ArchSummit全球架构师峰会 北京站2015

工业4.0时代的物联网架构实践之道

Geekbang》. 极客邦科技

整合全球最优质学习资源,帮助技术人和企业成长 Growing Technicians, Growing Companies

技术媒体

高端技术人员 学习型社交网络

实践驱动的 IT职业学习和服务平台

一线专家驱动的 企业培训服务

旧金山 伦敦 北京 圣保罗 东京 纽约 上海 San Francisco London Beijing Sao Paulo Tokyo New York Shanghai

2016年4月21-23日 | 北京·国际会议中心

主办方 **Geek bang》**. **InfoQ**®

优惠(截至12月27日) 现在报名,节省2040元/张,团购享受更多优惠

新机遇工业4.0与中国制造2025

工业4.0是 "互联网+"的重要一部分,互联网技术降低了 产销之间的信息不对称,加速两者之间的相互联系和反馈,因 信息物理系统 此,催生出消费者驱动的商业模式,而工业4.0是实现这一 (CIS) 带动的 第四次工业革 模式的关键环节。工业4.0代表了"互联网+制造业"的 智能生产,孕育大量的新型商业模式,真正能够实现 电子及信息技 术的普及带动 "C2B2C"的商业模式。 工业自动化生 产和全球化 电气为动力的 大规模、量化 生产带来了第 二次工业革命 复杂程度 注: 引自"工业4.0" 18世纪末 1970年开始 20世纪初 现在

什么是中国制造2025 ?

"中国制造2025"将是中国工业未来 10年的发展纲领、顶层设计。政府的 诸多行动向市场传递出强烈信号,显 示工业转型将迎来大突破、大提速。

工信部表示,计划大体分为三步,用三个十年左右时间实现制造业大国向制造业强国的转变;"中国制造2025"是"三步走"的第一步,将指导中国进入全球制造业的第二方阵。

智能制造物联网案例

"我们想超越预防性维护的行业标准,提供预测甚至先发制人的维护,所以我们可以保证电梯正常运行时间的百分比更高。"

ANDREAS SCHIERENBECK CEO THYSSEN KRUPP

ThyssenKrupp

智能的工业自动化

挑战

和利时(NASDAQ: HOLI)是以"用自动化改进人们的工作、生活和环境"为使命,服务于世界各地的10,000多家企业,广泛涉及从能源生产、交通运输、建筑化工到食品医药的众多行业领域。和利时研发的自动化系统支持着全球25,000台套工业系统设备的日常运行,在包括中国高速铁路、地铁运营和核电、火电厂自动化控制等市场上都占据着主导地位。目前对于设备的主要运维手段是现场服务、巡检和定期维护,这需要消耗大量人力、物力、精力实施现场服务、巡检和定期维护。

解决方案

为了提高问题的诊断和解决效率,改变传统的运营维护模式,和利时建立工业控制云,来实现实时监视和远程诊断与大数据分析的预测性维护;

- 通过实时监视和远程诊断的分析,现场服务团队与全国 各地的研发团队可基于每天10TB以上的数据,共同协 作诊断和分析以提升问题解决的效率;
- 用大数据分析的预测性维护代替传统的运维模式, 分析和预测可能出现问题的设备、原因和可能解决方案, 以缩短非计划停机时间。

获益

- 高可扩展性和低后台运维成本:基于微软领先的公有 云技术和世纪互联的高效运维而构建的自动控制云,能 为大量设备连接和数据存储和处理提供高性能和低成本 的平台;
- 更好业务与技术的灵活性:通过微软的机器学习平台,快速地将和利时的行业知识转化为线上的预测分析服务;
- 易于开发和部署:在Azure的PaaS框架上快捷地搭建 起自己的开发、测试和生产环境,并迅速进行大规模部署,从而对业务环境和需求的变化即刻做出响应,以最低成本快速适应市场

Create the Internet of Your Things

"携手微软智能云给我们的业务模式带来了根本性的革新。Azure的大规模运算和高效的服务扩展潜力给我们留下了深刻的印象,而其对于物联网应用的支持如此完善,也是我们始料未及的。我们希望能在微软云上进一步深挖工业自动化控制领域的创新机遇,为推动制造业创新转型和实现'中国制造2025'战略目标贡献力量。"

- 和利时工业云服务平台的相关领导

智能制造物联网架构

智能制造物联网终端

simple digital signs & micro kiosks

智能制造对终端平台的需求

平台扩展性

- 通用开发框架
- 硬件外设驱动
- 低成本的芯片
- 低耗电

传感器连接

- · 无线链接 (BLE, Wi-Fi, MBB)
- 有线链接(Ethernet, USB)
- 集成MCU/功能单元 (GPIO, I2C, SPI)
- 工业协议链接(Modbus)

安全性

- 数据传输安全
- 平台架构安全

平台升级

远程在线平台升级

应用管理

终端应用的远程部署/更新

云集成

云端集成或适配集成(AMQP, MQTT)

ArchSummit

解读智能制造数据之旅——数据采集

数据采集需求

- 设备 <-> 云 双向连接
- 支持千万量级设备
- 数据采集
- 命令、控制
- 设备注册、身份识别
- 设备管理
- 支持HTTP/AMQP
- 扩展支持MQTT等协议

解读智能制造数据之旅——数据采集

数据采集需求

- 开源 "agent" 框架
- 简单、安全设备 <-> 云连接和管理
- 支持RTOS, Linux, Windows, Android
- 易用, 无强制

C API .NET API Java API Javascript API

Cross Platform C Code

OS Abstraction Layer / OS Bindings

解读智能制造数据之旅——数据分析

解读智能制造数据之旅——数据分析

参考架构

智能制造——设备预测性维护方案详解

设备预测性维护方案详解

日志采集及处理 子系统

采集并整合相关的 数据资产(传感器 日志,设备日志等)

大数据分析&预测子系统

分析业务场景,建 立预测模型并训练, 生成预测结果

设备故障预警及分 析子系统

构建数据可视化 应用,以及相应 维护流程,实现 价值 日志采集及处理子系统 (Demo)

设备故障预警及分析系统

现状

1/\

远景

特种设备预防性运维方案实现

源数据 - 设备状态日志/设备统计数据/设备维修报告

机器学习一模型识别

模型算法比较

	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
Linear Regression	1.645314	2.263212	0.635882	0.35498	0.64502
Neural Network Regression	1.7183	2.235722	0.66409	0.346409	0.653591
Decision Forest Regression	0.836082	1.532812	0.32313	0.162829	0.837171
Booted Decision Tree Regression	0.557559	0.921331	0.215486	0.058828	<u>0.941172</u>
Bayesian Linear Regression	1.661037	2.270156	0.641959	0.357161	0.642839

设备故障机率

预测性维护业务建模(复杂模型)

预测字段: 待检查天数

关键维度:站点ID、设备ID

特性选取: 自定义特性, 衍生设备特性

站点ID	设备ID	设备特性选取					设备统计类型(交易)		检査日
StationID	DeviceID	Feature_1	Feature_2	Feature_3	Feature_4	Feature_5	Dev_Stats_1	Dev_Stats_2	Predictive Day
安河桥北	TV01	48	13	40	9	4	20	30	5 Days
北宫门	TV02	57	13	35	17	10	40	80	7 Days

Thanks!

