NaiveBayes Homework Q

August 31, 2021

Bài tập: Cho tập dữ liệu về bệnh ung thư: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

Trong đó là các thông tin về đặc điểm của tế bào đã được ghi nhận thành các thuộc tính (radius_mean, texture_mean, ...), thể hiện dưới dạng bảng. Cùng với đó là các chẩn đoán (diagnosis) liệu tế bào đó có phải là tế bào ung thư hay không.

Hãy xây dựng mô hình Naive Bayes để dự đoán liệu một tế bào với các đặc điểm cho trước có phải là một tế bào ung thư hay không?

• Nếu dùng GColab, cần kết nối với server và drive (nếu đọc/ ghi dữ liệu từ drive)

```
[4]: from google.colab import drive drive.mount('/content/drive')
```

Mounted at /content/drive

```
[5]: cd /content/drive/MyDrive/NB_practice/2. Assignment
```

/content/drive/MyDrive/NB_practice/2. Assignment

• Import các thư viên cần thiết và load dữ liêu từ file

```
[2]: #Import các thư viện cần thiết
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
[6]: #Load data
data = pd.read_csv("cancer_data.csv")
data.head() #Quan sát dữ liệu cho thấy, tập dữ liệu đã được xử lí khá "sạch"
```

```
fractal_dimension_worst
[6]:
              id diagnosis
                                                           Unnamed: 32
          842302
     0
                          М
                                                  0.11890
                                                                    NaN
          842517
                          М
                                                  0.08902
     1
                                                                    NaN
       84300903
     2
                          М
                                                  0.08758
                                                                    NaN
     3 84348301
                                                  0.17300
                          М
                                                                    NaN
        84358402
                                                  0.07678
                                                                    NaN
```

[5 rows x 33 columns]

[7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
32	Unnamed: 32	0 non-null	float64
dtypes: float64(31), int64(1), object(1)			
memory usage: 146.8+ KB			

```
[9]: # Loại trường không cần thiết: id, unnamed data = data.drop(["id", "Unnamed: 32"], axis = 1)
```

```
[11]: #Trực quan hóa về dữ liệu: u ác tính và u lành:

M = data[data.diagnosis == "M"] # dữ liệu ứng với u ác tính

B = data[data.diagnosis == "B"] # dữ liệu ứng với u lành

plt.title("Trực quan dữ liệu u ác tính và u lành")

plt.xlabel("Radius Mean")

plt.ylabel("Texture Mean")

plt.scatter(M.radius_mean, M.texture_mean, color = "red", label = "U ác", alphau == 0.3)

plt.scatter(B.radius_mean, B.texture_mean, color = "lime", label = "U lành",u == alpha == 0.3)

plt.legend()

plt.show()
```


• Tiền xử lí trước khi huấn luyện mô hình:

```
[]: # Câu hỏi: Tách thuộc tính và nhãn:
    # Code #############
    X = #.....
    y = data.diagnosis.values
    #################
[18]: # Chuẩn hóa các trường của X
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    sc.fit(X)
[18]: StandardScaler(copy=True, with_mean=True, with_std=True)
[21]: # Câu hỏi: Chia dữ liệu train/test:
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = #....
    • Xây dựng và đánh giá mô hình Naive Bayes:
[]: # Câu hỏi: Multinormial NB:
    from sklearn.naive_bayes import MultinomialNB
    model_MNB = #....
    print("Multinormial Naive Bayes score: ", model_MNB.score(x_test, y_test))
    []: # Câu hỏi: Gaussian NB:
    from sklearn.naive_bayes import GaussianNB
    model_GNB = #....
    print("Gaussian Naive Bayes score: ", #....))
```