Learning as Signaling How do we think about the failure in repeated innovation

Xiaobo YU

April 29, 2019

1 / 10

Xiaobo YU Learning as Signaling April 29, 2019

Question

Who and how should repeated innovation be funded?

Motivation

Who and how should repeated innovation be funded?

Empirical Evidence

- Repeated innovation is common
 - Specialized researchers
 - Serial Entrepreneurs

4 / 10

Empirical Evidence

- Repeated innovation is common
 - Specialized researchers
 - Serial Entrepreneurs
- 2 Success depends on effort ...

4 / 10

Empirical Evidence

- Repeated innovation is common
 - Specialized researchers
 - Serial Entrepreneurs
- 2 Success depends on effort ...
- and luck!

Literature

- Failure: Landier 2006 (Abandoned); Cahn, Girotti & Landier 2017;
 Nanda & Rhodes-Kropf 2013
- Experimentation: Keller, Rady & Cripps 2005 ECMA; Bonatti & Horner 2011 AER; Kremer, Mansour & Perry 2014 JPE; Halac, Kartik, & Liu 2016 RES, 2017 JPE
- Venture Capital: Birgeman & Hege; Sabrina Howell
- Innovation Financing: Hall & Lerner,
- Signaling: Bobtcheff & Levy 2017 AEJMi
- Real Option: Dixit Pindyck 1994
- Reputation: Khanna Mathews 2017

Model Setting

- 2 Projects $s \in \{G, B\}$, prior $p_0 = \Pr(s = G)$
 - **1** Need funding I to start with. Equity financing: repay $(1 \alpha)F$
 - ② s=G, success comes at rate $\lambda_t(e_t)=\lambda_0+\lambda e_t$
 - s = B, no success
 - $\dot{p}_t = (p_t 1)\lambda_t < 0$ conditional on no success
- **3** Innovator $\theta \in \{L, H\}$: prior $\mu_0 = \Pr(\theta = H)$
 - cost of effort $c^{\theta}(e_t)=rac{e_t}{\gamma^{\theta}}$ with $e_t\in[0,1]$ $(rac{e_t^2}{2\gamma^{\theta}}$ is very hard!)
- **1** Discount rate r (relevant when $\lambda_0 \neq 0$)

Xiaobo YU

Trivial Case: First Best (Deep Pocket Innovator)

The payoff of the type γ is

$$v(p_{0-}) = \sup_{e_0^t, \kappa} \mathbb{E}^{\mathbb{Q}(e_0^t)} \left[V - I - \int_0^{\tau(e_0^t) \wedge \kappa} e^{-rt} \frac{e_t}{\gamma} \mathrm{d}t \right]$$

where
$$V = e^{-r\tau(e_0^t)} p_0 \alpha F 1_{\tau(e_0^t) < \kappa} + e^{-r\kappa} v(p_{0-}) (p_0 1_{\tau(e_0^t) > \kappa} + 1 - p_0)$$

$$e_t^* = egin{cases} 1 & \lambda(lpha p_t F + v'(p_t)(p_t-1)) > rac{1}{\gamma} \wedge v(p_t) > v(p_{0-}) \ 0 & ext{otherwise} \end{cases}$$

$$ho_t = egin{cases} 1 - (1 -
ho_0) \mathrm{e}^{(\lambda_0 + \lambda)t} & 0 < t \le t^* \ 1 - (1 -
ho_{t^*}) \mathrm{e}^{\lambda_0 (t - t^*)} & t^* < t < \kappa \end{cases}$$

where $t^* = \inf\{t : \lambda(\alpha p_t F + v'(p_t)(p_t - 1)) \leq \frac{1}{\gamma}\}$

◆ロ → ◆母 → ◆ き → ◆ き → り へ ○

Xiaobo YU Learning as Signaling April 29, 2019 7 / 10

Trivial Case: First Best (Deep Pocket Innovator)

Assume I is large, such that $v(p^*) > v(p_{0-})$, Quitting belief

$$p_q = \frac{rv(p_{0-})}{\lambda_0 \alpha F}; v(p_q) = v(p_{0-})$$

Shirking Belief

$$rv(p^*) = p^* \lambda_0 \alpha F + v'(p^*)(p^* - 1)\lambda_0$$
 $lpha F \lambda p^* + \lambda(p^* - 1)v'(p^*) = rac{1}{\gamma}$ $v(p^*) = rac{\lambda_0}{\lambda \gamma r}$

Xiaobo YU Learning as Signaling April 29, 2019 8 / 10

Expected results

Proposition

There is no pooling equilibrium surviving Cho and Kreps's intuitive criterion or D1.

Proposition

There is a fully separating equilibriumin which the low type behaves as in the best best ...

Proposition

There might be some partially separating equilibrium ...

Major Challenges

- Model Implication: Success is less informative than failure
- Equilibrium Selection: Intuitive Criterion, D1, Pareto-Dominance, Least Cost, etc
- Financing Choice:
 - Debt: Debt Overhang Problem
 - Equity: Internalization of Incentives
 - Or Optimal Contract
- Complexity vs. Tractability
- Empirical Relevance