Dummit and Foote Abridged

June 14, 2024

Contents

Ι	Group Theory	1
0	Preliminaries 0.1 Basics	2
1	Group Theory 1.1 Basic Axioms and Examples	2 2 3 3
2	Subgroups2.1 Definition and Examples2.2 Centralizers and Normalizers, Stabilizers and Kernels2.3 Cyclic Groups and Cyclic Subgroups2.4 Subgroups Generated by Subsets of a Group	4 4 4 5
3	Quotient Groups and Homomorphisms3.1 Definitions and Examples3.2 More on Cosets and Lagrange's Theorem3.3 The Isomorphism Theorems3.4 Composition Series and the Hölder Program3.5 Transpositions and the Alternating Group	6 6 7 8 9
4	Group Actions4.1 Group Actions and Permutation Representations	11 12 12 13 14 15
5	Direct and Semidirect Products and Abelian Groups 5.1 Direct Products	15 15 16

Part I

Group Theory

0 Preliminaries

0.1 Basics

Proposition 1. Let $f: A \to B$.

- 1. The map f is injective if and only if f has a left inverse.
- 2. The map f is surjective if and only if f has a right inverse.
- 3. The map f is a bijection if and only if there exist $g: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.
- 4. If A and B are finite sets with the same number of elements the $f: A \to B$ is bijective if and only if f is injective if and only if f is surjective.

Proposition 2. Let A be a nonempty set.

- 1. If \sim defines an equivalence relation on A then the set of equivalence classes of \sim form a partition of A.
- 2. If $\{A_i \mid i \in I\}$ is a partition of A then there is an equivalence relation on A whose equivalence classes are precisely the sets $A_i, i \in I$

1 Group Theory

1.1 Basic Axioms and Examples

Definition.

- 1. A binary operation \star on a set G is a function \star : $G \times G \to G$. For any $a, b \in G$ we shall write $a \star b$ for $\star(a, b)$.
- 2. A binary operation \star on a set G is associative if for all $a, b, c \in G$ we have $a \star (b \star c) = (a \star b) \star c$.
- 3. If \star is a binary operation on a set G we say elements a and b of G commute if $a \star b = b \star a$. We say \star (or G) is commutative if for all $a, b \in G$, $a \star b = b \star a$.

Proposition 1. If G is a group under the operation \cdot , then

- 1. The identity of G is unique
- 2. for each $a \in G$, a^{-1} is uniquely determined
- 3. $(a^{-1})^{-1} = a$ for all $a \in G$
- 4. $(a \cdot b)^{-1} = (b^{-1}) \cdot (a^{-1})$

5. for any $a_q, a_2, \ldots, a_n \in G$ the value of $a_1 a_2 \cdots a_n$ is independent of how the expression is bracketed

Proposition 2. Let G be a group and let $a, b \in G$. The equations ax = b and ya = b have unique solutions for $x, y \in G$. In particular, the left and right cancellation laws hold in G, i.e.,

- 1. if au = av, then u = v, and
- 2. if ub = vb, then u = v.

Definition. For G a group and $x \in G$ define the *order* of x to be the smallest positive integer n such that $x^n = 1$, denoted |x|. If there is no such integer than we define the order of x to be infinity.

1.6 Homomorphism and Isomorphisms

Definition. Let (G, \star) and (H, \diamond) be groups. A map $\phi \colon G \to H$ such that $\phi(x \star y) = \phi(x) \diamond \phi(y)$, for all $x, y \in G$ is called a *homomorphism*. Moreover, if ϕ is bijective it is called an *isomorphism* and we say that G and H are *isomorphic* or of the same *isomorphism* type, written $G \cong H$.

Note. If $\phi \colon G \to H$ is an isomorphism then

- 1. |G| = |H|
- 2. G is abelian if and only if H is abelian
- 3. for all $x \in G$, $|x| = |\phi(x)|$

1.7 Group Actions

Definition. A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:

- 1. $g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a$, for all $g_1, g_2 \in G$, $a \in A$, and
- 2. $1 \cdot a = a$ for all $a \in A$.

Note. Let the group G act on the set A. From each fixed $g \in G$ we get a map σ_g defined by

$$\sigma_g \colon A \to A$$

$$\sigma_g(a) = g \cdot a.$$

The following are true

- 1. for each fixed $g \in G$, σ_q is a permutation of A, and
- 2. the map from G to S_A defined by $g \mapsto \sigma_g$ is a homomorphism. Moreover this map is called the *permutation representation* associated to the given action.

Note. As a consequence of the above remark, if $\phi: G \to S_A$ is a homomorphism (here S_A is the symmetric group on the set A), then the map from $G \times A$ to A defined by

$$q \cdot a = \phi(q)(a)$$
 for all $q \in G$, and all $a \in A$

is a group action of G on A.

2 Subgroups

2.1 Definition and Examples

Definition. Let G be a group. The subset H of G is a *subgroup* of G if H is nonempty and H is closed under products and inverse (i.e, $x, y \in H$ implies $x \in H$ and $xy \in H$). If H is a subgroup of G we shall write $H \leq G$.

Proposition 1. (The Subgroup Criterion) A subset H of a group G is a subgroup if and only if

- 1. $H \neq \emptyset$, and
- 2. for all $x, y \in H, xy^{-1} \in H$

2.2 Centralizers and Normalizers, Stabilizers and Kernels

Let G be a group and A a nonempty subset of G.

Definition. The centralizer of A in G is $C_G(A) = \{g \in G \mid gag^{-1} = a \text{ for all } a \in A\}$. Note that this is the set of elements of G which commute with every element of A. Note that $C_g(A) \leq G$.

Definition. The *center* of G is the set $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$. Note that, $Z(G) = C_G(G)$, thus $Z(G) \leq G$.

Definition. Define $gAg^{-1} = \{gag^{-1} \mid a \in A\}$. The normalizer of A in G is the set $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$. Note that, $C_G(A) \leq N_G(A) \leq G$.

2.3 Cyclic Groups and Cyclic Subgroups

Definition. A group H is *cyclic* if H can be generated by a single element, i.e, there exist some $x \in H$ such that $H = \{x^n \mid n \in \mathbb{Z}\}$ when using multiplicative notation and $H = \{nx \mid n \in \mathbb{Z}\}$ when using additive notation. In either case we write $H = \langle x \rangle$.

Proposition 2. If $H = \langle x \rangle$, then |H| = |x|. Moreover,

- 1. if $|H| = n < \infty$, then $x^n = 1$ and $1, x, x^2, \dots, x^{n-1}$ are all distinct elements of H, and
- 2. if $|H| = \infty$, then $x^n \neq 1$ for all $n \neq 0$ and $x^a \neq x^b$ for all $a \neq b \in \mathbb{Z}$.

Proposition 3. Let G be an arbitrary group, $x \in G$ and let $m, n \in \mathbb{Z}$. If $x^n = 1$ and $x^m = 1$ then $x^d = 1$ where d = (m, n). In particular, if $x^m = 1$ for some $m \in \mathbb{Z}$ then |x| divides m.

Theorem 4. Any two cyclic groups of the same order are isomorphic. Moreover,

1. if $n \in \mathbb{Z}^+$ and $\langle x \rangle$ and $\langle y \rangle$ are both cyclic groups of order n, then the map

$$\phi \colon \langle x \rangle \to \langle y \rangle$$
$$x^k \mapsto y^k$$

is well defined and is an isomorphism

2. if $\langle x \rangle$ is an infinite cyclic group, the map

$$\phi \colon \mathbb{Z} \to \langle x \rangle$$
$$k \mapsto x^k$$

is well defined and is an isomorphism

Proposition 5. Let G be a group, let $x \in G$ and let $a \in \mathbb{Z} - \{0\}$.

- 1. If $|x| = \infty$, then $|x^a| = \infty$.
- 2. If $|x| = n < \infty$, then $|x^a| = \frac{n}{(n,a)}$.
- 3. In particular, if $|x| = n < \infty$ and a is a positive integer dividing n, then $|x^a| = \frac{n}{a}$.

Proposition 6. Let $H = \langle x \rangle$.

- 1. Assume $|x| = \infty$. Then $H = \langle x^a \rangle$ if and only if $a = \pm 1$.
- 2. Assume $|x| = n < \infty$. Then $H = \langle x^a \rangle$ if and only if (a, n) = 1. In particular, the number of generators of H is $\phi(n)$ (where ϕ is Euler's ϕ -function)

Theorem 7. Let $H = \langle x \rangle$ be a cyclic group.

- 1. Every subgroup of H is cyclic. More precisely, if $K \leq H$, then either $K = \{1\}$ or $K = \langle x^d \rangle$, where d is the smallest positive integer such that $x^d \in K$.
- 2. If $|H| = \infty$, then for any distinct nonnegative integers a and b, $\langle x^a \rangle \neq \langle x^b \rangle$. Furthermore, for every integer m, $\langle x^m \rangle = \langle x^{|m|} \rangle$, where |m| denotes the absolute value of m, so that the nontrival subgroups of H correspond bijectively with the integers $1, 2, 3, \ldots$
- 3. If $|H| = n < \infty$, then for each positive integer a dividing n there is a unique subgroup of H of order a. This subgroup is the cyclic group $\langle x^d \rangle$, where $d = \frac{n}{a}$. Furthermore, for every integer m, $\langle x^m \rangle = \langle x^{(n,m)} \rangle$, so that the subgroups of H correspond bijectively with the positive divisors of n.

2.4 Subgroups Generated by Subsets of a Group

Proposition 8. If \mathcal{A} is any nonempty collection of subgroups of G, then the intersection of all members of \mathcal{A} is also a subgroup of G.

Definition. If A is any subset of the group G define

$$\langle A \rangle = \bigcap_{\substack{A \subseteq H \\ H \leq G}} H.$$

This is called the subgroup of G generated by A.

Note. $\langle A \rangle = \{a_1^{\epsilon_1} a_2^{\epsilon_2} \dots a_n^{\epsilon_n} \mid n \in \mathbb{Z}, n \geq 0 \text{ and } a_i \in A, \epsilon_i = \pm 1 \text{ for each } i\}.$

3 Quotient Groups and Homomorphisms

3.1 Definitions and Examples

Definition. If ϕ is a homomorphism $\phi: G \to H$, the kernel of ϕ is the set

$$\{g \in G \mid \phi(g) = 1\}$$

and will be denoted by $\ker \phi$ (here 1 is the identity of H).

Proposition 1. Let G and H be groups and let $\phi: H \to H$ be a homomorphism.

- 1. $\phi(1_G) = 1_H$, where 1_G and 1_H are the identities of G and H, respectively.
- 2. $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
- 3. $\phi(q^n) = \phi(q)^n$ for all $n \in \mathbb{Z}$.
- 4. $\ker \phi$ is a subgroup of G.
- 5. $\operatorname{im} \phi$, the image of G under ϕ , is a subgroup of H.

Definition. Let $\phi: G \to H$ be a homomorphism with kernel K. The quotient group or factor group, G/K (read G modulo K or simply G mod K), is the group whose elements are the fibers of ϕ with the following group operation: If X is the fiber above a and Y is the fiber above b then the product XY in G/K is defined to be the fiber above the product ab in G.

Proposition 2. Let $\phi: G \to H$ be a homomorphism with kernel K. Let $X \in G/K$ be the fiber above a, i.e., $X = \phi^{-1}(a)$. Then

- 1. For any $u \in X$, $X = \{uk \mid k \in K\}$
- 2. For any $u \in X$, $X = \{ku \mid k \in K\}$

Definition. For any $N \leq G$ and any $g \in G$ let

$$gN = \{gn \mid n \in N\} \text{ and } Ng = \{ng \mid n \in N\}$$

called respectively a *left coset* and a *right coset* of N in G. Any element of a coset is called a *representative* for the coset.

Theorem 3. Let G be a group and let K be the kernel of some homomorphism from G to another group. Then the set of whose elements are left cosets of K in G with operation defined by

$$uK \circ vK = (uv)K$$

forms a group, G/K. This operation is well defined and does not depend on the choice of representatives.

Proposition 4. Let N be any subgroup of the group G. The set of left cosets of N in G form a partition of G. Furthermore, for all $u, v \in G, uN = vN$ if and only if $v^{-1}u \in N$ and in particular, uN = vN if and only if u and v are representatives of the same coset.

Proposition 5. Let G be a group and let N be a subgroup of G.

1. The operation on the set of left cosets of N in G described by

$$uN \cdot vN = (uv)N$$

is well defined if and only if gng^{-1} for all $g \in G$ and all $n \in N$.

2. If the above operation is well defined, then it makes the set of left cosets of N in G into a group. In particular the identity of this group is the coset 1N and the inverse of gN is the coset g^{-1} , i.e, $(gN)^{-1} = g^{-1}N$.

Definition. The element gng^{-1} is called the *conjugate* of $n \in N$ by g. The set $gNg^{-1} = \{gng^{-1} \mid n \in N\}$ is called the *conjugate* of N by g. The element g is said to *normalize* N if $gNg^{-1} = N$. A subgroup N of a group G is called *normal* if every element of G normalizes N, i.e., if $gNg^{-1} = N$ for all $g \in G$. If N is a normal subgroup of G we shall write $N \subseteq G$.

Theorem 6. Let N be a subgroup of the group G. The following are equivalent:

- 1. $N \leq G$
- 2. $N_G(N) = G$ (recall $N_G(N)$ is the normalizer in G of N)
- 3. qN = Nq for all $q \in G$
- 4. the operation on left cosets of N in G described in Proposition 5 makes the set of left cosets into a group
- 5. $gNg^{-1} \subseteq N$ for all $g \in G$.

Proposition 7. A subgroup N of the group G is normal if and only if it is the kernel of some homomorphism.

Definition. Let $N \subseteq G$. The homomorphism $\pi: G \to G/N$ defined by $\pi(g) = gN$ is called the *natural projection (homomorphism)* of G onto G/N. If $\overline{H} \subseteq G/N$, then complete preimage of \overline{H} in G is the preimage of \overline{H} under the natural projection homomorphism.

3.2 More on Cosets and Lagrange's Theorem

Theorem 8. (Lagrange's Theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G and the number of left cosets of H in G equals $\frac{|G|}{|H|}$.

Definition. If G is a group and $H \leq G$, the number of left cosets of H in G is called the *index* of H in G and is denoted by |G:H|.

Corollary 9. If G is a finite group and $x \in G$, then the order of x divides the order of G. In particular, $x^{|G|} = 1$ for all x in G.

Corollary 10. If G is a group of prime order p, then G is cyclic, hence $G \cong \mathbb{Z}_p$ (note that this text uses \mathbb{Z}_n to denote the cyclic group of order n written in multiplicative notation and that given any $n \in \mathbb{Z}$, $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$).

Note. For finite abelian groups the full converse of Lagrange's theorem holds, that is the group has a subgroup of order n for each n that divides the order of the group.

Theorem 11. (Cauchy's Theorem) If G is a finite group and p is a prime dividing |G|, then G has an element of order p.

Theorem 12. (Sylow) If G is a finite group of order $p^{\alpha}m$, where p is a prime not dividing m, then G has a subgroup of order p^{α} .

Definition. Let H and K be subgroups of a group and define

$$HK = \{hk \mid h \in H, k \in K\}.$$

Proposition 13. If H and K are finite subgroups of a group then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proposition 14. If H and K are subgroups of a group, HK is a subgroup if and only if HK = KH.

Note. HK = KH does not imply that the elements of H commute with the elements of K

Corollary 15. If H and K are subgroups of G and $H \leq N_G(K)$, then Hk is a subgroup of G. In particular, if $K \leq G$, Then $HK \leq G$ for any $H \leq G$ (Since if $K \leq G$, $N_G(k) = G$).

Definition. If A is any subset of $N_G(K)$ (or $C_G(K)$), we shall say A normalizes K (centralizes K, respectively).

3.3 The Isomorphism Theorems

Theorem 16. (The First Isomorphism Theorem) If $\phi: G \to H$ is a homomorphism, then $\ker \phi \subseteq G$ and $G/\ker \phi \cong \phi(G)$.

Corollary 17. Let $\phi \colon G \to H$ be a homomorphism.

- 1. ϕ is injective if and only if $\ker \phi = 1$.
- 2. $|G : \ker \phi = |\phi(G)|$.

Theorem 18. (The Second or Diamond Isomorphism Theorem) Let G be a group, let A and B be subgroups of G and assume $A \leq N_G(B)$. Then AB is a subgroup of G, $B \subseteq AB$, $A \cap B \subseteq A$, and $AB/B \cong A/A \cap B$.

Theorem 19. (The Third Isomorphism Theorem) Let G be a group and let H and K be normal subgroups of G with $H \leq K$. Then $K/H \subseteq G/H$ and

$$(G/H)/(K/H) \cong G/K$$
.

If we denote the quotient by H with a bar, this can be written

$$\overline{G}/\overline{K} \cong G/K$$
.

Theorem 20. (The Fourth or Lattice Isomorphism Theorem) Let G be a group and let N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of G which contains N onto the set of subgroups $\overline{A} = A/N$ of G/N. In particular, every subgroup of \overline{G} is of the form A/N for some subgroup A of G containing N (namely, its preimage in G under the natural projection homomorphism from G to G/N). This bijection has the following properties: for all $A, B \leq G$ with $N \leq A$ and $N \leq B$,

- 1. $A \leq B$ if and only if $\overline{A} \leq \overline{B}$,
- 2. if $A \leq B$, then $|B:A| = |\overline{B}:\overline{A}|$,
- 3. $\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$,
- 4. $\overline{A \cap B} = \overline{A} \cap \overline{B}$, and
- 5. $A \subseteq G$ if and only if $\overline{A} \subseteq \overline{G}$.

3.4 Composition Series and the Hölder Program

Proposition 21. If G is a finite abelian group and p is a prime dividing |G|, then G contains an element of order p.

Definition. A group G is called *simple* if |G| > 1 and the only normal subgroups of G are 1 and G.

Definition. In a group G a sequence of subgroups

$$1 = N_0 \le N_1 \le N_2 \le \ldots \le N_{k-1} \le N_k = G$$

is called a composition series if $N_i \leq N_{i+1}$ and N_{i+1}/N_i is a simple group, $0 \leq i \leq k-1$. If the above sequence is a composition series, the quotient groups N_{i+1}/N_i are called composition factors of G.

Theorem 22. (Jordan-Hölder) Let G be a finite group with $G \neq 1$. Then

- 1. G has a composition series and
- 2. The composition factors in a composition series are unique, namely, id $1 = N_0 \le N_1 \le \ldots \le N_r = G$ and $1 = M_0 \le M_1 \le \ldots \le M_s = G$ are two composition series for G, then r = s and there is some permutation, π , of $\{1, 2, \ldots, r\}$ such that

$$M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1}, \qquad 1 \le i \le r.$$

Theorem. There is a list consisting of 18 (infinite) families of simple groups and 26 simple groups not belonging to these families (the *sporadic* simple groups) such that every finite simple group is isomorphic to one of the groups in this list.

Theorem. (Feit-Thompson) If G is a simple group of odd order, then $G \cong \mathbb{Z}_p$ for some prime p.

Definition. A group G is *solvable* if there is a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_s = G$$

such that G_{i+1}/G_i is abelian for $i=0,1,\ldots,s-1$.

Theorem. The finite group G is solvable if and only if for every divisor n of |G| such that $(n, \frac{|G|}{n}) = 1$, G has a subgroup of order n.

Note. If N and G/N are solvable, then so is G.

3.5 Transpositions and the Alternating Group

Definition. A 2-cycle is called a *transposition*.

Note. Every element of S_n may be written as a product of transpositions.

Definition. Let x_1, \ldots, x_n be independent variables and let Δ be the polynomial

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j),$$

and for $\sigma \in S_n$ let σ act on Δ by

$$\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

One can show that for all $\sigma \in S_n$ that $\sigma(\Delta) = \pm \Delta$. Now define,

$$\epsilon(\sigma) = \begin{cases} +1 & \text{if } \sigma(\Delta) = \Delta \\ -1 & \text{if } \sigma(\Delta) = -\Delta. \end{cases}$$

Now,

- 1. $\epsilon(\sigma)$ is called the sign of σ and
- 2. σ is call an even permutation if $\epsilon(\sigma) = 1$ and an odd permutation if $\epsilon(\sigma) = -1$.

Proposition 23. The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism (where $\{\pm 1\}$ is a multiplicative version of the cyclic group of order 2).

Proposition 24. Transpositions are all odd permutations and ϵ is a surjective homomorphism.

Definition. The alternating group of degree n, denoted A_n , is the kernel of te homomorphism ϵ (i.e., the set of even permutations).

Note.

- 1. $|A_n| = \frac{1}{2}|S_n| = \frac{1}{2}(n!)$.
- 2. Due to ϵ being a homomorphism we get the rules

$$(even)(even) = (odd)(odd) = even$$

 $(even)(odd) = (odd)(even) = odd.$

3. An m-cycle is an odd permutation if and if only m is even

Proposition 25. The permutation σ is odd if and only if the number of cycles of even length in its cycle decomposition is odd.

Note. A_n is a non-abelian simple group for all $n \geq 5$.

4 Group Actions

4.1 Group Actions and Permutation Representations

Definition. Let G be a group acting on a set A

- 1. The *kernel* of the action is the set of elements of G that act trivially on every element of A: $\{g \in G \mid g \cdot a = a \text{ for all } a \in A\}$.
- 2. For each $a \in A$ the *stabilizer* of a in G is the set of elements of G that fix the element $a: \{g \in G \mid g \cdot a = a\}$ and is denoted by G_a .
- 3. An action is *faithful* if its kernel is the identity.

Note. The kernel pf an action is precisely the same as the kernel of the associated permutation representation as defined in the note in section 1.7 and is rephrased below.

Proposition 1. For any group G and any nonempty set A there is a bijection between the actions of G on A and the homomorphisms of G into S_A .

Definition. If G is a group a permutation representation of G into the symmetric group S_A for some nonempty set A. We shall say a given action of G on A affords or induces the associated representation of G.

Proposition 2. Let G be a group acting on the nonempty set A. the relation on A defined by

$$a \sim b$$
 if and only if $a = g \cdot b$ for some $g \in G$

is an equivalence relation. For each $a \in A$, the number of elements in the equivalence class containing a is $|G:G_a|$, the index of the stabilizer of a.

Definition. Let G be a group acting on the set A.

- 1. The equivalence class $\{g \mid g \in G\}$ is called the *orbit* of G containing a.
- 2. The action of G on A is called *transitive* if there is only one orbit, i.e., given any two elements $a, b \in A$ there is some $q \in G$ such that $a = q \cdot b$.

Note.

- 1. Every element of S_n has a unique cycle decomposition
- 2. Subgroups of symmetric groups are called *permutation groups*.
- 3. The orbits of a permutation group will refer to its orbits on $\{1, 2, \ldots, n\}$
- 4. The orbits of an element $\sigma \in S_n$ will refer to the orbits of the group $\langle \sigma \rangle$.

4.2 Group Acting on Themselves by Left Multiplication - Cayley's Theorem

Note. In this section G is any group and we first consider G acting on itself (i.e., A = G) by left multiplication:

$$g \cdot a = ga$$
 for all $g \in G, a \in G$

When G is a finite group of order n it is convenient to label the elements of G with the integers 1, 2, ..., n in order to describe the permutation representation afforded by this action. In this way the elements of G are listed as $g_1, g_2, ..., g_n$ and for each $g \in G$ the permutation σ_q may be described as a permutation of the indices 1, 2, ..., n as follows:

$$\sigma_q(i) = j$$
 if and only if $gg_i = g_j$.

Theorem 3. Let G be a group, let H be a subgroup and let G act by left multiplication on the set A of left cosets of H in G. Let π_H be the associated permutation representation afforded by this action. Then

- 1. G acts transitively on A
- 2. the stabilizer of G of the point $1H \in A$ us the subgroup H
- 3. the kernel of the action (i.e., the kernel of π_H) is $\cap_{x \in G} x H x^{-1}$, and $\ker \pi_H$ is the largest normal subgroup of g contained in H.

Corollary 4. (Cayley's Theorem) Every group is isomorphic to a subgroup of symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of S_n .

Corollary 5. If G is a finite group of order n and p is the smallest prime dividing |G|, then any subgroup of index p is normal (Note that a group of order n need not have a subgroup of order p).

4.3 Groups Acting on Themselves by Conjugation - The Class Equation

Note. In this section we consider a group G acting on itself by conjugation

$$g \cdot a = gag^{-1}$$
 for all $g \in G, a \in G$

Definition. Two elements a and a of G are said to be *conjugate* if G if there is some $g \in G$ such that $b = gag^{-1}$ (i.e., if and only if they are in some orbit of G acting on itself by conjugation). The orbits of G acting on itself by conjugation are called *conjugacy classes* of G.

Definition. Two subsets S and T of G are said to be *conjugate in* G if there is some $g \in G$ such that $T = gSg^{-1}$ (i.e., if and only if they are in the same orbit of G acting on its subsets by conjugation).

Proposition 6. The number of conjugates of a subset S in a group G is the index of the normalizer of S, $|G:N_G(S)|$. In particular, the number of conjugates of an element s of G is the index of the centralizer of s, $|G:C_q(s)|$.

Theorem 7. (The Class Equation) Let G be a finite group and let g_1, g_2, \ldots, g_r be representatives of the distinct conjugacy classes of G not contained in the center Z(G) of G. Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G : C_G(g_i)|.$$

Theorem 8. If p is a prime and P is a group of prime order p^{α} for some $\alpha \geq 1$, then P has a nontrivial center: $Z(P) \neq 1$.

Proposition 9. Let σ, τ be elements of the symmetric group S_n and suppose σ has cycle decomposition

$$(a_1a_2\ldots a_{k_1})(b_1b_2\ldots b_{k_2})\ldots$$

Then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$(\tau(a_1)\tau(a_2)\ldots\tau(a_{k_1}))(\tau(b_1)\tau(b_2)\ldots\tau(b_{k_2}))\ldots,$$

that is $\tau \sigma \tau^{-1}$ is obtained from σ by replacing each i in the cycle decomposition for σ by the entry $\tau(i)$.

Definition.

- 1. If $\sigma \in S_n$ is the product of disjoint cycles of length n_1, n_2, \ldots, n_r with $n_1 \leq n_2 \leq \ldots \leq n_r$ (including its 1-cycles) then the integers n_1, n_2, \ldots, n_r are called the *cycle* type of σ .
- 2. If $n \in \mathbb{Z}^+$, a partition of n is any nondecreasing sequence of positive integers whose sum is n.

Proposition 10. Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n equals the number of partitions of n.

Theorem 11. A_5 is a simple group.

4.4 Automorphisms

Definition. Let G be a group. An isomorphism from G onto itself is called an *automorphism* of G. The set of all automorphisms of G is denoted Aut(G).

Note. Aut(G) is a group under composition.

Proposition 12. Let H be a normal subgroup of the group G. Then G acts by conjugation on H as automorphisms of H. More specifically, the action of G on H by conjugation is defined for each $g \in G$ by

$$h \mapsto ghg^{-1}$$
 for each $h \in H$.

For each $g \in G$, conjugation by g is an automorphism of H. The permutation representation afforded by this action is a homomorphism of G into Aut(H) with kernel $C_G(H)$. In particular, $G/C_G(H)$ is isomorphic to a subgroup of Aut(H).

Corollary 13. If K is any subgroup of the group G and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

Corollary 14. For any subgroup H of a group G, the quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H). In particular, G/Z(G) is isomorphic to a subgroup of Aut(G).

Definition. Let G be a group and let $g \in G$. Conjugation by g is called an *inner automorphism* of G and the subgroup of Aut(G) consisting of all inner automorphisms is denoted Inn(G).

Definition. A subgroup H of a group G is called *characteristic* in G, denoted H char G, if every automorphism of G maps H to itself, i.e., $\sigma(H) = H$ for all $\sigma \in \text{Aut}(G)$.

Note.

- 1. Characteristic subgroups are normal,
- 2. if H is the unique subgroup of a given order, then H is characteristic in G, and
- 3. if K char H and $H \subseteq G$, then $K \subseteq G$.

Proposition 15. The automorphism group of the cyclic group of order n is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$, an abelian group of order $\phi(n)$ (where ϕ is Euler's function).

Proposition 16.

- 1. If p is an odd prime and $n \in \mathbb{Z}^+$, then the automorphism group of the cyclic group of order p is cyclic of order p-1. More generally, the automorphism group of the cyclic grup of order p^n is cyclic of order $p^{n-1}(p-1)$.
- 2. For all $n \geq 3$ the automorphism group of the cyclic group of order 2^n is isomorphic to $Z_2 \times Z_{2^{n-2}}$, and in particular is not cyclic but has a cyclic subgroup of index 2.
- 3. Let p be a prime and let V be an abelian group (written additively)with the property that pv = 0 for all $v \in V$. If $|V| = p^n$, then V is an n-dimensional vector space over the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. The automorphisms of V are precisely the nonsingular linear transformations from V to itself, that is

$$\operatorname{Aut}(V) \cong \operatorname{GL}(V) \cong \operatorname{GL}_n(\mathbb{F}_p).$$

In particular, the order of Aut(V) is given in section 1.4.

- 4. For all $n \neq 6$ we have $\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n) \cong S_n$. For n = 6 we have $|\operatorname{Aut}(S_6) : \operatorname{Inn}(S_6)| = 2$.
- 5. $\operatorname{Aut}(D_8) \cong D_8$ and $\operatorname{Aut}(Q_8) \cong S_4$.

4.5 Sylow's Theorem

Definition. Let G be a group and let p be a prime.

- 1. A group of order p^{α} for some $\alpha \geq 0$ is called a *p-group*. Subgroups of G which are p-groups are called p-subgroups.
- 2. If G is a group of order $p^{\alpha}m$, where $p \nmid m$, then a subgroup of order p^{α} is called a Sylow p-subgroup of G.

3. The set of Sylow p-subgroups of G will be denoted $Syl_p(G)$ and the number of Sylow p-subgroups of G will be denoted by $n_p(G)$ (or just n_p when G is clear from context).

Theorem 17. (Sylow's Theorem) Let G be a group of order $p^{\alpha}m$, where p is a prime not dividing m.

- 1. Sylow p-subgroups of G exist, i.e., $Syl_p(G) \neq \emptyset$.
- 2. If P is a sylow p-subgroup of G and Q is any p-subgroup of G, then there exists $g \in G$ such that $Q \leq gPg^{-1}$, i.e., Q is contained in some conjugate of P. In particular, any two Sylow p-subgroups of G are conjugate in G.
- 3. The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,

$$n_p = 1 \pmod{p}$$
.

Further, n_p is the indec in G of the normalizer of $N_G(P)$ for any Sylow p-subgroup P, hence n_p divides m.

Lemma 18. Let $P \in Sly_p(G)$. If Q is any p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

Corollary 19. Let P be a Sylow p-subgroup of G. Then the following are equivalent:

- 1. P is the unique Sylow p-subgroup of G, i.e., $n_p = 1$
- 2. P is normal in G
- 3. P is characteristic in G
- 4. All subgroups generated by elements of p-power order are p-groups, i.e., if X is any subset of G such that |x| is a power of p for all $x \in X$, then $\langle X \rangle$ is a p-group.

Proposition 20. If |G| = 60 and G has more than one Sylow 5-subgroups, then G is simple.

Corollary 21. A_5 is simple

Proposition 22. If G is a simple group of order 60, then $G \cong A_5$.

4.6 The Simplicity of A_n

Theorem 23. A_n is simple for all $n \geq 5$.

5 Direct and Semidirect Products and Abelian Groups

5.1 Direct Products

Definition.

1. The direct product $G_1 \times G_2 \times \cdots \times G_n$ of the groups G_1, G_2, \ldots, G_n with operations $\star_1, \star_2, \ldots, \star_n$, respectively, is the set of *n*-tuples (g_1, g_2, \ldots, g_n) where $g_i \in G_i$ with the operation defined componentwise:

$$(g_1, g_2, \dots, g_n) \star (h_1, h_2, \dots, h_n) = (g_1 \star_1 h_1, g_2 \star_2 h_2 \dots g_n \star_n h_n).$$

2. Similarly, the direct product $G_1 \times G_2 \times \cdots$ of the groups G_1, G_2, \ldots with operations \star_1, \star_2, \ldots , respectively, is the set of sequences (g_1, g_2, \ldots) where $g_i \in G_i$ with the operation defined componentwise:

$$(g_1, g_2, \ldots) \star (h_1, h_2, \ldots) = (g_1 \star_1 h_1, g_2 \star_2 h_2, \ldots).$$

Proposition 1. If G_1, \ldots, G_n are groups, their direct product is a group of order $|G_1||G_2|\cdots|G_n|$ (if any G_i is infinite, so is the direct product).

Proposition 2. Let G_1, G_2, \ldots, G_n be group and let $G = G_1 \times G_2 \times \cdots \times G_n$ be their direct product.

1. For each fixed i the set of elements of G which have the identity of G_j in the j^{th} position for all $j \neq i$ and arbitrary elements of G_i in position i is a subgroup of G isomorphic G_i :

$$G_i \cong \{(1, 1, \dots, 1, g_i, 1, \dots, 1) \mid g_i \in G_i\},\$$

(here g_i appears in the i^{th} position). If we identity G_i with this subgroup, then $G_i \leq G$ and

$$G/G_i \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n$$
.

2. For each fixed i define $\pi_i : G \to G_i$ by

$$\pi_i((g_1, g_2, \dots, g_n)) = g_i.$$

Then π_i is a surjective homomorphism with

$$\ker \pi_i = \{ (g_1, g_2, \dots, g_{i-1}, 1, g_{i+1}) \mid g_j \in G_j \text{ for all } j \neq i \}$$

$$\cong G_1 \times \dots \times G_{i-1} \times G_{i+1} \times \dots \times G_n$$

(here 1 appears in position i).

3. Under the identifications in part 1, if $x \in G_i$ and $y \in G_j$ for some $i \neq j$, then xy = yx.

5.2 The Fundamental Theorem of Finitely Generated Abelian Groups

Definition.

- 1. A group G is finitely generated if there is some finite subset A of G such that $G = \langle A \rangle$.
- 2. For each $r \in \mathbb{Z}$ with $r \geq 0$ let $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of r copies of the group \mathbb{Z} , where $\mathbb{Z}^0 = 1$. The group \mathbb{Z}^r is called the *free abelian group* of order r.

Theorem 3. (The Fundamental Theorem of Finitely Generated Abelian Groups) Let G be a finitely generated abelian group. Then

1.

$$G \cong \mathbb{Z}^r \times Z_{n_1} \times Z_{n_2} \times \cdots \times Z_{n_s}$$

for some r, n_1, n_2, \ldots, n_s satisfying the following conditions:

- (a) $r \ge 0$ and $n_i \ge 2$ for all j, and
- (b) $n_{i+1} \mid n_i \text{ for all } 1 \le i \le s-1$
- 2. the expression in 1. is unique: if $G \cong \mathbb{Z}^t \times Z_{m_1} \times Z_{m_2} \times \cdots \times Z_{m_u}$, where t and m_1, m_2, \ldots, m_u satisfy (a) and (b), then t = r and $m_i = n_i$ for all i.

Definition. The integer r in Theorem 3 is called the *free rank* or *Betti number* of G and the integers n_1, n_2, \ldots, n_s are called the *invariant factors* of G. The description of G in Theorem 3(1) is called the *invariant factor decomposition* of G.

Note. There is a bijection between the set of isomorphism classes of finite abelian groups of order n and the set of integer sequences n_1, n_2, \ldots, n_s such that

- 1. $n_j \geq 2$ for all $j \in \{1, 2, \dots, s\}$,
- 2. $n_{i+1} \mid n_i, 1 \le i \le s-1$, and
- $3. \ n_1 n_2 \cdots n_s = n.$

Also notice that every prime divisor of n must be a divisor of n_1 due to (2).

Corollary 4. If n is the product of distinct primes, then up to isomorphism the only abelian group of order n is the cyclic group of order n, Z_n .

Theorem 5. Let G be an abelian group of order n > 1 and let the unique factorization of n into distinct prime powers be

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}.$$

Then

- 1. $G \cong A_1 \times A_2 \times \cdots \times A_k$, where $|A_i| = p_i^{\alpha_i}$
- 2. for each $A \in \{A_1, A_2, \dots, A_k\}$ with $|A| = p^{\alpha}$,

$$A \cong Z_{p^{\beta_1}} \times Z_{p^{\beta_2}} \times \dots \times Z_{p^{\beta_t}}$$

with $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_t \geq 1$ and $\beta_1 + \beta_2 + \ldots + \beta_t = \alpha$ (where t and $\beta_1, \beta_2, \ldots, \beta_t$ depend on i)

3. the decomposition in 1. and 2. is unique, i.e., if $G \cong B_1 \times B_2 \times \cdots \times B_m$, with $|B_i| = p_i^{\alpha_i}$ for all i, then $B_i \cong A_i$ and B_i and A_i have the same invariant factors.

Definition. The integers p^{β_j} described in the proceeding theorem are called the *elementary divisors* of G. The description of G in Theorem 5(1) and 5(2) is called the *elementary divisor decomposition* of G.

Note. For a group of order p^{β} the invariant factors will be $p^{\beta_1}, p^{\beta_2}, \dots, p^{\beta_t}$ such that

- 1. $\beta_j \ge 1$ for all $j \in \{1, 2, \dots, t\}$,
- 2. $\beta_i \geq \beta_{i+1}$ for all i, and
- $3. \beta_1 + \beta_2 + \ldots + \beta_t = \beta$

Proposition 6. Let $m, n \in \mathbb{Z}^+$.

- 1. $Z_m \times Z_n \cong Z_{mn}$ if and only if (m, n) = 1.
- 2. If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ then $Z_n \cong Z_{p_1^{\alpha_1}} \times Z_{p_2^{\alpha_2}} \times \cdots \times Z_{p_k^{\alpha_k}}$.