Steps in a full machine learning project

5. Modelling Part 2 — Choosing M

"Based on our problem and data, what model should we use?"

3 parts to modelling

1. Choosing and training a model

Training Data

2. Tuning a model

Validation Data

3. Model comparison

Choosing a model

Structured Data

Unstructured Data

Transfer Learning

Training a model

	X (data)				y (label)	
ID	weight	Sex	Heav+ Rote	Chest Pain	Heart disease?	
4326	110Kg	M	81	4	Yes	
5681	6449	F	61	١	No	
7911	BIKg	M	57	0	NO	

Table 1.0: Patient records

Training Data

Goal: Minimise time between experiments

Model 2

Inputs

Experiment

1

2

Outputs

Things to remember

- Some models work better than others on different problems
- Don't be afraid to try things
- Start small and build up (add complexity) as you need

Up next

1. Choosing and training a model

Training Data

2. Tuning a model

Validation Data

3. Model comparison

