Conversão AD e DA

analogico-digital e digital-analogico

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Conversão entre digital e analógico

Conversão entre digital e analógico

Conversão entre digital e analógico

- Resolução porcentual: $r=\frac{1}{2^n-1}100\%$. Exemplo: se n=4 a resolução é de 6.7% do máximo voltagem de saída. Exemplo: se n=12 a resolução é de 0.024414% do máximo voltagem de saída.
 - Exatidão: Máxima desviação do seu valor esperado. se expressa como porcentagem da saída máxima. Exemplo: Exatidão de $\pm 0.1\%$ tendo 5V de saída máxima, da um error de 5mV
- Linealidade: Relação lineal entre o sinal digital (S_d) e a sinal analógica (S_a) . É dizer sua relação está dada por $S_a = K_1 S_d + K_2$
- Tempo de resposta: Tempo entre que se recebe um dado e este é interpretado.

Conversão digital-analógico

Conversão digital-analógico de entrada ponderada

Soma das correntes no nó

$$V_{x} = -R_{0} \frac{(V_{0} + 2V_{1} + 4V_{2} + 8V_{3})}{8R}$$

Desvantagens

- Precisa muitos tipos diferentes de resistências.
- Pode trazer erros pela tolerância porcentual das resistências.

Conversão digital-analogico com rede tipo R-2R [1]

Teorema de superposição

$$V_x = -\frac{R_0}{6R} \frac{(2^0 V_0 + 2^1 V_1 + 2^2 V_2 + 2^3 V_3)}{2^3}$$

Conversão digital-analogico com rede tipo R-2R

Conversão digital-analogico com rede tipo R-2R

Teorema de superposição

$$V_s = \frac{1}{3} \frac{(2^0 V_0 + 2^1 V_1 + 2^2 V_2 + 2^3 V_3)}{2^3}$$

Conversão digital-analógico DAC0808

Conversão AD - Amostragem

Conversão AD simultânea (FLASH)

Conversão AD por contador (Rampa)

Conversão AD por aproximações sucessivas (SAR)

Conversão AD por aproximações sucessivas (SAR)

Conversão analógico-digital ADC8004

Conversão analógico-digital ADC8004

References I

[1] Robert L Boylestad and Louis Nashelsky. *Dispositivos* eletrônicos e teoria de circuitos, volume 8. Pearson Prentice Hall, 2004.