Machine Learning HW7 Report

學號: B06901063 系級: 電機二姓名: 黃士豪

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces · 也就是對應到前五大 Eigenvalues 的 Eigenvectors ·

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

TECONSTRUCTION ,业重山和木。						
編號	原圖	reconstruction				
0						
11						
22						

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

1	2	3	4	5
4.1%	2.9%	2.4%	2.2%	2.1%

2. Image clustering:

a. 請實作兩種不同的方法·並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

實作方法	Conv(64, (3, 3))	Conv(32, (3, 3))
	BatchNormalization()	BatchNormalization()
	LeakyReLU()	LeakyReLU()
	MaxPooling2D((2, 2))	Conv(16, (3, 3))
	Conv(32, (3, 3))	BatchNormalization()
	BatchNormalization()	LeakyReLU()
	LeakyReLU()	Flatten()
	Conv(16, (3, 3))	Dense(1024)
	BatchNormalization()	BatchNormalization()
	LeakyReLU()	Dense(512)
	Flatten()	BatchNormalization()
	PCA(256)	PCA(512)
結果		
(Public / Private)	0.96983 / 0.96977	0.98709 / 0.98700
(loss)	0.57641	0.57344

可以發現單純用 conv 會比 conv 加上 dnn 的表現差,可見不能單純使用 conv 出來的資料做 flatten,結果會爛掉。

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)

其中 visualization.npy 中前 2500 個 images 來自 dataset A · 後 2500 個 images 來自 dataset B · 比較和自己預測的 label 之間有何不同。

可以發現抽出來的 feature 在經過 t-SNE 後,明確顯示出我有一些圖片的 feature 沒有抽取好,因此有一些照片的歸類是錯的(紅點中的藍點與藍點中的紅點),且切 label 的分割線也歪歪的。

c. 請介紹你的 model 架構(encoder, decoder, loss function...),並選出任意 32 張圖片,比較原圖片以及用 decoder reconstruct 的結果。 我的 encoder 架構是兩組 Conv 與 maxpooling 組合配上兩層的 fully connected layer,decoder 則相反,先是兩層 fully connected 再疊上兩組 conv 與 upsampling 的組合,loss function 採用 binary entropy,最後得出的結果如下,分別是 10~320 的圖片,可以發現人臉還原的相當好,但其他類型圖片則差強人意,可能就是分別的關鍵。

原圖	recon.	原圖	recon.	原圖	recon.	原圖	recon.
1	1			1		-	8
	-	(63)	3				=
fee	100			1	100		820
		00	Æ.	1	1	1	4
215	75	1	懂		1	A	3
			3	(A)		*	1
-		00	3				
	4	6			25		