Classificação de Imagens no Conjunto de Dados MPEG7

1st João Matheus Rosano Rocha

Universidade Federal de Viçosa Rio Paranaíba, Minas Gerais joao.rosano@ufv.br 2nd Grazielle Stefane Cruz

Universidade Federal de Viçosa Rio Paranaíba, Minas Gerais grazielle.cruz@ufv.br

I. Introdução

O presente estudo tem como objetivo avaliar o desempenho de três algoritmos de classificação amplamente utilizados: k-Nearest Neighbors (k-NN), Support Vector Machine (SVM) e Random Forest (RF). A classificação de imagens, uma tarefa essencial em visão computacional, depende da habilidade dos algoritmos em distinguir classes com base em características extraídas. O conjunto de dados utilizado foi o MPEG7 modificado, composto por 600 amostras distribuídas em seis classes ("apple", "bat", "beetle", "bell", "bird" e "bone"). Os algoritmos foram avaliados por meio de métricas de desempenho, incluindo matriz de confusão, precisão, recall, F1-score e acurácia geral. Os resultados obtidos destacam as diferenças de desempenho entre os classificadores.

II. METODOLOGIA

A. Conjunto de Dados

O conjunto de dados MPEG7 modificado consiste em 600 imagens, onde 30% foi destinado à teste, 60% à treinamento e 30% à validação. As características extraídas das imagens foram normalizadas para garantir que todas as variáveis estivessem na mesma escala, facilitando a comparação entre os algoritmos.

B. Algoritmos Avaliados

- k-NN: Classificador baseado em instâncias que utiliza os k vizinhos mais próximos para determinar a classe de uma amostra. Foi configurado com k=3 e métrica de distância Euclidiana.
- 2) SVM: Algoritmo que maximiza a margem entre as classes por meio de hiperplanos. Foi utilizado um kernel linear e parâmetros de regularização padrão.
- 3) RF: Ensemble de árvores de decisão que combina os resultados por meio de votação. O classificador foi configurado com 100 árvores e profundidade máxima ilimitada.

C. Validação

Os algoritmos foram testados em um conjunto fixo de 180 instâncias. A matriz de confusão foi usada para calcular as métricas de precisão, recall, F1-score e acurácia geral.

Identify applicable funding agency here. If none, delete this.

III. RESULTADOS

A. Desempenho do k-NN

Relatório de Classificação:

Classe	Precisão	Recall	F1-score	Suporte
apple	0.88	0.83	0.85	35
bat	0.76	0.81	0.79	32
beetle	0.64	0.78	0.71	23
bell	0.77	0.79	0.78	29
bird	0.76	0.68	0.72	28
bone	1.00	0.91	0.95	33

K-NN=3

Acurácia Geral: 81%

Média Ponderada do F1-score: 0.81

B. Desempenho do SVM

Relatório de Classificação:

Classe	Precisão	Recall	F1-score	Suporte
apple	0.75	0.69	0.72	35
bat	0.75	0.84	0.79	32
beetle	0.42	0.61	0.50	23
bell	0.88	0.72	0.79	29
bird	0.55	0.39	0.46	28
bone	0.89	0.94	0.91	33

TABLE II

RESULTADOS USANDO MÉTRICA DE AVALIAÇÃO SVM

- Acurácia Geral: 71%
- 0.71

C. Desempenho do RF

Relatório de Classificação:

Classe	Precisão	Recall	F1-score	Suporte
apple	0.80	0.80	0.80	35
bat	0.81	0.94	0.87	32
beetle	0.86	0.78	0.82	23
bell	0.69	0.86	0.77	29
bird	0.85	0.61	0.71	28
bone	1.00	0.94	0.97	33

TABLE III

RESULTADOS USANDO MÉTRICA DE AVALIAÇÃO RF

Acurácia Geral: 83%

• Média Ponderada do F1-score: 0.83

IV. DISCUSSÃO

Os resultados obtidos mostram que:

- O RF apresentou a maior acurácia (83%) e a maior média ponderada do F1- score (0.83). Isso evidencia sua robustez em lidar com dados complexos e distribuições variadas.
- O k-NN teve um bom desempenho geral, alcançando uma acurácia de 81% e F1-score de 0.81. Seu desempenho depende do parâmetro k e da escolha da métrica de distância.
- O SVM apresentou resultados mais modestos, com acurácia de 71% e F1- score de 0.71. O desempenho pode ser melhorado com ajustes de kernel ou parâmetros de regularização.

V. CONCLUSÃO

O estudo comparou o desempenho de três classificadores em um conjunto de dados de imagens. O Random Forest demonstrou ser o método mais eficiente para o conjunto analisado, enquanto o k-NN também obteve resultados satisfatórios. Por outro lado, o SVM mostrou-se menos eficaz com os parâmetros utilizados, sugerindo a necessidade de otimização. Esses resultados reforçam a importância de considerar as características do conjunto de dados e ajustar os hiperparâmetros dos algoritmos para obter o melhor desempenho.