Exerciții și probleme

Geometrie computațională, IDD, Sem. I, 2019-2020

Mihai Sorin Stupariu

1. Produs vectorial. Testul de orientare. Acoperiri convexe

- **1.1** Calculați produsul vectorial $v \times w$ pentru vectorii v = (1, -1, 0), w = (-2, 1, 3).
- **1.2** Fie P = (2,2), Q = (4,4). Stabiliți, folosind testul de orientare, poziția relativă a punctelor $R_1 = (8,8), R_2 = (6,0), R_3 = (-2,-1)$ față de muchia orientată \overrightarrow{PQ} . Care este poziția acelorași puncte față de muchia orientată \overrightarrow{QP} ?
- **1.3** Dați exemplu de puncte coplanare P, Q, R_1, R_2 din \mathbb{R}^3 , nesituate într-un plan de coordonate, astfel ca R_1 și R_2 să fie de o parte și de alta a segmentului [PQ].
- 1.4 Fie $\mathcal{M}=\{P_1,P_2,\ldots,P_7\}$, unde $P_1=(1,1),\ P_2=(2,7),\ P_3=(3,6),\ P_4=(4,5),\ P_5=(7,7),\ P_6=(9,7),\ P_7=(11,1).$ Scrieți cum evoluează, pe parcursul aplicării Graham's scan, lista \mathcal{L}_i a vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , parcursă în sens trigonometric. Aceeași cerință pentru marginea superioară \mathcal{L}_s .
- **1.5** Considerăm punctele A = (-6,6), B = (1,6), C = (1,-1), D = (-6,0), E = (6,0), F = (3,2), G = (-4,-2), H = (-1,-2), I = (-2,-2). Precizați care este numărul maxim de elemente pe care îl conține \mathcal{L} pe parcursul parcurgerii Graham's scan, indicând explicit punctele respective din \mathcal{L} (\mathcal{L} este lista vârfurilor care determină frontiera acoperirii convexe a lui \mathcal{M} , iar punctul "intern" considerat este O). Justificați!
- 1.6 Dați un exemplu de mulțime \mathcal{M} din planul \mathbb{R}^2 pentru care, la final, \mathcal{L}_i are 3 elemente, dar, pe parcursul algoritmului, numărul maxim de elemente al lui \mathcal{L}_i este egal cu 5 (\mathcal{L}_i este lista vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew). Justificați!

2. Triangularea poligoanelor. Teorema galeriei de artă

- **2.1** Fie \mathcal{P} poligonul dat de punctele $P_1 = (6,0), P_2 = (2,2), P_3 = (0,7), P_4 = (-2,2), P_5 = (-8,0), P_6 = (-2,-2), P_7 = (0,-6), P_8 = (2,-2)$. Indicați o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} și construiți graful asociat perechii $(\mathcal{P},\mathcal{T}_{\mathcal{P}})$.
- **2.2** Aplicați metoda din demonstrația teoremei galeriei de artă, indicând o posibilă amplasare a camerelor de supraveghere în cazul poligonului $P_1P_2...P_{10}$, unde $P_1=(4,5), P_2=(6,6), P_3=(4,7), P_4=(4.8), P_5=(6,10)$, iar punctele $P_6,...,P_{10}$ sunt respectiv simetricele punctelor $P_5,...,P_1$ față de axa Oy.
- **2.3** Fie poligonul $\mathcal{P} = (P_1P_2P_3P_4P_5P_6)$, unde $P_1 = (5,0)$, $P_2 = (3,2)$, $P_3 = (-1,2)$, $P_4 = (-3,0)$, $P_5 = (-1,-2)$, $P_6 = (3,-2)$. Arătați că Teorema Galeriei de Artă poate fi aplicată în două moduri diferite, așa încât în prima variantă să fie suficientă o singură cameră, iar în cea de-a doua variantă să fie necesare și suficiente două camere pentru supravegeherea unei galerii având forma poligonului \mathcal{P} .

3. Triangularea multimilor de puncte

- **3.1** Fie $n \geq 2$ un număr natural par fixat. Considerăm mulţimea $\mathcal{M} = \{A_0, \ldots, A_n, B_0, \ldots, B_n, C_0, \ldots, C_n, D_0, \ldots, D_n\}$, unde $A_i = (i, 0), B_i = (0, i), C_i = (i, i), D_i = (n i, i)$, pentru orice $i = 0, \ldots, n$. Determinați numărul de triunghiuri și numărul de muchii ale unei triangulări a lui \mathcal{M} .
- **3.2** Dați exemplu de mulțime de puncte din \mathbb{R}^2 care să admită o triangulare având 3 triunghiuri și 7 muchii.
- **3.3** Dați exemplu de mulțime $\mathcal{M} = \{A, B, C, D, E, F, G\}$ din \mathbb{R}^2 astfel ca \mathcal{M} să admită o triangulare ce conține 14 muchii.

4. Diagrame Voronoi

- **4.1** Determinați, folosind metoda diagramelor Voronoi, triangularea Delaunay pentru mulțimea formată din punctele $A=(3,5),\ B=(6,6),\ C=(6,4),\ D=(9,5)$ și E=(9,7).
- **4.2** Determinați numărul de semidrepte conținute în diagrama Voronoi asociată mulțimii de puncte $\mathcal{M} = \{A_0, \dots, A_5, B_0, \dots, B_5, C_0, \dots, C_5\}$, unde $A_i = (i + 1, i + 1), B_i = (-i, i)$ și $C_i = (0, i)$, pentru $i = 0, \dots, 5$.
- **4.3** Dați exemplu de mulțimi \mathcal{M}_1 și \mathcal{M}_2 din \mathbb{R}^2 , fiecare având câte 4 puncte, astfel ca, pentru fiecare dintre ele, diagrama Voronoi asociată să conțină exact 3 semidrepte, iar diagrama Voronoi asociată lui $\mathcal{M}_1 \cup \mathcal{M}_2$ să conțină exact 6 semidrepte.

4.4 Demonstrați că dacă punctele din mul
mtimea $\mathcal P$ nu sunt coliniare, diagrama Voronoi Vor
($\mathcal P$) nu poate conține drepte.