MATH-300 Andrew Jones

Worksheet 3

Let A, B, and C be sets. Prove or disprove the following statements.

Proof. Assume that $A = \{a\}$ and $C = \{a\}$ and $B = \{b\}$ It follows that: $A \cap B = \emptyset$ and $B \cap C = \emptyset$ however $A \cap C = \{a\}$ There for: $\exists A : \exists C : A \cap C \neq \emptyset$ and $A \cap B = \emptyset$ and $B \cap C = \emptyset$

2. If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$

1. If $A \cap B = \emptyset$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$

Proof. Assume that $A = \{a\}$ and $C = \{a, c\}$ and $B = \{b\}$ It follows that: $A \nsubseteq B$ and $B \nsubseteq C$ however $A \subset C$ There for: $\exists A : \exists C : A \subset C$ and $A \nsubseteq B$ and $B \nsubseteq C$

3. If $A \subseteq \emptyset$, then $a = \emptyset$

Proof. Assume the negation $A \subseteq \emptyset$ and $A \neq \emptyset$ If $A \neq \emptyset$ then $A \not\subseteq \emptyset$ by definition of \emptyset

- 4. If $A \subseteq C$ and $B \subseteq C$, then $A \cap B \subseteq C$
- 5. If $f:A\to B$ is injective and $g:B\to C$ is injective, then $g\circ f:A\to C$ is injective.
- 6. If $f:A\to B$ is surjective and $g:B\to C$ is surjective, then $g\circ f:A\to C$ is surjective
- 7. Give an example of a function $f:A\to A$ that is injective but not surjective.
- 8. Give an example of a function $g:A\to A$ that is surjective but not injective.
- 9. Let $f:A\to B$ and $g:B\to A$. If $g\circ f=id_a$, then both f and g are bijections.
- 10. If $f: A \to A$ is surjective, and if A is a finite set, then f is injective.
- 11. If $f: A \to A$ satisfies the property that $f \circ f = id_a$ then f is a bijection.