

# 15-826: Multimedia Databases and Data Mining

Lecture #24: DSP tools – Fourier and Wavelets *C. Faloutsos* 























CMU SCS

















C. Faloutsos



details

### How does it work?

- Basis functions are actually n-dim vectors, **orthogonal** to each other
- 'similarity' of x with each of them: inner product
- DFT: ~ all the similarities of x with the basis functions

15-826

Copyright: C. Faloutsos (2017)

21

23



#### **DFT:** definition

• Good news: Available in all symbolic math packages, eg., in 'mathematica'

```
x = [1,2,1,2];
```

X = Fourier[x];

Plot[ Abs[X] ];

15-826

Copyright: C. Faloutsos (2017)

22



#### **DFT:** definition

#### (variations:

- 1/n instead of 1/sqrt(n)
- exp(-...) instead of exp(+...)

15-826

Copyright: C. Faloutsos (2017)



## **DFT:** definition

#### Observations:

- X<sub>f</sub>: are complex numbers except
   X<sub>0</sub>, who is real
- Im (X<sub>f</sub>): ~ amplitude of sine wave of frequency f
- Re (X<sub>f</sub>): ~ amplitude of cosine wave of frequency f
- x: is the sum of the above sine/cosine waves

15-826

Copyright: C. Faloutsos (2017)

24



details

## **DFT:** definition

Observation - SYMMETRY property:

$$X_{f} = (X_{n-f})^*$$

("\*": complex conjugate:  $(a + b j)^* = a - b j$ 

15-826

Copyright: C. Faloutsos (2017)

25

27



## **DFT:** definition

#### **Definitions**

- $A_f = |X_f|$ : amplitude of frequency f
- $|X_f|^2 = \text{Re}(X_f)^2 + \text{Im}(X_f)^2 = \text{energy of}$ frequency f
- phase  $\phi_f$  at frequency f



15-826 Copyright: C. Faloutsos (2017)



28



Amplitude spectrum:  $|X_f| \text{ vs } f(f=0, 1, ... n-1)$ 

**SYMMETRIC** (Thus, we plot the first half only)



15-826 Copyright: C. Faloutsos (2017)



## **DFT:** definition

Phase spectrum  $|\phi_f|$  vs f(f=0, 1, ... n-1):

Anti-symmetric

(Rarely used)

15-826

CMU SCS

Copyright: C. Faloutsos (2017)



















































CMU SCS

## **Properties**

- Time shift sounds the same
  - Changes only phase, not amplitudes
- Sawtooth has almost all frequencies
  - With decreasing amplitude
- Spike has all frequencies

15-826

Copyright: C. Faloutsos (2017)

53

55



 $\mathbf{x}$ 1

•  $\mathbf{x} = \{\mathbf{x}0, \mathbf{x}1\}$   $\mathbf{x}$ 0

Copyright: C. Faloutsos (2017)

54



## DFT: Parseval's theorem

$$sum(|x_t|^2) = sum(|X_f|^2)$$

Ie., DFT preserves the 'energy' or, alternatively: it does an axis rotation:

$$\mathbf{x} = \{\mathbf{x}0, \mathbf{x}1\}$$

$$\mathbf{x} = \{\mathbf{x}0, \mathbf{x}1\}$$
Copyright: C. Faloutsos (2017)







Arithmetic examples

• Impulse function:  $\mathbf{x} = \{0, 1, 0, 0\} \ (n = 4)$ •  $X_0 = ?$ • A:  $X_0 = 1/\operatorname{sqrt}(4) * 1* \exp(-j 2 \pi 0 / n) = 1/2$ •  $X_1 = -1/2 j$ •  $X_2 = -1/2$ •  $X_3 = +1/2 j$ • Q: does the 'symmetry' property hold?

15-826 Copyright: C. Faloutsos (2017) 59

CMU SCS



X CN

CMU SCS

details

## **Arithmetic examples**

- Impulse function:  $\mathbf{x} = \{0, 1, 0, 0\} (n = 4)$
- $X_0 = ?$
- A:  $X_0 = 1/\text{sqrt}(4) * 1* \exp(-j 2 \pi 0 / n) = 1/2$
- $X_{i} = -1/2 j$
- $X_2 = -1/2$
- $X_3 = + 1/2 j$
- Q: check Parseval's theorem

15-826

Copyright: C. Faloutsos (2017)

61

63



details

## **Arithmetic examples**

- Impulse function:  $\mathbf{x} = \{0, 1, 0, 0\} (n = 4)$
- $X_0 = ?$
- A:  $X_0 = 1/\text{sqrt}(4) * 1* \exp(-j 2 \pi 0 / n) = 1/2$
- $X_I = -1/2 j$
- $X_2 = -1/2$
- $X_3 = + 1/2 j$
- Q: (Amplitude) spectrum?

15-826

Copyright: C. Faloutsos (2017)

62

64



## **Arithmetic examples**

- Impulse function:  $x = \{0, 1, 0, 0\}$  (n = 4)
- $X_0=?$
- A:  $X_0 = 1/\operatorname{sqrt}(4) * 1* \exp(-j 2 \pi 0 / n) = 1/2$
- $X_1 = -1/2 j$
- $X_2 = -1/2$
- $X_3 = + 1/2 j$
- Q: (Amplitude) spectrum?
- A: FLAT!

15-826

Copyright: C. Faloutsos (2017)

CMU SCS

## **Arithmetic examples**

• Q: What does this mean?

15-826

Copyright: C. Faloutsos (2017)



































CMU SCS

## **Observations**

• Q: DFT of a sinusoid, eg.

$$x_t = 3 \sin(2 \pi / 4 t)$$

$$(t = 0, ..., 3)$$

- Q:  $X_0 = 0$
- •Does this make sense?
- Q:  $X_1 = -3 j$
- Q:  $X_2 = 0$
- Q:  $X_3 = 3j$

0.12

15-826

Copyright: C. Faloutsos (2017)



## **Property**

- Shifting **x** in time does NOT change the amplitude spectrum
- eg.,  $\mathbf{x} = \{ 0 \ 0 \ 0 \ 1 \}$  and  $\mathbf{x'} = \{ 0 \ 1 \ 0 \ 0 \}$ : same (flat) amplitude spectrum
- (only the phase spectrum changes)
- Useful property when we search for patterns that may 'slide'

15-826

Copyright: C. Faloutsos (2017)

82

84



CMU SCS

## **Summary of properties**

- Spike in time: -> all frequencies
- Step/Trend: -> ringing (~ all frequencies)
- Single/dominant sinusoid: -> spike in spectrum
- Time shift -> same amplitude spectrum

15-826

Copyright: C. Faloutsos (2017)

83

DSP - Detailed outline

• DFT

- what

- why

- how

- Arithmetic examples

properties / observations

- DCT

- 2-d DFT

Fast Fourier Transform (FFT)

15-826

Copyright: C. Faloutsos (2017)



















#### 2-d DFT

- Quiz: how do the basis functions look like?
- for f1 = f2 = 0

flat

• for f1=1, f2=0

wave on x; flat on y

• for f1=1, f2=1

~ egg-carton

15-826

Copyright: C. Faloutsos (2017)

93









details

#### FFT

• What is the complexity of DFT?

$$X_f = 1/\sqrt{n} \sum_{t=0}^{n-1} x_t * \exp(-j2\pi tf/n)$$

• A: Naively,  $O(n^2)$ 

15-826

Copyright: C. Faloutsos (2017)

97

99



#### FFT

• However, if *n* is a power of 2 (or a number with many divisors), we can make it  $O(n \log n)$ 

Main idea: if we know the DFT of the odd time-ticks, and of the even time-ticks, we can quickly compute the whole **DFT** 

Details: in Num. Recipes

15-826

Copyright: C. Faloutsos (2017)

CMU SCS

#### **DFT - Conclusions**

- It spots periodicities (with the 'amplitude spectrum')
- can be quickly computed (O( $n \log n$ )), thanks to the FFT algorithm.
- standard tool in signal processing (speech, image etc signals)





15-826

Copyright: C. Faloutsos (2017)



## **Detailed outline**

- primary key indexing
- multimedia
  - Digital Signal Processing (DSP) tools
    - Discrete Fourier Transform (DFT)
    - Discrete Wavelet Transform (DWT)

15-826

Copyright: C. Faloutsos (2017)

100











































































































#### Resources

- Numerical Recipes in C: great description, intuition and code for all three tools
- *xwpl*: open source wavelet package from Yale, with excellent GUI.

15-826

Copyright: C. Faloutsos (2017)

153



# Resources (cont' d)

- (defunct?)
   <u>http://www.dsptutor.freeuk.com/jsanalyser/</u>

   <u>FFTSpectrumAnalyser.html</u>: Nice java applets
- <a href="http://www.relisoft.com/freeware/">http://www.relisoft.com/freeware/</a> freq.html : voice frequency analyzer (needs microphone – MSwindows only)

15-826

Copyright: C. Faloutsos (2017)

154

X

CMU SCS

# Resources (cont' d)

- www-dsp.rice.edu/software/EDU/mra.shtml (wavelets and other demos)
- R ('install.packages("wavelets"))

15-826

Copyright: C. Faloutsos (2017)

155