## Chapter I Introduction

#### A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

©All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved



### Computer Networking: A Top Down Approach

7<sup>th</sup> edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

# Chapter 1: Introduction

## Our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
  - use Internet as example

# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - end systems, access networks, links
- 1.3 Network core
  - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

## 1.1 What is the Internet?

- □将从以下两个角度描述因特网是什么:
  - \*因特网的具体构成
  - \*因特网的功能

### 1.1.1 因特网的具体构成



桌面机 • 终端:



服务器



笔记本



手持设备

以"训"

- 也称主机(host)或端系 统(end system)
- 运行应用程序

#### • 通信链路:



无线链路

—— 有线链路

- 光纤,铜线,电磁波
- 主要指标为传输速率, 也称带宽(bandwidth)

#### • 交换设备:



- 转发分组(packet)
- 路由器和交换机



### 因特网的具体构成(续)

- □ Internet Service Provider:
  - ❖ ISP是由交换设备和通信链 路组成的网络,为终端提供 因特网接入服务
  - ❖ 不同层次的ISP:本地ISP, 地区ISP,全球ISP
  - ❖ 每个ISP是自治的



### 因特网的具体构成(续)

- □ <mark>协议</mark>规定了设备之间通信需要遵循的规则:
  - \*终端与终端之间
  - \*终端与交换设备之间
  - \* 交换设备与交换设备之间
- □ 因特网协议标准:
  - ❖ 由IETF组织统一管理,以 RFC xxx文档的形式发布
  - ❖ 因特网中最核心的两个协议是 TCP和IP,因特网协议统称为 TCP/IP协议族



### 因特网的具体构成(续)

- □ 因特网定义一:
  - ❖ 由一群遵循TCP/IP协议的 ISP,按照松散的层次结构 组织而成的网络的网络
- □ 因特网的几个特点:
  - ❖ 因特网是"网络的网络"
  - ❖ 因特网不存在严格的层次结构
  - \* 因特网没有统一的管理机构



### 1.1.2 因特网的功能

- □ 因特网定义二:
  - ❖ 因特网是为分布式应用提供 通信服务的基础设施
- □传统通信系统的服务接口:
  - ❖ 电话系统: 拨号, 振铃
  - ❖ 邮政系统: 邮筒, 信箱
- □ 因特网提供给应用程序的服 务接口:
  - ❖ 一组用于在因特网上发送和 接收数据的应用编程接口API



## 小结

- □ 因特网定义一:
  - ❖ 由一群遵循TCP/IP协 议的ISP,按照松散的 层次结构组织而成的 网络的网络
- □对于通信功能的实现 有指导作用:
  - \* ISP内部实现
  - \* ISP之间互联

- □ 因特网定义二:
  - ❖ 为分布式应用提供通 信服务的基础设施
- □对于服务接口的定义 有指导作用:
  - ❖ 有序、可靠的数据交 付服务
  - ❖ 不可靠的数据交付服务

本课程使用这两种定义,介绍因特网服务接口及端到端通信的实现

# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - □ end systems, access networks, links
- 1.3 Network core
  - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

## A closer look at network structure:

end systems:

终端

access networks:

将终端连接到其边缘路 由器的<mark>物理链路</mark>

network core:

路由器和通信链路组成的网网络



## 1.2.1 接入网

- Q: How to connect end systems to edge router?
- □住宅接入
- □ 企业接入(学校,公司)
- □移动接入

#### Keep in mind:

- □ 接入网的带宽是多少?
- □ 共享还是专用?



## 住宅接入:数字用户线(DSL)



- \* 由电话公司提供,使用已有的数字电话线(每户一条线):
  - DSL modem: 转换模拟信号和数字信号
  - Splitter: 合并/分离话音和数据(用户侧)
  - DSLAM: 汇聚/分离多条DSL线路(ISP侧)
- ❖ 上行速率< 2.5 Mbps (典型地 < Ⅰ Mbps)</p>
- ❖ 下行速率< 24 Mbps (典型地 < 10 Mbps)</p>

### 住宅接入: 电缆网



- 有线电视公司提供,使用已有的有线电视基础设施
- 数据和电视信号在同一条电缆中传输

## 住宅接入: 电缆网



- ❖ 混合光纤同轴电缆HFC: hybrid fiber coax
  - 有线电视网由光纤网+电缆网组成(光纤网未画出)
  - cable modem、Splitter、电缆、光纤、CMTS构成接入网
  - 下行速率最高 30Mbps,上行速率最高 2 Mbps
  - ❖ 几百~几千户家庭共用一条电缆

### 企业接入网:以太网(Ethernet)



- □用于公司、学校及有较多终端的家庭:
  - \* 以太网交换机及链路构成接入网
  - ❖ 传输速率: 10 Mbps, 100Mbps, 1Gbps, 10Gbps

### 无线接入网:无线局域网(Wifi)

- □公司或个人提供基站(接入 点),将移动终端连接到有 线网络:
  - \*终端与基站相距几十米内
  - \* 基站通常位于有线网络上
  - ❖ 无线传输速率: 11 Mbps、54Mbps、450Mbps
  - \* 无线局域网是共享的



## 一个典型的家庭网络



## 无线接入网:广域无线接入

- 由移动通信公司提供,使 用现有的蜂窝电话网络
- 基站可为数万米半径内的 用户提供无线接入服务
- □ 传输速率 (共享信道):
  - ❖ 3G: 最大(静止) 2Mbps
  - ❖ 4G: 下行100Mbps, 上行

20Mbps



to Internet

### 1.2.2 物理媒体(传输媒体,传输介质)

- □ 设备之间通过物理媒体相 连,物理媒体两端各需要 一对收/发设备
- □ 在一条路径上,每对设备 之间的物理媒体可以不同
- □ 导引型媒体:
  - ❖信号沿固体媒体传播, 如铜线,光纤
- □ 非导引型媒体:
  - ❖ 信号在空间自由传播, 如电磁波

#### 双绞线:

- □ 两条绝缘的铜导线:
  - \* 3类线: 10 Mbps
  - \* 5类线: 100Mbps~1Gbps
  - ❖ 6类线: 10Gbps
- □电话线,网线





### 物理媒体 (续)

#### 同轴电缆:

- □ 铜芯和网状屏蔽层组成一 对同心导电体
- □有线电视电缆





#### 光纤:

- □能引导光脉冲的玻璃纤维
- □ 传输速率:
  - ❖ 几十 ~ 几百Gbps
- □ 低误码率,长距离传输, 抗电磁干扰





## 物理媒体: 电磁波



- □ 蓝牙: 2.4GHz, 10米左右
- □ Wifi: 2.4GHz, 几十米
- □ 红外: 室内短距离

- □ 陆地微波: 2GHz, 长距离
  - □ 卫星: 2GHz, 长距离、大范围
  - □ 可见光: 1-2km, 50Gbps

# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - end systems, access networks, links
- 1.3 Network core
  - □ circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

## 1.3 网络核心

- 网络核心: 由路由器和链路形成的 网状网络
- □ 任务:将数据包从发送侧的边缘路由器,传送到接收侧的边缘路由器
- 基本问题: 数据包如何在网络核心中高效地传递?
  - \* 分组传输延迟小
  - ❖ 网络吞吐量高
- 通信网络中移动数据的两种基本方法:
  - \* 电路交换(独占信道): 电话网使用
  - ❖ 分组交换(复用信道): 计算机网络使用



## 1.3.1 分组交换(packet switching)

- □ 分组交换的过程:
  - ❖ 主机将要传输的数据分段, 并组装成一系列分组
  - \* 交换: 在传输路径上,交 换设备从一条链路上接收 分组,将其发送到另一条 链路上
  - \* 存储转发: 交换设备在接收到完整的分组后,才可以开始转发



#### □ 思考:

❖ 为什么不是边收边发?

## 存储转发引入序列化延迟



- □ 将一个分组全部推送到一 条链路上,耗时 L/R 秒
- □ 将一个分组从源发送到目的, 总耗时 = 2 L/R (不 考虑信号传播时间)
- □ **3**个分组从源终端发送到目的终端,总耗时=?
  - ❖ 4 L/R

- □ 问题: P个分组经过N条 链路的总耗时是多少?
  - ♦ (P+N-1) L/R
- □ 当P远大于N时,存储转 发不会引入过多的延迟!

## 存储转发引入排队延迟和丢包



- 排队延迟: 分组在输出链路的缓存中排队, 引入延迟
- 丢包: 若输出链路的缓存满,溢出的分组被丢弃
- 当大量分组集中到达时,排队延迟和丢包较严重

## 网络核心的两个重要功能

### 选路 (routing):

交换设备确定不同目的地的 转发端口, 生成转发表

#### 转发 (forwarding):

交换设备按照转发表,将分组移动到相应的输出链路



## 1.3.2 电路交换(circuit switching)

- □ 电话网采用电路交换:
  - ❖ 通话前完成两部电话机之间的电路接续,通话结束后释放整条电路
- □本质是预留资源和独占资源



## 概念区分: 链路和电路

- □链路(link):
  - \*物理媒体,也称信道(channel)
  - ❖可以通过某种方式 划分为若干条独立 的子信道
- □电路(circuit):
  - ❖物理媒体中的一条 子信道



# 多路复用(multiplex)



# 采用电路交换的文件传输时间

- □ How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
  - All links are 1.536 Mbps
  - Each link uses TDM with 24 slots/sec
  - 500 msec to establish end-to-end circuit

#### □ Let's work it out!

- ❖ 数据传输速率: 1.536Mbps/24 = 64kbps
- ❖ 传输数据的时间: 640kbits/64kbps = 10s
- ❖ 总时间: 500ms+10s = 10.5s

## 为什么采用分组交换?

#### 同样的链路容量,分组交换允许支持更多的用户!

- □ 1 Mb/s link
- each user:
  - \* 100 kb/s when "active"
  - active 10% of time
- □ 电路交换(固定分配)
  - 10 users
- □ 分组交换(按需分配)
  - with 35 users,
    probability > 10 active
    at same time is less
    than .0004



## 为什么采用分组交换?

### 轻负载时,分组交换可以更快地服务用户!

- □ 1 Mb/s link
- Only one active user:
  - 1000 1kb-packet's
- □ 电路交换(固定分配)
  - Need 10s
- □ 分组交换(按需分配)
  - Need 1s



## 统计复用 vs 同步时分复用





#### 分组交换 vs 电路交换

- □分组交换的优点:
  - ❖ 资源利用率高,简单(不需要建立电路)
- □分组交换的缺点
  - ❖ 可能产生延迟、丢包,需要设计相应的协议解决
- □有些应用需要类似电路交换的传输特性,如何提供?
  - \*音视频应用需要带宽保证,该问题尚未解决
- □为什么因特网采用分组交换?
  - \*分组交换适合突发流量
  - ❖传统因特网应用(如电子邮件、文件传输)具有突发通信的特点

## 1.3.3 网络的网络

- □因特网是由一群 ISP组成的网络的 网络
- □网络核心的任务是 将全球的本地**ISP** 连接在一起
- □问题:如何连接?



# 网络的网络

Question: given millions of access ISPs, how to connect them together?



## 网络的网络: 朴素的方法

Option: connect each access ISP to every other access ISP?



# 网络的网络:连接到一个全球ISP

Option: connect each access ISP to a global transit ISP? Customer and provider ISPs have economic agreement.



## 网络的网络:建立多个全球ISP

But if one global ISP is viable business, there will be competitors ....



# 网络的网络:多个全球ISP

But if one global ISP is viable business, there will be competitors .... which must be interconnected



# 因特网交换点 (IXP)



# 网络的网络: 多层结构

... and regional networks may arise to connect access nets to ISPS



# 因特网生态系统

- ❖ 接入ISP
- ❖ 地区ISP
- ❖ 第一层ISP
- \* 对等链路
- ❖ 因特网交换点IXP: 多个ISP共同对等的地方
- ❖ 存在点PoP (Point of Presence): 低层ISP接入 高层ISP的地方
- ❖ 多宿 (multi-home): 一个低层ISP可以接入多个高层ISP

#### 网络的网络: 内容提供商网络

... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users



#### 网络的网络: 今天的因特网结构



- at center: small # of well-connected large networks
  - \* "tier-1" commercial ISPs: national & international coverage
  - content provider network: private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

# 小结

#### □端系统

- ❖ 调用因特网服务接口,实现分布式 应用
- ❖ 因特网中的通信过程对其不可见

#### □接入网

- ❖ 因特网到用户的"最后一公里", 将各类终端接入因特网
- \* 关注物理媒体、信号传输技术

#### □网络核心

- ❖ 任务是高效、准确地投递分组到目的地
- \* 关注选路、转发、拥塞控制等



# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - end systems, access networks, links
- 1.3 Network core
  - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

# 1.4 衡量网络性能的主要指标

- □延迟
  - \*分组从源终端到达目的终端的时间
- □丢包率
  - \*\*未成功交付到目的终端的分组比例
- □吞吐量
  - \*单位时间内网络成功交付的数据量

# 分组延迟的来源

- □ 1. 节点处理:
  - \* 检查错误
  - \* 确定输出链路

- □ 2. 排队
  - \* 在输出缓存等待传输
  - ❖ 时间长短取决于链路 负载大小



# 分组延迟的来源

- 3. 传输延迟:
- □ R=link bandwidth (bps)
- L=packet length (bits)
- □ 将分组发送到链路上的时间 = L/R (分组序列化时间)

- 4. 传播延迟:
- d = length of physical link
- $\square$  s = propagation speed in medium (~2×10<sup>8</sup> m/sec)
- propagation delay = d/s

Note: s and R are very different quantities!



# 节点延迟

$$d_{\rm nodal} = d_{\rm proc} + d_{\rm queue} + d_{\rm trans} + d_{\rm prop}$$

- □ d<sub>proc</sub> = 处理延迟
  - \* 典型地为几个微秒或更低
- □ d<sub>queue</sub> = 排队延迟
  - \* 差异很大,取决于链路负载
- □ d<sub>trans</sub> = 传输延迟
  - ❖ 微秒~毫秒,主要取决于链路速率
- □ d<sub>prop</sub> = 传播延迟
  - \* 几微秒~几百毫秒,主要取决于链路长度



# 排队延迟与流量强度

- $\square R$ : link bandwidth (bps)
- □L: packet length (bits)
- □a: average packet arrival rate

traffic intensity = La/R



- La/R ~ 0: avg. queueing delay small
- La/R -> I: avg. queueing delay large
- La/R > I: more "work" arriving than can be serviced, average delay infinite!

 $La/R \sim 0$ 

La/R ->

<sup>\*</sup> Check online interactive animation on queuing and loss

# 排队与丢包

□输出队列的容量是有限的;队列满时,新来的分组被丢弃



- □队列长度是一个重要的参数:
  - \* 队列太短: 丢包率增大
  - ❖ 队列太长: 排队延迟增大(也会造成间接丢包!)

# 端到端延迟

- □端到端延迟:
  - \*分组传输路径上所有节点的节点延迟之和
- □对端到端延迟敏感的应用:
  - ❖高度敏感:实时交互应用,如网络电话、视频会议
  - \*中度敏感:在线交互应用,如网页浏览
- □探测端到端延迟:
  - Ping, Traceroute

# 端到端吞吐量

- □单位时间内向接收端成功交付的数据量:
  - ₩瞬时吞吐量: 给定时刻的传输速率
  - \*平均吞吐量:较长时间内的传输速率



# 端到端吞吐量(续)

 $\square R_s \triangleleft R_c$  What is average end-end throughput?



 $\square R_s > R_c$  What is average end-end throughput?



#### bottleneck link

瓶颈链路的带宽限制了端到端吞吐量。

# Throughput: Internet scenario

- □ 端到端吞吐量: min(R<sub>c</sub>,R<sub>s</sub>,R/10)
- □端到端吞吐量与瓶 颈链路的速率、以 及链路上的负载有 关



10 connections (fairly) share backbone bottleneck link R bits/sec

# 小结

- □延迟、丢包率、吞吐量三个指标,均与 负载有关
- □如何通过调节负载来获得这些指标的平 衡,是因特网的重要研究内容之一

# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - end systems, access networks, links
- 1.3 Network core
  - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

# 什么是协议?

一个人类协议 一个计算机网络协议 TCP connection request TCP connection Got the response time? Get http://www.awl.com/kurose-ross 2:00 time

# 协议的要素

- Human/network protocols:
  - \* specific mesages sent
  - specific actions taken when messages received, or other events

#### □ 网络协议定义了:

- \*通信实体之间交换的报文的格式和次序
- \*\*在发送/接收报文、或其它事件后采取的动作
- □ 掌握计算机网络知识的过程,就是理解网络协议 的构成、原理和工作的过程

# Networks are complex!

- □many "pieces":
  - \* hosts
  - \* routers
  - links of various media
  - applications
  - \* Protocols

#### Question:

Is there any hope of organizing structure of network?

Or

at least our discussion of networks?

## Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

a series of steps

# Layering of airline functionality



- □ <u>系统分层</u>: 将系统按功能划分成一系列水平的层次,每一层实现一个功能(服务)
- □ **层次间关系**:每一层的功能实现都要依赖其下各层提供的服务

# 分层的好处

#### 系统分层: 易于处理复杂的系统

- □显式的层次结构易于确定系统的各个部 分及其相互关系
- □模块化简化了系统的维护和升级
  - \*改变某层服务的实现方式,对于其它 层次是透明的

# Internet协议栈

- □ application: 在应用程序之间传输应用特定的报文 (message)
  - ❖ E.g., FTP, SMTP, HTTP
- □ transport: 在应用程序(进程)的网络接口之间传输报文段(segment)
  - \* TCP, UDP
- □ network: 在源主机和目的主机(终端-终端)之间传输分组(packet)
  - IP, routing protocols
- □ link: 在相邻设备之间传输帧(frame)
  - \* E.g., PPP, Ethernet
- □ physical: 在物理媒体上传输比特 (bit)

application transport network link physical

## ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
  - these services, if needed, must be implemented in application
  - \* needed?

application presentation session transport network link physical

## 网络功能的分布式实现

- □ 某一层上的网络功能,需要该层上的实体(分布在不同的节点)协同完成
- □ 协同计算要求功能实体之间能够交互信息,需 要解决以下问题:
  - ❖ 信息交互的载体是什么: 各层上的报文
  - \* 信息交互的约定: 报文格式及语义规定
  - \*报文的传输方式:封装和解封装



## 小结

- □ 网络按功能划分层次,每层实现一个功能
- □ 在不同系统的同一层上:
  - \* 对等实体执行该层的协议
- □ 相同系统的上下层:
  - ❖ 调用服务/提供服务
  - \* 封装/解封装分组
- □ 不同系统的不同层:
  - \* 不直接通信

# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - end systems, access networks, links
- 1.3 Network core
  - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

# Network Security

- □ Internet最初设计的时候,并没有考虑安全的 问题
  - \* original vision: "a group of mutually trusting users attached to a transparent network" ©
- □ 今天的Internet:
  - ❖ 每天都有各种各样的安全事件发生
  - \* 网络安全已成为近年来计算机网络领域的中心主题

### 因特网面临的安全威胁

- □针对因特网基础设施的攻击:
  - \*恶意软件(如病毒、蠕虫)入侵计算机设备
  - ❖ 对主机、网络等实施拒绝服务攻击 (Denial of Service),使其中止服务
- □针对因特网中信息的攻击:
  - \* 窃听网络中传输的数据
  - ❖ 在网络中注入虚假的信息欺骗用户

## 拒绝服务(DoS)攻击

□ 攻击者通过耗尽主机或网络带宽资源,使得合法 用户得不到所需的服务

- 1. 选择目标
- 利用恶意软件攻陷网络中的主机(称肉鸡、僵尸机器)
- 3. 从僵尸主机向目标发送大 量数据包



## 嗅探

- □嗅探:
  - ❖ 监听网络中传输的数据包,获取数据包中携带的信息,如密码
- □Wireshark就是一款免费的嗅探器



# 伪装

□IP欺骗: 发送虚假地址的数据包



## 伪装

□ 重放攻击: 嗅探敏感信息(比如,某用户的口令),之后重新注入网络(以假冒该用户)



# Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
  - end systems, access networks, links
- 1.3 Network core
  - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

#### 1961-1972: Early packet-switching principles

- □ 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- □ 1964: Baran packetswitching in military nets
- □ 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
  - ARPAnet public demonstration
  - NCP (Network Control Protocol) first host-host protocol
  - first e-mail program
  - ARPAnet has 15 nodes



#### 1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- □ 1974: Cerf and Kahn architecture for interconnecting networks
- □ 1976: Ethernet at Xerox PARC
- □ ate70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- □ 1979: ARPAnet has 200 nodes

## Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- \* stateless routers
- decentralized control

define today's Internet architecture

#### 1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IPaddress translation
- □ 1985: ftp protocol defined
- □ 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- □ 100,000 hosts connected to confederation of networks

#### 1990, 2000's: commercialization, the Web, new apps

- □ Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
  - hypertext [Bush 1945, Nelson 1960's]
  - \* HTML, HTTP: Berners-Lee
  - 1994: Mosaic, later Netscape
  - late 1990's:
    commercialization of the Web

#### Late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

#### 2001~: Mobile Internet, Internet of Things

- □ 2008年开启移动互联网 时代:
  - ❖ 国际电信联盟正式公布第 三代移动通信标准(**36**)
  - 苹果公司发布iPhone3G、 iOS 2.0,推出AppStore
- □ 移动互联网:
  - ❖ 通过智能移动终端,从互 联网获取业务和服务

- □ 2009开启物联网时代:
  - ❖ 物联网计划在欧洲、美国 (智慧地球)、中国(感 知中国)启动
- □ 物联网:
  - ❖ 在互联网的基础上,将用户端扩展和延伸到任何物体,允许对任何能够被独立寻址的普通物体进行智能化识别、定位、跟踪、监控和管理

- □ ~5G devices attached to Internet (2016)
  - smartphones and tablets
- aggressive deployment of broadband access
- increasing ubiquity of high-speed wireless access
- emergence of online social networks:
  - Facebook: ~ one billion users
- service providers (Google, Microsoft) create their own networks
  - \*bypass Internet, providing "instantaneous" access to search, video content, email, etc.
- e-commerce, universities, enterprises running their services in "cloud" (e.g., Amazon EC2)

## 本章小结

- □ 计算机网络关注:
  - ❖ 功能性问题: 可达性(选路、转发),正确性(可靠性控制)
  - ❖ 性能问题: 吞吐量,延迟,丢包率
  - \* 安全性问题:基础设施安全,信息安全

#### □ 重点理解:

- ❖ 分组交换:存储转发,设计考虑(利),引入的问题(弊)
- 说明:在因特网中使用分组交换而不是电路交换,是一个重大的决定。需要理解这个决定背后的考虑,以及这些决定可能带来的问题,如何解决这些问题则是协议的主要内容
- ❖ 网络分层架构: 服务,功能,接口,协议,封装

## 作业

- □习题:
  - **♦** 9, 10, 13, 21, 22, 25, 31, 33
- □实验:
  - \* 入门实验

- □提交时间:
  - ❖ 习题: 9月15日
  - ❖ 实验: 9月17日