

Lines and Angles Ex 8.4 Q17

The figure can be drawn as follows:

Here, $1 \perp n$ and $m \perp n$

We need to prove that $l \parallel m$

It is given that $l \perp n$, therefore,

 $\angle 1 = 90^{\circ}$ (i)

Similarly, we have $m \perp n$, therefore,

 $\angle 2 = 90^{\circ}$ (ii)

From (i) and (ii), we get:

 $\angle 1 = \angle 2$

But these are the pair of corresponding angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of corresponding angles is equal, then the two lines are parallel.

Thus, we can say that $l \parallel m$.

Lines and Angles Ex 8.4 Q18

Answer:

The quadrilateral can be drawn as follows:

Here, we have $AB \parallel CD$ and $AC \parallel BD$.

Also,
$$\angle ACD = 60^{\circ}$$

Since, $AB \parallel CD$. Thus, $\angle ACD$ and $\angle BAC$ are consecutive interior angles.

Thus these two must be supplementary. That is,

$$\angle ACD + \angle BAC = 180^{0}$$

$$60^{0} + \angle BAC = 180^{0}$$

$$\angle BAC = 180^{0} - 60^{0}$$

$$\angle BAC = \boxed{120^{0}}$$

Similarly, $AC \parallel BD$. Thus, $\angle ACD$ and $\angle CDB$ are consecutive interior angles.

Thus these two must be supplementary. That is,

$$\angle ACD + \angle CDB = 180^{\circ}$$

$$60^{\circ} + \angle CDB = 180^{\circ}$$

$$\angle CDB = 180^{\circ} - 60^{\circ}$$

$$\angle CDB = \boxed{120^{\circ}}$$

Similarly, $AB \parallel CD$. Thus, $\angle ABD$ and $\angle CDB$ are consecutive interior angles.

Thus these two must be supplementary. That is,

$$\angle ABD + \angle CDB = 180^{\circ}$$

$$\angle ABD + 120^{\circ} = 180^{\circ}$$

$$\angle ABD = 180^{\circ} - 120^{\circ}$$

$$\angle ABD = \boxed{60^{\circ}}$$

Hence the other angles are as follows:

$$\angle BAC = \boxed{120^{\circ}}$$

$$\angle CDB = \boxed{120^{\circ}}$$

$$\angle ABD = \boxed{60^{\circ}}$$

Lines and Angles Ex 8.4 Q19

Answer:

Since, lines AB and CD intersect each other at point O.

Thus, $\angle AOC$ and $\angle BOD$ are vertically opposite angles.

Therefore,

$$\angle AOC = \angle BOD$$
 (1)
Similarly,
 $\angle COB = \angle AOD$ (11)

Also, we have $\angle AOC$, $\angle BOD$, $\angle BOC$ and $\angle AOD$ forming a complete angle. Thus,

$$\angle AOC + \angle BOD + \angle COB + \angle AOD = 360^{\circ}$$

It is given that

$$\angle AOC + \angle COB + \angle BOD = 270^{\circ}$$

Thus, we get

$$(\angle AOC + \angle BOD + \angle COB) + \angle AOD = 360^{\circ}$$
$$270^{\circ} + \angle AOD = 360^{\circ}$$
$$\angle AOD = 360^{\circ} - 270^{\circ}$$
$$\angle AOD = \boxed{90^{\circ}}$$

From (II), we get:

$$\angle COB = 90^{\circ}$$

We know that $\angle AOC$ and $\angle COB$ form a linear pair. Therefore, these must be supplementary.

$$\angle AOC + \angle COB = 180^{\circ}$$

$$\angle AOC + 90^{\circ} = 180^{\circ}$$

$$\angle AOC = 180^{\circ} - 90^{\circ}$$

$$\angle AOC = 90^{\circ}$$

From (I), we get:

$$\angle BOD = 90^{\circ}$$