Exercise 2

Name: Vivi Student ID: 24S153073

Grade:

Problem 1 Score: _____. Small Stiefel Manifold

The Stiefel manifold is the set of matrices of size $n \times p$ whose columns are orthonormal. In this introductory exercise, we suggest that you work out the fact that pairs of orthonormal vectors indeed form a manifold.

(1) Show that the set

$$\mathcal{M} = \{(x, y) \in \mathbb{R}^d \times \mathbb{R}^d : x^{\top} x = 1, y^{\top} y = 1, x^{\top} y = 0\}$$

is an embedded submanifold of $\mathcal{E} = \mathbb{R}^d \times \mathbb{R}^d$.

(2) What are the tangent spaces of \mathcal{M} ? What is the dimension of \mathcal{M} ?

Solution: (1) Let $f: \mathcal{E} \to \mathbb{R}^3$ be defined by $f(x,y) = \begin{pmatrix} x^\top x - 1 \\ y^\top y - 1 \\ x^\top y \end{pmatrix} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^3$. Then $\mathcal{M} = f^{-1}(0)$.

(a) f is smooth.

Since f is a polynomial, it is smooth.

(b) f is a submersion.

The Jacobian matrix of f is

$$Df(x,y) = J_f(x,y) = \begin{pmatrix} 2x^\top & 0\\ 0 & 2y^\top\\ y^\top & x^\top \end{pmatrix} \in \mathbb{R}^{3 \times 2d}$$

- $\because x^\top x = 1 \text{ and } y^\top y = 1$
- $\therefore x \neq 0 \text{ and } y \neq 0$
- $\therefore Df(x,y)$ has full rank.

 \mathcal{L} is an embedded submanifold of \mathcal{E} .

(2) the tangent spaces of \mathcal{M} at $x \in \mathcal{M}$ is

$$T_x \mathcal{M} = \ker Df(x, y) = \{(v, w) \in \mathbb{R}^d \times \mathbb{R}^d : x^{\top}v = 0, y^{\top}w = 0, x^{\top}w + y^{\top}v = 0\}$$

 $\therefore \dim \mathcal{M} = \dim \mathbb{R}^d \times \mathbb{R}^d - \operatorname{rank} Df(x, y) = 2d - 3$

Problem 2 Score: _____. Rank-1 matrices as a manifold

Let $\mathcal{M} = \mathbb{R}_r^{m \times n}$ be the set of real $m \times n$ matrices of rank r. You will show that this set is an embedded submanifold of $\mathbb{R}^{m \times n}$ when r = 1.

- (1) Show that $\mathcal{M} = \mathbb{R}_1^{m \times n}$ is an embedded submanifold of $\mathcal{E} = \mathbb{R}^{m \times n}$.
- (2) What is the dimension of $\mathcal{M} = \mathbb{R}_1^{m \times n}$?
- (3) For $X \in \mathcal{M} = \mathbb{R}_1^{m \times n}$, write $X = \sigma u v^{\top}$, where $\sigma > 0$ and $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ with ||u|| = ||v|| = 1. Show that

$$T_X \mathcal{M} = \{ auv^\top + wv^\top + uz^\top : a \in \mathbb{R}, w \in \mathbb{R}^m, z \in \mathbb{R}^n, u^\top w = 0, v^\top z = 0 \}.$$

Solution: (1) We consider the set

$$\mathcal{M} = \mathbb{R}_1^{m \times n} = \left\{ X \in \mathbb{R}^{m \times n} : \operatorname{rank} X = 1 \right\}$$

Since rank X = 1, X must have a nonzero entry, say X_{ij} .

First, we define the neighborhoods of X

$$U_{ij} = \{ X \in \mathbb{R}^{m \times n} : X_{ij} \neq 0 \}$$

where $i = 1, \dots, m$ and $j = 1, \dots, n$.

For $\forall X \in U_{ij}$, we have a neighborhood V_{ij} of X such that

$$\left\{ V_{ij} \in \mathbb{R}^{m \times n} : \|X - V_{ij}\| \leq |X_{ij}|/2 \right\} \subseteq U_{ij}.$$

So, U_{ij} is open, therefore can be the neighborhood of X.

Then, we need to build the local defining functions $h_{ij}: U_{ij} \to \mathbb{R}^{(m-1)\times (n-1)}$.

First, we try to build h_{11} . Let $X \in U_{11}$, i.e., $X_{11} \neq 0.X$ then can be written in block form as

$$X = \begin{pmatrix} X_{11} \in \mathbb{R} & X_{12} \in \mathbb{R}^{1 \times (n-1)} \\ X_{21} \in \mathbb{R}^{(m-1)} \times 1 & X_{22} \in \mathbb{R}^{(m-1) \times (n-1)} \end{pmatrix}.$$

Since x has rank 1, each collumn of $\begin{pmatrix} X_{12} \\ X_{22} \end{pmatrix}$ is a scalar multiple of the first column $\begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix}$.

Thus, $\exists w \in \mathbb{R}^{n-1}$ such that

$$\begin{pmatrix} X_{12} \\ X_{22} \end{pmatrix} = \begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix} w^\top = \begin{pmatrix} X_{11} w^\top \\ X_{21} w^\top \end{pmatrix}.$$

Considering that $X_{11} \neq 0$, we can get from the first row of the above equation that $w^{\top} = X_{11}^{-1} X_{12}$, and from the second row that $X_{22} = X_{21} w^{\top} = X_{21} X_{11}^{-1} X_{12}$. This shows that for $X \in \mathcal{M} \cap U_{11}$, $X_{22} - X_{21} X_{11}^{-1} X_{12} = 0$, which gives us a local defining function

$$h_{11}: U_{11} \to \mathbb{R}^{(m-1)\times(n-1)}, \quad h_{11}(X) = X_{22} - X_{21}X_{11}^{-1}X_{12}.$$

Apparently, h_{11} is smooth because it is a componentwise polynomial.

Moreover, the equation above shows that $\mathcal{M} \cap U_{11} \subseteq h_{11}^{-1}(0)$. To get the reverse inclusion, we need to find $h_{11}^{-1}(0)$. For h(X) = 0, we have

$$\begin{pmatrix} X_{12} \\ X_{22} \end{pmatrix} = \begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix} X_{11}^{-1} X_{12}.$$

Therefore

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} = \begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix} \begin{pmatrix} 1 & X_{11}^{-1} X_{12} \end{pmatrix}.$$

So, rank $X \leq 1$ and rank $X \geq 1$ due to the fact that $X_{11} \neq 0$, which implies that rank X = 1, i.e., $X \in \mathcal{M} \cap U_{11}$. Therefore, $M \cap U_{11} = h_{11}^{-1}(0)$.

Then, we need to show that rank $Dh_{11} = (m-1)(n-1)$, by definition we have

$$Dh_{11}(X)[V] = \frac{d}{dt} \left[h_{11}(X+tV) \right] |_{t=0} = V_{22} - X_{11}^{-1} V_{21} X_{12} - X_{11}^{-1} X_{21} V_{12} + X_{11}^{-2} V_{11} X_{21} X_{12}.$$

We can set $V_{11} = 0$ and $V_{12} = 0$ and $V_{21} = 0$, $Dh_{11}(X)[V] = V_{22}$, which can be any $(m-1) \times (n-1)$ matrix. So $Dh_{11}(X)$ is a surjection for $\forall X$, i.e., rank $Dh_{11} = (m-1)(n-1)$.

Therefore h_{11} is indeed a local defining function on U_{11} .

Next, for U_{ij} , we can define h_{ij} in a similar way as h_{11} .

For $\forall X \in U_{ij}$, $P_i X Q_i \in U_{11}$, where P_i is $m \times m$ permutation matrix exchanging the *i*-th and the first row of X, and Q_j is $n \times n$ permutation matrix exchanging the j-th and the first column of X.

Then we can define h_{ij} as

$$h_{ij}(X) = h_{11}(P_i X Q_j).$$

By chain rule, we have

$$Dh_{ij}(X)[V] = Dh_{11}(P_i X Q_j)[P_i V Q_j].$$

As the map $\mathcal{M} \cap U_{ij} \to \mathcal{M} \cap U_{11}, X \to P_i X Q_j$ is

- (a) smooth, so h_{ij} is smooth as a composition of two smooth maps;
- (b) bijective, so $h_{ij}^{-1}(0) = \mathcal{M} \cap U_{ij}$ and rank $Dh_{ij} = (m-1)(n-1)$.

Thus, h_{ij} is a local defining function on U_{ij} .

Finally, we can show that \mathcal{M} is an embedded submanifold of $\mathcal{E} = \mathbb{R}^{m \times n}$ under the atlas $\{(U_{ij}, h_{ij})\}$.

(2) Since h_{ij} maps U_{ij} to $\mathbb{R}^{(m-1)\times(n-1)}$

$$\dim \mathcal{M} = \dim \mathbb{R}^{m \times n} - \dim \mathbb{R}^{(m-1) \times (n-1)} = mn - (m-1)(n-1) = m+n-1.$$

(3) Since X has rank 1, using the SVD decomposition, X can be written as $X = \sigma u v^{\top}$, where $\sigma > 0$ and $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ with ||u|| = ||v|| = 1.

We define 3 smooth curves:

$$\sigma: \mathbb{R} \to \mathbb{R}, \sigma(0) = \sigma, \sigma'(0) = a$$

$$u: \mathbb{R} \to \mathbb{S}^{m-1}, u(0) = u, u'(0) = w/\sigma$$

 $v: \mathbb{R} \to \mathbb{S}^{n-1}, v(0) = v, v'(0) = z/\sigma$

Then we have a smooth curve on \mathcal{M} :

$$c = \sigma u v^{\top}, c(0) = X.$$

Differentiating c at 0, we have

$$c'(0) = \sigma'(0)u(0)v^{\top}(0) + \sigma(0)u'(0)v^{\top}(0) + \sigma(0)u(0)v'^{\top}(0)$$

= $auv^{\top} + wv^{\top} + uz^{\top}$.

As $u \in \mathbb{S}^{m-1}$ and $v \in \mathbb{S}^{n-1}$, we have $u^{\top}w = 0$ and $v^{\top}z = 0$.

Therefore,

$$\{auv^{\top} + wv^{\top} + uz^{\top} : a \in \mathbb{R}, w \in \mathbb{R}^m, z \in \mathbb{R}^n, u^{\top}w = 0, v^{\top}z = 0\} \subseteq T_X \mathcal{M}.$$

On the other hand,

$$\{auv^{\top} + wv^{\top} + uz^{\top} : a \in \mathbb{R}, w \in \mathbb{R}^m, z \in \mathbb{R}^n, u^{\top}w = 0, v^{\top}z = 0\}$$

has dimension $m + n - 1 = \dim \mathcal{M}$.

In conclusion, $T_X \mathcal{M} = \{auv^\top + wv^\top + uz^\top : a \in \mathbb{R}, w \in \mathbb{R}^m, z \in \mathbb{R}^n, u^\top w = 0, v^\top z = 0\}.$

. Product manifolds Problem 3 Score:

Let \mathcal{M} be an embedded submanifold of a linear space \mathcal{E} . Likewise, let \mathcal{M}' be an embedded submanifold of a (possibly different) linear space \mathcal{E}' .

- (1) Show that $\mathcal{M} \times \mathcal{M}'$ is an embedded submanifold of $\mathcal{E} \times \mathcal{E}'$.
- (2) How are the tangent spaces of the product manifold related to the tangent spaces of the base manifolds?

Solution: (1) Suppose that $\dim \mathcal{M} = m$, $\dim \mathcal{E} = p$, $m \le p$ and $\dim \mathcal{M}' = n$, $\dim \mathcal{E}' = q$, $n \le q$.

- (a) m = p and n = q, i.e., \mathcal{M} and \mathcal{M}' are open in \mathcal{E} and \mathcal{E}' . Clearly, $\mathcal{M} \times \mathcal{M}'$ is open in $\mathcal{E} \times \mathcal{E}'$.
- (b) m < p and n = q, i.e., \mathcal{M}' is open in \mathcal{E}' and there exists a local defining function $h: U \to \mathbb{R}^{p-m}$ on \mathcal{M} . Thus we can define a local defining function

$$H: U \times \mathcal{M}' \to \mathbb{R}^{p-m}, H(x, x') = h(x)$$

which is smooth and satisfies $H^{-1}(0) = \mathcal{M} \times \mathcal{M}'$, rank $DH(x, x') = \operatorname{rank} Dh(x) = p - m = p + q - (m + n)$.

(c) m < p and n < q, i.e., there exists two local defining functions $h: U \to \mathbb{R}^{p-m}$ on \mathcal{M} and $h': U' \to \mathbb{R}^{q-n}$ on \mathcal{M}' .

Then we can define a local defining function

$$H: U \times U' \to \mathbb{R}^{p-m} \times \mathbb{R}^{q-n}, H(x, x') = (h(x), h'(x'))$$

which is clearly smooth, and

$$H^{-1}(0)=\{(x,x')\in\mathcal{M}\times\mathcal{M}':h(x)=0,h'(x')=0\}=(U\cap\mathcal{M})\times(U'\cap\mathcal{M}')=(U\times U')\cap(\mathcal{M}\times\mathcal{M}')$$

and rank $DH(x, x') = \operatorname{rank} Dh(x) + \operatorname{rank} Dh'(x') = p - m + q - n = p + q - (m + n)$.

(2) From the definition of the tangent space, we have

$$T_{(x,x')}(\mathcal{M} \times \mathcal{M}') = \ker DH(x,x') = \ker Dh(x) \times \ker Dh'(x') = T_x \mathcal{M} \times T_{x'} \mathcal{M}'.$$

Problem 4 Score: _____. The cross is not a manifold Show that the cross $\mathcal{X} = \{x \in \mathbb{R}^2 : x_1^2 = x_2^2\}$ is not an embedded submanifold of \mathbb{R}^2 .

Solution: Clearly, \mathcal{X} is open in \mathbb{R}^2 , then dim $\mathcal{X} \in \{0,1\}$ to ensure \mathcal{X} is an embedded manifold. Focusing on the point $x = (0,0) \in \mathcal{X}$, we can have two smooth curves

$$\gamma_1 : \mathbb{R} \to \mathcal{X}, \gamma_1(t) = (t, t)$$

$$\gamma_2 : \mathbb{R} \to \mathcal{X}, \gamma_2(t) = (t, -t)$$

which satisfy that $\gamma(0) = (0,0)$. Therefore $\gamma_1'(0) = (1,1)$ and $\gamma_2'(0) = (1,-1)$ are two linearly independent vectors in $T_{(0,0)}\mathcal{X}$.

Thus, $\dim T_{(0,0)}\mathcal{X} \geq 2$, which contradicts the fact that $\dim \mathcal{X} \in \{0,1\}$.

Therefore, \mathcal{X} is not an embedded submanifold of \mathbb{R}^2 .

Problem 5 Score: ______. Differentiating the matrix inversion We define $U \subseteq \mathbb{R}^{n \times n}$ by $U := \det^{-1}(\mathbb{R} \setminus \{0\})$, i.e., U is the set of invertible matrices. As $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous, we have that U is open.

Let $F:U\to U$ be given by $A\mapsto A^{-1}$, i.e., F is the matrix inversion. The map F is smooth, this can be seen by the cofactor formula, which shows that every entry of F(A) is a rational function. Compute the differential of F.

Solution: (1) For $A \in U, H \in \mathbb{R}^{n \times n}$, we have

$$\begin{split} DF(A)[H] &= \frac{d}{dt} \left[F(A+tH) \right] |_{t=0} \\ &= \frac{d}{dt} \left[(A+tH)^{-1} \right] |_{t=0} \\ &= \lim_{t \to 0} \frac{(A+tH)^{-1} - A^{-1}}{t} \\ &= \lim_{t \to 0} \frac{A^{-1} + A^{-1}(t^2HA^{-1}H - tH)A^{-1} - A^{-1}}{t} \\ &= \lim_{t \to 0} (tA^{-1}HA^{-1}HA^{-1} - A^{-1}HA^{-1}) \\ &= -A^{-1}HA^{-1}. \end{split}$$

(2) Define $A(t) = A + tH, A(t) \in U$ for t small enough.

Then we have

$$F\circ A(t)\cdot A(t)=A^{-1}(t)\cdot A(t)=I.$$

Differentiating on both sides, we have

$$0 = \frac{d}{dt} \left[F \circ A(t) \cdot A(t) \right]$$

$$= \frac{d}{dt} \left[F \circ A(t) \right] \cdot A(t) + F \circ A(t) \cdot \frac{d}{dt} \left[A(t) \right]$$

$$= DF(A(t)) \left[A'(t) \right] \cdot A(t) + F(A(t)) \cdot H$$

$$= DF(A(t)) \left[H \right] \cdot A(t) + F(A(t)) \cdot H$$

In particular, for t = 0, we have

$$DF(A)[H] \cdot A + A^{-1} \cdot H = 0.$$

Therefore, $DF(A)[H] = -A^{-1}HA^{-1}$.