Question number	Scheme	Marks
5 (a)	$1 + anx + \frac{n(n-1)}{2}a^2x^2 + \frac{n(n-1)(n-2)}{3!}a^3x^3$	M1 A1 (2)
(b)	an = 15	B1
	$\frac{an = 15}{\frac{n(n-1)}{2}a^2} = \frac{n(n-1)(n-2)}{6}a^3 \Rightarrow (3 = (n-2)a)$	M1A1
	Solving simultaneously leading to $a = \dots$ or $n = \dots$	M1
	a = 6 and $n = 2.5$	A1 A1
		(6)
(c)	$\frac{2.5 \times 1.5 \times 0.5 \times 6^{3}}{6} = 67.5$	M1 A1 (2)
		Total 10 marks

Part Mark **Notes** For an attempt to expand the given expression up to the term in x^3 (a) **M1** The definition of an attempt is as follows: The first two terms must be correct [1 + anx]The powers of x must be correct The denominators must be correct Simplification not required e.g accept $(ax)^2$ or $(ax)^3$ $(1+ax)^n = 1 + anx + \frac{n(n-1)}{2}a^2x^2 + \frac{n(n-1)(n-2)}{3!}a^3x^3$ **A1** For a fully correct expansion. Simplification not required. **(b) B1** For setting an = 15For setting their coefficient of x^2 equal to their coefficient of x^3 **M1** $\frac{n(n-1)}{2}a^2 = \frac{n(n-1)(n-2)}{6}a^3$ Do not condone the presence of either x^2 or x^3 for this mark unless there is later For the fully correct equation simplified or unsimplified. A1 $\frac{n(n-1)}{2}a^2 = \frac{n(n-1)(n-2)}{6}a^3 \Rightarrow (3 = (n-2)a)$ For simplifying the correct equation above to an equation where the powers of a**M1** and n are 1 and attempting to solve the two equations simultaneously leading to $a = \dots$ or $n = \dots$ Condone one arithmetical slip at any point. For either a = 6 or n = 2.5A1 For both a = 6 and n = 2.5**A1** For substituting their values of a and n into their coefficient of x^3 (c) **M1** $\frac{2.5 \times 1.5 \times 0.5 \times 6^{3}}{6} = 67.5$ where $a, n \neq 1$ or 0 **A1** For 67.5