

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

ANÁLISE NUMÉRICA

Exercícios sobre Equações Não Lineares

- 1. Considere a equação $f(x) = e^{-x} \sin(7x) = 0$.
 - (a) Represente graficamente as curvas $y = e^{-x}$ e y = sen(7x) e localize a menor raiz positiva da equação. Indique, justificando, qual o número total de raízes de f.
 - (b) Aplique o método da bissecção para obter uma aproximação para a raiz β mais próxima de 1 da equação dada com erro absoluto inferior a 0.5×10^{-6} .
 - (c) Aplique o método da falsa posição para obter uma aproximação de β nas condições da alínea anterior.
- 2. Para uma certa função f, ao utilizar o método da falsa posição, obtiveram-se os seguintes resultados: f(0) = -2, f(2) = 2, $x_1 = 1$ e $f(x_1) = -\frac{2}{9}$. Obtenha a 2^a iterada.
- 3. Considere a seguinte função $f(x) = e^{-x} + 2x 2$.
 - (a) Por análise gráfica, determine quantas raizes tem a equação f(x) = 0? Determine um intervalo, com a amplitude de uma décima, que contenha a maior raiz.
 - (b) Utilizando o método da falsa posição no cálculo da raiz localizada no intervalo [-2, -1], obtiveram-se os seguintes resultados:

$$f(-2) = 1.389056$$
 $f(-1) = -1.281718$
 $x_1 = -1.479905$ $f(x_1) = -0.567281$.

Determine a 2^a iterada e indique um majorante do erro.

- 4. Utilize os métodos da bisseção e da falsa posição para, em 5 iterações, aproximar a única raiz positiva da função $f(x) = x^{10} 1$, tomando para aproximações iniciais $a_0 = 0$ e $b_0 = 1.3$. Recorrendo ao gráfico de f, explique porque é que o método da falsa posição converge tão lentamente.
- 5. Usando o método da falsa posição encontre uma aproximação \bar{x} para a menor raiz positiva da equação $x^2 |\sin x| = 5$ de modo que $|f(\bar{x})| < 0.01$.
- 6. Considere a equação $f(x) = x^2 2 = 0$. Obtenha uma aproximação da raiz positiva, usando o método do ponto fixo até à 5^a iterada.
- 7. Considere a função $h(x) = x^2 + 10\cos x$.
 - (a) Localize graficamente todos os zeros de h.
 - (b) Usando convenientemente o método do ponto fixo, obtenha uma aproximação do único zero da função em $\left[\frac{\pi}{2}, 2\right]$, com um erro não superior a 10^{-4} .

- 8. Considere $f(x) = e^x + x 2$ e $g(x) = \frac{x e^x + 2}{2}$.
 - (a) Verifique que a sucessão gerada pelo processo iterativo $x_{k+1} = g(x_k), k = 0, 1, 2, \ldots$, converge para um único zero de f em [0.1, 0.6].
 - (b) A partir do valor inicial 0.35 obtenha uma aproximação da raiz de f em 3 iterações. Indique um majorante do erro absoluto cometido.
- 9. Considere a sucessão definida pela seguinte fórmula de recorrência $x_{n+1} = 1 + \operatorname{sen} x_n$.
 - (a) Mostre que esta sucessão converge, qualquer que seja $x_0 \in \left[\frac{\pi}{2}, 2\right]$, e que o seu limite se encontra neste intervalo. A sucessão será monótona?
 - (b) Seja z é o limite da sucessão considerada. Partindo da aproximação inicial $x_0 = 2$, execute duas iterações e determine um majorante de $|z x_2|$.
- 10. Considere um número $N \in \mathbb{N}$.
 - (a) Deduza uma fórmula iterativa de Newton que permita calcular $\sqrt[3]{N}$.
 - (b) Calcule, com 4 algarismos significativos, $\sqrt[3]{4}$.
- 11. Deduza uma fórmula iterativa baseada no método de Newton que permita obter uma aproximação de $\frac{1}{a}$, sendo a>1. Aplique essa fórmula para a=18 e obtenha uma aproximação de $\frac{1}{18}$ com erro absoluto inferior a 0.5×10^{-8} .
- 12. Considere a equação $x^2 \ln x 4 = 0$.
 - (a) Indique um intervalo, com a amplitude de uma décima, que contenha a raiz α da equação mais próxima de 2.
 - (b) No cálculo da raiz α , e por aplicação do método de Newton, que extremo do intervalo se deve tomar como aproximação inicial?
 - (c) Determine uma aproximação da raiz α até que $|x_{i+1} x_i| \leq 10^{-4}$.
 - (d) Indique um majorante do erro do valor aproximado da raiz $\alpha.$
- 13. Calcule uma aproximação x_k do menor zero positivo da função $f(x) = \cos(x^3) \ln x$, utilizando o método de Newton, tal que $|f(x_k)| < 10^{-13}$.
- 14. Considere a equação x tg x = 1. Aplicando o método da secante, obtenha as duas primeiras iteradas para o cálculo da raiz situada no intervalo [0.8, 0.9].
- 15. Considere a equação $x^2 1 \ln(x+1) = 0$.
 - (a) Localize graficamente as raízes reais da equação dada e mostre, analiticamente, que no intervalo [1,2] a equação tem só uma raiz.
 - (b) Usando o intervalo da alínea anterior, calcule a 3ª iterada pelo método da falsa posição.
 - (c) Partindo das aproximações iniciais $x_0 = 1.5$ e $x_1 = 2$, aproxime agora essa raiz usando o método da secante em duas iterações.
 - (d) Compare as aproximações a que chegou nas alíneas anteriores, determinando um majorante do erro absoluto de cada uma dessas aproximações.

- 16. Considere a equação $x^3 = 5x 1$.
 - (a) Verifique graficamente que as três raízes da equação estão perto de -2.35, 0.20 e 2.10.
 - (b) Encontre, para cada raiz, uma função g que torne o método do ponto fixo convergente. Justifique.
 - (c) Considere $x_0 = 2.10$. Execute 10 iterações pelo método do ponto fixo e analise os resultados.
- 17. Considere a função

$$h(x) = \cos\left(\frac{\pi(x+1)}{8}\right) + 0.418x - 0.9062.$$

- (a) Mostre que a equação h(x) = 0 tem uma raiz β no intervalo]-1,0[.
- (b) Obtenha uma aproximação $\bar{\beta}$ da raiz β usando convenientemente o método ponto fixo de modo que $|h(\bar{\beta})|<10^{-8}$.
- 18. Considere a função $f(x) = x \cos x$ que tem uma raiz α no intervalo $I = \left[0, \frac{\pi}{2}\right]$.
 - (a) Aplicando o método da bissecção, determine uma aproximação $\bar{\alpha}$ de α tal que $|\alpha \bar{\alpha}| \leq \frac{\pi}{2^4}$.
 - (b) Obtenha um intervalo $I_{\alpha} \subset I$ tal que o método de Newton convirja para α em I_{α} .
- 19. Em alguns computadores o cálculo de $\sqrt[n]{a}$, a > 0, é realizado pelo método de Newton.
 - (a) Verifique que a equação $x^n a = 0$, a > 0, tem apenas uma raiz real positiva.
 - (b) Aplicando o método de Newton à equação anterior obtenha a fórmula iterativa

$$x_{k+1} = \frac{1}{n} \left[(n-1)x_k + \frac{a}{x_k^{n-1}} \right]$$

e averigue em que condições é garantida a sua convergência para $\sqrt[n]{a}$, com a > 0.

- 20. Considere a equação $\left[\cos(x) \frac{x}{2}\right]^2 = 0.$
 - (a) Quantas raízes distintas tem a equação? Indique-as e/ou localize-as.
 - (b) Partindo de $x_0 = 1.5$ aplique o método de Newton para, em 6 iterações, determinar uma aproximação da raiz mais próxima de 1.

3

- 21. Num reactor o máximo rendimento global de produto é obtido quando o tempo de reacção t satisfaz a relação $vt = \ln(1+vt+vt_p)$, onde v é a velocidade específica da reacção e t_p é o tempo perdido devido ao resfriamento do produto, descarga, limpeza, carga e outros possíveis factores. Pretende-se determinar o tempo de reacção α , quando v=10~m/s e $t_p=0.01~s$, utilizando o método do ponto fixo.
 - (a) Obtenha uma função g(t) que admita α como único ponto fixo em [0,0.5] e que torne o método do ponto fixo $t_{k+1} = g(t_k)$ convergente para α qualquer que seja a aproximação inicial $t_0 \in [0,0.5]$.
 - (b) Seja $t_k = \bar{\alpha}$ um valor aproximado de α . Determine $\bar{\alpha}$ tal que $|\alpha \bar{\alpha}| \leq 0.5 \times 10^{-8}$, utilizando o método definido em (a).
 - (c) Usando o método de Newton determine uma aproximação de α que satisfaça o erro especificado em (b) e compare a rapidez de convergência dos dois métodos.