LEPTONS

e

$$J=\frac{1}{2}$$

Mass $m=(548.57990946\pm0.00000022)\times10^{-6}$ u Mass $m=0.510998928\pm0.000000011$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m<8\times10^{-9}, \ \mathrm{CL}=90\%\\ |q_{e^+}+q_{e^-}|/e<4\times10^{-8} \end{aligned}$ Magnetic moment anomaly $(g-2)/2=(1159.65218076\pm0.00000027)\times10^{-6}$ ($g_{e^+}-g_{e^-}$) / $g_{\mathrm{average}}=(-0.5\pm2.1)\times10^{-12}$ Electric dipole moment $d<10.5\times10^{-28}$ e cm, $\mathrm{CL}=90\%$ Mean life $\tau>4.6\times10^{26}$ yr, $\mathrm{CL}=90\%$ [a]

 μ

$$J=\frac{1}{2}$$

Mass $m=0.1134289267\pm0.0000000029$ u Mass $m=105.6583715\pm0.0000035$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659209\pm6)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $d=(-0.1\pm0.9)\times10^{-19}$ e cm

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho &= 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.7 \pm 0.4 \\ \alpha/A &= (0 \pm 4) \times 10^{-3} \\ \alpha'/A &= (4 \pm 6) \times 10^{-3} \\ \beta/A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
$e^-\overline{ u}_e u_\mu$	pprox 100%		53
$e^-\overline{ u}_e u_\mu\gamma$	[d] $(1.4\pm0.4)\%$		53
$e^-\overline{ u}_e u_\mu\dot{e}^+e^-$	[e] $(3.4\pm0.4)\times1$	0 ⁻⁵	53
Lepton Family no	umber (<i>LF</i>) violati	ng modes	
$e^- u_e\overline{ u}_\mu$ LF	[f] < 1.2 %	90%	53
$e^-\gamma$	< 2.4 × 1	0^{-12} 90%	53
$e^-e^+e^-$ LF	< 1.0 × 1	0^{-12} 90%	53
$e^-2\gamma$ LF	< 7.2 × 1	0^{-11} 90%	53

$$J=\frac{1}{2}$$

Mass
$$m=1776.82\pm0.16$$
 MeV $(m_{\tau^+}-m_{\tau^-})/m_{\rm average}<2.8\times10^{-4},~{\rm CL}=90\%$ Mean life $\tau=(290.6\pm1.0)\times10^{-15}$ s $c\tau=87.11~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and $<0.013,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})=-0.220$ to $0.45\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

 ${
m Im}(d_{ au}) = -0.250 \ {
m to} \ 0.0080 imes 10^{-16} \ {
m e\,cm}, \ {
m CL} = 95\%$

Weak dipole moment

$$\mathrm{Re}(d_{\tau}^w)<~0.50\times10^{-17}$$
 ecm, CL $=95\%$ $\mathrm{Im}(d_{\tau}^w)<~1.1\times10^{-17}$ ecm, CL $=95\%$

Weak anomalous magnetic dipole moment

$$\mathrm{Re}(\alpha_{\tau}^{\mathit{W}})<~1.1\times10^{-3},~\mathrm{CL}=95\%$$
 $\mathrm{Im}(\alpha_{\tau}^{\mathit{W}})<~2.7\times10^{-3},~\mathrm{CL}=95\%$

Decay parameters

See the au Particle Listings for a note concerning au-decay parameters.

$$\rho(e \text{ or } \mu) = 0.745 \pm 0.008$$

$$\rho(e) = 0.747 \pm 0.010$$

$$\rho(\mu) = 0.763 \pm 0.020$$

$$\xi(e \text{ or } \mu) = 0.985 \pm 0.030$$

$$\xi(e) = 0.994 \pm 0.040$$

$$\xi(\mu) = 1.030 \pm 0.059$$

$$\eta(e \text{ or } \mu) = 0.013 \pm 0.020$$

$$\eta(\mu) = 0.094 \pm 0.073$$

$$(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021$$

$$(\delta \xi)(e) = 0.734 \pm 0.028$$

$$(\delta \xi)(\mu) = 0.778 \pm 0.037$$

$$\xi(\pi) = 0.993 \pm 0.022$$

$$\xi(\rho) = 0.994 \pm 0.008$$

$$\xi(a_1) = 1.001 \pm 0.027$$

$$\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$$

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

			Scale	e factor/	р
$ au^-$ DECAY MODES	F	Fraction (Γ_i/Γ)	Confide	nce level	(MeV/ <i>c</i>)
Modes with	n one	e charged part	icle		
particle ⁻ \geq 0 neutrals \geq 0 $K^0 \nu_{\tau}$		(85.35 ± 0.07)		S=1.3	_
("1-prong")					
particle ⁻ \geq 0 neutrals \geq 0 $K_I^0 \nu_{ au}$		(84.71 ± 0.08)) %	S=1.3	_
$\mu^- \overline{ u}_\mu u_ au$	[g]	(17.41 ± 0.04)) %	S=1.1	885
$\mu^{\dot{-}} \overline{ u}_{\mu} u_{ au} \gamma$	[e]	(3.6 ± 0.4	$) \times 10^{-3}$		885
$e^-\overline{ u}_e u_ au$	[g]	(17.83 ± 0.04)) %		888
$e^-\overline{ u}_{\mathbf{e}} u_{ au}\gamma$	[e]	(1.75 ± 0.18) %		888
$h^- \geq 0 K_L^0 \; u_ au$		(12.06 ± 0.06)) %	S=1.2	883
$h^- u_ au$		(11.53 ± 0.06)) %	S=1.2	883
$\pi^- u_{ au}$	[g]	(10.83 ± 0.06)) %	S=1.2	883
$\mathit{K}^- u_ au$	[g]	(7.00 ± 0.10	$) \times 10^{-3}$	S=1.1	820
$h^- \geq 1$ neutrals $ u_ au$		$(37.10 \pm 0.10$) %	S=1.2	_
$h^- \geq 1\pi^0 u_ au(ext{ex}. extit{K}^0)$		(36.57 ± 0.10)) %	S=1.2	_
$\mathit{h}^-\pi^0 u_{_{\overline{T}}}$		(25.95 ± 0.09)) %	S=1.1	878
$\pi^-\pi^0_{_{\scriptscriptstyle 2}} u_{\scriptscriptstyle \mathcal{T}}$	[g]	(25.52 ± 0.09)) %	S=1.1	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		(3.0 ± 3.2	$) \times 10^{-3}$		878
$\mathit{K}^-\pi^0 u_ au$	[g]	(4.29 ± 0.15	$) \times 10^{-3}$		814

HTTP://PDG.LBL.GOV

Page 3

Modes with three charged particles

$h^-h^-h^+ \geq 0$ neutrals $\geq 0 K_I^0 u_ au$		(:	15.20	± 0.08) %	S=1.3	861
$\mathit{h^-h^-h^+} \geq 0$ neutrals $\mathit{ u_{ au}}^-$		(:	14.57	± 0.07) %	S=1.3	861
(ex. $K_S^0 o \pi^+\pi^-$)							
("3-prong")							
$h^- h^- h^+ u_{\tau}$		(9.80	± 0.07) %	S=1.2	861
$h^- h^- h^+ \nu_{\tau}$ (ex. K^0)				± 0.06		S=1.2	861
$h^- h^- h^+ \nu_{\tau}$ (ex. K^0 , ω)		•		± 0.06	•	S=1.2	861
$\pi^-\pi^+\pi^- u_{\tau}$		(9.31	± 0.06) %	S=1.2	861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0})		•		± 0.06	•	S=1.1	861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0}),$		•	2.4		%	CL=95%	861
non-axial vector							
$\pi^-\pi^+\pi^- u_ au$ (ex. K^0 , ω)	[g]	(8.99	± 0.06) %	S=1.1	861
$\mathit{h^-h^-h^+} \geq 1$ neutrals $\mathit{ u_{ au}}$		(5.39	± 0.07) %	S=1.2	_
$h^- h^- h^+ \geq 1 \pi^0 u_{ au} (ext{ex. } K^0)$		(5.09	±0.06) %	S=1.2	_
$\mathit{h^-h^-h^+\pi^0} u_{ au}$		(4.76	± 0.06) %	S=1.2	834
$h^- h^- h^+ \pi^0 u_ au (ext{ex.} {\cal K}^0)$		(4.57	± 0.06) %	S=1.2	834
$\mathit{h^-h^-h^+\pi^0 u_{ au}}(ext{ex. }\mathit{K^0}$, $\omega)$		(2.79	± 0.08) %	S=1.2	834
$\pi^-\pi^+\pi^-\pi^0 u_ au$		(4.62	± 0.06) %	S=1.2	834
$\pi^-\pi^+\pi^-\pi^0 u_{ au}({ m ex.} {\it K}^0)$		(4.48	± 0.06) %	S=1.2	834
$\pi^-\pi^+\pi^-\pi^0 u_{ au}({ m ex.}K^0,\omega)$	[g]	(2.70	± 0.08) %	S=1.2	834
$h^- h^- h^+ \geq 2 \pi^0 u_ au$ (ex.		(5.21	± 0.32	$) \times 10^{-3}$		_
\mathcal{K}^0)							
$h^-h^-h^+2\pi^0 u_ au$		(5.09	± 0.32	$) \times 10^{-3}$		797
$h^- h^- h^+ 2 \pi^0 u_{ au} ({ m ex.} K^0)$					$) \times 10^{-3}$		797
$h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}(\text{ex}.K^{0},\omega,\eta)$	[g]	(1.0	± 0.4	$) \times 10^{-3}$		797
$h^- h^- h^+ 3\pi^0 \nu_{\tau}$	[g]				$) \times 10^{-4}$	S=1.2	749
$\mathit{K}^-\mathit{h}^+\mathit{h}^- \geq 0$ neutrals $ u_ au$					$) \times 10^{-3}$	S=1.5	794
$K^- h^+ \pi^- u_{ au} ({ m ex.} K^0)$					$) \times 10^{-3}$	S=2.7	794
$K^- h^+ \pi^- \pi^0 u_{ au} ({\sf ex}. K^0)$		(8.7	± 1.2	$) \times 10^{-4}$	S=1.1	763
$K^-\pi^+\pi^- \geq 0$ neutrals $ u_{ au}$		(4.85	± 0.21	$) \times 10^{-3}$	S=1.4	794
$K^{-}\pi^{+}\pi^{-} \geq 0$		(3.75	± 0.19	$) \times 10^{-3}$	S=1.5	794
$0\pi^0 u_{ au}(ext{ex}.K^0)$							
$K^-\pi^+\pi^- u_ au$		(3.49	± 0.16	$) \times 10^{-3}$	S=1.9	794
$K^-\pi^+\pi^-\nu_{\tau}({\rm ex}.K^0)$	[g]	(2.94	± 0.15	$) \times 10^{-3}$	S=2.2	794
$K^- ho^0 u_ au o$		(1.4	± 0.5	$) \times 10^{-3}$		_
$K^-\pi^+\pi^- u_ au$							
$K^-\pi^+\pi^-\pi^0 u_{_T}$		(1.35	± 0.14	$) \times 10^{-3}$		763
$K^-\pi^+\pi^-\pi^0\nu_{\tau}({\rm ex}.K^0)$					$) \times 10^{-4}$		763
$K^-\pi^+\pi^-\pi^0\nu_{ au}({\rm ex}.K^0,\eta)$	[g]	(7.8	± 1.2	$) \times 10^{-4}$		763
$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(ex.K^{0},\omega)$					$) \times 10^{-4}$		763
		<	9		$\times 10^{-4}$	CL=95%	685
		(1.50	± 0.06	$) \times 10^{-3}$	S=1.8	685
$K^-K^+\pi^- u_{\scriptscriptstyle \mathcal{T}}$					$) \times 10^{-3}$	S=1.9	685

$\mathcal{K}^-\mathcal{K}^+\pi^-\pi^0 u_ au$	[g]	(6.1	± 2.5	$) \times 10^{-5}$	S=1.4	618
$K^-K^+K^- u_ au$					$) \times 10^{-5}$		471
$K^-K^+K^{-} u_{ au}(ext{ex. }\phi)$					$\times 10^{-6}$		_
$K^-K^+K^-\pi^0 u_ au$		<	4.8		$\times 10^{-6}$	CL=90%	345
$\pi^- {\it K}^+ \pi^- \geq$ 0 neut. $ u_{ au} $					$\times10^{-3}$		794
$e^-e^-e^+\overline{ u}_e u_ au$					$) \times 10^{-5}$		888
$\mu^-\mathrm{e}^-\mathrm{e}^+\overline{ u}_\mu u_ au$					$\times 10^{-5}$		885
Modes with	h five	e ch	narge	d parti	cles		
$3h^-2h^+ \geq 0$ neutrals $ u_{ au}$			_	-	$) \times 10^{-3}$	S=1.1	794
(ex. $K_S^0 \rightarrow \pi^- \pi^+$)		•			,		
("5-prong")							
$3h^{-}2h^{+}\nu_{\tau}(ex.K^{0})$	[g]	(8.39	±0.35	$) \times 10^{-4}$	S=1.1	794
$3h^-2h^+\pi^0 u_{ au}({ m ex}.K^0)$	[g]	(1.78	±0.27	$) \times 10^{-4}$		746
$3h^-2h^+2\pi^0\nu_{ au}$		<	3.4		$\times 10^{-6}$	CL=90%	687
Miscellaneo	us ot	he	r allo	wed m	odes		
$(5\pi)^-\nu_{\tau}$					$) \times 10^{-3}$		800
$4h^{-3}h^{+} \geq 0$ neutrals $ u_{ au}$					$\times 10^{-7}$	CL=90%	682
("7-prong")							
$4h^-3h^+\nu_{ au}$		<	4.3		$\times 10^{-7}$	CL=90%	682
$4h^-3h^+\pi^0 u_ au$		<	2.5		$\times 10^{-7}$	CL=90%	612
$X^-(S=-1) u_ au$		(2.87	±0.07) %	S=1.3	_
$K^*(892)^- \geq 0$ neutrals $\geq 0 K_I^0 u_{ au}$		(1.42	±0.18) %	S=1.4	665
$K^*(892)^- \nu_{\tau}$		(1.20	± 0.07) %	S=1.8	665
$K^*(892)^-\nu_{\tau} \rightarrow \pi^-\overline{K}^0\nu_{\tau}$					$) \times 10^{-3}$		_
$K^*(892)^0K^- \geq 0$ neutrals $ u_ au$					$) \times 10^{-3}$		542
$K^*(892)^0K^- u_ au$		(2.1	± 0.4	$) \times 10^{-3}$		542
$\overline{\mathit{K}}^*(892)^0\pi^- \geq 0$ neutrals $ u_ au$					$) \times 10^{-3}$		655
$K^*(892)^0 \pi^- \nu_{\tau}$					$) \times 10^{-3}$		655
$(\overline{K}^*(892)\pi)^- u_ au ightarrow \pi^-\overline{K}^0\pi^0 u_ au$		(1.0	± 0.4) × 10 ⁻³		_
$K_1(1270)^- \nu_{\tau}$		(4.7	± 1.1	$) \times 10^{-3}$		433
$K_1(1400)^- \nu_{\tau}$					$) \times 10^{-3}$	S=1.7	335
$K^*(1410)^- u_ au$		(1.5	$^{+1.4}_{-1.0}$	$) \times 10^{-3}$		326
$K_0^*(1430)^- u_ au$		<	5		$\times 10^{-4}$	CL=95%	317
$K_2^*(1430)^- u_ au$		<	3		$\times 10^{-3}$	CL=95%	316
$\eta\pi^- u_{ au}$			9.9			CL=95%	797
$\eta \pi^{-} \pi^{0} \nu_{\tau}$	[g]				$) \times 10^{-3}$	S=1.4	778
$\eta \pi^- \pi^0 \pi^0 \nu_{\tau}$					$) \times 10^{-4}$		746
$\eta K^- \nu_{\tau}$	[g]				$) \times 10^{-4}$		719
$\eta K^*(892)^- \nu_{\tau}$		•			$) \times 10^{-4}$		511
$\eta K^- \pi^0 \nu_{ au}$		(4.8	± 1.2	$) \times 10^{-5}$		665

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+\pi^-\pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^-\pi^+\pi^-$). B means baryon number violation.

$e^-\gamma$	LF	< 3.3	$\times10^{-8}$ CL=90%	888
$\mu^-\gamma$	LF	< 4.4	$\times 10^{-8}$ CL=90%	885
$e^-\pi^0$	LF	< 8.0	$\times 10^{-8}$ CL=90%	883
$\mu^-\pi^0$	LF	< 1.1	$\times 10^{-7}$ CL=90%	880
$e^-K_S^0$	LF	< 2.6	$\times 10^{-8}$ CL=90%	819
$\mu^- K_S^0$	LF	< 2.3	$\times 10^{-8}$ CL=90%	815
$e^-\eta$	LF	< 9.2	$\times 10^{-8}$ CL=90%	804
$\mu^-\eta_{_{\perp}}$	LF	< 6.5	$\times 10^{-8}$ CL=90%	800
$e^- ho^0$	LF	< 1.8	$\times 10^{-8}$ CL=90%	719

_					
$\mu^- ho^0$	LF	<	1.2	$\times 10^{-8}$ CL=90%	715
$e^-\omega$	LF	<	4.8	$\times 10^{-8}$ CL=90%	716
$\mu^-\omega$	LF	<	4.7	$\times 10^{-8}$ CL=90%	711
$e^{-}K^{*}(892)^{0}$	LF	<	3.2	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\underline{K}^{*}(892)^{0}$	LF	<	5.9	$\times 10^{-8}$ CL=90%	659
$e^{-}\overline{K}^{*}(892)^{0}$	LF	<	3.4	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	<	7.0	$\times 10^{-8}$ CL=90%	659
$e^- \eta'(958)$	LF	<	1.6	$\times 10^{-7}$ CL=90%	630
$\mu^- \eta'(958)$	LF	<	1.3	$\times 10^{-7}$ CL=90%	625
$e^{-}f_{0}(980) \rightarrow e^{-}\pi^{+}\pi^{-}$	LF	<	3.2	$\times 10^{-8}$ CL=90%	_
$\mu^{-} f_0(980) \rightarrow \mu^{-} \pi^{+} \pi^{-}$	LF	<	3.4	$\times 10^{-8}$ CL=90%	_
$e^-\phi$	LF	<	3.1	$\times 10^{-8}$ CL=90%	596
$\mu^-\phi$	LF	<	8.4	$\times 10^{-8}$ CL=90%	590
$e^{-}e^{+}e^{-}$	LF	<	2.7	$\times 10^{-8}$ CL=90%	888
$e^-\mu^+\mu^-$	LF	<	2.7	$\times 10^{-8}$ CL=90%	882
$e^+\mu^-\mu^-$	LF	<	1.7	$\times 10^{-8}$ CL=90%	882
μ^- e $^+$ e $^-$	LF	<	1.8	$\times 10^{-8}$ CL=90%	885
$\mu^+e^-e^-$	LF	<	1.5	$\times 10^{-8}$ CL=90%	885
$\mu^-\mu^+\mu^-$	LF	<	2.1	$\times 10^{-8}$ CL=90%	873
$e^-\pi^+\pi^-$	LF	<	4.4	$\times 10^{-8}$ CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	<	8.8	$\times 10^{-8}$ CL=90%	877
$\mu^- \pi^+ \pi^-$	LF	<	3.3	$\times 10^{-8}$ CL=90%	866
$\mu^{+}\pi^{-}\pi^{-}$	L	<	3.7	$\times 10^{-8}$ CL=90%	866
$e^-\pi^+K^-$	LF	<	5.8	$\times 10^{-8}$ CL=90%	813
$e^-\pi^-K^+$	LF	<	5.2	$\times 10^{-8}$ CL=90%	813
$e^+\pi^-K^-$	L	<	6.7	$\times 10^{-8}$ CL=90%	813
$e^-K_S^0K_S^0$	LF	<	7.1	$\times 10^{-8}$ CL=90%	736
$e^-K^+K^-$	LF	<	5.4	$\times 10^{-8}$ CL=90%	738
$e^+K^-K^-$	L	<	6.0	$\times 10^{-8}$ CL=90%	738
$\mu^-\pi^+$ K $^-$	LF	<	1.6	$\times10^{-7}$ CL=90%	800
$\mu^-\pi^-$ K $^+$	LF	<	1.0	$\times10^{-7}$ CL=90%	800
$\mu^+\pi^-$ K $^-$	L	<	9.4	$\times 10^{-8}$ CL=90%	800
$\mu^- K^0_S K^0_S$	LF	<	8.0	$\times 10^{-8}$ CL=90%	696
$\mu^{-} K_{S}^{0} K_{S}^{0}$ $\mu^{-} K^{+} K^{-}$	LF	<	6.8	$\times 10^{-8}$ CL=90%	699
$\mu^{+} K^{-} K^{-}$	L	<	9.6	$\times 10^{-8}$ CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	<	6.5	$\times 10^{-6}$ CL=90%	878
$\mu^-\pi^0\pi^0$	LF	<	1.4	$\times 10^{-5}$ CL=90%	867
$e^-\eta\eta$	LF	<	3.5	$\times10^{-5}$ CL=90%	699
$\mu^-\eta\eta$	LF	<	6.0	$\times10^{-5}$ CL=90%	653
$e^{-\pi^0\eta}$	LF	<	2.4	$\times10^{-5}$ CL=90%	798
$\mu^-\pi^0\eta$	LF	<	2.2	$\times10^{-5}$ CL=90%	784
<u>n</u> o/	L,B	<	3.5	$\times 10^{-6}$ CL=90%	641
$\frac{p}{p}\pi^0$	L,B	<	1.5	$\times 10^{-5}$ CL=90%	632
$\frac{1}{\overline{p}}2\pi^0$	L,B		3.3	$\times 10^{-5}$ CL=90%	604

$\overline{p}\eta$	L,B	< 8.9	$\times 10^{-6}$ CL=90%	475
$\overline{p}\pi^0\eta$	L,B	< 2.7	$\times10^{-5}$ CL=90%	360
$\Lambda\pi^-$	L,B	< 7.2	$\times 10^{-8} \text{ CL} = 90\%$	525
$\overline{\Lambda}\pi^-$	L,B	< 1.4	$\times 10^{-7} \text{ CL} = 90\%$	525
e [–] light boson	LF	< 2.7	$\times 10^{-3}$ CL=95%	_
μ^- light boson	LF	< 5	$\times 10^{-3} \text{ CL}=95\%$	_

Heavy Charged Lepton Searches

 L^{\pm} – charged lepton

Mass m>100.8 GeV, CL=95% [h] Decay to ν W.

 L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

Mass m < 2 eV (tritium decay)

Mean life/mass, $\tau/m > 300$ s/eV, CL = 90% (reactor)

Mean life/mass, $\tau/m > 7 \times 10^9$ s/eV (solar

Mean life/mass, $\tau/m > 15.4$ s/eV, CL = 90% (accelerator)

Magnetic moment $\mu < 0.32 \times 10^{-10}~\mu_B$, CL = 90% (solar)

Number of Neutrino Types

Number $N=2.984\pm0.008$ (Standard Model fits to LEP data) Number $N=2.92\pm0.05$ (S = 1.2) (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this *Review*.

$$\begin{split} & \sin^2(2\theta_{12}) = 0.857 \pm 0.024 \\ & \Delta m_{21}^2 = (7.50 \pm 0.20) \times 10^{-5} \text{ eV}^2 \\ & \sin^2(2\theta_{23}) > 0.95 \,^{[i]} \\ & \Delta m_{32}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2 \,^{[j]} \\ & \sin^2(2\theta_{13}) = 0.098 \pm 0.013 \end{split}$$

Heavy Neutral Leptons, Searches for

For excited leptons, see Compositeness Limits below.

Stable Neutral Heavy Lepton Mass Limits

```
Mass m > 45.0 GeV, CL = 95\% (Dirac)
Mass m > 39.5 GeV, CL = 95\% (Majorana)
```

Neutral Heavy Lepton Mass Limits

```
Mass m>90.3 GeV, CL = 95%

(Dirac \nu_L coupling to e, \mu, \tau; conservative case(\tau))

Mass m>80.5 GeV, CL = 95%

(Majorana \nu_L coupling to e, \mu, \tau; conservative case(\tau))
```

NOTES

- [a] This is the best limit for the mode $e^- \to \nu \gamma$. The best limit for "electron disappearance" is 6.4×10^{24} yr.
- [b] See the "Note on Muon Decay Parameters" in the μ Particle Listings for definitions and details.
- [c] P_μ is the longitudinal polarization of the muon from pion decay. In standard V-A theory, $P_\mu=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with the γ energy > 10 MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.
- [i] The limit quoted corresponds to the projection onto the $\sin^2(2\theta_{23})$ axis of the 90% CL contour in the $\sin^2(2\theta_{23}) \Delta m_{32}^2$ plane.
- [j] The sign of Δm_{32}^2 is not known at this time. The range quoted is for the absolute value.