Ejercicios básicos

- 1 Usando la definición, obtener la derivada direccional de las funciones que a continuación se consideran en la dirección del vector \overrightarrow{v} en el punto (a,b), siendo:
 - a) $f(x,y) = 2x^2 + 3y^2$; $\overrightarrow{v} = (\cos(\frac{\pi}{4}), \sin(\frac{\pi}{4})), (a,b) = (1,1)$
 - b) $g(x,y) = \sqrt{x^2 + y^2}$; $\overrightarrow{v} = (\frac{3}{5}, \frac{-4}{5})$, (a,b) = (3,4)
 - c) $h(x,y) = \frac{1}{x-y}$; $\overrightarrow{v} = (\frac{12}{13}, \frac{-5}{13})$, (a,b) = (2,1)
- 2 Estudiar la existencia de las derivadas direccionales en (0,0,0) de la función:

$$f(x,y,z) = \begin{cases} & \frac{x\,y^2}{x^2 + y^4 + z^2} & \text{se } (x,y,z) \neq (0,0,0) \\ & 0 & \text{se } (x,y,z) = (0,0,0) \end{cases}$$

- 3 Hallar el gradiente de las siguientes funciones en un punto arbitrario.
 - a) $f(x,y) = e^{2xy}$
 - b) $g(x,y)=\frac{x}{x^2+y^2}$, c) $h(x,y,z)=x \, \mathrm{sen}(y\cdot z)$
- 4 Calcular funciones escalares f y g tales que:
 - a) $\nabla f(x, y, z) = (2x, 2y, 2z),$
 - b) $\nabla g(x,y) = (e^x \operatorname{sen}(y), e^x \cos(y)).$
- 5 Para un punto (x,y) de una placa rectangular la temperatura es $T(x,y)=x^2y^3$. Si se considera el punto (2,3)situado en dita placa,
 - a) ¿en qué dirección aumenta más rápido la temperatura en (2,3)?
 - b) ¿en que dirección disminuye más rápido a temperatura en (2,3)?
 - c) ¿en que dirección varía menos la temperatura?
- 6 Hallar las ecuaciones de los planos tangentes a las siguientes superficies en los puntos que se indican.
 - a) $z = \sqrt{9 x^2 y^2}$, punto (1, 2, 2),
 - b) $z = e^{3x} \, \text{sen}(3y)$, punto $(0, \frac{\pi}{6}, 1)$,
 - c) $z = \ln(xy)$, punto $(\frac{1}{2}, 2, 0)$.
- 7 La derivada direccional de $f:\mathbb{R}^2 \to \mathbb{R}$ en el punto (1,2) en la dirección do vector $\overrightarrow{\boldsymbol{u}} = \left(\frac{1}{\sqrt{2}},\,\frac{1}{\sqrt{2}}\right)$ es $-\frac{1}{\sqrt{2}}$, y en la dirección de $\overrightarrow{v}=\left(\frac{3}{\sqrt{13}},\,-\frac{2}{\sqrt{13}}\right)$ es 0. ¿Cuál es la derivada direccional de f en (1,2) en la dirección del vector $\overrightarrow{\boldsymbol{w}} = \left(-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$?
- $\fbox{8}$ De la función $f:\mathbb{R}^2 \to \mathbb{R}$ se sabe que es diferenciable y que en el punto (1,2) el plano tangente a la gráfica es 2x + 3y + 4z = 1. ¿Se puede calcular con estos datos la derivada direccional de f en la dirección que une el punto (1, 2) con (3, 4)?

 $\boxed{ 9 \text{ Se considera } f(x,y) = \mathrm{e}^{xy} + \frac{x}{y} + \mathrm{sen}((2x+3y)\pi). \text{ Calcular } \frac{\partial f}{\partial x}(x,y), \, \frac{\partial f}{\partial y}(x,y), \, \frac{\partial^2 f}{\partial x^2}(x,y), \, \frac{\partial^2 f}{\partial x \, \partial y}(x,y), \, \frac{\partial f}{\partial x}(x,y), \, \frac{\partial f$

10 Calcular la matriz jacobiana de las siguientes funciones en los puntos que se indican:

a)
$$\overrightarrow{f}(x, y, z) = (2x + 4y - z, 6x - 3y - 4z)$$
 en $(1, -3, 2)$,

b)
$$\vec{g}(x, y, z) = (xyz, xy, x)$$
 en $(2, 0, 1)$.

Ejercicios complementarios

- 11 Demostrar que no existe ninguna función $f: \mathbb{R}^n \to \mathbb{R}$ tal que $D_{\overrightarrow{\boldsymbol{v}}} f(\overrightarrow{\boldsymbol{a}}) > 0$ para un punto concreto $\overrightarrow{\boldsymbol{a}}$ y cualquier vector unitario $\overrightarrow{\boldsymbol{v}}$.
- $\boxed{\textbf{12}} \text{ Calcular las derivadas parciales de primer orden de las funciones } f(x,y) = x\,y\,+\,\tfrac{x}{x^2+y^2},\, g(x,y,z) = \tfrac{x+y\,e^z}{y^2+z}.$