DATA SCIENCE

AULA I - INTRODUÇÃO

PROF^a. ANA CAROLINA B. ALBERTON

BEM VINDOS

Apresentação

PYTHON

- Iremos utilizar o Jupyter (como IDE) e o Python (como Linguagem);
- Serão muito usados também arquivos .xlsx e .csv como fonte de dados para que seja mais tranquilo a manipulação dos dados.
- Para realizar a instalação, vocês podem acessar o link: https://www.anaconda.com/products/individual
- A partir das aulas de estatística já teremos alguns exemplos de código fonte e utilizaremos essa ferramenta;
- · Vamos então à leitura do plano de ensino.

AVALIAÇÕES

Avaliações:

- Nota I Avaliação Teórica 08/04
- Nota 2 Desafios
- Nota 3 Elaboração do Projeto em 6 Etapas
 - Etapas I à 6

Média Final

MF=(N1+N2+N3) / 3

OS DADOS

- Big Data:
- A cada segundo:
 - 100.000 tweets circulam
 - 547 websites são criados
 - mais de 2 milhões de pesquisas (Google)
 - 48h de vídeos são baixadas no YouTube
 - 684.478 itens são compartilhados no Facebook...
- Em governo (Brasil):
 - Mais de 7 milhões de notas fiscais eletrônicas (NFe) por dia
 - Mais de 16 bilhões de NFe autorizadas...

OS DADOS

- Como lidar com este "dilúvio" de dados?
- A palavra mais importante no termo

"ciência de dados" não é "dados", mas "ciência".

OS DADOS

- A partir da necessidade de análise desse emaranhado de dados surgiu uma "nova" área da ciência, a chamada ciência de dados
- O "quarto paradigma" da ciência
- A profissão mais "sexy" do século 21
- Uma nova buzzword!

- As atividades executadas pelo "cientista de dados", em menor escala em relação ao volume de dados, são bastante antigas;
- Uma das características mais singulares dos seres humanos é a capacidade de registrar informações e situações vividas para o futuro;
- Inicialmente registrávamos fatos históricos, conquistas para se fazer propaganda dos reinos, criações de lendas e etc...
- Essa capacidade nasceu de forma quase orgânica em toda humanidade, tanto que atualmente, é possível compreender a história humana cruzando documentos históricos de diferentes povos.

Competências do cientista de dados

- O que os cientistas de dados fazem?
 - "Considerando: Processos | Ambientes | Projetos"
 - Definem hipóteses e perguntas
 - Definem os conjuntos de dados ideais
 - Determinam que dados podem ser acessados
 - Adquirem os dados
 - Pré-processam os dados
 - Realizam análise de dados exploratória

- Realizam modelagem estatística dos dados
- Interpretam resultados de análises
- Escrevem relatórios sobre os resultados
- Criam modelos/componentes/códigos reusáveis
- Compartilham modelos e resultados com outras pessoas

- É tão importante, que verdades absolutas podem ser alteradas quando descobrimos novas evidências, novos dados;
- Uma das primeiras coisas que nós iremos definir aqui na sala de aula é:
 - o "Não existe verdade absoluta quando tratamos com dados".
- Então definimos a primeira regra da nossa aula, esse é apenas um exemplo de como a nossa grande capacidade de registrar informações consegue nos trazer diferentes decisões de acordo com a fonte que estamos trabalhando;

- Exemplo:
- Nos esportes, uma mudança muito importante ocorreu, como havia muito dinheiro em jogo uma nova forma de montar times nasceu;
- Anteriormente, quando não tínhamos registros apurados de todos os jogadores os times eram formados baseado na fama e na indicações de pessoas experientes;
- Até que uma pessoa percebeu que era muito mais efetivo catalogar os movimentos dos jogadores e formar estatísticas.

- Hoje a gente registra absolutamente tudo, de movimentos do mouse em um site, conversas pelo celular, fotos, capturamos registro de como o olho se movimenta em um site;
- E tudo isso serve para que tenhamos o maior número de informações possíveis para se tomar uma decisão, seja ela qual for;
- Existe um algoritmo de ciência de dados chamado Prophet, antigo liberado nos longínquos anos de 2017, que pode fazer previsões a nível de segundo.
- Por isso aqui nascem duas palavras muito importantes: **Big Data** e **Data Science**.

- Basicamente o Big Data é a estrutura, ambiente ou o ecossistema onde todos os dados são armazenados;
- Então se nós passamos a registrar tudo, uma nova estrutura, diferente dos bancos tradicionais precisou ser criada, e essa estrutura se transformou no Big Data;
- Geralmente a pessoa indicada à movimentar a estrutura são os: Engenheiros de Dados.

- E como agora a gente tem uma massa gigante de dados é humanamente impossível que alguém visualize tudo, pense, reflita e tome decisões;
- Por isso temos o Data Sciente, para que de maneira analítica, matemática e computacional, seja possível extrair informações relevantes dos dados;
- Hoje armazenamos dados de tudo, como Eric Schmidt uma vez disse: "Basta lembrar que ao postar alguma coisa, os computadores irão se lembrar eternamente";
- Portanto, o Data Science é basicamente o fluxo ou a forma a de como vamos utilizar os dados à nosso favor para realizar decisões.

- E para isso iremos utilizar várias "fórmulas" e "scripts" criados através dos anos, nesse caso, já computacionais, para no fim auxiliar alguém a tomar uma decisão, constatar um fato ou descobrir padrões.
- Porém, como Jose Miguel Cansado, Diretor da Alto Data, disse: "Precisa se fazer a pergunta correta aos dados com os quais vocês estão trabalhando".
- Um exemplo, o nosso padrão etário é baixo e basicamente a grande maioria da classe mora na mesma região.
- E o que isso significa para o Data Science?

- Bom isso significa que vocês todos passaram por experiências parecidas, possuem conhecimentos geográficos bem parecidos e, o mais importante para o Data Science, olhando apenas esse padrão reagiriam a **estímulos** de maneira similar.
- É claro, essa conclusão é rasa e provavelmente essa conclusão estaria errada.
- O que precisaríamos então para ter uma conclusão homogênea sobre como a classe seria corretamente impactada necessitaria de mais dados.
- Porém é impressionante, o que se pode ocorrer quando se tem dados suficientes para se tomar decisões, identificar padrões e etc...

■ Fávero e Belfiore (2020), apresentam em seu livro uma hierarquia que será bastante utilizada ao longo da matéria, esse é basicamente o começo, que é apresentada abaixo:

- Existem algumas características muito importantes que vocês, como estudantes de ciência de dados, devem prestar bastante atenção, são elas:
- Contexto, Padronização e Autenticidade.
- **Contexto**: Saber onde você está inserido, quais são as dificuldades e dores do seu entorno e porque você está enriquecendo o dado é essencial para poder obter bons resultados. Afinal, quanto menos específico for o seu modelo, menor vai ser a sua assertividade, pois aspectos importantes do contexto foram negligenciados para atingir um espectro maior.

- **Padronização**: Os dados devem possuir um padrão, seja ele de tipo de dado (numerico, texto..), seja a ordem cronológica (dados diários, mensais, semanais...) ou em relação à origem. Se os dados não forem padronizados o seu modelo levará à informações erradas, portanto mesmo que ele chegue até você de formas diferentes, padronize-o, para que assim você possa ter uma análise correta
- Autenticidade: Os dados que você tem acesso precisa ter uma fonte confiável, o que é mais fácil quando se lida com dados internos. Quando utilizar dados externos certifique-se de que os dados são verídicos, se possível cruzando com dados já existentes ou verificando possíveis distorções inadequadas ao tipo de informação que você está tratando.
- Dúvidas?

- TIPO DE VARIÁVEIS
- Variável é uma característica da população (ou amostra) em estudo, possível de ser medida, contada ou categorizada (FÁVERO; BELFIORE, 2020).
- O tipo de variável é crucial no cálculo de estatísticas e representação dos seus resultados.
- Portanto, as variáveis podem ser classificadas da seguinte forma:
 - Qualitativa (Não Métrica ou Categórica);
 - Quantitativa (Métrica).

- VARIÁVEL QUALITATIVA
- Como o nome já indica, uma variável Qualitativa, representa uma qualidade de um indivíduo, objeto ou elemento que não podem ser medidas ou quantificadas.
- Podemos simplificar essa questão dizendo que aquilo que não pode ser representado como numericamente pode ser uma variável qualitativa.
 - Exemplos:
 - Nome de uma pessoa;
 - Cor dos olhos;
 - Cidade de nascimento.

- Geralmente, sem realizar nenhuma transformação, as variáveis qualitativas não podem apresentar medidas-resumo, tais como média, mediana e desvio-padrão.
- Porém, o que ocorre geralmente numa situação onde existem variáveis qualitativas à serem trabalhadas, é trabalhar com uma faixa de frequência de uma determinada ocorrência.
- Vejamos um exemplo: Vamos fazer uma pesquisa para identificar as marcas mais comuns de smartphone na sala de aula.

- VARIÁVEL QUANTITATIVA
- Uma variável **Quantitativa**, podem ser representadas de forma gráfica e geralmente são numéricas e, diferentemente das qualitativas, podem apresentar medidas-resumo, como média, quartis, decis e etc...)
- As variáveis quantitativas podem ainda ser divididas novamente em dois sub-tipos, são eles:
 - Discretas: Geralmente provêm de uma contagem e estão dentro de um conjunto finito, portanto geralmente são números inteiros. (Ex: Número de Filhos).
 - Contínuas: Geralmente provêm de uma medição e estão dentro de um conjunto de números reais. (Ex: Peso, Tamanho do Calçado).

- Além dos seus tipos e/ou subtipos as variáveis podem também ser classificadas de acordo com as suas escalas de mensuração.
- Existem, na literatura, diversas formas de escalas de mensuração, porém iremos utilizar a classificação que define que:
 - As variáveis qualitativas podem ser classificadas Nominais e Ordinais;
 - As variáveis quantitativas são classificadas como Intervalares e Razão.

- VARIAVEIS QUALITATIVAS NOMINAIS
- Variáveis de escala nominais, são variáveis cujo o valor não representam ou não possuem nenhuma relação com escalas de grandeza ou de ordem.
- Como o nome já direciona, geralmente variáveis nominais são apenas substantivos, que carregam nomes, lugares ou profissão.
- Portanto operações matemáticas como adição, média e desvio padrão não são possível, porém outros métodos estatísticos podem ser aplicados, por exemplo é possível realizar contagem de números de ocorrências em uma determinada população.

VARIAVEIS QUALITATIVAS NOMINAIS

Empresa	Pais de Origem
Exxon Mobil	Estados Unidos
JP Morgan Chase	Estados Unidos
General Eletric	Estados Unidos
Royal Dutch Shell	Holanda
ICBC	China
HSBC Holdings	Reino Unido

Sem escala de grandeza

- VARIAVEIS QUALITATIVAS ORDINAIS
- Variáveis de escala ordinais, são variáveis cujo o valor representam classificações ou padrões de ordem entre diferentes categorias.
- Como o nome já direciona, geralmente variáveis ordinais são apenas classificatórias, que carregam escalas ou níveis.
- Portanto operações matemáticas como adição, média e desvio padrão também não são possíveis, já que o objetivo da aplicação dessa variável é justamente classificar um padrão, podendo ou não ter sido advindo de operações matemáticas.

VARIAVEIS QUALITATIVAS ORDINAIS

Valor	Rótulo
1	Péssimo
2	Bom
3	Muito Bom
4	Ótimo
5	Excelente

- Classificam um Padrão
- O exemplo mostra uma tabela com uma variável que indica ordem (Ordinal).

- VARIAVEIS QUANTITATIVAS INTERVALARES
- Variáveis de escala intervalares, são variáveis cujo o valor representam uma escala de valor já estabelecida, geralmente com pontos de origem e/ou fim já pré-determinados.
- O simples exemplo de uma variável quantitativa intervalar são as faixas de temperatura. Um outro exemplo poderia ser as horas do dia, dias do mês, meses do ano e Etc...
- Uma característica importante das variáveis intervalares é que o zero (ou ponto de origem) não necessariamente exprime ausência de valor. Já que dentro da escala esse valor tem a sua característica determinada.

VARIAVEIS QUANTITATIVAS INTERVALARES

- Pontos de Fim Determinados
- O Zero não representa ausência de valor
- Um termômetro talvez seja o exemplo mais
- claro de uma variável intervalar.

- VARIAVEIS QUANTITATIVAS RAZÃO
- Variáveis de escala de razão, são variáveis cujo o valor ordena as unidades relacionada à característica e possui uma unidade de medida constante.
- Basicamente qualquer valor número, que não seja intervalar, é considerado uma variável de razão.
- Dentre as variáveis quantitativas de razão podemos citar valores como: Peso, Altura, Valor Salarial, Idade e Etc...

DESAFIO I

- 1. Qual a diferença entre as variáveis qualitativas e quantitativas? Dê exemplos.
- 1. (ENADE)No questionário socioeconômico que faz parte integrante do ENADE há questões que abordam as seguintes informações sobre o aluno:
 - I Unidade da Federação em que nasceu;
 - II número de irmãos;
 - III faixa de renda mensal da família;
 - IV estado civil;
 - V horas por semana de dedicação aos estudos.

São qualitativas **APENAS** as variáveis:

- A) I e III;
- B) I e IV;
- C) I, IV e V;
- D) II, III eV;
- E) I, II, IV e V.

REFERÊNCIAS

- FÁVERO, Luiz Paulo; BELFIORE, Patrícia. **Manual de Análise de Dados:** Estatística e Modelagem Multivariada com Excel, SPSS e Stata. Rio de Janeiro: Ltc, 2020.
- CIFERRI, Cristina Dutra de Aguiar; CIFERRI, Ricardo Rodrigues. **Modelagem Multidimensional.** São Paulo: Usp, 2020. 14 slides, color. Disponível em: http://wiki.icmc.usp.br/images/6/6a/SCC5911-02-ModelagemMultidimensional.pdf. Acesso em: 10 jan. 2020.
- RESENDE, Tânia. **Modelagem multidimensional conceitos básicos.** São Paulo: Slideshare, 2016. 28 slides, color. Disponível em: https://pt.slideshare.net/TANIARESENDE/modelagem-multidimensional-conceitos-bsicos. Acesso em: 18 fev. 2020.
- JARDIM, Edgar Silveira; OLIVEIRA, Marcus Vinícius Abreu de; MORAVIA, Rodrigo Vitorino. Diferença Entre Banco de Dados Relacional e Banco de Dados Dimensional. **Revista Pensar Tecnologia**, Belo Horizonte, v. 2, n. 4, p.1-17, julho 2015. Mensal. Disponível em: http://revistapensar.com.br/tecnologia/pasta_upload/artigos/a122.pdf>. Acesso em: 18 fev. 2020.
- SERGENTI, Alexsandro. **Modelagem Relacional e Multidimensional:** uma análise envolvendo Sistemas de Apoio a decisão. 2015. Disponível em: https://www.linkedin.com/pulse/modelagem-relacional-e-multidimensional-uma-an%C3%A1lise-de-sergenti/. Acesso em: 18 fev. 2020.