Ugeopgave 1 Computerarkitektur 2015

Kristian Gausel¹, Rasmus Skovdal², and Steffan C. S. Jørgensen³

¹201509079, 201509079@post.au.dk ²201509421, rasmus.skovdal@post.au.dk ³201505832, 201505832@post.au.dk

 $1.~\mathrm{maj}~2016$

Spørgsmål A 1

Vi vil her opstille en sandhedstabel for en 4-bits paritetsfunktion, der returnerer true, når der er et ulige antal input og false, når der er et lige antal. Tabellen ses nedenfor i tabel 1.

\mathbf{A}	\mathbf{B}	\mathbf{C}	D	P
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	$\begin{array}{c} 1 \\ 0 \end{array}$
0	1	0	0	1
0	1	0	1	$\begin{array}{c} 1 \\ 0 \end{array}$
0	1	1	0	0
0	1	1	1	
1	0	0	1 0	1 1 0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Tabel 1: Sandhedstabel for 4-bit paritetsfunktionen

Spørgsmål B $\mathbf{2}$

Det boolske udtryk, der udtrykker sandhedstabellen i tabel 1 kan opskrives efter metoden beskrevet i SCO 3.1.2. Ved at nedskrives alle tilfælde af true fra sandhedstabellen, kan 4-bit paritetsfunktionen udtrykkes som følgende boolske udtryk:

$$M = \bar{A}BCD + A\bar{B}CD + AB\bar{C}D + AB\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D}$$

3 Spørgsmål C

Det logiske kredsløb for 4-bits paritetsfunktionionen fra afsnit 2 konstrueres efter medtoden beskrevet i SCO 3.1.3. Ved brug af OR og AND kan følgende logiske kredsløb opstilles i figur 1:

Figur 1: 4-bit paritetsfunktion lavet med OR og AND gates.

4 Spørgsmål D

I dette afsnit vil vi teste det kredsløb, der blev konstrueret i afsnit 3. Vi vil teste kredsløbet med inputværdierne 0000, 1010 og 1110. Testresultaterne findes i appendix A.

5 Spørgsmål E

Kredsløbet konstrueret i afsnit 3 skal forenkles ved brug af XOR gates. Ved brug af disse er vi kommet frem til følgende udtryk:

$$F = (A \oplus B) \oplus (C \oplus D) \tag{1}$$

Som det ses i sandhedstabellen nedenfor har F samme værdier som P i tabel 1.

\mathbf{A}	\mathbf{B}	\mathbf{C}	D	$\mathbf{A}\oplus\mathbf{B}$	$\mathbf{C}\oplus\mathbf{D}$	F
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	1	0	0	1	1
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	0	1	1	1	0
0	1	1	0	1	1	0
0	1	1	1	1	0	1
1	0	0	0	1	0	1
1	0	0	1	1	1	0
1	0	1	0	1	1	0
1	0	1	1	1	0	1
1	1	0	0	0	0	0
1	1	0	1	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0

Tabel 2: Sandhedstabel for 4-bit paritetsfunktionen dannet af xor gates

Ud fra Udtryk 1 har vi konstrueret følgende, simplere kredsløb.

Figur 2: 4-bit paritetsfunktion lavet med XOR gates.

A Spørgsmål D

Følgende er test af kredsløbet vist i 3.

Figur 3: Dokumentation af kredsløbets virkemåde med input: 0000, 1010, 1110