

Algebra

Alessandro D'Andrea

36. Criteri di diagonalizzabilità

Richiami

- Le applicazioni lineari $T: V \to V$ sono più facilmente descrivibili in una base che le diagonalizza
- Una base diagonalizzante è composta da autovettori
- Per determinare gli autovettori di T, si cercano prima gli autovalori calcolando le radici del polinomio caratteristico det $(T-x \operatorname{Id})$ e poi si trova l'autospazio $\ker(T-\lambda \operatorname{Id})$, relativo a ciascun autovalore $\lambda \in K$, risolvendo un sistema di equazioni lineari.
- ▶ Oggi: Se la somma delle molteplicità geometriche degli autovalori è pari a dim V, allora T è diagonalizzabile
- ► In tal caso, una base diagonalizzante si trova facendo l'unione delle basi, comunque scelte, degli autospazi

Autovettori

Se $v \in V$ è un autovettore di un'applicazione lineare $T: V \to V$, può esserlo rispetto a due autovalori diversi? No!

$$T(v) = \lambda v, T(v) = \mu v \implies \lambda v = \mu v \implies (\lambda - \mu)v = 0 \implies v = 0.$$

Allo stesso modo, se v, w sono autovettori relativi ad autovalori $\lambda \neq \mu$, devono essere linearmente indipendenti. In effetti, se $\alpha v + \beta w = 0$, allora applicando T si ottiene

$$0 = T(0) = T(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha T(\mathbf{v}) + \beta T(\mathbf{w}) = \alpha \lambda \mathbf{v} + \beta \mu \mathbf{w}.$$

Invece, moltiplicando per λ , si ottiene $\alpha \lambda v + \beta \lambda w = 0$.

Sottraendo, si ha $\beta(\lambda - \mu)w = 0$, da cui $\beta w = 0$, e quindi anche $\alpha v = 0$. Poiché v, w sono entrambi diversi da zero (sono autovettori!), allora $\alpha = \beta = 0$.

Il ragionamento è un po' farraginoso. Rendiamolo più pulito!

Indipendenza degli autospazi -

Scegliamo elementi v_1, \ldots, v_n con la proprietà che $T(v_i) = \lambda_i v_i$, con i λ_i tutti diversi. In altre parole, stiamo scegliendo n elementi, ciascuno da un autospazio diverso.

Attenzione: i vettori v_i non sono necessariamente autovettori, perché possono essere 0.

Vogliamo dimostrare la seguente osservazione centrale:

Proposizione

Se $v_1 + v_2 + \ldots + v_n = 0$, allora i v_i sono tutti nulli.

Indipendenza degli autospazi - II

Proposizione

Se i vettori v_i appartengono ad autospazi distinti di T, e $v_1 + v_2 + ... + v_n = 0$, allora i v_i sono tutti nulli.

La dimostrazione è facile e si fa per induzione su n. La base dell'induzione n = 1 è ovvia.

Se n > 1, applicando T si ottiene $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$, mentre moltiplicando per λ_n si ottiene $\lambda_n v_1 + \ldots + \lambda_n v_n = 0$. Sottraendo, si ha

$$(\lambda_1 - \lambda_n)v_1 + \cdots + (\lambda_{n-1} - \lambda_n)v_{n-1} = 0.$$

Ciascuno degli n-1 addendi sta in un autospazio diverso. Possiamo applicare l'ipotesi induttiva, e ottenere

$$(\lambda_1 - \lambda_n)v_1 = 0, \ldots, (\lambda_{n-1} - \lambda_n)v_{n-1} = 0.$$

Poiché $\lambda_1 - \lambda_i \neq 0$, si ottiene $v_1 = 0, v_2 = 0, \dots, v_{n-1} = 0$. Allora anche $v_n = 0$ perché la somma di tutti i v_i era nulla.

Indipendenza di autovettori - J

Situazione: V è uno spazio vettoriale, $T: V \to V$ è un'applicazione lineare, $\lambda_1, \ldots, \lambda_n \in K$ sono autovalori distinti di T.

Scelgo una base di ciascun autospazio:

$$v_1^1, v_2^1, \dots, v_{d_1}^1$$
 base di $V^{\lambda_1} = \ker(T - \lambda_1 \operatorname{Id})$
 $v_1^2, v_2^2, \dots, v_{d_1}^2$ base di $V^{\lambda_2} = \ker(T - \lambda_2 \operatorname{Id})$

$$v_1^2, v_2^2, \dots, v_{d_2}^2$$
 base di $V^{\lambda_2} = \ker(T - \lambda_2 \operatorname{Id})$

$$v_1^n, v_2^n, \dots, v_{d_n}^n$$
 base di $V^{\lambda_n} = \ker(T - \lambda_n \operatorname{Id})$

Voglio mostrare che

$$v_1^1, v_2^1, \dots, v_{d_1}^1, v_1^2, v_2^2, \dots, v_{d_2}^2, \dots, v_1^n, v_2^n, \dots, v_{d_n}^n$$

sono linearmente indipendenti.

Indipendenza di autovettori - II

Voglio mostrare che

$$v_1^1, v_2^1, \dots, v_{d_1}^1, v_1^2, v_2^2, \dots, v_{d_2}^2, \dots, v_1^n, v_2^n, \dots, v_{d_n}^n$$

sono linearmente indipendenti.

Prendiamo una combinazione lineare nulla, e mostriamo che tutti i coefficienti sono nulli. Se abbiamo

$$(\alpha_1 V_1^1 + \alpha_2 V_2^1 + \ldots + \alpha_{d_1} V_{d_1}^1) + (\beta_1 V_1^2 + \beta_2 V_2^2 + \ldots + \beta_{d_2} V_{d_2}^2) + \ldots + (\gamma_1 V_1^n + \gamma_2 V_2^n + \ldots + \gamma_{d_n} V_{d_n}^n) = 0,$$

ciascun termine tra parentesi appartiene ad un autospazio diverso, e quindi deve annullarsi. ← per il fatto che abbiamo dimostrato prima!!!

Ma allora, ad esempio, $\alpha_1 v_1^1 + \alpha_2 v_2^1 + \ldots + \alpha_{d_1} v_{d_1}^1 = 0$, e quindi $\alpha_1, \alpha_2, \ldots, \alpha_{d-1}$ sono tutti 0. Ripetendo lo stesso ragionamento per tutti gli addendi tra parentesi, si vede che i coefficienti sono tutti nulli.

Basi di autovettori - I

Ricapitoliamo:

- ▶ Una base diagonalizzante per $T: V \rightarrow V$ è costituita da autovettori di T
- Se prendo alcuni elementi di una base, rimangono linearmente indipendenti; pertanto, quegli autovettori di una base diagonalizzante, che stanno in uno stesso autospazio, sono linearmente indipendenti
- Il massimo numero di autovettori linearmente indipendenti che posso prendere in ciascun autospazio è pari alla molteplicità geometrica di quell'autovalore, cioè alla dimensione dell'autospazio

Basi di autovettori - II

- La molteplicità geometrica di ciascun autovalore è minore o uguale alla corrispondente molteplicità algebrica
- La somma delle molteplicità algebriche degli autovalori è minore o uguale a dim V
- Scegliendo una base di vettori in ciascun autospazio e mettendo insieme, ottengo dei vettori linearmente indipendenti, e il loro numero è uguale alla somma delle molteplicità geometriche, che è minore o uguale della somma delle molteplicità algebriche, che è minore o uguale di dim V
- L'unico modo di (sperare di) esibire una base diagonalizzante per T è di scegliere una base in ciascun autospazio e mettere insieme tutti i vettori. Se la somma delle molteplicità geometriche è dim V, ho ottenuto una base diagonalizzante
- ► Se la somma delle molteplicità geometriche è minore di dim *V*, non esistono basi diagonalizzanti!!!

Basi di autovettori - III

V è uno spazio vettoriale di dimensione finita.

- ► Un'applicazione lineare T: V → V è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uquale a dim V.
- Se la molteplicità geometrica di anche solo un autovalore è inferiore alla corrispondente molteplicità algebrica, T non è diagonalizzabile.
- Se K = C, T è diagonalizzabile se e solo se ciascuna molteplicità geometrica coincide con la corrispondente molteplicità algebrica.

Vediamo alcuni esempi.

Esempi - I

L'applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$ di matrice

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
,

non è diagonalizzabile.

Il polinomio caratteristico è

$$p_T(x) = \begin{vmatrix} -x & 1 \\ -1 & -x \end{vmatrix} = x^2 + 1,$$

che non ha radici reali.

La somma delle molteplicità geometriche è $0 \neq 2 = \dim \mathbb{R}^2$.

Esempi - II

L'applicazione lineare $T:\mathbb{C}^2\to\mathbb{C}^2$ di matrice

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
,

è diagonalizzabile.

Il polinomio caratteristico è ancora $x^2 + 1$. Le soluzioni di $x^2 + 1 = 0$ sono $x = \pm i$, che hanno entrambe molteplicità algebrica 1. Poiché

$$m_a(\lambda) \geq m_g(\lambda) \geq 1$$

vale per ogni autovalore, sia i che -i hanno molteplicità geometrica 1. La somma delle molteplicità geometriche è $1 + 1 = 2 = \dim \mathbb{C}^2$.

In generale, se ho $n=\dim V$ autovalori tutti di molt. algebrica 1, l'applicazione lineare $T:V\to V$ è automaticamente diagonalizzabile.

Esempi - III

L'applicazione lineare $T: \mathbb{C}^2 \to \mathbb{C}^2$ di matrice

$$\begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix},$$

non è diagonalizzabile.

Il polinomio caratteristico è

$$p_T(x) = \begin{vmatrix} 3-x & 1 \\ -1 & 1-x \end{vmatrix} = (3-x)(1-x)+1 = x^2-4x+4 = (x-2)^2.$$

L'unica soluzione di $(x-2)^2=0$ è x=2, che ha molteplicità algebrica 2.

Calcoliamo la molteplicità geometrica dell'autovalore 2, cioè la dimensione di ker(T-2 ld).

Esempi - IV

L'applicazione lineare $T:\mathbb{C}^2\to\mathbb{C}^2$ ha matrice

$$\begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$$
.

Per calcolare ker(T - 2 Id), procediamo con l'eliminazione di Gauss:

$$\begin{pmatrix} 3-2 & 1 \\ -1 & 1-2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Il rango è 1, quindi la dimensione dell'autospazio è 2-1=1. La molteplicità geometrica vale 1, mentre quella algebrica vale 2. L'applicazione non è diagonalizzabile.

Per la cronaca, l'autospazio è la retta $\langle (1, -1) \rangle$.

Conclusione

Il corso è terminato.

Aggiungerò qualche approfondimento alle lezioni registrate finora, per dare delle applicazioni e spiegare per quale motivo il linguaggio dell'algebra lineare sia concretamente utile.

Buon lavoro!