

Computer Networks and the Internet

Team Networks

Department of Computer Science and Engineering

Computer Networks and the Internet

Protocol Layers

Team Networks

Department of Computer Science and Engineering

PES UNIVERSITY DELESSATING SO VEXES

Unit – 1 Computer Networks and the Internet

- 1.1 Introduction to Computer Networks
- 1.2 What is the Internet?
 - A nuts-and-bolts and Services description, Protocol
- 1.3 Network edge
 - End systems, Access networks, Physical media
- 1.4 Network core
 - Packet switching, Circuit switching, Network structure
- 1.5 Delay, Loss & Throughput in networks
- 1.6 Protocol layers, Service models
 - OSI model and TCP/IP protocol suite

"Protocol Layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our *discussion* of networks?

Example: Organization of Air Travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

airline travel: a series of steps, involving many services

Layering of Airline functionality

ticket (purchase)	ticketing service	ticket (complain)	
baggage (check)	baggage service	baggage (claim)	
gates (load)	gate service	gates (unload)	
runway takeoff	runway service	runway landing	
airplane routing	routing service	airplane routing	

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Q: describe in words the service provided in each layer above

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change in layer's service implementation: transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?
- layering in other complex systems?

Internet Protocol Stack

PES UNIVERSITY

- application: supporting network applications (access to network resources)
 - IMAP, SMTP, HTTP
- transport: process-process data transfer (segmentation & reassembly, sockets, connection, flow and error control)
 - TCP, UDP
- network: routing of datagrams from source to destination (addressing, routing)
 - IP, routing protocols
- link: data transfer between neighboring network elements (framing, addressing, flow & error control)
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

OSI reference model

PES UNIVERSITY

- *presentation:* allow applications to interpret meaning of data, (e.g., encryption, compression, machine-specific conventions)
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

application presentation session transport network link physical

Open Systems Interconnection (OSI) model – introduced in late 1970s by ISO.

OSI reference model (more)

TCP/IP vs OSI reference model

Layers in the TCP/IP Protocol Suite (more)

A private internet

Layers in the TCP/IP Protocol Suite (more)

Communication at the physical layer

Unit of Communication – bit

Layers in the TCP/IP Protocol Suite (more)

D2 H2

Frame

D2 H2

Frame

Communication at the data link layer

Unit of Communication – frame

Layers in the TCP/IP Protocol Suite (more)

Communication at the network layer

Unit of Communication – datagram

Layers in the TCP/IP Protocol Suite (more)

Communication at the transport layer

Unit of Communication

- segment/packet

Layers in the TCP/IP Protocol Suite (more)

Communication at the application layer

Unit of Communication

message

OSI vs TCP/IP Protocol Suite

DHCP, DNS, FTP, HTTP, HTTPS, POP, SMTP, SSH, etc...

IP Address: IPv4, IPv6

Ethernet cable, fibre, wireless,

MAC Address

coax, etc...

TCP

Data

Segment

Datagram

Frame

Bits

UDP

The OSI Model

Application 6 Presentation Network **Phisical**

The TCP/IP Model

Application **Network Access**

Encapsulation – Data Communication in Protocol Stack source

Encapsulation & Decapsulation

THANK YOU

Team Networks

Department of Computer Science and Engineering