# Topology of Piecewise-Linear Manifolds

Jim Fowler

Lecture 7 Summer 2010

#### Regular neighborhoods

Suppose  $X \subset M$ .

#### Regular neighborhoods

Suppose  $X \subset M$ . The polyhedron X might have many neighborhoods in M.

#### Regular neighborhoods

Suppose  $X \subset M$ . The polyhedron X might have many neighborhoods in M.

But there is an "essentially unique" regular neighborhood.

E. C. Zeeman

## E. C. Zeeman

**Goal:** "Unknotting combinatorial balls"

## E. C. Zeeman

**Goal:** "Unknotting combinatorial balls"

a paper in the **Annals** 



## Main result

#### Theorem

Any embedding  $S^p \subset S^q$  is unknotted, if  $q - p \ge 3$ .

#### Corollary

Any embedding  $S^1 \subset S^2$  is unknotted.



#### Some background

Can  $S^1$  be knotted in  $S^3$ ?

#### Some background

Can  $S^1$  be knotted in  $S^3$ ?

What does knotted even mean?

 $\mathbb{R}^1 \cong S^1 - \mathsf{point}$ 

$$\mathbb{R}^1\cong S^1$$
 — point

$$\mathbb{R}^2 \cong S^2 - \mathsf{point}$$

$$\mathbb{R}^1\cong \mathcal{S}^1-\mathsf{point}$$

$$\mathbb{R}^2 \cong S^2 - \mathsf{point}$$

$$\mathbb{R}^3 \cong S^3 - \mathsf{point}$$

$$\mathbb{R}^1\cong \mathcal{S}^1-\mathsf{point}$$

$$\mathbb{R}^2 \cong S^2 - \mathsf{point}$$

$$\mathbb{R}^3 \cong S^3 - \mathsf{point}$$

So we can draw  $S^1 \subset S^3$  as if the circle were in  $\mathbb{R}^3$ .







## Reidemeister Move—Type I



#### Reidemeister Move—Type II



## Reidemeister Move—Type III



#### Reidemeister Moves



#### **Knots**

#### **Theorem**

Two knots are the same if a diagram for the one can be transformed into the other via Reidemeister moves.

High dimensional knots?

Are there "Reidemeister moves" for  $S^2$ 's in  $S^4$ ?

#### **Pairs**

#### Definition

"(p,q)-sphere pair" means  $S^q \subset S^p$ . We sometimes write  $(S^p, S^q)$ .

"(p,q)-ball pair" means  $B^q \subset B^p$ , with  $B^q$  properly embedded in  $B^p$ , meaning  $\partial B^q \subset \partial B^p$  and int  $B^q \subset \operatorname{int} B^p$ . We sometimes write  $(B^p, B^q)$ .

#### **Pairs**

#### Definition

"(p,q)-sphere pair" means  $S^q \subset S^p$ . We sometimes write  $(S^p, S^q)$ .

"(p,q)-ball pair" means  $B^q \subset B^p$ , with  $B^q$  properly embedded in  $B^p$ , meaning  $\partial B^q \subset \partial B^p$  and int  $B^q \subset \operatorname{int} B^p$ . We sometimes write  $(B^p, B^q)$ .

"Pair" means either a ball-pair or sphere-pair.

#### **Pairs**

#### Definition

"(p, q)-sphere pair" means  $S^q \subset S^p$ . We sometimes write  $(S^p, S^q)$ .

"(p,q)-ball pair" means  $B^q \subset B^p$ , with  $B^q$  properly embedded in  $B^p$ , meaning  $\partial B^q \subset \partial B^p$  and int  $B^q \subset \operatorname{int} B^p$ . We sometimes write  $(B^p, B^q)$ .

"Pair" means either a ball-pair or sphere-pair.

$$\partial(B^p,B^q)=(S^{p-1},S^{q-1}).$$





# Joins of pairs $(S^p, S^q) * S^k$ is a sphere pair. $(S^p, S^q) * B^k$ is a

 $(S^p, S^q) * S^k$  is a sphere pair.

 $(S^p, S^q) * B^k$  is a ball pair.

 $(S^p, S^q) * S^k$  is a sphere pair.

 $(S^p, S^q) * B^k$  is a ball pair.

 $(B^p, B^q) * S^k$  is a

 $(S^p, S^q) * S^k$  is a sphere pair.

 $(S^p, S^q) * B^k$  is a ball pair.

 $(B^p, B^q) * S^k$  is a ball pair.

- $(S^p, S^q) * S^k$  is a sphere pair.
- $(S^p, S^q) * B^k$  is a ball pair.
- $(B^p, B^q) * S^k$  is a ball pair.
- $(B^p, B^q) * B^k$  is a

- $(S^p, S^q) * S^k$  is a sphere pair.
- $(S^p, S^q) * B^k$  is a ball pair.
- $(B^p, B^q) * S^k$  is a ball pair.
- $(B^p, B^q) * B^k$  is a ball pair.

- $(S^p, S^q) * S^k$  is a sphere pair.
- $(S^p, S^q) * B^k$  is a ball pair.
- $(B^p, B^q) * S^k$  is a ball pair.
- $(B^p, B^q) * B^k$  is a ball pair.

# Joins of pairs

- $(S^p, S^q) * S^k$  is a sphere pair.
- $(S^p, S^q) * B^k$  is a ball pair.
- $(B^p, B^q) * S^k$  is a ball pair.
- $(B^p, B^q) * B^k$  is a ball pair.

We'll call the join of a pair and a point a cone pair.

# Subpairs

```
X = (X^p, X^q) and Y = (Y^r, Y^s) are pairs
we say Y is a subpair of X
(written Y \subset X or X \supset Y)
if Y^r \subset X^p and T^s = X^q \cap Y^r.
```

# Subpairs

$$X = (X^p, X^q)$$
 and  $Y = (Y^r, Y^s)$  are pairs  
we say  $Y$  is a subpair of  $X$   
(written  $Y \subset X$  or  $X \supset Y$ )  
if  $Y^r \subset X^p$  and  $T^s = X^q \cap Y^r$ .

If 
$$P=(S^p,S^q)\supset Q=(B^p,B^q)$$
, then 
$$P-\operatorname{int} Q=(S^p-\operatorname{int} B^p,S^q-\operatorname{int} B^q)$$

is a ball pair (via regular neighborhood machinery).

# Faces of pairs

If  $Q' = (B^{p-1}, B^{q-1})$  is contained in the boundary of  $Q = (B^p, B^q)$ , we call Q' a **face** of Q.

# Faces of pairs

If  $Q' = (B^{p-1}, B^{q-1})$  is contained in the boundary of  $Q = (B^p, B^q)$ , we call Q' a **face** of Q.

#### **Theorem**

If ball pairs intersect in their common boundary, their union is a sphere pair.

# Faces of pairs

If  $Q' = (B^{p-1}, B^{q-1})$  is contained in the boundary of  $Q = (B^p, B^q)$ , we call Q' a **face** of Q.

### **Theorem**

If ball pairs intersect in their common boundary, their union is a sphere pair.

### **Theorem**

If ball pairs intersect in a face, their union is a ball pair.

# Standard pairs

 $\Gamma^{p,q} = (S^{p-q}\Delta^q, \Delta^q)$  is the standard (p,q)-ball pair.  $\partial \Gamma^{p+1,q+1}$  is the standard (p,q)-sphere pair.

# Standard pairs

 $\Gamma^{p,q} = (S^{p-q}\Delta^q, \Delta^q)$  is the standard (p,q)-ball pair.  $\partial \Gamma^{p+1,q+1}$  is the standard (p,q)-sphere pair.

A pair is **unknotted** if it is homeomorphic to a standard pair.

## Theorem (**BallThm**<sub>p,q</sub>)

If  $p - q \ge 3$ , then any (p, q)-ball pair is unknotted.

# Theorem (**SphereThm**<sub>p,q</sub>)

If  $p - q \ge 3$ , then any (p, q)-sphere pair is unknotted.

## Theorem (**BallThm**<sub>p,q</sub>)

If  $p - q \ge 3$ , then any (p, q)-ball pair is unknotted.

# Theorem (**SphereThm**<sub>p,q</sub>)

If  $p - q \ge 3$ , then any (p, q)-sphere pair is unknotted.

## Proof.

By induction.

Prove **BallThm** $_{p,0}$  by hand.

Prove **BallThm**<sub>p,0</sub> by hand. **BallThm**<sub>p,q</sub> implies **SphereThm**<sub>p,q</sub>.

Prove **BallThm** $_{p,0}$  by hand.

**BallThm**<sub>p,q</sub> implies **SphereThm**<sub>p,q</sub>.

BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub> together imply BallThm<sub>p,q</sub>.

## Base case

Lemma BallThm $_{p,0}$  is true.

## Base case

Lemma BallThm $_{p,0}$  is true.

## Proof.

A ball  $B^p$  with a marked point  $B^0$  is homeomorphic to any other such (via regular neighborhood theory).

Prove **BallThm** $_{p,0}$  by hand.

**BallThm**<sub>p,q</sub> implies **SphereThm**<sub>p,q</sub>.

BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub> together imply BallThm<sub>p,q</sub>.

✓ Prove  $BallThm_{p,0}$  by hand.  $BallThm_{p,q}$  implies  $SphereThm_{p,q}$ .  $BallThm_{p-1,q-1}$  and  $SphereThm_{p-1,q-1}$  together imply  $BallThm_{p,q}$ .

 $\mathsf{BallThm}_{p,q} \Rightarrow \mathsf{SphereThm}_{p,q}$ 

 $\mathsf{BallThm}_{p,q} \Rightarrow \mathsf{SphereThm}_{p,q}$ 

## Proof.

 $P = (S^p, S^q)$ . Choose vertex  $x \in S^q$ .

 $\mathsf{BallThm}_{p,q} \Rightarrow \mathsf{SphereThm}_{p,q}$ 

## Proof.

 $P = (S^p, S^q)$ . Choose vertex  $x \in S^q$ .

 $P = Q \cup \{x\} * \partial Q,$ 

# $\mathsf{BallThm}_{p,q} \Rightarrow \mathsf{SphereThm}_{p,q}$

## Proof.

 $P = (S^p, S^q)$ . Choose vertex  $x \in S^q$ .

$$P=Q\cup\{x\}*\partial Q,$$

where  $Q = (S^p - st(x, S^p), S^q - st(x, S^q)).$ 

# $BallThm_{p,q} \Rightarrow SphereThm_{p,q}$

## Proof.

$$P = (S^p, S^q)$$
. Choose vertex  $x \in S^q$ .

$$P = Q \cup \{x\} * \partial Q,$$

where 
$$Q = (S^p - st(x, S^p), S^q - st(x, S^q)).$$

Extend 
$$Q \cong \Gamma^{p,q}$$
 to

a homeomorphism 
$$P \cong \partial \Gamma^{p+1,q+1}$$
.

✓ Prove  $BallThm_{p,0}$  by hand.  $BallThm_{p,q}$  implies  $SphereThm_{p,q}$ .  $BallThm_{p-1,q-1}$  and  $SphereThm_{p-1,q-1}$  together imply  $BallThm_{p,q}$ .

- ✓ Prove **BallThm**<sub>p,0</sub> by hand.
- ✓ BallThm<sub>p,q</sub> implies SphereThm<sub>p,q</sub>.
  - BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub> together imply BallThm<sub>p,q</sub>.

# The last step

 $\begin{array}{c} \mathbf{BallThm}_{p-1,q-1} \text{ and } \mathbf{SphereThm}_{p-1,q-1} \\ & \qquad \qquad \downarrow \\ \mathbf{BallThm}_{p,q} \end{array}$ 

This will require more machinery, building on simplicial collapse and regular neighborhoods.

# $\begin{array}{c} \mathbf{BallThm}_{p-1,q-1} \text{ and } \mathbf{SphereThm}_{p-1,q-1} \\ & \qquad \qquad \\ \mathbf{BallThm}_{p,q} \end{array}$

# $\begin{array}{c} \textbf{BallThm}_{p-1,q-1} \text{ and } \textbf{SphereThm}_{p-1,q-1} \\ & \qquad \qquad \\ \textbf{BallThm}_{p,q} \end{array}$

#### Lemma

Assuming BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub>,  $(B^p, B^q)$  with  $p-q \ge 3$  is unknotted provided  $B^p \searrow B^q$ .

# $\begin{array}{c} \mathbf{BallThm}_{p-1,q-1} \text{ and } \mathbf{SphereThm}_{p-1,q-1} \\ & \qquad \qquad \\ \mathbf{BallThm}_{p,q} \end{array}$

#### Lemma

Assuming BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub>,  $(B^p, B^q)$  with  $p-q \ge 3$  is unknotted provided  $B^p \setminus B^q$ .

#### Lemma

If  $p - q \ge 3$  and  $(B^p, B^q)$  is any ball pair, then  $B^p \searrow B^q$ .

But first...

Before we can proceed, we will prove a couple of helpful lemmas.

 $Q_1$  and  $Q_2$  are unknotted (p,q)-ball pairs.

Any homeomorphism  $h: \partial Q_1 \stackrel{\cong}{\longrightarrow} \partial Q_2$  extends to a homeomorphism  $h': Q_1 \stackrel{\cong}{\longrightarrow} Q_2$ .

 $Q_1$  and  $Q_2$  are unknotted (p,q)-ball pairs.

Any homeomorphism  $h: \partial Q_1 \stackrel{\cong}{\longrightarrow} \partial Q_2$  extends to a homeomorphism  $h': Q_1 \stackrel{\cong}{\longrightarrow} Q_2$ .

## Proof (via Alexander trick).

 $y = \text{point in interior of } \Delta^q$ ; then since  $Q_i$  is unknotted, we have maps  $f_i : Q_i \xrightarrow{\cong} \{y\} * \partial \Gamma^{p,q}$ 

 $Q_1$  and  $Q_2$  are unknotted (p,q)-ball pairs.

Any homeomorphism  $h: \partial Q_1 \xrightarrow{\cong} \partial Q_2$  extends to a homeomorphism  $h': Q_1 \xrightarrow{\cong} Q_2$ .

## Proof (via Alexander trick).

 $y = \text{point in interior of } \Delta^q$ ; then since  $Q_i$  is unknotted, we have maps  $f_i: Q_i \xrightarrow{\cong} \{y\} * \partial \Gamma^{p,q}$ 

$$g: \partial \Gamma^{p,q} \xrightarrow{f_1^{-1}} \partial Q_1 \xrightarrow{h} \partial Q_2 \xrightarrow{f_2} \partial \Gamma^{p,q}$$

 $Q_1$  and  $Q_2$  are unknotted (p,q)-ball pairs.

Any homeomorphism  $h: \partial Q_1 \stackrel{\cong}{\longrightarrow} \partial Q_2$  extends to a homeomorphism  $h': Q_1 \stackrel{\cong}{\longrightarrow} Q_2$ .

## Proof (via Alexander trick).

 $y = \text{point in interior of } \Delta^q$ ; then since  $Q_i$  is unknotted, we have maps  $f_i: Q_i \xrightarrow{\cong} \{y\} * \partial \Gamma^{p,q}$ 

$$g: \partial \Gamma^{p,q} \xrightarrow{f_1^{-1}} \partial Q_1 \xrightarrow{h} \partial Q_2 \xrightarrow{f_2} \partial \Gamma^{p,q}$$

 $h': Q_1 \xrightarrow{f_1} \{y\} * \partial \Gamma^{p,q} \xrightarrow{\mathsf{cone}\, g} \{y\} * \partial \Gamma^{p,q} \xrightarrow{f_2^{-1}} Q_2$ 

In short, radial extension.

## Lemma (assume **BallThm**<sub>p-1,q-1</sub>)

If  $Q_1$ ,  $Q_2$  are unknotted (p, q)-ball pairs, and  $Q_3 = Q_1 \cap Q_2$  is a face, then  $Q_1 \cup Q_2$  is unknotted.

## Lemma (assume **BallThm**<sub>p-1,q-1</sub>)

If  $Q_1$ ,  $Q_2$  are unknotted (p,q)-ball pairs, and  $Q_3 = Q_1 \cap Q_2$  is a face, then  $Q_1 \cup Q_2$  is unknotted.

## Proof.

Choose  $Q_3 \stackrel{\cong}{\longrightarrow} \Gamma^{p-1,q-1}$ , extend over  $\partial Q_1 - \operatorname{int} Q_3$  to  $h : \partial Q_1 \stackrel{\cong}{\longrightarrow} \Gamma^{p-1,q-1} \cup C \partial \Gamma^{p-1,q-1}$ ,

## Lemma (assume **BallThm**<sub>p-1,q-1</sub>)

If  $Q_1$ ,  $Q_2$  are unknotted (p,q)-ball pairs, and  $Q_3 = Q_1 \cap Q_2$  is a face, then  $Q_1 \cup Q_2$  is unknotted.

## Proof.

Choose  $Q_3 \xrightarrow{\cong} \Gamma^{p-1,q-1}$ , extend over  $\partial Q_1 - \text{int } Q_3$  to  $h : \partial Q_1 \xrightarrow{\cong} \Gamma^{p-1,q-1} \cup C \partial \Gamma^{p-1,q-1}$ ,

h extends to  $Q_1 \rightarrow C\Gamma^{p-1,q-1}$ 

## Lemma (assume **BallThm**<sub>p-1,q-1</sub>)

If  $Q_1$ ,  $Q_2$  are unknotted (p,q)-ball pairs, and  $Q_3 = Q_1 \cap Q_2$  is a face, then  $Q_1 \cup Q_2$  is unknotted.

### Proof.

Choose  $Q_3 \stackrel{\cong}{\longrightarrow} \Gamma^{p-1,q-1}$ , extend over  $\partial Q_1 - \operatorname{int} Q_3$  to  $h : \partial Q_1 \stackrel{\cong}{\longrightarrow} \Gamma^{p-1,q-1} \cup C \partial \Gamma^{p-1,q-1}$ ,

h extends to  $Q_1 \to C\Gamma^{p-1,q-1}$ Similarly produce  $Q_2 \to C\Gamma^{p-1,q-1}$ 

## Lemma (assume **BallThm**<sub>p-1,q-1</sub>)

If  $Q_1$ ,  $Q_2$  are unknotted (p, q)-ball pairs, and  $Q_3 = Q_1 \cap Q_2$  is a face, then  $Q_1 \cup Q_2$  is unknotted.

### Proof.

Choose  $Q_3 \stackrel{\cong}{\longrightarrow} \Gamma^{p-1,q-1}$ , extend over  $\partial Q_1$  – int  $Q_3$  to  $h: \partial Q_1 \stackrel{\cong}{\longrightarrow} \Gamma^{p-1,q-1} \cup C \partial \Gamma^{p-1,q-1}$ ,

h extends to  $Q_1 o C\Gamma^{p-1,q-1}$ 

Similarly produce  $Q_2 \rightarrow C\Gamma^{p-1,q-1}$ 

Glue together  $Q_1 \cup Q_2 \cong S\Gamma^{p-1,q-1}$ .

# Regular neighborhoods

M, an n-manifold,  $X \subset M$  a polyhedron a **regular neighborhood** of X in M is a subpolyhedron  $N \subset M$  such that

- N is a closed neighborhood of X
- ▶ *N* is an *n*-manifold
- $\triangleright N \setminus X$ .

### **Theorem**

If  $N_1$  and  $N_2$  are regular neighborhoods of  $X \subset M$ , there's a homeomorphism  $N_1 \to N_2$  keeping X fixed.

Assuming BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub>,  $(B^p, B^q)$  with  $p-q \ge 3$  is unknotted provided  $B^p \searrow B^q$ .

Assuming BallThm<sub>p-1,q-1</sub> and SphereThm<sub>p-1,q-1</sub>,  $(B^p, B^q)$  with  $p-q \ge 3$  is unknotted provided  $B^p \searrow B^q$ .

**Warning:** The lemma is false if p - q = 2. If  $(B^4, B^2) = \text{cone}(S^3, S^1)$ , then  $B^4 \setminus B^2$  because cones collapse to a subcone

 $B^p \searrow B^q \Rightarrow (B^p, B^q)$  unknotted

$$B^p \setminus B^q \Rightarrow (B^p, B^q)$$
 unknotted

Pick regular neighborhood N of  $B^q$ ;

 $B^p \setminus B^q \Rightarrow (B^p, B^q)$  unknotted

Pick regular neighborhood N of  $B^q$ ; then  $(B^p, B^q) \cong (N, B^q)$ .

$$B^p \setminus B^q \Rightarrow (B^p, B^q)$$
 unknotted

Pick regular neighborhood N of  $B^q$ ; then  $(B^p, B^q) \cong (N, B^q)$ .

then 
$$(B^p, B^q) \cong (N, B^q)$$
.  
 $B^q = K_k \setminus K_{k-1} \setminus \cdots \setminus K_0 = \{x\}$ 

$$B^p \setminus B^q \Rightarrow (B^p, B^q)$$
 unknotted

Pick regular neighborhood N of  $B^q$ ;

then 
$$(B^p, B^q) \cong (N, B^q)$$
.

$$B^q = K_k \setminus K_{k-1} \setminus \cdots \setminus K_0 = \{x\}$$

 $Q_i = \text{simplicial neighborhood of } K_i \text{ in } (B^p, B^q).$ 

$$B^p \setminus B^q \Rightarrow (B^p, B^q)$$
 unknotted

Pick regular neighborhood N of  $B^q$ ; then  $(B^p, B^q) \cong (N, B^q)$ .

$$B^q = K_k \setminus K_{k-1} \setminus \cdots \setminus K_0 = \{x\}$$

$$Q_i = \text{simplicial neighborhood of } K_i \text{ in } (B^p, B^q).$$

Proceed by induction.

$$B^p \setminus B^q \Rightarrow (B^p, B^q)$$
 unknotted

Pick regular neighborhood N of  $B^q$ ; then  $(B^p, B^q) \cong (N, B^q)$ .

then 
$$(B^p, B^q) \cong (N, B^q)$$
.  
 $B^q = K_k \setminus K_{k-1} \setminus \cdots \setminus K_0 = \{x\}$ 

$$Q_i = \text{simplicial neighborhood of } K_i \text{ in } (B^p, B^q).$$

Proceed by induction.

$$Q_0 = \{x\} * L \text{ where } L = (lk(x, B^p), lk(x, B^q)),$$

$$B^p \setminus B^q \Rightarrow (B^p, B^q)$$
 unknotted

Pick regular neighborhood N of  $B^q$ ; then  $(B^p, B^q) \cong (N, B^q)$ .

$$B^q = K_k \setminus K_{k-1} \setminus \cdots \setminus K_0 = \{x\}$$

 $Q_i = \text{simplicial neighborhood of } K_i \text{ in } (B^p, B^q).$ 

Proceed by induction.

 $Q_0 = \{x\} * L$  where  $L = (lk(x, B^p), lk(x, B^q))$ , and L is unknotted by either **BallThm**<sub>p-1,q-1</sub> or **SphereThm**<sub>p-1,q-1</sub>.

 $K_i - K_{i-1}$  consists of a principal simplex A with a free face C.

 $K_i - K_{i-1}$  consists of a principal simplex A with a free face C. Pick  $a \in \text{int } A$  and  $c \in \text{int } C$ .

 $K_i - K_{i-1}$  consists of a principal simplex A with a free face C. Pick  $a \in \text{int } A$  and  $c \in \text{int } C$ .

 $Q_a = \{a\} * (lk(a, B^p), lk(a, B^q))$  is unknotted.

 $K_i - K_{i-1}$  consists of a principal simplex A with a free face C. Pick  $a \in \text{int } A$  and  $c \in \text{int } C$ .

 $Q_a = \{a\} * (lk(a, B^p), lk(a, B^q))$  is unknotted.  $Q_c = \{c\} * (lk(c, B^p), lk(c, B^q))$  is unknotted.

 $K_i - K_{i-1}$  consists of a principal simplex A with a free face C. Pick  $a \in \text{int } A$  and  $c \in \text{int } C$ .

$$Q_a = \{a\} * (lk(a, B^p), lk(a, B^q))$$
 is unknotted.  
 $Q_c = \{c\} * (lk(c, B^p), lk(c, B^q))$  is unknotted.

 $Q_i = Q_{i-1} \cup Q_a \cup Q_c$  is union of unknotted ball pairs along faces; therefore,  $Q_i$  is unknotted.

 $K_i - K_{i-1}$  consists of a principal simplex A with a free face C. Pick  $a \in \text{int } A$  and  $c \in \text{int } C$ .

$$Q_a = \{a\} * (lk(a, B^p), lk(a, B^q))$$
 is unknotted.  
 $Q_c = \{c\} * (lk(c, B^p), lk(c, B^q))$  is unknotted.

 $Q_i = Q_{i-1} \cup Q_a \cup Q_c$  is union of unknotted ball pairs along faces; therefore,  $Q_i$  is unknotted.

## All that remains

### If we could prove

#### Lemma

If  $p - q \ge 3$  and  $(B^p, B^q)$  is any ball pair, then  $B^p \searrow B^q$ .

we would finish the argument.

## All that remains

### If we could prove

#### Lemma

If  $p-q \ge 3$  and  $(B^p, B^q)$  is any ball pair, then  $B^p \searrow B^q$ .

we would finish the argument.

Hitherto, no use of the codimension assumption.

## All that remains

### If we could prove

#### Lemma

If  $p - q \ge 3$  and  $(B^p, B^q)$  is any ball pair, then  $B^p \searrow B^q$ .

we would finish the argument.

Hitherto, no use of the codimension assumption.

## Proof Technique.

Sunny collapse.

