同轴电缆中电磁波 的传输及金属中超 声波的传输

简 要 报 告

 姓名
 刘若涵

 学号
 2020011126

 班级
 自 05 班

 循环组号
 单三晚 L

 组内循环号
 18

1 同轴电缆中电磁波的传输

同轴电缆输出负载	信号幅度V _i (mV)	脉冲峰位t _i (ns)
开路	$V_0 = 198$	$t_0 = -100$
	$V_1 = 316$	$t_1 = 20$
	$V_2 = 236$	$t_2 = 160$
	$V_3 = 174$	$t_3 = 300$
	$V_4 = 132$	$t_4 = 440$
	$V_5 = 98$	$t_5 = 580$
	$V_6 = 76$	$t_6 = 720$
	$V_7 = 56$	$t_7 = 860$
	$V_8 = 46$	$t_8 = 1000$
短路负载	$V_0 = 200$	$t_0 = -470$
	$V_2 = -240$	$t_2 = -220$
	$V_4 = 132$	$t_4 = 40$
	$V_6 = -72$	$t_6 = 300$
	$V_8 = 40$	$t_8 = 560$
匹配负载	$V_0 = 192$	$t_0 = 28$
	$V_1 = 160$	$t_1 = 148$

(1) 开路

波形如下图所示

$$\tau = \frac{t_5 + t_6 + t_7 + t_8 - t_1 - t_2 - t_3 - t_4}{16}$$

$$= \frac{580 + 720 + 860 + 1000 - 20 - 160 - 300 - 440}{16} = 140ns$$

$$l = \tau v = 140 \times 10^{-9} \times 2 \times 10^8 = 28.0 \text{m}$$

根据 $V_l = Ve^{-\alpha l}$,拟合得电压信号幅度与传输距离的关系曲线如下图所示。

得吸收系数 $\alpha = 0.010m^{-1}$

(2) 短路

波形如下图所示

$$\tau = \frac{t_6 + t_8 - t_2 - t_4}{8} = \frac{300 + 560 - (-220) - 40}{8} = 130ns$$
$$l = \tau v = 130 \times 10^{-9} \times 2 \times 10^8 = 26.0 \text{m}$$

(3) 负载匹配

波形如下图所示

$$\tau = t_1 - t_0 = 148 - 28 = 120 ns$$

$$l = \tau v = 120 \times 10^{-9} \times 2 \times 10^8 = 24.0 \text{m}$$

2 金属中超声波的传输

直探头一	纵波	斜探头-	横波	可变探头——表面波		
底面回波	表面回波	R_1 弧面回	R_2 弧面回	探头角度	探头位置	表面波回
峰位(t ₂ /	峰位(t ₁ /	波峰位	波峰位	(°)	$(l_{EG}/mm$	波延时
μs)	μs)	$(t_{R1}/\mu s)$	$(t_{R2}/\mu s)$)	(Δt/μs)
19.20	0	28.40	47.60	60	79.0	55.20
				探头移动	表面波回	表面波回
				距离(l _{EI} /	波峰位	波峰位
				mm)	$(t_1/\mu s)$	$(t_2/\mu s)$
				20.0	48.40	61.60

纵波声速

$$c_l = \frac{2R_2}{t_2 - t_1} = \frac{2 \times 60.00mm}{19.20\mu s} = 6250m/s$$

横波声速

$$c_s = \frac{2(R_2 - R_1)}{t_{R2} - t_{R1}} = \frac{2 \times (60.00mm - 30.00mm)}{47.60\mu s - 28.40\mu s} = 3125m/s$$

$$T = \frac{c_l}{c_s} = \frac{6250}{3125} = 2.000$$

$$\rho = 2700 kg/m^3$$

杨氏模量

$$E = \frac{\rho c_s^2 (3T^2 - 4)}{T^2 - 1} = 7.03 \times 10^{10} Pa$$

泊松系数

$$\sigma = \frac{T^2 - 2}{2(T^2 - 1)} = 0.333$$

固定法求表面波声速

$$c_R = \frac{2l_{EG}}{\Delta t} = \frac{2 \times 79.0mm}{55.20\mu s} = 2862m/s$$

移动法求表面波声速

$$c_R = \frac{2l_{EI}}{t_2 - t_1} = \frac{2 \times 20.0mm}{61.60\mu s - 48.40\mu s} = 3030m/s$$

3 超声波探测缺陷

直探头——扩散角		直探头测缺陷 C		斜探头测量缺陷 D 的位置			
x_0/mm	x_1/mm	x_2/mm	底面波	缺陷波	x_A/t_A	x_B/t_B	x_D/t_D
			$t_H - t_1/$	$t_C - t_1/$			
			μs	μs			
50.5	45.0	55.0	19.20	14.80	30.8 <i>mm</i>	89.2 <i>mm</i>	110.6 <i>mm</i>
					26.40 <i>μs</i>	53.20μs	35.20μs
					x_1/mm	x_2/mm	
					28.7	33.7	

直探头扩散角

$$\theta = 2tan^{-1}\frac{x_2 - x_1}{2H_B} = 2tan^{-1}\frac{55.0 - 45.0}{2 \times 50.00} = 11.42^{\circ}$$

直探头测缺陷C至试样表面距离

$$H_C = \frac{t_C - t_1}{t_H - t_1} R_2 = \frac{14.80}{19.20} \times 60.00 mm = 46.25 mm$$

缺陷C深度

$$h = R_2 - H_C = 60.00 - 46.25 = 13.75mm$$

斜探头折射角

$$\beta = tan^{-1} \frac{(x_B - x_A) - (L_B - L_A)}{H_B - H_A} = tan^{-1} \frac{(89.2 - 30.8) - (50.00 - 20.00)}{50.00 - 20.00} = 43.43^{\circ}$$

斜探头扩散角

$$\theta = 2tan^{-1}(\frac{x_2 - x_1}{2L}(cos\beta)^2) = 2tan^{-1}(\frac{33.7 - 28.7}{2H_A/cos\beta}(cos\beta)^2) = 5.48^\circ$$

缺陷 D 到试样表面深度

$$H_D = H_A + \frac{t_D - t_A}{t_B - t_A} (H_B - H_A) = 20.00 + \frac{35.20 - 26.40}{53.20 - 26.40} \times (50.00 - 20.00) = 29.85 mm$$

缺陷D到右侧面距离

$$L_D = x_D - x_A - (H_D - H_A)tan\beta + L_A = 90.48mm$$

4 思考题

(1) 光标如何定位? 如何消除探测线的影响? 如何提高测量 τ 的精度?

统一以波形的上升沿起点为参照定位光标。用逐差法消除探测线的影响。在测量时尽量放大波形,增大时间轴最小分度值,减小仪器误差,同时也能增大上升沿选取的准确性,提高测量 τ 的精度。

(2)分析哪一种方式测得的同轴电缆长度 l 的结果更加可靠?注意实验中脉冲幅度 $V_1 > V_0$,请做定性说明解释。

开路测量较为可靠。开路时电压幅值衰减较慢,可以测量多组时间差值,有利于消除误差。相比之下,短路时可以测得的数据较少,而匹配电阻时只能测得一组数据,误差更大。 $V_1>V_0$ 可能是因为反射波在输出端叠加造成的。

(3) 哪种方法测得的表面波速 c_R 更为可靠? 移动法更可靠,可以用两次测量的差值消除系统误差。

5 原始数据

2) g 202205/8-18

2022 春物理实验 B(2)课程资料

四、附录 1: 原始数据记录参考表格

(一)传输线中脉冲信号传输和反射的观测(注意波形相位关系,各量含义参看图 3)

同轴电缆输出负载	信号幅度 17 (mV)	脉冲峰位 ti (ns)	波形示意图
开路	$V_{1} = 316$ $V_{2} = 136$ $V_{3} = 176$ $V_{4} = 137$ $V_{5} = 98$ $V_{6} = 76$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	输入端
短路负载	$V_0 = 100$ $V_2 = -240$ $V_4 = 131$ $V_6 = -72$ $V_8 = 40$	$t_0 = -470$ $t_2 = -220$ $t_4 = 40$ $t_6 = 300$ $t_8 = 560$	输入端
匹配负载	$V_0 = 19\nu$ $V_1 = 160$	t ₁ = 148	输入端输出端

(二) 超声波波速及式样杨氏模量、泊松系数测量(适当调整示波器分度值以适合于测量)测试样密度: $ho=2700 {
m kg/m}^3$ (铝),其它参数参见附录 2

直探头纵波		斜探头横波		可变探头表面波		
底面回波 峰位(t ₂ /µs)	表面回波 峰位(t ₁ /μs)	R ₁ 弧面回 波峰位(t _{R1} /μs)	R ₂ 弧面回波 峰位(t _{R2} /μs)	探头角度 (°)	探头位置 (I _{EG} mm)	表面波回波 延时(Δt/μs)
19.20	0	28.40	47.60	60	79.0	55.20
				探头移动 距离(<i>l_{El}</i> /mm)	表面波回波 峰位(t₂/μs)	表面波回波 峰位(t ₁ /μs)
				20,0	48.40	61.60

刘第20220518-18

2022 春物理实验 B(2)课程资料

(三)超声波探伤(适当调整示波器分度值)

ľ	直探头-扩散角		直探头测缺陷 С		斜探头测量缺陷 D 的位置		
<i>x</i> ₀	х1	<i>x</i> ₂	底面波 (tu-ti)	缺陷波 (/c-/ _t)	x _A /t _A		$x_{\rm D}/t_{\rm D}$
So, Smi	45.0mm	SS.omm	19.20 MG	14.80,45	30.8 mm 26.60US	89.2 mm 53.20US	110.6 mm 35.20US

X1 28.7mm X2 33.7mm

附录 2 CSK-IB 铝试样尺寸图

尺寸: R_1 =30.00, R_2 =60.00, L_A =20.00, H_A =20.00, L_B =50.00, H_B =50.00(单位: mm) A、B、D 为背面开口的非贯通横孔,C 为底面开口的竖直非贯通孔