CIÊNCIA DE DADOS - 05

Prof. Júlio Cesar Nievola

PPGla – PUCPR

08/junho/2019

Normalização – 1

 Alguns métodos, como os baseados no cálculo da distância entre pontos, podem precisar de normalização para obter os melhores resultados

Os valores medidos são escalados para uma faixa específica

• Escalamento decimal: move o ponto decimal mas preserva os dígitos:

$$V'(i) = V(i)/10^k$$

Normalização – 2

Normalização mín-máx:

$$v'(i) = \frac{v(i) - min[v(i)]}{max[v(i)] - min[v(i)]}$$

min e max para a característica v são calculados automaticamente do conjunto ou dados pelo especialista

• Normalização pelo Desvio Padrão:

$$v'(i) = \frac{v(i) - mean(v)}{std(v)}$$

mean(v) e sd(v) são calculados do conjunto de dados

Suavização de Dados

- Pequenas diferenças no valor das instâncias de uma variável podem não ser significativas e degradar o desempenho e o resultado final
 - Suavização simples: arredondamento de valores
 - Reduzir o número de valores distintos reduz a dimensionalidade
 - Discretizar variáveis contínuas

Diferenças e razões

• A faixa de valores para variação relativa em geral é menor que para valores absolutos (usar diferença – chamado de *gradiente*)

• O nível de aumento/diminuição de uma variável (razão) pode melhorar o desempenho (e.g. dados médicos, uso de body-mass index - BMI em lugar de peso e altura)

Relações lógicas (A > B) podem ser usadas para compor novos atributos mais poderosos

Dados faltantes – 1

• Solução mais simples: eliminação dos dados com valores faltantes

 Mesmo com grandes quantidades de dados, o subconjunto de dados completos pode ser bem pequeno

 Para manter todas as instâncias, fornecem-se manualmente valores razoáveis, prováveis ou esperados, em função da experiência

Dados faltantes – 2

- Substituição automática de valores faltantes por constantes tais como
 - Substituir todos os valores faltantes por uma única constante global (altamente dependente da aplicação)
 - Substituir o valor faltante pelo valor médio do atributo
 - Substituir o valor faltante pelo valor médio do atributo para aquela classe

Substituição pelo Valor Médio

	Original
Position	sample
1	0.0886
2	0.0684
3	0.3515
4	0.9874
5	0.4713
6	0.6115
7	0.2573
8	0.2914
9	0.1662
10	0.4400
11	0.6939

-	
F	Position 11 missing
	0.0886
	0.0684
	0.3515
	0.9874
	0.4713
	0.6115
	0.2573
	0.2914
	0.1662
	0.4400
	?

	Preserve	
	mean as	
	estimate	
	0.0886	
	0.0684	
	0.3515	
	0.9874	
	0.4713	
	0.6115	
	0.2573	
	0.2914	
Ī	0.1662	
	0.4400	
	0.3731	

Pro	eserve
vari	ance as
es	timate
0	.0886
0	.0684
0	.3515
0	.9874
0	.4713
0	.6115
0	.2573
0	.2914
0	.1662
0	.4400
0	.6622

Mean	0.4023
Standard deviation	0.2785

0.3731
0.2753

0.3731	
0.2612	

0.3994	
0.2753	

Size of error in the estimate

0.3208

0.0317

Substituição mantendo o Desvio Padrão

Position	Original sample
1	0.0886
2	0.0684
3	0.3515
4	0.9874
5	0.4713
6	0.6115
7	0.2573
8	0.2914
9	0.1662
10	0.4400
11	0.6939

Position 1
missing
?
0.0684
0.3515
0.9874
0.4713
0.6115
0.2573
0.2914
0.1662
0.4400
0.6939

	Preserve	10
	mean as	
	estimate	
	0.4336	
	0.0684	
	0.3515	
	0.9874	
	0.4713	
	0.6115	
	0.2573	
	0.2914	
Г	0.1662	
	0.4400	
	0.6939	
		-

Preserv	/e
variance	as
estimat	е
0.1479)
0.0684	ļ.
0.3515	5
0.9874	
0.4713	3
0.6115	
0.2573	
0.2914	
0.1662	
0.4400	
0.6939	
	11 - 11/1/19

Mean	0.4025
Standard deviation	0.2791

0.4336	
0.2723	

A STATE OF THE PARTY OF THE PAR	0.4336	in and the
	0.2584	

-	0.4076	Vicinity and
	0.2723	

Size of error in the estimate

0.3450

0.0593

Dados faltantes – 3

 Valor faltante = "don't care"; a instância com valor faltante é substituída por novas instâncias, em que o valor faltante é substituído pelos possíveis valores do domínio

• Método mais popular: gerar um modelo preditivo para gerar cada um dos valores faltantes de cada um dos atributos

Análise de outliers – 1

- Detecção de outliers é o processo de seleção de k instâncias de um total de n que sejam consideradas inconsistentes com os dados restantes
 - A técnica mais simples está baseada na estatística. Neste caso, determinam-se a média e a variância da amostra e descartam-se as instâncias que estão além de um certo valor limite da variância

Análise de outliers – 2

 Detecção de outliers baseada na distância: s_i é um outlier se pelo menos uma fração p das instâncias está a uma distância maior que d (não tem vizinhos suficientes a uma certa distância)

• Técnicas baseadas em desvio: define o menor subconjunto de instâncias cuja remoção resulta na maior redução da função de dissimilaridade do conjunto residual

Redução de Dados

- Há um potencial de resultados melhores da mineração com grandes bases de dados, mas não há garantia que o conhecimento obtido seja melhor
- Um subconjunto dos dados preparados e pré-processados
 - pode ser obtido em um tempo razoável?
 - pode ser descartado sem afetar a qualidade dos resultados?

Operações sobre os Dados

- Operações básicas no processo de redução de dados:
 - deleção de colunas (atributos)
 - deleção de linhas (instâncias)
 - deleção de valores (de um atributo)

Preservam as características dos dados

 Outras operações de redução de dados tornam os novos dados não-reconhecíveis

Dimensões dos Dados

 Redução de dados não reduz necessariamente a qualidade dos resultados (às vezes melhora)

- Parâmetros de comparação (redução):
 - Tempo de cálculo
 - Precisão preditiva ou descritiva
 - Simplicidade de representação do modelo

 Não existe um método de redução de dados que seja melhor em todos os casos

Redução de Atributos

- O processo de redução de dados resulta em:
 - menos dados: o algoritmo aprende mais rápido
 - maior precisão: o modelo generaliza melhor
 - resultados mais simples: a interpretação e o uso do modelo é mais fácil
 - menos atributos: na próxima coleta de dados a exigência é menor

Seleção de Características - Conceitos

- Escolher um subconjunto com *M* dos *N* atributos originais
- É um problema de busca
- Objetivos
 - Reduzir a dimensionalidade do espaço
 - Acelerar o algoritmo de aprendizagem
 - Melhorar a precisão da previsão
 - Melhorar a compreensibilidade

Seleção de Características – Passos Básicos

Seleção de Características – Procedimento de Busca

- Com *N* atributos originais, tem-se 2^N subconjuntos candidatos
 - → busca exaustiva inviável

- Critérios de parada:
 - Número pré-definido de atributos
 - Número pré-definido de iterações
 - Subconjunto ótimo de acordo com o critério
 - Adição ou retirada de atributo não altera o melhor subconjunto

Seleção de Características – Geração de Subconjuntos

- Ponto de início
 - Conjunto vazio geração avante
 - Conjunto completo geração para trás
 - Conjunto aleatório geração aleatória

- Estratégia de busca
 - Completa baseada em propriedades
 - Heurística
 - Não determinista

Seleção de Características – Critério de Avaliação

- Filtro("filter)
 - Critério independente sem o envolvimento do algoritmo de aprendizagem
 - Exemplos: medidas de distância, de informação, de dependência, de consistência

- Envelope("wrapper")
 - Uso da avaliação do desempenho do algoritmo de aprendizagem quando aplicado ao subconjunto de atributos selecionado

Discretização de Atributos

 Consiste na transformação de atributos numéricos em atributos categóricos

- Existem duas possibilidades
 - Discretização local: usa informações das proximidades para determinar os pontos de corte
 - Discretização global: utiliza todos os valores que o atributo assume para estipular os pontos de corte

Discretização Não-Supervisionada

 Discretização não-supervisionada gera intervalos sem utilizar a informação da classe, e é a única possibilidade na tarefa de agrupamento

- Duas estratégias principais:
 - Intervalos de mesmo tamanho
 - Intervalos de mesma frequência

• Inferior a esquemas supervisionados em tarefas de classificação

Discretização Supervisionada

• Os intervalos são determinados em função dos valores do atributo e da classe corresponde a cada valor

- Diversos métodos:
 - Baseados em entropia
 - Baseados em programação quadrática