SOLUTION BOOK TO INTRODUCTION TO SMOOTH MANIFOLDS BY JOHN M. LEE

SOLUTION BOOK TO INTRODUCTION TO SMOOTH MANIFOLDS BY JOHN M. LEE

Contents

Cha	pter 1. Foundations	1
1	Set Theory	1
	1.1 Relations	1
Cha	pter 2. Connectedness and Compactness	2
1	Connectedness	2
2	Local Compactness	2
Cha	pter 3. Homotopy and the Fundamental Group	3
1		3
2	Categories and Functors	4
Cha	pter 4. The Seifert-Van Kampen Theorem	6
1	•	6
Cha		7
1	Definitions and Basic Properties	7
Cha	pter 6. Smooth Maps	8
1		8
		8
Cha	pter 7. Tangent Vectors	0
1		0
1	0	0
		Ü
Cha	pter 8. Vector Fields	2
1	Vector Fields on Manifolds	2
Cha	pter 9. Integral Curves and Flows	3
1		3
_		
Cha		7
1	0	7
	1.1 The Winding Number*	7
Cha	pter 11. Tensors	8
1		8
$\overset{-}{2}$		9
Class		^
	<u>.</u>	0
1	Orientations of Vector Spaces	0
Cha	pter 13. Symplectic Forms	1

CONTENTS	iii
----------	-----

1 Symplectic Linear Algebra	21
Chapter 14. Symplectic Form on the Cotangent Bundle 2 1 Symplectic Volume	
Chapter 15. Lagrangian Submanifolds	
Chapter 16. Dolbeault Theory21 Tensor Characterization Lemma22 Integrability3	27
Chapter 17. Complex Manifolds	3 2
Chapter 18. Kähler Forms 3 1 The Fubini-Study Structure 3	
Appendix. Bibliography	36

Foundations

1. Set Theory

1.1. Relations.

Exercise 1.1. Let X be a set and \sim an equivalence relation on X. Then X/\sim is a partition of X. Conversly, given any partition $\mathscr C$ of X, there exists a unique equivalence relation $\sim_{\mathscr C}$ on X such that $X/\sim_{\mathscr C}=\mathscr C$.

Solution 1.1. Let \sim be an equivalence relation on X. If $X=\varnothing$, then $X/\sim=\varnothing$ which is a partition of the empty set \varnothing . So assume that $X\neq\varnothing$. Let $[x]\in X/\sim$. Then $[x]\neq\varnothing$ since $x\in[x]$ by reflexivity. Furthermore, let $[y]\in X/\sim$. Now we have to show that if $[x]\neq[y]$ then $[x]\cap[y]=\varnothing$. So assume that $z\in[x]\cap[y]$. Then $z\sim x$ and $z\sim y$ which implies $x\sim y$ by symmetry and transitivity from which easily follows that [x]=[y]. Also $X=\cup_{x\in X}[x]$ holds and thus X/\sim is a partition of X. Define a relation on X by

$$x \sim_{\mathscr{C}} y \quad :\Leftrightarrow \quad \exists A \in \mathscr{C} : x, y \in A.$$

Then it is easily seen that $\sim_{\mathscr{C}}$ is an equivalence relation on X where [x] = A for some $A \in \mathscr{C}$ such that $x \in A$. Thus $X/\sim_{\mathscr{C}} = \mathscr{C}$.

Connectedness and Compactness

1. Connectedness

Exercise 1.1. Let X be a nonempty connected topological space and \sim an equivalence relation on X such that every equivalence class is open. Then there is exactly one equivalence class.

Solution 1.1. Let $x \in X$. If [x] = X, there is nothing to show. So assume that $[x] \neq X$. By exercise 1.1 we have that X/\sim is a partition of X and thus $X = [x] \cup (\bigcup_{y \in [x]^c} [y])$. Since [x] and $\bigcup_{y \in [x]^c} [y]$ are nonempty, disjoint and open by assumption, they disconnect X, contradicting the connectedness of X.

2. Local Compactness

Exercise 2.1. In a Baire space, every meager subset has a dense complement.

Solution 2.1. Let F be a meager subset of the Baire space. Thus we can write $F = \bigcup_n F_n$, where each F_n is nowhere dense. Therefore $F^c = \bigcap_n F_n^c$ and $\bigcap_n \overline{F_n}^c \subseteq \bigcap_n F_n^c$. By the definition of a Baire space, $\bigcap_n \overline{F_n}^c$ is dense since each $\overline{F_n}$ is closed. Thus

$$X\supseteq \overline{F^c}\supseteq \overline{\cap_n \overline{F_n}^c}=X$$

and therefore $\overline{F^c}$ is dense.

Homotopy and the Fundamental Group

1. The Fundamental Group

Exercise 1.1. Let X be a topological space. For any points $p, q \in X$, path homotopy is an equivalence relation on the set of all paths in X from p to q.

Solution 1.1. Let f be a path in X from p to q. Define $H: I \times I \to X$ by H(s,t) := f(s). Clearly H is continuous since f is. Indeed, take $U \subseteq X$ open, then $H^{-1}(U) = f^{-1}(U) \times I$ which is open in the box topology. Now clearly H(s,0) = H(s,1) = f(s) for all $s \in I$ and H(0,t) = f(0) = p, H(1,t) = f(1) = q for all $t \in I$. Hence $f \sim f$. If $f \sim g$ and F is a path homotopy from f to g, then f is a path homotopy from f to f in f in f in f in f in f is a path homotopy from f to f in f

$$H(s,t) := \begin{cases} F(s,2t) & 0 \le t \le \frac{1}{2}, \\ G(s,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a path homotopy from f to h, hence $f \sim g$.

Exercise 1.2. Let X be a path-connected topological space.

- (a) Let $f, g: I \to X$ be two paths from p to q. Show that $f \sim g$ if and only if $f\overline{g} \sim c_p$.
- (b) Show that X is simply connected if and only if any two paths in X with the same initial and terminal points are path-homotopic.
- (c) Let $A \subseteq \mathbb{R}^n$ be convex. Then A is simply connected.

Solution 1.2. For (a), assume $f \sim g$. Hence [f] = [g] and by the properties of path class products [Lee11, p. 189] we get

$$[f\overline{g}] = [f][\overline{g}] = [g][\overline{g}] = [c_p]$$

and thus $f\overline{g} \sim c_p$. Conversly, $f\overline{g} \sim c_p$ implies $[f\overline{g}] = [c_p]$ and thus

$$[g] = [c_p][g] = ([f\overline{g}])[g] = ([f][\overline{g}])[g] = [f]([\overline{g}][g]) = [f][c_q] = [f].$$

For (b), assume that X is simply connected and let f and g be paths in X from p to q. Then $f\overline{g}$ is a loop based at p. Since $\pi_1(X,p)=\{[c_p]\}$, we get that $f\overline{g}\sim c_p$ and thus by part (a) that $f\sim g$. Conversly, let f be a loop based at p. Hence $f\sim c_p$ and so $\pi_1(X,p)$ is trivial. For (c), let f and g be paths in f from f to f. Then by example 7.4 [Lee11, pp. 185–186] we get that $f\sim g$. Hence by part (b) follows that f is simply connected.

Corollary 1.1. \mathbb{R}^n is simply connected.

2. Categories and Functors

See [Lan71, pp. 57–58].

Exercise 2.1. Let G be a group and $N \subseteq G$. Define $F : \mathsf{Grp} \to \mathsf{Set}$ by

$$F(H) := \{ f \in \text{Hom}(G, H) : N \subseteq \ker f \}. \tag{1}$$

- (i) Show that F is a functor.
- (ii) Show that $\langle G/N, \pi \rangle$ is a universal element of the functor F.

Solution 2.1. For (i), we have to define first the action of F on arrows of Grp. Consider $A \xrightarrow{\varphi} B$. Define $F(\varphi) : F(A) \to F(B)$ by

$$F(\varphi)(f) := \varphi \circ f.$$

Let $f \in F(A)$. Then $F(\mathrm{id}_A)(f) = \mathrm{id}_A \circ f = f$ and thus $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$. Furthermore, for $B \xrightarrow{\psi} C$ we have that

$$F(\psi \circ \varphi)(f) = (\psi \circ \varphi) \circ f$$

$$= \psi \circ (\varphi \circ f)$$

$$= \psi \circ F(\varphi)(f)$$

$$= F(\psi) (F(\varphi)(f))$$

$$= (F(\psi) \circ F(\varphi)) (f)$$

and so $F(\psi \circ \varphi) = F(\psi) \circ F(\varphi)$. Hence F is a functor. For (ii), by proposition 4.7 [Gri07, p. 20] we get that $\pi \in F(G/N)$. Furthermore, consider $\langle A, \varphi \rangle$ for any A object and φ morphism in Grp such that $\varphi \in F(A)$. By the factorization theorem [Gri07, p. 23] there exists a unique homomorphism $\psi: G \to A$ such that $\varphi = \psi \circ \pi$. Thus

$$F(\psi)(\pi) = \psi \circ \pi = \varphi$$

and thus $\langle G/N, \pi \rangle$ is a universal element of the functor F.

Exercise 2.2. Let C be a category and $(X_{\alpha})_{\alpha \in A}$ be a familiy of objects of C. If (S, ι_{α}) and (S', ι'_{α}) are two coproducts of $(X_{\alpha})_{\alpha \in A}$, then there exists a unique isomorphism $f: S \to S'$ such that $f \circ \iota_{\alpha} = \iota'_{\alpha}$ for all $\alpha \in A$.

Solution 2.2. By the defining property of a coproduct there exist unique morphisms $f: S \to S'$ and $g: S' \to S$ as indicated in the commutative diagram below. Furthermore, above diagram yields

$$(g \circ f) \circ \iota_{\alpha} = \iota_{\alpha}$$
 and $(f \circ g) \circ \iota'_{\alpha} = \iota'_{\alpha}$.

for all $\alpha \in A$ and thus the commutative diagrams Also are commutative and

so by the uniqueness property of the coproduct we get that $g\circ f=\mathrm{id}_S\qquad\text{and}\qquad f\circ g=\mathrm{id}_{S'}\,.$

The Seifert-Van Kampen Theorem

1. Fundamental Groups of Compact Surfaces

Exercise 1.1. Let G be a group. Recall, that for $g, h \in G$ the **commutator of g** and h, written [g, h], is defined to be

$$[g,h] := ghg^{-1}h^{-1}. (2)$$

Furthermore, define

$$[G,G] := \langle \{[g,h] : g,h \in G\} \rangle. \tag{3}$$

- (a) Show that $[G, G] \subseteq G$. [G, G] is called the *commutator subgroup of G*.
- (b) [G, G] is trivial if and only if G is abelian.
- (c) G/[G,G] is abelian.

Solution 1.1. For (a), set

$$X := \{ [g, h] : g, h \in G \}$$
.

Then by [KM13, p. 31] we have that

$$\langle X \rangle = \{x_1 \cdots x_n : n \in \mathbb{Z}, n \ge 1, x_1, \dots, x_n \in X \cup X^{-1}\}.$$

Since for any $g \in G$ and $x \in \langle X \rangle$ we have

$$qxq^{-1} = qx_1 \cdots x_n q^{-1} = qx_1 q^{-1} qx_2 q^{-1} \cdots qx_{n-1} q^{-1} qx_n q^{-1}$$

it is enough to show that $g[h,k]g^{-1} \in \langle X \rangle$ for every $h,k \in G$. But

$$g\left[h,k\right]g^{-1}=\left[ghg^{-1},gkg^{-1}\right]$$

and thus $[G,G] \subseteq G$. For (b), assume that $[G,G]=\{1\}$. Since $X\subseteq [G,G]$, we have that $ghg^{-1}h^{-1}=1$ for all $g,h\in G$ which is equivalent to gh=hg. Hence G is abelian. Conversly, assume that G is abelian. Then [g,h]=1 for all $g,h\in G$, which implies $X=\{1\}$ and thus [G,G] is trivial. For (c), let $x[G,G],y[G,G]\in G/[G,G]$. Then we see that

$$[x[G,G],y[G,G]] = [G,G].$$

Hence [G/[G,G],G/[G,G]] is trivial and the claim follows from part (b).

Covering Maps

1. Definitions and Basic Properties

Exercise 1.1. For $n \in \mathbb{Z}$, $n \geq 1$, define the **n-th power map** $p_n : \mathbb{S}^1 \to \mathbb{S}^1$ by $p_n(z) := z^n$. Show that p_n is a covering map.

Solution 1.1. The map p_n is surely continuous. We show surjectivity. Let $z^n \in p_n(\mathbb{S}^1)$. Then we have that $|z^n| = |z|^n = 1$ and thus $p_n(\mathbb{S}^1) \subseteq \mathbb{S}^1$. Conversly, every $z \in \mathbb{S}^1$ can be written as $e^{i\varphi}$ for some $\varphi \in \mathbb{R}$. Hence define $\widetilde{z} := e^{i\varphi/n} \in \mathbb{S}^1$. Then we have that $p_n(\widetilde{z}) = z$ and thus $\mathbb{S}^1 \subseteq p_n(\mathbb{S}^1)$. Now let $z_0 \in \mathbb{S}^1$. Define $U_{z_0} := \mathbb{S}^1 \setminus \{-z_0\}$. Then $p_n^{-1}(U_{z_0}) = \{z \in \mathbb{S}^1 : z^n \neq -z_0\}$, or equivalently $p_n^{-1}(U_{z_0}) = \{z \in \mathbb{S}^1 : z^n = -z_0\}^c$. Hence

Exercise 1.2. Let $f:(0,2)\to\mathbb{S}^1$ be defined by $f(x):=e^{2\pi ix}$. Show that f is not a covering map.

Solution 1.2.

Smooth Maps

1. Smooth Functions and Smooth Maps

1.1. Smooth Functions on Manifolds. We follow the terminology established in [Gri07, p. 515].

Exercise 1.1. Let M be a smooth manifold. $\mathscr{C}^{\infty}(M)$ is an associative and commutative \mathbb{R} -algebra with identity under the usual pointwise defined operations.

Solution 1.1. First we show that $\mathscr{C}^{\infty}(M)$ is a real vector space. Since $\mathscr{C}^{\infty}(M) \subseteq \mathbb{R}^M$ it is enough to show that $\mathscr{C}^{\infty}(M)$ is a linear subspace of the real vector space \mathbb{R}^M . Clearly, $\mathscr{C}^{\infty}(M) \neq \emptyset$, since $\chi_M \in \mathscr{C}^{\infty}(M)$. Indeed, for $p \in M$ we find a chart (U, φ) such that $p \in U$ and the composition $\chi_M \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}$ is clearly the function $\chi_{\varphi(U)}$, which is smooth since it is constant. Now let $f, g \in \mathscr{C}^{\infty}(M)$, $\lambda \in \mathbb{R}$ and $p \in M$. By definition, there exist charts (U, φ) , (V, ψ) such that $f \circ \varphi^{-1}$ and $g \circ \psi^{-1}$ are smooth. Now consider the chart $(U \cap V, \varphi)$. Then by

$$(\lambda f + g) \circ \varphi^{-1} = \lambda (f \circ \varphi^{-1}) + (g \circ \varphi^{-1}) = \lambda (f \circ \varphi^{-1}) + \left((g \circ \psi^{-1}) \circ (\psi \circ \varphi^{-1}) \right)$$

we have that $\lambda f + g \in \mathscr{C}^{\infty}(M)$. Hence $\mathscr{C}^{\infty}(M)$ is a real vector space. Now define a product map $\cdot : \mathscr{C}^{\infty}(M) \times \mathscr{C}^{\infty}(M) \to \mathscr{C}^{\infty}(M)$ by pointwise multiplication. Indeed, similar to the previous reasoning, by

$$(f\cdot g)\circ \varphi^{-1}=(f\circ \varphi^{-1})\cdot (g\circ \varphi^{-1})=(f\circ \varphi^{-1})\cdot \left((g\circ \psi^{-1})\circ (\psi\circ \varphi^{-1})\right)$$

we have that $f\cdot g$ is smooth. Let $f,g,h\in\mathscr{C}^\infty(M)$ and $\lambda\in\mathbb{R}.$ Then for $p\in M$

$$((\lambda f + g) \cdot h) (p) = (\lambda f + g)(p)h(p)$$

$$= (\lambda f(p) + g(p)) h(p)$$

$$= \lambda f(p)h(p) + g(p)h(p)$$

$$= \lambda (f \cdot h)(p) + (g \cdot h)(p)$$

$$= (\lambda (f \cdot h)) (p) + (g \cdot h)(p)$$

$$= (\lambda (f \cdot h) + (g \cdot h)) (p)$$

shows that \cdot is bilinear in the first argument. A similar computation shows that \cdot is bilinear. By

$$((f \cdot g) \cdot) (p) = (f \cdot g)(p)h(p)$$
$$= f(p)g(p)h(p)$$
$$= f(p)(g \cdot h)(p)$$
$$= (f \cdot (g \cdot h)) (p)$$

we see that \cdot is associative. Furthermore by

$$(f\cdot g)(p)=f(p)g(p)=g(p)f(p)=(g\cdot f)(p)$$

we see that \cdot is commutative. Finally, the identity element is given by χ_M since

$$(\chi_M \cdot f)(p) = \chi_M(p)f(p) = 1f(p) = f(p).$$

Tangent Vectors

1. Tangent Vectors

1.1. Tangent Vectors on Manifolds.

Exercise 1.1. Let M be a smooth manifold and $p \in M$. The set of all derivations at p, written T_pM , is a real vector space under the usual pointwise defined operations.

Solution 1.1. Clearly $T_pM \subseteq L(\mathscr{C}^{\infty}(M); \mathbb{R})$ and thus it is enough to show that T_pM is a linear subspace of $L(\mathscr{C}^{\infty}(M); \mathbb{R})$ (see [Lee13, p. 626]). We have $T_pM \neq \emptyset$, since $0 \in T_pM$ defined by $f \mapsto 0$. Let $u, v \in T_pM$, $\lambda \in \mathbb{R}$ and $f, g \in \mathscr{C}^{\infty}(M)$. Then by

$$(\lambda u + v)(fg) = \lambda u(fg) + v(fg)$$

$$= f(p) (\lambda u(g) + v(g)) + g(p) (\lambda u(f) + v(f))$$

$$= f(p)(\lambda u + v)(g) + g(p)(\lambda u + v)(f)$$

we have that $\lambda u + v \in T_pM$.

Exercise 1.2. Suppose M is a smooth manifold. Let $p \in M$, $v \in T_pM$ and $f \in \mathscr{C}^{\infty}(M)$. If f is constant, then v(f) = 0.

Solution 1.2. First assume that $f = \chi_M$. Then

$$v(\chi_M) = v(\chi_M \cdot \chi_M) = f(p)v(\chi_M) + f(p)v(\chi_M) = v(\chi_M) + v(\chi_M) \tag{4}$$

implies that v(f) = 0. Hence if $f = \lambda \chi_M$ for $\lambda \in \mathbb{R}$, the \mathbb{R} -linearity of v implies that

$$v(f) = v(\lambda \chi_M) = \lambda v(\chi_M) = 0.$$
 (5)

Exercise 1.3 (Properties of Differentials). Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$.

- (a) $dF_p: T_pM \to T_{F(p)}N$ is \mathbb{R} -linear.
- (b) $\operatorname{d}(\overset{r}{G} \circ \overset{r}{F})_p = \operatorname{d}G_{F(p)} \circ \operatorname{d}F_p.$
- (c) $d(id_M)_p = id_{T_pM}$.
- (d) If F is a diffeomorphism, then dF_p is an isomorphism and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Solution 1.3. Let $u, v \in T_pM$, $\lambda \in \mathbb{R}$ and $f \in \mathscr{C}^{\infty}(N)$. Then

$$dF_p(\lambda u + v)(f) = (\lambda u + v)(f \circ F)$$

$$= \lambda u(f \circ F) + v(f \circ F)$$

$$= \lambda dF_p(u)(f) + dF_p(v)(f).$$

This shows part (a). Let $v \in T_pM$ and $f \in \mathscr{C}^{\infty}(P)$. Then

$$d(G \circ F)_p(v)(f) = v (f \circ (G \circ F))$$

$$= v ((f \circ G) \circ F)$$

$$= dF_p(f \circ G)$$

$$= dG_{F(p)} (dF_p(v)) (f)$$

$$= (dG_{F(p)} \circ dF_p) (v)(f).$$

This shows part (b). Part (c) is immediate by

$$d(id_M)_p(v)(f) = v(f \circ id_M) = v(f)$$

for $f \in \mathscr{C}^{\infty}(M)$. Finally, part (b) and (c) yields

$$dF_p \circ d(F^{-1})_{F(p)} = d(F \circ F^{-1})_{F(p)} = d(id_N)_{F(p)} = id_{T_{F(p)}N}$$

and

$$d(F^{-1})_{F(p)} \circ dF_p = d(F^{-1} \circ F)_p = d(id_M)_p = id_{T_pM}$$

which shows that dF_p is bijective with inverse $(dF_p)^{-1} = d(F^{-1})_{F(p)}$ by uniqueness. Since by part (a) dF_p is linear, we have that dF_p is an isomorphism (see [Lee13, p. 622]). This shows part (d).

Vector Fields

1. Vector Fields on Manifolds

Exercise 1.1. Let M be a smooth manifold.

(a) If $X, Y \in \mathfrak{X}(M)$, $f, g \in \mathscr{C}^{\infty}(M)$, then $fX + gY \in \mathfrak{X}(M)$.

Integral Curves and Flows

1. Integral Curves

Definition 1.1. Let (M_1, d_1) and (M_2, d_2) be metric spaces. A mapping $f: M_1 \to M_2$ is said to be **Lipschitz continuous** if there exists $L \in \mathbb{R}_{>0}$ such that for all $x, y \in M_1$

$$d_2\left(f(x), f(y)\right) \le Ld_1(x, y) \tag{6}$$

holds. We say that f is **locally Lipschitz continuous** if for every point $x \in M_1$ there exists a neighbourhood on which f is Lipschitz continuous.

Proposition 1.1. Let (M_1, d_1) be a metric space and (M_2, d_2) a complete bounded metric space. For $f, g \in \mathcal{C}(M_1; M_2)$ define

$$d_{\infty}(f,g) := \sup_{x \in M_1} d_2\left(f(x), g(x)\right). \tag{7}$$

Then $(\mathscr{C}(M_1; M_2), d_{\infty})$ is a complete metric space.

Proof. Since M is bounded, there exists $C \in \mathbb{R}_{>0}$ such that $d_2(x,y) \leq R$ for all $x,y \in M_1$. Hence

$$d_{\infty}(f,g) = \sup_{x \in M_1} d_2(f(x), g(x)) \le R < \infty$$

for all $f,g \in \mathscr{C}(M_1;M_2)$. The metric axioms are easily verified, so we only show the completeness property. Let $(f_{\nu})_{\nu \in \mathbb{N}}$ be a Cauchy sequence in $\mathscr{C}(M_1;M_2)$. Fix $\varepsilon > 0$. Since $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence, we find $N \in \mathbb{N}$, such that for all $\nu, \mu \geq N$

$$d_{\infty}\left(f_{\nu}, f_{\mu}\right) < \frac{\varepsilon}{2}$$

holds. So for all $y \in M_1$ we have

$$d_2\left(f_{\nu}(y), f_{\mu}(y)\right) \le \sup_{x \in X} d_2\left(f_{\nu}(x), f_{\mu}(x)\right) = d_{\infty}(f_{\nu}, f_{\mu}) < \varepsilon.$$

whenever $\nu, \mu \geq N$. Thus $(f_{\nu}(y))_{\nu \in \mathbb{N}}$ is a Cauchy sequence in M_2 for all $y \in M_1$. Since M_2 is complete

$$f(y) := \lim_{\nu \to \infty} f_{\nu}(y)$$

exists for all $y \in M_1$. Now we show that $f_{\nu} \to f$ with respect to d_{∞} . For all $\nu \geq N$ and $y \in M_1$ we have that

$$d_{2}(f_{\nu}(y), f(y)) = \lim_{\mu \to \infty} d_{2}(f_{\nu}(y), f_{\mu}(y))$$

$$= \lim_{\mu \to \infty} \inf d_{2}(f_{\nu}(y), f_{\mu}(y))$$

$$\leq \lim_{\mu \to \infty} \inf d_{\infty}(f_{\nu}, f_{\mu})$$

$$\leq \frac{\varepsilon}{2}$$

$$< \varepsilon.$$

Hence

$$d_{\infty}(f_{\nu}, f) < \varepsilon$$

whenever $\nu \geq N$. So $f_{\nu} \to f$ with respect to d_{∞} . Left to show is that $f \in \mathscr{C}(M_1; M_2)$. Fix $x_0 \in M_1$. Since $f_{\nu} \to f$ with respect to d_{∞} , there exists $N \in \mathbb{N}$ such that

$$d_{\infty}(f_{\nu}, f) < \frac{\varepsilon}{3}$$

for all $\nu \geq N$. Fix $\nu_0 \geq N$. Since f_{ν_0} is continuous at x_0 , there exists $\delta > 0$, such that

$$d_2\left(f_{\nu_0}(x_0), f_{\nu_0}(x)\right) < \frac{\varepsilon}{3}$$

whenever $d_1(x_0, x) < \delta$. Hence

$$d_{2}(f(x_{0}), f(x)) = d_{2}(f(x_{0}), f_{\nu_{0}}(x)) + d_{2}(f_{\nu_{0}}(x_{0}), f_{\nu_{0}}(x)) + d_{2}(f_{\nu_{0}}(x), f(x))$$

$$< 2d_{\infty}(f, f_{\nu_{0}}) + \frac{\varepsilon}{3}$$

whenever $d_1(x_0, x) < \delta$. Thus $f \in \mathcal{C}(M_1; M_2)$.

Lemma 1.1 (Integral Formulation of an ODE). Let $n \in \mathbb{Z}$, n > 0, $U \subseteq \mathbb{R}^n$ and $f \in \mathcal{C}(U;\mathbb{R}^n)$. A mapping $y \in \mathcal{C}(J_0;U)$, for some interval J_0 containing t_0 , is a solution of the initial value problem

$$\begin{cases} y'(t) = f(y(t)) \\ y(t_0) = y_0 \end{cases}$$
 (8)

if and only if

$$y(t) = y_0 + \int_{t_0}^t f(y(s)) ds$$
 (9)

holds for all $t \in J_0$.

Proof. Assume that $y \in \mathcal{C}^1(J_0; U)$ solves (8). Then

$$\int_{t_0}^t f(y(s)) ds = \int_{t_0}^t y'(s) ds = y(t) - y(t_0)$$

for all $t \in J_0$ by the corollary to the first fundamental theorem of calculus [Spi94, p. 284].

Conversly assume that

$$y(t) = y_0 + \int_{t_0}^t f(y(s)) ds$$

for all $t \in J_0$. Since $f \circ y \in \mathscr{C}(J_0; \mathbb{R}^n)$, the first fundamental theorem of calculus [Spi94, p. 282] implies y'(t) = f(y(s)) for all $t \in J_0$. Furthermore clearly $y(t_0) = t_0$ and $y \in \mathscr{C}^1(J_0; U)$. Hence y is a solution of (8).

Lemma 1.2 (Contraction Lemma). Let (M, d) be a nonempty complete metric space and T be a contraction. Then there exists a unique fixed point for T.

Theorem 1.1 (Existence of ODE Solutions). Let $n \in \mathbb{Z}$, n > 0, $U \subseteq \mathbb{R}^n$ open, $f \in \mathscr{C}(U; \mathbb{R}^n)$ locally Lipschitz continuous and $(t_0, x_0) \in \mathbb{R} \times U$. Then there exists an open interval $J_0 \subseteq \mathbb{R}$ and an open subset $U_0 \subseteq U$, such that $(t_0, x_0) \in J_0 \times U_0$ and for each $y_0 \in U_0$ a mapping $y \in \mathscr{C}^1(J_0; U)$ satisfying

$$\begin{cases} y'(t) = f(y(t)) \\ y(t_0) = y_0 \end{cases}$$
 (10)

Proof. Since F is locally Lipschitz continuous on U, there exists a neighbourhood V of x_0 , such that f is Lipschitz continuous on V. Since $(U, |\cdot|)$ has the same topology as the subspace $U \subseteq \mathbb{R}^n$ by [Lee11, p. 50], we find $W \subseteq \mathbb{R}^n$ open, such that $V = U \cap W$. But since U is open, so is V open in \mathbb{R}^n . Hence we may assume that f is Lipschitz continuous on U. Let L > 0 denote a Lipschitz constant of f. Now choose r > 0 so, such that $\overline{B}_r(x_0) \subseteq U$. Furthermore let

$$M := \sup_{x \in \overline{B}_r(x_0)} |f(x)| < \infty$$

since $\overline{B}_r(x_0)$ is compact and $\delta, \varepsilon > 0$ such that

$$\delta < \frac{r}{2}$$
 and $\varepsilon < \min\left(\frac{r}{2M}, \frac{1}{L}\right)$.

Define

$$J_0 := (t_0 - \varepsilon, t_0 + \varepsilon) \subseteq \mathbb{R}$$
 and $U_0 := B_\delta(x_0) \subseteq U$.

For any $y_0 \in U_0$, let

$$A_{y_0} := \{ y \in \mathscr{C}(J_0; \overline{B}_r(x_0)) : y(t_0) = y_0 \}.$$

Clearly $A_{y_0} \neq \emptyset$ since $y = y_0$ is in A_{y_0} . $\overline{B}_r(x_0)$ is clearly bounded and complete since it is a closed subset of a complete metric space. Thus we can consider the metric space (A_{y_0}, d_{∞}) , where d_{∞} is defined as in proposition 1.1. From the proof of proposition 1.1 we also see that if $(y_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in A_{y_0} and $y := \lim_{\nu \to \infty} y_{\nu}$, then $y(t_0) = \lim_{\nu \to \infty} y_{\nu}(t_0) = y_0$. Hence $y \in A_{y_0}$ and so (A_{y_0}, d_{∞}) is complete. For $y \in A_{y_0}$ define for $t \in J_0$

$$T(y)(t) := y_0 + \int_{t_0}^t f(y(s)) ds.$$

Clearly T is continuous and $T(y)(t_0) = y_0$. Furthermore

$$|T(y)(t) - x_0| = |y_0 + \int_{t_0}^t f(y(s)) ds - x_0|$$

$$\leq |y_0 - x_0| + \int_{t_0}^t |f(y(s))| ds$$

$$< \delta + M |t - t_0|$$

$$< \delta + M\varepsilon$$

$$< r.$$

for all $t \in J_0$. Hence $T: A_{y_0} \to A_{y_0}$. Furthermore for $y_1, y_2 \in A_{y_0}$ we have that

$$d_{\infty}\left(T(y_1), T(y_2)\right) = \sup_{t \in J_0} \left| \int_{t_0}^t f\left(y_1(s)\right) ds - \int_{t_0}^t f\left(y_2(s)\right) ds \right|$$

$$\leq \sup_{t \in J_0} \int_{t_0}^t \left| f\left(y_1(s)\right) - f\left(y_2(s)\right) \right| ds$$

$$\leq L \sup_{t \in J_0} \int_{t_0}^t \left| y_1(s) - y_2(s) \right| ds$$

$$\leq L \varepsilon d_{\infty}(y_1, y_2).$$

Since $0 < L\varepsilon < 1$, T is a contraction. Hence by the contraction lemma 1.2 there exists a unique fixed point $y \in A_{y_0}$. This y is a solution to the initial value problem by lemma 1.1.

The Cotangent Bundle

1. Line Integrals

1.1. The Winding Number*.

Definition 1.1 (Winding Number). Let $z_0 \in \mathbb{C}$ and $\gamma : [a, b] \to \mathbb{C} \setminus \{z_0\}$ be a piecewise continuously differentiable closed path. Then

$$W(\gamma, z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} \tag{11}$$

is called the **winding number** of γ around z_0 .

Proposition 1.1. Let $z_0 := x_0 + iy_0 \in \mathbb{C}$ and $\gamma : [a,b] \to \mathbb{C} \setminus \{z_0\}$ be a piecewise continuously differentiable closed path. Then

$$W(\gamma, z_0) = \int_{\gamma} \omega \tag{12}$$

where $\omega \in \Omega^1(\mathbb{R}^2 \setminus \{z_0\})$ is given by

$$\omega := \frac{1}{2\pi} \frac{(x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x}{(x - x_0)^2 + (y - y_0)^2}.$$
 (13)

Proof. This immediately follows from

$$\int_{\gamma} \frac{\mathrm{d}z}{z - z_0} = \int_{\gamma} \frac{\mathrm{d}x + i \,\mathrm{d}y}{(x + iy) - (x_0 + iy_0)}
= \int_{\gamma} \frac{\mathrm{d}x + i \,\mathrm{d}y}{(x - x_0) + i(y - y_0)} \frac{(x - x_0) - i(y - y_0)}{(x - x_0) - i(y - y_0)}
= \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}x + ((x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x) + (y - y_0) \,\mathrm{d}y}{(x - x_0)^2 + (y - y_0)^2}
= \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}x + (y - y_0) \,\mathrm{d}y}{(x - x_0)^2 + (y - y_0)^2} + i \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x}{(x - x_0)^2 + (y - y_0)^2}
= i \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x}{(x - x_0)^2 + (y - y_0)^2}$$

by the fundamental theorem for line integrals [Lee13, p. 291] since

$$d\left(\frac{1}{2}\log\left((x-x_0)^2+(y-y_0)^2\right)\right) = \frac{(x-x_0)\,dx+(y-y_0)\,dy}{(x-x_0)^2+(y-y_0)^2}.$$

Remark 1.1. By proposition 1.1, the definition of the winding number in complex analysis given by definition 1.1 coincides with the one usually given in algebraic topology (see for example [Ful95, pp. 19–20]).

Tensors

1. Multilinear Algebra

We follow the terminology established in [Lee13, p. 312].

Definition 1.1. Let V be a finite-dimensional real vector space and $k, l \in \mathbb{Z}$ where $k, l \geq 0$. Then we define the **space of mixed tensors of type** (k, l) on V by

$$T^{(k,l)}(V) := \underbrace{V \otimes \cdots \otimes V}_{k} \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{l}$$
 (14)

if $(k, l) \neq (0, 0)$ and

$$T^{(0,0)}(V) := \mathbb{R} \tag{15}$$

otherwise.

Proposition 1.1 (Tensor Characterization Lemma). Let V be a finite-dimensional real vector space and $k, l \in \mathbb{Z}$ where $k \geq 1$, $l \geq 0$ and $(k, l) \neq (1, 0)$. Then

$$T^{(k,l)}(V) \cong L\left((V^*)^{k-1}, V^l; V\right).$$
(16)

Lemma 1.1.

Proof. Define

$$\Phi: V^k \times (V^*)^l \to L\left((V^*)^{k-1}, V^l; V\right)$$

by letting

$$\Phi(v,\varphi)(\psi,w) := \varphi_1(w_1) \cdots \varphi_l(w_l) \psi_1(v_1) \cdots \psi_{k-1}(v_{k-1}) v_k.$$

It is easyily checked that $\Phi(v,\varphi) \in L\left((V^*)^{k-1},V^l;V\right)$ and that Φ is multi-linear. By the characteristic property of the tensor product space [Lee13, p. 309] there exists a unique linear mapping

$$\widetilde{\Phi}: V^{\otimes k} \otimes (V^*)^{\otimes l} \to \mathcal{L}\left((V^*)^{k-1}, V^l; V\right)$$

such that

$$\Phi = \widetilde{\Phi} \circ \pi$$
.

Now we claim that $\ker \widetilde{\Phi} = \{0\}$. Let $v \otimes \varphi \in \ker \widetilde{\Phi}$ and assume that $v, \varphi \neq 0$. Hence we find $w \in V^l$ such that $\varphi_i(w_i) \neq 0$ for all $i = 1, \ldots, l$. Furthermore since $v_1, \ldots, v_k \neq 0$, we find $\psi \in (V^*)^{k-1}$ such that $\psi_i(v_i) \neq 0$ for all $i = 1, \ldots, k-1$. For example, if (e_j) is a basis of V then $v_i = r_i^j e_i$ where at least one $r_i^j \neq 0$, say r_i^k . Then let $\psi_i := e_k^*$ where (e_j^*) denotes the corresponding basis of V^* . Then

$$\widetilde{\Phi}(v,\varphi)(\psi,w) = \varphi_1(w_1)\cdots\varphi_l(w_l)\psi_1(v_1)\cdots\psi_{k-1}(v_{k-1})v_k \neq 0.$$

Contradiction. Thus the claim holds and we get that $\widetilde{\Phi}$ is injective. Since $\dim (V^{\otimes k} \otimes (V^*)^{\otimes l}) = (\dim V)^{k+l} = \dim (L((V^*)^{k-1}, V^l; V))$ by [Lee13, p. 309]

2. Pullbacks of Tensor Fields

Exercise 2.1 (Properties of Tensor Pullbacks). Suppose $F: M \to N$ is a smooth mapping and A, B are covariant tensor fields on N. Then

(a)
$$F^*(A \otimes B) = F^*A \otimes F^*B$$
.

Solution 2.1. Let $p \in M$. Then we have

$$(F^*(A \otimes B))_p (v_1, \dots, v_{k+l}) = (A \otimes B)_{F(p)} (dF_p(v_1), \dots, dF_p(v_{k+l}))$$

$$= (A_{F(p)} \otimes B_{F(p)}) (dF_p(v_1), \dots, dF_p(v_{k+l}))$$

$$= A_{F(p)} (dF_p(v_1), \dots, dF_p(v_k)) B_{F(p)} (dF_p(v_{k+1}), \dots, dF_p(v_{k+l}))$$

$$= (F^*A)_p (v_1, \dots, v_k) (F^*B)_p (v_{k+1}, \dots, v_{k+l})$$

$$= ((F^*A)_p \otimes (F^*B)_p) (v_1, \dots, v_{k+l})$$

$$= (F^*A \otimes F^*B)_p (v_1, \dots, v_{k+l})$$

for all $v_1, \ldots, v_{k+l} \in T_pM$.

Orientations

1. Orientations of Vector Spaces

Exercise 1.1. Let V be a vector space of dimension $n \ge 1$. Define a relation \sim on the set of all ordered bases of V by

$$(v_1, \dots, v_n) \sim (w_1, \dots, w_n) \quad \Leftrightarrow \quad \det B > 0$$

where B denotes the transition matrix defined by $w_j = B_j^i v_i$. Show that \sim is an equivalence relation and that $|X/\sim| = 2$.

Solution 1.1. Clearly $(v_1, \ldots, v_n) \sim (v_1, \ldots, v_n)$ by $v_j = \delta_j^i v_i$. Assume $(v_1, \ldots, v_n) \sim (w_1, \ldots, w_n)$. Thus B defined by $w_j = B_j^i v_i$ has a positive determinant. But then by $\det(B^{-1}) = (\det(B))^{-1}$ also $\det(B^{-1})$ is positive and $v_j = (B^{-1})_j^i w_i$. Hence $(w_1, \ldots, w_n) \sim (v_1, \ldots, v_n)$. Lastly, assume that also $(w_1, \ldots, w_n) \sim (u_1, \ldots, u_n)$. Hence there exists a matrix A such that $u_j = A_j^i w_i$ where $\det(A) > 0$. Thus $u_j = A_j^i w_i = A_j^i (B_i^k v_k) = (A_j^i B_i^k) v_k$ and by $\det(AB) = \det(A) \det(B) > 0$ we get that $(v_1, \ldots, v_n) \sim (u_1, \ldots, u_n)$. Hence \sim is an equivalence relation.

By [Gri07, p. 335] every vector space has a basis. Let us denote it by (v_1, \ldots, v_n) . Therefore

$$(\widetilde{v}_1,\ldots,\widetilde{v}_n):=(-v_1,\ldots,v_n)$$

is also a basis for V simply by considering the transition matrix

$$\widetilde{B} := \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

defined by $v_j = \widetilde{B}_j^i \widetilde{v}_i$. Let (w_1, \dots, w_n) be an ordered basis for V. Let the transition matrix B be defined by $w_j = B_j^i v_i$. If $\det(B) > 0$, we have that

$$(w_1,\ldots,w_n)\sim (v_1,\ldots,v_n).$$

Otherwise, if det(B) < 0

$$w_j = B_j^i v_i = B_j^i \left(\widehat{B}_i^k \widehat{v}_k \right) = \left(B_j^i \widehat{B}_i^k \right) \widehat{v}_k$$

together with $det(B\widehat{B}) = det(B) det(\widehat{B}) > 0$ yields

$$(w_1,\ldots,w_n)\sim (\widetilde{v}_1,\ldots,\widetilde{v}_n).$$

Since $det(B) \neq 0$ by the nonsingularity of B, we have that there are exactly two equivalence classes

$$[(v_1,\ldots,v_n)]_{\sim}$$
 and $[(-v_1,\ldots,v_n)]_{\sim}$.

20

Symplectic Forms

1. Symplectic Linear Algebra

Exercise 1.1. Let V be a finite dimensional real vector space and ω be a 2-covector on V. Then Ω is nondegenerate if and only if for each nonzero $v \in V$ there exists $w \in V$ such that $\omega(v, w) \neq 0$.

Solution 1.1. We have that

$$\ker \widehat{\omega} = \{ v \in V : \forall w \in V (\omega(v, w) = 0) \}.$$

Hence if ω is nondegenerate we have that $\widehat{\omega}$ is an isomorphism and thus $\ker \widehat{\omega} = \{0\}$. Conversly, we have that $\ker \widehat{\omega} = \{0\}$ and since $\dim V = \dim V^*$, we have that $\widehat{\omega}$ is an isomorphism.

Exercise 1.2. Let (V, ω) be a symplectic vector space and $S, T \subseteq V$ be linear subspaces.

- $\begin{array}{l} \text{(a)} \ \dim S + \dim S^\omega = \dim V. \\ \text{(b)} \ \left(S^\omega\right)^\omega = S. \end{array}$
- (c) $S \subseteq T \Leftrightarrow T^{\omega} \subseteq S^{\omega}$.
- (d) $\omega|_S$ nondegenerate $\Leftrightarrow S \cap S^\omega = \{0\} \Leftrightarrow V = S \oplus S^\omega$.
- (e) If $S \subseteq S^{\omega}$, then dim $S \leq \frac{1}{2} \dim V$.
- (f) If S is of codimension 1, then S is coisotropic.
- (g) S lagrangian $\Leftrightarrow S$ isotropic and coisotropic $\Leftrightarrow S = S^{\omega}$.

Solution 1.2. For proving (a), consider the mapping $\Phi: V \to S^*$ defined by $\Phi(v) := \omega(v,\cdot)|_{S}$. Clearly, $\ker \Phi = S^{\omega}$. Let $\varphi \in S^{*}$. By exercise B.13 [Lee13, p. 623, there exists an extension $\widehat{\varphi} \in V^*$ of φ . Since $\widehat{\omega}$ is an isomorphism, there exists $v \in V$ such that $\widehat{\varphi} = \omega(v, \cdot)$. This implies $\widehat{\varphi}|_S = \omega(v, \cdot)|_S$. Hence we get that Φ is surjective and thus $\Phi(V) = S^*$. Hence the rank-nullity law [Lee13, p. 627] implies that

$$\dim V = \dim S^* + \dim S^{\omega} = \dim S + \dim S^{\omega}.$$

For proving (b), let $v \in S$. Then for any $u \in S^{\omega}$ we have that $\omega(v,u) =$ $-\omega(u,v)=0$ and thus $S\subseteq (S^{\omega})^{\omega}$. Hence S is a linear subspace of $(S^{\omega})^{\omega}$. Furthermore part (a) yields

$$\dim S = \dim V - \dim S^{\omega} = \dim (S^{\omega})^{\omega}$$

Thus exercise B.4. (b) [Lee13, p. 620] implies that $(S^{\omega})^{\omega} = S$.

For (c), suppose that $S \subseteq T$ and let $v \in T^{\omega}$. Then for any $u \in S$ we have that $\omega(v,u)=0$ and thus $T^{\omega}\subseteq S^{\omega}$. Conversly, suppose that $T^{\omega}\subseteq S^{\omega}$. By part (b) we can also show that $(S^{\omega})^{\omega} \subseteq (T^{\omega})^{\omega}$. But this holds as one can easily see. Thus $S \subseteq T$ and the statement follows.

For (d), we show the two equivalences separately. We have that

$$\ker \widehat{\omega|_S} = \{v \in S : \forall w \in S \, (\omega(v, w) = 0)\} = S \cap S^{\omega}.$$

So $\omega|_S$ is nondegenerate if and only if $S \cap S^{\omega} = \{0\}$. For the second equivalence, assume that $S \cap S^{\omega} = \{0\}$. Then by [Fis14, p. 100] and part (a) we have that

 $\dim(S+S^{\omega}) = \dim S + \dim S^{\omega} - \dim(S \cap S^{\omega}) = \dim S + \dim S^{\omega} = \dim V.$

Thus exercise B.4. (b) [Lee13, p. 620] implies that $S + S^{\omega} = V$. Since $S \cap S^{\omega} = \{0\}$ holds, we have $V = S \oplus S^{\omega}$ by [Fis14, p. 101]. The other implication follows simply by definition of the direct sum.

(e) directly follows from (a) and [Lee13, p. 620] since

$$2\dim S \le \dim S + \dim S^{\omega} = \dim V.$$

For (f) let S have codimension 1. Hence by part (a) we get that $\dim S^{\omega}=1$. Thus any element in S^{ω} can be written as λv , where $\lambda \in \mathbb{R}$ and $v \in S^{\omega} \setminus \{0\}$. Hence $\omega(\lambda v, \mu v) = \lambda \mu \omega(v, v) = 0$ and thus $S^{\omega} \subseteq (S^{\omega})^{\omega}$ which is by part (b) equivalent to $S^{\omega} \subseteq S$. For proving (g), we first observe that the second equivalence is trivial. Now assume that S is lagrangian. From part (a) immediately follows that $\dim S = \dim S^{\omega}$. Since $S \subseteq S^{\omega}$ we get that $S = S^{\omega}$. Conversly, assume that $S = S^{\omega}$. Using again part (a) we get that $S = \dim S = \dim S = \dim S$.

Symplectic Form on the Cotangent Bundle

1. Symplectic Volume

Exercise 1.1.

- (a) If $\omega \in \Lambda^2(V^*)$, then $\omega = \sum_{i=1}^n e_i^* \wedge f_i^*$.
- (b)
- (c) Deduce that any symplectic manifold (M,ω) is canonically oriented. Does the Möbius band admit a symplectic structure?
- (d)

Solution 1.1. For (a), we adapt the notation introduced in [Lee13, pp. 351–354] and use the result about a basis of $\Lambda^k(V^*)$. Letting

$$(\varepsilon^1, \dots, \varepsilon^{k+2n}) := (u_1^*, \dots, u_k^*, e_1^*, \dots, e_n^*, f_1^*, \dots, f_n^*)$$

where $(u_1, \ldots, u_k, e_1, \ldots, e_n, f_1, \ldots, f_n)$ is the basis of V obtained in [Sil08, p. 3]. Then we get

$$\begin{split} &\omega = \sum_{\{I: 0 \leq i_1 < i_2 \leq k + 2n\}} \omega_I \varepsilon^I \\ &= \sum_{\{I: 1 \leq i_1 \leq k, i_1 < i_2 \leq k + 2n\}} \omega(u_{i_1}, \varepsilon^{i_2}) \varepsilon^I + \sum_{\{I: k < i_1 < i_2 \leq k + n\}} \omega(e_{i_1}, e_{i_2}) \varepsilon^I \\ &\quad + \sum_{\{I: k < i_1 \leq k + n < i_2 \leq k + 2n\}} \omega(e_{i_1}, f_{i_2}) \varepsilon^I + \sum_{\{I: k + n < i_1 < i_2 \leq k + 2n\}} \omega(f_{i_1}, f_{i_2}) \varepsilon^I \\ &= \sum_{\{I: k < i_1 \leq k + n < i_2 \leq k + 2n\}} \delta^{i_1}_{i_2 - n} \varepsilon^I \\ &= \sum_{\{k < i_1 \leq k + n\}} \varepsilon^{i_1(i_1 + n)} \\ &= \sum_{i = 1}^n e_i^* \wedge f_i^* \end{split}$$

by [Lee13, p. 356].

For (c), part (a) implies that $(\omega_p)^n \neq 0$ for all $p \in M$. Thus $\omega^n \neq 0$. Clearly, ω^n is a top form. Thus by [Lee13, p. 381], ω^n induces a unique orientation on M. Since the Möbius band is not orientable by [Lee13, p. 393], we have that the Möbius band does not admit a symplectic structure.

Exercise 1.2. Let (M, ω) be a 2n-dimensional compact symplectic manifold.

- (a) Show that $[\omega^n] \in H^{2n}_{dR}(M)$ is nonzero.
- (b) Conclude that $[\omega] \neq 0$.
- (c) \mathbb{S}^{2n} does not admit a symplectic structure for n > 1.

Solution 1.2. For (a), assume that $[\omega^n] = 0$. Thus there exists an exact form $\alpha \in \Omega^{2n}(M)$, such that $\omega^n + \alpha = 0$. Hence there exists $\beta \in \Omega^{2n-1}(M)$, such that $\omega^n + \mathrm{d}\beta = 0$. By exercise 1.1 (c) we have that ω^n determines a unique orientation of M for which ω^n is positively oriented. Hence linearity, positivity and Stoke's theorem [Lee13, pp. 407,411] yield

$$0 < \int_{M} \omega = -\int_{M} \mathrm{d}\beta = \int_{\partial M} \beta = 0.$$

since $\partial M = \emptyset$. Contradiction.

For (b), we use that one can define a product for cohomology classes (see [Lee13, p. 464]). Then one has that $[\omega^n] = [\omega]^n$.

For (c), by [Lee13, p. 450] we have that $H^2_{\mathrm{dR}}(\mathbb{S}^{2n}) \cong 0$. Hence if \mathbb{S}^{2n} admits a symplectic structure ω , then by part (b) we would have $[w] \neq 0$, which contradicts the fact that $H^2_{\mathrm{dR}}(\mathbb{S}^{2n}) \cong 0$.

Lagrangian Submanifolds

1. Tautological Form and Symplectomorphisms

Exercise 1.1. Let M and N be smooth manifolds, $F: M \to N$ a diffeomorphism and $A \in \Gamma(T^{(0,k)}TN)$, $k \in \mathbb{Z}$, $k \ge 1$. Then

$$F^*A(X_1, \dots, X_k) = A(F_*X_1, \dots, F_*X_k) \circ F$$
(18)

holds for all $X_1, \ldots, X_k \in \mathfrak{X}(M)$.

Solution 1.1. Let $p \in M$. Then

$$F^*A(X_1, ..., X_k)(p) = (F^*A)_p(X_1|_p, ..., X_k|_p)$$

$$= A_{F(p)} \left(dF_p(X_1|_p), ..., dF_p(X_k|_p) \right)$$

$$= A_{F(p)} \left((F_*X_1)_{F(p)}, ..., (F_*X_k)_{F(p)} \right)$$

$$= A \left(F_*X_1, ..., F_*X_k \right) (F(p)).$$

Exercise 1.2.

(a) Let (M, ω) be a symplectic manifold and $\alpha \in \Omega^1(M)$ such that $\omega = -d\alpha$. Furthermore, let $g: M \to M$ be a diffeomorphism such that $g^*\alpha = \alpha$. Then there exists a unique vector field $X \in \mathfrak{X}(M)$, such that $X \sqcup \omega = -\alpha$ and

$$\rho_t \circ g = g \circ \rho_t \tag{19}$$

holds, where $\rho: D \to M$ is the local flow generated by X.

Solution 1.2. For (a), we observe that $\widehat{\omega}:TM\to T^*M$ is a smooth bundle isomorphism (see [Lee13, p. 341]). Thus we define $X:M\to TM$ by

$$X := -\widehat{\omega}^{-1}(\alpha).$$

As a composition of smooth maps, X is smooth and clearly, it is a section of the projection $\pi:TM\to M$ by definition. Hence $X\in\mathfrak{X}(M)$. Furthermore $X\sqcup\omega=\widehat{\omega}(X)=-\alpha$.

Let ρ denote the flow of X and define

$$\theta_t := g \circ \rho_t \circ g^{-1}, \qquad t \in \mathbb{R}.$$

Then we have that

$$\theta_0 = g \circ \rho_0 \circ g^{-1} = g \circ \mathrm{id}_M \circ g^{-1} = \mathrm{id}_M$$

and for $t \in \mathbb{R}$, $p \in M$

$$\begin{split} \left(\theta^{(p)}\right)'(t) &= \left(g \circ \rho^{(g^{-1}(p))}\right)'(t) \\ &= \mathrm{d}g_{\rho^{(g^{-1}(p))}(t)} \left(\rho^{(g^{-1}(p))}\right)'(t) \\ &= \mathrm{d}g_{\rho^{(g^{-1}(p))}(t)} X_{\rho^{(g^{-1}(p))}(t)} \\ &= \left(g_* X\right)_{g(\rho^{(g^{-1}(p))})(t)} \\ &= \left(g_* X\right)_{\theta^{(p)}(t)}. \end{split}$$

Since $g * \alpha = \alpha$ and $\omega = -d\alpha$, we have that g is a symplectomorphism. Indeed, we have that

$$g^*\omega = g^*(-d\alpha) = -d(g^*\alpha) = -d\alpha = \omega.$$

by [Lee13, p. 366]. Let $Y \in \mathfrak{X}(M)$. Then by exercise 1.1 we have that

$$\omega(g_*X,Y) \circ g = (g^*\omega)(X,g_*^{-1}Y)$$

$$= \omega(X,g_*^{-1}Y)$$

$$= (X \perp \omega)(g_*^{-1}Y)$$

$$= -\alpha(g_*^{-1}Y) \circ g^{-1}$$

$$= -(g^*\alpha)(g_*^{-1}Y)$$

$$= -\alpha(Y) \circ g$$

$$= (X \perp \omega)(Y) \circ g$$

$$= \omega(X,Y) \circ g.$$

Thus $\omega(g_*X,Y)=\omega(X,Y)$ for all $Y\in\mathfrak{X}(M)$. Since $\widehat{\omega}:\mathfrak{X}(M)\to\mathfrak{X}^*(M)$ is an isomorphism, we get that $g_*X=X$. We deduce that the local flow θ is also generated by X and thus by uniqueness [Lee13, p. 212] we deduce that $\theta=\rho$ which implies $\theta_t=\rho_t$ and thus by definition of θ , $\rho_t\circ g=g\circ\rho_t$. For (b), let $X:=X^i\frac{\partial}{\partial x^i}+Y^i\frac{\partial}{\partial \xi^i}$. We calculate

$$X \perp \omega = \sum_{i=1}^{n} (X \perp (\mathrm{d}x^{i} \wedge \mathrm{d}\xi^{i}))$$
$$= \sum_{i=1}^{n} ((X \perp \mathrm{d}x^{i}) \wedge \mathrm{d}y^{i}) - \mathrm{d}x^{i} \wedge (X \perp \mathrm{d}\xi^{i}))$$
$$= \sum_{i=1}^{n} (X^{i} \, \mathrm{d}\xi^{i} - Y^{i} \, \mathrm{d}x^{i}).$$

Since $X \perp \omega = -\alpha$, we get that

$$X = \xi^i \frac{\partial}{\partial \xi^i}.$$

Define an isotopy $\rho : \mathbb{R} \times T^*M \to T^*M$ by $\rho(t,p) := (x,e^t\xi)$, where $p = (x,\xi)$. Then we have that $\rho_0 = \mathrm{id}_M$ and

Dolbeault Theory

1. Tensor Characterization Lemma

Definition 1.1. Let $k, l \in \mathbb{Z}$, $k, l \geq 0$ and M a smooth manifold. Then the bundle of mixed tensors of type (k, l) is defined by

$$T^{(k,l)}TM := \prod_{p \in M} T^{(k,l)}(T_p M). \tag{20}$$

Proposition 1.1. The bundle of mixed tensors of type (k,l) has a unique natural structure as a smooth vector bundle of rank n^{k+l} over M.

Proof. For each $p \in M$ let $E_p := T^{(k,l)}(T_pM)$. By [Lee13, p. 57] and [Lee13, p. 313] dim $E_p = n^{k+l}$. Furthermore, let $E := T^{(k,l)}TM$ and $\pi : E \to M$ be defined by $\pi(p,A) := p$. Let $\{(U_\alpha, \varphi_\alpha) : \alpha \in A\}$ be an atlas for M. For each $\alpha \in A$ define

$$\Phi_{\alpha}: \begin{cases} \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n^{k+l}} \\ (p, A) \mapsto (p, (A_{i_{1} \dots i_{k}}^{i_{1} \dots i_{k}})) \end{cases}$$

Clearly, the inverse is given by

$$\Phi_{\alpha}^{-1}: \begin{cases} U_{\alpha} \times \mathbb{R}^{n^{k+l}} \to \pi^{-1}(U_{\alpha}) \\ \left(p, (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}})\right) \mapsto (p, A) \end{cases}$$

Hence each Φ_{α} is bijective. Now we have to check, that $\Phi_{\alpha}|_{E_p}$ is an isomorphism. So let $\lambda \in \mathbb{R}$ and $B \in E_p$. Then

$$\begin{split} \Phi_{\alpha}|_{E_{p}}(p,\lambda A + B) &= \left(p, (\lambda A + B)_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}}\right)\right) \\ &= \left(p, \lambda (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}}) + (B_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}})\right) \\ &= \lambda \Phi_{\alpha}|_{E_{p}}(p,A) + \Phi_{\alpha}|_{E_{p}}(p,B). \end{split}$$

Now let $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. We consider the mapping

$$\Phi_{\alpha} \circ \Phi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n^{k+l}} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n^{k+l}}.$$

Define $\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n^{k+l}, \mathbb{R})$ by

$$\tau_{\alpha\beta}:=(\delta^i_j).$$

Then we have that

$$(\Phi_\alpha\circ\Phi_\beta^{-1})\left(p,(A^{i_1\dots i_k}_{j_1\dots j_l})\right)=\left(p,(A^{i_1\dots i_k}_{j_1\dots j_l})\right)=\left(p,\tau_{\alpha\beta}(p)(A^{i_1\dots i_k}_{j_1\dots j_l})\right).$$

Since $\tau_{\alpha\beta}$ is constant, it is smooth (see [Lee13, p. 36]). Hence we can apply the vector bundle chart lemma [Lee13, p. 253] and the result follows.

What follows is a reformulation of the smoothness criteria for tensor fields ([Lee13, pp. 317–318]) for tensor fields of type (1, k).

Proposition 1.2 (Smoothness Criteria for Tensor Fields). Let M be smooth manifold and let $A: M \to T^{(1,k)}TM$ be a rough section. Then the following are equivalent:

- (a) $A \in \Gamma(T^{(1,k)}TM)$.
- (b) In every smooth coordinate chart, the component functions of A are smooth.
- (c) For all $X_1, \ldots, X_k \in \mathfrak{X}(M)$, the rough section $A(X_1, \ldots, X_k) : M \to TM$ defined by

$$A(X_1, \dots, X_k)(p) := A_p(X_1|_p, \dots, X_k|_p)$$
 (21)

is a smooth vector field.

(d) If $X_1, ..., X_k$ are smooth vector fields on some open subset $U \subseteq M$, then also $A(X_1, ..., X_k)$ is a smooth vector field on U.

Proof. We prove (a) \Leftrightarrow (b) and (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (b).

To prove (a) \Leftrightarrow (b), let $(U,(x^i))$ be a smooth chart. Actually, we can prove this for general tensor fields of type (k,l). Proposition 1.1 together with the proof of the vector bundle chart lemma [Lee13, pp. 253–254] implies, that the corresponding chart on $T^{(k,l)}TM$ is given by $(\pi^{-1}(U),\widetilde{\varphi})$, where $\widetilde{\varphi}:\pi^{-1}(U)\to\varphi(U)\times\mathbb{R}^{n^{k+l}}$ is defined by

$$\widetilde{\varphi} := (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \circ \Phi$$

where $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^{n^{k+l}}$ is given as in the proof of proposition 1.1. Now we consider the coordinate representation \widehat{A} in the given charts (see [Lee13, p. 35]). Since A is a rough section, we have that

$$A^{-1}(\pi^{-1}(U)) = (\pi \circ A)^{-1}(U) = \mathrm{id}_M^{-1}(U) = U.$$

Hence $\varphi(U \cap A^{-1}(\pi^{-1}(U))) = \varphi(U)$, which is open, and $\widehat{A}: \varphi(U) \to \widetilde{\varphi}(\pi^{-1}(U))$ is given by

$$\begin{split} \widehat{A}(x) &= (\widetilde{\varphi} \circ A \circ \varphi^{-1})(x) \\ &= (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \left(\Phi(\varphi^{-1}(x), A_{\varphi^{-1}(x)}) \right) \\ &= (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \left(\varphi^{-1}(x), \left(A_{j_1 \dots j_l}^{i_1 \dots i_k} (\varphi^{-1}(x)) \right) \right) \\ &= \left(x, \left(\widehat{A}_{j_1 \dots j_l}^{i_1 \dots i_k} (x) \right) \right). \end{split}$$

By [Lee13, p. 35] A is smooth if and only if in any chart \widehat{A} is smooth. This is furthermore equivalent to that each $\widehat{A}_{j_1...j_l}^{i_1...i_k}$ is smooth and thus equivalent to that $A_{j_1...j_l}^{i_1...i_k}$ is smooth (see [Lee13, p. 33]).

To prove (b) \Rightarrow (c), let $(U,(x^i))$ be a smooth chart. Then write $X_1,\ldots,X_k \in \mathfrak{X}(M)$ as

$$X_{\nu} = X_{\nu}^{\mu_{\nu}} \frac{\partial}{\partial x^{\mu_{\nu}}}.$$

for $\nu = 1, \dots, k$. For $p \in U$ lemma ?? implies

$$A(X_1, \dots, X_n)(p) = A_p(X_1|_p, \dots, X_k|_p)$$

$$= A_p \left(X_1^{\mu_1}(p) \frac{\partial}{\partial x^{\mu_1}} \Big|_p, \dots, X_1^{\mu_k}(p) \frac{\partial}{\partial x^{\mu_k}} \Big|_p \right)$$

$$= X_1^{\mu_1}(p) \cdots X_k^{\mu_k}(p) A_p \left(\frac{\partial}{\partial x^{\mu_1}} \Big|_p, \dots, \frac{\partial}{\partial x^{\mu_k}} \Big|_p \right)$$

$$= X_1^{\mu_1}(p) \cdots X_k^{\mu_k}(p) A_{\mu_1 \dots \mu_k}^i(p) \frac{\partial}{\partial x^i} \Big|_p.$$

By the smoothness criterion for vector fields [Lee13, p. 175] we have that each component function $X_{\nu}^{\mu_n}$ is smooth. Thus if A is smooth, we have by that each $A_{j_1...j_k}^i$ is smooth and since $\mathscr{C}^{\infty}(M)$ is an \mathbb{R} -algebra (see [Lee13, p. 33]), we have that

$$X_1^{\mu_1} \cdots X_k^{\mu_k} A_{\mu_1 \dots \mu_k}^i$$

is smooth for i = 1, ..., n. Thus again by the smoothness criterion together with the localness of smoothness [Lee13, p. 35] we get that $A(X_1, ..., X_k) \in \mathfrak{X}(M)$.

To prove (c) \Rightarrow (d), we use that smoothness is a local property (see [Lee13, p. 35]). Let $p \in U$. Then by [Cat17, p. 14] we find a smooth bump function ψ supported in U and identically equal to 1 on some neighbourhood V of p. Set

$$\widetilde{X}_{\nu}|_{p} := \begin{cases} \psi(p)X_{\nu}|_{p} & p \in \operatorname{supp} \psi \\ 0 & p \in M \setminus \operatorname{supp} \psi \end{cases}.$$

Then the gluing lemma for smooth maps [Lee13, p. 35] implies $\widetilde{X}_1, \ldots, \widetilde{X}_k \in \mathfrak{X}(M)$. Hence by (c) we get that $A(\widetilde{X}_1, \ldots, \widetilde{X}_k) \in \mathfrak{X}(M)$ and so the restriction $A(\widetilde{X}_1, \ldots, \widetilde{X}_k)|_V$ is smooth. But $A(\widetilde{X}_1, \ldots, \widetilde{X}_k)|_V = A(X_1, \ldots, X_k)$ and so we are done.

Lasty to prove (d)⇒(b), each vector field locally defined by

$$X_{j_{\nu}} = \delta_{j_{\nu}}^{\mu_{\nu}} \frac{\partial}{\partial x^{\mu_{\nu}}}.$$

is smooth. Thus by

$$A(X_1, \dots, X_n)(p) = \delta_{j_1}^{\mu_1} \cdots \delta_{j_k}^{\mu_k} A_{\mu_1 \dots \mu_k}^i(p) \frac{\partial}{\partial x^i} \bigg|_p = A_{j_1 \dots j_k}^i(p) \frac{\partial}{\partial x^i} \bigg|_p$$

we get that $A^i_{j_1...j_k}$ is smooth and hence by (b) also A.

Theorem 1.1 (Tensor Characterization Lemma). A mapping

$$\underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_k \to \mathscr{C}^\infty(M) \qquad or \qquad \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_k \to \mathfrak{X}(M)$$

is induced by an element of $\Gamma(T^{(0,k)}TM)$ or $\Gamma(T^{(1,k)}TM)$, respectively, if and only if they are multilinear over $\mathscr{C}^{\infty}(M)$.

Proof. We are proving only the second statement. Any element in $\Gamma(T^{(1,k)}TM)$ induces a mapping $\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ by part (c) of the smoothness criteria for tensor fields 1.2. Thus we have to show that

 \mathscr{A} is multilinear over $\mathscr{C}^{\infty}(M)$. Let $f \in \mathscr{C}^{\infty}(M)$ and $X_{\nu}, \widetilde{X}_{\nu} \in \mathfrak{X}(M)$, $\nu = 1, \ldots, k$. Then for any $p \in M$ we have that

$$\mathcal{A}(X_1, \dots, fX_{\nu} + \widetilde{X}_{\nu}, \dots, X_k)_p = A_p(X_1|_p, \dots, (fX_{\nu} + \widetilde{X}_{\nu})_p, \dots, X_k|_p)$$

$$= A_p(X_1|_p, \dots, f(p)X_{\nu}|_p + \widetilde{X}_{\nu}|_p, \dots, X_k|_p)$$

$$= f(p)A_p(X_1|_p, \dots, X_{\nu}|_p, \dots, X_k|_p)$$

$$+ A_p(X_1|_p, \dots, \widetilde{X}_{\nu}|_p, \dots, X_k|_p)$$

$$= f(p)\mathcal{A}(X_1, \dots, X_{\nu}, \dots, X_k)_p$$

$$+ \mathcal{A}(X_1, \dots, \widetilde{X}_{\nu}, \dots, X_k)_p$$

$$= (f\mathcal{A}(X_1, \dots, X_{\nu}, \dots, X_k)_p)$$

$$+ \mathcal{A}(X_1, \dots, \widetilde{X}_{\nu}, \dots, X_k)_p.$$

Conversly, suppose that $\mathscr{A}: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ is multilinear over $\mathscr{C}^{\infty}(M)$. Let $p \in M$. First we show that \mathscr{A} acts locally, i.e. if $X_{\nu} = \widetilde{X}_{\nu}$ in some neighbourhood U of p implies that also

$$\mathscr{A}(X_1,\ldots,X_{\nu},\ldots,X_k)=\mathscr{A}(X_1,\ldots,\widetilde{X}_{\nu},\ldots,X_k)$$

on U. By the multilinearity of \mathscr{A} it is enough to show that if X_{ν} vanishes on U then so does \mathscr{A} . There exists a smooth bump function ψ for $\{p\}$ supported in U (see [Lee13, p. 44]). Hence $\psi X_{\nu} = 0$ on M and $\psi(p) = 1$. Thus

$$0 = \mathscr{A}(X_1, \dots, \psi X_{\nu}, \dots, X_k)_p = \psi(p) \mathscr{A}(X_1, \dots, X_{\nu}, \dots, X_k)_p.$$

and since $\psi(p) = 1$ we have that

$$\mathscr{A}(X_1,\ldots,X_{\nu},\ldots,X_k)_n=0$$

for any $p \in U$.

Next we show that \mathscr{A} actually acts pointwise, i.e. if $X_{\nu}|_{p}$ vanishes so does \mathscr{A} . Let $(U,(x^{i}))$ be a chart containing p and $X_{\nu} = X_{\nu}^{i} \frac{\partial}{\partial x^{i}}$ on U. The same construction as used showing the implication $(c) \Rightarrow (d)$ in the proof of proposition 1.2 yields the existence of $f^{1}, \ldots, f^{n} \in \mathscr{C}^{\infty}(M)$ and $\widetilde{X}_{1}, \ldots, \widetilde{X}_{n} \in \mathfrak{X}(M)$ such that $f^{i} = X_{\nu}^{i}$ and $\widetilde{X}_{i} = \frac{\partial}{\partial x^{i}}$ on a neighbourhood $V \subseteq U$ of p. Thus by the previous localization, we get that

$$\mathscr{A}(X_1,\ldots,X_{\nu},\ldots,X_k)=\mathscr{A}(X_1,\ldots,f^i\widetilde{X}_i,\ldots,X_k)=f^i\mathscr{A}(X_1,\ldots,\widetilde{X}_i,\ldots,X_k)$$

in U. Since $0 = X^i_{\nu}(p) = f^i(p)$, $\mathscr A$ vanishes at p. Hence $\mathscr A$ depends only on the value of X_{ν} at p. Thus define a rough section $A: M \to T^{(1,k)}TM$ by

$$A_p(v_1,\ldots,v_k) := \mathscr{A}(V_1,\ldots,V_k)(p)$$

where $V_1, \ldots, V_k \in \mathfrak{X}(M)$ are any extensions of $v_1, \ldots, v_k \in T_pM$ (see [Lee13, p. 177]). By the above, the choice of the extensions does not matter and the resulting rough section is smooth by proposition 1.2 part (c), hence $A \in \Gamma(T^{(1,k)}TM)$.

2. Integrability

Definition 2.1. Let (M, J) be an almost complex manifold. For $X, Y \in \mathfrak{X}(M)$ define the **Nijenhuis tensor** N as

$$N(X,Y) := [JX,JY] - J[X,JY] - J[JX,Y] - [X,Y]$$
 (22)

where [X,Y] denotes the usual Lie-bracket of vector fields. Exercise 2.1.

- (a) If $[\cdot, Y] \circ J = J \circ [\cdot, Y]$ for all $Y \in \mathfrak{X}(M)$, then N(X, Y) = 0 for all $X \in \mathfrak{X}(M)$.
- (b) N is actually a tensor.

Solution 2.1. Part (a) simply follows from

$$N(X,Y) = J[X,JY] - J[X,JY] + [X,Y] - [X,Y] = 0.$$

To prove (b), we observe that by the tensor characterization lemma 1.1 it is enough to show that N is multilinear over $\mathscr{C}^{\infty}(M)$. Let $f \in \mathscr{C}^{\infty}(M)$ and $X,Y,Z \in \mathfrak{X}(M)$. Then

$$\begin{split} N(fX+Y,Z) &= [J(fX+Y),JZ] - J\left[fX+Y,JZ\right] - J\left[J(fX+Y),Z\right] \\ &- [fX+Y,Z] \\ &= [fJX+JY,JZ] - J\left[fX+Y,JZ\right] - J\left[fJX+JY,Z\right] \\ &- [fX+Y,Z] \\ &= [fJX,JZ] + [JY,JZ] - J\left[fX,JZ\right] - J\left[Y,JZ\right] - J\left[fJX,Z\right] \\ &- J\left[JY,Z\right] - [fX,Z] - [Y,Z] \\ &= f\left[JX,JZ\right] - (JZf)JX + [JY,JZ] - fJ\left[X,JZ\right] + (JZf)JX \\ &- [Y,JZ] - fJ\left[JX,Z\right] + (Zf)JJX - J\left[JY,Z\right] - f\left[X,Z\right] \\ &+ (Zf)X - [Y,Z] \\ &= fN(X,Z) + N(Y,Z). \end{split}$$

by [Lee13, pp. 187–188]. Linearity in the second argument is shown similarly. Hence $N:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ is bilinear over $\mathscr{C}^\infty(M)$.

Complex Manifolds

1. Complex Projective Space

This is problem 2-11 [Lee11].

Exercise 1.1. Let $f: X \to Y$ be a continuous map between topological spaces, and let \mathcal{B} be a basis for X. Then $f(\mathcal{B}) := \{f(B) : B \in \mathcal{B}\}$ is a basis for Y if and only if f is open and surjective. Deduce that if X is second countable and f open and surjective, then Y is second countable.

Solution 1.1. Assume first that $f(\mathcal{B})$ is a basis for Y. Let $U \subseteq X$ be open. Since \mathcal{B} is a basis for X, we have that $U = \cup_{\iota \in I} B_{\iota}$. Thus by exercise A4. (h) [Lee11, p. 388], we have that $f(U) = \cup_{\iota \in I} f(B_{\iota})$, which is open since $f(B_{\iota})$ is open for each $\iota \in I$. Assume that f is not surjective. Hence we find $g \in Y \setminus f(X)$. Let U be a neighbourhood of g. By exercise 240 [Lee11, p. 33], there exists $f(B) \in f(\mathcal{B})$ such that $g \in f(B) \subseteq U$. But by exercise A.4 (g) [Lee11, p. 388], this implies that $g \in f(X)$ contradiction. Conversly, suppose that $g \in f(X)$ is open and surjective. Thus $g \in f(X)$ is open for any $g \in f(X)$ and thus $g \in f(X)$ is open for $g \in f(X)$ and thus $g \in f(X)$ is open in $g \in f(X)$. Therefore $g \in f(X)$ is continuous, $g \in f(X)$ and by the surjectivity of $g \in f(X)$ we get $g \in f(X)$ by exercise A.7 [Lee11, p. 388]. If $g \in f(X)$ is a countable basis $g \in f(X)$ for $g \in f(X)$ is open and surjective, $g \in f(X)$ is a countable basis for $g \in f(X)$. Since $g \in f(X)$ is a countable basis $g \in f(X)$.

Definition 1.1. Let $n \in \mathbb{Z}$, $n \geq 0$. On $\mathbb{C}^{n+1} \setminus \{0\}$ define an equivalence relation $\sim by$

$$z \sim w \quad :\Leftrightarrow \quad \exists \lambda \in \mathbb{C}^{\times} (z = \lambda w).$$
 (23)

The quotient space of $\mathbb{C}^{n+1} \setminus \{0\}$ under \sim is called the **complex projective** space and is denoted by \mathbb{CP}^n .

Exercise 1.2.

(a) \mathbb{CP}^n is an *n*-dimensional complex manifold.

Solution 1.2. To prove (a), we show first that \mathbb{CP}^n is Hausdorff and second countable. To this end, we observe that \mathbb{CP}^n is precisely the orbit space of the action of \mathbb{C}^{\times} on $\mathbb{C}^{n+1} \setminus \{0\}$ by scalar multiplication, which we will denote by θ . Assume that $(\lambda_n, z_n) \to (\lambda, z)$ in $\mathbb{C}^{\times} \times (\mathbb{C}^{n+1} \setminus \{0\})$. By [Eng89, p. 260], this is equivalent to $\lambda_n \to \lambda$ and $z_n \to z$. Therefore, we have that

$$\theta(\lambda_n, z_n) = \lambda_n z_n \to \lambda z = \theta(\lambda, z).$$

Thus θ is a continuous action and by [Lee13, p. 541] we have that the canonical projection $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ is an open map. Hence by exercise 1.1 \mathbb{CP}^n is second countable.

Let $z_n \to z$ in $\mathbb{C}^{n+1} \setminus \{0\}$ and $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in \mathbb{C}^{\times} such that $\theta(\lambda_n, z_n)$ converges. Since $z_n \to z$ in $\mathbb{C}^{n+1} \setminus \{0\}$, we find a component z^i of z which

is nonzero. Now take a subsequence $z_{n_k}^i$ of z_n^i , such that $z_{n_k}^i \neq 0$. Then $1/z_{n_k}^i \to 1/z^i$ and since $\theta(\lambda_n, z_n)$ converges, also $\lambda_{n_k} z_{n_k}^i$ converges. But then $\lambda_{n_k} = \lambda_{n_k} z_{n_k}^i (1/z_{n_k}^i)$ converges and thus by the characterizations of proper actions [Lee13, p. 543], θ is a proper action. Thus by [Lee13, p. 543], the orbit space \mathbb{CP}^n is Hausdorff.

For $\nu = 1, \dots, n+1$ define

$$U_{\nu} := \{ \pi(z) : z_{\nu} \neq 0 \}$$

and $\varphi_{\nu}: U_{\nu} \to \mathbb{C}^n$

$$\varphi_{\nu}([z_1,\ldots,z_{n+1}]) := \frac{1}{z_{\nu}}(z_1,\ldots,z_{\nu-1},z_{\nu+1},\ldots,z_{n+1}).$$

Since π is an open map, each U_{ν} is open and φ_{ν} is easily checked to be well defined. The inverse $\varphi_{\nu}^{-1}: \mathbb{C}^n \to U_{\nu}$ is given by

$$\varphi_{\nu}^{-1}(z_1,\ldots,z_n) = [z_1,\ldots,z_{\nu-1},1,z_{\nu},\ldots,z_n].$$

Kähler Forms

1. The Fubini-Study Structure

Lemma 1.1. For every $z \in \mathbb{C}^n$ there exists $A \in \mathrm{U}(n)$ such that $Az \in \mathbb{C} \times \{0\}^{n-1}$.

Proof. If z=0, for example $Iz=0\in\mathbb{C}\times\{0\}^{n-1}$. So let us assume that |z|=1. Let (e_{ν}) denote the standard basis of \mathbb{C}^n . Since $z\neq 0$, the set $\{z\}$ is linearly independent and thus by exercise B.4 [Lee13, p. 620] contained in a basis for \mathbb{C}^n , which can be made into an orthonormal basis using the Gram-Schmidt algorithm, say (\tilde{e}_{ν}) , where $\tilde{e}_1=z$. Define a linear mapping $\tilde{A}:\mathbb{C}^n\to\mathbb{C}^n$ by matrix multiplication with $\tilde{A}:=(\tilde{e}_1,\ldots,\tilde{e}_n)$. Clearly $\tilde{A}e_{\nu}=\tilde{e}_{\nu}$ and $\tilde{A}\in \mathrm{U}(n)$. Thus $\tilde{A}^{-1}\in\mathrm{U}(n)$ and $\tilde{A}^{-1}z=e_1\in\mathbb{C}\times\{0\}^{n-1}$. Now set $A:=\tilde{A}^{-1}$. If $|z|\neq 1$, we have that

$$Az = A\left(|z|\frac{z}{|z|}\right) = |z|A\left(\frac{z}{|z|}\right) = |z|e_1 \in \mathbb{C} \times \{0\}^{n-1}.$$
 (24)

Exercise 1.1. (a) The form

$$\frac{i}{2}\partial\overline{\partial}\log\left(\left|z\right|^2+1\right)\tag{25}$$

on \mathbb{C}^n is a Kähler form.

Solution 1.1. For (a), define a smooth function $\rho: \mathbb{C}^n \to \mathbb{R}$ by

$$\rho(z) := \log(|z|^2 + 1).$$

Then we have

$$\frac{\partial^2 \rho}{\partial z_\mu \partial \overline{z}_\nu} = \frac{\partial}{\partial z_\mu} \frac{z_\nu}{|z|^2 + 1} = \frac{\delta_{\nu\mu}}{|z|^2 + 1} - \frac{z_\nu \overline{z}_\mu}{(|z|^2 + 1)^2}.$$
 (26)

Let $A \in \mathrm{U}(n)$. Then

$$A^*\omega_{\mathrm{FS}} = \frac{i}{2}A^*\partial\overline{\partial}\rho = \frac{i}{2}\partial\overline{\partial}A^*\rho = \frac{i}{2}A\partial\overline{\partial}(\rho \circ A) = \frac{i}{2}\partial\overline{\partial}\rho = \omega_{\mathrm{FS}}$$

since

$$|Az|^2 = \langle Az, Az \rangle = z^t A^t \overline{A} \overline{z} = z^t \overline{z} = \langle z, z \rangle = |z|^2$$

for any $z \in \mathbb{C}^n$. Let $p := (a, 0, \dots, 0) \in \mathbb{C} \times \{0\}^{n-1}$. From 26 we deduce that

$$\frac{\partial^2 \rho}{\partial z_\mu \partial \overline{z}_\nu}(p) = \begin{cases} \frac{1}{(|a|^2 + 1)^2} & \nu = \mu = 1\\ \frac{1}{|a|^2 + 1} & \nu = \mu > 1\\ 0 & \nu \neq \mu \end{cases}$$

Therefore the matrix $\left(\frac{\partial^2 \rho}{\partial z_\mu \partial \overline{z}_\nu}(p)\right)$ does have the eigenvalues $\frac{1}{(|a|^2+1)^2}$ and $\frac{1}{|a|^2+1}$ which are both positive. Thus $\left(\frac{\partial^2 \rho}{\partial z_\mu \partial \overline{z}_\nu}(p)\right)$ is positive definite. For (b), we have that $\varphi \circ \varphi = \mathrm{id}_U$ and φ is holomorphic. Furthermore

$$\varphi^* \log (|z|^2 + 1) = \log (|\varphi(z)|^2 + 1)$$

$$= \log \left(\frac{1}{|z_1|^2} \left(1 + \sum_{\nu=2}^n |z_\nu|^2\right) + 1\right)$$

$$= \log \left(\frac{1}{|z_1|^2} (|z|^2 + 1)\right)$$

$$= \log (|z|^2 + 1) + \log \left(\frac{1}{|z_1|^2}\right).$$

For (c), we have that

$$\partial \overline{\partial} \varphi^* \log (|z|^2 + 1) = \partial \overline{\partial} \log (|z|^2 + 1) + \partial \overline{\partial} \log \left(\frac{1}{|z_1|^2} \right)$$
$$= \partial \overline{\partial} \log (|z|^2 + 1) - \partial \overline{\partial} \log z_1 - \partial \overline{\partial} \log \overline{z}_1$$
$$= \partial \overline{\partial} \log (|z|^2 + 1)$$

by part (b) and so

$$\varphi^* \omega_{\rm FS} = \frac{i}{2} \varphi^* \partial \overline{\partial} \rho = \frac{i}{2} \partial \overline{\partial} \varphi^* \rho = \frac{i}{2} \partial \overline{\partial} \rho = \omega_{\rm FS}.$$

For (f), we have that

$$\int_{\mathbb{CP}^{1}} \omega_{FS} = \int_{\mathbb{R}^{2}} \frac{dx \wedge dy}{(x^{2} + y^{2} + 1)^{2}}$$

$$= \int_{\mathbb{R}^{2}} \frac{dx \, dy}{(x^{2} + y^{2} + 1)^{2}}$$

$$= \int_{0}^{\infty} \int_{0}^{2\pi} \frac{r}{(r^{2} + 1)^{2}} \, d\theta \, dr$$

$$= 2\pi \int_{0}^{\infty} \frac{r}{(r^{2} + 1)^{2}} \, dr$$

$$= \pi \int_{1}^{\infty} \frac{ds}{s^{2}}$$

$$= \pi.$$

Bibliography

- [Cat17] Alberto S. Cattaneo. "Notes on Manifolds". 2017. URL: http://user.math.uzh.ch/cattaneo/manifoldsFS15.pdf.
- [Eng89] Ryszard Engelking. *General Topology*. Revised and completed edition. Heldermann Verlag, 1989.
- [Fis14] Gerd Fischer. Lineare Algebra Eine Einführung für Studienanfänger. Grundkurs Mathematik. Springer Spektrum, 2014.
- [Ful95] William Fulton. Algebraic Topology A first Course. Graduate Texts in Mathematics. Springer Science + Business Media, Inc., 1995.
- [Gri07] Pierre Antoine Grillet. Abstract Algebra. Graduate Texts in Mathematics. Springer Science + Business Media, LLC, 2007.
- [KM13] Christian Karpfinger and Kurt Meyberg. Algebra Gruppen Ringe Körper. 3. Auflage. Springer Spektrum, 2013.
- [Lan71] Saunders Mac Lane. Categories for the Working Mathematician. Second Edition. Vol. 5. Graduate Texts in Mathematics. Springer Science + Business Media New York, 1971.
- [Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.
- [Sil08] Ana Cannas da Silva. Lectures on Symplectic Geometry. Lecture Notes in Mathematics 1764. Springer-Verlag Berlin Heidelberg, 2008.
- [Spi94] Michael Spivak. Calculus. Third Edition. Cambridge University Press, 1994.