NISQ+: Boosting quantum computing power by approximating quantum error correction

Yichao Yu

Ni Group

Apr. 26, 2020

Stabilizer operators

Stabilizer operators

Error and stabilizer

Error and stabilizer

Qubit state: $X|\psi\rangle = |\psi\rangle$ Error: σ_a^z

Error and stabilizer

Qubit state:
$$X|\psi\rangle = |\psi\rangle$$

Error: σ_a^z

$$X\sigma_a^z|\psi\rangle = -\sigma_a^z X|\psi\rangle = -\sigma_a^z|\psi\rangle$$

$$Z = \prod_{i=a,b,c,d} \sigma_i^z$$

$$Z = \prod_{i=a,b,c,d} \sigma_i^z$$

a	b	c	d	ancilla	$\langle Z \rangle$
$ 0\rangle$	1				
$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	1>	-1
$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	1
$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	1>	-1
$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	1

$$Z = \prod_{i=a,b,c,d} \sigma_i^z$$

i=a,b,c,d

Syndrome

Syndrome

Benign ambiguity

Benign ambiguity

Benign ambiguity

Real ambiguity

Minimal number of qubits required to form a logical error.

Minimal number of qubits required to form a logical error. i.e. system size.

Minimal number of qubits required to form a logical error. i.e. system size.

Larger code distance

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Minimal number of qubits required to form a logical error. i.e. system size.

Larger code distance

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Minimal number of qubits required to form a logical error. i.e. system size.

Larger code distance

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Minimal number of qubits required to form a logical error. i.e. system size.

Larger code distance

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Scaling

Scaling

