1장 자료구조와 알고리즘

일상생활에서의 사물의 조직화

일상생활과 자료구조의 비교

⟨표 1-1⟩ 일상생활과 자료구조의 유사성

일상생활에서의 예	해당하는 자료구조
그릇을 쌓아서 보관하는 것	스택
마트 계산대의 줄	큐
버킷 리스트	리스트
영어사전	사전
지도	그래프
컴퓨터의 디렉토리 구조	트리

자료구조와 알고리즘

□ 프로그램 = 자료구조 + 알고리즘

알고리즘

largest←scores[0]
for i←1 to N-1 do
 if scores[i]>largest
 then largest←scores[i]
return largest


```
#define MAX_ELEMENTS 100
int scores[MAX_ELEMENTS]; // 자료구조
int get_max_score(int n) // 학생의 숫자는 n
       int i, largest;
       largest = scores[0]; // 알고리즘
       for (i = 1; i<n; i++) {
                 if (scores[i] > largest) {
                          largest = scores[i];
       return largest;
```

알고리즘의 조건

- □ 알고리즘의 조건
 - □ 입력: 0개 이상의 입력이 존재하여야 한다.
 - 출력: 1개 이상의 출력이 존재하여야 한다.
 - 명백성 : 각 명령어의 의미는 모호하지 않고 명확해야 한다.
 - □ 유한성 : 한정된 수의 단계 후에는 반드시 종료되어야 한다.
 - □ 유효성 : 각 명령어들은 실행 가능한 연산이여야 한다.

□ **알고리즘(algorithm):** 컴퓨터로 문제를 풀기 위한 단계적인 절차

알고리즘의 기술 방법

- □ 영어나 한국어와 같은 자연어
- □ 흐름도(flow chart)
- □ 의사 코드(pseudo-code)
- □ 프로그래밍 언어

자연어로 표기된 알고리즘

- □ 인간이 읽기가 쉽다.
- □ 그러나 자연어의 단어들을 정확하게 정의하지 않으면 의미 전달이 모호해질 우려가 있다.

(예) 배열에서 최대값 찾기 알고리즘

ArrayMax(list, n)

- 1. 배열 list의 첫번쨰 요소를 변수 tmp에 복사
- 2. 배열 list의 다음 요소들을 차례대로 tmp와 비교하면 더 크면 tmp 로 복사
- 3. 배열 list의 모든 요소를 비교했으면 tmp를 반환

흐름도로 표기된 알고리즘

- 직관적이고 이해하기 쉬운 알고리즘 기술 방법
- 그러나 복잡한 알고리즘의 경우, 상당히 복잡해짐.

유사코드로 표현된 알고리즘

- □ 알고리즘 기술에 가장 많이 사용
- 프로그램을 구현할 때의 여러 가지 문제들을 감출 수 있다.즉 알고리즘의 핵심적인 내용에만 집중할 수 있다.

```
ArrayMax(list, N):

largest←list[0]

for i←1 to N-1 do

if list[i]>largest

then largest←list[i]

return largest
```


- 알고리즘의 가장 정확한 기술이 가능
- 반면 실제 구현 시, 많은 구체적인 사항들이 알고리즘의 핵심적인 내용에 대한 이해를 방해할 수 있다.

```
#define MAX_ELEMENTS 100
int score[MAX_ELEMENTS];
int find_max_score(int n)
{
    int i, tmp;
    tmp=score[0];
    for(i=1;i<n;i++){
        if( score[i] > tmp ){
            tmp = score[i];
        }
    }
    return tmp;
}
```


- □ 자료형(data type): "데이터의 종류"
- □ 정수, 실수, 문자열 등이 기초적인 자료형의 예

- □ 자료형(data type)
 - □ 데이터의 집합과 연산의 집합

int 자료형

데이터: {-INT_MIN, ..., -2, -1. 0, 1, 2, ..., INT_MAX }

연산: +, -, *, /, %, ==, >, <

- □ 추상 데이터 타입(ADT: Abstract Data Type)
 - 데이터 타입을 추상적(수학적)으로 정의한 것
 - □ 데이터나 연산이 무엇(what)인가는 정의되지만 데이터나 연산을 어떻게(how) 컴퓨터 상에서 구현할 것인지는 정의되지 않는다.

추상데이터타입의 유래

- □ 추상화(abstraction)-> 정보은닉기법(information hiding)-> 추상 자료형(ADT)
- 추상화란 사용자에게 중요한 정보는 강조되고 반면 중요 하지 않은 구현 세부 사항은 제거하는 것

추상 데이터 타입의 정의

- □ <mark>객체</mark>: 추상 데이터 타입에 속하는 객체가 정의된다.
- □ <mark>연산</mark>: 이들 객체들 사이의 연산이 정의된다. 이 연산은 추상 데이터 타입과 외부를 연결하는 인터페이스의 역할을 한다.

추상 데이터 타입의 예: 자연수

```
Nat_No
객체: 0에서 시작하여 INT MAX까지의 순서화된 정수의 부분범위
함수:
Nat Number zero()
                  ::= 0
Nat_Number successor(x) := if(x == INT_MAX) return x
                                         else return x+1
Boolean is_zero(x) ::= if (x) return FALSE
                                       else return TRUE
Boolean equal(x,y) ::= if( x==y) return TRUE
                                         else return FALSE
Nat_Number\ add(x,y) ::= if((x+y) \le INT_MAX)
                                                return x+y
                 else return INT MAX
Nat_Number sub(x,y) ::= if (x<y) return 0
                                else return x-y;
```


추상 데이터 타입과 TV

- ■TV의 인터페이스가 제공하는 특정한 작업만을 할 수 있다.
- ■사용자는 TV의 내부를 볼 수 없다.
- ■TV의 내부에서 무엇이 일어나고 있는 지를 몰라도 이용할 수 있다.

- ■사용자들은 ADT가 제공하는 연산만을 사용할 수 있다.
- ■사용자들은 ADT 내부의 데이터를 접근할 수 없다.
- ■사용자들은 ADT가 어떻게 구현되는지 모르더라도 ADT를 사용할 수 있다

알고리즘의 성능분석

- □ 알고리즘의 성능 분석 기법
 - □ 수행 시간 측정
 - 두개의 알고리즘의 실제 수행 시간을 측정하는 것
 - 실제로 구현하는 것이 필요
 - 동일한 하드웨어를 사용하여야 함

- □ 알고리즘의 복잡도 분석
 - 직접 구현하지 않고서도 수행 시간을 분석하는 것
 - 알고리즘이 수행하는 연산의 횟수를 측정하여 비교
 - 일반적으로 연산의 횟수는 n의 함수

와 프로그램의 효율성이 중요한 가2

입력 자료의 개수	프로그램 A: n^2	프로그램 B: 2 ⁿ
n = 6	36초	64초
n = 100	10000초	2 ¹⁰⁰ 초=4×10 ²² 년

수행시간측정

□ 알고리즘을 프로그래밍 언어로 작성하여 실제 컴퓨터상 에서 실행시킨 다음, 그 수행시간을 측정

알고리즘 2

수행 시간 50초

수행시간 측정 2가지 방법

방법 #1	방법 #2
<pre>#include <time.h></time.h></pre>	<pre>#include <time.h></time.h></pre>
<pre>start = clock();</pre>	<pre>start = time(NULL);</pre>
<pre>stop = clock(); double duration = (double)(stop - start) / CLOCKS_PER_SEC;</pre>	<pre>stop = time(NULL); double duration = (double) difftime(stop, start);</pre>


```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void)
      clock_t start, stop;
       double duration;
      start = clock(); // 측정 시작
      for (int i = 0; i < 1000000; i++) // 의미 없는 반복 루프
      stop = clock(); // 측정 종료
       duration = (double)(stop - start) / CLOCKS_PER_SEC;
       printf("수행시간은 %f초입니다.\n", duration);
       return 0;
```

복잡도 분석

□ 시간 복잡도는 알고리즘을 이루고 있는 연산들이 몇 번이 나 수행되는지를 숫자로 표시

largest←scores[0]
for i←1 to N-1 do
 if scores[i]>largest
 then largest←scores[i]
return largest

- □ 시간 복잡도(time complexity)
- □ 공간 복잡도(space complexity)

기본연산수 20

알고리즘 2

기본연산수 100

입력의 개수 고려

알고리즘 1

3n+2

알고리즘 2

 $5n^2 + 6$

복잡도 분석의 예

□ 양의 정수 을 번 더하는 문제를 생각하여 보자.

알고리즘 A	알고리즘 B	알고리즘 C
sum ←n*n;	for i←1 <u>to n</u> do sum ←sum + n;	for i←1 <u>to n</u> do for j←1 <u>to n</u> do sum ←sum + 1;

알고리즘의 비교

알고리즘 A	알고리즘 B	알고리즘 C
sum ←n*n;	for i←1 <u>to n</u> do sum ←sum + n;	for i←1 <u>to n</u> do for j←1 <u>to n</u> do sum ←sum + 1;

	알고리즘 A	알고리즘 B	알고리즘 C
대입연산	1	n	n * n
덧셈연산		n	n * n
곱셈연산	1		
나눗셈연산			
전체연산수	2	2n	$2n^2$

연산의 횟수를 그래프로 표현

시 박오 표기법

 자료의 개수가 많은 경우에는 차수가 가장 큰 항이 가장 영향을 크게 미치고 다른 항들은 상대적으로 무시될 수 있다.

첫빅오 표기법

- □ **빅오표기법**: 연산의 횟수를 대략적(점근적)으로 표기한 것
- 두개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 |f(n)| ≤ c|g(n)|을 만족하는 2개의 상수 c와 n₀가 존재하면 f(n)=O(g(n))이다.
- 빅오는 함수의 상한을 표시한다.
 - (예) n≥5 이면 2n+1 <10n 이므로 2n+1 = O(n)

시 박오 표기법

灣박오 표기법의 예

예제 1.1 - 빅오 표기법

- f(n)=5이면 O(1)이다. 왜냐하면 $n_0=1$, c=10일 때, n>1에 대하여 $5 \le 10 \cdot 1$ 이 되기 때문이다.
- f(n)=2n+1이면 O(n)이다. 왜냐하면 $n_0=2$, c=3일 때, n>2에 대하여 $2n+1 \le 3n$ 이 되기 때문이다.
- $f(n)=3n^2+100$ 이면 $O(n^2)$ 이다. 왜냐하면 $n_0=100$, c=5일 때, n>100에 대하여 $3n^2+100 \le 5n^2$ 이 되기 때문이다.
- $f(n) = 5 \cdot 2^n + 10n^2 + 100$ 이면 $O(2^n)$ 이다. 왜냐하면 $n_0 = 1000$, c = 10일 때, n > 1000에 대하여 $5 \cdot 2^n + 10n^2 + 100 \le 10 \cdot 2^n$ 이 되기 때문이다.

박오 표기법의 종류

• O(1): 상수형

• O(log n): 로그형

• O(n): 선형

• *O*(*n* log *n*): 선형로그형

• O(n²): 2차형

• O(n³): 3차형

• $O(2^n)$: 지수형

• O(n!): 팩토리얼형

f(n)	O(f(n))		
10	O(1)		
$5n^2 + 6$	$O(n^2)$		
$2n^3+1$	$O(n^3)$		
$2n^3 + 5n^2 + 6$	$O(n^3)$		

박오 표기법의 종류

시간복잡도		n				
시신숙합도	1	2	4	8	16	32
1	1	1	1	1	1	1
$\log n$	0	1	2	3	4	5
n	1	2	4	8	16	32
$n \log n$	0	2	8	24	64	160
n^2	1	4	16	64	256	1024
n^3	1	8	64	512	4096	32768
2^n	2	4	16	256	65536	4294967296
n!	1	2	24	40326	20922789888000	26313×10^{33}

박오표기법

ㅁ 빅오메가 표기법

- 모든 n≥n₀에 대하여 |f(n)| ≥ c|g(n)|을 만족하는 2개의 상수 c와 n₀가 존재하면 f(n)=Ω(g(n))이다.
- □ 빅오메가는 함수의 하한을 표시한다.
- □ (예) n ≥ 5 이면 2n+1 <10n 이므로 n = Ω(n)

비세타 표기법

- 모든 n≥n₀에 대하여 c₁|g(n)| ≤ |f(n)| ≤ c₂|g(n)|을 만족하는 3개의 상수 c₁, c₂와 n₀가 존재하면 f(n)=θ(g(n))이다.
- □ 빅세타는 함수의 하한인 동시에 상한을 표시한다.
- □ f(n)=O(g(n))이면서 f(n)= Ω(g(n))이면 f(n)= θ(n)이다.
- □ (예) n ≥ 1이면 n ≤ 2n+1 ≤ 3n이므로 2n+1 = θ(n)

최선, 평균, 최악의 경우

- 알고리즘의 수행시간은 입력 자료 집합에 따라 다를 수 있다.
- □ 최선의 경우(best case): 수행 시간이 가장 빠른 경우
- □ 평균의 경우(average case): 수행시간이 평균적인 경우
- □ 최악의 경우(worst case): 수행 시간이 가장 늦은 경우

(예) 최선, 평균, 최악의 경우

- □ (예) 순차탐색
- 최선의 경우: 찾고자 하는 숫자가 맨 앞에 있는 경우∴ O(1)
- 최악의 경우: 찾고자 하는 숫자가 맨 뒤에 있는 경우∴ O(n)

평균적인 경우: 각 요소들이 균일하게 탐색된다고 가정하면

$$(1+2+\cdots+n)/n=(n+1)/2$$

최선, 평균, 최악의 경우

- □ 최선의 경우: 의미가 없는 경우가 많다.
- □ 평균적인 경우: 계산하기가 상당히 어려움.
- 최악의 경우: 가장 널리 사용된다. 계산하기 쉽고 응용에 따라서 중요한 의미를 가질 수도 있다.
 - □ (예) 비행기 관제업무, 게임, 로보틱스

Q & A

