Math 206 Group Quiz 3 Names: _

lames: _____

1. Let A be an $n \times n$ matrix and λ a constant. Is $S = \{x \in \mathbb{R}^n : Ax = \lambda x\}$ a subspace of \mathbb{R}^n ? Why?

2. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $S = \{X \in M_{2,2} : AX = XA\}$. Show that S is a subspace. Find a basis for S.

3. Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ be nonzero vectors in \mathbb{R}^n . Perform the matrix multiplications $\mathbf{u}\mathbf{v}^{\top}$ and $\mathbf{u}^{\top}\mathbf{v}$ and then give the rank of each of these matrices.

- **4.** Let A be an m imes n matrix and let $B = ig[\mathbf{b}_1 \cdots \mathbf{b}_p ig]$ be an n imes p matrix. By now we know that
 - 1. The vector $A\mathbf{b}_1$ is a linear combination of the columns of A.
 - 2. Matrix multiplication is defined by $AB = [A\mathbf{b}_1 \cdots A\mathbf{b}_p]$.
 - 3. The rank of A is the number of linearly independent columns of A.

Why do these three facts imply that $rank(AB) \leq rank(A)$?