Zhao-Huan YU (余钊焕)

Institute of High Energy Physics, CAS

with Xiao-Jun BI, Qi-Shu YAN, and Peng-Fei YIN

DM searches at colliders

Based on
Phys. Rev. D **88**, 075015 [arXiv:1304.4128]
and arXiv:1404 xxxx

Wuhan, April 21, 2013

DM searches at colliders

Dark matter (DM) searches at colliders

Social dark matter

Accompanied by other new particles
Complicated decay chains
Decay products of other particles

Various final states

 $(jets + leptons + \cancel{E}, ...)$

Maverick dark matter

DM particle is the only new particle reachable at the collision energy

Direct production

Mono- $X + \cancel{E}$ final states

(monojet, mono- γ , mono-W/Z, ...)

(From Rocky Kolb's talk)

Hadron colliders

00000

DM searches at colliders

DM direct productions at hadron colliders

Sensitive to the DM couplings to quarks, gluons photons, Z bosons W^{\pm} bosons

Hadron colliders

00000

DM searches at colliders

LHC vs. direct detection

Constraints on DM-nucleon scattering cross section given by the CMS dark matter search in the monojet + ₱_T final state with an integrated luminosity of $\sim 20 \text{ fb}^{-1}$ at $\sqrt{s} = 8 \text{ TeV}$.

[CMS PAS EXO-12-048]

Lepton colliders

DM searches at colliders

DM direct productions at e^+e^- colliders

Sensitive to
the DM couplings to
electrons/positrons
photons
Z bosons

Collision energies of future e^+e^- colliders:

 $\sqrt{s} = 250 \,\text{GeV}$: "Higgs factory" (CEPC/TLEP, ILC)

 $\sqrt{s} = 500 \,\text{GeV}$: typical **ILC**

 $\sqrt{s} = 1 \text{ TeV}$: upgraded **ILC** & initial **CLIC**

 $\sqrt{s} = 3 \, \text{TeV}$: ultimate **CLIC**

MC simulation

DM searches at colliders

Simulation tools:

FeynRules (adding new particles & couplings)

MadGraph (parton-level calculation & sample generation)

PYTHIA (parton shower & hadronization)

PGS (jet clustering & fast detector simulation)

SiD/ILD-like detector:

ECAL energy resolution
$$\frac{\Delta E}{E} = \frac{17\%}{\sqrt{E/\mathrm{GeV}}} \oplus 1\%$$

HCAL energy resolution
$$\frac{\Delta E}{E} = \frac{30\%}{\sqrt{E/\text{GeV}}}$$

Monophoton signature

DM searches at colliders

DM-photon interaction

Indirect search

 γ -ray line signature

 $e^+e^- \rightarrow \chi \bar{\chi} \gamma$

Collider search

Monophoton signature $(\gamma + \cancel{E})$

DM searches at colliders

Effective operator approach

If DM particles couple to photons via exchanging some mediators which are **sufficiently heavy**, the DM-photon coupling can be approximately described by **effective contact operators**.

For Dirac fermionic DM, consider $\mathcal{O}_F = \frac{1}{\Lambda^3} \bar{\chi} i \gamma_5 \chi F_{\mu\nu} \tilde{F}^{\mu\nu}$:

$$\langle \sigma_{\rm ann} \nu \rangle_{\chi \bar{\chi} \to 2\gamma} \simeq \frac{4m_{\chi}^4}{\pi \Lambda^6}, \qquad \sigma(e^+e^- \to \chi \bar{\chi} \gamma) \sim \frac{s^2}{\Lambda^6}$$

For complex scalar DM, consider $\mathcal{O}_S = \frac{1}{\Lambda^2} \chi^* \chi F_{\mu\nu} F^{\mu\nu}$:

$$\langle \sigma_{\rm ann} \nu \rangle_{\chi \chi^* \to 2\gamma} \simeq \frac{2m_\chi^2}{\pi \Lambda^4}, \quad \sigma(e^+ e^- \to \chi \chi^* \gamma) \sim \frac{s}{\Lambda^4}$$

In the $\gamma+E$ searching channel, the main background is $e^+e^- \to v\bar{v}\gamma$. Minor backgrounds are $e^+e^- \to e^+e^-\gamma$, $e^+e^- \to \tau^+\tau^-\gamma$, \cdots

DM searches at colliders

 e^+e^- collider, $\sqrt{s} = 500$ GeV, $\gamma + E$

Cut 1 (pre-selection):

Require a photon with $E_{\gamma} > 10\,{\rm GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle

Benchmark point: $\Lambda = 200 \, \mathrm{GeV}$, $m_\chi = 100 \, (50) \, \mathrm{GeV}$ for fermionic (scalar) DM

500

400

100

200

 $m_{\text{miss}} = [(p_{e^-} + p_{e^+} - p_{v})^2]^{1/2}$ (GeV)

300

10⁻¹

DM searches at colliders

Cut 1 (pre-selection):

Require a photon with $E_{\gamma} > 10\,{\rm GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle

Cut 2: Veto $50 \,\text{GeV} < m_{\text{miss}} < 130 \,\text{GeV}$

Benchmark point: $\Lambda = 200\,\mathrm{GeV},\ m_\chi = 100\,(50)\,\mathrm{GeV}$ for fermionic (scalar) DM

500

100

200

 $m_{miss} = [(p_{e^-} + p_{e^+} - p_{\gamma})^2]^{1/2} (GeV)$

300

400

10⁻²

DM searches at colliders

Cut 1 (pre-selection):

Require a photon with $E_{\gamma} > 10\,{\rm GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle

Cut 2: Veto $50 \,\text{GeV} < m_{\text{miss}} < 130 \,\text{GeV}$

Cut 3: Require $30^{\circ} < \theta_{\gamma} < 150^{\circ}$

Benchmark point: $\Lambda = 200 \, \mathrm{GeV}$, $m_\chi = 100 \, (50) \, \mathrm{GeV}$ for fermionic (scalar) DM

DM searches at colliders

Cut 1 (pre-selection):

Require a photon with $E_{\gamma} > 10 \,\text{GeV}$ and $10^{\circ} < \theta_{\scriptscriptstyle Y} < 170^{\circ}$

Veto any other particle

Cut 2: Veto $50 \,\text{GeV} < m_{\text{miss}} < 130 \,\text{GeV}$

Cut 3: Require $30^{\circ} < \theta_{\gamma} < 150^{\circ}$

Cut 4: Require $p_{\rm T}^{\gamma} > \sqrt{s}/10$

Benchmark point: $\Lambda = 200 \,\text{GeV}$, $m_{\gamma} = 100 \,(50) \,\text{GeV}$ for fermionic (scalar) DM

DM searches at colliders

Cross sections and signal significances after each cut

	$ uar{ u}\gamma$	$e^+e^-\gamma$	Fermionic DM		Scalar DM	
	σ (fb)	σ (fb)	σ (fb)	S/\sqrt{B}	σ (fb)	S/\sqrt{B}
Cut 1	2415.2	173.0	646.8	12.7	321.4	6.3
Cut 2	2102.5	168.6	646.8	13.6	308.2	6.5
Cut 3	1161.1	16.8	538.0	15.7	255.9	7.5
Cut 4	254.5	1.9	520.7	32.5	253.9	15.8

Benchmark point: $\Lambda = 200 \,\text{GeV}$, $m_{\gamma} = 100 \,(50) \,\text{GeV}$ for fermionic (scalar) DM

Most of the signal events remain

 $e^+e^- \rightarrow v\bar{v}\gamma$ background: reduced by almost an order of magnitude $e^+e^- \rightarrow e^+e^-\gamma$ background: only **one percent** survives

$$(\sqrt{s} = 500 \,\text{GeV}, \, 1 \,\text{fb}^{-1})$$

3σ sensitivity

Solid lines: $100 \, \text{fb}^{-1}$; dot-dashed lines: $1000 \, \text{fb}^{-1}$ ($S/\sqrt{B} = 3$)

DM searches at colliders

Beam polarization

For a process at an e^+e^- collider with **polarized beams**,

$$\begin{split} \sigma(P_{e^-},P_{e^+}) &= \frac{1}{4} \big[(1+P_{e^-})(1+P_{e^+})\sigma_{\mathrm{RR}} + (1-P_{e^-})(1-P_{e^+})\sigma_{\mathrm{LL}} \\ &\quad + (1+P_{e^-})(1-P_{e^+})\sigma_{\mathrm{RL}} + (1-P_{e^-})(1+P_{e^+})\sigma_{\mathrm{LR}} \big] \end{split}$$

$$\blacktriangle$$
 $(P_{e^-}, P_{e^+}) = (0.8, -0.3)$ can be achieved at the ILC

[ILC technical design report, Vol. 1, 1306.6327]

Beam polarization

DM searches at colliders

Using the **polarized beams** is roughly equivalent to **increasing** the integrated luminosity by **an order of magnitude**.

For fermionic DM (scalar DM), a data set of $2000\,\mathrm{fb}^{-1}$ ($1000\,\mathrm{fb}^{-1}$) would be just sufficient to test the potential Fermi γ -ray line signal at an e^+e^- collider with $\sqrt{s}=1\,\mathrm{TeV}$ ($3\,\mathrm{TeV}$).

DM searches at colliders

Mono-Z signature: DM couplings to $ZZ/Z\gamma$

The mono-Z channel at high energy e^+e^- collider can be sensitive to **the DM coupling to** $ZZ/Z\gamma$.

Assuming the DM particle χ is a Dirac fermion, we consider the following effective operators:

$$\mathcal{O}_{\text{F1}} = \frac{1}{\Lambda_{1}^{3}} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu} + \frac{1}{\Lambda_{2}^{3}} \bar{\chi} \chi W_{\mu\nu}^{a} W^{a\mu\nu}$$
$$\supset \bar{\chi} \chi (G_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + G_{AZ} A_{\mu\nu} Z^{\mu\nu})$$

$$\begin{split} \mathcal{O}_{\mathrm{F2}} &= \frac{1}{\Lambda_{\mathrm{3}}^{3}} \bar{\chi} i \gamma_{5} \chi B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{1}{\Lambda_{\mathrm{2}}^{3}} \bar{\chi} i \gamma_{5} \chi W_{\mu\nu}^{a} \tilde{W}^{a\mu\nu} \\ &\supset \bar{\chi} i \gamma_{5} \chi (G_{\mathrm{ZZ}} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + G_{\mathrm{AZ}} A_{\mu\nu} \tilde{Z}^{\mu\nu}) \end{split}$$

$$\mathcal{O}_{\mathrm{FH}} = \frac{1}{\Lambda^3} \bar{\chi} \chi (D_\mu H)^\dagger D_\mu H \to \frac{m_Z^2}{2\Lambda^3} \bar{\chi} \chi Z_\mu Z^\mu$$

$$G_{\rm ZZ} \equiv \frac{\sin^2 \theta_W}{\Lambda_1^3} + \frac{\cos^2 \theta_W}{\Lambda_2^3}$$

$$G_{\rm AZ} \equiv 2 \sin \theta_W \cos \theta_W \left(\frac{1}{\Lambda_2^3} - \frac{1}{\Lambda_1^3} \right)$$

DM searches at colliders

Mono-Z signature: DM couplings to e^+e^-

This channel can also be sensitive to the DM coupling to e^+e^- .

We consider the following effective operators:

$$\mathcal{O}_{\mathrm{FP}} = \frac{1}{\Lambda^2} \bar{\chi} \gamma_5 \chi \bar{e} \gamma_5 e, \quad \mathcal{O}_{\mathrm{FA}} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \gamma_5 \chi \bar{e} \gamma_\mu \gamma_5 e$$

DM searches at colliders

Lepton channel: $Z \rightarrow \ell^+\ell^- \ (\ell = e, \mu)$

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^-\bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^-\bar{\nu}\nu$

DM searches at colliders

Lepton channel: $Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$)

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^-\bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^-\bar{\nu}\nu$ **Reconstructing the** Z **boson**: require only 2 leptons (e's or μ 's) with $p_T > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; no any other particle;

Mono-Z signature

0000000

DM searches at colliders

Lepton channel: $Z \rightarrow \ell^+\ell^ (\ell = e, \mu)$

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^-\bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^-\bar{\nu}\nu$ **Reconstructing the** Z **boson**: require only 2 leptons (e's or μ 's) with $p_T > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; no any other particle; require the invariant mass of the 2 leptons satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

Mono-Z signature

0000000

DM searches at colliders

Lepton channel: $Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$)

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^-\bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^-\bar{\nu}\nu$ **Reconstructing the** Z **boson**: require only 2 leptons (e's or μ 's) with $p_T > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; no any other particle; require the invariant mass of the 2 leptons satisfying $|m_{\ell\ell} - m_z| < 5$ GeV.

Reconstructing the recoil mass: $m_{\text{rec}} = \sqrt{(p_{e^+} + p_{e^-} - p_{\ell_1} - p_{\ell_2})^2}$;

DM searches at colliders

Lepton channel: $Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$)

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^-\bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^-\bar{\nu}\nu$ **Reconstructing the** Z **boson**: require only 2 leptons (e's or μ 's) with $p_T > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; no any other particle; require the invariant mass of the 2 leptons satisfying $|m_{\ell\ell} - m_z| < 5$ GeV.

Reconstructing the recoil mass: $m_{\text{rec}} = \sqrt{(p_{e^+} + p_{e^-} - p_{\ell_1} - p_{\ell_2})^2}$; veto events with $m_{rec} < 140$ GeV.

DM searches at colliders

Hadron channel: $Z \rightarrow jj$

SM backgrounds: $e^+e^- \rightarrow jj\bar{\nu}\nu$, $e^+e^- \rightarrow jj\ell\nu$, $e^+e^- \rightarrow t\bar{t}$

DM searches at colliders

Hadron channel: $Z \rightarrow jj$

SM backgrounds: $e^+e^- \rightarrow jj\bar{v}v$, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the Z **boson**: require only 2 jets with $p_{\rm T} > 10$ GeV and $|\eta| < 3$; **no any other particle**;

DM searches at colliders

Hadron channel: $Z \rightarrow jj$

SM backgrounds: $e^+e^- \rightarrow jj\bar{\nu}\nu$, $e^+e^- \rightarrow ji\ell\nu$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the Z **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; no any other particle; require the invariant mass of the 2 jets satisfying 40 GeV $< m_{ij} < 95$ GeV.

DM searches at colliders

Hadron channel: $Z \rightarrow jj$

SM backgrounds: $e^+e^- \rightarrow jj\bar{v}v$, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the Z **boson**: require only 2 jets with $p_{\rm T} > 10$ GeV and $|\eta| < 3$; **no any other particle**; require the invariant mass of the 2 jets satisfying 40 GeV $< m_{jj} < 95$ GeV.

Reconstructing the recoil mass: $m_{\rm rec} = \sqrt{(p_{e^+} + p_{e^-} - p_{j_1} - p_{j_2})^2}$;

DM searches at colliders

Hadron channel: $Z \rightarrow jj$

SM backgrounds: $e^+e^- \rightarrow jj\bar{\nu}\nu$, $e^+e^- \rightarrow ji\ell\nu$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the Z **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; no any other particle; require the invariant mass of the 2 jets satisfying 40 GeV $< m_{ij} < 95$ GeV.

Reconstructing the recoil mass: $m_{\text{rec}} = \sqrt{(p_{e^+} + \overline{p_{e^-} - p_{i_*} - p_{i_*}})^2}$; veto events with $m_{\rm rec}$ < 200 GeV.

DM searches at colliders

3σ sensitivity: DM couplings to $ZZ/Z\gamma$

(with an integrated luminosity of 1000 fb⁻¹, assuming $\Lambda = \Lambda_1 = \Lambda_2$ for \mathcal{O}_{F1} and \mathcal{O}_{F2})

3σ sensitivity: DM couplings to e^+e^-

(with an integrated luminosity of 1000 fb⁻¹; Fermi upper limits come from arXiv:1310.0828)

Beam polarization

DM searches at colliders

Cross sections with polarized beams

The dashed box indicates the polarization ranges achievable at the ILC:

$$-0.8 \le P_{e^-} \le +0.8$$
, $-0.3 \le P_{e^+} \le +0.3$.

Beam polarization

DM searches at colliders

Cross sections with polarized beams

The dashed box indicates the polarization ranges achievable at the ILC: $-0.8 < P_{a^{-}} < +0.8$, $-0.3 < P_{a^{+}} < +0.3$.

In order to obtain the maximal signal significance,

 \blacktriangle $(P_{e^-}, P_{e^+}) = (+0.8, -0.3)$ is optimal for \mathcal{O}_{E1} , \mathcal{O}_{E2} , \mathcal{O}_{EH} , \mathcal{O}_{EA} ;

DM searches at colliders

Cross sections with polarized beams

00000000

The dashed box indicates the polarization ranges achievable at the ILC: $-0.8 < P_{a^{-}} < +0.8$, $-0.3 < P_{a^{+}} < +0.3$.

In order to obtain the maximal signal significance,

▲ $(P_{e^-}, P_{e^+}) = (+0.8, -0.3)$ is optimal for \mathcal{O}_{E1} , \mathcal{O}_{E2} , \mathcal{O}_{EH} , \mathcal{O}_{EA} ;

★ $(P_{e^-}, P_{e^+}) = (+0.8, +0.3)$ is optimal for \mathcal{O}_{FP} .

Beam polarization

DM searches at colliders

Sensitivity improvements

Signal significances without and with polarized beams for the benchmark points at $\sqrt{s} = 500 \text{ GeV } (100 \text{ fb}^{-1})$:

Lepton channel $\ell^+\ell^- + E$

	$\mathcal{S}_{ ext{unpol}}$	$\mathcal{S}_{ ext{pol}}$	$\mathcal{S}_{ m pol}/\mathcal{S}_{ m unpol}$
$\mathcal{O}_{\mathrm{F1}}$	5.69	10.1	1.78
$\mathcal{O}_{ ext{F2}}$	6.24	10.9	1.75
$\mathcal{O}_{ ext{FH}}$	5.50	9.70	1.76
$\mathcal{O}_{ ext{FP}}$	7.47	13.4	1.79
$\mathcal{O}_{ ext{FA}}$	5.25	9.29	1.77

Hadron channel $jj + \not\!\! E$

	$\mathcal{S}_{ ext{unpol}}$	\mathcal{S}_{pol}	$\mathcal{S}_{ m pol}/\mathcal{S}_{ m unpol}$
$\mathcal{O}_{\mathrm{F}1}$	14.3	26.0	1.82
$\mathcal{O}_{\mathrm{F2}}$	16.1	28.6	1.78
$\mathcal{O}_{ ext{FH}}$	13.5	24.8	1.84
$\mathcal{O}_{ ext{FP}}$	18.7	34.4	1.84
$\mathcal{O}_{ ext{FA}}$	12.3	23.0	1.87

Conclusions and discussions

- In addition to DM direct and indirect detection. DM searches at colliders provide an independent and complementary way to explore the microscopic nature of DM particles.
- ② The monophoton searching channel at e^+e^- colliders is sensitive to the DM couplings to $\gamma\gamma$.
- 3 The mono-Z searching channel at e^+e^- colliders is sensitive to the **DM** couplings to $ZZ/Z\gamma$ and to e^+e^- .
- **Polarized beams** are helpful to improve the signal significance.

Conclusions and discussions

DM searches at colliders

- In addition to DM direct and indirect detection. DM searches at colliders provide an independent and complementary way to explore the microscopic nature of DM particles.
- ② The monophoton searching channel at e^+e^- colliders is sensitive to the DM couplings to $\gamma\gamma$.
- 3 The mono-Z searching channel at e^+e^- colliders is sensitive to the DM couplings to $ZZ/Z\gamma$ and to e^+e^- .
- Polarized beams are helpful to improve the signal significance.

Thanks for your attentions!

Backup slides

Mono-Z: e^+e^- colliders vs. LHC

LHC, $\sqrt{s} = 8 \text{ TeV}$, 20.3 fb⁻¹ [ATLAS, arXiv:1404.0051]

5 10

50 100

 m_{γ} (GeV)

500 1000

DM couplings to e^+e^- : mono-Z vs. monophoton

[Chae and Perelstein, arXiv:1211.4008]

3σ sensitivity affected by the Λ_1 - Λ_2 relation

$\chi \chi ZZ$ coupling:

DM searches at colliders

$$G_{\rm ZZ} = \frac{\sin^2 \theta_{\rm W}}{\Lambda_1^3} + \frac{\cos^2 \theta_{\rm W}}{\Lambda_2^3}$$

$\chi \chi \gamma Z$ coupling:

$$G_{\rm AZ} = 2\sin\theta_W\cos\theta_W \left(\frac{1}{\Lambda_2^3} - \frac{1}{\Lambda_1^3}\right)$$

 $\Lambda = \Lambda_1 = \Lambda_2$: only the $\chi \chi ZZ$ coupling contributes.

 $\Lambda = \Lambda_1 = -\Lambda_2$: the $\chi \chi \gamma Z$ coupling is dominant.

 $\Lambda = \Lambda_1$, $\Lambda_2 \to \infty$: the $\chi \chi \gamma Z$ coupling is dominant.

 $\Lambda = \Lambda_2, \ \Lambda_1 \rightarrow \infty$: the $\chi \chi ZZ$ and the $\chi \chi \gamma Z$ couplings are comparable.

Chiral couplings in the standard model

- W^{\pm} only couples to left-handed e^{-} (right-handed e^{+}).
- e^{\pm} couples to Z^0 via $\frac{g_2}{2\cos\theta_W}(g_L\bar{e}_L\gamma^{\mu}e_L+g_R\bar{e}_R\gamma^{\mu}e_R)Z_{\mu}$.

$$g_L = -1 + 2\sin^2\theta_W \simeq -0.56$$
, $g_R = 2\sin^2\theta_W \simeq 0.44$, $g_L^2/g_R^2 \simeq 1.56$.

The left-handed e^- (right-handed e^+) coupling to Z^0 is stronger.

Cross sections σ and signal significances S after each cut $(\sqrt{s} = 500 \text{ GeV}, \text{ with an integrated luminosity of } 100 \text{ fb}^{-1})$

(
$$\sigma$$
 in fb, $S = S/\sqrt{S+B}$)

Hadron channel: $Z \rightarrow jj$

DM searches at colliders

Cross sections σ and signal significances S after each cut $(\sqrt{s} = 500 \text{ GeV}, \text{ with an integrated luminosity of } 100 \text{ fb}^{-1})$