Convolutional Dictionary Learning through Tensor Factorization

*Furong Huang and Animashree Anandkumar

University of California, Irvine

Feature learning as cornerstone of ML

- ▶ Find efficient representation of data based on
- sparsity / group invariance / low dimensional structures
- ▶ Principled approaches guaranteed to learn good features?

Summary

- ► Goal: Feature Learning or Representation Learning
- ▶ Methods: Tensor Decomposition
- powerful paradigm and consistent learning
- proven success for a wide class of latent variable
- topic model/ ICA/ Mixture of Gaussian/ HMM
- ► Contribution: models with invariances
- ▶ Shift invariance: convolutional dictionary models
- ALS method with shift invariance constraints
- ► Validation: convolutional tensor vs alternating minimization
- CT: converges faster, better reconstruction error
- AM: pass through data in every iteration

Standard Linear vs Convolutional Dictionary Models

Dictionary learning: Find dictionary *A*

- ▶ *k* dictionary components/elements
- ► Signal = linear/sparse combination of dictionary elements
- 1 Topic model: $doc x_i$, topic-word matrix A, topics in $doc h_i$
- 2 Images: image x_i , filters A, activation map h_i

Problem in standard dictionary model: NO invariances.

Convolutional models incorporate shift invariance

From convolutional to standard dictionary model

(a)Convolutional model

(b)Reformulated model

$$x = \sum_{l} f_l \star w_l = \sum_{l} \operatorname{Cir}(f_l) w_l = \mathcal{F}^{\star} w^{\star}$$

1 Assume coefficients w_i are independent (convolutional ICA model)

2 Cumulant tensor has decomposition with components \mathcal{F}_{i}^{*} .

Data Moments Relating Model Parameters

$\mathsf{C}_{\mathsf{3}} := \mathbb{E}[\mathsf{x}(\mathsf{x} \odot \mathsf{x})^{\top}] - \mathsf{unfold}(\mathsf{Z})$

▶ Shift term Z: composed of 1th and 2th empirical moments.

Decomposition form of C₃

where λ_i^* is the third order cumulant corresponding to the (univariate) distribution of $w^*(j)$.

Optimization with Closed Form Result

Estimate Filter Dictionary

- ► Goal: estimate filters f_l
- \blacktriangleright minimize Frobenius norm $\|\cdot\|_{\mathbb{F}}$ of reconstruction
- ▶ on cumulant tensor C₃

$$\min_{\mathcal{F}} \quad \|\mathbf{C}_{3} - \mathcal{F}\Lambda \left(\mathcal{F} \odot \mathcal{F}\right)^{\top}\|_{F}^{2}$$

s.t. $\mathsf{blk}_l(\mathcal{F}) = U \mathsf{diag}(\mathsf{FFT}(f_l))U^\mathsf{H}, ||f_l||_2 = 1, \Lambda = \mathsf{diag}(\lambda).$

ALS Relaxation: $\mathcal{F}\Lambda \left(\mathcal{F}\odot\mathcal{F}\right)^{\top} \to \mathcal{F}\Lambda \left(\mathcal{H}\odot\mathcal{G}\right)^{\top}$

Closed Form Main Result: The optimal solution f_l^{opt} is

$$f_l^{\text{opt}}(p) = \frac{\sum\limits_{i,j \in [n]} \|\operatorname{blk}_l(\mathsf{M})_j\|^{-1} \cdot \operatorname{blk}_l(\mathsf{M})_j^i \cdot I_{p-1}^q}{\sum\limits_{i,j \in [n]} I_{p-1}^q}, \forall p \in [n], q := (i-j) \mod r$$

Note that $M := C_3 \left((\mathcal{H} \odot \mathcal{G})^{\top} \right)^{\dagger}$.

Efficient Optimization

Bottleneck: Computing $(\mathcal{H} \odot \mathcal{G})^{\top}$ requires $O(n^6)$ naively.

Solution:

- $\mathbf{L} ((\mathcal{H} \odot \mathcal{G})^\top)^\dagger = (\mathcal{H} \odot \mathcal{G})((\mathcal{H}^\top \mathcal{H}). \star (\mathcal{G}^\top \mathcal{G}))^\dagger$
- ▶ Row and column stacked circulant matrices $(\mathcal{H}^{\top}\mathcal{H}). \star (\mathcal{G}^{\top}\mathcal{G})$
- ▶ The inversion of $(\mathcal{H}^{\top}\mathcal{H})$. $\star (\mathcal{G}^{\top}\mathcal{G})$ reduced to the inversion of row-and-column stacked set of diagonal matrices
- ▶ Block matrix inversion theorem [Golub and Van Loan, 2012]

Running Time: $O(\log n + \log L)$ with $O(L^2n^3)$ processors. Involves 2LFFT's, some matrix multiplications, inverse of diagonal matrices.

Objective Visualization: Optimal Points

Blue: objective fn has small value \rightarrow Red: objective fn has large value

Convolutional Tensor vs Alternating Minimization

Paraphrase Detection: embeddings learned from scratch

- ▶ PCA on One-hot Encoding Matrix → Subspace and Projected data
- ightharpoonup CT on each coordinate ightharpoonup activation map for each coordinate
- ▶ Stack all activation maps → Sentence Embedding

Method	Description	Outside Information ¹	Fscore
Vector Similarity	cosine similarity with tf-idf weights	word similarity	75.3%
ESA	explicit semantic space	word semantic profiles	79.3%
LSA	latent semantic space	word semantic profiles	79.9%
RMLMG	graph subsumption	lexical&syntactic&synonymy info	80.5%
CT (proposed)	convolutional dictionary learning	none	80.7%
MCS	combine word similarity measures	word similarity	81.3%
STS	combine semantic&string similarity	semantic similarity	81.3%
SSA	salient semantic space	word semantic profiles	81.4%
matrixJcn	JCN WordNet similarity with matrix	word similarity	82.4%
► All other methods use word similarities trained on Wikipedia or from WordNet.			

- ► Our algorithm: detects paraphrases from scratch, no side information used.
- ► Our algorithm: achieves comparable results as we incorporate word orders.

*Email: furongh@uci.edu