Undergraduate Complexity Theory Lecture 16: Space Complexity

Marcythm

July 19, 2022

1 Lecture Notes

Definition 1.1. Space complexity of a decider TM is a function $S: \mathbb{N} \to \mathbb{N}$ s.t.

 $S(n) = \max_{|x|=n} \{ \# \text{ distinct tape cells accessed by } M(x) \}$

another version: read-only input tape, work tapes, for sublinear spaces.

Remark 1.2. To simulate multitape TM with space S, only needs single-tape TM with space O(S).

Definition 1.3. SPACE $(f(n)) = \{A : \text{exists a TM deciding } A \text{ with space complexity } O(f(n))\}.$

Fact 1.4. Using $O(\log n)$ space a TM on input x can compute (write in base 2) n = |x|.

Definition 1.5. $L = SPACE(\log n)$.

```
e.g. A = \{0^n 1^n : n \in \mathbb{N}\} \in L. PALINDROMES \in L
```

Intuitively, L is pesudocode with constant (i.e. O(1)) # of variables, which are ints ranging from 0 to poly(n). no array/memory allocation, read-only input lookups, basic arith ops on vars.

 $\mathsf{ST-PATH} = \{ \langle G, s, t \rangle : \mathsf{exists} \ \mathsf{path} \ s \to t \ \mathsf{in} \ \mathsf{G} \}, \ \mathsf{in} \ \mathsf{L}? \ \mathsf{BFS} \ \mathsf{in} \ \Theta(n) \ \mathsf{space}, \ \mathsf{DFS} \ \mathsf{the} \ \mathsf{same}.$

Theorem 1.6 (Savitch's Theorem '70). $ST-PATH \in SPACE(\log^2 n)$.

Theorem 1.7 (Reingold '04). Undirected $ST-PATH \in L$.

CIRCUIT-EVAL = $\{\langle C, x \rangle : C(x) = 1\} \in P$, doable in linear space, believed not in sublinear space. 3SAT: O(n) space.

Definition 1.8. PSPACE = $\bigcup_{k \in \mathbb{N}} SPACE(n^k)$.

Exercise 1.9. $NP \subseteq PSPACE$.

Fact 1.10. TIME $(f(n)) \subseteq SPACE(f(n))$. e.g. $P \subseteq PSPACE$.

Theorem 1.11. For $f(n) \ge \log n$, $SPACE(f(n)) \subseteq TIME(2^{O(f(n))})$.

Corollary 1.12. $L \subseteq P$.

Corollary 1.13. PSPACE \subseteq EXP.

current hierarchy: $L \subseteq P \subseteq \{NP | coNP\} \subseteq PSPACE \subseteq EXP$. interesting: find a problem in P but not in L; in PSPACE but not in $NP \cup coNP$. already knows $P \neq EXP$ by T.H.T, so whether $P \neq PSPACE$ or $PSPACE \neq EXP$?

Definition 1.14. f(n) is space-constructible iff $f(n) \ge \log n$ and can compute f(n) in O(f(n)) space.

Theorem 1.15 (Space Hierarchy Theorem). Let f(n) be a space-constructible function, then exists language $A \in \mathsf{SPACE}(f(n))$ that $f \notin \mathsf{SPACE}(g(n))$ for any f(n) = o(f(n)).

2 Reading

2.1 sipser 8.0 (Space Complexity)

- 1. definition of SPACE and NSPACE.
- 2. Space appears to be more powerful than time because space can be reused, whereas time cannot.

2.2 sipser 8.1 (Savitch's Theorem)

Theorem 2.1 (Savitch's Theorem). For any function $f: \mathbb{N} \to \mathbb{R}^+$, where $f(n) \geq n$,

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$$

2.3 sipser 8.2 (The Class PSPACE)

definition of PSPACE, so far $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXP$.