# **EEE 2015 ELECTRICS**

# LO3 AC Circuit Analysis&Power Calculations

#### LO2 Alternating Voltage and Current

#### Behaviors of Basic Circuit Components under AC



#### AC circuit -RL in series

 $Z = \frac{V}{I}$ 



Figure 3.10: Series resistor inductor circuit: Current lags applied voltage by  $\theta^*$  to  $9\theta^*$ .

#### Inductive reactance of the coil

 $X_1 = 0 + 3.7699 j\Omega$ 

The total effect is called as **impedance**.

$$Z = R + X_L = 5 + 3.7699 jΩ = 6.262 \angle 37.016Ω$$
$$I = \frac{10 \angle 0V}{6.262 \angle 37.016Ω} = 1.597 \angle -37.016A$$

Dr. Levent ÇETİN

# AC circuit –RL in series

#### LO2 Alternating Voltage and Current





igure 3.10: Series resistor inductor circuit: Current lags applied voltage by  $\theta^*$  to  $9\theta^*$ .

Figure 3.11: Current lags voltage in a series L-R circuit.

$$\begin{split} E &= IZ & E &= IZ \\ E_R &= I_R Z_R & E_L &= I_L Z_L \end{split}$$

 $E_R = (1.597 \text{ A} \angle -37.016^\circ)(5 \Omega \angle 0^\circ) \\ E_L = (1.597 \text{ A} \angle -37.016^\circ)(3.7699 \Omega \angle 90^\circ)$ 

 $E_R = 7.9847 \text{ V} \angle -37.016^{\circ}$   $E_L = 6.0203 \text{ V} \angle 52.984^{\circ}$ 

Notice that the phase angle of  $E_{\rm L}$  is exactly 90° more than the phase angle of the current.

 $E_{total} = E_R + E_L$ 

 $E_{total} = (7.9847 \text{ V} \angle -37.016^{\circ}) + (6.0203 \text{ V} \angle 52.984^{\circ})$ 

 $E_{total} = 10 \text{ V} \angle 0^{\circ}$ 

# AC circuit –RL in parallel



Figure 3.14: Parallel R-L circuit.



Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit -RL in parallel



Figure 3.14: Parallel R-L circuit.



# AC circuit –RL in parallel



Figure 3.14: Parallel R-L circuit.



Dr. Levent ÇETİN

# LO2 Alternating Voltage and Current

# AC circuit –RL in parallel



Figure 3.14: Parallel R-L circuit.

|   | R                  | L                               | Total                                | _                                                          |
|---|--------------------|---------------------------------|--------------------------------------|------------------------------------------------------------|
| Е | 10 + j0<br>10 ∠ 0° | $10 + j0$ $10 \angle 0^{\circ}$ | 10 + j0<br>10 ∠ 0°                   | Volts                                                      |
| I | 2 + j0<br>2 ∠ 0°   | 0 - j2.6526<br>2.6526 ∠ -90°    | 2 - j2.6526<br>3.322 ∠ -52.984°      | Amps                                                       |
| Z | 5 + j0<br>5 ∠ 0°   | 0 + j3.7699<br>3.7699 ∠ 90°     | 1.8122 + j2.4035<br>3.0102 ∠ 52.984° | Ohms                                                       |
|   |                    |                                 |                                      | f parallel uits: $\frac{1}{\frac{1}{Z_R} + \frac{1}{Z_L}}$ |

#### AC circuit -RC in series



$$X_c = 0 - 26.5258j\Omega$$

$$R = 5 + 0j\Omega$$

$$Z = R + X_c = 5 - 26.5258j\Omega = 26.993 \angle -79.325$$

$$I = \frac{E}{Z}$$
 
$$I = \frac{10 \text{ V} \angle 0^{\circ}}{26.933 \ \Omega \angle -79.325^{\circ}}$$
 
$$= \frac{10 \text{ V} \angle 0^{\circ}}{26.933 \ \Omega \angle -79.325^{\circ}}$$

 $I = 370.5 \text{ mA} \angle 79.325^{\circ}$ 

Figure 4.11: Voltage lags current (current leads voltage)in a series R-C circuit.

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit -RC in series



#### AC circuit –RC in series



As it can be considered easily, the phase shift is 79.325 degrees in this circuit whereas in the circuit that has only one capacitor it was 90 degrees.

The current and the voltage on the resistor is on the same phase as it is mentioned.

However, the current on a capacitor leads voltage by 90 degrees.

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit -RC in parallel



|   | R                | C                                           | Total   | _     |
|---|------------------|---------------------------------------------|---------|-------|
| Е | 10 + j0          | 10 + j0                                     | 10 + j0 | Volts |
| - | <b>10</b> ∠ 0°   | <b>10</b> ∠ 0°                              | 10 ∠ 0° | VOILS |
| I |                  |                                             |         | Amps  |
| Z | 5 + j0<br>5 ∠ 0° | 0 - j26.5258<br>26.5258 ∠ -90°              |         | Ohms  |
|   |                  | Rule of paralle<br>circuits:<br>E = E_ = E_ | · I     |       |

#### AC circuit -RC in parallel



Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit –RC in parallel



Figure 4.14: Parallel R-C circuit.



# AC circuit –RLC in series



Figure 5.2: Example series R, L, and C circuit.

$$X_L = 2\pi f L$$

$$X_L = (2)(\pi)(60 \text{ Hz})(650 \text{ mH})$$

$$X_{L} = 245.04 \Omega$$

$$X_{C} = \frac{1}{2\pi fC}$$

$$X_C = \frac{1}{(2)(\pi)(60 \text{ Hz})(1.5 \text{ }\mu\text{F})}$$

$$X_C = 1.7684 \text{ k}\Omega$$

$$Z_R = 250 + j0 \Omega$$
 or  $250 \Omega \angle 0^{\circ}$ 

$$Z_L = 0 + j245.04~\Omega \quad \textit{or} \quad 245.04~\Omega \angle 90^{o}$$

$$Z_{C}$$
 = 0 - j1.7684k  $\Omega$  or  $1.7684~k\Omega$   $\angle$  -90°

Dr. Levent ÇETİN

# LO2 Alternating Voltage and Current

#### AC circuit -RLC in series



Figure 5.2: Example series R, L, and C circuit



# Rule of series circuits: $Z_{total} = Z_R + Z_L + Z_C$

|   | K                    | L                           | C                              | 1 otal                                 |       |
|---|----------------------|-----------------------------|--------------------------------|----------------------------------------|-------|
| Ε |                      |                             |                                | 120 + j0<br>120 ∠ 0°                   | Volts |
| 1 |                      |                             |                                | 12.589m + 76.708m<br>77.734m ∠ 80.680° | Amps  |
| Z | 250 + j0<br>250 ∠ 0° | 0 + j245.04<br>245.04 ∠ 90° | 0 - j1.7684k<br>1.7684k ∠ -90° | 250 - j1.5233k<br>1.5437k ∠ -80.680°   | Ohms  |
|   |                      |                             |                                | <u></u>                                | -     |

1.5437k ∠ -80.680°

#### AC circuit -RLC in series



It should be considered that the amplitude of the voltage on the capacitor is greater than the voltage supplied to the circuit. The influence of the impedance in the whole circuit is smaller than the influence of impedance of any single component. This case causes higher voltages on single components.

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit -RLC in paralel



#### AC circuit -RLC in paralel



Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit -Complex Circuit



#### Reactances and Resistances:

| $X_{C1} = \frac{1}{2\pi f C_1}$                               | $X_L = 2\pi f L$                       |  |  |
|---------------------------------------------------------------|----------------------------------------|--|--|
| $X_{C1} = \frac{1}{(2)(\pi)(60 \text{ Hz})(4.7 \mu\text{F})}$ | X <sub>L</sub> = (2)(π)(60 Hz)(650 mH) |  |  |
| $X_{C1} = 564.38 \Omega$                                      | $X_L = 245.04 \Omega$                  |  |  |
| $x_{C2} = \frac{1}{2\pi f C_2}$                               |                                        |  |  |
| $X_{C2} = \frac{1}{(2)(\pi)(60 \text{ Hz})(1.5 \mu\text{F})}$ | R = 470 Ω                              |  |  |
| $X_{C2}$ = 1.7684 k $\Omega$                                  |                                        |  |  |

$$\begin{split} &Z_{C1} = 0 \text{ -} j564.38 \ \Omega \quad \text{or} \quad 564.38 \ \Omega \angle \text{ -} 90^{\circ} \\ &Z_{L} = 0 \text{ +} j245.04 \ \Omega \quad \text{or} \quad 245.04 \ \Omega \angle 90^{\circ} \\ &Z_{C2} = 0 \text{ -} j1.7684 \text{k} \ \Omega \quad \text{or} \quad 1.7684 \ \text{k} \Omega \angle \text{ -} 90^{\circ} \\ &Z_{R} = 470 \text{ +} j0 \ \Omega \quad \text{or} \quad 470 \ \Omega \angle 0^{\circ} \end{split}$$

#### AC circuit -Complex Circuit



|   | $C_1$                        | L                           | $C_2$                          | R                    | Total                |       |
|---|------------------------------|-----------------------------|--------------------------------|----------------------|----------------------|-------|
| E |                              |                             |                                |                      | 120 + j0<br>120 ∠ 0° | Volts |
| I |                              |                             |                                |                      |                      | Amps  |
| Z | 0 - j564.38<br>564.38 ∠ -90° | 0 + j245.04<br>245.04 ∠ 90° | 0 - j1.7684k<br>1.7684k ∠ -90° | 470 + j0<br>470 ∠ 0° |                      | Ohms  |

The calculation of impedance in this circuit should be completed step by step.

First, serial connection branch of  ${\rm C_2}$  and  ${\rm L}$ ,

afterwards the parallel branch of resistor and last the serial capacitor effects should be calculated. Total



Dr. Levent ÇETİN

# LO2 Alternating Voltage and Current

#### AC circuit -Complex Circuit



#### Calculate current drawn from source and passing through C<sub>1</sub>

|   | L C <sub>2</sub>               | R // (L C <sub>2</sub> )              | Total $C_1 [R // (L C_2)]$              |       |
|---|--------------------------------|---------------------------------------|-----------------------------------------|-------|
| Е |                                |                                       | 120 + j0<br>120 ∠ 0°                    | Volts |
| I |                                |                                       | 76.899m + j124.86m<br>146.64m ∠ 58.371° | Amps  |
| Z | 0 - j1.5233k<br>1.5233k ∠ -90° | 429.15 - j132.41<br>449.11 ∠ -17.147° | 429.15 - j696.79<br>818.34 ∠ -58.371°   | Ohms  |
|   |                                |                                       | Ohm's Law $I = \frac{E}{Z}$             |       |

# Same current is passing through $L-C_2$ branch

|                                                                                                  | L C <sub>2</sub>               | R // (L C <sub>2</sub> )                | $Total \\ C_1 [R // (L C_2)]$           |       |  |
|--------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|-------|--|
| Е                                                                                                |                                |                                         | 120 + j0<br>120 ∠ 0°                    | Volts |  |
| I                                                                                                |                                | 76.899m + j124.86m<br>146.64m ∠ 58.371° | 76.899m + j124.86m<br>146.64m ∠ 58.371° | Amps  |  |
| Z                                                                                                | 0 - j1.5233k<br>1.5233k ∠ -90° | 429.15 - j132.41<br>449.11 ∠ -17.147°   | 429.15 - j696.79<br>818.34 ∠ -58.371°   | Ohms  |  |
| Rule of series circuits: $\mathbf{I}_{\text{total}} = \mathbf{I}_{C_1} = \mathbf{I}_{R/(L-C_2)}$ |                                |                                         |                                         |       |  |

#### AC circuit -Complex Circuit



#### Same Voltage drops on parallel R branch

|   | L C <sub>2</sub>                                                 | R // (L C <sub>2</sub> )                              | Total $C_1 [R // (L C_2)]$              |       |
|---|------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-------|
| E | 49.533 + j43.400<br>65.857 ∠ 41.225°                             | 49.533 + j43.400<br>65.857 ∠ 41.225°                  | 120 + j0<br>120 ∠ 0°                    | Volts |
| Ι |                                                                  | 76.899m + j124.86m<br>$146.64m \angle 58.371^{\circ}$ | 76.899m + j124.86m<br>146.64m ∠ 58.371° | Amps  |
| Z | 0 - j1.5233k<br>1.5233k ∠ -90°                                   | 429.15 - j132.41<br>449.11 ∠ -17.147°                 | 429.15 - j696.79<br>818.34 ∠ -58.371°   | Ohms  |
|   | Rule of parallel<br>circuits:<br>$E_{R/(L-C2)} = E_R = E_{L-C2}$ | 1                                                     |                                         |       |

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### AC circuit -Complex Circuit



#### Power in AC circuit

Since it was mentioned, there is a phase shift between current and voltage in AC circuits. The reason is the complex number impedance as it was stated. So there are three definitions in AC circuits which are related with power. These are:

True power (active power), Reactive power, Apparent power.

#### Impedance Calculations:



Dr. Levent ÇETİN

# Power in AC circuit

$$\label{eq:power} \mathbf{P} = \text{true power} \qquad P = I^2 R \qquad P = \frac{E^2}{R}$$
   
 Measured in units of **Watts**

$${f Q}$$
 = reactive power  ${f Q}$  =  ${f I}^2{f X}$   ${f Q}$  =  ${{f E}^2\over{f X}}$  Measured in units of **Volt-Amps-Reactive** (**VAR**)

S = apparent power 
$$S = I^2Z$$
  $S = \frac{E^2}{Z}$   $S = IE$ 

Measured in units of Volt-Amps (VA)

#### LO2 Alternating Voltage and Current



 $P = \text{true power} = I^2 R = 240 \text{ W}$ 

 $Q = \text{reactive power} = I^2X = 0 \text{ VAR}$ 

 $S = apparent power = I^2Z = 240 VA$ 



 $P=\text{true power}=I^2R=0~W$ 

 $Q = \text{reactive power} = I^2 X = 238.73 \ VAR$ 

 $S = apparent power = I^2Z = 238.73 \ VA$ 

#### Power in AC circuit

$${f P}={
m true}\ {
m power} \qquad {f P}={f I}^2{
m R} \qquad {f P}=rac{{f E}^2}{{
m R}}$$
 Measured in units of Watts

The power quantities are scalar quantities. if we consider the 90 degrees of direction angle between the resistor and the reactance and <u>phase shift</u> in the circuit.

# This perpendicular triangle is called as 'Power Triangle





A part of the power cannot be converted to electrical work in an AC circuit.

The generated effective power is just as the true power.

**Power factor** is the cosine of the angle between the true and apparent powers ( $\cos \phi$ ). This value is equal to 1 in only circuits those have just resistors. But if there is a reactance, then the value is between 0 and 1.

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

# Power in AC circuit

P - true power



 $P = I^2R$   $P = I^2R$ 

$$\begin{aligned} \mathbf{Q} = \text{reactive power} &\quad \mathbf{Q} = \mathbf{I}^2 X &\quad \mathbf{Q} = \frac{\mathbf{E}^2}{X} \\ \end{aligned}$$
 Measured in units of Volt-Amps-Reactive (VAR)





 $P = \text{true power} = I^2R = 119.365 \text{ W}$ 

 $Q = \text{reactive power} = I^2X = 119.998 \text{ VAR}$ 

 $S = apparent power = I^2Z = 169.256 VA$ 

The power factor value shows that the **70.5** % of the power used from the grid is served for the purpose.

#### Compensation in AC circuit



$$\label{eq:Q} \begin{aligned} \mathbf{Q} = \text{reactive power} &\quad Q = I^2 X \quad \ \ Q = \frac{E^2}{X} \\ \end{aligned}$$
 Measured in units of Volt-Amps-Reactive (VAR)





 $P = \text{true power} = I^2R = 119.365 \text{ W}$ 

 $Q = \text{reactive power} = I^2 X = 119.998 \ VAR$ 

 $S = apparent power = I^2Z = 169.256 VA$ 

Power factor = True power
Apparent power

Power factor =  $\frac{119.365 \text{ W}}{169.256 \text{ VA}}$ 

Power factor = 0.705

The power factor value shows that the **70.5** % of the power used from the grid is served for the purpose.

This situation is not wanted.

So, in circuit design stage, it must be noted that the power factor is approximately equal to 1.

For this reason, the capacitive and inductive reactance values should be approximately equal to each other.

If this is not possible, a capacitor or an inductor should be externally added to the circuit. **This improvement is called as compensation.** 

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### Compensation in AC circuit









 $P = \text{true power} = I^2R = 119.365 \text{ W}$ 

 $Q = \text{reactive power} = I^2X = 119.998 \text{ VAR}$ 

 $S = apparent power = I^2Z = 169.256 VA$ 

Power factor =  $\frac{\text{True power}}{\text{Apparent power}}$ 

Power factor =  $\frac{119.365 \text{ W}}{169.256 \text{ VA}}$ 

Power factor = 0.705

The circuit is inductive so a **parallel** capacitor should be added so that the total reactance of the circuit becomes approximately zero

$$Q = \frac{E^2}{Y}$$

. . solving for X . . .

$$X = \frac{E^2}{Q}$$

$$X = \frac{(120 \text{ V})^2}{119.998 \text{ VAR}}$$

$$X = 120.002 \Omega$$

In parallel branches voltage is constant so the necessary reactance value can be calculated using voltage based power formula

#### Compensation in AC circuit



$$\label{eq:Q} \begin{aligned} \mathbf{Q} = \text{reactive power} & \quad \mathbf{Q} = \mathbf{I}^2 \mathbf{X} \quad \quad \mathbf{Q} = \frac{\mathbf{E}^2}{\mathbf{X}} \\ \end{aligned} \\ \textit{Measured in units of Volt-Amps-Reactive (VAR)}$$

$$S = \text{apparent power} \quad S = I^2Z \qquad S = \frac{E^2}{Z} \qquad S = IE$$
   
 Measured in units of **Volt-Amps (VA)**



 $P = \text{true power} = I^2R = 119.365 \text{ W}$ 

 $Q = \text{reactive power} = I^2X = 119.998 \text{ VAR}$ 

S = apparent power =  $I^2Z = 169.256 \text{ VA}$ 

Power factor = 
$$\frac{119.365 \text{ W}}{169.256 \text{ VA}}$$

Power factor = 0.705

The calculated reactance value is used to find capacitor value

$$X_C = \frac{1}{2\pi fC}$$

. . . solving for C . . .

$$C = \frac{1}{2\pi f X_C}$$

$$C = \frac{1}{2\pi (60 \text{ Hz})(120.002 \Omega)}$$

$$C = 22.105 \mu F$$

Dr. Levent ÇETİN

# LO2 Alternating Voltage and Current

#### Compensation in AC circuit









 $P=\text{true power}=I^2R=119.365~W$ 

 $Q = \text{reactive power} = I^2X = 119.998 \text{ VAR}$ 

 $S = apparent power = I^2Z = 169.256 VA$ 

True power Power factor = Apparent power

Power factor =  $\frac{119.565 \text{ N}}{169.256 \text{ VA}}$ 

Power factor = 0.705

The capacitor value found is not a standart value for capacitors, so the closest standart value shold be chosen (22  $\mu\text{F})$  and connected in parallel with the circuit.



#### Compensation in AC circuit



this improvement made the power factor closer to 1. Besides, the current is decreased.

Dr. Levent ÇETİN

#### LO2 Alternating Voltage and Current

#### Compensation in AC circuit

