Reconnaissance de parole avec prise de son distante pour la domotique

Encadrants:

Dominique Fohr

Irina Illina

Denis Jouvet

Equipe

PAROLE

Etudiante:

Luiza Orosanu

Nancy, le 26 Juin 2011

Plan

- Contexte et problématique
- Notions générales
- Contexte du travail
- Étude paramétrage et modélisation
- Corpus parole
- Résultats d'expérimentations
- Conclusion

Plan

Contexte et problématique

La reconnaissance de la parole [2006; J.-P. HATON, C. CERISARA, D. FOHR, Y. LAPRIE, AND K. SMAILI]

Objectifs:

- la transcription
- la traduction
- faciliter l'exécution de commandes

Contraintes:

- la qualité du signal capté par les microphones
- la performance des outils de reconnaissance

Contexte et problématique

Domaines d'application:

- un environnement téléphonique avec une prise de son effectuée par le combiné téléphonique
- un environnement calme avec une prise de son de bonne qualité (telle que micro-casque) par exemple pour la dictée vocale
- un environnement domestique [2005; THIEBAUT-BRODIER] avec une prise de son à distance
- La proximité au microphone est une contrainte nécessaire au bon fonctionnement du système de reconnaissance de la parole

Contexte et problématique

Difficultés liées à l'application de la reconnaissances de la parole au domaine de la domotique :

- variabilité de la parole
- éloignement des locuteurs aux microphones
- bruit ambiant
- faire la distinction entre les commandes adressées à la centrale domotique et les conversations (résidents discutant entre eux, ...)
- atteindre un niveau de performance acceptable pour l'utilisateur

Plan

Modélisation pour la reconnaissance

Architecture d'un système de reconnaissance vocale:

Analyse du signal vocal

Paramétrage du signal audio (Analyse cepstrale MFCC)

Analyse Aurora: debruitage + MFCC

Modèles de Markov caché (HMM)

Modèles de Markov:

- automates probabilistes à états finis
- définis par deux processus stochastiques :
 - transitions
 - émission d'observations

Application au traitement de la parole:

- un modèle de Markov associé à chaque unité de parole
- l'émission d'une observation dépend seulement de l'état courant

Adaptation de modèles HMM

- Mise à jour de paramètres du modèle acoustique (HMM) afin d'améliorer la modélisation pour un nouveau locuteur ou pour un nouvel environnement
- Méthodes couramment utilisées [2001, Woodland]:
 - maximum a posteriori (MAP)
 - régression linéaire (MLLR)

Évaluation

Évaluation de performance d'un système de reconnaissance:

- Comparaison entre:
 - transcription de référence: les mots qui ont été prononcés
 - transcription hypothèse: les mots qui ont été reconnus par le système
- Critère d'évaluation par taux d'erreur:

$$WER = \frac{Substitutions + Omissions + Insertions}{Nombre \ de \ mots \ r\'ef\'erence}$$

Plan

Contexte du travail

Objectif:

 évaluer les performances d'un système de reconnaissance avec prise de son distante

Descriptif du travail:

- enregistrement de données à distance
- synchronisation des transcriptions de référence
- déterminer la configuration conduisant à une performance acceptable pour l'utilisateur

Plan

Étude paramétrage et modélisation

Analyse de l'influence des paramètres du systèmes de reconnaissance:

Analyse acoustique

impact de l'analyse acoustique du signal audio

Vocabulaire

- voc = domotique + 0.0k
- voc = domotique + 0.5k
- voc = domotique + 0.1K
- voc = domotique + 1k

impact du vocabulaire

Poids du modèle de langage

impact de poids du modèle de langage

Probabilité des fillers

fillers = modèles de bruit

impact de la probabilité des fillers

Adaptation modèles acoustiques

- Original
- adaptation MAP
- adaptation MLLR
- combinaisons MLLR + MAP

impact de l'adaptation de modèles acoustiques

Plan

Corpus domotique - spécification & enregistrement

Informations:

- correspondant à une liste de commandes domotiques (avec et sans le mot clé)
- Exemple de commande: « Majordome, allume la lumière. »

Conditions d'enregistrement:

- environnement: sans réverbération, peu de bruit ambiant (SNR de ~15dB)
 - les « fichiers en continu »: à une distance de 1 mètre
 - les « fichiers segmentés »: à une distance de 40cm

Utilisation:

- les « fichiers en continu »: données de test
- les « fichiers segmentés »: données de référence pour la synchronisation de transcriptions

Corpus domotique - transcriptions de référence

On dispose de: transcriptions de référence pour les « fichiers segmentés »

On a besoin de: transcriptions de référence pour les « fichiers en continu »

Synchronisation de transcriptions de référence:

- alignement élastique entre les « fichiers segmentés » et les « fichiers en continu »
 - trouver la position de chaque phrase dans le signal enregistré en continu à distance
 - sélectionner uniquement les phrases qui ont été bien prononcées

Corpus ESTER2 (Évaluation des Systèmes de Transcription enrichie d'Émissions Radiophoniques)

Informations:

- contient des bulletins d'information, manuellement transcrits
- divisé dans un ensemble d'apprentissage et un autre de développement

Conditions d'enregistrement :

- environnement: réel
- à une distance de 1 mètre

Utilisation:

données d'adaptation

Corpus ESTER2 - transcriptions de référence

On dispose de: transcriptions de référence pour les fichiers audio d'ESTER2

On a besoin de: transcriptions de référence pour les fichiers enregistrés à distance

Synchronisation de transcriptions de référence:

- alignement élastique entre les fichiers originaux et ceux enregistrés à distance
 - trouver la position de chaque segment de parole dans le signal enregistré à distance

Corpus CHIME (Computational Hearing in Multisource Environments)

Informations:

- contient des commandes artificielles
- divisé dans un ensemble d'apprentissage et un autre de développement

Conditions d'enregistrement:

- environnement: réel, réverbérant, plus ou moins bruité (valeurs SNR: -6dB, -3dB, 0dB, 3dB, 6dB, 9dB)
 - à distance

Utilisation:

données de test bruitées

Plan

Vocabulaire

Configuration

- analyse acoustique MFCC Sphinx
- le modèle acoustique non-adapté d'ESTER2
- différentes variantes de vocabulaire

meilleurs résultats (sur le corpus domotique) obtenus avec le vocabulaire limité à celui des commandes domotiques

Poids du modèle de langage

Configuration

- analyse acoustique MFCC Sphinx
- le modèle acoustique non-adapté d'ESTER2
- le vocabulaire domotique
- différentes variantes de poids du modèle de langage

la diminution du poids du modèle de langage améliore les résultats

Adaptation de modèle acoustique

Configuration

- analyse acoustique Sphinx
- le vocabulaire domotique
- différentes variantes de modèles acoustiques adaptés

les meilleurs résultats obtenus (sur le corpus domotique) avec les modèles adaptés par régression linéaire avec 1 ou 40 classes

Autres paramètres

Résultats avec des autres tests:

- la variation de *probabilité des fillers* n'apporte aucun gain au résultats
- l'utilisation d'un mot clé long et sonore au début de chaque phrase donne une petite amélioration des résultats
- les erreurs de reconnaissance sur le mot clé sont faibles (de l'ordre 10%)

Analyse acoustique

Configuration

- analyse acoustique MFCC Sphinx et MFCC Aurora (+phase debruitage)
- le modèle acoustique non-adapté d'ESTER2
- différentes variantes de vocabulaire

le paramétrage MFCC Aurora n'améliore pas les résultats obtenus par rapport au paramétrage MFCC Sphinx

Analyse acoustique

le paramétrage MFCC Aurora sur le corpus CHIME

le parametrage Aurora améliore les résultats pour le corpus CHIME

Rappel des questions posées

Questions posées au début du stage:

- comment paramétrer un signal acoustique enregistré à distance et possiblement couvert par bruit ambiant ?
- comment faire la différence entre les commandes adressées à la centrale domotique et les conversations (résidents discutant entre eux, ...) ?
- quels types de configurations, paramètres de reconnaissance et modèles de langage doivent être essayés afin de déterminer la configuration conduisant à des performances optimales du système de reconnaissance ?

Conclusion

D'après les résultats de nos expérimentations, afin d'améliorer la performance de reconnaissance il faut :

- utiliser le vocabulaire limité à la domotique,
- diminuer le poids du modèle de langage
- adapter les modèles acoustiques par régression linéaire avec 1 ou 40 classes
- utiliser un mot clé long et sonore au début de chaque commande domotique
- utiliser le paramétrage MFCC Aurora comme analyse acoustique du signaux collectés dans un environnement domestique bruyant.

Perspectives

Quelques points qu'il reste encore à aborder:

- le problème de détection des zones parole / non parole en milieu bruyant
- l'amélioration du modèle de langage, en le fabricant à partir d'un grand nombre d'exemples de commandes domotiques.

