Før kalkulus

Teoridel

Sindre Sogge Heggen

"Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt"

"Det er ikke kunnskapen, men læringen, ikke besittelsen, men ervervelsen, ikke oppholdet, men ankomsten som gir den største gleden."

— Carl Friedrich Gauss

Alt innhold er lagd av Sindre Sogge Heggen. Teksten er skrevet i LATEX og figurene er lagd vha. LATEX, GeoGebra og Asymptote.

Om boka

Denne bokas hovedmål er å virke som lærebok i faget *Matematikk R2*. Temaene i boka dekker derfor kompetansemålene til faget per 2017, bestemt av *Utdanningsdirektoratet* (www.udir.no/kl06/MAT3-01/Hele/Kompetansemaal/matematikk-r2).

Boka er delt inn i to deler, én teoridel og én GeoGebra-del. GeoGebra-delen kan lastes ned gratis fra nettsiden forkalkulus.netlify.com, som også er hjemmeside for denne boka. Hovedårsaken til en slik inndeling er at GeoGebra hyppig oppdateres. Ved å la læreteksten for GeoGebra være nettbasert, kan det sørges for at informasjonen som blir gitt alltid er tilpasset den nyeste versjonen av programvaren.

Teoridelen

En sentral del i skolematematikken er å ha en brei oversikt over ligninger som kan anvendes under visse vilkår, disse ligningene kaller vi gjerne regneregler. I de fleste lærebøker på markedet vil man erfare at noen forklaringer for regneregler er tatt med, mens andre er fullstendig utelatt. Etter forfatterens mening er dette med på å holde i live den uheldige myten om at "matematikk er et sett med regler som må læres" og at man ofte "må akspetere at sånn er det bare". Med denne holdningen undertrykker man kansje det vakreste av alt med matematikk, nemlig at (nesten) enhver sannhet bygger på en annen - alt som kan forklares bør derfor forklares.

Samtidig er læreplanen for R2 såpass omfattende at skolenes tilmålte tid til faget gjør det vanskelig å gå i dybden av hvert eneste tema. Som et et kompromiss mellom grundighet og tidspress er derfor teoridelen strukturert på følgende måte: Der hvor forfatteren mener at begrunnelesen for en regneregel er nødvendig for høy måloppnåelse i faget, er en forklaring¹ tatt med i forkant. Hvis en regneregel derimot presenteres direkte, vil man finne en forklaring for denne i seksjonen Forklaringer i samme kapittel, underforstått at dette er for den spesielt interesserte.

¹Å forklare reglene istedenfor å bevise dem er et bevisst valg. Et bevis stiller sterke matematiske krav som ofte må defineres både på forhånd og underveis i en utledning av en ligning, noe som kan føre til at forståelsen av hovedpoenget drukner i smådetaljer. Noen av forklaringene vil likevel være gyldige som bevis.

Teksten består av sju kapitler som er delt inn i seksjoner og delseksjoner. Alle oppgaver tilhørende hvert kapittel er satt av til siste seksjon, fasit finner du bakerst i boka (løsningsforslag ligger gratis tilgjengelig på hjemmesiden). Hver såkalt regneregel dukker opp i en blå tekstboks, som oftest etterfulgt av ett eller flere eksempler.

Rimelig unikt for denne boka, i skolesammenheng, er bruken av nummererte ligninger. Alle ligninger som blir brukt ved senere anledninger blir referert til ved et unikt nummer. Dette gjør at omskrivinger og resulter ikke kommer "ut av det blå", og at leseren enkelt kan finne tilbake til aktuelle ligninger. Ved digital lesning er også hyperreferanser aktivert. Dette betyr at du kan nå refererte ligninger, figurer, lenker, kapitler, seksjoner og delseksjoner ved et enkelt pekertrykk.

GeoGebra-delen

Fra og med våren 2015 har det vært spesifikke krav på eksamen i R2 om bruk av digital graftegner og CAS (Computer Algebra System). Eksamenskandidaten står fritt til å velge selv hvilket digitalt hjelpemiddel han/hun vil bruke, men på de fleste norske skoler er det GeoGebra som blir undervist.

Før kalkulus; GeoGebra i R2 tilbyr en omfattende oversikt over de mest sentrale funksjonalitetene i GeoGebra, sett fra et R2 perspektiv. Teksten følger de samme kapitlene som teoridelen og inneholder eksempler og øvingsoppgaver med løsningsforslag.

Kjære leser.

Denne boka er i utgangspunktet gratis å bruke, men jeg håper du forstår hvor mye tid og ressurser jeg har brukt på å lage den. Jeg ønsker å fortsette arbeidet med å lage lærebøker som er med på å gjøre matematikk lett tilgjengeleg for alle, men det kan bli vanskelig med mindre arbeidet gir en viss inntekt. Hvis du ender opp med å like boka, håper jeg derfor du kan donere 50 kr via Vipps til 90559730 eller via PayPal. Vær vennlig å markere donasjonen med "Før kalkulus" ved bruk av Vipps. På forhand takk!

Boka blir oppdatert så snart som råd etter at skrivefeil og lignende blir oppdaget. Jeg vil derfor råde alle til å laste ned en ny versjon i ny og ne ved å følge denne linken.

Nynorskversjonen av boka finner du her.

For spørsmål, ta kontakt på mail: sindre.heggen@gmail.com

Symboler

```
definisjonsmengden til f
 D_f
  \in
              "inneholdt i"
  V
              "eller"
              de reelle tallene
 \mathbb{R}
              de naturlige tallene \{1, 2, 3, ...\}
 \mathbb{N}
              heltallene \{..., -2, -1, 0, 1, 2, ...\}
  \mathbb{Z}
[a,b]
              lukket intervall fra og med a til og med b
[a,b)
              halvåpent intervall fra og med a til b
(a,b)
              åpent intervall fra a til b
 |a|
              absoluttverdien/tallverdien til a
 \perp
              "vinkelrett på"
              "parallell med"
  "hvis og bare hvis" (om det éne er sant, er også det andre sant.)
```

Obs! Den engelske standarden med $\dot{}$, $\dot{}$ som desimaltegn istedenfor $\dot{}$, $\dot{}$ brukes.

Innhold

1	Følg	ger og rekker	9
	1.1	Følger	LO
	1.2	Rekker	13
	1.3	Induksjon	19
	Fork	laringer	24
	Opp	gaver	26
2	Trig	conometri	1
	2.1	Vinkler og enhetssirkelen	32
	2.2	Trigonometriske uttrykk	35
	2.3	Lineære ligninger	13
	2.4	Kvadratiske ligninger	51
	2.5	Trigonometriske funksjoner	54
	Fork	laringer	3
	Opp	gaver	68
3	Vek	torer i rommet 7	′5
	3.1	Vektorbegrepet	76
	3.2	Skalarproduktet	31
	3.3	Vinkelrette og parallelle vektorer	35
	3.4	Determinanter	38
	3.5	Vektorproduktet)1
	Fork	laringer)4
	Opp	gaver)()
4	Ron	ngeometrier 10	15
	4.1	Parameteriseringer)6
	4.2	Ligninger til geometrier	1
	4.3	Avstander mellom geometrier	9
	4.4	Vinkler mellom geometrier	22
	Fork	laringer	26
		gaver	28
5	Der	ivasjon 13	3
	5.1	Derivasjonsregler	34
	5.2	Andrederiverttesten	
	5.3	Den antideriverte	
		laringer	
		gaver	

6	Integ	grasjon	145
	6.1	Bestemt og ubestemt integral	146
	6.2	Integralregning	152
	6.3	Areal og volum	165
	Fork	laringer	173
	Oppg	gaver	179
7	Diffe	erensialligninger	183
	7.1	Introduksjon til differensialligninger	184
	7.2	Første ordens lineære differensialligninger	185
	7.3	Separable differensialligninger	188
	7.4	Retningsdiagram	190
	7.5	Andre ordens lineære differensialligninger	193
	7.6	Anvendelser	197
	Fork	laringer	206
	Oppg	gaver	209
\mathbf{Ve}	$_{ m dlegg}$; A -E	213
In	deks		225
Fa	\mathbf{sit}		227

Kapittel 1

Følger og rekker

Mål for opplæringen:

- finne og analysere rekursive og eksplisitte formler for tallmønstre med og uten digitale hjelpemidler, og gjennomføre og presentere enkle bevis knyttet til disse formlene
- gjennomføre og gjøre rede for induksjonsbevis
- ullet summere endelige rekker med og uten digitale hjelpemidler, utlede og bruke formlene for summen av de n første leddene i aritmetiske og geometriske rekker, og bruke dette til å løse praktiske problemer
- regne med uendelige geometriske rekker med konstante og variable kvotienter, bestemme konvergensområdet for disse rekkene og presentere resultatene

1.1 Følger

Følger er en oppramsing av tall, gjerne skilt med komma. I følgen

$$2, 4, 8, 16$$
 (1.1)

sier vi at vi har fire ledd. Ledd nr. 1 har verdien 2, ledd nr. 2 har verdien 4 osv. Hvert ledd i en rekke beskrives gjerne ved hjelp av en indeksert bokstav. Velger vi oss bokstaven a for følgen over, kan vi skrive $a_1 = 2$, $a_2 = 4$ osv.

Når vi lar a_i betegne leddene i en følge, bruker vi $i \in \mathbb{N}$. \mathbb{N} er symbolet for tallene i følgen 1, 2, 3, 4 osv, disse kaller vi gjerne de naturlige tallene. Ønsker vi å fortelle at et tall er i en følge vi ikke har noe symbol for, bruker vi klammeparanteser '{}'. For eksempel er $8 \in \{2, 4, 8, 16\}$.

Ofte kan tallene i en følge settes i sammenheng med hverandre. Multipliserer vi for eksempel et ledd i følgen fra (1.1) med 2, så har vi funnet det neste leddet. Den *rekursive* formelen er da

$$a_i = 2 \cdot a_{i-1}$$

I den rekursive formelen bruker vi altså den forrige verdien for å finne den neste.

Den nevnte følgen er en *endelig* følge fordi den har et konkret antall ledd. Hadde vi brukt den rekursive formelen kunne vi lagt på stadig flere ledd og fått følgen

$$2, 4, 8, 16, 32, 64, \dots$$
 (1.2)

'...' betyr at nye ledd fortsetter i det uendelige, følgen kalles da en uendelig følge.

Hva om vi for denne følgen ønsker å finne ledd nr. 20, altså a_{20} ? Det vil da lønne seg å finne en *eksplisitt* formel. For å gjøre dette skriver vi opp noen ledd og ser om vi finner et mønster:

$$a_1 = 2 = 2^1$$

 $a_2 = 4 = 2^2$
 $a_3 = 8 = 2^3$

Av ligningene over innser vi at vi for ledd nr. i kan skrive

$$a_i = 2^i$$

Og slik kan vi fort finne ledd nr. 20:

$$a_{20} = 2^{20}$$
$$= 1048576$$

En eksplisitt formel gir oss altså et uttrykk der verdien til et ledd regnes ut direkte. Når man har et slikt uttrykk er det også vanlig å skrive dette som siste ledd i rekka, (1.2) blir da seende slik ut:

$$2, 4, 8, 16, 32, 64, \dots, 2^{i}$$

1.1.1 Aritmetiske følger

Følgen

kalles en aritmetisk følge. Dette fordi to naboledd har en konstant differanse d=3. Skriver vi opp de tre første leddene kan vi finne mønsteret til en eksplisitt formel:

$$a_1 = 2 = 2 + 3 \cdot 0$$

 $a_2 = 5 = 2 + 3 \cdot 1$
 $a_3 = 8 = 2 + 3 \cdot 2$

Av ligningene over observerer vi at

$$a_i = 2 + 3 \cdot (i - 1)$$

Aritmetisk følge

Et ledd a_i i en aritmetisk følge er gitt ved den rekursive formelen

$$a_i = a_{i-1} + d (1.3)$$

og den eksplisitte formelen

$$a_i = a_1 + d(i-1) (1.4)$$

hvor d er den konstante differansen $a_i - a_{i-1}$.

Finn den rekursive og den eksplisitte formelen til følgen

$$7, 13, 19, 25, \dots$$

Svar:

Følgen har konstant differanse d = 6 og første ledd $a_1 = 7$. Den rekursive formelen blir da

$$a_i = a_{i-1} + 6$$

Mens den eksplisitte formelen blir

$$a_i = 7 + 6(i - 1)$$

1.1.2 Geometriske følger

Følgen

kalles en geometrisk følge. Dette fordi forholdet mellom to naboledd er den samme $kvotienten\ k=3$. Også her kan vi gjenkjenne et fast mønster:

$$a_1 = 2 = 2 \cdot 3^0$$

$$a_2 = 6 = 2 \cdot 3^1$$

$$a_3 = 18 = 2 \cdot 3^2$$

Den eksplisitte formelen blir derfor

$$a_i = 2 \cdot 3^{i-1}$$

Geometrisk følge

Et ledd a_i i en geometrisk følge med kvotient k er gitt ved den rekursive formelen

$$a_i = a_{i-1} \cdot k \tag{1.5}$$

og den eksplisitte formelen

$$a_i = a_1 \cdot k^{i-1} \tag{1.6}$$

En geometrisk følge har $a_1 = 2$ og k = 4. For hvilken i er $a_i = 128$?

Svar:

Vi får ligningen

$$2 \cdot 4^{i-1} = 128$$

$$4^{i-1} = 64$$

$$4^{i-1} = 4^{3}$$

$$i - 1 = 3$$

$$i = 4$$

Altså er $a_4 = 128$.

1.2 Rekker

Den store forskjellen på en rekke og en følge, er at i en rekke er leddene skilt med plusstegn¹. For eksempel er

$$2+6+18+54+162$$

en rekke. Vi bruker begrepet ledd på samme måte som for en følge; i rekken over har ledd nr. 3 verdien 18, og i alt er det fem ledd.

For en rekke er det naturlig at vi ikke bare ønsker å vite verdien til hvert enkelt ledd, men også hva summen av alle leddene blir. Så lenge en rekke ikke er uendelig, kan man alltids legge sammen ledd for ledd, men for noen rekker finnes det uttrykk som gir oss summen etter mye mindre arbeid (og til og med for tilfeller av uendelige rekker).

 $^{^{1}}$ Rekka -1-2-3 ser ut til å være skilt med minustegn, men er egentlig bare en forkorting av (-1) + (-2) + (-3).

1.2.1 Aritmetiske rekker

Hvis leddene i en rekke kan beskrives som en aritmetisk følge, kalles rekken en *aritmetisk rekke*. Da kan summen uttrykkes ved rekkens første og siste ledd:

Summen av en aritmetisk rekke

Summen S_n av de n første leddene i en aritmetisk rekke er gitt som

$$S_n = n \frac{a_1 + a_n}{2} \tag{1.7}$$

hvor a_1 er første ledd i rekken.

Eksempel

Gitt den uendelige rekken

$$3 + 7 + 11 + \dots$$

- a) Finn summen av de ti første leddene.
- **b)** For hvilken n er summen av rekken lik 903?

Svar:

a) Det i-te leddet a_i i rekken er gitt ved formelen

$$a_i = 3 + 4(i-1)$$

Dette er derfor en aritmetisk rekke, og summen av de n første leddene er da gitt av ligning (1.7). Ledd nr. 10 blir da¹

$$a_{10} = 3 + 4(10 - 1)$$
$$= 39$$

De ti første leddene er dermed gitt som

$$S_{10} = 10 \cdot \frac{3+39}{2}$$
$$= 210$$

b) I formelen for S_n setter vi inn det eksplisitte uttrykket for a_n , og får at

$$S_n = n \frac{a_1 + a_1 + d(n-1)}{2}$$

$$2 \cdot 903 = n(3+3+4(n-1))$$
$$0 = 6n+4n^2-4n-2 \cdot 903$$
$$0 = 2n^2+n-903$$

Denne ligningen har løsningene $n \in \{21, -\frac{43}{2}\}$. Vi søker et positivt heltall, derfor er n = 21 eneste mulige løsning.

1.2.2 Geometriske rekker

Hvis leddene i en rekke kan beskrives som en geometrisk følge, kalles rekken en *geometrisk rekke*. Da kan summen uttrykkes ved rekkens første ledd og kvotienten:

Summen av en geometrisk rekke

Summen S_n av de n første leddene i en geometrisk rekke med kvotient k og første ledd a_1 er gitt som

$$S_n = a_1 \frac{1 - k^n}{1 - k}$$
 , $k \neq 1$ (1.8)

Hvis k=1, er

$$S_n = na_1 \tag{1.9}$$

Eksempel

Gitt den uendelige rekken

$$3+6+12+24+...$$

- a) Finn summen av de 15 første leddene.
- b) For hvor mange ledd er summen av rekken lik 93?

Svar:

a) Vi observerer at dette er en geometrisk rekke med $a_1 = 3$ og k = 2. Summen av de 15 første leddene blir da

$$S_{15} = 3 \cdot \frac{2^{15} - 1}{1 - 2}$$

¹Når én side av ligningen er blank, betyr dette at uttrykket på siden er uforandret.

$$= 3 \cdot \frac{1 - 32768}{-1}$$
$$= 98301$$

b) Vi lar n være antall ledd, og får at

$$3 \cdot \frac{1 - 2^{n}}{1 - 2} = 93$$
$$2^{n} - 1 = \frac{93}{3}$$
$$2^{n} = 31 + 1$$
$$2^{n} = 2^{5}$$
$$n = 5$$

1.2.3 Uendelige geometrisk rekker

Når en geometrisk rekke har uendelig mange ledd, merker vi oss dette: Hvis |k| < 1, er

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} a_1 \frac{1 - k^n}{1 - k}$$
$$= a_1 \frac{1}{1 - k}$$

Summen av uendelig mange ledd går altså mot en endelig (konkret) verdi! Når dette er et faktum sier vi at rekken konvergerer og at rekken er konvergent. Hvis derimot $|k| \geq 1$, går summen mot $\pm \infty$. Da sier vi at rekken divergerer og at rekken er divergent.

Summen av en uendelig geometrisk rekke

For en uendelig geometrisk rekke med kvotient k<|1| og første ledd a_1 er summen S_∞ av rekken gitt som

$$S_{\infty} = \frac{a_1}{1 - k} \tag{1.10}$$

Hvis $|k| \ge 1$, vil summen gå mot $\pm \infty$.

Gitt den uendelige rekken

$$1 + \frac{1}{x} + \frac{1}{x^2} + \dots$$

- a) For hvilke x er rekken konvergent?
- b) Vis at $S_{\infty} = \frac{x}{x-1}$ når rekka konvergerer.
- c) For hvilken x er summen av rekken lik $\frac{3}{2}$?
- d) For hvilken x er summen av rekken lik -1?

Svar:

a) Dette er en geometrisk rekke med $k = \frac{1}{x}$ og $a_1 = 1$. Rekken er konvergent når |k| < 1, vi krever derfor at

b) Når |x| > 1, har vi at

$$S_{\infty} = \frac{a_1}{1 - k}$$

$$= \frac{1}{1 - \frac{1}{x}}$$

$$= \frac{1}{\frac{x-1}{x}}$$

$$= \frac{x}{x-1}$$

Som var det vi skulle vise.

c) Hvis rekken har en endelig sum $S_{\infty} = \frac{3}{2}$, er

$$\frac{x}{x-1} = \frac{3}{2}$$
$$2x = 3(x-1)$$
$$x = 3$$

Summen av rekken er altså $\frac{3}{2}$ når x=3.

d) Skal summen bli -1, må x oppfylle følgende ligning:

$$\frac{x}{x-1} = -1$$

$$x = -(x - 1)$$
$$x = \frac{1}{2}$$

Men $x = \frac{1}{2}$ oppfyller ikke kravet fra oppgave a), rekken er derfor ikke konvergent (den er divergent) for dette valget av x. Altså er det ingen verdier for x som oppfyller ligningen.

1.2.4 Summetegnet

Vi skal nå se på et symbol som forenkler skrivemåten av rekker betraktelig. Symbolet blir spesielt viktig i kapittel 6, hvor vi skal studere integrasjon.

Tidligere har vi skrevet rekkene mer eller mindre bent fram. For eksempel har vi sett på rekken

$$2+6+18+54+162$$

med den eksplisitte formelen

$$a_n = 2 \cdot 3^{n-1}$$

Ved hjelp av summetegnet \sum kan rekken vår komprimeres betratelig. Ved å skrive $\sum_{i=1}^{5}$ indikerer vi at i er en løpende variabel som starter på 1 og deretter øker med 1 opp til 5. Hvis vi lar den eksplisitte formelen til rekken være uttrykt ved i, kan vi skrive rekken som $\sum_{i=1}^{5} 2 \cdot 3^{i-1}$, underforstått at vi skal sette et plusstegn hver gang i øker med 1:

$$2+6+18+54+162 = \sum_{i=1}^{5} 2 \cdot 3^{i-1}$$

Den uendelige rekken $2+6+18+\dots$ kan vi
 derimot skrive som

$$\sum_{i=1}^{\infty} 2 \cdot 3^{i-1}$$

For summetegnet har vi også noen regneregler verdt å nevne:

Regneregler for summetegnet

For to følger $\{a_i\}$ og $\{b_i\}$ og en konstant c har vi at

$$\sum_{i=j}^{n} (a_i + b_i) = \sum_{i=j}^{n} a_i + \sum_{i=j}^{n} b_i$$
 (1.11)

$$\sum_{i=j}^{n} ca_i = c \sum_{i=j}^{n} a_i \tag{1.12}$$

hvor $j, n \in \mathbb{N}$ og j < n.

1.3 Induksjon

I teoretisk matematikk stilles det strenge krav til bevis av formler. En metode som brukes spesielt for formler med heltall, er *induksjon*. Prinsippet er dette¹:

Si vi har en ligning som er sann for et heltall n. Hvis vi kan vise at ligningen også gjelder om vi adderer heltallet med 1, har vi vist at ligningen gjelder for alle heltall større eller lik n.

Det kan være litt vanskelig i starten å få helt grep på induksjonsprinsippet, så la oss gå rett til et eksempel:

Vi ønsker å vise at summen av de n første partallene er lik n(n+1):

$$2 + 4 + 6 + \dots + 2n = n(n+1) \tag{1.13}$$

Vi starter med å vise at dette stemmer for n = 1:

$$2 = 1 \cdot (1+1)$$
$$2 = 2$$

Nå vet vi altså om et heltall, nemlig n = 1, som formelen stemmer for. Videre antar vi at ligningen er gyldig helt opp til ledd nr. k. Vi ønsker

¹Ordene formel og ligning vil bli brukt litt om hverandre. En formel er strengt tatt bare en ligning hvor vi kan finne den ukjente størrelsen direkte ved å sette inn kjente størresler.

så å sjekke at den gjelder også for neste ledd, altså når n = k + 1. Summen blir da

$$2 + 4 + 6 + \dots + 2k + \underbrace{2(k+1)}_{\text{ledd nr. } k+1} = (k+1)((k+1)+1)$$

Men fram til ledd nr. k er det tatt for gitt at (1.13) gjelder, dermed får vi at^1

$$\underbrace{2+4+6+\ldots+2k}_{k(k+1)} + 2(k+1) = (k+1)((k+1)+1)$$

$$k(k+1) + 2(k+1) = (k+1)(k+2)$$

$$(k+1)(k+2) = (k+1)(k+2)$$

Og nå kommer den briljante konklusjonen: Vi har vist at (1.13) er sann for n=1. I tillegg har vi vist at hvis ligningen gjelder for et heltall n=k, gjelder den også for n=k+1. På grunn av dette vet vi at (1.13) gjelder for n=1+1=2. Men når vi vet at den gjelder for n=2, gelder den også for n=2+1=3 og så videre, altså for alle heltall!

Induksjon

Når vi ved induksjon ønsker å vise at ligningen

$$A(n) = B(n) \tag{1.14}$$

er sann for alle $n \in \mathbb{N}$, gjør vi følgende:

- 1. Sjekker at (1.14) er sann for n=1.
- 2. Sjekker at (1.14) er sann for n = k + 1, antatt at den er sann for n = k.

¹Det kan se litt merkelig ut å skrive 2+4+6+...+2k, og anta at formelen vår gjelder for denne summen. Det virker jo da som at vi antar den gjelder for n=1, n=2 osv. Men dette er bare en litt kunstig skrivemåte som blir brukt for summen fram til ledd nr. k. For etterpå sier vi at vi vet om et tall k som denne antakelsen er riktig for, nemlig k=1, og da har vi jo bare ett ledd før ledd nr. k+1.

I påfølgende eksempler skal vi for enkelthets skyld la ledd nr. k være innbakt i symbolet "...".

Vis ved induksjon at summen av de n første oddetallene er gitt ved ligningen

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

for alle $n \in \mathbb{N}$.

Svar:

Vi sjekker at påstanden stemmer for n = 1:

$$1 = 1^2$$
$$1 = 1$$

Vi tar det for gitt at påstanden gjelder for n = k, og sjekker at den stemmer også for n = k + 1:

$$\underbrace{1+3+5+\dots}_{k^2} + (2(k+1)-1) = (k+1)^2$$
$$k^2 + 2k + 1 = (k+1)^2$$
$$(k+1)^2 = (k+1)^2$$

Dermed er påstanden vist for alle $n \in \mathbb{N}$.

Merk: Hvis du har problemer med å faktorisere venstresiden når du utfører induksjon, kan du som reserveløsning skrive ut høyresiden istedenfor, men helst bør du la være. Dett er litt for elegansens skyld (selv ikke matematikk kan fraskrive seg en porsjon forfengelighet), men også fordi sjansen for regnefeil blir mindre.

Vis ved induksjon at:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

for alle $n \in \mathbb{N}$.

Svar:

Vi starter med å sjekke for n = 1:

$$1 = \frac{1^2 \cdot (1+1)^2}{4}$$
$$1^3 = \frac{2^2}{4}$$
$$1 = 1$$

Ligningen er altså sann for n = 1. Vi antar videre at den også stemmer for n = k, og sjekker for n = k + 1:

$$\underbrace{\frac{1^3 + 2^3 + 3^3 + \dots}{4} + (k+1)^3}_{\frac{k^2(k+1)^2}{4}} + (k+1)^3 = \frac{(k+1)^2(k+1+1)^2}{4}$$

$$\frac{\frac{k^2(k+1)^2}{4} + (k+1)^3}{4} = \frac{(k+1)^2(k+2)^2}{4}$$

$$\frac{\frac{k^2(k+1)^2 + 4(k+1)^3}{4}}{4} = \frac{(k+1)^2(k^2 + 4(k+1))}{4} = \frac{(k+1)^2(k^2 + 4k + 4))}{4} = \frac{(k+1)^2(k+2)^2}{4}$$

Påstanden er dermed vist for alle $n \in \mathbb{N}$.

Vis ved induksjon at:

$$3 \cdot 9 \cdot 27 \cdot \dots \cdot 3^n = 3^{\frac{1}{2}n(n+1)}$$

Svar:

Vi sjekker at påstanden er sann for n = 1:

$$3 = 3^{\frac{1}{2} \cdot 1(1+1)}$$
$$3 = 3^{1}$$

Videre antar vi at påsanden stemmer også for n=k, og sjekker for n=k+1:

$$\underbrace{\frac{3 \cdot 9 \cdot 27 \cdot \dots}{3^{\frac{1}{2}k(k+1)}} \cdot 3^{k+1}}_{3^{\frac{1}{2}k(k+1)}} \cdot 3^{k+1} = 3^{\frac{1}{2}(k+1)(k+1+1)}$$

$$3^{\frac{1}{2}k(k+1)} \cdot 3^{k+1} = 3^{\frac{1}{2}(k+1)(k+2)}$$

$$3^{\frac{1}{2}k(k+1)+k+1} =$$

$$3^{\frac{1}{2}k(k+1)+\frac{2}{2}(k+1)} =$$

$$3^{\frac{1}{2}(k+1)(k+2)} = 3^{\frac{1}{2}(k+1)(k+2)}$$

Påstanden er dermed vist for alle $n \in \mathbb{N}$.

Forklaringer

Summen av en aritmetisk rekke

Ved å bruke den eksplisitte formelen fra (1.4), kan vi skrive summen av en aritmetisk rekke med n ledd som

$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + d(n-1))$$
(1.15)

Men leddene i rekken kan også uttrykkes slik:

$$a_i = a_n - (n - i)d$$

for $1 \leq i \leq n$. Og da kan vi skrive summen som (her står siste ledd først, deretter nest siste osv.)

$$S_n = a_n + (a_n - d) + (a_n - 2d) + \dots + (a_n - d(n-1))$$
(1.16)

Adderer vi (1.15) og (1.16), får vi $2S_n$ på venstre side. På høyre side blir alle d-er kansellert, og vi ender opp med at

$$2S_n = na_1 + na_n$$
$$a_1 + a_n$$

$$S_n = n \frac{a_1 + a_n}{2}$$

Summen av en geometrisk rekke

Summen S_n av en geometrisk rekke med n ledd er

$$S_n = a_1 + a_1k + a_1k^2 + \dots + a_1k^{n-2} + a_1k^{n-1}$$
 (1.17)

Ganger vi denne summen med k, får vi at

$$kS_n = a_1k + a_1k^2 + a_1k^3 + \dots + a_1k^{n-1} + a_1k^n$$
 (1.18)

Uttrykket vi søker framkommer når vi trekker (1.18) ifra (1.17):

$$S_n - kS_n = a_1 - a_1k^n$$

 $S_n(1 - k) = a_1(1 - k^n)$
 $S_n = a_1\frac{(1 - k^n)}{1 - k}$

Regneregler for summetegnet

Ved å skrive ut summen og omrokkere på rekkefølgen av addisjonene, innser vi at

$$\sum_{i=1}^{n} (a_i + b_i) = a_1 + b_1 + a_2 + b_2 + \dots + a_n + b_n$$

$$= a_1 + a_2 + \dots + a_n + b_1 + b_2 + \dots + b_n$$

$$= \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

Ved å skrive ut summen og faktorisere ut c, innser vi også at

$$\sum_{i=1}^{n} ca_i = ca_1 + ca_2 + \dots + ca_n$$
$$= c(a_1 + a_2 + \dots + a_n)$$
$$= c\sum_{i=1}^{n} a_i$$

Oppgaver for kapittel 1

1.1.1

- a) Skriv opp de tre første partallene. Lag en rekursiv og en eksplisitt formel for det i-te partallet.
- **b)** Skriv opp de tre første oddetallene. Lag en eksplisitt formel for det i-te oddetallet.

1.1.2

Finn det eksplisitte uttrykket til den aritmetiske følgen når du vet at

- a) $a_1 = 3 \text{ og } a_4 = 30$
- **b)** $a_1 = 5 \text{ og } a_{11} = -25$
- **c)** $a_3 = 14 \text{ og } a_5 = 26$

1.1.3

Finn det eksplisitte uttrykket til den geometriske følgen når du vet at

- a) $a_1 = \frac{1}{2} \text{ og } a_2 = \frac{1}{6}$
- **b)** $a_1 = 5 \text{ og } a_4 = 40$

1.2.1

a) Bruk figuren under til å forklare at summen S_n av de n første naturlige tallene er gitt ved

$$S_n = \frac{n(n+1)}{2}$$

b) Skriv opp summen av det første, de to første og de tre første oddetallene. Bruk en lignende figur som i oppgave a) til å vise at summen S_n av de n første oddetallene er

$$S_n = n^2$$

1.2.2

Finn S_{10} for rekkene:

a)
$$7 + 13 + 19 + 25 + \dots$$
 b) $1 + 9 + 17 + 25 + \dots$

1.2.3

Gitt rekken

$$8 + 11 + 14 + \dots$$

For hvilken n er summen av rekken lik 435?

1.2.4

Bruk summen av en aritmetisk rekke til å vise at ligningen gitt i Eksempel 3 på s. 23 er sann.

1.2.5

Gitt rekken

$$3 + 12 + 48 + \ldots + 768$$

Finn summen av rekken.

1.2.6

En geometrisk rekke har $a_1 = 2$ og k = 3.

a) Vis at summen S_n kan skrives som:

$$S_n = 3^n - 1$$

- b) Regn ut summen for de tre første leddene.
- c) For hvilken n er $S_n = 728$?

1.2.7

Du ønsker å spare penger i en bank som gir 2% månedlig rente. Du sparer ved å foreta et innskudd den 1. i hver måned, og du starter 01.01.2017.

- a) Skriv rekken som viser hvor mye penger du har i banken 01.05.2017. Innskuddet 01.05 skal tas med.
- **b)** Sett opp et uttrykk P(n) som viser hvor mye penger du har i banken n måneder etter 01.01.2017, medregnet innskuddet samme måned.

1.2.8

Gitt den uendelige rekken

$$4+1+\frac{1}{4}+\dots$$

- a) Forklar hvorfor rekken er konvergent.
- b) Finn summen av den uendelige rekken.

1.2.9

- a) Skriv det uendelige desimaltallet 0.999... som en uendelig geometrisk rekke.
- **b)** Forklar hvorfor rekken er konvergent og bruk dette faktumet til å finne summen av rekken.

1.2.10

Gitt den uendelige rekken

$$\frac{1}{3} + \frac{1}{3}(x-2) + \frac{1}{3}(x-2)^2 + \dots$$

- a) For hvilke x er rekken konvergent?
- **b)** For hvilken x er $S_n = \frac{2}{9}$?
- c) For hvilken x er $S_n = \frac{1}{6}$?

1.3.1

Vis ved induksjon at for alle $n \in \mathbb{N}$ er

a)
$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

b)
$$1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1$$

c)
$$4 + 4^2 + 4^3 + \ldots + 4^n = \frac{4}{3}(4^n - 1)$$

d)
$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(2n+1)(n+1)}{6}$$

1.3.2

Vis ved induksjon at $n(n^2 + 2)$ er delelig med 3 for alle $n \in \mathbb{N}$.

1.3.3

a) Vis ved induksjon at:

$$\frac{1\cdot 2}{1}\cdot \frac{1\cdot 2\cdot 3\cdot 4}{1\cdot 2\cdot 3}\cdot \dots \cdot \frac{(2n)!}{(2n-1)!} = 2^n n!$$

Hint:
$$(2(k+1))! = (2k+1)!(2k+2)$$
.

b) Hvordan kan venstresiden i a) skrives enklere? Utfør induksjonsbeviset på nytt etter forenklingen.

Gruble 1

Målet med denne oppgaven er å, uten bruk av induksjon, vise at summen av n kvadrater er gitt ved følgende formel:

$$\sum_{i=1}^{n} i^2 = \frac{n(2n+1)(n+1)}{6} \tag{I}$$

a) Forklar hvorfor vi kan skrive

$$1^2 + 2^2 + 3^2 + \dots = 1 + (1+3) + (1+3+5) + \dots$$

Hint: se opg. 1.2.1 b).

b) Ut ifra det du fant i a), forklar at

$$\sum_{i=1}^{n} i^2 = n + \sum_{i=1}^{n} (n-i)(2i+1)$$

c) Skriv ut alle kjente summer fra b) og løs ligningen med hensyn på $\sum_{i=1}^{n} i^2$, du skal da komme fram til (I).

Kapittel 2

Trigonometri

Mål for opplæringen er at eleven skal kunne

- forenkle og løse lineære og kvadratiske likninger i trigonometriske uttrykk ved å bruke sammenhenger mellom de trigonometriske funksjonene
- omforme trigonometriske uttrykk av typen $a\sin kx + b\cos kx$, og bruke dem til å modellere periodiske fenomener

2.1 Vinkler og enhetssirkelen

2.1.1 Vinkel og vinkelmål

Når linjestykker med samme utgangspunkt ikke er parallelle, utspenner de en vinkel v. Vinkelen indikeres ofte ved å tegne en liten sektor mellom linjestykkene:

Figur 2.1: Vinkelen v mellom to linjestykker

For å måle denne vinkelen er vi tidligere vant med å bruke grader (°). Vi tenker oss da en sirkel som krysser begge linjer, og at omkretsen til denne sirkelen er delt opp i 360 like store buelengder, altså 360° . Hvis vi langs sirkelen må gå 60 slike lengder for å komme fra det ene linjestykket til det andre, sier vi at vinkelen er 60° .

Figur 2.2: Vinkelen v målt i grader.

Ved geometri i praksis er grader gjerne en foretrukket enhet, men i teoretisk matematikk har det *absolutte vinkelmål* mange fordeler. Absolutt vinkelmål oppgis i *radianer* (rad), som vi beregner på følgende måte:

Vi sier at vår tenkte sirkel har radius 1 og dermed omkrets 2π . Denne sirkelen kalles enhetssirkelen. Lengden vi må gå langs (den tenkte) enhetssirkelen for å komme fra det éne linjestykket til det andre, er vinkelmålet i radianer.

Figur 2.3: Vinkelen v målt i radianer. Den tenkte sirkelen er enhetssirkelen, som har radius 1 og omkrets 2π .

Når man skriver vinkler i radianer, er det vanlig å bare oppgi verdien uten benevning¹, slik som i figur 2.3 – radianer er jo tross alt bare en tenkt lengde og har derfor ingen dimensjon. Og vi tegner selvfølgelig ikke slike sirkler hver gang vi skal framstille en vinkel, men bare verdien til v og en liten sektor:

Figur 2.4: Vinkelen $\frac{\pi}{3}$ radianer.

I overgangen mellom grader og radianer er det spesielt fem vinkler det er viktig å huske:

Tabell 2.1: Sammenfallende vinkler målt i grader (øverst) og radianer.

Relasjonen mellom grader og radianer

$$1^{\circ} = \frac{\pi}{180} \tag{2.1}$$

¹I noen sammenhenger brukes benevningen rad.

2.1.2 Enhetssirkelen som tallinje

Tenk at noen ber deg tegne hele tallinjen. Dette virker som en umulig oppgave siden tallinjen består av intervallet $[-\infty, \infty]$.

Figur 2.5: Horisontal tallinje på intervallet [-5, 5]

Men hva med dette?

Vi tegner en sirkel med et horisontalt linjestykke trekt mellom sentrum og buen. På enden av dette linjestykket setter vi verdien 0. Videre sier vi at buelengden vi går *mot* klokka har positivt fortegn, mens buelengden vi går *med* klokka har negativt fortegn.

Vi kan da se på sirkelen som et hjul som har startet på en horisontal tallinje i $-\infty$ og deretter "tatt" alle verdier til seg mens det har rullet mot høyere tall.

Figur 2.7: Sirkel som rullende hjul over tallinjen.

Vi står fritt til å velge en hvilken som helst sirkel til å represenere tallinjen, men et kløktig valg er den nevnte enhetssirkelen. Alle sirkler som heretter blir avbildet vil derfor være sirkler med radius 1.

Enhetssirkelen som tallinje er selveste grunnlaget for de trignometriske uttrykkene vi skal se på i kommende seksjon. Det vil da være noen verdier på interallet $(-\pi, \pi]$ som blir spesielt viktige, disse er derfor tegnet inn i figuren under:

Figur 2.8: Intervallet $(-\pi, \pi]$ avbildet på enhetssirkelen.

Ekstra verdt å legge merke til i figur 2.8 er symmetrien om horisontallinjen, og at sektoren mellom 0 og et tall på øvre halvdel har en vinkel som, målt i radianer, har samme verdi som tallet.

2.2 Trigonometriske uttrykk

2.2.1 Sinus, cosinus og tangens til x

Tiden er inne for å definere cosinus og sinus til tallet x, som vi forkorter til henholdsvis $\cos x$ og $\sin x$.

¹Merk at definisjonen bare er en utvidelse av det du tidligere har lært, hvor du så på sinus og cosinus som forholdstall i rettvinklede trekanter.

Sinus og cosinus

La enhetssirkelen være tegnet inn i et koordinatsystem med sentrum i origo, som vist i figuren under.

La videre x representere en buelengde vandret i positiv (mot klokka) eller negativ retning fra punktet (1,0) til et punkt (a_0,b_0) . Da er

$$\cos x = a_0 \tag{2.2}$$

$$\sin x = b_0 \tag{2.3}$$

Vi skal straks studere $\cos x$ og $\sin x$ nærmere, men bør først gjøre noen forenklinger for kommende figurer. Fordi enhetssirkelen befinner seg i intervallet [-1,1] både langs horisontalaksen og vertikalaksen, skal vi kutte akselinjene rett av i disse endepunktene. Og istedenfor å tegne både et punkt og buen som tar oss dit, nøyer vi oss med å skrive x i enden av buen. Med disse og noen flere små forenklinger blir for eksempel figuren fra definisjonen over seende slik ut:

Figur 2.9

Etterhvert vil vi også bruke begrepet kjerne om tallet vi finner den trigonometriske verdien av. For eksempel er x kjernen til cosinusuttrykket $\cos x$, mens kx + c er kjernen til sinusutrykket $\sin(kx + c)$.

Tangens

Med $\cos x$ og $\sin x$ definert, er det fort gjort å definere tangens til et tall x, som vi skriver som $\tan x$:

Tangens
$$\tan x = \frac{\sin x}{\cos x} \tag{2.4}$$

2.2.2 Arcuscosinus, arcusinus og arcustangens

Ut if ra figuren knyttet til (2.3) og (2.2) kan vi slutte at $\cos \pi = -1$ (og at $\sin \pi = 0$).

Figur 2.10: a) π plassert på enhetssirkelen som tallinje. b) I koordinatsystemet samsvarer verdien π med punktet (-1,0)

Altså er π et tall som har -1 som cosinusverdi. Dette kan også uttrykkes ved begrepet arcuscosinus, som gjerne forkortes til¹ acos. Da skriver vi acos $\pi = -1$.

Si videre vi har ligningen

$$a\cos d = x \tag{2.5}$$

hvor $d \in [-1,1]$. Å bestemme verdien til x uten bruk av hjelpemidler er ofte vrient, men vi kan likevel si noe om hvor på enhetssirkelen x befinner seg:

¹Noen forfattere bruker $\arccos x$ eller $\cos^{-1} x$ istedenfor $\cos x$.

Et koordinatsystem plassert i sentrum av enhetssirkelen gir en inndeling i fire sektorer. Disse sektorene kalles første, andre, tredje og fjerde kvadrant.

Figur 2.11: Enhetssirkelen inndelt i kvadranter, med ekstremverdiene til cosinus og sinus i endene.

Det er helt avjørende å forstå at vi i trigonometri snakker om tre forskjellige tallinjer, nemlig enhetssirkelen, horisontalaksen og vertikalaksen. Mens figur 2.8 viser tall plassert langs buen til enhetssirkelen, er -1 og 1 i figur 2.11 plassert på horisontal- og vertikalaksen. 1 og -1 representerer ekstremverdiene til cosinus (horisontalaksen) og sinus (vertikalaksen).

Av dette observerer vi at hvis $d \in [0,1]$, må x ligge¹ på buen til første eller fjerde kvadrant. På samme vis må x ligge på buen til andre eller tredje kvadrant hvis $d \in [-1,0]$.

Vi innser også at det må finnes flere verdier av x som kan oppfylle (2.5). For eksempel må det finnes et tall i 4. kvadrant som har samme cosinusverdi som et tall i 1. kvadrant. For denne typen ligninger er det likevel vanlig å bare oppgi én løsning, altså en x liggende enten i første eller andre kvadrant. I denne boka, og på de fleste kalkulatorer, svarer dette til $x \in [0, \pi]$.

Prinsippet bak arcussinus og arcustangens er akkurat det samme som for arcuscosinus, bare at vi for $x = a\sin d$ eller $x = a\tan d$ bruker en løsning som ligger i første eller fjerde kvadrant. Vanligst er å oppgi en x på intervallet $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

 $^{^1\}mathrm{Tall}$ med cosinusverdi lik-1,0eller 1 ligger i grensesjiktet mellom to kvadranter.

Arcusuttrykkene

Uttrykket

$$atri x = d (2.6)$$

hvor tri erstattes med sin, cos eller tan, betyr at

$$tri d = x (2.7)$$

Eksempel

$$a\sin\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

2.2.3 Eksaktverdier

Et lite utvalg av sinus-, cosinus- og tangensverdier¹ bør vi kjenne til, nemlig følgende:

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

Tabell 2.2: Eksaktverdier for sinus, cosinus og tangens av x

Tabellen kan nok virke litt infløkt, men i $vedlegg\ A$ finner du et enkelt triks som kan hjelpe deg å huske den.

Viktig å merke seg er at vi ut ifra denne tabellen også vet om eksaktverdiene for sinus, cosinus og tangens til mange flere tall. Tar vi et blikk tilbake til figur 2.8, kan vi for eksempel se at $\frac{\pi}{4}$ og $\frac{3\pi}{4}$ har samme sinusverdi² og at $\cos\left(\frac{3\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right)$. Slik kan vi ut ifra tabell 2.2 bestemme de eksakte sinus-, cosinus- og tangensverdiene til alle tallene i figur 2.8.

 $^{^{1}\}tan x$ er ikke definert for $x=\frac{\pi}{2},$ men $\lim_{x\rightarrow\frac{\pi}{2}}\tan x=\infty$

²Strengt tatt kan vi ikke være helt sikre på dette ut ifra øyemål, men det blir forklart i seksjon 2.3 at det stemmer.

2.2.4 Trigonometriske identiteter

Mange trigonometriske uttrykk kan skrives på flere måter, disse omskrivingene kalles gjerne *trigonometriske identiteter*. Et lite utvalg er listet opp under¹:

Trigonometriske identiteter

$$\cos(u+v) = \cos u \cos v - \sin u \sin v \tag{2.8}$$

$$\cos(u - v) = \cos u \cos v + \sin u \sin v \tag{2.9}$$

$$\sin(u+v) = \sin u \cos v + \cos u \sin v \tag{2.10}$$

$$\sin(u - v) = \sin u \cos v - \cos u \sin v \tag{2.11}$$

$$\cos(-x) = \cos x \tag{2.12}$$

$$\sin(-x) = -\sin x \tag{2.13}$$

$$\cos(x \pm \pi) = -\cos x \tag{2.14}$$

$$\sin(x \pm \pi) = -\sin x \tag{2.15}$$

$$\sin(2x) = 2\cos x \sin x \tag{2.16}$$

$$\cos^2 x + \sin^2 x = 1 \tag{2.17}$$

$$\cos\left(u - \frac{\pi}{2}\right) = \sin u \tag{2.18}$$

$$\sin\left(u + \frac{\pi}{2}\right) = \cos u \tag{2.19}$$

Eksempel 1

Bruk de trigonometrisk identitetene til å finne eksaktverdien til $\cos\left(\frac{\pi}{3}\right)$ og $\sin\left(\frac{\pi}{3}\right)$ når du vet at $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ og $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

Svar:

Vi har at

$$\cos\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6} + \frac{\pi}{6}\right)$$
$$= \cos\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\sin\left(\frac{\pi}{6}\right)$$

Obs! Som nevnt blir $\sin^{-1}x$ brukt istedenfor $a\sin x$ i noen lærebøker. Da er $\sin^{-1}x\neq (\sin x)^{-1}.$

¹For trigonometriske potenser er det vanlig å skrive eksponenten bak selve "navnet". For eksempel betyr $\sin^2 x$ det samme som $(\sin x)^2$.

$$= \frac{3}{4} - \frac{1}{4}$$
$$= \frac{1}{2}$$

og videre at

$$\sin\left(\frac{\pi}{3}\right) = \sin\left(\frac{\pi}{6} + \frac{\pi}{6}\right)$$

$$= \sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6}\right)\sin\left(\frac{\pi}{6}\right)$$

$$= 2\left(\frac{\sqrt{3}}{4}\right)$$

$$= \frac{\sqrt{3}}{2}$$

Eksempel 2

Skriv om

$$2\sin\left(5x + \frac{2\pi}{3}\right)$$

til et uttrykk bestående av både et cosinus- og et sinus-ledd.

Svar:

Vi vet at $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$ og at $\sin\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2}$, derfor kan vi skrive:

$$2\sin\left(5x + \frac{2\pi}{3}\right) = 2\left(\sin(5x)\cos\left(\frac{2\pi}{3}\right) + \cos(5x)\sin\left(\frac{2\pi}{3}\right)\right)$$
$$= 2\left(\sin(5x)\cdot\left(-\frac{1}{2}\right) + \cos(5x)\frac{\sqrt{3}}{2}\right)$$
$$= \sqrt{3}\cos(5x) - \sin(5x)$$

2.2.5 Sinus og cosinus kombinert

Av Eksempel 2 på forrige side merker vi oss at når et sinus-uttrykk kan skrives om til et kombinert sinus- og cosinusuttrykk, må det også gå an å gå andre veien:

Sinus og cosinus kombinert

Vi kan skrive

$$a\cos(kx) + b\sin(kx) = r\sin(kx+c) \tag{2.20}$$

der $r = \sqrt{a^2 + b^2}$ og hvor

$$\cos c = \frac{b}{r} \tag{2.21}$$

$$\sin c = \frac{a}{r} \tag{2.22}$$

Eksempel

Skriv om $\sqrt{3}\sin(\pi x) - \cos(\pi x)$ til et sinusuttrykk.

Svar:

Vi starter med å finne r:

$$r = \sqrt{\sqrt{3}^2 + (-1)^2}$$
$$= \sqrt{4}$$
$$= 2$$

Videre krever vi at

$$\cos c = \frac{\sqrt{3}}{2}$$
$$\sin c = -\frac{1}{2}$$

Tallet $c=-\frac{\pi}{6}$ oppfyller disse kravene, derfor er

$$\sqrt{3}\sin(\pi x) - \cos(\pi x) = 2\sin\left(\pi x - \frac{\pi}{6}\right)$$

Se vedlegg B for tips til hvordan å finne c når tallet ikke ligger i første kvadrant.

2.3 Lineære ligninger

I forrige seksjon så vi på sinus-, cosinus- og tangensverdiene til tall på intervallet $[-\pi,\pi)$. Vi skal nå gå over til å løse trigonometriske ligninger. Da er det viktig å ta hensyn til at løsningene liksågodt kan ligge utenfor dette intervallet, og at mange forskjellige tall kan oppfylle samme ligning.

De første ligningene vi skal se på kalles line xre trigonometriske ligninger. Navnet kommer av at de trigonometriske uttrykkene som $\sin x$, $\cos x$ osv. bare forekommer i første potens¹.

2.3.1 Cosinus-ligninger

 $\operatorname{La}^2 d \in (-1,1)$. Vi ønsker å finne alle løsninger av ligningen

$$\cos x = d$$

Hvis $0 \le d < 1$, må vi ha en løsning $x = v_1$ i første kvadrant (se figur 2.11 og 2.12). Men om vi fra 0 går en buelengde v_1 i negativ retning, har vi kommet like langt langs horisontalaksen, derfor må også $x = -v_1$ være en løsning.

Hvis vi derimot har at -1 < d < 0, må vi ha en løsning $x = v_2$ i andre kvadrant, og da må også $x = -v_2$ være en løsning.

Figur 2.12

Og hva nå om vi står i punktet til den ene av løsningene og derifra vandrer 2π buelengder i enten negativ eller positiv retning? Jo, da er vi tilbake til det eksakt samme punktet. Har vi én løsning kan vi altså

¹Tallet a^1 er a i første potens, mens a^2 er a i andre potens osv.

²Når $d \in \{-1, 1\}$ får vi to spesialtilfeller av ligningen, men resonnementet for å finne løsningene er helt analogt til det som gis ved $d \in (-1, 1)$.

finne en ny løsning ved å legge til et heltalls antall 2π . Alle heltallene, nemlig følgen $\{..., -2, -1, 0, 1, 2, ...\}$, skriver vi som \mathbb{Z} .

Til slutt tar vi med oss at siden cosinusverdier handler om horisontalkoordinaten til et punkt på enhetssirkelen, vil vi ikke få $reelle^1$ svar hvis $d \notin [1,1]$.

Cosinusligninger

Gitt ligningen

$$\cos x = d \tag{2.23}$$

For $n \in \mathbb{Z}$ har vi at

• Hvis $d \in (-1,1)$, har (2.23) løsningene

$$x = \pm \cos d + 2\pi n \tag{2.24}$$

• Hvis d = 1, har (2.23) løsningene

$$x = 2\pi n \tag{2.25}$$

• Hvis d = -1, har (2.23) løsningene

$$x = \pi + 2\pi n \tag{2.26}$$

Eksempel 1

Løs ligningen:

$$4\cos x = 2\sqrt{3}$$

Svar:

Vi starter med å isolere cosinusuttrykket:

$$4\cos x = 2\sqrt{3}$$
$$\cos x = \frac{\sqrt{3}}{2}$$

Siden $a\cos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$, har vi at

$$x = \pm \frac{\pi}{6} + 2\pi n$$

¹Vi kommer tilbake til dette begrepet i kapittel 7, se s. 193.

Eksempel 2

Finn løsningene til ligningen

$$4\cos\left(\frac{\pi}{6}x - \frac{\pi}{3}\right) = 2\sqrt{3} \qquad , \qquad x \in [-9,4]$$

Svar:

Fra svaret i $Eksempel\ 1$ på forrige side vet vi at kjernen må oppfylle kravet

 $\frac{\pi}{6}x - \frac{\pi}{3} = \pm \frac{\pi}{6} + 2\pi n$

Vi må altså enten ha at

$$\frac{\pi}{6}x = \frac{\pi}{6} + \frac{\pi}{3} + 2\pi n$$
$$\frac{\pi}{6} = \frac{\pi}{2} + 2\pi n$$
$$x = 3 + 12n$$

eller at

$$\frac{\pi}{6}x = \frac{\pi}{3} - \frac{\pi}{6} + 2\pi n$$
$$\frac{\pi}{6}x = \frac{\pi}{6} + 2\pi n$$
$$x = 1 + 12n$$

På intervallet [-9,4] vil $x \in \{-9,1,3\}$ oppfylle dette kravet.

2.3.2 Sinusligninger

Gitt ligningen

$$\sin x = d \tag{2.27}$$

Hvis $0 \le d < 1$, må vi ha en løsning $x = v_1$ i første kvadrant (se figur 2.13). Men om vi starter i π og går en buelengde x_1 i negativ retning, har vi kommet akkurat like høyt langs vertikalaksen, og dermed må også $x = \pi - v_1$ være en løsning.

Er derimot -1 < d < 0, må en løsning $x = v_2$ ligge i fjerde kvadrant. Da er også $x = \pi - v_2$ en løsning.

Figur 2.13

Og vandrer vi $\pm 2\pi$ finner vi stadig nye løsninger.

Sinusligninger

Gitt ligningen

$$\sin x = d \tag{2.28}$$

For $n \in \mathbb{Z}$ har vi at

 $\bullet\,$ Hvis $d\in(-1,1)$ har (2.28) løsningene

$$x = \sin d + 2\pi n \quad \lor \quad x = \pi - \sin d + 2\pi n \tag{2.29}$$

 $\bullet\,$ Hvis d=1har (2.28) løsningene

$$x = \frac{\pi}{2} + 2\pi n \tag{2.30}$$

• Hvis d = -1 har (2.28) løsningene

$$x = -\frac{\pi}{2} + 2\pi n \tag{2.31}$$

Eksempel

Løs ligningen

$$2\sin x = \sqrt{2}$$

Svar:

Vi kan skrive

$$\sin x = \frac{\sqrt{2}}{2}$$

 $\mathrm{asin}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4},$ da er xenten gitt som

$$x = \frac{\pi}{4} + 2\pi n$$

eller som

$$x = \pi - \frac{\pi}{4} + 2\pi n$$
$$= \frac{3\pi}{4} + 2\pi n$$

Merk: Det kan være praktisk å bli fortrolig med sinus- og cosinusverdiene til tallene i figur~2.8. Da vil man direkte se at $\frac{\pi}{4}$ og $\frac{3\pi}{4}$ er tall med samme sinusverdi, men at de ligger i hver sin kvadrant. Legges $2\pi n$ til hver av dem, har man funnet alle løsninger. Man unngår da å regne ut π minus et tall, dette er tidsbesparende og minsker i tillegg sjansen for regnefeil.

2.3.3 Tangensligninger

Gitt ligningen

$$\tan x = d$$

I én av kvadrantene må det finnes en løsning x=v. Hvis vi vandrer en buelengde π fra denne løsningen, kommer vi til et tall som har sinusverdi $-\sin v$ og cosinusverdi $-\cos v$.

Figur 2.14

Dette tallet har altså samme tangensverdi som v, og må derfor også være en løsning. Og vandrer vi $\pm \pi$ herfra får vi stadig nye løsninger.

Tangensligninger

Ligningen

$$\tan x = d \tag{2.32}$$

har løsningene

$$x = a \tan d + \pi n \tag{2.33}$$

hvor $d \in \mathbb{R}$ og $n \in \mathbb{Z}$.

Eksempel

Løs ligningen

$$\sqrt{3}\tan(2x) = 1$$

Svar:

Vi starter med å isolere tangensuttrykket:

$$\sqrt{3}\tan(2x) = 1$$
$$\tan(2x) = \frac{1}{\sqrt{3}}$$

Siden atan $\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$, får vi at

$$2x = \frac{\pi}{6} + \pi n$$
$$x = \frac{1}{2} \left(\frac{\pi}{6} + \pi n \right)$$

$2.3.4 \quad a\sin(kx) + b\cos(kx) = 0$

Vi har hittil sett på ligninger med ett sinus-, cosinus- eller tangensuttrykk, men ofte kommer vi ut for ligninger som har kombinasjoner av disse. La oss prøve å løse ligningen

$$a\sin(kx) + b\cos(kx) = 0 (2.34)$$

hvor a, b og k er konstanter forskjellige fra 0.

Det første vi observerer er at hvis $\cos(kx) = 0$, er $x = \frac{1}{k} \left(\pm \frac{\pi}{2} + 2\pi n \right)$. I så tilfelle er $\sin(kx) = \pm 1$, og da får vi at

$$a\sin(kx) + b\cos(kx) = \pm a + 0 \neq 0$$

 $^{^{1}}$ Se (2.24).

Dette funnet gjør at vi trygt kan dele (2.34) med $\cos(kx)$:

$$\frac{a\sin(kx) + b\cos(kx)}{\cos(kx)} = \frac{0}{\cos(kx)}$$
$$\frac{a\sin(kx)}{\cos kx} + b = 0$$
$$a\tan(kx) = -b$$
$$\tan(kx) = -\frac{b}{a}$$

Vi har nå endt opp med en tangensligning med løsninger gitt ved (2.33).

$$a\sin(kx) + b\cos(kx) = 0$$

Ligningen

$$a\sin(kx) + b\cos(kx) = 0 (2.35)$$

løses ved å dele begge sider med $\cos(kx)$ og deretter løse den resulterende tangensligningen.

Eksempel

Løs ligningen

$$\sqrt{3}\sin(\pi x) + \cos(\pi x) = 0$$

Svar:

Vi starter med å dele på $\cos(kx)$:

$$\frac{\sqrt{3}\sin(\pi x) + \cos(\pi x)}{\cos(\pi x)} = \frac{0}{\cos(\pi x)}$$
$$\sqrt{3}\tan(\pi x) + 1 = 0$$
$$\tan(\pi x) = -\frac{1}{\sqrt{3}}$$

Siden atan
$$\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$
, er
$$\pi x = -\frac{\pi}{6} + \pi n$$

$$x = n - \frac{1}{6}$$

$2.3.5 \quad a\sin(kx) + b\cos(kx) = d$

En noe mer avansert utgave av (2.35) får vi hvis høyresiden er en konstant d istedenfor 0. Da utnytter vi (2.20) for å omskrive ligningen til en form vi kan løse:

$$a\sin(kx) + b\cos(kx) = d$$

Ligningen

$$a\sin(kx) + b\cos(kx) = d \tag{2.36}$$

kan løses ved å omforme venstresiden til et reint sinusuttrykk, og deretter løse den resulterende sinusligningen.

Eksempel

Løs ligningen

$$\sin(3x) + \cos(3x) = \sqrt{2}$$

Svar:

Vi starter med å finne det kombinerte sinusuttrykket for venstresiden av ligningen:

$$r = \sqrt{1^2 + 1^2} \qquad \cos c = \frac{1}{\sqrt{2}} \qquad \sin c = \frac{1}{\sqrt{2}}$$

$$= \frac{\sqrt{2}}{2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\sqrt{2}}{2}$$

 $c=\frac{\pi}{4}$ oppfyller kravene over, dermed er

$$\sqrt{2}\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{2}$$
$$\sin\left(3x + \frac{\pi}{4}\right) = 1$$

Altså har vi at

$$3x + \frac{\pi}{4} = \frac{\pi}{2} + 2\pi n$$
$$x = \frac{\pi}{3} \left(\frac{1}{4} + 2n \right)$$

2.4 Kvadratiske ligninger

Vi skal nå se på to typer ligninger der sinus-, cosinus- eller tangensuttrykk opptrer i andre potens. Uttrykk i andre potens kalles *kvadrerte* uttrykk, derav navnet *kvadratiske ligninger*.

2.4.1 Løsning ved abc-formelen

La oss forsøke å løse ligningen

$$2\sin^2 x - 3\sin x - 2 = 0\tag{2.37}$$

Vi observerer at (2.37) er en andregradsligning for $\sin x$ (erstatt $\sin x$ med u hvis du syns det er vanskelig å se). Vi kan derfor bruke abcformelen til å løse ligningen med hensyn på $\sin x$, og finner da at:

$$\sin x = \frac{1}{2} \quad \lor \quad \sin x = -2$$

Altså har vi to sinusligninger vi nå må finne løsningene til. Vi vet at asin $\frac{1}{2} = \frac{\pi}{6}$, dermed er (se (2.29)):

$$x = \frac{\pi}{6} + 2\pi n$$
 \vee $x = \pi - \frac{\pi}{6} + \frac{2\pi}{n} = \frac{5\pi}{6} + \frac{2\pi}{n}$

Derimot er det ingen *reelle* tall som kan oppfylle ligningen $\sin x = -2$, vi anser derfor (2.37) som ferdig løst.

Kvadratiske ligninger I

Når vi skal løse ligninger av typen

$$a\operatorname{tri}^2 x + b\operatorname{tri} x + c = 0 \tag{2.38}$$

hvor a, b og c er konstanter og tri erstattes med sin, cos eller tan, gjør vi følgende:

- 1. løser ligningen mhp. tri \boldsymbol{x}
- 2. løser de nye ligningene mhp. x

Eksempel 1

Løs ligingen

$$\cos^2 x - 3\cos x - 4 = 0$$

Svar:

Vi starter med å løse andregradsligningen mhp. $\cos x$. Da 1(-4)=-4 og 1-4=-3, får vi at (se vedlegg C)

$$\cos x = -1 \quad \lor \quad \cos x = 4$$

Siden $\cos x = 4$ ikke har noen reell løsning, trenger vi bare å løse ligningen $\cos x = -1$. Vi får da at

$$x = \pi + 2\pi n$$

Eksempel 2

Løs ligningen

$$4\cos^2(\pi x) - \sqrt{48}\cos(\pi x) + 3 = 0$$

Svar:

Av *abc*-formelen er

$$\cos x = \frac{-(-\sqrt{48}) + \sqrt{\sqrt{48}^2 - 4 \cdot 4 \cdot 3}}{2 \cdot 4}$$

$$= \frac{\sqrt{48}}{8}$$

$$= \frac{\sqrt{16}\sqrt{3}}{2 \cdot 4}$$

$$= \frac{\sqrt{3}}{2}$$

Fordi $\operatorname{acos}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6},$ har vi at

$$\pi x = \pm \frac{\pi}{6} + 2\pi n$$
$$= \pm \frac{1}{6} + 2n$$

2.4.2 Kvadrater av sinus og cosinus kombinert

Vi går videre til å studere ligningen

$$3\cos^2(2x) + 5\sin^2(2x) = 4\tag{2.39}$$

Fra (2.17) vet vi at $1 = \cos^2(2x) + \sin^2(2x)$, derfor kan vi skrive:

$$4 = 4 \cdot 1$$

= $4 \left(\cos^2(2x) + \sin^2(2x) \right)$

Kanskje litt overraskende forenkler dette ligningen vi ønsker å løse:

$$3\cos^{2}(2x) + 5\sin^{2}(2x) = 4\left(\cos^{2}(2x) + \sin^{2}(2x)\right)$$
$$-\cos^{2}(2x) + \sin^{2}(2x) = 0$$

Videre deler¹ vi ligningen med $\cos^2(2x)$:

$$\frac{-\cos^{2}(2x) + \sin^{2}(2x)}{\cos^{2}(2x)} = \frac{0}{\cos^{2}(2x)}$$
$$-1 + \tan^{2}(2x) = 0$$
$$\tan^{2}(2x) = 1$$
$$\tan(2x) = \pm 1$$

Siden atan $1 = \frac{\pi}{4}$ og atan $(-1) = -\frac{\pi}{4}$, har vi at

$$2x = \pm \frac{\pi}{4} + \pi n$$
$$x = \frac{1}{2} \left(\pm \frac{\pi}{4} + \pi n \right)$$

Kvadratiske ligninger II

For å løse ligninger på formen

$$a\cos^2(kx) + b\sin^2(kx) = d$$
 (2.40)

utnytter vi at $d = d(\cos^2(kx) + \sin^2(kx))$. Vi dividerer så ligningen med $\cos^2(kx)$, og løser den resulterende tangensligningen.

 $^{^{1}}$ Vi observerer at (2.39) ikke har en løsning (sjekk selv!) når $\cos(2x) = 0$. Derfor er vi sikre på å unngå nulldivisjon.

Eksempel

Løs ligningen

$$-3\cos^2(5x) + \sin^2(5x) = -2$$

Svar:

$$-3\cos^{2}(5x) + \sin^{2}(5x) = -2(\cos^{2}(5x) + \sin^{2}(5x))$$
$$-\cos^{2}(5x) + 3\sin^{2}(5x) = 0$$
$$-1 + 3\tan^{2}(5x) = 0$$
$$\tan^{2}(5x) = \frac{1}{3}$$
$$\tan(5x) = \pm \frac{1}{\sqrt{3}}$$

Siden atan
$$\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$
 og atan $\left(-\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$, har vi at
$$5x = \pm \frac{\pi}{6} + \pi n$$
$$x = \pm \frac{1}{5} \left(\frac{\pi}{6} + \pi n\right)$$

2.5 Trigonometriske funksjoner

2.5.1 Cosinusfunksjoner

La oss studere funksjonen

$$f(x) = a\cos(kx + c) + d \tag{2.41}$$

hvor a, k, c og d er konstanter. Dette kaller vi en cosinus funksjon. I figur 2.15 vises grafen til

$$f(x) = 2\cos\left(\frac{\pi}{2}x - \pi\right) + 1$$

Figur 2.15: Utsnitt av grafen til $f(x) = 2\cos\left(\frac{\pi}{2}x - \pi\right) + 1$.

Av figuren merker vi oss følgende:

- horisontalavstanden fra et toppunkt¹ til et annet er 4. Denne avstanden kalles *perioden* (eventuelt *bølgelengden*).
- topp- og bunnpunktene har den samme vertikalavstanden til linja y = 1, som kalles *likevektslinja* til grafen. Verdien til likevektslinja samsvarer med konstantleddet til f.
- vertikalavstanden fra likevektslinja til et toppunkt er 2, denne avstanden kalles *amplituden*. Verdien til amplituden samsvarer med faktoren foran cosinusuttrykket.

Om vi ikke visste uttrykket til f, kunne vi altså ut ifra figur 2.15 og punktene over sett at² a = 2 og d = 1. Men hva med k og c?

La oss starte med det enkleste: Når vi kjenner perioden P=4, kan vi finne $bølgetallet\ k$ ut ifra følgende relasjon:

$$k = \frac{2\pi}{P}$$
$$= \frac{2\pi}{4}$$
$$= \frac{\pi}{2}$$

For å bestemme c gjør vi denne observasjonen: En cosinusfunksjon med positiv a må ha et toppunkt der hvor kx + c = 0 (fordi $\cos 0 = 1$).

 $^{^1\}mathrm{Det}$ er antatt at begrep som toppunkt, ekstremalpunkt o.l. er kjent for leseren. Hvis ikke finnes definisjonen av disse ivedlegg~E

²Som vi straks skal se, kunne a også vært -2. Men når vi skal finne et cosinusuttrykk, kan vi alltid finne et uttrykk med a > 0 som vil samsvare med grafen.

Da f har et toppunkt der x = 2, må vi ha at

$$\frac{\pi}{2} \cdot 2 + c = 0$$
$$c = -\pi$$

En endring i c vil forskyve cosinusfunksjonen horisontalt, c kalles derfor faseforskyvningen (eventuelt bare fasen).

La oss også kort studere grafen til

$$g(x) = -2\cos\left(\frac{\pi}{2}x - \pi\right) + 1$$

Figur 2.16: Utsnitt av grafen til $g(x) = -2\cos\left(\frac{\pi}{2}x - \pi\right) + 1$.

Den eneste forskjellen på uttrykkene til f og g er at g har faktoren -2 foran cosinusuttrykket. Vertikalavstanden fra likevektslinja til et toppunkt er likevel 2 også for g, som derfor har 2 som amplitude. For en hvilken som helst cosinusfunksjon er altså |a| lik verdien til amplituden. Fordi a er negativ, har g et toppunkt når $kx+c=\pi$ (siden $\cos\pi=-1$).

Cosinusfunksjonen

En funksjon f(x) på formen

$$f(x) = a\cos(kx + c) + d \tag{2.42}$$

kalles en cosinusfunksjon med amplitude |a|, bølgetall k, fase c og likevektslinje y=d.

Hvis f har to naboliggende toppunkt x_1 og x_2 , er

$$P = x_2 - x_1 \tag{2.43}$$

og

$$k = \frac{2\pi}{P} \tag{2.44}$$

Videre kan c finnes ut ifra ligningen

$$kx_1 + c = 0 (2.45)$$

Funksjonen har ekstremalpunkter for alle x der

$$kx + c = 2\pi n \quad \lor \quad kx + c = \pi + 2\pi n$$
 (2.46)

for alle $n \in \mathbb{Z}$.

Eksempel 1

Grafen til cosinusfunksjonen f er skissert i figuren under.

Finn et uttrykk for f.

Svar:

Vi observerer at verdiene til f varierer mellom 1 og 5. Dette betyr at likevektslinja er $y=\frac{1+5}{2}=3$ og at amplituden er $\frac{5-1}{2}=2$. Vi legger også merke til at horisontalavstanden mellom to toppunkt er $2\pi-(-2\pi)=4\pi$, som altså er bølgelengden. Dermed er

$$f(x) = a\cos(kx + c) + d$$

hvor a=2, d=3 og $k=\frac{2\pi}{4\pi}=\frac{1}{2}$. Fasen c finner vi ved å observere at f har et toppunkt for $x=2\pi$. Cosinusverdien til f må være 1 i dette punktet, og da er

$$kx + c = 0$$
$$\frac{1}{2} \cdot 2\pi + c = 0$$
$$c = -\pi$$

Uttrykket til f blir da

$$f(x) = 2\cos\left(\frac{1}{2}x - \pi\right) + 3$$

Eksempel 2

En tilnærming for høy- og lavvann i Molde er gitt ved funksjonen

$$f(x) = 128 + 80\cos\left(\frac{3\pi}{37}x\right)$$

hvor f angir cm over sjøkartnull¹ t timer etter et gitt referansetidspunkt. Referansetidspunktet er valgt slik at det ved t = 0 var høyvann (flo).

- a) Hva er vannstanden i Molde når det er lavvann (fjøre)?
- b) Hvor lang tid er det mellom flo og fjøre?

Svar:

- a) En cosinusfunksjon har lavest verdi når cosinusuttrykket har verdien -1. Den laveste verdien til f er derfor 128 80 = 48. Når det er fjære er altså vannstanden $48 \,\mathrm{cm}$ over sjåkartnull.
- b) Av (2.44) har vi at perioden P er gitt som

$$P = \frac{2\pi}{k}$$

I dette tilfellet er $k = \frac{3\pi}{37}$, altså er

$$P = \frac{37}{3}$$
$$= 12 + \frac{1}{3}$$

Følgelig er det 12 timer og 20 minutter mellom to etterfølgende tipspunkt for flo. Dette betyr at det er 6 timer og 10 minutter mellom flo og fjære.

¹Sjøkartnull er som regel satt til den laveste vannstanden som kan oppnås ut ifra astronomiske betingelser (flo og fjære er i stor grad betinget av hvordan jorda, sola og månen står i forhold til hverandre).

2.5.2 Sinusfunksjoner

Funksjoner på formen

$$f(x) = a\sin(kx + c) + d$$

kalles *sinusfunksjoner*. Amplituden, bølgetallet og likevektslinjen finner vi på akkurat samme måte som for cosinusfunksjoner.

Fasen finner vi derimot ved å observere at en sinusfunksjon må ha en maksimalverdi der

- $kx + c = \frac{\pi}{2}$ hvis a er positiv (fordi $\sin \frac{\pi}{2} = 1$).
- $kx + c = -\frac{\pi}{2}$ hvis a er negativ (fordi $\sin\left(-\frac{\pi}{2}\right) = -1$).

Sinusfunksjonen

En funksjon f(x) på formen

$$f(x) = a\sin(kx+c) + d \tag{2.47}$$

kalles en sinusfunksjon med amplitude |a|, bølgetall k, fase c og likevektslinje y=d.

c er gitt ved ligningen

$$kx_1 + c = \frac{\pi}{2} \tag{2.48}$$

hvor x_1 er x-verdien til et toppunkt.

Funksjonen har ekstremalpunkter for alle x der

$$kx + c = \pm \frac{\pi}{2} + 2\pi n \tag{2.49}$$

for alle $n \in \mathbb{Z}$.

Eksempel

Gitt funksjonen

$$f(x) = 2\cos(3x + \pi) + 1$$

- a) Skriv om f til en sinusfunksjon.
- **b)** Finn x-verdiene til toppunktene til f.

Svar:

a) Det eneste vi må sørge for er å gjøre om cosinusuttrykket til et sinusuttrykk. Av (2.18) vet vi at

$$\cos(3x + \pi) = \cos\left(3x + \pi + \frac{\pi}{2} - \frac{\pi}{2}\right)$$
$$= \sin\left(3x + \pi + \frac{\pi}{2}\right)$$
$$= \sin\left(3x + \frac{3\pi}{2}\right)$$

Dermed er

$$f(x) = 2\sin\left(3x + \frac{3\pi}{2}\right) + 1$$

b) Fordi sinusuttrykket multipliseres med det positive tallet 2, må toppunktene være der hvor sinusuttrykket blir 1. Da er x gitt ved ligningen

$$kx + c = \frac{\pi}{2} + 2\pi n$$

Vi får derfor at

$$3x + \frac{3\pi}{2} = \frac{\pi}{2} + 2\pi n$$
$$3x = 2\pi n - \pi$$
$$x = \frac{\pi}{3}(2n - 1)$$

2.5.3 Tangensfunksjoner

Vi avslutter seksjonen om trigonometrisk funksjoner med tangens-funksjoner, nemlig funksjoner f på formen

$$f(x) = a \tan(kx + c) + d$$

Når x går mot $\frac{\pi}{2}$, går $\sin x$ mot 1 og $\cos x$ mot 0. Siden $\tan x = \frac{\sin x}{\cos x}$, vil f da vil gå mot uendelig. Derfor er det ikke mulig å angi noen amplitude for tangensfunksjonen. Dette betyr også at funksjonen vil oppføre seg asymptotisk.

Figur 2.17: Grafen til $f(x) = \tan(\pi x)$ på intervallet $x \in [-2, 2]$.

Det spesielle med tangensfunksjoner er at den asymptotiske oppførselen gjentar seg med den samme avstanden, altså en periode P (i figur 2.17 er P=1). Til forskjell fra sinus- og cosinusfunskjoner er perioden her gitt av formelen

$$P = \frac{\pi}{\nu}$$

Med en litt annen tolkning enn tidligere kan man også se på y=d som en likevektslinje, men for tangensfunksjoner er det asymptotetene og perioden som er av størst interesse.

Tangensfunksjoner

Funksjonen

$$f(x) = a\tan(kx + c) + d \tag{2.50}$$

har vertikale asymptoter for alle x der

$$kx + c = \pm \frac{\pi}{2} + \pi n$$
 (2.51)

for $n \in \mathbb{Z}$.

Perioden P er gitt ved relasjonen

$$P = \frac{\pi}{k} \tag{2.52}$$

Forklaringer

Trigonometriske identiteter

$$\cos(-x) = \cos x \text{ og } \sin(-x) = -\sin x$$

Disse to identitetene følger direkte av definisjonen av sinus og cosinus og symmetrien om horisontal- og vertikalaksen.

$$\cos^2 x + \sin^2 x = 1$$

I enhetssirkelen er $\pm \cos x$ og $\pm \sin x$ katetene i en rettvinklet trekant der hypotenusen har lengde 1. Identiteten følger altså direkte av Pytagoras' setning.

$$\cos(u - v) = \cos u \cos v + \sin u \sin v$$

Denne forklaringen bygger på vektorer i planet, som det er antatt at leseren kjenner fra tidligere matematikkurs.

Gitt to vektorer \vec{b} og \vec{r} , begge med lengde 1. Disse tegner vi inn i enhetssirkelen med utspring i sentrum. Den horisontale diameteren danner vinkelen u med \vec{b} og vinkelen v med \vec{r} .

Figur 2.18: Vektorene \vec{b} (blå) og \vec{r} (rød).

Husk nå at en vinkel oppgitt i radianer representerer en buelengde langs enhetssirkelen (selv om vi i $figur\ 2.18$ har indikert vinklene innenfor omkretsen for å unngå overlapping). Av definisjonen til sinus og cosinus (se ligning (2.2) og (2.3))) har vi at

$$\vec{b} = [\cos u, \sin u]$$
$$\vec{r} = [\cos v, \sin v]$$

Vinkelen $\angle(\vec{b}, \vec{r})$ utspent av to vektorer i planet er gitt som

$$\cos \angle (\vec{b}, \vec{r}) = \frac{\vec{b} \cdot \vec{r}}{|\vec{b}||\vec{r}|}$$

Hvis¹
$$(u - v) \in [0, \pi]$$
, er $\angle(\vec{b}, \vec{r}) = u - v$, og dermed er
$$\cos \angle(\vec{b}, \vec{r}) = \cos(u - v)$$
$$= \frac{[\cos u, \sin u] \cdot [\cos v, \sin v]}{1 \cdot 1}$$
$$= \cos u \cos v + \sin u \sin v$$

Det er fristende å si at vi er i mål, men vi har ikke sjekket hva som skjer hvis $\pi < u - v \le 2\pi$. Det er heldigvis ingen radikal endring, forskjellen blir bare at $u - v = 2\pi - \angle(\vec{b}, \vec{r})$. Og siden $\cos(2\pi - x) = \cos x$ (forklar for deg selv hvorfor), har vi at

$$\cos(u - v) = \cos\left(2\pi - \angle(\vec{a}, \vec{b})\right)$$
$$= \cos\angle(\vec{b}, \vec{r})$$
$$= \cos u \cos v + \sin u \sin v$$

Nå har vi altså vist at (2.8) gjelder for alle $u-v\in [0,2\pi]$. Hvis u-v ligger utenfor dette intervallet, må det finnes et tall $2\pi n$, hvor $n\in \mathbb{Z}$, som er slik at $(u-v+2\pi n)\in [0,2\pi]$. Da kan vi skrive

$$cos(u - v) = cos(u - v + 2\pi n)$$

$$= cos u cos(v + 2\pi n) + sin u sin(v + 2\pi n)$$

$$= cos u cos v + sin u sin v$$

Dermed er (2.8) vist for alle $(u - v) \in \mathbb{R}$.

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

$$cos(u - v) = cos(u - (-v))$$

$$= cos u cos(-v) + sin u sin(-v)$$

$$= cos u cos v - sin u sin v$$

$$\cos\left(u - \frac{\pi}{2}\right) = \sin u$$

$$\cos\left(u - \frac{\pi}{2}\right) = \cos u \cos\left(\frac{\pi}{2}\right) + \sin u \sin\left(\frac{\pi}{2}\right)$$

$$= \sin u$$

$$\sin\left(u+\tfrac{\pi}{2}\right)=\cos u$$

$$\sin\left(u + \frac{\pi}{2}\right) = \cos\left(u + \frac{\pi}{2} - \frac{\pi}{2}\right)$$

 $^{^{1}\}mathrm{Vinkelen}$ mellom vektorer er bare definert på intervallet $[0,\pi].$

$\sin(u+v) = \cos u \sin v + \sin u \cos v$

Vi tar først med oss at (det får bli opp til leseren selv å bekrefte dette):

$$\cos\left(u + \frac{\pi}{2}\right) = -\sin u$$

Da kan vi videre skrive

$$\cos\left(u+v+\frac{\pi}{2}\right) = \cos u \cos\left(v+\frac{\pi}{2}\right) - \sin u \sin\left(v+\frac{\pi}{2}\right)$$
$$= -(\cos u \sin v + \sin u \cos v)$$

Siden $\cos\left(u+\left(v+\frac{\pi}{2}\right)\right)=-\sin(u+v)$, har vi nå at

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$

 $\sin(u-v) = \sin u \cos v - \cos u \sin v$

$$\sin(u - v) = \sin(u + (-v))$$

$$= \sin u \cos(-v) + \cos u \sin(-v)$$

$$= \sin u \cos v - \cos u \sin v$$

 $\sin(2u) = 2\sin u\cos u$

$$\sin(2x) = \sin(x+x)$$

$$= \sin x \cos x + \sin x + \cos x$$

$$= 2\sin x \cos x$$

$$\cos\left(x - \frac{\pi}{2}\right) = \sin x$$

$$\cos\left(x - \frac{\pi}{2}\right) = \cos x \cos\left(\frac{\pi}{2}\right) + \sin x \sin\left(\frac{\pi}{2}\right)$$
$$= \sin x$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin\left(x + \frac{\pi}{2}\right) = \sin x \cos\left(\frac{\pi}{2}\right) + \cos x \sin\left(\frac{\pi}{2}\right)$$
$$= \cos x$$

Sinus og cosinus kombinert

Gitt uttrykket

$$a\cos(kx) + b\sin(kx) \tag{2.53}$$

Vi vet at (se (2.10))

$$r\sin(kx+c) = r\sin c\cos(kx) + r\cos c\sin(kx) \tag{2.54}$$

Uttrykkene fra ligning (2.53) og (2.54) er like hvis

$$a = r\sin c \tag{2.55}$$

$$b = r\cos c \tag{2.56}$$

Kvadrerer vi ligning (2.55) og (2.56), får vi at

$$a^2 = r^2 \sin^2 c (2.57)$$

$$b^2 = r^2 \cos^2 c (2.58)$$

Hvis vi nå legger sammen ligning (2.57) og (2.58), finner vi et uttrykk for r:

$$r^{2} \sin^{2} c + r^{2} \cos^{2} c = a^{2} + b^{2}$$

$$r^{2} (\sin^{2} c + \cos^{2} c) = a^{2} + b^{2}$$

$$r^{2} = a^{2} + b^{2}$$

$$r = \pm \sqrt{a^{2} + b^{2}}$$

Hvis vi velger den positive løsningen for r, får vi at

$$r = \sqrt{a^2 + b^2}$$
$$\cos c = \frac{b}{r}$$
$$\sin c = \frac{a}{r}$$

Trigonometriske funksjoner

Tallet k

Vi skal nå vise hvorfor vi for en cosinusfunksjon har relasjonen $k = \frac{2\pi}{P}$. Det samme resonnementet kan brukes for en sinusfunksjon, og et veldig lignende et kan brukes for å vise at $k = \frac{\pi}{P}$ for en tangensfunksjon.

La oss tenke oss en cosinusfunksjon med kx + c som kjerne. Si videre at x_1 og x_2 er x-verdien til to naboliggende toppunkt.

Figur 2.19

Siden et nytt toppunkt kommer for hver gang vi legger til 2π i kjernen, vet vi at

$$kx_1 + c + 2\pi = kx_2 + c$$
$$k(x_2 - x_1) = 2\pi$$
$$k = \frac{2\pi}{x_2 - x_1}$$

Da $x_2 - x_1$ er det vi kaller for perioden P, har vi vist det vi skulle.

Oppgaver for kapittel 2

2.1.1

Utdanninsdirektoratet definerer størrelsen til en vinkel v mellom to linjestykker a og b, oppgitt i radianer, på følgende måte:

Forholdet mellom lengden på en bue mellom a og b og radiusen til buen.

I figuren over svarer dette til forholdet $\frac{l}{r}$.

Forklar hvorfor radianer ut ifra denne definisjonen også kan sees på som en buelengde langs enhetssirkelen.

2.1.2

Gjør om til radianer:

- a) 60°
- **b**) 15°

2.1.3

Gjør om til grader:

a)
$$\frac{11\pi}{12}$$
 b) $\frac{11\pi}{6}$

b)
$$\frac{11\pi}{6}$$

2.2.1

Bruk Pytagoras' setning og definisjonen av $\cos x$ og $\sin x$ til å vise at

$$\cos^2 x + \sin^2 x = 1$$

2.2.2

Finn $\tan x$ når du vet at

$$\mathbf{a)}\,\sin x = 0\,\cos \cos x = 1$$

a)
$$\sin x = 0$$
 og $\cos x = 1$ **b)** $\sin x = \frac{1}{2}$ og $\cos x = -\frac{\sqrt{3}}{2}$

2.2.3

Bruk - og + for å indikere henholdsvis negativ og positiv, og sett riktige markører i tabellen under.

	1. kvadrant	2. kvadrant	3. kvadrant	4. kvadrant
$\sin x$				
$\cos x$				
$\tan x$				

2.2.4

Bestem verdien til

- a) $\sin\left(-\frac{\pi}{6}\right)$ b) $\cos\pi$ c) $\cos\left(-\frac{\pi}{2}\right)$ d) $\tan\left(\frac{2\pi}{3}\right)$

2.2.5

Finn verdien til

- \mathbf{a}) asin 0
- **b**) asin $\frac{\sqrt{3}}{2}$
- c) acos(-1) d) $acos\left(-\frac{\sqrt{2}}{2}\right)$
- e) atan 1 f) atan $\left(\frac{1}{\sqrt{3}}\right)$

2.2.6

Bruk (2.17) til å vise at $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ når du vet at $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

2.2.7

a) Bruk én av de trigonometriske identitetene til å vise at

$$\sin(2x) = 2\cos x \sin x$$

b) Gitt at $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$. Bruk dette og identiteten over til å vise at

$$2\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{\pi}{12}\right) = \frac{1}{2}$$

2.2.8

Skriv om utrykket

$$\cos\left(3x - \frac{5\pi}{2}\right)$$

til et sinusuttrykk.

2.2.9

Skriv om uttrykket

$$\cos(2x) + \sqrt{3}\sin(2x)$$

til et sinusuttrykk.

2.3.1

Vis at alle løsninger av ligningen $\cos x = 0$ er gitt som

$$x = \frac{\pi}{2} + \pi n$$

mens alle løsninger av ligningen sin x=0 er gitt som

$$x = \pi n$$

2.3.2

Løs ligningene:

- **a)** $\cos x = \frac{\sqrt{2}}{2}$
- **b)** $\cos(\frac{\pi}{3}x) = 0$, $x \in [0, 5]$
- **c)** $2\sin(3x) = 1$
- **d)** $\sin(2x \pi) = -\frac{\sqrt{3}}{2}$
- e) $2\sqrt{3}\tan(4x + \frac{\pi}{2}) = 2$

2.3.3

 ${\rm L} \emptyset {\rm s}$ ligningene:

- a) $\sqrt{3}\sin x \cos x = 0$
- **b)** $\sin x + \sqrt{3}\cos x = 0$
- **c)** $\cos(2x) + \sin(2x) = 0$

2.3.4

Løs ligningene:

- a) $\cos x \sin x = \sqrt{2}$
- **b)** $\sqrt{3}\cos\left(\frac{x}{2\pi}\right) \sin\left(\frac{x}{2\pi}\right) = 1$

2.4.1

Løs ligningene:

a)
$$\sin^2 x + \frac{1}{2}\sin x - \frac{1}{2} = 0$$

b)
$$\cos^2(3x) - 3\cos(3x) - 4 = 0$$

c)
$$2\cos^2 x + \sqrt{8}\cos x + 1 = 0$$

d)
$$\tan^2(\pi x) - \sqrt{12}\tan(\pi x) + 3 = 0$$

e)
$$-\sin^2(3x) - 3\cos(3x) - 3 = 0$$

2.4.2

Løs ligningene:

a)
$$-\cos^2 x + 15\sin^2 x = 3$$

$$\mathbf{b)} \cos^2\left(\frac{x}{4}\right) - 2\sin^2\left(\frac{x}{4}\right) = -\frac{1}{2}$$

2.5.1

Forklar hvorfor en cosinusfunksjon $f(x) = a\cos(kx+c) + d$ har

- a) Maksimalverdier for $kx + c = 2\pi n$ og minimalverdier for $kx + c = \pi + 2\pi n$ når a > 0.
- **b)** Maksimalverdier for $kx+c=\pi+2\pi n$ og minimalverdier for $kx+c=2\pi n$ når a<0.

2.5.2

Gitt funksjonen

$$f(x) = -3\cos\left(3x + \frac{\pi}{12}\right) + 4$$

- a) Finn perioden til f.
- b) Hva er minimums- og maksimumsverdiene til f?
- c) Finn alle x hvor f har minimums- og maksimumsverdier.

2.5.3

Forklar hvorfor en sinusfunksjon $f(x) = a \sin(kx + c) + d$ har

- a) Maksimalverdier for $kx+c=\frac{\pi}{2}+2\pi n$ og minimalverdier for $kx+c=-\frac{\pi}{2}+2\pi n$ når a>0.
- **b)** Maksimalverdier for $kx = \pi + 2\pi n$ og minimalverdier for $kx = 2\pi n$ når a < 0.

2.5.4

Gitt funksjonen

$$f(x) = -2\sin\left(\frac{\pi}{2}x\right) + 1 \quad , \quad x \in [-5, 5]$$

- a) Finn perioden til f.
- **b)** Finn topppunktene til f.
- c) Finn nullpunktene til f.

2.5.5

Om en cosinusfunksjon vet du følgende:

- likevektslinja til funksjonen er y = 1.
- (0,3) og $(2\pi,3)$ er to naboliggende toppunkt.

Skisser grafen til funksjonen for $x \in [0, 3\pi]$.

2.5.6

- a) Finn et cosinusuttrykk til grafen over.
- b) Finn et sinusuttrykk til grafen over.

2.5.7

Forklar hvorfor alle funksjoner f på formen

$$f(x) = a \tan(kx + c) + d$$

har vertikale asymptoter når

$$kx + c = \pm \frac{\pi}{2} + \pi n$$

Gruble 2

Gitt relasjonen

$$\tan x = \frac{a}{b}$$

Vis at
$$\sin x = \frac{a}{\sqrt{a^2 + b^2}}$$
 og at $\cos x = \frac{b}{\sqrt{a^2 + b^2}}$.

Kommentar

I enkelte tekster som omtaler trigonometriske funksjoner finner man formuleringer som denne:

$$f(x) = \sin x \quad , \quad x \in [0, 2\pi] \tag{I}$$

$$g(x) = \sin x$$
 , $x \in [0^{\circ}, 360^{\circ}].$ (II)

Dette skaper det feilaktige bildet av at f og g er den samme funksjonen, med uttrykket $\sin x$, men at det er opp til oss å velge om x er et tall eller vinkelmålet grader.

Det er viktig å innse at de trigonometriske funskjonene vi nå har introdusert, er funksjoner som bare kan ha tall som argumenter — x kan ikke bære enheter som grader, meter o.l. Men det kan selvfølgelig være at man ønsker å la x representere grader, en korrekt måte å skrive g på er da

$$g(x) = \sin^\circ x \quad , \quad x \in [0, 360]$$

hvor ° indikerer at ger sinusverdien til xgrader. Relasjonen mellom $\sin^\circ x$ og sinxer

$$\sin^{\circ} x = \sin\left(\frac{\pi}{180}x\right)$$

Selv om vi enda ikke har studert den deriverte av sinusfunksjoner, bør du allerede nå (via kjerneregelen) ane at $(\sin^{\circ} x)' \neq (\sin x)'$. Å presentere f og g med like uttrykk, som i (I) og (II), blir derfor helt feil.

Når det for eksempel skrives sin 45°, menes det altså strengt tatt sin° 45. Likevel skal vi bruke denne skrivemåten i neste kapittel fordi den er så utbredt. For å ha alt på det tørre, definerer vi her og nå at symbolet ° rett og slett ikke er noe annet enn brøken¹ $\frac{\pi}{180}$. På denne måten blir:

$$\sin x^{\circ} = \sin\left(\frac{\pi}{180}x\right) = \sin^{\circ} x$$

¹Dette er i samsvar med (2.1).

Kapittel 3

Vektorer i rommet

Mål for opplæringen er at eleven skal kunne

- utføre beregninger med tredimensjonale vektorer som er representert både geometrisk og på koordinatform
- bruke og tolke skalar- og vektorproduktet i beregning av avstander, vinkler, areal og volum

3.1 Vektorbegrepet

For å beskrive størrelser i rommet, innfører vi et koordinatsystem der en x- en y- og en z-akse står vinkelrett på hverandre. En vektor i rommet vil angi en lengde langs hver av disse aksene La oss bruke vektoren $\vec{u} = [2,3,4]$ som eksempel. Når vi skriver \vec{u} på denne måten, sier vi at vektoren er skrevet på komponentform med 2 som x-komponent, 3 som y-komponent og 4 som z-komponent.

For å framstille \vec{u} grafisk tegner vi en pil fra et startpunkt til punktet vi når ved å følge lengdene¹ som vektoren angir.

Figur 3.1: $\vec{u} = [2, 3, 4]$

I figuren over er \vec{u} vist i det som kalles grunnstillingen, dette innebærer at den starter i origo. Enhver vektor som starter i grunnstillingen vil ende i punktet med samme koordinater som vektorens komponenter. Hvis man følger en vektor fra et punkt til et annet, har man bevegd seg i en bestemt retning, pilen som tegnes peker i netopp denne retningen.

¹Hvis en komponent er negativ betyr dette at lengden skal vandres motsatt av akseretningen.

3.1.1 Vektoren mellom to punkt

Det er viktig å innse at en vektor kan befinne seg hvor som helst i koordinatsystemet. Trekker vi for eksempel en pil fra punktet A=(1,1,0) til B=(3,4,4), vil \vec{u} fra figur 3.1 dukke opp igjen, men denne gangen forskjøvet fra grunnstillingen.

Figur 3.2: Vektoren \vec{u} to forsjellige plasser i rommet

At vi ser noe grafisk er sjeldent et tilstrekkelig bevis, og skal vi sjekke om to vektorer er like bør dette gjøres ved regning. I vårt tilfelle ønsker vi å vite hvilken vektor som bringer oss fra A til B, og da må vi finne differansen mellom koordinatene:

$$[3-1, 4-1, 4-0] = [2, 3, 4]$$

Dermed har vi vist at nettopp nevnte \vec{u} er denne vektoren.

Vektoren mellom to punkt

Vektoren \vec{u} fra punkt $A=(x_1,y_1,z_1)$ til $B=(x_2,y_2,z_2)$ er gitt som

$$\vec{u} = [x_2 - x_1, y_2 - y_1, z_2 - z_1] \tag{3.1}$$

Eksempel

Finn vektoren \vec{u} mellom punktet A = (1, 2, 0) og B = (3, 0, 1).

Svar:

$$\vec{u} = [3-1, 0-2, 1-0]$$

= $[2, -2, 1]$

3.1.2 Regneregler for vektorer

Av (3.1) innser vi at hvis vektoren mellom A og B er betegnet som \vec{u} , finner vi koordinatene til B ved å addere koordinatene til A med komponentene til \vec{u} . Dette leder oss til den litt snodige konvensjonen at et punkt addert med en vektor blir et punkt¹.

Regneregler for vektorer

Gitt vektorene $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$, punktet $A = (x_0, y_0, z_0)$ og en konstant t. Da er

$$A + \vec{u} = (x_0 + x_1, y_0 + y_1, z_0 + z_1) \tag{3.2}$$

$$\vec{u} + \vec{v} = [x_1 + x_2, y_1 + y_2, z_1 + z_2] \tag{3.3}$$

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2, z_1 - z_2] \tag{3.4}$$

$$t\vec{u} = [tx_1, ty_1, tz_1] \tag{3.5}$$

Figurativt kan vi tegne summen eller differansen av \vec{u} og \vec{v} som

For en vektor \vec{w} har vi videre at

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \tag{3.6}$$

$$\vec{u} - (\vec{v} + \vec{w}) = \vec{u} - \vec{v} - \vec{w} \tag{3.7}$$

$$t(\vec{u} + \vec{v}) = t\vec{u} + t\vec{v} \tag{3.8}$$

 $^{^1\}mathrm{I}$ mange matematiske tekster blir punkt og vektorer sett på som det samme.

Eksempel

Et parallellogram er tegnet inn i figuren under.

Vis at midpunktet M til diagonalen AG også er midtpunktet til diagonalen CE.

Svar:

Vektoren \overrightarrow{AG} er gitt som

$$\overrightarrow{AG} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Dette betyr at

$$\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AG}$$

$$= \frac{1}{2} (\vec{a} + \vec{b} + \vec{c})$$

Vi kaller midpunktet til CE for M_1 . Da har vi at

$$\overrightarrow{CM_1} = \frac{1}{2}\overrightarrow{CE}$$
$$= \frac{1}{2}(\vec{c} - \vec{a} - \vec{b})$$

Videre er

$$\overrightarrow{AM_1} = \vec{a} + \vec{b} + \overrightarrow{CM_1}$$

$$= \vec{a} + \vec{b} + \frac{1}{2}(\vec{c} - \vec{a} - \vec{b})$$

$$= \frac{1}{2}(\vec{a} + \vec{b} + \vec{c})$$

$$= \overrightarrow{AM}$$

Dette må bety at $M = M_1$.

3.1.3 Lengden av en vektor

Vi har sett hvordan komponentene bestemmer hvor vi ender når vi følger en vektor, men de angir også den korteste avstanden mellom punktet vi starter fra og punktet vi ender i. For en vektor \vec{u} kaller vi denne asvstanden lengden av \vec{u} , som vi skriver som $|\vec{u}|$. La oss prøve å finne lengden av en vektor $\vec{u} = [x_1, y_1, z_1]$, som skissert i figur 3.3. Grafisk er lengden avstanden fra den butte enden til pilspissen.

Figur 3.3

Av $|\vec{u}|$ og lengdene z_1 og $\hat{u}=\sqrt{x_1^2+y_1^2}$ danner vi en rettvinklet trekant. Av Pytagoras' setning har vi da at lengden av \vec{u} er gitt som

$$\begin{split} |\vec{u}| &= \sqrt{\hat{u}^2 + z_1^2} \\ &= \sqrt{x_1^2 + y_1^2 + z_1^2} \end{split}$$

Lengden av en vektor

Lengden $|\vec{u}|$ av en vektor $\vec{u} = [x_1, y_1, z_1]$ er gitt som

$$|\vec{u}| = \sqrt{x_1^2 + y_1^2 + z_1^2} \tag{3.9}$$

Eksempel

Finn lengden av vektoren $\vec{u} = [-2, 4, 1]$.

Svar:

$$|\vec{u}| = \sqrt{(-2)^2 + 4^2 + 1^2}$$
$$= \sqrt{4 + 16 + 1}$$
$$= \sqrt{21}$$

Eksempel 2

Finn lengden av vektoren $\vec{a} = [-9, 18, 27]$.

Svar:

Ved å bruke (3.5) sparer vi oss for kvadrater av store tall:

$$[-9, 18, 27] = 9[-1, 2, 3]$$

Lengden blir da (se opg. 3.1.3)

$$|\vec{a}| = 9\sqrt{(-1)^2 + 2^2 + 3^2}$$
$$= 9\sqrt{14}$$

3.2 Skalarproduktet

Vi skal nå se på definisjonen av en regneoperasjon mellom vektorer som kalles *skalarpruduktet* (også kalt *prikkproduktet* eller *indreproduktet*). Skalarproduktet skiller seg ut ifra mange andre operasjoner fordi det kan regnes ut på to vidt forskjellige måter.

Ved den ene utregningen skal vi anvende vinkelen *utspent* av to vektorer, som er den minste vinkelen mellom to vektorer med samme utgangspunkt. For to vektorer \vec{u} og \vec{v} skriver vi denne som $\angle(\vec{u}, \vec{v})$.

Figur 3.4: $\angle(\vec{u}, \vec{v})$ er vinkelen utspent av \vec{u} og \vec{v} .

I vektorregning er det vanlig å oppgi vinkelmål i grader, for minst mulige vinkler betyr dette vinkler på intervallet $[0^{\circ}, 180^{\circ}]$.

3.2.1 Første definisjon

Fra (3.9) vet vi hvordan å finne lengden av en vektor. Si nå at vi har vektoren $\vec{u}-\vec{v}$, hvor $\vec{u}=[x_1,y_1,z_1]$ og $\vec{v}=[x_2,y_2,z_2]$. Da er

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2, z_1 - z_2]$$

Lengden kan dermed skrives som

$$|\vec{u} - \vec{v}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

$$= \sqrt{x_1^2 - 2x_1x_2 + x_2^2 + y_1^2 - 2y_1y_2 + y_2^2 + z_1^2 - 2z_1z_2 + z_2^2}$$
(3.10)

Uttrykket på høyre side i ligningen over er skremmende langt. For å komprimere dette og lignende uttrykk, innfører vi skalarproduktet:

Skalarproduktet I

Skalar produktet av to vektorer $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$ kan skrives som

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2 \tag{3.11}$$

For særtilfellet $\vec{u} \cdot \vec{u}$ er

$$\vec{u} \cdot \vec{u} = \vec{u}^2 \tag{3.12}$$

Eksempel

Finn skalar produktet av vektorene $\vec{a} = [1, 2, 3]$ og $\vec{b} = [4, -3, -2]$.

Svar:

$$\vec{a} \cdot \vec{b} = 1 \cdot 4 + 2 \cdot (-3) + 3 \cdot (-2)$$

= -8

3.2.2 Andre definisjon

Med den første definisjonen av skalarproduktet kan vi omskrive (3.10) til

$$|\vec{u} - \vec{v}| = \sqrt{\vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2}$$
 (3.13)

Videre merker vi oss følgende figur:

Figur 3.5: $\theta = \angle(\vec{u}, \vec{v})$.

Av cosinussetningen¹ og (3.13) har vi at

$$|(\vec{v} - \vec{u})|^2 = |\vec{v}|^2 + |\vec{u}|^2 - 2\vec{u}||\vec{v}|\cos\theta$$
$$\vec{v}^2 - 2\vec{u} \cdot \vec{v} + \vec{u}^2 = \vec{v}^2 + \vec{u}^2 - 2|\vec{u}||\vec{v}|\cos\theta$$
$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$$

Skalarproduktet II

Skalarproduktet av to vektorer \vec{u} og \vec{v} er gitt som

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta \tag{3.14}$$

hvor $\theta = \angle(\vec{u}, \vec{v})$.

Eksempel 1

En vektor \vec{a} har lengde 3 og en vektor \vec{b} har lengde 2. De utspenner vinkelen 45°. Finn skalarproduktet $\vec{a} \cdot \vec{b}$.

Svar:

$$\vec{a} \cdot \vec{b} = 3 \cdot 2\cos(45^{\circ})$$
$$= 6 \cdot \frac{\sqrt{2}}{2}$$
$$= 3\sqrt{2}$$

Eksempel 2

Finn vinkelen v utspent av vektorene $\vec{a} = [-5, 4, -3]$ og $\vec{b} = [-2, 5, -5]$.

Svar:

Vi starter med å finne lengdene og skalarproduktene av vektorene:

$$|\vec{a}| = \sqrt{(-5)^2 + 4^2 + (-3)^2}$$
$$= \sqrt{50}$$
$$= 5\sqrt{2}$$

$$c^2 = a^2 + b^2 - 2ab\cos v$$

¹For en trekant med sider a, b og c, hvor a og b utspenner vinkelen v, har vi at

$$|\vec{b}| = \sqrt{(-2)^2 + 5^2 + (-5)^2}$$

$$= \sqrt{54}$$

$$= 3\sqrt{6}$$

$$\vec{a} \cdot \vec{b} = (-5) \cdot (-2) + 5 \cdot 4 + (-3) \cdot (-5)$$

$$= 45$$

Videre har vi at

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos v$$

$$45 = 5\sqrt{2} \cdot 3\sqrt{6} \cos v$$

$$\cos v = \frac{5 \cdot 9}{5 \cdot 3\sqrt{12}}$$

$$= \frac{5 \cdot 9}{4 \cdot 3 \cdot 2\sqrt{3}}$$

$$= \frac{3}{2\sqrt{3}}$$

$$= \frac{3}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{\sqrt{3}}{2}$$

Siden $\cos v = \frac{\sqrt{3}}{2}$, er $v = 30^{\circ}$.

3.2.3 Regneregler

Den observante leser har allerede lagt merke til at skalarproduktet av vektorer har mye til felles med pruktet av to tall. Dette blir enda mer tydelig når man ser på flere regneoperasjoner mellom vektorer:

Regneregler for skalarproduktet

For vektorene \vec{u} , \vec{v} og \vec{w} har vi at

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

Eksempel

Forkort uttrykket

$$\vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2$$

når du vet at $\vec{b} \cdot \vec{c} = 0$.

Svar:

$$\begin{split} \vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2 &= \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \left(\vec{a} + \vec{b}\right)^2 \end{split}$$

3.3 Vinkelrette og parallelle vektorer

3.3.1 Vinkelrette vektorer

Fra (3.14) kan vi gjøre en viktig observasjon. Hvis \vec{u} og \vec{v} står vinkelrett¹ på hverandre, utspenner de vinkelen 90°. I så fall er $\cos\theta=0$, og da blir

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$$
$$= 0$$

Kan vi få $\vec{u} \cdot \vec{v} = 0$ om vinkelen mellom \vec{u} og \vec{v} ikke er 90°? Fordi $\theta \in [0^{\circ}, 180^{\circ}]$, er det bare $\theta = 90^{\circ}$ som gir at $\cos \theta = 0$. Skal skalarproduktet bli 0 for andre vinkler, må derfor lengden av \vec{u} eller \vec{v} være 0. Den eneste vektoren med denne lengden er nullvektoren $\vec{0} = [0, 0, 0]$, som rett og slett ikke har noen retning². Det er likevel vanlig å definere at nullvektoren står vinkelrett på alle vektorer.

¹"Vinkelrett på" omtales gjerne som "normalt på".

²Eventuelt kan man hevde at den peker i alle retninger! Forøvrig spiller nullvektoren en minimal rolle i R2-faget.

Vinkelrette vektorer

To vektorer \vec{u} og \vec{v} står vinkelrett (normalt) på hverandre hvis skalarproduktet av dem er null:

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \tag{3.15}$$

Hvis én av vilkårene i (3.15) er oppfylt, sies \vec{u} og \vec{v} å være ortogonale.

Eksempel 1

Sjekk om vektorene $\vec{a} = [5, -3, 2]$ og $\vec{b} = [2, 4, 1]$ er ortogonale.

Svar:

$$\vec{a} \cdot \vec{b} = [5, -3, 2] \cdot [2, 4, 1]$$

= 10 - 12 + 2
= 0

Altså er $\vec{a} \perp \vec{b}$.

3.3.2 Parallelle vektorer

Figur 3.6: $\vec{u}||\vec{v}|$

Hvis en vektor \vec{v} kan skrives som et multiplum¹ av en vektor \vec{u} , er \vec{u} og \vec{v} parallelle. Vi lar figuren over stå som foreløpig forklaring for dette, og går videre til å finne en metode for å teste om to vektorer er parallelle.

Si at vi har vektorene $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$. Tenk nå at forholdstallet mellom hver korresponderende komponent er det samme, altså et tall c:

$$\frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{z_2}{z_1} = c$$

 $^{^1}$ Hvis vi for to vektorer \vec{u} og \vec{v} og en konstant t kan skrive $\vec{v}=t\vec{u},$ sier vi at \vec{v} er et multiplum av $\vec{u}.$

Altså er $x_2 = cx_1, y_2 = cy_1$ og $z_2 = cz_1$. Dette betyr at \vec{v} kan skrives som

$$\vec{v} = [cx_1, cy_1, cz_1]$$

= $c[x_1, y_1, z_1]$
= $c\vec{u}$

Og dermed er \vec{u} og \vec{v} parallelle. Dette skriver vi som $\vec{u} \parallel \vec{v}$.

Hvis forholdtstallet mellom de korresponderende koordinatene ikke er det samme, kan vi ikke skrive den ene vektoren som et multiplum av den andre, da er \vec{u} og \vec{v} ikke parallelle.

Parallelle vektorer

To vektorer $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$ er parallelle hvis forholdet mellom korresponderende komponenter er likt

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} \iff \vec{u} \parallel \vec{v}$$
 (3.16)

Eksempel 1

Gitt vektorene $\vec{u} = [1, 2, 3]$ og $\vec{v} = [3, 2(1-t), 11+t]$, finn t slik at \vec{u} og \vec{v} er parallelle.

Svar:

Vi starter med å kreve at forholdet mellom korresponderende komponenter er likt. Vi dividerer x- og y-komponenten i \vec{v} med henholdsvis x- og y-komponenten i \vec{u} :

$$\frac{3}{1} = \frac{2(1-t)}{2}$$
$$3 = 1-t$$
$$t = -2$$

Siden forholdet mellom de to x-komponentene og de to y-koordinatene er 3, må dette også stemme for z-koordinatene for at \vec{u} og \vec{v} skal være parallelle:

$$\frac{11+t}{3} = \frac{11+(-2)}{3}$$
$$= 3$$

Altså er $\vec{u} \parallel \vec{v}$ hvis t = -2.

Eksempel 2

Finn s og t slik at vektorene $\vec{u} = [-1, 2s, 4]$ og $\vec{v} = [3, 18, 4t + 4]$ er parallelle.

Svar:

Vi observerer at forholdet mellom x-komponeten i \vec{v} og \vec{u} er $\frac{3}{-1} = -3$. Hvis $\vec{u} \parallel \vec{v}$, er altså $\vec{v} = -3\vec{u}$. Vi kan derfor sette opp følgende ligning for s:

$$18 = -3(2s)$$
$$s = -3$$

Videre må vi ha at

$$4t + 4 = -3(4)$$
$$t = -4$$

3.4 Determinanter

Vi skal her se på regneoperasjoner mellom vektorer som brukes for å finne *determinanter*. Determinanter spiller en viktig rolle i den matematiske greinen som kalles *lineær algebra*, men for vår del er de mer et middel som skal brukes for å finne *vektorprodukt* i neste seksjon.

2×2 determinanter

Determinanten $\det(\vec{u}, \vec{v})$ av to vektorer $\vec{u} = [a, b]$ og $\vec{v} = [b, c]$ er gitt som

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
$$= ad - bc$$

Eksempel

Gitt vektorene $\vec{u} = [-1, 3]$ og $\vec{v} = [-2, 4]$. Bestem $\det(\vec{u}, \vec{v})$.

Svar:

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} -1 & 3 \\ -2 & 4 \end{vmatrix}$$
$$= (-1)4 - 3(-2)$$
$$= 2$$

3×3 determinanter

Determinanten $\det(\vec{u}, \vec{v}, \vec{w})$ av tre vektorer $\vec{u} = [a, b, c]$, $\vec{v} = [d, e, f]$ og $\vec{w} = [g, h, i]$ er gitt som

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} a & b & c \\ d & e & f \\ h & i & j \end{vmatrix}$$

$$= a \begin{vmatrix} e & f \\ i & j \end{vmatrix} - b \begin{vmatrix} d & f \\ h & j \end{vmatrix} + c \begin{vmatrix} d & e \\ h & i \end{vmatrix}$$

$$= a(ej - fi) - b(dj - fh) + c(di - eh)$$
(3.18)

Eksempel

Finn $\det(\vec{a}, \vec{b}, \vec{c})$ til vektorene $\vec{a} = [1, -2, 2], \vec{b} = [2, 2, -3]$ og $\vec{c} = [4, -1, 2].$

Svar:

Vi skal altså regne ut følgende:

$$\begin{vmatrix} 1 & -2 & 2 \\ 2 & 2 & -3 \\ 4 & -1 & 2 \end{vmatrix}$$

Å gå rundt å huske (3.18) er ikke bare bare, så vi skal her bruke et triks som gjør det enklere for oss å komme fram til høyresiden i (3.17).

Vi starter med å finne tallet i første rad og kolonne, i vårt tilfelle 1. Deretter danner vi en 2×2 determinant ved å utelukke raden og kolonnen dette tallet tilhører:

Når vi ganger 1 med denne determinanten, har vi funnet det første leddet fra (3.17):

$$1 \cdot \begin{vmatrix} 2 & -3 \\ -1 & 2 \end{vmatrix}$$

Vi går så over til tallet i første rad og andre kolonne, altså -2, og finner den tilhørende 2×2 determinanten:

Når vi setter et minustegn foran -2 ganger denne determinanten, har vi funnet andre ledd fra (3.17):

$$-(-2) \cdot \begin{vmatrix} 2 & -3 \\ 4 & 2 \end{vmatrix}$$

Vi avslutter med determinanten vi får ved å utelukke første rad og tredje kolonne:

Ganger vi denne med tallet som står i både raden og kolonnen som er utelatt, altså 2, får vi siste ledd i (3.17):

$$2 \cdot \begin{vmatrix} 2 & 2 \\ 4 & -1 \end{vmatrix}$$

Vi har nå funnet alle ledd vi trenger og kan da skrive

$$\det(\vec{a}, \vec{b}, \vec{c}) = 1 \cdot \begin{vmatrix} 2 & -3 \\ -1 & 2 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -3 \\ 4 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 2 \\ 4 & -1 \end{vmatrix}$$
$$= 2 \cdot 2 - (-3) \cdot (-1) + 2(2 \cdot 2 - (-3) \cdot 4) + 2(2 \cdot (-1) - 2 \cdot 4)$$
$$= 13$$

3.5 Vektorproduktet

3.5.1 Definisjon

Vi har sett hvordan vi ved skalarproduktet kan sjekke om to vektorer \vec{u} og \vec{v} står normalt på hverandre, men ofte kan vi isteden være interessert i å finne en vektor som står normalt på begge disse. En slik vektor får vi ved vektorproduktet (også kalt kryssproduktet) av \vec{u} og \vec{v} , som vi skriver som $\vec{u} \times \vec{v}$.

Merk: For skalarproduktet får vi en skalar (et tall), mens vi for vektorproduktet får en vektor. Det er derfor veldig viktig å skille symbolet \cdot fra \times .

Vektorproduktet

Vektorpruduktet av vektorene $\vec{u} = [a,b,c]$ og $\vec{v} = [d,e,f]$ er gitt som

$$\vec{u} \times \vec{v} = [bf - ce, -(af - cd), ae - bd] \tag{3.19}$$

Eventuelt kan man skrive

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a & b & c \\ d & e & f \end{vmatrix}$$
 (3.20)

hvor $\vec{e}_x = [1, 0, 0], \vec{e}_y = [0, 1, 0] \text{ og } \vec{e}_z = [0, 0, 1].$

Videre har vi at¹

$$\vec{u} \times \vec{v} \cdot \vec{u} = 0 \tag{3.21}$$

$$\vec{u} \times \vec{v} \cdot \vec{v} = 0 \tag{3.22}$$

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin \angle(\vec{u}, \vec{v}) \tag{3.23}$$

 $^{^1\}mathrm{Kryssprodukt}$ må regnes ut før skalarprodukt

Eksempel

Gitt vektorene $\vec{a} = [-3, 2, 3]$ og $\vec{b} = [2, -2, 1]$.

- a) Finn $\vec{a} \times \vec{b}$.
- **b)** Vis at vektoren du fant i a) står normalt på både \vec{a} og \vec{b} .

Svar:

a) Vi bruker uttrykket fra (3.20), og regner ut følgende 3×3 determinant:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ -3 & 2 & 3 \\ 2 & -2 & 1 \end{vmatrix}$$

Vi får da at (se gjerne tilbake til eksempelet på side 89)

$$\begin{aligned} \vec{a} \times \vec{b} &= \vec{e}_x \begin{vmatrix} 2 & 3 \\ -2 & -1 \end{vmatrix} - \vec{e}_y \begin{vmatrix} -3 & 3 \\ 2 & 1 \end{vmatrix} + \vec{e}_z \begin{vmatrix} -3 & 2 \\ 2 & -2 \end{vmatrix} \\ &= \vec{e}_x (2 \cdot 1 - 3 \cdot (-2)) - \vec{e}_y (-3 \cdot 1 - 3 \cdot 2) + \vec{e}_z (-3 \cdot (-2) - 2 \cdot 2) \\ &= 8\vec{e}_x + 9\vec{e}_y + 2\vec{e}_z \\ &= [8, 9, 2] \end{aligned}$$

b) To vektorer står normalt på hverandre dersom skalarproduktet av dem er 0:

$$[8,9,2] \cdot [-3,2,3] = -24 + 18 + 6 = 0$$
$$[8,9,2] \cdot [2,-2,1] = 16 - 18 + 2 = 0$$

Regneregler for vektorproduktet

For vektorene \vec{u}, \vec{v} og \vec{w} og en konstant t har vi at

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u} \tag{3.24}$$

$$\vec{u} \times (t\vec{v}) = t(\vec{u} \times \vec{v}) \tag{3.25}$$

$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w} \tag{3.26}$$

$$\vec{u} \times \vec{v} \cdot \vec{w} = \vec{w} \times \vec{u} \cdot \vec{v} \tag{3.27}$$

3.5.2 Vektorprodukt som areal og volum

En anvendelse av vektorproduktet (og skalarproduktet) er å finne arealet og volumet av noen geometriske former som kan sies å være utspent av vektorer. Med dette mener vi at to eller tre vektorer som starter i samme utgangspunkt, utgjør grunnlaget for en trekant, et parallellogram, et parallellepiped, en pyramide eller et tetraeder.

Figur 3.7: Geometriske former utspent av vektorene \vec{u} , \vec{v} og \vec{w} .

Vektorproduktet som areal og volum

Arealet A av et parallellogram utspent av vektorene \vec{u} og \vec{v} er gitt som

$$A = |\vec{u} \times \vec{v}| \tag{3.28}$$

Arealet Aav en trekant utspent av vektorene \vec{u} og \vec{v} er gitt som

$$A = \frac{1}{2}|\vec{u} \times \vec{v}| \tag{3.29}$$

Volumet V av parallellepipedet utspent av vektorene $\vec{u},\,\vec{v}$ og \vec{w} er gitt som

$$V = |\vec{u} \times \vec{v} \cdot \vec{w}| \tag{3.30}$$

Volumet V av pyramiden utspent av vektorene $\vec{u},\,\vec{v}$ og \vec{w} er gitt som

$$V = \frac{1}{3} |\vec{u} \times \vec{v} \cdot \vec{w}| \tag{3.31}$$

Volumet V til tetraedet utspent av vektorene $\vec{u},\,\vec{v}$ og \vec{w} er gitt som

$$V = \frac{1}{6} |\vec{u} \times \vec{v} \cdot \vec{w}| \tag{3.32}$$

Forklaringer

Parallelle vektorer et multiplum av hverandre

Vi skal nå vise hvorfor $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$ må være et multiplum av hverandre for at de skal være parallelle.

Ligning (3.28) forteller oss at $|\vec{u} \times \vec{v}|$ tilsvarer arealet av parallellogramet utspent av \vec{u} og \vec{v} . Dette arealet kan bare ha verdien 0 hvis \vec{u} og \vec{v} er parallelle, og den eneste vektoren med lengde 0 er nullvektoren [0,0,0]. Kombinerer vi dette kravet med (3.19), får vi at

$$[y_1z_2 - z_1y_2, -(x_1z_2 - z_1x_2), x_1y_2 - y_1x_2] = [0, 0, 0]$$

Uttrykket over gir oss tre ligninger

$$y_1 z_2 - z_1 y_2 = 0$$
$$x_1 z_2 - z_1 x_2 = 0$$
$$x_1 y_2 - y_1 x_2 = 0$$

som vi kan omskrive til

$$\begin{aligned} \frac{y_1}{y_2} &= \frac{z_1}{z_2} \\ \frac{x_1}{x_2} &= \frac{z_1}{z_2} \\ \frac{x_1}{x_2} &= \frac{y_1}{y_2} \end{aligned}$$

Til slutt kan vi samle alle tre til én ligning:

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$

Altså må forholdet mellom hver korresponderende komponent være likt.

Videre må det finnes tre tall a, b og c slik at

$$\vec{u} = [ax_2, by_2, cz_3]$$

Skal \vec{u} være parallell med \vec{v} har vi følgende krav:

$$\frac{ax_2}{x_2} = \frac{by_2}{y_2} = \frac{cz_2}{z_2}$$

Forkorter vi disse brøkene, finner vi at a = b = c. Da er

$$\vec{u} = [ax_2, ay_2, az_2]$$

= $a[x_2, y_2, z_2]$
= $a\vec{u}$

Herav må \vec{u} og \vec{v} være et multiplum av hverandre skal vi ha at $\vec{u}||\vec{v}|$.

Vektorproduktet

Hensikten med vektorproduktet er å innføre en regne
operasjon som gir oss en vektor $\vec{w} = [x,y,z]$ som står normalt på to andre vektore
r $\vec{u} = [a,b,c]$ og $\vec{v} = [d,e,f].$ For at dette skal være sant, vet vi
 av (3.15) at

$$\vec{u} \cdot \vec{w} = 0$$

$$ax + by + cz = 0$$

$$ax + by = -cz$$
(3.33)

$$\vec{v} \cdot \vec{w} = 0$$

$$dx + ey + fz = 0$$

$$dx + ey = -fz$$
(3.34)

Vi har altså to forskjellige ligninger som kan hjelpe oss med å finne de tre ukjente størrelsene x, y og z. Dette kalles at man har en ligning med én fri variabel. Hvis vi velger z som fri variabel betyr dette kort fortalt at vi kan finne et uttrykk for x og y som vil oppfylle (3.33) og (3.34) for et hvilket som helst valg av z.

Vi starter med å finne et uttrykk for x. Først multipliserer vi (3.34) med $\frac{b}{e}$, og subtraherer deretter venstre- og høyresiden fra denne ligningen med henholdsvis venstre- og høyresiden fra ligning (3.33):

$$ax + by - \left(\frac{bdx}{e} + by\right) = -cz - \left(-\frac{bfz}{e}\right)$$
$$ax - \frac{bdx}{e} = -cz - \left(-\frac{bfz}{e}\right)$$

Hvis vi videre multipliserer med e, og deretter antar at $ae-bd \neq 0$, får vi at

$$aex - bdx = bfz - cez$$
$$(ae - bd)x = (bf - ce)z$$

$$x = \frac{bf - ce}{ae - bd}z\tag{3.35}$$

Med omtrent samme framgangsmåte og identisk antakelse finner vi et uttrykk for y:

$$ax + by - \left(ax + \frac{aey}{d}\right) = -cz - \left(-\frac{afz}{d}\right)$$

$$(bd - ae)y = (af - cd)z$$

$$y = \frac{af - cd}{bd - ae}z$$
(3.36)

Som nevnt kan z velges fritt, og vi ser av (3.35) og (3.36) at valget z = ae - bd gir oss følgende fine uttrykk:

$$x = bf - ce$$

$$y = -(af - cd)$$

$$z = ae - bd$$

Dette samsvarer med (3.19).

For å komme fram til likhetene over har vi antatt at $z = ae - bd \neq 0$, men det er fristende å sjekke om uttrykkene vi nettopp har funnet oppfyller (3.33) og (3.34) også når z = ae - bd = 0:

$$ax + by = 0$$

$$a(bf - ce) + -b(af - cd) = 0$$

$$-(ae - bd)c = 0$$

$$0 = 0$$

$$dx + ey = 0$$

$$d(bf - ce) - e(af - cd) = 0$$

$$-(ae - db)f = 0$$

$$0 = 0$$

Med z som fri variabel er altså (3.33) og (3.34) oppfylt for alle z = ae - bd, dermed har vi funnet et uttrykk som alltid vil gi oss en vektor \vec{w} som er ortogonal med både \vec{u} og \vec{v} .

Så lenge man bruker uttrykkene fra (3.35) og (3.36), vil \vec{w} være parallell med vektoren gitt ved (3.19), uansett valg av z. I tillegg kan vi få uttrykket fra (3.19) også om vi velger x eller y som fri variabel (det får bli opp til leseren å konstatere disse to påstandene). Av dette kan vi konkludere med at alle vektorer som står ortogonalt på både \vec{u} og \vec{v} er parallelle med vektoren gitt ved (3.19).

Lengden av vektorproduktet

For å komme fram til det vi ønsker, skal vi benytte oss av *Lagranges* identitet¹. Denne sier at vi for to vektorer \vec{v} og \vec{u} har at

$$|\vec{v} \times \vec{u}|^2 = |\vec{v}|^2 |\vec{u}|^2 - (\vec{v} \cdot \vec{u})^2$$
 (Lagranges identitet)

Ved å anvende (3.14) og (2.17) kan vi derfor skrive

$$\begin{aligned} |\vec{v} \times \vec{u}|^2 &= |\vec{v}|^2 |\vec{u}|^2 - (\vec{v} \cdot \vec{u})^2 \\ |\vec{v} \times \vec{u}|^2 &= |\vec{v}|^2 |\vec{u}|^2 - |\vec{v}|^2 |\vec{u}|^2 \cos^2 \theta \\ |\vec{v} \times \vec{u}|^2 &= |\vec{v}|^2 |\vec{u}|^2 (1 - \cos^2 \theta) \\ |\vec{v} \times \vec{u}| &= |\vec{v}| |\vec{u}| \sin \theta \end{aligned}$$

Vektorproduktet som areal

Figur 3.8: Parallellogram med grunnlinje $|\vec{u}|$ og høyde $|\vec{v}|\sin\theta$.

Arealet av et paralellogram er gitt som grunnlinja ganger høyden. For et parallellogram utspent av vektorene \vec{u} og \vec{v} , tilsvarer dette produktet $|\vec{u}||\vec{v}|\sin\theta$, som er det samme som lengden $|\vec{u}\times\vec{v}|$. Arealet av trekanten utspent av \vec{u} og \vec{v} er halvparten av arealet av parallellogrammet.

 $^{^{1}\}mathrm{Den}$ spesielt interesserte finner utledningen for identieten i vedleggF

Vektorproduktet som volum

Figur 3.9

Volumet V av et parallellepidet tilsvarer grunnflaten A ganger høyden h:

Figur 3.10

I figur 3.9 er grunnflaten A utspent av vektorene \vec{v} og \vec{v} , og vi vet fra (3.28) at

$$A = |\vec{u} \times \vec{v}| \tag{3.38}$$

La θ være vinkelen mellom $\vec{u} \times \vec{v}$ og \vec{w} . Hvis $90^{\circ} \ge \theta \ge 0$, får vi en figur som skissert i figur 3.10a. Da er høyden h gitt som

$$h = |\vec{w}| \cos \theta$$

Er derimot 180° $\geq \theta > 90^{\circ},$ får vi en figur som skissert i figur 3.10b. Da er

$$h = -|\vec{w}|\cos\theta$$

For alle $\theta \in [0^{\circ}, 180^{\circ}]$ kan vi derfor skrive

$$h = \left| |\vec{w}| \cos \theta \right| \tag{3.39}$$

Av (3.37), (3.38), (3.39) og definisjonen av skalarproduktet har vi derfor at

$$\begin{aligned} \left| \vec{u} \times \vec{v} \cdot \vec{w} \right| &= \left| \left| \vec{u} \times \vec{v} \right| \left| \vec{v} \right| \cos \theta \right| \\ &= Ah \\ &= V \end{aligned}$$

Av klassisk geometri har vi videre at

- volumet av pyramiden utspent av \vec{u} og \vec{v} er $\frac{1}{3}$ av volumet av parallellepipedet.
- volumet av tetraedet utspent av \vec{u} og \vec{v} er $\frac{1}{6}$ av volumet av parallellepipedet.

Oppgaver for kapittel 3

3.1.1

Finn lengden av vektorene:

- a) [-2, 1, 5] b) $[\sqrt{3}, 2, \sqrt{2}]$

3.1.2

Hvilket av punktene B = (3, -2, 1) og C = (0, 5, 6) ligger nærmest punktet A = (1, -1, -2)?

3.1.3

Gitt vektoren

$$\vec{u} = [ad, bd, cd]$$

a) Vis at

$$|\vec{u}| = d\sqrt{a^2 + b^2 + c^2}$$

når d > 0.

b) Forklar at

$$|\vec{u}| = |d|\sqrt{a^2 + b^2 + c^2}$$

når d < 0.

3.2.1

Gitt vektorene

$$\vec{u} = [ad, bd, cd] \text{ og } \vec{v} = [eh, fh, gh]$$

Vis at

$$\vec{u} \cdot \vec{v} = dh(ae + bf + cg)$$

3.2.2

Finn skalarproduktet av vektorene:

a)
$$\vec{a} = [2, 4, 6]$$
 og $\vec{b} = [-5, 0, -1]$

b)
$$\vec{a} = [-9, 1, 5]$$
 og $\vec{b} = [-2, 1, -2]$

c)
$$\vec{a} = \left[\frac{1}{5}, \frac{3}{5}, -\frac{1}{5}\right]$$
 og $\vec{b} = [512, -128, 64]$. Tips: Bruk resultatet fra opg. 3.2.1.

3.2.3

Finn skalarproduktet av \vec{a} og \vec{b} , som utspenner vinkelen θ , når du vet at

a)
$$|\vec{a}| = 5$$
, $|\vec{b}| = 2$ og $\theta = 60^{\circ}$

b)
$$|\vec{a}| = 5$$
, $|\vec{b}| = 2$ og $\theta = 150^{\circ}$

3.2.4

Finn vinkelen mellom \vec{a} og \vec{b} når

a)
$$\vec{a} = [5, -5, 2]$$
 og $\vec{b} = [3, -4, 5]$

b)
$$\vec{a} = [2, -1, -3]$$
 og $\vec{b} = [-1, -3, -2]$

c)
$$\vec{a} = [-1, -2, 2]$$
 og $\vec{b} = [-3, 5, -4]$

3.2.5

Forkort uttrykkene når du vet at $|\vec{a}|=1,$ $|\vec{b}|=2,$ $|\vec{c}|=5,$ $\vec{a}\cdot\vec{b}=0$ og $\vec{b}\cdot\vec{c}=0.$

a)
$$\vec{b} \cdot (\vec{a} + \vec{c}) + 3(\vec{a} + \vec{b})^2$$

b)
$$(\vec{a} + \vec{b} + \vec{c})^2$$

3.3.1

Sjekk om \vec{a} og \vec{b} er ortogonale når

a)
$$\vec{a} = [2, 4, -2]$$
 og $\vec{b} = [3, 1, 1]$

b)
$$\vec{a} = [-18, 12, 9] \text{ og } \vec{b} = [1, -2, 1]$$

c)
$$\vec{a} = [5, 5, -1]$$
 og $\vec{b} = [5, -4, 5]$

3.3.2

Gitt vektoren

$$\vec{u} = [-5, -1, 6]$$

Finn t slik at $\vec{u} \perp \vec{v}$ når

a)
$$\vec{v} = [t, 3t, 2]$$

b)
$$\vec{v} = [t, t^2, 1]$$

3.3.3

Sjekk om $\vec{a} \parallel \vec{b}$ når

a)
$$\vec{a} = [8, 4, -2]$$
 og $\vec{b} = [4, 2, 4]$

b)
$$\vec{a} = [-3, 5, 2] \text{ og } \vec{b} = \left[-\frac{9}{7}, \frac{15}{7}, \frac{6}{7} \right]$$

3.3.4

Gitt vektoren

$$\vec{a} = [-3, 1, 8]$$

Om mulig, finn t slik at $\vec{a} \parallel \vec{b}$ når

a)
$$\vec{b} = [t+3, 1-t, -16]$$

b)
$$\vec{b} = [t^2 + 2, t, -(5t^2 + 3)]$$

3.3.5

Finn s og t slik at $\vec{u} = [4, 6+s, -(s+t)]$ og $\vec{v} = \left[\frac{12}{7}, \frac{2t-9s}{7}, \frac{3s-t}{7}\right]$ er parallelle.

3.4.1

Vis at

$$\begin{vmatrix} ae & be \\ cf & df \end{vmatrix} = ef \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

3.4.2

Vis at hvis $\vec{u}||\vec{v}$, så er $\vec{u} \times \vec{v} = 0$

3.4.3

For to vektorer \vec{u} og \vec{v} er Lagranges identitet gitt som

$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$

Bruk identiteten og definisjonen av skalarproduktet til å vise at

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\angle(\vec{u}, \vec{v})$$

3.4.4

Et tetraeted er utspent av vektorene $\vec{a}=[2,-2,1],\ \vec{b}=[3,-3,1]$ og $\vec{c}=[2,-3,2],$ hvor \vec{a} og \vec{b} utspenner grunnflaten.

- a) Vis at arealet av grunnflaten er $\sqrt{2}$.
- **b)** Vis at volumet av tetraetedet er $\frac{1}{6}$.

3.4.5

Et parallellepidet er utspent av vektorene \vec{a} , \vec{b} og \vec{c} . Vi har at |a| = 3, $\vec{b}| = 4$ og $\vec{a} \cdot \vec{b} = 0$ og at grunnflaten er utspent av \vec{a} og \vec{b} .

a) Finn lengden av diagonalen til grunnflaten.

La θ være vinkelen mellom $\vec{a} \times \vec{b}$ og \vec{c} og la $\theta \in [0^{\circ}, 90^{\circ}]$.

b) Lag en tegning og forklar hvorfor høyden h i parallellepipedet er gitt som

$$h = |\vec{c}| \cos \theta$$

d) Forklar hvorfor volumet V av parallellepidetet kan skrives som

$$V = |\vec{a} \times \vec{b}||c|\cos\theta$$

3.4.6

Gitt vektorene $\vec{u} = [a, b, c], \vec{v} = [d, e, f]$ og $\vec{w} = [g, h, i]$. Vis at

$$\vec{u} \times \vec{v} \cdot \vec{w} = \vec{w} \times \vec{u} \cdot \vec{v}$$

Tre pyramider er utspent av vektorene $\vec{u} = [a, b, c]$, $\vec{v} = [d, e, f]$ og $\vec{w} = [g, h, i]$. Grunnflatene til pyramidene er henholdsvis utspent av \vec{u} og \vec{v} , \vec{u} og \vec{v} og \vec{v} og \vec{v} og \vec{v} . Hva er uttrykket til volumet av pyramidene?

Gruble 3

Vis at tallverdien til $det(\vec{u}, \vec{v})$ tilsvarer arealet A av parallellogrammet (i planet) utspent av $\vec{u} = [a, b]$ og $\vec{v} = [c, d]$:

$$A = |\det(\vec{u}, \vec{v})|$$

Kapittel 4

Romgeometrier

Mål for opplæringen er at eleven skal kunne

- bruke vektorregning til å finne liknings- og parameterframstillinger til linjer, plan og kuleflater
- beregne lengder, vinkler og arealer i legemer avgrenset av plan og kuleflater

4.1 Parameteriseringer

4.1.1 Linje i rommet

En rett strek gjennom (og uendelig langt forbi) to punkt i rommet, kalles en *linje i rommet*. Langs denne linja ligger det uendelig mange punkt, og det er nettopp et generelt uttrykk for disse punktene vi ønsker å finne.

Si nå at vi har ei linje l, som skissert i figur 4.1.

Figur 4.1: Linje l med retningsvektor \vec{r} og punktene A og B på linja.

Hvis en vektor \vec{r} er parallell med l, kalles den en retningsvektor for linja. Si nå at $\vec{r} = [a, b, c]$ er en retningsvektor for l og at $A = (x_0, y_0, z_0)$ er et punkt på linja. Om vi starter i A og vandrer parallellt med \vec{r} , kan vi være sikre på at vi fortsatt befinner oss på linja. Dette må bety at vi for en variabel t kan nå et vilkårlig punkt B = (x, y, z) på linja ved følgende utregning¹:

$$B = A + t\vec{r}$$

På koordinatform kan vi skrive dette som

$$(x, y, z) = (x_0 + at, y_0 + bt, z_0 + ct)$$

Uttrykket over kalles parameteriseringen til linja, uttrykt ved t. Parameteriseringen skriver vi gjerne på følgende måte:

¹Uttrykk som $t\vec{r}$ kan tolkes som "t lengder av vektoren \vec{r} ", i samme eller motsatt retning av \vec{r} , avhengig av fortegnet til t. F. eks. vil $-2\vec{r}$ bety "2 lengder av \vec{r} , i motsatt retning av \vec{r} ".

Linje i rommet

Ei linje l som går gjennom punktet $A = (x_0, y_0, z_0)$ og har retningsvektor $\vec{r} = [a, b, c]$ kan parameteriseres ved

$$l: \begin{cases} x = x_0 + a_2 t \\ y = y_0 + b_2 t \\ z = z_0 + c_2 t \end{cases}$$
 (4.1)

hvor $t \in \mathbb{R}$.

Eksempel

Ei linje går gjennom punktene A = (-2, 2, 1) og B = (2, 4, -5).

- a) Finn en parameterisering for linja l som går gjennom A og B.
- **b)** Sjekk om punktet C = (-5, 3, 6) ligger på linja.

Svar:

a) Vektoren \overrightarrow{AB} er en retningsvektor for linja:

$$\overrightarrow{AB} = [2 - (-2), 4 - 2, -5 - 1]$$

= $[4, 2, -6]$
= $2[2, 1, -3]$

Vi bruker den forkortede retningsvektoren i kombinasjon med A, og får at

$$l: \begin{cases} x = -2 + 2t \\ y = 2 + t \\ z = 1 - 3t \end{cases}$$

b) Skal C ligge på l, må parameteriseringen gi oss koordinaten til C for rett valg av t. Skal for eksempel y-koordinaten bli riktig, må vi ha at

$$2 + t = 3$$
$$t = 1$$

For t=1 blir x=0, men x-koordinaten til C er -5, altså ligger ikke C på linja.

4.1.2 Plan i rommet

Tenk at vi velger ut to ikke-parallelle vektorer \vec{u} og \vec{v} som de eneste vektorene vi tillater oss å følge i rommet. De uendelig mange punktene vi kan nå ved å følge \vec{u} og \vec{v} fra et startpunkt utgjør da et plan i rommet.

Et enkelt eksempel er å la et hjørne i en bygning være et x, y, z aksekors. La rett opp være z-retningen, rett bort langs den ene veggen være x-retningen og rett bort langs den andre være y-retningen. Du kan komme til et hvilket som helst punkt på gulvet ved å først gå noen skritt i x-retningen, og deretter i y-retningen. I z-retningen beveger du deg ikke i det hele tatt, og siden du bare beveger deg langs to retninger¹, kan gulvet kalles et utklipp av et plan.

 $Figur\ 4.2 \colon x$ og ybortover langs veggene, zrett opp. Gulvet er et utklipp av xyplanet.

I eksempelet akkurat gitt, sier vi at vi beveger oss i xy-planet. Om vi ikke beveger oss noen retning langs x-aksen, går vi derimot i yz-planet. Og hvis vi ikke beveger oss langs y-aksen, vandrer vi i xz-planet.

Tiden er nå inne for å beskrive plan på en mer matematisk måte. Vi tenker oss da at vi vet om et punkt $A = (x_0, y_0, z_0)$ som ligger i et plan α . I tillegg vet vi om to vektorer $\vec{u} = [a_1, b_1, c_1]$ og $\vec{v} = [a_2, b_2, c_2]$ som også ligger i planet, disse er da retninsgvektorer for α .

¹retningene til vektorene \vec{e}_x og \vec{e}_y .

Figur 4.3: Utklipp av planet α utspent av vektorene \vec{v} og \vec{u} .

Hvis vi nå ønsker å komme oss til et vilkårlig punkt B = (x, y, z) i planet, må det gå an å starte i A og først vandre s lengder av \vec{u} , og deretter t lengder av \vec{v} . Altså kan vi skrive at

$$B = A + s\vec{u} + t\vec{v}$$

(x, y, z) = (x₀ + a₁s + a₂t, y₀ + b₁s + b₂t, z₀ + c₁s + c₂t)

Parameteriseringen av et plan i rommet

Et plan α som med inneholder punktet $P=(x_0,y_0,z_0)$ og to ikke-parallelle vektorer $\vec{u}=[a_1,b_1,c_1]$ og $\vec{v}=[a_2,b_2,c_3]$ kan parameteriseres ved

$$\alpha: \begin{cases} x = x_0 + a_1 s + a_2 t \\ y = y_0 + b_1 s + b_2 t \\ z = z_0 + c_1 s + c_2 t \end{cases}$$

hvor $s, t \in \mathbb{R}$.

Eksempel 1

Et plan inneholder punktene A = (-2, 3, 5), B = (-10, 1, 9) og C = (0, 5, -4).

- a) Finn en parameterisering til planet.
- **b)** Sjekk om punktet (4, 6, -6) ligger i planet.

Svar:

a) En vektor mellom to av punktene A, B og C er en retningsvektor for planet. Vi starter derfor med å finne to slike:

$$\overrightarrow{AB} = [-10 - (-2), 1 - 3, 9 - 5]$$

= 2[-4, -1, 2]

$$\overrightarrow{AC} = [0 - (-2), 5 - 3, -4 - 5]$$

= $[2, 2, -9]$

Disse to vektorene er ikke parallelle, dermed kan vi skrive

$$\alpha: \begin{cases} x = -2 - 4s + 2t \\ y = 3 - s + 2t \\ z = 5 + 2s - 9t \end{cases}$$

b) Vi starter med å finne en s og en t som oppfyller kravet for x og y-koordinatene, og får da ligningssystemet

$$-2 - 4s + 2t = 4 \tag{I}$$

$$3 - s + 2t = 6 \tag{II}$$

Av (II) er s = 2t - 3. Dette uttrykket for s setter vi inn i (I), og får at

$$-2 - 4(2t - 3) + 2t = 4$$
$$-6t = -6$$
$$t = 1$$

Altså er s = -1 og t = 1, z-koordinaten blir da

$$5 + 2(-1) - 9(1) = -6$$

Kravet for z-koordinaten er altså oppfylt, punktet (4,6,-6) ligger derfor i planet.

Eksempel 2

Et plan α inneholder ei linje l og punktet A=(-3,-2,6). A ligger ikke på l. Finn en parameterisering til planet når l er gitt som

$$l: \begin{cases} x = t \\ y = 5 + t \\ z = 6 + 4 \end{cases}$$

Svar:

Siden l ligger i planet, må en retningsvektor til l også være en retningsvektor for planet. Av parameteriseringen ser vi at en retningsvektor er [1,1,4]. Vi ser også at (0,5,6) er et punkt som ligger på linja, og derfor også i planet. Vektoren mellom

A og dette punktet må også være en retningsvektor (og er ikke parallell med [1,1,4]):

$$[-3-0, -2-5, 6-6] = -[3, 7, 0]$$

Parameteriseringen til planet blir altså

$$\alpha: \left\{ \begin{array}{l} x = s + 3q \\ y = 5 + s + 7q \\ z = 6 + 4s \end{array} \right.$$

Merk: Vi har her introdusert variabelen q for å tydeligjøre at variabelen for l og variablene for α er uavhengige av hverandre.

4.2 Ligninger til geometrier

4.2.1 Ligningen til et plan

En mer kompakt metode enn parameterisering er å beskrive et plan ved en ligning.

Figur 4.4: Punktene $A=(x_0,y_0,z_0)$ og B=(x,y,z) i planet α med normalvektor $\vec{n}=[a,b,c].$

Tenk at vi vet om et punkt $A = (x_0, y_0, z_0)$ som ligger i et plan α . Vi velger oss et vilkårlig punkt B = (x, y, z) i planet, vektoren \vec{u} fra A til B blir da

$$\vec{u} = [x - x_0, y - y_0, z - z_0]$$

En vektor som står normalt på alle vektorer i planet, kalles en normalvektor og skrives gjerne som \vec{n} . Hvis $\vec{n} = [a, b, c]$ er en normalvektor for α , må vi ha at

$$\vec{u} \cdot \vec{n} = 0$$

$$[x - x_0, y - y_0, z - z_0] \cdot [a, b, c] = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Om vi slår sammen alle konstantene til én konstant $d = -(ax_0 + by_0 + cz_0)$, kan vi videre skrive

$$ax + bx + cz + d = 0$$

Ligningen til et plan i rommet

Et plan med normalvektor n = [a, b, c] kan uttrykkes ved ligningen

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 (4.2)$$

hvor $A = (x_0, y_0, z_0)$ er et vilkårlig punkt i planet.

Eventuelt kan man skrive

$$ax + by + zc + d = 0 \tag{4.3}$$

hvor $-(ax_0 + by_0 + cz_0) = d$.

Eksempel 1

Et plan er utspent av vektorene $\vec{u} = [1, -2, 2]$ og $\vec{v} = [-3, 3, 1]$ og inneholder punktet A = (-3, 3, 4). Finn en ligning for planet.

Svar:

En normalvektor til planet kan vi finne ved

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & -2 & 2 \\ -3 & 3 & 1 \end{vmatrix}$$

$$= (-2 \cdot 1 - 3 \cdot 2)\vec{e}_1 - (1 \cdot 1 - (-3) \cdot 2)\vec{e}_2 + (1 \cdot 3 - (-2) \cdot (-3))\vec{e}_3$$

$$= [-8, -7, -3]$$

$$= -[8, 7, 3]$$

Vi har nå en normalvektor og et punkt i planet, og får dermed ligningen

$$8(x+3) + 7(y-3) + 3(z-4) = 0$$

$$8x + 24 + 7y - 21 + 3z - 12 = 0$$

$$8x + 7y + 3z - 9 = 0$$

Et plan α er gitt ved ligningen

$$3x - y - 2z + 6 = 0$$

- a) Finn en parameterisering til planet.
- b) Finn et punkt som ligger i planet.

Svar:

a) For å finne en parameterisering for et plan gitt av en ligning, står vi fritt til selv å velge to av x, y og z som lik hver av parameteriseringsvariablene. Vi velger her x = s og z = t, og får at

$$3s - y - 2t + 6 = 0$$
$$y = 3s + 2t - 6$$

Parameteriseringen blir da

$$\alpha: \begin{cases} x = s \\ y = -6 + 3s + 2t \\ z = t \end{cases}$$

b) Ut ifra parameteriseringen ser vi at et punkt i planet må være (0, -6, 0)

Eksempel 3

Et plan α gitt ved ligningen 2x-3y-3z-11=0 møter ei linje l i et punkt A. Finn koordinatene til A når l er gitt ved parameteriseringen

$$l: \begin{cases} x = -1 - 2t \\ y = -1 + t \\ z = 1 + 2t \end{cases}$$

Svar:

I punktet A må parameteriseringen til linja oppfylle ligningen til planet. Vi må altså ha at

$$2(-1-2t) - 3(-1+t) - 3(1+2t) - 11 = 0$$
$$-2 - 4t + 3 - 3t - 3 - 6t - 11 = 0$$

$$-13t - 13 = 0$$
$$t = -1$$

Koordinatene til A blir da

$$A = (-1 - 2(-1), -1 + (-1), 1 + 2(-1))$$

= (1, -2, -1)

4.2.2 Linja mellom to plan

Gitt to ikke-parallelle plan, det ene med normalvektor \vec{n}_1 og det andre med normalvektor \vec{n}_2 . Planene vil skjære hverandre langs ei linje med en retningsvektor som må ligge i begge planene. Dette innebærer at retningsvektoren står normalt på både \vec{n}_1 og \vec{n}_2 , med andre ord må¹ $\vec{n}_1 \times \vec{n}_2$ være en retningsvektor for linja.

Figur 4.5: Skjæringslinje mellom to plan.

Linja mellom to plan

Gitt to ikke-parallelle plan, det ene med normalvektor \vec{n}_1 og det andre med normalvektor \vec{n}_2 . Planene skjærer da hverandre langs ei linje med retningsvektor $\vec{n}_1 \times \vec{n}_2$.

¹ Alle vektorer som står normalt på både \vec{n}_1 og \vec{n}_2 er parallelle med vektoren $\vec{n}_1 \times \vec{n}_2$ (se s. 96).

To plan α og β er gitt ved

$$\alpha: \quad -2x + y + z - 2 = 0$$

 $\beta: \quad x - y - z = 0$

Planene skjærer hverandre langs ei linje l, finn en parameterisering for linja.

Svar:

Vi starter med å finne en retnigsvektor for linja. Av ligningene til planene ser vi at α har normalvektor [-2,1,1], mens β har normalvektor [1,-1,-1]. En retningsvektor for linja er derfor gitt ved

$$[-2,1,1]\times[1,-1,-1]=[0,-1,1]$$

Nå gjenstår å finne et punkt som ligger i begge planene. Vi bestemmer da én av koordinatene og løser det resulterende ligningssystemet. For enkelhetsskyld er det naturlig å velge at én av koordinatene er 0, men vi må da være litt varsomme. Av ligningene til α og β ser vi for eksempel at hvis vi setter x=0, får vi et uløselig ligningssystem, mens y=0 gir et løselig et. For y=0 får vi at

$$-2x + z - 2 = 0 (I)$$

$$x - z = 0 \tag{II}$$

Ved å løse dette ligningssystemet finner vi at x=-2 og z=-2, altså ligger punktet (-2,0,-2) i begge planene. En parameter-framstilling av l blir derfor

$$l: \left\{ \begin{array}{l} x = -2\\ y = -t\\ z = -2 + t \end{array} \right.$$

4.2.3 Kuleligningen

Gitt ei kule med sentrum i $S = (x_0, y_0, z_0)$ og et vilkårlig punkt A = (x, y, z), som ligger på kuleflaten (på randen av kula).

Figur 4.6: Kule med sentrum $S=(x_0,y_0,z_0)$. Punktet A=(x,y,z) ligger på kuleflaten.

Lengden til \overrightarrow{SA} må være den samme som radiusen r til kula, dermed har vi at

$$r = |\overrightarrow{SA}|$$

$$r = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$$

$$r^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$$

Kuleligningen

Ligningen for en kuleflate med radius r og sentrum $S = (x_0, y_0, z_0)$ er gitt ved

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$$
(4.4)

Eksempel 1

En kuleflate er beskrevet ved ligningen

$$x^2 - 6x + y^2 + 4y + z^2 - 4z - 19 = 0$$

- a) Finn sentrum S og radiusen til kula.
- b) Vis at punktet A = (7, -6, 4) ligger på kuleflaten.
- c) Finn tangentplanet til kuleflaten i punktet A.

Svar:

a) For å løse denne oppgaven må vi finne de fullstendige

kvadratene:

$$x^{2} - 6x = (x - 3)^{2} - (-3)^{2}$$
$$y^{2} + 4y = (y + 2)^{2} - 2^{2}$$
$$z^{2} - 4z = (z - 2)^{2} - (-2)^{2}$$

Dermed får vi at

$$x^{2} - 6x + y^{2} + 4y + z^{2} - 4z - 19 = 0$$
$$(x - 3)^{2} + (y + 2)^{2} + (z - 2)^{2} - 3^{2} - 2^{2} - 2^{2} - 19 = 0$$
$$(x - 3)^{2} + (y + 2)^{2} + (z - 2)^{2} = 36$$
$$= 6^{2}$$

Kula har altså sentrum i punktet S = (3, -2, 2) og radius lik 6.

b) Skal A ligge på kuleflaten, må koordinatene til A oppfylle kuleligningen:

$$(7-3)^{2} + (-6+2)^{2} + (4-2)^{2} = 36$$
$$4^{2} + (-4)^{2} + 2^{2} = 36$$
$$36 = 36$$

Dermed har vi vist det vi skulle.

c) Tangentplanet står normalt på kuleflaten i A og har derfor \overrightarrow{SA} som normalvektor:

$$\overrightarrow{SA} = [7 - 3, -6 - (-2), 4 - 2]$$

= $[4, -4, 2]$
= $2[2, -2, 1]$

Altså er [2, -2, 1] en normalvektor for tangentplanet. Av (4.2) kan dette planet uttrykkes ved ligningen

$$2(x-7) - 2(y - (-6)) + 1(z - 4) = 0$$
$$2(x-7) - 2(y+6) + 1(z-4) = 0$$
$$2x - 14 - 2y - 12 + z - 4 = 0$$
$$2x - 2y - z - 30 = 0$$

En kuleflate er gitt ved ligningen

$$(x+2)^2 + (x-3)^2 + (z-2)^2 = 3^2$$

I to punkt skjærer kuleflaten ei linje l parameterisert ved

$$l: \begin{cases} x = -4 - 2t \\ y = 5 + 2t \\ z = 3 + t \end{cases}$$

Finn skjæringspunktene mellom kuleflaten og l.

Svar:

Vi skal her bruke to løsningsmetoder. Den første gir oss direkte en andregradsligning som vi kan løse, mens den andre unngår nettopp dette, men krever til gjengjeld litt resonnering i forkant.

Løsningsmetode 1:

Der hvor kuleflaten skjærer linja, må parameteriseringen til linja oppfylle kuleligningen:

$$((-4-2t)+2)^{2} + ((5+2t)-3)^{2} + ((3+t)-2)^{2} = 3^{2}$$

$$(-2(t+1))^{2} + (2(t+1))^{2} + (t+1)^{2} = 9$$

$$9(t+1)^{2} = 9$$

$$(t+1) = \pm 1$$

$$t = \pm 1 - 1$$

Altså er $t \in \{0, -2\}$. For t = 0 får vi punktet (-4, 5, 3) og for t = -2 får vi punktet (0, 1, 1).

Løsningsmetode 2:

[-2,2,1] er en retningsvektor for linja og har lengden 3. Vektoren $\frac{1}{3}[-2,2,1]$ er derfor også en retningsvektor, men har lengde 1. Siden skjæringspunktene ligger på kuleflaten, må avstanden fra S tilsvare radiusen (altså 3). De to punktene må da være gitt av uttrykket

$$S \pm 3 \cdot \frac{1}{3}[-2, 2, 1]$$

Regner man ut de to tilfellene $S \pm [-2, 2, 1]$, får man de samme punktene som i Løsningsmetode 1.

4.3 Avstander mellom geometrier

4.3.1 Avstand mellom punkt og linje

La oss tenke at vi har ei linje l i rommet, beskrevet ut ifra et punkt A og en retningsvektor \vec{r} . I tillegg ligger et punkt B utenfor linja, som skissert i figur 4.7.

Figur 4.7: Punkt B en avstand h fra linja l.

Vi ønsker nå å finne den korteste avstanden fra B til linja. Denne avstanden identifiserer vi som høyden h i trekanten utspent av \vec{r} og \overrightarrow{AB} . Fra (3.29) vet vi at arealet er gitt ved uttrykket

$$\frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{r} \right|$$

Men vi er også kjent med at arealet til en trekant er gitt som grunnlinja ganger høyden, dermed er

$$\begin{split} \frac{1}{2}|\vec{r}|h &= \frac{1}{2} \left| \overrightarrow{AB} \times \vec{r} \, \right| \\ h &= \frac{\left| \overrightarrow{AB} \times \vec{r} \, \right|}{|\vec{r}|} \end{split}$$

 $^{^1\}mathrm{Når}$ man snakker om avstanden mellom geometrier, menes den korteste avstanden (så lenge ikke annet er nevnt).

Avstand mellom punkt og linje

Avstanden h mellom et punkt B og en linje gitt av punktet A og retningsvektoren \vec{r} er gitt som

$$h = \frac{\left| \overrightarrow{AB} \times \overrightarrow{r} \right|}{\left| \overrightarrow{r} \right|} \tag{4.5}$$

Eksempel

Ei linje l går gjennom punktene A = (-2, 4, 1) og B = (-5, 7, -2). Finn avstanden mellom l og punktet C = (1, 3, -2).

Svar:

Vektoren mellom de to punktene er en retningsvektor for linja:

$$[-5 - (-2), 7 - 4, -2 - 1] = [-3, 3, -3]$$

= $3[-1, 1, -1]$

Vi fortsetter med å finne lengden til den faktoriserte retningsvektoren:

$$\sqrt{(-1)^2 + 1^2 + (-1)^2} = \sqrt{3}$$

Vektoren mellom A og C er gitt som

$$\overrightarrow{AC} = [1 - (-2), 3 - 4, -2 - 1]$$

= $[3, -1, -3]$

Kryssproduktet av [-1,1,-1] og \overrightarrow{AC} blir

$$\begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ 3 & -1 & -3 \\ -1 & 1 & -1 \end{vmatrix} = \vec{e}_x \begin{vmatrix} -1 & -3 \\ 1 & -1 \end{vmatrix} - \vec{e}_y \begin{vmatrix} 3 & -3 \\ -1 & 1 \end{vmatrix} + \vec{e}_z \begin{vmatrix} 3 & -1 \\ -1 & 1 \end{vmatrix}$$
$$= \vec{e}_x (1 - (-3)) - \vec{e}_y (-3 - 3) + \vec{e}_z (3 - 1)$$
$$= [4, 6, 2]$$

Lengden av denne vektoren er

$$2\sqrt{2^2 + 3^2 + 1^2} = 2\sqrt{14}$$

Nå har vi alle størrelser vi trenger for å finne avstanden h mellom linja og C:

 $h = \frac{2\sqrt{14}}{\sqrt{3}}$

4.3.2 Avstand mellom punkt og plan

Når et punkt ligger over et plan, kan man trekke et linjestykke som treffer punktet og står normalt på planet. Lengden av dette linjestykket er den korteste avstanden mellom punktet og planet.

Figur 4.8: Den korteste avstanden h mellom punktet A og planet (i blått).

Avstand mellom punkt og plan

Avstanden h mellom et punkt $A = (x_0, y_0, z_0)$ og et plan beskrevet av ligningen ax + by + cz + d = 0, er gitt som

$$h = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
(4.6)

Eksempel

Finn avstanden mellom punktet (-1,4,5) og planet gitt ved ligningen

$$2x - y + 3z - 21 = 0$$

Svar:

Avstanden h er

$$h = \frac{|2(-1) - 4 + 3 \cdot 5 - 21|}{\sqrt{2^2 + (-1)^2 + 3^2}}$$
$$= \frac{|-12|}{\sqrt{14}}$$
$$= \frac{12}{\sqrt{14}}$$

4.4 Vinkler mellom geometrier

Når geometrier i rommet skjærer hverandre, utspenner de forskjellige vinkler mellom seg. Når vi bruker begrepet *vinkelen mellom* geometrier, søker vi alltid den minste av disse vinklene.

4.4.1 Vinkelen mellom to linjer

Figur 4.9: a) \vec{r}_1 og \vec{r}_2 utspenner vinkelen v. b) \vec{r}_1 og \vec{r}_2 utspenner vinkelen u.

Si vi har to linjer m og l med hver sine retningsvektorer $\vec{r_1}$ og $\vec{r_2}$. Vi er nå interessert i å finne den minste vinkelen mellom disse linjene. Vi lar u betegne den største og v den minste vinkelen mellom linjene. Linjene danner et par av vinkelen u og et par av vinkelen v, mens retningsvektorene r_1 og r_2 vil utspenne enten u eller v (se figur 4.9).

Av (3.14) har vi at

$$\cos \angle(\vec{r}_1, \vec{r}_2) = \frac{\vec{r}_1 \cdot \vec{r}_2}{|\vec{r}_1||\vec{r}_2|}$$

Vi vet at uttrykket over representerer cosinusverdien til u eller v, men ikke hvilken av dem. Det blir tungvint å alltid måtte inspisere \vec{r}_1 og \vec{r}_2 grafisk bare for å sjekke dette, vi merker oss derfor følgende: Siden $v=180^\circ-u$, er tallverdien til $\cos u$ og $\cos v$ eksakt lik. Videre er $180^\circ \geq u \geq 90^\circ$ og $90^\circ \geq u \geq 0^\circ$. Altså er $\cos u \leq 0$ og $\cos v \geq 0$. Dette betyr at

$$\cos v = |\cos \angle (\vec{r}_1, \vec{r}_2)|$$

$$= \left| \frac{\vec{r}_1 \cdot \vec{r}_2}{|\vec{r}_1||\vec{r}_2|} \right|$$

$$= \frac{|\vec{r}_1 \cdot \vec{r}_2|}{|\vec{r}_1||\vec{r}_2|}$$

Vinkelen mellom to linjer

Vinkelen v mellom ei linje med retningsvektoren \vec{r}_1 og ei linje med retningsvektoren \vec{r}_2 er gitt ved ligningen

$$\cos v = \frac{|\vec{r}_1 \cdot \vec{r}_2|}{|\vec{r}_1||\vec{r}_2|} \tag{4.7}$$

Eksempel

Finn vinkelen mellom ei linje med retnigsvektor $\vec{r}_1 = [4, 1, 1]$ og ei linje med retnigsvektor $\vec{r}_2 = [-1, 0, 1]$.

Svar:

Vi starter med å regne ut skalarproduktet og lengdene av retningsvektorene:

$$\vec{r}_1 \cdot \vec{r}_2 = [4, 1, 1] \cdot [-1, 0, 1]$$

$$= -4 + 0 + 1$$

$$= -3$$

$$|\vec{r}_1| = \sqrt{4^2 + 1^2 + 1^2}$$

$$= \sqrt{18}$$

$$= 3\sqrt{2}$$

$$|\vec{r}_2| = \sqrt{(-1)^2 + 0^2 + 1^2}$$

$$= \sqrt{2}$$

Cosinus til vinkelen v mellom linjene er derfor gitt som

$$\cos v = \frac{|\vec{r}_1 \cdot \vec{r}_2|}{|\vec{r}_1||\vec{r}_2|}$$
$$= \frac{3}{3\sqrt{2} \cdot \sqrt{2}}$$
$$= \frac{1}{2}$$

Altså er $v = 60^{\circ}$.

4.4.2 Vinkelen mellom to plan

Som tidligere nevnt vil skjæringspunktene mellom to plan danne ei linje (se figur 4.5). Om vi betrakter geometriene langsmed denne linja, vil planene selv framstå som to linjer som, analogt til forrige delseksjon, danner et par av to vinkler.

Figur 4.10: a) \vec{n}_1 og \vec{n}_2 utspenner vinkelen v. b) \vec{n}_1 og \vec{n}_2 utspenner vinkelen u.

Gitt to plan α og β med hver sine normalvektorer \vec{n}_1 og \vec{n}_2 . De to linjene som går gjennnom normalvektorene utspenner de to samme vinkelparene som de skjærende planene¹. Resonnementet for å finne den minste vinkelen blir derfor helt likt det vi brukte da vi kom fram til ligning (4.7).

Vinkelen mellom to plan

Vinkelen v mellom et plan med normalvektoren \vec{n}_1 og et plan med normalvektoren \vec{n}_2 er gitt ved ligningen

$$\cos v = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} \tag{4.8}$$

¹Hvis vi roterer begge planene 90° til høyre, må vinklene de utspenner forbli de samme. Og ved dette tilfellet ligger planene på linje med sine opprinnelige normalvektorer, som derfor utspenner de samme vinkelparene.

4.4.3 Vinkelen mellom plan og linje

Figur 4.11: a) \vec{n} og \vec{r} utspenner vinkelen $w < 90^\circ$. b) \vec{n} og \vec{r} utspenner vinkelen $m > 90^\circ$.

Når ei linje med retningsvektor \vec{r} og et plan med normalvektor \vec{n} skjærer hverandre, vil linjene gjennom retningsvektoren og normalvektoren danne to vinkler w og m (se figur 4.11).

Vi lar w være den minste av disse to vinklene, da tilsvarer $|\cos \angle(\vec{n}, \vec{r})|$ cosinusverdien til w. Hvis vi kaller den minste vinkelen utspent av planet og linja for v, har vi at

$$v = 90^{\circ} - w$$

Vinkel mellom plan og linje

Vinkelen v mellom et plan med normalvektor \vec{n} og ei linje med retningsvektor \vec{r} er gitt som

$$v = 90^{\circ} - w \tag{4.9}$$

hvor w er gitt ved ligningen

$$\cos w = \frac{|\vec{n} \cdot \vec{r}|}{|\vec{n}||\vec{r}|} \tag{4.10}$$

Forklaringer

Avstanden mellom punkt og plan

Figur 4.12: a) Vektoren mellom P_0 og P_1 har samme retning som \vec{n} . b) Vektoren mellom P_0 og P_1 har motsatt retning som \vec{n} .

Vi ønsker å finne avstanden mellom et punkt $P_1 = (x_1, y_2, z_1)$ og et plan α gitt ved ligningen

$$ax + by + cz + d = 0$$

I planet velger vi oss punktet $P_0 = (x_0, y_0, z_0)$ slik at $\overrightarrow{P_0P_1}$ er en normalvektor til planet (se figur 4.12). Siden P_0 ligger i planet, følger det at

$$ax_0 + by_0 + cz_0 + d = 0$$

$$d = -(ax_0 + by_0 + cz_0)$$
 (4.11)

Normalvektoren gitt av ligningen til planet er $\vec{n} = [a, b, c]$, ved hjelp av (4.11) kan vi skrive skalarproduktet av \vec{n} og $\overrightarrow{P_0P_1}$ som

$$\vec{n} \cdot \overrightarrow{P_0 P_1} = [a, b, c] \cdot [x_1 - x_0, y_1 - y_0, z_1 - z_0]$$

$$= a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)$$

$$= ax_1 + by_1 + cz_1 + d$$
(4.12)

La oss kalle vinkelen mellom \vec{n} og $\overrightarrow{P_0P_1}$ for v. Fra definisjonen av skalarproduktet har vi at

$$|\vec{n}| \left| \overrightarrow{P_0 P_1} \right| \cos v = \vec{n} \cdot \overrightarrow{P_0 P_1}$$

Siden begge vektorene er normalvektorer, må v være enten 0° eller 180°, altså er $\cos v=\pm 1$. Tar vi tallverdien av skalarproduktet, får vi at

$$\left| |\vec{n}| \left| \overrightarrow{P_0 P_1} \right| \cos v \right| = \left| \vec{n} \cdot \overrightarrow{P_0 P_1} \right|$$

$$\left| \overrightarrow{P_0 P_1} \right| = \frac{\left| \vec{n} \cdot \overrightarrow{P_0 P_1} \right|}{|\vec{n}|}$$

Av (4.12) og definisjonen av lengden til en vektor har vi nå at

$$\left| \overrightarrow{P_0 P_1} \right| = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Lengden av $\overrightarrow{P_0P_1}$ er nettopp avstanden mellom P_1 og planet α .

Oppgaver for kapittel 4

4.1.1

Ei linje går gjennom punktene A = (-2, 3, -5) og B = (-1, 1, -4).

- a) Finn en parameterframstilling for linja.
- **b)** Sjekk om punktene C=(-4,7,-7) og D=(-3,5,4) ligger på linja.

4.1.2

To linjer l og m krysser hverandre i et punkt A. Parameteriseringen til linjene er gitt som

$$l: \left\{ \begin{array}{l} x = -3 - 2t \\ y = 3 + 2t \\ z = 1 - t \end{array} \right. \quad m: \left\{ \begin{array}{l} x = -7 + 3s \\ y = 5 - 2s \\ z = s \end{array} \right.$$

Finn koordinatene til A.

4.1.3

Et plan inneholder punktene (1,1,-1), (-2,-3,-1) og (5,6,1).

- a) Finn en parameterisering for planet.
- **b)** Sjekk om punktet (-9,5,3) ligger i planet.

4.1.4

Et plan har retningsvektoren [2,1,-5]og inneholder linja gitt ved parameteriseringen

$$l: \left\{ \begin{array}{l} x = 2 - 4t \\ y = -3 + 2t \\ z = 5 + t \end{array} \right.$$

4.2.1

Et plan er utspent av vektorene [-4, 2, 0] og [-3, 0, 3] og inneholder punket (-2, 2, 1). Finn en ligning for planet.

4.2.2

Et plan α er gitt ved parameteriseringen

$$\alpha: \left\{ \begin{array}{l} x = -4 + 2s \\ y = 2 + 3s + 2t \\ z = 1 - t \end{array} \right.$$

- a) Finn to retningsvektorer for planet.
- b) Finn en ligning for planet.

4.2.3

Et plan er gitt ved ligningen

$$10x - 3y - 4z = 0$$

- a) Sjekk om punktene (1, -2, 4) og (4, -2, 1) ligger i planet.
- b) Finn en parameterframstilling for planet.

4.2.4

Et plan går gjennom origo og inneholder punktet A=(-2,1,1). For en gitt t er vektoren $\vec{u}=[3t,5,t]$ ortogonal med vektoren mellom origo og A. For dette valget av t er \vec{u} også en normalvektor for planet. Finn en ligning for planet.

4.2.5

Ei kule er gitt ved ligningen

$$x^{2} + 2x + y^{2} - 4y + z^{2} - 12z + 32 = 0$$

- a) Finn sentrum og radiusen til kula.
- **b)** Vis at punktet A = (1, 3, 8) ligger på kuleflaten.
- c) Bestem ligningen til tangentplanet til kuleflaten i punktet A.

4.2.6

Ei kule er gitt ved ligningen

$$x^2 - 6x + y^2 + 2y + z^2 - 10z - 14 = 0$$

- a) Finn sentrum S og radiusen r til kula.
- **b)** Sjekk om punktene A = (4, 1, 6) og B = (-6, -4, 1) ligger innenfor, utenfor eller på kuleflaten.

4.3.1

Ei linje l går gjennom punktene (1,0,-2) og (2,-2,0). Finn avstanden mellom l og punktet (1,-3,1).

4.3.2

Et plan er gitt ved ligningen:

$$-3x + 4y + z - 7 = 0$$

Finn avstanden mellom planet og punktet (-3,2,3).

4.3.3

To parallelle plan α og β er henholdsvis gitt ved ligningene

$$3x - 2y + z + 12 = 0$$

og

$$3x - 2y + z = 0$$

- a) Finn en normalvektor til planene.
- b) Finn et punkt som ligger i ett av planene.

Hint: Velg fritt en verdi for x og y, og løs resulterende ligning for z.

- c) Finn avstanden mellom planene.
- d) Finn en parameterframstilling for ett av planene.

4.3.4

Når et plan α skjærer en kuleflate med sentrum S, kan vi alltids studere geometrien fra en slik vinkel at planet ligger rett horisontalt. Et snitt av figuren vil da se slik ut:

Punktet A er sentrum i sirkelen hvor kuleflaten skjærer planet, og ved formlikhet kan vi vise (prøv selv!) at linjestykket AS står normalt på α .

La α være gitt ved ligningen

$$2x - y - 2z + 1 = 0$$

Dette planet skjærer en kuleflate gitt ved ligningen

$$x^2 - 6x + y^2 + 4y + z^2 - 23 =$$

- a) Hva er avstanden mellom planet og S?
- b) Finn en parameterframstilling for linja som går gjennom A og S.
- c) Finn koordiantene til de to punktene hvor kuleflaten og linja gjennom AS krysser.
- **d)** Hva er koordinatene til A?
- e) Hvor stor er radiusen til sirkelen hvor A er sentrum?

Gruble 4

Vi skal her jobbe oss fram til å vise formelen for avstanden mellom et punkt og et plan (ligning (4.6)).

På figurene over ser vi skissen av et plan α som er gitt ved ligningen ax + by + cz + d = 0. Planet inneholder punktet $P_0 = (x_0, y_0, z_0)$ og har en normalvektor \vec{n} . Utenfor planet ligger et punt $P_1 = (x_1, y_1, z_1)$, P_0 er valgt slik at $P_0P_1 \parallel \vec{n}$.

a) Forklar hvorfor P_0 oppfyller ligningen

$$d = -(ax_0 + by_0 + cz_0) (I)$$

b) Vis at vektoren $\overrightarrow{P_0P_1}$ er gitt som:

$$\overrightarrow{P_0P_1} = [x_1 - x_0, y_1 - y_0, z_1 - z_0] \tag{II}$$

d) Vis at:

$$\overrightarrow{P_0P_1} \cdot q\overrightarrow{n} = \left| \overrightarrow{P_0P_1} \right| |\overrightarrow{n}| \cos \theta$$

kan skrives som:

$$ax_1 + by_1 + cz_1 + d = \left| \overrightarrow{P_0 P_1} \right| \left| \overrightarrow{n} \right| \cos \theta$$
 (III)

Hint: Bruk (II) og (I).

f) Bruk (III) til å finne formelen for avstanden mellom P_1 og α .

Kapittel 5

Derivasjon

Mål for opplæringen er at eleven skal kunne

• derivere sentrale funksjoner og bruke førstederiverte og andrederiverte til å drøfte slike funksjoner

5.1 Derivasjonsregler

I tidligere matematikkurs lærte du å derivere grunnleggende funksjoner og sammensatte funksjoner. Vi skal ta med oss en liten repetisjon av derivasjonsreglene og i tillegg presentere den deriverte av $\sin x$, $\cos x$ og $\tan x$. Men først må vi ha en liten redegjøring for føringen av funksjoner og deres deriverte:

For en funksjon f(x) vil f'(x) betegne f derivert med hensyn på x. Hvis det på forhånd er etablert at f er en funksjon av x, vil vi skrive f'(x) bare som f'.

Definisjon av den deriverte

For en deriverbar funksjon f(x) er den deriverte med hensyn på x definert som

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 (5.1)

Den deriverte av utvalgte funksjoner av x

For en konstant k har vi at

$$(x^k)' = kx^{k-1} \tag{5.2}$$

$$(\ln x)' = \frac{1}{x} \tag{5.3}$$

$$(e^x)' = e^x (5.4)$$

$$(\sin x)' = \cos x \tag{5.5}$$

$$(\cos x)' = -\sin x \tag{5.6}$$

$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x \tag{5.7}$$

$$(kf(x))' = kf'(x) \tag{5.8}$$

Kjerneregelen

For en funksjon f(x) = g(u(x)) har vi at

$$f' = g'(u)u' \tag{5.9}$$

Finn f' når $f(x) = (x^2 + x)^2$

Svar:

Vi setter $u(x) = x^2 + x$, og får at

$$g(u) = u^{2}$$
$$g'(u) = 2u$$
$$u' = 2x + 1$$

Altså blir

$$f' = g'(u)u'$$

= 2u(2x + 1)
= 2(x² + x)(2x + 1)

Produktregelen ved derivasjon

For funksjonen f(x) = u(x)v(x) har vi at

$$f' = u'v + uv' \tag{5.10}$$

Eksempel

Gitt funksjonen $f(t) = t^2 e^t$. Finn f'.

Svar:

Vi setter $u(t) = t^2$ og $v(t) = e^t$, og får at

$$u' = 2t$$
$$v' = e^t$$

Videre er da

$$f' = (uv)'$$

$$= u'v + uv'$$

$$= 2te^{t} + t^{2}e^{t}$$

$$= te^{t}(2+t)$$

Divisjonsregelen ved derivasjon

For funksjonen $f(x) = \frac{u(x)}{v(x)}$ har vi at

$$f' = \frac{u'v - uv'}{v^2} \tag{5.11}$$

Eksempel

Gitt funskjonen $f(x) = \frac{x^2}{\sin x}$. Finn f'.

Svar:

Vi setter $u(x) = x^2$ og $v(x) = \sin x$, og får da at

$$u' = 2x$$
$$v' = \cos x$$

Videre er da

$$f' = \left(\frac{u}{v}\right)'$$

$$= \frac{u'v - uv'}{v^2}$$

$$= \frac{(x^2)'\sin x - x^2(\sin x)'}{\sin^2 x}$$

$$= \frac{2x\sin x - x^2\cos x}{\sin^2 x}$$

$$= x\sin^{-2}(2\sin x - x\cos x)$$

Merk: (5.11) er bare en utvidelse av (5.10) kombinert med potensregelen $\frac{1}{a} = a^{-1}$. Uten å bruke (5.11) kunne vi derfor løst oppgaven slik¹:

Vi observerer at

$$f(x) = x^2 \sin^{-1} x$$

Av (5.10) er da

$$f' = (x^2)' \sin^{-1} x + x^2 (\sin^{-1} x)'$$
$$= 2x \sin^{-1} x - x^2 \sin^{-2} \cos x$$

$$= x\sin^{-1}x(2x - x\sin^{-1}\cos x)$$

I derivasjonen av $\sin^{-1} x$ har vi brukt kjerneregelen. Med litt omskriving vil du finne at det endelige svaret er ekvivalent med det vi fikk da vi brukte divisjonsregelen.

5.2 Andrederiverttesten

Trolig er du også kjent med å finne maksimum¹ og minimum² til en funksjon f ved å studere f' via et fortegnsskjema, men ofte er andred-eriverttesten mindre tidkrevende:

Andrederiverttesten

Gitt en funksjom f(x) som er kontinuerlig omkring 1 c. Da har vi at

- Hvis f'(c) = 0 og f''(c) < 0, er f(c) et lokalt maksimum.
- Hvis f'(c) = 0 og f''(c) > 0, er f(c) et lokalt minimum.
- Hvis f'(c) = f''(c) = 0, kan man ikke ut ifra denne informasjonen alene si om f(c) er et lokalt maksimum eller minimum.

Om én av de to første punktene er oppfylt, er c et lokalt ekstremalpunkt.

¹Minner igjen om at $\sin^{-1} x$ i denne boka er det samme som $\frac{1}{\sin x}$, mens uttrykket i andre tekster kan være samsvarende med asin x.

¹Kontinuerlig omkring c betyr at det for en funksjon f(x) finnes et åpent intervall I hvor f er kontinuerlig og der $c \in I$.

 $^{^1{\}rm Vi}$ minner igjen om at en utfyllende liste over punkt på en graf er å finne i vedleggE.

 $^{^2{\}rm Maksimum}$ og minimum blir også kalt maksimumsverdier og minimumsverdier.

Gitt funksjonen

$$f(x) = x^3 - 3x^2 \quad , \quad x \in [-2, 3]$$

- a) Finn alle lokale maksimum og minimum for f.
- **b)** Finn maksimal- og minimalverdien til f.

Svar:

a) Vi starter med å finne punktene hvor f'(x) = 0:

$$f'(x) = 0$$
$$3x^2 - 6x = 0$$
$$3x(x - 2) = 0$$

f'(x) er altså 0 for x=0 eller x=2. Videre finner vi at

$$f''(x) = 6x - 6$$

og at

$$f''(0) = -6$$
$$f''(2) = 6$$

Av andrederiverttesten er da x = 0 et lokalt maksimum og x = 2 et lokalt minimum for f.

b) f-verdiene for de to lokale ekstremalpunktene vi fant i a) er

$$f(0) = 0$$
$$f(2) = -4$$

Men vi må ikke glemme å sjekke endepunktene til f:

$$f(-2) = -20$$
$$f(3) = 0$$

Altså er -20 minimumsverdien til f, mens 0 er maksimumsverdien.

Gitt funksjonen

$$f(x) = \cos x \quad , \quad x \in [0, \pi]$$

Finn lokale maksimum og minimum for f.

Svar:

Vi har at

$$f'(x) = -\sin x$$
$$f''(x) = -\cos x$$

Dette betyr at f' = 0 for $x \in \{0, \pi\}$ og at $f''(\pi) = -f''(0) = 1$. Men siden x = 0 og $x = \pi$ er endepunkter for f, er ikke f' kontinuerlig *omkring* disse verdiene, dermed har f ingen lokale maksumim eller miniumum. Istedenfor er f(0) = 1 absolutt maksimum og $f(\pi) = -1$ absolutt minimum.

5.3 Den antideriverte

Vi skal nå se på en definisjon som kan virke veldig triviell, men som viser seg å være en viktig brikke når vi i neste kapittel skal studere integrasjon.

La oss starte med å se på funksjonen $f(x) = x^2$. Å derivere f mhp. x byr på få problemer:

$$f' = 2x$$

Hva nå med den deriverte av $g(x) = x^2 + 1$? Svaret blir det samme som for f':

$$g' = 2x$$

Allerede nå innser vi at det finnes en haug av funksjoner, rett og slett uendelig mange, som har 2x som sin deriverte. Tiden er derfor inne for å lage en samlebetegnelse for alle funksjoner med samme deriverte:

Den antideriverte

Hvis F(x) er en deriverbar funksjon og F'(x) = f(x), da er F en antiderivert av f.

Undersøk om følgende funksjoner er en antiderivert til $f(x) = 2x + e^x$:

$$g(x) = x^{2} + e^{x}$$
$$h(x) = x^{2} + e^{2x}$$
$$k(x) = x^{2} + e^{x} + 4$$

Svar:

Vi finner de deriverte av g, h og k:

$$g'(x) = 2x + e^{x}$$
$$h'(x) = 2x + 2e^{2x}$$
$$k(x) = 2x + e^{x}$$

Siden g'(x) = k'(x) = f(x), mens $h'(x) \neq f(x)$, er bare g(x) og k(x) en antiderivert til f.

Forklaringer

Derivasjonsregler

Vi skal nøye oss med å finne uttrykket for den deriverte av de tre uttrykkene som ikke ble gitt i R1, nemlig $\cos x$, $\sin x$ og $\tan x$.

$$(\cos x)' = -\sin x$$

Vi skal her anvende de to ligningene (se vedlegg D)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{I}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \tag{II}$$

Per definisjon (se (5.1)) er $(\cos x)'$ gitt som

$$(\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x}$$

Ved (2.9) kan vi skrive

$$\lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\cos x \cos(\Delta x) - \sin x \sin(\Delta x) - \cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(\cos(\Delta x) - 1) \cos x - \sin x \sin(\Delta x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos(\Delta x) - 1}{\Delta x} \cos x - \lim_{\Delta x \to 0} \frac{\sin(\Delta x)}{\Delta x} \sin x$$

$$= 0 - 1 \cdot \sin x$$

$$= -\sin x$$

Mellom tredje og fjerde linje i likningen over brukte vi (I) og (II).

$$(\sin x)' = \cos x$$

Av (2.2.8), (2.19) og (2.12) har vi at

$$\sin x = \cos\left(x - \frac{\pi}{2}\right)$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Bruker vi det faktum at $(\cos x)' = -\sin x$, i kombinasjon med kjerneregelen, får vi at

$$(\sin x)' = \left(\cos\left(x - \frac{\pi}{2}\right)\right)'$$

$$= -\sin\left(x - \frac{\pi}{2}\right) \cdot 1$$
$$= \sin\left(\frac{\pi}{2} - x\right)$$
$$= \cos x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

Av kjerneregelen og produktregelen ved derivasjon (se $(5.9~{\rm og}~(5.10))$ er

$$(\tan x)' = \left(\sin x \cos^{-1} x\right)'$$

$$= \cos x \cos^{-1} x + \sin x \left(\cos^{-1}\right)'$$

$$= 1 + \sin x (-\cos^{-2} x)(-\sin x)$$

$$= 1 + \tan^2 x$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \qquad (\cos^2 x + \sin^2 x = 1)$$

$$= \frac{1}{\cos^2 x}$$

Andrederiverttesten

Av definisjonen for den deriverte har vi at

$$f''(c) = \lim_{\Delta x \to 0} \frac{f'(c + \Delta x) - f'(c)}{\Delta x}$$

Når f'(c) = 0, er

$$f''(c) = \frac{f'(c + \Delta x)}{\Delta x}$$

Når f''(c) < 0, betyr dette at

$$\lim_{\Delta x \to 0} \frac{f'(c + \Delta x)}{\Delta x} < 0$$

Altså må $f'(c + \Delta x)$ være positiv når Δx nærmer seg 0 fra negativ side av tallinjen og negativ når Δx nærmer seg 0 fra positiv side. Dermed skifter f' fortegn i c, som da må være et maksimalpunkt for f. Tilsvarende må c være et minimumspunkt for f hvis f(c) = 0 og f''(c) < 0.

Oppgaver for kapittel 5

5.1.1

Deriver f mhp. x:

- a) $f(x) = 3\tan(4x)$
- **b)** $f(x) = e^{-4x} \cos x$
- c) $f(x) = -2\cos x \sin x$ d) $f(x) = \sqrt{\tan x}$
- **e)** $f(x) = e^{2x} \ln x$
- f) $f(x) = \frac{\sin x}{\ln x}$

5.1.2

a) Gitt funksjonen

$$f(x) = \ln(\cos x)$$

Vis at $f'(x) = -\tan x$.

b) Gitt funksjonen

$$f(x) = -2\cos x \sin x$$

Vis at $f'(x) = -2\cos(2x)$

5.2.1

Gitt funksjonen

$$f(x) = xe^{-x} \quad , \quad x \in [-1, 2]$$

- a) Finn ekstremalpunktene til f.
- **b)** Finn maksimal- og minimalverdien til f.

5.2.2

Gitt funksjonen

$$f(x) = a\cos(kx + c) + d$$

Alle punkt hvor f'' = 0 er et infleksjonspunkt (se vedlegg E).

- a) Forklar hvorfor alle vendepunktene til f ligger på likevektslinja y = d.
- **b)** Finn alle infleksjonspunktene til f, uttrykt ved k og c.

5.2.3

Finn infleksjonspunktene og vendepunkene til funksjonen

$$f(x) = \frac{1}{a + x^2}$$

uttrykt ved a. (Se vedlegg E)

5.3.1

Forklar hvorfor:

- a) $F(x) = e^{x^2} + 4$ er en antiderivert av $f(x) = 2xe^{x^2}$
- **b)** $F(x) = -\sin x$ er en antiderivert av $f(x) = -\cos x$

Gruble 5

Gitt funksjonen

$$f(x) = e^x(\cos x + \sin x)$$
 , $x \in [\pi, \infty]$

Finn ekstremalpunktene til f og bruk dette til å forklare at ekstremalverdiene til f kan uttrykkes som en geometrisk følge.

Kapittel 6

Integrasjon

Mål for opplæringen er at eleven skal kunne

- gjøre rede for definisjonen av bestemt integral som grense for en sum og ubestemt integral som antiderivert
- beregne integraler av de sentrale funksjonene ved antiderivasjon og ved hjelp av variabelskifte, ved delbrøkoppspalting med lineære nevnere og ved delvis integrasjon
- tolke det bestemte integralet i modeller av praktiske situasjoner og bruke det til å beregne arealer av plane områder og volumer av omdreiningslegemer

6.1 Bestemt og ubestemt integral

6.1.1 Bestemt integral

Tenk at vi kjører en bil med en fart som til enhver tid t er gitt av en funksjon v(t). Etter en tid t=b ønsker vi å vite lengden S vi har kjørt siden tiden t=a.

La oss først si at farten v er en konstant. Lengden vi har kjørt i tidsintervallet [a,b] må da være¹

$$S = v \cdot (b - a)$$

Figurativt blir dette arealet til firkanten som er avgrenset av t-aksen, linjene $t=a,\,t=b$ og grafen til v:

Figur 6.1

Men hvordan kan vi finne S hvis farten er varierende med tiden, som vist i $figur\ 6.2$?

Figur 6.2

 $^{^{1}}$ strekning = fart · tid

Én tilnærming er å plukke ut små intervaller hvor vi regner farten som konstant. Vi starter her med å dele grafen inn i tre like brede intervaller, som da får bredden $\Delta t = \frac{b-a}{3}$. Videre bruker vi v(t) i starten av hvert intervall som konstantfart, de tilhørende tidspunktene kaller vi $t_1 = a, t_2$ og t_3 . Vi kan nå anslå S som summen av tre strekninger s_1 , s_2 og s_3 reist med konstant fart:

$$S \approx s_1 + s_2 + s_3$$

$$\approx v(a)\Delta t + v(t_2)\Delta t + v(t_3)\Delta t$$

$$\approx (v(a) + v(t_2) + v(t_3))\Delta t$$

Grafisk har vi tilnærmet S ved å legge sammen arealet av de tre grønne søylene i figur 6.3:

Figur 6.3

Intuitivt vil vi tenke at jo mindre intervaller vi bruker, jo riktigere blir det å si at farten er konstant over intervallet, og at tilnærmingen da må bli bedre.

Figur 6.4: a) 10 intervaller b) 20 intervaller

Så hvorfor ikke lage uendelig mange, uendelig små¹ intervaller? Vi lar antall intervaller være gitt ved tallet n og lar $n \to \infty$. Vi får da at

$$S \approx \lim_{n \to \infty} (v(t_1) + v(t_2) + \dots + v(t_n)) \Delta t$$
$$\approx \lim_{n \to \infty} \sum_{i=1}^{n} v(t_i) \Delta t$$

hvor $t_i = a + (i-1)\Delta t$ og $\Delta t = \frac{b-a}{n}$ (legg merke til at $t_1 = a$). Faktisk kan det faktisk vises² at:

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} v(t_i) \Delta t$$

I R2 kan vi se på dette som selveste definisjonen av det bestemte integralet³ av v over intervallet [a, b].

Bestemt integral I

Det bestemte integralet I av en funksjon f(x) over intervallet [a,b] er gitt som

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{6.1}$$

hvor $x_i = a + (i-1)\Delta x$ og $\Delta x = \frac{b-a}{n}$.

Eksempel

Finn det bestemte integralet av f(x) = x på intervallet $x \in [0, 4]$.

Svar:

Vi har her at $f(x_i) = x_i = (i-1)\Delta x$, hvor $\Delta x = \frac{4}{n}$. Setter vi dette inn i (6.1), får vi at

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} (i-1) \left(\frac{4}{n}\right)^{2}$$

 $^{^{1}}$ Med "uendelig små" menes det at verdien går mot 0. Størrelser som går mot 0 kalles for *infinitesimale størrelser*.

²Se side 173 for en grundigere forklaring.

³Hvilke bokstaver vi bruker for å indikere størrelser, funksjoner og variabler er selvsagt helt vilkårlig. I oppsummeringen har vi valgt å bruke de mer klassiske bokstavene I, f og x istedenfor S, v og t.

$$= 4^{2} \lim_{n \to \infty} \frac{1}{n^{2}} \left(\frac{n(n+1)}{2} - n \right)$$

$$= 4^{2} \lim_{n \to \infty} \frac{1}{n^{2}} \left(\frac{n^{2} + n}{2} - n \right)$$

$$= 16\frac{1}{2}$$

$$= 8$$

Merk: I overgangen mellom første og andre linje i ligningen over har vi brukt summen av en aritmetisk rekke.

I kommende seksjoner skal vi finne integraler på en helt annen måte enn i eksempelet over. Læresetningen som sørger for dette er så viktig at den rett og slett kalles *Analysens fundamentalteorem*¹. Fordi teoremet gir oss en metode som omgår utregning av summer, lønner det seg å skrive integralet på en mer kompakt form²:

Bestemt integral II

Det bestemte integralet I av en funksjon f(x) over intervallet [a,b] skrives som

$$I = \int_{a}^{b} f(x) dx \tag{6.2}$$

6.1.2 Analysens fundamentalteorem

Tenk igjen at vi kjører med en hastighet gitt av funksjonen v(t), og at strekningen vi har kjørt nå er gitt ved funksjonen s(t). I R1 lærte vi at farten er den deriverte av strekningen, altså at:

$$s'(t) = v(t)$$

Når s er kjent kan vi enkelt finne den totale strekningen S vi har reist på intervallet $t \in [a, b]$:

$$S = s(b) - s(a)$$

¹Analyse i matematisk sammenheng kan, kort oppsummert, sies å være studien av funksjoner. Teorem er en læresetning som kan bevises.

²Man kan sammenligne dette med å erstatte grensesummen i (6.1) med \int_{a}^{b} , grenseintervallet med dx, og deretter fjerne alle indekser.

Men som vi har sett kan S også beskrives som et bestemt integral:

$$S = \int_{a}^{b} v(t) dt$$

Denne sammenhengen kan generaliseres til å gjelde for alle kontinuerlige funksjoner:

Analysens fundamentalteorem

Gitt en funksjon f(x) definert på intervallet [a,b]. Hvis F er en antiderivert til f, er

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 (6.3)

Eksempel

Gitt funksjonen $f(x) = e^{\sin x}$. Finn $\int_{0}^{\frac{\pi}{2}} f'(x) dx$.

Svar:

Siden f er en antiderivert til f'(x), må vi ha at

$$\int_{0}^{\frac{\pi}{2}} f'(x) dx = f\left(\frac{\pi}{2}\right) - f(0)$$
$$= e^{\sin\frac{\pi}{2}} - e^{\sin 0}$$
$$= e - 1$$

6.1.3 Ubestemte integral

Vi har hittil sett på det bestemte integralet, som har sitt navn fordi integralet er over et intervall der start- og sluttverdien er gitt. Det ubestemte integralet til en funksjon f(x) skriver vi derimot som

$$\int_{c}^{x} f(t) dt$$

Navnet ubestemt kommer av at c er en vilkårlig konstant og at x er en varierende verdi¹.

Hvis vi lar F være en antiderivert til f, har vi fra (6.3) at:

$$\int_{c}^{x} f(t) dt = F(x) - F(c)$$

Siden c er en konstant, må -F(c) også være det. Denne kalles *integrasjonskonstanten* og omdøpes gjerne til C. Det er også vanlig å forenkle skrivemåten til det ubestemte integralet ved å fjerne grensene og bare skrive f(x) dx etter integraltegnet.

Ubestemt integral

Det ubestemte integralet av f(x) er gitt som

$$\int f(x) dx = F(x) + C \tag{6.4}$$

Hvor F er en antiderivert til f og C er en vilkårlig konstant.

Merk: Når ikke annet er nevnt, tar vi det heretter for gitt at størrelser skrevet som store bokstaver er vilkårlige konstanter som resultat av integrasjon.

Eksempel 1

Ved derivasjon vet vi at $(x^2)' = 2x$. Bruk dette til å å finne $\int 2x \, dx$.

Svar:

Fra derivasjonen ser vi at x^2 er en antiderivert til 2x. Vi kan dermed skrive

$$\int 2x \, dx = x^2 + C$$

¹Det kan kanskje se litt rart ut at vi har skrevet f(t) i integralet når vi snakker om f(x), men dette gjøres bare for å skille mellom de to varierende verdiene x og t. x kan være en hvilken som helst verdi, men for det ubestemte integralet ser vi på f for verdiene $t \in [a, x]$, altså f(t). Og da er det ikke x som varierer, men t, derav dt.

Eksempel 2

Ved derivasjon vet vi at $(x^2 + 3)' = 2x$. Bruk dette til å finne $\int 2x \, dx$.

Svar:

Fra derivasjonen ser vi at $x^2 + 3$ er en antiderivert til 2x. Vi kan dermed skrive

$$\int 2x \, dx = x^2 + 3 + C$$

Men siden C er en vilkårlig konstant, kan vi liksågodt lage oss en ny konstant D = C + 3, og får da at

$$\int 2x \, dx = x^2 + D$$

Merk: Siden integrasjonskonstanter er vilkårlige, kan vi tillate oss å komprimere flere konstanter til én. I utregningen over kunne vi skrevet C opp igen, underforstått at 3 var "trekt inn" i denne konstanten:

$$\int 2x \, dx = x^2 + 3 + C = x^2 + C$$

6.2 Integralregning

Å finne bestemte og ubestemte integraler er et stort og viktig felt innenfor matematikken. Analysens fundamentalteorem forteller oss at nøkkelen er å finne en antiderivert til funksjonen vi ønsker å integrere.

6.2.1 Integralet av utvalge funksjoner

Vi skal etterhvert se at å finne integraler ofte krever spesielle metoder, men noen grunnleggende relasjoner bør vi huske:

Ubestemte integraler

For konstantene k og C har vi at

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx \qquad (6.5)$$

$$\int kf(x) dx = k \int f(x) dx \tag{6.6}$$

$$\int x^k dx = \frac{1}{k+1} x^{k+1} + C \qquad (k \neq -1)$$
 (6.7)

$$\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \tag{6.8}$$

$$\int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \tag{6.9}$$

$$\int e^{kx} \, dx = \frac{1}{k} e^{kx} + C \tag{6.10}$$

$$\int \frac{1}{\cos^2 x} \, dx = \tan x + C \tag{6.11}$$

$$\int \frac{1}{x+k} \, dx = \ln|x+k| + C \tag{6.12}$$

Eksempel 1

Finn det bestemte integralet $\int_{0}^{\frac{\pi}{4}} \frac{8}{1-\sin^2 x} dx$.

Svar:

Vi starter med å observere at $1 - \sin^2 x = \cos^2 x$. I tillegg vet vi fra (6.6) at konstanten 8 kan trekkes utenfor integralet. Vi kan derfor skrive integralet vårt som

$$8\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \, dx$$

Fra (6.11) vet vi at $\tan x$ er en antiderivert til $\frac{1}{\cos^2 x}$. Når vi har funnet en antiderivert fører vi gjerne slik¹:

$$8\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \, dx = 8 \left[\tan x \right]_{0}^{\frac{\pi}{4}}$$

$$= 8 \left[\tan \frac{\pi}{4} - \tan 0 \right]$$
$$= 8[1 - 0]$$
$$= 8$$

Merk: Bruken av klammeparantes er bare en annen måte å skrive (6.3) på.

Eksempel 2

Finn det ubestemte integralet $\int \left(\frac{1}{x^4} + \sqrt[3]{x}\right) dx$.

Svar:

Vi utnytter at $\frac{1}{x^4} = x^{-4}$ og at $\sqrt[3]{x} = x^{\frac{1}{3}}$. Ved (6.5) og (6.7) kan vi skrive:

$$\int \left(\frac{1}{x^4} + \sqrt[3]{x}\right) dx = \int \left(x^{-4} + x^{\frac{1}{3}}\right) dx$$
$$= \frac{1}{-4+1}x^{-4+1} + \frac{1}{\frac{1}{3}+1}x^{\frac{1}{3}+1} + C$$
$$= -\frac{1}{3}x^{-3} + \frac{3}{4}x^{\frac{4}{3}} + C$$

¹Forklar for deg selv hvorfor vi ikke trenger å ta hensyn til konstanten når vi skal finne et bestemt integral.

6.2.2 Bytte av variabel

Vi skal nå se på en metode som kalles *bytte av variabel*¹ (også kalt *substutisjon*). Med denne kan vi ofte forenkle integralregningen betraktelig.

Bytte av variabel

Gitt funksjonene f(x), u(x) og g(u). Hvis $\int f(x) dx$ kan skrives om til $\int g(u)u' dx$, kan integralet løses med u som variabel:

$$\int g(u)u' dx = \int g(u) du \tag{6.13}$$

Eksempel 1

Finn det ubestemte integralet

$$\int 8x \sin\left(4x^2\right) dx$$

Svar:

Vi setter $u(x) = 4x^2$ og $g(u) = \sin u$. Dermed blir u' = 8x, og da er

$$\int 8x \sin(4x^2) dx = \int u'g(u) dx$$

$$= \int g(u) du$$

$$= \int \sin u du$$

$$= -\cos u + C$$

$$= -\cos(4x^2) + C$$

Merk: Når integralet vi skal finne er mhp. x, er det viktig at sluttuttrykket har x som eneste variabel.

¹Det er flere framgangsmåter for denne metoden. Den vi her presenterer er, etter forfatterens mening, den raskeste for integraler som er pensum i R2. For mer avanserte integraler bør man kjenne til framgangsmåten presentert i vedlegg G.

Eksempel 2

Finn det bestemte integralet

$$\int_{0}^{2} x^2 e^{2x^3} dx$$

Svar:

Vi setter $u(x) = 2x^3$ og $g(u) = e^u$, da blir $u' = 6x^2$. I integralet vi skal løse mangler vi altså faktoren 6 for å kunne anvende oss av (6.13). Men vi kan alltids gange integralet vårt med 1, skrevet som $\frac{6}{6}$. Da kan vi trekke 6-tallet vi ønsker inn i integralet, og la resten av brøken forbli utenfor:

$$\int_{0}^{2} x^{2} e^{2x^{3}} dx = \frac{6}{6} \int_{0}^{2} x^{2} e^{2x^{3}} dx$$
$$= \frac{1}{6} \int_{0}^{2} 6x^{2} e^{2x^{3}} dx$$

Nå ligger alt til rette for å bytte variabel:

$$\frac{1}{6} \int_{0}^{2} 6x^{2} e^{2x^{3}} dx = \frac{1}{6} \int_{0}^{2} u'g(u) dx$$

$$= \frac{1}{6} \int_{0}^{2} g(u) du$$

$$= \frac{1}{6} \int_{0}^{2} e^{u} du$$

$$= \frac{1}{6} [e^{u}]_{0}^{2}$$

$$= \frac{1}{6} [e^{2x^{3}}]_{0}^{2}$$

$$= \frac{1}{6} (e^{2} \cdot 2^{3} - e^{2 \cdot 0^{2}})$$

$$= \frac{1}{6} (e^{16} - 1)$$

Det finnes også en alternativ måte for å regne ut bestemte integral ved bytte av variabel, se $vedlegg\ H$ for denne.

Eksempel 3

Buelengden til grafen til en funksjon f(x) på intervallet [a,b] er gitt som

$$\int_{a}^{b} \sqrt{1 + (f')^2} \, dx \tag{I}$$

Finn lengden til funksjonen

$$f(x) = \frac{1}{3}x^{\frac{3}{2}}$$
 , $x \in [0, 5]$

Svar:

Vi har at

$$f' = \frac{1}{2}x^{\frac{1}{2}}$$

Og videre at

$$(f')^2 = \frac{1}{4}x$$

Det ubestemte integralet i (I) blir da

$$\int \sqrt{1 + \frac{1}{4}x} \, dx$$

Vi setter $u=1+\frac{1}{4}x$ og $g(u)=u^{\frac{1}{2}}.$ Da er $u'=\frac{1}{4}.$ Nå har vi at

$$\int \sqrt{1 + \frac{1}{4}x} \, dx = 4 \int u^{\frac{1}{2}} u' \, dx$$

$$= 4 \int u^{\frac{1}{2}} \, du$$

$$= \frac{8}{3} u^{\frac{3}{2}} + C$$

$$= \frac{8}{3} \left(1 + \frac{1}{4}x\right)^{\frac{3}{2}} + C$$

Altså er

$$\int\limits_{0}^{5} \sqrt{1+(f')^2} \, dx = \frac{8}{3} \left[\left(1+\frac{1}{4}x\right)^{\frac{3}{2}} \right]_{0}^{5}$$

$$= \frac{8}{3} \left(\left(1 + \frac{5}{4} \right)^{\frac{3}{2}} - 1 \right)$$

$$= \frac{8}{3} \left(\left(\frac{9}{4} \right)^{\frac{3}{2}} - 1 \right)$$

$$= \frac{8}{3} \left(\frac{27}{8} - 1 \right)$$

$$= \frac{19}{3}$$

Merk: En litt lettere utrekning kunne vi fått ved å observere at

$$\sqrt{1 + \frac{1}{4}x} = \frac{1}{2}\sqrt{4 + x}$$

Med denne omskrivingen kunne vi valgt substutisjonen u = 4 + x, og dermed fått at u' = 1.

6.2.3 Delvis integrasjon

Hvis vi ikke finner et passende bytte av variabel for å løse et integral, kan vi isteden prøve med *delvis integrasjon*. Vi starter med å utlede ligningen som legger grunnlaget for metoden.

Gitt produktet av to funksjoner u(x) og v(x), altså uv. Av produktergelen ved derivasjon (se (5.10)) har vi at

$$(uv)' = u'v + uv'$$

Videre integrerer 1 vi begge sider av ligningen over mhp. x:

$$\int (uv)' dx = \int (u'v + uv') dx$$
$$uv = \int (u'v + uv') dx$$
$$uv - \int u'v dx = \int uv' dx$$

 $^{^{1}}$ Når vi har flere ubestemte itegraler, trenger vi bare ta med integrasjonskonstanten for én av dem. Derfor er ikke konstanten fra integrasjonen av (uv)' tatt med.

Delvis integrasjon

For to funksjoner u(x) og v(x) har vi at

$$\int uv' dx = uv - \int u'v dx \tag{6.14}$$

Eksempel 1

Integrer funksjonen $f(x) = x \ln x$.

Svar:

Vi observerer at f(x) er sammensatt av x og $\ln x$. Trikset bak delvis integrasjon er å sette én av disse til å være funksjonen u(x) og den andre til å være den deriverte av v(x), altså v'(x). Da har vi en ligning som i (6.14) og kan (forhåpentligvis) bruke denne til å finne integralet vi søker.

Vi må integrere v' for å finne v og derivere u for å finne u'. Siden $\ln x$ er lett å derivere, men vanskelig å integrere, setter vi

$$u = \ln x$$
$$v' = x$$

Da må vi ha at¹

$$u' = \frac{1}{x}$$
$$v = \frac{1}{2}x^2$$

Altså kan vi skrive (rekkefølgen på v' og u har selvsagt ingenting å si i (6.14))

$$\int x \ln x \, dx = \int v' u \, dx$$

$$= uv - \int u' v \, dx$$

$$= \ln x \cdot \frac{1}{2}x^2 - \int \frac{1}{x} \cdot \frac{1}{2}x^2 \, dx$$

$$= \frac{1}{2}x^2 \ln x - \int \frac{1}{2}x \, dx$$

$$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$

¹Hvorfor ikke $v = \frac{1}{2}x^2 + C$? Vi hadde jo da fått samme v'.

Hvis vi lar V betegne en antiderivert til v', kan vi skrive v=V+C. Av (6.14) har vi da at

$$\int uv' dx = u(V+C) - \int u'(V+C) dx$$

$$= u(V+C) - \int u'V dx - \int Cu' dx$$

$$= uV + Cu - \int u'V dx - Cu$$

$$= uV - \int u'V dx$$

Vi har endt opp med et uttrykk hvor C ikke lenger deltar. Vi får altså det samme svaret uansett hva verdien til C er, og da velger vi selvsagt fra starten av at C=0.

Eksempel 2

Integrer funksjonen $f(x) = \ln x$.

Svar:

Vi starter med å skrive $f(x) = \ln x \cdot 1$, og setter

$$u = \ln x$$
$$v' = 1$$

Vi får da at

$$u' = \frac{1}{x}$$
$$v = x$$

 $\int f dx$ finner vi nå ved delvis integrasjon:

$$\int \ln x \cdot 1 \, dx = \int uv' \, dx$$

$$= uv - \int u'v \, dx$$

$$= x \ln x - \int x \cdot \frac{1}{x} \, dx$$

$$= x \ln x - x + C$$

$$= x(\ln x - 1) + C$$

6.2.4 Delbrøksoppspaltning

Gitt integralet

$$\int \frac{4x+5}{(x+1)(x+2)} \, dx$$

Etter litt testing vil vi finne at både delvis integrasjon og bytte av variabel kommer til kort i vår søken etter en antiderivert. Hva vi heller kan gjøre, er å ta i bruk delbrøksoppspaltning.

Vi merker oss da at integranden¹ er en brøk med nevneren (x+1)(x+2). Dette betyr at den kan skrives som to separate brøker med (x+1) og (x+2) som nevnere:

$$\frac{4x+5}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$
 (6.15)

¹For $\int f(x) dx$ sier vi at f er integranden.

A og B er to konstanter, vår oppgave blir nå å bestemme verdien til disse.

Vi starter med å gange begge sider av (6.15) med fellesnevneren:

$$\frac{4x+5}{(x+1)(x+2)}(x+1)(x+2) = \left(\frac{A}{x+1} + \frac{B}{x+2}\right)(x+1)(x+2)$$
$$4x+5 = A(x+2) + B(x+1)$$

For det rette valget av A og B er uttrykkene over like for alle verdier av x. Når x = -1, har vi bare A som ukjent:

$$4 \cdot (-1) + 5 = A(-1+2) + B(-1+1)$$
$$1 = A$$

Og ved å sette x = -2, finner vi B:

$$4 \cdot (-2) + 5 = A(-2+2) + B(-2+1)$$
$$-3 = -B$$
$$3 = B$$

Nå kan vi altså skrive

$$\frac{4x+5}{(x+1)(x+2)} = \frac{1}{x+1} + \frac{3}{x+2}$$

Dette er to brøker vi kan å integrere 1 (se (6.12)):

$$\int \frac{4x+5}{(x+1)(x+2)} dx = \int \left(\frac{1}{x+1} + \frac{3}{x+2}\right) dx$$
$$= \ln|x+1| + 3\ln|x+2|$$

 $^{^{1}}Obs!$ I søken etter A og B valgte vi verdiene x=-1 og x=-2. I ligningene hvor vi satte inn disse verdiene var dette helt uskyldig, men i integralet må vi være observante. Vi får nemlig 0 i nevner hvis én av disse verdiene ligger i intervallet vi skal integere over. Er det snakk om et bestemt integral må vi derfor passe på at dette ikke er tilfelle.

Integrasjon ved delbrøksoppspaltning

For integraler på formen

$$\int \frac{a+bx+cx^2+\dots}{(x-d)(x-e)(x-f)\dots} dx$$

hvor a, b, c, \dots er konstanter, skriver vi om integranden til

$$\frac{A}{(x-d)} + \frac{B}{(x-e)} + \frac{C}{(x-f)} + \dots$$

og finner så de ukjente konstantene A, B, C, ...

Eksempel 1

Finn det ubestemte integralet

$$\int \frac{3x^2 + 3x + 2}{x^3 - x} \, dx$$

Svar:

Vi starter med å faktorisere nevneren i integranden, og får at

$$\frac{3x^2 + 3x + 2}{x^3 - x} = \frac{3x^2 + 3x + 2}{x(x+1)(x-1)}$$

Denne brøken ønsker vi å skrive som

$$\frac{3x^2 + 3x + 2}{x(x+1)(x-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$$

For å finne A, B og C, omskriver vi ligningen ved å gange med fellesnevneren x(x+1)(x-1):

$$3x^{2} + 3x + 2 = A(x+1)(x-1) + Bx(x-1) + Cx(x+1)$$

Ligningen må holde for alle verdier av x. Vi setter først x=0, og får at

$$2 = A \cdot (-1)$$
$$-2 = A$$

Videre setter vi x = -1:

$$3 \cdot (-1)^2 + 3(-1) + 2 = B \cdot (-1)(-1 - 1)$$

$$1 = B$$

Til slutt setter vi x = 1:

$$3 \cdot 1^2 + 3 \cdot 1 + 2 = C(1+1)$$
$$4 = C$$

Integralet vi skal finne kan vi derfor skrive som

$$\int \left(-\frac{2}{x} + \frac{1}{x+1} + \frac{4}{x-1} \right) dx = -2\ln|x| + \ln|x+1| + 4\ln|x-1| + D$$

Eksempel 2

Finn det ubestemte integralet

$$\int \frac{x^3 + 5x^2 + x - 4}{x^2 + x - 2} \, dx$$

Svar:

Hvis telleren har potenser av høyere orden¹ enn nevneren, må vi starte med en polynomdivisjon:

$$(x^{3} + 5x^{2} + x - 4) : (x^{2} + x - 2) = x + 4 + \frac{-x + 4}{x^{2} + x - 2}$$

$$- (x^{3} + x^{2} - 2x)$$

$$4x^{2} + 3x - 4$$

$$- (4x^{2} + 4x - 8)$$

$$- x + 4$$

Vi observerer videre at nevneren i brøken kan omskrives til (x-1)(x+2), for to konstanter A og B har vi altså at

$$\frac{A}{x-1} + \frac{B}{x+2} = \frac{-x+4}{x^2+x-2}$$
$$A(x+2) + B(x-1) = -x+4$$

Når x = -2, får vi at

$$B(-2-1) = -(-2) + 4$$
$$B = -2$$

Og når x = 1, er

$$A(1+2) = -1 + 4$$
$$A = 1$$

Integralet blir derfor

$$\int \left(x+4+\frac{1}{x-1}-\frac{2}{x+2}\right) dx = \frac{1}{2}x^2+4x+\ln|x-1|-2\ln|x+2|+C$$

6.3 Areal og volum

6.3.1 Avgrenset areal

Som antydet i delseksjon 6.1.1 er det en sterk sammenheng¹ mellom det bestemte integralet av en funksjon f(x) på intervallet [a, b] og arealet avgrenset av grafen til f, x-aksen og linjene x = a og x = b. Sistnevnte størrelse skal vi for enkelhetsskyld kalle arealet avgrenset av f for $x \in [a, b]$:

¹Her har telleren tre som høyeste orden, mens nevneren har to.

¹Se s. 173-175 for nærmere forklaring.

Integral som areal I

Gitt en kontinuerlig funksjon f(x) og to tall a og b der a < b.

Hvis $f \geq 0$ for $x \in [a,b],$ er arealet A avgrenset av f på dette intervallet gitt som

$$A = \int_{a}^{b} f \, dx$$

Hvis $f \leq 0$ for $x \in [a, b]$, er arealet A avgrenset av f på dette intervallet gitt som

$$A = -\int_{a}^{b} f \, dx$$

Areal avgrenset av to funksjoner

Noen ganger ønsker vi også å finne arealet avgrenset av to funksjoner. Da må vi sørge for at vi har tilstrekkelig med informasjon om disse før vi utfører integrasjonen:

Integral som areal II

Gitt to kontinuerlige funksjoner f(x) og g(x) og tre tall a, b og c der a < c < b.

Hvis f>g for $x\in [a,b],$ er arealet A avgrenset mellom f og g på dette intervallet gitt ved

$$A = \int_{a}^{b} (f - g) \, dx \tag{6.16}$$

Hvis $f \geq g$ for $x \in [a, c]$ og $g \geq f$ for $x \in [c, b]$, er arealet A avgrenset mellom f og g for $x \in [a, b]$ gitt ved

$$A = \int_{a}^{c} (f - g) dx + \int_{c}^{b} (g - f) dx$$
 (6.17)

Eksempel

Gitt funksjonene $f(x) = \sin\left(\frac{\pi}{2}x\right)$ og g(x) = 2x - 1. Vi har da at $f \ge g$ for $x \le 1$ og at $g \ge f$ for $x \ge 1$. Finn arealet A avgrenset av f og g for $x \in [0, 2]$.

Svar:

Ut ifra informasjonen over er arealet gitt ved ligningen

$$A = \int_{0}^{1} (f - g) dx + \int_{1}^{2} (g - f) dx$$

Vi starter med å regne ut de to integralene hver for seg:

$$\int_{0}^{2} (f - g) dx = \left[-\frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) - (x^{2} - x) \right]_{0}^{1}$$

$$= -\left[\frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) + (x^{2} - x) \right]_{0}^{1}$$

$$= \frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 1\right) + (1^{2} - 1)$$

$$-\left(\frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 0\right) + (0^{2} - 0)\right)$$

$$= \frac{2}{\pi}$$

$$\int_{1}^{2} (g - f) dx = \left[(x^{2} - x) + \frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) \right]_{1}^{2}$$

$$= (2^{2} - 2) + \frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 2\right)$$

$$-\left(-\frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 1\right) - (1^{2} - 1)\right)$$

$$= 2 - \frac{2}{\pi}$$

Summen av disse to integralene er 2, som altså er arealet.

6.3.2 Volumet av en figur

Vi har sett hvordan integraler kan brukes til å finne arealer, men de kan også brukes til å finne volumer:

Integral som volum

Gitt en tredimensjonal figur plassert i et koordinatsystem, med endepunktene satt til verdiene a og b langs x-aksen.

La videre A(x) være tverrsnittsarealet av figuren for verdien x. Volumet V av figuren er da gitt som

$$V = \int_{a}^{b} A \, dx \tag{6.18}$$

Eksempel

Vis at volumet V av ei rett kjegle er gitt som

$$V = \frac{1}{3}\pi h r^2$$

hvor r er radiusen til grunnflata og h er høgden til kjegla.

Svar:

Vi plasserer kjegla inn i et koordinatsystem med høyden langs x-aksen og spissen plassert i origo.

Radiusen $r_t(x)$ kan beskrives som en rett linje med stigningstall $\frac{r}{h}$:

$$r_t(x) = \frac{r}{h}x$$

Arealet A(x) av tverrsnittet blir da

$$A(x) = \pi r_t^2$$
$$= \pi \left(\frac{r}{h}\right)^2 x^2$$

Altså er volumet av kjegla gitt som

$$\int_{0}^{h} A dx = \int_{0}^{h} \pi \left(\frac{r}{h}\right)^{2} x^{2} dx$$

$$= \pi \frac{r^{2}}{h^{2}} \int_{0}^{h} x^{2} dx$$

$$= \pi \frac{r^{2}}{h^{2}} \left[\frac{1}{3}x^{3}\right]_{0}^{h}$$

$$= \frac{1}{3}\pi h r^{2}$$

6.3.3 Volum av omdreiningslegemer

Si vi har en funksjon f(x) gitt på intervallet [a, b], med en graf som vist i figur 6.5a. Tenk nå at vi dreier linjestykket 360° om x-aksen. Formen vi da har "skjært" ut, vist i figur 6.5b, er det vi kaller omdreiningslegemet til f(x) på intervallet [a, b].

Figur 6.5: a) Grafen til f. b) Omdreiningslegemet til f.

Tverrsnittet (langs x-aksen) til en slik figur er alltid sirkelformet, tverrsnittsarealet er derfor πr^2 , hvor r(x) er radiusen til tverrsnittet. Men siden radiusen tilsvarer høyden fra x-aksen opp til f, er r = f. Av (6.18) kan vi da skrive

$$V = \int_{a}^{b} A \, dx = \int_{a}^{b} \pi f^{2} \, dx = \pi \int_{a}^{b} f^{2} \, dx$$

Volum av omdreiningslegemer

Volumet V av omdreiningslegemet til f(x) på intervallet [a,b] er gitt som

$$V = \pi \int_{a}^{b} f^2 dx \tag{6.19}$$

Eksempel

Gitt funksjonen

$$f(x) = \sqrt{x}$$

finn volumet av omdreiningsleget til f på intervallet [1,3].

Svar:

Volumet vi søker er gitt som

$$\pi \int_{1}^{3} f^{2} dx = \pi \int_{1}^{3} (\sqrt{x})^{2} dx$$
$$= \pi \int_{1}^{3} x dx$$
$$= \pi \left[\frac{1}{2} x^{2} \right]_{1}^{3}$$
$$= \frac{\pi}{2} [9 - 1]$$
$$= 4\pi$$

Forklaringer

Bestemt integral

På side 146-149 brukte vi en funksjon v(t) som ga oss en hastighet for enhver tid t. Vi presenterte da integralet som en tilnærming av hvor langt man hadde beveget seg over et tidsintervall $t \in [a, b]$. Når vi nå skal studere integralet helt generelt, starter vi isteden med en geometrisk definisjon av integralet:

Gitt en funksjon f(x) som er positiv og kontinuerlig for alle $x \in [a, b]$. Integralet I tilsvarer arealet avgrenset av x-aksen, linjene x = a og x = b og grafen til f.

Figur 6.6: Integralet I tilsvarer det avgrensede arealet i grønt.

La oss ta utgangspunkt i funksjonen f(x), med en graf som vist i figur 6.6. Vårt mål er nå å finne I.

Vi starter med å splitte [a, b] inn i n mindre delintervaller, alle med bredden $\Delta x = \frac{b-a}{n}$. I tillegg lar vi x_i for $i \in \{1, 2, ..., n\}$ betegne den x-verdien som er slik at $f(x_i)$ er den laveste verdien til f på delintervall nr. i.

Arealet avgrenset av delintervallet og f tilnærmer vi som $s_i = f(x_i)\Delta x$, da har vi at (se figur 6.7)

$$I \ge s_1 + s_2 + \dots + s_i$$

$$I \ge f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x$$

$$I \ge \sum_{i=1}^n f(x_i)\Delta x$$

Figur 6.7: Arealene av s_i markert som grønne søyler og arealene av c_i markert som blå søyler. Bredden til hver søyle er $\Delta x = \frac{b-a}{n}$ (her er n=4).

Videre må det finnes et tall $h_i \in [0, 1)$ som er slik at $f(x_i + h_i \Delta x)$ er den høyeste verdien til f på delintervallet. Vi lar c_i betegne arealet til søylen med Δx som bredde og $f(x_i + h_i \Delta x) - f(x_i)$ som høyde:

$$c_i = (f(x_i + h_i \Delta x) - f(x_i))\Delta x$$

Hvis vi legger til alle c_i i det første estimatet vårt, får vi en tilnærming som må være større eller lik det egentlige arealet. Derfor kan vi skrive

$$\sum_{i=1}^{n} f(x_i) \Delta x \le I \le \sum_{i=1}^{n} f(x_i) \Delta x + \sum_{i=1}^{n} c_i$$

Én av c-verdiene må være større eller lik alle andre c-verdier. Vi lar m betegne indeksen til nettopp denne c-verdien. Da må vi ha at

$$0 \le \sum_{i=1}^{n} c_i \le nc_m$$

Men når $n \to \infty$, går summen nc_m mot 0:

$$\lim_{n \to \infty} nc_m = \lim_{n \to \infty} n(f(x_m + h_m \Delta x) - f(x_m)) \Delta x$$

$$= \lim_{n \to \infty} n(f(x_m + h_m \Delta x) - f(x_m)) \frac{b - a}{n}$$

$$= \lim_{n \to \infty} (f(x_m + h_m \Delta x) - f(x_m))(b - a)$$

$$= \lim_{n \to \infty} (f(x_m) - f(x_m))(b - a)$$

$$= 0$$

Følgelig er $\lim_{x\to\infty}\sum_{i=1}^n c_i = 0$, og da er

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \le I \le \lim_{n \to \infty} \left(\sum_{i=1}^{n} f(x_i) \Delta x + \sum_{i=1}^{n} c_i \right)$$
 (6.20)

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \le I \le \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
 (6.21)

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{6.22}$$

Det vi har kommet fram til nå er vel og bra, men skal vi regne ut et integral blir det slitsomt å inspisere f(x) på uendelig mange delintervaller for å finne de laveste funksjonsverdiene i hver av dem! Vi merker oss derfor at venstresiden i (6.20), i vårt tilfelle, representerer det kraftigste underestimatet av I, mens høyresiden er det kraftigste overestimatet. I (6.20)-(6.22) har vi vist at begge disse estimatene går mot I når $n \to \infty$, dette betyr at vi for andre valg av x_i på hvert intervall også kommer fram til ønsket resultat. Regneteknisk vil det ofte være lurt å velge $x_i = a + (i-1)\Delta x$ for $i \in \{1, 2, ..., n\}$, slik som i (6.1).

Integral som areal for negative funksjoner

Hva nå om vi isteden skulle finne arealet avgrenset av x-aksen, linjene x = a og x = b og grafen til g(x) = -f(x)?

Grafene til f og g er fullstendig symmetriske om x-aksen, dette må bety at arealet A de avgrenser på et intervall må være helt likt. Og vi vet at

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} -g(x_i) \Delta x$$
$$= -\lim_{n \to \infty} \sum_{i=1}^{n} g(x_i) \Delta x$$

Av dette kan vi utvide den geometriske definisjonen av integralet:

Gitt en funksjon f(x) som er negativ og kontiunerlig for alle $x \in [a, b]$. Integralet I multiplisert med -1 tilsvarer arealet avgrenset av x-aksen, linjene x = a og x = b og grafen til f.

Analysens fundamentalteorem

Vi ønsker å vise at integralet I av en funksjon f(x) på intervallet [a,b] er gitt som

$$I = F(b) - F(a)$$

hvor F er en antiderivert til f. For å vise dette skal vi anvende oss av (6.1). Spesielt verdt å merke seg er at $x_1 = a$ og at $x_{n+1} = b$.

Fra tidligere vet vi at den deriverte av en funksjon f(x) er gitt som

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Med vår $\Delta x = \frac{b-a}{n}$ kan vi omskrive grensen:

$$f'(x) = \lim_{n \to \infty} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

La F(x) være en antiderivert til f(x), da er

$$F'(x) = f(x) = \lim_{n \to \infty} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$

Vi erstatter f i (6.1) med uttrykket over, og får at

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{F(x_i + \Delta x) - F(x_i)}{\Delta x} \Delta x$$

Fordi $x_{i+1} = x_i + \Delta x$, har vi videre at

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} (F(x_{i+1}) - F(x_i))$$

=
$$\lim_{n \to \infty} (F(x_2) - F(x_1) + F(x_3) - F(x_2) + \dots + F(x_{n+1}) - F(x_n))$$

Av dette legger vi merke til at alle $F(x_i)$ kansellerer hverandre, bortsett fra i endepunktene. Vi sitter altså igjen med summen

$$I = \lim_{n \to \infty} \left(-F(x_1) + F(x_{n+1}) \right)$$

= $F(b) - F(a)$

Integralet av utvalgte funksjoner

(6.5) og (6.6) følger direkte av (1.11) og (1.12).

Ut ifra definisjonen av det ubestemte integralet (se (6.4)) har vi at

$$\int f(x) \, dx = F(x) + C$$

hvis F' = f. For alle ubestemte integraler gitt i (6.7)-(6.11) kan dette sjekkes via enkle derivasjonoperasjoner og er derfor overlatt til leseren.

Bytte av variabel

Gitt en funksjon F(x) som vil anta samme verdier som G(u(x)):

$$F(x) = G(u) \tag{6.23}$$

La oss nå skrive F'(x) som f(x) og G'(u) som g(u). For to konstanter C og D må vi ha at

$$\int f(x) dx = F(x) + C$$
og
$$\int g(u) du = G(u) + D$$

Det må derfor finnes en konstant E som er slik at

$$\int f(x) \, dx + E = \int g(u) \, du$$

Men av kjerneregelen (5.9) har vi følgende relasjon:

$$f(x) = g(u)u'$$

Vi kan derfor skrive

$$\int g(u)u'\,dx + E = \int g(u)\,du$$

Når vi utfører integrasjonen på enten venstre eller høyre side, får vi en ny konstant som vi kan slå sammen med E. I praksis kan vi derfor utelate E, noe som er gjort i (6.13).

Volumet av geometrier

Vi setter geometrien vår inn i et koordinatsystem, og tar for gitt at vi har en funksjon A(x) som gir oss tverrsnittsarealet for alle gyldige x.

Figur 6.8: Volumet av geometrien (gul) tilnærmes ved summen av hver $A(x_i)\Delta x$ (blå).

Vi deler [a,b] inn i n delintervaller, der hvert intervall har lengden $\Delta x = \frac{b-a}{n}$ og startverdi $x_i = a + (i-1)\Delta x$ for $i \in \{1,2,\ldots,n\}$. Vi tilnærmer volumet til geometrien ved å legge sammen volumene på formen $A(x_i)\Delta x$. Når vi lar n gå mot uendelig vil summen gå mot volumet til gjenstanden¹, dette kan vi skrive som

$$V = \lim_{x \to \infty} (A(x_0)\Delta x + A(x_1)\Delta x + \dots + A(x_n)\Delta x)$$
$$= \lim_{x \to \infty} (A(x_0) + A(x_1) + \dots + A(x_n))\Delta x$$
$$= \lim_{x \to \infty} \sum_{i=1}^{n} A(x_i)\Delta x$$

Uttrykket over er analogt til definisjonen av det bestemte integralet fra ligning (6.1).

¹Argumentasjonen for denne påstanden blir identisk med den gitt i forklaringen for det bestemte integralet (se side 173).

Oppgaver for kapittel 6

6.1.1

- a) Deriver funksjonen $f(x) = 4x^5$.
- **b)** Finn det bestemte integralet $\int_{0}^{2} 20x^4 dx$.

6.1.2

Relasjonen mellom en funksjon F(x) og f(x) er at F'(x) = f(x). Videre er F(1) = 1 og F(4) = 9.

Finn det bestemte integralet $\int_{1}^{4} f(x) dx$.

6.1.3

- a) Deriver funksjonen $f(x) = e^{\cos^2 x}$.
- b) Finn det ubestemte integralet

$$\int -\sin(2x) \, e^{\cos^2 x} \, dx$$

6.1.4

Vis at

a)
$$\int x(x+2)e^x dx = x^2e^x + C$$

b)
$$\int -e^{x^2 + \cos x} (-2x + \sin x) \, dx = e^{\cos x + x^2} + C$$

6.2.1

Finn integalene:

$$\mathbf{a)} \int \frac{3}{4x} \, dx$$

a)
$$\int \frac{3}{4x} dx$$
 b) $\int -\frac{7}{\cos^2 t} dt$ **c)** $-4x^5$

c)
$$-4x^{5}$$

$$\mathbf{d)} \int \cos(\pi x) \, dx$$

e)
$$\int 4e^{-4t} dt$$

d)
$$\int \cos(\pi x) dx$$
 e) $\int 4e^{-4t} dt$ **f)** $\int \left(2x^4 dx - \frac{3}{x^{\frac{3}{2}}}\right) dx$

$$\mathbf{g)} \int \sqrt{x^5} \, dx$$

6.2.2

Gjennomsnittet av en funksjon f(x) over et intervall [a,b] kan vi skrive som

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Vis at gjennomsnittet av $f(x) = \cos x + d$ over en periode blir d.

Hint: Sett a = c og $b = c + 2\pi$.

6.2.3

Finn integralene:

a)
$$\int xe^{x^2} dx$$
 b) $\int_{1}^{2} 8xe^{2x^2-3} dx$ c) $\int \tan x dx$

d)
$$\int_{0}^{3} \frac{\sin x}{\cos^{3} x} dx$$
 e) $\int \frac{4x+5}{2x^{2}+5x} dx$ f) $\int \frac{3x+2}{3x^{2}+4x+3} dx$

6.2.4

Anvend to av de trigonometriske identitetene og bytte av variabel to ganger for å finne integralet

$$\int \sin(2x)e^{1-\cos^2 x} \, dx$$

6.2.5

Finn det bestemte/ubestemte integralet:

a)
$$\int (x-1)\cos x \, dx$$
 b) $\int \sqrt{x} \ln x \, dx$ c) $\int_{1}^{c} \frac{\ln x}{x^2}$

6.2.6

Bruk delvis integrasjon og (2.17) til å vise at

$$\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + C$$

6.2.7

Finn det bestemte/ubestemte integralet:

a)
$$\int_{4}^{5} \frac{13-4x}{x^2-5x+6} dx$$
 b) $\int \frac{41-4x}{(x-5)(x+2)} dx$

c)
$$\int \frac{x^2 + 9x - 16}{(x - 2)(x^2 - 1)} dx$$
 d) $\int \frac{3x^2 - 14x + 10}{x^3 - 3x^2 + 2x}$

6.2.8

Finn det ubestemte integralet:

$$\int \frac{3x^3 - 2x^2 - 20x + 2}{x^2 - x - 6} \, dx$$

Hint: Bruk polynomdivisjon.

6.3.1

Relasjonen mellom to funksjoner f(x) og g(x) og en konstant d er at

$$g = f + d$$

a) Ta det for gitt at f og g er som vist på figuren under.

Forklar ut ifra en arealbetraktning hvorfor

$$\int_{a}^{b} f \, dx = \int_{a}^{b} g \, dx - (b - a)d$$

b) Bekreft likheten i oppgave a) ved integrasjon.

6.3.2

Under vises grafen til F(x) og f(x). F er en antiderivert av f.

Forklar hvorfor arealet av det oransje området er like stort som arealet av det grønne området.

6.4.1

La en kule med radius r være plassert i et koordinatsystem med variabelen x langs horisontalaksen. Kula er plassert slik at sentrum ligger i origo.

- a) Lag en tegning og bestem kulas tverrsnitt A langs horisontalaksen, uttrykt ved r og x.
- **b)** Finn volumet V av kula.

6.4.2

Finn volumet av omdreiningslegemene til funksjonene på intervallet [0,1]:

a)
$$f(x) = e^x$$
 b) $f(x) = \frac{1}{\sqrt{2}} \sqrt{1 - \cos(2\pi x)}$

Gruble 6

Bruk definisjonen fra (6.1) til å vise at

$$\int_{a}^{b} x^2 \, dx = \frac{1}{3} (b^3 - a^3)$$

Hint: Bruk summen av de naturlige tallene og (I) fra s. 29.

Kapittel 7

Differensialligninger

Mål for opplæringen er at eleven skal kunne

- modellere praktiske situasjoner ved å omforme problemstillingen til en differensiallikning, løse den og tolke resultatet
- løse lineære første ordens og separable differensiallikninger ved regning og gjøre rede for noen viktige bruksområder
- løse andre ordens homogene differensiallikninger og bruke Newtons andre lov til å beskrive frie svingninger ved periodiske funksjoner
- løse differensiallikninger og tegne retningsdiagrammer og integralkurver, og tolke dem ved å bruke digitale hjelpemidler

7.1 Introduksjon til differensialligninger

Vi er fra tidligere vant med ligninger hvor vi søker ett eller flere ukjente tall som oppfyller krav formulert ved de fire elementære regneartene multiplikasjon, divisjon, addisjon og subtraksjon. Når vi nå skal gå over til differensialligninger, skal vi i tillegg stille krav ved hjelp av derivasjon, og vi skal anvende integrasjon¹² for å løse ligningene.

Fordi derivasjon setter premissene for en differensialligning, er det viktig å innse at løsningen vi søker er en funksjon. Det er vanlig å kalle denne funksjonen for y. I tilfellene vi skal se på er y avhengig av én variabel, oftest beskrevet av bokstaven x eller t.

7.1.1 Første ordens ligninger

Den enkleste differensialligningen er følgende:

$$y' = 0 \tag{7.1}$$

Fordi den førstederiverte er den høyeste graden av derivasjon i ligningen, kaller vi den for en første ordens differensialligning. Hvis vi lar x være den frie variablen, kan vi integrere begge sider mhp. x:

$$\int y' \, dx = \int 0 \, dx$$

Siden y er en antiderivert til y', kan vi skrive

$$y = C (7.2)$$

Også for differensialligninger kan vi selvsagt sjekke at løsningen vår er riktig, og det bør ikke ta deg lang tid å sjekke at (7.2) oppfyller kravet fra (7.1).

Det vi fant over kan kanskje virke trivielt, men faktisk har vi allerede avdekket en viktig egenskap: Fordi C er en vilkårlig konstant, må (7.1) ha uendelig mange løsninger! Dette gjelder for alle differensialligningene vi skal se på i dette kapittelet. Når vi ikke har bestemt konstanten(e) enda, har vi har funnet den generelle løsningen.

¹Vi tar opp tråden fra forrige kapittel, hvor størrelser betegnet med store bokstaver tas for å være konstanter (så lenge ikke annet er nevnt).

²I tilfeller hvor den antideriverte er et l
n-uttrykk, dropper vi her å skrive tallverdier. Å ta med tallverdier gjør utregninger vanskeligere, men har ingen betydning for det endelige svaret.

Skal vi bestemme konstantene trenger vi mer informasjon, som oftest i form av at vi vet hva y eller dens deriverte er for noen verdier av x. Slik informasjon kalles gjerne randbetingelser eller $initialkrav^1$. For eksempel: Om vi angående vår y fra (7.2) vet at y(0) = 1, finner vi fort at C = 1.

7.1.2 Andre ordens ligninger

Da y'=0 var så grei å håndtere, er det fristende å også prøve seg på ligningen

$$y'' = 0$$

Fordi den andrederiverte her er den høyeste orden av derivasjon, kalles dette en $andre\ ordens$ differensialligning. Om vi ved to tilfeller integrerer begge sider mhp. x, får vi at

$$\int y'' dx = \int 0 dx$$

$$y' = C$$

$$\int y' dx = \int C dx$$

$$y = Cx + D$$
(7.3)

Og atter en gang har det vi kan tillate oss å kalle for en enkel ligning gitt en pekepinne mot et viktig faktum; for den typen andre ordens differensialligninger som omtales i seksjon 7.5 forventer vi nemlig også to konstanter som ikke kan slås sammen til én.

7.2 Første ordens lineære differensialligninger

La oss nå undres om det finnes en funksjon y(x) som er slik at den deriverte av funksjonen, addert to ganger funksjonen selv, tilsvarer tallet 6:

$$y' + 2y = 6 \tag{7.4}$$

Ligningen over kalles en første ordens lineær differensialligning. Begrepet lineær kommer av at hverken y eller funksjones deriverte er av høyere potens enn én. Hadde vi for eksempel hatt $(y')^4$ med i ligningen, ville den vært en første ordens ikke-lineær differensialligning.

¹Randbetingelse brukes gjerne når den frie variabelen har en romlig dimensjon, mens initialbetingelse brukes oftest hvis den har tidsdimensjon.

De fleste ikke-lineære ligninger er veldig vanskelige å løse eksakt, mens lineære ligninger som (7.4) greier vi fint å håndtere. Er du dreven i derivering ser du kanskje at funskjonen $y=e^{-2x}+3$ vil oppfylle ligningen

$$\underbrace{(e^{-2x} + 3)'}_{y'} + 2\underbrace{(e^{-2x} + 3)}_{2x} = 4$$

$$-2e^{-2x} - 2e^{-2x} + 6 = 6$$

$$6 = 6$$

Å tippe eller se svar er absolutt lov å gjøre, men ikke alltid så enkelt. Dessuten nevnte vi jo i forrige seksjon at det forventes uendelig mange løsninger, altså en generell løsning. Denne skal vi finne ved å gå fram på en mer systematisk måte.

Vi starter med å gange begge sider av ligningen med e^{2x} :

$$y'e^{2x} + 2ye^{2x} = 6e^{2x} (7.5)$$

Av produktregelen ved derivasjon (se (5.10)) merker vi oss at

$$(ye^{2x})' = y'e^{2x} + 2ye^{2x}$$

Uttrykket på høyresiden over er identisk med venstresiden i (7.5), dermed er

 $\left(ye^{2x}\right)' = 6e^{2x}$

Et uttrykk for y kan vi nå finne ved å integrere mhp. x:

$$\int (ye^{2x})' dx = \int 6e^{2x} dx$$
$$ye^{2x} = 3e^{2x} + C$$
$$y = 3 + Ce^{-2x}$$

Dette er den generelle løsningen av ligningen. For å tydeliggjøre at $y = Ce^{-2x} + 3$ er riktig løsning uavhengig av verdien til C, kan vi sette dette uttrykket for y inn i $(7.4)^1$:

$$(Ce^{-2x} + 3)' + 2(Ce^{-2x} + 3) = 6$$
$$-2Ce^{-2x} + 2Ce^{-2x} + 6 = 6$$
$$2C(e^{-2x} - e^{-2x}) + 6 = 6$$
$$6 = 6$$

Ligningen er dermed oppfylt.

 $^{^1\}mathrm{Som}$ du trolig er vant med fra tidligere, kalles dette å sette prøve på svaret.

Første ordens lineære differensialligninger

Ligninger på formen

$$y' + f(x)y = g(x)$$

kan løses ved å multiplisere ligningen med den integrerende faktoren $e^{F(x)}$, hvor F er den antideriverte av f (uten konstantledd). Man kan da omskrive ligningen til

$$\left(ye^{F(x)}\right)' = g(x)e^{F(x)}$$

som kan løses ved integrasjon.

Eksempel 1

Gitt differensialligningen

$$y' - 2xy = 6x$$

- a) Finn den generelle løsningen av ligningen.
- **b)** Finn løsningen som oppfyller randbetingelsen y(0) = 0.

Svar:

a) Uttrykket foran y er lik -2x, den antideriverte blir derfor $-x^2$ og den integrerende faktoren blir da e^{-x^2}

$$(y' - 2xy)e^{-x^2} = 6xe^{-x^2}$$

$$\int (y' - 2xy)e^{-x^2} dx = \int 6xe^{-x^2} dx$$

$$\int (ye^{-x^2})' dx = \int 6xe^{-x^2} dx$$

$$ye^{-x^2} = -3e^{-x^2} + C$$

$$y = -3 + Ce^{x^2}$$

Merk: Her er bytte av variabel brukt for å løse integralet på høyresiden i ligningen over.

b)
$$y(0) = -3 + Ce^{0^2}$$
$$0 = -3 + C$$
$$3 = C$$

Løsningen som oppfyller randbetingelsen er altså

$$y = 3(e^{x^2} - 1)$$

Eksempel 2

Løs ligningen

$$y' - y + x = 0$$

Svar:

Uttrykket foran y er -1, den integrerende faktoren blir derfor e^{-x} :

$$y' - y = -x$$

$$(y' - y)e^{-x} = -xe^{-x}$$

$$(ye^{-x})' = -xe^{-x}$$

$$\int (ye^{-x})' dx = \int -xe^{-x} dx$$

$$ye^{-x} = xe^{-x} - \int e^{-x} dx$$

$$ye^{-x} = xe^{-x} + e^{-x} + C$$

$$y = x + 1 + Ce^{x}$$

Merk: Delvis integrasjon ble brukt for å finne integralet på høyre side i ligningen over.

7.3 Separable differensialligninger

La oss nå se på differensialligningen

$$y' + 3y^4 = 0$$

Her kan vi ikke bruke løsningsmetoden fra forrige seksjon, isteden omskriver vi ligningen til

 $\frac{y'}{y^4} = -3$

En ligning som kan omskrives slik at vi får y' av første orden og enhver funksjon av y samlet på èn side, kalles en separabel differensialligning.

Vi fortsetter ved å integrere mhp. y:

$$\int \frac{y'}{y^4} \, dx = \int -3 \, dx$$

Integralet på venstresiden kan vi skrive om til (se (6.13))

$$\int \frac{y'}{y^4} \, dx = \int \frac{1}{y^4} \, dy$$

Vi får derfor at

$$\int \frac{1}{y^4} dy = \int -3 dx$$
$$-\frac{1}{3}y^{-3} = -3x + C$$
$$y^{-3} = 9x + C$$
$$\left(y^{-3}\right)^{-\frac{1}{3}} = (9x + C)^{-\frac{1}{3}}$$
$$y = (9x + C)^{-\frac{1}{3}}$$

Separable differensialligninger

Enhver ligning som kan skrives på formen

$$g(y)y' = f(x) \tag{7.6}$$

er en separabel differensialligning. Ligningen kan løses ved å integrere mhp. x på begge sider:

$$\int g(y)y' dx = \int f(x) dx$$
$$\int g(y) dy = \int f(x) dx$$

og deretter løse ligningen for y.

Eksempel

Finn den generelle løsningen for differensialligningen

$$y' + 8xy = 0$$

Svar:

Vi starter med å separere ligningen:

$$y' + 8xy = 0$$
$$\frac{y'}{y} = -8x$$

Vi integrerer så på begge sider mhp x og løser deretter for y:

$$\int \frac{y'}{y} dx = \int -8x dx$$

$$\int \frac{1}{y} dy = -4x^2 + C$$

$$\ln y = -4x^2 + C$$

$$e^{\ln y} = e^{-4x^2 + C}$$

$$y = e^{-4x^2 + C}$$

$$= De^{-4x^2}$$

Merk: $D = e^C$.

7.4 Retningsdiagram

Så langt har vi funnet det som kalles *analytiske* løsninger av forskjellige differensialligninger, dette innebar at løsningene hadde eksakte uttrykk. Men for de aller fleste differensialligninger har vi faktisk ikke teknikker som sikrer oss analytiske løsninger, og da må vi nøye oss med tilnærminger.

Vi skal her se på en teknikk som innebærer at vi prøver å utnytte "oppførselen" til løsningene. Vi starter med å late som at vi ikke greier å løse ligningen

$$y' + x^2 y = 0 (7.7)$$

Men istedenfor å gi opp, isolerer vi y':

$$y' = -x^2y$$

Nå har vi et uttrykk for y' for et hvilket som helst punkt (x,y). I tillegg vet vi at y'(x,y) er stigningstallet til tangenten til y i punktet (x,y). Så hvis vi nå tegner inn tangentene til mange forskjellige kombinasjoner av x og y, vil vi forhåpentligvis se en trend. Figuren vi da får kalles et retningsdiagram.

Figur 7.1: Tangenten til y i punktet (x, y) for kombinasjonene av 31 forskjellige verdier av x og y.

Vi har sett at differensialligninger har uendelig mange løsninger. Ut ifra figur 7.1 ser det ut til at tallverdien til enhver y

- avtar forholdsvis kraftig fram til x nærmer seg ca. -1 fra negativ side av tallinja.
- forblir tilnærmet konstant i området rundt x = 0.
- nærmer seg stadig mot 0 for økende verdier av x.

Men nå vet vi jo at den generelle løsningen til (7.7) er $y = Ce^{-\frac{1}{3}x^3}$. For å bekrefte vår beskrivelse av oppførselen, kan vi derfor tegne inn grafen til løsningene for C = 2 og C = -1:

Figur7.2: Løsningene (integralkurvene) $y=2e^{-\frac{1}{3}x^3}$ (blå) og $y=-e^{-\frac{1}{3}x^3}$ (rød) tegnet inn i retningsdiagrammet.

Kurvene til bestemte løsninger av differensialligninger kalles integralkurver.

Eksempel

Gitt differensialligningen

$$x^2y' + 3y = 4x$$

- a) Finn et uttrykk for y'.
- **b)** Finn stigningstallet til y i punktene (1,1) og (-1,2).

Svar:

a)

$$x^2y' = 4x - 3y$$
$$y' = \frac{4x - 3y}{x^2}$$

b) Stigningstallet er verdien til y' i hvert av punktene:

$$y'(1,1) = \frac{4 \cdot 1 - 3 \cdot 1}{1^2}$$

$$= 1$$

$$y'(-1,2) = \frac{4 \cdot (-1) - 3 \cdot 2}{(-1)^2}$$

$$= -10$$

7.5 Andre ordens lineære differensialligninger

Vi ønsker nå å løse ligningen

$$ay'' + by' + cy = 0 (7.8)$$

hvor a, b og c er konstanter. Dette er en andre ordens lineær differensialligning. Fordi y og funksjonens deriverte inngår i alle ledd forskjellige fra 0, betegnes den i tillegg som homogen.

For de lineære ligningene vi så på i seksjon 7.2 var eksponentialfuksjonen alltid en del av løsningen. Dette, i tillegg til funksjonens særegne egenskap ved derivasjon, gjør at det er naturlig å sjekke om den er innblandet også her. Vi setter derfor $y = e^{rx}$, for en konstant r, inn i (7.8). Da får vi at

$$a(e^{rx})'' + b(e^{rx})' + e^{rx} = 0$$

$$ar^{2}e^{rx} + bre^{rx} + ce^{rx} = 0$$

$$(ar^{2} + br + c)e^{rx} = 0$$

$$ar^{2} + br + c = 0$$
(7.9)

Ligning (7.8) er derfor oppfylt hvis vi kan finne en r som oppfyller andregradsligningen over. (7.9) kalles den karakteristiske ligningen til (7.8) og kan løses ved abc-formelen:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

I tidligere skolematematikk har vi sagt at (7.9) ikke har en reell løsning¹ når $b^2 - 4ac < 0$, og stoppet der. Men det viser seg at vi går glipp av mange løsninger av (7.8) om vi ikke også tar med de komplekse løsningene av (7.9).

I kompleks analyse innfører man bokstaven 'i' for å betegne kvadratroten av (-1):

$$\mathrm{i} = \sqrt{-1}$$

Et tall som $3 + 5\sqrt{-1}$ kalles et *komplekst tall*, og skrives gjerne som 3 + 5i.

¹Mange tekster opererer også med at ligningen ikke har noen løsning.

La oss som et eksempel se hvilken konsekvens kompleks analyse har for ligningen

$$r^2 + 9 = 0$$

Fra ethvert tall kan vi alltid faktorisere ut (-1), med introduksjonen av 'i' får vi derfor at

$$r^{2} = -9$$

$$r^{2} = 9(-1)$$

$$r = \pm \sqrt{9(-1)}$$

$$= \pm \sqrt{9}\sqrt{-1}$$

$$= \pm 3i$$

Den komplekse løsningen er altså $r = \pm 3i$.

Med kjennskapen til komplekse tall er vi klare til å se på alle løsninger av (7.8):

Andre ordens lineære differensialligninger

En differensialligning på formen

$$ay'' + by' + cy = 0 (7.10)$$

har karakteristisk ligning

$$ar^2 + br + c = 0 (7.11)$$

To løsninger:

Hvis (7.11) har to løsninger $r=r_1$ og $r=r_2$, har (7.10) løsningen

$$y = Ce^{r_1x} + De^{r_2x} (7.12)$$

Én løsning:

Hvis (7.11) bare har èn løsning $r=r_1$, har (7.10) løsningen

$$y = Ce^{r_1x} + xDe^{r_1x} (7.13)$$

Kompleks løsning:

Hvis (7.11) har kompleks løsning $r=p\pm q$ i, hvor i = $\sqrt{-1}$, kan den reelle løsningen til (7.10) skrives som

$$y = e^{px}(C\cos(qx) + D\sin(qx)) \tag{7.14}$$

Eksempel 1

Gitt differensialligningen

$$y'' + 3y' - 10y = 0$$

- a) Finn den generelle løsningen
- **b)** Finn løsningen som oppyller randbetingelsene y(0) = 3 og y'(0) = -1.

Svar:

a) Den karakteristiske ligningen blir

$$r^2 + 3r - 10 = 0$$

Siden (-2)5 = -10 og (-2) + 5 = 3, kan vi skrive

$$r^2 + 3r - 10 = (r - 2)(r + 5)$$

Den karakteristiske ligningen har derfor løsningene r=2 og r=-5. Den generelle løsningen blir da

$$y = Ce^{2x} + De^{-5x}$$

b) Fra den første randbetingelsen har vi at

$$y(0) = 3$$

 $Ce^{2\cdot 0} + De^{-5\cdot 0} = 3$
 $C + D = 3$ (I)

For å bruke den andre randbetingelsen må vi finne y':

$$u' = 2Ce^{2x} - 5De^{-5x}$$

Videre er

$$y'(0) = -1$$

$$2Ce^{2\cdot 0} - 5De^{-5\cdot 0} = -1$$

$$2C - 5D = -1$$
(II)

Når vi løser ligningssettet dannet av (I) og (II), finner vi at C=2 og D=1. Løsningen vi søker er altså

$$y = 2e^{2x} + e^{-5x}$$

Eksempel 2

Finn den generelle løsningen av ligningen

$$2y'' + 8y' + 8y = 0$$

Svar:

Den karakteristiske ligningen blir

$$2r^2 + 8r + 8 = 0$$

Videre er

$$r^2 + 4r + 4 = 0$$
$$(r+2)^2 = 0$$

Altså har vi bare løsningen r=-2. Den generelle løsningen av differensialligningen blir derfor

$$y = (C + Dx)e^{-2x}$$

Eksempel 3

Finn den generelle løsningen av ligningen

$$y'' - 4y' + 13y = 0$$

Svar:

Den karakteristiske ligningen blir

$$r^2 - 4r + 13 = 0$$

Denne ligningen har ingen åpenbart enkel løsning, så her må vi ta i bruk abc-formelen:

$$r = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 13}}{2 \cdot 1}$$

$$r = \frac{4 \pm \sqrt{-36}}{2}$$

$$r = \frac{4 \pm \sqrt{36}\sqrt{-1}}{2}$$

$$r = \frac{4 \pm 6i}{2}$$

$$r = 2 \pm 3i$$

Her får vi komplekse verdier for r, og dermed følgende generelle løsning:

$$y = e^{2x}(C\cos 3x + D\sin 3x)$$

7.6 Anvendelser

Vi skal straks se eksempler på hvordan differensialligninger anvendes i beregninger, men først må vi ha en liten repetisjon av den praktiske tolkningen av derivasjon. Har vi en funksjon y(x) er y', kort fortalt, den momentane endringen av størrelsen y per enhet x. Likeså er y'' den momentane endringen av størrelsen y' per enhet x osv.

7.6.1 y' proporsjonal med y

I mange sammenhenger vi finner i naturen studerer vi en størrelse y(t) som endrer seg med tiden t. I enkelte tilfeller vil vi observere at den momentane endringen per tidsenhet, altså farten, er proporsjonal med størrelsen selv. Dette betyr at

$$y' = ky$$

hvor k er en konstant. Fortegnet til k avhenger av om y er voksende (k > 0) eller synkende (k < 0).

Eksempel 1

Hovedprinsippet bak karbondatering (også kalt C-14 metoden) er at alle levende organismer innholder en tilnærmet konstant mengde med den radioaktive isotopen ¹⁴C. Når organismen dør vil derimot innholdet av denne isotopen avta. Ved å sammenligne ¹⁴C-innholdet i en død og en levende organisme av samme art, kan man med god presisjon fastslå alderen til den avdøde organismen.

For en død organisme er det funnet at endringen i 14 C-mengde per tidsenhet er proporsjonal med mengden 14 C som til enhver tid er i organismen. Hvis vi lar y(t) være et mål på denne mengden, kan vi skrive

$$y' = ky$$

hvor k er en konstant. Dette er en differensialligning med den generelle løsningen

$$y = De^{ky}$$

Vi lar y betegne prosenten av den opprinnelig 14 C-mengde som er igjen i organismen etter t år. Dette betyr at y(0) = 100 og dermed at D = 100:

$$y = 100e^{ky}$$

Halveringstiden til $^{14}{\rm C}$ er 5730 år. Dette betyr at etter så mange år vil $^{14}{\rm C}$ -mengden i en død organisme være halvert. Altså er

$$y(5730) = 50$$

$$100e^{5730k} = 50$$

$$5730k = \ln \frac{1}{2}$$

$$k = \frac{\ln \frac{1}{2}}{5730}$$

$$\approx -0.000121$$

For å datere en organisme kan vi derfor bruke funksjonen

$$y = 100^{-0.000121t}$$

Eksempel 2

I en bakteriekultur er økningen i antall bakterier per minutt lik 4% av antallet bakterier. La y(t) betegne antall bakterier etter t minutter.

- a) Sett opp en differensialligning som relaterer y' til y og finn den generelle løsningen av denne.
- **b)** Sett y(0) = 1. Når vil kulturen inneholde 30 bakterier?

Svar:

a) Differensialligningen blir

$$y' = 0.04y$$

Dette er en seperabel differensialligning med generell løsning

$$y = Ce^{0.04t}$$

b) Siden y(0) = 1, finner vi fort at C = 1, og derfor at $y = e^{0.04t}$. Vi søker altså en løsning av ligningen

$$e^{0.04t} = 30$$
$$t = \frac{\ln 30}{0.04}$$
$$\approx 85.03$$

Kulturen vil passere 30 bakterier i løpet av det 85. minuttet.

7.6.2 Populasjonsmodeller

I en populasjonsmodell¹ er det spesielt tre faktorer man må ta hensyn til for å beregne en størrelse y(x):

- Hvor mye som, uavhengig av populasjonen, tilføres/fjernes per enhet x.
- \bullet Hvor stor andel av populasjonen som tilføres per enhet x.
- Hvor stor andel av populasjonen som fjernes per enhet x.

¹Navnet populasjon assosieres gjerne med antall mennesker, dyr o.l., men metodene som ligger til grunn for populasjonsmodeller kan like gjerne brukes for å finne utviklingen av mengder som alkohol, medisin osv.

Siden det er snakk om endringer per enhet x, gir punktene over bidrag til uttrykket for y'.

Eksempel 1

Ifølge SSB var netto innvandring 1 til Norge i 2017 talt til 21 349 mennesker. I tillegg utgjorde antall fødte ca. 1.05% av folketallet, mens antall døde utgjorde ca. 0.76% av folketallet. Det totale folketallet var 5 295 619

Anta at netto innvandring per år, prosent fødte per år og prosent døde per år vil være det samme som i 2017 de kommende årene. Sett opp en differensialligning for folketallet y(t), t år etter 2017.

Svar:

- Netto innvandring per år gir bidraget 21 349 til y'.
- Antall fødte per år gir bidraget 0.0105y til y'.
- Antall døde per år gir bidraget -0.0076y til y'.
- Siden folketallet var 5 295 619 i 2017, er y(0) = 5295619.

Ligningen blir derfor

$$y' = 21349 + 0.0105y - 0.0076y$$
$$= 21349 + 0.0029y$$

¹antall innvandret – antall utvandret

7.6.3 Fjør-masse-system uten demping

Tenk at vi har en klosse med masse m som henger vertikalt i en stiv, masseløs fjør. Vi plasserer en y-akse vertikalt og definerer nedover som positiv retning.

Figur 7.3: a) Fjøra i sin opprinnelige lengde. b) Fjøra og klossen i likevektsstilling.

Når fjøra ikke er påvirket av noen ytre krefter, altså før klossen festes, har den lengden L_0 . Hvis fjøra blir strekt eller komprimert antar vi at fjøra adlyder $Hooks\ lov^1$. Denne sier at kraften F_f fra fjøra er proporsjonal med, og motsatt rettet av, forlengelsen/forkortelsen:

$$F_f = -k(L - L_0)$$

k er en konstant² bestemt ut ifra fjøras egenskaper, mens L er den endrede lengden til fjøra.

Når klossen festes til fjøra, vil tyngdekraften³ mg dra klossen nedover og fjøra strekkes. For en viss fjørlengde L_1 (se figur 7.3) vil fjørkraften være like stor, men motsatt rettet av tyngekraften. Dette betyr at

$$mg = -F_f$$

 $mg = k(L_1 - L_0)$ (7.15)

Posisjonen festepunktet mellom fjøra og klossen har i dette tilfellet kaller vi *likevektspunktet*. Her setter vi y = 0 (se igjen figur 7.3).

 $^{^1\}mathrm{Hooks}$ lov er rimelig å anta så lenge utslaget er mye mindre enn originallengden til fjøra.

²k har SI-enhet N/m, altså Newton per meter.

 $^{^{3}}g$ går under navnet tyngdeakselerasjonen, verdien tilnærmes ofte til 9.81 m/s²

Newtons andre lov forteller oss at summen av alle krefter F_i som virker på klossen er lik massen ganger akselerasjonen a:

$$\sum_{i=1}^{n} F_i = ma$$
 (Newtons andre lov)

Tenk nå at vi trekker i klossen slik at festepunktet mellom denne og fjøra blir forskjøvet fra likevektspunktet. Klossen vil da svinge opp og ned. Vi lar L(t) betegne lengden fjøra har til enhver tid t. Hvis vi ser bort ifra luftmotstand og all annen form for friksjon¹, blir summen av kreftene som virker på klossen følgende:

$$\sum F = mg + F_f$$
$$= mg - k(L(t) - L_0)$$

Videre erstatter vi mg med uttrykket fra (7.15), og anvender Newtons andre lov:

$$\sum F = k(L_1 - L_0) - k(L(t) - L_0)$$

$$ma = -k(L(t) - L_1)$$

Vi setter $y(t) = L(t) - L_1$. Denne funksjonene beskriver forflytnigen til festepunktet relativt til likevektspunktet y = 0. Den relative forflytningen til y samsvarer med den relative forflytningen til massesenteret til klossen. Dette betyr at vi kan erstatte akselerasjonen a med y'':

$$my'' = -ky$$
$$my'' + ky = 0$$

Fjør-masse system uten demping

For et fjør-masse system uten demping er forflytningen y(t), relativt til likevektspunktet y=0, etter en tid t gitt ved ligningen

$$my'' + ky = 0 \tag{7.16}$$

hvor m>0 er massen og k>0 er en fjørkonstant.

¹Når friksjonskrefter, altså krefter som alltid motvirker bevegelsen, er neglisjert, sier vi at vi har et system uten demping.

Eksempel

En klosse med masse m=0.1 henger vertikalt i ei fjør med fjørkonstant k=10. Klossen forflyttes lengden 0.5 i positiv retning fra likevektspunktet y=0, og blir etterpå sluppet. La y(t) være forflytningen relativt til likevektspunktet tiden t etter at bevegelsen har startet.

- a) Finn et uttrykk for y.
- **b)** Hvor lang tid tar det mellom hver gang klossen er i sitt høyeste punkt?

Svar:

a) Vi gjenkjenner dette som et fjør-masse system uten demping, y(t) er derfor gitt ved ligningen

$$mu'' + ku = 0$$

med karateristisk ligning

$$mr^{2} + k = 0$$
$$0.1r^{2} + 10 = 0$$
$$r^{2} = \sqrt{-100}$$
$$= \pm 10\sqrt{-1}$$

Den generelle løsningen blir derfor (se (7.14))

$$C\cos(10t) + D\sin(10t)$$

Videre vet vi at y(0) = 0.5, som gir oss ligningen

$$C\cos(10\cdot 0) + D\sin(10\cdot 0) = 0.5$$
$$C = 0.5$$

Rett før bevegelsen starter har klossen hastighet 0, noe som betyr at y'(0) = 0:

$$-\frac{C}{10}\sin(10\cdot 0) + \frac{D}{10}\cos(10\cdot 0) = 0$$

$$D = 0$$

Endelig løsning blir derfor

$$y = 0.5\cos(10t)$$

b) Tiden klossen bruker fra topp tilbake til topp er perioden P til svingebevegelsen. Denne er gitt som (se (2.44))

$$P = \frac{2\pi}{10}$$

Det tar klossen 0.2π tidsenheter å fullføre en svingebevegelse.

7.6.4 Fjør-masse system med demping

Vi har akkurat sett på et fjør-masse system hvor alle friksjonskrefter er neglisjert. Hvis slike krefter derimot tas med i betraktningen, sier vi at systemet er *dempet*. Friksjon er en veldig krevende disiplin innen fysikk, og de matematiske tilnærmingene av fenomenet er mange og varierte.

Av de enkleste tilnærmingene er å beskrive friksjonen ved størrelsen qv, hvor v er farten til gjenstanden som ytes motstand og q er et friksjonstall med enhet kg/s. Hvis vi tilføyer dette leddet i (7.16), får vi at

$$my'' + qy' + ky = 0$$

hvor v er erstattet med y'.

Fjør-masse system med demping

For et fjør-masse system med demping er forflytningen y(t), relativt til likevektspunktet y=0, etter en tid t gitt ved ligningen

$$my'' + qy' + ky = 0 (7.17)$$

hvor m > 0 er masssen, k > 0 er en fjørkonstant og q > 0 er et friksjonstall.

Eksempel

Gitt et fjør-masse system med m = 1, k = 5 og q = 4. Finn for-flytningen y(t) relativt til likevektspunktet når massen initielt blir gitt en forflytning y(0) = 1, og deretter sluppet.

Svar:

Dette er et fjør-masse system med demping, y(t) er derfor gitt ved ligningen

$$my'' + qy' + ky = 0$$

som har karakteristisk ligning

$$mr^{2} + qr + k = 0$$

$$r^{2} + 4r + 5 = 0$$

$$r = \frac{-4 \pm \sqrt{4^{2} - 4 \cdot 5}}{2}$$

$$= \frac{-4 \pm \sqrt{-4}}{2}$$

$$= \frac{-4 \pm 2\sqrt{-1}}{2}$$

$$= -2 \pm \sqrt{-1}$$

Den generelle løsningen blir derfor

$$y = e^{-2t} \left(C \cos t + D \sin t \right)$$

Siden y(0) = 1, får vi at

$$e^{-2\cdot 0} \left(C\cos 0 + D\sin 0 \right) = 1$$
$$C = 1$$

Videre vet vi at massens hastighet må ha vært 0 idét den ble sluppet, altså at y'(0) = 0:

$$-2e^{-2\cdot 0}(C\cos 0 + D\sin 0) + e^{-2\cdot 0}(-C\sin 0 + D\cos 0) = 0$$
$$-2C + D = 0$$
$$D = 2C$$
$$D = 2$$

Altså er

$$y = e^{-2t} \left(\cos t + 2\sin t\right)$$

Forklaringer

Andre ordens differensialligninger

I seksjon 7.5 har vi sett at ligningen

$$ay'' + by' + cy = 0 (7.18)$$

har $y = e^{rx}$ som løsning hvis r oppfyller den karakteristiske ligningen

$$ar^2 + br + c = 0 (7.19)$$

I tillegg ble det nevnt i seksjon 7.1 at vi for disse typen ligninger forventer en generell løsning som består av to konstanter vi ikke kan slå sammen til én. Mer nøyaktig forventer vi at løsningen er en lineærkombinasjon av to lineært uavhengige funksjoner, men hverken disse to begrepene eller et bevis for dette skal vi bruke tid på her. Isteden skal vi se noe overfladisk på hvorfor løsningene blir så forskjellige for de tre tilfellene av den karakteristiske ligningen.

Vi starter med å vise at hvis $y = y_1$ og $y = y_2$ er to løsninger av (7.18), så er $y = y_1 + y_2$ også en løsning:

$$a(y_1 + y_2)'' + b(y_1 + y_2)' + c(y_1 + y_2) = 0$$

$$ay_1'' + ay_2'' + by_1' + by_2' + cy_1 + cy_2 = 0$$

$$\underbrace{ay_1'' + by_1' + cy_1}_{0} + \underbrace{ay_2'' + by_2' + cy_2}_{0} = 0$$

Med samme framgangsmåte kan vi også vise (prøv selv!) at hvis $y = y_1$ er en løsningen, må $y = Cy_1$ også være det.

Av det som er drøftet over, er målet nå å finne to funksjoner y_1 og y_2 som begge oppfyller (7.18), og som er slik at $y_1 \neq Dy_2$. Da vil nemlig $y = Cy_1 + Dy_2$ være den komplette løsningen av differensialligningen.

To reelle røtter

Når (7.19) har to distinkte og reelle røtter $r=r_1$ og $r=r_2$, betyr dette at både $y_1=e^{r_1x}$ og $y_2=e^{r_2x}$ er løsninger av (7.18). Da må også både $y_1=Ce^{r_1x}$ og $y_2=De^{r_2x}$ være løsninger av differensialligningen. Og fordi $r_1\neq r_2$, må vi ha at $Ce^{r_1x}\neq De^{r_2x}$. Den generelle løsningen vi søker er dermed

$$y = Ce^{r_1} + De^{r_2}$$

Én reell rot

Hvis (7.19) har én rot $r = r_1$, er $y = e^{r_1 x}$ en løsning av (7.18). Men om vi som i tilfellet av to reelle røtter legger sammen løsningene $y_1 = Ce^{r_1 x}$ og $y_2 = De^{r_1 x}$, ender vi opp med løsningen $y = (C + D)e^{r_1 x}$. Dette motstrider det løselig definerte kravet vårt om to konstanter som ikke kan slås sammen til én for å ha en komplett løsning.

Dette motiverer oss til å søke en løsning på formen $y = u(x)e^{r_1x}$, hvor u er en ukjent funksjon av x. Når $r = r_1$ er den eneste løsningen av den karakteristiske ligningen, må denne være på formen

$$(r - r_1)^2 = r^2 - 2r_1r + r_1^2 = 0$$

Dette betyr at differensialligningen kan skrives som

$$y'' - 2r_1y' + r_1^2y = 0$$

Setter vi $y = u(x)e^{r_1x}$ inn i ligningen over, får vi at

$$(ue^{r_1x})'' - 2r_1(ue^{r_1x})' + r_1^2ue^{r_1x} = 0$$

$$((u' + r_1u)e^{r_1x})' - 2r_1(u' + r_1u)e^{r_1x} + r_1^2ue^{r_1x} = 0$$

$$((u'' + r_1u') + r_1(u' + r_1u) - 2r_1(u' + r_1u) + r_1^2u)e^{r_1x} = 0 \quad (e^{r_1x} \neq 0)$$

$$u'' + r_1u' + r_1(u' + r_1u) - 2r_1(u' + r_1u) + r_1^2u = 0$$

$$u'' = 0$$

Ved integrasjon to ganger finner vi at u = C + Dx, og dermed at

$$y = (C + Dx)e^{r_1x}$$

To komplekse røtter

Det kan kanskje virke litt rart at alle løsninger av (7.18) hittil har bestått av eksponentialfunksjonen, mens vi i tilfellet av to komplekse røtter ender opp med en kombinasjon av sinus og cosinus. Men for to komplekse røtter r = p + iq og r = p - iq får vi faktisk en generell løsning på akkurat samme formen som for tilfellet av to reelle røtter:

$$y = \hat{C}e^{(p+iq)x} + \hat{D}e^{(p-iq)x}$$
$$= e^{px}(\hat{C}e^{iqx} + \hat{D}e^{-iqx})$$

Til forskjell tillates her komplekse verdier også for de vilkårlige konstantene, noe som er indikert ved symbolet '^'. Men skal differensialligningen brukes til å modellere fysiske systemer fra virkeligheten, må

vi sørge for at løsningen er reell. For å utrette dette anvender vi *Eulers* formel:

$$e^{iqx} = \cos(qx) + i\sin(qx)$$
 (Eulers formel)

Av denne kan vi skrive (husk at $\cos(-x) = \cos x$ og at $\sin(-x) = -\sin x$)

$$\hat{C}e^{\mathrm{i}qx} + \hat{D}e^{-\mathrm{i}qx} = \hat{C}(\cos(qx) + \mathrm{i}\sin(qx)) + \hat{D}(\cos(-qx) + \mathrm{i}\sin(-qx))$$
$$= (\hat{C} + \hat{D})\cos(qx) + \mathrm{i}(\hat{C} - \hat{D})\sin(qx)$$

Ved riktig valg¹ av \hat{C} og \hat{D} kan vi lage oss de reelle tallene $C=\hat{C}+\hat{D}$ og $D=\hat{C}-\hat{D}$, og med det få den reelle løsningen

$$y = e^{px}(C\cos(qx) + D\sin(qx))$$

 $^{^{1}\}mathrm{Vi}$ lar $\hat{C}=a+\mathrm{i}b$ og $\hat{D}=a-\mathrm{i}b,$ hvor a og b er to reelle konstanter.

Oppgaver for kapittel 7

7.1.1

I fysikken sier man at når et legeme er i fritt fall, er tyngdekraften den eneste kraften som utfører et arbeid på legemet. Hvis vi innfører en y-akse med positiv retning rett opp, vil tyndeakselerasjonen g virke i negativ retning. Akselerasjonen a på legemet kan vi derfor skrive som

$$a = -g$$

Vi lar videre y(t) betegne legemets posisjon til enhver tid t. Vi kan da skrive farten som y' og akselerasjonen som y''. Altså har vi at

$$y'' = -g \tag{I}$$

- a) Finn dene generelle løsningen av (I).
- b) Ofte kaller man startfarten til et legeme for v_0 . Finn løsningen til
- (I) når du vet at y(0) = 0 og $y'(0) = v_0$.

7.2.1

Vis at vi for enhver funksjon f(x) har at

$$(y(x)e^{F(x)})' = y'(x)e^{F(x)} + f(x)y(x)e^{F(x)}$$

hvor F er en antiderivert til f.

7.2.2

Løs ligningen:

a)
$$y' + 4y = 8$$
 b) $y' + \frac{1}{x}y - \cos x = 0$

c)
$$y' + \frac{3}{x}y = 6x + 2$$
 d) $y' + 3x^2y = (1 + 3x^2)e^x$

7.3.1

Finn den generelle løsningen av ligningen:

a)
$$y' = ye^x \cos x$$
 b) $y' = \frac{1}{y} 3x^2(y^2 + 1)$

7.3.2

Løs ligningen:

a)
$$xy' - y = 2x^2y$$
 , $y(1) = 1$

b)
$$2\sqrt{x}y' = \cos^2 y$$
 , $y(4) = \frac{\pi}{4}$

7.4.1

Figuren under viser et retningsdiagram for en differensialligning.

- a) Skisser integralkurven som går gjennom punket (0,4) og integralkurven som går gjennom punktet (0,-4).
- **b)** Bruk figuren til å anslå stigningstallet til alle integralkurvene for x = 0.

Integralkurvene er løsninger av ligningen y' + 4xy = 3x.

- c) Bruk ligningen til å verifisere anslaget fra oppgave b).
- **b)** Finn stigningstallet i punktene (-3,5) og (4,2).

7.5.1

Finn den generelle løsningen av ligningen:

a)
$$y'' - y' - 2y = 0$$

b)
$$2y'' - 12y' + 18y = 0$$

c)
$$y'' - 4y' + 13y = 0$$

7.5.2

Finn løsningen av differensialligningen:

a)
$$y'' - 2y' - 15y = 0$$
 , $y(0) = -1, y'(0) = 2$

b)
$$y'' + 10y' + 25y = 0$$
 , $y(0) = 2, y'(0) = 1$

c)
$$y'' - 2y' + 5y = 0$$
 , $y(0) = 1, y'(0) = 1$

7.6.1

I året 2015 var tallet på en populasjon 100 millioner. Fra og med dette året er det forventet at folkeveksten vil være proporsjonal med folketallet.

- a) Sett opp en differensialligning som beskriver situasjonen over.
- b) I 2016 var folketallet 101 millioner. Bruk denne informasjonen til å finne uttrykket y(t) som gir folketallet (i millioner) t år etter 2015.

7.6.2

En gjenstand med temperaturen T befinner seg i et rom med temperaturen T_r . Det antas at temperaturen til gjenstanden er likt fordelt hele tiden og at romtemperaturen ikke blir påvirket av gjenstandens temperatur. Når T er høyere enn T_r kan vi bruke Newtons avkjølingslov for å tilnærme hvordan T vil utvikle seg med tiden t:

$$T' = -k(T - T_r)$$

k er en konstant som må bestemmes ut ifra gjenstandens termodynamiske egenskaper.

- a) Finn den generelle løsningen av ligningen over. En gjenstand med temperaturen 95 °C blir plassert i et rom med temperaturen 15 °C. Vi bruker Newtons avkjølingslov til å anslå gjenstandens temperatur T etter t minutter. k har verdien $\frac{\ln 2}{5}$.
- **b)** Finn et uttrykk for T.
- c) Bestem T(15).
- d) Hva skjer når vi lar tiden gå mot uendelig?

7.6.3

Gitt en funksjon y(t) på formen

$$y(t) = a\cos(\omega t) + b\sin(\omega t)$$

hvor a,b og ω er konstanter (når t er en tidsvariabel, kaller vi gjerne ω for vinkelfrekvensen). Vis at vi for alle fjør-masse systemer uten demping har at

$$\omega = \sqrt{\frac{k}{m}}$$

7.6.4

En klosse med masse m=1 henger vertikalt i en fjør med fjørkonstant k=25. Klossen strekkes slik at den forflyttes en lengde 0.5 fra likevektspunktet y=0, og blir etterpå sluppet. La y(t) være forflytningen relativt til likevektspunktet tiden t etter at bevegelsen har startet.

- a) Finn et uttrykk for y.
- **b)** Finn perioden til y.

Klossen og fjøren blir plassert i en omgivelse der dempingskonstanten er funnet å være q = 6. Ved et tidspunkt satt til t = 0 passerer klossen likevektspunktet med en fart y'(0) = 4.

c) Finn det nye uttrykket for y.

Gruble 7

 ${\bf a})$ Vis at vi
 kan omskrive et fjør-masse system med demping til ligningen

$$y'' + 2\alpha y' + \omega^2 y = 0 \tag{I}$$

hvor $2\alpha = \frac{b}{m}$ og $\omega = \sqrt{\frac{k}{m}}$.

 $\mathbf b)$ Vis at løsningen av den karakteristiske ligningen av (I) kan skrives som

$$r = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$$

c) For de tre tilfellene $\alpha > \omega,$ $\alpha = \omega$ og $\alpha < \omega,$ hvilket uttrykk antar løsningen av (I)?

Hint: Se (7.12)-(7.14).

d) La y(t) være løsningen av (I). Forklar hvorfor $\lim_{t\to\infty}y(t)=0$. (Ta det for gitt at $\lim_{t\to\infty}te^{-at}=0$ når a>0).

Vedlegg A-??

Vedlegg A: Eksakte sinus- og cosinus-verdier

For å finne eksakte verdier av sinus til et tall x, kan vi sette opp følgende tabell:

For cosinus setter vi opp mønsteret andre veien:

$$\cos x \mid \frac{\sqrt{4}}{2} \mid \frac{\sqrt{3}}{2} \mid \frac{\sqrt{2}}{2} \mid \frac{\sqrt{1}}{2} \mid 0$$

Erstatter vi $\frac{\sqrt{1}}{2}$ med $\frac{1}{2}$ og $\frac{\sqrt{4}}{2}$ med 1, får vi dette:

Av tabellen over kan vi enkelt finne $\tan x = \frac{\sin x}{\cos x}$:

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

Vedlegg B: Løsning av trigonometriske ligninger

Når vi har trigonometriske ligninger hvor en løsning ikke ligger i første kvadrant, kan det være litt vanskelig å huske et tall som løser ligningen. Vi skal nå vise en metode du alltid kan bruke, eksemplifisert ved å finne et tall som oppfyller ligningen

$$\cos x = -\frac{\sqrt{2}}{2} \tag{B1}$$

Siden cosinusverdien er negativ, må én løsning ligge i andre kvadrant. Vi vet at $\cos x = \frac{\sqrt{2}}{2}$ har en løsning i første kvadrant, nemlig

 $x = \frac{\pi}{4}$. Dette forteller oss faktisk at alle løsninger av $\cos x = \pm \frac{\sqrt{2}}{2}$ er et heltalls multiplum¹ av brøken $\frac{\pi}{4}$. På intervallet $[0, \pi]$ deler vi derfor enhetssirkelen inn i fire like sektorer:

Figur 7.4: $\frac{3}{4}\pi$ og $\frac{1}{4}\pi$ har samme cosninusverdi.

Av figuren over ser vi at $\cos\left(\frac{3\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right)$, derfor må $x = \frac{3}{4}\pi$ være en løsning av (B1). Og da må også $x = -\frac{3\pi}{4}$ være en løsning (se tilbake til figur 2.8).

Vedlegg C: Løsning av andregradsligninger

Andregradssuttrykket

$$x^2 + bx + c$$

kan vi skrive som

$$(x+x_1)(x+x_2)$$

hvor $x=-x_1$ og $x=-x_2$ er løsningene av ligningen $x^2+bc+c=0$. Dette betyr at

$$x^{2} + bx + c = (x + x_{1})(x + x_{2})$$

$$= x^{2} + x_{1}x + x_{2}x + x_{1}x_{2}$$

$$= x^{2} + (x_{1} + x_{2})x + x_{1}x_{2}$$

Venstre og høyre side i ligningen over er lik for alle x bare hvis

$$x_1 x_2 = c \quad \text{og} \quad x_1 + x_2 = b \tag{C1}$$

¹Hvis vi for tre tall a, b og c kan skrive at a = bc, da er a et multiplum av b.

Eksempel 1

Faktoriser uttrykket $x^2 - 5x + 4$.

Svar:

Siden (-4)(-1) = 4 og (-4) + (-1) = -5 er kravet fra (C1) oppfylt, og vi kan skrive

$$x^2 - 5x + 4 = (x - 4)(x - 1)$$

Eksempel 2

Løs ligningen

$$x^2 - x - 6 = 0$$

Svar:

Siden (-3)2 = -6 og (-3) + 2 = -1, kan vi skrive

$$x^{2} - x - 6 = 0$$
$$(x - 3)(x + 2) = 0$$

Altså har vi løsningene x = 3 eller x = -2.

Vedlegg D: Grensen av $\sin x$ og $\cos x - 1$ over x

$$\lim_{x\to 0} \tfrac{\sin x}{x} = 1$$

Vi nøyer oss med å se på grensen når $x^+ \to 0$, da resonnementet blir helt symmetrisk for $x^- + \to 0$.

I figuren under ser vi bl. a. en rett trekant med katetene $\cos x$ og $\sin x$. Av formlikhet kan det vises at vi kan lage en forstørret trekant med katetene 1 og $\tan x$.

Bulengden x må alltid være større enn $\sin x$, altså må vi ha at

$$\frac{\sin x}{x} < 1 \tag{D1}$$

Videre observerer vi at trekanten med tan x som høyde og 1 som grunnlinje må ha et større areal enn sektoren til x. Fordi x utgjør $\frac{x}{2\pi}$ av omkretsen til enhetssirkelen, må den utgjøre den samme brøkdelen av arealet (forklar for deg selv hvorfor!). Arealet til enhetssirkelen er π , og da er arealet til sektoren $\pi \cdot \frac{x}{2\pi} = \frac{x}{2}$. Vi kan derfor skrive

$$\frac{1}{2}x < \frac{1}{2}\tan x$$

$$x < \frac{\sin x}{\cos x}$$

$$\cos x < \frac{\sin x}{x}$$
(D2)

Fra (D1) og (D2) har vi at

$$\cos x < \frac{\sin x}{x} < 1$$

Når x går mot 0, går $\cos x$ mot 1. I denne grensen blir altså $\frac{\sin x}{x}$ klemt i mellom et tall uendelig nærme (men mindre enn) 1 på den ene siden og 1 på den andre. Derfor må vi ha at

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Siden $\lim_{x\to 0} \frac{\sin x}{x} = 1$, har vi at

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{(\cos x - 1)}{x} \frac{(\cos x + 1)}{(\cos x + 1)}$$

$$= \lim_{x \to 0} \frac{\cos^2 x - 1}{x(\cos x + 1)}$$

$$= \lim_{x \to 0} \frac{\sin^2 x}{x(\cos x + 1)}$$

$$= \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \left(\lim_{x \to 0} \frac{\sin x}{\cos x + 1}\right)$$

$$= 1 \cdot 0$$

$$= 0$$

Vedlegg E: Funksjonsdrøfting

Merk: Et tall c kan omtales som et punkt i funskjonsdrøftinger.

Maksimum og minimum

Gitt en funksjon f(x):

Absolutt maksimum og absolutt minimum:

- f har absolutt maksimum f(c) hvis $f(c) \ge f(x)$ for alle $x \in D_f$.
- f har absolutt minimum f(c) hvis $f(c) \leq f(x)$ for alle $x \in D_f$.

Lokalt maksimum og absolutt minimum:

- f har et lokalt maksimum f(c) hvis det finnes et åpent intervall I om c slik at $f(c) \ge f(x)$ for $x \in I$.
- f har et lokalt minimum f(c) hvis det finnes et åpent intervall I om c slik at $f(c) \leq f(x)$ for $x \in I$.

Ekstremalverdi og ekstremalpunkt

Gitt en funksjon f(x) med maksimum/minimum f(c). Da er

- f(c) en ekstremalverdi for f.
- c et ekstremalpunkt for f. Nærmere bestemt et maksimalpunkt/minimumspunkt for f.
- (c, f(c)) et toppunkt/bunnpunkt for f.

Konvekse og konkave funksjoner

Gitt en kontinuerlig funksjon f(x).

Hvis hele linja mellom (a, f(a)) og (b, f(b)) ligger over grafen til f på intervallet [a, b], er f konveks for $x \in [a, b]$.

Hvis hele linja mellom (a, f(a)) og (b, f(b)) ligger under grafen til f på intervallet [a, b], er f konkav for $x \in [a, b]$.

Infleksjonspunkt og vendepunkt

For en kontinuerlig funksjon $f(\boldsymbol{x})$ har vi at

- Hvis f''(c) = 0 og f'' skifter fortegn i c, er c et infleksjonspunkt for f.
- Hvis c er er infleksjonspunkt for f, er (c, f(x)) et vendepunkt.
- Hvis f'' går fra positiv til negativ, går f fra konveks til konkav (og omvendt).

Eksempel

Gitt funksjonen

$$f(x) = \sin x \quad , \quad x \in [-2, 4]$$

- a) Finn infleksjonspunktene til f.
- **b)** Finn vendepunktene til f.

Svar:

a) Infleksjonspunktene finner vi der hvor f''(x) = 0:

$$f''(x) = 0$$
$$(\sin x)'' = 0$$
$$-\sin x = 0$$

Av $x \in D_f$ er det x = 0 og $x = \pi$ som oppfyller kravet fra ligningen over. For å finne ut om f'' skifter fortegn i disse punktene, setter vi opp et fortegnsskjema:

f'' går altså fra positiv til negativ i x=0 og fra negativ til positiv i $x=\pi$. Dette betyr at f går fra konveks til konkav i x=0 og fra konkav til konveks i $x=\pi$.

Vedlegg F: Lagranges identitet

Vi ønsker å vise Lagranges identitet for to vektorer $\vec{a} = [a_1, a_2, a_3]$ og $\vec{b} = [b_1, b_2, b_3]$:

$$|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$$

La oss starte med å skrive ut venstresiden. Vi ser at dette blir en tung oppgave, men kan lette litt på trykket ved å skrive:

$$c_{ij} = a_i b_j$$

Vi får da at

$$|\vec{a} \times \vec{b}|^2 = (c_{23} - c_{32})^2 + (c_{31} - c_{13})^2 + (c_{12} - c_{21})^2$$

= $c_{23}^2 - 2c_{23}c_{32} + c_{32}^2 + c_{31}^2 - 2c_{31}c_{13} + c_{13}^2 + c_{12}^2 - 2c_{12}c_{21} + c_{21}^2$ (F1)

Tiden er nå inne for å observere to ting:

$$\begin{aligned} |\vec{a}|^2 |\vec{b}|^2 &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) \\ &= c_{11}^2 + c_{12}^2 + c_{13}^2 + c_{21}^2 + c_{22}^2 + c_{23}^2 + c_{31}^2 + c_{32}^2 + c_{33}^2 \end{aligned} \tag{F2}$$

$$(\vec{a} \cdot \vec{b})^2 = (a_1b_1 + a_2b_2 + a_3b_3)^2$$

$$= (c_{11} + c_{22} + c_{33})^2$$

$$= (c_{11} + c_{22})^2 + 2(c_{11} + c_{22})c_{33} + c_{33}^2$$

$$= c_{11}^2 + c_{22}^2 + c_{33}^2 + 2c_{11}c_{22} + 2c_{11}c_{33} + 2c_{22}c_{33}$$
 (F3)

Vi legger nå merke til at $c_{ii}c_{jj} = c_{ij}c_{ij}$. Om vi studerer høyresidene til (F1), (F2) og (F3), ser vi at vi kan skrive

$$(F1) = (F2) - (F3)$$

Dermed har vi vist det vi skulle.

Vedlegg G: Bytte av variabel ved Leibniz-notasjon

En annen måte å utføre bytte av variabel på, er å anvende seg av Leibniz-notasjon. For en funksjon u(x) skriver man da at

$$u' = \frac{du}{dx}$$

du og dx betegner infinitesimale størrelser av u og x, begge størrelsene går altså mot 0. Dette er bare en annen måte å skrive ligning (5.1) på, så strengt tatt kan vi ikke behandle høyresiden som en vanlig brøk. Men hvis vi *likevel* gjør det, kan vi skrive

$$dx = \frac{du}{u'}$$

Og når vi først er i gang med manipulasjoner som egentlig ikke gir mening, kan vi sette dette uttrykket inn i et integral vi ønsker å løse:

Eksempel

Finn det ubestemte integralet

$$\int x^4 e^{x^5} \, dx$$

Svar:

Vi setter $u = x^5$, og får da at

$$u' = \frac{du}{dx}$$
$$5x^4 = \frac{du}{dx}$$
$$dx = \frac{du}{5x^4}$$

Setter vi dette inn i integralet, kan vi skrive

$$\int x^4 e^{x^5} dx = \int x^4 e^u \frac{du}{5x^4}$$
$$= \frac{1}{5} \int e^u du$$
$$= \frac{1}{5} e^u du$$
$$= \frac{1}{5} + e^u + C$$
$$= \frac{1}{5} e^{x^5} + C$$

Kommentar: I eksempelet over kom vi fram til rett svar, selv om regneoperasjonene med de infinitesimale størrelsene ikke kan forsvares rent matematisk. Derimot kan det vises matematisk at denne metoden alltid vil gi oss korrekte uttrykk! Å bruke regneoperasjoner som i seg selv er meningsløse, men som beviselig fører til riktige uttrykk, kalles formell regning.

Vedlegg H: Bytte av variabel for bestemt integral

Bytte av variabel for bestemt integral

Gitt funksjonene u(x) og g(u). Da har vi at

$$\int_{a}^{b} g(u)u' dx = \int_{u(a)}^{u(b)} g(u) du$$
 (7.20)

Eksempel 1

Finn det bestemte integralet

$$\int_{1}^{2} \frac{6x^2 + 4x}{x^3 + x^2} \, dx$$

Svar:

Vi setter $u(x) = x^3 + x^2$ og $g(u) = \frac{1}{u}$. Da blir $u' = 3x^2 + 2x$, og vi kan skrive

$$\int \frac{6x^2 + 4x}{x^3 + x^2} dx = 2 \int (3x^2 + 2x) \frac{1}{x^3 + x^2} dx$$
$$= 2 \int u' \frac{1}{u} dx$$
$$= 2 \int \frac{1}{u} du$$
$$= 2 \ln|u| + C$$

Siden $u(1) = 1^3 + 1^2 = 2$ og $u(2) = 2^3 + 2^2 = 12$, får vi at

$$\int_{1}^{2} \frac{6x^{2} + 4x}{x^{3} + x^{2}} dx = \left[2 \ln |u|\right]_{2}^{12}$$

$$= 2(\ln 12 - \ln 2)$$

$$= 2 \ln \left(\frac{12}{2}\right)$$

$$= 2 \ln 6$$

Indeks

abgalutt vinledmål 22	uandalia 10		
absolutt vinkelmål, 32	uendelig, 10		
amplitude, 55	fart, 149, 197, 204		
analysens fundamentalteorem,	fase, 56		
150	faseforskyvning, 56		
andrederiverttest, 137	fjør, 201		
antiderivert, 139	-konstant, 201		
arcuscosinus, 37	fjør-masse-system		
arcussinus, 37	med demping, 204		
arcustangens, 37	uten demping, 201		
avstand	friksjon, 202		
fra punkt til linje, 119	friksjonstall, 204		
fra punkt til plan, 121			
halmalanada EE	grunnstilling, 76		
bølgelengde, 55	1-1: 100		
bølgetall, 55	halveringstid, 198		
buelengde, 32	homogen, 193		
cosinus, 35	Hooks lov, 201		
-funksjon, 54	induksjon, 19		
rumojon, o r	- '		
demping, 204	infinitesimal, 148		
derivasjon, 134	infleksjonspunkt, 218		
determinant, 88	initialkrav, 185		
differensialligning, 184	integral		
andre ordens, 185	bestemt, 148		
lineær, 193	som areal, 166		
første ordens, 184	som volum, 169		
lineær, 185	ubestemt, 150		
separabel, 188	integralkurver, 192		
divergere, 16	integrand, 161		
42.52-8525, 25	integrasjon		
eksplisitt formel, 11	bytte av variabel, 155		
eksponentialfunksjon, 207	delbrøksoppspaltning, 161		
ekstremalpunkt, 217	delvis, 158		
ekstremalverdi, 217			
enhetssirkelen, 32	karakteristisk ligning, 193		
som tallinje, 35	karbondatering, 198		
• ,	kjerne, 37		
følge, 10	klosse, 201		
aritmetisk, 11	kompleks		
endelig, 10	løsning, 193, 194		
geometrisk, 12	tall, 193		

verdi, 207	randbetingelse, 185		
komponent, 76	rekke, 13		
konstantledd, 55	aritmetisk, 14		
konvergere, 16	divergent, 16		
kryssprodukt, 91	geometrisk, 15		
kule, 116	konvergent, 16		
kvadrant, 38	rekursiv formel, 10		
kvadrert, 51	retning, 76		
kvotient, 12	retningsdiagram, 191		
	retningsvektor		
Lagranges identitet, 97	for linje, 106		
ledd, 10	for plan, 108		
likevektslinje, 55	- '		
likevektspunkt, 201	sinus, 35		
lineærkombinasjon, 206	-funksjon, 60		
lineært uavhengig, 206	skalarprodukt, 81		
linje, 106	summetegnet, 18		
mellom to plan, 114	tangens, 37		
luftmotstand, 202	-funksjon, 62		
malraimum 197 917	tetreaeder, 93		
maksimum, 137, 217 masse, 201	trekant, 93		
,	trigonometrisk		
minimum, 137, 217	identitet, 40		
multiplum, 214	ligning		
Newton (enhet), 201	kvadratisk, 51		
Newtons andre lov, 202	lineær, 43		
normalvektor, 111	tyngdekraft, 201		
	tyfiguekraft, 201		
omdreiningslegeme	utspent		
volumet av, 171	geometrisk figur, 92		
omdreiningsleme, 171	vinkel, 81		
ortogonal, 86	l.+ 7 <i>C</i>		
nanallallaninad 02	vektor, 76		
parallellepiped, 93	lengden av, 80		
parallellogram, 93	mellom to punkt, 77		
parameterisering	vektorprodukt, 91		
av linje, 106	som areal og volum, 92		
av plan, 108	vendepunkt, 218		
periode, 55	verdi, 10		
plan, 108	vinkel, 32		
ligningen til, 111	-frekvens, 211		
proporsjonal, 197	målt i grader, 32		
pyramide, 93	målt i radianer, 32		

mellom linjer, 122 mellom plan, 124 mellom plan og linje, 125

Fasit

For alle svar tas det for gitt at $i, n \in \mathbb{N}$.

Kapittel 1

- **1.1.1 a)** Rekursiv: $a_i = a_{i-1} + 2$, eksplisitt: 2i **b)** Rekursiv: $a_i = a_{i-1} + 2$, eksplisitt: 2i 1
- **1.1.2** a) $a_i = 3 + 9(i-1)$ b) $a_i = 5 3(i-1)$ c) $a_i = 2 + 6(i+1)$
- **1.1.3 a)** $a_i = \frac{1}{2} \cdot \frac{1}{3^{i-1}} = \frac{1}{2} \cdot 3^{1-i}$ **b)** $a_i = 5 \cdot 2^{i-1}$
- **1.2.1 a)** Både antall grønne og antall blå sirkler tilsvarer summen av de n første naturlige tallene. Av figuren ser vi at to ganger denne summen utgjør n(n+1) sirkler. **b)** Se løsningsforslag.
- **1.2.2 a)** 340 **b)** 370
- **1.2.3** n = 15
- 1.2.4 Se løsningsforslag.
- **1.2.5** $S_5 = 1023$
- **1.2.6 a** Se løsningsforslag.**b)** 26 **c)** n = 6
- **1.2.7** a) $1000 \cdot 1.02^4 + 1000 \cdot 1.02^3 + 1000 \cdot 1.02^2 + 1000 \cdot 1.02^1 + 1000$ b) $P(n) = 50000(1.02^n 1)$
- **1.2.8 a)** Fordi $-1 < k = \frac{1}{4} < 1$
- **1.2.9 a)** $10^{-1} + 10^{-2} + 10^{-3} + \dots$ **b)** Konvergent siden |k| < 1. $S_{\infty} = 1$
- **1.2.10 a)** 1 < x < 3 **b)** $x = \frac{3}{2}$. **c)** x = 1 løser ligningen, men rekka konvergerer ikke for denne verdien av x. $S_n = \frac{1}{6}$ har derfor ingen løsning.
- 1.3.1 Se løsningsforslag.
- 1.3.3 Se løsningsforslag.

Kapittel 2

For alle svar tas det for gitt at $n \in \mathbb{Z}$.

Merk: Uttrykkene for løsninger av trigonometriske ligninger kan se forskjellige ut, men gi de samme verdiene av x. For eksempel vil $x=2\pi n-\frac{\pi}{4}$ være den samme løsningen som $x=\frac{7\pi}{4}+2\pi n$ fordi $-\frac{\pi}{4}+2\pi=\frac{7\pi}{4}$. Vi kan alltid trekke ut heltallsfaktorer av n-leddet for å endre på uttrykk, for å sjekke om ditt svar er riktig bør du derfor først sjekke at ditt n-ledd er i overensstemmelse med fasit.

- **2.1.1** Siden radiusen til enhetssirkelen er 1, blir forholdet mellom buelengde l og radiusen lik $\frac{l}{l} = l$.
- **2.1.2** a) $\frac{\pi}{3}$ b) $\frac{\pi}{12}$
- **2.1.3** a) 165° b) 330°
- 2.2.1 Se løsningsforslag.

2.2.2 a) 0 b) $-\frac{1}{\sqrt{3}}$

2.2.3

	1. kvadrant	2. kvadrant	3. kvadrant	4. kvadrant
$\sin x$	+	+	_	_
$\cos x$	+	_	_	+
$\tan x$	+	_	+	_

2.2.4 a)
$$-\frac{1}{2}$$
 b) -1 c) 0 d) $-\sqrt{3}$

2.2.5 a) 0 b)
$$\frac{\pi}{3}$$
 c) π d) $\frac{3\pi}{4}$ e) $\frac{\pi}{4}$ f) $\frac{\pi}{6}$

2.2.6 Se løsningsforslag.

2.2.7 a) Se side 65. b) Se løsningsforslag.

2.2.8 $\sin(3x)$

2.2.9 a)
$$2\sin\left(2x + \frac{2\pi}{3}\right)$$

2.3.1 Se løsningsforslag.

2.3.2 a)
$$x = \pm \frac{\pi}{4} + 2\pi n$$
 b) $x = \frac{3}{2} \lor x = \frac{9}{2}$ **c)** $x = \frac{1}{3} (\frac{\pi}{6} + 2\pi n) \lor x = \frac{1}{3} (\frac{5\pi}{6} + 2\pi n)$ **d)** $x = \frac{\pi}{3} (3n+1) \lor x = \frac{\pi}{6} (6n+1)$ **e)** $\frac{1}{4} (\pi n - \frac{\pi}{3})$

2.3.3 a)
$$\frac{\pi}{6} + \pi n$$
 b) $\pi n - \frac{\pi}{3}$ c) $\frac{1}{2} \left(\pi n - \frac{\pi}{4} \right)$

2.3.4 a)
$$x = 2\pi n - \frac{\pi}{4}$$
 b) $x\pi^2(4n-1) \lor x = 2\pi \left(\frac{\pi}{6} + 2\pi n\right)$

2.4.1 a)
$$x = 2\pi n - \frac{\pi}{2} \lor x = \frac{\pi}{6} + 2\pi n \lor x = \frac{5\pi}{6} + 2\pi n$$
 b) $x = \frac{1}{3}(\pi + 2\pi n)$ **c)** $x = \pm \frac{3\pi}{4} + 2\pi n$ **d)** $x = \frac{1}{3} + n$ **e)** $x = \frac{1}{3}(\pi + 2\pi n)$

2.4.2 a) a)
$$x = \pm \frac{\pi}{6} + \pi n$$
 b) $\pm \pi + 4\pi n$ (eventuelt $x = \pi + 2\pi n$))

2.5.1 Se løsningsforslag.

2.5.2 a)
$$P = \frac{2\pi}{3}$$
 b) $f_{maks} = 9$, $f_{min} = -1$ **c)** f har maksimum for $x = \frac{1}{3} \left(2\pi n - \frac{\pi}{12} \right)$ og minimum for $x = \frac{1}{3} \left(2\pi n - \frac{11\pi}{12} \right)$

2.5.4 a)
$$P = 4$$
 b) $(-1,3)$ og $(3,3)$ **c)** $x = -\frac{7}{3}$, $x = \frac{5}{3}$ og $x = \frac{1}{3}$

2.5.5

2.5.6 a)
$$3\cos(\pi x - \pi)$$
 b) $\sin(\pi x - \frac{\pi}{2})$

Kapittel 3

3.1.1 a)
$$\sqrt{30}$$
 b) 3

3.1.3 Se løsningsforslag.

3.2.1 Se løsningsforslag.

3.2.2 a)
$$-16$$
 b) 9 c) $\frac{64}{5}$

3.2.3 a) 5 b)
$$-5\sqrt{3}$$

3.2.4 a)
$$\theta = 30^{\circ}$$
 b) 60° c) $\theta = 135^{\circ}$

3.2.5 a)
$$3(5 + \vec{a} \cdot \vec{b})$$
 b) $2(15 + \vec{a} \cdot \vec{c})$

3.3.4 a)
$$\vec{a}||\vec{b}$$
 for $t = 3$ b) $\vec{a}||\vec{b}$ for $t = -1$

3.3.5
$$s = -1$$
 og $t = 3$

3.3.1 a) Ikke ortogonale. b) Ikke ortogonale. c) Ortogonale.

3.3.2 a)
$$t = \frac{3}{2}$$
 b) $t \in \{2, 3\}$

3.3.3 a) Ikke parallelle. b) Parallelle.

3.3.4 a)
$$t = 3$$
 b) $t = -1$

3.4.1 Se løsningsforslag.

3.4.2 Se løsningsforslag.

3.4.4 Se løsnigsforslag.

3.4.3 Se forklaringen for lengden av vektorproduktet, s. 97.

3.4.5 a) $|\vec{a} + \vec{b}| = 5$ **b)** Se forklaringen for vektorproduktet som volum, s.98 **c)** Se forklaringen for vektorproduktet som volum, s.98

Kapittel 4

4.1.1 a)
$$l: \left\{ \begin{array}{l} x=-2+s \\ y=3-2t \\ z=-5+t \end{array} \right.$$
 b) C ligger på linja.

4.1.2
$$A = (-1, 1, 2)$$

4.1.3 a)
$$\alpha$$
:
$$\begin{cases} x=1-3s+4t \\ y=1-4s+5t \\ z=-1+2t \end{cases}$$
 b) Punktet ligger ikke i planet.

4.1.4
$$\alpha$$
:
$$\begin{cases} x = 2 - 4s + 2t \\ y = -3 + 2s + t \\ z = -5 + s - 5t \end{cases}$$

4.2.1
$$x + 2y + z - 3 = 0$$

4.2.2 a)
$$[2,3,0]$$
, $[0,2,-1]$ b) $-3x-2y+4z-20=0$

4.2.3 a) Bare
$$(1, -2, 4)$$
 b) $\alpha : \begin{cases} x = \frac{1}{10}(3s + 4t) \\ y = s \\ z = t \end{cases}$

4.2.4
$$3x + 5y + z = 0$$

4.2.5 a)
$$S = (-1, 2, 6), r = 3$$
 b) Se løsningsforslag. c) $2x + y + 2z - 21 = 0$

4.2.6 a)
$$S = (3, -1, 5), r = 7$$
 b) A inni og B utenfor.

4.3.1
$$\sqrt{2}$$

4.3.2
$$\frac{13}{\sqrt{26}}$$

4.3.3 a)
$$[3, -2, 1]$$
 b) $(0, 0, 0)$ c) $\frac{12}{\sqrt{14}}$

434

a)
$$(3, -2, 1)$$
 b) $l: \begin{cases} x = 3 + 2t \\ y = -2 - 1t \\ z = -2t \end{cases}$ c) $(-1, 0, 4), (7, -4, -4)$ d) $A = (1, -1, 2)$

e)
$$\sqrt{27}$$

Kapittel 5

5.1.1 a)
$$f'(x) = \frac{12}{\cos^2(4x)}$$
 b) $f'(x) = -e^{-4x}(\sin x + 4\cos x)$ **c)** $f'(x) = 2(\sin^2 x - \cos^2 x)$

d)
$$f'(x) = \frac{1}{2\tan^{\frac{1}{2}}x\cos^2 x}$$
 e) $f'(x) = e^{2x} \left(2\ln x + \frac{1}{x}\right)$ f) $f'(x) = \frac{x\ln(x)\cos x - \sin x}{x\ln^2 x}$

5.1.2 a) Se løsningsforslag. b) Se løsningsforslag.

5.2.1 a)
$$x = -1$$
 og $x = 1$ b) $f(-1) = -e$ og $f(1) = e^{-1}$

5.2.2 a) Se løsningsforslag. **b)**
$$x = \frac{1}{2k}(\pi + 4\pi n + 2c)$$

5.3.1 a) Fordi
$$F'(x) = f(x)$$
. b) Fordi $F'(x) = f(x)$.

Kapittel 6

6.1.1 a)
$$f'(x) = 20x^4$$
 b) $f(2) - f(0) = 128$

6.1.2
$$F(4) - F(1) = 8$$

6.1.3 a)
$$f' = -2\cos x \sin x e^{\cos^2 x} = -\sin(2x) e^{\cos^2 x}$$
 b) $e^{\cos^2 x}$

6.1.4 Se løsningsforslag.

6.2.1 a)
$$\frac{3}{4} \ln|x| + C$$
 b) $7 \tan t + C$ **c)** $-\frac{2}{3}x^6 + C$ **d)** $\frac{1}{\pi} \sin(\pi x) + C$ **e)** $-e^{-4t} + C$ **f)** $\frac{2}{5}x^5 + \frac{6}{16} + C$ **g)** $\frac{2}{7}x^{\frac{7}{2}} + C$

6.2.2 Se løsningsforslag.

6.2.3 a)
$$\frac{1}{2}e^{x^2} + C$$
 b) $2(e^5 - e^{-1})$ c) $-\ln|\cos x| + C$ d) $\frac{3}{2}$ e) $\ln|x| + \ln|2x + 5| + C$ f) $\frac{1}{2}\ln|3x^2 + 4x + 3| + C$

6.2.4
$$e^{\sin^2 x} + C$$

6.2.5 a)
$$(x-1)\sin x + \cos x + C$$
 b) $\frac{2}{9}x^{\frac{3}{2}}(3\ln x - 2)$ c) $1 - \frac{2}{6}$

6.2.6 Se løsningsforslag.

6.2.7 a)
$$6 \ln 2 - 5 \ln 3$$
 b) $3 \ln |x - 5| - 7 \ln |2 + x| + C$ **c)** $2 \ln |x - 2| + 3 \ln |x - 1| - 4 \ln |x + 1| + C$ **d)** $\ln |1 - x| - 3 \ln |2 - x| + 5 \ln |x| + C$

6.2.8
$$x + \frac{3}{2}x^2 + \ln|x-3| - 2\ln|x+2| + C$$

- **6.3.1** Se løsningsforslag.
- **6.3.2** Se løsningsforslag.

6.4.1 a)
$$\pi(r^2 - x^2)$$
 b) $V = \frac{4\pi}{3}r^3$

6.4.2 a)
$$\frac{1}{2} (e^2 - 1)$$
 b) $\frac{1}{2}$

Kapittel 7

7.1.1 a)
$$y = Ct - \frac{1}{2}gt^2 + D$$
 b) $y = v_0 - \frac{1}{2}gt^2$.

7.2.1 Se løsningsforslag.

7.2.2 a)
$$Ce^{-4x} + 2$$
 b) $y = x^{-1}(C + \cos x) + \sin x$ **c)** $y = Cx^{-3} + \frac{6x^2}{5} + \frac{x}{2}$ **d)** $y = Ce^{-x^3} + e^x$

7.3.1 a)
$$y = Ce^{\frac{1}{2}e^x(\sin x + \cos x)}$$
 b) $y = \pm \sqrt{Ce^{2x^3} - 1}$

7.3.2 a)
$$y = xe^{x^2 - 1}$$
 b) $y = -\tan(1 - \sqrt{x})$

20

7.5.1 a)
$$y = Ce^{-x} + De^{2x}$$
 b) $y = (C + Dx)e^{3x}$ c) $y = e^{2x}(C\cos(3x) + D\sin(3x)$

7.5.2 a)
$$y = -\frac{1}{8} \left(e^{5x} + 7e^{-3x} \right)$$
 b) $y = 2e^{-5x} + 11xe^{-5x}$ **c)** $y = e^x \cos(2x)$

7.6.1 a
$$y' = ky$$
, $k > 0$ b) $y = 100 \cdot 1.01^t$

7.6.2 a) $T = T_a + Ce^{-kt}$ **b)** $T = 15 + 80e^{-\frac{\ln 2}{5}t}$ **c)** T(15) = 25 **d)** Temperaturen til gjenstanden går mot romtemperaturen.

7.6.3 Se løsningsforslag.

7.6.4 a)
$$y = 2\cos(5t)$$
 b) $\frac{2\pi}{5}$ c) $e^{-3x}\sin(4t)$

Om boka

Før Kalkulus; Teoridel introduserer matematikkteorien som inngår i faget R2. Teorien er delt inn i syv kapitler som er rike på regneeksempler og oppgaver av variert vanskegrad. Sammen med boka Før Kalkulus; GeoGebra i R2 er dette et komplett læreverk som dekker alle kompetansemål bestemt av Utdanningsdirektoratet per 2017.

Før Kalkulus; Geo Gebra i R2 kan lastes ned gratis på nettsiden forkalkulus.netlify.com.

Om forfatteren

Sindre Sogge Heggen har en mastergrad i anvendt matematikk fra Universitetet i Oslo og flere års erfaring med undervisning i ungdomsskoler og videregående skoler.