

Manajemen Proyek Sistem Informasi

PROJECT RISK MANAGEMENT

S1 SISTEM INFORMASI

FAKULTAS REKAYASA INDUSTRI

TELKOM UNIVERSITY

Learning Objectives

- Understand what risk is and the importance of good project risk management
- Discuss the elements involved in risk management planning and the contents of a risk management plan
- List common sources of risks in information technology projects

Learning Objectives (Cont)

- Describe the risk identification process, tools and techniques to help identify project risks, and the main output of risk identification: a risk register
- Discuss the qualitative risk analysis process and explain how to calculate risk factors, create probability/impact matrixes, and apply the Top Ten Risk Item Tracking technique to rank risks

Learning Objectives (Cont)

- Explain the quantitative risk analysis process and how to apply decision trees, simulation, and sensitivity analysis to quantify risks
- Provide examples of using different risk response planning strategies to address both negative and positive risks
- Discuss what is involved in risk monitoring and control
- Describe how software can assist in project risk management

The Importance of Project Risk Management

- Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives
- Risk management is often overlooked in projects, but it can help improve project success by helping select good projects, determining project scope, and developing realistic estimates
- Unfortunately, crisis management has higher visibility due to the obvious danger to the success of the project but it's risk management that helps a project have fewer problems to begin with.

Project Management Maturity by Industry Group and Knowledge Area*

KEY: 1 = LOWEST MATURITY RATING

5 = HIGHEST MATURITY RATING

Knowledge Area Engineering/ Construction		Telecommunications	Information Systems	Hi-Tech Manufacturing	
Scope 3.52		3.45	3.25	3.37	
Time	3.55	3.41	3.03	3.50	
Cost	3.74	3.22	3.20	3.97	
Quality	2.91	3.22	2.88	3.26	
Human Resources	3.18	3.20	2.93	3.18	
Communications	3.53	3.53	3.21	3.48	
Risk	2.93	2.87	2.75	2.76	
Procurement	3.33	3.01	2.91	3.33	

*Ibbs, C. William and Young Hoon Kwak. "Assessing Project Management Maturity,"

Project Management Journal (March 2000).

Benefits from Software Risk Management Practices*

*Kulik, Peter and Catherine Weber, "Software Risk Management Practices - 2001," KLCI Research Group (August 2001).

Negative Risk

- A dictionary definition of risk is "the possibility of loss or injury"
- Negative risk involves understanding potential problems that might occur in the project and how they might impede project success
- Negative risk management is like a form of insurance; it is an investment
- If IT projects are so risky, why do companies pursue them?

Risk Can Be Positive

- Positive risks are risks that result in good things happening; sometimes called opportunities
- A general definition of project risk is an uncertainty that can have a negative or positive effect on meeting project objectives
- The goal of project risk management is to minimize potential negative risks while maximizing potential positive risks

Risk Utility

- Different organizations and people have different tolerances for risk
- Risk utility or risk tolerance is the amount of satisfaction or pleasure received from a potential payoff
 - Utility rises at a decreasing rate for people who are riskaverse
 - Those who are risk-seeking have a higher tolerance for risk and their satisfaction increases when more payoff is at stake
 - The risk-neutral approach achieves a balance between risk and payoff

Risk Utility Function and Risk Preference

Project Risk Management Processes

- Risk management planning: deciding how to approach and plan the risk management activities for the project
- Risk identification: determining which risks are likely to affect a project and documenting the characteristics of each
- Qualitative risk analysis: prioritizing risks based on their probability and impact of occurrence

Project Risk Management Processes (Cont)

- Quantitative risk analysis: numerically estimating the effects of risks on project objectives
- Risk response planning: taking steps to enhance opportunities and reduce threats to meeting project objectives
- Risk monitoring and control: monitoring identified and residual risks, identifying new risks, carrying out risk response plans, and evaluating the effectiveness of risk strategies throughout the life of the project

Project Risk Management Summary

Planning

Process: Risk Management Planning

Outputs: Risk management plan

Process: Risk Identification

Outputs: Risk register

Process: Qualitative Risk Analysis
Outputs: Updates to the risk register
Process: Quantitative Risk Analysis
Outputs: Updates to the risk register
Process: Risk Response Planning

Outputs: Updates to the risk register and project management plan,

risk-related contractual agreements

Monitoring and Controlling

Process: Risk Monitoring and Controlling

Outputs: Recommended corrective and preventive actions, requested

changes, and updates to the risk register, project management

plan, and organizational process assets

Project Start

Project Finish

Risk Management Planning

- The main output of risk management planning is a risk management plan—a plan that documents the procedures for managing risk throughout a project
- The project team should review project documents, corporate risk management policies, lessons-learned reports from past projects and understand the organization's and the sponsor's approaches to risk
 - Important to clarify roles and responsibilities, prepare budget and schedule estimates for risk-related work and identify risk categories for consideration
- The level of detail will vary with the needs of the project

Topics Addressed in a Risk Management Plan

- Methodology: How will risk management be performed on this project?
 What tools and data sources are available and applicable?
- Roles and Responsibilities: Who are the individuals responsible for implementing specific tasks and providing deliverables related to risk management?
- Budget and Schedule: What are the estimated costs and schedules for performing risk-related activities?
- Risk Categories: What are the main categories of risks that should be addressed on this project? Is there a risk breakdown structure for the project?
- Risk Probability and Impact: How will the probabilities and impacts of risk items be assessed? What scoring and interpretation methods will be used for the qualitative and quantitative analysis of risks?
- Risk Documentation: What reporting formats and processes will be used for risk management activities?

Contingency and Fallback Plans, Contingency Reserves

- In addition to a risk management plan, many projects also include:
 - Contingency plans predefined actions that the project team will take if an identified risk event occurs
 - Expecting new release of a s/w package, must plan to use older version if delayed
 - Fallback plans developed for risks that have a high impact on meeting project objectives, and are put into effect if attempts to reduce the risk are not effective
 - College grad has main plan and contingency plans of where to live after graduation but needs fallback plan to possibly live at home
 - Contingency reserves or allowances provisions held by the project sponsor or organization to reduce the risk of cost or schedule overruns to an acceptable level
 - Project falling behind schedule due to inexperience with new technology, use these funds to hire outside trainer

Information Technology Success Potential Scoring Sheet

Success Criterion	Relative Importance			
User Involvement	19			
Executive Management support	16			
Clear Statement of Requirements	15			
Proper Planning	11			
Realistic Expectations	10			
Smaller Project Milestones	9			
Competent Staff	8			
Ownership	6			
Clear Visions and Objectives	3			
Hard-Working, Focused Staff	3			
Total	100			

- The number of questions corresponding to each success criterion determines the number of points each positive response is assigned
 - Ex: User involvement: 19/5 (or 3.8) points per question answered positively

Broad Categories of Risk

- Many organizations develop their own risk questionnaires. Some of the categories of risk might include:
 - Market risk Will the new service or product be useful to the organization or marketable to others? Will the users accept it? Will someone else create a better product?
 - Financial risk can the organization afford to undertake the project? Will the project meet NPV, ROI and payback estimates?
 - **Technology risk** is the project technically feasible? Is it leading edge or bleeding edge technology?
 - People risk Are people with appropriate skills available to help complete the project? Does senior management support the project?
 - Structure/process risk What is the degree of change the new project will introduce into user areas and business procedures? With how many other systems does a new project/system need to interact?

Risk Breakdown Structure

- A risk breakdown structure is a hierarchy of potential risk categories for a project
- Similar to a work breakdown structure but used to identify and categorize risks
- In addition to identifying risk based on the nature of the project or products produced, it is also important to identify potential risks according to project management knowledge areas

Sample Risk Breakdown Structure

Potential Negative Risk Conditions Associated With Each Knowledge Area

KNOWLEDGE AREA	RISK CONDITIONS				
Integration	Inadequate planning; poor resource allocation; poor integration management; lack of post-project review				
Scope	Poor definition of scope or work packages; incomplete definition				
Time	Errors in estimating time or resource availability; errors in determining the critical path; poor allocation and management of float; early release of competitive products				
Cost	Estimating errors; inadequate productivity, cost, change, or contingency				
Quality	Poor attitude toward quality; substandard design/materials/work-manship; inadequate quality assurance program				
Human Resources	Poor conflict management; poor project organization and definition of responsibilities; absence of leadership				
Communications	Carelessness in planning or communicating; lack of consultation with key stakeholders				
Risk	Ignoring risk; unclear analysis of risk; poor insurance management				
Procurement	Unenforceable conditions or contract clauses; adversarial relations				

Plan Risk Management ITTO

Inputs

- .1 Project management plan
- .2 Project charter
- .3 Stakeholder register
- .4 Enterprise environmental factors
- .5 Organizational process assets

Tools & Techniques

- .1 Analytical techniques
- .2 Expert judgment
- .3 Meetings

Outputs

.1 Risk management plan

Risk Identification

- Risk identification is the process of understanding what potential events might hurt or enhance a particular project
 - This is an ongoing process throughout the project lifecycle as things change
 - You can not manage risks that you don't identify
- Risk identification tools and techniques include:
 - Brainstorming (Information Gathering Techniques)
 - The Delphi Technique (Information Gathering Techniques)
 - Interviewing (Information Gathering Techniques)
 - SWOT analysis

Identify Risks ITTO

Inputs

- .1 Risk management plan
- .2 Cost management plan
- .3 Schedule management plan
- .4 Quality management plan
- .5 Human resource management plan
- .6 Scope baseline
- .7 Activity cost estimates
- .8 Activity duration estimates
- .9 Stakeholder register
- .10 Project documents
- .11 Procurement documents
- .12 Enterprise environmental factors
- .13 Organizational process assets

Tools & Techniques

- .1 Documentation reviews
- .2 Information gathering techniques
- .3 Checklist analysis
- .4 Assumptions analysis
- .5 Diagramming techniques
- .6 SWOT analysis
- .7 Expert judgment

Outputs

.1 Risk register

Tools & Technique Brainstorming

- Brainstorming is a technique by which a group attempts to generate ideas or find a solution for a specific problem by amassing ideas spontaneously and without judgment
- An experienced facilitator should run the brainstorming session
- Be careful not to overuse or misuse brainstorming
 - Psychology literature shows that individuals produce a greater number of ideas working alone than they do through brainstorming in small, face-to-face groups
 - Group effects often inhibit idea generation

Tools & Technique Delphi Technique

- The Delphi Technique is used to derive a consensus among a panel of experts who make predictions about future developments
 - Developed by the RAND Corporation for the US Air Force in the late 1960s
- Provides independent and anonymous input regarding future events
- Uses repeated rounds of questioning and written responses and avoids the biasing effects possible in oral methods, such as brainstorming
 - Requires a panel of experts for the particular area in question

Tools & Technique Interviewing

- Interviewing is a fact-finding technique for collecting information in face-to-face, phone, email, or instant-messaging discussions
 - Useful to have a prepared set of questions as a guide to the interview
- Interviewing people with similar project experience is an important tool for identifying potential risks

Tools & Technique SWOT Analysis

- SWOT analysis (strengths, weaknesses, opportunities, and threats) can also be used during risk identification
- Project teams focus on the broad perspectives of potential risks for particular projects
 - What are the company's strengths and weaknesses related to this project
 - What opportunities and threats exist
- Helps identify the broad negative and positive risks that apply to a project

Other Risk Identification Tools & Technique

- Checklists based on risks encountered in previous projects
- Analyze the validity of project assumptions as incomplete, inaccurate and/or inconsistent assumptions can lead to identifying more risks
- Diagramming techniques: cause-and-effect, fishbone, flowcharts and influence diagrams
 - Influence diagrams represent decision problems by displaying essential elements, including decisions, uncertainties, causality and objectives and how they influence each other

Risk Register

- The main output of the risk identification process is a list of identified risks and other information needed to begin creating a risk register
- A risk register is:
 - A document that contains the results of various risk management processes and that is often displayed in a table or spreadsheet format
 - A tool for documenting potential risk events and related information
- Risk events refer to specific, uncertain events that may occur to the detriment or enhancement of the project
 - Negative risks: delays in completing work as scheduled, increases in estimated costs, supply shortages, litigation, strikes, etc.
 - Positive risks: completing work sooner and/or cheaper than planned, collaborating with suppliers to produce better products, good publicity, etc.

Risk Register Contents

- An identification number for each risk event
- A rank for each risk event
- The name of each risk event
- A description of each risk event
- The category under which each risk event falls
- The root cause of each risk

Risk Register Contents (continued)

- Triggers for each risk; triggers are indicators or symptoms of actual risk events
 - Cost overruns on early activities, defective products
- Potential responses to each risk
- The risk owner or person who will own or take responsibility for each risk
- The probability and impact of each risk occurring
- The status of each risk

Sample Risk Register

No.	RANK	Risk	DESCRIPTION	CATEGORY	R оот	TRIGGERS	POTENTIAL	RISK	PROBABILITY	Імраст	S TATUS
					CAUSE	RESPONSES	OWNER				
R44	1										
R21	2										
R7	3										

Qualitative Risk Analysis

- After identifying risks, the next step is to understand which risks are most important
- Assess the likelihood and impact of identified risks to determine their magnitude and priority
- Risk quantification tools and techniques include:
 - Probability/impact matrixes
 - Expert judgment

Perform Qualitative Risk Analysis ITTO

Inputs

- .1 Risk management plan
- .2 Scope baseline
- .3 Risk register
- .4 Enterprise environmental factors
- .5 Organizational process assets

Tools & Techniques

- Risk probability and impact assessment
- .2 Probability and impact matrix
- .3 Risk data quality assessment
- .4 Risk categorization
- .5 Risk urgency assessment
- .6 Expert judgment

Outputs

.1 Project documents updates

Probability/Impact Matrix

- A probability/impact matrix or chart lists the relative probability of a risk occurring on one side of a matrix or axis on a chart and the relative impact of the risk occurring on the other
- List the risks and then label each one as high, medium, or low in terms of its probability of occurrence and its impact if it did occur
- Deal first with those risks in the high probability/high impact cell

Sample Probability/Impact Matrix

Figure 11-2. Sample Probability/Impact Matrix

Risk factors

- Can also calculate risk factors
 - Numbers that represent the overall risk of specific events based on their probability of occurring and the consequences to the project if they do occur
 - Probabilities of a risk occurring can be estimated based on several factors based on the unique nature of each project
 - For example: technology not being mature, technology too complex, inadequate support base for developing the technology
 - The impact of a risk could include factors such as the availability of fallback solutions or the consequences of not meeting performance, cost and schedule estimates

High-, Medium-, and Low-Risk Technologies

- Example of how risk factors were used to graph the probability of failure and consequence of failure for proposed technologies in a research study to help design more reliable aircraft
- Based on this chart, the recommendation was made to invest in low- to medium-risk technologies and not pursue high-risk technology

Quantitative Risk Analysis

- numerically estimating the effects of risks on project objectives
- Often follows qualitative risk analysis, but both can be done together
- Large, complex projects involving leading edge technologies often require extensive quantitative risk analysis
- Main techniques include:
 - Decision tree analysis
 - Simulation
 - Sensitivity analysis

Perform Quantitative Risk Analysis ITTO

Inputs

- .1 Risk management plan
- .2 Cost management plan
- .3 Schedule management plan
- .4 Risk register
- .5 Enterprise environmental factors
- .6 Organizational process assets

Tools & Techniques

- .1 Data gathering and representation techniques
- .2 Quantitative risk analysis and modeling techniques
- .3 Expert judgment

Outputs

 Project documents updates

Decision Trees and Expected Monetary Value (EMV)

- A decision tree is a diagramming analysis
 technique used to help select the best course of
 action in situations in which future outcomes are
 uncertain
- Estimated monetary value (EMV) is the product of a risk event probability and the risk event's monetary value
- You can draw a decision tree to help find the EMV
- Watchout EMV is NOT EVM

Expected Monetary Value (EMV)

Project 1's EMV = \$60,000 - 32,000 = \$28,000Project 2's EMV = -\$10,000 - 2,000 + 42,000 = \$30,000

Simulation

- Simulation uses a representation or model of a system to analyze the expected behavior or performance of the system
 - To use a Monte Carlo simulation, you must have three estimates (most likely, pessimistic, and optimistic) plus an estimate of the likelihood of the estimate being between the most likely and optimistic values
- Monte Carlo analysis simulates a model's outcome many times to provide a statistical distribution of the calculated results
 - Predicts the probability of finishing by a certain date or that the cost will be equal to or less than a certain value

Sample Monte Carlo Simulation Results for Project Schedule

Date: 1/14/08 11:13:56 AM Number of Samples: 250

Unique ID: 1

Name: Widget

Completion Std Deviation: 5.2d 95% Confidence Interval: 0.6d

Each bar represents 2d

Completion Probability Table

Prob	Date	Prob	Date
0.05	2/4/08	0.55	2/17/08
0.10	2/8/08	0.60	2/18/08
0.15	2/9/08	0.65	2/19/08
0.20	2/10/08	0.70	2/22/08
0.25	2/11/08	0.75	2/22/08
0.30	2/12/08	0.80	2/23/08
0.35	2/15/08	0.85	2/24/08
0.40	2/15/08	0.90	2/25/08
0.45	2/16/08	0.95	2/26/08
0.50	2/17/08	1.00	3/10/08

Sensitivity Analysis

- Sensitivity analysis is a technique used to show the effects of changing one or more variables on an outcome
- For example, many people use it to determine what the monthly payments for a loan will be given different interest rates or periods of the loan, or for determining break-even points based on different assumptions
- Spreadsheet software, such as Excel, is a common tool for performing sensitivity analysis

Sample Sensitivity Analysis for Determining Break-Even Point

Plan Risk Response ITTO

 After identifying and quantifying risks, you must decide how to respond to them

Inputs

- .1 Risk management plan
- .2 Risk register

Tools & Techniques

- .1 Strategies for negative risks or threats
- .2 Strategies for positive risks or opportunities
- .3 Contingent response strategies
- .4 Expert judgment

Outputs

- Project management plan updates
- .2 Project documents updates

NEGATIVE RISK RESPONSE

- Four main response strategies for negative risks:
 - Risk avoidance don't use h/w or s/w if unfamiliar with them
 - Risk acceptance prepare for risk with backup plan or contingency reserves
 - Risk transference to deal with financial risk exposure, a company may purchase special insurance for specific h/w needed for a project. If h/w fails, insurer has to replace it.
 - Risk mitigation reduce probability of occurrence e.g., use proven technology, buy maintenance or service contract

H/W -> Hardware; S/W -> Software

Response Strategies for Positive Risks

- Risk exploitation do whatever you can to make sure the risk occurs, call press conference to advertise new product, take out ads, etc
- Risk sharing allocating ownership of the risk to another party. Hire an outside firm to do your advertising and PR
- Risk enhancement identify and maximize key drivers of the risk. Encourage your employees or users of your product to spread the word of your product
- Risk acceptance don't take any action with regard to positive risk. Assume the product will speak for itself

Residual and Secondary Risks

- It's also important to identify residual and secondary risks
- Residual risks are risks that remain after all of the response strategies have been implemented
 - Even though used stable h/w platform, it still may fail
- Secondary risks are a direct result of implementing a risk response
 - Using stable h/w may have caused a risk of peripheral devices failing to function properly

Control Risk ITTO

Inputs

- .1 Project management plan
- .2 Risk register
- .3 Work performance data
- .4 Work performance reports

Tools & Techniques

- .1 Risk reassessment
- .2 Risk audits
- .3 Variance and trend analysis
- .4 Technical performance measurement
- .5 Reserve analysis
- .6 Meetings

Outputs

- .1 Work performance information
- .2 Change requests
- .3 Project management plan updates
- .4 Project documents updates
- .5 Organizational process assets updates

Risk Monitoring and Control

- Involves executing the risk management process to respond to risk events
 - This is an ongoing activity new risks identified, old risks disappear, weaken or get stronger
- Workarounds are unplanned responses to risk events that must be done when there are no contingency plans
- Main outputs of risk monitoring and control are:
 - Requested changes
 - Recommended corrective and preventive actions
 - Updates to the risk register, project management plan, and organizational process assets

Chapter Summary

- Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives
- Main processes include:
 - 1. Plan risk management
 - 2. Identify risks
 - 3. Perform qualitative risk analysis
 - 4. Perform quantitative risk analysis
 - 5. Plan risk responses
 - 6. Control risks

References

- 1. Kathy Schwalbe, Managing Information Technology Projects 7th Edition, Course Technology, Cengage Learning, 2014
- 2. A Guide to the Project Management Body of Knowledge: PMBOK Guide 6th Edition, Project Management Institute, 2017

