Applying epidemiological estimates

Anoop Shah

Clinical lecturer in Cardiology

Royal Infirmary of Edinburgh

Objectives

- Definitions
- Type of epidemiological estimates
- Measures of public health impact
 - PAF
 - Burden of disease
- Exercise
 - Causal inference
 - Real world example of use of PAF to estimate burden of disease

Definitions

Disease

A disease is a particular abnormal condition that negatively affects the structure or function of part or all of an organism, and that is not due to any external injury

Risk factor

A risk factor is any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury.

Causal inference

Inferring the <u>cause</u> of something has been described as:

- "...reason[ing] to the conclusion that something is, or is likely to be, the cause of something else".
- "Identification of the cause or causes of a phenomenon, by establishing covariation of cause and effect, a timeorder relationship with the cause preceding the effect, and the elimination of plausible alternative causes."

Types of epidemiological estimates / measures of risk

Types of epidemiological estimates / measures of risk

Types of epidemiological estimates

Incidence and prevalence

Figure 3.1 represents 10 new cases of illness over about 15 months in a population of 20 persons. Each horizontal line represents one person. The down arrow indicates the date of onset of illness. The solid line represents the duration of illness. The up arrow and the cross represent the date of recovery and date of death, respectively.

Examples from https://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson3/section1.html

Calculate the incidence rate from October 1, 2004, to September 30, 2005, using the midpoint population (population alive on April 1, 2005) as the denominator. Express the rate per 100 population.

Examples from https://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson3/section1.html

Calculate the point prevalence on April 1, 2005. Point prevalence is the number of persons ill on the date divided by the population on that date.

Examples from https://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson3/section1.html

Calculate the period prevalence from October 1, 2004, to September 30, 2005. The numerator of period prevalence includes anyone who was ill any time during the period.

Examples from https://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson3/section1.html

Types of epidemiological estimates

Proportionate mortality

Proportions

Rate

Incident rate ratios

Odds ratio

Incidence risk ratios

In an outbreak of tuberculosis among prison inmates in South Carolina in 1999, 28 of 157 inmates residing on the East wing of the dormitory developed tuberculosis, compared with 4 of 137 inmates residing on the West wing. These data are summarized in the two-by-two table so called because it has two rows for the exposure and two columns for the outcome. Here is the general format and notation.

		Disease	
	Yes	No	Total
East Wing	28	129	157
West Wing	4	133	137
Total	32	262	294

Incidence risk ratios

Are inmates in the east wing more likely to get TB and if so by how much

		Disease	
	Yes	No	Total
East Wing	28	129	157
West Wing	4	133	137
Total	32	262	294

Odds ratio

Are inmates in the east wing more likely to get TB and if so by how much – so what is the odds ratio?

		Disease	
	Yes	No	Total
East Wing	28	129	157
West Wing	4	133	137
Total	32	262	294

Types of epidemiological estimates / measures of risk

Public health impact

Attributable risk

In another study of smoking and lung cancer, the lung cancer mortality rate among nonsmokers was 0.07 per 1,000 persons per year. The lung cancer mortality rate among persons who smoked 1–14 cigarettes per day was 0.57 lung cancer deaths per 1,000 persons per year. Calculate the attributable proportion.

Calculate the risk ratio?

Calculate the attributable proportion?

Remember the attributable proportion is the risk difference / risk in the exposed group x 100

Attributable risk

In another study of smoking and lung cancer, the lung cancer mortality rate among nonsmokers was 0.07 per 1,000 persons per year. The lung cancer mortality rate among persons who smoked 1–14 cigarettes per day was 0.57 lung cancer deaths per 1,000 persons per year. Calculate the attributable proportion.

Calculate the risk ratio?

Calculate the attributable proportion?

Alternative formula

$$AR = (RR - 1)/RR$$

Population Attributable risk

Population Attributable Risk (or Population Attributable Fraction) indicates the number (or proportion) of cases that would not occur in a population if the factor were eliminated

So for this metric we need one additional parameter?

Population Attributable risk

Population Attributable Risk (or Population Attributable Fraction) indicates the number (or proportion) of cases that would not occur in a population if the factor were eliminated

So for this metric we need one additional parameter?

Prevalence

$$PAR = P_e (RR_e-1) / [1 + P_e (RR_e-1)]$$

Calculate the hypothetical case where

Prevalence is

0% - 0%

10% - 41%

50% - 78%

80% - 85%

100% - 88%

$$PAR = P_e (RR_e-1) / [1 + P_e (RR_e-1)]$$

Calculate the hypothetical case where

Prevalence is

0% - 0%

10% - 41%

50% - 78%

80% - 85%

100% - 88%

$$PAR = P_e (RR_e-1) / [1 + P_e (RR_e-1)]$$

Calculate the hypothetical PAF where

Prevalence is

0% -

10% -

50% -

80% -

100% -

$$PAR = P_e (RR_e-1) / [1 + P_e (RR_e-1)]$$

- New drug for acute myocardial infarction to reduce mortality
- First studied in a high risk population:
 - 40% mortality at 30 days among untreated
 - e.g., elderly, heart failure, anterior wall infarction

Ref: http://www.cche.net/usersguides/ebm-tips.asp

- New drug for acute myocardial infarction to reduce mortality
- First studied in a high risk population:
 - 40% mortality at 30 days among untreated
 - e.g., elderly, heart failure, anterior wall infarction
 - 30% mortality among treated
- How would you describe the effect of the new drug?

Ref: http://www.cche.net/usersguides/ebm tips.asp

Ref: http://www.cche.net/usersguides/ebm-tips.asp

- New drug for acute myocardial infarction to reduce mortality
- Later studied in a lower risk population:
 - 10% mortality at 30 days among untreated
 - e.g., younger, uncomplicated inferior wall infarction

Ref: http://www.cche.net/usersguides/ebm-tips.asp

- New drug for acute myocardial infarction to reduce mortality
- Later studied in a lower risk population:
 - 10% mortality at 30 days among untreated
 - e.g., younger, uncomplicated inferior wall infarction
 - 7.5% mortality among treated
- How would you describe the effect of the new drug?

Ref: http://www.cche.net/usersguides/ebm_tips.asp

Ref: http://www.cche.net/usersguides/ebm tips.asp

In patients with multiple risk factors for heart disease,

Lipitor reduces risk of heart attack

If you have risk factors such as family history, high blood pressure, age, low HDL ('good' cholesterol) or smoking.

*That means in a large clinical study, 3% of patients taking a sugar pill or placebo had a heart attack compared to 2% of patients taking Lipitor,

LIPITOR® atorvastatin calcium

What is the NNT for trial 1 and trial 2

Ref: http://www.cche.net/usersguides/ebm tips.asp

Exercise

Global Burden of Atherosclerotic Cardiovascular Disease in People Living With HIV

Circulation. 2018;138:1100–1112

Disability adjusted life years

Let's Say There is a Village of 100 People in 2012...

One child suddenly dies from malaria at age 3, when ideal life expectancy is 86. So that child lost 83 years of life.

One man contracts TB when he's 54. Over the course of his illness, lets assume he will lose 3 years of healthy life.

The remaining 97 people in the village are all healthy and do not get sick or die in 2012.

So, to estimate the **DALYs** lost in this village in 2012

DISABLED

YEARS LIVED WITH DISABILITY

Burden of disease rates from non-communicable diseases (NCDs), 2016

Age-standardized DALY (Disability-Adjusted Life Year) rates per 100,000 individuals from non-communicable diseases (NCDs). DALYs are used to measure total burden of disease - both from years of life lost and years lived with a disability. One DALY equals one lost year of healthy life.

Burden of disease rates from communicable, neonatal, maternal & nutritional diseases, 2016

Age-standardized DALY (Disability-Adjusted Life Year) rates per 100,000 individuals from non-communicable diseases (NCDs). DALYs are used to measure total burden of disease - both from years of life lost and years lived with a disability. One DALY equals one lost year of healthy life.

Pathophysiology of CVD in HIV infections

Draw a causal diagram – HIV and CVD

How can we estimate burden?

Types of epidemiological estimates / measures of risk

Descriptive /
Frequency/
Count

Measures of association

Measures of public health impact

Adult HIV Prevalence Rate, 2012

Global HIV/AIDS Prevalence Rate = 0.8%

NOTES: Data are estimates. Prevalence rates include adults ages 15-49. The estimate for Sudan represents data for South Sudan. An estimate was not provided for Sudan.

SOURCE: Kaiser Family Foundation, www.GlobalHealthFacts.org, based on UNAIDS, Report on the Global AIDS Epidemic; 2013.

Descriptive /
Frequency/
Count

Measures of association

Measures of public health impact

Systematic review of HIV associated CVD

RR: 2.16

Adult HIV Prevalence Rate, 2012

Global HIV/AIDS Prevalence Rate = 0.8%

NOTES: Data are estimates. Prevalence rates include adults ages 15-49. The estimate for Sudan represents data for South

Sudan. An estimate was not provided for Sudan.
SOURCE: Kaiser Family Foundation, www.GlobalHealthFacts.org, based on UNAIDS, Report on the Global AIDS Epidemic; 2013.

Author(s)	tear	weights	Hisk Hatio [95% Ci]							
				:						
Cardiovascular events										
Gardner et al	2003	3.0	6.40 [2.13, 19.25]		-	(e)			$\overline{}$	
Aldaz et al	2011	4.3	3.10 [1.30, 6.10]		F	•				
Helleberg et al	2012	6.9	2.50 [2.00 , 3.10]		-					
Tripathi et al	2014	7.2	1.15 [1.04 , 1.27]	-						
Womack et al	2014	5.7	2.80 [1.70 , 4.60]		-					
RE Model (Q = 60.48, df = 4; I	² = 89.2% [95% CI 71.6	5 - 99.2])	2.36 [1.50 , 3.70]	# P P P P P P P P P P P P P P P P P P P						
Myocardial infarction	1000000		10000000 0000							
Triant et al Durand et al	2009	5.9	1.93 [1.21, 2.93]			-1				
	2011	6.9	2.11 [1.69, 2.63]							
Klein et al	2015	7.2	1.40 [1.20 , 1.60]		——					
Althoff et al	2015	7.1	1.76 [1.49 , 2.07]		-					
Rasmussen et al.1	2015	7.1	2.02 [1.71 , 2.38]		1					
RE Model (Q = 15.06, df = 4; I	² = 64.6% [95% CI 19.9	95.7])	1.79 [1.54 , 2.08]							
Stroke			NAMES OF STREET							
Qureshi et al	1997	3.2	3.20 [1.10, 8.90]		-	-				
Cole et al	2004	4.1	13.70 [6.10 , 30.80]				1		-	-
Chow et al	2012	7.0	1.21 [1.01 , 1.46]	-						
Mateen et al	2013	6.0	2.16 [1.39 , 3.31]		-					
Walker et al	2013	4.0	5.61 [2.41 , 13.09]		1	-				
Rasmussen et al.2	2015	7.2	1.84 [1.60, 2.13]							
Sico et al	2015	7.1	1.17 [1.01 , 1.36]	· ·	•					
RE Model (Q = 66.52, df = 6; I	² = 97.0% [95% CI 92.8	1 – 99.5])	2.56 [1.43 , 4.61]							
RE Model Studies (Q = 156.91	i, df = 16; l ² = 94.9% [95	5% CI 91.4 - 98.7])	2.16 [1.68 , 2.77]							
				i		T T	1	1		7
				0.75 1	2	4	8	12	16	20
						Risk Ratio				

Population attributable fraction (%) by country

Descriptive / Frequency/ Count

Measures of association

Measures of public health impact

Attributable risk

Population Attributable Fraction

Burden of disease rates from non-communicable diseases (NCDs), 2016 Age-standardized DALY (Disability-Adjusted Life Year) rates per 100,000 individuals from non-communicable diseases (NCDs). DALYs are used to measure total burden of disease - both from years of life lost and years lived with a disability. One DALY equals one lost year of healthy life.

Source: IHME, Global Burden of Disease CC BY-SA

25,000 35,000 45,000 20,000 30,000 40,000

17,500

15,000

CVD DALYs Attributable to HIV

Kenya Illustration for deriving population attributable fraction (PAF)

Risk ratio

12

Kenya
Illustration for deriving HIV attributable CVD disability adjusted life years (DALYs) per 100,000 persons

Conclusion

- Understand the different measures of descriptive epidemiology
- Understand measures of risk
- Never forget about confounding!
- Both parameters can be combined to derive powerful metrics of burden that can be used to drive policy change and decisions