Math 230A: Homework 4

Lance Remigio

September 23, 2024

1	Let A	and	R	he	subsets	of a	. metric	space	(X	d	١
т.	1100 21	and .	$\boldsymbol{\mathcal{L}}$	\mathcal{L}	DUDDCUD	OI C		pacc	(- - 1 •	, w	, .

(a) If A ⊆ B, then A' ⊆ B'.
 Proof.
 (b) If A ⊆ B, then Ā ⊆ B̄.
 Proof.
 (c) Prove that Ā ∩ B̄ ⊆ Ā ∩ B̄.
 Proof.

- 2. Let (X,d) be a metric space and let $E \subseteq X$.
 - (a) Prove that E' is closed.

 Proof.
 - (b) Prove that E and \overline{E} have the same limit points. Proof.
 - (c) Construct an example that shows E and E' do not necessarily have the same limit points?

Proof. Suppose we have the following set $E = \{x < \frac{1}{n} : n \in \mathbb{N}, x \in \mathbb{R}\}$ and its set of limit points $E' = \{\frac{1}{n} : n \in \mathbb{N}\}$. Do these two sets necessarily have the same limit points?

3. Construct a bounded set of real numbers with exactly three limit points.

Solution. Consider $(a,b) \subseteq \mathbb{R}$. Then the three limit points of this set are a,b and a $p \in \mathbb{Q}$ with $a since <math>\mathbb{Q}$ is dense in \mathbb{R} .

Let A and B be two sets. If an element $x \notin A \cup B$, then is it the case that $x \notin A$ and $x \notin B$?

Let A be a subset of X. Suppose (X, d) is a metric space. If $x \in A$, then can we construct a neighborhood $N_{\varepsilon}(x)$ such that $N_{\varepsilon}(x) \subseteq A$?

Suppose we have a finite intersection of sets $\bigcap_{i=1}^{n} A_i$. Then is $A_i \subseteq \bigcap_{i=1}^{n} A_i$?