1 Move to ℓb classifier

1.1 Motivation

Move due to poor performance on event level BDT (was using 50% TRF and 50% testing/training). ST, minMax, HT and a few other variables performed better than the BDT \rightarrow most likely due to the fact that the BDT score variable had half the MC than just taking the full MC dataset as normal.

1.2 Different Iterations/Setups

Common setup:

 \bullet use $t\bar{t}$ Bakoven sample (Ntuple-level selection of 1 lepton)

• Signal: ℓb from the same top

• Signal: ℓb **NOT** from the same top

1.2.1 Matching ℓ AND b to truth

Match ℓ and b to their truth particles, by use of smallest ΔR . Small ΔR is indication of a good match to truth.

- Signal: ℓ and b with the smallest ΔR (below some threshold $\rightarrow 0.3$) and come from the same top
- Background: ℓ and b with the smallest ΔR (below some threshold \rightarrow 0.3) and DON'T come from the same top

Note: threshold chosen of 0.3 is VERY loose

Figure 1: Input variables

- Num events¹ training $\sim 240~000$ (sig and back)
- Num events testing $\sim 60~000$ (sig and back)
- ★ Check non-linear correlation coefficient graphs (In TMVAGui)

⁰Date: Early August 2020

¹James says this is sufficient and any more would just slow down training

★ Weird bump?

Results:

Limit $\rightarrow 2.429$ (All ASIMOV), 2.488 (Data in CR)

Previously (Full Run 2 $m(\ell b)_{minMax}$) \rightarrow 2.474 (All ASIMOV), 2.535 (Data in CR)

** Figured out that the '-1' default value is being used in the fit (underflow), as can see in first bin **

1.2.2 Matching ℓb system to truth

2 Delft Ntuples

2.1 Yield Discrepancy

Supposed difference between Delft and Constantia which has the largest effect \rightarrow using a tighter lepton isolation parameter

This causes much less stats/yields in Delft (compared to Constantia) \rightarrow also seen in Cameron's analysis. I compared 2018 Constantia and Delft 2018 (ttZ region), 1 data event in Constantia and 0 in Delft. This was concerning, so looked at INT note to see stats/yields Full Run 2 Constantia had. INT note had around 40 data events (would expect 2018 Constantia to have more than 1, probably around 16 (since luminosity of mc16e is a bit less than half of Full Run 2 luminosity)). The only differences between INT note plot and 2018 Constantia control plot are that

2.1 Yield Discrepancy 2 DELFT NTUPLES

we are using Full Run 2 and the 77% btag WP (referring to INT note plots).

Recall:

- Tight jet: 77 WP or less

- Loose jet: 85 WP

• Delft 2018: 0 ttZ data events (≥ 1 tight, ≥ 1 loose, loose + tight = 2)

- Constantia 2018: 1 ttZ data event (≥ 1 tight, ≥ 1 loose, loose + tight = 2)

• Constantia in INT Note (Full Run 2): $\sim ttZ$ 40 data events (≥ 1 tight, ≥ 0 loose, loose + tight = 2)

Changed Constantia 2018 ttZ region to ≥ 1 tight, ≥ 0 loose, loose + tight = 2 (essentially what is in INT note (these plots are before this bjet WP was implemented)). This gave us the expected total number of events, ≈ 17 .