Практикум 2.2. Приложения определенного интеграла

Цель работы — научиться использовать средства пакета MatLab для вычисления площадей плоских фигур, длин дуг, объемов тел вращения.

Продолжительность работы - 2 часа.

Оборудование, приборы, инструментарий – работа выполняется в компьютерном классе с использованием пакета MatLab.

Порядок выполнения

- 1. Работа начинается с выполнения общих упражнений. Их наличие в отчете является допуском к сдаче индивидуального зачетного задания по практикуму.
- 2. После выполнения общих упражнений выполняются индивидуальные задания; результаты заносятся в отчет.
- 3. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения» и упражнения для самостоятельной работы. Отчёт представить в виде документа Microsoft Word, имя файла (пример): mp_10_Ivanov_P_01_s_1 (факультет_группа_Фамилия студента_Инициал_номер лабораторной, семестр). Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения/

Краткие теоретические сведения

и практические упражнения

1. Вычисление площадей фигур, ограниченных кривыми, заданными уравнениями в декартовых координатах.

Если интегрируемая на отрезке [a;b] функция f(x) неотрицательна на нем, то криволинейная трапеция, ограниченная прямыми $x=a,\ x=b,\ y=0$ и графиком функции y=f(x), имеет площадь, равную $S=\int\limits_{-b}^{b}f(x)dx$.

Упражнение 1. Построить график функции $y = x\cos x$ на отрезке $[0;\pi/2]$. Вычислить площадь фигуры, ограниченной графиком функции и линиями x = 0, $x = \frac{\pi}{2}, \ y = 0$.

Если фигура ограничена кривыми y = f(x) и y = g(x) пересекающимися в точках A(a;f(a)) и $B(b;f(b)), \ f(x) \geq g(x)$ при $x \in [a;b],$ то ее площадь равна $S = \int\limits_a^b \left(f(x) - g(x)\right) dx$ (можно считать, что она ограничена еще и прямыми x = a, x = b).

Упражнение 2. Построить графики функций $y = x^2 + 2x$ и $y = 7 - 4x - x^2$. Найти точки пересечения графиков. Вычислить площадь фигуры, ограниченной графиками.

2. Вычисление площади фигуры, ограниченной кривой, заданной параметрически.

Если плоская фигура ограничена прямыми $x=a,\ x=b\ (a < b\),\ y=0$ и графиком функции, заданной параметрическими уравнениями $y=y(t),\ x=x(t),$ $a=x(t_1),\ b=x(t_2),\$ и функция y(t) неотрицательна на отрезке $t_1;t_2$, то площадь

фигуры вычисляется по формуле $S = \int_{t_1}^{t_2} y(t) x'(t) dt$. Изменение параметра t от t_1 до t_2 должно соответствовать обходу контура по часовой стрелке.

Для построения графика функции, заданной параметрически нужно задать изменение параметра t и функции x(t), y(t).

Пример 1.

```
from numpy import *
import matplotlib.pyplot as plt
t=linspace(0,2*pi,100)
x=cos(t)+1
y=sin(t)
plt.plot(x,y)
plt.grid(True)
```

Упражнение 3. Построить графики функций, заданные параметрически. Вычислить площадь фигуры, ограниченной графиками. Упражнение проделать с использованием Python и аналитически, сопоставить результаты:

- a) $x = \cos t$, $y = \sin t$, $t \in [0, 2\pi]$;
- 6) $x = 2\cos t$, $y = 3\sin t$, $t \in [0; 2\pi]$.
- 3. Вычисление площади фигуры, ограниченной кривой, заданной уравнением в полярных координатах.

Если фигура на плоскости ограничена двумя лучами, выходящим из начала координат $\phi = \alpha$ и $\phi = \beta$, и кривой, заданной в полярных координатах интегрируемой на отрезке функцией $r = r(\phi) \ge 0$, то эта фигура имеет площадь, равную

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) \, d\varphi.$$

Построение графика функции, заданной в полярных координатах можно свести к построению графика параметрически заданной функции.

Пример 2. Построить график функции $r = \varphi$, $0 \le \varphi \le 2\pi$, заданной в полярных координатах.

```
from numpy import *
import matplotlib.pyplot as plt
t=linspace(0,2*pi,100)
r=t
x=r*cos(t)+1
y=r*sin(t)
plt.plot(x,y)
plt.grid(True)
```

Упражнение 4. Построить фигуру, ограниченную графиком логарифмической спирали $r=e^{\phi}$ и прямыми $\phi=0$, $\phi=2\pi$. Найти площадь фигуры.

4. Вычисление длины дуги.

Если дуга кривой задана **явным образом** y = y(x), $a \le x \le b$ где y(x)- непрерывно дифференцируемая на отрезке [a;b] функция, то ее длина вычисляется по формуле $s = \int\limits_{a}^{b} \sqrt{1 + (y'(x))^2} \ dx$.

Упражнение 5. Найти длину дуги параболы $y = x^2$, от точки A(1;1) до точки B(2;4).

Если дуга кривой задана *параметрическими уравнениями* y = y(t), x = x(t), $t_1 \le t \le t_2, \,$ где функции y(t) и x(t) - непрерывно дифференцируемые на отрезке $\begin{bmatrix} t_1, t_2 \end{bmatrix}, \,$ и y'(t) и x'(t) не обращаются одновременно в $0 \,$ (т.е. $(y'(t))^2 + (x'(t))^2 \ne 0$ при всех $t \in \begin{bmatrix} t_1, t_2 \end{bmatrix}$), то длина дуги вычисляется по формуле

$$s = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

Упражнение 6. Найти длину замкнутой кривой, заданной параметрическими уравнениями $x = 2\cos t, \ y = 3\sin t, \ t \in [0;2\pi].$

Если дуга кривой задана в *полярных координатах* уравнением $r = r(\phi), \, \phi \in [\alpha; \beta], \,$ где функция $r(\phi)$ непрерывно дифференцируема на отрезке $\phi \in [\alpha; \beta], \,$ то длина дуги вычисляется по формуле

$$s = \int_{\alpha}^{\beta} \sqrt{(r(\varphi))^2 + (r'(\varphi))^2} dt.$$

Упражнение 7. Вычислить длину замкнутой кривой, задаваемой уравнением $r = 4(1 + \cos \varphi)$.

5. Вычисление объема тела вращения.

Объем тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной прямыми $x=a,\ x=b,\ y=0$ и графиком неотрицательной непрерывной на отрезке $\left[a;b\right]$ функции y=f(x), равен $V=\pi\int\limits_{a}^{b}y^{2}(x)dx$.

Объем тела, образованного вращением вокруг оси Oy криволинейной трапеции, ограниченной прямыми $x=a, \quad x=b, \quad y=0$ и графиком неотрицательной непрерывной на отрезке $\left[a;b\right]$ функции y=f(x), равен $V=2\pi\int\limits_a^b xy(x)\,dx$.

Упражнение 8. Вычислить объем тела, полученного при вращении криволинейной трапеции, ограниченной графиком функции $y = \sin x$ и прямой y = 0 ($x \in [0; \pi]$):

а) относительно оси Ox; б) относительно оси Oy.

Индивидуальные задания

Задание 1. Вычислить длину дуги кривой, сделать геометрическую иллюстрацию.

Номер	Индивидуальное задание				
компьютера	тиндивидуальное задание				
1.	Вычислить длину дуги кривой $y = \frac{1}{\sin 2x}$ между точками с абсцис-				
	сами $x_1 = \frac{\pi}{6}$ и $x_2 = \frac{\pi}{4}$.				
2.	Вычислить длину дуги логарифмической спирали				
	$\rho = 4e^{2\varphi}$, расположенной между двумя окружностями $\rho = 12$ и				
	$\rho = 20$				
3.	Вычислить длину дуги внутри кардиоиды $\rho = 1 + \cos \varphi$, лежащей				
	справа от окружности $\rho = \frac{3}{4}\cos \varphi$.				
4.	Вычислить длину дуги внутри окружности $\rho = 6\cos\varphi$, лежащей вне окружности $\rho = 3\sqrt{2}$				
5.	Вычислить длину дуги $\rho = 3\sqrt{2}$, лежащей вне окружности $\rho = 6\sin \varphi$.				
6.	Вычислить длину дуги лемнискаты $\rho^2 = 2\cos 2\varphi$, лежащей вне				
	окружности $\rho = 1$				

	_			
7.	Вычислить длину дуги $y = \frac{1}{\cos 2x}$ между точками с абсциссами			
	$x_1 = \frac{\pi}{6}$ if $x_2 = \frac{\pi}{3}$.			
8.	Вычислить длину дуги окружности $\rho = \cos \varphi$, лежащей вне кардиоиды $\rho = (1 - \cos \varphi)$			
9.	Вычислить длину дуги лемнискаты $\rho^2 = \cos 2\varphi$, лежащей внутри окружности $\rho = \sqrt{2} \sin \varphi$			
10.	Вычислить длину дуги окружности $\rho = 4\cos\varphi$, лежащей внутри окружности $\rho = 2\sqrt{2}$.			
11.	Вычислить длину дуги кривой $y^2 = 4x^3$, лежащей внутри окружности $x^2 + y^2 = \frac{3}{2}$.			
12.	.Вычислить длину дуги кривой $x = 2\cos^3 t,$ $y = 2\sin^3 t$ $t \in [0; 2\pi]$			
13.	.Вычислить длину дуги кривой: $ x = 4(\cos t + t \sin t), $ $ y = 4(\sin t - t \cos t) $ $ t \in [0; 2\pi] $			
14.	Вычислить длину дуги кривой $x = t - \sin t$, $y = 1 - \cos t$. $t \in [0; 2\pi]$			
15.	Вычислить длину дуги кардиоиды $\rho = 3(1-\cos\varphi)$, лежащей внутри окружности $\rho = \frac{3}{2}$.			
16.	Вычислить длину дуги окружности $\rho = 2 \sin \varphi$, лежащей внутри окружности $\rho = 1$			
17.	Вычислить длину дуги окружности $\rho = 1$, лежащей внутри кардиоиды $\rho = 2(1 + \cos \varphi)$.			
18.	Вычислить длину дуги окружности $\rho = 4\cos\varphi$, лежащей справа от кривой $\rho = \frac{3}{\cos\varphi}$			
19.	Вычислить длину дуги кардиоиды $\rho = 1 + \cos \varphi$, лежащей вне кардиоиды $\rho = 1 - \cos \varphi$.			
20.	Вычислить длину дуги окружности $\rho = \cos \varphi$, лежащей вне окружности $\rho = \sin \varphi$			

21.	Вычислить длину дуги окружности $\rho = \frac{3}{2}$, лежащей вне кардиоиды $\rho = 3(1-\cos\varphi)$			
22.	Вычислить длину дуги правой ветви лемнискаты $\rho^2 = 9\cos 2\varphi$, лежащей вне окружности $\rho = \sqrt{6}\cos \varphi$			
23.	Вычислить длину дуги лемнискатами $\rho^2 = 4\cos 2\varphi$.			
24.	Вычислить длину дуги окружности $\rho = \sqrt{3} \sin \varphi$, лежащей вне кардиоиды $\rho = (1 - \cos \varphi)$			
25.	Вычислить длину кривой $y = \frac{1}{\sin 2x}$ между точками с абсциссами $x=0$ и $x=\overline{\bf 8}$			
26.	Вычислить длину кривой: $x = 2(3\cos t - \cos 3t),$ $y = 2(3\sin t - \sin 3t)$ $t \in \left[0; \frac{\pi}{2}\right]$			
27.	Вычислить длину кривой $\rho = 3(1 + \sin \varphi)$.			
28.	Вычислить длину дуги окружности $\rho = 4\cos\varphi$, лежащей справа от кривой $\rho = \frac{3}{\cos\varphi}$			

Задание 2. Построить фигуру, ограниченную кривыми. Вычислить объем тела, полученного при вращении фигуры

а) относительно оси Ox;

б) относительно оси Оу.

1.	$y = \arcsin x$, $0 \le x \le 1$.	15.	$y = \arccos x, -1 \le x \le 1.$
2.	$y = \sqrt{x+2}$, $y = -x-2$, $x = 0$.	16.	$y = \sqrt{4 - x} \;, \; y = 0 \;.$
3.	$y=x+2, y=2-\sqrt{x}, y=0.$	17.	$y=x+2, y=4+\sqrt{x}, y=0.$
4.	$y = \sqrt[3]{x}$, y=0, x=8.	18.	$y = x^3$, y=0, x=2.
5.	$y = 2 - \sqrt{x}$, $y = \frac{1}{4}x^2 - 4$, $x = 0$.	19.	$y = 6 - \sqrt{x} , y = 0.$
6.	$y = x^3, y = \sqrt[3]{x} \ .$	20.	$y = x^3, y = \sqrt[5]{x} .$
7.	y=ln(x+1), x=5, y=0.	21.	$y=\ln(x+7), x=4, y=0.$
8.	$y = (x-2)^2$, $y = 4-x^2$.	22.	$y = (x-3)^2$, $y = 9-x^2$.
9.	$y = 2 - \frac{x^2}{2}$, $y = 4 - \frac{5x^2}{2}$.	23.	$y = 2 - \frac{x^2}{2}$, $y = 4 - \frac{5x^2}{2}$.
10.	$y = e^x - 1$, $y=2$, $x=0$.	24.	$y = 2^x - 1$, $y=2$, $x=0$.
11.	$(y-2)^2 = 4-x$, $x=0$.	25.	$(y-3)^2 = 5-x$, x=0.

12.	y=arctg x , $y=$ x-1, $y=$ 0.	26.	y=arcetg x , $y=$ x, $x=$ 0.
13.	$y = \sqrt{2x}$, y=4-x, x=0.	27.	$y = \sqrt{5x}$, y=10-x, x=0.
14.	y=lnx, y=2-lnx, y=0.	28.	y=2lnx, y=4-lnx, y=0.

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
- 2. Самостоятельно выполнить упражнения:

Упражнение 1С. Построить графики функций $y = x^2 + 1$, y = 3 - x, y = 1. Вычислить площадь фигуры, ограниченной графиками всех трех функций. График оформить: сделать одинаковый масштаб по осям, нанести сетку, пометить оси координат, сделать заголовок.

Упражнение 2С. Построить график астроиды $x = \cos^3 t$, $y = \sin^3 t$, $t \in [0; 2\pi]$. Вычислить площадь фигуры, ограниченной графиком. График оформить: сделать одинаковый масштаб по осям, нанести сетку, пометить оси координат, сделать заголовок.

Упражнение 3С. Построить фигуру, ограниченную кривыми r=1, r=2 и лучами $\varphi=\frac{\pi}{4}$, $\varphi=\frac{3\pi}{4}$. Найти ее площадь.

Упражнение 4С. Найти длину замкнутой кривой, заданной параметрическими уравнениями $y = \sin^3 t$, $x = \cos^3 t$, $t \in [0; 2\pi]$.