EEE104 – Digital Electronics (I) Lecture 3

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Binary Arithmetic
- · Hexadecimal Numbers.
- Binary Coded Decimal (BCD)

1

Binary Arithmetic

1's Complement

- This is to change all 1s to 0s and all 0s to 1s in a binary number.
- It is important to the representation of negative numbers.

1 0 1 1 0 0 1	
$\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$	\downarrow
0 1 0 0 1 1 0	1 1's complement

Binary Arithmetic

2's Complement

- This is to add 1 to the 1's complement.
- It is important to the representation of negative numbers.

10110	010	Binary number		
01001101		1's complement		
+	1	Add 1		
01001110		2's complement		

-

Hexadecimal Numbers

- · Long binary numbers are difficult to read and write.
- So hexadecimal number system is introduced as a compact way of writing binary numbers.
- It is widely used in computers and microprocessors.

5

Hexadecimal Numbers

- The hexadecimal number system has 16 digits: 10 numeric digits (0-9) and 6 alphabetic characters (A-F).
- Each digit represents a 4-bit binary number.
- A hexadecimal number may have a subscript 16 or be followed by an "h".

	Decimal	Binary	Hexadecimal
ă	0	0000	
	1	0001	1
	2	0010	2
T.	3	0011	3
	4	0100	4
t	5	0101	
	6	0110	6
	7	0111	7
,	8	1000	8
100	9	1001	9
	10	1010	A
	11	1011	В
	12	1100	$^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$
	13	1101	D
	14	1110	Ε
	15	1111	F

Hexadecimal Numbers

Counting in Hexadecimal

• Once you get to F, add another digit and continue.

Hexadecimal Numbers

Binary-to-Hexadecimal Conversion

- Starting at the right-most bit, break the binary number into 4-bit groups.
- Replace each 4-bit group with the equivalent hexadecimal symbol.

Hexadecimal Numbers

Hexadecimal-to-Binary Conversion

 Replace each hexadecimal symbol with the appropriate 4 bits.

ç

Hexadecimal Numbers

Decimal-to-Hexadecimal Conversion

- Divide a decimal number or the previous quotient by 16. The remainder is a digit in the hexadecimal number.
- · The first remainder is the LSD.
- Repeat this process until the whole number quotient becomes zero.

	quotient	remainder	
$\frac{650}{16}$	40	10 = A	$650 = 28A_{16}$
$\frac{40}{16}$	2	8 = 8	
$\frac{2}{16}$	0	2	1:

Hexadecimal Numbers

Hexadecimal-to-Decimal Conversion

• The weights of hexadecimal digits are increasing powers of 16 (from right to left).

$$16^3$$
 16^2 16^1 16^0 4096 256 16 1

 Multiply the decimal value of each hexadecimal digit by its weight and then take the sum of these products.

$$B2F8_{16} = (B \times 4096) + (2 \times 256) + (F \times 16) + (8 \times 1)$$

$$= (11 \times 4096) + (2 \times 256) + (15 \times 16) + (8 \times 1)$$

$$= 45,056 + 512 + 240 + 8 = 45,816_{10}$$

10

Hexadecimal Numbers

Hexadecimal Addition

- If the sum of two digits is 15₁₀ or less, bring down the corresponding hexadecimal digit.
- If the sum of these two digits is greater than 15₁₀, bring down the amount of the sum that exceeds 16₁₀ and carry a 1 to the next column.

$$\begin{array}{lll} 58_{16} & \text{right column:} & 8_{16} + 2_{16} = 8_{10} + 2_{10} = 10_{10} = A_{16} \\ & \underline{+ 22_{16}} & \text{left column:} & 5_{16} + 2_{16} = 5_{10} + 2_{10} = 7_{10} = 7_{16} \\ \hline \textbf{7A}_{16} & \text{right column:} & F_{16} + C_{16} = 15_{10} + 12_{10} = 27_{10} \\ & \underline{+ AC_{16}} & 27_{10} - 16_{10} = 11_{10} = B_{16} \text{ with a 1 carry} \\ & 18B_{16} & 18B_{16} & 16B_{16} + A_{16} + 1_{16} = 13_{10} + 10_{10} + 1_{10} = 24_{10} \\ & 24_{10} - 16_{10} = 8_{10} = 8_{16} \text{ with a 1 carry} \end{array}$$

Binary Coded Decimal (BCD)

- **Binary coded decimal** (BCD) is an easy way to express decimal digits with a binary code.
- The BCD system has only 10 code groups.
- It is mainly used in user interface such as keypads and digital displays.
- The **8421 code** is a type of BCD, where the weights of the four bits are 8, 4, 2 and 1.

									12000
Decimal Digit	Λ	. 1	2		1	5	6		9
Decimal Digit	U	1	2	3	4	J ,	U	/	0 9
DCD	0000	0001	0010	0011	0100	0101	0110	0111	1000 1001
BCD	UUUU	0001	0010	OULL	0100	0101	0110	UIII	1000 1001
	23549165	<u> </u>	<u>0. zástyt</u>	38 Bar 1707	s ille XIII (il			24.00	The Book of Marketing

13

15

Binary Coded Decimal (BCD)

BCD Addition

- Add the two BCD number using the rules for binary addition.
- If a 4-bit sum is equal to or less than 9, it is a valid BCD number.
- If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, it is an invalid result. Add 6 (0110) to the 4-bit sum to skip the six invalid states.

$$\begin{array}{c|ccccc}
0010 & 0011 & 23 \\
+ 0001 & 0101 & + 15 \\
\hline
\mathbf{0011} & \mathbf{1000} & 38
\end{array}$$

Binary Coded Decimal (BCD)

Decimal-to-BCD Conversion

• Replace each decimal digit with the appropriate 4-bit.

BCD-to-Decimal Conversion

- Start at the right-most bit and break the code into groups of four bits.
- · Write the decimal digit for each 4-bit group.

14

Binary Coded Decimal (BCD)

BCD Addition

