Deep Learning 5. Time series & sequences

A course @EDHEC by Romain Tavenard (Prof. @Univ. Rennes 2)

Neural network architectures and inductive biases

Relational Inductive Biases

Convolutional neural nets for time series

Source: [Le Guennec et al., 2014]

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Sample text generated by a RNN trained on Shakespeare words

For $\bigoplus_{n=1,\ldots,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparisoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, \ref{Sch} and the fact that any U affine, see Morphisms, Lemma \ref{Sch} . Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch/S)_{fppf}$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Sample LaTeX generated by a RNN trained on a book of algebraic geometry

 Very flexible model (any length, let the model learn its memory needs, ...)

Source: Christopher Olah's blog

"Vanilla" RNN in more details

- Very flexible model (any length, let the model learn its memory needs, ...)
- Difficult to learn in practice
 - Slow (lack of parallelism)
 - Vanishing gradients (hard to learn long-term dependencies)

Source: Christopher Olah's blog

- Gated Recurrent Unit (GRU)
- Principle
 - At each time step, keep only part of the information

- Long Short-Term Memory (LSTM)
- Principle: similar to GRU

- Long Short-Term Memory (LSTM)
- Principle: similar to GRU

- Long Short-Term Memory (LSTM)
- Principle: similar to GRU

- Long Short-Term Memory (LSTM)
- Principle: similar to GRU

- Long Short-Term Memory (LSTM)
- Principle: similar to GRU

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Attention-based models Motivating example

- Consider the following translation task:
 - From English: "An apple that had been on the tree in the garden for weeks had finally been picked up."
 - To French: "Une pomme qui était sur l'arbre du jardin depuis des semaines avait finalement été ramassée."

- Both recurrent and convolutional architectures fail at modelling long-range dependencies (for different reasons)
 - Attention aims at tackling this limitation

Attention for Sequence (seq2seq) tasks

Recurrent models

- Compute a bottleneck representation
- Generate output sequence from this bottleneck

Attention-based models

- For each token in the output sequence, aggregate input features
- Aggregation is importance-based
- Importance depends on the features, not their localization

Assessing importance: Queries, Keys & Values

The Query / Key / Value metaphor: Python dictionaries

```
d = {"a": 12, "b": 7}
print(d["a"])
```

- Queries, Keys & Values: the continuous case
 - Look for keys that are similar to the query (not equal)
 - Retrieved value is a weighted average of values associated to keys that are close to the query
 - Could be seen as weighted k-nearest neighbors

$$A_{i,j} = \operatorname{softmax} (Q_i \cdot K_j)$$

$$Y_i = \sum_j A_{i,j} V_j$$

$$A_{i,j} = \operatorname{softmax} (Q_i \cdot K_j)$$

$$Y_i = \sum_j A_{i,j} V_j$$

Standard attention layers

- Standard Attention layers
 - take as inputs 2 sequences X and X'
 - output a sequence Y

Standard attention layers

In <u>self-attention layers</u>, we have X=X'

Standard attention layers

- In <u>multi-head attention layers</u>,
 - several (h here) such blocks operate in parallel
 - Their output is concatenated in feature dimension

Image credit: Vaswani et al. 2017

Summary

- 1d-CNN, RNN and Attention-based models can be used
 - depends on the context
 - slightly different underlying assumptions
 - locality (ConvNets)
 - sequentiality (RNNs)
 - relationships between any set of items in the sequence (Attention-based models)
 - 1d-CNN are faster to train