mpi* - lycée montaigne informatique

TP7 - Graphes (2) (éléments de réponses)

Généralités

Question 1. Les arêtes $\{0_A, 0_B\}, \{2_A, 2_B\}, \{3_A, 3_B\}$ forment un couplage de cardinal 3. On a également $\{0_A, 1_B\}, \{2_A, 2_B\}, \{3_A, 3_B\}$ ou encore $\{0_A, 0_B\}, \{2_A, 2_B\}, \{1_A, 3_B\}$. Et bien d'autres encore.

Question 2. Supposons qu'il existe un couplage de cardinal 4. Tous les sommets de A (et tous ceux de B) doivent y participer, pour des raisons de cardinal. Mais 1_A et 3_A ne peuvent être couplés qu'avec 3_B , ce qui donne deux arêtes incidentes. C'est contradictoire; il n'existe donc pas de tel couplage dans ce graphe.

Question 3. Compte tenu des hypothèses sur c, il reste à vérifier que les arêtes mentionnées existent réellement et qu'il n'y en a pas deux incidentes. Ce dernier point est clair du côté de A mais on doit vérifier l'injectivité du côté de B.

```
let verifie g c =
                                  (* c'est aussi la taille de c par hypothèse *)
 let n = Array.length g in
  let i = ref 0 in
  let ok = ref true in
                                   (* jusqu'ici c n'a pas de problème *)
  while !i < n && !ok do
    let j = c.(!i) in
    if j <> -1 then
      if not g.(!i).(j) then
        ok := false
                                   (* arête factice *)
      else begin
        let k = ref 0 in
                                   (* sommet déjà utilisé ? *)
        while (!k < !i) && (c.(!k) <> j) do incr k done;
        ok := (!k = !i)
      end:
    incr i
  done;
```

La complexité au pire est en $O(n^2)$ car chaque vérification de non-incidence a un coût linéaire.

Question 4.

```
let cardinal c =
  let nb = ref 0 in
  for i = 0 to Array.length c - 1 do
    if c.(i) <> -1 then incr nb
  done;
!nb
```

La complexité au pire est linéaire.

Couplage maximal

Question 5. On observe que le minimum pour les sommes de degrés vaut 4, réalisé pour les arêtes $\{1_A, 3_B\}$ et $\{3_A, 3_B\}$. On enlève par exemple $\{1_A, 3_B\}$. Il reste alors le graphe ci-dessous dont on retire n'importe quelle arête (la somme vaut toujours 5), par exemple $\{0_A, 0_B\}$, pour obtenir un graphe sans arête.

Question 6. L'arête $\{3_A, 2_B\}$ est la seule de somme 4 et il n'y en a pas de somme moindre. C'est donc l'arête a_1 . On obtient

mpi* - lycée montaigne informatique

qui comporte deux composantes connexes (en excluant les sommets sans arête). Dans chacune, il n'y a pas de couplage de cardinal strictement supérieur à 2 (pas assez de sommets pour cela), donc l'algorithme fournira un couplage de cardinal au plus 1+2+2=5.

Mais il y a clairement un couplage de cardinal 6 en prenant les $\{i_A,i_B\}$. Finalement le couplage fourni par l'algorithme étudié ne peut pas être de cardinal maximal.

Question 7. Il n'est pas raisonnable d'écrire une fonction auxiliaire pour calculer le degré d'un sommet car le calcul dépend de si ce sommet est dans A ou dans B.

```
let arete_min g a =
 let n = Array.length g in
  let non_vide = ref false in
 let min_sdegres = ref 0 in (* cette valeur ne sera jamais lue *)
  for i = 0 to n-1 do
    for j = 0 to n-1 do if g.(i).(j) then
        let sdegres = ref 0 in
        for k = 0 to n-1 do
           if g.(i).(k) then incr sdegres;
           if g.(k).(j) then incr sdegres
        done;
         if (not !non_vide) || (!sdegres < !min_sdegres) then (</pre>
           non_vide := true;
           a.(0) \leftarrow i; a.(1) \leftarrow j;
           min_sdegres := !sdegres;
    done
  !non_vide
```

La complexité est clairement cubique.

Question 8.

```
let supprimer g (i,j) =
  let n = Array.length g in
  for k = 0 to n - 1 do
    g.(i).(k) <- false;
    g.(k).(j) <- false
  done</pre>
```

Complexité linéaire.

Question 9. On peut proposer une solution à la main.

```
let copier_matrice m =
  let n = Array.length m in
  let p = Array.length m.(0) in
  let mc = Array.make_matrix n p true in
  for i = 0 to n-1 do
    for j = 0 to p-1 do
    mc.(i).(j) <- m.(i).(j)</pre>
```

mpi* - lycée montaigne informatique

```
done;
done;
mc
```

On peut également utiliser des fonctions de la bibliothèque OCaml comme la fonction Array.copy qui copie un tableau unidimensionnel.

```
let copier_matrice m =
   Array.init (Array.length m) (fun i -> Array.copy m.(i))
```

Complexité $O(n^2)$.

Question 10.

```
let algo_approche g =
  let g = copier_matrice g in
  let n = Array.length g in
  let c = Array.make n (-1) in
  let a = Array.make 2 0 in
  while arete_min g a do
    c.(a.(0)) <- a.(1);
    supprimer g (a.(0), a.(1))
  done;
  c</pre>
```

On a vu que arete_min est cubique et que les autres opérations sont au plus quadratiques. Dans le pire cas (tous les sommets sont de degré 1), la suppression n'enlève qu'une seule arête à chaque fois, et on a donc n tours de boucle. L'algorithme est donc en $O(n^4)$.

Couplage maximum

Question 11.

```
let une_arete g =
  let n = Array.length g in
  let i = ref 0 and trouve = ref None in
  while !trouve = None && !i < n do
    let j = ref 0 in
    while !trouve = None && !j < n do
       if g.(!i).(!j) then trouve := Some((!i,!j));
       incr j
    done;
    incr i
done;
!trouve</pre>
```

Question 12.

```
let rec meilleur_couplage g =
  let n = Array.length g in
  match une_arete g with
  | None -> Array.make n (-1)
  | Some((i,j)) ->
     let gavec = copier_matrice g in
     supprimer gavec (i,j); (* on fait comme si on avait couplé i avec j *)
     let cavec = meilleur_couplage gavec in
     cavec.(i) <- j; (* on couple i avec j *)
     let gsans = copier_matrice g in
        gsans.(i).(j) <- false; (* on supprime (i,j) seulement *)
     let csans = meilleur_couplage gsans in
     if cardinal cavec > cardinal csans then cavec else csans
```