Lecture 21. Solving Recurrence Relations

Recursive Thinking

In the previous lecture note, we have seen some examples how to think recursively about a problem by describing it with a recurrence relation. Remember that any recurrence relation has two parts: a **base case** that describes some initial conditions, and a **recursive case** that describes a **future value in terms of previous values**. Armed with this way of thinking, we can model other problems using recurrence relations.

Recursive Thinking

In the previous lecture note, we have seen some examples how to think recursively about a problem by describing it with a recurrence relation. Remember that any recurrence relation has two parts: a **base case** that describes some initial conditions, and a **recursive case** that describes a **future value in terms of previous values**. Armed with this way of thinking, we can model other problems using recurrence relations.

Example 20.1. Ahmed lends money at outrageous rates of interest. He demands to be paid 10% interest *per week* on a loan, compounded weekly. Suppose you borrow 500 Dhs from him. Let M(n) = the money you owed at n-th week.

- (a) Find the recurrence relation for M(n).
- (b) If you wait four weeks to pay him back, how much will you owe?

Recursive Thinking

In the previous lecture note, we have seen some examples how to think recursively about a problem by describing it with a recurrence relation. Remember that any recurrence relation has two parts: a base case that describes some initial conditions, and a recursive case that describes a future value in terms of previous values. Armed with this way of thinking, we can model other problems using recurrence relations.

Example 20.1. Ahmed lends money at outrageous rates of interest. He demands to be paid 10% interest *per week* on a loan, compounded weekly. Suppose you borrow 500 Dhs from him. Let M(n) = the money you owed at n-th week.

- (a) Find the recurrence relation for M(n).
- (b) If you wait four weeks to pay him back, how much will you owe?

Answer:

$$M(n) = \begin{cases} 500 & \text{if } n = 0 \\ 1.1 M(n-1) & \text{if } n > 0 \end{cases}$$
 $M(4) = 732.05

Practice 20.2. Find a closed-form solution for the recurrence relation from

$$M(n) = \begin{cases} 500 & \text{if } n = 0\\ 1.1 M(n-1) & \text{if } n > 0 \end{cases}$$

Practice 20.2. Find a closed-form solution for the recurrence relation from

$$M(n) = \begin{cases} 500 & \text{if } n = 0\\ 1.1 M(n-1) & \text{if } n > 0 \end{cases}$$

Answer:
$$M(n) = 500(1.1)^n$$

Polynomial sequences: Using differences

Finding a closed-form solution for P(n) can be thought of as guessing a formula for the sequence P(0), P(1), P(2),

Polynomial sequences: Using differences

Finding a closed-form solution for P(n) can be thought of as guessing a formula for the sequence P(0), P(1), P(2),

One Idea. If we knew that

$$P(n) =$$
 a polynomial function of n

then we can detect such a sequence by looking at the differences between terms.

Polynomial sequences: Using differences

Finding a closed-form solution for P(n) can be thought of as guessing a formula for the sequence P(0), P(1), P(2),

One Idea. If we knew that

$$P(n) =$$
 a polynomial function of n

then we can detect such a sequence by looking at the differences between terms. Given any sequence,

$$a_0, a_1, a_2, ..., a_{n-1}, a_n$$

the differences

$$a_1 - a_0, a_2 - a_1, a_3 - a_2, ..., a_n - a_{n-1}$$

form another sequence, called the sequence of differences.

Given any sequence,

$$a_0, a_1, a_2, ..., a_{n-1}, a_n$$

the differences

$$a_1 - a_0, a_2 - a_1, a_3 - a_2, ..., a_n - a_{n-1}$$

form another sequence, called the sequence of differences.

- A linear sequence $a_n = An + B$ will have a constant sequence of differences (because a line has constant slop).
- A quadratic sequence $a_n = An^2 + Bn + C$ will have a linear sequence of differences.
- a cubic sequence $a_n = An^3 + Bn^2 + Cn + D$ will have a quadratic sequence of differences, etc.
- If we eventually end up with a constant sequence, then the original sequence is given by a polynomial function.
- The degree of the conjectured polynomial is the number of times we had to calculate the sequence of differences.

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

Answer. $H(n) = 3n^2 - 3n + 1$ is a good candidate for a closed-form solution.

Remark. The result of these procedures is still only a guess. To be sure that our guess is right, we need to prove that the formula matches the recurrence relation for all n.

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

Answer. $H(n) = 3n^2 - 3n + 1$ is a good candidate for a closed-form solution.

Remark. The result of these procedures is still only a guess. To be sure that our guess is right, we need to prove that the formula matches the recurrence relation for all n.

Practice 20.4. Solve the recurrence relation $a_n = a_{n-1} + n$ with initial term $a_0 = 4$.

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

Answer. $H(n) = 3n^2 - 3n + 1$ is a good candidate for a closed-form solution.

Remark. The result of these procedures is still only a guess. To be sure that our guess is right, we need to prove that the formula matches the recurrence relation for all n.

Practice 20.4. Solve the recurrence relation $a_n = a_{n-1} + n$ with initial term $a_0 = 4$.

Answer. $a_n = \frac{n(n+1)}{2} + 4$ for $n \ge 0$.