CNN Fundamentals.

1. Explain the basic components of a digital image and how it is represented in a computer. State the differences between grayscale and color images.

Ans:

Basic Components of a Digital Image

A digital image is composed of:

- Pixels (Picture Elements): The smallest unit of an image, each representing a single color or intensity value.
- Channels:
 - Grayscale: Single channel (intensity values, typically 0-255).
 - Color (RGB): Three channels (Red, Green, Blue), each with intensity values (0-255).
- Resolution: Determined by width × height (e.g., 1920×1080 pixels).
- **Bit Depth**: Number of bits per pixel (e.g., 8-bit = 256 intensity levels).

Grayscale vs. Color Images

Feature	Grayscale Images	Colour (RGB) Image	
Channels	1(intensity)	3(R,G,B)	
File size	Smaller	Larger(3*grayscale)	
Applications	Medical imaging, edge	Photography, object	
	detection.	detection.	

 Define Convolutional Neural Networks (CNNs) and discuss their role in image processing. Describe the key advantages of using CNNs over traditional neural networks for image-related tasks

Ans:

Convolutional Layers & Purpose

- Purpose: Detect local patterns (edges, textures) via filters/kernels.
- Operation: Slides a filter over the input, computing dot products to produce a feature map.
 Filters (Kernels)
- Small matrices (e.g., 3×3, 5×5) that extract features.
- Eg. Vertical edge detector.
- Define convolutional layers and their purpose in a CNN.Discuss the concept of filters and how they are applied during the convolution operation. Explain the use of padding and strides in convolutional layers and their impact on the output size

concept	Purpose	Impact on Output Size	
Padding(Adding zeros	Preserves spatial dimensions	Output size = Input	
around edges)		size(with "same" padding.)	
Stride(step size of filter)	Controls downsamplingL	Larger stride → smaller	
		output(eg, strid=2 halves	
		dimension)	

Output size Formula.

Output size = [(Input size-Filter size+2*padding)/stride]+1

4. Describe the purpose of pooling layers in CNNs.Compare max pooling and average pooling operation

Ans: Purpose of Pooling Layers

• **Dimensionality Reduction**: Reduces spatial size (controls overfitting).

• Translation Invariance: Makes network robust to small shifts.

• Computational Efficiency: Reduces parameters for subsequent layers.

Max Pooling vs. Average Pooling

Pooling type	Operations	Advantages	Disadvantages
Max Pooling	Select maximum	Preserves sharps	Loses some special
	value in windows	feature(edges)	details
Average pooling	Computes mean of	Smooth outfput	Blurs edges.
	window	(reduces noise)	

Example (2×2 Pooling):

• Input: [[1, 3], [2, 4]]

• Max Pooling: 4

• Average Pooling: (1+3+2+4)/4 = 2.5