1 – Dipôle dans un condensateur

1. La première question est une question de cours : pour un dipôle de moment dipolaire \overrightarrow{p} , plongé dans un champ extérieur \overrightarrow{E} , on a :

$$E_P = -\overrightarrow{p} \cdot \overrightarrow{E} = -p \times E \times \cos(\pi - \alpha) = p \times E \times \cos \alpha \tag{3}$$

- 2. D'après le schéma ci-contre, on voit que :
 - \circ Si $\alpha=0$, la position d'équilibre est instable.
 - \circ Si $\alpha=\pi$, la position d'équilibre est stable.

Figure 2 - Dipôle au centre d'un condensateur

On peut également voir ceci plus mathématiquement en utilisant les dérivées première et seconde de l'énergie potentielle par rapport à lpha.

3. D'après l'expression qui est donnée, on sait que le champ \overrightarrow{E} qui règne à l'intérieur d'un condensateur est uniforme. Les forces subit par les charges opposées qui forment le dipôle sont identiques, la résultant des forces est nulle : pas de déplacement.

2 - Force de Keesom

1. Voici le schéma proposé pour expliquer le phénomène

Figure 2 - Attraction de Keesom entre deux moments dipolaires permanents

2. On calcule la force exercée par le champ $\overrightarrow{E_1}$ au niveau de chaque charge du dipôle 2 : C'est une résultante de forces exercées au niveau de chaque charge du dipôle. On utilisera deux développements limités : le DL utilisé est celui que l'on connaît bien : $(1+x)^{\alpha}=1+\alpha x$ au premier ordre quand $x\to 0$.

On obtient alors:

$$\left| \overrightarrow{F} = \frac{-6q^2d^2}{4\pi\epsilon_0 r^4} \overrightarrow{u} \right| \tag{2}$$