Flight Management System Projeto 2 AED 23/24

•••

G33: David Ranito Pedro João Tiago Torres

Classes Diagram

Graph -> Graph.cpp, Graph.h

Airport -> Airport.cpp, Airport.h

Flight -> Flight.cpp, Flight.h

Airline -> Airline.cpp, Airline.h

Auxiliar -> Auxiliar.cpp, Auxiliar.h, airlines.csv, airports.csv, flights.csv

Terminal -> Terminal.cpp, Terminal.h

Reading the dataset

To read the given data, 3 functions were added in the "Auxiliar" class:

- readAirports
- readAirlines
- readFlights

These functions read the respective file line by line and create the appropriate object

(in the heap in the case of airport and airline), providing the read data as parameters of the constructor.

```
void Auxiliar::readAirports(Graph &g) {
    std::ifstream file( s: "../airports.csv");
   std::string line;
    std::string code, name, city, country, latitude, longitude;
   getline( &: file, &: line);
    while (std::getline( &: file, &: line)){...}
void Auxiliar::readAirlines(Graph &g) {
    std::ifstream file( s: "../airlines.csv");
    std::string line:
    std::string code, name, callsign, country;
   getline( &: file, &: line);
    while (std::getline( & file, & line)){...}
void Auxiliar::readFlights(Graph &g) {
    std::ifstream file( s: "../flights.csv");
    std::string line;
    std::string source, dest, airline;
    getline( &: file, &: line);
    while (std::getline( &: file, &: line)){...}
```

Reading the dataset

By finally calling the addAirport, addAirline or addFlight the new objects are then added to the appropriate data structure and to the graph.

As an example, in the case of the Airport, it is added to the graph's vertex set and to all the hash maps.

Graph Description

- The graph is built with Airport's as vertices and Flight's as edges.
- It has hashmaps to allow constant-time lookup for airports, airlines and cities.

```
std::vector<Airport*> vAirports;
std::unordered_map<std::string, Airport *> airports;
std::unordered_map<std::string, Airport *> airportsName;
std::unordered_map<std::pair<std::string, std::string>, std::vector<Airport *>, CityCountryHash, CityCountryEqual> airportsPerCity;
std::unordered_map<std::string, Airline *> airlines;
```

- Each airport (vertex) has a group of outgoing flights (edges).
- Some attributes are auxiliary to the execution of some methods.

```
class Airport {
   std::string code;
   std::string name;
   std::string city;
   std::string country;
   std::string latitude;
   std::string longitude;
   std::vector<Flight> flights; // list of outgoing flights
   int nFlightsOut;
   int num;
   int low;
   bool visited; // auxiliary field
   bool processing;
```

Graph Description - continuation

 Each Flight has an origin Airport from which the Flight takes place to a destination Airport, which is done through an Airline.

```
class Flight {
   Airport * source;
   Airport * dest; // destination vertex
   Airline * airline;
```

 Airline's have the following attributes that were read from the dataset.

```
class Airline {
   std::string code;
   std::string name;
   std::string callsign;
   std::string country;
```

Global numbers

Time Complexity: O(1)

Global numbers

There are 3019 airports There are 63832 flights There are 444 airlines

Countries that a city flies to directly

Time Complexity: O(A*F*log(n))

Flights from airport and per city/airline

Time Complexity:

- Airport: O(n*log(m))
- City: O(n)
- Airline: O(V+E)

There are 2484 flights from RYR

Press 'm' to go back to the main menu. Press 'q' to quit.

Reachable destinations from an airport in n stops

Options:

From Airport:

- to Airports
- to Countries
- to Cities

In a maximum number of stops

Algorithms used: BFS

Time Complexity: O(V+E)

Other important aspects: With this functionality if 0 stops are provided, direct destinations are displayed as well as all possible destinations if stops are a high value (higher than airport number)

Code	Name		Country	Latitude	Longitude	Out	Flights
YMN	Makkovik Airport	Makkovik	Canada	55.076900	-59.186400		
YRG	Rigolet Airport	Rigolet	Canada	54.179700	-58.457500		
	Postville Airport	Postville	Canada	54.910278	-59.785278		
YYR	Goose Bay	Goose Bay	Canada	53.319168	-60.425833		

Maximum trip

Important aspects: For every airport was made a bfs in order to understand the maximum trip distance and destinations.

Algorithms used: BFS **Time Complexity:** O(V(V+E))

code	City		Country	Code	City	Country	
THU	Thule		Greenland	ZLT	La Tabatiere	Canada	
THU	Thule		Greenland	YBX	Lourdes-De-Blanc-Sablon	Canada	
THU	Thule		Greenland	YHO	Hopedale	Canada	
THU	Thule		Greenland	SRV	Stony River	United States	
ZLT	La Tabatiere		Canada	THU	Thule	Greenland	
ZLT	La Tabatiere		Canada	SRV	Stony River	United States	
YBX	Lourdes-De-Blanc-Sablon		Canada	THU	Thule	Greenland	
YBX	Lourdes-De-Blanc-Sablon		Canada	SRV	Stony River	United States	
YHO	Hopedale		Canada	THU	Thule	Greenland	
YHO	Hopedale		Canada	BVI	Birdsville	Australia	
YHO	Hopedale		Canada	XTG	Thargomindah	Australia	
YHO	Hopedale		Canada	SRV	Stony River	United States	
YHO	Hopedale		Canada	CMP	Santana do Araguaia	Brazil	
BVI	Birdsville		Australia	YHO	Hopedale	Canada	
PTJ	Portland		Australia	YHO	Hopedale	Canada	
XTG	Thargomindah		Australia	YHO	Hopedale	Canada	
STZ	Santa Terezinha		Brazil	YHO	Hopedale	Canada	
STZ	Santa Terezinha		Brazil	SRV	Stony River	l United States	

Top airports with the greatest air capacity

Options:

• Number n of airports to show

Time Complexity: O(V)

Other important aspects: It was possible to do it in a single iteration of the vertex set using a min heap where the size can't exceed n. It was needed to create a custom comparator.

```
struct compareNFlightsOut {
   bool operator()(Airport* a, Airport* b) {
      return a->getNFlightsOut() > b->getNFlightsOut();
   }
};
std::priority_queue<Airport *, std::vector<Airport *>, compareNFlightsOut> topMin;
```

```
Display Top-3
Top-3 airports with the greatest air traffic capacity
Code
                                                                                                                               Latitude
                                                                                                                                                                 | OutFlights
                                                                                                   Country
                                                                                                                                                  Longitude
                                                                                                United States
I ATL I
            Hartsfield Jackson Atlanta Intl
                                                                Atlanta
                                                                                                                              33.636719
                                                                                                                                                   -84,428067
 ORD I
                  Chicago Ohare Intl
                                                               Chicago
                                                                                                United States
                                                                                                                              41.978603
                                                                                                                                                   -87.904842
PEK
                     Capital Intl
                                                               Beijing
                                                                                                                              40.080111
                                                                                                                                                   116.584556
                                                                                                                                                                       526
```

Essential airports to the circulation capability

Algorithms used: similar to Tarjan's

Time Complexity: O(V+E)

Other important aspects:

- The function uses a stack to keep track of visited airports during the DFS traversal.
- Temporarily addition and deletion of flights is done to achieve the desired functionality without directly modifying the original graph structure.

Essential	. airports to the network's circulation	capabili [.]	ty		
There are	: 314 airports				
]					
Code	Name		City	Country	1
					1
ABQ	Albuquerque International Sunport		Albuquerque	United States	T
ACC	Kotoka Intl		Accra	Ghana	1
ACK	Nantucket Mem		Nantucket	United States	ı
ADD	Bole Intl		Addis Ababa	Ethiopia	- 1
ADL	Adelaide Intl		Adelaide	Australia	- 1

I YYC I Calgary Intl Calgary Canada I YYR I Goose Bay Goose Bay Canada | YYZ | Lester B Pearson Intl Canada I YZF I Yellowknife Yellowknife Canada 1 YZV I Sept Iles Sept-iles Canada | ZAG | Zagreb Croatia Zagreb Zamboanga Intl **Philippines** I ZAM I Zamboanga

Best Flight Option(s)

Options:

From and To:

- airport code or name
- city
- geographical coordinates

Using maximum number of airlines
Using only specified airlines

Algorithms used: BFS

Time Complexity: O(S*D*(V+E+F))

Other important aspects: These are all possible options with the least amount of stops, including trips that stop at the same airports but fly in different airlines

There are 4 opt							
There are 2 fli From OPO To FMO							
		FROM					AIRLIN
Code				Code			Code
OPO FRA	Porto Frankfurt		Portugal Germany	 FRA FMO	Frankfurt Munster	Germany Germany	 DLH DLH

Interface

The interface is implemented with the Terminal class, that is responsible for managing the execution of the program as wished by the user.

All functionalities are displayed in the console by menus.

For each menu the user can choose one option with the corresponding string and then follow the steps that are shown

- 0 Global numbers
- 1 Flights from an airport
- 2 Flights per city
- 3 Flights per airline
- 4 Countries that a city flies to directly
- 5 Direct destinations from an airport
- 6 All possible destinations from an airport
- 7 Reachable destinations from an airport in a maximum n lay-overs
- 8 Maximum trip (with the greatest number of lay-overs)
- 9 Top airports with the greatest air traffic capacity
- 10 Essential airports to the network's circulation capability
- 11 Consult the best flight option

Press 'q' to quit.

Press the number corresponding the action you want.

Interface

Some lists can be sorted by each column, by ascending or descending order:

```
Press 's' for sorting options.

Press 'm' to go back to the main menu.

Press 'q' to quit.

S

SORTING OPTIONS

Type the number of the column (starting at 0) to order by: 0

Type 0 for descending order or 1 for ascending order: 0
```

The interface is very flexible and the user can choose when and how things are displayed:

```
There are 7 options

Do you wish to display them? (y/n)
```

```
FROM
Search by:

0 - Airport code

1 - Airport name

2 - City ("city,country")

3 - Geographical coordinates ("lat,lon")
```

Highlights

- For the complexity involved, the speed and responsiveness of the program is very good.
- The interface has a good look, is intuitive and has some interesting and useful features, for example, sorting options.
- For each trip, all flights used are displayed
- ☐ Multiple querying options and combinations, such as, best options from a city to the nearest location from geographical coordinates using a maximum of three airlines

Conclusion

During the project the biggest struggle was to compute the best flight option, because we wanted to show for all options what flights to catch and it was hard to keep track of them.

After the difficulties that we faced on the last project, we improved some aspects that facilitated the development of this project.

In general, we accomplished everything that was asked and also added our personal touch.

All elements equally contributed to the project.