WEEK 8 SUBMISSION

QUESTION 1:

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickness to be 13 mm)

ANSWER 1:

The result of the effect of applying different modifications will be as shown in the table:

S value	0.	84		0.10			0.84			0.10	
No of	Double	Double	Double	Double	Double	Triple	Triple	Triple	Triple	Triple	Triple
panes											
GAS	Argon	Krypton	Air	Argon	Krypton	Air	Argon	Krypton	Air	Argon	Krypton
U value	2.65	2.6	1.8	1.5	1.4	1.8	1.7	1.6	1	0.8	0.7
% of	5.4	7.2	35.7	46.4	50	35.7	39.2	42.8	64.3	71.4	75
change											

QUESTION 2:

Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

Table 10	Peak I	rradiance.	W/m^2

					L	atitud	le				
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°	
North	E_D	125	106	92	84	81	85	96	112	136	
	E_d	128	115	103	93	84	76	69	62	55	
	E_t	253	221	195	177	166	162	164	174	191	
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361	
	E_d	177	169	162	156	151	147	143	140	137	
	E_t	637	618	599	581	563	546	529	513	498	
East/West	E_D	530	543	552	558	560	559	555	547	531	
	E_d	200	196	193	190	189	188	187	187	187	
	E_t	730	739	745	748	749	747	742	734	724	
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	51	
	E_d	204	203	203	204	205	207	210	212	21:	
	E_t	485	531	572	609	641	670	695	715	732	
South	E_D	0	60	139	214	283	348	408	464	515	
	E_d	166	193	196	200	204	209	214	219	225	
	E_t	166	253	335	414	487	557	622	683	740	
Horizontal	E_D	845	840	827	806	776	738	691	637	574	
	E_d	170	170	170	170	170	170	170	170	170	
	E_t	1015	1010	997	976	946	908	861	807	744	

Table 13	Fenestration Solar Load Factors FF _s						
Exposure	Single Family Detached	Multifamily					
North	0.44	0.27					
Northeast	0.21	0.43					
East	0.31	0.56					
Southeast	0.37	0.54					
South	0.47	0.53					
Southwest	0.58	0.61					
West	0.56	0.65					
Northwest	0.46	0.57					
Horizontal	0.58	0.73					

ANSWER 2:

Since the cooling design temperature $T_{cooling}=24^{\circ}C$, and the heating design temperature $T_{heating}=20^{\circ}C$, therefore;

 $\Delta T_{cooling} = 31.9^{\circ}C - 24^{\circ}C = 7.9^{\circ}C = 7.9^{K}$

 Δ Theating=20°C-(-4.8)°C=24.8°C=24.8K

DR=11.9°C=11.9K

1. Fixed window on the west side.

Cooling load:

CFwindowwest(heattransfer) = Uwindowwest(Δ Tcooling - 0.46DR) = 2.84(7.9 - 0.46*11.9) = 6.9W/m²

PXIwindowwest=ED+Ed=559+188=747

SHGC=0.54

No internal shading on IAC=1

FFs=0.56

CFwindowwest(irradiation)=PXIwindowwest*SHGC*IAC*FFs=747*0.54*1*0.56=225.9

CFwindowwest = CFwindowwest(heattransfer) + CFwindowwest(irradiation) = 6.9 + 225.9 = 232.8W/m²

 $Q \ windowwest = A \ windowwest * CF \ windowwest = 14.4 * 232.8 = 3352.3W$

Heating load:

 $Q \ windowwest = A \ windowwest = A \times U \ windowwest \\ \Delta Theating = 14.4 \times 2.84 \times 24.8 = 1014.0W$

If the window frame was changed into aluminum, then;

Uwindowwest=3.61W/m² K, SHGC=0.56

CF'windowwest(heattransfer)=U'windowwest (ΔT -0.46DR)=3.61(7.9-0.46*11.9)=8.7W/m² CF'windowwest(irradiation)= PXIwindowwest*SHGC'*IAC*FFs=747*0.56*1*0.56=234.3W/m²

Cooling load

 $\label{eq:continuous} Q'\text{windowwest} = A*CF'\text{windowwest} = A(CF'\text{windowwest(heattransfer)} + CF'\text{windowwest(irradiation)}) \\ = 14.4*(8.7+234.3) = 3499.2W$

Heating load

 $Q'windowwest = A*HF'windowwest = A*U'windowwest \Delta Theating = 14.4*3.61*24.8 = 1289.2W$

2. Fixed window on the south side.

Cooling load:

 $CF windows outh (\text{$\Delta$Tcooling-0.46DR}) = 2.84 (7.9-0.46*11.9) = 6.9 \text{W/m}^2 + 2.84 (7.9-0.46*11.9) = 6.9$

PXIwindowsouth=ED+Ed=348+209=557

SHGC=0.54

No internal shading on IAC=1

FFs=0.47

CFwindows outh (irradiation) = PXI windows outh *SHGC*IAC*FFs = 557*0.54*1*0.47 = 141.4

 $CFwindowsouth = CFwindowsouth \ (heattransfer) + CFwindowsouth \ (irradiation) = 6.9 + 141.4 = 148.3 W/m^2 + 148.3 W/m$

Q windowsouth=A windowsouth*CF windowsouth=3.6*148.3=533.9W

Heating load:

O windowsouth=A windowsouth*HF windowsouth=A*U windowsouth Δ Theating=3.6*2.84*24.8=253.6W

If the window frame was changed into aluminum, then;

Uwindowsouth=3.61W/m2 K, SHGC=0.56

CF'windowsouth (heattransfer)=U'windowsouth (ΔT -0.46DR)=3.61(7.9-0.46*11.9)=8.7W/m² CF'windowsouth (irradiation)= PXIwindowsouth*SHGC'*IAC*FFs=557*0.56*1*0.47=146.6W/m²

Cooling load

 $\label{eq:continuous} Q'\text{windowsouth} = A*CF'\text{windowsouth} = A(CF'\text{windowsouth (heattransfer)} + CF'\text{windowsouth (irradiation)}) \\ = 3.6*(8.7+146.6) = 559.1 \text{W}$

Heating load

 $Q'windows outh = A*HF'windows outh = A*U'windows outh \Delta Theating = 3.6*3.61*24.8 = 322.3W$

3. Operable window on the south side.

Cooling load:

CFwindow'south(heattransfer)=Uwindow'south(Δ Tcooling-0.46DR)=2.87(7.9-0.46*11.9)=7W/m² PXIwindow'south=ED+Ed=348+209=557

SHGC=0.46

No internal shading on IAC=1

FFs=0.47

CF windows outh (irradiation) = PXI windows outh *SHGC*IAC*FFs = 557*0.46*1*0.47 = 120.4

 $CFwindow's outh = CFwindow's outh (heattransfer) + CFwindow's outh (irradiation) = 7 + 120.4 = 127.4 \text{W/m}^2$

Q window'south=A window'south*CF window'south=3.6*127.4=458.7W

Heating load:

 $Qwindow's outh = A window's outh + HF window's outh = A*U windows' outh \Delta Theating = 3.6*2.87*24.8 = 256.2W$

If the window frame was changed into aluminum, then;

Uwindow'south=4.62W/m K, SHGC=0.55

CF'windows'outh (heattransfer)=U'window'south (ΔT -0.46DR)=4.62(7.9-0.46*11.9)=11.2W/m² CF'window'south (irradiation)= PXIwindow'south*SHGC'*IAC*FFs=557*0.55*1*0.47=144W/m² CF'window'south*SHGC'*IAC*FFs=557*0.55*1*0.47=144W/m² CF'window'south*SHGC'*IAC*FFs=557*0.47=144W/m² CF'wi

Cooling load

 $\label{eq:continuous} Q'window's outh = A*CF'window's outh = A(CF'window's outh (heattransfer) + CF'window's outh (irradiation)) \\ = 3.6*(11.2+144) = 558.7W$

Heating load

 $Q'window's outh = A*HF'window's outh = A*U'window's outh \Delta The ating = 3.6*4.62*24.8 = 412.5W$