Learning Overcomplete Latent Variable Models through Tensor Methods

Anima Anandkumar

UC Irvine

Joint work with

Majid Janzamin

Rong Ge

UC Irvine

Microsoft Research

• Latent (hidden) variable $h \in \mathbb{R}^k$, observed variable $x \in \mathbb{R}^d$.

• Latent (hidden) variable $h \in \mathbb{R}^k$, observed variable $x \in \mathbb{R}^d$.

- ullet Categorical hidden variable h.
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \frac{a_h}{h}, \ \mathbb{E}[x_2|h] = \frac{b_h}{h}, \ \mathbb{E}[x_3|h] = \frac{c_h}{h}.$$

• Latent (hidden) variable $h \in \mathbb{R}^k$, observed variable $x \in \mathbb{R}^d$.

Multiview linear mixture models

- Categorical hidden variable h.
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \frac{a_h}{h}, \ \mathbb{E}[x_2|h] = \frac{b_h}{h}, \ \mathbb{E}[x_3|h] = \frac{c_h}{h}.$$

Gaussian Mixture

- Categorical hidden variable h.
- $x|h \sim \mathcal{N}(\mu_h, \Sigma_h)$.

• Latent (hidden) variable $h \in \mathbb{R}^k$, observed variable $x \in \mathbb{R}^d$.

Multiview linear mixture models

- Categorical hidden variable h.
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \frac{a_h}{h}, \ \mathbb{E}[x_2|h] = \frac{b_h}{h}, \ \mathbb{E}[x_3|h] = \frac{c_h}{h}.$$

Gaussian Mixture

- Categorical hidden variable h.
- $x|h \sim \mathcal{N}(\mu_h, \Sigma_h)$.

ICA, Sparse Coding, HMM, Topic modeling, ...

• Latent (hidden) variable $h \in \mathbb{R}^k$, observed variable $x \in \mathbb{R}^d$.

Multiview linear mixture models

- Categorical hidden variable h.
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \frac{a_h}{h}, \ \mathbb{E}[x_2|h] = \frac{b_h}{h}, \ \mathbb{E}[x_3|h] = \frac{c_h}{h}.$$

Gaussian Mixture

- Categorical hidden variable h.
- $x|h \sim \mathcal{N}(\mu_h, \Sigma_h)$.

ICA, Sparse Coding, HMM, Topic modeling, ...

Multi-variate observed moments

$$M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].$$

Multi-variate observed moments

$$M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].$$

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1, i_2} = \mathbb{E}[x_{i_1} x_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$

Multi-variate observed moments

$$M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].$$

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1,i_2} = \mathbb{E}[x_{i_1}x_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1, i_2, i_3} = \mathbb{E}[x_{i_1} x_{i_2} x_{i_3}].$

Multi-variate observed moments

$$M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].$$

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1,i_2} = \mathbb{E}[x_{i_1}x_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1, i_2, i_3} = \mathbb{E}[x_{i_1} x_{i_2} x_{i_3}].$

Information in moments for learning LVMs?

• $[k] := \{1, \dots, k\}.$

- Categorical hidden variable $h \in [k]$.
- $\mathbf{w}_i := \Pr[h = j]$
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \frac{a_h}{h}, \ \mathbb{E}[x_2|h] = \frac{b_h}{h}, \ \mathbb{E}[x_3|h] = \frac{c_h}{h}.$$

• $[k] := \{1, \dots, k\}.$

- Categorical hidden variable $h \in [k]$.
- $\mathbf{w}_{j} := \Pr[h = j]$
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \frac{\mathbf{a_h}}{\mathbf{h}}, \ \mathbb{E}[x_2|h] = \frac{\mathbf{b_h}}{\mathbf{h}}, \ \mathbb{E}[x_3|h] = \frac{\mathbf{c_h}}{\mathbf{h}}.$$

$$\mathbb{E}_{x}[\overbrace{x_{1} \otimes x_{2}}^{x_{1}x_{2}^{\top}}] = \mathbb{E}_{h}[\mathbb{E}_{x}[x_{1} \otimes x_{2}|h]]$$

$$= \mathbb{E}_{h}[a_{h} \otimes b_{h}]$$

$$= \sum_{j \in [k]} w_{j}a_{j} \otimes b_{j}.$$

• $[k] := \{1, \dots, k\}.$

- Categorical hidden variable $h \in [k]$.
- $\mathbf{w_j} := \Pr[h = j]$
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \mathbf{a_h}, \ \mathbb{E}[x_2|h] = \mathbf{b_h}, \ \mathbb{E}[x_3|h] = \mathbf{c_h}.$$

$$\mathbb{E}[x_1 \otimes x_2] = \sum_{j \in [k]} w_j a_j \otimes b_j,$$

• $[k] := \{1, \ldots, k\}.$

- Categorical hidden variable $h \in [k]$.
- $\mathbf{w}_i := \Pr[h = j]$
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \mathbf{a_h}, \ \mathbb{E}[x_2|h] = \mathbf{b_h}, \ \mathbb{E}[x_3|h] = \mathbf{c_h}.$$

$$\mathbb{E}[x_1 \otimes x_2 \otimes x_3] = \sum_{j \in [k]} w_j a_j \otimes b_j \otimes c_j.$$

• $[k] := \{1, \dots, k\}.$

Multiview linear mixture models

- Categorical hidden variable $h \in [k]$.
- $\mathbf{w}_{j} := \Pr[h = j]$
- Views: conditionally indep. given h.
- Linear model:

$$\mathbb{E}[x_1|h] = \mathbf{a_h}, \ \mathbb{E}[x_2|h] = \mathbf{b_h}, \ \mathbb{E}[x_3|h] = \mathbf{c_h}.$$

$$\mathbb{E}[x_1 \otimes x_2] = \sum_{j \in [k]} w_j a_j \otimes b_j,$$

$$\mathbb{E}[x_1 \otimes x_2 \otimes x_3] = \sum_{j \in [k]} w_j a_j \otimes b_j \otimes c_j.$$

Tensor (matrix) factorization for learning LVMs.

Rank-1 tensor: $T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i,j,l) = w \cdot a(i) \cdot b(j) \cdot c(l)$.

Rank-1 tensor: $T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i,j,l) = w \cdot a(i) \cdot b(j) \cdot c(l)$.

CANDECOMP/PARAFAC (CP) Decomposition

$$T = \sum_{j \in [k]} w_j a_j \otimes b_j \otimes c_j \in \mathbb{R}^{d \times d \times d}, \quad a_j, b_j, c_j \in \mathcal{S}^{d-1}.$$

Rank-1 tensor: $T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i,j,l) = w \cdot a(i) \cdot b(j) \cdot c(l)$.

CANDECOMP/PARAFAC (CP) Decomposition

- k: tensor rank. d: ambient dimension.
- k < d: undercomplete and k > d: overcomplete.

Rank-1 tensor:
$$T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i,j,l) = w \cdot a(i) \cdot b(j) \cdot c(l)$$
.

CANDECOMP/PARAFAC (CP) Decomposition

- k: tensor rank, d: ambient dimension.
- k < d: undercomplete and k > d: overcomplete.

This talk: guarantees for overcomplete tensor decomposition

- Decomposition may not always exist for general tensors.
- Finding the decomposition is NP-hard in general.

- Decomposition may not always exist for general tensors.
- Finding the decomposition is NP-hard in general.

Tractable case: orthogonal tensor decomposition $(\langle v_i, v_i \rangle = 0, i \neq j)$

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

• $\{v_i\}$'s are the only robust fixed points.

- Decomposition may not always exist for general tensors.
- Finding the decomposition is NP-hard in general.

Tractable case: orthogonal tensor decomposition $(\langle v_i, v_i \rangle = 0, i \neq j)$

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

• $\{v_i\}$'s are the only robust fixed points.

All other eigenvectors are saddle points.

- Decomposition may not always exist for general tensors.
- Finding the decomposition is NP-hard in general.

Tractable case: orthogonal tensor decomposition $(\langle v_i, v_i \rangle = 0, i \neq j)$

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

- $\{v_i\}$'s are the only robust fixed points.
- All other eigenvectors are saddle points.

For an orthogonal tensor, no spurious local optima!

Beyond Orthogonal Tensor Decomposition

Limitations

• Not ALL tensors have orthogonal decomposition (unlike matrices).

Beyond Orthogonal Tensor Decomposition

Limitations

• Not ALL tensors have orthogonal decomposition (unlike matrices).

Undercomplete tensors $(k \le d)$ with full rank components

Non-orthogonal decomposition $T_1 = \sum_i w_i a_i \otimes a_i \otimes a_i$.

- Whitening matrix W:
- Multilinear transform: $T_2 = T_1(W, W, W)$

Tensor T_1 Tensor T_2

Beyond Orthogonal Tensor Decomposition

Limitations

• Not ALL tensors have orthogonal decomposition (unlike matrices).

Undercomplete tensors $(k \le d)$ with full rank components

Non-orthogonal decomposition $T_1 = \sum_i w_i a_i \otimes a_i \otimes a_i$.

• Whitening matrix W:

$$\begin{array}{c}
a_1 \\
a_2 \\
a_3
\end{array}$$

$$\begin{array}{c}
v_1 \\
v_3
\end{array}$$

• Multilinear transform: $T_2 = T_1(W, W, W)$

 ${\sf Tensor}\ T_1 \quad {\sf Tensor}\ T_2$

This talk: guarantees for overcomplete tensor decomposition

Outline

- Introduction
- 2 Overcomplete tensor decomposition
- Sample Complexity Analysis
- 4 Conclusion

Our Setup

So far

- General tensor decomposition: NP-hard.
- Orthogonal tensors: too limiting.
 Tractable cases? Covers overcomplete tensors?

Our Setup

So far

- General tensor decomposition: NP-hard.
- Orthogonal tensors: too limiting.
 Tractable cases? Covers overcomplete tensors?

Our framework: Incoherent Components

- $|\langle a_i, a_j \rangle| = O\left(1/\sqrt{d}\right)$ for $i \neq j$. Similarly for b, c.
- Can handle overcomplete tensors. Satisfied by random vectors.

Guaranteed recovery for alternating minimization?

Alternating minimization

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Rank-1 ALS iteration (power iteration)

- Initialization: $a^{(0)}, b^{(0)}, c^{(0)}$.
- Update in t^{th} step: fix $a^{(t)}, b^{(t)}$ and

$$c^{(t+1)} \propto T(a^{(t)}, b^{(t)}, I).$$

• After (approx.) convergence, restart.

Alternating minimization

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Rank-1 ALS iteration (power iteration)

- Initialization: $a^{(0)}, b^{(0)}, c^{(0)}$.
- ullet Update in ${m t}^{ ext{th}}$ step: fix $a^{(t)}, b^{(t)}$ and

$$c^{(t+1)} \propto T(a^{(t)}, b^{(t)}, I).$$

- After (approx.) convergence, restart.
- Simple update: trivially parallelizable and hence scalable.
- Linear computation in dimension, rank, number of different runs.

Alternating minimization

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} \|T - w \cdot a \otimes b \otimes c\|_F.$$

Rank-1 ALS iteration (power iteration)

- Initialization: $a^{(0)}, b^{(0)}, c^{(0)}$.
- \bullet Update in \emph{t}^{th} step: fix $a^{(t)}, b^{(t)}$ and

$$c^{(t+1)} \propto T(a^{(t)}, b^{(t)}, I).$$

- After (approx.) convergence, restart.
- Simple update: trivially parallelizable and hence scalable.
- Linear computation in dimension, rank, number of different runs.

Rank-1 ALS iteration \equiv asymmetric power iteration

Main Result: Local Convergence

- Initialization: $\max\{\|a_1-\hat{a}^{(0)}\|,\|b_1-\hat{b}^{(0)}\|\} \leq \epsilon_0$, and $\epsilon_0 <$ constant.
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Rank: $k = o(d^{1.5})$.

Main Result: Local Convergence

- Initialization: $\max\{\|a_1-\hat{a}^{(0)}\|,\|b_1-\hat{b}^{(0)}\|\} \leq \epsilon_0$, and $\epsilon_0 <$ constant.
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Rank: $k = o(d^{1.5})$.

Theorem (Local Convergence)[AGJ2014]

After $N = O(\log(1/||E||))$ steps of alternating rank-1 updates,

$$||a_1 - \hat{a}^{(N)}|| = O(||E||).$$

Main Result: Local Convergence

- Initialization: $\max\{\|a_1 \hat{a}^{(0)}\|, \|b_1 \hat{b}^{(0)}\|\} \le \epsilon_0$, and $\epsilon_0 <$ constant.
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Rank: $k = o(d^{1.5})$.

Theorem (Local Convergence)[AGJ2014]

After $N = O(\log(1/\|E\|))$ steps of alternating rank-1 updates,

$$||a_1 - \hat{a}^{(N)}|| = O(||E||).$$

- Linear convergence: up to approximation error.
- Guarantees for overcomplete tensors: $k = o(d^{1.5})$ and for p^{th} -order tensors $k = o(d^{p/2})$.
- Requires good initialization. What about global convergence?

Global Convergence k = O(d)

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Global Convergence k = O(d)

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. *L* trials.

Assumptions

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\|E\|))$. Recall $\|E\|$: recovery error.

Global Convergence k = O(d)

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Assumptions

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\|E\|))$. Recall $\|E\|$: recovery error.

Theorem (Global Convergence)[AGJ2014]: $||a_1 - \hat{a}^{(N)}|| \leq O(\epsilon_R)$.

Outline

- Introduction
- 2 Overcomplete tensor decomposition
- Sample Complexity Analysis
- 4 Conclusion

High-level Intuition for Sample Bounds

- Multi-view Model: $x_1 = Ah + z_1$, where z_1 is noise.
- Exact moment $T = \sum_i w_i a_i \otimes b_i \otimes c_i$.
- Sample moment: $\hat{T} = \frac{1}{n} \sum_i x_1^i \otimes x_2^i \otimes x_3^i$.

Naïve Idea: $\|\hat{T} - T\| \le \| \max(\hat{T}) - \max(T) \|$, apply matrix Bernstein's.

High-level Intuition for Sample Bounds

- Multi-view Model: $x_1 = Ah + z_1$, where z_1 is noise.
- Exact moment $T = \sum_i w_i a_i \otimes b_i \otimes c_i$.
- Sample moment: $\hat{T} = \frac{1}{n} \sum_i x_1^i \otimes x_2^i \otimes x_3^i$.

Naïve Idea: $\|\hat{T} - T\| \le \| \max(\hat{T}) - \max(T) \|$, apply matrix Bernstein's.

- Our idea: Careful ϵ -net covering for $\hat{T} T$.
- $\hat{T}-T$ has many terms, e.g., all-noise term: $\frac{1}{n}\sum_i z_1^i\otimes z_2^i\otimes z_3^i$ and signal-noise terms.
- Need to bound $\frac{1}{n} \sum_i \langle z_1^i, u \rangle \langle z_2^i, v \rangle \langle z_3^i, w \rangle$, for all $u, v, w \in \mathcal{S}^{d-1}$.
- Classify inner products into buckets and bound them separately.

Tight sample bounds for a range of latent variable models

Unsupervised Learning of Gaussian Mixtures

- No. of mixture components: $k = C \cdot d$
- No. of unlabeled samples: $n = \tilde{\Omega}(k \cdot d)$.
- ullet Computational complexity: $ilde{O}\left(k^{C^2}
 ight)$

Our result: achieved error with n unlabeled samples

$$\max_{j} \|\widehat{a}_{j} - a_{j}\| = \widetilde{O}\left(\sqrt{\frac{k}{n}}\right)$$

- Linear convergence.
- Error: same as before, for semi-supervised setting.
- Computational complexity: polynomial when $k = \Theta(d)$.

Semi-supervised Learning of Gaussian Mixtures

- n unlabeled samples, m_j : samples for component j.
- No. of mixture components: $k = o(d^{1.5})$
- No. of labeled samples: $m_j = \tilde{\Omega}(1)$.
- No. of unlabeled samples: $n = \tilde{\Omega}(k)$.

Our result: achieved error with n unlabeled samples

$$\max_{j} \|\widehat{a}_{j} - a_{j}\| = \widetilde{O}\left(\sqrt{\frac{k}{n}}\right)$$

- Linear convergence.
- Can handle (polynomially) overcomplete mixtures.
- Extremely small number of labeled samples: polylog(d).
- Sample complexity is tight: need $\tilde{\Omega}(k)$ samples!

Outline

- Introduction
- 2 Overcomplete tensor decomposition
- Sample Complexity Analysis
- 4 Conclusion

Conclusion

- Learning overcomplete Latent variable models.
 - * Method-of-moments.
 - * Tensor power iteration.
- Robustness to noise.
- Sample complexity bounds for a range of LVMs.
 - * Unsupervised setting.
 - * Semi-supervised setting.

Conclusion

- Learning overcomplete Latent variable models.
 - * Method-of-moments.
 - * Tensor power iteration.
- Robustness to noise.
- Sample complexity bounds for a range of LVMs.
 - * Unsupervised setting.
 - * Semi-supervised setting.
- Latest result: improved initialization for tensor with Gaussian components.

Conclusion

- Learning overcomplete Latent variable models.
 - * Method-of-moments.
 - * Tensor power iteration.
- Robustness to noise.
- Sample complexity bounds for a range of LVMs.
 - * Unsupervised setting.
 - * Semi-supervised setting.
- Latest result: improved initialization for tensor with Gaussian components.

Thank you!