Measuring Meter: Modeling Poetic Rhythm as Coupled Oscillators and Sequence Models

Avery Chen — avery.chen@alum.example.com

Abstract

Poetic meter is both formal constraint and embodied rhythm. We present a cross \blacksquare disciplinary method that (1) infers stress patterns with a sequence model, (2) maps those patterns to a simple physical system of coupled oscillators, and (3) derives an interpretable "meter energy" that quantifies tension and release. On two annotated corpora (Shakespeare sonnets; a mixed modern set), our BiLSTM \blacksquare CRF achieves 92% F1 for stress labeling; the oscillatory mapping correlates with expert scansion difficulty ($\rho \approx 0.61$). We show applications to meter classification, pedagogical visualization, and constraint \blacksquare aware generation.

1. Introduction

Readers feel meter as expectation—beats you can march to—and deviation—surprises that make lines sing. Literary scholars annotate stress with scansion marks; physicists describe periodic motion with oscillators. This paper connects the two: we first infer a line's stress pattern with a standard sequence model, then interpret the pattern through a physical analogy that reveals where tension accumulates and dissipates. The goal is not to reduce poetry to physics, but to borrow a language of explainable structure that students and machines can both use.

2. Related Work

Prosody modeling spans rule based scansion, HMM/CRF tagging, and neural sequence models. Meanwhile, physics metaphors for art (e.g., harmonics in music) offer conceptual tools for pedagogy. Our contribution is to pair a competitive tagger with an explicit, low parameter physical model that yields an interpretable score.

3. Data & Preprocessing

We compile two corpora: (i) Sonnets: 154 Shakespeare sonnets (~2k lines) with canonical iambic annotations; (ii) Modern: 1.2k lines from 20th/21st century poets with crowd sourced scansion cross checked by two annotators (κ=0.78). Tokens are syllabified (heuristics + CMUdict), lowercased, and enriched with POS and lexical stress priors.

4. Method — 4.1 Stress Tagger

We train a BiLSTM**E**CRF to predict syllable level stress ($y_t \in \{0,1\}$) given features (syllable, POS, word shape, lexicon prior, position in foot). The model slightly outperforms an HMM baseline and matches a transformer miniature on this scale while remaining fast and lightweight.

4. Method — 4.2 Oscillator Mapping

We model each foot as a damped harmonic oscillator with natural frequency tied to the expected metrical pattern (e.g., iamb: unstress \rightarrow stress). Let \blacksquare_t be predicted stress; define displacement $d_t = \blacksquare_t - y^*_t$, where y^*_t is the ideal stress (0/1) for the target meter. Define per \blacksquare line meter energy: $E = \Sigma_t k d_t^2 + c(d_t - d_{t-1})^2$ with spring constant k and coupling term c encouraging smooth transitions. Intuitively, E rises with substitutions (e.g., trochaic inversion), catalexis, or syncopation, and falls when the line settles into pattern.

4. Method — 4.3 Interpretability Layer

We align spikes in E with tokens to explain where and why tension appears ("spondee at black night", "feminine ending"). A simple rule set labels common phenomena for teaching.

5. Experiments

Stress Labeling: BiLSTM CRF reaches 92.1 F1 (Sonnets) and 88.3 F1 (Modern), beating HMM by +6–9 F1. Meter Classification (iambic vs trochaic vs free): logistic regression on summary features of E hits 91.5% accuracy. Pedagogy Study (pilot): 24 students used a prototype energy overlay in a scansion exercise; quiz scores improved by +14% vs. control, and confidence self reports increased.

6. Applications

Teaching: Visualize meter energy atop text; click spikes to reveal labeled phenomena. Editing: Poets can tune line endings by observing how E responds to word choice. Generation: A small language model with a penalty for high E produces more metrical lines without rigid templates.

7. Discussion & Limitations

The oscillator analogy foregrounds periodicity but abstracts away semantics and prosodic nuance (intonation, speech rate). Our corpora are small and English centric. Future work: multilingual meter, prosody aware TTS evaluation, and human in the loop authoring tools.

8. Conclusion

By combining a practical stress tagger with a physically interpretable energy score, we offer a common vocabulary for scholars, students, and models. Meter becomes something you can see and adjust, not just memorize.

References (selected)

Hayes, B. (1995). Metrical Stress Theory.

Jurafsky, D., & Martin, J. (2023). Speech and Language Processing (draft).

Ryan, K. (2019). Prosodic Weight.

Greene, E., Bodrumlu, T., & Knight, K. (2010). Automatic analysis of rhythmic poetry.

Collobert, R., et al. (2011). Natural Language Processing (almost) from Scratch.