Parvalbumin: Evolutionary Distance From Human Homologs and Allergenicity.

Diana Rozenshteyn

Computer Science Department

San Diego State University

San Diego, USA

Index Terms—parvalbumin, PRVB, allergenicity, fish allergy, allergens, gene diversity, food allergy

I. Introduction

Food allergy is a potentially life threatening health condition that can affect a person's life and well being. Food allergies are affecting close to 8% of children in the US with an allergy to fin fish accounting for 0.6% of the total percentage [1]. Up to 10.8% (>26 million) of US adults also suffer from food allergies with 0.9% of them being allergic to fin fish [2].

Parvalbumin (PRVB) is a low molecular weight Ca2+ binding protein that plays important role in muscle twitching and other biological processes [3]. PRVB gene family has two evolutionary distinct forms of the PRVB protein, α – and β -Parvalbumins [3]. Additionally, β -PRVB also has two isoforms, $\beta 1$ and $\beta 2$ [3].

 β -PRVB are abundant in fish species, but absent from human muscles [4]. Humans carry α - form of the PRVB protein [3].

It is important to consider the high level of cross-reactivity in fish species. Cross-reactivity is "the recognition of distinct antigens by the same IgE antibody...which clinically manifests as reactions caused by antigens that are homologous to different species" [5]. A study by Borrego, J. T., Cuevas, J. M., & Garcia, J. T. (2003) estimated that 50% of individuals allergic to one kind of fish species are also allergic to a different fish species due to similarity among parvalbumins of different fish species.[6].

This paper investigates how the Human α -Parvalbumin protein is different from its homologs from fish and non-fish species, and how that could potentially help in the insight of Parvalbumin related allergies. This topic is worth researching because fish allergy affecting a large number of people in the US and poses a serious health risk for the adults and children affected.

II. HYPOTHESIS/QUESTIONS

The objective of this study is to research, with the help of bio-informatics tools such as Multiple Alignment Fast Fourier Transform (MAFFT) and MView, the similarities between $\alpha-$ and β -Parvalbumins among fish and non-fish species and the human $\alpha-$ Parvalbumin and to see how close PRVBs proteins have to be similar across species to cause an allergic reaction.

III. METHODS

A. mRNA Sequences

First, to obtain mRNA sequences from different fish and non-fish species to be compared, I used nucleotide search tool available on the National Center for Biological Information (NCBI) website which is run by the National Institute of Health (NIH), https://www.ncbi.nlm.nih.gov/. Keywords for the search parameters were Parvalbumin plus a species common or scientific name. I downloaded each mRNA sequence in the FASTA format from the NCBI website and assembled all sequences into one FASTA file. I choose 26 different species for this study.

Second, for each of the species I verified its allergenicity type, when available, on the website http://www.allergen.org. The site provides the systematic allergen nomenclature which is approved by the World Health Organization (WHO) and International Union of Immunological Societies (IUIS).

B. Multiple Sequence Alignment

I have used MAFFT web based tool to align mRNA sequences and to build phylogenetic tree, https://www.ebi.ac.uk/Tools/msa/mafft/.

Additionally, I have used MView web tool, https://www.ebi.ac.uk/Tools/msa/mview/, to calculate percent coverage and percent identity of all mRNA sequences with respect to a reference sequence. The reference sequence in this study is Human α -PRVB.

 $\begin{array}{c} MView \ defines \ percent \ coverage \ as: \\ \frac{number \ of \ residues \ in \ row \ aligned \ with \ reference \ row}{length \ of \ ungapped \ reference \ row} x 100 \\ It \ also \ defines \ percent \ identity \ as: \\ \frac{number \ of \ identical \ residues}{length \ of \ ungapped \ reference \ row \ over \ aligned \ region} x 100 \\ \end{array}$

IV. RESULTS

The summary of Parvalbumin mRNA sequences searches, including the species scientific and common names, accession codes and allergen type as specified by WHO and IUIS are presented in the Table I. It is important to point out that among non-fish species chicken and frog PRVBs are also on the list of known allergen types as specified by WHO and IUIS.

Phylogentic relation of fish and non-fish $\alpha-$ and β -PRVB is shown in the pylogenetic tree in the Fig 1. It is evident from the tree that non-fish PRVB samples are closely related variants of the human $\alpha-$ PRVB and frog and fish species PRVBs are further removed on the tree from the human $\alpha-$ PRVB.

TABLE I FISH AND NON-FISH $\alpha-$ AND $\beta-$ PARVALBUMINS.

Species	Common	Accession Code ^a	Protein	Allergen
	Name			Type ⁶
Homo sapi- ens	Human	BC096113.3	α -PRVB	none
Ovis aries	Sheep	XM_012175019.4	α-PRVB	none
Bos taurus	Cattle	FM178223.1	α-PRVB	none
Sus scrofa	Pig	FM994923.1	α-PRVB	none
Oryctolagus	Rabbit	XM 002711409	α-PRVB	none
cuniculus				
Gallus gallus	Chicken	FM994924.1	α-PRVB	Gal d8
Rana	Frog	AJ315959.1	α-PRVB	Ran e1
esculenta				
Rana	Frog	AJ414730.1	β-PRVB	Ran e1
esculenta	8		/	
Esox lucius	Pike	XM_010874231.3	β1-	none
			PRVB	
Cyprinus	Carp	KY784972.1	β-PRVB	Cyp c1
carpio			,	
Salmo salar	Salmon	NM_001123717.1	β 2-	Sal s1
			PRVB	
Gadus	Cod	XM_030349118.1	β1-	Gad m1
morhua	G 1	VAL 020240776 1	PRVB	G 1 1
Gadus	Cod	XM_030349776.1	β2-	Gad m1
morhua	X 11 C	E) (150015 1	PRVB	TOI 1
Thunnus al-	Yellowfin	FM178217.1	β1-	Thu a1
bacares	Tuna	1 T22 T T T T	PRVB	
Ictalurus	Catfish	AF227795.1	β -PRVB	Pan h1
punctatus		TT (0 (0 f T 1	0.00010	
Micropterus	Largemouth	FJ696957.1	β -PRVB	none
salmoides	Bass	ANIO 522 52 1	0 DDI/D	
Paralichthys	Japanese	AY953372.1	β -PRVB	none
olivaceus	Flounder	E) (170000 1	0 DDI/D	Cl. 1.1
Clupea	Atlantic	FM178222.1	β -PRVB	Clu h1
harengus	Herring	EE501500 1	0 DDI/D	
Lutjanus	Mangrove	EF591789.1	β -PRVB	none
argentimacu- latus	Red			
	Snapper	AY035587.1	0 DDI/D	
Gadus	Walleye Pollock	AY035587.1	β -PRVB	none
chalcogram- mus	Pollock			
Sebastes	Ocean	FM178219.1	β-PRVB	Seb m1
marinus	Perch	F1VI1/6219.1	р-гкув	Seo mi
Oreochromis		DQ124253.1	β-PRVB	Ore m4
mossambi-	Mozambique	DQ124233.1	р-гкув	Ore m4
cus	Tilapia			
Xiphias gla-	Swordfish	XM 040135499.1	β-PRVB	Xip g1
dius gia-	Swordiisii	AWI_040133499.1	ρ -r κ V δ	Aip gi
Salvelinus	Brook	FM994928.1	β-PRVB	Onc m1
fontinalis	Trout	1 181774740.1	ρ -1 KV D	One III
Epinephelus		FJ426133.1	β-PRVB	none
coioides	Grouper, orange-	19420133.1	ρ -r κ V δ	none
cololues	spotted			
Doctrollinos	Indian	KX527884.1	β-PRVB	Ras k1
Rastrelliger kanagurta	Mackerel	NAJ4/004.1	ρ -r κ V δ	Nas KI
amRNA.	MIACKETEI			

amRNA.

Visualization of the percent coverage as determined by MView Sequences alignment of fish and non-fish $\alpha-$ and β -PRVB is attached as a supplemental material file mview alligment.html.

Percentage identity for α - and β -PRVB for all species was ordered by the similarity to the human α -PRVB sequence (Table II). In addition, percent identity of all species to the

Fig. 1. Phylogenetic Tree.

Cod β 1-PRVB is also presented in the Table II. I choose Cod because it has been extensively used as a model in studies of allergy to fish [5]. As can be observed from the Table II, among all fish and non-fish species, Ocean Perch β -PRVB had the least similarity (57.8%) to the Human α -PRVB. Chicken and Frog α -PRVBs had the least similarity (74.77 and 68.47%) with the Human α -PRVB among non-fish species.

V. DISCUSSION

With the help of bio-informatics tools such as MAFFT and MView, I analyzed the mRNA sequences of α - and β -Parvalbumins among fish and non-fish species and the Human α -Parvalbumin. The results show that PRVB proteins with sequences identities less than 86.79\% (the protein identity of Rabbit α -PRVB to Human one) exhibit or have the potential to exhibit allergenicity (abnormal immune response) in humans, Tables I and II. Chicken and Frog PRVBs are on the list of known allergen types as specified by WHO and IUIS, and also show 74.77 and 68.47% similarity to the Human α -Parvalbumin. Additionally, as can be seen in the pylogenetic tree in the Fig 1, chicken and frog α -PRVBs are are further removed on the tree from the human $\alpha-PRVB$ than all other non-fish species investigated in this study. Thus, while it is rare to have an allergy to chicken and frog α -PRVBs, they still have the potential to cause an allergic reaction in highly sensitive individuals [3].

For all the fish species evaluated in this study, similarity to the Human α -Parvalbumin varies between 64.85 to 57.58%. Most of the fish studied are also on the list of known allergen types as specified by WHO and IUIS, Tables I and II. In addition, fish species β -PRVBs are further removed on the pylogenetic tree from the human α -PRVB than non-fish species 1.

Considering the results of this study, the strong crossreactivity exhibited by the fish species and low degree of similarity between fish and human PRVBs, it is reasonable

^bas registered with WHO.

 $\label{eq:table ii} \begin{tabular}{ll} \beg$

Common Name	Protein	Percent	Percent
		Identity,	Identity,
		Human	Cod β1-
		α -PRVB	PRVB
Human	α -PRVB	100	59.70
Sheep	α -PRVB	89.79	61.52
Pig	α -PRVB	89.49	61.21
Cattle	α -PRVB	86.79	60.30
Rabbit	α -PRVB	86.79	60.91
Chicken	α -PRVB	74.77	61.52
Frog	α -PRVB	68.47	63.64
Carp	β -PRVB	64.85	73.94
Largemouth Bass	β -PRVB	64.24	76.06
Mozambique	β -PRVB	63.94	78.79
Tilapia			
Catfish	β -PRVB	63.64	75.76
Salmon	β2-PRVB	63.61	76.15
Brook Trout	β -PRVB	63.30	75.84
Grouper, orange-	β -PRVB	62.42	73.64
spotted			
Yellowfin Tuna	β 1-PRVB	62.12	77.27
Mangrove Red	β -PRVB	61.52	71.21
Snapper			
Frog	β -PRVB	61.12	65.15
Atlantic Herring	β -PRVB	60.91	66.06
Japanese Flounder	β -PRVB	60.00	76.36
Walleye Pollock	β-PRVB	60.00	73.33
Cod	β 1-PRVB	59.70	100
Cod	β2-PRVB	59.70	73.33
Pike	β 1-PRVB	59.39	69.09
Swordfish	β -PRVB	58.56	60.61
Indian Mackerel	β -PRVB	57.88	74.85
Ocean Perch	β-PRVB	57.58	73.33

to conclude that individuals known to have allergy to one or more type of fish, should avoid all fin fish species.

In the feature studies, it would be interesting to take a closer look at the protein structure of the different PRVBs analysed in this study to see how this can contribute to the better understanding of the PRVBs allergenic potential across different species.

VI. REFERENCES

REFERENCES

- Gupta, R. S., Warren, C. M., Smith, B. M., Blumenstock, J. A., Jiang, J., Davis, M. M., & Nadeau, K. C. (2018). The public health impact of parent-reported childhood food allergies in the United States. Pediatrics, 142(6).
- [2] Gupta, R. S., Warren, C. M., Smith, B. M., Jiang, J., Blumenstock, J. A., Davis, M. M., ... & Nadeau, K. C. (2019). Prevalence and severity of food allergies among US adults. JAMA network open, 2(1), e185630-e185630.
- [3] Mukherjee, S., Horka, P., Zdenkova, K., & Cermakova, E. (2023). Parvalbumin: A Major Fish Allergen and a Forensically Relevant Marker. Genes, 14(1), 223.
- [4] Jenkins, J. A., Breiteneder, H., & Mills, E. C. (2007). Evolutionary distance from human homologs reflects allergenicity of animal food proteins. Journal of allergy and clinical immunology, 120(6), 1399-1405.
- [5] Wild, L. G., & Lehrer, S. B. (2005). Fish and shellfish allergy. Current allergy and asthma reports, 5(1), 74-79.
- [6] Borrego, J. T., Cuevas, J. M., & Garcia, J. T. (2003). Cross reactivity between fish and shellfish. Allergologia et immunopathologia, 31(3), 146-151.