Segmentation

Deep Learning

Aziz Temirkhanov Lambda, HSE

Fast recap

Statistical learning theory

$$\{(x_i,y_i)\}_{i=1}^\ell$$
 - training set $x\in\mathbb{R}^d$ - data features $y\in\mathbb{R}$ - target

$$\min_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} = \mathcal{L}(\theta; x, y) \qquad \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(g_{\theta}(x_i), y_i)$$

STL

- 1. Problem is formulated in business language (e.g. "Highlight a tumor within MRI scan")
- 2. Reformulate it formally in terms of math and STL ("given an image x, predict segmentation mask y")
- 3. Recall a universal approximation theorem
- 4. Remember that you have a prior knowledge about your data distribution (besides the normality assumption)
- 5. Fit your function f (your NN) to approximate target function g (your PDF or other law)
- 6. During fitting, you have to minimize the loss function (ERM). Once it minimized, and other formalities are satisfied, you are done!

Image segmentation

Computer Vision Tasks

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Formulation

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.

At test time, classify each pixel of a new image.

Problem

Impossible to classify without context

Q: how do we include context?

Context

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Inefficiency

overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

A. Temirkhanov, HSE. 08.04.24 10/32

Shared Convolutional features

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

A. Temirkhanov, HSE. 08.04.24 11/32

CNN Segmentation

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

A. Temirkhanov, HSE. 08.04.24 12/32

CNN Segmentation

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

CNN Segmentation

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

A. Temirkhanov, HSE. 08.04.24 14/32

UNet

Unpooling

Nearest Neighbor

1			
	1	2	1
	3	4	3
			2

	1	1	2	2
	3	3	4	4
Ì	2	2	1	,

2

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

Input: 2 x 2

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Output: 4 x 4

Max unpooling

Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

A. Temirkhanov, HSE. 08.04.24 18/32

Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

A. Temirkhanov, HSE. 08.04.24 19/32

Transposed Convolution

A. Temirkhanov, HSE. 08.04.24 20/32

Transposed Convolution

A. Temirkhanov, HSE. 08.04.24 21/32

Semantic Segmentation

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling:

Unpooling or strided transposed convolution

Predictions: H x W

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

A. Temirkhanov, HSE. 08.04.24 23/32

Instance Segmentation

Instance Object Segmentation **Detection** DOG, DOG, CAT DOG, DOG, CAT Multiple Object

A. Temirkhanov, HSE. 08.04.24 24/32

He et al, "Mask R-CNN", ICCV 2017

A. Temirkhanov, HSE. 08.04.24 25/32

C x 28 x 28

He et al, "Mask R-CNN", arXiv 2017

A. Temirkhanov, HSE. 08.04.24 26/32

Mask R-CNN

ROI Alignment

A. Temirkhanov, HSE. 08.04.24 28/32

Bonus part

Addition vision tasks

Face verification and recognition

A. Temirkhanov, HSE. 08.04.24 30/32

Triplet Loss

$$\ell(A,P,N) = \max \left(d(A,P) - d(A,N) + lpha,0
ight)$$

Style Transfer and Domain Adaptation

A. Temirkhanov, HSE. 08.04.24 32/32