TODO!!!

Definice 0.1 (Dot product on the space of matrices)

$$\mathbb{A}: \mathbb{B} = \operatorname{tr}(\mathbb{A}\mathbb{B}^T).$$

Definice 0.2 (Norm of matrix)

$$|\mathbb{A}| = (\mathbb{A} : \mathbb{A})^{\frac{1}{2}}.$$

 $P\check{r}iklad$

$$(\mathbf{a} \otimes \mathbf{b})^T = \mathbf{b} \otimes \mathbf{a}.$$

 □ Důkaz

$$\mathbf{u}\cdot(\mathbf{a}\otimes\mathbf{b})^T\mathbf{v}=(\mathbf{a}\otimes\mathbf{b})\mathbf{u}\cdot\mathbf{v}=(\mathbf{a}(\mathbf{b}\cdot\mathbf{u}))\mathbf{v}=(\mathbf{b}\cdot\mathbf{u})(\mathbf{a}\cdot\mathbf{v})=\mathbf{u}\cdot(\mathbf{b}(\mathbf{a}\cdot\mathbf{v}))=\mathbf{u}\cdot(\mathbf{b}\otimes\mathbf{a})\mathbf{v}.$$

Příklad

$$\det(e^{\mathbb{A}}) = e^{\operatorname{tr} \mathbb{A}}.$$

Důkaz

$$e^{\mathbb{A}} = \lim \left(\mathbb{I} + \frac{\mathbb{A}}{n} \right)^n.$$

$$\det e^{\mathbb{A}} = \lim_{n \to \infty} \left(\det \left(\mathbb{I} + \frac{\mathbb{A}}{n} \right)^n \right) = \lim_{n \to \infty} \left(\det \left(\mathbb{I} + \frac{\mathbb{A}}{n} \right) \right)^n = ?$$

Subtask: Is there an approximation for $\det(\mathbb{I} + \mathbb{S})$, where \mathbb{S} is a "small" matrix. Yes, we did it (KontinuumDU1.pdf) for $\mathbb{S} \in \mathbb{R}^{3\times 3}$:

$$\det(\mathbb{I} + \mathbb{S}) = \det\mathbb{I} + \operatorname{tr}(\mathbb{I}\operatorname{cof}\mathbb{S}) + \operatorname{tr}(\mathbb{S}^T\operatorname{cof}\mathbb{I}) + \det\mathbb{S} \approx 1 + \operatorname{tr}(\mathbb{S}^T\operatorname{cof}\mathbb{I}) + o(\mathbb{S}^2) = 1 + \operatorname{tr}(S) + o(\mathbb{S}^2).$$

And for $\mathbb{S} \in \mathbb{R}^{n \times n}$, one can see that:

$$\det(\mathbb{I} + \mathbb{S}) = \begin{pmatrix} 1 + s_{11} & s_{12} & \dots & s_{1n} \\ s_{21} & 1 + s_{22} & \dots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \dots & 1 + s_{nn} \end{pmatrix} = (1 + s_{11})(1 + s_{22}) \cdot \dots \cdot (1 + s_{nn}) + o(\mathbb{S}^2) = 1 + s_{11} + s_{22} + \dots + s_{nn} + o(\mathbb{S}^2) = 1 + \text{tr } \mathbb{S} + o(\mathbb{S}^2).$$

$$? = \lim_{n \to \infty} \left(1 + \frac{\text{tr } \mathbb{A}}{n} + \dots \right)^n = e^{\text{tr } \mathbb{A}}.$$

Tvrzení 0.1

$$\det(\mathbb{I} + \mathbb{S}) = 1 + \operatorname{tr} \mathbb{S} + \dots$$

Definice 0.3 (Gateaux derivative)

$$D\mathbf{f}(\mathbf{x})[\mathbf{y}] := \frac{d}{d\tau}\mathbf{f}(\mathbf{x} + \tau\mathbf{y})|_{\tau=0}.$$

Definice 0.4 (Fréchet derivative)

 $\mathbf{f}:U \to V$:

$$\lim_{\|\mathbf{y}\|_{U} \to 0} \frac{\|\mathbf{f}(\mathbf{x} + \mathbf{y}) - \mathbf{f}(\mathbf{x}) - D\mathbf{f}(\mathbf{x})[\mathbf{y}]\|_{V}}{\|\mathbf{y}\|_{V}} = 0.$$

Poznámka

Sometimes we write $\nabla f(\mathbf{x}) \cdot \mathbf{y}$ instead of $Df(\mathbf{x})[\mathbf{y}]$ (from Riesz representation theorem).

For matrices $(\varphi : \mathbb{A} \in \mathbb{R}^{3 \times 3} \to \mathbb{R})$:

$$\frac{\|\varphi(\mathbb{A} + \mathbb{B}) - \varphi(\mathbb{A}) - D\varphi(\mathbb{A})[\mathbb{B}]\|_{\mathbb{R}}}{\|\mathbb{B}\|_{\mathbb{R}^{3\times3}}}.$$

Poznámka

We write $\frac{\partial \varphi}{\partial \mathbb{A}}(\mathbb{A})$: \mathbb{B} instead of $D\varphi(\mathbb{A})[\mathbb{B}]$, where $\frac{\partial \varphi}{\partial \mathbb{A}}(\mathbb{A})$ is right matrix. Warning $\frac{\partial \varphi}{\partial \mathbb{A}}(\mathbb{A}) \neq D\varphi(\mathbb{A})$, because of transposition $(\mathbb{A} : \mathbb{B} = \operatorname{tr}(\mathbb{A}\mathbb{B}^T) = \operatorname{tr}(\mathbb{A}^T\mathbb{B}))$.

Příklad

$$\frac{\partial \operatorname{tr} \mathbb{A}}{\partial \mathbb{A}}(\mathbb{A})[\mathbb{B}] = \frac{d}{d\tau}(\operatorname{tr}(\mathbb{A} + \tau \mathbb{B}))|_{\tau=0} = \frac{d}{d\tau}\left(\operatorname{tr} \mathbb{A} + \tau \operatorname{tr} \mathbb{B}\right)|_{\tau=0} = \operatorname{tr} \mathbb{B} = \mathbb{I} : \mathbb{B}.$$
 So $\frac{\partial \operatorname{tr} \mathbb{A}}{\partial \mathbb{A}} = \mathbb{I}$.

Příklad

$$\begin{split} \frac{\partial \det \mathbb{A}}{\partial \mathbb{A}}(\mathbb{A})[\mathbb{B}] &= \frac{d}{d\tau} (\det(\mathbb{A} + \tau \mathbb{B}))|_{\tau=0} = \frac{d}{d\tau} \left(\det(\mathbb{A}) \cdot \det \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)|_{\tau=0} = \\ &= \frac{d}{d\tau} \left((\det \mathbb{A}) \cdot \left(1 + \tau \operatorname{tr}(\mathbb{A}^{-1} \mathbb{B}) + o(\tau^2) \right) \right)|_{\tau=0} = (\det \mathbb{A}) \operatorname{tr} \left(\mathbb{A}^{-1} \mathbb{B} \right) = \\ &= (\det \mathbb{A}) \operatorname{tr} \left(\left(\mathbb{A}^{-T} \right)^T \mathbb{B} \right) = \left((\det \mathbb{A}) \mathbb{A}^{-T} \right) : \mathbb{B}. \end{split}$$

So $\frac{\partial \det \mathbb{A}}{\partial \mathbb{A}} = (\det \mathbb{A}) \mathbb{A}^{-T} = \operatorname{cof}(\mathbb{A}).$

Příklad

 $A: \mathbb{R} \to \mathbb{R}^{3\times 3}$.

$$\frac{d}{dt}(\det \mathbb{A}(t)) = (\det \mathbb{A}(t))\operatorname{tr}\left(\mathbb{A}(t)^{-1}\frac{d\mathbb{A}(t)}{dt}\right).$$

Příklad

$$\mathbb{F}: \mathbb{A} \in \mathbb{R}^{3 \times 3} \to \mathbb{F}(\mathbb{A}) \in \mathbb{R}^{3 \times 3}. \ \mathbb{F}(\mathbb{A}) = \mathbb{A}^{-1}. \ (\text{We know } \frac{1}{1+x} = 1 - x + \ldots)$$

$$\frac{\partial \mathbb{F}(\mathbb{A})}{\partial \mathbb{A}}(\mathbb{A})[\mathbb{B}] = \frac{d}{d\tau} \left((\mathbb{A} + \tau \mathbb{B})^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right) \right)^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{A} + \tau \mathbb{B} \right) \right)^{-1} |_{\tau=0} = \frac{d}{d\tau} \left(\mathbb{A} \left(\mathbb{A} + \tau \mathbb{B} \right) \right)^{-1} |_{\tau=0} = \mathbb{A} \right) |_{\tau=0} = \mathbb{A}$$

$$= \frac{d}{d\tau} \left(\left(\mathbb{I} + \tau \mathbb{A}^{-1} \mathbb{B} \right)^{-1} \mathbb{A}^{-1} \right) |_{\tau=0} = \frac{d}{d\tau} \left(\left(\mathbb{I} - \tau \mathbb{A}^{-1} \mathbb{B} + \ldots \right) \mathbb{A}^{-1} \right) |_{\tau=0} = -\mathbb{A}^{-1} \mathbb{B} \mathbb{A}^{-1}.$$

So we have $\frac{\partial (\mathbb{A}^{-1})_{ij}}{\partial (\mathbb{A})_{kl}}(\mathbb{B})_{kl}$.

From chain rule (but this is easily solvable by differentiating $\mathbb{A}^{-1}(t)\mathbb{A}(t) = \mathbb{I}$):

$$\frac{d}{dt}\left(\mathbb{A}^{-1}\right) = -\mathbb{A}^{-1}\frac{d\mathbb{A}}{dt}\mathbb{A}^{-1}.$$

 $P\check{r}iklad$ $\mathbb{F}(\mathbb{A}) = e^{\mathbb{A}}$

$$\frac{\partial e^{\mathbb{A}}}{\partial \mathbb{A}}[\mathbb{B}] = \frac{d}{d\tau}(e^{\mathbb{A}+\tau\mathbb{B}})|_{\tau=0} = \frac{d}{d\tau}\left(\mathbb{I} + \frac{\mathbb{A}+\tau\mathbb{B}}{1!} + \frac{(\mathbb{A}+\tau\mathbb{B})^2}{2!}\right)|_{\tau=0}.$$

Věta 0.2 (Daleckii–Krein)

 \mathbb{A} real symmetric matrix, $\mathbb{A} \in \mathbb{R}^{k \times k}$, $\mathbb{A} = \sum_{i=1}^{k} \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i$, where λ_i are eigenvalues and \mathbf{v}_i are normalised orthogonal $(\mathbf{v}_i \cdot \mathbf{v}_j = \delta_{ij})$ eigenvectors.

f continuously differentiable real function defined on open set containing the spectrum of $\mathbb A$

$$\mathbb{F}(\mathbb{A}) := \sum_{i=1}^k f(\lambda_i) \mathbf{v}_i \otimes \mathbf{v}_i =: \sum_{i=1}^k f(\lambda_i) \mathbb{P}_i.$$

Then the formula for the Gateaux derivative of f at point \mathbb{A} in direction \mathbb{X} reads

$$D\mathbb{F}(\mathbb{A})[\mathbb{X}] = \frac{\partial \mathbb{F}}{\partial \mathbb{A}}[\mathbb{X}] = \sum_{i=1}^{k} \frac{df}{d\lambda}|_{\lambda = \lambda_i} \mathbb{P}_i \mathbb{X} \mathbb{P}_i + \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j} \mathbb{P}_i \mathbb{X} \mathbb{P}_j.$$

Sometimes we write $D\mathbb{F}(\mathbb{A})[\mathbb{X}] = f^{[1]}(\mathbb{A}) \ominus \mathbb{X}$ (Schur product of matrices, it is point-wise multiplication). Then

$$[f^{[1]}(\mathbb{A})]_{ij} = \begin{cases} \frac{df}{d\lambda}|_{\lambda = \lambda_i}, & i = j, \\ \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}, & i \neq j. \end{cases}$$

Důkaz

No summation conventions, all sums are stated explicitly!

$$\mathbb{F}(\mathbb{A}) = \sum_{i=1}^k f(\lambda_i) \mathbf{v}_i \otimes \mathbf{v}_i =$$

$$=\sum_{i=1}^k f(\lambda_i(a_{11},a_{12},\ldots,a_{21},\ldots))\mathbf{v}_i(a_{11},a_{12},\ldots,a_{21},\ldots)\otimes\mathbf{v}_i(a_{11},a_{12},\ldots,a_{21},\ldots).$$

$$\frac{\partial \mathbb{F}(\mathbb{A})}{\partial \mathbb{A}} = \sum_{i=1}^{k} \left(\frac{\partial f}{\partial \lambda_i} \frac{\partial \lambda_i}{\partial \mathbb{A}} \mathbf{v}_i \otimes \mathbf{v}_i + f(\lambda_i) \frac{\partial \mathbf{v}_i}{\partial \mathbb{A}} \otimes \mathbf{v}_i + f(\lambda_i) \mathbf{v}_i \otimes \frac{\partial \mathbf{v}_i}{\partial \mathbb{A}} \right) = ?.$$

We derivate $\mathbb{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$:

$$\frac{\partial \mathbb{A}}{\partial \mathbb{A}} \mathbf{v}_i + \mathbb{A} \frac{\partial \mathbf{v}_i}{\partial \mathbb{A}} = \frac{\partial \lambda_i}{\partial \mathbb{A}} \mathbf{v}_i + \lambda_i \frac{\partial \mathbf{v}_i}{\partial \mathbb{A}}.$$

We multiply (with dot product) it by \mathbf{v}_i :

$$\mathbb{P}_i + \frac{\partial \mathbf{v}_i}{\partial \mathbb{A}} \cdot \mathbb{A}^T \mathbf{v}_i = \frac{\partial \lambda_i}{\partial \mathbb{A}} \cdot 1 + \frac{\partial \mathbf{v}_i}{\partial \mathbb{A}} \mathbb{A} \cdot \mathbf{v}_i.$$
$$\frac{\partial \lambda_i}{\partial \mathbb{A}} = \mathbb{P}_i = \mathbf{v}_i \otimes \mathbf{v}_i.$$

We again multiply derivative of $\mathbb{A}|\mathbf{v}_i = \lambda \mathbf{v}_i$, but this time by \mathbf{v}_j :

$$\mathbf{v}_{j} \otimes \mathbf{v}_{i} + \frac{\partial \mathbf{v}_{i}}{\partial \mathbb{A}} \cdot \lambda_{j} \mathbf{v}_{j} = 0 + \lambda_{i} \frac{\partial \mathbf{v}_{i}}{\partial \mathbb{A}} \cdot \mathbf{v}_{j}.$$
$$(\lambda_{j} - \lambda_{i}) \frac{\partial \mathbf{v}_{i}}{\partial \mathbb{A}} \cdot \mathbf{v}_{j} = -\mathbf{v}_{j} \otimes \mathbf{v}_{i}.$$

We also need $(\mathbf{v}_j \otimes \mathbf{v}_i) \mathbb{X}_{ij} = \ldots = \mathbb{P}_i \mathbb{X} \mathbb{P}_j$:

$$\dots = (\mathbf{v}_j \otimes \mathbf{v}_i)(\mathbf{v}_i \cdot \mathbb{X} \mathbf{v}_j) = (\mathbf{v}_j \otimes \mathbf{v}_i)\mathbb{X}(\mathbf{v}_j \otimes \mathbf{v}_j).$$

TODO!!!

1 Kinematics

Definice 1.1

We have some abstract body with point P. We can look at it in reference configuration (some point in past), where $K_0(P) = \mathbf{X}$ ($K_0 = \text{placer}$), $t = t_0$. Or in current configuration

(how it is situated now), where $K_t(P) = \mathbf{x}$.

The change of configuration, χ in $\mathbf{x} = \chi(\mathbf{X}, t)$ is called deformation (but it contains translation and rotation too!).

Definice 1.2

Let us consider quantity θ that describes the given material point. We can describe it by:

- $\theta(P,t)$;
- $\hat{\theta}(\mathbf{X}, t)$ (referential/Lagrangian description, commonly used for solids because deformation is with respect to reference configuration);
- $\tilde{\theta}(\mathbf{x},t)$ (spatial/Eulerian description, commonly used for fluids because velocity is time-local property).

But people write those functions without ^ or ~

Poznámka

$$\tilde{\theta}(\mathbf{x},t)|_{\mathbf{x}=\chi(\mathbf{X},t)} = \hat{\theta}(\mathbf{X},t).$$

Definice 1.3 (Deformation gradient)

$$d\mathbf{x} = \mathbf{x}_2 - \mathbf{x}_1 = \chi(\mathbf{X}_2, t) - \chi(\mathbf{X}_1, t) =$$

$$= \chi(\mathbf{X}_1 + d\mathbf{X}, t) - \chi(\mathbf{X}_1, t) = \chi(\mathbf{X}_1, t) + \frac{\partial \chi}{\mathbf{X}}(\mathbf{X}_1, t) d\mathbf{X} + \dots - \chi(\mathbf{X}_1, t) = \frac{\partial \chi}{\mathbf{X}}(\mathbf{X}_1, t) d\mathbf{X}.$$

$$\mathbb{F}(\mathbf{X},t) := \frac{\partial \chi}{\mathbf{X}}(\mathbf{X}_1,t)d\mathbf{X}. \qquad d\mathbf{x} = \mathbb{F}d\mathbf{X}$$

Poznámka

It can be derived by derivatives on curves (see lecture).

Dusledek

Transformation of infinitesimal line segment: $d\mathbf{x} = \mathbb{F}d\mathbf{X}$.

Transformation of infinitesimal surface elements: $d\mathbf{s} = (\det \mathbb{F})\mathbb{F}^{-T}d\mathbf{S} = \operatorname{cof} \mathbb{F}d\mathbf{S}$.

Transformation of infinitesimal volume: $dv = (\det \mathbb{F})dV$.

Důsledek (In tangent spaces)

$$F(\mathbf{X}, t_0) = f(\chi(\mathbf{X}, t), t).$$

Representation theorem:

$$(GradF)\mathbf{W} = \mathbf{U}_{GradF} \cdot \mathbf{W}$$

$$(Gradf)\mathbf{w} = \mathbf{u}_{Gradf} \cdot \mathbf{w}$$

$$f(\chi(\mathbf{X},t),t) = F(\mathbf{X},t_0)$$

$$Gradf(\mathbf{x},t)|_{\mathbf{x}=\mathbf{y}(\mathbf{X},t)} = GradF(\mathbf{X},t_0)$$

$$\mathbf{U}_{GradF} \cdot \mathbf{W} = (GradF)\mathbf{W} = (Gradf)\mathbb{F}\mathbf{W} = (gradf)(\mathbb{F}\mathbf{W}) = \mathbf{u}_{gradf} \cdot \mathbb{F}\mathbf{W} = \mathbb{F}^T \mathbf{u}_{Gradf} \cdot \mathbf{W}.$$

$$\mathbf{u}_{gradf} = \mathbb{F}^{-T} \mathbf{U}_{GradF}.$$

Příklad (Hollow cylinder)

$$r = f(R), \, \varphi = \Phi, \, z = Z.$$

Řešení

$$\mathbb{F} = \frac{\partial \chi_i}{\partial x_j} \mathbf{e}_i \otimes \mathbf{E}_j$$

$$X_1 = R\cos\Phi,$$
 $X_2 = R\sin\Phi, x_1 = r\cos\Phi, x_2 = r\sin\Phi.$

$$x_1 = \chi_1(X_1, X_2, t), \qquad x_2 = \chi(x_1, x_2, t), x_i = \chi_i(X_j, t).$$

By chain rule:

$$\frac{\partial x_1}{\partial X_2} = \frac{\partial r \cos \Phi}{\partial \partial X_2} = \frac{\partial}{\partial X_2} f(R) \cos \Phi.$$

$$\mathbb{F} = F_{rR}\mathbf{e}_r \otimes \mathbf{E}_R + F_{r\Phi}\mathbf{e}_r \otimes \mathbf{E}_\Phi + \dots$$

 $\check{R}e\check{s}eni$

From image:

$$\mathbf{E}_R \stackrel{\mathbb{F}}{\to} F_{rR} \mathbf{e}_r.$$

$$\mathbf{E}_{\Phi} \stackrel{\mathbb{F}}{\to} F_{\varphi\Phi} \mathbf{e}_{\varphi}$$

So
$$\mathbb{F} = \begin{pmatrix} F_{rR} & 0 \\ 0 & F_{\varphi\Phi} \end{pmatrix}$$

Poznámka

How to differentiate in time tensorial quantities related to the current configuration?

Upper convected derivative:

$$\frac{\overset{\nabla}{\mathbb{A}}(\mathbf{x},t)|_{\mathbf{x}=\chi(\mathbf{X},t)} = \det \mathbb{F}(\mathbf{X},t) \left[\frac{d}{dt} \left(\mathbb{F}^{-1}(\mathbf{X},t) \mathbb{A}(\chi(\mathbf{X},t),t) \mathbb{F}^{-T}(\mathbf{X},t) \right) \right] \mathbb{F}^{T}(\mathbf{X},t).$$

1.1 Derivatives

Definice 1.4 (Lagragian velocity)

$$\mathbf{V}(\mathbf{X}, t) = \frac{d\chi(\mathbf{X}, t)}{dt}.$$
$$\mathbf{v}(\mathbf{x}, t)|_{\mathbf{x} = \chi(\mathbf{X}, t)}$$

Definice 1.5 (Eulerian velocity)

$$\mathbf{v}(\mathbf{x},t) = \mathbf{V}(\mathbf{X},t)|_{\mathbf{X} = \chi^{-1}(\mathbf{x},t)}.$$

Definice 1.6 (Material time derivative)

 $\frac{d}{dt}$ = keep **X** fixed, and differentiate with respect to time.

$$\psi(\mathbf{X},t) \to \frac{d}{dt}\psi(\mathbf{X},t) = \frac{\partial \psi}{\partial t}(\mathbf{X},t)$$

$$\psi(\mathbf{x},t) \to \frac{d}{dt}\psi(\chi(\mathbf{X},t),t) = \frac{\partial \psi}{\partial t}|_{\mathbf{x}=\chi(\mathbf{X},t)} + \frac{\partial \psi}{\partial x_i}(\mathbf{x},t)|_{\mathbf{x}=\chi(\mathbf{X},t)} \frac{d\chi_i}{dt}(\mathbf{X},t) =$$

$$= \left(\frac{\partial \psi}{\partial t}(\mathbf{x},t)|_{\mathbf{x}=\chi(\mathbf{X},t)} + V_i(\mathbf{X},t)\frac{\partial \psi}{\partial x_i}(\mathbf{x},t)|_{\mathbf{x}=\chi(\mathbf{X},t)}\right) =$$

$$= \left(\frac{\partial \psi}{\partial t}(\mathbf{x},t) + v_i(\mathbf{x},t)\frac{\partial \psi}{\partial x_i}(\mathbf{x},t)\right)|_{\mathbf{x}=\chi(\mathbf{x},t)}$$

$$\frac{d}{dt}\psi(\mathbf{x},t) = \frac{\partial \psi}{\partial t}(\mathbf{x},t) + (\mathbf{v}(\mathbf{x},t)\cdot\nabla)\psi(\mathbf{x},t).$$

Definice 1.7 (Time derivative of deformation gradient \mathbb{F})

$$\frac{d}{dt}\mathbb{F}(\mathbf{X},t) = \frac{d}{dt}\left(\frac{\partial \chi(\mathbf{X},t)}{\partial \mathbf{X}}\right) = \frac{\partial}{\partial \mathbf{X}}\frac{d\chi(\mathbf{X},t)}{dt} = \frac{\partial}{\partial \mathbf{X}}\mathbf{V}(\mathbf{X},t) =$$

$$=\frac{\partial}{\partial \mathbf{X}}\mathbf{v}(\chi(\mathbf{X},t),t)=\frac{\partial \mathbf{v}}{\partial \mathbf{x}}(\mathbf{x},t)|_{\mathbf{x}=\chi(\mathbf{X},t)}\frac{\partial \chi}{\partial \mathbf{X}}(\mathbf{X},t)=\frac{\partial \mathbf{v}}{\partial x}|_{\mathbf{x}=\chi(\mathbf{X},t)}\mathbb{F}(\mathbf{X},t).$$

$$\mathbb{L}(\mathbf{x},t) := \nabla \mathbf{V}(\mathbf{x},t) = \frac{\partial \mathbf{v}}{\partial \mathbf{x}}(\mathbf{x},t).$$

 $D\mathring{u}sledek$

$$\frac{d\mathbb{F}}{dt}=\mathbb{LF}$$

Důsledek

$$\frac{\nabla}{\mathbb{A}} = \frac{d\mathbb{A}}{dt} - \mathbb{L}\mathbb{A} - \mathbb{A}\mathbb{L}^T$$