12

13

14

15

CLAIMS

What is claimed is:

- 1. A method to forward network data in a data processing system, comprising:
 - (a) receiving network data;
 - (b) separating the network data into portions which will be modified and into portions which will not be modified;
 - (c) storing both portions of the network data in a local memory;
 - (d) forwarding the modifiable portions of the data to a cache associated with a processing element requesting at least the modifiable portion of the data;
 - (e) determining a destination of the modifiable portion;
 - (f) modifying the modifiable portions within the requesting processing element; and
 - (g) writing back the modified portion of the network data to the destination bypassing the local memory.

2

1

2

1

2

1

2

3

1

2

1

- 2. The method of claim 1, wherein the modifiable portion of the network data is a packet header of one network protocol which is modified to that of another network protocol.
- 3. The method of claim 2 wherein one and/or another network protocol is ATM.
 - 4. The method of claim 2 wherein one and/or another network protocol is ethernet.
 - 5. The method of claim 2 wherein one/and or another network protocol is PPP, point-to-point protocol.
 - 6. The method of claim 2 wherein one/and or another network protocol is IP, internet protocol.
 - 7. The method of claim 2, further comprising:
 - (a) translating an address if the requesting processing element and the destination have different addresses of the local memory.
 - 8. The method of claim 1, wherein the modification comprises updating an address to that of the destination.
 - 9. The method of claim 1, wherein the modification occurs in a network processor.
- 10. The method of claim 1, wherein the modification occurs in a local processing element.

1	11.	The method of claim 1, wherein the modification occurs in an
2		embedded processor in an application specific integrated circuit,
3		ASIC.
1	12.	An apparatus for data communications, comprising:
2		(a) a network interface through which to receive incoming
3		data comprised of at least one packet, the data packet
4		having a modifiable portion and a portion that need not be
5		modified;
<u> </u> -6		(b) a local memory connected to the network interface, the
116 117 118 119		local memory for receiving the data and storing the
[] [] 8		modifiable portion from the portion that need not be
9		modified;
10		(c) a modifier which updates the modifiable portion of the
1 1		data packet;
12		(d) a bus interface; and
11 12 13		(e) an interconnect fabric connected to the bus interface by
-14		which to forward the modifiable portion and the portion of
15		the data that need not be modified to its destination.
1	13.	The apparatus of claim 12, wherein the incoming data is digital
2		electrical and/or optical data.
1	14.	The apparatus of claim 12, wherein the incoming data is analog
2		electrical and/or optical data.
1	15.	A memory bypass mechanism, comprising:
2		(a) means to receive optical and/or digital data;
3		(b) means to separate the received data into a modifiable
4		portion and a non-modifiable portion;

2

3

4

1

2

3

5

6

7

8

9

10

11

- (c) means to store the received data in a first memory;
- (d) means to forward the modifiable portion of the data to a modifying means;
- (e) means to forward the non-modifiable portion to a destination;
- (f) means to modify the modifiable portion; and
- (g) means to forward the modified portion of data directly to its destination bypassing storing the modified portion in the first memory.
- 16. The memory bypass mechanism of claim 15, wherein the modifiable portion of the received data is a header stating a network protocol of the data and/or a destination address of the received data.
- 17. The memory bypass mechanism of claim 16, wherein the received header is of a first network protocol and the modified header is of a second network protocol.
- 18. The memory bypass mechanism of claim 17, wherein the first and second network protocols are selected from the group consisting of: asynchronous transfer mode, ethernet, Internet protocol, and Point-to-Point protocol.
- 19. The memory bypass mechanism of claim 15, wherein the modifying means is a processing element in a network processor.

2

3

1

2

- 20. The memory bypass mechanism of claim 19, wherein the destination is a different processing element in the network processor.
- 21. The memory bypass mechanism of claim 15, wherein the destination is a second memory.