Asymptotic Notation Exercises

Ibrahim Albluwi

Exercise 1

Prove each of the following statements.

1.
$$3n^4 + 100n^2 + 42n = O(n^4)$$

2.
$$2^{2n} \neq O(2^n)$$

3.
$$2^n = \Omega(2^{\frac{n}{2}})$$

$$a \quad n! = O((n+1)!)$$

5.
$$(n+b)^2 = \Theta(n^2)$$
 for any $b \ge 1$.

$$\sum_{i=1}^{n} (2i-1) = \Theta(n^2)$$

7.
$$\sum_{i=0}^{n} 2^{i} = \Theta(2^{n})$$

8.
$$3n+1=o(n^2)$$

9.
$$k^n = o((k+1)^n)$$
, where k is a constant integer that is > 1 .

10.
$$3n^2 + 1 = \omega(n)$$

Exercise 2

For each of the following groups of functions, rearrange the functions in the group based on their order of growth, such that if a function f appears before a function g then f must be O(g).

Assume the base of the logarithm to be 2 if the base makes a difference.

1.
$$2^n$$
, $2^{\log n}$, 2^{n^2} , $2^{2^{\log n}}$, $2^{\frac{1}{n}}$

2.
$$\log n$$
, $\log(\log n)$, $\log^2 n$, $\log^4 n$, n , $\log(n^{\log n})$

3.
$$5^{\frac{n}{2}}$$
, 2^n , $7^{\log n}$, 2^{3000} , 1.0001^n

4.
$$n, (\log n)^{\log n}, (\log n)!, 2^n, \frac{1}{n}, \frac{1}{2^n}$$

Exercise 3

For each of the following pairs of functions f and g, mention which of the shown relations apply (assume k is a positive constant).

f	g	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$	f = o(g)	$f = \omega(g)$
kn	n					
kn	k					
$n^{\log k}$	$k^{\log n}$					
$\log^k n$	n					
k^n	k^{n+k}					
k^n	k^{kn}					
n^k	n^{k+1}					
k^k	k+1					
$n^{rac{1}{k}}$	$\log_k(n)$					

Exercise 4

Provide a counterexample for each of the following statements:

- 1. If f(n) = O(n) and $g(n) = O(n^2)$ then f grows slower than g.
- 2. If f(n) = O(1), then $f(n) = \Theta(1)$.
- 3. For any two functions f(n) and g(n), f(n) = O(g(n)) or $f(n) = \Omega(g(n))$.
- 4. If f(n) = O(g(n)), then $2^f = O(2^g)$

Solutions

$$1.1 \ 3n^4 + 100n^2 + 42n = O(n^4)$$

We need to show that there exist two constants c and n_0 such that:

$$0 \le 3n^4 + 100n^2 + 42n \le cn^4 \text{ for all } n \ge n_o$$

We know that:

$$0 < 3n^4 + 100n^2 + 42n < 3n^4 + 100n^4 + 42n^4 < 145n^4$$
 for all $n > 1$

We can pick c = 145 and $n_o = 1$

1.2
$$2^{2n} \neq O(2^n)$$

Let's assume for the sake of contradiction that there exist two constants c and n_0 such that:

$$0 \le 2^{2n} \le c2^n$$
 for all $n \ge n_o$

If we divide by 2^n the inequality becomes:

$$0 \le 2^n \le c$$
 for all $n \ge n_o$

This is clearly false because 2^n is an increasing function that approaches ∞ as n increases, so it cannot always remain below a constant, regardless of what this constant is. Hence, the initial assumption is false.

1.3
$$2^n = \Omega(2^{\frac{n}{2}})$$

We need to show that there exist two constants c and n_0 such that:

$$0 \le c \times 2^{\frac{n}{2}} \le 2^n$$
 for all $n \ge n_o$

If we divide by $2^{\frac{n}{2}}$ the inequality becomes:

$$0 \le c \le 2^{\frac{n}{2}} \le \sqrt{2}^n$$
 for all $n \ge n_o$

We can pick c=1 and $n_o=1$ since $1 \le \sqrt{2}^n$ and $\sqrt{2}^n$ is an increasing function, so the inequality is always true for all $n \ge 1$.

1.4
$$n! = O((n+1)!)$$

We need to show that there exist two constants c and n_0 such that:

$$0 \le n! \le c \times (n+1)!$$
 for all $n \ge n_o$

If we divide by n! the inequality becomes:

$$0 \le 1 \le c \times (n+1)$$
 because $(n+1)! = (n+1) \times n!$

Hence, we can pick c=1 and $n_o=1$

1.5
$$(n+b)^2 = \Theta(n^2)$$
 for any $b \ge 1$.

1. We need to show that there exist two constants c and n_0 such that:

$$0 \le (n+b)^2 \le cn^2$$
 for all $n \ge n_o$ and for any $b \ge 1$.

Since
$$(n+b)^2 = n^2 + 2bn + b^2$$
:

$$n^2 + 2bn + b^2 \le n^2 + 2bn^2 + b^2n^2 \le (1 + 2b + b^2)n^2$$
 for all $n \ge 1$

We can pick
$$c = 1 + 2b + b^2$$
 and $n_o = 1$

This means that $(n+b)^2 = O(n^2)$ for any $b \ge 1$.

2. We need to show that there exist two constants c and n_0 such that:

$$0 \le cn^2 \le (n+b)^2$$
 for all $n \ge n_o$ and for any $b \ge 1$.

We can pick c=1 and $n_o=1$

$$0 < n^2 < n^2 + 2bn + b^2$$

This is true because $n \ge 1$ and $b \ge 1$

1.6
$$\sum_{i=1}^{n} (2i-1) = \Theta(n^2)$$

The left hand side is equivalent to:

$$2 \times \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = n(n+1) - n = n^{2} + n - n = n^{2}$$

Therefore, the question is to show that $n^2 = \Theta(n^2)$ Which is true given the properties f = O(f) and $f = \Omega(f)$, which imply that $f = \Theta(f)$

1.7
$$\sum_{i=0}^{n} 2^i = \Theta(2^n)$$

The left hand side is equivalent to $2^{n+1} - 1$. Hence, we need to show that:

1. There exist two constants c and n_0 such that $0 \le 2^{n+1} - 1 \le c \times 2^n$ for all $n \ge n_0$

If we pick c=2, the inequality becomes:

$$0 \le 2^{n+1} - 1 \le 2^1 \times 2^n \le 2^{n+1}$$
, which is clearly true for all $n \ge 1$.

This means that $2^{n+1} - 1 = O(2^n)$

2. There exist two constants c and n_0 such that $0 \le c \times 2^n \le 2^{n+1} - 1$ for all $n \ge n_0$

If we pick c=1 and $n_o=1$, the inequality becomes:

$$0 \le 2^n \le 2^{n+1} - 1 \le 2 \times 2^n - 1 \le 2^n + (2^n - 1)$$
, which is true for all $n \ge 1$ because $2^n - 1 \ge 1$ for all $n \ge 1$.

This means that $2^{n+1}-1=\Omega(2^n)$

1.8
$$3n+1=o(n^2)$$

We will prove the following statement instead: $3n + 1 \neq \Omega(n^2)$.

Let's assume for the sake of contradiction that $3n+1=\Omega(n^2)$. I.e., there exist two constants c>0 and $n_0>0$ such that: $0\leq cn^2\leq 3n+1$ for all $n\geq n_o$

Dividing the inequality by n gives: $0 \le cn \le 3 + \frac{1}{n}$ for all $n \ge 1$

This statement is clearly false because:

- 1. cn is an increasing function that approaches ∞ regardless of the value of c.
- 2. The values of $3 + \frac{1}{n}$ are between 4 and 3.
- **1.9** $k^n = o((k+1)^n)$, where k is a constant integer that is > 1.

We will prove the following statement instead: $(k+1)^n \neq O(k^n)$.

Let's assume for the sake of contradiction that $(k+1)^n = O(k^n)$. I.e., there exist two constants c > 0 and $n_0 > 0$ such that: $(k+1)^n \le ck^n$ for all $n \ge n_0$

Since
$$(k+1)=k(\frac{1}{k}+1)$$
, the left hand side = $k^n(\frac{1}{k}+1)^n$

Dividing both sides by k^n gives: $(\frac{1}{k}+1)^n \le c$

This is clearly false because the left side of the inequality is strictly increasing while the right side is a constant. Regardless of what the value of c is, the left hand side must at some point become larger than c.

1.10
$$3n^2 + 1 = \omega(n)$$

We will prove the following statement instead: $3n^2 + 1 \neq O(n)$.

Let's assume for the sake of contradiction that $3n^2+1=O(n)$. I.e., there exist two constants c>0 and $n_o>0$ such that: $0\leq 3n^2+1\leq cn$ for all $n\geq n_o$

Dividing the inequality by n gives: $0 \le 3n + \frac{1}{n} \le c$ for all $n \ge 1$

This statement is false because $3n + \frac{1}{n}$ is an increasing function that approaches ∞ as n increases and c is a constant.

2.1
$$2^{\frac{1}{n}}$$
, $2^{\log n}$, 2^n , $2^{2^{\log n}}$, 2^{n^2}

Notes.

- The values for $2^{\frac{1}{n}}$ decrease when n increases (from 2 when n=1 to 1 when $n=\infty$). This makes the function $\Theta(1)$ (i.e. there is a constant that is always $\geq 2^{\frac{1}{n}}$ and there is a constant that is always $\leq 2^{\frac{1}{n}}$).
- $2^{\log_2 n} = n^{\log_2 2} = n$
- $2^{n^2} = (2^n)^n$
- $2^{2^{\log 2}} = 2^n$

2.2
$$\log(\log n)$$
, $\log n$, $\log(n^{\log n})$, $\log^2 n$, $\log^4 n$, n

Notes.

- $\bullet \quad \log(n^{\log n}) = \log^2 n$
- One way to reason about this is to give the function $\log n$ the name x (for example). This makes the functions as follows: $\log x$, x, $\log(n^x) = x^2$, x^2 , x^4 , 2^x

2.3
$$2^{3000}$$
, $7^{\log n}$, 1.0001^n , 2^n , $5^{\frac{n}{2}}$

Notes.

•
$$7^{\log_2 n} = n^{\log_2 7} = n^{2.81}$$

•
$$5^{\frac{n}{2}} = \sqrt{5}^n \approx 2.236^n$$

2.4
$$\frac{1}{2^n}$$
, $\frac{1}{n}$, n , $(\log n)!$, $(\log n)^{\log n}$, 2^n

Notes.

- The values for $\frac{1}{n}$ decrease from 1 to 0 as the values of n increase. Therefore $\frac{1}{n}=O(1)$ (i.e. There is a constant that is always $\geq \frac{1}{n}$).
- The values for $\frac{1}{2^n}$ decrease from 1 to 0 as the values of n increase. Therefore $\frac{1}{2^n} = O(1)$.
- One way to reason about this is to give the function $\log n$ the name x (for example). This makes the functions as follows:

$$n = 2^{\log n} = 2^x$$

$$(\log n)! = x!$$

$$(\log n)^{\log n} = x^x = (2^{\log x})^x = 2^{x \log x}$$

$$2^n = 2^{2^{\log n}} = 2^{2^x}$$

3

f	g	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$	f = o(g)	$f = \omega(g)$
kn	n	✓	✓	✓		
kn	k		✓			✓
$n^{\log k}$	$k^{\log n}$	1	1	1		
$\log^k n$	n	1			1	
k^n	k^{n+k}	√	✓	1		
k^n	k^{kn}	✓			1	
n^k	n^{k+1}	✓			✓	
k^k	k+1	1	1	✓		
$n^{rac{1}{k}}$	$\log_k(n)$		1			1

4.1 If f(n) = O(n) and $g(n) = O(n^2)$ then f grows slower than g.

Let f(n) = n and $g(n) = \log(n)$, then:

n = O(n) is true and $\log(n) = O(n^2)$ but n does not grow slower than $\log(n)$.

4.2 If
$$f(n) = O(1)$$
, then $f(n) = \Theta(1)$.

Let
$$f(n) = \frac{1}{n}$$
.

- Since $0 \le f(n) \le 1$, We can multiply 1 by a constant c such that $0 \le f(n) \le c \times 1$ for all $n \ge 0$. Hence, f(n) = O(1).
- Since f(n) approaches 0 when n approaches ∞ , no constant c>0 can be multiplied by 1 such that $0 \le c \times 1 \le f(n)$ for all $n \ge$ some n_o . Hence, $f(n) \ne \Omega(1)$.

4.3 For any two functions f(n) and g(n), f(n) = O(g(n)) or $f(n) = \Omega(g(n))$.

Let
$$f(n) = cos(n)$$
 and $g(n) = sin(x)$.

Multiplying any of the two functions by a constant does not make it always greater or always less than the other function.

4.4 If
$$f(n) = O(g(n))$$
, then $2^f = O(2^g)$

Let
$$f(n) = \log_2 n$$
 and $g(n) = \frac{1}{2} \log_2 n$.

It is clear that $\log_2 n = O(\frac{1}{2}\log_2 n)$ (pick c=2 and $n_o=1$). However, $2^{\log_2 n} = n \neq O(2^{\frac{1}{2}\log_2 n})$, because $2^{\frac{1}{2}\log_2 n} = \sqrt{n}$.