Pole Shed App Ver 01 2022

 Job No.:
 739320
 Address:
 513c Waikino Rd, Karetu, New Zealand
 Date:
 25/03/2025

 Latitude:
 -35.338146
 Longitude:
 174.120823
 Elevation:
 24 m

General Input

F	toof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
S	now Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
E	arthquake Zone	1	Subsoil Category	D	Exposure Zone	D
I	mportance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5 m
V	Vind Region	NZ1	Terrain Category	1.0	Design Wind Speed	51.25 m/s
V	Vind Pressure	1.58 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
V	Vind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 4.4 m Cpe = -0.9 pe = -1.28 KPa pnet = -1.28 KPa

For roof CP,e from 4.40 m To 8.80 m Cpe = -0.5 pe = -0.71 KPa pnet = -0.71 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 9 m Cpe = 0.7 pe = 0.99 KPa pnet = 1.46 KPa

For side wall CP,e from 0 m To 4.40 m Cpe = pe = -0.92 KPa pnet = -0.92 KPa

Maximum Upward pressure used in roof member Design = 1.28 KPa

Maximum Downward pressure used in roof member Design = 0.61 KPa

Maximum Wall pressure used in Design = 1.46 KPa

Maximum Racking pressure used in Design = 1.56 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 1300 mm Girt's Span = 2070 mm Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.87 S1 Downward =10.36 S1 Upward =15.72

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.02 Kn-m	Capacity	1.43 Kn-m	Passing Percentage	140.20 %
V _{0.9D-WnUp}	1.96 Kn	Capacity	10.13 Kn	Passing Percentage	516.84 %

Deflections

Second page

Pole Shed App Ver 01 2022

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.58 mm

Limit by Woolcock et al, 1999 Span/100 = 20.70 mm

Sag during installation = 1.37 mm

Reactions

Maximum = 1.96 kn

Girt Design Sides

Girt's Spacing = 0 mm

Girt's Span = 2250 mm

Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
$V_{0.9D\text{-W}nUp}$	0.00 Kn	Capacity	0.00 Kn	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al. 1999 Span/100 = 22.50 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile() x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile()

Skin Friction = 0.00 Kn

Weight of Pile + Pile Skin Friction = 0.00 Kn

Uplift on one Pile = 19.65 Kn

Uplift is ok