COMP4680/COMP8650: Advanced Topics in Machine Learning

Assignment #4: Applications

Due: 11:55pm on Sunday 2 October, 2022.

Submit solutions (showing all working) as a single PDF file or Jupyter notebook via Wattle. Don't forget to include your name and student ID at the top of the submitted solutions. Attribute/cite all sources.

- 1. Conjugate functions (20 marks). Recall the definition of a conjugate function is $f^*(y) = \sup_{x \in \mathbf{dom}(f)} \{x^T y f(x)\}.$
 - (a) Show $\inf_{x} f(x) = -f^{*}(0)$.
 - (b) Show $f(x) + f^*(y) \ge x^T y$ for all x, y.
 - (c) Show that $f^{**}(x) \leq f(x)$ for all x. Here $= \sup_{y \in \mathbf{dom}(f^*)} \{x^T y f^*(y)\}$.
 - (d) Compute f^* for f(x) = ||x|| for arbitrary norm $||\cdot||$.
- 2. Norm approximation and least norm (20 marks). What is the solution of the following norm approximation and least norm problems with one scalar variable $x \in \mathbb{R}$,
 - (a) minimize $||x\mathbf{1} a||_1$
 - (b) minimize $||x\mathbf{1} a||_2$
 - (c) minimize $||x\mathbf{1} a||_{\infty}$
 - (d) minimize $||x||_p$ subject to $a + x \leq 1$

for $a \in \mathbb{R}^n$ and $x \in \mathbb{R}$? Here $\mathbf{1} \in \mathbb{R}^n$ is the all-ones vector.

3. **Dual penalty function approximation problems (30 marks).** Derive the Lagrange dual for the problem

minimize
$$\sum_{i=1}^{m} \phi(r_i)$$

subject to $r = Ax - b$,

for the following penalty function $\phi: \mathbb{R} \to \mathbb{R}$. The variables are $x \in \mathbb{R}^n$ and $r \in \mathbb{R}^m$.

(a) Deadzone-linear penalty (with deadzone width $\alpha = 1$),

$$\phi(u) = \begin{cases} 0 & |u| \le 1, \\ |u| - 1 & |u| > 1. \end{cases}$$

(b) Scaled Huber penalty (with M = 1),

$$\phi(u) = \begin{cases} u^2 & |u| \le 1, \\ 2|u| - 1 & |u| > 1. \end{cases}$$

(c) Lopsided linear penalty

$$\phi(u) = \begin{cases} 2u & u \ge 0, \\ -u & u < 0. \end{cases}$$

1

Hint. First show that the dual problem for general penalty function ϕ is

$$\begin{array}{ll} \text{maximize} & b^T \nu - \sum_{i=1}^m \phi^*(-\nu_i) \\ \text{subject to} & A^T \nu = 0 \end{array}$$

Then determine the specific conjugate function ϕ^* for (a) and (b) above.

- 4. Estimation of mean and variance (30 marks). Consider a random variable $x \in \mathbb{R}$ with density p, which is normalized, i.e., has zero mean and unit variance. Now consider a random variable y = (x + b)/a obtained by an affine transformation of x, where a > 0. The random variable y has mean b/a and variance $1/a^2$. As a and b vary over \mathbb{R}_+ and \mathbb{R} , respectively, we generate a family of densities obtained from p by scaling and shifting, uniquely parametrized by mean and variance.
 - (a) Show that if p is log-concave, then finding the maximum-likelihood estimates of a and b, given samples y_1, \ldots, y_n of y, is a convex problem.
 - (b) As an example, work out an analytical solution for the maximum-likelihood estimates of a and b, assuming p is a normalized Gaussian density, $p(x) = e^{-\frac{1}{2}x^2}$. You may consider first minimizing over b and then over a.