1. Prove $7n^2 + 4n + 1$ is $O(n^2)$

2. Prove $7n^6 + 8n^5$ is $O(n^6)$

3. Prove $(n+1)^5$ is $O(n^5)$

4. Prove n is $O(n\log(n))$

5. Prove nlog(n) is $\Omega(n)$

6. The number of operations executed by algorithm A is $192n^5$. The number of operations executed by algorithm B is $3n^{5*}2^n$. Determine n_o such that algorithm A has the same performance as algorithm B for $n \ge n_o$.

Assignment 2

7. The number of operations executed by algorithm A is $25n^3$. The number of operations executed by algorithm B is $5n^3*log(n)$. Determine n_0 such that algorithm A has the same performance as algorithm B for $n \ge n_0$.

8. Give the big-Oh characterization in terms of n.

Input: An array A storing $n \ge 1$ of integers **Output:** The sum of the prefix sums in A.

$$s \leftarrow A[0]$$

 $t \leftarrow s$
for $i \leftarrow 1$ to $n - 1$ do
 $s \leftarrow s + A[i]$
 $t \leftarrow t + s$
return t

- 9. Given an n-element array X, Algorithm A calls Algorithm B on each element X[i]. The B Algorithm runs in O(i) time when it is called on element X[i]. What is the worse-case running time on Algorithm A?
- 10. Order the following functions by asymptotic growth (slowest to fastest) rate: 2^{14} , nlog(n), 200n, n^7+n^3+10 , 9n + 10log(n), 6nlog(n) + 2n, 2^n , log(n), n^2+10n , $2^{log(n)}$

Assignment must be submitted in a folder. Due at the beginning of class.