Vorlesung Multidimensionale und Multimodale Signale, SoSe 2010

Sebastian Rockel (6095961) Vitali Amann (5788408)

19. April 2010

2 Übung (Abgabe: 22.04.2010, 8.30 Uhr, schriftlich)

1. Gegeben sei eine periodische Funktion über die Zeit, wie lauten die Fourierkoeffizienten?

a)
$$f(t) = \sin(t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0$; $a_k = 0$; $b_k = 1$; $k = 1$

b)
$$f(t) = \cos(t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0$; $a_k = 1$; $b_k = 0$; $k = 1$

c)
$$f(t) = \cos(2t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0$; $a_k = 1$; $b_k = 0$; $k = 2$

d)
$$f(t) = 1$$
 für $t \in (-\pi, \pi)$
 $a_0 = 2$; $a_k = 0$; $b_k = 0$; $k = 1, 2, 3...$

2. Gegeben seien die Fourierkoeffizienten einer Funktion über die Zeit. Wie lautet die Funktion?

Siehe Abbildungen 1, 2 und 3.

3. Welche der Funktionen entspricht den Dirichletschen Bedingungen im Intervall $(-\pi,\pi)$

a)
$$f(t) = sgn(t)$$

Diese Funktion erfüllt nicht die Dirichletschen Bedingungen, da die Regel ii verletzt werden. Es existieren keine links- oder rechtsseitigen Grenzwerte in den Punkt t=0.

b)
$$f(t) = 1$$
 falls $t \in \mathbb{Z}$, sonst $f(t) = 0$

Diese Funktion erfüllt nicht die Dirichletschen Bedingungen, da die Regel i verletzt wird. Die Funktion stellt einzelne Punkte dar, die weder stetig noch monoton sind.

c)
$$f(t) = 1$$
 falls $t \in \mathbb{Q}$, sonst $f(t) = 0$

Abbildung 1: $f(x) = \frac{1}{2} + \sum_{k=1}^{n} \cos(kx), n = 100$

Abbildung 2: $f(x) = \frac{1}{2} + \sum_{k=2i}^{n} \cos(kx), n = 100, i = 1, 2, 3...$

Abbildung 3: $f(x) = \sum_{k=1}^n \frac{1}{k} sin(kx), n = 100$

Diese Funktion erfüllt nicht die Dirichletschen Bedingungen, da die Regel i verletzt wird. Die Funktion stellt einzelne Punkte dar, die weder stetig noch monoton sind.

d)
$$f(t) = \frac{1}{t}$$

Diese Funktion erfüllt die Dirichletschen Bedingungen. Die Funktion lässt sich in zwei Teilintervalle aufteilen, die stetig und monoton sind und für den Punkt $t_0 = 0$ gilt die Regel ii, für die Funktion f(t) existieren der links- und rechtsseitigen Grenzwert.

e)
$$f(t) = \cos(\frac{1}{t})$$

Diese Funktion erfüllt nicht die Dirichletschen Bedingungen, da die Regel i verletzt wird. Die Funktion kann zwar in Intervalle aufgeteilt werden, die stetig und monoton sind, allerdings ist die Anzahl dieser Intervalle unendlich.

f) $f(t) = t \mod 1$

Diese Funktion erfüllt die Dirichletschen Bedingungen. Diese Funktion liefert immer 0 als Ergebnis. Somit erfüllt sie beide Bedingungen.