Tutorial 3

Course: Operations Research-IT-205

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (x a)^4$, where $a \in \mathbb{R}$ is a constant. Apply Newton's method to the problem of minimizing of f.
 - a. Write down equation for Newton's method.
 - **b.** Let $y_k = |x_k a|$. Show that the sequence $\{y_k\}$ satisfies $y_{k+1} = \frac{2}{3}y_k$.
 - **c.** Show that x_k converges to x_0 for any initial guess x_0 .
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^{\frac{4}{3}}$. Minimize f.
 - a. Write down the algorithm for Newton's method applied to this problem.
 - **b.** Show that as long as starting point is not zero, the algorithm in (a) does not converge to 0.
- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x) = \frac{3}{2}(x_1^2 + x_2^2) + 2x_1x_2 - (x_1 + x_2) + 1$$

Apply Steepest descent method to find first approximation to local Minimizer. Start with $x_0 = (1, 1)$.

- 4. Maximize $x_2^2 + x_3^2$ subject to $x_1^2 + x_2^2 + x_3^2 1 = 0$
- 5. Maximize x_1x_2 subject to $x_1^2 + 4x_2^2 = 1$
- 6. Minimize $2x_1 + 3x_2 4$ subject to $x_1x_2 = 6$