Výsledky algoritmov

Algoritmus 1.1: Pre $u_1, v_1, u_2, v_2 < 1000$ nedokážu parametrické vzorce vygenerovať magický štvorec veľkosti 3×3 , ktorého aspoň 7 prvkov sú druhé mocniny prirodzených čísel.

Algoritmus 1.2: Pre $x < 10^8$ nedokážu parametrické vzorce vygenerovať magický štvorec veľkosti 3×3 , ktorého aspoň 7 prvkov sú druhé mocniny prirodzených čísel.

Algoritmy pre bimagické štvorce

Algoritmus 2.1: Na vstupe dostaneme kladné celé číslo $h \in \mathbb{N}$. Výstupom je bimagický štvorec veľkosti 5×5 .

Pseudokód:

```
def ohodnot(h): pre a od 1 po h vrátane pre b od a+1 po h vrátane pre c od b+1 po h vrátane pridám do asociatívneho poľa D trojicu (a,b,c) pre kľúč a^2+b^2+c^2 po skončení pre každý kľúč k v D pre každé dve trojice (a,b,c),(d,e,f) v D[k] zostroj štvorice (a+b-c,a-b+c,-a+b+c,-a-b-c),(d+e-f,d-e+f,-d+e+f,-d-e-f) ak sú všetky vybraté čísla navzájom rôzne
```

Výsledky:

Algoritmy pre multiplikatívne magické štvorce

Algoritmus 3.1:

Výsledky:

Algoritmy pre vrcholovo bimagické grafy

Algoritmus 4.1: jediné súvislé grafy s menej ako 10 vrcholmi, ktoré spĺňajú všetky podmienky (a teda môžu byť vrcholovo bimagickými), sú:

 $K_{2,3}$ $K_{2,4}, K_{3,3}$ $K_{2,5}, K_{3,4}$ $K_{2,6}, K_{3,5}, K_{4,4}, K_{2,3,3}$ $K_{2,7}, K_{3,6}, K_{4,5}, K_{2,3,4}, K_{3,3,3}$

Vieme, že $K_{i,j}$ je vrcholovo bimagický pre $i, j \geq 2, (i, j) \neq (2, 2)$. Môžeme sa ľahko presvedčiť, že aj zvyšné grafy majú vrcholové bimagické ohodnotenie:

 $K_{2,3,3} \rightarrow 11, 13 \mid 1, 8, 15 \mid 3, 5, 16$ $K_{2,3,4} \rightarrow 11, 19 \mid 1, 9, 20 \mid 1, 2, 6, 21$ $K_{3,3,3} \rightarrow 1, 12, 14 \mid 2, 9, 16 \mid 4, 6, 17$

Algoritmy pre vrcholovo multiplikatívne magické grafy

Algoritmy pre bimagické obdĺžniky

Algoritmus 6.1: Neexistuje bimagický obdĺžnik veľkosti $3 \times n$, ktorého všetky prvky neprevyšujú 400.

Algoritmus 6.2: Neexistuje bimagický obdĺžnik veľkosti $3 \times n$, ktorého súčet prvkov v riadku je menší ako 384. Podarilo sa nájsť niekoľko magických obdĺžnikov veľkosti 3×6 , 3×8 a 3×10 s bimagickými stĺpcami a jediným nebimagickým riadkom. Najmenší z nich má súčet v stĺpci rovný 144:

1, 3, 88, 8, 93, 95 63, 56, 51, 91, 11, 16 80, 85, 5, 45, 40, 33

Algoritmus 6.3: Na vstupe dostaneme číslo $n \in \mathbb{N}$. Výstupom má byť bimagický obdĺžnik veľkosti $3 \times n$, ktorého prvky sú celé (potenciálne záporné)

čísla v absolútnej hodnote neprevyšujúce h. Náš algoritmus predpokladá, že bimagický obdĺžnik má v každom riadku aj stĺpci nulový súčet. Trojica prvkov v každom stĺpci je preto v tvare a, b, -a - b. Pre každú dvojicu celých čísel a, b si algoritmus uloží hodnotu výrazu $a^2 + b^2 + (-a - b)^2$ ako kľúč do asociatívneho poľa. Potom toto pole prejde a v každom kľúči vyberie n rôznych zapamätaných dvojíc.

Pseudokód:

```
def ohodnot(n,h): pre a od 0 po h vrátane pre b od -a+1 po a-1 vrátane t=a^2+b^2+(-a-b)^2 pridám do asociatívneho poľa D dvojicu (a,b) pre kľúč t po skončení pre každý kľúč k v D pre každú n-prvkovú podmnožinu dvojíc v D[k] z každej dvojice (a,b) zrekonštruuj trojicu (a,b,-a-b) ak sú všetky vybraté čísla navzájom rôzne prejdi všetky permutácie každej trojice (zober do úvahy aj opačné znamienka) n trojíc v danom poradí ulož vedľa seba do stĺpcov ak má vzniknutý obdĺžnik bimagické riadky, vypíš ho
```

Algoritmy pre multiplikatívne magické obdĺžniky

Algoritmus 7.1: Na vstupe dostaneme čísla $n, h \in \mathbb{N}, n \geq 4$. Výstupom má byť multiplikatívny magický obdĺžnik veľkosti $3 \times n$, ktorého prvky sú kladné celé čísla neprevyšujúce h. Vieme, že obdĺžnik nemôže obsahovať prvočíslo p, pre ktoré platí pn > h (inak by sme mali nanajvýš n-1 násobkov p, ktoré by sme museli vedieť rozdeliť do n stĺpcov, čo je spor). Náš algoritmus si pre každú trojicu vyhovujúcich rôznych kladných čísel predpočíta ich súčet a súčin a obe hodnoty si uloží ako kľúč do asociatívneho poľa. Potom toto pole prejde a v každom kľúči vyberie n rôznych zapamätaných trojíc.

Pseudokód:

```
def ohodnot(n,h):

vyhovuju = \{x \mid x \in \{1,...,h\}, x \text{ nie je prvočíslo alebo } xn \leq h\}

pre všetky trojice rôznych vyhovujúcich čísel a,b,c

s = a + b + c; p = abc
```

pridám do asociatívneho poľa D trojicu (a,b,c) pre kľúč (s,p) po skončení pre každý kľúč k v D pre každú n-prvkovú podmnožinu trojíc v D[k] ak sú všetky vybraté čísla navzájom rôzne prejdi všetky permutácie pre druhú, tretiu, ..., n-tú trojicu n trojíc v danom poradí ulož vedľa seba do stĺpcov ak má vzniknutý obdĺžnik multiplikatívne magické riadky, vypíš ho

Algoritmus 7.2: Neexistuje multiplikatívny magický obdĺžnik veľkosti $3 \times n$, ktorého súčet prvkov v riadku je menší ako 4000. Podarilo sa nájsť niekoľko multiplikatívnych obdĺžnikov veľkosti 3×6 a 3×9 s magickými stĺpcami. Najmenší z nich má súčet v stĺpci rovný 485:

14, 294, 16, 385, 60, 396 231, 15, 154, 72, 392, 40 240, 176, 315, 28, 33, 49