BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

AUSLEGESCHRIFT 1248292

Int. Cl.:

C 08 f

Deutsche Kl.: 39 b - 22/06

Nummer:

1248292

Aktenzeichen:

W 26808 IV c/39 b

Anmeldetag: ~

30. November 1959

Auslegetag:

24. August 1967

1

Es ist bekannt, Polyvinylchlorid in den verschiedensten Formen -- sei es als Suspensions- oder Emulsionspolymerisat oder in Lösung - zur Veredlung von Werkstoffen auf den verschiedensten Gebieten einzusetzen, wobei für den jeweiligen Imprägnier- bzw. 5 Beschichtungszweck speziell hergestellte Polyvinylchlorid-Sorten verwendet werden müssen.

Obwohl Polyvinylchlorid in weitestem Rahmen auf den verschiedensten Gebieten in der Praxis verwendet wird, spielt es immer noch eine untergeordnete 10 Rolle zum Veredeln von in allergrößtem Ausmaß verwendeten billigen Werkstoffen, wie Holzmehl, Papier, Leder, Fasern und Cellulosevliesen, also Stoffen, bei deren Herstellung bzw. Verarbeitung es bisher nicht möglich war, Polyvinylchlorid gleich- 15 mäßig verteilt darauf niederzuschlagen.

Wie bekannt, ist es technisch schwierig, Polyvinylchlorid aus der Emulsion quantitativ bei starker Verdünnung aus Wasser auf die genannten pulvrigen Es sind hierzu Hilfsstoffe, wie starke Koagulationsmittel, z. B. Aluminiumsulfat, erforderlich, wobei in den allermeisten Fällen die kleinen Anteile an Polyvinylchlorid bei den anschließenden Waschdaß Polyvinylchlorid bisher technisch in wäßrigen Aufschlämmungen zur Verbesserung von anderen Werkstoffen praktisch keine Bedeutung gewonnen hat.

Bei Einsatz von getrocknetem handelsüblichem kann man zwar den Kunststoff ohne wesentliche Verluste auf anderen Stoffen niederschlagen, aber infolge der ungleichen Korngröße ist keine gleichmäßige Verteilung zu erreichen. Die Schwierigkeit tritt besonders klar hervor, wenn man die Korn- 35 verteilung der getrockneten handelsüblichen Emulsionspolymerisate betrachtet, die im Durchschnitt eine Teilchengröße von 5 bis 60 µ haben. Beim Niederschlagen von solchen in Wasser wieder aufgeschlämmten Werkstoffen können erhebliche Konzentrationsunterschiede auf den einzelnen Werkstoffteilchen eintreten, was insbesondere beim anschließenden Preß- und Geliervorgang zu uneinheitlichen Erzeugnissen führt.

Es wurde festgestellt, daß für die Veredlung von Werkstoffen in Form von wäßrigen Aufschlämmungen. z. B. von Holzmehl oder Zellstoff sowie von Cellulosevlies, mit Polyvinylchlorid als Überzugs- bzw. Bindemittel dann gute Ergebnisse erzielt werden, wenn 50 ein Polyvinylchlorid mit möglichst gleichmäßiger Teilchengröße verwendet wird, wobei besonders eine

Verfahren zur Herstellung von redispergierbarem Polyvinylchlorid-Pulver

Anmelder:

Wacker-Chemie G. m. b. H., München 22, Prinzregentenstr. 22

Als Erfinder benannt:

Dr. Gerhard Beier.

Dr. Joseph Heckmaier,

Eligius Nickl, Burghausen (Obb.)

2

Korngröße bis zu etwa 10 µ günstig ist. Diese erwünschte Teilchengröße läßt sich aber nur schwer durch direkte Emulsionspolymerisation und Veroder faserigen Werkstoffe einheitlich niederzuschlagen. 20 wendung des anfallenden Latex erzielen. Solche Emulsionen sind nicht stabil, neigen zum Absitzen und haben darüber hinaus den Nachteil des Verschickens wäßriger Kunststoffdispersionen.

Überraschenderweise haben sich als besonders prozessen verlorengehen. Dies ist mit ein Grund, 25 günstig redispergierbare Polyvinylchlorid-Pulver genannter Teilchengröße als geeignet erwiesen, die nach dem erfindungsgemäßen Verfahren wie folgt

hergestellt werden:

Die in bekannter Weise durch Emulsionspolymeri-Emulsions-Polyvinylchlorid in aufgeschlämmter Form 30 sation erhaltenen Latices, die von der Polymerisation her bereits ionogene Emulgatoren, wie z. B. Lauryloder andere Sulfonate, enthalten, trocknet man bei möglichst niedriger Temperatur durch Verdüsen oder auf andere Art bis auf eine Endfeuchtigkeit von etwa 5%, setzt den Latices während der Verarbeitung zu einem redispergierbaren Trockenpulver oder dem Trockenpulver nichtionogene Dispergatoren zu, und zwar in Mengen bis zu etwa 5 Gewichtsprozent, berechnet auf Polyvinylchlorid, und bringt ten Polyvinylchloridteilchen auf den eingangs erwähn- 40 das Pulver durch Mahlung und Sichtung auf eine einheitliche Teilchengröße bis zu etwa 10 µ.

Es ist zwar bekannt, Polyvinylchlorid-Latices zwecks Gewinnung stabiler Emulsionen mit nichtionogenen Emulgatoren zu versetzen. Dagegen geht man er-45 findungsgemäß von den bei der Emulsionspolymerisation anfallenden rohen Polymerisationsgemischen aus, denen man die nichtionogenen Dispergatoren während der Verarbeitung auf Trockenpulver oder

danach zusetzt.

Als nichtionogene Dispersionen eignen sich erfindungsgemäß vor allem Polyhydroxyfettsäureester, d. h. solche Ester höherer Fettsäuren mit zwei- oder mehrwertigen Alkoholen (Polyalkoholen), die noch mindestens eine freie Hydroxylgruppe aufweisen. Es handelt sich somit vor allem um Ester nachstehender

Monoglykolester von Laurin-, Stearin-, Palmitinund Oleinsäuren, beispielsweise Äthylenglykol-, Propylenglykol-, Diäthylenglykol- und Polyäthylenglykolmonolaurate sowie die entsprechenden -monooleate und -monostearate;

Mono- oder aus Diglyceride höherer Fettsäuren, wie Glycerinmonooleat und -monostearat:

Teilester von Pentaerythrit, Sorbit, Mannit und anderen Zuckeralkoholen und deren Anhydriden. z. B. Sorbitmonostearat, Sorbitanmonolaurat, -pal- 15 Emulgators und andererseits einen nichtionogenen mitat, -stearat, -oleat und -sesquioleat sowie Mannitmonopalmitat.

Als zusätzliche Dispergatoren benutzbar sind ferner auch andere nichtionogene Dispergatoren, beispiels-

Polyglykole und Polyglycerine sowie Veresterungsprodukte von Polyglykolen, Polyglycerinen, Zuckeralkoholen oder auch Dialkylolaminen mit höheren Fettsäuren, wie Polyglycerinoleylester;

vorzugsweise mit Äthylenoxyd oder auch mit Propylenoxyd alkoxylierte niedere und höhere Alkohole, Fett- und Harzsäuren, fette Öle, Harze, Amine, Mercaptane und Alkylphenole, wie Dodecylpolyäthylenäther (Polyoxyäthylenauryläther), Tetradecaoder Pentakosa-äthylenglykolmonooleyläther und Polyäthylenglykolhydroabietyläther; Talgalkoholpolyäthylenäther und polyoxyäthylierte Pflanzenöle; Alkylphenylpolyäthylenäther (Polyäthylenglykolalkylphenyläther bzw. Alkylarylpolyätheralkohole, z. B. Isooctyl-und Nonylphenoxypolyoxyäthylenäthanol); Kondensationsprodukte von Propylenoxyd mit Propylenglykol; Polyhydroxypolyoxäthylenfettsäureester; Polyāthylenglykoldodecylthioäther;

monofettsäureestern mit Äthylenoxyd, wie Polyoxyāthylensorbitol- bzw. Polyoxyäthylensorbitan-monound -dilaurat, -monooleat, -oleatlaurat und -stearat;

dem Vorstehenden entsprechende Kondensationsprodukte (Polyimine) von Äthylenimin statt Äthylen- 45 oxyd mit Fettalkoholen, z. B. Dodecylpolyäthylenimin.

Die Zusätze nichtionogener Dispergatoren können an sich zu einem beliebigen Zeitpunkt der Verarbeitung 50 der Polyvinylchlorid-Latices bzw. der Trocknungsprodukte diesen einverleibt werden, nämlich entweder unmittelbar den Latices vor der Trocknung oder den durch die Trocknung erhaltenen Pulvern Produkten. Am zweckmäßigsten ist es, die nichtionogenen Dispergatoren den Latices zuzumischen.

Oft ist es günstig, in den Latices zusätzlich den zu etwa 0,5% bereits vorliegenden Gehalt an ionogenem Emulgator zu erhöhen, und zwar bis zu etwa 2 Gewichtsprozent, berechnet auf das Gewicht des 5 Polyvinylchlorids. Der zugesetzte ionogene Emulgator kann gleicher oder anderer Art sein als derjenige im Latex von der Polymerisation her bereits vorhandene. Es handelt sich vorzugsweise um den Zusatz von anionaktiven Emulgatoren, insbesondere 10 von Natriumsalzen von Sulfonierungsprodukten, wie Fettalkylsulfonaten.

Das erfindungsgemäße Verfahren besteht in seiner bevorzugten Arbeitsweise somit darin, daß man den Latices einerseits weitere Mengen eines ionogenen Dispergator einverleibt. Durch diese kombinierten Zusätze wird gemäß der Erfindung die günstigste Wirkung erzielt.

Die gegebenenfalls zweisach mit Dispergatoren stabilisierten Polyvinylchlorid-Latices werden bei möglichst niedriger Temperatur zweckmäßig in der Weise durch Verdüsen oder auf andere Art getrocknet, daß ein Endprodukt mit bis zu etwa 5% Feuchtigkeit verbleibt, was zur Folge hat, daß jede Sinterung durch 25 Temperatureinwirkung vermieden wird, vielmehr nur eine Verklebung eintritt. Wie erwähnt, kann man aber auch den Zusatz an nichtionogenem Dispergator anschließend, d. h. kurz vor der Mahlung, beimischen. Zur Vereinheitlichung der Teilchengröße ist es zweck-30 mäßig, das Polyvinylchlorid-Pulver mit den genannten Zusätzen einschließlich der Feuchtigkeit zu vermahlen, was ohne Schwierigkeit erfolgen kann. Teilchen über 10 µ werden durch geeignete Sichtung abgeschieden und können erneut in den Mahlprozeß 35 zurückgeführt werden.

Der Zusatz von nichtionogenem Dispergiermittel erweist sich, wie oben angeführt, als besonders wirksam für das Redispergieren der so getrockneten Emulsionen. Die gemäß der Erfindung hergestellten Kondensationsprodukte von Sorbit- bzw. Sorbitan- 40 Polyvinylchlorid-Pulver mit einer Korngröße bis zu etwa 10 µ lassen sich leicht zu haltbaren Dispersionen bis zu etwa 72% Festgehalt redispergieren.

Beispiele

Die nachfolgende Tabelle zeigt den Einfluß eines nichtionogenen Dispergators auf die Redispergierbarkeit des Polyvinylchlorid-Pulvers, das als ionogenen Emulgator laurylsulfonsaures Natrium, als nichtionogenen Dispergator Glycerinmonooleat und gegebenenfalls als Lichtstabilisator Bleioctoat oder einen anderen geeigneten Stoff enthält. Zunächst wurden die Trockenpulver nur so weit in Wasser dispergiert, daß noch gerade haltbare Dispersionen erhalten wurden. Sodann wurden diese Dispersionen weiter vor der Mahlung oder erst den bereits gemahlenen 55 bis zu einem Festgehalt von 50% verdünnt. Jeweils wurde die Viskosität der Dispersion in einem Kugelfall-Viskosimeter in Sekunden gemessen.

Beispiel	Dispergatorgehalt		Erste Verdünnung		Zweite Verdünnung	
	Laurylsulfonat	Glycerinmono- oleat	bis Festgehalt	Viskosität Sekunden	bis Festgehalt	Viskosität Sekunden
1	1		50	60	50	60
2	1	' 1	67	65	50	10
3	2		65	14	50	14
4	2	1 '	72	30	50	6

10

6

Beim Einsatz der erfindungsgemäßen, durch Redispergieren gewonnenen Polyvinylchlerid-Dispersionen für Veredlungszwecke, wie z. B. Papierstoff in wäßriger Schlempe, ergibt sich auch ohne Koaguliermittel eine gleichmäßige Beladung bzw. ein gleichmäßiger Überzug auf den Fasern, wodurch beim Gelier- oder Heißpreßvorgang einheitliche, widerstandsfähige Pappen, Platten und sonstige Gegenstände aller Art erhalten werden.

Patentansprüche:

1. Verfahren zur Herstellung von in Wasser redispergierbaren Polyvinylchlorid-Pulvern aus durch Emulsionspolymerisation unter Verwendung 15 üblicher Emulgatormengen erhaltenen Latices, dad urch gekennzeichnet, daß man die

Latices bei möglichst niedriger Temperatur durch Verdüsen oder auf andere Art bis auf eine Endfeuchtigkeit von etwa 5% trocknet und die Trockenpulver durch Mahlung und Sichtung auf eine einheitliche Teilchengröße bis zu etwa 10 μ bringt, wobei entweder den Latices oder dem Trockenpulver nichtionogene Dispergatoren in Mengen bis zu etwa 5 Gewichtsprozent, bezogen auf Polyvinylchlorid, zugesetzt sind.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Latices verwendet werden, welche mit weiteren Mengen eines ionogenen Emulgators versetzt sind.

In Betracht gezogene Druckschriften: Britische Patentschrift Nr. 753 758; französische Patentschrift Nr. 1 127 131.