Electronics Lab Course Experiment #0: Introduction and Preparational Experiment

Christopher Jörn

April 12, 2015

Contents

1	Aims of the experiment	2
2	Theoretical background 2.1 Amplitudes of AC voltage 2.2 Measuring instruments 2.2.1 Measuring unit 2.2.2 Displaying unit	3 3 3 3
3	Preperational exercises 3.1 0.2.1.A 3.2 0.2.1.B 3.3 0.2.2.C 3.3.1 0.2.2.C.1 3.3.2 0.2.2.C.2 3.4 0.3.3.E	4 4 4 4 5 5
4	Experiment set-up	6
5	Procedure	7
6	Measurement	8
7	Evaluation	9
8	Conclusion	10

1 Aims of the experiment

The aim of this experiment is to understand the tools used in the electronics lab course, which shall be archieved by determination of the ramp-up time of the oszilloscope.

2 Theoretical background

2.1 Amplitudes of AC voltage

To describe AC voltage amplitudes, the following voltages can be used:

```
peak-to-peak-voltage: U_{PP} = max\{U(t)\} - min\{U(t)\} peak-voltage (symmetric and most times also asymmetric voltage): U_P = max\{|U(t)|\} root-mean-square-amplitude-voltage: U_{RMS} = \sqrt{\langle U^2(t) \rangle}
```

2.2 Measuring instruments

Every measuring instrument is made up of two parts:

- Measuring unit
- Displaying unit

2.2.1 Measuring unit

The measuring unit measures the measurand and controlls the displaying unit. It is made up itself of another 3 subunits:

- Measuring amplifier
- Area selection network
- Measuring converter

2.2.2 Displaying unit

The displaying unit allows us to read the value of the measurement. If the measuring instrument is an analogue one, it consists of a pointer a coil which steers the pointer and a scale. If it is a digital one, it consists of a counter which -most times- gets it's input from a so called dual-slope converter¹ and a LCD.

2.3 The oszilloscope

¹it measures a measurand by the time it takes to decharge a build-in capacitor

3 Preperational exercises

3.1 0.2.1.A

$$U(t) = U_0 \cdot \sin(\omega t)$$

$$U_{PP} = 2 \cdot U_0$$

$$U_P = U_0$$

$$U_{RMS} = \frac{U_0}{\sqrt{2}}$$

3.2 0.2.1.B

For a symmetrical rectangular voltage²

$$U_{RMS} = \frac{U_0}{\sqrt{2}}$$
$$= 7.07 \,\mathrm{V}$$

3.3 0.2.2.C

3.3.1 0.2.2.C.1

To proof:
$$R_i = \frac{U_2 - U_1}{I_1 - I_2}$$

$$U_n = U_0 \frac{R_n}{R_n + R_i}$$

$$I_n = \frac{U_n}{R_n}$$

$$\Leftrightarrow I_n = U_0 \frac{1}{R_n + R_i}$$

$$U_2 - U_1 = U_0 \left(\frac{R_2}{R_2 + R_i} - \frac{R_1}{R_1 + R_i}\right)$$

$$I_1 - I_2 = U_0 \left(\frac{1}{R_1 + R_i} - \frac{1}{R_2 - R_i}\right)$$

$$\Rightarrow \frac{U_2 - U_1}{I_1 - I_2} = \frac{\left(\frac{R_2}{R_2 + R_i} - \frac{R_1}{R_1 + R_i}\right)}{\left(\frac{1}{R_1 + R_i} - \frac{1}{R_2 + R_i}\right)}$$

$$= \frac{R_2 \left(R_1 + R_i\right) - R_1 \left(R_2 + R_i\right)}{R_2 + R_i - R_1 - R_i}$$

$$= \frac{R_i \left(R_2 - R_1\right)}{R_2 - R_1}$$

$$= R_i$$

 $^{^{2}}$ In this case with $U_{P} = 10 \,\mathrm{V}$

3.3.2 0.2.2.C.2

$$U_0 = 10 \text{ V}$$

$$U_n(50 \Omega) = 5 \text{ V}$$

$$U_n = U_0 \frac{R_n}{R_n + R_i}$$

$$\Rightarrow R_i = 50 \Omega$$

3.4 0.3.3.E

To proof:
$$B\Delta t = 0.35$$

$$B = \frac{1}{2\pi\tau}$$

$$\Delta t = t(0.9U_0) - t(0.1U_0)$$
Decharging-function of a capacitor: $U(t) = U_0 \exp\left(-\frac{t}{\tau}\right)$

$$\frac{0.1}{0.9} = \exp\left(-\frac{\Delta t}{\tau}\right)$$

$$\Leftrightarrow \Delta t = -\ln\left(\frac{1}{9}\right)\tau$$

$$= 2.197\tau$$

$$\Rightarrow B\Delta t = \frac{2.197}{2\pi}$$

$$\approx 0.35$$

4 Experiment set-up

Procedure

6 Measurement

Evaluation

8 Conclusion