Relevant concepts

- Corpus
- Vocabulary
- Bag of words
- Similarity Measures
- Indexing
- TF-IDF
- Okapi BM25

- 1. Define the corpus
 - Define what is the 'document'
 - b. Pre-process data

How to build a frequency-based search engine?

- 1. Define the corpus
- 2. Decide on retrieval algorithm
 - a. Bag-of-words + Cosine Similarity
 - b. TF-IDF + Cosine Similarity
 - c. BM25

Computers do not understand text. They only understand numbers.

- 1. Define the corpus
- 2. Decide on retrieval algorithm
 - a. Bag-of-words + Cosine Similarity
 - b. TF-IDF + Cosine Similarity
 - c. BM25

- 1. Define the corpus
- 2. Decide on retrieval algorithm
 - a. Bag-of-words + Cosine Similarity
 - b. TF-IDF + Cosine Similarity
 - c. BM25

- 1. Define the corpus
- 2. Decide on retrieval algorithm
 - a. Bag-of-words + Cosine Similarity
 - b. TF-IDF + Cosine Similarity
 - c. BM25

- 1. Define the corpus
- 2. Decide on retrieval algorithm
- 3. Index corpus
 - a. Compute count of words, per corpus and per document
 - b. Create auxiliary vectors

- 1. Define the corpus
- 2. Decide on retrieval algorithm
- 3. Index corpus
- 4. That's it

Let's compare them.

How much is pre-processing important?

How does BoW, TF-IDF and BM25 compare against each other?

Let's compare them.

How much is pre-processing important?

How does BoW, TF-IDF and BM25 compare against each other?

How can we formally compare them?

Evaluation Metrics

- Precision (at K)
- Recall (at K)
- F1 Score
- NDCG

Evaluation Metrics

Precision (at K)

Evaluation Metrics

Precision (at K)

True Positives
i.e The system
classifies something
as true and they are
true

Precision = TP / (TP + FP)

False Positives i.e The system classifies something as true and they are false

Evaluation Metrics

Evaluation Metrics

Precision (at K)

→ Precision = TP / (TP + FP)

% of times the system got the true label right

Evaluation Metrics

 Precision (at K) is the proportion of recommended items in the top-k set that are relevant

Precision at K = TP at K / (TP at K + FP at K)

Evaluation Metrics

 Precision (at K) is the proportion of recommended items in the top-k set that are relevant

Precision at K = TP at K / (TP at K + FP at K)

Result A	Relevant
Result B	Relevant
Result C	Not Relevant

Evaluation Metrics

 Precision (at K) is the proportion of recommended items in the top-k set that are relevant

Precision at K = TP at K / (TP at K + FP at K) Precision at $3 = \frac{2}{3} = 66\%$

Result A	Relevant
Result B	Relevant
Result C	Not Relevant

Evaluation Metrics

 Precision (at K) is the proportion of recommended items in the top-k set that are relevant

Precision at K = TP at K / (TP at K + FP at K) Precision at $3 = \frac{2}{3} = 66\%$

Result A	Relevant
Result B	Not Relevant
Result C	Relevant

Evaluation Metrics

Recall (at K)

Recall = TP/(TP+FN)

False Negatives i.e The system classifies something as false and they are true

Evaluation Metrics

• Recall (at K) (also known as sensitivity) is the fraction of relevant instances that were retrieved.

Recall at K= TP at K / (TP at K + FN at K)
Relevant items = 5

Recall at 3 = 2/2 = 100%

Result A	Relevant
Result B	Not Relevant
Result C	Relevant

Evaluation Metrics

• Recall (at K) (also known as sensitivity) is the fraction of relevant instances that were retrieved.

Recall at K= TP at K / (All relevant items)
Relevant items = 5

Recall at 3 = % = 40%

Result A	Relevant
Result B	Not Relevant
Result C	Relevant

Evaluation Metrics

• Recall (at K) (also known as sensitivity) is the **fraction of relevant instances** that were retrieved.

Recall at K= TP at K / (All relevant items)
Relevant items = 5

Recall at $3 = \frac{3}{5} = 40\%$

Result A	Relevant
Result B	Not Relevant
Result C	Relevant

Evaluation Metrics

 F1 Score is a metric that takes into account both precision and recall to provide a balanced evaluation of a system's performance

Evaluation Metrics

 F1 Score is a metric that takes into account both precision and recall to provide a balanced evaluation of a system's performance

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

Evaluation Metrics

 F1 Score is a metric that takes into account both precision and recall to provide a balanced evaluation of a system's performance

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

... gives more weight to the lower of the two values. This means that if **either precision** or **recall is low** (i.e., the weaker of the two metrics), **the harmonic mean will also be low**, reflecting the fact that the system is not performing well in at least one of these aspects. It penalizes systems that have an extreme imbalance between precision and recall.

Evaluation Metrics

 F1 Score at K is a metric that takes into account both precision and recall to provide a balanced evaluation of a system's performance

F1 Score at K = 2 * (Precision at K * Recall at K) / (Precision at K + Recall at K)

... gives more weight to the lower of the two values. This means that if **either precision** or **recall is low** (i.e., the weaker of the two metrics), **the harmonic mean will also be low**, reflecting the fact that the system is not performing well in at least one of these aspects. It penalizes systems that have an extreme imbalance between precision and recall.

Evaluation Metrics

Normalized Discounted Cumulative Gain (NDCG)

Evaluation Metrics

 Normalized Discounted Cumulative Gain (NDCG) assesses how well the top-ranked items in a list align with the preferences or relevance judgments of users, i.e order matters.

Evaluation Metrics

• Normalized **Discounted Cumulative Gain** (NDCG).

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)} =$$

Evaluation Metrics

• Normalized **Discounted Cumulative Gain** (NDCG).

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)} =$$

DCGp is the DCG at position p.

Evaluation Metrics

• Normalized Discounted Cumulative Gain (NDCG).

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)}$$

- DCGp is the DCG at position p.
- reli is the relevance score of the item at position i in the ranking list (typically a non-negative number, where higher values represent higher relevance).

Evaluation Metrics

• Normalized Discounted Cumulative Gain (NDCG).

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)}$$

- DCGp is the DCG at position p.
- reli is the relevance score of the item at position i in the ranking list (typically a non-negative number, where higher values represent higher relevance).
- Log is used to produce a smooth reduction

Evaluation Metrics

Normalized Discounted Cumulative Gain (NDCG).

The premise of DCG is that **highly relevant documents appearing lower in a search result list should be penalized** as the graded relevance value is reduced logarithmically proportional to the position of the result.

Evaluation Metrics

• Normalized Discounted Cumulative Gain (NDCG).

$$\mathbf{nDCG_p} = rac{DCG_p}{IDCG_p}$$
 IDCG $_\mathbf{p} = \sum_{i=1}^{|REL_p|} rac{rel_i}{\log_2(i+1)}$ ideal discounted cumulative gain

represents the list of relevant documents (ordered by their relevance) in the corpus up to position p.

Let's compare them.

How much is pre-processing important?

How does BoW, TF-IDF and BM25 compare against each other?

How can we formally compare them?

- Precision at K
- Recall at K
- F1 Score at K
- NDCG

Let's compare them.

How much is pre-processing important?

How does BoW, TF-IDF and BM25 compare against each other?

How can we formally compare them?

- Precision at K
- Recall at K
- F1 Score at K
- NDCG

Semantic Search

... is a search technique that focuses on understanding the meaning and context of user queries to provide more relevant search results.

Semantic Search

... is a search technique that focuses on understanding the meaning and context of user queries to provide more relevant search results.

- Goes beyond keyword matching.
- Utilizes Natural Language Understanding (NLU).
- Aims for contextual accuracy.

Semantic Search

... is a search technique that focuses on understanding the meaning and context of user queries to provide more relevant search results.

Aims for contextual accuracy.

Semantic Search

Word Embeddings (dense vectors)

Semantic Search

Semantic Search

- Word2Vec
- GloVe
- CBOW
- Skipgram
- ..
- Transformers

Semantic Search

- Predict context i.e words around another
- Predict next word (next token prediction)
- Predict missing word (masked token token prediction)

Semantic Search

Semantic Search

Semantic Search Key players

... and much more

Semantic Search Key players

Hugging Face

... and much more

Semantic Search

+

Generative Al

=

Semantic Search

+

Generative Al

=

Semantic Search

+

Generative Al

=

Semantic Search

+

Generative Al

=

Natural Language Processing

Next up:

Supervised Learning

Unsupervised Learning

Natural Language Processing

Natural Language Processing

