

DET

Department of Electronics and Telecommunications

Amplificatori Operazionali

Limitazioni degli stadi amplificatori

- Principali limitazioni degli amplificatori (considerati fino ad ora):
 - Effetto di carico in ingresso ed in uscita → in generale, è difficile ottenere con impedenze d'ingresso e d'uscita molto elevate o molto ridotte.
 - L'accuratezza dei parametri (amplificazione, impedenze d'ingresso e d'uscita) è scarsa: i parametri dei dispositivi attivi presentano forti tolleranze di fabbricazione (oltre $\pm 50\%$ per i componenti attivi) che variano da dispositivo a dispositivo.

Per migliorare decisamente le prestazioni sotto entrambi gli aspetti verrà introdotto ora il principio funzionale della **retroazione negativa**.

Amplificatori ad Anello Aperto

• Negli amplificatori ad anello aperto considerati fino ad ora, il segnale di ingresso dell'amplificatore coincide con l'ingresso esterno x(t)

 Se lo stadio è progettato per avere amplificazione A, qualsiasi errore δA, dovuto a tolleranze di fabbricazione o effetto di carico si riflette direttamente sull'uscita:

$$y(t) = (A + \delta A)x(t) \neq Ax(t)$$

Retroazione Negativa (I)

- In un amplificatore con retroazione negativa (*negative feedback*), il segnale voluto in uscita è visto come il segnale che, se attenuato di un fattore β , è uguale all'ingresso esterno.
- L'amplificatore d'errore A ha in ingresso l'errore $\varepsilon = x \beta y$ tra ingr. esterno x e uscita attenuata βy e varia l'uscita y così da *ridurre* l'errore (segno meno davanti a y, da cui retroazione *negativa*).
 - Se $\varepsilon > 0$ cresce (ad es. perché cresce x) $\rightarrow y$ aumenta e l'errore $\varepsilon = x \beta y$ decresce
 - Se $\varepsilon < 0$ diminuisce (ad es. perché decresce x) $\rightarrow y$ diminuisce e l'errore $\varepsilon = x \beta y$ decresce in modulo
 - Se $x = \beta y$ allora l'uscita è proprio quella voluta $(1/\beta)$
- Il fattore β è ottenuto da una rete passiva e può essere controllato in modo accurato.

Esempio: amplificatore che amplifica 10

$$y = 10x$$
 approccio ad anello aperto $x = \frac{y}{10}$ $x = \frac{y}{10} = 0$ approccio con retroazione segnale d'errore

Retroazione Negativa (II)

Definizioni	
$\varepsilon = x - \beta y$	segnale d'errore
$T = A\beta$	guadagno d'anello
A	amplificazione ad anello aperto
$\frac{1}{\beta}$	amplificazione ad anello chiuso

Dallo schema a blocchi:

$$\begin{cases} y = A\varepsilon \\ \varepsilon = x - \beta y \\ y = A(x - \beta y) \end{cases}$$
$$y(1 + A\beta) = Ax$$

Espressioni dell'uscita e del segnale d'errore:

$$\begin{cases} y = \frac{A\beta}{1 + A\beta} \frac{1}{\beta} x = \frac{T}{1 + T} \frac{1}{\beta} x \\ \varepsilon = \frac{1}{1 + A\beta} x = \frac{1}{1 + T} x \end{cases}$$

Retroazione Negativa (III)

- Se A, o meglio il guadagno d'anello $T = A\beta$, è sufficientemente elevato in modulo, l'amplificazione complessiva $\frac{y}{x}$ tende a $\frac{1}{\beta}$ indipendentemente dal valore preciso di A!
- L'amplificazione ad anello chiuso dipende solo da β ed è pertanto insensibile a effetti di carico, tolleranze di fabbricazione dei dispositivi attivi (che invece influenzano A).

Retroazione Negativa (IV)

- Le tolleranze, gli effetti di carico... ed altre non-idealità dell'amplificatore A possono essere descritte da un termine di errore additivo n.
- Il contributo n delle non-idealità sull'uscita y è attenuato di un fattore $1 + A\beta$.
- Tanto più il guadagno d'anello $T = A\beta$ è elevato in modulo, tanto più il comportamento dell'amplificatore retroazionato si avvicina all'idealità.

$$\begin{cases} y = A\varepsilon + n \\ \varepsilon = x - \beta y \\ y = A(x - \beta y) + n \end{cases}$$

$$y = \underbrace{\frac{A\beta}{1 + A\beta} \frac{1}{\beta}}_{\text{Termine atteso}} x + \underbrace{\frac{1}{1 + A\beta}}_{\text{Effetto delle non idealità di } A}$$

per
$$T=Aeta o\infty$$
 le non-idealità $y=rac{1}{eta}x$ di A non influenzano l'uscita

Amplificatore Operazionale (I)

- Che cosa occorre per implementare il principio della retroazione negativa a livello circuitale?
 - Un amplificatore con elevata amplificazione A, idealmente infinita
 - E' necessario eseguire la differenza tra due segnali → amplificatore differenziale
- Un amplificatore di tensione differenziale con queste caratteristiche (amplificazione di tensione differenziale $A_d = \frac{v_{out}}{v^+ v^-}$ da 10⁴ fino a 10⁶ (80-120dB) è detto **amplificatore operazionale**.
- Il fattore β è ottenuto da una rete passiva (rete di retroazione).

Amplificatore Operazionale (II)

$$v_d=v^+-v^-$$
 tensione differenziale d'ingresso $v_{cm}=rac{v^++v^-}{2}$ tensione di modo comune d'ingresso

$v_{out} = A_d v_d$

$$\operatorname{per} A_d \to \infty$$

Amplificatore Operazionale ideale

 v_{out}

È un **amplificatore differenziale**: l'uscita v_{out} , (che è riferita allo 0V del circuito), dipende solo dalla differenza tra v^+ e v^- , non da v^+ e v^- rispetto a 0V

Morsetto invertente

Amplificatore Operazionale (III)

- Come tutti gli amplificatori, anche gli operazionali presentano R_{in} , R_{out} generalmente finite e non nulle \rightarrow ma se A_d è sufficientemente elevata, gli effetti di carico risultanti sono trascurabili.
- In un amplificatore operazionale ideale ($A_d \to \infty$) R_{in} ed R_{out} non danno luogo ad effetto di carico e sono completamente ininfluenti.

Amplificatore operazionale come doppio bipolo

Amplificatore di tensione con operazionale

Dallo schema a blocchi...

Es.: per ottenere un amplificatore di tensione con $A_n = 10$

- applico l'ingresso v_{in} al morsetto non invertente.
- per amplificare 10, attenuo v_{out} di un fattore $\beta=0.1$ con un partitore ($R_1=R_2/9$) e lo applico all'ingresso invertente.

...al circuito con operazionale

$$v^{+} = v_{in}$$

$$v^{-} = \frac{R_1}{R_1 + R_2} v_{out} = \beta v_{out}$$

$$v_{out} = A_d(v^+ - v^-) = A_d(v_{in} - \beta v_{out})$$

$$v_{out} = \frac{\beta A_d}{1 + \beta A_d} \frac{v_{in}}{\beta} \xrightarrow{A_d \to \infty} v_{out} = \frac{v_{in}}{\beta} = \left(1 + \frac{R_2}{R_1}\right)$$

$$v_{out} = \frac{v_{in}}{\beta} = \left(1 + \frac{R_2}{R_1}\right) v_{in}$$

Analisi di circuiti con operazionali (I)

-consideriamo l'amplificatore di tensione ricavato dallo schema a blocchi in un caso più realistico, introducendo anche:

- $R_{in,OP}$, $R_{out,OP}$ Resistenza d'ingresso e d'uscita dell'operazionale finite e non nulle
- R_S , R_L Resistenza di sorgente e carico finite e non nulle

Obiettivo: ricavare $A_{v}=rac{v_{out}}{v_{in}}$, R_{in} , R_{out}

- \rightarrow Per A_d finita
- \rightarrow Nel caso ideale, per $A_d \rightarrow \infty$

Analisi di circuiti con operazionali (II)

E' un circuito con generatore di tensione pilotato in tensione

Applicando il metodo del pilota... (calcoli laboriosi ma semplici)

primo passo:

$$R_{L} \geqslant v_{\text{out}} \qquad \begin{cases} v_{d} = \frac{R_{in,OP}}{R_{in,OP} + R_{S} + R_{c}} v_{in} - \beta' \hat{e} \\ \hat{e} = A_{d} v_{d} \end{cases}$$

$$\beta' = \frac{R_a}{R_a + R_{out}} \frac{R_b}{R_b + R_2} \frac{R_{in,OP}}{R_{in,op} + R_S}$$

$$R_a = R_L \parallel [R_2 + R_1 \parallel (R_S + R_{in,OP})]$$

$$R_b = R_1 \parallel (R_S + R_{in,OP})$$

$$R_c = R_1 \parallel (R_2 + R_{out,OP} \parallel R_L)$$

Analisi di circuiti con operazionali (III)

secondo passo:

$$\begin{cases} v_{d} = \frac{R_{in,OP}}{R_{in,OP} + R_{S} + R_{c}} v_{in} - \beta' \hat{e} \\ \hat{e} = A_{d} v_{d} \\ v_{d} (1 + \beta' A_{d}) = \frac{R_{in,OP}}{R_{in,OP} + R_{S} + R_{c}} v_{in} \end{cases}$$

$$\downarrow i_{L} \qquad v_{d} = \frac{R_{in,OP}}{R_{in,OP} + R_{S} + R_{c}} \frac{v_{in}}{1 + \beta' A_{d}}$$

terzo passo:

- **per** A_d **finita**: si prosegue con il metodo del pilota si ricava v_{out} in funzione di v_{in} e di $\hat{e} = A_d v_d$ (noto)... altri calcoli un po' laboriosi... Con lo stesso metodo si valutano R_{in} ed R_{out} .
- $\operatorname{per} A_d \to \infty$ (operazionale ideale) sono possibili notevoli semplificazioni \odot ! (vedi prossima slide...)

Analisi di circuiti con operazionali ideali (I)

$$v_d = \frac{R_{in,OP}}{R_{in,OP} + R_S + R_c} \underbrace{\frac{v_{in}}{1 + \beta' A_d}} \to 0$$

Non è necessario determinarla applicando il metodo del pilota!!!

$$v_d = 0 \rightarrow v^- = v^+$$

Essendo poi $R_{in,OP}$ non nulla, si ha anche:

$$i^{+} = -i^{-} = \frac{v_d}{R_{in,OP}} = 0$$

Nota Bene: essendo $A_d \to \infty$ $v_d = \frac{\hat{e}}{A_d} = 0 \text{, indipendentemente da } \hat{e}$ per cui $v_d = 0$ non implica $\hat{e} = A_d v_d = 0!$

Analisi di circuiti con operazionali ideali (II)

$$v_d = 0 \rightarrow v^- = v^+$$

$$i^+ = -i^- = 0$$

Le due relazioni sono valide per tutti i circuiti con operazionali in retroazione *negativa*

Utilizzando le due relazioni:

$$i_{in} = i^{+} = 0$$
 $v_{R_{S}} = 0$
 $v_{R1} = v^{-} = v^{+} = v_{in}$
 $i_{R2} = i_{R1} = \frac{v_{in}}{R_{1}}$
 $v_{out} = v^{-} + v_{R2}$
 $= v_{in} + i_{R2}R_{2}$
 $= v_{in} + \frac{R_{2}}{R_{1}}v_{in} = v_{in}\left(1 + \frac{R_{2}}{R_{1}}\right)$

Analisi di circuiti con operazionali ideali (III)

$$A_v = \frac{v_{out}}{v_{in}} = 1 + \frac{R_2}{R_1}$$

- E' l'espressione da cui eravamo partiti... ed è valida anche ora considerando $R_{in,OP}$, $R_{out,OP}$, R_S , R_G finite e non nulle \rightarrow non c'è effetto di carico!

- Essendo
$$i^+ \to 0$$
, $R_{in} = \frac{v_{in}}{i^+} \to \infty$

- Inoltre, spegnendo v_{in} , $v_{out}=0$ anche applicando un generatore di corrente di test in uscita, quindi $R_{out}=\frac{v_{out}}{i_{test}}=0$

- per $A_d \to \infty$ il circuito si comporta come un amplificatore di tensione ideale

$$R_{in} \rightarrow \infty$$

$$R_{out} = 0$$

Amplificatori con operazionali ideali

- Abbiamo visto come utilizzando un amplificatore operazionale ideale (con $A_d \to \infty$) sia possibile ottenere un amplificatore di tensione prossimo all'idealità.
- Partendo dallo stesso operazionale ideale, è possibile ottenere tutte le tipologie di amplificatore:
 - Amplificatore di **Tensione**
 - Amplificatore di Transconduttanza
 - Amplificatore di Transresistenza
 - Amplificatore di Corrente
 con caratteristiche che idealmente non risentono degli effetti di carico.
- Ricavare i circuiti dallo schema a blocchi è meno intuitivo: analizzeremo direttamente i circuiti.

Amplificatore di Tensione

$$A_{v} = \frac{v_{out}}{v_{in}} = 1 + \frac{R_2}{R_1}$$

 $R_{in} \rightarrow \infty$

 $R_{out} = 0$

Amplificazione di tensione

$$v_{out} = v^+ + v_{R2}$$
 $v_{R2} = i_{R2}R_2 = \frac{v_{in}}{R_1}R_2$

Resistenze di ingresso e di uscita:

 $(v_{in}$ spento, generatori di test opportuni)

$$G_{in} = \frac{i^+}{v_{test,in}} = 0$$

$$R_{out} = \frac{v_{out}}{i_{test,out}} = 0$$

Amplificatore di Transconduttanza

$$G_m = \frac{i_{out}}{v_{in}} = \frac{1}{R}$$

$$R_{in} \rightarrow \infty$$

$$R_{out} \rightarrow \infty$$

<u>Transconduttanza:</u>

$$i_{out} = i_R - i^- = \frac{v_{in}}{R}$$

 $(v_{in}$ spento, generatori di test opportuni)

$$G_{in} = \frac{i^+}{v_{test,in}} = 0$$

$$G_{out} = \frac{i_{out}}{v_{test,out}} = 0$$

Amplificatore di Transresistenza

Transresistenza:

$$v_{out} = v^+ + v_R = v_R$$
 $i_R = i_{in} - i^ v_{out} = R i_{in}$
 $v_R = i_R R = R i_{IN}$

$$R_m = \frac{v_{out}}{i_{in}} = R$$

$$R_{in}=0$$

$$R_{out} = 0$$

Resistenze di ingresso e di uscita:

 $(i_{in}$ spento, generatori di test opportuni)

$$R_{in} = \frac{v^+}{i_{test,in}} = 0$$

$$R_{out} = \frac{v_{out}}{i_{test,out}} = 0$$

Amplificatore di Corrente

di corrente:

$$\frac{a_{lout}}{i_{out}} = i_{R2} + i_{R1} = i_{in} + i_{in} \frac{R_2}{R_1}$$

$$i_{R2} = i_{in} \qquad v_{R1} = v_{R2}$$

$$v_{R2} = i_{R2}R_2 = i_{in}R_2$$

$$i_{R1} = \frac{v_{R1}}{R_1} = \frac{v_{R2}}{R_1} = i_{in} \frac{R_2}{R_1}$$

$$i_{out} = i_{in} \left(1 + \frac{R_2}{R_1} \right)$$

$$A_i = \frac{i_{out}}{i_{in}} = 1 + \frac{R_2}{R_1}$$

$$R_{in} = 0$$

$$R_{out} \rightarrow \infty$$

Resistenze di ingresso e di uscita:

 $(i_{in}$ spento, generatori di test opportuni)

$$R_{in} = \frac{v^+}{i_{test,in}} = 0$$

$$G_{out} = \frac{i_{out}}{v_{test,out}} = 0^*$$

Amplificatori con operazionali

Uscita:

Altri Circuiti Analogici Basati su Operazionale

- Utilizzando amplificatori operazionali con retroazione negativa è anche possibile implementare direttamente altri blocchi funzionali analogici.
- In questo corso vedremo:
 - Inseguitore di Tensione (Voltage Follower)
 - Amplificatore di Tensione invertente
 - Amplificatore Esponenziale
 - Amplificatore Logaritmico
 - Integratore
 - Derivatore
 - Sommatore
 - Amplificatore Differenziale
 - Filtri attivi

Inseguitore di Tensione (Voltage Follower) - I

$$v_{out} = v_{in}$$

$$R_{in} \rightarrow \infty$$

$$R_{out} = 0$$

Amplificatore di tensione con amplificazione unitaria

A che cosa può servire un amplificatore di tensione che dà in uscita la stessa tensione applicata in ingresso?!

L'importanza di questo circuito, fondamentale, è tutta legata agli effetti di carico...

Inseguitore di Tensione (Voltage Follower) - Il

Problema:

- Si ha una tensione v_0 ai capi di un bipolo.
- Si vuole applicare la tensione v_0 ad un carico R_L .

Inseguitore di Tensione (Voltage Follower) - III

Collegamento diretto

Se si collega direttamente R_L al bipolo, in generale *non si ottiene il risultato desiderato* a causa dell'effetto di carico.

Utilizzando il voltage follower:

- La corrente assorbita all'ingresso dell'operazionale è nulla.
- La tensione ai capi del bipolo resta $v_{
 m 0}$
- La tensione sul carico è uguale a v_0 indipendentemente dalla corrente i_L erogata al carico.

Amplificatore Invertente

$$A_{v} = \frac{v_{out}}{v_{in}} = -\frac{R_2}{R_1}$$

$$R_{in} = R_1$$

$$R_{out} = 0$$

Amplificazione di tensione

$$v_{out} = v_{R2}$$

$$i_{R2}=i_{R1}$$

$$v_{R2} = i_{R2}R_2 = -\frac{v_{in}}{R_1}R_2$$

$$v_{out} = -\frac{R_2}{R_1} v_{in}$$

 $(v_{in}$ spento, generatori di test opportuni)

$$R_{in} = \frac{v_{test,in}}{v_{test,in}/R_1} = R_1$$

$$R_{out} = \frac{v_{test,out}}{i_{test,out}} = 0$$

Amplificatore Invertente

- Spesso è indicato come amplificatore di tensione invertente, ma non è un amplificatore di tensione prossimo all'idealità, in quanto $R_{in}=R_1$ e non è necessariamente elevata.
- Deriva dall'amplificatore di Transresistenza (sostituendo la rappresentazione Norton della sorgente con la rappresentazione di Thévénin)
- Su R_1 è applicata la tensione v_{in} , perchè l'ingresso invertente è a 0V (massa virtuale).
- La corrente in R_1 non va verso massa, ma in R_2 : la caduta su R_2 è la tensione in uscita.
- Con lo stesso approccio si possono ottenere altri blocchi funzionali analogici...

Amplificatore Esponenziale

$$v_{out} = -V_0 e^{\frac{v_{in}}{V_1}}$$

Blocco Funzionale

$$v_{in}(t) \longrightarrow \exp(\cdot) \xrightarrow{v_{out}(t)}$$

$$v_D = v_{in}$$

$$i_D = I_S \left(e^{rac{v_D}{\eta V_T}} - 1
ight) \;\;$$
 Caratteristica del Diodo $\simeq I_S e^{rac{v_D}{\eta V_T}} \, {
m per} \; v_D > 0$

$$i_R = i_D$$

$$i_R = i_D$$

$$v_R = RI_S e^{\frac{v_{in}}{\eta V_T}}$$

$$v_{out} = -RI_S e^{\frac{v_{in}}{\eta V_T}}$$

 R_{in} : il comportamento alla porta d'ingresso è non-lineare e dà luogo ad effetto di carico → per evitare di caricare la sorgente v_{in} : voltage follower.

$$R_{out} = 0$$

Amplificatore Logaritmico

$$\frac{v_{in}}{R} = I_S e^{\frac{v_D}{\eta V_T}} \text{ per } i_D \gg I_S$$
 Caratteristica del Diodo

$$v_D = \eta V_T \log \frac{v_{in}}{RI_S} \qquad \qquad v_{out} = -\eta V_T \log \frac{v_{in}}{RI_S}$$

$$R_{in} = R \quad (*)$$

$$R_{out} = 0$$

(*) Come per l'amplificatore invertente, la resistenza d'ingresso è finita e può dare luogo ad effetto di carico. Se fosse un problema (i.e. se la resistenza di sorgente non è molto minore), lo si può far precedere da un *voltage follower.*

Integratore

(*) Come per l'amplificatore invertente, la resistenza d'ingresso è finita e può dare luogo ad effetto di carico. Se fosse un problema (i.e. se la resistenza di sorgente non è molto minore), lo si può far precedere da un *voltage follower.*

Derivatore

Blocco Funzionale

$$v_{in}(t)$$
 \xrightarrow{d} $v_{out}(t)$

$$v_{in} = v_C$$
 $i_C = C \frac{dv_C}{dt}$
 $i_R = i_C$
 $v_{out} = -v_R = -Ri_R$

$$v_{out} = -RC \frac{dv_{in}}{dt}$$

$$R_{in}
ightarrow \infty$$
 (in DC)
$$Z_{in}(\omega) = \frac{1}{j\omega {\rm C}} \mbox{(nel dominio della frequenza)}$$

$$R_{out} = 0$$

Analisi di Circuiti con Operazionali

Determinare la tensione d'uscita v_{out} nel circuito in figura in funzione degli ingressi v_1 , v_2 e v_3 .

Analisi di Circuiti con Operazionali Ideali: I metodo (I)

I metodo: analisi diretta a partire dalle relazioni costitutive

Operazionale Ideale

$$v^- = v^+$$

$$+ = i^- = 0$$

In un circuito con operazionale ideale con retroazione negativa ed un resistore di feedback R_F (o altro bipolo) che collega l'uscita all'ingresso invertente, essendo $v^- = v^+$, per la KVL l'uscita si può sempre scrivere come:

$$v_{out} = v_{RF} + v^+$$

dove v_{RF} è la tensione sul resistore (o altro bipolo) in feedback.

Per valutare la tensione di uscita v_{out} , si tratta quindi di determinare:

- La tensione al morsetto non invertente, v⁺
- La caduta di tensione sul resistore (o altro bipolo) in retroazione, v_{RF}

Analisi di Circuiti con Operazionali Ideali: I metodo (II)

Tensione v^+ all'ingresso non-invertente

Dal momento che la corrente i^+ è nulla, la tensione v^+ è la stessa che si avrebbe ai capi del bipolo A a vuoto e può essere determinata facilmente.

Analisi di Circuiti con Operazionali Ideali: I metodo (III)

Tensione v^+ all'ingresso non-invertente

$$v^+ = \frac{R_2 v_1 + R_1 v_2}{R_1 + R_2}$$

Analisi di Circuiti con Operazionali Ideali: I metodo (IV)

Tensione v_{RF}

- Per determinare v_{RF} si valuta la corrente i_{RF} che scorre in R_F e si applica la legge di Ohm.
- La corrente i_{RF} fluisce nel bipolo B, a cui è applicata una tensione $v^- = v^+$, che è <u>nota</u> dal passaggio precedente \rightarrow per il teorema di sostituzione, è come se ci fosse un generatore ideale di tensione, di valore v^+ , tra morsetto invertente e 0V.

Analisi di Circuiti con Operazionali Ideali: I metodo (V)

Corrente i_{RF}

Analisi di Circuiti con Operazionali Ideali: I metodo (VI)

Dopo aver trovato v^+ e v_{RF} , non resta che scrivere la soluzione

$$v_{out} = v_{RF} + v^{+}$$

$$= R_{F} \left(\frac{v^{+} - v_{3}}{R_{3}} + \frac{v^{+}}{R_{4}} \right) + v^{+}$$

$$= v^{+} \left(1 + \frac{R_{F}}{R_{3} \| R_{4}} \right) - v_{3} \frac{R_{F}}{R_{3}}$$

$$v^{+} = \frac{R_{2} v_{1} + R_{1} v_{2}}{R_{1} + R_{2}}$$

$$v_{out} = \frac{R_2 v_1 + R_1 v_2}{R_1 + R_2} \left(1 + \frac{R_F}{R_3 \parallel R_4} \right) - v_3 \frac{R_F}{R_3}$$

Analisi di Circuiti con Operazionali Ideali: Il metodo (I)

Il metodo: sovrapposizione degli effetti, riconducendo il circuito a configurazioni base

Essendo $i^+=0$, possiamo valutare direttamente la tensione all'ingresso non invertente e sostituire i generatori collegati all'ingresso non invertente con un unico generatore di tensione equivalente v^+ (vedi primo metodo) nella sovrapposizione degli effetti.

Analisi di Circuiti con Operazionali Ideali: Il metodo (II)

ci si riconduce ad un amplificatore di tensione non invertente

$$v'_{out} = v^+ \left(1 + \frac{R_F}{R_3 \parallel R_4} \right)$$

$$v^+ = \frac{R_2 v_1 + R_1 v_2}{R_1 + R_2}$$

- Per determinare l'effetto di v^+ sull'uscita spegniamo v_3 . Così facendo, R_3 ed R_4 sono in parallelo e ci si riconduce al caso dell'*amplificatore di tensione* (non invertente).
- Ricordando la relazione tra ingresso ed uscita dell'amplificatore di tensione, si scrive direttamente l'espressione del contributo sull'uscita v'_{out} di v^+ .

Analisi di Circuiti con Operazionali Ideali: Il metodo (III)

- Per determinare l'effetto di v_3 , spegniamo v_1 e v_2 . Essendo $i^+ = 0$, in R_1 e R_2 non passa corrente e l'ingresso non invertente può considerarsi collegato direttamente a 0V.
- Essendo $v^+ = 0$, anche $v^- = 0$ per cui nella resistenza R_4 dello schema originale *non passa corrente* e può essere eliminata.
- Il circuito si riconduce così ad un *amplificatore invertente* e si risolve immediatamente.

Analisi di Circuiti con Operazionali Ideali: Il metodo (IV)

Sovrapponendo gli effetti:

$$v_{out} = \frac{R_2 v_1 + R_1 v_2}{R_1 + R_2} \left(1 + \frac{R_F}{R_3 \parallel R_4} \right) - v_3 \frac{R_F}{R_3}$$

Analisi di Circuiti con Operazionali Ideali: III metodo (I)

III metodo: Teorema di Millman

Assumendo di conoscere v_{out} , ed essendo $i^+ = i^- = 0$, si possono ricavare indipendentemente v^+ e v^- con il teorema di Millman

$$v^+ = \frac{G_1 v_1 + G_2 v_2}{G_1 + G_2}$$

$$v^{-} = \frac{G_3 v_3 + G_F v_{out}}{G_3 + G_4 + G_F}$$

$$\left(G_{x} = \frac{1}{R_{x}} \ \forall x\right)$$

Analisi di Circuiti con Operazionali Ideali: III metodo (II)

Si impone quindi l'uguaglianza $v^+ = v^-$ e da questa si ricava l'uscita v_{out}

$$v^{+} = v^{-}$$

$$\frac{G_{1}v_{1} + G_{2}v_{2}}{G_{1} + G_{2}} = \frac{G_{3}v_{3} + G_{F}v_{out}}{G_{3} + G_{4} + G_{F}}$$

$$v_{out} = \frac{G_3 + G_4 + G_F}{G_F} \frac{G_1 v_1 + G_2 v_2}{G_1 + G_2} - \frac{G_3}{G_F} v_3$$

Analisi di Circuiti con Operazionali Ideali: III metodo (III)

Dopo alcuni passaggi algebrici si ritrova l'espressione ottenuta in precedenza con gli altri metodi.

$$v_{out} = \frac{G_3 + G_4 + G_F}{G_F} \frac{G_1 v_1 + G_2 v_2}{G_1 + G_2} - \frac{G_3}{G_F} v_3$$

$$v_{out} = \frac{R_2 v_1 + R_1 v_2}{R_1 + R_2} \left(1 + \frac{R_F}{R_3 \parallel R_4} \right) - v_3 \frac{R_F}{R_3}$$

Sommatore (I)

Il circuito analizzato esegue la somma algebrica pesata delle tensioni in ingresso

$$v_{out} = \underbrace{\frac{R_2}{R_1 + R_2} \left(1 + \frac{R_F}{R_3 \parallel R_4}\right) v_1 + \underbrace{\frac{R_1}{R_1 + R_2} \left(1 + \frac{R_F}{R_3 \parallel R_4}\right) v_2 - \underbrace{\frac{R_F}{R_3} v_3}_{k_2 > 0}}_{k_2 > 0}$$

Sommatore (II)

$$v_{out}(t) = \sum_{i} k_i \, v_i(t)$$

Il circuito analizzato esegue la somma algebrica pesata delle tensioni in ingresso

Osservazioni:

- le resistenze equivalenti viste dai generatori di tensione che forniscono le tensioni di ingresso da sommare non sono infinite (calcolo lasciato per esercizio) → si ha effetto di carico in ingresso.
- se l'effetto di carico sugli ingressi non è accettabile, è possibile introdurre stadi voltage follower.

Sommatore Generalizzato (I)

Il sommatore può essere generalizzato come in figura per eseguire la somma pesata di N+M tensioni (N con pesi positivi, M con pesi negativi)

Sommatore Generalizzato (II)

Date le tensioni v_{ip} (i=1...N) e v_{im} (i=1...M), fornite da generatori ideali, dimensionare il sommatore per avere in uscita $v_{out} = \sum_{i=1}^N k_{ip} v_{ip} - \sum_{i=1}^M k_{im} v_{im}$, con k_{ip} , k_{in} dati.

$$v_{out} = \frac{\sum_{i=0}^{M} G_{im} + G_F}{\sum_{i=0}^{N} G_{ip}} \sum_{i=1}^{N} \frac{G_{ip}}{G_F} v_{ip} - \sum_{i=1}^{M} \frac{G_{im}}{G_F} v_{im}$$

1) assumendo $\sum_{i=0}^{N} G_{ip} = \sum_{i=0}^{N} G_{im} + G_F$ (il che non è vero in generale, dovremo poi far sì che l'assunzione sia verificata), si ha che:

$$v_{out} = \sum_{i=1}^{N} \frac{G_{ip}}{G_F} v_{ip} - \sum_{i=1}^{M} \frac{G_{im}}{G_F} v_{im}$$

e si determinano direttamente i rapporti tra le conduttanze in serie ai generatori e G_F

$$\frac{G_{ip}}{G_F} = k_{ip}, \ 1 \le i \le N$$

$$\frac{G_{ip}}{G_F} = k_{ip}, \ 1 \le i \le N$$

$$\frac{G_{im}}{G_F} = k_{im}, \ 1 \le i \le M$$

Nota: restano da determinare le conduttanze G_{0m} , G_{0p} tra gli ingressi dell'operazionale e 0V

Sommatore Generalizzato (III)

2) Si determinano le conduttanze $G_{0\mathrm{m}}$, $G_{0\mathrm{p}}$ tra gli ingressi e 0V in modo che l'assunzione $\sum_{i=0}^N G_{i\mathrm{p}} = \sum_{i=0}^N G_{i\mathrm{m}} + G_F$ sia verificata. A tale fine, dette:

$$G_{\mathrm{p}}' = \sum_{i=1}^{N} G_{i\mathrm{p}}$$
 $G_{\mathrm{m}}' = \sum_{i=1}^{N} G_{i\mathrm{m}} + G_{F}$
se $G_{\mathrm{p}}' > G_{\mathrm{m}}'$

si pone:
$$G_{0\mathrm{m}} = G_{\mathrm{p}}' - G_{\mathrm{m}}'$$
, e $G_{0\mathrm{p}} = 0$

se
$$G_p' < G_m'$$

si pone:
$$G_{0\mathrm{m}} = G_{\mathrm{m}}' - G_{\mathrm{p}}'$$
, e $G_{0\mathrm{m}} = 0$

<u>In altre parole</u>: si aggiunge un resistore tra 0V e l'ingresso per cui la somma delle conduttanze dei generatori (G'_p o G'_m) è minore, di valore tale da rendere la somma delle conduttanze collegate a quell'ingresso uguale alla somma delle conduttanze collegate all'altro ingresso, verificando l'assunzione di partenza.

Sommatore Generalizzato (IV)

$$v_{out} = \sum_{i=1}^{N} k_{ip} v_{ip} - \sum_{i=1}^{M} k_{im} v_{im}$$

$$\frac{G_{ip}}{G_F} = k_{ip}, \ 1 \le i \le N$$

$$\frac{G_{i\mathrm{m}}}{G_F} = k_{i\mathrm{m}}, 1 \le i \le M$$

se
$$G_p' > G_m'$$

$$G_{0\mathrm{m}}$$
= G_{p}' - G_{m}' , e $G_{0\mathrm{p}}=0$

se
$$G_{\rm p}^{\prime} < G_{\rm m}^{\prime}$$

$$G_{0p}$$
= G_{m}' - G_{p}' , e $G_{0m}=0$

Le relazioni ricavate forniscono i rapporti tra tutte le resistenze ed R_F .

- Le relazioni trovate risolvono l'esercizio, ma sono solo il primo passo in un progetto vero e proprio.
- Il progetto è un problema ingegneristico complesso con numerose altre variabili: caratteristiche dei segnali, tecnologie di fabbricazione, limitazioni dei componenti, costi e reperibilità dei componenti...
- Affrontare questi aspetti esula dallo scopo di questo corso.

Utilizzando una resistenza di retroazione $R_F=100\mathrm{k}\Omega$ progettare un circuito che generi una tensione $v_{out}=3v_1+4v_2-v_3$ a partire da v_1 , v_2 e v_3 forniti da generatori ideali di tensione.

Utilizzando le formule, per i coefficienti positivi

$$G_1 = 3G_F \qquad G_2 = 4G_F$$

Per il coefficiente negativo:

$$G_3 = G_F$$

Somma delle conduttanze al morsetto invertente:

$$G_m' = G_F + G_F = 2G_F$$

Somma delle conduttanze al morsetto non-invertente:

$$G_p' = 3G_F + 4G_F = 7G_F$$

Essendo $G_p' > G_m'$ è necessario aggiungere una conduttanza G_4 verso 0V **all'ingresso invertente**

$$G_4 = G_p' - G_m' = 5G_F$$

Utilizzando una resistenza di retroazione $R_F = 100 \mathrm{k}\Omega$ progettare un circuito che generi una tensione $v_{out} = 3v_1 + 4v_2 - v_3$ a partire da v_1 , v_2 e v_3 forniti da generatori ideali di tensione.

Si ottiene quindi:

$$G_1 = 3G_F$$
 $R_1 = \frac{R_F}{3} = 33k\Omega$

$$G_2 = 4G_F \qquad R_1 = \frac{R_F}{4} = 25k\Omega$$

$$G_3 = G_F$$
 $R_3 = R_F = 100 \text{k}\Omega$

$$G_3 = G_F$$
 $R_3 = R_F = 100 \mathrm{k}\Omega$
 $G_4 = 5G_F$ $R_4 = \frac{R_F}{5} = 20 \mathrm{k}\Omega$

Utilizzando una resistenza di retroazione $R_F = 100 \mathrm{k}\Omega$ progettare un circuito che generi una tensione $v_{out} = v_1 + 2v_2 - 5v_3$ a partire da v_1 , v_2 e v_3 forniti da generatori ideali di tensione.

Utilizzando le formule, per i coefficienti positivi

$$G_1 = G_F$$
 $G_2 = 2G_F$

Per il coefficiente negativo:

$$G_3 = 5G_F$$

Somma delle conduttanze al morsetto invertente:

$$G_m' = 5G_F + G_F = 6G_F$$

Somma delle conduttanze al morsetto non-invertente:

$$G_p' = 2G_F + G_F = 3G_F$$

Essendo $G_p' < G_m'$ è necessario aggiungere una conduttanza G_4 verso 0V **all'ingresso non invertente**

$$G_4 = G_m' - G_p' = 3G_F$$

Utilizzando una resistenza di retroazione $R_F = 100 \mathrm{k}\Omega$ progettare un circuito che generi una tensione $v_{out} = v_1 + 2v_2 - 5v_3$ a partire da v_1 , v_2 e v_3 forniti da generatori ideali di tensione.

Si ottiene quindi:

$$G_1 = G_F$$
 $R_1 = R_F = 100 \text{k}\Omega$

$$G_1 = G_F$$
 $R_1 = R_F = 100 \text{k}\Omega$
 $G_2 = 2G_F$ $R_1 = \frac{R_F}{2} = 50 \text{k}\Omega$

$$G_3 = 5G_F \quad R_3 = \frac{R_F}{5} = 20k\Omega$$

$$G_4 = 3G_F$$
 $R_4 = \frac{R_F}{5} = 33k\Omega$

Amplificatore Differenziale (I)

Tra i circuiti riconducibili al sommatore generalizzato riveste particolare importanza l'**amplificatore differenziale**, che fornisce una tensione d'uscita proporzionale alla *differenza* tra due tensioni v^+ e v^- riferite a 0V.

$$v_{out} = v'_{out} + v''_{out} = v^{+} \frac{R_a}{R_a + R_b} \left(1 + \frac{R_a}{R_b} \right) - v^{-} \frac{R_a}{R_b} = \frac{R_a}{R_b} (v^{+} - v^{-})$$

Modo Differenziale e Modo Comune

Quando si parla di circuiti differenziali è utile scomporre i segnali in **componente differenziale**, v_d (la differenza dei due segnali) e **componente di modo comune**, v_{cm} (la media aritmetica). Si può vedere come un 'cambio di variabili': la coppia (v_d, v_{cm}) porta la stessa informazione della coppia (v^+, v^-) ed è immediato passare dall'una all'altra.

Da
$$(v^+,v^-)$$
 a (v_d,v_{cm})

$$\begin{cases} v_d = v^+ - v^- \\ v_{cm} = \frac{v^+ + v^-}{2} \end{cases}$$

Da
$$(v_d, v_{cm})$$
 a (v^+, v^-)

$$\begin{cases} v^+ = v_{cm} + \frac{v_d}{2} \\ v^- = v_{cm} - \frac{v_d}{2} \end{cases}$$

Immunità ai disturbi dei segnali differenziali (I)

Se la sorgente che fornisce l'ingresso non è vicina all'amplificatore, la tensione di ingresso è corrotta da disturbi elettromagnetici captati dall'interconnessione e/o derivanti da differenze tra i potenziali di riferimento che si sommano al segnale utile.

Il segnale ricevuto dall'amplificatore (riferito al suo 0V, cioè *single-ended*) è corrotto:

- -dai disturbi v_{dl} captati dal conduttore, che si comporta come un'antenna,
- -dalle fluttuazioni tra i riferimenti di potenziale del sensore e dell'amplificatore, v_g

Immunità ai disturbi dei segnali differenziali (II)

- Per rendere il sistema immune più ai disturbi, la sorgente codifica l'informazione nella tensione differenziale, con polarità opposte rispetto al riferimento locale.
- Se le due linee sono identiche e vicinissime, accoppiano i disturbi esterni 'quasi' allo stesso modo.

Se i conduttori sono vicini, possibilmente intrecciati: v^+ e v^- sono corrotti da v_{dl} e da v_g quasi **allo stesso modo**

$$v^{+} = \frac{v_{s}}{2} + v_{dl} + v_{g}$$
$$v^{-} = -\frac{v_{s}}{2} + v_{d1} + v_{g}$$

Amplificatore Differenziale (I)

- Per recuperare l'informazione utile occorre un *amplificatore differenziale* che:
- → amplifichi la differenza tra le tensioni in ingresso (che porta l'informazione)
- → sia insensibile al modo comune delle tensioni rispetto al riferimento (che è corrotto da disturbi)

$$v^{+} = \frac{v_{s}}{2} + v_{d1} + v_{g}$$
$$v^{-} = -\frac{v_{s}}{2} + v_{d1} + v_{g}$$

$$v_d = v^+ - v^- = v_s$$

$$v_{cm} = \frac{v^+ + v^-}{2} = v_{d1} + v_g$$

Modo differenziale → segnale utile

Modo comune → disturbo

Amplificatore Differenziale (II)

- Per recuperare l'informazione occorre un *amplificatore differenziale* come quello introdotto che:
- → amplifichi la differenza tra le tensioni in ingresso, *tensione differenziale* (che porta l'informazione)
- → sia **insensibile al modo comune** delle tensioni rispetto al riferimento (corrotto da disturbi)

 $v_{out} = \frac{R_a}{R_b} \left(\frac{v_s}{2} + v_{d1} + v_g + \frac{v_s}{2} - v_{d1} - v_g \right)$

$$v_{out} = \frac{R_a}{R_b} (v^+ - v^-)$$

$$v^{+} = \frac{v_s}{2} + v_{d1} + v_g$$
$$v^{-} = -\frac{v_s}{2} + v_{d1} + v_g$$

L'uscita dell'ampl. differenziale non è affetta dai disturbi

$$v_{out} = \frac{R_a}{R_b} v_s$$

Amplificatore Differenziale (III)

- Se i rapporti delle resistenze $\frac{R_a}{R_b}$ e $\frac{R'_a}{R'_b}$ non sono identici per effetto delle tolleranze dei componenti, l'amplificatore non amplifica solo il modo differenziale

$$\frac{R_a'}{R_b'} = \frac{R_a}{R_b} (1 + \varepsilon) \neq \frac{R_a}{R_b}$$

Se i quattro resistori hanno tolleranza δ , cioè se $R=R_{nom}~(1\pm\delta)$, nel caso peggiore:

$$\varepsilon = 4|\delta|$$

$$v_{out} = v^{+} \frac{R'_{a}}{R'_{a} + R'_{b}} \left(1 + \frac{R_{a}}{R_{b}} \right) - v^{-} \frac{R_{a}}{R_{b}} = v^{+} \frac{1}{1 + \frac{R'_{b}}{R'_{a}}} \left(1 + \frac{R_{a}}{R_{b}} \right) - v^{-} \frac{R_{a}}{R_{b}}$$

Amplificatore Differenziale (IV)

$$\begin{split} \frac{R_b'}{R_a'} &= \frac{R_b}{R_a} (1 + \varepsilon) \neq \frac{R_b}{R_a} \\ v_{out} &= v^+ \frac{R_a'}{R_a' + R_b'} \left(1 + \frac{R_a}{R_b} \right) - v^- \frac{R_a}{R_b} = v^+ \frac{1}{1 + \frac{R_b'}{R_a'}} \left(1 + \frac{R_a}{R_b} \right) - v^- \frac{R_a}{R_b} = \\ v_{out} &= v^+ \frac{1}{1 + \frac{R_b}{R_a} + \frac{R_b}{R_a} \varepsilon} \left(1 + \frac{R_a}{R_b} \right) - v^- \frac{R_a}{R_b} = v^+ \frac{1}{1 + \frac{R_b}{R_a} \varepsilon} \frac{1 + \frac{R_a}{R_b}}{1 + \frac{R_b}{R_a}} - v^- \frac{R_a}{R_b} = \\ v_{out} &= \frac{1}{1 + \frac{R_b}{R_a} \varepsilon} v^+ \frac{R_a}{R_b} - v^- \frac{R_a}{R_b} \simeq \left(1 - \frac{\varepsilon}{1 + \frac{R_a}{R_b}} \right) v^+ \frac{R_a}{R_b} - v^- \frac{R_a}{R_b} \\ v_{out} &= \frac{R_a}{R_b} (v^+ - v^-) - v^+ \frac{R_a}{R_a + R_b} \varepsilon \end{split}$$

Dipende anche dal modo comune

Amplificatore Differenziale (V)

$$v_{out} = \frac{R_a}{R_b} v_d - \left(v_{cm} + \frac{v_d}{2}\right) \frac{R_a}{R_a + R_b} \varepsilon$$

$$v_{out} = \left(\frac{R_a}{R_b} - \frac{R_a}{R_a + R_b} \frac{\varepsilon}{2}\right) v_d - \frac{R_a}{R_a + R_b} \varepsilon v_{cm}$$

Amplificazione Differenziale

$$A_{diff} = \frac{R_a}{R_b} + \frac{R_a}{R_a + R_b} \frac{\varepsilon}{2} \simeq \frac{R_a}{R_b}$$

Errore su A_{diff} (trascurabile) Amplificazione di Modo Comune

$$A_{cm} = -\frac{R_a}{R_a + R_b} \ \varepsilon$$

$$CMRR = \left| \frac{A_d}{A_{cm}} \right|$$

Common-Mode Rejection Ratio

 $CMRR = \frac{A_d}{A}$ (rapporto di reiezione del modo comune) Rapporto tra amplificazione differenziale e di modo comune

Nello specifico amplificatore differenziale:

$$CMRR = \frac{1 + \frac{R_a}{R_b}}{\varepsilon} = \frac{1 + A_{diff}}{\varepsilon} = \frac{1 + A_{diff}}{4\delta}$$

Amplificatore Differenziale (VI)

- In presenza di amplificazione di modo comune finita, l'uscita contiene ancora parte dei disturbi
- Il rapporto tra l'amplificazione del segnale utile e quella dei disturbi è proprio il CMRR.

Analisi di circuiti con più operazionali ideali (I)

Assumendo che gli amplificatori operazionali siano ideali, determinare l'espressione di v_{out} in funzione degli ingressi v_1 , i_2 , v_3

Analisi di circuiti con più operazionali ideali (II)

- si può determinare l'uscita degli operazionali che sono direttamente collegati solo ad ingressi esterni (in questo caso OP1)
- nota v_{out1} , per il teorema di sostituzione, è possibile analizzare il resto del circuito sostituendo al primo operazionale un generatore ideale di tensione di valore pari a v_{out1} appena trovato.

Analisi di circuiti con più operazionali ideali (III)

per determinare il contributo di v_{out1} , ci si riconduce all'amplificatore invertente, per il contributo di i_2 ci si riconduce ad un amplificatore di transresistenza, per il contributo di v_3 , ci si riconduce ad un amplificatore di tensione.

Analisi di circuiti con più operazionali ideali (IV)

$$v_{out} = -\frac{R_5}{R_3} \left(1 + \frac{R_2}{R_1} \right) v_1 - R_5 i_2 + v_3 \left(1 + \frac{R_5}{R_3} \right)$$

Sostituendo i valori numerici:

$$v_{out} = -2v_1 - 82k\Omega \cdot i_2 + 2v_3$$

Filtri Attivi

- Un filtro (elettronico) è un circuito lineare dinamico descritto da una funzione di trasferimento nel dominio della frequenza con caratteristiche specificate.
- Nei sistemi elettronici è molto spesso necessario disporre di filtri in grado di prelevare e amplificare una porzione dello spettro di un segnale sopprimendo le altre componenti.
- E' possibile implementare <u>filtri attivi</u> con operazionali ed elementi reattivi (condensatori).

Filtro passa-basso

|H| f f

Banda Passante: $f < f_0$

Filtro passa-banda

Banda Passante: $f_1 < f < f_2$

Filtro passa-alto

Banda Passante: $f > f_1$

LPF

BPF

HPF

Filtri nei Sistemi Elettronici

Filtri Attivi

- Il progetto di un filtro prevede due fasi:
 - Determinare una funzione di trasferimento di un circuito fisicamente realizzabile che approssimi le caratteristiche desiderate (ad es: transizioni ripide tra banda passante e attenuata, guadagno costante in banda...)→ problema matematico
 - Realizzare un circuito elettronico che presenti la funzione di trasferimento voluta.

In questo corso non ci occuperemo di nessuna delle due cose, ci limiteremo a introdurre alcuni circuiti basati su operazionale che presentano caratteristiche filtranti ed analizzare le caratteristiche filtranti di reti date.

Filtro Passa-Basso del I ordine

Banda Passante: $f < f_0 = \frac{1}{2\pi R_2 C}$

$$H(s) = -\frac{R_2}{R_1} \frac{1}{1 + sR_2C}$$

Analisi nel dominio della frequenza:

$$H(s) = \frac{V_{out}(s)}{V_{in}(s)} = -\frac{Z_2}{Z_1} = -\frac{\left(sC + \frac{1}{R_2}\right)^{-1}}{R_1} = -\frac{R_2}{R_1} \frac{1}{1 + sR_2C} \qquad X(s)$$

Filtro Passa-Alto del I ordine

Analisi nel dominio della frequenza:

$$H(s) = \frac{V_{out}(s)}{V_{in}(s)} = -\frac{Z_2}{Z_1} = -\frac{R_2}{\frac{1}{sC} + R_1} = -\frac{sCR_2}{1 + sR_1C}$$

Filtro Passa-Banda del II ordine (poli reali)

Banda Passante: $f_1 < f < f_2$

$$H(s) = -\frac{sC_1}{1 + sR_1C_1} \frac{1}{1 + sR_2C_2}$$

Analisi nel dominio della frequenza:

$$H(s) = -\frac{Z_2}{Z_1} = -\frac{\left(sC_2 + \frac{1}{R_2}\right)^{-1}}{\frac{1}{sC_1} + R_1} = -\frac{sR_2C_1}{1 + sR_1C_1} \frac{1}{1 + sR_2C_2}$$

Filtri Attivi vs. Filtri Passivi (I)

E' possibile realizzare funzioni di filtraggio anche utilizzando circuiti puramente passivi

$$H(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + sRC}$$

- Il massimo guadagno in banda passante è 0dB
- Non è unidirezionale e dà luogo ad effetti di carico

Filtro passa-basso attivo

$$H(s) = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1} \frac{1}{1 + sR_2C}$$

- Può amplificare il segnale in banda $|H(j\omega)|_{dB}$ >0dB
- E' unidirezionale e l'uscita si comporta come un generatore ideale di tensione → si comporta come un blocco funzionale analogico

Filtri Attivi vs. Filtri Passivi (II)

Filtri passivi in cascata: $H_2(s) \neq H_1^2(s)$ per gli effetti di carico

$$\begin{split} H_2(s) &= \frac{V_{out}}{V_{in}} = \frac{\frac{1}{sC} \, \| \left(R + \frac{1}{sC} \right)}{R + \frac{1}{sC} \, \| \left(R + \frac{1}{sC} \right)} \frac{\frac{1}{sC}}{R + \frac{1}{sC}} \\ &= \frac{1}{R^2 C^2 s^2 + 3RCs + 1} \neq H_1^2(s) \end{split}$$

I filtri passivi non si comportano in generale come blocchi funzionali analogici

Filtri Attivi vs. Filtri Passivi (III)

Il collegamento in cascata non dà luogo ad effetti di carico: $H_2(s) = H_1^2(s)$.

$$H_2(s) = \frac{V_{out}}{V_{in}} = \left(\frac{R_2}{R_1}\right)^2 \frac{1}{(1 + sR_2C)^2} = H_1^2(s) \qquad \underbrace{X(s)}_{H_1(s)} \qquad \underbrace{Y(s)}_{H_1(s)}$$

Esercizio (I)

Determinare l'espressione della tensione di uscita $V_{out}(s)$ in funzione dei segnali d'ingresso $V_1(s)$ e $V_2(s)$. Tracciare i diagrammi di Bode in modulo e fase della funzione di

In R3 non passa corrente, il circuito nella linea tratteggiata si riconduce ad un *amplificatore di tensione non invertente* e si può esprimere la tensione di uscita V_{out1} in funzione di V_2

Esercizio (III)

Scriviamo l'uscita V_{out} sovrapponendo gli effetti dell'ingresso V_1 e di V_{out1} calcolato prima (il primo operazionale si comporta come un generatore di tensione V_{out1} alla porta d'uscita)

Contributo di V₁

- R_1 è in parallelo ad un generatore ideale di tensione ed è pertanto ininfluente
- $\ln R_2$ non scorre corrente, per cui la caduta di tensione ai suoi capi è nulla.
- Sostituendo C, R_6 ed R_7 con Z ci si riconduce ad un **amplificatore di tensione non invertente**.
- L'uscita dell'operazionale ideale non dà luogo ad effetti di carico e pertanto R_9 è ininfluente.

Contributo di V₁

$$V'_{out} = V_1 \left(1 + \frac{R_8}{Z} \right) = \frac{1}{R_6} \frac{s(R_6 R_7 + R_8 R_6 + R_8 R_7)C + R_8 + R_6}{1 + sR_7 C} V_1$$

Contributo di V₁

$$V'_{out} = V_1 \left(1 + \frac{R_8}{Z} \right) = \left(1 + \frac{R_8}{R_6} \right) \frac{1 + s \frac{R_6 R_7 + R_8 R_6 + R_8 R_7}{R_8 + R_6} C}{1 + s R_7 C} V_1$$

Contributo di *Vout*1

- R_1 è cortocircuitata dal generatore V_1 spento;
- in R₂ non passa corrente.
- Entrambi i resistori R_1 e R_2 sono ininfluenti e $v^+ = 0$ V

Esercizio (VIII) R_{2} R_{1} 0V $perché i^{+}=0$

Contributo di Vout1

Ci si riconduce ad un *amplificatore invertente* (l'uscita dell'operazionale ideale si comporta come un generatore di tensione e non risente degli effetti di carico, per cui R9 è ininfluente)

 R_8

Contributo di
$$V_{out1}$$

$$Z = R_6 \parallel \left(\frac{1}{sC} + R_7\right) = \frac{sR_6R_7C + R_6}{1 + sC(R_6 + R_7)}$$

$$V_{out}^{\prime\prime} = -\frac{R_8}{Z} V_{out1} = -\frac{R_8}{R_6} \frac{1 + sC(R_6 + R_7)}{sR_7C + 1} V_{out1}$$

Contributo di Vout1

$$Z = R_6 \parallel \left(\frac{1}{sC} + R_7\right) = \frac{sR_6R_7C + R_6}{1 + sC(R_6 + R_7)}$$

$$V_{out}^{\prime\prime} = -\frac{R_8}{Z} V_{out1} = -\frac{R_8}{R_6} \frac{1 + sC(R_6 + R_7)}{sR_7C + 1} \left(1 + \frac{R_5}{R_4}\right) V_2$$

Esercizio: Soluzione

$$V_{out} = V'_{out} + V''_{out}$$

$$V_{out} = \left(1 + \frac{R_8}{R_6}\right) \frac{1 + s \frac{R_6 R_7 + R_8 R_6 + R_8 R_7}{R_8 + R_6}C}{1 + s R_7 C} V_1 - \frac{R_8}{R_6} \frac{1 + s C (R_6 + R_7)}{1 + s R_7 C} \left(1 + \frac{R_5}{R_4}\right) V_2$$

Esercizio: Diagrammi di Bode (II)

$$V_{out} = \left(1 + \frac{R_8}{R_6}\right) \frac{1 + s \frac{R_6 R_7 + R_8 R_6 + R_8 R_7}{R_8 + R_6} C}{1 + s R_7 C} V_1 - \frac{R_8}{R_6} \frac{1 + s C (R_6 + R_7)}{1 + s R_7 C} \left(1 + \frac{R_5}{R_4}\right) V_2$$

$$H(s) = \frac{V_{out}(s)}{V_1(s)} \bigg|_{V_2 = 0} = \left(1 + \frac{R_8}{R_6}\right) \frac{1 + s \frac{R_6 R_7 + R_8 R_6 + R_8 R_7}{R_8 + R_6}C}{1 + s R_7 C}$$
 Singolarità: 1 zero ed 1 polo:

Forma canonica

Forma canonica
$$H(s) = k \frac{1 - \frac{s}{s_z}}{1 - \frac{s}{s_p}} V_1$$

$$R_6 = 120 \text{k}\Omega$$

$$R_7 = 10 \text{k}\Omega$$

$$R_8 = 120 \text{k}\Omega$$

$$C = 4.7 \text{nF}$$

Valori numerici

$$R_6 = 120 \mathrm{k}\Omega$$

$$R_7 = 10 \mathrm{k}\Omega$$

$$R_8 = 120 \text{k}\Omega$$

$$C = 4.7 \text{nF}$$

$$k = \left(1 + \frac{R_8}{R_6}\right) = 2$$

$$s_z = -\left(\frac{R_6R_7 + R_8R_6 + R_8R_7}{R_8 + R_6}C\right)^{-1} = -3.039 \text{ krad/s} \rightarrow f_z = 483 \text{Hz}$$

 $s_p = -\left(R_7C\right)^{-1} = -21.27 \text{ krad/s} \rightarrow f_p = 3.38 \text{kHz}$

$$f \rightarrow 0$$
: (C circuito aperto)

$$f \to 0$$
: (C circuito aperto) $f \to \infty$: (C corto circuito)

$$|H(f)| = k = 2 \text{ (6dB)}$$

$$|H(f)| = k \frac{s_p}{s_z} = 14$$
 (23dB)

Esercizio: Diagrammi di Bode (I)

