

# Agenda

- □ / Introducción.
- Normalización.
- Formas normales.
- Ejercicios.
- Modelo de datos.
- DER.
- Ejercicios.

## Introducción

- Diseño de esquemas.
- Definición de tablas y atributos.
- Definición de las propiedades de atributos.
- Normalización. Formas normales.
- Modelado de datos. DER

## Diseño de BD

- Consiste en diseñar el nivel conceptual (lógico).
- Qué tablas?
- Qué atributos?
- Qué relaciones?
- Integridad.
- Normalización.

# Algunos conceptos previos.

- Claves.
- Dependencias funcionales.
- Determinantes.
- Normalización.

#### ALUMNO

Legajo

Nombre

Apellido

Sexo

DNI

Fec. Nac.

CUIL

Pais

- Candidatas
- Primarias
- Alternativas
- Foráneas

R



Candidatas

Sea K un conjunto de atributos de la relación R. K es una clave candidata de R si y solo si, posee las dos propiedades siguientes:

- a. Unicidad: Ningún valor de R contiene dos tuplas distintas con el mismo valor de K.
- b. Irreductibilidad: Ningún subconjunto propio de K tiene la propiedad de unicidad.

Pueden ser simples o compuestas.



#### Claves Foráneas (Foreign Keys)

Sea R2 una relación => una clave foránea en R2 es un conjunto de atributos de R2 (FK) tal que:

- a. Exista una relación R1 (R1 y R2 pueden ser iguales) con una clave PK y
- b. Cada valor de la FK de R2 es igual al valor de la PK en alguna tupla de R1.

Nota: Puede ser simple o compuesta.



# Dependencia Funcional

Sea R una relación y sean X e Y subconjuntos arbitrarios del conjunto de atributos de R. Entonces decimos que Y depende funcionalmente de X (o X determina funcionalmente a Y)  $\Leftrightarrow$  cada valor de X está relacionado con SOLO un valor de Y

En símbolos: X -> Y

## Dependencia Funcional

En la tabla VP existe una dependencia funcional entre el conjunto de atributos {V#,P#} y el conjunto de atributos {CANT} si ...

| v# | PROVEEDOR | STATUS | CIUDAD  |
|----|-----------|--------|---------|
| V1 | Smith     | 20     | Londres |
| V2 | Jones     | 10     | París   |
| V3 | Blake     | 30     | París   |
| V4 | Clark     | 20     | Londres |
| V5 | Adams     | 30     | Atenas  |

| p# | PARTE    | COLOR | PESO | CIUDAD  |
|----|----------|-------|------|---------|
|    |          |       |      |         |
| P1 | Tuerca   | Rojo  | 12   | Londres |
| P2 | Perno    | Verde | 17   | París   |
| Р3 | Tornillo | Azul  | 17   | Roma    |
| P4 | Tornillo | Rojo  | 14   | Londres |
| P5 | Leva     | Azul  | 12   | París   |
| P6 | Engrane  | Rojo  | 19   | Londres |
|    |          |       |      |         |

| V# | P#  | CANT, |
|----|-----|-------|
|    | - 4 | 0.00  |
| V1 | P1  | 300   |
| VT | P2  | 200   |
|    | P3  | 400   |
| V1 | P4  | 200   |
| V1 | P5  | 100   |
| V1 | P6  | 100   |
| V2 | P1  | 300   |
| V2 | P2  | 400   |
| V3 | P2  | 200   |
| V4 | P2  | 200   |
| V4 | P4  | 300   |
| V4 | P5  | 400   |
|    |     |       |

- Para cualquier valor del par de atributos V# y P#, sólo existe un valor correspondiente del atributo CANT ...
- Aunque muchos valores distintos del par de atributos V# y P# pueden tener el mismo valor del atributo CANT

## Dependencia Funcional

VCP

| ∨# | CIUDAD  | P# | CANT |
|----|---------|----|------|
| V1 | Londres | P1 | 100  |
| V1 | Londres | P2 | 100  |
| V2 | París   | P1 | 200  |
| V2 | París   | P2 | 200  |
| V3 | París   | P2 | 300  |
| V4 | Londres | P2 | 400  |
| V4 | Londres | P4 | 400  |
| V4 | Londres | P5 | 400  |

Dependencias funcionales?

```
{V#, P#} -> {cant}

{V#, P#} -> {ciudad}

{V#, P#} -> {cant, ciudad}

{V#, P#} -> {V#} (trivial)

{V#, P#} -> {P#} (trivial)

{V#, P#} -> {V#, P#, cant, ciudad}

{V#} -> {ciudad} o V# -> ciudad

{V#} -> {cant} o V# -> cant
```

### Determinante -> Dependiente

El determinante suele estar relacionado a los atributos **claves** mientras que los dependientes a los atributos **no claves**.

# Normalización - Objetivos

- Eliminar redundancias
- Evitar anomalías en las actualizaciones.
- Simplificar las reglas de integridad.
- Crear un modelo que represente el "mundo real".

## **Primera Forma Normal**

 Se dice que una relación está en 1ra forma normal si todos sus dominios contienen valores atómicos.

#### Otra definición

 Se dice que una relación está en 1ra forma normal si toda tupla (fila) contiene exactamente un valor para cada atributo.

## **Primera Forma Normal**

#### **EMPLEADOS**

| <u>L</u> | eg | a | <u> </u> |
|----------|----|---|----------|
|          |    |   |          |

Nombre

Cargo

Dni

Fecha Nac.

DniHijo[1..10]

NombreHijo[1..10]

EdadHijo[1..10]



#### **EMPLEADOS**

#### <u>Legajo</u>

Nombre

Cargo

Dni

Fecha Nac.

#### HIJOS

**Legajo** 

<u>DniHijo</u>

NombreHijo

EdadHijo

# Segunda Forma Normal

Una relación está en 2da forma normal  $\Leftrightarrow$  está en 1FN y todos los atributos no clave *dependen completamente* de la clave primaria.

#### **FACTURAS**

| <u>NroFactura</u> |  |  |
|-------------------|--|--|
| <u>Renglon</u>    |  |  |
| Fecha emisión     |  |  |
| CUIT cliente      |  |  |
| Producto          |  |  |
| Cantidad          |  |  |
| PrecioUnit        |  |  |
|                   |  |  |



#### **FACTURAS**

**NroFactura** 

# Fecha emisión CUIT cliente

#### **ITEMS FACTURA**

| <u>NroFactura</u> |
|-------------------|
| Renglon           |
| Producto          |
| Cantidad          |
| PrecioUnit        |

## **Tercera Forma Normal**

Dependencia functional transitiva.

Si 
$$R(a,b)$$
,  $R(b,c) \Rightarrow R(a,c)$ 

 Una relación está en 3FN ⇔ está en 2FN y todos los atributos no claves dependen de manera NO transitiva de la clave primaria.

## **Tercera Forma Normal**

#### **EMPLEADOS**

<u>Legajo</u>

Nombre

Depto

DeptoDesc

Fecha Nac.



#### **EMPLEADOS**

<u>Legajo</u>

Nombre

Depto

Fecha Nac.

#### **DEPARTAMENTOS**

**Depto** 

DeptoDesc

## Forma normal Boyce/Codd

Una relación está en BCNF ⇔ todo determinante es clave candidata.

**Determinante**: Atributo del cual depende funcionalmente otro atributo.

| <u>Profesor</u> | <u>Materia</u> | Aula |
|-----------------|----------------|------|
| Carlos          | Fisica         | 1    |
| Carlos          | Musica         | 2    |
| Juan            | Biologia       | 3    |
| Ana             | Fisica         | 4    |
| Pedro           | Física         | 1    |

- La clave candidata es (Profesor, Materia)
- Existen 2 dependencias funcionales:
  - (profesor, materia)-> aula
  - (aula) -> (materia)
- Aula no es clave candidata pero si es Determinante

# Forma normal Boyce/Codd

| <u>Profesor</u> | <u>Materia</u> | Aula |
|-----------------|----------------|------|
| Carlos          | Fisica         | 1    |
| Carlos          | Musica         | 2    |
| Juan            | Biologia       | 3    |
| Ana             | Fisica         | 4    |
| Pedro           | Física         | 1    |



R(a, b, c) se convierte en R(a, c) y R(c, b)

| <u>Profesor</u> | <u>Aula</u> |
|-----------------|-------------|
| Carlos          | 1           |
| Carlos          | 2           |
| Juan            | 3           |
| Ana             | 4           |
| Pedro           | 1           |

| <u>Aula</u> | Materia  |
|-------------|----------|
| 1           | Fisica   |
| 2           | Musica   |
| 3           | Biologia |
| 4           | Fisica   |

## **Cuarta Forma normal**

- Dependencia Multivaluada (DMV)
- Dada una R(a,b,c) la DMV R(a)->>R(b) se cumple en R
   ⇔ el conjunto de valores de b depende solo de a y no de c.

| <u>Profesor</u> | <u>Materia</u> | <u>Idioma</u> |
|-----------------|----------------|---------------|
| Marie Curie     | Física         | Polaco        |
| Marie Curie     | Física         | Francés       |
| Isaac Newton    | Matemáticas    | Ingles        |

Una relación está en 4FN ⇔ está en BCNF y no contiene dependencias multivaluadas.

## **Cuarta Forma normal**

#### Requisitos

- Debe haber por lo menos 3 columnas (a, b, c).
- A->>B Para un valor de a hay muchos valores de b.
- No debe haber dependencias entre b y c (independientes).

| <u>Profesor</u> | <u>Materia</u> | <u>Idioma</u> |
|-----------------|----------------|---------------|
| Marie Curie     | Física         | Polaco        |
| Marie Curie     | Física         | Francés       |
| Marie Curie     | Química        |               |
| Isaac Newton    | Matemáticas    | Ingles        |

Qué sucede si Marie Curie ahora da Química?

## **Cuarta Forma normal**

### DMV's

| <u>Profesor</u> | <u>Materia</u> | <u>Idioma</u> |
|-----------------|----------------|---------------|
| Marie Curie     | Física         | Polaco        |
| Marie Curie     | Física         | Francés       |
| Marie Curie     | Química        | Francés       |
| Marie Curie     | Química        | Polaco        |
| Isaac Newton    | Matemáticas    | Ingles        |



| <u>Profesor</u> | <u>Materia</u> |
|-----------------|----------------|
| Marie Curie     | Física         |
| Marie Curie     | Química        |
| Isaac Newton    | Matemáticas    |

| <u>Profesor</u> | <u>Idioma</u> |
|-----------------|---------------|
| Marie Curie     | Francés       |
| Marie Curie     | Polaco        |
| Isaac Newton    | Ingles        |

R(a, b, c) se convierte en R(a, b) y R(a, c)

## **Quinta Forma normal**

Una relación se encuentra en 5FN

- Si se encuentra en 4FN
- No existen relaciones de dependencias de join (junta) que no se generen desde las claves. Si se aplicara una consulta entre 3 relaciones independientes entre sí dentro de la 4FN y se obtuvieran tuplas espurias, entonces no estaría en 5FN.

Se dice que hay dependencia de Join entre una tabla y sus proyecciones, si es posible obtener la tabla original por medio de la unión (join) de dichas proyecciones.

## **Quinta Forma normal - PJNF**

**Project Join Normal Form** 

Si a la relación **R** le agregamos la regla o restricción

- . Si un profesor dicta una materia
- . esa materia utiliza un libro
- . Y ese **libro** es usado por el **profesor** Entonces
- . El **profesor** también debe dictar la **materia** con ese **libro**

R

| Profesor | <u>Materia</u> | <u>Libro</u>        |
|----------|----------------|---------------------|
| Green    | Matemáticas    | Cálculo diferencial |
| Green    | Física         | Pr. Óptica          |

## **Quinta Forma normal - PJNF**

R

| <u>Profesor</u> | <u>Materia</u> | <u>Libro</u>        |
|-----------------|----------------|---------------------|
| Green           | Matemáticas    | Cálculo diferencial |
| Green           | Física         | Pr. Óptica          |
| White           | Matemáticas    | Pr. Óptica          |
| Green           | Matemáticas    | Pr. Óptica          |

Si agregásemos al **profesor White** que da **Matemáticas** utilizando el **libro Pr. Óptica** qué sucedería? Por qué?

(Green, Matemáticas) (Matemáticas, Pr. Óptica) (Pr. Óptica, Green)

=>

(Green, Matemáticas, Pr. Óptica)

## **5ta Forma normal**

#### **Profesor-Materia**

| <u>Profesor</u> | <u>Materia</u> |
|-----------------|----------------|
| Green           | Fisica         |
| Green           | Matemáticas    |

#### **Materia-Libro**

| <u>Materia</u> | <u>Libro</u>           |
|----------------|------------------------|
| Matemáticas    | Cálculo<br>diferencial |
| Física         | Pr. Óptica             |

#### Libro-Profesor

| <u>Libro</u>           | <u>Profesor</u> |
|------------------------|-----------------|
| Cálculo<br>diferencial | Green           |
| Pr. Óptica             | Green           |

Separamos la relación original en 3 proyecciones

## **5ta Forma normal**

#### **Profesor-Materia**

| <u>Profesor</u> | <u>Materia</u> |
|-----------------|----------------|
| Green           | Fisica         |
| Green           | Matemáticas    |
| White           | Matemáticas    |

#### **Materia-Libro**

| <u>Materia</u> | <u>Libro</u>           |
|----------------|------------------------|
| Matemáticas    | Cálculo<br>diferencial |
| Física         | Pr. Óptica             |
| Matemáticas    | Pr. Óptica             |

#### Libro-Profesor

| <u>Libro</u>           | <u>Profesor</u> |
|------------------------|-----------------|
| Cálculo<br>diferencial | Green           |
| Pr. Óptica             | Green           |
| Pr. Óptica             | White           |

o Estas 3 relaciones cumplen la 5FN, la original NO.

## Desnormalización

#### Características

- Reduce la cantidad de tablas.
- 2. Mejora la Performance de Lecturas.
- 3. Reglas de negocio (totales, datos históricos).
- 4. Ralentiza las actualizaciones.
- 5. Aumenta la redundancia.
- 6. Aumenta la complejidad de las actualizaciones.
- 7. Se utiliza en modelos dimensionales (aplicaciones OLAP).





# Ejercicios?



1. Sea la entidad facturas formada por (

Nro. Factura, fecha emisión, fecha Vto, código de cliente, cuit del cliente, razón social del cliente, domicilio del cliente, código de provincia del cliente, nombre de la provincia del cliente, teléfono del cliente[1..m], renglón factura[1..n], codigo producto[1..n], descripción del producto[1..n], cantidad[1..n], precioUnitario[1..n]

Normalizarla

Obtener las diferentes entidades y claves primarias (mínimas).

2. El siguiente esquema de una BD pertenece a una concesionaria de automotores multimarca.

TERMINAL(codTerminal, DescTerminal, marcaAuto[1..n], modeloAuto[1..n])

AUTOS(codTerminal, marcaAuto, modeloAuto, CantPuertas, precio)

FACTURA(nroFact, fechaFact, marcaAuto, modeloAuto, codCliente, nombreCliente, cantidad,

Precio, direcTerminal)

CLIENTES(codCliente, nombreCliente, cuit)

#### Notas.

Ejemplos de Autos

Stellantis, Peugeot, 308 SX, 5, 12000

Stellantis, Fiat, Mobi GL, 5, 8000

Renault, Clio, 1.6, 4, 11000

Ford, Focus, 1.6, 4, 15000

Ford, Focus, 1.8, 4, 16000

VW, Gol, 1.9D, 4, 9000

Los autos, si difieren en cantidad de puertas también difieren en el modelo.

Cada automóvil solo puede ser fabricado por una terminal.

En cada factura solo se puede vender un modelo de auto

#### Resolver

- a. Cuales serían las claves candidatas de las entidades originales?
- b. Para cada entidad decir que FN no cumple y por qué?
- c. Normalizar las entidades, indicando las claves primarias mínimas.
- d. Modifique el modelo para poder vender varios modelos de autos en una factura.

### Consiste en ...

- Generar una representación de la BD.
- Diseñar el nivel lógico o conceptual.
- Identificar objetos "cosas" y las relaciones existentes entre ellos.
- Identificar las propiedades de los "objetos".

- En el modelo relacional teniamos Relaciones y vínculos entre las relaciones.
- En el modelado de datos utilizamos otros términos.

| Entidad           | Cosas de la realidad con propiedades comunes. Ej. Empleado, Departamento, Libro, Discos, Autores, Productos.                                                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atributo          | Pieza de información que describe una entidad.<br>Nombre empleado, nombre del departamento, ISBN<br>del libro, Interprete del disco, país del autor, categoría<br>del producto. |
| Identidad         | Atributos o atributo que Identifica las ocurrencias de las entidades.                                                                                                           |
| Relaciones        | Asociaciones entre entidades. Asignación (empleado-<br>departamento), Envío (producto-proyecto),                                                                                |
| Subtipo/supertipo | Subcategoría de una entidad. Ej. Programador es un subtipo de Empleado.                                                                                                         |

# Diagrama de Entidad Relación (DER)



#### **ENTIDADES**

Fuertes o débiles: Se identifican por su clave. Las débiles dependen su existencia de otra entidad.

Las entidades débiles no tiene una clave primaria propia y se identifican mediante una combinación de su clave parcial y la clave primaria de la entidad padre.

#### **ATRIBUTOS**

- Dominio
- Simples
- Claves/No claves
- Atómicos

#### **RELACIONES**

- Grado: Cantidad de entidades que forman parte de una relación. Unaria (recursiva), binaria, n-aria.
- Modalidad: Dependencia obligatoria o no.
- Cardinalidad: Número de instancias de entidad relacionadas a través de la relación. Según su cardinalidad las relaciones pueden ser:
  - Uno a uno
  - Uno a muchos
  - Muchos a muchos

#### **SUBTIPO - SUPERTIPO**

- Supertipo: Entidad padre.
- Subtipo: Entidades hijas. Son excluyentes
- Ej. Productos, productos electrónicos, productos de jardín, productos comestibles







- 1. Dadas las siguientes ENTIDADES,
- Normalizarlas
- Crear el diagrama de Entidad/Relación

#### **CLIENTES\_FABRICANTES**

ClienteNum, nombreCliente, apellidoCliente, clienteDomicilio, clienteCodProvincia, nombreProvinciaCliente, clienteReferente, FabricanteCod, nombreFabricante, plazoEntregaFabricante, CodProvinciaFabricante, nombreProvinciaFabricante

#### **FACTURAS**

NroFactura, fechaEmision, fechaVto, renglon(1..n), codProducto(1..n), descProducto(1..n), fabricanteCod(1..n), CantidadVendida(1..n), montoUnitario(1..n), MontoTotal, PesoProducto

2. Dados los siguientes requerimientos y tablas **CLUBES**(nombreClub, fecFundacion, Domicilio, codClub, nombreJugadora[1.n], codJugadora[1..n])

JUGADORAS (Nombre, Apellido, FechaNac, Domicilio, DNI, codJugadora)

**PARTIDOS**(codClub, puntosObtenidos, descClub, codCamp, fechaComienzo, codClub1, codClub2, fechaPartido, golesClub1, golesClub2)

#### **Notas**

Las jugadoras pertenecen a un club.

Se realizan campeonatos en forma anual.

Los campeonatos deberian contener el historial de todos los campeonatos celebrados.

Los partidos son todos los celebrados en la historia de los campeonatos.

Cada equipo juega partidos de ida y vuelta contra un mismo equipo.

#### Puntos a resolver

- Definir las claves candidatas de cada entidad.
- Normalizar el modelo. Qué FN no cumplen?
- Qué otras entidades surgen de la normalización?
- Hacer el modelo final indicando entidades y sus claves primarias mínimas.
- Crear el diagrama de Entidad/Relación (DER)
- La AFF ha decidido que pueden haber PASES de jugadoras entre clubes. Por lo que se necesitarían registrar los pases y su historial ya que las jugadoras podrían pasar por varios clubes (incluso por el mismo club) pero no al mismo tiempo.
- Cómo modificaría el esquema anterior para tener en cuenta este nuevo requerimiento? Cómo sabría en qué equipo juega actualmente la jugadora?