $X_1, X_2, ..., X_k$ are iid N(0,1), then $S := \sum_{i=1}^k X_i^2 \sim \chi^2(k)$ (chi-squared with k degrees-of-freedom).
- ▶ For $\lambda \in [0, 1/2)$,

$$\psi_{X_i^2-1}(\lambda) \ = \ -\frac{1}{2} \ln(1-2\lambda) - \lambda \ = \ \frac{1}{2} \sum_{j=2}^{\infty} \frac{(2\lambda)^j}{j} \ \le \ \frac{2\lambda^2}{2} \cdot \frac{1}{1-2\lambda} \ ,$$

so X_i^2 is (2,2)-subgamma; also (4,4)-subexponential.

- ▶ Consequently, S is (4k, 4)-subexponential.
- Tail bound using subexponential property:

$$\mathbb{P}(S-k\geq t) \leq \exp\left(-\min\left\{t^2/k, t\right\}/8\right).$$

• With probability at least $1 - \delta$,

$$S \leq k + \sqrt{8k\ln(1/\delta)} + 8\ln(1/\delta)$$
.

▶ A tighter analysis gets a bound of $k + 2\sqrt{k \ln(1/\delta)} + 2 \ln(1/\delta)$.

Subgaussian moments

Suppose X is v-subgaussian and $\mathbb{E}(X) = 0$.

▶ For any $k \in \mathbb{N}$,

$$\mathbb{E} |X|^k \leq (2v)^{k/2} k \Gamma(k/2).$$

- ▶ **Proof**: $\mathbb{E} |X|^k = \int_0^\infty \mathbb{P}(|X|^k \ge t) dt \le \int_0^\infty 2e^{-t^{2/k}/(2v)} dt \dots$
- ▶ X^2 is $(128v^2, 8v)$ -subexponential.
 - ▶ **Proof**: Use Taylor series to express $\psi_{X^2-\mathbb{E}(X^2)}$ in terms of even moments of X.