Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption

Debjyoti Bhattacharjee and Anupam Chattopadhyay

KAAI Research Group

School of Computer Engineering, NTU, Singapore

A brief introduction of AEGIS-128

AES Round Operation

- Authenticated encryption algorithm in the currently ongoing CAESAR competition.
- Processes 80-byte state vector in a state update operation
- State update uses <u>5 AES</u>
 rounds in parallel to update
 the 80-byte state.

Motivation

- Among nearly 50 entries reported to CAESAR, nearly 1/5th are based on AES.
- High-performance and area-efficient AES-based authenticated encryption schemes have been reported, which makes AEGIS an important candidate in the current port-folio of CAESAR.
- No attacks on AEGIS have been reported so far.

Theoretical Analysis of AEGIS for Cycleper-Byte

- *msglen* = length of plaintext
- adlen = length of associated data
- Assume 128-bit tag generation by AEGIS-128.

StateUpdate128 operation

Theoretical Analysis of AEGIS for Cycle-per-Byte

No of cycles required to complete one round of StateUpdate128

Process
Associated data

$$cpb = n(10 + \left\lceil \frac{adlen}{128} \right\rceil + \left\lceil \frac{msglen}{128} \right\rceil + 7)/(\frac{msglen}{8})$$

initialization

Encryption

Finalization

Accelerator Implementation of AEGIS-128

Top Level Structure of AEGIS-128

- Same top-level structure used for all the design variants.
- Theoretical guidelines for improving cpb are used.
- Possibilities for reducing the storage are explored.

Base Implementation

- A single AES Round is executed in a clock cycle processing 128-bit of current state
- Takes 5 clock cycles to complete a StateUpdate128 operation

3 out of 5 next state registers have been removed by optimization.

Area Optimized Design Point AO₁

- Canright's implementation of SBOX is used to process 8 bits of state/cycle.
- 16 clock cycles required to load the SBOX result of a 128-bit state Si to the sixteen 8-bit registers R0··· R15.
- Perform Shift Rows operation in 1 clock cycle, since it just involves data shuffling among the registers.

Area Optimized Design Point AO₁

- Left shift the registers columnwise, shifting out the registers [R0,R4,R8,R12], which serves as input to mix columns(MC) logic block.
- 32-bit output of MC logic block in each clock cycle, is loaded back to the register column [R3,R7,R11,R15].
- Requires 4 cycle for MC to complete.

Area Optimized Design Point AO₁

- Add Round Key (ARK) step is executed 8-bit at a time.
- Requires 16 clock cycles to complete update of the 128-bit state Si.
- Single next state register used in this design. (kindly refer to the paper for details).

Area Optimized Design Point AO₂

- Uses a 4-stage pipeline.
- Improves on the maximum operating frequency
- 128-bit data-path.
- Each stage requires a single clock cycle to process its input.

Throughput optimized design point TO₁

- Equipped with two parallel pipelines for higher throughput.
- 3 pipeline stages namely SBOX, SR+MC,ARK.
- •2 identical functional units in each stage.

Pipeline Schedule of design point TO₁

Throughput optimized design point TO₂

- Writes back the updated state value into the state registers directly.
- Control logic is minimal when compared to the other implementations.
- Requires a single clock cycle for the StateUpdate128 operation.

Hardware implementation details

Implementation:
Language for Instruction
Set Architecture [LISA]

RTL generation : Synopsys Processor Designer

Synthesis: Synopsys
Design Compiler
[65 nm Faraday library]

Performance of AEGIS-128 accelerator in cycles per byte

	1024B	4096R							
0.48		TUJUD							
0.10	0.40	0.33							
9.60	7.93	6.67							
0.48	0.40	0.33							
Throughput optimization									
0.29	0.24	0.20							
0.10	0.08	0.07							
Software Implementation									
0.96	0.8	0.66							
	0.10	0.10 0.08							

Table 2. Performance of AEGIS architectures in cycles per byte

Performance of AEGIS-128 architectures

Design	Optimization	Clock Frequency	Area	Throughput	Efficiency	Total Power	Energy Efficiency
		(MHz)	(KGE)	(Gbps)	(Gbps/kGE)	(mW)	(pJ/bit)
Base Implementation	Speed	915	59.34	17.04	0.29	74.41	4.07
	Area	915	57.01	17.04	0.30	64.65	1.06
AO_1	Speed	1435	20.55	1.35	0.07	21.96	15.17
	Area	1410	18.72	1.32	0.07	21.58	15.17
AO_2	Speed	2010	60.88	37.44	0.61	33.08	0.82
	Area	1962	56.65	36.55	0.65	34.21	0.87
TO_1	Speed	1725	88.91	53.55	0.60	28.33	0.49
	Area	1700	84.71	52.77	0.62	28.33	0.50
TO_2	Speed	1300	172.72	121.07	0.70	232.75	1.79
	Area	1300	172.72	121.07	0.70	232.75	1.79

Table 1. Performance of AEGIS-128 architectures

17

Reported performance of some CAESAR entries

- ICEPOLE:
 42 Gbps Xilinx Virtex 6
 38.78 Gbps Altera Stratix IV FPGA.
- Minealpher v1 45 nm tech node High Speed Core
 - -> 6.1 Gbps timing optimized
 - -> 9.1 Gbps area optimized
- Scream10(2R/cycle) 65 nm tech node 5.19 Gbps, 17292 μm²
- iScream(2R/cycle) 65 nm tech node 4.41 Gbps, 17024 µm^2

Conclusion

- Detailed implementation study of AEGIS-128 authenticated encryption algorithm.
- Diverse design points with various performance metrics are implemented
- Pre-layout implementation reports using an ASIC technology library.
- Implementation results are competitive in terms of area
- Significantly superior in terms of throughput.

