A FROM VALUES TO SPECIFIC CRITERIA MANIFESTATIONS

	Value	Criteria	Manifestations
	Privacy	 (1) Consent for data usage [3, 56, 60] (2) Data protection [3, 60, 61] (3) Control over data / ability to restrict processing [56, 60] (4) Right to rectification [3, 56, 60] (5) Right to erase the data [3, 56, 60] (6) Right of access by data subject, data agency [56, 167] 	 Written declaration of consent [56] Description of what data is collected [125] Description of how data is handled [125] Purpose statement of data collection [125] Statement of how long the data is kept [125] Form and submission mechanisms to object data collection and to make complaints [27] Obfuscation of data [3]
Conservation	Security	 (1) Resilience to attacks: protection of privacy [86, 127, 178], vulnerabilities, fallback plans [3, 60, 75, 133] (2) Predictability [3, 57, 60] (3) Robustness / reliability: prevent manipulation [3] 	AGAINST INTEGRITY THREATS [183]: • Training time [183] Ex.: • Data sanitization ¹² [23, 40] • Robust learning ¹³ [23, 73] • Prediction time [183] • Model enhancement [23, 74, 122, 141] Ex.: • Adversarial Learning ¹⁴ • Gradient masking ¹⁵ • Defensive Distillation ¹⁶ AGAINST PRIVACY THREATS [183]: • Mitigation techniques [136]: • Restrict prediction vector to top k classes ¹⁷ [161] • Coarsen the precision of the prediction vector ¹⁸ [161] • Increase entropy of the prediction vector ¹⁹ [161] • Use regularization ²⁰ [101, 161] • Differential privacy mechanisms [136]: • Differential privacy ²¹ [53, 187]. Ex.: • Adversarial regularization ²² [136] • MemGuard ²³ [97]

 $^{^{12}}$ It ensures data soundness by identifying abnormal input samples and by removing them [183]. 13 It ensures that algorithms are trained on statistically robust datasets, with little sensitivity to outliers [183].

¹⁴Adversarial samples are introduced to the training set [183].

¹⁵Input gradients are modified to enhance model robustness [183].

¹⁶The dimensionality of the network is reduced [183].

¹⁷Applicable when the number of classes is very large. Even if the model only outputs the most likely k classes, it will still be useful [161].

¹⁸It consists in rounding the classification probabilities down [161].

¹⁹Modification of the softmax layer (in neural networks) to increase its normalizing temperature [161].

²⁰Technique to avoid overfitting in ML that penalizes large parameters by adding a regularization factor λ to the loss function [161].

²¹It prevents any adversary from distinguishing the predictions of a model when its training dataset is used compared to when other dataset is used [187]

²² Membership privacy is modeled as a min-max optimization problem, where a model is trained to achieve minimum loss of accuracy and maximum robustness against the strongest inference attack [136].

²³ Noise is added to the confidence vector of the attacker so as to mislead the attacker's classifier [97]

	Value	Criteria	Manifestations
Conservation	Performance	 (1) Correctness of predictions [26, 57, 60] (2) Memory efficiency [3, 26] (3) Training efficiency [26] (4) Energy efficiency [3, 26] (5) Data efficiency [26] 	 Accuracy (for classification, sum of true positive and true negative rates) [130, 180] False Positive and False Negative rates [130, 180] False Discovery and Omission Rate [130] Mean and median error [180] R2 score [25] Precision and recall rates [180] Area under ROC curve (AUC) [25] Estimation of energy consumption through [68]: performance counters simulation instruction- or architecture-level estimations real-time estimation Estimation of GPU memory consumption [67, 123] Wall-clock training time [14, 41]
	Respect for public interest	 Desirability of technology [1, 34, 104] Benefit to society [60-62, 133] Environmental impact [3, 21] 	 Diverse and inclusive forum for discussion [60, 129] Measure of social and environmental impact [21, 133, 147]
Universalism	Fairness	 Individual fairness ²⁴[18, 52, 110, 126] Demographic parity ²⁵ [18, 52, 80, 86, 102, 110, 126, 163, 177] Conditional Statistical parity ²⁶ [126, 177] Equality of opportunity ²⁷ [79, 126, 175] Equalized odds ²⁸ [126] Treatment equality ²⁹ [22, 126] Test fairness ³⁰[37, 126, 177] Procedural fairness ³¹ [77, 110, 126] 	 Accuracy across groups (for classification, sum of true positive and true negative rates) [37, 80, 105, 133] False positive and negative rates across groups [37, 105, 126, 151, 179] False discovery and omission rates across groups [130, 151] Pinned AUC [48, 130] Debiasing algorithms [19] Election of protected classes based on user considerations [77]
	Non- discrimination	(1) Quality and integrity of data [60, 70, 86, 133, 144] (2) Inclusiveness in design [57, 60, 133] (3) Accessibility [3, 26, 60, 133]	 Inclusive data generation process [3, 34, 70, 133] Analysis of data for potential biases, data quality assessment [3, 60, 69, 86, 126] Diversity of participant in development process [3, 60, 114, 189] Access to code and technology to all [3, 26, 60, 133]

²⁴Similar individuals should be treated in a similar way. Diverging definitions state that: two individuals that are similar with respect to a common metric should receive the same outcome (fairness through awareness); or any protected attribute should not be used when making a decision (fairness through unawareness); or the outcome obtained by an individual should be the same if this individual belonged to a counterfactual world or group (counterfactual fairness) [126].

25 The probability of getting a positive outcome should be the same whether the individual belongs to a protected group or not [126].

26 Given a set of factors L, individuals belonging to the protected or unprotected group should have the same probability of getting a positive outcome

^{[126]. &}lt;sup>27</sup>The probability for a person from class A (positive class) of getting a positive outcome, which should be the same regardless of the group (protected group or not) that the individual belongs to [126].

28 The probability for a person from class A (positive class) of getting a positive outcome and the probability for a person from class B (negative class) of

getting a negative outcome should be the same [126].

29 The ratio of false positives and negatives has to be the same for both groups [126].

³⁰For any probability score S, the probability of correctly belonging to the positive class should be the same for both the protected and unprotected group [126].

31 It deals with the fairness of the decision-making process that leads to the outcome in question [77].

	Value	Criteria	Manifestations
Openness	Transparency	 (1) Interpretability of data and models [26, 168] (2) Enabling human oversight of operations [60, 133] (3) Accessibility of data and algorithm [3, 60, 168] (4) Traceability [133] (5) Reproducibility [26] 	 Description of data generation process [3, 20, 34, 69, 70, 133] Disclosure of origin and properties of models and data [3, 130, 168] Open access to data and algorithm [3, 26, 60, 168] Notification of usage/interaction [60] Regular reporting [60]
	Explainability	 (1) Ability to understand AI systems and the decision reached [26, 57, 61, 62, 139, 168] (2) Traceability [133] (3) Enable evaluation [60, 133] 	Interpretability by design [18]Post-hoc explanations [18]
owerment	Contestability	 (1) Enable argumentation / negotiation against a decision [6, 16, 57, 60, 100, 113, 121, 168] (2) Citizen empowerment [16, 57, 100] 	 Information of who determines and what constitutes a contestable decision and who is accountable [121] Determination of who can contest the decision (subject or representative) [121] Indication of type of review in place [121] Information regarding the contestability workflow [121] Mechanisms for users to ask questions and record disagreements with system behavior [87, 131]
Individual empowerment	Human Control	 (1) User/collective influence [26, 113] (2) Human review of automated decision [60] (3) Choice of how and whether to delegate [60] 	 Continuous monitoring of system to intervene [57, 60, 166] Establishment levels of human discretion during the use of the system [57, 127] Ability to override the decision made by a system [57]
	Human	 Respect for human autonomy [57, 60, 133] Power to decide. Ability to make informed autonomous decision [26, 57] Ability to opt out of an automated decision [57, 60] 	 Give knowledge and tools to comprehend and interact with AI system [57] Opportunity to self-assess the system [57]

Table 3. Summary of the specific criteria that relate to each value considered in our ML assessment framework. These criteria are then translated into specific manifestations in the form of signifiers (orange), process-oriented practices (olive) or quantifiable indicators (magenta).

B MAPPING STAKEHOLDERS

Stakeholder	Mapping [164]	Nature of knowledge	Purpose of insight
Development team	ML, Formal + Instrumental + Personal	 "Knowledge of the math behind the architecture" [164] "Stakeholder involved in an ex-ante impact assessment of the automatic decision system" [84] 	debug [18]
Auditing team	Milieu, Formal + Instrumental	 "Familiarity with broader ML-enabled systems" [164] "Experts who intervene wither up- stream or downstream" [84] 	• Verify model compliance with legislation [18]
Data domain experts	Data domain, Formal + Instrumental	 "Theories relevant to the data domain" [164] "Professional involved in the operational phase of the automatic decision system" [84] 	 Gain scientific or domain-specific knowledge [18, 164] Trust the model [18, 164] Act based on the output [164]
Decision subjects	Data domain + Milieu, Personal	 "Lived experience and cultural knowledge" [164] "Layperson affected by the outcomes of the automatic decision system" [84] 	 Understand their situation [18] Verify fair decision [18] Contest decision [164] Understand how one's data is being used [164]

Table 4. Description of potential stakeholders that can be brought together as part of our value-based framework. These stakeholders have been mapped following the two dimensional criteria (type of knowledge —formal, instrumental or personal— and contexts in which this knowledge manifests —ML, data domain, milieu—) outlined by Suresh et al. [164]. The nature of their knowledge and the purpose of gaining insight for each of them have also been defined.

A TAILORED COMMUNICATION OF SYSTEM-RELATED INFORMATION

		Development team	Auditing team	Data Domain experts	Decision subjects
	Privacy	[K]	[K]		[A] [B]
Conservation	Security	[K] [W] [AB]	[K] [W]		
Conservation	Performance	[F] [G] [H] [Y] [Z]	[G] [H] [Y] [Z] [AE]	[I] [J]	[J]
	remormance	[AE]			
	Respect for public	[E] [AE]	[E] [AE]	[E]	[C] [D]
	interest				
Universalism	Fairness	[G] [H] [K] [W] [X]	[G] [H] [K] [W] [X]	[I] [J]	[J]
Oniversalishi		[Y] [Z] [AD]	[Y] [Z] [AD]		
	Non-	[H] [K] [X] [Y] [AD]	[H][K] [X] [Y] [AD]	[J] [L]	[J] [L]
	discrimination				
	Transparency	[H] [K] [M]	[H][K] [M]	[I] [J] [L] [M]	[B] [J] [L] [M]
Openness	Explainability	[M] [N] [O] [Q] [AC]	[M] [N] [O] [Q]	[J] [M] [N] [O] [Q]	[J] [M] [N] [O] [Q]
	Explamability	[AD] [P]	[AC] [AD] [P]	[P]	[R] [S] [P]
Individual	Contestability	[U]	[U]	[T] [U]	[T] [AF]
	Human Control	[V]	[V]	[T] [V]	[C] [T] [V]
empowerment	Human Agency			[T]	[T] [B] [AA]

Table 14. Mapping of available means for transmitting value-specific manifestations to different stakeholders based on the purpose of their insight and the nature of their knowledge. These means have been classified into three main categories: descriptive documents specifying whether/how a value manifestation is fulfilled (red), strategies for fulfilling value manifestations (blue), and complete tools for enabling the fulfillment of value manifestations (green). This table aims at facilitating the navigation of table 15, where each means is documented.

	Means	Value	Manifestation(s)	Stakeholder	Application	Approach	Visual elements	Additional
[A]	Iconsets for data privacy declara- tions [56, 89, 125, 149]	Privacy	 Description of what data is collected Description of how data is handled Purpose statement of data collection Statement of how long the data is kept 		Agnostic		Iconsets	
[B]	Privacy dash- boards [54, 58, 59, 85, 191]	Privacy Human agency	Description of what data is collected Description of how data is handled Purpose statement of data collection Opportunity to selfasses the system	>	Agnostic		TimelinesBar chartsMapsNetwork graphs	
		Trans- parency	• Disclosure of origin and properties of data					
	Risk [C] matrix [3, 107]	Respect for public interest Human Control	 Measure of social impact Ability to override the decision made by a system 	>	Agnostic		• Two dimensional space (vulnerability vs dependence of the decision)	
[0]	[D] Moral space [86]	Respect for public interest	• Measure of social impact	>	Agnostic	Based on human judgement	• Three dimensional moral space. Wrong-ness as a function of intention and harm	

	Means	Value	Manifestation(s)	Stakeholder DT AT DE DS	Application (model)	Approach	Visual elements	Additional details
ョ	Social impact as- sessment [147]	Respect for public interest	Measure of social impact	> >	Agnostic	Anticipate scenarios		
E	Model Tracker in- teractive visualiza- tion [9]	Perfor- mance	• Accuracy • False Positive and Negative rates	>	Classification tasks		 Summary statistics Confusion matrices Labels chart Precision-recall curves Connector lines to identify similar examples in feature space Highlighted boxes for correlations between features and target classes 	
[9]	Model cards for models [130]	Perfor- mance Fairness	Accuracy False Positive and Negative rates False Discovery and omission rates Accuracy across groups False Positive and Negative rates across groups False Discovery and omission rates across groups	> >	Agnostic		• Confidence bars	

	Value	Manifestation(s)	Stakeholder	Application	Approach	Visual elements	Additional
	Perfor- mance	Accuracy False Positive and Negative Rates False Discovery and omission rates	3			• Confusion matrices • (Two-	Interactive modules
What-if [H] tool ³² [180]	Fairness	Accuracy across groups False Positive and Negative Rates across groups False Discovery and omission rates across groups	> >	Classification tasks, Regression tasks		dimensional) Histograms • Scatterplots • Summary statistics of datasets	include: list of feature values, inference values, and counterfac-
	Trans- parency Non- discrimi- nation	Disclosure of origin and properties of data Analysis of data for potential biases, data quality assessment				• Partial dependence plots	tual controls
Interactive	Perfor- mance	 Accuracy False Positive and Negative Rates 				• Confusion matrices • Z-scored of each	
[I] transfer learning tools [128]	Fairness [8] Trans-	Accuracy across groups False Positive and Negative Rates across groups Disclosure of properties of data	>	Convolutional Neural Networks		filter Bar charts Activation heatmaps t-SNE clusters	
Question-		Accuracy Accuracy across groups Disclosure of origin and				Summary statistics (percentage scores) for data	End users were more interested
Driven [J] XAI Design [118]	parency Non- discrimination	Analysis of data for potential biases, data quality assessment	``\	Agnostic		explanations and performance metrics • Feature importance	in the limitation of the model: uncertainty
32/https://github.com/pair-code/what-if-tool	air-code/what-if-t	loo				explanations	

32https://github.com/pair-code/what-if-tool

Means	Value	Manifestation(s)	Stakeholder DT AT DE DS	Application (model)	Approach	Visual elements	Additional details
	Explain- ability	• Post-hoc explanations		,			
	Trans-	Description of data generation process Disclosure of origin properties of models and data					
	discrimi- nation	Analysis of data for po- tential biases, data qual- ity assessment				• Summary	
Datastreets for [69]	Privacy	 written declaration of consent Description of what data is collected Description of how data is handled Purpose statement of data collection Statement of how long 	> >	Agnostic		• Visual examples of datasets (if images, for instance)	
	Fairness	the data is kept • Election of protected classes • Membership inference					
Data centric ex-	Trans- parency	 Description of data generation process Disclosure of origin and properties of the models and data 	>	Agnostic		 Interactive list Q&A format Pie charts Bar charts Process 	
[12]	Non- discrimi- nation	Analysis of data for po- tential biases, data qual- ity assessment				diagrams • timelines • Icons	

	Means	Value	Manifestation(s)	Sta DT /	Stakeholder AT DE	ler 3 DS	Application (model)	Approach	Visual elements	Additional details
	Example- based explana-	Trans- parency	Disclosure of properties of data			,		• Similar example • Typical	Example images from dataset if in	Normative vs compara-
$\overline{\mathbb{W}}$	tions [18, 24, 32, 49, 98, 117, 118]	Explain- ability	Post-hoc explanations	<i>,</i>	>	>	Agnostic	example • Counter- factual example	the visual domain	tive explana- tions [32]
N	Explanation by simpli- fication [18, 98]	Explain- ability	• Post-hoc explanations	, ,	<u> </u>	>	Agnostic	• Decision rule		
0	Feature relevance explanation [7, 18, 24, 49, 98, 118]	Explain- ability	• Post-hoc explanations	<i>, , , , , , , , , ,</i>	>	>	Agnostic	• Feature attribute • Feature shape • Feature inter- action • Sensitivity / perturbation - based • Saliency maps (visual	Bar charts Visualization of element importance, saliency (visual domain)	Usability of saliency maps for non-experts [7]. They should be accompanied by global descriptors
[P]	Contrastive explanations [47, 118, 134]	Explain- ability	• Post-hoc explanations	>	>	>	Agnostic	• Example of minimum change that leads to different outcomes		
[6]	Text-based expla-nation [18, 175]	Explain- ability	Post-hoc explanations	, ,	` \	>	Agnostic	• With or without outcome comparison		

	Means	Value	Manifestation(s)	Stakeholder DT AT DE DS	Application (model)	Approach	Visual elements	Additional details
	Interactive demon- strations [120]	Explain- ability	• Post-hoc explanations	>	/ Agnostic			
[S]	Experiential Explain- AI [82] ability	. Explain- ability	• Post-hoc explanations	>	Agnostic	• Art mediated between computer code and human comprehension		
E	Interactive contestations [84, 106]	Contest- ability Human Control Human agency	Mechanisms for users to ask questions and record disagreements with system behavior Ability to override the decision made by the system Opportunity to selfassess the system	>	Agnostic	Statements restricted to natural language		
[0]	Challenge justifications provided [U] by operator tor using the same means [84]	Contest-ability	Mechanisms for users to ask questions and record disagreements with system behavior	> >	Agnostic	• Further testing • Verification		

	Means	Value	Manifestation(s)	Stake DT AT	Stakeholder AT DE DS	Application (model)	Approach	Visual elements	Additional details
Σ	Mapping of actors and tasks depending on automation level [33]	Human Control	• Establishment of levels of human discretion during the use of the system	> >	> >	Agnostic		• Relationship diagrams	
W	Failure Modes and W] Effects	Security	• Threats against integrity (adversarial learning) and mittgation techniques	> >		Agnostic			
	Analysis [147]	Fairness	 Accuracy across groups False positives and negatives across groups 						
Ξ	[X] Aequitas	Fairness	Accuracy across groups False Positive and Negative rates across groups False Discovery and Omission rates across groups Counterfactual exam-	> >		Agnostic			
		Non- discrimi- nation	ples • Analysis of data for potential biases, data quality assessment						
		Perfor- mance	• False Positive and Negative rates			Classifiers: logistic			
Ξ	AI Fairness 360 ³⁴ [19]	Fairness	 False positive and negative rates across groups Debiasing algorithms 	>		regression, random forest		Bar chartsConfidence bars	
		Non- discrimi- nation	Analysis of data for po- tential biases, data qual- ity assessment			and neural networks			

³³https://github.com/dssg/aequitas ³⁴https://github.com/Trusted-AI/AIF360

Means	Value	Manifestation(s)	Stakeholder	ar Application	Approach	Visual elements	Additional
Fairlearn 35 r. c. 2	Perfor- mance	• Accuracy • False Positive and False Negative rates • Precision and recall rates	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Agnostic		• Bar charts	תרנמווס
[52]	Fairness	 Accuracy across groups False negative and false positive rates across groups Debiasing algorithms)		• Pie charts	
$^{\mathrm{Playbook}}_{\mathrm{AI}}$ $^{\mathrm{Se}}_{\mathrm{B}}$ [90]	Human agency	• Give knowledge and tools to comprehend and interact with AI systems • Opportunity to selfasses the system		NLP	Early AI prototyping	• Interactive survey	
[AB] 37	Security	• Defence against integrity threats • Defence against privacy threats	>	Agnostic			
InterpretML Explain- [AC] 38 39 ability [134, 137]	Éxplain- ability	 Interpretability by design Post-hoc explanations 	` <u>`</u>	Both white- box and blackbox models		• Bar charts • Line charts • Decision trees	

35 https://github.com/fairlearn/fairlearn 36 https://github.com/microsoft/HAXPlaybook 37 https://github.com/Azure/counterfit 38 https://github.com/interpretml/interpret/ 39 https://github.com/interpretml/DICE

Means	Value	Manifestation(s)	Stakeholder Applicat DT AT DE DS (model)	Application (model)	Approach	Visual elements	Additional details
[]	Non- discrimi-	• Analysis of data for potential biases, data qual-					
analvsis	nation	ity assessment				• Decision tree	
[AD] dashboard Explain-	Explain- ability	• Post-hoc explanations	>	Agnostic		• Error heatmap	
	Fairness	 Accuracy across groups 					
	,	• Estimation of energy					
	Perfor-	consumption					
Breakend	mance	 Estimation of GPU mem- 					
[AE] Impact		ory consumption	\ \ \	Appostic		• Dot plots	
tracker 41	Respect		•			 Bar charts 	
[83]	for	• Measure of					
	public	environmental impact					
	interest						
Represent-		• Mechanisms for users to					
[AF] ative	Contest-	ask questions and record	>	/ Agnostic			
contesta- ability	ahilitv	dissamont with our		2000000			

Table 15. Mapping of available means for transmitting value-specific manifestations to different stakeholders based on the purpose of their insight and the nature of Their knowledge (DT = Development Team; AT = Auditing Team; DE = Data Domain Experts; DS = Decision Subjects). The identification and color code correspond to those on table 14. Each means is linked to the value and criteria manifestations that they communicate, the stakeholders that the original papers address, model specificity, deployed approach, visual elements and any additional details.

tions [174] contesta-

disagreement with system behaviour

ability