

Model Optimization and Tuning Phase Template

Date	15 March 2024
Team ID	SWTID1720000747
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values			
KNN	<pre>param_grid_knn = { 'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance'] } grid_search_knn = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=param_grid_knn, cv=5, scoring='accuracy') grid_search_knn.fit(X_train, y_train) best_knn = grid_search_knn.best_estimator_</pre>	<pre>print(f'Best parameters for KINN: {grid_search_knn.best_params_}') print(f'Accuracy for KINN: {accuracy_score(y_test, best_knn.predict (X_test)):.4f}') Best parameters for KINN: {'n_neighbors': 7, 'weights': 'uniform'} Accuracy for KINN: 0.9672</pre>			
Logistic Regression	<pre># Hyper Parameter tuning param_grid_lr = { 'C': [0.1, 1, 10, 100], 'solver': ['liblinear', 'lbfgs'] } grid_search_lr = GridSearchCV(estimator=LogisticRegression() , param_grid=param_grid_lr, cv=5, scoring='accuracy') grid_search_lr.fit(X_train, y_train) best lr = grid search lr.best estimator</pre>	print(f'Best parameters for Logistic Regression: {grid_search_knn.best_params_}') print(f'Accuracy_for Logistic Regression: {accuracy_score(y_test, best_knn.predict (X_test)):.4f}') Best parameters for Logistic Regression: {hax_depth': None, 'min_samples_split': 2, 'm_estimators': 100 Accuracy for Logistic Regression: 0.972			


```
param_grid_svm = {
                               'C': [0.1, 1, 10, 100],
'kernel': ['linear', 'rbf']
                                                                                                                  print(f'Best parameters for SVM: {grid_search_svm.best_params_}')
print(f'Accuracy for SVM: {accuracy_score(y_test,
    best_svm.predict(X_test)):.4f}')
SVM
                         grid_search_svm = GridSearchCV(estimator=SVC(),
                                                                                                                  Best parameters for SVM: {'C': 0.1, 'kernel': 'linear'}
Accuracy for SVM: 1.0000
                         param_grid=param_grid_svm, cv=5, scoring='accuracy')
                         grid_search_svm.fit(X_train, y_train)
                         best_svm = grid_search_svm.best_estimator_
                        param grid dt = {
                               'max_depth': [None, 10, 20, 30],
                                                                                                                  print(f'Best parameters for Decision Tree: {grid_search_dt.best_params_]')
print(f'Accuracy for Decision Tree: {accuracy_score(y_test,
best_dt.predict(X_test)):.4f)')
Decision
                              'min_samples_split': [2, 5, 10]
                        grid search dt = GridSearchCV(estimator=DecisionTreeClassifier(),
                                                                                                                  Best parameters for Decision Tree: {'max_depth': None, 'min_samples_split': 2} Accuracy for Decision Tree: 1.0000
Trees
                        param_grid=param_grid_dt, cv=5, scoring='accuracy')
                        grid_search_dt.fit(X_train, y_train)
                        best_dt = grid_search_dt.best_estimator
                        param_grid_rf = {
    'n_estimators': [100, 200, 300],
                              'max_depth': [None, 10, 20],
'min_samples_split': [2, 5, 10]
Random
                                                                                                                  Best parameters for Random Forest: {'max_depth': None, 'min_samples_split': 2, Accuracy for Random Forest: 1.0000
                        grid_search_rf = GridSearchCV(estimator=RandomForestClassifier()
Forest
                        , param_grid=param_grid_rf, cv=5, scoring='accuracy')
                        grid_search_rf.fit(X_train, y_train)
                        best_rf = grid_search_rf.best_estimator_
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric					
		precision	recall	f1-score	support	
	0	0.99	0.97	0.98	87	
KNN	1	0.92	0.97	0.94	35	
	accuracy			0.97	122	
	macro avg	0.95	0.97	0.96	122	
	weighted avg	0.97	0.97	0.97	122	
Logistic Regression	0 1 accuracy macro avg weighted avg	precision 0.98 1.00 0.99 0.98	recall 1.00 0.95 0.97 0.98	0.97 0.98	support 41 20 61 61 61	

		precision	recall	f1-score	support
	0	0.97	1.00	0.98	87
	1		0.91	0.96	35
SVM					
	accuracy			0.98	122
	macro avg		0.96	0.97	122
	weighted avg	0.98	0.98	0.98	122
		precision	recall	f1-score	support
	0	0.98	0.98	0.98	41
	1	0.95	0.95	0.95	20
Decision Trees					
	accuracy			0.97	
	macro avg		0.96		
	weighted avg	0.97	0.97	0.97	61
		precision	recall	f1-score	support
	0	0.98	0.98	0.98	41
Dandom Forest	1	0.95	0.95	0.95	20
Random Forest	200111201			0.97	61
	accuracy macro avg	0.96	0.96	0.97	61
	weighted avg	0.97	0.97	0.97	61

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Random Forest model was selected for its superior
	performance, exhibiting high accuracy during hyperparameter tuning.
	Its ability to handle complex relationships, minimize overfitting, and
D 1 D	optimize predictive accuracy aligns with project objectives, justifying
Random Forest	its selection as the final model.