Geospatial Data Science Content Block II: *Techniques*Lab 8 Machine learning for geospatial data

Austin J. Brockmeier, Ph.D.

Wednesday, April 5th, 2023

Outline

Lab 8: scikit-learn, regression, neural networks, convolutional neural networks

By The scikit-learn developers - github.com/scikit-learn/scikit-learn/blob/master/doc/logos/scikit-learn-logo.svg, BSD, https://commons.wikimedia.org/w/index.php?curid=71445288

Designing a Machine Learning System

- 1. Goal: What is the task?
- **2.** Data:
- 3. Model:
- 4. Fitness:
- 5. Training:
- 6. Selection:

Model: Popular choices

- Linear model
- k-nearest neighbor
- Decision trees
- Random forest, gradient boosting
- Neural networks
- Convolutional neural network
- Kernel ridge regression
- Support vector machine
- Gaussian processes

Artificial neural networks consist of layers of processing connected together

Single layer neural network

CNN: Where's Waldo? (Prediction yes or no for each image patch

https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Proc essing_and_Modeling/Signals_and_Systems_%28Baraniuk_et_al.%29/13 %3A_Capstone_Signal_Processing_Topics/13.04%3A_Matched_Filter_Det ector

Convolution or matched filtering

Depth is the number of channels/attributes/layers

Subsampling via **max pooling** with a 2x2 filter and stride = 2

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

https://poloclub.github.io/cnn-explainer

Example of CNN classifier on Fashion MNIST

• Error rate is 273/2646

Non-linear models

- k-nearest neighbor
- Decision trees, random forests, gradient boosting
- Neural networks
- Kernel ridge regression
- Gaussian process

Phase 1. Fit relationship

Phase 2: Find x that gives a specific y with high confidence (near seen data) and fits constraints!

- Kernel regression
 - Advanced by Prof. Grace Wahba at UW-Madison

$$E[Y|x,\{(x_i,y_i)\}_{i=1}^n] = \overline{f}(x) = [\kappa(x,x_1),...,\kappa(x,x_n)]\mathbf{K}^{-1}\overline{\mathbf{y}} = \mathbf{K}\overline{\alpha}$$
 krr.fit(X,y).predict(x)

By The scikit-learn developers - github.com/scikit-learn/scikit-learn/blob/master/doc/logos/scikit-learn-logo.svg, BSD, https://commons.wikimedia.org/w/index.php?curid=71445288

Gaussian process (Kriging)

The predicted value at x is normally distributed with mean f(x), and variance σ_x^2 $\mathcal{N}(f(x), \sigma_x^2)$

$$\sigma_x^2 = \text{cov}(f(x), f(x)) = \kappa(x, x) - [\kappa(x, x_1), ..., \kappa(x, x_N)] \mathbf{K}^{-1} [\kappa(x, x_1), ..., \kappa(x, x_N)]$$

https://distill.pub/2019/visual-exploration-gaussian-processes/