Probability

Uncertainty in the World

- An person can often be uncertain about the state of the world/domain since there is often ambiguity and uncertainty
- Plausible/probabilistic inference
 - I've got this evidence; what's the chance that this conclusion is true?
 - I've got a sore neck; how likely am I to have meningitis?
 - A mammogram test is positive; what's the probability that the patient has breast cancer?

Uncertainty

- Say we have a rule:
 if toothache then problem is cavity
- But not all patients have toothaches due to cavities, so we could set up rules like:

```
if toothache and ¬gum-disease and ¬filling and ...
then problem = cavity
```

• This gets complicated; better method: if toothache then problem is cavity with 0.8 probability or $P(cavity \mid toothache) = 0.8$

the probability of cavity is 0.8 given toothache is observed

Example of Uncertainty

- Assume a camera and vision system is used to estimate the curvature of the road ahead
- There's uncertainty about which way it curves
 - limited pixel resolution, noise in image
 - algorithm for "road detection" is not perfect
- This uncertainty can be represented with a simple probability model:

```
P(road\ curves\ to\ left\ |\ E)=0.6

P(road\ goes\ straight\ |\ E)=0.3

P(road\ curves\ to\ right\ |\ E)=0.1
```

 where the probability of an event is a measure of observer's belief in the event given the evidence E

Uncertainty in the World and our Models

- True uncertainty: rules are probabilistic in nature
 - quantum mechanics
 - rolling dice, flipping a coin
- Laziness: too hard to determine exception-less rules
 - takes too much work to determine all of the relevant factors
 - too hard to use the enormous rules that result
- Theoretical ignorance: don't know all the rules
 - problem domain has no complete, consistent theory (e.g., medical diagnosis)
- Practical ignorance: do know all the rules BUT
 - haven't collected all relevant information for a particular case

Logics

Logics are characterized by what they commit to as "primitives"

Logic	What Exists in World	Knowledge States
Propositional	facts	true/false/unknown
First-Order	facts, objects, relations	true/false/unknown
Temporal	facts, objects, relations, times	true/false/unknown
Probability Theory	facts	degree of belief 01
Fuzzy	degree of truth	degree of belief 01

Probability Theory

- Probability theory serves as a formal means for
 - Representing and reasoning with uncertain knowledge
 - Modeling degrees of belief in a proposition (event, conclusion, diagnosis, etc.)

- Probability is the "language" of uncertainty
 - A key modeling method in modern Al

Source of Probabilities

Frequentists

- probabilities come from experiments
- if 10 of 100 people tested have a cavity, P(cavity) = 0.1
- probability means the fraction that would be observed in the limit of infinitely many samples

Objectivists

- probabilities are real aspects of the world
- objects have a propensity to behave in certain ways
- coin has propensity to come up heads with probability 0.5

Subjectivists

- probabilities characterize an agent's belief
- have no external physical significance

Sample Space/Outcome Space

- *S* is a outcome space: collection of all possible outcome
- Let, A be a part of the collection of outcomes in S; that is, $A \subseteq S$. Then A is called an event.
- Events can be binary, multi-valued, or continuous

Outcome and Event

- Outcome and event are not synonymous.
- Outcome is the result of a random experiment. Example: rolling a die has six possible outcomes.
- Event is a set of outcomes to which a probability is assigned. Example: One possible event is "rolling a number less than 3".

Mutually Exclusive Event

- Mutually exclusive events are events that cannot occur together (simultaneously).
- $A_1, A_2, ..., A_k$ are mutually exclusive events means that $A_i \cap A_j = \emptyset$, $i \neq j$; that is, $A_1, A_2, ..., A_k$ are disjoint sets.

Example:

- -A = queen of diamonds; B = queen of clubs
- Events A and B are mutually exclusive if only one card is selected

Mutually Exhaustive Event

• A_1, A_2, \dots, A_k are mutually exhaustive events means that $A_i \cup A_j \cup \dots \cup A_k = S$

Example:

Consider the experiment of throwing a die.

Sample space $S = \{1, 2, 3, 4, 5, 6\}$

Assume that A, B and C are the events associated with this experiment.

Define: A be the event of getting a number greater than 3

B be the event of getting a number greater than 2 but less than 5

C be the event of getting a number less than 3

We can write these events as:

$$A = \{4, 5, 6\}$$

$$B = \{3, 4\}$$

and
$$C = \{1, 2\}$$

We observe that

The Axioms of Probability

- **1.** $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. For any two disjoint events A and B, we have $P(A \cup B) = P(A) + P(B)$
- 4. For any infinite sequence of mutually disjoint events $A_1, A_2, A_3, ...$, we have

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots)$$

= $P(A_1) + P(A_2) + P(A_3) + \cdots$

Empirical Probablity

 Refers to a probability that is based on historical data.

$$P(A) = \frac{\text{# of times event A occurs}}{\text{total # of observed occurences}}$$

Empirical Probablity

Find the probability of selecting a male taking statistics from the population described in the following table:

	Taking Stats	Not Taking Stats	Total
Male	84	145	229
Female	76	134	210
Total	160	279	439

Probability of Male Taking Stats =
$$\frac{\text{number of males taking stats}}{\text{total number of people}} = \frac{84}{439} = 0.191$$

Equiprobable Probability Space

- All outcomes equally likely (fair coin, fair die...)
- Laplace's definition of probability (only in finite equiprobable space)

$$P(A) = \frac{|A|}{|S|}$$

Theoritical Probablity

 Theoretical probability is finding the probability of events that come from an equiprobable sample space.

$$P(A) = \frac{\text{# of outcomes in } A}{\text{number of outcomes in } S} = \frac{|A|}{|S|}$$

Theoritical Probablity

Find the probability of selecting a face card (Jack, Queen, or King) from a standard deck of 52 cards.

$$P(Face\ Card) = \frac{|A|}{|S|} = \frac{12}{52} = \frac{3}{13}$$

Simple vs Joint Probability

- Simple (Marginal) Probability refers to the probability of a simple event.
 - Example: P(King)

- Joint Probability refers to the probability of an occurrence of two or more events.
 - Example: P(King and Spade)

Simple vs Joint Probability

Gomputing Joint and Marginal Probabilities:

The probability of a joint event, A and B:

$$P(A \text{ and } B) = \frac{\text{number of outcomes satisfying A and B}}{\text{total number of elementary outcomes}}$$

Computing a marginal (or simple) probability:

$$P(A) = P(A \text{ and } B_1) + P(A \text{ and } B_2) + \cdots + P(A \text{ and } B_k)$$

Where $B_1, B_2, ..., B_k$ are k mutually exclusive and collectively exhaustive events

Example of Joint Probability

	Ace	Not Ace	Total
Black	2	24	26
Red	2	24	26
Total	4	48	52

P(Red and Ace) =
$$\frac{\text{number of cards that are red and ace}}{\text{total number of cards}} = \frac{2}{52}$$

Example of Marginal Probability

	Ace	Not Ace	Total
Black	2	24	26
Red	2	24	26
Total	4	48	52

P(Ace) = P(Ace and Red) + P(Ace and Black) =
$$\frac{2}{52} + \frac{2}{52} = \frac{4}{52}$$

Laws of Probability: Additive Rule

 If A and B are two events in a probability experiment, then the probability that either one of the events will occur is

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$
Or
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Laws of Probability: Additive Rule (Example)

• Example: If I roll a number cube and flip a coin, What is the probability I will get a tails or a 3?

Answer:

$$P(\text{tails or a 3}) = \frac{1}{2} + \frac{1}{6} = \frac{8}{12} = \frac{2}{3}$$

Laws of Probability: Additive Rule

• If A and B are two mutually exclusive events then $P(A \cap B) = 0$.

$$P(A \text{ or } B) = P(A) + P(B)$$
Or
$$P(A \cup B) = P(A) + P(B)$$

Laws of Probability: Additive Rule (Example)

If you take out a single card from a regular pack of cards, what is probability that the card is either an ace or spade?

Answer

Let X be the event of picking an ace and Y be the event of picking a spade.

$$P(X) = \frac{4}{52}$$

$$P(Y) = \frac{13}{52}$$

The two events are not mutually exclusive, as there is one favorable outcome in which the card can be both an ace and spade.

$$P(X \cap Y) = \frac{1}{52}$$

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{4}{13}$$

Complement Rule

For any event A, we have

$$P(A^c) = 1 - P(A)$$

Complement Rule

Suppose that we flip eight fair coins. What is the probability that we have at least one head showing?

Answer:

The complement of the event "we flip at least one head" is the event "there are no heads."

$$P(\text{At least one head}) = 1 - P(\text{No head})$$

= $1 - \frac{1}{256} = 0.99609375$

Complement Rule

Suppose that we flip eight fair coins. What is the probability that we have at least one head showing?

Answer:

The complement of the event "we flip at least one head" is the event "there are no heads."

$$P(\text{At least one head}) = 1 - P(\text{No head})$$

= $1 - \frac{1}{256} = 0.99609375$

Random Variable

- A variable, X, whose domain is a sample space, and whose value is (somewhat) uncertain
- Examples:

X = coin flip outcome

X = first word in tomorrow's NYT newspaper

X = tomorrow's high temperature

Random Variable

- Random Variables (RV):
 - are capitalized (usually) e.g., Sky, Weather, Temperature
 - refer to attributes of the world whose "status" is unknown
 - have one and only one value at a time
 - have a domain of values that are possible states of the world:
 - Boolean: domain = <true, false>
 Cavity = true (often abbreviated as cavity)
 Cavity = false (often abbreviated as ← cavity)
 - Discrete: domain is countable (includes Boolean)
 values are mutually exclusive and exhaustive
 e.g. Sky domain = <clear, partly_cloudy, overcast>
 Sky = clear abbreviated as clear
 Sky ≠ clear also abbreviated as ¬clear
 - Continuous: domain is real numbers

- Conditional probabilities
 - formalizes the process of accumulating evidence and updating probabilities based on new evidence
 - specifies the belief in a proposition (event, conclusion, diagnosis, etc.) that is conditioned on a proposition (evidence, feature, symptom, etc.) being true
- $P(a \mid e)$: conditional probability of A=a given E=e evidence is all that is known true
 - $-P(a \mid e) = P(a \land e) / P(e) = P(a, e) / P(e)$
 - conditional probability can viewed as the joint probability P(a, e) normalized by the prior probability, P(e)

Conditional probabilities behave exactly like standard probabilities; for example:

$$0 \leq P(a \mid e) \leq 1$$

conditional probabilities are between 0 and 1 inclusive

$$P(a_1 | e) + P(a_2 | e) + ... + P(a_k | e) = 1$$

conditional probabilities sum to 1 where a_1 , ..., a_k are all values in the domain of random variable A

$$P(\neg a \mid e) = 1 - P(a \mid e)$$

negation for conditional probabilities

P(conjunction of events | e)

 $P(a \land b \land c \mid e)$ or as $P(a, b, c \mid e)$ is the agent's belief in the sentence $a \land b \land c$ conditioned on e being true

$P(a \mid conjunction \ of \ evidence)$

 $P(a \mid e \land f \land g)$ or as $P(a \mid e, f, g)$ is the agent's belief in the sentence a conditioned on $e \land f \land g$ being true

The conditional probability $P(A=a \mid B=b)$ is the fraction of time A=a, within the region where B=b

P(A=a), e.g. $P(1^{st} \text{ word on a random page} = "San") = 0.001$

 $P(A=a \mid B=b)$, e.g. $P(1^{st}="San" \mid 2^{nd}="Francisco") = ?$ (possibly: San, Don, Pablo ...)

- P(san | francisco)
 - $= \#(1^{st} = s \text{ and } 2^{nd} = f) / \#(2^{nd} = f)$
 - = $P(\text{san} \land \text{francisco}) / P(\text{francisco})$
 - = 0.0007 / 0.0008
 - = 0.875

```
P(s)=0.001

P(f)=0.0008

P(s,f)=0.0007
```

```
P(B=b), e.g. P(2^{nd} \text{ word} = \text{``Francisco''}) = 0.0008
```

P(A=a | B=b), e.g. P(1st="San" | 2nd ="Francisco") = **0.875**(possibly: San, Don, Pablo
...)
Although "San" is rare and "Francisco" is

Although "San" is rare and "Francisco" is rare,

given "Francisco" then "San" is quite likely!

Conditional Probability

In general, the conditional probability is

$$P(A = a \mid B) = \frac{P(A = a, B)}{P(B)} = \frac{P(A = a, B)}{\sum_{\text{all } a_i} P(A = a_i, B)}$$

 We can have everything conditioned on some other event(s), C, to get a conditionalized version of conditional probability:

$$P(A \mid B, C) = \frac{P(A, B \mid C)}{P(B \mid C)}$$

'|' has low precedence.

This should read: $P(A \mid (B,C))$

The Chain Rule

From the definition of conditional probability we have

$$P(A, B) = P(B) * P(A \mid B) = P(A \mid B) * P(B)$$

It also works the other way around:

$$P(A, B) = P(A) * P(B | A) = P(B | A) P(A)$$

• It works with more than 2 events too:

$$P(A_1, A_2, ..., A_n) =$$

$$P(A_1) * P(A_2 | A_1) * P(A_3 | A_1, A_2) * ...$$

$$* P(A_n | A_1, A_2, ..., A_{n-1})$$

Called "Product Rule"

Called "Chain Rule"

Probabilistic Reasoning

How do we use probabilities in AI?

- You wake up with a headache
- Do you have the flu?
- H = headache, F = flu

Logical Inference: if *H* then *F* (but the world is usually not this simple)

Statistical Inference: compute the probability of a query/diagnosis/decision given (i.e., conditioned on) evidence/symptom/observation, i.e., $P(F \mid H)$

Example

Statistical Inference: Compute the probability of a diagnosis, *F*, given symptom, *H*, where *H* = "has a headache" and *F* = "has flu"

That is, compute $P(F \mid H)$

You know that

- P(H) = 0.1 "one in ten people has a headache"
- P(F) = 0.01 "one in 100 people has flu"
- P(H | F) = 0.9 "90% of people who have flu have a headache"

Inference with Bayes's Rule

Thomas Bayes, "Essay Towards Solving a Problem in the Doctrine of Chances," 1764

$$P(F | H) = \frac{P(F,H)}{P(H)} = \frac{P(H | F)P(F)}{P(H)}$$

Def of cond. prob.

- P(H) = 0.1 "one in ten people has a headache"
- P(F) = 0.01 "one in 100 people has flu"
- P(H|F) = 0.9 "90% of people who have flu have a headache"

Product rule

- P(F|H) = 0.9 * 0.01 / 0.1 = 0.09
- So, there's a 9% chance you have flu much less than 90%
- But it's higher than P(F) = 1%, since you have a headache

Bayes's Rule

- Bayes's Rule is the basis for probabilistic reasoning given a prior model of the world, P(Q), and a new piece of evidence, E, Bayes's rule says how this piece of evidence decreases our ignorance about the world
- Initially, know P(Q) ("prior")
- Update after knowing E ("posterior"):

$$P(Q|E) = P(Q) \frac{P(E|Q)}{P(E)}$$

Inference with Bayes's Rule

$$P(A | B) = P(B | A)P(A) / P(B)$$
 Bayes's rule

- Why do we make things this complicated?
 - Often P(B|A), P(A), P(B) are easier to get
 - Some names:
 - Prior P(A): probability of A before any evidence
 - Likelihood P(B|A): assuming A, how likely is the evidence
 - Posterior P(A | B): probability of A after knowing evidence
 - (Deductive) Inference: deriving an unknown probability from known ones
- If we have the full joint probability table, we can simply compute $P(A \mid B) = P(A, B) / P(B)$

Bayes's Rule in Practice

Summary of Important Rules

- Conditional Probability: P(A | B) = P(A,B)/P(B)
- Product rule: $P(A,B) = P(A \mid B)P(B)$
- Chain rule: P(A,B,C,D) = P(A | B,C,D)P(B | C,D)P(C | D)P(D)
- Conditionalized version of Chain rule:

$$P(A,B|C) = P(A|B,C)P(B|C)$$

- Bayes's rule: P(A | B) = P(B | A)P(A)/P(B)
- Conditionalized version of Bayes's rule:

$$P(A \mid B, C) = P(B \mid A, C)P(A \mid C)/P(B \mid C)$$

• Addition / Conditioning rule: $P(A) = P(A,B) + P(A,\neg B)$

$$P(A) = P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B)$$

Common Mistake

•
$$P(A) = 0.3$$
 so $P(\neg A) = 1 - P(A) = 0.7$

•
$$P(A|B) = 0.4$$
 so $P(\neg A|B) = 1 - P(A|B) = 0.6$
because $P(A|B) + P(\neg A|B) = 1$

but $P(A|\neg B) \neq 0.6$ (in general) because $P(A|B) + P(A|\neg B) \neq 1$ in general

Quiz

- A doctor performs a test that has 99% reliability, i.e., 99% of people who are sick test positive, and 99% of people who are healthy test negative. The doctor estimates that 1% of the population is sick.
- Question: A patient tests positive. What is the chance that the patient is sick?
- 0-25%, 25-75%, 75-95%, or 95-100%?

Quiz

- A doctor performs a test that has 99% reliability, i.e., 99% of people who are sick test positive, and 99% of people who are healthy test negative. The doctor estimates that 1% of the population is sick.
- Question: A patient tests positive. What is the chance that the patient is sick?
- 0-25%, 25-75%, 75-95%, or 95-100%?
- Common answer: 99%; Correct answer: 50%

Given:

$$P(TP \mid S) = 0.99$$

 $P(\neg TP \mid \neg S) = 0.99$
 $P(S) = 0.01$

Query:

$$P(S \mid TP) = ?$$

$$P(TP \mid S) = 0.99$$

 $P(\neg TP \mid \neg S) = 0.99$
 $P(S) = 0.01$
 $P(S \mid TP) = P(TP \mid S) P(S) / P(TP)$
 $P(S \mid TP) = P(TP \mid \neg S) P(\neg S) / P(TP)$
 $P(\neg S \mid TP) = P(TP \mid \neg S) P(\neg S) / P(TP)$
 $P(TP \mid S) P(TP) = 0.0099 / P(TP)$

Inference with Bayes's Rule

- In a bag there are two envelopes
 - one has a red ball (worth \$100) and a black ball
 - one has two black balls. Black balls are worth nothing

- You randomly grab an envelope, and randomly take out one ball – it's black
- At this point you're given the option to switch envelopes. Should you switch or not?