Quantification in emission tomography: challenges, solutions, performance and impact

Irène Buvat U678 INSERM, Paris

buvat@imed.jussieu.fr http://www.guillemet.org/irene

What is quantification in emission tomography?

Extracting physiologically meaningful values from PET or SPECT images

Density of dopaminergic transporters

Why do we need quantification?

Physiological parameters are richer than visual assessment

- Differential diagnosis
- Prognosis
- Therapeutic management
- Treatment monitoring
- Radiotherapy

Supraglottic squamous cell carcinoma

Cumulative survival of patients with T1–T4 laryngeal carcinomas (n = 34)

PSR: protein synthesis rate from C11-TYR PET

de Boer et al, J Nucl Med 2004

Is quantification easy?

No

Radiotracer concentration

Density of dopaminergic transporters

Deriving radiotracer concentration from ET images

What should be accounted for

- patient motion
- photon attenuation
 - photon scatter

- limited spatial resolution
- [randoms (PET)]
 - [deadtime]

• tomographic reconstruction

measurement procedure

Patient and organ motions

Spurious or physiological (cardiac, respiratory)

Lung FDG PET

with respiratory motion

without

- → Increase of lesion size from 10% to 30%
- → Decrease of SUV_{max} from 5% to > 100%

Nehmeh et al. J Nucl Med 2002:876-881

- Reduce scan duration
- Gating (cardiac, respiratory, or both) and further processing

no gating

gating + combining gates

Li et al, Med Phys 2006:1288-1298

Hot topic!

Photon attenuation

Attenuation introduces activity underestimation > 70% in SPECT and PET!

Tc99m cardiac SPECT

- 1. Measure tissue density (e.g., using a CT)
- 2. Pre or post correction, or model attenuation in reconstruction

$$p = R_{\mu} f$$

Very efficient Fine tuning stage (motion, contrast medium, aso)

Photon scatter

20 to 50% of detected photons can be scattered (hence mislocated) in ET Decrease contrast

Tc99m cardiac SPECT

20% projection

unscattered

scattered (37%)

- Subtraction of scattered photons after modelling scatter distribution
- Better: towards relocation of scattered events

Relocation under investigation (much less non zero elements in R_s, out of the FOV activity)

Limited and non stationary spatial resolution

Introduces non stationary partial volume effect

Partial volume effect in ET

severely affects structures < 3 FWHM in size

Multiply measured values by a recovery coefficient

• Invert a cross-contamination matrix

Definitely useful
But all methods assume that
functional contours same as
anatomical contours

Tomographic reconstruction

Indirectly affects quantitation

FBP, MLEM, OSEM, conjugate gradient? Does that change quantitative accuracy?

Boellaard et al, J Nucl Med 2001:808-817

- Control spatial resolution, so that partial volume effect can be predicted
- Control noise level, which affects measurement variability

Need for more systematic report on the spatial resolution / noise trade-off achieved by the reconstruction to determine quantitative accuracy

Measurement procedure

Significant impact of VOI drawing

In PET, therapeutic follow-up based on TNR

Feuardent et al, SNM 2005

- Empirical work so far
- Home-made approaches

Large room for improvement

Need for optimization and standardization

Hot topic: Definition of functional regions

How accurate can one be in SPECT?

Brain SPECT of dopaminergic system (no motion)

Soret et al, J Nucl Med 2003:1184-1193

Need for accurate quantification in SPECT

Lewy body dementia

Brain SPECT of dopaminergic system

Binding potentia (BP) estimate

Differential diagnosis in presymptomatic patients

Soret et al, Eur J Nucl Med Mol Imaging 2006

Example: quantification in FDG-PET

True tumor/bgd ratio = 8

Clinical conditions (CPET!)

- 6 min acquisition
- Cs137 transmission scan for attenuation correction
- No PVE correction
- mean count value in the tumor region

	Lung spheres diameter (in mm)						
	10.5	16	22	33			
Tumor/bgd ratio	0.5	1.4	2.4	3.5			

Different conditions

	Lung spheres					
	diameter (in mm)					
	10.5	16	22	33		
18 min acquisition	0.4	1.5	2.4	3.7		
CT att correction	0.7	2	2.8	3.7		
PVE correction	5.2	5.4	5.4	5.5		
Max in tumor region	0.6	2.3	4.1	6.3		

Feuardent et al, IEEE Trans Nucl Sci 2006

2nd step: deriving physiological parameters

Radiotracer concentration

Density of dopaminergic transporters

General and appropriate approach

Region-dependent physiological parameters e.g., glucose metabolic rate, blood flow, blood volume, mean transit time

Practical trade-off

• Simplifying the whole procedure to achieve some reasonable tradeoff between feasibility and index usefulness

Example of FDG-PET
Glucose metabolic rate

Example of F18-FDG PET

Tumor FDG (t) =
$$K_i$$
 $\int_0^t AIF(\theta)d\theta$ + unmetabolized FDG (t)
FDG made available to tumor

Glucose metabolic rate

$$SUV = \frac{\text{Tumor (t)} - \text{unmetabolized FDG}}{\int_{0}^{t} \text{AIF}(\theta) d\theta} \sim \text{injected dose / dilution volume} \\ \sim \text{injected dose / patient weight}$$

Accuracy depends on complexity

• SUV versus K_i

FDG-PET in accute lung injury

Chen et al, J Nucl Med 2004:1583-1590

Quantitative accuracy depends on the relevance of the model used for physiological parameter estimates

Conclusions

- Quantification is feasible in PET and SPECT
- Quantification is a complicated process, requiring tissue density map, perfectly controlled acquisition and processing protocols, high resolution anatomical information, accurate kinetic modeling
- Accurate quantification is easier in PET than in SPECT, just because attenuation correction is more accessible, and mostly because spatial resolution is better
- SPECT/CT and PET/CT scan could make quantification a clinical reality
- Partial volume effect and motion are currently the toughest effects to deal with

Conclusions

- Quantification accuracy highly depends on the acquisition and processing protocols, and should be characterized
- Meta-analyses are often impossible or meaningless given the variety and lack of information regarding acquisition and processing
- Comparing quantitative values (e.g. for therapeutic follow-up, malignancy indices) requires highly controlled protocols to ensure constant acquisition and processing conditions

Thank you for your attention

Slides available on http://www.guillemet.org/irene