

COUNTER

Nama : Septian Bagus Jumantoro

Kelas : 1 – D4 Teknik Komputer B

NRP : 3221600039

Dosen : Reni Soelistijorini B.Eng., MT.

Mata Kuliah : Praktikum Rangkaian Logika

Hari, Tgl. Praktikum: Jumat, 27 Mei 2022

1. Tujuan

Dapat menjelaskan rangkaian pembagi clock. Dapat membuat rangkaian Counter modulus 10k.

2. Teori

Clock Divider

Frekuensi dan periode dari Xilinx Spartan 3 adalah 24-bit counter dengan clock sebesar 50MHz. Counter dapat digunakan untuk membagi frekuensi f dari clock, dimana frekuensi output q(i) adalah $f_i = f/2^{i+1}$. Tabel 2.1 menyatakan pembagian frekuensi.

Tabel 8.1 Clock divide frequencies

q(i)	Frekuensi (Hz)	Periode(ms)
i	5000000.00	0.00002
0	25000000.00	0.00004
1	12500000.00	0.00008
2	6250000.00	0.00016
3	3125000.00	0.00032
4	1562500.00	0.00064
5	781250.00	0.00128
6	390625.00	0.00256
7	195312.50	0.00512
8	97656.25	0.01024
9	48828.13	0.02048
10	24414.06	0.04096
11	12207.03	0.08192
12	6103.52	0.16384
13	3051.76	0.32768
14	1525.88	0.65536
15	762.94	1.31072
16	381.47	2.62144
17	190.73	5.24288
18	95.37	10.48576
19	47.68	20.97152
20	23.84	41.94304
21	11.92	83.88608
22	5.96	167.77216
23	2.98	335.54432

Counter

```
library | EEE;
use | EEE.STD_LOG C_1164.ALL;
use | EEE.STD_LOG C_unsi gned.ALL;
entity Counter is
    generic(N : integer :=8);
      Port ( clk : in STD_LOG C;
               clr : in STD_LOGIC;
              q : out STD_LOG C_VECTOR (N-1 downto 0));
end Count er;
architecture Behavi or al of Count er is
      signal count : std_logic_vector (N-1 downto 0);
begin
      process (clk, clr)
      begin
            if clr ='1' then
                 count <= (others => '0');
            elsif clk' event and clk='1' then
                 count <= count + 1;
            end if:
            q <= count;
      end process;
end Behavi or al;
```

```
--Example 4
use | EEE.STD_LOG C_1164.all;
use | EEE.STD_LOG C_unsi gned.all;
entity clkdiv is
     port(
            mclk : in STD LOGIC;
            clr : in STD_LOGIC;
            cl k25 : out STD_LOG C;
           cl k190 : out STD_LOGIC;
           cl k3 : out STD_LOG C
      );
end cl kdi v :
architecture clkdiv of clkdiv is
signal q : STD_LOG C_VECTOR(23 downto 0);
begin
      -- cl ock di vi der
     process(mclk, clr)
                                  xcviii
     begin
```

Pada skrip 8.1 adalah contoh 24-bit counter yang mempunyai 3 output, yaitu 25Mhz clock (clk25),clock 190Hz (clk190), dan clock 3Hz (clk3). Untuk memodifikasi component *clkdiv* untuk bisa menghasilkan output frekuensi yang berbeda dengan menggunakan tabel 8.1.

3. Peralatan

- 1. PC yang sudah terinstal ISE 13.1
- 2. Xilinx Spartan 3
- 3. Downloader JTAG USB
- **4.** Power Supply 5 volt

4. Langkah Percobaan

Pada percobaan ini akan mendisain counter 0-9999. Masukan rangkaian ini adalah mclk 50Mhz danbutton Reset. Keluaran di seven segmen(a_to_g) dan enable(an(3:0)).

- 1. Buatlah *new project* dengan nama Lab8.
- 2. Tambahkan program VHDL dibawah ini.

Clock Devider

```
library | EEE;
use | EEE.STD_LOG| C_1164.ALL;
entity Clockdiv is
     Clk: out STD_LOGIC);
     end Clockdiv;
architecture Behavior of Clockdiv is
     constant max: Integer := 25000000;
     constant half: integer := max/2;
     signal count: Integer range 0 to max;
begin
     process
     begin
           wait until CI k25Mhz' EVENT and CI k25Mhz = '1';
           if count < max then
                count <= count + 1;
                count <= 0;
           end if;
           if count < half then
                Cl k <= '0';
           else
                 Cl k <= '1';
           end if;
     end process;
end Behavi or;
```

Clock devider 48Hz dan 190Hz

```
library | EEE;
use | EEE.STD_LOG| C_1164.ALL;
use | EEE.STD_LOG| C_unsigned.ALL;

entity clkdiv is
    Port ( mclk : in STD_LOG| C;
        clr : in STD_LOG| C;
        clk190 : out STD_LOG| C;
        clk48 : out STD_LOG| C;
end clkdiv;

architecture Behavioral of clkdiv is
        signal q:std_log| c_vector (23 downto 0);
begin
    -- clock devider
```

```
process(mtlk, clr)
begin
    if clr ='1' then
        q <= x"000000"; -- format hexadesimal
    elsif mtlk' event and mtlk ='1' then
        q <= q + 1;
    end if;
    clk48 <= q(19);
    clk190 <= q(17);
    end process;
end Behavi or al;</pre>
```

Counter modulus 10K.

```
use | EEE.STD_LOG| C_1164.ALL;
use | EEE.STD_LOG| C_unsi gned.ALL;
entity mod10kcnt is
   Port ( clr : in STD_LOG C;
    clk : in STD_LOG C;
    q : out STD_LOG C_VECTOR (13 downto 0));
end mod10kcnt;
architecture Behavioral of mod10kcnt is
      signal count :STD_LOGIC_VECTOR (13 downto 0);
       -- modul o 10k
      process(clk,clr)
      begin
             if clr = '1' then
                          count <= (others => '0');
             elsif clk'event and clk =' 1' then
                          conv_i nteger (count) = 9999 then
                    if
                           count <= (others => '0');
                           count \leq count + 1;
                    end if;
             end if:
       end process;
       a \le count:
end Behavi or al;
```

Biner 14 bit to BCD

```
library | EEE;
use | EEE.STD_LOG|C_1164.ALL;
use | EEE.STD_LOG|C_unsigned.ALL;
entity binBCD14 is
    Port ( b : in STD_LOG|C_VECTOR (13 downto 0);
        p : out STD_LOG|C_VECTOR (16 downto 0));
```

```
end bi nBCD14;
architecture Behavioral of binBCD14 is
begin
      process(b)
             variable z : STD_LOG C_VECTOR (32 downto 0);
             for I in 0 to 32 loop
                   z(i) := '0';
             end loop;
            z(16 downto 3) := b;
             for i in 0 to 10\ loop
                   if z(17 \text{ downto } 14) > 4 \text{ then}
                         z(17 downto 14) := z(17 downto 14) + 3;
                   end if;
                   if z (21 downto 18) > 4 then
                         z (21 downto 18) := z (21 downto 18) + 3;
                   end if;
                   if z (25 downto 22) > 4 then
                         z (25 downto 22) := z (25 downto 22) + 3;
                   end if;
                   if z(29 \text{ downto } 26) > 4 \text{ then}
                         z (29 downto 26) := z (29 downto 26) + 3;
                   end if;
                   z (32 downto 1) := z (31 downto 0);
             end loop;
             p <= z (30 downto 14);
      end process;
end Behavi or al;
```

```
architecture Behavioral of x7segbc is
      signal s : std_logic_vector(1 downto 0);
      signal digit : std_logic_vector(3 downto 0);
      signal aen : std_logic_vector(3 downto 0);
begin
      dp <= '1';
      -- set aen(3 downto 0) for leading blanks
      aen(3) \le x(15) or x(14) or x(13) or x(12);
      aen(2) \le x(15) or x(14) or x(13) or x(12)
                  or x(11) or x(10) or x(9) or x(8);
      aen(1) \le x(15) or x(14) or x(13) or x(12)
                 or x(11) or x(10) or x(9) or x(8)
                  or x(7) or x(6) or x(5) or x(4);
      aen(0) <= '1';
-- Quad 4-to-1 MLK:
                       mux44
     process(s.x)
           begin
                  case s is
                        when "00" => digit <= x(3 downto 0);
                        when "01" => digit <= x(7 downto 4);
                        when "10" => digit <= x(11 downto 8);
                        when others => digit <= x(15 downto 12);
                  end case;
      end process;
-- 7-segment decoder: hex7seg
      process(digit)
      begin
            case digit is
                  when x"0" => a_to_g <= "0000001"; --0
                  when x"1" => a_to_g <= "1001111"; --1
                  when x"2" => a_to_g <= "0010010"; --2
                  when x"3" => a_to_g <= "0000110"; --3
                  when x"4" => a_to_g <= "1001100"; --4
                  when x"5" => a_to_g <= "0100100"; --5
                  when x"6" => a_to_g <= "0100000"; --6
                  when x"7" => a_to_g <= "0001111"; --7
                  when x"8" => a_to_g <= "0000000"; --8
                  when x"9" => a_to_g <= "0000100"; --9
                  when x"A" => a_to_g <= "0001000"; -- a
                  when x"B" => a_to_g <= "1100000"; --b
                  when x"C" => a_to_g <= "0110001"; --c
                  when x"D" => a_to_g <= "1000010"; -- d
```

```
when x"E" => a_to_g <= "0110000"; --e
                  when others => a_to_g <= "0111000"; -- f
            end case;
      end process;
-- Digit select: ancode
     process(s,aen)
     begin
            an <= "1111";
            if aen(conv_i nt eger(s))='1' then
                  an (conv_i nt eger (s)) <=' 0';
            end if;
     end process;
-- 2 bit counter
     process(cclk, clr)
     begin
            if clr='1' then
                  s <= "00";
            elsif cclk'event and cclk='1' then
                  s <= s + 1;
            end if;
      end process;
end Behavi or al;
```

Mod10Kcnt_top

```
library | EEE;
use | EEE.STD_LOG| C_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
-- use I EEE. NUMERI C_STD. ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
-- library UNISIM
-- use UNI SI M VComponent s. al I;
entity mod10Kcnt_top is
      port( mtlk : in std_logic;
                  btn : in std_logic;
                            :
                                    out std_logic_vector (6 downto 0);
                  a_to_g
                      : out std_logic_vector (3 downto 0);
                  dp : out std_logic
```

```
end mod10Kcnt_top;
architecture Behavioral of mod10Kcnt_top is
      component clkdiv is
             port( mtlk : in std_logic;
                          clr : in std_logic;
clk190: out std_logic;
                          clk48: out std_logic
      component mod10kcnt is
            port(
                         clr : in STD_LOGIC;
                                 clk: in STD_LOGIC;
                                  q : out STD_LOGIC_VECTOR (13 downto 0)
      component binBCD14 is
Port ( b : in ST
                   b : in STD_LOGIC_VECTOR (13 downto 0);
                          p : out STD_LOGIC_VECTOR (16 downto 0));
      component x7segbc is
      port(x
                     : in std_logic_vector (15 downto 0);
                   cclk : in std_logic;
                   cl r
                            : in std_logic;
                    a_to_g : out std_logic_vector(6 downto 0);
                    an : out std_logic_vector (3 downto 0);
dp : out std_logic
      end component;
      signal b : std_logic_vector(13 downto 0);
signal p : std_logic_vector(16 downto 0);
      signal clr, clk48, clk190 : std_logic;
      begin
      clr <= btn;
      u1: clkdiv port map(
             mclk => mclk,
clr => clr,
clk190 => clk190,
             cl k48 => cl k48
```

```
u2: mod10kcnt port map(
          clr => clr,
           cl k => cl k48,
           q => b
     );
     u3: bi nbcd14 port map(
           b => b,
           p => p
     u4: x7segbc port map(
                => p(15 downto 0),
           ccl k => cl k190,
           clr => clr,
           a_to_g => a_to_g,
          an => an,
           dp => dp
end Behavi or al;
```

- 3. Pastikan program Mod10Kcnt_top menjadi top module.
- **4.** Lakukan sintessis, sehingga menghasilkan RTL schematics seperti dibawah ini.

Hasil RTL Shcematics

5. Upload program ke board spartan, setelah sukses demokan hasilnya ke dosen pengampu

5. Latihan

Buatlah program stop watch, dengan menggunakcavni push button untuk tombol start, pause, reset.

6. Hasil Percobaan

a. Langkah Percobaan

Pendefinisian Pin

```
net btn(0) LOC = M13;
2
   net btn(1) LOC = M14;
3
  NET a to g(0) LOC = N16;
4
5 NET a_to_g(1) LOC = F13;
  NET a to g(2) LOC = R16;
7
   NET a to g(3) LOC = P15;
   NET a to g(4) LOC = N15;
8
   NET a to g(5) LOC = G13;
9
   NET a_{to}g(6) LOC = E14;
10
11
12
   net an(0) LOC = D14;
13
   net an(1) LOC = G14;
14
   net an(2) LOC = F14;
15
  net an(3) LOC = E13;
16
17
  NET dp LOC = P16;
```

RTL Skematik

Foto Percobaan pada FPGA Board

Gambar Output 6645 pada 7 Segment Display

Gambar Output 7688 pada 7 Segment Display

b. Mini Project

Kode program

Clock Divider

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC unsigned.ALL;
entity clkdiv is
Port (mclk : in STD LOGIC;
             clr : in STD LOGIC;
             clk190 : out STD LOGIC;
             clk48 : out STD LOGIC);
end clkdiv;
architecture Behavioral of clkdiv is
signal q:std logic vector(23 downto 0);
begin
      process (mclk, clr)
      begin
              if clr = '1' then
                    q <= x"000000"; --format hexadesimal</pre>
              elsif mclk' event and mclk = '1' then
                    q \le q + 1;
             end if;
             clk48 \le q(19); clk190 \le q(17);
      end process;
end Behavioral ;
```

Modulus

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC unsigned.ALL;
entity mod10kcnt is
               Port (clr : in STD_LOGIC;
                              clk : in STD LOGIC;
                               start : in STD_LOGIC;
                              pause : in STD LOGIC;
                               q : out STD LOGIC VECTOR (13 downto 0));
end mod10kcnt;
architecture Behavioral of mod10kcnt is
               signal count:STD_LOGIC_VECTOR (13 downto 0);
               signal flagrun:std logic;
begin
               -- modul o 10k
               process(clk,clr,start,pause)
               begin
                       -- reset and counter
                       if clr = '1' then
                               count <= (others => '0');
                       elsif clk' event and clk = '1' then
                               if start = '1' and pause = '0' then
                               flagrun <= '1';
elsif start = '0' and pause = '1' then</pre>
                                       flagrun <= '0';
                               end if:
                               if conv integer (count) = 9999 then
                                      count <= (others => '0');
                               elsif flagrun = '1' then
```

```
count <= count + 1;
end if;
end if;
end process;
q <= count;
end Behavioral;</pre>
```

Binary to BCD

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;
entity binBCD14 is
       Port (b : in STD LOGIC VECTOR (13 downto 0);
                     p : out STD_LOGIC_VECTOR (16 downto 0));
end binBCD14;
architecture Behavioral of binBCD14 is
begin
       process(b)
       variable z : STD_LOGIC_VECTOR (32 downto 0);
       begin
       for i in 0 to 32 loop
             z (i ) := '0';
       end loop;
       z (16 downto 3) := b;
       for i in 0 to 10 loop
              if z (17 downto 14) > 4 then
                     z (17 downto 14) := z (17 downto 14) + 3;
              end if;
              if z (21 \text{ downto } 18) > 4 \text{ then}
                     z (21 downto 18) := z (21 downto 18) + 3;
              end if;
              if z (25 downto 22) > 4 then
                     z (25 downto 22) := z (25 downto 22) + 3;
              end if;
              if z (29 downto 26) > 4 then
                     z (29 downto 26) := z (29 downto 26) + 3;
              z (32 \text{ downto } 1) := z (31 \text{ downto } 0);
       end loop;
       p \le z (30 \text{ downto } 14);
       end process;
end Behavioral;
```

Decoder 7 Segment

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;
entity x7segbc is
              port(x: in std_logic_vector (15 downto 0); cclk : in std_logic ; clr
              : in std_logic ;
              a_to_g : out std_logic_vector (6 downto 0); an : out std_logic_vector (3
downto 0); dp: out std logic);
end x7segbc ;
architecture Behavioral of x7segbc is
signal s : std logic vector (1 downto 0); signal digit : std logic vector (3
downto 0); signal aen : std logic vector (3 downto 0);
begin
              dp <= '1';
              --set aen(3 downto0) for leading blanks
              aen(3) \le x(15) \text{ or } x(14) \text{ or } x(13) \text{ or } x(12);
              aen(2) \le x(15) or x(14) or x(13) or x(12) or x(11) or x(10) or x(9) or
x(8);
              aen(1) \le x(15) or x(14) or x(13) or x(12) or x(11) or x(10) or x(9) or
x(8) or x(7) or x(6) or x(5) or x(4);
              aen(0) <= '1';
                             Quad 4- t o- 1 MUX:
              process(s ,x)
              begin
                             case
                                         s is
                                                        "00" => digit <= x(3 \text{ downto 0});
                                           when
                                                        "01" => digit <= x(7 \text{ downto } 4);
                                           when
                                           when "10" => digit <= x(11 \text{ downto } 8);
                                           when others \Rightarrow digit \Leftarrow x(15 downto 12);
                             end case;
              end process;
                          7- segment
                                                        decoder: hex7seg
              process(digit) begin
                             case digit is
                                                        => a_to_g <=
=> a_to_g <=
=> a_to_g <=
                             when x"0"
                                                                                                      "0000001"; -- 0
                             when x"1"
                                                                                                      "1001111"; -- 1
                                                       =>
                             when x"2"
                                                                                                      "0010010"; -- 2
                             when x"3"
                                                         =>
                                                                                                      "0000110"; -- 3
                                                                     a_to_g <=
                             when x"4"
                                                         =>
                                                                      a_to_g <=
                                                                                                      "1001100"; -- 4
                             when x"5"
                                                         =>
                                                                      a_to_g <=
                                                                                                      "0100100"; -- 5
                                         x"6"
                                                                                                      "0100000"; -- 6
                             when
                                                         =>
                                                                      a_to_g <=
                                         x"7"
                                                                                                      "0001111";
                             when
                                                         =>
                                                                      a_to_g <=
                                         x"8"
                                                        =>
                                                                                                      "0000000";
                             when
                                                                      a_to_g <=
                                                       =>
                                           x"9"
                                                                                                      "0000100";
                                                                        a_to_g <=
                             when
                                                        =>
                                                                                                      "0001000";
                                           x"A"
                                                                        a_to_g <=
                             when
                             when x"B" => a_to_g <= when <math>x"C" => a_to_g <= when <math>x"D" => a_to_g <= when <math>x"D" => a_to_g <= when <math>x"D" => a_to_g <= when <math>x = a_t > a
                                                                                                     "1100000";
                                                                                                 "0110001"; -- c
"1000010"; -- d
                             when x"E" => a_to_g <= "0110000" ; -- e
                             when others => a_to_g <= "0111000"; -- f
                             end case;
              end process;
```

```
-- Di gi t sel ect : ancode
      process(s ,aen)
      beginan <= "1111" ;
             if aen(conv_integer (s ))='1'then
                    an(conv_integer (s )) <= '0';</pre>
             end if;
       end process;
       -- 2 bi t count er
       process(cclk, clr)
      begin
             if clr ='1'
                    s <= "00" ;
             elsif cclk' event and cclk='1' then
                    s \le s + 1;
             end if;
      end process;
end Behavioral;
```

Top Modul

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity mod10kcnt top is
port( mclk : in std_logic;
              btn : in std logic vector(2 downto 0);
              a_to_g : out std_logic_vector(6 downto 0);
              an : out std logic vector(3 downto 0);
              dp : out std_logic
        );
end mod10kcnt_top;
architecture Behavioral of mod10kcnt_top is
              component clkdiv is
                     clk190: out std logic;
                                    clk48: out std_logic
end component;
              component mod10kcnt is
                     port( clr : in STD_LOGIC;
                                    clk : in STD LOGIC;
                                    start : in std_logic;
                                    pause : in std logic;
                                    q : out STD_LOGIC_VECTOR(13 downto 0)
                              );
end component;
              component binBCD14 is
                      Port ( b : in STD_LOGIC_VECTOR(13 downto 0);
                                      p : out STD LOGIC VECTOR(16 downto 0));
end component;
              component x7segbc is
                      port( x : in std_logic_vector(15 downto 0);
                                     cclk : in std logic;
                                     clr : in std_logic;
                                     a to g : out std logic vector(6 downto 0);
                                     an : out std_logic_vector(3 downto 0);
                                     dp : out std logic
                               );
end component;
```

```
signal b : std logic vector(13 downto 0);
signal p : std logic vector(16 downto 0);
signal clr, start, pause, clk48, clk190 : std logic;
begin
clr \ll btn(0);
pause \leq btn(1);
start <= btn(2);
u1: clkdiv port map(
               mclk => mclk,
               clr => clr,
               clk190 \Rightarrow clk190,
               clk48 \Rightarrow clk48
               );
u2: mod10kcnt port map(
               clr => clr,
               start => start,
               pause => pause,
               clk => clk48,
               q \Rightarrow b
               );
u3: binBCD14 port map(
               b \Rightarrow b
               p => p
);
u4: x7segbc port map(
               x \Rightarrow p(15 \text{ downto } 0),
               cclk => clk190,
               clr => clr,
               a_{to_g} => a_{to_g}
               an => an,
               dp \Rightarrow dp
);
end Behavioral;
```

Pendefinisian Pin

```
1 NET btn(0) LOC = M13;
2 NET btn(1) LOC = M14;
 3 NET btn(2) LOC = L13;
5 NET a_to_g(0) LOC = N16;
 6 NET a to g(1) LOC = F13;
7 NET a to g(2) LOC = R16;
8 NET a to g(3) LOC = P15;
 9 NET a to g(4) LOC = N15;
10 NET a_to_g(5) LOC = G13;
11 NET a_to_g(6) LOC = E14;
12
13 NET an(0) LOC = D14;
14 NET an(1) LOC = G14;
15 NET an(2) LOC = F14;
16 NET an(3) LOC = E13;
17
18 NET dp LOC = P16;
```

RTL Skematik

Hasil Pada FPGA Board

Gambar pada stopwatch sedang di mulai

Gambar pada stopwatch sedang di pause

Gambar pada stopwatch sedang di reset

7. Analisa

	Blo.
	Date
Analisa dan kesimpulan	
Langkah Percabaan Pada praktikum tersebut, merupakan program rana menampilkin output desimal mulai dari O hruga limit pi parcabaan menggunakan Canter mud lo , dimana parcapai urgka mulai dari O hiruga 9 dan kebali lagi mulai O menampilkan cinaka hiraga 9999, Setelah ciraka ters reset kembali dan menampilkan ulang mulai dani O. Ac sebuah clock . Ada program tersebut Clock burusit o 48 Hz dan 190 Hz . Latu Output di lanjutkan ke pada 7 segment display deceder sebagai output al	region upig telah disetting Kada in tersebut akan merampilkan Selanjulnya percabaan tersebut abut tampil, pragnam akan akur Canter dapal bekerja dibulih tari Clark derider dengan freksions BCD canverter dan dilanjutkan
-> M.n. Project Pada program kalı in merupakon program yang m Schuch Stophutch, dimora terdaput hullon schago Strukturnya terdiput program mod to /caunter, Clock, decoder. Pada bagian arsitektur telah disetting in Caunter daput slart, pause dan reset.	Biner to BCD don 7 seq