

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Tópicos en Ciencia de Datos

Informe Final: Análisis Exploratorio de Datos

Docente: Ana Maria Cuadros Valdivia

INFORME FINAL DE ANÁLISIS EXPLORATORIO DE DATOS DEL CONJUNTO DE DATOS owid-covid-data

1. Hipótesis iniciales:

1.1. Motivación:

La pandemia de COVID-19 generó una gran cantidad de datos epidemiológicos a nivel mundial, incluyendo casos confirmados, muertes, hospitalizaciones y vacunaciones. Sin embargo, gran parte de las herramientas desarrolladas durante este periodo presentaron limitaciones al permitir el análisis detallado por región y en distintas escalas temporales. Esta situación motivó la construcción de un dashboard interactivo centrado en filtros por país, año y mes, con el fin de facilitar la exploración visual del comportamiento del virus y sus impactos a lo largo del tiempo.

A través de este dashboard, se busca responder preguntas clave relacionadas con la evolución del COVID-19 en distintos países, observando cómo varían los casos, muertes y otros indicadores en función del tiempo y de las acciones tomadas localmente. Las hipótesis surgen a partir de patrones observados en estudios previos, así como del análisis preliminar de los datos.

1.2. HIPOTESIS

Hipótesis 1:

¿Los picos de contagio por COVID-19 se concentran en determinados meses del año, repitiéndose con cierta estacionalidad en países específicos?

Hipótesis 2:

¿La cantidad de muertes por COVID-19 tiende a disminuir en los países que presentan un aumento sostenido en la cobertura de vacunación durante un mismo año?

Hipótesis 3:

¿Existen diferencias notables en la evolución mensual de los casos confirmados entre países con similares características demográficas?

1.3. Plan de análisis:

Para investigar las hipótesis planteadas, se siguió el siguiente proceso metodológico:

Descarga de la base de datos:

Se utilizó el conjunto de datos abiertos de COVID-19 proporcionado por Our World in Data, el cual contiene registros diarios de múltiples indicadores epidemiológicos y sanitarios a nivel mundial.

Limpieza y selección de columnas relevantes:

A partir del archivo original, se filtraron únicamente las columnas de mayor interés para el análisis, como: casos confirmados diarios, muertes, total de pruebas realizadas, tasa de vacunación y fecha. Esto permitió reducir la complejidad y centrarse en los indicadores más significativos.

Desarrollo del dashboard interactivo:

Se diseñó un dashboard con filtros dinámicos que permiten seleccionar el país, el año y el mes. Al realizar una selección, los gráficos se actualizan automáticamente para mostrar los datos correspondientes.

Visualización y acumulación de datos por país:

Los gráficos fueron configurados para acumular los datos según los países seleccionados. Esto facilita comparar cómo evolucionó la pandemia en distintos lugares a lo largo del tiempo y permite identificar patrones mensuales y anuales.

Exploración visual de patrones:

Mediante el uso del dashboard, se realizó un análisis exploratorio de los datos, permitiendo observar visualmente la aparición de olas pandémicas, variaciones estacionales, y posibles relaciones entre la vacunación y la reducción de muertes en cada país.

2. Fuente de datos:

2.1. **Fuente**:

El conjunto de datos utilizado fue obtenido del proyecto Our World in Data (OWID), una iniciativa global desarrollada por la Universidad de Oxford y el Global Change Data Lab. La descarga se realizó a través de su API oficial en mayo de 2025, desde el repositorio disponible en: https://docs.owid.io/projects/etl/api/covid

Los datos han sido recolectados y actualizados constantemente por OWID a partir de fuentes oficiales como la Organización Mundial de la Salud (OMS), gobiernos nacionales y centros de control de enfermedades. La técnica de recolección se basa en integración de fuentes oficiales, limpieza automática y verificación cruzada de datos.

Este conjunto de datos pertenece al área de la epidemiología computacional y ciencia de datos. Está diseñado para permitir el análisis a gran escala de la pandemia de COVID-19 desde una perspectiva multivariada, combinando datos sanitarios, demográficos y económicos. El problema computacional que se busca abordar mediante este conjunto es la detección de patrones de propagación del virus, comparación entre regiones y evaluación del impacto de factores como la vacunación o medidas gubernamentales.

Las variables capturadas reflejan aspectos clave como el número de casos y muertes diarios, tasas de vacunación, edad media de la población, PIB per cápita, y el índice de severidad de las restricciones (stringency index). Estas variables son importantes porque permiten correlacionar indicadores sanitarios con factores sociales y económicos, habilitando análisis espacio-temporales de la pandemia.

2.2. Descripción:

- a) El dataset cubre el periodo enero 2020 a la fecha actual (2025) y contiene más de 100.000 registros, con aproximadamente 60 columnas. Cada fila representa un país en una fecha específica.
- b) A continuación, se describen los principales atributos utilizados:
 A nivel de atributos:

A livel de dilibatos.							
Atributo	Tipo	Descripció	Unidad /	Valores	Tipo		
		n	Rango	nulos	estadístico		
iso_code	Categórica	Código ISO	Texto	No	Identificador		
	nominal	del país	(ej:				
		1	"PER")				
continent	Categórica	Continente	6 valores	No	Agrupación		
	nominal		únicos	110	regional		
location	Categórica	Nombre del	Texto	No	Variable clave		
	nominal	país	Texto	110	variable clave		
date	†		1137373737	NT.	37 ' 11 1		
date	Temporal	Fecha del	"YYYY-	No	Variable de		
		registro	MM-		tiempo		
			DD"				
total_cases	Cuantitativ	Casos	0 –	Sí (al	Tendencia		
	a continua	confirmado	>1e+8	inicio)	creciente		
		S					
		acumulados					
new_cases	Cuantitativ	Nuevos	0 –	Sí	Alta dispersión		
	a continua	casos	>1e+6		1		
		diarios					
new_cases_smoothe	Cuantitativ	Promedio	-	Sí	Menos volátil		
d	a continua	móvil de					
		casos					
total_deaths	Cuantitativ	Muertes	0 –	Sí	Parecida a		
	a continua	acumuladas	>1e+6		total_cases		

new_deaths	Cuantitativ	Nuevas	-	Sí	Muy dispersa
	a continua	muertes por			
		día			
population	Cuantitativ	Población	10^4 -	No	Estática por
	a continua	total del	1.4e+9		país
		país			
median_age	Cuantitativ	Edad media	16 - 48	Alguno	Factor de riesgo
	a continua	poblacional	años	S	
				países:	
				Sí	
gdp_per_capita	Cuantitativ	PIB per	500 –	Sí	Socioeconómic
	a continua	cápita	>100,00		0
		(USD)	0		
total_vaccination	Cuantitativ	Vacunas	0 –	Sí (por	Indicador clave
S	a continua	aplicadas	>1e+9	fechas)	
stringency_index	Cuantitativ	Índice de	0-100	Sí	Evaluación de
	a continua	severidad			políticas
		de medidas			

- Muchas variables presentan valores nulos, especialmente en los primeros meses del 2020 o en países con menor infraestructura sanitaria.
- Los valores únicos para atributos como continent y location son limitados, mientras que atributos como new_cases tienen alta dispersión y asimetría.
- La mayoría de variables son cuantitativas continuas. Algunas (como continent) son categóricas nominales.

c) A nivel de registros:

Cada registro (fila) representa un país en un día específico. No se incluyen etiquetas en el sentido tradicional de clasificación supervisada, pero los datos están etiquetados por fecha y país, lo cual define su granularidad espacio-temporal diaria.

Esta estructura permite realizar análisis agregados por mes, año o país, dependiendo del filtro seleccionado en el dashboard.

d) Relación entre atributos:

Existe una correlación esperada entre variables como:

new_cases y new_deaths: a mayor número de contagios, tiende a aumentar el número de muertes con un desfase temporal.

total_vaccinations y new_deaths: en general, a mayor vacunación, se espera una reducción en la mortalidad.

stringency_index y new_cases: puede observarse una disminución de casos en períodos posteriores al aumento de restricciones.

Estas relaciones son clave para las hipótesis planteadas y justifican el uso de estos atributos en el dashboard.

Terminología especial

- **Stringency Index**: Índice que mide la severidad de las políticas de respuesta al COVID-19 (cuarentenas, cierre de escuelas, restricciones de movilidad).
- **New Cases Smoothed**: Promedio móvil de 7 días de casos nuevos, útil para reducir ruido y visualizar tendencias.
- **Per Million**: Algunos atributos están normalizados por millón de habitantes, lo cual facilita comparaciones justas entre países con distinta población.

Atributo	Descripción	Tipo de dato	Categoría	Valores nulos (antes)	Unidade s / Rango
iso_code	Código ISO del país	Texto	Categórica nominal	No	Ej: "PER", "USA"
continent	Continente al que pertenece el país	Texto	Categórica nominal	No	6 únicos
location	Nombre del país	Texto	Categórica nominal	No	200+ países
date	Fecha del registro	Fecha	Temporal	No	2020-01- 01 a 2025-01- 01
total_cases	Casos acumulados confirmados	Numéric o (float)	Cuantitativ a continua	Sí → 0	0 a +100 millones
new_cases	Casos nuevos diarios	Numéric o (float)	Cuantitativ a continua	Sí → 0	0 a +1 millón
new_cases_smoothed	Media móvil de casos nuevos	Numéric o (float)	Cuantitativ a continua	Sí → 0	-
total_deaths	Muertes acumuladas	Numéric o (float)	Cuantitativ a continua	Sí → 0	0 a +1 millón
new_deaths	Nuevas muertes diarias	Numéric o (float)	Cuantitativ a continua	Sí → 0	-

new deaths smoothed	Madia ! !1	NI	Cuantitatia	C1 . A	
incw_deachs_smoothed	Media móvil	Numéric	Cuantitativ	$Si \rightarrow 0$	-
	de nuevas	o (float)	a continua		
nonulation	muertes	NT (G	NT.	10 "
population	Población	Numéric	Cuantitativ	No	10 mil –
	total del país	o (int)	a continua		1.4 mil
					millones
median_age	Edad media	Numéric	Cuantitativ	$Si \rightarrow 0$	15 - 50
	de la	o (float)	a continua		años
	población				
aged_65_older	% de	Numéric	Cuantitativ	$Si \rightarrow 0$	0 - 30%
	personas	o (float)	a continua		
	mayores de				
	65				
aged_70_older	% de	Numéric	Cuantitativ	Sí → 0	0 - 20%
	personas	o (float)	a continua		
	mayores de	, ,			
	70				
gdp_per_capita	PIB per	Numéric	Cuantitativ	Sí → 0	USD
	cápita	o (float)	a continua		500 –
	3mp		2 Continua		100,000
extreme poverty	% de	Numéric	Cuantitativ	$Si \rightarrow 0$	0 - 80%
	población en	o (float)	a continua		3 3070
	pobreza	o (110at)	a continua		
	extrema				
cardiovasc_death_rate	Tasa de	Numéric	Cuantitativ	$Si \rightarrow 0$	_
	muerte	o (float)	a continua	51 70	
	cardiovascul	o (110at)	a Continua		
	ar por 100 mil				
	habitantes				
diabetes prevalence		Numeric	Cyantitatica	Q1 . A	0 200/
grapeces_brevatence	Prevalencia	Numéric	Cuantitativ	$Si \rightarrow 0$	0 - 20%
	de diabetes	o (float)	a continua		
total wagginations	(%)	NI / ·	G	G' O	0 "
total_vaccinations	Vacunas	Numéric	Cuantitativ	$Si \rightarrow 0$	0 - miles
	administrada	o (float)	a continua		de
	s acumuladas				millones
people_vaccinated	Personas con	Numéric	Cuantitativ	$Si \rightarrow 0$	-
	al menos una	o (float)	a continua		
	dosis				
people_fully_vaccinate	Personas con	Numéric	Cuantitativ	$Si \rightarrow 0$	-
d	esquema	o (float)	a continua		
	completo				
stringency_index	Índice de	Numéric	Cuantitativ	$Si \rightarrow 0$	0 - 100
	severidad de	o (float)	a continua		
	políticas (0–				
	100)				
total_cases_per_millio	Casos	Numéric	Cuantitativ	Calculad	-
n	acumulados	o (float)	a continua	0	
	por millón	(======================================			
	(derivado)				
	(acrivado)	<u> </u>		1	

total_deaths_per_milli	Muertes	Numéric	Cuantitativ	Calculad	-
on	acumuladas	o (float)	a continua	0	
	por millón				
	(derivado)				

2.3. Formato:

El conjunto de datos original fue encontrado en formato CSV (Comma Separated Values), accesible directamente desde la API de Our World in Data o mediante descarga directa desde su repositorio de GitHub.

2.4. Transformaciones:

Para convertir el conjunto de datos en un formato utilizable dentro del proyecto, se realizaron las siguientes transformaciones clave:

Selección de atributos:

Se redujo el número de columnas de más de 60 a solo las 22 más relevantes para el análisis (epidemiológicas, demográficas y económicas).

Conversión de fecha:

La columna date fue convertida al tipo datetime para facilitar agrupaciones por mes y año, así como para visualizar series temporales.

Creación de columnas derivadas:

Se añadieron columnas nuevas como total_cases_per_million y total_deaths_per_million para normalizar los datos por población.

2.5. Limpieza de datos:

Durante el preprocesamiento del conjunto de datos, se aplicaron las siguientes técnicas de limpieza:

• Eliminación de columnas irrelevantes o redundantes:

Se eliminaron variables como hospitalizaciones semanales, pruebas diarias, fumadores, etc., por no estar directamente relacionadas con las hipótesis del trabajo.

• Relleno de valores faltantes:

Se identificaron valores nulos principalmente en variables sanitarias y demográficas. Se reemplazaron por 0 para permitir un procesamiento uniforme en los gráficos y evitar errores.

Eliminación de duplicados:

Se verificaron y eliminaron registros duplicados.

Filtrado temporal (opcional):

Se consideró trabajar a partir de marzo de 2020, momento en que la mayoría de países comenzaron a reportar datos significativos.

Conversión de tipos de datos:

Se aseguraron formatos correctos en columnas numéricas y temporales, lo cual es esencial para realizar cálculos y generar visualizaciones interactivas.

3. **Exploración:**

Para investigar las hipótesis planteadas, se realizó una fase exploratoria basada en visualizaciones interactivas y estadísticas descriptivas. Se seleccionaron 11 gráficos representativos, cada uno con una función específica en el análisis. Las visualizaciones se generaron filtrando por país, año y mes, y permitieron identificar patrones clave en la evolución de la pandemia.

3.1. Gráfico de Casos Totales vs. Muertes Totales

Título: Casos Totales vs. Muertes Totales

Tipo: Dispersión

Justificación: Permite observar la relación entre la cantidad de infectados y los

fallecimientos, ayudando a estimar la letalidad relativa por país.

Observaciones: Se encontró una correlación positiva general: países con más casos suelen tener más muertes. Sin embargo, países con mejores sistemas sanitarios muestran

menor mortalidad relativa a igual número de casos.

3.2. Gráfico de Nuevos Casos Diarios

Título: Nuevos Casos Diarios

Tipo: Línea

Justificación: Permite detectar olas epidémicas y su magnitud en el tiempo.

Observaciones: Se observaron picos en diferentes meses según el país. Por ejemplo, en algunos países europeos los picos fueron estacionales (invierno), mientras que en países

tropicales fueron más irregulares.

3.3. Gráfico de Vacunaciones Totales vs. Personas Totalmente Vacunadas

Título: Vacunaciones Totales vs. Personas Totalmente Vacunadas

Tipo: Dispersión

Justificación: Evalúa la eficiencia de la campaña de vacunación.

Observaciones: Países con alta cobertura muestran una relación estrecha entre ambas variables, mientras que en otros la diferencia refleja esquemas incompletos o retrasos en la segunda dosis.

3.4. Gráfico de Casos Totales

Título: Casos Totales

Tipo: Línea

Justificación: Muestra el crecimiento acumulativo del virus.

Observaciones: Todos los países presentan una curva creciente, con inflexiones en periodos de control exitoso o retrocesos en medidas sanitarias.

3.5. Gráfico de Muertes Totales

Título: Muertes Totales

Tipo: Línea

Justificación: Visualiza la carga mortal de la pandemia.

Observaciones: Similar al gráfico de casos, pero con variaciones que evidencian

diferencias en el sistema de salud, edad poblacional o vacunación.

3.6. Gráfico de Tasa de Vacunación

Título: Tasa de Vacunación

Tipo: Línea

Justificación: Indica el ritmo de vacunación respecto a la población. **Observaciones**: Se observaron estrategias diferenciadas: algunos países priorizaron una vacunación rápida, otros tuvieron procesos más lentos debido a disponibilidad o logística.

3.8. Gráfico de Tasa de Mortalidad (por millón)

Título: Tasa de Mortalidad

Tipo: Línea

Justificación: Normaliza el impacto del COVID según el tamaño poblacional.

Observaciones: A igualdad de casos, la tasa varía notablemente. Por ejemplo, algunos países con menos casos presentan tasas de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad más altas, lo cual podría indicar dia se fectione de la casa de mortalidad de la casa de la casa

diagnósticos tardíos o colapso sanitario.

3.9. Gráfico de Tasa de Recuperación

Título: Tasa de Recuperación

Tipo: Línea

Justificación: Estima la proporción de casos que no derivaron en muerte.

Observaciones: En países con buena atención hospitalaria, la tasa se mantiene alta. No se

registran tasas absolutas en el dataset, por lo que esta se estimó como:

3.10. Gráfico de Impacto de Casos Totales en la Población

Título: Impacto de Casos Totales en la Población

Tipo: Dispersión

Justificación: Permite comparar países en términos relativos, ajustando por población. **Observaciones:** Se evidenció que países pequeños pueden tener alta proporción de contagios (como Israel o Qatar), mientras que países grandes presentan cifras absolutas elevadas pero tasas menores.

4. Conclusión:

El análisis exploratorio realizado a partir del conjunto de datos de COVID-19 proporcionado por *Our World in Data* permitió identificar patrones relevantes en la propagación, letalidad y control de la pandemia a nivel mundial. A través del uso de 11 visualizaciones clave, filtradas por país, año y mes en un dashboard interactivo, fue posible extraer conocimientos útiles para evaluar el comportamiento de la pandemia en distintas regiones y contextos.

Hipótesis 1:

¿Los picos de contagio por COVID-19 se concentran en determinados meses del año, repitiéndose con cierta estacionalidad en países específicos?

Conclusiones intermedias:

- Los gráficos de "Casos Totales" muestran picos significativos en ciertos periodos, lo que sugiere una posible estacionalidad.
- Los gráficos de "Nuevos Casos" también muestran fluctuaciones que podrían indicar patrones estacionales.

Conclusión final:

 Basado en los gráficos, parece haber una estacionalidad en los picos de contagio, con incrementos significativos en ciertos meses del año. Esto podría estar relacionado con factores climáticos, comportamientos sociales, o la introducción de nuevas variantes del virus.

Hipótesis 2:

¿La cantidad de muertes por COVID-19 tiende a disminuir en los países que presentan un aumento sostenido en la cobertura de vacunación durante un mismo año?

Conclusiones intermedias:

- El gráfico de "Tasa de Vacunación (%)" muestra un aumento sostenido en la cobertura de vacunación a lo largo del tiempo.
- El gráfico de "Muertes Totales" muestra una disminución en el número de muertes a medida que avanza el tiempo, lo cual podría correlacionarse con el aumento de la vacunación.

Conclusión final:

 Existe una correlación aparente entre el aumento de la cobertura de vacunación y la disminución en el número de muertes por COVID-19. Esto sugiere que la vacunación ha tenido un impacto positivo en la reducción de la mortalidad.

Hipótesis 3:

¿Existen diferencias notables en la evolución mensual de los casos confirmados entre países con similares características demográficas?

Conclusiones intermedias:

- Los gráficos de "Casos Totales" y "Nuevos Casos" muestran diferencias en la evolución mensual de los casos confirmados.
- El gráfico de "Impacto de Casos Totales" vs "Población" sugiere que la densidad poblacional y otros factores demográficos podrían influir en la evolución de los casos.

Conclusión final:

 Hay diferencias notables en la evolución mensual de los casos confirmados entre países, incluso entre aquellos con características demográficas similares. Esto podría deberse a una variedad de factores, incluyendo políticas de salud pública, comportamientos sociales, y diferencias en la implementación de medidas de control de infecciones.

Conclusión General:

El análisis exploratorio de datos sugiere que:

- 1. Existe una estacionalidad en los picos de contagio de COVID-19.
- 2. La vacunación tiene un impacto positivo en la reducción de muertes por COVID-19.

3. Las diferencias en la evolución de los casos confirmados entre países pueden estar influenciadas por múltiples factores, incluyendo características demográficas y políticas de salud pública.

Referencias

Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., Giattino, C., & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), 947–953. https://doi.org/10.1038/s41562-021-01122-8

Our World in Data – COVID-19 Dataset Documentation: https://github.com/owid/covid-19-data