

FUNÇÕES LINEARES

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br

DEFINIÇÃO

- Função polinomial do 1º grau
 - ✓ Também conhecida como função afim

$$f(x) = ax + b, \operatorname{com} a \neq 0$$

- $a \rightarrow \text{coeficiente de } x$
- $b \rightarrow \text{termo constante}$

DEFINIÇÃO

Exemplo:

Uma firma que conserta televisores cobra de visita uma taxa fixa de R\$ 40,00 mais R\$ 10,00 por hora de mão-de-obra. Sabendo-se que o preço a ser pago pelo conserto de um televisor é dado em função do número de horas de trabalho, encontre essa função. Quanto pagará um cliente por um conserto que durou 3 horas para ser realizado?

REPRESENTAÇÃO TABULAR

- A partir da tabela podemos determinar a função correspondente
- A tabela de valores poderá ter 2 ou 3 colunas
 - ✓ 1º coluna → valores da variável x
 - ✓ 2º coluna → valores da função f(x) ou y
 - ✓ 3º coluna → pares ordenados (x, f(x)) ou (x, y)
- A tabela de valores é uma ferramenta auxiliar para a construção do gráfico da função

REPRESENTAÇÃO TABULAR

Exemplo:

Preencha a tabela abaixo de forma a determinar os pares ordenados que transformam a função verdadeira.

x	f(x)=x-3	(x,f(x))
- 5		
0		
10		

REPRESENTAÇÃO TABULAR

Exemplo:

Para levar uma carga de caminhão dentro de um Estado, uma transportadora cobra R\$ 10,00 fixos mais R\$ 0,50 por quilo de carga. O preço do frete (f(x)) é função da massa em quilogramas (x) da carga. Construa uma tabela de valores para o transporte de 10 kg, 20 kg, 50 kg, 80 kg e 100 kg.

Massa (kg)	Valor do Frete (R\$)	(x,f(x))

- A partir de um gráfico de função pode-se determinar a função e seu comportamento
 - ✓ Crescente $\rightarrow a > 0$
 - ✓ Decrescente $\rightarrow a < 0$
 - ✓ Contínuo $\rightarrow a = 0$
- É necessário e suficiente apenas 2 pontos, distintos, para determinarmos uma reta e esta reta será única, gerando o gráfico

Exemplos:

Construa, num sistema de eixos ortogonais, o gráfico das funções:

a)
$$f(x) = 2x - 3$$

b)
$$f(x) = -x + 1$$

EXERCÍCIO DE FIXAÇÃO

Construa, num sistema de coordenadas cartesianas ortogonais, o gráfico da função

$$f(x) = \begin{cases} 2, se \ x \ge 0 \\ x + 2, se \ x < 0 \end{cases}$$

FUNÇÕES QUADRÁTICAS

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br

DEFINIÇÃO

Função polinomial do 2º grau

$$f(x) = ax^2 + bx + c, \text{ com } a \neq 0$$

- $a \rightarrow \text{coeficiente de } x^2$
- $b \rightarrow \text{coeficiente de } x$
- $c \rightarrow \text{termo constante}$

Se
$$f(x) = 0 \Rightarrow ax^2 + bx + c = 0 \Rightarrow$$
 equação de 2º grau

FÓRMULA DE BHASKARA

• Discriminante (delta):

$$\Delta = b^2 - 4ac$$

• Bhaskara:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

FÓRMULA DE BHASKARA

Raízes da Equação:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} \Rightarrow \begin{cases} x' = \frac{-b - \sqrt{\Delta}}{2a} \\ x'' = \frac{-b + \sqrt{\Delta}}{2a} \end{cases}$$

- Se $\Delta > 0 \Rightarrow$ há duas raízes distintas para a equação (x'e x'')
- Se $\Delta = 0 \Rightarrow$ há duas raízes iguais para a equação (x' = x'')
- Se $\Delta < 0 \Rightarrow$ não há raízes para a equação

FÓRMULA DE BHASKARA

Exemplo:

Resolva a seguinte equação do 2º grau: $x^2 - 5x + 6 = 0$

FÓRMULA DE BHASKARA

Exemplos:

Resolva as seguintes equações do 2º grau:

$$x^2 + 4x + 4 = 0$$

$$2x^2 - 6x = 0$$

EQUAÇÕES DO 2º GRAU...Relembrando

Relações entre os Coeficientes e as Raízes da Equação do 2º Grau

SE $\Delta \geq 0$

- A soma das raízes ou seja, $x' + x'' = \frac{-b}{a}$
- O produto das raízes, ou seja, $x' \cdot x'' = \frac{c}{a}$

FUNÇÃO QUADRÁTICA

Exemplo:

Escreva uma função do segundo grau cujas raízes sejam 4 e - 1

Se tivesse sido atribuído \underline{a} outro valor qualquer (diferente de 1), os valores de b e c mudariam mas, ainda assim, seria encontrada uma função cujas raízes são 4 e -1.

FUNÇÃO QUADRÁTICA

Exemplo:

Escreva uma função do segundo grau cujas raízes sejam 4 e 5

• O gráfico de uma função quadrática é uma parábola

VÉRTICE

- O ponto V é chamado de vértice da parábola e está localizado sobre o eixo de simetria da parábola
- As coordenadas do vértice da parábola, são:

$$V = \left(-\frac{b}{2a}; \frac{-\Delta}{4a}\right)$$

CONCAVIDADE

- Dada a função $y = ax^2 + bx + c$
 - \rightarrow Se $a > 0 \rightarrow$ concavidade para cima
 - \rightarrow Se $\alpha < 0 \rightarrow$ concavidade para baixo

FUNÇÃO QUADRÁTICA

Exemplo:

Determine o vértice da parábola e aponte a direção da concavidade da parábola para a função $f(x) = x^2 - 2x + 2$

FUNÇÃO QUADRÁTICA

Exemplo:

Determine o vértice da parábola e aponte a direção da concavidade da parábola para a função $f(x) = -x^2 + 4x$

EXERCÍCIOS DE FIXAÇÃO

1) Obtenha uma função do segundo grau cujos zeros sejam:

a)
$$3 e 4 \implies f(x) = x^2 - 7x + 12$$

b) -1 e 2
$$\rightarrow f(x) = x^2 - x - 2$$

2) Determine as raízes, o vértice da parábola e aponte a direção da concavidade da parábola para a função $f(x) = x^2 - 3x + 2$

Análise e Desenvolvimento de Sistemas Gestão de Tecnologia da Informação

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br