COMP2201 – Discrete Mathematics Basics Of Counting - Tutorial solutions

1. A small country (9 million people) is installing a new state-of-the-art telephone system. How many digits are necessary to allow sufficient phone numbers?

Discuss the assumptions you have made, as well as the justification for your answer

Solution

Assuming a phone number can begin with any digit then need the smallest r such that $10^{\rm r} \ge 9$ million $\log_{10} 9,000,000 = 6.9$ Therefore need at least 7 digits

2. Many people are paid every other week. Show that there will always be a month in which these people receive three paycheques.

Solution

52 weeks in a year Biweekly cheques will be sent 26 times a year There are 12 months in a year Using Pigeon hole principle If n objects are distributed into k boxes, then at least one box must contain $\left\lceil \frac{n}{k} \right\rceil$ objects. Therefore, $\left\lceil \frac{26}{12} \right\rceil = 3 \text{ cheques must be deposited in one month}$

3. Use the inclusion-exclusion to calculate the number of bit strings of length 7 that do not contain a sequence of five consecutive 1s.

Solution

Inclusion-Exclusion Principle $|A_{1} \cup A_{2} \cup A_{3}| = |A_{1}| + |A_{2}| + |A_{3}| - (|A_{1} \cap A_{2}| + |A_{1} \cap A_{3}| + |A_{2} \cap A_{3}|) + |A_{1} \cap A_{2} \cap A_{3}|$

Let A_1 = set of all bit strings of length 7 with 1's in the first five positions Let A_2 = set of all bit strings of length 7 with 1's in positions 2-6 Let A_3 = set of all bit strings of length 7 with 1's in positions 3-7

Now

$$|A_1| = |A_2| = |A_3| = 2^2 = 4$$

$$|A_1 \cap A_2 \cap A_3| = 1$$

$$|A_1 \cap A_2| = |A_2 \cap A_3| = 2$$

$$|A_1 \cap A_3| = 1$$

Therefore, the number of bit strings of length 7 that contains a sequence of 5 consecutive 1's is given by

$$|A_1 \cup A_2 \cup A_3| = (4+4+4)-(2+2+1)+1=8$$

The total number of 7 bits strings is given by

$$2^7 = 128$$

Therefore the total number of bit strings of length 7 that does not contain a sequence of 5 consecutive 1's is given by

$$128 - 8 = 120$$

4. Use the inclusion-exclusion to calculate the number of bit strings of length 9 that begin with two 0s, have eight consecutive 0s, or end with a 1 bit.

Solution

Inclusion-Exclusion Principle

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) + |A_1 \cap A_2 \cap A_3|$$

Let A_1 = set of all bit strings of length 9 that begin with two 0s

Let A_2 = set of all bit strings of length 9 that have eight consecutive 0s

Let A_3 = set of all bit strings of length 9 that end with a 1 bit

Now

$$|A_1| = 2^7$$
 = 128
 $|A_2| = 2 + 2 - 1 = 3$
 $|A_3| = 2^8$ = 256

$$|A_1 \cap A_2 \cap A_3| = 1$$

 $|A_1 \cap A_2| = 2$

$$|\mathbf{A}_2 \cap \mathbf{A}_3| = 1$$

$$|A_1 \cap A_3| = 2^6 = 64$$

Therefore, the number of bit strings of length 9 that begin with two 0s, have eight consecutive 0s, or end with a 1 bit is given by

$$|A_1 \cup A_2 \cup A_3| = 128 + 3 + 256 - (2 + 1 + 64) + 1 = 321$$

5. By constructing a Tree Diagram, determine how many 3-combinations are there of six objects (selecting all 6 objects)?

Ans. 6!/3!3! or ${}^{6}C_{3}{}^{3}C_{3}$ or 20

Solution

abc def	abd cef	abe cdf	abf cde
acd bef	ace bdf	acf bdf	
bcd aef	bce adf	bcf ade	
def abc	cef abd	cdf abe	cde abf
bef acd	bdf ace	bdf acf	
aef bcd	adf bce	ade bcf	

6. The following is a Python function *fib_seq* (from COMP1126) that prints Fibonacci series up to a number n.

```
def fib_seq(n):  # write Fibonacci series up to n
  a, b = 0, 1
  while a < n:
    print a,
    a, b = b, a+b</pre>
```

Write a Python function fib_val that receives positive integer argument n and returns the corresponding value in the Fibonacci sequence,

Solution

```
def fib_val(n):
    if n == 1 or n == 2:
        return 1
    else:
        return fib_val(n-1) + fib_val(n-2)
```

7. Write a Java method $lexic_less$ that takes two strings x and y and returns if x is lexicographically less than y.

Solution

```
public boolean lexic_less (String x, String y) {
   int min = (x.length() <= y.length()) ? x.length() : y.length();
   int i;

   boolean result = true;
   for (i = 0; i < min; i++)
      if (x.charAt(i) > y.charAt(i)) {
        result = false;
        break;
    }
    else if (x.charAt(i) < y.charAt(i))
        break;
   if ((x.length() > y.length()) && (i >= min))
      result = false;
   return result;
}
```