PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-274330

(43) Date of publication of application: 18.10.1996

(51)Int.CI.

H01L 29/78 H01L 29/43

(21)Application number: 07-113447

(71)Applicant : SEIKO INSTR INC

(22)Date of filing:

11.05.1995

(72)Inventor: MIYAGI MASAKI

KONISHI HARUO

KUBO KAZUAKI KOJIMA YOSHIKAZU

SHIMIZU TORU SAITO YUTAKA **MACHIDA TORU** KANEKO TETSUYA

(30)Priority

Priority number: 07 15419

07 15421

Priority date: 01.02.1995

01.02.1995 03.06.1994

06122872

Priority country: JP

JP

JP

(54) SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

(57)Abstract:

PURPOSE: To easily obtain transistors, having a plurality of threshold values, inside an identical integrated semiconductor device by forcing a channel region having different surface reverse voltages.

CONSTITUTION: First impurity concentration channel regions 104 and second impurity concentration channel regions 105 are formed in a plurality of rectangular shapes in a direction parallel to a channel length. When mask pattern widths 107 for impurity introduction and their intervals 108 are combined, the area ratio of the second impurity concentration channel regions to the whole face of a channel region is decided to a desired value. Then, the second impurity concentration channel regions are formed generally in a channel doping process, their impurity concentration is changed by a later heat treatment, and their depth is formed to be shallower than the junction depth of at least a source region 102 and a drain region 103. Consequently, when the depth of the second impurity concentration channel

regions is made shallower than the depth of a depletion layer generated on the surface of a substrate at a time when an electric field is applied to a gate electrode, a MOSFET whose control voltage is high can be realized at low costs.

LEGAL STATUS

[Date of request for examination]

05.12.1997

[Date of sending the examiner's decision of

-05.09.2000

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3470133

[Date of registration]

12.09.2003

[Number of appeal against examiner's decision

2000-15817

of rejection]

[Date of requesting appeal against examiner's

05.10.2000

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国符許庁(JP)

(12) 念 開 等 許 念 鑞 (A)

(11)特許出国公园番号

特關平8-274330

(43)公問日 平成8年(1996)10月18日

(51) Int.CL⁶

印刷記号 庁内盛理恐号 FΙ

技符表示的所

H01L 29/78 29/43

H01L 29/78 29/62 301H

G

湾査記求 未記求 記求項の磁48 OL (全 29 頁)

(21)出国番号

特回平7-113447

(22)出頭日

平成7年(1995) 5月11日

(31) 公先約主張番号 等原平7-15419

(32) { 5年日

平7(1995)2月1日

(33) [[5] 化拉主聚国

日本 (JP) (31) [5] 先約主張番号 特區平7-15421

(32) 紅先日

平7(1995)2月1日

日本(JP)

(33) 红先粒主張国

(31) [[] 先約主張番号 特頭平6-122872

(32) 仅先日

平6(1994)6月3日

(33) [5]先約主張国

日本(JP)

(71)出国人 000002325

セイコー〇子工登株式会社

千寇県千寇市炎阪区中頃1丁目8番地

(72) 発明者 宮城 雜記

千茲県千森市美族区中源1丁目8番地 セ

イコー〇子工党株式会社内

(72) 発明者 小西 容男

千茲県千茲市美族区中辺1丁目8番地 セ

イコー電子工意株式会社内

(72)発明者 久保 和昭

千茂県千茂市美族区中頃1丁目8番地 セ

イコー電子工算株式会社内

(74)代理人 弁理士 林 欲之助

帰済買に強く

(54) 【発明の名称】 半耶体装置とその図道方法

(57) 【要約】·

【構成】 同一のMISFETのチャネル領域に第1の ゲート電圧でチャネル表面が反転する領域と第2のゲー ト電圧でチャネル表面が反転する領域とを平面的に構成 要素として設ける。例えばP型半導体基板上のN型MO SFETのチャネル領域をP型半導体基板の表面凝度で 決まる第1の不純物設度のチャネル領域104と不純物 導入用マスクのパターン106によって選択された領域 に不純物をイオン打ち込み等で導入する事によって決ま る第2の不純物設度のチャネル領域105を設ける。さ らに第1の不純物設度のチャネル領域104と第2の不 純物設度のチャネル領域105は複数の平面的形状に分 割する。

【効果】 上記の様に同一のMOSFETのチャネル領 域を複数の不純物設度の複数の平面的形状の領域で構成 し、さらに第1の不純物設度の領域と第2の不純物設度 の領域の平面的な面積比に応じてMOSFETのしきい 値電圧を所望の値に容易に設定する事ができ、低コスト でより高性能な半導体集和回路装置を実現する。

1 '

【特許請求の笕囲】

【請求項1】 第1 導電型半導体基板に絶縁層を有し、 該絶縁層に接してゲート電極を有し、該ゲート電極の下 の第1 導電型半導体基板表面は、少なくとも第1のゲー ト電圧で表面が第2 導電型に反転する領域(第1 反転電 圧領域)と第2のゲート電圧で表面が第2 導電型に反転 する領域(第2 反転電圧領域)とが平面的に構成される MIS型要素であることを特徴とする半導体装置。

【請求項2】 該第1反転電圧領域の平面的面積と該第2反転電圧領域の平面的面積との比率が異なる複数のMIS型要素より構成されることを特徴とする請求項1記载の半導体装置。

【請求項3】 該第1反転電圧領域の平面的面積と該第2反転電圧領域の平面的面積とが所定の比率を有するとともに、該第1反転電圧領域及び該第2反転電圧領域の個々の平面的大きさもしくは形状の異なる複数のMIS型要素より構成されることを特徴とする請求項1記載の半導体装置。

【請求項4】 該MIS型要素の少なくとも該第2反転電圧領域は、複数の平面的形状に分割されて構成されることを特徴とする請求項1から3いずれか記载の半導体装置。

【請求項5】 該MIS型要素の少なくとも該第2反転 電圧領域は、5個以上の平面的形状に分割されて構成さ れることを特徴とする請求項1から4いずれか記載の半 導体装置。

【請求項6】 該MIS型要素は,第1導電型半導体基板に互いに離れ設けられた第2導電型のソース・ドレイン領域と、前記ソース領域と前記ドレイン領域との間の前記半導体基板上のチャネル領域と、前記チャネル領域に少なくとも該第1反転電圧領域と該第2反転電圧領域とが平面的に分割されて設けられた複数の表面反転電圧領域と、前記チャネル領域の上にゲート絶縁膜を介して設けられたゲート電極とから成る絶縁ゲート電界効果型トランジスタ(MISFET)を構成することを特徴とする請求項1から5いずれか記載の半導体装置。

【請求項7】 該絶縁ゲート電界効果型トランジスタは,第1反転電圧領域と第2反転電圧領域の形状に応じて、しきい値電圧及び飽和電流値が変化することを特徴とする請求項6記载の半導体装置。

【請求項8】 該第2反転電圧領域は、該シャネル領域のチャネル長方向に平行な短冊状に構成されていることを特徴とする請求項6乃至7いずれか記載の半導体装置。

【請求項9】 該第2反転電圧領域は、該チャネル領域のチャネル幅方向に平行な短冊状に構成されていることを特徴とする請求項6乃至7いずれか記載の半導体装置

【請求項10】 該第2反転電圧領域は、該チャネル領域内にドット状に構成されていることを特徴とする請求

2

項6乃至7いずれか記载の半導体装置。

【請求項11】 該第2反転電圧領域は、該チャネル領域内に市松模様状に構成されていることを特徴とする請求項6乃至7いずれか記載の半導体装置。

【請求項12】 該第1反転電圧領域及び該第2反転電 圧領域は、ゲート電極直下のゲート絶縁膜と接している 半導体基板表面にチャネル不純物領域としてそれぞれ第 1の不純物設度領域と第2の不純物設度領域を形成する ことにより構成されていることを特徴とする請求項1か 511いずれか記載の半導体装置。

【請求項13】 該第1の不純物潑度領域と該第2の不 純物潑度領域の少なくとも一方は、該ソース・ドレイン 領域の接合深さより浅く設けたことを特徴とする請求項 12記載の半導体装置。

【請求項14】 該ゲート絶縁膜と膜厚の異なる第2の ゲート絶縁膜を有する第2のMISFETを該半導体基 板表面に設けたことを特徴とする請求項6から11いず れか記載の半導体装置。

【請求項15】 該第1導電型半導体基板表面に設けられるとともに、該半導体基板と同じ導電型で不純物凝度の異なる第2の半導体領域であるウェル領域に、第2のMISFETを設けたことを特徴とする請求項6から11いずれか記載の半導体装置。

【請求項16】 該第1導電型半導体基板表面に設けられるとともに、該半導体基板と異なる導電型である第2 導電型の第2の半導体領域であるウェル領域に、第2の MISFETを設けた請求項6から11いずれか記載の 半導体装置。

【請求項17】 絶縁層と前記絶縁層の上に設けた半導体領域とから半導体素子が形成される基板を構成するとともに、前記半導体領域の厚さを 10μ mより薄く形成したことを特徴とする請求項6から11いずれか記載の半導体装置。

【請求項18】 前記半導体領域の厚さが前記チャネル 領域と同等の膜厚である請求項17記載の半導体装置。

【請求項19】 前記半導体領域の厚さが前記チャネル 不純物領域の深さと同じである請求項17記载の半導体 装骨。

【請求項20】 第1導電型の半導体領域の表面にエンハンスメント型及びデプレッション型の第2導電型のMISFETを有する半導体装置において、エンハンスメント型のチャネル領域に該第1導電型の半導体領域より 設い濃度の第1導電型不純物濃度分布をもち、デプレッション型のチャネル領域に該エンハンスメント型のチャネル領域と実質的に同一の不純物濃度分布を持ちかつ該第1導電型不純物濃度分布と持ちかつ該第1導電型不純物濃度分布より濃い第2導電型の不純物濃度分布のピーク位置が該第1導電型の不純物濃度分布のピーク位置がち±20nm以内の位置となる構造を有する半導体装置。

【請求項21】 第1導電型の半導体領域の表面にエンハンスメント型及びデプレッション型の第2導電型のMISFETを有する半導体装置において、エンハンスメント型のチャネル領域に該第1導電型の半導体領域より設い設度の第1導電型不純物設度分布をもち、デプレッション型のチャネル領域に該エンハンスメント型のチャネル領域と実質的に同一の不純物設度分布を持ちかつ該第1導電型不純物設度分布を持ちかつ該第1導電型不純物設度分布をもち、該第2項電型の不純物設度分布のピーク位置が該第1項電型の不純物プロファイルのピーク位置が該第1項電型の不純物プロファイルのピーク位置がちま20nm以内の位置となる構造を有し、さらに該第1反転電圧領域が該第2導電型不純物設度分布をもつことを特徴とする請求項12から15及び17から19いずれか記載の半導体装置。

【請求項22】 基板表面の第1導電型の半導体領域の 表面にフィールド絶縁膜を形成する工程と、前記半導体 領域の第1のトランジスタ領域と第2のトランジスタ領 域の表面にゲート絶縁膜を形成する工程と、前記第1の トランジスタ領域の表面にチャネル不純物領域を形成す るためのフォトレジストパターンを形成する工程と、前 記レジストパターンをマスクとして前記第1のトランジ スタ領域の表面に不純物を導入して前記チャネル不純物 領域を形成する工程と、前記ゲート絶縁膜の上にゲート 電極をパターンニングする工程と、前記ゲート電極によ り区切られるように前記第1のトランジスタ領域の表面 に第2導電型のソース・ドレイン領域を形成する工程 と、前記ゲート電極の上に中間絶縁膜を形成する工程 と、前記中間絶縁膜にコンタクトホールを形成する工程 と、前記コンタクトホールの上に重なるように金属配線 をパターンニングする工程とから成るとともに、前記チ ャネル不純物形成領域に、少なくとも第1の不純物凝度 領域と第2の不純物濃度領域が前記ソース領域と前記ド レイン領域との間に平面的に分割して複数形成されるこ とを特徴とする半導体装置の製造方法。

【請求項23】 該第1の不純物濃度領域と該第2の不純物濃度領域は、フォトレジストを所望の形状にチャネルとなる領域上に形成することで、同一チャネル内にしきい値電圧制御用の不純物を選択的に導入しMOSFETのチャネル領域を形成することを特徴とする請求項22記載の半導体装置の製造方法。

【請求項24】 該第1の不純物濃度領域と該第2の不純物濃度領域は、フォトレジストを所望の形状にチャネルとなる領域上に形成することで、同一チャネル内にしきい値電圧制御用の不純物を選択的にイオン注入法で導入しMOSFETのチャネル領域を形成することを特徴とする請求項22記歳の半導体装置の製造方法。

【請求項25】 第1のトランジスタ領域に第1のゲート絶縁膜を形成する工程と、第2のトランジスタ領域に前記第1のゲート絶縁膜と膜厚の異なる第2のゲート絶

4

縁膜とを形成する工程とから成る請求項22記载の半導体装置の製造方法。

【請求項26】 第1のトランジスタ領域のソース・ドレイン領域を含む第1 導電型の半導体領域の表面に、第2 導電型のウェル領域を形成する工程と、前記第1のトランジスタ領域の前記ソース・ドレイン領域として第1 導電型の不純物を導入する工程と、前記第2のトランジスタ領域のソース・ドレイン領域として第2 導電型の不純物を導入する工程とから成る請求項22記載の半導体装置の製造方法。

【請求項27】 請求項20記哉の半導体装置の製造方法において、第1導電型の半導体領域のエンハンスメント型及びデプレッション型のチャネル領域に第1導電型の不純物をイオン注入法により導入する工程と、デプレッション型のチャネル領域に第2導電型の不純物を該第1導電型の不純物濃度分布のピーク位置から±20nm以内の位置にピークをもつようにイオン注入法により導入する工程とからなる半導体装置の製造方法。

【請求項28】 請求項21記載の半導体装置の製造方法において、第1導電型の半導体領域のエンハンスメント型及びデプレッション型のチャネル領域に第1導電型の不純物をイオン注入法により導入する工程と、デプレッション型のチャネル領域に該デプレッション型のチャネル領域上に選択的かつ部分的にフォトレジストを形成する工程と該デプレッション型のチャネル領域に該フォトレジストをマスクとして第2導電型の不純物を該第1導電型の不純物濃度分布のピーク位置から±20nm以内の位置にピークをもつようにイオン注入法により導入する工程とからなる半導体装置の製造方法。

【請求項29】 該第1反転電圧領域及び該第2反転電 圧領域は、ゲート電極直下の絶縁層がそれぞれ第1の膜 厚の絶縁層領域と第2の膜厚の絶縁層領域を形成するこ とにより構成されていることを特徴とする請求項1から 11いずれか記載の半導体装置。

【請求項30】 基板表面の第1導電型の半導体領域の 表面にフィールド絶縁膜を形成する工程と、前記半導体 領域の第1のトランジスタ領域と第2のトランジスタ領 域の表面に異なる膜厚のゲート絶縁膜を形成する領域を 選択するためのフォトレジストを形成する工程と、前記 フォトレジストの形状に応じて異なる膜厚のゲート絶縁 膜を形成する工程と、前記第1及び第2のトランジスタ 領域の表面にチャネル不純物領域を形成する工程と、前 記ゲート絶縁膜の上にゲート電極をパターンニングする 工程と、前記ゲート電極により区切られるように前記第 1のトランジスタ領域の表面に第2導電型のソース・ド レイン領域を形成する工程と、前記ゲート電極の上に中 間絶縁膜を形成する工程と、前記中間絶縁膜にコンタク トホールを形成する工程と、前記コンタクトホールの上 に重なるように金属配線をパターンニングする工程とか ら成るとともに、前記ゲート絶縁膜は同一のチャネル上

に、少なくとも第1の膜厚のゲート絶縁膜領域と第2の 膜厚のゲート絶縁膜領域が前記ソース領域と前記ドレイ ン領域との間に平面的に分割して複数形成されることを 特徴とする半導体装置の製造方法。

【請求項31】 該第1の膜厚のゲート絶縁膜領域と該第2の膜厚のゲート絶縁膜領域は、フォトレジストを所望の形状にチャネルとなる領域上に形成することで、異なる膜厚の絶縁膜を選択的に形成することを特徴とする請求項30記哉の半導体装置の製造方法。

【請求項32】 該MIS型要素は、Nチャネル型MISFETであることを特徴とする請求項1から21乃至29いずれか記載の半導体装置。

【請求項33】 該Nチャネル型MISFETの該第1 反転電圧領域の表面反転電圧(しきい値電圧)は-0. 01~0.3Vで、該第2反転電圧領域の表面反転電圧 (しきい値電圧)は-0.01~-1.0Vであること を特徴とする請求項32記載の半導体装置。

【請求項34】 該Nチャネル型MISFETの該第1 反転電圧領域の表面反転電圧(しきい値電圧)は-0. 01~0.3Vで、該第2反転電圧領域の表面反転電圧 (しきい値電圧)は0.3~5.0Vであることを特徴 とする請求項32記載の半導体装置。

【請求項35】 該Nチャネル型MISFETの該第1 反転電圧領域の表面反転電圧(しきい値電圧)は0.3 ~5.0 Vで、該第2反転電圧領域の表面反転電圧(しきい値電圧)は-0.01~-1.0 Vであることを特徴とする請求項32記載の半導体装置。

【請求項36】 該MIS型要素は、Pチャネル型MI SFETであることを特徴とする請求項1から21乃至 29いずれか記載の半導体装置。

【請求項37】 該Pチャネル型MISFETの該第1 反転電圧領域の表面反転電圧(しきい値電圧)は0.0 1~-0.3 Vで、該第2反転電圧領域の表面反転電圧 (しきい値電圧)が0.01~1.0 Vであることを特 徴とする請求項36記載の半導体装置。

【請求項38】 該Pチャネル型MISFETの該第1 反転電圧領域の表面反転電圧(しきい値電圧)は0.0 1~-0.3 Vで、該第2反転電圧領域の表面反転電圧 (しきい値電圧)が-0.3~-5.0 Vであることを 特徴とする請求項36記載の半導体装置。

【請求項39】 該Pチャネル型MISFETの該第1 反転電圧領域の表面反転電圧(しきい値電圧)は-0. 3~-5.0Vで、該第2反転電圧領域の表面反転電圧 (しきい値電圧)が0.01~1.0Vであることを特 徴とする請求項36歳の半導体装置。

【請求項40】 該MISFETから成るアナログ回路 と、該チャネル領域に比べ1桁以上面積の小さい第2の チャネル領域から成る第2のMISFETにより構成さ れるディジタル回路とを該半導体基板表面に設けた請求 項7、32乃至36記载の半導体装置。 6

【請求項41】 該MISFETが複数直列に接続されることを特徴とする請求項7、32乃至36記載の半導体装置。

【請求項42】 該MISFETには容良が接続されていることを特徴とする請求項41記載の半導体装置。

【請求項43】 該MISFET及び該容量を有する電 圧昇圧回路を構成したことを特徴とする請求項42記歳 の半導体装置。

【請求項44】 該電圧昇圧回路が不揮発性記憶素子に 接続されていることを特徴とする請求項43記載の半導 体装置。

【請求項45】 該MISFETを有する差動増幅回路 を構成したことを特徴とする請求項7、32乃至36記 裁の半導体装置。

【請求項46】 該MISFETを有する基準電圧発生 回路を構成したことを特徴とする請求項7、32乃至3 6記載の半導体装置。

【請求項47】 該差動増幅回路は基準電圧発生回路と外部に電圧を出力するための出力回路とに接続し、該基準電圧発生回路で発生した電圧と、該出力回路の外部に出力する電圧もしくは外部に出力する電圧に所定の比率で追従する電圧とを該差動増幅回路により比較して、該出力回路より一定電圧を出力することを特徴とする請求項45記載の半導体装置。

【請求項48】 差動増幅回路は該基準電圧発生回路と外部に電圧を出力するための出力回路とに接続し、該基準電圧発生回路で発生した電圧と、該出力回路の外部に出力する電圧もしくは外部に出力する電圧に所定の比率で追従する電とを該差動増幅回路により比較して、該出力回路より一定電圧を出力することを特徴とする請求項46記載の半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、集積回路半導体装置を構成する絶縁ゲート電界効果型トランジスタ(以下MISFETと称す)のチャネル領域の構成に係わり、特にチャネル領域の不純物濃度やゲート絶縁膜厚等によって決まるチャネル領域の表面反転電圧(しきい値電圧)が制御される半導体装置に関する。

40 【0002】この発明は、同一基板上に複数のしきい値 電圧を有するMISFETから構成される集積回路半導 体装置及びその製造方法に関する。この発明は、同一基 板上に異なる導電型のMISFETを有する集積回路半 導体装置及びその製造方法に関する。

【0003】この発明は、同一基板上に異なるゲート電圧が印加される高耐圧及び低電圧用のMISFETを有する集積回路半導体装置及びその製造方法に関する。この発明は、同一基板上にアナログ回路とディジタル回路とから成る半導体装置及びその製造方法に関する。

) 【0004】この発明は、絶縁層の上に設けられた薄膜

半導体に形成された半導体装置及びその製造方法に関する。

[0005]

【従来の技術】図39は、従来の集積回路半導体装置内のMISFETを表す模式的な平面図である。なお本明細書では、MISFETの代表的な例として金属ゲート電極と半導体基板にはさまれた絶縁層がシリコン酸化膜であるMOSFETを例にとり説明する。

【0006】今図39においては、3種類のトランジスタのソース、ドレイン及びゲートを模式的に表しており、簡単のためアルミニウムの金属配線等は省いてある。トランジスタ1、2、3はそれぞれ異なるしきい値電圧 (V_{TM}) を持つものである。

【0007】図40は、従来の集積回路半導体装置内のMOSFETを表す模式的な断面図である。トランジスタ1においてチャネル領域4004の不純物濃度は、例えば半導体基板4006の不純物濃度値とし、このチャネル領域4004の不純物濃度とゲート絶縁膜4005の膜厚で決まるしきい値電圧をVm とする。

【0008】トランジスタ2のしきい値電圧VTH2をVTH1 と異なる値にしたい場合は不純物を導入する領域を選択するためのガラスマスク等を用いてフォトレジストを光学的にパターンニング(フォトリソグラフィー技術)し、選択的に形成されたフォトレジストをマスクとしてイオン打ち込みなどで不純物をゲート絶縁膜4005を介して導入し、トランジスタ1のチャネル領域1とは異なる不純物濃度のチャネル領域2を形成する。

【0009】このとき不純物を導入する領域を選択するためのイオン打ち込み用ガラスマスク1のパターン3905は、図39(b)のようにガラスマスクの合わせずれ等を考慮して、チャネル領域よりわずかに大きくかつ全面を覆うように作られ、フォトレジストはチャネル領域よりわずかに大きく除去されて、除去された領域のチャネルに不純物が導入される。

【0010】また、ゲート絶縁膜4005は通常は、10nmから100nm程度の均一の膜厚のシリコン酸化膜で形成されている。このようにすることでトランジスタ2のVTH2とトランジスタ1のVTH1とは異なるものが形成でき、同様にしてトランジスタ3のVTH3のように必要な種類と必要な不純物を導入し必要なしきい値電圧のトランジスタを形成する。

【0011】また、図示しないが、同一基板の表面に厚いゲート酸化膜の高電圧MOSFETと、薄いゲート酸化膜の低電圧MOSFETとを設けた集積回路半導体装置においては、各々のしきい値電圧をほぼ同じ値にするために、フォトリングラフィー技術により各々のMOSFETのチャネル領域の均一な不純物領域の設度を制御している。

【0012】同様に、P型MOSFETとN型MOSF ETから成るCMOS型集積回路においても、ほぼ同じ 8

しきい値電圧にするために、別々の不純物導入工程により行っている。

[0013]

【発明が解決しようとする課題】しかし、従来の集積回路半導体装置内のMOSFETは前述したようにそれぞれ均一な不純物設度のチャネル領域と均一な膜厚のゲート絶縁膜を持つために、チャネルの表面反転電圧が一定となり、したがって単一の半導体基板上に形成される集積回路半導体装置内に複数種類のしきい値電圧のトランジスタを形成するには、必要な種類数の不純物あるいは不純物設度をチャネル領域に導入する工程が必要であった。

【0014】したがって単一の半導体基板上に形成される集積回路半導体装置内に複数種類のしきい値電圧のトランジスタを形成することは、コスト増の原因でもあり回路設計上の制約にもなったいた。また、チャネル領域に不純物を導入する前のしきい値電圧が異なる構造のトランジスタを同一基板上に設けた集積回路半導体装置においては、電源電圧の範囲に見合ったしきい値電圧を合せこむための複数回のフォトリソグラフィー工程が必要であった。

【0015】したがって、異なるゲート絶縁膜、異なる 基板凝度、または、異なる導電型のMOSFETのしき い値電圧を制御するには製造期間が長く、製造コストも 高くなっていた。

[0016]

【課題を解決するための手段】上記課題を解決するために、この発明は、以下のような手段をとった。第1の手段としてMOSFETの同一チャネル内に2つ以上の異なるゲート電圧でチャネル表面が反転するという、異なる表面反転電圧を持つチャネル領域を設ける手段をとった。

【0017】さらに、第1の表面反転電圧領域と第2の表面反転電圧領域の平面的な面積の比率、すなわち全チャネルの平面的な面積に対する第2の表面反転電圧領域の平面的な面積の比率を複数種類とするか、第1の表面反転電圧領域及び第2の表面反転電圧領域の個々の平面的な大きさもしくは形状を複数種類とする手段をとった。

【0018】第2の手段として前記第2の表面反転電圧 領域が複数の平面的形状に分割されているという手段を とった。また複数の平面的形状に分割する方法の例とし て、次の方法がある。

(1) チャネル長方向に平行な短冊状に分割する。

【0019】(2)チャネル幅方向に平行な短冊状に分割する。

- (3) ドット状に分割する。
- (4) 市松模様状に分割する。

第3の手段として前記2つ以上の異なる表面反転電圧を 持つチャネル領域は、2つ以上の異なる不純物凝度の領 域(チャネル不純物領域)をMOSFETの同一チャネル領域表面に形成することで得る手段をとった。

【0020】第4の手段として前記第3の手段記載のチャネル不純物領域をソース・ドレイン領域の接合深さより浅く形成するといった手段をとった。第5の手段としてそれぞれ異なる膜厚で形成されたゲート絶縁膜を持つ第1のMOSFETと第2のMOSFETを形成し、各々に前記第1から第4の手段を適用するといった手段をとった。

【0021】第6の手段として第1導電型の半導体基板に形成される第1のMOSFETと前記半導体基板と異なる不純物設度でかつ同一の導電型で形成されたウェル領域内に形成される第2のMOSFETを形成し、各々に前記第1から第4の手段を適用するといった手段をとった。

【0022】第7の手段として第1導電型の半導体基板に形成される第1のMOSFETと前記半導体基板と異なる導電型で形成されたウェル領域内に形成される第2のMOSFETを形成し、各々に前記第1から第4の手段を適用するといった手段をとった。

【0023】第8の手段として絶縁層の上に形成される 膜厚が10μmより薄い薄膜半導体層にMOSFETを 形成し、さらに前記MOSFETに前記第1から第4の 手段を適用するといった手段をとった。第9の手段として第8の手段記載の薄膜半導体層の厚さが前記薄膜半導体層に形成されるMOSFETのチャネル領域の厚さと 同等の膜厚であるといった手段をとった。

【0024】第10の手段として第8の手段記載の薄膜半導体層の厚さが前記薄膜半導体層に形成されるMOSFETのチャネル領域のチャネル不純物領域の深さと同等の膜厚であるといった手段をとった。第11の手段としてエンハンスメント型MOSFETのチャネル領域に第1導電型の不純物を導入する際、フォトレジストパターンをマスクに用いずに不純物を導入し、次にフォトレジストパターンをマスクに用いてデプレッション型MOSFETのチャネル領域にのみ、第2導電型の不純物を第1導電型不純物の不純物プロファイルから±20nm以内の位置にピークとなるように導入される半導体装置とする手段をとった。

【0025】第12の手段として前記11の手段による 半導体装置において、デプレッション型MOSFETの チャネル領域上に選択的かつ部分的にフォトレジストパ ターンを形成し、次に前記フォトレジストパターンをマ スクに用いてデプレッション型MOSFETのチャネル 領域にのみ、第2導電型の不純物を第1導電型不純物の 不純物凝度分布から±20nm以内の位置にピークとな るように平面的にみて部分的に導入される半導体装置と する手段をとった。

【0026】第13の手段として基板表面の第1導電型の半導体領域の表面にフィールド絶縁膜を形成する工程

10

と、前記半導体領域の第1のトランジスタ領域と第2の トランジスタ領域の表面にゲート絶縁膜を形成する工程 と、前記第1のトランジスタ領域の表面にチャネル不純 物領域を形成するためのフォトレジストパターンを形成 する工程と、前記レジストパターンをマスクとして前記 第1のトランジスタ領域の表面に不純物を導入して前記 チャネル不純物領域を形成する工程と、前記ゲート絶縁 膜の上にゲート電極をパターンニングする工程と、前記 ゲート電極により区切られるように前記第1のトランジ スタ領域の表面に第2導電型のソース・ドレイン領域を 形成する工程と、前記ゲート電極の上に中間絶縁膜を形 成する工程と、前記中間絶縁膜にコンタクトホールを形 成する工程と、前記コンタクトホールの上に重なるよう に金属配線をパターンニングする工程とから成るととも に、前記チャネル不純物形成領域に、少なくとも第1の 不純物 凝度領域と第2の不純物 凝度領域が前記ソース領 域と前記ドレイン領域との間に平面的に分割して複数形 成されることを特徴とする半導体装置の製造方法とする 手段をとった。

【0027】第14の手段として前記第1の不純物 設度 領域と該第2の不純物設度領域は、フォトレジストを所 望の形状にチャネルとなる領域上に形成することで、同 ーチャネル内にしきい値電圧制御用の不純物を選択的に 導入し形成することを特徴とする半導体装置の製造方法 とする手段をとった。

【0028】第15の手段として前記第1の不純物濃度 領域と該第2の不純物設度領域は、フォトレジストを所 望の形状にチャネルとなる領域上に形成することで、同 ーチャネル内にしきい値電圧制御用の不純物を選択的に イオン注入法で導入し形成することを特徴とする半導体 装置の製造方法とする手段をとった。

【0029】第16の手段として第1のトランジスタ領域に第1のゲート絶縁膜を形成する工程と、第2のトランジスタ領域に前記第1のゲート絶縁膜と膜厚の異なる第2のゲート絶縁膜とを形成する工程とから成り、前記第1のトランジスタ領域と前記第2トランジスタ領域各々に前記第13から15の手段を適用するといった半導体装置の製造方法とする手段をとった。

【0030】第17の手段として第1のトランジスタ領域のソース・ドレイン領域を含む前記半導体領域の表面に第2導電型のウェル領域を形成する工程と、前記第1のトランジスタ領域の前記ソース・ドレイン領域として第1導電型の不純物を導入する工程と、前記第2のトランジスタ領域のソース・ドレイン領域として第2導電型の不純物を導入する工程とから成り、前記第1のトランジスタ領域と前記第2トランジスタ領域各々に前記第13から15の手段を適用するといった半導体装置の製造方法とする手段をとった。

【0031】第18の手段としてエンハンスメント型MOSFETのチャネル領域に第1導電型の不純物を導入

する際、フォトレジストパターンをマスクに用いずに不 純物を導入し、次にフォトレジストパターンをマスクに 用いてデプレッション型MOSFETのチャネル領域に のみ、第2導電型の不純物を第1導電型不純物の不純物 プロファイルから±20nm以内の位置にピークとなる ように導入する半導体装置の製造方法とする手段をとっ た。

【0032】第19の手段として前記18の手段による 半導体装置において、デプレッション型MOSFETの チャネル領域上に選択的かつ部分的にフォトレジストパ ターンを形成し、次に前記フォトレジストパターンをマ スクに用いてデプレッション型MOSFETのチャネル 領域にのみ、第2導電型の不純物を第1導電型不純物の 不純物凝度分布から±20nm以内の位置にピークとな るように平面的にみて部分的に導入される半導体装置の 製造方法とする手段をとった。

【0033】第20の手段として前記2つ以上の異なる 表面反転電圧を持つチャネル領域は、2つ以上の異なる 膜厚のゲート絶縁膜をMOSFETの同一チャネル領域 上に形成することで得る手段をとった。第21の手段と して基板表面の第1導電型の半導体領域の表面にフィー ルド絶縁膜を形成する工程と、前記半導体領域の第1の トランジスタ領域と第2のトランジスタ領域の表面に異 なる膜厚のゲート絶縁膜を形成する領域を選択するため のフォトレジストを形成する工程と、前記フォトレジス トの形状に応じて異なる膜厚のゲート絶縁膜を形成する 工程と、前記第1及び第2のトランジスタ領域の表面に チャネル不純物領域を形成する工程と、前記ゲート絶縁 膜の上にゲート電極をパターンニングする工程と、前記 ゲート電極により区切られるように前記第1のトランジ スタ領域の表面に第2導電型のソース・ドレイン領域を 形成する工程と、前記ゲート電極の上に中間絶縁膜を形 成する工程と、前記中間絶縁膜にコンタクトホールを形 成する工程と、前記コンタクトホールの上に重なるよう に金属配線をパターンニングする工程とから成るととも に、前記ゲート絶縁膜は同一のチャネル上に、少なくと も第1の膜厚のゲート絶縁膜と第2の膜厚のゲート絶縁 膜が前記ソース領域と前記ドレイン領域との間に平面的 に分割して複数形成されることを特徴とする半導体装置 の製造方法とする手段をとった。

 $V_{TH} = \phi_{MS} + Q_B / C_{OX} + 2 \phi_f$

φιsは、基板とゲート電極との仕事関数差である。QBは、チャネル領域に発生する単位面積当りの空乏電荷はである。Coxは、ゲート絶縁膜の単位面積当りの容量である。

【0040】 ϕ_f は、基板のフェルミレベルである。チ $V_{Th}=A\,V_{T1}+B\,V_{T2}$

0≦A、B≦1の定数であり、各々の領域のパターン形状に依存する。従って、フォトリソグラフィー技術により定数AとBを制御することにより、同一基板上に複数

12

【0034】第22の手段として前記2つ以上の異なる 膜厚のゲート絶縁膜は、フォトレジストを同一チャネル 上に選択的に形成することにより、この選択的に形成されたフォトレジストをマスクとして選択的にゲート絶縁 膜を除去または形成することを特徴とする半導体装置の 製造方法とする手段をとった。

【0035】第23の手段として前記第1の手段から第12万至20の手段に記載のMOSFETから成るアナログ回路と、前記アナログ回路に使用しているMOSFETのチャネル領域に比べ1桁以上面積の小さい第2のチャネル領域から成る第2のMOSFETにより構成されるディジタル回路とを該半導体基板表面に設けた半導体装置とする手段をとった。

【0036】第24の手段として前記第1の手段から第12乃至20の手段に記載のMOSFETを複数個直列にダイオード接続し、おのおのに電荷蓄積用の容量が接続されている電圧昇圧回路(チャージポンプ回路)を構成し、さらに電圧昇圧回路の前段から後段になるにしたがって第2の表面反転電圧領域の面積比または形状を変えていくという手段をとった。

【0037】また前記電圧昇圧回路を不揮発性半導体記 憶回路を有する集積回路半導体装置に搭載した。第25 の手段として前記第1の手段から第12乃至20の手段 に記載のMOSFETを差動増幅器回路に使用するといった手段をとった。

【0038】第26の手段として前記第1の手段から第12万至20の手段に記載のMOSFETを前記差動増幅回路において電圧を比較するための基準となる一定電圧を発生する基準電圧発生回路に使用するといった手段をとった。第27の手段として前記第25の手段に記載の差動増幅回路と前記第26の手段に記載の基準電圧発生回路と外部に電圧を出力する回路を接続し、基準となる電圧と外部に出力する電圧もしくは外部に出力する電圧に一定の比率で追従する電圧を前記差動増幅回路で比較することにより出力の負荷が変わっても外部に常に一定の電圧を出力する集務回路半導体装置を構成した。

[0039]

【作用】絶縁ゲート電界効果型トランジスタ(MISFET)のしきい値電圧 $V_{\rm H}$ は以下の式によって表すことができる。

(1)

ャネル領域内に、局所的に異なるしきい値電圧すなわち 表面反転電圧 V_{11} 、 V_{12} を有する領域を各々複数の領域 設けた場合の全体のしきい値電圧VTHは次式となる。 【0041】

(2)

の種類のしきい値電圧を1回のフォトリソグラフィーに より形成することができる。但し、常に、 $V_{T1} \le V_{T2}$ と各々の局所的しきい値電圧の間に設定される。局 所的しきい値電圧とは、均一な不純物設度でチャネル領 城を形成した場合のチャネルサイズに依存しない(非常 に大きなサイズのトランジスタ)しきい値電圧であり、 式1より数学的に導かれる値である。

【0042】また、ゲート絶縁膜容母(ゲート絶縁膜 厚、ゲート絶縁膜の種類)、基板凝度または、φMSが 異なるMOSトランジスタにおいて、1回のフォトリソ

 $V_{TH} = \phi_{MS} + \alpha \cdot (Q_{B1}/C_{0X}) + \beta \cdot (Q_{B2}/C_{0X}) + 2 \phi_f$

 $0 \le \alpha + \beta \le 1$ の定数である。 Q_{B1} 及び Q_{B2} は、それぞ れ異なる不純物領域のチャネル領域の表面から基板の深 さ方向に沿ったチャネル深さ方向の単位面積当りの空乏 電荷量である。ous及びorは、実効値な値であり、チ ャネル領域の不純物凝度が複数種類・複数領域存在する ために実質的には実験的に求めることができる。

【0044】式3より、例えば、ゲート絶縁膜が異なる 各々のトランジスタにおいて、チャネル領域の不純物を パターンニングすることにより、一回のフォトリソグラ フィーによりほぼ同じしきい値電圧に制御することがで きる。また、同一基板上に設けられたN型及びP型のM

 $V_{TH} = \phi_{MS} + \alpha \cdot (Q_{B2} / C_{O_{X1}}) + \beta \cdot$

式3同様に α 及び β は、 $0 \le \alpha + \beta \le 1$ の定数である。 QBは、チャネル領域の表面から基板の深さ方向に沿っ たチャネル深さ方向の単位面積当りの空乏電荷量であ る。

【0047】COxi及びCOxzはそれぞれ局所的に異な る膜厚のゲート絶縁膜の単位面積当たりの容量値であ る。以下に課題を解決するための手段に記載した項目に そって作用を示す。第1の手段をとることで、同一の集 **稽回路半導体装置内に複数のしきい値電圧のトランジス** タを容易に得るという作用がある。

【0048】このことにより回路設計の自由度も増えて 非常に高性能で高機能の半導体集積回路装置を低コスト で実現可能となる。第2の手段をとることで、キンクが なくリーク電流の少ない良好な特性のトランジスタを比 較的精度良く狙いどうりに得ることが可能となる。これ は、微細加工の許す範囲でより細かく分割されているほ うが良好な特性を得られる。

【0049】第3及び第4の手段をとることで、1回の チャネル不純物導入工程で複数のしきい値電圧のトラン ジスタを容易に得る作用がある。従来では、例えば1回 のフォトレジストの光学的パターンニング工程とイオン 注入工程よりなるチャネル不純物の導入工程でMOSF ETのしきい値電圧を制御下場合、同一導電型の半導体 基板領域もしくはウエル領域に形成されるMOSFET のしきい値電圧は、チャネル領域全面に不純物が導入さ れたトランジスタとまったく導入されていないトランジ スタの2種類だけであったが、第3及び第4の手段をと ることでチャネル領域に部分的に不純物が導入されたト ランジスタのしきい値電圧は、チャネル領域全面に不純 物が導入されたトランジスタのしきい値電圧とまったく 14

グラフィーにより、チャネル領域に局所的に異なる不純 物領域をパターンニングすることでねらいのしきい値電 圧にすることができる。

【0043】即ち、異なる不純物領域をパターンニング した場合には、しきい値電圧は次式のように近似され、 る。

(3)

ISFETにおいても同様の手段により、エンハンスメ ント側にほぼ同じしきい値電圧に制御することができ る。

【0045】また式1は、しきい値電圧がゲート絶縁膜 の単位面積当たりの容量値が変化しても変わることを示 しているが、このことはすなわちチャネル領域の不純物 **設度が一定であっても同一チャネル内にゲート絶縁膜の** 厚さが異なる領域が複数種類・複数領域存在する場合も 同様にしきい値電圧が変化することを示している。

【0046】この場合のしきい値電圧は次式で近似でき る。

 $(Q_B / CO_{X2}) + 2 \phi_f$ (4)

導入されなかったトランジスタのしきい値電圧の間に分 布するため少なくとも3種類のしきい値電圧のトランジ スタを形成することができる。

【0050】また、不純物が導入された領域の面積比や 形状を適切に選択することによりさらに3種類以上のし きい値電圧のトランジスタを容易に形成することができ る。第5の手段をとることで、1回のチャネル不純物導 入工程でゲート絶縁膜の膜厚が異なってもしきい値電圧 が同じ値もしくはそれぞれ所望の値に合わせ込まれたト ランジスタが容易に得ることができるといった作用があ

【0051】第6の手段をとることで、1回のチャネル 不純物導入工程で同一導電型で基板の不純物凝度もしく はウェルの不純物温度の異なる領域に形成されてもしき い値電圧が同じ値もしくはそれぞれ所望の値に合わせ込 まれたトランジスタが容易に得ることができるといった 作用がある。

【0052】第7の手段をとることで、1回のチャネル 不純物導入工程で異なる導電型の基板もしくはウェルの 領域に形成されてもしきい値電圧が絶対値として同じ値 もしくはそれぞれ所望の値に合わせ込まれたトランジス タが容易に得ることができるといった作用がある。

【0053】第8、第9及び第10の手段をとること で、絶縁層の上の薄膜半導体層に形成されるトランジス タにおいてしきい値電圧の異なる複数のトランジスタを 1回のチャネル不純物導入工程で容易に得ることができ るといった作用がある。また、前記溶膜半導体層の厚さ が充分薄くトランジスタのチャネル領域の厚さやチャネ ル不純物が導入された深さと同等である場合は、部分的 に導入されたチャネル不純物が充分拡散し全体としてよ

り均一な設度に近づくため、より特性の良いトランジス タを得ることができる。

【0054】第11の手段をとることでフォトレジストの光学的パターンニング工程を1工程省略することができる。第12の手段をとることでフォトレジストの光学的パターンニング工程を1工程省略する事ができるうえに、エンハンスメント型からデプレッション型まで3種類以上の所望のしきい値電圧のMOSFETが1回フォトレジストの光学的パターンニングと2回の不純物導入工程で形成することができる。

【0055】第13から17の手段をとることで従来と比較して特別な工程の追加を行わずに第3から第10の手段記載のMOSFET及び前記MOSFETを搭載した半導体集積回路装置を簡単に製造することができるといった作用がある。第18の手段をとることでフォトレジストの光学的パターンニング工程を1工程省略してもMOSFETの特性を落とさずに半導体装置を製造することができる。

【0056】第19の手段をとることでフォトレジストの光学的パターンニング工程を1工程省略する事ができるうえに、エンハンスメント型からデプレッション型まで3種類以上の所望のしきい値電圧のMOSFETが1回のフォトレジストの光学的パターンニングと2回の不純物導入工程で製造することができる。

【0057】第20の手段をとることで、第2の膜厚のゲート絶縁膜を形成する工程を1つ追加するだけで、複数のしきい値電圧のMOSFETを容易に得る作用がある。また、FLOTOX型不揮発性メモリを搭載する集積回路半導体装置のようにトンネル絶縁膜のような第2の膜厚のゲート絶縁膜を形成する工程がすでにある場合には、新たに工程を追加すること無く複数のしきい値電圧のMOSFETを容易に得ることができる。

【0058】第21及び22の手段をとることで、第20の手段記載のMOSFET及び前記MOSFETを搭載した集積回路半導体装置を簡単に製造することができるといった作用がある。第23の手段をとることで、比較的チャネル面積の大きなアナログ回路のトランジスタは、チャネル不純物領域を適切な形状と大きさにする事で、自由度が大きく高性能なアナログ回路を構成でき、さらに前記アナログ回路とデジタル回路を同一の基板上に低コストで搭載することができるといった作用がある。

【0059】第24の手段をとることで、複数直列に接続されたMOSFET(MOSダイオード)での基板効果によるしきい値電圧の上昇で起こる電圧降下が小さくできるため、非常に効率の良い電圧昇圧回路を構成する事ができる。また第24の手段による電圧昇圧回路を不揮発性記憶機能を有する半導体集積回路装置に搭載した場合、同じ昇圧能力をより小さな面積の回路で構成したり同じ面積の回路でより昇圧能力の高い回路を構成する

16 .

事ができるため、より低コストで高性能な集積回路半導 体装置が実現できる。

【0060】第25、第26及び第27の手段をとる事で従来複数のしきい値電圧のMOSFETを形成するために、それぞれ別の不純物設度を導入する工程が必要であったものが、ひとつの工程で実現できるので、より低コストな集積回路半導体装置が実現できる。詳しい説明は、実施例に譲る。

[0061]

【実施例】以下に、この発明の実施例を図に基づいて説明する。図1は、本発明に係わる第1の実施例のMOSFETを表す模式的な平面図である。

【0062】ここで第1の実施例のMOSFETをP型 半導体基板上に形成されるN型MOSFETとすると第 1の不純物設度のチャネル領域104の不純物設度はP 型半導体基板によってきまり、第2の不純物設度のチャネル領域105の不純物設度は不純物導入用マスクのパターン106により光学的にパターンニングされたフォトレジストで選択された領域にイオン打ち込みにより不純物を導入する事によりきまるが、不純物導入用マスクのパターン106がトランジスタのチャネル長と平行な方向に複数の短冊状に描かれているため、第2の不純物設度のチャネル領域を形成するために導入される不純物も同様にトランジスタのチャネル長と平行な方向の短冊状に導入される。

【0063】その結果、第1の不純物濃度のチャネル領域104と第2の不純物濃度のチャネル領域105はそれぞれチャネル長と平行な方向の複数の短冊状に形成される。さらに、不純物導入用マスクパターンの幅107と不純物導入用マスクパターンの間隔108の組み合わせにより、チャネル領域全面に対する第2の不純物濃度のチャネル領域の面積比を所望の値に決定する。また、同一の面積比であっても不純物導入用マスクパターンの幅107と間隔108のサイズが異なる場合もある。

【0064】第2の不純物凝度の領域は、一般的にチャネルドープの工程において形成される。その後の熱処理により不純物分布は変化する。しかし、その深さは、少なくともソース領域102及びドレイン領域103の接合深さより浅く形成されている。第2の不純物凝度の領域の深さをゲート電極に電界を加えて時に基板表面に発生する空乏層の深さより浅くすることにより、しきい値電圧の制御精度を高くすることができる。

【0065】図2は、本発明に係わる第2の実施例のMOSFETを表す模式的な平面図である。第1の実施例と同様に不純物導入用マスクのパターン106が複数の短冊状に描かれているが、第2の実施例ではチャネル幅と平行な方向の短冊状となっている。第2の実施例においても不純物導入用マスクパターンの幅107と不純物導入用マスクパターンの間隔108の組み合わせで所望の面積比に決定され、また同一の面積比であっても不純

物導入用マスクパターンの幅107と間隔108のサイズが異なる場合がある。

【0066】図3は、本発明に係わる第2の実施例のMOSFETにおけるチャネル不純物が導入された直後のA-A'断面を表す模式的な断面図である。図4は、本発明に係わる第3の実施例のMOSFETを表す模式的な平面図である。

【0067】第3の実施例においては、不純物導入用マスクのパターン106がドット状に描かれている。第3の実施例においても第1及び第2の実施例同様に第2の不純物設度のチャネル領域の面積比が決定され、また同一面積比であっても不純物導入用マスクパターンの幅107と間隔108のサイズが異なる場合がある。

【0068】図5は、本発明に係わる第4の実施例のMOSFETを表す模式的な平面図である。第4の実施例においては、不純物導入用マスクのパターン106が市松模様状に描かれている。第3の実施例においても第1及び第2の実施例同様に第2の不純物設度のチャネル領域の面積比が決定され、また同一面積比であっても不純物導入用マスクパターンの幅107と間隔108のサイズが異なる場合がある。

【0069】図6及び図7は第1、第2及び第3の実施例のMOSトランジスタの種類、具体的な各部のサイズ及びチャネル領域全面に対する第2の不純物凝度領域の面積比を示した説明図である。図8は比較のための従来技術によるMOSFETの種類とサイズを示した説明図である。

【0070】トランジスタTr1からTr8及びTr2 4からTr31は第1の実施例に係わり、トランジスタ Tr9からTr16及びTr32からTr39は第2の 実施例に係わり、トランジスタTr17からTr23及 びTr40からTr46は第3の実施例に係わる。

【0071】このうち図6に示すMOSFETは、第2の不純物凝度領域がデプレッション型のチャネルを形成するもので、図7に示すMOSFETは、第2の不純物 凝度領域がエンハンスメント型のチャネルを形成するものである。また、図6及び図7に示すMOSFETの第1の不純物凝度領域は、P型半導体基板の凝度で決まるネイティブ状態となっており本実施例では、ゼロスレッショルド型のチャネルを形成するものである。

【0072】図8は、従来の技術によるデプレッション型(Tr47)、エンハンスメント型(Tr48)及びゼロスレッショルド型(Tr49)のMOSFETのサイズ等を示した説明図である。図6におけるMOSFETの第2の不純物設度の領域と図8のデプレッション型MOSFETのチャネル領域には、チャネルをノーマリーオン状態にするための不純物としてリン(P)が、エネルギーとドーズ量がそれぞれ、50KeV,2.4×101cm⁻²の条件で導入されている。

【0073】図7におけるMOSFETの第2の不純物

設度の領域と図8のエンハンスメント型MOSFETのチャネル領域には、しきい値電圧を高くするための不純物としてボロン (B) が、エネルギーとドーズ量がそれぞれ $40 \, \mathrm{KeV}$, $4.5 \times 10^{11} \, \mathrm{cm}^{-2}$ の条件で導入されている。

【0074】図9は従来型のトランジスタであるTr47とTr49、さらに本発明の実施例であるTr1とTr6のしきい値電圧を測定した際のゲート電圧(V_{GS})に対するドレイン電流(I_{IS})を示した図である。このときドレイン電流(I_{IS})はソース及び基板をグランドに接続しドレインに I_{IS} 0、 I_{IS} 1 V印加したときに流れる電流を測定している。

【0075】さらにしきい値電圧は各曲線の傾きが最大となる点での接線(図9では一点鎖線で示されている)のX切片からドレイン電圧の1/2すなわち0.05Vを引いた値としている。図10は、前記のトランジスタTr47、Tr49、Tr1及びTr6のサブスレッショルド電流の特性を示した図である。

【0076】測定条件は、図9のしきい値電圧を測定する場合と同じであるがY軸となるドレイン電流(Ins)を対数で示している。図9及び10よりしきい値電圧及びドレイン電流特性のどちらも本発明により従来の技術によるトランジスタの間の領域を容易にねらえることがわかる。

【0077】図11、12及び13は、図6に示した各トランジスタのしきい値電圧と全チャネル領域に対する第2の不純物機度領域の面積比の関係を第2の不純物機度領域の形状別に表したグラフである。また従来技術によるトランジスタTr47及びTr49がそれぞれ面積比が"1"あるいは"0"として◇印で示されている。

【0078】チャネル全面が、第1の不純物譲度であるトランジスタTr49のしきい値電圧(約0.00V)とチャネル全面が第2の不純物譲度であるトランジスタTr47のしきい値電圧(約-0.73V)の間に本発明における第1、第2及び第3の実施例のトランジスタのしきい値電圧が分布しているが第2の不純物譲度領域の形状によりグラフの形状が大きく異なり、第2の不純物譲度領域の面積比あるいは第2の不純物譲度領域の幅と間隔に依存してしきい値電圧が変化している。

【0079】また図中の括弧内の数値は第2の不純物設度領域の(幅、間隔)を [μm] 単位で示している。第2の不純物設度領域がチャネル長と平行な方向の短冊状に形成されている場合は、第2の不純物設度の面積比としきい値電圧には強い相関があり、ほぼ比例関係となっており、また第2の不純物設度領域の幅と間隔でも若干しきい値電圧が変化する。

【0080】第2の不純物設度領域がチャネル幅と平行な方向の短冊状に形成されている場合、もしくはドット状に形成されている場合は、第2の不純物設度領域の間隔すなわちしきい値電圧の高い第1の不純物設度領域の

幅に強い相関があることがわかる。すなわち、第2の不 純物設度領域の面積比の違いによってもしきい値電圧は 変化するが同一面積比であっても第1の不純物設度領域 の幅を変化させるとしきい値電圧が大きく変わる。また この場合は、面積比でも若干しきい値電圧が変化する。

【0081】また、第2の不純物設度領域の幅を一定にして間隔を変化させた場合のしぎい値電圧の値と間隔を一定にして幅を変化させた場合のしきい値電圧の値とをそれぞれ結ぶと各点は、グラフ上で格子を形成することがわかる。図14は、同一面積比(0.5)で第2の不純物設度領域の幅と間隔を変化させた場合のしきい値電圧の変化を示したグラフである。

【0082】幅と間隔が4.0μm以下になると急激にしきい値電圧が変化することがわかる。特に第2の不純物濃度領域がチャネル幅と平行な方向の短冊状に形成されている場合により急激に変化する。以上に示す様に、第2の不純物凝度領域の面積比と形状を適切に選択する事によって、所望のしきい値電圧を任意に選択することが可能となる。

【0083】図7に示した第2の不純物凝度領域がエンハンスメント型のチャネルを形成するMOSトランジスタにおいても、同様に第2の不純物凝度領域の面積比と形状を適切に選択する事によって所望のしきい値電圧を任意に選択する事ができる。図15は従来型のトランジスタであるTr48とTr49、さらに本発明のエンハンスメントトランジスタにおける実施例であるTr24とTr2.9のしきい値電圧を測定した際のゲート電圧(V_{GS})に対するドレイン電流(I_{IS})を示した図である。

【0084】デプレッショントランジスタの時と同様にドレイン電流 (I_{18})はソース及び基板をグランドに接続しドレインに0.1 V印加したときに流れる電流を測定している。さらにしきい値電圧は各曲線の傾きが最大となる点での接線(図15では一点鎖線で示されている)のX切片からドレイン電圧の1/2すなわち0.05 Vを引いた値としている。

【0085】図16は、前記のトランジスタTr48、Tr49、Tr24及びTr29のサブスレッショルド電流の特性を示した図である。測定条件は、図15のしきい値電圧を測定する場合と同じであるがY軸となるドレイン電流(I_{18})を対数で示している。

【0086】図15及び16よりエンハンスメントトランジスタにおいてもしきい値電圧及びドレイン電流特性のどちらも本発明により従来の技術によるトランジスタの間の領域を容易にねらえることがわかる。図17、18及び19に示すように図7に示したエンハンスメントトランジスタにおいても第2の不純物凝度領域の面積比と形状を適切に選択する事によって所望のしきい値電圧を任意に選択する事ができる。

【0087】また、図17、18及び19には従来技術

20

によるトランジスタTr48及びTr49がそれぞれ面 積比"1"あるいは"0"として◇印で示されている。 図中の括弧内の数値は第2の不純物設度領域の(幅、間 隔)を [μm] 単位で示している。

【0088】図20は図6に示したデプレッションタイプの各トランジスタのうち第2の不純物凝度領域がチャネル長と平行な短冊状に形成されているTrlからTr8の飽和電流値と全チャネル領域に対する第2の不純物 凝度領域の面積比の関係を表すグラフである。

【0089】しきい値電圧と同様に第2の不純物凝度領域の面積比と飽和電流値はほぼ比例関係となっている。図21は図6に示したデプレッションタイプの各トランジスタのうち第2の不純物凝度領域がチャネル幅と平行な短冊状に形成されているTr9からTr16の飽和電流値と全チャネル領域に対する第2の不純物凝度領域の面積比の関係を表すグラフである。

【0090】これも同様に、しきい値電圧と同様に第2の不純物設度領域の面積比と飽和電流値はほぼ比例関係となっている。以上の実施例はNチャネル型MOSFETの例について述べてきたが、Pチャネル型MOSFETについても同様な特性を得る事ができる。

【0091】また本実施例ではネイティブ状態のMOSFETのしきい値電圧はほぼ0Vとしたが、本発明はこれに拘束されるものではなく、ネイティブなMOSFETのしきい値電圧がより強いエンハンスメント状態やデプレッション状態の場合でも、第2の不純物凝度領域の形状や面積比を適切に選択する事で所望のしきい値電圧に設定できるばかりか、1回の不純物導入工程でエンハンスメントからデプレッションまでのすべてのしきい値電圧のMOSFETが同一の不純物凝度の半導体基板上またはウェル上に自由に形成できる。

【0092】ネイティブ状態のMOSFETのしきい値 電圧がほぼ0Vの場合、1回のフォトレジストの光学的 パターンニング工程と2回の不純物導入工程でエンハン スメント型MOSFETとデプレッション型NMOSF ETを同時に製造するためには、例えばNチャネルMO SFETでは、フォトレジストを用いずにチャネル領域 全面にMOSFETをエンハンスメント型の所望のしき い値電圧にするための不純物としてボロン(B)を導入 し、その後デプレッション型MOSFETを製造するた めに必要部分にのみフォトレジストを用いて選択的にリン(P)を導入する。

【0093】このとき、チャネル内のエンハンスメント型の領域とデプレッション型の領域との面積比や各々の形状を変えることにより所望のしきい値のトランジスタを製造する事が可能となる。さらに、チャネル領域の不純物としてのボロンとリンの設度分布のピーク位置を実質的に同一位置(例えば±20nm以内)にある構造とする事により、各MOSFETのしきい値電圧や駆動能力をより安定して得られる構造とする事ができる。

膜2206を40nmの厚さに形成する。次にボロンイオンを25keVのエネルギーで熱酸化膜2206表面より80nm付近の深さへ注入してエンハンスメント型

MOSFETのチャネル領域となる、P型シリコン基板 2201よりも不純物凝度の高いP型領域2207を形成する。

【0101】次に図22(c)に示すように、開孔を設けたフォトレジストパターン2204cを新たに形成し、前記開孔からリンイオンを75keVのエネルギーで熱酸化膜2206表面より80nm付近の深さへ注入してデプレッション型MOSFETのチャネル領域をN型領域2208に変換する。

【0102】またこのとき、通常はデプレッション型MOSFETのチャネル領域となる部分はすべて開孔を設けるが、フォトレジストパターン2204cを選択的かつ部分的にチャネル領域に形成し、同一のチャネル領域内に部分的にリンイオンを注入する事により、フォトレジストパターン2204cの形状に応じて所望のしきい値電圧のMOSFETを形成できる。

【0103】次に図22(d)に示すように、前記フォトレジストパターン2204cを剥離した後、CVD法、により350~400nmの厚さのポリシリコン膜を全面に形成する。その後、前記ポリシリコン膜上にフォトレジストパターン2204dを設け、それをマスクにして該ポリシリコン膜をドライエッチング法により除去してポリシリコン電極2209a, bを形成させる。

【0104】次に図23 (e) に示すように、前記フォトレジストパターンあ2204dを剥離した後、全面にリンイオンを5×10¹⁵程度のドーズ量で注入し、高濃度のN型領域のソース領域2210a, c、及びドレイン領域2210b, dを形成する。

【0105】次に図23(f)に示すように、CVD法により $500\sim1000$ nmの厚さのPSG膜2211を全面に形成する。その後、前記PSG膜上にフォトレジストパターン2204eを設け、それをマスクにして該PSG膜2211をウェットエッチング法あるいはドライエッチング法により除去してコンタクトホールを形成させる。

【0106】次に図23(g)に示すように、前記フォトレジストパターン2204eを剥離した後、スパッタ法により800~1200nmの厚さのアルミニウム膜を全面に形成する。その後、前記アルミニウム膜上にフォトレジストパターン2204fを設け、それをマスクにして該アルミニウム膜をドライエッチング法により除去してアルミ配線2212a, bを形成させる。

【0107】次に図23(h)に示すように、前記フォトレジストパターン2204fを剥離した後、表面保護のためのシリコン窒化膜2213をプラズマCVD法により全面に形成する。該シリコン窒化膜に開孔を設けて前記アルミ配線2212a, bのボンディングパッド部

【0094】また、ネイティブ状態のMOSFETのしきい値電圧がより強いエンハンスメント状態である場合は、前述したボロンの導入工程が不要である場合もある。これらの局所的なしきい値電圧の組み合わせ、すなわち第1の不純物設度領域の表面反転電圧と第2の不純物設度領域の表面反転電圧の組み合わせの例として以下の組み合わせがあげられる。

【0095】(1)第1の不純物凝度領域の表面反転電 圧が-0.01~0.3 Vで、第2の不純物凝度領域の 表面反転電圧が-0.01~-1.0 VであるNチャネ ル型MOSFET。

(2) 第1の不純物 設度領域の表面反転電圧が - 0.0 1~0.3 Vで、第2の不純物 設度領域の表面反転電圧が 0.3~5.0 Vである Nチャネル型MOSFET。

【0096】(3)第1不純物凝度領域の表面反転電圧が0.3~5.0Vで、第2の不純物凝度領域の表面反転電圧が-0.01~-1.0VであるNチャネル型MOSFET。

(4) 第1の不純物設度領域の表面反転電圧が0.01 ~-0.3 Vで、第2の不純物設度領域の表面反転電圧 が0.01~1.0 VであるPチャネル型MOSFE T。

【0097】(5)第1の不純物凝度領域の表面反転電 圧が0.01~-0.3Vで、第2の不純物凝度領域の 表面反転電圧が-0.3~-5.0VであるPチャネル 型MOSFET。

(6) 第1不純物 強度領域の表面反転電圧が-0.3~ -5.0 Vで、第2の不純物 設度領域の表面反転電圧が 0.01~1.0 VであるPチャネル型MOSFET。

【0098】また、前述したボロンとリンの不純物濃度 分布の位置を実質的に同一位置とする方法は、デプレッション型MOSFETとエンハンスメント型MOSFE Tをそれぞれ1種類ずつしか形成しない場合は、チャネル上にフォトレジストを部分的に形成する必要はなく、すべて覆うか覆わないかで形成することができる。

【0099】この場合の製造方法を第5の実施例として図22及び図23に示す。まず、図22(a)に示すように、抵抗率10~20ΩcmのP型シリコン基板2201の表面に熱酸化膜2202を形成し、CVD法により100~150nmの厚さのシリコン窒化膜2203を全面に形成する。その後、前記シリコン窒化膜2203上にフォトレジストパターン2204aを設け、それをマスクにして該シリコン窒化膜2203をプラズマエッチング法により除去して前記酸化膜2202の一部を解出させる。

【0100】次に図22(b)に示すように、前記フォトレジストパターン2204aを剥離した後、熱酸化法により500~1200nmの厚さのフィールド酸化膜2205を形成する。次いで前記シリコン窒化膜2203及びその下の酸化膜2202を除去し、新たに熱酸化

(図示されていない。)を**は出させれば、エンハンスメント型及びデプレッション型のMOSFETを回路**にもつNチャネル型MOSFETによる集積回路半導体装置が完成する。

【0109】このような構造にすることにより、デプレッション型のチャネル領域の深さはボロン及びリンの凝度にあまり影響を受けずにデプレッション型MOSFETのしきい値電圧及び駆動能力を安定して得られる構造となる。また第5の実施例では、Nチャネル型MOSFETによる例についてのみ示したが、Pチャネル型やNチャネル型及びPチャネル型双方によるCMOS型の集積回路半導体装置についても同様な効果がある。

【0110】次に図26は、本発明に係わる第6の実施例としての集積回路型半導体装置の断面図である。P型シリコン基板2601の表面に深さが $1\sim5\mu$ m程度のNウエル2602が形成されている。Nウエル2602内にPMOSFETが形成されている。

【0111】Nウエル2602の形成されていないP型シリコン基板2601の表面にはN型MOSFETが形成されている。N型MOSFETはN型ソース領域2604aと、チャネル領域を挟んでN型ドレイン領域2604aとドレイン領域2604bが設けられている。ソース領域2604aとドレイン領域2604bとの間の基板2601の表面であるチャネル領域には、第1から第4の実施例と同様のチャネル不純物領域2607がドット状に平面的に複数分割されて設けられている。チャネル領域の表面にはゲート酸化膜2606を介してゲート電極2604cが設けられている。P型MOSFETも同様に導電型を反対して形成されている。

【0112】また、P型MOSFETのチャネル不純物 領域の全チャネル領域に対する割合は、所望のねらい値 を得るためにNMOSFETと異なるパターンに形成されている。例えば、チャネル不純物領域 2607 を設けない場合の各々のしきい値電圧が、0.2V(N型MOSFET)と-1.5V(P型MOSFET)の場合、各々のしきい値電圧を0.6Vと-0.6Vに制御するために、不純物元素としてボロンを40keV, 4×10^{11} cm $^{-2}$ のイオン注入条件でP型MOSFETには面積比

(0.2)の割合でチャネル領域に選択的に注入した。 即ち、1回のレジストパターン形成と、そのレジストパ ターンをマスクとしたイオン注入により、導電型の異なるMOSFETのしきい値電圧を所望の値に制御できる。図26に示すように、各々のトランジスタのチャネル領域に各々異なる面積比でイオン注入してもよいが、一般的には、いづれか一方のみ面積比が0または1にする。残りの一方のトランジスタが面積比が0から1の間の中間値によりしきい値を制御する。

【0113】図26の第6の実施例は、各々のトランジスタの基板となる半導体領域の導電型が異なる場合の本発明の実施例の断面図であるが、同じ導電型の半導体領域の場合で、かつ半導体領域の不純物凝度が異なる場合にも同様にしきい値電圧を制御できる。

【0114】例えば、図示しないが、P型半導体基板に同じ導電型で不純物設度の設いPウエルを設け、P型半導体基板とPウエル内にそれぞれN型MOSFETを形成した場合、P型半導体基板内のN型MOSFETのしきい値電圧は0.1Vに対し、不純物設度が設いPウエル内のN型MOSFETのしきい値電圧は0.3Vであった。

【0117】また、しきい値の制御性を向上するためには、チャネル不純物領域を少なくともチャネル領域内に5領域、望ましくは10領域以上設ける必要がある。もしくは、新たにチャネル不純物を導入する領域どうしの間隔や幅を 4μ m以下、望ましくは 1μ m以下とする必要がある。これは、図14にも示されているが局所的にしきい値電圧の高い領域の幅が 4μ m以上になるとMOSFET全体としてのしきい値電圧が変化し難くなるためである。また図示はしないが、局所的にしきい値電圧の低い部分の幅が 4μ m以上でかつソース・ドレイン間に連続して分布している場合(例えばチャネル長と平行な短冊状)は、ゲート電圧の低い場合でのソース・ドレイン間でのリーク電流が多くなるため、このことからも新たにチャネル不純物を導入する領域どうしの間隔や幅を 4μ m以下とすることが望ましい。

【0118】また、複数のチャネル不純物領域をチャネル領域に設けてしきい値電圧を制御するトランジスタのサイズは、従来方法による全面イオン注入制御、また

は、全面イオン注入しないトランジスタのサイズに比べ 少なくとも4倍、望ましくは10倍以上のチャネル領域 の面積を必要とする。従って、本発明の半導体装置とし ては、入出力レベルが"H""L"のディシタル信号の み処理するディジタル回路を構成するMOSFETには 最小設計ルールを用いてチャネル領域を均一不純物領域 にて形成する。入出力レベルが電源電圧と異なるアナロ グ信号を処理するアナログ回路を構成するMOSFET には、最小ルールによるトランジスタの約10倍以上の トランジスタで構成し、チャネル領域に複数のチャネル 不純物領域を設けてしきい値を制御することが好まし い。一般に、ICは、アナログ回路とディジタル回路に より構成される。しかし、アナログ回路の面積は少ない 場合が一般的である。従って、アナログ回路の面積が少 し増加しても、製造工程が従来より簡単にできるためコ ストダウンできる。特に、しきい値電圧を数多く必要と する、または、チャネルドープ前のしきい値が数多く存 在して合せ込む必要がある場合に大きな効果がある。

【0119】ただし不純物の導入方法が、光学的にパターンニングされたフォトレジストのマスク無しに、例えば不純物イオンビームを直接選択的にチャネル領域に打ち込むような場合には、不純物導入領域はフォトレジストの光学的なパターンニングの最少寸法に律速されないため、前記のようにアナログ回路のトランジスタのチャネル領域がデジタル回路のトランジスタのチャネル領域よりも充分大きくする必要はない。

【0120】またフォトレジストをマスクに不純物を導入するばあいでもトランジスタのチャネル幅とチャネル長のどちらか一方が最少加工寸法よりも充分大きな場合も同様である。図27は、本発明の第7の実施例の半導体装置の断面図である。P型シリコン基板2601にゲート絶縁膜の膜厚の異なる低電圧MOSトランジスタ

(LVMOSFET) と高耐圧MOSトランジスタ(HVMOSFET)が設けられている。LVMOSFETは電源電圧3Vにで動作するために、約10nmのシリコン酸化膜で薄いゲート酸化膜2701cを形成している。HVMOSFETは、電源電圧より大きな電圧(例えば30V)にて動作できるように約100nmのシリコン酸化膜で厚いゲート酸化膜2702cを形成している。また、LVMOSFETは、ゲート絶縁膜として10nmの酸化膜を用いているために、チャネル不純物領域2701eをチャネル領域全面に設けることによりしきい値電圧を0.4Vに制御している。

【0121】一方、HVMOSFETは、ゲート絶縁膜が100nmと厚いために同様に全面イオン注入するとしきい値電圧は3V以上と非常に大きく変化してしまう。そこで、図27に示すように、HVMOSFETのみ、チャネル面積に対して10%の割合にのみチャネル不純物領域2702eを分割して形成することにより0.8V±0.1Vに制御することができた。

【0122】図27においては、ゲート絶縁膜として、 膜厚の異なるMOSFETのしきい値電圧制御の実施例 を示した。図示しないが、誘電率が異なる材料のゲート 絶縁膜を用いても同様に制御できる。例えば、LVMO SFETのゲート絶縁膜としてはシリコン酸化膜を用 い、HVMOSFETのゲート絶縁膜としてシリコン酸 化膜・シリコン窒化膜・シリコン酸化膜の三層の複合膜 を用いて形成することがある。

【0123】このような場合でも、図27のようなチャネル不純物領域をパターンニングすることにより1回のイオン注入により各々のトランジスタのしきい値電圧を所望の値に制御することができる。図28は図27の半導体装置の製造方法を説明するための工程順断面図である。

【0124】まず、図28 (a) に示すように各々のトランジスタを電気的に分離するためのフィールド酸化膜2603を基板2601の表面に形成する。一般的には、P型シリコン基板の上に酸化膜を介してシリコン窒化膜を通常のフォトリソグラフィー技術によりパターンニングする。

【0125】次に、シリコン窒化膜をマスクとして選択酸化することにより図28(a)のようなフィールド酸化膜をパターンニングすることができる。シリコン窒化膜の形成されている領域には厚いフィールド酸化膜2603が形成されない。選択酸化後に、シリコン窒化膜とシリコン窒化膜の下の薄い酸化膜を除去するとトランジスタ領域のみシリコン表面が露出して図28(a)のようになる。

【0126】次に、図28(b)のように1000℃程度の高温にて100nmのゲート酸化膜2801を形成する。フィールド酸化膜2603は500nm以上の厚い酸化膜である。LVMOSFETとなるトランジスタ領域に10nmのゲート酸化膜を形成するために、図28(b)のようにHVMOSFETの領域にレジスト膜2802を形成し、レジスト膜2802をマスクとしてゲート酸化膜2801を除去する。

【0127】次に、同様に1000℃程度の高温にて、 短い酸化時間でシリコン基板2601を酸化する。HV MOSFETの領域には100nmのゲート酸化膜が存 在していたのでほとんどそのままで、LVMOSFET の領域にのみ10nmの酸化膜2803がゲート酸化膜 として形成される。

【0128】次に、図28(d)のようにチャネル不純物形成のためのレジスト膜2804を形成する。図28(d)においては、LVMOSFETの領域には全面レジストが形成されている。一方、HVMOSFETの領域には、チャネル領域に複数のチャネル不純物領域2806が形成されるように平面的に分割されたレジストの窓が複数チャネル領域内に形成されている。レジスト膜2804をマスクとしてボロンイオンをイオン注入す

る。

【0129】次に、各々のゲート絶縁膜の上にゲート電 極2805を形成する。図示しないが、ゲート電極28 05を形成後、ゲート電極及びフィールド酸化膜をマス クとしてN型の不純物元素ヒ素イオンを注入して、各々 のMOSFETのソース・ドレイン領域を形成する。

【0130】次に、A1配線とゲート電極との間の電気 的分離をするための中間絶縁膜を全面に形成する。次 に、各々の領域及びゲート電極とA1配線とのコンタク トをするためのコンタクトホールを中間絶縁膜に形成す る。

【0131】次に、コンタクトホールをカバーするよう にAl配線をパターンニングして半導体装置を製造す る。チャネル不純物領域を形成するためのイオン注入工 程は、図28(a)に示したフィールド酸化膜2603 の形成と図28(b)と厚いゲート酸化膜形成との間、 または、図28 (b) の厚いゲート酸化膜形成と図28 (c) の薄いゲート酸化膜形成工程との間でもよい。薄 い酸化膜2803の上にレジスト膜2804を形成する と薄いゲート酸化膜2803の膜質が低下して集積回路 半導体装置の歩留りが低下することがある。従って、一 般には、厚いゲート酸化膜形成工程と薄い酸化膜形成工 程との間にイオン注入工程を行う。

【0132】図29は、本発明の第8実施例のSOI

(Silicon On Insulatorの略) 基 板を用いた半導体装置の製造方法を説明するための工程 順断面図である。本発明は、図29に示すように、チャ ネル領域がシリコン潜膜で形成された場合に効果を大き くすることができる。シリコン薄膜は、単結晶、多結晶 あるいは、非晶質(アモルファス)いずれの場合も適用 できる。チャネル領域を薄膜で形成することにより、し きい値電圧制御のためのチャネル不純物領域の不純物設 度がより効果的に制御できる。特に、チャネル領域の厚 さを反転時の空乏層より薄く形成することにより、さら に効果的に制御できる。しきい値電圧がチャネル不純物 領域により、主に影響されるためである。

【0133】SOI基板でない厚い基板の場合には、反 転になる場合の空乏層の電荷が反転層の下に多く形成さ れる。SOI基板においては、チャネル領域が空乏層よ り薄い膜のために空乏電荷昼が少ない。空乏電荷昼は基 板温度の関数であるが、基板が無いためにしきい値電圧 はほとんどチャネル領域内の不純物凝度分布によって制

【0134】図29を用いて製造方法を説明する。シリ コン基板2601の表面に1μmの酸化膜2901を介 して100nmの単結晶シリコン膜2902が設けられ ている。チャネル不純物領域を形成するためのレジスト パターン2903を通常のフォトリソグラフィー技術に より形成する。MOSFETのチャネル領域にレジスト 膜の複数の窓を設けている。レジスト膜2903をマス . 28

クとしてボロンイオンを単結晶シリコン膜2902へイ オン注入する。

【0135】次に、必要に応じて、図29(b)のよう に、ボロンを1000℃程度の高温にて熱拡散すること により不純物分布を一様に平均化する。次に、通常のフ ォトリソグラフィー工程によりトランジスタ領域にレジ スト膜2906をパターンニングして分離領域を形成す

【0136】図29 (c) においては、レジスト膜29 06をマスクにして異なる不純物温度分布となったシリ コン膜2904、2905をエッチング除去する。分離 形成は、選択酸化により形成してもよい。次に、図29 (d) のようにLVMOSFETに薄いゲート絶縁膜2 907をHVMOSFETに厚いゲート酸化膜2908 を形成する。

【0137】次、図29 (e) のように各々のゲート絶 縁膜の上にゲート電極2909を形成する。次に、図2 9 (d) のようにゲート電極2909をマスクとしてN 型不純物をイオン注入してLVNMOSFETとHVN MOSFETのソース・ドレイン領域2910を形成し トランジスタを完成させる。少なくともいずれか一方の チャネル領域には、図29(a)でイオン注入された形 成されたチャネル領域不純物領域が平面的に分割されて 複数設けられている。

【0138】SOI基板においては、図29(b)の熱 拡散の条件と図29 (a) のレジスト膜の間隔との関係 により、結果としてチャネル不純物領域が分割されず に、平均的に均一分布として異なる濃度として形成する こともできる。均一分布に制御したい場合には、不純物 の拡散長よりレジスト膜の間隔を充分小さく形成すれば よい。

【0139】また、図29においては、半導体領域とし て100nmと非常に薄いSOI基板の場合の実施例に ついて説明した。熱拡散を充分した場合には、チャネル 不純領域がシリコン薄膜の底に達る。この場合には、し きい値電圧は、ほとんどチャネル不純物領域により主に 制御されることになる。即ち、半導体領域の厚さが、チ ャネル不純物領域の深さとほぼ同じになる場合には、空 乏層の影響が小さくなるためにしきい値電圧の制御性が より高くできる。また、チャネル不純物領域の深さ程度 まで半導体領域としてのシリコン薄膜を薄くせずとも効 果を得ることができる。少なくとも、チャネル領域であ る空乏層の深さよりシリコン薄膜を薄くできれば空乏層 の影響は小さくなるためしきい値制御感度を高くでき る。一般に、従来の厚い半導体基板と異なるSOI基板 においては10μm以下のシリコン薄膜が用いられてい る。また、図示しないが、各々異なる膜厚のシリコン薄 膜を有するMOSFETに対しても同様な方法にて容易 にしきい値電圧を制御できる。また、CMOS型SOI 集積回路も同様な方法にて形成できる。

【0140】図30は、本発明に係わる第9の実施例の MOSFETを表す模式的な平面図である。また図31 は、図30に示した第9の実施例のMOSFETのA-A′ 断面を表す模式的な断面図である。

【0141】ここで第9の実施例のMOSFETには、第1の膜厚のゲート絶縁膜領域3004と、第2の膜厚のゲート絶縁膜領域3005が同一のチャネル領域上に形成されている。さらに第9の実施例のMOSFETは、P型半導体基板上に形成されるN型MOSFETで、第1の膜厚のゲート絶縁膜領域3004は第1層目(下層)のポリシリコンで通常形成されるMOSFETのゲート絶縁膜厚であり、約60nmの厚さがある。

【0142】また、第2の膜厚のゲート絶縁膜領域3005は、FLOTOX型不揮発性メモリのフローティングゲートに電荷を注入または引き抜くためのトンネル絶縁膜を代用しており、厚さは約10nmである。通常FLOTOX型不揮発性メモリでは、トンネル絶縁膜の下には、比較的凝い凝度のN型不純物拡散層となっているが、本実施例ではP型半導体基板となっている。

【0143】トンネル絶縁膜で代用された第2の膜厚のゲート絶縁膜領域3005はチャネル幅と平行に複数の短冊状に描かれている。また本実施例では、しきい値電圧合わせ込み用の不純物は、通常のゲート絶縁膜やトンネル絶縁膜の形成前に不純物導入用の薄い絶縁膜を形成して、なおかつ不純物導入用マスクパターン3008で光学的にパターンニングされたフォトレジスト等で選択されたチャネル領域に不純物導入用の薄い絶縁膜を介して不純物イオンをイオン注入法等で導入しているためゲート絶縁膜直下の表面凝度はゲート絶縁膜厚によらずー定である。

【0144】さらに、第1のゲート絶縁膜領域の幅3006と第2の膜厚のゲート絶縁膜領域の幅3007の組み合わせにより、第1の実施例のMOSFETにおいて第2の不純物凝度領域の面積比を決めたのと同様に第2の膜厚のゲート絶縁膜領域の面積比を所望の値に決定する。

【0145】また、同一の面積比であっても第1の膜厚のゲート酸化膜領域の幅3006と第2の膜厚のゲート 絶縁膜領域の幅3007のサイズが異なる場合がある。 図32は、本発明に係わる第10の実施例のMOSFE Tを表す模式的な平面図である。

【0146】第9の実施例と同様に第2の膜厚のゲート 絶縁膜領域3005が複数の短冊状に描かれているが、 第10の実施例ではチャネル長と平行な方向の短冊状と なっている。第10の実施例においても第2の膜厚のゲート絶縁膜領域の面積比を所望の値に決定する。また、 同一の面積比であっても第1の膜厚のゲート絶縁膜領域 の幅3006と第2の膜厚のゲート絶縁膜領域の幅30 07のサイズが異なる場合がある。

【0147】図33は、本発明に係わる第11の実施例

30

のMOSFETを表す模式的な平面図である。第11の 実施例においては、第2の膜厚のゲート絶縁膜領域30 05がドット状に存在している。第11の実施例におい ても第9及び第10の実施例同様に第2の膜厚のゲート 絶縁膜領域の面積比を所望の値に決定する。また、同一 の面積比であっても第1の膜厚のゲート酸化膜領域の幅 3006と第2の膜厚のゲート絶縁膜領域の幅3007 のサイズが異なる場合がある。

【0148】図34は、本発明に係わる第12の実施例のMOSFETを表す模式的な平面図である。第12の実施例は、第9の実施例の改良型でフィールド絶縁膜エッジから第2の膜厚のゲート絶縁膜領域3005を離した構成となっている。

【0149】このような構成とする事で、第2の膜厚の ゲート絶縁膜領域3005の膜厚が非常に薄くてもゲート電極に高電界が加えられた場合のフィールド絶縁膜エッジでの基板へのリーク電流を減らす事ができる。図3 5は、本発明に係わる第13の実施例のMOSFETを 表す模式的な平面図である。

【0150】第13の実施例は、第10の実施例の改良型でソース及びドレインエッジから第2の膜厚のゲート絶縁膜領域3005を離した構成となっている。このような構成とする事で、第2の膜厚のゲート絶縁膜領域3005の膜厚が非常に薄くてもソース及びドレインの耐圧を向上させることができる。

【0151】図36は、本発明に係わる第14の実施例である電圧昇圧回路(チャージポンプ回路)の回路図である。MOSFETのドレイン電極とゲート電極が同一のノードで接続されたMOSダイオードを複数直列に接続し、おのおののMOSダイオード同士が接続されるノードには、それぞれ容量が接続されている。容量の片方の電極にはす及びすxという互いに位相のずれた信号をひとつおきに交互に与える構造になっており、容量C1からCnへ順次電荷を転送する事により、電源電圧VDDよりも昇圧された高い電圧であるVPPがMOSダイオードMnより出力される。

【0152】このときMOSダイオードM1~Mnがすべて同じしきい値電圧で構成されていると、後段になるほど基板効果により実質的なしきい値電圧が高くなるため、ドレイン電圧に対するソース電圧の低下が次第に大きくなる。すなわちチャージポンプ回路の効率が後段ほど悪くなるのである。

【0153】そこで本実施例では、MOSダイオードM1~Mnのチャネル領域における第2の不純物凝度の面積比をそれぞれ変えて、後段ほどしきい値電圧が低くなるように構成されている。現実には、前段にはチャネルの不純物凝度がネイティブ状態(本実施例ではしきい値電圧が約0.00V)のトランジスタを使用し、後段になるほどデプレッション状態が深くなる、すなわちノーマリーオンの状態が強くなるようになっている。しかし

ながら後段のMOSダイオードほど基板効果によるしきい値電圧の上昇が大きいため結果として実質的なしきい値電圧は、どのMOSダイオードもOV近辺となり、各段におけるドレイン電圧に対するソース電圧の低下は低く抑えられ電圧昇圧回路の効率は非常に高くなる。またすべてのMOSダイオードのしきい値電圧を異なる電圧にするのではなく、いくつかのブロックに分けて数段づつしきい値電圧を変えても良い。

【0154】また、第2のゲート絶縁膜領域の面積比を変える事によって、しきい値電圧を変えても同様の効果が得られる。図37は、第15の実施例であるところの電圧昇圧回路を搭載する不揮発性半導体記憶装置の簡単なブロック図である。

【0155】このように、効率の高い電圧昇圧回路を搭 哉する事で、0.7Vから1.0V程度の極低電圧域で も電気的にデータの書き込み及び消去ができる不揮発性 半導体記憶装置が実現できる。図38は、本発明に係わ る第16の実施例である差動増幅回路を有する一定電圧 出力回路の回路図である。

【0156】差動増幅回路部3801で基準電圧発生回 20路部3802で発生された基準となる一定電圧と出力回路部3803で外部に出力される電圧を抵抗R1及びR2で抵抗分割された電圧とを比較する事で、出力端子VOUTから出力の負荷が変わっても常に一定の電圧を出力する構成となっている。

【0157】本実施例では、NMOSトランジスタM3の基板効果によるしきい値電圧の上昇で低電圧動作時にトランジスタM3がカットオフするのを防ぐために、比較的低いしきい値電圧(約0.34V)のエンハンスメント型NMOSトランジスタM3、M4及びM5を差動 30増幅回路部3801に使用している。

【0158】また基準電圧発生回路部3802には、高温時におけるNMOSトランジスタM8のリーク電流を抑えて基準電圧値を安定させるために比較的高いしきい値電圧(約0.50V)のエンハンスメント型NMOSトランジスタM8を使用している。

【0159】さらに前記基準電圧発生回路部3802には、デプレッション型NMOSトランジスタM7(Vth=-0.40V)が使用されており、本実施例全体でNMOSトランジスタのしきい値電圧は合計で3種類存40在することとなる。従来の技術ではこの3種類のしきい値電圧のトランジスタを製造するためにはそれぞれ別の3回の不純物導入工程を必要としたが、本実施例では第2の不純物設度領域を適切な形状と面積比にする事で、これらのトランジスタが2回もしくは1回の不純物導入工程で製造する事が可能となる。

[0160]

【発明の効果】この発明は、以上説明したように同一の MOSFETのチャネル領域に平面的に複数の不純物設 度領域や複数の膜厚のゲート絶縁膜領域を設ける事によ 50 32

り、結果として複数の表面反転電圧の領域を設け、さら に第1の表面反転電圧領域の平面的面積と第2以降の表 面反転電圧領域の平面的面積の比率を複数設けるか、も しくは同一の面積比であっても、第1の表面反転電圧領 域及び第2以降の表面反転電圧領域の平面的大きさや形 状を複数設けることで以下の半導体装置を簡単に製造で きる効果を有する。

【0161】(1)同一基板上に非常に多くの種類のし きい値電圧を有するMOSFETを低コストで形成でき ろ

(2) ほぼ同じレベルのしきい値電圧を有する高耐圧M OSFETと低電圧MOSFETを低コストで形成でき ス

【0162】(3)ほぼ同じレベルのしきい値電圧を有するN型MOSFETとP型MOSFETを低コストで形成できる。

(4) 前記(1) から(3) のMOSFETを搭載する ことでより高性能な半導体集積回路装置を低コストで製 造できる。

0 【図面の簡単な説明】

【図1】本発明における第1の実施例のMOSFETの 模式的平面図である。

【図2】本発明における第2の実施例のMOSFETの 模式的平面図である。

【図3】本発明における第2の実施例のMOSFETの模式的断面図である。

【図4】本発明における第3の実施例のMOSFETの 模式的平面図である。

【図5】本発明における第4の実施例のMOSFETの 模式的平面図である。

【図6】本発明における第1~3の実施例のデプレッション型MOSFETの具体的な各部のサイズや種類を示した説明図である。

【図7】本発明における第 $1\sim3$ の実施例のエンハンスメント型MOSFETの具体的な各部のサイズや種類を示した説明図である。

【図8】本発明における第1~3の実施例のMOSFE Tの特性と比較するための従来技術によるMOSFET の具体的な各部のサイズや種類を示した説明図である。

【図9】本発明における第1の実施例のデプレッション型MOSFETのしきい値電圧を測定する際のゲート電圧に対するドレイン電流を示した説明図である。

【図10】本発明における第1の実施例のデプレッション型MOSFETのしきい値電圧を測定する際のゲート電圧に対するドレイン電流を対数で表しサブスレッショルド電流を示すための説明図である。

【図11】本発明における図6の表に示したMOSFE Tの中で、第1の実施例に係わるMOSFETのしきい 値電圧と全チャネル領域の面積に対する第2の不純物凝 度領域の面積比との関係を示したグラフである。 【図12】本発明における図6の表に示したMOSFE Tの中で、第2の実施例に係わるMOSFETのしきい 値電圧と全チャネル領域の面積に対する第2の不純物設 度領域の面積比との関係を示したグラフである。

【図13】本発明における図6の表に示したMOSFE Tの中で、第3の実施例に係わるMOSFETのしきい 値電圧と全チャネル領域の面積に対する第2の不純物設 度領域の面積比との関係を示したグラフである。

【図14】本発明における図6の表に示したMOSFE Tの中で、第1及び第2の実施例のMOSFETのしき い値電圧と第1の不純物潑度領域の幅との関係を示した グラフである。

【図15】本発明における第1の実施例のエンハンスメント型MOSFETのしきい値電圧を測定する際のゲート電圧に対するドレイン電流を示した説明図である。

【図16】本発明における第1の実施例のエンハンスメント型MOSFETのしきい値電圧を測定する際のゲート電圧に対するドレイン電流を対数で表しサブスレッショルド電流を示すための説明図である。

【図17】本発明における図7の表に示したMOSFE Tの中で、第1の実施例に係わるMOSFETのしきい 値電圧と全チャネル領域の面積に対する第2の不純物設 度領域の面積比との関係を示したグラフである。

【図18】本発明における図7の表に示したMOSFE Tの中で、第2の実施例に係わるMOSFETのしきい 値電圧と全チャネル領域の面積に対する第2の不純物濃 度領域の面積比との関係を示したグラフである。

【図19】本発明における図7の表に示したMOSFE Tの中で、第3の実施例に係わるMOSトランジスタの しきい値電圧と全チャネル領域の面積に対する第2の不 純物設度領域の面積比との関係を示したグラフである。

【図20】本発明における図6の表に示したMOSFE Tの中で、第1の実施例に係わるMOSFETの飽和電 流値と全チャネル領域の面積に対する第2の不純物凝度 領域の面積比との関係を示したグラフである。

【図21】本発明における図6の表に示したMOSFE Tの中で、第2の実施例に係わるMOSFETの飽和電 流値と全チャネル領域の面積に対する第2の不純物凝度 領域の面積比との関係を示したグラフである。

【図22】本発明における第5の実施例を示す半導体装置の製造方法の工程順断面図である。

【図23】本発明における第5の実施例を示す半導体装置の製造方法の工程順断面図である。

【図24】本発明における第5の実施例のデプレッション型MOSFETのチャネル領域の不純物凝度分布である

【図25】本発明における第5の実施例におけるデプレッション型MOSFETの断面図である。

【図26】本発明における第6の実施例のCMOSICの断面図である。

34

【図27】本発明における第7の実施例の高耐圧MOS FET内蔵ICの断面図である。

【図28】本発明における第7の実施例の高耐圧MOS FET内蔵ICの製造工程順断面図である。

【図29】本発明おける第8の実施例のSOI半導体装置の製造工程順断面図である。

【図30】本発明の第9の実施例のMOSFETの模式 的平面図である。

【図31】本発明における第9の実施例のMOSFETの模式的断面図である。

【図32】本発明における第10の実施例のMOSFE T模式的平面図である。

【図33】本発明における第11の実施例のMOSFE Tの模式的平面図である。

【図34】本発明における第12の実施例のMOSFE Tの模式的平面図である。

【図35】本発明における第13の実施例のMOSFE Tの模式的平面図である。

【図36】本発明における第14の実施例の電圧昇圧回路の回路図である。

【図37】本発明における第15の実施例の第14の実施例の電圧昇圧回路を搭載した不揮発性半導体記憶装置のブロック図を示した図である。

【図38】本発明における第16の実施例の差動増幅回路を有する一定電圧出力回路の回路図である。

【図39】従来の技術によるMOSFETの模式的平面図である。

【図40】従来の技術によるMOSFETの模式的断面 図である。

【符号の説明】

101、2909、3001、3901、4001 ゲート電極

102、3002、3902、4002 ソース領域

103、3003、3903、4003 ドレイン領域

104 第1の不純物凝度のチャネル領域

105 第2の不純物濃度のチャネル領域

106 不純物導入用マスクのパターン

107 不純物導入用マスクパターンの幅

108 不純物導入用マスクパターンの間隔

301、3101、4007 フィールド絶縁膜

302、4005 ゲート絶縁膜

2201 P型シリコン基板

2202 熱酸化膜

2203 シリコン窒化膜

2204a~f フォトレジストパターン

2205、2603 フィールド酸化膜

2206 熱酸化膜

2207 元の基板より不純物凝度の高いP型領域

2208 デプレッション型MOSFETのチャネル領 域

2209a, b ポリシリコン電極 2210a~d 高凝度N型領域 2211 PSG膜 2212a, b アルミ配線 2213 シリコン窒化膜 2601 P型シリコン基板 2602 Nウェル 2604a、2701a N型ソース領域 2606 ゲート酸化膜 2702a, 2702b, 2604b, 2701b N 型ドレイン領域 2604c, 2605c, 2805, 2701d, 27 02d ゲート電極 2605a P型ソース領域 2605b P型ドレイン領域 2607、2701e、2702e、2806 チャネ ル不純物領域 2701c、2907、2803 薄いゲート酸化膜 2702c 厚いゲート酸化膜 2801、2908 厚いゲート絶縁膜 2802、2804 レジスト膜 2901 絶縁膜

36

2902 単結晶シリコン膜 2903、2906 フォトレジスト 2904 第1の不純物設度分布をもつシリコン膜 2 9.0 5 第2の不純物設度分布をもつシリコン膜 ソース・ドレイン領域 2910 3004 第1の膜厚のゲート絶縁膜領域 第2の膜厚のゲート絶縁膜領域 3005 第1の膜厚のゲート絶縁膜領域の幅 3006 第2の膜厚のゲート絶縁膜領域の幅 3007 3008 不純物導入用マスクのパターン NMOSトランジスタによるMOSダイオー 3601 3602 電荷蓄積用の容量 3801 差動增幅回路部 基準電圧発生回路部 3802 3803 出力回路部 3904 チャネル領域1 3905 イオン打ち込み用マスク1のパターン 3906、3908 チャネル領域2 3907 イオン打ち込み用マスク2のパターン

【図1】

4004 チャネル領域

4006 半導体基板

[図8]

		テャネルビティネル型		不均均以入用マスクパターンの形状とサイズ			TI 2 DECEM	
	トランジスタのタイプ	(W)	(1)	遊杖	٥	田町	の西口比	
Tr-47	デブレッション型NMOS	50 µ m	50 µ m	チャネル似奴全面	_	_	1.000	
Tr-48	エンハンスメント型NMOS	50 µ m	50 µ m	チャネル包切全口	_	_	1.000	
Tr-49	ゼロスレッショルド型NMOS	50 µ m	50 µ m	コレ (ネイティブ校口)			0.000	

【図6】

		チャネル個	ネル間チャネル長 不能物導人用マスクペターンの形状とす			とサイズ 第2級皮領域		
	トランジスタのタイプ	(W)	(L)	形状	ă.	阿福	の面養比	集本
Tr-1	ダブレッション型NMOS	50 µ m	50 g m	L方向と平行な短骨状	1.0 µ m	1.0 # ma	0.500	
Tr-2	アプレッション型NMOS	50 µm	50 pm	L方向と平行な組骨状	2, 0 µ m	1,0 μ па	0. 660	
T r - 8	デブレッション型NMOS	80 g m	50 pm	し方向と平行な短冊状	1.0 µ m	2.0 gm	0.340	
Tr-4	ゲブレッション型NMOS	50 µ m	50 # m	L方向と平行な短機状	2. 0 µ m	2.0 µ m	0.520	
Tr-5	デプレッション型NMOS	50 µ m	50 µ m	L方向と平行な短機状	4.0 µ m	1.0 µ m	0.800	
Tr-8	アプレッション型NMOS	50 µ m	50 µ m	L方向と平行な短疑状	1.0 µ m	4.0 # TB	0. 200	
Tr-7	デブレッション型NMOS	50 µm	50 pm	1.方向と平行な短長状	4. 0 µ m	4.0 µ m	0.520	
T r - 8	デプレッション型NMOS	50 µ m	50 am	し方向と平行な組儡状	12.5 µm	25.0 pm	0,500	•1
T r - 9	アプレッション型NMOS	50 µ m	50 a m	甲方向と平行な遺伝状	1.0 µ m	1.0 µ m.	0.500	
Tr-10	デブレッション型NMOS	50 µ m	50 µ m	8万向と平行な組織状	2. 0 µ m	1.0 mm	0.660	
Tr-11	デブレッション型NMOS	80 µ m	50 µ m	東方向と平行な短書状	1.0 m	2.0 m	0.340	
Tr-12	デブレッション型NMOS	50 µ m	50 # m	▼方向と平行な返告状	2, 0 µ m	2.0 µ m	0.520	
Tr-13	アプレッション型NMOS	50 µ m	50 µ m.	甲方向と平行な短層状	4,0 µ m	1.0 µ m.	0. 800	
Tr-14	ダブレッション型NMOS	50 µ m	50 µ m	₩方向と平行な短層状	l, Oμm	4. 0 µ m	0.200	
Tr-18	デブレッション型NMOS	50μm	50 µ m	₩方向と平行な咀嚼状	4.0 µ m	4.0 m	0.520	
Tr-16	アプレッション型NMOS	50 µ m	50 # m	甲方向と平行な虹番状	l 2. 5 μ m	25.0 m	0.500	. 01
Tr-17	アブレッション型NMOS	50 µ m	50 µ m	ドット状	1, 0μπ	1. Q # E	0.250	
Tr-18	ダブレッション型NMOS	50 µ m	50 # m	ドット状	2. 0 μ m	1.0 µ m	0.444	
Tr-19	アプレッション型NMOS	50 µ m	50 µm	ドット状	1.0μπ	2.0 µm	0.116	
Tr-20	デブレッション型NMOS	50 µ m	50 µ m	ドット状	2. 0 µ m	2, 0 µ m	0.270	
Tr-21	デブレッション型NMOS	50 µ Œ	50 µ m	ドット状	4.0 µ m	1.0 # m	0.640	
Tr-22	デブレッション型NMOS	50 µ m	50 gm	ドット状	1.0 µ m	4.0 µ m	0.040	
Tr-23	デブレッション型NMOS	50 µ m	50 µ m	ドット状	4.0 pm	4. C # m	0.270	

#1) 編-12. 5μm×2 **関照-25.** Dμm×1

【図7】

		ティネルロティネル長		不純物導入用マスクパターンの形状とサイズ			第2歳度保境	
	トランジスタのタイプ	(W)	(L)	形状	45	開稿	の面積比	
Tr-24	エンハンスメント型NMOS	50 g m	50 µ an	L方向と平行な短韻状	1. 0 µ m	1.0 µ m	0,500	
Tr~25	エンハンスメント型NMOS	50 gm	50 g m	し方向と平行な域器状	2.0gm	1.0 µ m	0.660	
Tr-26	エンハンスメント型NMOS	50 # ma	50 mm	L方向と平行な短機状	1.0gm	2. 0 µm	0.840	
Tr-27	エンハンスメント型NMOS	50 µ m.	50 µ m	し方向と平行な環骨状	2,0 µm	2. 0 µ m	0.520	
Tr-28	エンハンスメント型NMOS	50 µ m	50 µ m	L方向と平行な短冊状	4. 0 µ m	1.0 pm	0.800	
Tr-29	エンハンスメント型NMOS	50 um	50 µ m	L方向と平行な短野状	l. O am	4.0 gm	0.200	
Tr-80	エンハンスメント型NMOS	50 gm	50 # m	し方向と平行な短野状	4. 0 #m	4. 0 m	0.520	
Tr-91	エンハンスメント型NMOS	50 µ m	50 # m	し方向と平行な短冊状	12. 5 µm	25.0µm	0.500	•1
Tr-32	エンハンスメント型NMOS	50 µm.	50 µ m	₩方向と平行な短冊状	1.0 µm	1.0 am	0. 500	
T 1 - 3 3	エンハンスメント型NMOS	50 µ m	50 µ m	マ方向と平行な短野状	2. Срш	1.0 д 🖽	0.660	
T 1 - 3 4	エンハンスメント型NMOB	5 C µ m	60 µ m	東方向と平行な短唇状	1.0 µm	2,0 µ m	0.340	
Tr-35	エンハンスメント型NMOS	50 µ m	50 µ m	₩方向と平行な組費状	2.0 gm	2.0 µ m	0.520	
T 1 - 3 6	エンハンスメント型NMOS	50 µ m	50 µ m	₩方向と平行な短層状	4.0 µ m	1.0 µ m	0.800	
Tr-37	エンハンスメント型NMOS	50 um	50 # m	東方向と平行な組書状	l. O # m	4. 0 u m	0.200	
Tr-38	エンハンスメント型NMOS	50 µ m	50 µ m	甲方向と平行な場響状	4. 0 µ m	4.0 pm	0.520	
Tr-39	エンハンスメント型NMOS	50 µ m	60 µ m	W方向と平行な短層伏	12.5 µm	25.0 µm	0.500	*1
Tr-40	エンハンスメント型NMOS	50 µ m	50 µ m	ドット状	1.0 µm	1.0 # m	0.250	
Tr-41	エンハンスメント型NMOS	60 µ m	60 µ m	ドット状	2.0 µ m	1.0 µ m	0.444	
Tr-42	エンハンスメント型NMOS	50 µ m	50 µ m	ドット状	1.0 g m	2.0 µ m	0. 1 L B	
Tr-43	エンハンスメント型NMOS	50 µ m	50 µ m	ドット状	2.0 µ m	2.0 µ m	0.270	L
Tr-44	エンハンスメント型NMOS	50 µ m	50 µ m	ドット状	4. 0 µ m	1.0 # m	0.640	
Tr-45	エンハンスメント型NMOS	50 µ m	50 µm	ゲット状	1.0 µ m	4.0 µ m	0.040	
Tr-46	エンハンスメント型NMOS	60 µ m	50 µ m	ドット状	4. 0 µ m	4.0 µ m	0. 270	

#1) 幅=12. 5μm×2 開稿=25. 0μm×1

【図11】

【図12】

【図13】

【図14】

【図19】

【図20】

【図23】

【図27】

【図26】

【図31】

【図28】 【図29】 _ 2603 2902 2601 2901 絶級膜 2802 レジスト膜 (a) 2601 2904 2905 2801 厚ッゲート酸化膜 (b) 2801 (b) 2803 苺ぃゲー) 酸化膜 2906 (c) レジスト膜 2804 **∜**B+ (c) 2907 2908 (d) LVMOSFET HVMOSFET (4) 2805 ゲートで極 2909 2909 2806 チャネル不純物領域 (e) (e) LVMOSFET HVMOSFET 2910 2910 2910 2910 (1)

【図32】 【図30】 3001 3002 3006第1の脱及の ケート絶級限領域の恒 3008 3008 3002 ソ-ス領域 不純物學入開 3006 3003 マスクパターン 3004 3007 3005 3003 ドルン収域 3005 第2の股系の 7-1 地級股領域 3004 第1の股系の 7-1 地級股領域 3004 第1の股系の ケート紀級脱領域

【図39】

【図36】

しさい信息圧 Vtm1 > Vtm2 > Vtm3 >----> Vtmn-1 > Vtmn

Mo の #1 χ : W/L = $\frac{20\mu m}{5\mu m}$ 5 μm M1 \sim N の $\frac{91}{\chi}$: W/L = $\frac{20\mu m}{6\mu m}$ 6 μm C1 \sim Nの 象量色: C = 1.61 pF

【図38】

56

【図40】

フロントページの続き

(72)発明者 小島 芳和

千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内

(72)発明者 清水 亨

千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 20 (72)発明者 斉藤 豊

千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内

(72)発明者 町田 透

千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内

(72)発明者 金子 哲也

千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内