I. Objectifs

Court terme

- Retour délivrable ADAPT Pieter ok
- Article débruitage à rédiger
- Fin débruitage Airbus : comparer avec méthode référencée
- Mise au propre des notes de première année/ébauche de mémoire
- Effet qualitatif et quantitatif (puissance reconstruite) du débruitage avant imagerie (Beamforming vs Bayes Iteratif code avec base optimale de Jérôme) sur les cas suivants :
 - ligne de corrélation variable
 - piston

Faire varier les paramètres suivants :

- nombre de sources
- corrélation des sources
- SNR

Long terme

- Imagerie (cf mail Jérôme 20/07/2018)
- Biblio inférence bayésienne
- Biblio source aéro + Cas test numériques
- Exploiter données ADAPT
- Débruitage bruit légèrement corrélé

II. Notes sur le CC-IN2P3

Limites nombre de jobs : 1000 (à 3000, utilisateur bloqué)

III. Article débruitage

To Do

- Bruit homogène : exporter courbes avec erreur sur toute la matrice :
 - AP + CVX + linprog

- MCMC (calculs à lancer)
- RPCA (λ opt va donc changer, calculs à lancer)
- Lancer les calculs EM (attention au choix du critère d'arrêt)
- Rédaction

Questions:

- bruit hétérogène pas très pertinent?
- à quel point faut-il reformuler?
- -couleur?

Remarques: Étude en fonction du rang: si le nombre de source augmente, le niveau de bruit augmente à SNR constant. Ne vaudrait-il mieux pas, à SNR constant, garder également un niveau de bruit constant? De cette façon, l'écart entre SP et Sy serait constant. Actuellement, on observe principalement l'effet de l'augmentation du niveau de bruit.

IV. Débruitage Airbus

4.1. BBSAN

$$f_{\rm BBSAN} = \frac{M_c}{\alpha (1 - M_c \cos \theta)}$$
 avec $\alpha = \frac{L_{sh}}{u_{\infty}}$ (1)

 θ est l'angle formé par les micros, la sortie de la tuyère et l'axe du jet vers l'aval. Dans ce cas, l'angle varie de 17° à 36°.

 $u_{\infty} = 300 \text{ m/s}$ à 10 km d'altitude

 $M_c = \frac{u_c}{u_\infty}$ est le nombre de Mach de convection

 $u_c \approx 0,65u_i$ où u_i est la vitesse du jet détendu

 L_{sh} est la longueur moyenne des cellules de chocs.

Elle dépend de la vitesse du jet et de la vitesse de vol de l'avion. Un modèle simplifié donne : $L_{sh}=1,306\sqrt{M_j^2-1}D_j$ où D_j est le diamètre du jet détendu.

V. Retours délivrable Pieter

p.5 Airbus devrait fournir un cas avec corrélation?

Mach = 0.25 Est-il nécessaire de demander d'autres vitesses?

Erreur de débruitage sur les éléments extra-diagonaux : A basse fréquence, le bruit est corrélé, mais le niveau total des éléments extra-diagonaux bruité n'en est pas affecté. Pourquoi?

→ longueur de corrélation faible devant l'ensemble des distances inter-mics?

Clean-SC & SPI : Quid de l'erreur commise s'il y a une erreur sur le propagateur ? (ex écoulement non-uniforme)

Proposition de nouveaux cas tests:

- Ligne de source de longueur de corrélation variable
- Source étendue type piston (i.e. ensemble de monopoles rapprochés et complétement corrélés)