

Bangladesh Army University Of Science And **Technology, BAUST**

DHAKA HOME RENT PRICE PREDICTION APP

Department	CSE	
Course Code	CSE 4252	
Course Title	Data Ware-housing and Data Mining Sessional	
Course Credit	3	

TABLE OF CONTENT

- Introduction.
- Project Summary.
- How It works?
- Architecture Diagram.
- Hardware & Software specification.
- Pictures of the project's practical demo.
- Future Work.

INTRODUCTION

Problems faced during renting a house:

- It's a stressfull thing.
- Tenant are generally not aware of factors that influence the house rent.
- Hence real estate agents are trusted with the communication between Tenant & Landlord, This just create a middle man and increases the cost.

Project Summary

- Our project is a machine learning app, based on certain specifications
 of your future home it will try to guess the most accurate price.
- Information such as Location, Bedroom Number, Bathroom Number, Land Size etc.

How It Works

- Collecting Data: First step was to collect data. We collected data from https://www.bproperty.com.
- Then preprocess the collecting data.
- After preprocessing the data we trained the model using machine learning algorithm which in this case is linear regression.
- Based on the generated graphs we predict the cost of the house rent.

-Architecture Diagram-

Specification

Hardware	Software	Libraries
Laptop	Framework –Flask Design- Html, CSS	Numpy,Pandas,Seabor n,Matplotlib
Ram – Min 4 GB	Virtual Environment - Anaconda Navigator	BeautifulSoup,request,c
HDD – Min 500 GB	Language – Python, Javascript	Scikit-learn
Internet – wifi, broadband	IDE - Spyder, Jupyter Notebook, VS Code	Pickle, Json

Collecting Data

• URL: https://www.bproperty.com/en/dhaka/properties-for-rent

BDT 12 Thousand

Tilpapara, Khilgaon, Dhaka

Apartment

Find Your Desired A...

🛌 2 🛴 2 👭 700 sqft

```
<span class="f343d9ce" aria-label="Price">12 Thousand</span>
```

```
<div class="d6e81fd0">
 <div class="_6d2ea5a7"></div>
\div class="cd6d5974 d8b3c34d">...</div> flex
▼<div class=" 4b74b8bb">
   <div class="_7afabd84" aria-label="Location">Tilpapara,
   Khilgaon, Dhaka</div>
   <div class=" 9a4e3964" aria-label="Type">Apartment</div>
   <h2 class=" 7f17f34f" aria-label="Title">Find Your Desired
   Apartment At This Ready 700 Sq Ft Flat For Rent At Khilgaon
```

Save Those data in a datahouse.csv file in write mode.

Data Preprocessing

```
df = pd.read_csv('datahouse29.csv')
```

df.shape

(28683, 5)

df2 = df.drop_duplicates()

df2.shape

(15547, 5)

df.describe()

	bedrooms	bath	size	price
count	28682.000000	28682.000000	28683.000000	28683.000000
mean	2.520187	2.372638	1067.924868	19.898163
std	0.781235	0.781200	830.246843	23.865889
min	1.000000	1.000000	200.000000	1.100000
25%	2.000000	2.000000	700.000000	13.000000
50%	2.000000	2.000000	900.000000	16.000000
75%	3.000000	3.000000	1250.000000	21.000000
max	63.000000	10.000000	100000.000000	2100.000000

Null value In Dataset

```
sns.heatmap(df.isnull(), cbar=False)
```

<AxesSubplot:>

Heatmap

Data Cleaning & Describe

```
df5 = df4[df4['bedrooms']<6]
df6 = df5[df5['bath']<6]
df7 = df6[df6['size']<3000]
df8 = df7[df7['size']>300]
df9 = df8[df8['price']<500]
df9 = df9[df9['price']>5]
df9.shape
(15218, 5)
```

df9.describe()

	bedrooms	bath	size	price
count	15218.000000	15218.000000	15218.000000	15218.000000
mean	2.554081	2.377579	1077.105861	20.711227
std	0.614067	0.809211	443.197003	12.442792
min	1.000000	1.000000	320.000000	6.300000
25%	2.000000	2.000000	720.000000	13.500000
50%	3.000000	2.000000	1000.000000	17.000000
75%	3.000000	3.000000	1300.000000	24.000000
max	5.000000	5.000000	2970.000000	200.000000

Dataset Regplot of size & price

Outliers Detection & Remove

Preprocessed Dataset Regplot of size &

sns.regplot(x="price", y="size", data=df12);

Preprocessed Dataset Pairplot-

Machine Learning Models

```
from sklearn.linear_model import LinearRegression
lr_clf = LinearRegression()
lr_clf.fit(X_train,y_train)
lr_clf.score(X_test,y_test)
```

```
modelbest_scorebest_params0linear_regression0.952714{'normalize': True}1lasso0.779855{'alpha': 1, 'selection': 'random'}2decision_tree0.912485{'criterion': 'mse', 'splitter': 'best'}
```

0.959423262825028

```
cross_val_score(LinearRegression(), X, y, cv=cv)
array([0.95942326, 0.95291503, 0.95925098, 0.95747018, 0.95820748])
```

House Rent Prediction Page

Future Work

The future works of this project include the following:

- We can add more feature in our dataset.
- We can use other advanced regression techniques, like Random
 Forest and Bayesian Ridge Algorithm.
- Since the data is highly correlated, we should try Elastic Net regression Technique.

