Johnson Noise Power Spectral Density Theoretical 1 kHZ 10^3 – 2.5 kHZ 6 kHZ Power Spectral Density $S_V \left[\text{nV}^2/\text{Hz} \right]$ 1 kHz: $k = 1.3408(28) \times 10^{-23} \text{ J/K}$ 2.5 kHz: $k = 1.3937(28) \times 10^{-23} \text{ J/K}$ 6 kHz: $k = 1.4746(29) \times 10^{-23} \text{ J/K}$ Average: $k = 1.4030(16) \times 10^{-23} \text{ J/K}$ Actual: k = $1.3806 \times 10^{-}23 \text{ J/K}$ 10^{0} Error: 1.6 % 10^{3} 10^2 10^{5} 10^{4} Resistance R_L $[\Omega]$