# Capstone Project

Stock Price Prediction with ARIMAX, SARIMAX, GRU, LSTM

## The problem

The objective is to create a predictive model to forecast future stock closing prices.

For the purpose of this presentation I will be showcasing the AMD stock ticker.

## Overview



## Pandas Datareader

- Tiingo
- IEX
- Alpha Vantage
- Econdb
- Enigma
- Quandl
- St.Louis FED (FRED)
- Kenneth French's data library
- World Bank

- OECD
- Eurostat
- Thrift Savings Plan
- Nasdaq Trader symbol definitions
- Stooq
- MOEX
- Naver Finance
- Yahoo Finance











EDA

Pre-Processing

Modeling & Evaluation

**Future Works** 

## Adfuller Test #1

**ADF Test Statistic**: -0.1856205771364

**p-value**: 0.9402140424261141

Number of Observations Used: 1237

**Comment**: Time series is non-stationary

## Apply Lag (24)

#### Procedure

Day #1 to Day #24 = N/A

Day #25 = Day #25 - Day #1

Day #26 = Day #26 - Day #2

Day #27 = Day #27 - Day #3

## Adfuller Test #2

**ADF Test Statistic**: -5.439757731032

**p-value**: 2.793269722804705e-06

Number of Observations Used: 1209

**Comment**: Time series is stationary









## **Obtain Data**

## EDA

## **Pre-Processing**

# Modeling & Evaluation

## **Future Works**

## **ARIMAX Architecture**

80 - 20 Train Test Split

Order = (1, 1, 1), # (p, d, q)

Exog = Lag(24)

## **SARIMAX Architecture**

80 - 20 Train Test Split

Order = (1, 1, 1), # (p, d, q)

Seasonal Order = (1, 1, 1, 24), # (p, d, q, m)

Exog = Lag(24)

#### **GRU Architecture**

80 - 20 Train Test Split

#### Layer #1 - GRU

Units : 128 Activation : Tanh

Recurrent Activation: Sigmoid

#### Layer #2 - GRU

Units: 64 Activation: Tanh

Recurrent Activation: Sigmoid

#### Layer #3 - Dropout

Rate: 0.2

#### Layer #4 - Dense

Units: 1

#### **Evaluator**

Loss : Mean Squared Error Optimizer : Adam

### **LSTM Architecture**

80 - 20 Train Test Split

#### Layer #1 - LSTM

Units: 128 Activation: Tanh

Recurrent Activation: Sigmoid

#### Layer #2 - LSTM

Units: 64

Activation: Tanh

Recurrent Activation : Sigmoid

#### Layer #3 - Dropout

Rate: 0.2

#### Layer #4 - Dense

Units: 1

#### **Evaluator**

Loss : Mean Squared Error Optimizer : Adam

p: Trend Autoregression Orderd: Trend difference orderq: Trend moving average orderm: The number of time steps for a

single seasonal period Exog: OLS Regressor

### **ARIMAX Model**

80 - 20 Train Test Split



## **SARIMAX Model**

80 - 20 Train Test Split



### **Loss Interaction**

Epochs = 100 Batch Size = 32 Validation Split = 0.2 Verbose = 1



## **GRU and LSTM Model**

80 - 20 Train Test Split







## More Data

- Include News Sentiment data from
  - News Articles
  - Reddit posts
  - Tweets
  - Discord channels
- Add statistical weights on certain price movements based on specific chart indicators

## Create a WebApp

- Provide data on any stock ticker that is search
  - Bullish/Bearish
  - Increase/Decrease (with %)
- Personal Screener
- Recommended stocks
  - Industry
  - High Volume
  - Momentum

## **AI Trading Bot**

 Only when I can obtain a MAPE of less than 1% and at least a 70% win-rate can I then consider the bot to be viable.

# Thank You

