Faster Learning over Networks and BlueFog¹

Bicheng Ying (Google), Kun Yuan (Alibaba), Hanbin Hu (UCSB) Ji Liu (Baidu), **Wotao Yin** (UCLA)

The 18th China Symposium on Machine Learning and Applications

November 7, 2020

 $^{^{1}\}mathsf{Open}\;\mathsf{source}\;\mathsf{project}\;\mathsf{https://github.com/Bluefog-Lib/bluefog}$

Among the biggest issues of DL research and applications

- Scale to larger models and bigger data
- Bring down training time from days to hours
- Separate low-level system implementations from ML modeling

DNN training

Data parallel training

Parameter server approach [Li et.al. 2014]

Pros: mature implementation (2015-), fault tolerance

Cons: many-to-one communication is no scalable

Ring Allreduce [Patarasuk and Yuan 2009]

Started by Distributed PaddlePaddle [Gibiansky 2017] (Baidu)
Popularized by Horovod [Sergeev and Del Balso 2018] (Linux Foundation AI)

Pros: mature implementation (2018–), bandwidth optimality

Cons: total latency grows linearly

Distributed Tensorflow vs Horovod

Result is from Horovod GitHub homepage.

2018 ACM Gordon Bell Prize

- Awarded to NERSC-led team at ORNL and LBNL
- Exascale deep learning for climate analysis
- Running Horovod over 27k+ V100 GPUs, achieving 90.7% scaling efficiency, 1.13 exaflops peak

- Communication framework for PyTorch
- Just a few lines of Python
- Supports MPI and NCCL
- Higher throughput than Hovovod

Exact vs approximate SGD

Data-parallel formulation: Let D_i be agent i's local training data,

minimize
$$\sum_{i=1}^{n} \mathbb{E}_{\xi_i \sim D_i} F(x; \xi_i).$$

Mini-batch SGD: Let B_i^k be the mini-batch of agent i at iteration k,

$$x^{k+1} = x^k - \frac{\alpha^k}{n} \sum_{i=1}^n \underbrace{\frac{1}{|B_i^k|} \sum_{\xi_i \in B_i^k} \nabla F(x^k; \xi_i)}_{\text{mini-batch grad at } i}.$$

Neighbor-averaging SGD [Cattivelli et.al. 2008, Nedic and Ozdaglar 2009]: Let x_i be agent i's local copy, W be a weight matrix, for $i=1,\ldots,n$,

$$x_i^{k+1} = \sum_{j=1}^n W_{ij} \left(x_j^k - \alpha^k (\mathsf{mini ext{-}batch grad at } j) \right).$$

Goal: design W_{ij} that leads to cheap communication and very close approximation to mini-batch SGD. (No actual matrix-vector multiplication needed.)

Weight matrix W

Given y_1, \ldots, y_n from n different nodes, return $x_i = \sum_j W_{ij} y_j$ to node i; write this as

$$\mathbf{x} = W\mathbf{y} = W \begin{bmatrix} - & y_1^T & - \\ & \cdots & \\ - & y_n^T & - \end{bmatrix}.$$

Sparser $W \Rightarrow$ less (thus faster) communication.

Smaller $\rho := \|W - \frac{1}{n} \mathbf{1} \mathbf{1}^T\| \Rightarrow$ better approximation to exact averaging.

We also require: $W\mathbf{1} = \mathbf{1}$, $\mathbf{1}^TW = \mathbf{1}^T$, and W has eigenvalues:

$$\lambda_1 = 1 > |\lambda_2| \ge \cdots \ge |\lambda_n| > -1.$$

We have $\rho = \max(|\lambda_2|, |\lambda_n|)$.

Examples

- $W = \frac{1}{n} \mathbf{1} \mathbf{1}^T$ has $\rho = 0$, but every communicates from and to all other nodes; worst choice!
- $\begin{tabular}{ll} \blacksquare & {\sf Grid} \ W = {\sf Conv2D} \left(\begin{bmatrix} 1/5 \\ 1/5 & 1/5 & 1/5 \\ 1/5 & \end{bmatrix} \right) \ {\sf has} \ \rho \approx 0.868. \ {\sf Every \ node} \\ & {\sf connects \ to \ four \ other \ nodes.} \ {\sf But} \ \rho \ {\sf approaches} \ 1 \ {\sf quickly \ as} \ n \ {\sf increases.} \\ & {\sf Poor \ global \ information \ mixing.} \\ \end{tabular}$

• Left: bilateral ring $W=\mathrm{circ}(1/3,1/3,1/3,\dots)$ has $\rho=\frac{1}{3}+\frac{2}{3}\cos(2\pi/n)$. Every node connects directly to two other nodes. Poor global information mixing.

■ Right: exp2 ring W has $\rho=1-2/(2+\lfloor\log_2(n-1)\rfloor)$ for even n. Every node connects to $\lfloor\log_2(n-1)\rfloor$ other nodes. Both sparse and good mixing!

Fixed vs dynamic neighbor averaging

Fixed Neighbor-averaging SGD:

$$x_i^{k+1} = \sum_{j=1}^n W_{ij} \left(x_j^k - \alpha^k (\text{mini-batch grad at } j) \right).$$

Dynamic Neighbor-averaging SGD:

$$x_i^{k+1} = \sum_{j=1}^n W_{ij}^{(k)} \left(x_j^k - \alpha^k (\text{mini-batch grad at } j) \right).$$

Each round uses a different W.

Further generalization:

- 1. if communication is faster, apply multiple W per mini-batch gradient
- 2. if communication is slower, apply multiple mini-batch gradients per W

For simplicity, assume one W per mini-batch gradient

Dynamic exp2-ring [Assran et.al. 2019]

Take n=16 for example. Break a 16-node exp2-graph into four subgraphs. To each subgraph, assign a unique W with weights 1/2,1/2 for the active nodes.

In every subgraph, every node communicates one other node. Computing $W\mathbf{y}$ takes O(1) time.

8-node example

Exact averaging achieved by finite dynamic neighbor averaging

Theorem: When $n=2^{\tau}$ for $\tau \in \mathbb{Z}$, dynamic exp-2 averaging satisfies

$$W^{(\tau)}W^{(\tau-1)}\cdots W^{(1)} = \frac{1}{n}\mathbf{1}\mathbf{1}^T$$

Furthermore, for any $p = 2, \ldots, \tau$,

$$W^{(p-1)}\cdots W^{(1)}W^{(\tau)}\cdots W^{(p)}=\frac{1}{n}\mathbf{1}\mathbf{1}^{T}.$$

This W-sequence is communication optimal among all averaging matrices.

Higher throughput

Define: n nodes, M-sized message, B bandwidth, L latency.

	Bandwidth Cost	Latency	Total Cost
Parameter server	O(nM/B)	O(L)	O(n+1)
Ring allreduce	O(2M/B)	O(2nL)	O(1+n)
Static exp2 averaging	$O(\log(n)M/B)$	$O(\log(n)L)^2$	$\tilde{O}(1+1)$
Dynamic exp2 averaging	O(M/B)	O(L)	O(1 + 1)

Neighbor averaging is much cheaper than any allreduce per round.

 $^{^2\}mbox{\sc Assume}$ no conflict or racing when receiving messages from neighbors.

Training convergence rate

Let: σ^2 be variance of gradient noise

	Rate for non-convex loss, iid data
Allreduce SGD	$O\left(\frac{\sigma}{\sqrt{nT}} + \frac{1}{T}\right)$
Neighbor-averaging SGD ³	$O\left(\frac{\sigma}{\sqrt{nT}} + \frac{\sigma^{2/3}\rho^{2/3}}{T^{2/3}(1-\rho)^{1/3}} + \frac{1}{(1-\rho)T}\right)$

 $^{^3\}mathsf{First}$ proved in [Lian et al. 2017] and later improved in [Koloskova et al. 2020]

Large-scale training for image classification

■ Model: ResNet-50 (~25.5M parameters)

■ Dataset: ImageNet-1K (1000 classes)

• Size: 1,281,167 training images and 50,000 validation images

■ GPUs: 8 × 8

Method	Epochs/Hours to 76%.	
Allreduce SGD	68 / 5.57	
Neighbor-averaging SGD	76 / 4.23	

Periodic allreduce [Chen et.al. 2020]

$$\begin{split} & \boldsymbol{y}_i^{(k)} = \boldsymbol{x}_i^{(k)} - \gamma \nabla F_i(\boldsymbol{x}_i^{(k)}; \boldsymbol{\xi}_i^{(k+1)}) \\ & \boldsymbol{x}_i^{(k+1)} = \begin{cases} \frac{1}{n} \sum_{j=1}^n \boldsymbol{y}_j^{(k)} & \text{If } \operatorname{mod}(k+1, H) = 0 \\ \sum_j W_{ij} \boldsymbol{y}_j^{(k)} & \text{If } \operatorname{mod}(k+1, H) \neq 0 \end{cases} \end{split}$$

Selecting $H < \frac{1}{1-\rho}$ can provably accelerate Neighbor-averaging SGD.

Large-scale training for image classification

■ Model: ResNet-50 (~25.5M parameters)

■ Dataset: ImageNet-1K (1000 classes)

• Size: 1,281,167 training images and 50,000 validation images

• Hardware: 32×8 GPUs

Method	Epochs/Hours to 76%.	
Allreduce SGD	94 / 1.74	
Neighbor-averaging SGD	91 / 1.20	

Large-scale BERT training for language modeling

■ Model: BERT-Large (~330M parameters)

Dataset: Wikipedia (2500M words) and BookCorpus (800M words)

■ Hardware: 8 × 8 GPUs

Method	Final Loss	Wall-clock Time (hrs)
Allreduce SGD	1.75	59.02
Neighbor-averaging SGD SGD	1.77	30.4

DNN example

BlueFog has a high-level API that wraps around any torch optimizer.

Example:

```
import torch
import bluefog.torch as bf
bf.init()
...
optimizer = optim.SGD(model.parameters(), lr=lr*bf.size())
optimizer = bf.DistributedNeighborAllreduceOptimzer( \
    optimizer, model=model)
...
# Torch training code
```

BlueFog also provides optimizers: Distributed Allreduce, Distributed Hierarchical Neighbor Allreduce, etc.

SPMD (single program, multiple data)

One code for all nodes; different nodes have different data and unique ranks.

```
# hello_world.py
import bluefog.torch as bf
bf.init()
print("I am rank {} in size {}".format(bf.rank(), bf.size()))

> bfrun -np 2 python hello_world.py

I am rank 1 in size 2
I am rank 0 in size 2
```

Neighbor averaging

Example: compute the average of ranks of the nodes

```
import torch
import bluefog.torch as bf
bf.init()

x = torch.Tensor([bf.rank()])

for _ in range(100):
    x = bf.neighbor_allreduce(x)
print("rank {} has x={}".format(bf.rank(), x))
```

Defaults:

- bf.init() creates a static exp2 graph
- neighbor-averaging weights are set to ¹/_{neighbors+1} for every incoming neighbors and the node itself

```
> bfrun -np 10 python neighbor_avg.py
rank 0 has x=tensor([4.5000])
rank 3 has x=tensor([4.5000])
rank 9 has x=tensor([4.5000])
rank 1 has x=t.ensor([4.50001)
rank 7 has x=tensor([4.5000])
rank 4 has x=t.ensor([4.50001)
rank 2 has x=tensor([4.5000])
rank 6 has x=tensor([4.5000])
rank 5 has x=tensor([4.50001)
rank 6 has x=tensor([4.5000])
```

Neighbor averaging using dynamic subgraphs

Example: Default dynamic exp2 averaging

```
dynamic neighbors = topology util.GetDynamicSendRecvRanks(
            bf.load topology(), bf.rank())
3
   for in range (maxite):
      to_neighbors, from_neighbors = next(dynamic_neighbors)
5
6
      avg weight = 1/(len(from neighbors) + 1)
7
8
      xi = bf.neighbor_allreduce(xi, name='x',
Q
         self weight=avg weight,
10
         neighbor_weights={r: avg_weight for r in from_neighbors},
11
         send neighbors=to neighbors)
12
```

You can replace GetDynamicSendRecvRanks() with your own.

Decentralized gradient descent [Nedic and Ozdaglar 2009]

To approximate solve

minimize
$$\alpha \sum_{i=1}^{n} f_i(x_i)$$
 subject to $x_1 = \cdots = x_n$,

we can apply decentralized gradient descent:

$$\mathbf{x}^{k+1} = W\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k).$$

Implementation using static exp2:

```
# DGD recursion
for k in range(maxite):
    xi = bf.neighbor_allreduce(xi) - alpha*ComputeGrad(fi,xi)
```

Blocking and asynchrony

Each node has two threads: communication thread and computation thread

- non-blocking: allow concurrent threads to save time
- blocking: computation starts after communication completes

Synchronization is similar concept but applies to operations across different nodes. All collective communications are synchronous.

Left: nonblocking but synchronized; Right: blocking, may or may not sync'd

By default, BlueFog is blocking and synchronized, but it also supports non-blocking and asynchronous operations

To save time, we ask neighbor allreduce $W\mathbf{x}^k$ not to block computation $\nabla f(\mathbf{x}^k)$, so they can run concurrently.

```
for k in range(maxite):
    handle = bf.neighbor_allreduce_nonblocking(xi)
    gradi = ComputeGrad(fi, xi)
    avg_x = bf.wait(handle)
    xi = avg_x - alpha*gradi
```

Since Line 5 must wait for the result of $W\mathbf{x}^k$.

EXTRA [Shi et.al. 2015]

EXTRA was the first method that solves

minimize
$$\sum_{i=1}^{n} f_i(x_i)$$
 subject to $x_1 = \dots = x_n$

with a constant α . One form of this method is

$$\begin{cases} \mathbf{x}^1 = W\mathbf{x}^0 - \alpha \nabla f(\mathbf{x}^0), \\ \mathbf{x}^{k+1} = W(2\mathbf{x}^k - \mathbf{x}^{k-1}) - \alpha(\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{k-1})), & k = 1, 2, \dots \end{cases}$$

The code structure is similar to DGD. Non-blocking communication can accelerate the code.

Tracking

DIGing [Nedic et.al. 2017] is a tracking-based method. For static W, DIGing is a special case of EXTRA. However, DIGing works for dynamic W.

$$\begin{cases} \mathbf{x}^{k+1} = W^{(k)}\mathbf{x}^k - \alpha \mathbf{y}^k \\ \mathbf{y}^{k+1} = W^{(k)}\mathbf{y}^k + \nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k) \end{cases}$$

 $(\mathbf{y}^k)_k$ a tracking sequence converging to $\lim_k \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^k)$ if it exists.

Linear speedup in throughput on CPU

Linear speedup in running time on CPU

Availability

Open source at https://github.com/Bluefog-Lib/bluefog

Contributors: Bicheng Ying, Kun Yuan, Hanbin Hu, Ji Liu, Wotao Yin

Thank you!

References

[Li et.al. 2014] M. Li, et al. "Scaling Distributed Machine Learning with the Parameter Server", OSDI, 2014.

[Patarasuk and Yuan 2009] P. Patarasuk, and X. Yuan, "Bandwidth Optimal All-reduce Algorithms for Clusters of Workstations", Journal of Parallel and Distributed Computing, 2009.

[Gibiansky 2017] A. Gibiansky, "Bringing HPC Techniques to Deep Learning", 2017.

[Sergeev and Del Balso 2018] A. Sergeev, and M. Del Balso, "Horovod: Fast and Easy Distributed Deep Learning in TensorFlow", arXiv:1802.05799, 2018.

[Cattivelli et.al. 2008] F. Cattivelli, C. G. Lopes, and A. H. Sayed, "Diffusion Recursive Least-Squares for Distributed Estimation over Adaptive Networks", IEEE TSP, 2008.

[Nedic and Ozdaglar 2009] A. Nedic, and A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization", IEEE TAC, 2009.

References

[Assran et.al. 2019] M. Assran, et. al. "Stochastic Gradient Push for Distributed Deep Learning", ICML, 2019.

[Lian et.al. 2017] X. Lian, et al. "Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent", Neurips 2017.

[Koloskova et.al. 2020] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, "A Unified Theory of Decentralized SGD with Changing Topology and Local Updates", ICML 2020.

[Chen et.al. 2020] Y. Chen, et. al., "Accelerating Gossip SGD with Periodic Global Averaging", 2020.

[Shi et.al. 2015] W. Shi, et. al., "EXTRA: An Exact First-Order Algorithm for Decentralized Consensus Optimization", SIAM J. Opt, 2015.

[Nedic et.al. 2017] A., Nedic, A. Olshevsky, and W. Shi, "Achieving Geometric Convergence for Distributed Optimization over Time-varying Graphs." SIAM J. Opt, 2017.