

Bayerhamerstraße 16 A-5020 Salzburg Serviceline: 0800/ 660 661

E-Mail: kundenservice@salzburgnetz.at

Technische Beschreibung

Kundenschnittstelle Smart Meter

März, 2022

Inhalt

1	Pł	hysikalische Schnittstelle:	3
	1.1	Stromversorgung:	3
2	Pr	rotokoll-Version:	3
3	Se	ecurity Standard:	3
4	K	ommunikation:	3
5	D	atenmodell:	4
6	V	Veiterführende Informationen	5
	6.1	Example	5
	6.2	Overview M-Bus - Physical Layer	6
	6.3	Overview M-Bus - Data Link Layer	7
	6.4	Overview M-Bus - Data Link Layer	8
	6.5		
	6.6		
	6 7		11

Diese Beschreibung gilt für die von Salzburg Netz eingesetzten Smart Meter der Hersteller Kaifa und Honeywell.

1 Physikalische Schnittstelle:

Anschluss: RJ 12 Modular Jack 6P6C Konfiguration: Wired M-Bus Master

Baud-Rate: 2.400

Pin-Nr.	Belegung
1	nicht verwendet
2	nicht verwendet
3	MBUS1 (+)
4	MBUS2 (-)
5	nicht verwendet
6	nicht verwendet

1.1 Stromversorgung:

M-Bus 4 M-Bus-Loads mit insgesamt 6mA und 32V

2 Protokoll-Version:

Version: DLMS / COSEM, IDIS CII

3 Security Standard:

Security Suite: Security Suite 1

Security Profil: Security profile B laut OMS Standard

Verschlüsselung: AES128-CBC Key: Global Unicast Encryption Key

Authentication: CMAC (8 Byte trunc)(MAC-Mode AT=5)

4 Kommunikation:

Kom.-Richtung: Push only Push-Intervall: 5 Sekunden

5 Datenmodell:

OBIS-Code	Attribut
0-0:1.0.0.255,1	Clock Attribute 1
0-0:1.0.0.255,2	Clock attribute 2
0-0:96.1.0.255	Zählernummer
0-0:42.0.0.255	COSEM logical device name
1-0:32.7.0.255	Spannung L1 (V)
1-0:52.7.0.255	Spannung L2 (V)*
1-0:72.7.0.255	Spannung L3 (V)*
1-0:31.7.0.255	Strom L1 (A)
1-0:51.7.0.255	Strom L2 (A)*
1-0:71.7.0.255	Strom L3 (A)*
1-0:1.7.0.255	Wirkleistung Bezug +P (W)
1-0:2.7.0.255	Wirkleistung Lieferung -P (W)
1-0:1.8.0.255	Wirkenergie Bezug +A (Wh)
1-0:2.8.0.255	Wirkenergie Lieferung -A (Wh)
1-0:3.8.0.255	Blindenergie Bezug +R (varh)
1-0:4.8.0.255	Blindenergie Lieferung -R (varh)

^{*} Werte werden ausschließlich bei Drehstrom-Zählern ausgegeben

Zusätzliche Informationen können dem Kapitel 10.5 des DLMS/COSEM Green Book bzw. dem IDIS package 2 entnommen werden. Nachfolgende Kapitel sind wesentlich:

- DLMS/COSEM Green Book
 - o 10.5.3.4.2 MBUS-DATA service primitives
 - o 10.5.3.4.3 MBUS-DATA protocol specification
 - o 10.5.4 Identification and addressing scheme
 - 10.5.4.4 Link Layer Address for M-Bus broadcast
 - 10.5.4.5 Transport layer address
 - 10.5.4.6 Application addressing extension M-Bus wrapper
- IDIS package 2
 - o 6.11.3 Security on the Consumer Information Interface
 - o 6.11.4 CIP System Title an Error Handling

6 Weiterführende Informationen

6.1 Example

DLMS/COSEM APDU

enum: 32

general-glo-ciphering 45 4C 53 65 70 00 00 01 'ELSep....' system-title: 454c536570000001 ciphered-service: length: 77 security-control-byte security-suite-id: 0 encryption key-set: unicast frame-counter: 144 E2 A3 30 F9 B7 E0 D6 8C 09 37 5A A1 B1 F8 F3 A7 '..0.....7Z.....' DF 14 B7 79 0E 14 D1 55 6A B8 75 B1 49 E6 84 7D '...y...Uj.u.l..}' '..m....v.-.h.' 11 93 6D B5 19 1D D0 F4 89 BA 76 8C 2D BB 68 F6 BO 01 E3 04 C2 1F EA 14 7E 0B 2E 2C A1 B9 1D 57 '.....V' 4D F4 F7 F5 82 CE BE 92 'M.....'

DLMS/COSEM APDU (decrypted payload)

data-notification long-invoke-id-and-priority invoke-id: 366 not-self-descriptive processing-option: continue on error service-class: unconfirmed priority: normal date-time 07 E0 09 09 05 11 3A 00 00 FF C4 80 '.....' 2016/09/09 17:58:00 Day of Week: 5 Deviation to GMT: -60 minutes Clock Status: 80 notification-body data structure with 7 elements struct-element-0 octet-string: 07 E0 09 09 05 11 3A 00 00 00 00 80 '.....' struct-element-1 octet-string: 01 00 01 08 00 FF struct-element-2 double-long-unsigned: 0 struct-element-3 structure with 2 elements struct-element-0 integer: 0 struct-element-1 enum: 30 struct-element-4 octet-string: 01 00 03 08 00 FF struct-element-5 double-long-unsigned: 0 struct-element-6 structure with 2 elements struct-element-0 integer: 0 struct-element-1

6.2 Overview M-Bus - Physical Layer

The M-Bus consists of

- The master,
- A number of slaves
- A two-wire connecting cable

Master to Slave => The transfer of bits from master to slave is accomplished by means of voltage level shifts.

- A logical "1" (Mark) corresponds to a nominal voltage of +36 V
- A logical "0" (Space) reduces the bus voltage by 12 V to a nominal +24 V

Slave to Master => The transfer of bits from slave to master slave is accomplished by means of modulating the current consumption of the slave.

- A logical "1" (Mark) is represented by a constant current of up to 1.5 mA,
- A logical "0" (Space) is represented by an increased current drain requirement by the slave of additional 11-20 mA.

6.3 Overview M-Bus - Data Link Layer

Telegram format - FT 1.2 according to IEC 870-5:

=> The format class FT 1.2 specifies three different telegram formats, which can be recognized by means of special start characters

Single Character

This format consists of a single character, namely the E5h (decimal 229), and serves to acknowledge receipt of transmissions.

Short Frame

This format with a fixed length begins with the start character 10h, and besides the C and A fields includes the check sum (this is made up from the two last mentioned characters), and the stop character 16h.

Long Frame

With the long frame, after the start character 68h, the length field (L field) is first transmitted twice, followed by the start character once again. After this, there follow the function field (C field), the address field (A field) and the control information field (CI field). The L field gives the quantity of the user data inputs plus 3 (for C,A,CI). After the user data inputs, the check sum is transmitted, which is built up over the same area as the length field, and in conclusion the stop character 16h is transmitted.

Control Frame

The control sentence conforms to the long sentence without user data, with an L field from the contents of 3. The check sum is calculated at this point from the fields C, A and CI.

Single Character E5h

Start 10h
C Field
A Field
Check Sum
Stop 16h

Short Frame

Connorrante
Start 68h
L Field = 3
L Field = 3
Start 68h
C Field
A Field
CI Field
Check Sum
Stop 16h

Control Framo

Long Frame						
Start 68h						
L Field						
L Field						
Start 68h						
C Field						
A Field						
CI Field						
User Data						
(0-252 Byte)						
Check Sum						
Stop 16h						

6.4 Overview M-Bus - Data Link Layer

C Field (Control Field)

The control field specifies the direction of data flow, and is responsible for various additional tasks in both the calling and replying directions.

A Field (Address Field)

The address field serves to address the recipient in the calling direction, and to identify the sender of information in the receiving direction. The size of this field is one B yte, and can therefore take values from 0 to 255.

- Address 0: indicates an unconfigured slave
- Address 1-250: can be allocated to the individual slaves
- Address 251-252: reserved
- Address 253: Network Layer addressing used instead of Data Link Layer addressing
- Address 254: broadcast all slaves reply with their own addresses
- Address 255: broadcast none of the slaves reply

CI Field (control information field)

The control information field is already a part of the Application Layer, The control information allows the implementation of a variety of actions in the master or the slaves.

Check Sum

The Check Sum is calculated from the arithmetical sum of the data mentioned above, without taking carry digits into account.

Coding of the Control Field

Bit Number	7	6	5	4	3	2	1	0
Calling Direction	0	1	FCB	FCV	F3	F2	F1	F0
Reply Direction	0	0	ACD	DFC	F3	F2	F1	F0

Control Codes of the M-Bus Protocol (F: FCB-Bit, A: ACD-Bit, D: DFC-Bit)

Name	C Field Binary	C Field Hex.	Telegram	Description
SND_NKE	0100 0000	40	Short Frame	Initialization of Slave
SND_UD	01F1 0011	53/73	Long/Control Frame	Send User Data to Slave
REQ_UD2	01F1 1011	5B/7B	Short Frame	Request for Class 2 Data
REQ_UD1	01F1 1010	5 A /7 A	Short Frame	Request for Class1 Data (see 8.1: Alarm Protocol)
RSP_UD	00AD 1000	08/18/28/38	Long/Control Frame	Data Transfer from Slave to Master after Request

6.5 Overview M-Bus – Transport Layer

The M-Bus transport layer allows several application layers to co-exist over the M-Bus lower layers.

These may be:

- the M-Bus dedicated AL
- the DLMS/COSEM AL
- some other AL that may be specified in the future.

The AL used is selected by the Control Information (CI) field of the M-Bus frame.

CI field values

	Application					
00h-1Fh	OLMS/COSEM M-Bus based TL					
	No M-Bus Data Header is present					
20h-4Fh	reserved for DLMS-based applications					
50h	application reset					
51h	data send (master to slave)					
52h	selection of slaves					
53h	reserved					
54h-58h	reserved for DLMS-based applications					
55h-58h	reserved					
5Ch	synchronise action					
60h	DLM5/COSEM M-Bus based TL					
	Long M-Bus Data Header present, direction master to slave					
61h	DLMS/COSEM M-Bus-based TL					
	Short M-Bus Data Header present, direction master to slave					
62h-6Fh	reserved					
70h	slave to master: report of application errors					
71h	slave to master: report of alarms					
72h	slave to master: 12 byte header followed by variable format data					
73h-77h	reserved					
78h	slave to master: Variable data format response without header					
79h	reserved					
7Ah	slave to master: 4 byte header followed by Variable data format response					
78h	reserved					
7Ch	DLMS/COSEM M-Bus based TL					
	Long M-Bus Data Header present, direction slave to master					
7Dh	DLMS/COSEM M-Bus based TL					
	Short M-Bus Data-Header present, direction slave to master					
7Eh-80h	reserved					
81h	Reserved for a future CEN-TC294- Radio relaying and application Layer					
82h	Reserved for a future CENELEC-TC205 network/application Layer					
82h-8Fh	reserved					
90h-97h	manufacturer specific (obsolete)					
A0h-AFh	manufacturer specific					
B0-B7h	manufacturer specific					
B8h	set baudrate to 300 baud					
89h	set baudrate to 600 baud					
BAh	set baudrate to 1200 baud					
BBh	set baudrate to 2400 baud					
BCh	set baudrate to 4800 baud					
BDh	set baudrate to 9600 baud					
BEh	set baudrate to 19200 baud					
BFh	set baudrate to 38400 baud					
C0h-FFh	reserved					

6.6 DLMS/COSEM M-Bus transport layer

DLMS/COSEM AL based CI values

CITL	Description				
0x00-0x1F	No M-Bus Data Header is present 1				
0x60 Long M-Bus Data Header present, direction master to slave					
0x61	Short M-Bus Data Header present, direction master to slave				
0x7C	Long M-Bus Data Header present, direction slave to master				
0x7D	Short M-Bus Data Header present, direction slave to master				
¹ In this case, segmentation / reassembly is possible with restrictions.					

CI without M-Bus Data Header

b7	b6	b5	b4	b3	b2	b1	b0
0	0	0	FIN	S	equenc	e numb	er

The values CITL = 0x00...0x1F indicate that no M-Bus Data Header is present. In this case, the TL can provide segmentation and reassembly

- Bit 4 (FIN) indicates that the Data field of the TPDU carries either one part of an xDLMS APDU or the complete APDU.
- Bits 3 to 0 are used for sequence numbering. The rollover of the sequence numbers is permitted, meaning that when the sequence number reaches the value 1111 and there are segments remaining to be sent, the next segment sequence number will take the value 0000.

TPDU with no M-Bus Data Header, Data without segmentation

CI _{TL} = 0x10	STSAP	DTSAP	Data (xDLMS APDU)
-------------------------	-------	-------	----------------------

TPDU with no M-Bus Data Header, Data with segmentation, first segment

CI _{TL} = 0x00	STSAP	DTSAP	Data (xDLMS APDU)
-------------------------	-------	-------	----------------------

TPDU with no M-Bus Data Header, Data with segmentation, one segment

CI _{TL} = STS	DTSAP	Data (xDLMS APDU)
------------------------	-------	----------------------

TPDU with no M-Bus Data Header, Data with segmentation, last segment

CI _{TL} = 0x100x1F	STSAP	DTSAP	Data (xDLMS APDU)
--------------------------------	-------	-------	----------------------

TPDU with short M-Bus Data Header, Data without segmentation

TPDU with long M-Bus Data Header, Data without segmentation

6.7 Example M-Bus frame

685D5D6853FF100167DB08454C5365700000014D200000541FE2A330AD29E0D68C09365BA286DBF3A7DF14B7790E14D1556AB974B2
7EC5847D11936DB5191DD0F489BA768C2DBB68F6B001E304C21FEA147E0B2E2CA1B91D574DF4F7F582CEBE928316

M-Bus Data link layer	Start Character	0x68	
The Bus Buttu Hill Tuye.	Lfield	0x5D	
	Lfield	0x5D	
	Start Character	0x68	
	Cfield	0x53	SND UD (long frame)
	A field	0xFF	Broadcast Address
DLMS/COSEM M-Bus transport layer	CI field	0x10	TPDU with no M-Bus Data Header, Data without
.,			segmentation (Data with segmentation, last segment)
	STSAP	0x01	logical Device ID 1
	DTSAP	0x67	Client ID (CIP client id 103)
DLMS/COSEM Application Layer	Cyphering service	DB	General-Glo-Ciphering
	???	0x08	???
	System title	0x454C536570000001	
	length	0x4D	77 bytes of encrypted data
	security control byte	0x20	Bit 30: Security_Suite_Id
			Bit 4: "A" subfield: indicates that authentication is
			applied;
			Bit 5: "E" subfield: indicates that encryption is applied;
			Bit 6: Key_Set subfield: 0 = Unicast,
			1 = Broadcast;
			Bit 7: Indicates the use of compression.
	frame counter	0x0000541F	
	encrypted payload	0xE2A330AD29E0D68C09365BA286DBF3A7DF1 unencrypted payload:	
		4B7790E14D1556AB974B27EC584	47D11936DB5 0x0F000055390C07E0090804130D1900FFC4800207090C07
		191DD0F489BA768C2DBB68F6BC	001E304C21FE 0090804130D190000008009060100010800FF06000000000
		A147E0B2E2CA1B91D574DF4F7F	582CEBE92 020F00161E09060100030800FF060000000002020F001620
M-Bus Data link layer	checksum	0x83	
	End character	0x16	