Teoría de Control

Carrera: Ingeniería en Sistemas de Información

Docente: Ing. Aquino, Dominga Concepción

Dados los siguientes polos y ceros de lazo abierto, obtener y graficar el Lugar Geométrico de las Raíces, detallando los pasos vistos en Teoría utilizando el software **MatLab y/o SciLab**, e indicar en el gráfico todos los valores calculados.

Ceros: 1+2j; 1-2j; -3

Polos: 4; -2+3j; -2+3j; -2

Ecuación Característica:

$$1 + \frac{k(s - (1+2j))(s - (1-2j))(s - (-3))}{(s - (4))(s - (-2+3j))(s - (-2-3j))(s - (-2))} = 0$$

$$1 + \frac{k(s - 1 - 2j)(s - 1 + 2j)(s + 3)}{(s - 4)(s + 2 - 3j)(s + 2 + 3j)(s + 2)} = 0$$

$$1 + \frac{k(s^2 - 2s + 5)(s + 3)}{(s - 4)(s^2 + 4s + 13)(s + 2)} = 0$$

$$1 + \frac{k(s^3 + s^2 - s + 15)}{(s - 4)(s^3 + 6s^2 + 21s + 26)} = 0$$

$$1 + \frac{k(s^3 + s^2 - s + 15)}{(s^4 + 2s^3 - 3s^2 - 58s - 104)} = 0$$

Grafica de ceros, polos y Lugar Geométrico de las Raíces sobre el eje real.

Cálculo del ángulo de las asíntotas

$$\propto = \frac{180^{\circ}(2k+1)}{n-m}$$

$$n=4$$
 $m=3$

Se tendrá una única asíntota debido a que n-m=4-3=1

Luego, para k = 0 tenemos que

$$\alpha = \frac{180^{\circ}(2*0+1)}{4-3} = \frac{180^{\circ}}{1} = 180^{\circ}$$

Punto donde nace la asíntota

Posibles puntos de ruptura

Despejando ${\it k}$ de la *Ecuación Característica* y derivando con respecto a ${\it s}$.

$$1 + \frac{k(s^3 + s^2 - s + 15)}{s^4 + 2s^3 - 3s^2 - 58s - 104} = 0$$

$$\frac{k(s^3 + s^2 - s + 15)}{s^4 + 2s^3 - 3s^2 - 58s - 104} = -1$$

$$k(s^3 + s^2 - s + 15) = -s^4 - 2s^3 + 3s^2 + 58s + 104$$

$$k = \frac{-s^4 - 2s^3 + 3s^2 + 58s + 104}{s^3 + s^2 - s + 15}$$

Para hallar k' aplicamos la expresión de la derivada de un cociente entre dos funciones

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Donde

$$u = -s^4 - 2s^3 + 3s^2 + 58s + 104$$

$$v = s^3 + s^2 - s + 15$$

$$u' = -4s^3 - 6s^2 + 6s + 58$$

$$v' = 3s^2 + 2s - 1$$

Luego

$$\frac{\partial k}{\partial s} = \left(\frac{u}{v}\right)'$$

$$\frac{\partial k}{\partial s} = \frac{(-4s^3 - 6s^2 + 6s + 58)(s^3 + s^2 - s + 15) - (-s^4 - 2s^3 + 3s^2 + 58s + 104)(3s^2 + 2s - 1)}{(s^3 + s^2 - s + 15)^2}$$

Considerando que $\frac{\partial k}{\partial s} = 0$ y dividiendo miembro a miembro por $(s^3 + s^2 - s + 15)^2$, se aplica la propiedad distributiva de los productos en el numerador.

$$\frac{\partial k}{\partial s} = -4s^6 - 6s^5 + 6s^4 + 58s^3 - 4s^5 - 6s^4 + 6s^3 + 58s^2 + 4s^4 + 6s^3 - 6s^2 - 58s - 60s^3 - 90s^2 + 90s + 870 - (-3s^6 - 6s^5 + 9s^4 + 174s^3 + 312s^2 - 2s^5 - 4s^4 + 6s^3 + 116s^2 + 208s + s^4 + 2s^3 - 3s^2 - 58s - 104)$$

$$\frac{\partial k}{\partial s} = -s^6 - 2s^5 - 2s^4 - 172s^3 - 463s^2 - 118s + 974$$

Igualando $\frac{\partial k}{\partial s} = 0$ tenemos que

$$-s^6 - 2s^5 - 2s^4 - 172s^3 - 463s^2 - 118s + 974 = 0$$

Hallando las raíces de la ecuación.

$s_1 = -5,15$	Pertenece al L.G.R. ∴ es un punto de ruptura.
$s_2 = 1,12$	Pertenece al L.G.R. ∴ es un punto de ruptura.
$s_3 = -1.9 - 1.21j$	No Pertenece al L.G.R. \div no es un punto de ruptura.
$s_4 = -1.9 + 1.21j$	No Pertenece al L.G.R. \div no es un punto de ruptura.
$s_5 = 2,92 - 4,95j$	No Pertenece al L.G.R. \div no es un punto de ruptura.
$s_6 = 2.92 + 4.95i$	No Pertenece al L.G.R. ∴ no es un punto de ruptura.

ω y k críticos

Partimos de la Ecuación Característica.

$$1 + \frac{k(s^3 + s^2 - s + 15)}{s^4 + 2s^3 - 3s^2 - 58s - 104} = 0$$

$$k(s^3 + s^2 - s + 15) = -(s^4 + 2s^3 - 3s^2 - 58s - 104)$$

$$s^3k + s^2k - sk + 15k = -s^4 - 2s^3 + 3s^2 + 58s + 104$$

$$s^3k + s^2k - sk + 15k + s^4 + 2s^3 - 3s^2 - 58s - 104 = 0$$

Reemplazando $s = j\omega$

$$(j\omega)^{3}k + (j\omega)^{2}k - (j\omega)k + 15k + (j\omega)^{4} + 2(j\omega)^{3} - 3(j\omega)^{2} - 58(j\omega) - 104 = 0$$
$$-j\omega^{3}k - \omega^{2}k - j\omega k + 15k + \omega^{4} - 2j\omega^{3} + 3\omega^{2} - 58j\omega - 104 = 0 + 0j$$

Con lo cual queda formado el sistema de ecuaciones.

$$\begin{cases} -\omega^2 k + 15k + \omega^4 + 3\omega^2 - 104 = 0 \\ -j\omega^3 k - j\omega k - 2j\omega^3 - 58j\omega = 0j \end{cases}$$

Despejando k

$$k(-\omega^3 - \omega) = 2\omega^3 + 58\omega$$
$$k = \frac{2\omega^3 + 58\omega}{-\omega^3 - \omega}$$
$$k = \frac{\omega(2\omega^2 + 58)}{\omega(-\omega^2 - 1)}$$
$$k = \frac{2\omega^2 + 58}{-\omega^2 - 1}$$

Reemplazando en la primera ecuación.

$$-\omega^{2} \left(\frac{2\omega^{2} + 58}{-\omega^{2} - 1}\right) + 15 \left(\frac{2\omega^{2} + 58}{-\omega^{2} - 1}\right) + \omega^{4} + 3\omega^{2} - 104 = 0$$

$$\frac{-2\omega^{4} - 58\omega^{2}}{-\omega^{2} - 1} + \frac{30\omega^{2} + 870}{-\omega^{2} - 1} + \omega^{4} + 3\omega^{2} - 104 = 0$$

$$\frac{-2\omega^{4} - 58\omega^{2} + 30\omega^{2} + 870}{-\omega^{2} - 1} = 104 - \omega^{4} - 3\omega^{2}$$

$$-2\omega^{4} - 28\omega^{2} + 870 = (104 - \omega^{4} - 3\omega^{2})(-\omega^{2} - 1)$$

$$-2\omega^{4} - 28\omega^{2} + 870 = -104\omega^{2} + \omega^{6} + 3\omega^{4} - 104 + \omega^{4} + 3\omega^{2}$$

$$-2\omega^{4} - 28\omega^{2} + 870 = \omega^{6} + 4\omega^{4} - 101\omega^{2} - 104$$

$$-2\omega^{4} - 28\omega^{2} + 870 - \omega^{6} - 4\omega^{4} + 101\omega^{2} + 104 = 0$$

$$-\omega^{6} - 6\omega^{4} + 76\omega^{2} + 974 = 0$$

Hallando las raíces

$$\omega_1 = -3,22$$
 $\omega_2 = 3,22$
 $\omega_3 = -0.87 + 2.99j$
 $\omega_4 = -0.87 - 2.99j$

$$\omega_5 = 0.87 + 2.99j$$

$$\omega_6 = 0.87 - 2.99i$$

Donde ω_1 y $\omega_2 \in \mathbb{R}$, por lo tanto $\omega = \pm 3.22$

Reemplazando en la fórmula de k

$$k = \frac{2\omega^2 + 58}{-\omega^2 - 1}$$
$$k = \frac{2(\pm 3,22)^2 + 58}{-(\pm 3,22)^2 - 1}$$

 $k = -6.93 \Rightarrow k < 0$: Los polos de lazo cerrado no cruzan el eje imaginario

Ángulos de salida desde los polos complejos y ángulos de llegada a los ceros complejos.

Ángulo de salida desde un polo complejo = 180°

- (suma de los ángulos de vectores hacia el polo complejo en cuestión desde otros polos)
- + (suma de los ángulos de vectores hacia el polo complejo en cuestión desde los ceros)

Ángulo de llegada a un cero complejo = 180°

- (suma de los ángulos de vectores hacia el cero complejo en cuestión desde otros ceros)
- + (suma de los ángulos de vectores hacia el cero complejo en cuestión desde los polos)

• Ángulos de salida desde el polo complejo -2 + 3j

o Desde el polo -2

$$\alpha_2=90^\circ$$

o Desde el polo -2-3j

$$\alpha_3 = 90^{\circ}$$

o Desde el polo 4

$$\alpha_6 = 90^\circ + \tan^{-1}\frac{6}{3} = 153^\circ$$

o Desde el cero -3

$$\alpha_1 = \tan^{-1} \frac{3}{1} = 71^{\circ}$$

o Desde el cero 1+2j

$$\alpha_4 = 90^\circ + \tan^{-1}\frac{3}{1} = 161^\circ$$

o Desde el cero 1-2j

$$\alpha_5 = 90^\circ + \tan^{-1}\frac{3}{5} = 121^\circ$$

$$\alpha = 180^{\circ} - (90^{\circ} + 90^{\circ} + 153^{\circ}) + (71^{\circ} + 161^{\circ} + 121^{\circ}) = 200^{\circ}$$

Ángulos de salida desde el polo complejo -2 - 3j

Desde el polo -2

$$\beta_2 = 270^{\circ}$$

Desde el polo -2+3j

$$\beta_3 = 270^{\circ}$$

Desde el polo 4

$$\beta_6 = 180^\circ + \tan^{-1}\frac{3}{6} = 207^\circ$$

Desde el cero -3

$$\beta_1 = 270^\circ + \tan^{-1}\frac{1}{3} = 288^\circ$$

Desde el cero 1+2j

$$\beta_4 = 180^\circ + \tan^{-1}\frac{5}{3} = 239^\circ$$

Desde el cero 1-2j

$$\beta_5 = 180^\circ + \tan^{-1}\frac{1}{3} = 198^\circ$$

$$\beta = 180^{\circ} - (270^{\circ} + 270^{\circ} + 207^{\circ}) + (288^{\circ} + 239^{\circ} + 198^{\circ}) = 158^{\circ}$$

• Ángulos de llegada al cero complejo 1+2j

Desde el cero -3

$$\theta_1 = \tan^{-1}\frac{2}{4} = 27^\circ$$

o Desde el cero 1-2j

$$\theta_{5} = 90^{\circ}$$

○ Desde el polo -2+3j

$$\theta_2 = 270^\circ + \tan^{-1}\frac{3}{1} = 342^\circ$$

o Desde el polo -2

$$\theta_3 = \tan^{-1}\frac{2}{3} = 34^\circ$$

o Desde el polo -2-3j

$$\theta_4 = \tan^{-1}\frac{5}{3} = 59^\circ$$

o Desde el polo 4

$$\theta_6 = 90^\circ + \tan^{-1}\frac{3}{2} = 146^\circ$$

$$\theta = 180^{\circ} - (27^{\circ} + 90^{\circ}) + (342^{\circ} + 34^{\circ} + 59^{\circ} + 146^{\circ}) = 644^{\circ} - 360^{\circ} = 284^{\circ}$$

Ángulos de llegada al cero complejo 1-2j

o Desde el cero -3

$$\varepsilon_1 = 270^{\circ} + \tan^{-1}\frac{4}{2} = 333^{\circ}$$

o Desde el cero 1+2j

$$\varepsilon_5 = 270^{\circ}$$

○ Desde el polo -2+3j

$$\varepsilon_2 = 270^{\circ} + \tan^{-1} \frac{3}{5} = 301^{\circ}$$

o Desde el polo -2

$$\varepsilon_3 = 270^{\circ} + \tan^{-1}\frac{3}{2} = 326^{\circ}$$

o Desde el polo -2-3j

$$\varepsilon_4 = \tan^{-1}\frac{1}{3} = 18^{\circ}$$

o Desde el polo 4

$$\varepsilon = 180^{\circ} - (333^{\circ} + 270^{\circ}) + (301^{\circ} + 326^{\circ} + 18^{\circ} + 214^{\circ}) = 436^{\circ} - 360^{\circ} = 76^{\circ}$$

Lugar Geométrico de las Raíces

COMANDOS MATLAB

Ecuación característica

Partimos de crear dos vectores, uno para ubicar los ceros, y otro para los polos. El vector con los ceros se debe trasponer. Esto último se indica con una comilla al final.

```
>> ceros=[1+2i 1-2i -3]'
ceros =
1.0000 - 2.0000i
1.0000 + 2.0000i
-3.0000 + 0.0000i

>> polos=[4 -2 -2+3i -2-3i]
polos =
4.0000 + 0.0000i -2.0000 + 0.0000i -2.0000 + 3.0000i -2.0000 - 3.0000i
```

Se procede entonces a usar la función zp2tf pasándole como parámetros los dos vectores de los ceros y los polos, y el valor de k=1. En [NUM, DEN] se guardarán los coeficientes de los polinomios numerador y denominador de la ecuación característica.

Para darle formato a esta ecuación usamos el comando tf.

Continuous-time transfer function.

Es decir, es la Ecuación Característica

$$1 + \frac{k(s^3 + s^2 - s + 15)}{s^4 + 2s^3 - 3s^2 - 58s - 104} = 0$$

Ángulos de las asíntotas

Primero, se crea una función en MatLab que reciba como parámetro: el número de polos, el número de ceros y el valor de *k*.

```
function [ang] = ang_asint(n,m,k)
ang = (180*(2*k+1))/(n-m);
end
```

Luego, llamamos a la función enviando los parámetros correspondientes:

```
>> angulo = ang_asint(4,3,0)
angulo =
  180

>> angulo = ang_asint(4,3,1)
angulo =
  540
```

Si a 540° le restamos 360° obtenemos el mismo ángulo que con K=0. Por lo que el ángulo de la asíntota única es igual a 180°.

Punto donde nacen las asíntotas:

Creamos una función a la que se le pueda enviar como parámetros el número de polos, el número de ceros, y dos vectores con los valores de los polos y los ceros.

```
function[punto] = punto_origen_asintotas(n,m,p,c)
    o=1;
    q=1;
    sumapolos=0;
    sumaceros=0;
    while o <= n
        sumapolos=sumapolos+p(o);
        o=o+1;
    end
    while q <= m
        sumaceros=sumaceros+c(q);
        q=q+1;
    end
    punto = (sumapolos-sumaceros)/(n-m);
end</pre>
```

Luego, llamamos a esta función enviándole los parámetros correspondientes, de la siguiente manera:

```
>> punto=punto_origen_asintotas(4,3,[4 -2 -2+3i -2-3i],[1+2i 1-2i -3])
punto =
-1
```

Posibles puntos de ruptura

Despejando k de la ecuación característica:

$$k = \frac{-s^4 - 2s^3 + 3s^2 + 58s + 104}{s^3 + s^2 - s + 15}$$

Guardamos los coeficientes del numerador y del denominador en dos vectores.

>> NUME=[-1 -2 3 58 104]

NUME =

-1 -2 3 58 104

>> DENO=[1 1 -1 15]

DENO =

1 1 -1 15

Hallamos la derivada de *k* haciendo la derivada del cociente de esos dos polinomios. Para ello usamos la función *polyder()*.

>> [D_NUME,D_DENO]=polyder(NUME,DENO)

D_NUME =

-1 -2 -2 -172 -463 -118 974

D DENO =

1 2 -1 28 31 -30 225

Lo que se puede expresar como

>> sys=tf(D_NUME,D_DENO)

sys =

-s^6 - 2 s^5 - 2 s^4 - 172 s^3 - 463 s^2 - 118 s + 974

s^6 + 2 s^5 - s^4 + 28 s^3 + 31 s^2 - 30 s + 225

Continuous-time transfer function.

Como k' = 0 tenemos que el denominador se puede ignorar y se procede a trabajar únicamente con el numerador.

Hallamos las raíces del polinomio numerador usando la función roots().

>> raices=roots(D_NUME)

raices =

- 2.9156 + 4.9550i
- 2.9156 4.9550i
- -5.1466 + 0.0000i
- -1.9052 + 1.2067i
- -1.9052 1.2067i
- 1.1258 + 0.0000i

Las dos raíces resaltadas (-5,1466 y 1,1258) son puntos de ruptura pues ambas son las únicas que pertenecen al Lugar Geométrico de las Raíces.

Grafica del Lugar Geométrico de las Raíces.

Para graficar el Lugar Geométrico de las Raíces usamos el comando *rlocus()* que acepta como parámetros los dos vectores con los coeficientes del numerador y del denominador de la Ecuación Característica.

El comando title nos permite ponerte un título a la gráfica.

- >> rlocus(NUM,DEN)
- >> title('Gráfica del Lugar Geometrico de las Raices')

Donde puede verse que los puntos que cortan al eje real son, en efecto, los puntos de ruptura que se calcularon con anterioridad.

Cálculo de K y ω crítico usando Scilab.

Para calcular K y ω crítico Scilab cuenta con la función kpure().

w =

3.2079376i

k =

-6.9597623

En el ejercicio existe un valor crítico de $\omega = 3,21$ (**Real**), para un valor crítico de k = -6.96 (**Negativo**). Por lo tanto, el Lugar Geométrico de las Raíces no atraviesa el eje imaginario.