ON DICKSON'S THEOREM CONCERNING ODD PERFECT NUMBERS

PAUL POLLACK

ABSTRACT. A 1913 theorem of Dickson asserts that for each fixed natural number k, there are only finitely many odd perfect numbers N with k distinct prime factors. We show that the number of such N is bounded by $2^{(2k)^2}$.

1. Introduction

If N is a natural number, we write $\sigma(N) := \sum_{d|N} d$ for the sum of the divisors of N. We call N perfect if $\sigma(N) = 2N$, i.e., if N is equal to the sum of its proper divisors. The even perfect numbers were completely classified by Euclid and Euler, but the odd perfect numbers remain utterly mysterious: Despite millennia of effort, we don't know of a single example, but we possess no argument ruling out their existence.

In 1913, Dickson [2] proved that for each fixed natural number k, there are only finitely many odd perfect numbers N with $\omega(N) = k$. (Here and below, we write $\omega(N)$ for the number of distinct prime factors of the natural number N.) The first explicit bounds were given by Pomerance [5], who showed that an odd perfect N with $\omega(N) \leq k$ satisfies

$$N \le (4k)^{(4k)^{2^{k^2}}}.$$

After the work of Heath-Brown [3], and its subsequent refinements by Cook [1] and Nielsen [4], we know that any such N satisfies

$$(1) N < 2^{2^{2k}}.$$

In addition to an upper bound on the *size* of such N, it is sensible to ask for a bound on the *number* of such N. The purpose of this note is to prove the following estimate:

²⁰⁰⁰ Mathematics Subject Classification. Primary: 11A25, Secondary: 11N25.

This material is based upon work supported by the National Science Foundation under agreement No. DMS-0635607. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Theorem 1. For each positive integer k, the number of odd perfect numbers N with $\omega(N) \leq k$ is bounded by $2^{(2k)^2}$.

Notice that the exponent 2^{2k} in (1) has been replaced with the typographically similar (but much smaller!) $(2k)^2$. Actually, Theorem 1 is a corollary of the following result that is perhaps of independent interest:

Theorem 2. Suppose that $x > e^{12}$. The number of odd perfect $N \le x$ with $\omega(N) \le k$ is bounded by $(\log x)^{2k}$, uniformly in $k \ge 1$.

The proofs of these results are essentially self-contained, except for the use in Theorem 1 of the upper bound (1). Most of our notation will be familiar to students of elementary number theory. A possible exception is the definition of " \parallel " (or exactly divides): If p is a prime, we write $p^e \parallel n$ to mean that $p^e \mid n$ while $p^{e+1} \nmid n$.

2. Proofs

Proof of Theorem 2. We employ a modification of Wirsing's method from [6]. Suppose that $N \leq x$ is odd perfect and $\omega(N) \leq k$. Since no prime power is perfect, $k \geq 2$. Write N = AB, where $A := \prod_{\substack{p^e || N \\ p > 2k}} p^e$

and
$$B := \prod_{\substack{p^e || N \ p \le 2k}} p^e$$
. We have

$$\sigma(A) = \prod_{p^e || A} (1 + p + p^2 + \dots + p^e) \le A \prod_{p | A} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right),$$

and hence

(2)
$$\frac{A}{\sigma(A)} \ge \prod_{p|A} \left(1 - \frac{1}{p} \right) \ge 1 - \sum_{p|A} \frac{1}{p} \ge 1 - \frac{k}{2k+1} > \frac{1}{2}.$$

Since N is perfect,

$$(3) 2AB = \sigma(A)\sigma(B),$$

and so

$$B < \frac{2A}{\sigma(A)}B = \sigma(B) \le 2B,$$

with equality on the right precisely when A = 1. Suppose $A \neq 1$. The preceding inequalities show that $\sigma(B) \nmid 2B$, and so there is a prime p_1 dividing $\sigma(B)$ to a higher power than that to which it divides 2B; for definiteness, fix p_1 as the least such prime. It now follows from (3) that $p_1 \mid A$. Suppose $p_1^{e_1} \parallel A$, where $e_1 \geq 1$. Then if we put

$$A' := A/p_1^{e_1}$$
 and $B' := Bp_1^{e_1}$,

it is clear that both (2) and (3) hold with A' in place of A and B' in place of B. Arguing as above, we find that unless A' = 1, there is a prime p_2 dividing $\sigma(B')$ to a higher power than that to which it divides 2B'. Again, for definiteness, let p_2 be the least such prime. Then $p_2^{e_2} \parallel A'$ for some $e_2 \geq 1$. We put

$$A'' := A'/p_2^{e_2}$$
 and $B'' := B'p_2^{e_2}$

and observe that (2) and (3) hold with A'' and B'' replacing A and B. We continue in this manner; since the sequence $\omega(A), \omega(A'), \ldots$ is strictly decreasing, it is clear that this process terminates, and we eventually arrive at a factorization

$$A = p_1^{e_1} p_2^{e_2} \cdots p_l^{e_l},$$

where

$$l = \omega(A) = \omega(N) - \omega(B) \le k - 1.$$

(Notice that (2) implies that $B \neq 1$, and hence $\omega(B) \geq 1$.)

The prime p_1 depends only on B, while for i > 1, the prime p_i depends only B and the exponents e_1, \ldots, e_{i-1} . It follows that for a given B, the cofactor A is entirely determined by the sequence of exponents e_1, \ldots, e_l . Since $A \le n \le x$ and each $p_i \ge 2k + 1 \ge 5$, each $e_i \in \{1, \ldots, \lfloor \log x/\log 5 \rfloor\}$. Since $l \in \{0, 1, \ldots, k-1\}$, the number of possibilities for the sequence of exponents is (crudely) bounded by

$$(4) k \left(\log x / \log 5\right)^k \le (\log x)^k.$$

To estimate the number of possibilities for B, we observe that the number of odd primes not exceeding 2k is smaller than k, while for each prime $p^e \parallel B$, we have $e \leq \log x/\log 3$. Hence the number of possibilities for B is bounded by

(5)
$$(1 + \log x / \log 3)^k \le (\log x)^k,$$

since we are assuming that $x > e^{12}$. Combining (4) and (5) gives the theorem.

Proof of Theorem 1. We may suppose that $k \geq 3$, since an odd N with $\omega(N) < 3$ satisfies

$$\sigma(N) = N \prod_{p^e || N} \left(1 + \frac{1}{p} + \dots + \frac{1}{p^e} \right)$$

$$< N \left(1 + \frac{1}{3} + \frac{1}{3^2} + \dots \right) \left(1 + \frac{1}{5} + \frac{1}{5^2} + \dots \right) = \frac{15}{8} N < 2N,$$

and so cannot be perfect. Then $x := 2^{2^{2k}} > e^{12}$, and by (1) and Theorem 2, the number of odd perfect N with $\omega(N) \leq k$ is at most $(\log x)^{2k} < (2^{2k})^{2k} = 2^{(2k)^2}$.

ACKNOWLEDGEMENTS

The author thanks the Institute for Advanced Study for providing a conducive research environment.

References

- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 67–71.
- 2. L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math. **35** (1913), no. 4, 413–422.
- 3. D. R. Heath-Brown, *Odd perfect numbers*, Math. Proc. Cambridge Philos. Soc. **115** (1994), no. 2, 191–196.
- 4. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), A14, 9 pp. (electronic).
- 5. C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann. **226** (1977), no. 3, 195–206.
- 6. E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959), 316–318.

University of Illinois at Urbana-Champaign, Department of Mathematics, Urbana, Illinois 61802

E-mail address: pppollac@illinois.edu