Theory of Computation Course Code: 10B11CI513 ASSIGNMENT - II

Last Date: 30-11-2018

- a) Discuss ambiguity, left recursion and factoring in context free grammars. Explain how to eliminate each one.
 - b) Discuss closure and decision properties of context free languages.
- 2. What is GNF? Explain in detail. Convert the following grammar to GNF:
 - a) A1→A1A3
- b) $A_2 \rightarrow A_3 A_1 | b$
- c) A₃→ A₁A₂|a.
- 3. a) Reduce the grammar $S \rightarrow aAa$, $A \rightarrow SB|bcc|DaA$, $C \rightarrow abb|DD$, $E \rightarrow ac$, $D \rightarrow aDA$.
 - b) What is left recursion? How to eliminate it?
- 4. a) Convert the given grammar to GNF: i) A₁→A₁A₃ ii) A₂→ A₃A₁|b iii) A₃→ A₁A₂|a.
 - b) Explain the concept of ambiguity in context free grammars. How to eliminate it?
- 5. Convert the following grammar into Chomsky normal form: S→aA/a /B/c, A→a B/∈, B→aA, C→c C D, D→abd.
- 3 7 an/a / b/c, n 7 a b/∈, b 7 an, c 7 c c b, b 7 abd.
- 6. a) What are useless variable in a CFG? How do you find out useless variable in a given CFG? Explain with an example.
 - b) Eliminate ambiguity from the following grammar $E \rightarrow E + E / E^*E / (E) / id$.
- 7. What is meant by ambiguous grammar? Test whether the grammar is ambiguous or not?
- 8. Write a procedure for eliminating 'E' productions from a given CFG. Eliminate 'E' productions from the given grammar: $S\rightarrow ABCBCD$, $A\rightarrow CD$, $B\rightarrow Cb$, $C\rightarrow a/E$, $D\rightarrow bD/E$
- 9. Explain equivalence of CFG and PDA.
- 10. a) Explain acceptance of language by PDA.
 - b) Design a PDA that accepts the language L={w/w has equal no. of a's and b's} over an alphabet {a,b}.
- 11. a) Explain the terms: PDA and CFL.
 - b) Explain equivalence of acceptance by final state and empty stack.
- 12. a) Convert the following Context Free Grammar to PDA i) S→aA|bB ii) A→aB|a iii) B→b. Verify the string aab is accepted by equivalent PDA.
 - b) Explain instantaneous description for PDA.
- 13. a) Define a PDA. Design a PDA for L= $\{xcx/x \in \{a,b\}^*\}$. Process the string "abbacabba". Note: x stands for reverse of a string x.
 - b) What do you mean by an instantaneous description of a PDA? Explain with example.
- 14. a) When do we say mat PDA is non deterministic? Design a PDA for recognizing the language of palindromes over the input alphabet {a,b}.

- b) Distinguish between a DPDA and NPDA.
- 15. Prove that acceptance by empty stack and by final state is equivalent.