ML-101: An Introduction to Machine Learning

BY SARTHAK CONSUL

"Machine learning is glorified statistics"

"Machine learning is statistics scaled up to big data"

"Machine learning is for Computer Science majors who couldn't pass a Statistics course." – A disgruntled statistician

ML is an HYBRID field

- (Convex) Optimization
- Bayesian Statistics
- Lots and lots of linear algebra
- Sampling Theory
- Inspiration from biology, psychology

Image Source:

https://medium.com/@heyozramos/regression-vsclassification-86d73c281c5e home.deib.polimi.it

Regression

Classification

Clustering

Some Basic Statistics

Probability Distributions

The probability of a real-valued variable x falling in the interval $(x, x + \delta x)$ is given by $p(x)\delta x$ for $\delta x \to 0$, then p(x) is called the probability density over x

The Gaussian Distribution

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

Some Basic Statistics contd.

❖ Mean

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x.$$

Variance

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^{2}\right]$$

$$var[f] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2.$$

Covariance

$$cov[x, y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

Standard Deviation

Pre-processing of Data

- ❖Remove noise
- Filtering and Sampling
- Feature Scaling and Zero-Mean [Normalization]
- Building dictionaries
- Encoding
- Handling missing data
- ◆PCA*
- Whitening

Linear Regression

- \Leftrightarrow Hypothesis Function: $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1.x_1 + ... + \theta_n.x_n$
- ❖Cost Function, J(**\theta**) Mean Squared Error

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Optimizing the cost Function via Gradient Descent

Gradient Descent

Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Gradient Descent

Repeat till convergence{

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

}

Gradient Descent contd.

- To improve convergence
 - Feature Scaling and Mean Normali

$$x'=rac{x-ar{x}}{\sigma}$$

Choosing the learning rate, α

- Stochastic Gradient Descent
- Mini-Batch Gradient Descent

Modifications to SGD

- ♦SGD + Momentum
- Nesterov
- AdaGrad
- ❖ RMSProp
- Adam

• • •

dx = compute_gradient(x)
 x += learning_rate *dx

```
dx = compute_gradient(x)
    vx = rho*vx + dx
x += learning_rate * vx
```

Cross Validation

- While training model, test data should NOT be touched
- Limited Data
- Split Data into train, validation, (test)

Holdout Method, K-fold CV, Leave-One-Out CV