电压比较器

• 电压传输特性三要素:

高低电平:决定于输出电压的限幅电路

阈值电压: $\Diamond U_P = U_N$ 时的输入电压

跃变方向:取决于输入电压作用于同相端/反相端

非正弦波发生器

$$\mathbf{A_2} \quad u_{P} = \frac{R_2}{R_2 + R_3} \cdot u_{O2} + \frac{R_3}{R_2 + R_3} \cdot u_{O1} = 0$$

$$\pm U_{T} = \pm \frac{R_2}{R_3} \cdot U_{OM} = \pm 6V$$

$$\mathbf{A_1} \quad u_{O1} = -\frac{1}{R_1 C} u_{O2} (t_2 - t_1) + u_{O1} (t_1)$$

波形发生电路如图所示,设振荡周期为T,在一个周期内 $u_{01}=U_{Z}$ 的时间为 T_{1} ,则占空比为 T_{1} / T; $R_{w1}<< R_{w2}$; 在电路某一参数变化时,其余参数不变。选择①增大、②不变或③减小填入空内:

当 R_1 增大时, u_{O1} 的占空比将② ,振荡频率将 ①, u_{O2} 的幅值将③ ;若 R_{W1} 的滑动端向上移动,则 u_{O1} 的占空比将② ,振荡频率将①, u_{O2} 的幅值将② ;若 R_{W2} 的滑动端向上移动,则 u_{O1} 的占空比将① ,振荡频率将② , u_{O2} 的幅值将② 。

模拟电子技术基础

第8章 功率放大电路

第8章 功率放大电路

- 8.1 功率放大电路概述
- 8.2 互补功率放大电路
- 8.4 集成功率放大电路

8.1.1 功率放大电路的特点

功率放大电路

能够向负载提供足够信号功率的放大电路,简称功放;

基本要求:

- (1) 输出功率尽可能大: 基本不失真条件下的交流功率 $P_o = U_o I_o$
- (2) 效率高

$$\eta = \frac{\overline{\Sigma}$$
 交流输出功率 $\times 100\% = \frac{P_{\text{O}}}{P_{\text{V}}} \times 100\%$

(3) 非线性失真要小

输出电压和电流很大,不能采用适合于小信号的 交流等效电路法,应采用图解法。

8.1.1 功率放大电路的特点

(3)甲乙类工作状态

晶体管的工作方式

一、变压器耦合功率放大电路

$$R_L' = \left(\frac{N_1}{N_2}\right)^2 R_L$$

实现阻抗匹配

最大转换效率:

$$\eta = P_{\rm om}/P_{\rm v} \times 100\% = 50\%$$
!

二、OTL电路(无输出变压器的功率放大电路)

T₁与T₂对称,单电源供电

发射极电位为 $V_{\rm CC}/2$;

C足够大,对交流信号认为是短路。

正半周,T₁导通、T₂截止

负半周:T₂导通、T₁截止

三、OCL电路(无输出电容的功率放大电路)

晶体管 T_1 与 T_2 特性对称, 采用双电源供电。

静态时:
$$U_{EQ} = U_{BQ} = 0$$

正半周: $+V_{CC} \rightarrow T_1 \rightarrow R_L \rightarrow \mathbb{1}$
负半周: $\mathbb{1}$ $\mathbb{1$

四、BTL电路(桥式推挽功率放大电路)

双端输入、双端输出形式,输入信号、负载电阻均无接地点。

正半周:

$$+V_{\rm CC}$$
 \to T_1 \to $R_{\rm L}$ \to T_4 \to 地

负半周:

$$+V_{\rm CC}$$
 \rightarrow T_2 \rightarrow $R_{\rm L}$ \rightarrow T_3 \rightarrow 地

8.2 互补功率放大电路

一、OCL功率放大电路

8.2 互补功率放大电路

$$U_{\rm B1B2} = U_{\rm D1} + U_{\rm D2}$$

 T_1 、 T_2 管为甲乙类工作状态。

动态时, u_{D1} 、 u_{D2} 很小,可忽略不计,所以 $u_{B1}=u_{B2}=u_{i}$ 。

效率

$$\eta = \frac{\hat{\Sigma}$$
 交流输出功率 $\eta = \frac{P_{\rm O}}{P_{\rm V}}$ ×100% $\eta = \frac{P_{om}}{P_{\rm V}}$