Lecture 4: Convex Functions

Niao He

16th April 2019

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Outline

Convex Functions

Definitions Examples

Calculus of Convexity

Niao He

Convex Functions
Definitions
Examples

Which function is different from others?

Figure: Functions

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Definition of Convex Function

Definition. A function $f(x) : \mathbb{R}^n \to \mathbb{R}$ is <u>convex</u> if

- (i) $dom(f) := \{x \in \mathbb{R}^n : |f(x)| < \infty\}$ is a convex set;
- (ii) $\forall x, y \in dom(f)$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

Figure: Convex function

• Geometrically, the line segment between (x, f(x)), (y, f(y)) sits above the graph of f.

Niao He

Convex Functions

Definitions

Examples

Brotherhood Definitions

Definition. (Strict and Strong Convex)

▶ A function is called <u>strictly convex</u> if (ii) holds with strict sign, i.e., $\forall \lambda \in (0,1)$,

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

▶ A function is called α -strongly convex $(\alpha > 0)$ if $f(x) - \frac{\alpha}{2} \|x\|_2^2$ is convex, i.e., $\forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \frac{\alpha}{2}\lambda(1-\lambda)||x-y||_2^2.$$

Note that strongly convex \Longrightarrow strictly convex \Longrightarrow convex

Definition. (Concave/Strictly Concave/Strongly Concave)

- ▶ A function is called <u>concave</u> if -f(x) is convex.
- Similarly for strict concavity and strong concavity.

Niao He

Convex Functions
Definitions
Examples

Calculus of Conver

Examples of Convex Functions

Example 1. Simple univariate functions:

- Even powers: x^p , p is even
- ▶ Exponential: e^{ax} , $\forall a \in \mathbb{R}$
- ▶ Negative logarithmic: − log x
- ▶ Absolute value: |x|
- ▶ Negative entropy: $x \log(x)$

Example 2. Affine functions:

$$f(x) = a^{\mathsf{T}} x + b$$

both convex & concave, but not strictly convex/concave

Niao He

Convex Functions
Definitions

Examples

Calculus of Conve

Examples of Convex Functions

Example 3. Norms:

▶ I_p -norm on \mathbb{R}^n :

$$||x||_{p} := (\sum_{i=1}^{n} |x_{i}|^{p})^{1/p} \qquad (p \ge 1)$$

▶ Q-norm on \mathbb{R}^n :

$$\parallel x \parallel_{Q} := \sqrt{x^T Q x} \qquad (Q \succ 0)$$

▶ Frobenius norm on $\mathbb{R}^{m \times n}$:

$$||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2)^{1/2}$$

▶ Spectral and nuclear norms on $\mathbb{R}^{m \times n}$:

$$\parallel A \parallel = \max_{i=1,\ldots,\min\{m,n\}} \sigma_i(A)$$

$$\parallel A \parallel_* = \sum_{i=1,\ldots,\min\{m,n\}} \sigma_i(A$$

Niao He

Convex Functions
Definitions
Examples

Examples of Convex Functions

Example 4. Some quadratic functions:

$$f(x) = \frac{1}{2}x^T Q x + b^T x + c$$

- ightharpoonup convex if and only if $Q \succeq 0$ is positive semi-definite
- strictly convex if and only if $Q \succ 0$ is positive definite

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Examples of Convex Functions

Example 5. Indicator function:

$$I_C(x) = \begin{cases} 0, x \in C \\ \infty, x \notin C \end{cases}$$

 $ightharpoonup I_C(x)$ is convex if the set C is a convex set. (why?)

Example 6. Supporting function:

$$I_C^*(x) = \sup_{y \in C} x^T y$$

▶ $I_C^*(x)$ is always convex for any set C. (why?)

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Examples of Convex Functions

Example 7. More examples

- ▶ Piecewise linear functions: $\max(a_1^T x + b_1, ..., a_k^T x + b_k)$
- ▶ Log of exponential sums: $\log(\sum_{i=1}^{k} e^{a_i^T x + b_i})$
- ▶ Negative log of determinant: $-\log(\det(X))$

Q. How to show convexity of these functions?

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Convexity-Preserving Operators

- ► Taking conic combination;
- Taking affine composition;
- ► Taking pointwise maximum and supremum;
- Taking convex monotone composition;
- Taking partial minimization;
- Taking the perspective transformation;

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Conic Combination

Proposition. If $f_i(x)$, $i \in I$ are convex functions and $\alpha_i \geq 0, \forall i \in I$, then so is

$$g(x) = \sum_{i \in I} \alpha_i f_i(x).$$

Remark. (Extension to integrals) If $f(x,\omega)$ is convex in x and $\alpha(\omega) \geq 0, \forall \omega \in \Omega$, then so is

$$g(x) = \int_{\Omega} \alpha(\omega) f(x, \omega) d\omega$$

Example 8. If η is a well-defined random variable on Ω , and $f(x, \eta(\omega))$ is convex, $\forall \omega \in \Omega$, then $\mathbb{E}_n[f(x, \eta)]$ is convex.

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Affine Composition

Proposition. If f(x) is convex and $A(y): y \mapsto Ay + b$ is an affine mapping, then so is

$$g(y) := f(Ay + b).$$

Example 9. The following functions are convex:

►
$$f(x) = ||Ax - b||_2^2$$
,

$$f(x) = \sum_{i} e^{a_i^T x - b_i},$$

•
$$f(x) = -\sum_{i=1}^{n} \log(a_i^T x - b_i).$$

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Pointwise Maximum and Supremum

Proposition. If $f_i(x)$, $i \in I$ are convex, then so is

$$g(x) := \max_{i \in I} f_i(x).$$

Remark. (Extension to pointwise supremum) If $f(x,\omega)$ is convex in x, for $\omega \in \Omega$, then so is

$$g(x) := \sup_{\omega \in \Omega} f(x, \omega).$$

Example 10. The following functions are convex:

- $p(x) = max(a_1^T x + b_1, ..., a_k^T x + b_k)$
- $I_C^*(x) = \sup_{y \in C} x^T y$
- $b d_{max}(x,C) = \max_{y \in C} \parallel y x \parallel_2$
- $\lambda_{max}(X) = \max_{\|y\|_2 = 1} y^T X y$

Niao He

Definitions
Examples
Calculus of Convexity

Taking Convex Monotone Composition

Proposition. If $f_i(x)$, $i=1,\ldots,m$ are convex and $F(y_1,\ldots,y_m)$ is convex and component-wise non-decreasing, then so is

$$g(x) = F(f_1(x), \ldots, f_m(x)).$$

Remark. Taking pointwise maximum is a special case of the above rule by setting $F(y_1, ..., y_m) = \max(y_1, ..., y_m)$,

$$F(f_1(x),...,f_m(x)) = \max_{i=1}^{m} f_i(x).$$

Example 11.

- $ightharpoonup e^{f(x)}$ is convex if f is convex
- $-\log f(x)$ is convex if f is concave
- ▶ $\log(\sum_{i=1}^k e^{f_i})$ is convex if f_i are convex.

Niao He

Definitions
Examples
Calculus of Convexity

Taking Convex Monotone Composition

Proposition. If $f_i(x)$, i = 1, ..., m are convex and $F(y_1, ..., y_m)$ is convex and component-wise non-decreasing, then so is

$$g(x) = F(f_1(x), \ldots, f_m(x)).$$

Proof. By convexity of f_i , we have

$$f_i(\lambda x + (1-\lambda)y) \leq \lambda f_i(x) + (1-\lambda)f_i(y), \forall i, \forall \lambda \in [0,1].$$

Hence, we have for any $x, y \in dom(g)$, $\lambda \in [0, 1]$,

$$g(\lambda x + (1 - \lambda)y) = F(f_1(\lambda x + (1 - \lambda)y), \dots, f_m(\lambda x + (1 - \lambda)y))$$

$$\leq F(\lambda f_1(x) + (1 - \lambda)f_1(y), \dots, \lambda f_m(x) + (1 - \lambda)f_m(y))$$

$$\leq \lambda F(f_1(x), \dots, f_m(x)) + (1 - \lambda)F(f_1(x), \dots, f_m(x))$$

$$= \lambda g(x) + (1 - \lambda)g(y)$$

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Partial Minimization

Proposition. If f(x, y) is convex in $(x, y) \in \mathbb{R}^n$ and Y is a convex set, then so is

$$g(x) = \inf_{y \in Y} f(x, y).$$

Example 12. The following are convex:

- ▶ $d(x, C) = \min_{y \in C} ||x y||_2$, where C is convex;
- $g(x) = \inf_{y} \{h(y)|Ay = x\}$, where h is convex.

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Partial Minimization

Proposition. If f(x, y) is convex in $(x, y) \in \mathbb{R}^n$ and Y is a convex set, then so is

$$g(x) = \inf_{y \in Y} f(x, y).$$

Proof.

- ▶ $dom(g) = \{x : (x, y) \in dom(f) \text{ and } y \in C\}$ is a projection of dom(f), hence is convex.
- ▶ Given any x_1, x_2 , by definition, for any $\epsilon > 0$, $\exists y_1, y_2 \in Y$ s.t.

$$f(x_1, y_1) \le g(x_1) + \epsilon/2, \quad f(x_2, y_2) \le g(x_2) + \epsilon/2$$

By convexity of f(x, y), this implies $f(\lambda x_1 + (1-\lambda)x_2, \lambda y_1 + (1-\lambda)y_2) \le \lambda g(x_1) + (1-\lambda)g(x_2) + \epsilon$.

▶ $\forall \epsilon > 0$, $g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2) + \epsilon$. Letting $\epsilon \to 0$ leads to the convexity of g.

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Perspective Function

Proposition. If f is convex, then so is the perspective function

$$g(x,t) = tf(x/t),$$

where
$$dom(g) = \{(x, t) : x/t \in dom(f), t > 0\}.$$

Example 13.

- $g(x,t) = x^T x/t$ is convex on $\mathbb{R}^n \times \mathbb{R}_{++}$;
- $g(x,t) = t \log t t \log x$ is convex on \mathbb{R}^2_{++} ;

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Taking Perspective Function

Proposition. If f is convex, then so is the perspective function

$$g(x,t)=tf(x/t),$$

where $dom(g) = \{(x, t) : x/t \in dom(f), t > 0\}.$

Proof.

- ▶ dom(g) is the inverse image of dom(f) under the perspective function P(x,t) := x/t for t > 0. So it is convex. (why?)
- ▶ Consider $(x, t), (y, s) \in dom(g)$, and $\lambda \in (0, 1)$.

$$g(\lambda x + (1 - \lambda)y, \lambda t + (1 - \lambda)s)$$

$$= (\lambda t + (1 - \lambda)s)f\left(\frac{\lambda x + (1 - \lambda)y}{\lambda t + (1 - \lambda)s}\right)$$

$$\leq \lambda t f(x/t) + (1 - \lambda)s f(y/s)$$

$$= \lambda g(x, t) + (1 - \lambda)g(y, s).$$

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Which of the following function is convex:

A.
$$f(x_1, x_2) = x_1 x_2$$
 on \mathbb{R}^2_+

Quick Check

B.
$$f(x_1, x_2) = \min(x_1, x_2)$$
 on \mathbb{R}^2

C.
$$f(x_1, x_2) = \frac{x_1}{x_2}$$
 on \mathbb{R}^2_{++}

D.
$$f(x_1, x_2) = \frac{x_1^2}{x_2}$$
 on $\mathbb{R} \times \mathbb{R}_{++}$

Niao He

Convex Functions

Examples

Calculus of Convexity

Quick Check

Which of the following function is not convex:

A.
$$f(x) = ||x||$$

B.
$$f(x) = ||x||^2$$

C.
$$f(x) = ||x||^3$$

$$D. f(x) = -\log(||x||)$$

Niao He

Convex Functions
Definitions
Examples
Calculus of Convexity

Application: Inventory Model

- Consider a single period inventory system.
- Let x denote the inventory level and d denote the random demand in that period following distribution \mathcal{D} .
- ▶ Suppose that the vendor suffers either a holding cost of h dollars per unit for excess inventory or a penalty cost of p dollars per unit for lost demands.
- What's the expected total cost f(x) as a function of x? Is it a convex function?

The cost function

$$f(x) = \mathbb{E}_{d \sim \mathcal{D}}[h \cdot \max(x - d, 0) + p \cdot \max(d - x, 0)]$$

is a convex function.

Niao He

Convex Functions
Definitions

Calculus of Convexity

References

▶ Boyd & Vandenberghe, Chapter 3.1-3.2