

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC

LUIZ AUGUSTO BELLO MARQUES DOS ANJOS

RELATORIO PARA TRABALHO PROJ4b PARA A DISCIPLINA CET087 – CONCEITOS DE LINGUAGEM DE PROGRAMAÇÃO

ILHÉUS-BAHIA 2024

Sumário

Sumário	2
Link para as Implementações:	3
Resultados tabulados para os exercícios 2 e 3:	3
Referências:	4

Link para as Implementações:

- Exercício 32: https://github.com/DRhiuky/CLP-CET087/blob/main/proj4b/Ex32.lisp
- Exercício 33: https://github.com/DRhiuky/CLP-CET087/blob/main/proj4b/Ex33.lisp
- Exercício 34: https://github.com/DRhiuky/CLP-CET087/blob/main/proj4b/Ex34.lisp
- Exercício 36: https://github.com/DRhiuky/CLP-CET087/blob/main/proj4b/Ex36.lisp
- Exercício 37: https://github.com/DRhiuky/CLP-CET087/blob/main/proj4b/Ex37.lisp
- Exercício 38: https://github.com/DRhiuky/CLP-CET087/blob/main/proj4b/Ex38.lisp

Resultados tabulados para os exercícios 2 e 3:

Exercícios 32, 33, e 34:

Funções	Valor de	Valor de	Aproximação (LISP)
	n	Referência	
e≈e^1	50	2.718281828459045	2.7182818284590455
Cbrt(27)	20	3	3.0
Pi	10000000	3.141592653589793	3.141592653589793

Para determinar o número n necessário para que as aproximações fornecidas pelo COMMON LISP tenham a mesma precisão que as funções de biblioteca JAVA e C ANSI, executei uma série de testes. Utilizei o site <u>Rextester</u> para rodar os códigos e testar os valores de n.

Exercícios 36, 37 e 38:

Funções	Máximo n calculado em menos de 1 minuto	Tempo de execução
serieG	21	Absolute running time: 0.74 sec, cpu time: 0.92 sec
produto	31	Absolute running time: 3.87 sec, cpu time: 5.84 sec
serieH	1450	Absolute running time: 5.08 sec, cpu time: 7.68 sec

Durante os testes dos exercícios implementados em Lisp no site <u>Rextester</u>, encontrei limitações significativas que impactaram a execução dos programas. Os problemas encontrados foram especificamente relacionados aos erros "Lisp stack overflow" para o problema 36 com a mensagem *** - Lisp stack overflow. RESET, e a mensagem de erro "Kill signal (SIGKILL)" para os problemas 37 e 38, os quais limitaram o número máximo de iterações ou chamadas recursivas que puderam ser realizadas com sucesso até 1 minuto.

Referências:

- Exercícios: http://www.ybadoo.com.br/tutoriais/plp/14/PLP.pdf
- Interpretador: https://rextester.com/l/common_lisp_online_compiler