Aufgabenblatt Mengenoperationen Lösungen

- 1) a) AUB = { x | x = 12 oder x = 1B} = { 1,4,6,2,3,5}
 - b) (AUB) n C = {x | xe (AUB) und xe C} = {4,5,6}
 - c) $\mathbb{C} \setminus \mathbb{A} = \{ \times \mid \times \in \mathbb{C} \text{ und } \times \notin \mathbb{A} \} = \{ 5,7,8 \}$ $(\mathbb{C} \setminus \mathbb{A}) \cup \mathbb{B} = \{ \times \mid \times \in (\mathbb{C} \setminus \mathbb{A}) \text{ oder } \times \in \mathbb{B} \} = \{ 5,7,8,4,3,5 \}$
 - d) IBn $A = \{x \mid x \in \mathbb{B} \text{ und } x \in \mathbb{A}\} = \{1\}$ $\mathbb{C} \setminus (\mathbb{B} \cap \mathbb{A}) = \{x \mid x \in \mathbb{C} \text{ und } x \notin (\mathbb{B} \cap \mathbb{A})\} = \{4,5,6,7,8\} = \mathbb{C}$
- 2) a) $A \cup B = \{ \times | \times \in A \text{ oder } \times \in B \}$ = $\{ \times \in G \mid \times \text{ ist genode oder } \times \text{ ist kleiner als 50} \}$ (= $\{ 1,2,3,...,48,49,50,52,54,56,... \}$)
 - b) $\overline{A} = G \setminus A = \{x \mid x \in G \text{ und } x \notin A\}$ $= \{x \in G \mid x \text{ ist nicht gerade}\}$ $= \{x \in G \mid x \text{ ist ungerade}\}$
 - c) $\overline{\mathbb{C}} = \mathbb{G} \setminus \mathbb{C} = \{ x \in \mathbb{G} \mid x \notin \{1,3,5,7,9\} \}$ = $\{ 2,4,6,8,10,11,12,13,... \}$
 - $\mathbb{C} \setminus A = \{ \times \mid \times \in \mathbb{C} \text{ und } \times \notin A \}$ = $\{ \times \mid \times \in \mathbb{C} \text{ und } \times \text{ ist nicht genode} \}$ = $\{ 11, 15, 15, ... \}$
 - d) $\overline{\mathbb{G}} = \{x \in G \mid x \text{ ist nicht kleiner als 50}\}$ $= \{x \in G \mid x \ge 50\}$ $\overline{\mathbb{G}} \cap A = \{x \in G \mid x \ge 50 \text{ und } x \text{ ist genade}\}$ $(= \{50, 52, 54, ... \})$
- 3) (Es gibt immer mehrere nichtige Antworken)
 - a) (AUB) (AnB) (oder (ANB) U(BNA))
 - b) (AnB) U(AnC) U(BnC)
 - c) (AnB)\C
 - d) (AnB) UC

Aufgabe 4. Welche der folgenden Aussagen sind richtig?

(e) $\mathbb{N}_0 \setminus \mathbb{N} = \{0\} \checkmark$

(b)
$$\emptyset \in \mathcal{P}(\emptyset) \checkmark$$

(f) $\mathcal{P}(\{1,2\}) = \{\{1\},\{2\},\{1,2\}\} \times$

(c)
$$\mathbb{N} \cap \mathbb{Q} = \mathbb{N}_0 \times$$

(g) $\mathcal{P}(\{1,2\}) \cap \mathbb{N} = \emptyset \checkmark$

(d)
$$(\mathbb{Q} \setminus \mathbb{N}_0) \cup \mathbb{Z} = \mathbb{Z} \times$$

(h) $\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\} \checkmark$

Aufgabe 5. Von den Schüler*innen einer Klasse spielen 6 kein Instrument. 10 Schüler*innen spielen Violine und 7 spielen Klavier. Ferner gibt es 12 Flötenspieler*innen in der Klasse, von denen alle mit Ausnahme von dreien noch mindestens ein weiteres Instrument spielen, nämlich 6 Violine und 5 Klavier. Von den Violinist*innen spielen 3 kein weiteres Instrument.

Grundmenge G ist die Menge aller Schüler*innen.

V 154 die Henge aller Violinespieler*innen.

K ist die Henge aller Klavierspieler*innen.

F 13t die Menge aller Flōtenspieler*innen.

card(T) = 12, 3 von den 12 haben wir schon eingetragen, also bleiben noch 9

card(FnV) = 6 sind zusammen M, also mūssen 2(=11-9) Schūler*innen Flōte, Klavier und Violine spielen

=> 6-2=4 spielen Flöte und Violine, aber nicht Klavier 5-2=3 spielen Flöte und Klavier, aber nicht Violine card(V) = 10, 3+4+2=9 von den 10 haben wir schon eingetragen, also bleiben noch 1 card(K) = 7, 1+2+3=6 von den 7 haben wir schon eingetragen, also bleiben noch 1

a)
$$cord(G) = 6+3+1+1+4+2+3+3=23$$

d)
$$1 + 2 = 3$$

card(P(A))	
2	21
4	2 ²
8	2 ³
1G :	24
	2 4 8

7) Aufgabe 7. Gelten die folgenden Gleichungen?

(a)
$$(\mathbb{A} \cup \mathbb{B}) \cup \mathbb{C} = \mathbb{A} \cup (\mathbb{B} \cup \mathbb{C}) \checkmark$$

(b)
$$(A \cap B) \cup C = A \cap (B \cup C) \times$$

(c)
$$\mathbb{G} \setminus (\mathbb{A} \cup \mathbb{B}) = (\mathbb{G} \setminus \mathbb{A}) \cup (\mathbb{G} \setminus \mathbb{B}) \times$$

$$(\mathrm{d}) \ \mathbb{G} \setminus (\mathbb{A} \cup \mathbb{B}) = (\mathbb{G} \setminus \mathbb{A}) \cap (\mathbb{G} \setminus \mathbb{B}) \checkmark$$

8) a)
$$A \times IB = \{(x,y) \mid x \in A \text{ und } y \in IB\}$$

= $\{(0,6),(0,7),(1,6),(1,7)\}$

b)
$$A \times IB = \{ (blau, Haus), (blau, Boot), (rot, Haus), (rot, Boot), (qelb, Haus), (qelb, Boot) \}$$

c)
$$\emptyset \times \mathbb{A} = \{(x,y) \mid x \in \emptyset \text{ und } y \in \mathbb{A}\} = \emptyset$$
es gibt kein x, doss dies erfüllt