Circuit Switched

Uspostavljanje namenske fizičke veze između dva učesnika po potrebi (na zahtev)

- Telefonske veze, ISDN...
- Povezivanje računara preko iznajmeljenih telefonskih linija

Packet Switched

Paketi podataka se nezavisno prosleđuju (komutiraju) kroz WAN mrežu između dve tačke

-Ranije: Frame Relay, ATM, X.25

-Danas: L2VPN, L3VPN

Primer: povezivanje objekata u korporacijskoj WAN mreži

Circuit Switched

Zakup i ekskluzivno korišćenje permanentnih veza

- skupo, nefleksibino, neefikasno

Packet Switched

Povezivanje na pristupnu tačku provajdera

 Ugovorom sa provajderom se određuje način komunikacije između lokacija korisnika

- Fizička topologija
 - Irelevantna topologija mreže provajdera

- Logička topologija
 - Korisnici od provajdera zakupljuju pojedinačne veze između svojih lokacija
 - Najčešće se realizuje zvezdasto

WAN veze na L1 nivou

Analogne veze

- digitalni signali se modulišu i pretvaraju u analogne
- Uređaji modemi
 - voiceband "uskopojasni"
 - broadband "širokopojasni"

Digitalne veze

- uređaji CSU/DSU
- 64 kbps, 128 kbps, 2 Mbps, 34, Mbps, 155 Mbps...

WAN uređaji

Modemi

- povezani na fizičku vezu, digitalne signale transformiše u modulisani <u>analogni</u> signal i obrnuto
- voiceband "uskopojasni"
 - u govornom području preko telefonske veze
 - neograničeno rastojanje
 - male brzine 33.6 / 54 kbps
- broadband "širokopojasni"
 - modulacija na višim frekvencijama, iznad govornog opsega
 - DSL modemi Digital Subscriber Line prenos preko telefonske linije, 128kbps...2Mbps...8Mbps, 16Mbps...
 - SHDSL Symmetric DSL npr. 2Mbps down/2 Mbps up
 - ADSL Asymmetric DSL max 8 Mbps down/1 Mbps up
 - VDSL Very Hight Bitrate DSL max 52 Mbps down/16 Mbps up
 - Kablovski modemi prenos preko koaksijalnog kabla kablovskog operatora – brzine slične DSL modemima

Modemi

Širokopojasni pristup DSL modemi

Širokopojasni pristup Kablovski modem

WAN uređaji

- CSU Channel Service Unit
 - uređaj povezan na <u>digitalnu</u> liniju (E1, E3, T1, T3...) veće brzine
- DSU Data Service Unit
 - uređaj koji adaptira fizičku vezu od DTE za transmisiju u digitalni signal preko CSU

CSU/DSU – obično su integrisani u jedan eksterni uređaj ili u karticu

na ruteru

Sinhronizacija takta

- Sinhronizacija
 - digitalni uređaji na obe strane moraju da usaglase brzinu slanja i primanja podataka, kako bi mogli da komuniciraju
- Klok (clock) takt kojim se odabiru signali
- Dve strane u komunikaciji:
 - Master definiše klok
 - Slave prilagođava se taktu koji dobije od mastera
- U digitalnim servisima telekom provajder definiše takt (master), a CSU/DSU se prilagođavaju (slave)
- Ruteri dobijaju takt od CSU/DSU uređaja

Tipovi digitalnih veza i brzina

Line Type	Signal Standard	Bit Rate Capacity	
56	DS0	56 Kbps	
64	DS0	64 Kbps	
T1	DS1	1.544 Mbps	
E1	ZM	2.048 Mbps	
E3	M3	34.064 Mbps	
J1	Y1	2.048 Mbps	
T3	DS3	44.736 Mbps	
OC-1	SONET	51.84 Mbps	
OC-3	SONET	155.54 Mbps	
OC-9	SONET	466.56 Mbps	
OC-12	SONET	622.08 Mbps	
OC-18	SONET	933.12 Mbps	
OC-24	SONET	1244.16 Mbps	
OC-36	SONET	1866.24 Mbps	
OC-48	SONET	2488.32 Mbps	

Širokopojasni pristup Bežične veze

WAN uređaji

- Layer 1
 - RS-232, RS-449, X.21, V.35, G.703 itd.
- Layer 2
 - HDLC, PPP, Frame Relay, X.25
- Multilayer
 - ISDN, ATM, SDH/SONET

Layer 1 WAN prenos

Serijske veze

- bitovi se prenose serijski preko WAN veza
- Tipovi serijskih veza
 - asinhroni link (do 115.2 kbps)
 - sinhroni link (trenutno do 10 Gbps)
- DCE (Data Circuit-Terminating Equipment)
 - uređaj koji se povezuje na mrežu provajdera (Modem, CSU/DSU…)
- DTE (Data Terminal Equipment)
 - Uređaj koji se povezuje na DCE (Ruter)

Layer 1 WAN standardi

Layer 1 WAN standardi

- Definišu električni interfejs za prenos bitova između DTE i DCE uređaja
 - RS-232, RS-449, X.21, V.35, G.703 itd.

Konektori (kablovi)

EIA-613 HSSI Male

DCE i DTE kablovi

 Povezivanje dva rutera u laboratoriji bez CSU/DSU uređaja – back-to-back jedan mora da bude DCE i da daje klok!

PPP - Point-to-Point Protocol

- Layer 2 protokol za prenos preko <u>sinhrone i asinhrone</u> serijske veze
- Unapređena verzija HDLC protokola (High Level Data Link Control)
- Arhitektura:
 - L1 nivo prenos signala preko serijske veze
 - L2 nivo dva podsloja:
 - Link Control Protocol (LCP)
 - Network Control Protocols (NCP) interfejs prema L3 nivou

PPP – L1 nivo

- sinhrone i asinhrone serijske veze:
 - sinhrono
 - prenos digitalnih signala sa unapred usklađenim taktom (brzinom) između učesnika
 - asinhrono
 - prenos digitalnih signala bez unapred usklađenog kloka (brzine) između učesnika
- Karakteristike:
 - podržava različite vrste interfejsa:
 - RS-232, RS-422, RS-423, V.35
 - različite brzine
 - jedini uslov je da se radi o dvosmernoj vezi

PPP – L2 nivo

- L2 nivo dva podsloja:
 - Link Control Protocol (LCP)
 - Uspostavljanje veze i pregovaranje o konfiguraciji
 - Određivanje kvaliteta veze opciono
 - Network Control Protocols (NCP)
 - Onterfejs prema L3 nivou
 - Pregovaranje o konfiguraciji mrežnog sloja

Format PPP okvira

	3	1	2	Variable	2 or 4
Flag	Address	Control	Protocol	Data	FCS

Polje Flag

- Označava početak i kraj svakog okvira 8 bita, uvek "01111110"
- Šta ako se ova vrednost nađe negde u sredini okvira?
- Ne sme dozvoliti šest uzastopnih jedinica ostatku okvira
 - pošiljalac nakon svakih pet uzastopno poslatih jedinica, veštački se dodaje jedna nula ("11111" => "111110")
 - prijemnik nakon svakih primljenih uzastopnih pet jedinica:
 - ako se primi nula, ona se ignoriše ("111110" => "11111")
 - ako se primi jedinica, radi se o Flag polju kraj okvira ("01111110")
- Kada se okviri šalju u kontinuitetu, flag polje koje označava kraj prethodnog okvira istovremeno se koristi za početak narednog okviga

Format PPP okvira

- Address ne koristise, uvek fiksna vrednost: 0xFF ("11111111")
- Control uvek fiksna vrednost: 0x03 ("00000011")
- Protocol identifikacija protokola L3 nivoa, default 2 bajta, ali se može koristiti i 1 bajt (ako se obe strane o tome dogovore)
- Data enkapsulirani podaci viših podslojeva i slojeva, default je max. 1500 bajta
- FCS Frame Check Sequence provera greške okvira (CRC)

1	1	9	2	Variable	2 or 4
Flag	Address	Control	Protocol	Data	FCS

PPP - LCP

- LCP Link Control Protocol
 - centralni deo PPP
 - nezavistan od protokola L3 nivoa
- Funkcije
 - uspostavljanje, održavanje i raskidanje veze
 - pregovara između učesnika (negotiation)
 - postavlja kontrolne opcije
 - automatski konfiguriše obe strane:
 - usklađuje različite limite u veličini okvira
 - detektuje pojedine greške u konfiguraciji
 - detektuje greške na linku

PPP - LCP

- Tri vrste okvira:
 - 1. Link-establisment frames Okviri za uspostavljanje veze
 - Configure-Request inicijalizuje vezu
 - Configure-Ack prihvata veze, prelazi se u sledeću fazu...
 - Configure-Nak, Configure-Reject odbija vezu
 - npr. nisu prepoznati parametri
 - pokušava se ponovo uspostavljanje sa novim parametrima
 - 2. Link-maintenance frames Okviri za održavanje veze
 - Code-Reject, Protocol-Reject ne prepoznaje se LCP kod ili protokol
 - Echo-Request, Echo-Reply, Discard-Request –testiranje veze
 - 3. *Link-termination frames* Okviri za raskidanje veze
 - Terminate-Request zahteva raskidanje veze
 - Terminate-Ack prihvata raskidanje veze

PPP - LCP

Format LCP okvira

- Code tip LCP okvira, 1 bajt
- Identifier koristi se za uparivanje request i replay, 1 bajt
- Length ukupna dužina LCP okvira, 2 bajta
- Data podaci viših podslojeva i slojeva, 0 ili više bajtova

PPP opcije

- PPP podržava različite opcione funkcije:
 - Autentifikacija učesnika
 - Kompresija podataka
 - Mult-link povezivanje
 - detekcijagrešaka
 - call-back podrška

PPP autentifikacija

- Autentifikacija međusobna provera identiteta
- Dve vrste: PAP i CHAP
- Password Authentication Protocol (PAP)
 2 koraka:
 - Klijent šalje lozinku u <u>čistom tekstu</u>, i to samo na početku uspostavljanja sesije
 - Druga strana prihvata ili odvija vezu
- nesigurno prisluškivanjem linije se lako može saznati lozinka, neautorizovano se povezati na liniju i lažno se predstaviti

PPP autentifikacija

- Challenge Authentication Protocol (CHAP)
 3 koraka:
 - Challenge Server šalje challenge kombinacija vremena i slučajnih podataka
 - Response Klijent dodaje lozinuku i vraća vrednost izračunatu unapred poznatim algoritmom (MD5)
 - Accept/Reject Server sam računa tu vrednost na osnovu lokalnih podataka i poredi je sa dobijenom vrednosti

PPP autentifikacija

Primer

PPP algoritmi kompresije

Predictor

- Predviđa se sekvenca karaktera u nizu podataka
- Tabela čestih sekvenci "rečnik kompresije"
- Prepoznati nizovi se zamenjuju sa indeksima u "rečniku"

STAC

- realizovan od strane STAC Electronics
- Lempel-Ziv (LZ) tip algoritma kompresije
- U ulaznom nizu podataka traže se sekvence koje se ponavljaju
- Pronađene sekvence se zamenjuju sa tzv. indeksima (tokens), koji su kraći od originalnog niza karaktera
- Problem je prenos već komprimovanih podataka
 - ponovna kompresija će da prouzrokuje duže rezultujuće podatke umesto da ih skrati

PPP Multilink

- Mehanizam kojim se više fizičkih serijskih veza spajaju u jednu logičku
- Svaki datagram se deli na delove fiksne veličine koji se naizmenično šalju preko svakog od serijskih linkova
- Ukupan kapacitet veze se sumira

PPP – detekcija greške

- LQM Link Quality Monitoring
 - koristi LCP radi utvrđivanja broja grešaka pri prenosu
- LCP obe strane povremeno šalje poruke sa brojem ispravno primljenih paketa i bajtova
- Na drugoj strani se porede ovi podaci sa ukupno poslatim paketima i bajtovima
- Na osnovu toga se računa procenat grešaka u prenosu
- U slučaju da je procenat grešaka veći od konfigurisanog, LCP je da prekine vezu
- Ima smisla samo u slučaju rezervnih (backup) veza, koje će da se tada aktiviraju

PPP – callback

- Callback "povratni poziv"
 - callback klijent i callback server
 - klijent inicira poziv, zahteva povratni poziv i prekida vezu
 - server inicira novi poziv ("povratni poziv") prema klijentu na bazi konfigurisanih parametara
- Povećana sigurnost
 - server može da odbije neželjenog klijenta, ako nije klijent konfigurisan

PPP NCP protokoli

- NCP Network Control Protocol
 - uspostavlja i konfiguriše različite protokole mrežnog nivoa (L3)
 - kada je NCP sesija uspostavljena, paketi između mrežnih slojeva mogu da se razmenjuju
 - kada sesija zatvori, mrežni slojevi se o tome informišu
- Primeri
 - IPCP (razmenjuje IP adrese krajeva linka, IP adrese DNS servera itd.)
 - IPXCP, CDPCP...

PPP NCP - primer za IP

PPP NCP - primer za IP

IPCP

- usaglašavaju se dve opcione mogućnosti:
 - Kompresija TCP/IP hedera (L4 i L3)
 - moguće smanjenje na svega 3 bajta koršćenjem Van Jacobson algoritma
 - značajno na sporim linijama sa malim IP paketima (relativna dobit je značajna)
 - IP address mogućnost specificiranja IP adrese, npr. kod dial-up korisnika

PPP na Windows računarima

Tunneling

• GRE - Generic Routing Encapsulation RFC 2784

