axis_spi_master.v

AUTHORS

JAY CONVERTINO

DATES

2025/04/22

INFORMATION

Brief

Stream SPI input/output data over AXIS bus in master mode.

License MIT

Copyright 2025 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

axis_spi_master

```
module axis_spi_master #(
parameter
CLOCK_SPEED
=
2000000,
parameter
BUS_WIDTH
=
4,
parameter
SELECT_WIDTH
=
8
) ( input wire aclk, input wire arstn, input wire [BUS_WIDTH*8-1:0] s_axis_t
```

SPI core with axis input/output data. Read/Write is size of BUS_WIDTH bytes. Write activates core for read.

Parameters

CLOCK_SPEED This is the aclk frequency in Hz, this is the the frequency used for the bus and is

parameter divided by the rate.

BUS_WIDTH AXIS data width in bytes.

parameter

SELECT_WIDTH Bit width of the slave select.

parameter

Ports

aclk Clock for AXIS

arstn Negative reset for AXIS s_axis_tdata Input data for SPI MOSI.

s_axis_tvalid When set active high the input data is valid

s_axis_tready When active high the device is ready for input data.

m_axis_tdata Output data from SPI MISO

m_axis_tvalid When active high the output data is valid

m_axis_tready When set active high the output device is ready for data.sclk spi clock, should only drive output pins to devices.

mosi transmit for master output
miso receive for master input
ssn_i slave select input
ssn_o slave select output
rate output rate of spi core.
cpol clock polarity of sclk
cpha clock phase of sclk

miso_dcountCurrent number of input bits available from parallel register.mosi_dcountcurrent number of output bits available to serial shift output.

STATE MACHINE

Constants that makeup the data_state machine.

ready

```
localparam ready = 3'd1
```

ready and waiting for data

processing

```
localparam processing = 3'd3
```

data is being processed

error

```
localparam error = 3'd0
```

someone made a whoops

INSTANTIATED MODULES

inst_spi_output_clk

Generates enable at rate for spi output data.

inst_spi_input_clk

Generates enable at rate for spi input data.

inst_piso

```
piso #(
BUS_WIDTH(BUS_WIDTH)
) inst_piso ( .clk(aclk), .rstn(arstn), .ena(spi_ena_mosi), .rev(1'b0), .lc
```

take axis input parallel data at bus size, and output the word to the spi bus.

inst_sipo

```
sipo #(

BUS_WIDTH(BUS_WIDTH)
) inst_sipo ( .clk(aclk), .rstn(arstn), .ena(spi_ena_miso), .rev(1'b0), .lc
```

take serial input data, and output the world to the parallel data bus.