Estratégias de pesquisa não informada

- As estratégias de pesquisa não informada usam apenas a informação que faz parte da definição do problema
 - Pesquisa em extensão ou largura (breadth-first)
 - Pesquisa de custo uniforme (uniform-cost)
 - Pesquisa em profundidade (depth-first)
 - Pesquisa em profundidade limitada (depth-limited)
 - Pesquisa por aprofundamento iterativo (iterative deepening)

Pesquisa em extensão ou largura

- Expande sempre o nó de menor profundidade
- Implementação:
 - fronteira é uma lista FIFO: os novos nós vão para o fim da fila

- Expande sempre o nó de menor profundidade
- Implementação:
 - fronteira é uma lista FIFO: os novos nós vão para o fim da fila

- Expande sempre o nó de menor profundidade
- Implementação:
 - fronteira é uma lista FIFO: os novos nós vão para o fim da fila

- Expande sempre o nó de menor profundidade
- Implementação:
 - fronteira é uma lista FIFO: os novos nós vão para o fim da fila

etc...

etc...

Pesquisa em extensão ou largura -- propriedades

- Completa ??
 - Sim, se b for finito
- Tempo ??

$$-1+b+b^2+b^3+...+b^d+b^{d+1}=O(b^{d+1})$$

- Espaço ??
 - O(b^{d+1}) os nós são todos guardados em memória
- Ótimo ??
 - Sim, se o custo de cada passo for 1
- Exemplo: fator de ramificação = 10:

Profundidade	Nº nós	Tempo Memória		
0	1	1 ms	ms 100 bytes	
2	111	100 ms	11 kbyte	
4	11 111	11 s	1 Mbyte	
8	10 ⁸	31 h	11 Gbyte	
14	1014	3 500 anos	11 111 Tbyte	

Pesquisa de custo uniforme

- Expande o nó com menor custo do caminho
- Implementação:
 - fronteira: lista ordenada pelo custo do caminho
- Se os passos tiverem todos o mesmo custo, é equivalente à pesquisa em extensão ou largura
- Completo??
 - Sim, se o custo de cada passo \geq = ϵ
 - Pode ficar preso num ciclo de passos com custo 0
- Tempo ??
 - $O(b^{1+C^*/\epsilon})$ em que C* é o custo da solução ótima $O(b^d)$
- Espaço ??
 - $O(b^{1+C^*/\epsilon})$ em que C* é o custo da solução ótima $O(b^d)$
- Ótimo ??
 - Sim; os nós são expandidos por valores crescentes de g(n)

Pesquisa de custo uniforme (cont.)

• Um nó só é a solução quando for o MENOR da lista de nós fronteira

Pesquisa de custo uniforme - otimização

- A eficiência da pesquisa pode ser melhorada se garantirmos que não há nós de estados duplicados na lista de nós fronteira, nem repetimos a pesquisa de nós com estados que já foram explorados
 - Antes de juntar um nó à lista de nós fronteira, verificar se o estado já faz parte desta lista, e escolher o nó com menor custo
 - Registar numa coleção os nós já explorados, e verificar se o novo nó tem um estado que faz parte desta lista, e portanto já foi explorado
 - Para aumentar a eficiência, e dado que a coleção não precisa de estar ordenada, pode ser usado um HashMap

Ψľ

Pesquisa em profundidade

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

Inteligência Artificial 2012-2013 IA_04

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

Inteligência Artificial 2012-2013 IA_04

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

- Expande o nó mais profundo da lista de nós fronteira
- Implementação:
 - fronteira é uma lista LIFO, isto é, os nós novos ficam à cabeça

. . .

- Completo ??
 - Não. Falha em espaços com profundidade ilimitada, ou quando existem ciclos
 - Se for modificado para detetar e eliminar estados repetidos ao longo do caminho (que originam ciclos), então é completo em espaços finitos (limitados)
- Tempo ??
 - O(b^m). Horrível se m >> d
 - Se houver muitas soluções, pode ser muito eficiente, porque aumenta a probabilidade de encontrar uma solução
- Espaço ??
 - O(bm) isto é, linear!
- Ótimo ??
 - Não

Pesquisa em profundidade limitada

- igual a pesquisa em profundidade, mas com limite de profundidade
 l, isto é, nós com profundidade l não têm sucessores
- Completo??
 - Sim, mas apenas se a profundidade da solução, d, for menor ou igual a
- Tempo ??
 - O(bl), se encontrar uma solução
- Espaço ??
 - O(bl)
- Ótimo ??
 - Não

- Repete-se a pesquisa em profundidade limitada, para valores sucessivamente crescentes do limite l
- I = 0

| = 1

• I = 2

• I = 2 (cont.)

 Continua com I = 3, 4, ... até encontrar uma solução ou esgotar as alternativas

- Completo ??
 - Sim
- Tempo ??
 - $(d+1) b^0 + (d) b^1 + (d-1) b^2 + (d-2) b^3 + ... + b^d = O(b^d)$
 - Exemplo com b = 10 e d = 5:

Número de expansões:

$$(d+1) 1 + (d) b + (d-1) b^2 + ... + 3 b^{d-1} + 1 b^d$$

6 + 50 + 400 + 3 000 + 20 000 + 100 000 = 123 456

- Espaço ??
 - O(b d)

Número de nós, com b=10 e d=5:

$$1 + 10 + 10 + 10 + 10 + 10 = 51$$

- Ótimo ??
 - Sim, se o custo de cada passo for 1

Comparação

Critério	Largura	Custo uniforme	Profund.	Profund. limitada	Aprofund. iterativo
Completo ?	Sim	Sim	Não	Sim, se I>=d	Sim
Tempo	b ^{d+1}	O(b ^{1+C*/ε})	b ^m	b ^l	b ^d
Espaço	b ^{d+1}	O(b ^{1+C*/ε})	b m	bІ	b d
Óptimo ?	Sim	Sim	Não	Não	Sim