

Modulbeschreibung

Projekt: MSS60 Modul: Kattemperaturmodell

Seite 1 von 3

Projekt: MSS54

Modul: Kattemperaturmodell

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	03.03.05		TKATM.DOC

Modulbeschreibung

Projekt: MSS60 Modul: Kattemperaturmodell

Seite 2 von 3

x. Kattemperaturmodell

x.1 Berechnung der Kattemperatur

Die Berechnung der Kattemperatur erfolgt alle 100ms in Abhängigkeit von der gemessenen Abgastemperatur und der Luftmasse ml.

Bei der Berechnung werden die Fälle Motor läuft und Motor steht unterschieden:

a) Motor läuft

wenn die Abgastemperatur größer ist als die des Kattemperaturmodells, dann wird der Kat aufgeheizt dies erfolgt indem der Temperaturunterschied (tabg zu tkatm_oex) mit dem Wert der Kennlinie KL_TKATM_AUFHEIZ (abhängig von ml) multipliziert wird

wenn die Abgastemperatur kleiner ist als die des Kattemperaturmodells, dann wird der Kat abgekühlt dies erfolgt indem der Temperaturunterschied (tabg zu tkatm_oex) mit dem Wert der Kennlinie KL_TKATM_ABKUEHL (abhängig von ml) multipliziert wird

wenn die Modelltemperatur ohne exothermen Anteil (tkatm_oex) größer ist als die Konstante K_TKATM_ANSPRING ist der Kat angesprungen. Über eine Rampe K_TKATM_EXO_DELT_AUF wird der exotherme Anteil (tkatm_ex) bis K_TKATM_EXOTHERM_MAX aufgeregelt.

Abgregelt wird der exotherme Anteil, wenn tkatm_oex < (K_TKATM_ANSPRING-K_TKATM_AUS_HYS). Die Rampe heißt dabei K_TKATM_EXO_DELT_AB.

b) Motor steht

eine Berechnung kann nur erfolgen falls das Kombi die Relativzeit t_relativ liefert, sonst bleibt das Kattemperaturmodell eingefroren

bei bekannter Standzeit, erfolgt eine Angleichung auf die Ansauglufttemperatur tkatm_oex_int = tkatm_off * tkatm_oex_faktor + tan

 $der\ Faktor\ folgt\ aus\ der\ Kennlinie\ KL_TKATM_STAND\ abhängig\ von\ t_motor_steht;$

tkatm_off ist der Wert des Kattemperaturmodells beim Abstellen des Motors

x.2 Initialisierung der Abgastemperatur

Die Initialisierung teilt sich in zwei Stufen auf.

Bei der ersten Initialisierung liegt die Echtzeit vom Kombi noch nicht vor. Deshalb wird das Kattemperaturmodell mit der Abgastemperatur vorinitialisiert.

Erfolgt eine zweite Initialisierung (ca. nach 140ms) durch den CAN, so wird die Modelltemperatur einmalig, wie bei Motor steht berechnet.

x.3 Variablen

tkatm Temperatur des Katmodells

tkatm_oex Temperatur des Katmodells ohne exothermen Anteil

tkatm_ex Temperatur exothermer Anteil

		Abteilung	Datum	Name	Filename
	Bearbeiter	ZS-M-57	03 03 05		TKATM DOC

Modulbeschreibung

Projekt: MSS60 Modul: Kattemperaturmodell

Seite 3 von 3

x.4 applizierbare Konstanten

K_TKATM_ANSPRING Anspringtemperatur des Kats
K_TKATM_AUS_HYS Hysteres der Anspringtemperatur
K_TKATM_EXOTHERM_MAX Maximaler exothermer Anteil
K_TKATM_EXO_DELT_AUF Abregelrampe exothermer Anteil

x.5 applizierbare Kennlinien

KL_TKATM_AUFHEIZ Aufheizungsfaktor des Kats in Abhängigkeit von der Luftmasse ml

(multipliziert mit der Diff. tabg-tkatm_oex ergibt die Erwärmung pro Minute)

KL_TKATM_ABKUEHL Abkuehlungsfaktor des Kats in Abhängigkeit von der Luftmasse ml

(multipliziert mit der Diff. tabg-tkatm_oex ergibt die Abkuehlung pro Minute)

KL_TKATM_STAND Angleichungsfaktor der Temperaturdifferenz zwischen tabg und tkatm in

Abhängigkeit der Standzeit des Motors

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	03.03.05		TKATM.DOC