Dynamic Posted-Price Mechanisms for the Blockchain Transaction-Fee Market

Matheus V. X. Ferreira, Daniel J. Moroz, David C. Parkes, Mitchell Stern

Blockchains

Distributed ledger of transactions.

• Managed by a **decentralized** network of miners.

Pending Transactions							
TX ID	Sender	Receiver	Value				
01	Alice	Bob	10				
02	Charlie	David	15				
03	Bob	Charlie	1				

Transaction fee Mechanism

[Nakamoto '08] To select transactions, miners implement a first-price auction to select transactions.

Estimated fee

0.00001869 BTC

\$ 0.56

For confirmation within 2 blocks

~ 20 minutes

- 1 + - 2 +

Total amount of bytes: 222

A fee rate of **8.417** Satoshi/byte applies for confirmation within the next **2** blocks.

Source: https://btc.network/estimate

Accessed: 9/23/2021

Posted-price provides simplicity

Research Question

• How to dynamically price block space given future demand is unknown?

Approach

- 1. Each block contains a posted-price: $Price_t$.
- 2. Miner can **ONLY** include transactions with a budget above $Price_t$.
- 3. Bidder pays $Price_t$.
- 4. Compute the posted-price for next block

Pending Transactions								
TX ID	Sender	Receiver	Value	Budget				
01	Alice	Bob	10	1				
02	Charlie	David	15	0.01				
03	Bob	Charlie	1	0.5				

Example: Dynamic Posted-Prices

Ethereum Improvement Proposal (EIP) 1559 [Buterin et al., '19]

• London hard fork (August 4th, 2021).

Pending Transactions							
TX ID	Sender	Receiver	Value	Tip	Budget		
01	Alice	Bob	10	0.01	1		
02	Charlie	David	15	0.01	0.01		
03	Bob	Charlie	1	0.01	0.5		

Pricing Rules

Utilization-based (EIP-1559)

Welfare-based

Truncated Welfare-based

Utilization-based rule

$$Price_{t+1}^{U} = Price_{t}^{U}(1 + \alpha(Utilization - Target))$$

- Block $Utilization = \frac{\# Transactions in Block}{Block Capacity}$.
- Target utilization ($Target = \frac{1}{2}$ in EIP-1559).

Instability of Utilization-based rule

• Consider 50 slots for sale and 100 users with value 10 (each round).

$$\begin{aligned} Price_{t+1} &= Price_t (1 + \alpha(Utilization - Target)) \\ &= 1/2 \\ &= Price_t \left(1 \mp \frac{\alpha}{2}\right) \end{aligned}$$

Welfare-based pricing rule

$$Welfare(Block) = \sum_{i \in Block} v_i$$

$$Price_{t+1}^{W} = \alpha \frac{Welfare(Block)}{Capacity} + (1 - \alpha)Price_{t}^{W}$$

• Each transaction contributes $\frac{\alpha v_i}{capacity}$ (where v_i is the bid of bidder i).

Example: Welfare-based

- Consider 50 slots for sale and 100 users with value 10.
- Case 1 ($Price_t^W > 10$):

$$\begin{aligned} \text{Price}_{t+1}^{W} &= \alpha \frac{Welfare(Block)}{Capacity} + (1 - \alpha) Price_{t}^{W} \\ &= (1 - \alpha) Price_{t}^{W} \\ &< \text{Price}_{t}^{W} \end{aligned}$$

• The eventually $Price_{t+1}^W \leq 10$.

Example: Welfare-based

• Case 2 ($Price_t^W \leq 10$):

$$\begin{aligned} \operatorname{Price}_{t+1}^{W} &= \alpha \frac{\operatorname{Welfare}(\operatorname{Block})}{\operatorname{Capacity}} + (1-\alpha)\operatorname{Price}_{t}^{W} \\ &= 10\alpha + (1-\alpha)\operatorname{Price}_{t}^{W} \\ &\geq \operatorname{Price}_{t}^{W} \text{ and } \leq 10 \end{aligned}$$

- Thus, sequence of prices o monotone increasing.
- From monotone convergence, postedprice converge.

Quality of convergence?

If we had converged to a price > 10, then the mechanism obtains zero welfare.

Main result 1: Welfare guarantees

[Theorem] Assume values are drawn i.i.d. Then the utilization-based, welfare-based and the truncated welfare-based obtain ¼ of the optimal welfare at equilibrium.

[Optimal welfare] Welfare obtained by selling at the market clearing price.

Main result 2: Convergence guarantees

• If the **revenue curve** is strict concave and Lipschitz continuous, there is an α such that the welfare-based and utilization-base rules are stable.

Improving the Welfare-base rule

Truncated Welfare-based rule

• Each transaction contributes $\frac{\alpha \min\{v_i,(1+\delta)p_i\}}{Capacity}$ to next price.

 v_i is the bid of bidder i p_i is the payment of bidder i

Conclusion

• Dynamic posted-prices provides predictable payments.

• We give conditions for the stability of pricing rules and welfare guarantees at equilibrium.

• Using observable bids (rather than block utilization) reduces price volatility and increases welfare.

Future direction: quantify a good pricing rules

• Welfare: quantifying the tradeoff between larger blocks and network delays.

• **Strategyproofness**: users might prefer to wait in exchange for lower payments.

Future direction: predict demand changes

Source: https://www.anyblockanalytics.com/blog/historical-ethereum-gas-price-analysis/

