1. CONSTRUÇÃO DO SISTEMA DE EQUAÇÕES

Para o problema da difusão de calor resolvido numericamente pelo método dos volumes finitos e utilizando a discretização de segunda ordem CDS-2, temos o sistema de equações definido por (1).

$$a_p T_p = a_W T_W + a_E T_E + b_P \tag{1}$$

Para as condições de contorno, de material e geométricas $T_A = 0\,^{\circ}C$, $T_B = 100\,^{\circ}C$, $k = 400\,W\,m^{-1}K^{-1}$, $\dot{q} = 5\cdot 10^5\,W\,m^{-3}$, $A = 0.10\,m^2$, $L = 1.0\,m$ e N = 10, temos os coeficientes dados pela Tabela 1

Tabela 1. Coeficientes do sistema de equações

\overline{P}	X_P	a_P	$a_{\scriptscriptstyle W}$	$a_{\scriptscriptstyle E}$	$b_{\scriptscriptstyle P}$
1	5.00000000000000e-02	1.20000000000000e+04	0.00000000000000e+00	-4.0000000000000e+03	5.00000000000000e+04
2	1.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
3	2.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
4	3.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
5	4.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
6	5.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
7	6.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
8	7.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
9	8.50000000000000e-01	8.0000000000000e+03	-4.0000000000000e+03	-4.0000000000000e+03	5.00000000000000e+04
10	9.50000000000000e-01	1.20000000000000e+04	-4.00000000000000e+03	0.00000000000000e+00	8.50000000000000e+05

2. RESULTADO DA SIMULAÇÃO

A Tabela 2 apresenta o resultado da simulação utilizando o método TDMA e sua comparação com a solução analítica dada por (2), onde os pontos 0 e 11 representam as condições de contorno A e B, respectivamente. O cálculo do erro é dado por (3).

$$T(x) = T_A + \frac{T_B - T_A}{L} x + \frac{\dot{q}}{2k} (L - x) x \tag{2}$$

$$Error_{p} = T_{P,analytic} - T_{P,numeric}$$
 (3)

Tabela 2. Resultado da simulação

\overline{P}	$x_P(m)$	$T_{P,analytic}(^{\circ}C)$	$T_{P,numeric}(\circ C)$	$Error_{P}({}^{\circ}C)$
0	0.0000000000000e+00	0.0000000000000e+00	0.0000000000000e+00	0.0000000000000e+00
1	5.0000000000000e-02	3.46875000000000e+01	3.62500000000000e+01	-1.5624999999999e+00
2	1.50000000000000e-01	9.46875000000000e+01	9.62500000000000e+01	-1.56250000000001e+00
3	2.50000000000000e-01	1.42187500000000e+02	1.43750000000000e+02	-1.56250000000000e+00
4	3.50000000000000e-01	1.77187500000000e+02	1.78750000000000e+02	-1.56250000000003e+00
5	4.50000000000000e-01	1.99687500000000e+02	2.01250000000000e+02	-1.56250000000000e+00
6	5.5000000000000e-01	2.09687500000000e+02	2.11250000000000e+02	-1.56250000000003e+00
7	6.50000000000000e-01	2.07187500000000e+02	2.08750000000000e+02	-1.56250000000000e+00
8	7.50000000000000e-01	1.92187500000000e+02	1.93750000000000e+02	-1.56250000000000e+00
9	8.5000000000000e-01	1.64687500000000e+02	1.66250000000000e+02	-1.5624999999994e+00
10	9.5000000000000e-01	1.24687500000000e+02	1.26250000000000e+02	-1.5624999999999e+00
11	1.0000000000000e+00	1.00000000000000e+02	1.00000000000000e+02	0.0000000000000e+00

3. VISUALIZAÇÃO DOS RESULTADOS

A Figura 1 apresenta o resultado da simulação e sua comparação com a solução analítica dada por (2), onde os pontos 0 e 11 representam as condições de contorno A e B, respectivamente.

Figura 1. Resultado gráfico da simulação

4. OBTENÇÃO DA TEMPERATURA MÉDIA

A temperatura média obtida de forma analítica pela equação (4) e pela integração do resultado da simulação numérica através da regra do retângulo são apresentadas em (5) e (6), respectivamente.

$$\overline{T} = \frac{T_A + T_B}{2} + \frac{\dot{q} L^2}{12k} \tag{4}$$

$$\overline{T_{numeric}} = 1.5262500000000000e + 02 ° C$$
 (6)

5. OBTENÇÃO DA TAXA DE TRANSFERÊNCIA DE CALOR EM X=0

A taxa de transferência de calor em $x=0\,m$ obtida de forma analítica pela equação (7) e pela simulação numérica são apresentadas em (8) e (9) respectivamente.

$$q(x) = \left[k \frac{T_A - T_B}{L} + \dot{q} x - \frac{\dot{q} L}{2} \right] A \tag{7}$$

6. OBTENÇÃO DA TAXA DE TRANSFERÊNCIA DE CALOR EM X=L

A taxa de transferência de calor em $x=L=1.0\,m$ obtida de forma analítica pela equação (7) e pela simulação numérica são apresentadas em (10) e (11), respectivamente.

7. IMPLEMENTAÇÃO

A implementalção do código computacional foi realizada na linguagem C++20 compilado com *clang* versão 18.1.8. O código fonte se encontra em: https://github.com/mBelisarius/cfd-basics.