

Telco 客户流失预测方法对比

课程名称: 模式识别与机器学习

小组成员: 随情英 2023K8009991004

张三 202300000002

李四 202300000003

王五 202300000004

赵六 202300000005

Telco 客户流失预测方法对比

随情英1 张三1 李四1 王五1 赵六1

Abstract

本研究对比了三种机器学习方法(Logistic 回归、决策树和 AdaBoost)在 Telco 客户流失预测任务上的性能表现。实验基于 Kaggle 提供的电信客户数据集,包含 7043 条客户记录和 21 个特征。结果表明,Logistic 回归模型在准确率(80.00%)和 AUC(0.835)指标上均优于其他两种方法,同时具有良好的解释性和最快的训练速度。本研究提供了科学的方法选择依据,为电信行业客户流失预测提供了实践参考。

1. 引言

1.1. 项目背景

对于电信运营商来说,用户流失有很多偶然因素,但通过对用户属性和行为的数字化描述,我们能够在这些数据中挖掘导致用户流失的"蛛丝马迹"。更重要的是,如果能够实时接入这些数据,我们可以借助模型来对未来用户流失风险进行预测,从而及时制定挽留策略,防止用户真实流失情况发生。

1.2. 团队分工

• 数据预处理与代码实现: 随情英

• 模型训练与调参: 张三

• 实验结果整理与可视化: 李四

• 实验报告撰写与校对: 王五

2. 数据集说明

本实验选用 Kaggle Telco Customer Churn 数据集。该数据集包含 7043 条客户记录,每条记录包含 21 个特征(如性别、合同类型、服务类型、月费用、总费用等),目标变量为客户是否流失(Churn),属于二分类问题。数据类型包括数值型和分类型,适合多种机器学习方法。

2.1. 数据集详情

该数据集模拟了电信公司的客户信息及其流失状态,包含以下主要特征:

- 个人信息类特征: 性别 (gender)、年龄 (SeniorCitizen)、伴侣状态 (Partner)、是否有抚养人 (Dependents)
- 账户信息类特征: 账户时长 (tenure)、合同类型 (Contract)、付款方式 (PaymentMethod)、无纸 化账单 (PaperlessBilling)、月度费用 (Monthly-Charges)、总费用 (TotalCharges)
- 服务信息类特征: 电话服务 (PhoneService)、多 线电话 (MultipleLines)、互联网服务 (Internet-Service)、在线安全 (OnlineSecurity)、在线备份 (OnlineBackup)、设备保护 (DeviceProtection)、 技术支持 (TechSupport)、流媒体电视 (StreamingTV)、流媒体电影 (StreamingMovies)

2.2. 数据集特点

- 样本分布:流失客户占比约 26.5% (1869 人), 非流失客户占比约 73.5% (5174 人),存在一定 的类别不平衡
- **特征类型**: 包含 17 个分类特征和 4 个数值特

 $^{^1}$ 中国科学院大学人工智能学院. Correspondence to: suiqingying panyuxuan231@mails.ucas.ac.cn>.

征

• 数据质量: TotalCharges 列存在 11 条缺失记录, 其余特征数据完整

• 特征相关性:

- 月费用 (MonthlyCharges) 与多项服务选择 存在较强相关性
- 总费用 (TotalCharges) 与账户时长 (tenure) 和月费用呈正相关

该数据集特别适合客户流失预测研究,因为它包含了多种可能影响客户决策的因素,既有客户自身的特征,也有服务相关的特征,能够较为全面地反映现实业务场景中客户流失的复杂原因。

3. 实验规划

本项目分为三个主要阶段:

Stage 1. 业务背景解读与数据探索

在接收任务的第一时间,我们需要对数据及其对应业务的基本背景进行解读。由于数据诞生于特定业务场景,我们尽可能了解数据诞生的基本环境和业务逻辑,准确解读每个字段的含义。随后进行数据探索,包括数据分布检验、数据正确性校验、数据质量检验、训练集/测试集规律一致性检验等。

Stage 2. 数据预处理与特征工程

这一阶段包括数据清洗和特征工程。数据清洗主要 聚焦于提升数据集质量,包括缺失值、异常值、重 复值处理,以及数据字段类型调整等;特征工程则 调整特征基本结构,使数据集规律更容易被模型识 别,如特征衍生、特殊类型字段处理等。

Stage 3. 算法建模与模型调优

最终的建模环节包括算法训练和参数调优。我们尝试了多种模型、调参方法以及模型对比,并根据模型输出结果调整数据预处理和特征工程相关方法,以获得最优的预测性能。

4. 算法简介

本实验对比了三类机器学习算法在该数据集上的表 现:

4.1. 线性方法

4.1.1. Logistic Regression

Logistic 回归是一种广泛应用的线性分类方法,通过 Sigmoid 函数将线性模型的输出转换为 0-1 之间的概率值:

$$P(y=1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}}$$
 (1)

适用场景:

- 二分类问题, 如客户流失预测(流失/不流失)
- 需要输出概率而非仅分类结果的场景
- 对模型可解释性有较高要求的业务问题

优势与局限:

- 训练速度快,内存占用小,适合大规模数据处理
- 可输出类别预测的概率, 方便风险评估
- 模型系数直观反映特征重要性,可解释性强
- 不适合捕捉特征间的复杂非线性关系
- 对特征间的多重共线性较为敏感

4.1.2. LINEAR SVM

线性支持向量机是一种基于最大间隔原则的线性分 类方法,通过寻找一个超平面将数据分为不同类别:

$$f(x) = w^T x + b \tag{2}$$

适用场景:

- 二分类问题, 尤其是线性可分数据
- 需要鲁棒性较强的分类器

优势与局限:

- 能有效处理高维数据
- 对小样本数据集表现良好
- 不适合处理非线性关系复杂的数据
- 训练时间较长, 尤其是大规模数据集

4.2. 非线性方法

4.2.1. Kernel SVM

核支持向量机通过核函数将数据映射到高维空间, 从而处理非线性分类问题。常用的核函数包括径向 基函数 (RBF):

$$K(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2)$$
 (3)

适用场景:

- 数据分布复杂,存在非线性关系
- 样本量较小但特征维度较高

优势与局限:

- 能处理复杂的非线性分类问题
- 对小样本数据集表现良好
- 计算复杂度较高,训练时间较长
- 对超参数(如核函数和正则化参数)较为敏感

4.2.2. Decision Tree

决策树通过递归二分法将数据划分为不同子集,形成树状结构。每个节点代表一个特征条件判断,叶节点代表分类结果。

适用场景:

- 需要高可解释性的分类或回归问题
- 特征间存在非线性关系的数据
- 混合类型特征(分类型和数值型)数据集

优势与局限:

- 决策规则直观易懂,可直接转化为业务规则
- 能自动处理特征选择,对缺失值相对鲁棒
- 容易过拟合, 泛化能力有限
- 对数据微小变化敏感,模型稳定性较差

4.3. 集成学习方法

4.3.1. Bagging

Bagging 通过对数据集进行多次随机采样训练多个弱分类器,并将它们的预测结果进行平均或投票,从而提升模型的稳定性和准确性。

适用场景:

- 数据噪声较多,模型需要较强的鲁棒性
- 需要提升模型的稳定性和泛化能力

优势与局限:

- 能显著降低模型的方差,提升稳定性
- 训练时间较短,适合大规模数据
- 对单个弱分类器的性能依赖较大

4.3.2. BOOSTING (ADABOOST)

AdaBoost 通过顺序训练多个弱分类器 (通常是简单 决策树),每次训练都关注前一轮分类错误的样本, 最终将所有弱分类器的预测结果加权组合。

适用场景:

- 复杂分类问题,需要高预测精度
- 数据存在噪声,需要强大的泛化能力
- 有足够计算资源进行集成模型训练

优势与局限:

• 通过集成多个弱分类器显著提高预测精度

- 能够自动处理特征重要性评估
- 相比单一决策树, 大幅降低过拟合风险
- 训练时间较长, 计算复杂度高
- 对异常值和噪声数据较为敏感

5. 实验结果

5.1. 实验设置

- 训练集: 数据集的 80% (约 5634 条记录)
- 测试集: 数据集的 20% (约 1409 条记录)
- 所有分类型特征进行独热编码,数值型特征归一化
- 评估指标:准确率 (accuracy)、AUC、分类报告 (precision、recall、f1-score)、混淆矩阵、训练时间

5.2. 数据预处理与缺失值处理

在数据预处理阶段,我们对数据集进行了以下处理:

• **删除无关列**: 删除了 'customerID' 列, 因为它是唯一标识符, 对模型训练没有帮助。

• 缺失值处理:

- 对'TotalCharges'列中的缺失值(约11条记录)使用中位数填充。选择中位数是因为它对异常值的鲁棒性较强,能够减少对数据分布的影响。
- 一 对其他特征(如分类型特征)未发现缺失值,因此未进行额外处理。
- **标签编码**: 将目标列 'Churn'的值从 'No'和 'Yes' 映射为 '0'和 '1'。
- **独热编码**: 对所有分类型特征进行独热编码, 转 换为数值型。
- 数值特征归一化: 使用 'StandardScaler' 对所 有数值型特征进行归一化处理, 使其均值为'0', 标准差为'1'。

5.3. 缺失值处理策略分析

在缺失值处理过程中, 我们选择了以下策略:

- 中位数填充:对于'TotalCharges'列中的缺失值,使用中位数填充是因为该列为连续型数据,且中位数对异常值较为鲁棒,能够减少对数据分布的影响。
- 删除样本的可选性:由于缺失值样本占比较低 (约 0.16%),也可以选择直接删除这些样本,但 考虑到数据集规模较小,为保留更多信息,我 们选择填充而非删除。
- **分类型特征的缺失值处理**: 对于分类型特征, 如果存在缺失值,可以考虑使用众数填充或添加缺失值标记,但本数据集中未发现分类型特征的缺失值。

通过上述处理,我们确保了数据集的完整性和质量, 为后续模型训练提供了可靠的数据基础。

5.4. 实验结果总览

Table 1. 三类算法性能对比

算法类别	模型	准确率	AUC
线性方法	Logistic Regression	0.8000	0.8350
线性方法	Linear SVM	0.7787	0.8088
非线性方法	Kernel SVM	0.7759	0.7806
非线性方法	Decision Tree	0.7191	0.6312
集成学习方法	Bagging	0.7844	0.7779
集成学习方法	Boosting	0.7418	0.7511

Figure 1. 模型准确率对比

Table 2. 算法训练时间对比

模型	训练时间	(秒)
Logistic Regression	0.01	
Linear SVM	2.89	
Kernel SVM	2.27	
Decision Tree	0.02	
Bagging	0.13	
Boosting	1.05	

Figure 3. 模型训练时间对比

Figure 2. 模型 ROC 曲线及 AUC 对比

5.5. 训练时间对比

从表格和图像可以看出,线性方法(如 Logistic Regression)训练时间最短,仅需 0.01 秒,适合大规模数据处理。非线性方法(如 Kernel SVM 和 Linear SVM)训练时间较长,分别为 2.27 秒和 2.89 秒,主要由于核函数计算复杂度较高。集成学习方法中,Bagging 的训练时间较短(0.13 秒),而 Boosting的训练时间较长(1.05 秒),因为其需要顺序训练多

个弱分类器。总体来看,训练时间与模型复杂度和 计算资源需求密切相关。

5.6. 分析与讨论

5.6.1. BAD CASE 分析

通过混淆矩阵发现,所有模型对流失客户(标签为1)的召回率较低。例如,Logistic 模型的召回率仅为 54%,Kernel SVM 和 Boosting 模型分别为 47%和 50%。这表明模型在识别流失客户时存在较大误差,主要原因包括:

- **类别不平衡**: 流失客户仅占总样本的 26.5%, 导 致模型更倾向于预测为非流失客户。
- **特征信息不足**: 部分特征(如合同类型、账户 时长)对流失客户的区分度较低。
- 模型复杂度不足或过拟合:简单模型(如回归和决策树)难以捕捉复杂的非线性关系,而复杂模型(如 Boosting)可能对噪声数据过于敏感。

5.6.2. 性能差距原因分析

- 线性方法: Logistic 回归表现最佳,得益于其 线性模型的稳定性和对类别不平衡的鲁棒性。 Linear SVM 在复杂数据上表现稍差,训练时间 较长。
- **非线性方法**: Kernel SVM 在复杂数据上表现较好,但计算开销较大。决策树易过拟合,泛化能力较差。
- 集成学习方法: Bagging 通过集成多个弱分类 器提升了性能,训练时间较短; Boosting 进一 步提升了性能,但计算复杂度较高。

5.6.3. 不同算法优劣分析

• 线性方法:

- 优势: 训练速度快, 可解释性强, 适合业务 部署。
- 局限: 无法捕捉复杂的非线性关系。

• 非线性方法:

- 优势: 适合复杂数据,能捕捉非线性关系。

- 局限: 计算开销较大, 易受噪声影响。

• 集成学习方法:

- 优势: 性能提升显著, 适合复杂分类问题。

- 局限: 训练时间长, 可解释性较低。

6. 总结

本实验对比了三类机器学习方法在客户流失预测任 务上的表现。线性方法(如 Logistic 回归)表现最 佳,非线性方法(如 Kernel SVM)适合复杂数据, 集成学习方法(如 Boosting)性能较好但计算开销 较大。

6.1. 实验总结与改进方向

- **线性方法**: Logistic 回归在准确率和 AUC 指标 上表现优异,同时具有良好的解释性和最快的 训练速度,适合实际业务部署。
- **非线性方法**: Kernel SVM 在复杂数据上表现较好,但计算开销较大;决策树易过拟合,泛化能力较差。
- 集成学习方法: Bagging 和 Boosting 通过集成 多个弱分类器显著提升了性能,但训练时间较 长,适合追求高性能的场景。

6.2. 扩展建议

- 神经网络的引人:后续可以尝试使用深度学习模型(如多层感知机、卷积神经网络或循环神经网络)处理客户流失预测任务。神经网络能够捕捉复杂的非线性关系,适合处理高维度和复杂特征的数据。
- 超参数性能估计: 在模型训练过程中, 可以引入网格搜索或贝叶斯优化等方法对超参数进行调优, 以进一步提升模型性能。
- 训练集与测试集比值优化: 当前实验采用了 80% 训练集和 20% 测试集的划分方式, 后续可

以尝试不同的划分比例(如 70%-30% 或 90%-10%),并评估其对模型性能的影响。

• 同类方法细化分析:

- **线性方法**: 对比 Logistic 回归与线性 SVM 在特征权重和支持向量分布上的差异,分析它们在处理线性关系时的优劣。
- **非线性方法**: 补充决策树剪枝前后的泛化 能力变化,分析剪枝对模型复杂度和过拟 合的影响。
- 集成学习方法: 分析 Bagging 与 Boosting 的基模型差异, 例如 Bagging 使用完整决策树, 而 AdaBoost 使用决策树桩 (深度为 1 的决策树),探讨它们在处理数据噪声和复杂关系时的表现。
- 训练资源量化: 补充内存占用或 GPU/CPU 使用率对比 (Table 2 仅时间开销)。

本研究为电信行业客户流失预测提供了科学的方法 选择依据,同时为后续研究提供了改进方向。