Algorithms and Datastructures Graphs, Depth-/Breadth-first Search, Graph-Connectivity

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithms and Datastructures, January 2017

Structure

Feedback

Exercises Lecture

Graphs

Introduction Implementation Application example

Structure

Feedback

Exercises Lecture

Graphs

Introduction Implementation Application example

Feedback from the exercises

The upcoming exercise sheet 12 and 13 will be merged together (finding largest connected component + Dijkstra)

Some people were asking for more solution sheets for the exercises

We are working on it.

Feedback from the lecture

Code in the lecture will be a little bit different from exercise sheet.

One person asked for additional explanations regarding proofs.

Structure

Feedback Exercises

Graphs

Introduction Implementation Application example

Structure

Feedback

Exercises Lecture

Graphs

Introduction

Implementation
Application example

Graphs - Overview:

NE NE

Graphs - Overview:

 Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth first search (BFS)

Graphs - Overview:

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth first search (BFS)
- Depth first search (DFS)

Graphs - Overview:

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth first search (BFS)
- Depth first search (DFS)
- Connected components of a graph

■ Each Graph G = (V, E) consists of:

- Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$

- Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, ...\}$
 - A set of edges (arcs) $E = \{e_1, e_2, ...\}$

- Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, ...\}$
 - A set of edges (arcs) $E = \{e_1, e_2, ...\}$
- Each edge connects two vertices $(u, v \in V)$

- Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, ...\}$
- Each edge connects two vertices $(u, v \in V)$
 - Undirected edge: $e = \{u, v\}$ (set)

- Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, ...\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- Each edge connects two vertices $(u, v \in V)$
 - Undirected edge: $e = \{u, v\}$ (set)
 - Directed edge: e = (u, v) (tuple)

- Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, ...\}$
 - A set of edges (arcs) $E = \{e_1, e_2, ...\}$
- Each edge connects two vertices $(u, v \in V)$
 - Undirected edge: $e = \{u, v\}$ (set)
 - Directed edge: e = (u, v) (tuple)
- Self-loops are also possible: e = (u, u) or $e = \{u, u\}$

NE NE

Weighted graph:

UN:

Weighted graph:

REB

Weighted graph:

Each edge is marked with a real number named weight

Weighted graph:

- Each edge is marked with a real number named weight
- The weight is also named length or cost of the edge depending on the application

Graphs Introduction

Example: Road network

Example: Road network

Intersections:

vertices

Example: Road network

Intersections:

vertices

■ Roads: edges

Example: Road network

Intersections:

vertices

Roads: edges

Travel time:

costs of the edges

- Intersections: vertices
- Roads: edges
- Travel time: costs of the edges

Figure: Map of Freiburg © OpenStreetMap

Structure

Feedback

Exercises Lecture

Graphs

Introduction
Implementation
Application example

Two classic variants

- Two classic variants
 - 1 Adjacency matrix with space consumption $\Theta(|V|^2)$

- Two classic variants
 - Adjacency matrix with space consumption $\Theta(|V|^2)$

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

How to represent this graph computationally?

- Two classic variants
 - Adjacency matrix with space consumption $\Theta(|V|^2)$

Figure: Weighted graph with |V| = 4, |E| = 6

	end-vertice			
	0	1	2	3
ice 0		2		3
start-vertice			9	
£ 2				-1
sta 3		7	-2	

Figure: Adjacency matrix

Graphs

Implementation

EIBURG

How to represent this graph computationally?

EIBURG

How to represent this graph computationally?

- Two classic variants
 - 2 Adjacency list / fields with space consumption $\Theta(|V| + |E|)$

- Two classic variants
 - 2 Adjacency list / fields with space consumption $\Theta(|V| + |E|)$
 - Each list item stores the target vertice and the cost of the edge

How to represent this graph computationally?

- Two classic variants
 - 2 Adjacency list / fields with space consumption $\Theta(|V| + |E|)$
 - Each list item stores the target vertice and the cost of the edge

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

- Two classic variants
 - 2 Adjacency list / fields with space consumption $\Theta(|V| + |E|)$
 - Each list item stores the target vertice and the cost of the edge

<u>8</u> (0)	1, 2	3, 3
start-vertice	2, 9	
£ 2	3, -1	
sta 3	1, 7	2, -2
		•

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

Figure: Adjacency list

Graphs Implementation

I BURG

NE NE

Graphs

Implementation

Graph: Arrangement

■ Graph is fully defined through the adjacency matrix / list

- Graph is fully defined through the adjacency matrix / list
- The arrangement is not relevant for visualisation of the graph

- Graph is fully defined through the adjacency matrix / list
- The arrangement is not relevant for visualisation of the graph

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

- Graph is fully defined through the adjacency matrix / list
- The arrangement is not relevant for visualisation of the graph

Figure: Weighted graph with |V| = 4, |E| = 6

Figure: Same graph ordered by number - outer planar graph

```
class Graph:
    def init (self):
        self.vertices = []
        self.edges = []
    def addVertice(self, vert):
        self.vertices.append(vert)
    def addEdge(self, fromVert, toVert):
        self.edges.append((fromVert, toVert))
```


Graphs Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Graphs

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

Figure: Vertex with in- / outdegree of 3 / 2

■ Indegree of a vertex *u* is the number of edge heads adjacent to the vertex

$$\deg^+(u) = |\{(v, u) : (v, u) \in E\}|$$

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

Indegree of a vertex u is the number of edge heads adjacent to the vertex

$$\deg^+(u) = |\{(v, u) : (v, u) \in E\}|$$

 Outdegree of a vertex u is the number of edge tails adjacent to the vertex

$$\deg^{-}(u) = |\{(u, v) : (u, v) \in E\}|$$

Graphs Degrees (Valency)

FREE

Degree of a vertex: Undirected graph: G = (V, E)

Figure: Vertex with degree of 4

Degree of a vertex: Undirected graph: G = (V, E)

Figure: Vertex with degree of 4

Degree of a vertex u is the number of vertices adjacent to the vertex

$$deg(u) = |\{\{v, u\} : \{v, u\} \in E\}|$$

Graphs Paths

Figure: Undirected path of length 3 P = (0,3,2,4)

Figure: Directed path of length 3 P = (0,3,1,4)

Paths in a graph: G = (V, E)

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

■ A path of G is a sequence of edges $u_1, u_2, ..., u_i \in V$ with

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

- A path of G is a sequence of edges $u_1, u_2, ..., u_i \in V$ with
 - Undirected graph: $\{u_1, u_2\}, \{u_2, u_3\}, \dots, \{u_{i-1}, u_i\} \in E$
 - Directed graph: $(u_1, u_2), (u_2, u_3), \dots, (u_{i-1}, u_i) \in E$

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths in a graph: G = (V, E)

3 -1 2

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

The length of a path is: (also costs of a path)

3 -1 -2 2

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

- The length of a path is: (also costs of a path)
 - Without weights: number of edges taken

3 -1 2

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

- The length of a path is: (also costs of a path)
 - Without weights: number of edges taken
 - With weights: sum of weigths of edges taken

Graphs Paths

Shortest path in a graph: G = (V, E)

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = ?

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = ?

The shortest path between two vertices u, v is the path P = (u, ..., v) with the shortest length d(u, v) or lowest costs

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = 6P = (0,1,4,3,2)

The shortest path between two vertices u, v is the path P = (u, ..., v) with the shortest length d(u, v) or lowest costs

Graphs Paths

Diameter of a graph: G = (V, E)

Diameter of a graph: G = (V, E)

$$d = \max_{u,v \in V} d(u,v)$$

Figure: Diameter of graph is d = ?

Paths

Diameter of a graph: G = (V, E)

$$d = \max_{u,v \in V} d(u,v)$$

Figure: Diameter of graph is d = ?

The diameter of a graph is the length / the costs of the longest shortest path

Paths

Diameter of a graph: G = (V, E)

Figure: Diameter of graph is d = 10, P = (3, 2, 5)

The diameter of a graph is the length / the costs of the longest shortest path

Graphs Connected Components

E BURG

Connected components: G = (V, E)

ZE ZE

Figure: Three connected components

Undirected graph:

Figure: Three connected components

- Undirected graph:
 - All connected components are a partition of V

$$V = V_1 \cup \cdots \cup V_k$$

Figure: Three connected components

- Undirected graph:
 - All connected components are a partition of V

$$V = V_1 \cup \cdots \cup V_k$$

Two vertices u, v are in the same connected component if a path between u and v exists

Graphs Connected Components

Graphs Connected Components

Connected components: G = (V, E)

Directed graph:

- Directed graph:
 - Named strongly connected components

- Directed graph:
 - Named strongly connected components
 - Direction of edge has to be regarded

- Directed graph:
 - Named strongly connected components
 - Direction of edge has to be regarded
 - Not part of this lecture

Connected Components - Graph Exploration

Graph Exploration: (Informal definition)

Connected Components - Graph Exploration

Graph Exploration: (Informal definition)

■ Let G = (V, E) be a graph and $s \in V$ a start vertex

- Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s

- Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s
- Breadth-first search: in sequence of the smallest distance to s

Graph Exploration: (Informal definition)

- Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s
- Breadth-first search: in sequence of the smallest distance to s
- Depth-first search: in sequence of the largest distance to s

- Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s
- Breadth-first search: in sequence of the smallest distance to s
- Depth-first search: in sequence of the largest distance to s
- Not a problem on its own but is often used as subroutine of other algorithms

Connected Components - Breadth-First Search

Connected Components - Breadth-First Search

Idea:

We start with all vertices unmarked and mark visited vertices

- We start with all vertices unmarked and mark visited vertices
- 2 Mark the start vertex s (level 0)

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s (level 0)
- Mark all unmarked connected vertices (level 1)

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s (level 0)
- Mark all unmarked connected vertices (level 1)
- Mark all unmarked vertices connected to a level 1-vertex (level 2)

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s (level 0)
- Mark all unmarked connected vertices (level 1)
- Mark all unmarked vertices connected to a level 1-vertex (level 2)
- 5 Iteratively mark reachable vertices for all levels

ldea:

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s (level 0)
- Mark all unmarked connected vertices (level 1)
- Mark all unmarked vertices connected to a level 1-vertex (level 2)
- 5 Iteratively mark reachable vertices for all levels
- All connected nodes are now marked and in the same connected component as the start vertex s

Connected Components - Breadth-First Search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Figure: spanning tree of a breadth-first search

Connected Components - Depth-First Search

We start with all vertices unmarked and mark visited vertices

Idea:

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s

Idea:

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s
- Pick an unmarked connected vertex and start a recursive depth-first search with the vertex as start vertex (continue on step 2)

- We start with all vertices unmarked and mark visited vertices
- Mark the start vertex s
- Pick an unmarked connected vertex and start a recursive depth-first search with the vertex as start vertex (continue on step 2)
- If no unmarked connected vertex exists go one vertex back (reduce the recursion level by one)

Graphs

Connected Components - Depth-First Search

Search starts with long paths (searching with depth)

- Search starts with long paths (searching with depth)
- Marks like breadth-first search all connected vertices

- Search starts with long paths (searching with depth)
- Marks like breadth-first search all connected vertices
- If the graph is acyclic we get a topological sorting

- Search starts with long paths (searching with depth)
- Marks like breadth-first search all connected vertices
- If the graph is acyclic we get a topological sorting
 - Each newly visited vertex gets marked by an increasing number

- Search starts with long paths (searching with depth)
- Marks like breadth-first search all connected vertices
- If the graph is acyclic we get a topological sorting
 - Each newly visited vertex gets marked by an increasing number
 - The numbers increase with path from the start vertex

Graphs Connected Components - Depth-First Search

January 2017

Graphs

Connected Components - Depth-First Search

- The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- opath 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

- The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- path 1
- path 2
- opath 3

Figure: spanning tree of a depth-first search

Figure: spanning tree of a depth-first search

Graphs

Why is this called Breadth - and Depth First Search?

Constant costs for each visited vertex and edge

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- Let V' and E' be the reachable vertices and edges

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- Let V' and E' be the reachable vertices and edges
- All vertices of V' are in the same connected component as our start vertex s

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- Let V' and E' be the reachable vertices and edges
- All vertices of V' are in the same connected component as our start vertex s
- This can only be improved by a constant factor

Structure

Feedback

Exercises

Graphs

Introduction Implementation

Application example

Image processing

Image processing

Connected component labeling

Image processing

- Connected component labeling
- Counting of objects in an image

Image processing

- Connected component labeling
- Counting of objects in an image

Image processing

What's object, what's background?

Convert to black white using threshold:

value = 255 if value > 100 else 0

Application example Image processing

Interpret image as graph:

Application example Image processing

NE NE

Interpret image as graph:

■ Each white pixel is a node

Application example Image processing

Interpret image as graph:

- Each white pixel is a node
- Edges between adjacent pixels (normally 4 or 8 neighbors)

Interpret image as graph:

- Each white pixel is a node
- Edges between adjacent pixels (normally 4 or 8 neighbors)
- Edges are not saved externally, algorithm works directly on array

Image processing

Interpret image as graph:

- Each white pixel is a node
- Edges between adjacent pixels (normally 4 or 8 neighbors)
- Edges are not saved externally, algorithm works directly on array
- Breadth- / depth-first search find all connected components (particles)

Image processing

Image processing

Image processing

Find connected components:

Search pixel-by-pixel for non-zero intensity

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels

William Willia

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- Label found pixel as component 2
- ...

Result of connected component labeling:

Figure: Result: particle indices instead of intensities

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- Kurt Mehlhorn and Peter Sanders. [MS08] Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/

ftp/Mehlhorn-Sanders-Toolbox.pdf.

■ Graph-Search

Graph-Connectivity

```
[Wik] Connectivity (graph theory)
    https://en.wikipedia.org/wiki/Connectivity_
    (graph_theory)
```