# **Summary | Real Analysis**

# Introduction— |

 $| \land | \text{ and } | | \lor | \text{ or } | | \to | \text{ then } | \implies | \text{ implies } | \Leftarrow | \text{ implied by } | \iff | \text{ if and only if } | \forall | \text{ for all } | \exists | \text{ there exists } | \sim | \text{ not } |$ 

Let's take  $a \rightarrow b$ .

- 1. Contrapositive or transposition:  $\sim b 
  ightarrow \sim a$  . This is equivalent to the original.
- 2. Inverse:  $\sim a 
  ightarrow \sim b$  . Does not depend on the original.
- 3. Converse: b o a . Does not depend on the original.

$$a 
ightarrow b \equiv \sim a \lor b \equiv \sim b 
ightarrow \sim a$$

#### **Required proofs**

- $\sim \forall x P(x) \equiv \exists x \sim P(x)$
- $\sim \exists x \, P(x) \equiv \forall x \sim P(x)$
- $\exists x \, \exists y P(x,y) \equiv \exists y \, \exists x P(x,y)$
- $\forall x \, \forall y P(x,y) \equiv \forall y \, \forall x P(x,y)$
- $\exists x \, \forall y P(x,y) \implies \forall y \, \exists x P(x,y)$
- $(A \rightarrow C) \land (B \rightarrow C) \equiv (A \lor B) \rightarrow C$

# **Methods of proofs**

- 1. Just proof what should be proven
- 2. Prove the contrapositive
- 3. Proof by contradiction
- 4. Proof by induction

### **Proof by contradiction**

Suppose  $a \implies b$  has to be proven. If  $a \land \sim b$  is proven to be false, then, by proof by contradiction,  $a \implies b$  can be trivially proven.

### Logic behind proof by contradiction

$$egin{aligned} a \wedge \sim b &= F \ &\sim (a \wedge \sim b) = \sim F \ &\sim a ee b = T \ &a \Longrightarrow b \end{aligned}$$

# **Set theory**

Zermelo-Fraenkel set theory with axiom of Choice(ZFC):9 axioms all together is being used here.

### **Definitions**

- $x \in A^{c} \iff x \notin A$
- $x \in A \cup B \iff x \in A \lor x \in B$
- $x \in A \cap B \iff x \in A \land x \in B$
- $A \subset B = \forall x (x \in A \implies x \in B)$
- $A-B=A\cap B^{c}$
- $A = B \iff ((\forall z \in A \implies z \in B) \land (\forall z \in B \implies z \in A))$

# Required proofs

- $(A \cap B)^c = A^c \cup B^c$
- $(A \cup B)^c = A^c \cap B^c$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \subset A \cup B$
- $A \cap B \subset A$

### **Set of Numbers**

#### Sets of numbers

- Positive integers:  $\mathbb{Z}^+ = \{1,2,3,4,\dots\}$  .
- Natural integers:  $\mathbb{N} = \{0,1,2,3,4,\dots\}$  .
- Negative integers:  $\mathbb{Z}^- = \{-1, -2, -3, -4, \dots\}$  .
- Integers:  $\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$  .
- Rational numbers:  $\mathbb{Q}=\left\{rac{p}{q} \middle| q 
  eq 0 \land p,q \in \mathbb{Z}
  ight\}$  .
- Irrational numbers: limits of sequences of rational numbers (which are not rational numbers)
- Real numbers:  $\mathbb{R}=\mathbb{Q}^c\cup\mathbb{Q}$  .

Complex numbers are not part of the study here.

# **Continued Fraction Expansion**

# The process

- Separate the integer part
- Find the inverse of the remaining part. Result will be greated than 1.
- Repeat the process for the remaining part.

### Finite expansion

Take  $\frac{420}{69}$  for example.

$$\frac{420}{69} = 6 + \frac{6}{69}$$

$$\frac{420}{69} = 6 + \frac{1}{\frac{69}{6}}$$

$$\frac{420}{69} = 6 + \frac{1}{11 + \frac{3}{6}}$$

$$\frac{420}{69} = 6 + \frac{1}{11 + \frac{1}{2}}$$

As  $\frac{420}{69}$  is finite, its continued fraction expansion is also finite. And it can be written as  $\frac{420}{69}=[6;11,2]$ .

### Infinite expansion

For irrational numbers, the expansion will be infinite.

For example  $\pi$ :

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \cdots}}}}$$

Conintued fraction expansion of  $\pi$  is  $[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,\ldots]$ 

# **Field Axioms**

### Field Axioms of ${\mathbb R}$

 $\mathbb{R} 
eq \emptyset$  with two binary operations + and  $\cdot$  satisfying the following properties

- 1. Closed under addition:  $\forall a,b \in \mathbb{R}; a+b \in \mathbb{R}$
- 2. Commutative:  $\forall a,b \in \mathbb{R}; a+b=b+a$

- 3. Associative:  $\forall a,b,c \in \mathbb{R}; (a+b)+c=a+(b+c)$
- 4. Additive identity:  $\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R}; a+0=0+a=a$
- 5. Additive inverse:  $\forall a \in \mathbb{R} \, \exists (-a); a+(-a)=(-a)+a=0$
- 6. Closed under multiplication:  $\forall a,b \in \mathbb{R}; a \cdot b \in \mathbb{R}$
- 7. Commutative:  $\forall a,b \in \mathbb{R}; a \cdot b = b \cdot a$
- 8. Associative:  $\forall a,b,c \in \mathbb{R}; (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 9. Multiplicative identity:  $\exists 1 \in \mathbb{R} \ \forall a \in \mathbb{R}; a \cdot 1 = 1 \cdot a = a$
- 10. Multiplicative inverse:  $\forall a \in \mathbb{R} \{0\} \, \exists a^-; a \cdot a^- = a^- \cdot a = 1$
- 11. Multiplication is distributive over addition:  $a \cdot (b+c) = a \cdot b + a \cdot c$

### (i) Field

Any set satisfying the above axioms with two binary operations (commonly + and  $\cdot$ ) is called a **field**. Written as  $(\mathbb{R}, +, \cdot)$  is a **Field**. But  $(\mathbb{R}, \cdot, +)$  is not a **field**.

### **Required proofs**

The below mentioned propositions can and should be proven using the above-mentioned axioms.  $a,b,c\in\mathbb{R}.$ 

• 
$$a \cdot 0 = 0$$

Hint: Start with a(1+0)

• Additive identity ( 
$$\mathbf{0}$$
 ) is unique

• Multiplicative identity ( 
$${f 1}$$
 ) is unique

• Additive inverse ( 
$$-a$$
 ) is unique for a given  $a$ 

• Multiplicative inverse ( 
$$a^{-1}$$
 ) is unique for a given  $a$ 

• 
$$a+b=0 \implies b=-a$$

• 
$$a+c=b+c \implies a=b$$

• 
$$-(a+b) = (-a) + (-b)$$

• 
$$-(-a) = a$$

• 
$$ac = bc \implies a = b$$

• 
$$ab = 0 \implies a = 0 \lor b = 0$$

• 
$$-(ab) = (-a)b = a(-b)$$

• 
$$(-a)(-b) = ab$$

• 
$$a \neq 0 \implies (a^{-1})^{-1} = a$$

• 
$$a, b \neq 0 \implies ab^{-1} = a^{-1}b^{-1}$$

#### Field or Not?

|                                           | Is field? | Reason (if not)                           |
|-------------------------------------------|-----------|-------------------------------------------|
| $(\mathbb{R},+,\cdot)$                    | True      |                                           |
| $(\mathbb{R},\cdot,+)$                    | False     | Axiom 11 is invalid                       |
| $(\mathbb{Z},+,\cdot)$                    | False     | Multiplicative inverse doesn't exist      |
| $(\mathbb{Q},+,\cdot)$                    | True      |                                           |
| $(\mathbb{Q}^c,+,\cdot)$                  | False     | $\sqrt{2}\cdot\sqrt{2} ot\in\mathbb{Q}^c$ |
| Boolean algebra                           | False     | Additive inverse doesn't exist            |
| $(\{0,1\}, + \bmod 2, \cdot \bmod 2)$     | True      |                                           |
| $(\{0,1,2\}, + \bmod 3, \cdot \bmod 3)$   | True      |                                           |
| $(\{0,1,2,3\}, + \bmod 4, \cdot \bmod 4)$ | False     | Multiplicative inverse doesn't exist      |

# **Completeness Axiom**

Let A be a non empty subset of  $\mathbb{R}$ .

- u is the upper bound of A if:  $\forall a \in A; a \leq u$
- A is bounded above if A has an upper bound
- ullet Maximum element of A :  $\max A = u$  if  $u \in A$  and u is an upper bound of A
- ullet Supremum of  $A \ \sup A$  , is the smallest upper bound of A
- Maximum is a supremum. Supremum is not necessarily a maximum.
- $\emph{l}$  is the lower bound of  $\emph{A}$  if:  $orall a \in \emph{A}; a \geq \emph{l}$
- ullet A is bounded below if A has a lower bound
- ullet Minimum element of A :  $\min A = l$  if  $l \in A$  and l is a lower bound of A
- ullet Infimum of A  $\inf A$  , is the largest lower bound of A
- Minimum is a infimum. Infimum is not necessarily a minimum.

### **Theorems**

Let A be a non empty subset of  $\mathbb{R}$ .

- Say u is an upper bound of A . Then  $u = \sup A$  iff:

$$\forall \epsilon > 0 \ \exists a \in A; \ a + \epsilon > u$$

ullet Say l is a lower bound of A . Then  $l=\inf A$  iff:

$$\forall \epsilon > 0 \; \exists a \in A; \; a - \epsilon < l$$

### (i) Proof Hint

Prove the contrapositive. Use  $\epsilon=rac{1}{2}(L-sup(A))$  for supremum proof.

# **Required proofs**

- sup(a,b) = b
- inf(a,b) = a

### Completeness axioms of real numbers

- ullet Every non empty subset of  ${\mathbb R}$  which is bounded above has a supremum in  ${\mathbb R}$
- ullet Every non empty subset of  ${\mathbb R}$  which is bounded below has a infimum in  ${\mathbb R}$

#### (i) Note

 $\mathbb{Q}$  doesn't have the completeness property.

### **Completeness axioms of integers**

- ullet Every non empty subset of  ${\Bbb Z}$  which is bounded above has a maximum
- ullet Every non empty subset of  ${\Bbb Z}$  which is bounded below has a minimum

### **Order Axioms**

- Trichotomy:  $\forall a,b \in \mathbb{R}$  exactly one of these holds: a>b , a=b , a< b
- Transitivity:  $\forall a, b, c \in \mathbb{R}; a < b \land b < c \implies a < c$
- Operation with addition:  $orall a, b \in \mathbb{R}; a < b \implies a + c < b + c$
- Operation with mutliplication:  $\forall a,b,c \in \mathbb{R}; a < b \land 0 < c \implies ac < bc$

### **Definitions**

• 
$$a < b \equiv b > a$$

• 
$$a \le b \equiv a < b \lor a = b$$

• 
$$a \neq b \equiv a < b \lor a > b$$

$$ullet |x| = egin{cases} x & ext{if } x \geq 0, \ -x & ext{if } x < 0 \end{cases}$$

## **Triangular inequalities**

$$|a|-|b| \le |a+b| \le |a|+|b|$$

$$\Big||a|-|b|\Big|\leq |a+b|$$

For first:

• Use 
$$-|a| \leq a \leq |a|$$

For second:

• Use the below substitutions in first conclusion

$$\circ$$
  $a = a - b \land b = b$ 

$$\circ$$
  $a = b - a \land b = a$ 

# **Required proofs**

- $\forall a,b,c \in \mathbb{R}; a < b \land c < 0 \implies ac > bc$
- 1 > 0
- $-|a| \leq a \leq |a|$
- Triangular inequalities

### **Theorems**

- $\exists a \ \forall \epsilon > 0, \ a < \epsilon \implies a \leq 0$
- $\exists a \ \forall \epsilon > 0, \ 0 \leq a < \epsilon \implies a = 0$
- $\forall \epsilon > 0 \; \exists a, a < \epsilon \Longrightarrow a \leq 0$

# (!) Caution

 $\forall \epsilon > 0 \; \exists a, \, a < \epsilon \implies a \leq 0 \; \text{is not} \; \text{valid}.$ 

# Relations

#### **Definitions**

- $oldsymbol{\cdot}$  Cartesian Product of sets A,B  $A imes B=\{(a,b)|a\in A,b\in B\}$
- Ordered pair  $(a,b)=\{\{a\},\{a,b\}\}$

#### Relation

Let  $A, B \neq \emptyset$ . A relation  $R: A \rightarrow B$  is a non-empty subset of  $A \times B$ .

- $aRb \equiv (a,b) \in R$
- Domain of R : dom(R) = A
- Codomain of R : codom(R) = B
- Range of R :  $ran(R) = \{y | (x,y) \in R\}$
- $ran(R) \subseteq B$
- Pre-range of R :  $preran(R) = \{x \, | \, (x,y) \in R\}$
- $preran(R) \subseteq A$
- $R(a) = \{b \, | \, (a,b) \in R\}$

### **Everywhere defined**

 $oldsymbol{R}$  is everywhere defined

$$\iff A = dom(R) = preran(R)$$

$$\iff \forall a \in A, \ \exists b \in B; \ (a,b) \in R.$$

#### **Onto**

 $oldsymbol{R}$  is onto

$$\iff B = codom(R) = ran(R)$$

$$\iff \forall b \in B \, \exists a \in A \, (a,b) \in R$$

Aka. surjection.

#### **Inverse**

Inverse of R:  $R^{-1}=\{(b,a)\,|\,(a,b)\in R\}$ 

### **Types of relation**

one-many

$$\iff \exists a \in A, \, \exists b_1, b_2 \in B \; ((a,b_1),(a,b_2) \in R \, \wedge \, b_1 
eq b_2)$$

**Not one-many** 

$$\iff \forall a \in A, \forall b_1, b_2 \in B ((a, b_1), (a, b_2) \in R \implies b_1 = b_2)$$

many-one

$$\iff \exists a_1, a_2 \in A, \exists b \in B ((a_1, b), (a_2, b) \in R \land a_1 \neq a_2)$$

Not many-one

$$\iff orall a_1, a_2 \in A, \, orall b \in B \ ((a_1,b),(a_2,b) \in R \implies a_1 = a_2)$$

#### many-many

**iff** R is **one-many** and **many-one**.

#### one-one

iff R is not one-many and not many-one. Aka. injection.

#### **Bijection**

When a relation is **onto** and **one-one**.

### **Functions**

A function  $f\colon A o B$  is a relation  $f\colon A o B$  which is <u>everywhere defined</u> and <u>not one-many</u>.

• 
$$dom(f) = A = preran(f)$$

#### **Inverse**

For a function f:A o B to have its inverse relation  $f^{-1}:B o A$  be also a function, we need:

- **f** is <u>onto</u>
- $m{f}$  is <u>not many-one</u> (in other words,  $m{f}$  must be <u>one-one</u>)

The above statement is true for all unrestricted function f that has an inverse  $f^{-1}$ :

$$f(f^{-1}(x)) = x = f^{-1}(f(x)) = x$$

# Composition

### **Composition of relations**

Let  $R:A \to B$  and  $S:B \to C$  are 2 relations. Composition can be defined when  $\operatorname{ran}(R) = \operatorname{preran}(S)$ .

Say ran(R) = preran(S) = D. Composition of the 2 relations is written as:

$$S \circ R = \{(a,c) \, | \, (a,b) \in R, \, (b,c) \in S, \, b \in D\}$$

### **Composition of functions**

Let f:A o B and g:B o C be 2 functions where f is  ${\color{red} \underline{\sf onto}}.$ 

$$g\circ f=\{(x,z)\,|\, (x,y)\in f,\, (y,z)\in g,\, y\in B\}=g(f(x))$$

# Countability

A set A is countable  $\mathrm{iff}\ \exists f:A o Z^+$ , where f is a one-one function.

# **Examples**

- Countable: Any finite set,  $\mathbb{Z}, \mathbb{Q}$
- ullet Uncountable:  ${\mathbb R}$  , Any open/closed intervals in  ${\mathbb R}$  .

### **Transitive property**

Say 
$$B\subset A$$
.

$$A ext{ is countable } \implies B ext{ is countable }$$

$$B$$
 is not countable  $\implies A$  is not countable

# **Limits**

$$\lim_{x o a}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x-a| < \delta \implies |f(x) - L| < \epsilon)$$

Defining  $\delta$  in terms of a given  $\epsilon$  is enough to prove a limit.

### One sided limits

$$\lim_{x o a^+} f(x) = L$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < x - a < \delta \implies |f(x) - L| < \epsilon)$$

$$\lim_{x o a^-} f(x) = L$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (-\delta < x - a < 0 \implies |f(x) - L| < \epsilon)$$

$$\lim_{x o a}f(x)=L^+$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x-a| < \delta \implies 0 \leq f(x) - L < \epsilon)$$

$$\lim_{x o a}f(x)=L^-$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x-a| < \delta \implies -\epsilon < f(x) - L \le 0)$$

# Limits including infinite

$$\lim_{x o\infty}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists N > 0 \; orall x \; (x > N \implies |f(x) - L| < \epsilon)$$

$$\lim_{x o -\infty} f(x) = L$$
 iff:

$$orall \epsilon > 0 \; \exists N > 0 \; orall x \; (x < -N \implies |f(x) - L| < \epsilon)$$

$$\lim_{x o a}f(x)=\infty$$
 iff:

$$orall M>0 \; \exists \delta>0 \; orall x \; (0<|x-a|<\delta \implies f(x)>M)$$

$$\lim_{x o a}f(x)=-\infty$$
 iff:

$$orall M>0 \; \exists \delta>0 \; orall x \; (0<|x-a|<\delta \implies f(x)<-M)$$

### **Indeterminate forms**

- $\bullet$   $\frac{0}{0}$
- $\frac{\infty}{\infty}$
- ∞ ⋅ 0
- $\infty \infty$
- $\infty^0$
- · 0<sup>0</sup>
- 1<sup>∞</sup>

# **Continuity**

A function f is continuous at a iff:

$$\lim_{x o a}f(x)=f(a)$$

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (|x-a| < \delta \implies |f(x) - f(a)| < \epsilon)$$

#### **One-side continuous**

A function f is continuous from right at a iff:

$$\lim_{x o a^+}f(x)=f(a)$$

A function f is continuous from left at a iff:

$$\lim_{x o a^-}f(x)=f(a)$$

### Continuous on an open interval

A function f is continuous in (a,b) iff f is continuous on every  $c\in(a,b)$ .

#### Continuous on a closed interval

A function f is continuous in [a,b] iff f is:

- continuous on every  $c \in (a,b)$
- ullet right-continuous at  $oldsymbol{a}$
- left-continuous at b

# **Uniformly continuous**

Suppose a function f is continuous on (a,b). f is uniformly continuous on (a,b) iff:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \mathrm{s.t.} \; |x-y| < \delta \implies |f(x) - f(y)| < \epsilon$$

If a function f is continuous on [a,b], f is uniformly continuous on [a,b].

⚠ Todo

Is this section correct? I am not 100% sure.

# **Continuity Theorems**

#### **Extreme Value Theorem**

If f is continuous on [a,b], f has a maximum and a minimum in [a,b].

(i) Proof Hint

Proof is quite hard.

#### **Intermediate Value Theorem**

Let f is continuous on [a,b]. If  $\exists u$  such that f(a)>u>f(b) or f(a)< u< f(b):  $\exists c\in (a,b)$  such that f(c)=u.

(i) Proof Hint

Proof the case when u=0. Otherwise define a new function g(x) such that middle part of the above inequality has a 0 in the place of u.

### Sandwich (or Squeeze) Theorem

Let:

- For some  $\delta > 0$  :  $orall x(0 < |x-a| < \delta \implies f(x) \le g(x) \le h(x))$
- $\lim_{x o a}f(x)=\lim_{x o a}h(x)=L\in\mathbb{R}$

Then  $\lim_{x o a} g(x) = L$ .

(i) Note

Works for any kind of x limits.

# "No sudden changes"

#### **Positive**

Let f be continuous on a and f(a)>0

$$\implies \exists \delta > 0; \forall x (|x-a| < \delta \implies f(x) > 0)$$

Take 
$$\epsilon = rac{f(a)}{2}$$

#### **Negative**

Let f be continuous on a and f(a) < 0

$$\implies \exists \delta > 0; \forall x (|x-a| < \delta \implies f(x) < 0)$$

(i) Proof Hint

Take 
$$\epsilon = -rac{f(a)}{2}$$

# Differentiability

A function f is differentiable at a iff:

$$\lim_{x o a}rac{f(x)-f(a)}{x-a}=L\in\mathbb{R}=f'(a)$$

f'(a) is called the derivative of f at a.

### One-side differentiable

#### Left differentiable

A function f is left-differentiable at a iff:

$$\lim_{x o a^-}rac{f(x)-f(a)}{x-a}=L\in\mathbb{R}=f_-'(a)$$

### Right differentiable

A function f is right-differentiable at a iff:

$$\lim_{x o a^+}rac{f(x)-f(a)}{x-a}=L\in\mathbb{R}=f'_+(a)$$

### Differentiability implies continuity

f is differentiable at  $a \implies f$  is continuous at a

#### (i) Proof Hint

Use  $\delta = min(\delta_1, rac{\epsilon}{1+|f'(a)|})$  .

#### (i) Note

Suppose f is differentiable at a. Define g:

$$g(x) = \left\{ egin{array}{ll} rac{f(x) - f(a)}{x - a}, & x 
eq a \ f'(a), & x = a \end{array} 
ight.$$

g is continuous at a.

### **Extreme Values**

Suppose  $f:[a,b] o \mathbb{R}$ , and  $F=f([a,b])=\Big\{\,f(x)\mid x\in [a,b]\,\Big\}$ . Minimum and maximum values of f are called the extreme values.

#### **Maximum**

Maximum of the function f is f(c) where  $c \in [a,b]$  iff:

$$orall x \in [a,b], \; f(c) \geq f(x)$$

aka. Global Maximum. Maximum doesn't exist always.

#### **Local Maximum**

A Local maximum of the function f is f(c) where  $c \in [a,b]$  iff:

$$\exists \delta \ \ \forall x \, (0 < |x - c| < \delta \implies f(c) \ge f(x))$$

Global maximum is obviously a local maximum.

The above statement can be simplified when c = a or c = b.

When c = a:

$$\exists \delta \ \forall x (0 < x - c < \delta \implies f(c) \ge f(x))$$

When c = b:

$$\exists \delta \ \forall x (-\delta < x - c < 0 \implies f(c) \geq f(x))$$

#### **Minimum**

Minimum of the function f is f(c) where  $c \in [a,b]$  iff:

$$\forall x \in [a,b], \ f(c) \leq f(x)$$

aka. Global Minimum. Minimum doesn't exist always.

#### **Local Minimum**

$$\exists \delta \ \forall x (0 < |x - c| < \delta \implies f(c) \le f(x))$$

Global minimum is obviously a local maximum.

The above statement can be simplified when c=a or c=b.

When c = a:

$$\exists \delta \ \forall x (0 < x - c < \delta \implies f(c) \leq f(x))$$

When c=b:

$$\exists \delta \ \ orall x \left( -\delta < x - c < 0 \ \Longrightarrow \ f(c) \leq f(x) 
ight)$$

### Special cases

#### f is continuous

Then by Extreme Value Theorem, we know  $m{f}$  has a minimum and maximum in [a,b].

#### f is differentiable

- If f(a) is a local maximum:  $f'_+(a) \leq 0$
- If f(b) is a local maximum:  $f'(b) \geq 0$
- $c \in (a,b)$  and If f(c) is a local maximum: f'(c)=0
- If f(a) is a local minimum:  $f'_+(a) \geq 0$
- If f(b) is a local minimum:  $f'(b) \leq 0$
- $c \in (a,b)$  and If f(c) is a local minimum: f'(c)=0

### **Critical point**

 $c \in [a,b]$  is called a critical point iff:

$$f'(c) = 0 \quad \lor \quad f'(c) \text{ is undefined}$$

# **Other Theorems**

#### Rolle's Theorem

Let f be continuous on [a,b] and differentiable on (a,b). And f(a)=f(b). Then:

$$\exists c \in (a,b) \text{ s.t. } f'(c) = 0$$

By Extreme Value Theorem, maximum and minimum exists for f.

Consider 2 cases:

- 1. Both minimum and maximum exist at  $oldsymbol{a}$  and  $oldsymbol{b}$  .
- 2. One of minimum or maximum occurs in (a,b) .

#### **Mean Value Theorem**

Let f be continuous on [a,b] and differentiable on (a,b). Then:

$$\exists c \in (a,b) ext{ s.t. } f'(c) = rac{f(b) - f(a)}{b - a}$$

#### (i) Proof Hint

- Define  $g(x) = f(x) \Big(rac{f(a) f(b)}{a b}\Big) x$
- g(a) will be equal to g(b)
- ullet Use Rolle's Theorem for  $oldsymbol{g}$

### Cauchy's Mean Value Theorem

Let f and g be continuous on [a,b] and differentiable on (a,b), and  $\forall x \in (a,b) \ g'(x) \neq 0$  Then:

$$\exists c \in (a,b) ext{ s.t. } rac{f'(c)}{g'(c)} = rac{f(b) - f(a)}{g(b) - g(a)}$$

- Define  $h(x) = f(x) \left(rac{f(a) f(b)}{g(a) g(b)}
  ight) g(x)$
- h(a) will be equal to h(b)
- ullet Use Rolle's Theorem for h

Mean value theorem can be obtained from this when g(x)=x.

# **Generalized MVT for Riemann Integrals**

Let f,g be continuous on [a,b] (  $\Longrightarrow f,g$  are integrable), and g does not change sign on (a,b). Then  $\exists \zeta \in (a,b)$  such that:

$$\int_a^b f(x)g(x)\mathrm{d}x = f(\zeta)\int_a^b g(x)\mathrm{d}x$$

#### (i) Proof Hint

- ullet Use Extreme value theorem for  $oldsymbol{f}$
- ullet Multiply by g(x) . Then integrate. Then divide by  $\int_a^b g(x)$  .
- ullet Use intermediate value theorem to find  $f(\zeta)$

# L'Hopital's Rule

# (i) Note

Be careful with the pronunciation.

- It's not "Hospital's Rule", there are no "s"
- It's not "Hopital's Rule" either, there is a "L"

L'Hopital's Rule can be used when all of these conditions are met. (here  $\pmb{\delta}$  is some positive number). Select the appropriate  $\pmb{x}$  ranges.

1. Either of these conditions must be satisfied

$$\circ \quad f(a) = g(a) = 0$$

$$\circ \lim f(x) = \lim g(x) = 0$$

$$\circ \ \lim f(x) = \lim g(x) = \infty$$

- 2. f,g are continuous on  $x\in [a,a+\delta]$
- 3. f,g are differentiable on  $x\in(a,a+\delta)$

4. 
$$g'(x) 
eq 0$$
 on  $x \in (a, a + \delta)$ 

5. 
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$$

Then: 
$$\lim_{x o a^+} rac{f(x)}{g(x)} = L$$

(i) Note

L'Hopital's rule can be proven using Cauchy's Mean Value Theorem.

It is valid for all types of "x limits".

# **Higher Order Derivatives**

Suppose f is a function defined on (a,b). f is n times differentiable or n-th differentiable iff:

$$\lim_{x o a}rac{f^{(n-1)}(x)-f^{(n-1)}(a)}{x-a}=L\in\mathbb{R}=f^{(n)}(a)$$

Here  $f^{(n)}$  denotes n-th derivative of f. And  $f^{(0)}$  means the function itself.

 $f^{(n)}(a)$  is the n-th derivative of f at a.

(i) Note

f is n-th differentiable at  $a \implies f^{(n-1)}$  is continuous at a

# **Taylor's Theorem**

Let f is n+1 differentiable on (a,b). Let  $c,x\in(a,b)$ . Then  $\exists\zeta\in(c,x)\ \mathrm{s.t.}$  :

$$f(x) = f(c) + \sum_{k=1}^n rac{f^{(k)}(c)}{k!} (x-c)^k + rac{f^{(n+1)}(\zeta)}{(n+1)!} (x-c)^{n+1}$$

Mean value theorem can be derived from taylor's theorem when n=0.

### (i) Proof Hint

$$F(t) = f(t) + \sum_{k=1}^n rac{f^{(k)}(t)}{k!} (x-t)^k$$

$$G(t) = (x-t)^{n+1}$$

- ullet Define F,G as mentioned above
- ullet Consider the interval [c,x]
- ullet Use <u>Cauchy's mean value theorem</u> for F,G after making sure the conditions are met.

The above equation can be written like:

$$f(x) = T_n(x,c) + R_n(x,c)$$

# **Taylor Polynomial**

This part of the above equation is called the Taylor polynomial. Denoted by  $T_n(x,c)$ .

$$T_n(x,c) = f(c) + \sum_{k=1}^n rac{f^{(k)}(c)}{k!} (x-c)^k$$

#### Remainder

Denoted by  $R_n(x,c)$ .

$$R_n(x,c) = rac{f^{(n+1)}(\zeta)}{(n+1)!} (x-c)^{n+1}$$

Integral form of the remainder

$$R_n(x,c)=rac{1}{n!}\int_c^x f^{(n+1)}(t)(x-t)^n\mathrm{d}t$$

#### (i) Proof Hint

- Method 1: Use integration by parts and mathematical induction.
- Method 2: Use Generalized MVT for Riemann Integrals where:

$$\circ$$
  $F=f^{(n+1)}$ 

$$\circ G = (x-t)^n$$

#### Second derivative test

When n=1:

$$f(x) = f(c) + f'(c)(x-c) + rac{f''(\zeta)}{2!}(x-c)^2$$

$$f(x) - ext{Tangent line} = rac{f''(\zeta)}{2!} (x-c)^2$$

From this:  $f''(c)>0 \implies$  a local minimum is at c. Converse is  $\cot$  true.

# Sequences

A sequence on a set A is a function  $u:\mathbb{Z}^+ o A$ .

Image of the n is written as  $u_n$ . A sequence is indicated by one of these ways:

$$\left\{u_n\right\}_{n=1}^{\infty}$$
 or  $\left\{u_n\right\}$  or  $\left(u_n\right)_{n=1}^{\infty}$ 

#### **Increasing or Decreasing**

A sequence  $ig(u_nig)$  is

- Increasing **iff**  $u_n \geq u_m$  for n > m
- ullet Decreasing **iff**  $u_n \leq u_m$  for n>m
- · Monotone iff either increasing or decreasing
- ullet Strictly increasing **iff**  $u_n>u_m$  for n>m
- ullet Strictly decreasing ullet iff  $u_n < u_m$  for n > m

#### **Subsequence**

Suppose  $u:\mathbb{Z}^+ \to \mathbb{R}$  be a sequence and  $v:\mathbb{Z}^+ \to \mathbb{Z}^+$  be an increasing sequence. Then  $u\circ v:\mathbb{Z}^+ \to \mathbb{R}$  is a subsequence of u.

### Convergence

#### Converging

A sequence  $ig(u_nig)_{n=1}^\infty$  is converging (to  $L\in\mathbb{R}$ ) iff:  $\lim_{n o\infty}u_n=L$ 

$$orall \epsilon > 0 \; \exists N \in \mathbb{Z}^+ \; orall n \; (n > N \implies |u_n - L| < \epsilon)$$

(i) Note

$$orall x \in \mathbb{R} ~~ \lim_{n o \infty} rac{x^n}{n!} = 0$$

### Diverging

A sequence is diverging **iff** it is not converging.

$$\lim_{n o \infty} u_n = \left\{egin{array}{l} \infty \ -\infty \ ext{undefined,} & ext{when } u_n ext{ is osciallating} \end{array}
ight.$$

### **Convergence test**

All converging sequences are bounded.

#### Increasing and bounded above

Let  $ig(u_nig)$  be increasing and bounded above. Then  $ig(u_nig)$  is converging (to  $\sup\ \{u_n\}$ ).

#### (i) Proof Hint

- $\{u_n\}$  has a  $\sup u_n (=s)$
- Prove:  $\lim_{n o \infty} u_n = s^-$

#### Decreasing and bounded below

Let  $(u_n)$  be decreasing and bounded below. Then  $(u_n)$  is converging (to  $\inf \ \{u_n\}$ ).

### (i) Proof Hint

- $\{u_n\}$  has a  $\inf u_n (=l)$
- Prove:  $\lim_{n o \infty} u_n = l^+$

# Newton's method of finding roots

Suppose  $\boldsymbol{f}$  is a function. To find its roots:

- Select a point  $oldsymbol{x}_0$
- ullet Draw a tangent at  $oldsymbol{x}_0$
- Choose  $x_1$  which is where the tangent meets  $\,y=0\,$
- Continue this process repeatedly

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

#### **Theorems**

### **Existence of subsequence**

Every sequence has a monotone subsequence.

#### **Bolzano-Weistrass**

Every bounded sequence has a converging sequence.

(i) Proof Hint

Using the above theorem and the fact that bounded monotone sequences converge.

# **Cauchy Sequence**

A sequence  $u:\mathbb{Z}^+ o A$  is Cauchy  $\mathrm{iff}$ :

$$orall \epsilon > 0 \, \exists N \in \mathbb{Z}^+ \, orall m, n; m, n > N \implies |u_n - u_m| < \epsilon$$

### **Complete**

A set  $\boldsymbol{A}$  is complete **iff**:

$$\forall u: \mathbb{Z}^+ \to A; \ u \text{ converges to } L \in A$$

### Q is not complete

 ${m Q}$  is  ${f not}$  complete because:

$$\sum_{k=1}^{\infty}rac{1}{k!}=e-1
otin\mathbb{Q}$$

### R is complete

 $\mathbb{R}$  is complete.

Proof is quite hard.

#### **Bounded**

All Cauchy sequences are bounded. (has an upper bound).

### (i) Proof Hint

- Consider the Cauchy definition
- Take n>m=N+1>N

# **Series**

Let  $(u_n)$  be a sequence, and a series (a new sequence) can be defined from it such that:

$$s_n = \sum_{k=1}^n u_k$$

# Convergence

If  $(s_n)$  is converging:

$$\lim_{n o\infty}s_n=\lim_{n o\infty}\sum_{k=1}^nu_k=\sum_{k=1}^\infty u_k=S\in\mathbb{R}$$

## **Absolutely Converging**

 $\sum_{k=1}^n u_k$  is absolutely converging iff  $\sum_{k=1}^n |u_k|$  is converging.

$$\sum_{k=1}^n |u_k| ext{ is converging } \implies \sum_{k=1}^n u_k ext{ is converging }$$

Use this inequality:

$$0 \leq |u_k| - u_k| \leq 2|u_k|$$

#### **Conditionally Converging**

 $\sum_{k=1}^n u_k$  is condtionally converging iff:

$$\sum_{k=1}^{n} |u_k| ext{ is diverging} \quad ext{and} \quad \sum_{k=1}^{n} u_k ext{ is converging}$$

#### **Theorem 1**

$$\sum_{k=1}^n u_k ext{ is converging } \implies \lim_{k o\infty} u_k = 0$$

The converse is more useful:

$$\lim_{k o\infty}u_k
eq 0 \implies \sum_{k=1}^nu_k ext{ is diverging}$$

# **Convergence Tests**

# **Direct Comparison Test**

Let  $0 < u_k < v_k$ .

$$\sum_{k=1}^{\infty} v_k ext{ is converges } \Longrightarrow \sum_{k=1}^{\infty} u_k ext{ is converges}$$

- Note that  $\sum_{k=1}^n u_k$  and  $\sum_{k=1}^n v_k$  are increasing
- Show that  $\sum_{k=1}^{\infty} v_k$  converges to its supremum v which is an upper bound of  $\sum_{k=1}^n u_k$

### (i) Example

Proving the convergence of  $\sum_{k=1}^{\infty} rac{1}{k!}$ , by using  $k! \geq 2^{k-1}$  for all  $k \geq 0$ .

## **Limit Comparison Test**

Let  $0 < u_k, v_k$  and  $\lim_{n o \infty} rac{u_n}{v_n} = R$ .

$$R>0 \implies \left(\sum_{n=1}^\infty u_n ext{ is converging } \iff \sum_{n=1}^\infty v_n ext{ is converging}
ight)$$

$$R=0 \implies igg(\sum_{n=1}^\infty v_n ext{ is converging } \implies \sum_{n=1}^\infty u_n ext{ is converging}igg)$$

$$R = \infty \implies \left(\sum_{n=1}^\infty v_n ext{ is diverging } \implies \sum_{n=1}^\infty u_n ext{ is diverging}
ight)$$

Only possibilities are  $R=0,R>0,R=\infty$ .

For R>0:

- Consider limit definition with  $\,\epsilon=rac{L}{2}\,$
- Direct comparison test can be used for the 2 set of inequalities

For R=0:

- ullet Consider limit definition with  $\epsilon=1$
- Direct comparison test can be used now

For  $R=\infty$ :

- ullet Consider limit definition with  $\,M=1\,$
- · Direct comparison test can be used now

### **Integral Test**

Let u(x)>0, decreasing and integrable on [1,M] for all M>1. Then:

$$\sum_{n=1}^{\infty} u_n$$
 is converging  $\iff \int_1^{\infty} u(x) \, \mathrm{d}x$  is converging

As u(x) is decreasing, it is apparent that it is integrable.

Make use of this inequality:

$$s_n - u_1 \leq \int_1^n u(x) \,\mathrm{d}x \leq s_n - u_n$$

For  $\iff$ :

- Note that  $oldsymbol{s}_n$  is increasing
- ullet Show that  $s_n$  is bounded above by  $\int_1^\infty u(x)\,\mathrm{d}x + u_1$

For  $\Longrightarrow$ :

- Define  $F(n)=\int_1^n u(x)\,\mathrm{d}x$
- ullet Note that F(n) is increasing
- ullet Note that  $\lim_{n o\infty}u_n=0$
- ullet Show that F(n) is bounded above by  $\lim_{n o\infty}s_n$

### (i) Note

$$\sum_{n=1}^{\infty} u_n ext{ is converging } \implies \lim_{k o\infty} u_k = 0$$

$$\int_1^\infty u(x)\,\mathrm{d}x ext{ is converging } \implies \lim_{k o\infty} u(k) = 0$$

### **Ratio Test**

Let 
$$u(x)>0$$
 and  $\lim_{n o\infty}rac{u_{n+1}}{u_n}=L$ .

$$L < 1 \implies \sum_{n=1}^{\infty} u_n ext{ is converging}$$

$$L>1 \implies \sum_{n=1}^{\infty} u_n ext{ is diverging}$$

- ullet Consider the limit definition with  $\,\epsilon=rac{1}{2}(1-L)\,$
- Show that:  $rac{1}{2}(3L-2) < rac{u_{k+1}}{u_k} < rac{1}{2}(1+L)$
- Use  $\sum_{k=1}^{\infty} r^k$  is converging iff r < 1

### **Root Test**

Let u(x)>0 and  $\lim_{n o\infty}u_n^{1/n}=L$ .

$$L < 1 \implies \sum_{n=1}^{\infty} u_n ext{ is converging}$$

$$(L>1ee L=\infty)\implies \sum_{n=1}^\infty u_n ext{ is diverging}$$

### (i) Proof Hint

For  $L < 1 \lor L > 1$ : Consider the limit definition with  $\epsilon = \frac{1}{2}(1-L)$ 

For  $L=\infty$ : Consider the limit definition with M>1

# **Riemann Zeta Function**

$$\zeta(s) = \sum_{k=1}^{\infty} rac{1}{k^s}$$

Convergence of this function can be derived using integral test.

This function converges iff s>1. And it converges to:

$$\frac{1}{s-1}$$

Otherwise it diverges.

# **Alternating Series**

Suppose  $u_k > 0$ . An alternating series is:

$$\sum_{k=1}^n (-1)^{k-1} u_k = u_1 - u_2 + u_3 - u_4 + \cdots$$

### Convergence

If  $orall k \ u_k > 0$ , decreasing and  $\lim_{n o \infty} u_n = 0$ . Then

$$\sum_{k=1}^{n} (-1)^{k-1} u_k$$
 is converging

### (i) Proof

For odd-indexed elements:

$$s_{2m+3} \leq s_{2m+1} \leq s_1 = u_1$$

For even-indexed elements:

$$s_{2m+2} \geq s_{2m} \geq s_2 = u_1 - u_2$$

Combining these 2:

$$0 \leq u_1 - u_2 \leq s_2 \leq s_{2m} \leq s_{2m+1} \leq s_1 = u_1$$

 $s_{2m}$  is bounded above by  $u_1$  and increasing.  $s_{2m+1}$  is bounded below by 0 and decreasing. So both converges.

$$\lim_{m o\infty}(s_{2m+1}-s_{2m})=\lim_{m o\infty}u_{2m+1}=0$$

$$\implies \lim_{m o \infty} s_{2m+1} = \lim_{m o \infty} s_{2m} = s$$

Both converges to the same number.

This PDF is saved from https://s1.sahithyan.dev