Revision

Waves

1

I) Vibrations

Vibrations or oscillations are regular to-and-fro motions of an object between two extreme positions.

Characteristics of vibratory motion:

1- Period T: Is the time taken by one complete vibration.

The SI unit of T is second (s).

2- Frequency f: is the number of cycles per unit time (in SI per second).

$$f=\frac{1}{T}$$

The SI unit of f is Hertz (Hz) or (s^{-1}) .

3- Amplitude: is the distance or angle between the equilibrium position and one of the extreme points.

Experimentally:

T is calculated by measuring the time Δt taken by n oscillations, then:

$$T=\frac{\Delta t}{n}$$

Simple Pendulum

Elastic Pendulum

٣

II) Waves:

- A propagating wave is produced by vibratory motion.
- A propagating wave carries energy but not matter.
- A non-damped motion, propagating in a given medium, is characterized by its amplitude a, its wavelength λ , and its frequency f.
- The characteristics of the wave (amplitude, period and frequency) are the same as those of the vibratory motion.

The motion of the wave in a homogeneous medium is uniform. (i.e: its speed is constant).

The distance \boldsymbol{x} covered by the wave during time \boldsymbol{t} is:

$$x = Vt$$
 (x in m and t in s)

Where V is the speed of the wave in (m/s)

- The length of one wave is called the wavelength λ . It is the distance from one point of a wave to an identical point on the next wave.
- The wavelength λ is the distance covered by the wave during a period T.

Substitute in the above equation:

$$\Rightarrow \lambda = VT = \frac{V}{f}$$

III)Reflection of light:

Light undergoes reflection when it falls on a polished surface like mirrors

i: angle of incidence

 \hat{r} : angle of reflection

Law of reflection:

Angle of incidence = angle of reflection

$$\hat{i} = \hat{r}$$

IV) Index of refraction n:

The index of refraction n of a transparent medium, is the ratio of the speed of light c in vacuum to its speed V in the medium:

$$n = \frac{Speed of light in vacuum}{speed of light in the medium} = \frac{c}{V}$$

$$c = 3 \times 10^8 m/s$$

Since
$$V \le c \Rightarrow n \ge 1$$

Material	n
Vacuum	1
Air	1.000293
Water	4/3
Ice	1.31
Milk	1.35
Glass	1.5
Diamond	2.417
Benzene	1.501

Speed of light in air is: $V_{air} \cong c \Rightarrow n_{air} \cong 1$

V) Refraction of light:

Light undergoes refraction when it passes from a transparent medium of index n_1 to another transparent medium of index n_2

Law of refraction (Snell's law):

 $n_1 \sin i_1 = n_2 \sin i_2$

 $\hat{i_1}$: is the angle of incidentce

 $\hat{i_2}$: angle of refraction

1- if
$$n_2 > n_1$$

$$\frac{\sin i_2}{\sin i_1} = \frac{n_1}{n_2} < 1$$

$$\Rightarrow sini_2 < sini_1 \Rightarrow i_2 < i_1$$

The ray refracts toward the normal (see figure)

2- if
$$n_2 < n_1$$

$$\frac{\sin i_2}{\sin i_1} = \frac{n_1}{n_2} > 1$$

$$\Rightarrow sini_2 > sini_1 \Rightarrow i_2 > i_1$$

The ray refracts away the normal (see figure)

Limiting angle i_l :

The limiting (or critical) angle i_l is a special value of i_1 for which $i_2 = 90^o$

$$\Rightarrow n_1 \sin i_l = n_2 \sin 90 \Rightarrow \sin i_l = \frac{n_2}{n_1}$$

1- if $i_1 < i_l \Rightarrow$ the ray refracts to the second medium.

72- if $i_1 = i_l \Rightarrow$ the ray refracts with $i_2 = 90^o$, it grazes the surface.

3- if $i_1 > i_l \Rightarrow$ the ray undergoes total internal reflection

VI) Electromagnetic waves:

The entire range (electromagnetic spectrum) is given by:

Gamma rays, X-rays, ultra-violet (UV), visible light, , infrared (IR), microwaves and radio waves.

- When the above waves are arranged in the order of increasing λ (or decreasing f), the arrangement is called electromagnetic spectrum.
- The wavelength of the visible spectrum varies between 400nm (for violet) and 750nm (for red).

- If λ is slightly less than 400nm, then this radiation is infrared (IR).
- If λ is slightly greater than 750nm, then this radiation is ultraviolet (UV).
- Unlike mechanical waves (water wave, sound,....), electromagnetic waves can propagate in vacuum with the same speed $c = 3 \times 10^8 m/s$.