

Grundlagen des Operations Research

Teil 8 – Soft Constraints, Mehrfach Zielsetzung Lin Xie \mid 30.11.2021

PROF. DR. LIN XIE - WIRTSCHAFTSINFORMATIK, INSBESONDERE OPERATIONS RESEARCH

- 1 Wiederholung
- 2 Weitere Modellierungstechniken mit 0/1-Variablen
- 3 Soft Constraints
- 4 MultiCriteria Decision Making
- 5 Fazit und Ausblick

Konjunktive Normalform

Wiederholung

Umwandlung in KNF - Zusammenfassung

■ Logische Äquivalenzen und Implikationen entfernen

$$F1 \leftrightarrow F2 \approx (F1 \rightarrow F2) \land (F2 \rightarrow F1)$$

 $F1 \rightarrow F2 \approx \neg F1 \lor F2$

Negationen nach innen bewegen

$$\neg(F1 \land F2) \approx \neg F1 \lor \neg F2$$

$$\neg(F1 \lor F2) \approx \neg F1 \land \neg F2$$

$$\neg \neg F1 \approx F1$$

Disjunktionen nach innen bzw. Konjunktionen nach außen bewegen

$$F1 \lor (F2 \land F3) \approx (F1 \lor F2) \land (F1 \lor F3)$$

Algebraische Darstellung

Führe 0/1-Variablen ein: y_1 für a, y_2 für b und y_3 für c.

- **11** Die Klausel $(\neg a \lor \neg b)$ wird in die Ungleichung $(1-v_1)+(1-v_2)>1$ und
- **2** Klausel $(\neg a \lor c)$ wird in die Ungleichung $(1-y_1)+(y_3)>1$ umgewandelt.

Beispiel:

Die Formel $a \to \neg(b \lor \neg c)$ als $(\neg a \lor \neg b) \land (\neg a \lor c)$ kann in die zwei vereinfachten Ungleichungen $v_1 + v_2 < 1$ und $v_3 > v_1$ überführt werden.

Beispiel: Grünfan

Auf einer Party sollen die Gäste grün kostümiert erscheinen. Erlaubt ist (neben anderer Kleidung) aber nur das Tragen von grünen Krawatten, Socken, Hemden oder Bändern. Es gelten folgende Regeln:

- 1. Wenn jemand eine grüne Krawatte trägt, dann muss sie/er auch ein grünes Hemd tragen
- 2. Man darf nur dann grüne Socken und grünes Hemd tragen, wenn man eine grüne Krawatte oder ein grünes Band trägt.
- 3. Wer ein grünes Hemd oder ein grünes Band oder wer keine grüne Socken trägt, muss eine grüne Krawatte tragen.
- Ein Gast, der nicht nach diesen Regeln kostümiert ist, muss €11 Eintrittsgeld zahlen.
- Herr S will an der Party teilnehmen, besitzt aber nur ein grünes
 Hemd. Eine grüne Krawatte könnte er für €10, ein grünes Band für
 €2 und grüne Socken für €12 kaufen.

Wie lautet eine kostenminimale Lösung für S, um an der Party teilzunehmen?

 Die Regeln werden zunächst aussagenlogisch formuliert wobei k, h, b, s, n die Aussagen repräsentieren S trägt grüne(s) Krawatte, Hemd, Band, Socken oder ist nicht vorschriftsmäßig kostümiert:

■ Die Regeln werden zunächst aussagenlogisch formuliert wobei k, h, b, s, n die Aussagen repräsentieren S trägt grüne(s) Krawatte, Hemd, Band, Socken oder ist nicht vorschriftsmäßig kostümiert:

$$k \to h$$
 oder $\neg k \lor h \lor n$
 $(s \land h) \to (k \lor b)$ oder $(\neg s \lor \neg h) \lor (k \lor b) \lor n$
 $(h \lor b \lor \neg s) \to k$ oder $(\neg h \land \neg b \land s) \lor k \lor n$

■ Die Regeln werden zunächst aussagenlogisch formuliert wobei k, h, b, s, n die Aussagen repräsentieren S trägt grüne(s) Krawatte, Hemd, Band, Socken oder ist nicht vorschriftsmäßig kostümiert: $k \to h$ oder $\neg k \lor h \lor n$

$$k \to h \qquad \text{oder } \neg k \lor h \lor n$$

$$(s \land h) \to (k \lor b) \qquad \text{oder } (\neg s \lor \neg h) \lor (k \lor b) \lor n$$

$$(h \lor b \lor \neg s) \to k \qquad \text{oder } (\neg h \land \neg b \land s) \lor k \lor n$$

die logischen Verknüpfungen werden in algebraische Darstellungen durch Einführung der 0-1-Variablen K, H, B, S und N überführt:

■ Die Regeln werden zunächst aussagenlogisch formuliert wobei k, h, b, s, n die Aussagen repräsentieren S trägt grüne(s) Krawatte, Hemd, Band, Socken oder ist nicht vorschriftsmäßig kostümiert: $k \rightarrow h$ oder $\neg k \lor h \lor n$

$$k \to h \qquad \text{oder } \neg k \lor h \lor n \\ (s \land h) \to (k \lor b) \qquad \text{oder } (\neg s \lor \neg h) \lor (k \lor b) \lor n \\ (h \lor b \lor \neg s) \to k \qquad \text{oder } (\neg h \land \neg b \land s) \lor k \lor n$$

■ die logischen Verknüpfungen werden in algebraische Darstellungen durch Einführung der 0-1-Variablen K, H, B, S und N überführt:

Modell

- Optimale Lösung?
- \blacksquare H = K = 1, B = S = N = 0, Kosten = 10, d.h. Herr S muss nur noch die Krawatte kaufen und sein grünes Hemd anziehen

Alternative Restriktionsgruppen

Aufgabe: Aus zwei Gruppen a) und b) von je zwei Maschinen soll eine Gruppe für die Produktion zweier Produkte ausgewählt und dabei deren Gewinn maximiert werden.

- Restriktionsgruppen beider Maschinengruppen gelten ..alternativ"
- Identische Variablen für die Produktionsmengen in beiden Gruppen

Kapazitätsrestriktionen:

a):
$$x_1 +5x_2 \le 10$$
 b): $2x_1 +5x_2 \le 20$ $x_1 +x_2 \le 6$

mit $x_1, x_2 > 0$ und der Zielfunktion maximiere $z=x_1+2x_2$

Alternative Restriktionsgruppen – Grafik

- Das Restriktionssystem a oder b muss erfüllt werden.
- "Oder" ist wie Aussagenlogik nicht direkt Bestandteil der Klasse MIP
- Lösungsraum ist nicht konvex.

Alternative Restriktionsgruppen

- Frage: Wie "logisches oder" der Restriktionsgruppen als MIP modellieren?
- Pro konvexem (Teil-)Bereich ist eine 0/1-Variable einzuführen.
- Optimale Lösung liegt in einem der Bereiche
 - Aber: Die 0/1 Variablen sind Indikator für Wirksamkeit eines Bereiches

```
y_B=1 \ 	o  Restriktionen für Bereich B wirksam
```

 $y_B = 0 \rightarrow \text{Restriktionen für Bereich B unwirksam}$

Alternative Restriktionen – Allgemeine Vorgehensweise

- **1** Definiere 0/1-Variablen, $y_i = 1 \rightarrow \text{Restriktionsgruppe i}$ wirksam
- 2 Alle Gleichungen in Ungleichungen umwandeln.
- 3 Alle Ungleichungen in \leq -Ungleichungen umwandeln.
- Addiere auf der rechten Seite jeweils " $+M_i(1-y_i)$ ".
 - Als M_i wird eine in Relation zu den anderen Parametern große Zahl gewählt.
 - $y_i = 1$ ("Aktivierung") lässt den zusätzlichen, additiven Term verschwinden
- **5** Durch die Restriktion $y_1 + ... y_N = 1$ wird sichergestellt, dass nur eine Restriktionsgruppe ausgewählt wird.

Alternative Restriktionsgruppen – Beispiel

Aus den einzelnen Kapazitätsrestriktionen:

a):
$$x_1 +5x_2 \le 10$$
 b): $2x_1 +5x_2 \le 20$
 $x_1 +x_2 \le 6$ $2x_1 +x_2 \le 6$

mit $x_1, x_2 \ge 0$ und der Zielfunktion maximize $z=x_1+2x_2$ wird nun:

$$x_1$$
 $+5x_2$ ≤ 10 $+M_a(1-y_a)$
 x_1 $+x_2$ ≤ 6 $+M_a(1-y_a)$
 $2x_1$ $+5x_2$ ≤ 20 $+M_b(1-y_b)$
 $2x_1$ $+x_2$ ≤ 6 $+M_b(1-y_b)$
 y_a $+y_b$ = 1,

mit entsprechenden 0-1 Variablen und big-M Konstanten.

Behandlung spezieller Nichtlinearitäten

$$x_1 = \begin{cases} x_2, & \text{wenn y} = 1\\ 0, & \text{sonst} \end{cases}$$

- $x_1, x_2 \ge 0, y \in \{0, 1\}$
- Entspricht $x_1 = x_2 y$, ist jedoch in dieser Form nichtlinear.

$$x_1 = \begin{cases} x_2, & \text{wenn y} = 1\\ 0, & \text{sonst} \end{cases}$$

- $\blacksquare x_1, x_2 > 0, y \in \{0, 1\}$
- Entspricht $x_1 = x_2 y$, ist jedoch in dieser Form nichtlinear.
- kann formuliert werden als (ohne Herleitung)
 - 1) $x_1 < M_1 y$ M_1 obere Schranke von x_1
 - 2) $x_1 x_2 \le M_2(1 y)$ M_2 obere Schranke von $x_1 x_2$
 - 3) $x_2 x_1 \le M_3(1 y)$ M_3 obere Schranke von $x_2 x_1$

Produkt

■
$$y_3 = y_1.y_2$$

 y_1, y_2 und somit y_3 sind 0/1-Variable

Produkt

$$\blacksquare$$
 $y_3 = y_1.y_2$ y_1, y_2 und somit y_3 sind $0/1$ -Variable

Man setzt oben y_1 für x_2 und y_2 für y ein, dann steht y_3 für x_1 .

$$\begin{array}{lclcrcl} x_1 & \leq M_1 y & \to & y_3 \leq M_1 y_2 \\ x_1 - x_2 & \leq M_2 (1 - y) & \to & y_3 - y_1 \leq M_2 (1 - y_2) \\ x_2 - x_1 & \leq M_3 (1 - y) & \to & y_1 - y_3 \leq M_3 (1 - y_2) \end{array}$$

■
$$y_3 = y_1.y_2$$
 y_1, y_2 und somit y_3 sind $0/1$ -Variable

Man setzt oben y_1 für x_2 und y_2 für y ein, dann steht y_3 für x_1 .

$$\begin{array}{lclcrcl} x_1 & \leq M_1 y & \to & y_3 \leq M_1 y_2 \\ x_1 - x_2 & \leq M_2 (1 - y) & \to & y_3 - y_1 \leq M_2 (1 - y_2) \\ x_2 - x_1 & \leq M_3 (1 - y) & \to & y_1 - y_3 \leq M_3 (1 - y_2) \end{array}$$

$$\mathit{M}_1 = \mathit{M}_2 = \mathit{M}_3 = 1 \; ext{(weil 0/1-Variablen)}
ightarrow$$

1)
$$-y_2 + y_3 \leq 0$$

2)
$$-y_1 + y_2 + y_3 \le 1$$

3)
$$y_1 + y_2 - y_3 \leq 1$$

$$z = max(x_1, x_2)$$

Alternative 1: Wir führen $u_1, u_2 \ge 0$ ein und setzen:

(1)
$$z = x_1 + u_1$$
 bzw. $u_1 = z - x_1$

(2)
$$z = x_2 + u_2$$
 bzw. $u_2 = z - x_2$

$$z = max(x_1, x_2)$$

Alternative 1: Wir führen $u_1, u_2 \ge 0$ ein und setzen:

(1)
$$z = x_1 + u_1$$
 bzw. $u_1 = z - x_1$

(2)
$$z = x_2 + u_2$$
 bzw. $u_2 = z - x_2$

- \blacksquare $(u_1, u_2 \ge 0, da z \ge x_1 und z \ge x_2 gelten).$
- Eine 0/1-Indikator-Variable y wird eingeführt, um anzuzeigen, ob $u_1 = 0$ (also $z = x_1$) falls y = 1 oder $u_2 = 0$ (also $z = x_2$) falls y = 0 ist.

$$z = max(x_1, x_2)$$

Alternative 1: Wir führen $u_1, u_2 > 0$ ein und setzen:

(1)
$$z = x_1 + u_1$$
 bzw. $u_1 = z - x_1$

(2)
$$z = x_2 + u_2$$
 bzw. $u_2 = z - x_2$

- \blacksquare $(u_1, u_2 \ge 0, da z \ge x_1 und z \ge x_2 gelten).$
- Eine 0/1-Indikator-Variable y wird eingeführt, um anzuzeigen, ob $u_1 = 0$ (also $z = x_1$) falls y = 1 oder $u_2 = 0$ (also $z = x_2$) falls y = 0 ist.
- (3) $u_1 \leq M_1(1-y)$, y ist 0/1-Variable
- (4) $u_2 < M_2 y$,

$$z = max(x_1, x_2)$$

Alternative 1: Wir führen $u_1, u_2 \ge 0$ ein und setzen:

(1)
$$z = x_1 + u_1$$
 bzw. $u_1 = z - x_1$

(2)
$$z = x_2 + u_2$$
 bzw. $u_2 = z - x_2$

- \blacksquare $(u_1, u_2 \ge 0, da z \ge x_1 und z \ge x_2 gelten).$
- Eine 0/1-Indikator-Variable y wird eingeführt, um anzuzeigen, ob $u_1 = 0$ (also $z = x_1$) falls y = 1 oder $u_2 = 0$ (also $z = x_2$) falls y = 0 ist.
- (3) $u_1 \le M_1(1-y)$, y ist 0/1-Variable
- $(4) \quad u_2 \leq M_2 y,$
 - M_1 bzw. M_2 wird als positive obere Schranke des Ausdrucks $x_2 x_1$ bzw. $x_1 x_2$ gewählt, da $z = x_1$ oder $z = x_2$ gilt.

$$(y = 1 \Rightarrow u_1 \le 0, \ x_2 \le M_2) \quad \Rightarrow z = x_1 = x_2 + u_2.[Fall \ x_1 \ge x_2])$$

$$(y = 0 \Rightarrow u_1 \le M, \ u_2 \le 0) \Rightarrow z = x_2 = x_1 + u_1.[Fall \ x_2 \ge x_1])$$

$$z = max(x_1, x_2)$$

Alternative 2: (Verzicht auf die Hilfsvariablen u_1, u_2)

- (1) $x_1 \le z$ (2) $x_2 \le z$ (3) $z x_1 \le M_1(1 y)$
- (4) $z x_2 < M_2 y$

 $y \in \{0,1\}, M_1 \text{ und } M_2 \text{ wie vor } ...$

Soft Constraints

- Unsere bisherigen Optimierungsmodelle hatten nur "harte", also exakte Werte
- Problem in der Praxis: Weiche Werte, z.B.:
 - "Ungefähr", "meistens", "sollte nicht", "kann manchmal", ..wünschenswert"
 - Lieferfenster kann mal überschritten werden.
 - Durch Überstunden kann die Kapazität erhöht werden.
- Wie passen solche Werte in den Optimierungskontext?
- Gibt es dafür spezielle Modellierungstechniken?

■ Eine Modellierungstechnik für soft constraints : $\sum_i a_i x_j \le b \Rightarrow ???$

■ Eine Modellierungstechnik für soft constraints : $\sum_i a_j x_j \le b \Rightarrow$???

$$\sum_{i} a_{j} x_{j} \leq b \Rightarrow \sum_{i} a_{j} x_{j} - u \leq b$$

■ Eine Modellierungstechnik für *soft constraints :*

$$\sum_{j} a_j x_j \leq b \Rightarrow ???$$

$$\sum_{j} a_{j} x_{j} \leq b \Rightarrow \sum_{j} a_{j} x_{j} - u \leq b$$

$$\sum_{j} a_{j} x_{j} \geq b \Rightarrow \sum_{j} a_{j} x_{j} + v \geq b$$

■ Eine Modellierungstechnik für *soft constraints :* $\sum_{i} a_{i} x_{i} \leq b \Rightarrow ???$

$$\sum_{j} a_{j} x_{j} \leq b \Rightarrow \sum_{j} a_{j} x_{j} - u \leq b$$
$$\sum_{j} a_{j} x_{j} \geq b \Rightarrow \sum_{j} a_{j} x_{j} + v \geq b$$
$$\sum_{j} a_{j} x_{j} = b \Rightarrow \sum_{j} a_{j} x_{j} - u + v = b$$

■ Eine Modellierungstechnik für *soft constraints :* $\sum_i a_i x_i \leq b \Rightarrow ???$

$$\sum_{j} a_{j} x_{j} \leq b \Rightarrow \sum_{j} a_{j} x_{j} - u \leq b$$

$$\sum_{j} a_{j} x_{j} \geq b \Rightarrow \sum_{j} a_{j} x_{j} + v \geq b$$

$$\sum_{j} a_{j} x_{j} = b \Rightarrow \sum_{j} a_{j} x_{j} - u + v = b$$

- Zielfunktion:
- z := z + cu (c > 0 für Min., c < 0 für Max.) evtl. noch eine Obergrenze $u \leftarrow U$
- \blacksquare bzw. z := z + cv
- bzw. z := z + c_1 u + c_2 v

Beispiel "Fahrradfabrik"

Ausgangsmodell:

$$\begin{array}{lll} \max z = 120x_1 + 90x_2 & \text{(Gewinnmax.)} \\ \text{subject to (s.t.)} & \\ x_1 & + & x_2 & \leq 800 & \text{(Produktionsmenge)} \\ 12x_1 & + & 6x_2 & \leq 6000 & \text{(Zeit)} \\ x_1 & & \leq 400 & \text{(Maximum deluxe)} \\ & & x_2 & \leq 700 & \text{(Maximum normal)} \\ & & x_1, x_2 \geq 0 & \text{(Nichtnegativität)} \end{array}$$

- Produktionsmenge kann mehr als 800 sein, ist aber nicht gewünscht
- Zeit kann mehr als 6000 Min. sein, jedoch unerwünscht
- Wie lautet das neue Modell?

Lösung mit Soft Constraints:

- Neue Variablen $u_1, u_2 > 0$
- Neue 7 ielfunktion:

$$\max 120x_1 + 90x_2 + c_1u_1 + c_2u_2 \text{ mit } c_1, c_2 < 0$$

■ Geänderte Produktionsmengenrestriktion:

$$x_1 + x_2 - u_1 \le 800$$

■ Geänderte Zeitrestriktion:

$$12x_1 + 6x_2 - u_2 \le 6000$$

Beispiel "Biobauer" – Ursprüngliche Problemstellung

Ein Biobauer braucht täglich mindestens 800 kg Spezialfutter für seine Tiere. Dabei handelt es sich um eine Mischung aus Mais und Sojamehl mit den folgenden Eigenschaften:

	Proteine Ballaststoffe		Preis
	[kg je kg Futter]		[€/kg]
Mais	0,09	0,02	0,30
Sojamehl	0,60	0,06	0,90

Laut Bestimmungen muss die Mischung mindestens 30% Proteine und höchstens 5% Ballaststoffe beinhalten. Unter Beibehaltung der Bestimmungen sollen die täglichen Futterkosten minimiert werden.

Beispiel: "Biobauer" – Modell

Entscheidungsvariablen:

Mischungsmengen:m: Menge an Mais (in kg)s: Menge an Sojamehl (in kg)

Wichtig: Definition der Einheiten!

Ziel:

■ Minimierung der Futterkosten (in €)

Parameter:

■ Preise, Mindest- und Höchstmengen

Nebenbedingungen (Restriktionen):

- Mindestmenge an Futter
- Mindestmenge an Proteinen
- Höchstmenge Ballaststoffe
- Nichtnegativität

Beispiel: "Biobauer" – Mathematisches Modell

Hinweis zur Herleitung der Protein- und Ballaststoffrestriktionen:

$$0,09m+0,6s \ge 0,3(m+s) \Rightarrow -0,21m+0,3s \ge 0$$
 (Proteine) $0,02m+0,06s \le 0,05(m+s) \Rightarrow -0,03m+0,01s \le 0$ (Ballaststoffe)

Beispiel "Biobauer" – Modifiziert

Modifizierte Aufgabenstellung mit Soft Constraints:

■ "Proteingehalt kann ein bisschen niedriger sein, ist aber nicht erwünscht"

Achtung:

 "Ballaststoffgehalt kann ein bisschen höher sein, jedoch nicht erwünscht"

Beispiel "Biobauer"

Lösung mit Soft Constraints:

- Neue Variablen $v_1, u_2 \ge 0$
- Neue Zielfunktion:

min
$$0.3m + 0.9s + c_1v_1 + c_2u_2$$
 mit $c_1, c_2 > 0$

■ Geänderte Proteinrestriktion:

$$-0,21m+0,30s+v_1\geq 0$$

■ Geänderte Ballastrestriktion:

$$-0,03m+0,01s-u_2 \leq 0$$

MultiCriteria Decision Making

Ihre Mitspieler

Ihre Mitspieler

Sie haben den Ball! aber wo soll er hin?

Ihre Mitspieler

Sie haben den Ball! . . aber wo soll er hin?

Sie haben den Ball!
...aber wo soll er hin?

Sie haben den Ball! ...aber wo soll er hin?

aber wo soll er hin?

Optimierung bei mehrfacher Zielsetzung

Beobachtungen

- Löst man das Problem jeweils für jedes einzelne Ziel, stimmen die Lösungen im Allgemeinen nicht überein
- Im Beispiel konnten wir eine Lösung auswählen, weil sie optimal für beide Ziele war, aber im Allgemeinen brauchen wir eine Methodik.

"Multicriteria Decision Making (MCDM): Verfahren zur Analyse von Entscheidungsmöglichkeiten unter Berücksichtigung verschiedener Kriterien"

- **Beispiel 1:** Ein Absolvent der Leuphana kann zwischen mehreren Jobangeboten auswählen.
- Es gibt mehrere Kriterien:
 - Anfangsgehalt
 - Geographische Lage
 - Inhaltliche Zufriedenheit
 - Langfristige Entwicklungsmöglichkeiten

Optimierung bei mehrfacher Zielsetzung

- **Beispiel 2:** Man möchte sich ein Auto kaufen und überlegt zwischen mehreren Alternativen. Dabei gibt es mehrere Ziele:
 - Größe
 - Benzinverbrauch / E-Auto
 - Preis
 - Design
- **Beispiel 3:** Beim Kauf einer Fahrkarte bei der Deutschen Bahn gibt es mehrere Ziele:
 - Preis
 - Fahrzeit
 - Wie oft umsteigen
 - Auslastung

Ansatz 1: Gewichtung der Ziele

- Gegeben seien im Folgenden immer explizite, berechenbare Ausdrücke für die einzelnen Zielfunktionen
- Um Optimierungsverfahren, wie wir Sie in dieser Vorlesung behandeln, anwenden zu können, müssen wir uns auf die Optimierung mit einzelnen Zielfunktionen zurückführen

Ansatz Gewichtung:

- Den Zielen $z_1, z_2, ..., z_n$ werden nach ihrer Wichtigkeit Gewichte $g_1, g_2, ..., g_n$ zugeordnet
- Das lineare Optimierungsproblem mit einer (gewichteten)
 Zielfunktion wird ganz normal gelöst
- Hauptproblem: Wahl der Gewichte
- Ziele bzw. ihre Maßeinheiten sind oft nicht vergleichbar
- Es kann sein, dass die Lösung bzgl. einiger Ziele nicht zufriedenstellend ist

Ansatz 2: Mindestanteile von Zielen (Idee)

Eine weitere mögliche Vorgehensweise:

- Wir ordnen die Ziele nach Wichtigkeit
- Wir lösen zuerst das Modell nur mit dem wichtigsten Ziel
- Dieser Wert wird etwas verkleinert (z.B. mit 0,95 multipliziert) und als Restriktion für die Optimierung nach dem zweitwichtigsten Ziel eingefügt
- Das so erzielte Zielwert basierend auf dem zweitwichtigsten Ziel wird verkleinert (z.B. mit dem Faktor 0,9 multipliziert) und für die dritte Zielfunktion als Restriktion eingefügt
- Usw.
- Hauptproblem: Hierarchisierung und Wahl der Faktoren

Ansatz 3: Goal Programming

Ansatz: Kombiniere Gewichtung mit unterschiedlichen Zielwerten

- Für n verschiedene Ziele bezeichne optimale Zielwerte z_i^{opt} , i=1....n
- Forderung: Gemeinsame optimale Lösung am Ende
- Idee: Minimiere die Abstände zwischen z_i und z_i^{opt} (Für das i. Ziel kann eine Variable z_i eingeführt werden, die den ZF-Wert per Gleichungsrestriktion berechnet)
- Verschiedene Möglichkeiten alle Abstände zusammen zu betrachten: Minimiere Summe, Maximum, ...
- Allgemeines Setting im Goal Programming:
 - Für jedes Ziel sei ein Zielwert bi gegeben
 - Es kann bspw. b_i auf z_i^{opt} gesetzt werden
 - Das b_i wird auch Goal genannt.

Ansatz 3: Goal Programming

- Allgemeines Setting im Goal Programming:
 - Für jedes Ziel sei ein Zielwert bi gegeben
 - Es kann bspw. b_i auf z_i^{opt} gesetzt werden
 - Das b_i wird auch Goal genannt.

Minimierung der Abstände von z_i und b_i :

- Uber Schlupfvariable. Andere Sichtweise: Soft Constraints
- Ideal wäre es, wenn in der optimalen Lösung gelten würde: $z_i = b_i$
- Da das für jedes Ziel gemacht wird, ist es eine sehr starke Forderung. Daher werden diese Forderungen als weiche Restriktionen formuliert.
- Umformung: $z_i u_i + v_i = b_i$

Anmerkung: Statt z_i einzuführen können wir auch direkt die definierenden Gleichungen einsetzen

- Für das veränderte Modell sind nun zwei alternative Zielfunktionen möglich:
- Minimiere die Summe der Abweichungen von z_i zu b_i für alle i

Realisierung: min
$$\sum_i (u_i + v_i)$$

s.t. $z_i - u_i + v_i = b_i$ für alle i
Restliches Modell

 \blacksquare Minimiere die maximale Abweichung der z_i zu b_i über alle i Realisierung: min z

s.t.
$$u_i \le z$$
 für alle i $v_i \le z$ für alle i $z_i - u_i + v_i = b_i$ für alle i Restliches Modell

Ansatz 3: Goal Programming

- Anmerkung: Beim Goal-Programming kann
 - bei max z_i die Überschreitungsvariable u_i weggelassen werden
 - bei min z_i die Unterschreitungsvariable v_i weggelassen werden
- Die Abweichungen der einzelnen Ziele können auch gewichtet werden

Beispiel: Wenn die beiden Zielfunktionen des folgenden Optimierungsmodells jeweils für sich alleine betrachtet werden, so gilt:

$$z_1^{opt} = 80, \ z_2^{opt} = -160.$$

Stellen Sie ein lineares Optimierungsmodell des Goal Programming auf, das die Summe der Abweichung der Goal-Werte minimiert

$$\max z_1 = 2x_1 + 3x_2$$

$$\min z_2 = -4x_1 - x_2$$
s.t. $x_1 + 2x_2 \le 40$
 $x_1, x_2 \ge 0$

Umformung zu z2: $\max z_2' := 4x_1 + x_2$ mit Goal $b_2 = 160$

Beispiel: Wenn die beiden Zielfunktionen des folgenden Optimierungsmodells jeweils für sich alleine betrachtet werden, so gilt:

$$z_1^{opt} = 80, \ z_2^{opt} = -160.$$

Stellen Sie ein lineares Optimierungsmodell des Goal Programming auf, das die Summe der Abweichung der Goal-Werte minimiert

$$\max z_1 = 2x_1 + 3x_2$$

$$\min z_2 = -4x_1 - x_2$$

s.t. $x_1 + 2x_2 \le 40$
 $x_1, x_2 \ge 0$

Umformung zu
$$z_2$$
:
max $z_2' := 4x_1 + x_2$
mit Goal $b_2 = 160$

min
$$z = v_1 + v_2$$

s.t. $x_1 + 2x_2 \le 40$
 $2x_1 + 3x_2 + v_1 = 80$
 $4x_1 + x_2 + v_2 = 160$
 $x_1, x_2, v_1, v_2 \ge 0$

Ansatz 3: Goal Programming

Beispiel: Wenn die beiden Zielfunktionen des folgenden Optimierungsmodells jeweils für sich alleine betrachtet werden, so gilt:

$$z_1^{opt} = 80, \ z_2^{opt} = -160.$$

Stellen Sie ein lineares Optimierungsmodell des Goal Programming auf, das die maximale Abweichung von jedem der Goal-Werte minimiert.

$$\max z_1 = 2x_1 + 3x_2$$

$$\min z_2 = -4x_1 - x_2$$
s.t. $x_1 + 2x_2 \le 40$
 $x_1, x_2 \ge 0$

Umformung zu
$$z_2$$
:
max $z_2' := 4x_1 + x_2$
mit Goal $b_2 = 160$

min z
s.t.
$$x_1 + 2x_2 \le 40$$

 $2x_1 + 3x_2 + v_1 = 80$
 $4x_1 + x_2 + v_2 = 160$
 $v_1 \le z$
 $v_2 \le z$
 $x_1, x_2, v_1, v_2 \ge 0$

Fazit und Ausblick

Fazit und Ausblick

- Alternative Restriktionsgruppe (Suhl/Mellouli: S. 102-103)
- Behandlung einiger spezieller Nichtlinearitäten (S. 103-105)
- Weiche Restriktionen (S. 106)
 - Anwendung
 - Formulierung
- Optimierung bei mehrfacher Zielsetzung (S. 115-119)
 - Gewichtung der Ziele
 - Mindestanteile von Zielen
 - Goal Programming
- Nächste Vorlesung
 - Allgemeine Notation von Modellen, Modellierungssprache AMPL

Leuphana Universität Lüneburg Wirtschaftsinformatik, insbesondere Operations Research Prof Dr Lin Xie Universitätsallee 1 Gebäude 4. Raum 314 21335 Lüneburg Fon +49 4131 677 2305 Fax +49 4131 677 1749 xie@leuphana.de