SMART INDIA HACKATHON 2024-

- SWART INDIA MACKATHUN ZUZ4
- Problem Statement ID 1639
- Problem Statement Title Sustainable
 Fertilizer Usage Optimizer for Higher
 Yield
- Theme Agriculture, Food-Tech & Rural Development
- PS Category- Software
- Team ID- 20
- Team Name Sic Mundus

Idea/ Approach Details

We are aiming to build a web based application that will serve as a bridge between farmers to access knowledge about the optimal use of fertilizers for their farming purposes.

- Firstly data containing soil content, pH level, Environmental conditions and the location of the land was collected from trustworthy government sources
- Data processing and manipulation was done to avoid outliers and generate processable values.
- Parameters Used:
 - Soil content
 - Nitrogen, Phosphorus, Potassium
 - Environmental factors
 - o pH level, Rainfall, Humidity
 - Geographical factors
 - State, City
- ML Models such as Random Forest, XGBoost, Decision tree etc were used to predict the possible fertilizers that can be applied.
- People can check the crop details along with the fertilizer details to gain more information and take educated guesses in future.

Why us?

Our solution uniquely combines advanced ML models with comprehensive data to provide **personalized**, **precise & fast fertilizer recommendations**. Designed for easy use by Indian farmers, it includes a **rich educational content library** and **supports sustainable**, **scalable farming practices**.

Technical Approach

SMART INDIA HACKATHON 2024

Tech Stack

FEASIBILITY AND VIABILITY

FEASIBILITY

Economic Feasibility

- Uses open-source tools and cloud infrastructure to minimize development and operational costs.
- Optimizes crop yields and reduces input costs, increasing farmer profitability.

Social Feasibility

• Enhances agricultural productivity and sustainability, benefiting both individual farmers and local communities.

Technical Feasibility

- Utilizes robust algorithms like Random Forest and XGBoost to provide precise fertilizer recommendations.
- Combines soil health, weather data, and local agricultural practices for accurate, contextspecific advice.

Challenges & Risks

- Farmer Adoption
- Inadequate Data
- Pricing misinformation
- Model Inaccuracy

How to Solve those?

- Add multilingual support for farmers
- Continuous updation of data through reliable sources & model changes.
- Price the fertilizers based on ML models such as LSTM, ARIMA, FB Prophet etc to provide the farmers with adequate costs

IMPACT AND BENEFITS

- Farmers
- Environmental Specialists
- Government Bodies that deals with soil studies
- Any Curious Mind!

Social Impact

- Enhanced Farmer
 Education
- Improved Community
 Practices
- Increased Accessibility

Economic Impact

- Saves money by reducing excessive fertilizer use
- Boosts crop yield for higher productivity
- Reserves soil health, ensuring long-term productivity

Environmental Impact

- Reduced Pollution
- Effective WasteManagement
- Healthier and
 Sustainable Practices

- Data-Driven Decisions
- Cost Savings
- Increased Crop Yields
- Educational Value:
- Scalability
- Economic Opportunities
- Community Impact

RESEARCH AND REFERENCES

References

- National Academy of Agricultural Sciences (Executive Council 2009)
- STCR Research Crop wise recommendation
- data.gov.in
- ICAR,2010-2022