

第二章和第三章 (3)

平面力系的简化和平衡

十二、平面任意力系的平衡条件和平衡方程(P44)

1、平面任意力系的平衡条件:

$$\begin{bmatrix}
\vec{\mathbf{F}}_R' = \mathbf{0} \\
M_O = \mathbf{0}
\end{bmatrix}$$

2、平面任意力系的平衡方程:

$$\sum F_{x} = \mathbf{0}$$

$$\sum F_{y} = \mathbf{0}$$

$$\sum M_{O}(\vec{F}) = \mathbf{0}$$

● 三个独立的平衡方程,可解三个未知量。

十三、由平面任意力系的平衡方程推导平面特殊力系的平衡方程

4	发起工 人
1583	0,4
AN	W¢,
MARIE	OF SCIENCE
	. nt 2010.

力系名称	平衡方程	独立方程 的数目
<u>共线力系</u>	$\sum F = 0$	1
平面力偶系	$\sum M = 0$	1
平面汇交力系	$\sum F_x = 0 \qquad \sum F_y = 0$	2
平面平行力系	$\sum F = 0 \qquad \sum M_o(\vec{F}) = 0$	2
平面(任意)力 系	$\sum \mathbf{F}_{x} = 0 \qquad \sum \mathbf{F}_{y} = 0$ $\sum \mathbf{M}_{o}(\vec{\mathbf{F}}) = 0$	3

共线力系

● 各力位于同一直线上。(如二力杆)

$$\sum F_x = 0 \quad \cdots (1)$$

$$\sum F_y = 0$$
 ···(2) 自动满足

$$\sum M = 0$$
 …(3) 满足(1)则自动满足

平面力偶系

$$\sum F_x = 0$$
 ···(1) 自动满足

$$\sum F_y = 0$$
 ···(2) 自动满足

$$\sum M = 0 \quad \cdots (3)$$

平面汇交力系

●各力位于同一平面内, 且作用线 (延长线) 汇交于一点

$$\int \mathbf{F}_x = \mathbf{0} \quad \cdots \mathbf{(1)}$$

$$\sum F_y = 0 \cdots (2)$$

$$\sum M = 0 \quad \cdots (3)$$

 $\sum M = 0$ …(3) 满足(1)(2)则自动满足

平面平行力系

●各力位于同一平面内, 且作用线互相平行

$$\sum F_x = 0, \qquad 0 + 0 + 0 + \cdots = 0$$

或: x 轴如右下图所取

独立的平衡方程剩下两个:
$$\left\{ egin{array}{ll} \sum F_{y} = 0 & \cdots (1) \\ \hline \sum M = 0 & \cdots (2) \end{array}
ight.$$

十三、由平面任意力系的平衡方程推导平面特殊力系的平衡方程

力系名称	平衡方程	独立方程 的数目
共线力系	$\sum F = 0$	1
平面力偶系	$\sum M = 0$	1
平面汇交力系	$\sum F_x = 0 \qquad \sum F_y = 0$	2
平面平行力系	$\sum F = 0 \qquad \sum M_O(\vec{F}) = 0$	2
平面(任意)力 系	$\sum \mathbf{F}_{x} = 0 \qquad \sum \mathbf{F}_{y} = 0$ $\sum \mathbf{M}_{o}(\vec{\mathbf{F}}) = 0$	3

Thank you for your listening!