Real Analysis Qualifying Exam Questions

D. Zack Garza

Tuesday 11th August, 2020

Contents

1.2 Fall 2017 # 1 3 1.3 Fall 2014 # 1 3 1.4 Spring 2017 # 4 3 1.5 Spring 2015 # 1 4 1.6 Fall 2014 # 2 4 1.7 Spring 2014 # 2 4 2 General Analysis 4 2.1 Spring 2020 # 1 4 2.2 Fall 2019 # 1 4 2.3 Fall 2018 # 4 5 2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6	1	Und	ergraduate Analysis: Uniform Convergence	3
1.3 Fall 2014 # 1 3 1.4 Spring 2017 # 4 3 1.5 Spring 2015 # 1 4 1.6 Fall 2014 # 2 4 1.7 Spring 2014 # 2 4 2 General Analysis 4 2.1 Spring 2020 # 1 4 2.2 Fall 2019 # 1 4 2.3 Fall 2018 # 4 5 2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9		1.1	Fall 2018 # 1	3
1.4 Spring 2017 # 4 1.5 Spring 2015 # 1 1.6 Fall 2014 # 2 1.7 Spring 2014 # 2 2 General Analysis 2.1 Spring 2020 # 1 2.2 Fall 2019 # 1 2.3 Fall 2018 # 4 2.4 Fall 2017 # 4 2.5 Spring 2017 # 3 2.6 Fall 2016 # 1 2.7 Fall 2016 # 5 2.8 Fall 2016 # 6 2.9 Spring 2016 # 1 2.10 Fall 2015 # 1 3 Measure Theory: Sets 3.1 Spring 2020 # 2 3.2 Fall 2019 # 3 3.3 Spring 2019 # 2 3.4 Fall 2018 # 2 3.5 Spring 2019 # 2 3.6 Fall 2018 # 3 3.7 Spring 2018 # 1 3.7 Spring 2019 # 2 3.8 Fall 2018 # 2 3.9 Spring 2017 # 2 3.7 Spring 2017 # 2 3.8 Fall 2016 # 4 3.9 Spring 2016 # 4 3.9 Spring 2016 # 4 3.9 Spring 2016 # 4		1.2	Fall 2017 # 1	3
1.5 Spring 2015 # 1 1.6 Fall 2014 # 2 1.7 Spring 2014 # 2 2 General Analysis 2.1 Spring 2020 # 1 2.2 Fall 2019 # 1 2.3 Fall 2018 # 4 2.4 Fall 2017 # 4 2.5 Spring 2017 # 3 2.6 Fall 2016 # 1 2.7 Fall 2016 # 5 2.8 Fall 2016 # 6 2.9 Spring 2016 # 1 2.10 Fall 2015 # 1 3 Measure Theory: Sets 3.1 Spring 2020 # 2 3.2 Fall 2019 # 3 3.3 Spring 2019 # 2 3.4 Fall 2018 # 2 3.5 Spring 2017 # 2 3.6 Fall 2017 # 2 3.7 Spring 2017 # 2 3.8 Fall 2017 # 2 3.8 Fall 2016 # 6		1.3	Fall 2014 # 1	3
1.6 Fall 2014 # 2 4 1.7 Spring 2014 # 2 4 2 General Analysis 4 2.1 Spring 2020 # 1 4 2.2 Fall 2019 # 1. 4 2.3 Fall 2018 # 4 5 2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 3.2 Fall 2019 # 3. 7 3.3 Spring 2020 # 2 3.4 Fall 2018 # 2 8 3.5 Spring 2019 # 2 3.5 Spring 2019 # 2 3.6 Fall 2017 # 2 3.7 Spring 2017 # 2 3.8 Fall 2017 # 2 3.8 Fall 2016 # 4 3.9 Spring 2017 # 2 3.8 Fall 2016 # 4 3.9 Spring 2016 # 3		1.4	Spring 2017 # 4	3
1.7 Spring 2014 # 2 4 2 General Analysis 2.1 Spring 2020 # 1 2.2 Fall 2019 # 1. 4 2.3 Fall 2018 # 4 2.4 Fall 2017 # 4 2.5 Spring 2017 # 3 2.6 Fall 2016 # 1 2.7 Fall 2016 # 5 2.8 Fall 2016 # 6 2.9 Spring 2016 # 1 2.10 Fall 2015 # 1 3 Measure Theory: Sets 3.1 Spring 2020 # 2 3.2 Fall 2019 # 3. 7 3.3 Spring 2019 # 2 3.4 Fall 2018 # 2 3.5 Spring 2018 # 1 3.6 Fall 2017 # 2 3.7 Spring 2017 # 2 3.8 Fall 2016 # 4 3.9 Spring 2016 # 4 3.9 Spring 2016 # 4 3.9 Spring 2017 # 2 3.8 Fall 2016 # 4 3.9 Spring 2016 # 4		1.5	Spring 2015 # 1	4
2 General Analysis 4 2.1 Spring 2020 # 1 4 2.2 Fall 2019 # 1. 4 2.3 Fall 2018 # 4 5 2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9		1.6	Fall 2014 # 2	4
2.1 Spring 2020 # 1 2.2 Fall 2019 # 1		1.7	Spring 2014 # 2	4
2.1 Spring 2020 # 1 2.2 Fall 2019 # 1	2	Gene	eral Analysis	4
2.2 Fall 2019 # 1. 4 2.3 Fall 2018 # 4 5 2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.9 Spring 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9				4
2.3 Fall 2018 # 4 5 2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9				4
2.4 Fall 2017 # 4 5 2.5 Spring 2017 # 3 5 2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9		2.3		5
2.5 Spring 2017 # 3			"	5
2.6 Fall 2016 # 1 6 2.7 Fall 2016 # 5 6 2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3				5
2.7 Fall 2016 # 5 2.8 Fall 2016 # 6 2.9 Spring 2016 # 1 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 3.1 Spring 2020 # 2 3.2 Fall 2019 # 3 3.3 Spring 2019 # 2 3.4 Fall 2018 # 2 3.5 Spring 2018 # 1 3.6 Fall 2017 # 2 3.7 Spring 2017 # 2 3.8 Fall 2016 # 4 3.9 Spring 2016 # 3				6
2.8 Fall 2016 # 6 6 2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 7 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9				6
2.9 Spring 2016 # 1 6 2.10 Fall 2015 # 1 7 3 Measure Theory: Sets 3.1 Spring 2020 # 2 7 3.2 Fall 2019 # 3. 7 3.3 Spring 2019 # 2 8 3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3		2.8	···	6
2.10 Fall 2015 # 1		2.9		6
3.1 Spring 2020 # 2		2.10		7
3.1 Spring 2020 # 2	2	Maa	Theory Sets	7
3.2 Fall 2019 # 3	J		· · · · · · · · · · · · · · · · · · ·	-
3.3 Spring 2019 # 2			1 0 "	-
3.4 Fall 2018 # 2 8 3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9		-	"	
3.5 Spring 2018 # 1 8 3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9				
3.6 Fall 2017 # 2 8 3.7 Spring 2017 # 2 8 3.8 Fall 2016 # 4 9 3.9 Spring 2016 # 3 9				
3.7 Spring 2017 # 2			1 0 "	
3.8 Fall 2016 # 4				
3.9 Spring 2016 # 3				
1 9 "				
σ_{110} Oping 2010 π 0				
* 0 "				9
3.12 Spring 2015 # 3				

	3.13	Spring 2014 #	4 3																								10
		Spring 2014 #																									
	3.15	Spring 2017 #	<u> 1</u>																								10
	3.16	Spring 2016 #	2																								10
_			_																								
4		sure Theory:																									11
	4.1	Fall 2016 # 2																									
	4.2	Spring 2016 #	± 4		•	 •	٠	•	 ٠	 •	٠		•	 •	•	•	 ٠	•	 ٠	•	•		•	•	٠	•	11
5	Inte	grals: Converg	enc	e																							11
	5.1	Fall 2019 # 2																									11
	5.2	Spring 2020 #	5																								11
	5.3	Spring 2019 #	4 3																								12
	5.4	Fall 2018 # 6																									12
	5.5	Fall 2018 # 3																									12
	5.6	Spring 2018 #	5																								12
	5.7	Spring 2018 #	2																								12
	5.8	Fall 2016 # 3																									13
	5.9	Fall 2015 # 3																									
	5.10	Fall 2015 # 4																									13
_	_			_																							
6	7	grals: Approxi																									13
	6.1	Spring 2018 #																									
	6.2	Spring 2018 #																									
	6.3	Spring 2015 #																									
	6.4	Fall 2014 # 4			•	 •	٠	•	 ٠	 •	•		•	 ٠	•	•	 •	•	 •	•	•		•	•	•	•	14
7	L^1																										14
•	7.1	Spring 2020 #	4 3																								
	7.2	Fall 2019 # 5																									
	7.3	Fall 2017 # 3																									
	7.4	Spring 2015 #																									
	7.5	Fall 2014 # 3																									
	7.6	Spring 2014 #																									
	1.0	Spiiii8 2 011 //	-		•	 •	•	•	 •	 •	•	• •	•	 •	•	•	 •	•	 •	•	•	•	•	•	•	•	10
8		ni-Tonelli																									15
	8.1	Spring 2020 #																									15
	8.2	Spring 2019 #																									
	8.3	Fall 2018 # 5																									
	8.4	Fall 2015 $\#$ 5																									16
	8.5	Spring 2014 #	£ 5		•																						16
9	L^2 a	nd Fourier An	alve	is																							16
•	9.1	Spring 2020 #	-				_		_				_														16
	0.1	9.1.1 a																									
		9.1.2 b																									17
	9.2	Fall 2017 # 5																									17
	9.2	Spring 2017 # 5																									
	9.4	Spring 2017 # Spring 2015 #																									
	U. I	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	9		•	 •	•	•	 •	 •	•	- •	•	 •	•	•	 •	•	 •	•	•		•	•	•	•	10

Contents 2

	9.5	Fall 2014 # 5	18
10	Fund		18
	10.1	Fall 2019 # 4	18
	10.2	Spring 2019 # 5	18
		10.2.1 a	18
		10.2.2 b	19
	10.3	Spring 2016 # 6	19
	10.4	Spring 2015 # 5	19
	10.5	Fall 2015 # 6	19
	10.6	Fall 2014 # 6	19
11			20
	11.1	Spring 2019 # 1	20
	11.2	Spring 2017 # 5	20
	11.3	Fall 2017 # 6	20

1 Undergraduate Analysis: Uniform Convergence

1.1 Fall 2018 # 1

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

1.2 Fall 2017 # 1

Let

$$f(x) = s \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Describe the intervals on which f does and does not converge uniformly.

1.3 Fall 2014 # 1

Let $\{f_n\}$ be a sequence of continuous functions such that $\sum f_n$ converges uniformly.

Prove that $\sum f_n$ is also continuous.

1.4 Spring 2017 # 4

Let f(x,y) on $[-1,1]^2$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Determine if f is integrable.

1.5 Spring 2015 # 1

Let (X,d) and (Y,ρ) be metric spaces, $f:X\longrightarrow Y,$ and $x_0\in X.$

Prove that the following statements are equivalent:

- 1. For every $\varepsilon > 0$ $\exists \delta > 0$ such that $\rho(f(x), f(x_0)) < \varepsilon$ whenever $d(x, x_0) < \delta$.
- 2. The sequence $\{f(x_n)\}_{n=1}^{\infty} \longrightarrow f(x_0)$ for every sequence $\{x_n\} \longrightarrow x_0$ in X.

1.6 Fall 2014 # 2

Let I be an index set and $\alpha: I \longrightarrow (0, \infty)$.

1. Show that

$$\sum_{i \in I} a(i) := \sup_{\substack{J \subset I \\ J \text{ finite}}} \sum_{i \in J} a(i) < \infty \implies I \text{ is countable.}$$

2. Suppose $I=\mathbb{Q}$ and $\sum_{q\in\mathbb{Q}}a(q)<\infty.$ Define

$$f(x) := \sum_{\substack{q \in \mathbb{Q} \\ q \le x}} a(q).$$

Show that f is continuous at $x \iff x \notin \mathbb{Q}$.

1.7 Spring 2014 # 2

Let $\{a_n\}$ be a sequence of real numbers such that

$$\{b_n\} \in \ell^2(\mathbb{N}) \implies \sum a_n b_n < \infty.$$

Show that $\sum a_n^2 < \infty$.

Note: Assume a_n, b_n are all non-negative.

2 General Analysis

2.1 Spring 2020 # 1

Prove that if $f:[0,1] \longrightarrow \mathbb{R}$ is continuous then

$$\lim_{k \to \infty} \int_0^1 kx^{k-1} f(x) \, dx = f(1).$$

2.2 Fall 2019 # 1.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

a. Prove that if $\lim_{n \to \infty} a_n = 0$, then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 0$$

b. Prove that if $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges, then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 0$$

2.3 Fall 2018 # 4

Let $f \in L^1([0,1])$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| \ dx = \frac{2}{\pi} \int_0^1 f(x) \ dx$$

Hint: Begin with the case that f is the characteristic function of an interval.

2.4 Fall 2017 # 4

Let

$$f_n(x) = nx(1-x)^n, \quad n \in \mathbb{N}.$$

1. Show that $f_n \longrightarrow 0$ pointwise but not uniformly on [0,1].

Hint: Consider the maximum of f_n .

2.

$$\lim_{n \to \infty} \int_0^1 n(1-x)^n \sin x \, dx = 0$$

2.5 Spring 2017 # 3

Let

$$f_n(x) = ae^{-nax} - be^{-nbx}$$
 where $0 < a < b$.

Show that

a.
$$\sum_{n=1}^{\infty} |f_n| \text{ is not in } L^1([0,\infty),m)$$

Hint: $f_n(x)$ has a root x_n .

b.

$$\sum_{n=1}^{\infty} f_n \text{ is in } L^1([0,\infty),m) \quad \text{and} \quad \int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) \, dm = \ln \frac{b}{a}$$

2.6 Fall 2016 # 1

Define

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Show that f converges to a differentiable function on $(1, \infty)$ and that

$$f'(x) = \sum_{n=1}^{\infty} \left(\frac{1}{n^x}\right)'.$$

Hint:

$$\left(\frac{1}{n^x}\right)' = -\frac{1}{n^x} \ln n$$

2.7 Fall 2016 # 5

Let $\varphi \in L^{\infty}(\mathbb{R})$. Show that the following limit exists and satisfies the equality

$$\lim_{n \to \infty} \left(\int_{\mathbb{R}} \frac{|\varphi(x)|^n}{1 + x^2} \, dx \right)^{\frac{1}{n}} = \|\varphi\|_{\infty}.$$

2.8 Fall 2016 # 6

Let $f, g \in L^2(\mathbb{R})$. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x)g(x+n) \, dx = 0$$

2.9 Spring 2016 # 1

For $n \in \mathbb{N}$, define

$$]e_n = \left(1 + \frac{1}{n}\right)^n$$
 and $E_n = \left(1 + \frac{1}{n}\right)^{n+1}$

Show that $e_n < E_n$, and prove Bernoulli's inequality:

$$(1+x)^n \ge 1 + nx$$
 for $-1 < x < \infty$ and $n \in \mathbb{N}$

Use this to show the following:

- 1. The sequence e_n is increasing.
- 2. The sequence E_n is decreasing.
- 3. $2 < e_n < E_n < 4$.
- $4. \lim_{n \to \infty} e_n = \lim_{n \to \infty} E_n.$

2.10 Fall 2015 # 1

Define

$$f(x) = c_0 + c_1 x^1 + c_2 x^2 + \ldots + c_n x^n$$
 with n even and $c_n > 0$.

Show that there is a number x_m such that $f(x_m) \leq f(x)$ for all $x \in \mathbb{R}$.

3 Measure Theory: Sets

3.1 Spring 2020 # 2

Let m_* denote the Lebesgue outer measure on \mathbb{R} .

a. Prove that for every $E \subseteq \mathbb{R}$ there exists a Borel set B containing E such that

$$m_*(B) = m_*(E).$$

b. Prove that if $E \subseteq \mathbb{R}$ has the property that

$$m_*(A) = m_*(A \cap E) + m_*(A \cap E^c)$$

for every set $A \subseteq \mathbb{R}$, then there exists a Borel set $B \subseteq \mathbb{R}$ such that $E = B \setminus N$ with $m_*(N) = 0$. Be sure to address the case when $m_*(E) = \infty$.

3.2 Fall 2019 # 3.

Let (X, \mathcal{B}, μ) be a measure space with $\mu(X) = 1$ and $\{B_n\}_{n=1}^{\infty}$ be a sequence of \mathcal{B} -measurable subsets of X, and

$$B := \left\{ x \in X \mid x \in B_n \text{ for infinitely many } n \right\}.$$

- a. Argue that B is also a \mathcal{B} -measurable subset of X.
- b. Prove that if $\sum_{n=1}^{\infty} \mu(B_n) < \infty$ then $\mu(B) = 0$.
- c. Prove that if $\sum_{n=1}^{\infty} \mu(B_n) = \infty$ and the sequence of set complements $\{B_n^c\}_{n=1}^{\infty}$ satisfies

$$\mu\left(\bigcap_{n=k}^{K} B_{n}^{c}\right) = \prod_{n=k}^{K} \left(1 - \mu\left(B_{n}\right)\right)$$

for all positive integers k and K with k < K, then $\mu(B) = 1$.

Hint: Use the fact that $1 - x \le e^{-x}$ for all x.

3.3 Spring 2019 # 2

Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu : \mathcal{B} \longrightarrow [0, \infty)$ denote a finite Borel measure on \mathbb{R} .

a. Prove that if $\{F_k\}$ is a sequence of Borel sets for which $F_k \supseteq F_{k+1}$ for all k, then

$$\lim_{k \to \infty} \mu\left(F_k\right) = \mu\left(\bigcap_{k=1}^{\infty} F_k\right)$$

b. Suppose μ has the property that $\mu(E) = 0$ for every $E \in \mathcal{B}$ with Lebesgue measure m(E) = 0. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ so that if $E \in \mathcal{B}$ with $m(E) < \delta$, then $\mu(E) < \varepsilon$.

3.4 Fall 2018 # 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set. Show that there is a Borel set $B \subset E$ such that $m(E \setminus B) = 0$.

3.5 Spring 2018 # 1

Define

$$E := \left\{ x \in \mathbb{R} : \left| x - \frac{p}{q} \right| < q^{-3} \text{ for infinitely many } p, q \in \mathbb{N} \right\}.$$

Prove that m(E) = 0.

3.6 Fall 2017 # 2

Let $f(x) = x^2$ and $E \subset [0, \infty) := \mathbb{R}^+$.

1. Show that

$$m^*(E) = 0 \iff m^*(f(E)) = 0.$$

2. Deduce that the map

$$\varphi: \mathcal{L}(\mathbb{R}^+) \longrightarrow \mathcal{L}(\mathbb{R}^+)$$

$$E \mapsto f(E)$$

is a bijection from the class of Lebesgue measurable sets of $[0, \infty)$ to itself.

3.7 Spring 2017 # 2

a. Let μ be a measure on a measurable space (X, \mathcal{M}) and f a positive measurable function. Define a measure λ by

$$\lambda(E) := \int_{E} f \ d\mu, \quad E \in \mathcal{M}$$

Show that for g any positive measurable function,

$$\int_X g \ d\lambda = \int_X fg \ d\mu$$

b. Let $E \subset \mathbb{R}$ be a measurable set such that

$$\int_E x^2 \ dm = 0.$$

Show that m(E) = 0.

3.8 Fall 2016 # 4

Let (X, \mathcal{M}, μ) be a measure space and suppose $\{E_n\} \subset \mathcal{M}$ satisfies

$$\lim_{n \to \infty} \mu\left(X \backslash E_n\right) = 0.$$

Define

$$G := \{ x \in X \mid x \in E_n \text{ for only finitely many } n \}.$$

Show that $G \in \mathcal{M}$ and $\mu(G) = 0$.

3.9 Spring 2016 # 3

Let f be Lebesgue measurable on \mathbb{R} and $E \subset \mathbb{R}$ be measurable such that

$$0 < A = \int_{E} f(x)dx < \infty.$$

Show that for every 0 < t < 1, there exists a measurable set $E_t \subset E$ such that

$$\int_{E_t} f(x)dx = tA.$$

3.10 Spring 2016 # 5

Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1(\mu)$ and $\lambda > 0$, define

$$\varphi(\lambda) = \mu(\{x \in X | f(x) > \lambda\})$$
 and $\psi(\lambda) = \mu(\{x \in X | f(x) < -\lambda\})$

Show that φ, ψ are Borel measurable and

$$\int_{X} |f| \ d\mu = \int_{0}^{\infty} [\varphi(\lambda) + \psi(\lambda)] \ d\lambda$$

3.11 Fall 2015 # 2

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be Lebesgue measurable.

- 1. Show that there is a sequence of simple functions $s_n(x)$ such that $s_n(x) \longrightarrow f(x)$ for all $x \in \mathbb{R}$.
- 2. Show that there is a Borel measurable function g such that g = f almost everywhere.

3.12 Spring 2015 # 3

Let μ be a finite Borel measure on $\mathbb R$ and $E \subset \mathbb R$ Borel. Prove that the following statements are equivalent:

1. $\forall \varepsilon > 0$ there exists G open and F closed such that

$$F \subseteq E \subseteq G$$
 and $\mu(G \setminus F) < \varepsilon$.

2. There exists a $V \in G_{\delta}$ and $H \in F_{\sigma}$ such that

$$H \subseteq E \subseteq V$$
 and $\mu(V \setminus H) = 0$

3.13 Spring 2014 # 3

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and suppose

$$\forall x \in \mathbb{R}, \quad f(x) \ge \limsup_{y \to x} f(y)$$

Prove that f is Borel measurable.

3.14 Spring 2014 # 4

Let (X, \mathcal{M}, μ) be a measure space and suppose f is a measurable function on X. Show that

$$\lim_{n \to \infty} \int_X f^n \ d\mu = \begin{cases} \infty & \text{or} \\ \mu(f^{-1}(1)), \end{cases}$$

and characterize the collection of functions of each type.

3.15 Spring 2017 # 1

Let K be the set of numbers in [0,1] whose decimal expansions do not use the digit 4.

We use the convention that when a decimal number ends with 4 but all other digits are different from 4, we replace the digit 4 with $399\cdots$. For example, $0.8754 = 0.8753999\cdots$.

Show that K is a compact, nowhere dense set without isolated points, and find the Lebesgue measure m(K).

3.16 Spring 2016 # 2

Let $0 < \lambda < 1$ and construct a Cantor set C_{λ} by successively removing middle intervals of length λ . Prove that $m(C_{\lambda}) = 0$.

4 Measure Theory: Functions

4.1 Fall 2016 # 2

Let $f, g : [a, b] \longrightarrow \mathbb{R}$ be measurable with

$$\int_a^b f(x) \ dx = \int_a^b g(x) \ dx.$$

Show that either

- 1. f(x) = g(x) almost everywhere, or
- 2. There exists a measurable set $E \subset [a, b]$ such that

$$\int_{E} f(x) \ dx > \int_{E} g(x) \ dx$$

4.2 Spring 2016 # 4

Let $E \subset \mathbb{R}$ be measurable with $m(E) < \infty$. Define

$$f(x) = m(E \cap (E + x)).$$

Show that

- 1. $f \in L^1(\mathbb{R})$.
- 2. f is uniformly continuous.
- $3. \lim_{|x| \to \infty} f(x) = 0.$

Hint:

$$\chi_{E\cap(E+x)}(y) = \chi_E(y)\chi_E(y-x)$$

5 Integrals: Convergence

5.1 Fall 2019 # 2.

Prove that

$$\left| \frac{d^n}{dx^n} \frac{\sin x}{x} \right| \le \frac{1}{n}$$

for all $x \neq 0$ and positive integers n.

Hint: Consider
$$\int_0^1 \cos(tx) dt$$

5.2 Spring 2020 # 5

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx.$$

5.3 Spring 2019 # 3

Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $\|f_k\|_2 \leq M$ for all $k \in \mathbb{N}$.

Prove that if $f_k \longrightarrow f$ almost everywhere, then $f \in L^2([0,1])$ with $||f||_2 \leq M$ and

$$\lim_{k \to \infty} \int_0^1 f_k(x) dx = \int_0^1 f(x) dx$$

Hint: Try using Fatou's Lemma to show that $\|f\|_2 \leq M$ and then try applying Egorov's

5.4 Fall 2018 # 6

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_1^n \frac{dx}{\left(1 + \frac{x}{n}\right)^n \sqrt[n]{x}}$$

5.5 Fall 2018 # 3

Suppose f(x) and xf(x) are integrable on \mathbb{R} . Define F by

$$F(t) := \int_{-\infty}^{\infty} f(x) \cos(xt) dx$$

Show that

$$F'(t) = -\int_{-\infty}^{\infty} x f(x) \sin(xt) dx.$$

5.6 Spring 2018 # 5

Suppose that

- $f_n, f \in L^1$, $f_n \longrightarrow f$ almost everywhere, and $\int |f_n| \to \int |f|$.

Show that $\int f_n \to \int f$

5.7 Spring 2018 # 2

Let

$$f_n(x) := \frac{x}{1 + x^n}, \quad x \ge 0.$$

- a. Show that this sequence converges pointwise and find its limit. Is the convergence uniform on $[0,\infty)$?
- b. Compute

$$\lim_{n\to\infty} \int_0^\infty f_n(x) dx$$

5.8 Fall 2016 # 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\lim_{x \to 0} \int_{\mathbb{R}} |f(y - x) - f(y)| \, dy = 0$$

5.9 Fall 2015 # 3

Compute the following limit:

$$\lim_{n \to \infty} \int_1^n \frac{ne^{-x}}{1 + nx^2} \sin\left(\frac{x}{n}\right) dx$$

5.10 Fall 2015 # 4

Let $f:[1,\infty)\longrightarrow \mathbb{R}$ such that f(1)=1 and

$$f'(x) = \frac{1}{x^2 + f(x)^2}$$

Show that the following limit exists and satisfies the equality

$$\lim_{x \to \infty} f(x) \le 1 + \frac{\pi}{4}$$

6 Integrals: Approximation

6.1 Spring 2018 # 3

Let f be a non-negative measurable function on [0, 1].

Show that

$$\lim_{p \to \infty} \left(\int_{[0,1]} f(x)^p dx \right)^{\frac{1}{p}} = \|f\|_{\infty}.$$

6.2 Spring 2018 # 4

Let $f \in L^2([0,1])$ and suppose

$$\int_{[0,1]} f(x)x^n dx = 0 \text{ for all integers } n \ge 0.$$

Show that f = 0 almost everywhere.

6.3 Spring 2015 # 2

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be continuous with period 1. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(t)dt \quad \forall \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Hint: show this first for the functions $f(t) = e^{2\pi i k t}$ for $k \in \mathbb{Z}$.

6.4 Fall 2014 # 4

Let $g \in L^{\infty}([0,1])$ Prove that

 $\int_{[0,1]} f(x)g(x) dx = 0$ for all continuous $f:[0,1] \longrightarrow \mathbb{R} \implies g(x) = 0$ almost everywhere.

7 L^{1}

7.1 Spring 2020 # 3

a. Prove that if $g \in L^1(\mathbb{R})$ then

$$\lim_{N \to \infty} \int_{|x| > N} |f(x)| \, dx = 0,$$

and demonstrate that it is not necessarily the case that $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$.

- b. Prove that if $f \in L^1([1,\infty])$ and is decreasing, then $\lim_{x \to \infty} f(x) = 0$ and in fact $\lim_{x \to \infty} x f(x) = 0$.
- c. If $f:[1,\infty) \longrightarrow [0,\infty)$ is decreasing with $\lim_{x \to \infty} x f(x) = 0$, does this ensure that $f \in L^1([1,\infty))$?

7.2 Fall 2019 # 5.

a. Show that if f is continuous with compact support on \mathbb{R} , then

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dx = 0$$

b. Let $f \in L^1(\mathbb{R})$ and for each h > 0 let

$$\mathcal{A}_h f(x) := \frac{1}{2h} \int_{|y| \le h} f(x - y) dy$$

- c. Prove that $\|\mathcal{A}_h f\|_1 \leq \|f\|_1$ for all h > 0.
- ii. Prove that $A_h f \longrightarrow f$ in $L^1(\mathbb{R})$ as $h \longrightarrow 0^+$.

7.3 Fall 2017 # 3

Let

$$S = \operatorname{span}_{\mathbb{C}} \left\{ \chi_{(a,b)} \mid a, b \in \mathbb{R} \right\},$$

the complex linear span of characteristic functions of intervals of the form (a, b).

Show that for every $f \in L^1(\mathbb{R})$, there exists a sequence of functions $\{f_n\} \subset S$ such that

$$\lim_{n \to \infty} ||f_n - f||_1 = 0$$

7 L^1 14

7.4 Spring 2015 # 4

Define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{(1+xy)^{3/2}} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

Carefully show that $f \in L^1(\mathbb{R}^2)$.

7.5 Fall 2014 # 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\forall \varepsilon > 0 \exists \delta > 0 \text{ such that} \qquad m(E) < \delta \implies \int_{E} |f(x)| \, dx < \varepsilon$$

7.6 Spring 2014 # 1

- 1. Give an example of a continuous $f \in L^1(\mathbb{R})$ such that $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.
- 2. Show that if f is uniformly continuous, then

$$\lim_{|x| \to \infty} f(x) = 0.$$

8 Fubini-Tonelli

8.1 Spring 2020 # 4

Let $f,g\in L^1(\mathbb{R})$. Argue that $H(x,y)\coloneqq f(y)g(x-y)$ defines a function in $L^1(\mathbb{R}^2)$ and deduce from this fact that

$$(f * g)(x) \coloneqq \int_{\mathbb{R}} f(y)g(x - y) \, dy$$

defines a function in $L^1(\mathbb{R})$ that satisfies

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

8.2 Spring 2019 # 4

Let f be a non-negative function on \mathbb{R}^n and $\mathcal{A} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x)\}.$

Prove the validity of the following two statements:

- a. f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
- b. If f is a Lebesgue measurable function on \mathbb{R}^n , then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x)dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n : f(x) \ge t\right\}\right)dt$$

8.3 Fall 2018 # 5

Let $f \geq 0$ be a measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f = \int_{0}^{\infty} m(\{x : f(x) > t\}) dt$$

8.4 Fall 2015 # 5

Let $f, g \in L^1(\mathbb{R})$ be Borel measurable.

- 1. Show that
- The function

$$F(x,y) \coloneqq f(x-y)g(y)$$

is Borel measurable on \mathbb{R}^2 , and

• For almost every $y \in \mathbb{R}$,

$$F_y(x) := f(x-y)g(y)$$

is integrable with respect to y.

2. Show that $f * g \in L^1(\mathbb{R})$ and

$$||f * g||_1 \le ||f||_1 ||g||_1$$

8.5 Spring 2014 # 5

Let $f, g \in L^1([0,1])$ and for all $x \in [0,1]$ define

$$F(x) := \int_0^x f(y) \, dy$$
 and $G(x) := \int_0^x g(y) \, dy$.

Prove that

$$\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx$$

9 L^2 and Fourier Analysis

9.1 Spring 2020 # 6

9.1.1 a

Show that

$$L^{2}([0,1]) \subseteq L^{1}([0,1])$$
 and $\ell^{1}(\mathbb{Z}) \subseteq \ell^{2}(\mathbb{Z})$.

9.1.2 b

For $f \in L^1([0,1])$ define

$$\widehat{f}(n) := \int_0^1 f(x)e^{-2\pi i nx} dx.$$

Prove that if $f \in L^1([0,1])$ and $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$ then

$$S_N f(x) := \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}.$$

converges uniformly on [0,1] to a continuous function g such that g=f almost everywhere.

 $\text{Hint: One approach is to argue that if } f \in L^1([0,1]) \text{ with } \left\{ \widehat{f}(n) \right\} \in \ell^1(\mathbb{Z}) \text{ then } f \in L^2([0,1]).$

9.2 Fall 2017 # 5

Let φ be a compactly supported smooth function that vanishes outside of an interval [-N,N] such that $\int_{\mathbb{D}} \varphi(x) dx = 1$.

For $f \in L^1(\mathbb{R})$, define

$$K_j(x) := j\varphi(jx), \qquad f * K_j(x) := \int_{\mathbb{R}} f(x-y)K_j(y) \, dy$$

and prove the following:

1. Each $f * K_j$ is smooth and compactly supported.

2.

$$\lim_{i \to \infty} \|f * K_j - f\|_1 = 0$$

Hint:

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dy = 0$$

9.3 Spring 2017 # 5

Let $f, g \in L^2(\mathbb{R})$. Prove that the formula

$$h(x) := \int_{-\infty}^{\infty} f(t)g(x-t) dt$$

defines a uniformly continuous function h on \mathbb{R} .

9.4 Spring 2015 # 6

Let $f \in L^1(\mathbb{R})$ and g be a bounded measurable function on \mathbb{R} .

- 1. Show that the convolution f * g is well-defined, bounded, and uniformly continuous on \mathbb{R} .
- 2. Prove that one further assumes that $g \in C^1(\mathbb{R})$ with bounded derivative, then $f * g \in C^1(\mathbb{R})$ and

$$\frac{d}{dx}(f*g) = f*\left(\frac{d}{dx}g\right)$$

9.5 Fall 2014 # 5

1. Let $f \in C_c^0(\mathbb{R}^n)$, and show

$$\lim_{t \to 0} \int_{\mathbb{R}^n} |f(x+t) - f(x)| \, dx = 0.$$

2. Extend the above result to $f \in L^1(\mathbb{R}^n)$ and show that

$$f \in L^1(\mathbb{R}^n), \quad g \in L^\infty(\mathbb{R}^n) \implies f * g \text{ is bounded and uniformly continuous.}$$

10 Functional Analysis: General

10.1 Fall 2019 # 4.

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space \mathcal{H} .

a. Prove that for every $x \in \mathcal{H}$ one has

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2$$

b. Prove that for any sequence $\{a_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N})$ there exists an element $x \in \mathcal{H}$ such that

$$a_n = \langle x, u_n \rangle$$
 for all $n \in \mathbb{N}$

and

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

10.2 Spring 2019 # 5

10.2.1 a

Show that $L^2([0,1]) \subseteq L^1([0,1])$ and argue that $L^2([0,1])$ in fact forms a dense subset of $L^1([0,1])$.

10.2.2 b

Let Λ be a continuous linear functional on $L^1([0,1])$.

Prove the Riesz Representation Theorem for $L^1([0,1])$ by following the steps below:

i. Establish the existence of a function $g \in L^2([0,1])$ which represents Λ in the sense that

$$\Lambda(f) = f(x)g(x)dx$$
 for all $f \in L^2([0,1])$.

Hint: You may use, without proof, the Riesz Representation Theorem for $L^2([0,1])$.

ii. Argue that the g obtained above must in fact belong to $L^{\infty}([0,1])$ and represent Λ in the sense that

$$\Lambda(f) = \int_0^1 f(x)\overline{g(x)}dx \quad \text{ for all } f \in L^1([0,1])$$

with

$$||g||_{L^{\infty}([0,1])} = ||\Lambda||_{L^{1}([0,1])}$$

10.3 Spring 2016 # 6

Without using the Riesz Representation Theorem, compute

$$\sup \left\{ \left| \int_0^1 f(x)e^x dx \right| \mid f \in L^2([0,1], m), \|f\|_2 \le 1 \right\}$$

10.4 Spring 2015 # 5

Let \mathcal{H} be a Hilbert space.

1. Let $x \in \mathcal{H}$ and $\{u_n\}_{n=1}^N$ be an orthonormal set. Prove that the best approximation to x in \mathcal{H} by an element in $\operatorname{span}_{\mathbb{C}}\{u_n\}$ is given by

$$\widehat{x} := \sum_{n=1}^{N} \langle x, u_n \rangle u_n.$$

2. Conclude that finite dimensional subspaces of \mathcal{H} are always closed.

10.5 Fall 2015 # 6

Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous. Show that

$$\sup \left\{ \|fg\|_1 \mid g \in L^1[0,1], \|g\|_1 \le 1 \right\} = \|f\|_{\infty}$$

10.6 Fall 2014 # 6

Let $1 \leq p, q \leq \infty$ be conjugate exponents, and show that

$$f \in L^p(\mathbb{R}^n) \implies ||f||_p = \sup_{\|g\|_q = 1} \left| \int f(x)g(x)dx \right|$$

11 Functional Analysis: Banach Spaces

11.1 Spring 2019 # 1

Let C([0,1]) denote the space of all continuous real-valued functions on [0,1].

- a. Prove that C([0,1]) is complete under the uniform norm $\|f\|_u := \sup_{x \in [0,1]} |f(x)|$.
- b. Prove that C([0,1]) is not complete under the L^1 -norm $||f||_1 = \int_0^1 |f(x)| \ dx$.

11.2 Spring 2017 # 5

Show that the space $C^1([a,b])$ is a Banach space when equipped with the norm

$$||f|| := \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)|.$$

11.3 Fall 2017 # 6

Let X be a complete metric space and define a norm

$$||f|| := \max\{|f(x)| : x \in X\}.$$

Show that $(C^0(\mathbb{R}), \|\cdot\|)$ (the space of continuous functions $f: X \longrightarrow \mathbb{R}$) is complete.