Document: W0803214, Rev:B

WM10N02M

N-Channel MOSFET

Features

- V_{DS} = 100V, I_{D} = 0.2A $R_{DS(on)}$ < 6 Ω @ V_{GS} = 10V $R_{DS(on)}$ < 9 Ω @ V_{GS} = 4.5V
- Switching Application
- Small Servo Motor Controls
- Rugged and Reliable

Mechanical Characteristics

- SOT-23 Package
- Marking : Making Code
- RoHS Compliant

Schematic & PIN Configuration

Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	±20	٧
Continuous Drain Current	I _D	0.2	А
Pulsed Drain Current ¹	I _{DM}	0.5	А
Power Dissipation	P _D	350	mW
Junction Temperature	TJ	150	°C
Storage Temperature	Тѕтс	-55 to 150	°C
Thermal Resistance from Junction to Ambient ²	Rеja	357	°C/W

N Channel MOSFET WM10N02M

Electrical Characteristics (T_{amb}=25°C unless otherwise noted)

Parameter	Symbol	Symbol Test Condition		Тур.	Max.	Unit	
Static Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V, V _{GS} = 0 V	-	-	1	μΑ	
Gate-body Leakage Current	Igss	V _{DS} = 0 V, V _{GS} = ±20V	-	-	±1	μΑ	
Gate Threshold Voltage ³	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250μA	1	-	3	V	
Drain-Source On-state Resistance ³	_	V _{GS} = 10V, I _D = 0.2A	-	3.5	6	Ω	
	R _{DS(on)}	V _{GS} =4.5V, I _D = 0.17A	-	3.8	9		
Dynamic Characteristics	1						
Input Capacitance	Ciss		-	25	-	pF	
Output Capacitance	Coss	V _{GS} = 0V, V _{DS} = 50V, f = 1MHz	-	3.6	-		
Reverse Transfer Capacitance	C _{rss}		-	1.5	-		
Switching Characteristics	1	1					
Total Gate Charge ⁴	Qg		-	1.5	-		
Gate-Source Charge ⁴	\mathbf{Q}_{gs}	V _{GS} = 10V, V _{DS} = 10V, I _D = 0.2A	-	0.18	-	nC	
Gate-Drain Charge ⁴	\mathbf{Q}_{gd}		-	0.22	-		
Turn-On Delay Time ⁴	t _{d(on)}		-	5.5	-		
Turn-On Rise Time ⁴	tr	V _{DD} = 50V, V _{GS} =10V, I _D =0.2A,		5.5			
Turn-Off Delay Time ⁴	t _{d(off)}	$R_{G}=6\Omega$	-	7.8	-	nS	
Turn- Off Fall Time ⁴	t _f		-	10	-		
Source-Drain Diode Characteristics							
Body Diode Voltage	V _{SD}	I _S = 0.2A, V _{GS} = 0V	-	-	1.2	V	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface mounted on FR4 board using 1 square inch pad size,1oz single-side copper.
- 3. Pulse Test: Pulse width≤300µs, duty cycle≤2%.
- 4. Guaranteed by design, not subject to product

N Channel MOSFET WM10N02M

Typical Characteristics

N Channel MOSFET WM10N02M

Outline Drawing - SOT-23

DIMENSIONS				
SYMBO	MILLIMETER		INCHES	
L	MIN	MAX	MIN	MAX
Α	0.90	1.15	0.035	0.045
A1	0.00	0.10	0.000	0.004
b	0.30	0.50	0.012	0.020
С	0.08	0.15	0.003	0.006
D	2.80	3.00	0.110	0.118
Е	2.25	2.55	0.089	0.100
E1	1.20	1.40	0.047	0.055
е	0.95 BSC		0.037	74 BSC
e1	1.80	2.00	0.071	0.079
L	0.45	0.65	0.018	0.026
Α	0,	8.	0.	8.

DIMENSIONS		
DIM	INCHES	MILLIMETER S
М	0.080	2.02
С	0.032	0.80
Z	0.111	2.82
е	0.037 BSC	0.95 BSC
e1	0.075 BSC	1.9 BSC
b	0.032	0.80

Notes

- 1. Dimensioning and tolerances per ANSI Y14.5M, 1985
- 2. Controlling Dimension: Inches
- 3. Pin 3 is the cathode (Unidirectional Only).
- **4.** Dimensions are exclusive of mold flash and metal burrs.

Marking Codes

Part Number	WM10N02M
Marking Code	B123 □ □

Package Information

Qty: 3k/Reel

CONTACT INFORMATION

No.1001, Shiwan (7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-68969993 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

WRYDN ® is registered trademark of Wayon Corporation.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.