

University College London

MENG MECHANICAL ENGINEERING

MECH0071 ELECTRICAL POWER SYSTEMS AND ELECTRICAL PROPULSION

PSCAD COURSEWORK

Author: Module coordinator: Hasha Dar Prof. Richard Bucknall

November 16, 2022

Contents

List of Figures				
Li	List of Tables			
1 Question 1		stion 1		
	1.1	Circuit diagram		
	1.2	Instantaneous voltages		
	1 3	Effect of increasing capacitcance to 25 µF		

List of Figures

1	Circuit diagram for question 1	3
2	Graph to show instantaneous input voltage across the voltage source	3
3	Graph to show instantaneous output voltage across the resistive load	4
4	Graph to show comparison between instantaneous output voltage across the resistive load for	
	different capacitance values	4

List of Tables

1 Question 1

1.1 Circuit diagram

Figure 1: Circuit diagram for question 1.

1.2 Instantaneous voltages

Figure 2: Graph to show instantaneous input voltage across the voltage source.

Figure 3: Graph to show instantaneous output voltage across the resistive load.

1.3 Effect of increasing capacitcance to 25 μF

Figure 4: Graph to show comparison between instantaneous output voltage across the resistive load for different capacitance values.

The purpose of the capacitor in this diode bridge circuit is to filter/reduce the amount of voltage ripple, inherent to bridge diode circuits. We can see in Figure 3 that our voltage drop is approximately $25\,V$ between pulses. By increasing the capacitance, our voltage drop reduces (from data: voltage drop with $25\,\mu F\approx 4\,V$.) This is desirable as this achieves a more stable DC output. However, increasing the capacitance also increases the rise time and reduces the peak voltage of the output, shown in Figure 4.