Создание программных RAIDмассивов в Linux

- RAID (англ. redundant array of independent/inexpensive disks избыточный массив независимых/недорогих жёстких дисков) массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое.
- В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия.
- Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

уровни спецификации RAID

- RAID 0 представлен как неотказоустойчивый дисковый массив.
- RAID 1 определён как зеркальный дисковый массив.
- RAID 2 зарезервирован для массивов, которые применяют код Хемминга.
- RAID 3, 4, 5 используют чётность для защиты данных от одиночных неисправностей.
- RAID 6 используют чётность для защиты данных от двойных неисправностей

RAID 0: Дисковый массив без отказоустойчивости (Striped Disk Array)

Диск 1	Диск 2	Диск 3	Диск 4
A	В	C	D
E	F	G	Н
MIM	ANJ A	K	MUN
M	N	0	AP(A)

RAID 1: Дисковый массив с зеркалированием

Диск 1	Диск 2
MAM	HAM AMAN
В	В
CON	CANAL CANAL
M MDM	MOND MODE

RAID 2: Отказоустойчивый дисковый массив с использованием кода Хемминга

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6	Диск 7
Α	В	C	D	ECC1: ABCD	ECC2: ABCD	ECC3: ABCD
) E	AIC	G	HAL	ECC1: EFGH	ECC2: EFGH	ECC3: EFGH
I	J	K	L	ECC1: IJKL	ECC2: IJKL	ECC3:
М	N	0	P	ECC1: MNOP	ECC2: MNOP	ECC3: MNOP
77	AIL	DH	ÄAL	a pro	14	

RAID 3: Отказоустойчивый массив с параллельной передачей данных и четностью

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5
A.1	A.2	A.3	A.4	ECC: A
B.1	B.2	B.3	B.4	ECC: B
C.1	C.2	C.3	C.4	ECC: C
D.1	D.2	D.3	D.4	ECC: D
				7

XOR: исключающее ИЛИ

F 1	X	Υ	X⊕Y
H	0	0	0
	0	1 1/11/20	u du Di
1	1	0	1
n	1	1	0
MM	AARCADA	a aaia	MA AARAN

RAID 4: Массив независимых дисков с разделяемым диском четности

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5
Α	В	C	D	ECC: ABCD
ME A	nDu	G	DH,	ECC: EFGH
I	I		L	ECC: IJKL
М	N	0	Р	ECC: MNOP
4-1	11474	MAL	DH /	MA

RAID 5: Отказоустойчивый массив независимых дисков с распределенной четностью

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5
A	В	C	OLD /	ECC: ABCD
E	a Esta	G	ECC: EFGH	M (A)
I	J	ECC: IJKL	K	
M	ECC: MNOP	N	0	P
M A	u(A)u	2116	04	u(A)

RAID 6: Отказоустойчивый массив независимых дисков с двумя независимыми распределенными схемами четности

- Обеспечивает надежное хранение данных при выходе из строя до двух дисков
- Два основных подхода
 - ЕСС независимые по данным
 - ЕСС независимые по алгоритмам
- Несколько различных реализаций:
 - EVENODD
 - X-Code
 - С кодами Рида-Соломона (Reed-Solomon)
 - ...

RAID 6: EVENODD

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6
Α	В	C/	D	P:ABCD	Q:ALOS
E	F	G	H	P:EFGH	Q:BEPS
I	J	K		P:IJKL	Q:CFIS
М	N	0	P	P:MNOP	Q:DGJMS

 $S=H\oplus K\oplus N$

RAID 6: EVENODD

- Коды четности распределены по дискам
- Р XOR внутри горизонтальных групп
- Q XOR внутри диагональных групп
- Случайная запись вызывает 6 операций ввода/вывода для 13 блоков и 12 для 3 блоков

RAID 6: X-Code

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5
Α	В	C	D	MEDI
F	G	Н	I	J
K	1/W	М	N	0
P:CIO	P:DJK	P:EFL	P:AGM	P:BHN
Q:DHL	Q:EIM	Q:AJN	Q:BFO	Q:CGK

RAID 6: X-code

- Количество дисков должно быть простым числом
- Р XOR внутри диагональных групп слева направо
- Q XOR внутри диагональных групп справа налево
- Случайная запись вызывает 6 операций ввода/вывода

RAID 6: Reed-Solomon

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6
A	В	C	D	XOR ABCD	R-S ABCD
E	F	G	XOR EFGH	R-S EFGH	H
I	J	XOR IJKL	R-S IJKL	K	L
M	XOR MNOP	R-S MNOP	N	0	Р
XOR QRST	R-S QRST	Q	R	S	nD)

RAID 6: Reed-Solomon

- ХОК внутри горизонтальных групп
- R-S внутри горизонтальных групп
- Случайная запись вызывает 6 операций ввода/вывода
- Может быть расширен для обеспечения надежного хранения данных в случае отказа большего числа дисков (>2)

RAID 1+0: Отказоустойчивый массив с дублированием и параллельной обработкой

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6
Α	A	В	В	1 C/	C
D	D	E	uED)	FA	a(F)
G	G	Н	Н	I	I
11 /	MIX.	11		4 1	7

RAID 0+1: Отказоустойчивый массив с параллельной обработкой и зеркалированием

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6
Α	В	C	A	B	C
D	uE)	F	D	E	(F)
G	Н	I	G	Н	I
1		M /		7	7

RAID 5+0. Отказоустойчивый массив с распределенными блоками четности и повышенной производительностью

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6
Α	В	P: AB	С	1 D/	P:CD
E	P:EF	F	G	P:GH	(H)
P:IJ	I	J	P:KL	К	-
M. /		M 1		1	7

RAID 1E: Отказоустойчивый массив с двунаправленным зеркалированием

Диск 1	Диск 2	Диск 3 В	
A	A		
В	С	С	
D	J DAM	1 AFIAD	
E	F	F	
n my	M MAYEN	1 1844	

Hot Spare HDDs: Диски «горячей» подмены

- Предназначены для замены вышедших из строя HDD без участия человека
- В нормальном режиме работы не используются
- Могут быть общими для всех групп в комбинированных уровнях RAID

RAID 5EE: Отказоустойчивый массив независимых дисков с распределенными четностью и диском горячей подмены

Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	Диск 6
A	В	C	D	XOR ABCD	Hot spare
Е	F	G	XOR EFGH	Hot spare	Н
I	J	XOR IJKL	Hot spare	K	
М	XOR MNOP	Hot spare	N	10/	P
XOR QRST	Hot spare	Q	R	S	T

Виртуализация RAID

Реализации RAID

- Аппаратный RAID-контроллер
 - управляет всем так, что дисковый массив виден как один диск даже на самом низком уровне.
- Программный RAID,
 - использует ПО операционной системы для объединения отдельных устройств в RAID-массив.
- Гибридный RAID («фальшивым» (fake-raid))

- Управление программным RAID-массивом в Linux выполняется с помощью программы **mdadm**
- Режимы работы mdadm
 - Assemble (сборка)
 - Собрать компоненты ранее созданного массива в массив.
 - Build (построение)
 - Собрать массив из компонентов, у которых нет суперблоков.
 - Create (создание)
 - Создать новый массив на основе указанных устройств.

- Режимы работы **mdadm** (продолжение)
 - Monitor (наблюдение)
 - Следить на изменением состояния устройств. Для RAIDO этот режим не имеет смысла.
 - Grow (расширение или уменьшение)
 - Расширение или уменьшение массива, включаются или удаляются новые диски.
 - Incremental Assembly (инкрементальная сборка)
 - Добавление диска в массив.
 - Manage (управление)
 - Разнообразные операции по управлению массивом, такие как замена диска и пометка как сбойного.
 - Misc (разное)
 - Действия, которые не относятся ни к одному из перечисленных выше режимов работы.
 - Auto-detect (автоообнаружение)
 - Активация автоматически обнаруживаемых массивов в ядре Linux.

- mdadm [mode] [array] [options]
- Режимы:
 - -A, --assemble режим сборки
 - -B, --build режим построения
 - -C, --create режим создания
 - -F, --follow, --monitor режим наблюдения
 - -G, --grow режим расширения
 - -I, --incremental режим инкрементальной сборки

Пример создания RAID 5

- сначала необходимо установить и правильно настроить необходимое оборудование.
- Разбиение на разделы для RAID отличается от разбиения одного отдельного диска:
 - Вместо типа раздела «Linux» (тип 83) или «подкачки Linux» (тип 82), все разделы, которые станут частью RAID-массива, должны иметь тип «Linux raid auto» (тип FD).
- Понадобятся минимум три раздела
- например /dev/sda1 /dev/sdb1 /dev/sdc1

Пример создания RAID 5

```
mdadm --create --verbose /dev/md0 --level=5 \
--raid-devices=3 /dev/sda1 /dev/sdb1 /dev/sdc1
```

- --create создание RAID-массива
- --level для того чтобы создать RAID-массив 5 уровня.
- --raid-devices устройства, поверх которых будет собираться RAID-массив.

Проверка правильности сборки

• Убедиться, что RAID-массив проинициализирован корректно можно просмотрев файл /proc/mdstat. В этом файле отражается текущее состояние RAID-массива.

unused devices: <none>

Или командой

```
mdadm --detail /dev/md0
```

Создание конфигурационного файла mdadm.conf

- Команда mdadm не нуждается в файле конфигурации, но будет использовать его, если он указан.
- Рекомендуется создать файл конфигурации, поскольку он позволяет документировать конфигурацию RAID.
- команда:

```
mdadm --detail --scan -verbose
```

Пример:

работа с массивом

- Пометка диска как сбойного
 - mdadm /dev/md0 --fail /dev/sda1
 - mdadm /dev/md0 -f /dev/sda1
- Удаление сбойного диска
 - mdadm /dev/md0 --remove /dev/sda1
 - mdadm /dev/md0 -r /dev/sda1
- Добавление нового диска
 - mdadm /dev/md0 --add /dev/sda1
 - mdadm /dev/md0 -a /dev/sda1

работа с массивом

- Сборка существующего массива
 - mdadm --assemble /dev/md0 /dev/sda1 /dev/sdb1 /dev/sdc1
 - mdadm --assemble -scan
- Мониторинг функционирования массива:
 - mdadm --monitor --mail=sysadmin --delay=300 /dev/md0
- Удаление массива
 - mdadm -S /dev/md0
 - mdadm --zero-superblock /dev/sda1
 - mdadm --zero-superblock /dev/sdb1

работа с массивом

- Расширение массива
 - Сначала добавляется диск
 - mdadm /dev/md0 --add /dev/sdd1
 - Проверяем, что диск (раздел) добавился
 - mdadm --detail /dev/hdh2
 - cat /proc/mdstat
 - Если раздел действительно добавился, мы можем расширить массив
 - mdadm -G /dev/md0 --raid-devices=4
 - Убедитесь, что массив расширился
 - cat /proc/mdstat
 - обновить конфигурационный файл
 - mdadm --detail --scan >> /etc/mdadm/mdadm.conf
 - vi /etc/mdadm/mdadm.conf

Создание многоканального устройства с mdadm

- Команда mdadm также может использоваться для работы с оборудованием, поддерживающим любое число путей ввода/ вывода к отдельным дискам SCSI LUN.
- Главным назначением многоканального устройства хранения является обеспечение постоянного доступа к данным в случае сбоя оборудования.
- Команда mdadm включает дополнительный параметр опции level для определения отдельного устройства, которое будет доступным в случае сбоя пути ввода/ вывода.

• Команда создания многоканального устройства аналогична команде создания RAID устройства с единственной разницей — параметр уровня RAID будет замещен параметром *multipath*.

```
mdadm -C /dev/md0 --level=multipath --raid-
  devices=4 /dev/sda1 /dev/sdb1
  /dev/sdc1 /dev/sdd1

Continue creating array? yes
mdadm: array /dev/md0 started.
```