Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

# FYZIKÁLNÍ PRAKTIKUM

## Fyzikální praktikum 3

**Zpracoval:** Tomáš Plšek **Naměřeno:** 23. března 2018

Obor: Astrofyzika Ročník: II Semestr: IV Testováno:

#### Úloha č. 1: Studium činnosti fotonásobiče

#### Úkoly:

- 1. Stanovte závislost sekundární emise na energii elektronů dopadajících na dynodu. Vyneste do grafu i závislost  $\ln(\sigma/V) = f(V)$ . Zjistěte, jestli koeficient sekundární emise  $\sigma$  závisí na intenzitě osvětlení fotokatody.
- 2. Stanovte a vyneste do grafu závislost integrální citlivosti fotonásobiče a zesílení fotonásobiče na napětí na násobiči  $S = f(U_a)$  a  $M = f(U_a)$ .
- 3. Stanovte integrální citlivost fotokatody  $k = I_f/\Phi$ .
- 4. Prověřte vliv temného proudu na přesnost měření.

# 1. Úvod

V této úloze se budeme zabývat fotonásobičem a jeho vlastnostmi. Jedná se o elektro-optický přístroj, jež je schopný snímat světelné signály o velmi nízké intenzitě. Fotonásobiče fungují na principu fotoemise, k níž dochází na fotokatodě, a následné sekundární emise, jež se odehrává na dynodách.

Proud na fotokatodě závisí na světelném toku podle Štoletovova zákona:

$$I_f = k \cdot \Phi \tag{1}$$

kde k je integrální citlivost fotokatody. Proud  $I_f$  se na první dynodě zvýší na hodnotu  $I_1 = \sigma I_f$ , kde  $\sigma$  je koeficient sekundární emise. Děj se následně opakuje i na ostatních dynodách. Poslední dynodou tedy bude protékat proud:

$$I_a = \sigma^n \cdot I_f, \tag{2}$$

kde n je počet dynod. Hodnota  $\sigma^n$  se označuje jako zesílení fotonásobiče M a součin zesílení a integrální citlivosti fotokatody se označuje integrální citlivost fotonásobiče:

$$S = M k. (3)$$

Fotonásobičem však teče určitý proud i při nulovém osvětlení. Jedná se o tzv. temný proud, jež je převážně způsobený termoemisí z fotokatody. Lze jej tedy potlačit ochlazením fotokatody.

#### 2. Měření

Nejprve při nulovém osvětlení fotokatody změříme pro různá napětí proud na dynodách a určíme tzv. temný proud fotonásobiče.

Tabulka 1: Temný proud fotonásobiče.

| $U_a$ [V] | $I_a [\mu A]$ | $I_{12} [\mu A]$ | $I_{10} [\mu A]$ |
|-----------|---------------|------------------|------------------|
| 632       | 0             | 0.03             | 0                |
| 770       | 0             | 0.05             | 0                |
| 849       | 0             | 0.06             | 0                |
| 920       | 0.1           | 0.08             | 0                |
| 978       | 0.2           | 0.10             | 0                |
| 996       | 0.3           | 0.13             | 0                |

Z tabulky 1 vidíme, že temný proud se začíná projevovat až při velmi vysokých napětích  $(U_a > 900 \text{ V})$  a to ještě velmi slabě. Rozhodl jsem se proto v dalších měřeních jeho vliv zanedbávat. Nyní proměříme hodnoty proudů na 12. a 10. dynodě v závislosti na osvětlení pro dvě různá napětí a pokusíme se zjistit, zda koeficient sekundární emise závisí na hodnotě osvětlení.

Tabulka 2a: Závislost koeficientu sekundární emise na osvětlení při  $U_a=833~{\rm V}.$ 

| $\Phi [10^{-4} \text{Lm}]$ | $I_{12} [\mu A]$ | $I_{10} [\mu A]$ | $\sigma$ |
|----------------------------|------------------|------------------|----------|
| 0.9                        | 3.02             | 0.25             | 3.47     |
| 0.67                       | 2.35             | 0.19             | 3.51     |
| 0.52                       | 1.92             | 0.16             | 3.46     |
| 0.43                       | 1.38             | 0.11             | 3.54     |
| 0.34                       | 0.96             | 0.07             | 3.70     |
| 0.27                       | 0.78             | 0.06             | 3.60     |
| 0.21                       | 0.61             | 0.04             | 3.90     |
| 0.16                       | 0.55             | 0.03             | 4.28     |

Hodnota koeficientu sekundární emise  $\sigma = 3.7 \pm 0.3$ .

Tabulka 2<br/>b: Závislost koeficientu sekundární emise na osvětlení při<br/>  $U_a=885~{\rm V}.$ 

| $\Phi [10^{-4} \text{Lm}]$ | $I_{12} [\mu A]$ | $I_{10} [\mu A]$ | $\sigma$ |
|----------------------------|------------------|------------------|----------|
| 0.9                        | 6.06             | 0.45             | 3.66     |
| 0.67                       | 4.71             | 0.35             | 3.66     |
| 0.52                       | 3.71             | 0.27             | 3.70     |
| 0.43                       | 2.32             | 0.17             | 3.69     |
| 0.34                       | 1.66             | 0.12             | 3.71     |
| 0.27                       | 1.34             | 0.09             | 3.85     |
| 0.21                       | 1.01             | 0.07             | 3.79     |
| 0.16                       | 0.96             | 0.06             | 4.0      |

Hodnota koeficientu sekundární emise při  $\sigma = 3.8 \pm 0.1.$ 



Graf 1: Závislost koeficientu sekundární emise na hodnotě osvětlení.

Z grafu 1 vidíme, že koeficient sekundární emise na osvětlení prakticky nezávisí. Nárůst při nízkých hodnotách osvětlení je nejspíše způsoben chybou měřidla, neboť proud měřený na 10. dynodě je velmi nízký (viz tabulky 2a a 2b).

Pro tři různé hodnoty osvětlení nyní proměříme závislosti proudů na dynodách na anodovém napětí, určíme závislost  $\ln(\sigma/V) = f(V)$  a závislost zesílení a integrální citlivosti fotonásobiče na anodovém napětí a stanovíme hodnotu integrální citlivosti fotokatody k.

Tabulka 3a: Závislost proudů na jednotlivých dynodách, zesílení a integrální závislosti fotonásobiče na anodovém napětí při  $\Phi = 0.90 \cdot 10^{-4}$  Lm.

| $U_a$ [V] | $I_a [\mu A]$ | $I_{12} [\mu A]$ | $I_{10} [\mu A]$ | $\ln(\sigma/V)$ | $M [10^6]$ | $S \left[ A \cdot Lm^{-1} \right]$ | $k \left[ \text{nA} \cdot \text{Lm}^{-1} \right]$ |
|-----------|---------------|------------------|------------------|-----------------|------------|------------------------------------|---------------------------------------------------|
| 637       | 2.3           | 0.52             | 0.06             | -2.74           | 3.67       | 0.026                              | 6.96                                              |
| 700       | 4.8           | 0.87             | 0.09             | -2.78           | 7.89       | 0.053                              | 6.76                                              |
| 753       | 9.3           | 1.47             | 0.14             | -2.81           | 14.07      | 0.103                              | 7.34                                              |
| 799       | 15.6          | 2.23             | 0.20             | -2.84           | 21.43      | 0.173                              | 8.09                                              |
| 854       | 27.9          | 3.65             | 0.30             | -2.86           | 39.46      | 0.310                              | 7.86                                              |
| 895       | 40.9          | 4.90             | 0.38             | -2.88           | 59.28      | 0.454                              | 7.67                                              |
| 930       | 50.0          | 5.94             | 0.45             | -2.91           | 69.83      | 0.556                              | 7.96                                              |
| 954       | 58.6          | 6.80             | 0.49             | -2.91           | 99.13      | 0.651                              | 6.57                                              |
| 978       | 69.8          | 8.04             | 0.57             | -2.92           | 111.09     | 0.776                              | 6.98                                              |
| 1000      | 85.5          | 9.52             | 0.65             | -2.93           | 144.57     | 0.950                              | 6.57                                              |

Tabulka 3b: Závislost proudů na jednotlivých dynodách, zesílení a integrální závislosti fotonásobiče na anodovém napětí při  $\Phi=0.52\cdot 10^{-4}$  Lm.

| $U_a$ [V] | $I_a [\mu A]$ | $I_{12} [\mu A]$ | $I_{10} [\mu A]$ | $\ln(\sigma/V)$ | $M [10^6]$ | $S \left[ A \cdot Lm^{-1} \right]$ | $k  [\mathrm{nA \cdot Lm^{-1}}]$ |
|-----------|---------------|------------------|------------------|-----------------|------------|------------------------------------|----------------------------------|
| 592       | 0.8           | 0.25             | 0.03             | -2.68           | 2.79       | 0.016                              | 5.86                             |
| 627       | 2.0           | 0.38             | 0.04             | -2.68           | 6.98       | 0.039                              | 5.65                             |
| 675       | 4.1           | 0.75             | 0.07             | -2.69           | 16.21      | 0.079                              | 4.86                             |
| 732       | 8.3           | 1.25             | 0.11             | -2.74           | 24.47      | 0.160                              | 6.52                             |
| 783       | 15.7          | 2.09             | 0.17             | -2.77           | 42.45      | 0.302                              | 7.11                             |
| 812       | 22.9          | 2.93             | 0.22             | -2.77           | 74.32      | 0.440                              | 5.93                             |
| 833       | 31.2          | 3.69             | 0.27             | -2.78           | 89.05      | 0.599                              | 6.73                             |
| 848       | 35.8          | 4.16             | 0.30             | -2.79           | 98.58      | 0.688                              | 6.97                             |
| 866       | 44.6          | 5.11             | 0.35             | -2.78           | 141.41     | 0.858                              | 6.07                             |
| 881       | 48.9          | 5.41             | 0.36             | -2.79           | 173.09     | 0.940                              | 5.43                             |

Tabulka 3c: Závislost proudů na jednotlivých dynodách, zesílení a integrální závislosti fotonásobiče na anodovém napětí při  $\Phi=0.34\cdot 10^{-4}$  Lm.

| $U_a$ [V] | $I_a [\mu A]$ | $I_{12} [\mu A]$ | $I_{10} [\mu A]$ | $\ln(\sigma/V)$ | $M [10^6]$ | $S \left[ A \cdot Lm^{-1} \right]$ | $k  [\mathrm{nA \cdot Lm^{-1}}]$ |
|-----------|---------------|------------------|------------------|-----------------|------------|------------------------------------|----------------------------------|
| 654       | 1.4           | 0.29             | 0.03             | -2.71           | 7.89       | 0.043                              | 5.41                             |
| 696       | 2.7           | 0.46             | 0.04             | -2.69           | 26.60      | 0.079                              | 2.99                             |
| 734       | 4.4           | 0.66             | 0.05             | -2.67           | 69.83      | 0.129                              | 1.85                             |
| 776       | 6.8           | 0.94             | 0.07             | -2.72           | 78.74      | 0.200                              | 2.54                             |
| 806       | 9.7           | 1.23             | 0.09             | -2.75           | 89.05      | 0.285                              | 3.20                             |
| 840       | 12.8          | 1.59             | 0.11             | -2.76           | 131.84     | 0.376                              | 2.86                             |
| 867       | 17.4          | 2.07             | 0.14             | -2.78           | 154.49     | 0.513                              | 3.32                             |
| 905       | 25.8          | 2.82             | 0.18             | -2.79           | 231.65     | 0.760                              | 3.28                             |
| 928       | 33.6          | 3.54             | 0.22             | -2.80           | 279.30     | 0.988                              | 3.54                             |
| 963       | 43.4          | 4.52             | 0.27             | -2.82           | 368.49     | 1.278                              | 3.47                             |



Graf 2: Grafická závislost  $\ln(\sigma/V) = f(V)$  pro tři různé hodnoty osvětlení.

Hodnota přirozeného logaritmu poměru koeficientu sekundární emise a napětí mezi dvěma následujícími dynodami s rostoucím napětím určitou dobu roste a od jisté hodnoty začíná lineárně klesat (graf 2). Při osvětlení  $\Phi = 0.9 \cdot 10^{-4}$  Lm vidíme pouze pokles, dá se však očekávat, že pro nižší hodnoty napětí bude průběh křivky velmi podobný.

V grafu 3 vidíme, že hodnota zesílení fotonásobiče s rostoucím osvětlením klesá. Podobným způsobem závisí na osvětlení i integrální citlivost fotonásobiče viz graf 4.

### 3. Závěr

V prví části jsem stanovil temný proud fotokatody a rozhodl jsem se jeho vliv zanedbávat.

Následně jsem proměřil závislost koeficientu sekundární emise na světelném toku a zjistil jsem, že do jisté hodnoty na světelném toku nezávisí. Při nižších hodnotách světelného toku a tedy i velmi nízkých hodnotách proudu na 10. dynodě se začíná projevovat nejistota měřidla.

V poslední části jsem proměřil závislost  $\ln(\sigma/V) = f(V)$  a závislost zesílení fotonásobiče M a integrální citlivosti fotonásobiče S na anodovém napětí a zjistil jsem, že integrální citlivost i zesílení fotonásobiče s rostoucím osvětlením klesá.



Graf 3: Závislost zesílení fotonásobiče Mna anodovém napětí  $U_a.$ 



Graf 4: Závislost integrální citlivosti fotonásobiče Sna anodovém napětí  $U_a.$