```
In [1]:
          import pandas as pd
          import numpy as np
          df2=pd.read_csv('C:/Users/ashiq/Desktop/csv/assignment_4/Salary_Data.csv')
 In [2]:
 In [6]:
          df1_copy=df2.copy()
 In [7]:
          df2.head()
 Out[7]:
              YearsExperience
                              Salary
                            39343.0
           0
                         1.3 46205.0
           1
           2
                         1.5 37731.0
                         2.0 43525.0
           3
                         2.2 39891.0
 In [8]:
          df2.shape
 Out[8]: (30, 2)
 In [9]: df2.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 30 entries, 0 to 29
          Data columns (total 2 columns):
           #
               Column
                                 Non-Null Count
                                                  Dtype
           0
               YearsExperience 30 non-null
                                                   float64
           1
               Salary
                                  30 non-null
                                                   float64
          dtypes: float64(2)
          memory usage: 608.0 bytes
In [10]: df2.describe()
Out[10]:
                 YearsExperience
                                       Salary
           count
                       30.000000
                                    30.000000
                                 76003.000000
                        5.313333
           mean
                        2.837888
             std
                                 27414.429785
```

count 30.000000 30.000000 mean 5.313333 76003.000000 std 2.837888 27414.429785 min 1.100000 37731.000000 25% 3.200000 56720.750000 50% 4.700000 65237.000000 75% 7.700000 100544.750000 max 10.500000 122391.000000

In [11]: df2.corr()

Out[11]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

In [12]: df2.boxplot()

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1abb8f804f0>


```
In [13]: array=df2.values
```

```
In [14]: from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))
rescaledX = scaler.fit_transform(array[:,0:2])
```

```
In [15]: rescaledX
Out[15]: array([[0.
                            , 0.01904087],
                 [0.0212766 , 0.1000945 ],
                 [0.04255319, 0.
                                         ],
                 [0.09574468, 0.06843846],
                 [0.11702128, 0.02551382],
                 [0.19148936, 0.22337586],
                 [0.20212766, 0.26481219],
                 [0.22340426, 0.19742499],
                 [0.22340426, 0.31554453],
                 [0.27659574, 0.229837],
                 [0.29787234, 0.30105126],
                 [0.30851064, 0.21335932],
                 [0.30851064, 0.22709662],
                 [0.31914894, 0.2285613],
                 [0.36170213, 0.27616348],
                 [0.40425532, 0.35680369],
                 [0.42553191, 0.33425467],
                 [0.44680851, 0.53575478],
                 [0.5106383, 0.51537916],
                 [0.5212766, 0.66393811],
                 [0.60638298, 0.63792818],
                 [0.63829787, 0.7151193],
                 [0.72340426, 0.75089771],
                 [0.75531915, 0.89866525],
                 [0.80851064, 0.84691708],
                 [0.84042553, 0.80145287],
                 [0.89361702, 0.93595559],
                 [0.90425532, 0.88476258],
                 [0.9787234 , 1.
                 [1.
                            , 0.9938696 ]])
         column values = ['YearsExperience', 'Salary']
In [16]:
         df = pd.DataFrame(data = rescaledX,
                            columns = column values)
```

In [17]: df

Out[17]:

YearsExperience		Salary
0	0.000000	0.019041
1	0.021277	0.100094
2	0.042553	0.000000
3	0.095745	0.068438
4	0.117021	0.025514
5	0.191489	0.223376
6	0.202128	0.264812
7	0.223404	0.197425
8	0.223404	0.315545
9	0.276596	0.229837
10	0.297872	0.301051
11	0.308511	0.213359
12	0.308511	0.227097
13	0.319149	0.228561
14	0.361702	0.276163
15	0.404255	0.356804
16	0.425532	0.334255
17	0.446809	0.535755
18	0.510638	0.515379
19	0.521277	0.663938
20	0.606383	0.637928
21	0.638298	0.715119
22	0.723404	0.750898
23	0.755319	0.898665
24	0.808511	0.846917
25	0.840426	0.801453
26	0.893617	0.935956
27	0.904255	0.884763
28	0.978723	1.000000
29	1.000000	0.993870

```
In [18]: df.boxplot()
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x1abbb6b7c40>


```
In [19]: df.corr()
```

Out[19]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

```
In [20]: from scipy.stats import kurtosis
    from scipy.stats import skew
        (kurtosis(df['YearsExperience']),skew(df['Salary']))
```

Out[20]: (-1.0447521989892934, 0.3361618825592921)

```
In [21]: (skew(df['YearsExperience']),skew(df['Salary']))
```

Out[21]: (0.3603123252525565, 0.3361618825592921)

In [22]: import seaborn as sns
sns.pairplot(df)

Out[22]: <seaborn.axisgrid.PairGrid at 0x1abbb7346d0>

In [23]: sns.distplot(df.YearsExperience)

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x1abbbb5c070>

In [24]: sns.distplot(df.Salary)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1abbbc2a760>


```
In [25]:
         import statsmodels.formula.api as smf
         model1=smf.ols('df.Salary~df.YearsExperience', data= df).fit()
In [26]: sns.regplot(x=df.YearsExperience,y=df.Salary, data=df)
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x1abbbf990d0>
            1.0
            0.8
            0.6
            0.4
            0.2
            0.0
                       0.2
                                 0.4
                                                   0.8
              0.0
                                          0.6
                                                            1.0
                                 YearsExperience
In [27]: | model1.params
Out[27]: Intercept
                               -0.018236
         df.YearsExperience
                                1.049252
         dtype: float64
In [28]: (model1.tvalues, model1.pvalues)
Out[28]: (Intercept
                                 -0.806598
          df.YearsExperience
                                 24.950094
          dtype: float64,
          Intercept
                                 4.266967e-01
          df.YearsExperience
                                 1.143068e-20
          dtype: float64)
In [29]:
         (model1.rsquared,model1.rsquared adj)
Out[29]: (0.9569566641435086, 0.9554194021486339)
 In [ ]:
         standard scalar
```

In [30]: from sklearn.preprocessing import StandardScaler

```
In [31]: | array = df1_copy.values
          scaler = StandardScaler().fit(array)
          rescaledX = scaler.transform(array)
In [32]: |column_values = ['YearsExperience','Salary']
          df3 = pd.DataFrame(data = rescaledX,
                             columns = column values)
In [35]: model2=smf.ols('df.Salary~df.YearsExperience', data= df3).fit()
In [36]: sns.regplot(x=df3.Salary,y=df3.YearsExperience, data=df3)
Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x1abbc3f2d00>
              2.0
              1.5
              1.0
          YearsExperience
              0.5
              0.0
             -0.5
             -1.0
             -1.5
                             −o.5
                                             0.5
                                     0.0
                                                    1.0
                                                           1.5
                      -1.0
                                      Salary
In [37]: model2.params
Out[37]: Intercept
                                -0.018236
          df.YearsExperience
                                 1.049252
          dtype: float64
In [38]:
          (model2.tvalues, model2.pvalues)
Out[38]: (Intercept
                                  -0.806598
           df.YearsExperience
                                  24.950094
           dtype: float64,
           Intercept
                                  4.266967e-01
           df.YearsExperience
                                  1.143068e-20
           dtype: float64)
          (model2.rsquared,model2.rsquared_adj)
In [39]:
Out[39]: (0.9569566641435086, 0.9554194021486339)
 In [ ]:
```

```
In [48]: from numpy import log
In [49]: | data4 = log(df1_copy)
In [50]: data4
 In [ ]:
         model3=smf.ols('data4.Salary~data4.YearsExperience', data= data4).fit()
         sns.regplot(x=data4.Salary,y=data4.YearsExperience, data=data4)
In [52]:
Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x1abbc65b910>
            2.5
            2.0
          FearsExperience
            1.5
            1.0
            0.5
            0.0
                        10.8
                                11.0
                                        11.2
                                                11.4
                                                       11.6
                 10.6
                                     Salary
In [53]: model3.params
Out[53]: Intercept
                                    10.328043
         data4.YearsExperience
                                     0.562089
         dtype: float64
In [54]:
         (model3.tvalues, model3.pvalues)
Out[54]: (Intercept
                                     184.867959
           data4.YearsExperience
                                      16.352542
           dtype: float64,
           Intercept
                                     9.073132e-45
           data4.YearsExperience
                                     7.395278e-16
           dtype: float64)
In [55]:
         (model3.rsquared_adj)
         (0.9052150725817149, 0.9018298966024904)
 In [ ]:
```

robust scalar

```
In [56]: from sklearn.preprocessing import RobustScaler
          array = df1_copy.values
           transformer = RobustScaler().fit_transform(array)
In [57]:
In [58]:
         column_values = ['Salary', 'YearsExperience']
          df4 = pd.DataFrame(data = transformer,
                             columns = column_values)
         model4=smf.ols('df4.Salary~df4.YearsExperience', data= df4).fit()
In [59]:
         model4.params
In [60]:
Out[60]: Intercept
                                 -0.105976
          df4.YearsExperience
                                  0.986192
          dtype: float64
In [61]:
         (model4.tvalues, model4.pvalues)
Out[61]: (Intercept
                                   -4.048275
           df4.YearsExperience
                                   24.950094
           dtype: float64,
           Intercept
                                   3.691400e-04
           df4.YearsExperience
                                   1.143068e-20
           dtype: float64)
In [63]: | sns.regplot(x=df4.Salary,y=df4.YearsExperience, data=df4)
Out[63]: <matplotlib.axes. subplots.AxesSubplot at 0x1abbc6cba60>
              1.5
              1.0
          éarsExperience
              0.5
              0.0
             -0.5
                     -0.50 -0.25
                                 0.00
                                       0.25
                                            0.50
                                                  0.75
                                                       1.00
                                                             1.25
                                      Salary
         (model4.rsquared,model4.rsquared_adj)
In [64]:
Out[64]: (0.9569566641435086, 0.9554194021486339)
```

In []: