# Visualization, Identification, and Estimation in the Linear Panel Event-Study Design

Simon Freyaldenhoven<sup>1</sup> Christian Hansen<sup>2</sup> Jorge Pérez Pérez<sup>3</sup> Jesse M. Shapiro<sup>4</sup>

<sup>1</sup>Federal Reserve Bank of Philadelphia

<sup>2</sup>University of Chicago

<sup>3</sup>Banco de México

<sup>4</sup>Brown University and NBER

The views expressed are those of the speaker and not necessarily those of the Federal Reserve Bank of Philadelphia, the Federal Reserve System, or Banco de México.

# Setup

$$y_{it} = \alpha_i + \gamma_t + q'_{it}\psi + \sum_{m=-C}^{M} \beta_m z_{i,t-m} + C_{it} + \varepsilon_{it}$$
 (linear panel model)

$$y_{it} = \sum_{k=-G-L_G}^{M+L_M-1} \delta_k \Delta z_{i,t-k} + \delta_{M+L_M} z_{i,t-M-L_M} + \delta_{-G-L_G-1} (-z_{i,t+G+L_G}) + \alpha_i + \gamma_t + q'_{it} \psi + C_{it} + \varepsilon_{it}$$

(estimating equation)

# Simulation designs

- ightharpoonup N = 50, T = 40
- ▶ Policy adopted when  $(C_{i,t+P} + \text{noise})$  crosses a threshold
- ► Vary P and structure of C<sub>it</sub>

# Event-study path of unconfounded outcome $y_{it} - C_{it}$



## Summary of data-generating processes











### **Takeaways**

- No estimator performs well uniformly under all reasonable DGPs
- Performance of estimator cannot typically be gauged from the data at hand
- Importance of motivating modeling assumptions on economic grounds