Group FTR

Week 9: Deliverables (Pls Scroll down)

Team Details

I cum D cums								
Name	Email	Country	College/Company	Specialization				
Fabian Umeh	Fabianumeh335@gmail.com	UK	Teesside University	Data Science				
Rukevwe Ovuowo	rukevwe10@gmail.com	Nigeria	GBG Data science Academy	Data Science				
Olutayo Oladeinbo	oladeinboolutayo@yahoo.com	UK	Teesside University	Data Science				

Problem statement (Week 7)

Churn rate is a marketing metric that describes the number of customers who leave a business over a specific time. Every user is assigned a prediction value that estimates their state of churn at any given time.

Business Understanding

Browsing behaviour Historical purchase data among other information It factors in our unique and proprietary predictions of how long a user will remain a customer. This score is updated every day for all users who have a minimum of one conversion. The values assigned are between 1 and 5.

Project lifecycle

Two weeks—deadline (1/09/2022)

Data intake report

Name: Customer Churn score prediction

Report date: 18/08/2022

Internship Batch: LISUM11: 30

Version:<1.0>

Data intake by: Fabian Umeh, Rukevwe Ovuowo, and Olutayo Oladeinbo

Data intake reviewer: Group members

Data storage location: Github

Tabular data details:

Total number of observations: 36992

Total number of files: 1 Total number of features: 25 Base format of the file: .csv Size of the data: 8.3 MB

PROBLEMS IN DATA (Week 8)

1.1 Missing values:

Some values in columns such as [region_category, preferred_offer_types, points_in_wallet], appears to be missing.

1.2 Approach:

• The region category was encoded as follows:

City - 3

Town - 2

Village – 1

And as such, missing values were filled with the non-extreme value (2) for town.

- The points_in_wallet column had a relatively small percentage of missing values, and these values were filled using the average of the collected samples.
- The Preferred offer type column was encoded as follows:

Offer - 1

Without offer -0

And as such the few missing values were replaced with no offers.

data.info()

C <class 'pandas.core.frame.DataFrame'>
RangeIndex: 36992 entries, 0 to 36991
Data columns (total 25 columns):

#	Column	Non-No	ull Count	Dtype			
0	customer_id		non-null	object			
1	Name	36992	non-null	object			
2	age	36992	non-null	int64			
3	gender	36992	non-null	object			
4	security_no	36992	non-null	object			
5	region_category	31564	non-null	object			
6	membership_category	36992	non-null	object			
7	joining_date	36992	non-null	object			
8	joined_through_referral	36992	non-null	object			
9	referral_id	36992	non-null	object			
10	preferred_offer_types	36704	non-null	object			
11	medium_of_operation	36992	non-null	object			
12	internet_option	36992	non-null	object			
13	last_visit_time	36992	non-null	object			
14	days_since_last_login	36992	non-null	int64			
15	avg_time_spent	36992	non-null	float64			
16	avg_transaction_value	36992	non-null	float64			
17	avg_frequency_login_days	36992	non-null	object			
18	points_in_wallet	33549	non-null	float64			
19	used_special_discount	36992	non-null	object			
20	offer_application_preference	36992	non-null	object			
21	past_complaint	36992	non-null	object			
22	complaint_status	36992	non-null	object			
23	feedback	36992	non-null	object			
24	churn_risk_score	36992	non-null	int64			
dtypes: float64(3), int64(3), object(19)							
memory usage: 7.1+ MB							

2.1 String Error:

The data type in the average frequency login days column was supposed to be 'int' but rather contained some string value 'Error', which was further removed.

2.2 Approach:

The average frequency login days column keeps record of the average days the company site is visited by a customer. So ideally 'Error', most likely represent 0 login days was replaced as such.

Inspection of avg_frequency_login_days for posible anomaly:

From findings, the column contains 'int' and 'str' values, and as a result was not considered by the describe function above.

3.1 Negative values:

Some columns contained negative values, which appeared to be anomalous and were further excluded from the analysis.

3.2 Approach:

The negative (anomalous) values were few and were excluded from the analysis.

Check and removal of negative values (anomalous values):

```
#code to check for the negative values in the Dataframe we noticed from the describe function
     anom = data[['avg_time_spent','days_since_last_login','points_in_wallet','churn_risk_score','avg_frequency_login_days']].min(axis=0)
     anom[anom < 0]
 C→ avg_time_spent
                                -2814.109110
    days_since_last_login
points_in_wallet
                                  -999,000000
     churn risk score
                                    -1.000000
     avg_frequency_login_days
     dtype: float64
[ ] #code to remove negative values in the avg_time_spent column
     data = data.drop(data[data['avg_time_spent'] < 0].index).copy()</pre>
     #code to remove negative values in the avg_time_spent column
     data = data.drop(data[data['days_since_last_login'] < 0].index).copy()</pre>
     #code to remove negative values in the avg time spent column
     data = data.drop(data[data['points_in_wallet'] < 0].index).copy()</pre>
     #code to remove negative values in the avg_time_spent column
     data = data.drop(data[data['churn_risk_score'] < 0].index).copy()</pre>
     #code to remove negative values in the avg_time_spent column
     new\_data = data.drop(data[data['avg\_frequency\_login\_days'] < \emptyset].index).copy()
```

4.1 Duplicate check:

Duplicate check:

```
[ ] print('counting duplicates')
  len(new_data) - len(new_data.drop_duplicates())

counting duplicates
```

Data Transformations (Week 9)

1. Removing Unused columns

Some features appeared to be irrelevant in the prediction of customers churn score rate, and as such were excluded from the study.

```
#dropping unused columns
new_data = new_data.drop(['security_no', 'Name', 'customer_id','referral_id'], axis =1).copy()
```

2. Feature Engineering

The data in its raw form can only provide limited information. Some transformation techniques were performed on the data, this is to convert the data into a machine-readable format. Some of the transformation includes: date formatting, binary encoding and categorical encoding.

Date Formatting

```
#converting to datatime format
new_data['joining_date'] = new_data['joining_date'].apply(pd.to_datetime)
```

• Getting the number of days spent by each customer

```
# Getting the number of days customer has spent with the company
#code to convert from time stamp in days to integer
new_data['Days_w_com'] = (new_data['joining_date'] - new_data['joining_date'].min()
#convert to string
new_data['Days_w_com'] = new_data['Days_w_com'].astype('str')

#split and pick only integer values
new_data['Days_w_com'] = new_data['Days_w_com'].str.split(" ", n=1, expand=True)[0]
#replace the latest value with 0
new_data['Days_w_com'] = new_data['Days_w_com'].replace('NaT', 0)
#convert to integer
new_data['Days w_com'] = new_data['Days w_com'].astype('int')
```

• Getting the number of hours spent in the last visit by each customer

```
#gettint the hours from last time visit
last_timv = new_data['last_visit_time'].str.split(r":", expand=True)

#fill Nan values with zero before computing hour
new_data['hour'] = last_timv[0].fillna(0).astype('int')
new_data['min'] = last_timv[1].fillna(0).astype('int')
new_data['sec'] = last_timv[2].fillna(0).astype('int')
new_data['hour'] = new_data['hour'] + (new_data['min']/60) + new_data['sec']/3600
```

• Low-level categorical feature format

Some categorical features has some classes either few or unknown. To handle this, the said classes were split equally between the two major class as shown below.

```
#code to get the dataframe with unknown gender
unknown = new[new['gender']== 'Unknown']
#code to divide the unkown into two equal part
index1= new[new['gender']== 'Unknown'][:len(unknown) // 2].index
index2= new[new['gender']== 'Unknown'][len(unknown) // 2 :].index
#code for allocating Each half
new.loc[index1, 'gender'] = 'M'
new.loc[index2, 'gender'] = 'F'
#code to get the dataframe with unknown referral status
Un ref = new[new['joined through referral']== '?']
#code to divide the unkown into two equal part
index1= new[new['joined through referral']== '?'][:len(Un ref) // 2].index
index2= new[new['joined through referral']== '?'][len(Un ref) // 2 :].index
#code for allocating Each half to Yes and No
new.loc[index1,'joined through referral'] = 'Yes'
new.loc[index2,'joined through referral'] = 'No'
```

Generalizing categories to reduce complexity

Classes that represent the same phenomena were further classified as one, for instance the feedback columns with categories such as 'Poor Product Quality', 'Poor Website', 'Too many ads', 'Poor Customer Service' all represent bad reviews.

```
#replacing values in columns for better understanding and reduced dimension
new = new.replace({'complaint_status': {'Solved in Follow-up': 'Solved',
                                         'No Information Available': 'Not Applicable'}})
new = new.replace({'feedback': {'Poor Product Quality': 'Bad',
                                 'Poor Website': 'Bad',
                                 'Too many ads': 'Bad',
                                 'Poor Customer Service': 'Bad',
                                'Reasonable Price': 'Good',
                                'User Friendly Website': 'Good',
                                'Products always in Stock': 'Good',
                                 'Quality Customer Care': 'Good',
                                 'No reason specified': 'Good'
                                }})
new = new.replace({'medium_of_operation': {'?': 'Both'}})
new = new.replace({'preferred_offer_types': {'Gift Vouchers/Coupons': 'Offer',
                                              'Credit/Debit Card Offers': 'Offer'}})
```

• Binary Encoding

```
#Encoding Binary columns
new['gender'] = new['gender'].apply(lambda x: 1 if x =='M' else (0 if x =='F' else None))
new['joined_through_referral'] = new['joined_through_referral'].apply(lambda x: 1 if x =='Yes' else (0 if x =='No' else None))
new['feedback'] = new['feedback'].apply(lambda x: 1 if x =='Good' else (0 if x =='Bad' else None))
new['used_special_discount'] = new['used_special_discount'].apply(lambda x: 1 if x =='Yes' else (0 if x =='No' else None))
new['past_complaint'] = new['past_complaint'].apply(lambda x: 1 if x =='Yes' else (0 if x =='No' else None))
new['offer_application_preference'] = new['offer_application_preference'].apply(lambda x: 1 if x =='Yes' else (0 if x =='No' else None))
new['preferred_offer_types'] = new['preferred_offer_types'].apply(lambda x: 1 if x =='Offer' else (0 if x =='Without Offers' else None))
```

Categorical encoding

3. Finally, Handling of missing values

new.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 31618 entries, 0 to 36991
Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype		
0	age	31618 non-null	int64		
1	gender	31618 non-null	int64		
2	region_category	31618 non-null	float64		
3	membership_category	31618 non-null	int64		
4	joined_through_referral	31618 non-null	int64		
5	preferred_offer_types	31618 non-null	float64		
6	medium_of_operation	31618 non-null	object		
7	internet_option	31618 non-null	object		
8	days_since_last_login	31618 non-null	int64		
9	avg_time_spent	31618 non-null	float64		
10	avg_transaction_value	31618 non-null	float64		
11	avg_frequency_login_days	31618 non-null	float64		
12	points_in_wallet	31618 non-null	float64		
13	used_special_discount	31618 non-null	int64		
14	offer_application_preference	31618 non-null	int64		
15	past_complaint	31618 non-null	int64		
16	complaint_status	31618 non-null	object		
17	feedback	31618 non-null	int64		
18	churn_risk_score	31618 non-null	category		
19	Days_w_com	31618 non-null	int64		
20	hour	31618 non-null	float64		
dtypes: category(1), float64(7), int64(10), object(3)					

dtypes: category(1), float64(7), int64(10), object(3)

memory usage: 6.1+ MB