5. Grafico della funzione integrale

Definizione

Sia f(x) una funzione continua in [a; b]. La funzione

$$F(x) = \int_{a}^{x} f(t)dt$$

prende il nome di **funzione integrale** della f , mentre la funzione f prende il nome di **funzione integranda**.

Il teorema di Torricelli-Barrow afferma che la funzione integrale F(x) è derivabile $\forall x \in [a;b]$ e risulta

$$F'(x) = f(x)$$
 e $F(a) = 0$

Cioè la funzione integrale F(x) è una primitiva della funzione integranda f(x) ed è quella particolare primitiva che si annulla per x=a.

Pertanto dalle proprietà e dal grafico della f(x) è possibile dedurre andamento e proprietà della F(x) basandosi sulle seguenti considerazioni:

- negli intervalli in cui la f(x) = F'(x) è positiva (negativa) la F(x) è crescente (decrescente);
- gli zeri della f(x) = F'(x) sono punti a tangente orizzontale per la F(x);
- se la f(x) = F'(x) è dispari allora la F(x) è pari;
- se a = 0 e la f(x) = F'(x) è pari allora la F(x) è dispari.

Esempio

Dopo aver studiato la funzione $f(x) = log(x^2 - x + 1)$ studiare e dedurre il grafico della funzione

$$F(x) = \int_0^x \log(t^2 - t + 1) \, dt.$$

Poiché $x^2-x+1>0 \ \forall x\in\mathbb{R}$, la funzione f(x) è definita e continua in \mathbb{R} , inoltre risulta

$$log(x^2 - x + 1) \ge 0$$
 se $x^2 - x + 1 \ge 1$ cioè se $x \le 0 \lor x \ge 1$,

quindi il suo grafico interseca l'asse x nei punti O(0; 0) e A(1; 0);

risulta inoltre

$$f'(x) = \frac{2x-1}{x^2 - x + 1},$$

la f(x) è derivabile $\forall x \in \mathbb{R}$ e dal segno di f'(x) si ha

Quindi $x = \frac{1}{2}$ è punto di minimo e il corrispondente punto sulla curva è $B\left(\frac{1}{2}; log \frac{3}{4}\right)$.

Inoltre $\lim_{x \to \pm \infty} f(x) = +\infty$ e $\lim_{x \to \pm \infty} \frac{f(x)}{x} = 0$ quindi non ha asintoti.

0 1

$$F'(x) = f(x)$$
 + 0 - 0 +

Per quanto riguarda la F(x) dal segno di f(x) = F'(x) e di f'(x) = F''(x) si deduce che x = 0 è punto di massimo relativo e x = 1 è punto di minimo relativo (C in figura), mentre $x = \frac{1}{2}$ è punto di flesso; inoltre F(0) = 0; i grafici di f(x) e F(x) sono riportati in fig.

Esercizi

(gli esercizi con asterisco sono avviati)

Applicazioni del teorema di Torricelli-Barrow

- *1) Determinare i punti a tangente orizzontale della funzione $\int_{-1}^{x} \frac{2t-t^2}{t^2+1} dt$.
- *2) Determinare gli eventuali punti a tangente orizzontale della funzione

$$F(x) = \int_0^x (t-1) \operatorname{arctgt} dt.$$

*3) Determinare l'equazione della retta tangente al grafico della funzione

$$F(x) = \int_{-2}^{x} \frac{\sqrt{t+3}}{t^4+2} dt$$

nel suo punto di ascissa x = -2.

- *4) Data la funzione $F(x) = \int_1^x t\sqrt{t^4 + 1} dt$:
 - a) dimostrare che la F(x) è pari;
 - b) determinare le rette tangenti al grafico della F(x) nei punti $x = \pm 1$;
 - c) dimostrare che ha un punto di minimo relativo;
 - d) studiare la concavità.
- *5) Data la funzione $F(x) = \int_0^x e^{2t-t^2} dt$
 - a) dimostrare che la F(x) non ha punti a tangente orizzontale;
 - b) verificare che ha un punto di flesso a tangente obliqua.
- *6) Data la funzione $F(x) = \int_0^x \frac{t}{\sqrt{1+t^4}} dt$, $x \in \mathbb{R}$,
 - a) determinare eventuali massimi e minimi;
 - b) determinare eventuali flessi;
 - c) tracciarne il grafico.

*7) Data la funzione f(x) continua in \mathbb{R} e tale che f(1)=-4, calcolare il limite

$$\lim_{x\to 1}\frac{\int_1^x f(t)dt}{x^3-x}.$$

*8) Calcolare la derivata della funzione integrale

$$F(x) = \int_0^{x^3} e^{-\cos t} dt.$$

*9) Dimostrare che la funzione

$$F(x) = \int_{-2}^{x} (t^2 + t + 3)e^{-t+1}dt$$

è invertibile e poi calcolare la derivata dell'inversa $(F^{-1})'(0)$.

Soluzioni

***1. S.**
$$x = 0$$
 e $x = 2$; ($F'(x) = \frac{2x - x^2}{x^2 + 1} = 0$ );

***2. S.** x=0 punto di massimo relativo, x=1 punto di minimo relativo ;

$$(F'(x) = (x-1)arctgx \ge 0 \text{ per } x \le 0 \lor x \ge 1 ...);$$

*3. S.
$$y = \frac{1}{18}(x+2)$$
; (si ha: $F(-2) = 0$, $F'(x) = \frac{\sqrt{x+3}}{x^4+2}$, $F'(-2) = \frac{1}{18}$...);

*4. S. a) poiché la $F'(x) = x\sqrt{x^4 + 1}$ è dispari allora la F(x) è pari ;

b) per
$$x = 1$$
 risulta : $F(1) = 0$, $F'(x) = x\sqrt{x^4 + 1}$,

 $F'(1)=\sqrt{2}$, pertanto la retta tangente ha equazione $y=\sqrt{2}(x-1)$, per x=-1 per la simmetria la retta tangente ha equazione $y=-\sqrt{2}(x+1)$;

c)
$$F'(x) = x\sqrt{x^4 + 1} \ge 0$$
 per $x \ge 0$ quindi $x = 0$ è punto di minimo relativo ; d) $F''(x) = f'(x) = \frac{3x^4 + 1}{\sqrt{x^4 + 1}} > 0 \ \forall x \in \mathbb{R}$, pertanto la concavità è sempre verso l'alto ;

- *5. S. a) poiché $F'(x) = e^{2x-x^2} > 0 \ \forall x$, la funzione è sempre crescente;
 - b) poiché $F''(x)=f'(x)=2(1-x)e^{2x-x^2}\geq 0$ per $x\leq 1$, x=1 è ascissa di un punto di flesso a tangente obliqua poiché $F'(1)=f(1)=e\neq 0$;
- *6. S. a) $F'(x) = f(x) = \frac{x}{\sqrt{1+x^4}}$, la F è pari poiché la f è dispari ed essendo F(0) = 0, il grafico passa per l'origine degli assi ; essendo $F'(x) = f(x) \ge 0$ per $x \ge 0 \Rightarrow x = 0$ è punto di minimo relativo;
 - b) si ha $F''(x)=f'(x)=\frac{1-x^4}{\sqrt{(1+x^4)^3}}\geq 0$ per $-1\leq x\leq 1$, i punti $x=\pm 1$ sono ascisse di punti di flesso, F_1 , F_2 ; inoltre, dal seguente grafico

si deduce che $F(x) \ge 0 \ \forall x$;

c) Grafico della funzione F(x)

*7. S. -2; (il limite si presenta sotto la forma indeterminata $\frac{0}{0}$, è possibile applicare il teorema di De l'Hopital:

$$\lim_{x \to 1} \frac{\int_1^x f(t)}{x^3 - x} = \lim_{x \to 1} \frac{f(x)}{3x^2 - 1} = \frac{-4}{2} = -2$$
);

*8. S. $3x^2e^{-cos(x^3)}$; (la F(x) è composta mediante le funzioni

$$g(y) = \int_0^y e^{-cost} dt$$
 e $y = h(x) = x^3$;

poiché e^{-cost} è continua in $\mathbb R$ la g(y) per il teorema di Torricelli-Barrow è derivabile in $\mathbb R$ e risulta $g'(y)=e^{-cosy}$; quindi la F(x) composta di funzioni derivabili in $\mathbb R$ è derivabile in $\mathbb R$. Applichiamo la regola di derivazioni delle funzioni composte:

$$F'(x) = g'(h(x)) \cdot h'(x) = 3x^2 e^{-cos(x^3)}$$
);

*9. S. $\frac{1}{5e^3}$ (poiché $F'(x)=(x^2+x+3)e^{-x+1}>0 \ \forall x\in\mathbb{R}$, la F(x) è crescente in \mathbb{R} pertanto invertibile; si ha F(x)=0 per x=-2, dalla regola di derivazione della funzione inversa si ha:

$$(F^{-1})'(0) = \frac{1}{F'(-2)} = \frac{1}{((-2)^2 - 2 + 3)e^{-(-2) + 1}} = \frac{1}{5e^3}$$
):