Tema 4 Variable aleatoria

Carlos Montes - uc3m

1. Concepto

a) Ortodoxo

 Variable cuyo valor numérico está determinado por el resultado de un experimento aleatorio.

b) Ligeramente heterodoxo

 Variable que cuantifica la magnitud de interés, y cuya realización numérica concreta depende del azar(cada valor o intervalo de valores tendrá una probabilidad de aparición).

1. Concepto

- 2. Distribución de probabilidad
 - 2.1. Función de probabilidad
 - 2.2. Función de distribución
 - 2.3. Variables aleatorias discretas y continuas
 - 2.4. Función de densidad
- 3. Medidas características de una variable aleatoria
 - 3.1. Medidas de tendencia central
 - 3.2. Medidas de dispersión
- 4. Covarianza y correlación
- 5. Transformaciones y medidas características

1. Concepto

Lanzamos 2 dados no trucados.

Nos interesa estudiar el experimento aleatorio: "suma de puntuaciones".

¿Cómo definimos la variable aleatoria?

1. Concepto

Probabilidad de cada resultado:

1/36

(<mark>1</mark> ,1)	(<mark>1</mark> ,2)	(1 ,3)	(<mark>1</mark> ,4)	(<mark>1</mark> ,5)	(<mark>1</mark> ,6)
(2,1)	(<mark>2</mark> ,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6 ,5)	(6,6)

Carlos Montes – uc3m

1. Concepto

Suma de puntuaciones de los dos dados.

¿Cómo definimos la variable aleatoria?

X: "Suma de puntos obtenidos al lanzar dos dados".

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

1. Concepto

X: "Suma de puntos obtenidos al lanzar dos dados"

		٠.				
*	2	3	4	5	6	7
	3	4	5	6	7	8
	4	5	6	7	8	9
Š	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

		_									
х	p(x)										
2	1/36										
3	2/36					(4)					
4	3/36	0.00			3		*	1			
5	4/36	£ 10						Š			
6	5/36	14		*						ŧ.	
7	6/36	-	÷			-			40.1	-	
8	5/36					*					
9	4/36										
10	3/36										
11	2/36										
12	1/36										

1. Concepto

Probabilidad de obtener 8 puntos:

5/36

Probabilidad de obtener menos de 6 puntos: 1/36 + 2/36 + 3/36 + 4/36 = 10/36

X: "Suma de puntos obtenidos al lanzar dos dados"

p(x)
1/36
2/36
3/36
4/36
5/36
6/36
5/36
4/36
3/36
2/36
1/36

1. Concepto

- Fallo de una maquinaria.
- Número de artículos defectuosos en un lote.
- Número de bits transmitidos correctamente.
- Distancia recorrida con determinada cantidad de combustible.
- Número de averías de un sistema.
- Número de clientes que llegan a un puesto de servicio por unidad de tiempo.

Carlos Montes - uc3m

1. Concepto

2.1. Función de probabilidad

Función de probabilidad, de cuantía o de masa de una variable aleatoria

Es la función p(x) de una variable **discreta** X que asigna a cada valor diferente de $X: x_1, x_2..., x_k$ la probabilidad de ser obtenido en el experimento aleatorio.

$$p(x_0) = P(X = x_0)$$
$$\sum_{E} p(x_i) = 1$$

ej. 17

Sea una variable aleatoria discreta que toma los valores $X=\{a, 1, 2, 3\}$ y con función de probabilidad p(x)=x/10. ¿Qué valor debe tomar a?

$$X = \{a, 1, 2, 3\}$$
 $p(x)=x/10$

Los valores 1,2,3 suman una probabilidad de:
$$\frac{1+2+3}{10} = \frac{6}{10}$$

Para que la probabilidad total sea 1.

$$a = 4$$

Carlos Montes – uc3m

2.2. Función de distribución

Propiedades

1)
$$F(+\infty) = 1$$
 $F(-\infty) = 0$

2)
$$P(x_0, x_{0+h}) = F(x_{0+h}) - F(x_0)$$

3) Es una función monótona no decreciente: $F(x_0) \leq F(x_{0+h})$

2.2. Función de distribución

Función de distribución F(x)

(Cumulative probability function)

Función de distribución de la variable aleatoria X en el punto $x = x_0$ es la probabilidad de que X tome un valor menor o igual que x_0 .

$$F(x_0) = P(x \le x_0)$$

$$F(x_0) = P(-\infty < x \le x_0)$$

$$F(x_0) = P(-\infty, x_0]$$

2.3. Variables aleatorias discretas y continuas

Variable aleatoria discreta:

toma un número de valores cuantitativos discretos

$$F(x_0) = p(X \le x_0) = \sum_{x_i \le x_0} p(X = x_i)$$

En una distribución discreta, la probabilidad se concentra en los puntos de discontinuidad x_i

2.3. Variables aleatorias discretas y continuas

Variable aleatoria continua:

puede tomar cualquier valor en un intervalo

$$p(X = x_i) = 0$$
$$p(X \le x_i) = p(X < x_i)$$

La probabilidad de cada punto concreto es nula.

Carlos Montes - uc3m

2.4. Función de densidad

Función que describe la **densidad de probabilidad** en cualquier intervalo.

$$f(x) = \frac{P(x_0 < X < x_0 + \Delta x)}{\Delta x}$$

Haciendo las clases del histograma cada vez más pequeñas, éste tenderá a una curva f(x), capaz de describir el comportamiento de la variable.

2.4. Función de densidad

$$f(x) = \frac{P(x_0 < X < x_0 + \Delta x)}{\Delta x}$$

La probabilidad de cualquier intervalo vendrá dada por el área que f(x) encierra en ese intervalo.

2.4. Función de densidad

$$f(x) = \frac{P(x_0 < X < x_0 + \Delta x)}{\Delta x} = \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x}$$

Tomando un intervalo tan pequeño como queramos $(\Delta x \rightarrow 0)$

$$\lim_{\Delta x \to 0} \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} = F'(x_0)$$

$$f(x)=F'(x)$$

Propiedades

1)
$$f(x) \ge 0 \quad \forall x \in D_x$$

2)
$$f(x) = 0 \quad \forall x \notin D_x$$

3)
$$P(x \le x_0) = \int_0^{x_0} f(x) dx$$

$$4) \int_{-\infty}^{+\infty} f(x) dx = [F(x)]_{-\infty}^{+\infty} = F(+\infty) - F(-\infty) = 1$$

5)
$$P(a < x \le b) = F(b) - F(a)$$
$$= \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx = \int_{a}^{b} f(x)dx$$

Carlos Montes - uc3m

La duración de la batería de un iPad mini (medida en días) viene dada por una variable aleatoria con función de densidad

$$f(x) = \begin{cases} (2+kx)/6 & \text{si } 0 < x < 2\\ 0 & \text{en el resto} \end{cases}$$

Calcule:

- a) El valor de k para que f(x) sea función de densidad
- b) La duración media de la batería.
- c) Se considera admisible un iPad cuya batería tenga una duración superior a 1.5 días. Sabiendo que la batería ha durado más de un día ¿cuál es la probabilidad de que ese iPad sea admisible?

a) $\int_0^2 \frac{(2+kx)}{6} dx = 1$

$$\frac{1}{6} \left[2x + \frac{kx^2}{2} \right]_0^2 = 1 \qquad \frac{1}{6} [4 + 2k] = 1 \qquad [4 + 2k] = 6 \qquad k = 1$$

3.1. Medidas de tendencia central

Media o esperanza matemática: μ, E(x)

Caso discreto: $\mu = E(x) = \sum_{i} x_i P(x_i)$

Caso continuo: $\mu = E(x) = \int_{-\infty}^{\infty} x \cdot f(x) dx$

Mediana

Caso discreto: el m más pequeño que satisfaga:

$$F(m) \ge 0.5$$

Caso continuo: el m tal que:

$$F(m) = 0.5$$

3.1. Medidas de tendencia central

Moda

Es el valor de mayor probabilidad o densidad.

Carlos Montes – uc3m

3.2. Medidas de dispersión

$$\sigma^{2} = E[(X - \mu)^{2}] = E(X^{2} - 2X\mu + \mu^{2}) =$$

$$= E(X^{2}) - 2\mu E(X) + E(\mu^{2}) =$$

$$= E(X^{2}) - 2\mu^{2} + \mu^{2} = E(X^{2}) - \mu^{2}$$

Fórmula de cálculo:

$$\sigma^2 = E(X^2) - [E(X)]^2$$

3.2. Medidas de dispersión

Varianza: σ^2 , var(x)

Caso discreto:
$$\sigma^2 = var(X) = \sum_{i=1}^n (x_i - \mu)^2 P(x_i)$$

Caso continuo:
$$\sigma^2 = var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

Equivale a
$$E(X - \mu)^2$$

3.2. Medidas de dispersión

Percentil p

Es el valor x_p que verifica:

$$F(x_p) = p$$

La duración de la batería de un iPad mini (medida en días) viene dada por una variable aleatoria con función de densidad

$$f(x) = \begin{cases} (2 + kx)/6 & \text{si } 0 < x < 2\\ 0 & \text{en el resto} \end{cases}$$

Calcule:

- a) El valor de k para que f(x) sea función de densidad
- b) La duración media de la batería.
- c) Se considera admisible un iPad cuya batería tenga una duración superior a 1.5 días. Sabiendo que la batería ha durado más de un día ¿cuál es la probabilidad de que ese iPad sea admisible?

b)
$$\int_0^2 x \cdot \frac{(2+x)}{6} dx = \frac{1}{6} \left[\frac{2x^2}{2} + \frac{x^3}{3} \right]_0^2 =$$
$$= \frac{1}{6} \left[4 + \frac{8}{2} \right] = \frac{20}{19} = 1.11$$

ej. 22

La duración de la batería de un iPad mini (medida en días) viene dada por una variable aleatoria con función de densidad

$$f(x) = \begin{cases} (2+kx)/6 & \text{si } 0 < x < 2\\ 0 & \text{en el resto} \end{cases}$$

Calcule:

- a) El valor de k para que f(x) sea función de densidad
- b) La duración media de la batería.
- c) Se considera admisible un iPad cuya batería tenga una duración superior a 1.5 días. Sabiendo que la batería ha durado más de un día ¿cuál es la probabilidad de que ese iPad sea admisible?

c)
$$P(X > 1.5 | X > 1) = \frac{P[(X > 1.5) \cap (X > 1)]}{P(X > 1)} = \frac{P(X > 1.5)}{P(X > 1)}$$

$$P(X > 1.5) = \int_{1.5}^{2} \frac{(2+x)}{6} dx = \frac{1}{6} \left[2x + \frac{x^2}{2} \right] \frac{2}{1.5} = 0.3125$$

$$P(X > 1) = \frac{1}{6} \left[2x + \frac{x^2}{2} \right] \frac{2}{1} = 0.5833$$

$$\frac{0.3125}{0.5833} = 0.5357$$

4. Covarianza y correlación

La covarianza y correlación poblacionales tienen la misma interpretación que las muestrales.

$$cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$$

$$\rho = corr(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)}\sqrt{var(Y)}}$$

Carlos Montes – uc3m

5. Transformaciones y medidas características

En el caso de la media:

$$E(a+bX) = a+bE(X)$$

Para dos variables:

$$E(aX + bY) = aE(X) + bE(Y)$$

5. Transformaciones y medidas características

En el caso de la varianza:

$$var(a + bX) = b^2 var(X)$$

Para dos variables:

$$var(aX + bY) = a^2var(X) + b^2var(Y) + 2abcov(X, Y)$$

Si X e Y están incorreladas:

$$var(aX + bY) = a^2var(X) + b^2var(Y)$$

5. Transformaciones y medidas características

De la misma manera:

$$var(aX - bY) = a^{2}var(X) + b^{2}var(Y) - 2abcov(X, Y)$$

Si X e Y están incorreladas:

$$var(aX - bY) = a^2 var(X) + b^2 var(Y)$$

En ambos casos es la SUMA de las varianzas.

5. Transformaciones y medidas características

 $independencia \Rightarrow incorrelación$ $incorrelación \Rightarrow independencia$

(salvo en una normal bidimensional)

Carlos Montes – uc3m