ASSIGNMENT - LINEAR REGRESSION

Importing Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
```

Data

```
In [2]: df=pd.read_csv(r"C:\Users\alika\Downloads\Salary_dataset.csv")
    df.head(5)
```

Out[2]:		Unnamed: 0	YearsExperience	Salary
	0	0	1.2	39344.0
	1	1	1.4	46206.0
	2	2	1.6	37732.0
	3	3	2.1	43526.0
	4	4	2.3	39892.0

Dropping unnecessary columns

```
In [3]: df=df.drop(columns='Unnamed: 0', axis=1)
    df.head(5)
```

```
      Out[3]:
      YearsExperience
      Salary

      0
      1.2
      39344.0

      1
      1.4
      46206.0

      2
      1.6
      37732.0

      3
      2.1
      43526.0

      4
      2.3
      39892.0
```

Scatterplot

```
In [4]: sns.scatterplot(x='YearsExperience',y='Salary',data=df)
plt.show()
```


Test vs Train Data

```
In [5]: df_train,df_test=train_test_split(df,test_size=0.2,random_state=72)
In [6]: df_train
```

ut[6]:		YearsExperience	Salary
	27	9.7	112636.0
	9	3.8	57190.0
	2	1.6	37732.0
	11	4.1	55795.0
	21	7.2	98274.0
	0	1.2	39344.0
	26	9.6	116970.0
	1	1.4	46206.0
	29	10.6	121873.0
	28	10.4	122392.0
	18	6.0	81364.0
	16	5.2	66030.0
	8	3.3	64446.0
	12	4.1	56958.0
	13	4.2	57082.0
	7	3.3	54446.0
	23	8.3	113813.0
	15	5.0	67939.0
	25	9.1	105583.0
	5	3.0	56643.0
	10	4.0	63219.0
	14	4.6	61112.0
	19	6.1	93941.0
	24	8.8	109432.0

In [7]: df_test

Out[7]:

	YearsExperience	Salary	
22	8.0	101303.0	
20	6.9	91739.0	
6	3.1	60151.0	
3	2.1	43526.0	
17	5.4	83089.0	
4	2.3	39892.0	

Linear Regression

```
from sklearn.linear model import LinearRegression
 In [8]:
          model=LinearRegression()
 In [9]:
In [10]:
          df_input_train=df_train[['YearsExperience']]
          df_target_train=df_train['Salary']
          model.fit(df_input_train,df_target_train)
In [11]:
Out[11]:
         ▼ LinearRegression
          LinearRegression()
          df_input_test=df_test[['YearsExperience']]
In [12]:
          df_input_test
Out[12]:
              YearsExperience
          22
                         8.0
          20
                         6.9
           6
                         3.1
           3
                         2.1
          17
                         5.4
                         2.3
```

Prediction

```
prediction=model.predict(df_input_test)
In [13]:
         prediction
         array([99950.73980663, 89633.01278755, 53989.95581256, 44610.20397704,
Out[13]:
                75563.38503427, 46486.15434414])
         df_test_target=df_test['Salary'].tolist()
In [14]:
          df test target
         [101303.0, 91739.0, 60151.0, 43526.0, 83089.0, 39892.0]
Out[14]:
         from sklearn.metrics import mean squared error, r2 score
In [15]:
         mse=mean_squared_error(prediction,df_test_target)
In [16]:
         mse
         24252584.27330477
Out[16]:
```

Root Mean Squared Error

```
In [17]: rmse=np.sqrt(mse) rmse

Out[17]: 4924.6912871067125
```

R-Squared

```
In [18]:
         r2=r2_score(df_test_target,prediction)
         0.9562771755752736
Out[18]:
          prediction=prediction.tolist()
In [19]:
          prediction
In [20]:
          [99950.73980662727,
Out[20]:
          89633.01278755131,
           53989.955812561646,
          44610.20397703805,
          75563.38503426593,
          46486.15434414278]
In [21]:
          df_test_target
         [101303.0, 91739.0, 60151.0, 43526.0, 83089.0, 39892.0]
Out[21]:
         Comparison
          comparison=pd.DataFrame({'actual': df_test_target, 'prediction': prediction})
In [22]:
          comparison
Out[22]:
              actual
                       prediction
          0 101303.0
                     99950.739807
          1 91739.0 89633.012788
          2 60151.0 53989.955813
          3 43526.0 44610.203977
             83089.0 75563.385034
             39892.0 46486.154344
In [23]:
         list=[]
          for i in range (len(comparison)):
In [24]:
              list.append(i+1)
          list
In [25]:
         [1, 2, 3, 4, 5, 6]
Out[25]:
          comparison['s.no.']=list
In [26]:
In [27]:
          comparison
```

Out[27]:		actual	prediction	s.no.
	0	101303.0	99950.739807	1
	1	91739.0	89633.012788	2
	2	60151.0	53989.955813	3
	3	43526.0	44610.203977	4
	4	83089.0	75563.385034	5
	5	39892.0	46486.154344	6

Plotting Actual vs Predicted values

```
In [28]: sns.barplot(x='s.no.', y='actual', data=comparison, color='blue', label='Actual', a
sns.barplot(x='s.no.', y='prediction', data=comparison, color='green', label='Predi

Out[28]:
```

