Arithmetic discrete planes are quasicrystals

V. Berthé

LIRMM-CNRS-Montpellier-France berthe@lirmm.fr http://www.lirmm.fr/~berthe

DGCI 2009

From discrete geometry to word combinatorics...

...via tilings and quasicrystals

Arithmetic discrete planes [Reveillès'91]

Let $\vec{v} \in \mathbb{R}^d$, $\mu, \omega \in \mathbb{R}$.

The arithmetic discrete plane $\mathfrak{P}(\vec{\mathsf{v}},\mu,\omega)$ is defined as

$$\mathfrak{P}(\vec{v}, \mu, \omega) = \{ \vec{x} \in \mathbb{Z}^d \mid 0 \le \langle \vec{x}, \vec{v} \rangle + \mu < \omega \}.$$

- μ is the translation parameter.
- ω is the width.
- If $\omega = \max_i \{ |v_i| \} = ||\vec{v}||_{\infty}$, then $\mathfrak{P}(\vec{v}, \mu, \omega)$ is said naive.
- If $\omega = \sum_{i} |v_i| = ||\vec{v}||_1$, then $\mathfrak{P}(\vec{v}, \mu, \omega)$ is said standard.

Arithmetic discrete planes [Reveillès'91]

Let $\vec{v} \in \mathbb{R}^d, \ \mu, \omega \in \mathbb{R}$.

The arithmetic discrete plane $\mathfrak{P}(\vec{v},\mu,\omega)$ is defined as

$$\mathfrak{P}(\vec{v}, \mu, \omega) = \{ \vec{x} \in \mathbb{Z}^d \mid 0 \le \langle \vec{x}, \vec{v} \rangle + \mu < \omega \}.$$

- \bullet μ is the translation parameter.
- ullet ω is the width.
- If $\omega = \max_i \{|v_i|\} = ||\vec{v}||_{\infty}$, then $\mathfrak{P}(\vec{v}, \mu, \omega)$ is said naive.
- If $\omega = \sum_i |v_i| = ||\vec{v}||_1$, then $\mathfrak{P}(\vec{v}, \mu, \omega)$ is said standard.

We work here with d=2,3. The vector \vec{v} is assumed to be a nonzero vector with nonnegative coordinates. We consider here integer as well as irrational parameters

What are quasicrystals?

Quasicrystals are atomic structures discovered in 84 [Shechtman-Blech-Gratias-Cahn] that are both ordered and nonperiodic.

- Like crystals, quasicrystals produce Bragg diffraction.
- Diffraction comes from regular spacing and long-range order.

A large family of models of quasicrystals is produced by cut and project schemes: projection of a plane slicing through a higher dimensional lattice

- The order comes from the lattice structure.
- The nonperiodicity comes from the normal vector of the plane.

Cut and project scheme:

projection of a plane slicing through the lattice \mathbb{Z}^d

• Cutting step

$$\mathfrak{P}(\vec{\mathsf{v}},\mu,\omega) = \{\vec{\mathsf{x}} \in \mathbb{Z}^3 \mid 0 \leq \langle \vec{\mathsf{x}},\vec{\mathsf{v}} \rangle + \mu < \omega \}.$$

The selection window is $[0, \omega]$.

Cut and project scheme:

projection of a plane slicing through the lattice \mathbb{Z}^d

• Projection step

Cut and project scheme:

projection of a plane slicing through the lattice \mathbb{Z}^d

• Projection step

Let π_0 be the orthogonal projection onto $P_0\colon \langle \vec{\mathsf{x}}, (1,1,1) \rangle = 0$. We project by π_0 the arithmetic discrete plane $\mathfrak{P}(\vec{\mathsf{v}}, \mu, \omega)$.

Cut and project scheme:

projection of a plane slicing through the lattice \mathbb{Z}^d

Projection step

Let π_0 be the orthogonal projection onto P_0 : $\langle \vec{x}, (1, 1, 1) \rangle = 0$. We project by π_0 the arithmetic discrete plane $\mathfrak{P}(\vec{v}, \mu, \omega)$.

One gets a set of points of P_0 which is a Delone set, i.e., a set that is both

- relatively dense: there exists R > 0 such that any Euclidean ball of P_0 of radius R contains a point of this set,
- uniformly discrete: there exists r > 0 such that any ball of radius r contains at
 most one point of this set.

About the selection window

- Configurations correspond to subintervals of the selection window.
- $\bullet\,$ By playing with the selection window, we can go from discrete planes to discrete planes

About the selection window

Configurations correspond to subintervals of the selection window...

....by looking at discrete planes as

- tilings
- multidimensional words

- We work in the standard case $\omega = ||\vec{v}_1||$.
- We associate with the quasicrystal $\pi_0(\mathfrak{P}(\vec{v},\mu,\omega))$ a tiling $T(\vec{v},\mu,\omega))$ of the plane by three kinds of lozenges, obtained by connecting points of the quasicrystal with edges.

- We work in the standard case $\omega = ||\vec{v}_1||$.
- We associate with the quasicrystal $\pi_0(\mathfrak{P}(\vec{v},\mu,\omega))$ a tiling $T(\vec{v},\mu,\omega))$ of the plane by three kinds of lozenges, obtained by connecting points of the quasicrystal with edges.

- We work in the standard case $\omega = ||\vec{v}_1||$.
- We associate with the quasicrystal $\pi_0(\mathfrak{P}(\vec{v},\mu,\omega))$ a tiling $T(\vec{v},\mu,\omega))$ of the plane by three kinds of lozenges, obtained by connecting points of the quasicrystal with edges.
- A tiling by translation of the plane by a set T of (proto)tiles is a union of translates of elements of T that covers the full space, with any two tiles intersecting either on an empty set, or on a vertex or on an edge.

- We work in the standard case $\omega = ||\vec{v}_1||$.
- We associate with the quasicrystal $\pi_0(\mathfrak{P}(\vec{v},\mu,\omega))$ a tiling $T(\vec{v},\mu,\omega))$ of the plane by three kinds of lozenges, obtained by connecting points of the quasicrystal with edges.
- We associate with the arithmetic discrete plane $\mathfrak{P}(\vec{v},\mu,\omega)$ a surface $\mathcal{P}(\vec{v},\mu,\omega)$ in \mathbb{R}^3 called stepped plane defined as the union of translates of faces of the unit cube whose vertices belong to $\mathfrak{P}(\vec{v},\mu,\omega)$.

- We work in the standard case $\omega = ||\vec{\mathbf{v}}_1||$.
- We associate with the quasicrystal $\pi_0(\mathfrak{P}(\vec{v},\mu,\omega))$ a tiling $T(\vec{v},\mu,\omega))$ of the plane by three kinds of lozenges, obtained by connecting points of the quasicrystal with edges.

We now pick for each tile T_i a particular vertex, called its distinguished vertex. One has a one-to-one correspondence between tiles T_i of the tiling and faces F_i of the stepped plane

Fact: The set of distinguished vertices of $\mathfrak{P}(\vec{v}, \mu, \omega)$ is a lattice.

..and a multidimensional word

Fact: The set of distinguished vertices of $\mathfrak{P}(\vec{v}, \mu, \omega)$ is a lattice.

Since the set of distinguished vertices is a lattice that can be assimilated to \mathbb{Z}^2 , we can code as a \mathbb{Z}^2 -word over the alphabet $\{1,2,3\}$ any arithmetic discrete plane.

lattice structure → some regularity

Two-dimensional word combinatorics

An arithmetic discrete plane can be coded as

_	1 -	_	~	-	· ·	-	_	*	_	~	-	_	-	Ŀ
1	2	1	2	1	2	3	1	2	1	2	3	1	3	
3	1	3	1	2	1	2	3	1	2	1	2	1	2	
2	1	2	3	1	2	1	2	3	1	3	1	2	1	
1	2	1	2	3	1	3	1	2	1	2	3	1	2	
3	1	2	1	2	1	2	3	1	2	1	2	3	1	•
2	3	1	3	1	2	1	2	3	1	2	1	2	1	
1	2	1	2	3	1	2	1	2	3	1	3	1	2	
3	1	2	1	2	3	1	3	1	2	1	2	3	1	

Discrete lines and Sturmian words

One can code such a discrete line (Freeman code) over the two-letter alphabet $\{0,1\}$. One gets a Stumian word $(u_n)_{n\in\mathbb{N}}\in\{0,1\}^{\mathbb{N}}$

0100101001001010010100100101

We want now to localize with respect to the value $\langle \vec{x}, \vec{v} \rangle$ in the selection window $[0,\omega)$ the distinguished vertices of faces of a given type

$$0 \le \langle \vec{x}, \vec{v} \rangle + \mu < ||\vec{v}||_1 = v_1 + v_2 + v_3.$$

We want now to localize with respect to the value $\langle \vec{x}, \vec{v} \rangle$ in the selection window $[0, \omega)$ the distinguished vertices of faces of a given type

$$0 \le \langle \vec{x}, \vec{v} \rangle + \mu < ||\vec{v}||_1 = v_1 + v_2 + v_3.$$

Faces of type 1 Assume first that

$$0 \leq \langle \vec{x}, \vec{v} \rangle + \mu < v_1.$$

Then

$$\vec{x} + \vec{e}_2$$
, $\vec{x} + \vec{e}_3$, $\vec{x} + \vec{e}_2 + \vec{e}_3$

all belong to $\mathfrak{P}(\vec{v}, \mu, \omega)$. Hence the full face $F_1 + \vec{x}$ is included in $\mathcal{P}(\vec{v}, \mu, \omega)$.

We want now to localize with respect to the value $\langle \vec{x}, \vec{v} \rangle$ in the selection window $[0, \omega)$ the distinguished vertices of faces of a given type

$$0 \le \langle \vec{x}, \vec{v} \rangle + \mu < ||\vec{v}||_1 = v_1 + v_2 + v_3.$$

Faces of type 2 Assume

$$v_1 \leq \langle \vec{x}, \vec{v} \rangle + \mu < v_1 + v_2.$$

Then

$$\vec{x} - \vec{e}_1, \ \vec{x} + \vec{e}_3, \ \vec{x} - \vec{e}_1 + \vec{e}_3$$

all belong to $\mathfrak{P}(\vec{v}, \mu, \omega)$. Hence the full face $F_2 + \vec{x}$ is included in $\mathcal{P}(\vec{v}, \mu, \omega)$.

We want now to localize with respect to the value $\langle \vec{x}, \vec{v} \rangle$ in the selection window $[0, \omega)$ the distinguished vertices of faces of a given type

$$0 \le \langle \vec{x}, \vec{v} \rangle + \mu < ||\vec{v}||_1 = v_1 + v_2 + v_3.$$

Faces of type 3 Assume

$$v_1 + v_2 \le \langle \vec{x}, \vec{v} \rangle + \mu < v_1 + v_2 + v_3.$$

Then

$$\vec{x} - \vec{e}_1, \ \vec{x} - \vec{e}_2, \ \vec{x} - \vec{e}_1 - \vec{e}_2$$

all belong to $\mathfrak{P}(\vec{v}, \mu, \omega)$. The face $F_3 + \vec{x}$ is included in $\mathcal{P}(\vec{v}, \mu, \omega)$.

We want now to localize with respect to the value $\langle \vec{x}, \vec{v} \rangle$ in the selection window $[0,\omega)$ the distinguished vertices of faces of a given type

$$0 \le \langle \vec{x}, \vec{v} \rangle + \mu < ||\vec{v}||_1 = v_1 + v_2 + v_3.$$

We have cut the selection interval $[0, ||\vec{v}||_1)$ into three subintervals,

$$I_1 = [0, v_1), I_2 = [v_1, v_1 + v_2), I_3 = [v_1 + v_2, v_1 + v_2 + v_3),$$

each of them corresponding to the occurrences of the distinguished vertex of a particular type of face.

→ configurations

Rational vs irrational arithmetic discrete planes

The arithmetic discrete plane $\mathfrak{P}(\vec{v},\mu,\omega)$ is defined as

$$\mathfrak{P}(\vec{v}, \mu, \omega) = \{(x, y, z) \in \mathbb{Z}^3 \mid 0 \le v_1 x + v_2 y + v_3 z + \mu < \omega\}.$$

Remark

- Totally irrational planes: $\dim_{\mathbb{Q}}(v_1, v_2, v_3) = 3$.
- Irrational planes (the intermediate case): $\dim_{\mathbb{Q}}(v_1, v_2, v_3) = 2$.
- Rational planes: $\dim_{\mathbb{Q}}(v_1, v_2, v_3) = 1$. One can choose $v_1, v_2, v_3, \mu, \omega \in \mathbb{Z}$ with

$$gcd(v_1, v_2, v_3) = 1$$
 (Bezout's Lemma).

The determination of the frequencies of factors is deduced from the properties of equidistribution for the sequence

$$((mv_1+nv_2) \bmod \omega)_{(m,n))\in\mathbb{Z}^2}$$
.

- A configuration of the tiling $T(\vec{v}, \mu, \omega)$ is an edge-connected finite union of lozenge tiles contained in the tiling.
- Liftings in $\mathfrak{P}(\vec{v},\mu,\omega)$ of configurations correspond to usual local configurations of discrete planes.
- We associate with the configuration C the set I_C of the selection window defined as the closure of the set

$$\{\langle \vec{x}, \vec{v} \rangle + \mu \mid \vec{y} = \pi_0(\vec{x}), \ \vec{x} \in \mathfrak{P}(\vec{v}, \mu, \omega), \ C \text{ occurs in } T(\vec{v}, \mu, \omega) \text{ at } \vec{y} \}.$$

- A configuration of the tiling $T(\vec{v}, \mu, \omega)$ is an edge-connected finite union of lozenge tiles contained in the tiling.
- Liftings in $\mathfrak{P}(\vec{v},\mu,\omega)$ of configurations correspond to usual local configurations of discrete planes.
- We associate with the configuration C the set I_C of the selection window defined as the closure of the set

$$\{\langle \vec{x}, \vec{v} \rangle + \mu \mid \vec{y} = \pi_0(\vec{x}), \ \vec{x} \in \mathfrak{P}(\vec{v}, \mu, \omega), \ C \text{ occurs in } T(\vec{v}, \mu, \omega) \text{ at } \vec{y} \}.$$

- The set I_C is an interval if the dimension of the \mathbb{Q} -vector space generated by the coordinates of \vec{v} is at least 2. We use the denseness in the acceptance window $[0,\omega)$ of $(\langle \vec{x},\vec{v}\rangle)_{\vec{x}\in\mathbb{Z}^2}$.
- If \vec{v} has integer coprime entries and μ is also an integer, I_C is a set of consecutive integers. We use in this latter case Bezout's lemma.

- A configuration of the tiling $T(\vec{v}, \mu, \omega)$ is an edge-connected finite union of lozenge tiles contained in the tiling.
- Liftings in $\mathfrak{P}(\vec{v},\mu,\omega)$ of configurations correspond to usual local configurations of discrete planes.
- We associate with the configuration C the set I_C of the selection window defined as the closure of the set

$$\{\langle \vec{x}, \vec{v} \rangle + \mu \mid \vec{y} = \pi_0(\vec{x}), \ \vec{x} \in \mathfrak{P}(\vec{v}, \mu, \omega), \ C \text{ occurs in } T(\vec{v}, \mu, \omega) \text{ at } \vec{y} \}.$$

Example Consider $C = T_1 \cup (T_1 + \vec{e}_3)$. Recall that

$$I_1 = [0, v_1), \ I_2 = [v_1, v_1 + v_2), \ I_3 = [v_1 + v_2, v_1 + v_2 + v_3).$$

Configuration C occurs at $\vec{y} = \pi_0(\vec{x})$ if and only if

$$\langle \vec{x}, \vec{v} \rangle + \mu \in I_1 \text{ and } \langle \vec{x} + \vec{e}_3, \vec{v} \rangle + \mu = \langle \vec{x}, \vec{v} \rangle + v_3 + \mu \in I_1,$$

 $\langle \vec{x}, \vec{v} \rangle + \mu \in I_1 \cap (I_1 - v_3).$

Hence

- $I_C \neq \emptyset$ if and only if $v_1 > v_3$.
- If $v_1 > v_3$, then $I_C = [0, v_1 v_3)$

- A configuration of the tiling $T(\vec{v}, \mu, \omega)$ is an edge-connected finite union of lozenge tiles contained in the tiling.
- Liftings in $\mathfrak{P}(\vec{v},\mu,\omega)$ of configurations correspond to usual local configurations of discrete planes.
- We associate with the configuration $\mathcal C$ the set $\mathcal I_{\mathcal C}$ of the selection window defined as the closure of the set

$$\{\langle \vec{x}, \vec{v} \rangle + \mu \mid \vec{y} = \pi_0(\vec{x}), \ \vec{x} \in \mathfrak{P}(\vec{v}, \mu, \omega), \ \textit{C occurs in } T(\vec{v}, \mu, \omega) \ \text{at } \vec{y}\}.$$

We thus have here again divided the selection window $[0,\omega)$ into intervals I_C associated with configurations C.

Applications

Two discrete planes with the same normal vector and same width have the same configurations.

We also deduce information on the

- number of configurations/factors of a given size (enumeration)
- frequencies (probabilities)

See for instance [B.-Vuillon] and more generally [Daurat-Tajine-Zouaoui DGCI'09]

Application: repetitivity

- The radius of a configuration is defined as the minimal radius of a disk containing this configuration.
- Two configurations are said identical if they only differ by a translation vector.
- A tiling is said repetitive if for every configuration C there exists a positive number R such that every configuration of radius R contains C.

Configurations appear "with bounded gaps". Repetitive tilings can be considered as ordered structures.

Configurations = words, repetitivity = uniform recurrence

Application: repetitivity

- The radius of a configuration is defined as the minimal radius of a disk containing this configuration.
- Two configurations are said identical if they only differ by a translation vector.
- A tiling is said repetitive if for every configuration C there exists a positive number R such that every configuration of radius R contains C.

Configurations appear "with bounded gaps". Repetitive tilings can be considered as ordered structures.

Configurations = words, repetitivity = uniform recurrence

Proof of the repetitivity: Let C be a given configuration that occurs in the tiling T. We consider the interval associated with C.

Given any interval I of \mathbb{R}/\mathbb{Z} , the sequence $(n\alpha)_{n\in\mathbb{N}}\mod 1$ enters the interval I with bounded gaps, that is, there exists $N\in\mathbb{N}$ such that any sequence of N successive values of the sequence contains a value in I.

From discrete planes to tilings via... number theory

Fact: Arithmetic discrete planes are repetitive.

Repetitivity function: Let N be the smallest integer N such that every ball of radius N in the tiling contains all configurations of radius n. We set R(n) := N.

Linear repetitivity: there exists C such that $R(n) \leq Cn$ for all n.

Open problem: Characterize the discrete planes which have linear repetitivity.

Discrete lines: one has linear repetitivity iff and the slope of the line has bounded partial quotients in its continued fraction expansion.

Repetitivity is a measure of disorder.

Playing with the selection window

As an example, see [Domenjoud-Jamet-Toutant DGCI'09]

By playing with the selection window....

....we would like to be able to

- generate discrete planes
- recognize discrete planes: given a set of points in \mathbb{Z}^3 , is it contained in an arithmetic discrete plane?
 - → Hierarchical structure/substitution rules

Toward multidimensional continued fractions

- We have been so far able to describe properties of arithmetic discrete planes sharing the same normal vector \vec{v} by cutting the selection window into intervals associated with configurations.
- We now want to be able to relate two discrete planes with different normal vectors \vec{v} and \vec{v}' .
- We focus on the case $\vec{v} = M\vec{v}'$, where M is a 3 by 3 square matrix with entries in $\mathbb N$ having determinant equal to 1 or -1.

Continued fractions

One represents any positive real number α as

$$\alpha = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cdots}}}$$

in order to find good rational approximations of α .

Continued fractions

One represents any positive real number α as

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

in order to find good rational approximations of α .

In matricial terms this gives

$$\left(\begin{array}{cc}p_{n+1}&p_n\\q_{n+1}&q_n\end{array}\right)=\left(\begin{array}{cc}a_1&1\\1&0\end{array}\right)\left(\begin{array}{cc}a_2&1\\1&0\end{array}\right)\cdots\left(\begin{array}{cc}a_{n+1}&1\\1&0\end{array}\right)$$

Continued fractions

One represents any positive real number α as

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

in order to find good rational approximations of α .

In matricial terms this gives

$$\left(\begin{array}{cc} p_{n+1} & p_n \\ q_{n+1} & q_n \end{array}\right) = \left(\begin{array}{cc} a_1 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} a_2 & 1 \\ 1 & 0 \end{array}\right) \cdots \left(\begin{array}{cc} a_{n+1} & 1 \\ 1 & 0 \end{array}\right)$$

$$\left(\begin{array}{c} 1 \\ \alpha \end{array}\right) \sim \left(\begin{array}{cc} a_1 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} a_2 & 1 \\ 1 & 0 \end{array}\right) \cdots \left(\begin{array}{cc} a_n & 1 \\ 1 & 0 \end{array}\right) \cdots$$

One approximates a direction $(1, \alpha)$ by a succession of nested cones.

Multidimensional continued fractions

If we start with two parameters (α, β) , one looks for two rational sequences (p_n/q_n) et (r_n/q_n) with the same denominator that satisfy

$$\lim p_n/q_n = \alpha, \lim r_n/q_n = \beta.$$

There is no canonical multidimensional continued fraction.

Multidimensional continued fractions

If we start with two parameters (α, β) , one looks for two rational sequences (p_n/q_n) et (r_n/q_n) with the same denominator that satisfy

$$\lim p_n/q_n = \alpha$$
, $\lim r_n/q_n = \beta$.

There is no canonical multidimensional continued fraction.

Which kind of continued fraction algorithm can we use in discrete geomery to describe

- discrete lines in \mathbb{R}^3
- discrete planes in R³?

Unimodular multidimensional continued fractions

Let $X \subset \mathbb{R}^d$. A d-dimensional continued fraction map over X is a map $T: X \to X$ such that $T(X) \subset X$ and, for any $\vec{x} \in X$, there is a matrix $M(\vec{x})$ in $GL(d, \mathbb{Z})$ satisfying:

$$\vec{x} = M(\vec{x}).T(\vec{x}).$$

The associated continued fraction algorithm consists in iteratively applying the map T on a vector $\vec{x} \in X$. This yields the following sequence of matrices, called the continued fraction expansion of \vec{x} :

$$(M(T^n(\vec{x})))_{n\in\mathbb{N}}.$$

If the matrices have nonnegative entries, the algorithm is said nonnegative.

Jacobi-Perron algorithm

• Its projective version is defined on the unit square $[0,1) \times [0,1)$ by:

$$(\alpha, \beta) \mapsto \left(\frac{\beta}{\alpha} - \left\lfloor \frac{\beta}{\alpha} \right\rfloor, \frac{1}{\alpha} - \left\lfloor \frac{1}{\alpha} \right\rfloor \right) = (\{\beta/\alpha\}, \{1/\alpha\}).$$

• Its linear version is defined on the positive cone $X = \{(a,b,c) \in \mathbb{R}^3 | 0 \le a,b < c\}$ by:

$$T(a,b,c) = (b - \lfloor b/a \rfloor a, c - \lfloor c/a \rfloor a, a).$$

Jacobi-Perron algorithm

• Its projective version is defined on the unit square $[0,1) \times [0,1)$ by:

$$(\alpha, \beta) \mapsto \left(\frac{\beta}{\alpha} - \left\lfloor \frac{\beta}{\alpha} \right\rfloor, \frac{1}{\alpha} - \left\lfloor \frac{1}{\alpha} \right\rfloor \right) = (\{\beta/\alpha\}, \{1/\alpha\}).$$

• Its linear version is defined on the positive cone $X = \{(a,b,c) \in \mathbb{R}^3 | 0 \le a,b < c\}$ by:

$$T(a,b,c)=(b-\lfloor b/a\rfloor a,c-\lfloor c/a\rfloor a,a).$$

• We set $(a_0,b_0,c_0):=(a,b,c)$ and $(a_{n+1},b_{n+1},c_{n+1}):=T^n(a_n,b_n,c_n)$, for $n\in\mathbb{N}$. Let $B_{n+1}=\lfloor b_n/a_n\rfloor a_n$, $C_n=\lfloor c_n/a_n\rfloor$. One has

$$\left(\begin{array}{c} a_{n} \\ b_{n} \\ c_{n} \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & B_{n+1} \\ 0 & 1 & C_{n+1} \end{array}\right) \left(\begin{array}{c} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{array}\right).$$

Jacobi-Perron algorithm

• Its projective version is defined on the unit square $[0,1) \times [0,1)$ by:

$$(\alpha, \beta) \mapsto \left(\frac{\beta}{\alpha} - \left\lfloor \frac{\beta}{\alpha} \right\rfloor, \frac{1}{\alpha} - \left\lfloor \frac{1}{\alpha} \right\rfloor \right) = (\{\beta/\alpha\}, \{1/\alpha\}).$$

• Its linear version is defined on the positive cone $X = \{(a,b,c) \in \mathbb{R}^3 | 0 \le a,b < c\}$ by:

$$T(a,b,c)=(b-\lfloor b/a\rfloor a,c-\lfloor c/a\rfloor a,a).$$

• We set $(a_0,b_0,c_0):=(a,b,c)$ and $(a_{n+1},b_{n+1},c_{n+1}):=T^n(a_n,b_n,c_n)$, for $n\in\mathbb{N}$. Let $B_{n+1}=\lfloor b_n/a_n\rfloor a_n$, $C_n=\lfloor c_n/a_n\rfloor$. One has

$$\left(\begin{array}{c} a_{n} \\ b_{n} \\ c_{n} \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & B_{n+1} \\ 0 & 1 & C_{n+1} \end{array}\right) \left(\begin{array}{c} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{array}\right).$$

• The idea is now to consider the expansion of a given normal vector $\vec{v} \in X$. Let $\vec{v}^{(n)}$ stand for $T^n(\vec{v})$. One expands \vec{v} as

$$\vec{v} = M_{B_1,C_1} \cdots M_{B_n,C_n} \vec{v}^{(n)}.$$

Generalized substitutions

- We assume that we are in the standard case $\omega = ||\vec{v}||_1$.
- We would like to give a description of $\mathfrak{P}(\vec{v},\mu,||\vec{v}||_1)$ with respect to a multidimensional continued fraction algorithm

$$\vec{v} = M_1 \cdots M_n \vec{v}^{(n)}$$

where the $M_i \in SL(3, \mathbb{N})$.

Generalized substitutions

- We assume that we are in the standard case $\omega = ||\vec{v}||_1$.
- We would like to give a description of $\mathfrak{P}(\vec{v},\mu,||\vec{v}||_1)$ with respect to a multidimensional continued fraction algorithm

$$\vec{v} = M_1 \cdots M_n \vec{v}^{(n)}$$

where the $M_i \in SL(3, \mathbb{N})$.

• Take a matrix $M \in SL(3,\mathbb{N})$. We want to find an algorithmic way to go from from

$$\mathcal{P}_{(\overrightarrow{Mv},\mu,||\overrightarrow{Mv}||_1||)}$$
 to $\mathcal{P}_{(\overrightarrow{v},\mu,||\overrightarrow{v}||_1)}$.

• We use the fact that

$$\langle \vec{x}, M \vec{v} \rangle = \langle {}^t M \vec{x}, \vec{v} \rangle$$

Substitutions in word combinatorics

Let σ be a substitution on \mathcal{A} .

Example:

$$\sigma(1) = 12, \ \sigma(2) = 13, \ \sigma(3) = 1.$$

The incidence matrix M_{σ} of σ is defined by

$$M_{\sigma} = (|\sigma(j)|_i)_{(i,j)\in\mathcal{A}^2},$$

where $|\sigma(j)|_i$ counts the number of occurrences of the letter i in $\sigma(j)$.

Unimodular substitution

$$\det\,M_\sigma=\pm 1$$

Generalized substitutions

Abelianisation

Let d be the cardinality of \mathcal{A} . Let $\vec{l}: \mathcal{A}^* \to \mathbb{N}^d$ be the abelinisation map

$$\vec{l}(w) = {}^{t}(|w|_{1}, |w|_{2}, \cdots, |w|_{d}).$$

Generalized substitutions [P. Arnoux-S. Ito][H. Ei]

Let σ be a unimodular substitution.

$$E_1^*(\sigma)(\vec{x}, i^*) = \sum_{j \in \mathcal{A}} \sum_{P, \sigma(j) = PiS} \left(M_{\sigma}^{-1} \left(\vec{x} + \vec{l}(S) \right), j^* \right).$$

Action on planes and surfaces

Theorem [Arnoux-Ito, Fernique]

Let σ be a unimodular substitution. Let $\vec{v} \in \mathbb{R}^d_+$ be a positive vector. The generalized substitution $E_1^*(\sigma)$ maps without overlaps the stepped plane

$$\mathfrak{P}(\vec{v}, \mu, ||\vec{v}||_1)$$
 onto $\mathfrak{P}({}^tM_{\sigma}\vec{v}, \mu, ||{}^tM_{\sigma}\vec{v}||_1)$

Action on surfaces

Theorem [B.-Fernique]

Let σ be a unimodular substitution. The generalized substitution $E_1^*(\sigma)$ maps without overlaps stepped surfaces onto stepped surfaces.

Some iterations

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

One has

$$E_1^*(\sigma \circ \tau) = E_1^*(\tau) \circ E_1^*(\sigma)$$

We can substitute and desubstitute

Changing the order of letters

 $1\mapsto 12,\ 2\mapsto 23,\ 3\mapsto 123$ $1\mapsto 12,\ 2\mapsto 32,\ 3\mapsto 231$

Generation of a discrete plane

- By considering the iterates of the unit cube $\mathcal U$ under the action of a generalized substitution, are we able to generate the whole discrete plane?
- If yes, what is the shape of these patterns?

Theorem [B.-Lacasse-Paquin-Provençal] Take any admissible Jacobi-Perron expansion. The boundaries of the patterns

$$E_1^*(\sigma_{(B_1,C_1)}) \dots E_1^*(\sigma_{(B_n,C_n)})(\mathcal{U})$$

are self-avoiding paths.

Freeman code

The Freeman code gives the segment directions of the contour of a bounded connected shape.

 $w = 10010\bar{1}0\bar{1}\bar{0}\bar{0}\bar{1}\bar{0}1\bar{0}$

Boundary words

A word over the alphabet $\{0,1,\overline{0},\overline{1}\}$ is a boundary word if it codes the boundary of a polyomino.

A polyomino is determined by the conjugation class of its boundary word.

Some natural questions...

- Can we recognize efficiently whether a word w is a boundary word?
- What can be said on the corresponding polyomino? Can we detect geometric properties like convexity?
- Does it tile the plane?

For answers, see the following DGCI's papers [Brlek-Koskas-Provençal'09, Blondin Massé-Brlek-Garon-Labbé'09, Provençal-Lachaud'09, Brlek-Lachaud-Provençal-Reutenauer'08, Brlek-Provençal'06]

From tilings to discrete geometry

 $\mathbb{Z}^2 \leadsto \mathsf{Honeycomb/hexagonal}$ and triangular lattice polyomino \leadsto polyamond (diamond)

Lozenge tiling model/ Dimers on the honeycomb graph/ Perfect matching of a bipartite planar graph

See [Bodini-Fernique-Rémila, Bodini-Lumbroso DGCI'09]

Back to tilings Long-range aperiodic order

Discrete planes with irrational normal vector are

- repetitive (uniform recurrence)
- aperiodic

The corresponding tilings are obtained by a cut and project scheme and yield quasicrystals (model sets)

Back to tilings Long-range aperiodic order

Discrete planes with irrational normal vector are

- repetitive (uniform recurrence)
- aperiodic

The corresponding tilings are obtained by a cut and project scheme and yield quasicrystals (model sets)

Assume we have a "substitutive" arithmetic discrete plane

Multidimensional substitutive tilings \longrightarrow Local/matching rules [S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic discrete plane by local inspection?

Back to tilings Long-range aperiodic order

Discrete planes with irrational normal vector are

- repetitive (uniform recurrence)
- aperiodic

The corresponding tilings are obtained by a cut and project scheme and yield quasicrystals (model sets)

Assume we have a "substitutive" arithmetic discrete plane

Multidimensional substitutive tilings

Local/matching rules [S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic discrete plane by local inspection?

Yes in the Tribonacci case $\sigma: 1\mapsto 12,\ 2\mapsto 13,\ 3\mapsto 1$ [Bressaud-Sablik-Pytheas Fogg'09]

Special Semester 2010 CIRM-Marseille-France

Towards new Interactions between Mathematics and Computer Science February 01-March 05 2010 http://www.lirmm.fr/MathInfo2010/

- Lattice reduction
- Dynamics and Computation
- · Multi-dimensional subshifts and tilings
- Sage days
- Topological Methods for the study of discrete structures