Problem 7 $= \sum_{\substack{n = 1 \\ n \neq n}} \underbrace{x_n + \frac{a}{x_n}}_{n+1} = \underbrace{\frac{1}{2}(x_n + \frac{a}{x_n})}_{n+1} \text{ for } n \in \mathbb{N}, \text{ where } a > 0. \text{ Show that the sequence } \{x_n\}$ converges.

(\bigcirc Hint: Show that $\{x_n\}$ is decreasing by considering $x_{n+1}-x_n$.)

Proof:
$$X_1 > 0$$
, $= | \times_n > 0$, for $n \in \mathbb{N}$ $0 + b \ge 2\sqrt{ab}$, $a, b \ge 0$.
 $X_{n+1} = \frac{1}{2} \left(X_n + \frac{a}{X_n} \right) \ge \frac{1}{2} \cdot 2 \cdot \sqrt{X_n \cdot \frac{a}{X_n}} = \sqrt{a}, = | \times_n > \sqrt{a}, n \ge 1$.
 $X_{n+1} - X_n = \frac{1}{2} \left(X_n + \frac{a}{X_n} \right) - X_n$

$$= \frac{1}{2} \left(\frac{a}{X_n} - X_n \right)$$

$$= \frac{1}{2X_n} \left(\alpha \cdot X_n^2 \right) \le 0$$

- =) [Xn] is decreasing [Xn] is bounded.
- =) Xn converges, to x.
- $=) \lim_{n \to +\infty} X_n = \frac{1}{2} \lim_{n \to +\infty} \left(X_n + \frac{A}{K_n} \right) =) \quad X = \frac{1}{2} \left(X + \frac{A}{K} \right) =) \quad X = \sqrt{a}.$
- =) hm xn=Ja.

Problem 8

Problem 8We let $\{x_n\}$ be a bounded sequence of real numbers. For any $n \in \mathbb{N}$, we define $\lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_$

Show that $\{y_n\}$ converges.

Zn = inf FXn, Xn+1, Xn+2, , , , & FZn3,

Proof; PXNJ is bounded => JM70. St. -M=Xn=M. for n=IN. => -MEYnem. => (yn) is bounded.

Relationship

{Xnti, Xnti, Xnt

=) ynt & yn. =) [yn] 13 deveaning.

=> sym] converges.

Problem 9

We let $\{x_n\}$ is a sequence of positive real numbers. For any $n \in \mathbb{N}$, we define $y_n = \max\{x_1, x_2, \dots, x_n\}$.

- (a) If $\{x_n\}$ is bounded, show that $\{y_n\}$ converges.
- **(b)** If $\{x_n\}$ is unbounded, show that $\{y_n\}$ diverges to $+\infty$.

Problem 10

Show that a sequence $\{x_n\}$ defined by $x_n = (-1)^n$ is not Cauchy sequence.

Definition.

Proof: Take
$$\xi = 1$$
.

 $\forall N \in \mathbb{N}$. Choose $n = N+1, > N$.

 $|X_{N+1} - X_{N}| = 2 > \xi = 1$.

 $|X_{N+1} - X_{N}| = 2 > \xi = 1$.

 $|X_{N+1} - X_{N}| = 2 > \xi = 1$.

Problem 11

Show that if $\{x_n\}$ and $\{y_n\}$ are both Cauchy sequence, then $\{x_n+y_n\}$ and $\{x_ny_n\}$ are both Cauchy sequence using the definition of Cauchy sequence.

$$\exists N_{2} \quad \text{S.t.} \quad \forall m, n > N_{2}, \quad | y_{n} - y_{m}| < \underbrace{\xi_{2M}}_{2M} c,$$

$$x_{n}y_{n} - x_{m}y_{m}, \quad ? \quad \text{Take } N = \max_{n} f_{N_{1}}, N_{2}?$$

$$= x_{n}y_{n} - x_{n}y_{m} + x_{n}y_{m} - x_{m}y_{m}$$

$$= x_{n}(y_{n} - x_{m}) + (x_{n} - x_{m}) + (x_{m} - x_$$

Problem 12 (Harder)

We let $\{x_n\}$ be a sequence of real number with $\lim_{n\to\infty}x_n=x$. Show that

$$\lim_{n\to\infty}\frac{x_1+x_2+\cdots+x_n}{n}=x.$$

(${\stackrel{\smile}{\circ}}$ Hint: Note that $\lim_{n\to\infty}x_n=x$. Then for any $\varepsilon>0$, there exists $K\in\mathbb{N}$ such that $|x_n-x|<\varepsilon$ for $n\ge K$.)

Problem 13 (Harder)

We let $\{x_n\}$ be a bounded sequence and let $s=\sup\{x_n|x\in\mathbb{N}\}$. Show that if $s\notin\{x_n|n\in\mathbb{N}\}$, then there exists a subsequence of $\{x_n\}$ which converges to s.

(\odot Hint: You need to construct such subsequence. Using the property of supremum and the fact that $s \notin \{x_n | n \in \mathbb{N}\}$, argue that for any $\varepsilon > 0$, there exists infinitely many $x_n s$ such that $s > x_n > s - \varepsilon$. Construct the subsequence by taking $\varepsilon = \frac{1}{k}$ for $k \in \mathbb{N}$.)

Proof: Take &i = 1. $\exists n_1 \in IW$. $c+. s-\&i \leq Xn_1 \in S$.

Take &i = 1. $\exists n_1 \in IW$. $c+. s-\&i \leq Xn_2 \in S$.

Take &i = 1. $\exists n_1 > n_1$. $s+. s-\&i \leq Xn_2 \in S$.

Take &i = 1. $\exists n_3 > n_2$. $s+. s-\&i \leq Xn_3 \in S$. $\&k = \frac{1}{K}$. $\exists n_3 > n_2$. $s+. s-\&i \leq Xn_k \in S$. $\&k = \frac{1}{K}$. $\exists n_3 > n_2 = S$. $\&k = \frac{1}{K}$. $\exists n_3 > n_3 = S$. &k =