# Contact curve based simulation of side chains from two amino acids in a protein molecule

SANGHUN JEONG, KU-JIN KIM
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

KYUNGPOOK NATIONAL UNIVERSITY, KOREA

#### Motivation

- Protein molecules have flexibility
- Simulating flexible molecules requires heavy computation efforts
- Efficient simulating method is needed
- We propose an efficient simulation method based on contact curve computation

#### Problem Definition

- Find a method to efficiently simulate two flexible amino acids
- Assumption
  - Fixed main chain and rotating side chains
    - Often used method for simplifying flexibility

#### Preliminaries (1)

- A protein is composed of amino acids
- Amino acids are composed of atoms
- Each atom can be represented as van der Waals spheres
- Only covalent bonded atoms have sphere intersections



#### Preliminaries (2)

No collision cases



Collision case



#### Preliminaries (3)

- An amino acid has two parts
  - Main chain
  - Side chain
- Main chain is fixed
- $^{\circ}$  Side chain rotates along the axis containing centers of C $\alpha$  and C $\beta$



#### <Rotating side chain animation>



## Collision region for two spheres(1)

- Center location of rotating spheres A and B
  - A.c(s) =  $(R_0 \cos (s + s_0), R_0 \sin (s + s_0), z_0)$
  - B.c(t) =  $\mathbf{p}$  + R<sub>1</sub> cos (t + t<sub>0</sub>)  $\mathbf{b}_1$ + R<sub>1</sub> sin (t + t<sub>0</sub>)  $\mathbf{b}_2$  + ||c<sub>1</sub> - c<sub>1</sub>'||  $\mathbf{b}_3$



## Collision region for two spheres(2)

Case 1: Two spheres at (s\*, t\*) tangentially contact each other

$$| | A.c(s^*) - B.c(t^*) | |^2 = (r_0 + r_1)^2$$



Case 2: Two spheres at (s\*, t\*) have an intersection each other

$$| |A.c(s^*) - B.c(t^*) | |^2 < (r_0 + r_1)^2$$



Case 3: Two spheres at (s\*, t\*) are apart

$$| |A.c(s^*) - B.c(t^*) | |^2 > (r_0 + r_1)^2$$



## Collision region for two spheres(3)



### Contact curve for two amino acids (1)





S

### Contact curve for two amino acids (2)



# Simulation along contact curve (1)



# Simulation along contact curve (2)



#### Conclusion

- Analysis of contact configuration of two amino acids
- Computation of the contact curve
- Simulation based on the contact curve

#### Thank you

tkdgns3042@naver.com