Test de primalidad de Pocklington

Ana Sofía Escobar

Universidad del Valle de Guatemala Facultad de Ciencias y Humanidades Teoría de Números

18 de noviembre de 2023

Contenido

- Datos históricos
- 2 Recursos
- 3 Teorema de Pocklington
- 4 Ejemplo
- 6 Referencias

Historia

- El test de primalidad de Pocklington fue propuesto por el matemático y físico inglés Henry C. Pocklington en 1914.
- Fue propuesto como una alternativa más eficiente al test de primalidad de Lucas, requiriendo solo la factorización parcial de n – 1.

HENRY POCKLINGTON,

Test de primalidad de Lucas

Theorem (Test de Lucas)

Sea n > 1. Si para cada factor primo q de n - 1 existe un entero a tal que

$$a^{n-1} \equiv 1 \pmod{n}$$
,

у

$$a^{\frac{n-1}{q}} \not\equiv 1 \pmod{n}$$
;

entonces n es primo.

El Test de Lucas, también conocido como el Test de Lucas-Lehmer, es un método para verificar la primalidad de un número de Mersenne, que tiene la forma $2^p - 1$, donde p es un número primo.

Teoremas útiles

Theorem (Pequeño teorema de Fermat)

Sean $a \in \mathbb{Z}$ y p un número primo, y a no es divisible por p. Entonces,

$$a^p \equiv a \pmod{p}$$
.

Theorem (Euler-Fermat)

Sean $a, n \in \mathbb{Z}$, con n > 1 siendo dos enteros tales que (a, n) = 1. Entonces,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

Test de Pocklington

Theorem (Test de primalidad)

Sea N>1 un número entero, y supongamos que existen números naturales a y p tales que:

$$a^{N-1}\equiv 1\pmod{N}$$
 (1) p es primo, $p|N-1$ y $p>\sqrt{N}-1$ (2) $mcd\left(a^{(N-1)/p}-1,N\right)=1$ (3)

Entonces, N es primo.

La Ecuación 1 se relaciona directamente con el teorema de Euler-Fermat. Si encontramos cualquier valor de a que no sea divisible por N y que haga que la Ecuación 1 sea falsa, podemos concluir inmediatamente que N no es primo.

Test de Pocklington

Demostración.

Supongamos que N no es primo. Esto significa que debe existir un primo q, donde $q \le \sqrt{N}$, que divide a N.

.

Dado que $p>\sqrt{N}-1\geq q-1$, p>q-1, y dado que p es primo, $\mathrm{mcd}(p,q-1)=1$.

Por lo tanto, debe existir un entero u, el cual es un inverso multiplicativo de p módulo q-1, con la propiedad de que

$$up \equiv 1 \pmod{q-1}$$

y, por lo tanto, por el pequeño teorema de Fermat,

$$a^{up} \equiv a \pmod{q}$$

Test de Pocklington

Demostración.

Esto implica

$$1 \equiv a^{N-1} \pmod{q}$$

por hipotesis (1) ya que q|N.

$$1 \equiv (a^{N-1})^u \equiv a^{up((N-1)/p)} \equiv (a^{up})^{(N,1)/p} \pmod{q}$$
 $\Rightarrow 1 \equiv a^{(N-1)/p} \pmod{q}$

Esto muestra que q divide al mcd en la hipotesis (3), y por lo tanto este mcd no es igual a 1, lo cual es una contradicción.

Test de Pocklington: Problemas

Cuando se brinda p desde un principio a es simple de encontrar pero en caso contario, suele ser complicado encontrar un valor de p que satisfaga la ecuación (2) de la hipotesis:

- Generalmente es difícil encontrar un factor primo (p).
- Para muchos primos N, dicho p no existe.
- La eficiencia del Test depende de la elección del a.

.

Por ejemplo, N=17 no tiene un p adecuado porque $N-1=2^4$, y $p=2<\sqrt{N}-1$, lo que no cuple la desigualdad en (2).

Test Generalizado de Pocklington

Corollary (Test Generalizado de Pocklington)

Factorice N-1 como N-1=AB, donde A y B son primos relativos, $A>\sqrt{N}$, la factorización prima de A es conocida, pero la factorización de B no necesariamente es conocida.

Si para cada factor primo p de A existe un entero a_p tal que

$$a_p^{N-1} \equiv 1 \pmod{N}$$

У

$$\gcd(a_p^{(N-1)/p}-1,N)=1,$$

entonces N es primo.

Test Generalizado de Pocklington

Demostración.

Sea p un primo que divide a A, y sea p^e la potencia máxima de p que divide a A. Sea q un factor primo de N. Para el a_p del teorema, sea $b \equiv$ $a_p^{(N-1)/p^e}$ (mód q). Esto implica que $b^{p^e}\equiv a_p^{N-1}\equiv 1$ (mód q), y debido a que $mcd(a_p^{(N-1)/p}-1,N)=1$, también $b^{p^{e-1}}\equiv a_p^{(N-1)/p}\not\equiv 1$ (mód q).

Esto significa que el orden de b (mód q) es p^e . Así, p^e divide a (q-1). Esto se cumple para cada factor de potencia primo p^e de A, lo que implica que A divide a (q-1). Y entonces $q > A > \sqrt{N}$.

Si N fuera compuesto, necesariamente tendría un factor primo menor o igual a \sqrt{N} . Se ha demostrado que no existe tal factor, lo que prueba que N es primo.

18 de noviembre de 2023

Ejemplo

Ejercicio: Determinar si N = 27457 es un número primo.

.

Primero, buscamos factores primos pequeños de N-1. Notese que $N-1=2^6\cdot 3\cdot 143=27546$. Debemos determinar si A=192 y B=143 cumplen las condiciones del Corolario. $A^2=36864>27457=N$, así que $A>\sqrt{N}$. Por lo tanto, hemos factorizado lo suficiente de N-1 para aplicar el Corolario. También debemos verificar que $\gcd(A,B)=1$.

.

Finalmente, para cada factor primo p de A, usar prueba y error para encontrar un a_p que satisfaga las condiciones del corolario.

Ejemplo

```
Para p=2, probar a_2=2. Elevar 2^{13728}\equiv 1\pmod{27457}, pero \gcd(2^{13728}-1,27457)=27457. Entonces, a_2=2 satisface la primera pero no la segunda condicion del corolario. Probar a_2=5 en su lugar: 5^{13728}\equiv 1\pmod{27457}, y \gcd(5^{13728}-1,27457)=1. Entonces, a_2=5 satisface cambas condiciones.
```

Para p=3, probar $a_3=2$: $2^{9152}\equiv 1\pmod{27457}$, y $\gcd(2^{9152}-1,27457)=1$. Entonces, $a_3=2$ satisface cambas condiciones.

.

Por lo tanto N=27457 es primo y note a los dos pares (p, a_p) (2, 5) y (3, 2).

• • •

¿Preguntas?

Referencias

[1] Caldwell, C. K.

Primality proving 3.1: N-1 tests and Pepin's test for Fermats.

Disponible en: https://t5k.org/prove/prove3_1.html

[2] **Şuteu**, **D**.

Primality testing algorithms.

trizenx, 17 de septiembre de 2023.

Disponible en: https://trizenx.blogspot.com/2020/01/primality-testing-algorithms.html

[3] Wikipedia contributors.

Pocklington Primality test.

Wikipedia, 29 de octubre de 2023.

Disponible en:

https://en.wikipedia.org/wiki/Pocklington_primality_test