Math 620: HW 5, Permutations

Due on Wednesday, September 30, 2015

Boynton 10:00

Kailee Gray

Exercise 2.3.1: Consider the following permutations in S_7

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \text{ and } \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$$

Compute the following products.

(a)

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 6 & 7 & 4 & 1 & 5 \end{pmatrix}$$

(b)

$$\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 4 & 7 & 6 & 2 & 3 \end{pmatrix}$$

(c)

$$\tau^2 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 7 & 3 & 6 & 1 & 5 \end{pmatrix}$$

(d)

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 2 & 1 & 4 & 3 & 5 & 7 \end{pmatrix}$$

(e)

$$\sigma\tau\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 2 & 7 & 6 & 4 & 5 \end{pmatrix}$$

(f)

$$\tau^{-1}\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 7 & 6 & 4 & 5 & 2 & 3 \end{pmatrix}$$

Exercise 2.3.3: Write the following permutation as a product of disjoint cycles and as a product of transpositions. Construct its associated diagram, find its inverse, and find its order.

Let

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1 \end{pmatrix}$$

 τ as product of disjoint cycles: $\tau = (1\ 3\ 10)\ (2\ 4\ 5\ 7)\ (6\ 8)$

Thus, by proposition 2.3.8, the order of τ is lcm(3, 4, 2) = 12.

 τ as product of transpositions: $\tau = (1\ 3)\ (3\ 10)\ (2\ 4)\ (4\ 5)\ (5\ 7)\ (6\ 8)$

diagram of τ

$$\tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 7 & 1 & 2 & 4 & 6 & 5 & 6 & 9 & 3 \end{pmatrix}$$

From above, the order of τ 12.

Exercise 2.3.4(d): Find the order of the permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 4 & 9 & 6 & 5 & 2 & 3 & 1 & 7
\end{pmatrix}$$

 τ as product of disjoint cycles: $\tau = (1\ 8)\ (2\ 4\ 6)\ (3\ 9\ 7)$

Thus, by proposition 2.3.8, the order of τ is lcm(2,3,3) = 6.

Exercise 2.3.5: Let $3 \le m \le n$. Calculate $\sigma \tau^{-1}$ for the cycles $\sigma = (1, 2, \dots, m-1)$ and $\tau = (1, 2, \dots, m-1, m)$ in S_n .

To better understand σ, τ , write:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & m-2 & m-1 \\ 2 & 3 & \dots & m-1 & 1 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & \dots & m-1 & m \\ 2 & 3 & \dots & m & 1 \end{pmatrix}$$

Then

$$\tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & \dots & m-1 & m \\ m & 1 & 2 & \dots & m-2 & m-1 \end{pmatrix}.$$

Now, if we apply σ to τ^{-1} , we have

$$\sigma \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & \dots & m-1 & m \\ m & 2 & 3 & \dots & m-1 & 1 \end{pmatrix}.$$

Thus, $\sigma \tau^{-1} = (1, 2, \dots, m-1)(1, m, m-1, m-2, m-3, \dots, 3, 2) = (1, m)$

Exercise 2.3.8: Count the permutations σ in S_6 that satisfy the conditions $\sigma(1) = 2$ and $\sigma(2) = 3$.

If $\sigma(1) = 2$ and $\sigma(2) = 3$, then σ has the form

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & k_3 & k_4 & k_5 & k_6 \end{pmatrix}, \text{ where } k_i \in S_n, 3 \le i \le 6, k_i \ne 2, 3.$$

If we start by choosing k_3 , since $k_3 \neq 2, 3$, k_3 can be 1, 4, 5, 6 so there are 4 options for k_3 . Then, similarly, there are 3 choices for k_4 , 2 choices for k_5 , and 1 choice for k_6 . Thus, there are $4 \cdot 3 \cdot 2 \cdot 1 = 24$ permutations that satisfy the given conditions. Exercise 2.3.13: Let $\tau \in S_n$ be the cycle (1, 2, 3, ..., k) of length k, where $k \leq n$. (a) Prove that if $\sigma \in S_n$, then $\sigma \tau \sigma^{-1} = (\sigma(1), \sigma(2), ..., \sigma(k))$. Thus $\sigma \tau \sigma^{-1}$ is a cycle of length k.

Proof. Let $\sigma \in S_n$ and consider. To prove $\sigma \tau \sigma^{-1} = (\sigma(1), \sigma(2), \dots, \sigma(k))$, we will first show $\sigma \tau = (\sigma(1), \sigma(2), \dots, \sigma(k))\sigma$ and then we will multiply this equation by σ^{-1} on the right to obtain the desired equality. To prove these functions are equivalent, we must show for any $x \in S_n$, $\sigma \tau(x) = (\sigma(1), \sigma(2), \dots, \sigma(k))\sigma(x)$. We will consider two cases:

Case 1: $x \notin \{1, 2, ..., k\}$

If $x \notin \{1, 2, ..., k\}$, then τ will fix x so that $\tau(x) = x$. Thus, $\sigma\tau(x) = \sigma(x)$. To calculate $(\sigma(1), \sigma(2), ..., \sigma(k))\sigma(x)$, we need to determine what $(\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$ does to $\sigma(x)$. The cycle $(\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$ only acts on elements of the form $\sigma(a)$ where $a \in \{1, 2, ..., k\}$. Since $\sigma(x)$ is not of this form, $(\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$ will fix $\sigma(x)$ so that $(\sigma(1), \sigma(2), ..., \sigma(k))\sigma(x) = \sigma(x)$. Thus, when $x \notin \{1, 2, ..., k\}$, $\sigma\tau(x) = (\sigma(1), \sigma(2), ..., \sigma(k))\sigma(x)$.

Case 2: $x \in \{1, 2, ..., k\}$

Suppose $x \in \{1, 2, ..., k\}$. Then, $\sigma \tau(x) = \sigma(x+1)$ since $x \in \{1, 2, ..., k\}$. In this case, the cycle $(\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$ acts on $\sigma(x)$ since $x \in \{1, 2, ..., k\}$. The cycle $(\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$ maps $\sigma(x)$ to $\sigma(x+1)$. Hence $(\sigma(1), \sigma(2), ..., \sigma(k)) \sigma(x) = \sigma(x+1)$ and we've shown when $x \in \{1, 2, ..., k\}$, $\sigma \tau(x) = (\sigma(1), \sigma(2), ..., \sigma(k)) \sigma(x)$.

Since $\sigma\tau(x) = (\sigma(1), \sigma(2), \dots, \sigma(k))\sigma(x)$ for all $x \in S_n$, we can multiply on the right by σ^{-1} to obtain $\sigma\tau\sigma^{-1} = (\sigma(1), \sigma(2), \dots, \sigma(k))\sigma\sigma^{-1}$. Composition of functions is associative so $(\sigma(1), \sigma(2), \dots, \sigma(k))\sigma\sigma^{-1} = (\sigma(1), \sigma(2), \dots, \sigma(k))(\sigma\sigma^{-1}) = (\sigma(1), \sigma(2), \dots, \sigma(k))(1) = (\sigma(1), \sigma(2), \dots, \sigma(k))$. Thus, $\sigma\tau\sigma^{-1} = (\sigma(1), \sigma(2), \dots, \sigma(k))$. Additionally, $(\sigma(1), \sigma(2), \dots, \sigma(k))$ has length k, so $\sigma\tau\sigma^{-1}$ is a cycle of length k.

2.2.13 (b) Let ρ be any cycle of length k. Prove that there exists a permutation $\sigma \in S_n$ such that $\sigma \tau \sigma^{-1} = \rho$.

Proof. Consider $\rho = (a_1, a_2, \dots, a_k)$, a cycle of length k in S_n and define $\sigma \in S_n$ by $\sigma(j) = a_j$ for $1 \le j \le k$. Let $\tau = (1, 2, 3, \dots, k)$. Then, from part (a), $\sigma \tau \sigma^{-1} = (\sigma(1), \sigma(2), \dots, \sigma(k)) = (a_1, a_2, \dots, a_k) = \rho$. Thus for any $\rho \in S_n$ we can find a $\sigma \in S_n$ such that $\sigma \tau \sigma^{-1} = \rho$.

Exercise 2.3.15: For $\alpha, \beta \in S_n$, let $\alpha \sim \beta$ if there exists $\sigma \in S_n$, such that $\sigma \alpha \sigma^{-1} = \beta$. Show that \sim is an equivalence relation.

Proof. (reflexive) Consider any $\alpha \in S_n$. Then $\alpha \alpha \alpha^{-1} = \alpha(\alpha \alpha^{-1}) = \alpha(1) = \alpha$ so $\alpha \sim \alpha$. Let $\sigma_i = \sigma^{-1}$.

(symmetric) Let $\alpha, \beta \in S_n$ and $\alpha \sim \beta$. Then, there exists $\sigma \in S_n$ such that $\sigma \alpha \sigma^{-1} = \beta$. Let $\gamma = \sigma^{-1}$, then $\gamma \in S_n$ and $\gamma^{-1} = \sigma$. Substituting γ for σ in the equation $\sigma \alpha \sigma^{-1} = \beta$, we have $\gamma^{-1} \alpha \gamma = \beta$. Now, multiply the left by γ and the right by γ^{-1} to obtain $\gamma \gamma^{-1} \alpha \gamma \gamma^{-1} = \gamma \beta \gamma^{-1}$. By associativity of composition of functions, $\gamma \gamma^{-1} \alpha \gamma \gamma^{-1} = (\gamma \gamma^{-1}) \alpha (\gamma \gamma^{-1}) = (1) \alpha (1) = \alpha$. Therefore, $\gamma \beta \gamma^{-1} = \alpha$. Thus, $\beta \sim \alpha$.

(transitive) Suppose $\alpha \sim \beta$ and $\beta \sim \gamma$. Then, there exists $\sigma_1, \sigma_2 \in S_n$ such that $\sigma_1 \alpha \sigma_1^{-1} = \beta$ and $\sigma_2 \beta \sigma_2^{-1} = \gamma$. Substitute $\beta = \sigma_1 \alpha \sigma_1^{-1}$ into the equation $\sigma_2 \beta \sigma_2^{-1} = \gamma$ to obtain $\sigma_2(\sigma_1 \alpha \sigma_1^{-1})\sigma_2^{-1} = \gamma$. Composition of permutations is associative, so $\sigma_2(\sigma_1 \alpha \sigma_1^{-1})\sigma_2^{-1} = (\sigma_2 \sigma_1)\alpha(\sigma_1^{-1}\sigma_2^{-1})$. From page 81 of Beachy, we know $(\sigma_2 \sigma_1)^{-1} = \sigma_1^{-1}\sigma_2^{-1}$. Thus $(\sigma_2 \sigma_1)\alpha(\sigma_1^{-1}\sigma_2^{-1}) = (\sigma_2 \sigma_1)\alpha(\sigma_2 \sigma_1)^{-1}$. Also, the composition of two permutations in S_n is a permutation in S_n , so $\sigma_2 \sigma_1 \in S_n$. Hence,

$$(\sigma_2 \sigma_1) \alpha (\sigma_2 \sigma_1)^{-1} = \gamma \text{ implies } \alpha \sim \gamma.$$