CS/MATH 111 SPRING 2016 Final Test Version A Solution Key

Problem 1: Amber needs to buy 30 bagels for a party. There are three flavors to choose from: poppyseed, blueberry, and garlic. She needs at least 3 poppyseed bagels, at most 12 blueberry bagels and at most 17 garlic bagels. How many possible combinations of bagels are there that satisfy these requirements? Show your work¹.

The problem is equivalent to computing the number of non-negative integer solutions to

$$p+b+g=33$$

$$p\geq 3$$

$$b\leq 11$$

$$q\leq 13$$

After the substitution for p, this reduces to computing the number of non-negative integer solutions to

$$p + b + g = 30$$
$$b \le 11$$
$$g \le 13$$

As in class, let S(P) be the number of solutions that satisfy condition P. So we need to compute $S(b \le 11 \land g \le 13)$. Denoting by S the number of all non-negative solutions, we have

$$S(b \le 11 \land g \le 13) = S - S(b \ge 12 \lor g \ge 14)$$

We now compute S:

$$S = \binom{30+2}{2} = \binom{32}{2} = 496.$$

To compute $S(b \ge 12 \lor g \ge 14)$, we use inclusion-exclusion:

$$S(b \ge 12 \lor g \ge 14) = S(b \ge 12) + S(g \ge 14) - S(b \ge 12 \land g \ge 14)$$

$$= {30 - 12 + 2 \choose 2} + {30 - 14 + 2 \choose 2} - {30 - 26 + 2 \choose 2}$$

$$= {20 \choose 2} + {18 \choose 2} - {6 \choose 2} = 190 + 153 - 15 = 328.$$

So

$$S(b \le 11 \land g \le 13) = 496 - 328 =$$
168.

¹You must use the method for counting integer partitions that we covered in class. Brute force listing of all solutions will not be credited.

Problem 2: For each graph below determine the minimum number of colors necessary to color its vertices. Justify your answer, by giving a coloring and explaining why it is not possible to use fewer colors.

To give a coloring, use positive integers 1, 2, ... for colors and mark the color of each vertex in the box next to it. For ease of grading, assign color 1 to vertex **a** and color 2 to vertex **b**.

Graph G can be colored with 3 colors. Graph H can be colored with 4 colors. See the two colorings above.

Why the number of colors of G is minimized?	Why the number of colors of H is minimized?
G requires 3 colors because it contains an odd- length cycle, for example a,d,g,h,b,a .	H requires 4 colors because it contains a 4-vertex clique consising of vertices d, e, c, g .

Problem 3: (a) Compute $12^{-1} \pmod{19}$. Show your work.

Listing multiples of 19 plus 1, we get 20, 39, 58, 77, 96. Since $96 = 12 \cdot 8$, we have $12^{-1} \pmod{19} = 8$.

(b) Compute $2^{5983207}$ (mod 101). Show your work.

Computing modulo 101, using Fermat's theorem, we get

$$2^{5983207} = 2^{59832 \cdot 100 + 7}$$
$$= (2^{100})^{59832} \cdot 2^{7}$$
$$= 1 \cdot 128 = 27.$$

(c) Compute $7^{17} \pmod{23}$. Show your work.

Computing modulo 23, we get

$$7^{17} = 7 \cdot (7^2)^8$$

$$= 7 \cdot 49^8$$

$$= 7 \cdot 3^8$$

$$= 7 \cdot 9^4$$

$$= 7 \cdot 81^2$$

$$= 7 \cdot 12^2$$

$$= 7 \cdot 144 = 7 \cdot 6 = 42 = 19.$$

Problem 4: Solve the following recurrence equation:

$$Z_n = Z_{n-1} + 2Z_{n-2} + 3^n$$
$$Z_0 = 3$$

$$Z_1 = 4$$

To find a particular solution, we try $Z_n'' = \beta 3^n$. After substituting, we get

$$\beta 3^n = \beta 3^{n-1} + 2\beta 3^{n-2} + 3^n$$

which simplifies to

$$9\beta = 3\beta + 2\beta + 9$$

so $\beta = \frac{9}{4}$. Thus $Z_n'' = \frac{9}{4}3^n$.

Next, we compute the general solution of the homogeneous equation. The characteristic equation is

$$x^2 - x - 2 = 0$$

The roots are -1, 2. So the general solution for the homogeneous equation is

$$Z_n' = \alpha_1(-1)^n + \alpha_2 2^n.$$

We now combine it with the particular solution, getting the general solution of the inhomogeneous equation:

$$Z_n = \alpha_1 (-1)^n + \alpha_2 2^n + \frac{9}{4} 3^n.$$

Plugging into the initial condition, we get equations:

$$\alpha_1 + \alpha_2 + \frac{9}{4} = 3$$
$$-\alpha_1 + 2\alpha_2 + \frac{27}{4} = 4$$

From these equations, $\alpha_1 = \frac{17}{12}$ and $\alpha_2 = -\frac{2}{3}$. This gives us the final solution:

$$Z_n = \frac{17}{12}(-1)^n - \frac{2}{3}2^n + \frac{9}{4}3^n.$$

Problem 5: For each integer $n \ge 1$ we define a tree T_n , as follows: T_1 and T_2 consist of just a single node. For $n \ge 3$, T_n is formed by creating five new nodes and attaching to them two copies of subtree $T_{\lfloor n/3 \rfloor}$, as in the picture below:

Let Q(n) be the number of nodes in T_n . For example, we have Q(1) = Q(2) = 1, $Q(3) = Q(4) = \dots = Q(8) = 7$, and so on.

(a) Give a recurrence equation for Q(n) and justify it. (b) Then determine the asymptotic value of Q(n), expressing it using the Θ -notation.

(Reminder: |x| is the largest integer not larger than x. For example, |2.7| = 2 and |23/3| = 7.)

 T_n contains all nodes from both copies of $T_{\lfloor n/3 \rfloor}$, plus 5 additional nodes. Therefore the number of nodes Q(n) satisfies the recurrence

$$Q(n) = 2 \cdot Q(\lfloor n/3 \rfloor) + 5.$$

To estimate Q(n), we use Master Theorem. We have $a=2,\,b=3$ and d=0, so $a>b^d$. So the solution is

$$Q(n) = \Theta(n^{\log_3 2}).$$

Problem 6: Consider numbers B_n defined recursively as follows: $B_0 = B_1 = B_2 = 1$, and $B_n = B_{n-1} + B_{n-2} + B_{n-3}$ for all integers $n \geq 3$. Using mathematical induction, prove that $B_n \leq 2^n$ for all $n \geq 0$.

Base case: In the base case we verify that the inequality holds for n=0,1,2. For n=0, $B_0=1\leq 2^0$, for n=1, $B_1=1\leq 2^1$, and for n=2, $B_2=1\leq 2^2$. So the inequality holds in the base case.

Inductive step: Now, let $k \geq 2$, and assume that $B_n \leq 2^n$ holds for all $n \leq k$. We show that it also holds for k+1, that is $B_{k+1} \leq 2^{k+1}$. The derivation is as follows:

$$B_{k+1} = B_k + B_{k-1} + B_{k-2}$$

$$\leq 2^k + 2^{k-1} + 2^{k-2} \qquad \text{(from the inductive assumption)}$$

$$= 2^{k-2}(4+2+1)$$

$$= 7 \cdot 2^{k-2}$$

$$\leq 8 \cdot 2^{k-2}$$

$$= 2^{k+1}.$$

This implies that $B_{k+1} \leq 2^{k+1}$, completing the proof.

Problem 7: Complete statements of the following theorems.

(a) Euler's Theorem: Let G be a connected graph. G has an Euler tour if and only if each vertex in G has even degree.

(b) Dirac's Theorem: Let G be a graph with n vertices. If **each vertex in** G has degree at least n/2 then G has a hamiltonian cycle.

(c) Hall's Theorem: Let G = (L, R, E) be a bipartite graph. G has a perfect matching if and only if |L| = |R| and for each $X \subseteq L$ we have $|N(X)| \ge |X|$.

(d) Kuratowski's Theorem: Let G be a graph. G is planar if and only if G does not contain a subgraph that is a sub-division of K_5 or $K_{3,3}$.

Problem 8: Give the formulas for the following quantities. Provide a justification for each.

(a) (2 points) The number of all strings of length n formed from letters a, b, c, d, e.

For each n positions we have 5 choices, so the number of strings is 5^n .

(b) (2 points) The number of all strings of length n formed from letters a, b, c, d, e that contain exactly two a's and exactly two b's. (Here we assume $n \ge 4$.)

There are $\binom{n}{2}$ choices for the positions that have a's. Among the remaining n-2 positions, there are $\binom{n-2}{2}$ choices for the positions that have b's. The remaining n-4 positions can be filled in 3 ways each, for the total of 3^{n-4} . So the answer is

$$\binom{n}{2} \cdot \binom{n-2}{2} \cdot 3^{n-4} = \frac{1}{4}n(n-1)(n-2)(n-3)3^{n-4}.$$

(c) (6 points) The number of all strings of length n formed from letters a, b, c, d, e that contain at least two a's and at least two b's. (Here we assume $n \ge 4$.)

Some notation will be helpful. Let α be the number of $\mathtt{a}'s$ and β be the number of \mathtt{b} 's in the string. Let also S(P) be the number of strings of length n with property P. So we want to compute $S(\alpha \geq 2 \land \beta \geq 2)$. Then

$$S(\alpha \ge 2 \land \beta \ge 2) = 5^n - S(\alpha < 2 \lor \beta < 2)$$

We now compute $S(\alpha < 2 \lor \beta < 2)$, using the inclusion-exclusion principle and breaking into cases:

$$\begin{split} S(\alpha < 2 \lor \beta < 2) &= S(\alpha < 2) + S(\beta < 2) - S(\alpha < 2 \land \beta < 2) \\ &= S(\alpha = 0) + S(\alpha = 1) + S(\beta = 0) + S(\beta = 1) \\ &- \left[S(\alpha = 0 \land \beta = 0) + S(\alpha = 1 \land \beta = 0) \right. \\ &+ S(\alpha = 0 \land \beta = 1) + S(\alpha = 1 \land \beta = 1) \left. \right] \\ &= 4^n + n4^{n-1} + 4^n + n4^{n-1} \\ &- \left[3^n + n3^{n-1} + n3^{n-1} + n(n-1)3^{n-2} \right. \right] \\ &= (2n+8)4^{n-1} - (n^2 + 5n + 9)3^{n-2} \end{split}$$

So the answer is

$$S(\alpha \ge 2 \land \beta \ge 2) = 5^n - (2n+8)4^{n-1} + (n^2 + 5n + 9)3^{n-2}$$