

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 December 2002 (19.12.2002)

PCT

(10) International Publication Number
WO 02/101045 A2

(51) International Patent Classification⁷: C12N 15/12, C07K 14/705, C12N 5/10, C12Q 1/68, C07K 16/18, G01N 33/50, 33/53

(GB). PEIER, Andrea [US/US]; 9725 Mesa Springs Way 176, San Diego, CA 92126 (US). MCINTYRE, Peter [AU/GB]; Novartis Institute for Medical Sciences, University College, 5 Gower Place, London WC1E 6BN (GB). BEVAN, Stuart [GB/GB]; Novartis Institute for Medical Sciences, University College, 5 Gower Place, London WC1E 6BN (GB).

(21) International Application Number: PCT/EP02/06520

(74) Agent: GROS, Florent; Novartis AG, Corporate Intellectual Property, Patent & Trademark Department, CH-4002 Basel (CH).

(22) International Filing Date: 13 June 2002 (13.06.2002)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LT, LU, LV, MA, MD, MK, MN, MX, NO, NZ, OM, PH, PL, PT, RO, RU, SE, SG, SI, SK, TJ, TM, TN, TR, TT, UA, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (regional): Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(26) Publication Language: English

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(30) Priority Data:

60/297,835	13 June 2001 (13.06.2001)	US
60/351,238	22 January 2002 (22.01.2002)	US
60/352,914	29 January 2002 (29.01.2002)	US
60/357,161	12 February 2002 (12.02.2002)	US
60/381,086	15 May 2002 (15.05.2002)	US
60/381,739	16 May 2002 (16.05.2002)	US

(71) Applicants (for all designated States except US): NOVARTIS AG [CH/CH]; Lichtstrasse 35, CH-4056 Basel (CH). IRM LLC [US/—]; PO Box HM 2899, Hamilton HM LX (BM).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PATAPOUTIAN, Ardem [US/US]; 4330 North Talmadge Drive, San Diego, CA 92116 (US). SONG, Chuanzheng [CN/US]; 87 Reinman Road, Warren, NJ 07059 (US). GANJU, Pamposh [GB/GB]; Novartis Institute for Medical Sciences, University College, 5 Gower Place, London WC1E 6BN

WO 02/101045 A2

(54) Title: VANILLOID RECEPTOR-RELATED NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: This invention provides novel genes and polypeptides of the VR family, identification of trkA⁺ pain specific genes expressed in the DRG, and use of these genes and polypeptides for the treatment of pain and identification of agents useful in the treatment of pain.

VANILLOID RECEPTOR-RELATED NUCLEIC ACIDS AND POLYPEPTIDES

5

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 60/297,835 filed on June 13, 2001, U.S. Provisional Application No. 60/351,238, filed on January 22, 2002, U.S. Provisional Application No. 60/352,914, filed on January 29, 2002, U.S. Provisional Application No. 60/357,161, filed on February 12, 2002, U.S. Provisional Application No. 60/381,086, filed on May 15, 2002, and U.S. Provisional Application No. 60/381,739, filed on May 16, 2002. These applications are incorporated herein by reference for all purposes.

COPYRIGHT NOTIFICATION

[0002] Pursuant to 37 C.F.R. 1.71(e), a portion of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

20 **Field of the Invention**

[0003] This invention pertains to novel vanilloid receptor (VR) related nucleic acids and polypeptides. In particular, the invention relates to proteins that are homologous to known VRs, nucleic acids encoding such proteins, identification of trkA⁺ pain-specific genes, and the use of these genes and polypeptides in methods of diagnosing pain, methods of identifying compounds useful in treating pain and methods of treating pain.

Background

[0004] Pain has been defined as the sensory experience perceived by nerve tissue distinct from sensations of touch, pressure, heat and cold. Individuals suffering from pain

typically describe it by such terms as bright, dull, aching, pricking, cutting, burning, etc. This range of sensations, as well as the variation in perception of pain by different individuals, makes a precise definition of pain difficult. Pain as suffering, however, is generally considered to include both the original sensation and the reaction to that sensation.

5 Where pain results from the stimulation of nociceptive receptors and transmitted over intact neural pathways, this is termed nociceptive pain. Alternatively, pain may be caused by damage to neural structures, often manifesting itself as neural supersensitivity, and is referred to as neuropathic pain.

[0005] Neuropathic pain is a particular type of pain that has a complex and 10 variable etiology. It is generally a chronic condition attributable to complete or partial transection of a nerve or trauma to a nerve plexus or soft tissue. This condition is characterized by hyperesthesia (enhanced sensitivity to a natural stimulus), hyperalgesia (abnormal sensitivity to pain), allodynia (widespread tenderness, characterized by hypersensitivity to tactile stimuli) and/or spontaneous burning pain. In humans, neuropathic 15 pain tends to be chronic and debilitating, and occurs during conditions such as trigeminal neuralgia, diabetic neuropathy, post-herpetic neuralgia, late-stage cancer, amputation or physical nerve damage.

[0006] Most drugs including conventional opioids and antidepressants are not practical against chronic pain such as neuropathic pain, either because they are not effective 20 or have serious side effects. For these reasons, alternate therapies for the management of chronic or neuropathic pain are widely sought.

[0007] Stimuli such as heat, cold, stretch, and pressure are detected by specialized sensory neurons within the Dorsal Root Ganglia (DRG). These neurons fire action potentials in response to these mechanical and thermal stimuli, although the molecular 25 mechanism for such detection is not known. Recently, two channels, vanilloid receptor 1 (VR1) and vanilloid receptor-like protein 1 (VRL1), have been isolated from DRG that respond to different thresholds of high heat, and hence act as pain receptors. These channels belong to a family of TRP channels that in *C. elegans* and *D. melanogaster* are involved in mechano- and osmoregulation.

30 [0008] The VR1 is a calcium channel with six transmembrane domains and a putative pore domain. The channel can be activated by many distinct reagents, including heat, low pH (high proton concentration is present during injury and inflammation), and

capsaicin (the active ingredient in hot chili peppers). The knockout of VR1 in mice has demonstrated that this channel plays a role in pain propagation; however, since the phenotype is rather subtle, it also implies that VR1 is not the sole receptor for high heat and pain. To date, one other homologue of VR1 is known in mammals - the VRL1. VRL1 is 5 structurally very similar to VR1, but is expressed on DRG neurons that are not involved in pain reception (in contrast to VR1).

[0009] The somatic sensory neurons detect external stimuli such as heat, cold and noxious stimuli through the activation of thermal and mechanical receptors/channels. The VR family represents the first example of molecules expressed within the DRG that have 10 such activation capabilities. Since these molecules are relatively specific to sensory neurons (for example, VR1 knockout mice do not have phenotypes outside of pain perception), they represent highly promising targets for developing drugs against pain or other thermal noxious stimuli. VR1 knockout mice have demonstrated that other molecules have to be involved in pain perception. However, despite the large amount of interest generated in the 15 scientific community concerning this class of receptors, so far, no other receptors of this class have been identified.

[0010] In view of the role of the VR members in pain perception, the identification of new members of VR would allow the development of therapeutic candidates specifically designed to block these new TRP channels, which would enable the 20 treatment of various disorders associated with chronic pain. In addition, the identification of new VR members would permit the screening of various drugs to identify those compounds suitable for further, in-depth studies of therapeutic applications.

SUMMARY OF THE INVENTION

[0011] The present invention relates to members of the VR family, in particular 25 TRPV3 (previously known as VRLS, VRLX, VR4 and TRPV7), TRPV4 (previously known as VRL3 and OTRPC4) and TRPM8 (previously known as TRPX) nucleic acids and polypeptides, recombinant materials and methods for their production. In another aspect, the present invention relates to the identification of $trkA^+$ pain-specific genes expressed in the DRG. In yet another aspect, the present invention relates to methods for using the TRPV3, 30 TRPV4, TRPM8 and $trkA^+$ pain-specific nucleic acids and polypeptides, including methods for treating pain, inflammation, skin disorders and cancer, methods of diagnosing pain,

inflammation, skin disorders and cancer, methods of identifying agents useful in the treatment of pain, inflammation, skin disorders and cancer and in methods of monitoring the efficacy of a treatment for pain, inflammation, skin disorders and cancer.

TRPV3

5 [0012] The invention provides isolated and/or purified TRPV3 nucleic acid molecules, such as: a) a polynucleotide that encodes a mouse TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO: 2; b) a polynucleotide that encodes a mouse TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO: 2; c) a polynucleotide that encodes a functional domain of a mouse TRPV3 protein; d) a polynucleotide that 10 encodes a human TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO 5; e) a polynucleotide that encodes a human TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO 5; f) a polynucleotide that encodes a functional domain of a human TRPV3 protein; and g) a polynucleotide that is complementary to a polynucleotide of a) through f). In some embodiments, the nucleic acid molecule is a) or b) and comprises a first 15 polynucleotide that is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 3 (mouse TRPV3), or is d) or e) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 6 (human TRPV3). The nucleic acids can be 90% or more, or 95% or more, identical to a second polynucleotide having a nucleotide sequence as 20 set forth in SEQ ID NO: 3 or SEQ ID NO: 6, or can be identical to the respective polynucleotide. Examples of TRPV3 nucleic acids of the invention include polynucleotides that are 80% or more, 90% or more, or 95% or more, identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 65-2440 of SEQ ID NO: 1 (mouse TRPV3) or nucleotides 57-2432 of SEQ ID NO: 4 (human TRPV3).

25 [0013] The invention also provides isolated TRPV3 nucleic acid molecules that encode polypeptides that include one or more functional domains of a mammalian (e.g., human or mouse) TRPV3 polypeptide. The polypeptides encoded by these nucleic acid molecules can include, for example, one or more functional domains such as ankyrin domains, transmembrane regions, pore loop regions, and coiled-coil domains. As an 30 example, the polypeptides can include a pore loop region flanked by two transmembrane regions, and/or four ankyrin domains.

[0014] Also provided by the invention are isolated and/or purified TRPV3 polypeptides. Such polypeptides include, for example, a) a mouse TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO: 2; b) a mouse TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO: 2; c) one or more functional domains 5 of a mouse TRPV3 protein; d) a human TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO 5; e) a human TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO 5; and f) one or more functional domains of a human TRPV3 protein. For example, the TRPV3 polypeptides can include one or more functional domains selected from the group consisting of an ankyrin domain, a transmembrane region, a pore loop region, and 10 a coiled-coil domain. In some embodiments, the polypeptides include a pore loop region flanked by two transmembrane regions, and/or four ankyrin domains.

[0015] Methods for identifying an agent that modulates TRPV3-mediated cation passage through a membrane are also provided by the invention. These methods involve: a) providing a membrane that comprises a TRPV3 polypeptide; b) contacting the membrane 15 with a candidate agent; and c) determining whether passage of one or more cations through the membrane is increased in the presence of the candidate agent compared to passage in the absence of the candidate agent. In some embodiments, the membrane is a cell membrane and cation passage through the membrane is detected by measuring cation influx or efflux across the membrane into or out of the cell. The assay is conducted at a temperature of at least 20 33°C, in some embodiments. Also provided are methods in which a candidate agent that reduces cation passage is further tested for ability to treat pain by administering the candidate agent to a test animal and determining whether the candidate agent decreases the test animal's response to a pain stimulus. A pain stimulus can include, for example exposure to a temperature above 33°C.

[0016] The invention also provides methods for reducing pain associated with 25 TRPV3 activity. These methods involve administering to a subject suffering from pain an analgesically effective amount of a compound that reduces TRPV3-mediated cation passage through a membrane or reduces signal transduction from a TRPV3 polypeptide to a DRG neuron. The pain can be with, for example, one or more of heat exposure, inflammation, and 30 tissue damage. Suitable compounds can include, for example, an antibody that specifically binds to a TRPV3 polypeptide; an antisense polynucleotide, ribozyme, or an interfering

RNA that reduces expression of a TRPV3 polypeptide; and/or a chemical compound that reduces cation passage through a membrane that comprises a TRPV3 polypeptide.

[0017] Methods for determining whether pain in a subject is mediated by TRPV3 are also provided by the invention. These methods can involve: obtaining a sample from a 5 region of the subject at which the pain is felt; and testing the sample to determine whether a TRPV3 polypeptide or TRPV3 polynucleotide is present and/or active in the sample. In some embodiments, the presence of a TRPV3 polypeptide in the sample is detected by determining whether cation passage across membranes of cells in the sample is mediated by a TRPV3 polypeptide. For example, TRPV3 involvement in mediating cation passage across 10 membranes of the cells can be determined by detecting an increase in cation passage across membranes of the cells when assayed above 33°C compared to cation passage when assayed below 33°C. To distinguish between TRPV3 involvement in mediating cation passage and involvement by other ion channels (e.g., TRPV1 or TRPV2), the assay can be conducted at a temperature above the activation threshold of TRPV3 but below the activation threshold of 15 the other receptor (e.g., below about 43°C or below about 52°C, respectively, for TRPV1 and TRPV2). As an alternative to assaying for TRPV3-mediated ion channel activity, one can detect the presence of a TRPV3 polypeptide in the sample by contacting the sample with a reagent that specifically binds to a TRPV3 polypeptide, or detect the presence of a TRPV3 polynucleotide in the sample by contacting nucleic acids from the sample with a test 20 polynucleotide that can hybridize to a TRPV3 polynucleotide.

TRPV4

[0018] The invention also provides isolated TRPV4 nucleic acid molecules. These include, for example, a) a polynucleotide that encodes a mouse TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO: 14; b) a polynucleotide that encodes a mouse 25 TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO: 14; c) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a mouse TRPV4 protein; d) a polynucleotide that encodes a human TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO 17; e) a polynucleotide that encodes a human TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO 17; f) a 30 polynucleotide that encodes a polypeptide that comprises one or more functional domains of a human TRPV4 protein; and g) a polynucleotide that is complementary to a polynucleotide

of a) through f). In some embodiments, the nucleic acid molecule is a) or b) and comprises a first polynucleotide that is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 15 (mouse TRPV4), or is d) or e) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a 5 nucleotide sequence as set forth in SEQ ID NO: 18 (human TRPV4). The nucleic acids can be 90% or more, or 95% or more, identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 15 or SEQ ID NO: 18, or can be identical to the respective polynucleotide. Examples of TRPV4 nucleic acids of the invention include polynucleotides that are 80% or more, 90% or more, or 95% or more, identical to a second 10 polynucleotide having a nucleotide sequence as set forth in nucleotides 156-2771 of SEQ ID NO: 13 (mouse TRPV4) or to a nucleotide sequence as set forth in SEQ ID NO: 16 (human TRPV4).

[0019] The invention also provides isolated TRPV4 nucleic acid molecules that encode polypeptides that include one or more functional domains of a mammalian (e.g., 15 human or mouse) TRPV4 polypeptide. The polypeptides encoded by these nucleic acid molecules can include, for example, one or more functional domains such as ankyrin domains, transmembrane regions, pore loop regions, and coiled-coil domains. As an example, the polypeptides can include a pore loop region flanked by two transmembrane regions, and/or three ankyrin domains.

[0020] Also provided by the invention are isolated and/or purified TRPV4 polypeptides. Such polypeptides include, for example, a) a mouse TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO: 14; b) a mouse TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO: 14; c) one or more functional domains of a mouse TRPV4 protein; d) a human TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO 17; e) a human TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO 17; and f) one or more functional domains of a human TRPV4 protein. For example, the TRPV4 polypeptides can include one or more functional domains selected from the group consisting of an ankyrin domain, a transmembrane region, a pore loop region, and a coiled-coil domain. In some embodiments, the polypeptides include a 25 pore loop region flanked by two transmembrane regions, and/or three ankyrin domains. 30

[0021] Methods for identifying an agent that modulates TRPV4-mediated cation passage through a membrane are also provided by the invention. These methods involve: a)

providing a membrane that comprises a TRPV4 polypeptide; b) contacting the membrane with a candidate agent; and c) determining whether passage of one or more cations through the membrane is increased in the presence of the candidate agent compared to passage in the absence of the candidate agent. Cation influx and/or efflux can be measured as described above for TRPV3. In some embodiments, candidate agents that reduce cation passage are further tested for ability to treat pain by administering the candidate agent to a test animal and determining whether the candidate agent decreases the test animal's response to a pain stimulus.

[0022] Methods for reducing pain associated with TRPV4 activity are provided by the invention. These methods involve administering to a subject suffering from pain an analgesically effective amount of a compound that reduces TRPV4-mediated cation passage through a membrane or reduces signal transduction from a TRPV4 polypeptide to a DRG neuron. The compounds are suitable for treating, for example, neuropathic pain, and can include: a) an antibody that specifically binds to a TRPV4 polypeptide; b) an antisense polynucleotide, ribozyme, or an interfering RNA that reduces expression of a TRPV4 polypeptide; and c) a chemical compound that reduces cation passage through a membrane that comprises a TRPV4 polypeptide.

[0023] The invention also provides methods for determining whether pain in a subject is mediated by TRPV4. These methods involve obtaining a sample from a region of the subject at which the pain is felt, and testing the sample to determine whether a TRPV4 polypeptide or TRPV4 polynucleotide is present and/or active in the sample. The presence and/or activity of the TRPV4 polypeptide can be detected, for example, by determining whether cation passage across membranes of cells in the sample is mediated by a TRPV4 polypeptide, or by contacting the sample with a reagent that specifically binds to a TRPV4 polypeptide. One can detect the presence of a TRPV4 polynucleotide by, for example, contacting nucleic acids from the sample with a test polynucleotide that can hybridize to a TRPV4 polynucleotide.

TRPM8

[0024] Isolated and/or purified TRPM8 nucleic acid molecules are also provided by the invention. These TRPM8 nucleic acid molecules include, for example, a) a polynucleotide that encodes a mouse TRPM8 protein comprising amino acid residues 1-1104

of SEQ ID NO: 8; b) a polynucleotide that encodes a mouse TRPM8 protein comprising amino acid residues 2-1104 of SEQ ID NO: 8; c) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a mouse TRPM8 protein; d) a polynucleotide that encodes a human TRPM8 protein comprising amino acid residues 1-

5 1268 of SEQ ID NO 11; e) a polynucleotide that encodes a human TRPM8 protein comprising amino acid residues 2-1268 of SEQ ID NO 11; f) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a human TRPM8 protein; and
10 g) a polynucleotide that is complementary to a polynucleotide of a) through f). In some embodiments, the nucleic acid molecule is a) or b) and comprises a first polynucleotide that is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 9 (mouse TRPM8), or is d) or e) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 12 (human TRPM8). The nucleic acids can be 90% or more, or 95% or more, identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ
15 ID NO: 9 or SEQ ID NO: 12, or can be identical to the respective polynucleotide. Examples of TRPM8 nucleic acids of the invention include polynucleotides that are 80% or more, 90% or more, or 95% or more, identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 448-3762 of SEQ ID NO: 7 (mouse TRPM8) or nucleotides 61-4821 of SEQ ID NO: 10 (human TRPM8).

20 [0025] The invention also provides isolated TRPM8 nucleic acid molecules that encode polypeptides that include one or more functional domains of a mammalian (e.g., human or mouse) TRPM8 polypeptide. The polypeptides encoded by these nucleic acid molecules can include, for example, one or more functional domains such as transmembrane regions, pore loop regions, and coiled-coil domains. As an example, the polypeptides can
25 include a pore loop region flanked by two transmembrane regions.

[0026] The invention also provides isolated and/or purified TRPM8 polypeptides. The TRPM8 polypeptides include, for example, a) a mouse TRPM8 protein comprising amino acid residues 1-1104 of SEQ ID NO: 8; b) a mouse TRPM8 protein comprising amino acid residues 2-1104 of SEQ ID NO: 8; c) one or more functional domains of a mouse
30 TRPM8 protein; d) a human TRPM8 protein comprising amino acid residues 1-1268 of SEQ ID NO 11; e) a human TRPM8 protein comprising amino acid residues 2-1268 of SEQ ID NO 11; and f) one or more functional domains of a human TRPM8 protein. For example, the

TRPM8 polypeptides can include one or more functional domains selected from the group consisting of a transmembrane region, a pore loop region, and a coiled-coil domain. In some embodiments, the TRPM8 polypeptides of the invention include a pore loop region flanked by two transmembrane regions.

5 [0027] Methods for identifying an agent that modulates TRPM8-mediated cation passage through a membrane are also provided by the invention. These methods involve: a) providing a membrane that comprises a TRPM8 polypeptide; b) contacting the membrane with a candidate agent; and c) determining whether passage of one or more cations through the membrane is increased in the presence of the candidate agent compared to passage in the 10 absence of the candidate agent. In some embodiments, the membrane is a cell membrane and cation passage through the membrane is detected by measuring cation influx or efflux across the membrane into or out of the cell. To identify antagonists that reduce TRPM8-mediated cation passage, the assay typically is conducted under conditions in which TRPM8 allows cation passage in the absence of the antagonist; e.g., at a temperature of about 20°C or less, 15 or in the presence of menthol. Also provided are methods in which a candidate agent that reduces cation passage is further tested for ability to treat pain by administering the candidate agent to a test animal and determining whether the candidate agent decreases the test animal's response to a pain stimulus. A pain stimulus can include, for example exposure to a temperature below 20°C.

20 [0028] In other embodiments, the invention provides methods for identifying an agent that stimulates TRPM8-mediated cation passage through a membrane. These screens for identifying TRPM8 agonists generally are conducted under conditions in which the TRPM8 polypeptides do not mediate cation passage. Such conditions include, for example, temperatures above about 20°C. Agonists of TRPM8-mediated cation passage are useful as 25 flavor enhancers, fragrances, and the like.

[0029] The invention also provides methods of reducing pain associated with TRPM8 activity. These methods involve administering to a subject suffering from pain an analgesically effective amount of a compound that reduces TRPM8-mediated cation passage through a membrane or reduces signal transduction from a TRPM8 polypeptide to a DRG 30 neuron. These methods are useful for treating pain that results from, for example, cold exposure, inflammation, tissue damage, and the like. The compounds can be, for example, a) an antibody that specifically binds to a TRPM8 polypeptide; b) an antisense polynucleotide,

ribozyme, or an interfering RNA that reduces expression of a TRPM8 polypeptide; or c) a chemical compound that reduces cation passage through a membrane that comprises a TRPM8 polypeptide.

[0030] Methods for determining whether pain in a subject is mediated by TRPM8 are also provided by the invention. These methods involve obtaining a sample from a region of the subject at which the pain is felt; and testing the sample to determine whether a TRPM8 polypeptide or TRPM8 polynucleotide is present and/or active in the sample. In some embodiments, the presence of a TRPM8 polypeptide in the sample is detected by determining whether cation passage across membranes of cells in the sample is mediated by a TRPM8 polypeptide. TRPM8 involvement in mediating cation passage across membranes of the cells can be determined, for example, by detecting an increase or decrease in cation passage across membranes of the cells when assayed below 20°C and/or in the presence of menthol, compared to cation passage when assayed above 20°C and/or in the absence of menthol. Alternatively, or additionally, the presence of a TRPM8 polypeptide in the sample is detected by contacting the sample with a reagent that specifically binds to a TRPM8 polypeptide. The presence of a TRPM8 polynucleotide in the sample can be detected by, for example, contacting nucleic acids from the sample with a test polynucleotide that can hybridize to a TRPM8 polynucleotide.

[0031] The invention also provides methods for identifying an agent useful in the modulation of a mammalian sensory response. These methods involve: a) contacting a candidate agent with a test system that comprises a receptor polypeptide selected from the group consisting of TRPM8, TRPV3 and TRPV4; and b) detecting a change in activity of the receptor polypeptide in the presence of the candidate agent as compared to the activity of the receptor polypeptide in the absence of the agent, thereby identifying an agent that modulates receptor activity.

[0032] Also provided by the invention are methods for monitoring the efficacy of a treatment of a subject suffering from pain. These methods involve: a) obtaining, at two or more time points in the course of treatment for pain, a sample from a region of the subject at which the pain is felt; and b) testing the samples to determine whether a reduction is observed in amount or activity of one or more members selected from the group consisting of: a TRPV3 polypeptide, a TRPV3 mRNA, a TRPV4 polypeptide, a TRPV4 mRNA, a TRPM8 polypeptide, and a TRPM8 mRNA. In some embodiments, one of the time points is

prior to or simultaneously with administration of the treatment, and the other time point is after treatment has begun.

[0033] The invention provides assays capable of detecting the expression of one or more of TRPV3, TRPV4 or TRPM8 in human tissue. The assays are selected from the 5 group consisting of: a) an assay comprising contacting a human tissue sample with monoclonal antibodies binding to TRPV3, TRPV4 or TRPM8 and determining whether the monoclonal antibodies bind to polypeptides in the sample; and b) an assay comprising contacting a human tissue sample with an oligonucleotide that is capable of hybridizing to a nucleic acid that encodes TRPV3, TRPV4 or TRPM8.

10 [0034] Methods of treating pain provided by the invention include methods in which a patient suffering from pain mediated by one or more polypeptides selected from the group consisting of TRPV3, TRPV4 and TRPM8 is identified by measuring expression of the polypeptide in tissue from such patient, and administering to such patient an analgesically effective amount of an agent which inhibits the polypeptide.

15 [0035] The invention also provides methods for identifying an agent useful in the treatment of pain. These methods involve: a) administering a candidate agent to a mammal suffering from pain; b) in a sample obtained from the mammal, detecting an activity or amount of one or more members selected from the group consisting of: a TRPV3 polypeptide, a TRPV3 mRNA, a TRPV4 polypeptide, a TRPV4 mRNA, a TRPM8 20 polypeptide, and a TRPM8 mRNA; and c) comparing the amount or activity of the member in the presence of the candidate agent with the amount or activity of the member in a sample obtained from the mammal in the absence of the candidate agent, wherein a decrease in amount or activity of the member in the sample in the presence of the candidate agent relative to the amount or activity in the absence of the candidate agent is indicative of an 25 agent useful in the treatment of pain.

[0036] Also provided are methods for identifying an agent that binds to and/or modulates the activity of an mRNA or polypeptide encoded by a TRPV3, TRPV4, or TRPM8 nucleic acid. These methods involve: a) contacting an isolated cell which expresses a heterologous TRPV3, TRPV4, or TRPM8 nucleic acid encoding a polypeptide with the 30 agent; and b) determining binding and/or modulation of the activity of the mRNA or polypeptide by the agent, to identify agents which bind with and/or modulate the activity of the polypeptide.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] Figures 1A and 1B show differential expression of TRPV3 and TRPV4 genes in the Chung model. Figure 1A: mRNA levels of TRPV3 are increased in a rat model of chronic neuropathic pain. The human cDNA sequence of TRPV3 is used to search the Celera mouse genomic DNA database and two primers are derived from regions that are identical from human and mouse sequences. The primers are used to amplify the rat TRPV3 from total RNA samples from the Chung model (L4 and L5 DRG) and sham-operated animals in a standard reverse-transcriptase polymerase chain reaction (RT-PCR) protocol. The top panel shows the gel image from one RT-PCR experiment and the bottom shows the average fold of regulation of TRPV3 in L4 and L5 DRG neurons from Chung model from three independent experiments. Figure 1B: TRPV4 is up-regulated in a rat model of chronic neuropathic pain. For analysis TRPV4 expression in the Chung model (28- and 50-day), first-strand cDNA equivalent to 30 ng of total RNA is used per reaction and amplified between 32/35 cycles for higher expressing genes and 35/38 cycles for lower-expressing genes. Due to the constraints on the amount of total RNA available, half the volume of the PCR reaction is removed at the lower cycle and the remaining reaction is continued for a further 3 cycles. All the samples are resolved on 4-20% TBE gels and densitometry carried out on the clearest, non-saturated bands.

[0038] Figures 2A-2F show the TRPV3 sequence and genomic localization. Figure 2A: Rooted tree showing protein sequence relationship of different members of the TRPV ion channel family. Figure 2B: Relative position of TRPV1 (VR1) and TRPV3 coding sequences on mouse (11B4) and human (17p13) chromosomes. Figure 2C: Comparison of mouse TRPV3 protein sequence to other TRPVs (excluding C-terminal half containing transmembrane domains). Identical sequences are highlighted in dark gray; conserved residues, in light gray. Predicted coiled-coil and ankyrin domains are marked and correspond to regions for TRPV3 only. The protein alignment is generated using Megalign and Boxshade at <http://biowb.sdsc.edu/CGI/BW.cgi>. The coiled-coil domains are predicted using the program Coils (<http://searchlauncherbcm.tmc.edu/seq-search/struc-predict.html>). The ankyrin domains are predicted using the PFAM protein search (<http://pfam.wustl.edu/hmmsearch.shtml>). Figure 2D: A schematic of TRPV3 and predicted membrane topology. Figure 2E: Kyte Doolittle hydrophobicity plot of TRPV3 sequences showing the 6 transmembrane domains (1-6) and the pore domain (P). Figure 2F: Coiled-

coil domain prediction of TRPV3 sequence by Coils shows two 14-mer peaks at the N-terminal, prior to ankyrin sequences.

[0039] Figures 3A-3D demonstrate that TRPV3 is activated by heat. Currents evoked by heat in TRPV3 expressing Chinese Hamster Ovary (CHO) cells. Figure 3A: 5 Inward current to temperature ramp, $V_h = -60$ mV, in calcium free external solutions. Figure 3B: Heat evoked currents of the same cell in Ca^{2+} -free and subsequently in Ca^{2+} containing solutions showing increased inward current in Ca^{2+} conditions. Figure 3C: Semi-logarithmic plot of current against temperature with double exponential fitted line for the same trace as Figure 3A. Note the discontinuity at $\sim 32^\circ\text{C}$ (arrow). Figure 3D: Current-voltage relationship 10 in calcium containing external solution showing the pronounced outward rectification of TRPV3 at 48°C but not at room temperature. Note the small outward currents at room temperature.

[0040] Figures 4A-4D. TRPV3 becomes sensitized to repeated applications of the heat stimulus. Figure 4A: Repeated heat steps from 25 - 45°C evoke increased inward current 15 responses. Figure 4B: The outward rectification becomes more pronounced with repeated voltage ramps in 48°C external solution. Both experiments are conducted in the presence of 2 mM CaCl_2 in the external solution. Figure 4C: Control protocol for antagonist experiments. Note that the responses continue to sensitize with repeated heat steps in the absence of putative antagonists. Figure 4D: 1 μM ruthenium red attenuates the sensitization 20 and inhibits the heat response.

[0041] Figure 5. TRP Channels in thermosensation. Four TRP channels implicated in thermosensation cover most but not all physiologically relevant temperatures.

[0042] Figures 6A-6D show results of an analysis of the nucleotide and amino acid sequences of TRPM8. Figure 6A: Comparison of mouse TRPM8 protein sequence to 25 some of its closest relatives, TRPM1 (human Melastatin, GI 6006023), TRPM2 (human, GI 4507688) and TRPM7 (mouse Chak, GI 14211382). The alignment is generated using Megalign and Boxshade. Identical or conserved residues are shown in white letters on a black background. Figure 6B: Phylogenetic tree showing protein sequence relationship of different members of the TRP ion channel super-family. TRPs are subdivided into three 30 main subfamilies: TRPMs, TRPVs and TRPCs. The TRPMs do not contain any Ankyrin domains in their N-terminal domains. The transmembrane domains have the highest homology among different classes of TRP channels. Figure 6C: Kyte Doolittle

hydrophobicity plot of TRPM8 sequences showing the eight hydrophobic peaks demarking the potential transmembrane regions of the protein that spans from 695-1024 amino acids.

Figure 6D: Coiled-coil domain prediction of TRPM8 sequence by the program coils shows multiple 14-mer peaks at the N- and C-terminus of the transmembrane spanning domains

5 (<http://searchlauncher.bcm.tmc.edu/seq-search/struc-predict.html>).

[0043] Figures 7A-7E: Increase in intracellular calcium concentration ($[Ca^{2+}]_i$) in TRPM8-expressing CHO cells in response to cold and menthol. Figure 7A: mTRPM8 CHO cells show a rapid increase in $[Ca^{2+}]_i$ when the temperature reaches $\sim 15^\circ C$. Non-transfected CHO cells do not show a response to cold. Removal of external Ca^{2+} completely abolishes the response to cooling. Figure 7B: The estimated average threshold temperature at which $[Ca^{2+}]_i$ begins to increase is approximately $23^\circ C$ for mTRPM8. TRPM8-expressing CHO cells are cooled from $33-23^\circ C$, upon which an increase in Ca^{2+} is observed. Continuous cooling of the cells to $20^\circ C$ shows a marked Ca^{2+} increase followed by a rapid return to near-basal levels upon warming to $33^\circ C$. Figure 7C: TRPM8 responses, evoked by repeated applications of a $23^\circ C$ temperature stimulus show little desensitization in calcium-containing standard bath solution. Figure 7D: TRPM8 responds to menthol at $25^\circ C$. Intensity of the TRPM8 response is dependent on menthol concentrations. A 10-fold increase in menthol concentration results in a larger influx of Ca^{2+} . This response is suppressed in the absence of extracellular Ca^{2+} . Non-transfected CHO cells exhibit no increase in $[Ca^{2+}]_i$ upon application of menthol. Figure 7E: At $33^\circ C$, $10 \mu M$ menthol does not elicit an influx of Ca^{2+} . When the temperature of the bath solution is lowered to $30^\circ C$, a marked increase in intracellular Ca^{2+} is observed. Additionally, repeated applications of menthol do not appear to desensitize TRPM8-expressing cells. These experiments suggest that menthol simulates the effect of cooling in TRPM8-expressing cells. This identification of a cold-sensing TRP channel involved in thermoreception reveals an expanded role for this family in somatic sensory detection.

[0044] Figures 8A-8B show an increase in intracellular calcium concentration $[Ca^{2+}]_i$ in TRPM8-expressing CHO cells in response to cold. Figure 8A: TRPM8-transfected CHO cells show a rapid increase in $[Ca^{2+}]_i$ when the temperature is lowered from $25^\circ C$ to $15^\circ C$. The stimulus period is indicated below the traces. Non-transfected CHO cells do not show a response to cold. Removal of external Ca^{2+} completely suppresses the response to cooling. Experiments are performed in triplicate. The average response ($\pm SEM$) of 20-30

cells from a representative experiment is presented. Figure 8B: Increase in $[Ca^{2+}]_i$ due to decrease in temperature from 35°C to 13°C in TRPM8⁺ cells. The panel shows mean \pm SEM for 34 individual cells. Note the increase starts to occur between 22°C and 25°C.

5 [0045] Figures 9A-9B show that current is evoked by reduction in temperature in TRPM8-expressing CHO cells. Figure 9A: Outward currents evoked at +60 mV by reducing the temperature from 35°C to 10°C. In this cell the current activates at 19.3°C as indicated in the right hand panel. Figure 9B: Current-voltage relationship for currents activated at 20.5°C and 33.5°C. Increasing the temperature reduces the amplitude of outward currents.

10 [0046] Figures 10A-10B show that current is evoked by menthol in TRPM8-expressing CHO cells. Figure 10A: Inward currents evoked by 1 mM menthol ($V_h = -60$ mV) are inactivated by increasing the temperature from 25°C to 45°C. Figure 10B: Current-voltage relationship for response to 1 mM menthol. Currents show pronounced outward-rectification in the presence of menthol not seen in the absence of this agonist.

15 [0047] Figures 11A-11B show a dose-response curve for menthol-stimulated current in TRPM8-expressing CHO cells. The voltage employed was +60 mV. Figure 11A: Single examples, from two different cells, of current evoked by applying 0.1, 0.5, 1 and 10 mM menthol at 22°C and 35°C. Figure 11B: Comparison of response (mean \pm SEM, n=5 for all points) of current evoked by menthol either at 22°C or 35°C.

DESCRIPTION OF THE SEQUENCE LISTING

20 [0048] SEQ ID NO: 1 provides a nucleotide sequence that encodes a mouse TRPV3 polypeptide, and upstream and downstream regions. The open-reading frame extends from nucleotides 65-2440.

[0049] SEQ ID NO: 2 provides an amino acid sequence of a mouse TRPV3 polypeptide.

25 [0050] SEQ ID NO: 3 provides nucleotide sequences for all polynucleotides that code for the mouse TRPV3 amino acid sequence presented in SEQ ID NO: 2.

[0051] SEQ ID NO: 4 provides a nucleotide sequence that encodes a human TRPV3 polypeptide, and an upstream non-coding region. The open-reading frame extends from nucleotides 57-2432.

30 [0052] SEQ ID NO: 5 provides an amino acid sequence of a human TRPV3 polypeptide.

[0053] SEQ ID NO: 6 provides nucleotide sequences for all polynucleotides that code for the human TRPV3 amino acid sequence presented in SEQ ID NO: 5.

5 [0054] SEQ ID NO: 7 provides a nucleotide sequence that encodes a mouse TRPM8 polypeptide, and upstream and downstream non-coding regions. The coding region extends from nucleotides 448-3762.

[0055] SEQ ID NO: 8 provides an amino acid sequence of a mouse TRPM8 polypeptide.

[0056] SEQ ID NO: 9 provides nucleotide sequences for all polynucleotides that code for the mouse TRPM8 amino acid sequence presented in SEQ ID NO: 8.

10 [0057] SEQ ID NO: 10 provides a nucleotide sequence that encodes a human TRPM8 polypeptide, and upstream and downstream non-coding regions. The coding region extends from nucleotides 61-4821.

[0058] SEQ ID NO: 11 provides an amino acid sequence of a human TRPM8 polypeptide.

15 [0059] SEQ ID NO: 12 provides nucleotide sequences for all polynucleotides that code for the human TRPM8 amino acid sequence presented in SEQ ID NO: 11.

[0060] SEQ ID NO: 13 provides a nucleotide sequence that encodes a mouse TRPV4 polypeptide, and upstream and downstream regions. The open-reading frame extends from nucleotides 156-2771.

20 [0061] SEQ ID NO: 14 provides an amino acid sequence of a mouse TRPV4 polypeptide.

[0062] SEQ ID NO: 15 provides nucleotide sequences for all polynucleotides that code for the mouse TRPV4 amino acid sequence presented in SEQ ID NO: 14.

25 [0063] SEQ ID NO: 16 provides a nucleotide sequence that encodes a human TRPV4 polypeptide.

[0064] SEQ ID NO: 17 provides an amino acid sequence of a human TRPV4 polypeptide.

[0065] SEQ ID NO: 18 provides nucleotide sequences for all polynucleotides that code for the human TRPV4 amino acid sequence presented in SEQ ID NO: 17.

DETAILED DESCRIPTION

Definitions

[0066] A "host cell," as used herein, refers to a prokaryotic or eukaryotic cell that contains heterologous DNA that has been introduced into the cell by any means, e.g., 5 electroporation, calcium phosphate precipitation, microinjection, transformation, viral infection and the like.

[0067] "Heterologous" as used herein means "of different natural origin" or represent a non-natural state. For example, if a host cell is transformed with a DNA or gene derived from another organism, particularly from another species, that gene is heterologous 10 with respect to that host cell and also with respect to descendants of the host cell which carry that gene. Similarly, heterologous refers to a nucleotide sequence derived from and inserted into the same natural, original cell type, but which is present in a non-natural state, e.g., a different copy number, or under the control of different regulatory elements.

[0068] A "vector" molecule is a nucleic acid molecule into which heterologous 15 nucleic acid may be inserted which can then be introduced into an appropriate host cell. Vectors preferably have one or more origins of replication, and one or more sites into which the recombinant DNA can be inserted. Vectors often have convenient means by which cells with vectors can be selected from those without, e.g., they encode drug resistance genes. Common vectors include plasmids, viral genomes, and (primarily in yeast and bacteria) 20 "artificial chromosomes".

[0069] "Plasmids" generally are designated herein by a lower case p preceded and/or followed by capital letters and/or numbers, in accordance with standard naming 25 conventions that are familiar to those of skill in the art. Starting plasmids disclosed herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids by routine application of well-known, published procedures. Many plasmids and other cloning and expression vectors that can be used in accordance with the present invention are well-known and readily available to those of skill in the art. Moreover, those of skill readily may construct any number of other plasmids suitable for use in the invention. The properties, construction and use of such plasmids, as 30 well as other vectors, in the present invention will be readily apparent to those of skill from the present disclosure.

[0070] The terms "nucleic acid", "DNA sequence" or "polynucleotide" refer to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues of natural nucleotides that hybridize to nucleic acids in manner similar to naturally-occurring nucleotides. Although 5 polynucleotide sequences presented herein recite "T" (for thymidine), which is found only in DNA, the sequences also encompass the corresponding RNA molecules in which each "T" in the DNA sequence is replaced by "U" for uridine.

[0071] The term "isolated" refers to material that is substantially or essentially free from components which normally accompany the material as found in its native state.

10 Thus, the polypeptides and nucleic acids of the invention do not include materials normally associated with their *in situ* environment. An isolated nucleic acid, for example, is not associated with all or part of the chromosomal DNA that would otherwise flank the nucleic acid. Typically, isolated proteins of the invention are at least about 80% pure, usually at least about 90%, and preferably at least about 95% pure as measured by band intensity on a 15 silver stained gel or other method for determining purity. Protein purity or homogeneity can be indicated by a number of means well-known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualization upon staining. For certain purposes high resolution will be needed and HPLC or a similar means for purification utilized.

20 [0072] The terms "identical" or percent "identity", in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.

25 [0073] The phrase "substantially identical", in the context of two nucleic acids or polypeptides, refers to two or more sequences or subsequences that have at least 70%, preferably 80%, most preferably 90-95% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. Preferably, the substantial identity 30 exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are

substantially identical over at least about 150 residues. In a most preferred embodiment, the sequences are substantially identical over the entire length of the coding regions.

[0074] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison 5 algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

[0075] Optimal alignment of sequences for comparison can be conducted, e.g., by 10 the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.*, 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, *J. Mol. Biol.*, 48:443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Natl. Acad. Sci. USA*, 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 15 575 Science Drive, Madison, WI), or by visual inspection (see generally, *Current Protocols in Molecular Biology*, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (1995 Supplement) (Ausubel)).

[0076] Examples of algorithms that are suitable for determining percent sequence 20 identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., *J. Mol. Biol.*, 215:403-410 (1990) and Altschul et al., *Nucleic Acids Res.*, 25:3389-3402 (1997), respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information 25 (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high-scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in 30 both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for

mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more 5 negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters wordlength (W), T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a W of 11, an expectation (E) of 10, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a W of 3, an E of 10 and the BLOSUM62 10 scoring matrix (see Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA*, 89:10915 (1989)). Percent identities, where specified herein, are typically calculated using the Blast 2.0 implementation using the default parameters.

[0077] In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin 15 & Altschul, *Proc. Natl. Acad. Sci. USA*, 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to 20 the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

[0078] Another indication that two polynucleotides are substantially identical is that the polynucleotides hybridize to each other under specified hybridization conditions. Examples of stringent hybridization conditions include: incubation temperatures of about 25 25°C to about 37°C; hybridization buffer concentrations of about 6 x SSC to about 10 x SSC; formamide concentrations of about 0% to about 25%; and wash solutions of about 6 x SSC. Examples of moderate hybridization conditions include: incubation temperatures of about 40°C to about 50°C; buffer concentrations of about 9 x SSC to about 2 x SSC; formamide concentrations of about 30% to about 50%; and wash solutions of about 5 x SSC 30 to about 2 x SSC. Examples of high stringency conditions include: incubation temperatures of about 55°C to about 68°C; buffer concentrations of about 1 x SSC to about 0.1 x SSC; formamide concentrations of about 55% to about 75%; and wash solutions of about 1 x SSC,

0.1 x SSC or deionized water. In general, hybridization incubation times are from 5 minutes to 24 hours, with 1, 2 or more washing steps, and wash incubation times are about 1, 2 or 15 minutes. SSC is 0.15 M NaCl and 15 mM citrate buffer. It is understood that equivalents of SSC using other buffer systems can be employed.

5 [0079] A further indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross-reactive with the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions.

10 10 Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions, as described below.

[0080] “Conservatively modified variations” of a particular polynucleotide sequence refers to those polynucleotides that encode identical or essentially identical amino acid sequences, or where the polynucleotide does not encode an amino acid sequence, to 15 essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given polypeptide. For instance, the codons CGU, CGC, CGA, CGG, AGA and AGG all encode the amino acid arginine. Thus, at every position where an arginine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such 20 nucleic acid variations are “silent variations,” which are one species of “conservatively modified variations”. Every polynucleotide sequence described herein which encodes a polypeptide also describes every possible silent variation, except where otherwise noted. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine) can be modified to yield a functionally identical 25 molecule by standard techniques. Accordingly, each “silent variation” of a nucleic acid which encodes a polypeptide is implicit in each described sequence.

[0081] Furthermore, one of skill will recognize that individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids (typically less than 5%, more typically less than 1%) in an encoded sequence are 30 “conservatively modified variations” where the alterations result in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art (see, e.g., Creighton, *Proteins*,

W.H. Freeman and Company (1984)). Individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence are also “conservatively modified variations”.

[0082] The term “recombinant” when used with reference to a cell, or nucleic acid, or vector, indicates that the cell, or nucleic acid, or vector, has been modified by the introduction of a heterologous nucleic acid or the alteration of a native nucleic acid, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells can contain genes that are not found within the native (non-recombinant) form of the cell or can express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. Recombinant cells can also contain genes found in the native form of the cell wherein the genes are modified and re-introduced into the cell by artificial means. The term also encompasses cells that contain a nucleic acid endogenous to the cell that has been modified without removing the nucleic acid from the cell; such modifications include those obtained by gene replacement, site-specific mutation and related techniques.

[0083] The term “modulate” refers to a change in the activity and/or amount of TRPV3, TRPV4 or TRPM8 proteins. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional or immunological properties of such proteins. The term “modulation” also refers to a change in the increase or decrease in the level of expression of mRNA or protein encoded by the TRPV3, TRPV4, and TRPM8 genes.

[0084] The term “operably-linked”, as used herein, refer to functionally-related nucleic acid sequences. A promoter is operably associated or operably-linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably-linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

[0085] The term “agonist”, as used herein, refers to a molecule which, when bound to the TRPV3, TRPV4 and TRPM8 proteins, increases or prolongs the duration of the effect of the biological or immunological activity of such proteins. Agonists may include proteins, nucleic acids, carbohydrates or any other molecules which bind to and modulate the effect of these proteins.

[0086] The term “antagonist”, as used herein, refers to a molecule which, when bound to TRPV3, TRPV4 and TRPM8 proteins, decreases the amount or the duration of the effect of the biological or immunological activity of these proteins. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecules which decrease the effect of these proteins. The term “antagonist” can also refer to a molecule which decreases the level of expression of mRNA and/or translation of protein encoded by TRPV3, TRPV4, and TRPM8 genes. Examples of such antagonists include antisense polynucleotides, ribozymes and double-stranded RNAs.

[0087] In practicing the present invention, many conventional techniques in molecular biology, microbiology and recombinant DNA are used. These techniques are well-known and are explained in, e.g., *Current Protocols in Molecular Biology*, Vols. I, II and III, F.M. Ausubel, ed. (1997); Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001); *DNA Cloning: A Practical Approach*, Vols. I and II, D.N. Glover, ed. (1985); *Oligonucleotide Synthesis*, M.L. Gait, ed. (1984); *Nucleic Acid Hybridization*, Hames and Higgins (1985); *Transcription and Translation*, Hames and Higgins, eds. (1984); *Animal Cell Culture*, R.I. Freshney, ed. (1986); *Immobilized Cells and Enzymes*, IRL Press (1986); Perbal, *A Practical Guide to Molecular Cloning*; the series, *Methods in Enzymology*, Academic Press, Inc. (1984); *Gene Transfer Vectors for Mammalian Cells*, J.H. Miller and M.P. Calos, eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1987); and *Methods in Enzymology*, Vols. 154 and 155, Wu and Grossman, and Wu, eds., respectively.

Description of the Preferred Embodiments

[0088] The present invention relates to novel nucleic acids known as TRPV3 (previously known as VRLX, VRL-S, VR4 and TRPV7), TRPV4 (previously known as VRL3 and OTRPC4), and TRPM8 (previously known as TRPX) that are homologous to the VR1, polypeptides encoded by these nucleic acids, recombinant materials and methods for their production. The specific names given to the three genes follow the nomenclature suggested in Montell et al., *Molecular Cell*, 9:229-231 (2002). The genes have been found to be expressed either in keratinocytes or the DRG, and both TRPV3 and TRPM8 proteins function in temperature sensation. In addition, expression of the TRPV3 and TRPV4 genes

is up-regulated in a rat injury model (see Examples 4 and 6). The present invention also relates to the identification of trkA^+ pain-specific genes that are expressed in the DRG. Since the aforementioned genes are expressed in keratinocytes and the DRG, function in temperature sensation, and are up-regulated in response to injury, these genes and their 5 related polypeptides can serve as specific therapeutic targets for the design of drugs to treat chronic and nociceptive pain, inflammation and skin disorders. Accordingly, the invention also relates to methods for identifying agents useful in treating pain, inflammation and skin disorders, methods for treating pain, inflammation and skin disorders and methods of monitoring the efficacy of a treatment, utilizing these genes and polypeptides. These genes 10 and related polypeptides can also be utilized in diagnostic methods for the detection of pain, inflammation and skin disorders.

[0089] TRPV3, TRPV4 and TRPM8 belong to the VR family. A Hidden Markov Model (HMM) of the VR1 and VRL1 proteins from different mammalian species including human and an HMM model against Transmembrane 6 (TM6) domain of all known TRP/VRs 15 has been constructed. The six-frame translation of the Human Celera database has been searched against the VR model. Multiple new putative exons with high homology (70% identical and 82% similar in conserved regions among the different VR/TRPs) to Transmembrane 4 (TM4) and TM6 domains to the known TRPs have been identified. These 20 exons map to bacterial artificial chromosomes containing specific human sequences from the High Throughput Genome Sequence (HTGS) database. All the newly-identified exons belong to three new genes of the VR family. Subsequently, RT-PCR has confirmed that 25 these genes are expressed in the DRG or keratinocytes. The structural homology to known TRP channels, the genes' expression in DRG or keratinocytes, their function as temperature-sensitive channels, and the up-regulation of TRPV3 and TRPV4 gene expression observed in a rat injury model in the DRG, indicate that the new genes act as important sensory receptors.

TRPV3: An Ion Channel Responsive to Warm and Hot Temperatures

[0090] TRPV3 is the first molecule described to be activated at warm and hot temperatures, and to be expressed in skin cells (see Examples 2 and 3). TRPV3 signaling 30 mediates a cell-autonomous response in keratinocytes upon exposure to heat. The heat-induced TRPV3 signal is transferred to nearby free nerve endings, thereby contributing to

conscious sensations of warm and hot. This is supported by indirect evidence that skin cells can act as thermal receptors. For instance, while dissociated DRG neurons can be directly activated by heat and cold, warm receptors have only been demonstrated in experiments where skin-nerve connectivity is intact (see Hensel et al., *Pfugers Arch.*, 329:1-8 (1971), 5 Hensel et al., *J. Physio.*, 204:99-112 (1969)). TRPV3 has an activation threshold around 33-35°C. The presence of such a warm receptor in skin (with a resting temperature of 34°C) and not DRG neurons (with a resting temperature of 37°C at the cell body) prevents a warm-channel like TRPV3 from being constitutively active at core 37°C temperatures. The residual heat sensitivity in TRPV1 knockout mice also involves skin cells: while dissociated 10 DRG neurons from TRPV1-null animals do not respond to moderate noxious stimulus at all, skin-nerve preparations from such animals do respond (see Caterina et al., *Science*, 288:306-13 (2000); Davis et al., *Nature*, 405:183-187 (2000); Roza et al., Paper presented at the 31st Annual meeting for the Society of Neuroscience, San Diego, CA (2001)). Collectively these 15 data indicate that a warm/heat receptor is present in the skin, in addition to the heat receptors in DRGs. While synapses have not been found between keratinocytes and sensory termini; ultrastructural studies have shown that keratinocytes contact, and often surround, DRG nerve fibers through membrane-membrane apposition (see Hilliges et al., *J. Invest. Dermatol.*, 104:134-137 (1995) and Cauna., *J. Anat.*, 115:277-288 (1973)). Therefore, heat-activated 20 TRPV3 signal from keratinocytes can be transduced to DRG neurons through direct chemical signaling. One potential signaling mechanism can involve ATP. P2X3, an ATP-gated channel, is present in sensory endings, and analysis of P2X3 knockout mice show a strong deficit in coding of warm temperatures (see Souslova et al., *Nature*, 407:1015-1017 (2000); Cockayne et al., *Nature*, 407:1011-1015 (2000)). Furthermore, release of ATP from 25 damaged keratinocytes has been shown to cause action potentials in nociceptors via the P2X receptors (see Cook et al., *Pain*, 95:41-47 (2002)). Since TRPV3 is activated at innocuous warm and noxious hot temperatures and is expressed in skin, this gene can serve as a therapeutic target for the design of drugs useful in treating pain, inflammation and skin disorders, e.g., those associated with sunburn and other sensitized states.

[0091] In one aspect, the invention provides isolated nucleic acids encoding a 30 mammalian TRPV3 protein. These include an isolated and/or recombinant nucleic acid molecule that encodes a mouse TRPV3 protein having an amino acid sequence as shown in SEQ ID NO: 2. For example, the TRPV3-encoding nucleic acids of the invention include

those that have a nucleotide sequence as set forth in SEQ ID NO: 1, from nucleotides 65-2440. The nucleic acids of the invention can include not only the coding region, but also the non-coding regions that are upstream and downstream of the coding region and also are provided in SEQ ID NO: 1. The invention also provides an isolated mouse TRPV3 5 polypeptide having an amino acid sequence as shown in SEQ ID NO: 2. Also provided are numerous other nucleic acids that encode this mouse TRPV3 polypeptide; the nucleotide sequences of these nucleic acids are shown in SEQ ID NO: 3.

[0092] Human TRPV3 polypeptides and polynucleotides are also provided by the invention. For example, the invention provides an isolated and/or recombinant human 10 TRPV3-encoding polynucleotide encoding a human TRPV3 polypeptide having an amino acid sequence as set forth in SEQ ID NO: 5. These nucleic acid molecules include those that have a nucleotide sequence as set forth in nucleotides 57-2432 of SEQ ID NO: 4. Upstream and downstream non-coding regions are also provided in SEQ ID NO: 4. Also provided by the invention are isolated human TRPV3 polypeptides having an amino acid sequence as set 15 forth in SEQ ID NO: 5. The invention also provides numerous other nucleic acids that encode this human TRPV3 polypeptide; the nucleotide sequences of these nucleic acids are shown in SEQ ID NO: 6.

TRPV4: An Ion Channel that is Activated by Pain

[0093] TRPV4 is a TRP channel protein that is expressed in adult mouse kidney, 20 newborn dorsal root ganglion and adult trigeminal tissue (see Example 5). TRPV4 is a nonselective cation channel that is activated by decreases in, and is inhibited by increases in, extracellular osmolarity indicating that this channel functions as an osmosensor channel (see, e.g., Strotmann et al., *Nat. Cell Biol.*, 2:695-702 (2000)). In addition, expression of the TRPV4 gene is up-regulated in a rat injury model (see Example 6). Accordingly, the 25 TRPV4 gene can serve as a therapeutic target for the design of drugs to treat pain, kidney disorders and migraine.

[0094] The invention provides isolated nucleic acids that encode a mammalian TRPV4 protein. These include the isolated and/or recombinant nucleic acid molecule that encodes mouse TRPV4 protein having an amino acid sequence as set forth in SEQ ID NO: 30 14. Included among these nucleic acid molecules are those that have a nucleotide sequence as set forth in nucleotides 156-2771 of SEQ ID NO: 13. Upstream and downstream non-

coding sequences are also provided. Also provided by the invention are isolated mouse TRPV4 polypeptides having an amino acid sequence as set forth in SEQ ID NO: 14. Numerous other nucleic acids that encode this mouse TRPV4 polypeptide are also provided by the invention. The nucleotide sequences of such nucleic acids are shown in SEQ ID NO: 5 15.

[0095] The mammalian TRPV4-encoding nucleic acids also include the isolated and/or recombinant nucleic acid molecules that encode human TRPV4 protein that has an amino acid sequence as set forth in SEQ ID NO: 17. Such nucleic acid molecules include those having a nucleotide sequence as set forth in SEQ ID NO: 16. Also provided are 10 isolated human TRPV4 polypeptides having an amino acid sequence as set forth in SEQ ID NO: 17. The invention also provides numerous other nucleic acids that encode this human TRPV4 polypeptide; the nucleotide sequences of these nucleic acids are shown in SEQ ID NO: 18.

TRPM8: An Ion Channel Responsive to Cold Temperatures and to Menthol

[0096] TRPM8 is activated by cold stimuli and a cooling agent (menthol) and is 15 expressed in a select group of DRG neurons that share characteristics of thermoreceptive neurons (see Examples 8 and 9).

[0097] Cells over-expressing TRPM8 show increased intracellular calcium levels when subjected to cold temperatures ranging from 23°C to 10°C (the lower limit of our 20 temperature-controlled perfusion system). The calcium influx and electrophysiological studies described below demonstrate that TRMP8 is a non-selective, plasma membrane cation channel activated by cold temperatures. The ionic permeability of TRPM8 is similar to that of other TRP channels, which are permeable to both monovalent and divalent cations, although calcium permeability estimates (P_{Ca}/P_{Na}) vary from 0.3 to 14 (see, e.g., Harteneck 25 et al., *Trends Neurosci.*, 23:159-166 (2000)). Menthol is a cooling compound that likely acts on endogenous cold-sensitive channel(s) (see Schafer et al., *J. Gen. Physiol.*, 88:757-776 (1986)). That TRPM8-expressing cells are activated and modulated by menthol reinforces the idea that TRPM8 indeed functions as a cold-sensitive channel *in vivo*. The finding that the sensitivity to menthol is dependent on temperature is consistent with the behavior of a 30 subset of isolated DRG neurons that show a raised 'cold' threshold in the presence of menthol (see Reid and Flonta, *Nature*, 413:480 (2001)). With respect to the mechanism of

TRPM8 activation, TRPM8 could be directly gated by cold stimulus through a conformational change, or cold temperatures could act through a second messenger system that in turn activates TRPM8. The rapid activation by menthol suggests a direct gating mechanism, at least for this mode of activation.

5 [0098] The expression pattern observed for TRPM8 is consistent with a role in cold thermoception. First, TRPM8 mRNA is highly-specific to DRG neurons. Within the DRG, TRPM8 is expressed in the small-diameter non-myelinated neurons, which correspond to the c-fiber thermoreceptor and nociceptors (see Scott, *Sensory Neurons: Diversity, Development and Plasticity*, Oxford University Press, NY (1992)). The lack of TRPM8 expression in trkA knockout mice, whose DRGs lack all thermoreceptor and nociceptive neurons, corroborates this finding. Furthermore, the lack of co-expression with VR1, CGRP or IB4 in the adult suggests that TRPM8 is expressed in a unique population of DRG neurons distinct from well-characterized heat nociceptors. Both soma size of neurons that express VRL1 (medium-large neurons) and their co-expression with NF200 (80% 10 co-expression (see Caterina et al., *Nature*, 398:436-441(1999)) strongly argues that cells expressing TRPM8 and VRL1 are also distinct. Therefore, by using various markers it is shown below that TRPM8 is expressed in a sub-class of nociceptors/thermoreceptors that is distinct from noxious heat sensing neurons, and this correlates well with physiological studies of cold-sensitive DRG neurons (see Hensel, *Thermoreception and Temperature 15 Regulation*, Academic Press, London (1981)). A human gene with a high degree of similarity to mouse TRPM8 but no known function was recently shown to be expressed in prostate tissue (see Tsavaler et al., *Cancer Res.*, 61:3760-3769 (2001)).

20

[0099] As the first molecule to respond to cold temperatures and menthol, TRPM8 offers interesting insight into the fundamental biology of cold perception. Modulation of 25 TRPM8 activity is also relevant for therapeutic applications: cold treatment is often used as a method of pain relief, and in some instances, hypersensitivity to cold can lead to cold allodynia in patients suffering from neuropathic pain. Modulation of TRPM8 activity is also relevant for treating acute pain, e.g., toothache and other trigeminal focused pain; and for treating cancer, particularly prostate cancer and other prostate disorders.

30 [0100] The invention provides isolated nucleic acids encoding a TRPM8 mammalian protein. These include the isolated and/or recombinant nucleic acid molecules that encode mouse TRPM8 protein that have an amino acid sequence as set forth in SEQ ID

NO: 8. For example, the invention provides recombinant and/or isolated nucleic acid molecules that have a nucleotide sequence as set forth in nucleotides 448-3762 of SEQ ID

NO: 7. Upstream and downstream non-coding regions are also provided. The invention also provides isolated mouse TRPM8 polypeptides that include an amino acid sequence as set forth in SEQ ID NO: 8. Also provided are numerous other nucleic acids that encode this mouse TRPM8 polypeptide. Nucleotide sequences of these nucleic acids are provided in SEQ ID NO: 9.

5 [0101] The nucleic acids encoding a mammalian TRPM8 protein also include isolated and/or recombinant nucleic acid molecules that encode a human TRPM8 protein

10 comprising an amino acid sequence as set forth in SEQ ID NO: 11. For example, the invention provides an isolated and/or recombinant nucleic acid molecule that includes a nucleotide sequence as set forth from nucleotides 61-4821 of SEQ ID NO: 10. Upstream and downstream non-coding regions are also provided by the invention. The invention also provides isolated human TRPM8 polypeptides having an amino acid sequence as set forth in

15 SEQ ID NO:11. The TRPM8 protein is responsive to cold and menthol.

Nucleic Acid Molecules

20 [0102] Nucleic acid molecules of the present invention also include isolated nucleic acid molecules that have at least 80% sequence identity, preferably at least 90% identity, preferably at least 95% identity, more preferably at least 98% identity, and most

preferably at least 99% identity to a nucleic acid encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 17, respectively, over the entire coding region or over a subsequence thereof. Such nucleic acid molecules include a nucleic acid having a nucleotide sequence as set forth in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 16 or SEQ ID NO: 18, as set forth above.

25 [0103] Nucleic acids of the present invention include isolated nucleic acid molecules encoding polypeptide variants which comprise the amino acid sequences of SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 17, respectively. Nucleic acids that are amplified using a primer pair disclosed herein are also encompassed by the present invention.

[0104] Further nucleic acids of the present invention also include fragments of the aforementioned nucleic acid molecules. These oligonucleotide probes are preferably of sufficient length to specifically hybridize only to complementary transcripts of the above identified gene(s) of interest under the desired hybridization conditions (e.g., stringent conditions). As used herein, the term "oligonucleotide" refers to a single-stranded nucleic acid. Generally the oligonucleotides probes will be at least 16-20 nucleotides in length, although in some cases longer probes of at least 20-25 nucleotides will be desirable.

[0105] The oligonucleotide probes can be labeled with one or more labeling moieties to permit detection of the hybridized probe/target polynucleotide complexes.

10 Labeling moieties can include compositions that can be detected by spectroscopic, biochemical, photochemical, bioelectronic, immunochemical, electrical optical or chemical means. Examples of labeling moieties include, but are not limited to, radioisotopes, e.g., ^{32}P , ^{33}P , ^{35}S , chemiluminescent compounds, labeled binding proteins, heavy metal atoms, spectroscopic markers, such as fluorescent markers and dyes, linked enzymes, mass spectrometry tags and magnetic labels.

[0106] Oligonucleotide probe arrays for expression monitoring can be prepared and used according to techniques which are well known to those skilled in the art as described, e.g., in Lockhart et al., *Nature Biotech.*, 14:1675-1680 (1996); McGall et al., *Proc. Natl. Acad. Sci. USA*, 93:13555-13460 (1996); and U.S. Patent No. 6,040,138.

20 [0107] The invention also provides isolated nucleic acid molecules that are complementary to all the above described isolated nucleic acid molecules.

[0108] An isolated nucleic acid encoding one of the above polypeptides including homologs from species other than mouse or human, may be obtained by a method which comprises the steps of screening an appropriate library under stringent conditions with a 25 labeled probe having the sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 16 or SEQ ID NO: 18, or a fragment thereof; and isolating full-length cDNA and genomic clones containing the nucleotide sequences. Such hybridization techniques are well-known to a skilled artisan.

30 [0109] Nucleic acid molecules of the present invention may be obtained, using standard cloning and screening techniques, from a cDNA library derived from mRNA in cells of the DRG using the expressed sequence tag (EST) analysis (see Adams et al.,

Science, 252:1651-1656 (1991); Adams et al., *Nature*, 355:632-634 (1992); Adams et al., *Nature*, 377;Suppl. 3:174 (1995)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well-known and commercially available techniques.

5 [0110] It is also appreciated by one skilled in the art, that an isolated cDNA sequence can be incomplete, in that the region coding for the polypeptide is short at the 5' end of the DNA. This can occur due to the failure of the reverse transcriptase to complete a DNA copy of the mRNA transcript during the synthesis of the first strand of cDNA. Methods for obtaining full-length cDNAs, or to extend short cDNAs, are well-known in the 10 art, e.g., those based on the method of RACE as described in Frohman et al., *Proc. Natl. Acad. Sci. USA*, 85:8998-9002 (1988). The RACE technique has been modified as exemplified by Marathon™ technology (Clontech Laboratories, Inc.), wherein cDNAs have been prepared from mRNA extracted from a selected tissues and an adaptor sequence is 15 ligated to each end. Subsequently, nucleic acid amplification (PCR) is carried out to amplify the missing 5-end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is repeated using primers known as nested primers that are designed to anneal with the amplified product, which is generally an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence. The reaction products are then analyzed by 20 DNA sequencing and a full-length cDNA is prepared either by directly joining the product to the existing cDNA to provide a complete sequence, or by carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.

[0111] When nucleic acid molecules of the present invention are utilized for the recombinant production of polypeptides of the present invention, the polynucleotide can 25 include the coding sequence for the mature polypeptide, by itself; or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, pro- or prepro-protein sequence, or other fusion peptide portions. For example, a marker sequence which facilitates purification of the fused polypeptide can be encoded, e.g., a hexa-histidine peptide, as provided in the pQE 30 vector (Qiagen, Inc.) and described in Gentz et al., *Proc. Natl. Acad. Sci. USA*, 86:821-824 (1989), or is an HA tag. The nucleic acid molecule can also contain non-coding 5' and 3'

sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

Polypeptides and Antibodies

[0112] In another aspect, the present invention relates to mammalian TRPV3,

5 TRPV4 and TRPM8 polypeptides. These include the mouse TRPV3 polypeptide comprising an amino acid sequence as set forth in SEQ ID NO: 2, the human TRPV3 polypeptide comprising an amino acid sequence as set forth in SEQ ID: 5, the mouse TRPV4 polypeptide comprising an amino acid sequence as set forth in SEQ ID NO: 14, the human TRPV4 polypeptide comprising an amino acid sequence as set forth in SEQ ID NO: 17, the mouse 10 TRPM8 polypeptide comprising an amino acid sequence as set forth in SEQ ID NO: 8, and the human TRPM8 polypeptide having an amino acid sequence as set forth in SEQ ID NO: 11.

[0113] Further polypeptides of the present invention include isolated polypeptides, i.e., variants, in which the amino acid sequence has at least 90% identity, preferably at least 15 95% identity, more preferably at least 98% identity and most preferably at least 99% identity, to the amino acid sequences as set forth in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 17 over the entire length of these sequences, or a subsequence thereof. Such sequences include the sequences of SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 14 and SEQ ID 20 NO: 17.

[0114] The polypeptides of the present invention also include fragments of the aforementioned sequences. For example, the polypeptides of the invention can include amino acids that comprise one or more functional domains of a TRPV3, TRPV4, or TRPM8 polypeptide of the invention. Examples of such domains are described below; other 25 functional domains can be determined using methods known to those of skill in the art.

[0115] The aforementioned TRPV3, TRPV4 and TRPM8 polypeptides can be obtained by a variety of means. Smaller peptides (generally less than 50 amino acids long) may be conveniently synthesized by standard chemical techniques. These polypeptides may also be purified from biological sources by methods well known in the art (see *Protein 30 Purification, Principles and Practice*, 2nd Edition, Scopes, Springer Verlag, NY (1987)). They may also be produced in their naturally occurring, truncated or fusion protein forms by

recombinant DNA technology using techniques well-known in the art. These methods include, for example, *in vitro* recombinant DNA techniques, synthetic techniques and *in vivo* genetic recombination (see, e.g., the techniques described in Sambrook et al., *Molecular Cloning, A Laboratory Manual*, 3rd Edition, Cold Spring Harbor Press, NY (2001); and 5 Ausubel et al., eds., *Short Protocols in Molecular Biology*, 4th Edition, John Wiley & Sons, Inc., NY (1999)). Alternatively, RNA encoding the proteins may be chemically synthesized (see, e.g., the techniques described in *Oligonucleotide Synthesis*, Gait, Ed., IRL Press, Oxford (1984)). Obtaining large quantities of these polypeptides is preferably by recombinant techniques as further described herein.

10 [0116] Accordingly, another aspect of the present invention relates to a method for producing a TRPV3, TRPV4 or TRPM8 polypeptide. These methods generally involve:

- a) obtaining a DNA sequence encoding the TRPV3, TRPV4 or TRPM8 polypeptide as defined above; and
- b) inserting the DNA into a host cell and expressing the TRPV3, TRPV4 or

15 TRPM8 polypeptide. In some embodiments, the methods further include:

- c) isolating the TRPV3, TRPV4 or TRPM8 polypeptide.

[0117] The nucleic acid molecules described herein can be expressed in a suitable host cell to produce active TRPV3, TRPV4 or TRPM8 protein. Expression occurs by placing a nucleotide sequence encoding these proteins into an appropriate expression vector 20 and introducing the expression vector into a suitable host cell, growing the transformed host cell, inducing the expression of one of these proteins, and purifying the recombinant proteins from the host cell to obtain purified, and preferably active, TRPV3, TRPV4 or TRPM8 protein. Appropriate expression vectors are known in the art. For example, pET-14b, pCDNA1Amp and pVL1392 are available from Novagen and Invitrogen and are suitable 25 vectors for expression in *E. Coli*, COS cells and baculovirus infected insect cells, respectively. These vectors are illustrative of those that are known in the art. Suitable host cells can be any cell capable of growth in a suitable media and allowing purification of the expressed TRPV3, TRPV4 or TRPM8 protein. Examples of suitable host cells include bacterial cells, such as *E. Coli*, *Streptococci*, *Staphylococci*, *Streptomyces* and *Bacillus* 30 *subtilis* cells; fungal cells, such as yeast cells, e.g., *Pichia* and *Aspergillus* cells; insect cells, such as *Drosophila* S2 and *Spodoptera* Sf9 cells; mammalian cells, such as CHO, COS, HeLa; and plant cells.

[0118] Growth of the transformed host cells can occur under conditions that are known in the art. The conditions will generally depend upon the host cell and the type of vector used. Suitable induction conditions may be used such as temperature and chemicals and will depend on the type of promoter utilized.

5 [0119] Purification of the TRPV3, TRPV4 or TRPM8 protein can be accomplished using known techniques without performing undue experimentation. Generally, the transformed cells expressing one of these proteins are broken, crude purification occurs to remove debris and some contaminating proteins, followed by chromatography to further purify the protein to the desired level of purity. Cells can be
10 broken by known techniques such as homogenization, sonication, detergent lysis and freeze-thaw techniques. Crude purification can occur using ammonium sulfate precipitation, centrifugation or other known techniques. Suitable chromatography includes anion exchange, cation exchange, high performance liquid chromatography (HPLC), gel filtration, affinity chromatography, hydrophobic interaction chromatography, etc. Well-known
15 techniques for refolding proteins may be used to obtain the active conformation of the protein when the protein is denatured during intracellular synthesis, isolation or purification.

[0120] In another aspect, the present invention relates to antibodies that recognize epitopes within the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 14 or SEQ ID NO: 17. As used herein, the term "antibody" includes, but is not limited to, polyclonal antibodies, monoclonal antibodies, humanized or chimeric antibodies and biologically-functional antibody fragments which are those fragments sufficient for binding of the antibody fragment to the protein. Antibodies specific for proteins encoded by the aforementioned sequences have utilities in several types of applications. These may include, e.g., the production of diagnostic kits for use in detecting
20 and diagnosing pain, particularly in differentiating among different types of pain. Another use would be to link such antibodies to therapeutic agents, such as chemotherapeutic agents, followed by administration to subjects suffering from pain. These and other uses are
25 described in more detail below.

[0121] For the production of antibodies to a protein encoded by one of the
30 disclosed genes, various host animals may be immunized by injection with the polypeptide, or a portion thereof. Such host animals may include but are not limited to rabbits, mice and rats, to name but a few. Various adjuvants may be used to increase the immunological

response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances, such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants, such as BCG (*Bacille Calmette-Guerin*) and *Corynebacterium parvum*.

5 [0122] Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as target gene product, or an antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals, such as those described above, may be immunized by injection with the encoded 10 protein, or a portion thereof, supplemented with adjuvants as also described above.

[0123] Monoclonal antibodies (mAbs), which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to the hybridoma technique of Kohler and Milstein, *Nature*, 256:495-497 (1975); 15 and U.S. Patent No. 4,376,110, the human B-cell hybridoma technique (see Kosbor et al., *Immunology Today*, 4:72 (1983); Cole et al., *Proc. Natl. Acad. Sci. USA*, 80:2026-2030 (1983), and the EBV-hybridoma technique (see Cole et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96 (1985)). Such antibodies may be of any 20 immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated *in vitro* or *in vivo*. Production of high titers of mAbs *in vivo* makes this the presently preferred method of production.

[0124] In addition, techniques developed for the production of "chimeric antibodies" (see Morrison et al., *Proc. Natl. Acad. Sci. USA*, 81:6851-6855 (1984); 25 Neuberger et al., *Nature*, 312:604-608 (1984); Takeda et al., *Nature*, 314:452-454 (1985)) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable or hypervariable region derived 30 from a murine mAb and a human immunoglobulin constant region.

[0125] Alternatively, techniques described for the production of single chain antibodies (see U.S. Patent No. 4,946,778; Bird, *Science*, 242:423-426 (1988); Huston et al.,

Proc. Natl. Acad. Sci. USA, 85:5879-5883 (1988); and Ward et al., *Nature*, 334:544-546 (1989)) can be adapted to produce differentially expressed gene single-chain antibodies. Single-chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single-chain polypeptide.

5 [0126] Most preferably, techniques useful for the production of "humanized antibodies" can be adapted to produce antibodies to the proteins, fragments or derivatives thereof. Such techniques are disclosed in U.S. Patent Nos. 5,932,448; 5,693,762; 5,693,761; 5,585,089; 5,530,101; 5,569,825; 5,625,126; 5,633,425; 5,789,650; 5,661,016; and 5,770,429.

10 [0127] Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (see Huse et al., 15 *Science*, 246:1275-1281 (1989)) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Assays for Expression of TRPV3, TRPV4 and TRPM8

20 [0128] In another aspect, diagnostic assays are provided which are capable of detecting the expression of one or more of TRPV3, TRPV4 or TRPM8 in human tissue. Such assays are particularly useful in identifying subjects suffering from pain and differentiating among different types of pain. As stated above, expression of the TRPV3 and TRPV4 genes are up-regulated in a rat injury model. Accordingly, up-regulation of the TRPV3 and TRPV4 genes in a sample obtained from a subject suffering from pain compared with a normal value of expression of these genes, e.g., a sample obtained from a subject not 25 suffering from pain, or a pre-established control for which expression of the gene was determined at an earlier time, is indicative of a subject suffering from pain. Expression of one or more of these genes can be detected by measuring either protein encoded by the gene or mRNA corresponding to the gene in a tissue sample, particularly from a human tissue sample obtained from a site of pain.

30 [0129] Expression of the TRPV3, TRPV4 and TRPM8 proteins can be detected by a probe which is detectably-labeled, or which can be subsequently-labeled. Generally, the

probe is an antibody which recognizes the expressed protein as described above, especially a monoclonal antibody. Accordingly, in one embodiment, an assay capable of detecting the expression of one or more of TRPV3, TRPV4 or TRPM8 genes comprises contacting a human tissue sample with antibodies preferably monoclonal antibodies, that bind to TRPV3, 5 TRPV4 or TRPM8 polypeptides and determining whether the monoclonal antibodies bind to the polypeptides in the sample.

[0130] Immunoassay methods which utilize the antibodies include, but are not limited to, dot blotting, western blotting, competitive and non-competitive protein binding assays, enzyme-linked immunosorbant assays (ELISA), immunohistochemistry, 10 fluorescence-activated cell sorting (FACS) and others commonly used and widely-described in scientific and patent literature, and many employed commercially.

[0131] Particularly preferred, for ease of detection, is the sandwich ELISA, of which a number of variations exist, all of which are intended to be encompassed by the present invention. For example, in a typical forward assay, unlabeled antibody is 15 immobilized on a solid substrate and the sample to be tested is brought into contact with the bound molecule, followed by incubation for a period of time sufficient to allow formation of an antibody-antigen binary complex. At this point, a second antibody, labeled with a reporter molecule capable of inducing a detectable signal, is then added and incubated, allowing time sufficient for the formation of a ternary complex of antibody-antigen-labeled 20 antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal, or may be quantitated by comparing with a control sample containing known amounts of antigen. Variations on the forward assay include the simultaneous assay, in which both sample and antibody are added simultaneously to the bound antibody, or a reverse assay in which the labeled antibody and sample to be tested are 25 first combined, incubated and added to the unlabeled surface bound antibody. These techniques are well-known to those skilled in the art, and the possibility of minor variations will be readily apparent. As used herein, "sandwich assay" is intended to encompass all variations on the basic two-site technique. For the immunoassays of the present invention, the only limiting factor is that the labeled antibody be an antibody which is specific for the 30 protein expressed by the gene of interest, e.g., TRPV3 or a fragment thereof.

[0132] The most commonly used reporter molecules in this type of assay are either enzymes, fluorophore- or radionuclide-containing molecules. In the case of an

enzyme immunoassay an enzyme is conjugated to the second antibody, usually by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different ligation techniques exist, which are well-known to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and

5 alkaline phosphatase, among others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. For example, p-nitrophenyl phosphate is suitable for use with alkaline phosphatase conjugates; for peroxidase conjugates, 1,2-phenylenediamine or toluidine are commonly used. It is also possible to employ fluorogenic substrates, which
10 yield a fluorescent product rather than the chromogenic substrates noted above. A solution containing the appropriate substrate is then added to the tertiary complex. The substrate reacts with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an evaluation of the amount of TRPV3, TRPV4 or TRPM8 protein which is present in the tissue sample.

15 [0133] Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labeled antibody absorbs the light energy, inducing a state of excitability in the molecule, followed by emission of the light at a characteristic longer wavelength. The emission appears as a
20 characteristic color visually detectable with a light microscope. Immunofluorescence and EIA techniques are both very well-established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotopes, chemiluminescent or bioluminescent molecules may also be employed. It will be readily apparent to the skilled artisan how to vary the procedure to suit the required use.

25 [0134] The level of expression of mRNA corresponding to the TRPV3, TRPV4 and TRPM8 genes can be detected utilizing methods well-known to those skilled in the art, e.g., northern blotting, RT-PCR, real time quantitative PCR, high density arrays and other hybridization methods. Accordingly, in another embodiment, an assay capable of detecting the expression of one or more of TRPV3, TRPV4 or TRPM8 genes in a sample of tissue,
30 preferably human tissue, is provided which comprises contacting a human tissue sample with an oligonucleotide, i.e., a primer, that is capable of hybridizing to a nucleic acid, particularly

a mRNA, that encodes TRPV3, TRPV4 or TRPM8. The oligonucleotide primer is generally from 10-20 nucleotides in length, but longer sequences can also be employed.

[0135] RNA can be isolated from the tissue sample by methods well-known to those skilled in the art as described, e.g., in Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley and Sons, Inc., 1:4.1.1-4.2.9 and 4.5.1-4.5.3 (1996).

[0136] One preferred method for detecting the level of mRNA transcribed from the TRPV3, TRPV3, and TRPM8 genes is RT-PCR. In this method, an mRNA species is first transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase. Methods of reverse transcribing RNA into cDNA are well-known and described in Sambrook et al., *supra*. The cDNA is then amplified as in a standard PCR reaction (referred to as PCR) which is described in detail in U.S. Patent Nos. 4,683,195; 4,683,202; and 4,800,159.

[0137] Briefly, in PCR, two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target nucleic acid sequence. An excess of deoxynucleoside triphosphates are added to a reaction mixture along with a DNA polymerase, e.g., Taq polymerase. The primers will bind to the target nucleic acid and the polymerase will cause the primers to be extended along the target nucleic acid sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the target nucleic acid to form reaction products, excess primers will bind to the target nucleic acid and to the reaction products and the process is repeated.

[0138] Another preferred method for detecting the level of mRNA transcripts obtained from more than one of the disclosed genes involves hybridization of labeled mRNA to an ordered array of oligonucleotides. Such a method allows the level of transcription of a plurality of these genes to be determined simultaneously to generate gene expression profiles or patterns. In particularly useful embodiments, a gene expression profile derived from a tissue sample obtained from a subject suffering from pain can be compared with a gene expression profile derived from a sample obtained from a normal subject, i.e., a subject not suffering from pain, to determine whether one or more of the TRPV3, TRPV4 and TRPM8 genes are over-expressed in the sample obtained from the subject suffering from pain relative to the genes in the sample obtained from the normal subject, and thereby determine

which gene is responsible for the pain. Ligase chain reaction is another assay that is suitable for detecting the presence of a TRPV3, TRPV4, or TRPM8 polynucleotide.

[0139] The oligonucleotides utilized in this hybridization method typically are bound to a solid support. Examples of solid supports include, but are not limited to, 5 membranes, filters, slides, paper, nylon, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, polymers, polyvinyl chloride dishes, etc. Any solid surface to which the oligonucleotides can be bound, either directly or indirectly, either covalently or non-covalently, can be used. A particularly preferred solid substrate is a high density array or DNA chip. These high density arrays contain a particular oligonucleotide probe in a pre-selected location on the array. Each pre-selected location can contain more than one 10 molecule of the particular probe. Because the oligonucleotides are at specified locations on the substrate, the hybridization patterns and intensities (which together result in a unique expression profile or pattern) can be interpreted in terms of expression levels of particular genes.

[0140] The oligonucleotide probes are preferably of sufficient length to 15 specifically hybridize only to complementary transcripts of the above identified gene(s) of interest. As used herein, the term "oligonucleotide" refers to a single-stranded nucleic acid. Generally the oligonucleotides probes will be at least 16-20 nucleotides in length, although in some cases longer probes of at least 20-25 nucleotides will be desirable.

[0141] The oligonucleotide probes can be labeled with one or more labeling 20 moieties to permit detection of the hybridized probe/target polynucleotide complexes. Labeling moieties can include compositions that can be detected by spectroscopic, biochemical, photochemical, bioelectronic, immunochemical, electrical optical or chemical means. Examples of labeling moieties include, but are not limited to, radioisotopes, e.g., ^{32}P , ^{33}P , ^{35}S , chemiluminescent compounds, labeled binding proteins, heavy metal atoms, spectroscopic markers, such as fluorescent markers and dyes, linked enzymes, mass spectrometry tags and magnetic labels.

[0142] Oligonucleotide probe arrays for expression monitoring can be prepared 25 and used according to techniques which are well-known to those skilled in the art as described, e.g., in Lockhart et al., *supra*); McGall et al., *supra*; and U.S. Patent No. 6,040,138.

[0143] In another aspect, kits are provided for detecting the level of expression of one or more of the TRPV3, TRPV4 and TRPM8 genes in a sample of tissue, e.g., a sample of tissue from a site of pain. For example, the kit can comprise a labeled compound or agent capable of detecting a protein encoded by, or mRNA corresponding to, at least one of the 5 genes TRPV3, TRPV4 and TRPM8; or fragment of the protein, means for determining the amount of protein encoded by or mRNA corresponding to the gene or fragment of the protein; and means for comparing the amount of protein encoded by or mRNA corresponding to the gene or fragment of the protein, obtained from the subject sample with a standard level of expression of the gene, e.g., from a sample obtained from a subject not 10 suffering pain. With respect to detection of TRPV3, TRPV4 and TRPM8 proteins, the agent can be an antibody specific for these proteins. With respect to detection of mRNA, the agent can be pre-selected primer pairs that selectively hybridize to mRNA corresponding to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 16 15 and SEQ ID NO: 18. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect protein encoded by or mRNA corresponding to the gene.

[0144] In another aspect, the present invention is based on the identification of novel genes that are specific for trkA^+ pain-specific DRG neurons. DRG neurons can be 20 classified into several distinct subpopulations with different functional, biochemical and morphological characteristics. The only known early markers differentially expressed by the DRG subtypes are the trk family of neurotrophin receptors. Gene-targeted deletion of the mouse neurotrophins and trks (receptor tyrosine kinases) have demonstrated that neurotrophin signaling is required for the survival of the different subpopulations of DRG 25 neurons that trks specifically mark. For example, trkA knockout mice lack the nociceptive and thermoceptive neurons that sense pain and temperature.

Identification of Agonists and Antagonists

[0145] In another aspect, the present invention relates to the use of the TRPV3, TRPV4 and TRPM8 genes in methods for identifying agents useful in treating pain, or 30 modulating responses to heat and cold, as flavor enhancers (e.g., menthol mimetics that one can identify using TRPM8 in a screening assay) and as cosmetic additives that provide a

cool or warm sensation to the skin (e.g., menthol mimetics, capsaicin mimetics or other compounds identified using TRPM8 or TRPV3 in screening assays). These methods comprise assaying for the ability of various agents to bind and/or modulate the activity of the proteins encoded by these genes, and/or decrease or increase the level of expression of 5 mRNA corresponding to or protein encoded by these genes. The candidate agent may function as an antagonist or agonist. Examples of various candidate agents include, but are not limited to, natural or synthetic molecules such as antibodies, proteins or fragments thereof, antisense nucleotides, double-stranded RNA, ribozymes, organic or inorganic compounds, etc. Methods for identifying such candidate agents can be carried out in cell-10 based systems and in animal models.

[0146] For example, proteins encoding these genes expressed in a recombinant host cell such as CHO or COS may be used to identify candidate agents that bind to and/or modulate the activity of the protein, or that increase or decrease the level of expression of mRNA corresponding to or encoded by these genes. In this regard, the specificity of the 15 binding of a candidate agent showing affinity for the protein can be shown by measuring the affinity of the agents for cells expressing the receptor or membranes from these cells. This can be achieved by measuring the specific binding of labeled, e.g., radioactive agent to the cell, cell membranes or isolated protein, or by measuring the ability of the candidate agent to displace the specific binding of standard labeled ligand.

[0147] Cells expressing proteins encoded by these genes can also be utilized to 20 identify agents that modulate the protein's activity. For example, one method for identifying compounds useful for treating pain, or for use as a flavor or fragrance, comprises, providing a cell that expresses one of these proteins, e.g., TRPV3, TRPV4 or TRPM8, combining a candidate agent with the cell and measuring the effect of the candidate agent on the protein's 25 activity. The cell can be a mammalian cell, a yeast cell, bacterial cell, insect cell or any other cell expressing the TRPV3 protein. The candidate compound is evaluated for its ability to elicit an appropriate response, e.g., the stimulation of cellular depolarization or increase in intracellular calcium ion levels due to calcium ion influx.

[0148] The level of intracellular calcium can be assessed using a calcium ion-30 sensitive fluorescent indicator such as a calcium ion-sensitive fluorescent dye, including, but not limited to, quin-2 (see, e.g., Tsien et al., *J. Cell Biol.*, 94:325 (1982)), fura-2 (see, e.g., Grynkiewicz et al., *J. Biol. Chem.*, 260:3440 (1985)), fluo-3 (see, e.g., Kao et al., *J. Biol.*

Chem., 264:8179 (1989)) and rhod-2 (see, e.g., Tsien et al., *J. Biol. Chem.*, Abstract 89a (1987)).

[0149] Membrane depolarization of recombinant cells expressing the above proteins can be monitored using a fluorescent dye that is sensitive to changes in membrane potential, including, but not limited to, carbocyanaines such as 3,3'-dipentyloxacarbocyanine iodide (DiOC₅) and 3,3'-dipropylthiadicarbocyanine iodide (DiSC₃), oxonols, such as bis-(1,3-dibutylbarbituric acid) pentamethine oxonol (DiBAC₄ (Biotrend Chemikalien GmbH, Cologne, Germany)) or bis-(1,3-dibutylbarbituric acid) pentamethine oxonol, etc. Cellular fluorescence can be monitored using a fluorometer.

[0150] The assays to identify antagonists of ion channel activity are preferably performed under conditions in which the particular ion channel is active. Conversely, when seeking to identify an agonist, one would preferably perform the screening under conditions in which the ion channel is not active in the absence of the agonist. For example, TRPV3 is activated (i.e., mediates ion passage through a membrane) at temperatures of about 33°C and above. Accordingly, it is preferred to screen for antagonists of TRPV3 at a temperature of above about 33°C (e.g., 35°, 40°, 45°, or above), and to screen for agonists of TRPV3 at a temperature below 33°C (e.g., 30°, 25°, 20°C, or below). In some assays, it is desirable to discriminate between TRPV3-mediated ion transport and ion transport mediated by a different TRP ion channel. For example, to discriminate between TRPV3-mediated cation transport and cation transport mediated by, for example, TRPV1 or TRPV2, the assay can be conducted at a temperature above the activation threshold of TRPV3 but below the activation threshold of the other receptor (e.g., below about 43°C or below about 52°C, respectively, for TRPV1 and TRPV2). Thus, an assay temperature of between about 35°C and about 40°C would result in active TRPV3, but inactive TRPV1 and TRPV2.

[0151] Similarly, assays to identify antagonists of TRPM8 cation channel activity are preferably conducted under conditions in which the TRPM8 conducts cations in the absence of an antagonist. For example, since the threshold activation temperature of TRPM8 is approximately 15°C, one could screen for antagonists at a temperature below 15°C (e.g., 10°, 5°, 0°C, and the like). TRPM8 also is activated by menthol, so instead of or in addition to regulating activity by temperature, one could conduct the assay for antagonists in the presence of menthol. To identify an agonist of TRPM8, it is preferred to conduct the assay under conditions in which TRPM8 does not exhibit significant ion channel activity, such as a

temperature above 15°C (e.g., 20°C, 25°C, 30°C, etc.). To distinguish between TRPM8-mediated cation channel activity and that of other TRP ion channels, the assay for agonists can be conducted at a temperature below 33°C (the activation temperature of TRPV3). For example, a temperature between 20°C and 30°C would result in TRPM8 being inactive in the absence of an agonist, and TRPV3, TRPV1 and TRPV2 also being inactive.

[0152] The TRPV3, TRPV4, and TRPM8 cation channels function to transport not only divalent cations (e.g., Ca^{2+}), but also monovalent cations (e.g., Na^+ , K^+).

[0153] The assay can be carried out manually or using an automated system. For high throughput screening assays to identify ligands of such proteins, an automated system is preferred. For example, one type of automated system provides a 96-well, 384-well, or 1536-well, culture plate wherein a recombinant cell comprising a nucleotide sequence encoding such a protein is cultured to express the protein. The plate is loaded into a fluorescence imaging plate reader (e.g., "FLIPR®" commercially available from Molecular Devices Corp., Sunnyvale, CA) which measure the kinetics of intracellular calcium influx in each of the wells. The FLIPR® can quantitatively transfer fluids into and from each well of the plate and thus can be utilized to add the calcium-ion sensitive fluorescent indicator dye, a candidate agent, etc. Membrane potential dyes suitable for high throughput assays include the FLIPR® Membrane Potential Assay Kit as sold by Molecular Devices Corp.

[0154] Once a candidate compound is identified as an agonist, such agonists can be added to cells expressing such proteins followed by the addition of various candidate agents to determine which agents function as antagonists.

[0155] The nucleic acids and polypeptides of the present invention can also be utilized to identify candidate agents that modulate, i.e., increase or decrease the level of expression of mRNA and proteins in cells expressing these proteins. For example, expression of the TRPV4 gene is shown to be up-regulated in a rat injury model (see Example 3). The level of expression of mRNA and protein can be detected utilizing methods well-known to those skilled in the art as described above.

[0156] After initial screening assays have identified agents that inhibit the protein's activity or level of expression of mRNA or protein, these agents can then be assayed in conventional live animal models of pain to assess the ability of the agent to ameliorate the pathological effects produced in these models and/or inhibit expression levels of mRNA or protein. For example, in the case of the TRPV4 gene which is shown to be up-

regulated in a rat injury model, one method for identifying an agent useful in the treatment of pain comprises:

a) administering a candidate agent, e.g., an antisense nucleotide derived from the sequence of the TRPV4 gene, to a subject such as a rat model of pain; and

5 b) determining reversal of established pain in the animal. Various animal models utilized in neuropathic pain are well-known in the art, e.g., the partial sciatic ligation model, i.e., the Seltzer model, the chronic constriction injury model, i.e., the CCI model and the spinal nerve ligation model, i.e., the Chung model.

[0157] For example, in the partial sciatic ligation (see, the Seltzer model as described in Seltzer et al., *Pain*, 43:205-218 (1990)), rats are anesthetized and a small incision made mid-way up one thigh (usually the left) to expose the sciatic nerve. The nerve is carefully cleared of surrounding connective tissues at a site near the trochanter just distal to the point at which the posterior biceps semitendinosus nerve branches off the common sciatic nerve. A 7-0 silk suture is inserted into the nerve with a 3/8 curved, reversed-cutting mini-needle, and tightly ligated so that the dorsal 1/3 to 1/2 of the nerve thickness is held within the ligature. The muscle and skin are closed with sutures and clips and the wound dusted with antibiotic powder. In sham animals the sciatic nerve is exposed but not ligated and the wound closed as before.

[0158] In the chronic constriction model (the CCI model as described in Bennett et al., *Pain*, 33:87-107 (1988)) rats are anesthetized and a small incision is made midway up one thigh to expose the sciatic nerve. The nerve is freed of surrounding connective tissue and four ligatures of chromic gut are tied loosely around the nerve with approximately 1 mM between each, so that the ligatures just barely constrict the surface of the nerve. The wound is closed with sutures and clips. In sham animals the sciatic nerve is exposed but not ligated and the wound is closed.

[0159] In the spinal nerve ligation (see, the Chung model as described in Kim et al., *Pain*, 50:355-363 (1992)) rats are anesthetized and placed into a prone position and an incision made to the left of the spine at the L4-S2 level. A deep dissection through the paraspinal muscles and separation of the muscles from the spinal processes at the L4-S2 level will reveal part of the sciatic nerve as it branches to form the L4, L5 and L6 spinal nerves. The L6 transverse process is carefully removed with a small rongeur enabling visualization of these spinal nerves. The L5 spinal nerve is isolated and tightly ligated with

7-0 silk suture. The wound is closed with a single muscle suture (6-0 silk) and one or two skin closure clips and dusted with antibiotic powder. In sham animals the L5 nerve is exposed as before but not ligated and the wound closed as before.

[0160] Male Wistar rats (120-140 g) are used for each of the three models.

5 Mechanical hyperalgesia is then assessed in rat by measuring paw withdrawal thresholds of both hindpaws to an increasing pressure stimulus using an Analgesymeter (Ugo-Basile, Milan). Thermal hyperalgesia is assessed by measuring withdrawal latencies to a noxious thermal stimulus applied to the underside of each hindpaw. With all models, mechanical hyperalgesia and allodynia and thermal hyperalgesia develop within 1-3 days following 10 surgery and persist for at least 50 days. Reversal of mechanical hyperalgesia and allodynia and thermal hyperalgesia is assessed following administration of the agent, e.g., the antisense nucleotide specific for the TRPV4 gene.

[0161] Another example of a method for identifying agents useful in treating pain comprises:

15 a) administering a candidate agent to a subject such as a rat model of pain;
 b) detecting a level of expression of a protein encoded by or mRNA corresponding to one of genes described herein, e.g., TRPV4, in a sample obtained from the subject; and
 c) comparing the level of expression of the protein or mRNA in the sample in the presence of the agent with a level of expression of the protein or mRNA obtained from the 20 sample of the subject in the absence of the agent, wherein a decreased level of expression of the protein or mRNA in the sample in the presence of the agent relative to the level of expression of the protein or mRNA in the absence of the agent is indicative that the agent is useful in the treatment of pain.

[0162] The present invention also provides a method for identifying an agent 25 useful in the modulation of a mammalian sensory response. The method comprises

 a) contacting a candidate agent with a test system that comprises a receptor polypeptide selected from the group consisting of TRPM8, TRPV3, and TRPV4; and
 b) detecting a change in activity of the receptor polypeptide in the presence of the candidate agent as compared to the activity of the receptor polypeptide in the absence of the 30 agent, thereby identifying an agent that modulates receptor activity.

[0163] In particularly useful embodiments of this method, the sensory response is response to cold and the polypeptide is a TRPM8 polypeptide preferably having an amino

acid sequence selected from the group consisting of SEQ ID NO: 8 and SEQ ID NO: 11. The method can further include the step of administering the agent that modulates receptor activity to a test subject, and thereafter detecting a change in the sensory response in the test subject.

5 [0164] The test system that is contacted with a candidate agent can comprise, e.g., a membrane that comprises the receptor polypeptide or a cell that expresses a heterologous polynucleotide that encodes the receptor polypeptide. In a useful embodiment, the heterologous polynucleotide comprises a nucleotide sequence as set forth in nucleotides 448-3762 of SEQ ID NO: 7 or as set forth in nucleotides 61-4821 of SEQ ID NO: 10, and the
10 receptor polypeptide is a TRPM8 polypeptide. The cell can be substantially isolated wherein the step of contacting of the cell with the candidate agent is performed *in vitro* or the cell can be present in an organism wherein the step of contacting is performed *in vivo*.

15 [0165] In particularly useful embodiments, the receptor activity comprises increased or decreased Ca^{2+} passage through the membrane comprising the receptor polypeptide, wherein the membrane can be, e.g., a substantially purified cell membrane or a membrane comprising a liposome.

Pharmaceutical Compositions and Methods

20 [0166] The present invention also provides for therapeutic methods of treating a subject suffering from pain utilizing the aforementioned genes, i.e., TRPV3, TRPV4, and TRPM8. Examples of suitable therapeutic agents include, but are not limited to, antisense nucleotides, ribozymes, double-stranded RNAs, antagonists and agonists, as described in detail below.

25 [0167] As used herein, the term “antisense” refers to nucleotide sequences that are complementary to a portion of an RNA expression product of at least one of the disclosed genes. “Complementary” nucleotide sequences refer to nucleotide sequences that are capable of base-pairing according to the standard Watson-Crick complementary rules. That is, purines will base pair with pyrimidine to form combinations of guanine:cytosine and adenine:thymine in the case of DNA, or adenine:uracil in the case of RNA. Other less common bases, e.g., inosine, 5-methylcytosine, 6-methyladenine, hypoxanthine and others 30 may be included in the hybridizing sequences and will not interfere with pairing.

[0168] When introduced into a host cell, antisense nucleotide sequences specifically hybridize with the cellular mRNA and/or genomic DNA corresponding to the gene(s) so as to inhibit expression of the encoded protein, e.g., by inhibiting transcription and/or translation within the cell.

5 [0169] The isolated nucleic acid molecule comprising the antisense nucleotide sequence can be delivered, e.g., as an expression vector, which when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the encoded mRNA of the gene(s). Alternatively, the isolated nucleic acid molecule comprising the antisense nucleotide sequence is an oligonucleotide probe which is prepared *ex vivo* and, which when 10 introduced into the cell results in inhibiting expression of the encoded protein by hybridizing with the mRNA and/or genomic sequences of the gene(s).

15 [0170] Preferably, the oligonucleotide contains artificial internucleotide linkages which render the antisense molecule resistant to exonucleases and endonucleases, and thus are stable in the cell. Examples of modified nucleic acid molecules for use as antisense nucleotide sequences are phosphoramidate, phosphorothioate and methylphosphonate analogs of DNA as described, e.g., in U.S. Patent Nos. 5,176,996; 5,264,564; and 5,256,775. General approaches to preparing oligomers useful in antisense therapy are described, e.g., in Van der Krol, *BioTechniques*, 6:958-976 (1988); and Stein et al., *Cancer Res.*, 48:2659-2668 (1988).

20 [0171] Typical antisense approaches, involve the preparation of oligonucleotides, either DNA or RNA, that are complementary to the encoded mRNA of the gene. The antisense oligonucleotides will hybridize to the encoded mRNA of the gene and prevent translation. The capacity of the antisense nucleotide sequence to hybridize with the desired gene will depend on the degree of complementarity and the length of the antisense 25 nucleotide sequence. Typically, as the length of the hybridizing nucleic acid increases, the more base mismatches with an RNA it may contain and still form a stable duplex or triplex. One skilled in the art can determine a tolerable degree of mismatch by use of conventional procedures to determine the melting point of the hybridized complexes.

30 [0172] Antisense oligonucleotides are preferably designed to be complementary to the 5' end of the mRNA, e.g., the 5' untranslated sequence up to and including the regions complementary to the mRNA initiation site, i.e., AUG. However, oligonucleotide sequences that are complementary to the 3' untranslated sequence of mRNA have also been shown to

be effective at inhibiting translation of mRNAs as described e.g., in Wagner, *Nature*, 372:333 (1994). While antisense oligonucleotides can be designed to be complementary to the mRNA coding regions, such oligonucleotides are less efficient inhibitors of translation.

5 [0173] Regardless of the mRNA region to which they hybridize, antisense oligonucleotides are generally from about 15 to about 25 nucleotides in length.

[0174] The antisense nucleotide can also comprise at least one modified base moiety, e.g., 3-methylcytosine, 5-methylcytosine, 7-methylguanine, 5-fluorouracil, 5-bromouracil and may also comprise at least one modified sugar moiety, e.g., arabinose, hexose, 2-fluorarabinose and xylulose.

10 [0175] In another embodiment, the antisense nucleotide sequence is an alpha-anomeric nucleotide sequence. An alpha-anomeric nucleotide sequence forms specific double stranded hybrids with complementary RNA, in which, contrary to the usual beta-units, the strands run parallel to each other as described e.g., in Gautier et al., *Nucl. Acids. Res.*, 15:6625-6641 (1987).

15 [0176] Antisense nucleotides can be delivered to cells which express the described genes *in vivo* by various techniques, e.g., injection directly into the target tissue site, entrapping the antisense nucleotide in a liposome, by administering modified antisense nucleotides which are targeted to the target cells by linking the antisense nucleotides to peptides or antibodies that specifically bind receptors or antigens expressed on the cell 20 surface.

[0177] However, with the above-mentioned delivery methods, it may be difficult to attain intracellular concentrations sufficient to inhibit translation of endogenous mRNA. Accordingly, in a preferred embodiment, the nucleic acid comprising an antisense nucleotide sequence is placed under the transcriptional control of a promoter, i.e., a DNA sequence 25 which is required to initiate transcription of the specific genes, to form an expression construct. The use of such a construct to transfect cells results in the transcription of sufficient amounts of single-stranded RNAs to hybridize with the endogenous mRNAs of the described genes, thereby inhibiting translation of the encoded mRNA of the gene. For example, a vector can be introduced *in vivo* such that it is taken up by a cell and directs the 30 transcription of the antisense nucleotide sequence. Such vectors can be constructed by standard recombinant technology methods. Typical expression vectors include bacterial plasmids or phage, such as those of the pUC or BluescriptTM plasmid series, or viral vectors

such as adenovirus, adeno-associated virus, herpes virus, vaccinia virus and retrovirus, adapted for use in eukaryotic cells. Expression of the antisense nucleotide sequence can be achieved by any promoter known in the art to act in mammalian cells. Examples of such promoters include, but are not limited to, the promoter contained in the 3' long terminal repeat of Rous sarcoma virus as described, e.g., in Yamamoto et al., *Cell*, 22:787-797 (1980); the herpes thymidine kinase promoter as described, e.g., in Wagner et al., *Proc. Natl. Acad. Sci. USA*, 78:1441-1445 (1981); the SV40 early promoter region as described e.g., in Bernoist and Chambon, *Nature*, 290:304-310 (1981); and the regulatory sequences of the metallothionein gene as described, e.g., in Brinster et al., *Nature*, 296:39-42 (1982).

[0178] Ribozymes are RNA molecules that specifically cleave other single-stranded RNA in a manner similar to DNA restriction endonucleases. By modifying the nucleotide sequences encoding the RNAs, ribozymes can be synthesized to recognize specific nucleotide sequences in a molecule and cleave it as described, e.g., in Cech, *J. Amer. Med. Assn.*, 260:3030 (1988). Accordingly, only mRNAs with specific sequences are cleaved and inactivated.

[0179] Two basic types of ribozymes include the "hammerhead" type as described, e.g., in Rossie et al., *Pharmac. Ther.*, 50:245-254 (1991); and the hairpin ribozyme as described, e.g., in Hampel et al., *Nucl. Acids Res.*, 18:299-304 (1999) and U.S. Patent No. 5,254,678. Intracellular expression of hammerhead and hairpin ribozymes targeted to mRNA corresponding to at least one of the disclosed genes can be utilized to inhibit protein encoded by the gene.

[0180] Ribozymes can either be delivered directly to cells, in the form of RNA oligonucleotides incorporating ribozyme sequences, or introduced into the cell as an expression vector encoding the desired ribozymal RNA. Ribozyme sequences can be modified in essentially the same manner as described for antisense nucleotides, e.g., the ribozyme sequence can comprise a modified base moiety.

[0181] Double-stranded RNA, i.e., sense-antisense RNA, corresponding to at least one of the disclosed genes can also be utilized to interfere with expression of at least one of the disclosed genes. Interference with the function and expression of endogenous genes by double-stranded RNA has been shown in various organisms such as *C. elegans* as described e.g., in Fire et al., *Nature*, 391:806-811 (1998); *Drosophila* as described, e.g., in Kennerdell et al., *Cell*, 23;95(7):1017-1026 (1998); and mouse embryos as described, e.g., in Wianni et

al., *Nat. Cell Biol.*, 2(2):70-75 (2000). Such double-stranded RNA can be synthesized by *in vitro* transcription of single-stranded RNA read from both directions of a template and *in vitro* annealing of sense and antisense RNA strands. Double-stranded RNA can also be synthesized from a cDNA vector construct in which the gene of interest is cloned in opposing orientations separated by an inverted repeat. Following cell transfection, the RNA is transcribed and the complementary strands reanneal. Double-stranded RNA corresponding to at least one of the disclosed genes could be introduced into a cell by cell transfection of a construct such as that described above.

5 [0182] The term "antagonist" with respect to methods of treatment refers to a molecule which, when bound to the protein encoded by the gene, inhibits its activity. 10 Antagonists can include, but are not limited to, peptides, proteins, carbohydrates and small molecules (generally, a molecule having a molecular weight of about 1000 daltons or less).

15 [0183] The term "agonist" with respect to methods of treatment refers to a molecule which, when bound to the protein encoded by the gene, activates its activity. Agonists can include, but are not limited to, peptides, proteins, carbohydrates and small molecules.

20 [0184] In a particularly useful embodiment, the antagonist is an antibody-specific for the cell-surface protein expressed by one of the genes, e.g., TRPV3. Antibodies useful as therapeutics encompass the antibodies as described above, and are preferably monoclonal antibodies. The antibody alone may act as an effector of therapy or it may recruit other cells to actually effect cell killing. The antibody may also be conjugated to a reagent such as a chemotherapeutic, radionuclide, ricin A chain, cholera toxin, pertussis toxin, etc. and serve as a target agent. Alternatively, the effector may be a lymphocyte carrying a surface molecule that interacts, either directly or indirectly, with a tumor target. Various effector 25 cells include, cytotoxic T cells and NK cells.

30 [0185] Examples of the antibody-therapeutic agent conjugates which can be used in therapy include, but are not limited to: 1) antibodies coupled to radionuclides, such as ^{125}I , ^{131}I , ^{123}I , ^{111}In , ^{105}Rh , ^{153}Sm , ^{67}Cu , ^{67}Ga , ^{166}Ho , ^{177}Lu , ^{186}Re and ^{188}Re , and as described, e.g., in Goldenberg et al., *Cancer Res.*, 41:4354-4360 (1981); Carrasquillo et al., *Cancer Treat. Rep.*, 68:317-328 (1984); Zalcberg et al., *J. Natl. Cancer Inst.*, 72:697-704 (1984); Jones et al., *Int. J. Cancer*, 35:715-720 (1985); Lange et al., *Surgery*, 98:143-150 (1985); Kaltovich et al., *J. Nucl. Med.*, 27:897 (1986); Order et al., *Int. J. Radiother. Oncol. Biol.*

Phys., 8:259-261 (1982); Courtenay-Luck et al., *Lancet*, 1:1441-1443 (1984) and Ettinger et al., *Cancer Treat. Rep.*, 66:289-297 (1982); 2) antibodies coupled to drugs or biological response modifiers, such as methotrexate, adriamycin and lymphokines, such as interferon as described, e.g., in Chabner et al., *Cancer, Principles and Practice of Oncology*,

5 J.B. Lippincott Co., Philadelphia, PA, 1:290-328 (1985); Oldham et al., *Cancer, Principles and Practice of Oncology*, J.B. Lippincott Co., Philadelphia, PA, 2:2223-2245 (1985); Deguchi et al., *Cancer Res.*, 46:3751-3755 (1986); Deguchi et al., *Fed. Proc.*, 44:1684 (1985); Embleton et al., *Br. J. Cancer*, 49:559-565 (1984); and Pimm et al., *Cancer Immunol. Immunother.*, 12:125-134 (1982); 3) antibodies coupled to toxins, as described,

10 e.g., in Uhr et al., *Monoclonal Antibodies and Cancer*, Academic Press, Inc., pp. 85-98 (1983); Vitetta et al., *Biotechnology and Bio. Frontiers*, P.H. Abelson, Ed., pp. 73-85 (1984) and Vitetta et al., *Science*, 219:644-650 (1983); 4) heterofunctional antibodies, for example, antibodies coupled or combined with another antibody so that the complex binds both to the carcinoma and effector cells, e.g., killer cells, such as T cells, as described, e.g., in Perez

15 et al., *J. Exper. Med.*, 163:166-178 (1986); and Lau et al., *Proc. Natl. Acad. Sci. USA*, 82:8648-8652 (1985); and 5) native, i.e., non-conjugated or non-complexed, antibodies, as described in, e.g., in Herlyn et al., *Proc. Natl. Acad. Sci. USA*, 79:4761-4765 (1982); Schulz et al., *Proc. Natl. Acad. Sci. USA*, 80:5407-5411 (1983); Capone et al., *Proc. Natl. Acad. Sci. USA*, 80:7328-7332 (1983); Sears et al., *Cancer Res.*, 45:5910-5913 (1985); Nepom et al.,

20 *Proc. Natl. Acad. Sci. USA*, 81:2864-2867 (1984); Koprowski et al., *Proc. Natl. Acad. Sci. USA*, 81:216-219 (1984); and Houghton et al., *Proc. Natl. Acad. Sci. USA*, 82:1242-1246 (1985).

[0186] Methods for coupling an antibody or fragment thereof to a therapeutic agent as described above are well-known in the art and are described, e.g., in the methods provided in the references above. In yet another embodiment, the antagonist useful as a therapeutic for treating disorders can be an inhibitor of a protein encoded by one of the disclosed genes.

[0187] In the case of treatment with an antisense nucleotide, the method comprises administering a therapeutically effective amount of an isolated nucleic acid molecule comprising an antisense nucleotide sequence derived from at least one of the disclosed genes, wherein the antisense nucleotide has the ability to decrease the transcription/translation of one of the genes. The term “isolated” nucleic acid molecule

means that the nucleic acid molecule is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring nucleic acid molecule is not isolated, but the same nucleic acid molecule, separated from some or all of the coexisting materials in the natural system, is isolated, even if subsequently

5 reintroduced into the natural system. Such nucleic acid molecules could be part of a vector or part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

[0188] With respect to treatment with a ribozyme or double-stranded RNA molecule, the method comprises administering a therapeutically effective amount of a 10 nucleotide sequence encoding a ribozyme, or a double-stranded RNA molecule, wherein the nucleotide sequence encoding the ribozyme/double-stranded RNA molecule has the ability to decrease the transcription/translation of one of the genes.

[0189] In the case of treatment with an antagonist, the method comprises administering to a subject a therapeutically effective amount of an antagonist that inhibits a 15 protein encoded by one of these genes.

[0190] In the case of treatment with an agonist, the method comprises administering to a subject a therapeutically effective amount of an agonist that inhibits a protein encoded by one of these genes. In particularly useful embodiments, the gene is TRPV8 and the agonist can include compounds that are derivatives of menthol and other 20 compounds known to be cool-feeling agents including, but not limited to, camphor, thymol, peppermint oil, thymol and the like. Such compounds can be particular useful in alleviating pain associated with skin inflammation by providing a cool sensation to the skin.

[0191] A “therapeutically effective amount” of an isolated nucleic acid molecule comprising an antisense nucleotide, nucleotide sequence encoding a ribozyme, double- 25 stranded RNA, agonist or antagonist, refers to a sufficient amount of one of these therapeutic agents to treat a subject suffering from pain. The determination of a therapeutically effective amount is well within the capability of those skilled in the art. For any therapeutic, the therapeutically effective dose can be estimated initially either in cell culture assays, or in animal models, usually mice, rats, rabbits, dogs or pigs. The animal model may also be used 30 to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

[0192] The present invention also provides for methods of treating pain, wherein the method comprises identifying a patient suffering from a TRPV3-, TRPV4- or TRPM8-mediated pain by measuring expression of protein encoded by or mRNA corresponding to the TRPV3, TRPV4 or TRPM8 gene, and then administering to such a patient an 5 analgesically effective amount of an agent which decreases or increases the activity or expression of one of these genes. The agent can be a therapeutic agent as described above.

[0193] An "analgesically effective amount" can be a therapeutically effective amount as described above.

[0194] Therapeutic efficacy and toxicity may be determined by standard 10 pharmaceutical procedures in cell cultures or experimental animals, e.g., ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD₅₀/ED₅₀. Antisense nucleotides, ribozymes, double-stranded RNAs, agonists, antagonists and other agents which exhibit large therapeutic 15 indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient and the route of administration.

[0195] The exact dosage will be determined by the practitioner, in light of factors 20 related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, general health of the subject, age, weight and gender of the subject, diet, time and frequency of administration, 25 drug combination(s), reaction sensitivities and tolerance/response to therapy.

[0196] Normal dosage amounts may vary from 0.1-100,000 mg, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for 30 antagonists.

[0197] For therapeutic applications, the antisense nucleotides, nucleotide sequences encoding ribozymes, double-stranded RNAs (whether entrapped in a liposome or

contained in a viral vector), antibodies or other agents are preferably administered as pharmaceutical compositions containing the therapeutic agent in combination with one or more pharmaceutically acceptable carriers. The compositions may be administered alone or in combination with at least one other agent, such as stabilizing compound, which may be 5 administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs or hormones.

10 [0198] The pharmaceutical compositions may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intraarticular, intraarterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual or rectal means.

15 [0199] In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences, Maack Publishing Co., Easton, PA.

20 [0200] Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well-known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for ingestion by the patient.

25 [0201] Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins, such 30 as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid or a salt thereof, such as sodium alginate.

[0202] Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or 5 dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

[0203] Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or 10 binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid or liquid polyethylene glycol with or without stabilizers.

[0204] Pharmaceutical formulations suitable for parenteral administration may be 15 formulated in aqueous solutions, preferably in physiologically compatible buffers, such as Hank's solution, Ringer's solution or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. Additionally, suspensions of the active 20 compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil or synthetic fatty acid esters, such as ethyl oleate or triglycerides or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

25 [0205] For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

[0206] The pharmaceutical compositions of the present invention may be 30 manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

[0207] The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation 5 may be a lyophilized powder which may contain any or all of the following: 1-50 mM histidine, 0.1-2% sucrose, and 2-7% mannitol, at a pH range of 4.5-5.5, that is combined with buffer prior to use.

[0208] After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For 10 administration of the antisense nucleotide or antagonist, such labeling would include amount, frequency and method of administration. Those skilled in the art will employ different formulations for antisense nucleotides than for antagonists, e.g., antibodies or inhibitors. Pharmaceutical formulations suitable for oral administration of proteins are described, e.g., in U.S. Patent Nos. 5,008,114; 5,505,962; 5,641,515; 5,681,811; 5,700,486; 15 5,766,633; 5,792,451; 5,853,748; 5,972,387; 5,976,569; and 6,051,561.

[0209] In another aspect, the treatment of a subject, e.g., a rat injury model, with a therapeutic agent such as those described above, can be monitored by detecting the level of expression of mRNA or protein encoded by at least one of the disclosed genes, or the activity of the protein encoded by the gene. These measurements will indicate whether the 20 treatment is effective or whether it should be adjusted or optimized. Accordingly, one or more of the genes described herein can be used as a marker for the efficacy of a drug during clinical trials.

[0210] In a particularly useful embodiment, a method for monitoring the efficacy of a treatment of a subject suffering from pain with an agent (e.g., an antagonist, protein, 25 nucleic acid, small molecule or other therapeutic agent or candidate agent identified by the screening assays described herein) is provided comprising:

- a) obtaining a pre-administration sample from a subject prior to administration of the agent;
- b) detecting the level of expression of mRNA or protein encoded by the gene, or 30 activity of the protein encoded by the gene in the pre-administration sample;
- c) obtaining one or more post-administration samples from the subject;

d) detecting the level of expression of mRNA or protein encoded by the gene, or activity of the protein encoded by the gene in the post-administration sample or samples;

5 e) comparing the level of expression of expression of mRNA or protein encoded by the gene, or activity of the protein encoded by the gene in the pre-administration sample

with the level of expression of mRNA or protein encoded by the gene, or activity of the protein encoded by the gene in the post-administration sample or samples; and

10 f) adjusting the administration of the agent accordingly.

[0211] For example, increased administration of the agent may be desirable to decrease the level of expression or activity of the gene to lower levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to increase expression or activity of the gene to higher levels than detected, i.e., to decrease the effectiveness of the agent.

EXAMPLES

[0212] The following examples are offered to illustrate, but not to limit the present invention.

EXAMPLE 1

Identification of New VRs

A. VR searching

[0213] Strategy: Known VR sequences are downloaded (GI Nos. 6782444, 20 5305598, 7106445, 4589143, 6635238, 2570933, 5263196 and 4589141) from NCBI and assembled using Clustal (Megalign--DNAsstar, Madison, WI) with the following parameters: Gap Penalty 10, GapLength Penalty 10, Ktuple 1, Window 5 and Diagonals Saved 5. This alignment is saved as a *.MSF file.

[0214] This *.MSF file is converted to a hidden Markov model using 25 HMMBUILD 2.0 (Sean Eddy, Washington University, St. Louis) then calibrated using HMMCALIBRATE 2.0 (Sean Eddy), and used to search 6 frame translations (Feb 20 release) of the Celera human genome data using the default parameters. The protein sequences of these files are retrieved and used as subjects in a BLASTP search of NR. This file is manually inspected identifying three novel candidates for VRs.

B. Identification of VR TRPV3

[0215] Mechanical and thermal stimuli activate specialized sensory neurons that terminate in the skin at receptor structures like hair follicles or as free nerve endings. Pain and temperature sensitive neurons belong to the latter category and are thus thought to 5 directly sense stimuli. A TRP channel that is expressed in pain neurons, VR1 is partially responsible for the detection of noxious heat. This Example describes the cloning of TRPV3, a close relative of VR1 that is also activated by noxious heat. Surprisingly, TRPV3 is most highly-expressed in skin cells. Keratinocytes that express TRPV3 show a calcium influx in response to noxious heat. Therefore, skin cells possess molecular tools similar to 10 those of sensory neurons to “sense” heat.

[0216] VR1 (TRPV1), the best-characterized receptor in the somatic sensory system, is directly gated by noxious heat. VR1 is expressed in small-diameter, nociceptive DRG neurons that terminate in the skin as free nerve endings to detect noxious heat. Analysis of VR1 knockout mice has demonstrated that this channel is partially responsible 15 for heat sensitivity. VR1 belongs to the family of six transmembrane-containing TRP non-selective cation-channels that function in mechanosensation, osmoregulation and replenishment of intracellular calcium stores. This TRPV family includes at least five members, three of which are expressed in DRG neurons. One of these, VRL1 (TRPV2), is also gated by heat, but has a higher threshold than VR1 (52°C instead of 43°C) and is not co-expressed with VR1. Recent experiments have implied that VRL1 expression does not 20 correlate with the heat-sensitive neurons in VR1 knockout mice, suggesting the existence of yet another heat-sensing channel.

[0217] Public and Celera databases for VR1-related TRP channels are searched by 25 constructing a Hidden Markov Model (HMM) of the VR1 and VRL1 protein sequences from different mammalian species. With this model, the 6-frame translation of human sequence is queried and has identified multiple new putative exons with a great degree of sequence similarity to the ankyrin and transmembrane domains of VR1. These exons map to two genes, one of which is TRPV4, as described, e.g., in Liedtke et al., *Cell*, 103:525-35 (2000); and Strotmann et al., *supra*). The other novel gene is known as TRPV3.

30 [0218] The full-length sequence of mouse TRPV3 is derived from a combination of exon-prediction software, PCR and RACE amplification from newborn mouse DRG and skin cDNA. For PCR cloning, primers (5'-TGACATGATCCTGCTGAGGAGTG-3'

(SEQ ID NO: 19) and 5'-ACGAGGCAGGCGAGGTATTCTT-3' (SEQ ID NO: 20) are designed from the HMM sequences for TRPV3 as a result of blast hits to the ankyrin and transmembrane domains and used to amplify a 699-nucleotide fragment of TRPV3 from newborn DRG cDNA. From this initial fragment, Rapid Amplification of cDNA Ends (RACE) PCR (Clontech) is used to obtain the 5' and 3' ends of TRPV3 from mouse newborn skin and DRG cDNA. In order to characterize the genomic locus of VR1 and TRPV3, primers are designed from predicted HMM TRPV3 exon sequences and used to screen a genomic BAC Mouse (RPCI22) library (Roswell Park Cancer Institute). Primers utilized are shown in Table 1. Additionally, mouse VR1 BACs are identified by hybridizing a 320 bp probe spanning the mouse VR1 ankyrin region to the same BAC library. Positive BAC clones are further characterized by restriction digest mapping, pulse field gel electrophoresis, and Southern blotting as previously described using probes specific to the 5' and 3' ends of the VR1 and TRPV3 genes. BAC clones positive for TRPV3 included 5J3. BAC clones that were positive for both VR1 and TRPV3 included 9e22, 27I14, 82c1 and 112g17. BACs positive for VR1 included 137N13, 137O13, 234J23, 246D9 and 285G11.

Table 1: TRPV3 Primers

		SEQ ID NO:
5' RACE		
AP40	CAGCGTATGCAGAGGCTCCAGGGTCAG	21
AP4	TTGAAGTCCTCAGCCACCGTCACCA	22
Mvr4ANK	CACCAGCGCGTGCAGGATGT	23
AP105 RACE-rev	tcgttctctcagcgaaggcaaggcaga	24
AP110R (nested)	CCTTCTATCTCCAGGAAGAAGTGTGC	25
ap113r (race)	GTCACCAGCGCGTGCAGGATGTGT	26
ap36	AGGCCCATACGCCAGTCCGTGAAC	27
ap33R	CATGCCCATAGACTGGAAGCC	28
ap71	GATGGCGATGTTCAGCGCTGTCTGC	29
3' RACE		
AP37	GCTGCCAAGATGGCAAGGCTGAGA	30
Ap31	CCTGGGCTGGCGAACATGCTCTA	31
TM6VR4RACE	GCGCCAGATGCGTTCACTTCTTTGGA	32
Primers to amplify partial and/or full-length TRPV transcript		SEQ ID NO:
mVR4-F	TGACATGATCCTGCTGAGGAGTG	33
mVR4-R	ACGAGGCAGGCGAGGTATTCTT	34

AP72 F	TCCAAGCTGTGCTTGTGATA	35
AP73R	CTTGAGCATGTAGTTCACACAAA	36
AP74R	GTGTTTCCATTCCGTCCAC	37
AP75R	CGACGTTCTGGAAATTCAT	38
AP76R	CTTGAGCATGTAGTTCACACAAA	39
AP77F	TCCTCCTCCTCAACATGCTC	40
AP78R	TGGAAATCAAAACAGTATTCAATG	41
AP79F	CTCTTCAAGCTACCATAGGC	42
AP80R	CGACGTTCTGGAAATTCAT	43
AP81R	GTGTTTCCATTCCGTCCAC	44
AP82R	CCCTCTGTTACCGCAGACAC	45
AP83F	ACTCCAGCCTGGGTGACA	46
AP84R	ATGGTCTCCAGCTCCCAGTT	47
AP85R	AGGAGGACGAAGGTGAGGAT	48
AP86F	AGCCTCAGGTCTGAAGTGGA	49
AP87R	GCCAGATGCGTTCACTTTCT	50
AP88R	GGCAAATTCTCCATTTCG	51
AP89R	AGATGCGTTCGCTCTCCTT	52
AP102F	TGCACACTTCTCCTGGAGAT	53
AP103F	TTCCTCATGCACAAGCTGAC	54
AP104F	TCTTCCTGGAGATAGAAGGGATT	55
AP106R	CGATGATTCCAGCACAGAG	56
AP107F	CTCACCAATGTAGACACAAACGAC	57
AP108F	TACCAGCATGAAGGCTTCTATT	58
AP109R	ATAAGCACTGCTGTGATGTCTCC	59
AP111R	GTCAGCTTGTGCATGAGGAA	60
AP112F	TGACAGAGACCCCATCCAATCCAAACA	61
AP114F	CTCTTGTGATATGGCTTCTGG	62
AP115F	GAGAAGGAGTGGTGAGCTG	63
AP116R	CCTTCTCCCAGAGTCCACAG	64
AP117F	AGCAGGCAGGAAAATGAGAG	65
AP118R	CCAAAGATGGTCCAGAAAGC	66
AP115F	CTCTTGTGATATGGCTTCTGG	67
AP116F	AACTGTGATGACATGGACTCTCCCCCAG	68

AP118F	AACTGTGATGACATGGACTC	69
AP119F	CAGGATGATGTGACAGAGACCCCATC	70
AP128F	ATGATCCTGCTGAGGAGTGG	71
AP129R	AGGATGACACAGGCCATAC	72
AP130F	ATCCTCACCTCGTCCTCCT	73
AP131R	CATTCCGTCCACTTCACCTC	74
AP204R (3'UTR)	TGGTTTGCTGTTGTTCTG	75
AP205R	(POLYA)CATGTAAATCAACGCAGAAGTCA	76

[0219] Several murine ESTs from skin tissues contain 3' UTR TRPV3 sequence (BB148735, BB148088, BB151430 and AI644701), and recently the human TRPV3 sequence has been annotated (see GI: 185877, 18587705 and Peng et al., *Genomics*, 76:99-109 (2001)).

[0220] As predicted from the nucleotide sequence, TRPV3 is composed of 791 amino acid residues. The overall sequence of mouse TRPV3 has 43% identity to TRPV1 (VR1) and TRPV4; 41% to TRPV2 (VRL1); and 20% to TRPV5 (ECAC) and TRPV6 (see Figure 2C). TRPV3 has four, instead of the usual three, predicted N-terminal ankyrin domains that are thought to be involved in protein-protein interactions, TM6 domains and a pore loop region between the last two membrane spanning regions. Two coiled-coil domains N-terminus to the ankyrin domains in TRPV3 are also identified (see Figure 2F). Coiled-coil domains are implicated in oligomerization of GABA-B channels, and have been previously reported to be present in some TRP channels, but not for TRPVs. Further examination shows that VR1, but not the other members of the TRPV family, also has putative coiled-coil domains in the same N-terminal location. Phylogenetic analysis illustrates that TRPV3 is indeed a member of the OTRP/TRPV sub-family, which is part of the larger TRP ion channel family (see Figure 2A). The same BAC genomic clone in the public database contains the sequence of TRPV3 and VR1. Both genes map to human chromosome 17p13 and mouse chromosome 11B4. Mapping analysis of these BAC clones, and later the assembled human and mouse genome sequences reveals the distance between the two genes to be about 10 kb (see Figure 2B). This suggests that TRPV3 and VR1 are derived from a single duplication event.

EXAMPLE 2

Localization of TRPV3 Expression

A. Northern blot analysis

[0221] For Northern blot analyses approximately 3 µg of polyA⁺ RNA extracted from adult mouse and newborn tissue are electrophoresed on 1% glyoxal gels, transferred and hybridized at high-stringency with a ³²P labeled probe representing the entire full-length TRPV3 sequence. Commercial Northern blots (Clontech) are hybridized with the same TRPV3 full-length probe. For human skin specific expression, Northern blots are prepared from 20 µg of total RNA from primary keratinocytes and cell lines CRL-2309 and CRL-2404 (ATCC) or from 2 µg of polyA⁺ adult and fetal skin RNA (Stratagene). Blots are hybridized with a probe corresponding to the ankryin 1-TM2 region of the TRPV3 human sequence. For VR1 hybridizations, a probe corresponding to nucleotides 60-605, encoding the amino terminus of rat VR1 are used on mouse blots. The entire coding sequence of human VR1 are used as a probe on human Northern blots.

[0222] As stated above, to determine the overall tissue distribution of TRPV3, the full-length mouse TRPV3 sequence is used as a probe for Northern blot analysis. No TRPV3 expression is detected using commercial Northern blots. Blots from adult rat are then used that include tissues relevant to somatic sensation, including DRG, spinal cord and different sources of skin. A mRNA of approximately 6.5 kb is present in tissues derived from skin but not in DRGs. Probing the same adult blot with a TRPV1-specific probe confirms its strong expression in DRG while demonstrating a lack of expression in skin tissues. Northern blot analysis of human adult and fetal skin also shows expression of TRPV3. Cultured primary mouse keratinocytes as well as several epidermal cell lines do not show any TRPV3 expression by Northern blots. These finding suggest that TRPV3 expression may get down regulated after tissue dissociation and long-term culture. Northern blots from newborn and adult mice that include tissues relevant for somatic sensation, including DRG, spinal cord and different sources in skin also show TRPV3 expression in skin tissues with weak expression in the DRG.

B. In situ hybridization

[0223] For *in situ* hybridizations, newborn and adult tissues are dissected, fixed in 4% paraformaldehyde in PBS, cryoprotected and frozen in liquid nitrogen in OCT mounting

medium. Cryostat sections (10 μ m) are processed and probed with either a digoxigenin cRNA probe or a 35 S-labeled probe generated by *in vitro* transcription as described in Wilkinson, in *Essential Developmental Biology, A Practical Approach*, C. Stern, P. Holland, eds., Oxford Univ. Press, NY, pp. 258-263 (1993). Two mouse TRPV3-specific antisense 5 riboprobes are used, one corresponding to nucleotides 235-1020 encoding the amino terminus and the other spanning nucleotides 980-1675 corresponding to the region between the third ankyrin and TM4 domains.

10 [0224] Digoxigenin-labeled probes show specific expression in specialized skin tissues, such as hair follicles in both newborn and adult mice. Expression in epidermis is difficult to assess, because of high background observed in this tissue with the sense probe. To circumvent this problem, and to gain more sensitivity, 35 S-radioactive *in situ* hybridizations are carried out on cross-sections of newborn mice. Clear expression is detected in the epidermis and hair follicles. No significant expression is detected in DRGs.

C. Immunohistochemical staining assays

15 [0225] For immunohistochemistry, rabbits are immunized (AnimalPharm Services, Healdsburg, CA) with KLH conjugated peptide corresponding to either the N-terminus of mouse TRPV3 (CDDMDSPQSPQDDVTETPSN (SEQ ID NO: 77)) or a C-terminus peptide (KIQDSSRSNSKTTL (SEQ ID NO: 78)). Affinity purified antiserum recognizes a band of relative molecular mass ~85 kDa in whole-cell extracts prepared from 20 CHO cells stably transfected with mouse TRPV3 (not shown). For peptide competition, diluted antibody solutions (1:5000) of TRPV3 are pre-incubated (room temperature, 2 hours) with TRPV3 antigenic peptide (9 μ gmL $^{-1}$) prior to incubation with tissue sections. Immunofluorescence are performed on fixed frozen and paraffin sections using rabbit anti-TRPV3 (1:5000), pan cytokeratin (Abcam) cytokeratin (1:300, Abcam), cytokeratin 10 (K8.60, Sigma), pan-basal Cytokeratin (Abcam), PGP9.5 (Abcam) followed by FITC-labeled goat anti-rabbit (10 μ g/mL $^{-1}$) and Cy-3-labeled donkey anti-mouse (Jackson 25 Immunoresearch) antibodies.

30 [0226] Using polyclonal antibodies produced against TRPV3 peptides from either the N-terminus or the C-terminus, intense TRPV3 immunoreactivity is observed in most keratinocytes at the epidermal layer and in hair follicles from newborn and adult rodent tissues. In the epidermis, staining is absent in the outermost layers (stratum corneum and

lucidum) as well as the basement membrane. In hair follicles, expression is localized to the outer root sheath and absent from the matrix cells, inner root sheath and sebaceous glands. Developmentally, expression in hair follicles increases from newborn to adult stages. High magnification of these images indicates staining in the cytoplasm and at high levels in the 5 plasma membrane.

[0227] Coexpression with various keratinocyte-specific markers shows that TRPV3 is expressed in the basal keratinocytes, which *in vitro* require low calcium concentrations to maintain their undifferentiated state, as well as in some of the more differentiated suprabasal layers of the epidermis. Temperature-sensing neurons are thought 10 to terminate as free nerve endings mainly at the level of dermis, but some processes do extend into the epidermis (see Hilliges et al., *supra*; and Cauna, *supra*. Cutaneous termini can be labeled with the immunohistochemical marker protein gene product 9.5 (PGP 9.5), and it is observed that these epidermal endings indeed co-localize with TRPV3.

D. GFP-fusion constructs

15 [0228] The full-length mouse TRPV3 is amplified and subcloned into pcDNA3.1/CT-GFP-TOPO (Invitrogen). *In vitro* transcription/translation (TnT System, Promega) confirms the integrity of the constructs. Cells are viewed live or fixed in 4% paraformaldehyde 48-72 hours after transfection, counterstained with propidium iodide and mounted in Slowfade (Molecular probes).

20 [0229] Confocal fluorescence microscopy on cells transiently transfected with a C-terminally GFP-tagged TRPV3 protein construct also finds the protein mainly localized at the plasma membrane. This pattern of expression at the cell membrane is consistent with TRPV3 having a role as an ion channel. In sum, the expression analysis suggests that TRPV3 is most prominently expressed in plasma membrane of keratinocytes in both rodents 25 and humans.

EXAMPLE 3

Activation of TRPV3 Protein by Heat

A. Effect of heat, capsazepine and ruthenium red upon conductance

30 [0230] Given the high degree of homology of TRPV3 to TRPV family members, TRPV3 is tested to determine whether it responds to stimuli known to activate other closely-

related family members. Accordingly, the effects of heat upon TRPV3 activity in mediating conductance are examined using whole-cell patch-clamp analysis of transfected CHO cell lines expressing TRPV3.

[0231] Mouse TRPV3 and rat TRPV1 cDNA are subcloned into pcDNA5 (Invitrogen) and transfected into CHO-K1/FRT cells using Fugene 6 (Roche). The transfected cells are selected by growth in MEM medium containing 200 µg/mL hygromycin (Gibco BRL). Populations are frozen at early passages and these stocks are used for further studies. Stable clones that express the mRNAs are identified by Northern blot analysis as well as Southern blotting to confirm integration site. Long-term cultures are subsequently maintained at 33°C.

[0232] TRPV3 expressing CHO cells are assayed electrophysiologically using whole cell voltage clamped techniques. Currents are recorded via pCLAMP8 suite of software via an Axopatch 200A and filtered at 5 kHz. Series-resistance compensation for all experiments is 80% using 2-5 MΩ resistance, fire-polished pipettes. Unless stated, the holding potential for most experiments is -60 mV, apart from the current-voltage relationship studies (2 second ramp from -100 to +80 mV). Cells are normally bathed in a medium containing (mM): NaCl, 140; KCl, 5; Glucose; 10, HEPES, 10; CaCl₂, 2; MgCl₂ 1; titrated to pH 7.4 with NaOH, apart from the monovalent permeability studies, when NaCl is replaced by equimolar KCl or CsCl with the omission of KCl, 5 mM. For the divalent permeability studies, the solutions either contain 1 mM Ca²⁺ or Mg²⁺ and (mM) NaCl, 100; Glucose, 10; Hepes, 10; sucrose, 80 or 30 mM test ion, in the above solution minus sucrose. The experiments in calcium free media have no added CaCl₂ with the addition of 100 µM EGTA. Pipette solution is always (mM) CsCl, 140; CaCl₂, 1; EGTA, 10; HEPES, 10; MgATP, 2; titrated to pH7.4 with CsOH. For the permeability, ratios for the monovalent cations relative to Na (P_X/P_{Na}) are calculated as follows:

$$P_X/P_{Na} = E_{shift} = \{RT/F\} \log (P_X/P_{Na} [X]_0 / [Na]_0)$$

where *F* is Faraday's constant, *R* is the universal gas constant, and *T* is absolute temperature. For the divalent ions, P_{Ca} or P_{Mg}/P_{Na} is calculated as follows:

$$E_{shift} = \{RT/F\} \log \{[Na]_0 + 4B' [X]_0 (2)\} / \{[Na]_0 4B' [X]_0 (1)\}$$

where B' = P'X/P_{Na} and P'X = P_X/(1 + e^{EF/RT}) and [X]0 (1) and [X]0 (2) refer to the two different concentrations of the divalent ion tested.

[0233] The results from transfected cells assayed electrophysiologically via whole cell voltage clamped techniques are described below. Capsaicin (1 μ M), an activator of TRPV1, does not evoke a response in TRPV3-expressing cells. Similarly no current responses are seen when TRPV3-expressing cells are challenged with a hypo-osmotic 5 solution containing 70 mM NaCl or with low pH (5.4). However, raising the temperature of superperfused external solution from room temperature to 45°C evokes currents in TRPV3 expressing cells. Analysis of currents evoked by temperature ramps from ~15°C to ~48°C (see Figure 3A) shows that little current is elicited until temperatures rise above ~33°C and that the current continues to increase in the noxious temperature range (>42°C). With these 10 findings, TRPV3-expressing cells are subsequently maintained at 33°C to avoid constitutive activation. The current amplitude is influenced by the presence or absence of Ca^{2+} in the external medium, with reduced current amplitudes in the presence of 2 mM Ca^{2+} after a prior challenge in Ca^{2+} -free solution (see Figure 3B). This finding is reminiscent of the channel properties of TRPV5 and TRPV6 (see Nilius et al., *J. Physiol.*, 527:239-248 (2000)). As 15 shown in Figure 3C, the heat evoked current in TRPV3-expressing CHO cells increases exponentially at temperatures above 35°C with an e-fold increase per $5.29 \pm 0.35^\circ\text{C}$ (n=12), corresponding to a mean Q_{10} of 6.62. This temperature dependence is considerably greater than that seen for most ion channel currents, which typically have Q_{10} values in the range 1.5-2.0, but is less than the values noted for TRPV1 (VR1, $Q_{10} = 17.8$) (see Vyklicky et al., 20 *J. Physiol.*, 517:181-192 (1999)). In some cells it is difficult to see a sharp threshold temperature. However, measurable temperature dependent currents below 30°C show an e-fold increase for a $22.72 \pm 3.31^\circ\text{C}$ (n=12) increase in temperature ($Q_{10} = 1.69$).

[0234] The elevated temperature evoked currents, in TRPV3-expressing cells, shows a pronounced outward rectification (see Figure 3D) with a reversal potential in the 25 standard recording solution of -1.22 ± 1 mV. Reducing the NaCl in the external solution to 70 mM (from 140 mM) shifts the reversal potential by -19mV as expected for a cation selective conductance (shift = -17.5 mV). Differences in reversal potentials are also used to determine the ionic selectivity of TRPV3 channels. In simplified external solutions, the reversal potentials of the heat activated currents are very similar when NaCl ($E_{\text{rev}} = -1.22 \pm 30 1.08$ mV, n=5) is replaced with either KCl ($E_{\text{rev}} = -0.40 \pm 0.77$ mV, n=6) or CsCl ($E_{\text{rev}} = -1.14 \pm 0.53$ mV, n=6), which yields relative permeability ratios P_K/P_{Na} and $P_{\text{Cs}}/P_{\text{Na}}$ close to 1 (see Funayama et al., *Brain Res. Mol. Brain Res.*, 43:259-266 (1996)). The relative

permeability of Ca^{2+} and Mg^{2+} are estimated from the shift in reversal potentials when their concentrations are raised from 1 mM to 30 mM in a 100 mM NaCl solution containing the divalent cation under investigation. The reversal potential shifts (from -9.1 ± 1.40 mV to $+11.29 \pm 0.38$ mV for Ca^{2+} and from -8.41 ± 0.50 mV to $+10.34 \pm 2.38$ mV for Mg^{2+})

5 correspond to $P_{\text{Ca}}/P_{\text{Na}} = 2.57$ and $P_{\text{Mg}}/P_{\text{Na}} = 2.18$. These data show that TRPV3 is a non-selective cation channel that discriminates poorly between the tested monovalent cations and has significant divalent cation permeability.

[0235] Heat activation of TRPV3 shows a marked sensitization with repeated heat stimulation. This is studied at a steady membrane potential of -60 mV and with voltage

10 ramps. The first response to a step increase from room temperature to $\sim 48^\circ\text{C}$ is often very small, but the current response grew with repeated heat steps (see Figure 4A). Sensitization to heat has also been observed for TRPV1 and TRPVL (see Caterina et al., *supra* and Jordt et al., *Cell*, 108:421-430 (2002)). Application of voltage ramps shows that sensitization is associated with an increase in outward rectification (see Figure 4B). A protocol of repeated

15 temperature challenges is used to investigate if antagonists of TRPV1 (VR1) are inhibitors of TRPV3. Under normal conditions, a heat challenge delivered 2 minutes after 4-5 sensitizing heat steps evokes a current that is 1.57 ± 0.25 (n=4) times the amplitude of the preceding response (see Figure 4C). Application of 10 μM capsazepine, a competitive capsaicin antagonist at TRPV1, for 2 minutes prior to the test heat challenge does not reduce the

20 current amplitude (2.31 ± 0.36 times the amplitude of the preceding response, n=4). In contrast, a similar exposure to 1 μM ruthenium red, a non-competitive inhibitor of other TRPV channels, reduces the relative amplitude of the heat response to 0.34 ± 0.03 , n=5 (see Figure 4D). Taken together, these results indicate that TRPV3 is a cation permeable channel activated by warm and hot temperatures and has channel properties reminiscent of other

25 TRPV channels.

EXAMPLE 4

Gene Expression Analysis of TRPV3 in the Rat Chung Model

[0236] These studies discussed below measure relative levels of RNA expression for TRPV3 in the Chung neuropathic pain model using RT-PCR.

A. Spinal nerve ligation (Chung) model

[0237] This model is established according to the methods described by Kim and Chung, *supra*, 1992. Rats are anesthetized and placed into a prone position and an incision made to the left of the spine at the L4-S2 level. A deep dissection through the paraspinal muscles and separation of the muscles from the spinal processes at the L4-S2 level will reveal part of the sciatic nerve as it branches to form the L4, L5 and L6 spinal nerves. The L6 transverse process is carefully removed with a small rongeur enabling visualization of these spinal nerves. The L5 spinal nerve is isolated and tightly ligated with 7-0 silk suture. The wound is closed with a single muscle suture (6-0 silk) and one or two skin closure clips and dusted with antibiotic powder. In sham animals the L5 nerve is exposed as before but not ligated and the wound closed as before.

[0238] Male Wistar rats (120-140 g) are used for each procedure. Mechanical hyperalgesia is assessed by measuring paw withdrawal thresholds of both hindpaws to an increasing pressure stimulus using an Analgesymeter (Ugo-Basile, Milan). Mechanical allodynia is assessed by measuring withdrawal thresholds to non-noxious mechanical stimuli applied with von Frey hairs to the plantar surface of both hindpaws. Thermal hyperalgesia is assessed by measuring withdrawal latencies to a noxious thermal stimulus applied to the underside of each hindpaw. With all models, mechanical hyperalgesia and allodynia and thermal hyperalgesia develop within 1-3 days following surgery and persist for at least 20 50 days. Drugs may be applied before and after surgery to assess their effect on the development of hyperalgesia, or approximately 14 days following surgery to determine their ability to reverse established hyperalgesia.

B. RT-PCR mRNA analysis

[0239] One microgram of total RNA samples from the Chung model (L4 and L5 DRG) and sham-operated animals are used for first-strand cDNA synthesis using 50 pmol of oligo (dt) 24 primer in a 20 μ L total reaction with 200 units Superscript II (LTI). The cDNA is then diluted to 100 μ L with Tris-EDTA buffer (10 mM TrisCl, pH 8.0 and 1 mM EDTA). Three μ L of the diluted cDNA is used to amplify the message for TRPV3 with gene-specific primers (sequences in 5' to 3' orientation: TRPV3 forward primer, 30 CTCATGCACAAGCTGACAGCCT (SEQ ID NO: 79); TRPV3 reverse primer, AGGCCTCTCCGTGTACTCAGCGTTG (SEQ ID NO: 80)) in a 15 μ L PCR reaction

using NotStart Taq DNA polymerase (Qiagen) for 25-38 cycles. Neuropeptide Y (NPY) is used as positive control.

[0240] For normalization 1 μ L of the diluted cDNA is used to amplify actin using the following primers:

5' actin primer: ATC TGG CAC CAC ACC TTC TAC AA (SEQ ID NO: 81)

3' actin primer: GCC AGC CAG GTC CAG ACG CA (SEQ ID NO: 82)

[0241] A portion of the samples are then analyzed on a 4-20 TBE Criterion polyacrylamide gel (BioRad), stained with SYBR GREEN I (Molecular Probes) and visualized on a Phosphorimager.

10 [0242] Figure 1A shows the average fold regulation of TRPV3 (VRLx) in L4 and L5 DRG neurons from the Chung model from three independent experiments. As shown in Figure 1A the positive control, NPY and TRPV3 message are elevated in the injured DRG relative to sham and non-ligated DRGs.

EXAMPLE 5

15 Identification of TRPV4

[0243] Primers are designed to amplify distinct regions of the candidate genes that had been identified through the computer model. Based on the human sequence obtained, PCR primers are designed to also amplify the mouse homologue of TRPV4 (mTRPV4) (TRPV4 forward: CTCATGCACAAGCTGACAGCCT (SEQ ID NO: 83); TRP4 reverse: 20 AGGCCTCTTCCGTGTACTCAGCGTTG (SEQ ID NO: 84)). These PCR products are subsequently sequenced and the mouse EST database is searched using these sequences. One EST clone (ID No. AI510567) is identified and obtained from the IMAGE consortium. The EST is further characterized and found to contain a ~2.4 kb insert which is sequenced. Primers are designed from this sequence and used to obtain the full length cDNA using the 25 RACE protocol (Clontech). Both 5' and 3' RACE products are obtained and sequenced. This approach results in the amplification of the full length cDNA of mTRPV4 from mouse kidney and DRG cDNA using primers designed from the very 5' and 3' end of the RACE products. All primers utilized in the characterization of mTRPV4 are shown in Table 2. A novel full length cDNA of ~3.2 kb is identified, which includes an open-reading frame of 30 ~2.5 kb, a 5' UTR consisting of ~145 bp and a 3' UTR encompassing ~400-500 nucleotides. The gene encodes a 3.4 kb transcript that contains three ankryin-repeat regions and TM6

domains. The protein sequence includes ~1000 amino acids and is set forth in SEQ ID NO: 14. Clustal W alignments to the rat VR (GenBank Ascession No. AF029310) reveals 34% identity and 64% similarity to VR1 in the region spanning the Ank2 through the TM4 region.

5

Table 2: TRPV4 Primers

		SEQ ID NO:
Primers used for RACE		
3' RACE	CCCTGGGCTGGCGAACATGCTCTA	85
VR3RACE5'	CTTGGCAGCCATCATGAGAGGCGAA	86
Primers to amplify partial/full length TRPV4		
AP19	GCAGTGGTAACAAACGCAGAG	87
AP20	AGGTCAGATCTGTGGCAGGT	88
AP21	CGTGAGGTGACAGATGAGGA	89
AP32	CCAGTATGGCAGATCCTGGT	90
AP25	ATGGCAGATCCTGGTGATG	91
<u>AP26 CCCAGGCACTACTGAGGACT</u>		
		92
<u>AP27 AGGGCTACGCTCCCAAGT</u>		
		93
<u>AP28 GTGCTGGCTTAGGTGACTCC</u>		
AP22	TGAACTTGCGAGACAGATGC	94
		95

[0244] A combination of RT-PCR and Northern blot analyses are utilized to characterize expression of TRPV4. Total RNA is prepared from adult mouse kidney, 5 newborn DRG and adult trigeminal tissue. RT-PCR is carried out using cDNA prepared from these three mouse tissues and primers within the ankyrin and the TM domain of mTRPV4. The expected 403 bp product is observed in all three tissues. This PCR product also serves as a probe on Northern blots (Clontech MTN blots). The expected 3.4 kb transcript is observed in kidney and other tissues.

10 [0245] The genomic structure of hTRPV4 is predicted from the high throughput genomic sequence database (GenBank Accession No. AC007834). HVR3 encompasses ~17 exons. A comparison of the amino acid sequence of the rat VR1 sequence (GenBank Accession No. AF029310) and the mouse VR3 protein reveals 34% identity and 64% similarity in the sequence spanning the ankyrin 2 region and the TM4 domain. The 15 nucleotide and amino acid sequences of hTRPV4 are shown in SEQ ID NO: 16 and SEQ ID NO: 17, respectively.

EXAMPLE 6

Gene Expression Analysis of TRPV4 in the Rat Chung Model

[0246] These studies discussed below measure relative levels of RNA expression for TRPV4 in the Chung neuropathic pain model using RT-PCR.

5 ***A. Spinal nerve ligation (Chung) model***

[0247] This model is established according to the methods described by Kim and Chung, *supra*, and is described in Example 4.

B. RT-PCR mRNA analysis

[0248] One microgram of total RNA samples from the Chung model (L4 and L5 DRG) and sham-operated animals are used for first-strand cDNA synthesis using 50 pmol of oligo (dt) 24 primer in a 20 μ L total reaction with 200 units Superscript II (LTI). The cDNA is then diluted to 100 μ L with Tris-EDTA buffer (10 mM TrisCl, pH 8.0 and 1 mM EDTA). Three μ L of the diluted cDNA is used to amplify the message for TRPV4 with gene-specific primers (Sequences in 5' to 3' orientation: TRPV4 forward primer, 99

15 TGAGGATGACATAGGTGATGAG 120 (SEQ ID NO: 96), TRPV4 reverse primer, 255 CCAAGGACAAAAAGGACTGC 236 (SEQ ID NO: 97)) in a 15 μ L PCR reaction using NotStart Taq DNA polymerase (Qiagen) for 25-38 cycles. NPY is used as positive control.

[0249] For normalization 1 μ L of the diluted cDNA is used to amplify actin using the following primers:

20 5'actin primer: ATC TGG CAC CAC ACC TTC TAC AA (SEQ ID NO: 81)
3'actin primer: GCC AGC CAG GTC CAG ACG CA (SEQ ID NO: 82)

[0250] A portion of the samples are then analyzed on a 4-20 TBE Criterion polyacrylamide gel (BioRad), stained with SYBR GREEN I (Molecular Probes) and visualized on a Phosphorimager.

25 [0251] First-strand cDNA from the Chung model (50 days post-ligation) is normalized using a house-keeping gene; beta-actin. Figures 1A and 1B shows the expression of TRPV4 and NPY in the Chung Model (50- and 28-day post-ligation, respectively). The positive control, NPY and TRPV4 message are elevated in the injured DRG relative to sham and non-ligated DRGs. Accordingly, TRPV4 serves as a target for 30 neuropathic pain.

EXAMPLE 7

Identification of VR TRPM8

[0252] To identify novel TRP channels, genomic DNA databases are searched by constructing a HMM from the known TRP protein sequences of different mammalian species. With this model, the 6-frame translation of all available human sequences is queried and identifies multiple novel putative exons with similarity to the TM4 and TM6 domains of VR1. A fragment of the mouse homologue of one novel TRP channel is amplified by RT-PCR from mouse DRG RNA. Full-length sequence of this gene is derived from a combination of exon-prediction software, PCR and RACE amplification from newborn mouse DRGs.

[0253] For PCR cloning, primers 163f (5'-CAAGTTGTCCGCCTTTTC (SEQ ID NO: 98)) and 164r (5'-AACTGTCTGGAGCTGGCAGT (SEQ ID NO: 99)) are designed from the HMM sequences for TRPM8 as a result of blast hits and used to amplify a 699-nucleotide fragment of TRPM8 from newborn DRG cDNA. From this initial sequence and exon prediction programs, RACE PCR (Clontech) is used to obtain the 5' and 3' ends of TRPM8 from mouse newborn DRG cDNA following the manufacturer's protocol. Primers used in these experiments are shown in Table 3.

Table 3: Primers to Amplify Mouse TRPM8 cDNA

		SEQ ID NO:
Putative trp candidate		
2KMHMR5R44-MOD CELERA HUMAN CONTIG		
FOR MOUSE:		
Probes designed for <i>in situ</i> hyb analysis		
AP163F	CAAGTTGTCCGCCTCTTC	100
AP164R	ACTGCCAGCTCCAGACAGTT	101
Rapid amplification of cDNA ends (RACE)		
5' RACE primers		
5' RACE (nested)	ccttcgatgtgtggctctggcataa	102
5' RACE	CCTTGCCTTCTTCCCCAGAGTCTCAA	103
AP220 5' RACE	GCAAAGTTTTGGCTCCACCCGTCA	104
AP2215' RACE (nested)	GCCAGTGCTGGGTCAAGCAGTCGTA	105
3' RACE primers		
3' RACE I	TTCAGGAGGTCAATGTTCACGGCTCTCA	106
3' RACE I (nested)	GTACCGAACCTGCAGATGCCAAGA	107
AP218 3'RACE TRPXII	GCAAGATCCCTTGTGTGGTGGTGGGA	108
AP219 3' (nested)	CAGCCTGGTGGAGGTGGAGGATGTT	109
3' RACE #3	CGGAACCTGCAGATGCCAAGAACT	110
3' RACE primer in TM5 region of TRPM8		
AP225	GCGTGGCCAGACAGGGGATCTTAAG	111
3' REVERSE primer in TM5 region of TRPM8		
AP226	CCACACAGCAAAGAGGAACA	112
To amplify longer piece of mouse TRPM8		
216F	GGAGCCGCAGAAATGGTACT	113
Primers used for Northern probe		
Amplifies around 1.2 kb band		
AP258	TCTCATTGGCCTCATTCTG	114
AP247	ATATGAGACCCGAGCAGTGG	115

[0254] The protein TRPM8, has been named following the nomenclature suggested in Clapham et al., *Cell*, 108:595-598 (2001). Several human ESTs, many of which have been isolated from various cancer tissues, contain fragments of TRPM8 (Genbank GI Nos. 8750489, 9149390, 9335992 and 2223353).

[0255] Translation of the nucleotide sequence of TRPM8 predicts a protein composed of 1104 amino acid residues (see SEQ ID NO: 8). The overall sequence of mouse

TRPM8 is 93% identical to that of the human gene (see Figure 6A). Its closest relative is TRPM2 (42% identity) (see Figures 6A and 6B). TRPM8 belongs to the “long” or Melastatin subfamily of TRP channels, a group of TRPs characterized by their lack of ankyrin domains in the N-terminus. TRP channels are predicted to contain TM6 domains, 5 although at least one is predicted to have seven membrane-spanning domains (see Nagamine et al., *Genomics*, 54:124-131 (1998)). A Kyte-Doolittle plot suggests the presence of eight distinct hydrophobic peaks in TRPM8 sequence, which could represent six to eight predicted transmembrane domains. Overall, the predicted transmembrane domains are within amino acids 695-1024 of TRPM8. Outside of this region, the only predicted secondary structures 10 are coiled-coil domains present both in the N- and C-terminal portion of the protein (data not shown) (see Burkhard et al., *Trends Cell. Biol.*, 11:82-88 (2001)). Coiled-coil domains are implicated in oligomerization of GABA-B channels, and have been previously predicted in some TRP channels (see Funayama et al., *supra*; and Margeta-Mitrovic et al., *Neuron*, 27:97-106 (2000)).

15

EXAMPLE 8

Localization of TRPM8 expression

A. Northern blot analysis

[0256] Northern blots are made as followed: Total RNA are purified from mouse newborn and adult tissues using TRIzol LS (Invitrogen/Gibco Life technologies), followed 20 by polyA⁺ purification with Oligotex (Qiagen) according to the manufacturer’s protocols. Approximately 3 mg of sample are electrophoresed on 1% glyoxal gels, transferred and hybridized at high-stringency with a ³²P-labeled probe representing nucleotides 1410-1980 of the mouse full-length TRPM8 sequence. Commercial Northern blots (Clontech) are hybridized with the same TRPM8 probe. Blots are hybridized for 3 hours at 68°C in 25 ExpressHyb hybridization solution (Clontech) and washed according to the manufacturer’s high-stringency washing protocol and exposed to a phosphoimager screen for 1-3 days.

[0257] The results from this analysis are described below. No TRPM8 expression is detected using commercial Northern blots. Blots from newborn and adult mice are used that include tissues relevant for somatic sensation, including DRG, spinal cord and different

sources of skin. One mRNA species of approximately 6.3 kb is present predominantly in DRGs.

B. In situ hybridization

[0258] For *in situ* hybridizations, newborn and adult tissues are dissected, fixed in

5 4% paraformaldehyde in PBS, cryoprotected and frozen in liquid nitrogen in OCT mounting medium. Cryostat sections (10 μ m) are processed and hybridized with a digoxigenin cRNA probe generated by *in vitro* transcription (Roche Biochemicals). The mouse TRPM8 mRNA-specific antisense riboprobe corresponds to nucleotides 1410-1980 of the mTRPM8 sequence. Fluorescence detection and double-labeling experiments are carried out with the
10 tyramide signal amplification kit (TSA; NEN) essentially as previously described (see Dong et al., *Cell*, 106:619-632 (2001)).

[0259] Digoxigenin-labeled probes show specific expression in DRG and trigeminal ganglia (cranial sensory neurons innervating the mouth and jaw) in newborn and adult mouse, but not in day 13 embryos. TRPM8 expression is restricted to approximately
15 5-10% of adult DRG neurons. The average size of the neurons positive for TRPM8 is 18 \pm 3.1 μ m (mean \pm standard deviation, n=69), and can be classified as small-diameter c-fiber-containing neurons, which in mouse are defined as smaller than 25 μ m. TRPM8 is not expressed in heavily-myelinated neurons marked by Neurofilament (NF) antibodies, which correlates well with TRPM8 expression in small-sized neurons. TRPM8⁺ neurons thus
20 appear to belong to a subset of nociceptive or thermoceptive neurons that express trkA, an NGF receptor, during development (see Huang and Reichardt, *Ann. Rev. Neurosci.*, 24:677-736 (2001)). In the absence of NGF or trkA, DRG neurons that normally express this receptor die through apoptosis during embryonic development (Huang and Reichardt, *supra*). To prove that TRPM8 is expressed in trkA-dependent neurons, TRPM8 expression
25 is evaluated in DRGs from newborn trkA-null mice. The expression of TRPM8 is completely abolished in the mutant ganglia. In addition, TRPM8 is not co-expressed with VR1, which marks a class of nociceptors that respond to capsaicin and noxious heat. This observation is confirmed by the lack of TRPM8 co-expression with either CGRP or IB4, two well-characterized antigenic markers found on nociceptive neurons (see Snider and
30 McMahon, *Neuron*, 20:629-632 (1998); Tominaga et al., *Neuron*, 21:531-543 (1998)). This data strongly indicates that TRPM8 is expressed in a subpopulation of

thermoceptive/nociceptive neurons distinct from the well-characterized heat and pain sensing neurons marked by VR1, CGRP or IB4.

[0260] Following *in situ* hybridization, immunofluorescence is performed with anti-CGRP (1:100; Biogenesis), IB-4 (10 µg/mL; Sigma), anti-VR1 (1/2000; Abcam), anti-NF150 (1/1000; Chemicon) and detected with FITC or CY3 (10 µg/mL; Jackson Immunoresearch). Although all panels shown in these studies demonstrate lack of co-expression, this is not due to technical issues since additional probes/antibodies are used as controls to ensure our double-labeling protocol with the TRPM8 *in situ* probe is working.

EXAMPLE 9

10 Activation of TRPM8 Protein by Cold and Menthol

A. Effect of heat, capsaicin, cold and menthol upon intracellular calcium

[0261] Given the similarity of TRPM8 protein to TRPV family members and its unique expression pattern, the effects of heat, capsaicin, cold and menthol in mediating calcium influx are examined using transfected CHO-K1/FRT cells expressing TRPM8 protein and a fluorescent calcium imaging method as described in detail below.

[0262] To generate mouse TRPM8-expressing CHO cell lines, mouse TRPM8 cDNA are subcloned in pcDNA5 (Invitrogen), transfected into CHO-K1/FRT cells using Fugene 6 (Roche). The transfected cells are selected by growth in MEM medium containing 200 µg/µL⁻¹ hygromycin (Gibco BRL). Populations are frozen at early passage numbers and 20 these stocks are used for further studies. Stable clones that express the mRNAs are identified by Northern blot analysis as well as Southern blotting to confirm integration site (not shown). CHO cells do not express an endogenous TRPM8 isoform and therefore serve as a control along with a cell line stably transfected with a VR1-expressing plasmid.

[0263] Calcium imaging experiments are performed essentially as previously 25 described (see Savidge et al., *Neuroscience*, 102:177-184 (2001)). Briefly, cells are plated on glass coverslips and loaded with Fura-2 acetoxyethyl ester (2.5-5 mM) and incubated for 30-60 minutes at room temperature in 1.5 mM of pluronic acid (Molecular Probes, Eugene, OR) in a HEPES-buffered saline (2 mM Ca²⁺). Coverslips are placed in a laminar flow perfusion chamber (Warner Instrument Corp.) and constantly perfused with HEPES-buffered saline (2 mM Ca²⁺) via a local perfusion pipette through which buffer and chilled 30

solutions are also applied. Chilled stimulations consist of a linear decrease (~1-1.5°C sec⁻¹) in perfusate temperature from 33°C to 10°C. Perfusate temperature is controlled by a regulated Peltier device and is monitored in the cell chamber by a miniature thermocouple. Alternatively, cells are plated on 24-well tissue culture plates, loaded with Fura-2 and 5 application of solutions is performed with a 3 cc syringe over a period of 10 seconds. Images of Fura-2 loaded cells with the excitation wavelength alternating between 340 and 380 nM are captured with a cooled CCD camera. Following subtraction of background fluorescence, the ratio of fluorescence intensity at the two wavelengths is calculated. Ratio levels in groups of 20-40 individual cells are analyzed using MetaFluor (Universal Imaging 10 Corporation). All graphs are averaged responses from groups of 20-30 individual cells from representative single experiments. All experiments are repeated on three separate occasions and similar results obtained. Hanks balanced salt solution (HBSS), phosphate buffered saline (PBS) and all cell culture reagents are obtained from Gibco BRL. Ruthenium red, capsaicin and menthol are obtained from Sigma.

15 [0264] The results of the above calcium imaging experiments are described below. Capsaicin (10 µM), an activator of VR1, does not evoke a response in TRPM8 expressing cells. Neither hypo-osmotic solutions, known to generate Ca²⁺ responses in TRPV3-expressing cells, or hypertonic buffer elicit a response in TRPM8 expressing cell lines (see Liedtke et al., *supra*; and Strotmann et al., *supra*). An increase in temperature (25-50°C), a 20 potent stimulus for VR1, also does not alter intracellular calcium levels. However, when the temperature is lowered from 25°C to 15°C, an increase in intracellular calcium is observed in TRPM8 expressing cells (Figures 7A and 8A). This response is not observed in non-transfected CHO cells or the VR1-expressing cell line (Figures 7A and 8A). Addition of a 10°C stimulus also evokes an influx of Ca²⁺. This response is dependent on Ca²⁺ in the 25 buffer, because removal of extracellular calcium suppresses the temperature response (Figures 7A and 8A). The dependence on outside calcium is indicative of a cation-permeable channel localized at the plasma membrane. A potent blocker of the heat response for VR1, ruthenium red (at 5 µM), does not suppress the temperature response.

30 [0265] Since TRPM8 responds to a decrease in temperature, additional experiments are carried out to investigate the temperature threshold at which intracellular calcium ([Ca²⁺]_i) begins to rise in TRPM8 expressing cells. Cells are incubated at 35°C (normal skin temperature) for several minutes followed by a decrease in temperature to

13°C. The temperature response in mouse TRPM8-CHO cells shows a threshold of 22-25°C at which $[Ca^{2+}]_i$ starts to increase (Figure 7B), followed by a marked increase when the temperature of the buffer reached ~15°C. These experiments indicate that at physiological relevant temperatures, the upper activation threshold for TRPM8 is ~23°C (Figure 7C).

5 [0266] Menthol, a compound commonly used for its cooling properties, is tested as a stimulus on TRPM8 expressing CHO cells. Non-transfected CHO cells are completely insensitive to menthol (tested up to 1 mM) (Figure 7D). However, upon treatment of TRPM8 cells (incubated at 25°C), intracellular fluorescence increases significantly within seconds in response to menthol concentrations of 10 and 100 μ M (Figure 7D). Additionally, 10 as with the temperature stimulus, depletion of calcium from the extracellular buffer suppresses the calcium response (Figure 7D). The effect that menthol has at different temperatures is also examined. Incubation of TRPM8 expressing cells at 33°C, reveals that 10 μ M menthol does not induce a calcium response as observed at 25°C, but upon lowering the temperature to 30°C, intracellular calcium levels increases (Figure 7E). Menthol thus 15 appears to mimic the effect of lowering the temperature on TRPM8 expressing cells.

B. Effect of cold and menthol upon conductance

[0267] To investigate the membrane responses to cold and menthol, voltage clamp experiments are carried out on TRPM8 expressing cells which are prepared as described above.

20 [0268] Cells are plated onto poly-D-lysine coated cover-slips for recording purposes and recordings undertaken 18-24 hours later. Experiments are carried out at room temperature using whole-cell voltage clamp technique, with an Axopatch 2B amplifier, filtered at 5 kHz and pClamp suite of software (Axon Instruments). Series resistant compensation is 80% for all experiments, using 2-5 $M\Omega$ fire-polished pipettes. Recording 25 solutions are as follows; pipette solution for all experiments is (mM) CsCl, 140; $CaCl_2$, 1; EGTA, 10; HEPES, 10; MgATP, 2; titrated to pH 7.4 with CsOH. For menthol and cold activated currents the bath solution is (mM): NaCl, 140; KCl, 5; Glucose; 10, HEPES, 10; $CaCl_2$, 2; $MgCl_2$, 1; titrated to pH 7.4 with NaOH. Current-voltage relationships are used to evaluate reversal potentials with voltage ramps from -100 to +60 mV (2 second duration). 30 For the permeability studies for the monovalent ions the NaCl in a simplified bath solution (mM): NaCl, 140; Glucose; 10, HEPES, 10; $CaCl_2$, 2; $MgCl_2$, 1, is substituted by either

equimolar CsCl or KCl (titrated with CsOH or KOH). For calcium permeability estimates, the bath solutions contains (mM) NaCl, 100; Glucose, 10 mM; Hepes, 10 mM (titrated with NaOH) plus 1 or 30 mM CaCl₂. Osmolarity of solutions are adjusted by addition of sucrose. Permeability ratios for the monovalent cations to Na (P_X/P_{Na}) are calculated as follows:

5 $P_X/P_{Na} = E_{shift} = \{RT/F\} \log (P_X/P_{Na}[X]_O / [Na]_O)$

where F is Faraday's constant, R is the universal gas constant and T is absolute temperature. For measurements of calcium permeability P_{Ca}/P_{Na} is calculated as follows:

$$E_{shift} = \{RT/F\} \log \{[Na]_O + 4B'[Ca]_O(2)\} / \{ [Na]_O 4B'[Ca]_O(1)\}$$

where $B' = P'_{Ca}/P_{Na}$ and $P'_{Ca} = P_{Ca} / (1 + e^{EF/RT})$ and [Ca]_{O(1)} and [Ca]_{O(2)} refer to the 10 two different calcium concentrations. Local perfusion of menthol is via a TC²bip temperature controller. A Marlow temperature controller is used for the cooling ramps.

[0269] The results of the voltage clamp studies carried out on TRPM8 expressing cells are described below. Temperature ramps from 35°C to 7-13°C evoke inward currents at a holding potential of -60 mV and outward currents at +40 or +60 mV. Currents increase 15 in amplitude as the temperature is lowered and usually show some degree of desensitization at the coldest temperatures tested <10°C (Figure 9A). The temperature threshold for current activation shows no dependence on membrane potential and individual cells activated at temperatures between 19°C and 25°C, with a mean threshold of 21.79 ± 0.64°C (n=5). Analysis of the current-voltage relationships of the response to a cold stimulus with CsCl 20 filled recording pipettes and a typical NaCl-based external solution reveals an outwardly rectifying current with a reversal potential (E_{rev}) close to 0 mV which is typical of a non-selective cation channel (Figure 9B).

[0270] Application of menthol evokes rapidly activating currents in TRPM8 expressing, but not in non-transfected CHO cells at temperatures above the threshold for 25 cold activation (>23°C, Figure 10A). The menthol activated current shows pronounced outward rectification (Figure 10B) with an E_{rev} of -9.28 ± 0.75 mV (n=12) that is similar to the E_{rev} for the cold-activated current under the same ionic conditions. These currents could be inactivated by raising the temperature (see Figure 10A) suggesting that menthol shifts the threshold for activation to higher temperatures, which agrees with the calcium imaging 30 experiments. To test this idea further, concentration-response curves for menthol-evoked currents at two temperatures (22°C and 35°C) are obtained using positive membrane potentials to increase the size of the currents (Figures 11A and 11B). The concentration-

response relationship is shifted to the left at the lower temperature with a marked increase in the maximum amplitudes (Figures 11A and 11B). Changes in E_{rev} are used to determine the ion selectivity of the menthol activated current. Isotonic replacement of the NaCl in the solution with KCl or CsCl, causes small positive shifts in E_{rev} indicating that the TRPM8 5 channel discriminates poorly between these cations (data not shown). From the changes in E_{rev} measured on individual cells (external NaCl to KCl gives a shift of $+7.38 \pm 1.43$ mV, n=7; NaCl to CsCl gives a shift of $+9.09 \pm 0.36$ mV, n=5) a permeability sequence of Cs>K>Na is calculated with $P_{Cs}/P_{Na} = 1.43$ and $P_K/P_{Na} = 1.34$. Relative calcium permeability is calculated from the E_{rev} values measured with different external calcium 10 concentrations. Increasing the external calcium from 1-30 mM, in the absence of external Mg²⁺ ions, shifts E_{rev} by $+11.67 \pm 1.20$ mV, which corresponds to $P_{Ca}/P_{Na} = 0.97$. Thus TRPM8 is permeable to the monovalent cations, Na, K and Cs as well as the divalent cation calcium.

[0271] It is understood that the examples and embodiments described herein are 15 for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes.

WE CLAIM:

1. An isolated TRPV3 nucleic acid molecule comprising a member selected from the group consisting of:

- 5 a) a polynucleotide that encodes a mouse TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO: 2;
- b) a polynucleotide that encodes a mouse TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO: 2;
- c) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a mouse TRPV3 protein;
- 10 d) a polynucleotide that encodes a human TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO 5;
- e) a polynucleotide that encodes a human TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO 5;
- f) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a human TRPV3 protein; and
- 15 g) a polynucleotide that is complementary to a polynucleotide of a) through f).

2. The TRPV3 nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a polydeoxyribonucleic acid (DNA).

20 3. The TRPV3 nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a polyribonucleic acid (RNA).

4. The TRPV3 nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a) or b) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 3.

25 5. The TRPV3 nucleic acid molecule of claim 4, wherein the first polynucleotide is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 65-2440 of SEQ ID NO: 1.

6. The TRPV3 nucleic acid molecule of claim 4, wherein the first polynucleotide is 90% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 65-2440 of SEQ ID NO: 1.

7. The TRPV3 nucleic acid molecule of claim 4, wherein the first 5 polynucleotide comprises a nucleotide sequence as set forth in nucleotides 65-2440 of SEQ ID NO: 1.

8. The TRPV3 nucleic acid molecule of claim 1, wherein the nucleic acid molecule is d) or e) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 6.

10 9. The TRPV3 nucleic acid molecule of claim 8, wherein the first polynucleotide is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 57-2432 of SEQ ID NO: 4.

15 10. The TRPV3 nucleic acid molecule of claim 9, wherein the first polynucleotide is 90% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 57-2432 of SEQ ID NO: 4.

11. The TRPV3 nucleic acid molecule of claim 9, wherein the first polynucleotide comprises a nucleotide sequence as set forth in nucleotides 57-2432 of SEQ ID NO: 4.

12. The TRPV3 nucleic acid molecule of claim 1, wherein the nucleic acid 20 molecule is c) or f) and the polypeptide comprises one or more functional domains selected from the group consisting of:

- a) an ankyrin domain;
- b) a transmembrane region;
- c) a pore loop region; and
- 25 d) a coiled-coil domain.

13. The TRPV3 nucleic acid molecule of claim 12, wherein the polypeptide comprises a pore loop region flanked by two transmembrane regions.

14. The TRPV3 nucleic acid molecule of claim 12, wherein the polypeptide comprises four ankyrin domains.

15. The TRPV3 nucleic acid molecule of claim 1, wherein the nucleic acid molecule further comprises a heterologous nucleic acid.

5 16. The TRPV3 nucleic acid molecule of claim 15, wherein the heterologous nucleic acid comprises a promoter operably linked to the TRPV3 polynucleotide.

17. The TRPV3 nucleic acid molecule of claim 15, wherein the heterologous nucleic acid comprises an expression vector.

10 18. A host cell that comprises a TRPV3 nucleic acid molecule of claim 15.

19. An isolated TRPV3 polypeptide comprising a member selected from the group consisting of:

- a) a mouse TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO: 2;
- b) a mouse TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO: 2;
- c) one or more functional domains of a mouse TRPV3 protein;
- d) a human TRPV3 protein comprising amino acid residues 1-791 of SEQ ID NO 5;
- e) a human TRPV3 protein comprising amino acid residues 2-791 of SEQ ID NO 5; and
- f) one or more functional domains of a human TRPV3 protein.

20 20. The TRPV3 polypeptide of claim 19, wherein the TRPV3 polypeptide is c) or f) and comprises one or more functional domains selected from the group consisting

25 of:

- a) an ankyrin domain;
- b) a transmembrane region;
- c) a pore loop region; and

d) a coiled-coil domain.

21. The TRPV3 polypeptide of claim 20, wherein the polypeptide comprises a pore loop region flanked by two transmembrane regions.

22. The TRPV3 polypeptide of claim 20, wherein the polypeptide 5 comprises four ankyrin domains.

23. An antibody that specifically binds to a TRPV3 polypeptide of claim 19.

24. A method for identifying an agent that modulates TRPV3-mediated cation passage through a membrane, the method comprising:

10 a) providing a membrane that comprises a TRPV3 polypeptide of claim 19;
b) contacting the membrane with a candidate agent; and
c) determining whether passage of one or more cations through the membrane is increased in the presence of the candidate agent 15 compared to passage in the absence of the candidate agent.

25. The method of claim 24, wherein the membrane comprises a cell and cation passage through the membrane is detected by measuring cation influx across the membrane into the cell.

26. The method of claim 25, wherein the cell comprises a promoter 20 operably linked to a heterologous polynucleotide that encodes the TRPV3 polypeptide.

27. The method of claim 24, wherein cation passage through the membrane is detected by voltage clamping.

28. The method of claim 24, wherein cation passage through the membrane is detected by an ion sensitive dye or a membrane potential dye.

25 29. The method of claim 24, wherein the assay is conducted at a 20 temperature of at least 33°C.

30. The method of claim 24, wherein the assay is conducted at a temperature of less than 52°C.

31. The method of claim 30, wherein the assay is conducted at a temperature of less than 43°C.

5 32. The method of claim 24, wherein the membrane is contacted with the candidate modulating agent in a well of a multiwell plate.

33. The method of claim 32, wherein the multiwell plate is a 96-, 384- or 1536-well plate.

10 34. The method of claim 24, wherein a candidate agent that reduces cation passage is further tested for ability to treat pain by administering the candidate agent to a test animal and determining whether the candidate agent decreases the test animal's response to a pain stimulus.

15 35. The method of claim 34, wherein the pain stimulus is exposure to a temperature above 33° C.

36. A method of reducing pain associated with TRPV3 activity, the method comprising administering to a subject suffering from pain an analgesically effective amount of a compound that reduces TRPV3-mediated cation passage through a membrane or reduces signal transduction from a TRPV3 polypeptide to a DRG neuron.

20 37. The method of claim 36, wherein the pain is associated with one or more of heat exposure, inflammation, or tissue damage.

38. The method of claim 36, wherein the compound is selected from the group consisting of:

- a) an antibody that specifically binds to a TRPV3 polypeptide;
- b) an antisense polynucleotide, ribozyme, or an interfering RNA that reduces expression of a TRPV3 polypeptide; and
- c) a chemical compound that reduces cation passage through a membrane that comprises a TRPV3 polypeptide.

39. The method of claim 38, wherein the chemical compound has a molecular weight of 1000 daltons or less.

40. A method for determining whether pain in a subject is mediated by TRPV3, the method comprising:

5 a) obtaining a sample from a region of the subject at which the pain is felt; and

 b) testing the sample to determine whether a TRPV3 polypeptide or TRPV3 polynucleotide is present in the sample.

41. The method of claim 40, wherein the presence of a TRPV3 polypeptide 10 in the sample is detected by determining whether cation passage across membranes of cells in the sample is mediated by a TRPV3 polypeptide.

42. The method of claim 41, wherein TRPV3 involvement in mediating cation passage across membranes of the cells is determined by detecting an increase in cation passage across membranes of the cells when assayed above 33°C compared to cation passage 15 when assayed below 33°C.

43. The method of claim 40, wherein the presence of a TRPV3 polypeptide in the sample is detected by contacting the sample with a reagent that specifically binds to a TRPV3 polypeptide.

44. The method of claim 43, wherein the reagent comprises an antibody.

20 45. The method of claim 40, wherein the presence of a TRPV3 polynucleotide in the sample is detected by contacting nucleic acids from the sample with a test polynucleotide that can hybridize to a TRPV3 polynucleotide.

46. The method of claim 45, wherein the test polynucleotide comprises an oligonucleotide at least 10 nucleotides in length.

25 47. The method of claim 45, wherein the method comprises amplification of a TRPV3 polynucleotide, if present in the sample.

48. The method of claim 47, wherein the amplification comprises polymerase chain reaction or ligase chain reaction.

49. The method of claim 45, wherein the test polynucleotide is attached to a solid support.

5 **50.** The method of claim 49, wherein the solid support comprises a microchip.

51. An isolated TRPV4 nucleic acid molecule comprising a member selected from the group consisting of:

- a)** a polynucleotide that encodes a mouse TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO: 14;
- b)** a polynucleotide that encodes a mouse TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO: 14;
- c)** a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a mouse TRPV4 protein;
- d)** a polynucleotide that encodes a human TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO 17;
- e)** a polynucleotide that encodes a human TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO 17;
- f)** a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a human TRPV4 protein; and
- g)** a polynucleotide that is complementary to a polynucleotide of a) through f).

52. The TRPV4 nucleic acid molecule of claim 51, wherein the nucleic acid molecule is a polydeoxyribonucleic acid (DNA).

25 **53.** The TRPV4 nucleic acid molecule of claim 51, wherein the nucleic acid molecule is a polyribonucleic acid (RNA).

54. The TRPV4 nucleic acid molecule of claim 51, wherein the nucleic acid molecule is a) or b) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 15.

5 55. The TRPV4 nucleic acid molecule of claim 54, wherein the first polynucleotide is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 156-2771 of SEQ ID NO: 13.

56. The TRPV4 nucleic acid molecule of claim 54, wherein the first polynucleotide is 90% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 156-2771 of SEQ ID NO: 13.

10 57. The TRPV4 nucleic acid molecule of claim 56, wherein the first polynucleotide comprises a nucleotide sequence as set forth in nucleotides 156-2771 of SEQ ID NO: 13.

15 58. The TRPV4 nucleic acid molecule of claim 51, wherein the nucleic acid molecule is d) or e) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 18.

59. The TRPV4 nucleic acid molecule of claim 58, wherein the first polynucleotide is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 16.

20 60. The TRPV4 nucleic acid molecule of claim 58, wherein the first polynucleotide is 90% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 16.

61. The TRPV4 nucleic acid molecule of claim 60, wherein the first polynucleotide comprises a nucleotide sequence as set forth in SEQ ID NO: 16.

25 62. The TRPV4 nucleic acid molecule of claim 51, wherein the nucleic acid molecule is c) or f) and the polypeptide comprises one or more functional domains selected from the group consisting of:

- a) an ankyrin domain;

- b) a transmembrane region;
- c) a pore loop region; and
- d) a coiled-coil domain.

5 63. The TRPV4 nucleic acid molecule of claim 62, wherein the polypeptide comprises a pore loop region flanked by two transmembrane regions.

64. The TRPV4 nucleic acid molecule of claim 62, wherein the polypeptide comprises three ankyrin domains.

65. The TRPV4 nucleic acid molecule of claim 51, wherein the nucleic acid molecule further comprises a heterologous nucleic acid.

10 66. The TRPV4 nucleic acid molecule of claim 65, wherein the heterologous nucleic acid comprises a promoter operably linked to the TRPV4 polynucleotide.

67. The TRPV4 nucleic acid molecule of claim 65, wherein the heterologous nucleic acid comprises an expression vector.

15 68. A host cell that comprises a TRPV4 nucleic acid molecule of claim 65.

69. An isolated TRPV4 polypeptide comprising a member selected from the group consisting of:

- a) a mouse TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO: 14;
- b) a mouse TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO: 14;
- c) one or more functional domains of a mouse TRPV4 protein;
- d) a human TRPV4 protein comprising amino acid residues 1-871 of SEQ ID NO 17;
- e) a human TRPV4 protein comprising amino acid residues 2-871 of SEQ ID NO 17; and
- f) one or more functional domains of a human TRPV4 protein.

70. The TRPV4 polypeptide of claim 69, wherein the polypeptide is c) or f) and comprises one or more functional domains selected from the group consisting of:

- 5 a) an ankyrin domain;
- b) a transmembrane region;
- c) a pore loop region; and
- d) a coiled-coil domain.

71. The TRPV4 polypeptide of claim 70, wherein the polypeptide comprises a pore loop region flanked by two transmembrane regions.

72. The TRPV4 polypeptide of claim 70, wherein the polypeptide 10 comprises three ankyrin domains.

73. An antibody that specifically binds to a TRPV4 polypeptide of claim 69.

74. A method for identifying an agent that modulates TRPV4-mediated cation passage through a membrane, the method comprising:

- 15 a) providing a membrane that comprises a TRPV4 polypeptide of claim 69;
- b) contacting the membrane with a candidate agent; and
- c) determining whether passage of one or more cations through the membrane is increased in the presence of the candidate agent compared to passage in the absence of the candidate agent.

20 75. The method of claim 74, wherein the membrane comprises a cell and cation passage through the membrane is detected by measuring cation influx across the membrane into the cell.

76. The method of claim 75, wherein the cell comprises a promoter 25 operably linked to a heterologous polynucleotide that encodes the TRPV4 polypeptide.

77. The method of claim 74, wherein cation passage through the membrane is detected by voltage clamping.

78. The method of claim 74, wherein cation passage through the membrane is detected by an ion sensitive dye or a membrane potential dye.

79. The method of claim 74, wherein the membrane is contacted with the candidate modulating agent in a well of a multiwell plate.

5 80. The method of claim 79, wherein the multiwell plate is a 96-, 384- or 1536-well plate.

10 81. The method of claim 74, wherein a candidate agent that reduces cation passage is further tested for ability to treat pain by administering the candidate agent to a test animal and determining whether the candidate agent decreases the test animal's response to a pain stimulus.

82. The method of claim 81, wherein the pain is neuropathic pain.

15 83. A method of reducing pain associated with TRPV4 activity, the method comprising administering to a subject suffering from pain an analgesically effective amount of a compound that reduces TRPV4-mediated cation passage through a membrane or reduces signal transduction from a TRPV4 polypeptide to a DRG neuron.

84. The method of claim 83, wherein the pain is neuropathic pain.

85. The method of claim 83, wherein the compound is selected from the group consisting of:

20 a) an antibody that specifically binds to a TRPV4 polypeptide;
b) an antisense polynucleotide, ribozyme, or an interfering RNA that reduces expression of a TRPV4 polypeptide; and
c) a chemical compound that reduces cation passage through a membrane that comprises a TRPV4 polypeptide.

25 86. The method of claim 85, wherein the chemical compound has a molecular weight of 1000 daltons or less.

87. A method for determining whether pain in a subject is mediated by TRPV4, the method comprising:

- a) obtaining a sample from a region of the subject at which the pain is felt; and
- b) testing the sample to determine whether a TRPV4 polypeptide or TRPV4 polynucleotide is present in the sample.

5 **88.** The method of claim 87, wherein the presence of a TRPV4 polypeptide in the sample is detected by determining whether cation passage across membranes of cells in the sample is mediated by a TRPV4 polypeptide.

10 **89.** The method of claim 87, wherein the presence of a TRPV4 polypeptide in the sample is detected by contacting the sample with a reagent that specifically binds to a TRPV4 polypeptide.

90. The method of claim 89, wherein the reagent comprises an antibody.

91. The method of claim 87, wherein the presence of a TRPV4 polynucleotide in the sample is detected by contacting nucleic acids from the sample with a test polynucleotide that can hybridize to a TRPV4 polynucleotide.

15 **92.** The method of claim 91, wherein the test polynucleotide comprises an oligonucleotide at least 10 nucleotides in length.

93. The method of claim 91, wherein the method comprises amplification of a TRPV4 polynucleotide, if present in the sample.

20 **94.** The method of claim 93, wherein the amplification comprises polymerase chain reaction or ligase chain reaction.

95. The method of claim 91, wherein the test polynucleotide is attached to a solid support.

96. The method of claim 95, wherein the solid support comprises a microchip.

25 **97.** An isolated TRPM8 nucleic acid molecule comprising a member selected from the group consisting of:

- a) a polynucleotide that encodes a mouse TRPM8 protein comprising amino acid residues 1-1104 of SEQ ID NO: 8;
- b) a polynucleotide that encodes a mouse TRPM8 protein comprising amino acid residues 2-1104 of SEQ ID NO: 8;
- 5 c) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a mouse TRPM8 protein;
- d) a polynucleotide that encodes a human TRPM8 protein comprising amino acid residues 1-1268 of SEQ ID NO 11;
- e) a polynucleotide that encodes a human TRPM8 protein comprising amino acid residues 2-1268 of SEQ ID NO 11;
- 10 f) a polynucleotide that encodes a polypeptide that comprises one or more functional domains of a human TRPM8 protein; and
- g) a polynucleotide that is complementary to a polynucleotide of a) through f).

15 **98.** The TRPM8 nucleic acid molecule of claim 97, wherein the nucleic acid molecule is a polydeoxyribonucleic acid (DNA).

99. The TRPM8 nucleic acid molecule of claim 97, wherein the nucleic acid molecule is a polyribonucleic acid (RNA).

20 **100.** The TRPM8 nucleic acid molecule of claim 97, wherein the nucleic acid molecule is a) or b) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 9.

101. The TRPM8 nucleic acid molecule of claim 100, wherein the first polynucleotide is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 448-3762 of SEQ ID NO: 7.

25 **102.** The TRPM8 nucleic acid molecule of claim 100, wherein the first polynucleotide is 90% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 448-3762 of SEQ ID NO: 7.

103. The TRPM8 nucleic acid molecule of claim 102, wherein the first polynucleotide comprises a nucleotide sequence as set forth in nucleotides 448-3762 of SEQ ID NO: 7.

5 **104.** The TRPM8 nucleic acid molecule of claim 97, wherein the nucleic acid molecule is d) or e) and comprises a first polynucleotide 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 12.

105. The TRPM8 nucleic acid molecule of claim 104, wherein the first polynucleotide is 80% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 61-4821 of SEQ ID NO: 10.

10 **106.** The TRPM8 nucleic acid molecule of claim 104, wherein the first polynucleotide is 90% or more identical to a second polynucleotide having a nucleotide sequence as set forth in nucleotides 61-4821 of SEQ ID NO: 10.

15 **107.** The TRPM8 nucleic acid molecule of claim 106, wherein the first polynucleotide comprises a nucleotide sequence as set forth in nucleotides 61-4821 of SEQ ID NO: 10.

108. The TRPM8 nucleic acid molecule of claim 97, wherein the nucleic acid molecule is c) or f) and the polypeptide comprises one or more functional domains selected from the group consisting of:

20 a) a transmembrane region;
b) a pore loop region; and
c) a coiled-coil domain.

109. The TRPM8 nucleic acid molecule of claim 108, wherein the polypeptide comprises a pore loop region flanked by two transmembrane regions.

25 **110.** The TRPM8 nucleic acid molecule of claim 97, wherein the nucleic acid molecule further comprises a heterologous nucleic acid.

111. The TRPM8 nucleic acid molecule of claim 110, wherein the heterologous nucleic acid comprises a promoter operably linked to the TRPM8 polynucleotide.

5 **112.** The TRPM8 nucleic acid molecule of claim 110, wherein the heterologous nucleic acid comprises an expression vector.

113. A host cell that comprises a TRPM8 nucleic acid molecule of claim 97.

114. An isolated TRPM8 polypeptide comprising a member selected from the group consisting of:

- 10 a) a mouse TRPM8 protein comprising amino acid residues 1-1104 of SEQ ID NO: 8;
- 15 b) a mouse TRPM8 protein comprising amino acid residues 2-1104 of SEQ ID NO: 8;
- 16 c) one or more functional domains of a mouse TRPM8 protein;
- 17 d) a human TRPM8 protein comprising amino acid residues 1-1268 of SEQ ID NO 11;
- 18 e) a human TRPM8 protein comprising amino acid residues 2-1268 of SEQ ID NO 11; and
- 19 f) one or more functional domains of a human TRPM8 protein.

20 **115.** The TRPM8 polypeptide of claim 114, wherein the nucleic acid molecule is c) or f) and the functional domains comprise one or more members selected from the group consisting of:

- 21 a) a transmembrane region;
- 22 b) a pore loop region; and
- 23 c) a coiled-coil domain.

25 **116.** The TRPM8 polypeptide of claim 115, wherein the polypeptide comprises a pore loop region flanked by two transmembrane regions.

117. An antibody that specifically binds to a TRPM8 polypeptide of claim 114.

118. A method for identifying an agent that modulates TRPM8-mediated cation passage through a membrane, the method comprising:

- a) providing a membrane that comprises a TRPM8 polypeptide of claim 114;
- 5 b) contacting the membrane with a candidate agent; and
- c) determining whether passage of one or more cations through the membrane is increased in the presence of the candidate agent compared to passage in the absence of the candidate agent.

10 **119.** The method of claim 118, wherein the membrane comprises a cell and cation passage through the membrane is detected by measuring cation influx across the membrane into the cell.

120. The method of claim 119, wherein the cell comprises a promoter operably linked to a heterologous polynucleotide that encodes the TRPM8 polypeptide.

15 **121.** The method of claim 118, wherein cation passage through the membrane is detected by voltage clamping.

122. The method of claim 118, wherein cation passage through the membrane is detected by an ion sensitive dye or a membrane potential dye.

123. The method of claim 118, wherein the membrane is contacted with the candidate modulating agent in a well of a multiwell plate.

20 **124.** The method of claim 123, wherein the multiwell plate is a 96-, 384- or 1536-well plate.

125. The method of claim 118, wherein the assay is to identify antagonists of TRPM8-mediated cation passage and is conducted at a temperature of less than 20°C and/or in the presence of menthol.

25 **126.** The method of claim 125, wherein a candidate agent that reduces cation passage is further tested for ability to treat pain by administering the candidate agent to a test

animal and determining whether the candidate agent decreases the test animal's response to a pain stimulus.

127. The method of claim 126, wherein the pain stimulus is cold.

128. The method of claim 118, wherein the assay is to identify agonists of 5 TRPM8-mediated cation passage and is conducted at a temperature of greater than 20°C.

129. The method of claim 128, wherein an agonist of TRPM8-mediated cation passage is used as a fragrance or a flavor enhancer.

130. A method of reducing pain associated with TRPM8 activity, the method comprising administering to a subject suffering from pain an analgesically effective amount 10 of a compound that reduces TRPM8-mediated cation passage through a membrane or reduces signal transduction from a TRPM8 polypeptide to a DRG neuron.

131. The method of claim 130, wherein the pain is associated with one or more of cold exposure, inflammation, or tissue damage.

132. The method of claim 130, wherein the compound is selected from the 15 group consisting of:

- a) an antibody that specifically binds to a TRPM8 polypeptide;
- b) an antisense polynucleotide, ribozyme, or an interfering RNA that reduces expression of a TRPM8 polypeptide; and
- c) a chemical compound that reduces cation passage through a membrane that comprises a TRPM8 polypeptide.

20 133. The method of claim 132, wherein the chemical compound has a molecular weight of 1000 daltons or less.

134. A method for determining whether pain in a subject is mediated by TRPM8, the method comprising:

25

- a) obtaining a sample from a region of the subject at which the pain is felt; and

b) testing the sample to determine whether a TRPM8 polypeptide or TRPM8 polynucleotide is present in the sample.

135. The method of claim 134, wherein the presence of a TRPM8 polypeptide in the sample is detected by determining whether cation passage across 5 membranes of cells in the sample is mediated by a TRPM8 polypeptide.

136. The method of claim 135, wherein TRPM8 involvement in mediating cation passage across membranes of the cells is determined by detecting an increase or decrease in cation passage across membranes of the cells when assayed below 20°C and/or in the 10 presence of menthol, compared to cation passage when assayed above 20°C and/or in the absence of menthol.

137. The method of claim 134, wherein the presence of a TRPM8 polypeptide in the sample is detected by contacting the sample with a reagent that specifically binds to a TRPM8 polypeptide.

138. The method of claim 137, wherein the reagent comprises an antibody.

139. The method of claim 134, wherein the presence of a TRPM8 polynucleotide in the sample is detected by contacting nucleic acids from the sample with a test polynucleotide that can hybridize to a TRPM8 polynucleotide.

140. The method of claim 139, wherein the test polynucleotide comprises an oligonucleotide at least 10 nucleotides in length.

141. The method of claim 139, wherein the method comprises amplification 20 of a TRPM8 polynucleotide, if present in the sample.

142. The method of claim 141, wherein the amplification comprises polymerase chain reaction or ligase chain reaction.

143. The method of claim 139, wherein the test polynucleotide is attached to 25 a solid support.

144. The method of claim 143, wherein the solid support comprises a microchip.

145. A method for identifying an agent useful in the modulation of a mammalian sensory response, the method comprising:

- 5 a) contacting a candidate agent with a test system that comprises a receptor polypeptide selected from the group consisting of TRPM8, TRPV3 and TRPV4; and
- b) detecting a change in activity of the receptor polypeptide in the presence of the candidate agent as compared to the activity of the receptor polypeptide in the absence of the agent, thereby identifying 10 an agent that modulates receptor activity.

146. The method of claim 145, wherein the sensory response is response to cold and the polypeptide is a TRPM8 polypeptide.

147. The method of claim 146, wherein the TRPM8 polypeptide comprises 15 an amino acid sequence as set forth in SEQ ID NO: 8 or SEQ ID NO: 11.

148. The method of claim 145, wherein the sensory response is response to warm or hot temperatures and the polypeptide is a TRPV3 polypeptide.

149. The method of claim 148, wherein the TRPV3 polypeptide comprises an amino acid sequence as set forth in SEQ ID NO: 2 or SEQ ID NO: 5.

20 150. The method of claim 145, wherein the sensory response is neuropathic pain and the polypeptide is a TRPV4 polypeptide.

151. The method of claim 150, wherein the TRPV4 polypeptide comprises an amino acid sequence as set forth in SEQ ID NO: 14 or SEQ ID NO: 17.

25 152. The method of claim 145, wherein the method further comprises administering the agent that modulates receptor activity to a test subject, and thereafter detecting a change in the sensory response in the test subject.

153. The method of claim 145, wherein the test system comprises a membrane that comprises the receptor polypeptide.

154. The method of claim 153, wherein the test system comprises a cell that expresses a heterologous polynucleotide that encodes the receptor polypeptide.

5 155. The method of claim 154, wherein the cell is substantially isolated and the contacting is performed *in vitro*.

156. The method of claim 154, wherein the cell is present in an organism and the contacting is performed *in vivo*.

10 157. The method of claim 145, wherein the receptor activity comprises increased or decreased Ca^{2+} passage through the membrane that comprises the receptor polypeptide.

158. The method of claim 157, wherein the membrane comprises a substantially purified cell membrane.

159. The method of claim 157, wherein the membrane comprises a liposome.

160. A method for monitoring the efficacy of a treatment of a subject suffering from pain, the method comprising:

a) obtaining, at two or more time points in the course of treatment for pain, a sample from a region of the subject at which the pain is felt; and

20 b) testing the samples to determine whether a reduction is observed from one time point to another in amount or activity of one or more members selected from the group consisting of: a TRPV3 polypeptide, a TRPV3 mRNA, a TRPV4 polypeptide, a TRPV4 mRNA, a TRPM8 polypeptide, and a TRPM8 mRNA.

25 161. The method of claim 160, wherein one of the time points is prior to administration of the treatment for pain.

162. An assay capable of detecting the expression of one or more of TRPV3, TRPV4 or TRPM8 in human tissue, the assay selected from the group consisting of:

- 5 a) an assay comprising contacting a human tissue sample with monoclonal antibodies binding to TRPV3, TRPV4 or TRPM8 and determining whether the monoclonal antibodies bind to polypeptides in the sample; and
- b) an assay comprising contacting a human tissue sample with an oligonucleotide that is capable of hybridizing to a nucleic acid that encodes TRPV3, TRPV4 or TRPM8.

10 163. The assay of claim 162, wherein the assay comprises contacting a human tissue sample with a pair of oligonucleotides that are capable of hybridizing to a nucleic acid that encodes TRPV3, TRPV4 or TRPM8 and subjecting the sample to polymerase chain reaction.

15 164. The assay of claim 162, wherein the assay comprises contacting a human tissue sample with an oligonucleotide array that comprises one or more oligonucleotides that are capable of hybridizing to a nucleic acid that encodes TRPV3, TRPV4 or TRPM8.

165. The assay of claim 162, wherein the human tissue sample is obtained from a site of pain.

20 166. A method of treating pain, the method comprising identifying a patient suffering from pain mediated by one or more polypeptides selected from the group consisting of TRPV3, TRPV4 and TRPM8 by measuring expression of the polypeptide in tissue from such patient, and administering to such patient an analgesically effective amount of an agent which inhibits the polypeptide.

25 167. A method for identifying an agent useful in the treatment of pain, the method comprising:

- a) administering a candidate agent to a mammal suffering from pain;
- b) in a sample obtained from the mammal, detecting an activity or amount of one or more members selected from the group consisting

of: a TRPV3 polypeptide, a TRPV3 mRNA, a TRPV4 polypeptide, a TRPV4 mRNA, a TRPM8 polypeptide, and a TRPM8 mRNA; and

- c) comparing the amount or activity of the member in the presence of the candidate agent with the amount or activity of the member in a sample obtained from the mammal in the absence of the candidate agent, wherein a decrease in amount or activity of the member in the sample in the presence of the candidate agent relative to the amount or activity in the absence of the candidate agent is indicative of an agent useful in the treatment of pain.

10 **168.** A method of identifying an agent that binds to and/or modulates the
activity of an mRNA or polypeptide encoded by a TRPV3, TRPV4, or TRPM8 nucleic acid,
the method comprising:

- a) contacting an isolated cell which expresses a heterologous TRPV3, TRPV4, or TRPM8 nucleic acid encoding a polypeptide with the agent; and
- b) determining binding and/or modulation of the activity of the mRNA or polypeptide by the agent, to identify agents which bind with and/or modulate the activity of the polypeptide.

A

RT-PCR

**Fold
Regulation**

B

Figure 1

c

TRPV1 1 --MEQRASLDSEESESPEQENSCLDPPDRDPNCKEPVVKPHITTRSRTRLFG----KGDSEEA
 TRPV2 1 --MTSASNPEAFAFR---LETSGD----EEGSAEVN----KGKNE-PGPMES
 TRPV4 1 --MADPGDGFRAAPGEVAEPPGDESGTSGGAEFELSSLANL----EEGEGSSSSLPVDASRPA
 TRPV3 1 MNAHSKEMVPLMGKRTTAE~~GGN~~PPV~~LL~~TEKRPADLT~~TKK~~SAHFELIEG
 TRPV6 1 --MGWSLPK----EKGLILC~~W~~LNKF~~C~~RWFH
 TRPV5 1 --MGVKKP----WIQ~~Q~~RLNWV
coiled-coil
 TRPV1 71 ASCD-----IIT~~S~~SVLT~~T~~GRPGDGPAS-----VRESS~~S~~DSV~~S~~AGEKPD----RLYD~~R~~RS~~T~~ED
 TRPV2 45 NFSR-----QIKVN---LNYRKG----LG~~S~~QD----N~~N~~FD~~D~~DR~~L~~ES
 TRPV4 77 KGVPNPIDLLESTRYESSVVPGPKKAPMDSL~~F~~D~~G~~TYRHHPS~~S~~D~~N~~K~~R~~W~~R~~R~~K~~V~~V~~E~~K~~OP~~Q~~SP~~K~~AP~~A~~P~~Q~~PE~~P~~IL~~V~~F~~N~~EP~~I~~ED
 TRPV3 74 QCLSG-----NCDDM~~S~~PQSP~~S~~DDV~~T~~ETPS-----N~~N~~NS~~S~~ANLAKE~~Q~~R~~K~~K~~U~~LLKKR~~T~~KA
 TRPV6 26 RES-----WAQ~~S~~R~~D~~E~~Q~~NLLQO-----KRIWESE~~P~~ELL
 TRPV5 20 EQD-----WNQH~~V~~D~~Q~~LHMLQO-----KSIWESE~~P~~HLR
coiled-coil
 TRPV1 120 AVAQSN~~C~~Q~~E~~LES~~S~~LI~~P~~FI~~O~~RS~~K~~KE-----LTDSEFKD~~P~~E~~T~~G~~K~~T~~C~~L~~K~~K~~A~~M~~L~~N~~H~~NG~~Q~~ND~~T~~ALL~~L~~D~~V~~AR~~K~~T~~D~~SL~~K~~Q~~O~~PF~~V~~
 TRPV2 78 V~~W~~RR~~G~~P~~E~~MT~~T~~G~~Y~~Y~~H~~Y~~R~~RT~~S~~-----H~~I~~S~~A~~Y~~T~~E~~S~~~~G~~K~~T~~C~~L~~M~~K~~A~~V~~N~~I~~Q~~D~~G~~V~~N~~A~~C~~L~~P~~I~~Q~~I~~D~~R~~G~~S~~N~~P~~Q~~E~~LY
 TRPV4 157 I~~V~~S~~R~~G~~S~~T~~A~~D~~I~~G~~L~~U~~S~~E~~H~~L~~T~~KK~~K~~-----L~~T~~D~~E~~BF~~R~~P~~S~~T~~G~~K~~T~~C~~L~~P~~K~~A~~L~~N~~L~~S~~N~~GR~~N~~D~~T~~U~~P~~V~~E~~LD~~I~~A~~R~~T~~G~~N~~M~~R~~E~~FIN
 TRPV3 126 AVSEG~~C~~V~~E~~E~~U~~R~~E~~L~~L~~Q~~D~~D~~L~~C~~E~~R~~R~~G~~L~~D~~V~~F~~L~~M~~H~~K~~L~~T~~A~~S~~D~~T~~G~~K~~T~~C~~L~~M~~K~~A~~V~~N~~I~~IN~~P~~N~~T~~K~~E~~IV~~R~~L~~B~~A~~F~~E~~E~~ND~~I~~D~~R~~P~~I~~
 TRPV6 52 A~~A~~K~~A~~N~~N~~V~~Q~~A~~N~~I~~K~~U~~K~~E~~G~~C~~E~~V~~H~~Q-----K~~U~~AM~~G~~E~~T~~A~~H~~I~~A~~Y~~D~~N-----L~~E~~A~~M~~V~~I~~ME~~A~~P-----E~~L~~MF
 TRPV5 46 A~~A~~K~~A~~N~~D~~M~~C~~T~~K~~R~~I~~Q~~H~~D~~Q~~N~~C~~D~~F~~R~~O~~-----R~~G~~AL~~G~~E~~A~~L~~H~~V~~A~~Y~~A~~Y~~D~~N-----L~~D~~A~~I~~M~~L~~M~~E~~TA~~P~~-----Y~~I~~MT
ankyrin 1
 TRPV1 192 ASY~~T~~D~~S~~Y~~V~~KG~~O~~T~~A~~L~~H~~I~~A~~T~~E~~FR~~N~~M~~T~~L~~V~~T~~L~~V~~E~~NG~~A~~D~~V~~Q~~A~~A~~N~~G~~D~~FE~~K~~K~~T~~K~~G~~R~~P~~G~~F~~Y~~F~~G~~E~~L~~P~~IS~~A~~ACT~~N~~OL~~A~~T~~V~~K~~F~~LI~~O~~N~~S~~
 TRPV2 150 A~~O~~C~~T~~D~~E~~FY~~R~~G~~H~~S~~A~~L~~H~~I~~A~~T~~E~~K~~R~~S~~L~~W~~C~~M~~L~~L~~V~~E~~N~~G~~A~~N~~V~~H~~I~~R~~A~~C~~G~~R~~F~~F~~K~~H~~Q~~G-----T~~C~~F~~Y~~F~~E~~L~~P~~IS~~A~~ACT~~K~~W~~O~~D~~V~~M~~T~~Y~~E~~LEN~~P~~
 TRPV4 229 S~~P~~F~~R~~D~~I~~Y~~R~~G~~Q~~T~~S~~L~~H~~I~~A~~T~~E~~R~~R~~C~~H~~Y~~M~~V~~E~~L~~V~~A~~Q~~G~~A~~D~~V~~A~~Q~~A~~R~~G~~F~~F~~P~~Q~~K~~D~~E~~G~~G~~Y~~M~~-----K~~U~~AM~~G~~E~~T~~A~~H~~I~~A~~Y~~D~~N-----L~~E~~A~~M~~V~~I~~ME~~A~~P-----E~~L~~MF
 TRPV3 206 A~~E~~Y~~T~~E~~E~~A~~Y~~G~~O~~T~~A~~L~~H~~I~~A~~T~~E~~R~~G~~D~~I~~T~~A~~V~~H~~I~~A~~G~~A~~D~~V~~N~~A~~H~~A~~K~~G~~F~~E~~N~~P~~K~~Y~~H~~E~~G~~F~~Y~~F~~G~~E~~T~~E~~NA~~L~~A~~A~~CT~~N~~O~~P~~E~~I~~Q~~V~~H~~I~~M~~E~~N~~S~~
 TRPV6 108 E~~P~~M~~T~~S~~E~~L~~V~~E~~G~~O~~T~~A~~L~~H~~I~~A~~V~~I~~N~~Y~~N~~V~~N~~I~~R~~A~~L~~A~~R~~G~~A~~S~~V~~A~~R~~T~~G~~S~~V~~H~~Y~~R-----P~~H~~N~~L~~I~~V~~Y~~G~~E~~H~~P~~I~~S~~F~~A~~A~~C~~V~~G~~S~~E~~E~~I~~V~~R~~L~~I~~I~~H~~G~~
 TRPV5 102 E~~S~~T~~L~~C~~E~~P~~F~~V~~G~~O~~T~~A~~L~~H~~I~~A~~V~~I~~N~~Y~~N~~V~~N~~I~~R~~A~~L~~A~~R~~G~~A~~S~~V~~A~~R~~T~~G~~S~~V~~H~~Y~~R-----S~~H~~N~~L~~I~~V~~Y~~G~~E~~H~~P~~I~~F~~A~~A~~C~~V~~G~~S~~E~~E~~I~~V~~R~~L~~I~~H~~G~~
ankyrin 2
 TRPV1 192 ASY~~T~~D~~S~~Y~~V~~KG~~O~~T~~A~~L~~H~~I~~A~~T~~E~~FR~~N~~M~~T~~L~~V~~T~~L~~V~~E~~NG~~A~~D~~V~~Q~~A~~A~~N~~G~~D~~FE~~K~~K~~T~~K~~G~~R~~P~~G~~F~~Y~~F~~G~~E~~L~~P~~IS~~A~~ACT~~N~~OL~~A~~T~~V~~K~~F~~LI~~O~~N~~S~~
 TRPV2 150 A~~O~~C~~T~~D~~E~~FY~~R~~G~~H~~S~~A~~L~~H~~I~~A~~T~~E~~K~~R~~S~~L~~W~~C~~M~~L~~L~~V~~E~~N~~G~~A~~N~~V~~H~~I~~R~~A~~C~~G~~R~~F~~F~~K~~H~~Q~~G-----T~~C~~F~~Y~~F~~E~~L~~P~~IS~~A~~ACT~~K~~W~~O~~D~~V~~M~~T~~Y~~E~~LEN~~P~~
 TRPV4 229 S~~P~~F~~R~~D~~I~~Y~~R~~G~~Q~~T~~S~~L~~H~~I~~A~~T~~E~~R~~R~~C~~H~~Y~~M~~V~~E~~L~~V~~A~~Q~~G~~A~~D~~V~~A~~Q~~A~~R~~G~~F~~F~~P~~Q~~K~~D~~E~~G~~G~~Y~~M~~-----K~~U~~AM~~G~~E~~T~~A~~H~~I~~A~~Y~~D~~N-----L~~E~~A~~M~~V~~I~~ME~~A~~P-----E~~L~~MF
 TRPV3 206 A~~E~~Y~~T~~E~~E~~A~~Y~~G~~O~~T~~A~~L~~H~~I~~A~~T~~E~~R~~G~~D~~I~~T~~A~~V~~H~~I~~A~~G~~A~~D~~V~~N~~A~~H~~A~~K~~G~~F~~E~~N~~P~~K~~Y~~H~~E~~G~~F~~Y~~F~~G~~E~~T~~E~~NA~~L~~A~~A~~CT~~N~~O~~P~~E~~I~~Q~~V~~H~~I~~M~~E~~N~~S~~
 TRPV6 108 E~~P~~M~~T~~S~~E~~L~~V~~E~~G~~O~~T~~A~~L~~H~~I~~A~~V~~I~~N~~Y~~N~~V~~N~~I~~R~~A~~L~~A~~R~~G~~A~~S~~V~~A~~R~~T~~G~~S~~V~~H~~Y~~R-----P~~H~~N~~L~~I~~V~~Y~~G~~E~~H~~P~~I~~S~~F~~A~~A~~C~~V~~G~~S~~EE~~I~~V~~R~~L~~I~~H~~G~~
 TRPV5 102 E~~S~~T~~L~~C~~E~~P~~F~~V~~G~~O~~T~~A~~L~~H~~I~~A~~V~~I~~N~~Y~~N~~V~~N~~I~~R~~A~~L~~A~~R~~G~~A~~S~~V~~A~~R~~T~~G~~S~~V~~H~~Y~~R-----S~~H~~N~~L~~I~~V~~Y~~G~~E~~H~~P~~I~~F~~A~~A~~C~~V~~G~~S~~E~~E~~I~~V~~R~~L~~I~~H~~G~~
ankyrin 3
 TRPV1 192 ASY~~T~~D~~S~~Y~~V~~KG~~O~~T~~A~~L~~H~~I~~A~~T~~E~~FR~~N~~M~~T~~L~~V~~T~~L~~V~~E~~NG~~A~~D~~V~~Q~~A~~A~~N~~G~~D~~FE~~K~~K~~T~~K~~G~~R~~P~~G~~F~~Y~~F~~G~~E~~L~~P~~IS~~A~~ACT~~N~~OL~~A~~T~~V~~K~~F~~LI~~O~~N~~S~~
 TRPV2 150 A~~O~~C~~T~~D~~E~~FY~~R~~G~~H~~S~~A~~L~~H~~I~~A~~T~~E~~K~~R~~S~~L~~W~~C~~M~~L~~L~~V~~E~~N~~G~~A~~N~~V~~H~~I~~R~~A~~C~~G~~R~~F~~F~~K~~H~~Q~~G-----T~~C~~F~~Y~~F~~E~~L~~P~~IS~~A~~ACT~~K~~W~~O~~D~~V~~M~~T~~Y~~E~~LEN~~P~~
 TRPV4 229 S~~P~~F~~R~~D~~I~~Y~~R~~G~~Q~~T~~S~~L~~H~~I~~A~~T~~E~~R~~R~~C~~H~~Y~~M~~V~~E~~L~~V~~A~~Q~~G~~A~~D~~V~~A~~Q~~A~~R~~G~~F~~F~~P~~Q~~K~~D~~E~~G~~G~~Y~~M~~-----K~~U~~AM~~G~~E~~T~~A~~H~~I~~A~~Y~~D~~N-----L~~E~~A~~M~~V~~I~~ME~~A~~P-----E~~L~~MF
 TRPV3 206 A~~E~~Y~~T~~E~~E~~A~~Y~~G~~O~~T~~A~~L~~H~~I~~A~~T~~E~~R~~G~~D~~I~~T~~A~~V~~H~~I~~A~~G~~A~~D~~V~~N~~A~~H~~A~~K~~G~~F~~E~~N~~P~~K~~Y~~H~~E~~G~~F~~Y~~F~~G~~E~~T~~E~~NA~~L~~A~~A~~CT~~N~~O~~P~~E~~I~~Q~~V~~H~~I~~M~~E~~N~~S~~
 TRPV6 108 E~~P~~M~~T~~S~~E~~L~~V~~E~~G~~O~~T~~A~~L~~H~~I~~A~~V~~I~~N~~Y~~N~~V~~N~~I~~R~~A~~L~~A~~R~~G~~A~~S~~V~~A~~R~~T~~G~~S~~V~~H~~Y~~R-----P~~H~~N~~L~~I~~V~~Y~~G~~E~~H~~P~~I~~S~~F~~A~~A~~C~~V~~G~~S~~EE~~I~~V~~R~~L~~I~~H~~G~~
 TRPV5 102 E~~S~~T~~L~~C~~E~~P~~F~~V~~G~~O~~T~~A~~L~~H~~I~~A~~V~~I~~N~~Y~~N~~V~~N~~I~~R~~A~~L~~A~~R~~G~~A~~S~~V~~A~~R~~T~~G~~S~~V~~H~~Y~~R-----S~~H~~N~~L~~I~~V~~Y~~G~~E~~H~~P~~I~~F~~A~~A~~C~~V~~G~~S~~E~~E~~I~~V~~R~~L~~I~~H~~G~~
ankyrin 4
 TRPV1 272 WOPADISARD~~S~~VG~~N~~TV~~V~~HAL~~V~~E~~V~~AD~~N~~T~~V~~D~~N~~T~~K~~E~~T~~TS~~M~~N~~E~~I~~L~~LG~~A~~K~~H~~E~~T~~L~~K~~T~~E~~IT~~N~~R~~K~~G~~I~~T~~L~~LA~~A~~AS~~G~~NG~~V~~LAY
 TRPV2 229 WOPASL~~A~~T~~D~~SL~~G~~N~~T~~V~~V~~HAL~~V~~M~~A~~D~~N~~S~~P~~EN~~S~~AL~~V~~I~~H~~M~~D~~S~~L~~IQ~~M~~GA~~R~~C~~T~~V~~O~~LED~~I~~C~~N~~H~~Q~~CL~~T~~PL~~K~~LA~~K~~GE~~H~~E~~I~~E~~R~~
 TRPV4 309 HKKAD~~M~~E~~R~~Q~~D~~S~~R~~G~~N~~TV~~V~~HAL~~V~~A~~T~~D~~N~~T~~R~~E~~T~~K~~V~~T~~K~~M~~D~~E~~B~~L~~I~~K~~C~~S~~R~~I~~F~~D~~S~~N~~I~~E~~T~~L~~V~~NN~~D~~G~~I~~S~~P~~IM~~M~~A~~N~~T~~U~~E~~G~~V~~G~~
 TRPV3 285 --EQ~~T~~D~~S~~Q~~D~~S~~R~~G~~N~~TV~~V~~HAL~~V~~A~~T~~D~~N~~T~~R~~E~~T~~K~~V~~T~~K~~M~~D~~E~~B~~L~~I~~K~~C~~S~~R~~I~~F~~D~~S~~N~~I~~E~~T~~L~~V~~NN~~D~~G~~I~~S~~P~~IM~~M~~A~~N~~T~~U~~E~~G~~V~~G~~
 TRPV6 187 --AD~~I~~R~~A~~Q~~D~~S~~L~~G~~N~~T~~V~~HAL~~V~~E~~Q~~-----N~~K~~T~~E~~A~~C~~Q~~M~~N~~L~~TS~~Y~~D~~G~~D~~H~~L~~K~~~~S~~-----L~~E~~L~~M~~P~~N~~Q~~G~~I~~T~~F~~K~~LA~~G~~V~~E~~GN~~V~~MF~~G~~
 TRPV5 181 --AD~~I~~R~~A~~Q~~D~~S~~L~~G~~N~~T~~V~~HAL~~V~~E~~Q~~-----N~~K~~T~~E~~A~~C~~Q~~M~~N~~L~~TS~~Y~~D~~G~~D~~H~~L~~K~~~~S~~-----L~~E~~L~~M~~P~~N~~Q~~G~~I~~T~~F~~K~~LA~~G~~V~~E~~GN~~V~~MF~~G~~
ankyrin 4
 TRPV1 352 I~~L~~OR~~K~~I~~H~~E~~P~~C~~H~~I~~E~~K~~E~~T~~E~~W~~A~~Y~~G~~P~~V~~H~~S~~LYD~~I~~S~~C~~TC~~-~~E~~K~~N~~S~~V~~L~~E~~V~~I~~A~~S~~S~~SET~~P~~N~~R~~H~~D~~M~~L~~V~~K~~P~~L~~N~~R~~I~~H~~D~~R~~V~~V~~
 TRPV2 309 I~~L~~OR~~K~~E~~F~~S~~G~~-LY~~Q~~Y~~O~~P~~R~~E~~K~~E~~H~~V~~C~~G~~V~~S~~L~~Y~~D~~SS~~V~~S~~V~~E~~N~~E~~K~~N~~S~~V~~I~~H~~A~~F~~-~~C~~N~~S~~P~~H~~R~~K~~M~~V~~U~~L~~N~~K~~E~~Q~~E~~W~~R~~L~~R~~
 TRPV3 348 I~~L~~OR~~K~~E~~F~~T~~D~~E~~D~~H~~S~~E~~R~~K~~E~~T~~D~~W~~A~~Y~~G~~P~~V~~S~~S~~Y~~I~~D~~T~~I~~T~~N~~V~~D~~T~~T~~-~~T~~D~~N~~S~~V~~L~~E~~V~~N~~-~~T~~N~~I~~D~~E~~M~~T~~I~~L~~T~~P~~H~~I~~L~~H~~T~~K~~R~~
 TRPV3 360 I~~L~~OR~~K~~E~~F~~K~~P~~L~~S~~I~~S~~R~~K~~E~~T~~D~~W~~A~~Y~~G~~P~~V~~S~~Y~~I~~D~~T~~I~~T~~N~~V~~D~~T~~T~~-~~T~~D~~N~~S~~V~~L~~E~~V~~N~~-~~T~~N~~I~~D~~E~~M~~T~~I~~L~~T~~P~~H~~I~~L~~H~~T~~K~~R~~
 TRPV5 258 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 252 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 250 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 254 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 258 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 252 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 250 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 254 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 258 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 252 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 250 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 254 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 258 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 252 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 250 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 254 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 258 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 252 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 250 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 254 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 258 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 252 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 250 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 254 L~~M~~Q~~-~~-----K~~R~~K~~H~~I~~Q~~W~~T~~Y~~G~~B~~T~~ST~~S~~Y~~D~~IT~~E~~I~~S~~Q~~D~~S~~L~~K~~E~~L~~T~~TT~~-~~KK~~R~~E~~A~~Q~~D~~T~~P~~V~~K~~E~~V~~S~~L~~K~~W~~K~~R~~
 TRPV5 258 L~~M~~Q~~-</del~~

Figure 2

Figure 2D**Figure 2E****Figure 2F**

Figure 3
A**B****C****D**

A
— 250pA — 50 sC
heat — 100pA — 50 s

Figure 5

6/16

Figure 6A

TRPM7 1 **MSQKSWIESTLT**KREC^{VVY}-----**I**TES^SKDPRHCLPGCQ^ICQOLVRCFCGRLVKQHA

TRPM1 1 -----**I**MEPS^ESLRKAGSEOE^EEGFEGLP^RRTD^LGMVS^NLR^RSNSSLF^SWRLQCP^GNNDKQES^DSSW^IPE^NIKKKEC^VYF^VESSK

TRPM2 1 **MSFEGCARLSMRSRRNGTMGSTR**-----**T**LYSSV^RST-----**D**V^SYSDSP-----**L**VNF^IQANFKKREC^VFT^RDSK

TRPM8 1 -----**T**RYAS^V-----**D**V^SYSDSP-----**L**VNF^IQANFKKREC^VFT^RDSK

TRPM7 53 **CFTASLAMKYS**DVKLGEHF^{NQ}A-----**I**EEWS^VE^KHTEQS^PTDAYGV^IINFO^GC^HS^YRAKYVRL^ISYDTK^PE^IILQ^{LL}

TRPM1 1 -----**M**YIRV^SYDTK^PDS^L-----**H**LMV

TRPM2 81 **LSDAGKVVC**OC^GGY^THEQHLE^EAT^KP^HT^FQ^GT^QW^DP^KKH^VQ^EMP^TDA^FGD^IV^FT^GLS^QX^V-----**K**KYV^RV^SQ^DT^PSS^VT^FHM^T

TRPM8 63 **AMEN**-----**I**CKC^GY^AQS^QH^IE^GT^T-----**Q**INQNEK^WY^KK^HT^EF^PTD^AFG^DI^O-----**E**T^LG^KK^G-**K**-**Y**LR^LS^CTD^DSET^LY^ELLT

TRPM7 126 **KEWQ**OMELP^KL^VIS^VHGGM^QKFEL^HP^RIKQ^LL^GKGL^IKA^AV^TT^GGA^WIL^LT^GGGV^NT^GV^AK^HV^GD^AL^KE^HA^SR^SSR^K-----**I**C^TH

TRPM1 20 **KD**W^OLE^LP^KL^LIS^VHGG^LON^FEM^QP^KL^KQ^VF^GK^GL^IKA^AM^TT^GGA^WI^FT^GGGV^ISHVG^DALK^DH^SSK^SSR^GR-----**V**CA^I

TRPM2 160 **QH**W^HL^DV^PN^LIS^VT^GGA^KN^MMF^KFR^LK^SI^FR^RGL^VK^VQ^OT^TGA^WI^FT^GGGV^ISHVG^DALK^DH^SSK^SSR^GR-----**V**CA^I

TRPM8 135 **QH**W^HL^KT^PN^LIS^VT^GGA^KN^MMF^KFR^LK^SI^FR^RGL^VK^VQ^OT^TGA^WI^FT^GGGV^ISHVG^DALK^DH^SSK^SSR^GR-----**V**CA^I

TRPM7 126 **KEWQ**OMELP^KL^VIS^VHGGM^QKFEL^HP^RIKQ^LL^GKGL^IKA^AV^TT^GGA^WIL^LT^GGGV^NT^GV^AK^HV^GD^AL^KE^HA^SR^SSR^K-----**I**C^TH

TRPM1 20 **KD**W^OLE^LP^KL^LIS^VHGG^LON^FEM^QP^KL^KQ^VF^GK^GL^IKA^AM^TT^GGA^WI^FT^GGGV^ISHVG^DALK^DH^SSK^SSR^GR-----**V**CA^I

TRPM2 160 **QH**W^HL^DV^PN^LIS^VT^GGA^KN^MMF^KFR^LK^SI^FR^RGL^VK^VQ^OT^TGA^WI^FT^GGGV^ISHVG^DALK^DH^SSK^SSR^GR-----**V**CA^I

TRPM8 135 **QH**W^HL^KT^PN^LIS^VT^GGA^KN^MMF^KFR^LK^SI^FR^RGL^VK^VQ^OT^TGA^WI^FT^GGGV^ISHVG^DALK^DH^SSK^SSR^GR-----**V**CA^I

TRPM7 203 **GIAPWG**V^IENR^NDLV^G-----**R**D^VV^AP^YQ^TL^NNP^LS^KL^NV^LN^LH^SH^FI^LV^DD^GT^VG^KY^GA^EV^RL^RRE^EL^KT^IIN^QO⁻**R**H

TRPM1 97 **GIAPWG**G^IVENK^ED^LV^G-----**R**D^VT^RV^YQ^TM^SN^PL^SK^LS^VL^NN^SH^TH^TI^LD^PN^GT^LG^KY^GA^EV^KL^RR^LLE^KH^IS^LOK⁻**I**N

TRPM2 240 **GVAT**WT^GV^IVR^RREG^LH^I-----**G**S^FPA^EY^IL^DE^DG^QG^NT^LC^DS^NH^SH^FI^LV^DD^GT^HG^QY^GV^EI^PL^RT^RLE^KF^IS^EQ⁻**R**K^ER

TRPM8 213 **GIAPWG**M^VS^NR^DT^LI^RS^CD^EB^HF^SQ^YI^MD^FT^RD^PY^IL^DN^HH^TH^LL^VD^NG^GH^GP^TV^EA^KL^RN^QLE^KY^IS^ER⁻**S**Q^D

TRPM7 277 **ARIGQG**V^PV^VAL^VI^FE^GGP^NV^ID^TT^VLE^LY^QE^SPP^VP^VV^VC^EG^TGRA^DLL^YI^HK^TQ^EE^GGN^LP^DAA^EPD^DI^IST^IIK^KT^FN^V

TRPM1 171 **TRLQGQ**V^PL^VG^LV^VVE^GGP^NV^SI^VL^EY^LQ^EE^PP^PV^IC^DG^SGR^AS^DI^LS^EH^KY^CE^EG^II^NE^SL^RS^OL^VV^TI^QE^TF^NY

TRPM2 317 **GGVA**I^KI^PI^VC^VV^LE^GG^PG^NH^ET^TD^NA^TT^N-----**G**TP^CV^VV^VE^GS^GR^VAD^VI^AQ^VA^NL^PV^SD^IT^IS^LI^QQ^KL^SV^FQ^EM^PE^TF

TRPM8 293 **SNYGGK**I^KI^PI^VC^VA^QG^GG^RE^TL^KA^IN^TS^VK^S-----**K**IP^CV^VV^VE^GS^GQ^IA^DV^IA^SL^VE^VV⁻**E**D^VL^TS^SM^VK^EK^LV^RE^LP^RT^VS^RL

TRPM7 357 **GQSEAV**H^LF^QI^MEC^MKK^KKEL^IT^VF^HI^GS^ED^HQ^DI^DV^AI^LT^LKK^GT^NS^AF^D-----**Q**L^IL^TL^AW^DR^VD^IA^KN^HV^FV

TRPM1 251 **NKAQ**OS^HQ^LF^AI^JIME^CM^XX^KK^LV^TV^FR^MG^SE^GQ^QD^IE^MMAIL^TL^AKK^TN^VS^AP^D-----**Q**L^IS^LA^LW^NR^VD^IA^RS^CI^FV

TRPM2 395 **TESR**I^VE^WTK^KI^QD^IV^RR^QL^LT^VF^RE^GK^DQ^QD^VD^VA^IL^QALL^KA^SR^SQ^DH^FG^HE^NW^DH^QL^KL^VA^VN^RV^DI^AR^SE^IF^M

TRPM8 370 **PEEEIE**I^ES^WK^LK^EI^LE^SSS^HL^LT^VI^KM^EA^EG^DE^IV^SN^AI^SY^AV^KA^FS^TN^EQ^D-----**K**D^NW^NG^QL^KL^LLE^WN^OL^DL^AS^EI^F

TRPM7 430 **YGOQW**L⁻-----**V**G^SLEQ^AM^LD^AL^VM^DR

TRPM1 324 **FGPHW**T^LG^SL^AP^TD^SK^AT^EK^EK^KP^PM^AT^TK^GG^RK^GK^KG^KV^KE^EV^EE^ET^DP^RK^IE^LL^NW^VN^AL^EQ^AM^LD^AL^VM^DR

TRPM2 475 **D**E^WQ^WK^P-----**S**D^LH^FP^MT^AL^IS^NK⁻

TRPM8 449 **ND**RR^WE^S-----**A**D^LQ^EV^MF^TA^LI^KR⁻

TRPM7 452 **V**S^FV^KL^LI^ENG^VS^MH^KF^LT^IPR^LE^ELY^NT^KO^GP^TN^PM^FH^IL^RD^VR^QG^N-----**L**PP^GY^KI^TL^ID^IG^LV^IB^EY^LM^GG^TY^RC^T

TRPM1 404 **V**D^FV^KL^LI^ENG^VS^MH^KF^LT^IPR^LE^ELY^NT^KO^GP^TN^PM^FH^IL^RD^VR^QG^N-----**L**PP^DY^HI^SL^ID^IG^LV^IB^EY^LM^GG^TY^RC^T

TRPM2 497 **P**E^FV^KL^FL^ENG^VQ^LK^PF^VT^WD^TL^LLY^NE^LN^DP^SC^LF^HS^KL^QV^KW^ED^PR^AC^AP^RL^QM^HH^VA^QV^IR^ELL^GD^ET^QP^L

TRPM8 471 **P**K^FV^RL^FL^ENG^VQ^LK^PF^VT^WE^NV^LT^EL^FS⁻-----**D**A^LT^FV^WK^LV^AN^FR^RS^F

TRPM7 528 **Y**TR^KR^FR^LI^IY^NS^LG^CN^RR^SGR^NT^SS^T-----**P**Q^LR^KS^HE^TF^GN^RA^DK^EK^BK^MR^HH^NF^IK^TA^QP^YR^PK^MD^AS^ME^BG^KK^RT^KD^EI

TRPM1 479 **P**K^RP^KL^FL^EY^NL^FN^G-----**P**K^RP^KA^KL^KE^MD^EP^PA^KG^K-----**K**K^RK^KK^EE^ID

TRPM2 577 **Y**PR^RH^ND^RL^RL^L-----**V**P^HV^KL^NW^QG^VS^LR^SL^YK^RS^GH⁻

TRPM8 536 **W**K^ED^RS^SR⁻-----**E**D^LD^VE^LH^DA^ST⁻

TRPM7 608 **V**D^ID^DP^ET^KR^FP^VL^NE^LL^IW^ACL^MK^RO^VM^AR^FL^WH^OG^EE^SM^AK^AN^VA^LV^AC^K^V^SN^DF^G

TRPM1 528 **I**D^VD^DP^AV^SR^FQ^VP^FH^EL^MV^WA^VL^MK^RQ^MA^VF^WL^QR^GE^SM^AK^AN^VA^LV^AC^K^V^SN^DF^G

TRPM2 615 **I**V^TF^TM^DP^IT^RD^LI^IW^AQ^RR^EL^GT^IA^QS^DC^IA^AL^AC^SK^VI^AL^AE^EY^E

TRPM8 557 **I**TR^HD^PI^LQ^AM^FI^WI^AW^LQ^NK^EL^SK^VI^IT^GK^TG^CL^TA^AL^GA^SK^LL^KT^LA^VK^ND⁻-----**I**N^AAGE^EE^LLAN^EY^E

TRPM7 688 **O**L^AV^EL^LE^QS^FR^DE^TE^MA^MK^LL^TY^EL^KN^WS^NS^TC^LK^LA^VS^RI^DR^FV^AH^TC^TQ^ML^ILS^DM^WM^GR^LN^MK^NS^WY^KV^IL^SV

TRPM1 608 **O**L^AE^LL^DQ^SY^XK^HD^EQ^IQ^LA^MK^LL^TY^EL^KN^WS^NS^TC^LK^LA^VS^RI^DR^FV^AH^TC^TQ^ML^ILS^DM^WM^GR^LN^MK^NP^GL^KV^IM^GI^L

TRPM2 684 **H**R^AI^GV^FT^CY^RE^DE^RA^KQ^LL^TR^VS^EA^GW^KT^CI^CQ^AF^LK^VV^FN^GL^SV^DN^GL^WR^VT^LC^ML^AF

TRPM8 623 **T**R^AV^EL^TE^CY^ND^ED^LA^VL^QV^SC^EA^WG^SN^CI^ELA^VE^AT^DQ^HF^AI^OP^GV^QN^CE^IS^RD^TK^NW^KI^IL^CL^FI^I

TRPM7 768 **P**PA^IL^ML^EY^KT^AE^MSH^IP^QS^QD^AH^QM^TE^DS^RE^NN^FH^NI^TE^IP^ME^VF^KE^VK^IL^DI^IG^LV^IB^EY^LM^GG^TY^RC^T

TRPM1 688 **P**PT^IL^FE^FR^TY^DD^EFS^YQ^TS^KE^ND^EG^KE^E^IEN⁻-----**T**DA^NA^DG^SR^KG^DE^EH^RK^QR^IP^IG^TK^IC^E

TRPM2 764 **P**LL^LT^GL^IS^FR^EK^RD^IQ^DV^G-----**T**PA^AR^AR^A

TRPM8 703 **P**L^VG^CG^LV^SE^RK^EP^ID^KH^K-----**K**L^WY^IV^FV^A

TRPM7 848 **F**Y^HA^PI^VK^WF^NT^LA^LY^LG^FL^MY^TF^VV^LK^ME^QLP^SV^QE^WI^VI^AY^IF^TY^AI^EK^VR^EV^FM^S-**E**A^GK^IS^OK^IK^VW^FS^DY^NV^I

TRPM1 753 **F**Y^HA^PI^VK^WF^NT^LA^LY^LG^FL^MY^TF^VV^LK^ME^QLP^SV^QE^WI^VI^AY^IF^TY^AI^EK^VR^EV^FM^S-**E**P^GK^IS^OK^IK^VW^LQ^EY^WN^I

TRPM2 791 **F**FT^TA^PV^VV^LD^IL^SY^FA^FL^CL^FA^VV^LM^DF^QE^VW^SM^CE^CA^IY^LW^LF^SL^VC^EE^MR^OL^FV^DE^CG^IL^MK^AA^LY^FS^DW^NK^MI^DM^L^FV^VI^FV^VN^K

TRPM8 730 **F**FT^TS^PV^VF^SW^NV^VF^TY^AF^LL^FA^VL^MD^FH^SV^EH^TP^LL^IY^AL^VF^VL^FC^DE^VR^QY^MN-----**G**V^NY^FT^DL^WN^V

TRPM7 927 **S**DT^IA^IS^FF^EV^GF^GA^KW^NY^IN^AD^HN^VY^EA^GR^LI^CY^LN^IW^FY^VR^LD^FA^VN^VC^EP^MY^VS^DY^NV^I

TRPM1 832 **T**D^IV^AI^LL^FV^AG^IL^TC^RL^IQ^NQ^P-----**Y**MG^IY^CR^VI^CD^IV^YW^IR^VL^DF^IG^VK^YW^LQ^EY^WN^I

TRPM2 871 **L**D^VG^IL^LF^VA^GI^LT^CR^L-----**A**T^IY^FG^VR^IL^SL^DF^IL^FC^RL^MH

Figure 6B

Figure 6C**Figure 6D**

Figure 7A**Figure 7B**

Figure 7C**Figure 7D**

Figure 7E

Figure 8

A**B**

Figure 9

A**B**

Figure 10

Figure 11

A**B**

SEQUENCE LISTING

<110> Ardem Patapoutian
Andrea Peier
Peter McIntyre
Stuart Bevan
Chuanzheng Song
Pamposh Ganju

<120> VANILLOID RECEPTOR-RELATED NUCLEIC ACIDS
AND POLYPEPTIDES

<130> P0018US60

<150> 60/297,835
<151> 2001-06-13

<150> 60/351,238
<151> 2002-01-22

<150> 60/352,914
<151> 2002-01-29

<150> 60/357,161
<151> 2002-02-12

<150> 60/381,086
<151> 2002-05-15

<150> 60/381,739
<151> 2002-05-16

<160> 114

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2440
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (65) ... (2440)

<400> 1
gatctcaagg caaggactgc caccaccatc tgAACCTGC cAGCATATGC cttaggctcc 60
agca atg aat gcc cac tcc aag gag atg gtg ccc ctc atg ggc aaa aga 109
Met Asn Ala His Ser Lys Glu Met Val Pro Leu Met Gly Lys Arg
1 5 10 15
acc acg gca cct ggc aac cct gtt gta ctg aca gag aag agg cca 157
Thr Thr Ala Pro Gly Gly Asn Pro Val Val Leu Thr Glu Lys Arg Pro
20 25 30
gca gat ctc acc ccc acc aag aag agt gca cac ttc ttc ctg gag ata 205
Ala Asp Leu Thr Pro Thr Lys Lys Ser Ala His Phe Phe Leu Glu Ile
35 40 45
gaa gga ttt gag ccc aac ccc acg gtc acc aag acc tct cca ccc atc 253
Glu Gly Phe Glu Pro Asn Pro Thr Val Thr Lys Thr Ser Pro Pro Ile
50 55 60
ttc tcc aag ccg atg gac tcc aac atc cgg cag tgc ctc tct ggc aac 301
Phe Ser Lys Pro Met Asp Ser Asn Ile Arg Gln Cys Leu Ser Gly Asn
65 70 75

tgt gat gac atg gac tct ccc cag tct cct cag gat gat gtg aca gag	349
Cys Asp Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu	
80 85 90 95	
acc cca tcc aat ccc aac agt ccg agc gca aac ctg gcc aag gaa gaa	397
Thr Pro Ser Asn Pro Asn Ser Pro Ser Ala Asn Leu Ala Lys Glu Glu	
100 105 110	
cag agg cag aag aag cga ctg aag aag cgc atc ttc gcg gct gtg	445
Gln Arg Gln Lys Lys Arg Leu Lys Lys Arg Ile Phe Ala Ala Val	
115 120 125	
tcc gag ggc tgc gtg gag gag ctg cgg gaa ctc cta cag gat ctg cag	493
Ser Glu Gly Cys Val Glu Glu Leu Arg Glu Leu Leu Gln Asp Leu Gln	
130 135 140	
gac ctc tgc agg agg cgc cgc ggc ctg gat gtg cct gac ttc ctc atg	541
Asp Leu Cys Arg Arg Arg Gly Leu Asp Val Pro Asp Phe Leu Met	
145 150 155	
cac aag ctg aca gcc tca gac acc ggg aag acc tgc ctg atg aag gct	589
His Lys Leu Thr Ala Ser Asp Thr Gly Lys Thr Cys Leu Met Lys Ala	
160 165 170 175	
ttg ctc aac atc aat ccc aac acc aaa gag atc gtg cgg att ctg ctt	637
Leu Leu Asn Ile Asn Pro Asn Thr Lys Glu Ile Val Arg Ile Leu Leu	
180 185 190	
gcc ttc gct gag gag aac gac atc ctg gac agg ttc atc aac gct gag	685
Ala Phe Ala Glu Glu Asn Asp Ile Leu Asp Arg Phe Ile Asn Ala Glu	
195 200 205	
tac acg gaa gag gcc tat gaa ggg cag aca gcg ctg aac atc gcc atc	733
Tyr Thr Glu Glu Ala Tyr Glu Gly Gln Thr Ala Leu Asn Ile Ala Ile	
210 215 220	
gag cg _g cgc cag gga gac atc aca gca gtg ctt ata gca gcg ggt gct	781
Glu Arg Arg Gln Gly Asp Ile Thr Ala Val Leu Ile Ala Ala Gly Ala	
225 230 235	
gac gtc aat gct cac gcc aag ggg gtc ttc ttc aac ccc aaa tac cag	829
Asp Val Asn Ala His Ala Lys Gly Val Phe Phe Asn Pro Lys Tyr Gln	
240 245 250 255	
cat gaa ggc ttc tat ttt ggc gag aca ccc ctg gct ttg gca gcg tgt	877
His Glu Gly Phe Tyr Phe Gly Glu Thr Pro Leu Ala Leu Ala Ala Cys	
260 265 270	
act aac cag cct gag att gtg cag ctg ctg atg gag aat gag cag aca	925
Thr Asn Gln Pro Glu Ile Val Gln Leu Leu Met Glu Asn Glu Gln Thr	
275 280 285	
gac atc act tcc cag gat tcc cgg gga aac aac atc ctg cac gcg ctg	973
Asp Ile Thr Ser Gln Asp Ser Arg Gly Asn Asn Ile Leu His Ala Leu	
290 295 300	
gtg aca gtg gct gag gac ttc aag act cag aat gac ttc gtt aag cgc	1021
Val Thr Val Ala Glu Asp Phe Lys Thr Gln Asn Asp Phe Val Lys Arg	
305 310 315	
atg tat gac atg atc ctg ctg agg agt ggc aac tgg gag ctg gag acc	1069
Met Tyr Asp Met Ile Leu Leu Arg Ser Gly Asn Trp Glu Leu Glu Thr	
320 325 330 335	
atg cgc aac aac gat ggg ctc aca cca ctg cag ctg gct gcc aag atg	1117
Met Arg Asn Asn Asp Gly Leu Thr Pro Leu Gln Leu Ala Ala Lys Met	
340 345 350	

ggc aag gct gag atc ctg aag tac atc ctc agc cgc gag atc aag gag	1165
Gly Lys Ala Glu Ile Leu Lys Tyr Ile Leu Ser Arg Glu Ile Lys Glu	
355 360 365	
aag cct ctc cgg agc ttg tcc agg aag ttc acg gac tgg gcg tat ggg	1213
Lys Pro Leu Arg Ser Leu Ser Arg Lys Phe Thr Asp Trp Ala Tyr Gly	
370 375 380	
cct gtg tca tcc tca ctc tat gac ctc acc aat gta gac aca acg acg	1261
Pro Val Ser Ser Leu Tyr Asp Leu Thr Asn Val Asp Thr Thr Thr	
385 390 395	
gat aac tct gtg ctg gaa atc atc gtc tac aac acc aac att gat aac	1309
Asp Asn Ser Val Leu Glu Ile Ile Val Tyr Asn Thr Asn Ile Asp Asn	
400 405 410 415	
cga cat gag atg ctg acc ctg gag cct ctg cat acg ctg cta cac acg	1357
Arg His Glu Met Leu Thr Leu Glu Pro Leu His Thr Leu Leu His Thr	
420 425 430	
aaa tgg aag aaa ttt gcc aag tac atg ttc ttc ttg tcc ttc tgc ttc	1405
Lys Trp Lys Lys Phe Ala Lys Tyr Met Phe Phe Leu Ser Phe Cys Phe	
435 440 445	
tat ttc ttc tac aac atc acc ctg acc ctt gtc tct tac tac cgt cct	1453
Tyr Phe Tyr Asn Ile Thr Leu Thr Leu Val Ser Tyr Tyr Arg Pro	
450 455 460	
cgg gaa gat gag gat ctc cca cac ccc ttg gcc ctg aca cac aaa atg	1501
Arg Glu Asp Glu Asp Leu Pro His Pro Leu Ala Leu Thr His Lys Met	
465 470 475	
agt tgg ctt cag ctc cta ggg agg atg ttt gtc ctc atc tgg gcc aca	1549
Ser Trp Leu Gln Leu Leu Gly Arg Met Phe Val Leu Ile Trp Ala Thr	
480 485 490 495	
tgc atc tct gtg aaa gaa ggc att gcc att ttc ctg ctg aga ccc tcc	1597
Cys Ile Ser Val Lys Glu Gly Ile Ala Ile Phe Leu Leu Arg Pro Ser	
500 505 510	
gat ctt cag tcc atc ctg tca gat gcc tgg ttt cac ttt gtc ttt ttt	1645
Asp Leu Gln Ser Ile Leu Ser Asp Ala Trp Phe His Phe Val Phe Phe	
515 520 525	
gtc caa gct gta ctt gtg ata ctg tct gta ttc ttg tac ttg ttt gcc	1693
Val Gln Ala Val Leu Val Ile Leu Ser Val Phe Leu Tyr Leu Phe Ala	
530 535 540	
tac aaa gaa tac ctc gcc tgc ctc gtg ctg gcc atg gcc ctg ggc tgg	1741
Tyr Lys Glu Tyr Leu Ala Cys Leu Val Ile Leu Ala Met Ala Leu Gly Trp	
545 550 555	
gcg aac atg ctc tac tac acg aga ggc ttc cag tct atg ggc atg tac	1789
Ala Asn Met Leu Tyr Tyr Thr Arg Gly Phe Gln Ser Met Gly Met Tyr	
560 565 570 575	
agc gtc atg atc cag aag gtc att ttg cat gat gtc ctc aag ttc ttg	1837
Ser Val Met Ile Gln Lys Val Ile Leu His Asp Val Leu Lys Phe Leu	
580 585 590	
ttt gtt tac atc ctg ttc tta ctt gga ttt gga gta ggc ctg gcc tca	1885
Phe Val Tyr Ile Leu Phe Leu Leu Gly Phe Gly Val Ala Leu Ala Ser	
595 600 605	
ctg att gag aag tgc tcc aag gac aaa aag gac tgc agt tcc tat ggc	1933
Leu Ile Glu Lys Cys Ser Lys Asp Lys Lys Asp Cys Ser Ser Tyr Gly	
610 615 620	

agc ttc agc gac gcg gtg ctg gag ctc ttc aag ctc acc ata ggc ctg Ser Phe Ser Asp Ala Val Leu Glu Leu Phe Lys Leu Thr Ile Gly Leu 625 630 635	1981
ggc gac ctg aac atc cag cag aac tcc acc tac ccc atc ctc ttt ctc Gly Asp Leu Asn Ile Gln Gln Asn Ser Thr Tyr Pro Ile Leu Phe Leu 640 645 650 655	2029
ttc cta ctc atc acc tat gtc atc ctc acc ttc gtc ctc ctc aac Phe Leu Leu Ile Thr Tyr Val Ile Leu Thr Phe Val Leu Leu Leu Asn 660 665 670	2077
atg ctc atc gcc ctg atg ggg gag acg gtg gag aac gtc tcc aaa gaa Met Leu Ile Ala Leu Met Gly Glu Thr Val Glu Asn Val Ser Lys Glu 675 680 685	2125
agt gag cgg atc tgg cgc ttg cag aga gca agg acc atc ttg gag ttt Ser Glu Arg Ile Trp Arg Leu Gln Arg Ala Arg Thr Ile Leu Glu Phe 690 695 700	2173
gag aaa atg tta cca gaa tgg ctg aga agc aga ttc cgc atg ggc gag Glu Lys Met Leu Pro Glu Trp Leu Arg Ser Arg Phe Arg Met Gly Glu 705 710 715	2221
ctg tgc aaa gta gca gat gag gac ttc cgg ctg tgt ctg cgg atc aac Leu Cys Lys Val Ala Asp Glu Asp Phe Arg Leu Cys Leu Arg Ile Asn 720 725 730 735	2269
gag gtg aag tgg acg gaa tgg aaa aca cac gtg tcc ttc ctt aat gaa Glu Val Lys Trp Thr Glu Trp Lys Thr His Val Ser Phe Leu Asn Glu 740 745 750	2317
gac ccg gga ccc ata aga cgg aca gca gat tta aac aag att caa gat Asp Pro Gly Pro Ile Arg Arg Thr Ala Asp Leu Asn Lys Ile Gln Asp 755 760 765	2365
tct tcc agg agc aat agc aaa acc acc ctc tat gcg ttt gat gaa tta Ser Ser Arg Ser Asn Ser Lys Thr Thr Leu Tyr Ala Phe Asp Glu Leu 770 775 780	2413
gat gaa ttc cca gaa acg tcg gtg tag Asp Glu Phe Pro Glu Thr Ser Val *	2440
785 790	

<210> 2
<211> 791
<212> PRT
<213> Mus musculus

<400> 2
Met Asn Ala His Ser Lys Glu Met Val Pro Leu Met Gly Lys Arg Thr
1 5 10 15
Thr Ala Pro Gly Gly Asn Pro Val Val Leu Thr Glu Lys Arg Pro Ala
20 25 30
Asp Leu Thr Pro Thr Lys Lys Ser Ala His Phe Phe Leu Glu Ile Glu
35 40 45
Gly Phe Glu Pro Asn Pro Thr Val Thr Lys Thr Ser Pro Pro Ile Phe
50 55 60
Ser Lys Pro Met Asp Ser Asn Ile Arg Gln Cys Leu Ser Gly Asn Cys
65 70 75 80
Asp Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu Thr
85 90 95
Pro Ser Asn Pro Asn Ser Pro Ser Ala Asn Leu Ala Lys Glu Glu Gln
100 105 110
Arg Gln Lys Lys Lys Arg Leu Lys Lys Arg Ile Phe Ala Ala Val Ser
115 120 125
Glu Gly Cys Val Glu Glu Leu Arg Glu Leu Leu Gln Asp Leu Gln Asp

130	135	140
Leu Cys Arg Arg Arg Arg Gly	Leu Asp Val Pro Asp Phe	Leu Met His
145	150	155
Lys Leu Thr Ala Ser Asp Thr Gly Lys	Thr Cys Leu Met Lys Ala	Leu
165	170	175
Leu Asn Ile Asn Pro Asn Thr Lys	Glu Ile Val Arg Ile	Leu Leu Ala
180	185	190
Phe Ala Glu Glu Asn Asp Ile	Leu Asp Arg Phe Ile	Asn Ala Glu Tyr
195	200	205
Thr Glu Glu Ala Tyr Glu Gly	Gln Thr Ala Leu Asn Ile	Ala Ile Glu
210	215	220
Arg Arg Gln Gly Asp Ile	Thr Ala Val Leu Ile	Ala Ala Gly Ala Asp
225	230	235
Val Asn Ala His Ala Lys	Gly Val Phe Phe	Asn Pro Lys Tyr Gln His
245	250	255
Glu Gly Phe Tyr Phe Gly	Glu Thr Pro Leu Ala	Leu Ala Cys Thr
260	265	270
Asn Gln Pro Glu Ile Val Gln	Leu Leu Met Glu Asn	Glu Gln Thr Asp
275	280	285
Ile Thr Ser Gln Asp Ser Arg	Gly Asn Asn Ile	Leu His Ala Leu Val
290	295	300
Thr Val Ala Glu Asp Phe	Lys Thr Gln Asn Asp	Phe Val Lys Arg Met
305	310	315
Tyr Asp Met Ile Leu Leu Arg	Ser Gly Asn Trp	Glu Leu Glu Thr Met
325	330	335
Arg Asn Asn Asp Gly	Leu Thr Pro Leu Gln	Leu Ala Lys Met Gly
340	345	350
Lys Ala Glu Ile Leu Lys	Tyr Ile Leu Ser Arg	Glu Ile Lys Glu Lys
355	360	365
Pro Leu Arg Ser Leu Ser	Arg Lys Phe Thr Asp	Trp Ala Tyr Gly Pro
370	375	380
Val Ser Ser Ser Leu Tyr	Asp Leu Thr Asn Val	Asp Thr Thr Thr Asp
385	390	395
Asn Ser Val Leu Glu Ile	Ile Val Tyr Asn Thr	Asn Ile Asp Asn Arg
405	410	415
His Glu Met Leu Thr Leu Glu	Pro Leu His Thr Leu	Leu His Thr Lys
420	425	430
Trp Lys Lys Phe Ala Lys	Tyr Met Phe Phe	Leu Ser Phe Cys Phe Tyr
435	440	445
Phe Phe Tyr Asn Ile	Thr Leu Thr Leu Val	Ser Tyr Tyr Arg Pro Arg
450	455	460
Glu Asp Glu Asp Leu Pro	His Pro Leu Ala	Leu Thr His Lys Met Ser
465	470	475
Trp Leu Gln Leu Leu Gly	Arg Met Phe Val	Leu Ile Trp Ala Thr Cys
485	490	495
Ile Ser Val Lys Glu Gly	Ile Ala Ile Phe	Leu Leu Arg Pro Ser Asp
500	505	510
Leu Gln Ser Ile Leu Ser	Asp Ala Trp Phe	His Phe Val Phe Phe Val
515	520	525
Gln Ala Val Leu Val Ile	Leu Ser Val Phe	Leu Tyr Leu Phe Ala Tyr
530	535	540
Lys Glu Tyr Leu Ala Cys	Leu Val Leu Ala	Met Ala Leu Gly Trp Ala
545	550	555
Asn Met Leu Tyr Tyr	Arg Gly Phe Gln	Ser Met Gly Met Tyr Ser
565	570	575
Val Met Ile Gln Lys Val	Ile Leu His Asp Val	Leu Lys Phe Leu Phe
580	585	590
Val Tyr Ile Leu Phe Leu	Leu Gly Phe	Gly Val Ala Leu Ala Ser Leu
595	600	605
Ile Glu Lys Cys Ser Lys	Asp Lys Lys Asp	Cys Ser Ser Tyr Gly Ser
610	615	620
Phe Ser Asp Ala Val	Leu Glu Leu Phe	Lys Leu Thr Ile Gly Leu Gly
625	630	635
Asp Leu Asn Ile Gln	Gln Asn Ser Thr	Tyr Pro Ile Leu Phe Leu Phe
645	650	655
Leu Leu Ile Thr Tyr Val	Ile Leu Thr Phe	Val Leu Leu Leu Asn Met
660	665	670
Leu Ile Ala Leu Met	Gly Glu Thr Val	Glu Asn Val Ser Lys Glu Ser

675	680	685
Glu Arg Ile Trp Arg Leu Gln Arg Ala Arg Thr Ile Leu Glu Phe Glu		
690	695	700
Lys Met Leu Pro Glu Trp Leu Arg Ser Arg Phe Arg Met Gly Glu Leu		
705	710	715
Cys Lys Val Ala Asp Glu Asp Phe Arg Leu Cys Leu Arg Ile Asn Glu		
725	730	735
Val Lys Trp Thr Glu Trp Lys Thr His Val Ser Phe Leu Asn Glu Asp		
740	745	750
Pro Gly Pro Ile Arg Arg Thr Ala Asp Leu Asn Lys Ile Gln Asp Ser		
755	760	765
Ser Arg Ser Asn Ser Lys Thr Thr Leu Tyr Ala Phe Asp Glu Leu Asp		
770	775	780
Glu Phe Pro Glu Thr Ser Val		
785	790	

<210> 3
<211> 2373
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)...(2373)

<223> Generic sequence that encompasses all nucleotide sequences that encode mouse TRPV3 having an amino acid sequence as shown in SEQ ID NO:2

<221> misc_feature
<222> 15,120,180,195,210,231,255,264,294,306,312,384,495,873,882, 984,1086,1116,1122,1155,1158,1161,1206,1332,1377,1440,1494, 1533,1545,1554,1608,1713,1728,1821,1839,1860,1863,1872,1878, 1941,2055,2064,2139,2241,2304,2307,2313,2370
<223> n = A,C,G, or T if after TC;
n = T or C if after AG

<221> misc_feature
<222> 45,90,339,354,366,408,441,444,447,450,564,606,675,678,885, 957,981,1011,1089,1113,1125,1248,1386,1392,1461,1527,1701, 2070,2079,2088,2094,2136,2142,2148,2187,2199,2271,2274,2310
<223> n = A,C,G, or T if after CG;
n = A or G if after AG

<221> misc_feature
<222> all "n" not specified above
<223> n = A,T,C or G

<400> 3
atg aay gcn cay wsn aar gar atg gtn ccn ytn atg ggn aar mgn acn 48
Met Asn Ala His Ser Lys Glu Met Val Pro Leu Met Gly Lys Arg Thr
1 5 10 15

acn gcn ccn ggn ggn aay ccn gtn gtn ytn acn gar aar mgn ccn gcn 96
Thr Ala Pro Gly Gly Asn Pro Val Val Leu Thr Glu Lys Arg Pro Ala
. 20 25 30

gay ytn acn ccn acn aar aar wsn gcn cay tty tty ytn gar ath gar 144
Asp Leu Thr Pro Thr Lys Lys Ser Ala His Phe Phe Leu Glu Ile Glu
35 40 45

ggn tty gar ccn aay ccn acn gtn acn aar acn wsn ccn ccn ath tty 192
Gly Phe Glu Pro Asn Pro Thr Val Thr Lys Thr Ser Pro Pro Ile Phe
50 55 60

wsn aar ccn atg gay wsn aay ath mgn car tgy ytn wsn ggn aay tgy 240
Ser Lys Pro Met Asp Ser Asn Ile Arg Gln Cys Leu Ser Gly Asn Cys

7/75

65	70	75	80	
gay gay atg gay wsn ccn car wsn ccn car	gay gay gtn acn gar acn			288
Asp Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu Thr				
85	90	95		
ccn wsn aay ccn aay wsn ccn wsn gcn aay ytn gcn aar gar gar car				336
Pro Ser Asn Pro Asn Ser Pro Ser Ala Asn Leu Ala Lys Glu Glu Gln				
100	105	110		
mgn car aar aar aar mgn ytn aar aar mgn ath tty gcn gcn gtn wsn				384
Arg Gln Lys Lys Lys Arg Leu Lys Lys Arg Ile Phe Ala Ala Val Ser				
115	120	125		
gar ggn tgy gtn gar gar ytn mgn gar ytn ytn car gay ytn car gay				432
Glu Gly Cys Val Glu Glu Leu Arg Glu Leu Leu Gln Asp Leu Gln Asp				
130	135	140		
ytn tgy mgn mgn mgn ggn ytn gay gtn ccn gay tty ytn atg cay				480
Leu Cys Arg Arg Arg Gly Leu Asp Val Pro Asp Phe Leu Met His				
145	150	155	160	
aar ytn acn gcn wsn gay acn ggn aar acn tgy ytn atg aar gcn ytn				528
Lys Leu Thr Ala Ser Asp Thr Gly Lys Thr Cys Leu Met Lys Ala Leu				
165	170	175		
ytn aay ath aay ccn aay acn aar gar ath gtn mgn ath ytn ytn gcn				576
Leu Asn Ile Asn Pro Asn Thr Lys Glu Ile Val Arg Ile Leu Leu Ala				
180	185	190		
tty gcn gar gar aay gay ath ytn gay mgn tty ath aay gcn gar tay				624
Phe Ala Glu Glu Asn Asp Ile Leu Asp Arg Phe Ile Asn Ala Glu Tyr				
195	200	205		
acn gar gar gcn tay gar ggn car acn gcn ytn aay ath gcn ath gar				672
Thr Glu Glu Ala Tyr Glu Gly Gln Thr Ala Leu Asn Ile Ala Ile Glu				
210	215	220		
mgn mgn car ggn gay ath acn gcn gtn ytn ath gcn gcn ggn gcn gay				720
Arg Arg Gln Gly Asp Ile Thr Ala Val Leu Ile Ala Ala Gly Ala Asp				
225	230	235	240	
gtn aay gcn cay gcn aar ggn gtn tty tty aay ccn aar tay car cay				768
Val Asn Ala His Ala Lys Gly Val Phe Phe Asn Pro Lys Tyr Gln His				
245	250	255		
gar ggn tty tay tty ggn gar acn ccn ytn gcn ytn gcn gcn tgy acn				816
Glu Gly Phe Tyr Phe Gly Glu Thr Pro Leu Ala Leu Ala Ala Cys Thr				
260	265	270		
aay car ccn gar ath gtn car ytn ytn atg gar aay gar car acn gay				864
Asn Gln Pro Glu Ile Val Gln Leu Leu Met Glu Asn Glu Gln Thr Asp				
275	280	285		
ath acn wsn car gay wsn mgn ggn aay aay ath ytn cay gcn ytn gtn				912
Ile Thr Ser Gln Asp Ser Arg Gly Asn Asn Ile Leu His Ala Leu Val				
290	295	300		
acn gtn gcn gar gay tty aar acn car aay gay tty gtn aar mgn atg				960
Thr Val Ala Glu Asp Phe Lys Thr Gln Asn Asp Phe Val Lys Arg Met				
305	310	315	320	
tay gay atg ath ytn ytn mgn wsn ggn aay tgg gar ytn gar acn atg				1008
Tyr Asp Met Ile Leu Leu Arg Ser Gly Asn Trp Glu Leu Glu Thr Met				
325	330	335		
mgn aay aay gay ggn ytn acn ccn ytn car ytn gcn gcn aar atg ggn				1056
Arg Asn Asn Asp Gly Leu Thr Pro Leu Gln Leu Ala Ala Lys Met Gly				

340	345	350	
aar gcn gar ath ytn aar tay ath ytn wsn mgn gar ath aar gar aar Lys Ala Glu Ile Leu Lys Tyr Ile Leu Ser Arg Glu Ile Lys Glu Lys 355 360 365			1104
ccn ytn mgn wsn ytn wsn mgn aar tty acn gay tgg gcn tay ggn ccn Pro Leu Arg Ser Leu Ser Arg Lys Phe Thr Asp Trp Ala Tyr Gly Pro 370 375 380			1152
gtn wsn wsn wsn ytn tay gay ytn acn aay gtn gay acn acn acn gay Val Ser Ser Leu Tyr Asp Leu Thr Asn Val Asp Thr Thr Thr Asp 385 390 395 400			1200
aay wsn gtn ytn gar ath ath gtn tay aay acn aay ath gay aay mgn Asn Ser Val Leu Glu Ile Ile Val Tyr Asn Thr Asn Ile Asp Asn Arg 405 410 415			1248
cay gar atg ytn acn ytn gar ccn ytn cay acn ytn ytn cay acn aar His Glu Met Leu Thr Leu Glu Pro Leu His Thr Leu Leu His Thr Lys 420 425 430			1296
tgg aar aar tty gcn aar tay atg tty tty ytn wsn tty tgy tty tay Trp Lys Phe Ala Lys Tyr Met Phe Phe Leu Ser Phe Cys Phe Tyr 435 440 445			1344
tty tty tay aay ath acn ytn acn ytn gtn wsn tay tay mgn ccn mgn Phe Phe Tyr Asn Ile Thr Leu Thr Leu Val Ser Tyr Tyr Arg Pro Arg 450 455 460			1392
gar gay gar gay ytn ccn cay ccn ytn gcn ytn acn cay aar atg wsn Glu Asp Glu Asp Leu Pro His Pro Leu Ala Leu Thr His Lys Met Ser 465 470 475 480			1440
tgg ytn car ytn ytn ggn mgn atg tty gtn ytn ath tgg gcn acn tgy Trp Leu Gln Leu Gly Arg Met Phe Val Leu Ile Trp Ala Thr Cys 485 490 495			1488
ath wsn gtn aar gar ggn ath gcn ath tty ytn ytn mgn ccn wsn gay Ile Ser Val Lys Glu Gly Ile Ala Ile Phe Leu Leu Arg Pro Ser Asp 500 505 510			1536
ytn car wsn ath ytn wsn gay gcn tgg tty cay tty gtn tty tgy tgn Leu Gln Ser Ile Leu Ser Asp Ala Trp Phe His Phe Val Phe Phe Val 515 520 525			1584
car gcn gtn ytn gtn ath ytn wsn gtn tty ytn tay ytn tty gcn tay Gln Ala Val Leu Val Ile Leu Ser Val Phe Leu Tyr Leu Phe Ala Tyr 530 535 540			1632
aar gar tay ytn gcn tgy ytn gtn ytn gcn atg gcn ytn ggn tgg gcn Lys Glu Tyr Leu Ala Cys Leu Val Leu Ala Met Ala Leu Gly Trp Ala 545 550 555 560			1680
aay atg ytn tay tay acn mgn ggn tty car wsn atg ggn atg tay wsn Asn Met Leu Tyr Tyr Thr Arg Gly Phe Gln Ser Met Gly Met Tyr Ser 565 570 575			1728
gtn atg ath car aar gtn ath ytn cay gay gtn ytn aar tty ytn tgy Val Met Ile Gln Lys Val Ile Leu His Asp Val Leu Lys Phe Leu Phe 580 585 590			1776
gtn tay ath ytn tgy ytn ytn ggn tgy ggn gtn gcn ytn gcn wsn ytn Val Tyr Ile Leu Phe Leu Leu Gly Phe Gly Val Ala Leu Ala Ser Leu 595 600 605			1824
ath gar aar tgy wsn aar gay aar gay tgy wsn wsn tay ggn wsn Ile Glu Lys Cys Ser Lys Asp Lys Lys Asp Cys Ser Ser Tyr Gly Ser			1872

610	615	620	
tty wsn gay gcn gtn ytn gar ytn tty aar ytn acn ath ggn ytn ggn Phe Ser Asp Ala Val Leu Glu Leu Phe Lys Leu Thr Ile Gly Leu Gly 625 630 635 640			1920
gay ytn aay ath car car aay wsn acn tay ccn ath ytn tty ytn tty Asp Leu Asn Ile Gln Gln Asn Ser Thr Tyr Pro Ile Leu Phe Leu Phe 645 650 655			1968
ytn ytn ath acn tay gtn ath ytn acn tty gtn ytn ytn aay atg Leu Leu Ile Thr Tyr Val Ile Leu Thr Phe Val Leu Leu Asn Met 660 665 670			2016
ytn ath gcn ytn atg ggn gar acn gtn gar aay gtn wsn aar gar wsn Leu Ile Ala Leu Met Gly Glu Thr Val Glu Asn Val Ser Lys Glu Ser 675 680 685			2064
gar mgn ath tgg mgn ytn car mgn gcn mgn acn ath ytn gar tty gar Glu Arg Ile Trp Arg Leu Gln Arg Ala Arg Thr Ile Leu Glu Phe Glu 690 695 700			2112
aar atg ytn ccn gar tgg ytn mgn wsn mgn tty mgn atg ggn gar ytn Lys Met Leu Pro Glu Trp Leu Arg Ser Arg Phe Arg Met Gly Glu Leu 705 710 715 720			2160
tgy aar gtn gcn gay gar gay tty mgn ytn tgy ytn mgn ath aay gar Cys Lys Val Ala Asp Glu Asp Phe Arg Leu Cys Leu Arg Ile Asn Glu 725 730 735			2208
gtn aar tgg acn gar tgg aar acn cay gtn wsn tty ytn aay gar gay Val Lys Trp Thr Glu Trp Lys Thr His Val Ser Phe Leu Asn Glu Asp 740 745 750			2256
ccn ggn ccn ath mgn mgn acn gcn gay ytn aay aar ath car gay wsn Pro Gly Pro Ile Arg Arg Thr Ala Asp Leu Asn Lys Ile Gln Asp Ser 755 760 765			2304
wsn mgn wsn aay wsn aar acn acn ytn tay gcn tty gay gar ytn gay Ser Arg Ser Asn Ser Lys Thr Thr Leu Tyr Ala Phe Asp Glu Leu Asp 770 775 780			2352
gar tty ccn gar acn wsn gtn Glu Phe Pro Glu Thr Ser Val 785 790			2373
<p><210> 4 <211> 2432 <212> DNA <213> Human</p>			
<p><220> <221> CDS <222> (57) ... (2432)</p>			
<p><400> 4 gacatgcgtt gatctcaggg caagggttgc caccgaccacc cagaacctca ccagcc atg Met 1</p>			
<p>aaa gcc cac ccc aag gag atg gtg cct ctc atg ggc aag aga gtt gct Lys Ala His Pro Lys Glu Met Val Pro Leu Met Gly Lys Arg Val Ala 5 10 15</p>			
<p>gcc ccc agt ggg aac cct gcc gtc ctg cca gag aag agg ccg gcg gag Ala Pro Ser Gly Asn Pro Ala Val Leu Pro Glu Lys Arg Pro Ala Glu 20 25 30</p>			

atc acc ccc aca aag aag agt gca cac ttc ttc ctg qag ata gaa ggg Ile Thr Pro Thr Lys Lys Ser Ala His Phe Phe Leu Glu Ile Glu Gly 35 40 45	203
ttt gaa ccc aac ccc aca gtt gcc aag acc tct cct cct gtc ttc tcc Phe Glu Pro Asn Pro Thr Val Ala Lys Thr Ser Pro Pro Val Phe Ser 50 55 60 65	251
aag ccc atg gat tcc aac atc cgg cag tgc atc tct ggt aac tgt gat Lys Pro Met Asp Ser Asn Ile Arg Gln Cys Ile Ser Gly Asn Cys Asp 70 75 80	299
gac atg gac tcc ccc cag tct cct cag gat gat gtg aca gag acc cca Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu Thr Pro 85 90 95	347
tcc aat ccc aac agc ccc agt gca cag ctg gcc aag gaa gag cag agg Ser Asn Pro Asn Ser Pro Ser Ala Gln Leu Ala Lys Glu Glu Gln Arg 100 105 110	395
agg aaa aag agg cgg ctg aag aag cgc atc ttt gca gcc gtg tct gag Arg Lys Lys Arg Arg Leu Lys Arg Ile Phe Ala Ala Val Ser Glu 115 120 125	443
ggc tgc gtg gag gag ttg gta gag ttg ctg gtg gag ctg cag gag ctt Gly Cys Val Glu Glu Leu Val Glu Leu Leu Val Glu Leu Gln Glu Leu 130 135 140 145	491
tgc agg cgg cgc cat gat gag gat gtg cct gac ttc ctc atg cac aag Cys Arg Arg Arg His Asp Glu Asp Val Pro Asp Phe Leu Met His Lys 150 155 160	539
ctg acg gcc tcc gac acg ggg aag acc tgc ctg atg aag gcc ttg tta Leu Thr Ala Ser Asp Thr Gly Lys Thr Cys Leu Met Lys Ala Leu Leu 165 170 175	587
aac atc aac ccc aac acc aag gag ata gtg cgg atc ctg ctt gcc ttt Asn Ile Asn Pro Asn Thr Lys Glu Ile Val Arg Ile Leu Leu Ala Phe 180 185 190	635
gct gaa gag aac gac atc ctg ggc agg ttc atc aac gcc gag tac aca Ala Glu Glu Asn Asp Ile Leu Gly Arg Phe Ile Asn Ala Glu Tyr Thr 195 200 205	683
gag gag gcc tat gaa ggg cag acg gcg ctg aac atc gcc atc gag cgg Glu Glu Ala Tyr Glu Gly Gln Thr Ala Leu Asn Ile Ala Ile Glu Arg 210 215 220 225	731
cgg cag ggg gac atc gca gcc ctg ctc atc gcc ggc gac gtc Arg Gln Gly Asp Ile Ala Ala Leu Leu Ile Ala Ala Gly Ala Asp Val 230 235 240	779
aac gcg cac gcc aag ggg gcc ttc ttc aac ccc aag tac caa cac gaa Asn Ala His Ala Lys Gly Ala Phe Phe Asn Pro Lys Tyr Gln His Glu 245 250 255	827
ggc ttc tac ttc ggt gag acg ccc ctg gcc ctg gca gca tgc acc aac Gly Phe Tyr Phe Gly Glu Thr Pro Leu Ala Leu Ala Ala Cys Thr Asn 260 265 270	875
cag ccc gag att gtg cag ctg ctg atg gag cac gag cag acg gac atc Gln Pro Glu Ile Val Gln Leu Leu Met Glu His Glu Gln Thr Asp Ile 275 280 285	923
acc tcg cgg gac tca cga ggc aac aac atc ctt cac gcc ctg gtg acc Thr Ser Arg Asp Ser Arg Gly Asn Asn Ile Leu His Ala Leu Val Thr 290 295 300 305	971

gtg gcc gag gac ttc aag acg cag aat gac ttt gtg aag cgc atg tac	1019
Val Ala Glu Asp Phe Lys Thr Gln Asn Asp Phe Val Lys Arg Met Tyr	
310 315 320	
gac atg atc cta ctg cgg agt ggc aac tgg gag ctg gag acc act cgc	1067
Asp Met Ile Leu Leu Arg Ser Gly Asn Trp Glu Leu Glu Thr Thr Arg	
325 330 335	
aac aac gat ggc ctc acg ccg ctg cag ctg gcc gcc aag atg ggc aag	1115
Asn Asn Asp Gly Leu Thr Pro Leu Gln Leu Ala Ala Lys Met Gly Lys	
340 345 350	
gcg gag atc ctg aag tac atc ctc agt cgt gag atc aag gag aag cgg	1163
Ala Glu Ile Leu Lys Tyr Ile Leu Ser Arg Glu Ile Lys Glu Lys Arg	
355 360 365	
ctc cgg agc ctg tcc agg aag ttc acc gac tgg gcg tac gga ccc gtg	1211
Leu Arg Ser Leu Ser Arg Lys Phe Thr Asp Trp Ala Tyr Gly Pro Val	
370 375 380 385	
tca tcc tcc ctc tac gac ctc acc aac gtg gac acc acc acg gac aac	1259
Ser Ser Ser Leu Tyr Asp Leu Thr Asn Val Asp Thr Thr Asp Asn	
390 395 400	
tca gtg ctg gaa atc act gtc tac aac acc aac atc gac aac cgg cat	1307
Ser Val Leu Glu Ile Thr Val Tyr Asn Thr Asn Ile Asp Asn Arg His	
405 410 415	
gag atg ctg acc ctg gag ccg ctg cac acg ctg ctg cat atg aag tgg	1355
Glu Met Leu Thr Leu Glu Pro Leu His Thr Leu Leu His Met Lys Trp	
420 425 430	
aag aag ttt gcc aag cac atg ttc ttt ctg tcc ttc tgc ttt tat ttc	1403
Lys Lys Phe Ala Lys His Met Phe Phe Leu Ser Phe Cys Phe Tyr Phe	
435 440 445	
ttc tac aac atc acc ctg acc ctc gtc tcg tac tac cgc ccc cgg gag	1451
Phe Tyr Asn Ile Thr Leu Thr Leu Val Ser Tyr Tyr Arg Pro Arg Glu	
450 455 460 465	
gag gag gcc atc ccg cac ccc ttg gcc ctg acg cac aag atg ggg tgg	1499
Glu Glu Ala Ile Pro His Pro Leu Ala Leu Thr His Lys Met Gly Trp	
470 475 480	
ctg cag ctc cta ggg agg atg ttt gtg ctc atc tgg gcc atg tgc atc	1547
Leu Gln Leu Leu Gly Arg Met Phe Val Leu Ile Trp Ala Met Cys Ile	
485 490 495	
tct gtg aaa gag ggc att gcc atc ttc ctg ctg aga ccc tcg gat ctg	1595
Ser Val Lys Glu Gly Ile Ala Ile Phe Leu Leu Arg Pro Ser Asp Leu	
500 505 510	
cag tcc atc ctc tcg gat gcc tgg ttc cac ttt gtc ttt ttt atc caa	1643
Gln Ser Ile Leu Ser Asp Ala Trp Phe His Phe Val Phe Phe Ile Gln	
515 520 525	
gct gtg ctt gtg ata ctg tct gtc ttc ttg tac ttg ttt gcc tac aaa	1691
Ala Val Leu Val Ile Leu Ser Val Phe Leu Tyr Leu Phe Ala Tyr Lys	
530 535 540 545	
gag tac ctc gcc tgc ctc gtg ctg gcc atg gcc ctg ggc tgg gcg aac	1739
Glu Tyr Leu Ala Cys Leu Val Leu Ala Met Ala Leu Gly Trp Ala Asn	
550 555 560	
atg ctc tac tat acg cgg ggt ttc cag tcc atg ggc atg tac agc gtc	1787
Met Leu Tyr Tyr Thr Arg Gly Phe Gln Ser Met Gly Met Tyr Ser Val	
565 570 575	

atg atc cag aag gtc att ttg cat gat gtt ctg aag ttc ttg ttt gta Met Ile Gln Lys Val Ile Leu His Asp Val Leu Lys Phe Leu Phe Val 580 585 590	1835
tat atc gtg ttt ttg ctt gga ttt gga gta gcc ttg gcc tcg ctg atc Tyr Ile Val Phe Leu Leu Gly Phe Gly Val Ala Leu Ala Ser Leu Ile 595 600 605	1883
gag aag tgt ccc aaa gac aac aag gac tgc agc tcc tac ggc agc ttc Glu Lys Cys Pro Lys Asp Asn Lys Asp Cys Ser Ser Tyr Gly Ser Phe 610 615 620 625	1931
agc gac gca gtg ctg gaa ctc ttc aag ctc acc ata ggc ctg ggt gac Ser Asp Ala Val Leu Glu Leu Phe Lys Leu Thr Ile Gly Leu Gly Asp 630 635 640	1979
ctg aac atc cag cag aac tcc aag tat ccc att ctc ttt ctg ttc ctg Leu Asn Ile Gln Gln Asn Ser Lys Tyr Pro Ile Leu Phe Leu Phe Leu 645 650 655	2027
ctc atc acc tat gtc atc ctc acc ttt gtt ctc ctc ctc aac atg ctc Leu Ile Thr Tyr Val Ile Leu Thr Phe Val Leu Leu Leu Asn Met Leu 660 665 670	2075
att gct ctg atg ggc gag act gtg gag aac gtc tcc aag gag agc gaa Ile Ala Leu Met Gly Glu Thr Val Glu Asn Val Ser Lys Glu Ser Glu 675 680 685	2123
cgc atc tgg cgc ctg cag aga gcc agg acc atc ttg gag ttt gag aaa Arg Ile Trp Arg Leu Gln Arg Ala Arg Thr Ile Leu Glu Phe Glu Lys 690 695 700 705	2171
atg tta cca gaa tgg ctg agg agc aga ttc cgg atg gga gag ctg tgc Met Leu Pro Glu Trp Leu Arg Ser Arg Phe Arg Met Gly Glu Leu Cys 710 715 720	2219
aaa gtg gcc gag gat gat ttc cga ctg tgt ttg cgg atc aat gag gtg Lys Val Ala Glu Asp Asp Phe Arg Leu Cys Leu Arg Ile Asn Glu Val 725 730 735	2267
aag tgg act gaa tgg aag acg cac gtc tcc ttc ctt aac gaa gac ccg Lys Trp Thr Glu Trp Lys Thr His Val Ser Phe Leu Asn Glu Asp Pro 740 745 750	2315
ggg cct gta aga cga aca gca gat ttc aac aaa atc caa gat tct tcc Gly Pro Val Arg Arg Thr Ala Asp Phe Asn Lys Ile Gln Asp Ser Ser 755 760 765	2363
agg aac aac agc aaa acc act ctc aat gca ttt gaa gaa gtc gag gaa Arg Asn Asn Ser Lys Thr Thr Leu Asn Ala Phe Glu Glu Val Glu Glu 770 775 780 785	2411
ttc ccg gaa acc tcg gtg tag Phe Pro Glu Thr Ser Val * 790	2432

<210> 5
<211> 791
<212> PRT
<213> Human

<400> 5
Met Lys Ala His Pro Lys Glu Met Val Pro Leu Met Gly Lys Arg Val
1 5 10 15
Ala Ala Pro Ser Gly Asn Pro Ala Val Leu Pro Glu Lys Arg Pro Ala
20 25 30

Glu Ile Thr Pro Thr Lys Lys Ser Ala His Phe Phe Leu Glu Ile Glu
 35 40 45
 Gly Phe Glu Pro Asn Pro Thr Val Ala Lys Thr Ser Pro Pro Val Phe
 50 55 60
 Ser Lys Pro Met Asp Ser Asn Ile Arg Gln Cys Ile Ser Gly Asn Cys
 65 70 75 80
 Asp Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu Thr
 85 90 95
 Pro Ser Asn Pro Asn Ser Pro Ser Ala Gln Leu Ala Lys Glu Glu Gln
 100 105 110
 Arg Arg Lys Lys Arg Arg Leu Lys Lys Arg Ile Phe Ala Ala Val Ser
 115 120 125
 Glu Gly Cys Val Glu Glu Leu Val Glu Leu Leu Val Glu Leu Gln Glu
 130 135 140
 Leu Cys Arg Arg Arg His Asp Glu Asp Val Pro Asp Phe Leu Met His
 145 150 155 160
 Lys Leu Thr Ala Ser Asp Thr Gly Lys Thr Cys Leu Met Lys Ala Leu
 165 170 175
 Leu Asn Ile Asn Pro Asn Thr Lys Glu Ile Val Arg Ile Leu Leu Ala
 180 185 190
 Phe Ala Glu Glu Asn Asp Ile Leu Gly Arg Phe Ile Asn Ala Glu Tyr
 195 200 205
 Thr Glu Glu Ala Tyr Glu Gly Gln Thr Ala Leu Asn Ile Ala Ile Glu
 210 215 220
 Arg Arg Gln Gly Asp Ile Ala Ala Leu Leu Ile Ala Ala Gly Ala Asp
 225 230 235 240
 Val Asn Ala His Ala Lys Gly Ala Phe Phe Asn Pro Lys Tyr Gln His
 245 250 255
 Glu Gly Phe Tyr Phe Gly Glu Thr Pro Leu Ala Leu Ala Ala Cys Thr
 260 265 270
 Asn Gln Pro Glu Ile Val Gln Leu Leu Met Glu His Glu Gln Thr Asp
 275 280 285
 Ile Thr Ser Arg Asp Ser Arg Gly Asn Asn Ile Leu His Ala Leu Val
 290 295 300
 Thr Val Ala Glu Asp Phe Lys Thr Gln Asn Asp Phe Val Lys Arg Met
 305 310 315 320
 Tyr Asp Met Ile Leu Leu Arg Ser Gly Asn Trp Glu Leu Glu Thr Thr
 325 330 335
 Arg Asn Asn Asp Gly Leu Thr Pro Leu Gln Leu Ala Ala Lys Met Gly
 340 345 350
 Lys Ala Glu Ile Leu Lys Tyr Ile Leu Ser Arg Glu Ile Lys Glu Lys
 355 360 365
 Arg Leu Arg Ser Leu Ser Arg Lys Phe Thr Asp Trp Ala Tyr Gly Pro
 370 375 380
 Val Ser Ser Ser Leu Tyr Asp Leu Thr Asn Val Asp Thr Thr Thr Asp
 385 390 395 400
 Asn Ser Val Leu Glu Ile Thr Val Tyr Asn Thr Asn Ile Asp Asn Arg
 405 410 415
 His Glu Met Leu Thr Leu Glu Pro Leu His Thr Leu Leu His Met Lys
 420 425 430
 Trp Lys Lys Phe Ala Lys His Met Phe Phe Leu Ser Phe Cys Phe Tyr
 435 440 445
 Phe Phe Tyr Asn Ile Thr Leu Thr Leu Val Ser Tyr Tyr Arg Pro Arg
 450 455 460
 Glu Glu Glu Ala Ile Pro His Pro Leu Ala Leu Thr His Lys Met Gly
 465 470 475 480
 Trp Leu Gln Leu Leu Gly Arg Met Phe Val Leu Ile Trp Ala Met Cys
 485 490 495
 Ile Ser Val Lys Glu Gly Ile Ala Ile Phe Leu Leu Arg Pro Ser Asp
 500 505 510
 Leu Gln Ser Ile Leu Ser Asp Ala Trp Phe His Phe Val Phe Phe Ile
 515 520 525
 Gln Ala Val Leu Val Ile Leu Ser Val Phe Leu Tyr Leu Phe Ala Tyr
 530 535 540
 Lys Glu Tyr Leu Ala Cys Leu Val Leu Ala Met Ala Leu Gly Trp Ala
 545 550 555 560
 Asn Met Leu Tyr Tyr Thr Arg Gly Phe Gln Ser Met Gly Met Tyr Ser
 565 570 575

Val Met Ile Gln Lys Val Ile Leu His Asp Val Leu Lys Phe Leu Phe
 580 585 590
 Val Tyr Ile Val Phe Leu Leu Gly Phe Gly Val Ala Leu Ala Ser Leu
 595 600 605
 Ile Glu Lys Cys Pro Lys Asp Asn Lys Asp Cys Ser Ser Tyr Gly Ser
 610 615 620
 Phe Ser Asp Ala Val Leu Glu Leu Phe Lys Leu Thr Ile Gly Leu Gly
 625 630 635 640
 Asp Leu Asn Ile Gln Gln Asn Ser Lys Tyr Pro Ile Leu Phe Leu Phe
 645 650 655
 Leu Leu Ile Thr Tyr Val Ile Leu Thr Phe Val Leu Leu Leu Asn Met
 660 665 670
 Leu Ile Ala Leu Met Gly Glu Thr Val Glu Asn Val Ser Lys Glu Ser
 675 680 685
 Glu Arg Ile Trp Arg Leu Gln Arg Ala Arg Thr Ile Leu Glu Phe Glu
 690 695 700
 Lys Met Leu Pro Glu Trp Leu Arg Ser Arg Phe Arg Met Gly Glu Leu
 705 710 715 720
 Cys Lys Val Ala Glu Asp Asp Phe Arg Leu Cys Leu Arg Ile Asn Glu
 725 730 735
 Val Lys Trp Thr Glu Trp Lys Thr His Val Ser Phe Leu Asn Glu Asp
 740 745 750
 Pro Gly Pro Val Arg Arg Thr Ala Asp Phe Asn Lys Ile Gln Asp Ser
 755 760 765
 Ser Arg Asn Asn Ser Lys Thr Thr Leu Asn Ala Phe Glu Glu Val Glu
 770 775 780
 Glu Phe Pro Glu Thr Ser Val
 785 790

<210> 6
<211> 2373
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)...(2373)

<223> Generic sequence that encompasses all nucleotide
 sequences that encode human TRPV3 having an amino
 acid sequence as shown in SEQ ID NO:5

<221> misc_feature
<222> 60,120,180,195,210,231,255,264,294,306,312,384,495,873,882,
 984,1086,1116,1122,1158,1161,1164,1206,1332,1377,1494,1533,1545,1554,1608,
 1713,1728,1821,1860,1863,1872,1878,1944,2055,
 2064,2139,2241,2304,2307,2319,2370
<223> n = A,T,C or G if after TC;
 n = T or C if after AG

<221> misc_feature
<222> 45,90,219,339,342,351,354,366,441,444,447,564,606,675,678,
 876,885,957,981,1011,1089,1107,1113,1125,1248,1386,1392,
 1461,1527,1701,2070,2079,2088,2136,2142,2148,2187,2199,2271,2274,
 2310
<223> n = A,T,C or G if after CG;
 n = A or G if after AG

<221> misc_feature
<222> all "n" not specified above
<223> n = A,T,C or G

<400> 6
atg aar gcn cay ccn aar gar atg gtn ccn ytn atg ggn aar mgn gtn
Met Lys Ala His Pro Lys Glu Met Val Pro Leu Met Gly Lys Arg Val
 1 5 10 15

gcn gcn ccn wsn ggn aay ccn gcn gtn ytn ccn gar aar mgn ccn gcn Ala Ala Pro Ser Gly Asn Pro Ala Val Leu Pro Glu Lys Arg Pro Ala 20 25 30	96
gar ath acn ccn acn aar aar wsn gcn cay tty tty ytn gar ath gar Glu Ile Thr Pro Thr Lys Lys Ser Ala His Phe Phe Leu Glu Ile Glu 35 40 45	144
ggn tty gar ccn aay ccn acn gtn gcn aar acn wsn ccn ccn gtn tty Gly Phe Glu Pro Asn Pro Thr Val Ala Lys Thr Ser Pro Pro Val Phe 50 55 60	192
wsn aar ccn atg gay wsn aay ath mgn car tgy ath wsn ggn aay tgy Ser Lys Pro Met Asp Ser Asn Ile Arg Gln Cys Ile Ser Gly Asn Cys 65 70 75 80	240
gay gay atg gay wsn ccn car wsn ccn car gay gay gtn acn gar acn Asp Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu Thr 85 90 95	288
ccn wsn aay ccn aay wsn ccn wsn gcn car ytn gcn aar gar gar car Pro Ser Asn Pro Asn Ser Pro Ser Ala Gln Leu Ala Lys Glu Glu Gln 100 105 110	336
mgn mgn aar aar mgn mgn ytn aar aar mgn ath tty gcn gcn gtn wsn Arg Arg Lys Lys Arg Arg Leu Lys Lys Arg Ile Phe Ala Ala Val Ser 115 120 125	384
gar ggn tgy gtn gar gar ytn gtn gar ytn ytn gtn gar ytn car gar Glu Gly Cys Val Glu Glu Leu Val Glu Leu Leu Val Glu Leu Gln Glu 130 135 140	432
ytn tgy mgn mgn ygn cay gay gar gay gtn ccn gay tty ytn atg cay Leu Cys Arg Arg Arg His Asp Glu Asp Val Pro Asp Phe Leu Met His 145 150 155 160	480
aar ytn acn gcn wsn gay acn ggn aar acn tgy ytn atg aar gcn ytn Lys Leu Thr Ala Ser Asp Thr Gly Lys Thr Cys Leu Met Lys Ala Leu 165 170 175	528
ytn aay ath aay ccn aay acn aar gar ath gtn mgn ath ytn ytn gcn Leu Asn Ile Asn Pro Asn Thr Lys Glu Ile Val Arg Ile Leu Leu Ala 180 185 190	576
tty gcn gar gar aay gay ath ytn ggn mgn tty ath aay gcn gar tay Phe Ala Glu Glu Asn Asp Ile Leu Gly Arg Phe Ile Asn Ala Glu Tyr 195 200 205	624
acn gar gar gcn tay gar ggn car acn gcn ytn aay ath gcn ath gar Thr Glu Glu Ala Tyr Glu Gly Gln Thr Ala Leu Asn Ile Ala Ile Glu 210 215 220	672
mgn mgn car ggn gay ath gcn gcn ytn ytn ath gcn gcn ggn gcn gay Arg Arg Gln Gly Asp Ile Ala Ala Leu Leu Ile Ala Ala Gly Ala Asp 225 230 235 240	720
gtn aay gcn cay gcn aar ggn gcn tty tty aay ccn aar tay car cay Val Asn Ala His Ala Lys Gly Ala Phe Phe Asn Pro Lys Tyr Gln His 245 250 255	768
gar ggn tty tay tty ggn gar acn ccn ytn gcn ytn gcn gcn tgy acn Glu Gly Phe Tyr Phe Gly Glu Thr Pro Leu Ala Leu Ala Cys Thr 260 265 270	816
aay car ccn gar ath gtn car ytn ytn atg gar cay gar car acn gay Asn Gln Pro Glu Ile Val Gln Leu Leu Met Glu His Glu Gln Thr Asp 275 280 285	864

ath acn wsn mgn gay wsn mgn ggn aay aay ath ytn cay gcn ytn gtn Ile Thr Ser Arg Asp Ser Arg Gly Asn Asn Ile Leu His Ala Leu Val 290 295 300	912
acn gtn gcn gar gay tty aar acn car aay gay tty gtn aar mgn atg Thr Val Ala Glu Asp Phe Lys Thr Gln Asn Asp Phe Val Lys Arg Met 305 310 315 320	960
tay gay atg ath ytn ytn mgn wsn ggn aay tgg gar ytn gar acn acn Tyr Asp Met Ile Leu Leu Arg Ser Gly Asn Trp Glu Leu Glu Thr Thr 325 330 335	1008
mgn aay aay gay ggn ytn acn ccn ytn car ytn gcn gcn aar atg ggn Arg Asn Asn Asp Gly Leu Thr Pro Leu Gln Leu Ala Ala Lys Met Gly 340 345 350	1056
aar gcn gar ath ytn aar tay ath ytn wsn mgn gar ath aar gar aar Lys Ala Glu Ile Leu Lys Tyr Ile Leu Ser Arg Glu Ile Lys Glu Lys 355 360 365	1104
mgn ytn mgn wsn ytn wsn mgn aar tty acn gay tgg gcn tay ggn ccn Arg Leu Arg Ser Leu Ser Arg Lys Phe Thr Asp Trp Ala Tyr Gly Pro 370 375 380	1152
gtn wsn wsn wsn ytn tay gay ytn acn aay gtn gay acn acn acn gay Val Ser Ser Ser Leu Tyr Asp Leu Thr Asn Val Asp Thr Thr Asp 385 390 395 400	1200
aay wsn gtn ytn gar ath acn gtn tay aay acn aay ath gay aay mgn Asn Ser Val Leu Glu Ile Thr Val Tyr Asn Thr Asn Ile Asp Asn Arg 405 410 415	1248
cay gar atg ytn acn ytn gar ccn ytn cay acn ytn ytn cay atg aar His Glu Met Leu Thr Leu Glu Pro Leu His Thr Leu Leu His Met Lys 420 425 430	1296
tgg aar aar tty gcn aar cay atg tty tty ytn wsn tty tgy tty tay Trp Lys Lys Phe Ala Lys His Met Phe Phe Leu Ser Phe Cys Phe Tyr 435 440 445	1344
tty tty tay aay ath acn ytn acn ytn gtn wsn tay tay mgn ccn mgn Phe Phe Tyr Asn Ile Thr Leu Thr Leu Val Ser Tyr Tyr Arg Pro Arg 450 455 460	1392
gar gar gar gcn ath ccn cay ccn ytn gcn ytn acn cay aar atg ggn Glu Glu Glu Ala Ile Pro His Pro Leu Ala Leu Thr His Lys Met Gly 465 470 475 480	1440
tgg ytn car ytn ytn ggn mgn atg tty gtn ytn ath tgg gcn atg tgy Trp Leu Gln Leu Leu Gly Arg Met Phe Val Leu Ile Trp Ala Met Cys 485 490 495	1488
ath wsn gtn aar gar ggn ath gcn ath tty ytn ytn mgn ccn wsn gay Ile Ser Val Lys Glu Gly Ile Ala Ile Phe Leu Leu Arg Pro Ser Asp 500 505 510	1536
ytn car wsn ath ytn wsn gay gcn tgg tty cay tty gtn tty tay ath Leu Gln Ser Ile Leu Ser Asp Ala Trp Phe His Phe Val Phe Phe Ile 515 520 525	1584
car gcn gtn ytn gtn ath ytn wsn gtn tty ytn tay ytn tty gcn tay Gln Ala Val Leu Val Ile Leu Ser Val Phe Leu Tyr Leu Phe Ala Tyr 530 535 540	1632
aar gar tay ytn gcn tgy ytn gtn ytn gcn atg gcn ytn ggn tgg gcn Lys Glu Tyr Leu Ala Cys Leu Val Leu Ala Met Ala Leu Gly Trp Ala 545 550 555 560	1680

aay atg ytn tay tay acn mgn ggn tty car wsn atg ggn atg tay wsn Asn Met Leu Tyr Tyr Thr Arg Gly Phe Gln Ser Met Gly Met Tyr Ser 565 570 575	1728
gtn atg ath car aar gtn ath ytn cay gay gtn ytn aar tty ytn tty Val Met Ile Gln Lys Val Ile Leu His Asp Val Leu Lys Phe Leu Phe 580 585 590	1776
gtn tay ath gtn tty ytn ytn ggn tty ggn gtn gcn ytn gcn wsn ytn Val Tyr Ile Val Phe Leu Leu Gly Phe Gly Val Ala Leu Ala Ser Leu 595 600 605	1824
ath gar aar tgy ccn aar gay aay aar gay tgy wsn wsn tay ggn wsn Ile Glu Lys Cys Pro Lys Asp Asn Lys Asp Cys Ser Ser Tyr Gly Ser 610 615 620	1872
tty wsn gay gcn gtn ytn gar ytn tty aar ytn acn ath ggn ytn ggn Phe Ser Asp Ala Val Leu Glu Leu Phe Lys Leu Thr Ile Gly Leu Gly 625 630 635 640	1920
gay ytn aay ath car car aay wsn aar tay ccn ath ytn tty ytn tty Asp Leu Asn Ile Gln Gln Asn Ser Lys Tyr Pro Ile Leu Phe Leu Phe 645 650 655	1968
ytn ytn ath acn tay gtn ath ytn acn tty gtn ytn ytn ytn aay atg Leu Leu Ile Thr Val Ile Leu Thr Phe Val Leu Leu Leu Asn Met 660 665 670	2016
ytn ath gcn ytn atg ggn gar acn gtn gar aay gtn wsn aar gar wsn Leu Ile Ala Leu Met Gly Glu Thr Val Glu Asn Val Ser Lys Glu Ser 675 680 685	2064
gar mgn ath tgg mgn ytn car mgn gcn mgn acn ath ytn gar tty gar Glu Arg Ile Trp Arg Leu Gln Arg Ala Arg Thr Ile Leu Glu Phe Glu 690 695 700	2112
aar atg ytn ccn gar tgg ytn mgn wsn mgn tty mgn atg ggn gar ytn Lys Met Leu Pro Glu Trp Leu Arg Ser Arg Phe Arg Met Gly Glu Leu 705 710 715 720	2160
tgy aar gtn gcn gar gay gay tty mgn ytn tgy ytn mgn ath aay gar Cys Lys Val Ala Glu Asp Asp Phe Arg Leu Cys Leu Arg Ile Asn Glu 725 730 735	2208
gtn aar tgg acn gar tgg aar acn cay gtn wsn tty ytn aay gar gay Val Lys Trp Thr Glu Trp Lys Thr His Val Ser Phe Leu Asn Glu Asp 740 745 750	2256
ccn ggn ccn gtn mgn mgn acn gcn gay tty aay aar ath car gay wsn Pro Gly Pro Val Arg Arg Thr Ala Asp Phe Asn Lys Ile Gln Asp Ser 755 760 765	2304
wsn mgn aay aay wsn aar acn acn ytn aay gcn tty gar gar gtn gar Ser Arg Asn Asn Ser Lys Thr Thr Leu Asn Ala Phe Glu Glu Val Glu 770 775 780	2352
gar tty ccn gar acn wsn gtn Glu Phe Pro Glu Thr Ser Val 785 790	2373

<210> 7
<211> 4113
<212> DNA
<213> Mus musculus

<220>
<221> CDS

<222> (448) . . . (3762)

<400> 7

ggtgaaacta ctctgctggg agaacctagg aggcagtgaa gcctcatacc tcagcatcca 60
 cgagactct tcactttcc tgggcatcta tggtggtaat atggaggtaa tatctatgga 120
 ggtttgtgt ttggatttc tgcttctct gaagattctt gctggctcca gtgcagatca 180
 agggaaaga agcctggatt ttctggctc catttagaga agcttagtgc aggagacggg 240
 gctgggctgg gctgtgtgtg actataaagt cctccctct ccagttagct aagagacaag 300
 caggctctt gaggagagag aagctttgg ctgattgagc agctccacgt cctggctgtc 360
 ccggagcttg atacatagaa aagactgacc tcagatacac agagatcctt ctgcttctgt 420
 ctcccaagtg ctgggatcac aggcaag atg tcc ttc gag gga gcc agg ctc agc 474
 Met Ser Phe Glu Gly Ala Arg Leu Ser
 1 5

atg agg agc cgc aga aat ggt act atg ggc agc acc cgg acc ctg tac 522
 Met Arg Ser Arg Arg Asn Gly Thr Met Gly Ser Thr Arg Thr Leu Tyr
 10 15 20 25

tcc agt gta tct cgg agc aca gac gtg tcc tac agt gac agt gat ttg 570
 Ser Ser Val Ser Arg Ser Thr Asp Val Ser Tyr Ser Asp Ser Asp Leu
 30 35 40

gtg aat ttt att cag gca aat ttt aaa aaa cga gaa tgt gtc ttc ttt 618
 Val Asn Phe Ile Gln Ala Asn Phe Lys Lys Arg Glu Cys Val Phe Phe
 45 50 55

acc aga gac tcc aag gcc atg gag aac ata tgc aag tgt ggt tat gcc 666
 Thr Arg Asp Ser Lys Ala Met Glu Asn Ile Cys Lys Cys Gly Tyr Ala
 60 65 70

cag agc cag cac atc gaa ggc acc cag atc aac caa aat gag aag tgg 714
 Gln Ser Gln His Ile Glu Gly Thr Gln Ile Asn Gln Asn Glu Lys Trp
 75 80 85

aac tac aaa aaa cat acc aag gag ttt cca aca gac gcc ttc ggg gac 762
 Asn Tyr Lys Lys His Thr Lys Glu Phe Pro Thr Asp Ala Phe Gly Asp
 90 95 100 105

att cag ttt gag act ctg ggg aag aaa ggc aag tac tta cgc ttg tcc 810
 Ile Gln Phe Glu Thr Leu Gly Lys Lys Gly Lys Tyr Leu Arg Leu Ser
 110 115 120

tgt gac acc gac tct gaa act ctc tac gaa ctg ctg acc cag cac tgg 858
 Cys Asp Thr Asp Ser Glu Thr Leu Tyr Glu Leu Leu Thr Gln His Trp
 125 130 135

cac ctc aaa aca ccc aac ctg gtc att tca gtg acg ggt gga gcc aaa 906
 His Leu Lys Thr Pro Asn Leu Val Ile Ser Val Thr Gly Gly Ala Lys
 140 145 150

aac ttt gct ttg aag cca cgc atg cgc aag atc ttc agc agg ctg att 954
 Asn Phe Ala Leu Lys Pro Arg Met Arg Lys Ile Phe Ser Arg Leu Ile
 155 160 165

tac atc gca cag tct aaa ggt gcg tgg att ctc act gga ggc act cac 1002
 Tyr Ile Ala Gln Ser Lys Gly Ala Trp Ile Leu Thr Gly Gly Thr His
 170 175 180 185

tac ggc ctg atg aag tac ata ggc gag gtg gtg aga gac aac acc atc 1050
 Tyr Gly Leu Met Lys Tyr Ile Gly Glu Val Val Arg Asp Asn Thr Ile
 190 195 200

agc agg aac tca gaa gag aac atc gtg gcc att ggc atc gca gca tgg 1098
 Ser Arg Asn Ser Glu Glu Asn Ile Val Ala Ile Gly Ile Ala Ala Trp
 205 210 215

ggc atg gtc tcc aac agg gac acc ctc atc agg agc tgt gat gat gag 1146
 Gly Met Val Ser Asn Arg Asp Thr Leu Ile Arg Ser Cys Asp Asp Glu

220	225	230	
gga cat ttt tca gct caa tac atc atg gat gac ttt acc aga gac cct			1194
Gly His Phe Ser Ala Gln Tyr Ile Met Asp Asp Phe Thr Arg Asp Pro			
235 240 245			
cta tac atc ctg gac aac aac cat acc cac ctg ctg ctt gtg gac aac			1242
Leu Tyr Ile Leu Asp Asn Asn His Thr His Leu Leu Leu Val Asp Asn			
250 255 260 265			
ggt tgt cat gga cac ccc aca gtg gaa gcc aag ctc cgg aat cag ctg			1290
Gly Cys His Gly His Pro Thr Val Glu Ala Lys Leu Arg Asn Gln Leu			
270 275 280			
gaa aag tac atc tct gag cgc acc agt caa gat tcc aac tat ggt ggt			1338
Glu Lys Tyr Ile Ser Glu Arg Thr Ser Gln Asp Ser Asn Tyr Gly Gly			
285 290 295			
aag atc ccc atc gtg tgt ttt gcc caa gga ggt gga aga gag act cta			1386
Lys Ile Pro Ile Val Cys Phe Ala Gln Gly Gly Arg Glu Thr Leu			
300 305 310			
aaa gcc atc aac acc tct gtc aaa agc aag atc cct tgt gtg gtg gtg			1434
Lys Ala Ile Asn Thr Ser Val Lys Ser Ile Pro Cys Val Val Val			
315 320 325			
gaa ggc tcg ggg cag att gct gat gtg atc gcc agc ctg gtg gag gtg			1482
Glu Gly Ser Gly Gln Ile Ala Asp Val Ile Ala Ser Leu Val Glu Val			
330 335 340 345			
gag gat gtt tta acc tct tcc atg gtc aaa gag aag ctg gta cgc ttt			1530
Glu Asp Val Leu Thr Ser Ser Met Val Lys Glu Lys Leu Val Arg Phe			
350 355 360			
tta cca cgc act gtg tcc cgg ctg cct gaa gag gaa att gag agc tgg			1578
Leu Pro Arg Thr Val Ser Arg Leu Pro Glu Glu Glu Ile Glu Ser Trp			
365 370 375			
atc aaa tgg ctc aaa gaa att ctt gag agt tct cac cta ctc aca gta			1626
Ile Lys Trp Leu Lys Glu Ile Leu Glu Ser Ser His Leu Leu Thr Val			
380 385 390			
att aag atg gaa gag gct gga gat gag att gtg agc aac gcc att tcc			1674
Ile Lys Met Glu Glu Ala Gly Asp Glu Ile Val Ser Asn Ala Ile Ser			
395 400 405			
tat gcg ctg tac aaa gcc ttc agc act aat gag caa gac aag gac aac			1722
Tyr Ala Leu Tyr Lys Ala Phe Ser Thr Asn Glu Gln Asp Lys Asp Asn			
410 415 420 425			
tgg aat gga cag ctg aag ctt ctg ctg gag tgg aac cag ttg gac ctt			1770
Trp Asn Gly Gln Leu Lys Leu Leu Glu Trp Asn Gln Leu Asp Leu			
430 435 440			
gcc agt gat gag atc ttc acc aat gac cgc cgc tgg gag tct gcc gac			1818
Ala Ser Asp Glu Ile Phe Thr Asn Asp Arg Arg Trp Glu Ser Ala Asp			
445 450 455			
ctt cag gag gtc atg ttc acg gct ctc ata aag gac aga ccc aag ttt			1866
Leu Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe			
460 465 470			
gtc cgc ctc ttt ctg gag aat ggc ctg aat ctg cag aag ttt ctc acc			1914
Val Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Gln Lys Phe Leu Thr			
475 480 485			
aat gaa gtc ctc aca gag ctc ttc acc cac ttc agc acc cta gtg			1962
Asn Glu Val Leu Thr Glu Leu Phe Ser Thr His Phe Ser Thr Leu Val			

490	495	500	505														
tac	cg	aa	ctg	2010													
Tyr	Arg	Asn	Leu	Gln	Ile	Ala	Lys	Asn	Ser	Tyr	Asn	Asp	Ala	Leu	Leu		
510	515	520															
acc	ttt	gtc	tgg	aag	ttt	gtg	gca	aac	ttc	cgt	cga	agc	ttc	tgg	aaa	2058	
Thr	Phe	Val	Trp	Lys	Leu	Val	Ala	Asn	Phe	Arg	Arg	Ser	Phe	Trp	Lys		
525	530	535															
gag	gac	aga	agc	agc	agg	gag	gac	ttt	gtg	gat	gtg	gaa	ctc	cat	gat	gca	2106
Glu	Asp	Arg	Ser	Ser	Arg	Glu	Asp	Leu	Asp	Val	Glu	Leu	His	Asp	Ala		
540	545	550															
tct	ctc	acc	acc	cg	cac	ccg	ctg	caa	gct	ctc	ttc	atc	tgg	gcc	att	2154	
Ser	Leu	Thr	Thr	Arg	His	Pro	Leu	Gln	Ala	Leu	Phe	Ile	Trp	Ala	Ile		
555	560	565															
ctt	cag	aac	aag	aag	gaa	ctc	tcc	aag	gtc	att	tgg	gag	cag	acc	aaa	2202	
Leu	Gln	Asn	Lys	Lys	Glu	Leu	Ser	Lys	Val	Ile	Trp	Glu	Gln	Thr	Lys		
570	575	580	585														
ggc	tgt	act	ctg	gca	gcc	ttt	ggg	gcc	agc	aag	ctt	ctg	aag	acc	ctg	2250	
Gly	Cys	Thr	Leu	Ala	Ala	Leu	Gly	Ala	Ser	Lys	Leu	Leu	Lys	Thr	Leu		
590	595	600															
gcc	aaa	gtt	aag	aat	gat	atc	acc	gac	ttt	gct	ggg	gaa	tcg	gag	gaa	ctg	2298
Ala	Lys	Val	Lys	Asn	Asp	Ile	Asn	Ala	Ala	Gly	Glu	Ser	Glu	Glu	Leu		
605	610	615															
gcc	aat	gaa	tat	gag	acc	cga	gca	gtt	gag	ttt	ttc	acc	gag	tgt	tac	2346	
Ala	Asn	Glu	Tyr	Glu	Thr	Arg	Ala	Val	Glu	Leu	Phe	Thr	Glu	Cys	Tyr		
620	625	630															
agc	aat	gat	gaa	gac	ttt	gca	gaa	cag	cta	ctg	gtc	tac	tcc	tgc	gaa	2394	
Ser	Asn	Asp	Glu	Asp	Leu	Ala	Glu	Gln	Leu	Leu	Val	Tyr	Ser	Cys	Glu		
635	640	645															
gcc	tgg	gg	agc	aac	tgt	ctg	gag	ctg	gca	gtg	gag	gct	aca	gat	2442		
Ala	Trp	Gly	Gly	Ser	Asn	Cys	Leu	Glu	Leu	Ala	Val	Glu	Ala	Thr	Asp		
650	655	660	665														
cag	cat	ttc	atc	gct	cag	cct	ggg	gtc	cag	aat	ttc	ctt	tct	aag	caa	2490	
Gln	His	Phe	Ile	Ala	Gln	Pro	Gly	Val	Gln	Asn	Phe	Leu	Ser	Lys	Gln		
670	675	680															
tgg	tat	gga	gag	att	tcc	cga	gac	acg	aag	aac	tgg	aag	att	atc	ctg	2538	
Trp	Tyr	Gly	Glu	Ile	Ser	Arg	Asp	Thr	Lys	Asn	Trp	Lys	Ile	Ile	Leu		
685	690	695															
tgt	cta	ttc	att	atc	ccc	tta	gtg	ggc	tgt	ggc	ctc	gta	tca	ttt	agg	2586	
Cys	Leu	Phe	Ile	Ile	Pro	Leu	Val	Gly	Cys	Gly	Leu	Val	Ser	Phe	Arg		
700	705	710															
aag	aaa	ccc	att	gac	aag	cac	aag	ctg	ctg	tgg	tac	tat	gtg	gcc	2634		
Lys	Lys	Pro	Ile	Asp	Lys	His	Lys	Lys	Leu	Leu	Trp	Tyr	Tyr	Val	Ala		
715	720	725															
ttc	ttc	acg	tcg	ccc	ttc	gtg	gtc	ttc	tcc	tgg	aac	gtg	gtc	ttc	tac	2682	
Phe	Phe	Thr	Ser	Pro	Phe	Val	Val	Phe	Ser	Trp	Asn	Val	Val	Phe	Tyr		
730	735	740	745														
atc	gcc	ttc	ctc	ctg	ctg	ttt	gcc	tat	gtg	ctg	ctc	atg	gac	ttc	cac	2730	
Ile	Ala	Phe	Leu	Leu	Phe	Ala	Tyr	Val	Leu	Leu	Met	Asp	Phe	His			
750	755	760															
tca	gtg	cca	cac	acc	ccc	gag	ctg	atc	ctc	tac	gcc	ctg	gtc	ttc	gtc	2778	
Ser	Val	Pro	His	Thr	Pro	Glu	Leu	Ile	Leu	Tyr	Ala	Leu	Val	Phe	Val		

765	770	775	
ctc ttc tgt gat gaa gtg agg cag tgg tac atg aac gga gtg aat tat Leu Phe Cys Asp Glu Val Arg Gln Trp Tyr Met Asn Gly Val Asn Tyr 780 785 790			2826
ttc acc gac cta tgg aac gtt atg gac acc ctg gga ctc ttc tac ttc Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr Phe 795 800 805			2874
ata gcg ggt att gta ttc cgg ctc cac tct tct aat aaa agc tcg ttg Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser Leu 810 815 820 825			2922
tac tct ggg cgc gtc att ttc tgt ctg gat tac att ata ttc acg cta Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr Leu 830 835 840			2970
agg ctc atc cac att ttc acc gtc agc agg aac ttg gga ccc aag att Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile 845 850 855			3018
ata atg ctg cag cgg atg ctg atc gac gtt ttc ttc ttc ctg ttc ctc Ile Met Leu Gln Arg Met Leu Ile Asp Val Phe Phe Leu Phe Leu 860 865 870			3066
ttt gct gtg tgg atg gtg gcc ttt ggc gtg gcc aga cag ggg atc cta Phe Ala Val Trp Met Val Ala Phe Gly Val Ala Arg Gln Gly Ile Leu 875 880 885			3114
agg caa aat gaa cag cgc tgg aga tgg atc ttc cgc tct gtc atc tat Arg Gln Asn Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr 890 895 900 905			3162
gag ccc tac ctg gcc atg ttt ggc cag gtt ccc agt gac gtg gat agt Glu Pro Tyr Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Ser 910 915 920			3210
acc aca tat gac ttc tcc cac tgt acc ttc tcg gga aat gag tcc aag Thr Thr Tyr Asp Phe Ser His Cys Thr Phe Ser Gly Asn Glu Ser Lys 925 930 935			3258
cca ctg tgt gtg gag ctg gat gag cac aac ctg ccc cgc ttc cct gag Pro Leu Cys Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu 940 945 950			3306
tgg atc acc att ccg ctg gtg tgc atc tac atg ctc tcc acc aat atc Trp Ile Thr Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile 955 960 965			3354
ctt ctg gtc aac ctc ctg gtc gcc atg ttt ggc tac acg gta ggc att Leu Leu Val Asn Leu Leu Val Ala Met Phe Gly Tyr Thr Val Gly Ile 970 975 980 985			3402
gta cag gag aac aac gac cag gtc tgg aaa ttc cag cgg tac ttc ctg Val Gln Glu Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu 990 995 1000			3450
gtg cag gag tac tgc aac cgc cta aac atc ccc ttc ccc ttc gtt gtc Val Gln Glu Tyr Cys Asn Arg Leu Asn Ile Pro Phe Pro Phe Val Val 1005 1010 1015			3498
ttc gct tat ttc tac atg gtg gtc aag aag tgt ttc aaa tgc tgc tgt Phe Ala Tyr Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys 1020 1025 1030			3546
aaa gag aag aat atg gag tct aat gcc tgc tgt ttc aga aat gag gac Lys Glu Lys Asn Met Glu Ser Asn Ala Cys Cys Phe Arg Asn Glu Asp			3594

1035	1040	1045	
aat gag act ttg gcg tgg gag ggt gtc atg aag gag aat tac ctt gtc			3642
Asn Glu Thr Leu Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val			
1050	1055	1060	1065
aag atc aac acg aaa gcc aac gac aac tca gag gag atg agg cat cgg			3690
Lys Ile Asn Thr Lys Ala Asn Asp Asn Ser Glu Glu Met Arg His Arg			
1070	1075	1080	
ttt aga caa ctg gac tca aag ctt aac gac ctc aaa agt ctt ctg aaa			3738
Phe Arg Gln Leu Asp Ser Lys Leu Asn Asp Leu Lys Ser Leu Leu Lys			
1085	1090	1095	
gag att gct aat aac atc aag taa ggctggcgat gcttgggggg agaaaaccaaa			3792
Glu Ile Ala Asn Asn Ile Lys *			
1100			
tcacaatgag gtcacagcaa cccccctggat gtggaggctc atgggacact gatggacagt			3852
actgtctaattg acttctaaag gagacattt cagggtccctg agcacagggt ggtatgactct			3912
tagtcacccctt caagggcata ggtcaggag caaagtgtac agaggacttt acacctgaag			3972
aggggtgcaa aggaccatgt tcttctgtga aggtgcctgt gttttctgca ttcagagcc			4032
ttgtcctgtat gctgagggat taggtgttga cactcctttc ccacgactgt gactctggcc			4092
ctgattttat acttatactg c			4113

<210> 8

<211> 1104

<212> PRT

<213> Mus musculus

<400> 8

Met Ser Phe Glu Gly Ala Arg Leu Ser Met Arg Ser Arg Arg Asn Gly			
1	5	10	15
Thr Met Gly Ser Thr Arg Thr Leu Tyr Ser Ser Val Ser Arg Ser Thr			
20	25	30	
Asp Val Ser Tyr Ser Asp Ser Asp Leu Val Asn Phe Ile Gln Ala Asn			
35	40	45	
Phe Lys Lys Arg Glu Cys Val Phe Phe Thr Arg Asp Ser Lys Ala Met			
50	55	60	
Glu Asn Ile Cys Lys Cys Gly Tyr Ala Gln Ser Gln His Ile Glu Gly			
65	70	75	80
Thr Gln Ile Asn Gln Asn Glu Lys Trp Asn Tyr Lys Lys His Thr Lys			
85	90	95	
Glu Phe Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly			
100	105	110	
Lys Lys Gly Lys Tyr Leu Arg Leu Ser Cys Asp Thr Asp Ser Glu Thr			
115	120	125	
Leu Tyr Glu Leu Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu			
130	135	140	
Val Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg			
145	150	155	160
Met Arg Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly			
165	170	175	
Ala Trp Ile Leu Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile			
180	185	190	
Gly Glu Val Val Arg Asp Asn Thr Ile Ser Arg Asn Ser Glu Glu Asn			
195	200	205	
Ile Val Ala Ile Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp			
210	215	220	
Thr Leu Ile Arg Ser Cys Asp Asp Glu Gly His Phe Ser Ala Gln Tyr			
225	230	235	240
Ile Met Asp Asp Phe Thr Arg Asp Pro Leu Tyr Ile Leu Asp Asn Asn			
245	250	255	
His Thr His Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr			
260	265	270	
Val Glu Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg			
275	280	285	
Thr Ser Gln Asp Ser Asn Tyr Gly Lys Ile Pro Ile Val Cys Phe			

290 Ala Gln Gly Gly Gly Arg	295 Glu Thr Leu Lys Ala Ile Asn Thr Ser Val	300 310 315 320
305 Lys Ser Lys Ile Pro Cys Val Val Val	Glu Gly Ser Gly Gln Ile Ala	325 330 335
325 Asp Val Ile Ala Ser Leu Val Glu Val	Glu Asp Val Leu Thr Ser Ser	340 345 350
340 Met Val Lys Glu Lys Leu Val Arg Phe	Leu Pro Arg Thr Val Ser Arg	355 360 365
355 Leu Pro Glu Glu Glu Ile Glu Ser Trp	Ile Lys Trp Leu Lys Glu Ile	370 375 380
370 Leu Glu Ser Ser His Leu Leu Thr Val	Ile Lys Met Glu Glu Ala Gly	385 390 395 400
385 Asp Glu Ile Val Ser Asn Ala Ile Ser	Tyr Ala Leu Tyr Lys Ala Phe	405 410 415
405 Ser Thr Asn Glu Gln Asp Lys Asp Asn	Trp Asn Gly Gln Leu Lys Leu	420 425 430
420 Leu Leu Glu Trp Asn Gln Leu Asp	Leu Ala Ser Asp Glu Ile Phe Thr	435 440 445
435 Asn Asp Arg Arg Trp Glu Ser Ala Asp	Leu Gln Glu Val Met Phe Thr	450 455 460
450 Ala Leu Ile Lys Asp Arg Pro Lys Phe	Leu Arg Leu Phe Leu Glu Asn	465 470 475 480
465 Gly Leu Asn Leu Gln Lys Phe Leu Thr	Asn Glu Val Leu Thr Glu Leu	485 490 495
485 Phe Ser Thr His Phe Ser Thr Leu Val	Tyr Arg Asn Leu Gln Ile Ala	500 505 510
500 Lys Asn Ser Tyr Asn Asp Ala Leu	Leu Thr Phe Val Trp Lys Leu Val	515 520 525
515 Ala Asn Phe Arg Arg Ser Phe Trp	Lys Glu Asp Arg Ser Ser Arg Glu	530 535 540
530 Asp Leu Asp Val Glu Leu His Asp Ala	Ser Leu Thr Thr Arg His Pro	545 550 555 560
545 Leu Gln Ala Leu Phe Ile Trp Ala Ile	Ile Leu Gln Asn Lys Lys Glu Leu	565 570 575
565 Ser Lys Val Ile Trp Glu Gln Thr	Lys Gly Cys Thr Leu Ala Ala Leu	580 585 590
580 Gly Ala Ser Lys Leu Leu Lys Thr	Leu Ala Lys Val Lys Asn Asp Ile	595 600 605
595 Asn Ala Ala Gly Glu Ser Glu Glu	Asn Leu Ala Asn Glu Tyr Glu Thr Arg	610 615 620
610 Ala Val Glu Leu Phe Thr Glu Cys	Tyr Ser Asn Asp Glu Asp Leu Ala	625 630 635 640
625 Glu Gln Leu Leu Val Tyr Ser Cys	Glu Ala Trp Gly Gly Ser Asn Cys	645 650 655
645 Leu Glu Leu Ala Val Glu Ala Thr	Asp Gln His Phe Ile Ala Gln Pro	660 665 670
660 Gly Val Gln Asn Phe Leu Ser	Gln Trp Tyr Gly Glu Ile Ser Arg	675 680 685
675 Asp Thr Lys Asn Trp Lys Ile Ile	Ile Leu Cys Leu Phe Ile Ile Pro Leu	690 695 700
690 Val Gly Cys Gly Leu Val Ser Phe	Arg Lys Lys Pro Ile Asp Lys His	705 710 715 720
705 Lys Leu Leu Trp Tyr Tyr Val Ala	Phe Thr Ser Pro Phe Val	725 730 735
725 Val Phe Ser Trp Asn Val Val Phe	Tyr Ile Ala Phe Leu Leu Phe	740 745 750
740 Ala Tyr Val Leu Leu Met Asp Phe	His Ser Val Pro His Thr Pro Glu	755 760 765
755 Leu Ile Leu Tyr Ala Leu Val Phe	Val Leu Phe Cys Asp Glu Val Arg	770 775 780
770 Gln Trp Tyr Met Asn Gly Val Asn	Tyr Phe Thr Asp Leu Trp Asn Val	785 790 795 800
785 Met Asp Thr Leu Gly Leu Phe Tyr	Phe Ile Ala Gly Ile Val Phe Arg	805 810 815
805 Leu His Ser Ser Asn Lys Ser Ser	Leu Tyr Ser Gly Arg Val Ile Phe	820 825 830
820 Cys Leu Asp Tyr Ile Ile Phe Thr	Leu Arg Leu Ile His Ile Phe Thr	

835	840	845	
Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu Gln Arg Met Leu			
850	855	860	
Ile Asp Val Phe Phe Leu Phe Leu Phe Ala Val Trp Met Val Ala			
865	870	875	880
Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp			
885	890	895	
Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe			
900	905	910	
Gly Gln Val Pro Ser Asp Val Asp Ser Thr Thr Tyr Asp Phe Ser His			
915	920	925	
Cys Thr Phe Ser Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp			
930	935	940	
Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr Ile Pro Leu Val			
945	950	955	960
Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val Asn Leu Leu Val			
965	970	975	
Ala Met Phe Gly Thr Val Gly Ile Val Gln Glu Asn Asn Asp Gln			
980	985	990	
Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu Tyr Cys Asn Arg			
995	1000	1005	
Leu Asn Ile Pro Phe Pro Phe Val Val Phe Ala Tyr Phe Tyr Met Val			
1010	1015	1020	
Val Lys Lys Cys Phe Lys Cys Cys Lys Glu Lys Asn Met Glu Ser			
1025	1030	1035	1040
Asn Ala Cys Cys Phe Arg Asn Glu Asp Asn Glu Thr Leu Ala Trp Glu			
1045	1050	1055	
Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn Thr Lys Ala Asn			
1060	1065	1070	
Asp Asn Ser Glu Glu Met Arg His Arg Phe Arg Gln Leu Asp Ser Lys			
1075	1080	1085	
Leu Asn Asp Leu Lys Ser Leu Leu Lys Glu Ile Ala Asn Asn Ile Lys			
1090	1095	1100	

<210> 9
<211> 3312
<212> DNA
<213> Artificial Sequence

<220>

<223> Generic sequence that encompasses all nucleotide sequences that encode mouse TRPM8 having an amino acid sequence as shown in SEQ ID NO:8

<221> CDS

<222> (1)...(3312)

<221> misc_feature

<222> 6,27,36,60,78,81,87,93,105,111,117,183,225,363,378,441,498,522,606,615,663,687,711,858,870,879,957,966,1053,1056,1101,1128,1161,1164,1215,1227,1251,1329,1365,1494,1506,1545,1602,1623,1626,1662,1731,1785,1842,1902,1941,1962,2037,2061,2133,2199,2217,2286,2457,2460,2469,2472,2481,2550,2706,2751,2763,2781,2796,2808,2898,3120,3225,3261,3282

<223> n = A,T,C or G if after TC;
n = T or C if after AG

<221> misc_feature

<222> 21,33,39,42,66,90,156,177,357,480,486,501,591,609,669,684,741,834,864,930,1080,1092,1104,1353,1356,1410,1425,1521,1596,1599,1620,1629,1674,1872,2064,2139,2352,2448,2487,2526,2553,2586,2655,2670,2685,2691,2703,2850,2994,3024,3138,3237,3243,3249

<223> n = A,T,C or G if after CG;
n = T or C if after AG

<221> misc_feature

<222> all "n" not specified above
<223> n = A,T,C or G

<400> 9

atg wsn tty gar ggn gcn mgn ytn wsn atg mgn wsn mgn mgn aay ggn	48
Met Ser Phe Glu Gly Ala Arg Leu Ser Met Arg Ser Arg Arg Asn Gly	
1 5 10 15	
acn atg ggn wsn acn mgn acn ytn tay wsn wsn gtn wsn mgn wsn acn	96
Thr Met Gly Ser Thr Arg Thr Leu Tyr Ser Ser Val Ser Arg Ser Thr	
20 25 30	
gay gtn wsn tay wsn gay wsn gay ytn gtn aay tty ath car gcn aay	144
Asp Val Ser Tyr Ser Asp Ser Asp Leu Val Asn Phe Ile Gln Ala Asn	
35 40 45	
tty aar aar mgn gar tgy gtn tty tty acn mgn gay wsn aar gcn atg	192
Phe Lys Lys Arg Glu Cys Val Phe Phe Thr Arg Asp Ser Lys Ala Met	
50 55 60	
gar aay ath tgy aar tgy ggn tay gcn car wsn car cay ath gar ggn	240
Glu Asn Ile Cys Lys Cys Gly Tyr Ala Gln Ser Gln His Ile Glu Gly	
65 70 75 80	
acn car ath aay car aay gar aar tgg aay tay aar aar cay acn aar	288
Thr Gln Ile Asn Gln Asn Glu Lys Trp Asn Tyr Lys Lys His Thr Lys	
85 90 95	
gar tty ccn acn gay gcn tty ggn gay ath car tty gar acn ytn ggn	336
Glu Phe Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly	
100 105 110	
aar aar ggn aar tay ytn mgn ytn wsn tgy gay acn gay wsn gar acn	384
Lys Lys Gly Lys Tyr Leu Arg Leu Ser Cys Asp Thr Asp Ser Glu Thr	
115 120 125	
ytn tay gar ytn ytn acn car cay tgg cay ytn aar acn ccn aay ytn	432
Leu Tyr Glu Leu Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu	
130 135 140	
gtn ath wsn gtn acn ggn ggn gcn aar aay tty gcn ytn aar ccn mgn	480
Val Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg	
145 150 155 160	
atg mgn aar ath tty wsn mgn ytn ath tay ath gcn car wsn aar ggn	528
Met Arg Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly	
165 170 175	
gcn tgg ath ytn acn ggn ggn acn cay tay ggn ytn atg aar tay ath	576
Ala Trp Ile Leu Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile	
180 185 190	
ggn gar gtn gtn mgn gay aay acn ath wsn mgn aay wsn gar gar aay	624
Gly Glu Val Val Arg Asp Asn Thr Ile Ser Arg Asn Ser Glu Glu Asn	
195 200 205	
ath gtn gcn ath ggn ath gcn gcn tgg ggn atg gtn wsn aay mgn gay	672
Ile Val Ala Ile Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp	
210 215 220	
acn ytn ath mgn wsn tgy gay gay gar ggn cay tty wsn gcn car tay	720
Thr Leu Ile Arg Ser Cys Asp Asp Glu Gly His Phe Ser Ala Gln Tyr	
225 230 235 240	
ath atg gay gay tty acn mgn gay ccn ytn tay ath ytn gay aay aay	768
Ile Met Asp Asp Phe Thr Arg Asp Pro Leu Tyr Ile Leu Asp Asn Asn	
245 250 255	
cay acn cay ytn ytn gtn gay aay ggn tgy cay ggn cay ccn acn	816
His Thr His Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr	

260	265	270	
gtn gar gcn aar ytn mgn aay car ytn gar aar tay ath wsn gar mgn Val Glu Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg 275 280 285			864
acn wsn car gay wsn aay tay ggn ggn aar ath ccn ath gtn tgy tty Thr Ser Gln Asp Ser Asn Tyr Gly Gly Lys Ile Pro Ile Val Cys Phe 290 295 300			912
gcn car ggn ggn ggn mgn gar acn ytn aar gcn ath aay acn wsn gtn Ala Gln Gly Gly Arg Glu Thr Leu Lys Ala Ile Asn Thr Ser Val 305 310 315 320			960
aar wsn aar ath ccn tgy gtn gtn gar ggn wsn ggn car ath gcn Lys Ser Lys Ile Pro Cys Val Val Glu Gly Ser Gly Gln Ile Ala 325 330 335			1008
gay gtn ath gcn wsn ytn gtn gar gtn gar gay gtn ytn acn wsn wsn Asp Val Ile Ala Ser Leu Val Glu Val Glu Asp Val Leu Thr Ser Ser 340 345 350			1056
atg gtn aar gar aar ytn gtn mgn tty ytn ccn mgn acn gtn wsn mgn Met Val Lys Glu Lys Leu Val Arg Phe Leu Pro Arg Thr Val Ser Arg 355 360 365			1104
ytn ccn gar gar gar ath gar wsn tgg ath aar tgg ytn aar gar ath Leu Pro Glu Glu Glu Ile Ser Trp Ile Lys Trp Leu Lys Glu Ile 370 375 380			1152
ytn gar wsn wsn cay ytn ytn acn gtn ath aar atg gar gar gcn ggn Leu Glu Ser Ser His Leu Leu Thr Val Ile Lys Met Glu Glu Ala Gly 385 390 395 400			1200
gay gar ath gtn wsn aay gcn ath wsn tay gcn ytn tay aar gcn tty Asp Glu Ile Val Ser Asn Ala Ile Ser Tyr Ala Leu Tyr Lys Ala Phe 405 410 415			1248
wsn acn aay gar car gay aar gay aay tgg aay ggn car ytn aar ytn Ser Thr Asn Glu Gln Asp Lys Asp Asn Trp Asn Gly Gln Leu Lys Leu 420 425 430			1296
ytn ytn gar tgg aay car ytn gay ytn gcn wsn gay gar ath tty acn Leu Leu Glu Trp Asn Gln Leu Asp Leu Ala Ser Asp Glu Ile Phe Thr 435 440 445			1344
aay gay mgn mgn tgg gar wsn gcn gay ytn car gar gtn atg tty acn Asn Asp Arg Arg Trp Glu Ser Ala Asp Leu Gln Glu Val Met Phe Thr 450 455 460			1392
gcn ytn ath aar gay mgn ccn aar tty gtn mgn ytn tty ytn gar aay Ala Leu Ile Lys Asp Arg Pro Lys Phe Val Arg Leu Phe Leu Glu Asn 465 470 475 480			1440
ggn ytn aay ytn car aar tty ytn acn aay gar gtn ytn acn gar ytn Gly Leu Asn Leu Gln Lys Phe Leu Thr Asn Glu Val Leu Thr Glu Leu 485 490 495			1488
tty wsn acn cay tty wsn acn ytn gtn tay mgn aay ytn car ath gcn Phe Ser Thr His Phe Ser Thr Leu Val Tyr Arg Asn Leu Gln Ile Ala 500 505 510			1536
aar aay wsn tay aay gay gcn ytn ytn acn tty gtn tgg aar ytn gtn Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr Phe Val Trp Lys Leu Val 515 520 525			1584
gcn aay tty mgn mgn wsn tty tgg aar gar gay mgn wsn wsn mgn gar Ala Asn Phe Arg Arg Ser Phe Trp Lys Glu Asp Arg Ser Ser Arg Glu			1632

530	535	540	
gay ytn gay gtn gar ytn cay gay gcn wsn ytn acn acn mgn cay ccn			
Asp Leu Asp Val Glu Leu His Asp Ala Ser Leu Thr Thr Arg His Pro			
545 550 555 560			
ytn car gcn ytn tty ath tgg gcn ath ytn car aay aar aar gar ytn			
Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu Gln Asn Lys Lys Glu Leu			
565 570 575			
wsn aar gtn ath tgg gar car acn aar ggn tgy acn ytn gcn gcn ytn			
Ser Lys Val Ile Trp Glu Gln Thr Lys Gly Cys Thr Leu Ala Ala Leu			
580 585 590			
ggn gcn wsn aar ytn ytn aar acn ytn gcn aar gtn aar aay gay ath			
Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala Lys Val Lys Asn Asp Ile			
595 600 605			
aay gcn gcn ggn gar wsn gar gar ytn gcn aay gar tay gar acn mgn			
Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala Asn Glu Tyr Glu Thr Arg			
610 615 620			
gcn gtn gar ytn tty acn gar tgy tay wsn aay gay gar gay ytn gcn			
Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser Asn Asp Glu Asp Leu Ala			
625 630 635 640			
gar car ytn ytn gtn tay wsn tgy gar gcn tgg ggn ggn wsn aay tgy			
Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala Trp Gly Gly Ser Asn Cys			
645 650 655			
ytn gar ytn gcn gtn gar gcn acn gay car cay tty ath gcn car ccn			
Leu Glu Leu Ala Val Glu Ala Thr Asp Gln His Phe Ile Ala Gln Pro			
660 665 670			
ggn gtn car aay tty ytn wsn aar car tgg tay ggn gar ath wsn mgn			
Gly Val Gln Asn Phe Leu Ser Lys Gln Trp Tyr Gly Glu Ile Ser Arg			
675 680 685			
gay acn aar aay tgg aar ath ath ytn tgy ytn tty ath ath ccn ytn			
Asp Thr Lys Asn Trp Lys Ile Ile Leu Cys Leu Phe Ile Ile Pro Leu			
690 695 700			
gtn ggn tgy ggn ytn gtn wsn tty mgn aar aar ccn ath gay aar cay			
Val Gly Cys Gly Leu Val Ser Phe Arg Lys Lys Pro Ile Asp Lys His			
705 710 715 720			
aar aar ytn ytn tgg tay tay gtn gcn tty acn wsn ccn tty gtn			
Lys Lys Leu Leu Trp Tyr Tyr Val Ala Phe Phe Thr Ser Pro Phe Val			
725 730 735			
gtn tty wsn tgg aay gtn gtn tty tay ath gcn tty ytn ytn ytn tty			
Val Phe Ser Trp Asn Val Val Phe Tyr Ile Ala Phe Leu Leu Leu Phe			
740 745 750			
gcn tay gtn ytn ytn atg gay tty cay wsn gtn ccn cay acn ccn gar			
Ala Tyr Val Leu Leu Met Asp Phe His Ser Val Pro His Thr Pro Glu			
755 760 765			
ytn ath ytn tay gcn ytn gtn tty gtn ytn tty tgy gay gar gtn mgn			
Leu Ile Leu Tyr Ala Leu Val Phe Val Leu Phe Cys Asp Glu Val Arg			
770 775 780			
car tgg tay atg aay ggn gtn aay tay tty acn gay ytn tgg aay gtn			
Gln Trp Tyr Met Asn Gly Val Asn Tyr Phe Thr Asp Leu Trp Asn Val			
785 790 795 800			
atg gay acn ytn ggn ytn tty tay tty ath gcn ggn ath gtn tty mgn			
Met Asp Thr Leu Gly Leu Phe Tyr Phe Ile Ala Gly Ile Val Phe Arg			
			2448

805	810	815	
ytn cay wsn wsn aay aar wsn wsn ytn tay wsn ggn mgn gtn ath tty Leu His Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly Arg Val Ile Phe 820 825 830			2496
tgy ytn gay tay ath ath tty acn ytn mgn ytn ath cay ath tty acn Cys Leu Asp Tyr Ile Ile Phe Thr Leu Arg Leu Ile His Ile Phe Thr 835 840 845			2544
gtn wsn mgn aay ytn ggn ccn aar ath ath atg ytn car mgn atg ytn Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu Gln Arg Met Leu 850 855 860			2592
ath gay gtn tty tty ytn tay gcn gtn tgg atg gtn gcn Ile Asp Val Phe Phe Leu Phe Leu Phe Ala Val Trp Met Val Ala 865 870 875 880			2640
tty ggn gtn gcn mgn car ggn ath ytn mgn car aay gar car mgn tgg Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp 885 890 895			2688
mgn tgg ath tty mgn wsn gtn ath tay gar ccn tay ytn gcn atg tty Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe 900 905 910			2736
ggn car gtn ccn wsn gay gtn gay wsn acn acn tay gay tty wsn cay Gly Gln Val Pro Ser Asp Val Asp Ser Thr Thr Tyr Asp Phe Ser His 915 920 925			2784
tgy acn tty wsn ggn aay gar wsn aar ccn ytn tgy gtn gar ytn gay Cys Thr Phe Ser Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp 930 935 940			2832
gar cay aay ytn ccn mgn tty ccn gar tgg ath acn ath ccn ytn gtn Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr Ile Pro Leu Val 945 950 955 960			2880
tgy ath tay atg ytn wsn acn aay ath ytn ytn gtn aay ytn ytn gtn Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val Asn Leu Leu Val 965 970 975			2928
gcn atg tty ggn tay acn gtn ggn ath gtn car gar aay aay gay car Ala Met Phe Gly Tyr Thr Val Gly Ile Val Gln Glu Asn Asn Asp Gln 980 985 990			2976
gtn tgg aar tty car mgn tay tty ytn gtn car gar tay tgy aay mgn Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu Tyr Cys Asn Arg 995 1000 1005			3024
ytn aay ath ccn tty ccn tty gtn gtn tay tty tay atg gtn Leu Asn Ile Pro Phe Pro Phe Val Val Phe Ala Tyr Phe Tyr Met Val 1010 1015 1020			3072
gtn aar aar tgy tty aar tgy tgy aar gar aar aay atg gar wsn Val Lys Lys Cys Phe Lys Cys Cys Lys Glu Lys Asn Met Glu Ser 1025 1030 1035 1040			3120
aay gcn tgy tgy tty mgn aay gar gay aay gar acn ytn gcn tgg gar Asn Ala Cys Cys Phe Arg Asn Glu Asp Asn Glu Thr Leu Ala Trp Glu 1045 1050 1055			3168
ggn gtn atg aar gar aay tay ytn gtn aar ath aay acn aar gcn aay Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn Thr Lys Ala Asn 1060 1065 1070			3216
gay aay wsn gar gar atg mgn cay mgn tty mgn car ytn gay wsn aar Asp Asn Ser Glu Glu Met Arg His Arg Phe Arg Gln Leu Asp Ser Lys			3264

1075

1080

1085

ytn aay gay ytn aar wsn ytn ytn aar gar ath gcn aay aay ath aar	3312
Leu Asn Asp Leu Lys Ser Leu Leu Lys Glu Ile Ala Asn Asn Ile Lys	
1090	1095
	1100

<210> 10
 <211> 3867
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (61) ... (3867)

<400> 10	
cagaaggaag atggaggcgt tctgctaacc cgagtggtcc tggaaatgtgt ttttcttccc	60
atg ccg tta cca cat aaa agt ggt cag aaa tca ctc aga tct tat ttt	108
Met Pro Leu Pro His Lys Ser Gly Gln Lys Ser Leu Arg Ser Tyr Phe	
1 5 10 15	
gtc ttc tca atc caa gtt tcg gta att cag ata aaa ggc aca gaa agc	156
Val Phe Ser Ile Gln Val Ser Val Ile Gln Ile Lys Gly Thr Glu Ser	
20 25 30	
cct ggg ttt gcc tgg tgg gca ttc tct gga cca ctc ttc cgg ttc ttg	204
Pro Gly Phe Ala Trp Trp Ala Phe Ser Gly Pro Leu Phe Arg Phe Leu	
35 40 45	
cct ttc tcc gtg ttg ctg gcc ttg gag ctg acc gtg gtg ctg aca gga	252
Pro Phe Ser Val Leu Leu Ala Leu Glu Leu Thr Val Val Leu Thr Gly	
50 55 60	
gtc tgg cgc ctc ctg cgc cct tgc tat cat tgt gtg tac tgt gga ccc	300
Val Trp Arg Leu Leu Arg Pro Cys Tyr His Cys Val Tyr Cys Gly Pro	
65 70 75 80	
gca gca tcg gct cac ctg ttt ata aaa cag tgg ctg gat ggt tgg agg	348
Ala Ala Ser Ala His Leu Phe Ile Lys Gln Trp Leu Asp Gly Trp Arg	
85 90 95	
atg cag gtg gac aga aga cgt gga gcc tgc aga agt aaa ggc ttg gtg	396
Met Gln Val Asp Arg Arg Gly Ala Cys Arg Ser Lys Gly Leu Val	
100 105 110	
cag gtt gaa ggg gct aca cag gca ggt gag cac ttg ctc agc ctg ggc	444
Gln Val Glu Gly Ala Thr Gln Ala Gly Glu His Leu Leu Ser Leu Gly	
115 120 125	
att gtg ggg cat ctc cct gaa gaa atg atg agt gag ctg agc ctg gag	492
Ile Val Gly His Leu Pro Glu Glu Met Met Ser Glu Leu Ser Leu Glu	
130 135 140	
gat gag cag gag atg aca gct gga ggg gta tgg gga aga ggg ctc tgg	540
Asp Glu Gln Glu Met Thr Ala Gly Gly Val Trp Gly Arg Gly Leu Trp	
145 150 155 160	
aca gaa gaa aag atg tcc ttt cgg gca gcc agg ctc agc atg agg aac	588
Thr Glu Glu Lys Met Ser Phe Arg Ala Ala Arg Leu Ser Met Arg Asn	
165 170 175	
aga agg aat gac act ctg gac agc acc cgg acc ctg tac tcc agc gcg	636
Arg Arg Asn Asp Thr Leu Asp Ser Thr Arg Thr Leu Tyr Ser Ser Ala	
180 185 190	
tct cgg agc aca gac ttg tct tac agt gaa agc gac ttg gtg aat ttt	684

Ser	Arg	Ser	Thr	Asp	Leu	Ser	Tyr	Ser	Glu	Ser	Asp	Leu	Val	Asn	Phe		
195					200						205						
att	caa	gca	aat	ttt	aag	aaa	cga	gaa	tgt	gtc	ttc	ttt	atc	aaa	gat	732	
Ile	Gln	Ala	Asn	Phe	Lys	Lys	Arg	Glu	Cys	Val	Phe	Phe	Ile	Lys	Asp		
210					215						220						
tcc	aag	gcc	acg	gag	aat	gtg	tgc	aag	tgt	ggc	tat	gcc	cag	agc	cag	780	
Ser	Lys	Ala	Thr	Glu	Asn	Val	Cys	Lys	Cys	Gly	Tyr	Ala	Gln	Ser	Gln		
225					230					235				240			
cac	atg	gaa	ggc	acc	cag	atc	aac	caa	agt	gag	aaa	tgg	aac	tac	aag	828	
His	Met	Glu	Gly	Thr	Gln	Ile	Asn	Gln	Ser	Glu	Lys	Trp	Asn	Tyr	Lys		
245						250					255						
aaa	cac	acc	aag	gaa	ttt	cct	acc	gac	gcc	ttt	ggg	gat	att	cag	ttt	876	
Lys	His	Thr	Lys	Glu	Phe	Pro	Thr	Asp	Ala	Phe	Gly	Asp	Ile	Gln	Phe		
260						265					270						
gag	aca	ctg	ggg	aag	aaa	ggg	aag	tat	ata	cgt	ctg	tcc	tgc	gac	acg	924	
Glu	Thr	Leu	Gly	Lys	Lys	Gly	Lys	Tyr	Ile	Arg	Leu	Ser	Cys	Asp	Thr		
275						280					285						
gac	gcg	gaa	atc	ctt	tac	gag	ctg	ctg	acc	cag	cac	tgg	cac	ctg	aaa	972	
Asp	Ala	Glu	Ile	Leu	Tyr	Glu	Leu	Leu	Thr	Gln	His	Trp	His	Leu	Lys		
290						295					300						
aca	ccc	aac	ctg	gtc	att	tct	gtg	acc	ggg	ggc	gcc	aag	aac	ttc	gcc	1020	
Thr	Pro	Asn	Leu	Val	Ile	Ser	Val	Thr	Gly	Gly	Ala	Lys	Asn	Phe	Ala		
305						310					315			320			
ctg	aag	ccg	cgc	atg	cgc	aag	atc	ttc	agc	cgg	ctc	atc	tac	atc	gcf	1068	
Leu	Lys	Pro	Arg	Met	Arg	Lys	Ile	Phe	Ser	Arg	Leu	Ile	Tyr	Ile	Ala		
						325					330			335			
cag	tcc	aaa	ggg	gtt	gct	tgg	att	ctc	acg	gga	ggc	acc	cat	tat	ggc	ctg	1116
Gln	Ser	Lys	Gly	Ala	Trp	Ile	Leu	Thr	Gly	Gly	Thr	His	Tyr	Gly	Leu		
						340					345			350			
atg	aag	tac	atc	ggg	gag	gtg	gtg	aga	gat	aac	acc	atc	agc	agg	agt	1164	
Met	Lys	Tyr	Ile	Gly	Glu	Val	Val	Arg	Asp	Asn	Thr	Ile	Ser	Arg	Ser		
						355					360			365			
tca	gag	gag	aat	att	gtg	gcc	att	ggc	ata	gca	gct	tgg	ggc	atg	gtc	1212	
Ser	Glu	Glu	Asn	Ile	Val	Ala	Ile	Gly	Ile	Ala	Ala	Trp	Gly	Met	Val		
						370					375			380			
tcc	aac	cg	gac	acc	ctc	atc	agg	aat	tgc	gat	gct	gag	ggc	tat	ttt	1260	
Ser	Asn	Arg	Asp	Thr	Leu	Ile	Arg	Asn	Cys	Asp	Ala	Glu	Gly	Tyr	Phe		
						385					390			395		400	
tta	gcc	cag	tac	ctt	atg	gat	gac	tgc	aca	aga	gat	cca	ctg	tat	atc	1308	
Leu	Ala	Gln	Tyr	Leu	Met	Asp	Asp	Phe	Thr	Arg	Asp	Pro	Leu	Tyr	Ile		
						405					410			415			
ctg	gac	aac	aac	cac	aca	cat	ttg	ctg	ctc	gtg	gac	aat	ggc	tgt	cat	1356	
Leu	Asp	Asn	Asn	His	Thr	His	Leu	Leu	Leu	Val	Asp	Asn	Gly	Cys	His		
						420					425			430			
gga	cat	ccc	act	gtc	gaa	gca	aag	ctc	cg	aat	cag	cta	gag	aag	tat	1404	
Gly	His	Pro	Thr	Val	Glu	Ala	Lys	Leu	Arg	Asn	Gln	Ile	Glu	Lys	Tyr		
						435					440			445			
atc	tct	gag	cgc	act	att	caa	gat	tcc	aac	tat	ggt	ggc	aag	atc	ccc	1452	
Ile	Ser	Glu	Arg	Thr	Ile	Gln	Asp	Ser	Asn	Tyr	Gly	Gly	Lys	Ile	Pro		
						450					455			460			
att	gtg	tgt	ttt	gcc	caa	gga	ggt	gga	aaa	gag	act	ttg	aaa	gcc	atc	1500	

Ile	Val	Cys	Phe	Ala	Gln	Gly	Gly	Gly	Lys	Glu	Thr	Leu	Lys	Ala	Ile		
465				470					475					480			
aat	acc	tcc	atc	aaa	aat	aaa	att	cct	tgt	gtg	gtg	gaa	ggc	tcg	1548		
Asn	Thr	Ser	Ile	Lys	Asn	Lys	Ile	Pro	Cys	Val	Val	Val	Glu	Gly	Ser		
				485				490				495					
ggc	cag	atc	gct	gat	gtg	atc	gct	agc	ctg	gtg	gag	gtg	gag	gat	gcc	1596	
Gly	Gln	Ile	Ala	Asp	Val	Ile	Ala	Ser	Leu	Val	Glu	Val	Glu	Asp	Ala		
				500				505			510						
ctg	aca	tct	tct	gcc	gtc	aag	gag	aag	ctg	gtg	cgc	ttt	tta	ccc	cgc	1644	
Leu	Thr	Ser	Ser	Ala	Val	Lys	Glu	Lys	Leu	Val	Arg	Phe	Leu	Pro	Arg		
				515				520			525						
acg	gtg	tcc	cgg	ctg	cct	gag	gag	gag	act	gag	agt	tgg	atc	aaa	tgg	1692	
Thr	Val	Ser	Arg	Leu	Pro	Glu	Glu	Glu	Thr	Glu	Ser	Trp	Ile	Lys	Trp		
				530				535			540						
ctc	aaa	gaa	att	ctc	gaa	tgt	tct	cac	cta	tta	aca	gtt	att	aaa	atg	1740	
Leu	Lys	Glu	Ile	Leu	Glu	Cys	Ser	His	Leu	Leu	Thr	Val	Ile	Lys	Met		
				545				550			555			560			
gaa	gaa	gct	ggg	gat	gaa	att	gtg	agc	aat	gcc	atc	tcc	tac	gct	cta	1788	
Glu	Glu	Ala	Gly	Asp	Glu	Ile	Val	Ser	Asn	Ala	Ile	Ser	Tyr	Ala	Leu		
				565				570			575						
tac	aaa	gcc	ttc	agc	acc	agt	gag	caa	gac	aag	gat	aac	tgg	aat	ggg	1836	
Tyr	Lys	Ala	Phe	Ser	Thr	Ser	Glu	Gln	Asp	Lys	Asp	Asn	Trp	Asn	Gly		
				580				585			590						
cag	ctg	aag	ctt	ctg	ctg	gag	tgg	aac	cag	ctg	gac	tta	gcc	aat	gat	1884	
Gln	Leu	Lys	Leu	Leu	Glu	Trp	Asn	Gln	Leu	Asp	Leu	Ala	Asn	Asp			
				595				600			605						
gag	att	ttc	acc	aat	gac	cgc	cga	tgg	gag	tct	gct	gac	ctt	caa	gaa	1932	
Glu	Ile	Phe	Thr	Asn	Asp	Arg	Arg	Trp	Glu	Ser	Ala	Asp	Leu	Gln	Glu		
				610				615			620						
gtc	atg	ttt	acg	gct	ctc	ata	aag	gac	aga	ccc	aag	ttt	gtc	cgc	ctc	1980	
Val	Met	Phe	Thr	Ala	Leu	Ile	Lys	Asp	Arg	Pro	Lys	Phe	Val	Arg	Leu		
				625				630			635			640			
ttt	ctg	gag	aat	ggc	ttg	aac	cta	cgg	aag	ttt	ctc	acc	cat	gat	gtc	2028	
Phe	Leu	Glu	Asn	Gly	Leu	Asn	Leu	Arg	Lys	Phe	Leu	Thr	His	Asp	Val		
				645				650			655						
ctc	act	gaa	ctc	ttc	tcc	aac	cac	ttc	agc	acg	ctt	gtg	tac	cg	aat	2076	
Leu	Thr	Glu	Leu	Phe	Ser	Asn	His	Phe	Ser	Thr	Leu	Val	Tyr	Arg	Asn		
				660				665			670						
ctg	cag	atc	gcc	aag	aat	tcc	tat	aat	gat	gcc	ctc	ctc	acg	ttt	gtc	2124	
Leu	Gln	Ile	Ala	Lys	Asn	Ser	Tyr	Asn	Asp	Ala	Leu	Leu	Thr	Phe	Val		
				675				680			685						
tgg	aaa	ctg	gtt	gcg	aac	ttc	cga	aga	ggc	ttc	cgg	aag	gaa	gac	aga	2172	
Trp	Lys	Leu	Val	Ala	Asn	Phe	Arg	Arg	Gly	Phe	Arg	Lys	Glu	Asp	Arg		
				690				695			700						
aat	ggc	cgg	gac	gag	atg	gac	ata	gaa	ctc	cac	gac	gtg	tct	cct	att	2220	
Asn	Gly	Arg	Asp	Glu	Met	Asp	Ile	Glu	Leu	His	Asp	Val	Ser	Pro	Ile		
				705				710			715			720			
act	cgg	cac	ccc	ctg	caa	gct	ctc	ttc	atc	tgg	gcc	att	ctt	cag	aat	2268	
Thr	Arg	His	Pro	Leu	Gln	Ala	Leu	Phe	Ile	Trp	Ala	Ile	Leu	Gln	Asn		
				725				730			735						
aag	aag	gaa	ctc	tcc	aaa	gtc	att	tgg	gag	cag	acc	agg	ggc	tgc	act	2316	

Lys	Lys	Glu	Leu	Ser	Lys	Val	Ile	Trp	Glu	Gln	Thr	Arg	Gly	Cys	Thr	
740					745								750			
ctg	gca	gcc	ctg	gga	gcc	agc	aag	ctt	ctg	aag	act	ctg	gcc	aaa	gtg	2364
Leu	Ala	Ala	Leu	Gly	Ala	Ser	Lys	Leu	Leu	Lys	Thr	Ile	Ala	Lys	Val	
755					760							765				
aag	aac	gac	atc	aat	gct	gct	ggg	gag	tcc	gag	gag	ctg	gct	aat	gag	2412
Lys	Asn	Asp	Ile	Asn	Ala	Ala	Gly	Gly	Ser	Glu	Glu	Ile	Ala	Asn	Glu	
770					775						780					
tac	gag	acc	cg	gct	gtt	gag	ctg	tcc	act	gag	tgt	tac	agc	agc	gat	2460
Tyr	Glu	Thr	Arg	Ala	Val	Glu	Leu	Phe	Thr	Glu	Cys	Tyr	Ser	Ser	Asp	
785					790					795					800	
gaa	gac	ttg	gca	gaa	cag	ctg	ctg	gtc	tat	tcc	tgt	gaa	gct	tgg	ggt	2508
Glu	Asp	Leu	Ala	Glu	Gln	Leu	Leu	Val	Tyr	Ser	Cys	Glu	Ala	Trp	Gly	
805						810						815				
gga	agc	aac	tgt	ctg	gag	ctg	g	gtg	gag	gcc	aca	gac	cag	cat	ttc	2556
Gly	Ser	Asn	Cys	Leu	Glu	Leu	Ala	Val	Glu	Ala	Thr	Asp	Gln	His	Phe	
820					825					830						
atc	gcc	cag	cct	ggg	gtc	cag	aat	ttt	ctt	tct	aag	caa	tgg	tat	gga	2604
Ile	Ala	Gln	Pro	Gly	Val	Gln	Asn	Phe	Leu	Ser	Lys	Gln	Trp	Tyr	Gly	
835					840					845						
gag	att	tcc	cga	gac	acc	aag	aac	tgg	aag	att	atc	ctg	tgt	ctg	ttt	2652
Glu	Ile	Ser	Arg	Asp	Thr	Lys	Asn	Trp	Lys	Ile	Ile	Leu	Cys	Leu	Phe	
850					855					860						
att	ata	ccc	ttg	gtg	ggc	tgt	ggc	ttt	gta	tca	ttt	agg	aag	aaa	cct	2700
Ile	Ile	Pro	Leu	Val	Gly	Cys	Gly	Phe	Val	Ser	Phe	Arg	Lys	Lys	Pro	
865					870					875					880	
gtc	gac	aag	cac	aag	ctg	ctt	tgg	tac	tat	gtg	g	tcg	ttc	ttc	acc	2748
Val	Asp	Lys	His	Lys	Lys	Leu	Leu	Trp	Tyr	Tyr	Val	Ala	Phe	Phe	Thr	
885						890					895					
tcc	ccc	ttc	gtg	gtc	ttc	tcc	tgg	aat	gtg	gtc	ttc	tac	atc	gcc	ttc	2796
Ser	Pro	Phe	Val	Val	Phe	Ser	Trp	Asn	Val	Val	Phe	Tyr	Ile	Ala	Phe	
900						905					910					
ctc	ctg	ctg	ttt	gcc	tac	gtg	ctg	ctc	atg	gat	ttc	cat	tcg	gtg	cca	2844
Leu	Leu	Leu	Phe	Ala	Tyr	Val	Leu	Leu	Met	Asp	Phe	His	Ser	Val	Pro	
915					920					925						
cac	ccc	ccc	gag	ctg	gtc	ctg	tac	tcg	ctg	gtc	ttt	gtc	ctc	ttc	tgt	2892
His	Pro	Pro	Glu	Leu	Val	Leu	Tyr	Ser	Leu	Val	Phe	Val	Leu	Phe	Cys	
930					935					940						
gat	gaa	gtg	aga	cag	tgg	tac	gta	aat	ggg	gtg	aat	tat	ttt	act	gac	2940
Asp	Glu	Val	Arg	Gln	Trp	Tyr	Val	Asn	Gly	Val	Asn	Tyr	Phe	Thr	Asp	
945					950					955					960	
ctg	tgg	aat	gtg	atg	gac	acg	ctg	ggg	ctt	ttt	tac	ttc	ata	gca	gga	2988
Leu	Trp	Asn	Val	Met	Asp	Thr	Leu	Gly	Leu	Phe	Tyr	Phe	Ile	Ala	Gly	
965					970					975						
att	gta	ttt	cg	ctc	cac	tct	tct	aat	aaa	agc	tct	ttg	tat	tct	gga	3036
Ile	Val	Phe	Arg	Leu	His	Ser	Ser	Asn	Lys	Ser	Ser	Leu	Tyr	Ser	Gly	
980					985					990						
cga	gtc	att	ttc	tgt	ctg	gac	tac	att	att	ttc	act	cta	aga	ttg	atc	3084
Arg	Val	Ile	Phe	Cys	Leu	Asp	Tyr	Ile	Ile	Phe	Thr	Leu	Arg	Leu	Ile	
995					1000					1005						
cac	att	ttt	act	gta	aga	aac	tta	gga	ccc	aag	att	ata	atg	ctg		3132

His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu		
1010 1015 1020		
cag agg atg ctg atc gat gtg ttc ttc ttc ctg ttc ctc ttt gcg gtg	3180	
Gln Arg Met Leu Ile Asp Val Phe Phe Phe Leu Phe Leu Phe Ala Val		
1025 1030 1035 1040		
tgg atg gtg gcc ttt ggc gtg gcc agg caa ggg atc ctt agg cag aat	3228	
Trp Met Val Ala Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn		
1045 1050 1055		
gag cag cgc tgg agg tgg ata ttc cgt tcg gtc atc tac gag ccc tac	3276	
Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr		
1060 1065 1070		
ctg gcc atg ttc ggc cag gtg ccc agt gac gtg gat ggt acc acg tat	3324	
Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Gly Thr Thr Tyr		
1075 1080 1085		
gac ttt gcc cac tgc acc ttc act ggg aat gag tcc aag cca ctg tgt	3372	
Asp Phe Ala His Cys Thr Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys		
1090 1095 1100		
gtg gag ctg gat gag cac aac ctg ccc cggttccccc gag tgg atc acc	3420	
Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr		
1105 1110 1115 1120		
atc ccc ctg gtg tgc atc tac atg tta tcc acc aac atc ctg ctg gtc	3468	
Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val		
1125 1130 1135		
aac ctg ctg gtc gcc atg ttt ggc tac acg gtg ggc acc gtc cag gag	3516	
Asn Leu Leu Val Ala Met Phe Gly Tyr Thr Val Gly Thr Val Gln Glu		
1140 1145 1150		
aac aat gac cag gtc tgg aag ttc cag agg tac ttc ctg gtg cag gag	3564	
Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu		
1155 1160 1165		
tac tgc agc cgc ctc aat atc ccc ttc ccc ttc atc gtc ttc gct tac	3612	
Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro Phe Ile Val Phe Ala Tyr		
1170 1175 1180		
ttc tac atg gtg gtg aag aag tgc ttc aag tgt tgc tgc aag gag aaa	3660	
Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys Lys Glu Lys		
1185 1190 1195 1200		
aac atg gag tct tct gtc tgc tgt ttc aaa aat gaa gac aat gag act	3708	
Asn Met Glu Ser Ser Val Cys Cys Phe Lys Asn Glu Asp Asn Glu Thr		
1205 1210 1215		
ctg gca tgg gag ggt gtc atg aag gaa aac tac ctt gtc aag atc aac	3756	
Leu Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn		
1220 1225 1230		
aca aaa gcc aac gac acc tca gag gaa atg agg cat cga ttt aga caa	3804	
Thr Lys Ala Asn Asp Thr Ser Glu Glu Met Arg His Arg Phe Arg Gln		
1235 1240 1245		
ctg gat aca aag ctt aat gat ctc aag ggt ctt ctg aaa gag att gct	3852	
Leu Asp Thr Lys Leu Asn Asp Leu Lys Gly Leu Leu Lys Glu Ile Ala		
1250 1255 1260		
aat aaa atc aaa taa	3867	
Asn Lys Ile Lys *		
1265		

<210> 11

<211> 1268

<212> PRT

<213> Homo sapiens

<400> 11

Met Pro Leu Pro His Lys Ser Gly Gln Lys Ser Leu Arg Ser Tyr Phe
 1 5 10 15
 Val Phe Ser Ile Gln Val Ser Val Ile Gln Ile Lys Gly Thr Glu Ser
 20 25 30
 Pro Gly Phe Ala Trp Trp Ala Phe Ser Gly Pro Leu Phe Arg Phe Leu
 35 40 45
 Pro Phe Ser Val Leu Leu Ala Leu Glu Leu Thr Val Val Leu Thr Gly
 50 55 60
 Val Trp Arg Leu Leu Arg Pro Cys Tyr His Cys Val Tyr Cys Gly Pro
 65 70 75 80
 Ala Ala Ser Ala His Leu Phe Ile Lys Gln Trp Leu Asp Gly Trp Arg
 85 90 95
 Met Gln Val Asp Arg Arg Arg Gly Ala Cys Arg Ser Lys Gly Leu Val
 100 105 110
 Gln Val Glu Gly Ala Thr Gln Ala Gly Glu His Leu Leu Ser Leu Gly
 115 120 125
 Ile Val Gly His Leu Pro Glu Glu Met Met Ser Glu Leu Ser Leu Glu
 130 135 140
 Asp Glu Gln Glu Met Thr Ala Gly Gly Val Trp Gly Arg Gly Leu Trp
 145 150 155 160
 Thr Glu Glu Lys Met Ser Phe Arg Ala Ala Arg Leu Ser Met Arg Asn
 165 170 175
 Arg Arg Asn Asp Thr Leu Asp Ser Thr Arg Thr Leu Tyr Ser Ser Ala
 180 185 190
 Ser Arg Ser Thr Asp Leu Ser Tyr Ser Glu Ser Asp Leu Val Asn Phe
 195 200 205
 Ile Gln Ala Asn Phe Lys Lys Arg Glu Cys Val Phe Phe Ile Lys Asp
 210 215 220
 Ser Lys Ala Thr Glu Asn Val Cys Lys Cys Gly Tyr Ala Gln Ser Gln
 225 230 235 240
 His Met Glu Gly Thr Gln Ile Asn Gln Ser Glu Lys Trp Asn Tyr Lys
 245 250 255
 Lys His Thr Lys Glu Phe Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe
 260 265 270
 Glu Thr Leu Gly Lys Lys Gly Lys Tyr Ile Arg Leu Ser Cys Asp Thr
 275 280 285
 Asp Ala Glu Ile Leu Tyr Glu Leu Leu Thr Gln His Trp His Leu Lys
 290 295 300
 Thr Pro Asn Leu Val Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Ala
 305 310 315 320
 Leu Lys Pro Arg Met Arg Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala
 325 330 335
 Gln Ser Lys Gly Ala Trp Ile Leu Thr Gly Gly Thr His Tyr Gly Leu
 340 345 350
 Met Lys Tyr Ile Gly Glu Val Val Arg Asp Asn Thr Ile Ser Arg Ser
 355 360 365
 Ser Glu Glu Asn Ile Val Ala Ile Gly Ile Ala Ala Trp Gly Met Val
 370 375 380
 Ser Asn Arg Asp Thr Leu Ile Arg Asn Cys Asp Ala Glu Gly Tyr Phe
 385 390 395 400
 Leu Ala Gln Tyr Leu Met Asp Asp Phe Thr Arg Asp Pro Leu Tyr Ile
 405 410 415
 Leu Asp Asn Asn His Thr His Leu Leu Leu Val Asp Asn Gly Cys His
 420 425 430
 Gly His Pro Thr Val Glu Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr
 435 440 445
 Ile Ser Glu Arg Thr Ile Gln Asp Ser Asn Tyr Gly Gly Lys Ile Pro
 450 455 460
 Ile Val Cys Phe Ala Gln Gly Gly Lys Glu Thr Leu Lys Ala Ile
 465 470 475 480
 Asn Thr Ser Ile Lys Asn Lys Ile Pro Cys Val Val Val Glu Gly Ser
 485 490 495

Gly Gln Ile Ala Asp Val Ile Ala Ser Leu Val Glu Val Glu Asp Ala
 500 505 510
 Leu Thr Ser Ser Ala Val Lys Glu Lys Leu Val Arg Phe Leu Pro Arg
 515 520 525
 Thr Val Ser Arg Leu Pro Glu Glu Glu Thr Glu Ser Trp Ile Lys Trp
 530 535 540
 Leu Lys Glu Ile Leu Glu Cys Ser His Leu Leu Thr Val Ile Lys Met
 545 550 555 560
 Glu Glu Ala Gly Asp Glu Ile Val Ser Asn Ala Ile Ser Tyr Ala Leu
 565 570 575
 Tyr Lys Ala Phe Ser Thr Ser Glu Gln Asp Lys Asp Asn Trp Asn Gly
 580 585 590
 Gln Leu Lys Leu Leu Leu Glu Trp Asn Gln Leu Asp Leu Ala Asn Asp
 595 600 605
 Glu Ile Phe Thr Asn Asp Arg Arg Trp Glu Ser Ala Asp Leu Gln Glu
 610 615 620
 Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe Val Arg Leu
 625 630 635 640
 Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr His Asp Val
 645 650 655
 Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val Tyr Arg Asn
 660 665 670
 Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr Phe Val
 675 680 685
 Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys Glu Asp Arg
 690 695 700
 Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val Ser Pro Ile
 705 710 715 720
 Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu Gln Asn
 725 730 735
 Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg Gly Cys Thr
 740 745 750
 Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala Lys Val
 755 760 765
 Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala Asn Glu
 770 775 780
 Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser Ser Asp
 785 790 795 800
 Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala Trp Gly
 805 810 815
 Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr Asp Gln His Phe
 820 825 830
 Ile Ala Gln Pro Gly Val Gln Asn Phe Leu Ser Lys Gln Trp Tyr Gly
 835 840 845
 Glu Ile Ser Arg Asp Thr Lys Asn Trp Lys Ile Ile Leu Cys Leu Phe
 850 855 860
 Ile Ile Pro Leu Val Gly Cys Gly Phe Val Ser Phe Arg Lys Lys Pro
 865 870 875 880
 Val Asp Lys His Lys Lys Leu Leu Trp Tyr Tyr Val Ala Phe Phe Thr
 885 890 895
 Ser Pro Phe Val Val Phe Ser Trp Asn Val Val Phe Tyr Ile Ala Phe
 900 905 910
 Leu Leu Leu Phe Ala Tyr Val Leu Leu Met Asp Phe His Ser Val Pro
 915 920 925
 His Pro Pro Glu Leu Val Leu Tyr Ser Leu Val Phe Val Leu Phe Cys
 930 935 940
 Asp Glu Val Arg Gln Trp Tyr Val Asn Gly Val Asn Tyr Phe Thr Asp
 945 950 955 960
 Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr Phe Ile Ala Gly
 965 970 975
 Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly
 980 985 990
 Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr Leu Arg Leu Ile
 995 1000 1005
 His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu
 1010 1015 1020
 Gln Arg Met Leu Ile Asp Val Phe Phe Phe Leu Phe Leu Phe Ala Val
 1025 1030 1035 1040

Trp Met Val Ala Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn
 1045 1050 1055
 Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr
 1060 1065 1070
 Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Gly Thr Thr Tyr
 1075 1080 1085
 Asp Phe Ala His Cys Thr Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys
 1090 1095 1100
 Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr
 1105 1110 1115 1120
 Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val
 1125 1130 1135
 Asn Leu Leu Val Ala Met Phe Gly Tyr Thr Val Gly Thr Val Gln Glu
 1140 1145 1150
 Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu
 1155 1160 1165
 Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro Phe Ile Val Phe Ala Tyr
 1170 1175 1180
 Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys Lys Glu Lys
 1185 1190 1195 1200
 Asn Met Glu Ser Ser Val Cys Cys Phe Lys Asn Glu Asp Asn Glu Thr
 1205 1210 1215
 Leu Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn
 1220 1225 1230
 Thr Lys Ala Asn Asp Thr Ser Glu Glu Met Arg His Arg Phe Arg Gln
 1235 1240 1245
 Leu Asp Thr Lys Leu Asn Asp Leu Lys Gly Leu Leu Lys Glu Ile Ala
 1250 1255 1260
 Asn Lys Ile Lys
 1265

<210> 12

<211> 3804

<212> DNA

<213> Artificial Sequence

<220>

<223> Generic sequence that encompasses all nucleotide sequences that encode human TRPM8 having amino acid sequence as shown in SEQ ID NO:11

<221> CDS

<222> (1)...(3804)

<221> misc_feature

<222> 21,33,42,57,69,96,123,153,249,324,378,417,426,498,519,552,570,573,579,585,597,603,609,675,717,750,855,933,990,1014,1098,1104,1107,1155,1350,1371,1449,1488,1515,1545,1548,1593,1620,1656,1707,1719,1743,1749,1857,1986,2037,2154,2223,2277,2394,2397,2433,2454,2529,2553,2625,2691,2709,2778,2811,2949,2952,2961,2964,2973,3042,3198,3243,3300,3390,3513,3612,3615,3717

<223> n = A,T,C or G if after TC;
n = T or C if after AG

<221> misc_feature

<222> 39,138,201,210,288,303,306,309,321,471,504,513,525,531,534,558,582,648,849,972,978,993,1083,1101,1161,1176,1233,1326,1356,1572,1584,1596,1845,1848,1902,1917,1947,2013,2088,2091,2100,2112,2121,2166,2247,2364,2556,2631,2844,2940,2979,3018,3045,3078,3147,3162,3177,3183,3195,3342,3486,3516,3729,3735,3741

<223> n = A,T,C or G if after CG;
n = A or G if after AG

<221> misc_feature

<222> all "n" not specified above

<223> n = A,T,C or G

<400> 12
atg ccn ytn ccn cay aar wsn ggn car aar wsn ytn mgn wsn tay tty 48
Met Pro Leu Pro His Lys Ser Gly Gln Lys Ser Leu Arg Ser Tyr Phe
1 5 10 15

gtn tty wsn ath car gtn wsn gtn ath car ath aar ggn acn gar wsn 96
Val Phe Ser Ile Gln Val Ser Val Ile Gln Ile Lys Gly Thr Glu Ser
20 25 30

ccn ggn tty gcn tgg tgg gcn tty wsn ggn ccn ytn tty mgn tty ytn 144
Pro Gly Phe Ala Trp Trp Ala Phe Ser Gly Pro Leu Phe Arg Phe Leu
35 40 45

ccn tty wsn gtn ytn ytn gcn ytn gar ytn acn gtn gtn ytn acn ggn 192
Pro Phe Ser Val Leu Leu Ala Leu Glu Leu Thr Val Val Leu Thr Gly
50 55 60

gtn tgg mgn ytn ytn mgn ccn tgy tay cay tgg gtn tay tgy ggn ccn 240
Val Trp Arg Leu Leu Arg Pro Cys Tyr His Cys Val Tyr Cys Gly Pro
65 70 75 80

gcn gcn wsn gcn cay ytn tty ath aar car tgg ytn gay ggn tgg mgn 288
Ala Ala Ser Ala His Leu Phe Ile Lys Gln Trp Leu Asp Gly Trp Arg
85 90 95

atg car gtn gay mgn mgn ggn gcn tgy mgn wsn aar ggn ytn gtn 336
Met Gln Val Asp Arg Arg Gly Ala Cys Arg Ser Lys Gly Leu Val
100 105 110

car gtn gar ggn gcn acn car gcn ggn gar cay ytn ytn wsn ytn ggn 384
Gln Val Glu Gly Ala Thr Gln Ala Gly Glu His Leu Leu Ser Leu Gly
115 120 125

ath gtn ggn cay ytn ccn gar gar atg atg wsn gar ytn wsn ytn gar 432
Ile Val Gly His Leu Pro Glu Glu Met Met Ser Glu Leu Ser Leu Glu
130 135 140

gay gar car gar atg acn gcn ggn ggn gtn tgg ggn mgn ggn ytn tgg 480
Asp Glu Gln Glu Met Thr Ala Gly Gly Val Trp Gly Arg Gly Leu Trp
145 150 155 160

acn gar gar aar atg wsn tty mgn gcn gcn mgn ytn wsn atg mgn aay 528
Thr Glu Glu Lys Met Ser Phe Arg Ala Ala Arg Leu Ser Met Arg Asn
165 170 175

mgn mgn aay gay acn ytn gay wsn acn mgn acn ytn tay wsn wsn gcn 576
Arg Arg Asn Asp Thr Leu Asp Ser Thr Arg Thr Leu Tyr Ser Ser Ala
180 185 190

wsn mgn wsn acn gay ytn wsn tay wsn gar wsn gay ytn gtn aay tty 624
Ser Arg Ser Thr Asp Leu Ser Tyr Ser Glu Ser Asp Leu Val Asn Phe
195 200 205

ath car gcn aay tty aar aar mgn gar tgy gtn tty tgy ath aar gay 672
Ile Gln Ala Asn Phe Lys Lys Arg Glu Cys Val Phe Phe Ile Lys Asp
210 215 220

wsn aar gcn acn gar aay gtn tgy aar tgy ggn tay gcn car wsn car 720
Ser Lys Ala Thr Glu Asn Val Cys Lys Cys Gly Tyr Ala Gln Ser Gln
225 230 235 240

cay atg gar ggn acn car ath aay car wsn gar aar tgg aay tay aar 768
His Met Glu Gly Thr Gln Ile Asn Gln Ser Glu Lys Trp Asn Tyr Lys
245 250 255

aar cay acn aar gar tty ccn acn gay gcn tty ggn gay ath car tty 816
Lys His Thr Lys Glu Phe Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe
260 265 270

gar acn ytn ggn aar aar ggn aar tay ath mgn ytn wsn tgy gay acn	864
Glu Thr Leu Gly Lys Lys Gly Lys Tyr Ile Arg Leu Ser Cys Asp Thr	
275 280 285	
gay gcn gar ath ytn tay gar ytn ytn acn car cay tgg cay ytn aar	912
Asp Ala Glu Ile Leu Tyr Glu Leu Leu Thr Gln His Trp His Leu Lys	
290 295 300	
acn ccn aay ytn gtn ath wsn gtn acn ggn ggn gcn aar aay tty gcn	960
Thr Pro Asn Leu Val Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Ala	
305 310 315 320	
ytn aar ccn mgn atg mgn aar ath tty wsn mgn ytn ath tay ath gcn	1008
Leu Lys Pro Arg Met Arg Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala	
325 330 335	
car wsn aar ggn gcn tgg ath ytn acn ggn ggn acn cay tay ggn ytn	1056
Gln Ser Lys Gly Ala Trp Ile Leu Thr Gly Gly Thr His Tyr Gly Leu	
340 345 350	
atg aar tay ath ggn gar gtn gtn mgn gay aay acn ath wsn mgn wsn	1104
Met Lys Tyr Ile Gly Glu Val Val Arg Asp Asn Thr Ile Ser Arg Ser	
355 360 365	
wsn gar gar aay ath gtn gcn ath ggn ath gcn gcn tgg ggn atg gtn	1152
Ser Glu Glu Asn Ile Val Ala Ile Gly Ile Ala Ala Trp Gly Met Val	
370 375 380	
wsn aay mgn gay acn ytn ath mgn aay tgy gay gcn gar ggn tay tty	1200
Ser Asn Arg Asp Thr Leu Ile Arg Asn Cys Asp Ala Glu Gly Tyr Phe	
385 390 395 400	
ytn gcn car tay ytn atg gay gay tty acn mgn gay ccn ytn tay ath	1248
Leu Ala Gln Tyr Leu Met Asp Asp Phe Thr Arg Asp Pro Leu Tyr Ile	
405 410 415	
ytn gay aay aay cay acn cay ytn ytn gtn gay aay ggn tgy cay	1296
Leu Asp Asn Asn His Thr His Leu Leu Leu Val Asp Asn Gly Cys His	
420 425 430	
ggn cay ccn acn gtn gar gcn aar ytn mgn aay car ytn gar aar tay	1344
Gly His Pro Thr Val Glu Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr	
435 440 445	
ath wsn gar mgn acn ath car gay wsn aay tay ggn ggn aar ath ccn	1392
Ile Ser Glu Arg Thr Ile Gln Asp Ser Asn Tyr Gly Gly Lys Ile Pro	
450 455 460	
ath gtn tgy tty gcn car ggn ggn aar gar acn ytn aar gcn ath	1440
Ile Val Cys Phe Ala Gln Gly Gly Lys Glu Thr Leu Lys Ala Ile	
465 470 475 480	
aay acn wsn ath aar aay aar ath ccn tgy gtn gtn gtn gar ggn wsn	1488
Asn Thr Ser Ile Lys Asn Lys Ile Pro Cys Val Val Val Glu Gly Ser	
485 490 495	
ggn car ath gcn gay gtn ath gcn wsn ytn gtn gar gtn gar gay gcn	1536
Gly Gln Ile Ala Asp Val Ile Ala Ser Leu Val Glu Val Glu Asp Ala	
500 505 510	
ytn acn wsn wsn gcn gtn aar gar aar ytn gtn mgn tty ytn ccn mgn	1584
Leu Thr Ser Ser Ala Val Lys Glu Lys Leu Val Arg Phe Leu Pro Arg	
515 520 525	
acn gtn wsn mgn ytn ccn gar gar acn gar wsn tgg ath aar tgg	1632
Thr Val Ser Arg Leu Pro Glu Glu Thr Glu Ser Trp Ile Lys Trp	
530 535 540	

545	550	555	560	1680
565	570	575		1728
580	585	590		1776
595	600	605		1824
610	615	620		1872
625	630	635	640	1920
645	650	655		1968
660	665	670		2016
675	680	685		2064
690	695	700		2112
705	710	715	720	2160
725	730	735		2208
740	745	750		2256
755	760	765		2304
770	775	780		2352
785	790	795	800	2400
805	810	815		2448

Ytn aar gar ath ytn gar tgy wsn cay ytn ytn acn gtn ath aar atg
 Leu Lys Glu Ile Leu Glu Cys Ser His Leu Leu Thr Val Ile Lys Met
 545 550 555 560

gar gar gcn ggn gay gar ath gtn wsn aay gcn ath wsn tay gcn ytn
 Glu Glu Ala Gly Asp Glu Ile Val Ser Asn Ala Ile Ser Tyr Ala Leu
 565 570 575

tay aar gcn tty wsn acn wsn gar car gay aar gay aay tgg aay ggn
 Tyr Lys Ala Phe Ser Thr Ser Glu Gln Asp Lys Asp Asn Trp Asn Gly
 580 585 590

car ytn aar ytn ytn gar tgg aay car ytn gay ytn gcn aay gay
 Gln Leu Lys Leu Leu Glu Trp Asn Gln Leu Asp Leu Ala Asn Asp
 595 600 605

gar ath tty acn aay gay mgn mgn tgg gar wsn gcn gay ytn car gar
 Glu Ile Phe Thr Asn Asp Arg Arg Trp Glu Ser Ala Asp Leu Gln Glu
 610 615 620

gtn atg tty acn gcn ytn ath aar gay mgn ccn aar tty gtn mgn ytn
 Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe Val Arg Leu
 625 630 635 640

tty ytn gar aay ggn ytn aay ytn mgn aar tty ytn acn cay gay gtn
 Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr His Asp Val
 645 650 655

ytn acn gar ytn tty wsn aay cay tty wsn acn ytn gtn tay mgn aay
 Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val Tyr Arg Asn
 660 665 670

ytn car ath gcn aar aay wsn tay aay gay gcn ytn ytn acn tty gtn
 Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr Phe Val
 675 680 685

tgg aar ytn gtn gcn aay tty mgn mgn ggn tty mgn aar gar gay mgn
 Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys Glu Asp Arg
 690 695 700

aay ggn mgn gay gar atg gay ath gar ytn cay gay gtn wsn ccn ath
 Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val Ser Pro Ile
 705 710 715 720

acn mgn cay ccn ytn car gcn ytn tty ath tgg gcn ath ytn car aay
 Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu Gln Asn
 725 730 735

aar aar gar ytn wsn aar gtn ath tgg gar car acn mgn ggn tgy acn
 Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg Gly Cys Thr
 740 745 750

ytn gcn gcn ytn ggn gcn wsn aar ytn ytn aar acn ytn gcn aar gtn
 Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala Lys Val
 755 760 765

aar aay gay ath aay gcn gcn ggn gar wsn gar gar ytn gcn aay gar
 Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala Asn Glu
 770 775 780

tay gar acn mgn gcn gtn gar ytn tty acn gar tgy tay wsn wsn gay
 Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser Ser Asp
 785 790 795 800

gar gay ytn gcn gar car ytn ytn gtn tay wsn tgy gar gcn tgg ggn
 Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala Trp Gly
 805 810 815

ggn wsn aay tgy ytn gar ytn gcn gtn gar gcn acn gay car cay tty	2496
Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr Asp Gln His Phe	
820 825 830	
ath gcn car ccn ggn gtn car aay tty ytn wsn aar car tgg tay ggn	2544
Ile Ala Gln Pro Gly Val Gln Asn Phe Leu Ser Lys Gln Trp Tyr Gly	
835 840 845	
gar ath wsn mgn gay acn aar aay tgg aar ath ath ytn tgy ytn tty	2592
Glu Ile Ser Arg Asp Thr Lys Asn Trp Lys Ile Ile Leu Cys Leu Phe	
850 855 860	
ath ath ccn ytn gtn ggn tgy ggn tty gtn wsn tty mgn aar aar ccn	2640
Ile Ile Pro Leu Val Gly Cys Gly Phe Val Ser Phe Arg Lys Lys Pro	
865 870 875 880	
gtn gay aar cay aar aar ytn ytn tgg tay tay gtn gcn tty tty acn	2688
Val Asp Lys His Lys Lys Leu Leu Trp Tyr Tyr Val Ala Phe Phe Thr	
885 890 895	
wsn ccn tty gtn gtn tty wsn tgg aay gtn gtn tty tay ath gcn tty	2736
Ser Pro Phe Val Val Phe Ser Trp Asn Val Val Phe Tyr Ile Ala Phe	
900 905 910	
ytn ytn ytn tty gcn tay gtn ytn ytn atg gay tty cay wsn gtn ccn	2784
Leu Leu Leu Phe Ala Tyr Val Leu Leu Met Asp Phe His Ser Val Pro	
915 920 925	
cay ccn ccn gar ytn gtn ytn tay wsn ytn gtn tty gtn ytn tty tgy	2832
His Pro Pro Glu Leu Val Leu Tyr Ser Leu Val Phe Val Leu Phe Cys	
930 935 940	
gay gar gtn mgn car tgg tay gtn aay ggn gtn aay tay tty acn gay	2880
Asp Glu Val Arg Gln Trp Tyr Val Asn Gly Val Asn Tyr Phe Thr Asp	
945 950 955 960	
ytn tgg aay gtn atg gay acn ytn ggn ytn tty tay tty ath gcn ggn	2928
Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr Phe Ile Ala Gly	
965 970 975	
ath gtn tty mgn ytn cay wsn wsn aay aar wsn wsn ytn tay wsn ggn	2976
Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly	
980 985 990	
mgn gtn ath tty tgy ytn gay tay ath ath tty acn ytn mgn ytn ath	3024
Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr Leu Arg Leu Ile	
995 1000 1005	
cay ath tty acn gtn wsn mgn aay ytn ggn ccn aar ath ath atg ytn	3072
His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu	
1010 1015 1020	
car mgn atg ytn ath gay gtn tty tty ytn tty ytn tty gcn gtn	3120
Gln Arg Met Leu Ile Asp Val Phe Phe Phe Leu Phe Leu Phe Ala Val	
1025 1030 1035 1040	
tgg atg gtn gcn tty ggn gtn gcn mgn car ggn ath ytn mgn car aay	3168
Trp Met Val Ala Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn	
1045 1050 1055	
gar car mgn tgg mgn tgg ath tty mgn wsn gtn ath tay gar ccn tay	3216
Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr	
1060 1065 1070	
ytn gcn atg tty ggn car gtn ccn wsn gay gtn gay ggn acn acn tay	3264
Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Gly Thr Thr Tyr	
1075 1080 1085	

gay tty gcn cay tgy acn tty acn ggn aay gar wsn aar ccn ytn tgy	3312
Asp Phe Ala His Cys Thr Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys	
1090 1095 1100	
gtn gar ytn gay gar cay aay ytn ccn mgn tty ccn gar tgg ath acn	3360
Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr	
1105 1110 1115 1120	
ath ccn ytn gtn tgy ath tay atg ytn wsn acn aay ath ytn ytn gtn	3408
Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val	
1125 1130 1135	
aay ytn ytn gtn gcn atg tty ggn tay acn gtn ggn acn gtn car gar	3456
Asn Leu Leu Val Ala Met Phe Gly Tyr Thr Val Gly Thr Val Gln Glu	
1140 1145 1150	
aay aay gay car gtn tgg aar tty car mgn tay tty ytn gtn car gar	3504
Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu	
1155 1160 1165	
tay tgy wsn mgn ytn aay ath ccn tty ccn tty ath gtn tty gcn tay	3552
Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro Ile Val Phe Ala Tyr	
1170 1175 1180	
tty tay atg gtn gtn aar aar tgy tgy aar tgy tgy tgy aar gar aar	3600
Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys Lys Glu Lys	
1185 1190 1195 1200	
aay atg gar wsn wsn gtn tgy tgy tty aar aay gar gay aay gar acn	3648
Asn Met Glu Ser Ser Val Cys Cys Phe Lys Asn Glu Asp Asn Glu Thr	
1205 1210 1215	
ytn gcn tgg gar ggn gtn atg aar gar aay tay ytn gtn aar ath aay	3696
Leu Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn	
1220 1225 1230	
acn aar gcn aay gay acn wsn gar gar atg mgn cay mgn tty mgn car	3744
Thr Lys Ala Asn Asp Thr Ser Glu Glu Met Arg His Arg Phe Arg Gln	
1235 1240 1245	
ytn gay acn aar ytn aay gay ytn aar ggn ytn ytn aar gar ath gcn	3792
Leu Asp Thr Lys Leu Asn Asp Leu Lys Gly Leu Leu Lys Glu Ile Ala	
1250 1255 1260	
aay aar ath aar	3804
Asn Lys Ile Lys	
1265	
<210> 13	
<211> 3281	
<212> DNA	
<213> Mus musculus	
<220>	
<221> CDS	
<222> (156) ... (2771)	
<400> 13	
ctaatacgac tcactatagg gcaagcagt gtaacaacgc agagtaacgcg ggggaagcgc	60
agcaggagga ggacgcggcc ggagggatca ggaagcggcg gcgctgcgcc cgcgccctga	120
gcaggccgag aagtacaaac agatctgggt ccagt atg gca gat cct ggt gat	173
Met Ala Asp Pro Gly Asp	
1 5	
ggt ccc cgt gca gcg cct ggg gag gtg gct gag ccc cct gga gat gag	221
Gly Pro Arg Ala Ala Pro Gly Glu Val Ala Glu Pro Pro Gly Asp Glu	

10	15	20	
agt ggt acc tct ggt ggg gag gcc ttc ccc ctc tct tcc ctg gcc aat Ser Gly Thr Ser Gly Gly Glu Ala Phe Pro Leu Ser Ser Leu Ala Asn	25	30	269
		35	
ctg ttt gag ggg gag gaa ggc tcc tct tct ctt tcc ccg gtg gat gct Leu Phe Glu Gly Glu Gly Ser Ser Ser Leu Ser Pro Val Asp Ala	40	45	317
		50	
agc cgc cct gct ggc cct ggc gat gga cgt cca aac ctg cgt atg aag Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg Pro Asn Leu Arg Met Lys	55	60	365
		65	70
ttc cag ggc gct ttc cgc aag ggg gtt ccc aac ccc att gac ctg ttg Phe Gln Gly Ala Phe Arg Lys Gly Val Pro Asn Pro Ile Asp Leu Leu	75	80	413
		85	
gag tcc acc ctg tac gag tcc tca gta gtg cct ggg ccc aag aaa gcg Glu Ser Thr Leu Tyr Glu Ser Ser Val Val Pro Gly Pro Lys Lys Ala	90	95	461
		100	
ccc atg gat tcc ttg ttc gac tac ggc act tac cgt cac cac ccc agt Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr Tyr Arg His His Pro Ser	105	110	509
		115	
gac aac aag aga tgg agg aga aag gtc gtg gag aag cag cca cag agc Asp Asn Lys Arg Trp Arg Arg Lys Val Val Glu Lys Gln Pro Gln Ser	120	125	557
		130	
ccc aaa gct cct gca ccc cag cca ccc ccc atc ctc aaa gtc ttc aat Pro Lys Ala Pro Ala Pro Gln Pro Pro Pro Ile Leu Lys Val Phe Asn	135	140	605
		145	150
cgg ccc atc ctc ttt gac att gtg tcc cgg ggc tcc act gcg gac cta Arg Pro Ile Leu Phe Asp Ile Val Ser Arg Gly Ser Thr Ala Asp Leu	155	160	653
		165	
gat gga ctg ctc tcc ttc ttg acc cac aag aag cgc ctg act gat Asp Gly Leu Leu Ser Phe Leu Leu Thr His Lys Lys Arg Leu Thr Asp	170	175	701
		180	
gag gag ttc cgg gag ccg tcc acg ggg aag acc tgc ctg ccc aag gcg Glu Glu Phe Arg Glu Pro Ser Thr Gly Lys Thr Cys Leu Pro Lys Ala	185	190	749
		195	
ctg ctg aac cta agc aac ggg cgc aac gac acc atc ccg gtg ttg ctg Leu Leu Asn Leu Ser Asn Gly Arg Asn Asp Thr Ile Pro Val Leu Leu	200	205	797
		210	
gac att gcg gag cgc acc ggc aac atg cgt gaa ttc atc aac tcg ccc Asp Ile Ala Glu Arg Thr Gly Asn Met Arg Glu Phe Ile Asn Ser Pro	215	220	845
		225	230
ttc aga gac atc tac tac cga ggc cag aca tcc ctg cac att gcc atc Phe Arg Asp Ile Tyr Tyr Arg Gly Gln Thr Ser Leu His Ile Ala Ile	235	240	893
		245	
gaa cgg cgc tgc aag cac tac gtg gag ctg ctg gtg gcc cag gga gcc Glu Arg Arg Cys Lys His Tyr Val Glu Leu Leu Val Ala Gln Gly Ala	250	255	941
		260	
gac gtg cac gcc cag gcc cgc ggc ttc ttc cag ccc aag gat gag Asp Val His Ala Gln Ala Arg Gly Arg Phe Phe Gln Pro Lys Asp Glu	265	270	989
		275	
gga ggc tac ttc tac ttt ggg gag ctg ccc ttg tcc ctg gca gcc tgc Gly Gly Tyr Phe Tyr Phe Gly Glu Leu Pro Leu Ser Leu Ala Ala Cys			1037

280	285	290	
acc aac cag ccg cac atc gtc aac tac ctg aca gag aac cct cac aag			1085
Thr Asn Gln Pro His Ile Val Asn Tyr Leu Thr Glu Asn Pro His Lys			
295	300	305	310
aaa gct gac atg agg cga cag gac tcg agg ggg aac acg gtg ctg cac			1133
Lys Ala Asp Met Arg Arg Gln Asp Ser Arg Gly Asn Thr Val Leu His			
315	320	325	
gcg ctg gtg gcc atc gcc gac aac acc cga gag aac acc aag ttt gtc			1181
Ala Leu Val Ala Ile Ala Asp Asn Thr Arg Glu Asn Thr Lys Phe Val			
330	335	340	
acc aag atg tac gac ctg ctg ctt ctc aag tgt tca cgc ctc ttc ctc			1229
Thr Lys Met Tyr Asp Leu Leu Leu Lys Cys Ser Arg Leu Phe Leu			
345	350	355	
gac agc aac ctg gag aca gtt ctc aac aat gat ggc ctt tcg cct ctc			1277
Asp Ser Asn Leu Glu Thr Val Leu Asn Asn Asp Gly Leu Ser Pro Leu			
360	365	370	
atg atg gct gcc aag aca ggc aag atc ggg gtc ttt cag cac atc atc			1325
Met Met Ala Ala Lys Thr Gly Lys Ile Gly Val Phe Gln His Ile Ile			
375	380	385	390
cga cgt gag gtg aca gat gag gac acc cgg cat ctg tct cgc aag ttc			1373
Arg Arg Glu Val Thr Asp Glu Asp Thr Arg His Leu Ser Arg Lys Phe			
395	400	405	
aag gac tgg gcc tat ggg cct gtg tat tct tct ctc tac gac ctc tcc			1421
Lys Asp Trp Ala Tyr Gly Pro Val Tyr Ser Ser Leu Tyr Asp Leu Ser			
410	415	420	
tcc ctg gac aca tgc ggg gag gag gtg tcc gtg ctg gag atc ctg gtg			1469
Ser Leu Asp Thr Cys Gly Glu Val Ser Val Leu Glu Ile Leu Val			
425	430	435	
tac aac agc aag atc gag aac cgc cat gag atg ctg gct gta gag ccc			1517
Tyr Asn Ser Lys Ile Glu Asn Arg His Glu Met Leu Ala Val Glu Pro			
440	445	450	
att aac gaa ctg ttg aga gac aag tgg cgt aag ttt ggg gct gtg tcc			1565
Ile Asn Glu Leu Leu Arg Asp Lys Trp Arg Lys Phe Gly Ala Val Ser			
455	460	465	470
ttc tac atc aac gtg gtc tcc tat ctg tgt gcc atg gtc atc ttc acc			1613
Phe Tyr Ile Asn Val Val Ser Tyr Leu Cys Ala Met Val Ile Phe Thr			
475	480	485	
ctc acc gcc tac tat cag cca ctg gag ggc acg cca ccc tac cct tac			1661
Leu Thr Ala Tyr Tyr Gln Pro Leu Glu Gly Thr Pro Pro Tyr Pro Tyr			
490	495	500	
cgg acc aca gtg gac tac ctg agg ctg gct ggc gag gtc atc acg ctc			1709
Arg Thr Thr Val Asp Tyr Leu Arg Leu Ala Gly Glu Val Ile Thr Leu			
505	510	515	
ttc aca gga gtc ctg ttc ttt acc agt atc aaa gac ttg ttc acg			1757
Phe Thr Gly Val Leu Phe Phe Thr Ser Ile Lys Asp Leu Phe Thr			
520	525	530	
aag aaa tgc cct gga gtg aat tct ctc ttc gtc gat ggc tcc ttc cag			1805
Lys Lys Cys Pro Gly Val Asn Ser Leu Phe Val Asp Gly Ser Phe Gln			
535	540	545	550
tta ctc tac ttc atc tac tct gtg ctg gtg gtt gtc tct gcg gcg ctc			1853
Leu Leu Tyr Phe Ile Tyr Ser Val Leu Val Val Ser Ala Ala Leu			

44/75

555

560

565

tac	ctg	gct	ggg	atc	gag	gcc	tac	ctg	gct	gtg	atg	gtc	ttt	gcc	ctg	1901	
Tyr	Leu	Ala	Gly	Ile	Glu	Ala	Tyr	Leu	Ala	Val	Met	Val	Phe	Ala	Leu		
570								575					580				
gtc	ctg	ggc	tgg	atg	aat	gcg	ctg	tac	ttc	acg	cgc	ggg	ttg	aag	ctg	1949	
Val	Leu	Gly	Trp	Met	Asn	Ala	Leu	Tyr	Phe	Thr	Arg	Gly	Leu	Lys	Leu		
585								590				595					
acg	ggg	acc	tac	agc	atc	atg	att	cag	aag	atc	ctc	ttc	aaa	gac	ctc	1997	
Thr	Gly	Thr	Tyr	Ser	Ile	Met	Ile	Gln	Lys	Ile	Leu	Phe	Lys	Asp	Leu		
600							605				610						
ttc	cgc	ttc	ctg	ctt	gtg	tac	ctg	ctc	ttc	atg	atc	ggc	tat	gcc	tca	2045	
Phe	Arg	Phe	Leu	Leu	Val	Tyr	Leu	Leu	Phe	Met	Ile	Gly	Tyr	Ala	Ser		
615							620				625			630			
gcc	ctg	gtc	acc	ctc	ctg	aat	ccg	tgc	acc	aac	atg	aag	gtc	tgt	gac	2093	
Ala	Leu	Val	Thr	Leu	Leu	Asn	Pro	Cys	Thr	Asn	Met	Lys	Val	Cys	Asp		
635							640					645					
gag	gac	cag	agc	aac	tgc	acg	gtg	ccc	acg	tat	cct	gcg	tgc	cgc	gac	2141	
Glu	Asp	Gln	Ser	Asn	Cys	Thr	Val	Pro	Thr	Tyr	Pro	Ala	Cys	Arg	Asp		
650							655					660					
agc	gag	acc	ttc	agc	gcc	ttc	ctc	ctg	gac	ctc	ttc	aag	ctc	acc	atc	2189	
Ser	Glu	Thr	Phe	Ser	Ala	Phe	Leu	Leu	Asp	Leu	Phe	Lys	Lys	Leu	Thr	Ile	
665							670					675					
ggc	atg	gga	gac	ctg	gag	atg	ctg	agc	agc	gcc	aag	tac	ccc	gtg	gtc	2237	
Gly	Met	Gly	Asp	Leu	Glu	Met	Leu	Ser	Ser	Ala	Lys	Tyr	Pro	Val	Val		
680							685				690						
ttc	atc	ctc	ctg	ctg	gtc	acc	tac	atc	atc	ctc	acc	ttc	gtg	ctc	ctg	2285	
Phe	Ile	Leu	Leu	Leu	Val	Thr	Tyr	Ile	Ile	Leu	Thr	Phe	Val	Leu	Leu		
695							700				705			710			
ttg	aac	atg	ctt	atc	gcc	ctc	atg	ggt	gag	acc	gtg	ggc	cag	gtg	tcc	2333	
Leu	Asn	Met	Leu	Ile	Ala	Leu	Met	Gly	Glu	Thr	Val	Gly	Gln	Val	Ser		
715							720					725					
aag	gag	agc	aag	cac	atc	tgg	aag	ttg	cag	tgg	gcc	acc	acc	atc	ctg	2381	
Lys	Glu	Ser	Lys	His	Ile	Trp	Lys	Leu	Gln	Trp	Ala	Thr	Thr	Ile	Leu		
730							735					740					
gac	atc	gag	cgt	tcc	ttc	cct	gtg	ttc	ctg	agg	aag	gcc	ttc	cgc	tcc	2429	
Asp	Ile	Glu	Arg	Ser	Phe	Pro	Val	Phe	Leu	Arg	Lys	Ala	Phe	Arg	Ser		
745							750					755					
gga	gag	atg	gtg	act	gtg	ggc	aag	agc	tca	gat	ggc	act	ccg	gac	cgc	2477	
Gly	Glu	Met	Val	Thr	Val	Gly	Lys	Ser	Ser	Asp	Gly	Thr	Pro	Asp	Arg		
760							765				770						
agg	tgg	tgc	ttc	agg	gtg	gac	gag	gtg	aac	tgg	tct	cac	tgg	aac	cag	2525	
Arg	Trp	Cys	Phe	Arg	Val	Asp	Glu	Val	Asn	Trp	Ser	His	Trp	Asn	Gln		
775							780				785			790			
aac	ttg	ggc	atc	att	aac	gag	gac	cct	ggc	aag	agt	gaa	atc	tac	cag	2573	
Asn	Leu	Gly	Ile	Ile	Asn	Glu	Asp	Pro	Gly	Lys	Ser	Glu	Ile	Tyr	Gln		
795							800					805					
tac	tat	ggc	ttc	tcc	cac	acc	gtg	ggg	cgc	ctt	cgt	agg	gat	cgt	tgg	2621	
Tyr	Tyr	Gly	Phe	Ser	His	Thr	Val	Gly	Arg	Leu	Arg	Arg	Asp	Arg	Trp		
810							815				820						
tcc	tcg	gtg	gtg	ccc	cgc	gta	gtg	gag	ctg	aac	aag	aac	tca	agc	gca	2669	
Ser	Ser	Val	Val	Pro	Arg	Val	Val	Glu	Leu	Asn	Lys	Asn	Ser	Ser	Ala		

825

830

835

gat gaa gtg gtg gta ccc ctg gat aac cta ggg aac ccc aac tgt gac	2717
Asp Glu Val Val Val Pro Leu Asp Asn Leu Gly Asn Pro Asn Cys Asp	
840 845 850	
gac cag cag cag ggc tac gct ccc aag tgg agg acg gac gat gcc cca	2765
Gly His Gln Gln Gly Tyr Ala Pro Lys Trp Arg Thr Asp Asp Ala Pro	
855 860 865 870	
ctg tag gggccgtgcc agagctcgca cagatagtcc aggcttggcc ttcgctccc	2821
Leu *	

cctacattta ggcatttgtc cgggtgtcttc cccacccgca tgggaccttg gaggtgaggg	2881
cctctgtggc gactctgtgg aggccccagg accctctggt ccccgccaag acttttgccct	2941
ttagtctac tccccacatg gggggggcgg ggctcctggc tacctktctc gtcgctccc	3001
atggagtcac ctaagccagc acaaggcccc tctcctcgaa aggctcaggc cccatccctc	3061
ttgtgtattt tttattgtct tcctcaggaa aatggggtgg caggagtcca cccgcggctg	3121
gaacctggcc agggctgaag ctcatgcagg gacgctgcag ctccgacctg ccacagatct	3181
gacctgtgc agccctggct agtgtggtc ttctgtactt tgaagagatc ggggcccgtg	3241
gtgctcaata aatgtttatt ctgggtggaa aaaaaaaaaa	3281

<210> 14

<211> 871

<212> PRT

<213> Mus musculus

<400> 14	
Met Ala Asp Pro Gly Asp Gly Pro Arg Ala Ala Pro Gly Glu Val Ala	
1 5 10 15	
Glu Pro Pro Gly Asp Glu Ser Gly Thr Ser Gly Gly Glu Ala Phe Pro	
20 25 30	
Leu Ser Ser Leu Ala Asn Leu Phe Glu Gly Glu Glu Gly Ser Ser Ser	
35 40 45	
Leu Ser Pro Val Asp Ala Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg	
50 55 60	
Pro Asn Leu Arg Met Lys Phe Gln Gly Ala Phe Arg Lys Gly Val Pro	
65 70 75 80	
Asn Pro Ile Asp Leu Leu Glu Ser Thr Leu Tyr Glu Ser Ser Val Val	
85 90 95	
Pro Gly Pro Lys Ala Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr	
100 105 110	
Tyr Arg His His Pro Ser Asp Asn Lys Arg Trp Arg Arg Lys Val Val	
115 120 125	
Glu Lys Gln Pro Gln Ser Pro Lys Ala Pro Ala Pro Gln Pro Pro Pro	
130 135 140	
Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg	
145 150 155 160	
Gly Ser Thr Ala Asp Leu Asp Gly Leu Leu Ser Phe Leu Leu Thr His	
165 170 175	
Lys Lys Arg Leu Thr Asp Glu Glu Phe Arg Glu Pro Ser Thr Gly Lys	
180 185 190	
Thr Cys Leu Pro Lys Ala Leu Leu Asn Leu Ser Asn Gly Arg Asn Asp	
195 200 205	
Thr Ile Pro Val Leu Leu Asp Ile Ala Glu Arg Thr Gly Asn Met Arg	
210 215 220	
Glu Phe Ile Asn Ser Pro Phe Arg Asp Ile Tyr Tyr Arg Gly Gln Thr	
225 230 235 240	
Ser Leu His Ile Ala Ile Glu Arg Arg Cys Lys His Tyr Val Glu Leu	
245 250 255	
Leu Val Ala Gln Gly Ala Asp Val His Ala Gln Ala Arg Gly Arg Phe	
260 265 270	
Phe Gln Pro Lys Asp Glu Gly Gly Tyr Phe Tyr Phe Gly Glu Leu Pro	
275 280 285	
Leu Ser Leu Ala Ala Cys Thr Asn Gln Pro His Ile Val Asn Tyr Leu	
290 295 300	
Thr Glu Asn Pro His Lys Lys Ala Asp Met Arg Arg Gln Asp Ser Arg	

305	310	315	320												
Gly	Asn	Thr	Val	Leu	His	Ala	Leu	Val	Ala	Ile	Ala	Asp	Asn	Thr	Arg
325	330	335													
Glu	Asn	Thr	Lys	Phe	Val	Thr	Lys	Met	Tyr	Asp	Leu	Leu	Leu	Leu	Lys
340	345	350													
Cys	Ser	Arg	Leu	Phe	Leu	Asp	Ser	Asn	Leu	Glu	Thr	Val	Leu	Asn	Asn
355	360	365													
Asp	Gly	Leu	Ser	Pro	Leu	Met	Met	Ala	Ala	Lys	Thr	Gly	Lys	Ile	Gly
370	375	380													
Val	Phe	Gln	His	Ile	Ile	Arg	Arg	Glu	Val	Thr	Asp	Glu	Asp	Thr	Arg
385	390	395	400												
His	Leu	Ser	Arg	Lys	Phe	Lys	Asp	Trp	Ala	Tyr	Gly	Pro	Val	Tyr	Ser
405	410	415													
Ser	Leu	Tyr	Asp	Leu	Ser	Ser	Leu	Asp	Thr	Cys	Gly	Glu	Glu	Val	Ser
420	425	430													
Val	Leu	Glu	Ile	Leu	Val	Tyr	Asn	Ser	Lys	Ile	Glu	Asn	Arg	His	Glu
435	440	445													
Met	Leu	Ala	Val	Glu	Pro	Ile	Asn	Glu	Leu	Leu	Arg	Asp	Lys	Trp	Arg
450	455	460													
Lys	Phe	Gly	Ala	Val	Ser	Phe	Tyr	Ile	Asn	Val	Val	Ser	Tyr	Leu	Cys
465	470	475	480												
Ala	Met	Val	Ile	Phe	Thr	Leu	Thr	Ala	Tyr	Tyr	Gln	Pro	Leu	Glu	Gly
485	490	495													
Thr	Pro	Pro	Tyr	Pro	Tyr	Arg	Thr	Thr	Val	Asp	Tyr	Leu	Arg	Leu	Ala
500	505	510													
Gly	Glu	Val	Ile	Thr	Leu	Phe	Thr	Gly	Val	Leu	Phe	Phe	Phe	Thr	Ser
515	520	525													
Ile	Lys	Asp	Leu	Phe	Thr	Lys	Cys	Pro	Gly	Val	Asn	Ser	Leu	Phe	
530	535	540													
Val	Asp	Gly	Ser	Phe	Gln	Leu	Leu	Tyr	Phe	Ile	Tyr	Ser	Val	Leu	Val
545	550	555	560												
Val	Val	Ser	Ala	Ala	Leu	Tyr	Leu	Ala	Gly	Ile	Glu	Ala	Tyr	Leu	Ala
565	570	575													
Val	Met	Val	Phe	Ala	Leu	Val	Leu	Gly	Trp	Met	Asn	Ala	Leu	Tyr	Phe
580	585	590													
Thr	Arg	Gly	Leu	Lys	Leu	Thr	Gly	Thr	Tyr	Ser	Ile	Met	Ile	Gln	Lys
595	600	605													
Ile	Leu	Phe	Lys	Asp	Leu	Phe	Arg	Phe	Leu	Leu	Val	Tyr	Leu	Leu	Phe
610	615	620													
Met	Ile	Gly	Tyr	Ala	Ser	Ala	Leu	Val	Thr	Leu	Leu	Asn	Pro	Cys	Thr
625	630	635	640												
Asn	Met	Lys	Val	Cys	Asp	Glu	Asp	Gln	Ser	Asn	Cys	Thr	Val	Pro	Thr
645	650	655													
Tyr	Pro	Ala	Cys	Arg	Asp	Ser	Glu	Thr	Phe	Ser	Ala	Phe	Leu	Leu	Asp
660	665	670													
Leu	Phe	Lys	Leu	Thr	Ile	Gly	Met	Gly	Asp	Leu	Glu	Met	Leu	Ser	Ser
675	680	685													
Ala	Lys	Tyr	Pro	Val	Val	Phe	Ile	Leu	Leu	Leu	Val	Thr	Tyr	Ile	Ile
690	695	700													
Leu	Thr	Phe	Val	Leu	Leu	Asn	Met	Leu	Ile	Ala	Leu	Met	Gly	Glu	
705	710	715	720												
Thr	Val	Gly	Gln	Val	Ser	Lys	Glu	Ser	Lys	His	Ile	Trp	Lys	Leu	Gln
725	730	735													
Trp	Ala	Thr	Thr	Ile	Leu	Asp	Ile	Glu	Arg	Ser	Phe	Pro	Val	Phe	Leu
740	745	750													
Arg	Lys	Ala	Phe	Arg	Ser	Gly	Glu	Met	Val	Thr	Val	Gly	Lys	Ser	Ser
755	760	765													
Asp	Gly	Thr	Pro	Asp	Arg	Arg	Trp	Cys	Phe	Arg	Val	Asp	Glu	Val	Asn
770	775	780													
Trp	Ser	His	Trp	Asn	Gln	Asn	Leu	Gly	Ile	Ile	Asn	Glu	Asp	Pro	Gly
785	790	795	800												
Lys	Ser	Glu	Ile	Tyr	Gln	Tyr	Tyr	Gly	Phe	Ser	His	Thr	Val	Gly	Arg
805	810	815													
Leu	Arg	Arg	Asp	Arg	Trp	Ser	Ser	Val	Val	Pro	Arg	Val	Val	Glu	Leu
820	825	830													
Asn	Lys	Asn	Ser	Ser	Ala	Asp	Glu	Val	Val	Val	Pro	Leu	Asp	Asn	Leu
835	840	845													
Gly	Asn	Pro	Asn	Cys	Asp	Gly	His	Gln	Gln	Gly	Tyr	Ala	Pro	Lys	Trp

850	855	860	
Arg	Thr Asp Asp Ala Pro	Leu	
865	870		
<210> 15			
<211> 2613			
<212> DNA			
<213> Artificial Sequence			
<220>			
<221> CDS			
<222> (1)...(2613)			
<223> Generic sequence that encompasses all nucleotide sequences that encode mouse TRPV4 having amino acid sequence as shown in SEQ ID NO:14			
<221> misc_feature			
<222> 69, 78, 102, 105, 138, 141, 144, 150, 165, 264, 279, 282, 318, 354, 402, 477, 486, 513, 567, 609, 687, 723, 870, 957, 1062, 1080, 1116, 1209, 1248, 1251, 1266, 1269, 1296, 1323, 1410, 1431, 1584, 1626, 1644, 1671, 1689, 1809, 1890, 1950, 2001, 2061, 2064, 2178, 2187, 2241, 2274, 2301, 2304, 2358, 2406, 2433, 2469, 2472, 2508, 2511			
<223> n = A,T,C or G if after TC;			
n = T or C if after AG			
<221> misc_feature			
<222> 27, 168, 192, 204, 228, 342, 366, 372, 375, 453, 480, 537, 558, 618, 657, 672, 696, 711, 744, 747, 807, 813, 945, 948, 960, 1008, 1065, 1173, 1176, 1200, 1212, 1338, 1380, 1392, 1509, 1530, 1782, 1848, 1983, 2238, 2259, 2271, 2322, 2325, 2337, 2448			
, 2454, 2457, 2463, 2484, 2595			
<223> n = A,T,C or G if after CG;			
n = A or G if after AG			
<221> misc_feature			
<222> all "n" not specified above			
<223> n = A,T,C or G			
<400> 15			
atg	gcn gay ccn ggn gay ggn ccn mgn	gcn gcn ccn ggn gar gtn gcn	48
Met	Ala Asp Pro Gly Asp Gly Pro Arg	Ala Ala Pro Gly Glu Val Ala	
1	5	10	15
gar ccn ccn ggn gay gar wsn ggn acn wsn ggn ggn gar gcn tty ccn			96
Glu	Pro Pro Gly Asp Glu Ser Gly Thr Ser Gly Gly Glu Ala Phe Pro		
20	25	30	
ytn	wsn wsn ytn gcn aay ytn tty gar ggn gar gar ggn wsn wsn wsn		144
Leu	Ser Ser Leu Ala Asn Leu Phe Glu Gly Glu Gly Ser Ser Ser		
35	40	45	
ytn	wsn ccn gtn gay gcn wsn mgn ccn gcn ggn ccn ggn gay ggn mgn		192
Leu	Ser Pro Val Asp Ala Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg		
50	55	60	
ccn	aay ytn mgn atg aar tty car ggn gcn tty mgn aar ggn gtn ccn		240
Pro	Asn Leu Arg Met Lys Phe Gln Gly Ala Phe Arg Lys Gly Val Pro		
65	70	75	80
aay	ccn ath gay ytn ytn gar wsn acn ytn tay gar wsn wsn gtn gtn		288
Asn	Pro Ile Asp Leu Leu Glu Ser Thr Leu Tyr Glu Ser Ser Val Val		
85	90	95	
ccn	ggn ccn aar aar gcn ccn atg gay wsn ytn tty gay tay ggn acn		336
Pro	Gly Pro Lys Lys Ala Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr		
100	105	110	

tay mgn cay cay ccn wsn gay aay aar mgn tgg mgn mgn aar gtn gtn	384
Tyr Arg His His Pro Ser Asp Asn Lys Arg Trp Arg Arg Lys Val Val	
115 120 125	
gar aar car ccn car wsn ccn aar gcn ccn gcn ccn car ccn ccn ccn	432
Glu Lys Gln Pro Gln Ser Pro Lys Ala Pro Ala Pro Gln Pro Pro Pro	
130 135 140	
ath ytn aar gtn tty aay mgn ccn ath ytn tty gay ath gtn wsn mgn	480
Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg	
145 150 155 160	
ggn wsn acn gcn gay ytn gay ggn ytn wsn tty ytn ytn acn cay	528
Gly Ser Thr Ala Asp Leu Asp Gly Leu Leu Ser Phe Leu Leu Thr His	
165 170 175	
aar aar mgn ytn acn gay gar gar tty mgn gar ccn wsn acn ggn aar	576
Lys Lys Arg Leu Thr Asp Glu Glu Phe Arg Glu Pro Ser Thr Gly Lys	
180 185 190	
acn tgy ytn ccn aar gcn ytn ytn aay ytn wsn aay ggn mgn aay gay	624
Thr Cys Leu Pro Lys Ala Leu Leu Asn Leu Ser Asn Gly Arg Asn Asp	
195 200 205	
acn ath ccn gtn ytn ytn gay ath gcn gar mgn acn ggn aay atg mgn	672
Thr Ile Pro Val Leu Leu Asp Ile Ala Glu Arg Thr Gly Asn Met Arg	
210 215 220	
gar tty ath aay wsn ccn tty mgn gay ath tay tay mgn ggn car acn	720
Glu Phe Ile Asn Ser Pro Phe Arg Asp Ile Tyr Tyr Arg Gly Gln Thr	
225 230 235 240	
wsn ytn cay ath gcn ath gar mgn mgn tgy aar cay tay gtn gar ytn	768
Ser Leu His Ile Ala Glu Arg Arg Cys Lys His Tyr Val Glu Leu	
245 250 255	
ytn gtn gcn car ggn gcn gay gtn cay gcn car gcn mgn ggn mgn tty	816
Leu Val Ala Gln Gly Ala Asp Val His Ala Gln Ala Arg Gly Arg Phe	
260 265 270	
tty car ccn aar gay gar ggn ggn tay tty tay ggn gar ytn ccn	864
Phe Gln Pro Lys Asp Glu Gly Gly Tyr Phe Tyr Phe Gly Glu Leu Pro	
275 280 285	
ytn wsn ytn gcn gcn tgy acn aay car ccn cay ath gtn aay tay ytn	912
Leu Ser Leu Ala Ala Cys Thr Asn Gln Pro His Ile Val Asn Tyr Leu	
290 295 300	
acn gar aay ccn cay aar aar gcn gay atg mgn mgn car gay wsn mgn	960
Thr Glu Asn Pro His Lys Lys Ala Asp Met Arg Arg Gln Asp Ser Arg	
305 310 315 320	
ggn aay acn gtn ytn cay gcn ytn gtn gcn ath gcn gay aay acn mgn	1008
Gly Asn Thr Val Leu His Ala Leu Val Ala Ile Ala Asp Asn Thr Arg	
325 330 335	
gar aay acn aar tty gtn acn aar atg tay gay ytn ytn ytn ytn aar	1056
Glu Asn Thr Lys Phe Val Thr Lys Met Tyr Asp Leu Leu Leu Leu Lys	
340 345 350	
tgy wsn mgn ytn tty ytn gay wsn aay ytn gar acn gtn ytn aay aay	1104
Cys Ser Arg Leu Phe Leu Asp Ser Asn Leu Glu Thr Val Leu Asn Asn	
355 360 365	
gay ggn ytn wsn ccn ytn atg atg gcn gcn aar acn ggn aar ath ggn	1152
Asp Gly Leu Ser Pro Leu Met Met Ala Ala Lys Thr Gly Lys Ile Gly	
370 375 380	

gtn tty car cay ath ath mgn mgn gar gtn acn gay gar gay acn mgn	1200
Val Phe Gln His Ile Ile Arg Arg Glu Val Thr Asp Glu Asp Thr Arg	
385 390 395 400	
cay ytn wsn mgn aar tty aar gay tgg gcn tay ggn ccn gtn tay wsn	1248
His Leu Ser Arg Lys Phe Lys Asp Trp Ala Tyr Gly Pro Val Tyr Ser	
405 410 415	
wsn ytn tay gay ytn wsn wsn ytn gay acn tgy ggn gar gar gtn wsn	1296
Ser Leu Tyr Asp Leu Ser Ser Leu Asp Thr Cys Gly Glu Glu Val Ser	
420 425 430	
gtn ytn gar ath ytn gtn tay aay wsn aar ath gar aay mgn cay gar	1344
Val Leu Glu Ile Leu Val Tyr Asn Ser Lys Ile Glu Asn Arg His Glu	
435 440 445	
atg ytn gcn gtn gar ccn ath aay gar ytn ytn mgn gay aar tgg mgn	1392
Met Leu Ala Val Glu Pro Ile Asn Glu Leu Leu Arg Asp Lys Trp Arg	
450 455 460	
aar tty ggn gcn gtn wsn tty tay ath aay gtn gtn wsn tay ytn tgy	1440
Lys Phe Gly Ala Val Ser Phe Tyr Ile Asn Val Val Ser Tyr Leu Cys	
465 470 475 480	
gcn atg gtn ath tty acn acn gcn tay tay car ccn ytn gar ggn	1488
Ala Met Val Ile Phe Thr Leu Thr Ala Tyr Tyr Gln Pro Leu Glu Gly	
485 490 495	
acn ccn ccn tay ccn tay mgn acn acn gtn gay tay ytn mgn ytn gcn	1536
Thr Pro Pro Tyr Pro Tyr Arg Thr Thr Val Asp Tyr Leu Arg Leu Ala	
500 505 510	
ggn gar gtn ath acn ytn tty acn ggn gtn ytn tty tty tty acn wsn	1584
Gly Glu Val Ile Thr Leu Phe Thr Gly Val Leu Phe Phe Phe Thr Ser	
515 520 525	
ath aar gay ytn tty acn aar aar tgy ccn ggn gtn aay wsn ytn tty	1632
Ile Lys Asp Leu Phe Thr Lys Lys Cys Pro Gly Val Asn Ser Leu Phe	
530 535 540	
gtn gay ggn wsn tty car ytn ytn tay ath tay wsn gtn ytn gtn	1680
Val Asp Gly Ser Phe Gln Leu Leu Tyr Phe Ile Tyr Ser Val Leu Val	
545 550 555 560	
gtn gtn wsn gcn gcn ytn tay ytn gcn ggn ath gar gcn tay ytn gcn	1728
Val Val Ser Ala Ala Leu Tyr Leu Ala Gly Ile Glu Ala Tyr Leu Ala	
565 570 575	
gtn atg gtn tty gcn ytn gtn ytn ggn tgg atg aay gcn ytn tay tty	1776
Val Met Val Phe Ala Leu Val Leu Gly Trp Met Asn Ala Leu Tyr Phe	
580 585 590	
acn mgn ggn ytn aar ytn acn ggn acn tay wsn ath atg ath car aar	1824
Thr Arg Gly Leu Lys Leu Thr Gly Thr Tyr Ser Ile Met Ile Gln Lys	
595 600 605	
ath ytn tty aar gay ytn tty mgn tty ytn ytn gtn tay ytn ytn tty	1872
Ile Leu Phe Lys Asp Leu Phe Arg Phe Leu Leu Val Tyr Leu Leu Phe	
610 615 620	
atg ath ggn tay gcn wsn gcn ytn gtn acn ytn ytn aay ccn tgy acn	1920
Met Ile Gly Tyr Ala Ser Ala Leu Val Thr Leu Leu Asn Pro Cys Thr	
625 630 635 640	
aay atg aar gtn tgy gay gar gay car wsn aay tgy acn gtn ccn acn	1968
Asn Met Lys Val Cys Asp Glu Asp Gln Ser Asn Cys Thr Val Pro Thr	
645 650 655	

tay ccn gcn tgy mgn gay wsn gar acn tty wsn gcn tty ytn ytn gay	2016
Tyr Pro Ala Cys Arg Asp Ser Glu Thr Phe Ser Ala Phe Leu Leu Asp	
660 665 670	
ytn tty aar ytn acn ath ggn atg ggn gay ytn gar atg ytn wsn wsn	2064
Leu Phe Lys Leu Thr Ile Gly Met Gly Asp Leu Glu Met Leu Ser Ser	
675 680 685	
gcn aar tay ccn gtn gtn tty ath ytn ytn gtn acn tay ath ath	2112
Ala Lys Tyr Pro Val Val Phe Ile Leu Leu Val Thr Tyr Ile Ile	
690 695 700	
ytn acn tty gtn ytn ytn aay atg ytn ath gcn ytn atg ggn gar	2160
Leu Thr Phe Val Leu Leu Asn Met Leu Ile Ala Leu Met Gly Glu	
705 710 715 720	
acn gtn ggn car gtn wsn aar gar wsn aar cay ath tgg aar ytn car	2208
Thr Val Gly Gln Val Ser Lys Glu Ser Lys His Ile Trp Lys Leu Gln	
725 730 735	
tgg gcn acn acn ath ytn gay ath gar mgn wsn tty ccn gtn tty ytn	2256
Trp Ala Thr Thr Ile Leu Asp Ile Glu Arg Ser Phe Pro Val Phe Leu	
740 745 750	
mgn aar gcn tty mgn wsn ggn gar atg gtn acn gtn ggn aar wsn wsn	2304
Arg Lys Ala Phe Arg Ser Gly Glu Met Val Thr Val Gly Lys Ser Ser	
755 760 765	
gay ggn acn ccn gay mgn mgn tgg tgy tty mgn gtn gay gar gtn aay	2352
Asp Gly Thr Pro Asp Arg Arg Trp Cys Phe Arg Val Asp Glu Val Asn	
770 775 780	
tgg wsn cay tgg aay car aay ytn ggn ath ath aay gar gay ccn ggn	2400
Trp Ser His Trp Asn Gln Asn Leu Gly Ile Ile Asn Glu Asp Pro Gly	
785 790 795 800	
aar wsn gar ath tay car tay tay ggn tty wsn cay acn gtn ggn mgn	2448
Lys Ser Glu Ile Tyr Gln Tyr Tyr Gly Phe Ser His Thr Val Gly Arg	
805 810 815	
ytn mgn mgn gay mgn tgg wsn wsn gtn gtn ccn mgn gtn gtn gar ytn	2496
Leu Arg Arg Asp Arg Trp Ser Ser Val Val Pro Arg Val Val Glu Leu	
820 825 830	
aay aar aay wsn wsn gcn gay gar gtn gtn ccn ytn gay aay ytn	2544
Asn Lys Asn Ser Ser Ala Asp Glu Val Val Pro Leu Asp Asn Leu	
835 840 845	
ggn aay ccn aay tgy gay ggn cay car car ggn tay gcn ccn aar tgg	2592
Gly Asn Pro Asn Cys Asp Gly His Gln Gln Gly Tyr Ala Pro Lys Trp	
850 855 860	
mgn acn gay gay gcn ccn ytn	2613
Arg Thr Asp Asp Ala Pro Leu	
865 870	

<210> 16
 <211> 2616
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)...(2616)

<400> 16

atg	gct	gat	tcc	agc	gaa	ggc	ccc	cgc	gct	ggg	ccc	ggg	gag	gtg	gct	48
Met	Ala	Asp	Ser	Ser	Glu	Gly	Pro	Arg	Ala	Gly	Pro	Gly	Glu	Val	Ala	
1	5				10				15							
gag	ctc	ccc	ggg	gat	gag	agt	ggc	acc	cca	ggt	ggg	gag	gct	ttt	cct	96
Glu	Leu	Pro	Gly	Asp	Glu	Ser	Gly	Thr	Pro	Gly	Gly	Glu	Ala	Phe	Pro	
20				25					30							
ctc	tcc	tcc	ctg	gcc	aat	ctg	ttt	gag	ggg	gag	gat	ggc	tcc	ctt	tcg	144
Leu	Ser	Ser	Leu	Ala	Asn	Leu	Phe	Glu	Gly	Glu	Asp	Gly	Ser	Leu	Ser	
35				40					45							
ccc	tca	ccg	gct	gat	gcc	agt	cgc	cct	gct	ggc	cca	ggc	gat	ggg	cga	192
Pro	Ser	Pro	Ala	Asp	Ala	Ser	Arg	Pro	Ala	Gly	Pro	Gly	Asp	Gly	Arg	
50				55					60							
cca	aat	ctg	cgc	atg	aag	ttc	cag	ggc	gcc	ttc	cgc	aag	ggg	gtg	ccc	240
Pro	Asn	Leu	Arg	Met	Lys	Phe	Gln	Gly	Ala	Phe	Arg	Lys	Gly	Val	Pro	
65				70					75					80		
aac	ccc	atc	gat	ctg	ctg	gag	tcc	acc	cta	tat	gag	tcc	tcg	gtg	gtg	288
Asn	Pro	Ile	Asp	Leu	Leu	Glu	Ser	Thr	Leu	Tyr	Glu	Ser	Ser	Val	Val	
85				90					95							
cct	ggg	ccc	aag	aaa	gca	ccc	atg	gac	tca	ctg	ttt	gac	tac	ggc	acc	336
Pro	Gly	Pro	Lys	Ala	Pro	Met	Asp	Ser	Leu	Phe	Asp	Tyr	Gly	Thr		
100				105					110							
tat	cgt	cac	cac	tcc	agt	gac	aac	aag	agg	tgg	agg	aag	aag	atc	ata	384
Tyr	Arg	His	His	Ser	Ser	Asp	Asn	Lys	Arg	Trp	Arg	Lys	Lys	Ile	Ile	
115				120					125							
gag	aag	cag	ccg	cag	agg	ccc	aaa	gcc	cct	gcc	cct	cag	ccg	ccc	ccc	432
Glu	Lys	Gln	Pro	Gln	Ser	Pro	Lys	Ala	Pro	Ala	Pro	Gln	Pro	Pro	Pro	
130				135					140							
atc	ctc	aaa	gtc	ttc	aac	cgg	cct	atc	ctc	ttt	gac	atc	gtg	tcc	cgg	480
Ile	Leu	Lys	Val	Phe	Asn	Arg	Pro	Ile	Leu	Phe	Asp	Ile	Val	Ser	Arg	
145				150					155				160			
ggc	tcc	act	gct	gac	ctg	gac	ggg	ctg	ctc	cca	ttc	ttg	ctg	acc	cac	528
Gly	Ser	Thr	Ala	Asp	Leu	Asp	Gly	Leu	Leu	Pro	Phe	Leu	Leu	Thr	His	
165				170					175							
aag	aaa	cgc	cta	act	gat	gag	gag	ttt	cga	gag	cca	tct	acg	ggg	aag	576
Lys	Lys	Arg	Leu	Thr	Asp	Glu	Glu	Phe	Arg	Glu	Pro	Ser	Thr	Gly	Lys	
180				185					190							
acc	tgc	ctg	ccc	aag	gcc	ttg	ctg	aac	ctg	agc	aat	ggc	cgc	aac	gac	624
Thr	Cys	Ileu	Pro	Lys	Ala	Leu	Leu	Asn	Ileu	Ser	Asn	Gly	Arg	Asn	Asp	
195				200					205							
acc	atc	cct	gtg	ctg	ctg	gac	atc	gct	gag	cgc	acc	ggc	aac	atg	cgg	672
Thr	Ile	Pro	Val	Leu	Leu	Asp	Ile	Ala	Glu	Arg	Thr	Gly	Asn	Met	Arg	
210				215					220							
gag	ttc	att	aac	tcg	ccc	ttc	cgt	gac	atc	tac	tat	cga	ggt	cag	aca	720
Glu	Phe	Ile	Asn	Ser	Pro	Phe	Arg	Asp	Ile	Tyr	Tyr	Arg	Gly	Gln	Thr	
225				230					235				240			
gcc	ctg	cac	atc	gcc	att	gag	cgt	cgc	tgc	aaa	cac	tac	gtg	gaa	ctt	768
Ala	Leu	His	Ile	Ala	Ile	Glu	Arg	Arg	Cys	Lys	His	Tyr	Val	Glu	Leu	
245				250					255							
ctc	gtg	gcc	cag	gga	gct	gat	gtc	cac	gcc	cag	gcc	cgt	ggg	cgc	ttc	816
Leu	Val	Ala	Gln	Gly	Ala	Asp	Val	His	Ala	Gln	Ala	Arg	Gly	Arg	Phe	
260				265					270							

ttc cag ccc aag gat gag ggg ggc tac ttc tac ttt ggg gag ctg ccc	864
Phe Gln Pro Lys Asp Glu Gly Gly Tyr Phe Tyr Phe Gly Glu Leu Pro	
275 280 285	
ctg tcg ctg gct gcc tgc acc aac cag ccc cac att gtc aac tac ctg	912
Leu Ser Ile Ala Ala Cys Thr Asn Gln Pro His Ile Val Asn Tyr Leu	
290 295 300	
acg gag aac ccc cac aag aag gcg gac atg cgg cgc cag gac tcg cga	960
Thr Glu Asn Pro His Lys Lys Ala Asp Met Arg Arg Gln Asp Ser Arg	
305 310 315 320	
ggc aac aca gtg ctg cat gcg ctg gtg gcc att gct gac aac acc cgt	1008
Gly Asn Thr Val Leu His Ala Leu Val Ala Ile Ala Asp Asn Thr Arg	
325 330 335	
gag aac acc aag ttt gtt acc aag atg tac gac ctg ctg ctc aag	1056
Glu Asn Thr Lys Phe Val Thr Lys Met Tyr Asp Leu Leu Leu Lys	
340 345 350	
tgt gcc cgc ctc ttc ccc gac agc aac ctg gag gcc gtg ctc aac aac	1104
Cys Ala Arg Leu Phe Pro Asp Ser Asn Leu Glu Ala Val Leu Asn Asn	
355 360 365	
gac ggc ctc tcg ccc ctc atg atg gct gcc aag acg ggc aag att ggg	1152
Asp Gly Ile Ser Pro Leu Met Met Ala Ala Lys Thr Gly Lys Ile Gly	
370 375 380	
atc ttt cag cac atc atc cgg cgg gag gtg acg gat gag gac aca cgg	1200
Ile Phe Gln His Ile Ile Arg Arg Glu Val Thr Asp Glu Asp Thr Arg	
385 390 395 400	
cac ctg tcc cgc aag ttc aag gac tgg gcc tat ggg cca gtg tat tcc	1248
His Leu Ser Arg Lys Phe Lys Asp Trp Ala Tyr Gly Pro Val Tyr Ser	
405 410 415	
tcg ctt tat gac ctc tcc ctg gac acg tgt ggg gaa gag gcc tcc	1296
Ser Leu Tyr Asp Leu Ser Ser Leu Asp Thr Cys Gly Glu Ala Ser	
420 425 430	
gtg ctg gag atc ctg gtg tac aac agc aag att gag aac cgc cac gag	1344
Val Leu Glu Ile Leu Val Tyr Asn Ser Lys Ile Glu Asn Arg His Glu	
435 440 445	
atg ctg gct gtg gag ccc atc aat gaa ctg ctg cgg gac aag tgg cgc	1392
Met Leu Ala Val Glu Pro Ile Asn Glu Leu Leu Arg Asp Lys Trp Arg	
450 455 460	
aag ttc ggg gcc gtc tcc ttc tac atc aac gtg gtc tcc tac ctg tgt	1440
Lys Phe Gly Ala Val Ser Phe Tyr Ile Asn Val Val Ser Tyr Leu Cys	
465 470 475 480	
gcc atg gtc atc ttc act ctc acc gcc tac tac cag ccg ctg gag ggc	1488
Ala Met Val Ile Phe Thr Leu Thr Ala Tyr Tyr Gln Pro Leu Glu Gly	
485 490 495	
aca ccg ccg tac cct tac cgc acc acg gtg gac tac ctg cgg ctg gct	1536
Thr Pro Pro Tyr Pro Tyr Arg Thr Thr Val Asp Tyr Leu Arg Leu Ala	
500 505 510	
ggc gag gtc att acg ctc ttc act ggg gtc ctg ttc ttc acc aac	1584
Gly Glu Val Ile Thr Leu Phe Thr Gly Val Leu Phe Phe Phe Thr Asn	
515 520 525	
atc aaa gac ttg ttc atg aag aaa tgc cct gga gtg aat tct ctc ttc	1632
Ile Lys Asp Leu Phe Met Lys Lys Cys Pro Gly Val Asn Ser Leu Phe	
530 535 540	

att gat ggc tcc ttc cag ctg ctc tac ttc atc tac tct gtc ctg gtg		1680
Ile Asp Gly Ser Phe Gln Leu Leu Tyr Phe Ile Tyr Ser Val Val		
545 550 555 560		
atc gtc tca gca gcc ctc tac ctg gca ggg atc gag gcc tac ctg gcc		1728
Ile Val Ser Ala Ala Leu Tyr Leu Ala Gly Ile Glu Ala Tyr Leu Ala		
565 570 575		
gtg atg gtc ttt gcc ctg gtc ctg ggc tgg atg aat gcc ctt tac ttc		1776
Val Met Val Phe Ala Leu Val Leu Gly Trp Met Asn Ala Leu Tyr Phe		
580 585 590		
acc cgt ggg ctg aag ctg acg ggg acc tat agc atc atg atc cag aag		1824
Thr Arg Gly Leu Lys Leu Thr Gly Thr Tyr Ser Ile Met Ile Gln Lys		
595 600 605		
att ctc ttc aag gac ctt ttc cga ttc ctg ctc gtc tac ttg ctc ttc		1872
Ile Leu Phe Lys Asp Leu Phe Arg Phe Leu Leu Val Tyr Leu Leu Phe		
610 615 620		
atg atc ggc tac gct tca gcc ctg gtc tcc ctc ctg aac ccg tgt gcc		1920
Met Ile Gly Tyr Ala Ser Ala Leu Val Ser Leu Leu Asn Pro Cys Ala		
625 630 635 640		
aac atg aag gtg tgc aat gag gac cag acc aac tgc aca gtg ccc act		1968
Asn Met Lys Val Cys Asn Glu Asp Gln Thr Asn Cys Thr Val Pro Thr		
645 650 655		
tac ccc tcg tgc cgt gac agc gag acc ttc agc acc ttc ctc ctg gac		2016
Tyr Pro Ser Cys Arg Asp Ser Glu Thr Phe Ser Thr Phe Leu Leu Asp		
660 665 670		
ctg ttt aag ctg acc atc ggc atg ggc gac ctg gag atg ctg agc agc		2064
Leu Phe Lys Leu Thr Ile Gly Met Gly Asp Leu Glu Met Leu Ser Ser		
675 680 685		
acc aag tac ccc gtg gtc ttc atc atc ctg ctg gtg acc tac atc atc		2112
Thr Lys Tyr Pro Val Val Phe Ile Ile Leu Leu Val Thr Tyr Ile Ile		
690 695 700		
ctc acc ttt gtg ctg ctc aac atg ctc att gcc ctc atg ggc gag		2160
Leu Thr Phe Val Leu Leu Asn Met Leu Ile Ala Leu Met Gly Glu		
705 710 715 720		
aca gtg ggc cag gtc tcc aag gag agc aag cac atc tgg aag ctg cag		2208
Thr Val Gly Gln Val Ser Lys Glu Ser Lys His Ile Trp Lys Leu Gln		
725 730 735		
tgg gcc acc acc atc ctg gac att gag cgc tcc ttc ccc gta ttc ctg		2256
Trp Ala Thr Thr Ile Leu Asp Ile Glu Arg Ser Phe Pro Val Phe Leu		
740 745 750		
agg aag gcc ttc cgc tct ggg gag atg gtc acc gtg ggc aag agc tcg		2304
Arg Lys Ala Phe Arg Ser Gly Glu Met Val Thr Val Gly Lys Ser Ser		
755 760 765		
gac ggc act cct gac cgc agg tgg tgc ttc agg gtg gat gag gtg aac		2352
Asp Gly Thr Pro Asp Arg Arg Trp Cys Phe Arg Val Asp Glu Val Asn		
770 775 780		
tgg tct cac tgg aac cag aac ttg ggc atc atc aac gag gac ccg ggc		2400
Trp Ser His Trp Asn Gln Asn Leu Gly Ile Ile Asn Glu Asp Pro Gly		
785 790 795 800		
aag aat gag acc tac cag tat tat ggc ttc tcg cat acc gtg ggc cgc		2448
Lys Asn Glu Thr Tyr Gln Tyr Tyr Gly Phe Ser His Thr Val Gly Arg		
805 810 815		

ctc	cgc	agg	gat	cgc	tgg	tcc	tcg	gtg	gta	ccc	cgc	gtg	gtg	gaa	ctg	2496
Leu	Arg	Arg	Asp	Arg	Trp	Ser	Ser	Val	Val	Pro	Arg	Val	Val	Glu	Leu	
820								825						830		
aac	aag	aac	tcg	aac	ccg	gac	gag	gtg	gtg	gtg	cct	ctg	gac	agc	atg	2544
Asn	Lys	Asn	Ser	Asn	Pro	Asp	Glu	Val	Val	Val	Pro	Leu	Asp	Ser	Met	
835							840						845			
ggg	aac	ccc	cgc	tgc	gat	ggc	cac	cag	cag	ggt	tac	ccc	cgc	aag	tgg	2592
Gly	Asn	Pro	Arg	Cys	Asp	Gly	His	Gln	Gln	Gly	Tyr	Pro	Arg	Lys	Trp	
850						855					860					
agg	act	gag	gac	gcc	ccg	ctc	tag									2616
Arg	Thr	Glu	Asp	Ala	Pro	Leu	*									
865						870										

<210> 17
 <211> 871
 <212> PRT
 <213> Homo sapiens

<400> 17																	
Met	Ala	Asp	Ser	Ser	Glu	Gly	Pro	Arg	Ala	Gly	Pro	Gly	Glu	Val	Ala		
1					5				10						15		
Glu	Leu	Pro	Gly	Asp	Glu	Ser	Gly	Thr	Pro	Gly	Gly	Glu	Ala	Phe	Pro		
					20			25						30			
Leu	Ser	Ser	Leu	Ala	Asn	Leu	Phe	Glu	Gly	Glu	Asp	Gly	Ser	Leu	Ser		
					35			40						45			
Pro	Ser	Pro	Ala	Asp	Ala	Ser	Arg	Pro	Ala	Gly	Pro	Gly	Asp	Gly	Arg		
					50			55						60			
Pro	Asn	Leu	Arg	Met	Lys	Phe	Gln	Gly	Ala	Phe	Arg	Lys	Gly	Val	Pro		
					65			70			75			80			
Asn	Pro	Ile	Asp	Leu	Leu	Glu	Ser	Thr	Leu	Tyr	Glu	Ser	Ser	Val	Val		
					85			90						95			
Pro	Gly	Pro	Lys	Lys	Ala	Pro	Met	Asp	Ser	Leu	Phe	Asp	Tyr	Gly	Thr		
					100			105						110			
Tyr	Arg	His	His	Ser	Ser	Asp	Asn	Lys	Arg	Trp	Arg	Lys	Lys	Ile	Ile		
					115			120						125			
Glu	Lys	Gln	Pro	Gln	Ser	Pro	Lys	Ala	Pro	Ala	Pro	Gln	Pro	Pro	Pro		
					130			135						140			
Ile	Leu	Lys	Val	Phe	Asn	Arg	Pro	Ile	Leu	Phe	Asp	Ile	Val	Ser	Arg		
					145			150			155			160			
Gly	Ser	Thr	Ala	Asp	Leu	Asp	Gly	Leu	Leu	Pro	Phe	Leu	Leu	Thr	His		
					165			170			175			175			
Lys	Lys	Arg	Leu	Thr	Asp	Glu	Glu	Phe	Arg	Glu	Pro	Ser	Thr	Gly	Lys		
					180			185						190			
Thr	Cys	Leu	Pro	Lys	Ala	Leu	Leu	Asn	Leu	Ser	Asn	Gly	Arg	Asn	Asp		
					195			200						205			
Thr	Ile	Pro	Val	Leu	Leu	Asp	Ile	Ala	Glu	Arg	Thr	Gly	Asn	Met	Arg		
					210			215						220			
Glu	Phe	Ile	Asn	Ser	Pro	Phe	Arg	Asp	Ile	Tyr	Tyr	Arg	Gly	Gln	Thr		
					225			230			235			240			
Ala	Leu	His	Ile	Ala	Ile	Glu	Arg	Arg	Cys	Lys	His	Tyr	Val	Glu	Leu		
					245			250						255			
Leu	Val	Ala	Gln	Gly	Ala	Asp	Val	His	Ala	Gln	Ala	Arg	Gly	Arg	Phe		
					260			265						270			
Phe	Gln	Pro	Lys	Asp	Glu	Gly	Gly	Tyr	Phe	Tyr	Phe	Gly	Glu	Leu	Pro		
					275			280						285			
Leu	Ser	Leu	Ala	Ala	Cys	Thr	Asn	Gln	Pro	His	Ile	Val	Asn	Tyr	Leu		
					290			295						300			
Thr	Glu	Asn	Pro	His	Lys	Lys	Ala	Asp	Met	Arg	Arg	Gln	Asp	Ser	Arg		
					305			310			315			320			
Gly	Asn	Thr	Val	Leu	His	Ala	Leu	Val	Ala	Ile	Ala	Asp	Asn	Thr	Arg		
					325			330						335			
Glu	Asn	Thr	Lys	Phe	Val	Thr	Lys	Met	Tyr	Asp	Leu	Leu	Leu	Leu	Lys		
					340			345						350			
Cys	Ala	Arg	Leu	Phe	Pro	Asp	Ser	Asn	Leu	Glu	Ala	Val	Leu	Asn	Asn		

355	360	365													
Asp	Gly	Leu	Ser	Pro	Leu	Met	Met	Ala	Ala	Lys	Thr	Gly	Lys	Ile	Gly
370							375					380			
Ile	Phe	Gln	His	Ile	Ile	Arg	Arg	Glu	Val	Thr	Asp	Glu	Asp	Thr	Arg
385							390					395			400
His	Leu	Ser	Arg	Lys	Phe	Lys	Asp	Trp	Ala	Tyr	Gly	Pro	Val	Tyr	Ser
							405					410			415
Ser	Leu	Tyr	Asp	Leu	Ser	Ser	Leu	Asp	Thr	Cys	Gly	Glu	Glu	Ala	Ser
							420					425			430
Val	Leu	Glu	Ile	Leu	Val	Tyr	Asn	Ser	Lys	Ile	Glu	Asn	Arg	His	Glu
							435					440			445
Met	Leu	Ala	Val	Glu	Pro	Ile	Asn	Glu	Leu	Leu	Arg	Asp	Lys	Trp	Arg
							450					455			460
Lys	Phe	Gly	Ala	Val	Ser	Phe	Tyr	Ile	Asn	Val	Val	Ser	Tyr	Leu	Cys
465							470						475		480
Ala	Met	Val	Ile	Phe	Thr	Leu	Thr	Ala	Tyr	Tyr	Gln	Pro	Leu	Glu	Gly
							485					490			495
Thr	Pro	Pro	Tyr	Pro	Tyr	Arg	Thr	Thr	Val	Asp	Tyr	Leu	Arg	Leu	Ala
							500					505			510
Gly	Glu	Val	Ile	Thr	Leu	Phe	Thr	Gly	Val	Leu	Phe	Phe	Phe	Thr	Asn
							515					520			525
Ile	Lys	Asp	Leu	Phe	Met	Lys	Lys	Cys	Pro	Gly	Val	Asn	Ser	Leu	Phe
							530					535			540
Ile	Asp	Gly	Ser	Phe	Gln	Leu	Leu	Tyr	Phe	Ile	Tyr	Ser	Val	Leu	Val
545							550						555		560
Ile	Val	Ser	Ala	Ala	Leu	Tyr	Leu	Ala	Gly	Ile	Glu	Ala	Tyr	Leu	Ala
							565					570			575
Val	Met	Val	Phe	Ala	Leu	Val	Leu	Gly	Trp	Met	Asn	Ala	Leu	Tyr	Phe
							580					585			590
Thr	Arg	Gly	Leu	Lys	Leu	Thr	Gly	Thr	Tyr	Ser	Ile	Met	Ile	Gln	Lys
							595					600			605
Ile	Leu	Phe	Lys	Asp	Leu	Phe	Arg	Phe	Leu	Leu	Val	Tyr	Leu	Leu	Phe
							610					615			620
Met	Ile	Gly	Tyr	Ala	Ser	Ala	Leu	Val	Ser	Leu	Leu	Asn	Pro	Cys	Ala
625							630					635			640
Asn	Met	Lys	Val	Cys	Asn	Glu	Asp	Gln	Thr	Asn	Cys	Thr	Val	Pro	Thr
							645					650			655
Tyr	Pro	Ser	Cys	Arg	Asp	Ser	Glu	Thr	Phe	Ser	Thr	Phe	Leu	Leu	Asp
							660					665			670
Leu	Phe	Lys	Leu	Thr	Ile	Gly	Met	Gly	Asp	Leu	Glu	Met	Leu	Ser	Ser
							675					680			685
Thr	Lys	Tyr	Pro	Val	Val	Phe	Ile	Ile	Leu	Leu	Val	Thr	Tyr	Ile	Ile
							690					695			700
Leu	Thr	Phe	Val	Leu	Leu	Asn	Met	Leu	Ile	Ala	Leu	Met	Gly	Glu	
							705					710			720
Thr	Val	Gly	Gln	Val	Ser	Lys	Glu	Ser	Lys	His	Ile	Trp	Lys	Leu	Gln
							725					730			735
Trp	Ala	Thr	Thr	Ile	Leu	Asp	Ile	Glu	Arg	Ser	Phe	Pro	Val	Phe	Leu
							740					745			750
Arg	Lys	Ala	Phe	Arg	Ser	Gly	Glu	Met	Val	Thr	Val	Gly	Lys	Ser	Ser
							755					760			765
Asp	Gly	Thr	Pro	Asp	Arg	Arg	Trp	Cys	Phe	Arg	Val	Asp	Glu	Val	Asn
							770					775			780
Trp	Ser	His	Trp	Asn	Gln	Asn	Leu	Gly	Ile	Ile	Asn	Glu	Asp	Pro	Gly
							785					790			800
Lys	Asn	Glu	Thr	Tyr	Gln	Tyr	Tyr	Gly	Phe	Ser	His	Thr	Val	Gly	Arg
							805					810			815
Leu	Arg	Arg	Asp	Arg	Trp	Ser	Ser	Val	Val	Pro	Arg	Val	Val	Glu	Leu
							820					825			830
Asn	Lys	Asn	Ser	Asn	Pro	Asp	Glu	Val	Val	Val	Pro	Leu	Asp	Ser	Met
							835					840			845
Gly	Asn	Pro	Arg	Cys	Asp	Gly	His	Gln	Gln	Gly	Tyr	Pro	Arg	Lys	Trp
							850					855			860
Arg	Thr	Glu	Asp	Ala	Pro	Leu									
							865					870			

<211> 2613
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> CDS
 <222> (1)...(2613)
 <223> Generic sequence that encompasses all nucleotide sequences that encode human TRPV4 having amino acid sequence as shown in SEQ ID NO:17
 <221> misc_feature
 <222> 12, 15, 69, 102, 105, 138, 144, 150, 165, 264, 279, 282, 318, 351, 354, 402, 477, 486, 567, 609, 687, 870, 957, 1080, 1116, 1209, 1248, 1251, 1266, 1269, 1296, 1323, 1410, 1431, 1626, 1644, 1671, 1689, 1809, 1890, 1902, 1977, 1989, 2001, 2061, 2064, 2178, 2187, 2241, 2274, 2301, 2304, 2358, 2433, 2469, 2472, 2508, 2541
 <223> n = A, T, C or G if after TC;
 n = T or C if after AG
 <221> misc_feature
 <222> 27, 168, 192, 204, 228, 342, 366, 372, 453, 480, 537, 558, 618, 657, 672, 696, 711, 744, 747, 807, 813, 945, 948, 960, 1008, 1065, 1173, 1176, 1200, 1212, 1338, 1380, 1392, 1509, 1530, 1782, 1848, 1983, 2238, 2259, 2271, 2322, 2325, 2337, 2448, 2454, 2457, 2463, 2484, 2556, 2586, 2595
 <223> n = A, T, C or G if after CG;
 n = A or G if after AG
 <221> misc_feature
 <222> all "n" not specified above
 <223> n = A, T, C or G
 <400> 18

atg	gcn	gay	wsn	wsn	gar	ggn	ccn	mgn	gcn	ggn	ccn	ggn	gar	gtt	gcn	48
Met	Ala	Asp	Ser	Ser	Glu	Gly	Pro	Arg	Ala	Gly	Pro	Gly	Glu	Val	Ala	
1			5				10							15		

gar	ytn	ccn	ggn	gay	gar	wsn	ggn	acn	ccn	ggn	ggn	gar	gcn	tty	ccn	96
Glu	Leu	Pro	Gly	Asp	Glu	Ser	Gly	Thr	Pro	Gly	Gly	Glu	Ala	Phe	Pro	
20				25										30		

ytn	wsn	wsn	ytn	gcn	aay	ytn	tty	gar	ggn	gar	gay	ggn	wsn	ytn	wsn	144
Leu	Ser	Ser	Leu	Ala	Asn	Leu	Phe	Glu	Gly	Gly	Glu	Asp	Gly	Ser	Leu	Ser
35				40										45		

ccn	wsn	ccn	gcn	gay	gcn	wsn	mgn	ccn	gcn	ggn	ccn	ggn	gay	ggn	mgn	192
Pro	Ser	Pro	Ala	Asp	Ala	Ser	Arg	Pro	Ala	Gly	Pro	Gly	Asp	Gly	Arg	
50				55										60		

ccn	aay	ytn	mgn	atg	aar	tty	car	ggn	gcn	tty	mgn	aar	ggn	gtt	ccn	240
Pro	Asn	Leu	Arg	Met	Lys	Phe	Gln	Gly	Ala	Phe	Arg	Lys	Gly	Val	Pro	
65				70										80		

aay	ccn	ath	gay	ytn	gar	wsn	acn	ytn	tay	gar	wsn	wsn	gtt	gtt		288
Asn	Pro	Ile	Asp	Leu	Leu	Glu	Ser	Thr	Leu	Tyr	Glu	Ser	Ser	Val	Val	
85				90										95		

ccn	ggn	ccn	aar	aar	gcn	ccn	atg	gay	wsn	ytn	tty	gay	tay	ggn	acn	336
Pro	Gly	Pro	Lys	Lys	Ala	Pro	Met	Asp	Ser	Leu	Phe	Asp	Tyr	Gly	Thr	
100				105										110		

tay	mgn	cay	cay	wsn	wsn	gay	aay	aar	mgn	tgg	mgn	aar	aar	ath	ath	384
Tyr	Arg	His	His	Ser	Ser	Asp	Asn	Lys	Lys	Arg	Trp	Arg	Lys	Lys	Ile	Ile
115				120										125		

gar	aar	car	ccn	car	wsn	ccn	aar	gcn	ccn	gcn	ccn	car	ccn	ccn	ccn	432
Glu	Lys	Gln	Pro	Gln	Ser	Pro	Lys	Ala	Pro	Ala	Pro	Gln	Pro	Pro	Pro	

130	135	140	
ath ytn aar gtn tty aay mgn ccn ath ytn tty gay ath gtn wsn mgn Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg 145 150 155 160			480
ggn wsn acn gcn gay ytn gay ggn ytn ytn ccn tty ytn ytn acn cay Gly Ser Thr Ala Asp Leu Asp Gly Leu Leu Pro Phe Leu Leu Thr His 165 170 175			528
aar aar mgn ytn acn gay gar gar tty mgn gar ccn wsn acn ggn aar Lys Lys Arg Leu Thr Asp Glu Glu Phe Arg Glu Pro Ser Thr Gly Lys 180 185 190			576
acn tgy ytn ccn aar gcn ytn ytn aay ytn wsn aay ggn mgn aay gay Thr Cys Leu Pro Lys Ala Leu Leu Asn Leu Ser Asn Gly Arg Asn Asp 195 200 205			624
acn ath ccn gtn ytn ytn gay ath gcn gar mgn acn ggn aay atg mgn Thr Ile Pro Val Leu Leu Asp Ile Ala Glu Arg Thr Gly Asn Met Arg 210 215 220			672
gar tty ath aay wsn ccn tty mgn gay ath tay tay mgn ggn car acn Glu Phe Ile Asn Ser Pro Phe Arg Asp Ile Tyr Tyr Arg Gly Gln Thr 225 230 235 240			720
gcn ytn cay ath gcn ath gar mgn mgn tgy aar cay tay gtn gar ytn Ala Leu His Ile Ile Ala Glu Arg Arg Cys Lys His Tyr Val Glu Leu 245 250 255			768
ytn gtn gcn car ggn gcn gay gtn cay gcn car gcn mgn ggn mgn tty Leu Val Ala Gln Gly Ala Asp Val His Ala Gln Ala Arg Gly Arg Phe 260 265 270			816
tty car ccn aar gay gar ggn ggn tay tay tty ggn gar ytn ccn Phe Gln Pro Lys Asp Glu Gly Gly Tyr Phe Tyr Phe Gly Glu Leu Pro 275 280 285			864
ytn wsn ytn gcn gcn tgy acn aay car ccn cay ath gtn aay tay ytn Leu Ser Leu Ala Ala Cys Thr Asn Gln Pro His Ile Val Asn Tyr Leu 290 295 300			912
acn gar aay ccn cay aar aar gcn gay atg mgn mgn car gay wsn mgn Thr Glu Asn Pro His Lys Lys Ala Asp Met Arg Arg Gln Asp Ser Arg 305 310 315 320			960
ggn aay acn gtn ytn cay gcn ytn gtn gcn ath gcn gay aay acn mgn Gly Asn Thr Val Leu His Ala Leu Val Ala Ile Ala Asp Asn Thr Arg 325 330 335			1008
gar aay acn aar tty gtn acn aar atg tay gay ytn ytn ytn ytn aar Glu Asn Thr Lys Phe Val Thr Lys Met Tyr Asp Leu Leu Leu Lys 340 345 350			1056
tgy gcn mgn ytn tty ccn gay wsn aay ytn gar gcn gtn ytn aay aay Cys Ala Arg Leu Phe Pro Asp Ser Asn Leu Glu Ala Val Leu Asn Asn 355 360 365			1104
gay ggn ytn wsn ccn ytn atg atg gcn gcn aar acn ggn aar ath ggn Asp Gly Leu Ser Pro Leu Met Met Ala Ala Lys Thr Gly Lys Ile Gly 370 375 380			1152
ath tty car cay ath ath mgn mgn gar gtn acn gay gar gay acn mgn Ile Phe Gln His Ile Ile Arg Arg Glu Val Thr Asp Glu Asp Thr Arg 385 390 395 400			1200
cay ytn wsn mgn aar tty aar gay tgg gcn tay ggn ccn gtn tay wsn His Leu Ser Arg Lys Phe Lys Asp Trp Ala Tyr Gly Pro Val Tyr Ser			1248

405

410

415

wsn ytn tay gay ytn wsn wsn ytn gay acn tgy ggn gar gar gcn wsn	1296
Ser Leu Tyr Asp Leu Ser Ser Leu Asp Thr Cys Gly Glu Glu Ala Ser	
420 425 430	
gtn ytn gar ath ytn gtn tay aay wsn aar ath gar aay mgn cay gar	1344
Val Leu Glu Ile Leu Val Tyr Asn Ser Lys Ile Glu Asn Arg His Glu	
435 440 445	
atg ytn gcn gtn gar ccn ath aay gar ytn ytn mgn gay aar tgg mgn	1392
Met Leu Ala Val Glu Pro Ile Asn Glu Leu Leu Arg Asp Lys Trp Arg	
450 455 460	
aar tty ggn gcn gtn wsn tty tay ath aay gtn gtn wsn tay ytn tgy	1440
Lys Phe Gly Ala Val Ser Phe Tyr Ile Asn Val Val Ser Tyr Leu Cys	
465 470 475 480	
gcn atg gtn ath tty acn acn gcn tay tay car ccn ytn gar ggn	1488
Ala Met Val Ile Phe Thr Leu Thr Ala Tyr Tyr Gln Pro Leu Glu Gly	
485 490 495	
acn ccn ccn tay ccn tay mgn acn acn gtn gay tay ytn mgn ytn gcn	1536
Thr Pro Pro Tyr Pro Tyr Arg Thr Thr Val Asp Tyr Leu Arg Leu Ala	
500 505 510	
ggn gar gtn ath acn ytn tty acn ggn gtn ytn tty tgy tgy acn aay	1584
Gly Glu Val Ile Thr Leu Phe Thr Gly Val Leu Phe Phe Phe Thr Asn	
515 520 525	
ath aar gay ytn tty atg aar aar tgy ccn ggn gtn aay wsn ytn tty	1632
Ile Lys Asp Leu Phe Met Lys Lys Cys Pro Gly Val Asn Ser Leu Phe	
530 535 540	
ath gay ggn wsn tty car ytn ytn tay tgy ath tay wsn gtn ytn gtn	1680
Ile Asp Gly Ser Phe Gln Leu Leu Tyr Phe Ile Tyr Ser Val Leu Val	
545 550 555 560	
ath gtn wsn gcn gcn ytn tay ytn gcn ggn ath gar gcn tay ytn gcn	1728
Ile Val Ser Ala Ala Leu Tyr Leu Ala Gly Ile Glu Ala Tyr Leu Ala	
565 570 575	
gtn atg gtn tty gcn ytn gtn ytn ggn tgg atg aay gcn ytn tay tty	1776
Val Met Val Phe Ala Leu Val Leu Gly Trp Met Asn Ala Leu Tyr Phe	
580 585 590	
acn mgn ggn ytn aar ytn acn ggn acn tay wsn ath atg ath car aar	1824
Thr Arg Gly Leu Lys Leu Thr Gly Thr Tyr Ser Ile Met Ile Gln Lys	
595 600 605	
ath ytn tty aar gay ytn tty mgn tgy ytn ytn gtn tay ytn ytn tty	1872
Ile Leu Phe Lys Asp Leu Phe Arg Phe Leu Leu Val Tyr Leu Leu Phe	
610 615 620	
atg ath ggn tay gcn wsn gcn ytn gtn wsn ytn ytn aay ccn tgy gcn	1920
Met Ile Gly Tyr Ala Ser Ala Leu Val Ser Leu Leu Asn Pro Cys Ala	
625 630 635 640	
aay atg aar gtn tgy aay gar gay car acn aay tgy acn gtn ccn acn	1968
Asn Met Lys Val Cys Asn Glu Asp Gln Thr Asn Cys Thr Val Pro Thr	
645 650 655	
tay ccn wsn tgy mgn gay wsn gar acn tty wsn acn tty ytn ytn gay	2016
Tyr Pro Ser Cys Arg Asp Ser Glu Thr Phe Ser Thr Phe Leu Leu Asp	
660 665 670	
ytn tty aar ytn acn ath ggn atg ggn gay ytn gar atg ytn wsn wsn	2064
Leu Phe Lys Leu Thr Ile Gly Met Gly Asp Leu Glu Met Leu Ser Ser	

675

680

685

acn aar tay ccn gtn gtn tty ath ath ytn ytn gtn acn tay ath ath	2112
Thr Lys Tyr Pro Val Val Phe Ile Ile Leu Leu Val Thr Tyr Ile Ile	
690 695 700	
ytn acn tty gtn ytn ytn aay atg ytn ath gcn ytn atg ggn gar	2160
Leu Thr Phe Val Leu Leu Asn Met Leu Ile Ala Leu Met Gly Glu	
705 710 715 720	
acn gtn ggn car gtn wsn aar gar wsn aar cay ath tgg aar ytn car	2208
Thr Val Gly Gln Val Ser Lys Glu Ser Lys His Ile Trp Lys Leu Gln	
725 730 735	
tgg gcn acn acn ath ytn gay ath gar mgn wsn tty ccn gtn tty ytn	2256
Trp Ala Thr Thr Ile Leu Asp Ile Glu Arg Ser Phe Pro Val Phe Leu	
740 745 750	
mgn aar gcn tty mgn wsn ggn gar atg gtn acn gtn ggn aar wsn wsn	2304
Arg Lys Ala Phe Arg Ser Gly Glu Met Val Thr Val Gly Lys Ser Ser	
755 760 765	
gay ggn acn ccn gay mgn mgn tgg tgy tty mgn gtn gay gar gtn aay	2352
Asp Gly Thr Pro Asp Arg Arg Trp Cys Phe Arg Val Asp Glu Val Asn	
770 775 780	
tgg wsn cay tgg aay car aay ytn ggn ath ath aay gar gay ccn ggn	2400
Trp Ser His Trp Asn Gln Asn Leu Gly Ile Ile Asn Glu Asp Pro Gly	
785 790 795 800	
aar aay gar acn tay car tay tay ggn tty wsn cay acn gtn ggn mgn	2448
Lys Asn Glu Thr Tyr Gln Tyr Gly Phe Ser His Thr Val Gly Arg	
805 810 815	
ytn mgn mgn gay mgn tgg wsn wsn gtn gtn ccn mgn gtn gtn gar ytn	2496
Leu Arg Arg Asp Arg Trp Ser Ser Val Val Pro Arg Val Val Glu Leu	
820 825 830	
aay aar aay wsn aay ccn gay gar gtn gtn ccn ytn gay wsn atg	2544
Asn Lys Asn Ser Asn Pro Asp Glu Val Val Pro Leu Asp Ser Met	
835 840 845	
ggn aay ccn mgn tgy gay ggn cay car car ggn tay ccn mgn aar tgg	2592
Gly Asn Pro Arg Cys Asp Gly His Gln Gln Gly Tyr Pro Arg Lys Trp	
850 855 860	
mgn acn gar gay gcn ccn ytn	2613
Arg Thr Glu Asp Ala Pro Leu	
865 870	

<210> 19

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide probe that hybridizes to mouse
TRPV3-encoding nucleic acid

<400> 19

tgacatgatc ctgctgagga gtg

23

<210> 20

<211> 22

<212> DNA

<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 20
acgaggcagg cgaggtattc tt 22

<210> 21
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 21
cagcgtatgc agaggctcca gggtcag 27

<210> 22
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 22
ttgaagtccct cagccaccgt cacca 25

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 23
caccagcgcg tgcaggatgt 20

<210> 24
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 24
tcgttctcct cagcgaaggc aagcaga 27

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 25
ccttctatct ccaggaagaa gtgtgc 26

<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 26
gtcaccagcg cgtgcaggat gttgt 25
<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 27
aggcccatac gcccagtcgg tgaac 25
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 28
catgcccata gactggaagc c 21
<210> 29
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 29
gatggcgatg ttcagcgctg tctgc 25
<210> 30
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 30
gctgccaaga tgggcaaggc tgaga 25
<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 31
cctgggctgg gcgaacatgc tcta' 24
<210> 32
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 32

gccccagatg cgttcacttt ctttgga	27
<210> 33	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 33	
tgacatgatgc ctgctgagga gtg	23
<210> 34	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 34	
acgaggcagg cgaggtattc tt	22
<210> 35	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 35	
tccaaagctgt gcttgtgata	20
<210> 36	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 36	
ctttagccatg tagtttcaca caaa	24
<210> 37	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 37	
gtgtttcca ttccgtccac	20
<210> 38	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 38	
cgacgtttct gggaaattcat	20

<210> 39
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 39
cttgagatcg tagtttcaca caaa 24

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 40
tcctcccttc caacatgctc 20

<210> 41
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 41
tggaaatcaa aacagtattt caatg 25

<210> 42
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 42
ctcttcaagc tcaccatagg c 21

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 43
cgacgtttct gggaaattcat 20

<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 44
gtgtttcca ttccgtccac 20

<210> 45
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 45
ccctctgtta ccgcagacac 20

<210> 46
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 46
actccagcct gggtgaca 18

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 47
atggtctcca gctcccagtt 20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 48
aggaggacga aggtgaggat 20

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 49
agcctcaggt ctgaagtgga 20

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 50
gccagatgcg ttcactttct 20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 51
ggcaaatttc ttccatttcg 20

<210> 52
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 52
agatgcgttc gctctcctt 19

<210> 53
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 53
tgcacacttc ttccctggaga t 21

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 54
ttcctcatgc acaagctgac 20

<210> 55
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 55
tcttccttggaa gatagaagg att 23

<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 56
cgatgatttc cagcacagag 20

<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 57
ctcaccaatg tagacacaac gac

23

<210> 58
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 58
taccagcatg aaggcttcta ttt

23

<210> 59
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 59
ataaggactg ctgtgatgtc tcc

23

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 60
gtcagcttgt gcatgaggaa

20

<210> 61
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 61
tgacagagac cccatccaaat cccaaaca

27

<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 62
ctcttgat atggcttctt gg

22

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 63
gagaaggagt gggtagctg 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 64
ccttctccca gagtccacag 20

<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 65
agcaggcagg aaaaatgagag 20

<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 66
ccaaagatgg tccagaaagg 20

<210> 67
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 67
ctcttgatgat atggctttct gg 22

<210> 68
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 68
aactgtgatg acatggactc tcccccaag 28

<210> 69
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 69
aactgtgatg acatggactc 20

<210> 70
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 70
caggatgatg tgacagagac cccatc 26

<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 71
atgatcctgc tgaggagtgg 20

<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 72
aggatgacac aggcccatac 20

<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 73
atcctcacct tcgtcctcct 20

<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 74
cattccgtcc acttcacctc 20

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 75
tggtttgct gttgttcctg 20

<210> 76

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 76
catgtaaatc aacgcagaag tca

23

<210> 77
<211> 20
<212> PRT
<213> Mus musculus

<400> 77
Cys Asp Asp Met Asp Ser Pro Gln Ser Pro Gln Asp Asp Val Thr Glu
1 5 10 15
Thr Pro Ser Asn
20

<210> 78
<211> 14
<212> PRT
<213> Mus musculus

<400> 78
Lys Ile Gln Asp Ser Ser Arg Ser Asn Ser Lys Thr Thr Leu
1 5 10

<210> 79
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 79
ctcatgcaca agctgacagc ct

22

<210> 80
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 80
aggcctcttc cgtgtactca gcgttg

26

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 81
atctggcacc acaccttcta caa

23

<210> 82
<211> 20
<212> DNA

<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 82
gccagccagg tccagacgca 20
<210> 83
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 83
ctcatgcaca agctgacagc ct 22
<210> 84
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 84
aggcctcttc cgtgtactca gcgttg 26
<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 85
ccctgggctg ggcgaacatg ctcta 25
<210> 86
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 86
cttggcagcc atcatgagag gcgaa 25
<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 87
gcagtggtaa caacgcagag 20
<210> 88
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 88
aggtcagatc tgtggcaggt 20

<210> 89
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 89
cgtgagggtga cagatgagga 20

<210> 90
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 90
ccagtatggc agatcctgg 20

<210> 91
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 91
atggcagatc ctgggtgatg 19

<210> 92
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 92
cccaggcact actgaggact 20

<210> 93
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 93
agggctacgc tcccaagt 18

<210> 94
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 94
gtgctggctt aggtgactcc 20

<210> 95
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 95
tgaggatgac ataggtgatg ag 22

<210> 96
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 96
ccaaggacaa aaaggactgc 20

<210> 97
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 97
caagtttgtc cgcccttttc 20

<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 98
aactgtctgg agctggcagt 20

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 99
caagtttgtc cgcccttttc 20

<210> 100
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 100

actgccagct ccagacagtt 20
<210> 101
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 101
ccttcgatgt gctggctctg ggcataa 27

<210> 102
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 102
ccttgccttt ctccccaga gtctcaa 27

<210> 103
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 103
gcaaaggaaaa tggctccacc cgtca 25

<210> 104
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 104
gccagtgcgtg ggtcagcagt tcgtaa 25

<210> 105
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 105
ttcaggaggt catgttcacg gctctca 27

<210> 106
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 106
gtaccggaaac ctgcagatcg ccaaga 26

<210> 107
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 107
gcaagatccc ttgtgtggtg gtgga 25

<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 108
cagcctggtg gaggtggagg atgtt 25

<210> 109
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 109
cggaacctgc agatcgccaa gaact 25

<210> 110
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 110
gcgtggccag acaggggatc ctaag 25

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 111
ccacacagca aagaggaaca 20

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 112
ggagccgcag aaatggta 20

<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 113
tctcattggc ctcatttctg

20

<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 114
atatgagacc cgagcagtgg

20