Алгебра и геометрия

Лисид Лаконский

${\bf September}\ 2022$

Содержание

1	Алгебра и геометрия - 01.09.2022			2
	1.1	Комплексные числа		2
		1.1.1	Простейшие операции над комплексными числами	2
		112	Тригонометрическая форма комплексного числа	2

1 Алгебра и геометрия - 01.09.2022

1.1 Комплексные числа

Общий вид комплексного числа: z = a + ib, i — мнимая единица $(i^2 = -1); \overline{z} = a - ib$

1.1.1 Простейшие операции над комплексными числами

Сложение Пусть $z_1=a_1+ib_1,\ z_2=a_2+ib_2,\$ тогда $z_1\pm z_2=(a_1\pm a_2)+i(b_1\pm b_2)$ Некоторые частные случаи: $z+\overline{z}=2a$

Умножение Пусть $z_1=a_1+ib_1,\,z_2=a_2+ib_2,\,$ тогда $z_1*z_2=(a_1+ib_1)(a_2+ib_2)=a_1a_2+ib_1a_2+a_1ib_2+i^2b+b_2=(a_1a_2-b_1b_2)+i(b_1a_2+a_1b_2)$ Некоторые частные случаи: $z*\overline{z}=a^2+b^2$

Деление Пусть $z_1=a_1+ib_1,\,z_2=a_2+ib_2,\,$ тогда $\frac{z_1}{z_2}=\frac{(a_1+ib_1)}{(a_2+ib_2)}*\frac{(a_2-ib_2)}{(a_2-ib_2)}=\frac{a_1a_2-a_1ib_2+ib_1a_2-i^2b_1b_2}{a_2^2+b_2^2}=\frac{a_1a_2+b_1b_2+i(a_2b_1-a_1b_2)}{a_2^2+b_2^2}=\frac{a_1a_2+b_1b_2}{a_2^2+b_2^2}+i\,\frac{a_2b_1-a_1b_2}{a_2^2+b_2^2}$

1.1.2 Тригонометрическая форма комплексного числа

Тригонометрическая форма комплексного числа: $z=\rho(\cos\phi+i\sin\phi)$, где ρ — модуль (абсолютная величина) комплексного числа, $\rho=\sqrt{a^2+b^2}$, а ϕ — кратчайший угол поворота от оси ОХ до радиус-вектора: $\phi=\arg z= \arctan \frac{b}{a}$, где $a=\rho\cos\phi, b=\rho\sin\phi$

Умножение $z_1 * z_2 = \rho_1 \rho_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$

Возведение в степень $z^n = \rho_n(\cos n\phi + i\sin n\phi)$ — формула Муавра

Извлечение корня $\sqrt[n]{z}$ имеет п различных ответов, располагающихся в углах правильного п-угольника:

$$\sqrt[n]{z} = \sqrt[n]{p}\left(\cos\frac{\phi + 2\pi k}{n} + i\sin\frac{\phi + 2\pi k}{n}\right), k = 0, 1 \dots n - 1$$