Computational Intelligence Methods

Jaroslav Langer *

$\check{\mathrm{R}}$ íjen 2020

Contents

1	Lecture 1. Introduction					
2	Lec 2.1		Machine Learning	2 3		
3	Lec	ture 3.	Evolutionary Algos	4		
4	Lec	ture 4.	Neural Networks	4		
	4.1	Percep	${ m tron}$	5		
		4.1.1	Perceptron training	5		
		4.1.2	Perceptron gradient learning	5		
		4.1.3	Deriving gradietn of error	5		
		4.1.4	Cross entropy loss	5		
	4.2	Backpi	ropagation algorithm	5		
		4.2.1	Multilayer perceptron – MLP	5		
		4.2.2	Chain rule and backprop	5		
		4.2.3	Training MLP	5		
		4.2.4	Propagating the error through multiple layers	5		
		4.2.5	Backprop summary	5		
	4.3	Backpi	ropagation algorithm variants	5		
		4.3.1	Backprop variants	5		
		4.3.2	Modified transfer functions	5		

^{*}notes form lectures MIE-MVI/FIT/CTU

5	Con	voluti	ional Networks		5	5
	4.5	Self-o	organizing Map	 		Ó
	4.4	MLP	as universal approximator	 	. 5	5
		4.3.5	Second order methods	 		5
		4.3.4	Batch updates and variable learning rate	 	. 5	5
		4.3.3	Backprop with momentum	 		5

Abstract

Definitions, terms and knowledge from course NI-MVI. Course page.

1 Lecture 1. Introduction

What is intelligence

Evolutionary

Genotype fenotype

• fitness function

Significant fields

- \bullet self-driving cars
- ullet intelligent assistents
- general artifical inteligence (play game from visual input)

Research at Datalab

prg.ai

ethics

2 Lecture 2. Machine Learning

History

- 1940
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010

GAN

Transformers (pros of conv + recu)

2020+

AutoML in RL

Machine learning tasks

- regression / prediction
- classification / recomendation
- clustering /
- problem solving / planing / control

2.1 Types learning

- supervised
- unsupervised
- semisupervised
- Active learning
- transfer learning
- few-shot learning
- meta-learning / continual learning

Examples by types

Measuring the performace

Learning systems

Defining learning task

- T task ()
- P performance
- E expirience

Design learning system

- database, prepare data
- choose what to be learnt target function
- choose representation of target function
- choose learning algoritm
- supply algorithm with performance metric

Checkers example

Building the database

- Direct expirience set of board with correct move
- indirect expirience sequences of game moves and final results

Choose target function

- choseMove(board, legalMoves) -; bestMove
- V(board) -; R (how favorible position) can be applied for all legal-Moves

Choose target function representation

Machine learning methods

Ants AI challenge

3 Lecture 3. Evolutionary Algos

4 Lecture 4. Neural Networks

Overview

- Introduction to artificial neural networks
- Perceptron, gradient learning
- MLP, Back-propagation of error
- Unsupervized training SOM

- 4.1 Perceptron
- 4.1.1 Perceptron training
- 4.1.2 Perceptron gradient learning
- 4.1.3 Deriving gradietn of error
- 4.1.4 Cross entropy loss
- 4.2 Backpropagation algorithm
- 4.2.1 Multilayer perceptron MLP
- 4.2.2 Chain rule and backprop
- 4.2.3 Training MLP
- 4.2.4 Propagating the error through multiple layers
- 4.2.5 Backprop summary
- 4.3 Backpropagation algorithm variants
- 4.3.1 Backprop variants
- 4.3.2 Modified transfer functions
- 4.3.3 Backprop with momentum
- 4.3.4 Batch updates and variable learning rate
- 4.3.5 Second order methods
- 4.4 MLP as universal approximator
- 4.5 Self-organizing Map
- 5 Convolutional Networks