Analysis Qualifying Exam January 2003

Instructions: Write your name legibly on each sheet of paper. Write only on one side of of each sheet of paper. Try to answer all questions. Questions 1-8 are each worth 10 points and question 9 is worth 20 points.

Terminology: Measurability and integrability on \mathbb{R} or an interval will always refer to the Lebesgue measure, except if otherwise specified. Lebesgue measure will be denoted by m, dx or dy depending on the context.

- 1. Let $f:[a,b] \to [c,d]$ be an absolutely continuous function and let $g:[c,d] \to \mathbb{R}$ be a Lipschitz function. Prove that the composition $g \circ f:[a,b] \to \mathbb{R}$ is absolutely continuous.
- (2.) Let $1 \leq p \leq 2$ and let $f \in L_p([0,\infty))$.
 - a. Prove that the function f is integrable over any bounded interval $[a,b] \subset [0,\infty)$.
 - b. Define $g(x) = \int_x^{x^2} f(t) dt$. Prove that

$$\lim_{x \to \infty} \frac{g(x)}{x} = 0.$$

Let $0 \le f_n : [0,1] \to \mathbb{R}$ be Lebesgue measurable such that $f_n(x) \to 0$ a.e. Prove that

 $\lim_{n\to\infty}\int_0^1\frac{f_n}{1+f_n}\,dx=0.$

- 4. Let (X, Σ, μ) be a measure space, where Σ is the σ -algebra of all μ^* measurable sets.
 - a. Let $A_n \subset B_n$ for n=1,2 where each B_n is μ^* -measurable and $B_1 \cap B_2 = \emptyset$. Prove that $\mu^*(A_1 \cup A_2) = \mu^*(A_1) + \mu^*(A_2)$.
 - b. Let now (A_n) , (B_n) be sequences of sets such that $A_n \subset B_n$ for all n, and $B_n \cap B_m = \emptyset$ for all $n \neq m$. Prove that $\mu^*(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu^*(A_n)$.
- Let f be integrable over the bounded interval [a, b] and assume that $\int_a^x f(t) dt = 0$ for all $x \in [a, b]$. Prove that f(x) = 0 a.e.

- 6. Let f be a non-constant entire function such that $f(\mathbb{R}) \subset \mathbb{R}^+$. Prove that all real zeros of f have even order.
- 7. Let $f: \{z: |z| < 1\} \to \mathbb{C}$ be a holomorphic function such that $|f(z)| < \frac{1}{|z|}$ for all $z \neq 0$. Prove that $|f(z)| \leq 1$ for all |z| < 1.
- 8. Compute

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \, dx.$$

- 9. True or False. Prove, or give a counterexample.
 - a. Let $E_n \subset \mathbb{R}$ such that $\sum_{n=1}^{\infty} m^*(E_n) < \infty$. Then

$$m^*(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_k) = 0.$$

(b.) Let f be integrable over [0,1] such that

$$\left| \int_0^1 f(t)g(t) \, dt \right| \le 1$$

for all continuous functions g on [0,1] with $||g||_{\infty} \leq 1$. Then

$$\int_0^1 |f(t)| \, dt \le 1.$$

- (c.) f is integrable over [0,1], then f is bounded on [0,1].
- d. If f is analytic on |z| < 1, then there exists a $k \ge 1$ such that $|f^{(k)}(0)| < k!4^k$.
- e. Let $|a_{nm}| \leq 1$ for all $n, m \geq 1$. Then

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{nm} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{nm}.$$