

INTRODUCTION TO NATURAL LANGUAGE PROCESSING

Shilpa Shaju

What is NLP??

Natural language processing (NLP)- A branch of Artificial Intelligence that gives machines the ability to understand natural human language.

billions of text data being generated every day and most of them are unstructured.

Applications of

Natural Language Processing

in Different Domains

Python Libraries for NLP

Common Terminologies

Source

Text Features Extraction

The quick brown fox jumped over the brown dog

Turning text into vectors that can be then fed to machine learning models in a classical way

Types

Machine learning algorithms cannot work with raw text directly; the text must be converted into numbers. Specifically, vectors of numbers.

N-grams

N-grams are the combination of multiple words used together. Ngrams with N=1 are called unigrams. Similarly, bigrams (N=2), trigrams (N=3) and so on can also be used.

This is Big Data Al Book

Bag of Words (BoW)

- used to analyze text and documents based on word count.
- model does not account for word order within a document.

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
You heard about the bird	1	1	1	0	1	0	1
The bird is the word	0	1	0	1	2	1	0

Bag of Words(BOW) Limitation

'The sky is blue and beautiful',
'The king is old and the queen is
beautiful',
'Love this beautiful blue sky',
'The beautiful queen and the old king']

	and	beautiful	blue	is	king	love	old	queen	sky	the	this
0	1	1	1	1	0	0	0	0	1	1	0
1	1	1	0	2	1	0	1	1	0	2	0
2	0	1	1	0	0	1	0	0	1	0	1
3	1	1	0	0	1	0	1	1	0	2	0

	beautiful	beautiful blue	beautiful queen	blue	blue beautiful	blue sky	king	king old	love	love beautiful	old	old king	old queen	queen	queen beautiful	queen old	sky	sky blue
0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1
1	1	0	0	0	0	0	1	1	0	0	1	0	1	1	1	0	0	0
2	1	1	0	1	0	1	0	0	1	1	0	0	0	0	0	0	1	0
3	1	0	1	0	0	0	1	0	0	0	1	1	0	1	0	1	0	0

Term Document – Inverse Document Frequnecy Matrix

The *term frequency* is a ratio of the count of a word's occurrence in a document and the number of words in the document

Let us show the count of word i in document j by tf_{ij}

Let us represent document frequency for word i by df_i . With N as the number of documents in the corpus, the tf-idf weight w_{ij} for word i in document j is computed by the following formula:

The *document frequency* of word *i* represents the number of documents in the corpus with word *i* in them

$$w_{i,j} = t f_{i,j} imes log(rac{N}{df_i})$$

TF-IDF Calculation Example											
Words	Co	unt	Term Frequ	ency (TF)	Javama Dagument Fraguency (IDE)	TF * IDF					
Words	Document 1	Document 2	Document 1	Document 2	Inverse Document Frequency (IDF)	Document 1	Document 2				
read	1	1	0.17	0.17	0	0	0				
svm	1	0	0.17	0	0.3	0.05	0				
algorithm	1	1	0.17	0.17	0	0	0				
article	1	1	0.17	0.17	0	0	0				
dataaspirant	1	1	0.17	0.17	0	0	0				
blog	1	1	0.17	0.17	0	0	0				
randomforest	0	1	0	0.17	0.3	0	0.05				

Text Embedding

Word Embedding is the representation of text in the form of vectors. The underlying idea here is that similar words will have a minimum distance between their vectors.

Text Classification - Pipeline

Assignment Question

Thank You

ANY QUESTION

