Chapter 7: Naïve Bayes Classifier

Naïve Bayes Classifier:

- ☐ Naive Bayes is a statistical classification technique based on Bayes Theorem.
- ☐ It is called naïve because it assumes features are independent.

☐ Making Predictions using Naïve Bayes:

- ☐ We can make predictions using Bayes Theorem
 - \circ P(A|B) = P(B|A) * P(A) / P(B)
- ☐ In fact, we don't need a probability to predict the most likely class for a new data instance. We only need the numerator and the class that gives the largest response, which will be the predicted output.
 - \circ max(P(B|A) * P(A))

Playing Classifier:

PN	Weather	Play
1	Sunny	No
2	Sunny	No
3	Overcast	Yes
4	Rainy	Yes
5	Rainy	Yes
6	Rainy	No
7	Overcast	Yes
8	Sunny	No
9	Sunny	Yes
10	Rainy	Yes
11	Sunny	Yes
12	Overcast	Yes
13	Overcast	Yes
14	Rainy	No

For the given dataset, apply Naïve-Bayes Algo to predict the outcome of Weather = {Rainy}

$$P(Yes) =$$

$$P(No) =$$

Outlook	Yes	No
Sunny		
Overcast		
Rainy		

D(VIVoc) -	
P(X Yes) =	
P(X/No) =	
Normalizing	
P(X Yes) =	
Normalizing	
P(X No) =	

PN	Weather	Play
1	Sunny	No
2	Sunny	No
3	Overcast	Yes
4	Rainy	Yes
5	Rainy	Yes
6	Rainy	No
7	Overcast	Yes
8	Sunny	No
9	Sunny	Yes
10	Rainy	Yes
11	Sunny	Yes
12	Overcast	Yes
13	Overcast	Yes
14	Rainy	No

For the given dataset, apply Naïve-Bayes Algo to predict the outcome of Weather = {Sunny}

$$P(Yes) = 9/14$$

$$P(No) = 5/14$$

Outlook	Yes	No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rainy	3/9	2/5

P(X Yes) = P(Sunny Yes) * P(Yes)			
P(X No) =	P(Sunny No) * P(I	No)	
Normalizing			
P(X Yes) =			
Normalizing			
P(X No) =			

PN	Weather	Play
1	Sunny	No
2	Sunny	No
3	Overcast	Yes
4	Rainy	Yes
5	Rainy	Yes
6	Rainy	No
7	Overcast	Yes
8	Sunny	No
9	Sunny	Yes
10	Rainy	Yes
11	Sunny	Yes
12	Overcast	Yes
13	Overcast	Yes
14	Rainy	No

For the given dataset, apply Naïve-Bayes Algo to predict the outcome of Weather = {Overcast}

$$P(Yes) = 9/14$$

$$P(No) = 5/14$$

Outlook	Yes	No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rainy	3/9	2/5

P(X Yes) =	P(Overcast Yes) *	P(Yes)
P(X No) =	P(Overcast No) * P	P(No)
Normalizing P(X Yes) =		
Normalizing P(X No) =		

Laplace Smoothing:
Laplace smoothing is a smoothing technique that helps tackle the
problem of zero probability in the Naïve Bayes machine learning
algorithm.
Working of Laplace Smoothing
1. A small-sample correction, or pseudo-count, will be incorporated
in every probability estimate.
Consequently, no probability will be zero.
This is a way of regularizing Naive Bayes, and when the pseudo-count is
zero, it is called Laplace smoothing.

D/VIV\ -	P(Overcast Yes) * P(Yes)
P(X Yes) =	
P(X No) =	P(Overcast No) * P(No)
Normalizing P(X Yes) =	
Normalizing P(X No) =	

GO-OUT/STAY-HOME CLASSIFIER

DN	Weather	Car	Result
1	sunny	working	go-out
2	rainy	broken	go-out
3	sunny	working	go-out
4	sunny	working	go-out
5	sunny	working	go-out
6	rainy	broken	stay-home
7	rainy	broken	stay-home
8	sunny	working	stay-home
9	sunny	broken	stay-home
10	rainy	broken	stay-home

For the given dataset, apply Naïve-Bayes Algo to predict the outcome of a X = {sunny, working}

D	an out	_
П	(go-out)	_

Weather	go-out	stay-home	Car	go-out	stay-home
Sunny			Working		
Rainy			Broken		

P(X go-out)		
=		
P(X stay-		
P(X stay- home) =		
Normalizing		
P(X go-out)		
=		
Normalizing		
P(X stay-		
home) =		

DN	Weather	Car	Result
1	sunny	working	go-out
2	rainy	broken	go-out
3	sunny	working	go-out
4	sunny	working	go-out
5	sunny	working	go-out
6	rainy	broken	stay-home
7	rainy	broken	stay-home
8	sunny	working	stay-home
9	sunny	broken	stay-home
10	rainy	broken	stay-home

For the given dataset, apply Naïve-Bayes
Algo to predict the outcome of a

X = {rainy, broken}

$$P(go-out) = 5 / 10$$

Weather	go-out	stay-home	Car	go-out	stay-home
Sunny	4/5	2/5	Working	4/5	1/5
Rainy	1/5	3/5	Broken	1/5	4/5

P(X go-out)	P(rainy go-out) * P(broken go-out) * P(go-out)				
= (
P(X stay- home) =	P(rainy stay-home) * P(broken stay-hon	ne) * P(stay-home)			
Normalizing					
P(X go-out)					
=					
Normalizing					
P(X stay-					
home) =					

NBC Advantages:
□ Naïve Bayes is one of the fast and easy ML algorithms to predict a class of datasets.
☐ It can be used for Binary as well as Multi-class Classifications.
☐ It performs well in Multi-class predictions as compared to the other Algorithms.
NBC Disadvantages:
Naive Bayes assumes that all features are independent or unrelated.
NBC Application:
☐ Text Classification problem such as:
 Spam filtration
 Classifying articles
☐ Credit Scoring
☐ Medical data classification