第三节 随机事件的概率

- 🧼 一、频率的定义与性质
- 二、概率的统计定义
- 三、古典概型
- 四、几何概型
- 五、概率的公理化定义

一、频率的定义与性质

1. 定义

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数 n_A 称为事件A发生的频数.比值 $\frac{n_A}{n}$ 称为事件A发生的频率,并记成 $f_n(A)$.

2. 性质

设A 是随机试验E 的任一事件,则

(1)
$$0 \le f_n(A) \le 1$$
;

(2)
$$f_n(\Omega) = 1$$
, $f_n(\emptyset) = 0$;

(3)若 A_1, A_2, \dots, A_m 是两两互斥的事件,则

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_m) = f_n(A_1) + f_n(A_2) + \cdots + f_n(A_m).$$

实例 将一枚硬币抛掷 5 次、50 次、500 次,各做 7 遍,观察正面出现的次数及频率.

试验	n=	= 5	n=	50	n = 500						
序号	n_H	f	n_H	f	n_H	f					
1	2	0.4	22	0.44	251	0.502					
2	3	0.6	】在 → 欠	上波动较	大 249	0.498					
3	1	路首か 台	勺增大!	频率 <i>f</i> 呈	现出移	定性					
4	5	1.0	25	0.50	1	波动					
5	1	0.2	24	0.48	2	U•3U4					
6	2	0.4	18	0.36	2 波式	力最小					
7	4	0.8	27	0.54	258	0.516					

从上述数据可得

- (1) 频率有随机波动性,即对于同样的n,所得的f不一定相同;
- (2) 抛硬币次数 n 较小时, 频率 f 随机波动幅

度较大,但随n的增大,频率f呈现出稳定性。

即当n逐渐增大时频率f总是在0.5附近摆动,且逐渐稳定于0.5.

实验者	n	$n_{\scriptscriptstyle H}$	f
德.摩根	2048	1061	0.5181
蒲丰	4040	2048	0.5069
K.皮尔逊	12000	6019	0.5016
K.皮尔逊	24000	12012	0.5005

$$f_n(H)$$
 n的增大 $\frac{1}{2}$.

结论

频率当 n 较小时波动幅度比较大,当 n 逐渐增大时,频率趋于稳定值,这个稳定值从本质上反映了事件在试验中发生可能性的大小.它就是事件的概率(probability).

思考?

医生在检查完病人的时候摇摇头"你的病很重在十个得这种病的人中只有一个能救活."当病人被这个消息吓得够呛时, 医生继续说"但你是幸运的.因为你找到了我, 我已经看过九个病人了, 他们都死于此病."

医生的说法对吗?

二、概率的统计定义

1.定义1.2

在随机试验中,若事件A发生的频率 $\frac{n_A}{n}$ 随着试验次数n的增加,趋于某一常数p, $0 \le p \le 1$,则定义事件A的概率为p,记作P(A) = p.

2. 性质1.1

- (1) 对任一事件A,有 $0 \le P(A) \le 1$;
- (2) $P(\Omega) = 1, P(\emptyset) = 0;$
- (3) 若 A_1, A_2, \dots, A_m 是两两互斥的事件,则

$$P(A_1 + A_2 + \dots + A_m) = P(A_1) + P(A_2) + \dots + P(A_m)$$

- 证 (1) 显然成立;
 - (2) 由于 Ω 是必然事件,每次试验均发生,则其频率恒等于1,自然p=1;

对于 \emptyset ,由于它是不可能事件,每次试验均不发生,则其频率恒等于0,p=0;

(3) 由于 A_1, A_2, \dots, A_m 两两互斥,所以 $A = A_1 + A_2 + A_3 + A_4 + A_5 + A_5$

$$\cdots + A_m$$
的频率 $\frac{r}{n}$ 与 A_1, A_2, \cdots, A_m 的频率 $\frac{r_1}{n}, \frac{r_2}{n}, \cdots, \frac{r_m}{n}$

满足等式
$$\frac{r}{n} = \frac{r_1}{n} + \frac{r_2}{n} + \dots + \frac{r_m}{n},$$

根据定义1.2知, $P(A_1 + \cdots + A_m) = P(A_1) + \cdots + P(A_m)$.

注 1° 概率的统计定义直观地描述了事件发生的可能性大小,反映了概率的本质内容.

$$2^{\circ} f_n(A) = \frac{n_A}{n}$$
与 $P(A)$ 的区别 $f_n(A)$ 是一个随机数,是变数,它与 随机试验有关;而 $P(A)$ 是一个确定的数!

3° 当试验次数n很大时,有

$$f_n(A) = \frac{n_A}{n} \approx P(A).$$

- 4° 概率统计定义的缺陷
- (1) 粗糙,模糊,不便于理论研究.

需要作大量的试验,才能观察出 $f_n(A) = \frac{n_A}{n}$ 的稳定值,因此无法根据此定义计算某事件的概率.

(2) 在数学上不够严谨.

三、古典概型

古典概型随机试验

1.古典概型定义

若随机试验 E 具有下列两个特征:

1) 有限性

样本空间 Ω 中,只有有限个样本点: $\omega_1, \omega_2, \dots, \omega_n$ 即 $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$.

2) 等可能性

 $\omega_1,\omega_2,\cdots,\omega_n$ 出现的可能性相等.

则称E所描述的概率模型为古典概型.

2. 古典概型中事件概率的计算公式

定义1.3 设试验 E 的样本空间 Ω 由n 个样本点构成,A 为 E 的任意一个事件,且包含 m 个样本点,则事件 A 发生的概率记为:

$$P(A) = \frac{m}{n} = \frac{A \text{ 所包含样本点的个数}}{\text{样本空间}\Omega\text{所含样本点的总数}}.$$

称此为古典概型的概率定义.

注 1° 判断古典概型的两个依据:

- ① Ω的有限性;
- ② 样本点ω的等可能性.
- 2° 乘法原理、排列与组合在计算m和n时起很大作用.

3.性质1.2(古典概型的概率性质)

设A 是随机试验E 的任一事件,则

(1)
$$0 \le P(A) \le 1$$
;

(2)
$$P(\Omega) = 1$$
, $P(\emptyset) = 0$;

$$(3)$$
 若 A_1, A_2, \dots, A_m 是两两互斥的事件,则

$$P(A_1 + A_2 + \dots + A_m) = P(A_1) + P(A_2) + \dots + P(A_m).$$

证 根据定义, (1),(2)显然成立;

(3) 由于
$$A_1, A_2, \dots, A_m$$
两两互斥,设

$$A_i = \{\omega_1^{(i)}, \dots, \omega_{k_i}^{(i)}\}, i = 1, 2, \dots, m, \mathbb{N}$$

$$A_1 + A_2 + \cdots + A_m =$$

$$\{\boldsymbol{\omega}_{1}^{(1)}, \dots, \boldsymbol{\omega}_{k_{1}}^{(1)}; \ \boldsymbol{\omega}_{1}^{(2)}, \dots, \boldsymbol{\omega}_{k_{2}}^{(2)}; \dots; \ \boldsymbol{\omega}_{1}^{(m)}, \dots, \boldsymbol{\omega}_{k_{m}}^{(m)}\}$$

共含 $\sum_{i=1}^{k_i}$ 个样本点,若设 Ω 中所含样本点为n,则

$$P(A_1 + A_2 + \dots + A_m) = \frac{1}{n} \sum_{i=1}^m k_i$$

$$= \frac{k_1}{n} + \dots + \frac{k_m}{n} = P(A_1) + P(A_2) + \dots + P(A_m).$$

4. 常见的三种古典概型基本模型

- (1) 摸球模型;
- (2) 分房问题;
- (3) 随机取数问题.

例1 摸球模型

(1) 无放回地摸球

问题1 设箱中有 α 只白球和 β 只黑球,现从箱中

无放回地依次摸出a+b只球, 求所取球恰好含a只白球, b只黑球的概率($a \le \alpha, b \le \beta$)?

解 设 $A = \{$ 所取球恰好含a只白球,b只黑球 $\}$

基本事件总数为: $C_{\alpha+\beta}^{a+b}$,

A 所包含基本事件的个数为 $C^a_{\alpha} \cdot C^b_{\beta}$,

故
$$P(A) = \frac{C_{\alpha}^{a} \cdot C_{\beta}^{b}}{C_{\alpha+\beta}^{a+b}}.$$

同类型的问题还有:

- 1) 中彩问题;
- 2) 抽签问题;
- 3) 分组问题;
- 4) 产品检验问题;
- 5) 鞋子配对问题;
- 6) 扑克牌花色问题;
- 7) 英文单词、书、报及电话号码等排列问题.

设有N件产品,其中有D件次品,今从中任取n件, 其中恰有 $k \le D$)件次品的概率是多少?

$$\begin{array}{c} A \stackrel{A}{\longrightarrow} C_{N-D}^{n-k} \\ \hline C_N^n \end{array}$$

$$\frac{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}$$

$$C \frac{C_D^k \cdot C_{N-D}^{n-k}}{N^n}$$

$$\frac{C_D^k \cdot A_{N-D}^{n-k}}{C_N^n}$$

(2) 有放回地摸球

问题2 袋中有4只红球和6只黑球,现从袋中有放回 地摸球3次, 求前2次摸到黑球, 第3次摸到红球的概率.

设 $A = \{ 前2次摸到黑球,第三次摸到红球 \}$

第3次摸到红球 4种 第2次摸到黑球 6种

基本事件总数为10×10×10=10³

第3次摸球

故
$$P(A) = \frac{6 \times 6 \times 4}{10^3} = 0.144.$$

A 所包含基 本事件的个 数为 6×6×4,

同类型的问题还有:

- 1) 电话号码问题;
- 2) 骰子问题;
- 3) 英文单词、书、报等排列问题.

例2 分房模型

有n个人,每个人都以同样的概率 1/N被分配在 $N(n \le N)$ 间房中的每一间中,试求下列各事件的概率:

- (1) 某指定n间房中各有一人;
- (2) 恰有n间房, 其中各有一人;
- (3) 某指定房中恰有m (m ≤ n)人.

解 1° 先求样本空间Ω所含的样本点总数.

分析 把n个人随机地分到N个房间中去,每一种分法就对应着一个样本点(基本事件),由于每个人都可以住进N间房中的任一间,所以每一个人有N种分法,n个人共有 N×N ×··· ×N=Nⁿ 种分法,即

样本点总数: N^n .

2° (1) 设 A="某指定n间房中各有一人"

则 A所含样本点数: $P_n^n = n!$: $P(A) = \frac{n!}{N^n}$.

(2) 设 B="恰有n间房,其中各有一人".

分析 对于事件B,由于未指定哪n个房间,所以这n间房可以从N个房间中任意选取,共有 C_N^n 种分法.而对于每一选定的n间房,其中 各有一人的分法有 n!种,所以事件B所含的 样本点数:

$$C_N^n \cdot n!$$

$$\therefore P(B) = \frac{C_N^n \cdot n!}{N^n}.$$

(3) 设 C = "某指定房中恰有m ($m \le n$)人". 分析 "某指定房中恰有m ($m \le n$)人",这m个人可以从n个人中任意选出,共有 C_n^m 种选法,而其他的n-m个人可以任意地被分到余下的N-1间房中去,共有 (N-1)n-m 种分法,所以事件C 所含的样本点数:

$$C_n^m \cdot (N-1)^{n-m}$$
.

$$\therefore P(C) = \frac{C_n^m \cdot (N-1)^{n-m}}{N^n}.$$

同类型的问题还有:

- 1) 球在杯中的分配问题; (球→人,杯→房)
- 2) 生日问题; $(日 \rightarrow 房, N=365 \mp)$ (或 $月 \rightarrow 房, N=12 \mp)$
- 3) 旅客下站问题; (站→房)
- 4) 印刷错误问题; (印刷错误→人,页→房)
- 5) 性别问题 (性别→房, N=2)等等.

例2-2 有趣的生日问题

全班共有学生30人,求下列事件的概率:

- (1) 某指定30天,每位学生生日各占一天;
 - (2) 全年某天恰有二人在这一天同生日;
 - (3) 至少有两人的生日在10月1日.
 - (4) 全班学生生日各不相同;

解
$$\exists \beta, N=365(\Xi)$$

$$n = 30,$$

样本空间所包含的样本点总数:

$$N^n = (365)^{30}$$
.

则
$$P(A) = \frac{n!}{N^n} = \frac{30!}{365^{30}}.$$

(2) 设 C="全年某天恰有二人在这一天同生日",m=2

$$P(C) = \frac{C_n^m \cdot (N-1)^{n-m}}{N^n} = \frac{C_{30}^2 \cdot (364)^{28}}{365^{30}}.$$

(3) 设 D="至少有两人的生日在10月1日", D_1 ="恰有一人的生日在10月1日", D_2 ="无一人的生日在10月1日", 则 D_1 与 D_2 互斥,且 $\bar{D} = D_1 + D_2$,

$$P(\bar{D}) = P(D_1) + P(D_2) = \frac{C_{30}^1 \cdot (364)^{29}}{365^{30}} + \frac{C_{30}^0 \cdot (364)^{30}}{365^{30}}$$
$$= \frac{394 \cdot (364)^{29}}{365^{30}} \approx 0.9969.$$

:.
$$P(D) = 1 - P(\bar{D}) \approx 0.0031$$
.

(4) 设B="全班学生生日各不相同",

则
$$P(B) = \frac{C_N^n \cdot n!}{N^n} = \frac{C_{365}^{30} \cdot 30!}{365^{30}}.$$

而全班同学至少有两个人生日相同的概率为

$$p(\overline{B}) = 1 - \frac{C_{365}^{30} \cdot 30!}{365^{30}}.$$

利用软件进行数值计算.

, v, v, v v v i i v = 14 224 m v i 2 i																							
人	数	至		少		有	Ē	两	人		生	-	日	7	相	Ī	=]	的	j	村	兓	峉	<u> </u>
1	0	0	•	1	1	6	9	4	8	1	7	7	7	1	1	0	7	7	6	5	1	8	7
2	0	0	•	4	1	1	4	3	8	3	8	3	5	8	0	5	7	9	9	8	7	6	2
3	0	0		7	0	6	3	1	6	2	4	2	7	1	9	2	6	8	6	5	9	9	6
4	0	0	•	8	9	1	2	3	1	8	0	9	8	1	7	9	4	8	9	8	9	6	5
5	0	0	•	9	7	0	3	7	3	5	7	9	5	7	7	9	8	8	3	9	9	9	2
6	0	0		9	9	4	1	2	2	6	6	0	8	6	5	3	4	7	9	4	2	4	7_
7	0	0	•	9	9	9	1	5	9	5	7	5	9	6	5	1	5	7	0	9	1	3	5
8	0	0	•	9	9	9	9	1	4	3	3	1	9	4	9	3	1	3	4	9	4	6	9
9	0	0		9	9	9	9	9	3	8	4	8	3	5	6	1	2	3	6	0	3	5	5
1 (0 0	0		9	9	9	9	9	9	6	9	2	7	5	1	0	7	2	1	4	8	4	2
1 1	L 0	0	•	9	9	9	9	9	9	9	8	9	4	7	1	2	9	4	3	0	6	2	1
1 2	2 0	0	•	9	9	9	9	9	9	9	9	9	7	5	6	0	8	5	2	1	8	9	5
1 3	3 0	0	•	9	9	9	9	9	9	9	9	9	9	9	6	2	4	0	3	2	3	1	7
1 4	1 0	0	•	9	9	9	9	9	9	9	9	9	9	9	9	9	6	2	1	0	3	9	5
150 0.9999999999997549											•												
1_6	5 0	0		9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0

例3 随机取数模型

从0,1,2,···,9共10个数字中任取一个. 假定每个数字都以1/10的概率被取中,取后还原,先后取出7个数字,试求下列各事件的概率:

- (1)7个数字全不同;
- (2) 不含4和7;
- (3) 9恰好出现2次;
- (4) 至少出现2次9.
- 解 样本空间所包含的样本点总数: 107.

(1) A="7个数字全不同".

A所包含的样本点数:

$$A_{10}^7 = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4.$$

$$\therefore P(A) = \frac{A_{10}^7}{10^7} = \frac{10!}{10^7 \cdot 3!}.$$

(2) B="不含4和7".

$$P(B) = \frac{8^7}{10^7} \approx 0.2097.$$

$$P(C) = \frac{C_7^2 \cdot 9^5}{10^7}.$$

$$D_k$$
 = "9恰好出现 k 次"($k \le 7$),

$$P(D_k) = \frac{C_7^k \cdot 9^{7-k}}{10^7}.$$

(解法1) 由于
$$D = D_2 + D_3 + \cdots + D_7$$
,

所以,
$$P(D) = P(D_2) + P(D_3) + \cdots + P(D_7)$$
.

$$\therefore P(D) = \sum_{k=2}^{7} \frac{C_7^k \cdot 9^{7-k}}{10^7}.$$

(解法2) 由于
$$\bar{D} = D_0 + D_1$$
,
$$P(D) = 1 - P(\bar{D})$$
$$= 1 - P(D_0) - P(D_1)$$
$$= 1 - \frac{9^7}{10^7} - \frac{C_7^1 \cdot 9^6}{10^7} \approx 0.1497.$$

例3-1 掷五次骰子, 试求:

- (1)恰好有3次点数相同的概率;
- (2)至少有两次6点的概率.

- 随机试验的样本空间所含的基本事件总数 为65.
- (1) 5次中恰好有3次是1点的基本事件数是 $C_5^35^2$, 恰好有三次是2,3,...,6点的基本事件数也是 $C_5^35^2$,

$$p = \frac{6 \cdot C_5^3 \cdot 5^2}{6^5} = \frac{125}{648} = 0.193.$$

(2)不出现6点的基本事件数是 5^5 ,只出现一次6点的基本事件数是 $C_5^15^4$,故至少出现两次6的概率是

$$p = 1 - \frac{5^5}{6^5} - \frac{C_5^1 \cdot 5^4}{6^5} = \frac{1526}{7776} = 0.196.$$

全班有30位同学,有2人在同一天生日,其他人在其余天生日各不相同的概率是:

$$\frac{C_{30}^2 \cdot A_{365}^{29}}{365^{30}}$$

$$\frac{C_{30}^2 \cdot (364)^{28}}{365^{30} \cdot 365}$$

$$\frac{C_{30}^2 \cdot (365)^{28}}{365^{30}}$$

$$\frac{C_{30}^2 \cdot (364)^{29}}{365^{30}}$$

四、几何概型

1. 定义1.4

若试验E具有下列特征:

几何 空间	一维	二维	三维	
几何 度量	长度	面积	体积	

1)无限性: E的样本空间Ω是某几何空间中的 一个区域,其包含无穷多个样本 点,每个样本点由区域 Ω 内的点 的随机位置所确定

2)等可能性:每个样本点的出现是等可能的,即样本点落在Ω内几何度量相同的子区域是等可能的,

则称E所描述的概率模型为几何概型,并称 E为几何概型随机试验.

2.定义1.5(几何概率的定义)

对于随机试验E,以m(A)表示事件A的几何度量, Ω 为样本空间. 若 $0 < m(\Omega) < +\infty$,则对于任一事件A,定义其概率为

$$P(A) = \frac{m(A)}{m(\Omega)}.$$

3.性质1.3(几何概型的概率性质)

- (1) 对任一事件A,有 $0 \le p(A) \le 1$;
- (2) $P(\Omega) = 1, P(\emptyset) = 0;$
- (3) 对于可列多个两两互斥的事件 A_1, A_2, \cdots ,

$$P(A_1 + A_2 + \dots + A_m + \dots)$$

$$= P(A_1) + P(A_2) + \cdots + P(A_m) + \cdots$$

- 证 (1) 显然成立;
- (2) 由于 Ω 是必然事件,每次试验均发生,则其频率恒等于1,自然p=1;

对于 \emptyset ,由于它是不可能事件,每次试验均不可能发生,则其频率恒等于0,p=0;

(3) 由于 $A_1, A_2, \dots, A_m, \dots$ 两两互斥,所以

$$m(A) = m(A_1 + A_2 + \cdots + A_m + \cdots)$$

$$= m(A_1) + m(A_2) + \cdots + m(A_m) + \cdots$$

根据定义1.5

$$p(A_1 + \dots + A_m + \dots) = m(A_1 + A_2 + \dots + A_m + \dots) / m(\Omega)$$

$$= \sum m(A_i) / m(\Omega) = P(A_1) + \dots + P(A_m) + \dots$$

例4(浦丰投针问题)

1777年, 法国科学家蒲丰(Buffon)提出了投针试验问题. 平面上画有等距离a (a>0)的一些平行线, 向平面任意投一长为l (l<a)的针, 试求针与平行线相交的概率.

解设M表示针落下后,针的中心,x表示M与最近一平行线的距离, φ 表示针与这平行线的夹角,则样本空间 Ω :

$$0 \le x < \frac{a}{2}, \quad 0 \le \varphi \le \pi,$$

针与一平行线相交 \Leftrightarrow $0 \le x \le \frac{l}{2} \sin \varphi$,

设A="针与一平行线相交",则

$$A: \quad 0 \le x \le \frac{l}{2} \sin \varphi,$$

$$\therefore P(A) = \frac{m(A)}{m(\Omega)}$$

$$=\frac{\int_0^{\pi} \frac{l}{2} \sin \varphi d\varphi}{\frac{a}{2}\pi} = \frac{2l}{\pi a}$$

蒲丰投针试验的应用及意义

$$P(A) = \frac{2l}{a\pi}$$

根据频率的稳定性,当投针试验次数n很大时,算出针与平行直线相交的次数m,则频率值 $\frac{m}{n}$ 即可作为P(A)的近似值代入上式,那么

$$\frac{m}{n} \approx \frac{2l}{a\pi} \implies \pi \approx \frac{2ln}{am}$$

利用上式可计算圆周率 π的近似值.

历史上一些学者的计算结果(直线距离a=1)

试验者	时间	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218	3.1554
De Morgan	1860	1.0	600	382	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

例4-1 (会面问题)

甲、乙两人相约在 0 到 T 这段时间内,在预定地点会面. 先到的人等候另一个人,经过时间t (t<T)后离去. 设每人在0 到 T 这段时间内各时刻到达该地是等可能的,且两人到达的时刻互不牵连.求甲、乙两人能会面的概率.

 \mathbf{m} 设 x,y 分别为甲,乙两人到达的时刻,那末 $0 \le x \le T$, $0 \le y \le T$.

两人会面的充要条件为 $|x-y| \le t$,

若以 x, y 表示平面 上点的坐标,则有 故所求的概率为

$$p = \frac{阴影部分面积}{正方形面积}$$

$$= \frac{T^2 - (T - t)^2}{T^2}$$

$$= 1 - (1 - \frac{t}{T})^2.$$

例4-2 在线段AD上任取两点B, C.在B, C处 折断得三条线段, 求"这三条线段能构成三角形"的概率.

解 依题意,有

$$\begin{cases}
0 < x < l, \\
0 < y < l, \\
0 < l - (x + y) < l
\end{cases}$$

样本空间 Ω :

$$0 < x < l, \quad 0 < y < l,$$

 $0 < x + y < l.$

∵构成三角形⇔两边之和大于第三边,

∴
$$0 < x < l - x$$
, $0 < y < l - y$, $x = y$
 $\exists l \quad 0 < l - (x + y) < x + y$. A B C D

设 A="三线段能构成三角形"

则
$$A:0 < x < \frac{l}{2}, 0 < y < \frac{l}{2},$$

$$\frac{l}{2} < x + y < l.$$

$$\therefore P(A) = \frac{S(A)}{S(\Omega)} = \frac{\frac{1}{2}(\frac{l}{2})^{2}}{\frac{1}{2}l^{2}} = \frac{1}{4}.$$

五、概率的公理化定义

1933年,前苏联数学家柯尔莫哥洛夫提出了概率论的公理化结构,给出了概率的严格定义,使概率论有了迅速的发展.

柯尔莫哥洛夫, A. H.

(А. Н. Колмогоров 1903-1987)

20 世纪最 有影响的数 学家之一

当选过美,法, 意,英,德 第 10多个国家 的外籍院士 及皇家 会员.

1939年任苏联科学院院士. 其研究领域包括实变函数论、数学基础论、拓扑空间论、泛函分析、概率论、动态系统、统计力学、数理统计、信息论等多个分支。写过几百篇论文,研究特点:"广泛性"、"独创性"及"明快的叙述"。

- 1.定义1.7 设E是随机试验, Ω 是它的样本空间,对于E的每一事件A赋予一个实数,记作P(A),若P(A)满足下列三条公理:
- (1) 非负性:对于每一事件A,有 $P(A) \ge 0$;
- (2) 规范性: $P(\Omega)=1$;
- (3) 可列可加性:对于两两互斥的事件 A_1 , A_2 ,…,

即
$$i \neq j$$
时, $A_i A_j = \emptyset$ $(i, j = 1, 2, ...)$,则有

$$P(A_1 + A_2 + \dots + A_m + \dots)$$

$$= P(A_1) + P(A_2) + \cdots + P(A_m) + \cdots$$

则称P(A)为事件A的概率.

2. 性质1.4 (概率公理化定义的性质)

(1)
$$P(\emptyset)=0$$

$$\widetilde{\mathbf{L}} \quad \Omega = \Omega + \varnothing + \varnothing + \cdots,$$

$$P(\Omega)=P(\Omega)+P(\emptyset)+P(\emptyset)+\cdots$$
,

$$P(\Omega)=1$$
, $\therefore P(\emptyset)=0$.

(2) 有限可加性:

设 A_1 , A_2 ,…, A_m 为有限个两两互斥事件,则

$$P(A_1 + A_2 + \dots + A_m) = P(A_1) + P(A_2) + \dots + P(A_m).$$

if
$$A_1 + A_2 + \dots + A_m = A_1 + A_2 + \dots + A_m + \emptyset +$$

$$P(A_1 + A_2 + \dots + A_m)$$

$$= P(A_1 + A_2 + \dots + A_m + \varnothing + \varnothing + \dots)$$

$$= P(A_1) + P(A_2) + \cdots + P(A_m) + P(\emptyset) + P(\emptyset) + P(\emptyset)$$

$$= P(A_1) + P(A_2) + \cdots + P(A_m).$$

(3) 逆事件的概率: 对于任意事件A,有

$$P(\overline{A}) = 1 - P(A)$$
.

if
$$A + \overline{A} = \Omega$$
, $A\overline{A} = \emptyset$,

$$\therefore P(A) + P(\overline{A}) = P(A + \overline{A}) = P(\Omega) = 1,$$

即
$$P(\overline{A}) = 1 - P(A)$$
.

(4) 若 $A \supset B$, 则 P(A-B) = P(A) - P(B).

 $i \mathbb{E} : B \subset A, : A = A \cup B = B \cup (A - B).$

 $X :: B(A-B) = BA\overline{B} = \emptyset,$

 $\therefore P(A) = P(B) + P(A - B),$

即 P(A-B)=P(A)-P(B).

推论1(单调性) 若 $A \supset B$, 则 $P(B) \leq P(A)$.

证 由性质4,及 $P(A-B)\geq 0$,知命题成立.

一般地,对任意两个事件A, B,有

$$P(A-B) = P(A\overline{B}) = P(A) - P(AB)$$

$$A = AB + (A - B)$$

$$P(A)=P(AB)+P(A-B)$$

同理

$$P(B-A) = P(B) - P(AB)$$

(5) 概率的加法公式:

对于任意两个事件A, B, 有 $P(A \cup B) = P(A) + P(B) - P(AB).$

证 由图可得,

$$A \cup B = A + (B - AB),$$

且
$$A\cap(B-AB)=\emptyset$$
,

故
$$P(A \cup B) = P(A) + P(B - AB)$$
.

又由性质 4 得

$$P(B-AB) = P(B) - P(AB),$$

因此得
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
.

推论2
$$P(A \cup B) \leq P(A) + P(B)$$
.

一般地,
$$P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i)$$
.

推论3 设 A_1, A_2, A_3 是任意三个事件,则 $P(A_1 \cup A_2 \cup A_3)$

$$= P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_2A_3)$$
$$- P(A_1A_3) + P(A_1A_2A_3).$$

一般地,对于任意n个事件 A_1 , A_2 ,…, A_n ,有

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i$$

$$\sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n).$$

例5 设事件A,B的概率分别为 $\frac{1}{3}$ 和 $\frac{1}{2}$,求在下列

三种情况下 $P(B\overline{A})$ 的值.

$$(1)A$$
与 B 互斥; $(2)A \subset B$; $(3)P(AB) = \frac{1}{8}$.

解 (1)由图示得 $P(B\overline{A}) = P(B)$,

故
$$P(B\overline{A}) = P(B) = \frac{1}{2}$$
.

(2)由图示得

$$P(B\overline{A}) = P(B) - P(A) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

(3)
$$P(B\overline{A}) = P(B - AB) = P(B) - P(AB)$$

= $\frac{1}{2} - \frac{1}{9} = \frac{3}{9}$.

例5-1 设电话号码由7位数字组成 (第一位数字不为0),试求下列事件的概率:

- (1)7位数字为3501896; (2)7位数字完全相同;
- (3)7位数字不含0和9; (4)7位数字不含0或9;
- (5)7位数字含0不含9.

解 样本空间的数目: 9×106

于是,有
$$(1)P_1 = \frac{1}{9 \times 10^6} = 0.0000001;$$

$$(2)P_2 = \frac{9}{9 \times 10^6} = 0.000001;$$

设A="不含0",B="不含9",则,

$$(3)P_3 = P(AB) = \frac{8^7}{9 \times 10^6} = 0.23301689;$$

(4)
$$P_4 = P(A \cup B) = P(A) + P(B) - P(AB)$$

$$= \frac{9^7}{9 \times 10^6} + \frac{8 \times 9^6}{9 \times 10^6} - \frac{8^7}{9 \times 10^6} = 0.7708161;$$

(5)
$$P_5 = P(B\overline{A}) = P(B) - P(AB)$$

= $\frac{8 \times 9^6 - 8^7}{9 \times 10^6} = 0.2393751.$

例5-2 已知事件A,B满足 $P(AB) = P(\overline{A} \cap \overline{B})$,记

$$P(A) = p$$
, 试求 $P(B)$.

解 :
$$P(AB) = P(A \cap B) = P(A \cup B)$$

= $1 - P(A \cup B)$
= $1 - P(A) - P(B) + P(AB)$,

由此得

$$1 - P(A) - P(B) = 0,$$

:.
$$P(B) = 1 - P(A) = 1 - p$$
.

例5-3 已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{16}$, 求事件A, B, C全不发生的概率.

解
$$P(\overline{ABC}) = P(\overline{A \cup B \cup C})$$

 $= 1 - P(A \cup B \cup C)$
 $= 1 - [P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC)].$

$$ABC \subset AB$$
 $D \leq P(ABC) \leq P(AB) = 0$,

$$\therefore P(ABC) = 0.$$

从而
$$P(\bar{A}\bar{B}\bar{C}) = P(\bar{A}\cup B\cup C)$$

$$= 1 - [P(A) + P(B) + P(C) - 0$$
$$-P(BC) - P(AC) + 0]$$

$$=1-(\frac{3}{4}-\frac{2}{16})=\frac{3}{8}.$$

例6 (1)已知 A_1 与 A_2 同时发生则A发生,

证明:
$$P(A) \ge P(A_1) + P(A_2) - 1$$
.

$$(2)$$
若 $A_1A_2A_3$ \subset A ,证明

$$P(A) \ge P(A_1) + P(A_2) + P(A_3) - 2.$$

证 (1)由已知条件知 $A_1A_2 \subset A$,则

$$P(A) \ge P(A_1A_2) = P(A_1) + P(A_2) - P(A_1 \cup A_2)$$

$$\geq P(A_1) + P(A_2) - 1.$$

$$(\because 0 \le P(A_1 \cup A_2) \le 1)$$

$$(2)$$
 $A_1A_2A_3$ $\subset A$,则

$$P(A) \ge P(A_1 A_2 A_3) \ge P(A_3) + P(A_1 A_2) - 1$$

$$\ge P(A_3) + [P(A_1) + P(A_2) - 1] - 1$$

$$\ge P(A_1) + P(A_2) + P(A_3) - 2.$$

例7 从5双不同的鞋子中任取4只,求4只鞋子中至

少有2只鞋子配成一双的概率是多少?

解法1设A = 4只鞋子中至少有两只配成一双,

$$A_1 = 4$$
只鞋子中恰有两只配成一双,

$$A_2 = 4$$
只鞋子恰好配成2双,

于是
$$A = A_1 + A_2 \perp A_1 = \emptyset$$
,

则
$$P(A) = P(A_1 + A_2) = P(A_1) + P(A_2)$$

$$=\frac{C_5^1[C_4^22^2]}{C_{10}^4}+\frac{C_5^2}{C_{10}^4}=\frac{13}{21}.$$

解法2 设 $\overline{A} = 4$ 只鞋子都不能配成双,

$$P(\overline{A}) = \frac{C_5^4 2^4}{C_{10}^4} = \frac{8}{21},$$

则
$$P(A) = 1 - P(\overline{A})$$

= $1 - \frac{8}{21} = \frac{13}{21}$.

例7-1 n对新人参加婚礼,现进行一项游戏:随

机地把人分为n对,问每对恰为夫妻的概率是多少?

解 把2n个人从左至右排成一列,共有(2n)! 种排法.

处在1,2位置的作为一对夫妻,3,4位置的作为一对

夫妻, 等等. 第一位可有2n种取法: 第二位只有一种

取法,第三位有2n-2种取法,第四位也只有一种取法,

如此类推. 故有利的排列总数为 $2n(2n-2)...2=2^n n!$.

所以
$$P=\frac{2^n n!}{(2n)!}$$
.

把10本书任意地放在书架上, 求其中指定的3本书放在一起的概率.

$$\frac{8!}{10!}$$

$$\frac{3!7!}{10!}$$

$$\frac{3!8!}{10!}$$

$$\frac{7!}{10!}$$

内容小结

1. 频率 (波动) $n \to \infty$ 概率(稳定). 试验结果

2.最简单的随机现象 —古典概型 ^{连续无穷}几何概型

古典概率

$$P{A} = \frac{m}{n} = \frac{A \text{ 所包含样本点的个数}}{\text{样本点总数}}.$$

3. 概率的主要性质

(1)
$$0 \le P(A) \le 1$$
, $P(\Omega) = 1$, $P(\emptyset) = 0$;

(2)
$$P(\overline{A}) = 1 - P(A)$$
;

(3)
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
;

(4) 设 A,B 为两个事件,且 $A \supset B$,则

$$P(A) \ge P(B), \quad P(A-B) = P(A) - P(B).$$

备用题

例2-1(中彩问题) 从1,2,…,33共33个数字中任取

一个, 假定每个数字都以1/33的概率被取中,

取后不放回,先后取出7个数字求取中一组特定

号码A的概率.(不考虑顺序)

解
$$P(A) = \frac{1}{C_{33}^7} = \frac{7!26!}{33!} = \frac{1}{4272048}$$

≈ 2.3407×10^{-7} .

例2-3 抽签问题

在编号为1, 2, 3, ..., n 的n张赠券中,采用无放回的抽签,试求在第 k次($1 \le k \le n$)抽到1号赠券的概率.

分析 1号赠券 —— 白球

其他赠券 —— 黑球

问题相当于: 从装有1个白球和(n-1)个黑球的袋中,依次无放回地取球,求第k次 摸到白球的概率.

解 设A="第k次抽到1号赠券",

则样本空间样本点总数: $n = P_n^k$

A所含的样本点数: $m = P_{n-1}^{k-1} \cdot P_1^1$

$$P(A) = \frac{P_{n-1}^{k-1}P_1^1}{P_n^k}$$

$$= \frac{(n-1)(n-2)\cdots[(n-1)-(k-1)+1]}{n(n-1)\cdots(n-k+1)} = \frac{1}{n}.$$

注 此题不能直接用组合方法. 原因: 题目强调了次序: "第k次抽到1号赠券".

例2-4 分组问题

将20个球队分成两组(每组10队)进行比赛, 求最强的两队分在不同组的概率.

分析 强队 — 白球 :
$$P = \frac{C_{18}^9 C_2^1}{C_{20}^{10}} = \frac{10}{19}$$
. 其他队 — 黑球 • ... $P = \frac{C_{20}^9 C_2^1}{C_{20}^{10}} = \frac{10}{19}$.

问题相当于:袋中有2只白球,18只黑球,采用 无放回抽取方式从中取出10个球, 求恰有1个白球的概率.

例3-1 球放入杯子问题

(1)杯子容量无限

问题1 把 4 个球放到 3个杯子中去,求第1、2个杯子中各有两个球的概率,其中假设每个杯子可放任意多个球.

4个球放到3个杯子的所有放法 3×3×3×3=3⁴种,

因此第1、2个杯子中各有两个球的概率为

$$p = {4 \choose 2} {2 \choose 2} / 3^4 = \frac{2}{27}.$$

(2) 每个杯子只能放一个球

问题2 把4个球放到10个杯子中去,每个杯子只能放一个球,求第1 至第4个杯子各放一个球的概率.

解 第1至第4个杯子各放一个球的概率为

$$p = \frac{P_4^4}{P_{10}^4} = \frac{4 \times 3 \times 2 \times 1}{10 \times 9 \times 8 \times 7}$$
$$= \frac{1}{210}.$$

例3-3 5个人在第一层进入11层楼的电梯,假如每个人以相同的概率走出任一层(从第2层开始),求此5个人在不同楼走出的概率.

解 把楼层看成是房子,则此问题是5个人进入

10个房间,且每个房间可以有多个人.根据分房模型

10个房间中的5个房间各有一人的概率为

$$\frac{A_{10}^5}{10^5} = 0.3024.$$

- 例3-4 将 15 名新生随机地平均分配到三个班级中中去,这15名新生中有3名是优秀生.问:
- (1) 每一个班级各分配到一名优秀生的概率是多少?
- (2) 3 名优秀生分配在同一个班级的概率是多少?

解 15名新生平均分配到三个班级中的分法总数:

$$\binom{15}{5}\binom{10}{5}\binom{5}{5} = \frac{15!}{5! \, 5! \, 5!}.$$

(1)每一个班级各分配到一名优秀生的分法共有

$$\binom{3}{1}\binom{2}{1}\binom{1}{1}\binom{12}{4}\binom{8}{4}\binom{4}{4} = (3!\times12!)/(4!4!4!)$$
 $+ (3!\times12!)/(4!4!4!)$ $+ (3!\times12!)/(4!4!4!)$

因此所求概率为

$$p_1 = \frac{3! \times 12!}{4! \ 4! \ 4!} / \frac{15!}{5! \ 5! \ 5!} = \frac{25}{91}.$$

(2)将3名优秀生分配在同一个班级的分法共有3种,

对于每一种分法,其余12名新生的分法有 $\frac{12!}{2! \, 5! \, 5!}$ 种.

因此3名优秀生分配在同一个班级的分法共有

(3×12!)/(2!5!5!)种,因此所求概率为

$$p_2 = \frac{3 \times 12!}{2! \, 5! \, 5!} / \frac{15!}{5! \, 5! \, 5!} = \frac{6}{91}.$$

例4-1 在电话号码簿中任取一个号码, 求后 四个数全不相同的概率 (设后面四个数中的每一个 数都是等可能的取0, 1, ..., 9).

解 随机试验是观察电话号码的后四位数字,因此可以认为样本空间 Ω 的样本点总数 10^4 ,而后四位数字全不相同的样本点总数为 A_{10}^4 .

$$\therefore p = A_{10}^4 / 10^4 = 0.504.$$

例6-4 设A, B互不相容, P(A)=p, P(B)=q, 求

$$P(A \cup B), P(\overline{A} \cup B), P(AB), P(\overline{AB}), P(\overline{AB}).$$

解
$$P(A \cup B) = P(A) + P(B) = p + q$$
,

$$P(\overline{A} \cup B) = P(\overline{A}) = 1 - P(A) = 1 - P$$

$$P(AB) = P(\Phi) = 0,$$

$$P(\overline{AB}) = P(B) = q$$

$$P(\overline{AB}) = P(\overline{A \cup B})$$

$$= 1 - P(A \cup B) = 1 - p - q$$
.

例7-1 对任意事件A, B, C,证明:

$$(1)P(AB) + P(AC) - P(BC) \le P(A);$$

$$(2)P(AB)+P(AC)+P(BC)$$

$$\geq P(A) + P(B) + P(C) - 1.$$

$$i \mathbb{L} (1)P(A) \ge P(A(B \cup C)) = P(AB \cup AC)$$

$$= P(AB) + P(AC) - P(ABC)$$

$$\geq P(AB) + P(AC) - P(BC)$$
.

$$(2)::1\geq P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(AB)$$

$$-P(AC)-P(BC)+P(ABC),$$

$$\therefore P(AB) + P(AC) + P(BC)$$

$$\geq P(A) + P(B) + P(C) + P(ABC) - 1$$

$$\geq P(A) + P(B) + P(C) - 1.$$

例7-2 证明:对任意事件A,B有

$$P(A \cup B)P(AB) \leq P(A)P(B)$$
.

$$\mathbb{I} P(A \cup B)P(AB) - P(A)P(B)$$

$$= P(A)P(AB) + P(B)P(AB)$$

$$-P(AB)P(AB)-P(A)P(B)$$

$$= P(A)[P(AB) - P(B)] + P(AB)[P(B) - P(AB)]$$

$$= [P(AB) - P(B)][P(A) - P(AB)]$$

$$P(AB) - P(B) \le 0, P(A) - P(AB) \ge 0.$$

$$\therefore P(A \cup B)P(AB) - P(A)P(B) \leq 0$$

$$\therefore P(A \cup B)P(AB) \leq P(A)P(B).$$

例7-3 证明: $|P(AB)-P(A)P(B)| \leq \frac{1}{4}$.

证 不妨设 $P(A) \ge P(B)$,则

$$P(AB) - P(A)P(B) \le P(B) - P(B)P(B)$$

$$= P(B)[1-P(B)] \le \frac{1}{4},$$

另一方面,还有

$$P(A)P(B)-P(AB)$$

$$= P(A)[P(AB) + P(\overline{AB})] - P(AB)$$

$$= P(A)P(\overline{AB}) + P(AB)[P(A) - 1]$$

$$\leq P(A)P(\overline{A}B) \leq P(A)P(\overline{A})$$

$$= P(A)[1-P(A)] \le \frac{1}{4}.$$

综合两方面可得

$$|P(AB)-P(A)P(B)|\leq \frac{1}{4}.$$

