Mathematics 251 Exam 1

September 24, 2013	Name:

Instructions: This exam is closed book: you may refer to one double-sided page of handwritten notes, but no electronic aids or other printed references are permitted. Justification of all answers is required for partial credit unless otherwise noted; please **box** your final answers. Unless specifically directed, leave all answers in **exact form**, e.g. $\sqrt{3}$ instead of 1.732 and $\pi/2$ instead of 1.57.

Show all pertinent work. *Correct answers without accompanying work will receive little or no credit.* Results from class or from homework or from class can be cited freely. It is in your interest to display your solution in a clear, readable fashion.

Do not write on the exam paper. Use your own paper, or the provided paper. *Work on the exam paper itself will be disregarded.*

Please submit problems in order. Leave a note if you get them out of order.

If you have a question, please raise your hand.

Be sure to read all questions carefully and completely.

Question	Points	Score
1	12	
2	24	
3	24	
4	8	
5	12	
6	8	
7	12	
Total:	100	

Good luck!

- 1. Let $\vec{v} = (0, -3, 1)$ and $\vec{w} = (2, -3, 4)$.
 - (a) (6 points) Find a vector that is orthogonal to the plane containing these vectors.
 - (b) (6 points) Find an equation for the plane containing these vectors. (Either a vector equation or a scalar equation is acceptable.)
- 2. (a) (12 points) Explain geometrically why the equation

$$\langle 1, 1, 1 \rangle \times \langle x, y, z \rangle = \langle 1, 0, 0 \rangle$$

has no solution, i.e., why the equation is false for every choice of $\langle x, y, z \rangle$.

(b) (12 points) Find a vector $\langle x, y, z \rangle$ that satisfies the equation

$$\langle 1, 1, 1 \rangle \times \langle x, y, z \rangle = \langle 1, -1, 0 \rangle.$$

Note. There are infinitely many such vectors $\langle x, y, z \rangle$.

- 3. Let P = (1,1,0), Q = (1,-2,1), and R = (3,-2,4).
 - (a) (8 points) Find the cosine of the angle between the line segments \overline{PQ} and \overline{PR} .
 - (b) (8 points) Explain why your answer to the previous part means that the points *P*, *Q*, and *R* are the vertices of a triangle (in other words, why the points are not collinear).
 - (c) (8 points) Recall that for *any* two vectors \vec{u} , \vec{v} , the angle formed by \vec{u} and \vec{v} is acute (resp. obtuse) if $\vec{u} \cdot \vec{v}$ is positive (resp. negative). Are any of the angles of the triangle obtuse? Justify your answer.
- 4. (8 points) (Note: In this problem, no justification or explanation is required.) Let \vec{u} , \vec{v} , and \vec{w} be nonzero vectors in \mathbf{R}^3 . Identify the correct completion(s) of the sentence: The vectors \vec{u} , \vec{v} , and \vec{w} are coplanar (they lie in one plane) if (select one of (a) through (g)):
 - I. One of the three vectors is parallel to the cross product of the others.
 - II. There exist scalars a and b with $\vec{w} = a\vec{u} + b\vec{v}$.
 - III. $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{0}$.
 - IV. $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$.

- a. I only
- b. II only
- c. III only
- d. II and IV only
- e. III and IV only
- f. II, III, and IV only
- g. I, II, III, and IV

5. (12 points) Suppose that \vec{u} and \vec{v} are orthogonal. Use facts about vectors and their dot products to verify the equation

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Do you think this equation can be true for a pair of non-orthogonal vectors? Justify your answer.

- 6. (8 points) Suppose that \mathcal{P} is a plane in \mathbb{R}^3 and that ℓ is a line contained in \mathcal{P} . Let Q be a point not on \mathcal{P} . Choose the correct relationship between D, the distance from Q to ℓ , and d, the distance from Q to \mathcal{P} .
 - A. $d \leq D$.
 - B. $d \ge D$.
 - C. d = D.
 - D. None of the above.
- 7. Figure 7 shows a contour plot of a function f(x, y).
 - (a) (6 points) Starting at (2,2) and moving in the negative x-direction, are the values of f(x,y) decreasing or increasing?
 - (b) (6 points) Starting at point (2,0) and moving in the positive *y*-direction, are the values of f(x,y) decreasing or increasing?

Figure 1: Contour plot for Problem 7