제 11 장 모집단 분산의 추론

실험 1. $x \sim N(100, 10^2)$, n=4; 실험횟수 1,000,000

	x_1	x_2	x_3	x_4	\overline{x}	S^2
1	130.05	104.20	94.44	116.26	111.24	236.86
2	105.30	94.40	107.87	103.61	102.80	34.37
3	84.79	101.77	96.08	96.33	94.74	50.94
4	96.35	99.32	107.02	117.35	105.01	87.89
5	80.56	107.91	108.23	94.27	97.74	173.54
6	108.84	106.54	105.19	104.51	106.27	3.65
7	105.71	90.55	115.92	93.96	101.54	134.12
8	108.55	119.81	102.84	89.64	105.21	157.49
9	90.45	96.07	100.07	85.96	93.14	38.44
10	103.36	96.42	99.07	106.35	101.30	19.52
1,000,000	89.58	112.11	97.90	108.86	102.11	106.73
평균					99.99964	99.87746

S^2 의 도수분포그래프

 \overline{X} 와 S^2 의 백분위수

	\overline{x}	S^2
0.00%	76.5	0.0
10.0%	93.6	19.5
20.0%	95.8	33.6
30.0%	97.4	47.5
40.0%	98.7	62.4
50.0%	100.0	79.0
60.0%	101.3	98.3
70.0%	102.6	122.3
80.0%	104.2	154.8
90.0%	106.4	208.5
100.0%	124.2	1,027.4

	\overline{x}	S^2
최소	72.85	0.01
중앙	100.00	78.88
최대	124.44	1,129.66

연습문제 1.

문제 1. x와 s^2 의 분포의 특징에 대해 논하시오. (40.0% 줄의 첫 번째 값 98.7은 1,000,000개의 x 값들 중 하위 40%에 해당하는 값이 98.7, 두 번째 값 62.4는 1,000,000개의 s^2 값들 중 하위 40%에 해당하는 값이 62.4임을 의미한다.)

문제 2. s^2 의 (이론적) 최소값은?

제1절 단일 모집단 분산의 추론

1. 카이자승 (chi-square) 분포

가정: $X \sim N(\mu_X, \sigma_X^2)$

확률변수 χ^2_{n-1} (chi-square)의 정의

$$\chi_{n-1}^2 \equiv \frac{(n-1)S^2}{\sigma^2}$$
, where $n = \text{sample size}$

Note 1. 모집단이 정규분포 (또는 정규분포에 근사한 경우)가 아니면, $\frac{(n-1)S^2}{\sigma^2}$ 는 χ^2 분포를 갖지 못한다.

Note 2. $\chi^2_{n-1}\equiv \frac{(n-1)S^2}{\sigma^2}$ 에서 변수는 S^2 하나이며, n과 σ^2 은 상수이다. χ^2 분포는

 S^2 의 분포와 닮은 꼴이며, 단지 scale 을 $\frac{(n-1)}{\sigma^2}$ 으로 조정한 것 뿐이다.

실험 2. s^2 와 χ^2_{n-1} 의 관계: $x_1 \sim N(100, 10^2)$, $x_2 \sim N(200, 20^2)$, $n_1 = n_2 = 4$; 실험횟수 10,000

	모집단 1	$\sigma_1^2 = 10^2$	모집단 2	$\sigma_2^2 = 20^2$	χ^2
	s_1^2	χ^2	s_2^2	χ^2	이론값
0.0%	0.04	0.0011	0.48	0.0036	-
10.0%	19.54	0.5861	78.18	0.5863	0.5844
20.0%	33.33	0.9999	135.65	1.0173	1.0052
30.0%	47.17	1.4151	191.88	1.4391	1.4237
40.0%	61.78		252.93		1.8692
50.0%	78.76	2.3627	320.32	2.4024	2.3660
60.0%	98.34	2.9503	397.79	2.9834	2.9462
70.0%	121.02	3.6307	494.47	3.7085	3.6649
80.0%	152.35	4.5706	628.33	4.7125	4.6416
90.0%	205.84	6.1751	842.82	6.3212	6.2514
95.0%	259.57		1,047.08		7.8147
100.0%	691.98	20.7594	2,484.51	18.6339	77.3963

연습문제 2.

문제 1. 모집단 1에서 하위 40%에 해당하는 χ^2 값과, 모집단 2에서 하위 40%에 해당하는 χ^2 을 구하시오. (단, n=4이다.)

문제 2. 모집단 1에서 하위 95%에 해당하는 χ^2 값과, 모집단 2에서 하위 95%에 해당하는 χ^2 을 구하시오. (단, n=4이다.)

문제 3. 위의 표는 무엇을 방증하는가?

χ^2_{n-1} 분포의 특징

비대칭이고 오른쪽으로 꼬리 \to 자유도(df, n-1)가 증가할수록 정규분포에 가깝게 된다. 또한 모든 χ^2 의 값은 항상 양수이다.

 $_{_{\chi^{2}}}$ (여기서 lpha는 하위가 아닌 상위 개념이다.)

					α				
ν	0.99	0.975	0.95	0.9	0.5	0.1	0.05	0.025	0.01
1	0.000	0.001	0.004	0.016	0.455	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	1.386	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	2.366	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	3.357	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	4.351	9.236	11.070	12.833	15.086
6	0.872	1.237	1.635	2.204	5.348	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	6.346	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	3.490	7.344	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	8.343	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	9.342	15.987	18.307	20.483	23.209
10	T 600	0.005	10.115	11 051	10.000	07.004	00.144	00.050	0.6.1.01
19	7.633	8.907	10.117	11.651	18.338	27.204	30.144	32.852	36.191

연습문제 3.

문제 1. 모집단은 정규분포를 따른다. n=4일 때, 상위 5%에 해당하는 χ^2 값은?

문제 2. 모집단은 정규분포를 따른다. n=4일 때, 하위 5%에 해당하는 χ^2 값은?

문제 3. 모집단은 정규분포를 따르고 $\sigma^2=50$ 이다. n=6인 표본을 구성하여 s^2 의 값을 구하고자 한다. 상위 10%에 해당하는 s^2 의 값은?

문제 4. 모집단은 정규분포를 따르고 $\sigma^2=50$ 이다. n=6인 표본을 구성하여 s^2 의 값을 구하고자 한다. 하위 10%에 해당하는 s^2 의 값은?

2. 분산의 추정 및 가설검정

[1] σ^2 에 대한 [1- α]100% 신뢰구간

① 가정: $X \sim N(\mu_X, \sigma_X^2)$

② 신뢰구간:
$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}$$
, $\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$

(Lower Confidence Limit, Upper Confidence Limit; LCL, UCL)

$(1-\alpha)$ 100% σ^2 에 대한 신뢰구간 도출

신뢰구간 개념에서 도출하면
$$P(\chi^2_{1-\frac{\alpha}{2},n-1}<\chi^2<\chi^2_{\frac{\alpha}{2},n-1})$$
 = 1 - α

좌변을 정리하면

$$(\chi^2_{1-\frac{\alpha}{2},n-1} < \chi^2 < \chi^2_{\frac{\alpha}{2},n-1})$$

$$= (\ \chi^2_{1-\frac{\alpha}{2},n-1} < \frac{(n-1)s^2}{\sigma^2} < \chi^2_{\frac{\alpha}{2},n-1}\) \qquad \qquad \chi^2 \frac{\alpha}{2} \ \frac{(n-1)s^2}{\sigma^2} 로 대체$$

$$=\left(\frac{1}{\chi^2_{1-\frac{\alpha}{2},\,n-1}}>\frac{\sigma^2}{(n-1)s^2}>\frac{1}{\chi^2_{\frac{\alpha}{2},\,n-1}}\right) \qquad \qquad$$
각 항의 역수; 주의 - 역수를 취하면

$$= \left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}} \right)$$

$$\chi^2$$
을 $\frac{(n-1)s^2}{\sigma^2}$ 로 대체

부등호 방향이 바뀜

각 항에 $(n-1)s^2$ 을 곱하고, 부등호 방향 을 <로 정리

③ $\chi^2_{1-\alpha/2,n-1}$ 와 $\chi^2_{\alpha/2,n-1}$ 를 그림에서 이해하기

예제. $X \sim N(\mu_X, \sigma_X^2)$, n=20, S=50. σ^2 의 90% 수준의 신뢰구간을 구하시오.

LCL:
$$\frac{(n-1)S^2}{\chi^2_{0/2,n-1}} = \frac{(20-1)50^2}{\chi^2_{0.05,19}} = \frac{(20-1)50^2}{30.14} = 1,576.0$$

UCL:
$$\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}} = \frac{(20-1)50^2}{\chi^2_{0.95, 19}} = \frac{(20-1)50^2}{10.12} = 4,639.7$$

연습문제 4.

- 문제 1. σ^2 에 대한 $(1-\alpha)100\%$ 신뢰구간을 $\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}$, $\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$ 으로 설정하였다. 이에 필요한 가정은?
- 문제 2. $x \sim U[0,1]$ 인 경우, σ^2 에 대한 $(1-\alpha)100\%$ 신뢰구간을 $\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}$, $\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$ 으로 설정할 수 있나?
- 문제 3. $\chi^2_{n-1, \alpha/2}$ 과 $\chi^2_{n-1, 1-\alpha/2}$ 의 의미를 설명하시오.
- 문제 4. 모집단이 정규분포를 따르고 표본의 크기는 n이라 하자. 크기가 n인 표본을 10,000개 구성하고 각 표본의 분산값 s^2 을 구한 후, $\chi^2_{n-1} (= \frac{(n-1)S^2}{\sigma^2})$ 도 구했다고 하자. 표본마다 s^2 과 χ^2_{n-1} 을 구했으니, 총 10,000개의 s^2 과 χ^2_{n-1} 을 구한 것이 된다. 10,000개의 χ^2_{n-1} 중 임의로 하나를 선택한다고 하자. 이때 선택한 χ^2_{n-1} 이 χ^2_{n-1} , $\alpha/2$ 보다 클 확률은 얼마인가?

	$\sigma_1^2 = 10^2, n=4$		
	s_1^2	χ^2	
0.0%	0.04	0.0011	
5.0%	12.18	0.3654	
10.0%	19.54	0.5861	
95.0%	259.57	7.7871	
100.0%	691.98	20.7594	

- 문제 5. (문제 4의 연속) 10,000개의 χ^2_{n-1} 중 임의로 하나를 선택한다고 하자. 이때 선택한 χ^2_{n-1} 이 $\chi^2_{n-1,1-\alpha/2}$ 보다 작을 확률은 얼마인가?
- 문제 6. 임의로 χ^2_{n-1} 를 하나 선택했을 때, 그 값이 $\chi^2_{n-1,\;1-\alpha/2}$ 보다는 크고 $\chi^2_{n-1,\;\alpha/2}$ 보다는 작을 확률은?
- 문제 7. $P(\chi^2_{n-1,\;1-\alpha/2}<\chi^2_{n-1}<\chi^2_{n-1,\;\alpha/2})=1-\alpha$ 을 사용하여 σ^2 에 대한 $(1-\alpha)100\%$ 신뢰구간 공식을 도출하시오.

문제 8. 모집단은 정규분포를 따른다. $n=20,\ s^2=95.\ \sigma^2$ 의 90% 수준의 신뢰구간을 구하시오.

문제 9. 모집단은 정규분포를 따른다. n=20인 표본을 10,000개 추출한 후 각 표본마다 σ^2 의 90% 수준의 신뢰구간을 설정한다고 하자. (총 10,000개의 신뢰구간이 설정된다.) 10,000개의 신뢰구간 중 σ^2 를 포함하고 있는 신뢰구간은 몇 개쯤 될까?

문제 10. (문제 9 연속) 10,000개 중 σ^2 를 포함하고 있지 않은 신뢰구간의 수는? 문제 11. (문제 10 연속) 신뢰구간이 σ^2 를 포함하지 않을 확률은? 문제 12. α 의 의미는?

[2] σ^2 에 가설검정

① 가정: $X \sim N(\mu_X, \sigma_X^2)$

② H_0 : $\sigma^2 = \theta^2$, H_A : $\sigma^2 \neq \theta^2$ (양측검정)

(3) Test Statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$

(4) Rejection Region: $\chi^2 > \chi^2_{\alpha/2}, \ \chi^2 < \chi^2_{1-\alpha/2}$

예제. $S^2=120,\;n=30,\;\alpha=0.10;\;\sigma^2=100$ 여부에 대한 가설검정

① H_0 : $\sigma^2 = 100$, H_A : $\sigma^2 \neq 100$

② Test Statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$

③ For $\alpha = 0.10$,

Rejection Region: $\chi^2 > \chi^2_{\alpha/2} = \chi^2_{0.05} = 42.56$, $\chi^2 < \chi^2_{1-\alpha/2} = \chi^2_{0.95} = 17.71$

① Value of the statistic: $\chi^2 = \frac{(30-1)120}{100} = 34.8$

 \bigcirc Conclusion: Do not reject H_0 .

연습문제 5.

- 문제 1. " H_0 : $\sigma^2 = \theta^2$ 란 모집단의 분산 σ^2 이 θ^2 이라는 의미이다."라는 진술을 평가하시 오.
- 문제 2. 제품 A의 중량의 분산은 10^2 이어야 한다. 최근 제품 A의 중량 분산이 10^2 이 아니라는 불만이 제기되어 조사를 하려 한다. 제품 20개를 선택하여 표본 조사하려 한다. 제품의 중량은 정규분포를 따른다. 유의수준 $\alpha=0.05$ 로 한다.

Test Statistic으로 $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$ 을 사용하는 이유를 설명하시오.

문제 3. 모집단은 정규분포를 따른다. $n=20,\ s^2=95.\ \alpha=0.1$ $H_0:\ \sigma^2=10^2$ 이고, $H_A:\ \sigma^2\neq 10^2$ 이다. 가설검정을 실시하시오.

제2절 두 모집단 분산의 추론

1. F 분포

가정: $X_1 \sim N(\mu_{X_1},\,\sigma_{X_1}^2)$, $X_2 \sim N(\mu_{X_2},\,\sigma_{X_2}^2)$

확률변수 F의 정의

$$F_{n_1-1,\,n_2-1}=rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2},$$
 where $n_1=$ 첫 번째 표본의 크기, $n_2=$ 두 번째 표본의 크기

F 분포의 특징

비대칭이고 오른쪽으로 꼬리 $\rightarrow (n_1-1)$ 과 (n_2-1) 이 증가할수록 정규분포에 가깝게 된다. 또한 모든 F의 값은 항상 양수이다.

					$\alpha = 0.01$ df_1				
df_2	1	2	3	4	5	6	7	8	9
1	4,052.18	4,999.50	5,403.35	5,624.58	5,763.65	5,858.99	5,928.36	5,981.07	6,022.47
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94

연습문제 6.

문제 1. 표준정규분포에서 z_{α} 의 의미는?

문제 2. 표준정규분포에서 하위 α 에 해당하는 z값은?

문제 3. 표준정규분포에서 z_0 와 $z_{1-\alpha}$ 의 관계는?

문제 4. 문제 3의 등식이 성립하는 이유는?

문제 5. F_{α, n_1-1, n_2-1} 의 의미를 서술하시오.

문제 6. $F_{1-\alpha, n_1-1, n_2-1}$ 의 의미를 서술하시오.

문제 7. $F_{1-\alpha, n_1-1, n_2-1} = -F_{\alpha, n_1-1, n_2-1}$ 가 성립하는 가?

$$F_{1-\alpha, \, n_1-1, \, n_2-1} = \frac{1}{F_{\alpha, \, n_2-1, \, n_1-1}}$$

$$F_{1-lpha,\;n_1-1,\;n_2-1}$$
란 $rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$ 중 상위 1- $lpha$ 에 해당하는 값이다.

$$\dfrac{1}{F_{1-lpha,\;n_1-1,\;n_2-1}}$$
는 $\dfrac{1}{\dfrac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}}$ 중 상위 얼마에 해당하는 값일까?

역수를 취했으므로 상위 $1-\alpha$ 가 아니라 상위 α 에 해당하는 값이 된다. 즉,

$$\dfrac{1}{F_{1-lpha,\;n_1-1,\;n_2-1}}$$
는 $\dfrac{1}{S_1^2/\sigma_1^2}$ 중 상위 $lpha$ 에 해당하는 값이다. $\dfrac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$

$$ightarrow rac{1}{F_{1-lpha,\;n_1-1,\;n_2-1}}$$
는 $rac{S_2^2/\sigma_2^2}{S_1^2/\sigma_1^2}$ 중 상위 $lpha$ 에 해당하는 값이다.

$$rac{S_2^2/\sigma_2^2}{S_1^2/\sigma_1^2}$$
 중 상위 $lpha$ 에 해당하는 값은 F_{lpha,n_2-1,n_1-1} 이므로,

$$F_{lpha,\;n_2-1,\;n_1-1}=rac{1}{F_{1-lpha,\;n_1-1,\;n_2-1}}$$
이 성립한다. 양변을 역수로 하면,

$$F_{1-\alpha,\;n_1-1,\;n_2-1}=rac{1}{F_{lpha,\;n_2-1,\;n_1-1}}$$
이 성립한다.

연습문제 7. 제품 A와 B의 중량은 정규분포를 따른다. 두 제품 모두 중량의 분산은 10^2 라 알려져 있다. 제품 A의 표본 크기는 5, 제품 B의 6이며, 조사한 결과 제품 A의 표본 분산은 12^2 , 제품 B의 표본 분산은 8^2 이다.

문제 1. 제품 A를 첫 번째 표본으로, 제품 B를 두 번째 표본으로 간주하여 F값을 계산하시오.

문제 2. (문제 1의 연속) $F_{4.5}$ 값들 중 2.25는 상위 %에 해당하는 값인가?

문제 3. $n_1=5,\; n_2=6$ 일 때, 상위 0.1987에 해당하는 F값이 2.25임을 수식으로 표현하시 \circ 2.

문제 4. 제품 B를 첫 번째 표본으로, 제품 A를 두 번째 표본으로 간주하여 F값을 계산하시오.

문제 5. (문제 4의 연속) $F_{5,4}$ 값들 중 $\frac{1}{2.25}$ =0.44는 상위 %에 해당하는 값인가?

문제 6. $n_1=6,\ n_2=5$ 일 때, 상위 0.8013에 해당하는 F값이 0.44임을 수식으로 표현하시 \circ ..

문제 7. $F_{0.1987, 4.5}$ 과 $F_{0.8013, 5.4}$ 의 관계를 등식으로 표현하시오.

문제 8. 문제 7을 일반화하시오.

연습문제 8.

문제 1. $F_{0.05,7.9} = 3.2927$ 이다. $F_{0.95,9.7} =$

문제 2. $F_{0.10,\,8,\,12}=2.2446$ 이다. $F_{0.90,\,12,\,8}=$

2. 분산의 추정 및 가설검정

[1] $\frac{\sigma_1^2}{\sigma_2^2}$ 에 대한 [1-lpha]100% 신뢰구간

① 가정:
$$X_1 \sim N(\mu_{X_1}, \, \sigma^2_{X_1}), \, \, X_2 \sim N(\mu_{X_2}, \, \sigma^2_{X_2})$$

② 신뢰구간: LCL =
$$\left(\frac{S_1^2}{S_2^2}\right) \frac{1}{F_{\alpha/2, n_1-1, n_2-1}}$$
 UCL = $\left(\frac{S_1^2}{S_2^2}\right) \frac{1}{F_{1-\alpha/2, n_1-1, n_2-1}} = \left(\frac{S_1^2}{S_2^2}\right) F_{\alpha/2, n_2-1, n_1-1}$

(1-lpha)100% $\dfrac{\sigma_1^2}{\sigma_2^2}$ 에 대한 신뢰구간 도출

신뢰구간 개념에서 도출하면

$$P\left(F_{1-rac{lpha}{2},n_{1}-1,n_{2}-1} < F < rac{F_{lpha}}{2},n_{1}-1,n_{2}-1
ight) = 1 - lpha$$

좌변을 정리하면

$$\left(F_{1-\frac{\alpha}{2},n_1-1,n_2-1} < F < \frac{F_{\alpha}}{2},n_1-1,n_2-1\right)$$

$$= \left(F_{1-\frac{\alpha}{2},n_1-1,n_2-1} < \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} < F_{\frac{\alpha}{2},n_1-1,n_2-1}\right) \qquad F \stackrel{=}{=} \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \stackrel{=}{=} \operatorname{TIM}$$

$$= \left(F_{1-\frac{\alpha}{2},n_1-1,n_2-1} < \frac{s_1^2}{s_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} < F_{\frac{\alpha}{2},n_1-1,n_2-1}\right) \qquad \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \stackrel{=}{=} \frac{s_1^2}{s_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} \stackrel{\circ}{=} \operatorname{TIM}$$

$$= \left(\frac{1}{F_{1-\frac{\alpha}{2},n_1-1,n_2-1}} > \frac{s_2^2}{s_1^2} \cdot \frac{\sigma_1^2}{\sigma_2^2} > \frac{1}{F_{\frac{\alpha}{2},n_1-1,n_2-1}}\right) \qquad \text{각 항의 $9+^2$; 주의 - $9+^2$}$$

$$\stackrel{?}{=} \left(\frac{S_1^2}{S_2^2}\right) \frac{1}{F_{\alpha/2,n_1-1,n_2-1}} < \frac{\sigma_1^2}{\sigma_2^2} < \left(\frac{S_1^2}{S_2^2}\right) \frac{1}{F_{1-\alpha/2,n_1-1,n_2-1}}\right) \qquad \stackrel{?}{=} \stackrel{?}$$

예제. 두 모집단 모두 정규분포, $S_1^2=9.4$, $S_2^2=6.8$, $n_1=41$, $n_2=31$; σ_1^2/σ_2^2 의 90% 수준의 신뢰구간을 구하시오.

$$\begin{aligned} & \text{LCL: } \left(\frac{S_1^2}{S_2^2} \right) \frac{1}{F_{\alpha/2, \; n_1 - 1, n_2 - 1}} \; = \; \left(\frac{9.4}{6.8} \right) \frac{1}{F_{0.05, \; 40, \; 30}} \; = \; \left(\frac{9.4}{6.8} \right) \frac{1}{1.79} \; = \; 0.77 \\ & \text{UCL: } \left(\frac{S_1^2}{S_2^2} \right) \frac{1}{F_{1 - \alpha/2, \; n_1 - 1, n_2 - 1}} \; = \; \left(\frac{9.4}{6.8} \right) F_{0.05, \; 30, \; 40} \; = \; \left(\frac{9.4}{6.8} \right) (1.74) \; = \; 2.41 \\ \end{aligned}$$

연습문제 9.

두 모집단은 정규분포를 이룬다. 첫 번째 표본 크기는 n_1 , 두 번째 표본 크기는 n_2 이다. $F_{n_1-1,\,n_2-1}\,=\,\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$ 이다.

문제 1. 상위 $\frac{\alpha}{2}$ 와 하위 $\frac{\alpha}{2}$ 에 해당하는 F값은?

문제 2. $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$ 가 $F_{\frac{\alpha}{2},\ n_1-1,\,n_2-1}$ 와 $F_{1-\frac{\alpha}{2},\ n_1-1,\,n_2-1}$ 사이에 존재할 확률은?

문제 3. 문제 2를 수식으로 표현하시오.

문제 4. 문제 3의 수식으로부터 σ_1^2/σ_2^2 에 대한 (1-lpha)100% 신뢰구간을 도출하시오.

연습문제 10.

문제 1. 두 모집 모두 정규분포, $S_1^2=12$, $S_2^2=15$, $n_1=21$, $n_2=16$; σ_1^2/σ_2^2 의 95% 수준의 신뢰구간을 구하시오. 단, 상위 2.5% 및 하위 2.5%에 해당하는 $F_{n_1-1,\,n_2-1}$ 값은 2.7559와 0.3886이다.

[2]
$$\frac{\sigma_1^2}{\sigma_2^2}$$
에 가설검정

②
$$H_0$$
: $\frac{\sigma_1^2}{\sigma_2^2}$ = 1, H_A : $\frac{\sigma_1^2}{\sigma_2^2}$ \neq 1 (양측검정)

① Test Statistic:
$$F_{n_1-1,n_2-1} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2}{S_2^2}$$

$$(H_0$$
가 $\frac{\sigma_1^2}{\sigma_2^2}$ = 1이면 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2}{S_2^2}$ 이 성립한다.)

④ Rejection Region:
$$F > F_{\alpha/2}$$
 또는 $F < F_{1-\alpha/2}$

②
$$H_0$$
: $\frac{\sigma_1^2}{\sigma_2^2}$ = 1, H_A : $\frac{\sigma_1^2}{\sigma_2^2}$ < 1 \rightarrow R.R: $F < F_{1-\alpha}$ (왼쪽 꼬리검정)

②
$$H_0$$
: $\frac{\sigma_1^2}{\sigma_2^2}$ = 1, H_A : $\frac{\sigma_1^2}{\sigma_2^2}$ > 1 \rightarrow R.R: $F > F_{\alpha}$ (오른쪽 꼬리검정)

예제. 앞의 예제에서
$$\alpha = 0.10로 \; \frac{\sigma_1^2}{\sigma_2^2} = 1$$
 가설검증

①
$$H_0$$
: $\frac{\sigma_1^2}{\sigma_2^2} = 1$, H_A : $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$

② Test Statistic:
$$F_{n_1-1, n_2-1} = \frac{S_1^2}{S_2^2}$$
 $(H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1)$ 므로 $F = \frac{S_1^2}{S_2^2}$ 이다.)

③ For
$$\alpha = 0.10$$
,

Rejection Region:
$$F > F_{n_1-1,\; n_2-1,\; \alpha/2} = 1.79$$
 또는

$$F < F_{n_1-1, n_2-1, 1-\alpha/2} = \frac{1}{F_{n_2-1, n_1-1, \alpha/2}} = \frac{1}{1.74} = 0.57$$

① Value of the statistic:
$$F = \frac{9.4}{6.8} = 1.38$$

⑤ Conclusion: Do not reject
$$H_0$$
.

연습문제 정답

1. (1) \bar{x} 의 분포는 평균을 중심으로 좌우 대칭임을 알 수 있다.

- ① 평균과 하위 50%의 값이 거의 일치한다.
- ② 하위 50%에서 하위 40% 값을 제한 값(100.0-98.7 = 1.3)과 하위 60%에서 하위 50% 값을 제한 값(101.3-100.0=1.3)이 거의 일치한다. 하위 10%에서 하위 0% 값을 제한 값(18.3)과 하위 100%에서 하위 90% 값을 제한 값(18.4)이 거의 일치한다.

 s^2 의 분포는 비대칭이며, 오른쪽으로 늘어진 형태이다.

- ① 하위 50%의 값보다 평균이 더 크다.
- ② 하위 10%에서 하위 0% 값을 제한 값(19.5)보다 하위 100%에서 하위 90% 값을 제한 값(818.9)이 월등히 크다.

학습 포인트: x가 정규분포를 따르면

 \bar{x} 의 분포는 평균을 중심으로 좌우대칭인 정규분포를 따른다.

 s^2 의 분포는 오른쪽으로 늘어진 비대칭이다. (하위 50%값이 평균보다 작다.)

 $\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}$ (2) $s^{2}=\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n-1}$ 이다. 제곱의 합을 일정한 수로 나눈 값이므로 0보다 작을 수 없다.

 $s^2 = 0$ 이 되려면, 표본의 데이터값들이 모두 동일해야만 한다. 연속확률 변수의 속성상 동일한 값이 반복될 확률은 0이다. 결론적으로 s^2 은 음수는 불가능하며, 0에 가까운 양수는 가능하다.

2. (1) 모집단 1의 하위 40% $\chi^2 = \frac{(n-1) \cdot 하위 40\% s_1^2}{\sigma_1^2} = \frac{3(61.78)}{10^2} = 1.8534$

모집단 2의 하위 40%
$$\chi^2 = \frac{(n-1) \cdot 하위 40\% s_2^2}{\sigma_2^2} = \frac{3(252.93)}{20^2} = 1.8970$$

모집단 1의 하위 40% s^2 값(61.78)과 모집단 2의 하위 40% s^2 값(252.93)은 다르다.

그렇지만 각각의 값들을 (n-1)로 곱하고 자신의 모집단 분산으로 나눈 값, 즉 $\frac{(n-1)\cdot \text{ 하위 } 40\%\ s_1^2}{\sigma_1^2} \text{ 과 } \frac{(n-1)\cdot \text{ 하위 } 40\%\ s_2^2}{\sigma_2^2} \in \text{ 동일하다}.$

위와 같이 s^2 을 (n-1)로 곱하고 자신의 모집단 분산으로 나눈 값, $\frac{(n-1)s^2}{\sigma^2}$ 을 χ^2_{n-1} 라 한다.

학습 포인트:
$$\chi^2_{n-1}\equiv \frac{(n-1)s^2}{\sigma^2}$$
, where n = sample size

(2) 모집단 1의 하위 95%
$$\chi^2 = \frac{(n-1) \cdot$$
하위 $95\% \ s_1^2}{\sigma_1^2} = \frac{3(259.57)}{10^2} = 7.7871$
모집단 2의 하위 95% $\chi^2 = \frac{(n-1) \cdot$ 하위 $95\% \ s_2^2}{\sigma_1^2} = \frac{3(1,047.08)}{20^2} = 7.8531$

모집단 1의 하위 95% s^2 값(259.57)과 모집단 2의 하위 40% s^2 값(1,047.08)은 다르다. 그렇지만 각각의 값들을 (n-1)로 곱하고 자신의 모집단 분산으로 나눈 값, 즉 $\frac{(n-1)\cdot$ 하위 95% s_1^2 σ_1^2 과 $\frac{(n-1)\cdot$ 하위 95% s_2^2 은 동일하다.

위와 같이 s^2 을 (n-1)로 곱하고 자신의 모집단 분산으로 나눈 값, $\frac{(n-1)s^2}{\sigma^2}$ 을 χ^2_{n-1} 라 한다.

학습 포인트:
$$\chi_{n-1}^2 \equiv \frac{(n-1)S^2}{\sigma^2}$$
, where $n=$ sample size

- (3) 모집단이 정규분포이고 표본의 크기가 동일하면, χ^2 분포는 동일하다.
- 3. (1) 위 표에서 ν (nu라고 읽는다.)는 자유도를 의미한다. 자유도는 n-1이다. 표 상단에 있는 그래프를 보면 α 는 큰 쪽을 향하고 있다. (상위라는 이야기이다.) n=4이므로 $\nu=3$ 이고, 상위 5%이므로 $\alpha=0.05$ 이다. 이에 해당하는 $\chi^2=7.815$ 학습 포인트: $\chi^2_{n-1,\alpha}$ 란 상위 α 에 속하는 χ^2 값이다. (표본의 크기는 n이다.)
 - (2) 위 표에서 ν (nu라고 읽는다.)는 자유도를 의미한다. 자유도는 n-1이다. 표 상단에 있는 그래프를 보면 α 는 큰 쪽을 향하고 있다. 상위라는 이야기이다. 표는 상위를 기준으로 작성되어 있으니 하위를 상위로 변환한다. 하위 5%는 상위 95%에 해당한다. n=4이므로 $\nu=3$ 이고, 상위 95%이므로 $\alpha=0.95$ 이다. 이에 해당하는 $\chi^2=.352$ 이다.

학습 포인트: $\chi^2_{n-1,\,\alpha}$ 란 하위 1-lpha에 속하는 χ^2 값이다. (표본의 크기는 n이다.)

(3) n=6 ($\nu=5$)일 때 상위 10%에 해당하는 $\chi^2=\chi^2_{5,0.1}=9.236$ 이다. $\chi^2_{n-1}=\frac{(n-1)S^2}{\sigma^2}$ 이므로 $9.236=\frac{(6-1)s^2}{50}\to s^2=\frac{9.236(50)}{5}=92.36$

학습 포인트: 상위 α 에 해당하는 s^2 의 값은 $\dfrac{\chi^2_{n-1,\alpha}\cdot\sigma^2}{n-1}$ 이 된다.

(4) n=6 ($\nu=5$)일 때 하위 10%에 해당하는 χ^2 = 상위 90%에 해당하는 $\chi^2=\chi^2_{5,\ 0.9}=1.610$ $\chi^2_{n-1}=\frac{(n-1)S^2}{\sigma^2}$ 이므로 1.610 = $\frac{(6-1)s^2}{50}$ $\rightarrow s^2=\frac{1.610(50)}{5}=16.10$

학습 포인트: 하위 α 에 해당하는 s^2 의 값은 $\dfrac{\chi^2_{n-1,\;1-\alpha}\cdot\sigma^2}{n-1}$ 이 된다.

4. (1) 모집단이 정규분포를 이룰 때만 $\frac{(n-1)s^2}{\sigma^2}$ 이 χ^2 분포를 따른다. 실험 2를 참조한다.

(2) 없다.

모집단이 최소값이 0, 최대값이 1인 일양분포를 따른다고 하자. 이 경우 $\sigma^2 = \frac{(최대값-최소값)^2}{12} = \frac{(1-0)^2}{12} = \frac{1}{12}$ 이다.

n=4 ($\nu=3$)인 표본 10.000개를 구성하여 s^2 을 추출한 결과를 정리하였다.

	<i>x</i> ∼ <i>U</i>	[0,1]	χ_3^2
	s^2	$\frac{(n-1)s^2}{\sigma^2}$	<i>X</i> 3 이론값
0%	0.0002	0.01	-
5%	0.0130	0.47	0.35
10%	0.0214	0.77	0.58
15%	0.0287	1.03	0.80
50%	0.0767	2.76	2.37
90%	0.1545	5.56	6.25
95%	0.1745	6.28	7.81
99%	0.2094	7.54	11.34

본 실험은 정규분포가 아닌 일양분포를 따르는 데이터 4개씩을 추출하여 각 표본의 분산을 백분위로 표현한 것이다. 즉, 하위 5%에 속하는 s^2 는 0.0130이고, 하위 5%에 속하는 $\frac{(n-1)s^2}{\sigma^2}$ 은 $\frac{(4-1)\cdot 0.0130}{1/12}=0.47$ 이다. 그런데, $n=4(\nu=3)$ 일 때 하위 5%에 속하는 χ^2 은 $\chi^2_{3,0.95}=0.352(\chi^2_{n-1}$ 분포표에서 또는 컴퓨터로 구한 값)이다. 결론적으로 모집단이 정규분포를 따르지 않으면, $\frac{(n-1)s^2}{\sigma^2}$ 값은 χ^2 값과 같지 않으며, σ^2 에 대한 (1- α)100% 신뢰구간을 $\frac{(n-1)S^2}{\chi^2_{a/2,n-1}}$, $\frac{(n-1)S^2}{\chi^2_{1-a/2,n-1}}$ 으로 설정할 수 없다.

학습 포인트:
$$\frac{(n-1)s^2}{\sigma^2}=\chi^2$$
이 성립할 조건은 x 가 정규분포를 따르는 것이다.
모집단이 정규분포 (또는 정규분포에 근사한 경우)가 아니면,
$$\frac{(n-1)S^2}{\sigma^2} \vdash \chi^2 \ \mbox{분포를 갖지 못한다}.$$

(3) $\chi^2_{n-1,\;\alpha/2}$ 란 표본의 크기가 n인 χ^2_{n-1} $(\frac{(n-1)S^2}{\sigma^2})$ 중 상위 $\frac{\alpha}{2}$ 에 해당하는 χ^2_{n-1} 를, $\chi^2_{n-1,\;1-\alpha/2}$ 란 표본의 크기가 n인 χ^2_{n-1} $(\frac{(n-1)S^2}{\sigma^2})$ 중 하위 $\frac{\alpha}{2}$ 에 해당하는 χ^2_{n-1} 를 의미한다. 하위 $\frac{\alpha}{2}$ 와 상위 $1-\frac{\alpha}{2}$ 는 같은 의미이다.

학습 포인트:
$$\chi^2_{n-1,\;\alpha/2}$$
는 상위 $\frac{\alpha}{2}$ 에 해당하는 χ^2_{n-1}
$$\chi^2_{n-1,\;1-\alpha/2}$$
는 하위 $\frac{\alpha}{2}$ (또는 상위 $1-\frac{\alpha}{2}$)에 해당하는 χ^2_{n-1}

(4) $\alpha=0.10$ 이라 하자. 그러면 $\frac{\alpha}{2}=0.05$ 이다. 앞에서 실험한 결과를 보면, 상위 5%(위의 표에서는 상위 95%)의 $\chi^2_{3,\ 0.05}$ 의 값은 7.7871이다. 즉, 10,000개의 χ^2_3 중 95,000개는 7.7871보다 작고 5,000개는 7.7871보다 크다는 것이다. 이를 식으로 표현하면,

$$P(\chi_3^2 < \chi_{3, 0.05}^2) = P(\chi_3^2 < 7.7871) = 0.95 \dots$$

10,000개의 χ_3^2 중 95,000개는 $\chi_{3,0.05}^2$ (=7.7871)보다 작다.

$$P(\chi_3^2 > \chi_{3, 0.05}^2) = P(\chi_3^2 > 7.7871) = 0.05 \dots$$

10,000개의 χ^2_3 중 5,000개는 $\chi^2_{3,\ 0.05}$ (=7.7871)보다 크다.

이를 일반화하면, χ^2_{n-1} 이 $\chi^2_{n-1,\;\alpha/2}$ 보다 클 확률 = $P(\chi^2_{n-1}>\chi^2_{n-1,\;\alpha/2})=rac{lpha}{2}$

학습 포인트:
$$\chi^2_{n-1}$$
이 $\chi^2_{n-1,\;\alpha/2}$ 보다 클 확률 = $P(\chi^2_{n-1}>\chi^2_{n-1,\;\alpha/2})=rac{lpha}{2}$

(5) $\alpha=0.10$ 이라 하자. 그러면 $\frac{\alpha}{2}=0.05$ 이다. 앞에서 실험한 결과를 보면, 하위 5%의 χ^2_3 (표기는 상위 95% χ^2_3 , 즉 $\chi^2_{3,\ 0.95}$ 로 한다.)의 값은 0.3654이다. 즉, 10,000개의 χ^2_3 중 5,000개는 0.3654보다 작고 95,000개는 0.3654보다 크다는 것이다. 이를 식으로 표현하면, $P(\chi^2_3<\chi^2_{3,\ 0.95})=P(\chi^2_3<0.3654)=0.05$

10,000개의 χ^2_3 중 5,000개는 $\chi^2_{3,~0.95}$ (=0.3654)보다 작다.

$$P(\chi_3^2 > \chi_{3, 0.95}^2) = P(\chi_3^2 > 0.3654) = 0.95 \dots$$

10,000개의 χ^2_3 중 95,000개는 $\chi^2_{3,0.95}$ (=0.3654)보다 크다.

이를 일반화하면, χ_{n-1}^2 이 $\chi_{n-1, 1-\alpha/2}^2$ 보다 작을 확률 = $P(\chi_{n-1}^2 > \chi_{n-1, 1-\alpha/2}^2) = \frac{\alpha}{2}$

포인트:
$$\chi^2_{n-1}$$
이 $\chi^2_{n-1,\;1-\alpha/2}$ 보다 작을 확률 = $P(\chi^2_{n-1} < \chi^2_{n-1,\;1-\alpha/2}) = \frac{\alpha}{2}$

(6) χ^2_{n-1} 이 $\chi^2_{n-1,\;1-\alpha/2}$ 보다는 크고 $\chi^2_{n-1,\;\alpha/2}$ 보다는 작을 확률 $=P(\chi^2_{n-1,\;1-\alpha/2}<\chi^2_{n-1}<\chi^2_{n-1,\;\alpha/2})=1-\alpha$

학습 포인트:
$$P(\chi^2_{n-1,\;1-\alpha/2}<\chi^2_{n-1}<\chi^2_{n-1,\;\alpha/2})$$
 = 1- α

(7)
$$P(\chi_{n-1, 1-\alpha/2}^2 < \chi_{n-1}^2 < \chi_{n-1, \alpha/2}^2)$$

= $P(\chi_{n-1, 1-\alpha/2}^2 < \frac{(n-1)S^2}{\sigma^2} < \chi_{n-1, \alpha/2}^2)$ $\chi_{n-1}^2 = \frac{(n-1)S^2}{\sigma^2}$

$$=P(\frac{1}{\chi^2_{n-1,\;1-\alpha/2}}>\frac{\sigma^2}{(n-1)S^2}>\frac{1}{\chi^2_{n-1,\;\alpha/2}})$$
 역수로 하면 부등호 방향이 바뀐다.
$$=P(\frac{1}{\chi^2_{n-1,\;\alpha/2}}<\frac{\sigma^2}{(n-1)S^2}<\frac{1}{\chi^2_{n-1,\;1-\alpha/2}})$$
 부등호 방향을 < 으로 변경
$$=P(\frac{(n-1)s^2}{\chi^2_{n-1,\;\alpha/2}}<\sigma^2<)\qquad 각 항에 $(n\text{-}1)s^2$ 을 곱한다.$$

 $= 1-\alpha$

학습 포인트:
$$\sigma^2$$
에 대한 $(1-lpha)100\%$ 신뢰구간은 $\dfrac{(n-1)s^2}{\chi^2_{n-1,\;lpha/2}},\;\dfrac{(n-1)s^2}{\chi^2_{n-1,\;1-lpha/2}}$ 이다.

(8) 90%의 신뢰구간을 구하는 것이므로, α = 0.1 (=10%)이다.

n = 20이므로, 자유도는 19이다.

90%의 신뢰구간을 구하기 위해서는 상위 5%의 χ^2_{19} 와 하위 5%의 χ^2_{19} 의 값이 필요하다.

 χ^2_{n-1} 분포표에서 상위 5%의 χ^2_{19} , 즉 $\chi^2_{19,\,0.05}$ = 30.14이고, χ^2_{n-1} 분포표에서 하위 5%의 χ^2_{19} 는 상위 95%의 χ^2_{19} , 즉 $\chi^2_{19,\,0.95}$ = 10.117이다.

LCL:
$$\frac{(n-1)s^2}{\chi^2_{\alpha/2, n-1}} = \frac{(20-1)95}{\chi^2_{0.05, 19}} = \frac{(20-1)95}{30.14} = 59.89$$

LCL: $\frac{(n-1)s^2}{\chi^2_{0.05, 19}} = \frac{(20-1)95}{(20-1)95} = 59.89$

UCL:
$$\frac{(n-1)s^2}{\chi_{1-\alpha/2, n-1}^2} = \frac{(20-1)95}{\chi_{0.95, 19}^2} = \frac{(20-1)95}{10.12} = 178.36$$

- (9) 9,000개
- (10) 1,000개

$$(11) \ \frac{1,000}{10,000} = 0.1$$

- (12) 신뢰구간이 σ^2 를 포함하지 않을 확률 (문제 11의 경우 α =0.1)
- 5. (1) σ^2 에 대한 가설검정 은 σ^2 값을 모르기 때문에 실시한다. 만약 σ^2 값을 안다면, 굳이 검 정을 실시할 필요가 없다.

가설검정에서 H_0 란 사실(Fact)가 아니라 단지 가설(Hypothesis)에 불과하다. 즉, H_0 : $\sigma^2=\theta^2$ 란 모집단의 분산 σ^2 이 θ^2 이라는 가정하는 것뿐이다.

 σ^2 을 알려면 모집단 전체를 조사해야만 한다. 그렇지 않다면 표본을 구성하여 표본의 분산 s^2 을 구한다. σ^2 값이 θ^2 일 때 너무도 예외적인 s^2 값이 표본으로부터 나온다면

- ① σ^2 값은 정말 θ^2 인데, 너무도 예외적인 값이 나왔다라고 결론내릴 수도 있고,
- ② σ^2 값이 θ^2 라고 주장하기에는 너무 예외적인 값이 나왔으므로 σ^2 값은 θ^2 이 아니라고 결론 내릴 수도 있다. $(H_0$ 를 기각한다.)

가설검정에서는 미리 설정한 s^2 값보다 더 예외적인 s^2 가 나오면 ②와 같이 결론 내린다. (물론, 미리 설정한 s^2 값보다 덜 예외적인 s^2 가 나오면 H_0 의 주장을 기각하지 않는다.)

(2) 지문을 보면 H_0 : $\sigma^2 = 10^2$ 이고, H_A : $\sigma^2 \neq 10^2$ 이다. 양측검정이다.

 σ^2 를 직접 조사할 수 없다면, 표본을 통해 σ^2 값을 추정한다. 추정에 사용되는 도구는 s^2 이다.

양측검정인데, 유의수준이 0.05이다. 그러므로 ① 표본에서 구한 s^2 값이, H_0 가 사실일 때 상위 2.5%에 해당하는 s^2 값보다 더 크거나 또는 ② 표본에서 구한 s^2 값이, H_0 가 사실일 때 하위 2.5%에 해당하는 s^2 값보다 더 작은 지를 조사한다.

만약 ①과 ② 중 하나라도 해당하면 H_0 를 기각하고, 두 조건 중 하나라도 해당되지 않으면 H_0 를 기각하지 못한다.

문제는 $\sigma^2=10^2$ 일 때 상위 2.5%에 해당하는 s^2 과 하위 2.5%에 해당하는 s^2 을 모른다는 것이다. 그런데, $\chi^2_{20-10.025}$ 와 $\chi^2_{20-10.025}$ 은 χ^2 분포표를 통해 알려져 있고,

$$\frac{(n-1)\cdot$$
 상위 2.5% 에 해당하는 s^2 은 $\chi^2_{20-1,0.025}$ 이고,

 $\frac{(n-1)\cdot$ 하위 2.5%에 해당하는 s^2 은 $\chi^2_{20-1,0.925}$ 와 동일하므로, 기각하는 규칙을 다음과 같이 변경할 수 있다.

표본에서 구한 $\frac{(n-1)s^2}{\sigma^2}$ 이 $\chi^2_{20-1,0.025}$ 보다 크거나 또는 표본에서 구한 $\frac{(n-1)s^2}{\sigma^2}$ 이

 $\chi^2_{20-1,0.925}$ 보다 작으면 H_0 를 기각하고, 그렇지 않으면 H_0 를 기각하지 못한다.

정리하면, 각 σ^2 마다 상위 $\frac{\alpha}{2}$ 에 해당하는 s^2 값과 하위 $\frac{\alpha}{2}$ 에 해당하는 s^2 값을 알고

있다면, 굳이 Test Statistic으로 χ^2 을 사용할 필요가 없다. 그 값들을 모르기 때문에 값들이 표로 정리되어 있는 χ^2 을 Test Statistic으로 사용한다.

- (3) ① H_0 : $\sigma^2 = 100$, H_A : $\sigma^2 \neq 100$
 - ② Test Statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$
 - ③ For $\alpha = 0.10$,

Rejection Region: $\chi^2 > \chi^2_{n-1,~\alpha/2} = \chi^2_{19,~0.05} = 30.14,$ $\chi^2 < \chi^2_{n-1,~1-\alpha/2} = \chi^2_{19,~0.95} = 10.12$

(4) Value of the statistic:
$$\chi^2 = \frac{(20-1)95}{100} = 18.05$$

 \bigcirc Conclusion: Do not reject H_0 .

- 6. (1) 상위 α 에 해당하는 z값 (2) $z_{1-\alpha}$ (3) $z_{1-\alpha}=-z_{\alpha}$
 - (4) z분포는 0을 중심으로 좌우대칭
 - (5) 첫 번째 자유도가 n_1 -1이고, 두 번째 자유도가 n_2 -1인 F값들 중 상위 lpha에 해당하는 값
 - (6) 첫 번째 자유도가 n_1 -1이고, 두 번째 자유도가 n_2 -1인 F값들 중 상위 1- α 에 해당하는 값; 상위 1- α 는 하위 α 라는 의미이기도 함
 - (7) 성립하지 않는다. z분포의 경우, 평균이 0이고 좌우대칭이므로 $z_{1-\alpha}=-z_{\alpha}$ 이

성립하지만, F분포는 모두 양수이고 오른쪽으로 꼬리가 있는 형태로 비대칭이다.

7. (1)
$$F_{4, 5} = \frac{12^2/10^2}{8^2/10^2} = 2.25$$

(2) 0.1987 (19.87%)

Excel에서 F.DIST(2.25, 4, 5)를 입력하면 첫 번째 자유도 4, 두번째 자유도 5일 때 F_value = 2.25가 하위 %에 해당하는 값인지를 알려준다. F.DIST(2.25, 4, 5, cumulative=1) = 0.801267 (80.1267%). 상위로 변환하려면 1에서 0.801267을 빼면 된다.

(3)
$$F_{0.1987, 4, 5} = 2.25$$

(4)
$$F_{5,4} = \frac{8^2/10^2}{12^2/10^2} = \frac{1}{2.25} = 0.44$$

(6)
$$F_{0.8013, 5, 4} = 0.44 \ (= \frac{1}{2.25})$$

(7)
$$F_{0.1987, 4, 5} = \frac{1}{F_{0.8013, 5, 4}}$$

(8)
$$F_{\alpha, n_1 - 1, n_2 - 1} = \frac{1}{F_{1 - \alpha, n_2 - 1, n_2 - 1}}$$

8. (1)
$$F_{0.95, 9, 7} = \frac{1}{F_{0.05, 7, 9}} = 1/3.2927 = 0.3037$$

(2)
$$F_{0.90, 12, 8} = \frac{1}{F_{0.10, 8, 12}} = 1/2.2446 = 0.4455$$

9. (1) 상위
$$\frac{\alpha}{2}$$
에 해당하는 $F=F_{\frac{\alpha}{2},\;n_1-1,\,n_2-1}$, 하위 $\frac{\alpha}{2}$ 에 해당하는 $F=F_{1-\frac{\alpha}{2},\;n_1-1,\,n_2-1}$

(2) 1-0

(3)
$$P\left(F_{1-\frac{\alpha}{2}, n_1-1, n_2-1} < \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} < F_{\frac{\alpha}{2}, n_1-1, n_2-1}\right) = 1-\alpha$$

$$(4) \ P\left(F_{1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1} < \frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{2}^{2}/\sigma_{2}^{2}} < F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}\right)$$

$$= P\left(F_{1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1} < \frac{S_{1}^{2}}{S_{2}^{2}} \cdot \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} < F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}\right)$$

$$= P\left(\frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1} < \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} < \frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}\right)$$

$$= P\left(\frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1} < \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} < \frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}\right)$$

$$= P\left(\frac{1}{\frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1}} > \frac{1}{\frac{\sigma_{2}^{2}/\sigma_{1}^{2}}{S_{1}^{2}}} > \frac{1}{\frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}}\right)$$

$$= P\left(\frac{S_{1}^{2}}{S_{2}^{2}} \cdot \frac{1}{F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}} < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < \frac{S_{1}^{2}}{S_{2}^{2}} \cdot \frac{1}{F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}}\right)$$

10. (1) LCL:
$$\left(\frac{S_1^2}{S_2^2}\right) \frac{1}{F_{\alpha/2, n_1 - 1, n_2 - 1}} = \left(\frac{12}{15}\right) \frac{1}{F_{0.025, 20, 15}} = \left(\frac{12}{15}\right) \frac{1}{2.7559} = 0.2903$$

$$UCL: \left(\frac{S_1^2}{S_2^2}\right) \frac{1}{F_{1-\alpha/2, n_1 - 1, n_2 - 1}} = \left(\frac{12}{15}\right) \frac{1}{F_{0.975, 20, 15}} = \left(\frac{12}{15}\right) \frac{1}{0.3886} = 2.0585$$