Scilab Textbook Companion for Elementary Heat Power by H. L. Solberg¹

Created by
Chaitanya Potti
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Lavitha Pereira

April 12, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elementary Heat Power

Author: H. L. Solberg

Publisher: John Wiley and Sons, London

Edition: 2

Year: 1986

ISBN: 0131106724

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Matter and energy	7
2	Fuels and Combustion	13
3	Internal Combustion Engines	23
5	Steam Generation	31
6	Steam power plant cycles	40
7	Steam turbines	44
8	Steam engines	51
9	Pumps	54
10	Drafts fans blowers and compressors	60
11	Feed water heaters and condensers	66
12	The Gas turbine power plant	69
13	Mechanical Refrigeration	71

List of Scilab Codes

Exa 1.1	Example 1													7
Exa 1.2	Example 2													7
Exa 1.3	Example 3													8
Exa 1.4	Example 4													8
Exa 1.5	Example 5													9
Exa 1.6	Example 6													9
Exa 1.7	Example 7													10
Exa 1.8	Example 8													10
Exa 1.9	Example 9													11
Exa 1.10	Example 10													11
Exa 1.11	Example 11													12
Exa 1.12	Example 12													12
Exa 2.1	Example 1													13
Exa 2.2	Example 2													14
Exa 2.3	Example 3													15
Exa 2.4	Example 4													15
Exa 2.5	Example 5													16
Exa 2.6	Example 6													16
Exa 2.7	Example 7													17
Exa 2.8	Example 8													18
Exa 2.9	Example 9													19
Exa 2.10	Example 10													19
Exa 2.11.	a Example 11													20
Exa 2.11.	b Example 12													20
Exa 2.110	Example 13													21
Exa 2.110	d Example 14													21
Exa 2.11e	e Example 15													22
Exa. 3.1	Example 1													23

Exa 3.2	Example 2																					23
Exa 3.3	Example 3																					24
Exa 3.4	Example 4																					24
Exa 3.5	Example 5																					25
Exa 3.6	Example 6																					25
Exa 3.7	Example 7																					26
Exa 3.8	Example 8																					26
Exa 3.9	Example 9																					26
Exa 3.10	Example 10																					27
Exa 3.11	Example 11																					28
Exa 5.1	Example 1																					31
Exa 5.2	Example 2																					31
Exa 5.3	Example 3																					32
Exa 5.4	Example 4																					32
Exa 5.5	Example 5																					33
Exa 5.6	Example 6																					33
Exa 5.7	Example 7																					34
Exa 5.8	Example 8																					34
Exa 5.9	Example 9																					35
Exa 5.10	Example 10																					35
Exa 5.11	Example 11																					36
Exa 5.12	Example 12																					36
Exa 5.13	Example 13																					37
Exa 6.1																						40
Exa 6.2	-																					41
Exa 6.3	-																					42
Exa 6.4	Example 4																					42
Exa 7.1	-																					44
Exa 7.4	-																					45
Exa 7.5	Example 5																					46
Exa 7.6	Example 6																					46
Exa 7.7	*																					47
Exa 7.8	Example 8																					48
Exa 7.9	-																					48
Exa 7.10	Example 10																					49
Exa 8.1																						51
Exa 8.2	-																					52
Exa 9 1	Example 1	•	-	•	-	-	-	•	-	•	•		-		•	•	•	•	-	,		54

Exa 9.2	Example 2													54
Exa 9.3	Example 3													55
Exa 9.4	Example 4													55
Exa 9.5	Example 5													56
Exa 9.6	Example 6													56
Exa 9.7	Example 7													57
Exa 9.8	Example 8													57
Exa 9.9	Example 9													58
Exa 9.10	Example 10													59
Exa 10.1	Example 1													60
Exa 10.2	Example 2													61
Exa 10.3	Example 3													61
Exa 10.4	Example 4													62
Exa 10.5	Example 5													63
Exa 10.6	Example 6													64
Exa 10.7	Example 7													64
Exa 11.1	Example 1													66
Exa 11.2	Example 2													67
Exa 11.3	Example 3													67
Exa 11.4	Example 4													68
Exa 12.1	Example 1													69
Exa 12.2	Example 2													70
Exa 13.1	Example 1													71
Exa 13.2	Example 2													72
Eva 13.3	Example 3													72

Chapter 1

Matter and energy

Scilab code Exa 1.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 m=500 //lb
6 rate=10 //ft/s^2
7 //calculations
8 F1=m/g *rate
9 ms=m/g
10 F2=ms*rate
11 //results
12 printf("Force in case 1 = %.1f lbf",F1)
13 printf("\n Force in case 2 = %.1f lbf",F2)
```

Scilab code Exa 1.2 Example 2

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 g2=32.0 //ft/s^2
6 rate=10 //ft/s^2
7 w1=500 //lbf
8 //calculations
9 fd1=w1*g2/g
10 F=fd1/g2 *rate
11 ms=w1/g
12 F2=ms*rate
13 //results
14 printf("Net weight of body in case 1 = %.1 f lbf",F)
15 printf("\n Force in case 2 = %.1 f lbf",F2)
```

Scilab code Exa 1.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.174 //ft/s^2
5 m=500 //lbm
6 rate=10 //ft/s^2
7 //calculations
8 F=1/g *m*rate
9 //results
10 printf("Force required = %.1f lbf",F)
```

Scilab code Exa 1.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 g1=32.174 //ft/s^2
```

```
5 gc=g1
6 g2=30 //ft/s^2
7 m=100 //lbm
8 //calculations
9 w1=g1/gc *m
10 w2=g2/gc *m
11 //results
12 printf("Weight in case 1 = %d lbf", w1)
13 printf("\n Weight in case 2 = %.1f lbf", w2)
```

Scilab code Exa 1.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 ge=32.174 //ft/s^2
5 gm=5.47 //ft/s^2
6 we=50 //lbm
7 //calculations
8 wm=we*gm/ge
9 //results
10 printf("In case a, it will weigh the same, weight = %d lbm", we)
11 printf("\n In case b, weight = %.1f lbf", wm)
```

Scilab code Exa 1.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 p1=100 //psig
6 p2=29.0 //in of Hg
```

```
7 //calculations
8 BP=p2*0.491
9 AP=BP+p1
10 //results
11 printf("Absolute pressure = %.2f psia", AP)
```

Scilab code Exa 1.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 Pb=29.5 //in of Hg
6 Pv=10 //in of Hg
7 //calculations
8 AP=(Pb-Pv)*0.491
9 //results
10 printf("Absoulte pressure = %.2f psia",AP)
```

Scilab code Exa 1.8 Example 8

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 v1=1 //cu ft
6 p1=100 //psia
7 //calculations
8 v2=2*v1
9 W=144*p1*(v2-v1)
10 //results
11 printf("Work done = %d ft-lb", W)
```

Scilab code Exa 1.9 Example 9

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 v1=1 //cu ft
6 p1= 100 //psia
7 p2=50 //psia
8 v2=3 //cu ft
9 //calculations
10 pa=(p1+p2)/2
11 W=pa*(v2-v1)*144
12 //results
13 printf("Work done = %d ft-lb", W)
```

Scilab code Exa 1.10 Example 10

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 p1=100 //psia
6 p2=25 //psia
7 v2=2 //cu ft
8 //calculations
9 W=p1*144*v2 - p2*144*v2
10 //results
11 printf("Work done = %d ft-lb", W)
```

Scilab code Exa 1.11 Example 11

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 n=100 //rpm
6 p1=100 //psia
7 p2=25 //psia
8 v2=2 //cu ft
9 //calculations
10 W=p1*144*v2 - p2*144*v2
11 Hp=W*n/33000
12 //results
13 printf("Horsepower developed = %.1 f hp", Hp)
```

Scilab code Exa 1.12 Example 12

```
1 clc
2 clear
3 //Initialization of variables
4 P=50 //hp
5 m=30 //lb
6 E=19000 //Btu/lb
7 //calculations
8 eta= P*2545/(m*E) *100
9 //results
10 printf("Efficiency = %.1f percent",eta)
```

Chapter 2

Fuels and Combustion

Scilab code Exa 2.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 x1=0.135
5 \text{ x} 2 = 0.056
6 veca=[32.5 48.4 5.6 13.5]
7 B1=11788
8 //calculations
9 \text{ vecb=veca/}(1-x1)
10 vecc=veca/(1-x1-x2)
11 B2=B1/(1-x1)
12 B3=B1/(1-x1-x2)
13 \text{ vecb}(4) = 0
14 \text{ vecc}(3) = 0
15 \text{ vecc}(4) = 0
16 // results
17 printf("In Moisture free case, ")
18 format('v',6); vecb
19 disp(vecb)
20 printf("In Moisture and Ash free case, ")
21 format('v',6); vecc
```

Scilab code Exa 2.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 y1=13.5
5 x1=0.135
6 x2=0.056
7 veca=[66 1.5 1.1 5.6 5.9 19.9]
8 //calculations
9 vecb=[veca y1]
10 \text{ vecb}(5) = \text{vecb}(5) - 1/9*y1
11 vecb(6) = vecb(6) - 8/9*y1
12 \text{ vecc=vecb}/(1-x1)
13 vecd=vecb/(1-x1-x2)
14 \text{ vecd}(4) = 0
15 \text{ vecd}(7) = 0
16 \text{ vecc}(7) = 0
17 \text{ s1=sum (vecc)}
18 \text{ s2=sum}(\text{vecd})
19 //results
20 printf("With moisture as a separate item, ")
21 format ('v',6); vecb
22 disp(vecb)
23 printf("In Moisture free case, ")
24 format('v',4); vecc
25 disp(vecc)
26 printf("In Moisture and Ash free case, ")
27 format('v',5); vecd
```

Scilab code Exa 2.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 H=5.9
5 0=19.9
6 H2=4.4
7 02=7.9
8 //calculations
9 Ha1=H-0/8
10 Ha2=H2-02/8
11 //results
12 printf("Available hydrogen in case 1 = %.1f percent by weight", Ha1)
13 printf("\n Available hydrogen in case 1 = %.1f percent percent by weight", Ha2)
```

Scilab code Exa 2.4 Example 4

```
1 clc
2 clear
3 // Initialization of variables
4 H1=0.059
5 01=0.199
6 H2=0.044
7 02=0.079
```

Scilab code Exa 2.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 H1=0.059
5 01=0.199
6 C=0.66
7 S=0.011
8 //calculations
9 Qh1= 11.52*C+34.56*(H1-01/8)+4.32*S
10 //results
11 printf("Theoretical air required = %.2 f lb of air per lb of coal ",Qh1)
```

Scilab code Exa 2.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 mf=10000 //lb
5 mr=700 //lb
6 Cr=0.20
```

```
7 \text{ } \text{Cco2} = 14.1
8 \text{ Co} 2 = 5.1
9 \text{ Cco} = 0.1
10 Cf = 0.66
11 //calculations
12 Cn2=100-(Cco2+Co2+Cco)
13 Ci=mf*Cf
14 Ca=mr*Cr
15 Cb = (Ci - Ca) / mf
16 Cb2=((mf*Cf)-mr*Cr)/(mf)
17 veca=[Cco2 Co2 Cco Cn2]
18 vecb=veca
19 vecb(1) = vecb(1) *44
20 \text{ vecb}(2) = \text{vecb}(2) *32
21 \text{ vecb}(3) = \text{vecb}(3) *28
22 \text{ vecb}(4) = \text{vecb}(4) *28
23 sumvec=sum(vecb)
24 \text{ Lbc} = \text{Cco}2 * 12 + \text{Cco}*12
25 Gc=sumvec/Lbc
26 \text{ Gf} = \text{Gc} * \text{Cb}
27 // results
28 printf ("Carbon in the dry products combustion = \%.3 f
        lb per lb of fuel",Cb)
29 printf("\n In case 2, Carbon in the dry products
       combustion = \%.3 f lb per lb of fuel", Cb2)
30 printf("\n Dry gaseous products of combstion per lb
       of coal = \%.2 f lb ", Gf)
```

Scilab code Exa 2.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 mf=10000 //lb
5 mr=700 //lb
```

```
6 \text{ Cr} = 0.20
7 \text{ } \text{Cco2} = 14.1
8 \text{ Co} 2 = 5.1
9 \text{ Cco} = 0.1
10 \text{ Cf} = 0.66
11 //calculations
12 Cn2=100-(Cco2+Co2+Cco)
13 \quad Ci = mf * Cf
14 \quad Ca=mr*Cr
15 Cb = (Ci - Ca) / mf
16 Cb2=((mf*Cf)-mr*Cr)/(mf)
17 veca=[Cco2 Co2 Cco Cn2]
18 vecb=veca
19 vecb(1) = vecb(1) *44
20 \text{ vecb}(2) = \text{vecb}(2) *32
21 \text{ vecb}(3) = \text{vecb}(3) *28
22 \text{ vecb}(4) = \text{vecb}(4) *28
23 Cbb1=Cb*Cco*12/(Cco2*12 + Cco*12)
24 \text{ Cbb2} = \text{Cb}*(\text{veca}(3) / (\text{veca}(3) + \text{veca}(1)))
25 //results
26 printf("In case 1, Carbon burned per lb of fuel = \%
        .5f lb per lb of fuel", Cbb1)
27 printf("\n In case 2, Carbon burned per lb of fuel =
        \%.5\,\mathrm{f} lb per lb of fuel",Cbb2)
```

Scilab code Exa 2.8 Example 8

```
1 clc
2 clear
3 //Initialization of variables
4 H=4.4/100
5 M=13.5/100
6 H2=0.059
7 //calculations
8 pro=M+9*H
```

Scilab code Exa 2.9 Example 9

```
1 clc
2 clear
3 //Initialization of variables
4 Gf=11.57 //lb per lb of fuel
5 \text{ H}=4.4/100
6 M = 13.5/100
7 \text{ mr} = 700
8 \text{ mf} = 10000
9 mc=1 //lb
10 //calculations
11 pro=M+9*H
12 mrf=mr/mf
13 Aa=Gf+pro+mrf-mc
14 //results
15 printf ("Actual air supplied = \%.2 f lb of air
      supplied per lb of fuel", Aa)
```

Scilab code Exa 2.10 Example 10

```
1 clc
2 clear
3 //Initialization of variables
4 Gf=11.57 //lb per lb of fuel
5 H=4.4/100
```

Scilab code Exa 2.11.a Example 11

```
1 clc
2 clear
3 //Initialization of variables
4 Gf=11.57 //lb per lb of fuel
5 tg=500 //F
6 ta=70 //F
7 //calculations
8 Q1=0.24*Gf*(tg-ta)
9 //results
10 printf("Heat loss = %d Btu per lb of fuel",Q1)
```

Scilab code Exa 2.11.b Example 12

```
1 clc
2 clear
3 //Initialization of variables
4 Co=0.1
5 Co2=14.1
```

```
6 Cb=0.646
7 //calculations
8 Q2=Co/(Co+Co2) *Cb*10160
9 //results
10 printf("Heat loss = %d Btu per lb of fuel",Q2)
```

Scilab code Exa 2.11c Example 13

```
1 clc
2 clear
3 //Initialization of variables
4 mf=10000 //lb
5 mr=700 //lb
6 Cr=0.2
7 //calculations
8 Q3=mr*Cr/mf *14600
9 //results
10 printf("Heat loss = %d Btu per lb of fuel",Q3)
```

Scilab code Exa 2.11d Example 14

```
1 clc
2 clear
3 //Initialization of variables
4 M=0.135
5 tg=500 //F
6 ta=70 //F
7 //calculations
8 Q4=M*(1089+0.46*tg-ta)
9 //results
10 printf("Heat loss = %.1f Btu per lb of fuel",Q4)
```

Scilab code Exa 2.11e Example 15

```
1 clc
2 clear
3 //Initialization of variables
4 Per=0.044 //percentage
5 tg=500 //F
6 ta=70 //F
7 //calculations
8 Q5=9*Per*(1089+0.46*tg-ta)
9 //results
10 printf("Heat loss = %.1f Btu per lb of fuel",Q5)
```

Chapter 3

Internal Combustion Engines

Scilab code Exa 3.1 Example 1

```
1 clc
2 clear
3 // Initialization of variables
4 re=6
5 k=1.4
6 // calculations
7 nt=1-1/re^(k-1)
8 ntt=nt*100
9 // results
10 printf("Thermal efficiency = %.1f percent",ntt)
```

Scilab code Exa 3.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 d=3.25 //in
5 str=4 //in
```

```
6 v=6 //cu in
7 //calculations
8 Dp=d^2 *%pi*str/4
9 r=(Dp+v)/v
10 //results
11 printf("Compression ratio = %.2f",r)
```

Scilab code Exa 3.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 per=20
5 Dp=100
6 //calculations
7 r=Dp/per +1
8 //results
9 printf("Compression ratio = %d ",r)
```

Scilab code Exa 3.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 r=16
5 rc=4
6 k=1.4
7 //calculations
8 etat=1-1/r^(k-1) *((rc^k -1)/(k*(rc-1)))
9 eta=etat*100
10 //results
11 printf("Thermal efficiency = %.1f percent",eta)
```

12 disp("The answer is a bit different due to rounding off error in the textbook")

Scilab code Exa 3.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 F=200 //lb
5 area=1.65 //sq. in
6 len=3.5 //in
7 //calculations
8 ord=area/len
9 mep=ord*F
10 //results
11 printf("MEP of an engine = %.1f psi",mep)
```

Scilab code Exa 3.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 Pi=90 //psi
5 L=5/12 //ft
6 r=5 //in
7 x=1.5 //ft
8 rpm=1500 //rpm
9 //calculations
10 A=%pi*x*x
11 N=rpm*4/2
12 Ihp=Pi*L*A*N/33000
13 //results
14 printf("IHP of cylinder = %d", Ihp)
```

Scilab code Exa 3.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 r=4 //ft
5 n=300 //rpm
6 F=60 //lb
7 //calculations
8 Bhp=2*%pi*r*F*n/33000
9 //results
10 printf("Bhp of the engine = %.1f", Bhp)
```

Scilab code Exa 3.8 Example 8

```
1 clc
2 clear
3 //Initialization of variables
4 C=1/4000
5 F=125 //lb
6 n=3500 //rpm
7 //calculations
8 Bhp=F*n*C
9 //results
10 printf("Bhp developed by the engine = %.1f",Bhp)
```

Scilab code Exa 3.9 Example 9

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 r=1.75 //ft
5 F1=72 //lb
6 F2=24 //1b
7 n=500 / rpm
8 \text{ m=1.8} // \text{lb}
9 mi=15 //min
10 Qh = 20000 / Btu/lb
11 //calculations
12 Bhp=2*%pi*r*F1*n/33000
13 Fhp=2*%pi*r*F2*n/33000
14 Ihp=Bhp+Fhp
15 \text{ Fc=m*60/mi}
16 Bsfc=Fc/Bhp
17 Isfc=Fc/Ihp
18 etam=Bhp/Ihp *100
19 etabt=Bhp*2545/(Fc*Qh)
20 etait=Ihp*2545/(Fc*Qh)
21 //results
22 printf ("Thermal efficiency = %d percent", etam)
23 printf("\n Brake thermal effficiency = \%.1f percent"
      ,etabt *100)
24 printf("\n Indicated thermal effficiency = \%.1 f
      percent", etait *100)
```

Scilab code Exa 3.10 Example 10

```
1 clc
2 clear
3 //Initialization of variables
4 bore=3 //in
5 str=4 //in
6 rpm=3000 //rpm
7 air=110 //cu ft per min
```

```
8 // calculations
9 pdv=bore*bore*%pi*str*2*bore/4
10 pde=pdv*rpm /2
11 req=air*1728
12 eff=req/pde *100
13 // results
14 printf("Volumetric efficiency = %.1f percent",eff)
```

Scilab code Exa 3.11 Example 11

```
1 clc
2 clear
 3 //Initialization of variables
4 \times 1 = 11.5
 5 \text{ x} 2 = 4.1
6 x3=0.4
7 x4=2.3
8 x5=0.2
9 \times 6 = 81.5
10 \text{ yc} = 0.842
11 \text{ yh} = 0.158
12 \text{ basis}=1
13 bhp=100
14 burn=8.9 //gal/hr
15 \text{ sg} = 0.731
16 Qh=20750 //Btu/lbm
17 rate=66 //gpm
18 \text{ ex} = 1100 / F
19 air=70 //F
20 \text{ cp} = 0.254
21 h2=4330
22 h4=62000
23 h5=23700
24 //calculations
25 c1 = x1 * 44
```

```
26 c2=x2*28
 27 c3 = x3 * 32
28 c4 = x4 * 2
29 c5 = x5 * 16
30 c6 = x6 * 28
 31 \quad \text{summ} = c1 + c2 + c3 + c4 + c5 + c6
 32 \quad carbon=x1*12 + x2*12+x5*12
 33 hydrogen=x4*2+x5*4
 34 lbdrygas=summ/carbon *yc
 35 lbfuel=carbon/yc
 36 \quad lbH=lbfuel*yh
37 lbH2=lbH-hydrogen
38 \quad 1b3 = 1bH2 * 9
39 lbwater=1b3/lbfuel
40 lbair=lbdrygas+lbwater-basis
41 bsfc=burn*sg*8.33/bhp
 42 fuelmin=bsfc*bhp/60
 43 energy=2545/bsfc
44 per1=energy/Qh
45 Ec=rate*8.33*10
 46 Eclb=Ec/fuelmin
 47 per2=Eclb/Qh
 48 dryloss=(ex-air)*cp*lbdrygas
49 per3=dryloss/Qh
50 \text{ hv2=h2*c2/lbfuel}
51 \text{ hv4=h4*c4/lbfuel}
52 \text{ hv5=h5*c5/lbfuel}
53 \text{ hv} = \text{hv} + \text{hv} + \text{hv} = \text{hv} + \text{hv} = \text{hv} + \text{hv} = \text{hv} = \text{hv} + \text{hv} = \text{hv} = \text{hv} + \text{hv} = 
 54 per4=hv/Qh
 55 \text{ eh2=lbwater*}(1066+0.5*ex-air)
 56 \text{ per5=eh2/Qh}
57 \text{ rad} = 1017
 58 \text{ per6=rad/Qh}
59 //results
60 printf("Air supplied per lb of fuel = %.1f lb air
                             per lb fuel", lbair)
61 printf("\n Percentage of energy supplied utilized in
                                  Btu = \%.2 f percent", per1*100)
```

- 62 printf("\n Percentage of energy absorbed by coolant = %.2 f percent",per2*100)
- 63 printf("\n Energy lost in sensible heat = $\%.2 \, f$ percent", per3*100)
- 64 printf("\n Energy supplied in combustiles in exhaust = %.2 f percent", per4*100)
- 65 printf("\n Energy supplied in water formed by combustion = %.2f percent",per5*100)
- 66 printf("\n Energy supplied unaccounted for = %.2 f percent", per6*100)

Chapter 5

Steam Generation

Scilab code Exa 5.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 x=0.98
5 vg=26.80
6 vf=0.01672
7 //calculations
8 vx=x*vg+(1-x)*vf
9 //results
10 printf("Specific volume of wet steam = %.6 f cu ft per lb", vx)
```

Scilab code Exa 5.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 hf=167.99 //Btu/lb
```

```
5 hg=4.5 //Btu/lb
6 //calculations
7 hc=hf+hg
8 //results
9 printf("Enthalpy of water = %.1 f Btu/lb",hc)
```

Scilab code Exa 5.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 x=0.97
5 hg=1187.2 //Btu/lb
6 hf=298.40 //Btu/lb
7 hfg=888.8 //Btu/lb
8 //calculations
9 hx1=x*hg+(1-x)*hf
10 hx2=hf+x*hfg
11 hx3=hg-(1-x)*hfg
12 //results
13 printf("\n In case 1, enthalpy = %.1 f Btu/lb",hx1)
14 printf("\n In case 2, enthalpy = %.1 f Btu/lb",hx2)
15 printf("\n In case 3, enthalpy = %.1 f Btu/lb",hx3)
```

Scilab code Exa 5.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 h1=1172 //Btu/lb
5 hf1=355.36 //Btu/lb
6 hfg1=843 //Btu/lb
7 //calculations
```

```
8 h2=h1
9 x1= (h2-hf1)/hfg1
10 //results
11 printf("Quality of steam = %.1 f percent", x1*100)
```

Scilab code Exa 5.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 P=200 //psia
5 x=0.95
6 m=1//lb
7 //calculations
8 disp("From mollier chart,")
9 hx=1156 //Btu/lb
10 sx=1.495 //Btu/lb F
11 //results
12 printf("Enthalpy = %d Btu/lb",hx)
13 printf("\n entropy = %.3 f Btu/lb F",sx)
```

Scilab code Exa 5.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 P=200 //psia
5 T=600 //F
6 m=1 //lb
7 //calculations
8 disp("From mollier chart,")
9 hx=1322 //Btu/lb
10 sx=1.676 //Btu/lb F
```

```
// results
printf("Enthalpy = %d Btu/lb",hx)
printf("\n entropy = %.3 f Btu/lb F",sx)
```

Scilab code Exa 5.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 P=200 //psia
5 T=260 //F
6 //calculations
7 disp("From mollier chart,")
8 hx=1174 //Btu/lb
9 x1=2.8
10 y1=100-x1
11 //results
12 printf("Quality = %.1 f percent",y1)
```

Scilab code Exa 5.8 Example 8

```
1 clc
2 clear
3 //Initialization of variables
4 P=200 //psia
5 T=500 //F
6 //calculations
7 disp("From mollier chart,")
8 hi=1269 //Btu/lb
9 hf=1063 //Btu/lb
10 dh=hi-hf
11 y1=91
12 //results
```

```
13 printf("Quality = %.1f percent",y1)
14 printf("\n Change in enthalpy = %d Btu/lb",dh)
```

Scilab code Exa 5.9 Example 9

```
1 clc
2 clear
3 //Initialization of variables
4 P=200 //psia
5 Ts=260 //F
6 Tf=220 //F
7 m=10000 //lb
8 Pc=20 //psia
9 //calculations
10 disp("From mollier charts,")
11 hf=188 //Btu/lb
12 h2=1172 //Btu/lb
13 Q=m*(h2-hf)
14 //results
15 printf("Heat absorption = %d Btu/hr",Q)
```

Scilab code Exa 5.10 Example 10

```
1 clc
2 clear
3 //Initialization of variables
4 m=150000 //lb
5 P1=1000 //psia
6 Ts=900 //F
7 Tf=200 //F
8 //calculations
9 disp("From mollier charts,")
10 h2=1448.2 //Btu/lb
```

```
11 hf=167.99 //Btu/lb
12 correc=2.2 //Btu/lb
13 hc=hf+correc
14 Q=m*(h2-hc)
15 //results
16 printf("Heat absorption = %d Btu/hr",Q)
17 disp("The answer is a bit different due to rounding off error in textbook")
```

Scilab code Exa 5.11 Example 11

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m} = 150000 // \text{lb}
5 P1 = 1000 // psia
6 \text{ Ts} = 900 //F
7 Tf = 200 //F
8 //calculations
9 disp("From mollier charts,")
10 h2=1448.2 / Btu/lb
11 hf = 167.99 //Btu/lb
12 \text{ correc=2.2 } //Btu/lb
13 hc=hf+correc
14 Q = m * (h2 - hc)
15 \text{ output=Q/1000}
16 //results
17 printf("Output of the steam generating unit = %d kB/
      hr", output)
```

Scilab code Exa 5.12 Example 12

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 \text{ m} = 150000 // \text{lb}
5 P1 = 1000 //psia
6 \text{ Ts} = 900 //F
7 Tf = 200 //F
8 \text{ m2} = 21000 // \text{lb}
9 HV=12000 //Btu/lb
10 //calculations
11 disp("From mollier charts,")
12 h2 = 1448.2 //Btu/lb
13 hf=167.99 //Btu/lb
14 correc=2.2 //Btu/lb
15 hc=hf+correc
16 \ Q=m*(h2-hc)
17 output=Q
18 inpu=m2*HV
19 eta=output/inpu
20 //results
21 printf ("Efficiency of the steam generating unit = \%
      .1f percent", eta*100)
```

Scilab code Exa 5.13 Example 13

```
1 clc
2 clear
3 //Initialization of variables
4 hv=11780 //Btu/lb
5 steam=55000 //lb/hr
6 coal=6480 //lb
7 x1=0.66
8 x2=0.044
9 x3=0.079
10 x4=0.015
11 x5=0.11
```

```
12 z1 = 14.5
13 z2=0.2
14 z3=4.4
15 z4 = 80.9
16 \text{ xash} = 0.076
17 \text{ xmois} = 0.115
18 \text{ yc} = 0.21
19 refuse=622 //lb/hr
20 \text{ cp=0.24}
21 \text{ tg=} 400 \text{ //F}
22 \text{ ta=70} / F
23 Qco=10160 //Btu/lb
24 Qc=14600 //Btu/lb
25 //calculations
26 disp("From steam tables,")
27 hf = 269.6 //Btu/lbm
28 hfg=1.5 //Btu/lbm
29 h1=hf+hfg
30 \text{ h}2=1196.5
31 Qb=h2-h1
32 \text{ h}3 = 1407.7 //Btu/lbm}
33 \ Qs = h3 - h2
34 h4=h3-h1
35 \text{ out=steam}*h4/1000
36 eff=steam*h4/(coal*hv)
37 //Energy balance
38 \quad Ci = coal * x1
39 Cr=refuse*yc
40 Cb=(Ci-Cr)/coal
41 lbt= z1*44+z2*28+z3*32+z4*28
42 \quad 1bC = z1 * 12 + z2 * 12
43 \text{ dry=lbt/lbC} *Cb
44 \quad loss1=dry*cp*(tg-ta)
45 \quad loss2=z2*12/(lbC) *Cb*Qco
46 \quad loss3=Cr*Qc/coal
47 \; loss4=xmois*(1089+0.46*tg-ta)
48 \quad loss5=x2*9*(1089+0.46*tg-ta)
49 \quad loss6=steam*h4/coal
```

- 50 //results
- 51 printf("Heat absorbed in the boiler = %.2f Btu per
 lb of steam generated",Qb)
- 52 **printf**("\n Heat absorbed in the superheater = %.2 f Btu/lb of steam", Qs)
- 53 printf("\n Heat absorbed in steam generating = %.2 f Btu/lb of steam generated", h4)
- 54 printf("\n Output of steam generating unit = %d kB", out)
- 55 printf("\n Efficiency of steam generating unit = %.1 f percent", eff*100)
- 56 printf("\n Carbon burned to CO and CO2 = %.2 f lb of C per lb of fuel", Cb)
- 57 printf("\n Dry products of combustion = %.2 f lb per
 lb of fuel",dry)
- 58 printf("\n Loss due to sensible heat in dry gaseous
 products of combustion = %d Btu/lb of fuel",loss1
)
- 60 printf("\n Loss due to C in refuse = %.1f Btu/lb of fuel",loss3)
- 61 **printf**("\n Loss due to evaporating moisture in fuel = %.1 f Btu/lb of fuel",loss4)
- 62 printf("\n Loss due to water vapor formed from H = % .1f Btu/lb of fuel",loss5)
- 63 printf("\n Energy absorbed in generating steam = %d Btu/lb of fuel",loss6)
- 64 disp("The answers are a bit different due to rounding off error in the textbook")

Steam power plant cycles

Scilab code Exa 6.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 200 //psia
5 \text{ T1} = 600 //\text{F}
6 \text{ P2=2} // \text{psia}
7 J = 778
8 //calculations
9 disp("from mollier charts,")
10 h1 = 1322 //Btu/lb
11 h2=974 //Btu/lb
12 vf2=0.01623 //cu ft per lb
13 hf2=94 //Btu/lb
14 t2=126 / F
15 Wtj=h1-h2
16 \quad Qout=h2-hf2
17 Wp = (P1 - P2) * vf2
18 Wpj = Wp/J
19 h3=hf2+Wpj
20 Qin=h1-h3
21 etat=((h1-h2)-Wpj)/(h1-(hf2+Wpj))
```

Scilab code Exa 6.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 B=70 //F
5 P1 = 140 // psia
6 x = 0.986
7 P2=14.7 // psia
8 \text{ ms} = 2000 // \text{lb/hr}
9 Ihp=80
10 //calculations
11 disp("From mollier charts,")
12 \text{ hc}=38 \text{ //Btu/lb}
13 hf = 324.82 / Btu/lb
14 hfg=868.2 //Btu/lb
15 h1=hf+x*hfg
16 Qin=ms*(h1-hc)
17 eta=Ihp*2545*100/(Qin)
18 Qw = Ihp * 2545
19 Qr=Qin-Qw
20 \text{ per=Qr/Qin } *100
21 //results
22 printf ("Heat input to the boiler = \%d Btu/hr", Qin)
23 printf("\n Cycle efficiency = \%.1f percent", eta)
24 printf("\n Heat rejected to waste = \%d Btu/hr or \%.1
      f percent of Qin", Qr, per)
25 disp ("The answer is a bit different due to rounding
```

Scilab code Exa 6.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 B=70 //F
5 P1 = 140 / psia
6 x = 0.986
7 P2=14.7 // psia
8 \text{ ms} = 2000 // \text{lb/hr}
9 Ihp=80
10 //calculations
11 disp("From mollier charts,")
12 \text{ hc}=180 \text{ //Btu/lb}
13 hf = 324.82 / Btu/lb
14 hfg=868.2 //Btu/lb
15 h1=hf+x*hfg
16 Qin=ms*(h1-hc)
17 eta=Ihp*2545*100/(Qin)
18 Qw = Ihp * 2545
19 Qr = Qin - Qw
20 \text{ per=Qr/Qin } *100
21 //results
22 printf("Heat input to the boiler = %d Btu/hr",Qin)
23 printf("\n Cycle efficiency = \%.2 f percent", eta)
24 printf("\n Heat rejected to waste = \%d Btu/hr or \%.2
      f percent of Qin", Qr, per)
25 disp ("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 6.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 m=1.24 //lb
5 HV=11300 //Btu/lb
6 //calculations
7 HR=m*HV
8 eff=3413/HR
9 //results
10 printf("Plant heat rate = %d Btu/kw hr", HR)
11 printf("\n Overall efficiency = %.1f percent", eff *100)
```

Steam turbines

Scilab code Exa 7.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 200 // psia
5 T1 = 500 // psia
6 \text{ m=1} // \text{lb} / \text{s}
7 P4 = 140 // psia
8 P11=1 // psia
9 x = 0.808
10 //calculations
11 disp("From mollier charts,")
12 h1 = 1268.9 / Btu/lb
13 \text{ h}4 = 1234.7 //Btu/lb}
14 V4=223.8*sqrt(h1-h4)
15 \text{ v4=3.584 } //\text{cu ft/lb}
16 \quad A4 = m * v4 / V4
17 h11 = 907.4 //Btu/lb
18 V11=223.8*sqrt(h1-h11)
19 vf = 0.01614 //cu ft /lb
20 vg=333.6 //cu ft/lb
21 \text{ vfg=vg-vf}
```

```
22 v11=x*vg
23 A11=m*v11/V11
24 //results
25 printf("Area of nozzle = %.5 f sq ft", A4)
26 printf("\n Area of nozzle = %.4 f sq ft", A11)
```

Scilab code Exa 7.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 200 // psia
5 T1 = 500 //F
6 \text{ P2=1} // \text{psia}
7 alpha=20 //degrees
8 n = 3600
9 g=32.2 //ft/s^2
10 //calculations
11 disp("From mollier charts,")
12 V1 = 4240 / fps
13 Vb=V1*cosd(alpha) /2
14 R = Vb * 60/(n * 2 * \%pi)
15 work=1/32.2 *(V1*cosd(alpha))*Vb
16 eff=work/(V1^2 /(2*g)) *100
17 //results
18 printf("Blade velocity = %d fps", Vb)
19 printf("\n Blade radius = \%.1 \, f ft",R)
20 printf("\n Work done = \%d ft-lb per lb of steam",
      work)
21 printf("\n Blade efficiency = \%.1f percent", eff)
22 disp("The answers are a bit different due to
      rounding off error in textbook.")
```

Scilab code Exa 7.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 200 // psia
5 \text{ T1} = 500 //\text{F}
6 \text{ P2=1} // \text{psia}
7 alpha=20 // degrees
8 n = 3600
9 g=32.2 //ft/s^2
10 Vb = 1200 // fps
11 //calculations
12 disp("From mollier charts,")
13 V1 = 4240 // fps
14 V1x = 3980 //fps
15 V2x = -1580 //fps
16 \text{ work} = 1/32.2 * (V1x - V2x) * Vb
17 eff=work/(V1^2 /(2*g)) *100
18 //results
19 printf("\n Work done = \%d ft-lb per lb of steam",
      work)
20 printf("\n Blade efficiency = \%.1f percent", eff)
21 disp("The answers are a bit different due to
      rounding off error in textbook.")
```

Scilab code Exa 7.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 P1=200 //psia
5 T1=500 //F
6 P2=1 //psia
7 alpha=20 //degrees
```

```
8 n=3600
9 g=32.2 //ft/s^2
10 //calculations
11 disp("From mollier charts,")
12 V1=2450 //fps
13 Vb=V1*cosd(alpha) /2
14 R=Vb*60/(n*2*%pi)
15 work=1/32.2 *(V1*cosd(alpha))*Vb
16 w3=3*work
17 //results
18 printf("Blade velocity = %d fps",Vb)
19 printf("\n Blade radius = %.2 f ft",R)
20 printf("\n Work done = %d ft-lb per lb of steam",w3)
21 disp("The answers are a bit different due to rounding off error in textbook.")
```

Scilab code Exa 7.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 200 // psia
5 T1 = 500 / F
6 \text{ P2=1} // \text{psia}
7 alpha=20 // degrees
8 n = 3600
9 g=32.2 //ft/s^2
10 \text{ stage=2}
11 //calculations
12 disp("From mollier charts,")
13 V1 = 4240 // fps
14 Vb=V1*cosd(alpha) /(2*stage)
15 R=Vb*60/(n*2*\%pi)
16 \text{ V1x} = 3980 // \text{fps}
17 V2x = -1990 // fps
```

```
18 work1=1/g *(V1x-V2x)*Vb
19 work2=1/g *(-V2x)*Vb
20 wt=work1+work2
21 //results
22 printf("Blade velocity = %d fps",Vb)
23 printf("\n Blade radius = %.2 f ft",R)
24 printf("\n Total Work done = %d ft-lb per lb of steam",wt)
25 disp("The answers are a bit different due to rounding off error in textbook.")
```

Scilab code Exa 7.8 Example 8

```
1 clc
2 clear
3 //Initialization of variables
4 alpha=20 // degrees
5 n = 3600
6 g=32.2 //ft/s^2
7 V1 = 500 / fps
8 //calculations
9 Vb=V1*cosd(alpha)
10 \quad V1x = Vb
11 work=1/32.2 *(V1x)*Vb
12 //results
13 printf("Blade velocity = %d fps", Vb)
14 printf("\n Work done = \%d ft-lb per lb of steam",
15 disp("The answers are a bit different due to
      rounding off error in textbook.")
```

Scilab code Exa 7.9 Example 9

```
1 clc
2 clear
3 //Initialization of variables
4 pow=1000 //kw
5 \text{ ms} = 16000 // lb/hr
6 P = 200 // psia
7 T = 540 / F
8 //calculations
9 disp("From mollier charts,")
10 h1 = 1290 / Btu/hr
11 h2 = 940 / Btu/hr
12 dh=h1-h2
13 \text{ rate} = 3413/dh
14 act=ms/pow
15 //results
16 printf ("Ideal steam rate = \%.2 \,\mathrm{f} lb per kw hr", rate)
17 printf("\n Actual steam rate = %d lb per kw hr",act)
```

Scilab code Exa 7.10 Example 10

```
1 clc
2 clear
3 //Initialization of variables
4 P=200 //psia
5 T=540 //F
6 pow=1000 //kw
7 ms=16000 //lb/hr
8 //calculations
9 disp("From mollier charts,")
10 h1=1290 //Btu/hr
11 h2=940 //Btu/hr
12 dh=h1-h2
13 hf2=83 //Btu/lb
14 etat=(h1-h2)/(h1-hf2)
15 act=pow*3413/(ms*(h1-hf2))
```

Steam engines

Scilab code Exa 8.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ area1=2.7}
5 len=3.4
6 \text{ scale=60}
7 \text{ area2} = 2.75
8 \text{ dia}=12 // \text{ft}
9 d2=2.5 //ft
10 L = 15/12 // ft
11 n = 250 / rpm
12 F=600 //lb
13 r = 3 / ft
14 //calculations
15 Ah=dia^2 *%pi/4
16 \text{ Ac}=(dia^2 -d2^2)*\%pi/4
17 Pih=area1/len *scale
18 Pic=area2/len *scale
19 Hihp=Pih*L*Ah*n/33000
20 Cihp=Pic*L*Ac*n/33000
21 Tihp=Hihp+Cihp
```

```
Bhp=2*%pi*r*F*n/33000
Fhp=Tihp-Bhp
deff=Bhp/Tihp *100
//results
printf("Ihp = %.1 f ihp", Tihp)
printf("\n Bhp = %.1 f bhp", Bhp)
printf("\n Fhp = %.1 f fhp", Fhp)
printf("\n Fhp = %.1 f fhp", Fhp)
frintf("\n Efficiency = %.1 f percent", eff)
disp("The answer is a bit different due to rounding off error in the textbook.")
```

Scilab code Exa 8.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 Ihp=101.1
5 \text{ Bhp} = 85.7
6 \text{ md} = 3000 // lb / hr
7 \text{ h1} = 1172 //Btu/hr
8 h2 = 180 //Btu/hr
9 h3 = 1025 / Btu/hr
10 //calculations
11 eta1=Ihp*2545/(md*(h1-h2)) *100
12 eta2=Bhp*2545/(md*(h1-h2)) *100
13 etat=(h1-h3)/(h1-h2) *100
14 engeff=eta1/etat *100
15 \text{ rate1} = \text{md/Ihp}
16 rate2=md/Bhp
17 h22=h1-2545/rate1
18 //results
19 printf ("Actual thermal efficiency based upon Ihp = \%
      .2 f lb per ihp hr", eta1)
20 printf("\n Actual thermal efficiency based upon Bhp
      =\%.2 \,\mathrm{f} lb per ihp hr", eta2)
```

Pumps

Scilab code Exa 9.1 Example 1

```
1 clc
2 clear
3 // Initialization of variables
4 h=200 //ft
5 gam=64 //lb per cu ft
6 // calculations
7 P=h*gam/144
8 // results
9 printf("Pressure = %.1f psi",P)
```

Scilab code Exa 9.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 P=20 //psi
5 gam=62.4 //lb per cu ft
6 //calculations
```

```
7 h=P*144/gam
8 //results
9 printf("height = %.1 f ft",h)
```

Scilab code Exa 9.3 Example 3

```
clc
clear
//Initialization of variables
h=3/12 //ft
gam=63.4 //lb per cu ft
gam2=0.075 //lb per cu ft
//calculations
P=h*gam
h2=P/gam2
//results
printf("Air height required = %d ft of air",h2)
disp("The answer is a bit different due to roundoff error in textbook.")
```

Scilab code Exa 9.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 dif=4 //in
5 gam=62.4 //lb per cu ft
6 density=13.6 //g/cc
7 //calculations
8 pv=dif*1/12 *density*gam/144 - dif/12 *gam/144
9 hv=pv*144/gam
10 //results
11 printf("velocity pressure = %.2f psi",pv)
```

```
12 printf("\n velocity head = \%.1 f ft of water ",hv)
```

Scilab code Exa 9.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 dif=4 //in
5 gam=62.4 //lb per cu ft
6 gam2=0.08 //lb per cu ft
7 //calculations
8 pv=dif*1/12 *gam/144
9 hv=pv*144/gam2
10 //results
11 printf("velocity pressure = %.3f psi",pv)
12 printf("\n velocity head = %.1f ft of air ",hv)
```

Scilab code Exa 9.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 hw=3/12 //ft
5 gam1=62.4 //lb/ft^3
6 gam2=0.07 //lb/ft^3
7 g=32.2 //ft/s^2
8 //calculations
9 p=hw*gam1
10 hg=p/gam2
11 V=sqrt(2*g*hg)
12 //results
13 printf("velocity of gas = %.1 f fps",V)
```

Scilab code Exa 9.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 h = 4 / i n
5 \text{ den=13.6} //g/cc
6 \text{ Ar} = 1/9
7 A1=12 // sq in
8 gam=62.4 //lb/ft^3
9 g=32.2 //ft/s^2
10 //calculations
11 dh = (h*den-h)/12
12 Vr=1/Ar
13 V22=2*g*dh/(1-Ar^2)
14 V2=sqrt(V22)
15 \text{ A2=A1*Ar}
16 \text{ v2=1/gam}
17 ms = A2 * V2 / (v2 * 144)
18 //results
19 printf("Flow rate of water = \%.1 \, \text{f lb/sec}", ms)
```

Scilab code Exa 9.8 Example 8

```
1 clc
2 clear
3 //Initialization of variables
4 mdot=8000 //lb/min
5 A1=1 //sq ft
6 A2=3/4 //sq ft
7 P2=50 //psi
8 P1=10 //psi
```

```
9 gam=62.4 //lb/ft^3
10 y2 = -2 //ft
11 y1 = -4 // ft
12 g=32.2 //ft/s^2
13 \text{ eff} = 0.7
14 // calculations
15 \text{ v=1/gam}
16 \text{ cap=mdot/8.33}
17 V1=mdot*v/A1 /60
18 \ V2 = mdot * v/A2 /60
19 ht= (y2-y1) + (V2^2 -V1^2)/(2*g) + (P2-P1)*144/gam
20 Hhp = mdot * ht / 33000
21 Php=Hhp/eff
22 / results
23 printf("Capacity = %d gpm", cap)
24 printf("\n Total dynamic head = \%.1 \, \text{f} ft", ht)
25 printf("\n Hydraulic hp = \%.1 \, \text{f hp}", Hhp)
26 printf("\n pump hp = \%.1 \, \text{f hp}", Php)
```

Scilab code Exa 9.9 Example 9

```
1 clc
2 clear
3 //Initialization of variables
4 z=12 //ft
5 gam1=62.4 //lb/ft^3
6 sg=0.8
7 P2=100 //psia
8 P1=-10 //psia
9 mm=10000 //lb/min
10 //calculations
11 gam2=sg*gam1
12 p2g=P2*144/(gam2) +z
13 p1g=P1*144*0.491/(gam2)
14 ht=p2g-p1g
```

```
15 Hhp=mm*ht/33000
16 //results
17 printf("Total dynamic head = %.1 f ft of oil",ht)
18 printf("\n Hydraulic hp = %.1 f hp",Hhp)
```

Scilab code Exa 9.10 Example 10

```
1 clc
2 clear
3 //Initialization of variables
4 sr=2
5 //calculations
6 hr=sr^2
7 capr=sr
8 hpr=sr^3
9 //results
10 printf("head is %d times the original",hr)
11 printf("\n capacity is %d times the original",capr)
12 printf("\n power is %d times the original",hpr)
```

Drafts fans blowers and compressors

Scilab code Exa 10.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 hb=29 //in of Hg
5 \text{ sg} = 0.491
6 \text{ Ra} = 53.3
7 Ta=460+40 //R
8 \text{ Tg} = 540 + 460 / R
9 \text{ H} = 300 // \text{ft}
10 gam=62.4 //lb/cu ft
11 //calculations
12 pb=hb*sg*144
13 rhoa=pb/(Ra*Ta)
14 rhog=pb/(Ra*Tg)
15 dp=H*(rhoa-rhog)
16 D=dp/(gam)
17 //results
18 printf("Theoretical draft = %.1f psf",dp)
19 printf("\n Draft = \%.2 \, f ft H2O",D)
```

Scilab code Exa 10.2 Example 2

```
1 clc
2 clear
 3 //Initialization of variables
4 md=15 //lb per lb of coal
5 x = 0.1
6 \text{ mss=1} // \text{basis}
7 rea=29 //in of Hg
8 \text{ sg} = 0.491
9 R = 53.3
10 T = 540 + 460 / R
11 V = 25 / fps
12 gam = 0.038 / lb / ft^3
13 //calculations
14 \text{ m=mss-mss*x+md}
15 \text{ ms=m}
16 rhog=rea*0.491*144/(R*T)
17 A=ms/(gam*V)
18 //results
19 printf("stack area = \%.1 \, f sq ft",A)
```

Scilab code Exa 10.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 p=144*29*0.491 //psf
5 R=53.3
6 T=70+460 //R
7 gamw=62.4 //lb/ft^3
```

```
8 gama=0.073 //lb/ft^3
9 \text{ hw} = 3/12 // \text{ft}
10 hw2=3.5/12 //ft
11 hv = 32.2 //ft/s^2
12 \text{ ms} = 9 // 1b
13 g=32.2 //ft/s^2
14 //calculations
15 rhoa=p/(R*T)
16 hs=hw*gamw/gama
17 ht=hw2*gamw/gama
18 hv=ht-hs
19 V=sqrt (2*g*hv)
20 \text{ msv} = \text{ms} * \text{V} * 60
21 \text{ mm=msv*gama}
22 \text{ airhp= ht*mm/}33000
23 / results
24 printf("Velocity head = %d ft of air",hv)
25 printf("\n velocity of air in the duct =\%.1\,\mathrm{f} fps", V
26 printf("\n volume = %d cu ft per min", msv)
27 printf("\n Mass flow rate = \%d lb/min",mm)
28 printf("\n Air hp = \%.1 \, \text{f hp}", airhp)
29 disp("The answers in the textbook are a bit
       different due to rounding off error in the
      textbook. Please use a calculator")
```

Scilab code Exa 10.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 A2=9 //sq ft
5 p2=3/12 *62.4 //psf
6 p1=-1/12 *62.4 //psf
7 ms=20000 //cfm
```

```
8 A1=16 //sq ft
9 gam=0.075 //lb/ft^3
10 g=32.2 //ft/s^2
11 inp=17 //hp
12 //calculations
13 V2=ms/60 *1/A2
14 V1=ms/60 *1/A1
15 ht=(p2-p1)/gam +(V2^2 -V1^2)/(2*g)
16 airhp=ht*ms*gam/33000
17 eta=airhp/inp *100
18 //results
19 printf("Total head = %.1 f ft of air",ht)
20 printf("\n Air hp = %.1 f hp",airhp)
21 printf("\n Effifciency = %.1 f percent",eta)
```

Scilab code Exa 10.5 Example 5

```
1 clc
2 clear
3 //Initialization of variables
4 n1 = 400 / rpm
5 \text{ mv1} = 10000 // lb
6 \text{ mv2} = 15000 // lb
7 h1=2 //in of water
8 \text{ hp1=4} //\text{hp}
9 //calculations
10 \quad n2 = mv2/mv1 \quad *n1
11 h2=h1*(n2/n1)^2
12 \text{ hp2=hp1 } *(n2/n1)^3
13 //results
14 printf("The speed = %d rpm",n2)
15 printf("\n The pressure = \%.1 f in of water", h2)
16 printf("\n Power = \%.1 f hp", hp2)
```

Scilab code Exa 10.6 Example 6

```
1 clc
2 clear
3 //Initialization of variables
4 m = 100000 // lb / hr
5 p1=1 //psia
6 x = 0.8
7 p2=14.7 // psia
8 t2=300 //F
9 //calculations
10 disp("from table A3 and A2")
11 h2=1192.8 //Btu/lb
12 hf = 69.7 / Btu/lb
13 hfg=1036.3 //Btu/lb
14 h1=hf+x*hfg
15 W=h2-h1
16 \text{ power=m*W}
17 \text{ hp=power}/2545
18 //results
19 printf("Power required = %d hp", hp)
```

Scilab code Exa 10.7 Example 7

```
1 clc
2 clear
3 //Initialization of variables
4 p1=14.7 //psia
5 t1=60 //F
6 p2=60 //psia
7 t2=440 //F
8 m=10 //lb/sec
```

```
9 //calculations
10 disp("From mollier charts,")
11 h2=216.3 //Btu/lb
12 h1=124.3 //Btu/lb
13 W21=h2-h1
14 power=W21*m
15 hp=power*3600/2545
16 cp=0.237
17 W212=cp*(t2-t1)
18 power2=W212*m
19 hp2=power2*3600/2545
20 //results
21 printf("Power required = %d hp",hp)
22 printf("\n Power required = %d hp",hp2)
23 printf("\n Work done = %.1 f Btu/lb",W212)
```

Feed water heaters and condensers

Scilab code Exa 11.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m1} = 1000 // lb / hr
5 \text{ m}2 = 5000 // \text{lb/hr}
6 \text{ m3} = 3000 // \text{lb/hr}
7 //calculations
8 disp("From mollier charts,")
9 h5 = 196.16 //Btu/lb
10 h1=38.04 //Btu/lb
11 h2=67.97 //Btu/lb
12 h3 = 117.89 / Btu/lb
13 h4=1156.3 //Btu/lb
14 \quad m4 = (m1*h1+m2*h2+m3*h3-(m1+m2+m3)*h5)/(h5-h4)
15 //results
16 printf("Pounds of steam entering the heater = %d lb/
      hr", m4)
```

Scilab code Exa 11.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 100 // psia
5 T1 = 400 / F
6 T2 = 70 / F
7 //calculations
8 disp("From mollier charts,")
9 h1=1227.6 //Btu/lb
10 h2 = 298.4 / Btu / lb
11 h3=279.9 / Btu/lb
12 \text{ h}4=38.04 //Btu/lb}
13 \text{ m1} = (h3-h4)/(h1-h2)
14 //results
15 printf("Mass of steam required = \%.2 f lb steam per
      lb water", m1)
```

Scilab code Exa 11.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 h0=1260 //Btu/lb
5 msr=15 //lb
6 m4=15 //lb per hr per kw
7 t2=80 //F
8 t3=60 //F
9 //calculations
10 h1=h0-3413/msr
11 disp("from mollier charts,")
```

Scilab code Exa 11.4 Example 4

```
1 clc
2 clear
3 //Initialization of variables
4 m4=8*1000000 //lb per hr
5 dt=12 //F
6 //calculations
7 disp("from mollier charts,")
8 dh4=950 //Btu/lb
9 m3=m4*(dh4)/dt
10 //results
11 printf("\n mass of cooling water = %.3e lb per hr", m3)
```

The Gas turbine power plant

Scilab code Exa 12.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
4 T1=80 //F
5 T2 = 460 / F
6 T3 = 1300 / F
7 T4 = 780 / F
8 //calculations
9 disp("from mollier charts,")
10 h1 = 129.1 //Btu/lb
11 h2 = 221.2 //Btu/lb
12 h3= 438.8 //Btu/lb
13 h4 = 301.5 //Btu/lb
14 \quad wcom=h2-h1
15 \text{ wcob=h3-h2}
16 wtur=h3-h4
17 eta=(wtur-wcom)/wcob *100
18 //results
19 printf("\n work done by compressor = \%.1 f btu input
      as work per lb of air compressed", wcom)
20 printf("\n Heat supplied in the combustor = \%.1f Btu
```

```
supplied per lb of air ",wcob)
21 printf("\n work done in the turbine = %.1 f Btu
    output as work per lb of air",wtur)
22 printf("\n Cycle efficiency = %.1 f percent",eta)
```

Scilab code Exa 12.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 T1=80 //F
5 T2 = 460 / F
6 T = 700 / F
7 T3 = 1300 / F
8 T4 = 780 / F
9 //calculations
10 disp("from mollier charts,")
11 h1=129.1 //Btu/lb
12 \text{ h2} = 221.2 //Btu/lb}
13 h3= 438.8 //Btu/lb
14 \text{ h4} = 301.5 //Btu/lb}
15 \text{ wcom} = h2 - h1
16 wcob=h3-h2
17 \text{ wtur}=h3-h4
18 output = -wcom + wtur
19 h=281.1 //Btu/lb
20 \ Q=h3-h
21 \text{ eff=output/Q} *100
22 //results
23 printf("\n Heat supplied in the combustor = \%.1f Btu
       supplied per lb of air ",Q)
24 printf("\n Cycle efficiency = \%.1f percent", eff)
```

Mechanical Refrigeration

Scilab code Exa 13.1 Example 1

```
1 clc
2 clear
3 //Initialization of variables
5 disp("From mollier diagram from ammonia, values are
      found")
6 disp("part a")
7 h1=65 //Btu/lb
8 printf("enthalpy in case a = %d Btu/lb", h1)
9 h2=99 / Btu/lb
10 v2=0.93 //ft^3/lb
11 printf("\n In case 2, enthalpy and specific volume
      are %d Btu/lb and %.2f ft^3/lb respectively",h2,
      v2)
12 h3=583 / Btu/lb
13 v3=8.8 //ft^3/lb
14 \text{ s}3=1.275
15 printf("\n In case 3, enthalpy, specific volume and
      entropy are %d Btu/lb, %.2f ft<sup>3</sup>/lb and %.3f
      respectively", h3, v3, s3)
16 \text{ h}4 = 720 \text{ //Btu/lb}
```

```
17 v4=10.4 //ft^3/lb
18 s4=1.50
19 printf("\n In case 4, enthalpy, specific volume and
        entropy are %d Btu/lb, %.2f ft^3/lb and %.3f
        respectively",h4,v4,s4)
```

Scilab code Exa 13.2 Example 2

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ mr} = 3 //1b
5 \text{ mj} = 5 // \text{lb}
6 t2=67 //F
7 t1=60 // lb
8 \text{ ihp} = 7.25
9 //calculations
10 disp("From mollier charts,")
11 h4 = 709 / Btu/b
12 h3=618 / Btu/lb
13 energyin=ihp*2545/60
14 energyout=mr*(h4-h3) + mj*(t2-t1)
15 //results
16 printf ("Energy in = \%.1 \, \text{f Btu/min}", energyin)
17 printf("\n Energy out = %.1 f Btu/min", energyout)
```

Scilab code Exa 13.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 mr=3 //lb
5 hp=10 //hp
```

```
6  // calculations
7  h3=618  // Btu/lb
8  h1=131  // Btu/lb
9  Qe=mr*(h3-h1)
10  work=hp*2545/60
11  cop=Qe/work
12  // results
13  printf(" Coefficient of performance = %.2 f", cop)
```