2018-2019 学年第 1 学期

2017 级《计算机组成原理 A/B》 期末考试试题(A卷)

考试时间: 2019年1月7日

	班级		学号	•	姓名	
\$ \$		和试题纸上都		不必抄题,字诗 设,学号和姓名,	迹工整、清晰; 交卷时请将试题纸、	答题纸
_	、选择题(10	0 分,每小题	(2分)	1		
A.	通过流水线	提高性能 B.	采用多核程	韦大思想的是(亨设计 言不必关心底层		
	关于硬盘与 主存速度快			V. — . — .	D. 都是存储介质	
	下面属于非易 SRAM B.I			ache		
含	现有 32 位单 义是[]。 正无穷 B.(4//			(H 表示 16 进制数),	请问其
	CPU 能够理角 C 语言 B			D. 指令		

- 二、简答题(15分,每小题3分)
- 1、解释保护位、舍入位、粘贴位的作用。
- 2. 阐述冯诺依曼理论的三个要点。
- 3. 简述一个 C 语言程序转换为可执行程序的 4 个步骤。
- 4. 解释程序具有的局部性。
- 5. 阐述硬件设计的三个基本原则。

三、计算题(25分)

1. IEEE754 计算。(10分)

已知 A=—5. 25, B=7. 125, 二者都是 IEEE754 单精度格式的浮点数, 求 A—B=? 要求将 A、B 表示成 IEEE754 的个时候进行计算,写出计算步骤,并且将计算结果转化成 16 进制表示。

2. 计算机性能。(15分)

设基本 CPI 为 1.0, 主存访问时间为 100ns, 其中包含缺失处理时间, 下表是 P1, P2 的处理器一级 cache 的数据:

	一级 cache 容量	一级 cache 缺失率	一级 cache 命中时间	
P1	1KB	2.5%	0.2ns	
P2	2KB	2%	0.25ns	

问题:

- (1) 假设一级 cache 的命中时间决定了 P1 和 P2 的周期时间,分别求 P1、 P2 的时钟频率。
- (2) 分别求 P1 和 P2 的 CPI。
- (3) 如果 P2 执行某段程序用 时 10 秒钟, 求它的指令数。
- (4) 在 P1 中增加二级 cache,以弥补一级 cache 容量的限制。

二级 cache 容量	二级 cache 缺失率	二级 cache 访问时间
512KB	0.5%	5ns

增加二级 cache 后, 求 P1 的 CPI 是多少? 性能提升了多少?

四、综合题(50分)

1、流水线(15分)

采用教材中给定的流水线,包含 IF、ID、EX、MEM、WB 共 5 段,假设流水线能够执行以下指令:

LW \$1, 20(\$2)

SUB \$2, \$1, \$3

ADD \$0, \$1, \$2

SW \$2, 100(\$0)

ADD \$1, \$2, \$3

请分析这些指令在采用硬件转发结果的前提下,流水线各段中的执行 情况,画出上述指令能正确执行的流水线时空图(在图中标出转发),并计 算吞吐率和加速比。

2、(15分)

采用教材中给定的 MIPS 指令格式,已知如下二进制数列:

A: 0010 0001 0011 0011 1011 0000 0010 0000

B: 0000 1010 1011 0010 1010 1101 0111 0110

C: 0001 0110 1011 0011 0010 1101 0111 0010

D:1000 1101 1001 0000 0000 0000 0000 0100

寄存器 PC: 0000 0011 1011 0001 1000 0010 1101 1100,

一段内存:

内存地址	内存数据	内存地址	内存数据
30H	30H	14H	14H
•••••		13H	13H
24H	24H	12H	12H
		11H	11H
20H	20H	10H	10H

假设寄存器\$t0 到\$t7 的寄存器号为 8~15, 所存初始数据大小为各自寄存器号,\$s0~\$s7 的寄存器号为 16~23, 所存初始数据为各自寄存器号的 2 倍。

- 1. 若 A 是 addi 指令,则 A 中的目的寄存器名是什么、执行该指令后其中所存数据是什么?
 - 2. 若 B 是跳转指令,则跳转到的地址是多少?
 - 3. 若 C 是 bne 指令,则目的地址是多少?
- 4.若 D 是 LW 指令,根据 PC 寄存器内容取出该指令并执行,请写出目标寄存器的名称和内容。
 - 5. 若 A 在\$s0 中, 读立即数 61(十进制), lui \$s0,61 后\$s0 的值是多少。

3、(20分)

某计算机虚拟地址空间大小为 256MB,主存地址空间大小为 16MB,页面大小为 128KB; Cache 采用 2 路组相联映射方式,共 16 块; 主存与 Cache 之间交换的块大小为 16 字(一个字四个字节)。系统运行到某一时刻时,页表的部分内容和 Cache 的部分内容分别如下图所示,图中物理页号/磁盘地址及标记字段的内容为十六进制形式。请回答下列问题:

虚页号	有效位	物理页 / 磁 盘 地址	组 号	有效位	标记	有效位	标记
0Н	1	06H	0	1	0200 H	0	
1H	1	04H	1	0		1	0251H
2H	1	15 H	2	1	04C0 H	1	032EH
3H	1	02 H	3	1	01D2 H	0	
4H	0		4	1	0640 H	1	00CDH
5H	1	28 H	5	1	04DA H	1	0D7FH
6Н	0		6	0		0	
7H	1	32 H	7	1	07AB H	1	0020H
15H	0						
16H	1	23H	4-1-1		— /		

页表的内容

cache 的部分内容

- 1) 虚拟地址共有几位,那几位表示页号? 物理地址共有几位,哪几位表示物理页号?
- 2) 使用物理地址访问 Cache 时,给出物理地址的划分格式。
- 3) 使用虚拟地址 002C050H 访问时,能否从 Cache 中读取到数据? 要求给出推导过程。
- 4) 假定为该机配置一个全相联的 TLB,该 TLB 共可存放 4个页表项,若其 采用 LRU 替换算法,当前内容如下图所示,此时依次访问虚拟地址 027BAC0H 和 0110140H,问接下来继续访问 02A0020H 所在的页面是否在 主存中?要求说明理由。

有效位	脏位	引用位	标记	物理页面地址
1	1	1	6F3H	3FH
1	0	0	025H	08H
1	1	1	09EH	1DH
1	1	0	008H	07H

TLB 内容