Prova d'esame del 23/07/2018 - Turno B

Si consideri il database "new_ufo_sightings", contenente informazioni su oltre 80.000 avvistamenti di presunti UFO tra il 1910 ed il 2014. Il database (modificato a partire dai dati presenti su Kaggle all'indirizzo: https://www.kaggle.com/NUFORC/ufo-sightings) contiene solamente i dati relativi agli avvistamenti degli stati uniti ed è strutturato secondo il diagramma ER della pagina seguente. Nel database è contenuta anche l'informazione sui confini tra i diversi stati USA.

Si intende costruire un'applicazione JavaFX che permetta di interrogare tale base dati. L'applicazione dovrà svolgere le seguenti funzioni:

PUNTO 1

- a. Permettere all'utente di inserire nelle apposite caselle di testo un <u>numero di giorni</u> xG (con valori tra il 1 e 180, estremi inclusi) e l'anno da considerare (con valori tra il 1906 ed il 2014, estremi inclusi).
- b. Facendo click sul bottone CREA GRAFO, creare un grafo semplice, pesato e non orientato, i cui vertici siano tutti gli stati presenti nella tabella "state". Un arco collega due stati solo se sono confinanti, come indicato nella tabella "neighbor".
- Il peso dell'arco viene calcolato come la somma del numero di avvistamenti verificatisi nei due stati considerati, purché che si siano verificati al

Utilizzare la funzione DATEDIFF di mysql per calcolare la differenza in giorni tra campi datetime.

Es. DATEDIFF("1964-06-15 13:00:00", "1964-04-15 22:00:00")

d. Stampare per ogni stato la somma dei pesi degli archi adiacenti.

PUNTO 2

- a. Effettuare la simulazione del livello di allerta di ciascuno stato a seguito degli avvistamenti ufo nel periodo considerato. Il livello di allerta è chiamato DEFCON e varia su una scala da 5 ad 1, dove 5 è il livello di allerta minima, mentre 1 è quella massima. Inizialmente tutti gli stati si trovano al livello DEFCON 5. Non è mai possibile scendere sotto il livello DEFCON 1 o salire sopra DEFCON 5.
- b. L'utente inserisce due parametri: il tempo **T1** e **T2** (espressi in giorni e < 365).
- c. Alla pressione del bottone *SIMULA*, considerando tutti gli eventi selezionati al punto 1 (filtrati per **xG** giorni ed **anno**), ogni avvistamento decrementa il livello DEFCON di un'unità nello stato in cui si verifica. Dopo un tempo pari a **T1** il livello DEFCON viene nuovamente incrementato di 1.
- d. Se uno stato raggiunge il livello DEFCON 1, il governo entra in "emergenza" per un tempo pari a **T2**; in tale condizione si ignorano tutti gli avvistamenti nello stato. Successivamente, l'emergenza rientra e si ritorna al livello DEFCON 5.
- e. La simulazione termina quando non ci sono più eventi da processare, anche se la data dell'evento è successiva all'anno considerato. Alla fine della simulazione stampare quante volte ciascuno stato ha raggiunto il livello di allerta massima (DEFCON 1).

NOTA: dato un oggetto LocalDateTime, è possibile calcolare la nuova data in **n** giorni successivi utilizzando il metodo *plusDays(n)* di LocalDateTime.

Fonte: https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html#plusDays-long-

Nella realizzazione del codice, si lavori a partire dalle classi (Bean e DAO, FXML) e dal database contenuti nel progetto di base. È ovviamente permesso aggiungere o modificare classi e metodi.

Tutti i possibili errori di immissione, validazione dati, accesso al database, ed algoritmici devono essere gestiti, non sono ammesse eccezioni generate dal programma.

