Оглавление

1 Функции. Предел функции, монотонность, непрерывность 3 1.1 Предел функции 3 1.2 Односторонние пределы 4 1.3 Сущестование предела 5 1.4 Свойства пределов функции 6	
Лекция 6: Верхний и нижний пределы. Предел функ-	
ции.	12.10.2023
Теорема 1. (свойства пределов) Пусть есть последовательность $\{a_n\}_{n=1}^{\infty}$. Тогда справедливы следующие утверждения:	
$\exists N : \forall n > N : a_n < \limsup_{n \to \infty} a_n + \varepsilon \tag{1}$	
$\forall N \exists n > N : a_n > \limsup_{n \to \infty} a_n - \varepsilon \tag{2}$	
$\exists N_2 : \forall n > N_2 : a_n > \liminf_{n \to \infty} a_n - \varepsilon \tag{3}$	
$\forall N_3 \exists n > N_3 : a_n < \liminf_{n \to \infty} a_n + \varepsilon \tag{4}$	
Доказательство. (Все пределы при $n \to \infty$) Докажем только (1) и (2), другие свойства доказываются аналогично.	
1. Возьмем $E_n = \{a_n : m \ge n\}$ и $g_n = \sup E_n$.	
Тогда $\limsup a_n = \lim g_n$, и $\forall n : a_n \leq g_n$.	
При этом $\exists N: \forall n>N: g_n < g_n+arepsilon$ Имеем $\forall n>N: a_n \leq g_n < g_n+arepsilon = \limsup a_n+arepsilon$	
2. Имеем $g_N=\sup E_N$ и $g_{N+1}\geq g_N,$ значит $\exists a_n\in E_{N+1}: a_n\geq g_n>g_n-arepsilon$	
$\Rightarrow a_n > \limsup a_n - \varepsilon$	

Свойства. (Без доказательств)

Пусть есть последовательность $\{a_n\}_{n=1}^{\infty}$, тогда:

$$\exists \{a_{n_k}\}_{k=1}^{\infty} : a_{n_k} \underset{k \to \infty}{\to} \limsup a_n$$

$$\exists \{a_{n_l}\}_{l=1}^{\infty} : a_{n_l} \underset{l \to \infty}{\to} \liminf a_n$$

Теорема 2. (Последнее свойство) Пусть есть подпоследовательность

$$\{a_{n_m}\}_{m=1}^{\infty}: \exists \lim_{m\to\infty} a_{n_m} \in \overline{\mathbb{R}}$$

Тогда выполнено следующее неравенство:

$$\liminf_{n \to \infty} a_n \le \lim_{m \to \infty} a_{n_m} \le \limsup_{n \to \infty} a_n$$

Доказательство. Пусть $h_n = \inf E_n, g_n = \sup E_n$. Имеем неравенство:

$$h_{n_m} \leq a_{n_m} \leq g_{n_m} \Rightarrow \lim_{m \to \infty} h_{n_m} \leq \lim_{m \to \infty} a_{n_m} \leq \lim_{m \to \infty} g_{n_m}$$

В силу существования пределов у последовательностей g_n, h_n имеем:

$$\liminf_{n \to \infty} a_n \le \lim_{m \to \infty} a_{n_m} \le \limsup_{n \to \infty} a_n$$

Оглавление 2

Глава 1

Функции. Предел функции, монотонность, непрерывность

1.1Предел функции

Определение 1. Пусть X — метричесткое простанство с метрикой ρ , $\alpha \in X$. Окрестностью точки α называется:

$$\omega(\alpha) = \{x \in X : \forall \varepsilon > 0 : \rho(x, \alpha) < \varepsilon\}$$

Определение 2. α — точка сгущения множества X, если: $\forall \varepsilon > 0 \ \exists x_1 \in X : x_1 \neq \alpha \land \rho(x_1, \alpha) < \varepsilon \Leftrightarrow \forall \omega(\alpha) \ \exists x_1 \in \omega(\alpha), x_1 \neq \alpha$

Определение 3. α — точка сгущения для $E \subset \overline{\mathbb{R}}$, если: $\forall \omega(\alpha) \; \exists b \in (E \cap \omega(\alpha)), b \neq \alpha$

Пример. $E = \mathbb{N}, +\infty$ — точка сгущения для E.

Теорема 3. Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, тогда:

$$\exists \{x_n\}_{n=1}^{\infty}, x_n \underset{n \to \infty}{\to} \alpha, \ \forall x_n : x_n \neq \alpha, x_n \in X$$

Доказательство. Возьмем $x_1 \neq \alpha$, пусть $\varepsilon_1 = \rho(x_1, \alpha) > 0$. $\exists x_2 \neq \alpha$: $\rho(x_2,\alpha) < \frac{1}{2}\varepsilon_1$. Положим $\varepsilon_2 = \rho(x_2,\varepsilon)$.

Пусть уже выбрали выбрали x_1,\dots,x_n так, что $x_k \neq \alpha, 2 \leq k \leq$ $n, arepsilon_k =
ho(x_k, lpha) < rac{1}{2}arepsilon_{k-1}$ Тогда $\exists x_{n+1}
eq lpha :
ho(x_{n+1}, lpha) < rac{1}{2}arepsilon_n.$

Имеем
$$\varepsilon_n < \frac{1}{2}\varepsilon_{n-1} < \frac{1}{2^2}\varepsilon_{n-2} < \dots < \frac{1}{2^{n-1}}\varepsilon_1$$
, т.е. $\rho(x_n, \alpha) \underset{n \to \infty}{\to} 0 \Rightarrow$ $\Rightarrow x_n \underset{n \to \infty}{\to} \alpha$

Определение 4. (Предел функции) Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция f: $X \to \mathbb{R}$ и $A \in \overline{\mathbb{R}}$, тогда:

$$f(x)\underset{x\to\alpha}{\to} A \Leftrightarrow \lim_{x\to\alpha} f(x) = A,$$
 если выполнено: $\forall \omega(A) \; \exists \Omega(\alpha) : \forall x \in \Omega(\alpha), x \neq \alpha : f(x) \in \omega(A)$

Теорема 4. (единственность предела) Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция $f:X\to\mathbb{R}$. Тогда:

$$\exists ! A \in \overline{\mathbb{R}} : \lim_{x \to \alpha} f(x) = A$$

Доказательство. Предположим, что есть $A,B\in\overline{\mathbb{R}},B\neq A$ и $\lim_{x \to \alpha} f(x) = A, \lim_{x \to \alpha} f(x) = B.$

Тогда: $\exists \omega_1(A), \omega_2(B) : (\omega_1(A) \cap \omega_2(B)) = \emptyset$ А также: $\begin{cases} \exists \Omega_1(\alpha) : \forall x \in \Omega_1(\alpha) : f(x) \in \omega_1(A) \\ \exists \Omega_2(\alpha) : \forall x \in \Omega_2(\alpha) : f(x) \in \omega_2(B) \end{cases}$ Рассмотрим $\Omega(\alpha) = \Omega_1(\alpha) \cap \Omega_2(\alpha)$: $\exists x \in \Omega(\alpha), x \neq \alpha : \begin{cases} f(x) \in \omega_1(A) \\ f(x) \in \omega_2(B) \end{cases}$ — противоречие, т.к. $\omega_1(A) \cap \Omega_2(\alpha)$:

1.2 Односторонние пределы

Определение 5. Пусть есть $E = (p, q), p, q \in \mathbb{R}, a \in E, E_- = (p, a), E_+ =$ (a,q)

А также определены функции:

 $f: E \to \mathbb{R}$.

 $f_-:E_- o\mathbb{R},\quad f_-(x)=f(x),$ при $x\in E_-$

 $f_+: E_+ \to \mathbb{R}, \quad f_+(x) = f(x), \text{ при } x \in E_+$

Тогда пределом справа функции f в точке a называется:

$$\lim_{x \to a+0} f(x) = c_+$$

А пределом слева функции f в точке a называется:

$$\lim_{x \to a-0} f(x) = c_-$$

Теорема 5. (обозначения из определения выше)

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$$

Доказательство.

$$\Rightarrow$$
: Пусть $\lim_{x \to a} f(x) = c$. Тогда:
$$\forall \omega(c) \; \exists \Omega(a) : \forall x \in \Omega(a) \cap E, x \neq a : f(x) \in \omega(c)$$
 При этом
$$\begin{cases} \Omega(a) \cap E_+ \in \Omega(a) \cap E \\ \Omega(a) \cap E_- \in \Omega(a) \cap E \end{cases}$$
 Значит получаем
$$\begin{cases} \forall x \in \Omega(a) \cap E_+ : f(x) \in \omega(c) \end{cases}$$

Значит получаем
$$\begin{cases} \forall x \in \Omega(a) \cap E_+ : f(x) \in \omega(c) \\ \forall x \in \Omega(a) \cap E_- : f(x) \in \omega(c) \end{cases} \Rightarrow \lim_{x \to a + 0} f(x) = \lim_{x \to a - 0} f(x)$$

$$\Leftarrow$$
: Пусть $\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = c$. Тогда:
$$\begin{cases} \forall \omega(c) \exists \Omega(a) : \forall x \in \Omega_1(a) \cap E_+, x \neq a : f(x) \in \omega(c) \\ \forall \omega(c) \exists \Omega(a) : \forall x \in \Omega_2(a) \cap E_-, x \neq a : f(x) \in \omega(c) \end{cases}$$
 Возьмем $\Omega(a) = \Omega_1(a) \cap \Omega_2(a)$ Имеем $((\Omega_1(a) \cap E_+) \setminus \{a\}) \cup ((\Omega_2(a) \cap E_-) \setminus \{a\}) = ((\Omega(a) \cap E) \setminus \{a\})$ Тогда справедливо: $\forall x \in \Omega(a) \cap E, x \neq a : f(x) \in \omega(c)$

1.3 Сущестование предела

Теорема 6. (Соответствие предела функции пределу последовательности) Пусть есть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция $F: X \to \mathbb{R}$.

И пусть $E\subset\overline{\mathbb{R}}, a$ — точка сгущения, определена функция $f:E\to\mathbb{R}$.

Рассмотрим последовательности:

$$\{F(x_n)\}_{n=1}^{\infty}, x_n \to \alpha, \forall n: x_n \neq \alpha$$
 $\{f(b_n)\}_{n=1}^{\infty}, b_n \to a, \forall n: b_n \neq a$ Тогда:

$$\exists \lim_{x \to \alpha} F(x) = A \Leftrightarrow \forall \{x_n\} : F(x_n) \underset{n \to \infty}{\to} A$$

$$\exists \lim_{b \to a} f(x) = c \Leftrightarrow \forall \{b_n\} : f(b_n) \underset{n \to \infty}{\to} A$$

Доказательство. (Будем доказывать для метрического пространства, для множества E доказательство аналогично)

$$\Rightarrow$$
: Пусть $\lim_{x\to a} F(x) = A$. Тогда:

$$\forall \omega(A) \ \exists \Omega(\alpha) : \forall x \in \dot{\Omega}(\alpha) : F(x) \in \omega(A)$$

Поскольку
$$x_n \to \alpha$$
, то $\exists N : \forall n > N : x_n \in \Omega(\alpha)$

Имеем, что
$$\forall n > N : F(x_n) \in \omega(A) \Rightarrow F(x_n) \to A$$

 \Leftarrow : Предположим, что $\forall \{x_n\}: F(x_n) \to A$ — неверно. Тогда:

$$\exists \omega_0(A) : \forall \Omega_0(\alpha) \ \exists x \in \dot{\Omega}_0(\alpha) : F(x) \notin \omega_0(A)$$

Будем брать
$$\Omega_{1/n}(\alpha) = \{x \in X : \rho(x,\alpha) < \frac{1}{n}\}$$

$$\exists x_n \in \dots \Omega_{1/n}(\alpha) : F(x) \notin \omega_0(A)$$

Это означает, что $x_n \underset{n \to \infty}{\to} \alpha \Rightarrow F(x_n) \underset{n \to \infty}{\to} A$ — противоречие.

1.4 Свойства пределов функции

Свойства. (обозначения как в теореме выше) Для метрического пространства и для множества E:

- 1. $F(x) \equiv A \Rightarrow F(x) \to A, A \in \overline{\mathbb{R}}$
- 2. $\lim qF(x) = q \lim F(x), q \in \mathbb{R}$
- 3. $\lim(F(x) + G(x)) = \lim F(x) + \lim G(x)$
- 4. $\lim(F(x) \cdot G(x)) = \lim F(x) \cdot \lim G(x)$
- 5. $\lim \frac{1}{F(x)} = \frac{1}{\lim F(x)}$, если $\lim F(x) \neq 0$
- 6. $\lim \frac{F(x)}{G(x)} = \frac{\lim F(x)}{\lim G(x)}$, если $\lim G(x) \neq 0$
- 7. $\forall x : F(x) \le G(x) \Rightarrow \lim F(x) \le \lim G(x)$
- 8. $F(x) \leq G(x) \leq H(x)$ и $\lim F(x) = \lim H(x) \Rightarrow \exists \lim G(x) = \lim F(x)$

UPD: для множества E свойства аналогичны.

Доказательство. Все эти свойства доказываются аналогично свойствам пределов последовательностей, так как была доказана теорема о соответствии предела функции пределу последовательности.

Докажем 5 свойство для метрического пространства: Возьмем последовательность $\{x_n\}$ из теоремы.

По теореме:
$$F(x_n) \to A, A \neq 0$$

Получаем, что $\forall n: F(x_n) \neq 0 \Rightarrow \lim_{F(x_n)} \frac{1}{F(x_n)} = \frac{1}{A} \Rightarrow$
$$\Rightarrow \lim_{x \to \alpha} \frac{1}{F(x)} = \frac{1}{A}$$