Torna a l'edició de l'examen

Nom: _____
Puntuació: _____ / ___

Lab 2b - Castellano

Part 1

Alumno1
Nombre ____ Apellido1 ____ Apellido2 ____

Alumno2
Nombre Apellido1 Apellido2

Introdución

Ejecutar el program e jem p lo .s y rellenar el contenido de la siguiente tabla:

instrucciones	ctalls	ciclos totales	СРІ	☐ 3 ciclos de parada en la bnez
12	9	25	2,0	- 2 ciclos do parada en la boga
ireg 15,60	9	23	2,0	3 ciclos de parada en la bnez
.data .dword 100 .dword 0				10 instrucciones + 1(repeticion bnez) + trap
.text icio: bnez r5, dadd r3,r1,r2	final		1 :	Ciclos totales = instrucciones + stalls + 4 (ciclos de carga hasta que se IF optienx un resultado por ciclo
dsub r4,r1,r2			2	IF ID EX M WB
and r5,r1,r2 or r6,r1,r2			- 3 4	IF ID EX M WB IF ID EX M WB
xor r7,r1,r2				
ld r1,a(r0) sd r3, b(r0)		WB	5	IF ID EX M
sgt r2.r3.r4				_

begz r0,inicio; salto incondicional ASTA EL CICLO 5 NO TENGO NINGÚN

Detección y resolución de riesgos de datos mediar ciclos de parada

Introducir el código implementado en la fase de decodificación

```
// Riesgo entre EX e ID */
                                               // Riesgo entre MEM e ID
if (hay_fuente1_ID()
                                               if (hay_destino_MEM()
&& hay_destino_EX()
                                               && hay_fuente1_ID()&&
&&
                                               EX_MEM.IR.Rdestino
IF_ID.IR.Rfuente1 ==
                                               ==IF_ID.IR.Rfuente1) {
ID_EX.IR.Rdestino) {
                                               IDstall = SI; IFstall = SI;
IDstall = SI; IFstall = SI; }
                                               }else if(hay_destino_MEM()
else if (hay_fuente2_ID()
                                               &&hay_fuente2_ID() &&
                                               EX MEM.IR.Rdestino==
&& hay_destino_EX()
                                               IF_ID.IR.Rfuente2){
&& IF_ID.IR.Rfuente2 ==
                                               IDstall = SI; IFstall = SI; }
```

Completar la siguiente tabla con el contenido de los registros tras la ejecución de

datos1.s una vez incluido el código anterior:

R0	R1	R2	R3	R4
0	10	20	30	25

Detección y resolución de riesgos de datos er instrucciones aritméticas aplicando cortocircuitos

Introducir el código implementado en las funciones *m ux_ALU sup*:

```
WBtoEX
if (hay_destino_WB()
    && hay_fuente1_EX()
    && MEM_WB.IR.Rdestino==ID_EX.IR.Rfuente1)
{ WBaEXalu_s = SI; result = wb; }
/ MEMtoEX
if (hay_destino_MEM()
    && hay_fuente1_EX()
    && EX_MEM.IR.Rdestino == ID_EX.IR.Rfuente1)
{ MEMaEXalu_s = SI; result = mem; } break;
```

Completar la siguiente tabla con el contenido de los registros tras la ejecución de datos1.s una vez incluido el código anterior:

R0	R1	R2	R3	R4
0	10	20	30	25

Detección y resolución de riesgos de datos er instrucciones de carga seguidas de aritmética aplicando cortocircuitos

Introducir el código implementado en las funciones:

```
fase_decodificacion
mux_ALUsup:
```

```
int fase_decodificacion (
    case cortocircuito:

// Riesgo entre LD en fase EX

con otra en ID

if (hay_destino_EX()

&&hay_fuente1_ID()

&& IF_ID.IR.Rfuente1==

ID_EX.IR.Rdestino) {

IDstall = SI;

IFstall= SI;
}
```

Completar la siguiente tabla con el contenido de los registros tras la ejecución de datos2.s una vez incluido el código anterior:

R0	R1	R2	R3	R4
	10	20	10	5

У

Resolución de riesgos de control mediante la estrategia *predict-not-taken*

Introducir el código implementado en la fase de búsqueda

```
void fase_busqueda (
    case pnt:
    if (EX_MEM.cond) {
        Ifnop=SI;
        IDnop=SI;
        EXnop=SI;
        SaltoEfectivo = SI;
        PCn = EX_MEM.ALUout;
    } else {
        PCn = PC+1; }
        break;
```

Completar la siguiente tabla con el contenido de los registros y las posibiones de tras la ejecución de suma. suna vez incluido el código anterior:

R0	R1	R2	R3	a
0	6	40	0	6

Comparación entre estrategias de resolución de los riesgos de control:

	stalls	predict-not-taken
ciclos		