Control of nonlinear switched systems based on validated simulation

Symbolic and Numerical Methods for Reachability Analysis

CPSWeek 2016

Adrien Le Coënt ¹, Julien Alexandre dit Sandretto ², Alexandre Chapoutot ², Laurent Fribourg ³

April 11, 2016

¹CMLA - ENS Cachan

²U2IS - ENSTA ParisTech

³LSV - ENS Cachan

Introduction

Framework

- Framework of the switched control systems: one selects the working modes of the system over time, every mode is described by ordinary differential equations (ODEs)
- The tools we have:
 - Tiling (space discretization)
 - Zonotopes (symbolic representation of sets)
 - Validated simulation

Implementation in C++ with the library DynIbex:

http://perso.ensta-paristech.fr/~chapoutot/dynibex/

Non linear extension of the tool MINIMATOR written in Octave:

https://bitbucket.org/ukuehne/minimator/

Outline

- 1 Switched systems
- 2 State-space bisection algorithm
- 3 Validated simulation
- 4 Case studies

Outline

- 1 Switched systems
- 2 State-space bisection algorithm
- 3 Validated simulation
- 4 Case studies

A continuous-time switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

A continuous-time switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

 \blacksquare state $x \in \mathbb{R}^n$

A continuous-time switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

- state $x \in \mathbb{R}^n$
- lacksquare bounded perturbation $d \in \mathbb{R}^m$

A continuous-time switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

- state $x \in \mathbb{R}^n$
- lacksquare bounded perturbation $d \in \mathbb{R}^m$
- lacksquare switching signal $\sigma(\cdot): \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

A continuous-time switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

- state $x \in \mathbb{R}^n$
- lacksquare bounded perturbation $d \in \mathbb{R}^m$
- lacksquare switching signal $\sigma(\cdot): \mathbb{R}^+ \longrightarrow U$ (piecewise constant)
- ullet $U = \{1, \dots, N\}$ finite set of modes, associated with the dynamics

$$\dot{x}(t) = f_u(x(t), d(t)), \ u \in U$$

A continuous-time switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^n$
- lacksquare bounded perturbation $d \in \mathbb{R}^m$
- lacksquare switching signal $\sigma(\cdot): \mathbb{R}^+ \longrightarrow U$ (piecewise constant)
- ullet $U = \{1, \dots, N\}$ finite set of modes, associated with the dynamics

$$\dot{x}(t) = f_u(x(t), d(t)), \ u \in U$$

We focus on sampled switched systems: switching instants occur periodically every τ , i.e. σ is constant on $[i\tau,(i+1)\tau)$

Controlled Switched Systems: Schematic View

We consider the state-dependent control problem of synthesizing σ :

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u\in U$ according to the current value of x, in order to achieve some objectives:

Given three sets R, S and B:

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u\in U$ according to the current value of x, in order to achieve some objectives:

Given three sets R, S and B:

 \blacksquare $\tau\text{-stability: }x(t)$ returns in R infinitely often, at some multiples of sampling period τ

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u\in U$ according to the current value of x, in order to achieve some objectives:

Given three sets R, S and B:

- au au-stability: x(t) returns in R infinitely often, at some multiples of sampling period au
- **safety**: x(t) always stays in $S \setminus B$

<u>NB</u>: classic stabilization impossible here (no common equilibrium pt) → practical stability

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u} \\ \alpha_{e2} T_e \end{pmatrix}.$$

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u} \\ \alpha_{e2} T_e \end{pmatrix}.$$

■ Modes: u = 0, 1; sampling period τ

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u} \\ \alpha_{e2} T_e \end{pmatrix}.$$

■ Modes: u = 0, 1; sampling period τ

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u} \\ \alpha_{e2} T_e \end{pmatrix}.$$

- \blacksquare Modes: u=0,1 ; sampling period τ
- A pattern π is a finite sequence of modes, e.g. $(0 \cdot 1 \cdot 0 \cdot 0)$

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u} \\ \alpha_{e2} T_e \end{pmatrix}.$$

- Modes: u = 0, 1; sampling period τ
- A pattern π is a finite sequence of modes, e.g. $(0 \cdot 1 \cdot 0 \cdot 0)$
- A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.

Stability and safety properties for the two-room apartment **Input**:

- $\blacksquare R, B, S$
- \blacksquare an integer K (maximal length of patterns)

Output: control tiling of R (each tile is coupled with a pattern)

Guaranteed properties: τ -stability in R, safety in $S \setminus B$

Stability and safety properties for the two-room apartment **Input**:

- R. B. S
- an integer K (maximal length of patterns)

Output: control tiling of R (each tile is coupled with a pattern)

Guaranteed properties: τ -stability in R, safety in $S \setminus B$

■ τ -stability: after some $(\leq K)$ steps of time, the temperature returns in R

Stability and safety properties for the two-room apartment **Input**:

- $\blacksquare R, B, S$
- \blacksquare an integer K (maximal length of patterns)

Output: control tiling of R (each tile is coupled with a pattern) **Guaranteed properties:** τ -stability in R, safety in $S \setminus B$

- τ -stability: after some $(\leq K)$ steps of time, the temperature returns in R
- Safety: x(t) always stays in $S \setminus B$.

Outline

- 1 Switched systems
- 2 State-space bisection algorithm
- 3 Validated simulation
- 4 Case studies

Control tiling procedure

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

Goal: from any $x \in R$, return in R while always staying in $S \backslash B$.

Control tiling procedure

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

Goal: from any $x \in R$, return in R while always staying in $S \setminus B$.

Basic idea:

- Generate a tiling of R
- Look for patterns (input sequences) mapping the tiles into R while always staying in $S \backslash B$
- If it fails, generate another tiling.

Controlling a tile

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

Example of a validated pattern of length 2 mapping the tile X into R with safety in $S \backslash B$:

- lacksquare mode u is applied during $[t_0,t_0+ au]$
- lacksquare mode v is applied during $[t_0+ au,t_0+2 au]$

au-stability:

- $\blacksquare X(t_0) \subset R$
- $X(t_0+2\tau)\subset R$

safety:

- $\forall t \in [t_0, t_0 + 2\tau],$ $X(t) \subset S \backslash B$
- Pattern $u \cdot v$ depends only on X

Controlling a tile

$$\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$$

Example of a validated pattern of length 2 mapping the tile X into R with safety in $S \backslash B$:

- lacksquare mode u is applied during $[t_0,t_0+ au]$
- lacksquare mode v is applied during $[t_0+ au,t_0+2 au]$

au-stability:

- $X(t_0) \subset R$
- $X(t_0+2\tau)\subset R$

safety:

- $\forall t \in [t_0, t_0 + 2\tau],$ $X(t) \subset S \backslash B$
- Pattern $u \cdot v$ depends only on X

Control tiling for the two-room apartment

Inputs: $R = [20.25, 21.75] \times [20.25, 21.75]$, $S = [20, 22] \times [20, 22]$, K = 4

Outputs:

Tiling of R (left) and simulation for the initial condition (21.75, 21.75) (right).

Control tiling for reachability

Extension for reachability: compute patterns such that tile X belonging to R_1 is sent into an objective set R_2 .

au-reachability:

- $X(t_0) \subset R_1$
- $X(t_0+2\tau)\subset R_2$

safety:

- $\forall t \in [t_0, t_0 + 2\tau],$ $X(t) \subset S \backslash B$
- $\begin{tabular}{ll} {\bf Pattern} \ u \cdot v \ {\bf depends} \\ {\bf only \ on} \ X \\ \end{tabular}$

Outline

- 1 Switched systems
- 2 State-space bisection algorithm
- 3 Validated simulation
- 4 Case studies

Validated simulation

Definition (Initial Value Problem (IVP))

Consider an ODE with a given initial condition

$$\dot{x}(t) = f(t, x(t), d(t)) \quad \text{with} \quad x(0) \in X_0, \ d(t) \in [d],$$
 (1)

with $f: \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ assumed to be continuous in t and d and globally Lipschitz in x. We assume that parameters d are bounded (used to represent a perturbation, a modeling error, an uncertainty on measurement, . . .). An IVP consists in finding a function x(t) described by the ODE (1) for all d(t) lying in [d] and for all the initial conditions in X_0 .

Goal: compute an enclosure of all the solutions $x(t; x_0)$ of (1) $\forall t \in [0, T]$.

Validated simulation

Definition (Initial Value Problem (IVP))

Consider an ODE with a given initial condition

$$\dot{x}(t) = f(t, x(t), d(t)) \quad \text{with} \quad x(0) \in X_0, \ d(t) \in [d],$$
 (1)

with $f: \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ assumed to be continuous in t and d and globally Lipschitz in x. We assume that parameters d are bounded (used to represent a perturbation, a modeling error, an uncertainty on measurement, . . .). An IVP consists in finding a function x(t) described by the ODE (1) for all d(t) lying in [d] and for all the initial conditions in X_0 .

Goal: compute an enclosure of all the solutions $x(t; x_0)$ of (1) $\forall t \in [0, T]$. \Rightarrow Solution approximated with a Runge-Kutta numerical scheme

Validated simulation

Definition (Initial Value Problem (IVP))

Consider an ODE with a given initial condition

$$\dot{x}(t) = f(t, x(t), d(t)) \quad \text{with} \quad x(0) \in X_0, \ d(t) \in [d],$$
 (1)

with $f:\mathbb{R}^+\times\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$ assumed to be continuous in t and d and globally Lipschitz in x. We assume that parameters d are bounded (used to represent a perturbation, a modeling error, an uncertainty on measurement, . . .). An IVP consists in finding a function x(t) described by the ODE (1) for all d(t) lying in [d] and for all the initial conditions in X_0 .

Goal: compute an enclosure of all the solutions $x(t;x_0)$ of (1) $\forall t \in [0,T]$.

- \Rightarrow Solution approximated with a Runge-Kutta numerical scheme
- \Rightarrow Use of zonotope data structure to represent sets, permits to take parameters as intervals (i.e. $X_0 \subset \mathbb{R}^n$ and $[d] \subset \mathbb{R}^m$)

 X_{0}

Validated simulation

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution $X(t; X_0)$
- X_i computed with the previous step: $X_i = h(t_{i-1}, X_{i-1})$

 X_{0}

Validated simulation

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution $X(t; X_0)$
- X_i computed with the previous step: $X_i = h(t_{i-1}, X_{i-1})$

Making it guaranteed:

Bound the error

$$||x_n - x(t_n; x_{n-1})||$$

 X_{0}

Validated simulation

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution $X(t; X_0)$
- X_i computed with the previous step: $X_i = h(t_{i-1}, X_{i-1})$

Making it guaranteed:

Bound the error

$$||x_n - x(t_n; x_{n-1})||$$

■ Enclose solutions on $[t_{n-1}, t_n]$

Outline

- 1 Switched systems
- 2 State-space bisection algorithm
- 3 Validated simulation
- 4 Case studies

A polynomial example

[Liu, Ozay, Topcu, Murray, 2013]

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -x_2 - 1.5x_1 - 0.5x_1^3 + u_1 + d_1 \\ x_1 + u_2 + d_2 \end{bmatrix}.$$

Control inputs given by 4 different state-feedback controllers:

$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = K_{\sigma(t)} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ \sigma(t) \in U = \{1, 2, 3, 4\}$$

Perturbations:
$$d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$$
 lies in $[-0.005, 0.005] \times [-0.005, 0.005]$

A polynomial example

[Liu, Ozay, Topcu, Murray, 2013]

Inputs: $R_1 = [-0.5, 0.5] \times [-0.75, 0.0]$, $R_2 = [-1.0, 0.65] \times [0.75, 1.75]$, $S = [-2.0, 2.0] \times [-1.5, 3.0]$, $B = [0.1, 1.0] \times [0.15, 0.5]$ K = 12

Outputs: 128 tiles for R_1 , 128 tiles for R_2 , cpu time: 2min 30s

Building ventilation

[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

$$\frac{dT_i}{dt} = \sum_{j \in \mathcal{N}^*} a_{ij} (T_j - T_i) + \delta_{s_i} b_i (T_{s_i}^4 - T_i^4) + c_i \max\left(0, \frac{V_i - V_i^*}{\bar{V}_i - V_i^*}\right) (T_u - T_i).$$

$$\mathcal{N}^* = \{1, 2, 3, 4, u, o, c\}$$

Control inputs: V_1 and V_4 can take the values $0{\sf V}$ or $3.5{\sf V}$, and V_2 and V_3 can take the values $0{\sf V}$ or $3{\sf V}$

 \Rightarrow 16 switching modes

Perturbations:

- external environment: $T_o \in [27, 30]$
- heat transfer through the ceiling: $T_c \in [27, 30]$
- heat transfer through the underfloor: $T_u = 17$
- lacksquare presence of humans: $\delta_{s_i} \in [0,1]$

Building ventilation

[Meyer, Nazarpour, Girard, Witrant, 2014]

Inputs: $R = [20, 22]^2 \times [22, 24]^2$, $S = [19, 23]^2 \times [21, 25]^2$, K = 1

Outputs: 704 tiles, cpu time: 29min

Presence of humans:

Building ventilation

[Meyer, Nazarpour, Girard, Witrant, 2014]

Inputs: $R = [20, 22]^2 \times [22, 24]^2$, $S = [19, 23]^2 \times [21, 25]^2$, K = 1

Outputs: 704 tiles, cpu time: 29min

Conclusion

Recap:

- Guaranteed control
- Tiling of the state-space
- Validated simulation
- High computational cost

Conclusion

Recap:

- Guaranteed control
- Tiling of the state-space
- Validated simulation
- High computational cost

Further work:

- Improvement of the research of patterns
- Optimal patterns
- Distributed control then smart grids

Conclusion

Recap:

- Guaranteed control
- Tiling of the state-space
- Validated simulation
- High computational cost

Further work:

- Improvement of the research of patterns
- Optimal patterns
- Distributed control then smart grids

Already some results for distributed control:

Adrien Le Coënt, Laurent Fribourg, Nicolas Markey, Florian De Vuyst, Ludovic Chamoin. *Distributed synthesis of state-dependent switching control*. HAL 2016.

Some References

Laurent Fribourg, Ulrich Kühne, and Romain Soulat.

Finite controlled invariants for sampled switched systems.

Formal Methods in System Design, 45(3):303-329, December 2014.

Adrien Le Coënt, Florian De Vuyst, Christian Rey, Ludovic Chamoin, and Laurent Fribourg.

Guaranteed control of switched control systems using model order reduction and state-space bisection.

Open Acces Series in Informatics, 2015.

Adrien Le Coënt, Laurent Fribourg, Nicolas Markey, Florian De Vuyst, and Ludovic Chamoin

Distributed synthesis of state-dependent switching control. HAL. 2016.

Some References

Laurent Fribourg, Ulrich Kühne, and Romain Soulat.

Finite controlled invariants for sampled switched systems.

Formal Methods in System Design, 45(3):303-329, December 2014.

Adrien Le Coënt, Florian De Vuyst, Christian Rey, Ludovic Chamoin, and Laurent Fribourg.

Guaranteed control of switched control systems using model order reduction and state-space bisection.

Open Acces Series in Informatics, 2015.

Adrien Le Coënt, Laurent Fribourg, Nicolas Markey, Florian De Vuyst, and Ludovic Chamoin

Distributed synthesis of state-dependent switching control. HAL. 2016.

The set of the set of

Thank you! Questions?

