DISCRETE AND CONDITIONAL PROBABILITY

COMPUTER SCIENCE MENTORS 70

October 15 - 19, 2018

Discrete Probability

1.1 Introduction

Figure 1: From Pitman

Event language	Set language	Set notation	Venn diagram
outcome space	universal set	Ω	
event	subset of Ω	A, B, C, etc.	
impossible event	empty set	Ø	
not A , opposite of A	complement of A	A^c	A
either A or B or both	union of A and B	$A \cup B$	$A \longrightarrow B$
both A and B	intersection of A and B	$AB, A \cap B$	$A \longrightarrow B$
A and B are mutually exclusive	A and B are disjoint	$AB=\emptyset$	A B
if A then B	A is a subset of B	$A\subseteq B$	\bigcirc A $^{\mathrm{B}}$

1.2 Questions

1.	Pro	bab]	$ \mathbf{v} $	Pok	er
т.	110	Dub	L y J	OK	L

	(a)	What is the probability of drawing a hand with exactly one pair (two cards of matching rank)?
	(b)	What is the probability of drawing a hand with four of a kind (four cards of the same rank)?
	(c)	What is the probability of drawing a straight (five cards in numerical order)?
	(d)	What is the probability of drawing a hand of all of the same suit?
	(e)	What is the probability of drawing a straight flush (five cards in numerical order, all of the same suit)?
2.	Sup	opose you arrange 12 different cars in a parking lot, uniformly at random. Three of

the cars are Priuses, four of the cars are Teslas, and the other five are Nissan Leaves.

What is the probability that the three Priuses are all together?

2 Conditional Probability

2.1 Introduction

Bayes' Rule

$$P[A|B] = \frac{P[A \cap B]}{P[B]} = \frac{P[B|A]P[A]}{P[B]}$$

Total Probability Rule

$$P[B] = P[A \cap B] + P[\bar{A} \cap B] = P[B|A] * P[A] + P[B|\bar{A}] * (1 - P[A])$$

2.2 Questions

- 1. Say that we have a bag with 2 coins. One of the coins is fake: it has heads on both faces. The other is a normal coin. You pull a coin out of the bag, and flip it. It comes up heads. What is the probability that this coin is the fake one?
- 2. A lie detector is known to be 80% reliable when the person is guilty and 95% reliable when the person is innocent. If a suspect is chosen from a group of suspects where only 1% have ever committed a crime, and the test indicates that the person is guilty, what is the probability they are innocent?

3.1 Introduction

Often we are interested in the probabilities of combinations of events, whether it be their union or intersection.

Independence

Two events A, B in the same probability space are independent if

$$P[A \cap B] = P[A] * P[B]$$

Note that things get more complicated when we have more than two events. The independence of a pair of events (pairwise independence) doesn't necessarily imply the events are all mutually independent.

Intersections

When events are independent, we compute the probability of their intersection by simply multiplying the probabilities of each event. When events aren't necessarily independent, we must use the product rule.

$$P[A \cap B] = P[A] * P[B|A]$$

This rule can be extended to more than two events.

$$\mathbf{P}[\cap_{i=1}^n A_i] = \mathbf{P}[A_1] * \mathbf{P}[A_2|A_1] * \dots * \mathbf{P}[A_{n-1}|\cap_{i=1}^{n-2} A_i] * \mathbf{P}[A_n|\cap_{i=1}^{n-1} A_i]$$

Unions

If events are disjoint, computing the probability of their union is simple; just add up the probabilities of each. Unfortunately, many events are not disjoint (independent events in particular cannot be: why?). So, we must use the Principle of Inclusion/Exclusion.

$$P[\bigcup_{i=1}^{n}] = \sum_{n=1}^{n} P[A_i] - \sum_{\{i,j\}} P[A_i \cap A_j] + \sum_{\{i,j,k\}} P[A_i \cap A_j \cap A_k] - \pm P[\bigcap_{i=1}^{n}]$$

This sum is always less than adding up the individual probabilities of the events; this concept is known as the union bound.

$$P[\cup_{i=1}^n] \le \sum_{i=1}^n P[A_i]$$

3.2 Questions

- 1. Find an example of 3 events A, B, and C such that each pair of them are independent, but they are not mutually independent.
- 2. You have a deck of 52 cards. What is the probability of:
 - (a) Drawing 2 Kings with replacement?
 - (b) Drawing 2 Kings without replacement?
 - (c) The second card is a King without replacement?
 - (d) The nth card is a King without replacement (n < 52)?
- 3. You own a pizzeria. You observe that one of your customers, Andy, buys a cheese pizza on Saturday with probability 0.3 and on Sunday with probability 0.6.
 - (a) If Andy's pizza purchasing on Sunday is independent from his pizza purchasing on Saturday, what is the probability that he buys pizza on a given weekend?
 - (b) If Andy buying a pizza on Saturday means that he will not buy pizza on Sunday, what is the probability that he buys pizza on a given weekend (i.e if he buys pizza on one day, he is guaranteed to not buy a pizza the next day)?
 - (c) Given that Andy buys pizza on a given weekend with probability 0.65, what is the probability that he buys pizza both days?
- 4. Say that we pick a number at random from 1 to 90, inclusive. What is the probability that is divisible by 2, 3, or 5?
- 5. Given n bins and m balls find the largest value of m such that the probability that there is no collision is above $\frac{1}{2}$? Hint: Use the union bound to approximate. Recall, the union bound states that $P(A_1 \cup A_2 \cup ... \cup A_n) \leq P(A_1) + P(A_2) + ... + P(A_n)$.