Estimation du noyau de flou affectant une image

Estimating an Image's Blur Kernel Using Natural Image Statistics, and Deblurring it: An Analysis of the Goldstein-Fattal Method

TABLE DES MATIÈRES

- 1. Principe de l'algorithme
- 2. Fonctionnement de la récupération du module
- 3. Fonctionnement de singlePhaseRetrieval
- 4. Fonctionnement de phaseRetrieval

- 5. Test : la taille du noyau
- 6. Test sur différents noyaux
- 7. Gestion des bordures de l'image
- 8. Essais pour la récupération du module

Principe de l'algorithme

Entrée : une image floutée

Objectif: calculer le noyau de flou

Deux grandes parties:

- → Calcul du module de la TF du noyau
- → Calcul de la phase de la TF du noyau

Fonctionnement de la récupération du module

Calcul de l'autocorrélation de la projection de l'image sur différents angles.

Première estimation du support de l'autocorrélation.

Boucle:

- → A partir de l'autocorrélation et de son support, calculer |H|
- → Appliquer phaseRetrieval
- → Affiner le support de l'autocorrélation

Fonctionnement de la partie implémentée singlePhaseRetrieval

Entrée : module de la TF du noyau de flou, taille du noyau, nombre d'itérations

Sortie : noyau de flou estimé, de taille donnée en entrée

Fonctionnement:

- → Utiliser une phase aléatoire
- → Travailler dans le domaine réel
- → Appliquer des contraintes d'amplitude et de support

=

singlePhaseRetrieval

Noyau de flou retrouvé avec singlePhaseRetrieval

\equiv

singlePhaseRetrieval

Noyau de flou retrouvé avec singlePhaseRetrieval

Fonctionnement de la partie implémentée phaseRetrieval

Entrée : module de la TF du noyau de flou, taille du noyau, nombre d'itérations, nombre d'essais

Sortie: noyau de flou estimé, de taille donnée en entrée

Fonctionnement:

- → Cibler un "patch" de l'image pour limiter le nombre de calculs
- → Itérer l'algorithme singlePhaseRetrieval
- → À chaque étape, calculer un coefficient de différence
- → Renvoyer le kernel de plus petit coefficient de différence

Tests et résultats

Taille du noyau

phaseRetrieval avec différents noyaux

phaseRetrieval avec différents noyaux

Algorithme complet avec différents noyaux

25x25

Algorithme complet avec différents noyaux

40x40

sans périodisation

Gestion des bordures de l'image

__

avec périodisation

avec périodisation

Essais pour la récupération du module

On a la TF de l'image originale et l'image floutée.

Calcule du module du noyau de flou :

- → On divise la TF de l'image flou par la TF de l'image originale.
- → On sous-échantillonne la TF obtenue.

Test de récupération du module du noyau

