Lessons in Internet Scale Stream Processing @LinkedIn

Kartik Paramasiyam

Director of Engineering, Streams Infrastructure, LinkedIn

InfoQ

促进软件开发领域知识与创新的传播

关注InfoQ官方微信 及时获取ArchSummit 大会演讲视频信息

全球软件开发大会 [北京站]

2017年4月16-18日 北京·国家会议中心 咨询热线: 010-64738142

[38411145]

2017年7月7-8日 深圳-华侨城洲际酒店 咨询热线: 010-89880682

AGENDA

- Introduction
- - · Stream processing
 - · Data Ingestion

Future

- · Typical Architecture for Data Processing

CYBER-SECURITY

ToonClips.co

#9409

e@toonclips.com

AGENDA

- Introduction

 - · Data Ingestion · Stream processing

Future

- · Typical Architecture for Data Processing

AGENDA

- Introduction

 - · Stream processing
 - · Data Ingestion

Future

- · Typical Architecture for Data Processing

Yes

Yes

Yes

Partition

Aware Ability to

Replay Portable

across Clouds

Yes

Yes

No

Yes

Yes

No

No

No

No

DATA
INGESTION
OPTIONS

APACHE KAFKA

GOOGLE PUB-SUB

- DATA INGESTION :
 - COST BASED
 - COMPARISON >

Running at Small Scale (< 1TB a day)

Pay as you go Cloud managed services (Kinesis/EventHub) are cheaper.

Pay as you go Cloud managed services(Kinesis/EventHub) are cheaper

- Running at Medium Scale
- < 100 Billion messages/day, < 5000 partitions
- (incl. operational cost)
 Running at Large Scale

cheaper

- > 100 Billion messages/day, > 5000 partitions
 - Managing your own custom Apache Kafka Cluster is

KAFKA @ LINKEDIN

- Ingested Data/Day 350 TB

- Data consumed/day: 1.3 PB - ~1800+ Kafka Broker Machines

· Peak load of 16 Million Messages/second

~ 1.2 Trillion Messages

LESSONS FROM RUNNING KAFKA @ SCALE

Need auto-healing(Kafka Cruise Control)

- Machines/disks will die almost daily

- Take good care of Zookeeper

• 5 node Zookeeper clusters on SSD.

Monitoring will always reveal problems.

Kafka Monitor (<u>link</u>), Burrow (<u>link</u>)

Dealing with Multi-tenancy
 Quotas/Rate Limiting is critical to avoid availability dips

KAFKA: COST CONSIDERATIONS

- Bigger machines can be cheaper

. But., Machine failures take very long to recover

- More Data Storage = Bigger Clusters

- Better support for regular disks instead of using RAID-10
- · Optimized Data Retention capabilities (future) . Background recompression of old data (future)

AGENDA

- Introduction
- · Typical Architecture for Data Processing

Future

- - · Data Ingestion
- - · Stream processing

TYPES OF STREAM **PROCESSING**

- Stateless Processing

- Transformation etc.
- Lookup adjunct data (lookup databases/call services) · Producing results for every event
- Stateful Processing
 - . Triggering/Producing results periodically (time-windows)
 - · Maintain intermediate state E.g. Joining across multiple streams of events.

- - 62 Contributors - 14 Committers

- Top level Apache project since Dec 2014 - 5 big Releases (0.7, 0.8, 0.9, 0.10, 0.11)

https://cwiki.apache.org/confluence/display/SAMZA/Powered+By Applications at LinkedIn: from ~20 to ~200 in 2 years.

- APACHE SAM7A - Companies using: LinkedIn, Uber, MetaMarkets, Netflix, Intuit.
- TripAdvisor, MobileAware, Optimizely

HARD PROBLEMS IN

STREAM PROCESSING

Performance II Stability

Reprocessing

Support for a variety of input sources

Generating Accurate Results

PERFORMANCE

- I/O for accessing state is the biggest bottleneck!
 - Reading a Database
 - · Maintaining Temporary State

· Writing Results

Using a Regular Database

PERFORMANCE:

Using an Embedded Database

Using a Regular Database

Using an Embedded Database

-100x difference in Performance

- Local Data access:

- 1.1 Million TPS on a single processing machine (SSD)
 Used a 3 node Kafka cluster for storing the durable changelog
- Remote Data Access:
 - 8500 TPS when the Samza job was changed to accessing a remote No-Sql store
 - No-Sql Store was also on a 3 node (ssd) cluster

REMOTE DATA

AN EMBEDDED DATABASE DOES NOT ALWAYS WORK WELL

- If a database is too large and its access is not 'partitioned'
- Input stream doesn't support partitioned access (e.g. Google Pub-Sub)
- Number of partitions of the input stream is changing very often
- Aggressive auto-scaling the processor is required
- You anyways have to store the results of the stream processor into a serving Database (e.g. Espresso, Cassandra)

HOW SAMZA KEEPS LOCAL STATE STABLE

Start processing next message Event Loop SUPPORTING ASYNC I/O (Single ProcessAsync Remote DB /Service

Asynchronous Processing speeds up performance

INCREMENTAL CHECKPOINTS

Some applications have ~ 2 TB state in production

Stateful apps don't really work without incremental checkpointing

HARD PROBLEMS IN STREAM

PROCESSING

- Performance II - Stability

- Reprocessing

- Support for a variety of input sources

- Generating Accurate Results

BACKPRESSURE IN A PROCESSING PIPELINE

- Kafka or durable intermediate queues are leveraged to avoid backpressure issues in a pipeline.
- Allows each stage to be independent of the next stage

Kafka SUPPORT MANY Databus STREAMING EVENT **SOURCES** Oracle. Kinesis Samza Espresso, Processor MySQL ZeroMO Mongo ... Azure EventHub. Azure Document DB.

Google Pub-Sub etc.

HARD PROBLEMS IN STREAM

PROCESSING

- Performance !! - Stability

- Reprocessing

- Generating Accurate Results

- Support for a variety of input sources

REPROCESSING

....

Software Bugs

- What is reprocessing?
 Process events that happened in the past.
- Why do we have to do Reprocessing?
 - Changes in business logic

REPROCESSING

- DEALING WITH BUGS

BATCH PROCESSING IN SAMZA!!

(NEW)

- HDFS system consumer for Samza.

 Same Samza processor can be used for processing events from Kafka and HDFS with no code changes.

HARD PROBLEMS IN STREAM **PROCESSING**

- Performance !!

- Stability

- Generating Accurate Results

- Reprocessing (dealing with business logic changes)

- Support for a variety of input sources

DEALING WITH ACCURACY

- All events are stored locally
- Find impacted 'window/s' for late arrivals
- 3. Re-compute result
- 4. Choose strategy for emitting results (absolute or relative value)

Influenced by Google Millwheel

AGENDA

- Introduction

 - · Data Ingestion

· Stream processing Future

- · Typical Architecture for Data Processing

Data Ingestion

- More cheaper and flexible offerings
- · Kafka will become easier to operate

FUTURES

- Stream Processing

- Accuracy (event time support) will be the default
- Convergence of nearline and offline processing technologies
- Seamless SQL over streams/batch
 Local State will become more prevalent

Thank you !

PERFORMANCE

CONSIDERATIONS

KAFKA:

- Bottleneck in the Broker: . Network for 1 Gbps NICs

· CPU for 10 Gbps - SSI adds CPII overhead on Brokers

- Avoiding Recompression in Brokers saves CPU (new)

increases latency

- Client side batching improves compression, but

Espresso Publisher Oracle * RESTful **BROOKLIN** -API DocDB Bridge INGESTION FROM **DATABASES** Brooklin 6

I Management API

EventHub

Kinesis