Benchmark Problem 1A: MOX Fuel-Loaded Small PWR Core (MOX Fuel with Zoning)

- 1) The problem is to calculate effective multiplication factor (k_{eff}) and power distribution.
- 2) Core Configuration (1/4 Core)

3) Fuel Rod Configuration

Cell Type	Region	Radius
Fuel	r0 – r1 : Fuel	r1 = 0.4095 cm
(UOX, MOX,	r1 – r2 : Gap	r2 = 0.4180 cm
and Gd Rod)	r2 – r3 : Clad	r3 = 0.4750 cm
Instrumentation guide tube	r0 – r1 : Water	r1 = 0.5715 cm
	r1 – r2 : Clad	r2 = 0.6120 cm
Control rod	r0 - r1 : Control material	r1 = 0.3823 cm
	r1 – r2 : Clad	r2 = 0.4839 cm
	r2 – r3 : Water	r3 = 0.5715 cm
	r3 - r4 : Clad (guide tube)	r4 = 0.6120 cm

<Fuel and Gd Rod>

<Guide Tube>

<Control Rod>

4) Fuel Assembly Configuration

- Lattice: 17 X 17	- Assembly pitch: 21.42 cm	
- Number of fuel pins: 264	- Pin pitch: 1.26 cm	
- Number of control rod guide tubes: 24	- Active fuel length: 365.76 cm	
- Number of instrumentation guide tubes: 1		

<MOX-1 Fuel Assembly>

5) Material Composition

Fuel Materials

Assembly type	HM Material ^{a)}	
UOX-1	U235 : 2.0 w/o, U238 : 98.0 w/o	
UOX-2	U235 : 3.3 w/o, U238 : 96.7 w/o	
MOX-1	Peripheral zone:	
	Pu-tot=4.3 w/o	U235 : 0.225 w/o
	Intermediate zone:	Pu-tot : Pu238/239/240/241/242/Am241
	Pu-tot=7.0 w/o	= 1.83/57.93/22.50/11.06/5.60/1.08 w/o b)
	Central zone:	= 1.03/37.93/22.30/11.00/3.00/1.06 W/0
	Pu-tot=8.7 w/o	

a) UOX and MOX fuel density: 10.4 g/cm³

Absorber Materials

Control rod	B ₄ C, density: 1.84 g/cm ³ (73% of theoretical density 2.52 g/cm ³)	
Burnable	UO ₂ (0.711 w/o U235) + Gd ₂ O ₃ (9.0 w/o) ^{c)} ,	
absorber	density: 10.06 g/cm ³	

c) Content of godolinia isotopes

Gadolinium Isotopes	Content of isotopes (w/o)	Gadolinium isotopes	Content of isotopes (w/o)
Gd-152	0.1932	Gd-157	15.6674
Gd-154	2.0555	Gd-158	24.9061
Gd-155	14.5809	Gd-160	22.1710
Gd-156	20.4259		

Other Materials

Clad	Zircaloy (Zr-97.91%, Sn-1.59%, Fe-0.5%), density : 6.44 g/cm ³	
Baffle	SS-304 (Fe-70.351%, Cr-19.152%, Ni-8.483%, Mn-2.014%),	
	density: 7.82 g/cm ³	
Gap	He (320psig/700 °K)	
Coolant/Reflector	density: 1.0 g/cm³ at 300 °K, 0.7295 g/cm³ at 570 °K	
(Water)	Soluble boron concentration : 800 ppm	

^{b)} Derived from UO₂ PWR fuel of 33,000 MWd/t burnup, reprocessed after 3-yr cooling and 2-yr storage.

6) Reactor Operating Condition

- Total thermal power of the core: 900 MWth

- Water coolant average temperature: 570 $^{\circ}$ K

- Cladding average temperature: 630 $^{\circ}$ K

- Fuel average temperature: 900 $^{\circ}$ K

7) Problem Cases

- Case 1: All rods in

- Case 2 : All rods out