1

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from google.colab import drive
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score
```

DATASET LOADED

drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mou

df.head()

1 to 5 of 5 entries Filter								
index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	М	0.455	0.365	0.095	0.514	0.2245	0.101	0.15
1	М	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07
2	F	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21
3	М	0.44	0.365	0.125	0.516	0.2155	0.114	0.155
4	I	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055
4								

Show 25 ✓ per page

df.tail()

1 to 5 of 5 entries Filter □

index S	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	а
4172	F	0.565	0.45	0.165	0.887	0.37	0.239	0.249	1

df.describe()

1	to	R	∩f	R	entries
- 1	ιU	O	UI	O	GHILLES

index	Length	Diameter	Height	Whole weight	S
count	4177.0	4177.0	4177.0	4177.0	
mean	0.5239920995930094	0.40788125448886764	0.13951639932966242	0.8287421594445774	0.35
std	0.12009291256479956	0.09923986613365945	0.041827056607257274	0.4903890182309977	0.22
min	0.075	0.055	0.0	0.002	
25%	0.45	0.35	0.115	0.4415	
50%	0.545	0.425	0.14	0.7995	
75%	0.615	0.48	0.165	1.153	
max	0.815	0.65	1.13	2.8255	
4					>

Univariate Analysis

```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f50c63ffc90>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f50c77a4e50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f50c6311390>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f50c62c8990>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7f50c627ff90>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f50c62405d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f50c61f8c50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f50c61be1d0>]],
      dtype=object)
```


df.groupby('Sex')[['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'age']].mean().sort values('age')

1	to	3	of	3	entries
		_	•	_	

800

600

400

Filter

Sex	Length	Diameter	Height	Whole weight	Shu
I	0.42774590163934423	0.3264940387481371	0.10799552906110284	0.43136251862891206	0.19103
M	0.5613907068062827	0.4392866492146597	0.15138089005235603	0.9914594240837696	0.43294
F	0.5790933435348126	0.4547322111706198	0.15801071155317523	1.0465321346595258	0.44618
4					>

Show 25 ✓ per page

Like what you see? Visit the data table notebook to learn more about interactive tables

Bivariate and Multivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns sns.pairplot(df[numerical features])

Descriptive Statistics

df.describe()

			1 to 8 of	8 entries Filter	
index	Length	Diameter	Height	Whole weight	S
count	4177.0	4177.0	4177.0	4177.0	
mean	0.5239920995930094	0.40788125448886764	0.13951639932966242	0.8287421594445774	0.35
std	0.12009291256479956	0.09923986613365945	0.041827056607257274	0.4903890182309977	0.22
min	0.075	0.055	0.0	0.002	
25%	0.45	0.35	0.115	0.4415	
50%	0.545	0.425	0.14	0.7995	
75%	0.615	0.48	0.165	1.153	
max	0.815	0.65	1.13	2.8255	
4					•

Show 25 ▶ per page

Check for missing values

df.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
age	0
dtype: int64	

Outlier Handling

```
1
```

```
df = pd.get_dummies(df)
dummy_data = df.copy()
```

#outliers removal for viscera weight

```
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Viscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)
```


#outliers removal for shell weight

```
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True)
df.drop(df[(df['Shell weight']<0.8) & (df['age'] > 25)].index, inplace=True)
```


#Outliers removal for shuked weight

```
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```


#outliers removal for whole weight

```
var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &(df['age'] < 25)].index, inplace = True)
df.drop(df[(df['Whole weight']<2.5) & (df['age'] > 25)].index, inplace = True)
```


#outliers removal for diameters

```
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```

1

```
df.drop(df[(df['Diameter'] <0.1) &(df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Diameter'] < 0.6) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter'] > = 0.6) & (df['age'] < 25)].index, inplace = True)</pre>
```


#outliers removal for height

```
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Height'] > 0.4) &(df['age'] < 15)].index, inplace = True)
df.drop(df[(df['Height']<0.4) & (df['age'] > 25)].index, inplace = True)
```


#outliers removal for length

```
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Length'] < 0.1) &(df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Length'] < 0.8) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Length'] > = 0.8) & (df['age'] < 25)].index, inplace = True)</pre>
```


Categorical Columns

```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/rele

```
numerical_features
```

categorical_features

```
Index([], dtype='object')
```

Split the dependent and independent variables

```
x=df.iloc[:,:5]
y=df.iloc[:,5:]
```

Χ

1 to 25 of 3995 entries Filter

?

index	Length	Diameter	Height	Whole weight	Shucked weight
0	0.455	0.365	0.095	0.514	0.2245
1	0.35	0.265	0.09	0.2255	0.0995
2	0.53	0.42	0.135	0.677	0.2565
3	0.44	0.365	0.125	0.516	0.2155
4	0.33	0.255	80.0	0.205	0.0895
5	0.425	0.3	0.095	0.3515	0.141
7	0.545	0.425	0.125	0.768	0.294
8	0.475	0.37	0.125	0.5095	0.2165
10	0.525	0.38	0.14	0.6065	0.194
11	0.43	0.35	0.11	0.406	0.1675
12	0.49	0.38	0.135	0.5415	0.2175
13	0.535	0.405	0.145	0.6845	0.2725
14	0.47	0.355	0.1	0.4755	0.1675
15	0.5	0.4	0.13	0.6645	0.258
16	0.355	0.28	0.085	0.2905	0.095
17	0.44	0.34	0.1	0.451	0.188
18	0.365	0.295	80.0	0.2555	0.097
19	0.45	0.32	0.1	0.381	0.1705
20	0.355	0.28	0.095	0.2455	0.0955
21	0.38	0.275	0.1	0.2255	0.08
22	0.565	0.44	0.155	0.9395	0.4275
23	0.55	0.415	0.135	0.7635	0.318
24	0.615	0.48	0.165	1.1615	0.513

			1	to 25 of 3995	entries Fil	ter 🛭 ?
index	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
0	0.101	0.15	16.5	0	0	1
1	0.0485	0.07	8.5	0	0	1
2	0.1415	0.21	10.5	1	0	0
3	0.114	0.155	11.5	0	0	1
4	0.0395	0.055	8.5	0	1	0
5	0.0775	0.12	9.5	0	1	0
7	0.1495	0.26	17.5	1	0	0
8	0.1125	0.165	10.5	0	0	1
10	0.1475	0.21	15.5	1	0	0
11	0.081	0.135	11.5	0	0	1
12	0.095	0.19	12.5	0	0	1

split the data (train and test)

lr=LinearRegression()
lr.fit(x_train,y_train)

LinearRegression()

25 0.188 0.3 12.5 1 0 0

Train the model

Show 25 → per page | 1 | 2 | 10 | 100 | 150 | 160

x_train[0:4]

1 to 4 of 4 entries | Filter Height Whole weight Shucked weight index Length Diameter 2423 0.41 0.315 0.11 0.321 0.1255 1216 0.31 0.225 0.07 0.1055 0.435 3002 0.645 0.505 0.592 0.185 1.463 985 0.57 0.45 0.155 1.1935 0.513

Show 25 → per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

y_train[0:5]

1 to 4 of 4 entries Filter I

				1 to 5 of 5	entries Fil	Iter 🛭 🔞
index	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
2423	0.0655	0.095	11.5	1	0	0
1216	0.015	0.04	6.5	0	1	0
3002	0.3905	0.416	11.5	0	0	1
985	0.21	0.343	11.5	0	0	1
2838	0.233	0.2595	10.5	0	0	1

x_test[0:4]

				1 10 4 1	of 4 entities Tiller
index	Length	Diameter	Height	Whole weight	Shucked weight
3006	0.7	0.545	0.185	1.6135	0.75
3817	0.475	0.385	0.12	0.562	0.289
4094	0.63	0.53	0.175	1.4135	0.667
402	0.435	0.325	0.11	0.4335	0.178

Show 25 v per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

y_test[0:5]

			1 to 5 of 5 entries Filter			
index	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
3006	0.4035	0.3685	12.5	0	0	1
3817	0.0905	0.153	9.5	0	0	1
4094	0.2945	0.3555	14.5	0	0	1
402	0.0985	0.155	8.5	1	0	0
1396	0.2385	0.345	12.5	0	0	1

Show 25

✓ per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

```
ss=StandardScaler()
x_train=ss.fit_transform(x_train)
```

lrpred=lr.predict(x_test[0:9])

1rpred

```
array([[ 0.35064154,  0.42317517, 12.55339604,  0.50780283, -0.08545215,  0.57764932],  [ 0.11701718,  0.15625023,  9.84878154,  0.23508899,  0.45415266,  0.31075835],  [ 0.30007654,  0.37892926, 12.30238534,  0.50574715, -0.05317174,  0.54742459],  [ 0.09692013,  0.13181165,  9.95964476,  0.18232777,  0.5578356 ,
```

```
0.25983664],
[ 0.25590426,  0.32122087, 11.92694455,  0.41939293,  0.12392858,  0.45667849],
[ 0.15846252,  0.20923024, 11.29126176,  0.29014005,  0.36997235,  0.33988761],
[ 0.28730637,  0.35538064, 12.37098073,  0.43130339,  0.09697514,  0.47172147],
[ 0.15229535,  0.20263728, 10.84591436,  0.29722028,  0.34107547,  0.36170425],
[ 0.05210596,  0.07789379,  9.1755676 ,  0.12539739,  0.65136117,  0.22324144]])
```

Measure the performance using Metrics

```
r2_score(lr.predict(x_test),y_test)
```

-3.1758408437233587

Colab paid products - Cancel contracts here

check • X