COMP6453 Tutorial Week 4

1 MAC

Consider the following MAC for messages of length l(n) = 2n - 2 using a pseudorandom function F(k, m). On an input message $m_0||m_1$ (with $|m_0| = |m_1| = n - 1$) and key $k \in \{0,1\}^n$, algorithm MAC outputs $t = F_k(0||m_0)||F_k(1||m_1)$. Algorithm Ver is defined in the natural way. Is (KeyGen, TG, Ver) secure? Prove your answer.

2 Indistinguishability: Hybrid Lemma and an Application

- (i). Let $X^{(1)}, X^{(2)}, ..., X^{(m)}$ be a sequence of probability distributions. Assume that there exists an adversary $\mathcal A$ that distinguishes $X^{(1)}$ and $X^{(m)}$ with probability at least ϵ . Show that there exists $i \in 1, ..., m$ such that $\mathcal A$ distinguishes distributions $X^{(i)}$ and $X^{(i+1)}$ with probability at least $\frac{\epsilon}{m}$.
- (ii). (Transitivity property of Computational Indistinguishability) Use (i) to conclude that if A, B, and C are distributions with $A \approx_c B$ and $B \approx_c C$, then $A \approx_c C$.

Remark for Math Nerds: The probability a distinguisher outputs 1 when fed a sample from a distribution induces a metric space on the space of probability distributions over strings. The hybrid lemma is a restatement of the triangle inequality on this metric space.

(iii). Lets say we have a semantically secure public key encryption scheme Pub = (Setup, Enc, Dec). Using only this scheme, construct a symmetric key encryption scheme (Setup', Enc', Dec') satisfying multi message security.

(Hint: Multi message security (aka CPA security) means that for all pairs $(x_1, ..., x_n)$ and $(y_1, ..., y_n)$ where x_i, y_i are messages and n is polynomially long, we have that the two distributions

$$(Enc'(sk', x_1), ..., Enc'(sk', x_n)) \approx_c (Enc'(sk', y_1), ..., Enc'(sk', y_n))$$

where sk' is randomly sampled from the secret key space. You may use the fact that any semantically secure public key encryption scheme is also multi-message secure).

3 Basic Number Theory Calculations

- (i). Use the Euclidean Algorithm to find gcd(342, 194).
- (ii). Calculate 7¹²⁰ (mod 143)