Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Звіт з дисципліни

«Прикладна теорія цифрових автоматів» Лабораторна робота № 6

Тема: "Перехідні процеси в цифрових схемах. Перегони."

Роботу виконав студент 3 курсу KI-CA, ФРЕКС Мургашов Г.Е.

Мета роботи: Розглянути перехідні процеси в цифрових схемах

Хід виконання роботи:

0	1	0	1	0	1	0	1	1	1
h_{10}	h_9	h_8	h_7	h_6	h_5	h_4	h_3	h_2	h_1

1) Pulse Generator Properties

2)

3.1) На одному

Затримка на 7408: ~ 17.5ns

Затримка на U3:A − U3:b = ~18ns

Затримка на одному 7400: = \sim 9ns

3.2) На п'яти:

Затримка на 7408: ~ *17.6ns*

Затримка на: U4:C = \sim 7.02ns,

Затримка на:

U3:C - U3:D - U4:D - U4:B - U5:D - U4:C = 54ns

Середня затримка на 7400:

 $t_{\text{сер. }7400 \text{ затрим.}} = (54 + 9 + 18)/9 = 9 \text{ ns}$

4)

 $0.8 = 5 * e^{t/RC} => e^{t/RC} = 6.25 => t/(RC) = 1.833 => RC = 200 Ohm * 0.1ns = 20 ns => t = 20 * 1.833 = 36,66 ns$ Тривалість імпульсу: $t_u = 36.66 + 3 * 9 = 63.66 ns$

для л та т. визпачте тривалисть вилідпил імпульсть.

5. Змінюючи значення R та C змініть тривалість імпульсу до значення згідно свого варіанту.

Таблиця 5.1

h4	h5	h6	Тривалість імпульсу
0	0	0	40 нс
0	0	1	45 нс
0	1	0	50 нс
0	1	1	55 нс
1	0	0	60 нс
1	0	1	65 нс
1	1	0	70 нс
1	1	1	75 нс

$$t_u = 50 \text{ ns}$$

 $RC * 1.833 = 50 - 3 * 9$
 $RC = 12.55 * 10^{-9} =>$
 $C = 0.1 * 10^{-9} F = 0.1 nF$,
 $R = ^2125 \text{ Ohm}$

Значення майже збігаються

6) Схема генератора серії імпульсів

При P = 1, через елемент U1:C з затримкою передається на вихід Y = 0 (P=1, X=1);

Через **U1:A**, а потім **і через U1:В** передається сигнал **з 2ма затримками**, і потім вже сигнал **приходить на X** (**тепер X = 0**), звідки вже знову **через U1:С з затримкою** передається **на Y. Y = 1** (**P = 1, X=0**).

Через U1:А сигнал **з затримкою** передається **на U1:В**, де з U1:В **з затримкою** передається **на X**

Таким чином, **U1:С**, спочатку **зсуває сигнал на одну затримку**. А Імпульс на Y — складається з затримок на U1:A, U1:B та U1:C. Тривалість імпульсу Y = 9*3 = 27 ns. Число майже збігається

Тривалість імпульсів не змінились, але втроє зросла кількість імпульсів.

Проблеми виникають через затримку U1:A та U1:b на змінах наборів:

Input1(t)	Input2(t)	Input1(t+1)	Input2(t+1)
0	0	0	1
1	0	1	1

За табл. Істинності, можна зрозуміти, що $Y = \overline{Input1}$

X1	X2	Υ
0	0	1
0	1	1
1	0	0
1	1	0

Схема « $Y = \overline{Input1}$ »

1	0	1
h_9	h_8	h_7

Варіант: Рис. 5.5.3

NReset	C	J	K	Q(t-1)	q1	q2	q3	q4	Q	Р
0	*	*	*	*	*	*	*	*	0	1
1	0	*	*	*	*	*	*	*	Q(t)	P(t)
1	1	1	0	0	1	0	1	1	1	0
1	1	1	0	1	1	0	1	1	1	0
1	1	0	1	0	0	1	1	1	0	1
1	1	0	1	1	0	1	1	1	0	1
1	1	1	1	0	1	0	1	1	1	0
1	1	1	1	1	0	1	0	1	0	1
1	1	0	0	0	0	1	1	1	0	1
1	1	0	0	1	0	1	1	1	1	0

10)

Послідовний лічильник:

Графік входів і виходів послідовного лічильника:

2)Паралельний лічильник

Графік входів і виходів паралельного лічильника:

Порівняння 6-розрадного паралельного та послідовного лічильника.

Видно, що при роботі послідовного лічильника на великій частоті і при використанні всіх тригерів одночасно, видно, що затримка є досить великою, в порівнянні з паралельним.

11)

Перегони (гонки) по входу – виникають коли сигнал розгалуджується і поступає на елементи, які мають різні рівні спрацьовування, а фронт сигналу доволі затянутий.

Лог. Рівні:

"1:" 3.5 V

"0": -0.5 V

Логічний рівень спрацювання **0**: від -0.5V до 1.25V

Логічний рівень спрацювання 1: від 2.75 V до 3.50V

Висновок: Під час виконання лабораторної роботи було здобуто навички визначення затримок на логічних елементах, навички розробки схем для уникнення затримок. Було проведено роботу з осцилографом для визначення логічних рівнів спрацьовування 0 та 1, ознайомлено з перегонами по входу.