

Chapter 2

Basics of Algorithm Analysis

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Five Representative Problems

Interval scheduling: n log n greedy algorithm.

Weighted interval scheduling: n log n dynamic programming algorithm.

Bipartite matching: nk max-flow based algorithm.

Independent set: NP-complete.

Competitive facility location: PSPACE-complete.

Algorithm's Performance

We can evaluate an algorithm's performance in four ways:

- Completeness: Is the algorithm guaranteed to find a solution when there is one?
- Optimality: Does the strategy find the optimal solution?
- Time complexity: How long does it take to find a solution?
- Space complexity: How much memory is needed to perform the search?

2.1 Computational Tractability

"For me, great algorithms are the poetry of computation.

Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." - Francis Sullivan

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- \blacksquare Typically takes 2^N time or worse for inputs of size N.
- Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by $c \, N^d$ steps. $c(2N)^d = c \, 2^d N^d$

Def. An algorithm is poly-time if the above scaling property holds.

choose C = 2d

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

- Although $6.02 \times 10^{23} \times N^{20}$ is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

```
In <u>mathematical optimization</u>, <u>Dantzig</u>'s simplex algorithm

Unix grep

(or simplex method) is a popular <u>algorithm</u> for <u>linear programming</u>.
```

n! for stable matching

with n men and n women

 $O(n^2)$

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years we simply record the algorithm as taking a very long time.

	n	n log ₂ n	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	×1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

2.2 Asymptotic Order of Growth

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.

Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Ex: $T(n) = 32n^2 + 17n + 32$.

- T(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
- T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Notation

Slight abuse of notation. T(n) = O(f(n)).

Not transitive:

- $f(n) = 5n^3$; $g(n) = 3n^2$
- $f(n) = O(n^3) = g(n)$
- but $f(n) \neq g(n)$.
- Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons.

- Statement doesn't "type-check."
- Use Ω for lower bounds.

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials.
$$a_0 + a_1 n + ... + a_d n^d$$
 is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Logarithms.
$$O(\log_a n) = O(\log_b n)$$
 for any constants $a, b > 0$.

can avoid specifying the base

Logarithms. For every x > 0, $\log n = O(n^x)$.

log grows slower than every polynomial

Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial

2.4 A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

```
max ← a₁
for i = 2 to n {
   if (aᵢ > max)
      max ← aᵢ
}
```

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.


```
\label{eq:continuous_posterior} \begin{split} &i=1,\ j=1\\ &\text{while (both lists are nonempty) } \{\\ &\quad \text{if } (a_i \leq b_j) \text{ append } a_i \text{ to output list and increment i}\\ &\quad \text{else} \qquad \text{append b}_j \text{ to output list and increment j}\\ &\}\\ &\text{append remainder of nonempty list to output list} \end{split}
```

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform $O(n \log n)$ comparisons.

Largest empty interval. Given n time-stamps x_1 , ..., x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

sorting takes O(nlogn)

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

take O(n)

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x_1, y_1) , ..., (x_n, y_n) , find the pair that is closest.

 $O(n^2)$ solution. Try all pairs of points.

```
min \leftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2

for i = 1 to n {

    for j = i+1 to n {

        d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2

        if (d < min)

        min \leftarrow d

    }

}
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion. \leftarrow see chapter 5

Cubic Time: O(n3)

 $O(n^4)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

 $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

assume this takes a constant time

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

 $O(n^k)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S is an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

• Check whether S is an independent set = $O(k^2)$.

Number of k element subsets =
$$O(k^2 n^k / k!) = O(n^k).$$

$$poly-time for k=17, but not practical$$

$$n = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$$

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

 $O(n^2 2^n)$ solution. Enumerate all subsets.

```
2n: total number of subsets of an n-element set

S* ← φ

foreach subset S of nodes {

check whether S is an independent set

if (S is largest independent set seen so far)

update S* ← S

}
```