

UNIVERSIDADE DO VALE DO ITAJAI

PROFESSOR: ANDRESSA PINHEIRO ENTREGA: /_ / 2016_

ALUNO(s):_____

NOTA

1. (1,5) Os vetores $v_1=(0,-3,1)$ e $v_2=(3,-3,1)$ e $v_3=(0,0,1)$ são autovetores de uma transformação linear $T: R^3 \to R^3$, associados a $\lambda_1=-1$, $\lambda_2=1$ e $\lambda_3=2$, respectivamente. Determine a transformação linear e a imagem de v=(0,-2,1) através dessa transformação linear.

2. (3,0) Verifique se as matrizes abaixo são diagonalizáveis, caso sejam, determine a matriz P que a diagonaliza e calcule P^{-1} . T. P, se não, justifique sua resposta. (Caso a matriz seja simétrica, obtenha a matriz P ortonormal).

a)
$$T = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{pmatrix}$$

b)
$$T = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

- 3. (2,0) Seja V = \mathbb{R}^2 com $u=(x_1,y_1)$ e $v=(x_2,y_2)$ tal que o produto interno seja dado por $u.v=3x_1.x_2+2y_1.y_2$. A partir deste produto interno:
 - a) Calcule o valor de b para que o conjunto $B = \{(-2, 1), (-3, b)\}$ seja uma base ortogonal;
 - b) A partir do conjunto B da letra (a), obter uma base ortonormal.

4. (1,5) Considere no \mathbb{R}^2 , o produto interno definido por $u_1.u_2 = 2x_1.x_2 + y_1.y_2$, com $u_1 = (x_1, y_1)$ e $u_2 = (x_2, y_2)$. Em relação a esse produto interno, determinar um vetor v, tal que, $|v| = \sqrt{12}$, v.u = 0 e u = (-1, 2).

5. (2,0) Em relação ao produto interno usual, determinar uma base **ortonormal** do subespaço do R^4 dado por $S = \{(x, y, z, t) \in R^4 | x + 2y - z = 0\}$.