

Рис. 1

колебания возникают только в одном контуре с собственной частотой v_0 . Очевидно, для таких колебательных периодический процесс $u_3(t)$ является простейшим, поскольку он вызывает возбуждение только на одной частоте, равной v_0 . Этот процесс вам, безусловно, знаком, он представляет собой так называемое синусоидальное, или гармоническое, колебание, описываемое соотношением

$$u(t) = A\sin(2\pi\nu_0 t + \phi) = A\sin(\omega_0 t + \phi),$$

Рис. 2

и удовлетворяющее условиям

$$A, \omega_0, \phi = const$$

где A - амплитуда, ϕ - начальная фаза, $\omega_0 = 2\pi \nu_0$ - круговая частота колебаний.

Как же объяснить тот факт, что каждый из сигналов $u_1(t)$ и $u_2(t)$ одновременно возбуждает несколько конутров, настроенных на разные частоты? Можно заметить, что эти сигналы ведут себя так, как если бы каждый из них представлял собой сумму нескольких синусоидальных колебаний с разными частотами. Строго это свойство было доказано французским учёным Фурье и сформулировано им в виде замечательной теоремы. Она утверждает, что практически любую периодическую функцию, частота которой равна v_0 , можно представить в виде суммы синусоид с соответсвующим образом подобранными амплитудами и начальными фазами и частотами, кратными ν_0 (такие синусоиды часто называют гармоническими), или, как говорят, эту функцию можно разложить в ряд Фурье. Эта теорема может быть записана следующим обра-30M:

$$u(t) = A_1 \sin(\omega_0 t + \phi_1) + A_2 \sin(2\omega_0 t + \phi_2) + A_3 \sin(3\omega_0 t + \phi_3) + \dots + A_k \sin(k\omega_0 t + \phi_k) + \dots$$

или, более кратко,

$$u(t) = \sum_{k=1}^{\infty} A_k \sin(k\omega_0 t + \phi_k)$$

где k - номер гармоники, определяяющий её частоту, A_k - амплитуда гармоники, ϕ_k - начальная фаза гармоники, ω_0 - круговая частота исследуемого процесса.

Таким образом, сигнал представленный в виде суммы синусоид, можно удобно и просто охарактеризовать совокупностью величин A_k и ϕ_k . Совокупность величин A_k называется спектром амплитуд. Этот спектр наглядно представляют графически, откладывая по оси ординат значения A_k и по оси абсцисс ν и изображая амплитуды отдельных гармоник