

RAKUTEN CASE STUDY Rakuten Advertising Case Interview

Monday 25th March, 2024

Fanxiang ZENG

Data structure

Data structure

Numerical columns

■ imps : number of impressions

■ visibility: visibility of the ad

■ width : width of the ad

■ height : height of the ad

■ clikcs : number of clicks

Categorical features

■ date

■ country ref, domain, device

■ IDs : zone id, media id, advertiser id, campaign id, ad id

CTR prediction 1/10

Data structure

Dimension of dataset

■ train data : (5395051, 14)

■ test data : (231201, 13)

Target variable

■ clicks : number of clicks

ctr: click-through rate

CTR prediction 2/10

Data pre-processing

Data pre-processing

Handle missing values

- Numerical Columns : fill missing values with the median of the column
- Categorical Columns: fill missing values with 'Unknown'

Date

- extract day, month, year, weekday
- drop the original date column

Feature scaling and encoding

- Label encoding for categorical columns
- Standardize numerical columns

CTR prediction 3/10

Model

Brain stroming

How to predict click-through rate?

- Predict the click number using regression model and then calculate the CTR by dividing the predicted click number by the number of impressions
- Tree-based model : capture non-linear relationship
- Deep learning model : learn complex patterns in the data

CTR prediction 4/10

Model selection

Model selection

- MLP : Multi-layer Perceptron X
- DCN: Deep & Cross Network ✓

Evaluation metric

$$-\frac{\sum_{i} \operatorname{clicks}_{i} \times \operatorname{In}(\hat{y}_{i}) + (\operatorname{imps}_{i} - \operatorname{clicks}_{i}) \times \operatorname{In}(1 - \hat{y}_{i})}{\sum_{i} \operatorname{imps}_{i}}$$
(1)

- clicks : number of clicks
- imps : number of impressions
- \hat{y} : predicted click-through rate
- BCE loss: binary cross-entropy loss

CTR prediction 5/10

Model Description

Deep & Cross Network

- Learn tabular data by transforming categorical features into dense vectors through embeddings
- Cross Network : capture the relationship between features with a series of cross layers
- Deep Network : fully connected layers

CTR prediction 6/10

Model Description

Figure 1: The Deep & Cross Network

Model trainning

Model trainning

■ Optimizer : Adam

■ Learning rate: 0.001

■ Batch size: 128

■ Epochs: 5 or 3

CTR prediction 8/10

Results

Results

cf. Notbook and .csv

CTR prediction 9/10

Results

Ratio of non zero ctr

■ BCE CTR label: 1676703 / 2019086

■ BCE CTR click label: 1439133/2019086

■ MSE CTR label: 319 / 2019086

■ Clic predict CTR: 1105119/2019086

Evaluation metric

■ BCE CTR label: 0.05838478356599808

■ BCE CTR click label: 0.08586359024047852

■ MSE CTR label: 0.09446008503437042

■ Clic predict CTR: 0.4865149259567261

CTR prediction 10/10

Conclusion

Thank you for your attention!