HSC Worked Solutions projectmaths.com.au

05	6c	 The graphs of the curves y = x² and y = 12 - 2x² are shown in the diagram. (i) Find the points of intersection of the two curves. (ii) The shaded region between the curves and the y-axis is rotated about the y-axis. By splitting the shaded region 	$y = x^2$	1
		into two parts, or otherwise, find the volume of the solid formed.	$y = 12 - 2x^2$	

i.
$$x^2 = 12 - 2x^2$$

 $x^2 + 2x^2 = 12$
 $3x^2 = 12$
 $x^2 = 4$
 $x = \pm 2$
Subs $x = 2$ in $y = x^2$... $y = 4$... $(2, 4)$
Subs $x = -2$ in $y = x^2$... $y = 4$... $(-2, 4)$
ii. As $y = x^2$ and $y = 12 - 2x^2$
then $x^2 = y$ then $2x^2 = 12 - y$
 $x^2 = 6 - \frac{y}{2}$

Using Volume =
$$\pi \int x^2 dy$$
,

Total volume
$$= \pi \int_{4}^{12} 6 - \frac{y}{2} dy + \pi \int_{0}^{4} y dy$$

$$= \pi \left[6y - \frac{y^{2}}{4} \right]_{4}^{12} + \pi \left[\frac{y^{2}}{2} \right]_{0}^{4}$$

$$= \pi \left[72 - \frac{144}{4} - (24 - \frac{16}{4}) \right] + \pi \left[\frac{16}{2} - 0 \right]$$

$$= \pi \left[72 - 36 - 20 + 8 \right]$$

$$= 24\pi \qquad \therefore \text{ volume of } 24\pi \text{ unit}^{3}$$

Board of Studies: Notes from the Marking Centre

- (i) Most candidates attempted this part and many were successful in getting x = ±2. However, not all of these answered the question of finding the points of intersection as shown on the diagram.
- (ii) It was challenging for most candidates to understand the process needed and the link to part (i). Many tried to use x functions, while many others could not come up with the correct split of regions and/or wanted to take a difference of volumes, or they doubled an expression because of the symmetry. Many candidates also used the wrong limits, such as using y = 2 rather than 4 for the middle value.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by *projectmaths* and are not supplied or endorsed by the Board of Studies