Notes on R - Examples

Partition

The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

Subject

partition

The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

Activity

Each subject performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) and each activity is identified with 1-6 in activity_labels.txt.

Label	Activity
1	WALKING
2	WALKING_UPSTAIRS
3	WALKING_DOWNSTAIRS
4	SITTING
5	STANDING
6	LAYING

Input Data X

Measurement records of the study are stored in X_<partition>.txt.

Features

Triaxial acceleration from the accelerometer (total acceleration), the estimated body acceleration, and triaxial Angular velocity from the gyroscope. There are 561 features as specified in the features.txt. Refer to features_info.txt and features.txt provided with the original data for specifications.

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern:

'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

tBodyAcc-XYZ tGravityAcc-XYZ tBodyAccJerk-XYZ tBodyGyro-XYZ tBodyGyroJerk-XYZ tBodyAccMag tGravityAccMag tBodyAccJerkMag tBodyGyroMag tBodyGyroJerkMag fBodyAcc-XYZ fBodyAccJerk-XYZ fBodyGyro-XYZ fBodyAccMag fBodyAccJerkMag fBodyGyroMag fBodyGyroJerkMag

The set of variables that were estimated from these signals are:

mean(): Mean value std(): Standard deviation

mad(): Median absolute deviation max(): Largest value in array min(): Smallest value in array sma(): Signal magnitude area

energy(): Energy measure. Sum of the squares divided by the number of values.

iqr(): Interquartile range entropy(): Signal entropy

arCoeff(): Autorregresion coefficients with Burg order equal to 4

correlation(): correlation coefficient between two signals

maxInds(): index of the frequency component with largest magnitude

meanFreq(): Weighted average of the frequency components to obtain a mean frequency

skewness(): skewness of the frequency domain signal kurtosis(): kurtosis of the frequency domain signal

bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.

angle(): Angle between to vectors.

Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:

gravityMean tBodyAccMean tBodyAccJerkMean tBodyGyroMean tBodyGyroJerkMean

Subject of each record of X

Subject of each row data in X_<partition> is identified with the label of the corresponding row in subject_<partition>.txt.

Activity of each record of X

Activity type of each row data in X_<partition> is identified with the label of the corresponding row in y_<partition>.txt.

Result output

Format

means.txt holds the result data as in the format below.

Subject Activity Features (multiple)

Features

The feature column names are below. Fox instance, time_bodyacc_mean_x is the mean value of the time domain signal of the body acceleration for X direction.

.....

```
time_bodyacc_mean_x
time_bodyacc_mean_y
time_bodyacc_mean_z
time_bodyacc_std_x
time_bodyacc_std_y
{\tt time\_bodyacc\_std\_z}
time_gravityacc_mean_x
time_gravityacc_mean_y
time_gravityacc_mean_z
time_gravityacc_std_x
time_gravityacc_std_y
time_gravityacc_std_z
\verb|time_bodyaccjerk_mean_x|
time_bodyaccjerk_mean_y
time_bodyaccjerk_mean_z
time_bodyaccjerk_std_x
time_bodyaccjerk_std_y
time_bodyaccjerk_std_z
time_bodygyro_mean_x
time_bodygyro_mean_y
{\tt time\_bodygyro\_mean\_z}
{\tt time\_bodygyro\_std\_x}
time_bodygyro_std_y
time_bodygyro_std_z
time_bodygyrojerk_mean_x
time_bodygyrojerk_mean_y
time_bodygyrojerk_mean_z
time_bodygyrojerk_std_x
time_bodygyrojerk_std_y
{\tt time\_bodygyrojerk\_std\_z}
time_bodyaccmag_mean
time_bodyaccmag_std
time_gravityaccmag_mean
time_gravityaccmag_std
time_bodyaccjerkmag_mean
time_bodyaccjerkmag_std
time_bodygyromag_mean
time_bodygyromag_std
time_bodygyrojerkmag_mean
time_bodygyrojerkmag_std
freq_bodyacc_mean_x
freq_bodyacc_mean_y
freq_bodyacc_mean_z
freq_bodyacc_std_x
freq_bodyacc_std_y
freq_bodyacc_std_z
freq_bodyacc_meanfreq_x
freq_bodyacc_meanfreq_y
freq_bodyacc_meanfreq_z
freq_bodyaccjerk_mean_x
freq_bodyaccjerk_mean_y
freq_bodyaccjerk_mean_z
freq_bodyaccjerk_std_x
freq_bodyaccjerk_std_y
freq_bodyaccjerk_std_z
freq_bodyaccjerk_meanfreq_x
freq_bodyaccjerk_meanfreq_y
freq_bodyaccjerk_meanfreq_z
{\tt freq\_bodygyro\_mean\_x}
freq_bodygyro_mean_y
freq_bodygyro_mean_z
{\tt freq\_bodygyro\_std\_x}
freq_bodygyro_std_y
freq_bodygyro_std_z
freq_bodygyro_meanfreq_x
freq_bodygyro_meanfreq_y
freq_bodygyro_meanfreq_z
freq_bodyaccmag_mean
```

freq_bodyaccmag_std freq_bodyaccmag_meanfreq freq_bodybodyaccjerkmag_mean freq_bodybodyaccjerkmag_std freq_bodybodyaccjerkmag_meanfreq ${\tt freq_bodybodygyromag_mean}$ freq_bodybodygyromag_std freq_bodybodygyromag_meanfreq freq_bodybodygyrojerkmag_mean

freq_bodybodygyrojerkmag_std
freq_bodybodygyrojerkmag_meanfreq