

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 6

Многоскоростная обработка сигналов (Лекция 2)

Передискретизация (Resampling)

- □ Коэффициент изменения частоты дискретизации — рациональная дробь P/Q
 - Сочетание интерполяции и прореживания
 - \square Сначала повышаем частоту дискретизации в P раз
 - \square Затем понижаем частоту дискретизации в Q раз

Передискретизация (Resampling)

□ Объединяем два ФНЧ

- □ Возможны оба способа экономии:
 - Вычисление только нужных выходных отсчетов
 - Игнорирование операций с нулевыми отсчетами

Передискретизация (Resampling)

Многокаскадная реализация интерполяции и прореживания

□ Во всех схемах:

- ФНЧ работает на самой высокой из частот дискретизации
- Частота среза ФНЧ определяется
 самой низкой из частот дискретизации
- Если коэффициент изменения частоты дискретизации >>1, нормированные частота среза и ширина переходной зоны будут очень низкими
- Порядок фильтра окажется очень высоким

Многокаскадная реализация интерполяции и прореживания

 \square Если $L = L_1L_2$, можно разбить преобразование на несколько каскадов

- □ Несколько ФНЧ работают на разных частотах дискретизации
 - Ширина переходной зоны у разных фильтров разная
 - Порядок фильтров оказывается меньше, чем при однокаскадной реализации

Многокаскадная реализация: требования к фильтрам

Многокаскадная реализация интерполяции и прореживания

- Критерий оптимизации разделения на каскады (если есть несколько вариантов)
 - Для программной реализации:
 минимальное число операций в единицу времени
 - □ Для двух каскадов:

$$L_{1 \text{ опт}} pprox rac{2L\left(\sqrt{Lrac{F}{2-F}}-1
ight)}{F(L+1)-2}, \quad L_{2 \text{ опт}} pprox rac{L}{L_{1 \text{ опт}}}$$

Для аппаратной реализации:
 минимальный суммарный порядок фильтров

F — ширина переходной

Многокаскадная реализация прореживания: пример

- □ Исходная частота дискретизации: 400 кГц
- □ Максимальная частота в спектре полезного сигнала: 1,8 кГц
- □ Новая частота дискретизации: 4 кГц
 - Понижение в 100 раз
- □ Однокаскадная реализация:
 - ФНЧ работает на частоте дискретизации 400 кГц
 - Конец полосы пропускания: $F_{\text{pass}} = 1.8 \text{ кГц}$
 - Начало полосы задерживания: $F_{\text{stop}} = 2,0$ кГц
 - Оценка порядка фильтра будет показана на лекции

Многокаскадная реализация прореживания: пример

- □ Двухкаскадная реализация:
 - Возможные варианты:

```
\Box 100 = 50 × 2
```

$$\Box$$
 100 = 25 × 4

$$\Box$$
 100 = 20 × 5

$$\square$$
 100 = 10 × 10

$$\Box$$
 100 = 5 × 20

$$\Box$$
 100 = 4 × 25

$$\Box$$
 100 = 2 × 50

Важно: от ФНЧ первого каскада требуется только подавление возможных ложных частот в выходной рабочей полосе (0...2 кГц)

 Оценка порядка фильтров и выбор оптимального варианта будут показаны на лекции

Многокаскадная реализация прореживания: пример

L_1	L_2	N_1	N_2	$N_1 + N_2$	млн. оп./сек.
50	2				
25	4				
20	5				
10	10				
5	20				
4	25				
2	50				