Milestones	Steps	Tools involved	Deadline	Estimated number of hours	Effective number of hours
Understand the φ-FEM technique	 Read the documents related to φ-FEM Read the introductory paper Read the Neumann boundary case 		03/11/2020	4	
The Poisson equation	 Install FEniCS using Docker Install the most recent version Test the installation with the demo case provided Solve the Poisson equation using the classic FEM technique Use a simple domain (a unit disk) Validate this step by differentiating a known solution and verifying the results Perform the convergence study in norms L² and H¹ According to the theory, the slopes must be respectively close to 2 and 1 Solve the Poisson equation using the ф-FEM technique, without stabilising terms. Compare the results with the classic FEM technique Validate this step by comparison with the test cases in the paper Repeat the preceding test, while applying stabilizing terms Validate this step by comparison with the paper 	Docker FEniCS	10/11/2020	20	
The elasticity equation	 Reformulate the elasticity equation using φ-FEM Take inspiration from the Poisson formulation Solve the equation using FEniCS The method can be validated using academic cases as done in the papers The method can also be validated on classical solid mechanics cases such as beams 	Docker FEniCS	19/01/2021	30	