prediccion_con_kmeans-Copy1

January 6, 2021

0.1 Predicción de tipo de comunidad a partir del consumo energético utilizando k-Means

Alberto Ramos Sánchez 08/01/2021

0.1.1 Contenido

- Preparación de los datos
- A1: Predicción utilizando consumo eléctrico
 - A1.1: Predicción sin balancear los datos
 - A1.2: Predicción balanceando los datos
- A2: Predicción utilizando consumo de gas
 - A2.1: Predicción sin balancear los datos
 - A2.2: Predicción balanceando los datos

```
[1]: import pandas as pd
import numpy as np

from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
from sklearn import preprocessing

from dataloader import DataLoader

seed_val = 42
np.random.seed(seed_val)
import random
random.seed(seed_val)
```

```
[2]: df = pd.read_csv('energy-usage-2010-clean.csv')
df
```

```
[2]:
           COMMUNITY AREA NAME CENSUS BLOCK BUILDING TYPE BUILDING SUBTYPE \
     0
                Archer Heights 1.703157e+14
                                               Residential
                                                                  Multi < 7
                      Ashburn 1.703170e+14
                                                                   Multi 7+
     1
                                               Residential
     2
                Auburn Gresham 1.703171e+14
                                               Commercial
                                                                  Multi < 7
     3
                       Austin 1.703125e+14
                                                Commercial
                                                                  Multi < 7
```

4	Austin	1.703125e+14	Commercial	Multi < 7	
	•••		•••	•••	
67046		1.703184e+14		Single Family	
67047		1.703184e+14		Multi < 7	
67048		1.703184e+14		Multi < 7	
67049		1.703184e+14		•	
67050	Woodlawn	1.703184e+14	Residential	Multi < 7	
	WINI TANIHADY OO O	VIII PPDIIADA 004	O IZIIII MADGII OO	AAA WUU ADDII OO	١40 ١
0	KWH JANUARY 2010 K				
0 1	NaN 7334.0	Na 7741.			IaN O
2	NaN	Na			aN
3	NaN	Na Na			aN IaN
4	NaN	Na Na			aN IaN
T	Nan	īva.	1	ian i	an
 67046	2705.0	1318.	0 0 1582	 2.0 1465	5.0
67047	1005.0	1760.			
67048	3567.0	3031.			
67049	1208.0	1055.			
67050	2717.0	3057.			
	KWH MAY 2010 KWH J	UNE 2010 TO	TAL POPULATION	TOTAL UNITS \	
0	NaN	NaN	89.0	24.0	
1	2518.0	4273.0	112.0	67.0	
2	NaN	NaN	102.0	48.0	
3	NaN	NaN	121.0	56.0	
4	NaN	NaN	62.0	23.0	
•••	•••		•••	•••	
67046	1494.0	2990.0	116.0	55.0	
67047	2272.0	2361.0	31.0	24.0	
67048	7902.0	4987.0	31.0	24.0	
67049	1591.0	1367.0	0.0	0.0	
67050	4237.0	5383.0	77.0	49.0	
	AVERAGE STORIES AV	ERAGE BUILDING	AGE AVERAGE HO	USESIZE \	
0	2.00		.33	3.87	
1	2.00		.00	1.81	
2	3.00		.00	3.00	
3	2.00		.00	2.95	
4	2.00		.00	3.26	
•••	•••	•••			
67046	1.00	0	.00	3.14	
67047	3.00	104	.50	2.07	
67048	2.33	100	.67	2.07	
67049	1.00	0	.00	0.00	
67050	2.00	79	.40	2.57	

```
OCCUPIED UNITS OCCUPIED UNITS PERCENTAGE \
0
                  23.0
                                             0.9582
                  62.0
1
                                             0.9254
2
                  34.0
                                             0.7082
3
                  41.0
                                             0.7321
                  19.0
                                             0.8261
4
                  37.0
67046
                                             0.6727
67047
                  15.0
                                             0.6250
67048
                  15.0
                                             0.6250
67049
                   0.0
                                                NaN
67050
                  30.0
                                             0.6122
       RENTER-OCCUPIED HOUSING UNITS
                                        RENTER-OCCUPIED HOUSING PERCENTAGE \
0
                                   9.0
                                                                       0.3910
1
                                  50.0
                                                                       0.8059
2
                                  23.0
                                                                       0.6759
3
                                  32.0
                                                                       0.7800
4
                                  11.0
                                                                       0.5790
67046
                                  26.0
                                                                       0.7030
67047
                                  13.0
                                                                       0.8670
67048
                                  13.0
                                                                       0.8670
67049
                                   0.0
                                                                          NaN
67050
                                  28.0
                                                                       0.9329
       OCCUPIED HOUSING UNITS
0
                          23.0
1
                          62.0
2
                          34.0
3
                           41.0
4
                           19.0
                          37.0
67046
67047
                          15.0
67048
                          15.0
67049
                           0.0
67050
                          30.0
[67051 rows x 73 columns]
```

Tenemos 3 clases: residencial, comercial e industrial

[4]: dataset_energy = dl[dl.energy_cols + ['BUILDING TYPE']]
 dataset_gas = dl[dl.gas_cols + ['BUILDING TYPE']]

[3]: dl = DataLoader(df)

```
[5]: dataset_energy['BUILDING TYPE'].unique().tolist()
 [5]: ['Residential', 'Commercial', 'Industrial']
 [6]: dataset_gas['BUILDING TYPE'].unique().tolist()
 [6]: ['Residential', 'Commercial', 'Industrial']
 [7]: dataset_energy.groupby(['BUILDING TYPE']).count()['KWH JANUARY 2010']
 [7]: BUILDING TYPE
      Commercial
                     16630
      Industrial
                        26
      Residential
                     49447
      Name: KWH JANUARY 2010, dtype: int64
 [8]: dataset gas.groupby(['BUILDING TYPE']).count()['THERM JANUARY 2010']
 [8]: BUILDING TYPE
      Commercial
                     14505
      Industrial
                        31
      Residential
                     46200
      Name: THERM JANUARY 2010, dtype: int64
     0.1.2 Preparación de los datos
 [9]: dataset energy X = dataset energy[dl.energy cols]
      dataset_energy_y = dataset_energy['BUILDING TYPE']
[10]: dataset gas X = dataset gas[dl.gas cols]
      dataset_gas_y = dataset_gas['BUILDING TYPE']
     Dividimos los datos en entrenamiento y test.
[11]: dataset_energy_X_train = dataset_energy_X.sample(int(len(dataset_energy_X)*0.9))
      dataset_energy_X_test = dataset_energy_X.drop(dataset_energy_X_train.index)
      dataset_energy_y_train = dataset_energy_y[dataset_energy_X_train.index]
      dataset_energy_y_test = dataset_energy_y.drop(dataset_energy_y_train.index)
[12]: dataset_gas_X_train = dataset_gas_X.sample(int(len(dataset_gas_X)*0.9))
      dataset_gas_X_test = dataset_gas_X.drop(dataset_gas_X_train.index)
      dataset_gas_y_train = dataset_gas_y[dataset_gas_X_train.index]
      dataset_gas_y_test = dataset_gas_y.drop(dataset_gas_y_train.index)
```

0.1.3 A1: Predicción utilizando consumo eléctrico

A1.1: Predicción sin balancear los datos

```
[13]: scaler = preprocessing.StandardScaler()
      data = dataset_energy_X_train
      norm_data = scaler.fit(data).transform(data)
      kmeans = KMeans(n_clusters = 3, random_state = 42)
      kmeans.fit(norm_data)
[13]: KMeans(n clusters=3, random state=42)
[14]: | cluster = kmeans.predict(norm_data)
     Train score:
[15]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
      accuracy_score(dataset_energy_y_train.map(d), cluster)
[15]: 0.7468062932831305
     Test score:
[16]: scaler = preprocessing.StandardScaler()
      data = dataset_energy_X_test
      norm_data = scaler.fit(data).transform(data)
      cluster = kmeans.predict(norm_data)
[17]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
      accuracy_score(dataset_energy_y_test.map(d), cluster)
[17]: 0.7597942822568446
     A1.2: Predicción balanceando los datos Se balancean los datos.
[18]: g = dataset_energy.groupby("BUILDING TYPE")
      dataset_energy_bal = g.apply(lambda x: x.sample(g.size().min()).
       →reset_index(drop=True))
      dataset_energy_bal["BUILDING TYPE"] = dataset_energy_bal.index
      dataset_energy_bal["BUILDING TYPE"] = dataset_energy_bal["BUILDING TYPE"].
       \rightarrowapply(lambda x: x[0])
      dataset_energy_bal
                        KWH JANUARY 2010 KWH FEBRUARY 2010 KWH MARCH 2010 \
[18]:
      BUILDING TYPE
      Commercial
                                  8076.0
                                                      7988.0
                                                                      8598.0
                                 11412.0
                                                     10808.0
                                                                     11285.0
                                     0.0
                                                       719.0
                                                                       274.0
```

	3	14581.0	13973.0	14613.0	
	4	0.0	0.0	0.0	
•••		•••	•••		
Residential	21	3345.0	2839.0	2537.0	
	22	2054.0	1197.0	1005.0	
	23	4187.0	3380.0	4229.0	
	24	9582.0	7683.0	6774.0	
	25	3587.0	4954.0	4450.0	
		KWH APRIL 2010 K	WH MAY 2010 KWH JU	NE 2010 KWH JULY 2010	\
BUILDING TYPE	3				•
Commercial	0	9562.0	9821.0	10288.0 11636.0	
	1	12010.0		14416.0 16091.0	
	2	167.0	138.0	170.0 189.0	
	3	11522.0		19829.0 22480.0	
	4	0.0	446.0	586.0 733.0	
•••		•••		•••	
Residential	21	3436.0	4591.0	5601.0 5700.0	
	22	1744.0	2939.0	3136.0 3200.0	
	23	3413.0	4593.0	9306.0 9454.0	
	24	7880.0	11154.0	16201.0 17010.0	
	25	4221.0	5379.0	6613.0 6679.0	
		KWH AUGUST 2010	KWH SEPTEMBER 2010	KWH OCTOBER 2010 \	
BUILDING TYPE	3				
Commercial	0	11290.0	10466.0	10062.0	
	1	13222.0	11874.0	11062.0	
	2	228.0	277.0	383.0	
	3	19950.0	16179.0	11221.0	
	4	1011.0	503.0	338.0	
 Residential	21	 4033.0	 2277.0	 1965.0	
110D1d0H01d1	22	2205.0	1117.0	949.0	
	23	5306.0	3826.0	3194.0	
	24	12129.0	8166.0	11656.0	
	25	6238.0	5310.0	7720.0	
		VUU NOVEMBED 2010	KWH DECEMBER 2010	DIITI DING TVDE	
BUILDING TYPE	7	TAMIL MOARUDEN SOID	WII DECEUDER SOIO	DOTTOTIMO III D	
Commercial	0	10598.0	11120.0	Commercial	
Commer CTAT	1	14382.0			
	2	2139.0			
	3	14346.0			
	4	1916.0			
•••	-			•••	
Residential	21	4868.0	4094.0	Residential	
· · · · · ·	22	1521.0			

```
23 5763.0 7348.0 Residential
24 14434.0 14911.0 Residential
25 8025.0 8557.0 Residential
```

[78 rows x 13 columns]

```
[19]: dataset_energy_bal_X = dataset_energy_bal[dl.energy_cols]
dataset_energy_bal_y = dataset_energy_bal['BUILDING TYPE']
```

Predicción

```
[21]: scaler = preprocessing.StandardScaler()
  data = dataset_energy_bal_X_train
  norm_data = scaler.fit(data).transform(data)

kmeans = KMeans(n_clusters = 3, random_state = 42)
  kmeans.fit(norm_data)
```

[21]: KMeans(n_clusters=3, random_state=42)

```
[22]: cluster = kmeans.predict(norm_data)
```

Train score:

```
[23]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
accuracy_score(dataset_energy_bal_y_train.map(d), cluster)
```

[23]: 0.37142857142857144

Test score:

```
[24]: scaler = preprocessing.StandardScaler()
  data = dataset_energy_bal_X_test
  norm_data = scaler.fit(data).transform(data)

cluster = kmeans.predict(norm_data)
```

```
[25]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
accuracy_score(dataset_energy_bal_y_test.map(d), cluster)
```

```
[25]: 0.5
```

0.1.4 A2: Predicción utilizando consumo de gas

```
A2.1: Predicción sin balancear los datos
[26]: scaler = preprocessing.StandardScaler()
      data = dataset_gas_X_train
      norm_data = scaler.fit(data).transform(data)
      kmeans = KMeans(n_clusters = 3, random_state = 42)
      kmeans.fit(norm_data)
[26]: KMeans(n_clusters=3, random_state=42)
[27]: cluster = kmeans.predict(norm_data)
     Train score:
[28]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
      accuracy_score(dataset_gas_y_train.map(d), cluster)
[28]: 0.7603819838278878
     Test score:
[29]: scaler = preprocessing.StandardScaler()
      data = dataset_gas_X_test
      norm_data = scaler.fit(data).transform(data)
      cluster = kmeans.predict(norm_data)
[30]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
      accuracy_score(dataset_gas_y_test.map(d), cluster)
[30]: 0.7627593019427066
     A2.2: Predicción balanceando los datos Se balancean los datos.
[31]: g = dataset_gas.groupby("BUILDING TYPE")
      dataset_gas_bal = g.apply(lambda x: x.sample(g.size().min()).
       →reset_index(drop=True))
      dataset_gas_bal["BUILDING TYPE"] = dataset_gas_bal.index
```

dataset_gas_bal["BUILDING TYPE"] = dataset_gas_bal["BUILDING TYPE"].

 \rightarrow apply(lambda x: x[0])

dataset_gas_bal

[31]:			THERM	JANUAR	Y 2010) THEF	RM FE	BRUAR	Y 2010	THERM	MARCH	2010	\
	BUILDING TYPE	_											
	Commercial	0			2038.0				1694.0			699.0	
		1			4909.0				4045.0			223.0	
		2			502.0				462.0			487.0	
		3			1686.0				1397.0			519.0	
		4			3405.0)			4301.0		3	137.0	
	 Residential	26			 3500.0)		•••	3353.0			445.0	
	Nobiachoral	27			3830.0				3445.0			646.0	
		28			6662.0				5718.0			056.0	
		29			5927.0				5112.0			867.0	
		30			4426.0				3886.0			871.0	
		00			1120.0	,		,	0000.0			0/1.0	
			THERM	APRIL	2010	THERM	MAY	2010	THERM	JUNE 20	010 \		
	BUILDING TYPE	_											
	Commercial	0			19.0			69.0		368			
		1			98.0			91.0		261			
		2			21.0			55.0		618			
		3			58.0			90.0		1240			
		4			88.0		4	25.0		94	1.0		
	 Residential	26		12	49.0		7	73.0		368	R 0		
	nebidential	27			22.0			44.0		539			
		28			37.0			70.0		569			
		29			59.0			44.0		1126			
		30			43.0			62.0		380			
	BUILDING TYPE		THERM	JULY 2	010 7	THERM A	AUGUS	T 201	O THEF	RM SEPTE	EMBER	2010	\
	Commercial	0		25	6.0			207.	0		2	09.0	
	00	1			0.0			90.				79.0	
		2			2.0			610.				46.0	
		3			2.0			1233.				36.0	
		4			9.0			28.				26.0	
		-										20.0	
	Residential	26		27	3.0			269.	0		2	57.0	
		27		35	6.0			368.	0		3	55.0	
		28		48	2.0			449.	0		6	06.0	
		29		85	7.0			890.	0		8	07.0	
		30		37	9.0			314.	0		3	23.0	
			THERM	OCTORE	R. 2010) THE	RM MO	VEMRE	R 2010	\			
	BUILDING TYPE			201000	_, _,					`			
	Commercial	0			217.0)			605.0				
	Jommororat	1			162.0				1365.0				
		2			604.0				547.0				
		_			JU-1.(•			0 11.0				

```
3
                                1407.0
                                                      1291.0
               4
                                  74.0
                                                        114.0
Residential
               26
                                 335.0
                                                      1014.0
               27
                                 447.0
                                                      1111.0
                                1099.0
                                                      2390.0
               28
               29
                                 972.0
                                                      1352.0
               30
                                 785.0
                                                      1778.0
```

THERM DECEMBER 2010 BUILDING TYPE

BUILDING TYPE	•		
Commercial	0	1199.0	Commercial
	1	4711.0	Commercial
	2	636.0	Commercial
	3	2108.0	Commercial
	4	2017.0	Commercial
•••		•••	•••
Residential	26	2637.0	Residential
	27	2884.0	Residential
	28	7094.0	Residential
	29	2864.0	Residential
	30	4090.0	Residential

[93 rows x 13 columns]

```
[32]: dataset_gas_bal_X = dataset_gas_bal[dl.gas_cols] dataset_gas_bal_y = dataset_gas_bal['BUILDING TYPE']
```

```
[33]: dataset_gas_bal_X_train = dataset_gas_bal_X.sample(int(len(dataset_gas_bal_X)*0.

$\times 9)$)
dataset_gas_bal_X_test = dataset_gas_bal_X.drop(dataset_gas_bal_X_train.index)

dataset_gas_bal_y_train = dataset_gas_bal_y[dataset_gas_bal_X_train.index]
dataset_gas_bal_y_test = dataset_gas_bal_y.drop(dataset_gas_bal_y_train.index)
```

Predicción

```
[34]: scaler = preprocessing.StandardScaler()
data = dataset_gas_bal_X_train
norm_data = scaler.fit(data).transform(data)

kmeans = KMeans(n_clusters = 3, random_state = 42)
kmeans.fit(norm_data)
```

[34]: KMeans(n_clusters=3, random_state=42)

```
[35]: cluster = kmeans.predict(norm_data)
```

Train score:

```
[36]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
accuracy_score(dataset_gas_bal_y_train.map(d), cluster)

[36]: 0.3614457831325301

Test score:
[37]: scaler = preprocessing.StandardScaler()
data = dataset_gas_bal_X_test
norm_data = scaler.fit(data).transform(data)

cluster = kmeans.predict(norm_data)

[38]: d = {"Residential": 0, "Commercial": 1, "Industrial": 2}
accuracy_score(dataset_gas_bal_y_test.map(d), cluster)
```

[38]: 0.1