

Mathematisch-Naturwissenschaftliche Fakultät

Autonomes Maschinelles Sehen

Lecture: Computer Vision

The goal of computer vision is to compute geometric and semantic properties of the three-dimensional world from digital images. Problems in this field include reconstructing the 3D shape of an object, determining how things are moving and recognizing objects or scenes. This course will provide an introduction to computer vision, with topics including image formation, camera models, camera calibration, feature detection and matching, motion estimation, geometry reconstruction, object detection and tracking, and scene understanding. Applications include building 3D maps, creating virtual avatars, image search, organizing photo collections, human computer interaction, video surveillance, self-driving cars, robotics, virtual and augmented reality, simulation, medical imaging, and mobile computer vision. Modern computer vision relies heavily on machine learning in particular deep learning and graphical models. This course therefore assumes prior knowledge of deep learning (e.g., deep learning lecture) and introduces the basic concepts of graphical models and structured prediction where needed. The tutorials will deepen the understanding of deep neural networks by implementing and applying them in Python and PyTorch. A strong emphasis of this course is on 3D vision.

This class received the CS teaching award in summer 2021

Qualification Goals

Students gain an understanding of the theoretical and practical concepts of computer vision including image formation, camera models, feature detection, multiple view geometry, 3D reconstruction, motion estimation, object recognition, scene understanding and structured prediction using deep neural networks and graphical models. A strong emphasis of this course is on 3D vision. After this course, students should be able to understand and apply the basic concepts of computer vision in practice, develop and train computer vision models, reproduce research results and conduct original research in this area.

Overview

- Course number: ML-4360
- Credits: 6 ECTS, from 2023: 9 ECTS
- · Recommended for: Master, 2nd semester
- Total Workload: 270h
- This lecture is taught as **flipped classroom.** Lectures will be held asynchronously via **YouTube** (see sidebar for link). We will provide all lectures before the respective interactive live sessions for self-study. Please watch the relevant videos before participating in the interactive live sessions.
- Each week, we host **an interactive live session** where questions regarding the lecture and exercises are discussed together (see sidebar for details).
- We also offer a weekly **zoom helpdesk** where students may ask questions or share their screen to obtain individual feedback and support for solving the exercises (see sidebar for details).
- Exercises will not be graded. Instead, we will discuss the solution together.
- Students may obtain **bonus points** for the exam by answering questions about the lectures and exercises in weekly quizzes.

 The questions also serve as a measure for self-assessment and self-motivation. All quizzes are provided via our **Lecture Quiz Server** (see sidebar for details).

Prerequisites

- Basic Computer Science skills: Variables, functions, loops, classes, algorithms
- Basic **Python** and **PyTorch** coding skills
- · Basic Math skills: Linear algebra, probability and information theory (eg., Math for ML lecture
 - https://www.tml.cs.uni-tuebingen.de/teaching/2020 maths for ml/index.php)
 - As a refresher we recommend reading Chapters 1-4 of: http://www.deeplearningbook.org
- Experience with **Deep Learning** (eg., through participation our <u>Deep Learning lecture</u>)

Registration

- To participate in this lecture, you must enroll via ILIAS (see sidebar for link)
- Registration via **ILIAS will open** on 30.03. at 12:00
- Information about **exam registration** can be found <u>here</u>

Exercises

The exercises play an essential role in understanding the content of the course. There will be 6 assignments in total. The assignments contain pen and paper questions as well as programming problems. For some of the exercises, the students will use **PyTorch**, a state-of-the-art deep learning framework which features GPU support and auto-differentiation. If you have **questions** regarding the exercises or the lecture, please ask them during the interactive sessions, at the zoom helpdesk or in our ILIAS forum.

Further Readings

- Richard Szeliski: <a>Zeliski: <a>Computer Vision: Algorithms and Applications
- Hartley and Zisserman: <a> Multiple View Geometry in Computer Vision
- Nowozin and Lampert: <a>Z <a>Structured Learning and Prediction in Computer Vision
- Goodfellow, Bengio and Courville: <a> Deep Learning
- Z Computer Vision Lecture Notes written by students in summer 2021
- Articles and papers mentioned in the lecture slides

Schedule

Date	Lecture Slides and Videos	Live Sessions (Zoom MvL6+Zoom)	TA Support
22.04.	L01 - Introduction Slides 1.1 Organization Video 1.2 Introduction Video 1.3 History of Computer Vision Video	L01 - Lecture Organization E01 - Exercise Introduction Problems	Michael Niemeyer
29.04.	L02 - Image Formation Slides 2.1 Primitives and Transformations Video 2.2 Geometric Image Formation Video 2.3 Photometric Image Formation Video 2.4 Image Sensing Pipeline Video	L02 - Lecture Q&A E01 - Exercise Q&A	Michael Niemeyer
06.05.	L03 - Structure-from-Motion Slides 3.1 - Preliminaries Video 3.2 - Two-frame Structure-from-Motion Video 3.3 - Factorization Video 3.4 - Bundle Adjustment Video	L03 - Lecture Q&A E01 - Exercise Q&A E02 - Exercise Introduction Problems	Michael Niemeyer
13.05.	L04 - Stereo Reconstruction Slides 4.1 - Preliminaries Video 4.2 - Block Matching Video 4.3 - Siamese Networks Video 4.4 - Spatial Regularization Video 4.5 - End-to-End Learning Video	L04 - Lecture Q&A E02 - Exercise Q&A	Michael Niemeyer
20.05.	L05 - Probabilistic Graphical Models Slides 5.1 - Structured Prediction Video 5.2 - Markov Random Fields Video 5.3 - Factor Graphs Video 5.4 - Belief Propagation Video 5.5 - Examples Video	L05 - Lecture Q&A E02 - Exercise Q&A E03 - Exercise Introduction Problems	Michael Niemeyer Zehao Yu
27.05.	L06 - Applications of Graphical Models Slides 6.1 - Stereo Reconstruction Video 6.2 - Multi-View Reconstruction Video 6.3 - Optical Flow Video	No Lecture Q&A This Week E03 - Exercise Q&A	Zehao Yu
03.06.	L07 - Learning in Graphical Models Slides 7.1 - Conditional Random Fields Video 7.2 - Parameter Estimation Video 7.3 - Deep Structured Models Video	L07 - Lecture Q&A E03 - Exercise Q&A E04 - Exercise Introduction Problems	Zehao Yu
10.06.	No Lecture (Pfingstpause)	No Exercise (Pfingstpause)	

			,
17.06.	L08 - Shape-from-X Slides 8.1 - Shape-from-Shading Video 8.2 - Photometric Stereo Video 8.3 - Shape-from-X Video 8.4 - Volumetric Fusion Video	L08 - Lecture Q&A E04 - Exercise Q&A	Zehao Yu
24.06.	No Lecture	No Exercise	
01.07.	L09 - Coordinate-based Networks Slides 9.1 - Implicit Neural Representations Video 9.2 - Differentiable Volumetric Rendering Video 9.3 - Neural Radiance Fields Video 9.4 - Generative Radiance Fields Video	L09 - Lecture Q&A E04 - Exercise Q&A E05 - Exercise Introduction Problems	Zehao Yu Markus Flicke
08.07.	L10 - Recognition Slides 10.1 - Image Classification Video 10.2 - Semantic Segmentation Video 10.3 - Object Detection and Segmentation Video	L10 - Lecture Q&A E05 - Exercise Q&A	Markus Flicke
15.07.	L11 - Self-Supervised Learning Slides 11.1 - Preliminaries Video 11.2 - Task-specific Models Video 11.3 - Pretext Tasks Video 11.4 - Contrastive Learning Video	L11 - Lecture Q&A E05 - Exercise Q&A E06 - Exercise Introduction Problems	Markus Flicke
22.07.	No Lecture	No Exercise	
29.07.	L12 - Diverse Topics in Computer Vision Slides 12.1 - Input Optimization Video 12.2 - Compositional Models Video 12.3 - Human Body Models Video 12.4 - Deepfakes Video	L12 - Lecture Q&A E06 - Exercise Q&A	Markus Flicke

Lecturer

Prof. Dr. Andreas Geiger

TAs

Michael Niemeyer (lead)

<u>Zehao Yu</u>

Markus Flicke

Summer 2022

• Live Sessions:

Fri, 10:15-12:00

(until 27.5. via Zoom,

from 3.6. on Hybrid:

MvL6 + Zoom)

• Individual Sessions:

Fri, 9:15-10:00

Fri, 11:15-12:00

Fri, 12:15-13:00

• Important Links:

- ✓ YouTube Lectures
- Slides / Exercises
- ILIAS / Zoom / Quiz

Exam

• Date: 02.08.2022

• Time: 8:00-9:30

• Rooms: HS 25 (Kupferbau)

Mode: Written<u>Exam registration</u>

Make-up Exam

Date: 10.10.2022Time: 10:00-11:30

• Room: HS 25 (Kupferbau)

Mode: Written <u>Exam registration</u>

© 2023 Eberhard Karls Universität Tübingen, Tübingen