

PaNOSC Portal Architecture

16th June, 2020

Presenter: J. Hall on behalf of PaNOSC WP4

Authors: J. Hall (ILL), S. Caunt (ILL), W. Turner (ILL)

Overview

- What is the PaNOSC Portal?
- Common analysis services goals
- Why are we developing a common portal?
- Portal workflow
- Challenges
- Architecture
- First iteration
- Facility deployment
- Status and Roadmap

What is the PaNOSC Portal?

- The objective of this work package is to make data analysis services available through cloud hosted services and on the EOSC.
 - Build on experience and user feedback from <u>VISA</u> and <u>CalipsoPlus</u>
 - Simplify access to scientific software and tools
 - Promote collaborative and reproducible scientific analysis
- Development of a common remote analysis application deployed at each site.
 - Provide Remote Desktops and Jupyter Notebooks
 - FAIR access to scientific data (public and embargoed)
 - o Each facility implements a connector providing access to their compute and data infrastructure
- Provide a common API to manage cloud resources on existing compute infrastructure.
 - A user will be able to select any facility and start remotely analysing their data via a single interface
- Tie into services provided by other work packages
 - FAIR Data API (WP3)
 - AAI / data access and transfer (WP6)
 - Learning resources (WP8)

Common analysis services goals

- Provides seamless access to data and remote analysis tools
- Common user interface and experience
- Searching user data and open data across all facilities
- Create a cloud resource for a selected dataset
 - Tailored to the data analysis requirements
 - Configurable environments
- Collaborating on analysis and sharing the results
 - Common workflows for analysing well defined datasets
 - Sharing Remote Desktop sessions and Jupyter Notebook
 - Facilitating reproducability
- Quotas to manage the distribution of cloud resources
- Common authentication using UmbrellaID

Why are we developing a *common* portal?

- Same user experience irrespective of the facility or where the data is stored
- Single point of entry for PaN users to access and analyse their data
- Merge existing solutions into a common user experience
 - User interface and design
 - Authentication
 - Search and access datasets
 - Open or embargoed
 - Re-use of common software and tools

Portal workflow

Challenges

- Each facility has different infrastructure, services and needs
 - Data analysis survey carried out to get a better understanding
 - Use cases and <u>specification</u> validated by all partners
- Distributed development across facilities
 - Different skill sets and availabilities
- Different levels of maturity of existing solutions
 - Data policy, DOIs, Remote Desktops, Jupyter Notebooks, NeXUS.
- Deployment
 - Different levels of experience

Architecture

- Built on a micro-service architecture
 - Easy to have multiple developers developing separate functionalities (shared responsibilities)
 - Well-defined API for each module/service
 - Enable site-specific implementations
 - Less dependence on a single language/technology (allows flexibility)
- Identified core and secondary services
 - Analysis of the use cases and feature prioritisation
- Iterative development
 - Enables quick feedback
 - Reactive to changes
- Documentation publically <u>available</u>

First iteration

- Management of compute resources
 - Implementation of Kubernetes cloud provider.
- Validation of architecture core services
 - Deployed at partner sites
- User authentication (OpenID connect)
- Obtain feedback
 - Encountered problems / constraints / edge cases
- Micro-services developing use NodeJS / Java
- All source code is Open Source and made available on <u>GitHub</u>.

Facility deployment

- Automated the deployment of the portal
 - Use Kubernetes to manage the orchestration of the micro-services
- Packaged as HELM charts
 - Configurable for site specific needs
 - Easy to upgrade
 - First stable production release
 - Open sourced on <u>GitHub</u>
- Demo version available
 - Single command, no configuration
 - Dummy environment
 - Allows for simple testing of latest features

Status and Roadmap

- First development iteration completed
- Validated the architecture
 - Feedback from partners
- Next stage is to integrate the frontend and backend developments
- Looking at integrating
 - FAIR Data API of WP3
 - Data Access from WP6
- Development of other micro-services
 - SLURM and OpenStack Cloud Providers (priority)
 - Messaging / Notification service
 - Quota service
 - Metrics service
- Demonstrator deployed at each site: November 2021
- Obtain user feedback after beta testing / validation: May 2022

Thank you

wp4@panosc.eu

