

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Solución Ayudantía 10

Álgebra I - MAT2227

Fecha: 2019/10/08

3) Sea $p(x) \in \mathbb{Q}[x]$, ahora por inducción en el grado de un polinomio $q(x) \in \mathbb{X}$. Si $\deg(q) = 0$ entonces $\gcd(p,q) = p = p \cdot 1 + q \cdot 0$. Se asume que para todo q tal que $\deg(q) < k$ se tiene que $\exists a,b \in \mathbb{Q}[x]$ tal que $\gcd(p,q) = p \cdot a + q \cdot q$. Luego, sea q de grado k, por algoritmo de la división existen $r,s \in \mathbb{Q}[x]$ tal que p = qs + r donde $\deg(r) < \deg(q)$, se nota que $\gcd(p,q) = \gcd(p,r)$. Como $\deg(r) < \deg(q) = k$ existen $a,b \in \mathbb{Q}[x]$ tal que $ap + br = \gcd(p,r) = \gcd(p,q)$, usando que r = p - qs se tiene que $\gcd(p,q) = (a+b)p + (-bs)q$, con lo que se tiene lo pedido. Para la segunda parte, si p,q coprimos entonces $\exists a,b \in \mathbb{Q}[x]$ tal que ap + bq = 1, por lo que $1 \in (p,q) \subseteq \mathbb{Q}[x]$, sea $r \in \mathbb{Q}[x]$, como $1 \in (p,q)$ y por propiedad 1b) se tiene que $r \cdot 1 \in (p,q)$, por lo que $\mathbb{Q}[x] = (p,q)$. Para la tercera parte, dado p irreducible mónico, existe $q \notin (p)^1$. Luego $\gcd(p,q) = 1$, por lo que $(p,q) = \mathbb{Q}[x]$, por lo que todo elemento $r \in \mathbb{Q}[x]$ se puede escribir de la siguiente forma r = ap + bq, se nota que $ap \in (p)$, si $bq \in (p)$ se toma s = 0 y se tiene lo pedido, si no, se toma s = bq y se tiene lo pedido. Con esto se tiene lo pedido.

¹Si no existiera inmediatamente se tiene lo pedido, tomando s=0