

Medidas descriptivas de variables aleatorias multivariadas

Hossein T. Dinani

31 de Agosto 2023

Medidas descriptivas

- Para un set de datos describimos datos a través de :
 - Media
 - Desviación estándar : Estima dispersión
 - Varianza es la desviación estándar al cuadrado
 - Covarianza: estima la relación lineal entre dos variables aleatorias
 - Correlación: estima la relación estandarizada entre dos variables.
 - Distancia
 - Coeficiente de asimetría y kurtosis

Media

• La media para datos multivariados es un vector que contiene las medias de cada una de las variables:

$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{x}_1 \\ \vdots \\ \bar{x}_p \end{bmatrix}$$

donde
$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$
, $j = 1, ..., p$.

• También se puede escribirlo como $\bar{\mathbf{x}} = \frac{1}{n} X^T \mathbf{1}_{n \times 1}$, donde $\mathbf{1}_{n \times 1}$ es el vector identidad.

Varianza

• La varianza es la media de las distancias de los valores a su media al cuadrado:

$$\mathbf{s} = \begin{bmatrix} s_1^2 \\ \vdots \\ s_p^2 \end{bmatrix}$$

donde
$$s_j^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$$
, $j = 1, ..., p$.

• Nota que hemos ocupado la varianza insesgada que es un mejor estimador: Estamos usando la media muestral en lugar de la media poblacional.

Covarianza

 La covarianza determina el grado de variación conjunta de dos variables aleatorias respecto a sus medias:

$$s_{12} = cov(x_1, x_2) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_1)(x_{i2} - \bar{x}_2)$$

- La covarianza nos permite determinar si hay dependencia lineal entre las dos variables.
- En el caso multivariado, tenemos una covarianza para cada par de variables y se define una matriz de covarianza $S_{p \times p}$:

$$S = \begin{pmatrix} s_{11} & \cdots & s_{1p} \\ \vdots & \ddots & \vdots \\ s_{p1} & \cdots & s_{pp} \end{pmatrix}$$

donde los elementos en la diagonal son las varianzas: $s_{11} = s_1^2$.

• Matriz de covarianza es simétrica: $cov(x_i, x_j) = cov(x_j, x_i)$.

Matriz de covarianza

- El valor de la covarianza depende en las unidades de las variables.
- Por lo tanto con la matriz de covarianza solo se puede decir si hay una relación lineal entre las variables y su tendencia: No se puede comentar sobre la magnitud de la relación (fuerte o débil).
- El signo de la covarianza determina la tendencia en la relación lineal entre las dos variables:
 - Para $s_{ij} > 0$ la relación entre x_i y x_j es directa.
 - Si $s_{ij} < 0$ la relación es inversa.
- Si $s_{ij}=0$ no hay una relación lineal entre las dos variables.

Matriz de covarianza

• Podemos escribir la matriz de covarianza usando matriz de datos centrados:

$$\tilde{X} = X - \mathbf{1}_{n \times 1} \bar{\mathbf{x}}^T$$

Por lo tanto podemos escribir:

$$S = \frac{1}{n-1} \tilde{X}^T \tilde{X}$$

Propiedades de la matriz de covarianza

- Propiedades de la matriz de covarianza:
 - Es semi-definida positiva: sus valores propios $\lambda_i \geq 0$, j = 1, ..., p
 - $|S| = \prod_{j=1}^p \lambda_j \ge 0$.
 - Si |S| = 0 tenemos algunas variables que son combinación lineal de otras variables.
 - El rango de la matriz rg(S) está dado por numero de los valores propios que no sean cero
 - $Tr(S) = \sum_{j=1}^{p} s_j^2 = \sum_{j=1}^{p} \lambda_j$

Matriz de correlaciones

• La correlación es la versión normalizada de la covarianza:

$$r_{12} = \frac{cov(x_1, x_2)}{s_1 s_2}$$

La matriz de correlación:

$$R = \begin{pmatrix} 1 & \cdots & r_{1p} \\ \vdots & \ddots & \vdots \\ r_{p1} & \cdots & 1 \end{pmatrix}$$

donde r_{ij} ∈ [-1,1].

• La correlación mide la magnitud de la relación lineal entre dos variables aleatorias sin influencia de las unidades de las variables.

Matriz de correlación

- Podemos estandarizar las variables (sin unidades): $z_{ij} = \frac{x_{ij} \bar{x}_j}{s_j}$.
- La covarianza entre las variables estandarizadas z_i y z_j está dado por

$$r_{jk} = \frac{1}{n-1} \sum_{i=1}^{n} z_{ij} z_{ik}$$

• Se puede escribir la matriz de correlación en términos de la matriz de covarianza:

$$R = D^{-1/2} S D^{-1/2}$$

Donde D es una matriz diagonal que contiene las varianzas: $D = \begin{pmatrix} s_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_p^2 \end{pmatrix}$

Matriz de correlación

- Propiedades de la matriz de correlación
 - Es semi-definida positiva: sus autovalores $\lambda'_j \ge 0$, j = 1, ..., p
 - $|R| = \prod_{j=1}^p \lambda'_j \ge 0$
 - Si |R| = 0 tenemos algunas variables que son combinación lineal de otras variables
 - El rango de la matriz rg(R) esta dado por numero de los valores propios que no sean cero
 - $Tr(R) = \sum_{j=1}^{p} \lambda'_{j} = ?$

Transformación lineal

- Se utiliza una transformación lineal sobre la matriz de datos para cambio de unidades o cambiar numero de las variables.
- Consideramos $C_{p \times r}$ y definimos Y = XC, el vector de media $\overline{\mathbf{y}}_{r \times 1}$ y la matriz de covarianza están dados por

$$\bar{\mathbf{y}} = C^T \bar{\mathbf{x}}, \qquad S_y = C^T S_x C$$

Demuestra.

Transformación lineal: Ejemplo

Consideramos datos de Iris. La media y la matriz de covarianza están dados por

$$\bar{\mathbf{x}}^T = (5.84, 3.05, 3.75, 1.19),$$
 $S_x = \begin{pmatrix} 0.68 & -0.04 & 1.27 & 0.51 \\ -0.04 & 0.18 & -0.32 & -0.12 \\ 1.27 & -0.32 & 3.11 & 1.29 \\ 0.51 & -0.12 & 1.29 & 0.58 \end{pmatrix}$

 Para crear una nueva variable y que es la suma de largos y anchos de sépalo y pétalo, definimos

$$\mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

 \triangleright La media y varianza de $Y = X\mathbf{c}$ son?

Transformación lineal: Ejercicio

Escribe el set de datos de Iris basado en dos siguientes variables

Variable 1: La suma de la longitud del pétalo y del sépalo de cada flor

Variable 2: La suma del ancho del pétalo y del sépalo de cada flor

Estandarización

- Matriz de datos centrados: $\tilde{X} = X \mathbf{1}_{n \times 1} \overline{\mathbf{x}}^T$
- Definimos estandarización univariada: $Y = \tilde{X}D_x^{-1/2}$ donde D_x es la matriz diagonal que contiene las varianzas.
- El vector de media y la matriz de covarianza de la variable y:

$$\bar{\mathbf{y}} = \mathbf{0}_{p \times 1}, \qquad S_y = D_x^{-1/2} S_x D_x^{-1/2} = R_x$$

- Estandarización multivariada: $Z = \tilde{X}S_x^{-1/2}$
- El vector de media y la matriz de covarianza de la variable z:

$$\overline{\mathbf{z}} = \mathbf{0}_{p \times 1}$$
, $S_z = \left(S_x^{-1/2}\right)^T S_x S_x^{-1/2} = I_{p \times p}$

donde S_x es la matriz de covarianza de variable \mathbf{x} .

Las variables z son incorreladas.

Iris centrado

Iris: Estandarización univariada

Iris: Estandarización multivariada

Distancia

- Un procedimiento alternativo para estudiar la variabilidad de las observaciones es el concepto de distancia entre puntos.
- En el caso escalar $\sqrt{(x_i \bar{x})^2}$
- Para una variable vectorial, cada dato es un punto en \mathbb{R}^p . La distancia Euclídea se define

$$d_{ij} = \left(\sum_{k=1}^{p} (x_{ik} - x_{jk})^{2}\right)^{1/2} = \left[(\mathbf{x}_{i} - \mathbf{x}_{j})^{T} (\mathbf{x}_{i} - \mathbf{x}_{j}) \right]^{1/2}$$

• La distancia Euclídea depende de las unidades de las variables

Distancia

Ejemplo: Consideramos 3 individuos donde medimos su altura y su peso:

$$d_{A,B}^2 = (1.80 - 1.70)^2 + (80 - 72)^2 = 64.01, d_{A,C}^2 = 1.225$$

$$d_{A,C}^2 = 1.225$$

	Altura (m)	Peso (kg)
Α	1.80	80
В	1.70	72
С	1.65	81

- Si cambiamos la altura a cm: $d_{A,B}^2 = 164$, $d_{A,C}^2 = 226$.
- Una manera para evitar el problema de las unidades es dividir cada variable por un termino que elimina el efecto de la unidad

$$d_{ij} = \left[\left(\mathbf{x}_i - \mathbf{x}_j \right)^T M^{-1} \left(\mathbf{x}_i - \mathbf{x}_j \right) \right]^{1/2}$$

- Para M=D la matriz diagonal que contiene las varianzas: $d_{ij}=\left(\sum_{k=1}^{p}(\frac{x_{ik}-x_{jk}}{s_k})^2\right)^{1/2}$.
- Si $s_1 = 10$ cm, $s_2 = 10$ kg: $d_{A,B}^2 = 1.64$, $d_{A,C}^2 = 2.26$.
- M debe ser una matriz no singular y definida positiva para que $d_{ij} \geq 0$.

Distancia de Mahalanobis

• La distancia de Mahalanobis (MD), introducida por Mahalanobis en 1936, se define para M=S donde S es la matriz de covarianza:

$$d_{ij} = \left[\left(\mathbf{x}_i - \mathbf{x}_j \right)^T S^{-1} \left(\mathbf{x}_i - \mathbf{x}_j \right) \right]^{1/2}$$

Además de las unidades, la MD toma en cuenta la correlación entre las variables.

Distancia de Mahalanobis

Ejemplo: Consideramos el set de datos de peso y altura con la matriz de covarianza

$$S = \begin{pmatrix} s_1^2 & rs_1s_2 \\ rs_1s_2 & s_2^2 \end{pmatrix}$$

donde $s_1 = 10$ cm, $s_2 = 10$ kg, r = 0.7.

MD entre dos puntos (x_1, y_1) y (x_2, y_2) se puede escribir como

$$d_M = \left[\left(\mathbf{x}_i - \mathbf{x}_j \right)^T S^{-1} \left(\mathbf{x}_i - \mathbf{x}_j \right) \right]^{1/2}$$

$$d_M^2 = \frac{1}{1 - r^2} \left[\frac{(x_1 - x_2)^2}{s_1^2} + \frac{(y_1 - y_2)^2}{s_2^2} - 2r \frac{(x_1 - x_2)(y_1 - y_2)}{s_1 s_2} \right]$$

$$d_M^2(A, B) = 1.02, d_M^2(A, C) = 4.84$$