

Chapter 4 Divide-and-Conquer

Outline

- Solving Recurrences
- Methods for Solving Recurrences
- Divide-and-Conquer
- Substitution method
- Recursion tree
- Master Theorem

Solving Recurrences

- ▶ The analysis of merge sort from **Chapter 2** required a recursive solution.
- ▶ Recurrences are like solving integrals, differential equations, etc.
- ▶ A few tricks must be learned to gain an intuitive understanding of recurrences.
- ► Chapter 4 covers the applications of recurrences as it relates to divide-and-conquer algorithms.

Methods for solving recurrences

- ▶ Obtaining asymptotic O or Θ bounds
 - ▶ In the **substitution method** the bound is guessed and then mathematical induction is used to determine if the guess is correct.
 - ► The **recursion-tree method** converts the recurrence into a tree whose nodes represent the cost incurred at various levels of the recursion.
 - ► The **master method** provides bounds for recurrences of the form T(n) = aT(n/b) + f(n)

The Divide-and-Conquer Design Paradigm

- 1. Divide the problem (instance) into subproblems.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

Analyzing Divide-and- Conquer Algorithms

- Use a recurrence to characterize the running time of a divide-and-conquer algorithm. Solving the recurrence give an asymptotic running time.
- ▶ A recurrence is a function that is defined in terms of the following:
 - One or more base cases
 - Itself, with smaller arguments

Divide-and-Conquer Examples

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + 1 & \text{if } n > 1 \end{cases}$$
Solution: $T(n) = n$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

Solution: $T(n) = n \lg n + n$

$$T(n) = \begin{cases} 0 & \text{if } n = 2 \\ T(\sqrt{n}) + 1 & \text{if } n > 2 \end{cases}$$

Solution: $T(n) = \lg \lg n$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/3) + T(2n/3) + n & \text{if } n > 1 \end{cases}$$
Solution: $T(n) = \Theta(n \lg n)$

Maximum-Subarray Problems

- ▶ Input: An array A[1 ... n]. of numbers. [Assume that some of the numbers are negative, because this problem is trivial when all numbers are nonnegative.]
- ▶ Output: Indices i and j such that A[i ... j]. has the greatest sum of any nonempty, contiguous subarray of A, along with the sum of the values in A[i ... j].

Solving Maximum-Subarray Problems by Divide-and-Conquer

Use divide-and-conquer to solve in $O(n \lg n)$

- ► Subproblem: Find a maximum subarray of *A*[low .. high]
 - ▶ Divide the subarray A in two subarrays A_1 , A_2 of equal size as possible. Find the midpoint mid of the subarrays, and consider the subarrays A[low .. mid] and A[mid+1 .. high]
 - Conquer by finding a maximum subarrays of A[low .. mid] and A[mid+1 .. high]
 - ➤ Combine by finding a maximum subarray that crosses the midpoint, and using the best solution out of the three (the subarray crossing the midpoint and the two solutions found in the conquer step).
- ➤ This strategy works because any subarray must either lie entirely on one side of the midpoint or cross the midpoint.

Divide and Conquer Analysis

- Simplified assumption: Original problem size is a power of 2, so that all subproblem sizes are integer.
- ▶ Let T(n) denote the running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements.
- ▶ Base case: Occurs when high equals low, so that n/2. The procedure just returns) $\Rightarrow T(n) = \Theta(1)$.

Divide and Conquer Analysis cont.

- ▶ Recursive case: Occurs when n > 1.
- ▶ Dividing takes $\Theta(1)$ time.
 - ► Conquering solves two subproblems, each on a subarray of n=2 elements. Takes T(n/2) time for each subproblem $\Rightarrow 2T(n/2)$ time for conquering.
 - ▶ Combining consists of calling FIND-MAX-CROSSING-SUBARRAY, which takes, $\Theta(n)$ time, and a constant number of constant-time tests $\Rightarrow \Theta(n) + \Theta(1)$ time for combining.

Divide and Conquer Analysis cont.

Recurrence for recursive case becomes

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1)$$

= $2T(n/2) + \Theta(n)$

The $\Theta(1)$ terms are absorbed into the $\Theta(n)$

▶ The recurrence for all cases:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n = 1 \end{cases}$$

- Same recurrence as for merge sort. Can use the master method to show that it has solution $T(n) = \Theta(n \lg n)$.
- ▶ Thus, with divide-and-conquer, we have developed a $\Theta(n \lg n)$ -time solution. Better than the , $\Theta(n^2)$ -time brute-force solution.

Substitution Method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.

Use induction to find the constants and show that the solution works.

3. Solve for constants.

Substitution Method Example 1

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

Guess: $T(n) = n \lg n + n$. [Here, we have a recurrence with an exact function, rather than asymptotic notation, and the solution is also exact rather than asymptotic. We'll have to check boundary conditions and the base case.]

Induction:

Basis: $n = 1 \Rightarrow n \lg n + n = 1 = T(n)$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We'll use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$

$$= 2((n/2) \lg(n/2) + n/2) + n$$

$$= n\lg(n/2) + n + n$$

$$= n(\lg n - \lg 2) + n + n$$

$$= n\lg n - n + n + n$$

$$= n\lg n + n.$$

Asymptotic Notation

Generally, asymptotic notation is used as:

- $Write T(n) = 2T(n/2) + \Theta(n)$
- ▶ Assume T(n) = O(1) for sufficiently small n
- ▶ Express the solution by asymptotic notation $T(n) = \Theta(n \lg n)$
- Boundary cases are not considered, nor are base cases in the substitution proof
 - T(n) is always constant for any constant n
 - Since an asymptotic solutions is sought for a recurrence, it will always be possible to choose a base case that works
 - When an asymptotic solution to a recurrence is sought, the base case is not considered in the proofs
 - When an exact solutions is sought, the base case must be considered

Substitution Method Example 2

Example: T(n) = 4T(n/2) + n

- ▶ Assume that $T(1) = \Theta(1)$.
- ▶ Guess $O(n^3)$. (Prove O and Ω separately.)
- ▶ Assume that $T(k) \le ck^3$ for k < n.
- ▶ Prove $T(n) \le cn^3$ by induction.

```
T(n) = 4T(n/2) + n
       \leq 4c(n/2)^3 + n
        = (c/2)n^3 + n
        = cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual
        \leq cn^3 \leftarrow desired
 whenever (c/2)n^3 - n \ge 0, for example, if c \ge 2 and n \ge 1.
```

- We must also handle the initial conditions, that is, ground the induction with base cases.
- ▶ Base: $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- ► For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^2 + n$$

$$= cn^2 + n$$

$$= O(n^2)$$

A Tighter Upper Bound cont.

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^2 + n$$

$$= cn + n Wrong!$$
 We must prove the I.H.
$$= O(n^2)$$

A Tighter Upper Bound cont.

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

 $\leq 4c(n/2)^2 + n$
 $= cn + n$ Wrong! We must prove the I.H.
 $\equiv \mathcal{O}(n^2) (-n) [desired - residual]$
 $\leq cn^2$ for no choice of $c > 0$.

A Tighter Upper Bound cont.

Idea: Strengthen the inductive hypothesis.

- Subtract a low-order term.
- ▶ Inductive hypothesis: $T(k) \le c_1 k^2 c_2 k$ for k < n.

►
$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1 n^2 - 2c_2 n + n$$

$$= c_1 n^2 - c_2 n - (c_2 n - n)$$

$$\le c_1 n^2 - c_2 n \text{ if } c_2 \ge 1.$$

Pick c_1 big enough to handle the initial conditions.

Substitution Method

For the substitution method:

- The constant must be identified in the additive term.
- The upper bounds Ω and the lower bounds Ω must be shown separately. A different constant may be needed for each proof.

Recursion-Tree Method

- ► A recursion tree models the associated costs (time) of a recursive execution of an algorithm.
- ▶ The recursion-tree method promotes intuition.
- ► The recursion tree method is good for generating guesses for the substitution method.
- ► The recursion-tree method can be unreliable, just like any method that uses ellipses (a Gaussian distribution).

26

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
: $T(n)$

30

Recursion Trees

- ▶ Recursion trees are best used to generate a guess for the substitution method
- ► The generated guess can then be verifies by substitution method

Recursion Tree Example

$$T(n) = T(n/3) + T(2n/3) + \Theta(n)$$

- ► For upper bound, rewrite as $T(n) = T(n/3) + T(2n/3) + \Theta(n)$
- ► For lower bound, rewrite as $T(n) = T(n/3) + T(2n/3) + \Theta(n)$

Recursion Tree Example cont.

By summing across each level, the recursion tree shows the cost at each level of recursion (minus the costs of recursive calls, which appear in subtrees):

Recursion Tree Example cont.

- ▶ There are $\log_3 n$ full levels, and after $\log_{3/2} n$ levels, the problem size is down to 1.
- \triangleright Each level contributes < cn.
- ▶ Lower bound guess: $\geq dn \log_3 n = \Omega(n \lg n)$ for some positive constant d.
- ▶ Upper bound guess: $\leq dn \log_{3/2} n = O(n \lg n)$ for some positive constant d.
- ► Then prove by substitution.

Master Method

- ► Many divide-and-conquer recurrence equations have the form: T(n) = a T(n/b) + f(n),
 - $a \ge 1$, b > 1 are constants.
 - *f*(*n*) is asymptotically positive.
 - n/b may not be an integer, but we ignore floors and ceilings.
- ▶ The master method applies to recurrences of the form

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

Requires memorization of three cases.

The Master Theorem

Theorem 4.1 (Masters Theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we can replace n/b by floor(n/b) or ceil(n/b).

T(n) can be bounded asymptotically in three cases:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log ba \varepsilon})$, then $T(n) = \Theta(n^{\log ba} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $a f(n/b) \le c f(n)$, for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master theorem (reprise)

```
T(n) = aT(n/b) + f(n)
Compare f(n) with n^{\log_b a}
```

```
Case 1: f(n) = O(n^{\log_b a - \varepsilon}), for some constant \varepsilon > 0
 f(n) grows polynomially slower than n^{\log_b a}
 (by an n^{\varepsilon} factor).
```

Solution: $T(n) = \Theta(n^{\log_b a})$.

If
$$f(n) = O(n^{\log_b a - \varepsilon})$$

- $f(n) = O(n^{\log_b a \epsilon})$ implies that the sum of the cost of the nodes at each internal level are asymptotically smaller than the cost of leaves by a *polynomial* factor.
- Cost of the problem dominated by leaves, hence cost is $\Theta(n^{\log_b a})$.

Master theorem (reprise) cont.

$$T(n) = aT(n/b) + f(n)$$

Compare $f(n)$ with $n^{\log_b a}$

Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$, for some constant $k \ge 0$ f(n) and $n^{\log_b a}$ grow at similar rates. Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

If $f(n) = \Theta(n^{\log_b a})$

- $n^{\log_b a} = a^{\log_b n}$: Number of leaves in the recursion tree.
- $f(n) = \Theta(n^{\log_b a})$ implies that the sum of the cost of the nodes at each level is asymptotically the same as the cost of leaves.
- ► There are $\Theta(\lg n)$ levels.
- ► Hence, total cost is $\Theta(n^{\log_b a} \lg n)$.

For MERGE-SORT

$$a = 2$$
, $b = 2 \Rightarrow n^{\log_b a} = n^{\log_2 2} = n \Rightarrow \textbf{Case 2} \ (k = 0) \Rightarrow T(n) = \Theta(n \lg n)$.

Master theorem (reprise) cont.

T(n) = aT(n/b) + f(n)

```
Compare f(n) with n^{\log_b a}

Case 3: f(n) = \Omega(n^{\log_b a + \varepsilon}), for some constant \varepsilon > 0

f(n) grows polynomially faster than n^{\log_b a} (by an n^{\varepsilon} factor) and f(n) satisfies regularity condition that T(n) = \Theta(f(n)), provided a f(n/b) \le c f(n), for some constant c < 1

Solution: T(n) = \Theta(f(n)).

If f(n) = \Omega(n^{\log_b a + \varepsilon})

n^{\log_b a} = a^{\log_b n}: Number of leaves in the recursion tree.
```

 $f(n) = \Omega(n^{\log_b a + \varepsilon})$ implies that the cost is dominated by the root. Cost of the root is

asymptotically larger than the sum of the cost of the leaves by a polynomial

 \blacktriangleright Hence, cost is $\Theta(f(n))$.

factor.

Case 1 Examples

- T(n) = 4T(n/2) + n
 - $\rightarrow a = 4, b= 2 \Rightarrow n^{\log_b a} = n^2$
 - ► $f(n) = n = O(n^{2-\epsilon})$ for $\epsilon = 1$ Case 1 applies
 - ▶ Therefore, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

- ightharpoonup T(n) = 16T(n/4) + n
 - $a = 16, b = 4 \Rightarrow n^{\log_b a} = n^{\log_{4} 16} = n^2.$
 - ▶ $f(n) = n = O(n^{\log_b a \epsilon}) = O(n^{2-\epsilon})$, where $\epsilon = 1$ Case 1 applies
 - ▶ Therefore, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

Case 2 Examples

- $ightharpoonup T(n) = 4T(n/2) + n^2$
 - ightharpoonup a = 4, $b = 2 \Rightarrow n^{\log_b a} = n^2$
 - ► $f(n) = n^2 = \Theta(n^2 \lg^0 n)$, that is, k = 0 Case 2 applies
 - ▶ Therefore, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n^2 \lg n)$

- ightharpoonup T(n) = T(3n/7) + 1
 - $a = 1, b = 7/3 \Rightarrow n^{\log_b a} = n^{\log_{7/3} 1} = n^0 = 1$
 - $f(n) = 1 = \Theta(n^{\log_b a})$ Case 2 applies
 - ► Therefore, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(\lg n)$

Case 3 Examples

- $ightharpoonup T(n) = 4T(n/2) + n^3$
 - ightharpoonup a = 4, $b = 2 \Rightarrow n^{\log_b a} = n^2$
 - ► $f(n) = n^3 = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$ Case 3 applies
 - **▶** Case 3: *f*(*n*)
 - ▶ and $4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2.
 - ▶ Therefore, $T(n) = \Theta(f(n)) = \Theta(n^3)$.
- $ightharpoonup T(n) = 3T(n/4) + n \lg n$
 - a = 3, b=4, thus $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$
 - ▶ $f(n) = n \lg n = \Omega(n^{\log_4 3 + \varepsilon})$ where $\varepsilon \approx 0.2$ Case 3 applies
 - ▶ Therefore, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

Master Method does not apply Examples

- $T(n) = 4T(n/2) + n^2/1gn$
 - ightharpoonup a = 4, $b = 2 \Rightarrow n^{\log_b a} = n^2$
 - $f(n) = n^2/\lg n.$
 - Master method does not apply.
 - ▶ In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.
- $T(n) = 2T(n/2) + n \lg n$
 - $a = 2, b=2 \Rightarrow n^{\log_b a} = n^{\log_2 2} = n$
 - $ightharpoonup f(n) = n \lg n$
 - \blacktriangleright f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger.
 - ▶ The ratio $\lg n$ is asymptotically less than n^{ε} for any positive ε .
 - ► Thus, the Master method *does not* apply here.

Master Theorem – Proof for exact powers

Proof when n is an exact power of b.

Three steps.

- 1. Reduce the problem of solving the recurrence to the problem of evaluating an expression that contains a summation.
- Determine bounds on the summation.
- Combine 1 and 2.

Iterative "Proof" of the Master Theorem

Using iterative substitution, determine if a pattern can be found:

$$T(n) = aT(n/b) + f(n)$$

$$= a(aT(n/b^{2})) + f(n/b)) + bn$$

$$= a^{2}T(n/b^{2}) + af(n/b) + f(n)$$

$$= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$$

$$= ...$$

$$= a^{\log_{b} n}T(1) + \sum_{j=0}^{(\log_{b} n)-1} a^{j}f(n/b^{j})$$

$$= n^{\log_{b} a}T(1) + \sum_{j=0}^{(\log_{b} n)-1} a^{j}f(n/b^{j})$$

- Now distinguish between the three cases as
 - ► The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series

Recursion-tree Example

References

- ► T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms, Third Edition", 2009
- MIT Prof. Erik D. Demaine and MIT Prof. Charles E. Leiserson, Lecture Notes, Slides and Videos