Colle 3A: Compléments d'analyse

Question de cours : Définitions de la parité, périodicité d'une fonction.

Exercice 1:

Calculer une primitive de $x \mapsto \sqrt{x^2\sqrt{x} + x}$.

Exercice 2:

On considère la fonction $f: x \mapsto x - \frac{1}{x}$.

- 1. Montrer que f réalise une bijection de $[1, +\infty[$ vers un intervalle J à préciser.
- 2. Justifier que f^{-1} est dérivable sur J et que $\forall x \in J$, $0 < (f^{-1})'(x) < 1$.
- 3. Calculer f^{-1} .

Exercice 3:

Soit f et g deux fonctions continues sur \mathbb{R} .

- 1. On suppose que f est bornée. Montrer que $f\circ g$ et $g\circ f$ sont bornées.
- 2. On suppose maintenant que : $\forall x \in [a,b], g(x) < f(x)$. Montrer qu'il existe un unique réel $\alpha > 0$ tel que : $\forall x \in [a,b], g(x) + \alpha \leqslant f(x)$.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 3B: Compléments d'analyse

Question de cours : Définition d'une fonction dérivable en un point et du nombre dérivé.

Exercice 1 : Calculer une primitive de $x \mapsto \frac{e^{2x}}{\sqrt{e^x + 1}}$.

Exercice 2 : fonctions de Lambert

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^x$.

- 1. Justifier que f réalise une bijection de l'intervalle $[-1, +\infty[$ vers l'intervalle $[-e^{-1}, +\infty[$.
- 2. La réciproque de f est désormais notée W. Justifier que W est dérivable sur l'intervalle $]-e^{-1}, +\infty[$ et que pour tout $x \neq 0$ on a :

$$W'(x) = \frac{W(x)}{x(1+W(x))}$$

Exercice 3:

Déterminer toutes les fonctions f continues en 0 et vérifiant : $\forall x \in \mathbb{R}, f(2x) = f(x)e^x$.

Colle 3C: Compléments d'analyse

Question de cours : Énoncé du théorème d'intégration par parties.

Exercice 1:

Calculer une primitive de $x \mapsto (x+1)e^x \sin(x)$.

Exercice 2:

Soit f la fonction définie sur \mathbb{R} par $f(t) = t^3 + t$.

- 1. Montrer que f réalise une bijection de $\mathbb R$ dans $\mathbb R.$
- 2. On note g la réciproque de f. Montrer que :

$$\forall x \in \mathbb{R}, g^3(x) + g(x) = x$$

- 3. Donner l'expression de g'.
- 4. Tracer g.

Exercice 3:

- 1. Soit $f:[a,b]\to [a,b]$ continue. Montrer que f admet au moins un point fixe.
- 2. Soit f et g deux fonctions continues sur [a,b] et à valeurs dans [a,b]. On suppose que f et g commutent, i.e. que $f \circ g = g \circ f$. Montrer qu'il existe un réel $c \in [a,b]$ tel que f(c) = g(c).