Algebra II, Sheet 10

Remarks and Solutions

Exercise 2.

Recall 1. A map $f: X \to Y$ between topological spaces X and Y is continuous if and only if

$$f(\overline{A}) \subseteq \overline{f(A)}$$

for every subset $A \subseteq X$.

(a)

It holds that $e \in U \subseteq \overline{U}$. The inversion map $i \colon G \to G$ is a morphism and hence continuous, and therefore satisfies

$$i(\overline{U}) \subseteq \overline{i(U)} = \overline{U}$$
.

This shows that $\overline{U}^{-1} \subseteq \overline{U}$. For every $g \in U$ the left multiplication

$$\ell_q \colon G \to G$$
, $h \mapsto gh$

is a morphism and hence continuous, and therefore satisfies

$$\ell_q(\overline{U}) \subseteq \overline{\ell_q(U)} = \overline{U}$$
.

This shows that $U\overline{U} \subseteq \overline{U}$. We now use that for every $h \in \overline{U}$ the right multiplication

$$r_h \colon G \to G$$
, $g \mapsto gh$

is a morphism and hence continuous with $r_g(U) \subseteq \overline{U}$, and therefore satisfies

$$r_h(\overline{U}) \subseteq \overline{r_h(U)} \subseteq \overline{\overline{U}} = \overline{U}$$
.

This shows that \overline{U} $\overline{U} \subseteq \overline{U}$. We have altogether shown that \overline{U} is again a subgroup of G.

(b)

For every $g \in U$ the commutator map

$$c_g \colon G \to G \,, \quad h \mapsto ghg^{-1}h^{-1}$$

in a morphisms and hence continuous, and the singleton $\{e\}\subseteq G$ is closed. Therefore

$$c_g(\overline{U})\subseteq \overline{c_g(U)}=\overline{\{e\}}=\{e\}\,,$$

where we use that $c_g(U)=\{e\}$ since U is abelian. This shows that every $g\in U$ commutes with every $h\in \overline{U}$. By repeating this argument we find that every $h\in \overline{U}$ commutes with every $g\in \overline{U}$. This then shows that \overline{U} is abelian.