sac-format

Alexander R. Blanchette*

Contents

Introduction

sac-format is a single-header statically linked library designed to make working with binary SAC-files as easy as possible. Written in C++20, it follows a modern and easy to read programming-style while providing the high performance brought by C++.

sac-format's actively developed on GitHub!

Download an offline version of the documention (PDF).

Why sac-format

sac-format is Free and Open Source Software (FOSS) released under the MIT license. Anyone can use it, for any purpose (including proprietary software), anywhere in the world. sac-format's operating system agnostic and confirmed working on Windows, macOS, and Linux systems.

High-Level Trace Class

sac-format includes the Trace class for seismic traces, providing high-level object-oriented abstraction to seismic data. With the Trace class, you don't need to worry about manually reading SAC-files word-byword. It is compatible with v6 and v7 SAC-files and can automatically detect the version upon reading. File output defaults to v7 SAC-files and there is a *legacy-write* function for v6 output.

Low-Level I/O

If you want to roll your own SAC-file processing workflow you can use the low-level I/O functionality built into sac-format. All functions tested and confirmed working—they're used to build the Trace class!

Safe

sac-format's **safe**—testing is an important part of software development. The sac-format library is extensively tested using the Catch2 testing framework. Everything from low-level binary conversions to high-level Trace reading/writing are tested and confirmed working. New tests added when they're imagined. Check and run the tests yourself—see utests.cpp.

Fast

sac-format's **fast**—it's written in C++ and extensively benchmarked. You can run the benchmarks yourself to find out how sac-format performs on your system.

^{*}arbCoding@gmail.com

Easy

sac-format's easy—single-header makes integration to any project simple. CMake makes building on different platforms a breeze. Object-oriented design makes use easy and intuitive. See the Quickstart section to get up and running.

Small

sac-format's **small**—in total (header + implementation–excluding comments) adds to fewer than 1500 lines of code. Small size opens to door to using on any sort of hardware (old or new).

Documented

sac-format's extensively **documented**—both online and in the code. Nothing's hidden—nothing's obscured. Curious how something works? Check the documentation and in-code comments.

Quickstart

Manual Instructions

Build Instructions

Building is as easy as cloning the repository, running CMake for your preferred build tool, and then building.

• Ninja

```
git clone https://github.com/arbCoding/sac-format.git
mkdir bin && cd bin/
cmake -G Ninja .. && ninja
```

• Make

```
git clone https://github.com/arbCoding/sac-format.git
mkdir bin && cd bin/
cmake .. && make
```

Use

To use, link to the compiled library (libsac-format.a on Linux/macOS, libsac-format.lib on Windows) and include src/sac_format.hpp.

CMake Integration

To integrate sac-format into your CMake project, add it to your CMakeLists.txt.

```
include(FetchContent)
set(FETCHCONTENT_UPDATES_DISCONNECTED TRUE)
FetchContent_Declare(sac-format
    GIT_REPOSITORY https://github.com/arbCoding/sac-format
    GIT_TAG vX.X.X)
FetchContent_MakeAvailable(sac-format)
include_directory(${sacformat_SOURCE_DIR/src})
project (your_project
    LANGUAGES CXX)
add_executable(your_executable)
```

```
your_sources
sac_format.hpp)

target_link_libraries_library(your_executable
    PRIVATE sac-format)
```

Examples

Reading and Writing

```
#include <filesystem>
#include <iostream>
#include <sac_format.hpp>
using namespace sacfmt;
namespace fs = std::filesystem;
int main() {
    Trace trace1{};
    // Change header variable
    trace1.kstnm("Station1");
    fs::path file{"./test.SAC"};
    // Write
    trace1.write(file);
    // Read
    Trace trace2 = Trace(file);
    // Confirm equality
    std::cout << (trace1 == trace2) << '\n';
    fs::remove(file);
    return EXIT_SUCCESS;
}
```

Documentation

Dependencies

Manual

1. boost v1.83.0

Automatic (CMake)

- 1. Xoshiro-cpp v1.12.0 (utests.cpp only)
- 2. Catch2 v3.4.0 (utests.cpp only)

Trace class

Structure

- 'floats' array
- 'doubles' array
- 'ints' array
- 'bools' array

- 'strings' array
- 'data' array

Reading SAC

Writing SAC

Getters and Setters

Low-Level I/O

Debugging

Unit-testing

Benchmarking

SAC-file format

The official and up-to-date documentation is available from the EarthScope Consortium (formerly IRIS/UNAVCO) here. The following subsections constitute my notes on the format. They are meant to act as a useful guide—all credit for the creation of, and documentation for, the SAC file-format belongs to its developers and maintainers (details here).

Floating-point (39)

32-bit (1 word, 4 bytes)

- depmin Minimum value of the dependent variable (displacement/velocity/acceleration/volts/counts).
- depmen Mean value of the dependent variable.
- depmax Maximum value of the dependent variable.
- odelta Modified (observational) value of delta.
- resp[0--9] Instrument response parameters (poles, zeros, and a constant).

Not used by SAC—they are free for other purposes.

• stel Station elevation in meters above sea level (m.a.s.l).

Not used by SAC—free for other purposes.

 $\bullet\,$ stdp Station depth in meters below surface (borehole/buried vault).

Not used by SAC—free for other purposes.

• evel Event elevation m.a.s.l.

Not used by SAC—free for other purposes.

- evdp Event depth in kilometers (previously meters) below surface.
- mag Event magnitude.
- \bullet user(0--9) Storage for user-defined values.
- dist Station-Event distance in kilometers.
- az Azimuth (Event \rightarrow Station), decimal degrees from North.
- baz Back-azimuth (Station \rightarrow Event), decimal degrees from North.

- gcarc Station-Event great circle arc-length, decimal degrees.
- cmpaz Instrument measurement azimuth, decimal degrees from North.

Value	Direction
0°	North
90°	East
180°	South
270°	West
Other	1/2/3

• cmpinc Instrument measurement incident angle, decimal degrees from upward vertical (incident 0° = dip -90°).

Value	Direction
0°	Up
90°	Horizontal
180°	Down
270°	Horizontal

NOTE: SEED/MINISEED use dip angle, decimal degrees down from horizontal (dip 0° = incident 90°).

- xminimum Spectral-only equivalent of depmin $(f_0 \text{ or } \omega_0)$.
- xmaximum Spectral-only equivalent of depmax $(f_{max} \text{ or } \omega_{max})$.
- yminimum Spectral-only equivalent of b.
- ymaximum Spectral-only equivalent of e.

Double (22)

64-bit (2 words, 8 bytes)

NOTE: in the header section these are floats—they are doubles in the footer section of v7 SAC-files. In memory they are stored a doubles regardless of the SAC-file version.

- delta Increment between evenly spaced samples (Δt for timeseries, Δf or $\Delta \omega$ for spectra).
- b First value (begin) of independent variable (t_0) .
- e Final value (end) of independent variable (t_{max}) .
- • Event origin time, in seconds relative to the reference time.
- a Event first arrival time, in seconds relative to the reference time.
- \bullet t(0--9) User defined time values, in seconds relative to the reference time.
- f Event end (fini) time, in seconds relative to the reference time.
- stla Station latitude in decimal degrees, N/S positive/negative.
- stlo Station longitude in decimal degrees, E/W positive/negative.
- evla Event latitude in decimal degrees, N/S positive/negative.
- evlo Event longitude in decimal degrees, E/W positive/negative.
- sb Original (saved) b value.
- sdelta Original (saved) delta value.

Integer (26)

32-bit (1 word, 4 bytes)

- nzyear Reference time GMT year.
- nzjday Reference time GMT day-of-year (often called Julian Date) (1–366).
- nzhour Reference time GMT hour (00-23).
- nzmin Reference time GMT minute (0-59).
- nzsec Reference time GMT second (0-59).
- nzmsec Reference time GMT Millisecond (0-999).
- nvhdr SAC-file version.

Version	Description
v6	No footer (pre-2020, sac 102.0+)
v7	Footer $(2020+, sac\ 101.6a-)$

- norid Origin ID.
- nevid Event ID.
- npts Number of points in data.
- nsnpts Original (saved) npts.
- nwfid Waveform ID.
- nxsize Spectral-only equivalent of npts (length of spectrum).
- nysize Spectral-only, width of spectrum.
- iftype Type of file.

Value	Type	Description
01	ITIME	Time-series
02	IRLIM	Spectral (real/imaginary)
03	IAMPH	Spectral (amplitude/phase)
04	IXY	General XY file
??	IXYZ*	General XYZ file

- *Value not listed in the standard.
- idep Type of dependent variable.

Value	Type	Description
05	IUNKN	Unknown
06	IDISP	Displacement (nm)
07	IVEL	Velocity $\left(\frac{nm}{s}\right)$ Acceleration $\left(\frac{nm}{s^2}\right)$
08	IACC	Acceleration $\left(\frac{nm}{s^2}\right)$
50	IVOLTS	Velocity (volts)

• iztype Reference time equivalent.

Value	Type	Description
05	IUNKN	Unknown
09	IB	Recording start time
10	IDAY	Midnight reference GMT day
11	IO	Event origin time
12	IA	First arrival time
13 - 22	IT(0-9)	User defined time (t) pick

• iinst Type of recording instrument.

Not used by SAC—free for other purposes.

• istreg Station geographic region.

Not used by SAC—free for other purposes.

• ievreg Event geographic region.

Not used by SAC—free for other purposes.

• ievtyp Type of event.

Value	Type	Description
05	IUNKN	Unknown
11	IO	Other source of known origin
37	INUCL	Nuclear
38	IPREN	Nuclear pre-shot
39	IPOSTN	Nuclear post-shot
40	IQUAKE	Earthquake
41	IPREQ	Foreshock
42	IPOSTQ	Aftershock
43	ICHEM	Chemical explosion
44	IOTHER	Other
72	IQB	Quarry/mine blast—confirmed by quarry/mine
73	IQB1	Quarry/mine blast—designed shot info-ripple fired
74	IQB2	Quarry/mine blast—observed shot info-ripple fired
75	IQBX	Quarry/mine blast—single shot
76	IQMT	Quarry/mining induced events—tremor and rockbursts
77	IEQ	Earthquake
78	IEQ1	Earthquake in a swarm or in an aftershock sequence
79	IEQ2	Felt earthquake
80	$\overline{\text{IME}}$	Marine explosion
81	IEX	Other explosion
82	INU	Nuclear explosion
83	INC	Nuclear cavity collapse
85	IL	Local event of unknown origin
86	IR	Region event of unknown origin
87	IT	Teleseismic event of unknown origin
88	IU	Undetermined/conflicting information

• iqual Quality of data.

_	Value	Type	Description
_	44	IOTHER	Other
	45	IGOOD	Good
	46	IGLCH	Glitches
	47	IDROP	Dropouts
	48	ILOWSN	Low signal-to-noise ratio

Not used by SAC—free for other purposes.

• isynth Synthetic data flag.

Value	Type	Description
49	IRLDATA	Real data
XX	*	Synthetic

*Values and types not listed in the standard.

• imagtyp Magnitude type.

Value	Type	Description
52	IMB	Body-wave magnitude (M_b)
53	IMS	Surface-wave magnitude (M_s)
54	IML	Local magnitude (M_l)
55	IMW	Moment magnitude (M_w)
56	IMD	Duration magnitude (M_d)
57	IMX	User-defined magnitude (M_x)

• imagsrc Source of magnitude information.

Value	Type	Description
58	INEIC	National Earthquake Information Center
61	IPDE	Preliminary Determination of Epicenter
62	IISC	Internation Seismological Centre
63	IREB	Reviewed Event Bulletin
64	IUSGS	U.S. Geological Survey
65	IBRK	UC Berkley
66	ICALTECH	California Institute of Technology
67	ILLNL	Lawrence Livermore National Laboratory
68	IEVLOC	Event location (computer program)
69	IJSOP	Joinst Seismic Observation Program
70	IUSER	The user
71	IUNKNOWN	Unknown

 $\bullet\,$ ibody Body/spheroid definition used to calculate distances.

Value	Type	Name	Semi-major axis (a [m])	Inverse Flattening (f)
-12345	UNDEF	(Historic) Earth	6378160.0	0.00335293
98	ISUN	Sun	696000000.0	8.189e-6
99	IMERCURY	Mercury	2439700.0	0.0
100	IVENUS	Venus	6051800.0	0.0
101	IEARTH	(WGS84) Earth	6378137.0	0.0033528106647474805
102	IMOON	Moon	1737400.0	0.0
103	IMARS	Mars	3396190.0	0.005886007555525457

Boolean (4)

32-bit (1 word, 4 bytes) in-file/8-bit (1 byte) in-memory

• leven REQUIRED

Evenly-spaced data flag.

If true, then data is evenly spaced.

• lpspol Station polarity flag.

If true, then station has positive-polarity—it follows the left-hand convention (e.g., North-East-Up [NEZ]).

• lovrok File overwrite flag.

If true, then it is okay to overwrite the file.

• lcalda Calculate geometry flag.

If true, then calculate dist, az, baz, and gcarc from stla, stlo, evla, and evlo.

String (23)

32/64-bit (2/4 words, 8/16 bytes, 8/16 characters)

- kstnm Station name.
- kevnm* Event name.

*This is the only four word (16 character) string.

• khole Nuclear—hole identifier.

Other—Location identifier (LOCID).

- ko Text for o.
- ka Text for a.
- kt(0--9) Text for t(0--9).
- kf Text for f.
- kuser(0--2) Text for the first three of user(0--9).
- kdatrd Date the data was read onto a computer.
- kinst Text for iinst.

Data (2)

32-bit (2 words, 8 bytes) in-file/64-bit (4 words, 16 bytes) in-memory

These are stored a floating-point (32-bit) values in SAC-files, in memory they are double-precision.

- data1 The first data vector—always present in a SAC-file and begins at word 158.
- data2 The second data vector—conditionally present and begins after data1.

Required if leven is false, or if iftype is spectral/XY/XYZ.

Notes

Why C++20 and not C++23

Compiler restrictions—C++23 support requires GCC-13+ and Clang-16+. Many systems, still use GCC-12 and Clang-15—which has near complete support for C++20.

sac-format strives for accessibility, modernity, safety, and speed—C++20 provides the best fit.