Precalculus Homework Lecture 15

1. Use the definition of a logarithm to evaluate each of the following without using a calculator. The answer key has not been proofread, use with caution.

(a) $\log_2 16$.

(b) $\log_3\left(\frac{1}{9}\right)$.

(c) $\log_{10} 1000$.

(d) $\log_6 36^{-\frac{2}{3}}$.

(e) $\log_2(8\sqrt{2})$.

(f) $\log_{\frac{1}{2}}(4)$.

(g) $\log_{\frac{1}{9}}(\sqrt{3})$.

2. Find the exact value of each expression.

(a) $\log_5 125$.

(b) $\log_3 \frac{1}{27}$

(c) $\ln\left(\frac{1}{e}\right)$.

(d) $\log_{10} \sqrt{10}$.

(e) $e^{\ln 4.5}$.

(f) $\log_{10} 0.0001$.

(g) $\log_{1.5} 2.25$.

(h) $\log_5 4 - \log_5 500$.

(i) $\log_2 6 - \log_2 15 + \log_2 20$.

(j) $\log_3 100 - \log_3 18 - \log_3 50$.

(k) $e^{-2\ln 5}$.

(l) $\ln\left(\ln e^{e^{10}}\right)$.

(m) $\log_7\left(\frac{49^x}{343^y}\right)$

3. Using only the ln operation of your calculator compute the indicated logarithm. Confirm your computation numerically by exponentiation.

(a) $\log_5(13)$.

(c) $\log_{13}(101)$.

(b) $\log_{12}(9)$.

- (d) $\log_{10}(2015)$.
- 4. Express each of the following as a single logarithm. If possible, compute the logarithm without using a calculator. The answer key has not been proofread, use with caution.

(a) $\ln 4 + \ln 6 - \ln 5$.

(b) $2 \ln 2 - 3 \ln 3 + 4 \ln 4$.

(c) $\ln 36 - 2 \ln 3 - 3 \ln 2$.

(d) $\log_2(24) - \log_4 9$.

(e) $\log_7(24) + \log_{\frac{1}{7}} 3 - \log_{49}(64)$.

(f) $\log_3(24) + \log_3(\frac{3}{8})$.

5. Demonstrate the identity(s).

(a) $-\ln(\sqrt{1+x^2}-x) = \ln(x+\sqrt{1+x^2})$

6. Solve each equation for x. If available, use a calculator to give an (\approx) answer in decimal notation. If available, use a calculator to verify your approximate solutions.

1

- (a) $e^{7-4x} = 7$.
- (b) ln(2x-9) = 2.
- (c) $\ln(x^2 2) = 3$.
- (d) $2^{x-3} = 5$.
- (e) $\ln x + \ln(x 1) = 1$.
- (f) $e^{2x+1} = t$.
- (g) $\log_2(mx) = c$.
- (h) $e e^{-2x} = 1$.
- (i) $8(1 + e^{-x})^{-1} = 3$.

- (j) $\ln(\ln x) = 1$.
- (k) $e^{e^x} = 10$.
- (1) $\ln(2x+1) = 3 \ln x$.
- (m) $e^{2x} 4e^x + 3 = 0$.
- (n) $e^{4x} + 3e^{2x} 4 = 0$.
- (o) $e^{2x} e^x 6 = 0$.
- (p) $4^{3x} 2^{3x+2} 5 = 0$.
- (q) $3 \cdot 2^x + 2\left(\frac{1}{2}\right)^{x-1} 7 = 0$.