Permutation Closed Testing with Sum-Based Statistics

Combining p-Values

Combining p-Values via Averaging

Averaging Functions

$$p_1, \ldots, p_K = \text{p-values}$$

r	$M_{r,K}(p_1,\ldots,p_K)$	special cases
$\mathbb{R}\setminus\{0\}$	$\left(rac{ ho_1^r++ ho_K^r}{K} ight)^{1/r}$	r=-1 harmonic, $r=1$ arithmetic
0	$(p_1 \cdot \ldots \cdot p_K)^{1/K}$	geometric
$+\infty$	$\max\{p_1,\ldots,p_K\}$	maximum
$-\infty$	$\min\{p_1,\ldots,p_K\}$	Bonferroni

When multiplied by a positive constant $a_{r,K}$, the averaging function is a p-value.

Analysis

Tests for f variables and B data permutations:

$$\begin{pmatrix} p_1 & \dots & p_f \\ p_1^{(2)} & \dots & p_f^{(2)} \\ \vdots & & \vdots \\ p_1^{(B)} & \dots & p_f^{(B)} \end{pmatrix}$$

Average for $V \subseteq \{1, \ldots, f\}$:

$$M_{r,|V|}(p_i, i \in V) = \left(\frac{g_V}{|V|}\right)^{1/r}$$

where

$$g_i^{(\pi)} = (p_i^{(\pi)})^r$$
 $g_V^{\pi} = \sum_{i \in V} g_i^{(\pi)}$

Extreme Values

The extreme values of

$$M_{r,|V|}(p_i, i \in V) = \left(\frac{g_V}{|V|}\right)^{1/r}$$

are the lowest. The corresponding extreme values of g_{V} are

- the lowest if $r \ge 0$
- ullet the highest if r < 0

3

Simulations

Matrix of p-Values for f Variables and B Transformations (Sign-Flipping)

- ullet f_1 variables have mean $heta f/f_1$ and equi-correlation ho_1
- ullet the remaining variables have mean 0 and equi-correlation ho_2
- the correlation between the two groups is fixed at 0
- n observations

$$n \times f$$
 matrix: $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)^{\top}$ with rows

$$\mathbf{X}_{j} = MVN_{f}(\mu, \, \mathbf{\Sigma}) \qquad \mu = egin{pmatrix} heta f / f_{1} \ heta f \\ 0 \ heta \\ 0 \end{pmatrix} \qquad \mathbf{\Sigma} = egin{pmatrix} 1 & \dots &
ho_{1} & 0 & \dots & 0 \ heta & \dots & 0 \ heta & \dots & 1 & 0 & \dots & 0 \ 0 & \dots & 0 & 1 & \dots &
ho_{2} \ heta & \dots & heta & heta \\ 0 & \dots & 0 &
ho_{2} & \dots & 1 \end{pmatrix}$$

Matrix of p-Values for f Variables and B Transformations (Sign-Flipping)

One-sample t-test on the *i*-th variable (column X_i):

$$H_0$$
 : $\mu_i=0$ vs H_1 : $\mu_i>0$

$$p_i = P\left(T_{n-1} \geq \frac{\mathsf{mean}(\mathbf{X}_i)}{\mathsf{sd}(\mathbf{X}_i)/\sqrt{n}}\right)$$

 $B \times f$ matrix of p-values: repeat using B transformations (sign-flipping) of X

Numerical Issues for r < 0

The algorithm defines the bounds by using sums of the form

$$\sum_{k=1}^K (p_k^{(\pi)})^r,$$

which is high when $p_k^{(\pi)} << 1$.

Smallest p-value: $p_{\min} = \min\{p_i^{(\pi)}: i = 1, \dots, f, \ \pi = 1, \dots, B\}$

Every sum is smaller than $f \cdot p_{\min}^r$.

Numerical Issues for r < 0

Let M = .Machine\$double.xmax.

If $f \cdot p_{\min}^r < M$, then every sum will be finite.

Otherwise, we multiply all the p-values by

$$\lambda > \frac{1}{p} \left(\frac{M}{f} \right)^{1/r},$$

so that $f(p_{\min}\lambda)^r < M$.

7

Simulations for 650 cases (441 scenarios, 13 r values)

S contains a percentage $s_{\sf size}$ of all variables s_* and o_* are the percentages of false null hp within and outside S

- $r \in \{-100, -10, -2, -1, -0.5, -0.1, 0, 0.1, 0.5, 1, 2, 10, 100\}$
- f = 50, n = 20 and B = 50
- $m{\bullet}$ $\theta = 0.1$, $ho_1 \in \{0, 0.99\}$ and $ho_2 = 0$
- $s_{\text{size}} = 20 \ (\%)$
- $s_*, o_* \in \{0, 10, 50, 90, 100\}$ (%)
- $\alpha = 0.20$
- maximum number of iterations: 10⁴

Simulations per Case

Behavior of r: Percentage of

Non-Rejections over 100

o_*	r												
	-100	-10	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2	10	100
0	3	3	3	2	1	-	-	-	-	-	-	-	-
10	2	2	2	2	-	-	-	-	-	-	-	-	-
50	6	6	6	5	2	1	-	-	-	-	-	2	2
90	6	6	5	5	1	-	-	-	-	-	-	1	2
100	4	4	4	2	1	-	-	-	-	-	-	-	-

ρ_1	o_*						r							
		-100	-10	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2	10	100
	0	100	100	100	100	100	100	96	-	-	-	-	-	-
	10	93	93	93	93	85	11	-	-	-	-	-	-	-
0	50	13	13	13	13	8	1	-	-	-	-	-	1	1
	90	10	10	9	7	2	-	-	-	-	-	-	-	-
	100	6	5	5	4	2	1	-	-	-	1	1	4	8
	0	100	100	100	100	100	100	96	1	-	-	-	-	-
	10	92	92	93	90	80	19	2	-	-	-	-	-	-
0.99	50	8	9	9	6	2	-	-	-	-	-	-	-	1
	90	17	17	16	13	9	9	8	7	9	7	5	10	9
	100	23	23	21	16	14	13	14	13	12	11	15	18	24

$ ho_1$	0*														
		-100	-10	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2	10	100	
	0	100	100	100	100	100	100	100	96	-	-	-	-	-	
	10	88	88	89	92	88	67	51	31	-	-	-	-	-	
0	50	16	16	16	14	11	-	-	-	-	-	-	-	-	
	90	7	7	7	7	5	-	-	-	-	-	-	2	2	
	100	5	5	5	5	1	-	-	-	-	-	1	3	4	
	0	90	91	92	94	93	88	84	78	-	-	-	-	-	
	10	49	50	53	58	57	50	44	33	1	-	-	-	-	
0.99	50	9	9	11	14	16	11	10	9	3	1	-	-	-	
	90	18	18	19	26	27	29	30	29	25	18	15	11	11	
	100	28	28	25	27	27	27	28	28	27	25	21	19	22	

ρ_1	0*													
		-100	-10	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2	10	100
	0	99	99	100	100	100	99	98	94	18	-	-	-	1
	10	85	85	88	86	86	71	61	44	10	-	-	-	-
0	50	30	30	30	30	20	9	6	3	1	1	1	1	1
	90	15	15	15	13	9	4	1	1	-	-	-	2	5
	100	9	9	9	9	5	1	1	1	-	1	2	1	1
	0	46	46	58	65	71	72	71	69	8	-	-	-	-
	10	17	17	24	38	42	40	38	37	10	-	-	-	-
0.99	50	7	8	15	17	21	23	23	23	14	1	-	-	-
	90	16	16	22	25	25	28	28	28	28	26	16	1	1
	100	30	28	24	26	27	28	29	30	30	29	26	23	28

$ ho_1$	0*							r						
		-100	-10	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2	10	100
	0	95	96	97	99	99	96	94	91	23	-	-	-	-
	10	83	83	84	88	88	72	56	47	7	-	-	-	-
0	50	11	11	12	11	11	9	8	6	2	1	1	-	-
	90	15	15	15	13	5	3	1	1	1	-	-	3	3
	100	15	15	15	13	10	2	2	2	1	-	-	3	2
	0	32	33	45	62	67	68	66	59	14	-	-	-	-
	10	19	19	25	33	40	41	41	38	15	-	-	-	-
0.99	50	8	8	12	17	23	24	25	24	17	5	-	-	-
	90	12	12	14	22	25	26	26	26	26	24	13	3	-
	100	29	29	27	27	27	27	27	27	27	27	27	29	30

Non-rejections

Small values of r tend to be more powerful in most cases

When the false null hp are highly correlated in a dense scenario (small signal spread across many variables), positive r values perform better

Behavior of r: Bounds for $s_* = 50$,

 $o_* = 10$, $\rho_1 = 0.99$

r = -100: rejection

Correction for numerical issues using $\lambda=6$

r = -10: rejection

r = -2: rejection

r=-1 (harmonic mean): rejection

r = -0.5: rejection

r = -0.1: rejection

r = 0 (geometric mean): rejection

r = 0.1: rejection

r = 0.5: non-rejection

r = 1 (arithmetic mean): non-rejection

r=2: non-rejection

r=10: non-rejection

r = 100 (\approx maximum): non-rejection

