SBML Model Report

Model name: "Schilling2009 - ERK distributive"

April 23, 2015

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Lukas Endler 1 and Marcel Schilling 2 at October 27 th 2010 at 4:50 p.m. and last time modified at April 23 rd 2015 at 4:48 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	33
events	0	constraints	0
reactions	42	function definitions	0
global parameters	39	unit definitions	10
rules	9	initial assignments	0

Model Notes

Schilling2009 - ERK distributive

¹EMBL-EBI, lukas@ebi.ac.uk

²German Cancer Research Center, m.schilling@dkfz.de

This model has been exported from PottersWheel on 2009-04-20 18:57:44. The PottersWheel Model Definition file can be obtained from the curation tab.

This model is described in the article: Theoretical and experimental analysis links isoform-specific ERK signalling to cell fate decisions. Schilling M, Maiwald T, Hengl S, Winter D, Kreutz C, Kolch W, Lehmann WD, Timmer J, Klingmller U.Mol. Syst. Biol. 2009; 5: 334

Abstract:

Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. By combining quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, we predicted and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. Model analysis showed bow-tie-shaped signal processing and inherently transient signalling for cytokine-induced ERK signalling. Sensitivity analysis predicted that, through a feedback-mediated process, increasing one ERK isoform reduces activation of the other isoform, which was verified by protein over-expression. We calculated ERK activation for biochemically not addressable but physiologically relevant ligand concentrations showing that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Thus, we provide a quantitative link between earlier unobservable signalling dynamics and cell fate decisions.

This model is hosted on BioModels Database and identified by: BIOMD0000000270.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of twelve unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name 10E4 molecules

Definition $10^4 \cdot item$

2.2 Unit time

Name minutes

Definition 60 s

2.3 Unit volume

Name ml

Definition ml

2.4 Unit U

Name U

Definition dimensionless

2.5 Unit U_per_ml

Name U_per_ml

Definition dimensionless \cdot ml⁻¹

2.6 Unit ml_per_min_per_U

Name per min per (Uml)

Definition dimensionless⁻¹ · ml · $(60 \text{ s})^{-1}$

2.7 Unit au

Name arb. units

Definition dimensionless

2.8 Unit au_per_molec

Name arb. unit. per 10000 molecules

Definition $(10^4 \cdot item)^{-1} \cdot ml \cdot dimensionless$

2.9 Unit per_min

Name per minute

Definition $(60 \text{ s})^{-1}$

2.10 Unit sec_ord

Name second order rate constant

Definition $(10^4 \cdot item)^{-1} \cdot ml \cdot (60 \text{ s})^{-1}$

2.11 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.12 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell	0000290	3	1	litre	Ø	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one ml.

Name cell

SBO:0000290 physical compartment

4 Species

This model contains 33 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
JAK2		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$		
EpoR		cell	$10^4 \cdot \mathrm{item} \cdot \mathrm{ml}^{-1}$		\Box
SHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
SOS		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
Raf		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
MEK2		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
MEK1		cell	$10^4 \cdot item \cdot ml^{-1}$		
ERK1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
ERK2		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
pJAK2		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
pEpoR		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
actSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
mSOS		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
pRaf		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
ppMEK2		cell	$10^4 \cdot item \cdot ml^{-1}$	\Box	
ppMEK1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
ppERK1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
ppERK2		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
pSOS		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
pMEK2		cell	$10^4 \cdot item \cdot ml^{-1}$	\Box	
pMEK1		cell	$10^4 \cdot \mathrm{item} \cdot \mathrm{ml}^{-1}$	\Box	\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
pERK1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$		
pERK2		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
Delay01_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	
Delay02_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	\Box
Delay03_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	\Box
Delay04_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	\Box
Delay05_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	\Box
Delay06_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$	\Box	\Box
Delay07_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$		
Delay08_mSHP1		cell	$10^4 \cdot \text{item} \cdot \text{ml}^{-1}$		\Box
Еро		cell	dimensionless ml^{-1}		

5 Parameters

This model contains 39 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
JAK2- _phosphor _by_Epo	ylation-	0000036	0.012	$\begin{array}{c} \text{dimensionless}^{-1} & \cdot \\ \text{ml} \cdot (60 \text{ s})^{-1} \end{array}$	Ø
EpoRphosphor _by_pJAK2	ylation-	0000036	3.157	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
SHP1- _activati _by_pEpoR	on-	0000036	0.408	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
SHP1_dela actSHP1- _deactiva	•	0000035 0000035	0.408 0.025	$(60 \text{ s})^{-1}$ $(60 \text{ s})^{-1}$	✓
pEpoR-	orylation-	0000036	1.200	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
pJAK2-	orylation-	0000036	0.368	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	
SOS- _recruitm _by_pEpoR		0000036	0.103	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	
mSOS- _release- _from-		0000035	15.596	$(60 \text{ s})^{-1}$	
_membrane mSOS- _induced_H _phosphor	Raf-	0000036	0.145	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}}$	Ø
pRaf-	orylation	0000035	0.374	$\left(60\mathrm{s}\right)^{-1}$	Ø
First_MEK _phosphor _by_pRaf	2-	0000036	3.119	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	

Id		Name	SBO	Value	Unit	Constant
Second_MEI _phosphory _by_pRaf		ion-	0000036	215.158	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}}$	Ø
First_MEK: _phosphory _by_pRaf		ion-	0000036	0.687	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
Second_MEI _phosphory _by_pRaf		ion-	0000036	667.957	$ (10^4 \cdot \text{item})^{-1} \cdot \text{ml} \cdot (60 \text{ s})^{-1} $	
First_MEK- _dephospho		ation	0000035	0.131	$(60 \mathrm{s})^{-1}$	
Second_MEI	K-		0000035	0.073	$(60 \mathrm{s})^{-1}$	
First_ERK: _phosphory _by_ppMEK	1-		0000036	2.493	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	
Second_ERI _phosphory _by_ppMEK		ion-	0000036	59.525	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
First_ERK; _phosphory _by_ppMEK		ion-	0000036	2.444	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	\square
_sy_ppn.en Second_ERI _phosphory _by_ppMEK		ion-	0000036	53.082	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
First_ERK _dephospho		ation	0000035	39.089	$(60 \text{ s})^{-1}$	
Second_ERI _dephospho	K-		0000035	3.005	$(60 \text{ s})^{-1}$	\square
ppERK_neg _feedback_ _mSOS	-		0000036	5122.680	$ \frac{\left(10^4 \cdot \text{item}\right)^{-1} \cdot \text{ml} \cdot }{\left(60 \text{ s}\right)^{-1}} $	Ø
pSOS- _dephospho	orvla	ation	0000035	0.125	$(60 \text{ s})^{-1}$	
scale_pEp	•	scale_pEpoR	0000381	0.493	$(10^4 \cdot \text{item})^{-1} \cdot \text{ml} \cdot$ dimensionless	
scale_pJAI	K2	scale_pJAK2	0000381	0.210	$(10^4 \cdot \text{item})^{-1} \cdot \text{ml} \cdot \text{dimensionless}$	\square
scale_ppEl	RK	scale_ppERK	0000381	13.598	$(10^4 \cdot \text{item})^{-1} \cdot \text{ml} \cdot \text{dimensionless}$	Ø

Id	Name	SBO	Value	Unit	Constant
scale_SOS	scale_SOS	0000381	1.102	$(10^4 \cdot \text{item})^{-1} \cdot \text{ml} \cdot$ dimensionless	Ø
${ t scale_ppMEK}$	scale_ppMEK	0000381	40.536	$(10^4 \cdot \text{item})^{-1} \cdot \text{ml} \cdot \text{dimensionless}$	\mathbf{Z}
rescaled- _pEpoR	rescaled_pEpoR	0000196	0.000	dimensionless	
rescaled- _ppMEK1	rescaled_ppMEK1	0000196	0.000	dimensionless	
rescaled- _ppMEK2	rescaled_ppMEK2	0000196	0.000	dimensionless	
rescaled- _ppERK1	rescaled_ppERK1	0000196	0.000	dimensionless	
rescaled- _ppERK2	rescaled_ppERK2	0000196	0.000	dimensionless	
rescaled- _pJAK2	rescaled_pJAK2	0000196	0.000	dimensionless	
rescaled- _pSOS	rescaled_pSOS	0000196	0.000	dimensionless	
rescaled_SOS	rescaled_SOS	0000196	0.000	dimensionless	\Box
rescaled- _mSOS	rescaled_mSOS	0000196	0.000	dimensionless	

6 Rules

This is an overview of nine rules.

6.1 Rule rescaled_pEpoR

Rule rescaled_pEpoR is an assignment rule for parameter rescaled_pEpoR:

$$rescaled_pEpoR = scale_pEpoR \cdot [pEpoR]$$
 (1)

Derived unit dimensionless

6.2 Rule rescaled_pJAK2

Rule rescaled_pJAK2 is an assignment rule for parameter rescaled_pJAK2:

$$rescaled_pJAK2 = scale_pJAK2 \cdot [pJAK2]$$
 (2)

Derived unit dimensionless

6.3 Rule rescaled_ppERK1

Rule rescaled_ppERK1 is an assignment rule for parameter rescaled_ppERK1:

$$rescaled_ppERK1 = scale_ppERK \cdot [ppERK1]$$
 (3)

Derived unit dimensionless

6.4 Rule rescaled_ppERK2

Rule rescaled_ppERK2 is an assignment rule for parameter rescaled_ppERK2:

$$rescaled_ppERK2 = scale_ppERK \cdot [ppERK2]$$
 (4)

Derived unit dimensionless

6.5 Rule rescaled_ppMEK1

Rule rescaled_ppMEK1 is an assignment rule for parameter rescaled_ppMEK1:

$$rescaled_ppMEK1 = scale_ppMEK \cdot [ppMEK1]$$
 (5)

Derived unit dimensionless

6.6 Rule rescaled_ppMEK2

Rule rescaled_ppMEK2 is an assignment rule for parameter rescaled_ppMEK2:

$$rescaled_ppMEK2 = scale_ppMEK \cdot [ppMEK2]$$
 (6)

Derived unit dimensionless

6.7 Rule rescaled_pSOS

Rule rescaled_pSOS is an assignment rule for parameter rescaled_pSOS:

$$rescaled_pSOS = scale_SOS \cdot [pSOS]$$
 (7)

Derived unit dimensionless

6.8 Rule rescaled_SOS

Rule rescaled_SOS is an assignment rule for parameter rescaled_SOS:

$$rescaled_SOS = scale_SOS \cdot [SOS]$$
 (8)

Derived unit dimensionless

6.9 Rule rescaled_mSOS

Rule rescaled_mSOS is an assignment rule for parameter rescaled_mSOS:

$$rescaled_mSOS = scale_SOS \cdot [mSOS]$$
 (9)

Derived unit dimensionless

7 Reactions

This model contains 42 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id Name	Reaction Equation	SBO
1	reaction_1	$JAK2 \xrightarrow{Epo} pJAK2$	0000216
2	reaction_2	EpoR $\xrightarrow{\text{pJAK2}}$ pEpoR	0000216
3	reaction_3	SHP1 $\xrightarrow{\text{pEpoR}}$ mSHP1	0000177
4	${\tt reaction_4}$	$mSHP1 \longrightarrow Delay01_mSHP1$	0000397
5	reaction_5	Delay01_mSHP1 → Delay02_mSHP1	0000397
6	reaction_6	Delay02_mSHP1 → Delay03_mSHP1	0000397
7	reaction_7	Delay03_mSHP1 → Delay04_mSHP1	0000397
8	reaction_8	Delay04_mSHP1 → Delay05_mSHP1	0000397
9	reaction_9	Delay05_mSHP1 → Delay06_mSHP1	0000397
10	reaction_10	Delay06_mSHP1 —→ Delay07_mSHP1	0000397
11	reaction_11	Delay07_mSHP1 → Delay08_mSHP1	0000397
12	reaction_12	Delay08_mSHP1 \longrightarrow actSHP1	0000396
13	reaction_13	$actSHP1 \longrightarrow SHP1$	0000396
14	reaction_14	$pEpoR \xrightarrow{actSHP1} EpoR$	0000330
15	reaction_15	$pJAK2 \xrightarrow{actSHP1} JAK2$	0000330
16	reaction_16	$SOS \xrightarrow{pEpoR} mSOS$	0000177
17	reaction_17	$mSOS \longrightarrow SOS$	0000180
18	reaction_18	$Raf \xrightarrow{mSOS} pRaf$	0000216
19	reaction_19	$pRaf \longrightarrow Raf$	0000330

12	N⁰	Id	Name	Reaction Equation	SBO
	20	reaction_20		$MEK2 \xrightarrow{pRaf} pMEK2$	0000216
	21	reaction_21		$MEK1 \xrightarrow{pRaf} pMEK1$	0000216
	22	reaction_22		pMEK2 $\frac{pRaf}{p}$ ppMEK2	0000216
	23	reaction_23		$pMEK1 \xrightarrow{pRaf} ppMEK1$	0000216
	24	$reaction_24$		$ppMEK2 \longrightarrow pMEK2$	0000330
	25	reaction_25		$ppMEK1 \longrightarrow pMEK1$	0000330
	26	reaction_26		$pMEK2 \longrightarrow MEK2$	0000330
	27	reaction_27		$pMEK1 \longrightarrow MEK1$	0000330
Produced by SBML2PTEX	28	reaction_28		$ERK1 \xrightarrow{ppMEK2} pERK1$	0000216
ced	29	reaction_29		$ERK2 \xrightarrow{ppMEK2} pERK2$	0000216
by S	30	${\tt reaction_30}$		$ERK1 \xrightarrow{ppMEK1} pERK1$	0000216
MK	31	reaction_31		$ERK2 \xrightarrow{ppMEK1} pERK2$	0000216
, ME	32	reaction_32		$pERK1 \xrightarrow{ppMEK2} ppERK1$	0000216
×	33	reaction_33		$pERK2 \xrightarrow{ppMEK2} ppERK2$	0000216
	34	reaction_34		$pERK1 \xrightarrow{ppMEK1} ppERK1$	0000216
	35	reaction_35		$pERK2 \xrightarrow{ppMEK1} ppERK2$	0000216
	36	reaction_36		ppERK1 → pERK1	0000216
	37	reaction_37		ppERK2 → pERK2	0000216
	38	reaction_38		$pERK1 \longrightarrow ERK1$	0000216
	39	reaction_39		$pERK2 \longrightarrow ERK2$	0000216
	40	reaction_40		$mSOS \xrightarrow{ppERK1} pSOS$	0000216
	41	reaction_41		$mSOS \xrightarrow{ppERK2} pSOS$	0000216

N₀	Id	Name	Reaction Equation	SBO
42	reaction_42		$pSOS \longrightarrow SOS$	0000330

7.1 Reaction reaction_1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$JAK2 \xrightarrow{Epo} pJAK2 \tag{10}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
JAK2		

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
Еро		0000461

Product

Table 8: Properties of each product.

Id	Name	SBO
pJAK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_1 = \text{JAK2_phosphorylation_by_Epo} \cdot [\text{JAK2}] \cdot [\text{Epo}] \cdot \text{vol} (\text{cell})$$
 (11)

7.2 Reaction reaction_2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$EpoR \xrightarrow{pJAK2} pEpoR \tag{12}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
EpoR		

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
pJAK2		0000534

Product

Table 11: Properties of each product.

Id	Name	SBO
pEpoR		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_2 = \text{EpoR_phosphorylation_by_pJAK2} \cdot [\text{EpoR}] \cdot [\text{pJAK2}] \cdot \text{vol} (\text{cell})$$
 (13)

7.3 Reaction reaction_3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000177 non-covalent binding

Reaction equation

$$SHP1 \xrightarrow{pEpoR} mSHP1 \tag{14}$$

Table 12: Properties of each reactant.

Id	Name	SBO
SHP1		

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
pEpoR		0000463

Product

Table 14: Properties of each product.

Id	Name	SBO
mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_3 = SHP1_activation_by_pEpoR \cdot [SHP1] \cdot [pEpoR] \cdot vol(cell)$$
 (15)

7.4 Reaction reaction_4

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$mSHP1 \longrightarrow Delay01_mSHP1 \tag{16}$$

Table 15: Properties of each reactant.

Id	Name	SBO
mSHP1		

Table 16: Properties of each product.

Id	Name	
Delay01_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_4 = \text{SHP1_delay} \cdot [\text{mSHP1}] \cdot \text{vol}(\text{cell})$$
 (17)

7.5 Reaction reaction_5

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay01_mSHP1 \longrightarrow Delay02_mSHP1$$
 (18)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
Delay01_mSHP1		

Product

Table 18: Properties of each product.

Id	Name	SBO
Delay02_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_5 = SHP1_delay \cdot [Delay01_mSHP1] \cdot vol(cell)$$
 (19)

7.6 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay02_mSHP1 \longrightarrow Delay03_mSHP1$$
 (20)

Reactant

Table 19: Properties of each reactant.

Id Name SBO

Delay02_mSHP1

Product

Table 20: Properties of each product.

Id	Name	SBO
Delay03_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_6 = SHP1_delay \cdot [Delay02_mSHP1] \cdot vol(cell)$$
 (21)

7.7 Reaction reaction_7

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay03_mSHP1 \longrightarrow Delay04_mSHP1$$
 (22)

Id	Name	
Delay03_mSHP1		

Table 22: Properties of each product.

Id	Name	SBO
Delay04_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_7 = SHP1_delay \cdot [Delay03_mSHP1] \cdot vol(cell)$$
 (23)

7.8 Reaction reaction_8

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay04_mSHP1 \longrightarrow Delay05_mSHP1$$
 (24)

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
Delay04_mSHP1		

Product

Table 24: Properties of each product.

Id	Name	SBO
Delay05_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_8 = SHP1_delay \cdot [Delay04_mSHP1] \cdot vol(cell)$$
 (25)

7.9 Reaction reaction_9

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay05_mSHP1 \longrightarrow Delay06_mSHP1$$
 (26)

Reactant

Table 25: Properties of each reactant.

Id Name SBO

Delay05_mSHP1

Product

Table 26: Properties of each product.

Id	Name	SBO
Delay06_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_9 = SHP1_delay \cdot [Delay05_mSHP1] \cdot vol(cell)$$
 (27)

7.10 Reaction reaction_10

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay06_mSHP1 \longrightarrow Delay07_mSHP1$$
 (28)

Reactant

Table 27: Properties of each reactant.

Id Name SBO

Delay06_mSHP1

Product

Table 28: Properties of each product.

Id	Name	SBO
Delay07_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{10} = SHP1_delay \cdot [Delay06_mSHP1] \cdot vol(cell)$$
 (29)

7.11 Reaction reaction_11

This is an irreversible reaction of one reactant forming one product.

SBO:0000397 omitted process

Reaction equation

$$Delay07_mSHP1 \longrightarrow Delay08_mSHP1$$
 (30)

Table 29: Properties of each reactant.

Id	Name	SBO
Delay07_mSHP1		

Table 30: Properties of each product.

Id	Name	
Delay08_mSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{11} = SHP1_delay \cdot [Delay07_mSHP1] \cdot vol(cell)$$
 (31)

7.12 Reaction reaction_12

This is an irreversible reaction of one reactant forming one product.

SBO:0000396 uncertain process

Reaction equation

$$Delay08_mSHP1 \longrightarrow actSHP1$$
 (32)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
Delay08_mSHP1		

Product

Table 32: Properties of each product.

Id	Name	SBO
actSHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{12} = SHP1_delay \cdot [Delay08_mSHP1] \cdot vol(cell)$$
 (33)

7.13 Reaction reaction_13

This is an irreversible reaction of one reactant forming one product.

SBO:0000396 uncertain process

Reaction equation

$$actSHP1 \longrightarrow SHP1$$
 (34)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
actSHP1		

Product

Table 34: Properties of each product.

Id	Name	SBO
SHP1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{13} = \text{actSHP1_deactivation} \cdot [\text{actSHP1}] \cdot \text{vol} (\text{cell})$$
 (35)

7.14 Reaction reaction_14

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000330 dephosphorylation

Reaction equation

$$pEpoR \xrightarrow{actSHP1} EpoR$$
 (36)

Table 35: Properties of each reactant.

Id	Name	SBO
pEpoR		

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
actSHP1		0000534

Product

Table 37: Properties of each product.

Id	Name	SBO
EpoR		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{14} = pEpoR_dephosphorylation_by_actSHP1 \cdot [pEpoR] \cdot [actSHP1] \cdot vol(cell)$$
 (37)

7.15 Reaction reaction_15

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000330 dephosphorylation

Reaction equation

$$pJAK2 \xrightarrow{actSHP1} JAK2$$
 (38)

Table 38: Properties of each reactant.

Id	Name	SBO
pJAK2		

Modifier

Table 39: Properties of each modifier.

Id	Name	SBO
actSHP1		0000534

Product

Table 40: Properties of each product.

Id	Name	SBO
JAK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{15} = pJAK2_dephosphorylation_by_actSHP1 \cdot [pJAK2] \cdot [actSHP1] \cdot vol(cell)$$
 (39)

7.16 Reaction reaction_16

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000177 non-covalent binding

Reaction equation

$$SOS \xrightarrow{pEpoR} mSOS \tag{40}$$

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
SOS		

Modifier

Table 42: Properties of each modifier.

Id	Name	SBO
pEpoR		0000461

Table 43: Properties of each product.

Id	Name	SBO
mSOS		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_{16} = SOS_recruitment_by_pEpoR \cdot [SOS] \cdot [pEpoR] \cdot vol(cell)$$
 (41)

7.17 Reaction reaction_17

This is an irreversible reaction of one reactant forming one product.

SBO:0000180 dissociation

Reaction equation

$$mSOS \longrightarrow SOS$$
 (42)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
mSOS		

Product

Table 45: Properties of each product.

Id	Name	SBO
SOS		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_{17} = \text{mSOS_release_from_membrane} \cdot [\text{mSOS}] \cdot \text{vol} (\text{cell})$$
 (43)

7.18 Reaction reaction_18

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$Raf \xrightarrow{mSOS} pRaf \tag{44}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
Raf		

Modifier

Table 47: Properties of each modifier.

Id	Name	SBO
mSOS		0000461

Product

Table 48: Properties of each product.

Id	Name	SBO
pRaf		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{18} = \text{mSOS_induced_Raf_phosphorylation} \cdot [\text{Raf}] \cdot [\text{mSOS}] \cdot \text{vol}(\text{cell})$$
 (45)

7.19 Reaction reaction_19

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$pRaf \longrightarrow Raf$$
 (46)

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
pRaf		·

Product

Table 50: Properties of each product.

Id	Name	SBO
Raf		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_{19} = pRaf_dephosphorylation \cdot [pRaf] \cdot vol (cell)$$
 (47)

7.20 Reaction reaction_20

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$MEK2 \xrightarrow{pRaf} pMEK2 \tag{48}$$

Table 51: Properties of each reactant.

Id	Name	SBO
MEK2		

Modifier

Table 52: Properties of each modifier.

Id	Name	SBO
pRaf		0000534

Product

Table 53: Properties of each product.

Id	Name	SBO
pMEK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{20} = \text{First_MEK2_phosphorylation_by_pRaf} \cdot [\text{MEK2}] \cdot [\text{pRaf}] \cdot \text{vol} (\text{cell})$$
 (49)

7.21 Reaction reaction_21

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$MEK1 \xrightarrow{pRaf} pMEK1 \tag{50}$$

Table 54: Properties of each reactant.

Id	Name	SBO
MEK1		

Modifier

Table 55: Properties of each modifier.

Id	Name	SBO
pRaf		0000534

Product

Table 56: Properties of each product.

Id	Name	SBO
pMEK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{21} = First_MEK1_phosphorylation_by_pRaf \cdot [MEK1] \cdot [pRaf] \cdot vol(cell)$$
 (51)

7.22 Reaction reaction_22

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$pMEK2 \xrightarrow{pRaf} ppMEK2 \tag{52}$$

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
pMEK2		

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
pRaf		0000534

Table 59: Properties of each product.

Id	Name	SBO
ррМЕК2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{22} = \text{Second_MEK2_phosphorylation_by_pRaf} \cdot [\text{pMEK2}] \cdot [\text{pRaf}] \cdot \text{vol}(\text{cell})$$
 (53)

7.23 Reaction reaction_23

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$pMEK1 \xrightarrow{pRaf} ppMEK1 \tag{54}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
pMEK1		

Modifier

Table 61: Properties of each modifier.

Id	Name	SBO
pRaf		0000534

Table 62: Properties of each product.

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{23} = \text{Second_MEK1_phosphorylation_by_pRaf} \cdot [\text{pMEK1}] \cdot [\text{pRaf}] \cdot \text{vol} (\text{cell})$$
 (55)

7.24 Reaction reaction_24

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$ppMEK2 \longrightarrow pMEK2 \tag{56}$$

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
ppMEK2	·	

Product

Table 64: Properties of each product.

Id	Name	SBO
рМЕК2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{24} = \text{First_MEK_dephosphorylation} \cdot [\text{ppMEK2}] \cdot \text{vol} (\text{cell})$$
 (57)

7.25 Reaction reaction_25

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$ppMEK1 \longrightarrow pMEK1$$
 (58)

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
ppMEK1		

Product

Table 66: Properties of each product.

Id	Name	SBO
pMEK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{25} = \text{First_MEK_dephosphorylation} \cdot [\text{ppMEK1}] \cdot \text{vol} (\text{cell})$$
 (59)

7.26 Reaction reaction_26

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$pMEK2 \longrightarrow MEK2 \tag{60}$$

Table 67: Properties of each reactant.

Id	Name	SBO
pMEK2		

Table 68: Properties of each product.

Id	Name	SBO
MEK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_{26} = \text{Second_MEK_dephosphorylation} \cdot [\text{pMEK2}] \cdot \text{vol} (\text{cell})$$
 (61)

7.27 Reaction reaction_27

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$pMEK1 \longrightarrow MEK1 \tag{62}$$

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
pMEK1		

Product

Table 70: Properties of each product.

Id	Name	SBO
MEK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{27} = \text{Second_MEK_dephosphorylation} \cdot [\text{pMEK1}] \cdot \text{vol} (\text{cell})$$
 (63)

7.28 Reaction reaction_28

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$ERK1 \xrightarrow{ppMEK2} pERK1$$
 (64)

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
ERK1		

Modifier

Table 72: Properties of each modifier.

Id	Name	SBO
ррМЕК2		0000534

Product

Table 73: Properties of each product.

Id	Name	SBO
pERK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{28} = \text{First_ERK1_phosphorylation_by_ppMEK} \cdot [\text{ERK1}] \cdot [\text{ppMEK2}] \cdot \text{vol} (\text{cell})$$
 (65)

7.29 Reaction reaction_29

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$ERK2 \xrightarrow{ppMEK2} pERK2 \tag{66}$$

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
ERK2		

Modifier

Table 75: Properties of each modifier.

Id	Name	SBO
ррМЕК2		0000534

Product

Table 76: Properties of each product.

Id	Name	SBO
pERK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{29} = \text{First_ERK2_phosphorylation_by_ppMEK} \cdot [\text{ERK2}] \cdot [\text{ppMEK2}] \cdot \text{vol}(\text{cell})$$
 (67)

7.30 Reaction reaction_30

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$ERK1 \xrightarrow{ppMEK1} pERK1 \tag{68}$$

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
ERK1		

Modifier

Table 78: Properties of each modifier.

Id	Name	SBO
ppMEK1		0000534

Product

Table 79: Properties of each product.

Id	Name	SBO
pERK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{30} = \text{First_ERK1_phosphorylation_by_ppMEK} \cdot [\text{ERK1}] \cdot [\text{ppMEK1}] \cdot \text{vol}(\text{cell})$$
 (69)

7.31 Reaction reaction_31

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$ERK2 \xrightarrow{ppMEK1} pERK2 \tag{70}$$

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
ERK2		

Modifier

Table 81: Properties of each modifier.

Id	Name	SBO
ppMEK1		0000534

Product

Table 82: Properties of each product.

Id	Name	SBO
pERK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{31} = \text{First_ERK2_phosphorylation_by_ppMEK} \cdot [\text{ERK2}] \cdot [\text{ppMEK1}] \cdot \text{vol} (\text{cell})$$
 (71)

7.32 Reaction reaction_32

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$pERK1 \xrightarrow{ppMEK2} ppERK1$$
 (72)

Reactant

Table 83: Properties of each reactant.

Id	Name	SBO
pERK1		

Modifier

Table 84: Properties of each modifier.

Id	Name	SBO
ррМЕК2		0000534

Product

Table 85: Properties of each product.

Id	Name	SBO
ppERK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{32} = Second_ERK1_phosphorylation_by_ppMEK \cdot [pERK1] \cdot [ppMEK2] \cdot vol (cell)$$
 (73)

7.33 Reaction reaction_33

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$pERK2 \xrightarrow{ppMEK2} ppERK2 \tag{74}$$

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
pERK2		

Modifier

Table 87: Properties of each modifier.

Id	Name	SBO
ррМЕК2		0000534

Product

Table 88: Properties of each product.

Id	Name	SBO
ppERK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{33} = \text{Second_ERK2_phosphorylation_by_ppMEK} \cdot [\text{pERK2}] \cdot [\text{ppMEK2}] \cdot \text{vol} (\text{cell})$$
 (75)

7.34 Reaction reaction_34

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$pERK1 \xrightarrow{ppMEK1} ppERK1$$
 (76)

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
pERK1		

Modifier

Table 90: Properties of each modifier.

Id	Name	SBO
ppMEK1		0000534

Product

Table 91: Properties of each product.

Id	Name	SBO
ppERK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{34} = Second_ERK1_phosphorylation_by_ppMEK \cdot [pERK1] \cdot [ppMEK1] \cdot vol(cell)$$
 (77)

7.35 Reaction reaction_35

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$pERK2 \xrightarrow{ppMEK1} ppERK2$$
 (78)

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
pERK2		

Modifier

Table 93: Properties of each modifier.

Id	Name	SBO
ppMEK1		0000534

Product

Table 94: Properties of each product.

Id	Name	SBO
ppERK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{35} = \text{Second_ERK2_phosphorylation_by_ppMEK} \cdot [\text{pERK2}] \cdot [\text{ppMEK1}] \cdot \text{vol} (\text{cell})$$
 (79)

7.36 Reaction reaction_36

This is an irreversible reaction of one reactant forming one product.

SBO:0000216 phosphorylation

Reaction equation

$$ppERK1 \longrightarrow pERK1$$
 (80)

Reactant

Table 95: Properties of each reactant.

Id	Name	SBO
ppERK1		

Product

Table 96: Properties of each product.

Id	Name	SBO
pERK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{36} = \text{First_ERK_dephosphorylation} \cdot [\text{ppERK1}] \cdot \text{vol}(\text{cell})$$
 (81)

7.37 Reaction reaction_37

This is an irreversible reaction of one reactant forming one product.

SBO:0000216 phosphorylation

Reaction equation

$$ppERK2 \longrightarrow pERK2 \tag{82}$$

Reactant

Table 97: Properties of each reactant.

Id	Name	SBO
ppERK2		

Product

Table 98: Properties of each product.

Id	Name	SBO
pERK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{37} = \text{First_ERK_dephosphorylation} \cdot [\text{ppERK2}] \cdot \text{vol}(\text{cell})$$
 (83)

7.38 Reaction reaction_38

This is an irreversible reaction of one reactant forming one product.

SBO:0000216 phosphorylation

Reaction equation

$$pERK1 \longrightarrow ERK1$$
 (84)

Reactant

Table 99: Properties of each reactant.

Id	Name	SBO
pERK1		

Product

Table 100: Properties of each product.

Id	Name	SBO
ERK1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot item$

$$v_{38} = \text{Second_ERK_dephosphorylation} \cdot [\text{pERK1}] \cdot \text{vol} (\text{cell})$$
 (85)

7.39 Reaction reaction_39

This is an irreversible reaction of one reactant forming one product.

SBO:0000216 phosphorylation

Reaction equation

$$pERK2 \longrightarrow ERK2 \tag{86}$$

Reactant

Table 101: Properties of each reactant.

Id	Name	SBO
pERK2		

Product

Table 102: Properties of each product.

Id	Name	SBO
ERK2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{39} = \text{Second_ERK_dephosphorylation} \cdot [\text{pERK2}] \cdot \text{vol} (\text{cell})$$
 (87)

7.40 Reaction reaction_40

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$mSOS \xrightarrow{ppERK1} pSOS$$
 (88)

Reactant

Table 103: Properties of each reactant.

Id	Name	SBO
mSOS		

Modifier

Table 104: Properties of each modifier.

Id	Name	SBO
ppERK1		0000534

Product

Table 105: Properties of each product.

Id	Name	SBO
pSOS		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{40} = ppERK_neg_feedback_on_mSOS \cdot [mSOS] \cdot [ppERK1] \cdot vol (cell)$$
 (89)

7.41 Reaction reaction_41

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$mSOS \xrightarrow{ppERK2} pSOS$$
 (90)

Reactant

Table 106: Properties of each reactant.

Id	Name	SBO
mSOS		

Modifier

Table 107: Properties of each modifier.

Id	Name	SBO
ppERK2		0000534

Product

Table 108: Properties of each product.

Id	Name	SBO
pSOS		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{41} = ppERK_neg_feedback_on_mSOS \cdot [mSOS] \cdot [ppERK2] \cdot vol(cell) \tag{91}$$

7.42 Reaction reaction_42

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$pSOS \longrightarrow SOS \tag{92}$$

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
pSOS		

Product

Table 110: Properties of each product.

Id	Name	SBO
SOS		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot 10^4 \cdot \text{item}$

$$v_{42} = pSOS_dephosphorylation \cdot [pSOS] \cdot vol(cell)$$
 (93)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species JAK2

SBO:0000252 polypeptide chain

Initial concentration $2 \cdot 10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_1 and as a product in reaction_15).

$$\frac{d}{dt}JAK2 = v_{15} - v_1 \tag{94}$$

8.2 Species EpoR

SBO:0000252 polypeptide chain

Initial concentration $1 \cdot 10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_2 and as a product in reaction_14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EpoR} = v_{14} - v_2 \tag{95}$$

8.3 Species SHP1

SBO:0000252 polypeptide chain

Initial concentration 10.7991 10⁴ · item · ml⁻¹

This species takes part in two reactions (as a reactant in reaction_3 and as a product in reaction_13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SHP1} = v_{13} - v_3 \tag{96}$$

8.4 Species SOS

SBO:0000252 polypeptide chain

Initial concentration $2.5101 \ 10^4 \cdot item \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in reaction_16 and as a product in reaction_17, reaction_42).

$$\frac{d}{dt}SOS = v_{17} + v_{42} - v_{16} \tag{97}$$

8.5 Species Raf

SBO:0000252 polypeptide chain

Initial concentration $3.7719 \cdot 10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_18 and as a product in reaction_19).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Raf} = v_{19} - v_{18} \tag{98}$$

8.6 Species MEK2

SBO:0000252 polypeptide chain

Initial concentration $11 \cdot 10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_20 and as a product in reaction_26).

$$\frac{d}{dt}MEK2 = v_{26} - v_{20} \tag{99}$$

8.7 Species MEK1

SBO:0000252 polypeptide chain

Initial concentration 24 10⁴ · item · ml⁻¹

This species takes part in two reactions (as a reactant in reaction_21 and as a product in reaction_27).

$$\frac{d}{dt}MEK1 = v_{27} - v_{21} \tag{100}$$

8.8 Species ERK1

SBO:0000252 polypeptide chain

Initial concentration $7 \cdot 10^4 \cdot item \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in reaction_28, reaction_30 and as a product in reaction_38).

$$\frac{d}{dt}ERK1 = v_{38} - v_{28} - v_{30} \tag{101}$$

8.9 Species ERK2

SBO:0000252 polypeptide chain

Initial concentration $21 \ 10^4 \cdot item \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in reaction_29, reaction_31 and as a product in reaction_39).

$$\frac{d}{dt}ERK2 = v_{39} - v_{29} - v_{31} \tag{102}$$

8.10 Species pJAK2

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in reaction_15 and as a product in reaction_1 and as a modifier in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pJAK2} = v_1 - v_{15} \tag{103}$$

8.11 Species pEpoR

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in reaction_14 and as a product in reaction_2 and as a modifier in reaction_3, reaction_16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pEpoR} = v_2 - v_{14} \tag{104}$$

8.12 Species mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_4 and as a product in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mSHP1} = v_3 - v_4 \tag{105}$$

8.13 Species actSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in reaction_13 and as a product in reaction_12 and as a modifier in reaction_14, reaction_15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{actSHP1} = v_{12} - v_{13} \tag{106}$$

8.14 Species mSOS

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in five reactions (as a reactant in reaction_17, reaction_40, reaction_41 and as a product in reaction_16 and as a modifier in reaction_18).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{mSOS} = v_{16} - v_{17} - v_{40} - v_{41} \tag{107}$$

8.15 Species pRaf

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in six reactions (as a reactant in reaction_19 and as a product in reaction_18 and as a modifier in reaction_20, reaction_21, reaction_22, reaction_23).

$$\frac{d}{dt}pRaf = v_{18} - v_{19} \tag{108}$$

8.16 Species ppMEK2

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in six reactions (as a reactant in reaction_24 and as a product in reaction_22 and as a modifier in reaction_28, reaction_29, reaction_32, reaction_33).

$$\frac{d}{dt} ppMEK2 = v_{22} - v_{24} \tag{109}$$

8.17 Species ppMEK1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in six reactions (as a reactant in reaction_25 and as a product in reaction_23 and as a modifier in reaction_30, reaction_31, reaction_34, reaction_35).

$$\frac{d}{dt}ppMEK1 = v_{23} - v_{25} \tag{110}$$

8.18 Species ppERK1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in reaction_36 and as a product in reaction_32, reaction_34 and as a modifier in reaction_40).

$$\frac{d}{dt}ppERK1 = v_{32} + v_{34} - v_{36}$$
 (111)

8.19 Species ppERK2

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in reaction_37 and as a product in reaction_33, reaction_35 and as a modifier in reaction_41).

$$\frac{d}{dt}ppERK2 = v_{33} + v_{35} - v_{37}$$
 (112)

8.20 Species pSOS

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in three reactions (as a reactant in reaction_42 and as a product in reaction_40, reaction_41).

$$\frac{\mathrm{d}}{\mathrm{d}t} pSOS = v_{40} + v_{41} - v_{42} \tag{113}$$

8.21 Species pMEK2

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in reaction_22, reaction_26 and as a product in reaction_20, reaction_24).

$$\frac{\mathrm{d}}{\mathrm{d}t} p \text{MEK2} = v_{20} + v_{24} - v_{22} - v_{26} \tag{114}$$

8.22 Species pMEK1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in four reactions (as a reactant in reaction_23, reaction_27 and as a product in reaction_21, reaction_25).

$$\frac{\mathrm{d}}{\mathrm{d}t} p \text{MEK1} = v_{21} + v_{25} - v_{23} - v_{27} \tag{115}$$

8.23 Species pERK1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in six reactions (as a reactant in reaction_32, reaction_34, reaction_38 and as a product in reaction_28, reaction_30, reaction_36).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{pERK1} = v_{28} + v_{30} + v_{36} - v_{32} - v_{34} - v_{38} \tag{116}$$

8.24 Species pERK2

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in six reactions (as a reactant in reaction_33, reaction_35, reaction_39 and as a product in reaction_29, reaction_31, reaction_37).

$$\frac{d}{dt}pERK2 = v_{29} + v_{31} + v_{37} - v_{33} - v_{35} - v_{39}$$
(117)

8.25 Species Delay01_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_5 and as a product in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Delay01_mSHP1} = v_4 - v_5 \tag{118}$$

8.26 Species Delay02_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_6 and as a product in reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Delay02_mSHP1} = v_5 - v_6 \tag{119}$$

8.27 Species Delay03_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_7 and as a product in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Delay03_mSHP1} = v_6 - v_7 \tag{120}$$

8.28 Species Delay04_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_8 and as a product in reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Delay04_mSHP1} = v_7 - v_8 \tag{121}$$

8.29 Species Delay05_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_9 and as a product in reaction_8).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Delay05_mSHP1} = v_8 - v_9 \tag{122}$$

8.30 Species Delay06_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_10 and as a product in reaction_9).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Delay06_mSHP1} = v_9 - v_{10} \tag{123}$$

8.31 Species Delay07_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_11 and as a product in reaction_10).

$$\frac{d}{dt} Delay07 mSHP1 = v_{10} - v_{11}$$
 (124)

8.32 Species Delay08_mSHP1

SBO:0000252 polypeptide chain

Initial concentration $0.10^4 \cdot item \cdot ml^{-1}$

This species takes part in two reactions (as a reactant in reaction_12 and as a product in reaction_11).

$$\frac{d}{dt}Delay08_mSHP1 = v_{11} - v_{12}$$
 (125)

8.33 Species Epo

SBO:0000252 polypeptide chain

Initial concentration 50 dimensionless \cdot ml⁻¹

This species takes part in one reaction (as a modifier in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Epo} = 0\tag{126}$$

A Glossary of Systems Biology Ontology Terms

- **SBO:0000035 forward unimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000036 forward bimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving two reactants. This parameter encompasses all the contributions to the velocity except the quantity of the reactants. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000177 non-covalent binding:** Interaction between several biochemical entities that results in the formation of a non-covalent comple
- **SBO:0000180 dissociation:** Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie
- **SBO:0000196** concentration of an entity pool: The amount of an entity per unit of volume.
- **SBO:0000216 phosphorylation:** Addition of a phosphate group (-H2PO4) to a chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000330 dephosphorylation:** Removal of a phosphate group (-H2PO4) from a chemical entity.
- **SBO:0000381 biochemical proportionality coefficient:** A multiplicative factor for quantities, expressions or functions
- **SBO:0000396 uncertain process:** An equivocal or conjectural process, whose existence is assumed but not proven
- **SBO:0000397 omitted process:** One or more processes that are not represented in certain representations or interpretations of a model
- **SBO:0000461 essential activator:** A substance that is absolutely required for occurrence and stimulation of a reaction
- **SBO:0000463 standard biochemical potential:** The biochemical potential of a substance measured at standard concentrations and under standard conditions
- **SBO:0000534** catalytic activator: An essential activator that affects the apparent value of the catalytic constant

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany