Basi di dati

Elia Ronchetti @ulerich

Marzo 2022

Indice

1	\mathbf{Intr}	oduzione - Che cos'è un DB e un DBMS	4
	1.1	Perchè creare un Database	4
	1.2	Base di Dati - DB - Data Base	5
		1.2.1 Modello dei dati	7
	1.3	Schemi e Istanze	7
	1.4	Modelli concettuali	7
	1.5	Modelli logici - Modello Relazionale	8
		1.5.1 Modello Relazionale	8
		1.5.2 Linguaggi per basi di dati	8
		1.5.3 Creazione di un database	8
	1.6	Vantaggi e svantaggi dei DBMS	9
2	Mod	dello Entity Relationship - ER	10
	2.1	Fasi del ciclo di vita	10
	2.2	La progettazione di basi di dati	11
		2.2.1 Progettazione concettuale	11
		2.2.2 Vantaggi della progettazione concettuale	12
	2.3	Modello Entità Relazione	12
	2.4	I Costrutti del modello ER	12
		2.4.1 Entità	13
	2.5	Scelta tra entità e attributo	15
	2.6	Scelta tra entità e relazione	15
	2.7		16
	2.8	Identificatore di un'entità	16
		2.8.1 Esempi di identificatori esterni	17
	2.9	•	18
	2.10	Generalizzazione tra Entità	18
	2.11		19

INDICE 3

3	Mo	dello Relazionale	20
	3.1	Introduzione al modello relazionale e cenni storici	20
		3.1.1 I modelli logici dei dati	
		3.1.2 Il modello relazionale	
		3.1.3 Il termine relazione in 3 accezioni	
	3.2	Modello relazionale - definizione formale	
4	Pro	gettazione Concettuale	23
	4.1	Reificazione	23
	4.2	Stretegie di progetto	
	4.3	Strategia utilizzata in pratica - Mista	
	4.4	Qualità di uno schema concettuale	
	4.5	Consigli per lo svolgimento di esercizi	
5	Pre	parazione Primo Parziale	25
•	5.1	-	_
	5.2	Modello Relazionale	
6	SQI	L - Structured Query Language	28
	-	SQL e Algebra Relazionale	29
7	\mathbf{Alg}	ebra Relazionale	30
	7.1	Operatori dell'algebra relazionale	30
	7.2	Operatori insiemistici	
	7.3	Operatorri unari	
		7.3.1 Operatore di ridenominazione	
		7.3.2 Selezione	
	7.4	Proiezione	
	7.5	Join	

Capitolo 1

Introduzione - Che cos'è un DB e un DBMS

Che cos'è un Data Base Una collezione di dati utilizzati per rappresentare le informazioni di interesse di un sistema informativo

Che cos'è un DBMS? Un DBMS (Data Base Management System) è un insieme di programmi che permettono di creare, usare e gestire una base di dati, è quindi un software general purpose che facilità il processo di definizione, costruzione e manipolazione del database per varie applicazioni.

1.1 Perchè creare un Database

Un soggetto, come per esempio un'azienda, ha molti dati da manipolare

- Persone
- Denaro
- Materiali
- Informazioni

Per gestire questi dati è necessario un sistema che li organizzi e li gestisca in modo efficiente e sicuro. Questo sistema è detto **Sistema Informativo**, cioè un componente di una organizzazione che gestisce le informazioni di interesse, con i seguenti scopi:

- Acquisizione/Memorizzazione
- Aggiornamento

- Interrogazione
- Elaborazione

Il **Sistema Informatico** è invece la porzione automatizzata del Sistema informativo, la parte quindi che gestisce informazioni tramite tecnologia informatica.

Il Sistema Informatico ha i seguenti obiettivi:

- Garantisce che i dati siano conservati in modo permanente sui dispositivi di memorizzazione
- Permette un rapido Aggiornamento dei dati
- Rende i dati accessibili alle interrogazoni degli utenti
- Può essere distribuito sul territorio

Gestione delle informazioni Nei sistemi informatici le informazoni vengono rappresentate in modo essenziale attraverso i dati. I Dati hanno bisogno di essere interpretati, ma costituiscono una precisa rappresentazione di forme più ricche di informazioni e conoscenza, inoltre sono più stabili nel tempo rispetto ad altre componenti (come processi, tecnologie, ruoli umani) e restano gli stessi nella migrazione da un sistema al successivo.

1.2 Base di Dati - DB - Data Base

Data Base - DB Collezione di dati utilizzati per rappresentare le informazioni di interesse di un sistema informativo

Altra definizione di DB Insieme di archivi in cui ogni dato è rappresentato logicamente una sola volta e può essere utilizzato da un insieme di applicazioni da diversi utenti secondo opportuni criteri di riservatezza.

Data Base Management System - DBMS Sistema software capace di gestire collezioni di dati che siano grandi, condivise e persistenti, assicurando la loro affidabilità e privatezza.

6 CAPITOLO 1. INTRODUZIONE - CHE COS'È UN DB E UN DBMS

Elenco caratteristiche DBMS Sistema che garantisce collezioni di dati:

- grandi
- persistenti
- condivise

Garantendo:

- Privatezza Meccanismi di autorizzazione (come ACL)
- Affidabilità Resistenza malfunzionamenti hardware e software (tramite tecniche come la gestione delle transazioni)
- Efficienza
- Efficacia

Transazione → Insieme di operazioni da considerare indivisibile (atomico), la sequenza di operazioni sulla base di dati viene eseguita per intero o per niente.

L'effetto di transazioni concorrenti deve essere coerente (ad esempio "equivalente" all'esecuzione separata).

I risultati delle transizioni sono permanenti, la conclusione di una transazione corrisponde a un impegno (in inglese commitment) a mantenere traccia del risultato in modo definitivo.

I DBMS devono essere efficienti cercando di utilizzare al meglio le risorse di spazio di memoria e tempo.

Efficacia intesa come resa produttiva delle attività dei loro utilizzatori.

Caratteristiche di un DB

- Ridondanza minima e controllata
- Consistenza delle informazioni
- Dati disponibili per utenze diverse e concorrenti
- Dati controllati e protetti (da malfunzionamenti hardware e software)
- Indipendenza dei dati dal programma

Riassumendo, un DMSB è un prodotto sfotware in grado di gestire collezoni di dati che siano:

- Grandi
- Persistenti
- Condivise

E che garantiscano

- Affidabilità
- Privatezza
- Efficienza

I DBMS permettono inoltre ai dati di essere indipendenti dalla propria rappresentazione fisica.

1.2.1 Modello dei dati

Insieme di costrutti per organizzare i dati di interesse e descriverne la dinamica. Sono componenti fondamentali che permettono la strutturazione dei dati. Per esempio il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di recordo omogenei.

1.3 Schemi e Istanze

In ogni base di dati esistono:

- Lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura, il significato (aspetto intensionale). Costituisce quindi la parte astratta delle proprietà.
- L'istanza, che sono i valori attuali e possono cambiare anche molto rapidamente (aspetto estensionale). Costituisce quindi l'aspetto concreto che varia nel tempo.

1.4 Modelli concettuali

Permetton odi rappresentare i dati in modo indipendente da ogni sistema cercando di descrivere i concetti dle modno reale. Sono utilizzati nelle fasi preliminari di progettazione. Il più diffuso è il modello **Entity-Relationship ER**.

1.5 Modelli logici - Modello Relazionale

Sono i modelli adottati nei DBMS esistenti per l'organizzazione dei dati e sono utilizzati dai programmi, sono indipendenti dalle strutture fisiche. L'esempio più diffuso e che noi tratteremo e quello del **modello Relazionale**.

1.5.1 Modello Relazionale

I dati vengono strutturati in tabelle, in particolare un DBMS relazione può essere pensato come un insieme di tabelle, dove ogni tabella mantiene informazioni di tipo omogeneo. Diverse tabelle sono collegate (in relazione) fra loro grazie alla presenza di un campo comune che permette di mettere in relazione i dati delle due tabelle.

In questo caso lo schema è la componente intensionale e descrive la struttura della tabella (ed è stabile nel tempo)

Mentre il'istanza è la componente estensionale e descrive i valori attuali, cioè i dati (ed è variabile nel tempo).

1.5.2 Linguaggi per basi di dati

Ci sono i DDL (Data Definition Language) che permettono di definire il DB. Mentre i DML (Data Manipulation Language) permettono di manipolare i dati, interrogando e aggiornando delle basi di dati. Alcuni linguaggi, come SQL (Structured Query Language) hanno funzioni di entrambe le categorie.

1.5.3 Creazione di un database

Le tre fasi

- Definizione DDL
- Creazione/Popolazione DDL
- Manipolazione DML

Query É fondamentale poter interrogare un DB, attraverso per esempio delle query. L'efficacia della query dipende da:

- Conoscenza del contenuto del DB
- Esperienza del linguaggio di interrogazione

1.6 Vantaggi e svantaggi dei DBMS

Pro

- Permettono di considerare i dati come risorsa comune di un'organizzazione, a disposizione di molteplici applicazioni e utenti
- Offrono modello della parte di mondo di interesse che è unificato e preciso, utilizabile in applicazioni attuali e future
- Controllo centralizzato dei dati, riduce ridondanze e incosistenze
- Indipendenza dei dati: favorisce sviluppi di applicazioni flessibili e facilmente modificabili

Contro

- Costosi, complessi, hanno specifici requisiti in termini di software e hardware
- Difficile separare, tra tutti i servizi offerti da un DBMS, quelli effettivamente utilizzati da quelli inutili
- Inadatti alla gestione di applicazioni con pochi utenti

Capitolo 2

Modello Entity Relationship - ER

In questa parte si studierà la come progettare una base di dati a livello concettuale e logico, partendo dai requisiti di utente. Per capirne l'importanza è utile analizzare il ciclo di vita di un sistema informativo

2.1 Fasi del ciclo di vita

- Studio di fattibilità: definizione costi e priorità
- Raccolta e analisi dei requisiti: studio delle proprietà del sistema
- Progettazione: di dati e funzioni
- Implementazione: realizzazione
- Validazione e collaudo: sperimentazione
- Funzionamento: il sistema diventa operativo

Il ciclo di vita segue un modello a spirale. Per garantire prodotti di buona qualità è fondamentale seguire una metodologia di progetto.

Metodologia è un'articolazione in fasi/passi di guida ad una attività di progettazione. Avere una metodologia di progetto:

- Permette di suddividere la progettazione in fasi
- Fornisce una strategia da seguire

• Fornisce modelli di riferimento (linguaggi) per descrivere la realtà che stiamo progettando

Serve per garantire:

- Generalità rispetto ai problemi da affrontare
- Qualità in termini di correttezza, completezza ed efficienza
- Facilità d'uso

La metodologia di basa su un principio semplice ma efficace:

Separazione netta tra decisioni relative a:

- Cosa rappresentare
- Come farlo

2.2 La progettazione di basi di dati

La progettazione si divide in 3 fasi:

- Progettazione concettuale
- Progettazione logica
- Progettazione fisica

Ognuna delle fasi si basa su un modello, che permette di generare una rappresentazione formale (schema) della base di dati ad un dato livello di astrazione (concettuale, logico, fisico).

2.2.1 Progettazione concettuale

Traduce i requisiti del sistema informatico in una descrizione formalizzata, integrata delle esigenze aziendali, espressa in modo **indipendente** dalle scelte implementative.

- Formale Espressa con un linguaggio non ambiguo e capace di descrivere il sistema analizzato
- Integrata Deve essere in grado di descrivere nella globalità l'ambiente analizzato
- Indipendete dall'ambiente tecnologico

Nel nostro caso:

- Schema concettuale Modello ER
- Schema logico Modello relazionale

2.2.2 Vantaggi della progettazione concettuale

Permette una descrizione dei dati indipendente dagli aspetti tecnologici con un livello di astrazione intermedio fra utente e sistema. Prevale l'aspetto intensionale.

Si tratta di una rappresentazione prevalentemente grafica. Utile per la documentazione.

2.3 Modello Entità Relazione

Il modello ER è un modello grafico semi-formale per la rappresentazione di schemi concettuali. Si è ormai affermato come standard nelle metodologie di progetto e nei sistemi Software di ausilio alla progettazione.

2.4 I Costrutti del modello ER

- Entità
- Relazione
- Attributo semplice
- Atrributo composto
- Cardinalità
- Cardinalità di un Attributo
- Identificatore interno
- Identificatore esterno
- Generalizzazione
- Sottoinsieme

2.4.1 Entità

Classe di oggetti (fatti, persone, cose) della applicazione di interesse con proprità comuni e con esistenza autonoma e della quale si vogliono registrare fatti specifici.

Rappresentazione grafica

Definita come sostantivo al singolare (es. studente, classe, docente, ecc.) A livello estensionale un'entità è costituira da un insieme di oggetti che sono chiamati le sue istanze.

Istanza Occorrenza di un'entità, è l'oggetto della classe che entità rappresenta. Nello schema concettuale rappresentiamo le entità, non le singole istanze.

Riassumendo:

- Conoscenza Astratta → Entità
- ullet Conoscenza Concreta o Istanza di entità

Attributi

Un attributo di un entità è una proprietà locale di un'entità di interesse ai fini dell'applicazione. Associa ad ogni istanza di un'entità un valore appartenente a un insieme detto dominio dell'attributo (es. int, string, char, ecc.).

Viene definito quando si vuole rappresentare una proprietà locale delle istanze dell'entità E.

Una proprietà di un oggetto si dice locale quando in ogni istanza dello schema il valore di tale proprietà dipende solamente dall'oggetto stesso e non ha alcun rapporto con altri elementi dell'istanza dello schema.

14

Attributi composti Si ottengono raggruppando attributi di una medesima entità o relazione che presentano affinità nel loro significato o uso.

Esempio: Indirizzo è composto da Via, Numero, Cap.

Graficamente Sono rappresentati come dei collegamenti con un pallino vuoto.

Relazione-Associazione

Ogni relazione ha un nome che la identifica univocamente nello schema.

Convenzioni

- Singolare
- Sostantivi invece che verbi

A livello estensionale una relazione R tra le entità E ed F è costituita da un insieme di coppie (x, y) tali che x è una istanza di E, ed y è un'istanza di F. Ogni coppia è detta istanza della relazione R.

Ciò significa che se in uno schema S è definita una relazione R sulle entità E ed F

Istanze di associazione Combinazione (aggregazione) di istanze di entità che prendono parte alla associazione.

Esempio: Rossi insegna Basi di Dati

Osservazione importante

Dalla semantica delle relazioni segue immediatamente che non possono esistere due istanze della stessa relazione che coinvolgono le stesse istanze di entità.

Due entità possono essere coinvolte in più relationship. Le relationship possono coinvolgere più di due entità. Osservazione sul concetto di relazione Il concetto di relazione sarà spiegato meglio nel capitolo 2-Modello-Relazionale. Una relazione può coinvolgere due o più volte la stessa entità, queste sono dette associazioni ad anello. In questi casi è fondamentale definire la specifica dei ruoli, altrimenti non si riesce a capire l'ordine della relazione (esempio del sovrano o del confronto tra i prof. slide 70-78, Link).

2.5 Scelta tra entità e attributo

Un dubbio classico nella risoluzione di questi esercizi è proprio la scelta tra entità e attributo.

Scelgo Entità quando:

- le sue istanze sono concettualmente significative indipendentemente dalle altre istanze
- ha o potrà avere delle proprietà indipendenti dagli altri concetti
- se il concetto è importante nell'applicazione

Scelgo Attributo quando:

- le sue istanze non sono concettualmente significative
- non ha senso considerare una sua istanza indipendentemente dalle altre
- se serve solo a rappresentare un una proprietà locale di un altro concetto

2.6 Scelta tra entità e relazione

Dubbio ancora più classico è la scelta tra entità e relazione.

In linea generale quando è necessario modellare un concetto, perchè esiste a prescindere dalle altre istanze o relazioni allora scelgo entità (es. slide 98). Oltretutto devo considerare che una relazione esiste in funzione delle sue entità, viene identificate da una specifica tupla, quindi se ho un caso come Studente → Esame ← Corso, dove è possibile che una persona possa svolgere più volte un esame, questo schema risulta errato dato che la tupla Studente Corso identifica l'esame e non può identificare più esami svolti dalla stessa persona, questo schema quindi impedisce a una persona di dare più esame, ma come purtroppo sappiamo questo può accadere.

2.7 Cardinalità nelle relazioni

É importante definire il numero minimo e massimo di occorrenze delle relazioni cui ciascuna occorrenza di una entità può partecipare, questo possiamo farlo tramite la **cardinalità**.

La cardinalità è una coppia di valori che si associa a ogni entità che partecipa a una relazione.

- 0,1 è la cardinalità minima
 - -0 = partecipazione opzionale
 - -1 = partezipazione obbligatoria
- 1 e N per la massima N non pone alcun limite

Esempio: Slide 105, cardinalità Residenza dove una città ha più residenze, mentre uno studente ne ha una sola.

Per quanto riguarda le cardinalità massime, abbiamo relazioni

- 1,1 se la cardinalità massima di entrambe le entità è 1
- Si può avere 1 a molti come nell'esempio della residenza
- Oppure si può avere molti a molti (slide 108 riporta esempi)

Praticità della cardinalità

A livello pratico la cardinalità esprime un limite minimo (cardinalità minima) e massimo (cardinalità massima) di istanze della relazione R a cui può partecipare ogni istanza dell'entità E. Serve a caratterizzare meglio il significato di una relazione.

Attributi e cardinalità Si può assegnare cardinalità anche agli attributi per indicare opzionalità o attributi multivalore.

2.8 Identificatore di un'entità

Super importante è definire un identificatore per ogni entità, necessario per identificare univocamente le occorrenze di un'entità.

- Identificatore interno se costituito da attributi dell'entità
- Identificatore esterno attributi + entità esterne attraverso relationship

17

Notazione identificatori

Per gli identificatori interni:

- Se l'identificatore è costituito da un solo attributo, si annerisce il corrispondente pallino
- Se l'identificatore è costituito da più attributi, si uniscono gli attributi con una linea che termina con un pallino annerito

Per gli identificatori esterni:

• Se l'identificatore è formato da attributi e relazioni (o meglio ruoli) si indica unendo gli attributi ed i ruoli con una linea che termina con un pallino annerito

Osservazioni

- Ogni entità deve possedere almeno un identificatore, ma può averne in generale più di uno.
- Una identificazione esterna è possibile solo attraverso una relationship a cui l'entità da identificare partecipa con cardinalità (1,1)
- In questo corso NON si utilizzano identificatori delle relationship

2.8.1 Esempi di identificatori esterni

Qui invece vediamo la differenza dell'utilizzo di identificatori esterni in base al testo in entrambi i casi si fa riferimento alla data, ma basta cambiare di poco il testo per cambiare l'identificatore esterno. É fondamenale prestare attenzione a frasi come "unico nell'ambito di ..." oppure "identificato con un codice univoco all'interno del ...", tutte frasi che ci fanno capire che la chiave non è tale indipendentemente da tutto, ma è chiave all'interno di un contesto e quindi è chiave se c'è anche l'entità da cui dipende, per questo è un identificatore esterno.

Può anche darsi che l'identificatore esterno dipenda da un fattore esterno allo schema ER, per esempio alla data.

Da ricordare Lo ripeto perchè a volte sfugge ed è un errore grave, una identificazione esterna è possibile sono attraverso una relationship a cui l'entità da identificare partecipa con CARDINALITÁ (1,1).

2.9 Relazione IS-A tra entità

É una relazione di sottoinsieme di un entità, si può definire come entità-padre ed entità figlia, o sottoentità, cioè quella che rappresenta un sottoinsieme della entità padre.

Esempio Persona → Studente, dove Studente è una sottoentità di Persona. Si dice che Studente è in relazione ISA con Persona o in alternativa che Studente ISA Persona. Si tratta di un sottoinsieme specifico di quell'entità, esso eredita tutte le proprietà del padre, quindi i suoi attributi (non vengono riportati nel figlio, ma sono presenti), ciò non toglie che il figlio possa avere attributi aggiuntivi.

Ereditarietà Tutte le proprietà (attributi, relationship, altre generalizzaizoni) dell'entità genitore vengono ereditate dalle entità figlie e non rappresentate esplicitamente.

2.10 Generalizzazione tra Entità

Nella relazione ISA l'entità padre è più generale della sottoentità. Talvolta l'entità padre può generalizzare diverse sottoentità rispetto ad un unico criterio. In questo caso si parla di **generalizzazione**. Nella generalizzazione le sottoentità hanno insiemi di istanze disgiunti a coppie.

Una generalizzazione può essere di due tipi:

- Completa L'unione delle istanze delle sottoentità è uguale all'insieme delle istanze dell'entità padre
- Non completa

Graficamente La generalizzazione si indica collegando mediante un arco le sottoentità e collegando con una freccia tale arco alle entità padre. La freccia è annerita solo se la generalizzazione è completa.

Esempio Persona → Uomo/Donna (generalizzazione completa)

Esempio Persona → Studente/Docente (generalizzazione non completa)

Regola importante Vige la regola che una entità può avere al massimo una entità padre. In altre parola, il modello ER NON ammette ereditarietà multipla. Sia per quanto riguarda le ISA e le generalizzazioni. Mentre la stessa entità può essere padre di diverse generalizzazioni.

Ereditarietà Anche in questo caso vale il principio di ereditarietà.

Differenze tra due IS-A e una generalizzazione

Le due sottoclassi della generalizzazione derivano da uno stesso criterio di classificazione della superclasse, mentre per quanto riguarda la relazione IS-A le due sottoentità sono indipendenti.

2.11 Svolgimento Esercizi

Risulta fondamentale svolgere gli esercizi da casa per allenare la mente a convertire il testo in schema ER (come sarà all'esame), seguire gli esempi e basta non è sufficiente, dato che ci saranno diversi dubbi e difficoltà che si faranno strada nella vostra mente solo se vi metterete a fare gli esercizi per conto vostro (le esercitazioni sono molto utili).

Capitolo 3

Modello Relazionale

Un modello dei dati è un insieme di concetti per organizzare i dati e descriverne la struttura. Componente fondamentale di ogni modello sono i meccanismi di strutturazione (analogi ai costruttori di tipo).

Ogni modello dei dati prevede alcuni costruttori che permettono di definire nuovi tipi sull abase di tipi predefiniti (elementari).

Il **modello relazionale** è il modello di dati più diffuso.

3.1 Introduzione al modello relazionale e cenni storici

Il modello relazionale permette di definire tipi per mezzo del costruttore **relazione** che permette di organizzare i dati in insiemi di recordo a **struttura** fissa.

Una relazione è spesso rappresentata da una tabella, dove:

- Le righe rappresentano specifici record (istanze)
- Le colonne corrispondono ai campi dei record

L'ordine di righe e colonne è sostanzialmente irrilevante. La tabella è il livello logico di cui parlavamo inizialmente (schema DBMS, divisione livello fisico e logico). Ribadiamo che il livello logico è indipendente da quello fisico infatti una tabella è utilizzata nello stesso modo qualunque sia la sua realizzazione fisica. In questo corso vedremo solo il livello logico.

3.1.1 I modelli logici dei dati

Tradizionalmente ci sono tre modelli logici:

- Gerarchico Organizzazione ad albero
- Reticolare Organizzazione a grafo
- Relazionale Organizzazione a tabella

Poi ci sono altri modelli più recenti (e meno diffusi)

- a oggetti
- XML
- NoSQL Basato su documenti

3.1.2 Il modello relazionale

Proposto da E.F. Codd nel 1970 per favorire l'indipendenza dei dati, è diventato disponibile in DBMS reali nel 1981.

È basato sul concetto matematico di relazione a livello formale (con una variante), mentre concettualmente è basato su tabelle.

Essendo uno schema logico definisce come sono organizzati i dati e non come sono memorizzati e gestiti dal sistema informatico.

3.1.3 Il termine relazione in 3 accezioni

- 1. Relazione matematica come nella teoria degli insiemi
- 2. Relazione secondo il modello relazionale dei dati
- 3. Relazione (dall'inglese relationship) che rappresenta una classe di fatti, nel modello Entity-Relationship, tradotto anche con associazione e correlazione

3.2 Modello relazionale - definizione formale

Dati due insiemi D_1 , D_2 (Estendibile a n insiemi distinti o non), si definisce **prodotto cartesiano** D_1xD_2 come l'insieme di tutte le possibili coppie ordinate (v_1, v_2) tali che $v_1 \in D_1$ e $v_2 \in D_2$.

Esempio $A = \{1, 2, 4\}$ e $B = \{a, b\}$ il prodotto cartesiano AxB è composto da $\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$, cioè le sei coppie ordinate (il primo da A e il secondo da B) senza ripetizioni.

Il prodotto cartesiano rappresenta l'insieme di tutte le n-uple ordinate, mentre la **relazione matematica** rappresentare un sottoinsieme del prodotto cartesiamo fra n insiemi. Gli insiemi di partenza sono chiamati **domini**, mentre il numero delle componenti del prodotto (n) è detto grado della relazione, il numero di n-uple della relazione è la **cardinalità** della relazione.

Capitolo 4

Progettazione Concettuale

4.1 Reificazione

4.2 Stretegie di progetto

- Top-Down
- Bottom-Up
- Inside-Out

Reminder - Rappresentazione dei concetti nella specifica

- Entità Se il concetto ha proprietà significative e descrive oggetti con esistenza autonoma
- Attributo Se il concetto è una proprietà locale di un altro e non ha proprietà a sua volta
- Relazione Se il concetto correla due o più concetti
- Is-a o Generalizzazione Se il concetto è caso particolare di un altro

4.3 Strategia utilizzata in pratica - Mista

4.4 Qualità di uno schema concettuale

• Correttezza

- Completezza
- Leggibilità
- Minimalità

4.5 Consigli per lo svolgimento di esercizi

- 1. Leggere attentamente il testo
- 2. Suddividere il testo in varie sezioni (in base per esempio alle entità)
- 3. Iniziare a stendere lo schema ER secondo la suddivisione del testo, scrivendo quindi le entità e le relazioni per ogni sezione
- 4. Avere già un'idea generale di dove andranno posizionate le entità (giusto per non dover riscrivere tutto dopo)
- 5. Prosegui alla sezione successiva e ripeti il punto 3
- 6. Inserire attributi e segnare gli identificatori
- 7. Aggiungere le CARDINALITÁ (da non dimenticare assolutamente)

Capitolo 5

Preparazione Primo Parziale

Il primo parziale sarà composto da due esercizi

- Esercizio 1 Schema ER
- Esercio 2 Modello Relazionale

5.1 Schema ER

Ci verrà dato un testo e noi dovremmo creare uno schema ER, quindi dovremo identificare Entità, Relazioni, Attributi...

Sarà possibile disegnare sul testo, per esempio per dividerlo in sezioni a seconda dell'entità o relazione che rappresenta quella parte di testo.

Sarà possibile stendere prima una brutta e poi ricopiare lo schema in bella.

Consigli La prima volta leggere il testo per intero, anche se noterete che non riuscirete a ricordarlo tutto, la complessità di questi testi non permette alla nostra mente di memorizzare tutto. Durante la seconda lettura cercare di Suddividere il testo in sezioni iniziando a identificare entità e relazioni, segnando quelle che sono dubbie (per esempio fare un elenco). La terza lettura inizare a stendere lo schema utilizzando la metodologia mista vista poco fa nella progettazione concettuale.

Iniziare già a segnare gli identificatori e se sono palesi perchè il testo ce le indica, segnare le cardinalità, se invece richiedono un minimo di ragionamento è consigliabile finire prima lo schema e poi segnarle, così si avrà una visione d'insieme più chiara.

Personalmente io parto dalla prima entità e mi espando a macchia d'olio segnandomi le cose su cui ho dubbi, poi quando ho finito di stendere lo schema, mi concentro sulle parti su cui ho dubbi e verifico che abbiano senso.

Last but not least

Ricordarsi di **segnare le cardinalità** e verificare che tutto ciò che è citato nel testo sia presente, capita a volte di dimenticarsi dei pezzi e ciò è male.

Rileggi tutto

Rileggi schema e testo per verificare di non aver modellato cose che non erano citate, oppure di non aver modellato qualcosa di scritto.

- Verifica che tutte le identità abbiano identificatore
- Se c'è qualche entità collegata a una sola relazione, quindi isolata, controllarla due volte perchè potrebbero esserci degli errori, di solito le entità sono collegate a più elementi
- Visto che ce l'ho per vizio di dimenticarmi questa cosa devo ripeterla all'infinito: RICORDATI **LE CARDINALITÁ**
- Infine controlla che tutto abbia senso ("Se siamo in un osepdale fatemi arrivare i pazienti in sala operatoria" cit Schettini)

5.2 Modello Relazionale

Ci verrà dato un testo e ci verrà già dato lo schema con le relazioni, la richiesta sarà quella di:

- Trovare le chiavi primarie per ogni relazione
- Segnare i vincoli di integrità o testualmente (Relazione.attr con Relazione2.attr2) oppure graficamente facendo i collegamenti (io preferisco quest'ultima)
- Trovare almeno un vincolo di dominio (es. CF deve essere lungo 16 caratteri)
- Trovare almeno un vincolo di tupla (es. Data assunzione succesiva a Data nascita)
- Indicare una superchiave non minimale (basta indicare una cosa del tipo, per la relazione LIBRERIA gli attributi idLib, orariApertura, quantitàLibri costituiscono una superchiave indicando quindi tutti gli attributi)

- Indicare una chiave che non sia stata scelta come chiave primaria (es. se ho CF come chiave primaria e ho anche telefono come attributo, esso è una chiave che non è stata scelta come primaria)
- Non viene sempre chiesto: Indicare due attributi che possano assumero valore NULL qui in genere si dovranno indicare attributi che magari inizialmente sono settati a NULL perchè costituiscono misurazoni nel tempo (es numero-giorni-pioggia)

Consigli

- Se nel testo non vengono citati attributi del tipo "id" o "codice" e me li ritrovo nello schema, con buona probabilità quelli saranno possibili chiavi primarie.
- Se sto segnando i vincoli di integrità verso una relazione che ha 2 attributi come chiave primaria, dovrò per forza cerchiare 2 attributi nella relazione d'origine!
- Se ho scelto 2 attributi come vincolo di integrità, non posso spezzarli e prenderne 1 solo per vincolarlo con un'altra relazione
- Occhio al testo, a volte si nascondono delle specifiche diverse dalla realtà a cui siamo abituati
- Indicare esplicitamente che si effettua la risoluzione dei vincoli di integrità graficamente
- Occhio agli attributi cattivi (es. portabandiera indica un atleta)
- Verifica che le chiavi primarie scelte siano minimali

Capitolo 6

SQL - Structured Query Language

SQL è un linguaggio per la definizione e la manipolazione dei dati in database relazionali adottato da molti DBMS.

Ci sono diverse versioni, la prima versione ufficiale risale al 1986. Poi sono state rilasciate altre versioni come SQL-89, SQL-2, SQL-3...

Noi faremo riferimento principalmente a SQL-2. Questa versione è ricca e complessa, tanto che nessun sistema commerciale lo implementa in maniera completa.

Esistono 3 livelli di conformità:

- Entry level: molto simile a SQL-89
- Intermediate level: versione che soddisfa le esigenze di mercato
- Full level: versione completa anche delle funzioni avanzate che non sono realizzate in alcun DBMS

La maggior parte dei database è conforme solo all'entry level. Alcune famose implementazioni di SQL sono:

- ORACLE
- DB2 (IBM)
- Access (Microsoft)
- MSSQL server (Microsoft)
- MySQL
- Firebird

6.1 SQL e Algebra Relazionale

SQL è relazionalmente completo: ogni espressione logica può essere tradotta in SQL. Viene adottata la logica dei 3 valori (T, F, U) dell'Algebra relazionale (U = Unknown).

Il modello dati di SQL è basato su tabelle anzichè relazioni (possono essere presenti righe duplicate).

SQL è computazionalmente completo, ha istruzioni di controllo.

Capitolo 7

Algebra Relazionale

Nell ebasi di dati relazionali esistono 2 tipi di linguaggi di interrogazione

- Procedurali Specificano le modalità di generazione del risultato Come
- Dichiarativi Specificano le proprietà del risultato Che cosa

L'algebra relazionale è procedurale, mentre SQL è parzialmente dichiarativo. L'algebra relazionale è composta da un insieme di operatori che possono essere utilizzati su relazioni per produrre relazioni. Possono essere composti dando luogo a espressioni algebriche di complessità arbitraria.

7.1 Operatori dell'algebra relazionale

Unarie

- Ridenominazione
- Selezione
- Proiezione

Binarie

- Unione, Intersezione, Differenza (Operatori insiemistici)
- Join (Join naturale, Prodotto cartesiano, Theta-join)

7.2 Operatori insiemistici

Le relazioni sono insiemi e quindi è possibile applicare gli operatori insiemistici, è fondamentale sapere che è possibile applicare queste operazioni solo a relazioni definite sugli stessi attributi.

Unione

L'unione di due relazioni r_1 e r_2 è la relazione che contiene le tuple che appartengono ad r_1 oppure ad r_2 , oppure ad entrambe.

L'unione è commutativa e associativa.

Intersezione

L'intersezione di due relazioni r_1 e r_2 è la relazione che contiene le tuple che appartengono sia a r_1 che a r_2 .

L'intersezione è commutativa e associativa ed è inoltre esprimibile per mezzo della differenza:

$$r(X) = r_1(X) \cap r_2(X) = r_1(X) - (r_1(X) - r_2(X))$$

Differenza

La differenze di due relazioni $r_1(X)$ e $r_2(X)$ definite su un insieme di attributi X è la relazione $r(X) = r_1(X) - r_2(X)$ che contiene le tuple che appartengono a $r_1(X)$, ma non a $r_2(X)$.

La differenza NON è commutativa.

Operatori insiemistici e valori nulli

Gli operatori insiemistici sono definiti anche per relazioni che contengono valori nulli.

7.3 Operatorri unari

7.3.1 Operatore di ridenominazione

Per poter applicare operazioni insiemistiche come unione, intersezione, differenza a relazioni su attributi in parte diversi è necessario ridenominare attributi, in modo da uniformare i nomi. Questo viene fatto dall'operatore ridenominazione.

Si tratta di un operatore monadico (cioè un solo argomento) che modifica lo schema lasciando inalterata l'istanza dell'operando. Cambia quindi il nome dell'attributo, ma non il valore.

Sintassi Si indica con $\rho_{y\leftarrow x}(r)$ o REN_{$y\leftarrow x$}(r), dove x è il nome originale dell'attributo, mentre y è quello nuovo. L'operatore è sempre seguito dal nome della relazione che stiamo considerando.

É possibile rinominare più attributi, in questo caso è importante l'ordine degli attributi dato che la sintassi sarà la seguente:

$$\rho_{y1,y_2\leftarrow x_1,x_2}(r)$$

	Padre	Figlio		Genitore	Figlio
Esempio	Adamo	Abele	$REN_{Genitore \leftarrow Padre}(Paternita)$	Adamo	Abele
	Adamo	Caino		Adamo	Caino

Questa operazione è fondamentale per poter effettuare operazioni insiemistiche tra relazioni con attributi diversi, in questo modo possiamo uniformare i nomi degli attributi.

7.3.2 Selezione

Permette di selezionare un sottoinsieme delle ennuple, producendo un risultato che:

- Ha lo stesso schema dell'operando
- Contiene un sottoinsieme delle ennuple dell'operando
- Contene le ennuple che soddisfano una condizione espressa dall'operatore

Sintassi $\sigma_{\text{condizione}}(r)$

Sintassi altenativa $SEL_{condizione}(r)$ Data una relazione r(X) è una formula ottenuta combinando con i connettivi OR, AND e NOT condizioni atomiche del tipo:

• CONFR è un operatore di confronto $(=,<,>,\geq,\leq)$

- A e B sono attributi in X sui cui valori CONFR abbia senso
- c'è una costante per cui il confronto CONFR sia definito

Il risultato contien ele ennuple dell'operando che soddisfano la condizione (cioè su cui la condizione è vera).

Esempi Impiegato che:

- Guadagnano più di 50 STIPENDIO ; 50
- Guadagnano più di 50 e lavorano a Milano STIPENDIO ¿ 50 AND FILIALE = 'Milano'
- Hanno un cognome uguale al nome della filiale presso cui lavorano -COGNOME = FILIALE

Tradotto in Query in Algebra Realzionale: $SEL_{Stipendio>50}$ (Impiegati), lo stesso per le altre query, la parte scritta andrà sostituita nella parte condizione (sotto il SEL).

Selezione con valori nulli

La condizione atomica è vera solo per valori non nulli.

Se per esempio effettuo una SEL su una tabella con valori nulli, e la condizione seleziona tutti gli attributi (es. $\mathrm{SEL}_{\mathrm{Et\grave{a}}} > 30 \cup \mathrm{SEL}_{\mathrm{Et\grave{a}}} \leq 30$) il risultato sarà una tabella diversa da quella di partenza, perchè le condizioni atomiche vengono valutate separatamente e i valori nulli non sono valori che possiamo confrontare con un numero dato che rappresentano un valore di verità intermedio tra vero e falso. Anche inserendo tutto in una unica SEL il risultato sarebbe il medesimo, quindi senza valori nulli.

Per questo esistono gli operatori **IS NULL e IS NOT NULL**. Per avere la tabella iniziale per l'esempio Persone basterebbe quindi unire la precedente SEL con la seguente: $SEL_{Et\grave{a}}$ IS NULL (Persone). In questo modo otteniamo la stessa relazione di partenza dato che consideriamo anche i valori NULL.

7.4 Proiezione

Si occupa di selezionare solo alcune delle colonne della tabella presa in considerazione.

Per fare un confronto con il SEL:

- SEL è un operatore ortogonale di decomposizione orizzontale, infatti riduce il numero di righe
- PROJ è un operatore ortogonale di decomposizione verticale, infatti riduce il numero di colonne

Si tratta anche in questo caso di un operatore monadico.

Sintassi PROJ_{lista di attributi} (Operando), il risultato conterrà le ennuple dell'perando ristrette ai soli attributi nella ListaAttributi.

Proiezione e Valori Null

Proiezione, unione e differenza continuano a comportarsi usualmente quindi due tuple sono uguali anche se ci sono dei NULL.

Dato che una relazione è un insieme e un insieme non ha elementi uguali il risultato della PROJ non conterrà ennuple uguali, esse saranno scartate.

Cardinalità delle proiezioni

La cardinalità di una relazione è il numero delle sue ennuple e si indica con |R|.

Una proiezione:

- Contiene al più tante ennuple quante l'oerando
- Può anche contenerne di meno (come spiegato in precedenza)

Vale la proprietà che se X è una superchiave di R, allora $PROJ_X(R)$ contiene esattamente tante ennuple quante R.

Per la definizione di superhciave ogni superchiave compare una sola volta nella relazione.

Selezione e Proiezione

Combinando selezione e proiezione possiamo estrarre interessanti informazioni da una realzione

Esempio Ci viene richiesto matricola e cognome degli impiegati che guadagnano più di 50:

7.5. JOIN 35

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

Soluzione

Inserisco quindi come argomento della PROG la SEL delle tuple richieste. Combinando questi due operatori posso estrarre informazioni da una relazione. Non possiamo però correlare, mettere insieme informazioni presenti in relazioni diverse, per questo esiste il JOIN.

7.5 Join

Il Join è senz'altro l'operatore più interessante dell'algebra relazionale dato che permette di correlare, mettere insieme, integrare dati che si trovani in relazioni diverse. Ci sono diversi tipi di Join, partiamo da quello naturale.

Join naturale

Operatore binario (generalizzazione), produce un risultato sull'unione degli attributi degli operandi con ennuple costruitre ciascuna a partire da una ennupla di ognuno degli operandi.

Sintassi Date due relazioni $R_1(X_1)$ e $R_2(X_2)$, R_1 JOIN R_2 è una relazione su X_1, X_2 . Contribuiscono quindi le ennuple che hanno gli stessi valori negli attributi comuni. Quando ogni ennupla contribuisce al risultato si dice **Join completo**.

Un Join è non completo quando ci sono attributi sulle due relazioni che non corrispondono fra di loro. Se nessun attributo trova una corrispondenza si ottiene un Join vuoto.

Cardinalità del Join

1. Il Join di R_1 e R_2 contiene un numero di ennuple compreso fra zero e il prodotto di $|R_1|$ e $|R_2|$

- 2. Se il Join coinvolge una chiave di R_2 allora il numero di ennuple è compreso fra zero e $|R_1|$.
- 3. Se B è chiave in R_2 ed esiste vincolo di integrità referenziale fra B (in R_1) e R_2 , allora il numero di ennuple è uguale a $|R_1|$ $|R_1$ JOIN $R_2|=|R_1|$

Il Join è commutativo e associativo.

Il Join naturale non combina due tuple se queste hanno entrambe valore nullo su un attributo in comune