Métodos Numéricos (M2039) — 2023/2024

Folha de Exercícios 1 - Erros. Propagação de erros.

- 1. Diga qual o número de casas decimais e de algarismos significativos dos seguintes números: 0.012300 123.0501 3. 3.000
- 2. Escreva com 4 algarismos significativos, por arredondamento, os seguintes números:

- 3. Escreva com 6,5,4,3,2,1,0 algarismos significativos o número 21.03452
- 4. Dadas as expressões equivalentes:

$$\frac{1}{(3+\sqrt{8})^3}$$
, $(3-\sqrt{8})^3$ e $99-35\sqrt{8}$

calcule os seus valores usando $\sqrt{8} \approx 2.83$. Interprete os resultados.

- 5. Calcule o valor de $0.12^{3.1}$ sabendo que os dados foram obtidos por arredondamento.
- 6. Seja

$$f(x) = \frac{1.34^2}{4.02x - 3.22}.$$

Determine estimativas dos erros absoluto e relativo que se cometem ao calcular f(x) para x=1.5 (valor exato), supondo que os coeficientes 1.34, 4.02 e 3.22 foram obtidos por arredondamento.

- 7. Calcule o valor de $z = \ln(3.01 + \sqrt{4.12})$ sabendo que os dados foram obtidos por (a) arredondamento (b) truncatura.
- 8. Seja $f(x) = 0.814^{0.98x}$.

Determine estimativas dos erros absoluto e relativo que se cometem ao calcular f(x) para x=2.01 (valor exato), supondo que os coeficientes 0.814 e 0.98 foram obtidos por arredondamento.

9. Dada a função $z=\sin x+0.13^y$, com x expresso em radianos, discuta o cálculo do seu valor com erro absoluto não superior a 10^{-4} , sendo $x=26^{\circ}35'40.2''$ e y=1.25106. Considere os casos:

(a) 0.13 é exato;

- (b) 0.13 é arredondado.
- 10. Escreva um algoritmo que, a partir de um valor de x lido em radianos, permita o cálculo de $y = \cos(x)$ com erro inferior a ϵ através do seu desenvolvimento em série de Taylor. Implemente-o, e calcule o valor de $\cos(\pi/6)$ com erro absoluto inferior a 10^{-5} .
- 11. Sabendo que

$$e^{-x^2} = 1 - x^2 + x^4/2! - x^6/3! + \dots + (-1)^n x^{2n}/n! + \dots$$

proponha um algoritmo que permita o cálculo de e^{-x^2} com erro absoluto inferior a 10^{-9} e aplique-o ao cálculo de $e^{-0.25}$.

- 12. Sejam $x_1 = 5.74$ e $x_2 = 5.72$
 - (a) Avalie, numa aritmética de 3 algarismos significativos, com lei de arredondamento, a média aritmética daqueles valores

$$m = \frac{x_1 + x_2}{2}$$

- (b) Execute um programa para executar esta avaliação e generalize-o para uma aritmética de n algarismos significativos.
- (c) Justifique os resultados obtidos
- 13. Calcule, com erro absoluto inferior a 5×10^{-4} , o valor das seguintes séries numéricas:

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{5^k + 10}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n3^n}$ (c) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)...(2n)}$

14. Calcule um valor aproximado de cos 1.1 com erro absoluto inferior a 10^{-4} utilizando as seguintes relações: $\cos^2 x + \sin^2 x = 1$

$$\sin x = \sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-1} / (2n-1)!, \quad x \in \mathbb{R}.$$

15. Indique como calcular

$$\sum_{n=1}^{\infty} \frac{n^2}{(n^4+1)}$$

com erro absoluto inferior a 5×10^{-5} .

16. Escreva um programa que permita calcular um valor aproximado de

$$\pi^2 = 6\sum_{k=1}^{\infty} \frac{1}{k^2}$$

com erro absoluto inferior a um valor $\epsilon = 10^{-7}$ dado. O programa deve imprimir o número n de termos somados na série, o valor aproximado de π^2 e o erro absoluto $E_n = |\pi^2 - S_n|$.

17. Resolva pelo método de Gauss o seguinte sistema de equações:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ 2x_1 + 2x_2 + x_3 + x_4 = 6 \\ x_1 + 2x_2 + x_3 + 2x_4 = 6 \\ 3x_1 + x_2 + x_3 + x_4 = 6 \end{cases}$$

- (a) sem realizar pivotagem
- (b) com pivotagem parcial.
- 18. Resolva o seguinte sistema

$$\begin{cases} 1.133 x_1 + 5.281 x_2 = 6.414 \\ 24.14 x_1 - 1.210 x_2 = 22.93 \end{cases}$$

num sistema de vírgula flutuante com 4 algarismos significativos por eliminação gaussiana

- (a) sem realizar pivotagem
- (b) com pivotagem parcial.
- 19. A solução exata do sistema $\begin{pmatrix} 0.03 & 58.9 \\ 5.31 & -6.10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 59.2 \\ 47.0 \end{pmatrix} \text{\'e} \quad x = (10,1)^T.$

3

Resolva este sistema numa aritmética de 3 algarismos significativos com lei de arredondamento, usando eliminação gaussiana sem realizar pivotagem. Justifique o resultado e explique como obter um resultado mais preciso.