Aldehydes, Ketones and Carboxylic Acids

subtopics

- 12.1 Introduction
- 122 Classification of aldehydes, ketones and carboxylic acids
- Nomenclature of aldehydes, ketones and carboxylic acids
- 12.4 Preparation of aldehydes and ketones
- 12.5 Preparation of carboxylic acids
- 12.6 Physical properties
- 12.7 Polarity of carbonyl group
- 12.8 Chemical properties of aldehydes and ketones
- 2.9 Chemical properties of carboxylic acids

Actually, there is no chemical reaction in the working of a nail polish remover. The process works on the principle of like dissolves like. The nail polish remover is just the organic solvent that is used as an ingredient in the nail polish. The hardened organic nail polish is dissolved by the nail polish remover (which is also organic). Generally, the remover contains acetone.

Classification of aldehydes, ketones and carboxylic acids:

Prima

Toluen

IUPAC nomenclature:

Functional group	Types	IUPAC system (Basic rules)	Examples
Aldehydes	Aliphatic compounds	Parent name: Alkane → Alkanal Prefix – Formyl	Hexanal, 3-Formylhexanoic acid
	Alicyclic compounds	Parent name: Cycloalkanecarbaldehyde	Cyclohexanecarbaldehyde
	Aromatic compounds	Suffix – Benzaldehyde (one –CHO group) Prefix – Formyl	3-Methylbenzaldehyde, 4-Formylbenzoic acid
Ketones	Aliphatic compounds	Parent name: Alkane → Alkanone Prefix – Oxo	Hexan-2-one, 3-Oxobutanal
	Alicyclic compounds	Parent name: Cycloalkanone	4-Methylcyclohexanone
	Aromatic compounds	Suffix - phenone	Benzophenone
Carboxylic acids	Aliphatic compounds	Parent name: Alkane → Alkanoic acid	Hexanoic acid
	Alicyclic compounds	Parent name: Cycloalkanecarboxylic acid	Cyclohexanecarboxylic acid
	Aromatic compounds	Suffix - Benzoic acid (one -COOH group)	2-Hydroxybenzoic acid

Physical properties of aldehydes, ketones and carboxylic acids:

Boiling point in homologous series of aldehydes, ketones and carboxylic acids: Boiling point increases as the number of carbon atom increases.

Order of boiling points of aldehydes, ketones and carboxylic acids with other functional groups: Carboxylic acids > Alcohols > Ketones > Aldehydes > Ethers > Alkanes

Solubility of aldehydes, ketones and carboxylic acids in water decreases with increase in molecular mass.

R-CHO

Aldehyde

or aryl group

Aldehydes:

itic

(HC

acid

cid

(F

cid

d

I)

id

OOH)2]

Preparation of Aldehydes:

For aliphatic and aromatic aldehydes:

$$\begin{array}{c} \text{R-CH}_2 - \text{OH} + \text{[O]} & \frac{\text{K}_2\text{Cr}_2\text{O}_7 + \text{dil.H}_2\text{SO}_4}{\text{(or) Cu / 573 K}} \\ \end{array}$$

R-CH=CH-R'
$$\frac{\text{(i) O}_3}{\text{(ii) H}_2\text{O}, Zn}$$

$$R-C \equiv CH \frac{\text{dil. H}_2\text{SO}_4 + \text{HgSO}_4}{333 \text{ K}}$$

$$\begin{array}{c} O \\ \parallel \\ R-C-Cl \\ Acid chloride \end{array} \qquad \begin{array}{c} H_2/\operatorname{Pd}-\operatorname{BaSO_4} \\ \hline \text{(Rosenmund reduction)} \end{array}$$

$$\begin{array}{c} \text{R-CN} \\ \text{Nitrile} \end{array} \hspace{-0.5cm} \begin{array}{c} \text{(i) SnCl}_2 + \text{HCl} \\ \text{(ii) H}_3\text{O}^+ \\ \text{(Stephen reaction)} \end{array}$$

$$\begin{array}{c} O \\ \parallel \\ R-C-OR' & \begin{array}{c} AlH(i\text{-Bu})_2 \\ \hline H_3O^+ \end{array} \end{array}$$

$$\begin{array}{c} \text{R-CN} & \underline{\hspace{1cm} \text{(i) (DIBAL-H)}} \\ \text{Nitrile} & \underline{\hspace{1cm} \text{(ii) } \text{H}_3\text{O}^+} \end{array}$$

ii. For aromatic aldehydes:

$$(i) \ CrO_2Cl_2 \ / \ CS_2$$

$$(ii) \ H_2O$$

$$(Etard \ reaction)$$

$$(i) \ CrO_3 + (CH_3CO)_2O$$

$$(ii) \ H_3O^+$$

$$(i) \ Cl_2/hv$$

$$(ii) \ H_2O \ / \ 373 \ K$$

$$CO, \ HCl$$

$$Anhydrous \ AlCl_3 \ / \ CuCl$$

$$(Gatterman-Koch \ formylation)$$

Reactions of Aldehydes:

Ketones:

Preparation of ketones:

Reactions of ketones:

OH

SO₃Na

OR"

Ketal

i. For aliphatic and aromatic ketones:

OH
$$R - CH - R$$
Secondary alcohol

$$R_2 - C = C - R_2$$
Alkene

$$R - C = CH$$
Alkyne

$$R - COC1$$
Acetyl chloride

$$RC = N$$

$$R'MgX, Dry$$

$$ether, H_3O^+$$

ii. For aromatic ketones:

anhydrous AlCla $C_6H_6 + R - COCI$ Benzene Acid chloride

Dry HCl

Simple or mixed

ketone

where R and R' are

alkyl or aryl group

$$\begin{array}{c}
(i) \text{ R'MgX} \\
\hline
(ii) \text{ H}^{+}/\text{H}_{2}\text{O}
\end{array}$$

$$\begin{array}{c}
R' \\
-C - \text{OH} \\
R' \\
\text{Tertiary alcohol}$$

$$R - C = N - NH_2$$

$$\mid R'$$
Ketone hydrazone

$$\begin{array}{c}
C_6H_5NHNH_2 \\
 & | \\
R'
\end{array}$$

$$R-C = N-NH-C_6H_5$$

$$(Clemmensen reduction) \rightarrow R - CH_2 - R'$$

$$(Alkane) \rightarrow R$$

$$(Alkane) \rightarrow R$$

$$(Alkane) \rightarrow R$$

$$(i) NH_2 - NH_2 \rightarrow R - CH_2 - R' + N_2$$

$$(ii) KOH/ethylene glycol (Wolf-Kishner reduction)$$

$$R - CH_2 - R' + N_2$$

$$Alkane$$

Laboratory test for carbonyl group:

Functional group	Test	Observation + Conclusion
Aldehydic group (- C - H)	Schiff's test	Pink/red/magenta colour: presence of -CHO group
Ö	Tollens' test/Silver mirror test	Silver mirror (Ag): presence of -CHO group
drezen stum	Fehling test	Red ppt of Cu ₂ O: presence of -CHO group Used to distinguish aliphatic aldehydes from aromatic aldehydes and ketones
Ketonic group (>C = O)	Sodium nitroprusside test	Red colouration: Presence of > C = O group
	Litmus test	Turns blue litmus red: Presence of -COOH or phenolic -OH group
Carboxyl group (-COOH)	Sodium bicarbonate	Brisk effervescence of CO _{2(g)} : Presence of -COOH group (used to distinguish phenolic -OH group from -COOH group)
1 10 800 S- 100	Ester test	Fruity smell of ester: Confirmatory test for -COOH group.