Esercizio 1. (Angela Dosio) Let M and N be elementarily homogeneous structures of the same cardinality λ . Suppose that $M \models \exists x \, p(x) \Leftrightarrow N \models \exists x \, p(x)$ for every $p(x) \subseteq L$ such that $|x| < \lambda$ Prove that the two structures are isomorphic.

Esercizio 2. (Davide Peccioli) Let $|L| \le \lambda$. Prove that the following are equivalent

- 1. N is λ -saturated
- 2. *N* is weakly λ -saturated and weakly λ -homogeneous.

Esercizio 3. (Costanza Furone) Let $\varphi(x) \in L$. Prove that the following are equivalent

- 1. $\varphi(x)$ is equivalent (in \mathcal{U}) to some $\psi(x) \in L_{qf}$
- 2. $\varphi(a) \leftrightarrow \varphi(fa)$ for every partial embedding $f : \mathcal{U} \to \mathcal{U}$ and $a \in (\text{dom } f)^x$.

Can we use this result to infer that if all partial embeddings between models of T (any T, non necessarily complete) are elementary then T has elimination of quantifiers?

Esercizio 4. (Alessandro Martina) Let M be ω -saturated and let $k: M \to N$ be a finite Δ -morphism. Prove that the following are equivalent

- 1. $k: M \to N$ is a $\{\forall \lor\}\Delta$ -morphism
- 2. for every $c \in N^{<\omega}$ there is $b \in M^{<\omega}$ such that $k \cup \{\langle b, c \rangle\} : M \to N$ is a Δ -morphism.

Esercizio 5. (Matteo Bisi) Let T be a complete theory without finite models in a language that consists only of unary predicates. Prove that T has elimination of quantifiers. Is the claim true if T is not complete?

Esercizio 6. (Roberto Carnevale) Let T be the theory of *discrete linear orders*, that is, T extends the theory of linear orders T_{lo} with the following two of axioms

dis†.
$$\exists z \left[x < z \land \neg \exists y \ x < y < z \right]$$

dis‡. $\exists z \left[z < x \land \neg \exists y \ z < y < x \right]$.

Let Δ be the set of formulas that contains (all alphabetic variants of) the formulas

$$x <_n y := \exists^{\geq n} z (x < z < y)$$

and their negations, for every n > 0.

Prove that the theory of discrete linear orders has Δ -elimination of quantifiers. Prove that the structure $\mathbb{Q} \times \mathbb{Z}$ ordered with the lexicographic order is a saturated model of T.

Esercizio 7. (Leonardo Centazzo) Work in a monster model \mathcal{U} . Suppose that every formula $\varphi(x) \in L$ is equivalent to a some quantifier-free formula $\psi(x) \in L(\mathcal{U})$. Prove that T has positive Δ -elimination of quantifiers for Δ the set of formulas of the form $\exists y \, \forall z \, \theta(x, y, z)$ with $\theta(x, y, z) \in L_{\operatorname{at}^{\pm}}$.