Problem Set 8 Solutions

Due: Tuesday, November 2 @ 7pm

Problem 1. [25 points] Find Θ bounds for the following divide-and-conquer recurrences. Assume T(1) = 1 in all cases. Show your work.

(a) [5 pts]
$$T(n) = 8T(\lfloor n/2 \rfloor) + n$$

(b)
$$[5 \text{ pts}] T(n) = 2T(\lfloor n/8 \rfloor + 1/n) + n$$

(c) [5 pts]
$$T(n) = 7T(\lfloor n/20 \rfloor) + 2T(\lfloor n/8 \rfloor) + n$$

(d) [5 pts]
$$T(n) = 2T(|n/4| + 1) + n^{1/2}$$

(e) [5 pts]
$$T(n) = 3T(|n/9 + n^{1/9}|) + 1$$

Solution. We use the method of Akra-Bazzi for these problems.

(a) We see that a = 8, b = 1/2, h = |n/2| - n/2 so p = 3 gives $ab^p = 1$.

$$T(n) = \Theta(n^3(1 + \int_1^n \frac{u}{u^4} du)) = \Theta(n^3(1 + \int_1^n u^{-3} du)) = \Theta(n^3).$$

(b)
$$a_1 = 2$$
, $b_1 = 1/8$, $h_1(n) = \lfloor n/8 \rfloor - n/8 + 1/n$, $g(n) = n$, $p = 1/3$,

$$T(n) = \Theta\left(n^p \left(1 + \int_1^n \frac{g(u)}{u^{p+1}} du\right)\right)$$

$$= \Theta\left(n^{1/3} \left(1 + \int_1^n \frac{u}{u^{4/3}} du\right)\right)$$

$$= \Theta\left(n^{1/3} + n^{1/3} \int_1^n u^{-1/3} du\right)$$

$$= \Theta(n^{1/3} + n^{1/3} \frac{3}{2} (n^{2/3} - 1))$$

$$= \Theta(n).$$

(c) $a_1 = 7$, $b_1 = 1/20$, $a_2 = 2$, $b_2 = 1/8$, $h_1(n) = \lfloor n/20 \rfloor - n/20$, $h_2(n) = \lfloor n/8 \rfloor - n/8$, and g(n) = n. Finally, note that although we do not know what p is, we are guaranteed that p < 1.

$$T(n) = \Theta(n^p(1 + \int_1^n \frac{u}{u^{p+1}} du)) = \Theta(n^p(1 + \int_1^n u^{-p} du))$$
$$= \Theta(n^p + n^p \frac{1}{1 - p} (n^{1-p} - 1))$$
$$= \Theta(n).$$

(d)
$$a_1 = 2$$
, $b_1 = 1/4$, $h_1(n) = \lfloor n/4 \rfloor - n/4 + 1$, $g(n) = n^{1/2}$, $p = 1/2$,

$$T(n) = \Theta(n^{1/2}(1 + \int_{1}^{n} \frac{u^{1/2}}{u^{3/2}} du)) = \Theta(n^{1/2} \log n).$$

(e)
$$a_1 = 3$$
, $b_1 = 1/9$, $h_1(n) = \lfloor n/9 + n^{1/9} \rfloor - n/9$, $g(n) = 1$, $p = 1/2$,

$$T(n) = \Theta(n^{1/2}(1 + \int_1^n \frac{1}{u^{3/2}} du)) = \Theta(n^{1/2}).$$

Problem 2. [30 points] It is easy to misuse induction when working with asymptotic notation.

False Claim If

$$T(1) = 1$$
 and

$$T(n) = 4T(n/2) + n$$

Then T(n) = O(n).

False Proof We show this by induction. Let P(n) be the proposition that T(n) = O(n).

Base Case: P(1) is true because T(1) = 1 = O(1).

Inductive Case: For $n \ge 1$, assume that $P(n-1), \ldots, P(1)$ are true. We then have that

$$T(n) = 4T(n/2) + n = 4O(n/2) + n = O(n)$$

And we are done.

(a) [5 pts] Identify the flaw in the above proof.

Problem Set 8

(b) [10 pts] A simple attempt to prove $T(n) \neq O(n)$ via induction ultimately fails. We assume for sake of contradiction that T(n) = O(n). Then there exists positive integer n_0 and positive real number c such that for all $n \geq n_0$, $T(n) \leq cn$. We then define P(n) as the proposition that $T(n) \leq cn$.

We then proceed with strong induction.

Base Case, $n = n_0$: $P(n_0)$ is true, by assumption.

Inductive Step: We assume $P(n_0)$, $P(n_0 + 1)$, ..., P(n - 1) true.

Fill in the rest of this proof attempt, and explain why it doesn't work.

Note: As this problem was updated so late, the graders will be instructed to be exceedingly lenient when grading this.

- (c) [5 pts] Using Akra-Bazzi theorem, find the correct asymptotic behavior of this recurrence.
- (d) [10 pts] We have now seen several recurrences of the form $T(n) = aT(\lfloor n/b \rfloor) + n$. Some of them give a runtime that is O(n), and some don't. Find the relationship between a and b that yields T(n) = O(n), and prove that this is sufficient.
- **Solution.** (a) The flaw is that P(n) is a predicate on n, whereas O(n) is a statement not on n, but on the limit of n as n approaches infinity. T(n) = O(n) does not depend on the value of n it is either true or false.
- (b) We first take some $n \geq 2n_0$. Then,

$$T(n) = 4T(n/2) + n$$

From the inductive hypothesis, $n/2 \ge n_0$, so $T(n/2) \le cn/2$. So this means that

$$T(n) \le 4cn/2 + n = 2cn + n = n(2c+1)$$

Which is not less than cn. So the induction is simply not powerful enough.

- (c) We have that p = 2, so $T = \Theta(n^2(1 + \int_1^n (u/u^3)du)) = \Theta(n^2)$.
- (d) From analyzing the integral we can see that any case where p < 1 will give a linear solution, so having the condition a < b is sufficient.

Problem 3. [15 points] Define the sequence of numbers A_i by

$$A_0 = 2$$

$$A_{n+1} = A_n/2 + 1/A_n \text{ (for } n \ge 1)$$

Prove that $A_n \leq \sqrt{2} + 1/2^n$ for all $n \geq 0$.

Solution. Proof. The proof is by induction on n. Let P(n) be the proposition that $A_n \leq \sqrt{2} + 1/2^n$.

Base case: $A_0 = 2 \le \sqrt{2} + 1/2^0$ is true.

Inductive step: Let $n \ge 0$ and assume the inductive hypothesis $A_n \le \sqrt{2} + 1/2^n$. We need the following lemma.

Lemma. For real numbers x > 0, $x/2 + 1/x \ge \sqrt{2}$.

Proof. For real numbers x > 0,

$$x/2 + 1/x \ge \sqrt{2}$$

$$\Leftrightarrow x^2 + 2 \ge 2\sqrt{2} \cdot x$$

$$\Leftrightarrow x^2 - 2\sqrt{2} \cdot x + 2 \ge 0$$

$$\Leftrightarrow (x - \sqrt{2})^2 \ge 0,$$

which is true.

By using induction it is straightforward to prove that $A_n > 0$ for $n \ge 0$ (base case: $A_0 = 2 > 0$; inductive step: if $A_n > 0$, then $A_{n+1} = A_n/2 + 1/A_n > 0$). By the lemma, $A_n \ge \sqrt{2}$ for $n \ge 0$. Together with the inductive hypothesis this can be used in the following derivation:

$$A_{n+1} = A_n/2 + 1/A_n$$

$$\leq (\sqrt{2} + 1/2^n)/2 + 1/\sqrt{2}$$

$$= \sqrt{2} + 1/2^{n+1}.$$

This completes the proof.

Problem 4. [30 points] Find closed-form solutions to the following linear recurrences.

(a) [15 pts]
$$x_n = 4x_{n-1} - x_{n-2} - 6x_{n-3}$$
 $(x_0 = 3, x_1 = 4, x_2 = 14)$

Solution. The characteristic equation is $r^3 - 4r^2 + r + 6 = 0$.

Generally, solving a cubic equation is a difficult problem. However, we can find from inspection that the roots are:

$$r_1 = -1$$
$$r_2 = 2$$
$$r_3 = 3$$

Therefore a general form for a solution is

$$x_n = A(-1)^n + B(2)^n + C(3)^n.$$

Problem Set 8 5

Substituting the initial conditions into this general form gives a system of linear equations.

$$3 = A + B + C$$

 $4 = -A + 2B + 3C$
 $14 = A + 4B + 9C$

The solution to this linear system is A = 1, B = 1, and C = 1. The complete solution to the recurrence is therefore

$$x_n = (-1)^n + 2^n + 3^n$$
.

(b) [15 pts] $x_n = -x_{n-1} + 2x_{n-2} + n$ $(x_0 = 5, x_1 = -4/9)$

Solution. First, we find the general solution to the homogenous recurrence. The characteristic equation is $r^2 + r - 2 = 0$. The roots of this equation are $r_1 = 1$ and $r_2 = -2$. Therefore, the general solution to the homogenous recurrence is

$$x_n = A(-1)^n + B2^n.$$

Now we must find a particular solution to the recurrence, ignoring the boundary conditions. Since the inhomogenous term is linear, we guess there is a linear solution, that is, a solution of the form an + b. If the solution is of this form, we must have

$$an + b = -a(n-1) - b + 2a(n-2) + 2b + n$$

Gathering up like terms, this simplifies to

$$n(a+a-2a-1) + (b+a+b+4a-2b) = 0$$

which implies that

$$n = -5a$$

But a is a constant, so this cannot be so. So we make another guess, this time that there is a quadratic solution of the form $an^2 + bn + c$. If the solution is of this form, we must have

$$an^{2} + bn + c = -[a(n-1)^{2} + b(n-1) + c] + 2[a(n-2)^{2} + b(n-2) + c] + n$$

which simplifies to

$$n^{2}(a+a-2a) + n(b+b-2a+8a-2b-1) + (c+a-b+c-8a+4b-2c) = 0$$

This simplifies to

$$n(6a - 1) + (-7a + 3b) = 0$$

6

This last equation is satisfied only if the coefficient of n and the constant term are both zero, which implies a = 1/6 and b = 7/18. Apparently, any value of c gives a valid particular solution. For simplicity, we choose c = 0 and obtain the particular solution:

$$x_n = \frac{1}{6}n^2 - \frac{7}{18}n.$$

The complete solution to the recurrence is the homogenous solution plus the particular solution:

$$x_n = A(-1)^n + B2^n + \frac{1}{6}n^2 - \frac{7}{18}n$$

Substituting the initial conditions gives a system of linear equations:

$$5 = A + B$$
$$-4/9 = -A + 2B - +1/6 + 7/18$$

The solution to this linear system is A=3 and B=2. Therefore, the complete solution to the recurrence is

$$x_n = 3 + 2(-2)^n + \frac{1}{6}n^2 + \frac{7}{18}n$$