

Support Vector Machine

Which classifier would you choose?

Criterial of the optimal classifier?

Margins and support vectors

Recall logistic regression cost function

Cost of example:
$$-(y \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x)))$$

$$= -y \log \frac{1}{1 + e^{-\theta^T x}} - (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

If
$$y = 1$$
 (want $\theta^T x \gg 0$): $\theta^T x > 1$

If
$$y = 0$$
 (want $\theta^T x \ll 0$): $\theta^T x < -1$

The mathematics behind large margin classification

SVM Decision Boundary

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$
s.t. $\theta^T x^{(i)} \ge 1$ if $y^{(i)} = 1$

$$\theta^T x^{(i)} \le -1$$
 if $y^{(i)} = 0$

Let t_i be an indicator variable, meaning:

$$t_i = \begin{cases} 1 & \text{if } x_i \text{ in the first class} \\ -1 & \text{if } x_i \text{ in the second calass} \end{cases}$$

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

s.t.
$$t_i(\theta^T x^{(i)}) \ge 1$$

What if the data is not linearly separable?

We can make a non linear transformation for the data to other space where it is *linearly separable*.

$$oldsymbol{x} \in \mathcal{R}^l \longrightarrow oldsymbol{y} \in \mathcal{R}^k$$
 Kernels

Linear kernel (no kernel): $\theta^T x^{(i)}$

Gaussian kernel (rbf): $\exp(\frac{\|x - x^{(i)}\|}{2\sigma^2})$ need to choose σ

Polynomial kernel: $(\theta^T x^{(i)} + const)^d$ d is the degree

String kernel, chi-square kernel, histogram intersection kernel, ...

Not all similarity functions make valid kernels.

(Need to satisfy technical condition called "Mercer's Theorem" to make sure SVM packages' optimizations run correctly, and do not diverge).

SVM

K Nearest Neighbour

KNN

The algorithm for the so-called *nearest neighbour rule* is summarized as follows.

Given an unknown feature vector **x** and a **distance measure**, then:

- Out of the N training vectors, identify the k nearest neighbours, regardless of class label.
- Out of these k samples, identify the number of vectors, k_i that belong to class ω_i , $i=1,2,\ldots,M$.

The simplest version of the algorithm is for k=1, known as the nearest neighbour (NN) rule

Distance (similarity) measure

Euclidean distance:

$$d = \sqrt{\sum_{i=1}^{m} (x_i^1 - x_i^2)^2}$$

Manhattan distance:

$$d = \sum_{i=1}^{m} \left| x_i^{(1)} - x_i^{(2)} \right|$$

Distance (similarity) measure

Minkowski distance:

$$d = \left(\sum_{i=1}^{m} (x_i^1 - x_i^2)^p\right)^{1/p}$$

Cosine similarity:

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Jaccard similarity

Implementation

