Apêndice A

Lista de Distribuições

A.1 Distribuição Normal

X tem distribuição normal com parâmetros μ e σ^2 , denotando-se $X \sim N(\mu, \sigma^2)$, se sua função de densidade é dada por

$$p(x|\mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp[-(x-\mu)^2/2\sigma^2], -\infty < x < \infty,$$

para $-\infty < \mu < \infty$ e $\sigma^2 > 0$. Quando $\mu = 0$ e $\sigma^2 = 1$ a distribuição é chamada normal padrão. A distribuição log-normal é definida como a distribuição de e^X .

No caso vetorial, $\boldsymbol{X}=(X_1,\ldots,X_p)$ tem distribuição normal multivariada com vetor de médias $\boldsymbol{\mu}$ e matriz de variância-covariância Σ , denotando-se $\boldsymbol{X}\sim N(\boldsymbol{\mu},\Sigma)$ se sua função de densidade é dada por

$$p(x|\boldsymbol{\mu}, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp[-(\boldsymbol{x} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2]$$

para $\mu \in \mathbb{R}^p$ e Σ positiva-definida.

A.2 Distribuição Gama

X tem distribuição Gama com parâmetros α e β , denotando-se $X \sim Ga(\alpha, \beta)$, se sua função de densidade é dada por

$$p(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x > 0,$$

para $\alpha, \beta > 0$.

$$E(X) = \alpha/\beta$$
 e $V(X) = \alpha/\beta^2$.

Casos particulares da distribuição Gama são a distribuição de Erlang, $Ga(\alpha, 1)$, a distribuição exponencial, $Ga(1, \beta)$, e a distribuição qui-quadrado com ν graus de liberdade, $Ga(\nu/2, 1/2)$.

A.3 Distribuição Gama Inversa

X tem distribuição Gama Inversa com parâmetros α e β , denotando-se $X \sim GI(\alpha, \beta)$, se sua função de densidade é dada por

$$p(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\beta/x}, \quad x > 0,$$

para $\alpha, \beta > 0$.

$$E(X) = \frac{\beta}{\alpha - 1}$$
 e $V(X) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}$.

Não é difícil verificar que esta é a distribuição de 1/X quando $X \sim Ga(\alpha, \beta)$.

A.4 Distribuição Beta

X tem distribuição Beta com parâmetros α e β , denotando-se $X \sim Be(\alpha, \beta)$, se sua função de densidade é dada por

$$p(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1,$$

para $\alpha, \beta > 0$.

$$E(X) = \frac{\alpha}{\alpha + \beta}$$
 e $V(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

A.5 Distribuição de Dirichlet

O vetor aleatório $\boldsymbol{X}=(X_1,\ldots,X_k)$ tem distribuição de Dirichlet com parâmetros α_1,\ldots,α_k , denotada por $D_k(\alpha_1,\ldots,\alpha_k)$ se sua função de densidade conjunta é dada por

$$p(\boldsymbol{x}|\alpha_1,\ldots,\alpha_k) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1),\ldots,\Gamma(\alpha_k)} x_1^{\alpha_1-1} \ldots x_k^{\alpha_k-1}, \quad \sum_{i=1}^k x_i = 1,$$

para $\alpha_1, \ldots, \alpha_k > 0$ e $\alpha_0 = \sum_{i=1}^k \alpha_i$.

$$E(X_i) = \frac{\alpha_i}{\alpha_0}, \quad V(X_i) = \frac{(\alpha_0 - \alpha_i)\alpha_i}{\alpha_0^2(\alpha_0 + 1)}, \quad \text{e} \quad Cov(X_i, X_j) = -\frac{\alpha_i\alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$

Note que a distribuição Beta é obtida como caso particular para k=2.

A.6 Distribuição t de Student

X tem distribuição t de Student (ou simplesmente t) com média μ , parâmetro de escala σ e ν graus de liberdade, denotando-se $X \sim t_{\nu}(\mu, \sigma^2)$, se sua função de densidade é dada por

$$p(x|\nu,\mu,\sigma^2) = \frac{\Gamma((\nu+1)/2)\nu^{\nu/2}}{\Gamma(\nu/2)\sqrt{\pi}\sigma} \left[\nu + \frac{(x-\mu)^2}{\sigma^2}\right]^{-(\nu+1)/2}, \quad x \in \mathbb{R},$$

para $\nu > 0$, $\mu \in \mathbb{R}$ e $\sigma^2 > 0$.

$$E(X) = \mu$$
, para $\nu > 1$ e $V(X) = \frac{\nu \sigma^2}{\nu - 2}$, para $\nu > 2$.

Um caso particular da distribuição t é a distribuição de Cauchy, denotada por $C(\mu, \sigma^2)$, que corresponde a $\nu = 1$.

A.7 Distribuição F de Fisher

X tem distribuição F com ν_1 e ν_2 graus de liberdade, denotando-se $X \sim F(\nu_1, \nu_2)$, se sua função de densidade é dada por

$$p(x|\nu_1,\nu_2) = \frac{\Gamma((\nu_1 + \nu_2)/2)}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)} \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} x^{\nu_1/2 - 1} (\nu_2 + \nu_1 x)^{-(\nu_1 + \nu_2)/2}$$

x > 0, e para $\nu_1, \nu_2 > 0$.

$$E(X) = \frac{\nu_2}{\nu_2 - 2}$$
, para $\nu_2 > 2$ e $V(X) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 4)(\nu_2 - 2)^2}$, para $\nu_2 > 4$.

A.8 Distribuição Binomial

X tem distribuição binomial com parâmetros n e p, denotando-se $X \sim bin(n,p)$, se sua função de probabilidade é dada por

$$p(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, \dots, n$$

para $n \ge 1$ e 0 .

$$E(X) = np$$
 e $V(X) = np(1-p)$

e um caso particular é a distribuição de Bernoulli com n=1.

A.9 Distribuição Multinomial

O vetor aleatório $\boldsymbol{X}=(X_1,\ldots,X_k)$ tem distribuição multinomial com parâmetros n e probabilidades θ_1,\ldots,θ_k , denotada por $M_k(n,\theta_1,\ldots,\theta_k)$ se sua função de probabilidade conjunta é dada por

$$p(\boldsymbol{x}|\theta_1,\ldots,\theta_k) = \frac{n!}{x_1!,\ldots,x_k!}\theta_1^{x_1},\ldots,\theta_k^{x_k}, \quad x_i = 0,\ldots,n, \quad \sum_{i=1}^k x_i = n,$$

para $0 < \theta_i < 1$ e $\sum_{i=1}^k \theta_i = 1$. Note que a distribuição binomial é um caso especial da multinomial quando k = 2. Além disso, a distribuição marginal de cada X_i é binomial com parâmetros n e θ_i e

$$E(X_i) = n\theta_i, \quad V(X_i) = n\theta_i(1 - \theta_i), \quad e \quad Cov(X_i, X_j) = -n\theta_i\theta_j.$$

A.10 Distribuição de Poisson

X tem distribuição de Poisson com parâmetro θ , denotando-se $X \sim Poisson(\theta)$, se sua função de probabilidade é dada por

$$p(x|\theta) = \frac{\theta^x e^{-\theta}}{x!}, \quad x = 0, 1, \dots$$

para $\theta > 0$.

$$E(X) = V(X) = \theta.$$

A.11 Distribuição Binomial Negativa

X tem distribuição de binomial negativa com parâmetros r e p, denotando-se $X \sim BN(r,p)$, se sua função de probabilidade é dada por

$$p(x|r,p) = {r+x-1 \choose x} p^r (1-p)^x, \quad x = r, r+1, \dots$$

para $r \ge 1$ e 0 .

$$E(X) = r(1-p)/p$$
 e $V(X) = r(1-p)/p^2$.

Um caso particular é quando r=1 e neste caso diz-se que X tem distribuição geométrica com parâmetro p.