

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181001504

FCC REPORT

Applicant: GNJ Manufacturing Inc.

Address of Applicant: 5811 West Hallandale Beach Blve. West Park, FL 33023

Equipment Under Test (EUT)

Product Name: Earn

Model No.: Earn

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG51

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 10 Oct., 2018

Date of Test: 10 Oct., to 01 Nov., 2018

Date of report issued: 02 Nov., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	02 Nov., 2018	Original

Test Engineer

Reviewed by: Date: 02 Nov., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	46
7	TES	T SETUP PHOTO	54
Ω	FUT	CONSTRUCTIONAL DETAILS	55

Test Summary

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (c)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Pass: The EUT complies with the essential requirements in the standard.				

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc.
Address:	5811 West Hallandale Beach Blve. West Park, FL 33023
Manufacturer:	Epudo (HongKong) Industrial Limited
Address:	1101, Block B, Guanghao International Building, Meilong Road, Minzhi, Longhua, Shenzhen, China
Factory:	Dongguan Yipuda Digital Technology Co., Ltd.
Address:	No.5 Park, Keyuan 5th Road, Tianxin Village, Tangxia Town, Dongguan, China

5.2 General Description of E.U.T.

Product Name:	Earn
Model No.:	Earn
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2500mAh
AC adapter:	Model: EE5010-P17 Input: AC100-240V, 50/60Hz, 0.5A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181001504

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		

Transmitting mode Keep the EUT	in continuous transmit	ing with modulation
--------------------------------	------------------------	---------------------

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40) 13.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)		
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)		

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181001504

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	·	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	

Report No: CCISE181001504

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. E.U.T Antenna: The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.2dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kl				
Limit:	Frequency range	Limit (dRu\/\		
Limit.	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the loga				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	AUX Equipment Test table/Insula Remark E.U.T. Equipment Under LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power		
Test Instruments:	Refer to section 5.8 for d	etails			
Test mode:	Refer to section 5.3 for d	etails			
Test results:	Passed				

Measurement Data:

roduct name:	Earn		P	roduct mod	del: Ea	arn	
est by:	Caffrey Test mode: BLE Tx mode			Test mode:		BLE Tx mode Line	
est frequency:	150 kHz ~ 30	50 kHz ~ 30 MHz Phase: Line					
est voltage:	AC 120 V/60 H	Hz	E	nvironmen	t: Te	emp: 22.5°℃	Huni: 55%
80 Level (dBuV) 70 60 50 40 30 20		10 12	Malphyrania.	ng the same to be a second	hive a complete		ART 15.247 QP ART 15.247 AV
0.15 .2	.5	1	2 Frequenc	y (MHz)	5	10	20 3
0.15 .2	Read	LISN	Frequenc Cable Loss		5 Limit Line	Over	20 3 Remark
0.15 .2 Trace: 19	Read q Level H	LISN	Frequenc Cable		Limit	Over Limit	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Earn	Product m	Product model: Ea		Earn		
Test by:	Caffrey	Test mode	Test mode: Wi-Fi Tx mode				
Test frequency:	150 kHz ~ 30 MHz	Phase:	ı	Neutral			
Test voltage:	AC 120 V/60 Hz	Environme			Huni: 55%		
80 Level (dBuV) 70 60 40 20		11 12	Marke her see springer		PART 15.247 QP		
10 0.15 .2 Trace: 17		Frequency (MHz) Cable Loss Level		e Limit	20 30 Remark		
MH	z dBuV dB	dB dBuV	dBu	V dB			
1 0.17 2 0.17 3 0.28 4 0.40 5 0.48 6 0.48 7 0.53 8 0.77 9 0.95 10 0.96 11 1.39 12 2.24	4 26.45 0.95 6 29.25 0.97 2 37.95 0.97 9 42.40 0.97 9 32.73 0.97 8 30.99 0.97 9 37.04 0.97 3 39.95 0.97 3 25.57 0.97 6 36.32 0.97	10.77 52.75 10.77 38.17 10.74 40.96 10.72 49.64 10.76 54.13 10.76 42.72 10.80 48.81 10.86 51.78 10.86 37.40 10.91 48.20 10.95 32.77	54.7 50.6 57.8 56.1 46.0 56.0 56.0 56.0	3 -9.67 1 -8.17 9 -2.06 9 -1.73 0 -3.28 0 -7.19 0 -4.22 0 -8.60 0 -7.80	Average Average QP QP Average Average QP QP Average		

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Toot CU	Max	Limit(dDm)	Dooult			
Test CH	802.11b	Limit(dBm)	Result			
Lowest	17.14	14.29	14.36	14.27		
Middle	17.03	15.31	15.19	14.36	30.00	Pass
Highest	16.81	15.01	15.56	14.25		

Test plot as follows:

6.4 Occupy Bandwidth

	_			
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH		6dB Emission B	Limit/IrLI¬\	Dogult			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	9.84	15.52	15.36	35.52			
Middle	9.76	15.28	15.28	35.52	>500	Pass	
Highest	9.76	15.44	15.28	35.52			
Test CH		99% Occupy Ba	Limit/I/U=\	Dogult			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	12.56	16.40	17.60	35.84			
Middle	12.56	16.40	17.60	35.84	N/A	N/A	
Highest	12.56	16.48	17.60	36.00			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	8dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH		Limit(dDm)	Dooult			
	802.11b	Limit(dBm)	Result			
Lowest	7.38	2.30	2.30	-0.85		
Middle	7.19	3.41	3.42	-1.09	8.00	Pass
Highest	7.21	2.47	2.97	-0.99		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Conducted Linission	Netriod				
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	.2 Radiated Emission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2013 and KDB 558074							
	Test Frequency Range:	2.3GHz to 2.5G	2.3GHz to 2.5GHz						
	Test Distance:	3m							
	Receiver setup:	Frequency	Detect		RBW		'BW	Remark	
		Above 1GHz	Peak RMS		1MHz 1MHz		MHz MHz	Peak Value Average Value	
	Limit:	Frequenc	1		nit (dBuV/m @		VII 12	Remark	
		Above 1GI			54.00	•		verage Value	
				d 00	74.00	tating		Peak Value .5 meters above	
	Test Procedure:	the ground to determing to determing the EUT wantenna, watower. 3. The antennative ground Both horizon make the make the make the make the make the make to find the make to find the make to find the make to find the make the limit spoof the EUT have 10dB	at a 3 menter the post- vas set 3 which was the height to deterrontal and measuren uspected men the a difference the maximum receiver system of the height to determ the and the rotal maximum receiver system of the height the would be margin which the sign of the height the h	eter of sition meter of sition meter of sition meter of site of site of the site of the error of	camber. The to of the highest ers away from to unted on the to aried from one the maximum cal polarization ession, the EUT na was turned from the was turned from the example of the EUT in peak esting could be orted. Otherwise	able value interpretation and the interpretat	vas rota tion. erferen variable to four of the f he ante arrange ghts fror degrees etect Fu de. e was 1 ped and e emissi one us	ce-receiving e-height antenna meters above ield strength. nna are set to ed to its worst m 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-	
	Test setup:	150cm	AE E	, /	Hor 3m Ground Reference Plane	n Antenna	Antenna To	wer	
	Test Instruments:	Refer to section	5.8 for d	etail	S				
	Test mode:	Refer to section	5.3 for d	etail	S				
	Test results:	Passed	-				-		
		<u>-</u>							

802.11b mode:

Product	Name:	Earn			Pro	duct Mod	el: E	Earn				
Test By	:	Caffrey			Tes	Test mode: Polarization:		802.11b Tx mode		802.11b Tx mode		
Test Ch	annel:	Lowest ch	annel		Pol			ertical				
Test Vo	Itage:	AC 120/60	OHz		Env	/ironment	: Т	Temp: 24℃ Huni: 57%				
Leve	el (dBuV/m)				·							
100												
									~~~			
80								FCC	PART 15 (PK)			
60			_				1	FCCI	PART 15 (AV)			
m	mmm		many		mm	mar	more					
40												
20												
0 231	0 2320		2350		iency (MHz	2)			2422			
		ReadA	ntenna				Limit	Over				
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark			
,	MHz	dBu∀	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	. ——— <u>d</u> B				
1 2	2390.000 2390.000	20.04 8.05	27.37 27.37	4.69				-21.90 -13.89				

#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





Product Name:		Earn			Pro	duct Mod	el: E	Earn		
Test By:		Caffrey				st mode:	8	802.11b Tx mode		
Test Ch	hannel:	Lowest ch	nannel		Pol	Polarization:		lorizontal		
Test Vo	oltage:	AC 120/6	0Hz		Env	vironment	: Т	emp: 24℃	Huni: 57%	
Low	vel (dBuV/m)									
110	ver (dbdv/iii)									
100									~~	
80								FOC	PART 15 (PK)	
								1	111111111111	
60								Jun Seco	PART 15 (AV)	
~	more	mur	-	V	mon		man of the same	) FLL	PART TO (AV)	
100							2			
40		-								
40										
20										
20										
	10 2320		235						2422	
20	10 2320	DJ0		Frequ	iency (MH		74-44	0.000	2422	
20		ReadA Level	intenna	Frequ Cable	Preamp		Limit Line	Over : Limit		
20			intenna	Frequ Cable	Preamp Factor		Line	Limit		
20	Freq	Level	ntenna Factor ——dB/m	Frequ Cable Loss	Preamp Factor dB	Level	Line	Limit	Remark	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



				rieq	uency (win	L)			
	Freq		Antenna Factor				Limit Line		Remark
1	MHz	dBu∜	— <u>dB</u> /m	<u>dB</u>		$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57			54.99 42.37			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode: 802.11b Tx m	
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



				Frequ	uency (MHz	<u>()</u>			
	Freq		Antenna Factor				Limit Line		Remark
	MHz	—dBu∇	dB/m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1 2	2483.500 2483.500					51.36 41.76			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### 802.11g mode:

Produc	Product Name:		Earn			duct Mod	el: E	Earn		
Test By	Test By:				Tes	st mode:	8	802.11g Tx mode		
Test Ch	nannel:	Lowest channel				arization:	V	Vertical		
Test Vo	oltage:	AC 120/6	0Hz		Env	vironment:	: Т	emp: <b>24</b> ℃	Huni: 57%	
Lev	/el (dBuV/m)									
100										
80								CC	PART 15 (PK)	
60	~~~~	-	~~~~	haman		~~~~~~	A TON	FCC	PART 15 (AV)	
40					W		2			
20										
0231	10 2320		235		uency (MHz	<u>z)</u>			2422	
	Freq	Read! Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m			
1 2	2390.000 2390.000	19.21 8.39	27.37 27.37	4.69 4.69	0.00 0.00	51.27 40.45	74.00 54.00	-22.73 -13.55	Peak Average	

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Produ	uct Name:	Earn			Pro	duct Mode	el: Ea	arn	
Test I	Ву:	Caffrey				t mode:	80	)2.11g Tx ı	mode
Test (	Channel:	Lowest ch	nannel		Pol	arization:	He	orizontal	
Test \	Voltage:	AC 120/6	0Hz		Env	rironment:	Te	emp: <b>24</b> ℃	Huni: 57%
110 ^L	.evel (dBuV/m)				·		·		
3-10									
100								~	mm
								1	1
80								FCC	PART 15 (PK)
								1	
60							- 1	VA FCC	PART 15 (AV)
V	mmy	m	~~~~	v	mmm	mm	month	,,,,,	TANT TO (AT)
40							- 2		
20									
20									
2	2310 2320		235		- 2	4.	, i		2422
		D - 14	50.40.00.00.00.00	701-04-0400	ency (MHz		T : :-	^	
	Freq	Level	ntenna Factor				Limit Line		Remark
	MHz	dBu⊽		₫B		$\overline{dBuV/m}$	dBuV/m	āB	
1	2390.000	19.96	27.37	4.69	0.00	52.02	74.00	-21.98	Peak
2	2390,000	9.63		4.69	0.00	41 60	E4 00	-10 31	Average

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





Product	Name:	Earn			Pro	duct Mode	el: E	arn			
Test By:		Caffrey			Tes	t mode:	8	802.11g Tx mode			
Test Ch	annel:	Highest channel		Pol	arization:	V	Vertical				
Test Vol	ltage:	AC 120/60	OHz		Env	rironment:	: Т	emp: 24℃	Huni: 57%		
Leve	el (dBuV/m)						·				
110	, (abaviiii)										
100		~~									
		• • • • • • • • • • • • • • • • • • • •		\							
80				1				FCC	PART 15 (PK)		
60					my	1					
00						7	www	FCC	PART 15 (AV)		
40						2					
40											
20											
0245	2								2500		
243				Frequ	uency (MHz	2)			2500		
	Freq		ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		Remark		
2	MHz	—dBu∀	dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	₫B			
1 2	2483.500 2483.500	24.64 11.80	27.57 27.57	4.81 4.81	0.00 0.00	57.02 44.18	74.00 54.00	-16.98 -9.82	Peak Average		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.



dB



Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



#### dB dBuV/m dBuV/m dB/m 2483,500 24.64 27.57 4.81 57.02 74.00 -16.98 Peak 1 0.00 2 2483.500 11.28 27.57 4.81 0.00 43.66 54.00 -10.34 Average

dB

#### Remark:

MHz

dBuV

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### 802.11n(HT20):

Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m)			



				rreq	uency (IVIHZ	-)			
	Freq		Antenna Factor				Limit Line		
	MHz	—dBu∇	— <u>d</u> B/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000						74.00 54.00		

#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11n(HT20) Tx mode			
-				` '			
	•				Huni: 57%		
			7	Tomp. 24 C Tium. 07 70			
				,	>0.0a a		
				1	1 - may		
				FCC PA	ART 15 (PK)		
			~~	1			
				FCC PA	ART 15 (AV)		
	mound	man	2				
	1 1						
	2350				242		
				Over			
	Caffrey Lowest channe AC 120/60Hz	Caffrey Lowest channel AC 120/60Hz	Caffrey Lowest channel AC 120/60Hz  Environment:  2350 Frequency (MHz)	Caffrey Lowest channel AC 120/60Hz  Environment:  Temp	Lowest channel Polarization: Horizontal AC 120/60Hz Environment: Temp: 24°C  FCC PA  FCC PA  2350  Frequency (MHz)		

dB dBuV/m dBuV/m

74.00 -18.82 Peak

0.00 42.61 54.00 -11.39 Average

55.18

#### Remark:

1

2

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

dB/m

27.37

27.37

dBuV

23.12

10.55

MHz

2390.000

2390.000

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

dB

0.00

4.69

4.69





Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						
-	MHz	dBu∇	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq Level Factor Loss Factor Level Line Limit Remark dB dBuV/m dBuV/m MHz dBuV dB/m ďΒ dB 0.00 57.77 74.00 -16.23 Peak 0.00 45.33 54.00 -8.67 Average 4.81 2483.500 25.39 27.57 2 2483, 500 12.95 27.57 4.81

# Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





# 802.11n(HT40):

Produc	ct Name: Earn Product Model: Earn								
Test B	y:	Caffrey			Tes	st mode:		802.11n(HT	40) Tx mode
Test C	hannel:	Lowest cl	hannel		Pol	arization:	,	Vertical	
Test V	oltage:	AC 120/60Hz Environment:			Temp: 24℃	Huni: 57%			
	and felDed floor								
110 Le	evel (dBuV/m)								
100							-		
								my	money
80								FCC	PART 15 (PK)
							1	100	PART 15 (PR)
60						ma	not	F00	DART 45 (11)
11.50	~~~~	~~~~~~	www	way and b	N N N N N N N N N N N N N N N N N N N	~~~		FCC	PART 15 (AV)
40	**************************************								
40									
20									
023	310 2320		2350						2442
				AND TRANSPORT	uency (MH	1.0			
	Free							: Over	Remark
									Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/ı	n dB	
1	2390.000	26.72	27.37	4.69	0.00	58.78	74.00	-15.22	Peak
2	2390.000	14.24	27.37	4.69	0.00	46.30	54.00	-7.70	Average

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Test By: Caffrey Test mode: 802.11n(HT40) Tx mod	
rest mode. 602.1111(11140) 1X 11100	de
Test Channel: Lowest channel Polarization: Horizontal	
Test Voltage:AC 120/60HzEnvironment:Temp: 24℃Huni: 57	·%



				Fred	luency (MH	Z)			
	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000		27.37 27.37	4.69 4.69		59.53 50.77			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.





Product I	Name:	Earn			Pro	duct Mode	el: E	arn	
Test By:		Caffrey			Tes	t mode:	80	02.11n(HT4	0) Tx mode
Test Cha	nnel:	Highest ch	ghest channel Polarization: Vertical						
Test Volt	age:	AC 120/60	OHz		Env	/ironment:	: Т	emp: <b>24</b> ℃	Huni: 57%
					•		•		
110 Leve	l (dBuV/m)								1
100									
	~ ~	mm	~~~	~~~	~~~~				
80		2.00-0.20	~		1	<b>\</b>		FCC	DADT 45 (DIC)
1						1		FLL	PART 15 (PK)
60						V	m	ma	
								mfae	PART 15 (AV)
40									
40									
100									
20									
02432		245	50	The second second		Series Series			2500
	150	D 11			uency (MH:				
	Freq	KeadA Level	ntenna Factor			Level	Limit Line		Remark
2									
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500	31.16	27.57	4.81	0.00			-10.46	
2	2483.500	16.11	27.57	4.81	0.00	48.49	54.00	-5.51	Average

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





Product Name:	Earn	Product Model:	Earn
Test By:	Caffrey	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

Test Requirement:	500 D 145 0 O 11 45 047 / D					
•	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					





# Test plot as follows:













# 6.7.2 Radiated Emission Method

6.7.2	Radiated Emission Me	diated Emission Method						
	Test Requirement:	FCC Part 15 C S	ection 15.	.209 a	and 15.205			
	Test Method:	ANSI C63.10:201	13					
	Test Frequency Range:	9kHz to 25GHz						
	Test Distance:	3m						
	Receiver setup:	Frequency	Detecto	or	RBW	VI	3W	Remark
	•	30MHz-1GHz	Quasi-pe	eak	120KHz	300KHz		Quasi-peak Value
		Above 1GHz	Peak		1MHz		/IHz	Peak Value
	1 toute.		RMS		1MHz : (dBuV/m @3r		/lHz	Average Value
	Limit:	Frequency 30MHz-88MH	7	LIIIIII	. <u>(аваулп @зг</u> 40.0	11)	Oı	Remark uasi-peak Value
		88MHz-216MH			43.5			uasi-peak Value
		216MHz-960MI			46.0			uasi-peak Value
		960MHz-1GH			54.0			uasi-peak Value
		Above 1GHz			54.0		I	Average Value
	Test Procedure:				74.0 e top of a rota			Peak Value
		<ol> <li>1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data</li> </ol>						
	Test setup:	Below 1GHz  EUT  Turn Table  Ground P	0.8m	4m			_	





	Above 1GHz
	Horn Anienna Tower  AE EUT  Ground Reference Plane  Test Receiver Ampther Controller
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	<ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> <li>9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.</li> </ol>





### Measurement Data (worst case):

#### **Below 1GHz:**



#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





Test By: Caffrey Test mode: Horizontal  Test Voltage: AC 120/60Hz Environment: Temp: 24°C Huni: 57%    Read Antenna   Cable Preamp   Level Cave Factor   Level Cave Fa	Product Name:		Earn			Pro	oduct Mod	el:	Earn		
Test Voltage:   AC 120/60Hz   Environment:   Temp: 24°C   Huni: 57%	Test By	Test By:		Caffrey			st mode:		Wi-Fi Tx mode		
ReadAntenna Cable Preamp Limit Over Line Limit Remark    MHz   dBuV   dB/m   dB   dB   dBuV/m   dBuV/m   dB   dB   dBuV/m   dBuV/m   dB   dB   dB   dB   dB   dB   dB   d	Test Fre	Test Frequency:		30 MHz ~ 1 GHz			larization:		Horizontal		
Freq Level Factor Cable Preamp Limit Over Limit Remark  MHz dBuV dB/m dB dB dBuV/m dBuV/m dB   1 30.211 48.47 10.65 0.72 29.98 29.86 40.00 -10.14 QP  2 202.810 40.21 11.61 2.87 28.81 25.88 43.50 -17.62 QP  3 252.948 35.22 13.32 2.82 28.53 22.83 46.00 -23.17 QP  4 394.855 31.80 15.41 3.08 28.76 21.53 46.00 -23.49 QP  5 463.970 31.57 16.51 3.32 28.89 22.51 46.00 -23.49 QP	Test Vo	Itage:	AC 120/6	0Hz		En	vironment	•	Temp: 24℃ Huni: 57%		
10   200   500   1000   Frequency (MHz)	70 60 50 40	el (dBuV/m)				2	3				6
Freq Level Factor Loss Factor Level Line Limit Remark  MHz dBuV dB/m dB dB dBuV/m dBuV/m dB  1 30.211 48.47 10.65 0.72 29.98 29.86 40.00 -10.14 QP  2 202.810 40.21 11.61 2.87 28.81 25.88 43.50 -17.62 QP  3 252.948 35.22 13.32 2.82 28.53 22.83 46.00 -23.17 QP  4 394.855 31.80 15.41 3.08 28.76 21.53 46.00 -24.47 QP  5 463.970 31.57 16.51 3.32 28.89 22.51 46.00 -23.49 QP	10					200 uency (Mi	) Hz)	paraphyonidae	500		
MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 30.211 48.47 10.65 0.72 29.98 29.86 40.00 -10.14 QP 2 202.810 40.21 11.61 2.87 28.81 25.88 43.50 -17.62 QP 3 252.948 35.22 13.32 2.82 28.53 22.83 46.00 -23.17 QP 4 394.855 31.80 15.41 3.08 28.76 21.53 46.00 -24.47 QP 5 463.970 31.57 16.51 3.32 28.89 22.51 46.00 -23.49 QP		Frea									
2 202.810 40.21 11.61 2.87 28.81 25.88 43.50 -17.62 QP 3 252.948 35.22 13.32 2.82 28.53 22.83 46.00 -23.17 QP 4 394.855 31.80 15.41 3.08 28.76 21.53 46.00 -24.47 QP 5 463.970 31.57 16.51 3.32 28.89 22.51 46.00 -23.49 QP 6 938.833 30.33 22.38 4.10 27.76 29.05 46.00 -16.95 QP	1	MHz 30.211	—dBuV	— <u>dB</u> /π	<u>a</u> B 0.72	dE	dBu√/m 29.86	dBu√/i	mdB 0 -10.14	QP	
5 463.970 31.57 16.51 3.32 28.89 22.51 46.00 -23.49 QP 6 938.833 30.33 22.38 4.10 27.76 29.05 46.00 -16.95 QP	2 3 4	252.948	35.22	13.32	2.82	28.53	22.83	46.00	-23.17	QP	
was remarkable wearing and the second of the	5 6		31.57	16.51	3.32	28.89	22.51	46.00	-23.49	QP	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





### Above 1GHz

Above 1GHz										
				802.11b						
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.69	30.94	6.81	41.82	44.62	74.00	-29.38	Vertical		
4824.00	47.88	30.94	6.81	41.82	43.81	74.00	-30.19	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.51	30.94	6.81	41.82	35.44	54.00	-18.56	Vertical		
4824.00	37.19	30.94	6.81	41.82	33.12	54.00	-20.88	Horizontal		
			Test ch	annel: Midd	le channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	48.92	31.20	6.85	41.84	45.13	74.00	-28.87	Vertical		
4874.00	47.41	31.20	6.85	41.84	43.62	74.00	-30.38	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.10	31.20	6.85	41.84	35.31	54.00	-18.69	Vertical		
4874.00	38.41	31.20	6.85	41.84	34.62	54.00	-19.38	Horizontal		
				annel: Highe						
		T T		tector: Peak	Value		I			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.52	31.46	6.89	41.86	46.01	74.00	-27.99	Vertical		
4924.00	47.04	31.46	6.89	41.86	43.53	74.00	-30.47	Horizontal		
			Dete	ctor: Averaç	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.73	31.46	6.89	41.86	36.22	54.00	-17.78	Vertical		
4924.00 Remark:	38.36	31.46	6.89	41.86	34.85	54.00	-19.15	Horizontal		

#### Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11g						
			Test ch	annel: Lowe						
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.23	30.94	6.81	41.82	44.16	74.00	-29.84	Vertical		
4824.00	47.51	30.94	6.81	41.82	43.44	74.00	-30.56	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.66	30.94	6.81	41.82	35.59	54.00	-18.41	Vertical		
4824.00	37.46	30.94	6.81	41.82	33.39	54.00	-20.61	Horizontal		
			Test ch	nannel: Mido	lle channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	48.67	31.20	6.85	41.84	44.88	74.00	-29.12	Vertical		
4874.00	47.20	31.20	6.85	41.84	43.41	74.00	-30.59	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.49	31.20	6.85	41.84	34.70	54.00	-19.30	Vertical		
4874.00	38.06	31.20	6.85	41.84	34.27	54.00	-19.73	Horizontal		
			Test ch	annel: Highe	est channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	48.56	31.46	6.89	41.86	45.05	74.00	-28.95	Vertical		
4924.00	47.09	31.46	6.89	41.86	43.58	74.00	-30.42	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	38.93	31.46	6.89	41.86	35.42	54.00	-18.58	Vertical		
4924.00	37.34	31.46	6.89	41.86	33.83	54.00	-20.17	Horizontal		
Remark [,]										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11n(HT	(20)					
				annel: Lowe						
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	47.82	36.06	6.81	41.82	48.87	74.00	-25.13	Vertical		
4824.00	47.48	36.06	6.81	41.82	48.53	74.00	-25.47	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	37.64	36.06	6.81	41.82	38.69	54.00	-15.31	Vertical		
4824.00	37.38	36.06	6.81	41.82	38.43	54.00	-15.57	Horizontal		
			Test ch	annel: Midd	lle channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.59	36.32	6.85	41.84	48.92	74.00	-25.08	Vertical		
4874.00	48.46	36.32	6.85	41.84	49.79	74.00	-24.21	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.51	36.32	6.85	41.84	39.84	54.00	-14.16	Vertical		
4874.00	38.23	36.32	6.85	41.84	39.56	54.00	-14.44	Horizontal		
				annel: Highe						
		1 1		tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	47.62	36.58	6.89	41.86	49.23	74.00	-24.77	Vertical		
4924.00	47.11	36.58	6.89	41.86	48.72	74.00	-25.28	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	36.84	36.58	6.89	41.86	38.45	54.00	-15.55	Vertical		
4924.00	37.56	36.58	6.89	41.86	39.17	54.00	-14.83	Horizontal		
Remark [,]										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802 11n/HT	(40)					
802.11n(HT40)  Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	48.13	36.06	6.81	41.82	49.18	74.00	-24.82	Vertical		
4844.00	47.52	36.06	6.81	41.82	48.57	74.00	-25.43	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	38.68	36.06	6.81	41.82	39.73	54.00	-14.27	Vertical		
4844.00	37.89	36.06	6.81	41.82	38.94	54.00	-15.06	Horizontal		
				annel: Midd						
		T		tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	48.23	36.32	6.85	41.84	49.56	74.00	-24.44	Vertical		
4874.00	48.52	36.32	6.85	41.84	49.85	74.00	-24.15	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.12	36.32	6.85	41.84	38.45	54.00	-15.55	Vertical		
4874.00	38.36	36.32	6.85	41.84	39.69	54.00	-14.31	Horizontal		
			Test ch	annel: Highe	est channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	46.79	36.45	6.87	41.85	48.26	74.00	-25.74	Vertical		
4904.00	47.13	36.45	6.87	41.85	48.60	74.00	-25.40	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	36.89	36.45	6.87	41.85	38.36	54.00	-15.64	Vertical		
4904.00 Remark:	37.54	36.45	6.87	41.85	39.01	54.00	-14.99	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.