

Fundamentos da Análise Essencial

A Análise Estruturada da Essência de Sistemas faz o uso das ferramentas da Análise Estruturada com a finalidade de modelar a essência do sistema.

→ A Essência de um sistema é o conjunto completo de seus requisitos essenciais.

requisito essencial → requisito verdadeiro

requisito não essencial → requisito falso (irrelevante)

Um requisito essencial é uma característica (ou capacidade) que um sistema deve ter para cumprir seus objetivos independente de como o sistema é implantado.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

Fundamentos da Análise Essencial

Origens dos Requisitos Falsos

(modelagem prematura de características físicas)

- 1) Preferências irracionais
- 2) Preferências tecnológicas

Exemplos: sort, consistência, arquivos "batch".

Consequência dos Requisitos Falsos

- Aumento da complexidade
- Especificação confusa
- Maior custo

A Essência de um sistema é o conjunto completo dos requisitos do sistema, independente das possíveis alternativas de implementação.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

3

Análise Essencial

Fundamentos da Análise Essencial

A ESSÊNCIA DO SISTEMA

Para se modelar a essência do sistema, o analista deve observar e retratar o sistema como se este fosse implementado com tecnologia perfeita.

O MODELO DA ESSÊNCIA INDEPENDE DA TECNOLOGIA

O Sistema deve ser "idealizado" com tecnologia ideal.

A Encarnação do Sistema

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

Modelos	Produtos		
Modelo do Ambiente	Objetivos do Sistema	Tabela de Eventos Estímulos Respostas	Diagrama de Contexto
Modelo do Comportamento	DFDs nivelados	Modelo Conceitual de Dados (MER e DD)	Especificação dos Processos

Diagrama de Contexto

OBSERVAÇÕES - CONVENÇÕES

- · Útil para mostrar os limites do sistema.
 - Mostra as entidades relevantes para o sistema.
- Entidades externas ficam fora do escopo do sistema e o sistema é representado por um único processo.
 - O que não pode ser controlado pelo sistema fica de fora.
- Depósitos de dados não são usualmente mostrados uma vez que são considerados dentro do escopo do sistema.
 - Sistemas que disponibilizam arquivos são representados como entidades externas.
- No diagrama de contexto não são representados detalhes que acontecerem no interior do sistema.
 - É o DFD de mais alto nível.
 - Representa o diagrama de maior abstração.
 - Não são representados os fluxos de dados de rejeição de informação.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

O Sistema Particionado por Eventos

IDÉIA: Analise da Essência do Sistema [McMenamin 91]

Construir o modelo a partir dos eventos que o sistema deve atender.

- O diagrama do sistema particionado por eventos é um DFD que modela os requisitos usando um processo para cada evento.
 - O conjunto de fragmentos, ou partições do sistema, pode ser combinado em um só diagrama chamado DFD do sistema particionado por eventos ou diagrama 0.
- Os quatro próximos slides apresentam uma amostra do conjunto de DFDs relacionados.
 - 1) O diagrama de topo mostra o "Contexto".
 - O DFD seguinte (Diagrama 0) mapeia o sistema particionado por eventos.
 - O DFD seguinte (Diagrama de Primeiro Nível) apresenta os subsistemas que foram formados pela agregação de processos dos eventos relacionados entre si.
 - 4) O quarto slide do conjunto apresenta dois DFDs para ilustrar diagramas de segundo e terceiro nível.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

Diagrama de Primeiro Nível

Toda No diagrama de primeiro nível os processos que respondem aos eventos são agrupados em processos maiores para representar os sub-sistemas.

COMO AGRUPAR OS PROCESSOS PARA FORMAR O DFD DE PRIMEIRO NÍVEL ?

- Identificar os processos de eventos que compartilham os mesmos depósitos de dados.
- Agrupar, dentre os processos identificados, os processos de eventos que tenham uma finalidade em comum.
- 3) Fornecer um nome para o processo obedecendo a convenção.
 - Agrupar processos de eventos que acessam (com leitura ou gravação) os mesmos depósitos de dados.
 - Observe que os processos ligados por uma finalidade em comum normalmente fazem interface com uma mesma entidade externa.
 - Um "bom nome" para o processo deve conter, de preferência, um verbo no infinitivo que representa uma atividade do negócio.
 - Procure evitar verbos ligados a computação (ex: consistir, criticar, registrar) e/ou verbos que representem muito detalhamento (ex: ler, imprimir, grava)
 - » Não usar mais de um verbo e/ou não usar conectivos.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

Exemplo de Modelagem

SISTEMA: "ACOMPANHAMENTO DE SEMINÁRIOS"

As pessoas se inscrevem em seminários via postal ou telefônica. Cada inscrição dá origem a uma fatura e, após o seu pagamento, a uma carta de confirmação que são enviadas para o inscrito.

Os pagamentos chegam por depósito bancário e existe um mecanismo para as pessoas cancelarem suas inscrições, com até cinco dias de antecedência do seminário, se assim o desejarem.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

TABELA DE EVENTOS, ESTÍMULOS E RESPOSTAS

Exercício: Construir o DFD particionado por evento

EVENTOS	ESTÍMULOS	RESPOSTAS
1. Cliente se inscreve em seminário.	pedido inscrição	fatura
2. Cliente cancela inscrição.	cancelamento inscrição	carta confirmação cancelamento
3. Cliente paga seminário.	pagamento	carta confirmação inscrição
4. É dia de realizar seminário.	-	inscritos no seminário
5. Administração decide seminários do período.	seminários do período	programação seminários

Depósitos de dados no modelo funcional: CLIENTES, INSCRIÇÕES e SEMINÁRIOS.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira

15

Análise Essencial

Bibliografia

[DeMarco 78] DeMarco, T., Structured Analysis and Systems Specififcation, Prentice Hall, 1978.

[Gane 79] Gane, C. and Sarson, T., Structured Systems Analysis, Prentice Hall, 1979.

[McMenamin 91] McMenamin, Stephen M. & Palmer, John F. Análise Essencial de Sistemas. São Paulo, McGraw-Hill, 1991.

[Pompilho 95] Pompilho, S; Análise Essencial - Guia Prático de Análise de Sistemas; Infobook, 1995

[Oliveira 00] Oliveira, A. Padua A.; Apostila de ASII - UERJ - Notas de Aula, Análise de Sistemas II - UERJ - 2000.

[Pressman 06] Pressman, R. S.; Engenharia de Software, McGraw-Hill, Hardcover, 6th edition, (2006), ISBN 0-07-28318-2.

UERJ Engenharia de Software © 2006 Prof. A Padua A Oliveira