OD ZAPADKI SMOLUCHOWSKIEGO DO SILNIKÓW BROWNOWSKICH

prowadzący: Bogdan Cichocki i Piotr Szymczak

Krzysztof Kwiatkowski Paweł Balawender Warsztaty badawcze FUW 2018

RUCHY BROWNA - CZYM SĄ?

- Występują na poziomie mezoskopowym ($10nm 10\mu m$).
- Obserwujemy je w zawiesinach.
- Są losowe i zygzakowate.
- Powstają na skutek fluktuacji częstości bombardowań cząstki.
- Ilość zderzeń na sekundę jest rzędu 10^{20} , a fluktuacje 10^{10} .
- Czas ruchu prostoliniowego jest rzędu $10^{-8}s$.

TROCHĘ HISTORII

- 1827 odkrycie przez Roberta Browna
- Jeden z największych problemów fizyki przez ponad 80 lat
- 1905 publikacja Einsteina
- 1906 publikacja Mariana Smoluchowskiego

Marian Smoluchowski

ZAPADKA SMOLUCHOWSKIEGO

Jest to mechanizm składający się z łopatek i mechanizmu zębatkowozapadkowego zaproponowany po raz pierwszy przez Smoluchowskiego. Urządzenie ma wykorzystywać fluktuacje bombardowania łopatek cząsteczekami ośrodka do wytworzenia pracy mechanicznej.

II ZASADA TERMODYNAMIKI

- Sformułowanie Kelvina: "Nie jest możliwy proces, którego jedynym skutkiem byłoby pobranie pewnej ilości ciepła ze zbiornika i zamiana go w równoważną ilość pracy."
- Oznacza to niemożliwość zbudowania perpetum mobile drugiego rodzaju.

DLACZEGO NIE MOGŁABY DZIAŁAĆ

- Łamie II zasadę termodynamiki.
- Zapadka także podlega fluktuacjom.

Co gdybyśmy spróbowali ograniczyć fluktuacje zapadki?

CZY JEDNAK DA SIĘ COŚ ZROBIĆ?

- Załóżmy dwa układy o temperaturach $T_1 < T_2$.
- Siła fluktuacji zależy od temperatury.
- $\bullet\,$ Umieść
my zapadkę w $T_1,$ a łopatki w $T_2.$
- Fluktuacje działające na zapadkę są słabsze niż na łopatki.

OPIS MATEMATYCZNY - RUCH NADTŁUMIONY

- W tym ruchu siła działająca na cząstke $F = -\frac{dV}{dx}$ jest równoważona przez siłę oporu $-\gamma v$.
- Mamy więc związek $v = \frac{dx}{dt} = \frac{F}{\gamma}$.
- Prędkość cząstki jest zależna od siły, która na nią działa.

OPIS MATEMATYCZNY - PRZESUNIĘCIE CZĄSTKI

$$\Delta x = \frac{F}{\gamma} \Delta t + \alpha W(\Delta t)$$

- $\bullet\,$ F stała siła działająca na cząstkę
- $\alpha = \sqrt{\frac{2k_BT}{\gamma}}$ natężenie szumu
- W składowa losowa (< W>=0, ale < $W^2>=\Delta t$)

NASZE SYMULACJE - DEFINICJA UKŁADU

- $\bullet \ a$ parametr kontrolujący asymetrię potencjału
- $\bullet~V_0$ głębokość studni potencjału
- $\bullet \ L$ długość komórki periodycznej

ROZKŁAD BOLTZMANNA

$$P(x) \sim e^{\frac{-V(x)}{k_B T}}$$

RUCH CZĄSTECZKI

Z symulacji ruchu cząstki w układzie z asymetrycznym potencjałem i w zwykłym układzie bez potencjału uzyskamy kolejno dwa wykresy jej położenia:

PRZEŁĄCZANIE POTENCJAŁU

DLACZEGO TAK SIĘ DZIEJE?

źródło: H Linke, M T Downto, M J Zuckermann 2005, Performance characteristics of Brownian motors, dostęp 7 czerwca 2018, https://www.researchgate.net/publication/7709238

ZALEŻNOŚĆ OD CZĘSTOŚCI

$$\frac{2k_BT}{x_1^2} < K < \frac{2k_BT}{x_2^2} \hspace{1cm} 6,25 < K < 100$$

SILNIKI BROWNOWSKIE

To, co właśnie stworzyliśmy nazywawy silnikami brownowskimi. Podobne działają wewnątrz komórek w każdym z nas.

źródło: R. Dean Astumian, Thermodynamics and Kinetics of a Brownian Motor, Science Vol. 276, 1997, dostęp 7 czerwca 2018, http://science.sciencemag.org/content/276/5314/917>