

المحاضرة 6

كلية الهندسة المعلوماتية

مقرر تعلم الآلة

Support Vector Machine (SVM) 1

د. رياض سنبل

ML Pipeline

Why SVM? ... Why not decision trees?

- Can Decision Trees detect non-linear models?
 - Yes, Decision trees can detect non-linear relationships
- What type of boundaries can be detected using decision trees in each step?
 - The decision boundary in a Decision Tree is linear and perpendicular to one of the input dimensions, which means that it is limited to finding only axis-parallel splits.
- What if we have higher-dimensional feature space, more complex relationships between input features and target class?
 - In the higher-dimensional feature space, the decision boundary can take on a more complex shape, such as a curved or nonlinear boundary.
 - More problems when the relationship between the input features and the target variable is complex (ex: image classification, sentiment analysis, etc)

A "Good" Separator

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Maximizing the Margin

Terms

Support Vectors:

- These are the points that are closest to the hyperplane.
- A separating line will be defined with the help of these data points.

Margin:

- It is the distance between the hyperplane and the observations closest to the hyperplane (support vectors).
- In SVM large margin is considered a good margin.
- There are two types of margins hard margin and soft margin.

How does SVM work?

- SVM is defined such that it is defined in terms of the support vectors only.
 - The margin is made using the <u>points</u> which are <u>closest</u> to the <u>hyperplane</u> (support vectors).
 - We don't have to worry about other observations
 - Hence SVM enjoys some natural <u>speed-ups!</u>
- The <u>best hyperplane</u> is that plane that has the maximum distance from both the classes.

So.. What is our optimization problem?

Our problem:

Note that W represents all parameters i.e. w and b

RIAD SONBOL - ML COURSE

11

ny = wx+b=1 -> wx=1-6 N > WN + b = -1 > -WN = (+b width = 2 God Maximire widt 11....11 Minimize II w! Goal Minimize 1/2 1/2/2 true only if the constrait is satisfied use lagrange Multiplier L= 1 11 w11 - 2 x. [y(wx+b)-1]

SVM Optimization

$$w^*, b^* = \arg \min_{w,b} \frac{1}{2} \|w\|^2, \quad s.t. \quad y_n(w^T(\emptyset(x_n)) + b) \ge 1 \quad \forall n$$

Solved by Lagrange multiplier method:

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{n} \alpha_n [y_n(w^T(\emptyset(x_n)) + b) - 1]$$

where lpha is the Lagrange multiplier

The optimization problem can be solved by setting derivatives of Lagrangian to 0

SONBOL - ML COURSE

13

SVM Optimization

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{n} \alpha_n [y_n(w^T(\emptyset(x_n)) + b) - 1]$$

$$\frac{\partial L}{\partial w} = w - \sum_{n} \alpha_{n} y_{n} \phi(x_{n}) = 0 \Rightarrow w = \sum_{n} \alpha_{n} y_{n} \phi(x_{n})$$

$$\frac{\partial L}{\partial b} = \sum_{n} \alpha_{n} y_{n} = 0 \Rightarrow \sum_{n} \alpha_{n} y_{n} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{n} \alpha_n y_n = 0 \quad \Rightarrow \sum_{n} \alpha_n y_n = 0$$

SVM Optimization

$$w^*, b^* = \arg \min_{w,b} \frac{1}{2} ||w||^2, \quad s.t. \quad y_n(w^T(\emptyset(x_n)) + b) \ge 1 \quad \forall n$$

$$Y = w^{T}(\emptyset(x)) + b = \sum_{n} \alpha_{n} y_{n} \emptyset^{T}(x_{n}) \emptyset(x)$$

The decision rule in SVMs only depends on the dot product with support vectors

several important implications

Computational efficiency
Memory efficiency
Robustness to noise and outliers

15

What if?

What are the problems of the current version for SVM?

RIAD SONBOL - ML COURSE 16

1st Improvement Soft Margin SVM (allows few misclassifications)

C Hyper-parameter

• When **C** is <u>high</u> it will <u>classify all the data points correctly</u>, also there is a <u>chance</u> to overfit.

 $\operatorname{argmin}\left(\mathbf{w}^*, \mathbf{b}^*\right) \frac{\|\mathbf{w}\|}{2} \left(+c \sum_{i=1}^n \zeta_i \right)$

SVM Error = Margin Error + Classification Error

RIAD SONBOL - ML COURSE 18