

01_CS 350 Math Reference - Exam 1

Ryan Filgas - Studying under professor David Ely

Complexity notes: 'n' almost always means size of input. Input \neq bigO.

—- decreasing work is log(n), not log2(n) -—little O means less than

types of time: constant, linear, log, quadratic, exponential, factorial

Manipulation Options:

- Multiply top and bottom by 1
- add or subtract forms of 1
- divide bottom by n to find similar terms
- re-define variable in terms of another lesser variable
- pull a term out and evaluate it as its limit

- l'hospitals rule: indeterminate: derivative of the top / derivative of the bottom.
- To prove: big O: Take the ratio of the limits.
- Get exponentials to similar exponents and cancel
- split up the equation and take the sum of the limits
- the same log on both sides can be canceled
- all logs are the same order of growth, substitute (hand wavy)

Logarithm rules

Rule name	Rule		
Logarithm product rule	$\log_b(x \cdot y) = \log_b(x) + \log_b(y)$		
Logarithm quotient rule	$\log_b(x/y) = \log_b(x) - \log_b(y)$		
Logarithm power rule	$\log_b(x^y) = y \cdot \log_b(x)$		
Logarithm base switch rule	$\log_b(c) = 1 / \log_c(b)$		
Logarithm base change rule	$\log_b(x) = \log_c(x) / \log_c(b)$		
Derivative of logarithm	$f(x) = \log_b(x) \Rightarrow f'(x) = 1 / (x \ln(b))$		
Integral of logarithm	$\int \log_b(x) dx = x \cdot (\log_b(x) - 1 / \ln(b)) + C$		
Logarithm of negative number	$\log_b(x)$ is undefined when $x \le 0$		
Logarithm of 0	$\log_b(0)$ is undefined		
	$\lim_{x \to 0^+} \log_b(x) = -\infty$		
Logarithm of 1	$\log_b(1) = 0$		
Logarithm of the base	$\log_b(b) = 1$		
Logarithm of infinity	$\lim \log_b(x) = \infty, \text{ when } x \to \infty$		

Derivative rules

Derivative sum rule	(af(x) + bg(x))' = af'(x) + bg'(x)
Derivative product rule	$(f(x) \cdot g(x))' = f'(x) g(x) + f(x) g'(x)$
Derivative quotient rule	$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$
Derivative chain rule	$f(g(x))' = f'(g(x)) \cdot g'(x)$

$$\frac{d}{dx} \left[\sqrt{x} \right] = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}$$

^^Square Root Derivative

$$\log_b(x) = \log_c(x) / \log_c(b)$$

^^Change of Base Rule

If \boldsymbol{n} is a positive integer greater than 1 and both a and b are positive real numbers then,

1. Inverse Property $n\sqrt{an} = a$ if n is odd or

 $n\sqrt{an} = |a| \text{ if n is even}$

2. Product Rule $n\sqrt{ab} = n\sqrt{a} \cdot n\sqrt{b}$

 $n \int \frac{a}{h} = \frac{n \sqrt{a}}{n \sqrt{h}}$

3. Quotient Rule

^^Radicals (square roots)

Exponents rules and properties

Rule name	Rule	Example
Product rules	$a^n \cdot a^m = a^{n+m}$	$2^3 \cdot 2^4 = 2^{3+4} = 128$
	$a^n \cdot b^n = (a \cdot b)^n$	$3^2 \cdot 4^2 = (3 \cdot 4)^2 = 144$
Quotient rules	$a^n / a^m = a^{n-m}$	$2^5 / 2^3 = 2^{5-3} = 4$
	$a^n / b^n = (a / b)^n$	$4^3 / 2^3 = (4/2)^3 = 8$
Power rules	$(b^n)^m = b^{n \cdot m}$	$(2^3)^2 = 2^{3 \cdot 2} = 64$
	$b^{n^m} = b(n^m)$	$23^2 = 2(3^2) = 512$
	$m\sqrt{(b^n)} = b^{n/m}$	$2\sqrt{(2^6)} = 2^{6/2} = 8$
	$b^{1/n} = {}^{n}\sqrt{b}$	$8^{1/3} = \sqrt[3]{8} = 2$
Negative exponents	$b^{-n} = 1 / b^n$	$2^{-3} = 1/2^3 = 0.125$
Zero rules	$b^0 = 1$	$5^0 = 1$
	$0^n = 0$, for $n > 0$	$0^5 = 0$
One rules	$b^1 = b$	$5^1 = 5$
	$1^n = 1$	$1^5 = 1$
Minus one rule	$(-1)^n = \begin{cases} 1 &, n \text{ even} \\ -1 &, n \text{ odd} \end{cases}$	$(-1)^5 = -1$
Derivative rule	$(x^n)' = n \cdot x^{n-1}$	$(x^3)' = 3 \cdot x^{3-1}$
Integral rule	$\int x^n dx = $ $x^{n+1}/(n+1) + C$	$\int x^2 dx =$ $x^{2+1}/(2+1) + C$

List of Derivative Rules

Below is a list of all the derivative rules we went over in class.

- Constant Rule: f(x) = c then f'(x) = 0
- Constant Multiple Rule: $g(x) = c \cdot f(x)$ then $g'(x) = c \cdot f'(x)$
- Power Rule: $f(x) = x^n$ then $f'(x) = nx^{n-1}$
- Sum and Difference Rule: $h(x) = f(x) \pm g(x)$ then $h'(x) = f'(x) \pm g'(x)$
- Product Rule: h(x) = f(x)g(x) then h'(x) = f'(x)g(x) + f(x)g'(x)
- Quotient Rule: $h(x) = \frac{f(x)}{g(x)}$ then $h'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- Chain Rule: h(x) = f(g(x)) then h'(x) = f'(g(x))g'(x)
- Trig Derivatives:

$$-f(x) = \sin(x)$$
 then $f'(x) = \cos(x)$

$$-f(x) = \cos(x)$$
 then $f'(x) = -\sin(x)$

$$-f(x) = \tan(x)$$
 then $f'(x) = \sec^2(x)$

$$- f(x) = \sec(x)$$
then $f'(x) = \sec(x) \tan(x)$

$$-f(x) = \cot(x)$$
 then $f'(x) = -\csc^2(x)$

$$-f(x) = \csc(x)$$
 then $f'(x) = -\csc(x)\cot(x)$

• Exponential Derivatives

$$-f(x) = a^x$$
 then $f'(x) = \ln(a)a^x$

$$-f(x) = e^x$$
 then $f'(x) = e^x$

$$-f(x) = a^{g(x)}$$
 then $f'(x) = \ln(a)a^{g(x)}g'(x)$

$$- f(x) = e^{g(x)}$$
 then $f'(x) = e^{g(x)}g'(x)$

• Logarithm Derivatives

$$- f(x) = \log_a(x) \text{ then } f'(x) = \frac{1}{\ln(a)x}$$

$$-f(x) = \ln(x)$$
 then $f'(x) = \frac{1}{x}$

$$-f(x) = \log_a(g(x))$$
 then $f'(x) = \frac{g'(x)}{\ln(a)g(x)}$

$$- f(x) = \ln(g(x)) \text{ then } f'(x) = \frac{g'(x)}{g(x)}$$

$$\sum_{i=1}^n i = rac{n(n+1)}{2}.$$

 $\wedge \wedge$ summation of 1 + 2 + 3.... + n-1 + n

 $4 \log_6(n) = n (\log_6(4))$

$$8 \land (\log_2(n)) = n \land (\log_2(8)) = n \land 3 \longrightarrow$$

DONT FORGET TO SIMPLIFY!!!!!!!

Derivatives	Function	Derivative
	f (x)	f '(x)
Constant	const	0
Linear	X	1
Power	x ^a	a x ^(a-1)
Exponential	e ^x	e^x
Exponential	a ^x	a^x ln a
Natural logarithm	ln(x)	1/x
Logarithm	logb(x)	1/[x ln(b)]
Sine	sin x	cos x
Cosine	cos x	-sin x
Tangent	tan x	1/cos^2(x)
Hyperbolic sine	sinh x	cosh x
Hyperbolic cosine	cosh x	sinh x
Hyperbolic tangent	tanh x	1/(cosh^2)(x)