Analisi II

Paolo Bettelini

Contents

1	Bolle																1
	1.1 Succ	essioni in	spazi metrici			 			 						 		6

1 Bolle

L'insieme vuoto e l'insieme X sono aperti e chiusi.

Proposition

L'unione di aperti non numerabile è aperta, mentre l'intersezione è aperta solo se finita.

Proof

Per dimostrare quest'ultima lo facciamo su due insiemi e il resto è per induzione. Prendiamo un punto nell'interezione e prendiamo le due bolle dentro gli insiemi centrate nel punto. Siccome hanno lo stesso centro la loro intersezione è sempre una bolla di raggio il minore fra i due.

La metrice discreta può generare una bolla che è un singoletto.

Proposition

L'unione di chiusi finiti è chiusa. L'intersezione qualsiasi è chiusa.

Ogni singoletto è chiuso. Per dimostrarlo mostriamo che nel complementare esiste una bolla che non interseca il punto (vero per proprietà di Hausdorff).

Tutti i punti di accumulazione sono dei punti aderenti. Tutti i punti di un sottoinsieme sono aderenti per il sottoinsieme. Ogni punto o è di accumulazione o è isolato.

Se x_0 è aderente ad E, x_0 può essere un punto di E oppure no. Se x_0 è punto di accumulazione per E, in ogni bolla centrata in x_0 cadono inifiniti punti.

Proposition

 E° è aperto. E è aperto se e solo se $E=E^{\circ}$. E° è il più grande aperto contenuto in E. \overline{E} è chiuso. E è chiuso se e solo se $E=\overline{E}$. La chiusura di E è il più piccolo chiuso contenente E.

Proof per l'interno

Dimostriamo che E° è aperto. Sia $x_0 \in E^{\circ}$. un punto interno ad E, quindi esiste una bolla centrata in tale punto che è contenuta in E. Prendiamo un altro punto y in questa bolla. Possiamo costruire una inner bolla centrata in y con un raggio sufficientemente piccolo da rimanere nella bolla più grande. Quindi il punto y è a sua volta interno, quindi tutta la bolla centrata in x_0 è in E° e quindi è aperto.

Dimostriamo ora che se E è aperto allora $E=E^\circ$ (l'altra implicazione è ovvia). Per fare ciò dimostriamo che E° è il più grande aperto in E. Osserviamo che E° fa parte della famiglia degli aperti di X contenuti in E. Sia A un aperto contenuto in E. VOglio dimostrare che $A\subseteq E^\circ$. Sia $x_0\in A$. A èunione di bolle quindi esiste unr aggio tale che la bolla centrata in x_0 di tale raggio è contenuta in A che è contenuto in E. Quindi, x_0 è interno ad E e $x_0\in E^\circ$ e $A\subseteq E^\circ$. Supponiamo ora che E sia aperto. Allora E fa parte della famiglia degli aperti di E contenuti in E. Devo avere $E\subseteq E^\circ$. Dato che $E^\circ\subseteq E$ allora $E^\circ=E$.

Dire che un insieme è dentro in un altro significa dire che la sua chiusura coincide con l'insieme. Tipo la chiusura di Q è R quindi Q è denso in R.

Definizione Limitato

Se è contenuto in una bolla

Definizione Diametro

è il sup della metrica su tutte le coppie.

Definizione Ricoprimento

Sia E un sottoinsieme di uno spazio metrico X. Una famiglia

$$\{G_{\alpha}\}_{\alpha\in A}$$

è un ricoprimento apert di E se

$$E\subseteq\bigcup_{\alpha\in A}G_\alpha$$

Definizione Sottoricoprimento

Un Sottoricoprimento di

$$\{G_{\alpha}\}_{\alpha\in A}$$

è una sottofamiglia di G_{α} tale che continua a ricoprire. Cioè ne scarto alcuni ma deve comunque rimanere una copertura.

Definizione Compatto

Uno spazio metrico X è compatto se ogni ricoprimento aperto di E ammette un sottoricoprimento finito.

Ogni insieme finito è compatto.

Teorema

Sia X uno spazio metrico e E un sottoinsieme di X compatto.

- 1. E è limitato;
- 2. E è chiuso;
- 3. Ogni sottoinsieme infinito di E ha almeno un punto di accumulazione in E.

Proof

1. Consideriamo $\{B_1(x) \mid x \in E\}$ che è un ricoprimento aperto di E. Siccome E è compatto

esiste un sottoricoprimento finito aperto di E, ossia $x_1, \ldots, x_n \in E$ tali che

$$E \subseteq \bigcup_{i=1}^{n} B_1(x_i)$$

Posto

$$R = 1 + \max_{i=1,\dots,n} d(x_i, x_1)$$

Allora la bolla di raggio R centrata in x_1 contiene E, quindi E è limitato.

2. Supponiamo che non sia chiuso. Allora esiste $y \in E'$ ma $y \notin E$. Vogliamo costruire un ricoprimento aperto di E che non ammette sottoricoprimento finito. Sia $r(x) = \frac{1}{2}d(x,y)$ per ogni $x \in X$. Se $x \in E$ allora r(x) > 0 perchè $y \notin E$. Abbiamo il ricoprimento

$$\{B_{r(x)}(x) \mid x \in E\}$$

Ma per la compattezza esisterebbe un sottoricoprimento finito, cioè $x_1, \ldots, x_n \in E$ tali che

$$E \subseteq \bigcup_{i=1}^{n} B_{r(x_i)}(x_i)$$

Sia ora $R = \min_{i=1,\dots,n} r(x_i)$. Allora R > 0 e la bolla $B_R(y)$ non interseca nessuna delle $B_{r(x_i)}(x_i)$, assurdo poiché y è punto di accumulazione.

3. Sia F un sottoinsieme infinito di E. Supponiamo che F non abbia punti di accumulazione in E. Allora ogni punto di E ha una bolla che interseca F in al più un punto. Queste formano un ricoprimento aperto di E. Ma se esistesse un sottoricoprimento finito, F sarebbe finito, assurdo.

Proposition

Sia $E \subseteq X$ compatto. Se $F \subseteq E$ è chiuso allora F è compatto.

Proof

Sia $\{G_{\alpha}\}_{{\alpha}\in A}$ un ricoprimento aperto di F. Dobbiamo aggiungere degli insiemi aperti per coprire il resto. Siccome F è chiuso, $X\setminus F$ è aperto. Quindi $\{G_{\alpha}\}_{{\alpha}\in A}\cup \{X\setminus F\}$ è un ricoprimento aperto di E. Per la compattezza di E esiste un sottoricoprimento finito, che escludendo $X\setminus F$ è un sottoricoprimento finito di F.

Se $F \subseteq X$ è chiuso, ed $E \subseteq X$ è compatto, allora $F \cap E$ è compatto.

Teorema Teorema dell'intersezione finita

Sia $\{E_{\alpha}\}_{{\alpha}\in A}$ una famiglia di compatti tale che ogni intersezione finita è non vuota. Allora

$$\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset$$

Proof

Supponiamo che l'intersezione sia vuota. Allora e sa $E_{\overline{\alpha}}$ un compatto finito nella famiglia.

Corollario caso particolare

Sia $\{E_n\}_{n\in\mathbb{N}}$ una famiglia di compatti tale che

$$E_{n+1} \subseteq E_n$$

Allora

$$\bigcap_{n\in\mathbb{N}} E_n \neq \emptyset$$

Teorema Teorema di Heine-Borel

Sia $E \subseteq \mathbb{R}^n$ con la metrica euclidea. Allora E è compatto se e solo se E è chiuso e limitato.

Lemma

Sia $\{I_k\}_{k\in\mathbb{N}}$ una famiglia di intervalli $I_k=[a_k,b_k]$ tali che $I_k\supseteq I_{k+1}$. Allora

$$\bigcap_{k\in\mathbb{N}}I_k\neq\emptyset$$

Proof

Gli intervalli sono annidati, quindi a_k è crescente e b_k è decrescente e $a_k \leq b_k$. In particolare $a_k \leq b_i$. Consideriamo l'insieme $E = \{a_k \mid k \in \mathbb{N}\}$. E è limitato superiormente, e ammette supremum x. Per definizione $x \geq a_k$. Ma $a_k \leq b_i$ per tutte le i. Quindi, $x \leq b_i$ per ogni i. Allora

$$x \in I_n \implies x \in \bigcap I_k$$

Definizione

Siano $a, b \in \mathbb{R}^n$ con $a_i < b_i$ per ogni $i = 1, \dots, n$. Un rettangolo chiuso è il prodotto cartesiano

$$[a_1,b_1] \times [a_2,b_2] \times \ldots \times [a_n,b_n]$$

che indichiamo con [a, b].

Lemma

Sia $\{R_k\}_{k\in\mathbb{N}}$ una famiglia di rettangoli chiusi tali che $R_k\supseteq R_{k+1}$ per ogni k. Allora

$$\bigcap_{k\in\mathbb{N}}R_k\neq\emptyset$$

Proof

Siccome

$$R_k = I_{k,1} \times I_{k,2} \times \ldots \times I_{k,n}$$

possiamo applicare il primo lemma e quindi

$$\exists y_i \in \bigcap_{k \in \mathbb{N}} I_{k,i}$$

Il punto $y = (y_1, \ldots, y_n)$ è in ogni R_k .

Lemma Lemma 3

In \mathbb{R}^n con la metrica euclidea ogni rettangolo è compatto.

Proof Lemma 3

Sia R = [a, b] un rettangolo e supponiamo che non sia compatto. Sia $\{G_{\alpha}\}_{{\alpha} \in A}$ un ricoprimento aperto di R che non ammette sottoricoprimento finito. Vogliamo adesso dimezzare ambo i lati (quindi n tagli). Abbiamo adesso 2^n rettangoli.

$$[a_i, b_i] = [a_i, c_i] \cup [c_i, b_i], \quad c_i = \frac{a_i + b_i}{2}$$

Il diametro di R è ||b-a||. Il diametro di ogni rettangolo ottenuto è la metà. Almeno uno di questi rettangoli ha la proprietà di non ammettere sottoricoprimento finito. Lo chiamiamo R_1 . Iterando il procedimento otteniamo una successione di rettangoli

$$R \supseteq R_1 \supseteq R_2 \supseteq \dots$$

con diametro che tende a zero e che non ammettono sottoricoprimento finito, il diametro di R^k è dato da $\frac{1}{2^k}||b-a||$. Per il lemma precedente esiste $x\in\bigcap_{k\in\mathbb{N}}R_k$. Siccome $R_k\subseteq R$ per ogni $k,\ x\in R$. Siccome $\{G_\alpha\}_{\alpha\in A}$ è un ricoprimento di R, esiste $\alpha_0\in A$ tale che $x\in G_{\alpha_0}$. G_{α_0} è aperto, quindi esiste r>0 tale che $B_r(x)\subseteq G_{\alpha_0}$. Scegliamo k sufficientemente grande tale che $2^{-k}||b-a||< r$. Ma il diametro di R_k è minore di r, quindi $R_k\subseteq B_r(x)$. Quindi $R_k\subseteq G_{\alpha_0}$, assurdo perchè R_k non ammette sottoricoprimento finito.

Proof Heine-Borel

Dobbiamo dimostrare solo che se E è chiuso e limitato allora è compatto. Siccome E è limitato esiste M tale che ||x|| < M per ogni $x \in E$. Quindi,

$$E \subseteq [-M, M] \times [-M, M] \times \ldots \times [-M, M] = R$$

E è un chiuso contenuto in un compatto, quindi è compatto.

Teorema di Bolzano-Weierstrass

Ogni sottoinsieme infinito e limitato di \mathbb{R}^n ha almeno un punto di accumulazione.

Proof Teorema di Bolzano-Weierstrass

Definizione Insiemi separati

Sia (X,d) uno spazio metrico e $A,B\subseteq X$ due sottoinsiemi. Diciamo che A e B sono separati se

$$A \cap \overline{B} = \emptyset \wedge \overline{A} \cap B = \emptyset$$

Devono sicuramente essere disgiunti, ma non basta. Serve che non ci siano punti di accumulazione in comune.

Definizione

Sia (X,d) uno spazio metrico e $E\subseteq X$. E è connesso se non può essere scritto come unione di due sottoinsiemi non vuoti e separati.

I sottoinsiemi connessi di \mathbb{R} sono tutti e soli gli intervalli.

Uno spazio metrico è connesso se e solo se l'unico sotto
insieme non vuoto di X che è anche aperto e chiuso
è X stesso. (Dimostrazione per esercizio).

 \mathbb{R}^n con la metrica euclidea è connesso. (Dimostrazione per esercizio non proprio banale).

1.1 Successioni in spazi metrici

Mettere la definizione di convergenza ma con $d(x_m, y) < \varepsilon$. Oppure $x_m \in B_{\varepsilon}(y)$.

In particolare la successione metrica converge se e solo se $d(x_m, y) \to 0$ secondo la convergenza reale. Il limite è unico per proprietà di Hausdorff.

Proposition

Sia (X, d) uno spazio metrico e $E \subseteq X$ e sia y un punto di accumulazione per E. Allora esiste una successione $\{x_n\} \subseteq E \setminus \{y\}$ che converge ad y. In particolare, E è chiuso se e solo se per ogni successione $\{x_n\} \subseteq E$ che converge ad y allora $y \in E$.

Proof

Dato che $y \in E'$, $\forall x_m \in \mathbb{N}$, esiste x_m tale che $x_m \in B_{\frac{1}{m}}(y) \cap E$ e $x_m \neq y$. La successione così costruita converge ad y. Infatti, $d(x_m, y) < \frac{1}{m} \to 0$.

Proposition

Sia (X, d) uno spazio metrico e sia $\{x_n\}$ una successione convergente in X. Una condizione necessaria per la convergenza è che ogni sottosuccessione converga allo stesso limite. La condizione sufficiente è che ogni sottosuccessione ammetta una sottosuccessione che converge allo stesso limite.

Definizione Compattezza sequenziale

Uno spazio metrico X è sequenzialmente compatto se ogni successione in X a valori in E ammette una sottosuccessione convergente ad un punto di E.

Proposition Equivalenza compattezza

E is compact is and only if E is sequentially compact.

Questa c'è solo negli spazi metrici.

Proof

- (\Longrightarrow) Sia $\{x_n\}$ una successione in E. Consideriamo $F=\{x_n\mid n\in\mathbb{N}\}$. Se F è finito, esiste un elemento che compare infiniti volte e la successione costante converge a tale elemento. Se F è infinito, per la compattezza F ammette un punto di accumulazione, $y\in E$. Costruiamo una sottosuccessione che converga ad y. Scegliamo x_m tale che $d(x_m,y)<1$. Scegliamo x_{m_2} tale che $d(x_{m_2},y)<\frac{1}{2}$ e $m_2>m_1$, e così via. La sottosuccessione così costruita converge ad y in quanto $d(x_{m_k},y)<\frac{1}{k}\to 0$.
- (**⇐**) XXX

Ogni successione convergente è di Cauchy.

Per esempio con la metrica discreta una successione è convergente se e solo se è definitamente costante, che è equivalente ad essere di Cauchy, quindi è completo.

Nel caso dei razionali nei reali con metrica euclidea, consideriamo la radice di due che è un punto di accumulazione per i razionali. Esiste una successione di razionali che converge a radice di due, quindi è di Cauchy. Ma essa non può convergere in Q, altrimenti convergerebbe anche in R e avrebbe due limiti. Tuttavia è una successione di Cauchy in Q perché è convergente in R e quindi è di Cauchy in R. (La condizione è la medesima). Quindi Q non è completo.

Definizione Spazio completo

Uno spazio metrico (X, d) è completo se ogni successione di Cauchy in X converge ad un punto di X.

Teorema

 \mathbb{R}^n con la metrica euclidea è completo.

Proof

Sia $\{x_n\}$ una successione di Cauchy in \mathbb{R}^n . Scriviamo $E_n = \{x_k \mid k \geq n\}$. Notiamo che $E_n \supseteq E_{n+1}$. Ponendo la chiusura $\overline{E_n} \supseteq \overline{E_{n+1}}$. Inoltre, E_n è limitato e diam $E_n \to 0$. Infatti, dato $\varepsilon > 0$ esiste N tale che per ogni $m, n \geq N$ $d(x_n, x_m) < \varepsilon$. Notiamo inoltre che

$$diam E_n = \sup\{d(x_m, x_k)\} < \varepsilon$$

Dimostrazione per esercizio vale che diam $F = \text{diam}\overline{F}$. Quindi, diam $\overline{E_n} \to 0$. Adesso $\{\overline{E_n}\}$ è una successione di compatti in quanto chiusi e limitati, annidati. Quindi

$$E \triangleq \bigcap_{n \in \mathbb{N}} \overline{E_n} \neq \emptyset$$

Siccome diamE=0 o è vuoto o contiene un solo punto, quindi contiene un solo punto $E=\{y\}$. Mostriamo che $x_n \to y$. Abbiamo $d(x_n,y) \le \text{diam}\overline{E_n} \to 0$.

Teorema

Sia (X, d) uno spazio metrico compatto. Allora X è completo.

Proof

Sia $\{x_n\}$ una successione di Cauchy in X. Siccome è compatto è compatto per successioni, quindi esiste una sottosuccessione $\{x_{n_k}\}$ che converge ad un punto $y \in X$. Mostriamo che $x_n \to y$. Dato $\varepsilon > 0$ esiste N_0 tale che per ogni $m, n \geq N_0$ $d(x_n, x_m) < \frac{1}{2}\varepsilon$. Per la convergenza di $\{x_{n_k}\}$ esiste K tale che per ogni $k \geq K$ $d(x_{n_k}, y) < \frac{1}{2}\varepsilon$. Scegliamo $\overline{N} = \max\{N_0, n_K\}$. Allora per ogni $n \geq \overline{N}$ si ha

$$d(x_n, y) \le d(x_n, x_{n_K}) + d(x_{n_K}, y) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$