

planetmath.org

Math for the people, by the people.

free products and group actions

 ${\bf Canonical\ name} \quad {\bf Free Products And Group Actions}$

Date of creation 2013-03-22 17:34:56 Last modified on 2013-03-22 17:34:56

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 5

Author rm50 (10146) Entry type Theorem Classification msc 20E06 **Theorem 1.** (See Lang, Exercise 54 p. 81) Suppose $G_1, \ldots G_n$ are subgroups of G that generate G. Suppose further that G acts on a set S and that there are subsets $S_1, S_2, \ldots S_n \subset S$, and some $s \in S - \cup S_i$ such that for each $1 \le i \le n$, the following holds for each $g \in G_i, g \ne e$:

- $g(S_j) \subset S_i$ if $j \neq i$, and
- $g(s) \in S_i$.

Then $G = G_1 \star \ldots \star G_n$ (where \star denotes the free product).

Proof: Any $g \in G$ can be written $g = g_1g_2 \dots g_k$ with $g_i \in G_{j_i}, j_i \neq j_{i+1}, g_i \neq e$, since the G_i generate G. Thus there is a surjective homomorphism $\phi: \coprod G_i \twoheadrightarrow G$ (since $\coprod G_i$, as the coproduct, has this universal property). We must show $\ker \phi$ is trivial. Choose $g_1g_2 \dots g_k$ as above. Then $g_k(s) \in S_{j_k}, g_{k-1}(g_k(s)) \in S_{j_{k-1}}$, and so forth, so that $g_1(g_2(\dots(g_k(s)\dots)) \in S_{j_1}$. But $e(s) = s \notin S_{j_1}$. Thus $\phi(g_1g_2 \dots g_k) \neq e$, and ϕ is injective.