

Industrielle Kommunikation

Allgemeines

Signal \to A/D Wandlung: Abtastung \to Digitaler Bitstrom \to D/A Wandlung: ± 1 Gewichtete NF Impulse $\pm g_s(t) \to$ Modulation: Verschiebung ins Trägerband \to AWGN Kanal \to Detektor \to Bitstrom

1. Signale

1.1. Arten von Signalen

deterministisch: durch Funktionen beschreibbar, enthalten kein Nachricht.

stochastisch: zufälliger Verlauf, überträgt Information

2. Abtastung von Signalen

Bezeichnung	Symbol	Einheit
Signalstufen	V	[V] = 1
Bandbreite	В	[B] = 1Hz
Datenrate / Bitrate	R_b	$[R_b] = 1bps$
Sendepegel (Signal)	P_S	$[P_S] = 1W$ oder $[P_{S,dBm}] = 1dBm$
Rauschpegel (Noise)	P_N	$ \begin{array}{ccc} [P_N] &=& 1W & \text{oder} \\ [P_{N,dBm}] &=& 1dBm \end{array} $
Interefrenzpegel	P_I	$ \begin{array}{ccc} [P_I] &=& 1W & \text{oder} \\ [P_{I,dBm}] &=& 1dBm \end{array} $
Signal-Rausch- Verhältnis	$SNR = \frac{P_S}{P_N}$	$ \begin{array}{ccc} [SNR] &=& 1 & \text{oder} \\ [SNR_{dB}] &=& 1dB \end{array} $
Signal- Intefrenz- Rausch- Verhältnis	$SINR = \frac{P_S}{P_I + P_N}$	$[SINR] = 1$ oder $[SINR_{dB}] = 1dB$

(Signal-To-Noise-Ratio), Signal zu Rauschabstand $SNR_{(dB)}$ $SNR_{dB} = 10\log_{10}(SNR)dB = P_{S,dBm} - P_{N,dBm}$

(Signal-To-Interference-And-Noise-Ratio) $SINR_{(dB)}$

$$\begin{split} SINR &= \frac{P_S}{P_I + P_N} \\ SINR_{dB} &= 10\log_{10}(SINR)dB \\ SINR_{dB} &= P_{S,dBm} - P_{I,dBm} - P_{N,dBm} \end{split}$$

2.1. Nyquist-Abtasttheorem

 $R_{b,max} = 2Bld(V) \frac{bit}{s}$

2.2. Shannon-Abtasttheorem

 $R_{b,max} = Bld(1 + SNR) \frac{bit}{s} mit [SNR] = 1$

3. Dämpfung/Verstärkung, dB-Rechnung

3.1. Leistungspegel

Leistung: $P=\frac{U^2}{R}=I^2R$ Leistungspegel: $L_{P,dB}=10log\frac{P_2}{P_1}dB=20log\frac{U_2}{U_1}dB=20log\frac{I_2}{I_1}dB$ $L_{P,dBm}=10log\frac{P}{ImW}dBm$ $1dBm=1dBmW=30dB\mu W=60dBnW$ Verstärkung[dB] = $L_{P,dB}$: Dämpfung[dB] = $-L_{P,dB}$

Logarithmische Rechenregeln:

 $x = a \cdot \log_b(c \cdot d)$ $x = \log_b c \cdot d^a = \log_b c^a + \log_b d^a$ $b^x = (c \cdot d)^a = c^a \cdot d^a$

Durch $x=(\frac{1}{x})^{-1}$ ergeben sich die Rechenregeln für Subtraktion und Division.

3.2. Umrechnung dB

Verhältnis $\frac{P_2}{P_1}$	Verstärkung[dB]	Dämpfung[dB]
$\frac{\frac{1}{1000}}{\frac{1}{1000}} = 10^{-3}$ $\frac{\frac{1}{20}}{\frac{1}{10}} = 10^{-1}$ $\frac{\frac{1}{4}}{\frac{1}{2}}$ 1	-30	+30
$\frac{1}{20}$	-13	+13
$\frac{1}{10} = 10^{-1}$	-10	+10
$\frac{1}{4}$	-6	+6
$\frac{1}{2}$	-3	+3
1	0	0
2	+3	-3
4	+6	-6
8	+9	-9
10	+10	-10
$1000 = 10^3$	+30	-30

3.3. Rechenregeln dB bzw. dBi und dBm

 $\begin{array}{lll} dB \mp dB(i) & = & dB \\ dBm \mp dB(i) & = & dBm \\ dBm - dBm & = & dB \\ dBm + dBm & = & undefiniert \end{array}$

4. Baud-, Bit-/Übertragungsrate, Durchsatz

4.1. Definitionen

Bezeichnung	Symbol	Einheit	
Datenmenge in bit	$D_b = 8D_B$	$[D_b] = 1bit$	
Datenmenge in Byte	D_B	$[D_B] = 1Byte = 8bit$	
Signalstufen	V	[V] = 1	
Baudrate / Schritt- geschwindigkeit	R_{baud}	$[R_{baud}] = 1Hz$	
Bitrate/Brutto- Übertragungsrate	$R_b = R_{baud} \cdot \\ ld(V)bit$	$[R_b] = 1bps = 1\frac{bit}{s}$	
Durchsatz/Netto- Übertragungsrate, effektiv	$R_{eff} = \frac{D_b}{tges}$	$[R_{eff}] = 1bps$	

Signalstufen V; Anzahl der möglichen annehmbaren Werte eines diskr. Signals pro Schritt

Zeit t_{ges} ab Sendestart einer Datenmenge D_b bis zum vollständigen Empfang, abhängig von verwendeten Protokollen

5. Leitungstheorie

Leitungstheorie relevant für $l>=0,1\lambda$

5.1. Definitionen

Leitungslänge l mit [l]=m Belagsgrößen: R',L',G',C' als Widerstands-, Induktivitäts-, Ableitungs-, Kapazitätsbelag Bsp: $R=R'\cdot l$ mit $[R']=\frac{\Omega}{m}$

Wellenimpedanz
$$\underline{Z}_L = \sqrt{\frac{(R' \cdot j\omega L')}{(G' \cdot j\omega C')}}$$

Wellenlänge λ mit $[\lambda]=$ m Ausbreitungsgeschwindigkeit $v=\lambda\cdot f$ mit [v]= m/s Ausbreitungskonstante $\gamma=\alpha+j\beta=\sqrt{(R'\cdot j\omega L')(G'\cdot j\omega C')}$ mit $[\gamma]=\frac{1}{m}$

5.2. Leitungsmodell

5.3. Formeln

6. Wellen und Antennen

Indizes: E(empfänger), i(sotroper Kugelstrahler), r(adius), S(ender)

6.1. Poynting-Vektor

Poynting-Vektor \overrightarrow{S} ist Vektor der Leistungsflussdichte mit $[S]=1\frac{W}{m^2}$ $\overrightarrow{S}(x,y,z,t)=\overrightarrow{E}(x,y,z,t) imes \overrightarrow{H}(x,y,z,t)$ Für harmonische Zeitvorgänge und EM-Wellen $(\overrightarrow{E}\lhd\overrightarrow{H}=\frac{\pi}{2})$ gilt: $\underline{S}=S=\frac{1}{2}\underline{E}\cdot \underline{H}^*=\frac{1}{2}\underline{H}^2Z_F=\frac{1}{2}\frac{Z_F}{\underline{E}^2}$ mit $E,H\in\mathbb{C}$

Wellenwiderstand im Vakuum
$$Z_F = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 376,73\Omega$$

$$S_i = |\overrightarrow{S}| = \frac{P_S}{4\pi r^2}$$

Richtfaktor $D_i = \frac{S_{r,max}}{S_i} = 4\pi r^2 \frac{S_{r,max}}{P_S}$

i.d.R. angegeben als $D_{i,log} = 10log D_i dBi$

Antennengewinn $G = \eta D_i$ i.d.R. angegeben in dB

Antennenwirkfläche $A_W=rac{\lambda^2}{4\pi}G$ mit der Wellenlänge $\lambda=rac{c}{f}$ Bsp. Empfangs- und Sendeantenne im Abstand r zueinander: $P_E=P_S\cdot G_S\cdot G_E(rac{\lambda}{4\pi r})^2$

7. OSI-Modell (Open-System-Interface)

Ein- und Entkapselung der Daten in den 7 OSI-Schichten

Beispiel-Trace und Header-Verkapselung:

8. Zugriffsverfahren, Sicherungsschicht

8.1. Definitionen

Bezeichnung	Symbol	Einheit
Paketgröße in bit	D_P	$[D_P] = 1bit$
Rahmenzeit für ein Paket	$\tau = \frac{D_P}{R_b}$	$[\tau] = 1s$
Signallaufzeit (trans- mission time)	t_t	$[t_t] = 1s$
Round-Trip-Time/- Delay	$\begin{array}{ccc} RTT & = \\ RTD & = \\ 2 \cdot t_t & \end{array}$	$[t_t] = 1s$
durschnittliche Paketsende-Rate	λ	$[\lambda] = 1Hz$
Input, zu sendende Pakete	I	[I] = 1
Kanalauslastung / Gesamt Übertragungsversuche	$G = \lambda \cdot \tau$	[G] = 1
Throughput, kein Konflikt	S, ideal $S=G$	[S] = 1

Bei keinen verlorenen Pakete gilt I=S

Anzahl Übertragungsversuche bzw. Kanalauslastung $G=\lambda\cdot au$ Anzahl erfolgreich übertragener Pakete pro Rahmenzeit S, ideal S=G

8.2. Zugriffsverfahren

Ziel: Medienzugangskontrolle durch Paket-Kollisionsvermeidung und -endteckung

Datendurchsatz bei ALOHA-Systemen

Pure ALOHA Zufällige Sendung von Paketen durchschnittlich alle $\frac{1}{2}$ mit Paketen der zeitlichen Rahmenlänge au

Potentielle Kollisionszeit $=2\tau$

 $S = G \cdot e^{-2G} \text{ mit } S_{max}(G = G_{max} = 0, 5) = 0,184$

Slotted ALOHA Zufälliges Senden von Paketen durschnittlich alle 1 zu Beginn eines Zeitslots mit Paketen der zeitlichen Rahmenlänge au

Potentielle Kollisionszeit =
$$\tau$$
 $S = G \cdot E^{-G}$ mit $S_{max}(G = G_{max} = 1) = 0,368$

1-persistent CSMA (Carrier Sense Multiple Access)

regelmäßige Überprüfung auf freien Kanal, wenn frei, dann Paketsendung mit Wahrscheinlichkeit 1

Non-persistent CSMA (Carrier Sense Multiple Access)

unregelmäßige Überprüfung auf freien Kanal, wenn frei, dann Paketsendung mit Wahrscheinlichkeit 1

p-persistent CSMA (Carrier Sense Multiple Access)

regelmäßige Überprüfung auf freien Kanal, wenn frei, dann Paketsendung mit Wahrscheinlichkeit p

CSMA/CD (Carrier Sense Multiple Access / Collision Detection) Bestimmung Ethernet: Min. Nachrichtenlänge > Max. Konfliktdauer oder ev. künstl. Nachrichtenverlängerung mit Padding Bits

CSMA/CD beim Ethernet

8.3. Sicherungsschicht

Stop and Wait

Senden eines Pakets, Warten auf Bestätigung (ACK), Senden des nächsten

$$R_eff = rac{D_p}{rac{D_p}{R_h} + 2t_t}$$
 wenn t_t für Hin- und Rückweg gleich.

Fenstergröße $D_{oldsymbol{W}}$ in bits bestehend aus n Paketen

Bestätigung von Paket 1 muss ankommen, bevor die Fenstergröße in bits versendet wurde, damit keine Wartezeiten anfallen.

$$\begin{split} & \text{Fall 1 (ideal): Für } \frac{DW}{Rb} \leq \frac{DP}{Rb} + 2t_t \\ & \text{gilt: } R_{eff} = R_b \\ & \text{Fall 2 (Wartezeiten): Für } \frac{DW}{R_b} < \frac{DP}{R_b} + 2t_t \\ & \text{gilt } R_{eff} = \frac{DW}{\frac{DD}{R_b} + 2 \cdot t_t} \end{split}$$

Sender überträgt, wenn nach Senden eines Pakets und Verstreichen eines Timeout-Intervall kein ACK für das Paket einging, sämtliche Daten ab dem unbestätigten Rahmen neu.

Go-back-n mit Puffer

Genauso wie ohne Puffer, nur das nach Erhalt des ACK für das erneut gesandte Paket beim ersten noch nicht gesendeten Paket weiter gesendet

Selective repeat Bei Nichtüertragung eines Pakets wird nach Timeout-Intervall nur das nicht korrekt übertragene Paket neu gesandt, alle weiteren werden gepuffert.

HDLC (High Level Data Link Control)

HDLC-Rahmenformat

Flag	Adresse	Steuerfeld	Nutzdaten	CRC	Flag
8 Bit	8	8 oder 16	variabel	16 oder 32	8

01111110; Bit stuffing (Bitstopfen) um Flag eindeutig zu halten

CRC Cyclic Redundancy Check

Nutzdaten CRC-Beispiel

9. Codierung

Komprimierung: Falls Bitstrom nicht gleichverteilt und mit Gedächtnis Maximale Kompression: Bits gleichverteilt, ohne Gedächtnis Entropie: kein Code kann für Z eine geringere mittlere Codewortlänge finden als $H(z) = \sum P(z) \operatorname{ld} \left(\frac{1}{P(z)} \right)$

9.1. Kompression

Kleiner Verlust bei unkodierten Bitstrom. Großer Gewinn bei Kodierung. Bsp: Feste Blocklänge mit Statusbit am Anfang: Kodiert/Unkodiert

9.2. Digitale Quellencodierung (Kompression)

Arten von Kodierern:

Verteilung Bekannt: Huffman Code, Morse, Arithmetic Universal: Lempel-Ziv (ZIP), PPM, BWT(bZip)

Transform: Fouriertransformation (JPG.GIF.PNG.MP3)

9.3. Kanalcodierung

Single-Parity-Check: 1 Bit pro 2 bit zusätzlich: $XOR(x_1, x_2)$ Daraus ergibt sich eine Effizienz von $\frac{2}{3}$

FEC: Forward Error Correction liefert Fehlererkennung und Korrek-

Beispiele: Paritätsbit. CRC. Reed-Solomon-Codes. LDPC. Polar Codes

9.4. Informationsgehalt und Entropie

$$\begin{split} & \text{Info vom Symbol } s_i \text{: } I_i = -\log_2 \mathsf{P}(\mathsf{X}_Q = s_i) = -\log_2 p_i \\ & \text{Entropie von } \mathsf{X}_Q \text{: } H(\mathsf{X}_Q) = \mathsf{E}[I] = -\sum_{i=0}^{M-1} p_i \log_2 p_i \left[\frac{\mathsf{bit}}{\mathsf{Symbol}} \right] \end{split}$$

Mittlere Codewortlänge $\overline{l} = \mathrm{E}[l] = \sum_{i=0}^{n-1} p_i l_i$

Die minimale mittlere Codewortlänge $\bar{l} > H(x_O)$

9.5. Hamming-Code(N,n)

N Nachrichtenbits mit $N = 2^k - 1 = n + k$ n Datenbits k Paritybits

9.6. Huffmann-Code

10. Lineare, digitale Modulation

10.1. Allgemeines

Informationsfluss:

Info-Quelle -i, Codierung -i, Modulation -i, Kanal -i, Demodulation -i, Decodierung -¿ Info-Senke

10.2. Modulationsarten

Amplitudenmodulation ASK

Frequenzmodulation FSK (Winkelmodulation)

Phasenmodulation PSK (Winkelmodulation)

Quadraturmodulation QAM

Modulation mit Sinusträger: $a(t) = A(t) \cdot cos(\omega_0 t - \phi(t))$ Amplitudenmodulation wirkt sich nur auf A(t) aus Winkelmodulation wirkt sich nur auf $\phi(t)$

Tastung eines Sinusträgers

Trägerzustände der 16 QAM

Spread Spectrum durch Direct Sequence (DS) oder Frequency Hopping

Schützt vor Schmalbandstörern (Militär) und freuquenz-selektives Fading (Mobilfunk)

10.3. On-Off Keying (OOK)

Intensitätsmodulation mit b=1 (Laser an oder aus)

Mittlere Energie pro Symbol: $E_s = \frac{A_{on}^2}{2}$

10.4. Amplitude Shift Keying (M-ASK)

Für M Stufen mit Abstand Δ gilt: $\mathrm{E}[D_I^2] = \frac{\Delta^2(M^2-1)}{12}$

10.5. Phase Shift Keying (PSK)

$$\begin{aligned} &\boldsymbol{d}_{I}^{2} + \boldsymbol{d}_{Q}^{2} = r^{2} & \text{(meist } r = 1\text{)} \\ &\boldsymbol{E}_{s} = \mathrm{E}[\boldsymbol{D}_{I}^{2} + \boldsymbol{D}_{Q}^{2}] \int_{0}^{T} |\boldsymbol{g}_{s}(t)|^{2} \, \mathrm{d}t \end{aligned}$$

Offset: verhindert harte Übergänge (Nicht durch Null)

Gray-Codierung zwischen benachbarten Symbolen: Fehler in der Symbolerkennung hat nur geringe Bitfehler

10.5.1. DPSK

Differentielle binäre Phasenmodulation 0: Phase bleibt gleich, 1: Phase ändert sich

10.6. Quadraturamplitudenmodulation (M-QAM)

Für M Stufen und Abstand Δ : $E[D_I^2 + D_O^2] = \frac{\Delta^2(M-1)}{6}$

11. Weiteres, IP, etc.

11.1. IP-Adressen

IP-Adresse=Netzwerkadresse+HostadresseIP-Adresse UND Netzwerkmaske = Netzwerkadresse inkl. vorangestellte(s) Bit(s) für die Adressklasse

Genormte Länge von 32 bit für eine IP-Adresse

Schreibweise meist in 4 Oktett-Form mit 4 durch Punkte getrennte dezimale 8-Bit-Zahlen (0...255)

Klasse	führende	Wert des	Bits für Netz-	Bits für Host-	max. Rechner-						
KKESSE	Bits	1. Bytes	adresse	adresse	zahl		Klasse	Netz Adressraum	Netz max Zahl	Host Adressraum	Host max Zahi
Α	0	1 - 126	7	24	cc. 16 Mil.			0 bis 126	127	0.0.1 bis	234.2
В	10	128 - 191	14	16	ca. 65000		Α	0 00 120	121	255.255.254	=16777216-2
C	110	192 - 223	21	8	ca. 250		В	128.0 bis 191.255	16384	0.1 bis 255.254	210-2=65536-2
D		224 - 239	-	- -			С	192.0.0 bis 223.255.255	2 097 152	1 bis 254	2*-2=256-2
U	1110	224 - 239	Muticasi	st (Hostgruppe): 28 Bits		П	_			224 0 0 0 bis	228.2
Е	1111	rese	reserviert für Forschungszwecke				D			239.255.255.254	=268 435 454

Localhost = 127.0.0.1

Netzwerkadresse, alle bits der Hostadresse sind 0 Broadcastadresse, alle bits der Hostadresse sind 1

Subnetting

Unterteilung eines Klasse A-, B- oder C-Netzes in Subnetze

Die Subnetzmaske unterteilt die Bits für die Host-Adresse in eine Subnetzwerkadresse und die eigentliche Rechneradresse.

IP-Adresse = Netzwerkadresse + Subnetzwerkadresse +eig.Rechneradresse

IP-Adresse UND Subnetzmaske = Netzwerkadresse + Subnetzadresse inkl. vorangestellte(s) Bit(s) für die Adressklass

11.2.

11.3.

Hi, Dr. Elizabeth? Yeah, uh... I accidentally took the Fourier transform of my cat...

Eigene Notizen: ФЕ

Anhang

12. Mathematik

12.2. Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

12	12.3. Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$									
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\frac{1}{2}\pi$	π	$1\frac{1}{2}\pi$ 270°	2π		
φ	00	30°	45°	60°	90°	180°	270°	360°		
sir	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$ $\frac{1}{2}$	1	0	-1	0		
cos	s 1	$\frac{\sqrt{3}}{2}$	$\begin{array}{c c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$	$\frac{1}{2}$		-1	0	1		
taı		$\frac{\sqrt{3}}{3}$	1		±∞	0	∓∞	0		

Additionstheoreme Stammfunktionen

$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\bar{\pi}}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

 $\begin{array}{l} \sin(x\pm y) = \sin x \, \cos y \pm \sin y \, \cos x \quad \sin x = \frac{1}{2i} (e^{\mathrm{i}x} - e^{-\mathrm{i}x}) \\ \cos(x\pm y) = \cos x \, \cos y \mp \sin x \, \sin y \quad \cos x = \frac{1}{2} (e^{\mathrm{i}x} + e^{-\mathrm{i}x}) \end{array}$

12.4. Integralgarten

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

Substitution: $\int \int (g(x))g(x) dx = \int \int (t) dt$							
F(x) - C	f(x)	f'(x)					
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}					
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$					
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$					
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$					
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$					
$-\cos(x)$	$\sin(x)$	$\cos(x)$					
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$					
$\mathrm{Si}(x)$	$\operatorname{sinc}(x)$	$\frac{x\cos(x)-\sin(x)}{x^2}$					
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$					

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$

$$\int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2} \qquad \int t^2 e^{at} dt = \frac{(ax - 1)^2 + 1}{a^3} e^{at}$$

2^1	2^2	2^3	2^4	2^5	2^6	2^7	2^8	2^{16}
2	4	8	16	32	64	128	256	65536

13. Geometrie

$$a:b=c:d \quad \frac{a+b}{c+d} = \frac{a}{c} = \frac{b}{d}$$
$$\frac{a}{a+b} = \frac{c}{c+d} = \frac{e}{f}$$

Allg. Dreieck $\triangle ABC$ mit Seiten a, b, c und Winkel α, β, γ :

Schwerpunkt: $x_S = \frac{1}{3}(x_A + x_B + x_C)$ $y_S = \frac{1}{3}(y_A + y_B + y_C)$

Rechtwinkliges Dreieck $\triangle ABC$ mit $\gamma=90^\circ$ bei C

Pythagoras: $a^2 + b^2 = c^2$ Höhensatz: $h^2 = pq$ Kathetensatz: $a^2 = pc$ $a = c \sin \alpha = c \cos \beta = b \tan \alpha$

Pyramide mit beliebiger Grundfläche G $V = \frac{1}{2}G \cdot h$ SP: liegt auf h mit $y_S = h/4$

Zylinder/Prisma $V = G \cdot h$ $M = U \cdot h$

Kugel: $V = \frac{4}{2}\pi r^3$ $O = 4\pi r^2$ Kreissehne: $s = 2r \sin(\alpha/2)$

14. Stochastik

14.1. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

Ein Wahrscheinlichkeitsraum $(\Omega, \mathbb{F}, \mathsf{P})$ besteht aus

Ergebnismenge	$\Omega = \{\omega_1, \omega_2, \dots\}$	Ergebnis $\omega_j \in \Omega$
Ereignisalgebra	$\mathbb{F} = \left\{A_1, A_2, \ldots\right\}$	Ereignis $A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P:\mathbb{F}\to[0,1]$	$P(A) = \frac{ A }{ \Omega }$

Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

Erwartungswert: $\mathsf{E}[X] = \mu = \sum x_i P(x_i) = \int x \cdot f_\mathsf{X}(x) \, \mathrm{d}x$

 $\textbf{Varianz:} \ \mathsf{Var}[X] = \mathsf{E}\left[(\mathsf{X} - \mathsf{E}[\mathsf{X}])^2\right] = \mathsf{E}[\mathsf{X}^2] - \mathsf{E}[\mathsf{X}]^2$ Standard Abweichung $\sigma = \sqrt{\operatorname{Var}[X]}$

Covarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binominialverteilung (diskret, n Versuche, k Treffer): $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np$ $\sigma^2 = np(1-p)$

Korrelation ist ein Maß für den linearen Zusammenhang von Variablen

Cov(X, Y)Kreuzkorrelation von X und Y: $r_{xy} =$

14.2. Normalverteilung

 $Var(X) = \sigma^2$ $E(X) = \mu$

15. Signale

15.1. Faltung von Signalen

$$x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t - \tau) d\tau$$

15.2. sinc-Singal

16. Fouriertransformation

16.1. Eigenschaften der Fouriertrafo

Linearität:	$\alpha x(t) + \beta g(t) \stackrel{\mathcal{F}}{\circ} \alpha X(f) + \beta G(f)$
Zeitverschiebung:	$x(t-\tau) \circ \xrightarrow{\mathcal{F}} e^{-j2\pi f \tau} X(f)$
Frequenzversch.	$e^{j2\pi f_0 t} \circ \xrightarrow{\mathcal{F}} X(f - f_0)$
Vertauschung:	$U^*(t) \circ \stackrel{\mathcal{F}}{\longrightarrow} u^*(f)$
Stauchung	$x(ct) \circ \frac{\mathcal{F}}{ c } X(\frac{f}{c})$
Ableitung	$x^{(n)}(t) \stackrel{\mathcal{F}}{\circ} (j2\pi f)^n X(f)$
Integral	$\int_{-\infty}^{t} x(\tau) d\tau \circ^{\mathcal{F}} \left(\frac{1}{2} \delta(f) - \frac{\mathrm{j}}{2\pi f} \right) X(f)$
Faltung:	$(x*g)(t) \circ \stackrel{\mathcal{F}}{\longrightarrow} X(f) \cdot G(f)$

 $E = \int_{-\infty}^{+\infty} |u(t)|^2 dt = \int_{-\infty}^{+\infty} |U(f)|^2 df$

Zusammenhang zwischen geraden und ungeraden Signalanteilen: $x(t) = g + u + \mathbf{j}g + \mathbf{j}u$

 $x(t) \circ \xrightarrow{\mathcal{F}} X(f) \circ \xrightarrow{\mathcal{F}} x(-t) \circ \xrightarrow{\mathcal{F}} X(-f)$ Bei periodischen Signalen: Fourierreihen!

16.2. Wichtige Fouriertransform	nationen
Zeitfunktion	Spektrum
$1 + \delta(t)$	1 *
1 †	$\begin{matrix} & & & \\ & \downarrow & & \delta(f) \end{matrix}$
	$\begin{array}{c c} 1 & \sigma(f) \\ \hline \\ f \end{array}$
$1 \stackrel{\downarrow}{=} \sigma(t)$	$\frac{\frac{1}{2}}{\int} \frac{1}{2} \delta(t) - \frac{\mathbf{j}}{2\pi f}$
$\begin{matrix} & & & & \\ & & & \\ 1 & & & \\ \uparrow & & & \\ \end{matrix}$	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
$T \operatorname{rect}\left(\frac{t}{T}\right)$	$T \uparrow T \operatorname{sinc}(fT)$
$-\frac{T}{2}$ $\frac{T}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \qquad \qquad \operatorname{tri}\left(\frac{t}{T}\right)$	T $ T \operatorname{sinc}^2(fT)$
T T T T T T T T T T	$-\frac{2}{T} - \frac{1}{T} \qquad \frac{1}{T} \frac{2}{T} \qquad f$
$ \begin{array}{c c} & 1 \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c c} & \downarrow & \downarrow & f_0 \\ \hline -f_0 & \downarrow & f \end{array}$
$-\frac{2}{f_0} \qquad \frac{1}{\int_0^2 \frac{2}{f_0}}$	$-f_0$ f_0
J0 J0 J0	JU JU V

16.3. Weitere Paare $F(\omega)$ $F(\omega)$ $\frac{2n!}{(i\omega)^{n+1}}$ $\operatorname{sinc}(\frac{t}{T})$ $T \operatorname{rect}(fT)$ $2\pi i^n \delta^{(n)}(\omega)$ $\frac{1}{(a+i\omega)^n}$ $\exp(-\alpha t)$ $\frac{1}{i 2 \pi f + \alpha}$

17. E-Technik

17.1. OP-Amp-Schaltung mit Hysterese

 U_m als Spannung am Minus-Pin

 U_p als Spannung am Plus-Pin

 U_a^P als Ausgangsspannung

 U_e als Eingangsspannung

 $U_b = V_+$ als pos. Versorgungsspannung des Op-Amps.

 V_- als neg. Versorgungsspannung des OP-Amps $U_{os}=$ Spannung der oberen Schaltschwelle

 $U_{us} = {\sf Spannung} \; {\sf der} \; {\sf unteren} \; {\sf Schaltschwelle}$

Positive Rückkopplung beim OP-Amp bedeutet:

Für $U_p > U_m$ gilt $U_a = V_+ = U_b$ Für $U_p > U_m$ gilt $U_a = V_-$ (meistens = GND)

Annahme: Pos. Versorgungsspannung = U_b , neg. Versorgungsspannung = 0 V (GND)

1. Fallunterscheidung Hysterese (I) mit U_e am Plus-Pin und invertierte Hysterese (II) mit U_e am Minus-Pin

Fall I: $\lim_{U_e \to \infty} U = V +$ Fall II: $\lim_{U_e \to \infty} U_a = V_-$

2. Bedingung an der unteren (US) und oberen (OS) Schaltschwelle $(U_m = U_p)$ einstellen in Abhängigkeit der Art der Hysterese (I oder II): (I) US: $U_e = U_{us}; U_a = V_+$

 $\begin{array}{l} \text{(1) OS: } U_e = U_{us}; U_a = V_+ \\ \text{(II) OS: } U_e = U_{us}; U_a = V_- \\ \text{(II) OS: } U_e = U_{us}; U_a = V_+ \\ \end{array}$

Beispiele:

3. Beide Gleichung für die verschiedenen Schaltschwellen gleichsetzen und

17.2. Transistor-Verstärkerschaltung

18. Naturkonstanten

Konstanten...