Recall: Initial Value Problems (IVPs).

$$ay'' + by' + cy = h(t),$$
 $y(0) = y_0$
 $y'(0) = v_0$

This is a natural approach for scenarios where we know the initial state of a system (e.g., mass-spring or electrical circuit) and want to predict it behaviour at later times.

In other scenarios, we might know the state of the system at two times t=0 and t=T.

$$ay'' + by' + cy = h(t),$$

$$y(0) = y_0 y'(0) = v_0$$

$$y(T) = y_T or y'(T) = v_T$$
 boundary conditions

We call these boundary value problems (BVPs).

In cases where h(t) is a periodic function with period T, i.e.,

$$h(t+T)=h(t)$$
 $\forall t,$

the solution y(t) eventually becomes periodic.

Ignoring any intial transient solutions, we can find the long-term periodic solution by solving an ODE with <u>periodic boundary conditions</u>, given by

$$ay'' + by' + cy = h(t),$$
 $y(0) = y(T)$
 $y'(0) = y'(T)$

$$\underline{\text{ex}}: y'' + y = \cos(2\pi t), \qquad \begin{array}{c} y(0) = y(1) \\ y'(0) = y'(1) \end{array}$$

$$y(t) = y_h + y_p$$
 $y_h = c_1 \cos(t) + c_2 \sin(t)$ $y_p = A \cos(2\pi t) + B \sin(2\pi t)$ M. U. C.: $A = \frac{1}{1 - 4\pi^2}, \ B = 0$

$$y(t) = c_1 \cos(t) + c_2 \sin(t) + \frac{1}{1 - 4\pi^2} \cos(2\pi t)$$

Boundary Conditions:

$$y(0) = c_1 + \frac{1}{1 - 4\pi^2} = y(1) = c_1 \cos(1) + c_2 \sin(1) + \frac{1}{1 - 4\pi^2}$$
$$c_1 = c_1 \cos(1) + c_2 \sin(1)$$

$$y'(0) = c_2 = y'(1) = -c_1 \sin(1) + c_2 \cos(1)$$

 $c_2 = -c_1 \sin(1) + c_2 \cos(1)$

 $c_1 = c_1 \cos(1) - \frac{\sin^2(1)}{1 - \cos(1)} c_1$

 $c_1 = c_1 \cos(1) + c_2 \sin(1)$ $c_2 = -c_1 \sin(1) + c_2 \cos(1)$

 $c_2(1-\cos(1))=-c_1\sin(1)$

$$c_2 = -\frac{\sin(1)}{1-\cos(1)}c_1 \qquad c_1 = c_1\left(\cos(1) - \frac{(1+\cos(1))(1-\cos(1))}{1-\cos(1)}\right)$$

$$c_1 = c_1\left(\cos(1) - (1+\cos(1))\right)$$

$$c_1 = -c_1 \quad \Rightarrow c_1 = c_2 = 0$$

$$y(t) = \frac{1}{1-4\pi^2}\sin(2\pi t)$$
 Alternatively, we can notice that the homogeneous solution have period 2π whereas the particular solution has period 1. Since the boundary conditions require solutions with period 1, we can only keep the particular solution.

$$\underline{\text{ex}} : y'' + y = f(t), \qquad \begin{array}{c} y(0) = y(1) \\ y'(0) = y'(1) \end{array} \text{ with } f(t+1) = f(t)$$

Due to its periodicity, we can express f(t) as

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(2n\pi t) + b_n \sin(2n\pi t)$$

This is called the **Fourier Series** of the function f(t), the coefficients a_n and b_n are called **Fourier coefficients**.

The coefficients are obtained by taking the $\underline{\text{inner product}}$ of the function f(t) and the Fourier basis

$$\{\cos(2n\pi t), \sin(2n\pi t)\}$$
 $n=0,\ldots,\infty$

$$y'' + y = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(2n\pi t) + b_n \sin(2n\pi t)$$
 Let's guess

$$y(t) = \sum_{n} y_n(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(2n\pi t) + B_n \sin(2n\pi t)$$

Apply M.U.C. term-by-term for the different values of n.

For $n \neq 0$, the n^{th} particular solution is

$$y_n = A_n \cos(2n\pi t) + B_n \sin(2n\pi t)$$

$$y''_n = -4n^2\pi^2 A_n \cos(n\pi t) - 4n^2\pi^2 B_n \sin(n\pi t)$$

$$\underline{ODE}: \quad y''_n + y_n = a_n \cos(2n\pi t) + b_n \sin(2n\pi t)$$

$$A_n(1 - 4n^2\pi^2)\cos(n\pi t) + B_n(1 - 4n^2\pi^2)\sin(n\pi t)$$
 $A = \frac{a_n}{1 - 4n\pi^2}$
= $a_n\cos(n\pi t) + b_n\sin(n\pi t)$ $B = \frac{b_n}{1 - 4n\pi^2}$

 $y'' + y = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\pi t) + b_n \sin(n\pi t)$

For n = 0, we have

$$y_0 = A, y_0'' = 0$$
$$A = \frac{1}{2}a_0$$

$$y(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \frac{a_n}{1 - 4n\pi^2} \cos(2n\pi t) + \frac{b_n}{1 - 4n\pi^2} \sin(2n\pi t)$$

Given a specific periodic f(t), we can find its Fourier coefficients a_n and b_n and use the solution above.

Fourier Series

Given any periodic function f(t) with period T, we can approximate f(t) as a Fourier series

$$f(t) \approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2n\pi t}{T}\right) + b_n \sin\left(\frac{2n\pi t}{T}\right)$$

with

$$a_{0} = \langle f(t), 1 \rangle \qquad = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$a_{n} = \left\langle f(t), \cos\left(\frac{2n\pi t}{T}\right) \right\rangle \qquad = \frac{2}{T} \int_{0}^{T} f(t) \cos\left(\frac{2n\pi t}{T}\right) dt$$

$$b_{n} = \left\langle f(t), \sin\left(\frac{2n\pi t}{T}\right) \right\rangle \qquad = \frac{2}{T} \int_{0}^{T} f(t) \sin\left(\frac{2n\pi t}{T}\right) dt$$

If f(t) is a continuous function, then the approximation becomes an equality.

The Fourier Basis

Computing the Fourier series of a function f(t) is effectively projecting f(t) onto the space of T-periodic functions, decomposing the function into infinitely many components.

Vector

$$\vec{x} = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}^T \qquad f(t) = \frac{1}{2}a_0$$

$$\vec{x} = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad + \sum_{n=1}^{\infty} a_n \cos(n\pi t) + b_n \sin(n\pi t)$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$2\pi$$
 Periodic Function

$$f(t) = \frac{1}{2}a_0$$

$$+ \sum_{n=1}^{\infty} a_n \cos(n\pi t) + b_n \sin(n\pi t)$$

$$c_1 = \vec{x} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad c_2 = \vec{x} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{aligned} a_n &= \langle f(t), \cos{(n\pi t)} \rangle \\ b_n &= \langle f(t), \sin{(n\pi t)} \rangle \end{aligned}$$

The Fourier Basis is Orthonormalized

Consider m and n to be any two positive integers or zero, then we have

$$\begin{split} \langle \cos\left(2^{n\pi t}/T\right), \sin\left(2^{m\pi t}/T\right) \rangle &= 0 \qquad \forall m, n \qquad \text{(Orthogonality)} \\ \langle \sin\left(2^{n\pi t}/T\right), \sin\left(2^{m\pi t}/T\right) \rangle &= \langle \cos\left(2^{n\pi t}/T\right), \cos\left(2^{m\pi t}/T\right) \rangle \\ &= \begin{cases} 1 & \text{if } m = n \qquad \text{(Normalization)} \\ 0 & \text{otherwise} \qquad \text{(Orthogonality)} \end{cases} \end{split}$$

The normalization condition is the reason for the factors of $\frac{2}{T}$ (or $\frac{1}{T}$) in front of the Fourier coefficient integrals.