

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2021

MATHEMATICS: PAPER II

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

NOTE:

- If a candidate answers a question more than once, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

SECTION A

QUESTION 1

(a)	A = -160,645 $B = 21,505$ $y = -160,645 + 21,505x$	A = -160,645 B = 21,505 rounding
(b)	y = -160,645 + 21,505(90) y = 1774,81 Alternate with calculator: R 1774,79	R1 774,81 Alt: R 1774,79
(c)	Extrapolation has its risks, i.e. when working outside the boundaries of the given data.	Extrapolation
(d)	r = 0,912	r = 0,912
(e)	Very strong positive correlation	Very strong positive correlation

QUESTION 2

(a)	Correct box and whisker plot accordingly	Shape: Box & Whisker Min: 2 Max: 68 Q1: 30 Q2: 44 Q3: 52 Max. 2 if box & whisker has errors
(b)	Skewed left / negatively skewed	negatively skewed
(c)	Since Range A > Range B and IQR _A > IQR _B , the heights of the plants grown in Environment A were more spread out.	as described

(a)	Length AB = $\sqrt{(x^2 - x_1)^2 + (y_2 - y_1)^2}$	
	Length AB = $\sqrt{(11-6)^2 + (12-16)^2}$	$= \sqrt{(11-6)^2 + (12-16)^2}$
	\ <u></u>	Sub in dist. formula
	Length AB = $\sqrt{25 + 16}$	
(h)	Length AB = $\sqrt{41}$	= √41
(b)	$m_{AB} = \frac{16 - 12}{6 - 11}$	
	$m_{AB} = -\frac{4}{5}$	Gradients
		$m_{AB} = -\frac{4}{5}$
	$m_{DE} = \frac{-11+3}{6+4} = -\frac{8}{10}$	5
	4	4
	$m_{DE} = -\frac{4}{5}$	$m_{DE} = -\frac{4}{5}$
	Gradients are equal ∴ AB//DE	
(c)	Eq. of line DB: $y = mx + c$ sub. $(m_{DB} = 1)$	
	y = x + c sub. (-4;-3) or (11;12)	sub. $(m_{DB} = 1)$
	-3 = -4 + c $c = 1$	Sub. $(IIIDB = 1)$ C = 1
	$\therefore y = x + 1$	x=6
	For point of int. sub. $x = 6$	∴ <i>y</i> = 7
	$\therefore y = 7$	
	∴ <i>k</i> = 7	
(d)	$m_{AB} = -\frac{4}{5}$	
	$\tan\theta = m$	0.0070
	θ ≈ 38,7°	$\theta \approx 38,7^{\circ}$
	45 v ovio v 000	
	$AE \perp x$ -axis $\therefore \alpha$ =90°	AE⊥ x-axis ∴α=90°
	$B A C = 180^{\circ} - (90^{\circ} + 38,7^{\circ})$ (int. \angle of \triangle)	
	BÂC = 51,3°	BÂC = 51,3°

(e) $\frac{\text{Area }\triangle ABC}{\text{Area }\triangle EDC} = \frac{\frac{1}{2}(AB)(BC)\sin\hat{B}}{\frac{1}{2}(CD)(DE)\sin\hat{D}}$ $\triangle ABC///\triangle EDC \qquad \text{(equiangular)}$ $\therefore \frac{AB}{ED} = \frac{BC}{DC} = \frac{AC}{EC}$

Since
$$\hat{D} = \hat{B}$$
 (alt $\angle s$; // lines)

and
$$\frac{AB}{DE} = \frac{BC}{DC}$$
 (/// Δ s, sides in Prop)

$$\therefore \frac{\mathsf{Area} \ \Delta \mathsf{ABC}}{\mathsf{Area} \ \Delta \mathsf{EDC}} = \frac{\left(\mathsf{AB}\right)^2}{\left(\mathsf{DE}\right)^2}$$

$$\therefore \frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{\left(\sqrt{41}\right)^2}{\left(2\sqrt{41}\right)^2}$$

$$\therefore \frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{1}{4}$$

Alternate 1:

$$\frac{\text{Area }\triangle ABC}{\text{Area }\triangle EDC} = \frac{\frac{1}{2}(AC)(AB)\sin \hat{A}}{\frac{1}{2}(CE)(ED)\sin \hat{E}}$$

$$\frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{9 \times \sqrt{41}}{18 \times 2\sqrt{41}} = \frac{1}{4}$$

Alternate 2:

$$\frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{\frac{1}{2}(\text{AC})(h_{\text{B}})}{\frac{1}{2}(\text{CE})(h_{\text{D}})}$$
$$\frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{9 \times 5}{18 \times 10} = \frac{1}{4} \quad \dots \quad h_{\text{B}} = 12 - 7$$

$$=\frac{\frac{1}{2}(AB)(BC)\sin\hat{B}}{\frac{1}{2}(CD)(DE)\sin\hat{D}}$$

$$\hat{D} = \hat{B}$$
 (alt \angle s; // lines)

$$\frac{AB}{DE} = \frac{BC}{DC} \qquad (//\!/ \Delta s, \text{ sides in Prop})$$

$$\frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{\left(\text{AB}\right)^2}{\left(\text{DE}\right)^2}$$

$$\frac{\text{Area } \Delta \text{ABC}}{\text{Area } \Delta \text{EDC}} = \frac{1}{4}$$

$$\frac{\frac{1}{2}(AC)(AB)\sin \hat{A}}{\frac{1}{2}(CE)(ED)\sin \hat{E}}$$

Cancelling

$$\frac{9 \times \sqrt{41}}{18 \times 2\sqrt{41}}$$
$$= \frac{1}{4}$$

$$\frac{\frac{1}{2}(AC)(h_B)}{\frac{1}{2}(CE)(h_D)}$$

Perp heights 5 and 10 Values 9 and 18

$$\frac{9\times5}{18\times10}$$
$$=\frac{1}{4}$$

(a)(1)	Length AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Length AB = $\sqrt{(2 - 1)^2 + (8 + 1)^2}$ Length AB = $\sqrt{1 + 81}$ Length AB = $\sqrt{82}$	$= \sqrt{(2-1)^2 + (8+1)^2}$ Sub in dist. formula $= \sqrt{82}$
	Alternate: $ AB = \sqrt{82}$	$ AB = \sqrt{82}$
(a)(2)	AB is a diameter: For centre: MidPt AB $\left(\frac{2+1}{2}; \frac{8-1}{2}\right)$ MidPt AB $\left(\frac{3}{2}; \frac{7}{2}\right)$ $r = \frac{\sqrt{82}}{2}$ $\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 = \frac{41}{2}$	MidPt AB $\left(\frac{3}{2}, \frac{7}{2}\right)$ $r = \frac{\sqrt{82}}{2}$ $\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 = \frac{41}{2}$
(a)(3)	$m_{diam} = \frac{8+1}{2-1}$: $m_{diam} = 9$: $m_{tan} = -\frac{1}{9}$ $y = -\frac{1}{9}x + c$ sub. (2;8) $c = 8\frac{2}{9}$ $y = -\frac{1}{9}x + 8\frac{2}{9}$ 9y = -x + 74	$m_{diam} = \frac{8+1}{2-1} : m_{diam} = 9$ $\therefore m_{tan} = -\frac{1}{9}$ $c = 8\frac{2}{9}$ $9y = -x + 74$
(b)	Construct AO \therefore AO=10 units Radius AO \perp AM Tan \perp Rad $\left(\text{AM}\right)^2 = (13)^2 - (10)^2$ Pythag AM = $\sqrt{69}$	AO=10 units AO \perp AMTan \perp Rad $\left(AM\right)^2 = (13)^2 - (10)^2$ AM = $\sqrt{69}$

(a)	Construction: B through centre O	
	Proof: $\hat{O}_1 = \hat{A} + \hat{B}_1$ (ext. \angle of Δ)	B through centre O
	$\hat{A} = \hat{B}_1$ (Isos Δ / Radii)	$\hat{O}_1 = \hat{A} + \hat{B}_1$ (ext. \angle of \triangle)
	Similarly, in the other triangle:	$\hat{A} = \hat{B}_1$ (Isos Δ / Radii)
	$\hat{O}_1 = 2 \times \hat{B}_1$	$\hat{O}_1 = 2 \times \hat{B}_1$
	$\hat{O}_2 = 2 \times \hat{B}_2$	$\hat{O}_2 = 2 \times \hat{B}_2$
	$\therefore \mathring{AOC} = 2 \times \mathring{ABC}$	$\therefore \mathring{AOC} = 2 \times \mathring{ABC}$
(b)(1)	$\hat{C}_1 = \hat{A}_1$ (Tan. from pt / isosceles Δ)	٨
	$2\hat{A}_1 + \hat{T} = 180^{\circ}$	$A_1 = 59^{\circ}$ (Tan. from pt / isosceles Δ)
	$\hat{A}_1 = 59^{\circ}$	(Int. \angle s of Δ)
	(Int. \angle s of Δ)	
(b)(2)		
	$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$ (radius \perp tangent)	$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$
	$\hat{A}_2 = 90^\circ - 59^\circ$	(radius ⊥tangent)
	$\hat{A}_2 = 31^{\circ}$	$\stackrel{\wedge}{A_2} = 90^\circ - 59^\circ$
	$\hat{A}_2 = \hat{C}_2$ (Isos. Δ ; CO=AO radii)	$\hat{A}_2 = 31^\circ$
	$\therefore \hat{O}_1 = 118^{\circ}$ (int. \angle s of Δ)	$\hat{A}_2 = \hat{C}_2$
		∴ Ô ₁ = 118°
		(int. \angle s of Δ)
	ALTERNATE:	
	$\hat{A}_1 = \hat{B}$ (Tan-Chord Th)	$\hat{A}_1 = \hat{B}$ (Tan-Chord Th)
	$\hat{A}_1 = 59^{\circ} \text{ (From (b)(1))}$	$\hat{A}_1 = 59^{\circ} \text{ (From (b)(1))}$
	$∴ \hat{O}_1 = 118^{\circ} (\angle \text{ at centre } = 2 \text{ X} \angle \text{ at cir})$	∴ Ô ₁ = 118°
		$(\angle \text{ at centre } = 2 \text{ X } \angle \text{ at cir})$

(a)	DO=3 units AD:DO = 4:3 $\frac{AD}{DO} = \frac{AE}{EC} = \frac{AF}{FB}$ (Prop Th – DE//OC & EF//CB) AF: FB = 4:3	AD:DO = 4:3 $\frac{AD}{DO} = \frac{AE}{EC} = \frac{AF}{FB} \text{ with reason}$ $\therefore AF: FB = 4:3$
(b)	$\triangle AHF / / \triangle AGB$ (Equiangular) $\therefore \frac{AH}{AG} = \frac{HF}{GB} = \frac{AF}{AB}$ (similar triangles, sides in prop) AB = 7x $\therefore \frac{HF}{GB} = \frac{4x}{7x}$ $\therefore GB: HF = 7: 4$	\triangle AHF /// \triangle AGB with reason ∴ $\frac{AH}{AG} = \frac{HF}{GB} = \frac{AF}{AB}$ with reason ∴ GB:HF = 7:4
(c)	AE:EC = 4:3 (Prop Th) EG = GC = $1\frac{1}{2}k$ \therefore AE: EG = 4: $\frac{3}{2}$ or 8:3	AE:EC = 4:3 (Prop Th) EG = GC = $1\frac{1}{2}k$ \therefore AE: EG = 4: $\frac{3}{2}$ or 8:3

SECTION B

(a)
$$\sin 3x = -\frac{3}{4}$$

 $3x = -48,6^{\circ} + k360^{\circ}$; $k \in \mathbb{Z}$
 $x = -16,2^{\circ} + k120^{\circ}$; $k \in \mathbb{Z}$
or $3x = 180 - (-48,6^{\circ}) + k360^{\circ}$; $k \in \mathbb{Z}$
 $x = 76,2^{\circ} + k120^{\circ}$; $k \in \mathbb{Z}$
 $x = \{-16,2^{\circ}, -43,8^{\circ}\}$
(b) $\tan x = \sin 2x$
 $\sin x = 2\sin x\cos^2 x$
 $\cos x$
 $2\sin x\cos x$

(a)	$\sin\left(\hat{C}-\hat{D}\right) = \sin\hat{C}.\cos\hat{D} - \cos\hat{C}.\sin\hat{D}$ $= \left(\frac{12}{13}\right)\left(\frac{3}{5}\right) - \left(\frac{5}{13}\right)\left(-\frac{4}{5}\right)$ $= \frac{56}{65}$	$= \sin \hat{C} \cdot \cos \hat{D} - \cos \hat{C} \cdot \sin \hat{D}$ $\left(\frac{12}{13}\right)$ $\left(\frac{3}{5}\right)$ $\left(\frac{5}{13}\right)$ $\left(-\frac{4}{5}\right)$ $= \frac{56}{65}$
(b)	$cos(90^{\circ} + 60^{\circ}).cos 28^{\circ} + cos 60^{\circ}.cos 62^{\circ}$ $-sin 60^{\circ} sin 62^{\circ} + cos 60^{\circ} cos 62^{\circ}$ $cos(60^{\circ} + 62^{\circ})$ $cos 122^{\circ}$ $= cos(180^{\circ} - 58^{\circ})$ $= -cos 58^{\circ}$ $= -k$	$cos(90^{\circ} + 60^{\circ})$ $cos(60^{\circ} + 62^{\circ})$ $= cos(180^{\circ} - 58^{\circ})$ $= -cos58^{\circ}$ = -k
	Alternate: $-\sin 60^{\circ}\cos 28^{\circ} + \cos 60^{\circ}\sin 28^{\circ}$ $= -\sin(60^{\circ} - 28^{\circ})$ $= -\sin 32^{\circ}$ $= -\cos 58^{\circ}$ $= -k$ Alternate: $-\cos 30^{\circ}\cos 28^{\circ} + \sin 30^{\circ}\sin 28^{\circ}$ $= -\cos(30^{\circ} + 28^{\circ})$ $= -\cos 58^{\circ}$ $= -k$	

IEB Copyright © 2021

(a)	In $\triangle AEC$ $\frac{EC}{\sin 60^{\circ}} = \frac{80}{\sin 45^{\circ}}$ $EC = \frac{80 \sin 60^{\circ}}{\sin 45^{\circ}}$ $EC \approx 98 \text{ m}$ In $\triangle EDC$: $C\hat{E}D = 135^{\circ}$ (adj \angle s on str line) $(CD)^2 = (53)^2 + (97,98)^2 - 2(53)(97,98) \times \cos 135^{\circ}$ $CD = 140,54499$ m $CD \approx 140,5$ m	$\frac{EC}{\sin 60^{\circ}} = \frac{80}{\sin 45^{\circ}}$ $EC = \frac{80 \sin 60^{\circ}}{\sin 45^{\circ}}$ $EC \approx 98 \text{ m}$ $C\hat{E}D = 135^{\circ}$ $(CD)^{2} = (53)^{2} + (97,98)^{2}$ $-2(53)(97,98) \times \cos 135^{\circ}$ $CD = 140,5 \text{ m}$
(b)	In $\triangle ACB$: $tan 37^{\circ} = \frac{BC}{AC}$ BC = 80 tan 37° BC = 60, 284 m Let M be the midpoint of BC: In $\triangle DMC$: $MC = \frac{1}{2}BC$ $\therefore MC = 30,142$ m $tan CDM = \frac{MC}{CD}$ $tan CDM = \frac{30,142}{140,55}$ $CDM \approx 12,1^{\circ}$ The angle of elevation of M from D is 12,1°.	In \triangle ACB: $tan37^{\circ} = \frac{BC}{AC}$ BC = 60,284 m $tanC\hat{D}M = \frac{MC}{CD}$ MC = 30,142 m $C\hat{D}M \approx 12,1^{\circ}$

(a)	Circle with centre P:	_
	$x^2 - 6x + y^2 - 12y = -41$	$(x-3)^2 + (y-6)^2 = 4$
	$(x-3)^2 + (y-6)^2 = 4$ Centre: P(3;6) Radius: 2 units	P(3;6) Radius: 2 units
(b)	Centre: Q(9;3)	
	Distance PQ = $\sqrt{(9-3)^2 + (3-6)^2}$	$= \sqrt{(9-3)^2 + (3-6)^2}$
	Distance PQ = $\sqrt{45}$	$=3\sqrt{5}$
	Distance $PQ = 3\sqrt{5}$	·
	- = ()	$\therefore 3\sqrt{5} - (2+2)$
	$\therefore 3\sqrt{5} - (2+2)$	
(c)	=2,7	# h
(6)	Volume of block = $lbh - 2 \times (\pi r^2 h)$	$= lbh - 2 \times (\pi r^2 h)$
	$= (20 \times 14 \times 10) - 2(\pi(4)(20))$	2900 160-
	$=2800-160\pi$	$= 2800 - 160\pi$ $\approx 2297,3 \text{ units}^3$
	≈ 2297,3 units ³	≈ 2291,3 utili5

$$\begin{array}{c|c}
\hline
(a) & \bar{x} = \frac{5a+5b}{10} \\
\bar{x} = \frac{a+b}{2} \\
\hline
(b) & \\
\sigma^2 = \frac{5\left[a - \frac{a+b}{2}\right]^2 + 5\left[b - \frac{(a+b)}{2}\right]^2}{10} \\
\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{b-a}{2}\right)^2}{2} \\
\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{b-a}{2}\right)^2}{2} \\
\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2}{2} \\
\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2}{2} \\
\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 +$$

(a)	Let: $\hat{O}_1 = 2x$ $\therefore \hat{D} = x$ (\angle at centre = 2x) $\therefore \hat{A}_1 = x$ (alt \angle s; AC//BC) $\therefore \hat{C} = x$ (\angle in same segment) In $\triangle CAE$: $\hat{E}_1 = 180^\circ - 2x$ (int \angle s of \triangle) $\therefore \hat{E}_2 = 2x$ (adj \angle s on str. lines) Since $\therefore \hat{E}_2 = 2x = \hat{O}_1$ And these are subtended by AB, Then AEOB is cyclic (\angle s in same segment =)	$\hat{D} = x \ (\angle \text{ at centre} = 2x)$ $\therefore \hat{A}_1 = x (\text{alt } \angle s; \text{AC}//\text{BC})$ $\hat{C} = x \ (\angle \text{ in same seg})$ $\hat{E}_2 = 2x \ (\text{adj } \angle s \text{ on str. line})$ And these are subtended by AB, then AEOB is cyclic ($\angle s$ in same segment =)
(b)	Let: $\hat{D}_1 = x$ $\therefore \hat{B}_2 = x$ equal chords subtend = $\angle s$ Let: $\hat{E}_1 = y$ $\therefore \hat{B}_1 = y$ ext. \angle of cyclic quad = int opp $\therefore \hat{A}_1 = y - x$ ext. $\angle s$ of Δ = sum int opp $\therefore \hat{B}_1 - \hat{B}_2 = \hat{A}_1$	$\begin{array}{l} \therefore \hat{B}_2 = x \\ \text{equal chords subtend} = \angle s \\ \\ \therefore \hat{B}_1 = y \\ \\ \text{ext.} \ \angle \text{ of cyclic quad} = \text{int opp} \\ \\ \therefore \hat{A}_1 = y - x \\ \\ \text{ext.} \ \angle s \text{ of } \Delta = \text{sum int opp} \\ \\ \therefore \hat{B}_1 - \hat{B}_2 = \hat{A}_1 \end{array}$
(c)	Draw a perp. From P to SQ Call perp. PU \therefore UQ = 5 - 3 UQ = 2 cm \therefore PQ = 3 + 5 PQ = 8 cm $(PU)^2 = (PQ)^2 - (UQ)^2 \text{pythag}$ $(PU)^2 = (8)^2 - (2)^2 \text{pythag}$ $PU = \sqrt{60}$ $PU = 7,7 \text{ cm}$ $PU = RS \text{ (rectangle)}$ \therefore RS = 7,7 cm	Draw a perp. From P to SQ $UQ = 2 \text{ cm}$ $PQ = 8 \text{ cm}$ $(PU)^{2} = (8)^{2} - (2)^{2} \text{ pythag}$ $PU = \sqrt{60}$ $PU = RS \text{ (rectangle)}$

(a)	In ΔBOC:	
	$\hat{C} = 90^{\circ} - \theta$ (Isos Δ ; Radii; Int \angle s of Δ) In \triangle OCF:	$\therefore \overset{{}}{C}_2=\theta$
	$ \hat{C} = \theta $ $ \frac{CF}{8} = \cos \theta $	$CF = 8\cos\theta$
	8	$OF = 8 \sin \theta$
	$CF = 8\cos\theta$	∴P=2×CF+4×OF
	$OF = 8 \sin \theta$	
	∴P=2×CF+4×OF∴P=16cosθ+32sinθ	
(b)	$P = 16\cos\theta + 32\sin\theta$ and $P = 16\sqrt{5}\sin(\theta + \alpha)$	
	$P = 16\sqrt{5}\sin\theta.\cos\alpha + 16\sqrt{5}\cos\theta.\sin\alpha$	$16\sqrt{5}\sin\theta.\cos\alpha+16\sqrt{5}\cos\theta.\sin\alpha$
	$\therefore 16\sqrt{5}\sin\alpha = 16$	∴16√5 sinα = 16
	and $16\sqrt{5}\cos\alpha = 32$	$16\sqrt{5}\cos\alpha=32$
	$\alpha \approx 26,6^{\circ}$	$\alpha \approx 26,6^{\circ}$

Total: 150 marks