ISAAC DE FREITAS FRANÇA - LISTA 04

1. Elabore 02 Máquinas de Estados Finitos; sendo um AFD e um AFN. Elabore uma situação de uma máquina qualquer para reconhecimento de uma linguagem. Para tanto: a. Defina AFD e AFN;

AFD: Um tipo de máquina de estado finito. Lê e interpreta símbolos ou cadeia de símbolos de uma gramática, aceitando ou rejeitando-os de acordo com as regras que a regem. São máquinas baseadas em estados, onde a validação de uma cadeia é feita, dependendo se esta levou a máquina ao seu estado terminal, e cada entrada de símbolo em um dado estado, pode levar a somente um outro estado, ou mantê-la no mesmo estado.

AFN: Outro tipo de máquina de estado finito, com basicamente a mesma definição de uma AFD. Contudo, a entrada de um símbolo em um determinado estado, pode levar a múltiplos outros estados, cabendo à máquina fazer a decisão de para qual estado irá, dadas as condições.

b. Defina os 02 tipos de máquinas.

AFD: $(E: \{e1, e2, e3\}, \sum \{p, s, a, b\}, i: \{e1\}, F: \{e3\});$

AFN: (E: $\{e1, e2, e3\}$, $\sum \{0, 1\}$, i: $\{e1\}$, F: $\{e3\}$);

C.

AFD:

- 1. (w | "p" é prefixo e "s" é sufixo de w)
- 2. (w | "ededededed" é subpalavra e "s" é sufixo de w)

AFN:

- 1. (w | "1" é sufixo de w)
- 2. (w | "11" é subpalavra de w)

d.

O AFN, pois com a tomada de decisão inteligente proporcionada por esse autômato gera mais possibilidades quando se trata de palavras. Por exemplo na formação de sílabas e de palçavras conhecidas.

2.

Autômatos	AFD	AFN
Características	Uma palavra é reconhecida se, e somente se, existe uma computação que a consome e termina em estado final	
	Função de transição mapeia cada par de estado/símbolo para um estado	Para cada par estado/símbolo pode haver transição para mais de um estado
	Só é possível atingir um único estado para cada palavra de entrada	A máquina escolhe a "melhor decisão" em um ponto onde a transição pode ser feita para mais de um estado
	Um estado é atingido consumindo-se toda uma palavra de entrada	Para qualquer AFN existe uma AFD equivalente, mas em casos complexos, a conversão é inviável