

DELPHION

RESEARCH

PRODUCTS

INSIDE DELPHION

[Log Out](#) [Work Files](#) [Saved Searches](#)

My Account

Search: Quick/Number Boolean Advanced Derwent

Help

The Delphion Integrated View

Get Now: PDF | More choices...Tools: Annotate | Add to Work File: Create new Work File Add

View: INPADOC | Jump to: Top

Go to: Derwent

Email this to a friend

Title: **JP2002102152A2: ENDOSCOPE**

Derwent Title: Endoscope has curve operating wires enclosed by holding portion of operating section and coupled to main and auxiliary operating sections
[\[Derwent Record\]](#)

Country: JP Japan

Kind: A2 Document Laid open to Public inspection !

[View Image](#)

1 page

Inventor: HAMAZAKI MASANORI;
 OGURA TAKESHI;
 NAKAMURA TOSHIO;
 KAIYA HARUHIKO;

Assignee: OLYMPUS OPTICAL CO LTD
[News, Profiles, Stocks and More about this company](#)

Published / Filed: 2002-04-09 / 2000-10-02

Application Number: JP2000000302471

IPC Code: A61B 1/00; G02B 23/24;

Priority Number: 2000-10-02 JP2000000302471

Abstract: PROBLEM TO BE SOLVED: To provide an endoscope in which a control wire can easily be connected and the control section is small and operable.

SOLUTION: The endoscope 2 has a plurality of bending portions 12 and 13 independently controlled in the insertion section 6 thereof, bending control wires 40, 41 and 48 passing through articulation rings composing the bending portions 12 and 13., one ends of which are fixed to the distal articulation ring of the bending portions 12 and 13 or one articulation ring and the other ends are extended to the control section 7 of the endoscope 2, the control section 7 having the bending control sections 72 and 73 for bending control of the bending portions 12 and 13 and a grip 7a for an operator to grip the endoscope 2. The bending control wires 40, 41 and 48 and the bending control sections 72 and 73 are connected in the grip 7a.

COPYRIGHT: (C)2002,JPO

BEST AVAILABLE COPY

Family: None

Other Abstract Info: DERABS G2002-357366

Nominate this for the Gallery...

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号
特開2002-102152
(P2002-102152A)

(43)登録日 平成14年4月9日(2002.4.9)

(51) Int.Cl.
A 61 B 1/00
G 02 B 23/24

識別記号
310

F I
A 61 B 1/00
G 02 B 23/24

テマコード(参考)
2H040
4C061

審査請求 未請求 請求項の数 1 OL (全 17 頁)

(21) 出願番号 特願2000-302471(P2000-302471)

(71)出願人 000000376
オリンパス光学工業株式会社
東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 沢△崎▽ 昌典
東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

(72)発明者 小倉 刚
東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

(74)代理人 100076233
弁理士 伊藤 遼

最終頁に控ぐ

(54) [発明の名称] 内視鏡

(57) 【要約】

【課題】操作ワイヤの接続作業を容易に行え、操作部が小型で操作性に優れた内視鏡を提供すること。

【解決手段】内視鏡2の挿入部6に独立して操作される複数の湾曲部12, 13を有し、これらの湾曲部12, 13を構成する節輪の内部を通り、各湾曲部12, 13の先端節輪、又は節輪の1つに一端が固定されて他端が内視鏡2の操作部7に延出する湾曲操作ワイヤ40, 41, 48と、各湾曲部12, 13を湾曲操作するための湾曲操作部72, 73及び術者が内視鏡2を把持するための把持部7aを備えた操作部7とを有し、湾曲操作ワイヤ40, 41, 48と湾曲操作部72, 73とを把持部7a内で連結している。

【特許請求の範囲】

【請求項1】 内視鏡挿入部に独立して操作される複数の湾曲部を有し、これらの湾曲部を構成する節輪の内部を通り、各湾曲部の先端節輪、又は節輪の1つに一端が固定されて他端が内視鏡操作部に延出する湾曲操作ワイヤと、各湾曲部を湾曲操作するための湾曲操作手段及び術者が内視鏡を把持するための把持部を備えた操作部とを有する内視鏡において、

前記湾曲操作ワイヤと前記湾曲操作手段とを前記把持部内で連結することを特徴とする内視鏡。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、挿入部に複数の湾曲部を備え、それぞれの湾曲部を機械的に湾曲操作する湾曲操作機構を有する内視鏡に関する。

【0002】

【従来の技術】 複数の湾曲機構を有する内視鏡としては特公昭47-12398号公報の複数段屈曲自在の可撓管（以下可撓管と略記する）が知られている。この可撓管は、主湾曲部と副湾曲部との2つの湾曲部を有し、主湾曲部を操作する主湾曲操作ワイヤと副湾曲部を操作する副操作ワイヤとを備えている。

【0003】 また、本出願人は特願2000-46453号に一般の内視鏡と同様の主湾曲部と、チャンネルを湾曲させるための副湾曲部とを有し、主湾曲部を湾曲させる主操作部と副湾曲部を湾曲させる副操作部とを有する内視鏡を示している。

【0004】

【発明が解決しようとする課題】 しかしながら、前記特公昭47-12398号公報の複数段屈曲自在の可撓管では操作ワイヤ連結部の構造やレイアウトが図示されていなかった。また、湾曲部の節輪に副湾曲部の操作ワイヤを直接接続していたため、主湾曲部と副湾曲部とをそれぞれ独立したユニットとし組み立てることが困難であり、組立て作業性が悪かった。

【0005】 一方、前記特願2000-46453号では一般の内視鏡と同様の主湾曲部と、チャンネルを湾曲させるための副湾曲部とを有し、主湾曲部を湾曲させる主操作部と副湾曲部を湾曲させる副操作部とを有しているが、各操作部と湾曲操作ワイヤとの接続位置に関しては言及されていなかった。また、湾曲部の節輪が例え上下の2方向だけにしか湾曲しない構成なので、左右方向からの外力が加わった場合、湾曲できずに破損するおそれがあった。

【0006】 本発明は上記事情に鑑みてなされたものであり、操作ワイヤの接続作業を容易に行え、操作部が小型で操作性に優れた内視鏡を提供することを目的にしている。

【0007】

【課題を解決するための手段】 本発明の内視鏡は、内視

鏡挿入部に独立して操作される複数の湾曲部を有し、これらの湾曲部を構成する節輪の内部を通り、各湾曲部の先端節輪、又は節輪の1つに一端が固定されて他端が内視鏡操作部に延出する湾曲操作ワイヤと、各湾曲部を湾曲操作するための湾曲操作手段及び術者が内視鏡を把持するための把持部を備えた操作部とを有する内視鏡であって、前記湾曲操作ワイヤと前記湾曲操作手段とを前記把持部内で連結している。

【0008】 この構成によれば、湾曲操作ワイヤと湾曲操作手段との連結部が操作部の把持部内であるので容易に連結を行えるとともに、操作部が小型になる。

【0009】

【発明の実施の形態】 以下、図面を参照して本発明の実施の形態を説明する。図1ないし図4は本発明の第1実施形態に係り、図1は内視鏡システムを説明する図、図2は操作部の構成を説明する図、図3は図2のA方向から操作部内を見たときの図、図4は図3のB-B線で示すカバー部材近傍の断面図である。

【0010】 図1に示すように本実施形態の内視鏡システム1は、後述する内視鏡2と、照明光を供給する光源装置3と、図示しない撮像素子を駆動させる電気信号及び撮像素子から伝送された電気信号を映像信号に生成するビデオプロセッサ4と、この映像信号を受けて内視鏡画像を表示する表示装置であるモニタ5とで構成されている。

【0011】 前記内視鏡2は、体腔内に挿通される挿入部6と、この挿入部6の基端に位置する把持部7aを備えた操作部7と、この操作部7の側部から延出するユニバーサルコード8とで構成されている。

【0012】 前記ユニバーサルコード8の基端部には前記光源装置3に着脱自在に接続される内視鏡コネクタ8aが設けられており、この内視鏡コネクタ8aからは前記ビデオプロセッサ4に接続される電気コネクタ9aを基端部に備えた電気ケーブル9が延出している。

【0013】 前記挿入部6は、先端側から順に先端硬質部11、主湾曲部12、副湾曲部13、可撓管部14を連設している。前記先端硬質部11には図示しない観察光学系、照明光学系、チャンネル開口、送気・送水用ノズル等が設けられている。

【0014】 前記操作部7には、前記主湾曲部12を操作するための湾曲操作手段を構成する主操作部72と副湾曲部13を操作するための湾曲操作手段を構成する副操作部73とが設けられている。

【0015】 前記把持部7aは、主操作部72及び副操作部73よりも挿入部側に設けられている。また、挿入部6と操作部7との連結部には挿入部が座屈することを防止するための操作部折れ止め部材15が取り付けられている。

【0016】 図2に示すように操作部7内には地板21が配置されている。この地板21は操作部7を構成する

骨格部材であり、副操作部外装部材 2 2、主操作部外装部材 2 3、把持部外装部材 2 4 が装着されている。

【0017】主操作部 7 2 が構成される位置の地板 2 1 には第1支柱 3 1 が立設している。この第1支柱 3 1 には上下用スプロケット 3 2 及び左右用スプロケット 3 3 が設けられ、前記操作部外装部材 2 3 の外部に配置されている上下ノブ 3 4 及び左右ノブ 3 5 の回動操作に伴ってそれぞれ回動する構成になっている。

【0018】前記上下用スプロケット 3 2 及び左右用スプロケット 3 3 にはそれぞれ上下用チェーン 3 6 及び左右用チェーン 3 7 とが取り付けられ、それぞれのチェーン 3 6、3 7 の端部には接続部材である上下用連結部 3 8 及び左右用連結部 3 9 を介して、それぞれ上下操作ワイヤ 4 0、左右操作ワイヤ 4 1 が接続されている。そして、前記上下用連結部 3 8 と左右用連結部 3 9 との間にこの上下用連結部 3 8 と左右用連結部 3 9 とが干渉することを防止する第1仕切板 4 3 を設けている。

【0019】一方、前記副操作部 7 3 が構成される位置の地板 2 1 には前記第1支柱 3 1 に並設して第2支柱 4 2 が立設している。この第2支柱 4 2 の地板 2 1 から突出した先端部には副上下用スプロケット 4 4 が設けられ、前記副操作部外装部材 2 2 の外部に配置されている副上下ノブ 4 5 の回動操作に伴って回動するようになっている。

【0020】前記副上下用スプロケット 4 4 には副操作上下用チェーン 4 6 が取り付けられ、この副操作上下用チェーン 4 6 の端部には副上下用連結部 4 7 を介してそれぞれ副上下操作ワイヤ 4 8 が接続されている。

【0021】前記上下操作ワイヤ 4 0、左右操作ワイヤ 4 1、副上下操作ワイヤ 4 8 は、前記地板 2 1 の最も挿入部側面に設けられた隔壁 4 9 に固定されたコイルパイプ 8 3 U、8 3 D、8 3 L、8 3 R、8 6 U、8 6 D 内にそれぞれ挿通されている。

【0022】図3に示すように前記副上下用スプロケット 4 4 に取り付けられている副操作上下用チェーン 4 6 は、チェーンスライダ 5 1 によって延出方向を所定方向に変更されて並行部 5 2 を形成する構成になっている。そして、前記副操作上下用チェーン 4 6 の端部には副上下用連結部 4 7 U、4 7 D を介してそれぞれ副操作ワイヤ 4 8 U、4 8 D が取り付けられている。なお、前記並行部 5 2 を前記操作部 7 の把持部 7 a に対して斜めに傾いた状態で取り付けることによって、副上下用連結部 4 7 のストロークを極力長くとれるようにしている。

【0023】前記副上下用連結部 4 7 U、4 7 D は、第2仕切板 5 3 によって副上下用連結部 4 7 U、4 7 D との干渉が防止されている。また、前記副上下用連結部 4 7 U、4 7 D 及びこの両端部に位置する副操作上下用チェーン 4 6 及び副操作ワイヤ 4 8 U、4 8 D は、他の内蔵物との干渉を防止するため第1カバー部材 5 4 によって覆われている。

【0024】つまり、図4に示すように前記地板 2 1 の一面側に設けた第2仕切板 5 3 及び第1カバー部材 5 4 によって、副操作ワイヤ 4 8 U、4 8 D、副上下用連結部 4 7 U、4 7 D、副操作上下用チェーン 4 6 の並行部 5 2 での干渉が防止されている。

【0025】また、前記地板 2 1 の他面側には十字形状の第3仕切板 5 5 及び第2カバー部材 5 6 を設けて、上下操作ワイヤ 4 0 U、4 0 D、上下用連結部 3 8 U、3 8 D、上下用チェーン 3 6 及び左右操作ワイヤ 4 1 L、4 1 R、左右用連結部 3 9 L、3 9 R、左右用チェーン 3 7 の並行部 5 2 での干渉を防止している。

【0026】このように、挿入部側に位置する把持部内に主湾曲部及び副湾曲部用のチェーンと操作ワイヤとを接続する連結部を配置することによって、操作ワイヤの接続を主湾曲部と副湾曲部とで同時に行うことができる。

【0027】また、地板の一面側と他面側とで別々に操作ワイヤの接続作業を行えるので、主湾曲部用操作ワイヤと副湾曲部用操作ワイヤを取り違えて連結することを防止することができる。これらのことによって、作業性が向上するとともに、誤組立てが確実に防止される。

【0028】図5及び図6は本発明の第2実施形態にかかり、図5は操作部の他の構成を説明する図、図6は操作部に設けたノブを説明する図である。図5及び図6に示すように本実施形態においては、操作部 7 の小型化を図るために副操作部 7 3 であった副上下ノブ 4 5 と、主操作部 7 2 であった上下ノブ 3 4 及び左右ノブ 3 5 とを支柱 6 1 に一体に配置している。

【0029】前記支柱 6 1 には例えば操作部側面側から順に大径で周部の爪形状が大きく爪数が最少の上下ノブ 3 4、この上下ノブ 3 4 より小径で爪形状も小さく爪数を多く設けた左右ノブ 3 5、最も小径で爪形状が小さく爪数の最も多い副上下ノブ 4 5 が同軸に取り付けられている。また、地板 2 1 には、一面側である反ノブ側に副上下用スプロケット 4 4 が設けられ、他面側であるノブ側に上下用スプロケット 3 2 及び左右用スプロケット 3 3 が設けられている。

【0030】なお、本実施形態においては支柱 6 1 に複数のノブを配置する際、上下ノブ 3 4、左右ノブ 3 5、副上下ノブ 4 5 の順にしているが、その順番は本実施形態に限定されるものではない。しかし、ノブの形状については上述した関係にする。また、チェーン 3 6、3 7、4 6 と操作ワイヤ 4 0、4 1、4 8 とを接続する連結部 3 8、3 9、4 7 は把持部 7 a 内である。さらに、把持部 7 a 内のスペースによって、連結部 3 8、3 9、4 7 を地板 2 1 の片側に配置するようにしたり、地板 2 1 の一方側、他方側に振り分けて配置する。その他の構成は前記第1実施形態と同様であり、同部材には同符号を付して説明を省略する。

【0031】このように、主操作部と副操作部とを一体

化することによって操作部のさらなる小型化を図ることができる。その他の作用及び効果は前記第1実施形態と同様である。

【0032】図7及び図8は本発明の第3実施形態にかかり、図7は操作部の別の構成を示す図、図8は把持部内の副操作部の構成を説明する図である。図7及び図8に示すように本実施形態においては主操作部と副操作部との誤操作を防止するため、所定の間隔を設けて主操作部と副操作部とを操作部に配置している。

【0033】図7に示すように本実施形態においては主操作部72を前記第1実施形態と同様の位置に配置する一方、副操作部73を主操作部72より挿入部6側の把持部7aの先端側に配置している。

【0034】図8に示すように副操作部73には副操作ワイヤ48U, 48Dを進退移動させるための操作ノブ62が設けられている。この操作ノブ62を操作することによって、この操作ノブ62に一体な軸部63を介して地板21上に回動自在に取り付けられているドラムリール64が回動動作するようになっている。

【0035】前記ドラムリール64には牽引ワイヤ65U, 65Dが取り付けられており、それぞれの牽引ワイヤ65U, 65Dの主操作部72側に配置された端部には副操作ワイヤ48U, 48Dが連結部66U, 66Dを介して連結されている。この牽引ワイヤ65U, 65Dは、連結部66U, 66Dの移動ストローク分を確保した状態で前記ドラムリール64に接続されている。

【0036】また、前記副操作ワイヤ48U, 48Dは、把持部7aの略中央部に位置するように前記地板21に回動自在に配置されたブーリー67U, 67Dによって、延出方向を180°反転させて前記牽引ワイヤ65U, 65Dに接続されている。そして、前記連結部66U, 66Dは、この連結部66U, 66Dの移動距離より長めのガイド部材68U, 68D内に配置されて、他の内蔵物との引っ掛かりが防止されている。その他の構成は前記第1実施形態と同様であり、同部材に同符号を付して説明を省略する。

【0037】このように、操作ワイヤの延出方向を180°反転させるブーリーを、把持部の略中央部近傍に位置するように地板に回動自在に設けることによって、副操作部を主操作部から離れた位置である把持部先端側に配置することができる。このことによって、主操作部と副操作部とを誤って操作することが防止される。その他の作用及び効果は前記第1実施形態と同様である。

【0038】ここで、図9ないし図18を参照して内視鏡2の主湾曲部12と副湾曲部13との構造を説明する。図9は内視鏡の湾曲部を構成する主湾曲部と副湾曲部とを説明する図、図10は主湾曲部の後端節輪と副湾曲部の先端節輪との関係を示す図、図11は図9のC—C線断面図、図12は図9のD—D線断面図、図13は主湾曲部の節輪の構成例を説明する図、図14は主湾曲

部及び副湾曲部から延びる上ワイヤの挿入方向に関する位置関係を示す図、図15は副湾曲部の節輪の構成例を説明する図、図16は主湾曲部と副湾曲部とを湾曲させた状態を示す図、図17は図16の湾曲状態をE方向から見たときの図、図18は操作ワイヤの配置位置関係を説明する図である。

【0039】図9に示すように前記挿入部6の先端側には複数の節輪12aを上下左右に回動自在に連接して上下左右方向に湾曲するように構成した主湾曲部12が設けられ、この主湾曲部12の基端部には連結口金81を介して複数の節輪13aを上下左右に回動自在に連接して上下方向に湾曲するように構成した副湾曲部13が設けられている。このことにより、上下左右に回動自在な節輪を使用したことにより、患者のあらゆる方向に屈曲する体腔に対して常にスムーズに副湾曲部13が挿入・抜去されるようしている。

【0040】図9及び図11に示すように前記主湾曲部12の先端節輪12fにはこの主湾曲部12を上下方向に湾曲させるための上下操作ワイヤ40U, 40Dの先端部及び左右方向に湾曲させるための左右操作ワイヤ41L, 41Rの先端部が所定位置にロ一付け固定されている。これら上下操作ワイヤ40U, 40D、左右操作ワイヤ41L, 41Rは主湾曲部12の節輪12aに設けられているワイヤ受け82を通って連結口金81に設けられたコイルパイプ83U, 83D, 83L, 83Rに挿通されている。

【0041】一方、前記副湾曲部13においては上下方向に湾曲させるための副操作ワイヤ48U, 48Dの先端部が副湾曲部13の先端節輪13fにロ一付け固定されている。これら副操作ワイヤ48U, 48Dは、副湾曲部13の各節輪13aに設けたワイヤ受け84を通つて可撓管先端口金85に設けたコイルパイプ86U, 86Dに挿通されている。

【0042】図10及び図11に示すように主湾曲部12の後端に位置する後端節輪12eの基端部に形成した凹凸部と、副湾曲部13の先端に位置する先端節輪13fの先端部に形成した凹凸部とは互いに係合した状態で、ビス87によって前記連結口金81に一体的に固定されている。

【0043】図11に示すように前記ビス87は、前記連結口金81の内部にロ一付け固定されている上下左右、それぞれの方向用の操作ワイヤ40U, 40D, 41L, 41Rが挿通する複数のコイルパイプ83U, 83D, 83L, 83Rに干渉しないように、45度程度、傾いた位置関係で配置されている。なお、これらコイルパイプ83U, 83D, 83L, 83Rは、挿入部6内を通過して基端部を前述した操作部7内の隔壁49に固定されている。

【0044】図12に示すように副湾曲部13先端節輪13fにロ一付け固定されている副操作ワイヤ48U,

48Dの直径寸法は、操作ワイヤ40U, 40D, 41L, 41Rの直径寸法に比べて太径なものにして、引張り強度を大きくしている。

【0045】図13に示すように主湾曲部12の節輪12aは、水平軸に対して回動自在な回動部75を有するとともに、垂直軸に対して回動自在な回動部76とを有している。そして、節輪12aに設けたワイヤ受け82に挿通される上下操作ワイヤ40U, 40Dの進退によって回動部75を中心に上下方向に湾曲し、ワイヤ受け82に挿通される左右操作ワイヤ41L, 41Rの進退によって回動部76を中心に左右方向に湾曲する。また、前記副湾曲部13の節輪13aにおいても主湾曲部12同様、水平軸及び垂直軸に対してそれぞれ回動自在である。

【0046】なお、図14に示すように前記上下操作ワイヤ40Uを、主湾曲部12において真上位置に配置し、副湾曲部13において真上位置より僅かにずれた位置に配置することにより、上下操作ワイヤ48Uが挿通するコイルパイプ83Uを真上位置より左右いずれかの方向に僅かに位置ずれした位置に配置させ、副湾曲部13における副操作ワイヤ48Uを真上位置に配置させている。

【0047】このことによって、上下操作ワイヤ40Uと、副操作ワイヤ48Uとが挿入方向に対して一直線上に配置されるので、例えば主湾曲部12、副湾曲部13を共に上方向に湾曲させる場合、主湾曲部12と副湾曲部13とを位置ずれさせることなく湾曲させることができる。このことにより、操作性が向上する。

【0048】この図14では上下操作ワイヤ40Uと副操作ワイヤ48Uの関係を代表して説明したが、この構成は上方向に限定されるものではなく、下方向、左方向、右方向にも適用可能であり、上下左右全てに本構成をとることで所望方向への湾曲操作性が大幅に向上させられる。

【0049】また、前記図13では垂直軸と水平軸とに回動部75, 76を設けて湾曲部12, 13を上下左右に湾曲させるようにしていたが、例えば上下に湾曲させるとき、垂直軸廻りがフリーになり、外力によって左右に動き易い状態である。このため、図15に示すように副湾曲部13の節輪13aに、垂直方向に対して左右に45度傾いた斜め回動軸にそれぞれ斜め回動部77, 78を設ける一方、垂直方向の上下にワイヤ受け82を設けて副操作ワイヤ48U, 48Dを挿通させている。

【0050】このことにより、前記操作ワイヤ48U, 48Dを牽引操作したとき、節輪13aの4つの回動部77, 78が同時に動いた状態で上下方向に湾曲する。つまり、斜め回動部77, 78を有する湾曲部13では上下に湾曲させた際、4つの回動軸全てに力が加わるので、外力によって左右に振れ難くなって安定した操作性を得られる。

【0051】上述のように構成した湾曲部の作用を説明する。前記上下ノブ34を操作して主湾曲部12を例えば下方向に湾曲操作して、前記副上下ノブ45を操作して副湾曲部13を例えば上方向に湾曲操作すると、前記湾曲部12, 13は図16に示すように湾曲する。この湾曲操作のとき、副湾曲部13は、前記主湾曲部12に比べて挿通する内蔵物が多いので、主湾曲部12を湾曲させる際の湾曲力量より大きな湾曲力量が必要になるが、副操作ワイヤ48U, 48Dの直径寸法を、操作ワイヤ40U, 40D, 41L, 41Rの直径寸法より太径にして引張強度を大きくしているので副湾曲部13はスムーズに湾曲動作する。なお、本図において左右ノブ35は左右方向に湾曲操作されていない。

【0052】前記湾曲部12, 13がそれぞれ下方向と上方向とに湾曲している状態のとき、図17に示すように主湾曲部12に対して、例えば右方向から外力Fが加わった場合、前記主湾曲部12及び副湾曲部13は上下左右に湾曲自在に節輪12a, 13aが連接しているので、破線に示すように湾曲して、主湾曲部12を外装している湾曲ゴムと、左右ノブ35の回転によって加わった力を逃がし、副湾曲部13を外装する湾曲ゴムと回転するように連接した節輪13aによって加わった力を逃がしていく。

【0053】このように、連結口金とビスとを用いて複数の節輪を連接した主湾曲部と、複数の節輪を連接した副湾曲部とを組み付ける構成したことによって、主操作部と副操作部とをそれぞれ独立して組み立てができる。このことによって、湾曲部の組立て作業性が大幅に向上する。

【0054】また、連結口金にコイルパイプを予めロー付け固定しておくことにより、組立て作業性が良好である。

【0055】さらに、副上下操作ワイヤを設けた副湾曲部を、上下左右に湾曲自在に構成したことによって、たとえ湾曲操作可能な方向とは異なる方向から外力が加わった場合でも副湾曲部が外力の作用方向に曲がるので、挿抜に不具合が発生することや湾曲部が破損することを防止できる。

【0056】又、副操作ワイヤを操作ワイヤの径寸法より太径に設定して、引張強度を大きくしたことによって、主湾曲部を湾曲させる際の湾曲力量と副湾曲部を湾曲させる際の湾曲力量との強度的なバランスを良好に保つことができるとともに、内視鏡としての総合的な耐性を向上させることができる。

【0057】なお、上下操作ワイヤ40と副上下操作ワイヤ48との配置位置関係を、図18に示すように垂直軸に対して上下操作ワイヤ40が角度α（αは30度以下の鋭角）に傾いた位置に配置させるようにコイルパイプ83をロー付け固定する一方、副上下操作ワイヤ48を垂直軸に対して前記上下操作ワイヤ40と対称な位置

関係となるように角度 $- \alpha$ で傾いた位置に配置されるように先端節輪13fにロー付け固定することによって、例えば上下操作ワイヤ40で α 度傾いて湾曲しても、副上下操作ワイヤ48によって $- \alpha$ 度傾いて湾曲するので湾曲部全体としての傾きが相殺されて所望の湾曲状態を得られる。

【0058】図19(a), (b)を参照して副湾曲部13の他の構成例を説明する。図19(a)の挿入部の構成を説明する図に示すように本実施形態の副湾曲部13に挿通されている副操作ワイヤ48U, 48Dの先端部は、それぞれ先端節輪13fに固定され、基端部は可搬管先端口金85に先端部がロー付け固定されているコイルパイプ86U, 86D内を挿通して隔壁49を通過して操作部7まで延出している。

【0059】前記副操作ワイヤ48Uは、ドラムリール92に巻回配置され基端部をこのドラムリール92の所定位置に固定している。このドラムリール92には副操作部73を構成する副操作レバー93が取り付けられており、この副操作レバー93を回動操作することによってドラムリール92が回動されて副操作ワイヤ48Uが牽引操作されるようになっている。

【0060】このドラムリール92には周方向に細長な切り欠き孔92aが形成されており、この切り欠き孔92aには地板21から突設したストップ96が係入配置されている。

【0061】一方、副操作ワイヤ48Dは、前記隔壁49に一端が密着しているコイルスプリング94内を通して長手方向に進退移動可能に配置されたワイヤストップ95に固定されている。このワイヤストップ95には前記コイルスプリング94の他端が密着している。

【0062】このため、前記ワイヤストップ95は、前記コイルスプリング94の付勢によって図に示すように前記ドラムリール92側に付勢されている。このとき、前記ストップ96は、切り欠き孔92aの一方側に突き当たった状態になって、副湾曲部13が直線状態になる。

【0063】前記副湾曲部13を湾曲させる際には図19(b)の副湾曲部を湾曲させた状態を示す図のように副操作レバー93を手元側に倒す。すると、ドラムリール92が回転移動されて副操作ワイヤ48Uをドラムリール92に巻き付けながら牽引して副湾曲部13が湾曲状態になる。

【0064】このとき、副操作ワイヤ48Dは、先端側に引っ張られるように移動する。このことによって、前記ワイヤストップ95は、コイルスプリング94の付勢力に抗して、つまり、コイルスプリング94を圧縮せながら先端方向に移動する。そして、図に示すようにストップ96が前記切り欠き孔92aの他方側に突き当たった状態にすることによって最大湾曲状態を得られる。したがって、副操作レバー93の倒れ角を適宜調整する

ことによって、副操作ワイヤ48Uによる牽引力と、コイルスプリング94の付勢力によって副湾曲部13の湾曲動作が制御される。

【0065】このように、2本の副操作ワイヤのうち、一方のワイヤをコイルスプリングの付勢力によって所定方向に牽引し、他方のワイヤを操作レバーによって回動されるドラムリールに固定することによって副湾曲部の湾曲動作を行えるので副操作部の構造の簡略化を図ることができる。このことによって、主湾曲部と副湾曲部とを備えた内視鏡が安価に提供される。

【0066】なお、操作部7にコイルスプリング94を配置してワイヤストップ95を付勢する構成の代わりに、図20(a)の挿入部の他の構成を示す図のように副湾曲部13の例えば下方向側内周位置に弾発力を有して、通常状態においては直線状態を維持する弾性シャフト97を各節輪13aの下側シャフト受け98Dに挿通配置するようにしてもよい。このことによって、副操作レバー93を傾けたとき、図20(b)の副湾曲部を湾曲させた状態を示す図のように前記弾性シャフト97の弾発力を抗して副湾曲部13が湾曲する。そして、副操作レバー93の傾きを例えば破線に示す位置に変化させていくことによって、前記弾性シャフト97の弾発力によって副湾曲部13の湾曲状態が破線に示すように変化させられる。

【0067】ここで、図21及び図22を参照して内視鏡の送気/送水について説明する。図21は内視鏡の送気、送水用の管路を説明する図、図22は操作ボタンの操作と送気、送水作用との関係を説明する図である。

【0068】なお、図22(a)は送気・噴霧・送水ボタンのリーク孔を指で塞いで送気を行っている状態を示す図、図22(b)は噴霧を行っている状態を示す図、図22(c)は送水を行っている状態を示す図である。

【0069】図21に示すように本実施形態の内視鏡2は、先端硬質部11に例えば対物レンズ100に先端開口が対向したノズル101を有し、このノズル101に送気・送水管路102が連通している。この送気・送水管路102には送気管路103、送水管路104が連通している。この送気管路103及び送水管路104は、送気・噴霧・送水等を制御する後述する操作ボタンを備えた制御部105に連通している。この制御部105には送気ポンプ106に接続された送気供給用管路107と、送水タンク108に接続された送液供給用管路109が連通している。

【0070】なお、前記送気ポンプ106に接続された送気供給用管路107は途中で分岐されて送水タンク108内に空気を送るようになっている。また、前記送液供給用管路109の端部は液中に没している。さらに、前記送気ポンプ106からの空気圧は、送水タンク108内及び操作ボタンにかかり、通常はこの操作ボタンからリークしている。また、「噴霧」とは送気管路103

と送水管路104との両方の管路を開放状態にして水と空気とが混合されてノズル101から霧状に噴出されることをいう。

【0071】図22(a), (b), (c)を参照して制御部105を説明する。制御部105は、操作部7に設けられた外シリングダ111と、この外シリングダ111に摺動自在で着脱自在に配置されて送気・噴霧・送水を制御する操作部材112とで主に構成されている。

【0072】前記外シリングダ111の周部には下端より順に前記送液供給用管路109の連通部113、送水管路104への連通部114、送気供給用管路107の連通部115、送気管路103への連通部116が設けられている。

【0073】前記外シリングダ111の内面上側には内シリングダ117が設けられている。この内シリングダ117には前記外シリングダ111に操作部材112を取り付けるための取付部117aが形成されている。この取付部117aの外周には取付けゴム118が配置されている。

【0074】前記内シリングダ117の更に内側には操作部材112を構成するピストン119が設けられている。このピストン119の上端にはボタン部112aが設けられている。これらピストン119及びボタン部112aの略中央にはリーク孔121が形成されており、このリーク孔121はピストン119中途部に位置して前記内シリングダ117に連通する内開口122に連通している。

【0075】前記取付部117aの内面側で前記ピストン119の周りには弱バネ123が配置されている。この弱バネ123の上端にはバネ受け124を介して強バネ125が配置されている。この強バネ125の上端は前記ボタン部112aに当接している。つまり、前記取付部117aに配置されたバネ123, 125の付勢力によって、前記ボタン部112aに一体に固定されたピストン119は上方に向付勢されている。

【0076】前記ピストン119の内開口122の上側には気密を確保するため目的の内シール部126が設けられ、この内シール部126が前記内シリングダ117の内面に密着している。また、前記内開口122の下側には切替えシール部127が設けてあり、前記ピストン119を下方に押し込んだ状態のとき、このシール部127が内シリングダ117の内周段部128に当接して気密を確保するようになっている。

【0077】また、前記ピストン119の外周には前記送水管路104の連通部114と前記送気供給用管路107の連通部115とを遮断する遮断シール131と、この遮断シール131より下端側に位置して前記送液供給用管路109の連通部113と前記送水管路104の連通部114との間の開閉を行う送水シール132とが設けられている。

【0078】また、前記遮断シール131と送水シール132との間にはピストン119と外シリングダ111との間の滑り性を最適な状態にするとともに、外シリングダ111に対するピストン119の位置決め機能とシール機能とを有するピストンスライダ133が設けられている。

【0079】前記遮断シール131を設けたことによって、前記ピストン119が移動した場合でも常に外シリングダ111とピストン119との間の水密、気密が確保される。

【0080】前記送水シール132は、ピストン119が全く移動していない状態では外シリングダ111に密着して水密を確保する。このことによって、前記送液供給用管路109の連通部113と送水管路104の連通部114との間が遮断される。そして、前記ピストン119が押し込まれることによって、図22(b)及び図22(c)に示すように送液供給用管路109の連通部113と送水管路104の連通部とを連通させて水が流れ状態になる。

【0081】また、前記取付部117aと前記内シリングダ117との連結部には逆止弁134が設けられている。この逆止弁134にはシール部が設けられており、内シリングダ117と外シリングダ111との間の気密を確保している。

【0082】また、前記逆止弁134は、内シリングダ117に設けられている外開口135を覆っており、前記内シリングダ117の内側、すなわちピストン119側から圧力が加わった場合に空気を外シリングダ111側に送り込むようになっている。

【0083】前記送気管路103の連通部116と前記送気供給用管路107の連通部115との間に内シリングダ117外周には送気シール136が設けられている。この送気シール136は、外シリングダ111に密着して気密を確保している。

【0084】前記送気シール136の下方には外シリングダ111に対する内シリングダ117の位置決めを行うための内シリングダ用スライダ137が設けられている。また、前記内シリングダ117下端には下開口138が設けられている。この下開口138から外開口135までの内シリングダ117とピストン119との間は空気が連通するようにクリアランスが確保されている。さらに、下開口138からリーク孔121まで空気が連通するようにクリアランスが確保されている。

【0085】ここで、制御部105のリーク、送気、噴霧、送水時の作用を説明する。まず、リークについて説明する。送気供給用管路107から入ってくる空気は、下開口138を通過して内シリングダ117とピストン119との間のクリアランス、内開口122を通ってリーク孔121に到達する。そして、このリーク孔121の開口が指によって塞がれていなければこのリーク孔12

1から供給される空気が漏れ出していく。

【0086】このとき、送液供給用管路109の連通部113から外シリング111の底部に送液用の例えれば水が供給されていても、送水シール132によって送液供給用管路109の連通部113と送水管路104の連通部114との間の連通が阻止されているので送水は遮断される。

【0087】次に、送気について説明する。送気を行う際には、上述したリーク状態において、図22(a)に示すように指でリーク孔121の開口を塞ぐ。すると、送気供給用管路107の連通部115から外シリング111内に入ってくる空気は、下開口138より内シリング117とピストン119との間のクリアランス、内開口122を通りリーク孔121に到達するが、このリーク孔121の開口が指によって塞がれているので行き場を失う。一方、ピストン119と内シリング117とは内シール部126でシールされているので内シール部126の手前でも空気は行き場を失う。

【0088】これらのことにより、行き場を失った空気は、最終的に内シリング117の外開口135より逆止弁134を押し広げて内シリング117と外シリング11との間の空間に入り込む。

【0089】前記逆止弁134は、上部側が肉厚であるので外シリング111と内シリング117との間をシールする。また、前記送気シール136は、内シリング117と外シリングとの間の空間をシールしている。このため、逆止弁134から出た空気は送気管路103の連通部116に供給される。したがって、送気管路103に供給される空気は送気・送水管路102を通ってノズル101から噴出されて送気状態になる。

【0090】次いで、噴霧について説明する。噴霧を行う際には、図22(b)に示すように指でリーク孔121を塞いだ状態で、ピストン119をストローク“a”だけ押し込み操作する。すると、弱バネ123は、強バネ125が縮み始める力量よりも弱い力量で圧縮されて、バネ受け124が取付部117aに突き当たる。

【0091】すると、送水シール132は、外シリング111から離れた状態になる。このことにより、送液供給用管路109の連通部113と送水管路104の連通部114とが連通状態になる。一方、送水管路104の連通部114より上方側は、遮断シール131によって外シリング111と内シリング117との間の空間が密閉されている。

【0092】このため、外シリング111の底部に供給され続ける水は、内シリング117と外シリング111とピストンスライド133とで形成される空間を通して、連通部114から送水管路104に供給される。このとき、送気管路103の状況は、上述した送気状態から変化していない。そのため、送気供給用管路107の連通部115から供給される空気は、連通部116を通

過して送気管路103に送り込まれ続ける。

【0093】したがって、送水管路104に供給された水と、送気管路103に供給された空気とが送気・送水管路102内で合流して、水と空気が入り交じった状態でノズル101から噴出されて噴霧状態になる。

【0094】最後に、送水について説明する。送水を行う際には、図22(c)に示すように指でリーク孔121を塞いだ状態のまま、ピストン119をストローク“a”に加えて、さらにストローク“b”だけ押し込み操作する。この状態では、前記バネ受け124は、既に突き当たった状態があるので、強バネ125だけが縮んで、ボタン部112aがバネ受け124に近接していく。

【0095】このとき、ピストン119に設けられた切り換えシール部127が内シリング117の内周段部128に突き当たる。すると、送気供給用管路107の連通部115から入り込んだ空気は、下開口138からピストン119と内シリング117との間のクリアランスに入り込むが、切り換えシール部127によって遮断されているので行き場を失う。

【0096】また、送気供給用管路107の連通部115の上方は、送気シール136によって内シリング117と外シリング111との間の空間がシールされているので行き場を失う。さらに、送気供給用管路107の連通部115の下方は、遮断シール131によって外シリング111とピストン119との間の空間がシールされているので行き場を失う。つまり、送気供給用管路107の連通部115から外シリング111内に供給された空気は完全に行き場を失う。

【0097】一方、送液供給用管路109の連通部113から供給される水は、前述した噴霧時と状況が変化していないので連通部114から送水管路104へ水が供給される。そのため、送水管路104に供給された水が送気・送水管路102を通ってノズル101から噴出されて送水状態になる。

【0098】このように、2段押し構造の操作ボタンを有する制御部において、使用頻度を多くしたい噴霧状態を一段押し込み状態で機能させることによって、バネの力量を軽くしてユーザーの疲労を軽減することができる。

【0099】また、1段目の噴霧状態と2段目の送水状態とでは押し込み力量が大きく異なるので術者は目視にて制御状態を確認することなく、指先の力加減で噴霧状態であるか、送水状態であるかを容易に把握することができる。

【0100】なお、送水状態は、必要に応じて使用される操作であるので、たとえバネの力量が大きくとも使用頻度が少ないので使い勝手で不具合が生じることはない。

【0101】ここで、前記制御部105の各部の特徴を具体的に説明する。まず、図23の操作部材の取付部周

辺の詳細を説明する図に示すように、前記取付部117aと前記内シール部126及び前記ピストン119と前記内シリング117とで囲まれる部分に、操作部材112の操作に関わる機能を持たない無機能空間140を有している。この空間140にはややもすると消毒液がまわり難く、汚染の原因となりうる可能性がある。

【0102】このため、本実施形態の操作部材112ではピストン119に外周を切り欠いて消毒用通路171を形成している。また、バネ受け124の側周面にも消毒液開口172を設けている。

【0103】この消毒用通路171は、図24の図23のE-E線断面図で示すようにピストン119と取付部117aとの嵌合面に、断面形状が略半円形状で形成されている。この消毒用通路171がなければ消毒液及び滅菌液が極めて通過し難い構造である。

【0104】このように、消毒用通路を設けることによって、操作部材112を浸漬させたとき、消毒液や滅菌液が前記無機能空間に回り込んで消毒、滅菌を確実に行うことができる。

【0105】次に、図25の操作部材のピストン底部及び外シリング底部の詳細を説明する図に示すようにピストン119の底部側に設けた送水シール132は、上下方向に対して対称形状に形成することなく、つまり、突出部132aを上下方向の略中央に設けるのではなく、底部側に寄せて配置させている。このことで、外シリング111との密着状態が少ないストロークで解除されるので、密着状態解除後の移動距離Kを大きくとれる。なお、送水シール132は、ピストン119の最底部側に形成した溝部141に嵌入配置されている。

【0106】このように、送水シールに設けられる突出部の位置を中央よりも底部側に設定することによって、2段押し込みでも十分な移動ストロークを確保することができる。このことによって、術者は噴霧状態と送水状態との把握を更に容易に行える。

【0107】また、送水シールをピストンの最底部側に形成した溝部に嵌入配置させたことによって、ピストンの最底部側が金属部になるので、たとえ操作部材を落下させた場合でも送水シールへのダメージを小さくすることができます。

【0108】なお、図26の送水シールの変形例を示す図のように突出部142aを最下端に設けた送水シール142をピストン119の最底部に設けて移動距離Lを設定する構成にすることにより、ストローク量を更に大きくとれる。このことによって、2段押し込みボタンの操作性をさらに向上させることができる。

【0109】ここで、前記制御部105の変形例を説明する。図27(a)ないし図27(c)を参照して制御部の第1の変形例を説明する。図に示すように、本実施形態においては操作部材112に強バネ152を設ける代わりにパイプ形状の弾性ゴム175を設けている。そ

の他の構成は上述した実施形態と同様である。

【0110】前記パイプ形状の弾性ゴム175は、図27(a)のリーク孔を指で塞いで送水を行っている状態を示す図や、図27(b)の1段押し込みで弱バネを圧縮させて噴霧を行っている状態を示す図のように弱バネ123を圧縮する一段押し込みまでの押し込み力量では変形しないで圧縮される。そして、図27(c)の2段押し込みによって送水を行っている状態のとき、バネ受け124が突き当たっているので弾性ゴム175が変形してボタン部112aがバネ受け124に近接する。

【0111】このように、強バネの代わりに弾性ゴムを設けることによって、2段押し込みの際、弾性ゴムが変形するまでの間はパイプ状形状が保持されて、2段目のストロークで初めて変化するので、一段目押し込みの突き当たり感が術者に伝わりやすく、操作性が向上する。

【0112】なお、これまで述べてきた操作部材112は、リーク孔121を指で塞いで送気、一段押し込みで噴霧、2段押し込みで送水となっているが、この順番は限定されるものではなく、リーク孔121を指で塞いで送気、一段押し込みで送水、2段押し込みで噴霧という順番があつてもよい。

【0113】図28(a)ないし図28(c)を参照して制御部の第2の変形例を説明する。図28(a)のリーク孔を指で塞いで送水を行っている状態を示す図のように、本実施形態においては取付部151にスライダ145が嵌合し、さらにこの内側にピストン152が嵌合している。

【0114】前記スライダ145は、取付部151に対して所定のストロークで上下に可動できる。また、前記ピストン152は、取付部151を介して前記スライダ145よりも大きなストロークで上下に可動できる。

【0115】前記スライダ145の外周側には強バネ153が設けられ、スライダ上部の上フランジ部145aに強バネ153の上端が当接している。この強バネ153の下端は取付部151に当接している。

【0116】つまり、前記スライダ145は、強バネ153の付勢力によって上方に付勢されるが、このスライダ145下部には細径部145bがあり、この細径部145bの下フランジ部145cが前記取付部151に突き当たっている。

【0117】一方、前記強バネ153の外側には弱バネ154が設けられている。この弱バネ154の上端は、ピストン152の上部にフランジ上に設けられたボタン部152aに当接し、弱バネ154の下端は取付部151に当接している。

【0118】つまり、ピストン152は、弱バネ154の付勢力によって上方に浮勢されており、ピストン152の段部152bが前記スライダ145の下フランジ部145cに突き当たっている。

【0119】図28(b)の1段目を押し込んだ状態を

示す図のように弱バネ154を圧縮して、ピストン152を下方に移動させると、ピストン152のボタン部152aとスライダ145の上フランジ145aとが当接する。

【0120】図28(c)の2段目を押し込んだ状態を示す図のようにボタン部152aはスライダ145に当接したまま、更に弱バネ154を圧縮している。このことによって、スライダ145が同時に強バネ153を圧縮する。このとき、スライダ段部145dが取付部151に突き当たる。

【0121】このように、2つのバネが独立しているので互いのバネの影響を受けにくい。したがって、押し込んだ時に一段押し込みと2段押し込みとの差が伝わりやすく、管路を切り替えている感覚が術者に伝わり易い。

【0122】図29(a)ないし図29(c)を参照して制御部の第3の変形例を説明するであり、図29(a)は送気状態、図29(b)は噴霧状態、図29(c)は送水状態を示す図である。

【0123】図29(a)に示すように内視鏡2の操作部7に取り付けられるシリンド160の側面の最も底側には前記送気管路103への連通部116が設けられ、それより少し上方には送気供給用管路107への連通部115が設けられ、更に上方には送液供給用管路109への連通部113が設けられ、その上方には送水管路104への連通部114が設けられている。

【0124】前記シリンド160には操作部材161が着脱自在に取り付けられるようになっている。この操作部材161には取付け部材162が取り付けられており、この取付け部材162がシリンド160に着脱自在になっている。

【0125】前記取付け部材162の内周にはピストン163が配置されており、このピストン163に形成してある細径部164に前記取付け部材162が嵌合している。

【0126】前記ピストン163の中央にはリーク孔165が貫通している。前記ピストン163の上端外周にはフランジ部163aが設けられている。また、前記ピストン163にはバネ166が配置されており、このバネ166の上端が前記フランジ部163aに当接し、バネ166の下端が取付け部材162に当接している。このことによって、前記ピストン163はバネ166の付勢力によって上方に付勢され、細径部164下端の段部164aが取付け部材162に当接している。この段部164aより下方のピストン163外周には上Oリング167が設けられ、その下方に中Oリング168が設けられ、更に下には下Oリング169が設けられている。

【0127】リーク状態においては、図29(a)の状態から指を外した状態であるので送気供給用管路107の連通部115から入った空気はリーク孔165から漏れ出ている。

【0128】図29(a)の送気状態においては、リーク孔165が指で塞がれている。また、上Oリング167は送水管路104への連通部114よりも上方にあり、中Oリング168は送水管路104への連通部114と、送液供給用管路109への連通部113との間にある。そして、下Oリング169は、送液供給用管路109への連通部113より下方であって、送気供給用管路107の連通部115及び送気管路103の連通部116よりも上方にある。

【0129】このため、送気供給用管路107の連通部115からシリンド160に入った空気は、通常はリーク孔165から漏れ出るが、リーク孔165が塞がれた状態であり、ピストン163とシリンド160との間の空間が下Oリング169でシールされているので、送気管路103への連通部116より出ていく。

【0130】一方、送液供給用管路109の連通部113から入る水は、中Oリング168によって送水管路104への連通部114へのルートを遮断されるとともに、下Oリング169によって送気管路103へのルートが遮断されている。

【0131】図29(b)の噴霧状態においては、ピストン163は初期状態より押し込まれた状態である。このとき、中Oリング168が送液供給用管路109への連通部113より下方に移動する。

【0132】このことによって、送水管路104の連通部114より上方は、上Oリング167によってピストン163とシリンド160との間の空間がシールされ、送気供給用管路107の連通部115より下は中Oリング168によってシールされているので、送液供給用管路109の連通部113から供給された水は送水管路104への連通部114から出ていく。

【0133】一方、下Oリング169は、送気管路103の連通部116及び送気供給用管路107の連通部115より上に位置するので送気供給用管路107の連通部115より入った空気は送気管路103への連通部116より出ていく。したがって、水と空気が同時に噴出されて噴霧状態になる。

【0134】図29(c)の送水状態においては、ピストン163は最も押し込まれた状態にされる。このとき、下Oリング169は送気供給用管路107の連通部115と送気管路103への連通部116との間に配置される。そのため、送気供給用管路107の連通部115と送気管路103の連通部116とが遮断され、また、中Oリング168は上述と同様に送気供給用管路107の連通部115より上にるので空気が送水管路104側に漏れることなく行き場を失う。

【0135】このため、送液供給用管路109の連通部113から入った水は、ピストン163とシリンド160の間の空間に入り、上Oリング167によって取付け部材162方向への水を遮断し、中Oリング168によ

って送気管路 103 側へ向かう水を遮断している。したがって、送液供給用管路 109 の連通部 113 から供給された水は、送水管路 104 への連通部 114 から出ていく。

【0136】このことから、ピストンの構造を極めて単純にできる上に、汎用の O リングを使用できるのでコストを極めて低く抑えることができる。また、バネが 1 つだけなので構造を単純にでき、精度を向上させることができる。

【0137】なお、本発明は、以上述べた実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で種々変形実施可能である。

【0138】[付記] 以上詳述したような本発明の上記実施形態によれば、以下の如き構成を得ることができる。

【0139】(1) 内視鏡挿入部に独立して操作される複数の湾曲部を有し、これらの湾曲部を構成する節輪の内部を通り、各湾曲部の先端節輪、又は節輪の 1 つに一端が固定されて他端が内視鏡操作部に延出する湾曲操作ワイヤと、各湾曲部を湾曲操作するための湾曲操作手段及び術者が内視鏡を把持するための把持部を備えた操作部とを有する内視鏡において、前記湾曲操作ワイヤと前記湾曲操作手段とを前記把持部内で連結する内視鏡。

【0140】(2) それぞれの湾曲部に対応する湾曲操作ワイヤと湾曲操作手段との連結部を、前記把持部内に配した地板の一方側と他方側との両側にそれぞれ配置した付記 1 記載の内視鏡。

【0141】(3) 独立して操作される湾曲部のうち、主湾曲部用の湾曲操作ワイヤと、前記主湾曲部を操作するための主操作部との接続部を前記地板の一方側に設ける一方、副湾曲部用の湾曲操作ワイヤと前記副湾曲部を操作するための副操作部との接続部を前記地板の他方側に設けた付記 2 記載の内視鏡。

【0142】(4) 2 つ以上の湾曲部を有し、これら湾曲部を操作するための湾曲操作手段が操作部の把持部を挟んで先端側と基端側とに離間して配置するとき、前記把持部の先端側の湾曲操作手段に接続される湾曲操作ワイヤを、前記把持部内、或いは前記把持部より基端側までの間で反転させて把持部内で接続した付記 1 記載の内視鏡。

【0143】(5) 複数の湾曲部を、この湾曲部とは別体の口金を用いて連結した付記 1 記載の内視鏡。

【0144】(6) 複数の湾曲部を、この湾曲部とは別体の口金を用いて連結し、この口金に、該口金より先端側の湾曲部の操作ワイヤを挿通させるコイルパイプを設けた付記 1 記載の内視鏡。

【0145】(7) 前記挿入部の有する複数の湾曲部が主湾曲部と副湾曲部とであるとき、前記副湾曲部は、湾曲操作方向の設定に制限されず、上下左右方向に湾曲自在である付記 1 記載の内視鏡。

【0146】(8) 前記主湾曲部は、節輪の垂直方向と水平方向とに回転軸を有し、前記副湾曲部は前記主湾曲部の節輪の回動軸に対して左右 45 度に傾いた方向に回動軸を有する付記 7 記載の内視鏡。

【0147】

【発明の効果】以上説明したように本発明によれば、操作ワイヤの接続作業を容易に行え、操作部が小型で操作性に優れた内視鏡を提供することができる。

【図面の簡単な説明】

【図 1】図 1 ないし図 4 は本発明の第 1 実施形態に係り、図 1 は内視鏡システムを説明する図操作部の構成を説明する図

【図 2】操作部の構成を説明する図

【図 3】図 2 の A 方向から操作部内を見たときの図

【図 4】図 3 の B-B 線で示すカバー部材近傍の断面図

【図 5】図 5 及び図 6 は本発明の第 2 実施形態にかかる、図 5 は操作部の他の構成を説明する図

【図 6】操作部に設けたノブを説明する図

【図 7】図 7 及び図 8 は本発明の第 3 実施形態にかかる、図 7 は操作部の別の構成を示す図

【図 8】把持部内の副操作部の構成を説明する図

【図 9】図 9 ないし図 18 は、内視鏡の主湾曲部と副湾曲部との構造を説明する図であり、図 9 は内視鏡の湾曲部を構成する主湾曲部と副湾曲部とを説明する図

【図 10】主湾曲部の後端節輪と副湾曲部の先端節輪との関係を示す図

【図 11】図 9 の C-C 線断面図

【図 12】図 9 の D-D 線断面図

【図 13】主湾曲部の節輪の構成例を説明する図

【図 14】主湾曲部及び副湾曲部から伸びる上ワイヤの挿入方向に関する位置関係を示す図

【図 15】副湾曲部の節輪の構成例を説明する図

【図 16】主湾曲部と副湾曲部とを湾曲させた状態を示す図

【図 17】図 16 の湾曲状態を E 方向から見たときの図

【図 18】操作ワイヤの配置位置関係を説明する図

【図 19】副湾曲部の他の構成例を説明する図

【図 20】副湾曲部の別の構成例を説明する図

【図 21】図 21 及び図 22 は内視鏡の送気／送水について説明する図であり、図 21 は内視鏡の送気、送水用の管路を説明する図

【図 22】操作ボタンの操作と送気、送水作用との関係を説明する図

【図 23】操作部材の取付部周辺の詳細を説明する図

【図 24】図 23 の E-E 線断面図

【図 25】操作部材のピストン底部及び外シリンダ底部の詳細を説明する図

【図 26】送水シールの変形例を示す図

【図 27】制御部の第 1 の変形例を説明する図

【図 28】制御部の第 2 の変形例を説明する図

【図29】制御部の第3の変形例を説明する図

【符号の説明】

7…操作部
7a…把持部
21…地板
32…上下用スプロケット
33…左右用スプロケット
34…上下ノブ
35…左右ノブ
36…上下用チェーン
37…左右用チェーン

38…上下用連結部
39…左右用連結部
40…上下操作ワイヤ
41…左右操作ワイヤ
44…副上下用スプロケット
45…副上下ノブ
46…副操作上下用チェーン
47…副上下用連結部
48…副操作ワイヤ
72…主操作部
73…副操作部

【図1】

【図4】

【図10】

【図6】

【図3】

[図2]

【图11】

[图7]

[图 8]

【图9】

【图12】

[图21]

[图 1.3]

【図14】

【図18】

【図15】

【図16】

【図25】

【図17】

【図19】

【図23】

【图20】

[図24]

【图22】

[図26]

【図27】

【図28】

【図29】

【手続補正書】

【提出日】平成12年10月25日(2000.10.25)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0046

【補正方法】変更

【補正内容】

【0046】なお、図14に示すように前記上下操作ワイヤ40Uを、主湾曲部12において真上位置に配置し、副湾曲部13において真上位置より僅かにずれた位置に配置することにより、上下操作ワイヤ40Uが挿通するコイルパイプ83Uを真上位置より左右いずれかの方向に僅かに位置ずれした位置に配置させ、副湾曲部13における副操作ワイヤ48Uを真上位置に配置させている。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0049

【補正方法】変更

【補正内容】

【0049】また、前記図13では垂直軸と水平軸とに回動部75, 76を設けて湾曲部12, 13を上下左右に湾曲させるようにしていたが、例えば上下に湾曲させるとき、垂直軸廻りがフリーになり、外力によって左右に動き易い状態である。このため、図15に示すように副湾曲部13の節輪13aに、垂直方向に対して左右に

45度傾いた斜め回動軸にそれぞれ斜め回動部77, 78を設ける一方、垂直方向の上下にワイヤ受け82を設けて副操作ワイヤ48U, 48Dを挿通させている。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0050

【補正方法】変更

【補正内容】

【0050】このことにより、前記操作ワイヤ48U, 48Dを牽引操作したとき、節輪13aの4つの回動部77, 78が同時に動いた状態で上下方向に湾曲する。つまり、斜め回動部77, 78を有する副湾曲部13では上下に湾曲させた際、4つの回動軸全てに力が加わるので、外力によって左右に振れ難くなって安定した操作性を得られる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0078

【補正方法】変更

【補正内容】

【0078】また、前記遮断シール131と送水シール132との間にはピストン119と外シリンダ111との間の滑り性を最適な状態にするとともに、外シリンダ111に対するピストン119の位置決め機能を有するピストンスライダ133が設けられている。

フロントページの続き

(72)発明者 中村 俊夫

東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

(72)発明者 海谷 晴彦

東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

Fターム(参考) 2H040 AA01 BA21 DA19 DA21 GA02

4C061 AA00 BB00 CC00 DD03 FF11

HH32 HH36 JJ11

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)