

2 1 3

- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

5

Uncertainty

4

- General situation:
- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
- T = Is it hot or cold?
 D = How long will it take to drive to work?
- L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

6

• Associate a probability with each value

Temperature:

Weather:

7 8 9

Probability Distributions

Unobserved random variables have distributions

P(T)			P(V	V)	
Т		Р		W	Р
ho	t	0.5		sun	0.6
col	d	0.5		rain	0.1
			•	fog	0.3
				meteor	0.0

• A distribution is a TABLE of probabilities of values

• A probability (lower case value) is a single number

$$P(W=rain)=0.1$$

• Must have: $\forall x \ P(X=x) > 0$

Shorthand notation:

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

OK if all domain entries are unique

and $\sum P(X=x)=1$

$$\sum_{(x_1, x_2, \dots x_n)} I$$

• Size of distribution if n variables with domain sizes d?

• For all but the smallest distributions, impractical to write out!

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

Must obey: $P(x_1, x_2, \dots x_n) > 0$

\sum	$P(x_1, x_2, \dots x_n) = 1$	
(x_1, x_2, x_n))	

Probabilistic Models

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
 Joint distributions: say whether assignments (outcomes) are likely Normalized: sum to 1.0
- Ideally: only certain variables directly interact
- · Constraint satisfaction problems:
- Variables with domains Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over 1,11			
T	W	Р	
hot	sun	0.4	
hot	rain	0.1	ı
cold	sun	0.2	
cold	rain	0.3	ı

10 11 12

Events

■ An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T, W)				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		

cold rain 0.3

Quiz: Events

■ P(+x, +y)?

■ P(+x)?

■ P(-y OR +x)?

P(X,Y)				
	Х	Υ	Р	
	+x	+y	0.2	
	134		0.2	

0.4

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Marginal Distributions

- · Marginal distributions are sub-tables which eliminate variables
- · Marginalization (summing out): Combine collapsed rows by

cold sun 0.2 cold rain 0.3

cold 0.5

hot 0.5

 $P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$

13 15 14

Quiz: Marginal Distributions

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- . In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P(T|W)

1 (1,11)				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0$$

= P(W = s, T = c) + P(W = r, T = c)

Ouiz: Conditional Probabilities

■ P(+x | +y)?

$F(\Lambda, I)$				
Х	Υ	P		
+x	+y	0.2		
+x	-у	0.3		
-x	+y	0.4		
-x	-v	0.1		

- P(-x | +y)?
- P(-y | +x)?

16 17 18

= 0.2 + 0.3 = 0.5

19 20 21

22 23 24

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(on time | no accidents, 5 a.m.) = 0.95
- P(on time | no accidents, 5 a.m., raining) = 0.80
- Observing new evidence causes beliefs to be updated

25 26 27

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dn) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the

$$P(y)P(x|y) = P(x,y)$$
 \iff $P(x|y) = \frac{P(x,y)}{P(y)}$

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

P(W)				
	R	Р		
	sun	0.8		
	rain	0.2		

rain 0.7

P(D, W)dry sun wet rain

28

29

30

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i|x_1 \dots x_{i-1})$$

• Why is this always true?

Bayes Rule

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

P(x,y) = P(x|y)P(y) = P(y|x)P(x)

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 Foundation of many systems we'll see later (e.g. ASR, MT)

• In the running for most important Al equation!

31 32 33

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:
 - P(effect|cause)P(cause)P(cause|effect) =
- Example: · M: meningitis, S: stiff neck
 - P(+m) = 0.0001P(+s|+m) = 0.8 $P(+s|-m) = 0.01 \, \text{
 footnote{1}}$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s|+m)}$ P(+s|+m)P(+m) 0.8×0.0001

- · Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

Given:

	P(W)		
	R	Р	
ı	sun	0.8	
1	rain	0.2	

P(D|W)

■ What is P(W | dry)?

Ghostbusters, Revisited

- Let's say we have two distributions:
- Prior distribution over ghost location: P(G) Let's say this is uniform
- Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost

locations given a reading using Bayes'

34 35 36

Video of Demo Ghostbusters with Probability

37