bai genes annotation (contigs)

Chunyu Zhao

12 December, 2018

Contents

1	1 20181209	
	1.0.1 bai operons:	
	1.0.2 motivation	
	1.1 bai meta	
	1.2 rick's Q: how similar the bai genes and bsh genes are	
	1.3 pident and cov	
	1.4 per base coverage	
2	2 20181210	
	2.1 a complete bai operon detected	
	2.2 metadata	
	2.3 bysample	
	2.3.1 all five time points linear mixed effects	
	2.3.2 formula effect at 4.5 month	
	2.4 hyphylum	

$1 \quad 20181209$

It has become standard practice to use the bai genes as markers to predict the level of the DCA in a gut community. DCA production has been shown to limit the outgrowth of the enteric pathogen Clostridium difficile [9].

1.0.1 bai operons:

- gene clusters databases: collected 3 Clostridium species with known bai-operon; so for those contigs with known bai operon, we should annotate the genes.
- hub genes: baiCD and baiH genes.

1.0.2 motivation

Direct functional predictions based on gene homology alone can commonly results in misannotations if genes with distinct function share regions of high similarity, as specifically described for butyrate producing genes but and buk.

also, if the reads blasted to the genes covers enough, then the overlap between the reads should give us enough overlap information to assemble them.

Targeting the whole pathway for function predictions is hence a robust way to circumvent difficulties associated with the analysis based on specific genes only.

- two benefits of identify bai genes based on contigs annotation:
- 1) check whether the *whole* gene of interest is covered. (which is a limitation for reads blast approach)
- 2) virsualize things that are close together, which is operon, given long enough contigs.
- low diversity samples: easier to assemble

1.1 bai meta

Table 1: bai genes length

baiGene	Clostridium hiranonis DSM 13275	Clostridium hylemonae DSM 15053	Clostridium scindens ATCC 35704
baiA	750	0	747
baiB	1545	1542	1455
baiCD	1917	1920	1917
baiE	504	507	498
baiF	1278	1272	1278
baiG	1419	1425	1431
baiH	1983	1983	1983
baiI	543	546	552
barA	1236	954	1095

1.2 rick's Q: how similar the bai genes and bsh genes are.

"take genes already known, blast against each other, and how similar they are"

 $\bullet \ \ /\text{home/chunyu/} 20180725/20181001_\text{bai_blastp: I blastp known bai genes to the bai database and now let's part the results.}$

Ident dist for refseq bai gene familes

distribution for bai gene coverage

1.3 pident and cov

distribution for ident

distribution for bai gene coverage

1.4 per base coverage

2 20181210

Table 2: contigs with no phylum annot

baiGene	n
baiCD	239
baiE	1
baiA	1134
baiF	26
baiH	262

2.1 a complete bai operon detected

2.2 metadata

2.3 bysample

Non zero proportion of samples with bai genes

2.3.1 all five time points linear mixed effects

Table 3: lme result

Study month

bai	term	Value	Std.Error	DF	t.value	p.value	fdr
baiCD	EHF	0.3156	0.1435	28	2.199	0.03627	0.2619
baiCD	EHF:study_month1.5	-0.453	0.1933	108	-2.344	0.02091	0.1387
baiH	EHF:study_month1.5	-0.382	0.1746	108	-2.188	0.03082	0.1387
baiE	EHF:study_month2.5	0.2226	0.1105	108	2.015	0.04635	0.2086
baiI	EHF:study_month2.5	0.2743	0.1051	108	2.61	0.01035	0.09311
barA	EHF:study_month3.5	0.3226	0.1563	108	2.065	0.04134	0.09301
baiE	EHF:study_month3.5	0.297	0.1057	108	2.809	0.005906	0.02658
baiG	EHF:study_month3.5	0.1719	0.07874	108	2.183	0.03121	0.09301
baiI	EHF:study_month3.5	0.287	0.1005	108	2.855	0.005168	0.02658
baiE	EHF:study_month4.5	0.3872	0.1235	108	3.135	0.002215	0.009966
baiG	EHF:study_month4.5	0.2602	0.09223	108	2.821	0.005698	0.01709
baiI	EHF:study_month4.5	0.3998	0.1177	108	3.397	0.0009536	0.008582
baiCD	$study_month0.75$	0.4328	0.1492	108	2.9	0.004522	0.0407
baiH	$study_month0.75$	0.3228	0.1349	108	2.392	0.01846	0.08308
baiCD	$study_month1.5$	0.4954	0.1346	108	3.682	0.0003629	0.003266
baiH	$study_month1.5$	0.3843	0.1215	108	3.163	0.002028	0.009126
baiCD	$study_month2.5$	0.4686	0.1379	108	3.399	0.0009499	0.008549
baiH	$study_month2.5$	0.3714	0.1246	108	2.982	0.003545	0.01595
baiCD	$study_month3.5$	0.4716	0.1325	108	3.559	0.0005555	0.004999
baiH	$study_month 3.5$	0.3465	0.1197	108	2.895	0.004589	0.02065

bai	term	Value	Std.Error	DF	t.value	p.value	fdr
baiCD	$study_month4.5$	0.3476	0.1411	108	2.463	0.01535	0.1382

2.3.2 formula effect at 4.5 month

Table 4: lm result

baiGene	term	estimate	std.error	statistic	p.value	fdr
barA baiCD baiH	CMF-EHF CMF-EHF CMF-EHF	0.4462 0.4481 0.3902	$0.159 \\ 0.1505 \\ 0.165$	2.807 2.976 2.365	$\begin{array}{c} 0.01213 \\ 0.008471 \\ 0.03018 \end{array}$	$0.05459 \\ 0.05459 \\ 0.09055$

2.4 byphylum

• FOR further studies, we need to figure out why we have phylum == na

estimated BAI gene abundance from shotgun metagenomics data

Total BSH gene annotation

