EUROPEAN PATENT APPLICATION (12)

(43) Date of publication: 05.12.2007 Bulletin 2007/49

(21) Application number: 07109066.6

(51) Int CL: C09K 11/06 (2006.01)

H01L 51/50 (2006.01) H01L 51/00 (2006.01)

(11)

H011 27/32 (2006.01) H05B 33/14 (2006.01)

FP 1 862 524 A1

(22) Date of filing: 29.05.2007

(84) Designated Contracting States: AT RE RG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SLSK TR Designated Extension States: AL BA HR MK YU

(30) Priority: 29.05.2006 KR 20060048306

(71) Applicant; Samsung SDI Co., Ltd. Suwon-si Gyeonggi-do (KR)

(72) Inventors: Hwang, Seok-Hwan Gyeonggl-do (KR)

· Kim. Young-Kook Gyeonggi-do (KR)

· Kwak, Yoon-Hvun

Gyeonagi-do (KR) · Lee, Jong-Hyuk

Gyeonggl-do (KR) · Lee, Kwan-Hee

Gyeonggi-do (KR) · Chun, Min-Seung Gyeonagi-do (KR)

(74) Representative: Hengelhaupt, Jürgen et al. Anwaltskanzlei Gulde Hengelhaupt Ziebig & Schneider

> Wallstrasse 58/59 10179 Rerlin (DE)

Organic light emitting device and flat panel display device comprising the same (54)

Provided are an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the organic layer includes a layer having at least one of the compounds having at least one carbazole group, and a flat panel display device including the organic light emitting device. The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime.

Description

5

20

25

45

[0001] This application claims the benefit of Korean Patent Application No. 10-2006-0048306, filed on May 29, 2006, in the Korean Intellectual Property Office.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The present invention relates to an organic light emitting device and a flat panel display device, and more particularly, to an organic light emitting device including an organic layer containing a phenylicarbazole-based compound that has sexcellent hole mobility between a pair of electrodes capable of generating resonance during the operation of the light emitting device, an organic light emitting device including a hole injection layer having a prodetermined range of thickness between a pair of electrodes capable of generating resonance during the operation of the light emitting device, and a flat panel display device including the organic light emitting device. The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime. Particularly, the organic light emitting device has sexellent littlene.

2. Description of the Related Art

[0003] Organic light emitting devices are self-emission displays that emit light by recombination of electrons and holes in an organic layer made of a fluorescent or phosphorescent compound when a current is applied to the organic layer. Organic light emitting devices are lighthweight, have simple constituent elements, an easy fabrication process, superior image quality, and a wide viewing angle. Furthermore, organic light emitting devices can realize dynamic images and high color purity. Organic light emitting devices also have electrical properties such as low power consumption and low driving voltage suitable for portable electronic outgoinent.

[0004] Organic light emitting devices generally have an organic layer in the form of a multi-layer structure including an electron injection layer, an emission layer, a hole transport layer, etc. Instead of including only a single emission layer to improve efficiency and to lower driving voltage. For example, Japanese Patent Laid-Open Publication No. 2002-252089 discloses an organic light emitting device including a hole transport layer.

[0005] However, the driving voltage, current density, brightness, color purity, efficiency and lifetime of a conventional organic light emitting device do not meet desired levels. Accordingly, these properties must be improved.

SUMMARY OF THE INVENTION

[0006] According to an aspect of the Invention there is provided an organic light emitting device comprising a substrate, a first electrode, a second electrode facing the first electrode and an organic layer interposed between the first electrode and the second electrode, wherein resonance is accurring between the first electrode and the second electrode difficult in the organic layer comprises a compound selected from the group consisting of compounds represented by any of formulae (1) to (2).

where X is selected from the group consisting of a substituted or unsubstituted C₁-C₃₀ alkylene group, a substituted or

unsubstituted $C_2 \cdot C_{30}$ alkenylene group, a substituted or unsubstituted $C_6 \cdot C_{30}$ anylene group, a substituted or unsubstituted $C_2 \cdot C_{30}$ heteroanylene group, and a substituted or unsubstituted $C_2 \cdot C_{30}$ heteroanylene group, and as substituted or unsubstituted $C_3 \cdot C_{30}$ heteroanylene group, as unsubstituted or unsubst

each Ar₁ is independently selected from the group consisting of substituted or unsubstituted C₆-C₃₀ aryl group and a substituted or unsubstituted C₂-C₃₀ heteroaryl group;

15

25

wherein R_4 and R_5 are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 – C_2 ₀ alkyl group, a substituted or unsubstituted C_1 – C_2 ₀ alkyd group, a substituted or unsubstituted C_2 – C_2 ₀ apploxy group, a substituted or unsubstituted C_2 – C_2 ₀ hetero fing, a substituted or unsubstituted C_3 – C_2 ₀ polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein R_4 and R_5 , can be optionally bound with one another to form a saturated or unsubstituted or infig. and

Ar₂ is a substituted or unsubstituted C₆-C₃₀ aryl group or a substituted or unsubstituted C₂-C₃₀ heteroaryl group; and

wherein R_6 , R_7 and R_8 are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 - C_{20} alkey group, a substituted or unsubstituted C_2 - C_{20} alkey group, a substituted or unsubstituted C_2 - C_{20} anyloxy group, a substituted or unsubstituted C_2 - C_{20} anyloxy group, a substituted or unsubstituted or unsubstituted C_2 - C_{20} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted or unsubstituted are unsubstitut

 Ar_3 is a substituted or unsubstituted C_6 - C_{30} any group or a substituted or unsubstituted C_7 - C_{30} heteroaryl group, each Y is selected independently from the group consisting of a substituted or unsubstituted C_7 - C_{30} alkyl group, a substituted or unsubstituted C_7 - C_{30} alkyl group, and a substituted or unsubstituted C_7 - C_{30} heteroring, and mand nare an integer from 0 to 5.

[0007] According to a preferred embodiment, in the compounds of formula (1) R₁ to R₃ are hydrogen atoms. In the compounds of formula (1) - preferably in combination with the foregoing embodiment - Ar, may be a substituted or unsubstituted C₆-C₅₀ anyl group. At last, in the compounds of formula (1) - preferably in combination with any of the two foregoing embodiments - X may be selected from the group consisting of a substituted or unsubstituted C₆-C₅₀ anylene

group and a substituted or unsubstituted C2-C30 heteroarylene group.

20

45

[0008] According to another preferred embodiment, the compounds of formula (1) may be represented by formula (1 a):

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_2
 R_4
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

where each R_1 , each R_2 , and each R_3 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 - C_{20} alloy group, a substituted or unsubstituted C_2 - C_{20} alloy, a substituted or unsubstituted C_2 - C_{20} alloy, a substituted or unsubstituted C_2 - C_{20} and ploxy group, a substituted or unsubstituted C_2 - C_{20} application, a substituted or unsubstituted C_2 - C_{20} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstituted amino group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstrated carbon ring; and

each Q_t is independently selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $C_T - C_{20}$ alkyl group, a substituted or unsubstituted $C_T - C_{20}$ alkyl group, a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or group. Preferably, R_t to R_t are hydrogen atoms. [0009] According to another preferred embodiment, the compounds of formula (1) may also be represented by formula (1 bi:

where each R_1 , each R_2 and each R_3 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1-C_{39} alkoys group, a substituted or unsubstituted C_2-C_{39} and group, a substituted or unsubstituted C_2-C_{39} and group, a substituted or unsubstituted C_2-C_{39} and group, and substituted or unsubstituted C_2-C_{39} hetero fing, a substituted or unsubstituted C_2-C_{39} hetero fing, a substituted or unsubstituted C_2-C_{39} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted arming group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsaturated carbon ring, and

each \mathbf{Q}_2 is independently selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $\mathbf{C}_1\mathbf{C}_{20}$ alley group, a substituted or unsubstituted $\mathbf{C}_2\mathbf{C}_{20}$ heteror ing, and a substituted or unsubstituted amino group. Preferably, \mathbf{R}_1 to \mathbf{R}_2 are hydrogen atoms.

[0010] According to a preferred embodiment, in the compounds of formula (2) R₄ and R₅ are hydrogen atoms. In the compounds of formula (2) - preferably in combination with the foregoing embodiment - Ar_2 is a substituted or unsubstituted C₆-C₃₀ aryl group.

[0011] According to another preferred embodiment, the compounds of formula (2) may be represented by formula (2a):

5

10

15

20

45

$$R_4$$
 N N R_5 R_6

where R4 and R5 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C₁-C₃₀ alkyl group, a substituted or unsubstituted C₁-C₃₀ alkoxy group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C6-C30 aryloxy group, a substituted or unsubstituted C2-C30 hetero ring, a substituted or unsubstituted C5-C30 polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein R4, and R5 can be optionally bound with one another to form a saturated or unsaturated carbon ring; and

 Q_3 is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 hetero ring, and a substituted or unsubstituted amino group. Preferably, R4 and R5 are hydrogen atoms. [0012] According to another preferred embodiment, the compounds of formula (3) may be represented by formula (3c):

$$\begin{array}{c|c} R_6 & R_7 & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}$$

where Rg is selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C₁-C₃₀ alkoxy group, a substituted or unsubstituted C₆-C₃₀ aryl group, a substituted or unsubstituted C8-C30 aryloxy group, a substituted or unsubstituted C2-C30 hetero ring, a substituted or unsubstituted C₅-C₃₀ polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group. [0013] According to a preferred embodiment, in the compounds of formula (3) or formula (3c) R₈ or R₉ is a hydrogen atom. In the compounds of formula (3) or formula (3c) - preferably in combination with the foregoing embodiment - Ar₃ may be a substituted or unsubstituted C₆-C₃₀ aryl group. In the compounds of formula (3) or formula (3c) - preferably in combination with any of the two foregoing embodiments - Re and Ry may each be a methyl group or a phenyl group.

At last, in the compounds of formula (3) or formula (3c) - preferably in combination with any of the three foregoing embodiments - mis 1, n is zero and Y is a phenyl group connected to the N atom and the fluorene moiety in positions 1 and 4. [0014] According to another preferred embodiment, the compounds of formula (3) may be represented by formula (3a):

$$R_{6}$$
 R_{7}
 R_{6}
 R_{7}
 R_{8}
 R_{8}
 R_{7}
 R_{8}
 R_{8}
 R_{7}
 R_{8}
 R_{8}
 R_{7}
 R_{8}

15

45

where R_6 , R_7 and R_6 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted $C_1 - C_{30}$ alkey group, a substituted or unsubstituted $C_2 - C_{30}$ and $C_3 - C_{30}$ are condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein two or more of $C_3 - C_3$ and $C_3 - C_3$ are polycosity bound with one another to form a saturated or unsubstituted or infig. and

 Q_4 is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C_1 — C_2 0 alkyl group, a substituted or unsubstituted C_2 — C_3 0 heteroring, and a substituted or unsubstituted armino group.

[0015] According to another preferred embodiment, the compounds of formula (3) may be represented by formula (3d):

$$R_6$$
 R_7 Q_4 Q_4 Q_4

where R_0 , R_7 and R_0 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted G_1 – G_{20} allyly group, a substituted or unsubstituted G_2 – G_{20} allyoy group, a substituted or unsubstituted G_2 – G_{20} anyloxy group, a substituted or unsubstituted G_2 – G_{20} polycyclic condensed ring, a substituted or unsubstituted G_2 – G_{20} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted or unsubstituted are two more of R_0 , R_7 and R_0 can be optionally bound with one another to form a saturated or unsubstrated carbon ring; and

 Q_4 is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C_1 – C_{30} alkyl group, a substituted or unsubstituted C_2 – C_{30} hetero ring, an a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted are a substituted or unsubstituted are not group. Preferably, R_g is a hydrogen atom and/or R_g and R_7 may each be a methyl group or a phenyl group.

[0016] Preferably, one of the first electrode and the second electrode is being a reflective electrode and the other is being a semitransparent or transparent electrode. The first electrode may be formed on the substrate and may be the reflective electrode; the second electrode may be the semitransparent or transparent electrode in the organic light emitting device of one of the foregoing embodiments, the organic layer comprising said at least one compound selected from the group of compounds represented by formulae (1) to (3) my be one of a hole injection layer, a hole transport layer, and a single layer having hole injecting and transporting properties. Preferably, the organic layer comprising said at least one compound selected from the group of compounds represented by formulae (1) to (3) is a hole injection layer. [0017] Where the organic light emitting device further comprises an emission layer having a red emission region, the thickness of a region of the hole injection layer formed under the red emission region is preferably in the range of 1,600 to 2,200 Å. Where the organic light emitting device further comprises an emission layer having a green emission region, the thickness of a region of the hole injection layer formed under the green emission region is preferably in the range of 1,400 to 1,800 Å. Where the organic light emitting device further comprises an emission layer having a blue emission region, the thickness of a region of the hole injection layer formed under the blue emission region is preferably in the range of 1,000 to 1,400 Å. Where the organic light emitting device further comprises an emission layer having a red emission region, a blue emission region and a red emission region, the hole injection layer comprises a first region formed under the red emission region, a second region formed under the green emission region and a third region formed under the blue emission region. Preferably, the thickness of the first region is in the range of 1,600 to 2,200 Å, the thickness of the second region is in the range of 1,400 to 1,800 Å, and the thickness of the third region is in the range of 1,000 to 1,400 Å.

[0018] The organic light enritting device may further comprise a hole transport layer. Where the organic light enritting device further comprises an emission layer having a red emission region, the total thickness of a region of the hole transport layer and the hole injection layer formed under the red emission region is preferably in the range of 2,000 to 2,400 A, especially in the range of 1,800 to 2,200 A. Where the organic light emitting device further comprises an emission layer having a green emission region, the total thickness of a region of the hole tamport layer and the hole injection layer formed under the green emission region is preferably in the range of 1,600 to 2,000 A, especially thin the range of 1,400 to 1,800 A. Where the organic light emitting device further comprises an emission layer having a titue emission region, the total thickness of a region of the hole transport layer and the hole injection layer formed under the blue emission region is preferably in the range of 1,000 to 1,000 A, especially in the range of 1,000 to 1,000 A. especially in the range of 1,00

[0019] It is also provided a method for manufacturing a compound selected from the group consisting of compounds represented by any of formulae (1) to (3):

where X is selected from the group consisting of a substituted or unsubstituted C_1 - C_{20} allylone group, a substituted or unsubstituted C_2 - C_{20} allylone group, as substituted or unsubstituted C_2 - C_{20} , hetero ring, each R_1 , each R_2 and each R_2 , each R_2 and each R_3 , is independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted R_2 - R_2 all R_3 is independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_2 - C_{20} alloy, group, a substituted or unsubstituted C_3 - C_{20} and group, a substituted or unsubstituted C_3 - C_{20} and group, a substituted or unsubstituted aring group, a sylone group, and a substituted or unsubstituted aring group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstrated corton ring, and

Arg is independently selected from the group consisting of substituted or unsubstituted C_6 - C_{30} aryl group and a substituted or unsubstituted C_{7} - C_{30} heteroaryl group;

$$R_4 \longrightarrow N \longrightarrow R_5 \qquad (2)$$

wherein R₄ and R₅ are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted G₁-G₂₀ alkoy group, a substituted or unsubstituted G₂-G₂₀ alkoy group, a substituted or unsubstituted G₂-G₂₀ anylory group, a substituted or unsubstituted (G₂-G₃₀ anylory group, a substituted or unsubstituted (G₂-G₃₀ anylory group, a substituted or unsubstituted (G₂-G₃₀ plory) group, a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted amino group, wherein R₄ and R₅, can be optionally bound with one another to form a saturated or unsubstituted or u

Ar₂ is a substituted or unsubstituted C₆-C₃₀ aryl group or a substituted or unsubstituted C₂-C₃₀ heteroaryl group; and

wherein R_θ , R_7 and R_9 are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 - C_{29} alkey group, a substituted or unsubstituted C_7 - C_{39} alkey group, a substituted or unsubstituted C_7 - C_{39} and/or group, a substituted or unsubstituted C_7 - C_{39} and/or group, a substituted of C_7 - C_{39} and/or group, a substituted of C_7 - C_{39} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein R_9 and R_7 can be optionally bound with one another to form a saturated or unsubstituted carbon ring,

 Ar_3 is a substituted or unsubstituted C_FC_{20} anyl group or a substituted or unsubstituted C_FC_{20} heteroaryl group, each Y is selected independently from the group consisting of a substituted or unsubstituted C_FC_{20} alkyl group, a substituted or unsubstituted C_FC_{20} anyl group, and mand nare an integer from 0 to 5, the method including the step of:

coupling a compound of formula B

10

25

50

ξ

via a palladium catalyzed coupling reaction with a primary or secondary amine according to any one of formulae (1c), (2b) and (3b)

$$Ar_1 X Ar_1$$
 (1c)

[0020] Preferably, the compound of formula B is synthesized according to the following reaction scheme:

[0021] It is also provided an intermediate product according to compound of formula B:

10

15

20

25

30

40

[0022] The present invention provides an improved organic light emitting device. The organic light emitting device includes an organic layer containing a compound that has excellent hole mobility between a pair of electrodes capable of generating resonance during the operation of the light emitting device. The organic light emitting device may include a hole ligitical layer having a predetermined range of thickness between a pair of electrodes capable of generating resonance during the operation of the light emitting device. The invention provides also a flat panel display device including the above mentioned organic laith emitting device.

[0023] According to another aspect of the present invention, there is provided an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer having a red emission region and a hole injection layer having a region formed under the red emission region, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semittansparent or transparent electrode, and wherein the thickness of the region of the hole injection layer formed under the red emission region is in the range of 1,000 to 2,200 Å.

[0024] According to another aspect of the present invention, there is provided an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer having a green emission region and a hole injection layer having a region formed under the green emission region, wherein one of the first electrode and the second electrode is a reflective

electrode and the other is a semitransparent or transparent electrode, and wherein the thickness of the region of the hole injection layer formed under the green emission region is in the range of 1,400 to 1,800 Å.

[0025] According to another aspect of the present invention, there is provided an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer having a blue emission region and a hole injection layer having a region formed under the blue emission region, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the thickness of the region of the hole injection layer formed under the blue emission region is in the range of 1,000 to 1,400 A.

[0026] The organic light emitting device according to the invention may be used in a flat panel display device, wherein the first electrode of the organic light emitting device is electrically connected to a source electrode or a drain electrode of a thin film transistor.

[0027] The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime. Particularly, the organic light emitting device has excellent lifetime.

15 BRIEF DESCRIPTION OF THE DRAWINGS

25

30

[0028] A more complete appreciation of the present invention, and many of the above and other features and advantages of the present invention, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:

FIG. 1 schematically illustrates a structure of an organic light emitting device according to an embodiment of the present invention;

FIG. 2 schematically illustrates an organic light emitting device including an emission layer comprised of a red emission region, a green emission region, and blue emission region according to an embodiment of the present invention; and

FIGS. 3 through 7 are graphs illustrating current efficiencies, luminance, and driving voltages of an organic light emitting device according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0029] Hereinafter, the present invention will now be described more fully with neference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be constructed as being limited to the embodiments set forth herein; rather; these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to these skilled in the art.

[0030] An organic light emitting device according to an embodiment of the present invention includes a substrate, a first electrode, a second electrode and an organic layer. The organic layer is disposed between the first electrode and the second electrode and includes an emission layer. The organic layer can emit red, green, and/or blue light according to a metarial used to form the emission layer.

[0031] One of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode. Accordingly, resonance may occur between the first electrode and the second electrode during the operation of the light emitting device. Thus, the light generated in the organic layer between the first electrode and the second electrode resonates between the first electrode and the second electrode during the operation of the light emitting device, and the light is extracted from of the organic light emitting device. Thus, luminance of the light and light emitting efficiency can be enhanced.

[0032] The first electrode may be formed on the substrate. For example, the first electrode may be a reflective electrode, and the second electrode may be a sentitransparent of transparent electrode. Accordingly, the light generated in organic layer between the first electrode and the second electrode resonates between the first electrode and the second electrode during the operation of the light emitting device, and the light is extracted through the second electrode, that is, in a direction away from the substrate.

[0033] The organic layer of the organic light emitting device according to the current embodiment of the present so invention includes a phenylcarbazole-based compound. In particular, the organic layer may include a layer including at least one of the compounds represented by formulae (1) to (3) below.

30

40

50

where N is selected from the group consisting of a substituted or unsubstituted C_1 - C_{20} alkylene group, a substituted or unsubstituted C_2 - C_{30} alkenylene group, a substituted or unsubstituted C_2 - C_{30} heteroarylene group, as substituted or unsubstituted C_2 - C_{30} heteroarylene group, as substituted or unsubstituted C_2 - C_{30} hetero ring, each R_1 , each R_2 and each R_3 is independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 - C_{30} alkylengroup, a substituted or unsubstituted or C_2 - C_3 alkylengroup, as substituted or unsubstituted C_2 - C_3 alkylengroup, as substituted or unsubstituted C_2 - C_3 alkylengroup, as a substituted or unsubstituted o

each Ar, is independently selected from the group consisting of substituted or unsubstituted C₆-C₃₀ aryl group and a substituted or unsubstituted C₂-C₃₀ heteroaryl group;

wherein R_4 and R_5 are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 - C_2 alkey group, a substituted or unsubstituted C_2 - C_3 and group, a substituted or unsubstituted C_3 - C_3 and group, a substituted or unsubstituted C_3 - C_3 and group, as substituted or unsubstituted C_3 - C_3 hetero fing, a substituted or unsubstituted C_3 - C_3 polycyclic condensed fing, a hydroxy group, a cyano group, and a substituted or unsubstituted C_3 - C_3 polycyclic condensed fing, a hydroxy group, a cyano group, and a substituted or unsubstituted armino group, wherein R_4 and R_5 -can be optionally bound with one another to form a saturated or unsaturated carbon fing, and

Ar₂ is a substituted or unsubstituted C₆-C₃₀ aryl group or a substituted or unsubstituted C₂-C₃₀ heteroaryl group; and

wherein R_6 , R_7 and R_8 are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1C_{20} alloy group, a substituted or unsubstituted C_2C_{20} alloy group, a substituted or unsubstituted C_2C_{20} arilyon group, as unsupersuped or unsubstituted C_2C_{20} period group, and a substituted or unsubstituted or unsubstituted C_2C_{20} period group, and a substituted or unsubstituted amino group, wherein R_6 and R_7 can be optionally bound with one another to form a saturated or unsubstituted amino group, wherein R_6 and R_7 can be optionally bound with one another to form a saturated or unsubstituted group.

 Ar_3 is a substituted or unsubstituted C_6 - C_{30} any group or a substituted or unsubstituted C_2 - C_{30} heteroaryl group, each Y is selected independently from the group consisting of a substituted or unsubstituted C_2 - C_{30} allyl group, a substituted or unsubstituted C_2 - C_{30} hetero ring, and man and are an integer from 0 to 5.

The compounds represented by formula (1), (2), and (3) have a stiff carbazole group, and thus the glass transition temperature or the melting point of the compounds increases. During the operation of the organic light entiting device according to the current embodiment of the present invention, the compounds are highly resistant to heat generated in the organic layer, between the organic layers, or between the organic layers and the electrode according to Joulés Law, and are stable in a high temperature environment. Thus, when the compounds are used to form the organic layer of the organic layer of the present embodiment, long lifetime and excellent luminance can be obtained.

[0034] In particular, the compounds represented by formulae (1) and (2) which have two or more carbazole groups may provide long lifetime and excellent brightness.

[0035] In addition, the organic light emitting device of the present embodiment including an organic layer containing a compound represented by formula (1), (2) or (3) has excellent stability during storage and operation. This feature can be explained by, for example, but not limited to, a high Tg (glass transition temperature) of the compound represented by formula (1), (2) or (3).

[0036] The compound represented by formula (1) may include a compound represented by formula (1a) below, but is not limited thereto.

Formula (1a)

25

45

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_5
 R_7
 R_7
 R_7

[0037] Here, each R₁, each R₂, and each R₃ are each independently one of a hydrogen atom, a substituted or unsubstituted C₁-C₃₀ alkey group, a substituted or unsubstituted C₂-C₃₀ any group, a substituted or unsubstituted C₂-C₃₀ any group, a substituted or unsubstituted C₂-C₃₀ any group, a substituted or unsubstituted or unsubstituted c₂-C₃₀ polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted c₂-C₃₀ polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein two or more of R₁, R₂ and R₃ can be optionally bound with one another to form a saturated or unsufurated carbon ring; and

each Q_1 is independently one of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C_TC_{30} allyl group, a substituted or unsubstituted C_TC_{30} and group, a substituted or unsubstituted C_TC_{30} hetero ring, and a substituted or unsubstituted amino group.

[0038] The compound represented by formula (1) may include a compound represented by formula (1 b) below, but is not limited thereto.

Formula (1b)

R₁ R₃ R₃ R₃ R₄ R₂ R₂

[0039] Here, each R_1 , each R_2 , and each R_3 are each independently one of a hydrogen atom, a substituted consultativitied $C_1 \cdot C_{20}$ alkyl group, a substituted or unsubstituted $C_2 \cdot C_{30}$ and $C_3 \cdot C_3 \cdot C_3$ and $C_3 \cdot C_3 \cdot$

each Q_2 is one selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $C_1 - C_{30}$ airly group, a substituted or unsubstituted $C_2 - C_{30}$ any group, a substituted or unsubstituted or $C_2 - C_{30}$ thetero ring, and a substituted or unsubstituted amino group.

[0040] The compound represented by formula (2) may include a compound represented by formula (2a) below, but is not limited thereto.

Formula (2a)

20

35

50

[0041] Here, R_4 and R_5 are each independently one of a hydrogen atom, a substituted or unsubstituted C_1 - C_{20} alkoy, group, a substituted or unsubstituted C_2 - C_{20} and C_2 - C_2 - C_3

wherein R_a , and R_c can be optionally bound with one another to form a saturated or unsaturated carbon ring; and Q_b is one of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C_pC_{30} alkyl group, a substituted or unsubstituted C_pC_{30} alkyl group, a substituted or unsubstituted C_pC_{30} hetero ring, and a substituted or unsubstituted C_pC_{30} hetero ring, and a substituted or unsubstituted and C_pC_{30} hetero ring.

[0042] The compounds of formula (3) may be represented by formula (3c):

10

15

25

30

35

40

where R_0 is selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 - C_{30} alkyl group, a substituted or unsubstituted C_1 - C_{30} alkyl group, a substituted or unsubstituted C_2 - C_{30} apinoty group, a substituted or unsubstituted C_2 - C_{30} apinoty group, a substituted or unsubstituted C_2 - C_{30} apinoty group, a substituted or unsubstituted C_2 - C_{30} perior group, a substituted or unsubstituted C_2 - C_{30} perior group. The compound represented by formula (3) may include a compound represented by formula (3a) or formula (3b) below, but is not limited thereto.

Formula (3a)

[0044] Here, R_e , R_γ and R_g are each independently one of a hydrogen atom, a substituted or unsubstituted $C_r C_{30}$ airly group, a substituted or unsubstituted $C_r C_{30}$ arrows group, a substituted or unsubstituted $C_r C_{30}$ arrows group, a substituted or unsubstituted $C_r C_{30}$ polyr group, a substituted or unsubstituted $C_r C_{30}$ hetero ring, a substituted or unsubstituted $C_r C_{30}$ polyroyic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein two or more of R_g , R_γ and R_g can be optionally bound with one another to form a saturated or unsubstrated carbon ring; and

 Q_4 is one of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C_1 - C_{30} alkyl group, a substituted or unsubstituted C_2 - C_{30} hetero ring, and a substituted or unsubstituted are arrived an anisotropy.

Formula (3d)

5

10

15

20

$$R_{6}$$
 R_{7}
 R_{9}
 R_{9}
 R_{10}
 R_{10

where R_6 , R_7 and R_9 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 – C_{29} alkoy, group, a substituted or unsubstituted C_2 – C_{20} and group, a substituted or unsubstituted C_2 – C_{20} and group, a substituted or unsubstituted C_2 – C_{20} and group, as unsubstituted or unsu

 Q_4 is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $C_1 C_{30}$ alkyl group, a substituted or unsubstituted $C_2 C_{30}$ hetero ring, and a substituted or unsubstituted amino group. Preferably, R_9 is a hydrogen atom and/or R_9 and R_7 may each be a methyl orgou or a phenyl droup.

[0045] Hereinafter, examples of the groups used to form the compounds represented by the above formulae will now be described in more detail.

[0046] Examples of the unsubstituted $C_1 - C_{30}$ alloy group, may include a methyl group, an eithyl group, a propyl group, an iso-anyl group, and a hexyl group, at least one hydrogen atom in the unsubstituted $C_1 - C_{30}$ alloy group may be substituted with a halogen atom, a $C_1 - C_{30}$ alloy group, a $C_1 - C_{30}$ alloy group, a group, a low alkylamino group, a hydrozy group, a nitro group, a cyano group, a marino group, a marino group, a marino group, a walkylamino group, a carboxy group, a sathoxy group, a subrox group, a s

[0047] Examples of the unsubstituted C₁-C₃₀ alkoxy group may include a methoxy group, an ethoxy group, a propoxy group, an iso-butyloxy group, as esc-butyloxy group, a pentyloxy group, an iso-amyloxy group, and a hexyloxy group. At least one hydrogen atom in the unsubstituted C₁-C₃₀ alkoxy group may be substituted with the groups described above with reference to the C₁-C₃₀ alky group.

[0048] The $C_6\cdot C_{30}$ aryl group indicates a carbocyclic aromatic system containing one or more rings, wherein such rings may be bonded together in a pendent manner or may be fused. The term "aryl group" may include an aromatic system such as a phenyl group, a naphthyl group, and a tetrahydronaphthyl group. At least one hydrogen atom in the $C_6\cdot C_{30}$ aryl group may be substituted with the groups described above with reference to the $C_7\cdot C_{30}$ alkyl group.

[0049] The C₂C₃₀ heteroaryl group indicates a monovalent monocyclic ring compound having 2 to 30 membered rings including C and 1 to 3 hetero atoms selected from the group consisting of N, O, P, and S, wherein such rings may be bunded together in a pendent manner or may be fused. Examples of the C₂C₃₀ heteroaryl group may include a pyridyl group, a thienty group, and a furyl group. At least one hydrogen atom in the C₂C₃₀ heteroaryl group may be substitted with the groupe described above with reference to the C₁C₃₀ alight group.

[0050] A_1 , A_2 and A_5 may be preferably a phany group, a C_1 - C_{10} alkoybenyl group, a C_2 - C_{10} alkoyphenyl group, a halophenyl group, a cyanophenyl group, a dicyanophenyl group, an o_2 - m_2 - m_2 - m_3 - m_4 - m_2 - m_4 -m

group, an indenty (group, a naphthyl group, a C_1 – C_1 ally/inaphthyl group, a C_1 – C_2 - C_3 alloxynaphthyl group, a habraphthyl group, a bybenylenyl group, a C_1 – C_1 - C_3 alloxy biphenylenyl group, a nathracenyl group, an azulenyl group, a heptalenyl group, an acenaphthyl group, a phenaelmyl group, a fluorenyl group, an anthracenyl group, an embhylanthyl group, a phenaelmyl group, a therealmyl group, a pyrenyl group, a chyenyl group, a pyrenyl group, a chyenyl group, a chyenyl group, a pyrenyl group, a chyenyl group, a pentaphenyl group, a pentaphenyl group, a pentaphenyl group, a pentaphenyl group, a chyenyl group, a pyrenyl group, a byrenyl group, a byrenyl group, a byrenyl group, a byrenyl group, a da a bhantenyl group, a pyrenyl group, a pyrenyl group, and a thianthenyl group, a pyrenyl group, a da a bhantenyl group, a pyrenyl group, a da a bhantenyl group, a pyrenyl group, a da a bhantenyl group, a gyrenyl group, a da a bhantenyl group, a pyrenyl group, a pyrenyl group, a da a bhantenyl group, a gyrenyl gyrenyl gyrenyl gyroup, a da a bhantenyl group, a gyrenyl gyrenyl gyroup, a gyrenyl gyren

[0051] More particularly, preferred compounds represented by formula (1), (2) or (3) are each independently one of compounds 1 to 62 below.

15

20

35

50

[0052] The compound represented by formula (1), (2) and (3c) may be synthesized by coupling a compound of formula B

via a palladium catalyzed coupling reaction with a primary or secondary amine according to any one of formulae (1c), (2b) and (3b)

$$Ar_1 X Ar_1$$
 (1c)

20 [0053] The Intermediate B may be synthesized according to the following reaction scheme:

[0054] The compound represented by formula (1) may be synthesized through a reaction between a phenylcarbazole (B') with a diamine (C') according to Reaction Scheme 1 below.

Reaction Scheme 1

5
$$HN = X - NH + R_3 + R_2 + R_3 + R_3 + R_4 + R_5 +$$

[0055] Here, X, R_1 , R_2 , R_3 , and Ar_1 are already described above and Z can be a halogene, particularly lodine (I). The reaction can be performed in the presence of $Pol_2(cba)_3$ (dba = dibenzylideneactione), sodium tert-butoxide and tri(terbut)yhphosphine and at a reaction temperatures in the range of 50 to 150.

[0056] The layer which is included in the organic layer and which includes at least one of the compounds represented by formula (1), (2) or (3) may be a hole injection layer, a hole transport layer, or a single layer having hole injecting and transporting properties.

[0057] For example, the layer included in the organic layer and including at least one of the compounds represented by formula (1), (2) or (3) may be a hole injection layer.

[068] The thickness of the hole injection layer formed under the red emission layer may be in the range of 1,600 to 2,200 A, and preferably 1,900 to 2,200 A. When the thickness of the hole hjection layer formed under the red emission region is within the ranges described above, hole injecting and transporting properties suitable for causing resonance in a red emission layer of the organic layer can be obtained, and thus color purity, efficiency of the device, and a driving voltage of the device may be improved. In certain embodiments, the thickness of the hole injection layer formed under the red emission layer may be 1800, 1820, 1640, 1680, 1880, 1700, 1720, 1740, 1780, 1800, 1820, 1940, 1961, 1880, 1902, 1940, 1961, 1980, 2002, 2040, 2600, 2009, 2009, 2100, 2120, 2140, 2160, 2180, or 2200 A. In emembodiments, the thickness of the hole injection layer formed under the red emission layer may be within a range defined by two of the foregoint thicknesses.

[0059] The thickness of the hole injection layer formed under the green emission region may be in the range of 1,400 to 1,800 A, and preferably 1,800 to 1,800 A. When the thickness of the hole injection layer is within the range ofscribed above, hole injecting and transporting properties suitable for causing resonance in a green emission layer of the organic layer can be obtained, and thus color purity, efficiency of the device, and the driving voltage of the device may be improved. In certain embodiments, the thickness of the hole injection layer formed under the green emission layer may be judged to 1,420, 1440, 1460, 1480, 1500, 1520, 1540, 1560, 1580, 1600, 1620, 1640, 1660, 1680, 1700, 1720, 1740, 1760, 1780, or 1800 Å. In some embodiments, the thickness of the hole injection layer formed under the green emission layer may be within a range defined by two of the foregoing thicknesses.

[0000] The thickness of the hole injection layer formed under the blue emission region may be in the range of 1,000 to 1,400 Å, and preferably 1,100 to 1,300 Å. When the thickness of the hole injection layer formed under the blue emission region is within the ranges described above, hole injecting and transporting properties suitable for causing resonance in a blue emission layer of the organic layer can be obtained, and thus color purity, efficiency of the device, and the driving voltage of the device may be improved. In certain embodiments, the thickness of the hole injection layer formed under the blue emission layer may be, 1000, 1020, 1040, 1060, 1080, 1100, 1120, 1140, 1160, 1180, 1200, 1220, 1240, 1280, 1300, 1320, 1340, 1360, 1380, or 1400 Å. In some embodiments, the thickness of the hole injection layer formed under the blue emission layer may be within a range defined by two of the foregoing thicknesses.

[0061] The organic layer may further include a hole transport layer.

[0062] The total thickness of a region of the hole injection layer formed under a red emission region and the hole transport layer may be in the range of 2,000 to 2,400 Å, and preferably 2,100 to 2,300 Å. The thickness of the region of the hole injection layer formed under a red emission region may be in the range of 1,600 to 2,200 Å, and preferably 1,900 to 2,200 Å. When the total thickness of the region of the hole injection layer formed under the red emission region and the hole transport layer and/or the thickness of the region of the hole injection layer formed under the red emission region are within the ranges described above, hole injecting and transporting properties suitable for causing resonance in the red emission layer can be obtained, and thus color purity, difficency of the device, and the driving voltage of the

device may be improved. In certain embodiments, total thickness of a region of the hole injection layer formed under the red emission region and the hole transport layer may be, 2000, 2020, 2040, 2060, 2080, 2100, 2120, 2140, 2160, 2180, 2200, 2202, 2260, 2260, 2260, 2300, 2320, 2340, 2360, 2380, 02400 Å. In some embodiments, the total thickness of the hole injection layer and the hole transport layer formed under the red emission layer may be within a range defined

by two of the foregoing thicknesses.

[0633] The total thickness of a region of the hole injection layer formed under a green emission region and the hole transport layer may be in the range of 1,600 to 2,000 Å, and preferably 1,700 to 1,900 Å. The thickness of the region of the hole injection layer formed under the green emission region may be in the range of 1,400 to 1,800 Å, and preferably 1,500 to 1,800 Å. When the total thickness of the region of the hole injection layer formed under the green emission region and the hole transport layer and/or the titickness of the region of the hole injection layer formed under the green emission region are within the ranges described above, hole injecting and transporting properties suilable for causing resonance in the green emission layer can be obtained, and thus cotor purity, efficiency of the device, and a driving voltage of the device may be improved. In cartain embodiments, total thickness of a region of the hole injection layer formed under the green emission region and the hole transport layer may be, 1600, 1620, 1640, 1660, 1680, 1700, 1720, 1740, 1802, 1840, 1861, 1881, 1900, 1920, 1940, 1960, 1990, or 2000 Å. In some embodiments, the total thickness of the hole injection layer may be within a range defined by two of the foregoing hicknesses.

[004] The total thickness of a region of the hole injection layer formed under a but emission region and the hole transport layer may be in the range of 1,200 to 1,800 Å, and preferably 1,300 to 1,500 Å. The thickness of the region of the hole injection layer formed under the but emission region may be in the range of 1,000 to 1,400 Å, and preferably 1,100 to 1,300 Å. When the total thickness of the region of the hole injection layer formed under the but emission region and the hole transport layer and/or the thickness of the region of the hole injection layer formed under the but emission region are within the ranges described above, hole injection and transport properties suitable for causing resonance in the blue emission layer can be obtained, and thus color purity, efficiency of the device, and the driving vottage of the device may be improved. In certain embodiments, total thickness of a region of the hole injection layer formed under the blue emission region and the hole transport layer may be, 1200, 1220, 1240, 1260, 1280, 1300, 1300, 1400, 1420, 1440, 1460, 1480, 1500, 1520, 1540, 1560, 1580, or 1500 Å. In some embodiments, the total thickness of the hole injection layer and the hole transport layer formed under the blue emission layer may be within a range.

- defined by two of the foregoing thicknesses. [0065] An organic light entiting device according to an embodiment of the present invention includes: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and comprising an emission layer having a rad emission region and a hole injection layer having a region formed under the rad emission region, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the thickness of the region of the hole injection layer formed under the rad emission region is in the range of 1,600 to 2,200 A, and preferably 1,900 to 2,200 to 2,200 A.
- [0066] When the thickness of the region of the hole injection layer formed under the red emission region is within the ranges described above, hole injecting and transporting properties suitable for causing resonance in a red emission layer can be obtained, and thus color purity, efficiency of the device, and the driving voltage of the device may be improved.

 [0067] An organic light emitting device according to an embodiment of the present invention includes: a substrate; and the properties of the present invention includes: a substrate; and the properties of the present invention includes: a substrate; and the properties of the present invention includes: a substrate; and the properties of the present invention includes: a substrate; and the properties of the present invention includes: a substrate; and the properties of the properties of the present invention includes: a substrate; and the properties of the proper
- first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and comprising an emission layer having a green emission region and a hole injection layer having a region formed under the green emission region, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the thickness of the region of the hole injection layer formed under the green emission region is in the range of 1,400 to 1,800, A, and preferably 1,500 to 1,800 A.
- [0068] When the thickness of the region of the hole injection layer formed under the green emission region is within the ranges described above, hole injecting and transporting properties suitable for causing resonance in the green emission layer can be obtained, and thus color purity, efficiency of the device, the driving voltage of the device may be improved.
- [0069] An organic light emitting device according to an embodiment of the present invention includes: a substrate; a 50 first electrode; a second electrode, and an organic layer interpose of between the first electrode and the second electrode and comprising an emission layer having a blue emission region and a hote injection layer having a region formed under the blue emission region, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the thickness of the region of the hote injection layer formed under the blue emission region is in the range of 1,000 to 1,400 Å, and preferably 1,100 to 1,300 Å.
- 55 [0070] When the thickness of the region of the hole injection layer formed under the blue emission region is within the ranges described above, hole injecting and transporting properties suitable for causing resonance in the blue emission layer can be obtained, and thus color purity, efficiency of the device, and the driving voltage of the device may be improved. [0071] Resonance can occur between the first electrode and the second dejectore of an organic light emitting device

according to an embodiment of the present invention during the operation thereof. The hole injection layer of the organic layer disposed between the first electrode and the second electrod may have a specific thickness according to the color of the light emitted by the organic layer described above to obtain excellent properties such as driving voltage, current density, unminance, color purity, efficiency and lifetime of the organic light mentiting device.

5 (0072) In an organic light amilting device according to an embodiment of the present invention, the first electrode can be formed on the substant. The first electrode may be a reflective electrode and the second electrode may be a semitransparent or transparent electrode. Thus, resonance may occur between the first electrode to during the operation of the device. Accordingly, the light generated in the organic algor between the first electrode and the second electrode during the operation of the organic light emitting device, and the light is extracted through the second electrode chirally the operation of the the substants.

[0073] The organic layer of the organic light emitting device may include an emission layer and/or a hole injection layer. The organic layer may further include at least one of a hole transport layer, an electron blocking layer, a hole blocking layer, an electron insection layer. Thus, for example, an organic light emitting device according to an embodiment of the present invention may have a structure of substrate/first electrode/hole injection layer (HIL)/hole blocking layer (HIL)/electron transport layer (ETL)/electron injection layer (ETL)/electron injection).

10074] Hereinafter, Examples and methods of manufacturing an organic light emitting device according to an embodiment of the present invention will be described with reference to the organic light emitting device illustrated in FIGS. 1 and 2. FIG. 1 schematically illustrates a structure of an organic light emitting device according to an embodiment of the present invention. FIG. 2 schematically illustrates an organic light emitting device including red, green, and blue emission lavers according to an embodiment of the present invention.

[0075] Referring to FIG. 2, a first electrode 210 is formed on a substrate 200. Here, the substrate 200, which can be any substrate that is commonly used in conventional organic light emitting devices, may be a glass substrate or a plastic substrate with excellent transparency, surface smoothness, ease of treatment, and that is waterproof.

[0075] The first electrode 210 may be a reflective electrode, a senifransparent electrode or a transparent electrode formed of a metal with excellent conductivity such as IL, Mg, Al, ALL, Ca, Mg-In, Mg-Ag, and Ce-AL, or a metal oxide with excellent conductivity such as IL, Mg, AL, ALL, Ca, Mg-In, Mg-Ag, and Ce-AL, or a metal oxide with excellent conductivity such as ILO, LO, and IN₂O₃. A combination of two or more of the metals or the metal oxides described above can also be useful.

0 [0077] Then a pixel defining layer 214 which defines regions in which red, green, and blue emission layers will be formed is formed on predetermined regions. The pixel defining layer 214 can be formed by deposition or coating, etc. using inorganic materials such as a silicon oxide and a nitride or organic materials having insulating properties.

[0078] Then, a HIL 216 and a HTL 218 are sequentially formed on the first electrode 210 by thermal evaporation or spin coating according to regions which are defined by the pixel defining layer 214.

38 [079] The HIL 216 may include at least one of the compounds represented by Formulae 1, 2, and 3. The HTL 218 may include 1,3,5-tricarbazolyleherzene, 4,4'-biscarbazolybiphenyl, polyvinylcarbazole, m-biscarbazolylphenyl, 4,4'-biscarbazolybiphenyl, polyvinylcarbazole, m-biscarbazolylphenyl)benzene, 1,3,5-trics/2-carbazolyl-5-msthoxyphenyl)benzene, bis(4-carbazolylphenylsiane, N,N-bis(3-msthylphenyl)-N,N-diphenyl-1,1-biphenyl-1,4'-diamine (TPD), N,N-diphen-1,1-N)-diphenyl-1,1-biphenyl-1,4'-diamine (TPD), N,N-diphenyl-1,0,1-bis(1-naphthyl)-4,4'-diamine (TPD), N,N-diphenyl-1,0,1-bis(1-naphthyl)-4,4'-diamine (NPB), IDE 320 (Idemitsu Corporation), poly(9)-dioclytillucrene-co-N,4-bis(1-naphthyl)-4,1'-diamine (NPB), IDE 320 (Idemitsu Corpo

bis(1-naphthy)-(1,1-biphenyl)-4,4-'diamine(NPB), IDE 320 (Idemitsu Corporation), poly(9,9-dioctyfiluorene-co-N-(4-butylphenyl)diphenylamine (TFB), or poly(9,9-dioctyfiluorene-co-bis-(4-butylphenyl-bis-N,N-phenyl-1,4-phenylenediamin (PFB), but is not limited to the above-described examples.

[0080] The thickness of the HIL 216 and the HTL 218 are described above.

[0081] The HIL 216 can be formed using a known method such as vacuum deposition, spin coating, casting, Langmuir Biodoett (LB), or the like.

[0082] When the HIL 216 is formed by vacuum deposition, vacuum deposition conditions may vary according to a compound that is used to form the HIL 216, and the structure and themal properties of the HIL 216 to be formed. In general, however, conditions for vacuum deposition may include a deposition temperature of 100-500°C, a pressure of 10⁸ - 10³ torn, and a deposition speed of 0.01-100 Alsoc.

[0083] When the HIL 216 is formed by spin coating, coating conditions may vary according to a compound that is used to form the HIL 216, and the structure and thermal properties of the HIL 216 to be formed. In general, however, the coating speed may be in the range of about 2000 to 5000 rpm, and a temperature for heat treatment, which is performed to remove a solvent after coating may be in the range of about 80 to 200°C.

[0084] The HTL 218 can be formed using a known method such as vacuum deposition, spin coating, casting, LB, or the like

[0085] When the HTL 218 is formed by vacuum deposition and spin coating, conditions for deposition and coating are similar to those for formation of the HIL 216, although conditions for deposition and coating may vary according to a material that is used to form the HTL 218.

[0086] Red, green and blue EMLs, 220, 225, and 230 are formed on the HTL 218. The material used to form the red, green and blue EMLs, 220, 225, and 230 is not limited.

[0087] For example, DCM1, DCM2, Eu(thenoyltrifluoroacetone)3 (Eu(TTA)3), and butyl-6-(1,1,7,7,-tetramethyljulolidyl-9-enyl) 4H-pyran (DCJTB) can be used to form the red EML 220. Alternatively, a dopant such DCJTB can be deposited with Alq3, Alq3 and rubrene can be co-deposited and a dopant can be deposited thereon, or dopants such as BTPir or RD 61 can be deposited with 4,4'-N-N'-dicarbazole-biphenyl (CBP) to form the red EML 220, but the present invention is not limited to the above-described examples.

[0088] For example, Coumarin 6, C545T, quinacridone, and Ir(ppy)3 can be used to form the green EML 225. Alternatively, a dopant such Ir(ppy)3 can be deposited with CBP, or a dopant such as a coumarin-based material can be deposited with Alq3 as a host to form the green EML 225, but the present invention is not limited to the above-described examples. Examples of the coumann-based dopant may include C314S, C343S, C7, C7S, C6, C6S, C314T, and C545T. [0089] For example, oxadiazole dimer dyes (Bis-DAPOXP), spiro compounds (Spiro-DPVBi, Spiro-6P), trianylamine compounds, bis(styryl) amine (DPVBi, DSA), CzTT, Anthracene, TPB, PPCP, DST, TPA, OXD-4, BBOT, AZM-Zn, and BH-013X (Idemitsu Corporation) which is an aromatic hydrocarbon compound containing a naphthalene molety can be used to form the blue EML 230. Alternatively, a dopant such IDE 105 (Idemitsu Corporation) can be deposited on IDE 140 (Idemitsu Corporation) to form the blue EML 230, but the present invention is not limited to the above-described

examples. [0090] The thickness of the red, green and blue EMLs, 220, 225 and 230 may be in the range of 200 to 500 Å, and preferably 300 to 400 Å. The thickness of each of the red, green and blue, EMLs, 220, 225 and 230 may be the same or different. When the thickness of the red, green and blue, EMLs, 220, 225 and 230 is within the ranges described above, excellent lifetime and driving voltage of the light emitting device may be obtained.

[0091] The red, green and blue, EMLs, 220, 225 and 230 can be formed using a known method such as vacuum deposition, spin coating, casting, LB, or the like. When the red, green and blue, EMLs, 220, 225 and 230 are formed by vacuum deposition and spin coating, conditions for deposition and coating are similar to those for formation of the HIL 216, although conditions for deposition and coating may vary according to the material that is used to form the red, green

and blue, EMLs, 220, 225 and 230.

[0092] A HBL (not shown) can optionally be formed on the red, green and blue, EMLs, 220, 225 and 230 by vacuum deposition or spin coating. A material that is used to form the HBL should have a capability of transporting electrons and an ionization potential higher than the red, green and blue, EMLs, 220, 225 and 230, and thus examples of the material may include bis(2-methyl-8-quinolato)-(p-phenylphenolato)-aluminum (Balq), bathocuproine (BCP), and tris(N-aryl benzimidazole) (TPBI), but are not limited thereto.

[0093] The thickness of the HBL may be in the range of 30 to 60 Å, and preferably 40 to 50 Å. When the thickness of the HBL is within the ranges described above, a proper hole blocking capability and the driving voltage of the device may be obtained.

- [0094] The HBL can be formed using a known method such as vacuum deposition, spin coating, casting, LB, or the like. When the HBL is formed by vacuum deposition and spin coating, conditions for deposition and coating are similar to those for formation of the HIL 216, although conditions for deposition and coating may vary according to the material that is used to form the HBL.
 - [0095] An ETL 240 can be optionally formed by vacuum deposition or spin coating on the red, green and blue, EMLs, 220, 225 and 230, or the HBL. The material that is used to form the ETL 240 may be Alq3, but is not limited thereto. [0096] The thickness of the ETL 240 may be in the range of about 100 to 400 Å, and preferably, 250 to 350 Å. When the thickness of the ETL 240 is greater than 100 Å, proper charge balance can be maintained. On the other hand, when the thickness of the ETL 240 is less than 400 Å, proper driving voltage of the device may be obtained.
 - [0097] The ETL 240 can be formed using a known method such as vacuum deposition, spin coating, casting, LB, or the like. When the ETL 240 is formed by vacuum deposition and spin coating, conditions for deposition and coating are similar to those for formation of the HIL 216, although conditions for deposition and coating may vary according to the material that is used to form the ETL 240.
 - [0098] An EIL 250 may be formed by vacuum deposition or spin coating on the ETL 240. The material that is used to form the EIL 250 may be BaF2, LiF, NaCl, CsF, Li2O, BaO, Liq, or the like, but is not limited thereto.
- [0099] The thickness of the EIL 250 may be in the range of 2 to 100 Å, preferably, 2 to 5 Å, and more preferably 2 to 4 Å. When the thickness of the EIL 250 is within the ranges described above, proper electron injecting capability and the driving voltage of the device may be obtained.
 - [0100] The EIL 250 can be formed using a known method such as vacuum deposition, spin coating, casting, LB. or the like. When the EIL 250 is formed by vacuum deposition and spin coating, conditions for deposition and coating are similar to those for formation of the HIL 216, although conditions for deposition and coating may vary according to the material that is used to form the EIL 250.

[0101] A second electrode 260 is formed on the EIL 250 by deposition to thereby complete the manufacture of the organic light-emitting device according to the current embodiment of the present invention.

[0102] The material that is used to form the second electrode 260 can be a transparent metal oxide with excellent conductivity such as ITO, IZO, SnO₂, and ZnO. Li, Mg, IA, Al-Li, Ca, Mg-In, Mg-Ag, Ca-Al can be used to form a thin film of the second electrode 260, and thus the second electrode 260 can be a reflective electrode, a semitransparent electrode, or a transparent electrode in a various manner. The material used to form the second electrode 260 is not limited to the above-described examples.

[0103] The first electrode 210 and the second electrode 260 can be an anode or a cathode.

[0104] The organic light emitting device according to the current embodiment of the present invention can be utilized in various types of flat panel display devices such as a passive matrix organic light emitting device. When the organic light emitting device of the present embodiment is utilized in an active matrix organic light emitting device. The first electrode 210 as a pixel electrode that is formed on the substrate 200 can be electrically connected to a source electrode or a drain electrode of a thin film transistor. The organic light emitting device of the present embodiment can also be utilized in a flat panel display that can realize images in two sides.

[0105] Hereinafter, the present invention will be described more specifically with reference to the following Synthesis Examples of Compounds 8, 9, 10, 11, 14, 28, 35, and 56 and Examples of an organic light emitting device according to an embodiment of the present invention will now be described in detail. However, the Synthesis Examples and the Examples are not intended to limit the scope of the present invention.

Examples

25

Synthesis Example 1: Synthesis of Compound 8

[0106] Compound 8 was synthesized through Reaction Scheme 2 below.

Reaction Scheme 2

Synthesis of Intermediate A

[0107] 16.7 g (100 mmol) of carbazole, 26.5 g (130 mmol) of iodobenzene, 1.9 g (10 mmol) of Cul, 138 g (1 mol) of $K_{\rm SCO_3}$, and S30 mg (2 mmol) of 18-crown-6 were dissolved in 500 ml of 1,3-Dimethyl-3,4,5.6-letrahydro-(1H)-pyrimid-inone (DMPU), and heated at 170°C for 8 hours.

[0108] After the reaction terminated, the reaction mixture was cooled to room temperature, and the resultant solid substance was filtered. Then a small amount of ammonium hydroxide was added to the filtered solution. The resultant was washed three times with 300 ml of diethylether, and drided in MgQQ under reduced pressure. As a result, a crude product was obtained. The crude product was purified using a silica get column chromatography to produce 22 g of

Intermediate A as a white solid (yield 90%).
[0109] "H NMR (CDCI₃, 400MHz) δ (ppm) 8.12 (d, 2H), 7.58-7.53 (m, 4H), 7.46-7.42 (m, 1H), 7.38 (d, 4H), 7.30-7.26 (m, 2H); "3C NMR (CDCI₃, 100MHz) δ (ppm) 141.0, 137.9, 130.0, 127.5, 127.3, 126.0, 123.5, 120.4, 120.0, 109.9.

Synthesis of Intermediate B

15

35

[0110] 2.433 g (10 mmol) of Intermediate A was added to 100 ml of 80% acetic acid. 1.357 g (5.35 mmol) of lodine (i₂) and 0.333 g (1.46 mmol) of o-periodic acid (H₂/O₂) were added thereto in the solid state. Then, the mixture was stirred at 80°C in a nitrogen attemptshere for 2 hours.

[0111] After the reaction terminated, the resultant solution was extracted three times with 50 ml of ethylether. An organic layer collected from the mixture was dried over Mg9O₄ to evaporate the solvent. As a result, the dried result was purified using a silica get comment/ormatography to produce 3.29 of Intermediate B as a white solid (yield 97%). [0112] H NMR (CDC)₂ 300MH2) 5 (ppm) 8.43 (d, 1H), 8.05 (d, 1H), 7.62 (dd, 1H), 7.61-7.75 (m, 2H), 7.51-7.43 (m, 3H), 7.41-7.35 (m, 2H), 7.27 (d, 1H), 7.74 (d, 1H), 7.41-7.35 (m, 2H), 7.27 (d, 1H), 7.74 (d, 1H), 7.61-7.75 (m, 2H), 7.75 (m, 2H), 7.75

25 Synthesis of Intermediate C

[0113] 3.12 g (10 mmol) of 4.4'-dibromodiphenyl, 2.3 ml (25 mmol) of aniline, 2.9 g (30 mmol) of t-BuONa, 183 mg (0.2 mmol) of Pd₂(dala₃, 20 mg (0.1 mmol) of P(t-Bu)₃ were dissolved in 30 ml of toluene and the mixture was stirred at 90° C for 3 hours.

[0114] The reaction mixture was cooled to room temperature, and the resultant solution was extracted three times with 30 ml of distilled water and diethylether. A precipitate in an organic layer was filtered, washed with acetine and diethylether, and dried in a exacum condition to produce 0.3 g of Intermediate C (yield 90%).

[0115] ¹H NMR (DMSO-d₆, 400MHz) δ (ppm) 8.22 (s, 2H), 7.48 (d,4H), 7.23 (t, 4H), 7.10 (dd, 8H), 6.82 (t, 2H); ¹³C NMR (DMSO-d₆, 100MHz) δ (ppm) 145.7, 144.3, 133.7, 131.4, 128.7, 121.2, 119.2, 118.9.

Synthesis of Compound 8

[0116] 912 mg (2.47 mmol) of Intermediate B, 336.4 mg (1 mmol) of Intermediate C, 300 mg (3 mmol) of I-BuONa, 40 mg (0.02 mmol) of Pd,dba)₃, 3 mg (0.01 mmol) of P(I-Bu)₃were dissolved in 5 ml of toluene and the mixture was stirred at 90° C for 3 hours.

[0117] After the reaction terminated, the resultant mixture was cooled to room temperature, and the resultant solution was extracted three times with distilled water and 30 ml of ethylether. An organic layer collected from the mixture was dried over MgSC₄ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatography to produce 570 mg of Compound 8 as a yellow solid (Yideld 70%).

[0118] ¹H NMR (CDCl₃, 300MHz) δ (ppm) 7.99 (d. 2H), 7.95 (s. 2H), 7.61-7.57 (m. 8H), 7.48-7.32 (m. 12H), 7.27-7.19 (m. 8H), 7.18-7.10 (m. 8H), 6.96 (t. 2H); ¹³C NMR (CDCl₃, 100MHz) δ (ppm) 148.4, 147.3, 141.3, 140.4, 138.0, 137.6, 133.9, 129.9, 129.1, 127.4, 127.1, 127.0, 126.1, 125.6, 124.3, 123.0, 122.9, 122.8, 121.7, 120.5, 119.9, 118.5, 110.7, 109.9

[0119] Compound 8 was diluted in CHCl₃ to a concentration of 0.2 mM and a UV Spectrum of the diluted Compound 8 was obtained. Maximum absorption wavelengths were 353, 306 and 238 nm.

[0120] Td (decomposition temperature) and Tg (glass transition temperature) of Compound 8 were measured by performing thermal analysis using thermo gravimetric analysis (TGA) and differential scanning calcrimatery (DSC) under the following conditions: N₂ atmosphere, temperatures of room temperature to 600°C (10°C/min)-TGA and of room temperature to 400°C-DSC, and Pan Type: Pt Pan in disposable AI Pan (TGA) and disposable AI pan (DSC). The measure Td Twas 494°C and Tg was 153°C.

[0121] A highest occupied molecular orbital (HOMO) level of 5.16 eV and a lowest occupied molecular orbital (LUMO) level of 2.16 eV were obtained using AC-2 that measures UV absorption spectrum and ionization potential.

Synthesis Example 2: Synthesis Compound 9

[0122] Compound 9 was synthesized through Reaction Scheme 3 below.

Reaction Scheme 3

5

25

50

[0123] Intermediate D was synthesized with a yield of 85% in the same manner as in Synthesis Example 1, except that p-tolylarino was used instead of aniline in the synthesis of Intermediate C of Synthesis Example 1. Then, 2 g (Yield 80%) of Compound 9 as a yellow solid was produced in the same manner as in Synthesis Example 1, except that Intermediate D was used instead of Intermediate C in the synthesis of Compound 9 of Synthesis Example 1.

[0124] "H NMR (C₂D₆, 300MHz) δ (ppm) 8.14 (d, 2H), 7.46 (d, 2H), 7.47 (d, 4H), 7.38-7.28 (m, 6H), 7.27-7.25 (m, 8H), 7.28-7.01 (m, 16H), 6.96 (z, 4P), 2.14 (z, 4P), 2.15 (z, 4P), 2

[0125] Compound 9 was diluted in CHCl₃ to a concentration of 0.2 mM and a UV Spectrum of the diluted Compound 9 was obtained. Maximum absorption wavelengths were 358, 309 and 253 nm.

[0126] Td and Tg of Compound 9 were measured by performing thermal analysis using TGA and DSC under the following conditions: N₂ atmosphere, temperatures of room temperature to 600°C (10°Cmin)-TGA and of room temperature to 400°C-DSC, and Pan Type: Pt Pan in disposable AI Pan (TGA) and disposable AI pan (DSC). The measured Td was 480°C and Tg was 155°C.

[0127] A HOMO level of 5.0 eV and a LUMO level of 2.02 eV were obtained using AC-2 that measures UV absorption spectrum and ionization potential.

5 Synthesis Example 3: Synthesis Compound 10

[0128] Compound 10 was synthesized through Reaction Scheme 4 below.

Reaction Scheme 4

Synthesis of Intermediate E

[0129] 3.69 g (10 mmol) of Intermediate B, 1.42 g (12 mmol) of 4-aminobenzontiril, 1.44 g (15 mmol) of t-BuONa, 183 mg (0.2 mmol) of Pe₃(doba)₃, and 40 mg (0.2 mmol) of P(t-Bu)₃ were dissolved in 50 ml of toluene and the mixture was stirred at 49°C for 3 hours.

[0130] After the reaction terminated, the resultant mixture was cooled to room temperature, and the resultant solution was extracted three times with distilled water and 50 ml of diethylether. An organic layer collected from the mixture was dried over MgSO₄ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatoraphy to produce 1.8 g of Intermediate E (Yield 50%).

Synthesis of Compound 10

- 35 [0131] 2.2 g (Yield 86%) of Compound 10 as a yellow solid was produced in the same manner as in Synthesis Example 1, except that Intermediate E and 4.4-ditromodiphenyl were used instead of Intermediates B and C in the synthesis of Compound 8 of Synthesis Example 1.
- [0132] TH NMR (CDCl₃, 300MHz) δ (ppm) 8.02 (d, 2H), 7.97 (d, 2H), 7.64-7.48 (m, 14H), 7.49-7.39 (m, 10H), 7.29-7.22 (m, 8H), 7.03 (d, 4H); ¹³C NMR (CDCl₃, 100MHz) δ (ppm) 152.1, 145.6, 141.5, 138.9, 138.2, 137.3, 136.3, 133.2, 130.0, 07.27, 9, 1278, 1278, 1270, 126.6, 125.8, 125.5, 124.6, 122.7, 120.5, 120.2, 119.9, 119.4, 118.8, 111.2, 110.1, 101.8
- 127.9, 127.5, 127.0, 120.0,
 - [0134] Td, Tg and Tm of Compound 10 were measured by performing thermal analysis using TGA and DSC under the following conditions: N₂ atmosphere, temperatures of room temperature to 600°C (10°C/min)-TGA and of room temperature to 400°C-DSC, and Pan Type: Pt Pan in disposable AI Pan (TGA) and disposable AI pan (DSC). The measured Td was 482°C, Tg was 178°C, and Tm was 263°C.
 - [0135] A HOMO level of 5.4 eV and a LUMO level of 2.47 eV were obtained using AC-2 that measures UV absorption spectrum and ionization potential.
- 50 Synthesis Example 4: Synthesis Compound 11

[0136] Compound 11 was synthesized through Reaction Scheme 5 below.

Reaction Scheme 5

10

15

[0137] Intermediate F was synthesized with a yield of 95% in the same manner as in Synthesis Example 1, except that 4-fluorophenylamine was used instead of anilline in the synthesis of Intermediate C of Synthesis Example 1. Then, 18 g (Yield 48%) of Compound 11 as a yield wo solid was produced in the same manner as in Synthesis Example 1, except that Intermediate F was used instead of Intermediate C in the synthesis of Compound 8 of Synthesis Example 1. (1013) 14 NMR (CoD₈, 300MHz) 8 (ppm) 8.05 (s, 2H), 7.68 (d, 2H), 7.48 (d, 4H), 7.29-7.11 (m, 22H), 7.09-7.01 (m, 9H), 6.78 (d, 4H)

[0139] Compound 11 was diluted in CHCl₃ to a concentration of 0.2 mM and UV Spectrum of the diluted Compound 11 was obtained. Maximum absorption wavelengths were 351, 297 and 248 nm.

[0140] Td, Tg, and Tm of Compound 11 were measured by performing thermal analysis using TGA and DSC under the following conditions: N₂ atmosphere, temperatures of room temperature to 600°C (10°C/min)-TGA and of room temperature to 400°C-DSC, and Pan Type: Pt Pan in disposable Al Pan (TGA) and disposable Al pan (DSC). The

measured Td was 484°C, Tg was 151°C, and Tm was 289°C. [0141] A HOMO level of 5.1 eV and a LUMO level of 2.28 eV were obtained using AC-2 that measures UV absorption spectrum and indization potential.

Synthesis Example 5: Synthesis Compound 14

[0142] Compound 14 was synthesized through Reaction Scheme 6 below.

Reaction Scheme 6

10

15

20

45

50

55

- [6143] Intermediate G was synthesized with a yield of 90% in the same manner as in Synthesis Example 1, except that 4-aminobiphenyl was used instead of aniline in the synthesis of Intermediate C of Synthesis Example 1. Then, 3.1 g (Yield 82%) of Compound 14 as a yellow solid was produced in the same manner as in Synthesis Example 1, except that Intermediate G was used instead of Intermediate C in the synthesis of Compound 8 of Synthesis Example 1.
- [0144] ¹H NMR (CD₂Cl₂, 200MHz) δ (ppm) 8.02-8.01 (m, 4H), 7.65-7.56 (m, 12H), 7.51-7.46 (m, 10H), 7.43-7.36 (m, 0 10H), 7.32-7.17 (m, 14H), ¹³C NMR (CD₂Cl₂, 100MHz) δ (ppm) 148.2, 147.6, 141.8, 141.0, 140.6, 138.6, 137.9, 134.5, 134.4, 130.3, 129.1, 127.9, 127.8, 127.4, 127.3, 127.0, 126.8, 126.6, 126.1, 124.7, 123.5, 123.4, 123.0, 120.8, 120.3, 119.0, 1111.1, 110.3.
 - [0145] Compound 14 was diluted in CHCl₃ to a concentration of 0.2 mM and a UV Spectrum of the diluted Compound 14 was obtained. Maximum absorption wavelength was 329 nm.
- foliated Td and Tg of Compound 14 were measured by performing thermal analysis using TGA and DSC under the following conditions: N₂ atmosphere, temperatures of room temperature to 600°C (10°C/min)-TGA and of room temperature to 400°C-DSC, and Pan Type: Pt Pan in disposable Al Pan (TGA) and disposable Al pan (DSC). The measured Td was 533°C and Td was 174°C.
- [0147] A HOMO level of 5.2 eV and a LUMO level of 2.27 eV were obtained using AC-2 that measures UV absorption spectrum and ionization potential.

Synthesis Example 6; Synthesis Compound 28

[0148] Compound 28 was synthesized through Reaction Scheme 7 below.

Reaction Scheme 7

65 [0149] Intermediate H was synthesized with a yield of 80% in the same manner as in Synthesis Example 1, except that 3,6-dibromocarbozole was used instead of carbazzole in the synthesis of Intermediate A (Synthesis Example 1. Then, Intermediate I was synthesized with a yield of 85% in the same manner as in Synthesis Example 1, except that Intermediate H was used instead of 4,4-dibromodipenyl in the synthesis of Intermediate C of Synthesis Example 1, except that Intermediate B (Pidel 81%) of Compound 28 as a yellow solid powder was produced in the same manner as in Synthesis (Example 1, except that Intermediates B and I were used instead of Intermediates B and C in the synthesis of Compound 3 of Synthesis Example 1.

[0150] 1 H NMR ($C_{g}D_{g}$, 300MHz) δ (ppm) 8.13 (s, 2H), 8.04 (s, 2H), 7.65 (d, 2H), 7.39-7.31 (m, 4H), 7.27-7.22 (m, 12H), 7.19-6.99 (m, 21H), 6.82 (t, 2H), 13 C MMR ($C_{g}D_{g}$, 100MHz) δ (ppm) 150.4, 142.1, 141.9, 141.8, 138.8, 138.2, 138.0, 130.0, 129.9, 129.4, 128.3, 128.0, 127.8, 127.7, 127.3, 127.2, 127.1, 126.4, 126.3, 125.2, 125.1, 125.0, 123.8, 121.0, 120.7, 120.4, 120.2, 118.0, 117.7, 111.2, 110.9, 109.9.

[0151] Compound 28 was diluted in CHCl₃ to a concentration of 0.2 mM and UV Spectrum of the diluted Compound 28 was obtained. Maximum absorption wavelengths were 315 and 248 nm.

[0152] Td and Tg of Compound 28 were measured by performing thermal analysis using TGA and DSC under the following conditions: N₂ atmosphere, temperatures of room temperature to 600°C (10°C/min)-TGA and of room temperature to 400°C-DSC, and Pan Type: Pt Pan in disposable Al Pan (TGA) and disposable Al pan (DSC). The measured Td was 460°C and Tg was 175°C.

[0153] A HOMO level of 5.0 eV and a LUMO level of 2.09 eV were obtained using AC-2 that measures UV absorption spectrum and ionization potential.

5 Synthesis Example 7: Synthesis Compound 35

[0154] Compound 35 was synthesized through Reaction Scheme 8 below.

Reaction Scheme 8

Synthesis of Intermediate J

15

20

30

55

[0155] 0.316 g (0.856 mmol) of Intermediate B, 0.142 g (1.2 mmol) of 4-aminobenzonitril were dissolved in 5 ml of totuene and 0.144 g (1.5 mmol) of FelbuoNa, 0.018 g (0.02 mmol) of PelduoNa), and 0.004 to 0.006 g (0.02 to 0.03 mmol) of (1-Bu),P were added thereto. The mixture was stirred at 80°C for 5 hours. The resultant solution was extracted three times with 20 ml of ethylether. An organic layer collected from the mixture was dried over MgSO $_4$ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatography to produce 0.218 g of intermediate J (7bidl 77 %).

Synthesis of Compound 35

[0156] 0.221 g (0.614 mmol) of Intermediate J, 0.332 g (0.9 mmol) of Intermediate B were dissolved in 10 ml of toluene and 0.144 g (1.5 mmol) of 1-BuONa, 0.018 g (0.02 mmol) of Pd(dba)₂, and 0.004 to 0.006 g (0.02 to 0.03 mmol) of (1-Bu)₂P were added thereto. The mixture was stread at 90°C for 6 hours. The resultant solution was extracted three times with 30 ml of ethylether. An organic layer collected from the mixture was dried over MgSO₄ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatography to produce 0.236 g of Compound 35 (Yield 64%). Compound 35 Wgs (dentified by Yi-H-MIR.

[0157] 1H-NMR (CDCl₃, 400MHz) δ (ppm) 8.05 (d, 2H), 8.03 (dd, 2H), 7.58 (m, 8H), 7.47 (m, 2H), 7.39 (m, 8H), 7.33 (dd, 2H), 7.24 (m, 2H), 6.94 (d, 2H).

Synthesis Example 8: Synthesis Compound 56

[0158] Compound 56 was synthesized through Reaction Scheme 9 below.

Reaction Scheme 9

10

25

30

Synthesis of Intermediate K

[0159] 13 g (53 mmol) of 2-bromofluorene was dissolved in 60 ml of acetic acid. The reaction mixture was set 0° C, and 60 g (200 mmol) of sodium dichromate was gradually added thereto. After 12 hours, 200 ml of distilled water was added thereto and the reaction mixture was sufficiently stirred. The produced yellow solid was filtered and dried to produce 10 g of Intermediate K (Yield 78%).

Synthesis of Intermediate L

[0160] 8.g (31.6 mmol) of Intermediate K was dissolved in 60 ml of THF. The temperature of the reaction mixture was set to -78° C, and 38 ml (38 mmol) of 1 M phenylmagnesium bromide was gradually added thereot. After 2 hours, the temperature was set to room temperature and stirred for 5 hours. The reaction mixture was diuted in 50 ml of ammonium chloride solution and extracted three times with 40 ml of ethylacetate. An organic layer ool lected from the mixture was dired over MgSCq, to evaporate the solvent. As a result, the drift or result was puffied using a silica get column chromatography to produce 10 gol Intermediate L (Yield 95%). Intermediate L was identified by "H-NMR (1914)" (1914) (1

[0161] 1H NMR (CDCl₃, 400MHz) 8 (ppm) 7.64 (d, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.54-7.47 (m, 2H), 7.44 (d, 1 H), 7.59-7.55 (III, 1 H), 7.5

Synthesis of Intermediate M

[0162] 10 g (30 mmol) of Intermediate L was dissolved in 60 ml of benzene. 2.4 ml (45 mmol) of sulfuric acid diluted in a small amount of benzene was added thereto. The reaction mixture was stirred at 80° C for 5 hours. After the benzene was evaporated. 1 N NaOH was added to the reaction solution to adjust the ph of the reaction solution to 7. Then, the resultant solution was extracted three times with 40 ml of ethylacetate. An organic layer collected from the mixture was dried over MgSO₄ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatography to produce 6 g of Intermediate M (Yield 50%).

Synthesis of Intermediate O

[0163] 340 mg (0.856 mmol) of Intermediate M, 142 mg (1.2 mmol) of 4-aminobenzonitril were dissolved in 5 ml of

FP 1 862 524 A1

toluene and 0.144 g (1.5 mmol) of LBuONs, 0.018 g (0.02 mmol) of Pd(dba)₂, and 0.004 to 0.008 g (0.02 to 0.03 mmol) of (LBu)₂P were added thereto. The mixture was stirred at 80°C for 5 hours. The resultant solution was extracted three itimes with 20 ml of ethylether. An organic layer collected from the mixture was dried over MgSO₄ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatography to produce 0.27 g of intermediate O (Yeld 0.7%).

Synthesis of Compound 56

[0164] 267 mg (0.614 mmol) of Intermediate O, 0.332 g (0.9 mmol) of Intermediate B (refer to Synthesis Example 1) were dissolved in 10 ml of foluene and 0.144 g (1.5 mmol) of T-BuONa, 0.018 g (0.02 mmol) of T-gl(dba)₂, and 0.004 to 0.006 g (0.02 to 0.03 mmol) of (18-by)₂ even added thereto. The mixture was stirred at 90°C for 6 hours. The resultant solution was extracted three times with 30 ml of ethylether. An organic layer collected from the mixture was dried over MgSO₄ to evaporate the solvent. As a result, the dried result was purified using a silica gel column chromatography to produce 0.236 g of Compound 56 (Yrield 57%). Compound 56 was identified by YH-NMR.

δ [0185] 1H NMR (CDCl₃, 400MHz) δ (ppm) 7.97 (d, 1 H), 7.90 (d,1H), 7.69 (d, 1 H), 7.65 (d, 1 H), 7.60 (d, 2H), 7.48 (m, 1 H), 7.40 (d, 2H), 7.35 (m, 6H), 7.24 (m, 3H), 7.16 (m, 10H), 7.11 (dd, 1 H), 6.93 (d, 2H)

Example 1

- 20 [0166] An aluminium and ITO glass (SDI Co., Ltd.) substrate (1,300 A) was cut into pieces of 50 mm x 50 mm x 0.7 mm in size, followed by utrasonic cleaning in sopropyl alcohol and delonized water (5 minutes for each) and then UV/ ozone cleaned (30 minutes) to produce a reflective electroic.
- [0167] Then, Compound 8 was deposited on the reflective electrode to form a HIL with a thickness of 1,200 Å, and NPB was deposited on the HIL to form a HTL with a thickness of 300 Å.
- [0168] IDE 140 (idemitsu Corporation) as a blue fluorescent host and IDE 105 (idemitsu Corporation) as a blue fluorescent dopant were deposited at the same time in a weight ratio of 982 on the TIL to form a blue EML with a thickness of 300 A. Then, Bady was deposited on the blue EML form a HBL with a thickness of 50 A. Air3 was deposited on the HBL to form an ETL with a thickness of 250 Å. LIF was deposited on the ETL to form an EIL with a thickness of 3 Å, and then Mg-Ag was deposited on the EIL to form a semitransparent electrode with a thickness of 180 Å. As a result, an organic light emitting device was manufactured.
 - [0169] At a driving voltage of 5.5 V, the current density of the organic light emitting device was 23.0 mA/cm², the luminance was 1,179 cd/m², the color coordinates were (0.113, 0.130), and the light emitting efficiency was 5.13 cd/A.

Example 2

[0170] An organic light emitting device was manufactured in the same manner as in Example 1 except that Compound 9 was used instead of Compound 8 in the formation of a HIL.

[0171] At a driving voltage of 5.5 V, the current density of the organic light emitting device was 20.1 mA/cm², the luminance was 1,021 cd/m², the color coordinates were (0.113, 0.120), and the light emitting efficiency was 5.10 cd/A.

Example 3

ΔN

[0172] An organic light emitting device was manufactured in the same manner as in Example 1 except that IDE 406 (Idemitsu Corporation) was used instead of Compound 8 in the formation of a HIL.

Ign [0173] At a driving voltage of 5.5 V, the current density of the organic light emitting device was 46.52 mA/cm², the luminance was 784 cd/m², the color coordinates were (0.113, 0.125), and the light emitting efficiency was 4.74 cd/A.

Example 4

[0174] An organic light emitting device was manufactured in the same manner as in Example 1 except that Li273 (Sensient, Germany) was used instead of Compound 8 in the formation of a HIL.

[0175] At a driving voltage of 5.5 V, the current density of the organic light emitting device was 17.43 mA/cm², the luminance was 695 cd/m², the color coordinates were (0.122, 0.110), and the light emitting efficiency was 3.98 cd/A.

55 Example 5

[0176] An organic light emitting device was manufactured in the same manner as in Example 1 except that HI102 (UDC, U.S.A.) was used instead of Compound 8 in the formation of a HIL.

FP 1 862 524 A1

[0177] At a driving voltage of 5.5 V, the current density of the organic light emitting device was 0.67 mA/cm², the luminance was 1.2 cd/m², the color coordinates were (0.112, 0.154), and the light emitting efficiency was 0.18 cd/A.

Example 6

5

[0178] An organic light emitting device was manufactured in the same manner as in Example 1 except that ELM180 (ELM, Korea) was used instead of Compound 8 in the formation of a HIL.

[0179] At a driving voltage of 5.5 V, the current density of the organic light emitting device was 2.55 mA/cm², the brightness was 52 cd/m², the color coordinates were (0.124, 0.105), and the light emitting efficiency was 2.04 cd/A.

[0180] Referring to Examples 1 through 6, when Compound 8 or 9 was used to form the HIL or the thickness of the HIL was controlled according to an embodiment of the present invention, the hole injecting capability increased, and thus the current densities and the current efficiencies of the organic light emitting devices increased at the same witing voltage and luminance increased. The results of the current efficiencies at the same voltage are illustrated in FIG. 3.

1918.1 The evaluation results for the luminance changes and driving voltage changes of the organic light emitting devices according to Examples 1 and 3 are shown in FIGS.4 and 5.An accelerated file fest twas performed to measure ultrainance changes of the organic light emitting devices of Examples 1 and 3. The luminances were measure after 200 hours at 4,000 cd/m² as shown in FIG.4. The luminance of the organic light emitting device of Example 3 after 200 hours at 4,000 cd/m² was 90.2% of the initial luminance, and the luminance of the organic light emitting device of Example 3 after 200 hours at 4,000 cd/m² was 86.2% of the initial luminance. FIG.5 illustrates the accelerated life fest results of the driving voltage of hange share 400 hours at 4,000 cd/m². The driving voltage of the organic light emitting device of Example 1 increased by 0.45 V and the driving voltage of the organic light emitting device of Example 1 regards the proparation of the organic light emitting device of Example 1 regards the proparation of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic light emitting device of Example 1 has low power consumption and low driving voltage of the organic l

voltage. 25 Example 7

[0182] An organic light emitting device was manufactured in the same manner as in Example 1 except that Compound 11 was deposited on the electrode to form a HIL, with a thickness of 1600 A, and CEP and (fippy)₈ as green light emitting materials were deposited on the HTL to form a green EML with a thickness of 300 Å instead of the blue EML.

© [0183] At a driving voltage of 5 V, the current density of the organic light emitting device was 7.5 mA/cm², the luminance was 2220 cd/m², the color coordinates were (0.244, 0.71), and the light emitting efficiency was 29.6 cd/A.

Example 8

35 [0184] An organic light emitting device was manufactured in the same manner as in Example 7 except that IDE 408 (Idemitsu Corporation) was used instead of Compound 11 in the formation of a HiL. (1815) At a driving voltage of 5 V, the current density of the organic light emitting device was 7.86 mA/cm², the

[0185] At a driving voltage of 5 V, the current density of the organic light emitting device was 7.50 mJ/cm⁻, the luminance was 1,900 cd/m², the color coordinates were (0.246, 0.691), and the light emitting efficiency was 23.9 cd/A. [0186] The current efficiencies of Examples 7 and 8 are shown in FIG. 6.

Example 9

4n

[0187] An organic light emitting device was manufactured in the same manner as in Example 1 except that Compound 14 was deposited on the electrode to form a HIL with a thickness of 2000 Å, and CBP and BPTir as red light emitting materials were deposited on the HTL to form a red EML with a thickness of 300 Å instead of the blue EML.

[0188] At a driving voltage of 5 V, the current density of the organic light emitting device was 11.8 mA/cm², the luminance was 1,534 cd/m², the color coordinates were (0.687, 0.310), and the light emitting efficiency was 13.0 cd/A.

Example 10

[0189] An organic light emitting device was manufactured in the same manner as in Example 9 except that IDE 408 (Idemitsu Corporation) was used instead of Compound 14 in the formation of a HIL.

[0190] At a driving voltage of 5 V, the current density of the organic light emitting device was 13.3 mA/cm², the brightness was 1328 cd/m², the color coordinates were (0.692, 0.309, and the light emitting efficiency was 9.98 cd/A. [0191] The current efficiencies of Examples 9 and 10 are shown in FIG. 7.

[0192] The driving voltage, efficiency, and color purity characteristics of the organic light emitting devices of Examples 1-10 were evaluated using an IVL measuring device (PhotoResearch PR650, Keithley 238).

Example 11

[0193] An organic light emitting device including red, s green, and blue EMLs was manufactured as follows.

[0194] A substrate having a thin film transistor was prepared, and a first electrode composed of Al was formed in a stripe shape with a thickness of 1000 A. Here, the first electrode was electrically connected to a source electrode or a drain electrode of the thin film transistor formed on the substrate.

[0195] Red, green and blue sub-pixel defining layers which define regions in which the red, green, and blue SMLs will be formed were formed on the first electrode using a silicon oxide. Compound 8 was deposited on the regions in which the red, green and blue EMLwill be formed to from a HIL. Compound 8 was deposited on the region in which the ed. green and blue EMLwill be formed to a thickness of 2000 Å, on the region in which the green EML will be formed a thickness of 1600 Å, and on the region in which the blue EML will be formed to a thickness of 1200 Å to form the HIL. Then, NPB was deposited on the HIL to form a HTL with a thickness of 300 Å.

[0196] CBP and BPTr as red light emitting materials were deposited on the HTL to form a red EML with a thickness of 300 Å, CBP and Irply as green light emitting materials were deposited on the HTL to form a green EML with a thickness of 300 Å, and IDE 140 (Idemitsu Corporation) and IDE 105 (Idemitsu Corporation) as blue light emitting materials were deposited on the HTL to form a blue EML with a thickness of 150 Å.

[0197] Then, Baiq was deposited on the red, green and blue EMLs to form a HBL with a thickness of 50 Å. Alq3 was deposited on the HBL to form an ETL with a thickness of 250 Å. Lif was deposited on the ETL to form an EIL with a thickness of 3 Å, and the Mg-3g was deposited on the EIL to form a semitransparent electrode with a thickness of 180 Å. As a result, an organic light emitting device including the red, green, and blue EMLs was manufactured.

[0198] The efficiency and the color coordinates of the organic light emitting device of Example 11 were measured in the same manner as in Examples 1 through 10. The results are shown in Table 1.

Table 1

	Efficiency (cd/A)	x Color Coordinate	y Color Coordinate
Red EML	13.4	0.68	0.32
Green EML	29.9	0.22	0.73
Blue EML	2.9	0.14	0.06

[0199] As shown in Table 1, each EML of the organic light emitting device of Example 11 exhibited excellent efficiency and color purity. The efficiency of white light comprising a mixture of red, green, and blue light in the organic light emitting device of Example 11 was 13.0 add/A at a luminatione of 150 cdm² when 40% of the device was operating, and power consumption was 180 mW. The efficiency and color purity characteristics of the organic light emitting device of Example 11 were evaluated using an IVL measuring device (PhotoResearch PR650, Keithley 238) and the power consumption was calculated.

Example 12

25

30

45

[0200] An organic light emitting device was manufactured in the same manner as in Example 11 except that IDE 408 (Identitus Corporation) was used instead of Compound 8 to form a HIL. The efficiency and the color coordinates of the organic light emitting device of Example 12 are shown in Table 2.

Table 2

		Efficiency (cd/A)	x Color Coordinate	y Color Coordinate
ı	Red EML	12.1	0.67	0.32
Ī	Green EML	25.4	0.23	0.73
İ	Blue EML	2.24	0.14	0.06

[0201] As shown in Table 2, each EML of the organic light emitting device of Example 12 exhibited excellent efficiency and color purity. The efficiency of white light comprising a mixture of red, green, and blue light in the organic light emitting device of Example 12 was 11.0 add/4 at a brightness of 150 cdm² when 40% of the device was operating, and power consumption was 220 mW. The efficiency and color purity characteristics of the organic light emitting device of Example 12 were evaluated using an IVL measuring device (PhotoResearch PRSS). Keithley 238) and the power consumption

was calculated.

Comparative Example 1

- g [0202] A substrate having a thin film transistor was prepared, and a first electrode composed of Al was formed in a stripe shape with a thickness of 1000 A. Here, the first electrode was electrically cornected to a source electrode or a drain electrode of the thin film transistor formed on a lower portion of the substrate.
 - [2023] Red, green and blue pixel defining layers which define regions in which red, green, and blue emission layers will be formed were formed on the pixel electrode using a silicon oxide. M-TDATA was deposited on the regions in which red, green and blue emission layers will be formed form a HIL with a thickness of 1000 Å. Then NP5 was deposited on the HIL to form a HTL with a thickness of 400 Å in addition, NP5 was further deposited over the region in which green EML will be formed to a thickness of 400 Å wing a photomask. NP6 was further deposited over the region in which green EML will be formed to a thickness of 800 Å As a result, HTL having total thickness of 1200 Å in the region in which red EML will be formed, but thickness of 800 Å in the region in which green EML will be formed to total thickness of 400 Å in the region in which green EML will be formed.
 - [2024] CBP and BPTIr as red light emitting materials were deposited on the red HTL to form a red EML with a thickness of 300 Å, CBP and Irppy as green light emitting materials were deposited on the green HTL to form a green EML with a thickness of 300 Å, and IDE 140 (Idemitsu Corporation) and IDE 105 (Idemitsu Corporation) as blue light emitting materials were deposited on the blue HTL to form a blue EML with a thickness of 150 Å.
- 20 [0205] Then, Baiq was deposited on the red, green and blue EMLs to form a HBL with a thickness of 50 A. Alq3 was deposited on the HBL to form an ETL with a thickness of 250 A. Lif was deposited on the ETL to form an EIL with a thickness of 3 A, and then Mg.Ag was deposited on the EIL to form a semitransparent electrode with a thickness of 180 A. As a result, an organic light emitting device including the red, green, and blue EMLs was manufactured.
 - [0206] The efficiency and the color coordinates of the organic light emitting device of Comparative Example 1 are shown in Table 3.

Table 3

	Efficiency (cd/A)	x Color Coordinate	y Color Coordinate
Red EML	5.39	0.67	0.32
Green EML	24.45	0.21	0.72
Blue EML	1.40	0.14	0.06

- 35 [0207] As shown in Table 3, the organic light emitting device of Example 11 having a material used to form a HIL according to an embodiment of the present invention and the organic light emitting device of Example 12 having the thickness of the HIL according to an embodiment of the present invention exhibited greater efficiency and color purity than the organic light emitting device of Comparative Example 1.
- [0208] An organic light emitting device according to the present invention includes an organic layer containing one of or the compounds represented by Formulae 1, 2, and 3 between a pair of electrodes capable of generating resonance during the operation of the device; and/or a hole injection layer having the thickness range described above between the pair of electrodes. The organic light emitting device of the present invention has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime. In particular, the organic light emitting device of the present invention has excellent lifetime property. A flat panel display device having enhanced reliability
- can be obtained by employing the organic light emitting device of the present invention.

Claims

- An organic light emitting device comprising:
 - a substrate;
 - a first electrode:
 - a second electrode facing the first electrode; and
 - an organic layer interposed between the first electrode and the second electrode, wherein resonance is occurring between the first electrode and the second electrode during the operation of the organic light emitting device and the organic layer comprises a compound selected from the group consisting of compounds represented

by any of formulae (1) to (3):

5

15

20

25

30

an

45

50

55

where X is selected from the group consisting of a substituted or unsubstituted $C_1 \cdot C_{20}$ alkylone group, a substituted or unsubstituted $C_2 \cdot C_{20}$ alkenylene group, a substituted or unsubstituted $C_2 \cdot C_{20}$ heteroraylene group, and a substituted or unsubstituted $C_2 \cdot C_{20}$ heteroraylene group, and a substituted or unsubstituted $C_2 \cdot C_{20}$ heteroring, each R_1 , each R_2 and each R_3 is independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted $C_2 \cdot C_{20}$ and/proper, a substituted or unsubstituted $C_2 \cdot C_{20}$ and/proper, a substituted or unsubstituted $C_2 \cdot C_{20}$ placery only, a substituted or unsubstituted $C_2 \cdot C_{20}$ placery only, a substituted or unsubstituted $C_2 \cdot C_{20}$ polycygroup, a substituted or unsubstituted $C_2 \cdot C_{20}$ polycygroup, a substituted or unsubstituted $C_2 \cdot C_{20}$ polycygroup and a substituted or unsubstituted amino group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstituted or unsubstituted even the substituted or unsubstituted $C_2 \cdot C_2$ betroen fig. and

$$R_4$$
 N
 N
 R_5
 R_5
 R_5

wherein R_4 and R_5 are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted $C_1 - C_{30}$ alkey group, a substituted or unsubstituted $C_1 - C_{30}$ alkey group, a substituted or unsubstituted $C_2 - C_{30}$ and yor yor up, a substituted or unsubstituted $C_2 - C_{30}$ and yor yor up, a substituted or unsubstituted $C_2 - C_{30}$ polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein R_4 and R_5 , can be optionally bound with one another to form a saturated or unsubstituted or ning, and

 ${\sf Ar_2}$ is a substituted or unsubstituted ${\sf C_6}$ - ${\sf C_{30}}$ aryl group or a substituted or unsubstituted ${\sf C_2}$ - ${\sf C_{30}}$ heteroaryl group; and

wherein $R_{\rm c}$, $R_{\rm r}$ and $R_{\rm g}$ are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 – C_{20} alkoxy group, a substituted or unsubstituted C_2 – C_{20} and knoxy group, a substituted or unsubstituted C_2 – C_{20} anyloxy group, a substituted or unsubstituted C_2 – C_{20} polycygric polyc

 $A_{\rm S}$ is a substituted or unsubstituted $C_{\rm S}-C_{\rm S0}$ aryl group or a substituted or unsubstituted $C_{\rm Z}-C_{\rm S0}$ heleroaryl group, each Y is selected independently from the group consisting of a substituted or unsubstituted $C_{\rm F}-C_{\rm S0}$ alkyl group, as substituted or unsubstituted $C_{\rm F}-C_{\rm S0}$ and group, and a substituted or unsubstituted $C_{\rm F}-C_{\rm S0}$ and group, and a substituted or unsubstituted $C_{\rm F}-C_{\rm S0}$ and group, and a substituted or unsubstituted $C_{\rm F}-C_{\rm S0}$ hetero ring, and m and n are an integer from 0 to 5.

2. The organic light emitting device of claim 1, wherein in formula (1) R₁ to R₂ are hydrogen atoms.

10

15

20

25

30

35

45

50

- The organic light emitting device of one of claims 1 or 2, wherein in formula (1) Ar₁ is a substituted or unsubstituted C_a: C_{an} aryl group.
 - The organic light emitting device of one of claims 1 to 3, wherein in formula (1) X is selected from the group consisting
 of a substituted or unsubstituted C₈-C₃₀ arylene group and a substituted or unsubstituted C₂-C₃₀ heteroarylene group.
- The organic light emitting device of claim 1, wherein the compound represented by formula (1) is a compound represented by formula (1 a):

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_2
 R_4
 R_5
 where each R_1 each R_2 and each R_3 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 – C_{30} alky) group, a substituted or unsubstituted C_2 – C_{30} and show y group, a substituted or unsubstituted C_2 – C_{30} and show y group, a substituted or unsubstituted C_2 – C_{30} and yor group, a substituted or unsubstituted C_2 – C_{30} peter or ing. a substituted or unsubstituted C_2 – C_{30} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted armin or group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstituted armin or group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstated carbon ring; and

each Q₁ is independently selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C₁-C₃₀ alkyl group, a substituted or unsubstituted C₆-C₃₀ aryl group, a substituted or

unsubstituted C2-C30 hetero ring, and a substituted or unsubstituted amino group.

5

10

20

25

30

35

40

45

50

55

The organic light emitting device of claim 1, wherein the compound represented by formula (1) is a compound represented by formula (1 b):

where each R_1 , each R_2 , and each R_3 are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted $C_1 - C_{20}$ alkyl group, a substituted or unsubstituted $C_1 - C_{20}$ alkyl group, a substituted or unsubstituted $C_2 - C_{20}$ are placed by a substituted or unsubstituted $C_2 - C_{20}$ are placed by a substituted or unsubstituted $C_2 - C_{20}$ are placed in R_2 . As substituted or unsubstituted $C_2 - C_{20}$ polycyclic condensed in R_2 , a hydrogen, a cyan group, and as substituted or unsubstituted amin group, wherein two or more of R_1 , R_2 and R_3 can be optionally bound with one another to form a saturated or unsubstituted or ning; and each C_2 is independently selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $C_2 - C_{20}$ alkyl group, a substituted or unsubstituted $C_2 - C_{20}$ alkyl group, a substituted or unsubstituted $C_2 - C_{20}$ alkyl group, a substituted or unsubstituted $C_2 - C_{20}$ alkyl group, a substituted or unsubstituted $C_2 - C_{20}$ alkyl group, a substituted or unsubstituted $C_2 - C_{20}$ alkyl group, a substituted or $C_2 - C_{20}$ alkyl group, a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or $C_3 - C_{20}$ alkyl group, and a substituted or C_3

- 7. The organic light emitting device of claim 1, wherein in formula (2) R4 and R5 are hydrogen atoms.
- The organic light emitting device of claim 1 or 7, wherein in formula (2) Ar₂ is a substituted or unsubstituted C₆-C₃₀
 aryl group.
- The organic light emitting device of claim 1, wherein the compound represented by formula (2) is a compound represented by formula (2a):

$$R_4$$
 R_5
 R_6
 R_6
 R_6

where R_a and R_b are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 – C_{30} although group, a substituted or unsubstituted C_2 – C_{30} although group, a substituted or unsubstituted C_2 – C_{30} any group, a substituted or unsubstituted C_2 – C_{30} any group, a substituted or unsubstituted C_2 – C_{30} any group, a substituted or unsubstituted C_2 – C_{30} any group, a substituted or unsubstituted C_2 – C_{30} any force C_2 , and C_3 , a

FP 1 862 524 A1

ring, a substituted or unsubstituted C_5 - C_{30} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein R_4 , and R_5 can be optionally bound with one another to form a saturated or unsaturated carbon ring; and

- Q₃ is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted C₁-O₃₉ alityl group, a substituted or unsubstituted C₂-O₃₉ hetero ring, and a substituted or unsubstituted armino group.
- 10. The organic light emitting device of claim 1, wherein the compound represented by formula (3) is a compound represented by formula (3c):

where R_0 is selected from the group consisting of a hydrogen atom, a substituted or unsubstituted C_1 – C_{20} alloy, group, a substituted or unsubstituted C_2 – C_{30} are substituted or unsubstituted C_3 – C_{30} are substituted or unsubstituted C_3 – C_{30} are substituted or unsubstituted C_3 – C_{30} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted C_3 – C_{30} polycyclic condensed ring, a hydroxy group, a cyano group, and a substituted or unsubstituted armino group.

- 11. The organic light emitting device of claim 1, wherein in formula (3) R_R is a hydrogen atom.
- 12. The organic light emitting device of claim 10, wherein in formula (3c) R₉ is a hydrogen atom.

10

15

20

25

40

45

50

55

- 13. The organic light emitting device of one of claim 1 and 10 to 12, wherein in formula (3) Ar₃ is a substituted or unsubstituted C₆·C₃₀ aryl group.
- 14. The organic light emitting device of one of claim 1 and 10 to 13, wherein in formula (3) R₆ and R₇ are each a methyl group or a phenyl group.
 - 15. The organic light emitting device of one of claim 1 and 10 to 14, wherein in formula (3) m is 1, n is zero and Y is a phenyl group.
 - 16. The organic light emitting device of claim 1, wherein the compound represented by formula (3) is a compound represented by formula (3a):

$$\bigcap_{\mathbf{R}_{6}}^{\mathbf{R}_{6}} \bigcap_{\mathbf{R}_{7}}^{\mathbf{R}_{6}} \bigcap_{\mathbf{Q}_{4}}^{\mathbf{R}_{6}} \bigcap_{\mathbf$$

where R₈, R₇ and R₈ are each independently selected from the group consisting of a hydrogen atom, a substituted

FP 1 862 524 A1

or unsubstituted C_1 - C_{20} alkylgroup, a substituted or unsubstituted C_1 - C_{20} alkoygroup, a substituted or unsubstituted C_2 - C_{20} arylgroup, a substituted or unsubstituted C_2 - C_{20} arylgroup, a substituted or unsubstituted C_2 - C_{20} before ring, a substituted or unsubstituted C_2 - C_{20} before ring, a substituted or unsubstituted C_2 - C_{20} before ring, a substituted or unsubstituted arise group, and a substituted or unsubstituted arise group, wherein two or more of R_2 , R_1 and R_2 can be optionally bound with one another to form a saturated or unsubstituted ring and R_2 are substituted or unsubstituted or unsubstituted or unsubstituted arise group R_2 .

 Q_4 is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $C_1 - C_{2p}$ alkyl group, a substituted or unsubstituted $C_2 - C_{2p}$ hatero ring, and a substituted or unsubstituted armorphism group.

 The organic light emitting device of claim 1, wherein the compound represented by formula (3) is a compound represented by formula (3d);

15

25

30

45

$$R_6$$
 R_7 N Q_4 $(3d)$

where R_{θ} , R_{γ} and R_{θ} are each independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted $C_{\Gamma}C_{20}$ alloxy group, a substituted or unsubstituted $C_{\Gamma}C_{20}$ alloxy group, a substituted or unsubstituted $C_{\Gamma}C_{20}$ arrivoxy group, a substituted or unsubstituted $C_{\Gamma}C_{20}$ arrivoxy group, a substituted or unsubstituted $C_{\Gamma}C_{20}$ polycyclic condensed fing, a hydroxy group, a cyano group, and a substituted or unsubstituted amino group, wherein two or more of R_{Γ} , R_{Γ} and R_{Γ} can be optionally bound with one another to form a saturated or unsubstituted or indigently bound with one another to form a saturated or unsubstituted.

 Q_4 is selected from the group consisting of a hydrogen atom, a cyano group, a fluorine atom, a substituted or unsubstituted $Q_{\rm T}Q_{\rm D}$ alkyl group, a substituted or unsubstituted $Q_{\rm T}Q_{\rm D}$ arrive ring, and a substituted or unsubstituted arrive property of the property

18. The organic light emitting device of claim 1, wherein the compounds represented by formulae (1), (2), and (3) are one of compounds 1 through 62:

5€

 The organic light emitting device of claim 1, wherein the compounds represented by formulae (1), (2), and (3) are one of compounds 8, 9, 10, 11, 14, 28, 35, and 56:

10

15

20

25

45

50

- 20. The organic light emitting device of one of claims 1 to 19, wherein one of the first electrode and the second electrode is being a reflective electrode and the other is being a semitransparent or transparent electrode.
- 21. The organic light emitting device of claim 20, wherein the first electrode is formed on the substrate and is a reflective electrode, the second electrode is a semitransparent or transparent electrode.
- 22. The organic light emitting device of one of claims 1 to 21, wherein the organic layer comprising said at least one compound selected from the group of compounds represented by formulae (1) to (3) is one of a hole injection layer, a hole transport layer, and a single layer having hole injecting and transporting properties.

EP 1 862 524 A1

- 23. The organic light emitting device of claim 22, wherein the organic layer comprising said at least one compound selected from the group of compounds represented by Formulae (1) to (3) is a hole injection layer.
- 24. The organic light emitting device of claim 23, wherein the organic light emitting device further comprises an emission layer having a red emission region, and the thickness of a region of the hole injection layer formed under the red emission region is in the range of 1,600 to 2,200 A.
 - 25. The organic light emitting device of claim 23, wherein the organic light emitting device further comprises an emission layer having a green emission region, and the thickness of a region of the hole injection layer formed under the green emission region is in the range of 1.400 to 1.800 t.
 - 26. The organic light emitting device of claim 23, wherein the organic light emitting device further comprises an emission layer having a blue emission region, and the thickness of a region of the hole injection layer formed under the blue emission region is in the range of 1.000 to 1.400 Å.
 - 27. The organic light emitting device of claim 23, wherein the organic light emitting device further comprises an emission layer having a red emission region, a blue emission region and a red emission region;
 - the hole injection layer comprises a first region formed under the red emission region, a second region formed under the green emission region and a third region formed under the blue emission region; and
- 20 the thickness of the first region is in the range of 1,600 to 2,200 Å, the thickness of the second region is in the range of 1,400 to 1,800 Å, and the thickness of the third region is in the range of 1,000 to 1,400 Å.
 - 28. The organic light emitting device of claim 23, wherein the organic light emitting device further comprises a hole transport layer.
 - 29. The organic light emitting device of claim 28, wherein the organic light emitting device further comprises an emission layer having a red emission region, and the total thickness of a region of the hole transport layer and the hole injection layer formed under the red emission region is in the range of 2,000 to 2,400 to.
- 30 30. The organic light emitting device of claim 29, wherein the thickness of the region of the hole injection layer formed under the red emission region is in the range of 1.600 to 2.200 Å.
 - 31. The organic light emitting device of claim 30, wherein the organic light emitting device further comprises an emission layer having a green emission region, and the total thickness of a region of the hole transport layer and the hole injection layer formed under the green emission region is in the range of 1,600 to 2,000 A.
 - 32. The organic light emitting device of claim 31, wherein the thickness of the region of the hole injection layer formed under the green emission region is in the range of 1,400 to 1,800 Å.
- 49 33. The organic light emitting device of claim 28, wherein the organic light emitting device further comprises an emission layer having a blue emission region, and the total thickness of a region of the hole transport layer and the hole injection layer formed under the blue emission region is in the range of 1,200 to 1,600 Å.
 - 34. The organic light emitting device of claim 33, wherein the thickness of the region of the hole injection layer formed under the blue emission region is in the range of 1,000 to 1,400 Å.
 - 35. A flat panel display comprising an OLED according to one of claims 1 to 34.
 - 36. An organic light emitting device comprising:

a substrate;

5

15

35

45

50

- a first electrode;
- a second electrode, one of the first electrode and the second electrode being a reflective electrode, the other being a semitransparent or transparent electrode; and
- an organic layer interposed between the first electrode and the second electrode, the organic layer comprising an emission layer having a red emission region and a hole injection layer having a region formed under the red emission region, the thickness of the region or the hole injection layer formed under the red emission region belief in the rance of 1.600 to 2.200 Å

EP 1 862 524 A1

37. An organic light emitting device comprising:

- a substrate;
- a first electrode:

5

10

15

20

30

35

ΛO

- a second electrode, one of the first electrode and the second electrode being a reflective electrode, the other being a semitransparent or transparent electrode; and
- an organic layer interposed between the first electrode and the second electrode, the organic layer comprising an emission layer having a green emission region and a hole injection layer having a region formed under the green emission region, the thickness of the region of the hole injection layer formed under the green emission region being in the range of 1,400 to 1,800 Å.
- 38. An organic light emitting device comprising:
 - a substrate;
- a first electrode:
 - a second electrode, one of the first electrode and the second electrode being a reflective electrode, the other being a semitransparent or transparent electrode; and
 - an organic layer interposed between the first electrode and the second electrode, the organic layer comprising an emission layer having a blue emission region and a hole injection layer having a region formed under the blue emission region, the thickness of the region of the hole injection layer formed under the blue emission region beling in the range of 1,000 to 1,400 Å.
- 39. An organic light emitting device comprising:
- 25 a substrate;
 - a pair of electrodes comprising a reflective electrode and a semitransparent or transparent electrode; an organic layer interposed between the reflective electrode and the semitransparent or transparent electrode,
 - an organic layer interposed between the reflective electrode and the semitransparent or transparent electrode the organic layer comprising:
 - an emission layer having at least one or a rea emission region, a green emission region and a blue emission region; and
 - a hole injection layer having at least one of a first region formed under the red emission region, a second region formed under the green emission region and a third region formed under the blue emission region, the thickness of the first region being in the range of 1,600 to 2,200 A, the thickness of the second region being in the range of 1,400 to 1,800 A, the thickness of the second region being in the range of 1,400 to 1,800 A, the thickness of the third region being in the range of 1,000 to 1,400 A.
 - 40. The organic light entiting device of claim 39, wherein the first electrode is formed on the substrate and is a reflective electrode, the second electrode is entitransparent or transparent electrode, and the light generated in the organic layer is extracted through the second electrode.
 - 41. The organic light emitting device of claim 39, wherein resonance occurs between the first electrode and the second electrode during the operation of the organic light emitting device.
 - 42. The organic light emitting device of claim 40, wherein resonance occurs between the first electrode and the second electrode during the operation of the organic light emitting device.
 - 43. A flat panel display device comprising the organic light emitting device of claim 39.
 - 44. The flat panel display of claim 43, wherein one of the pair of electrodes of the organic light emitting device is electrically connected to a source electrode or a drain electrode of a thin film transistor.

FIG. 1

SECOND ELECTRODE
ELECTRON INJECTION LAYER (EIL)
ELECTRON TRANSPORT LAYER (ETL)
HOLE BLOCKING LAYER (HBL)
EMISSION LAYER (EML)
HOLE TRANSPORT LAYER (HTL)
HOLE INJECTION LAYER (HIL)
FIRST ELECTRODE
SUBSTRATE

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

EUROPEAN SEARCH REPORT

Application Number EP 07 10 9066

	DOCUMENTS CONSIDE	RED TO BE RELEVANT		
Category	Citation of document with in of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
P,X P,A	31 May 2006 (2006-0	SUNG SDI CO LTD [KR]) 5-31) hrough page 8, line 27	1-6, 18-26, 28-35 27	INV. C09K11/06 H01L27/32 H01L51/50 H05B33/14 H01L51/00
X A	US 2006/020136 A1 (AL) 26 January 2006 * pages 4-8, compou claims *	HWANG SEOK-HWAN [KR] E (2006-01-26) nds 1-24, Examples,	T 1-26, 28-35 27	
X A	AL) 6 October 2005 * pages 4-7, compou	HWANG SEOK-HWAN [KR] E (2005-10-06) nds 1, 2, 4-24, pages -36, Examples, claims	28-35 27	
A	JP 2004 087395 A (F 18 March 2004 (2004 * the whole documen	-03-18)	1-35	
A	JP 2004 087393 A (F 18 March 2004 (2004 * the whole documen	-03-18)	1-35	TECHNICAL FIELDS SEARCHED (IPC) C09K H01L
A	US 6 124 024 A (HOS AL) 26 September 20 * the whole documer	OKAWA CHISHIO [JP] ET 100 (2000-09-26) 1t *	1-35	H05B
A	US 2003/224207 A1 (4 December 2003 (20 * the whole documer		.) 1-35	
A	US 2006/017377 A1 (26 January 2006 (20 * the whole documer		39-44	
	The present search report has	hoor down up for all plains	4	
	Place of search	Date of completion of the search		Exeminal
	Munich	8 October 2007	Ne	mes, Csaba A.
X:pa Y:pa do A:tac	DATEGORY OF CITED DOCUMENTS ificularly relevant if taken alone risularly relevant if combined with and sument of the same category shrutogloal background in-written disclosure armediate document	E : earlier patent after the filing ther D : document cit L : document cit	piple underlying the document, but put date at in the application of for other reasons a same patent farm	lishedon, of

EUROPEAN SEARCH REPORT

Application Number EP 07 10 9066

	DOCUMENTS CONSIDE	r . r		Relevant	OL ADDITIO ATTOM	05 7115
Category	Citation of document with inc of relevant passa		iate,	to claim	CLASSIFICATION APPLICATION (IF	C)
A	WO 2006/033492 A (DI JONG-WODK [KR]; PARI 30 March 2006 (2006- * the whole document	DOSAN CORP [KR (HO-CHEOL [KR -03-30) : *]; PARK])	39-44		
					TECHNICAL FIEL SEARCHED	DS (IPC)
	-The present search report has b					
	Flace of search Munich		er 2007	Nor	nes, Csaba A	
X : per Y : per doo	DATEGORY OF CITED DOCUMENTS T: theory or print ticularly relevant if taken alone Soularly relevant if to ornibined with enother Double of the combined with enother Ticularly relevant if to ornibined with enother		theory or princip earlier patent do after the filing do document cited	ele underlying the soument, but publi	Invention	

Application Number

EP 07 10 9066

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims tees have been paid, namely claim(s).
No claims fees have been paid within the presoribed time limit. The present European search report has been drawn up for the first ten dalms.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in sepect of which search fees have been paid, namely delimit.
1-35,39-44
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, numely claims:

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 07 10 9066

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1(part),2-6,18-35(part)

Organic light emitting device comprising an organic layer containing a compound of formula (1).

2. claims: 1(part).7-9.18-35(part)

Organic light emitting device comprising an organic layer containing a compound of formula (2).

3. claims: 1(part), 10-17, 18-35(part)

Organic light emitting device comprising an organic layer containing a compound of formula (3).

4. claim: 36

Organic light emitting device comprising an organic layer comprising an emission layer having a red emission and a hole injecting layer under the emission layer having a thickness of 1600 to 2200 Angstroms.

5. claim: 37

Organic light emitting device comprising an organic layer comprising an emission layer having a green emission and a hole injecting layer under the emission layer having a thickness of 1400 to 1800 Angstroms.

6. claim: 38

Organic light emitting device comprising an organic layer comprising an emission layer having a blue emission and a hole injecting layer under the emission layer having a thickness of 1000 to 1400 Angstroms.

7. claims: 39-44

Organic light emitting device comprising an organic layer comprising an emission layer having a red emission region, a green emission region, and a blue emission region; and a hole injecting layer under the red, green and blue emission regions having a thickness of 1600 to 2200 Angstroms, 1400 to 1800 Angstroms and 1000 to 1400 Angstroms, respectively.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 07 10 9066

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members erra as contained in the European Patent Office EDP file on The European Patent Office is in new jackle for three particulars which are merely given for the purpose of information.

08-10-2007

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 1661888 A	31-05-2006	CN 1978441 A JP 2006151979 A KR 20060059613 A US 2006115680 A1	13-06-20 15-06-20 02-06-20 01-06-20
US 2006020136 AI	26-01-2006	JP 2006028176 A	02-02-20
US 2005221124 A1	. 06-10-2005	CN 1702065 A JP 2005290000 A KR 20050097670 A	30-11-20 20-10-20 10-10-20
JP 2004087395 A	18-03-2004	NONE	
JP 2004087393 A	18-03-2004	NONE	
US 6124024 A	26-09-2000	NONE	
US 2003224207 A	L 04-12-2003	CN 1462163 A JP 2004006320 A KR 20030093016 A	17-12-20 08-01-20 06-12-20
US 2006017377 A	1 26-01-2006	CN 1725921 A JP 2006041471 A KR 20060007899 A	25-01-20 09-02-20 26-01-20
WO 2006033492 A	30-03-2006	NONE	

For more details about this annex; see Official Journal of the European Patent Office, No. 12/82

EP 1 862 524 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

KR 1020060048306 [0001]

JP 2002252089 A [0004]