Training an Image Classifier with the Genetic Algorithm to Differentiate Between Roses and Irises Rob Bray

Introduction

- Genetic algorithms have been used to evolve image classifiers in the past, such as a semantic classifier using color data.¹
- Goal: examine the efficacy training a convolutional neural network with the genetic algorithm for classifying two different flowers, an iris and a rose.
- Parameters examined: mutation probability, crossover probability, parent selection strategy, tournament size, and number of parents selected from.

Methodology

- 2055 flower images²
 - 1055 Iris
 - 1000 Rose
 - Size: 64x64x3

- PyGAD framework for training Keras model
 - o Batch Size: 128
 - Number of Solutions: 50
 - Number of Generations: 20
 - Each generation trained on one batch
 - Each run, select a hyperparameter to change
 - Fitness: accuracy of predictions
- CNN structure:

Results

- Training accuracies reached around 65-72%
- Testing accuracies stayed around 50%
- Backpropagation Training Accuracy: 72%
- Best-Performing Hyperparameters:
 - Parent Selection: steady-state
 - Tournament K: 5
 - Mutation Probability: 0.01
 - Number of Parents Selected From: Inconclusive
 - Crossover Probability: 0.3

Conclusion

- Training accuracies reached comparable levels to backpropagation.
- Testing accuracy is low. The model is likely overfitting to training data because of how small it is.
- For future work, a larger model would be able to generalize and perform better on testing data. This was not done because of compute time and resources.