Иррациональные уравнения и неравенства

1. Задание 10 № 27982. Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением a км/ч 2 , вычисляется по формуле $v = \sqrt{2la}$. Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч 2 .

Решение.

Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав один километр. Задача сводится к решению уравнения $\sqrt{2Ia}=100$ при известном значении длины пути l=1 км:

$$\sqrt{2la} = 100 \Leftrightarrow \sqrt{2a} = 100 \Leftrightarrow 2a = 10000 \Leftrightarrow a = 5000 \text{ km/y}^2$$
.

Если его ускорение будет превосходить найденное, то, проехав один километр, гонщик наберёт большую скорость, поэтому наименьшее необходимое ускорение равно 5000 кm/ч^2 . Ответ: 5000.

Ответ: 5000

2. Задание 10 № 27983. При движении ракеты ее видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону $l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$, где $l_0 = 5$ м — длина покоящейся ракеты, $c = 3 \cdot 10^5$ км/с — скорость света, а v — скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы ее наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.

Решение.

Найдем, при какой скорости длина ракеты станет равна 4 м. Задача сводится к решению уравнения $l_0\sqrt{1-\frac{v^2}{c^2}}=4$ при заданном значении длины покоящейся ракеты $l_0=5$ м и известной величине скорости света $c=3\cdot 10^5$ км/с:

$$5\sqrt{1-\frac{v^2}{9\cdot 10^{10}}}=4\Leftrightarrow 1-\frac{v^2}{9\cdot 10^{10}}=\frac{16}{25}\Leftrightarrow \frac{v^2}{9\cdot 10^{10}}=\frac{9}{25}\Leftrightarrow v^2=\frac{81}{25}\cdot 10^{10}\Leftrightarrow v=180\,000\,\text{km/c}.$$

Если скорость будет превосходить найденную, то длина ракеты будет менее 4 метров, поэтому минимальная необходимая скорость равна 180 000 км/с.

Ответ: 180 000.

Ответ: 180000

3. Задание 10 № 27984. Расстояние от наблюдателя, находящегося на небольшой высоте h м над землей, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$, где R = 6400 км — радиус Земли. На какой наименьшей высоте следует располагаться наблюдателю, чтобы он видел горизонт на расстоянии не менее 4 километров? Ответ выразите в метрах.

Решение.

Задача сводится к решению уравнения l=4 при заданном значении R:

$$\sqrt{\frac{6400h}{500}} = 4 \Leftrightarrow \sqrt{\frac{64h}{5}} = 4 \Leftrightarrow \frac{64h}{5} = 16 \Leftrightarrow h = \frac{5}{4} \Leftrightarrow h = 1,25 \, \mathrm{m}.$$

Ответ: 1.25.

Примечание.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины R и L, выраженные в километрах, а h, выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: $l=\sqrt{2Rh}$. В формуле, приведённой в задании, коэффициент 500 как раз отражает, то что все величины, за исключением h, выражены в километрах.

Ответ: 1,25

2015-10-12 1/3

4. Задание 10 № 27985. Расстояние (в км) от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$, где R = 6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?

Решение.

Задача сводится к решению уравнений l=4,8 и l=6,4 при заданном значении R:

$$\sqrt{\frac{6400h}{500}} = 4,8 \Leftrightarrow 8\sqrt{\frac{h}{5}} = \frac{24}{5} \Leftrightarrow \sqrt{\frac{h}{5}} = \frac{3}{5} \Leftrightarrow \frac{h}{5} = \frac{9}{25} \Leftrightarrow h = \frac{9}{5} \Leftrightarrow h = 1,8.$$

$$\sqrt{\frac{6400h}{500}} = 6,4 \Leftrightarrow 8\sqrt{\frac{h}{5}} = \frac{32}{5} \Leftrightarrow \sqrt{\frac{h}{5}} = \frac{4}{5} \Leftrightarrow \frac{h}{5} = \frac{16}{25} \Leftrightarrow h = \frac{16}{5} \Leftrightarrow h = 3,2.$$

Следовательно, чтобы видеть горизонт на более далеком расстоянии, наблюдателю нужно подняться на 3, 2-1, 8=1, 4 метра.

Ответ: 1,4.

Примечание.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины R и L, выраженые в километрах, а h выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: $l=\sqrt{2Rh}$. В формуле, приведённой в задании, коэффициент 500 как раз отражает, то что все величины, за исключением h, выражены в километрах.

Ответ: 1,4

5. Задание 10 № 27986. Расстояние (в км) от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$, где R = 6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведет лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?

Решение.

Задача сводится к решению уравнений l=4,8 и l=6,4 при заданном значении R:

$$\sqrt{\frac{6400h}{500}} = 4,8 \Leftrightarrow 8\sqrt{\frac{h}{5}} = \frac{24}{5} \Leftrightarrow \sqrt{\frac{h}{5}} = \frac{3}{5} \Leftrightarrow \frac{h}{5} = \frac{9}{25} \Leftrightarrow h = \frac{9}{5} \Leftrightarrow h = 1,8 \text{ м.}$$

$$\sqrt{\frac{6400h}{500}} = 6,4 \Leftrightarrow 8\sqrt{\frac{h}{5}} = \frac{32}{5} \Leftrightarrow \sqrt{\frac{h}{5}} = \frac{4}{5} \Leftrightarrow \frac{h}{5} = \frac{16}{25} \Leftrightarrow h = \frac{16}{5} \Leftrightarrow h = 3,2 \text{ м.}$$

Следовательно, чтобы видеть горизонт на более далеком расстоянии, наблюдателю нужно подняться на 3, 2-1, 8=1, 4 метра. Для этого ему необходимо подняться на 1, 4: 0, 2=14: 2=7 ступенек.

Ответ: 7.

Примечание.

Иногда в физике или технике бывает удобно записать какую-либо формулу в определённых единицах измерения, особенно часто это используется при инженерных расчётах. При этом, длины, например, могут быть выражены в различных единицах измерения. Здесь удобно использовать величины R и L, выраженные в километрах, а h выражать в метрах. Если бы в этой формуле все величины измерялись в одних и тех же единицах измерения, то формула выглядела бы так: $l=\sqrt{2Rh}$. В формуле, приведённой в задании, коэффициент 500 как раз отражает, то что все величины, за исключением h, выражены в километрах.

Ответ: 7

2015-10-12 2/3

6. Задание 10 № 263802. Расстояние (в км) от наблюдателя, находящегося на небольшой высоте h километров над землей, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{2Rh}$, где R = 6400 (км) — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километра? Ответ выразите в километрах.

Решение.

Задача сводится к решению уравнения l=4 при заданном значении R:

$$\sqrt{2\cdot 6400h} = 4 \Leftrightarrow 2\cdot 6400h = 16 \Leftrightarrow h = \frac{16}{2\cdot 6400} \Leftrightarrow h = \frac{1}{800} \Leftrightarrow h = \frac{125}{100000} \Leftrightarrow h = 0,00125.$$

Примечание. Заметим, что полученная величина равна 1,25 метра, т. е. соответствует уровню глаз ребенка.

Ответ: 0,00125. Ответ: 0,00125

7. Задание 10 № 505382. Расстояние от наблюдателя, находящегося на небольшой высоте h километров над землёй, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{2Rh}$, где R = 6400 км — радиус Земли. С какой высоты горизонт виден на расстоянии 160 километров? Ответ выразите в километрах.

Решение.

Задача сводится к решению уравнения l=160 при заданном значении R:

$$\sqrt{2 \cdot 6400h} = 160 \Leftrightarrow 2 \cdot 6400h = 25 600 \Leftrightarrow h = \frac{25 600}{2 \cdot 6400} \Leftrightarrow h = 2.$$

Ответ: 2. Ответ: 2

8. Задание 10 № 505403. Расстояние от наблюдателя, находящегося на небольшой высоте h километров над землёй, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{2Rh}$, где R = 6400 км — радиус Земли. С какой высоты горизонт виден на расстоянии 144 километров? Ответ выразите в километрах.

Решение.

Задача сводится к решению уравнения l = 144 при заданном значении R:

$$\sqrt{2 \cdot 6400h} = 144 \Leftrightarrow 2 \cdot 6400h = 20736 \Leftrightarrow h = \frac{20736}{2 \cdot 6400} \Leftrightarrow h = 1,62.$$

Ответ: 1,62.

9. Задание 10 № 505445. Гоночный автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением а км/ч². Скорость v в конце пути вычисляется по формуле $v = \sqrt{2la}$, где l — пройденный автомобилем путь. Определите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 250 метров, приобрести скорость 60 км/ч. Ответ выразите в $\kappa M/4^2$.

Решение.

Выразим ускорение из формулы для скорости и найдём его:

$$a = \frac{v^2}{2l} = \frac{60^2}{2 \cdot 0.25} = 7200 \text{ km/q}^2.$$

Ответ: 7200. Ответ: 7200

2015-10-12 3/3