

Ingeniería del Conocimiento

Tema 2: Representación mediante Espacio de Estados

Objetivos del tema

- Ubicación
 - Unidad 2: BUSQUEDA EN ESPACIO DE ESTADOS
 - Tema 2: Representación mediante Espacio de Estados
- Objetivos generales
 - Definir Espacio de Estados y sus componentes. Estudiar su Complejidad
 - Comprender la importancia de la adecuada representación de problemas en espacio de estados
 - Desarrollar la capacidad de representar problemas simples empleando esta formulación
 - Acercamiento al concepto búsqueda mediante ejemplos
 - Distinguir los distintos tipos de búsquedas de la solución que podremos definir

Contenido

- 1. Introducción
- 2. Problemas y resolución
- 3. Espacio de Estados
 - Definición
 - 2. Búsqueda
- 4. Aplicación
- 5. Ejemplos

Contenido

- 1. Introducción
- 2. Problemas y resolución
- 3. Espacio de Estados
 - 1. Definición
 - 2. Búsqueda
- 4. Aplicación
- 5. Ejemplos

1. Introducción

- Los dos elementos básicos para resolver un problema son
 - Representación del problema
 - Primer paso
 - Consiste en <u>especificar el problema</u> usando el paradigma del <u>Espacio de Estados</u>
 - Búsqueda de la solución
 - Buscar entre todos los estados posibles aquel que es solución al problema
 - Mediante una estrategia de búsqueda potente y eficiente
 - Es un mecanismo genérico
- Ventaja: se pueden aplicar procedimientos generales de búsqueda de soluciones independientes del problema

- 1. Introducción
- 2. Problemas y resolución
- 3. Espacio de Estados
 - 1. Definición
 - 2. Búsqueda
- 4. Aplicación
- 5. Ejemplos

2. Problemas y resolución

2. Problemas y resolución

- Tipos de problemas según el conocimiento (abstracción) del problema:
 - Si se conoce las acciones y el estado actual
 - Entorno determinista y accesible →
 - Problema de un solo estado inicial (single-state)
 - Si conoce las acciones pero no el estado actual
 - Entorno determinista e inaccesible →
 - Problema de conjuntos de estados iniciales (multiple-state)
 - Si el conocimiento sobre acciones y estado actual es incompleto
 - Entorno no determinista e inaccesible →
 - Problema de contingencia: Durante la resolución se calcula un árbol de acciones cuyas ramas tratan distintos casos
 - Si se desconoce completamente las acciones
 - Espacio de estados desconocido →
 - Problema de exploración: experimentar y descubrir información sobre acciones y estados

- 1. Introducción
- 2. Problemas y resolución
- 3. Espacio de Estados
 - 1. Definición
 - 2. Búsqueda
- 4. Aplicación
- 5. Ejemplos

 Espacio de Estados de un problema: forma de representar un problema para facilitar su resolución.

Modelo matemático de un sistema físico consistente en un grafo en el que se representan todos y cada uno de los posibles estados en los que se puede encontrar el sistema y que debe de ser representable mediante un <u>árbol</u>

 Especificar un problema como espacio de estados es describir cada de uno de los componentes de ese espacio (es decir, del grafo que lo representa)

- <u>Grafo</u>: estructura de información compuesta de <u>Nodos</u>
 (piezas de información) + <u>Arcos</u> (uniones entre ellos)
 - Hojas: nodos sin descendientes (los últimos)
 - Camino: sucesión de nodos siguiendo los arcos
 - Ciclo: camino cerrado (bucle)

Árbol:

- Es un grafo dirigido acíclico conexo
 - Grafo dirigido: los arcos indican el sentido de la relación
 - Grafo acíclico: no tiene ciclos
 - Grafo conexo: entre dos nodos siempre hay un camino
- En el que
 - Hay un único nodo raíz
 - Cada nodo tiene un único padre
 - Para cada nodo existe un único camino que lo conecta con el nodo raíz

 Elementos del Espacio de Estados para problemas singlestate

Elemento	Pregunta
Conjunto de estados del problema	¿Cuántos estados hay? ¿Cómo se representan? ¿Cuál es el árbol de estados?
Estado(s) inicial(es)	¿cuál es la situación inicial de la que se parte?
Estado(s) final(es) o test de finalización	¿cuál es el <i>objetivo final</i> ?
Conjunto de operadores permitidos para cambiar de estado	¿Qué acciones se pueden llevar a cabo en cada momento para cambiar las situaciones y cómo cambian?
Función de coste de la solución $g(x)$	¿Cuánto cuesta alcanzar esa situación en concreto? Suma del coste de las acciones del camino desde el estado inicial hasta ese estado

Un camino es una secuencia de operadores.

- 1. Conjunto de Estados
 - Abstracción
 - 2. Nivel Conceptual
 - 3. Nivel Lógico
 - 4. No de Estados
- 2. Estado Inicial
- 3. Estado Final
- 4. Operadores
 - 1. Definición/Nombre
 - 2. Precondición
 - 3. Estado resultante
 - 4. Poscondición
 - Precedencia
- 5. Coste
- 6. Grafo

- Representación de Estados
 - Abstracción de propiedades
 - Niveles de representación
 - Nivel conceptual: se especifican estados y operadores, sin hacer referencia a estructuras de datos o algoritmos que vayan a usarse
 - Descripción de todas las posibles situaciones en el problema
 - Hay descripciones válidas e inválidas (violan el enunciado)→ no son estados
 - > Enumeración de estados (solo los válidos)
 - > Formas de describir los estados:
 - Enumerativa.
 - Declarativa.
 - Nivel lógico: se elige una estructura de datos para los estados y se determina el formato de codificación de los operadores
 - > Importancia de una buena representación de los estados
 - Solo considerar información relevante para el problema
 - Representación suficiente y necesaria
 - La representación escogida influye en el numero de estados y éste en los procedimientos de búsqueda de soluciones

Operadores:

- Representan un conjunto finito de acciones básicas que transforman unos estados en otros
- Elementos que describen un operador
 - Aplicabilidad: precondición y postcondición
 - Estado resultante de la aplicación de un operador (aplicable) a un estado
 - Hay estados válidos pero inalcanzables (espacios no conexos)
- Criterio para elegir operadores.
 - Depende de la representación de los estados
 - Preferencia por representaciones con menor número de operadores (lo más generales y aplicables posible)
 - Ejemplo: en el 8-puzzle
 - > 32 operadores si consideramos el movimiento de los bloques
 - > 4 operadores si consideramos el movimiento del hueco

Solución

Resolución del problemas = búsqueda de la solución en el espacio de los posibles estados (grafo) en que se puede encontrar un problema

Una solución es un camino que conduce del estado inicial a un estado que satisface el test de objetivo

Solución óptima: la que minimiza la función de coste

Dominio	Número de estados	Tiempo (10 ⁷ nodos/s)
8-puzzle	$\left \left(\frac{N^2!}{2} \right) \right _{N=3} = 181,440$	0.01 segundos
15-puzzle	$\left. \left(\frac{N^2!}{2} \right) \right _{N=4} = 10^{13}$	11,5 días
24-puzzle	$\left.\left(rac{\mathit{N}^2!}{2} ight) ight _{\mathit{N}=5}=10^{25}$	$31,7 imes 10^9$ años
Hanoi (3,2)	$(3^n) _{n=2}=9$	$9 imes 10^{-7}$ segundos
Hanoi (3,4)	$(3^n) _{n=4}=81$	$8,1 imes10^{-6}$ segundos
Hanoi (3,8)	$(3^n) _{n=8} = 6561$	$6,5 imes 10^{-4} ext{ segundos}$
Hanoi (3,16)	$(3^n) _{n=16} = 4, 3 \times 10^7$	4,3 segundos
Hanoi (3,24)	$(3^n) _{n=24} = 2,824 \times 10^11$	0,32 días
Cubo de Rubik $2 \times 2 \times 2$	10 ⁶	0,1 segundos
Cubo de Rubik $3 \times 3 \times 3$	$4,32 \times 10^{19}$	31.000 años

Hanoi:
$$T(n) = 2T(n-1) + 1$$
; $T(1) = 1$; $T(n) = 2^{n} - 1$

- La búsqueda es la exploración simulada del grafo del espacio de estados por medio de la generación de sucesores de los estados ya explorados
 - Genera un <u>árbol de soluciones</u> a partir del <u>estado inicial</u> del Espacio de Estados y los operadores que generan estados
 - El árbol generado <u>depende del algoritmo de búsqueda</u> utilizado
- Nodo: estructura de datos que forma parte de un árbol de búsqueda
 - Frontera: conjunto de nodos pendientes de expandir
- Objetivo: encontrar una secuencia de operadores que, partiendo del estado inicial, obtenga un estado final

- Parámetros de un nodo:
 - Estado: basta con poder diferenciarlo de otros
 - Padre: nodo del que es sucesor
 - Hijos: nodos sucesores
 - Acción: acción que nos llevó del padre a hijo
 - Factor de ramificación, b: número de sucesores de un nodo (propiedad del grafo de estados)
 - Profundidad del árbol de búsqueda, d: número de pasos desde el origen (propiedad del problema concreto a resolver)
 - Coste, g(o,n): coste de ir desde el origen al nodo n $(\sum g_i)$

- El espacio de búsqueda (árbol) se construye incrementalmente sobre el espacio de estados (grafo)
- La elección del nodo a analizar en cada momento determina una estrategia de búsqueda
- Aunque el grafo sea finito, el árbol puede ser infinito (ciclos del grafo)
 - Nodos distintos del árbol pueden corresponderse con el mismo estado del espacio de estados

- Es imprescindible evitar la repetición de estados (ciclos del grafo) pero tiene un coste:
 - Evitar aplicación sucesiva de operadores inversos (barato)
 - Guardar o marcar estados del camino actual
 - Marcar todos los estados generados para evitar la repetición de cualquier estado (costoso)

 Hay que llegar a un compromiso entre lo que se intenta evitar y el coste de evitarlo

 Esto es un árbol (no un grafo) y ya está "optimizado"

- Los problemas
 - de un solo estado (single-state)
 - de conjuntos de estados (multiple-state)

se pueden resolver mediante estrategias de

búsqueda no informada o ciega (no hay información adicional disponible)

- El resto de problemas Y los problemas
 - single-state
 - multiple-state

demasiado complejos (con espacios de estados imposibles) requieren del uso de

búsqueda informada o heurística (las heurísticas ayudan a disminuir la complejidad del problema)

Contenido

- 1. Introducción
- 2. Problemas y resolución
- 3. Espacio de Estados
 - 1. Definición
 - 2. Búsqueda
- 4. Aplicación
- 5. Ejemplos

4. Aplicación

- Tipos de problemas:
 - Determinar si existe solución y encontrar un estado final.
 - Buscar cualquier solución lo más rápidamente posible.
 - Buscar todas las soluciones.
 - Buscar la solución más corta.
 - Buscar la solución menos costosa.

4. Aplicación

Casos reales

- Buscar rutas
 - Redes de ordenadores
 - Sistemas automáticos de guiado en viajes
 - Planificación de viajes
 - Problema del viajante: cada ciudad exactamente una vez
- Diseño del layout de VLSI
- Navegación de Robots
- Aplicaciones espaciales (Curiosity, etc.)
- Videojuegos
- Ensamblaje automático: el orden importa, búsqueda geométrica difícil
- Diseño de proteínas: plegado en 3D de fragmentos
- Búsqueda en internet: respuestas, precios, ...

Contenido

- 1. Introducción
- 2. Problemas y resolución
- 3. Espacio de Estados
 - 1. Definición
 - 2. Búsqueda
- 4. Aplicación
- 5. Ejemplos