Study guide

- (§14) Know the definition of a Mersenne prime.
- (§14) Be able to prove: if $2^p 1$ is prime, then p is prime as well.
- (§15) What is the link between Mersenne primes and (even) perfect numbers?
- (§15) Understand the importance of multiplicativity in the study of perfect numbers.
- (§16) How can you use the *successive squaring* technique to quickly compute modular powers (by hand if needed)?
- 1. (Textbook 14.1)

Prove that if $a \ge 2$ and $n \ge 1$ are integers, and $a^n + 1$ is prime, then n is a power of 2.

2. (Textbook 14.2, on Fermat primes)

Let $F_k = 2^{2^k} + 1$. For example, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, and $F_4 = 65537$. Fermat thought that all the F_k 's might be prime, but Euler showed in 1732 that F_5 factors as $641 \cdot 6700417$, and in 1880 Landry showed that F_6 is composite. Primes of the form F_k are called Fermat primes. Show that if $k \neq m$, then the numbers F_k and F_m have no common factors; that is, show that $\gcd(F_k, F_m) = 1$. [Hint. If k > m, show that F_m divides $F_k = 2$.]

- 3. (Textbook 14.3, on primes of the form $\frac{1}{2}(3^n-1)$)
 The numbers 3^n-1 are never prime (if $n \geq 2$), since they are always even. However, it sometimes happens that $(3^n-1)/2$ is prime. For example, $(3^3-1)/2=13$ is prime.
 - (a) Find another prime of the form $(3^n 1)/2$.
 - (b) If n is even, show that $(3^n 1)/2$ is always divisible by 4, so it can never be prime.
 - (c) Use a similar argument to show that if n is a multiple of 5 then $(3^n 1)/2$ is never a prime.
 - (d) Do you think that there are infinitely many primes of the form $(3^n-1)/2$?
- 4. (Textbook 15.3, on the impossibility of certain odd perfect numbers)
 - (a) Show that a power of 3 can never be a perfect number.
 - (b) More generally, if p is an odd prime, show that a power p^k can never be a perfect number.
 - (c) Show that a number of the form $3^i \cdot 5^j$ can never be a perfect number.
 - (d) More generally, if p is an odd prime number greater than 3, show that the product $3^i p^j$ can never be a perfect number.
 - (e) Even more generally, show that if p and q are distinct odd primes, then a number of the form $q^i p^j$ can never be a perfect number.
- 5. (Textbook 15.8, on "amicable numbers")

The Greeks called two numbers m and n an amicable pair if the sum of the proper divisors of m equals n and simultaneously the sum of the proper divisors of n equals m. (The proper divisors of a number n are all divisors of n excluding n itself.) The first amicable pair, and the only one (as far as we know) that was known in ancient Greece, is the pair (220, 284). This pair is amicable since

$$284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110$$
 (divisors of 220)
 $220 = 1 + 2 + 4 + 71 + 142$ (divisors of 284).

- (a) Show that m and n form an amicable pair if and only if $\sigma(n)$ and $\sigma(m)$ both equal n+m.
- (b) Verify that each of the following pairs is an amicable pair of numbers.

$$(220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368)$$

 $(10744, 10856), (12285, 14595)$

(c) There is a rule for generating amicable numbers, although it does not generate all of them. This rule was first discovered by Abu-1-Hasan Thabit ben Korrah around the ninth century and later rediscovered by many others, including Fermat and Descartes. The rule says to look at the three numbers

$$p = 3 \cdot 2^{e-1} - 1$$

$$q = 2p + 1 = 3 \cdot 2^{e} - 1$$

$$r = (p+1)(q+1) - 1 = 9 \cdot 2^{2e-1} - 1$$

If all of p, q, and r happen to be odd primes, then $m = 2^e pq$ and $n = 2^e r$ are amicable. Prove that the method of Thabit ben Korrah gives amicable pairs.

- (d) Taking e = 2 in Thabit ben Korrah's method gives the pair (220, 284). Use his method to find a second pair. If you have access to a computer that will do factorizations for you, try to use Thabit ben Korrah's method to find additional amicable pairs. So we also get another amicable pair from e = 7, but then not another for awhile.
- 6. Evaluate the following using the method of successive squaring. Try to do as much by hand as possible, but use a calcualtor as needed (look for ways to make your calculations easier where you can). Note that on exams, I will often provide a multiplication table for modular arithmetic if the modulus is larger than 20 or so, so you won't have to do anything quite this complicated by hand under time pressure.
 - (a) The remainder when 2^{25} is divided by 29.
 - (b) The last two digits of 29^{72} .
 - (c) The remainder when 49^{37} is divided by 101.