United College of Engineering and Research, Allahabad

Department of Computer Science & Engineering

B.Tech CSE-III Semester

Set-4

Course Name: Discrete Structure and Theory of Logic AKTU Course Code: KCS-303

Time: 60 Minutes Max. Marks: 30

• All Questions are compulsory.

• All Questions carry one mark.

Q. No.	Questions	CO
1	Which of the following sentence is a proposition? a) Get me a glass of milkshake b) God bless you! c) What is the time now? d) The only odd prime number is 2	CO4
2	The truth value of '4+3=7 or 5 is not prime'. a) False b) True	CO4
3	Which of the following option is true? a) If the Sun is a planet, elephants will fly b) 3 +2 = 8 if 5-2 = 7 c) 1 > 3 and 3 is a positive integer d) -2 > 3 or 3 is a negative integer	CO4
4	What is the value of x after this statement, assuming the initial value of x is 5? 'If x equals to one then x=x+2 else x=0'. a) 1 b) 3 c) 0 d) 2	CO4
5	Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false then which of the following can be true? a) Raju bowled and Sahil got out on first ball b) Raju did not bowled c) Sahil bowled and Saurabh hits a century d) Sahil bowled and Saurabh got out	CO4
6	The truth value '9 is prime then 3 is even'. a) False	CO4

	b) True	
7	Let P: I am in Delhi.; Q: Delhi is clean.; then q ^ p(q and p) is?	
	a) Delhi is clean and I am in Delhi	
	b) Delhi is not clean or I am in Delhi	CO4
	c) I am in Delhi and Delhi is not clean	
	d) Delhi is clean but I am in Mumbai	
8	Let P: This is a great website, Q: You should not come back here. Then 'This is	
	a great website and you should come back here.' is best represented by?	
	a) ~P V ~Q	CO4
	b) P \(\sigma \cdot Q \)	
	c) P V Q	
_	d) P \(\text{Q} \)	
9	Let P: We should be honest., Q: We should be dedicated., R: We should be	
	overconfident. Then 'We should be honest or dedicated but not overconfident.'	
	is best represented by?	004
	a) ~P V ~Q V R	CO4
	b) P \(\sigma \ Q \(\Lambda \ R \)	
	c) P V Q A R	
10	d) PVQ A~R	
10	Let P: I am in Bangalore.; Q: I love cricket.; then q -> p is? a) If I love cricket then I am in Bangalore	
	b) If I am in Bangalore then I love cricket	CO4
	c) I am not in Bangalore	CO4
	d) I love cricket	
11	Let p and q be two propositions. Consider the following two formulae in	
	propositional logic.	
	S1: (¬p∧(p∨q))→q	
	S2 : $q \rightarrow (\neg p \land (p \lor q))$	
	Which one of the following choices is correct?	
	(A) Both S1 and S2 are tautologies.	
	(B) S1 is a tautology but S2 is not a tautology	
	(C) S1 is not a tautology but S2 is a tautology	
	(D) Neither S1 nor S2 is a tautology	
12	Change the correct chains (a) regarding the following properties of logic acception Co.	
12	Choose the correct choice(s) regarding the following proportional logic assertion S: $S:((P \land Q) \rightarrow R) \rightarrow ((P \land Q) \rightarrow (Q \rightarrow R))$	
	(A) S is neither a tautology nor a contradiction	
	(B) S is a tautology	
	(C) S is a contradiction	

13 Consider a Boolean function $f(w,x,y,z)$ such that $f(w,\theta,\theta,z)=1$ $f(1,x,1,z)=x+z$ $f(w,1,y,z)=x+z$ $f(w,1,y,z)=x+y$ The number of literals in the minimal sum-of-products expression of f is		(D) The antecedent of S is logically equivalent to the consequent of S							
The number of literals in the minimal sum-of-products expression of f is	13	· · · · · ·							
The number of literals in the minimal sum-of-products expression of f is		f(1,x,1,z) = x+z							
(A) 6 (B) 3 (C) 8 (D) 1 14 What is the logical translation of the following statement? "None of my friends are perfect." (A) $\exists x(F(x) \land \neg P(x))$ (B) $\exists x(\neg F(x) \land P(x))$ (C) $\exists x(\neg F(x) \land \neg P(x))$ (D) $\neg \exists x(F(x) \land P(x))$ (A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x(\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x(\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x(\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x(\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x(\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C		f(w,1,y,z) = wz+y							
(B) 3 (C) 8 (D) 1 14 What is the logical translation of the following statement? "None of my friends are perfect." (A) $\exists x(F(x) \land \neg P(x))$ (B) $\exists x(\neg F(x) \land P(x))$ (C) $\exists x(\neg F(x) \land \neg P(x))$ (D) $\neg \exists x(F(x) \land P(x))$ (A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x(\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x(\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x(\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x(\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x(\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C		The number of literals in the minimal sum-of-products expression of f is							
(C) 8 (D) 1 14 What is the logical translation of the following statement? "None of my friends are perfect." (A) $\exists x(F(x) \land \neg P(x))$ (B) $\exists x(\neg F(x) \land P(x))$ (C) $\exists x(\neg F(x) \land \neg P(x))$ (D) $\neg \exists x(F(x) \land P(x))$ (A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x(\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x(\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x(\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x(\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x(\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C		· (A) 6							
$(D) \ 1$ What is the logical translation of the following statement? "None of my friends are perfect." $(A) \ \exists x (F(x) \land \neg P(x)) \qquad (B) \ \exists x (\neg F(x) \land P(x)) \qquad (D) \ \neg \exists x (F(x) \land P(x)) \qquad (D) \ \neg$		(B) 3							
What is the logical translation of the following statement? "None of my friends are perfect." (A) $\exists x (F(x) \land \neg P(x))$ (B) $\exists x (\neg F(x) \land P(x))$ (C) $\exists x (\neg F(x) \land \neg P(x))$ (D) $\neg \exists x (F(x) \land P(x))$ (A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y (\alpha) \land \forall z (\beta))$? (A) $\forall x (\exists z (\neg \beta) \rightarrow \forall y (\alpha))$ (B) $\forall x (\forall z (\beta) \rightarrow \exists y (\neg \alpha))$ (C) $\forall x (\forall y (\alpha) \rightarrow \exists z (\neg \beta))$ (D) $\forall x (\exists y (\neg \alpha) \rightarrow \exists z (\neg \beta))$ (A) A (B) B (C) C		(C) 8							
"None of my friends are perfect." (A) $\exists x (F(x) \land \neg P(x))$ (B) $\exists x (\neg F(x) \land P(x))$ (C) $\exists x (\neg F(x) \land \neg P(x))$ (D) $\neg \exists x (F(x) \land P(x))$ (A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y (\alpha) \land \forall z (\beta))$? (A) $\forall x (\exists z (\neg \beta) \rightarrow \forall y (\alpha))$ (B) $\forall x (\forall z (\beta) \rightarrow \exists y (\neg \alpha))$ (C) $\forall x (\forall y (\alpha) \rightarrow \exists z (\neg \beta))$ (D) $\forall x (\exists y (\neg \alpha) \rightarrow \exists z (\neg \beta))$ (A) A (B) B (C) C		(D) 1							
(C) $\exists x (\neg F(x) \land \neg P(x))$ (D) $\neg \exists x (F(x) \land P(x))$ (A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y (\alpha) \land \forall z (\beta))$? (A) $\forall x (\exists z (\neg \beta) \rightarrow \forall y (\alpha))$ (B) $\forall x (\forall z (\beta) \rightarrow \exists y (\neg \alpha))$ (C) $\forall x (\forall y (\alpha) \rightarrow \exists z (\neg \beta))$ (D) $\forall x (\exists y (\neg \alpha) \rightarrow \exists z (\neg \beta))$ (A) A (B) B (C) C	14								
(A) A (B) B (C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x (\exists z (\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x (\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x (\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x (\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C									
(C) C (D) D 15 Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x (\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x (\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x (\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x (\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C									
(D) D Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x (\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x (\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x (\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x (\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C		(B) B							
Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y(\alpha) \land \forall z(\beta))$? (A) $\forall x (\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x (\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x (\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x (\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C		(C) C							
(A) $\forall x(\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x(\forall z(\beta) \rightarrow \exists y(\neg \alpha))$ (C) $\forall x(\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ (D) $\forall x(\exists y(\neg \alpha) \rightarrow \exists z(\neg \beta))$ (A) A (B) B (C) C		(D) D							
(C) $\forall x (\forall y (\alpha) \rightarrow \exists z (\neg \beta))$ (D) $\forall x (\exists y (\neg \alpha) \rightarrow \exists z (\neg \beta))$ (A) A (B) B (C) C	15	Which one of the following is NOT logically equivalent to $\neg \exists x (\forall y(\alpha) \land \forall z(\beta))$?							
(A) A (B) B (C) C		(A) $\forall x(\exists z(\neg \beta) \rightarrow \forall y(\alpha))$ (B) $\forall x(\forall z(\beta) \rightarrow \exists y(\neg \alpha))$							
(B) B (C) C		(C) $\forall x (\forall y (\alpha) \rightarrow \exists z (\neg \beta))$ (D) $\forall x (\exists y (\neg \alpha) \rightarrow \exists z (\neg \beta))$							
(C) C		(A) A							
		(B) B							
(D) D		(C) C							
		(D) D							
What is the correct translation of the following statement into mathematical logic? "Some real numbers are rational"	16								

	(A) $\exists x \ (\text{real}(x) \lor \text{rational}(x))$ (B) $\forall x \ (\text{real}(x) \to \text{rational}(x))$	
	(C) $\exists x \; (\text{real}(x) \land \text{rational}(x))$	
	(A) A (D) $\exists x \; (rational(x) \rightarrow real(x))$	
	(B) B	
	(C) C	
	(D) D	
17	Which one of the following options is CORRECT given three positive integers x, y and z, and a predicate?	
	$P(x) = \neg(x=1) \land \forall y (\exists z (x=y*z) \Rightarrow (y=x) \lor (y=1))$	
	(A) P(x) being true means that x has exactly two factors other than 1 and x	
	(B) P(x) is always true irrespective of the value of x	
	(C) $P(x)$ being true means that x is a number other than 1	
	(D) P(x) being true means that x is a prime number	
18	Suppose the predicate $F(x, y, t)$ is used to represent the statement that person x can fool person y at time t . which one of the statements below expresses best the meaning of the formula $\forall x \exists y \exists t (\neg F(x, y, t))$? (A) Everyone can fool some person at some time	
	(B) No one can fool everyone all the time	
	(C) Everyone cannot fool some person all the time	
	(D) No one can fool some person at some time	
19	Which one of the following is the most appropriate logical formula to represent the statement? "Gold and silver ornaments are precious". The following notations are used: $G(x)$: x is a gold ornament $S(x)$: x is a silver ornament $P(x)$: x is precious $P(x) \mapsto P(x) \mapsto $	
	(B) $\forall x((G(x) \land S(x)) \rightarrow P(x))$	
	(C) $\exists x((G(x) \land S(x)) \rightarrow P(x)$	
	(D) $\forall x((G(x) \lor S(x)) \rightarrow P(x))$	
	$(D) \vee \lambda((G(\lambda) \vee G(\lambda)) \rightarrow \Gamma(\lambda))$	

20	I. $\neg \forall x (P(x))$ II. $\neg \exists x (P(x))$									
	III. $\neg \exists x (\neg P(x))$ IV. $\exists x (\neg P(x))$									
	Which of the above two are equivalent?									
	(A) II and IV									
	(B) II and III									
	(C) I and IV									
	(D) I and III									
21	P and Q are two propositions. Which of the follows and Q are two propositions. Which of the follows are two propositions.	Q)								
22	Let Graph(x) be a predicate which denotes a predicate which denotes that x is connected; sentences DOES NOT represent the connected. (A) $\neg \forall x (Graph(x) \Rightarrow Connected(x))$ (C) $\neg \forall x (\neg Graph(x) \lor Connected(x))$ (A) A (B) B (C) C (D) D	sted. Which of the following first order statement: "Not every graph is $(B) \ \exists x \big(\textit{Graph}(x) \land \neg \textit{Connected}(x) \big)$								
23	Which one of the following propositional log	gic formulas is TRUE when exactly two								
	of									

	p, q, and r are TRUE?	
	(A) $((p \leftrightarrow q) \land r) \lor (p \land q \land \sim r)$	
	(B) $(\sim (p \leftrightarrow q) \land r) \lor (p \land q \land \sim r)$	
	(C) $((p \rightarrow q) \land r) \lor (p \land q \land \sim r)$	
	(D) $(\sim (p \leftrightarrow q) \land r) \land (p \land q \land \sim r)$	
	(A) A	
	(B) B	
	(C) C	
	(D) D	
24	Which one of the following Boolean expressions is NOT a tautology?	
24		
	$(A) ((a \to b) \land (b \to c)) \to (a \to c)$	
	$(B) (a \leftrightarrow c) \rightarrow (\sim b \rightarrow (a \land c))$	
	$(C) (a \land b \land c) \rightarrow (c \lor a)$	
	(D) $a \rightarrow (b \rightarrow a)$	
	(A) D	
	(B) C	
	(C) B	
	(D) A	
25	The CORRECT formula for the sentence, "not all rainy days are cold"	
	(A) ∀d (Rainy(d) ∧~Cold(d))	
	(B) $\forall d (\sim Rainy(d) \rightarrow Cold(d))$	
	(C) $\exists d (\neg Rainy(d) \rightarrow Cold(d))$	
	is (D) ∃d (Rainy(d) ∧~Cold(d)) (A) A	
	(B) B	
	(C) C (D) D	

26		Which one of the first order predicate calculus statements given below correctly express the following English statement?								
	Tigers and lio	ns atta	ck if they	are hungry or threatened.						
	(A) $\forall x [(tigen)]$	r(<i>x</i>)∧I	$ion(x)) \rightarrow$	$\{(hungry(x) \lor threatened(x)) \to attacks(x)\}$						
	(B) $\forall x [(tigen$	$r(x) \vee I$	$ion(x)) \rightarrow$	$\{(\text{hungry}(x) \lor \text{threatened}(x)) \land \text{attacks}(x)\}$						
	(C) ∀x[(tige	$r(x) \vee I$	$ion(x)) \rightarrow$	$\{ \operatorname{attacks}(x) \rightarrow (\operatorname{hungry}(x) \lor \operatorname{threatened}(x)) \} $						
	(D) $\forall x [(tiger(x) \lor lion(x)) \rightarrow \{(hungry(x) \lor threatened(x)) \rightarrow attacks(x)\}]$									
	(A) A									
	(B) B									
	(C) C									
	(D) D									
27	Consider the following propositional statements: P1 : $((A \land B) \to C)) \equiv ((A \to C) \land (B \to C))$ P2 : $((A \lor B) \to C)) \equiv ((A \to C) \lor (B \to C))$ Which one of the following is true? (A) P1 is a tautology, but not P2									
	(B) P2 is a tautology, but not P1									
	(C) P1 and P	2 are l	ooth tauto	logies						
	(D) Both P1 a	and P2	are not ta	autologies						
28	A logical binar	y relatio	on □ ,is def	ined as follows:						
	А	В	A □ B							
	True T	rue	True							
	True F	alse	True							
	False True False									
	False False True									
	Let ~ be the unary negation (NOT) operator, with higher precedence than □.									
	Which one of the	he follo	wing is eau	uivalent to A∧B ?						
	(A) (~A □ B)									
	(B) ~(A □ ~B)									

	(C) ~(~A □ ~B) (D) ~(~A □ B)	
	(A) D	
	(B) C	
	(C) B	
	(D) A	
29	Let P, Q and R be three atomic prepositional assertions. Let X denote $(P \lor Q) \to R$ and Y denote $(P \to R) \lor (Q \to R)$. Which one of the following is a tautology? (A) $X \equiv Y$	
	$(B) X \to Y$	
	$(C) Y \to X$	
	$(D) \neg Y \rightarrow X$	
30	What is the first order predicate calculus statement equivalent to the following? Every teacher is liked by some student (A) \forall (x) [teacher (x) \rightarrow \exists (y) [student (y) \rightarrow likes (y, x)]]	
	(B) \forall (x) [teacher (x) $\rightarrow \exists$ (y) [student (y) $^{\land}$ likes (y, x)]]	
	(C) \exists (y) \forall (x) [teacher (x) \rightarrow [student (y) $^{\land}$ likes (y, x)]]	
	(D) \forall (x) [teacher (x) $^{\land}$ \exists (y) [student (y) \rightarrow likes (y, x)]]	

<u>Answer</u>

1-D	2-B	3-A	4-C	5-C	6-B	7- A	8-B	9-D	10-A
11-B	12-B,D	13-A	14-D	15-A,D	16-C	17-D	18-B	19-D	20-C
21-C	22-D	23-B	24-C	25-D	26-D	27-D	28-A	29-B	30-B