Физика. Занятие №2, 16.09.2024

Рудяк А.С., СГУ им. Чернышевского 2 курс, «Программная инженерия»

Саратов, 2024

Содержание

Алгоритм описания ФС "Электромагнитное поле"	2
3. Выбор способа описания	2
4. Математическая модель	2
6. Анализ результатов	4
5. Решение уравнений состояния	4
Лекция 2. Электрическое поле в веществе	5

Алгоритм описания ФС "Электромагнитное поле"

3. Выбор способа описания

- Классический (Классическая модель)
 - Величина заряда может быть любой
 - Носители заряда частицы
 - Расстояние между зарядами можно измерять с любой точностью
- Квантовый (Квантовая модель)
 - Величина заряда должна быть кратна элементарному, т.е. заряд дискретен (квантован)
 - Носители заряда могут обладать и волновой, и корпускулярной природой
 - Координату частицы-волны невозможно указать точно

Параметры состояния идеализированной системы

E(r) - напряженность электрического поля определим как количественную меру свойства (а) электростатического поля: **численно** равна силе, действующей на единичный положительный заряд, помещенный в данную точку поля;

 $arphi_1-arphi_2=({\rm E}*dr)$ - разность потенциалов двух точек поля определим как количественную меру свойства (b), т.е. способность совершать работу по перемещению зарядов: численно равна работе сил поля по перемещению единичного положительного заряда из первой точки во вторую. ${\rm E}(r)=-\frac{darphi}{dr}$

4. Математическая модель

- Первый Классический
 - Экспериментальный закон Кулона
 - Устанавливающий величину силы взаимодействия двух точечных зарядов без описания механизма передачи действия
- Второй полевой
 - Теорема Остроградского-Гаусса
 - Связывающий заряды с параметрами (напряженностью) поля в пространстве.

Теорема Остроградского-Гаусса

Поток вектора напряженности электрического поля через любую замкнутую поверхность равен алгебраической сумме зарядов, находящихся внутри поверхности, деленной на электрическую постоянную ε_0

Данная теорема позволяет решать следующие задачи:

- 1. По заданной конфигурации зарядов можно определить электрическое поле.
- 2. По заданному электрическому полю можно найти конфигурации зарядов
- 3. Закон Кулона, определяющий силу взаимодействия точечных зарядов, может быть записан в полевой форме: $F_{21}=krac{|q_1||q_2|}{r^3}r\ F=qE$

Принцип суперпозиции полей

Если электрическое поле образовано несколькими зарядами, то напряженность результирующего поля равна векторной сумме напряженностей полей каждого из зарядов.

$$E=\sum_{i=1}^n E_i; \varphi=\frac{U}{q}=\frac{1}{4\pi\varepsilon_0}\sum_{i=1}^n \frac{q_i}{r_i}=\sum_{i=1}^n \varphi_i$$

Пример 1

Если радиус заряженной сферы уменьшать, то в пределее получим напряженность поля точечного заряда $E=\frac{q}{4\pi\varepsilon_0 r^2}$

6. Анализ результатов

Используя связь параметров, получим следующие уравнения.

- Закон Кулона для точечных зарядов $F_{21} = k rac{|q_1| |q_2|}{r^3} r$
- Потенциал точки поля (интеграл какой-то)
- Потенциал системы неподвижных зарядов (еще интеграл)
- Напряженность поля Е = че-то теорема

Используя связь параметров, получим следующие уравнения.

- Разность потенциалов между двумя точками поля $\delta \varphi = \frac{q}{4\pi \varepsilon_0} \Big(\frac{1}{r_1} \frac{1}{r_2} \Big)$
- Работа сил электростатического поля $A=\int_{r_1}^{r_2}Fdr=rac{Qq}{4\piarepsilon_0}\Big(rac{1}{r_1}-rac{1}{r_2}\Big)$
- **Циркуляция вектора E**. Если перемещение заряда происходит по произвольной, но замкнутой траектории L, то работа сил электростатического поля равна нулю: $\int_{L(E*...)}$

Пример 2
$$\Phi_E=\Phi_{E\text{och}}+\Phi_{E\text{бок}}=2\int_{S\text{och}}EdS+\int_{S\text{бок}}Eds=2ES_{\text{och}}+0(\leq E$$
 перпенд $ds)=2ES$ $\Phi_E=\frac{\sum q_i}{\varepsilon_0}=()$

Пример 3

5. Решение уравнений состояния

На участке 2: векторы сонаправлены $E=E_1+E_2=\frac{\sigma}{2\varepsilon_0}+\frac{\sigma}{2\varepsilon_0}=\frac{\sigma}{\varepsilon_0}$ Поле сосредоточено между плоскостями. **Напряженность поля** во всех

точках этой области одинакова по величине и по направлению, т.е. однородно.

Теорема Ирншоу Система неподвижных электрических зарядов не может находиться в устойчивом равновесии. Заряд +q будет находиться в равновесии, если при его перемещении на расстояние dr со стороны всех остальных зарядов системы, расположенных вне поверхности S, будет действовать сила F, возвращающая его в исходное положение. $\Phi_E=\dots$ Согласно теореме Гаусса, если заряды не охватываются замкнутой поверхностью, то $\Phi_E=0$. **Противоречие** доказывает теорему Ирншоу.

Лекция 2. Электрическое поле в веществе

• Все вещества состоят из атомов и молекул, находящихся в непрерывном хаотичном движении и взаимодействующих между собой с силами притяжения и отталкивания электромагнитной природы

- В зависимости от внешних условий и внутренних сил взаимодействия, вещество может находиться в трех агрегатных состояниях
- Атом вещества представляет собой систему заряженных частиц (частей): протоны, нейтроны, электроны, (или ядро-электроны)
- Движущиеся заряды атомов испытывают воздействие внешнего как электрического, так и магнитного полей
- Движущиеся заряды атома порождают собственные электрические и магнитные поля, которые по принципу суперпозиции изменяют внешнее электромагнитное поле.

Зонная теория твердого тела — это теория валентных электронов, движущихся в периодическом потенциалом поле кристаллической решетки. **Энергетический спектр** — шкала количественных значений энергии электронов атомов данного вещества

Наивысшая из разрешенных энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называются валентной, следующая за ней — зоной проводимости. В проводниках зоной проводимости называется наивысшая разрешенная зона, в которой находятся электроны при температуре 0 К.

Твёрдое вещество: Проводники, полупроводники, диэлектрики

Диэлектрики: активные (сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, электреты), пассивные (полярные, неполярные)

Электроны полностью заполненной зоны не могут принимать учатия в создании электрического тока. Для появления электропроводности

необходимо часть электронов перевести из валентной зоны в зону проводимости.

Электроны, находящиеся в зоне проводимости, нельзя считать абсолюнто свободными. Эти электроны взаимодействуют с периодическим потенциальным полем кристаллической решетки. При математическом описании поведения электронов в зоне проводимости используют понятие эффективной массы. Эффективная масса не определяет ни инерционных, ни гравитационных свойств электрона.

Ширина запрещенной зоны меняется с изменением температуры. Это происходит по двум основным причинам:: из-за изменения амплитуды тепловых колебаний атомов решетки и из-за изменения межатомных расстояний, т.е. объёма тела

Границы применимости:

- 1. Потенциал кристаллической решетки строго периодичен
- 2. Взаимодействие между свободными электронами может быть сведено к одноэлектронному самосогласованному потенциалу (а оставшаяся часть рассмотрена методом теории возмущений)
- 3. Взаимодействие с фотонами слабое (и может быть рассмотрено по теории возмущений).

Дополнения к физической модели:

- Полагаем, что свободных электронов в проводнике достаточно много (бесконечно много)
- На первом этапе внешнее электрическое (E_0) поле проникает в вещество
- Пренебрегаем хаотичным движением электронов

Для равновесия внутри проводника необходимы два условия: $E=E'+E_0=0$ и $\frac{\mathrm{d}\varphi}{\mathrm{d}r}=-E=0\Rightarrow \varphi_{\mathrm{внутри}}=\mathrm{const}$

Вне тела и вдоль поверхности проводника будет наблюдаться равновесие, если выполняется условие E перпенд $dr\Rightarrow (Edr)=0=-d\varphi$ $\varphi_{\text{поверхности}}=\text{const}$ Таким образом, чтобы заряд находился в равновесии, необходимо:

- 1. Напряженность поля внутри проводника
- 2. Внешняя напряженность поля перпендикулярна поверхности проводника
- 3. Потенциал на поверхности постоянен

Электростатическое поле перераспределяет заряды в нейтральном проводнике так, что его поверхность становится эквипотенциальной. Примеры экивпотенциальных поверхностей:

- 1. Точечный заряд
- 2. Диполь
- 3. Два равных одноименных заряда

Возьмем проводник и начнём его заряжать. Чем больше заряд на проводнике, тем больше его потенциал. $q(t)=C\varphi(t),\Rightarrow C=\frac{q(t)}{\varphi(t)}=\frac{dq}{dU}$