bmath Example

Using ctext & amath — 06.06.2017

Alexander Bartolomey

Table of Contents

1	Introduction	1
2	Examples	2
3	Markers	2

1 Introduction

BMATH defines some new environments for usage in scripts or subtasks. Environments may be chosen from the following list. Starred versions let you specify a name for the given type of environment.

- definition (available in starred version) lets you define formulas
- beispiel (available in starred version) lets you state an example
- bemerkung adds a remark
- konvention defines a convention
- proposition (available in starred version) proposes content
- notation adds a notational convention
- satz (available in starred version) defines a theorem
- korollar defines a corollary
- lemma (available in starred version) defines a lemma
- algorithmus (available in starred version) marks an algorithm
- induktion starts an inductional proof and puts appends a proof end mark at the end. 1

BMATH requires the amsthm package, which by default adds some environments, like $\ensuremath{\mbox{begin{proof}\mbox{hoof}\mbox{which MIGHT}}$ be useful in combination with BMATH . A minimal working example SHALL be given by:

 $^{^{1}}$ \QED is a command defined by BMATH putting a right-flushed square in the line

2 Examples

(2.1) Notation. BMATH SHALL be displayed in small capitals.

(2.2) Satz (Homomorphiesatz für Mengen). Es sei eine Abbildung $f: X \to Y$ gegeben. Dann haben wir eine induzierte Abbildung $\bar{f}: X/=_f \to Y, [x] \mapsto f(x)$, welche $f=\bar{f}\circ$ quo erfüllt. Es ist \bar{f} injektiv und Im $\bar{f}=\mathrm{Im}\ f$. Insbesondere ist

$$\bar{f}\big|^{\mathrm{Im}\ f}:X/\!=_f\to\mathrm{Im}\ f$$

eine Bijektion.

(2.3) Corollary. BMATH is quite nice.

Proof. This is left for exercise purpose to the reader.

(2.4) Notation.

(a) Es sei ein Monoid M gegeben. Für jedes $n \in \mathbb{N}_0$ und alle $x \in M^n$ mit $x_i x_j = x_j x_i$ für $i, j \in [1, n]$ notieren wir rekursiv

$$\prod_{i \in [1,n]} x_i := \begin{cases} 1, & \text{falls } n = 0, \\ (\prod_{i \in [1,n-1]} x_i) x_n, & \text{falls } n > 0 \end{cases}$$

(b) Es sei ein abelsches Monoid A gegeben. Für jedes $n \in \mathbb{N}_0$ und alle $x \in A^n$ notieren wir rekursiv

$$\sum_{i \in [1,n]} x_i := \begin{cases} 0, & \text{falls } n = 0, \\ \sum_{i \in [1,n-1]} x_i + x_n, & \text{falls } n > 0 \end{cases}$$

Special case: induktion environment

Proof by complete induction:

(Basis): n = 1 : ...

(Inductive Hypothesis): ...

(Inductive Step): $n \mapsto n+1 : \dots$

Therefore, the hypothesis was shown by complete induction.

3 Markers

BMATH adds some (pseudo-)subsectioning commands, which are not displayed in any glossary (Basically, they are just fancy-styled text). As seen in table 3.1, they look like this:

Marker	Command	Comment
(Basis):	\anfang	Marks the basis of a proof by induction
$(Inductive\ Hypothesis):$	\voraussetzung	Marks the inductive hypothesis
$(Inductive\ Step):$	\schritt	Marks the inductive step
Hypothesis:	\behauptung	Marks a hypothesis
Proof:	\beweis	Marks a proof
Assumption:	\ueberlegung	Marks an assumption
$Consider \ the \ following \ counterexample:$	\gegenbeispiel	Marks a counterexample

Table 3.1: Marker commands