

Esolution

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Analysis für Informatik

Klausur: MA0902 / Klausur Datum: Freitag, 21. Februar 2020

Prüfer: Prof. Dr. Silke Rolles Uhrzeit: 08:00 – 09:30

	A 1	A 2	A 3	A 4	A 5	A 6
Ι						

Bearbeitungshinweise

- Diese Klausur umfasst **8 Seiten** mit insgesamt **6 Aufgaben**. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 40 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- Es sind keine Hilfsmittel zugelassen.
- Bitte schreiben Sie alle Ergebnisse in die dafür vorgesehenen Kästchen. Es wird nur das korrigiert, was in den Kästchen steht.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Hörsaal verlassen von	bis /	Vorzeitige Abgabe um
Horsaar verrassen von	DIS/	vorzenige Abgabe um

Aufgabe 1 (14 Punkte)

Bei dieser Aufgabe wird nur das Ergebnis bewertet.

a) Betrachten Sie die Menge $M:=\{\frac{n}{n+2}:n\in\mathbb{N}=\{1,2,3,\ldots\}\}$. Bestimmen Sie:

$$\sup M = 1$$

$$\min M = \frac{1}{3}$$

₀ **b**) Bestimmen Sie den Grenzwert:

$$\lim_{x \to 0} \frac{\ln(1+7x^2)}{3x^2} = \frac{7}{3}$$

c) Bestimmen Sie den Grenzwert:

$$\lim_{n \to \infty} n^7 \sin(3^{-n}) = 0$$

 \blacksquare d) Bestimmen Sie die folgende Menge M:

$$M = \left\{ a \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{3\sin(na) + 5\cos(n^2 a)}{n^2} \text{ konvergiert absolut} \right\}$$

 $M = \mathbb{R}$

e) Bestimmen Sie die folgende Menge M:

$$M = \left\{ x \in \mathbb{R} : S(x) = \sum_{n=1}^{\infty} n3^n x^n \text{ konvergient} \right\}.$$

Bestimmen Sie im Konvergenzfall den Wert der Reihe S(x).

$$M = (-\frac{1}{3}, \frac{1}{3})$$
 $S(x) = \frac{3x}{(1-3x)^2}$

o f) Bestimmen Sie $A = \{z \in \mathbb{C} : z = |z|^2\}.$

$$A = \{0, 1\}$$

g) Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \sin(3x^2y)$. Bestimmen Sie:

$$\partial_x f(x,y) = 6xy \cos(3x^2y)$$

$$\partial_y \partial_y f(x,y) = -9x^4 \sin(3x^2y).$$

h) Es sei $f(x) = (2x^2 - 3x + 7) \ln(\ln(x^2)) + (3x - 2)^4 \ln x - (53x + 2)(2x^2 + 4)(\ln x)^2.$

Finden Sie eine Funktion g der Form $g(x) = ax^b(\ln x)^c$ oder $g(x) = ax^b\ln(\ln x)$ mit geeigneten Konstanten $a,b,c\in\mathbb{R}$ sodass

$$f(x) \simeq g(x)$$
 für $x \to \infty$,

d.h. f(x) und g(x) asymptotisch gleich für $x \to \infty$.

$$g(x) = 81x^4 \ln x,$$

Zusätzlicher Platz für Rechnungen (wird nicht bewertet).

Aufgabe 2 (3 Punkte)

- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- a) Geben Sie für alle $x \in \mathbb{R}$ die Taylorreihe von e^x um 0 an. Bei dieser Teilaufgabe wird nur das Ergebnis bewertet.

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad x \in \mathbb{R}.$$

- 0 1 2
- b) Geben Sie den Mittelwertsatz der Differentialrechung an.
 - Es sei $f:[a,b]\to\mathbb{R}$ stetig auf [a,b] und differenzierbar auf (a,b). Dann gibt es ein $\xi\in(a,b)$ mit

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Aufgabe 3 (4 Punkte)

Finden Sie alle $a \in \mathbb{R}$ sodass für $x \to \infty$ gilt:

$$f(x) = (2x^7 - x^2)e^x + x^5e^{-x} + e^{2x} = o(x^a e^{2x}).$$

Beweisen Sie Ihre Antwort. Geben Sie explizit die Menge der gesuchten a an.

Aufgabe 4 (7 Punkte)

Bei dieser Aufgabe sind alle Zwischenschritte zu begründen.

a) Berechnen Sie das folgende Integral: $\int_0^4 t e^{-5t} dt$.

Partielle Integration mit u(t) = t, $v'(t) = e^{-5t}$, u'(t) = 1, $v(t) = -\frac{1}{5}e^{-5t}$ liefert $\int_0^4 te^{-5t} dt = \left[-\frac{1}{5}te^{-5t} \right]_0^4 + \frac{1}{5} \int_0^4 e^{-5t} dt$ $= -\frac{4}{5}e^{-20} + \left[-\frac{1}{25}e^{-5t} \right]_0^4 = -\frac{4}{5}e^{-20} - \frac{1}{25}e^{-20} + \frac{1}{25} = \frac{1}{25} - \frac{21}{25}e^{-20}.$

b) Entscheiden Sie, ob das folgende unbestimmte Integral konvergiert. Im Konvergenzfall berechnen Sie seinen Wert. $\int_0^\infty \min\left(x^2,\frac{1}{x^2}\right) \mathrm{d}x.$

Sei $f:[0,\infty)\to[0,\infty), \ f(x):=\min(x^2,\frac{1}{x^2})=\begin{cases} x^2, & x\in[0,1]\\ \frac{1}{x^2}, & x\in[1,\infty) \end{cases}$. Offensichtlich ist f stetig auf dem Definitionsbereich. Es gilt $\int_0^\infty f(x)\mathrm{d}x=\int_0^1 \frac{x^2\mathrm{d}x+\lim_{\alpha\to\infty}\int_1^\alpha\frac{1}{x^2}\mathrm{d}x}{1+\lim_{\alpha\to\infty}\int_1^\alpha\frac{1}{x^2}\mathrm{d}x}=\frac{1}{3}+\lim_{\alpha\to\infty}-\left(\frac{1}{\alpha}-1\right)=\frac{1}{3}+1=\frac{4}{3}$

Aufgabe 5 (8 Punkte)

Bei dieser Aufgabe sind alle Zwischenschritte zu begründen.

a) Bestimmen Sie alle Lösungen der Differentialgleichung

$$y''(x) - 2y'(x) - 3y(x) = 0.$$

$$y'(x) + y(x) = \frac{1}{1 + e^x}. (1)$$

 $\begin{bmatrix} 0\\1\\2\\3\\4 \end{bmatrix}$

Sie dürfen bei dieser Aufgabe verwenden, dass alle Lösungen der Differentialgleichung

$$y'(x) + y(x) = 0$$

gegeben sind durch $y: \mathbb{R} \to \mathbb{R}$, $y(x) = ce^{-x}$ mit $c \in \mathbb{R}$. Bestimmen Sie alle Lösungen von (1) durch die Methode der Variation der Konstanten.

	Wiı	: be	stir	nm	en e	eine	\mathbf{sp}	ezie	lle	Lös	ung	ς de	r ir	iho	mog	gene	n (Jlei	chu	ng	(1)	duı	ch	die	Μe	$_{ m thc}$	de	der	Va	riat	ion	
	der	Ko	$_{ m nst}$	ant	en.	Sei	y(z)	r) =	= c(x)e	-x.	Da	nn	läs	st s	ch	die	inh	om	oge	ne l	Diff	ere	ntia	lgle	ich	ung	SO	sch	reil	en:	
							- `																									-
										4	$(x)_{\ell}$	-x	L_,	·(p)	e-3	c	c(r	\ _e -	x _		$\frac{1}{+e}$											
														(11)		'	c(x)	<i>)</i>		1	+e	$_{x}$,									79	
	,																															
	also	ist	t														e^x															
														c'(x) :	= -	$\frac{e^x}{+\epsilon}$	<u></u> .						4								
																1	+ 6															
	Du:	rch	Au	sint	egr	iere	en f	olg	t, d	ass																						
													٠.			<i>~</i> \																
											-c	(x)	= 1	n(1	+ (, ,	+c	1,	c_1	$\in \mathbb{I}$	₹.											
	α										or.						. \		,													
	Sor	nit	sin	d al	le I	LOS	ıng	en	der	Di	ttere	enti	alg	leic	hun	g (I) g	gege	ebei	ı dı	urcl	1										
											ļ, ,			t F1	/1	, r		١,														
										!	I(x)	=	e^{-}	Įm	(1 -	$-e^{-}$) +	c_{1}	,	c_1	$\in \mathbb{R}$		J									
												1																				
		1																														
•																																
																															_	

Bei dieser Aufgabe sind alle Zwischenschritte zu begründen. Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen nichtnegativer reeller Zahlen mit der Eigenschaft, dass $(b_n)_{n\in\mathbb{N}}$ konvergiert und $\lim_{n\to\infty} b_n = b \in \mathbb{R}$ mit b > 0. Zeigen Sie:

$$\sum_{n=1}^{\infty} a_n b_n \text{ konvergiert } \iff \sum_{n=1}^{\infty} a_n \text{ konvergiert.}$$

