

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»	
КАФЕЛРА "Г	Ірограммное обеспечение ЭВМ и информационные технологии»	

ОТЧЕТ

по рубежному контролю №1 по курсу «Анализ Алгоритмов»

на тему: «Разреженные матрицы. Описание алгоритма сложения разреженных матриц»

Студент <u>ИУ7-51Б</u> (Группа)	(Подпись, дата)	<u>Савинова М. Г.</u> (Фамилия И. О.)
Преподаватель	(Подпись, дата)	Волкова Л. Л (Фамилия И. О.)
Преподаватель	(Подпись, дата)	Строганов Ю.В. (Фамилия И. О.)

СОДЕРЖАНИЕ

B	ВЕД	ЕНИЕ	3
1	Ана	алитический раздел	4
	1.1	Разреженный строчный формат матрицы	4
	1.2	Сложение РСФ матриц	4
2	Koı	нструкторская часть	6
	2.1	Разработка алгоритмов	6
3	Tex	нологический раздел	9
	3.1	Средства реализации	9
	3.2	Реализация алгоритмов	9
4	Исс	следовательский раздел	12
	4.1	Демонстрация работы программы	12
3	4К Л	ЮЧЕНИЕ	13
\mathbf{C}	пис	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

ВВЕДЕНИЕ

Целью данного рубежного контроля является описание алгоритма сложения разреженных матриц.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) описать понятие разряженной матрицы;
- 2) описать алгоритм сложения разряженных матриц;
- 3) реализовать описанный алгоритм.

1 Аналитический раздел

В данном разделе приведена информация, касающаяся разреженных матриц и графовых моделей.

1.1 Разреженный строчный формат матрицы

Разреженный строчный формат (сокр. $PC\Phi$) — это одна из наиболее широко используемых схем хранения разреженных матриц [1].

Значения ненулевых элементов матрицы и соответствующие столбцовые индексы хранятся в этой схеме по строкам в двух массивах; назовем их соответственно AN и JA. Используется также массив указателей (скажем, IA, еще обозначающийся как NR), отмечающих позиции массивов AN и JA, с которых начинается описание очередной строки. Дополнительная компонента в IA содержит указатель первой свободной позиции в JA и AN.

Рассмотрим матрицу A:

Разреженный строчный формат матрицы 1.1 представлен ниже:

В общем случае описание і-й строки хранится в позициях с IA(i) до IA(i+1)-1 массивов JA и AN, за исключением равенства IA(i+1)=IA(i), означающего, что r-я строка пуста. Если матрица имеет n строк, то IA содержит n+1 позиций.

1.2 Сложение РСФ матриц

Для сложения матриц в РСФ необходимо пройти через матрицу указателей IA поэлементно через две матрицы, выделяя интервалы между соседними элементами IA по AN и JA, то есть IA(i) и IA(i+1).

Если встретится элементы с одинаковыми строками и столбцами, то производится сложение. Затем происходит повторные проходы по двум матрицам по отдельности для того чтобы добавить в результирующую матрицу остаточные значение [1].

Вывод

В данном разделе было рассмотрено понятие разреженной матрицы, а также были описаны графовые модели и алгоритм сложения матриц.

2 Конструкторская часть

В данном разделе будет представлена схема алгоритма сложения разреженных матриц.

2.1 Разработка алгоритмов

На рисунке 2.1-2.3 представлен алгоритм сложения РСФ-матриц.

Рисунок 2.1 – Схема алгоритма сложения РСФ-матриц (часть 1)

Рисунок 2.2 – Схема алгоритма сложения РСФ-матриц (часть 2)

Рисунок 2.3 – Схема алгоритма сложения РСФ-матриц (часть 3)

Вывод

В данном разделе была представлена схема алгоритма сложения разреженных матриц.

3 Технологический раздел

В данном разделе будут описаны средства реализации программного обеспечения.

3.1 Средства реализации

В качестве языка программирования, используемого при написании данной лабораторной работы, был выбран C++, так как в нем имеется контейнер std::vector, представляющий собой динамический массив данных произвольного типа [2].

3.2 Реализация алгоритмов

На листинге 3.1 представлена реализация разрабатываемого алгоритма.

Листинг 3.1 – Реализация алгоритма сложения РСФ-матриц

```
MatrixCSR MatrixCSR::operator+(const MatrixCSR &mtr) {
1
2
       MatrixCSR c;
3
4
       c.n = n;
5
6
       c.m = m;
       int val = 0;
8
9
       for (int i = 0; i < NR.size() - 1; i++) {</pre>
10
11
            if (i == 0)
12
13
                c.NR.push_back(0);
            else
14
                c.NR.push_back(c.NR[i - 1] + val);
15
16
            val = 0;
17
18
19
            int ka = NR[i];
            int kb = mtr.NR[i];
20
21
            for (; ka < NR[i + 1] && kb < mtr.NR[i + 1];) {</pre>
22
23
                if (JA[ka] < mtr.JA[kb]) {</pre>
24
                     c.JA.push_back(JA[ka]);
25
                     c.AN.push_back(AN[ka++]);
26
                } else if (JA[ka] > JA[kb]) {
27
                     c.JA.push_back(mtr.JA[kb]);
28
                     c.AN.push_back(mtr.AN[kb++]);
29
                } else {
30
                     auto tmp = AN[ka] + mtr.AN[kb];
31
32
33
                     if (tmp) {
                         c.JA.push_back(JA[ka]);
34
                         c.AN.push_back(tmp);
35
                     }
36
                     ka++;
                     kb++;
38
                }
39
                val++;
40
```

```
}
41
42
            for (; ka < NR[i + 1]; ka++) {</pre>
43
                 c.JA.push_back(JA[ka]);
44
                 c.AN.push_back(AN[ka]);
                 val++;
46
            }
47
48
            for (; kb < mtr.NR[i + 1]; kb++) {</pre>
49
                 c.JA.push_back(mtr.JA[kb]);
50
                 c.AN.push_back(mtr.AN[kb]);
51
                 val++;
52
            }
53
        }
54
55
        c.NR.push_back(c.AN.size());
56
        return c;
57
  }
58
```

Вывод

В данном разделе была приведена информация о выбранных средствах для разработки алгоритмов.

4 Исследовательский раздел

В данном разделе будут приведены примеры работы программы.

4.1 Демонстрация работы программы

На рисунке 4.1 представлен пример результата работы программы.

Рисунок 4.1 – Демонстрация работы программы

ЗАКЛЮЧЕНИЕ

Цель, поставленная в начале работы, была достигнута. Кроме того были достигнуты все поставленные задачи:

- 1) описано понятие разряженной матрицы;
- 2) описан алгоритм сложения разряженных матриц;
- 3) описанный алгоритм реализован.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. $\mathit{C.~II.}$ Технология разреженных матриц //. М.: Издательство «МИР», 1998. С. 410.
- 2. С++ language. [Электронный ресурс]. Режим доступа: https://en.cppreference.com/w/cpp/language (дата обращения: 21.12.2023).