EPOXY RESIN COMPOSITION

Patent number:

JP4332722

Publication date:

1992-11-19

Inventor:

TOMOI MASAO: IIJIMA TAKAO

Applicant:

TOA GOSEI CHEM IND

Classification:

- international:

C08G59/20; C08G59/50; C08L63/00

- european:

Application number:

JP19910131829 19910507

Priority number(s):

JP19910131829 19910507

Report a data error here

Abstract of JP4332722

PURPOSE:To provide the subject composition composed of an epoxy resin, a glycidyl group-containing acryl polymer and an aromatic secondary diamine, capable of producing a cured material having a high toughness while maintaining its elasticity, i.e., resin strength and suitable for a molding material, an adhesive, etc. CONSTITUTION:The objective composition obtained by blending (A) an epoxy resin (preferably bisphenol A type epoxy resin) with (B) a glycidyl group- containing acryl polymer and (C) an aromatic secondary diamine as a curing agent. As the component (B), a terpolymer between butyl acrylate, glycidyl methacrylate and acrylonitrile, having >=300g/eq epoxy equivalent and 3000-20000 number-average molecular weight is preferable. As the component (C), p,p'-(N,N'- dimethyl) diaminodiphenyl sulfone is preferable and diaminodiphenyl sulfone as an aromatic primary diamine is preferably used in combination therewith in a molar ratio of (30:70)-(70:30).

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-332722

(43)公開日 平成4年(1992)11月19日

(51) Int.Cl.8		識別記号	庁内 <u></u> 整理番号	FI	技術表示箇所
C08G	59/20	NHW	8416-4 J		
	59/50	NJA	8416-4 J		
C08L	63/00	NJW	8416-4 J		

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特膜平3-131829	(71)出願人	000003034 東亞合成化学工業株式会社
(22) 出願日	平成3年(1991)5月7日		東京都港区西新橋1丁目14番1号
		(72)発明者	友并 正男 神奈川県横浜市緑区鴨居六丁目14番14号
		(72)発明者	飯島 季雄
			神奈川県横浜市保土ケ谷区岩井町250番地
	•		
		I	

(54) 【発明の名称】 エポキシ樹脂組成物

(57)【要約】

【目的】エポキシ樹脂の硬化物に弾性率すなわち樹脂強 度を低下させずに破壊物性などの強靱性を付与し得るエ ポキシ樹脂組成物を提供しようとするものである。

【構成】エポキシ樹脂にグリシジル基を有するアクリル 系重合体を添加し硬化剤を芳香族2級ジアミンとする。

【効果】本発明のエポキシ樹脂組成物からは、弾性率と 強靱性を合わせ持つ優れた硬化物が得られ、成形材、接 着剤、コーティング剤などの幅広い分野で利用される。

【特許請求の範囲】

【請求項1】 下記3成分からなることを特徴とするエポキシ樹脂組成物。

- (A) エポキシ樹脂
- (B) グリシジル基を有するアクリル系重合体
- (C) 芳香族2級ジアミン

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、強靱性に優れた硬化物を与えるエポキシ樹脂組成物に関するものであり、エポ 10 キシ樹脂硬化物は、その架橋構造に起因して耐熱性、耐薬品性、電気的特性、接着性等に優れた性能を有しているため、ブリント配線基盤、電気機器の絶縁合浸材、封止材などの成形材、自動車部品、航空機部品、土木・建築用などの接着剤、防食及び土木・建築用強料など幅広い産業分野で使用されており、本発明の組成物はそれらの産業分野で有効に利用されるものである。

[0002]

【従来技術】エポキシ樹脂は上記の様に成形材、接着 剤、コーティング材等として広く利用されているもので 20 あるが、反面、従来の樹脂組成物は硬化物が硬くて脆い ため

- 1) 衝撃などに対する機械的強さが低い。
- 2) 熱衝撃などによりクラックが発生しやすい。
- 3) 硬化収縮により内部ひずみで基材に対する密着性が低下する。などの欠点がある。

[0004]

【発明が解決しようとする課題】前記の従来技術において、エポキシ樹脂の硬化物の柔軟性は改良されるが、耐熱性・耐薬品性が低下したり、弾性率すなわち樹脂強度自体が低下するなどの問題があった。本発明は、硬化物の弾性率すなわち樹脂強度を維持し、かつ破壊物性などの強物性を有するエポキシ樹脂組成物を提供することを目的とするものである。シジルエーテル、ピニルフェニルグリシジルエーテル、メタリイソプロペニルフェニルグリシジルエーテル、メタリイソプロペニルフェニルグリシジル基を有す エンジルグリシジルエーテル、ピニルフェニルグリシジルエーテル、メタリイツによいでよりないエーテル、ピニルフェニルグリシジル基を有するエルクリンジル基を有するよどの強制性を行うことができる。

[0005]

【課題を解決するための手段】本発明者らは、前記問題 点を解決すべく鋭意検討した結果、エポキシ樹脂にグリ シジル基を有するアクリル系型合体を添加し、それらを 芳香族2級ジアミンで硬化させたものが、弾性率を保持 したまま、破壊靭性の大幅に向上されたものであること を見いだし、本発明を完成するに至った

【0006】すなわち、本発明は下記3成分からなるこ 50 合性単量体であるメタクリル酸グリシジルと、その他の

とを特徴とするエポキシ樹脂組成物に関するものであ ス

- (A) エポキシ樹脂
- (B) グリシジル基を有するアクリル系重合体
- (C) 芳香族2級ジアミン
- [0007] 〇工ポキシ樹脂

本発明で用いられるエポキシ樹脂としては、ピスフェノールAにエピクロルヒドリンを反応して得られるピスフェノールA型エポキシ樹脂、ピスフェノールF型エポキシ樹脂、テトラプロモピスフェノールAをベースとした臭素化エポキシ樹脂、同様にノポラック型エポキシ樹脂、水添ピスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ゲリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、トリグリシジルイソシアヌレート、脂肪族エポキシ樹脂、脂環式エポキシ樹脂等の一般的なものを挙げることができ、又それらの2種以上のエポキシ樹脂の併用も挙げることが出来る。本発明にとり好ましいエポキシ樹脂は、ピスフェノールA型エポキシ樹脂である。

[0008] 〇グリシジル基を有するアクリル系里合体本発明で用いられるアクリル系重合体とは、アクリル酸メチル、アクリル酸エチル、アクリル酸プロビル、アクリル酸プチル、アクリル酸2ーエチルヘキシル等の、アルキル基の炭素数が1~10の、アクリル酸又はメタクリル酸(以下(メタ)アクリル酸ともいう)のアルキルエステルを主構成単量体とする重合体または共重合体、あるいはこれらの(メタ)アクリル酸アルキルエステルと他のビニル単量体、例えばスチレン、アクリロニトリル、メタクリロニトリル等の重合性ビニル単量体との共重合体等のことである。

【0009】上記の様なアクリル系重合体を、グリシジル基を有するアクリル系重合体とする、すなわちアクリル系重合体へのグリシジル基の導入は、アクリル酸グリシジル、メタクリル酸グリシジル、ビニルベンジルグリシジルエーテル、ビニルフェニルグリシジルエーテル、イソプロベニルフェニルグリシジルエーテル、メタリルベンジルグリシジルエーテル等のグリシジル基を有する重合性単最体を前記(メタ)アクリル酸アルキルエステル等と共重合することにより容易に行うことができる。

【0010】本発明において好ましいグリシジル基を有するアクリル系重合体は、重合体を構成する単量体の50モル米以上90モル米以下がアクリル酸プチルのものであり、また重合体のエポキシ当量が300g/eq以上のものであり、さらにその数平均分子量が3000以上、20000以下のものである。

[0011] 本発明にとり特に好ましいグリシジル基を 有するアクリル系重合体は、アクリル酸アルキルエステ ルであるアクリル酸プチルと、グリシジル基を有する重 合性単量体であるメタクリル酸グリシジルと、その他の

ピニル単量体であるアクリロニトリルを共重合させた三 元共重合体で前記特性を有するものである。

【0012】○芳香族2級ジアミン

本発明においては、エポキシ樹脂の硬化剤として、芳香 族2級ジアミンを用いる。芳香族2級ジアミンの具体例 としてはP, P'- (N, N'-ジメチル) ジアミノジ フェニルスルホン (以下MDSと称す) 、 P, P'-(N, N'ージメチル) ジアミノジフェニルメタン等を 挙げることが出来る。

メタン、ジアミノジフェニルスルホン(以下DDSと称 す)、メタフェニレンジアミン等の芳香族1級ポリアミ ンを (N, N' ージアルキル) 置換処理することにより 得られるものである。

【0014】本発明においては、芳香族2級ジアミン に、一般に用いられる硬化剤例えば脂肪族ポリアミン、 ポリアミドポリアミン、脂環族ポリアミン、芳香族1級 ジアミン、ジシアンジアミド・アジピン酸ジヒドラジド 等潜在性硬化剤、等のポリアミン系硬化剤、酸無水物硬 化剤、3級アミン系硬化剤、イミダゾール化合物系硬化 20 剤の1種以上を併用することが可能であり、この併用は 架橋速度や架橋密度を調整するために好ましい方法であ

【0015】本発明にとり好ましい芳香族2級ジアミン はMDSであり、さらに本発明にとり好ましいのは、M DSと芳香族1級ジアミンとの併用であり、特に好まし いものは、MDSと芳香族1級ジアミンであるDDSの 併用であり、併用する際の好ましいモル比は、30:7 0~70:30である。

【0016】〇配合比

上記の3成分からなる本発明のエポキシ樹脂組成物にお いて、それら3成分の好ましい配合比としては、まずエ ポキシ樹脂とアクリル茶重合体の割合は、重量比で9 5:5~60:40である。次に硬化剤はその種類に応 じ
査宜添加できるが、前記の芳香族2級ジアミンと芳香 族1級ジアミンのみを併用する場合には、組成物中のグ リシジル基に対し、等当量の添加が好ましい。

【0017】〇その他の添加剤

本発明の組成物には、本発明の特徴を損なはない範囲 で、顔料、安定剤、各種無機物、硬化促進剤、熱硬化性 40 樹脂、熱可塑性樹脂、難燃剤、消泡剤、レベリング剤、 カップリング剤、可塑剤、反応性希釈剤、及び液状ゴム 等の添加剤を使用することができる。

【0018】〇組成物の調製方法

本発明の組成物の調製方法としては、従来公知のエポキ シ樹脂組成物の調製方法を採用することができる。たと えばエポキシ樹脂とアクリル系重合体を混合し、室温~ 150℃で加熱混合溶解するか、あるいは両者を有機溶 剤に溶解し混合したのち、硬化剤を添加し、均一に溶解 することにより容易に調製することができる。このよう 50 より求め、ポリスチレン換算で7900であった。本里

にして得られたエポキシ樹脂組成物は、従来のエポキシ 樹脂と同様に加熱硬化により、本発明が目的とする良好 な弾性率と強靱性が両立する硬化物を与えることとがで きる。

[0019]

[作用] 一般にゴム変成エポキシ硬化物を強靭化するた めには、ゴム粒子がマトリックス中に分散しているミク 口相分離構造を有することと、マトリックスとゴム粒子 界面の接着性が良好であることが必要とされ、またミク 【0013】これらのジアミンは、ジアミノジフェニル 10 口相分離による強靱化のメカニズムには、ゴム粒子によ る破壊エネルギーの吸収、および強度的に弱いゴム粒子 に力が加わったときに起きるゴム粒子周辺のマトリック ス樹脂の塑性変形による破壊エネルギーの吸収の両方が 関与していると考えられている。

> 【0020】本発明組成物の硬化物を走査型電子顕微鏡 写真で観察したところアクリル系重合体が粒子として非 常に良く分散しており、そのため本発明の優れた効果が 奏されているものと思われるが、外観だけでなく、アク リル系重合体がエポキシ基を有しているためエポキシ樹 脂とある程度反応することにより、接着性が改良された ものとも思われ、さらに芳香族2級ジアミンを硬化剤と したことによりエポキシ樹脂の架橋密度が調整され、ア クリル系重合体の変形が容易になり、アクリル系重合体 粒子近傍のエポキシ樹脂の塑性変形も増大し、破壊エネ ルギーの吸収能力が増大したため、本発明の奏する優れ た効果がもたらされたものと思われる。

[0021]

【実施例】以下本発明を実施例により詳細に説明する が、本発明はこれら実施例に限定されるものではない。

【0022】○硬化物物性の測定方法

樹脂弾性率の指標として、曲げ強度及び曲げ弾性率を、 JISK-7203に準拠して測定した。また樹脂強靭 性の指標として、破壊物性 (K₁g) をASTME-39 9に準拠し切り欠き曲げ試験法により測定した。

【0023】〇アクリル系重合体の合成

実施例で使用するアクリル系重合体は、以下の方法によ り調製した。アクリル酸n-プチル、メタクリル酸グリ シジル及びアクリロニトリルをモル比で70:20:1 0の割合で混合したもの1.5モル量を450mlのト ルエン溶剤に溶解し、開始剤としてアゾビスイソプチロ ニトリル10モル%、連鎖移動剤としてドデシルメルカ プタン0.02モルを添加し、70℃で20時間反応を 行った。反応終了後、反応液を多量のヘキサン中に投入 し、重合体を分離し、乾燥した。重合体のエポキシ当量 は、塩酸ージオキサン法により適定で測定したところ、 488 g/egであった。重合体の組成はエポキシ当量と 元素分析から求めたところ、アクリル酸n-プチル、メ タクリル酸グリシジル及びアクリロニトリルのモル比が 62:25:13であった。数平均分子量は、GPCに 5

合体を以下A-1と称する。同様にして、重合体の組成 がアクリル酸nープチル、メタクリル酸グリシジル及び アクリロニトリルがモル比で66:22:12、エポキ シ当量が561、数平均分子量が7300の重合体を合 成した。本重合体を以下A-2と称する。

【0024】〇実施例1

エポキシ樹脂としてピスフェノールA型エポキシ樹脂A ER-331 (エポキシ当量190:旭化成株式会社* 表1.

*製) 80g、前述の重合体A-1を20gを混合し、さ らに硬化剤DDSとMDSをモル比で67:33の割合 で混合したものを前記のエポキシ当量に対し当量添加 し、エポキシ樹脂組成物を得た。この組成物を120℃ ×1時間+180℃×5時間で硬化し、硬化物を得た。 この硬化物の特性値を表1に示す。

6

[0025]

【表1】

	エポキシ樹脂 添加量 (重量部)	アクリル系重合体		硬化机比 DDS:MDS	破壊製性 K10	曲げ弾性率	曲げ強度
		重合体種類	奈加曼 (重量部)	(モル比)	(MN · m ^{-1/2})	(Kgf/mº)	(Kgt/m²)
実施例(8 0	A – 1	2 0	67:33	1. 08	255	11.5
実施例 2	80	A – 1	2 0	48:52	1. 2 1	254	. 12.0
実施例 3	8 0	A-1	2 0	33:67	1. 38	255	12. 1
実施例 4	9 0	A – 2	1 0	48:52	0. 99	287	14.8
実施例 5	8 0	A – 2	2 0	48:52	1. 15	267	12.7
実施例 6	7 5	A – 2	2 5	48:52	1. 31	251	11.6
比較例!	100	無添加	0	100: 0	0. 70	299	15.5
比較例 2	8 0	A – 1	2 0	100: 0	0.94	263	12. 5
比較例3	100	無添加	0	33:67	0.71	263	14. 5

【0026】〇実施例2~6

実施例1の硬化剤のモル比をDDS:MDS=48:5 2にかえたこと以外は同様の操作で組成物(実施例2) を翻製し硬化物を得た。この硬化物の特性値を表1にし めす。以下同様にして実施例1の硬化剤モル比をDD S:MDS=33:67にかえた組成物(実施例3)、 実施例1のエポキシ樹脂を90g, 重合体をA-2とし その10g、硬化剤モル比DDS:MDS=48:52 にかえた組成物 (実施例4) を調製しそれぞれ硬化物を 得た。これらの硬化物の特性値を表1にしめす。同様に 40 1に示す。 実施例4においてエポキシ樹脂を80g, 重合体A-2 を20gにかえた組成物(実施例5)、エポキシ樹脂を 75g, 重合体A-2を25gにかえた組成物(実施例 6) を調製し各々の硬化物の特性値を表1に示す。

【0027】〇比較例1

実施例1に対し、同様の方法で、重合体を添加せず、エ ポキシ樹脂100gに対し硬化剤DDS単独で当量添加 した組成物を得硬化させた。この硬化物の特性値も表1 に示す。

[0028] 〇比較例2~3

比較例1に対し、エポキシ樹脂を80g、重合体A-1 を20gに変えた組成物を比較例2、同様に比較例1に 対し硬化剤のモル比をDDS: MDS=33:67にか えた組成物を比較例3とし、各々の硬化物の特性値を表

[0029]

【発明の効果】本発明のエポキシ樹脂組成物からは、弾 性率と強靱性を合わせ持つ優れた硬化物が得られ、成形 材、接着剤、コーティング材などの幅広い分野で有効に 利用することができる。