University of Salzburg

Machine Learning (911.236)

Exercise sheet A

Exercise 1. 2 P.

Lets consider the class \mathcal{H} of Boolean conjunctions over (at most) d Boolean literals.

Our domain set here is $X = \{0, 1\}^d$ and the label set is $\mathcal{Y} = \{0, 1\}$. A Boolean literal $x_i, i \in [d]$ is either one, zero or not included in the conjunction. We say the empty conjunction *always* returns 1. For instance, with d = 3, we could have a conjunction of the form $x_1 \wedge \overline{x_3}$ as one possible hypothesis (reading: x_1 and not x_3 – here, x_2 does not appear at all).

Example: Take d=3 and let, for the sake of argument, the true labeling function be $x_1 \wedge \overline{x_3}$. In that case, a training $\overline{\text{set (of size } m = 3)}$ could look like this:

$$S = (((1, 0, 1), 0), ((0, 0, 1), 0), ((1, 0, 0), 1))$$

Show that \mathcal{H} is PAC learnable via ERM. That is, show that for any labeling function, f, and any distribution \mathcal{D} over X, if realizability holds, then with probability $1 - \delta$ over the choice of

$$m \geq \dots$$

samples (drawn i.i.d. according to \mathcal{D} and labeled by f), we have that $L_{\mathcal{D},f}(h_S) \leq \epsilon$.

Hint: Look at the hypothesis class H carefully (does this fall into the already discussed setting of the lecture?)

Exercise 2. 2 P.

Lets consider the hypothesis class of *monotone* conjunctions over (at most) d Boolean literals (monotone means we do not have negated Boolean literals). Our domain set is $\mathcal{X} = \{0, 1\}^d$, the label set is $\mathcal{Y} = \{0, 1\}$. One example, for d = 3, would be $h(\mathbf{x}) = x_1 \wedge x_3$, but $x_1 \wedge \overline{x}_3$ would not be in that class). Assume realizability and specify an ERM algorithm.

Exercise 3. 3 P.

Let X be a discrete domain set, $\mathcal{Y} = \{0, 1\}$ our label set and let

$$\mathcal{H} = \{h_z : z \in \mathcal{X}\} \cup h^-$$

where

$$h_z(x) = \begin{cases} 1, & \text{if } x = z \\ 0, & \text{otherwise} \end{cases}$$

Here, h^- denotes the hypothesis that is constant 0, i.e., $\forall x \in \mathcal{X} : h(x) = 0$.

Proof that \mathcal{H} is PAC learnable via ERM. That is, show that for any labeling function, f, and any distribution \mathcal{D} over X, if realizability holds, then with probability $1 - \delta$ over the choice of

$$m \geq \dots$$

samples (drawn i.i.d. according to \mathcal{D} and labeled by f), we have that $L_{\mathcal{D},f}(h_S) \leq \epsilon$. Assuming realizability, here would be one ERM algorithm (returning the ERM hypothesis h_S): if there is a positive instance, x^+ , in the training set S, we return h_{x^+} . If no positive instance exists in S, return h^- .

Hint: Make a case distinction for the case where (1) h^- is the true labeling function and (2) there actually is a unique positive instance in S, i.e., the true labeling function, f was some h_z . What are the cases where $L_{\mathcal{D},f}(h_S) > \epsilon$?

Total #points: 7 P.

Lecturer: Roland Kwitt