Assessing stocks in a data-limited world: methods and approaches

The ICES data-limited stock assessment workshop

Reykjavik, Iceland 12-16 September, 2016

Evolving towards more sophisticated, complex, & data-needy models

Overview of workshop

- Understanding concepts & fundamentals:
 - Life history relationships
 - Characterizing uncertainty in method output
 - Establishing reference points or benchmarks
- Method use and accessibility
 - A tour of data-limited methods
 - Identifying appropriate methods
 - Applications and demonstrations
- Testing methods
 - Management Strategy Evaluation
 - Best Available Scientific Information
- Data-limited assessment & management frameworks
 - ICES
 - FishPath

Data-limited fundamental: Common terms

What is data-limited? Why not "data-poor?

"Data"-limited methods

Population dimensions: Scale, Status, & Productivity

Scale: Absolute level of biomass

Status: Relative level of biomass

Productivity: Rate of new biomass

Biology and stock assessment: parameters

Data-limited fundamentals: Life history parameters

Relationships among life history parameters

"Endpoints" L_{∞}/T_{max}

Fig. 5. Relation between maximum age (T_{max}) and asymptotic length (L_{∞}) in various species not included in Fig. 4 (from Table I). The lines are those for the four groups shown in Fig. 4.

"Course of events" M/K

Fig. 7. Relation between natural mortality coefficient (M) and rate of curvature of growth curve (K) in various species not included in Fig. 6 (from Table I).

The lines are those for the four groups shown in Fig. 6.

"Reproductive drain?" $[L_{mat}/L_{\infty}]/T_{max}$

Fig. 8. Size at maturity (L_m) and longevity. Plot of ratio L_m/L_∞ against T_{max} . \bullet = Salmonoidei, \times = Clupeoidei; other species shown as \bigcirc .

Life history invariants and assembly rules

Life history invariants and assembly rules

Source: Charnov et al. 2013

Life history invariants and assembly rules

Building life history rules

- Chicken and egg; "errorsin-variables"
- Taxonomic considerations important

Empirical life history relationships

Empirical life history relationships:

Source: Thorson et al. 2013

Life history values: Where do they come from?

FishBase is a common source, but beware type of data

Other sources:

- Literature (how old?)
- Stock assessments
- Similar species

Source: Patrick et al. 2014 Average percent difference from true value

Summary: Life history relationships

- · The building blocks of many assessment methods
- Invariant relationships may reduce dimensionality
 - Taxonomically
 - Parameterization
- Empirical relationships aid parameterization
- Uncertainty in values
 - Central tendency and variance
 - Time-varying/directional