

Vorlesung: Statistik I

Prof. Dr. Simone Abendschön 8. Vorlesung am 14.12.23 (Fortsetzung bivariate Zusammenhänge) Plan

- Abschluss Kreuztabelle, Teil 1 (Achtung siehe Foliensatz vom letzten Mal, letzte 11 Folien)
- Kreuztabelle, Teil 2: Erstellung einer Indifferenztabelle
- Zusammenhangsmaße für nominalskalierte Variablen: Chi-Quadrat, Phi und Cramer's V

Plan

- Abschluss Kreuztabelle, Teil 1 (Foliensatz vom letzten Mal)
- Kreuztabelle, Teil 2: Erstellung einer Indifferenztabelle
- Zusammenhangsmaße für nominalskalierte Variablen: Chi-Quadrat und Cramer's V

Lernziele

- Sie wissen was eine Indifferenztabelle ist und können eine erstellen
- Sie kennen Zusammenhangsmaße für nominalskalierte Variablen und können diese berechnen

Kreuztabelle Politisches Interesse und Geschlecht – Wiederholung beobachtete Häufigkeiten

Geschlecht Politisches Interesse	Männliche Befragte	Weibliche Befragte	Gesamt
Sehr stark	311	116	427
	17,6%	6,7%	12,2%
Stark	537	345	882
	30,3%	20,1%	25,3%
Mittel	634	795	1429
	35,8%	46,2%	40,9%
Wenig	207	349	556
	11,7%	20,3%	15,9%
Überhaupt nicht	81	115	196
	4,6%	6,7%	5,6%
Gesamt	1770	1720	3490
	100,0%	100,0%	100,0%

Daten: ALLBUS 2016. Eigene Berechnungen

Indifferenztabelle, Hinführung

- Weiteres "feature" für Rückschlüsse auf mögliche Zusammenhänge zwischen den untersuchten Merkmalen
- Bildet die sog "erwarteten Häufigkeiten" ab
- Definition erwartete Häufigkeiten: Kombinierte Verteilung zweier Variablen, die erwartet wird, wenn es statistische Unabhängigkeit gibt
- Beobachtete vs. Erwartete Häufigkeiten

Hinführung Indifferenztabelle

- Unterschiede im politischen Interesse zwischen M\u00e4nnern und Frauen auf Basis des Vergleichs der Spaltenprozente -> Vermutung: Es besteht ein Zusammenhang
- Wie würde die Verteilung bei statistischer Unabhängigkeit aussehen? → Grundlage erwarteter Häufigkeiten
- Berechnung erwartete Häufigkeiten durch Einbezug der Randhäufigkeiten:

$$f_{e(ij)} = \frac{Zeilensum \, m \, e \times Spaltensum \, m \, e}{n}$$

Indifferenztabelle, Beispiel und Übung

Politisches Interesse und Geschlecht – Ergänzen Sie die Indifferenztabelle und vergleichen Sie beobachtete und erwartete Häufigkeiten

Geschlecht Politisches Interesse	Männliche Befragte	Weibliche Befragte	Gesamt
Sehr stark	1770 * 427 / 3490 = 216,56		427
Stark			882
Mittel		1720 * 1429 / 3490 = 704,26	1429
Wenig			556
Überhaupt nicht			196
Gesamt	1770	1720	3490

Daten: ALLBUS 2016 (n = 3490). Eigene Berechnungen

Indifferenztabelle, Beispiel und Übung

Politisches Interesse und Geschlecht – Ergänzen Sie die Indifferenztabelle und vergleichen Sie beobachtete und erwartete Häufigkeiten

Tabelle 28: Politisches Interesse und Geschlecht (erwartete Häufigkeiten) – Indifferenztabelle

Geschlecht Politisches Interesse	Männliche Befragte	Weibliche Befragte	Gesamt	Geschlecht Politisches Interesse	Männliche Befragte	Weibliche Befragte	Gesamt
Sehr stark	216,56	210,44	427	Sehr stark →	311 17,6%	116 6,7%	427 12,2%
Stark	447,32	434,68	882	Stark	537 30,3%	345 20,1%	882 25,3%
Mittel	724,74	704,26	1429	Mittel	634 35,8%	795 46,2%	1429 40,9%
Wenig	281,98	274,02	556	Wenig	207 11,7%	349 20,3%	556 15,9%
Überhaupt nicht	99,40	96,60	196	Überhaupt nicht	81 4,6%	115 6,7%	196 5,6%
Gesamt	1770	1720	3490	- Gesamt	1770 100,0%	1720 100,0%	3490 100,0%

- Je stärker sich erwartete und beobachtete Häufigkeiten unterscheiden, desto stärker ist der Zusammenhang zwischen den beiden Merkmalen
- Residuum: Abweichung bzw. Differenz der beobachteten und erwarteten Werte

Beispiel:

- Beobachtet wurden 311 M\u00e4nner, die ein starkes politisches Interesse bekunden
- Bei statistischer Unabhängigkeit wären 217 Männer zu erwarten gewesen
- Es haben also 94 mehr Männer ein starkes politisches Interesse bekundet, als zu erwarten gewesen wäre
- \rightarrow Berechnung eines **nominalen Zusammenhangsmaßes**: Für alle Zellen stellt die Indifferenztabelle die Basis für die Berechnung von Chi-Quadrat (χ 2) bereit

Plan

- Abschluss Kreuztabelle, Teil 1 (Foliensatz vom letzten Mal)
- Kreuztabelle, Teil 2: Erstellung einer Indifferenztabelle
- Zusammenhangsmaße für nominalskalierte Variablen: Chi-Quadrat, Phi und Cramer's V
- (Falls noch Zeit: Einstieg in bivariate Zusammenhänge von metrisch skalierten Variablen)

- Zusammenhangsmaß für nominale Merkmale (2 Merkmale)
- Nutzt alle Residuen einer Indifferenztabelle, um eine "globale" Aussage über den Zusammenhang zwischen zwei Merkmalen (über die gesamte Kreuztabelle hinweg)
- Formal:

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(f_{b_{ij}} - f_{e_{ij}})^2}{f_{e_{ij}}}$$
 $f_{b(ij)}$ = beobachtete Häufigkeit in der i-ten Zeile und j-ten Spalte $f_{e(ij)}$ = erwartete Häufigkeit in der i-ten Zeile und j-ten Spalte $f_{e(ij)}$ = Anzahl der Zeilen $f_{e(ij)}$ = beobachtete Häufigkeit in der i-ten Zeile und j-ten Spalte $f_{e(ij)}$ = Anzahl der Zeilen

 Residuen aller Zellen werden aufsummiert und quadriert (dadurch erhalten alle Werte ein positives Vorzeichen)

f _b	f _e	$f_b - f_e$	$(f_b - f_e)^2$	$\frac{(fb - fe)^2}{fe}$
311	216,56	94,44	8918,91	41,18
537	447,32	89,68	8042,50	17,98
634	724,74	-90,74	8233,75	11,36
207	281,98	-74,98	5622,00	19,94
81	99,40	-18,40	338,56	3,41
116	210,44	-94,44	8918,91	42,38
345	434,68	-89,68	8042,50	18,50
795	704,26	90,74	8233,75	11,69
349	274,02	74,98	5622,00	20,52
115	96,60	18,40	338,56	3,50
			Chi-Quadrat	190,46
				

Quelle: Eigene Darstellung

Chi-Quadrat ist von n und der Anzahl der Zellen abhängig

Chi-Quadrat (χ 2)

- Quadrierte Residuen aller Zellen werden aufsummiert und an den erwarteten Häufigkeiten relativiert
- Kann Werte von 0 bis +∞ annehmen (nicht-standardisiertes Maß)
- 0 = kein Zusammenhang
- Je größer der Wert, desto größer der Zusammenhang
- Aber: Abhängig von n und der "Größe" der Kreuztabelle

Übung Chi-Quadrat, fiktives Beispiel!

• Bitte berechnen Sie auf Basis der fiktiven Daten $\chi 2!$

Beobachtete Häufigkeiten

-	Partei- identifikati on	Erhebungsgebiet		Gesamt
		West	Ost	
	AfD	20	130	150
	Andere Partei	1572	606	2178
	Gesamt	1592	736	2328

Erwartete Häufigkeiten

Partei- identifikation	Erhebungsgebiet		Gesamt
	West	Ost	
AfD	103	47	150
Andere Partei	1489	689	2178
Gesamt	1592	736	2328

χ 2-basierte Zusammenhangsmaße

- Weiterentwicklung von Chi-Quadrat, um Limitationen zu beseitigen
- Chi-Quadrat ist abhängig von den absoluten Häufigkeiten in den Zellen
- Verdopplung der Häufigkeiten = Verdopplung von χ^2 (Prozentuale Verteilung ändert sich jedoch nicht!)
- Lösung: "Normierung" des χ 2-Wertes mit Phi und Cramer's V

χ 2-basierte Zusammenhangsmaße: φ (Phi)

- Für 2x2-Kreuztabellen!
- Ziel: Relativierung des χ2-Wertes für die Anzahl der Beobachtungen

$$\phi = \sqrt{\frac{\chi^2}{n}}$$

- Übung: Bitte berechnen Sie für die letzte Übung (Parteiidentifikation Ost/West) ebenfalls φ

$\chi 2$ -basierte Zusammenhangsmaße: Cramer's V

- Weiterentwicklung, die auch Vergleiche über unterschiedliche große Kreuztabellen hinweg ermöglicht
- Variiert zwischen 0 und +1

$$Cramer'sV = \sqrt{\frac{\chi^2}{\chi^2_{max}}} = \sqrt{\frac{\chi^2}{n*(min(k,m)-1)}}$$

Berechnung für Beispiel?

(sowie entsprechendes Lernmodul 3-Video)

$\chi 2$ -basierte Zusammenhangsmaße: Cramer's V

Interpretation des Zusammenhangs aus sozialwissenschaftlicher Sicht (siehe auch Lehrbrief, S. 58 bzw. Lernmodul 3 im WBT)

Wert von Cramer's V (V) bzw. Betrag von Phi (Φ)	Interpretation		
≤ 0,05	kein Zusammenhang		
> 0,05 bis ≤ 0,10	sehr schwacher Zusammenhang		
> 0,10 bis ≤ 0,20	schwacher Zusammenhang		
> 0,20 bis ≤ 0,40	mittelstarker Zusammenhang		
> 0,40 bis ≤ 0,60	starker Zusammenhang		
> 0,60	sehr starker Zusammenhang		

Quelle: Eigene Darstellung

$$V \in \begin{cases} [0,00;0,10[\rightarrow kein\ Zusammenhang \\ [0,10;0,30[\rightarrow schwacher\ Zusammenhang \\ [0,30;0,60[\rightarrow mittlerer\ Zusammenhang \\ [0,60;1,00[\rightarrow starker\ Zusammenhang \\ \end{cases}$$

Quelle: Cleff 2011: 92.