Tutorial 1 Revision on vector calculus and line integral

Differentiation

1. Find the first and second derivatives of $r = <3\cos 2t, 3\sin 2t, 4t>$.

$$\vec{r}(t) = \langle -b \sin 2t, 6 \cos 2t, 4 \rangle.$$

$$\vec{r}(t) = \langle -12 \cos 2t, -12 \sin 2t, 0 \rangle.$$

2. Find the first partial derivatives of $v_1 = \langle e^x \cos y, e^x \sin y \rangle$ and $v_2 = \langle \cos x \cosh y, -\sin x \sinh y \rangle$.

$$\frac{\partial \vec{V}_1}{\partial x} = \angle e^x \omega_y, \ e^x \sin_y). \quad \frac{\partial \vec{V}_2}{\partial y} = \angle -e^x \sin_y, \ e^x \omega_y \gamma.$$

$$\frac{\partial \vec{V}_2}{\partial x} = \angle -\sin_x x \omega_y, \ e^x \omega_y \gamma.$$

$$\frac{\partial \vec{V}_2}{\partial x} = \angle -\sin_x x \omega_y, \ e^x \omega_y \gamma.$$

Gradient

Find the gradient of the following functions *f*:

1.
$$f = (x-1)(4y-2)$$

2.
$$f = 2x^2 + 5y^2$$

3.
$$f = \frac{x}{y}$$

$$\nabla f = \langle \frac{1}{y}, -\frac{x}{y^2} \rangle.$$

4.
$$f = (x-2)^2 + (2y+4)^2$$

5.
$$f = x^5 + y^5$$

$$\nabla f = \langle 5 \chi^4, 5 \chi^4 \rangle$$
.

6.
$$f = \frac{x^2 + y^2}{x^2 - y^2}$$

$$\nabla f = \langle -\frac{4xy^2}{(x^2 - y^2)^2}, \frac{4x^2y}{(x^2 - y^2)^2} \rangle.$$

Velocity fields

Given the velocity potential f of a flow, find the velocity $\mathbf{v} = \nabla f$ of the field and its value $\mathbf{v}(P)$ at P.

1.
$$f = x^2 - 6x - y^2, P: (-1,5)$$

 $\overrightarrow{u} = y f = \langle 2x - 6, -2y \rangle, \qquad \overrightarrow{u}(y) = \langle 2x - 6, -10 \rangle.$

2. $f = \cos x \cosh y, P: (\pi/2, \ln 2)$

3.
$$f = x \left(1 + \frac{1}{x^2 + y^2} \right), P: (1,1)$$

$$\overrightarrow{v} = \nabla f = \left(1 - \frac{\gamma^2 - y^2}{(x^2 + y^2)^2} \right), \quad -\frac{2xy}{(x^2 + y^2)^2} >, \quad \overrightarrow{v}(P) = \left(1, -\frac{1}{2} \right).$$

4. $f = e^x \cos y$, $P: (1, \pi/2)$

Divergence If =
$$\langle e^{\times} \omega y \rangle$$
, $-e^{\times} \sin y \rangle$, $\vec{v}(p) = \langle 0, -e \rangle$.

Find divv and its value at P.

1.
$$v = \langle 2x^2, -3y^2, 8z^2 \rangle, P: \left(3, \frac{1}{2}, 0\right)$$

$$div \vec{v} = 4x - 6y + 16z , div \vec{v} \in P = 9.$$

2.
$$v = <0$$
, $\sin(x^2yz)$, $\cos(xy^2z) > P:(1,\frac{1}{2},-\pi)$

$$\operatorname{div} \vec{v} = \chi^2 y \cos(\chi^2 yz) - \chi y^2 \sin(\chi y^2 z), \quad \operatorname{div} \vec{v}(p) = \frac{\pi z}{8}.$$

3.
$$v = \frac{\langle x, y \rangle}{x^2 - y^2}, x \neq y$$

4.
$$v = \langle v_1(y, z), v_2(z, x), v_3(x, y) \rangle, P: (3, 1, -1)$$

$$div \vec{v} = 0$$
.

5.
$$v = \langle x^2yz, xy^2z, xyz^2 \rangle, P: (-1,3,-2)$$

 $div\vec{v} = 6xy$, $div\vec{v}(p) = 36$.

6.
$$v = \frac{\langle -x, -y, -z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

Curl

Find curl v for v given with respect to right-handed Cartesian coordinates. Show the details of your work.

1.
$$v = \langle 4y^2, 3x^2, 0 \rangle / \text{ Curl } \vec{u} = \sqrt{x} \vec{u} = \langle 0, 0, 6x - 8y \rangle$$
.

2.
$$v = xyz < x^2$$
, y^2 , $z^2 \ge cw(\vec{v}) = \langle \chi(z^3, y^3), \chi(x^3, z^3), z(y^3, x^3) \rangle$

2.
$$v = xyz < x^2, y^2, z^2 \ge cm(\vec{v}) = \langle \chi(\vec{z}^2 + \vec{y}^3), \chi(\vec{x}^2 - \vec{z}^3), \chi(\vec{y}^2 - \vec{z}^3) \rangle$$

3. $v = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$ 3. $cm(\vec{v}) = 0$

4.
$$v = <0.0, e^{-x} \sin y > 4$$
. Curl $\vec{u} = < e^{-x} \omega_y y$, e siny, 0>

4.
$$v = \langle 0, 0, e^{-x} \sin y \rangle$$
 4. Curl $\vec{u} = \langle e^{-x} \omega y \rangle$, $\vec{e} \sin y \rangle$, $\vec{o} \rangle$.
5. $v = \langle e^{-z^2}, e^{-x^2}, e^{-y^2} \rangle$
5. Curl $\vec{v} = \langle -2 \sqrt{e^{-y^2}}, -2 \times e^{-x^2} \rangle$.

Parametric representations

What curves are represented by the following? Sketch them. (page 390, Q1-4, 8)

1.
$$< 2 + 4\cos t$$
, $2\sin t$, $0 >$

We know
$$x=2+4$$
 ust $y=2$ sint, $z=0$, so we have

$$\begin{cases} \frac{(x-2)^2}{4} + (\frac{y}{2})^2 = 1 \\ \frac{1}{2} = 0 \end{cases}$$
i.e.
$$\begin{cases} \frac{(x-2)^2}{16} + \frac{y^2}{4} = 1 \\ \frac{1}{2} = 0 \end{cases}$$

Since Z = 0, this is an ellipse in the xy-plane.

With center (2,0.0), the semi-major axis a=4 and semi-minor axis is b=2 2. < a+t, b+3t, c-5t>

$$8-a = \frac{y-b}{3} = \frac{z-c}{-5}$$

This is a straight line in space passing through the point (a, b, c) and whose direction vector is $\vec{R} = \langle 1, 3, -5 \rangle$.

This is a circle in the plane 7=-2 with center (-2, 2, -1) and radius 5.

5. $< \cosh t$, $\sinh t$, 2 >

$$\begin{cases} X = cahl = \frac{e^{t} + e^{-t}}{2} \\ y = sinht = \frac{e^{t} - e^{-t}}{2} \\ z = 2 \end{cases} \Rightarrow \begin{cases} x + y = e^{t} \\ x - y = e^{-t} \\ z = 2 \end{cases}$$

This is a hyperhola in the plane
$$Z=2$$
 with major and minor semi-axises $a=b=1$.
Find a parametric representation (page 390, Q11, 12, 15, 17-19)

1. Circle in the plane z=2 with center (1,-1) and passing through the origin.

The circle passes through the origin and has center (1,-1,2) in space, so the radius of the circle equals the distance between the center and the origin (0,0,2) in the plane Z=2; i.e.

$$\sqrt{(1-0)^2+(1-0)^2+(2-2)^2}=\sqrt{1+1}=\sqrt{2}$$

Therefore $(x-1)^2 + (y+1)^2 = 2$. Using the per polar coordinate system, the circle can be represented as: $8-1=\pi\Sigma\omega A$, $y+1=\pi\Sigma\sin t$, so the parametric representation of the circle is $<1+\pi\Sigma\omega A$, $\pi\Sigma\sin t-1$, >>.

2. Circle in the yz-plane with center (4,0) and passing through (0,3). $(44)^{\frac{3}{4}} = 25$.

Radius of the circle is
$$\sqrt{(0-4)^2+(3-0)^2+(0-0)^2} = \sqrt{16+9} = 5$$
.
In polar coordinate system: $\begin{cases} x \equiv 0 \\ y-4 = 5 \text{ cost} \end{cases}$ i.e. $\begin{cases} x \equiv 0 \\ y = 4+5 \text{ cost} \end{cases}$
 $z = 0 = 5 \text{ sint}$

So the parametric representation of the circle is <0, 4+50st, 59nt>.

3. Straight line y = 2x - 1, z = 3x.

Let X=I, then the straight line can be expressed My <t, 2t-1, 3t>.

4. Ellipse $\frac{1}{3}x^2 + y^2 = 1$, z = y.

Let
$$\begin{cases} \frac{x}{\sqrt{3}} = \cos t & \text{then the parametric representation of the} \\ y = \sin t & \text{ellipse is } < \sqrt{3} \cos t & \text{sint} \end{cases}$$
 5. Helix $x^2 + y^2 = 25$, $z = 2\arctan \frac{y}{x}$.

Let
$$\begin{cases} 3 = 5 \omega / t \\ y = 5 \sin t \end{cases}$$
 $\therefore \langle 5 \omega / t, 5 \sin t, 2t \rangle$ $z = 2 \arctan(\tan(\tan t) = 2t)$

From question 5 in last part, we know the parametric representation for that hyperbola is \(\langle \text{csht}, \text{Sinht}, -2 \rangle .

Line integral – work

The line integral $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ of the vector field \mathbf{F} along the curve C gives the work done by the field on an object moving along the curve through the field. Calculate $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ for the given data. If F is a force, this gives the work done by the force in the displacement along C. Show the details.

1.
$$\mathbf{F} = \langle y^2, -x^2 \rangle$$
, $C: y = 4x^2$ from (0,0) to (1,4).

$$\vec{F}(\vec{r}(t)) = \langle (4t^2)^2, -t^2 \rangle = \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) = \langle 16t^4, -t^2 \rangle \cdot \langle 1.8t \rangle = /6t^4 - 8t^3$$

$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{1} 16t^{4} - 8t^{3} dt = \left[\frac{16}{5}t^{5} - 2t^{4} \right]_{0}^{1} = \frac{16}{5} - 2 = \frac{6}{5}.$$

2.
$$F$$
 as in question 1, C from $(0,0)$ straight to $(1,4)$. Compare the results.

$$(1, (\vec{r} \cdot d\vec{r}) = \int_{0}^{1} 12t^{2} dt = [4t^{3}]_{0}^{1} = 4.$$

3.
$$F = \langle xy, x^2y^2 \rangle$$
, C from (2,0) straight to (0,2). In the plane

$$\int_{c}^{\infty} \vec{r} \cdot d\vec{r} = \int_{2}^{0} -t^{4} + 4t^{3} - 5t^{2} + 1 t dt = \left[-\frac{1}{5}t^{5} + t^{4} - \frac{5}{3}t^{3} + t^{2} \right]_{2}^{\infty} = -\frac{4}{15}$$

4. F as in question 3, C is the quarter-circle from (2,0) to (0,2) with center (0,0).

=
$$24 \int_{0}^{\frac{\pi}{2}} \sinh^{2} d(\sinh) - 32 \int_{0}^{\frac{\pi}{2}} \sinh^{4} d(\sinh)$$

$$= 24 \cdot \left[\frac{3}{3} \cdot \int_{0}^{3} \frac{3}{5} - 32 \left[\frac{1}{5} \cdot \int_{0}^{3} \frac{1}{5} \right]_{0}^{2} = 8 - \frac{32}{5} = 8$$

Line integral – work done by an airplane

Consider a vector field $F = \langle \frac{x}{2}, \sin x \rangle$ which is defined on the plane. Suppose that t is the time, F is a force field, say the wind, and an airplane is moving over the curve $C: r(t) = \langle t, \sin t \rangle$ from the initial point (0,0) to the terminal point $(2, \sin 2)$. See the figure blow. Calculate the work done by the wind on this airplane along the path C.

Line integral

1. Calculate the line integral for the vector field $\mathbf{F} = \langle xy, y^2 \rangle$ over the segment joining the points from O: (0,0) to P: (1,1).

We know the path c can be represented by $\vec{r}(t) = \langle t, t \rangle, \ o \leq t \leq ||\cdot|| : |\vec{r}'(t) = \langle 1, 1 \rangle.$ $\vec{r}(\vec{r}(t)) = \langle t^2, t^2 \rangle, \ \vec{r}'(\vec{r}(t)) \cdot \vec{r}'(t) = 2t^2.$ $\vec{r}(\vec{r}(t)) = \langle t^2, t^2 \rangle, \ \vec{r}'(\vec{r}(t)) \cdot \vec{r}'(t) = 2t^2.$ $\vec{r}(\vec{r}(t)) \cdot \vec{r}'(t) = 2t^2.$

0

3. Determine the line integral for $G = <-\frac{y}{x^2+y^2}$, $\frac{x}{x^2+y^2} >$ over the circle in the plane with center (0,0) and radius 3 from the point (3,0) to the point ($\frac{3\sqrt{3}}{2}$, $\frac{3}{2}$). Hint: Use the polar coordinate system.

The path
$$C: \overline{R(t)} = \angle 3\cos t$$
, $3\sin t$), $0 = t = \frac{\pi}{6}$, which implies $\overline{R(t)} = 3(\frac{\pi}{2}, \frac{\pi}{2})$ and $\overline{R(0)} = (3.0)$.

 $\overline{R(R(t))} = \angle -\frac{3\sin t}{9(\cos t + \sin t)}$, $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$, and $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$, and $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$, and $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$, and $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$, and $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$, and $\frac{3\cos t}{9(\cos t + \sin t)} > = \frac{1}{3} \angle -\sin t$.

4. Calculate the work done by $F = \langle x, y^2 \rangle$ on a particle moving from (0,0) to (1,1) and then to (1,0) along the straight line segments joining the points.

Suppose that the path we use is denoted by C, C_1 and C can be decomposed by 2 paths.

One is the starting at (0,0) and

ending at (1,1); the other one is the starting at (0,0) and

that is $C = C_1 + C_2$, where $C_1 : V_1(t) = C_1 + C_2$, $C_2 = C_1$

By the property of line integrals, take get $\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{C_{2}} \vec{F} \cdot d\vec{r}$ $\int_{C_{1}} \vec{F} \cdot d\vec{r} = \int_{0}^{1} \vec{F} \cdot (\vec{F}_{1} t) \cdot \vec{F}_{1}(t) \cdot dt = \int_{0}^{1} \langle t, t^{2} \rangle \cdot \langle 1, 1 \rangle dt = \int_{0}^{1} t + t^{2} dt = \frac{1}{2} + \frac{1}{3} = \frac{1}{6}$ $\int_{C_{2}} \vec{F} \cdot d\vec{r} = \int_{0}^{1} \vec{F} \cdot (\vec{F}_{1} t) \cdot \vec{F}_{2}(t) dt = \int_{0}^{1} \langle 1, (1-t)^{2} \rangle \cdot \langle 0, -1 \rangle dt = \int_{0}^{1} - (1-t)^{2} dt = -\frac{1}{3}$ $\int_{C_{2}} \vec{F} \cdot d\vec{r} = \frac{1}{6} - \frac{1}{3} = \frac{1}{2} .$

C2: Pet = <1, 1-t), 0=t=1.