MTL100 - Calculus Tutorial 1

Department of Mathematics Indian Institute of Technology Delhi

Question 1(i)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\inf(A+B)=\inf(A)+\inf(B)$.

Question 1(i)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\inf(A+B)=\inf(A)+\inf(B)$.

Solution: First let us recall the definition of infimum. We say that a real number *I* is infimum of a set S if

- I is a lower bound of S.
- If y is a lower bound of S, then $y \leq I$.

Question 1(i)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\inf(A+B)=\inf(A)+\inf(B)$.

Solution: First let us recall the definition of infimum. We say that a real number *I* is infimum of a set S if

- I is a lower bound of S.
- If y is a lower bound of S, then $y \leq I$.

In other words, for given $\epsilon > 0$, $\exists z \in S$ such that $z < l + \epsilon$.

Question 1(i)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\inf(A+B)=\inf(A)+\inf(B)$.

Solution: First let us recall the definition of infimum. We say that a real number *I* is infimum of a set S if

- I is a lower bound of S.
- If y is a lower bound of S, then $y \leq I$.

In other words, for given $\epsilon > 0, \ \exists \ z \in S$ such that $z < l + \epsilon$. By definition $A + B = \{a + b : a \in A, b \in B\}$.

• Let us assume that $\inf(A) = \alpha, \inf(B) = \beta$ and $\inf(A + B) = \gamma$. Then we need to prove that $\alpha + \beta = \gamma$.

Question 1(i)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\inf(A+B)=\inf(A)+\inf(B)$.

Solution: First let us recall the definition of infimum. We say that a real number *I* is infimum of a set S if

- I is a lower bound of S.
- If y is a lower bound of S, then $y \leq I$.

In other words, for given $\epsilon > 0, \ \exists \ z \in S$ such that $z < l + \epsilon$. By definition $A + B = \{a + b : a \in A, b \in B\}$.

- Let us assume that $\inf(A) = \alpha, \inf(B) = \beta$ and $\inf(A + B) = \gamma$. Then we need to prove that $\alpha + \beta = \gamma$.
- Since α and β are lower bounds of A and B respectively, we have that $\alpha \leq a$ and $\beta \leq b \ \forall \ a \in A, b \in B$.

Question 1(i) Contd...

- It implies that for any $c = a + b \in A + B$, $\alpha + \beta \le a + b$.
- Therefore, $\alpha + \beta$ is a lower bound of A + B.
- Since γ is the greatest lower bound of A + B, we have that $\alpha + \beta \leq \gamma$.

Question 1(i) Contd...

- It implies that for any $c = a + b \in A + B$, $\alpha + \beta \le a + b$.
- Therefore, $\alpha + \beta$ is a lower bound of A + B.
- Since γ is the greatest lower bound of A + B, we have that $\alpha + \beta \leq \gamma$.

Now, we prove the reverse inequality $\alpha + \beta \geq \gamma$.

- Let $\epsilon > 0$ be a real number.
- Since α and β are infimum of A and B, respectively, it follows from the definition of infimum that we can find some $x \in A$ and $y \in B$ such that $x < \alpha + \frac{\epsilon}{2}$ and $y < \beta + \frac{\epsilon}{2}$.
- It further implies that $x + y < \alpha + \beta + \epsilon$ and since γ is a lower bound of A + B, we have $\gamma \le x + y < \alpha + \beta + \epsilon$.
- As $\epsilon > 0$ was arbitrary, we get that $\gamma \leq \alpha + \beta$.
- Thus $\alpha + \beta = \gamma$.

Question 1(ii)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\sup(A+B)=\sup(A)+\sup(B)$.

4/39

Question 1(ii)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\sup(A+B)=\sup(A)+\sup(B)$.

Solution: First let us recall the definition of supremum. We say that a real number u is supremum of a set S if

- *u* is an upper bound of S.
- If y is an upper bound of S, then $u \leq y$.

Question 1(ii)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\sup(A+B)=\sup(A)+\sup(B)$.

Solution: First let us recall the definition of supremum. We say that a real number u is supremum of a set S if

- *u* is an upper bound of S.
- If y is an upper bound of S, then $u \leq y$.

Thus one can say that for any $\epsilon > 0 \; \exists \; z \in S$ such that $u - \epsilon < z$.

Question 1(ii)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\sup(A+B)=\sup(A)+\sup(B)$.

Solution: First let us recall the definition of supremum. We say that a real number u is supremum of a set S if

- *u* is an upper bound of S.
- If y is an upper bound of S, then $u \leq y$.

Thus one can say that for any $\epsilon > 0 \; \exists \; z \in S$ such that $u - \epsilon < z$. By definition $A + B = \{a + b : a \in A, b \in B\}$.

• Suppose $\sup(A) = \alpha, \sup(B) = \beta$ and $\sup(A + B) = \gamma$. Then we need to prove that $\alpha + \beta = \gamma$.

Question 1(ii)

Let A and B be non-empty bounded subsets of \mathbb{R} , where \mathbb{R} is the set of real numbers. Then prove that $\sup(A+B)=\sup(A)+\sup(B)$.

Solution: First let us recall the definition of supremum. We say that a real number u is supremum of a set S if

- *u* is an upper bound of S.
- If y is an upper bound of S, then $u \leq y$.

Thus one can say that for any $\epsilon > 0 \; \exists \; z \in S$ such that $u - \epsilon < z$. By definition $A + B = \{a + b : a \in A, b \in B\}$.

- Suppose $\sup(A) = \alpha, \sup(B) = \beta$ and $\sup(A + B) = \gamma$. Then we need to prove that $\alpha + \beta = \gamma$.
- Since α and β are upper bounds of A and B respectively, we have that $\alpha \geq a$ and $\beta \geq b \ \forall \ a \in A, b \in B$.

Question 1.(ii) Contd...

- Thus for any $c = a + b \in A + B$, $\alpha + \beta \ge a + b$, which implies that $\alpha + \beta$ is an upper bound of A + B.
- Since γ is the least upper bound of A + B, $\alpha + \beta \ge \gamma$.

5/39

Question 1.(ii) Contd...

- Thus for any $c = a + b \in A + B$, $\alpha + \beta \ge a + b$, which implies that $\alpha + \beta$ is an upper bound of A + B.
- Since γ is the least upper bound of A + B, $\alpha + \beta \ge \gamma$.

Now, we prove the reverse inequality $\alpha + \beta \leq \gamma$.

- Let $\epsilon > 0$ be any real number.
- Since α and β are the supremum of A and B, respectively, we can find some $x \in A$ and $y \in B$ such that $x > \alpha \frac{\epsilon}{2}$ and $y > \beta \frac{\epsilon}{2}$.
- It implies that $x+y>\alpha+\beta-\epsilon$. Since γ is also an upper bound of A+B, we get that $\gamma\geq x+y>\alpha+\beta-\epsilon$, and so $\gamma+\epsilon>\alpha+\beta$.
- Since $\epsilon > 0$ was arbitrary, we get that $\gamma \geq \alpha + \beta$.
- Thus $\alpha + \beta = \gamma$ and the result follows.

Question

Let $r \in \mathbb{R}$. Prove that there exists a sequence $\{x_n\}$ of rational numbers such that $\lim_{n \to \infty} x_n = r$.

Question

Let $r \in \mathbb{R}$. Prove that there exists a sequence $\{x_n\}$ of rational numbers such that $\lim_{n \to \infty} x_n = r$.

Solution:

- If r itself is a rational number, then we can take $\{x_n\}$ to be a constant sequence i.e. $x_n = r \ \forall \ n \in \mathbb{N}$.
- Otherwise, it follows from the density property of rational numbers that for any two real numbers a and $b \in \mathbb{R}$, with a < b, there exists a rational number q such that a < q < b.
- Then for the numbers a = r 1 and b = r + 1, we have a rational number x_1 such that $r 1 < x_1 < r + 1$.

Question 2 Contd...

- Now for $a = r \frac{1}{2}$ and $b = r + \frac{1}{2}$, we have a rational number x_2 such that $r \frac{1}{2} < x_2 < r + \frac{1}{2}$.
- Similarly, we have rational numbers x_3, x_4, \ldots, x_n such that for any $n \in \mathbb{N}, r \frac{1}{n} < x_n < r + \frac{1}{n}$.

7/39

Question 2 Contd...

- Now for $a = r \frac{1}{2}$ and $b = r + \frac{1}{2}$, we have a rational number x_2 such that $r \frac{1}{2} < x_2 < r + \frac{1}{2}$.
- Similarly, we have rational numbers x_3, x_4, \ldots, x_n such that for any $n \in \mathbb{N}, r \frac{1}{n} < x_n < r + \frac{1}{n}$.
- Now consider the sequence $\{x_n\}$ of rational numbers. Let us check whether the sequence $\{x_n\}$ converges to r or not.
- Note that $r \frac{1}{n} < x_n < r + \frac{1}{n}$ implies that $|x_n r| < \frac{1}{n} \ \forall \ n \in \mathbb{N}$.
- It follows from the Archimedean Property that for any $\epsilon>0$ \exists some $N\in\mathbb{N}$ such that $\frac{1}{N}<\epsilon.$
- Hence $\forall n \geq N, \frac{1}{n} \leq \frac{1}{N} < \epsilon$ and so $|x_n r| < \frac{1}{n} < \epsilon \ \forall n \geq N$. Therefore, $\{x_n\}$ converges to r.

Question 3(i)

Suppose $\{a_n\}$ is a sequence of real numbers such that its subsequences $\{a_{2n}\}_{n=1}^{\infty}$ and $\{a_{2n-1}\}_{n=1}^{\infty}$ both converge to the same limit. Then show that $\{a_n\}$ converges to the same limit.

Solution:

- We are given that both subsequences $\{a_{2n}\}$ and $\{a_{2n-1}\}$ converge to the same limit, say, L. Let $\epsilon > 0$ be given.
- Then there exists some $N_1 \in \mathbb{N}$ such that

$$|a_{2n}-L|<\epsilon$$
 for all $n>N_1$.

• Similarly, there exists some $N_2 \in \mathbb{N}$ such that

$$|a_{2n-1}-L|<\epsilon$$
 for all $n>N_2$.

Question 3(i) contd...

• Let $N = \max\{2N_1, 2N_2 - 1\}$. Assume that n > N so that $n > 2N_1$ and $n > 2N_2 - 1$.

Question 3(i) contd...

- Let $N = \max\{2N_1, 2N_2 1\}$. Assume that n > N so that $n > 2N_1$ and $n > 2N_2 1$.
- If n is even, then n=2m for some integer m. Hence $n=2m>2N_1$ implies that $m>N_1$ and so

$$|a_n - L| = |a_{2m} - L| < \epsilon$$

• If n is odd, then n = 2k - 1 for some integer k. Then we have $2k - 1 > 2N_2 - 1$, which further implies that $k > N_2$. Hence

$$|a_n-L|=|a_{2k-1}-L|<\epsilon.$$

Question 3(i) contd...

- Let $N = \max\{2N_1, 2N_2 1\}$. Assume that n > N so that $n > 2N_1$ and $n > 2N_2 1$.
- If n is even, then n=2m for some integer m. Hence $n=2m>2N_1$ implies that $m>N_1$ and so

$$|a_n - L| = |a_{2m} - L| < \epsilon$$

• If n is odd, then n = 2k - 1 for some integer k. Then we have $2k - 1 > 2N_2 - 1$, which further implies that $k > N_2$. Hence

$$|a_n-L|=|a_{2k-1}-L|<\epsilon.$$

• Thus $|a_n - L| < \epsilon$, whenever n > N and so $\{a_n\}$ converges to L.

Question 3(ii)

If $\{a_n\}$ is a bounded sequence and $\{b_n\}$ is another sequence which converges to 0, show that the product sequence also converges to 0. What can you say about the product sequence, if $\{b_n\}$ converges, but to a non-zero point?

Solution:

- Since $\{a_n\}$ is a bounded sequence, there exists a real number M>0 such that $|a_n|\leq M$ for all $n\in\mathbb{N}$.
- Since $\{b_n\}$ converges to zero, it implies that for given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|b_n - 0| = |b_n| < \frac{\epsilon}{M}$$
 for all $n > N$

Question 3(ii) Contd...

Now note that $|a_nb_n-0|=|a_nb_n|=|a_n||b_n|\leq M|b_n|<\epsilon\ \forall\ n>N.$ Hence $\{a_nb_n\}$ converges to 0.

Question 3(ii) Contd...

Now note that $|a_nb_n-0|=|a_nb_n|=|a_n||b_n|\leq M|b_n|<\epsilon\ \forall\ n>N.$ Hence $\{a_nb_n\}$ converges to 0.

For the second part, observe that

- If we choose $a_n = (-1)^n$ and $b_n = 1$, then, clearly, a_n is bounded and b_n converges to $1 \ (\neq 0)$. But in this case $a_n b_n = (-1)^n$, which doesn't converge.
- Further, if $a_n=1$ and $b_n=1$ for all n, then $a_nb_n=1$. So $\{a_nb_n\}$ converges to 1. Hence $\{a_nb_n\}$ may or may not be convergent, if $\{b_n\}$ converges to a non-zero limit.

Question

Let $\{a_n\}$ be a sequence of real numbers. Define the sequence $\{s_n\}$ by $s_n = \frac{1}{n} \sum_{i=1}^n a_i$.

- (i) If $\{a_n\}$ is monotone and bounded, then show that $\{s_n\}$ is also monotone and bounded.
- (ii) If $\{a_n\}$ converges to a, then show that the sequence $\{s_n\}$ also converges to a.

Question

Let $\{a_n\}$ be a sequence of real numbers. Define the sequence $\{s_n\}$ by $s_n = \frac{1}{n} \sum_{i=1}^n a_i$.

- (i) If $\{a_n\}$ is monotone and bounded, then show that $\{s_n\}$ is also monotone and bounded.
- (ii) If $\{a_n\}$ converges to a, then show that the sequence $\{s_n\}$ also converges to a.

Solution: (i) Assume that $\{a_n\}$ is monotone and bounded. We show that the sequence $\{s_n\}$ is monotone and bounded.

Question 4(i) Contd...

First, we show that $\{s_n\}$ is a monotone sequence. For $\forall n \in \mathbb{N}$, consider

$$s_{n+1} - s_n = \sum_{i=1}^{n+1} \frac{a_i}{n+1} - \sum_{i=1}^n \frac{a_i}{n}$$

$$= \frac{a_1 + \dots + a_{n+1}}{n+1} - \frac{a_1 + \dots + a_n}{n}$$

$$= \frac{n(a_1 + \dots + a_{n+1}) - (n+1)(a_1 + \dots + a_n)}{n(n+1)}$$

$$= \frac{na_{n+1} - a_1 - \dots - a_n}{n(n+1)}$$

$$= \frac{(a_{n+1} - a_1) + \dots + (a_{n+1} - a_n)}{n(n+1)}.$$

Question 4(i) Contd...

Since $\{a_n\}$ is a monotone sequence, $\{a_n\}$ is either a nondecreasing sequence or a nonincreasing sequence.

- If $\{a_n\}$ is nondecreasing, i.e. $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$, then we get that $s_{n+1} s_n \geq 0, \forall n \in \mathbb{N}$, and hence, $\{s_n\}$ is a nondecreasing sequence.
- If $\{a_n\}$ is nonincreasing, i.e. $\forall n \in \mathbb{N}, a_n \geq a_{n+1}$, then we get that $s_{n+1} s_n \leq 0, \forall n \in \mathbb{N}$, and hence, $\{s_n\}$ is nonincreasing sequence.
- Hence, $\{s_n\}$ is a monotone sequence.

Question 4(i) Contd...

Next, we show that $\{s_n\}$ is a bounded sequence.

• Since $\{a_n\}$ is a bounded sequence, $\exists M > 0$ such that

$$|a_n| \leq M, \ \forall n \in \mathbb{N}.$$

• For $n \in \mathbb{N}$, consider

$$|s_n| = \left| \frac{a_1 + a_2 + \dots + a_n}{n} \right|$$

$$\leq \frac{|a_1| + |a_2| + \dots + |a_n|}{n} \qquad \{by \ triangle \ inequality\}$$

$$\leq \frac{nM}{n} = M. \qquad \{|a_n| \leq M, \ \forall n \in \mathbb{N}\}$$

• Hence, $\{s_n\}$ is a bounded sequence.

Question 4(ii)

(ii) If $\{a_n\}$ converges to a, then $\{s_n\}$ also converges to a. Let $\epsilon > 0$ be arbitrary. Consider,

$$|s_n - a| = \left| \sum_{i=1}^n \frac{a_i}{n} - a \right|$$

$$= \left| \frac{a_1 + \dots + a_n}{n} - a \right|$$

$$= \left| \frac{a_1 + \dots + a_n - na}{n} \right|$$

$$= \left| \frac{(a_1 - a) + \dots + (a_n - a)}{n} \right| \le \sum_{i=1}^n \frac{|a_i - a|}{n}.$$
 (1)

Since a_n converges to $a_n \ni n_0 \in \mathbb{N}$ such that $|a_n - a| < \frac{\epsilon}{2}, \ \forall n \ge n_0$. Let $\alpha = \max\{|a_1 - a|, |a_2 - a|, \dots, |a_{n_0 - 1} - a|\}.$

Question 4(ii) Contd...

Now, for $n \ge n_0$, we have

$$|s_{n} - a| \leq \sum_{i=1}^{n_{0}-1} \frac{|a_{i} - a|}{n} + \sum_{i=n_{0}}^{n} \frac{|a_{i} - a|}{n}$$
 {by Eq. (1)}
$$\leq \frac{\alpha(n_{0} - 1)}{n} + (n - n_{0} + 1) \frac{\epsilon}{2n}$$

$$< \frac{\alpha n_{0}}{n} + \frac{\epsilon}{2}.$$
 (2)

By Archimedian principle, $\exists n_1 \in \mathbb{N}$ such that $\frac{2\alpha n_0}{\epsilon} < n_1$. Thus, for $n \geq n_1$, we have $\frac{\alpha n_0}{n} < \frac{\epsilon}{2}$. By Eq. (2), we have

$$|s_n - a| < \epsilon$$
, for $n \ge \max\{n_0, n_1\}$.

Hence, $\{s_n\}$ converges to a.

Question

Let $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ and let $t_n = \max\{a_n, b_n\}$, $s_n = \min\{a_n, b_n\}$.

Show that $\{t_n\}$ and $\{s_n\}$ are convergent and

$$\lim_{n\to\infty}t_n=\max\{a,b\},\quad \lim_{n\to\infty}s_n=\min\{a,b\}.$$

Question

Let $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ and let $t_n = \max\{a_n, b_n\}$, $s_n = \min\{a_n, b_n\}$. Show that $\{t_n\}$ and $\{s_n\}$ are convergent and

$$\lim_{n\to\infty}t_n=\max\{a,b\},\quad \lim_{n\to\infty}s_n=\min\{a,b\}.$$

Solution: Observe that for any two real number x and y, we have

$$\max\{x,y\} := \frac{x+y}{2} + \frac{|x-y|}{2},$$

and

$$\min\{x,y\} := \frac{x+y}{2} - \frac{|x-y|}{2}.$$

Question 5 Contd...

Recall result: Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers such that $\lim_{n\to\infty}x_n=x$ and $\lim_{n\to\infty}y_n=y$. Then, the following holds:

- $\lim_{n\to\infty}(x_n+y_n)=x+y,$
- $\lim_{n\to\infty} (x_n y_n) = x y,$
- $\lim_{n\to\infty}(cx_n)=cx,\ \forall c\in\mathbb{R},$
- $\lim_{n\to\infty}|x_n|=|x|.$

Question 5 Contd...

Using this result, we get

$$\lim_{n \to \infty} t_n = \lim_{n \to \infty} \left(\frac{a_n + b_n}{2} + \frac{|a_n - b_n|}{2} \right)$$

$$= \lim_{n \to \infty} \frac{a_n + b_n}{2} + \lim_{n \to \infty} \frac{|a_n - b_n|}{2}$$

$$= \frac{a + b}{2} + \frac{|a - b|}{2}$$

$$= \max\{a, b\}.$$

Similarly,

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{a_n + b_n}{2} - \lim_{n\to\infty} \frac{|a_n - b_n|}{2}$$
$$= \frac{a+b}{2} - \frac{|a-b|}{2}$$
$$= \min\{a, b\}.$$

Question

If $a_1 \ge 0$ and for $n \ge 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$, then show that the sequence $\{a_n\}_{n\ge 2}$ is nonincreasing and bounded. Also, find its limit.

Question

If $a_1 \ge 0$ and for $n \ge 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$, then show that the sequence $\{a_n\}_{n\ge 2}$ is nonincreasing and bounded. Also, find its limit.

Solution:

- Clearly, $a_n > 0$ for all n.
- Note that for all $n \in \mathbb{N}$,

$$a_n - a_{n+1} = a_n - \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$$

= $\frac{a_n}{2} - \frac{1}{a_n} = \frac{a_n^2 - 2}{2a_n}$.

- For all $n \ge 2$, $a_n a_{n+1} \ge 0$ if and only if $a_n^2 2 \ge 0$, since $a_n > 0$.
- Therefore, $\{a_n\}$ is nonincreasing if and only if $a_n \ge \sqrt{2}$ for all $n \ge 2$.

Question 6 Contd...

• Now, for $n \ge 1$,

$$\begin{array}{ccc} & a_{n+1} & \geq & \sqrt{2} \\ \text{if and only if} & \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) & \geq & \sqrt{2} \\ \text{if and only if} & a_n^2 - 2\sqrt{2} a_n + 2 & \geq & 0 \\ \text{if and only if} & \left(a_n - \sqrt{2} \right)^2 & \geq & 0. \end{array}$$

- Since $(a_n \sqrt{2})^2 \ge 0$, $\{a_n\}_{n=2}^{\infty}$ is a nonincreasing sequence.
- $\{a_n\}$ is bounded below by $\min\{a_1, \sqrt{2}\}$ and bounded above by $\max\{a_1, a_2\}$.
- Hence, $\{a_n\}$ is a bounded sequence.

Question 6 Contd...

- We know that a bounded monotone sequence is convergent. Therefore, $\{a_n\}$ is a convergent sequence. So, let $L = \lim_{n \to \infty} a_n$.
- Note that $L \ge \sqrt{2}$ and $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) = \lim_{n \to \infty} \frac{a_n}{2} + \lim_{n \to \infty} \frac{1}{a_n}$.
- Therefore, we get

$$L = \frac{L}{2} + \frac{1}{L}$$
 which implies that $L^2 = 2$.

- Since $a_n > 0$, $\forall n \in \mathbb{N}$, we have $\lim_{n \to \infty} a_n \ge 0$.
- Hence, $L = \sqrt{2}$

Question

For $a \in \mathbb{R}$, let $x_1 = a$ and $x_{n+1} = \frac{1}{4}(x_n^2 + 3)$ for all $n \ge 1$. Examine the convergence of the sequence $\{x_n\}$ for different values of a. Also, find $\lim_{n \to \infty} x_n$ whenever it exists.

Question

For $a \in \mathbb{R}$, let $x_1 = a$ and $x_{n+1} = \frac{1}{4}(x_n^2 + 3)$ for all $n \ge 1$. Examine the convergence of the sequence $\{x_n\}$ for different values of a. Also, find $\lim_{n \to \infty} x_n$ whenever it exists.

Solution:

- If the sequence $\{x_n\}$ converges, the limit of the sequence $I = \lim_{n \to \infty} x_n$ satisfies $I^2 4I + 3 = 0$. (why?)
- So the only possible limits are l = 1 or l = 3.
- We have,

$$x_2 - x_1 = \frac{1}{4}(a-1)(a-3)$$

and

$$x_{n+1} - x_n = \frac{1}{4}(x_n^2 - x_{n-1}^2)$$
 for all $n \ge 2$. (3)

Question 7 Contd...

Depending upon the values of a, we will discuss the following cases:

• Case I (a > 3)If a > 3 then $x_2 > x_1$ and consequently, $x_{n+1} > x_n$ for all n. If the sequence $\{x_n\}$ converges, we have

$$I = \lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}\} \ge x_1 = a > 3,$$

which is impossible as the possible limits are 1 or 3.

• Case II (a=3) If a=3, then $x_n=3$ for all $n\in\mathbb{N}$. In this case $\{x_n\}$ is a constant sequence converging to 3.

• Case III (1 < a < 3) In this case,

$$x_2 - x_1 = \frac{1}{4}(a-1)(a-3) < 0 \implies x_2 < x_1.$$

Then from (3) we have $x_{n+1} < x_n$ for all $n \in \mathbb{N}$, that is, $\{x_n\}$ is a non-increasing sequence. Observe that $x_n > 1$ and by induction, we get

$$x_{n+1} - 1 = \frac{1}{4}(x_n^2 - 1) > 0 \text{ for all } n \in \mathbb{N}.$$
 (4)

Hence $\{x_n\}$ converges and converges to 1 as,

$$I = \lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}\} \le x_1 = a < 3.$$

Question 7 Contd...

- Case IV $(0 \le a \le 1)$ In this case, we get $x_2 \ge x_1$ and subsequently, $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$. So $\{x_n\}$ is a non-decreasing sequence bounded above by 1 (see (4)). Hence $\{x_n\}$ converges to 1.
- Case V (a < 0)Note that, if a < 0, we have -a > 0. Since x_2 is same irrespective of whether we choose $x_1 = a$ or $x_1 = -a$, we can replace $x_1 = -a$ and proceed as the above cases. So we can conclude the following:
 - for $-1 \le a \le 0, x_n \to 1$,
 - for $-3 < a < -1, x_n \to 1$,
 - for $a = -3, x_n \to 3$,
 - for a < -3, $\{x_n\}$ does not converge.

Question

Prove or disprove that the sequence $\sum_{k=0}^{n} \frac{1}{(n+k)^2}$ converges to 0.

Question

Prove or disprove that the sequence $\sum_{k=0}^{n} \frac{1}{(n+k)^2}$ converges to 0.

Solution: Recall the following theorem:

Theorem (Sandwich theorem)

Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three sequences such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

• Note that, $\forall n$,

$$\frac{1}{n^2} \le \sum_{k=0}^n \frac{1}{(n+k)^2} \le \frac{n+1}{n^2}.$$

Since

$$\lim_{n\to\infty}\frac{1}{n^2}=0 \text{ and } \lim_{n\to\infty}\frac{n+1}{n^2}=0,$$

by Sandwich theorem, $\sum_{k=0}^{n} \frac{1}{(n+k)^2} \to 0$.

Question

Check if the following sequences are Cauchy sequences or not.

(a)
$$a_n = \sum_{k=1}^n \frac{1}{k!}$$
 for $n \in \mathbb{N}$

(b)
$$a_1 = 1, a_{n+1} = (1 + \frac{(-1)^n}{2^n})a_n$$
 for $n \in \mathbb{N}$

(c)
$$x_1 = a, x_2 = b, x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$$
 for $n \ge 3$

Question

Check if the following sequences are Cauchy sequences or not.

- (a) $a_n = \sum_{k=1}^n \frac{1}{k!}$ for $n \in \mathbb{N}$
- (b) $a_1 = 1, a_{n+1} = (1 + \frac{(-1)^n}{2^n})a_n$ for $n \in \mathbb{N}$
- (c) $x_1 = a, x_2 = b, x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for $n \ge 3$

Solution (a): Without loss of generality let us assume that, $n \ge m$. Then,

$$\begin{aligned} |a_n - a_m| &= \left| \sum_{k=m+1}^n \frac{1}{k!} \right| \\ &= \sum_{k=m+1}^n \frac{1}{k!} \le \sum_{k=m+1}^n \frac{1}{2^{k-1}} \text{ (since } k! \ge 2^{k-1} \text{ for each } k) } \\ &= \frac{1}{2^m} \sum_{k=m+1}^{n-m} \frac{1}{2^k} \le \frac{1}{2^m} \times 2. \end{aligned}$$

Question 9(a) Contd...

• Now for $\epsilon > 0$,

$$\frac{1}{2^{m-1}} < \epsilon \iff \frac{1}{\epsilon} < 2^{m-1} \iff \frac{2}{\epsilon} < 2^m \iff m > \log_2\left(\frac{2}{\epsilon}\right).$$

- Choose $n_0 = \left\lceil \log_2\left(\frac{2}{\epsilon}\right) \right\rceil$. Then for all $n, m \geq n_0$ we have $|a_n a_m| < \epsilon$.
- Hence $\{a_n\}$ is a Cauchy sequence.

Question 9(b)

Solution (b): $a_1 = 1, a_{n+1} = \left(1 + \frac{(-1)^n}{2^n}\right) a_n$ for $n \in \mathbb{N}$.

$$\begin{split} a_{n+1} &= \left(1 + \frac{(-1)^n}{2^n}\right) \left(1 + \frac{(-1)^{n-1}}{2^{n-1}}\right) \cdots \left(1 + \frac{-1}{2}\right) a_1 \\ &\leq \left(1 + \frac{1}{2^n}\right) \left(1 + \frac{1}{2^{n-1}}\right) \cdots \left(1 + \frac{1}{2}\right) \\ &\leq \left(\frac{1}{n} \left(n + \sum_{i=1}^n \frac{1}{2^i}\right)\right)^n \text{(By AM-GM inequality)} \\ &\leq \left(1 + \frac{1}{n}\right)^n < 3 \quad \text{(why?)} \end{split}$$

Note that,

$$|a_{n+1}-a_n|=\left|a_n+rac{(-1)^n}{2^n}a_n-a_n
ight|\leq rac{1}{2^n}a_n<rac{3}{2^n}.$$

Question 9(b) Contd...

• Then, for n > m,

$$|a_n - a_m| \le |a_n - a_{n-1}| + \dots + |a_{m+1} - a_m|$$

$$\le \frac{3}{2^{n-1}} + \frac{3}{2^{n-2}} + \dots + \frac{3}{2^m}$$

$$\le \frac{3}{2^m} \left(\frac{1}{2^{(n-1)-m}} + \dots + \frac{1}{2} + 1 \right)$$

$$\le \frac{3}{2^m} \times 2$$

$$= \frac{3}{2^{m-1}}.$$

• Now for $\epsilon > 0$

$$\frac{3}{2^{m-1}} < \epsilon \iff \frac{6}{\epsilon} < 2^m \iff m > \log_2\left(\frac{6}{\epsilon}\right).$$

• Choose, $n_0 = \left\lceil \log_2\left(\frac{6}{\epsilon}\right) \right\rceil$. Then $|a_n - a_m| < \epsilon$ for all $n, m \ge n_0$.

Question 9(c)

Solution(c): $x_1 = a, x_2 = b, x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for $n \ge 3$.

$$|x_{n} - x_{n-1}| = \left| \frac{1}{2} (x_{n-1} + x_{n-2}) - x_{n-1} \right|$$

$$\leq \frac{1}{2} |x_{n-1} - x_{n-2}|$$

$$\leq \frac{1}{2^{n-2}} |x_{2} - x_{1}|$$

$$\leq \frac{1}{2^{n-2}} |b - a|.$$

For $n \geq m$,

$$|x_n - x_m| \le |x_n - x_{n-1}| + \dots + |x_{m+1} - x_m|$$

 $\le \frac{1}{2^{n-2}}|b - a| + \dots + \frac{1}{2^{m-1}}|b - a|$

Question 9(c) Contd...

$$= \frac{1}{2^{m-1}}|b-a|\left(\frac{1}{2^{(n-2)-(m-1)}} + \frac{1}{2^{(n-3)-(m-1)}} + \dots + \frac{1}{2} + 1\right)$$

$$\leq \frac{1}{2^{m-1}}|b-a| \times 2.$$

Let $\epsilon > 0$.

• For $a \neq b$ we have,

$$\frac{1}{2^{m-2}}|b-a|<\epsilon\iff\frac{1}{2^m}<\frac{\epsilon}{4|b-a|}\iff m>\log_2\left(\frac{4|b-a|}{\epsilon}\right).$$

• For a = b we have,

$$\frac{1}{2^{m-2}}|b-a|=0<\epsilon \text{ for all } m.$$

Question 9(c) Contd...

• Choose n_0 as,

$$n_0 = \begin{cases} \left\lceil \log_2\left(\frac{4|b-a|}{\epsilon}\right) \right\rceil & \text{if } a \neq b \\ 1 & \text{if } a = b \end{cases}.$$

Then we have, $|x_n - x_m| < \epsilon$ for all $n, m \ge n_0$.

Question no. 10

Question

Find the limit superior and the limit inferior for the sequence

$$\left\{(-1)^n(1+\frac{1}{n})\right\}_{n=1}^{n=\infty}$$

Question no. 10

Question

Find the limit superior and the limit inferior for the sequence

$$\left\{(-1)^n(1+\frac{1}{n})\right\}_{n=1}^{n=\infty}$$

Solution:

• Recall the definition of limit superior,

$$\limsup_{n\to\infty} a_n = \inf_{k\in\mathbb{N}} \sup_{n\geq k} a_n.$$

• Denote, $\alpha_k = \sup_{n \ge k} a_n = \sup\{(-1)^n (1 + \frac{1}{n}) : n \ge k\}.$

Question 10 Contd...

• Then, some terms of the sequence $\{\alpha_k\}$ are following:

$$\begin{split} &\alpha_1 = \sup_{n \geq 1} a_n = 1 + 1/2 \\ &\alpha_2 = \sup_{n \geq 2} a_n = 1 + 1/2 \\ &\alpha_3 = \sup_{n \geq 3} a_n = 1 + 1/4 \\ &\alpha_4 = \sup_{n \geq 4} a_n = 1 + 1/4 \\ &\vdots \\ &\alpha_k = \sup_{n \geq k} a_n = \begin{cases} 1 + \frac{1}{k+1}, & k \text{ is odd} \\ 1 + \frac{1}{k}, & k \text{ is even} \end{cases} \end{split}$$

• Thus $\inf_{k \in \mathbb{N}} \alpha_k = 1$ (why?), and hence $\limsup_{n \to \infty} a_n = 1$.

Question 10 Contd...

Recall the definition of limit inferior,

$$\liminf_{n\to\infty} a_n = \sup_{k\in\mathbb{N}} \inf_{n\geq k} a_n.$$

- Denote, $\beta_k = \inf_{n \geq k} a_n = \inf\{(-1)^n (1 + \frac{1}{n}) : n \geq k\}.$
- Then, some terms of the sequence $\{\beta_k\}$ are following:

$$\beta_1 = \inf_{n \ge 1} a_n = -(1+1)$$

$$\beta_2 = \inf_{n \ge 2} a_n = -(1+1/3)$$

$$\beta_3 = \inf_{n \ge 3} a_n = -(1+1/3)$$

$$\beta_4 = \inf_{n \ge 4} a_n = -(1+1/5)$$

$$\vdots$$

Question 10 Contd...

• In general,

$$\beta_k = \inf_{n \ge k} a_n = \begin{cases} -(1 + \frac{1}{k}), & k \text{ is odd} \\ -(1 + \frac{1}{k+1}), & k \text{ is even} \end{cases}.$$

Hence,

$$\liminf_{n\to\infty} a_n = \sup_{k\in\mathbb{N}} \ \beta_k = -1.$$