Komisja Egzaminacyjna dla Aktuariuszy

XL Egzamin dla Aktuariuszy z 9 października 2006 r.

Część I

Matematyka finansowa

lmię i	nazwisko	osoby	egzami	inowane	j:

Czas egzaminu: 100 minut

- **1.** Ile wynosi wartość bieżąca nieskończonego ciągu rent nieskończonych, gdzie renta startująca na początku roku k (k = 1,2,...) wypłaca z dołu na koniec kolejnych lat kwoty:
 - 1, 1 + k, 1 + 2 * k, 1 + k, 1, 1 + k, 1 + 2 * k, 1 + k, 1, ...? Podaj najbliższą wartość dla i = 7%.
 - A) 3 440
 - B) 3 547
 - C) 3 653
 - D) 3 761
 - E) 3874

- 2. Inwestor inwestuje na 5 lat równomiernie środki o wartości 1 mln PLN w grupę n firm o podwyższonym stopniu ryzyka. Prawdopodobieństwo podwojenia wartości każdej z inwestycji w ciągu dowolnego roku wynosi 60% a bankructwa 40%. Inwestycje jak również ich wyniki w kolejnych latach są wzajemnie niezależne. Ile musi wynosić co najmniej n, aby inwestor miał 99% pewności osiągnięcia po 5 latach 50% zysku nominalnego od całości inwestycji początkowej? Podaj najbliższą wartość. Wartość dystrybuanty standardowego rozkładu normalnego F(2.326) = 0.99
 - A) 255
 - B) 305
 - C) 355
 - D) 405
 - E) 455

- **3.** Pan Jan rozpoczyna oszczędzanie na emeryturę, które trwać będzie 40 lat (480 składek płatnych na początku miesięcy). Jego najbliższa pensja wyniesie 2000 PLN i będzie rosła o 3% rocznie (równomiernie w ciągu roku). Chce on zgromadzić na koniec 40 roku sumę wystarczającą do zakupu 20 letniej renty pewnej płatnej na końcu każdego miesiąca w wysokości 60% ostatniego (480-tego) wynagrodzenia, wyliczanej przy stopie 4%. Jaką część swojej pensji musi odkładać przy założeniu, że efektywne stopy zwrotu wyniosą:
 - 6% w okresie do końca 20 roku,
 - 3% w latach 21-40.

Podaj najbliższą wartość.

- A) 14,4%
- B) 15,2%
- C) 16,0%
- D) 16,8%
- E) 17,6%

- **4.** Inwestor przyjmuje następujące założenia co do kształtowania się kursu akcji spółki X w kolejnych trzech okresach:
 - obecna cena akcji wynosi 50,
 - w każdym z trzech kolejnych okresów cena akcji może zmienić się o + 20% (z prawdopodobieństwem 60%) lub -10% w odniesieniu do jej wartości z początku okresu.

Inwestor zamierza nabyć europejską opcję call na 1 akcję spółki X z ceną wykonania 50 z terminem wykonania na koniec trzeciego okresu. Specyfika tej inwestycji polega na tym, że płatność za opcję następuje w czterech równych ratach - pierwsza na początku inwestycji kolejne po 1, 2 i 3 okresie. Przy każdej z płatności inwestor może zrezygnować z jej dokonania tracąc dotychczas zapłacone raty.

Jaką maksymalną kwotę inwestor byłby skłonny zapłacić za opcję (nominalna suma czterech rat) przy założeniu, że inwestor oczekuje stopy zwrotu z inwestycji w opcję na poziomie i = 10% w skali jednego okresu. Podaj najbliższą wartość.

- A) 11,8
- B) 12,6
- C) 13,4
- D) 14,2
- E) 15,0

Dla ułatwienia poniżej drzewo wyceny standardowej opcji call z ceną wykonania 50 (premia płatna jednorazowo z góry, tutaj 10,71) przy oczekiwanej okresowej stopie zwrotu i =10%.

- **5.** Cena akcji spółki X wynosi 50. Przyjmujemy założenie, że cena akcji za rok ma rozkład równomierny na przedziale (30;90). Rozważmy dwa portfele:
 - portfel 1 : zawierający w 100% akcje spółki X,
 - portfel 2 : zawierający w 60% europejskie roczne opcje put (pozycje długie) na akcje spółki X z ceną wykonania 55 oraz w 40% akcje spółki X

Cena jednej opcji put (opiewającej na 1 akcję spółki) wynosi 5.

Ile wynosi stosunek wariancji rocznej stopy zwrotu z portfela 2 do wariancji rocznej stopy zwrotu z portfela 1 (podaj najbliższą wartość) ?

- A) 2,5
- B) 3,5
- C) 4,5
- D) 5,5
- E) 6,5

6. Bank udziela pożyczki 20-letniej z oprocentowaniem i>0, spłacanej w równych rocznych ratach P na koniec każdego roku. Odsetki spłacone w pierwszych 6 ratach wynoszą 1600 PLN. Odsetki spłacone w ostatnich 6 ratach wynoszą 400 PLN. Wyznacz roczną efektywną stopę oprocentowania pożyczki.

A)
$$i = \left(\frac{2P - 400}{2P - 100}\right)^{-\frac{1}{14}} - 1$$

B)
$$i = \left(\frac{3P - 800}{3P - 200}\right)^{-\frac{1}{20}} - 1$$

C)
$$i = \left(\frac{3P - 800}{3P - 200}\right)^{-\frac{1}{14}} - 1$$

D)
$$i = \left(\frac{4P - 800}{4P - 200}\right)^{-\frac{1}{14}} - 1$$

E)
$$i = \left(\frac{4P - 800}{4P - 200}\right)^{-\frac{1}{20}} - 1$$

- 7. Rachunek oszczędnościowy założono w chwili 0 z wpłatą początkową 1. Następnie na rachunek dokonywane są w sposób ciągły wpłaty z roczną intensywnością $C_t = \frac{1}{(1+t)^2} B_t$, gdzie B_t oznacza wartość rachunku w chwili t>0. Ciągła intensywność oprocentowania środków na rachunku wynosi $\delta_t = \frac{t}{(1+t)^2}$. Wyznacz B_t w chwili 2. Odpowiedź (podaj najbliższą wartość):
 - A) 2
 - B) 3
 - C) 4
 - D) 5
 - E) 6

- **8.** Renta wieczysta płaci na koniec roku k kwotę k / (k+1), k = 1, 2, 3, Efektywna roczna stopa dyskontowa jest zmienna, w roku k wynosi i * k / (k+1), gdzie stałe i = 8%. Wyznacz wartość obecną tej renty. Odpowiedź (podaj najbliższą wartość):
 - A) 11
 - B) 11.5
 - C) 12
 - D) 12.5
 - E) 13

9. Inwestujemy na giełdzie kwotę X_0 . Po 12 miesiącach stan naszego rachunku maklerskiego wynosi X_1 . Oceniamy, że wynik inwestycji $X=\frac{X_1}{X_0}$ jest zmienną losową o rozkładzie lognormalnym ze średnią 1 i odchyleniem standardowym a > 0. Oblicz *tail value at risk* $TVaR_p(X)=E(X|X>x_p)$, gdzie x_p jest p-tym kwantylem zmiennej losowej X, czyli liczbą spełniającą warunek $P(X\leq x_p)=p$. Oznaczenia: Φ – dystrybuanta zaś N_p – p-ty kwantyl standardowego rozkładu normalnego N(0,1).

A)
$$TVaR_p(X) = \frac{1}{1-p} \left(1 - \Phi(N_p - \sqrt{\ln(1+a^2)}) \right)$$

B)
$$TVaR_p(X) = \frac{1}{1-p} \left(1 - \Phi(N_p + \sqrt{\ln(1+a^2)}) \right)$$

C)
$$TVaR_p(X) = \frac{1}{1-p} \left(\Phi \left(\sqrt{\ln(1+a^2)} - N_p \right) \right)$$

D)
$$TVaR_p(X) = \frac{1}{1-p} \left(1 + \Phi(N_p - \sqrt{\ln(1+a^2)}) \right)$$

E)
$$TVaR_p(X) = \frac{1}{1-p} \left(p - \Phi(N_p - \sqrt{\ln(1+a^2)}) \right)$$

Wskazówka. Zmienna losowa X ma rozkład lognormalny z parametrami μ , $\sigma > 0$, jeżeli Y = lnX ma rozkład normalny $N(\mu, \sigma)$. Gęstość rozkładu lognormalnego ma postać:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], \quad x > 0. \text{ Wartość oczekiwana zmiennej losowej X o}$$

rozkładzie lognormalnym wynosi $EX=\exp\left(\mu+\frac{\sigma^2}{2}\right)$, zaś wariancję określa wzór $Var(X)=\left(e^{\sigma^2}-1\right)e^{2\mu+\sigma^2}$.

- 10. Funkcja intensywności oprocentowania w chwili t dla kwoty zainwestowanej w chwili s, $0 \le s \le t$ wynosi $\delta(s,t) = \frac{1}{1+s+t}$. Funkcja a(s,t) jest funkcją akumulacji w chwili t kwoty zainwestowanej w chwili s. Wyznacz różnicę $a(1,4) \left[a(1,2) \cdot a(2,4)\right]$ (różnica między akumulacją bez reinwestycji i z reinwestycją). Odpowiedź (podaj najbliższą wartość):
 - A) -2/15
 - B) 0
 - C) 2/15
 - D) 4/15
 - E) 6/15

Egzamin dla Aktuariuszy z 9 października 2006 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko:
Pesel:
OZNIA CZENIE WEDCII TECTII

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	D	
3	Е	
4	E	
5	D	
6	C	
7	В	
8	D	
9	A	
10	С	
_		

 $^{^{\}ast}$ Oceniane są wyłącznie odpowiedzi umieszczone w $Arkuszu\ odpowiedzi.$

^{*} Wypełnia Komisja Egzaminacyjna.