

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170100034201

Fax: +86 (0) 755 2671 0594 Page: 1 of 93

TEST REPORT

Application No.: SZEM1701000342CR(GZEM1701000289CR)

Applicant: Gibson Innovations Limited

Address of Applicant: 5/F, Philips Electronics Building, 5 Science Part East Venusue. Hong Kong

Science Park, Shatin, n. ThONG kONG

Manufacturer: Gibson Innovations Limited

Address of Manufacturer: 5/F, Philips Electronics Building, 5 Science Part East Venusue. Hong Kong

Science Park, Shatin, n. ThONG kONG

Factory: Minami Acoustics Limited

Address of Factory: NO.13, Maonan Road, Torch Development District, Zhongshan City, Guangdong

Province, China.

Equipment Under Test (EUT):

EUT Name: Bluetooth Headphones

Model No.: SHB4205, SHB4205/XX, SHB4205YY/XX, (YY=AA to ZZ; XX=00 to 99) ♣

Please refer to section 2 of this report which indicates which model was actually

tested and which were electrically identical.

Trade mark: Philips

FCC ID: 2AANUSHB4205

Standards: 47 CFR Part 15, Subpart C (2016)

Date of Receipt: 2017-01-12

Date of Test: 2017-01-17 to 2017-01-23

Date of Issue: 2017-01-25

Test Result : PASS*

^{*} In the configuration tested, the EUT complied with the standards specified above.

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170100034201

Page: 2 of 93

Revision Record						
Version	Chapter	Date	Modifier	Remark		
01		2017-01-25		Original		

Authorized for issue by:		
Tested By	Brir Chen	2017-01-23
	Bill Chen /Project Engineer	Date
Checked By	Eric Fu	2017-01-25
	Eric Fu /Reviewer	Date

Report No.: SZEM170100034201

Page: 3 of 93

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h	Pass		

Radio Spectrum Matt	Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result			
Conducted Disturbance at AC Power Line(150kHz- 30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass			
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass			
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass			
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass			
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass			
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass			
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass			

Remark:

Model No.: SHB4205, SHB4205/XX, SHB4205YY/XX, (YY=AA to ZZ; XX=00 to 99)

Only the model SHB4205 was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for all the above models, only different on model number and outer color.

Report No.: SZEM170100034201

Page: 4 of 93

3 Contents

			Page
1	COVE	R PAGE	1
2	TEST	SUMMARY	3
3	CONT	ENTS	4
4		RAL INFORMATION	
		AILS OF E.U.T.	
		CRIPTION OF SUPPORT UNITS	
		SUREMENT UNCERTAINTY	
		NDARDS APPLICABLE FOR TESTING	
		LOCATION	
		FACILITY	
		IATION FROM STANDARDSORMALITIES FROM STANDARD CONDITIONS	
5	EQUIF	MENT LIST	10
6	RADIC	SPECTRUM TECHNICAL REQUIREMENT	12
	6.1 ANT	ENNA REQUIREMENT	12
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	
	6.2 OTH	ER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE	13
	6.2.1	Test Requirement:	
	6.2.2	Conclusion	
7	RADIC	SPECTRUM MATTER TEST RESULTS	15
	7.1 Cox	DUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz)	15
	7.1.1	E.U.T. Operation	
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Data	
	7.2 20D	B BANDWIDTH	19
	7.2.1	E.U.T. Operation	19
	7.2.2	Test Setup Diagram	
	7.2.3	Measurement Data	
		DUCTED PEAK OUTPUT POWER	
	7.3.1	E.U.T. Operation	
	7.3.2	Test Setup Diagram	
	7.3.3	Measurement Data	
		RIER FREQUENCIES SEPARATION	
	7.4.1 7.4.2	E.U.T. Operation Test Setup Diagram	
	7.4.2 7.4.3	Measurement Data	
		PING CHANNEL NUMBER	
	7.5 110P	E.U.T. Operation	
	7.5.1 7.5.2	Test Setup Diagram	
	7.5.3	Measurement Data	
		ELL TIME	
	7.6.1	E.U.T. Operation	
	7.6.2	Test Setup Diagram	
	7.6.3	Measurement Data	

Report No.: SZEM170100034201

Page: 5 of 93

	7.7 Con	DUCTED SPURIOUS EMISSIONS	. 27
	7.7.1	E.U.T. Operation	
	7.7.2	Test Setup Diagram	
	7.7.3	Measurement Data	. 27
	7.8 RAD	IATED SPURIOUS EMISSIONS	
	7.8.1	E.U.T. Operation	
	7.8.2	Test Setup Diagram	
	7.8.3	Measurement Data	
	7.9 RAD	IATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.9.1	E.U.T. Operation	
	7.9.2	Test Setup Diagram	
	7.9.3	Measurement Data	
		ONDUCTED BAND EDGES MEASUREMENT	
	7.10.1	E.U.T. Operation	
	7.10.2		
	7.10.3	Measurement Data	. 42
8	PHOT	OGRAPHS	. 43
		DUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz) TEST SETUP	
		IATED SPURIOUS EMISSIONS TEST SETUP	
	8.3 EUT	CONSTRUCTIONAL DETAILS	. 45
9	APPEN	NDIX	. 46
	9.1 Appe	ENDIX 15.247	-93

Report No.: SZEM170100034201

Page: 6 of 93

4 General Information

4.1 Details of E.U.T.

Operation Frequency: 2402MHz~2480MHz
Bluetooth Version: V4.1 Classic mode

Modulation Technique: Frequency Hopping Spread Spectrum(FHSS)

Modulation Type: GFSK, π/4DQPSK, 8DPSK

Number of Channel: 79

Hopping Channel Type: Adaptive Frequency Hopping systems

Sample Type: Portable production

Antenna Type: Integral
Antenna Gain: OdBi

Power Supply: Internal rechargeable battery: DC 3.7V 120mAh

Charge by USB DC 5V

Test Voltage: AC 120V 60Hz

Cable: USB cable: 30cm unshielded

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Adapter	Apple	A1357 W010A051	REF. No.SEA0500

Report No.: SZEM170100034201

Page: 7 of 93

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
8	DE Dadiated various	4.5dB (below 1GHz)
8	RF Radiated power	4.8dB (above 1GHz)
•	Dadiated Courieus amission test	4.5dB (30MHz-1GHz)
9	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
10	Temperature test	1℃
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

Report No.: SZEM170100034201

Page: 8 of 93

4.4 Standards Applicable for Testing

Table 1: Tests Carried Out Under 47 CFR Part 15, Subpart C 15.247

Item	Status
Conducted Disturbance at AC Power Line(150kHz-30MHz)	√
20dB Bandwidth	√
Conducted Peak Output Power	√
Carrier Frequencies Separation	√
Hopping Channel Number	√
Dwell Time	√
Minimum 6dB Bandwidth	×
Power Spectrum Density	×
Conducted Spurious Emissions	√
Radiated Spurious Emissions	√
Radiated Emissions which fall in the restricted bands	√
Conducted Band Edges Measurement	√
Antenna Requirement	√
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	√

- × Indicates that the test is not applicable
- $\sqrt{}$ Indicates that the test is applicable

Report No.: SZEM170100034201

Page: 9 of 93

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

Report No.: SZEM170100034201

Page: 10 of 93

5 Equipment List

	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13		
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09		
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8- 02	EMC0120	2016-09-28	2017-09-28		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4- 02	EMC0121	2016-09-28	2017-09-28		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2- 02	EMC0122	2016-09-28	2017-09-28		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25		
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

Report No.: SZEM170100034201

Page: 11 of 93

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

RF connected test										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)				
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09				
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09				
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25				
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09				

	General used equipment										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)					
1	Humidity/ Temperature Indicator	Anymetre	TH101B	SEM002-11	2016-07-23	2017-07-23					
2	Humidity/ Temperature Indicator	Mingle	N/A	SEM002-12	2016-10-12	2017-10-12					
3	Humidity/ Temperature Indicator	Mingle	N/A	SEM002-13	2016-10-12	2017-10-12					
4	Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2016-05-18	2017-05-18					

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions/Ferms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170100034201

Page: 12 of 93

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM170100034201

Page: 13 of 93

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirment:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77 7 64 8 73 16 75 1

Each frequency used equally on the average by each transmitter.

Report No.: SZEM170100034201

Page: 14 of 93

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SZEM170100034201

Page: 15 of 93

7 Radio Spectrum Matter Test Results

7.1 Conducted Disturbance at AC Power Line(150kHz-30MHz)

Test Requirement: 47 CFR Part 15, Subpart C 15.247
Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Execution of emission (MUT)	Conducted limit(dBμV)					
Frequency of emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

Report No.: SZEM170100034201

Page: 16 of 93

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 25.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

b:Charge, Keep the EUT being charged by adapter. (The charge mode and

Test mode: transmitting mode can not work simultaneously. Only the charge mode is being

performed on this test.)

7.1.2 Test Setup Diagram

7.1.3 Measurement Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

Report No.: SZEM170100034201

Page: 17 of 93

Mode:b;Line:Neutral Line

Site : Shielding Room Condition : CE NEUTRAL Job No. : 0342CR Test Mode : b

	Freq	Cable Loss	LISN Factor			Limit Line		Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19969	0.02	9.63	31.75	41.40	53.62	-12.23	Peak
2	0.29554	0.02	9.63	29.79	39.44	50.37	-10.92	Peak
3 @	0.56709	0.02	9.63	31.68	41.34	46.00	-4.66	Peak
4	1.487	0.03	9.65	18.36	28.04	46.00	-17.96	Peak
5	2.487	0.03	9.66	17.86	27.55	46.00	-18.45	Peak
6	7.329	0.09	9.78	22.77	32.63	50.00	-17.37	Peak

Report No.: SZEM170100034201

Page: 18 of 93

Mode:b;Line:Live Line

Site : Shielding Room Condition : CE LINE Job No. : 0342CR Test Mode : b

	Freq		LISN Factor			Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19863	0.02	9.64	31.77	41.43	53.67	-12.24	Peak
2	0.24945	0.02	9.64	31.25	40.91	51.78	-10.86	Peak
3	0.34463	0.02	9.64	27.11	36.77	49.09	-12.32	Peak
4 @	0.58540	0.02	9.65	30.37	40.04	46.00	-5.96	Peak
5	1.602	0.03	9.66	19.83	29.52	46.00	-16.48	Peak
6	7.852	0.10	9.81	22.48	32.39	50.00	-17.61	Peak

Report No.: SZEM170100034201

Page: 19 of 93

7.2 20dB Bandwidth

Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.7

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170100034201

20 of 93 Page:

7.3 Conducted Peak Output Power

Test Requirement: 47 CFR Part 15, Subpart C 15.247(b)(1) Test Method: ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for <50 hopping channels
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

Report No.: SZEM170100034201

Page: 21 of 93

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170100034201

Page: 22 of 93

7.4 Carrier Frequencies Separation

Test Requirement: 47 CFR Part 15, Subpart C 15.247a(1)
Test Method: ANSI C63.10 (2013) Section 7.8.2

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than

0.125W

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170100034201

Page: 23 of 93

7.5 Hopping Channel Number

Test Requirement: 47 CFR Part 15, Subpart C 15.247a(1)(iii)

Test Method: ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range(MHz)	Channel Number(minimum)
902-928	50 for 20dB bandwidth <250kHz
902-926	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

Report No.: SZEM170100034201

Page: 24 of 93

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: Hopping transmitting with all kind of modulation.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170100034201

Page: 25 of 93

7.6 Dwell Time

Test Requirement: 47 CFR Part 15, Subpart C 15.247a(1)(iii)

Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit:

Frequency(MHz)	Limit			
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)			
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)			
0400 0400 5	0.4S within a period of 0.4S*number			
2400-2483.5	of hopping channels			
5725-5850	0.4S within a 30S period			

Report No.: SZEM170100034201

Page: 26 of 93

7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: Hopping transmitting with all kind of modulation and all kind of data type.

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170100034201

Page: 27 of 93

7.7 Conducted Spurious Emissions

Test Requirement: 47 CFR Part 15, Subpart C 15.247(d)
Test Method: 47 CFR Part 15, Subpart C 15.247(d)
ANSI C63.10 (2013) Section 7.8.8

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the

desired power, based on either an RF conducted or a radiated

measurement.

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.7.2 Test Setup Diagram

Ground Reference Plane

7.7.3 Measurement Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170100034201

Page: 28 of 93

7.8 Radiated Spurious Emissions

Test Requirement: 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM170100034201

Page: 29 of 93

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 53 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting mode with all kind of modulation and all kind of

Mode: data type

a: Transmitting mode

Final Test Mode: Through Pre-scan, find the 3-DH1 of data type and 8DPSK modulation is the worst

case

For below 1GHz part, through pre-scan, the worst case is the lowest channel.

Only the worst case is recorded in the report.

7.8.2 Test Setup Diagram

Below 30MHz 30MHz-1GHz

Above 1GHz

Report No.: SZEM170100034201

Page: 30 of 93

7.8.3 Measurement Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 and 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170100034201

Page: 31 of 93

For below 1GHz Mode:a;Polarization:Vertical

Condition: 3m VERTICAL

Job No. : 0342CR

Test mode: a

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.00	0.60	18.70	27.36	22.93	14.87	40.00	-25.13
2	104.54	1.21	8.87	27.17	26.57	9.48	43.50	-34.02
3	255.62	1.70	12.41	26.52	26.98	14.57	46.00	-31.43
4	459.11	2.45	17.23	27.50	24.84	17.02	46.00	-28.98
5	704.23	2.92	21.60	27.41	25.81	22.92	46.00	-23.08
6 pp	948.76	3.65	23.30	26.54	24.17	24.58	46.00	-21.42

Report No.: SZEM170100034201

Page: 32 of 93

Mode:a;Polarization:Horizontal

Condition: 3m HORIZONTAL

Job No. : 0342CR

Test mode: a

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.00	0.60	18.70	27.36	23.16	15.10	40.00	-24.90
2	39.71	0.60	13.26	27.32	24.27	10.81	40.00	-29.19
3	167.82	1.35	9.52	26.82	33.05	17.10	43.50	-26.40
4	191.75	1.39	10.12	26.73	33.75	18.53	43.50	-24.97
5	287.99	1.85	13.37	26.43	31.50	20.29	46.00	-25.71
6 pp	948.76	3.65	23.30	26.54	24.23	24.64	46.00	-21.36

Report No.: SZEM170100034201

Page: 33 of 93

For above 1GHz:

		BDPSK(3- DH1)	Test	Test channel:		Lowest Remar		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
3836.607	33.16	7.75	37.98	44.84	47.77	74.00	-26.23	Vertical
4804.000	34.16	8.87	38.4	44.21	48.84	74.00	-25.16	Vertical
5921.940	34.65	10.34	38.32	43.59	50.26	74.00	-23.74	Vertical
7206.000	36.42	10.68	37.11	41.51	51.50	74.00	-22.50	Vertical
9608.000	37.52	12.50	35.10	37.82	52.74	74.00	-21.26	Vertical
11963.580	38.56	14.52	35.59	35.80	53.29	74.00	-20.71	Vertical
3663.017	32.68	7.69	37.97	44.48	46.88	74.00	-27.12	Horizontal
4804.000	34.16	8.87	38.40	46.48	51.11	74.00	-22.89	Horizontal
5947.702	34.67	10.42	38.31	44.52	51.30	74.00	-22.70	Horizontal
7206.000	36.42	10.68	37.11	42.29	52.28	74.00	-21.72	Horizontal
9608.000	37.52	12.50	35.10	38.04	52.96	74.00	-21.04	Horizontal
12085.370	38.65	14.49	35.8	36.39	53.73	74.00	-20.27	Horizontal

Report No.: SZEM170100034201

Page: 34 of 93

Test mode:		8DPSK(3-DH1)		est channel:	Middle	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Cable Loss (dB)	1	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit (dB)	Polarization
3563.687	32.39	7.65	37.96		45.54	74.00	-28.46	Vertical
4882.000	34.30	8.98	38.44	42.16	47.00	74.00	-27.00	Vertical
6034.386	34.73	10.52	38.27	44.42	51.40	74.00	-22.60	Vertical
7323.000	36.37	10.72	37.01	40.97	51.05	74.00	-22.95	Vertical
9764.000	37.55	12.58	35.02	37.71	52.82	74.00	-21.18	Vertical
11980.900	38.58	14.54	35.60	36.06	53.58	74.00	-20.42	Vertical
3797.945	33.06	7.74	37.98	44.45	47.27	74.00	-26.73	Horizontal
4882.000	34.30	8.98	38.44	41.84	46.68	74.00	-27.32	Horizontal
6025.661	34.72	10.53	38.27	43.37	50.35	74.00	-23.65	Horizontal
7323.000	36.37	10.72	37.01	41.52	51.60	74.00	-22.40	Horizontal
9764.000	37.55	12.58	35.02	36.93	52.04	74.00	-21.96	Horizontal
12050.440	38.63	14.52	35.72	36.23	53.66	74.00	-20.34	Horizontal

Report No.: SZEM170100034201

Page: 35 of 93

Test mode:		8DPSK(3-DH1)		Test channel:		Highest	Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp factor (dB)		Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3594.760	32.48	7.67	37.96		45.46	47.65	74.00	-26.35	Vertical
4960.000	34.43	9.09	38.	.48	42.73	47.77	74.00	-26.23	Vertical
6069.413	34.76	10.47	38.	.23	44.39	51.39	74.00	-22.61	Vertical
7440.000	36.32	10.77	36.	.90	40.40	50.59	74.00	-23.41	Vertical
9920.000	37.58	12.67	34.	.94	37.19	52.50	74.00	-21.50	Vertical
12208.390	38.73	14.39	36.	.10	36.19	53.21	74.00	-20.79	Vertical
3864.464	33.24	7.76	37.	.99	45.21	48.22	74.00	-25.78	Horizontal
4960.000	34.43	9.09	38.	.48	42.13	47.17	74.00	-26.83	Horizontal
6034.386	34.73	10.52	38.	.27	43.61	50.59	74.00	-23.41	Horizontal
7440.000	36.32	10.77	36.	.90	41.05	51.24	74.00	-22.76	Horizontal
9920.000	37.58	12.67	34.	.94	37.06	52.37	74.00	-21.63	Horizontal
12155.510	38.69	14.43	35.	.97	35.89	53.04	74.00	-20.96	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM170100034201

Page: 36 of 93

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement: 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 24.0 °C Humidity: 54 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting mode with all kind of modulation and all kind of

Mode: data type

a: Transmitting mode

Final Test Mode: Through Pre-scan, find the 3-DH5 of data type and 8DPSK modulation is the worst

case.

For below 1GHz part, through pre-scan, the worst case is the lowest channel.

Only the worst case is recorded in the report.

7.9.2 Test Setup Diagram

30MHz-1GHz Above 1GHz

Report No.: SZEM170100034201

Page: 37 of 93

7.9.3 Measurement Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 and 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170100034201

Page: 38 of 93

Worse case mode: | 8DPSK(3-DH5) | Test channel: | Lowest | Remark: | Peak | Vertical

Condition: 3m VERTICAL Job No: : 0342CR

Mode: : 2402 Bandedge

: BT

1

	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2336.584								
pp	2402.148								· cuit

Report No.: SZEM170100034201

Page: 39 of 93

Condition: 3m HORIZONTAL

Job No: : 0342CR

Mode: : 2402 Bandedge

: BT

		. 01	Cable	Ant	Preamp	Read		limit	Over	
		Freq			Factor					Remark
	_									
		MHZ	dВ	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2329.662	5.29	28.89	37.97	47.02	43.23	74.00	-30.77	Peak
2		2390.000	5.34	29.08	37.96	44.99	41.45	74.00	-32.55	Peak
3	nn	2/02 1/18	5 35	29 11	37 96	96 96	93 46	7/ 00	19 46	

Report No.: SZEM170100034201

Page: 40 of 93

Worse case mode: 8DPSK(3-DH5) Test channel: Highest Remark: Peak Vertical	Worse case mode:	8DPSK(3-DH5)	Test channel:	Highest	Remark:	Peak	Vertical
---	------------------	--------------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL Job No: : 0342CR

Mode: : 2480 Bandedge

: BT

		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2479.830	5.41	29.34	37.95	97.76	94.56	74.00	20.56	
2		2483.500	5.41	29.35	37.95	51.65	48.46	74.00	-25.54	Peak
3	av	2483.622	5.41	29.35	37.95	49.19	46.00	54.00	-8.00	Average
4	pk	2483.622	5.41	29.35	37.95	65.32	62.13	74.00	-11.87	Peak

Report No.: SZEM170100034201

Page: 41 of 93

Worse case mode: | 8DPSK(3-DH5) | Test channel: | Highest | Remark: | Peak | Horizontal

Condition: 3m HORIZONTAL

Job No: : 0342CR

Mode: : 2480 Bandedge

: BT

		Freq					Level			Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1	pp	2479.880	5.41	29.34	37.95	102.26	99.06	74.00	25.06		
2	av	2483.500	5.41	29.35	37.95	46.59	43.40	54.00	-10.60	Average	
3		2483.500	5.41	29.35	37.95	61.99	58.80	74.00	-15.20	Peak	
4		2483.597	5.41	29.35	37.95	46.25	43.06	54.00	-10.94	Average	
5	pk	2483.597	5.41	29.35	37.95	71.21	68.02	74.00	-5.98	Peak	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM170100034201

Page: 42 of 93

7.10 Conducted Band Edges Measurement

Test Requirement: 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 7.8.6

7.10.1E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Hopping and non-hopping transmitting with all kind of modulation and all kind of

Mode: data type.

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.10.2Test Setup Diagram

Ground Reference Plane

7.10.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170100034201

Page: 43 of 93

8 Photographs

8.1 Conducted Disturbance at AC Power Line(150kHz-30MHz) Test Setup

8.2 Radiated Spurious Emissions Test Setup

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sas.com/en/Terms-and-Conditions/Terms-en-Document-sapx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170100034201

Page: 44 of 93

Report No.: SZEM170100034201

Page: 45 of 93

8.3 EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1701000342CR.

Report No.: SZEM170100034201

Page: 46 of 93

9 Appendix

9.1 Appendix 15.247

1.20 dB Bandwidth

			1	
Test Mode	Test Channel	EBW[MHz]	Limit	Verdict
DH5	2402	1.132		PASS
DH5	2441	1.128		PASS
DH5	2480	1.126		PASS
2DH5	2402	1.390		PASS
2DH5	2441	1.390		PASS
2DH5	2480	1.384		PASS
3DH5	2402	1.364		PASS
3DH5	2441	1.400		PASS
3DH5	2480	1.382		PASS

Report No.: SZEM170100034201

Page: 47 of 93

Report No.: SZEM170100034201

Page: 48 of 93

Report No.: SZEM170100034201

Page: 49 of 93

Report No.: SZEM170100034201

Page: 50 of 93

Report No.: SZEM170100034201

Page: 51 of 93

Report No.: SZEM170100034201

Page: 52 of 93

2.Conducted Peak Output Power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	0.68	<20.97	PASS
DH5	2441	0.53	<20.97	PASS
DH5	2480	0.37	<20.97	PASS
2DH5	2402	0.66	<20.97	PASS
2DH5	2441	0.52	<20.97	PASS
2DH5	2480	0.36	<20.97	PASS
3DH5	2402	0.69	<20.97	PASS
3DH5	2441	0.58	<20.97	PASS
3DH5	2480	0.37	<20.97	PASS

Report No.: SZEM170100034201

Page: 53 of 93

Report No.: SZEM170100034201

Page: 54 of 93

Report No.: SZEM170100034201

Page: 55 of 93

Report No.: SZEM170100034201

Page: 56 of 93

Report No.: SZEM170100034201

Page: 57 of 93

Report No.: SZEM170100034201

Page: 58 of 93

3. Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Verdict
DH5	2441	1.023	PASS
2DH5	2441	0.996	PASS
3DH5	2441	1.008	PASS

Note: According to 20dB bandwidth

	•	
Test Mode	20dB bandwidth (kHz)	Limit (kHz)
T CSt WOOC	(worse case)	(Carrier Frequencies Separation)
DH5	1132	754.67
2DH5	1390	926.67
3DH5	1400	933.33

Report No.: SZEM170100034201

Page: 59 of 93

Report No.: SZEM170100034201

Page: 60 of 93

4.Dwell Time

Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total	Dwell Time[ms]	Limit[ms]	Verdict
DH1	2402	0.40	90	0.036	<=0.4	PASS
DH3	2402	2.91	60	0.175	<=0.4	PASS
DH5	2402	2.89	110	0.318	<=0.4	PASS
2DH1	2402	0.4	120	0.048	<=0.4	PASS
2DH3	2402	1.53	180	0.275	<=0.4	PASS
2DH5	2402	1.52	120	0.182	<=0.4	PASS
3DH1	2402	0.39	130	0.051	<=0.4	PASS
3DH3	2402	1.07	170	0.182	<=0.4	PASS
3DH5	2402	1.06	150	0.159	<=0.4	PASS

Report No.: SZEM170100034201

Page: 61 of 93

Report No.: SZEM170100034201

Page: 62 of 93

Report No.: SZEM170100034201

Page: 63 of 93

Report No.: SZEM170100034201

Page: 64 of 93

Report No.: SZEM170100034201

Page: 65 of 93

Report No.: SZEM170100034201

Page: 66 of 93

Report No.: SZEM170100034201

Page: 67 of 93

Report No.: SZEM170100034201

Page: 68 of 93

Report No.: SZEM170100034201

Page: 69 of 93

Report No.: SZEM170100034201

Page: 70 of 93

5. Hopping Channel Number

1-1- 3				
Test Mode	Test Channel	Number of Hopping Channel[N]	Limit[N]	Verdict
DH5	2402	79	>=15	PASS
2DH5	2402	79	>=15	PASS
3DH5	2402	79	>=15	PASS

Report No.: SZEM170100034201

Page: 71 of 93

Report No.: SZEM170100034201

Page: 72 of 93

6.Band-edge for RF Conducted Emissions

Test Mode	Test Channel	Hopping	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit[dBm	Verdict
DH5	2402	Off	-0.270	-65.202	<-20.27	PASS
DH5	2480	Off	-0.320	-49.858	<-20.32	PASS
2DH5	2402	Off	-0.900	-66.178	<-20.9	PASS
2DH5	2480	Off	-1.100	-49.712	<-21.1	PASS
3DH5	2402	Off	-0.900	-65.192	<-20.9	PASS
3DH5	2480	Off	-0.930	-49.734	<-20.93	PASS
DH5	2402	On	-0.450	-55.010	<-20.45	PASS
DH5	2480	On	-0.350	-55.253	<-20.35	PASS
2DH5	2402	On	-2.090	-54.870	<-22.09	PASS
2DH5	2480	On	-4.720	-51.983	<-24.72	PASS
3DH5	2402	On	-0.790	-54.838	<-20.79	PASS
3DH5	2480	On	-1.030	-50.477	<-21.03	PASS

Report No.: SZEM170100034201

Page: 73 of 93

Report No.: SZEM170100034201

Page: 74 of 93

Report No.: SZEM170100034201

Page: 75 of 93

Report No.: SZEM170100034201

Page: 76 of 93

Report No.: SZEM170100034201

Page: 77 of 93

Report No.: SZEM170100034201

Page: 78 of 93

Report No.: SZEM170100034201

Page: 79 of 93

7.RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
DH5	2402	30	10000	1000	3000	-0.12	-31.020	<-20.12	PASS
DH5	2402	10000	25000	1000	3000	-0.12	-63.840	<-20.12	PASS
DH5	2441	30	10000	1000	3000	-0.14	-28.420	<-20.14	PASS
DH5	2441	10000	25000	1000	3000	-0.14	-64.370	<-20.14	PASS
DH5	2480	30	10000	1000	3000	-0.35	-29.310	<-20.35	PASS
DH5	2480	10000	25000	1000	3000	-0.35	-64.580	<-20.35	PASS
2DH5	2402	30	10000	1000	3000	-0.61	-30.060	<-20.61	PASS
2DH5	2402	10000	25000	1000	3000	-0.61	-63.890	<-20.61	PASS
2DH5	2441	30	10000	1000	3000	-0.73	-31.850	<-20.73	PASS
2DH5	2441	10000	25000	1000	3000	-0.73	-64.510	<-20.73	PASS
2DH5	2480	30	10000	1000	3000	-0.92	-31.300	<-20.92	PASS
2DH5	2480	10000	25000	1000	3000	-0.92	-65.140	<-20.92	PASS
3DH5	2402	30	10000	1000	3000	-0.47	-29.760	<-20.47	PASS
3DH5	2402	10000	25000	1000	3000	-0.47	-64.800	<-20.47	PASS
3DH5	2441	30	10000	1000	3000	-0.52	-31.780	<-20.52	PASS
3DH5	2441	10000	25000	1000	3000	-0.52	-64.450	<-20.52	PASS
3DH5	2480	30	10000	1000	3000	-0.77	-32.520	<-20.77	PASS
3DH5	2480	10000	25000	1000	3000	-0.77	-64.970	<-20.77	PASS

Report No.: SZEM170100034201

Page: 80 of 93

Report No.: SZEM170100034201 Page: 81 of 93

Report No.: SZEM170100034201

Page: 82 of 93

Report No.: SZEM170100034201

Page: 83 of 93

Report No.: SZEM170100034201 84 of 93 Page: *RBW 1 MHz Marker 1 [T1] -64.58 dBm * VBW 3 MHz Ref 10 dBm 23.132500000 GHz 10 Offset 0.9 dB CSE 2 Stop 25 GHz Start 10 GHz 1.5 GHz/ RF Conducted Spurious Emissions_2DH5_2402 **P**S *RBW 100 kHz *VBW 300 kHz 10 dBm *Att 10 dB SWT 10 ms 2.402000000 GHz 10 Offset 0. dВ Pref

10 MHz/

Stop 2.5 GHz

Start 2.4 GHz

Report No.: SZEM170100034201

Page: 85 of 93

Report No.: SZEM170100034201

Page: 86 of 93

Report No.: SZEM170100034201 87 of 93 Page: *RBW 1 MHz Marker 1 [T1] -64.51 dBm * VBW 3 MHz Ref 10 dBm 18.662500000 GHz 10 Offset 0.9 dB CSE 2 Stop 25 GHz Start 10 GHz 1.5 GHz/ RF Conducted Spurious Emissions_2DH5_2480 **P**S *RBW 100 kHz *VBW 300 kHz Ref 10 dBm *Att 10 dB SWT 10 ms 2.480000000 GHz 10 Offset 0.5 dВ Pref Start 2.4 GHz 10 MHz/ Stop 2.5 GHz

Report No.: SZEM170100034201

Page: 88 of 93

Report No.: SZEM170100034201

Page: 89 of 93

Report No.: SZEM170100034201 90 of 93 Page: *RBW 1 MHz Marker 1 [T1] -64.80 dBm * VBW 3 MHz Ref 10 dBm 22.337500000 GHz 10 Offset 0.9 dB CSE 2 Stop 25 GHz Start 10 GHz 1.5 GHz/ RF Conducted Spurious Emissions_3DH5_2441 **P**S *RBW 100 kHz *VBW 300 kHz Ref 10 dBm *Att 10 dB SWT 10 ms 2.441100000 GHz 10 Offset 0.5 dВ Pref

10 MHz/

Stop 2.5 GHz

Start 2.4 GHz

Report No.: SZEM170100034201

Report No.: SZEM170100034201

Page: 92 of 93

Page: 93 of 93

