Supervised Learning Revision Notes (19-20)

Study Suggestions

- Lecture notes
- Problems in lectures notes
- Past exams
- Assumed background knowledge includes but is not limited to
 - 1. Probability (Bayes rule, conditional probability, expectation, random variables, basic combinatorics)
 - 2. Linear Algebra (singular value decomposition, positive semi-definite, positive definite, rank, linear systems of equations)
 - 3. Calculus (Integration and differentiation with multiple variables)
 - 4. Misc: convexity, boolean functions (and, or, not, conjunctive normal form, disjunctive normal form, conjunction, disjunction)

Exam Format

Ten questions each with two sub-parts (each sub-part is 5 points) (answer all questions).

There are ten lecture files on moodle. The lecture "6. Sparsity and Matrix Estimation" and "10. Pac-Bayes" is not explicitly examined. Each of the remaining 8 lectures has a question associated with it. The remaining two questions are also drawn from the 8 examinable lectures.

Lectures

DISCLAIMER: Exam is not limited to outline topic headers.

- 1. Introduction
 - Supervised learning model
 - Least squares
 - Introducing a bias term
 - Normal equations
 - Bayes Estimator
 - *k*-NN
 - 1-NN is asymptotically 2 \times "optimal"
 - k-NN is optimal
 - Optimal supervised learning
 - Bias-variance decomposition
 - NFL Theorem
 - Curse of dimensionality

- Hypothesis space
- Bayes classifier
- Overfitting and Underfitting
- Cross-validation

2. Kernels and Regularization

- Inner product/vector/normed space
- Convexity
- Ill-posed problems
- Ridge regression (as an example of regularisation)
- Primal vs Dual representation
 - Computational considerations
 - Representer theorem
- Feature maps
 - Basis functions explicit feature map
 - Kernel functions implicit feature Map
 - Regularisation-based learning algorithms
 - * Definition (Role of PSDness)
 - * Kernel construction
 - * Example kernels : Polynomial, Anova, Gaussian
 - * min Kernel
- Regularisation-based learning algorithms
- 3. Support Vector Machines
 - Linear Classifier
 - Hyperplane (Separating)
 - Margin of hyperplane and a point
 - Constrained optimisation with a Lagrangian
 - Optimal Separating Hyperplane (OSH) (parameterization normal vs canonical)
 - Solution form of OSH in primal and dual (Combination of support vectors)
 - Support vectors and generalisation
 - Non-separable case
 - \bullet Role of the parameter C
 - connection to regularisation
- 4. Tree-based learning algorithms and Boosting
 - Classification and Regression Trees
 - Recursive Binary Partition
 - Optimization formulation
 - "Greedy" approximate algorithm
 - Cost-complexity pruning
 - Classification trees
 - Node impurity measures
 - Ensemble Methods (Wisdom of crowds)
 - Bagging
 - Random Forests
 - Weak Learners
 - Definition
 - Boosting (Adaboost)
 - Weak Learner
 - Distribution on training set
 - Final classifier is a linear combination of weak classifiers
 - Exponential convergence of training error
 - Boosting as exponential minimiser

- Boosting generalisation guarantees [not examined 19-20]
- Additive Models, Exponential Loss (vs other loss functions) and Boosting
- Comparison between boosting and bagging
- 5. Online learning I
 - Online learning model
 - Loss bound
 - Learning with expert advice
 - Halving algorithm
 - Weighted majority algorithm
 - Regret bound
 - Experts algorithm (AKA Weighted average algorithm) bound for general loss functions difference in results log and arbitrary loss function
 - Weighted Average Algorithm Proof [not examined 19-20]
 - Expected loss bound for WAA/Hedge
 - Hedge Theorem Proof [not examined 19-20]
 - Learning with thresholded linear combinations
 - Linear classifiers and disjunctions
 - Perceptron
 - Winnow
 - Learning boolean functions
 - * Definitions (conjunction, disjunction, (monotone) literal, term, etc)
 - * Perceptron and Winnow mistake bounds
 - * Case study: Finding a maximally sparse classifier is NP-hard [not examined 19-20]
 - * Case study: DNF
 - (a) Anova Kernel
 - Learning with sequences of experts
 - Tracking the best expert
 - Fixed Share algorithm
 - Shifting loss bound
 - * Proof Sketch [not examined 19-20]
- 6. Sparsity and Matrix estimation [not examined 19-20]
- 7. Advanced Online Learning
 - Partial feedback setting
 - Motivation "exploration vs exploitation"
 - Unbiased estimator
 - Importance weighting
 - EXP3
 - Connection to hedge
 - Model: Deterministic Oblivious Adversary
 - Theorem (bound how does it compare to hedge)
 - Matrix completion [not examined 19-20]
 - Factor Model [not examined 19-20]
 - Rank Complexity, Margin Complexity [not examined 19-20]
 - Mistake bound for matrix winnow applied to matrix completion [not examined 19-20]
 - Multi-task interpretation [not examined 19-20]
 - (k,ℓ) -biclustering (definition, VC-dimension lower bound, connection to margin complexity) [not examined 19-20]
- 8. Learning Theory
 - learning model

- definitions of expected (AKA true error, generalisation error) and empirical errors
- validation set bound
- empirical risk minimisation (ERM)
- "expected" vs "confident" bounds
- PAC Model
 - Realisability assumption
 - role of ϵ and δ
 - NFL lower bound result
 - Learning with finite hypothesis classes
 - Sample complexity
- VC-dimension (Definition as well as be able to compute for a hypothesis class)
- VC-dimension (Large Margin Halfspaces)
- VC-dimension upper bound for PAC learning and connection to finite hypothesis class
- Agnostic model
- Error decomposition approximation and estimation error.
- 9. Graph-based Semi-supervised learning
 - Overview
 - Why SSL?
 - Comparison to SL and UL
 - Transduction and Induction
 - Graphs
 - Intrinsic vs extrinsic
 - How to build (k-NN, ϵ -ball, tree-based, weighted graph, combo)
 - Graph classifier
 - * Cut as a measure of smoothness/complexity
 - $\bullet\,$ Algorithmic frameworks
 - Minimum cut
 - Laplacian
 - Spectral clustering (cut versus ratio objectives)
 - Interpolation as a limit case of regularization
 - Minimum cut transduction
 - Laplacian-based transduction
 - quadratic form $\mathbf{u}^T L \mathbf{u}$ (connection to cut)
 - associated kernel as pseudo-inverse
 - Laplacian Interpolation (AKA harmonic minimization, label propagation, Laplacian interpolated regularization)
 - Motivation via consensus
 - Harmonic solution
 - $\bullet\,$ Interpreting Laplacian-based transduction
 - Graph as a resistive network
 - Effective resistance
 - * Computation
 - * Kirchoff Circuit Laws [not examined 19-20]
 - * Connection to kernel (pseudo-inverse of Laplacian)
 - * Proof that $R(i,j) := (\mathbf{e}_i \mathbf{e}_j)^T L^+(\mathbf{e}_i \mathbf{e}_j)$
 - \ast Connection to random walks
 - st Labeling respects cluster structure (two-clique example)
 - Sections VIII-X [not examined 19-20]
- 10. Pac-Bayes [not examined 19-20]