Lecture 4: Model Selection Roundup and Examples

Francis J. DiTraglia March 19, 2014

1 Time Series Examples

We won't go through all of the specifics here since they're almost identical to the material from above. Some more details can be found in McQuarrie and Tsai (1998). The AR and VAR models are straightforward since, in the conditional formulation, they're just univariate and multivariate regression, respectively.

1.1 Autoregressive Models

Cross-Validation for AR The way we described it above, CV depended in independence. How can we adapt it for AR models? Roughly speaking, the idea is to use the fact that dependence dies out over time and treat observations that are "far enough apart" as approximately independent. Specifically, we choose an integer value h and assume that y_t and y_s can be treated as independent as long as |s-t| > h. This idea is called "h-block cross-validation" and was introduced by Burman, Chow & Nolan (1994). As in the iid version of leave-one-out cross-validation, we still evaluate a loss function by predicting one witheld observation at a time using a model estimated without it. The difference is that we also omit the h neighboring observations on each side

when fitting the model. For example, if we choose to evaluate squared-error loss, the criterion is

$$CV_h(1) = \frac{1}{T-p} \sum_{t=p+1}^{T} (y_t - \hat{y}_{(t)}^h)^2$$

where

$$\hat{y}_{(t)}^h = \hat{\phi}_{1(t)}^h y_{t-1} + \ldots + \hat{\phi}_{1(t)}^h y_{t-p}$$

and $\hat{\phi}_{j(t)}^h$ denotes the jth parameter estimate from the conditional least-squares estimator with observations y_{t-h}, \ldots, y_{t+h} removed. We still have the question of what h to choose. Here there is a trade-off between making the assumption of independence more plausible and leaving enough observations to get precise model estimates. Intriguingly, the simulation evidence presented in McQuarrie and Tsai (1998) suggests that setting h = 0, which yields plain-vanilla leave-one-out CV, works well even in settings with dependence.

The idea of h-block cross-validation can also be adapted to versions of cross-validation other than leave-one-out. For details, see Racine (1997, 2000).

1.2 Vector Autoregression Models

Write without an intercept for simplicity (just demean everything)

$$\mathbf{y}_{t} = \Phi_{1} \mathbf{y}_{t-1} + \ldots + \Phi_{p} \mathbf{y}_{t-p} + \epsilon_{t}$$

$$\boldsymbol{\epsilon}_{t} \stackrel{iid}{\sim} N_{q}(\mathbf{0}, \Sigma)$$

Conditional least squares estimation, sample size, etc.

$$FPE = \left| \widehat{\Sigma}_p \right| \left(\frac{T + qp}{T - qp} \right)^q$$

$$AIC = \log \left| \widehat{\Sigma}_p \right| + \frac{2pq^2 + q(q+1)}{T}$$

$$AIC_c = \log \left| \widehat{\Sigma}_p \right| + \frac{(T + qp)q}{T - qp - q - 1}$$

$$BIC = \log \left| \widehat{\Sigma}_p \right| + \frac{\log(T)pq^2}{T}$$

$$HQ = \log \left| \widehat{\Sigma}_p \right| + \frac{2\log\log(T)pq^2}{T}$$

Problems with VAR model selection

- 1. If we fit p lags, we lose p observations under the conditional least squares estimation procedure.
- 2. Adding a lag introduces q^2 additional parameters.

Cross-Validation for VARs In principle we could use the same h-block idea here as we did for for the AR example above. However, given the large number of parameters we need to estimate, the sample sizes witholding 2h + 1 observations at a time may be too small for this to work well.

1.3 Corrected AIC for State Space Models

Problem with VARs and state space more generally is that we can easily have sample size small relative to number of parameters. In this case AIC-type criteria don't work well. Suggestions for simulation-based selection.

Cavanaugh & Shumway (1997)