1 Bondi Hoyle

Bondi & Hoyle (1944); The rate of accretion can be give as::

$$\dot{M} = \frac{4\pi G^2 M^2 \rho_{\infty}}{v^3} \tag{1}$$

What's the difference, ("If Any!!") between Proto-stellar disks & AGN disks ???!!!!

Table 1: What are the similarties and differences between Proto-stellar and AGN accretion disks?

isks							
AGN disks			దా ్గ్య		<u>1</u> .		rt .
Proto-stellar disks	~ 0.1	Mainly adiabatic	Interesting issue. Thought to be sensitive to MRI at later stages at least. However, there are some arguing that global magnetic fields may play a key in transporting angular momentum away.	Self-gravity at early times, MRI later	Certainly many people working on chemistry in these discs	Regarded as important for cooling	Yes, and regarded as having, initially at least, an ISM composition.
	h/r	${\bf Adiabatic/isothermal?}$	$B ext{-field strength}$	Mechamism(s) for turbulence generation	Dust chemistry	Dust opacity	Iron present?

- 3 ADAFs, RIAFs, etcs.
- 4 ADAFs, RIAFs, etcs.

see reviews by Quataert [2001]; Narayan [2005]; early versions of RIAF models were called advection-dominated accretion flows [ADAFs] or ion tori;

Нот	thick, ~ 0.5 optically thin $(\tau < 1)$ low(er) non-negligible generally inefficient sub-Keplerian	Yes, Yes "Jet/Kinetic/Maintenances"	advection dominated accretion flow (ADAF) (adiabatic inflow-outflow solution; ADIOS) (convection-dominated accretion flow; CDAF) radiatively inefficient accretion flow (RIAF) "luminous hot" (LHAF) SLE (Shaprio, Lightman, Eardley, 1976, ApJ, 204, 187)	Low-luminosity AGN (LLAGN) BHXBs in "Hard and Quiescent" state
Согр	thin, ≤ 0.1 optically thick generally high negligible generally efficient generally Keplerian	Yes? No. "Radiative/Wind/Tranistionn"	"Slim" Shakura-Sunyaev disk (a.k.a "thin" + α)	quasars
Temperature (cf. Virial temperature)	geometry (h/R) gas opacity \dot{M} radiation pressure radiative cooling angular velocity	Outflows? Jets? Feedback mode	Named examples	Type of objects

$$T_{\rm vir} = \frac{\mu m_p}{2k_B} V_{\rm vir}^2 \simeq 3.6 \times 10^5 \left(\frac{V_{\rm vir}}{100 \,\text{km/s}}\right)^2$$
 (2)

$$T(R) = \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma} \left[1 - \frac{R}{R_*} \right]^{1/2} \right\}^{1/4}$$
 (3)

$$= \left(\frac{3GM\dot{M}}{8\pi\sigma R_*^3}\right)^{1/4} \tag{4}$$

$$\approx 5 \times 10^5 \left(\frac{M}{10^8 M_{\odot}}\right)^{1/4} \left(\frac{\dot{M}}{10^{23} \text{kg s}^{-1}}\right)^{1/4} \left(\frac{r}{r_g}\right)^{-3/4} \text{K}$$
 (5)

(6)

with $T = T_*(R/R_*)^{-3/4}$ for $R \gg R_*$.

$$T(R) = \left(\frac{3GM\dot{M}}{8\pi\sigma R_*^3}\right)^{1/4} \tag{7}$$

$$\approx 5 \times 10^5 \left(\frac{M}{10^8 M_{\odot}}\right)^{1/4} \left(\frac{\dot{M}}{10^{23} \text{kg s}^{-1}}\right)^{1/4} \left(\frac{r}{r_g}\right)^{-3/4} \text{K}$$
 (8)

(9)

$$T(R) = \left(\frac{3GM\dot{M}}{8\pi\sigma R_*^3}\right)^{1/4} \tag{10}$$

$$\approx 5 \times 10^5 \left(\frac{M}{10^8 M_{\odot}}\right)^{1/4} \left(\frac{\dot{M}}{10^{23} \text{kg s}^{-1}}\right)^{1/4} \left(\frac{r}{r_g}\right)^{-3/4} \text{K}$$
 (11)

$$\approx 5 \times 10^5 \left(\frac{M}{10^8 M_{\odot}}\right)^{1/4} \left(\frac{\dot{M}}{0.6 M_{\odot} \text{yr}^{-1}}\right)^{1/4} \left(\frac{r}{r_g}\right)^{-3/4} \text{K}$$
 (12)

$$\sim 8 \times 10^5 \left(\frac{M}{10^8 M_{\odot}}\right)^{1/4} \left(\frac{\dot{M}}{M_{\odot} \text{yr}^{-1}}\right)^{1/4} \left(\frac{r}{r_g}\right)^{-3/4} \text{K}$$

$$T(R) = \left(\frac{3GM\dot{M}}{8\pi\sigma R_*^3}\right)^{1/4} \approx 5 \times 10^5 \left(\frac{M}{10^8 M_\odot}\right)^{1/4} \left(\frac{\dot{M}}{0.6 M_\odot {\rm yr}^{-1}}\right)^{1/4} \left(\frac{r}{r_g}\right)^{-3/4} {\rm K}$$

5 This, THIS, THIS!!!!

http://www.scholarpedia.org/article/Accretion_discs

References

Bondi H., Hoyle F., 1944, MNRAS, 104, 273