Macro 2 Notes

Contents

1	Introduction						
2	2 Lecture 0: Neoclassical Growth Model without Growth						
	2.1	Terms		3			
	2.2	Setup		3			
		2.2.1	Preferences	3			
		2.2.2	Technology	3			
		2.2.3	Assumptions	4			
	2.3	Model		4			
		2.3.1	Social Planner Problem	4			
		2.3.2	Key Optimality Theorem	4			
3	Lecture 1						
	3.1	Neocla	assical Growth Model	4			
		3.1.1	Terms	4			
		3.1.2	Basic Accounting Definitions	5			
		3.1.3	More Relationships	5			
		3.1.4	Assumptions	5			
		3.1.5	Setup	5			
		3.1.6	Useful Normalization	6			
		3.1.7	Neoclassical Growth Model and Kaldor Facts	6			
	3 2	Kaldo	r Facts	6			

	3.3	Consta	ant Growth	6
	3.4	Uzawa	Theorem	7
		3.4.1	Implications of Uzawa	7
	3.5	Uzawa	Theorem - Part 2	7
	3.6	Consta	ant Interest Rates, Balanced Growth, and U Theorem	7
	3.7	Useful	Facts	7
		3.7.1	Re-Expressing Growth Rates	7
4	Lec	ture 2:	Structural Change - Demand Side	8
	4.1	Model		8
		4.1.1	Terms	8
		4.1.2	Model Setup	Ś
			Preferences	ç
			Technology	ç
		4.1.3	Firm's Problem	ξ
			Optimality Conditions for Firm	ç
		4.1.4	Market Clearing	10
			Market Clearing for Labor and Capital	10
			Market Clearing for Agricultural and Service Goods	10
			Manufacturing good is used in production of investment good	10
		4.1.5	Competitive Equilibrium	10
		4.1.6	Variable/Parameter Relationships	10
			Nonhomothetic Preferences	10
	4.2	Useful	Facts	11
		4.2.1	HD1 F	11
		422	HD1 F Implications: HD0 Partials	11

1 Introduction

Much of this is directly quoted from Golosov's notes, slides, Ragini's notes, or the notes of past students (Jordan Rosenthal-Kay, Jingoo Kwon).

2 Lecture 0: Neoclassical Growth Model without Growth

This section pulls from Golosov's Lecture 0.

2.1 Terms

- t: period
- β : discount factor
- c_t : consumption in period t
- $u(c_t)$: utility derived from consumption in period t
- k_t : capital in period t
- $f(k_t)$: production function
- δ : depreciation rate

2.2 Setup

2.2.1 Preferences

Continuum of identical, infinitely lived consumers with preferences

$$\sum_{t=0}^{\infty} \beta^t u\left(c_t\right),\,$$

where $c_t \geq 0$ is consumption in period t.

2.2.2 Technology

Technology Output produced with production function $f(k_t)$, where $k_t \ge 0$ is capital with initial $k_0 > 0$ given. Output can be costlessly transferred between consumption and capital for next period:

$$c_t + k_{t+1} \le f(k_t) + (1 - \delta)k_t$$

 $k_0 > 0$ is given.

for depreciation rate $\delta \in (0,1)$.

2.2.3 Assumptions

- 1. u, f are strictly increasing, differentiable, u is strictly concave, f is concave;
- 2. u, f are "nice" 1;
- 3. u, f satisfy Inada conditions $\lim_{c\to 0} u'(c) = \lim_{k\to 0} f'(k) = \infty$.

2.3 Model

2.3.1 Social Planner Problem

$$\max_{\left\{c_{t},k_{t}\right\}_{t}}\sum_{t=0}^{\infty}\beta^{t}u\left(c_{t}\right)$$

s.t.

$$c_t + k_{t+1} \le f(k_t) + (1 - \delta)k_t,$$

and $c_t \geq 0, k_t \geq 0, k_0$ is given.

2.3.2 Key Optimality Theorem

Theorem 2.1. Suppose the assumptions above hold. (necessity) If $\{c_t^*, k_t^*\}_t$ solves (3) then $\{c_t^*, k_t^*\}_t$ satisfies

$$\begin{split} c_t^* + k_{t+1}^* &= f\left(k_t^*\right) + (1 - \delta)k_t^*, \\ u'\left(c_t^*\right) &= \beta \left[1 + f'\left(k_{t+1}^*\right) - \delta\right] u'\left(c_{t+1}^*\right), \\ \lim_{T \to \infty} \beta^T u'\left(c_T^*\right) k_{T+1}^* &\leq 0. \end{split}$$

(sufficiency) If $\{c_t^*, k_t^*\}_t$ satisfies (4), (5), and (6), then it is a solution to (3).

3 Lecture 1

3.1 Neoclassical Growth Model

3.1.1 Terms

- t: period
- C_t : consumption in period t
- I_t : investment in period t
- K_t : capital in period t
- Y_t : output in period t, sum of factor income

¹Notes from earlier in Lecture 0 on niceness: There are multiple ways to assume niceness: bounded u; u bounded from below and F is such that feasible x are bounded; u is CRRA and some assumption on the speed of change in derivatives of F around x = 0. The formal arguments are a bit tedious and not that insightful beyond the intuition that I gave here, so we will not talk about them.

- F_t : production function
- X_t : (labor-augmenting) technology in period t
- n: growth rate of population
- ρ : discount factor

3.1.2 Basic Accounting Definitions

$$C_t + I_t = Y_t$$

$$K_{t+1} = I_t + (1 - \delta)K_t$$

$$Y_t = \text{sum of factor income}$$

3.1.3 More Relationships

$$\dot{K}(t) = Y(t) - C(t) - \delta K(t)$$
 Feasibility
$$Y(t) = F(K(t), X(t)L(t))$$

$$L(t) = 1$$
 Feasibility: inelastic labor

3.1.4 Assumptions

- Perfectly competitive firms
- Y_t is produced by CRS technology F_t (DRS is a CRS with a fixed factor, IRS is hard to model parsimoniously).
- Two factors: capital and labor.
- Inelastic Labor

3.1.5 Setup

Household

Infinitely lived representative household with preferences

$$\int_0^\infty e^{-\rho t} \frac{C(t)^{1-\sigma}}{1-\sigma} dt$$

and inelastic labor supply (for now)

3.1.6 Useful Normalization

Re-normalize everything per unit of X:

$$k(t) \equiv \frac{K(t)}{X(t)}$$

$$c(t) \equiv \frac{C(t)}{X(t)}$$

$$y(t) \equiv \frac{Y(t)}{X(t)} = F(k(t), 1)$$

$$\tilde{\rho} \equiv \rho - (1 - \sigma)g_X$$

In this case, the model becomes isomorphic to the neoclassical growth model without growth. Thus, we have

- Competitive equilibrium is efficient.
- k(t), c(t), y(t) converge to the steady state k^{ss}, c^{ss}, y^{ss} .

3.1.7 Neoclassical Growth Model and Kaldor Facts

Steady state of the neoclassical growth model is consistent with Kaldor facts (presented just below)

- 1. $y(t) = y^{ss}$ implies that Y(t) grows at rate g_X .
- 2. Capital-output ratio is constant: $K(t)/Y(t) = k^{ss}/y^{ss}$.
- 3. Since consumption growth rate is constant, so are interest rates.
- 4. Factor shares are constant by labor-augmenting technical change + constant interest rate.

3.2 Kaldor Facts

- 1. Output per capita grows at a constant rate.
- 2. Capital-output ratio is roughly constant.
- 3. Interest rate is roughly constant.
- 4. Distribution of income between capital and labor is roughly constant.

3.3 Constant Growth

$$\bullet \ \frac{\dot{Y}(t)}{Y(t)} = g_Y > 0$$

$$\bullet \ \frac{\dot{K}(t)}{K(t)} = g_K > 0$$

$$\bullet \ \frac{\dot{C}(t)}{C(t)} = g_C > 0$$

$$\bullet \ \frac{\dot{L}(t)}{L(t)} = n$$

3.4 Uzawa Theorem

With constant growth and CRS technology, we have

- 1. Balanced growth: $g_Y = g_C = g_K \equiv g$
- 2. Labor-augmenting technical change: \tilde{F} can be represented as $\tilde{F}(K(t), L(t), \tilde{X}(t)) = F(K(t), X(t)L(t))$ for some CRS F with $\frac{\dot{X}(t)}{X(t)} = g n$

3.4.1 Implications of Uzawa

Some implications from Uzawa's Theorem:

- With CRS, all constant growth must be balanced, i.e., all variables grow at the same rate. Moreover, per capita growth is driven by technology.
- Technology must be either purely labor-augmenting or the elasticity of substitution between K and L equals 1.

3.5 Uzawa Theorem - Part 2

With constant growth, CRS technology, and constant factor shares², we have

- Constant interest rate: $R(t) = R^* \quad \forall t$
- Constant wage growth rate at the rate of technological growth: $\frac{\dot{w}(t)}{w(t)} = g_X = g_Y n$

3.6 Constant Interest Rates, Balanced Growth, and U Theorem

Constant interest rates and balanced growth implies that U(C) must be, up to a linear transformation,

$$U(C) = \frac{C^{1-\sigma}}{1-\sigma}$$

3.7 Useful Facts

3.7.1 Re-Expressing Growth Rates

If any variable Z grows with rate $g, \ \frac{\dot{Z}(t)}{Z(t)} = g \Longleftrightarrow Z(t) = e^{(t-\tau)g}Z(\tau)$ for all t,τ

²Jingoo's notes also mention perfect competition, not sure if that's implicit in Golosov's statement

4 Lecture 2: Structural Change - Demand Side

4.1 Model

4.1.1 Terms

- t: period
- c_t : aggregate consumption in period t
- I(t): investment at time t
- K(t): capital at time t
- r(t): rental rate of capital at time t
- w(t): wage rate at time t
- ρ : discount factor
- U_0 : Utility beginning at period 0
 - $-c^{A}(t) \in [\gamma^{A}, \infty)$ is the agricultural consumption at time t.
 - $-c^{M}(t) \geq 0$ is the manufacturing consumption at time t.
 - $-c^{S}(t) \geq 0$ is the services consumption at time t.
- $\gamma^A < 0$: constant establishing a subsistence level of agricultural consumption
 - The household must consume at least this much agricultural production (food) to survive
- $\gamma^S > 0$: constant establishing that consumption of services can be zero or negative
- η^i : long-run share of consumption in sector i
- $p^i(t)$ is the price of one unit of $c^i(t)$ for $i \in \{A, M, S\}$
 - In general, we normalize s.t. $p^{M}(t) = 1$, but we can choose any sector to normalize to 1 if useful
- $Y^{i}(t)$: Output of sector i at time t
- B^i : Hicks-neutral productivity term for sector $i \in \{A, M, S\}$
- \bullet X(t): Labor-augmenting productivity term affecting all sectors.
- $g = \frac{\dot{X}(t)}{X(t)}$: growth rate of labor-augmenting productivity

4.1.2 Model Setup

Preferences

$$U_0 = \int_0^\infty \exp(-\rho t) \frac{c(t)^{1-\sigma} - 1}{1-\sigma} dt$$
 with
$$c(t) = \left(c^A(t) + \gamma^A\right)^{\eta^A} c^M(t)^{\eta^M} \left(c^S(t) + \gamma^S\right)^{\eta^S}$$

$$\eta^i > 0, \sum_{i \in \{A, M, S\}} \eta^i = 1,$$

$$\gamma^A < 0, \gamma^S > 0$$

Budget Constraint:

$$\sum_{i \in \{A,M,S\}} p^i(t)c^i(t) + \dot{K}(t) = w(t) + (r(t) - \delta)K(t)$$

Technology

Technology F is CRS with

$$\begin{split} Y^i(t) &= B^i F\left(K^i(t), X(t) L^i(t)\right), \\ \dot{X}(t) / X(t) &= g. \end{split}$$

with capital goods produced by sector M

4.1.3 Firm's Problem

$$\max p^{i}(t)Y^{i}(t) - w(t)L^{i}(t) - r(t)K^{i}(t)$$

s.t.

$$Y^i(t) = B^i F\left(K^i(t), X(t) L^i(t)\right)$$

Optimality Conditions for Firm

Capital:

$$p^{i}(t)B^{i}F_{K}\left(K^{i}(t),X(t)L^{i}(t)\right) = r(t)$$

Labor:

$$p^{i}(t)B^{i}F_{L}\left(K^{i}(t),X(t)L^{i}(t)\right)X(t) = w(t)$$

4.1.4 Market Clearing

Market Clearing for Labor and Capital

$$K^{A}(t) + K^{M}(t) + K^{S}(t) = K(t)$$

 $L^{A}(t) + L^{M}(t) + L^{S}(t) = 1$

Market Clearing for Agricultural and Service Goods

$$c^{A}(t) = Y^{A}(t)$$
$$c^{S}(t) = Y^{S}(t)$$

Manufacturing good is used in production of investment good

$$I(t) + c^{M}(t) = Y^{M}(t)$$
$$\dot{K}(t) = I(t) - \delta K$$

4.1.5 Competitive Equilibrium

Given initial K_0 , collection of prices and quantities, such that

- 1. Consumers choose their quantities optimally given prices.
- 2. Firms choose their quantities optimally given prices.
- 3. All markets clear.

4.1.6 Variable/Parameter Relationships

Nonhomothetic Preferences

Generally, allowing for nonhomothetic preferences:

$$\frac{p^i c^i}{p^M c^M} = \frac{\eta^i}{\eta^M} - \frac{p^i}{p^M} \frac{\gamma^i}{c^M}$$

Note that holding prices fixed, p^ic^i growths faster (slower) than p^Mc^M if $\gamma^i>0$ (if $\gamma^i<0$).

- $\gamma^A < 0$: Consumption share of A grows slower than M.
- $\gamma^S > 0$: Consumption share of S grows faster than M.

This is consistent with cross-sectional patterns in spending.

4.2 Useful Facts

4.2.1 HD1 F

In our context, F is HD1. That is,

$$F(\lambda K, \lambda L) = \lambda F(K, L)$$

4.2.2 HD1 F Implications; HD0 Partials

If F(K, L) is HD1 then

$$F(K,L) = F_K(K,L)K + F_L(K,L)L$$

and $F_K(K, L), F_L(K, L)$ are HD0.

That is,

$$F_K(\lambda K, \lambda L) = F_K(K, L)$$

$$F_L(\lambda K, \lambda L) = F_L(K, L)$$