Analyse en composantes principales Mme L.HAMDAD

Plan

Introduction

L'ACP est une méthode descriptive permettant de traiter des tableaux de données quantitatives $X_{n,p}$ (de grandes dimension) où n représente le nombre d'individus et p le nombre de variables quantitatives. Le but de l'ACP est de résumer la grande quantité d'information contenue dans X, et cela dans un tableau de plus petite dimension $Y_{n,q}(q < p)$. Et ainsi fournir une représentation visuelle tels que :

- ♦ Y^j est une combinaison linéaire des p variables quantitatives, X^j , j=1,...,p.
- \blacklozenge Les variables $(Y^j)_{j=1,\dots q}$ sont non correlées entre elles.
- ♦ Le tableau X peut être reconstitué à partir du nouveau tableau Y.
- \blacklozenge Y contient le maximum d'informations sur X.

Exemple de tableau de données :

- Notes de *n* étudiants en *p* modules,
- Relevés des dépenses de ménages en 10 postes.
- Teneur en mineraux de certaines eaux, ect......

Tableau de données

	X ¹	 X^{j}	 Xp
1		 x_1^j	 x_1^p
:			
i	x_1^1	x_i^j	x _i ^p
:			
n	x_n^1	x_n^j	x _n

- \mathbf{x}_1^j représente la mesure de la variable \mathbf{X}^j sur l'individu "i".

A chaque individu "
$$i$$
" on associe le vecteur $X_i = \begin{pmatrix} x_i^1 \\ \vdots \\ x_i^p \end{pmatrix}$ et un poids p_i , tel que $0 < p_i < 1$.

Le nuage de n individus appartenant à \mathbb{R}^p :

$$\aleph(I) = \{X_i \in \mathbb{R}^p, i = 1, ..., n\}.$$

L'espace \mathbb{R}^p est muni d'une métrique qu'on notera M. Cette métrique peut être euclidienne c'est à dire que :

$$M = \left(\begin{array}{ccc} 1 & 0 & 0 \\ & \ddots & \vdots \\ & & 1 \end{array}\right)$$

οu

$$M = \left(\begin{array}{ccc} \frac{1}{\sigma_1} & 0 & 0 \\ & \ddots & \vdots \\ & & \frac{1}{\sigma_p} \end{array}\right)$$

 σ_i représente l'écart type de de la variable X^j .

Remarque

Notons que le choix de l'une ou de l'autre des métriques se fera selon des cas qu'on citera ci après.

A chaque variable est associé le vecteur $X^j = \begin{pmatrix} x_1^j \\ \vdots \\ x_n^j \end{pmatrix}$ de \mathbb{R}^n et on définit le nuage de variables par :

$$\aleph(J) = \left\{ X^j \in \mathbb{R}^n, j = 1, ..., p \right\}$$

 \mathbb{R}^n est muni de la métrique des poids $D_p = \begin{pmatrix} p_1 & 0 \\ & \ddots & \\ 0 & p_n \end{pmatrix}$. Lorsque

les individus sont pris aléatoirement équiprobablement alors; $p_i = \frac{1}{n}, \forall i = 1, \dots, n.$

$$p_i = {n \choose n}, \forall i = 1, \ldots, n$$

Le centre de gravité du nuage N(I)

Il est défini par

$$g = \frac{1}{n} \sum_{i=1}^{n} x_i = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} x_i^1 \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} x_i^p \end{pmatrix} = \begin{pmatrix} \overline{x}^1 \\ \vdots \\ \overline{x}^p \end{pmatrix}$$

où \overline{x}^j représente la moyenne arithmétique de la $j^{i\`{e}me}$ variable. L'inertie est une mesure de dispersion multidimentionnelle, elle est défini par :

$$I_g = \sum_{i=1}^n p_i ||x_i - g||_M^2.$$

La mesure de dispersion dans le cas unidimentionnel n'est rien d'autre que l'écart type.

Formulation du problème d'ACP

Le principe est d'obtenir une représentation approchée du nuage N(I) (N(J)) dans un sous espace de plus faible dimension par projection. Ainsi, formellement :

- 1- On commence par rechercher un sous espace vectoriel de dimension 1, $E_1 = \Delta u_1$ engendré par un vecteur unitaire u_1 , qui ajuste au mieux le N(I) de \mathbb{R}^n
- 2- Ensuite rechercher un sous espace vectoriel de dimension 2, E_2 en déterminant Δu_2 orthogonal à Δu_1 qui ajuste au mieux le N(I) de \mathbb{R}^n
- 3- En général rechercher un sous espace vectoriel E_k de dimension k en déterminant Δu_k orthogonal à Δu_{k-1} qui ajuste au mieux le N(I) de \mathbb{R}^n avec

$$E_k = \Delta u_k \oplus \Delta u_{k-1}$$

Détermination des axes factoriels

A partir de maintenant, on suppose que le tableau X est centré. **Ajustement sur** (\mathbb{R}^P, M) : Dans ce cas le nuage N(I) est ajusté. On recherche le sous espace vectoriel de dim1, Δu_1 passant par l'origine et engendré par le vecteur unitaire u_1 qui ajuste au mieux le nuage N(I). Cela se fait, en déterminant u_1 qui maximise l'inertie du nuage N(I), défini précedemment.

Notons par α_i la valeur de projection du vecteur individu X_i du nuage N(I) sur l'axe Δu_k engendré par le vecteur unitaire u_k , α_i est donnée par :

$$\alpha_i = \langle X_i, u_1 \rangle_M = X_i^t M u_1,$$

Le vecteur de projection de tout les individus est donc donné par :

$$Y = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} X_1^t M u_1 \\ \vdots \\ X_n^t M u_1 \end{pmatrix} = X M u_1$$

Y est appelé composante principale.

Ainsi l'inertie du nuage N(I) défini plus haut s'écrit :

$$I = \phi(u) = ||Y||_{D_p}^2 = u_1^t M X^t D_p X M u_1.$$

 $V=X^tD_pX$ représente la matrice de variance covariance des p variables. Dans la suite, nous déterminons u_1 unitaire qui maximise $\phi(u)$. Commençons par écrire la fonction de Lagrange correspondant à notre problème d'optimisation :

$$L(u) = \phi(u) - \lambda(u^t M u - 1)$$

 u_1 est solution du système suivant :

$$\begin{cases}
\frac{dL(u)}{du}(u_1) = 0 \\
u_1^t M u_1 = 1
\end{cases}$$

Aprés résolution, nous obtenons l'équation suivante :

$$VMu_1 = \lambda u_1$$

. u_1 est vecteur propre de la matrice VM associé à la valeur propre λ . Laquelle des valeurs propres de VM?

En utilisant le contrainte sur le vecteur propre et en multipliant chaque coté de l'équation précédente par $u_1^T M$, nous obtenons :

$$u_1^t MVM u_1 = \lambda u_1^t M u_1 = \lambda$$
. $\square > 4 ? >$

Pour retrouver le sous espace vectoriel de dimension 2 qui ajuste au mieux le nuage de points N(I), il suffit de trouver u_2 vecteur propre unitaire orthogonale à u_1 qui maximise $\phi(u)$.

Dans ce cas la fonction de Lagrange sous deux contraintes s'écrit :

$$L(u,v) = L(u) = \phi(u) - \lambda(u^t Mu - 1) - \alpha u^t Mv.$$

u₂ est solution du systhème

$$\begin{cases} \frac{dL(u,v)}{du}(u_2,u_1) = 0\\ \frac{dL(u,v)}{dv}(u_2,u_1) = 0\\ u_2^t M u_2 = 1, u_2^t M u_1 = 0 \end{cases}$$

Après résolution du système et en prenant en considération les contraintes, on déduit que u_2 est vecteur propre de VM associ é à la deuxième plus grande valeur propre.

En général, le sous espace vectoriel de dimension k qui ajuste au mieux le nuage de points N(I) est engendré par les vecteurs propres $u_1, ..., u_k$ de VM unitaires et deux à deux orthogonaux associés aux valeurs propres $\lambda_1, ..., \lambda_k$, ordonnées de manière décroissantes, c'est \tilde{A} dire que $\lambda_1 > ... > \lambda_k$.

Ajustement sur (\mathbb{R}^n, D_p)

Dans ce cas le nuage N(J) des variables est ajusté.

On recherche le sous espace vectoriel de dim 1, Δv_1 engendré par le vecteur unitaire v_1 qui ajuste au mieux le nuage N(J) et ceci en déterminant v_1 qui maximise l'inertie du nuage N(J), défini dans ce qui suit.

le sous espace vectoriel de dimension k qui ajuste au mieux le nuage de points N(J) est engendrée par les vecteurs propres $v_1, ..., v_k$ de TD_p unitaires et deux à deux orthogonaux associés aux valeurs propres $\lambda_1, ..., \lambda_k$, ordonnées de manière décroissantes.

Remarque

Pour éviter la différence dans l'echelle de mesure de variables et pour faire jouer à chaque variable un rôle identique dans la définition des proximités entre individus, on passe à l'ACP normé qui consiste réduire les variables, c'est à dire :

$$X_i^j o rac{X_i^j}{\sigma_{j,}}$$

ou bien utiliser la métrique
$$M=\left(egin{array}{ccc} rac{1}{\sigma_1} & & 0 \\ & \ddots & \\ 0 & & rac{1}{\sigma_j} \end{array}
ight)$$

Propriétés des composantes principales

Nous rappelons que $Y_{\alpha}(i)$ qui représente le vecteur de projection des individus sur l'axe factoriel δ_{α} est appelé composante principale ou nouvelle variable, ses propriétés sont :

$$\begin{split} \forall \alpha &=& 1,...,p, \quad \overline{y}_{\alpha} = 0, \\ \|y_{\alpha}\|^2 &=& \textit{vary}_{\alpha} = \lambda_{\alpha}, \\ \textit{cov}(y_{\alpha},y_{\alpha'}) &=& 0. \end{split}$$

Représentation d'un individu supplémentaire Soit x_i un individu supplémentaire, sa représentation est donnée par :

$$\alpha_{x_i} = \widetilde{x_i}^t u$$
, tel que $\widetilde{x_i} = x_i - g^t$.

Représentation d'une variable supplémentaire

Soit x^j une variable supplémentaire, sa représentation est donnée par : $\alpha_{x_i} = X^{jt} D_p v$, tel que $\widetilde{x^j} = x^j - \overline{x}^j$ est la variable centrée.

Remarque

Si l'ACP est normée en plus d'être centré les vecteurs sont réduits.

Formules de transitions

Ces dernières permettent de passer de l'analyse d'un nuage à un autre.

Proposition

: Les matrices XX^tD_p et X^tD_pX ont les mêmes valeurs propres.

Les aides à l'interprétation :

Qualité globale de représentation d'un axe factoriel : Elle est mesurée par le pourcentage d'inertie et elle est donnée par

$$I = \frac{\lambda_{\alpha}}{\sum_{r=1}^{p} \lambda_{r}} \times 100$$

Qualité d'un individu (variable) par un axe factoriel a- Individu :

$$C_{re}^{\alpha}(i) = \cos_i^2(\theta) = \frac{(y_{\alpha}(i))^2}{\|x_i\|^2}$$

b-Variable:

$$C_{re}^{\alpha}(j) = \cos_j^2(\theta) = \frac{(V_{\alpha}(j))^2}{\|x^j\|_{D_p}^2}$$

Dés que $\cos_i^2(\theta) \simeq 1$, on dira que l'individu ou la variable sont trés bien représenté par le $\alpha^{t \`{e}me}$ axe factoriel.

Remarque

Il y a une relation très étroite entre le coéffcient de corrélation entre l'ancienne et la nouvelle variable et la projection de cette dernière sur l'axe factoriel, en effet

$$r(X^j, Y_\alpha) = \frac{V_\alpha(j)}{\sigma_j}$$

Ceci implique que lorsque l'ACP est normée, les variables varient à l'intérieur d'un cercle appelé cercle de corrélation.

✓ Si les variables sont proches du cercle, alors elles seront bien représentées par le plan factoriel.

Reconstitution du tableau de données : Le tableau de données est complètement reconstitué à partir de la formule suivante :

$$X = \sum_{\alpha=1}^{p} \sqrt{\lambda_{\alpha}} v_{\alpha} u_{\alpha}^{t}$$

En effet à partir des formules de transition, on a

$$v = \frac{1}{\sqrt{\lambda}} X u \Leftrightarrow \sqrt{\lambda} v = X u$$

On multiplie les deux cotés de l'égalité par u^t on aura

$$\sqrt{\lambda} v u^t = X u u^t \Leftrightarrow X \sum_{\alpha} u_{\alpha} u_{\alpha}^t =_{\alpha} \sqrt{\lambda_{\alpha}} v_{\alpha} u_{\alpha}^t$$

Récapitulation Algorithme ACP

- Calculer les moyennes des variables \overline{X}^j , j=1,...,p.
- Centrer le tableau X (réduire si les données sont hétérogènes).
- **3** Calculer la matrice de variance covariance $V = X^t D_p X = \frac{1}{n} X^t X$.
- lacktriangle Calculer les valeurs propres et les vecteurs propres de V.
- **3** Calculer les projections des individus et des variables sur les axes factoriels : $Y_{\alpha} = Xu, V_{\alpha} = \sqrt{\lambda_{\alpha}}u$.
- Représenter graphiquement les individus et les variables.
- Interpréter les résultats de l'analyse.