

planetmath.org

Math for the people, by the people.

hyperplane separation

Canonical name HyperplaneSeparation
Date of creation 2013-03-22 17:19:01
Last modified on 2013-03-22 17:19:01
Owner stevecheng (10074)
Last modified by stevecheng (10074)

Numerical id 4

Author stevecheng (10074)

Entry type Theorem
Classification msc 46A55
Classification msc 49J27
Classification msc 46A20

Synonym separating hyperplane

 $Related\ topic \\ Hahn Banach geometric Form Theorem$

Let X be a vector space, and Φ be any subspace of linear functionals on X. Impose on X the weak topology generated by Φ .

Theorem 1 (Hyperplane Separation Theorem I). Given a weakly closed convex subset $S \subset X$, and $a \in X \setminus S$. there is $\phi \in \Phi$ such that

$$\phi(a) < \inf_{x \in S} \phi(x) .$$

Proof. The weak topology on X can be generated by the semi-norms $x \mapsto |p(x)|$ for $p \in \Phi$. A subbasis for the weak topology consists of neigborhoods of the form $\{x \in X : |p(x-y)| < \epsilon\}$ for $y \in X$, $p \in \Phi$ and $\epsilon > 0$. Since $X \setminus S$ is weakly open, there exist $f_1, \ldots, f_n \in \Phi$ and $\epsilon > 0$ such that

$$|f_i(x) - f_i(a)| = |f_i(x - a)| < \epsilon$$
, for all $i = 1, ..., n$ implies $x \in X \setminus S$.

In other words, if $x \in S$ then at least one of $|f_i(x) - f_i(a)|$ is $\geq \epsilon$.

Define a map $F: X \to \mathbb{R}^n$ by $F(x) = (f_1(x), \dots, f_n(x))$. The set F(S) is evidently closed and convex in \mathbb{R}^n , a Hilbert space under the standard inner product. So there is a point $b \in \overline{F(S)}$ that minimizes the norm ||b - F(a)||.

It follows that $\langle y-b,b-F(a)\rangle \geq 0$ for all $y\in F(S)$; for otherwise we can attain a smaller value of the norm by moving from the point b along a line towards y. (Formally, we have $0\leq \frac{d}{dt}\big|_{t=0}\|ty+(1-t)b-F(a)\|^2=2\langle y-b,b-F(a)\rangle$.)

Take $\phi = \sum_{i=1}^{n} \lambda_i f_i$ where $\lambda = b - F(a)$. Then we find, for all $x \in S$,

$$\phi(x-a) = \langle b - F(a), F(x-a) \rangle$$

$$= \langle b - F(a), b - F(a) \rangle + \langle b - F(a), y - b \rangle, \quad y = F(x) \in \overline{F(S)}$$

$$\geq \|b - F(a)\|^2 + 0 \geq \epsilon^2.$$

Theorem 2 (Hyperplane Separation Theorem II). Let $S \subset X$ be a weakly closed convex subset, and $K \subset X$ a compact convex subset, that do not intersect each other. Then there exists $\phi \in \Phi$ such that

$$\sup_{y \in K} \phi(y) < \inf_{x \in S} \phi(x) .$$

Proof. We show that $S - K = \{x - y : x \in S, y \in K\}$ is weakly closed in X. Let $\{z_{\alpha} = x_{\alpha} - y_{\alpha}\} \subseteq A$ be a net convergent to z. Since K is compact, $\{y_{\alpha}\}$ has a subnet $\{y_{\alpha(\beta)}\}$ convergent to $y \in K$. Then the subnet

 $x_{\alpha(\beta)} = z_{\alpha(\beta)} + y_{\alpha(\beta)}$ is convergent to x = z + y. The point x is in S since S is closed; therefore z = x - y is in S - K.

Also, S-K is convex since S and K are. Noting that $0 \notin S-K$ (otherwise S and K would have a common point), we apply the previous theorem to obtain a $\phi \in \Phi$ such that

$$0 = \phi(0) < \inf_{z \in S - K} \phi(z) \le \phi(x - y) \,, \text{ for all } x \in S \text{ and } y \in K.$$

The desired conclusion follows at once.