Master's Method

The Problem is divided into number of sub-problems each of size $\frac{n}{b}$ and need time f(n) to combine the solution, then running time T(n) can be:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Where $a >= 1$, $b > 1 & f(n) = \theta(n^k \log^p n)$

- $1 \log_b a$
- 2- k (power of n)

Case-1: If
$$Log_b a > k$$
 then θ ($n^{\circ}log_b a$)

Case-2: If
$$Log_b a = k$$

2.1 If
$$p > -1$$
 then θ ($n^k \log^{p+1} n$)

2.2 If
$$p = -1$$
 then θ ($n^k \log \log n$)

2.3 If
$$p < -1$$
 then θ (n^k)

Case-3: If $Log_b a < k$

3.1 If
$$p >= 0$$
 then θ ($n^k \log^p n$)

3.2 If
$$p < 0$$
 then θ (n^k)

Cases when Master's Method Failed

1.
$$T(n) = 2^n T(\frac{n}{2}) + n^5$$

Here a=2ⁿ not a constant

Master's Method will work when a & b are constants

2.
$$T(n) = 1.5 T(\frac{n}{2}) + n^2$$

Here a=1.5 is a fraction, a is a number of subproblems and sub-problems can not be fraction Master's Method will not work with fraction values of a or b

3.
$$T(n) = 25 T(\frac{n}{2}) - n^3$$

F(n) can not be negative

Example-1

$$T(n) = 2T(\frac{n}{2}) + 1$$

$$a=2, b=2, f(n) = 1(n^{0}\log^{0}n) \quad k=0, p=0$$

$$\log_{2} 2 = 1 > k$$
It is case 1
$$T(n) = \theta(n^{\log_{2} 2}) = \theta(n^{1})$$

Example-2

$$T(n) = 4T(\frac{n}{2}) + n$$

 $a=4, b=2, f(n) = n (n^{1}log^{0}n) k=1, p=0$
 $log_{2} 4 = 2 > k$
It is case 1
 $T(n) = \theta(n^{log_{2} 4}) = \theta(n^{2})$

Example-3

$$T(n) = 8T(\frac{n}{2}) + n$$

$$a=8, b=2, f(n) = n (n^{1}log^{0}n) k=1, p=0$$

$$log_{2} 8 = 3 > k$$
It is case 1
$$T(n) = \theta(n^{\log_{2} 8}) = \theta(n^{3})$$

Example-4

$$T(n) = 9T(\frac{n}{3}) + 1$$

$$a=9, b=3, f(n) = 1 (n^{0}log^{0}n) \quad k=0, p=0$$

$$log_{3} 9 = 2 > k$$
It is case 1
$$T(n) = \theta(n^{-\log 3 9}) = \theta(n^{2})$$

Example-5

$$T(n) = 2T(\frac{n}{2}) + n$$

$$a=2, b=2, f(n) = n (n^{1}log^{0}n) \quad k=1, p=0$$

$$log_{2} 2 = 1 = k$$
It is case 2(2.1)
$$T(n) = \theta(n^{k} log^{p+1} n) = \theta(n log n)$$

Example-6

$$T(n) = 4T(\frac{n}{2}) + n^2$$
a=4, b=2, f(n) = n² (n²log⁰n) k=2, p=0
$$log_2 4 = 2 = k$$
It is case 2(2.1)
$$T(n) = \theta(n^k log^{p+1} n) = \theta(n^2 log n)$$

Example-7

$$T(n) = 8T(\frac{n}{2}) + n^{3}$$
a=8, b=2, f(n) = n³ (n³log⁰n) k=3, p=0
log₂ 8 = 3 = k

It is case 2(2.1)

$$T(n) = \theta(n^k \log^{p+1} n) = \theta(n^3 \log n)$$

Example-8

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log n}$$
a=2, b=2, f(n) = n (n¹log⁻¹n) k=1, p= -1
log₂ 2 =1 = k
It is case 2(2.2)

$$T(n) = \theta(n^k \log\log n) = \theta(n \log\log n)$$

Example-9

$$T(n) = 2T(\frac{n}{2}) + n / (log^{2}n)$$

$$a=2, b=2, f(n) = n (n^{1}log^{-2}n) k=1, p=-2$$

$$log_{2} 2 = 1 = k$$
It is case 2(2.3)
$$T(n) = \theta(n^{k}) = \theta(n)$$

Example-10

$$T(n) = 4T(\frac{n}{2}) + n^{3}$$
a=4, b=2, f(n) = n³ (n³log⁰n) k=3, p=0
$$log_{2} 4 = 2 < k$$
It is case 3(3.1)
$$T(n) = \theta(n^{k} log^{p} n) = \theta(n^{3})$$