Билет 7. Некоторые физические задачи, приводящие к уравнениям параболического типа в случае одной переменной

1 Теплопроводность

Рассмотрим достаточно тонкий однородный стержень (такой, что в ∀ момент времени его изотермические и поперечные сечения совпадают). Направим ось Ох вдоль стержня.

Пусть u(x,t) - температура стержня в точке x в момент времени t.

По ЗСЭ для участка $[x_1, x_2]$ энергия, требующаясядля изменения температуры участка в течение $[t_1, t_2]$ равна количеству тепла, полученному через концы x_1 и x_2 за $[t_1, t_2]$.

 ${\it 3akoh}\ {\it \Phiypbe}$: $W=-k{\partial u\over\partial x}$, где W — плотность потока теплоты, k>0 — коэффициент теплопроводности.

Поток втекающей на $[x_1, x_2]$ теплоты в момент τ :

$$S\left(k\frac{\partial u(x_2,\tau)}{\partial x} - k\frac{\partial u(x_1,\tau)}{\partial x}\right)$$

Баланс теплоты:

$$S \int_{x_1}^{x_2} c\rho(u(x, t_2) - u(x, t_1)) dx = S \int_{t_1}^{t_2} (W(x_1, \tau) - W(x_2, \tau)) d\tau = S \int_{t_1}^{t_2} \left(k \frac{\partial u(x_2, \tau)}{\partial x} - k \frac{\partial u(x_1, \tau)}{\partial x} \right) d\tau,$$

c - удельная теплоёмкость стержня,

 ρ - объёмная плотность массы.

По интегральной теореме о среднем:

$$c\rho(u(x',t_2) - u(x',t_1))(x_2 - x_1) = \left(k\frac{\partial u(x_2,\tau')}{\partial x} - k\frac{\partial u(x_1,\tau')}{\partial x}\right)(t_2 - t_1), x' \in [x_1,x_2], \tau' \in [t_1,t_2]$$

Делим на $(x_2-x_1)(t_2-t_1)$:

$$\frac{c\rho(u(x',t_2)-u(x',t_1))}{t_2-t_1} = \frac{k\frac{\partial u(x_2,\tau')}{\partial x}-k\frac{\partial u(x_1,\tau')}{\partial x}}{x_2-x_1}$$

Стягиваем отрезки в точки, получаем: $c\rho u_t = ku_{xx} \Rightarrow u_t = a^2u_{xx}, a^2 = \frac{k}{c\rho}$ - уравнение теплопроводности. Если есть источники или поглотители тепла с объёмной плотностью F(x,t), то в правой части баланса теплоты добавится $S \int_{t_1}^{t_2} \int_{x_1}^{x_2} F(x,\tau) dx d\tau$. Полагая, что F(x,t) - непрерывна по x и t, получим

$$u_t = a^2 u_{xx} + f(x,t), f = \frac{F}{c\rho}$$

Если стержень не является однородным:

$$c(x)\rho(x)u_t(x,t) = \frac{\partial}{\partial x}\left(k(x)\frac{\partial u(x,t)}{\partial x}\right) + F(x,t)$$

Диффузия

Аналогично, только вместо плотности энергии $c\rho u$ будет плотность вещества u, а вместо W будет градиент p= $-D\frac{\partial u}{\partial x}$, D - коэффициент диффузии.

Уравнение диффузии (одномерное):

$$u_t = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right)$$

Для однородной среды:

$$u_t = a^2 u_{xx}, a^2 = D$$

Теормин. Постановка внешней задачи Дирихле для уравнения Лапласа на плоскости

Найти функцию u(M), удовлетворяющую уравнению Лапласа $\Delta u = 0$ в неограниченной области D' ($D' = \mathbb{R}^2 \setminus \overline{D}$), непрерывную в замкнутой области $\overline{D}' = D' \cup S$ (S - граница D), принимающую на границе заданные значения $u(P) = \mu(P), P \in S$, и ограниченную на бесконечности.