CSE 548: (*Design and*) Analysis of Algorithms Coping with NP-Completeness

R. Sekar

Intelligent Exhaustive Search

Intro Backtracking Branch and Bound Approximation

- Exhaustive search will work for almost any problem Hamiltonian Tour: Consider an edge e.
 - Either e = (u, v) is part of the tour, in which case you can complete
 the tour by finding a path from u to v in G e.
 - Or, e is not part of the tour, in which case you can find the tour by searching G - e.

Either case leads to a recurrence T(m) = 2T(m-1), i.e., $T(m) = O(2^m)$. (Here m is the number of edge in G.)

SAT: Try all 2ⁿ possible truth assignments to the n variables in your formula.

 The key point is to be intelligent in the way this search is conducted, so that the algorithm is faster than 2ⁿ in practice.

Coping with NP-Completeness

- Sometimes you are faced with hard problems problems for which no efficient solutions exist.
- Step 1: Try to show that the problem is NP-complete
- This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm
- Step 2a: Sometimes, you may be able to say "let us solve a different problem"
 - you may be able leverage some special structure of your problem domain that enables a more efficient solution.
- Step 2b: Other times, you are stuck with a difficult problem and you need to make the best of it.
 - · We discuss different coping strategies in such cases.

Backtracking

- Depth-first approach to perform exhaustive search
 - In the above example, first try to find a solution that includes e
 - Looking down further, the algorithm will make additional choices of edges to include: e1, e2, ..., ek
 - Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e., Hamiltonian path that doesn't include e)
- Key goal is to recognize and prune failing paths as quickly as possible.

Backtracking Approach for SAT

Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
 - If it occurs k times, then you have the recurrence

$$T(n) = 2T(n-k)$$

whose solution is $O(2^{n/k})$.

- Of course, you won't be able to repeatedly find a variable that occurs k
 times, so this solution is meaningless in practice it just goes to show
 the exponential pruning effect of a frequently occurring variable
- Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.
- Exercise: Show that the backtracking algorithm solves 2SAT in polynomial time

Backtracking Approach for SAT: Complexity

- There are two cases, based on the variable w chosen for branching:
 - Case 1: Both w and \overline{w} occur in the formula In this case, both branches are present. Moreover, both w and \overline{w} are eliminated from the formula at this point, so we have the recurrence:

$$T(n) = 2T(n-2) + O(n)$$

Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence

$$T(n) = T(n-1) + O(n)$$

Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields
a solution of O(2^{n/2}) or O(1.414ⁿ), which is much better than 2ⁿ.

Branch and Bound

- · Generalization of backtracking to support optimization problems
- Requires a lower bound on the cost of solutions that may result from a partial solution
 - If the cost is higher than that of a previously encountered solution, then this subproblem need not be explored further.
- Sometimes, we may rely on estimates of cost rather than strict lower bounds.

Branch and Bound for TSP

- Begin with a vertex a the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.
- Partial solutions represent a path from a to some vertex b, passing through a set S ⊂ V of vertices.
- Completing a partial solution requires the computation of a low cost path from b to a using only vertices in V – S

Illustration of Branch-and Bound for TSP

Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
 - Cost of going from b to a vertex in V-S, i.e, the minimum weight edge from b to a vertex in V-S
 - Cost of going from a V S vertex to a, i.e, the minimum weight edge from a to a vertex in V - S
 - Minimal cost path in V − S that visits all v ∈ V − S
 - Note: Lower bound is the cost of MST for V − S
- By adding the above three cost components, we arrive at a lower bound on solutions derivable from a partial solution.

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions
- · Solutions that are within a certain distance from optimum
- Not heuristics: Approximate algorithms guarantee that solutions are within a certain distance from optimal
 - Differs from heuristics that can sometimes return very bad solutions.
- How to define "distance from optimal?"
 Additive: Optimal solution S_Ω and the Solution S_Λ returned by
 - approximation algorithm differ only by a constant.

 Quality of approximation is extremely good, but unfortunately, most problems don't admit such approximations

Factor: S_O and S_A are related by a factor.

Most known approximation algorithms fall into this category.

Approximation Factors

Constant: $S_A \leq kS_O$ for some fixed constant k.

• Examples: Vertex cover, Facility location, ...

Logarithmic: $S_A \leq O(\log^k n) \cdot S_O$

• Examples: Set cover, dominating set, ...

Polynomial: $S_A \leq O(n^k) \cdot S_O$.

• Examples: Max Clique, Independent set, graph coloring, ...

PTAS: $S_A \leq (1 + \epsilon) \cdot S_O$ for any $\epsilon > 0$.

("Polynomial-time approximation scheme")

FPTAS: PTAS with runtime $O(\epsilon^{-k})$ for some k. ("Fully PTAS")

· Examples: Knapsack, Bin-packing, Euclidean TSP, ...

First-fit Algorithm

A simple, greedy algorithm

FirstFit(x[1..n])

for i = 1 to n do

Put x[i] into the first open bin large enough to hold it

Theorem

All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins b and b' that are less than half-full. Then, items in b' would have fitted into b, and so the FF algorithm would never have opened the bin b'—a contradiction

Theorem

First-fit is optimal within a factor of 2: specifically, $S_A < 2S_O + 1$.

Bin Packing

Problem

Pack objects of different weight into bins that have a fixed capacity in such a way that minimizes bins used.

- · Obvious similarity to Knapsack
- Bin-packing is NP-hard
- Very good (and often very simple) approximation algorithms exist

Best-Fit Algorithm

- Another simple, greedy algorithm
- Instead of using the first bin that will can hold x[i], use the open bin whose remaining capacity is closest to x[i]
 - Prefers to keep bins close to full.
- Factor-2 optimality can established easily.

Other algorithms for Bin-packing

- First-fit decreasing strategy first sorts the items so that
 x[i] ≥ x[i+1] and then runs first-fit.
- Best-fit decreasing strategy first sorts the items so that $x[i] \ge x[i+1]$ and then runs best-fit.
- \bullet Both FFD and BFD achieve approximation factors of 11/9 $S_{O}+6/9.$
- Due to the additive term, bin-packing cannot have a PTAS unless P=NP.
 - \bullet But $S_A=(1+\epsilon)S_O+1$ is easy to achieve for any $\epsilon>0$

Set Cover

Problem

Given a collection S_1, \ldots, S_m of subsets of B, find a minimum collection S_{i_1}, \ldots, S_{i_k} such that $\bigcup_{j=1}^k S_{i_j} = B$

Greedy Set Cover Algorithm

GSC(S, B) $cover = \emptyset$: $covered = \emptyset$

while $covered \neq B do$

Let *new* be the set in S-cover containing

the maximum number of elements of B - coveredadd new to cover; $covered = covered \cup new$

return cover

Analysis of Greedy Set Cover

Greedy set cover is approximate with a factor of $\ln n$, where n = |B|

Theorem Greedy s Proof:

- Let k be the size of optimal cover, and n_t be the number of elements left uncovered after t steps of GSC
 These n_t elements are covered by k sets in optimal cover ⇒ each of
- these k sets must cover at least n_t/k uncovered elements. • Thus, GSC will find at least one set that covers n_t/k elements.
- Thus, GSC will find at least one set that covers n_t/k elements
 This yields the recurrence for bounding uncovered elements:
- $U(t+1) = n_t n_t/k = n_t(1-1/k) = U(t)(1-1/k)$
- The solution to recurrence is $n(1-1/k)^t < ne^{-t/k}$
- \bullet Thus, after $t=k\ln n$ steps, less than 1 (i.e., no) elements uncovered
- Thus, GSC computes a cover at most ln n times the optimal cover.

Vertex Cover

- Note that a vertex cover is a set cover for (S, E), where
 S = {{(v, u)|v ∈ V and (v, u) ∈ E}|v ∈ V}.
- S = {{(v, u)|v ∈ V and (v, u) ∈ E}|v ∈ V},
 S contains a set for each vertex; this set lists all edges incident on v
- Thus GSC is an approximate algorithm for vertex cover.
- \bullet But $\ln n$ is not a factor to be thrilled about can we do better?
 - Actually, we can do much better! That too with a very simple algorithm.

Vertex Cover

Consider any edge (u, v).

Either u or v must belong to any vertex cover.

 If we accept S_A = 2S_O, then we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm

AVC(G = (V, E)) $C = \emptyset$

while G is not empty pick any $(u, v) \in E$

 $C = C \cup \{u, v\}$ $G = G - \{u, v\}$

return C

Analysis of k-Cluster

This follows from:

Let x be the farthest point from μ_1, \ldots, μ_k , and let r the distance to its closest center. Then, we can say:

• Cluster diameter of C_1, \ldots, C_k is at most 2r

• The distance between any 2 points in $\{x, \mu_1, \dots, \mu_k\}$ is at least r.

• how μ_i 's was chosen to be the farthest point from μ_i for i < i,

• now μ_i s was chosen to be the fartnest point from μ_j for j < l,

this distance to μ_i must decrease with i, and
 when i = k + 1 this distance is r

Thus, any k-Cluster must have a diameter of at least r

With k circles, at least two of k+1 points must be within one of them.
 This circle's diameter must hence be r or greater

Thus, AC is approximate within a factor of 2.

k-Cluster

Problem

Given $X = \{x_1, \dots, x_n\}$ and distances between x_i , partition X into k clusters in a way that minimizes maximum cluster diameter.

Approximate k-Cluster Algorithm (AC)

Pick any point $\mu_1 \in X$ as the first cluster center

for i = 2 to k do

Choose μ_i to be the farthest point from μ_1, \dots, μ_{i-1} Create k clusters $C_i = \{x \in X | \mu_i \text{ is the closest center to } x\}$

Euclidean TSP

Our starting point is once again the MST

Note that no TSP solution can be smaller than MST
 Deleting an edge from TSP solution yields a spanning tree

Simple algorithm:

· Start with the MST

Approximating Euclidean TSP: An Illustration

- Start with the MST
- Make a tour that uses each MST edge twice (forward and backward)
 - This tour is like TSP in ending at the starting node, and differs from TSP by visiting some vertices and edges twice

Knapsack

```
Knap(0(w, v, n, W)

V = \sum_{j=0}^{n} V[j]

K[0, v] = 0, \forall 0 \le v \le V

for j = 1 to n do

for v = 1 to V do

if v[j] > v then K[j, v] = K[j-1, v]

else K[j, v] = min(K[j-1, v], K[j-1, v-v[j], ] + w[j])

return maximum v such that K[n, v] \le W
```

- · Computes minimum weight of knapsack for a given value.
- Iterates over all possible items and all possible values: O(nV)
 we derive a polynomial time approximate algorithm from this

Approximating Euclidean TSP: An Illustration (2)

- · Avoid revisits by short-circuiting to next unvisited vertex
- By triangle inequality, short-circuit distance can only be less than the distance following MST edges.
 - Thus, tour length less than 2xMST, i.e., approximate within a factor 2.

FPTAS for 0-1 Knapsack

$Knap01FPTAS(w, v, n, W, \epsilon)$

$$v_i' = \left\lfloor \frac{v_i}{\max_{1 \le j \le n} v_j} \cdot \frac{n}{\epsilon} \right\rfloor, \text{ for } 1 \le i \le n$$
 $Knap01(w, \checkmark, n, W)$

- · Rescaling consists of two steps:
 - Express value of each item relative to the most valuable item
 - If we worked with real values, this step won't change the optimal solution
 - Multiply relative values by a factor n/ϵ to get an integer
- Floor operation introduces an error ≤ 1 in v'_i (e.g., |3.99| = 3)
- Error in Knap01 output = error in $\sum v_i'$, which is at most $n \cdot 1$
- We scale each v_i' by n/ϵ , so relative error is $n/(n/\epsilon) = \epsilon$ • Thus we have achieved the desired approximation.

FPTAS for 0-1 Knapsack: Runtime

$Knap01FPTAS(w, v, n, W, \epsilon)$

$$v_i' = \left\lfloor \frac{v_i}{\max_{1 \le j \le n} v_j} \cdot \frac{n}{\epsilon} \right\rfloor, \text{ for } 1 \le i \le n$$
 $Knap01(w, v', n, W)$

- Note that we are using Knap01 with rescaled values, so the complexity is O(nV').
- Note: $V' = \sum_{i=1}^{n} v'_{i} \le n \cdot \max_{1 \le j \le n} v'_{i}$
- It is easy to see from definition of v_i' that $\max_{i \le j \le n} v_j' = n/\epsilon$. Substituting this into the above equation yields a complexity of: $O(nV') \le O(n(n \cdot \max_{i \le j \le n} v_i')) = O(n(n \cdot (n/\epsilon))) = O(n^2/\epsilon)$
- \bullet By varying $\epsilon,$ we can trade off accuracy against runtime.