Dr. Kevin Godin-Dubois

Contact

- ☑ k.j.m.godin-dubois@vu.nl
- ↑ Vrije Universiteit Amsterdam de Boelelaan 1081a, 1081HV Amsterdam, The Netherlands
- **Q** kgd-al.github.io
- kgd-al@github.com
- **v** godinduboisalife
- **3** Google Scholar

Position | Researcher in Evolutionary Robotics (since November 2022)

Highlights

Research

Artificial Life: Cognition, Interaction & Language

Main fields

Artificial Neural Networks

Species Dynamics

Morphogenetic Engineering

Output

- 3 journal articles (Artificial Life, Frontiers, JOSS)
- 5 international conference articles (ALife, IEEE ALife, EvoAPP)
- 6 international workshops short papers (ALife, ECAL, AAAI) Scientific software: ABrain, AMaze, Revolve2, SHARPIE

Positions

Postdoctoral 2022 - Present

Computer Science / Evolutionary Robotics

"NeuroEvolution and Reinforcement Learning for Embodied Robots" Computational Intelligence Group - Vrije Universiteit Amsterdam, The Netherlands

Supervisor: Dr. A. Yaman (a.yaman@vu.nl) Collaborators: Dr. A. Kononova (a.kononova@liacs.leidenuniv.nl)

Postdoctoral 2020 - 2022

Computer Science / Artificial Intelligence

"Emergent cognitive architectures in virtual embodied robots"

REVA Team, IRIT - Toulouse I University, France

Supervisors: Pr. Y. Duthen (yves.duthen@irit.fr)

Pr. S. Cussat-Blanc (sylvain.cussat-blanc@irit.fr)

PhD

Computer Science / Artificial Life

2016-2020

"Environment-driven speciation: long term interactions in artificial plant communities"

REVA Team, IRIT - Toulouse I University, France

Supervisors: Pr. Y. Duthen (yves.duthen@irit.fr)

Pr. S. Cussat-Blanc (sylvain.cussat-blanc@irit.fr)

Teaching | 9 years (600+ hours)

Computer | Learning Machines, Bachelor and Master research projects

Science | Programming languages: Python, C, R

Algorithms, Data Structures, Information theory

Programming projects

Generalists | Data Science tools and languages

Database modeling, SQL

Skills

Programming | Fluent: C++, Bash, Python, LATEX

Working Knowledge: C, Java, R, VB, VBA, JavaScript

Technical | Evolutionary Algorithms, Machine Learning, Multi-Agents Systems,

High-Performance Computing

Languages | French (Mother tongue), English

Research

Synopsis

My main interests revolve around autonomous artificial life forms: from the design of efficient morphologies to the emergence of high-level control schemes and the evolutionary constraints that favor both. Recently I am mostly focused on Artificial Neural Networks (ANN) through NeuroEvolution and Reinforcement Learning, notably in the context of Interactive Evolutionary Robotics.

Artificial Neural Networks

Studying the emergence of various "cognitive" capabilities in virtual robots, controlled by a spontaneously differentiated neural network, in response to biologically plausible stimuli.

[5, 3, 4] Virtual FMRI

Extracting stimulus-specific regions of an ANN by applying a virtual equivalent to functional Magnetic Resonance Imaging (fMRI) and building high-level cognitive maps.

Software: ES-HyperNEAT (Custom implementation)

[12, 11] COMMUNICATION

Exploring the mechanisms leading to emergent communication, how it becomes structured and its neural implementation.

Species Dynamics

Promoting complex evolutionary trajectories and extracting specieslevel information from individual reproductions.

[15, 13] Phylogenetics

Automatically transforming genealogic trees into phylogenetic abstraction to access the emergent species-level dynamics.

Software: APOGeT(Automated Phylogeny Over Geological Timescales)

[8] Speciation

Application of a bio-inspired reproduction operator (Bail-Out Crossover) capable of spontaneously generating species barriers thereby allowing for emergent speciation.

[6, 20] EVOLUTIONARY ALGORITHMS

Introduced a novel paradigm, EDEnS (Environment-Driven Evolutionary) Selection), relying on the indirect controlling of whole populations' evolutionary trajectories through an evolvable environmental controller.

Morphogenetic Engineering

Developing functional morphology in response to environmental constraints and evolutionary pressures.

[14, 6, 7, 15] DEVELOPMENTAL MORPHOLOGIES

Production of mature, functional virtual plants from a single cell/structure using various genetic encodings (rules-based, L-Systems, Graphtals) in response to environmental constraints.

[3] VIRTUAL ROBOTS

Use of genetically parameterized cubic bézier curves to control both static and mobile structures on the perimeter of virtual circular robots.

Software: Splinoids Videos: on Vimeo

Expertise

Evolutionary Algorithms

• Environment-Driven Evolutionary Selection (EDEnS)

- Multi-objective Optimisation
- High Performance Computing (HPC), Co-evolution, Novelty

Machine Learning

- Artificial Neural Networks (ANN, CNN, RNN)
- Composite Pattern-Producing Networks (CPPN)
- Cartesian Genetic Programming (CGP)
- Genetic Regulatory Networks (GRN)
- Hidden Markov Models (HMM)
- Stable baselines 3

Teachings

Postdoc

Vrije Universiteit Amsterdam

2023-2024 • NeuroEvolution (lecture)

> • Learning Machines (projects) 45h> 100h

• Master and Bachelor thesis supervision

Course management 2021-2022

Toulouse I University & Toulouse III University, France

• Computer Science projects 72h Multi-Agent Systems, Complex Systems, Simulation

67.5h

• R programming

English lectures

• Information theory 22.5h

• Servers and contents 18.75h

Teaching fellow	Toulouse I University & Toulouse III University, France	
2017-2021	• Statistical software (R & Python)	36h
	• Algorithms	60h
	• Excel & VBA	60h
	Modeling in databases	21h
Practical work	Toulouse III University, France	
supervisor	• Software projects	69.2h
2016-2021	• Data structures	18.8h
	• C Programming	36h
	• Python	8h

Outreach

2023

- Symposium on Artificial Life program comitee member
- Journal of Open Source Software reviewer

EduMix Aspi-Friendly 2021

Initiated a project for the self-monitoring of well-being in students with autistic disorders alongside a heterogeneous team of neuro-(a)typical and various profiles (faculty, designers, developers ...).

<u>Internships</u>

Morphogenetic Engineering 2016 (6 months)

Toulouse Research Institute on Computer Science (IRIT), France "Rule-based artificial embryogenesis in a complex 3D environment" Deployed rule-based genomes on the MecaCell platform to study artificial plant growth and cell specialization.

Contact: Pr. Y. Duthen (yves.duthen@irit.fr)

Machine Learning

IRIT, "Comparison of different evolutionary approaches, an application to the GECCO 2015 challenge"

2015 (3 months)

Performed a performance comparison (accuracy, efficiency) between Artificial Neural and Genetic Regulatory Networks on the 2015 GECCO temperature prediction challenge data.

Contact: Pr. H. Luga (herve.luga@irit.fr)

Machine Learning 2014 (2 months)

IRIT, "An architecture for automated bird discrimination" Applied Hidden Markov Models to the BirdClef2014 challenge on the iden-

tification of specific bird species in a corpus of thousands of recordings.

Contact: Pr. J. Farinas (jerome.farinas@irit.fr)

Education

PhD | Toulouse I University, France

2016 - 2020 Defended the 15th of July 2020

Thesis title: "Environment-driven speciation: long term interactions in artificial plant communities"

Investigated how complexification of artificial creatures could be further enhanced through the indirect control provided by a co-evolved, highly dynamical environment.

Rapporteurs: Pr. P. Collet & DoR. F. Vico Contact: Pr. Y. Duthen (yves.duthen@irit.fr)

Master | Toulouse III University, France (with honours)

2014 - 2016 | Artificial Intelligence: mathematical & symbolic models, training methods

Bachelor | Toulouse III University (with distinction)

2011 - 2014 | Computer Science: networks, programming, systems, mathematics

Scholarships and Fellowships

	Postdoctoral funding from the Hybrid Intelligence consortium (Netherlands)	
	PhD Fellowship from the French Minister of Higher Education and Research (MESR)	
	Master Scholarship from the International Mathematics and Computer Science Center (LabEx CIMI, Toulouse)	
0014 0015	M. 'a C. I. al. al. al. al. al. al. al. al. al. al	

2014-2015 | Merit Scholarship from the Regional Student Welfare Office (CROUS, 3K6 € | Toulouse)

Research Output

Journals (peer-reviewed)

- [1] K. Godin-Dubois, K. Miras, and Anna V Kononova. "AMaze: An Intuitive Benchmark Generator for Fast Prototyping of Generalizable Agents". In: Frontiers in Artificial Intelligence (2025), accepted. DOI: 10.3389/frai.2025.1511712.
- [2] K. Godin-Dubois, K. Miras, and A. V. Kononova. "AMaze: A Benchmark Generator for Sighted Maze-Navigating Agents". In: *Journal of Open Source Software* (2025), in press.
- [3] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Explaining the Neuroevolution of Fighting Creatures Through Virtual fMRI". In: *Artificial Life* 29.1 (2023), pp. 66–93. ISSN: 1064-5462. DOI: 10.1162/artl_a_00389.

International conferences (peer-reviewed)

- [4] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Specialization or Generalization: Investigating NeuroEvolutionary Choices via Virtual fMRI". In: *ALIFE 2024: Proceedings of the 2024 Artificial Life Conference*. MIT Press, July 2024. DOI: 10.1162/isal_a_00817.
- [5] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Spontaneous Modular NeuroEvolution Arising from a Life/Dinner Paradox". In: *The 2021 Conference on Artificial Life*. Cambridge, MA: MIT Press, 2021, p. 95. DOI: 10.1162/isal_a_00431. Presentation: https://vimeo.com/godinduboisalife/alife2021main.
- [6] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Beneficial Catastrophes: Leveraging Abiotic Constraints through Environment-Driven Evolutionary Selection". In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). 2020, pp. 94–101. DOI: 10.1109/SSCI47803.2020.9308411.
- [7] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Self-Sustainability Challenges of Plants Colonization Strategies in Virtual 3D Environments". In: *Applications of Evolutionary Computation*. Ed. by P. Kaufmann and P. A. Castillo. Cham: Springer International Publishing, 2019, pp. 377–392. ISBN: 978-3-030-16692-2. DOI: 10.1007/978-3-030-16692-2_25.
- [8] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Speciation under Changing Environments". In: *ALIFE 19*. Vol. 31. Cambridge, MA: MIT Press, 2019, pp. 349-356. ISBN: 978-0-262-35844-6. DOI: 10.1162/isal_a_00186. Presentation: https://vimeo.com/godinduboisalife/alife2019.

Workshops

- [9] H. Aydin et al. SHARPIE: A Modular Framework for Reinforcement Learning and Human-AI Interaction Experiments. Workshop. Feb. 2025. DOI: 10.48550/arXiv.2501.19245. (Visited on 03/14/2025).
- [10] K. Godin-Dubois et al. "Interactive Embodied Evolution for Socially Adept Artificial General Creatures". In: *Evolution of Things Workshop at the ALife 2024 Conference*. arXiv, July 2024. DOI: 10.48550/arXiv.2407.21357.
- [11] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Emergent Communication for Coordination in Teams of Embodied Agents". In: 4th International Workshop on Agent-Based Modelling of Human Behaviour (ALife2022). 2022.
- [12] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "On the Benefits of Emergent Communication for Threat Appraisal". In: 3rd International Workshop on Agent-Based Modelling of Human Behaviour. Online, 2021. Presentation: https://vimeo.com/godinduboisalife/abmhub2021.
- [13] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "APOGeT: Automated Phylogeny Over Geological Timescales". In: MethAL Workshop at ALife 2019. 2019. DOI: 10.48550/ arXiv.2407.21412.
- [14] K. Dubois, S. Cussat-Blanc, and Y. Duthen. "Towards an Artificial Polytrophic Ecosystem". In: Morphogenetic Engineering Workshop, at the European Conference on Artificial Life (ECAL) 2017 September 4. 2017.

Posters

[15] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. "Studying Long Term Interactions between Plants and Their Environment". In: Alife 2018. Tokyo, 2018. DOI: 10.13140/RG. 2.2.27553.97125.

Oral presentations

[16] K. Godin-Dubois, S. Cussat-Blanc, and Y. Duthen. Splinoids: First Steps out of EDEnS. Talk. Montreal (Virtual), 2020.

Softwares and datasets

- [17] K. Godin-Dubois. AMaze: Fully Discrete Training with Three Regimes (Direct, Scaffolding, Interactive) and Two Algorithms (A2C, PPO). Dataset. Feb. 2024. DOI: 10.5281/ZENODO. 10622913. (Visited on 09/19/2024).
- [18] K. Godin-Dubois, K. Miras, and A. V. Kononova. *AMaze: A Lightweight Benchmark Generator for Sighted Agents*. Zenodo. Software. Apr. 2024. DOI: 10.5281/ZENODO.10907939.
- [19] A. Stuurman et al. Ci-Group/Revolve2: 1.2.3. Zenodo. Software. Nov. 2024. doi: 10. 5281/ZENOD0.14143431. (Visited on 02/12/2025).

Thesis

[20] K. Godin-Dubois. "Environment-Driven Speciation: Long-Term Interactions in Artificial Plant Communities". PhD thesis. Doctoral school of Mathematics, Computer Science and Telecommunications (Toulouse, France), 2020. URL: http://www.theses.fr/2020T0U10026/document.