Ain Shams University
Faculty of Computer and Information Sciences
Computer Science Department
Final Exam 2017-2018
Prof. Zaki Taha
Dr. Sally S.Ismail

First Year - Second Term
Date: May 31st, 2018
Time: 180 minutes
Course: CSW150
Total: 90 points

Fundamentals of Structured Programming Using C++

Please attempt ALL questions, separate them clearly, and think before you write.

QUESTION (1)		(10 points) (20 mints)	
1.1 Type True/False in front of each statement and CORRECT the false ones. Use the			
following template table for your answer.			
Answer	Correction of False statements		
1.1. True/False			
1.2. True/False			
(1) According to <u>Visual Studio compiler</u> , this code is accepted:			
const double $n=3$; int $myArr[n]=\{0\}$; (F)			
const \underline{int} n=3; int myArr[n]={0};			
(2) If we input the following name "Bill James" to the console, the output would be "Bill Jame".			
<pre>struct Date{ int year; int month; int day;};</pre>			
<pre>struct Person{ char name[10]; Date birthDay;};</pre>			
$\label{eq:cond} \textbf{void main} () \ \{ \texttt{Person Bill; cin} > \texttt{Bill.name; cout} < \texttt{endl} < \texttt{Sill.name} < \texttt{cendl; } \big(F \big) \\$			
Bill			
(3) Recursive functions work faster than their iterative counterparts.			
The opposite			
(4) Arguments are variables that are passed to functions during function call.			
(5) C++ is considered a low-level language.			
High-Level			
(6) The following code segment outputs <i>rubbish</i> on the console :			
<pre>struct Examstruct { int num1, num2;} var1;</pre>			
<pre>void main() {cout<<v< pre=""></v<></pre>	(F)		
Zero			
(7) Overloaded functions are functions having the same name and the same formal parameters.			
(F)			
Different Formal Paramete			
(8) To avoid the existence of a <i>Dangling</i> Pointer we should delete the dynamically allocated			
pointer. (F)			
Set Pointer to Null after deletion			
(9) Using methods/functions in your program is a way of applying <i>Divide and Conquer</i>			
technique. (T) (10) The following statement de allocates 1D dynamic array:			
(10) The following statement de-allocates 1D dynamic array: delete [larr; (T)			
delete []arr; QUESTION (2)		(15 points) (20 mints)	
QUESTION (2)		(13 points) (20 mints)	

Choose the correct answer (ONLY ONE). (5 points each) PLEASE FOLLOW THIS ANSWER FORMAT:

Question Number	Answer	
2.1	Your choice letter	
2.2	Your choice letter	

(1) What is the output of the following code fragment? Assuming that the address of the dynamically allocated integer is: 00E9C2D8

- (a) 00E9C2D8 00E9C2D8 (b) 00E9C2D8 100
- (c) Runtime Error (d) Garbage 100
- (e) 00E9C2D8 Garbage
- (3) void my_Function(int myArr[], int size); myArr is passed by:
- (a) The code has syntax error.
- (b) Value.
- (c) Reference.
- (d) The code has runtime error.
- (e) None of the above.

(2) What is the output of the following code fragment? Assume that z is found in address: 003CF790

```
1  #include <iostream>
2  using namespace std;
3  void main()
4  {
5    int *x , *y, z=10;
6    x=&z;
7    y=x;
8    *x++;
9    cout<<z<<"\t"<<*x<<endl;
10  }</pre>
```

(a) 10 Garbage

(b) 11 11

(c) 10 11

(d) 11 003CF790

(e) Runtime Error

(4) double myArr[3]; double *myPtr=myArr; for(int i=0; i<3;i++) cin>> ? ;

We can replace by

- (a) myArr[i]
- **(b)** myPtr[i] **(d)** *(myArr+i)
- (c) *(myPtr+i)
 (e) All of the above

(5) int[] myFunction()
{ int myArr[5]={0};

return myArr; }

This code:

- (a) has a syntax Error, we cannot return an array.
- **(b)** has a logical Error.
- **(c)** is missing the size of the array in the return type.
- (d) has a runtime Error. (e
- (e) None of the above.

QUESTION (3) (25 points) (25 mints)

Answer the following questions, illustrate your final answer CLEARLY

(1) What is the output of the following code fragment?

```
9 ☐ int myfun(int y)
10
    {
11
         cout<<y<<endl;
12
         if(y==1)
13
             return 1;
14
         return myfun(y-1);
15
    | }
16 ⊡void main()
17
    1
         myfun(5);
18
19
    }
```

(2) What is the output of the following code fragment?

```
5 ⊡void main()
 6
    {
 7
         string s1="Good luck in your exam!";
         string s2="exam";
 8
 9
         string s3="testing";
         int counter=0;
10
11
         int index=s1.find(s2);
         for(int i=index;i<index+s2.length();i++)</pre>
12
13
             s1[i]=s3[counter++];
14
         cout<<s1<<endl:
15
```

Good luck in your test!

5\n4\n3\n2\n1

(3) The following code is not working well, may you help this poor developer to find and fix the two mistakes he/she has made? (In the answer sheet write only the line numbers that have the mistakes and its correction)

```
10 ⊡void input(Employee x)
11 { cout<<"Enter employee id, name and salary:\n";</pre>
        cin>>x.id:
        getline(cin,x.name);
13
        cin>>x.salarv:
15 }
    void display(Employee x)
    { cout<<x.id<<"\t"<<x.name<<"\t"<<x.salary<<endl;
19 Evoid main()
20
    { Employee emp1;
21
        input(emp1);
22
        display(emp1);
```

Hint: The mistakes are not in the #include
line#10 &x
line#13 cin.ignore()

(4) For the following program, write down the missing code for the de-allocation of the used matrix. (In the answer sheet Write down ONLY the missing code)

```
void main() {
      int r = 3, c= 4;
int** matrix = new int*[r];
      for(int i = 0; i < r; ++i)
         matrix[i] = new int[c];
      for(int i = 0; i < r; ++i)
        for(int i = 0: i < c: ++i)
 10
          cin>>matrix[i][j];
 11
       for(int i = 0; i < r; ++i)
 12
        for(int j = 0; j < c; ++j)
         cout << matrix[i][j] << "\n";</pre>
 15
       //de-allocate matrix
 16
 18
       //iv)....
 19
i) for (int i = 0; i < r; ++i)
ii)
             delete [] matrix[i];
iii)
           delete [] matrix;
iv) matrix=NULL;
```

(5) What is **the expected output** of the following pseudo-code if we input (4, 4.8, 3.5, 5, 2.5)?

```
WHILE index<numOfElements - 1

SET the first element of the current sub-list as currentImportant

FOR each of the elements in the current sub-list

IF element > currentImportant

THEN SET element as currentImportant

ENDIF

ENDFOR

SWAP currentImportant element with the first element of the current sub-list

ENDWHILE
```

5, 4.8, 4, 3.5, 2.5

QUESTION (4) (35 points) (60 mints)

Problem:

Spending ONE-WEEK vacation happily requires a lot of preparations. One of which is how to reserve a good rated hotel that fits your budget. We need to help in deciding which hotel to pass your vacation in.

Write a program that takes the details of hotels (name, rating, pricePerNight) in a dynamic array of structs. Then ask the user how much he is willing to pay per week.

Depending on the user's answer, the program should print a **sorted list by rating** of the recommended hotels information (name, priceperWeek, rate) that **ONLY fit the user's budget** (equal to or less than the user's week-budget).

Sample Run:

```
How many Hotels?
Hotels details:
# Name Rating(5) Price/Night
2 Hilton
            4.8
3 Baron
            3.5
                  750
What is your budget for a whole week?
6700
Recommended Hotels fitting your budget are:
               Rate
                       TotalCost
       Name
       Hilton 4.8
                        6650L.E
       Baron
              3.5
                       5250L.E
Press any key to continue . . . _
```

(1) Use top-down approach to suggest a design for a solution of the mentioned problem.

- **(2)** Write the definition of the following three C++ functions:
 - void input(hotel* arr ,int size);
 - void sortHotels(hotel* arr, int size);
 - void displayhotels(hotel* arr, int size, int budget);

Hint:

The **input()** function is responsible to input the hotels information.

The **sortHotels()** function is responsible for sorting the hotels dynamic array according to the ratings in descending order.

The **displayhotels()** function displays the recommendations for the user according to his budget sorted by the one with the best rating first.

void input(hotel* arr ,int size)
{
 cout<<"Hotels details:"<<endl;
 cout<<"# Name Rating(5)
Price/Night\n";</pre>

{
 int counter=1;
 cout<<"Recommended Hotels fitting your budget
are:\n";
 cout<<"#\tName\tRate\tTotalCost\n";
 for(int i=0; i<size; i++)
 {
 arr[i].weekbudget=arr[i].pricePerNight*7;
 if(arr[i].weekbudget<=pay)
 {
 cout<<counter++<<"\t";
 cout<<arr[i].name<<"\t"<arr[i].rating<<"\t"<<arr[i].weekbudget<<=ndl;
 }
 }
}</pre>

void displayhotels(hotel* arr, int size, int pay)

}

(3) Write the main() function of your program to solve the Problem using the 3 functions

defined in (2).

```
struct hotel
{
    char name[30];
    float rating ;
    float pricePerNight;
    float weekbudget;
};
void main()
    int size;
    cout << "How many Hotels?"<<endl;</pre>
    cin>>size;
    hotel* arr=new hotel[size];
    input(arr, size);
    float budget;
    cout<<"What is your budget for a whole week?"<<endl;</pre>
    cin>>budget;
    sortHotels(arr,size);
    displayhotels(arr, size, budget);
   delete []arr;
   arr=NULL;
}
```

(4) Add to your code an overloaded function for the **sortHotels()** function that sorts the hotels dynamic array according to the Price per night in an ascending order. **(Hint:** Write only the function definition, NO need to call it in **main()**

QUESTION (5) (5 points) (10 mints)

Write a short description of your role in the project you participated in with your team in the practical part of this course.

• Briefly discuss (in points) how you would like to enhance your project in the future.

Bes + Wishes © Prof. Zaki Taha Dr. Sally S.Ismail