(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 5 February 2004 (05.02.2004)

(10) International Publication Number WO 2004/011641 A2

C12N 9/64. (51) International Patent Classification7: G01N 33/53, 33/50, C12N 15/52, C12Q 1/37, G06F 17/50, G01N 33/68

(21) International Application Number:

PCT/GB2003/003200

25 July 2003 (25.07.2003) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/398,681

26 July 2002 (26.07.2002)

(71) Applicant (for all designated States except US): ASTEX TECHNOLOGY LIMITED [GB/GB]; 436 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0QA (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VUILLARD, Laurent, Michel, Marie [FR/GB]; Astex Technology Limited, 436 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0QA (GB). PATEL, Sahil, Joe [GB/GB]; Astex Technology Limited, 436 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0QA (GB). YON, Jeffrey, Roland [GB/GB]; Astex Technology Limited, 436 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0QA (GB). CLEASBY, Anne [GB/GB]; Astex Technology Limited, 436 Cambridge Science Park, Milton Road, Cambridge,

Cambridgeshire CB4 0QA (GB). HAMILTON, Bruce, John [GB/GB]; 5 West Road, Histon, Cambridge, Cambridgeshire CB4 9LH (GB). SHAH, Aleem [GB/GB]; 33b Victoria Street, Littleport, Ely, Cambridgeshire CB6 1LU (GB).

- (74) Agents: BRASNETT, Adrian, H. et al.; Mewburn Ellis, York House, 23 Kingsway, London, Greater London WC2B 6HP (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BEST AVAILABLE COPY

(54) Title: CRYSTAL STRUCTURE OF BETA SITE APP CLEAVING ENZYME (BACE) AND METHODS OF USE THEREOF

(57) Abstract: The present application discloses and claims mutant BACE proteins, recombinant BACE proteins, processes for crystallizing BACE and in particular to its crystal structure and to the uses of this structure in drug discovery.

WO 2004/011641 PCT/GB2003/003200

<u>Crystal Structure Of Beta Site App Cleaving Enzyme (Bace) And Methods Of Use</u> Thereof

All documents cited in this text, and all documents cited or referenced in documents cited in this text, and any manufacturer's instructions or catalogues for any products cited or mentioned in this text or in any document hereby incorporated into this text, are hereby incorporated herein by reference. Documents incorporated by reference into this text or any teachings therein may be used in the practice of this invention. Documents incorporated by reference into this text are not admitted to be prior art. Furthermore, authors or inventors on documents incorporated by reference into this text are not to be considered to be "another" or "others" as to the present inventive entity and *vice versa*, especially where one or more authors or inventors on documents incorporated by reference into this text are an inventor or inventors named in the present inventive entity.

Field of the Invention

The present invention relates to the mutant BACE proteins, recombinant BACE proteins, processes for crystallizing BACE and in particular to its crystal structure and to the uses of this structure in drug discovery.

Background to the Invention

Alzheimer's disease

10

15

20

25

Alzheimer's disease (AD) is estimated to afflict more than 20 million people worldwide and is believed to be the most common form of dementia. Alzheimer's disease is a progressive dementia in which massive deposits of aggregated protein breakdown products – amyloid plaques and neurofibrillary tangles accumulate in the brain. The amyloid plaques are thought to be responsible for the mental decline seen in Alzheimer's patients.

A β or amyloid- β -protein is the major constituent of the plaques which are characteristic of Alzheimer's disease (De Strooper et al, 1999). A β is a 39-42 residue peptide formed by the specific cleavage of a class I transmembrane protein called APP, or amyloid precursor protein. A β -secretase activity cleaves this protein between residues Met671 and Asp672 (numbering of 770aa isoform of APP) to form the N-terminus of A β . A second cleavage of the peptide is associated with β -secretase to form the C-terminus of the A β peptide.

Beta Site APP Cleaving Enzyme (BACE) and Alzheimer's Disease

Several groups have identified and isolated aspartate proteases that have β -secretase activity (Hussain et al., 1999; Lin et. al, 2000; Yan et. al, 1999; Sinha et. al., 1999 and Vassar et. al., 1999). B-secretase is also known in the literature as Asp2 (Yan et. al, 1999), Beta site APP Cleaving Enzyme (BACE or BACE1) (Vassar et. al., 1999) or memapsin-2 (Lin et al., 2000). BACE was identified using a number of experimental approaches such as EST database analysis (Hussain et al. 1999); expression cloning (Vassar et al. 1999); identification of human homologs from public databases of predicted C. elegans proteins (Yan et al. 1999) and finally utilizing an inhibitor to purify the protein from human brain (Sinha et al. 1999). Thus, five groups employing three different experimental approaches 10 led to the identification of the same enzyme, making a strong case that BACE is a βsecretase. Mention is also made of the patent literature: WO96/40885, EP871720, U.S. Patents Nos. 5,942,400 and 5,744,346, EP855444, US 6,319,689, WO99/64587, WO99/31236, EP1037977, WO00/17369, WO01/23533, WO0047618, WO00/58479, WO00/69262, WO01/00663, WO01/00665, US 6,313,268. 15

BACE is a membrane bound type 1 protein that is synthesized as a partially active proenzyme, and is abundantly expressed in brain tissue. It is thought to represent the major β -secretase activity, and is considered to be the rate-limiting step in the production of $A\beta$. It is thus of special interest in the pathology of Alzheimer's disease, and in the development of drugs as a treatment for Alzheimer's disease.

20

25

30

BACE was found to be a pepsin-like aspartyl proteinase, the mature enzyme consisting of the N-terminal catalytic domain, a transmembrane domain, and a small cytoplasmic domain. BACE has an optimum activity at pH 4.0-5.0 (Vassar et al, 1999) and is inhibited weakly by standard pepsin inhibitors such as pepstatin. It has been shown that the catalytic domain minus the transmembrane and cytoplasmic domain has activity against substrate peptides (Lin et al, 2000). Consequently, this soluble catalytic domain is suitable for crystallization studies and a crystal structure of this will give a representative structure of the BACE active site for the design of inhibitor molecules.

The likelihood of developing Alzheimer's disease increases with age, and as the aging population of the developed world increases, this disease becomes a greater and greater problem. In addition to this, there is a familial link to Alzheimer's disease and consequently

any individuals possessing the double mutation of APP known as the Swedish mutation (in which the mutated APP forms a considerably improved substrate for BACE) have a much greater chance of developing AD, and also of developing it at an early age (see also US 6,245,964 and US 5,877,399 pertaining to transgenic rodents comprising APP-Swedish).

5 Consequently there is a strong case for developing a compound that can be used in a prophylactic fashion for these individuals.

10

15

20

25

30

Hence, drugs that reduce or block BACE activity would reduce $A\beta$ levels and levels of fragments of $A\beta$ in the brain or elsewhere where $A\beta$ or fragments thereof deposit and thus slow the formation of amyloid plaques and the progression of AD or other maladies involving deposition of $A\beta$ or fragments thereof (Yankner, 1996; De Strooper and Konig, 1999). BACE is therefore an important candidate for the development of drugs as a treatment against Alzheimer's disease and/or against such other maladies.

The therapeutic potential of inhibiting the deposition of Aβ has motivated many groups to isolate and characterize secretase enzymes and to identify their potential inhibitors (*see*, *e.g.*, WO01/23533 A2, EP0855444, WO00/17369, WO00/58479, WO00/47618, WO00/77030, WO01/00665, WO01/00663, WO01/29563, WO02/25276, US5,942,400, US6,245,884, US6,221,667, US6,211,235, WO02/02505, WO02/02506, WO02/02512, WO02/02518, WO02/02520, WO02/14264).

The gene encoding APP is found on chromosome 21, which is also the chromosome found as an extra copy in Downs syndrome. Downs syndrome patients tend to acquire Alzheimers disease at an early age, with almost all those over 40 years of age showing Alzheimers-type pathology (Oyama et al., 1994). This is thought to be due to the extra copy of the APP gene found in these patients, which leads to overexpression of APP and therefore to increased levels of APP\$\beta\$ causing the high prevalence of Alzheimers disease seen in this population. Thus inhibitors of BACE could be useful in reducing Alzheimers-type pathology in Down's syndrome patients.

It would therefore be useful to inhibit the deposition of Aβ and portions thereof by inhibiting BACE through inhibitors designed from the BACE structure as provided herein. The determination of the three-dimensional structure of BACE provides a basis for the design of new and specific ligands for BACE. For example, knowing the three-dimensional structure of BACE, computer modelling programs may be used to design different

molecules expected to interact with possible or confirmed binding cavities or other structural or functional features of BACE or structure-based design approaches may used such as those described in Blundell *et al* (Nature Reviews, Drug Discovery, Vol 1, pg 45-54, 2002).

Ideally it would be desirable to have an abundant supply of this enzyme in homogenous form. It would also be preferable to solve the structure of a form of BACE with an unoccupied active site. This could be used to soak in small molecule inhibitors of the enzyme and to investigate their binding modes. We describe here the high yielding production of BACE from bacterial cells in homogenous form, and the generation of protein suitable for crystallisation and structure determination of BACE in Apo form

Protein Crystallisation

15

It is well known in the art of protein chemistry that crystallising a protein is an uncertain and difficult process without any clear expectation of success. It is now evident that protein crystallization is the main hurdle in protein structure determination. For this reason, protein crystallization has become a research subject in and of itself, and is not simply an extension of the protein crystallographer's laboratory. There are many references, which describe the difficulties associated with growing protein crystals (Kierzek AM. and Zielenkiewicz P. (2001) Biophysical Chemistry 91 1-20 Models of protein crystal growth; Wiencek JM (1999) Annu Rev Biomed Eng 1 505-534 New Strategies for crystal growth).

- The reasons why it is commonly held that crystallization of protein molecules from solution is the major obstacle in the process of determining protein structures are many; proteins are complex molecules, and the delicate balance involving specific and non-specific interactions with other protein molecules and small molecules in solution, is difficult to predict.
- Each protein crystallizes under a unique set of conditions, which cannot be predicted in advance. Simply supersaturating the protein to bring it out of solution will not work, the result would, in most cases, be an amorphous precipitate. Many precipitating agents are used, common ones are different salts, and polyethylene glycols, but others are known. In addition, additives such as metals and detergents can be added to modulate the behaviour of the protein in solution. Many kits are available (e.g., from Hampton Research), which attempt to cover as many parameters in crystallization space as possible, but in many cases

these are just a starting point to optimize crystalline precipitates and crystals which are unsuitable for diffraction analysis. Successful crystallization is aided by knowledge of the proteins behaviour in terms of solubility, dependence on metal ions for correct folding or activity, interactions with other molecules and any other information that is available. Even so, crystallization of proteins is often regarded as a time-consuming process, whereby subsequent experiments build on observations of past trials.

In cases where protein crystals are obtained, these are not necessarily always suitable for diffraction analysis; they may be limited in resolution, and it may subsequently be difficult to improve them to the point at which they will diffract to the resolution required for analysis. Limited resolution in a crystal can be due to several things. It may be due to intrinsic mobility of the protein within the crystal; this can be difficult to overcome, even with other crystal forms. It may be due to high solvent content within the crystal, which consequently results in weak scattering. Alternatively, it could be due to defects within the crystal lattice, which means that the diffracted x-rays will not be completely in phase from unit to unit within the lattice. Any one of these or a combination of these could mean that the crystals are not suitable for structure determination.

Some proteins never crystallize, and after a reasonable attempt it is necessary to examine the protein itself and consider whether it is possible to make individual domains, different N or C-terminal truncations, or point mutations. It is often hard to predict how a protein could be re-engineered in such a manner as to improve crystallisability. Sometimes the inclusion of a ligand in the crystallisation mixture is essential for the production suitable crystals. Our understanding of crystallisation mechanisms is still incomplete and the factors of protein structure, which are involved in crystallisation, are not well known.

BACE Production for Crystallisation

10

15

20

Beta secretase (BACE) is an integral membrane protein containing a signal sequence, a propeptide, a catalytic aspartyl protease domain, a transmembrane region and a C-terminal cytoplasmic region. During transit through the endoplasmic reticulum, Golgi apparatus and trans Golgi network the pro-peptide is cleaved by a furin-like protease (Bennett et al 2000, Creemers et al 2001) and N-glycosylation is added and matured (Haniu et al 2000). The protein contains 4 potential N-linked glycosylation sites, all of which are used (Bennett et al. 2000).

Certain active recombinant BACEs - different from those of the herein invention - have been produced using heterologous expression systems for mammalian cells (Vassar et al, 1999, Hussain et al, 1999), insect cells (Mallender et al, 2001) and bacterial cells (Lin et al 2000). Preferred constructs for crystallisation would be soluble and lack glycosylation: the former can be achieved by C-terminal truncation of the protein to remove the transmembrane and cytoplasmic regions; while glycosylation could be removed either by use of a deglycosylating agent such as PNGase F, by expression of the protein in bacteria or by mutation of the glycosylation sites.

5

10

15

20

25

30

The protein used for BACE crystallisation by Hong et al (2000) was produced in bacteria and was truncated at the C-terminus. Their protein was produced as insoluble inclusion bodies and required refolding to give soluble, active protein. Refolding of BACE is made more complex by the presence of 3 disulphide bonds in the native protease domain, which require careful control of redox conditions to form during *in-vitro* refolding. The protein produced by Hong et al was a mixture of products and was crystallised with inhibitor bound (see WO 01/00663, WO 01/00665, and US 6,545,127).

Mention is also made of WO 02/25276, which describes the crystallisation of BACE produced in mammalian cells. The protein produced also was a mixture of protein species and was also crystallized with an inhibitor bound.

Mention is also made of WO03/012089, which describes the crystallisation of BACE produced from insect cells. The co-ordinates of BACE with an inhibitor bound are provided.

Summary of the Invention

In general aspects, the present invention is concerned with the provision of a new, high resolution, apo, crystal form of BACE and the use of this structure in identifying or obtaining agent compounds (especially inhibitors of BACE) for modulating BACE activity, and in preferred embodiments identifying or obtaining actual agent compounds/inhibitors. Crystal structure information presented herein is useful in designing potential inhibitors and modelling them or their potential interaction with the BACE binding cavity. Potential inhibitors may be brought into contact with BACE to test for ability to interact with the BACE binding cavity. Actual inhibitors may be identified from among potential inhibitors synthesized following design and model work performed *in silico*. An inhibitor identified

using the present invention may be formulated into a composition, for instance a composition comprising a pharmaceutically acceptable excipient, and may be used in the manufacture of a medicament for use in a method of treatment.

Thus, according to a first aspect of the present invention there is provided a mutant BACE protein, which protein lacks one or more proteolytic cleavage sites recognized by clostripain (or another protease which recognizes the same cleavage site as clostripain). In particular, the protein is a BACE protein, which comprises the sequence set out in residues 45 to 455 of SEQ ID NO:2 (43 to 453 SwissProt P56817), or a fragment thereof comprising residues corresponding to 58 to 398 of SEQ ID NO:2, modified by the following changes: (a) substitution or deletion of at least one residue which is a proteolytic cleavage site recognised by clostripain; and (b) optionally the replacement of from 1 to 30 other amino acids by an equivalent or fewer number of amino acids. It will be understood that when the BACE protein comprises a fragment as defined above, the fragment will comprise at least feature (a) and optionally feature (b).

10

20

30

The modification is such that the BACE protein preferably retains at least one proteolytic cleavage site recognised by clostripain so that it may be cleaved to provide homogeneous location at which cleavage occurs.

According to a second aspect of the present invention there is provided a mutant BACE protein which is truncated at the N-terminal up to and including R42, R45, G55, R56 or R57. In a preferred aspect, when the protein is truncated up and including R56 the residue at position 57 is not arginine. It may for example be lysine.

In a third aspect the invention provides a mutant BACE protein selected from: (a) SEQ ID 6; (b) SEQ ID 8; (c) SEQ ID 10; (d) SEQ ID 12; (e) SEQ ID 14; (f) SEQ ID 16; (g) SEQ ID 18; (h) SEQ ID 19; (i) SEQ ID 20; (j) SEQ ID 21.

In another aspect, the invention contemplates a nucleic acid (e.g. DNA or RNA) sequence encoding the BACE protein of the invention, as well as the complementary nucleic acid sequence counterpart.

The nucleic acids of the invention may be isolated, or may be present in the context of a vector or host cell. Thus, in another aspect, the invention contemplates a vector comprising the nucleic acid of the invention.

The nature of the vector of the invention is not critical to the invention. Any suitable vector may be used, including expression vectors, plasmid, virus, bacteriophage, transposon, minichromosome, liposome or mechanical carrier.

The expression vectors of the invention are DNA constructs suitable for expressing DNA which encodes the desired peptide and which may include: (a) a regulatory element (e.g. a promoter, operator, activator, repressor and/or enhancer), (b) a structural or coding sequence which is transcribed into mRNA and (c) appropriate transcription, translation, initiation and termination sequences. They may also contain sequence encoding any of various tags (e.g. to facilitate subsequent purification of the expressed protein, such as affinity (e.g. His tags).

5

25

Particularly preferred are vectors which comprise an expression element or elements operably linked to the DNA of the invention to provide for expression thereof at suitable levels. Any of a wide variety of expression elements may be used, and the expression element or elements may for example be selected from promoters, enhancers, ribosome binding sites, operators and activating sequences. Such expression elements may comprise an enhancer, and for example may be regulatable, for example being inducible (via the addition of an inducer).

The vector may further comprise a positive selectable marker and/or a negative selectable marker. The use of a positive selectable marker facilitates the selection and/or identification of cells containing the vector.

In another aspect, the invention contemplates a host cell comprising the vector of the invention. The nucleic acid of the invention may be introduced into the host cell by any of a large number of convenient methods, including calcium phosphate transfection, DEAE-Dextran mediated transfection, electroporation or any other method known in the art.

Any suitable host cell may be used, including prokaryotic host cells (such as *Escherichia coli*, *Streptomyces* spp. and *Bacillus subtilis*) and eukaryotic host cells. Suitable eukaryotic host cells include insect cells (e.g. using the baculovirus expression system), mammalian cells, fungal (e.g. yeast) cells and plant cells. Preferred mammalian cells are animal cells such as CHO, COS, C 127, 3T3, HeLa, HEK 293, NIH 3T3, BHK and Bowes melanoma (particularly preferred being CHO-K1, COS7, Y1 adrenal and carcinoma cells).

Cell-free translation systems can also be used to produce the peptides of the invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989).

5 Prokaryotic host cells are preferred in circumstances where the BACE protein is required in an unglycosylated state.

According to another aspect of the invention there is provided a process for producing the BACE protein of the invention comprising the steps of: (a) culturing the host cell of the invention under conditions suitable for expression of the BACE protein; and optionally (b) isolating the expressed recombinant BACE protein.

10

15

20

25

30

In a further aspect the invention provides a method of making BACE protein which comprises proteolytically cleaving a BACE protein which lacks one of more proteolytic cleavage sites as described above, the cleavage desirably occurring at (and including) one of position 42, 45, 55, 56 or 57, preferably 42, 56 or 57. Clostripain, or another protease which recognises the same cleavage site as clostripain, may be used.

Thus the resulting BACE protein of this aspect of invention will be a protein whose N-terminal corresponds to 45, 48, 58, 59 or 60 of SEQ ID NO:2, and whose C-terminal region extends to and includes at least 398 of SEQ ID NO:2. Preferably the C-terminal region terminates at a residue between a point corresponding to and including 398 up to and including 455. This BACE protein may additionally comprise a C-terminal tag, such as a tag comprising from 5 to 15 residues, such as a his tag or the like.

In another aspect of the invention there is provided a process for producing refolded recombinant BACE protein comprising the steps of: (a) solubilising the recombinant BACE; (b) diluting the solubilised BACE into an aqueous buffer containing sulfobetaine (for example at a concentration of 10 to 50 mM, for example 10 mM); and (c) maintaining the diluted solution at low temperature (for example, 3 to 6°C) and at high pH (e.g. 9 to 10.5) for at least 2 weeks (typically 3 weeks, more typically 4 weeks).

In another aspect the invention provides a process for producing a crystal of BACE comprising the step of growing the crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME (for example, 20-24 % PEG 5000 MME, e.g. 20-22.5 %

PEG 5000 MME), 180-220 mM (e.g. 200 mM) ammonium iodide and 180-22- mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6). In a further aspect the reservoir buffer may additionally comprise from 0 to 5% (v/v) glycerol, for example 2.5% v/v.

- In another aspect the invention provides various BACE crystals, including a crystal of BACE having a hexagonal space group P6₁22 (and optionally having unit cell dimensions of a=b=103.2 Å, c=169.1 Å, α=β=60°, γ=120°, and a unit cell variability of 5% in all dimensions); a crystal of BACE having a resolution better than 3 Å (for example, better than 2.5 Å, e.g. better than 1.8 Å), and a crystal of BACE comprising a structure defined by all or a portion of the co-ordinates of Table 1.
- In another aspect the invention provides a three-dimensional representation of BACE or of a portion of BACE, which representation comprises all or a portion of the coordinates of Table 1. The representation is preferably a BACE model.
 - The invention also contemplates a three-dimensional representation of a compound which fits the BACE model of the invention.
- The invention also contemplates a computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing a BACE model; (b) providing a molecular structure to be fitted to said BACE model; and (c) fitting the molecular structure to the BACE model to produce a compound model.
- In another aspect the invention provides a computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing the structure of a BACE as defined by the coordinates of Table 1; (b) providing a molecular structure to be fitted to said BACE structure; and (c) fitting the molecular structure to the BACE structure of Table 1.
- In another aspect the invention provides a computer-based method for the analysis of molecular structures which comprises: (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structure of a molecular structure to be fitted to the selected coordinates; and (c) fitting the structure to the selected coordinates of the BACE structure.

In another aspect the invention provides a computer-based method of rational drug design comprising comprising: (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structures of a plurality of molecular fragments; (c) fitting the structure of each of the molecular fragments to the selected coordinates; and (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.

In another aspect the invention provides a method for identifying a candidate modulator (e.g. candidate inhibitor) of BACE comprising the steps of: (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.

10

15

In another aspect the invention provides a method for identifying an agent compound (e.g. an inhibitor) which modulates BACE activity, comprising the steps of: (a) employing three-dimensional atomic coordinate data according to Table 1 to characterise at least one (e.g. a plurality of) BACE binding site(s); (b) providing the structure of a candidate agent compound; (c) fitting the candidate agent compound to the binding sites; and (d) selecting the candidate agent compound.

- In another aspect the invention provides a method of assessing the ability of a candidate modulator to interact with BACE which comprises the steps of: (a) obtaining or synthesising said candidate modulator; (b) forming a crystallized complex of BACE and said candidate modulator; and (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.
- In another aspect the invention provides a method for determining the structure of a compound bound to BACE, said method comprising: (a) mixing BACE with the compound to form a BACE-compound complex; (b) crystallizing the BACE-compound complex; and (c) determining the structure of said BACE-compound(s) complex by reference to the data of Table 1.
- In another aspect the invention provides a method for determining the structure of a compound bound to BACE, said method comprising: (a) providing a crystal of BACE; (b)

soaking the crystal with one or more compound(s) to form a complex; and (c) determining the structure of the complex by employing the data of Table 1.

In another aspect the invention provides a method of determining the three dimensional structure of a BACE homologue or analogue of unknown structure, the method comprising the steps of: (a) aligning a representation of an amino acid sequence of the BACE homologue or analogue with the amino acid sequence of the BACE of Table 1 to match homologous regions of the amino acid sequences; (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table 1; and (c) determining a conformation for the BACE homologue or analogue which substantially preserves the structure of said matched homologous regions.

5

10

15

20

25

30

In another aspect the invention provides a method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising: (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE; (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.

In another aspect the invention provides a computer system containing one or more of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target BACE protein generated

by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

In another aspect the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion of the structure coordinates of BACE of Table 1, or a homologue of BACE, wherein said homologue comprises backbone atoms that have a root mean square deviation from the Cα or backbone atoms (nitrogen-carbon_α-carbon) of Table 1 of less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1 for the residue backbone atoms.

10

15

20

25

30

In another aspect the invention provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (e.g. selected coordinates as defined herein) of the structural coordinates for BACE according to Table 1; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.

In another aspect the invention provides a computer readable medium with at least one of:

(a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of BACE, or at least selected coordinates thereof; (b) structure factor data for BACE recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a BACE-ligand complex or a BACE homologue or analogue generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

In another aspect the invention provides a method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said

protein or (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1.

In another aspect the invention contemplates BACE modulator molecules, medicaments, pharmaceutical compositions and drugs obtainable by, or obtained by, the processes and methods of the invention, and to methods of therapy (e.g. the treatment of Alzheimer's disease) using such products.

5

10

15

20

25

30

It is to be understood that, except where explicitly stated otherwise, references herein to "BACE protein" or "BACE peptide", "mutant BACE protein" or "mutant BACE peptide" and to "BACE protein" or "BACE peptide", as well as references to any of the foregoing which are further defined *inter alia* by reference to one or more specific amino acid sequences, are intended to cover BACE homologues, allelic forms, species variants, derivatives and muteins thereof (as defined below).

Thus, references to mutant BACE proteins having particular amino acid sequences may optionally be interpreted to cover the corresponding homologues, allelic forms, species variants, derivatives and muteins (as defined below) of that particular BACE amino acid sequence.

Definitions

Where used herein and unless specifically indicated otherwise, the following terms are intended to have the following meanings in addition to any broader (or narrower) meanings the terms might enjoy in the art:

The term "isolated" is used herein to indicate that the isolated moiety (e.g. peptide or nucleic acid) exists in a physical milieu distinct from that in which it occurs in nature. For example, the isolated peptide may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs. The absolute level of purity is not critical, and those skilled in the art can readily determine appropriate levels of purity according to the use to which the peptide is to be put. The term "isolating" when used a step in a process is to be interpreted accordingly.

In many circumstances, the isolated moiety will form part of a composition (for example a more or less crude extract containing many other molecules and substances), buffer system,

matrix or excipient, which may for example contain other components (including proteins, such as albumin).

In other circumstances, the isolated moiety may be purified to essential homogeneity, for example as determined by PAGE or column chromatography (for example HPLC or mass spectrometry). In preferred embodiments, the isolated peptide or nucleic acid of the invention is essentially the sole peptide or nucleic acid in a given composition.

5

10

15

20

30

The proteins and nucleic acids of the invention need not be isolated in the sense defined above, however. For example, more or less crude culture supernatants (e.g. "spent" medium) may contain sufficient concentrations of the proteins or nucleic acids of the invention for use in several applications. Preferably, such supernatants are fractionated and/or extracted, but in many circumstances they may be used without pretreatment. They are preferably derived from spent media used to culture the host cells of the invention (for example, the bacterial sources described infra). The supernatants are preferably sterile. They may be treated in various ways, for example by concentration, filtration, centrifugation, spray drying, dialysis and/or lyophilisation. Conveniently, the culture supernatants are simply centrifuged to remove cells/cell debris and filtered.

The term "pharmaceutical composition" is used herein to define a solid or liquid composition in a form, concentration and level of purity suitable for administration to a patient (e.g. a human or animal patient) upon which administration it can elicit the desired physiological changes.

The term "recombinant" as applied to the proteins of the invention is used herein to define a protein that has been produced by that body of techniques collectively known as "recombinant DNA technology" (for example, using the nucleic acid, vectors and or host cells described herein).

The term "synthetic" as applied to the peptides of the invention is used herein to define a peptide that has been chemically synthesised *in vitro* (for example by any of the commercially available solid-phase peptide-synthesis systems).

As used herein in relation to the vectors of the invention, the term "operably linked" refers to a condition in which portions of a linear nucleic acid sequence are capable of influencing the activity of other portions of the same linear nucleic acid sequence. For example, DNA

for a signal peptide (secretory leader) is operably linked to DNA for a polypeptide if it is expressed as a precursor which participates in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned in the correct reading-frame so as to permit translation.

By "apo-structure" we mean the three-dimensional structure of the protein that contains no ligand, e.g. substrate or product or cofactor or inhibitor i.e. the active site of the protein is empty.

5

10

15

20

In the following by "binding site" or "binding cavity" we mean a site (such as an atom, a functional group of an amino acid residue or a plurality of such atoms and/or groups) in a BACE binding cavity, which may bind to an agent compound such as a candidate inhibitor. Depending on the particular molecule in the cavity, sites may exhibit attractive or repulsive binding interactions, brought about by charge, steric considerations and the like.

Binding sites are sites within a macromolecule, or on its surface, at which ligands can bind. Examples are the catalytic or active site of an enzyme (the site on an enzyme at which the amino acid residues involved in catalysing the enzymatic reaction are located), allosteric binding sites (ligand binding sites distinct from the catalytic site, but which can modulate enzymatic activity upon ligand binding), cofactor binding sites (sites involved in binding/co-ordinating cofactors e.g. metal ions), or substrate binding sites (the ligand binding sites on a protein at which the substrates for the enzymatic reaction bind). There are also sites of protein-protein interaction.

In the following by "active site" we mean a site (such as an atom, a functional group of an amino acid residue or a plurality of such atoms and/or groups) in a BACE binding cavity, which is involved in catalysis.

By "fitting", is meant determining by automatic, or semi-automatic means, interactions between one or more atoms of a candidate molecule and at least one atom of a BACE structure of the invention, and calculating the extent to which such interactions are stable. Interactions include attraction and repulsion, brought about by charge, steric considerations and the like. Various computer-based methods for fitting are described further herein.

By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

By a "computer system" we mean the hardware means, software means and data storage means used to analyse atomic coordinate data. The minimum hardware means of the computer-based systems of the present invention typically comprises a central processing unit (CPU), input means, output means and data storage means. Desirably a monitor is provided to visualise structure data. The data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows NT or IBM OS/2 operating systems.

5

10

15

20

By "computer readable media" we mean any medium or media, which can be read and accessed directly by a computer e.g. so that the media is suitable for use in the above-mentioned computer system. Such media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The term "homologue" is used herein in two distinct senses. It is used *sensu stricto* to define proteins that share a common ancestor. In this sense it covers orthologues (species variants which have diverged in different organisms following a speciation event) and paralogues (variants which have diverged within the same organism after a gene duplication event). Thus, there is a direct evolutionary relationship between such homologues and this may be reflected in structural and/or functional similarities. For example, orthologues may perform the same role in each organism in which they are found, while paralogues may perform functionally related (but distinct) roles within the same organism.

- 25 The term is also used herein *sensu lato* to define proteins which are to some extent structurally similar (i.e. not necessarily evolutionary related and/or structurally and functionally equivalent). In this sense, homology is recognised on the basis of purely structural criteria by the presence of amino acid sequence identities and/or conservative amino acid changes and/or similar secondary, tertiary or quaternary structures.
- The term "analogue" is used herein to define proteins with similar functions and/or structures and which are not necessarily evolutionary related. Protein analogues which

share function but which have no or little structural similarities are likely to have arisen by convergent evolution. Conversely, protein analogues which share structural similarities but which exhibit few or no functional similarities are likely to have arisen by divergent evolution. Protein analogues may be identified, for example, by screening a library of proteins to detect those with similar function(s) but different physical properties, or by screening for proteins which share structural features but not necessarily any functions (e.g. by immunological screening).

The term "equivalent" is used herein to define those protein analogues which exhibit substantially the same function(s) and which share at least some structural features (e.g. functional domains), but which have not evolved from a common ancestor. Such equivalents are typically synthetic proteins (see below) and may be generated, for example, by identifying sequences of functional importance (e.g. by identifying conserved or canonical sequences, functional domains or by mutagenesis followed by functional assay), selecting an amino acid sequence on that basis and then synthesising a peptide based on the selected amino acid sequence. Such synthesis can be achieved by any of many different methods known in the art, including solid phase peptide synthesis (to generate synthetic peptides) and the assembly (and subsequent cloning) of oligonucleotides. Some synthetic protein analogues may be chimaeras (see below), and such equivalents can be designed and assembled for example by concatenation of two or more different structural and/or functional peptide domains from different proteins using recombinant DNA techniques (see below).

10

15

20

25

30

The BACE protein homologues of the invention therefore include proteins and peptides having at least 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity with the reference protein, and include truncated forms of the BACE proteins of the invention. Such truncates are preferably at least 25%, 35%, 50% or 75% of the length of the corresponding specifically exemplified proteins and may have at least 60% sequence identity (more preferably, at least 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity) with that specifically exemplified protein.

Particularly preferred homologues are truncates that contain a segment preferably comprising at least 8, 15, 20 or 30 contiguous amino acids that share at least 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity with that specifically exemplified protein.

A "conservative amino acid change" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine and histidine), acidic side chains (e.g. aspartic acid and glutamic acid), non-charged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine and cysteine), non-polar side chains (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophan), beta-branched side chains (e.g. threonine, valine and isoleucine), and aromatic side chains (e.g. tyrosine, phenylalanine, tryptophan and histidine).

Thus, references herein to proteins and peptides that are to some defined extent "identical" (or which share a defined extent of "identity") with a reference protein or peptide may also optionally be interpreted to include proteins and peptides in which conservative amino acid changes are disregarded so that the original amino acid and its changed counterpart are regarded as identical for the purposes of sequence comparisons.

The term "allelic form" is used herein to define a naturally-occurring alternative forms of the sequence present in the BACE protein which reflect naturally-occurring differences in the BACE gene pool. Preferably, allelic variants of the proteins of the invention have at least 60% sequence identity (more preferably, at least 75%, 80%, 85%, 90% or 95% sequence identity) with the corresponding specifically exemplified BACE protein, where sequence identity is determined by comparing the nucleotide sequences of the polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

The term "species variant" (or orthologue) is used herein to define the corresponding protein from a different organism. Thus, species variants share a direct evolutionary relationship.

25

30

The term "derivative" as applied herein to the BACE proteins of the invention is used to define proteins which are modified versions of the specifically exemplified proteins of the invention. Such derivatives may include fusion proteins, in which the proteins of the invention have been fused to one or more different proteins, peptides or amino acid tags (for example an antibody or a protein domain conferring a biochemical activity, to act as a label, or to facilitate purification). Particularly preferred are derivatives in which the peptides are

modified by a polyHis (6xHis) tag to facilitate purification of the peptide derivative on Ni²⁺ agarose beads.

The derivatives may also be products of synthetic processes that use a peptide of the invention as a starting material or reactant.

5 The term "mutein" is used herein to define proteins that are mutant forms of the BACE proteins of the invention, i.e. proteins in which one or more amino acids have been added, altered, deleted, replaced, inserted or substituted. Thus, the terms "BACE mutein" and "mutant BACE protein" are used interchangeably herein. The muteins/mutant BACE proteins of the invention therefore include fragments, truncates and fusion proteins and peptides (e.g. comprising fused immunoglobulin, receptor, tag, label or enzyme moieties).

The muteins of the invention therefore include truncated forms of the BACE proteins of the invention. Such truncates are preferably least 25%, 35%, 50% or 75% of the length of the corresponding specifically exemplified BACE protein and may have at least 60% sequence identity (more preferably, at least 75%, 80%, 85%, 90% or 95% sequence identity) with that specifically exemplified protein.

Particularly preferred are truncates that contain a segment preferably comprising at least 8, 15, 20 or 30 contiguous amino acids that share at least 75%, 80%, 85%, 90% or 95% sequence identity with that specifically exemplified protein.

15

20

25

30

For the purposes of the present invention, sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical algorithms. A nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877.

Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers and Miller (1988) CABIOS 4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of

4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444-2448.

Preferred for use according to the present invention is the WU-BLAST (Washington
University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp://blast. wustl. edu/blast/executables.
This program is based on WU-BLAST version 1.4, which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul and Gish, 1996, Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et al., 1990, Basic local alignment search tool, Journal of Molecular Biology 215: 403-410; Gish and States, 1993, Identification of protein coding regions by database similarity search, Nature Genetics 3: 266-272; Karlin and Altschul, 1993, Applications and statistics for multiple high-scoring segments in molecular sequences, Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).

- In all search programs in the suite the gapped alignment routines are integral to the database search itself. Gapping can be turned off if desired. The default penalty (Q) for a gap of length one is Q=9 for proteins and BLASTP, and Q=10 for BLASTN, but may be changed to any integer. The default per-residue penalty for extending a gap (R) is R=2 for proteins and BLASTP, and R=10 for BLASTN, but may be changed to any integer. Any combination of values for Q and R can be used in order to align sequences so as to maximize overlap and identity while minimizing sequence gaps. The default amino acid comparison matrix is BLOSUM62, but other amino acid comparison matrices such as PAM can be utilized.
- The muteins of the invention also include peptides in which mutations have been introduced which effectively promote or impair one or more activities of the protein, for example mutations which promote or impair the function of a receptor, a recognition sequence or an effector binding site.
- Muteins may be produced by any convenient method. Conveniently, site-directed mutagenesis with mutagenic oligonucleotides may be employed using a double stranded template (pBluescript KS II construct containing nucleic acid encoding the BACE protein),

(e.g. Chameleon™ or QuikChange™ - Stratagene™) or cassette mutagenesis methods my be employed. After verifying each mutant derivative by sequencing, the mutated gene is excised and inserted into a suitable vector so that the modified protein can be overexpressed and purified.

Brief Description of the Drawings

Table 1, provides the coordinates of the BACE structure. The numbering of the residues used in this Table (see Section (D) below) correspond to the numbering of used by Hong *et al, ibid.* Elsewhere – unless indicated to the contrary – in the specification the numbering of the SwissProt database entry P56817 is used. Residue 1 of Table 1 corresponds to 62 of SwissProt P56817, and residue 385 corresponds to 446 of SwissProt P56817. In the sequence listing below, the SwissProt P56817 residues 14-453 are shown as 16-455 of SEQ ID NO:2.

Figure 1 represents the packing arrangements of the BACE monomers within the P6₁22 crystal lattice.

Figure 2 shows the superposition of BACE in complex with OM99-2 (1FKN), in black, with BACE, of the invention, in the absence of ligand (grey). The position of OM99-2 is defined by a stick representation of the inhibitor.

Detailed Description of the Invention

A. Construct design

5

10

15

- BACE protease is expressed, at high levels, as insoluble inclusion bodies in bacterial cells.

 To prepare functional protein appropriate for enzyme assay and structural studies these inclusion bodies are solubilised using denaturants and the slow removal of these denaturants results in the formation of the correct tertiary structure. In addition BACE is expressed as a pro-sequence and requires activation by a protease before it is fully functional.
- One of the problems of the techniques described in the art (Tang et al) for isolation of BACE from inclusion bodies is the generation of a mixture of products from the uncontrolled cleavage process. Choppa et al describe the isolation of BACE from mammalian cells and the subsequent cleavage with protease, which also gives a mixture of

protein species. Thus there is a need in the art for a method of generating active BACE as a homogenous species.

A further problem with the prior art techniques is the low yield of crystallisable material obtained. The inventors surprisingly found that the present invention results in a high yield from bacterial cells, in particular *E. coli*.

5

10

15

20

25

The inventors utilized clostripain as an activating protease to perform this cleavage in a controlled manner but this produced multiple species of BACE, as determined by mass spectrometry. In order to obtain a uniform homogenous protein after activation, a number of different constructs were produced. These constructs focused on the mutation of two of the clostripain cleavage sites (R56 and R57).

The sequences of the invention were designed to achieve a single cleavage point upon activation by clostripain, as activation of wild type sequence in this way resulted in a non-crystallisable protein with heterogeneous N termini.

The BACE constructs of the invention contain successful modifications of the BACE sequence to allow generation of homogeneous protein product from the use of clostripain. The sequence of the invention contains substitution for another amino acid residue or deletion of the arginine 56 and/or arginine 57 (numbering based on wild type full length sequence, SWISS_PROT P56817). In a preferred aspect of the invention this is a conserved substitution. Conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, positively charged amino acids include lysine and arginine and histidine. In a preferred aspect the mutation introduced is substitution of arginine to lysine at position 56 and/or 57, more preferably 56 and 57. This results in, as oppose to the wild type, the production of a single species of activated protein upon limited digest with clostripain. Clostripain cleavage occurs at a single site and is thus specific and generates a single species in minutes.

The advantage of these mutations is that they allow the controlled cleavage at arginine residue 42 and hence provides a single N-terminus.

This controlled cleavage thus provides a means to produce a substantially homogeneous composition of a BACE protein of the invention. By substantially homogeneous, it is meant that at least 95%, preferably at least 98% and more preferably at least 99% of the BACE protein in the composition has the same N-terminus. The N-terminus may be selected from residues 43 (i.e. by cleavage at 42), 46, 56, 57 or 58, preferably from 43, 56, 57 or 58, more preferably 43, 56 or 57.

5

10

25

These mutations can be introduced onto any sequence of BACE by site-directed mutagenesis techniques, to facilitate the generation of homogeneous material for structural or activity studies. Thus proteins of the invention are BACE proteins with residues 56 and/or 57 either mutated or deleted. Proteins of the invention also include BACE mutants described below in section (C).

The invention is exemplified by several constructs (SEQ ID 5-18). These were built based on the wild type sequence (BACE WT, SEQ ID 2) where R56 and/or R57 were mutated to K or deleted. These were BACE WT R56KR57K (SEQ ID 6), BACE WT R57K (SEQ ID 8), BACE WT R57del (SEQ ID 10). This was also performed on the BACE construct BACE N->Q to give BACE N->Q R56KR57K (SEQ ID 12), BACE N->Q R57K (SEQ ID 16), BACE N->Q R57del (SEQ ID 18). The BACE N->Q construct contains 4 additional mutations of asparagines to glutamine and a C-terminal His tag as well as the arginine mutations. BACE N->Q without the His tag was mutated at 56 and 57 to give BACE N->Q R56K R57K no His (SEQ ID 14).

SEQ ID 19 is the activated from of SEQ ID 6, SEQ ID 21 the activated form of SEQ ID 12 and SEQ ID 20 the activated form of SEQ ID 14, i.e. the form in which the protein is crystallized.

The three BACE constructs BACE WT R56KR57K, BACE N->Q R56KR57K, and BACE N->Q R56KR57K no His gave higher expression levels.

Thus the invention concerns any BACE proteins with one or more of: a mutation at 56, and mutation at 57, or a deletion at 56 or a deletion at 57, but preferably 56 and 57 mutated, and crystals thereof i.e. any BACE protein comprising residues 56-396 of BACE (based on numbering of SwissProt P56817) and containing these mutations.

B. Refolding protocol

5

10

20

25

The protein was expressed in *E. coli* as inclusion bodies, as outlined above. In an improvement of existing techniques BACE isolated from inclusion bodies was refolded by the use of high pH, a sulfobetaine refolding agent, and a longer duration at high pH. This refolding protocol increased the yield of refolded protein obtained and also gave high and reproducible yields of refolded BACE suitable for crystallisation.

The use of high pH in refolding (Burton et el, 1989) and of sulfobetaines as solubilising molecules in folding experiments (Goldberg et al, 1996) has previously been described. Here we describe the use of a combination of these technologies to give an unprecedented high yield of BACE. In addition to this combination of high pH and sulfobetaine, in another deviation from existing protocols for refolding BACE, the pH is maintained at high pH for at least 2 weeks. This is in comparison to the method of Tang et al, where BACE is solubilised at high pH and then the pH lowered before protein recovery at least 2-3 weeks later, preferably 3-4 weeks later.

Another aspect of the invention therefore concerns a novel method of producing soluble BACE proteins of the invention, utilizing a refolding protocol comprising the combined techniques of high pH buffer and the use of sulfobetaine, and also maintaining this high pH over at least two weeks.

More specifically, a method for producing refolded recombinant BACE comprising refolding the BACE under conditions which denature and then slowly renature the enzyme into a soluble form wherein: (a) the BACE is solubilised using a chaotrope such as urea or guanidine at 8-10M (typically 8 M urea solution) including one or more reducing agents at a pH of greater than 8.0 e.g. pH 9.0-10.5; (b) the BACE is then diluted into an aqueous buffer, like 20 mM-Tris, pH 9.0, containing sulfobetaine, preferably 10 mM sulfobetaine, where the sulfobetaine is preferably NDSB256 (3-(benzyldimethylammonio) propanesulfonate); (c) the solution is maintained at low temperature, e.g. 3-6 °C typically 4 °C, and at high pH, typically approximately pH 9.0, for at least 2 weeks (typically 3 weeks, more typically 4 weeks) before proceeding with purification.

C. Protein Crystals.

Described herein is a crystal of BACE having a hexagonal space group P6₁22, and unit cell dimensions a=b=103.2 Å, c=169.1 Å, α = β =60°, γ =120°. Unit cell variability of 5% may

be observed in all dimensions. Such crystals contain one copy of BACE in the asymmetric unit.

Such a crystal may be obtained using the methods described in the accompanying examples.

The crystal may be of the BACE protein of SEQ ID 19 although as explained earlier any homologue, allelic form, species variant, derivative or mutein (as hereinbefore defined) may be used. Thus, it will be understood by those of skill in the art that some variation to the primary amino acid sequence may be made without significant alteration to the resulting crystal structure. Such minor variations include the replacement of one or more amino acids, for example from 1 to 30, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids by an equivalent or fewer number of amino acids.

The methodology used to provide a BACE crystal illustrated herein may be used generally to provide a human BACE apo crystal resolvable at a resolution of at least 3 Å.

10

20

25

The invention thus further provides an apo BACE crystal having a resolution better than, i.e. numerically lower than, 2.5 Å.

15 The invention also provides a BACE crystal having a resolution better than, i.e. numerically lower than, 1.8 Å.

The invention also provides apo crystals of BACE resolvable to at least 2.5 Å capable of being soaked with compound(s) to form co-complex structures.

The proteins may be wild-type proteins or variants thereof, which are modified to promote crystal formation, for example by N-terminal truncations and/or deletion of loop regions, which prevent crystal formation.

The methods described herein may be used to make a BACE protein crystal, particularly of a BACE protein of SEQ ID 19-21, which method comprises growing a crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME, preferably 20-24 % PEG 5000 MME, more preferably 20-22.5 % PEG 5000 MME, with 180-220 mM (e.g. 200 mM) ammonium iodide and 180-220 mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6). In a preferred embodiment, this reservoir buffer may also contain from 0 to 5% glycerol, e.g. about 2.5% glycerol. The growing of the crystal is by vapour diffusion and is performed by placing an aliquot of the protein solution on a cover slip as a hanging drop

above a well containing the reservoir buffer. The concentration of the protein solution used was approximately 7 mg/ml.

Other crystals of the invention include crystals which have selected coordinates of the binding pocket, wherein the amino acid residues associated with those selected coordinates are located in a protein framework which holds these amino acids in a relative spatial configuration corresponding to the spatial configuration of those amino acids in Table 1. By "corresponding to", it is meant within an r.m.s.d. of less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å from the Ca or backbone atoms of Table 1, preferably the Cα atoms.

Crystals of the invention also include crystals of BACE mutants (muteins). In addition, BACE mutants may be crystallized in co-complex with known BACE substrates or inhibitors or novel compounds.

10

15

30

As explained herein, a mutant BACE (or BACE mutein) is a BACE protein characterized by the replacement or deletion of at least one amino acid from the wild type BACE. Such a mutant may be prepared for example by site-specific mutagenesis, or incorporation of natural or unnatural amino acids.

As explained herein, the present invention therefore contemplates BACE mutants (or muteins) as hereinbefore defined.

For example, the BACE mutants may define a polypeptide which is obtained by replacing at 20 least one amino acid residue in a native or synthetic BACE with a different amino acid residue and/or by adding and/or deleting amino acid residues within the native polypeptide or at the N- and/or C-terminus of a polypeptide corresponding to BACE, and which has substantially the same three-dimensional structure as BACE from which it is derived. By having substantially the same three-dimensional structure is meant having a set of atomic 25 structure co-ordinates that have a root mean square deviation (r.m.s.d.) of less than or equal to about 2.0 Å (preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å) when superimposed with the atomic structure co-ordinates of the BACE from which the mutant is derived when at least about 50% to 100% of the C_{α} atoms of the BACE

are included in the superposition. A mutant may have, but need not have, enzymatic or catalytic activity.

5

10

15

20

25

30

To produce homologues or mutants, amino acids present in the said protein can be replaced by other amino acids having similar properties, for example hydrophobicity, hydrophobic moment, antigenicity, propensity to form or break α -helical or β -sheet structures, and so. Substitutional variants of a protein are those in which at least one amino acid in the protein sequence has been removed and a different residue inserted in its place. Amino acid substitutions are typically of single residues but may be clustered depending on functional constraints e.g. at a crystal contact. Preferably amino acid substitutions will comprise conservative amino acid substitutions. Insertional amino acid variants are those in which one or more amino acids are introduced. This can be amino-terminal and/or carboxy-terminal fusion as well as intrasequence. Examples of amino-terminal and/or carboxy-terminal fusions are affinity tags, MBP tag, and epitope tags.

Deletional variants are those in which one or more amino acids are removed. This can be amino-terminal and/or carboxy-terminal, or in an internal region (for example a loop region), for example to remove or shorten that region.

Amino acid substitutions, deletions and additions that do not significantly interfere with the three-dimensional structure of the BACE will depend, in part, on the region of the BACE where the substitution, addition or deletion occurs. In highly variable regions of the molecule, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional structure of the molecule. In highly conserved regions, or regions containing significant secondary structure, conservative amino acid substitutions are preferred.

As explained earlier, conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine:

phenylalanine, tyrosine. Other conservative amino acid substitutions are well known in the art.

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a BACE binding pocket or catalytic residue in order to provide convenient cloning sites in the cDNA encoding the polypeptide, to aid in purification of the polypeptide, to modify compound binding etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of BACE will be apparent to those having skills in the art.

5

10

25

30

It should be noted that the mutants (BACE muteins) contemplated herein need not exhibit enzymatic activity. Indeed, amino acid substitutions, additions or deletions that interfere with the catalytic activity of the BACE but which do not significantly alter the three-dimensional structure of the catalytic region are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure co-ordinates obtained there from, can be used to identify compounds that bind to the protein.

15 The crystallization of such mutants and the determination of the three-dimensional structures by X-ray crystallography relies on the ability of the mutant proteins to yield crystals that diffract at high resolution. The mutant protein could then be used to obtain information on compound binding through the determination of mutant protein/ligand complex structures, which may be characterized using the BACE crystal structure of Table 1.

The mutations can be introduced by site-directed mutagenesis e.g. using a Stratagene QuikChangeTM Site-Directed Mutagenesis Kit or cassette mutagenesis methods (see e.g. Ausubel et al., eds., *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc., New York, and Sambrook et al., *Molecular Cloning: a Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989)).

To the extent that the present invention relates to BACE-ligand complexes and mutant, homologue, allelic form, species variant, derivative, mutein and analogue proteins of BACE, crystals of such proteins may be formed. The skilled person would recognize that the conditions provided herein for crystallising BACE may be used to form such crystals. Alternatively, the skilled person would use the conditions as a basis for identifying modified conditions for forming the crystals.

Thus the aspects of the invention relating to crystals of BACE, may be extended to crystals of mutant/mutein, homologue, allelic form, species variant or derivative (as defined herein).

D. Crystal Coordinates

5

10

15

20

25

In a further aspect, the invention also provides an apo crystal structure of BACE having the three dimensional atomic coordinates of Table 1. An advantageous feature of the structure defined by the atomic coordinates is that it has a high resolution of about 1.75 Å. A further advantageous aspect is the provision of an apo structure of BACE, which contains no ligand bound, unlike those previously described in the art. This is particularly advantageous as ligands can then be easily soaked into the crystal to provide co-complex data without the need for removal of any ligand already present, and without the need for time-consuming co-crystallisation experiments.

The BACE structure set out in Table 1 is a monomer structure. This is the first time that a monomer has been observed crystallographically for this protein.

Table 1 gives atomic coordinate data for BACE. In Table 1 the third column denotes the atom type, the fourth the residue type, the fifth the chain identification, the sixth the residue number (the atom numbering as described in Hong *et al*, 2000) the seventh, eighth and ninth columns are the X, Y, Z coordinates respectively of the atom in question, the tenth column the occupancy of the atom, the eleventh the temperature factor of the atom, the twelfth the chain identification, and the last, thirteenth column, the atom type.

Each of the tables is presented in an internally consistent format. For example, in Table 1 the coordinates of the atoms of each amino acid residue are listed such that the backbone nitrogen atom is first, followed by the C-alpha backbone carbon atom, designated CA, followed by the carbon and oxygen of the protein backbone and finally side chain residues (designated according to one standard convention). Alternative file formats (e.g. such as a format consistent with that of the EBI Macromolecular Structure Database (Hinxton, UK)) which may include a different ordering of these atoms, or a different designation of the side-chain residues, may be used or preferred by others of skill in the art. However it will be apparent that the use of a different file format to present or manipulate the coordinates of the Tables is within the scope of the present invention.

The coordinates of Table 1 provide a measure of atomic location in Ångstroms, to 3 decimal places. The coordinates are a relative set of positions that define a shape in three dimensions, but the skilled person would understand that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape.

Furthermore, the skilled person would understand that varying the relative atomic positions of the atoms of the structure so that the root mean square deviation of the residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues) is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1 for the Cα atoms or residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and usefulness for structure-based analysis of BACE-interactivity molecular structures.

10

15

20

25

30

Likewise the skilled person would understand that changing the number and/or positions of the water molecules and/or substrate molecules of Table 1 will not generally affect the usefulness of the structure for structure-based analysis of BACE-interacting structure. Thus for the purposes described herein as being aspects of the present invention, it is within the scope of the invention if: the Table 1 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of residue backbone atoms is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å, and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1 for the Cα or residue backbone atoms; and/or the number and/or positions of water molecules and/or substrate molecules is varied.

Reference herein to the coordinate data of Table 1 and the like thus includes the coordinate data in which one or more individual values of the Table are varied in this way unless specified explicitly to the contrary. In a preferred aspect, reference herein to the coordinates of Table 1 or parts thereof (e.g. selected coordinates) should be taken to include coordinates having a root mean square deviation of less than 0.72 Å, and preferably less than 0.5 Å, from the Cα atoms of Table 1 or corresponding parts thereof.

By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

Protein structure similarity is routinely expressed and measured by the root mean square deviation (r.m.s.d.), which measures the difference in positioning in space between two sets of atoms. The r.m.s.d. measures distance between equivalent atoms after their optimal superposition. The r.m.s.d. can be calculated over all atoms, over residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues), main chain atoms only (i.e. the nitrogen-carbon-oxygen-carbon backbone atoms of the protein amino acid residues), side chain atoms only or more usually over C-alpha atoms only. For the purposes of this invention, the r.m.s.d. can be calculated over any of these, using any of the methods outlined below.

5

20

25

30

Methods of comparing protein structures are discussed in Methods of Enzymology, vol 115, pg 397-420. The necessary least-squares algebra to calculate r.m.s.d. has been given by Rossman and Argos (J. Biol. Chem., vol 250, pp7525 (1975)) although faster methods have been described by Kabsch (Acta Crystallogr., Section A, A92, 922 (1976); Acta Cryst. A34, 827-828 (1978)), Hendrickson (Acta Crystallogr., Section A, A35, 158 (1979) and
McLachan (J. Mol. Biol., vol 128, pp49 (1979). Some algorithms use an iterative procedure in which the one molecule is moved relative to the other, such as that described by Ferro and Hermans (Ferro and Hermans, Acta Crystallographic, A33, 345-347 (1977)). Other methods e.g. Kabsch's algorithm locate the best fit directly.

It is usual to consider C-alpha atoms and the rmsd can then be calculated using programs such as LSQKAB (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, *Acta Crystallographica*, D50, (1994), 760-763), MNYFIT (part of a collection of programs called COMPOSER, Sutcliffe, M.J., Haneef, I., Carney, D. and Blundell, T.L. (1987) Protein Engineering, 1, 377-384), MAPS (Lu, G. An Approach for Multiple Alignment of Protein Structures (1998, in manuscript)), QUANTA (Jones et al., Acta Crystallography A47 (1991), 110-119 and commercially available from Accelerys, San Diego, CA), Insight (commercially available from Accelerys, San Diego, CA), Sybyl® (commercially available from Tripos, Inc., St Louis), O (Jones et al., *Acta Crystallographica*, A47, (1991), 110-119), and other coordinate fitting programs.

In, for example the programs LSQKAB and O, the user can define the residues in the two proteins that are to be paired for the purpose of the calculation. Alternatively, the pairing of residues can be determined by generating a sequence alignment of the two proteins, programs for sequence alignment are discussed in more detail in Section G. The atomic

coordinates can then be superimposed according to this alignment and an r.m.s.d. value calculated. The program Sequoia (C.M. Bruns, I. Hubatsch, M. Ridderström, B. Mannervik, and J.A. Tainer (1999) Human Glutathione Transferase A4-4 Crystal Structures and Mutagenesis Reveal the Basis of High Catalytic Efficiency with Toxic Lipid Peroxidation

Products, Journal of Molecular Biology 288(3): 427-439) performs the alignment of homologous protein sequences, and the superposition of homologous protein atomic coordinates. Once aligned, the r.m.s.d. can be calculated using programs detailed above. For sequence identical, or highly identical, the structural alignment of proteins can be done manually or automatically as outlined above. Another approach would be to generate a superposition of protein atomic coordinates without considering the sequence.

It is more normal when comparing significantly different sets of coordinates to calculate the r.m.s.d. value over C-alpha atoms only. It is particularly useful when analysing side chain movement to calculate the r.m.s.d. over all atoms and this can be done using LSQKAB and other programs.

Varying the atomic positions of the atoms of the structure by up to about 0.5 Å in a concerted way, preferably up to about 0.3 Å in any direction will result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and utility e.g. for molecular structure-based analysis.

20

25

30

Also, modifications in the BACE crystal structure due to e.g. mutations, additions, substitutions, and/or deletions of amino acid residues (including the deletion of one or more BACE protomers) could account for variations in the BACE atomic coordinates. However, atomic coordinate data of BACE modified so that a ligand that bound to one or more binding sites of BACE would be expected to bind to the corresponding binding sites of the modified BACE are, for the purposes described herein as being aspects of the present invention, also within the scope of the invention. Reference herein to the coordinates of Table 1 thus includes the coordinates modified in this way. Preferably, the modified coordinate data define at least one BACE binding cavity.

Those of skill in the art will appreciate that in many applications of the invention, it is not necessary to utilise all the coordinates of Table 1, but merely a portion of them. The term portion is intended to define a sub-set of the coordinates, which may or may not represent contiguous amino acid residues in the BACE structure. For example, as described below, in

methods of modelling candidate compounds with BACE, selected coordinates of BACE may be used, for example at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 atoms of the BACE structure. Likewise, the other applications of the invention described herein, including homology modelling and structure solution, and data storage and computer assisted manipulation of the coordinates, may also utilise all or a portion of the coordinates of Table 1.

E. Homology Modelling

5

10

The invention also provides a means for homology modelling of other proteins (referred to below as target BACE proteins). By "homology modelling", it is meant the prediction of related BACE structures based either on X-ray crystallographic data or computer-assisted *de novo* prediction of structure, based upon manipulation of the coordinate data of Table 1.

"Homology modelling" extends to target BACE proteins, which are analogues or homologues of the BACE protein whose structure has been determined in the accompanying examples. It also extends to BACE protein mutants of BACE protein itself.

- The term "homologous regions" describes amino acid residues in two sequences that are identical or have similar (e.g. aliphatic, aromatic, polar, negatively charged, or positively charged) side-chain chemical groups. Identical and similar residues in homologous regions are sometimes described as being respectively "invariant" and "conserved" by those skilled in the art.
- In general, the method involves comparing the amino acid sequences of the BACE protein of Table 1 with a target BACE protein by aligning the amino acid sequences (Dunbrack et al., Folding and Design, 2, (1997), 27-42). Amino acids in the sequences are then compared and groups of amino acids that are homologous (conveniently referred to as "corresponding regions") are grouped together. This method detects conserved regions of the polypeptides and accounts for amino acid insertions or deletions.
 - Homology between amino acid sequences can be determined using commercially available algorithms. The programs *BLAST*, *gapped BLAST*, *BLASTN*, *PSI-BLAST* and *BLAST 2* sequences (provided by the National Center for Biotechnology Information) are widely used in the art for this purpose, and can align homologous regions of two amino acid sequences.
- 30 These may be used with default parameters to determine the degree of homology between

the amino acid sequence of the Table 1 protein and other target BACE proteins, which are to be modeled.

Analogues are defined as proteins with similar three-dimensional structures and/or functions with little evidence of a common ancestor at a sequence level.

- Homologues are defined as proteins with evidence of a common ancestor, i.e. likely to be the result of evolutionary divergence and are divided into remote, medium and close subdivisions based on the degree (usually expressed as a percentage) of sequence identity.
 - A homologue is defined here as a protein with at least 15% sequence identity or which has at least one functional domain, which is characteristic of BACE.
- There are two types of homologue: orthologues and paralogues. Orthologues are defined as homologous genes in different organisms, i.e. the genes share a common ancestor coincident with the speciation event that generated them. Paralogues are defined as homologous genes in the same organism derived from a gene/chromosome/ genome duplication, i.e. the common ancestor of the genes occurred since the last speciation event.
- 15 The homologues could also be mutants as described in section (C).

20

25

Once the amino acid sequences of the polypeptides with known and unknown structures are aligned, the structures of the conserved amino acids in a computer representation of the polypeptide with known structure are transferred to the corresponding amino acids of the polypeptide whose structure is unknown. For example, a tyrosine in the amino acid sequence of known structure may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of unknown structure.

The structures of amino acids located in non-conserved regions may be assigned manually by using standard peptide geometries or by molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization.

Homology modelling as such is a technique that is well known to those skilled in the art (see e.g. Greer, *Science*, Vol. 228, (1985), 1055, and Blundell *et al.*, *Eur. J. Biochem*, Vol. 172, (1988), 513). The techniques described in these references, as well as other homology

modelling techniques, generally available in the art, may be used in performing the present invention.

Thus the invention provides a method of homology modelling comprising the steps of: (a) aligning a representation of an amino acid sequence of a target BACE protein of unknown three-dimensional structure with the amino acid sequence of the BACE of Table 1 to match homologous regions of the amino acid sequences; (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table 1; and (c) determining a conformation (e.g. so that favorable interactions are formed within the target BACE of unknown structure and/or so that a low energy conformation is formed) for said target BACE of unknown structure which substantially preserves the structure of said matched homologous regions.

Preferably one or all of steps (a) to (c) are performed by computer modelling.

The aspects of the invention described herein which utilise the BACE structure *in silico* may be equally applied to homologue models of BACE obtained by the above aspect of the invention, and this application forms a further aspect of the present invention. Thus having determined a conformation of a BACE by the method described above, such a conformation may be used in a computer-based method of rational drug design as described herein.

The absence of a ligand from our structure is particularly advantageous for modelling of other proteins as this structure reveals the native structure of the protein unaffected by conformational changes upon ligand binding.

F. Structure Solution

10

15

20

25

30

The structure of the human BACE can also be used to solve the crystal structure of other target BACE proteins including other crystal forms of BACE, mutants, and co-complexes of BACE, where X-ray diffraction data or NMR spectroscopic data of these target BACE proteins has been generated and requires interpretation in order to provide a structure.

In the case of BACE, this protein may crystallize in more than one crystal form. The structure coordinates of BACE, or portions thereof, as provided by this invention are particularly useful to solve the structure of those other crystal forms of BACE. They may also be used to solve the structure of BACE mutants, BACE co-complexes, or of the

crystalline form of any other protein with significant amino acid sequence homology to any functional domain of BACE.

In the case of other target BACE proteins, particularly the BACE proteins referred to in Section C above, the present invention allows the structures of such targets to be obtained more readily where raw X-ray diffraction data is generated.

5

10

15

20

25

Thus, where X-ray crystallographic or NMR spectroscopic data is provided for target BACE-ligand complex, or a BACE homologue or analogue of unknown three-dimensional structure, the structure of BACE, as defined by Table 1, may be used to interpret that data to provide a likely structure for the other BACE by techniques which are well known in the art, e.g. phasing in the case of X-ray crystallography and assisting peak assignments in NMR spectra.

One method that may be employed for these purposes is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of BACE, a BACE mutant, or a BACE co-complex, or the crystal of a target BACE protein with amino acid sequence homology to any functional domain of BACE, may be determined using the BACE structure coordinates of this invention as provided herein. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

Examples of computer programs known in the art for performing molecular replacement are CNX (Brunger A.T.; Adams P.D.; Rice L.M., Current Opinion in Structural Biology, Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from Accelerys San Diego, CA) or AMORE (Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157-163).

Thus, in a further aspect of the invention provides a method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein or (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1.

In a preferred aspect of this invention the co-ordinates are used to solve the structure of target BACE particularly homologues of BACE for example aspartic proteases such as BACE2 or cathepsin E (69% and 37% similarity, respectively).

G. Computer Systems

25

In another aspect, the present invention provides systems, particularly a computer system, the systems containing either (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target BACE protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

For example the computer system may comprise: (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design. The computer system may further comprise a display coupled to said central-processing unit for displaying said structures.

The invention also provides such systems containing atomic coordinate data of target BACE proteins wherein such data has been generated according to the methods of the invention described herein based on the starting data provided by Table 1.

Such data is useful for a number of purposes, including the generation of structures to analyze the mechanisms of action of BACE proteins and/or to perform rational drug design of compounds which interact with BACE, such as compounds which are inhibitors of BACE.

In another aspect, the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion (e.g. selected coordinates as defined herein) of the structure coordinates of BACE of Table 1, or a homologue of BACE, wherein said homologue comprises backbone atoms that have a root mean square deviation from the $C\alpha$ or backbone atoms (nitrogen-carbon_{α}-carbon) of Table 1 of less than 2 Å, such as not more than 1.5Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.5 Å.

5

10

15

20

25

30

The invention also provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (e.g. selected coordinates as defined herein) of the structural coordinates for BACE according to Table 1; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.

In a further aspect, the present invention provides computer readable media with with at least one of: (a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of BACE, or at least selected coordinates thereof; (b) structure factor data for BACE recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a BACE-ligand complex or a BACE homologue or analogue generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

By providing such computer readable media, the atomic coordinate data can be routinely accessed to model BACE or selected coordinates thereof. For example, RASMOL (Sayle et al., *TIBS*, Vol. 20, (1995), 374) is a publicly available computer software package which allows access and analysis of atomic coordinate data for structure determination and/or rational drug design.

On the other hand, structure factor data, which are derivable from atomic coordinate data (see e.g. Blundell et al., in *Protein Crystallography*, Academic Press, New York, London and San Francisco, (1976)), are particularly useful for calculating e.g. difference Fourier electron density maps.

- A further aspect of the invention provides a method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising:
- (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE; (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.
- Thus the remote device may comprise e.g. a computer system or computer readable media of one of the previous aspects of the invention. The device may be in a different country or jurisdiction from where the computer-readable data is received. The communication may be via the internet, intranet, e-mail etc. Typically the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibres. Additionally, the communication may be through radio signals or satellite transmissions.

H. Uses of the Crystals of the Invention

30

The crystal structures obtained according to the present invention (including the structure of Table 1 as well the structures of target BACE proteins obtained in accordance with the methods described herein), may be used in several ways for drug design.

By identifying conditions under which high quality crystals of apo-BACE can be produced (i.e. crystals which can diffract X-rays for the determination of atomic coordinates to a resolution of better than 2.5 Å), the present invention facilitates the identification of modulators of BACE activity.

The invention is particularly suitable for the design, screening, development and optimization of BACE inhibitor components. It is thus a preferred aspect of the invention that modulators are inhibitors.

In a further aspect, the invention provides a method for determining the structure of a compound bound to BACE, said method comprising: (a) providing a crystal of BACE according to the invention; (b) soaking the crystal with said compounds; and (c) determining the structure of said BACE compound complex by employing the data of Table 1.

10

15

20

25

Alternatively, the BACE and compound may be co-crystallized. Thus the invention provides a method for determining the structure of a compound bound to BACE, said method comprising; mixing the protein with the compound(s), crystallizing the protein-compound(s) complex; and determining the structure of said BACE-compound(s) complex by reference to the data of Table 1.

A mixture of compounds may be soaked or co-crystallized with the crystal, wherein only one or some of the compounds may be expected to bind to the BACE. As well as the structure of the complex, the identity of the complexing compound(s) is/are then determined.

In either case, substrate or a substrate analogue thereof may optionally be present.

The method may comprise the further steps of: (a) obtaining or synthesising said candidate modulator; (b) forming a complex of BACE and said candidate modulator; and (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.

The analysis of such structures may employ (i) X-ray crystallographic diffraction data from the complex and (ii) a three-dimensional structure of BACE, or at least selected coordinates thereof, to generate a difference Fourier electron density map of the complex, the threedimensional structure being defined by atomic coordinate data according to Table 1. The difference Fourier electron density map may then be analyzed, to identify the binding mode of the modulator.

Therefore, such complexes can be crystallized and analyzed using X-ray diffraction methods, e.g. according to the approach described by Greer et al., *J. of Medicinal Chemistry*, Vol. 37, (1994), 1035-1054, and difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked crystals of BACE or co-crystallized BACE and the solved structure of uncomplexed BACE. These maps can then be analyzed e.g. to determine whether and where a particular compound binds to BACE and/or changes the conformation of BACE.

10

15

20

25

Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, *Acta Crystallographica*, D50, (1994), 760-763.). For map visualization and model building programs such as "O" (Jones et al., *Acta Crystallographica*, A47, (1991), 110-119) or "QUANTA" (1994, San Diego, CA: Molecular Simulations can be used.

The crystal structures of a series of complexes may then be solved by molecular replacement and compared with that of the BACE of Table 1. Potential sites for modification within the various binding sites of the enzyme may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between BACE and a chemical entity or compound.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined against 1.5 to 3.5 Å resolution X-ray data to an R value of about 0.30 or less using computer software, such as CNX (Brunger et al., *Current Opinion in Structural Biology*, Vol. 8, Issue 5, October 1998, 606-611, and commercially available from Accelerys, San Diego, CA), X-PLOR (Yale University, ©1992, distributed by Accelerys), as described by Blundell et al, (1976) and Methods in Enzymology, vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985).

This information may thus be used to optimize known classes of BACE substrates or inhibitors, and more importantly, to design and synthesize novel classes of BACE inhibitors.

Analysing the complex by X-ray crystallography will determine the ability of the candidate compound to interact with BACE. Analysis of the co-complexes of BACE may involve e.g. phasing, molecular replacement or calculating a Fourier difference map of the complex as discussed above. However, with the high resolutions obtainable with the crystal, it can also be possible to determine the ability of the candidate modulator to interact with BACE merely by comparing the intensities and/or positions of X-ray diffraction spots from the complex with e.g. diffraction spots of uncomplexed BACE or a previously identified BACE-ligand complex. Thus the step of analysing the complex may involve analysing the intensities and/or positions of X-ray diffraction spots from the complex to determine the ability of the candidate modulator to interact with BACE.

Having obtained and characterized a modulator compound according to the invention, the invention further provides a method for modulating the activity of BACE which method comprises: (a) providing BACE under conditions where, in the absence of modulator, the BACE is able to synthesize amyloid β -peptide from amyloid precursor protein (APP); (b) providing a modulator compound; and (c) determining the extent to which the activity of BACE is altered by the presence of said compound.

20 <u>I. Structure-based Drug Design</u>

5

10

15

25

30

Determination of the three-dimensional structure of BACE provides important information about the binding sites of BACE, particularly when comparisons are made with similar enzymes. This information may then be used for rational design of BACE inhibitors, e.g. by computational techniques which identify possible binding ligands for the binding sites, by enabling linked-fragment approaches to drug design, and by enabling the identification and location of bound ligands using X-ray crystallographic analysis. These techniques are discussed in more detail below.

Greer et al. (1994) describes an iterative approach to ligand design based on repeated sequences of computer modelling, protein-ligand complex formation and X-ray crystallographic or NMR spectroscopic analysis. Thus novel thymidylate synthase inhibitor series were designed de novo by Greer et al., and BACE inhibitors may also be designed in

the this way. More specifically, using e.g. GRID on the solved 3D structure of BACE, a ligand (e.g. a potential inhibitor) for BACE may be designed that complements the functionalities of the BACE binding sites. The ligand can then be synthesised, formed into a complex with BACE, and the complex then analysed by X-ray crystallography to identify the actual position of the bound ligand. The structure and/or functional groups of the ligand can then be adjusted, if necessary, in view of the results of the X-ray analysis, and the synthesis and analysis sequence repeated until an optimised ligand is obtained. Related approaches to structure-based drug design are also discussed in Bohacek *et al.*, Medicinal Research Reviews, Vol.16, (1996), 3-50.

5

20

25

30

Linked-fragment approaches to drug design also require accurate information on the atomic coordinates of target receptors. The basic idea behind these approaches is to determine (computationally or experimentally) the binding locations of plural ligands to a target molecule, and then construct a molecular scaffold to connect the ligands together in such a way that their relative binding positions are preserved. The ligands may be provided computationally and modelled in a computer system, or provided in an experimental setting, wherein crystals according to the invention are provided and a plurality of ligands soaked separately or in mixed pools into the crystal prior to X-ray analysis and determination of their location.

The binding site of two or more ligands are determined and may be connected to form a potential lead compound that can be further refined using e.g. the iterative technique of *Greer* et al. For a virtual linked-fragment approach see Verlinde et al., *J. of Computer-Aided Molecular Design*, 6, (1992), 131-147, and for NMR and X-ray approaches see Shuker et al., *Science*, 274, (1996), 1531-1534 and Stout et al., *Structure*, 6, (1998), 839-848. The use of these approaches to design BACE inhibitors is made possible by the determination of the BACE structure.

Many of the techniques and approaches to structure-based drug design described above rely at some stage on X-ray analysis to identify the binding position of a ligand in a ligand-protein complex. A common way of doing this is to perform X-ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the ligand. However, in order to produce the map (as explained e.g. by Blundell *et al.* (1976)) it is necessary to know beforehand the protein 3D structure (or at least the protein structure factors). Therefore, determination of the BACE

structure also allows difference Fourier electron density maps of BACE-ligand complexes to be produced, which can greatly assist the process of rational drug design.

The provision of the crystal structures of the invention will also allow the development of compounds which interact with the binding pocket regions of BACE (for example to act as inhibitors of a BACE) based on a fragment linking or fragment growing approach.

5

10

15

25

30

For example, the binding of one or more molecular fragments can be determined in the protein binding pocket by X-ray crystallography. Molecular fragments are typically compounds with a molecular weight between 100 and 200 Da (Carr et al, 2002). This can then provide a starting point for medicinal chemistry to optimize the interactions using a structure-based approach. The fragments can be combined onto a template or used as the starting point for 'growing out' an inhibitor into other pockets of the protein (Blundell et al, 2002). The fragments can be positioned in the binding pocket of BACE and then 'grown' to fill the space available, exploring the electrostatic, van der Waals or hydrogen-bonding interactions that are involved in molecular recognition. The potency of the original weakly binding fragment thus can be rapidly improved using iterative structure-based chemical synthesis.

At one or more stages in the fragment growing approach, the compound may be synthesized and tested in a biological system for its activity. This can be used to guide the further growing out of the fragment.

Where two fragment-binding regions are identified, a linked fragment approach may be based upon attempting to link the two fragments directly, or growing one or both fragments in the manner described above in order to obtain a larger, linked structure, which may have the desired properties.

The previous aspects of the invention relate also to fragment linking or fragment growing approaches to rational drug design. Thus the step of providing the structure of a candidate modulator molecule in the previous aspects may be performed by providing the structures of a plurality of molecular fragments and linking the molecular fragments to form a candidate modulator molecule. Furthermore the step of fitting the structure of the candidate modulator molecule in the previous aspects may be performed by fitting the structure of each of the molecular fragments (before or after the molecular fragments are linked together).

For example, the computer-based method of rational drug design may comprise:

5

10

25

30

(a) providing the coordinates of at least two atoms of the BACE of Table 1; (b) providing the structures of a plurality of molecular fragments; (c) fitting the structure of each of the molecular fragments to the selected coordinates of the BACE; and (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.

In practice, it will be desirable to model a sufficient number of atoms of the BACE as defined by the coordinates of Table 1, which represent a binding pocket. Thus, in this embodiment of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 preferably at least 500 selected atoms of the BACE structure.

A further aspect of the invention provides a compound having a chemical structure selected using the method of any one of the previous aspects, said compound being an inhibitor of BACE.

J. Uses of the Coordinates of the Invention in in silico analysis and design

Although the invention will facilitate the determination of actual crystal structures comprising BACE and a compound, which modulates BACE, current computational techniques provide a powerful alternative to the need to generate such crystals and generate and analyze diffraction data. Accordingly, a particularly preferred aspect of the invention relates to *in silico* methods directed to the analysis and development of compounds, which interact, with BACE structures of the present invention.

The approaches to structure-based drug design described below all require initial identification of possible compounds for interaction with target bio-molecule (in this case BACE). Sometimes these compounds are known e.g. from the research literature. However, when they are not, or when novel compounds are wanted, a first stage of the drug design program may involve computer-based *in silico* screening of compound databases (such as the Cambridge Structural Database) with the aim of identifying compounds which interact with the binding site or sites of the target bio-molecule. Screening selection criteria may be based on pharmacokinetic properties such as metabolic stability and toxicity. However, determination of the BACE structure allows the architecture and chemical nature of each BACE binding site to be identified, which in turn allows the geometric and

functional constraints of a descriptor for the potential inhibitor to be derived. The descriptor is, therefore, a type of virtual 3-D pharmacophore, which can also be used as selection criteria or filter for database screening.

Thus as a result of the determination of the BACE three-dimensional structure, more purely computational techniques for rational drug design may also be used to design BACE inhibitors (for an overview of these techniques see e.g. Walters et al (*Drug Discovery Today*, Vol.3, No.4, (1998), 160-178; Abagyan, R.; Totrov, M. *Curr. Opin. Chem. Biol.* 2001, 5, 375-382). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in *Current Opinion in Biotechnology*, Vol.6, (1995), 652-656 and Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. *Proteins* 2002, 47, 409-443), which require accurate information on the atomic coordinates of target receptors may be used to design potential BACE inhibitors.

10

15

The aspects of the invention described herein which utilize the BACE structure *in silico* may be equally applied to both the BACE structure of Table 1 and the models of target BACE proteins obtained by other aspects of the invention. Thus having determined a conformation of a BACE by the method described above, such a conformation may be used in a computer-based method of rational drug design as described herein. In addition the availability of the structure of the BACE will allow the generation of highly predictive pharmacophore models for virtual library screening or compound design.

- Accordingly, the invention provides a computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing the structure of a BACE of the invention of Table 1; (b) providing a molecular structure to be fitted to said BACE structure; and (c) fitting the molecular structure to the BACE structure of Table 1.
- In an alternative aspect, the method of the invention may utilize the coordinates of atoms of interest of BACE, which are in the vicinity of a putative molecular structure binding region, for example within 10-25 Å of the catalytic regions or within 5-10 Å of a compound bound, in order to model the pocket in which the structure binds. These coordinates may be used to define a space, which is then analyzed "in silico". Thus the invention provides a computer-based method for the analysis of molecular structures which comprises: (a) providing the coordinates of at least two atoms of a BACE structure of the invention ("selected").

coordinates"); (b) providing the structure of a molecular structure to be fitted to said coordinates; and (c) fitting the structure to the selected coordinates of the BACE.

In practice, it will be desirable to model a sufficient number of atoms of the BACE as defined by the coordinates of Table 1, which represent a binding pocket. Thus, in this embodiment of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 and preferably 500 selected atoms of the BACE structure.

In order to provide a three-dimensional structure of compounds to be fitted to a BACE structure of the invention, the compound structure may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a representation of the compound for fitting to a BACE structure of the invention.

10

15

20

25

30

The step of providing the structure of a candidate modulator molecule may involve selecting the compound by computationally screening a database of compounds for interaction with the binding cavity or cavities. For example, a 3-D descriptor for the potential modulator may be derived, the descriptor including geometric and functional constraints derived from the architecture and chemical nature of the binding cavity or cavities. The descriptor may then be used to interrogate the compound database, a potential modulator being a compound that has a good match to the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.

In any event, the determination of the three-dimensional structure of BACE provides a basis for the design of new and specific ligands for BACE. For example, knowing the three-dimensional structure of BACE, computer modelling programs may be used to design different molecules expected to interact with possible or confirmed binding cavities or other structural or functional features of BACE. Examples of this are discussed in Schneider, G.; Bohm, H. J. *Drug Discov. Today* 2002, 7, 64-70.

More specifically, the interaction of a compound with BACE can be examined through the use of computer modelling using a docking program such as GOLD (Jones et al., *J. Mol. Biol.*, 245, 43-53 (1995), Jones et al., *J. Mol. Biol.*, 267, 727-748 (1997)), GRAMM (Vakser, I.A., *Proteins*, Suppl., 1:226-230 (1997)), DOCK (Kuntz et al, *J.Mol. Biol.* 1982, 161, 269-288, Makino et al, *J. Comput. Chem.* 1997, 18, 1812-1825), AUTODOCK

(Goodsell et al, *Proteins* 1990, 8, 195-202, Morris et al, *J.Comput.Chem.* 1998, 19, 1639-1662.), FlexX, (Rarey et al, *J.Mol.Biol.* 1996, 261, 470-489) or ICM (Abagyan et al, *J.Comput.Chem.* 1994, 15, 488-506). This procedure can include computer fitting of compounds to BACE to ascertain how well the shape and the chemical structure of the compound will bind to the BACE.

5

10

15

20

25

30

Also computer-assisted, manual examination of the binding site structure of BACE may be performed. The use of programs such as GRID (Goodford, *J. Med. Chem.*, 28, (1985), 849-857) - a program that determines probable interaction sites between molecules with various functional groups and an enzyme surface - may also be used to analyse the binding cavity or cavities to predict partial structures of inhibiting compounds.

Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (i.e. the BACE and a candidiate modulator). Generally the tighter the fit, the fewer the steric hindrances, and the greater the attractive forces, the more potent the potential modulator since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug, the more likely it is that the drug will not interact with other proteins as well. This will tend to minimise potential side-effects due to unwanted interactions with other proteins.

In another aspect, the present invention provides a method for identifying an agent compound (e.g. an inhibitor) which modulates BACE activity, comprising the steps of: (a) employing three-dimensional atomic coordinate data according to Table 1 to characterise at least one BACE binding site and preferably a plurality of BACE binding sites; (b) providing the structure of a candidate agent compound; (c) fitting the candidate agent compound to the binding sites; and (d) selecting the candidate agent compound.

Preferably sufficient binding sites are characterised to define a BACE binding cavity or cavities.

A plurality (for example two, three or four) of (typically spaced) BACE binding sites may be characterised and a plurality of respective compounds designed or selected. The agent compound may then be formed by linking the respective compounds into a larger compound which preferably maintains the relative positions and orientations of the respective compounds at the binding sites. The larger compound may be formed as a real molecule or by computer modelling.

In one embodiment a plurality of candidate agent compounds are screened or interrogated for interaction with the binding sites. In one example, step (b) involves providing the structures of the candidate agent compounds, each of which is then fitted in step (c) to computationally screen a database of compounds (such as the Cambridge Structural

5 Database) for interaction with the binding sites, i.e. the candidate agent compound may be selected by computationally screening a database of compounds for interaction with the binding sites (see Martin, *J. Med. Chem.*, vol 35, 2145-2154 (1992)). In another example, a 3-D descriptor for the agent compound is derived, the descriptor including e.g. geometric and functional constraints derived from the architecture and chemical nature of the binding cavity or cavities. The descriptor may then be used to interrogate the compound database, the identified agent compound being the compound which matches with the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.

In a related aspect, the present invention provides a method for identifying a candidate modulator (e.g. potential inhibitor) of BACE comprising the steps of: (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.

Detailed structural information can then be obtained about the binding of the compound to BACE, and in the light of this information adjustments can be made to the structure or functionality of the compound, e.g. to improve its interaction with BACE. The above steps may be repeated and re-repeated as necessary.

K. Compound selection

15

In another aspect, in place of *in silico* methods, high throughput screening of compounds to select compounds with binding activity may be undertaken, and those compounds which show binding activity may be selected as possible candidate modulators, and further crystallized with BACE (e.g. by co-crystallization or by soaking) for X-ray analysis. The resulting X-ray structure may be compared with that of Table 1 for a variety of purposes.

L. Compounds of the invention

5

15

20

25

Having designed or selected possible binding candidate modulators (e.g. by *in silico* analysis, "wet" chemical methods, X-ray analysis etc.) by determining those which have favourable fitting properties (e.g. strong attraction between candidate and BACE), these can then be screened for activity.

Consequently all the methods of compound design and identification outlined above can optionally include the step of: (a) obtaining or synthesising the candidate modulator; and (b) contacting the candidate modulator with BACE to determine the ability of the candidate modulator to interact with BACE.

More preferably, in the latter step the candidate modulator is contacted with BACE under conditions to determine its function.

For example, in the contacting step above the candidate modulator is contacted with BACE in the presence of a substrate, and typically a buffer, to determine the ability of said candidate modulator to inhibit BACE. The substrate may be e.g. APP. So, for example, an assay mixture for BACE may be produced which comprises the candidate modulator, substrate and buffer.

Detailed structural information can be obtained about the binding of the candidate modulator to BACE, and in the light of this information adjustments can be made to the structure or functionality of the candidate modulator, e.g. to improve binding to the binding cavity or cavities. The above steps may be repeated and re-repeated as necessary.

Following identification of such compounds, it may be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

Thus, the present invention extends in various aspects not only to a compound as provided by the invention, but also a pharmaceutical composition, medicament, drug or other composition comprising such a compound e.g. for treatment (which may include preventative treatment) of disease; a method comprising administration of such a composition to a patient, e.g. for treatment of disease; use of such an inhibitor in the manufacture of a composition for administration, e.g. for treatment of disease; and a method

of making a pharmaceutical composition comprising admixing such an inhibitor with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

Thus a further aspect of the present invention provides a method for preparing a medicament, pharmaceutical composition or drug, the method comprising:

5 (a) identifying a BACE modulator molecule (which may thus be termed a lead compound) by a method of any one of the other aspects of the invention disclosed herein; (b) optimising the structure of the modulator molecule; and (c) preparing a medicament, pharmaceutical composition or drug containing the optimised modulator molecule.

The above-described processes of the invention may be iterated in that the modified compound may itself be the basis for further compound design.

15

20

25

30

By "optimising the structure" we mean e.g. adding molecular scaffolding, adding or varying functional groups, or connecting the molecule with other molecules (e.g. using a fragment linking approach) such that the chemical structure of the modulator molecule is changed while its original modulating functionality is maintained or enhanced. Such optimisation is regularly undertaken during drug development programmes to e.g. enhance potency, promote pharmacological acceptability, increase chemical stability etc. of lead compounds.

Modification will be those conventional in the art known to the skilled medicinal chemist, and will include, for example, substitutions or removal of groups containing residues which interact with the amino acid side chain groups of a BACE structure of the invention. For example, the replacements may include the addition or removal of groups in order to decrease or increase the charge of a group in a test compound, the replacement of a charge group with a group of the opposite charge, or the replacement of a hydrophobic group with a hydrophilic group or vice versa. It will be understood that these are only examples of the type of substitutions considered by medicinal chemists in the development of new pharmaceutical compounds and other modifications may be made, depending upon the nature of the starting compound and its activity.

Compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural)

administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.

5

10

15

20

25

30

For solid compositions, conventional non-toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, cellulose, cellulose derivatives, starch, magnesium stearate, sodium saccharin, talcum, glucose, sucrose, magnesium carbonate, and the like may be used. Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc, an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension. If desired, the pharmaceutical composition to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, sorbitan monolaurate, triethanolamine oleate, etc. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pennsylvania, 15th Edition, 1975.

Compositions may be used, e.g. for treatment (which may include preventative treatment) of a disease such as Alzheimer's disease or Alzheimer's-type pathology in Downs syndrome. Thus the invention provides a method comprising administration of such a composition to a patient, e.g. for treatment of a disease such as Alzheimer's disease; use of such an agent compound in the manufacture of a composition for administration, e.g. for treatment of a disease such as Alzheimer's disease; and a method of making a pharmaceutical composition comprising admixing such an agent compound with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

Exemplification

The invention will now be described with reference to specific Examples. These are merely exemplary and for illustrative purposes only: they are not intended to be limiting in any way to the scope of the invention described. These examples constitute the best mode currently contemplated for practicing the invention.

BACE protease was expressed at high levels in bacterial cells as insoluble inclusion bodies. To prepare functional protein for enzyme assay and structural studies these inclusion bodies were solublised using denaturants; the slow removal of these denaturants allowed the formation of the correct tertiary structure. In the method described here, BACE was expressed as a pro-sequence and required activation by a protease before becoming fully functional. Clostripain was used as an activating protease but produced multiple species of BACE as determined by mass spectrometry. In order to obtain a uniform homogenous protein after activation by clostripain, a number of different constructs were produced. These constructs focused on the mutation of two undesireable clostripain cleavage sites (following residues R56 and R57).

Cloning of BACE WT and BACE N->Q

The full-length DNA coding sequence of BACE was cloned from human cerebellum and human dorsal root ganglion (DRG) cDNA by PCR using oligonucleotide primers based on the published BACE sequence (EMBL accession no. AF190725). The full-length template sequence was obtained by PCR amplification using the following primers: hBACE-sp1 and -ap1 were used for primary amplification, hBACE-sp2 and -ap2 for nested PCR.

The primers were as follows:

5

10

15

25

	hBACE-sp1	5'-AGCTCCCTCTCCTGAGAAGCCACC-3' (SEQ ID NO:22)
	hBACE-ap1	5'-CCACAGGTGCCATCTGTGTCTCC-3' (SEQ ID NO:23)
20	hBACE-sp2	5'-CACCAGCACCACCAGACTTGG-3' (SEQ ID NO:24)
	hBACE-ap2	5'-AACCACGGAGGTGTGGTCCAGG-3' (SEQ ID NO:25)

A cDNA construct encoding a modified BACE form was made as follows. A partial BACE cDNA fragment was amplified using the full-length BACE clone as a template with primers hBACE_EC(Bam-M-14)_FOR (5' - CGG GAT CCA TGG CGG GAG TGC TGC CTG CC - 3') and hBACE_EC(Bam-453)_REV (5' - CGG GAT CCT TAT GAC TCA TCT GTC TGT GGA ATG TTG TAG C - 3'). The resulting 1342 bp PCR fragment was subcloned in vector pCR2.1-TOPO using the TOPO TA cloning® kit (Invitrogen) according to the manufacturer's instructions. The inserts of several resulting clones were fully sequenced and a clone containing no PCR mistakes was selected. The insert of this clone was excised

from the pCR2.1-TOPO construct using the *Bam*HI restriction endonuclease and subcloned to vector pET11a (Novagen) linearized with *Bam*HI. The BACE coding sequence (BACE WT, SEQ ID 1) in the resulting clones was confirmed by sequence analysis and the resulting correct construct was named M-T7-RGSM(BACE14-453)/pET11a.

- Plasmid M-T7-RGSM(BACE14-453)/pET11a encodes a 455 amino acid residue protein named BACE WT containing a T7 epitope tag encoded by the pET11a vector sequence (AA 1 to 11), a linker sequence (AA 12-15; RGSM) and the partial BACE amino acid sequence from residue 14 to 453 (AA 16 to 455)(numbering based on SEQ ID 2). The calculated molecular mass of the resulting protein is 50.2 kDa.
- The insert from construct Plasmid M-T7-RGSM(BACE14-453)/pET11a was amplified by PCR to incorporate a His₆ tag (CAT CAC CAT CAC CAC) just upstream of the stop codon and *Bam*H1 site. Following cloning of this amplified fragment back into the original expression vector, the asparagine residues at positions -153, -172, -223 and -354 (numbers refer to the database BACE sequence BACE_HUMAN, P56817 in Swissprot) were mutated to glutamine (AAC to CAA) using the QuikchangeTM mutagenesis system (Stratagene, used according to the manufacturers instructions), to generate BACE N->Q (SEQ ID 3).

Introduction of Activation Site Mutations

20

30

BACE WT and BACE N->Q, described above, were mutated using the QuickchangeTM site directed mutagenesis protocol (Stratagene). Two complimentary oligonucleotides were designed which spanned the site of the mutation and which incorporated the amino acids changes to be made. These oligonucleotides were then used as primers in a PCR reaction producing each of the strands of the plasmid with the mutation present; the parental plasmid is digested with the methylation sensitive restriction endonuclease DpnI and then transformed into competent E.coli cells.

- 25 Primers were applicable for the mutation of both BACE WT and BACE N->Q due to their high sequence homology. Seven constructs were produced; these are detailed below with the oligonucleotide sequence used to make the constructs.
 - 1) BACE WT mutating arginine 56 to lysine and arginine 57 to lysine (SEQ ID 5)
 - 5' CCCGAGGAGCCCGGCAAGAAGGGCAGCTTTGTGGAGATG 3' (SEQ ID NO:26)

- 5' CATCTCCACAAAGCTGCCCTTCTTGCCGGGCTCCTCGGG 3' (SEQ ID NO:27)
- 2) BACE WT mutating arginine 57 to lysine (SEQ ID 7)
- 5' CCCGAGGAGCCCGGCCGGAAGGGCAGCTTTGTGGAGATGG 3' (SEQ ID NO:28)
- 5 5' CCATCTCCACAAAGCTGCCCTTCCGGCCGGGCTCCTCGGG 3' (SEQ ID NO:29)
 - 3) BACE WT deleting arginine 57 (SEQ ID 9)
 - 5' CCCGAGGAGCCCGGCAGGGCAGCTTTGTGGAGATGGTGGAC 3' (SEQ ID NO:30)
- 10 5' GTCCACCATCTCCACAAAGCTGCCCCTGCCGGGCTCCTCGGG 3' (SEQ ID NO:31)
 - 4) BACE N->Q mutating arginine 56 to lysine and arginine 57 to lysine (SEQ ID 11)
 - 5' CCCGAGGAGCCCGGCAAGAAGGGCAGCTTTGTGGAGATG 3' (SEQ ID NO:32)
- 15 5' CATCTCCACAAAGCTGCCCTTCTTGCCGGGGCTCCTCGGG 3' (SEQ ID NO:33)
 - 5) BACE N->Q mutating arginine 57 to lysine (SEQ ID 15)
 - 5' CCCGAGGAGCCCGGCCGGAAGGGCAGCTTTGTGGAGATGG 3' (SEQ ID NO:34)
- 5' CCATCTCCACAAAGCTGCCCTTCCGGCCGGGCTCCTCGGG 3' (SEQ ID NO:35)
 - 6) BACE N->Q deleting arginine 57 (SEQ ID 17)
 - 5' CCCGAGGAGCCCGGCAGGGGCAGCTTTGTGGAGATGGTGGAC 3' (SEQ ID NO:36)
- 5' GTCCACCATCTCCACAAAGCTGCCCCTGCCGGGCTCCTCGGG 3' (SEQ ID NO:37)

- 7) BACE N->Q mutating arginine 56 to lysine and arginine 57 to lysine and removing the C terminal poly histidine tag (SEQ ID 13)
- 5' CCCGAGGAGCCCGGCAAGAAGGGCAGCTTTGTGGAGATG 3' (SEQ ID NO:38)
- 5 5' CATCTCCACAAAGCTGCCCTTCTTGCCGGGGCTCCTCGGG 3' (SEQ ID NO:39)
 - 5' CCACAGACAGATGAGTCATGACACCATCATCACCACTAAG 3' (SEQ ID NO:40)
 - 5' CTTAGTGGTGATGATGGTGTCATGACTCATCTGTCTGTGG 3' (SEQ ID NO:41)
- After transformation of the plasmid the protein coding region was checked by DNA sequencing.

Protein production (1)

Plasmid constructs were transformed into BLR(DE3) as follows: 1-2 μl DNA was added into 25ul BLR(DE3) competent cells. Cells were then heat shocked at 42°C for 45secs,
followed by incubation for 30mins at 4°C. The sample was placed on ice for 2-3 mins before addition of 125-250ul HOC medium and left for 60 mins at 37°C. Cells were plated out onto agar containing carbenicillin & incubated at 37°C for 16h. Transformations were stored at 4°C. Transformed cells could be used up to after 8 weeks storage.

Colonies were inoculated in 100 ml LB broth with 1mM carbenicillin, and shaken for 16h at 25°C. 12 ml of this culture was added to 1 L of the same medium in baffle flasks. The typical total culture volume was 12, 20 or 24 L. Cells were induced by addition of 1mM IPTG at approximately OD₆₀₀ 1.0. Cells were harvested 3 to 4 hours after induction by centrifugation for 7 min at 16 000 g. Cell pellets were resuspended in 1 litre TN buffer (150mM NaCl, 50mM Tris, pH 7.5) before addition of 10 mg lysozyme per litre of bacterial culture. The suspension was left for 20 mins under vigorous stirring then frozen at -70°C.

The lysates were thawed & adjusted to 1 mM MgCl2 and 20 µl 10 mg/ml DNAse, incubated 30-60 mins at 20°C, then 0.1 % Triton X-100 was added. Inclusion body washes were

performed in 11 wash steps, spun down at 13,000-16,000 g for 20mins at room temperature then resuspended by sonication in TNT buffer (TN buffer + 0.1% Triton 100). The washing step with TNT was repeated at least three times (up to seven times) until an almost homogenous dark cream precipitate was obtained. At this stage the pellet was washed twice with TN buffer. The typical yield for a 12 L culture of BACE WT constructs was 4.5 g washed inclusion body material.

Protein Refolding (1)

5

10

15

20

25

30

Each g of inclusion bodies was solubilised with 22.5 ml of 8 M urea, 50 mM Tris, 0.1 M beta-mercaptoethanol, 10 mM DTT, 1 mM EDTA. After 2 to 3 hours under gentle stirring, this was spun at 48 400 g for 25mins. This was then diluted 1 in 10 in 8 M Urea, 0.2 mM oxidized glutathione, 1.0 mM reduced glutathione. This is the starting solution for refolding

Refolding was accomplished by dilution into 20 volumes 20 mM Tris, 10 mM NDSB256 (3-(benzyldimethylammonio)propanesulfonate). The addition was achieved by slowly dripping from a burette into a strongly stirred solution. Addition was carried out at room temperature.

The pH was adjusted to approximately 9 using 13.5 ml 1 N HCl per 5 litre of refolding mix either immediately after dilution or 16 h after dilution. This was left at 4°C for 2-3 weeks. The refolding mix was then adjusted to pH 8.2 16h before concentrating. In instances where a longer incubation was applied it appeared that yields were slightly better. No precipitation was seen when attempting to refold BACE, even in totally unsuccessful conditions. Constructs BACE WT R57K, BACE WT R57DEL, BACE N->Q R57K, and BACE R57DEL refolded with lower yields.

Protein Purification of BACE from refolding step (1)

The refolded protein sample was concentrated by ultrafiltration using two parallel Vivaflow 200 cells (MWCO 30Kda), fed by a single pump. The concentration factor was not more than 200 times: if exceeded, precipitation occurred.

Concentrated refolded BACE was loaded and eluted on a 1.75 L Sephacryl 300 column run at a flow of 0.2 cm-1/min in 0.4 M Urea, 20 mM Tris, 10 mM HCl. Typical loading volume was 2% bed volume. From reconcentrated material three peaks are observed, the first one near the void volume (large aggregates), which merges into a second peak of aggregated

inactive material. The third peak (elutes at approx 40% of column volume) constitutes active BACE. For BACE WT constructs, the active fraction elutes at approximately 800ml.

Activation by Clostripain (1)

Clostripain (Cp; EC 3.4.22.8, from Worthington or Sigma C7403) was activated before use by solubilising the freeze dried material to 1.25 mg/ml in: 20 mM Calcium Acetate, 8 mM DTT, 100 mM Tris, pH 8 at 1.25 mg/ml 4 °C for at least 1h. The preparation was then stable at 4 °C for up to four weeks.

The third peak (typically 100 ml at an average of 0.3 mg ml) from Sephacryl 300 elution was treated with activated Cp, (1/100 dilution) for between 30-90mins at room temperature.

Activation of BACE WT R56KR57K, BACE N->Q R56KR57K & BACE N->Q R56KR57K no His by clostripain was performed as described above except that prior to activation the solution was concentrated ten fold using Vivaspin 20 ml 30 KDa MWCO.

The reaction was stopped by loading onto a Mono Q HR5-5 column equilibrated in 0.4 M Urea, 20 mM Tris, 10 mM HCl, 1 mM EDTA followed by washing using the same buffer. The protein was eluted with a 0 to 1 M NaCl gradient over 10 column volumes. A typical final yield of active soluble BACE WT R56KR57K is 1-2 mg of protein per litre of culture grown. The eluted protein was characterised and used in crystallisation assays.

Protein Production (2)

15

20

25

BLR (DE3) competent cells were transformed as described earlier and plated onto agar containing ampicillin (Amp). A colony was picked into 250ml LB + 100ug/ml Amp and grown overnight @ 37°C, 185rpm. Following overnight growth (OD₆₀₀ varied between 2.0-2.5) 10ml of this culture was used to inoculate 1L of fresh LB+100 μg/ml Amp in a 2L baffled flask. Routinely 24L of fresh LB+Amp would be inoculated from the overnight growth. Following inoculation, the 24L prep would be grown at 37°C, 185rpm until an OD₆₀₀ = 1.0 was obtained. Protein expression was induced by the addition of IPTG to a final concentration of 1mM. Cultures were incubated for a further 3 hours (at 37°C, 185rpm) before harvesting by centrifugation at 8000 rpm for 10 mins (JLA 8.1000). Cell pellets could be stored at -80°C or processed immediately.

All following protein production procedures were performed at room temperature unless stated otherwise. Cell pellet was re-suspended in 500ml of TN buffer (TN buffer – 150mM NaCl, 50mM Tris, pH7.5). 240mg of egg lysozyme (10mg/L of bacterial culture) was added to the re-suspended pellet. The suspension was left stirring for 20mins. Following this, 100ul of DNase 1 (10mg/ml stock) was added to the suspension and this was left stirring for 20mins. This lysate was clarified by centrifugation at 8000rpm for 20mins (JLA8.1000).

20mins. This lysate was clarified by centrifugation at 8000rpm for 20mins (JLA8.1000). The supernatant was discarded and the pellet was re-suspended in 100ml TNT buffer (TNT buffer – 150mM NaCl, 50mM Tris, pH7.5, 0.1% Triton X-100). Effort was made to break up any lumps present in the pellet so that a homogenous re-suspension was obtained.

Following this, the re-suspension was sonicated for 2 mins (20 sec pulses). 400ml of TNT buffer was added to bring the volume of the suspension up to ~500mls. This was centrifuged for 20mins at 8000rpm and the supernatant discarded. The re-suspension in TNT buffer and sonication steps, as described above, were repeated twice. Following these three TNT washes, the pellet was re-suspended in 100ml of TN buffer and sonicated for 2 mins (20 second pulses). The suspension was centrifuged for 20 mins at 8000rpm. This wash in TN buffer was repeated once. Approximately 12-15g of inclusion bodies was obtained from the 24L of culture.

Protein Refolding (2)

5

10

15

The inclusion body preparation was solubilised by addition of 100mls of solubilisation buffer (Sol. Buffer – 8M urea, 50mM Tris, 0.1M beta-mercaptoethanol, 10mM DTT, 1mM EDTA). Effort was made to break up the inclusion body pellet using a pipette/spatula. The solution was left stirring gently overnight. The suspension was centrifuged for 30 mins at 25,000rpm (JA25). The supernatant (~100mls) was diluted by the addition of 900mls of 8M urea, 0.2mM oxidised glutathione, 1.0mM reduced glutathione.

The 1L of solubilised inclusion bodies as prepared above were refolded by a further 20x dilution. A 250ml aliquot of solubilised inclusion body prep was added drop-wise to 4.75L of refolding buffer (Refolding buffer – 20mM Tris, 10mM NDSB256 (3- (benzyldimethylammonio)propanesulfonate). The 4.75L of refolding buffer was stirred vigorously (not foaming) and the 250mls of inclusion body prep was added using a peristaltic pump. Care was taken to add the 250mls at a fast drop rather than a continuous pour. The remaining 750mls of inclusion body prep was diluted in the same way (250mls into 4.75L of refolding buffer). The four 5L vessels were placed at 4°C overnight.

Following overnight incubation at 4°C, the pH of each 5L vessel was adjusted to pH9.0 by addition of conc HCl. The vessels were then placed back at 4°C and left for 3 weeks.

Protein Purification of BACE from Refolding Step (2)

Two parallel Vivaflow 200 cells (MWCO 30Kda) fed by a single peristaltic pump were used. Each 5L of refolding mix was concentrated to ~50mls. Over concentrating leads to precipitation and should be avoided. The concentration of 5L of refolding mix took ~2 hours. The 50mls of concentrated refolding mix was centrifuged for 25 mins, at 25,000rpm. The supernatant was then ready for gel filtration using a Sephacryl S-300 column (100x3.5). This method is limited by the volume of concentrated refolding mix than can be loaded onto the gel filtration column (50mls) per run. Sephacryl S-300 column was equilibrated with 0.4M urea, 20mM Tris, 10mM HCl (at a flow rate of 4ml/min). 50ml of sample can be loaded per run. The column was run at a flow rate of 4ml/min. SDS PAGE analysis of peaks 1,2 and 3 showed the presence of BACE (50Kda band) however activity assay of all three peaks showed only active BACE in peak 3. Fractions from Peak 3 were pooled and kept on ice.

Activation by Clostripain (2)

5

10

15

30

Clostripain (Sigma C7403) was prepared by dissolving protein to a final concentration of 1.25mg/ml in 20mM Calcium acetate, 8mM DTT, 100mM Tris pH 8.0. The clostripain was activated by incubating on ice for 1 hour prior to use.

Pooled fractions from peak 3 (~100ml at 0.2mg/ml) were activated by the addition of 1/100 dilution of 1.25mg/ml clostripain. The reaction was incubated at 37°C in a water bath for 90 minutes. The reaction was stopped by addition of 1mM EDTA and placed on ice. Note:

With each fresh batch of Sigma Clostripain, a time trial was performed on a small amount of BACE to verify the length of incubation needed at 37°C. The length of incubation varied from 30-90 mins. Analysis by SDS PAGE clearly showed the appearance of the lower molecular weight activated species (~47Kda) from the larger inactivated species (~50Kda).

A Mono Q 5/5 ion exchange column was pre-equilibrated in 0.4M urea, 20mM Tris, 10mM HCl. The activated BACE (~50mls at ~0.2mg/ml) was loaded onto the Mono Q column at a flow rate of 1.0ml/min. Activated BACE was purified by applying a linear salt gradient (0.4M urea, 20mM Tris, 10mM HCl, 1.0M NaCl) over 20 column volumes. Following analysis by SDS PAGE and subsequent activity assay, fractions corresponding to activated

PCT/GB2003/003200

BACE were pooled and buffer exchanged into crystallisation buffer (20mM Tris, pH8.2, 150mM NaCl, 1mM DTT).

Protein Purification of BACE from Refolding Step (3)

5

10

15

20

By using method 3 in conjunction with the S-200 INDEX gel filtration column, all 20L of refolding mix could be processed in one go.

A Sartocon filtration cassette (MWCO 30Kda) was used in conjunction with a Watson Marlow 623S high speed pump. This assembly was set up as described in the manufactures operation manual. The 20L of refolding mix was concentrated down to ~500mls in less than 1 hour. Due to the dead volume in the assembly tubing, the volume could not be reduced further. At this stage the 500mls of concentrated refolding mix was filtered using a 0.2um filter. The filtered sample was then ready for gel filtration using an S-200 INDEX gel filtration column (100x10.0). A S-200 INDEX column pre-equilibrated in 0.4M urea, 20mm Tris, 10mM HCl was used. The column run was at a flow rate of 10mls/min.

SDS analysis of peaks 1,2 and 3 showed that BACE was present in all fractions. Activity assay showed that only peak 3 contain some BACE activity. Fractions from peak 3 were pooled (\sim 250mls at 0.1mg/ml).

Prior to clostripain activation, the BACE sample was concentrated using a Resource Q ion exchange column. A 6/1 Resource Q column was pre-equilibrated in 0.4M urea, 20mM Tris, 10mM HCl. The Bace sample was loaded onto the column at 7ml/min. BACE was eluted off the column using a linear salt gradient (0.4M urea, 20mM Tris, 10mM HCl, 1M NaCl) over 5 column volumes. This step has the effect of dramatically reducing the sample volume size. Prior to clostripain activation, the protein sample is diluted with 0.4M urea. 20mM Tris, 10mM HCl to reduce the salt concentration to enable further purification using Mono Q. A dilution factor of 5:1 has been used successfully.

This is then followed by Clostripain Activation and Mono Q purification as outlined above. 25

Protein Characterization

The quality of the final preparation was evaluated by:

(a) SDS polyacrylamide gel electrophoresis, performed using commercial gels (Novagen) followed by Coomassie Brilliant Blue staining according to the manufacturer's instructions. The purity as estimated by scanning a digital image of a gel was estimated to be at least 95%.

(b) <u>Mass Spectroscopy</u>: The eluted peak(s) were analysed using ESI-TOF-MS. Mass spectroscopy was performed using a Bruker "BioTOF" electrospray time of flight instrument. Samples were either diluted by a factor of 1000 straight from storage buffer into methanol/water/formic acid (50:48:2 v/v/v), or subjected to reverse phase HPLC separation using a C4 column. Calibration was achieved using Bombesin and angiotensin I using the 2+ and 1+ charged states. Data were acquired between 200 and 2000m/z range and were subsequently processed using Bruker's X-mass program. Mass accuracy was typically

10 below 1 in 10 000.

MS Analysis of BACE WT R56KR57K (SEQ ID NO:6)

Full-length protein: MASMTGGQQMGRGSMAGVLPAHGT...

Predicted mass of full-length protein: 50147

Cleavage position:

15 MASMTGGQQMGR ↓ GSMAGVLPAHGT...

Predicted mass of BACE protein: 48911. This is the first intermediate fragment and is obtained very quickly and can be obtained as a stable fragment at lower enzyme concentration.

Cleavage position:

20 MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLR ↓ LPRETDEEP...

Predicted mass of BACE protein: 45781. This is the final fragment obtained in the conditions described above. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 45783. The fragment typically elutes as a single peak from the Mono Q 5.5.

25 Mass Spec Analysis of BACE N->Q R56KR57K (SEQ ID NO:12)

Predicted mass of full-length protein: 50895

Cleavage position:

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLR↓
LPRETDEEP...

Predicted mass of BACE protein: 46660.65. This is the final fragment obtained in the conditions described above. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 46655. The fragment typically elutes as two peaks from the Mono Q 5.5, the first corresponding to the desired fragment.

Mass Spec Analysis of BACE N->Q R56KR57K no His (SEQ ID NO:14)

Predicted mass of full-length protein: 50072.73

10 Cleavage position:

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLR↓LPRETDEEP...

Predicted mass of BACE protein: 45837.80. This is the first intermediate fragment, obtained rapidly between 30-60 minutes post activation and is suitable for crystallisation.

Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 45838.30.

Typically elutes as 2 peaks from the Mono Q 5.5, the first peak corresponding to the desired fragment.

Cleavage position:

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEE
20 PGK ↓ KGSFVEMV...

Predicted fragment mass: 44230.11. Further digestion beyond 60 minutes promotes the formation of the above fragment, not suitable for crystallisation. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 44228.03. This typically elutes as peak 2 from the Mono Q 5.5.

25 Method for Determining Activity of BACE

A fluorimetric assay was used to measure the activity of the refolded proteins. Activity of the BACE enzyme was measured using the fluorescent peptide R-E(EDANS)-E-V-N-L-*D-A-E-F-K(DABCYL)-R-OH (Bachem) as substrate. Assays were carried out in 96-well

black, flat-bottomed Cliniplates in a final assay volume of 100ul. The reaction rate was monitored at room temperature on a Fluoroskan Ascent plate reader with excitation and emission wavelengths of 355nm and 530nm respectively.

To determine the pH profile for the enzyme 8 nM BACE was incubated with 10 µM substrate in 50 mM sodium acetate (pH 3.5-5.5) or MES (pH 5.5-6.5) buffers at varying pHs and 5 % DMSO.

For kinetic characterization of the enzyme 8 nM BACE enzyme was incubated with varying concentrations of the substrate $(2.5-80 \,\mu\text{M})$ in 50 mM sodium acetate, pH 5, 5 % DMSO and the reaction monitored as described above. Kinetic parameters were determined by the standard Michaelis-Menten equation, using Prizm (GraphPad) software. 1mM OM 99 completely inhibits activity.

Protein Crystallisation

10

15

20

25

30

The sample of BACE was buffer exchanged into 20 mM Tris.HCl pH8.2, 150 mM NaCl, 1 mM DTT and concentrated down to approximately 7 mg/ml as determined by its theoretical extinction coefficient. Prior to crystallisation, the sample was spun at 55,000 rpm for 30 min using a Beckman benchtop ultracentrifuge. DMSO was added to a final concentration of 3 % (v/v).

Crystals of BACE from BACE WT R56KR57K, BACE N->Q R56KR57K & BACE N->Q R56KR57K no His were obtained by the hanging-vapour diffusion method at 20 °C using 1.5 µl of protein and an equivalent volume of reservoir solution. The reservoir solution contained 20-24 % PEG 5000 MME, 180-220 mM (e.g. 200 mM) ammonium iodide, 180-220 mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6). In an alternative, the reservoir solution may additionally contain 2.5% v/v glycerol.

Diffraction quality single crystals of BACE WT R56KR57K were obtained by the hanging-vapour diffusion method at 20 °C using 1.5 μl of protein and an equivalent volume of reservoir solution. The reservoir solution contained 20-22.5 % PEG 5000 MME, 180-220 mM (e.g. 200 mM) ammonium iodide, 180-220 mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6).

Crystals appear within the first week and grow to maximum dimensions within 14 days. The crystals were hexagonal rods with approximate dimensions of $0.2 \times 0.05 \times 0.05$ mm.

They belonged to the hexagonal space group $P6_122$ with cell parameters a = b = 103.2 Å, c = 169.1 Å and accommodate one enzyme molecule per asymmetric unit, and a solvent content of 66%.

Inhibitor Soaking

5 BACE inhibitors were dissolved in DMSO to a concentration of 500 mM and then diluted 1 in 10 in a harvesting solution composed of 220 mM ammonium iodide, 220 mM sodium cacodylate pH 6.4 and 22% PEG 5K MME or 100-200 mM sodium citrate pH 5.0, 200 mM ammonium iodide and 30% PEG 5K MME. Apo-BACE protein crystals were transferred into the harvesting solution for a period of up to 24 hours prior to being dipped in cryoprotectant (20% PEG 5000 MME, 200 mM ammonium iodide, 200 mM sodium cacodylate pH 6.4 and 20% (v/v) glycerol or 200 mM sodium citrate pH 5.0, 200 mM ammonium iodide, 30% PEG 5K MME and 20% (v/v) glycerol) containing the inhibitor and frozen in liquid nitrogen.

Data Collection & Processing

The structure of apo-BACE was solved from BACE WT R56KR57K to 1.75 Å resolution 15 using the method of molecular replacement. Prior to data collection, crystals were exposed, briefly, to cryoprotectant, described previously, before flash freezing. Data was collected at 100 °K on beamline ID14-1 at the European Synchrotron Radiation Facility using an ADSC Quantum4 CCD detector, with a wavelength of 0.934Å and processed using MOSFLM (Leslie, A. G. W. (1992). In Joint CCP4 and EESF-EACMB Newsletter on Protein 20 Crystallography, vol. 26, Warrington, Daresbury Laboratory). The dataset was scaled using SCALA (CCP4 - Collaborative Computational Project 4. (1994) The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallographica D50, 760-763) and the intensities converted to structure factor amplitudes with TRUNCATE (Evans, P. R. (1997). Scaling of 25 MAD data. In Recent Advances in Phasing (ed. K. S. Wilson, G. Davies, A. W. Ashton and S. Bailey), pp. 97-102. Council for the Central Laboratory of the Research Councils Daresbury Laboratory, Daresbury, UK), from the CCP4 suite of programs (CCP4 -Collaborative Computational Project 4. (1994) The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallographica D50, 760-763). Statistics for the processing are shown in Table 2. 30

TABLE 2: Data collection statistics for apo-BACE.

Resolution	1.75 Å
Mosaicity	0.34°
Completeness	95.9 %
Multiplicity	6.3
Rmerge	0.097

Structure Determination and Refinement

5

10

15

20

The structure of apo-BACE was solved by molecular replacement using the program EPMR (Kissinger CR, Gehlhaar DK, Fogel DB, Acta Crystallogr D Biol Crystallogr, 1999,vol 55 (Pt 2), 484-91). Initially, it was impossible to know whether the correct space group was P6₁22 or P6₅22, therefore molecular replacement attempts were performed against both. Default parameters and a resolution range of 15-4Å were used in conjunction with the A chain of 1FKN (Hong et al, 2000) as the search model. A solution was found for P6₁22 with an Rfactor of 0.458 and a correlation coefficient of 0.543. In an attempt to reduce model bias, the molecular replacement solution was used as the starting point for ARP/wARP (Morris RJ, Perrakis A, Lamzin VS, Acta Crystallogr D Biol Crystallogr, 2002,vol 58,(Pt 6 No 2), 968-75) to perform automated backbone tracing using warpNtrace and side chain building via the Side_dock procedure. This produced a discontinuous model composed of 244 out of 385 residues spanning 12 amino acid chains. Cycles of structural refinement with REFMAC5 (Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica, 1997 D53, 240-255) were alternated with manual rebuilding of the model using QUANTA (Jones et al., Acta Crystallography A47 (1991), 110-119 and commercially available from Accelerys, San Diego, CA). The model was extended to 329 residues with chain breaks between 156-170, 255-280 and 311-325. CNX (Brunger et al., Current Opinion in Structural Biology, Vol. 8, Issue 5, October 1998, 606-611, and commercially available from Accelerys, San Diego, CA) composite omit maps were

generated to allow further building of the structure and finally water molecules added using DenInt (Astex internal software library). Refinement statistics are shown in Table 3.

TABLE 3: Final refinement statistics for apo-BACE

Rwork	0.251
Rfree	0.284
RMS bond deviation from ideality	0.011
RMS bond angle deviation from ideality	1.30
Average Bfactor for structure	32.99

This data indicates that the final structure is of good quality; the Rfactors indicating that the refined model has a good agreement with the experimental data. The RMS deviations from ideality indicate that the geometry of the model is good.

Description of the Apo Structure of BACE

The structure of BACE we present here has been solved in the absence of substrate or inhibitor. This is the first time that such a structure has been described. The solution of this structure has been possible as we have, for the first time, crystallized BACE without compound in a form suitable for diffracting X-rays, and hence allowed the determination of the apo structure of BACE. Under our conditions it crystallizes in space group P6₁22 with a monomer in the asymmetric unit. This is a novel crystal form of BACE.

The protein chain has been traced in the electron density from residue Phe47p to Ala157, and then from Ala168 to Asn385. There is no indication as to the position of residues 158 to 167 in the electron density map. In addition to the protein atoms, the model contains 3 iodine atoms and 285 water molecules in its present state of refinement.

The majority of the residues in this form of BACE are well defined, the exceptions being some exposed residues. Parts of the protein surface are exposed to solvent, as a consequence of the molecular packing within the crystal lattice (Figure 1). Residues 255-259, 271-277 and 310 to 317 are exposed and have high B-factors relative to the body of the protein. In

addition, residues 304 to 309 pack against an exposed loop and are poorly ordered with high b-factors. There are three disulphide bonds in BACE, two of these are well defined in the electron density, the third, between Cys269 and Cys319 has high temperature factors. This is probably a consequence of its proximity to exposed parts of the protein.

BACE as it has been solved in this form, is a compact globular protein, which is formed by two domains; domain 1 being comprised of residues 47p-146 and domain 2 of residues (146-385)(numbering from Hong et al, 2000). The active site lies between these two domains, and contains the two conserved aspartic acid residues, Asp32 and Asp228, which define the active sites of aspartic proteinases. In our structure, a single water molecule is 10 coordinated between these two residues.

The overall fold of the protein is similar to that of 1FKN (Hong et al, 2000), with a few minor, but potentially significant changes. Residues 158-166 are ordered in the structure of BACE in the presence of OM99-2 (in the P2₁ form), and consist of a loop plus a short helix. In the P6₁22 unliganded form, these residues cannot be seen, and are assumed to be mobile. This may be a consequence of the crystal packing arrangement in this form. Residues 69-75 15 have a different arrangement in the crystal form described here, to their arrangement in the crystal structure of the OM99-2 complex. The residues are displaced upward relative to the active site in the structure without OM99-2. The two molecules can be superposed over all residues using the program MAPS (MAPS-Multiple Alignment of Proteins Structures Version 0.2, Sep-7-1999, Guoguang, Lund University, Sweden and Lu, G. An Approach for 20 Multiple Alignment of Protein Structures (1998, in manuscript) to give an r.m.s.d. of 0.74 Å. This results in close alignment of the N-terminal residue prior to residue 69 and subsequent to 75. In contrast the CA atoms of residue 71 are displaced by 3.3 Å, those of residue 72 by 4.3 Å, and those of residue 73 by 6.0 Å. (Figure 2) The reason for this difference is postulated to be the interaction of OM99-2 backbone residues with the protein residues, in an arrangement analogous to a beta sheet. This interaction pulls the loop down over the substrate in the active site, and locks it in position. In the absence of substrate, or peptidic inhibitor, the loop moves back up again.

25

30

In addition to these local changes in structure, on binding of inhibitor, there appears to be a slight shift in the domain positions relative to each other, resulting in an average difference in position in the C-terminal domain CA atoms of about 2.0 Å, when the molecules are superposed using the N-terminal CA atoms.

The symmetry of the P6₁22 crystal system has resulted in a packing arrangement which brings part of a symmetry related molecule very close to the active site entrance of BACE. Gln73 from a symmetry related molecule lies very close to the entrance to the active site of BACE in this crystal form, and overlaps with the position occupied by P4 Glu in OM99-2.

However, this does not interfere with the usefulness of this crystal system to soak in inhibitors, as we have shown that these crystals can be used to soak BACE inhibitors into the active site.

Incorporation by Reference

The entire contents of all patents, published patent applications and other references cited herein are hereby expressly incorporated herein in their entireties by reference. Particular reference is made to the references listed below:

Bennett BD, Denis P, Haniu M, Teplow DB, Kahn S, Louis JC, Citron M, Vassar R., J Biol. Chem. 2000; 275(48):37712-7.

Blundell TL, Jhoti H, Abell C, Nature Reviews Drug Discovery, 1, 45 – 54, 2002.

Blundell, TL and Johnson, LN, in *Protein Crystallography*, Academic Press, New York, London and San Francisco, (1976)

Burton SJ, Quirk AV, Wood PC, European Journal of Biochemistry, 179, 379-87, 1989.

Carr, R; Jhoti, H; Drug Discov. Today, 2002, 7(9), 522-527

Choppa R, Svenson K, Annis B, Akopian T, Bard J, Stahl M, Somers W; PCT International Publication Number WO 02/25276, (28 March 2002).

Collaborative Computing Project N., 1994 Acta Crystallogr. D. 50 760-763.

Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B., J Biol. Chem. (2001) 276(6), 4211-7

De Strooper, B. and Konig. G., 1999, Nature 402, 471-472.

25 Ghosh AK., Shin D., Downs D., Koelsch G., Lin X., Ernolieff J. and Tang J. (2000) J. Am. Chem. Soc. 122 3522-3523.

- Goldberg ME, Expert-Bezançon N, Vuillard L, Rabilloud T, Folding & Design, 1, 21-27, 1996.
- Greer J, Erickson JW, Baldwin JJ, Varney MD, J. of Medicinal Chemistry, Vol. 37, (1994), 1035-1054,
- Haniu M, Denis P, Young Y, Mendiaz EA, Fuller J, Hui JO, Bennett BD, Kahn S, Ross S, Burgess T, Katta V, Rogers G, Vassar R, Citron M., J Biol. Chem. (2000), 275(28), 21099-106.
 - Hong L., Koelsch G., Lin X., Wu S., Terzyan S., Ghosh AK., Zhang XC. and Tang J. (2000) SCIENCE 290 150-153.
- Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G., Mol. Cell Neurosci. (1999)14(6):419-27
 - Lin X., Koelsch G., Wu S., Downs D., Dashti A., and Tang J. (2000) PNAS 97 1456-1460.
- Mallender WD, Yager D, Onstead L, Nichols MR, Eckman C, Sambamurti K, Kopcho LM,
 Marcinkeviciene J, Copeland RA, Rosenberry TL., Mol Pharmacol, (2001) Mar;59(3), 61926
 - Navaza J., 1994 Acta Crystallogr. A. 50 157
 - Pflugrath, JW. (1999) Acta Crystallogr. D. 55 1718-1725
- Sinha S., Anderson JP., Barbour R., Basi GS., Caccavello R., Davis D., Doan M., Dovey
 HF., Frigon N., Hong J., Jacobson-Croak K., Jewett N., Keim P., Knops J., Lieberburg I.,
 Power M., Tan H., Tatsuno G., Tung J., Schenk D., Seubert P., Suomensaari SM., Wand S.,
 Walker D., Zhoa J., McConlogue L. and Varghese J. (1999) NATURE 402 537-540
 - Tang J, Lin X, Koelsch G; PCT International Publication Number WO 01/00663, (04 January 2001).
- Vassar R., Bennett, BD., Babu-Khan S., Kahn S., Mendiaz, EA., Denis P., Teplow DB., Ross S., Amarante P., Loeloff R., Luo Y., Fisher S., Fuller J., Edenson S., Lile J., Jorosinski

MA., Biere AL., Curran E., Burgess T., Louis J-C., Collins F., Treaner J., Rogers G. and Citron M. (1999) SCIENCE 286 735-741

Yan R., Bienkowski MJ., Shuck ME., Miao H., Tory MC., Pauley AM., Brashier JR., Stratman NC., Mathews WR., Buhl AE., Carter DB., Tomasselli AG., Parodi LA., Heinrikson RL. and Gurney, ME. (1999) Nature, 402 533-537

Yankner BA., Nature Medicine, (1996) 2(8), 850-2

5

10

Equivalents

The foregoing description details presently preferred embodiments of the present invention which are therefore to be considered in all respects as illustrative and not restrictive. Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents, modifications and variations to the specific embodiments of the invention described specifically herein. Such equivalents, modifications and variations are intended to be (or are) encompassed in the scope of the following paragraphs:

- 1. A mutant BACE protein, which protein lacks one or more proteolytic cleavage sites recognized by clostripain (or another protease which recognizes the same cleavage site as clostripain).
- 2. The protein of paragraph 1 wherein BACE residues R56 and/or R57 (based on numbering of SwissProt P56817) are mutated or deleted.
- 3. The protein of paragraph 2 wherein R56 or R57 are mutated by the substitution of arginine for lysine.
- 4. The protein of paragraph 2 wherein R56 and R57 are mutated by the substitution of arginine for lysine.
- 5. The protein of any one of the preceding paragraphs which comprises BACE residues 56 to 396 (based on numbering of SwissProt P56817).

- 6. A mutant BACE protein (for example, a mutant BACE protein as defined in any one of the preceding paragraphs) which is truncated at the N-terminal up to and including R42, R45, G55, R56 or R57.
- 7. The protein of any one of paragraphs 1 to 6 truncated at the C-terminal such that at least residues 454 et seq. are absent.
- 8. The protein of paragraph 7 truncated at the C-terminal such that at least residues 447 et seq. are absent.
- 9. The protein of any one of the preceding paragraphs wherein the asparagine residues at positions 153, 172, 223 and 354 are mutated to glutamine residues.
- 10. The protein of any one of the preceding paragraphs which is un- or deglycolsylated.
- A mutant BACE protein selected from: (a) SEQ ID 6; (b) SEQ ID 8; (c) SEQ ID 10;
 (d) SEQ ID 12; (e) SEQ ID 14; (f) SEQ ID 16; (g) SEQ ID 18; (h) SEQ ID 19; (i)
 SEQ ID 20; (j) SEQ ID 21.
- 12. Nucleic acid encoding the protein of any one of the preceding paragraphs.
- 13. A vector comprising the nucleic acid of paragraph 12.
- 14. A host cell comprising the vector of paragraph 13.
- 15. A process for producing the protein of any one of paragraphs 1 to 11 comprising the steps of: (a) culturing the host cell of paragraph 14 under conditions suitable for expression of the protein; and optionally (b) isolating the expressed recombinant BACE protein.
- 16. A process for producing refolded recombinant BACE comprising the steps of: (a) solubilising the recombinant BACE; (b) diluting the solubilised BACE into an aqueous buffer containing sulfobetaine (for example at a concentration of 10 to 50 mM); and (c) maintaining the diluted solution at low temperature (for example, 3 to 6°C) and at high pH (e.g. 9 to 10.5) for at least 2 weeks.
- 17. The process of paragraph 16 wherein the recombinant BACE is produced according to the process of paragraph 15.

- 18. Refolded recombinant BACE produced by, or obtainable by, the process of paragraph 16 or paragraph 17.
- 19. A process for producing a crystal of BACE comprising the step of refolding recombinant BACE protein according to the process of paragraph 16 or paragraph 17.
- 20. A process for producing a crystal of BACE comprising the step of growing the crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME (for example, 20-24 % PEG 5000 MME, e.g. 20-22.5 % PEG 5000 MME), 180-220 mM (e.g. 200 mM) ammonium iodide and 180-22- mM (e.g. 200 mM) trisodium citrate (pH 6.4-6.6).
- 21. The process of paragraph 20 wherein the BACE is recombinant and the process further comprises the preliminary step of refolding the recombinant BACE according to the process of paragraph 16 or paragraph 17.
- 22. The process of any one of paragraphs 18 to 20 further comprising the step of activating the BACE by clostripain digestion.
- 23. The process of paragraph 21 wherein the BACE is as defined in any one of paragraphs 1 to 10.
- 24. A crystal of BACE produced by, or obtainable by, the process of any one of paragraphs 18 to 22.
- 25. A crystal of BACE having a hexagonal space group P6₁22.
- 26. The crystal of paragraph 25 having unit cell dimensions of a=b=103.2 Å, c=169.1 Å, $\alpha=\beta=60^{\circ}$, $\gamma=120^{\circ}$, and a unit cell variability of 5% in all dimensions.
- 27. The crystal of paragraph 25 or paragraph 26 which contains one copy of BACE in the asymmetric unit.
- 28. A crystal of BACE (e.g. a crystal according to any one of paragraphs 24 to 27) having a resolution better than 3 Å.
- 29. The crystal of paragraph 28 having a resolution better than 2.5 Å.

- 30. The crystal of paragraph 29 having a resolution better than 1.8 Å.
- 31. A crystal of BACE (e.g. a crystal according to any one of paragraphs 24 to 30) comprising a structure defined by all or a portion of the co-ordinates of Table 1.
- 32. The crystal of paragraph 31 comprising a structure defined by a portion of the coordinates of Table 1 which coordinates relate to: (a) the BACE catalytic domain; and/or (b) a BACE active site; and/or (c) a BACE binding cavity; and/or (d) selected amino acid residues of a BACE binding cavity located in a protein framework which holds the selected amino acids in a relative spatial configuration which corresponds to the spatial configuration of those amino acids in Table 1; and/or (d) a BACE binding site.
- 33. The crystal of paragraph 32 wherein the portion of the coordinates of Table 1 comprise (or consist essentially of) those relating to residues SER71, GLY72, LEU91, ASP93, GLY95, SER96, VAL130, PRO131, TYR132, THR133, GLN134, ILE171, ILE179, ILE187, ALA188, ARG189, PRO190, TRP258, TYR259, ASP284, LYS285, ASP289, GLY291, THR292, THR293, ASN294, ARG296 and ARG368 (based on the numbering of SwissProt P56817).
- 34. The crystal of paragraph 33 wherein the portion of the coordinates of Table 1 comprise (or consist essentially of) those relating to residues LYS70, SER71, GLY72, GLN73, GLY74, TYR75, LEU91, VAL92, ASP93, THR94, GLY95, SER96, SER97, ASN98, TYR129, VAL130, PRO131, TYR132, THR133, GLN134, GLY135, LYS136, TRP137, LYS168, PHE169, PHE170, ILE171, ASN172, SER174, TRP176, GLY178, ILE179, LEU180, GLY181, ALA183, TYR184, ALA185, GLU186, ILE187, ALA188, ARG189, PRO190, ASP191, ASP192, ARG256, TRP258, TYR259, TYR283, ASP284, LYS285, SER286, ILE287, VAL288, ASP289, SER290, GLY291, THR292, THR293, ASN294, LEU295, ARG296, GLY325, GLU326, ARG368, VAL370, LYS382, PHE383, ALA384, ILE385, SER386, GLN387, SER388, SER389, THR390, GLY391, THR392, VAL393, GLY395, ALA396 and ILE447 (based on the numbering of SwissProt P56817).
- 35. The crystal of any one of paragraphs 24 to 34 which is capable of being soaked with compound(s) to form co-complex structures.

- 36. The crystal of any one of paragraphs 24 to 35 which is soaked with one or more compound(s) to form co-complex structures.
- 37. The crystal of any one of paragraphs 24 to 36 wherein the BACE is co-crystallized with one or more compound(s) to form co-crystallized structures.
- 38. The crystal of any one of paragraphs 24 to 35 which is an apo crystal.
- 39. The crystal of any one of paragraphs 24 to 38 wherein the BACE is a wild-type BACE.
- 40. The crystal of paragraph 39 wherein the BACE is a human BACE.
- 41. The crystal of paragraph 40 wherein the BACE is a homologue of a human BACE.
- 42. The crystal of paragraph 41 wherein the homologue is an orthologue or a paralogue of a human BACE.
- 43. The crystal of any one of paragraphs 24 to 38 wherein the BACE is a mutant and/or recombinant BACE.
- 44. The crystal of paragraph 43 wherein the BACE: (a) lacks the BACE transmembrane and/or cytoplasmic domain(s); and/or (b) lacks one or more glycolsylation sites; and/or (c) comprises one or more peptide tags (for example a his tag); and/or (d) lacks one or more protease cleavage site(s); and/or (e) is truncated at the N-terminus; and/or (f) is truncated at the C-terminus; and/or (f) lacks the BACE pro-sequence.
- 45. The crystal of paragraph 44 wherein the BACE mutant lacks one or more clostripain cleavage sites.
- 46. The crystal of paragraph 45 wherein BACE residues R56 and/or R57 (based on numbering of SwissProt P56817) are mutated or deleted.
- 47. The crystal of paragraph 46 wherein R56 or R57 are mutated by the substitution of arginine for lysine.
- 48. The crystal of paragraph 46 wherein R56 and R57 are mutated by the substitution of arginine for lysine.

- 49. The crystal of any one of paragraphs 43 to 48 wherein the BACE mutant is truncated at the N-terminal up to and including R42.
- 50. The crystal of any one of paragraphs 43 to 49 wherein the BACE mutant is truncated at the C-terminal such that at least residues 396 *et seq.* are absent.
- 51. The crystal of paragraph 50 wherein the BACE mutant is truncated at the C-terminal such that at least residues 387 et seq. are absent.
- 52. The crystal of any one of paragraphs 43 to 51 wherein the asparagine residues at positions 153, 172, 223 and 354 of the BACE mutant are mutated to glutamine residues.
- 53. The crystal of any one of paragraphs 24 to 52 wherein the BACE is un- or deglycolsylated.
- 54. The crystal of paragraph 43 wherein the BACE mutant is selected from: (a) SEQ ID 19; (b) SEQ ID 20; (c) SEQ ID 21.
- 55. The process of any one of paragraphs 19 to 23 wherein the process produces a crystal of BACE as defined in any one of paragraphs 24 to 54.
- 56. A three-dimensional representation of BACE or of a portion of BACE, which representation comprises all or a portion of the coordinates of Table 1.
- 57. The three-dimensional representation of paragraph 56 which is a model constructed from all or a portion of the coordinates of Table 1.
- 58. The model of paragraph 57 wherein the portion of BACE is a BACE binding cavity and the portion of the coordinates of Table 1 comprise those of atoms defining a binding site within the binding cavity (for example, wherein the coordinates are as defined in paragraph 33 or paragraph 34).
- 59. A three-dimensional representation of a compound which fits the model of paragraph 57 or paragraph 58.
- 60. The three-dimensional representation of paragraph 59 which is a model of the compound.

- 61. The model of paragraph 60 wherein the compound is a pharmacophore.
- 62. The model of any one of paragraphs 57, 58, 60 or 61 which is: (a) a wire-frame model; (b) a chicken-wire model; (c) a ball-and-stick model; (d) a space-filling model; (e) a stick-model; (f) a ribbon model; (g) a snake model; (h) an arrow and cylinder model; (i) an electron density map; (j) a molecular surface model.
- 63. The model of any one of paragraphs 57, 58, 60, 61 or 62 which is in physical form.
- 64. The model of any one of paragraphs 57, 58, 60, 61 or 62 which is in electronic form.
- 65. The model of paragraph 64 which comprises a graphical image display on a computer screen.
- 66. A computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing a BACE model as defined in paragraph 57, 58 or 62 to 65; (b) providing a molecular structure to be fitted to said BACE model; and (c) fitting the molecular structure to the BACE model to produce a compound model as defined in paragraph 60, 61 or 62 to 65.
- 67. A computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing the structure of a BACE as defined by the coordinates of Table 1; (b) providing a molecular structure to be fitted to said BACE structure; and (c) fitting the molecular structure to the BACE structure of Table 1.
- 68. A computer-based method for the analysis of molecular structures which comprises:

 (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structure of a molecular structure to be fitted to the selected coordinates; and (c) fitting the structure to the selected coordinates of the BACE structure.
- 69. The method of paragraph 68 wherein the selected coordinates represent a binding pocket.
- 70. The method of paragraph 68 or paragraph 69 wherein the selected coordinates are of at least 5, 10, 50 or 100 atoms.

- 71. The method of paragraph 69 or paragraph 70 wherein the selected coordinates are as defined in paragraph 33 or paragraph 34.
- 72. A computer-based method of rational drug design comprising the method of any one of paragraphs 66 to 71.
- 73. A computer-based method of rational drug design comprising comprising: (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structures of a plurality of molecular fragments; (c) fitting the structure of each of the molecular fragments to the selected coordinates; and (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.
- 74. A method for identifying a candidate modulator (e.g. candidate inhibitor) of BACE comprising the steps of: (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.
- 75. The method of paragraph 74 wherein the three-dimensional structure of BACE is a model as defined in paragraph 57 or paragraph 58.
- 76. A method for identifying an agent compound (e.g. an inhibitor) which modulates BACE activity, comprising the steps of: (a) employing three-dimensional atomic coordinate data according to Table 1 to characterise at least one (e.g. a plurality of) BACE binding site(s); (b) providing the structure of a candidate agent compound; (c) fitting the candidate agent compound to the binding sites; and (d) selecting the candidate agent compound.
- 77. The method of paragraph 76 wherein in step (a) the three-dimensional atomic coordinate data are employed to create a model as defined in paragraph 57, 58 or 62 to 65.
- 78. The method of any one of paragraphs 73 to 77 further comprising the step of: (a) obtaining or synthesising the candidate agent or modulator; and (b) contacting the

- candidate modulator with BACE to determine the ability of the candidate modulator to interact with BACE.
- 79. A method of assessing the ability of a candidate modulator to interact with BACE which comprises the steps of: (a) obtaining or synthesising said candidate modulator; (b) forming a crystallized complex of BACE and said candidate modulator; and (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.
- 80. A method for determining the structure of a compound bound to BACE, said method comprising: (a) mixing BACE with the compound to form a BACE-compound complex; (b) crystallizing the BACE-compound complex; and (c) determining the structure of said BACE-compound(s) complex by reference to the data of Table 1.
- 81. A method for determining the structure of a compound bound to BACE, said method comprising: (a) providing a crystal of BACE; (b) soaking the crystal with one or more compound(s) to form a complex; and (c) determining the structure of the complex by employing the data of Table 1.
- 82. A method of determining the three dimensional structure of a BACE homologue or analogue of unknown structure, the method comprising the steps of: (a) aligning a representation of an amino acid sequence of the BACE homologue or analogue with the amino acid sequence of the BACE of Table 1 to match homologous regions of the amino acid sequences; (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table 1; and (c) determining a conformation for the BACE homologue or analogue which substantially preserves the structure of said matched homologous regions.
- 83. The method of paragraph 82 wherein steps (a) and/or (b) and/or (c) are performed by computer modelling.
- 84. A method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising: (i) establishing communication with a remote

device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE; (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.

- 85. A computer system containing one or more of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target BACE protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 86. The computer system of paragraph 85 comprising: (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design.
- 87. The computer system of paragraph 86 further comprising a display coupled to said central-processing unit for displaying said structures.

- 88. A computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion of the structure coordinates of BACE of Table 1, or a homologue of BACE, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms (nitrogen-carbon_α-carbon) of Table 1 of not more than 1.5Å.
- 89. A computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (e.g. selected coordinates as defined herein) of the structural coordinates for BACE according to Table 1; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
- 90. A computer readable medium with at least one of: (a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of BACE, or at least selected coordinates thereof; (b) structure factor data for BACE recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a BACE-ligand complex or a BACE homologue or analogue generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 91. A method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein or (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1.
- 92. A process for producing a medicament, pharmaceutical composition or drug, the process comprising: (a) identifying a BACE modulator molecule according to the

- method as defined in any one of paragraphs 73 to 79; (b) optimising the structure of the modulator molecule; and (c) preparing a medicament, pharmaceutical composition or drug containing the optimised modulator molecule.
- 93. A medicament, pharmaceutical composition or drug produced by, or obtainable by, the process of paragraph 92.
- 94. A compound identified, produced or obtainable by the process or method of any one of paragraphs 73 to 79.
- 95. A pharmaceutical composition, medicament, drug or other composition comprising the compound of paragraph 94.
- 96. The medicament, pharmaceutical composition or drug of paragraph 93, compound of paragraph 94 or composition of paragraph 95 for use in medicine, for example for use in therapy or prophylaxis.
- 97. The medicament, pharmaceutical composition, drug or composition of paragraph 96 wherein the therapy or prophylaxis comprises inhibiting BACE or the production of Aβ or fragments thereof or the treatment of Alzheimer's disease.
- 98. A method of inhibiting BACE or the production of Aβ or fragments thereof or treating Alzheimer's disease comprising administering the medicament, pharmaceutical composition, drug or composition of paragraph 96 to the patient.
- 99. The method of paragraph 84, wherein the computer readable data is transmitted form the remove device.
- 100. The method of paragraph 99, wherein the data is transmitted electronically or optically.

TABLE 1

ATOM	1	N	PHE	Α	47p	65.730	61.598	-17.857	1.00 56.68	A	N
MOTA	2	ÇA	PHE	Δ	47p	66.426	61 383	-16.552	1.00 54.16	A	С
ATOM	3	Ċ			-						
					47p	67.801		-16.734	1.00 54.30	A	¢
MOTA	4	0			47p	68.258	59.983	-15.869	1.00 52.46	A	0
ATOM	5	CB	PHE	A	47p	65.566	60.500	-15.635	1.00 54.61	A	С
MOTA	6	CG			47p	64.161		~15.429	1.00 54.65	A	C
ATOM	7		PHE		-	63.110		-16.186	1.00 56.27	A	С
MOTA	8	CD2	PHE	Α	47p	63.887	61.970	-14.463	1.00 55.01	A	С
ATOM	9	CE1	PHE	А	47p	61.812	60.972	-15.995	1.00 57.39	A	С
ATOM	10		PHE		-	62.596		-14.266			
					_				1.00 56.06	A	С
MOTA	11	CZ	PHE	A	47p	61.556	61.938	-15.035	1.00 56.47	A	С
MOTA	12	N	VAL	Α	48p	68.468	61.048	-17.845	1.00 54.26	A	N
ATOM	13	CA	VAL	А	48p	69.737	60.395	-18.200	1.00 54.45	A	С
ATOM	14	С			48p	70.910		-17.276			
					-				1.00 53.21	A	С
MOTA	15	0			48p	71.847	59.94/	-17.128	1.00 56.35	A	0
ATOM	16	CB	VAL	А	48p	70.156	60.691	-19.662	1.00 57.43	A	С
ATOM	17	CG1	VAL	A	48p	69.222	59.972	-20.636	1.00 58.42	A	С
ATOM	18		VAL			70.204		-19.944	1.00 57.43	A	č
ATOM	19	N	GLU		1	70.860		-16.668	1.00 49.17	A	N
MOTA	20	CA	GLU	А	1	71.845	62.329	-15.674	1.00 46.84	A	C
ATOM	21	С	GLU	Α	1	71.857	61.373	-14.479	1.00 42.66	A	С
ATOM	22	0	GLU	Δ	1	72.901		-13.891	1.00 45.10	A	ō
ATOM	23	CB	GLU		1	71.532		-15.171	1.00 48.32	A	С
ATOM	24	CG	GLU	Α	1	70.180	64.053	-14.545	0.00 50.15	A	C
ATOM	25	CD	GLU	Α	1	68.942	64.394	-15.351	0.00 51.10	A	С
ATOM	26	OE1	GLU	Α	1	68.516		-16.178	0.00 51.29	A	ŏ
ATOM	27		GLU						_		
					1	68.395		-15.155	0.00 51.61	A	0
MOTA	28	N	MET	A	2	70.685	60.855	-14.125	1.00 37.18	A	N
ATOM	29	CA	MET	A	2	70.525	60.001	-12.942	1.00 32.72	A	С
ATOM	30	С	MET	A	2	70.875		-13.154	1.00 29.50	A	Ċ
ATOM	31	ŏ	MET		2	-		-12.183			
						71.014			1.00 29.19	A	0
ATOM	32	СВ	MET	А	2	69.099	60.111	-12.415	1.00 30.14	A	С
ATOM	33	CG	MET	Α	2	68.733	61.514	-12.005	1.00 34.84	A	С
ATOM	34	SD	MET	Α	2	67.103		-11.322	1.00 36.26	A	s
ATOM	35	CE	MET		2			-12.134			
						66.607			1.00 40.05	A	С
ATOM	36	N	VAL	А	3	71.008	58.079	-14.396	1.00 28.21	A	N
ATOM	37	CA	VAL	A	3	71.291	56.669	-14.611	1.00 29.18	A	С
ATOM	38	С	VAL	A	3	72.690	56.364	-14.085	1.00 27.28	A	C
ATOM	39	ō	VAL		3						
						73.622		-14.298	1.00 28.33	A	0
MOTA	40	CB	VAL		3	71.137	56.248	-16.094	1.00 32.19	A	С
ATOM	41	CG1	VAL	Α	3	71.649	54.826	-16.299	1.00 30.92	A	С
ATOM	42	CG2	VAL	A	3	69.667		-16.525	1.00 32.71	A	č
ATOM	43	N	ASP		4	72.803					
								-13.359	1.00 28.19	A	N
MOTA	44	CA	ASP		4	74.066		-12.825	1.00 29.50	A	C
ATOM	45	С	ASP	А	4	74.600	55.632	-11.703	1.00 27.86	A	C
ATOM	46	0	ASP	Α	4	75.797	55,682	-11.454	1.00 28.77	A	0
ATOM	47	СВ	ASP		4	75.107		-13.940	1.00 32.06		
	48									A	c
ATOM		CG	ASP		4	76.254		-13.553	1.00 37.52	A	С
ATOM	49	ODI	ASP	A	4	76.029	52.572	-12.945	1.00 38.24	A	0
ATOM	50	OD2	ASP	A	4	77.438	53.952	-13.829	1.00 45.15	A	0
MOTA	51	N	ASN		5	73.694		-11.015	1.00 24.98	A	Ŋ
ATOM	52	CA									
			ASN		5	74.062	57.172	-9.876	1.00 18.95	Α .	
ATOM	53	С	ASN	А	5	74.270	56.415	-8.544	1.00 22.40	A	С
ATOM	54	0	ASN	Α	5	74.564	57.045	-7.515	1.00 21.31	A	0
ATOM	55	CB	ASN	A	5	73.064	58.329		1.00 21.03	_	č
ATOM	56	CG			5					A	
			ASN			71.677	57.870	-9.366	1.00 16.73	A	С
ATOM	57		ASN		5	71.424	56.673	-9.325	1.00 19.74	A	0
ATOM	58	ND2	ASN	А	5	70.801	58.808	-9.035	1.00 21.06	A	N
ATOM	59	N	LEU		6	74.099	55.098	-8.562	1.00 15.94	A	N
ATOM	60	CA	LEU		6	74.323	54.236				
								-7.397	1.00 16.57	A	С
ATOM	61	С	LEU		6	75.531	53.321	-7.510	1.00 21.72	A	С
ATOM	62	0	LEU	A	6	75.855	52.780	-8.581	1.00 21.55	A	0
ATOM	63	CB	LEU	A	6	73.109	53.352	-7.078	1.00 18.17	A	c
ATOM	64	CG	LEU		6	71.707	53.957	-6.866	1.00 19.32		
										A	C
ATOM	65		LEU		6	70.695	52.916	-6.521	1.00 17.46	A	С
ATOM	66	CD2	LEU	Α	6	71.748	54.997	- 5.797	1.00 21.42	A	С
ATOM	67	N	ARG	Α	7	76,173	53.126	-6.364	1.00 21.10	A	N
ATOM	68	CA	ARG		7		52.266				
						77.333		-6.230	1.00 23.84	A	C
ATOM	69	С	ARG		7	77.237	51.485	-4.939	1.00 25.78	A	С
ATOM	70	0	ARG	Α	7	76.424	51.808	-4.059	1.00 21.54	A	0
ATOM	71	СВ	ARG		7	78.610	53.103	-6.226	1.00 26.25	A	c
ATOM	72	CG	ARG		ż	78.992	53.658	-7.583	1.00 20.25		
ATOM	73	CD								A	C
			ARG		7	80.135	54.652	-7.549	1.00 37.65	A	С
MOTA	74	NE	ARG	Α	7	80.063	55.407	-8.932	0.00 40.50	A	N

ATOM	75	CZ	ARG	А	7	80.997	56.306	-9.222	0.00 41.92	A	С
ATOM	76		ARG		7	80.991		-10.402	0.00 42.93	A	N
MOTA	77		ARG		7	81.937	56.601	-8.335	0.00 42.80	A	N
ATOM	78	N	GLY	A	8	78.091	50.479	-4.799	1.00 26.16	A	N
ATOM	79	CA	GLY	Α	8	78.086	49.663	-3.598	1.00 29.54	A	С
ATOM	80	С	GLY		8	79.032	48.490	-3.639	1.00 31.18	A	С
MOTA	81	0	GLY		8	79.790	48.325	-4.591	1.00 33.68	A	0
ATOM	82	N	LYS	Α	9	78.986	47.685	-2.587	1.00 34.88	A	N
ATOM	83	CA	LYS	А	9	79.643	46.390	-2.578	1.00 36.27	A	C
ATOM	84	C	LYS		ğ	78.625	45.337	-2.169	1.00 37.50	A	C
MOTA	85	0	LYS		9	77.771	45.576	-1.316	1.00 32.87	A	0
MOTA	86	CB	LYS	Α	9	80.861	46.396	-1.649	1.00 39.66	A	С
ATOM	87	CG	LYS	A	9	81.975	47.324	-2,120	1.00 45.29	A	С
ATOM	88	CD	LYS		9	83.346	46.635	-2.207	1.00 50.21	A	c
ATOM	89	CE	LYS		9	84.382	47.543	-2.887	1.00 52.01	A	С
ATOM	90	NZ	LYS	А	9	85.408	48.085	-1.943	1.00 53.23	A	N
MOTA	91	N	SER	Α	10	78.708	44.172	-2.805	1.00 38.65	A	N
ATOM	92	CA	SER	Δ	10	77.807	43.063	-2.525	1.00 39.77	A	С
MOTA	93	С	SER		10	77.658	42.852	-1.026	1.00 38.92	A	Ç
ATOM	94	0	SER	А	10	78.658	42.718	-0.316	1.00 38.89	A	0
MOTA	95	ÇВ	SER	A	10	78.336	41,776	-3.172	1.00 41.88	A	¢
ATOM	96	OG	SER	Δ	10	77.485	40.680	-2.879	1.00 44.59	A	0
ATOM	97	N	GLY		11	76.410	42.857	-0.556	1.00 36.41	A	N
ATOM	98	CA	GLY	A	11	76.097	42.627	0.843	1.00 35.71	A	С
MOTA	99	С	GLY	A	11	76.076	43.859	1.738	1.00 35.38	A	С
ATOM	100	0	GLY	Α	11	75.631	43.757	2.886	1.00 37.81	A	0
						76.519					
ATOM	101	N	GLN		12		45.005	1.213	1.00 34.18	A	N
ATOM	102	CA	GLN	Α	12	76.732	46.234	1.999	1.00 35.64	A	С
ATOM	103	С	GLN	A	12	75.861	47.409	1.536	1.00 35.07	A	С
ATOM	104	0	GLN	Α	12	76.148	48.558	1.881	1.00 36.40	A	0
ATOM	105	CB	GLN		12	78.196	46.693	1.913	1.00 37.52	A	С
MOTA	106	CG	GLN	А	12	79.230	45.703	2.437	1.00 42.55	A	С
MOTA	107	CD	GLN	A	12	80.653	46.267	2.465	1,00 40.98	A	С
MOTA	108	OE1	GLN	Δ	12	81.562	45.623	2.984	1.00 49.77	A	0
ATOM	109		GLN		12	80.846	47.450	1.904	1.00 50.11	A	N
ATOM	110	N	GLY	Α	13	74.824	47.132	0.749	1.00 30.97	A	N
ATOM	111	CA	GLY	Α	13	73.887	48.163	0.331	1.00 27.55	A	С
ATOM	112	С	GLY		13	74.366	49.021	-0.820	1.00 25.65	A	С
ATOM	113	0	GLY		13	75.491	48.904	-1.289	1.00 26.10	A	0
MOTA	114	N	TYR	Α	14	73.477	49.892	-1.275	1.00 17.01	A	N
ATOM	115	CA	TYR	Α	14	73.738	50.794	-2.395	1.00 17.38	A	С
ATOM	116	С	TYR	Δ	14	73.722	52.218	-1.880	1.00 16.80	A	С
ATOM	117	0	TYR		14	72.851	52.561	-1.072	1.00 17.47	A	0
ATOM	118	CB	TYR	A	14	72.635	50.663	-3.446	1.00 18.29	A	С
ATOM	119	CG	TYR	Α	14	72.651	49.339	-4.162	1.00 21.45	A	С
MOTA	120	CD1	TYR	A	14	72.134	48.194	-3.574	1.00 20.72	A	С
ATOM	121		TYR		14			-5.434		A	č
						73.201	49.239		1.00 21.04		
MOTA	122	CEl		A	14	72.164	46.981	-4.246	1.00 20.87	A	С
ATOM	123	CE2	TYR	A	14	73.233	48.043	-6.101	1.00 23.36	A	С
ATOM	124	CZ	TYR	A	14	72.723	46.935	-5.522	1.00 24.50	A	С
ATOM	125	ОН	TYR		14	72.758	45.757	-6.229	1.00 27.32	A	ō
ATOM	126	N	TYR		15	74.636	53.044	-2.387	1.00 18.15	A	N
ATOM	127	CA	TYR	А	15	74.727	54.431	-1.976	1.00 15.54	A	С
ATOM	128	С	TYR	А	15	74.734	55.415	-3.133	1.00 16.89	A	С
ATOM	129	0	TYR		15	75.171	55.108	-4.243	1.00 17.87	A	o
	130					75.951					
ATOM		CB	TYR		15		54.666	-1.064	1.00 16.46	A	C
ATOM	131	CG	TYR		15	77.308	54.342	-1.685	1.00 15.58	A	С
ATOM	132	CD1	TYR	A	15	77.966	55.246	-2.501	1.00 19.48	A	С
ATOM	133	CD2	TYR	Δ	15	77.919	53.139	-1.411	1.00 19.60	A	С
ATOM	134					79.201					
			TYR		15		54.956	-3.034	1.00 21.95	A	С
ATOM	135	CE2	TYR	A	15	79.165	52.838	-1.926	1.00 23.26	A	С
ATOM	136	cz	TYR	A	15	79.787	53.734	-2.739	1.00 21.80	A	С
ATOM	137	ОН	TYR		15	81.006	53.396	-3.255	1.00 26.17	A	ŏ
			VAL				56.620				
MOTA	138	N			16	74.279		-2.823	1.00 17.50	A	N
MOTA	139	CA	VAL		16	74.197	57.728	-3.760	1.00 19.34	A	С
ATOM	140	С	VAL	A	16	75.077	58.862	-3.212	1.00 20.35	A	С
ATOM	141	0	VAL		16	75.165	59.056	-1.995	1.00 20.27	A	ō
ATOM	142		VAL								
		СВ			16	72.715	58.201	-3.936	1.00 18.58	A	С
ATOM	143		VAL		16	72.177	58.911	-2.680	1.00 18.67	A	С
ATOM	144	CG2	VAL	A	16	72.554	59.101	-5.172	1.00 21.03	A	С
ATOM	145	N	GLU		17	75.715	59.608	-4.101	1.00 20.07	A	N
ATOM	146	CA				76.401	60.838			A	
			GLU		17			-3.706	1.00 22.44		С
MOTA	147	Ç	GLU		17	75.398	61.943	-3.372	1.00 22.83	A	C
ATOM	148	0	GLU	A	17	74.419	62.145	-4.091	1.00 20.94	A	0
ATOM	149	СВ	GLU		17	77.360	61.298	-4.810	1.00 23.72	A	č
ATOM	150	CG	GLU		17	78.246	62.482	-4.416	1.00 28.53	A	
											c
ATOM	151	CD	GLU	A	17	79.065	63.024	-5.580	1.00 36.53	A	C

											_
MOTA	152	OE1	GLU	A	17	78.956	64.228	-5.878	1.00 39.0	2 A	. 0
ATOM	153	OE2	GLU	Α	17	79.820	62.249	-6.201	1.00 41.9	9 A	. 0
ATOM	154	N	MET		18			-2.249	1.00 18.6		
						75.616	62.632				
ATOM	155	CA	MET	A	18	74.824	63.788	-1.849	1.00 18.7	8 2	
ATOM	156	С	MET	Α	18	75.744	64.904	-1.365	1.00 24.2	4 A	C
ATOM	157	0	MET		18	76.919		-1.079	1.00 23.1		
							64.671				
ATOM	158	CB	MET	Α	18	73.866	63.427	-0.717	1.00 20.0	9 A	. c
ATOM	159	CG	MET	Α	18	72.884	62.284	-1.064	1.00 17.9	1 A	L C
ATOM	160	SD	MET		18	71.685	61.911	0.240	1.00 20.9	_	
ATOM	161	CE	MET	А	18	70.491	63.197	-0.005	1.00 21.3	5 A	, c
ATOM	162	N	THR	A	19	75.229	66.121	-1.313	1.00 24.8	6 P	N A
ATOM	163	CA	THR		19	75.966	67.206	-0.661	1.00 26.5		
ATOM	164	С	THR	A	19	75.122	67.794	0.443	1.00 24.4	5 A	C
ATOM	165	0	THR	A	19	73.904	67.861	0.341	1.00 23.6	0 7	. 0
ATOM	166	CB	THR		19	76.392	68.292	-1.665	1.00 28.5		
ATOM	167		THR		19	75.236	68.833	-2.311	1.00 32.7	8 A	. 0
ATOM	168	CG2	THR	Α	19	77.235	67.712	-2.775	1.00 28.1	1 A	C
MOTA	169	N	VAL	Δ	20	75.775	68.213	1.531	1.00 25.6	1 A	
ATOM	170	CA	VAL		20	75.078	68.836	2.643	1.00 22.0	O A	C
ATOM	171	С	VAL	Α	20	75.826	70.130	2.995	1.00 21.9	0 A	C
MOTA	172	0	VAL	A	20	77.040	70.183	2.841	1.00 23.4	4 A	
ATOM	173	СВ	VAL		20						
						75.011	67.902	3.848	1.00 25.2		
MOTA	174	CG1	VAL	A	20	74.361	68.579	5.033	1.00 30.8	3 А	C
MOTA	175	CG2	VAL	A	20	74.245	66.611	3.495	1.00 25.1	4 A	, c
ATOM	176	N	GLY		21	75.077	71.146	3.422	1.00 25.1		
										_	
ATOM	177	CA	GLY	A	21	75.623	72.434	3.837	1.00 27.7	9 A	C
ATOM	178	С	GLY	A	21	76.015	73.417	2.752	1.00 26.8	8 A	, с
ATOM	179	0	GLY		21	75.906	73.137	1.551	1.00 27.4		
MOTA	180	N	SER		22	76.466	74.594	3.202	1.00 28.2	8 A	N
MOTA	181	CA	SER	Α	22	76.976	75.657	2.330	1.00 29.1	6 A	C
ATOM	182	С	SER	20	22	78.298	76.173	2.919	1.00 28.6		
ATOM	183	0	SER		22	78.308	76.639	4.049	1.00 29.9	5 A	. 0
MOTA	184	CB	SER	A	22	75.983	76.815	2.238	1.00 29.6	9 A	, c
ATOM	185	OG	SER	20	22	74.675	76.366	1.925	1.00 29.7		
ATOM	186	N	PRO		23	79.407	76.052	2.198	1.00 28.2	2 A	N
MOTA	187	CA	PRO	Α	23	79.461	75.401	0.884	1.00 30.7	8 A	C
ATOM	188	С	PRO	Α	23	79.227	73.886	0.976	1.00 29.8	7 A	
		ŏ									
ATOM	189		PRO		23	79.338	73.300	2.063	1.00 25.4		
ATOM	190	CB	PRO	A	23	80.875	75.693	0.407	1.00 31.6	3 A	C
ATOM	191	CG	PRO	Α	23	81.664	75.968	1.651	1.00 29.9	4 A	. c
ATOM	192	CD	PRO		23	80.727	76.545	2.629			
									1.00 33.0		
ATOM	193	N	PRO	A	24	78.894	73.258	-0.145	1.00 30.3		. N
ATOM	194	CA	PRO	Α	24	78.559	71.821	-0.139	1.00 26.6	3 A	. с
MOTA	195	С	PRO	Δ	24	79.673	70.857	0.304	1.00 25.3		
ATOM	196	0	PRO	Α	24	80.807	70.925	-0.155	1.00 25.1	7 A	. 0
ATOM	197	CB	PRO	Α	24	78.141	71.536	-1.593	1.00 28.2	2 A	. с
MOTA	198	CG	PRO	Α	24	78.576	72.715	-2.410	1.00 32.4	0 A	C
ATOM	199	CD									
			PRO		24	78.778	73.874	-1.484	1.00 33.1		
ATOM	200	N	GLN	Α	25	79.292	69.920	1.169	1.00 24.2	6 A	. N
ATOM	201	CA	GLN	A	25	80.144	68.839	1.620	1.00 23.0	5 A	С
ATOM	202	С	GLN		25	79.617	67.576				
								0.992	1.00 19.9		
ATOM	203	0	GLN	A	25	78.470	67.220	1.220	1.00 20.8	7 A	. 0
ATOM	204	CB	GLN	Α	25	80.075	68.728	3.127	1.00 20.93	2 A	С
ATOM	205	CG	GLN		25	80.581	69.995	3.817	1.00 25.9		
ATOM											_
	206	CD	GLN		25	80.491	69.911	5.317	1.00 24.9		
ATOM	207	OE1	GLN	Α	25	80.742	68.850	5.894	1.00 21.1	7 A	. 0
ATOM	208	NE2	GLN	A	25	80.153	71.021	5.957	1.00 26.0		
MOTA	209	N	THR		26	80.439		0.187			
							66.926		1.00 23.7		
MOTA	210	CA	THR		26	80.041	65.699	-0.495	1.00 23.00	A C	С
ATOM	211	С	THR	Α	26	80.141	64.498	0.435	1.00 22.59	9 A	С
ATOM	212	0	THR		26	81.151	64.310	1.103	1.00 23.4		
ATOM	213	CB	THR		26	80.943	65.456	-1.685	1.00 24.9	l A	С
ATOM	214	OG1	THR	Α	26	80.891	66.588	-2.566	1.00 31.5	4 A	0
MOTA	215		THR		26	80.428	64.292	-2.537	1.00 25.20		
										_	
ATOM	216	N	LEU		27	79.107	63.666	0.430	1.00 19.1		N
ATOM	217	CA	LEU	A	27	79.093	62.431	1.198	1.00 18.03	3 A	С
ATOM	218	С	LEU	Α	27	78.394	61.329	0.375	1.00 22.50		č
ATOM	219	ō	LEU		27						
						77.511	61.636	-0.415	1.00 25.14	_	
ATOM	220	CB	LEU	A	27	78.310	62.637	2.488	1.00 18.43	l A	С
ATOM	221	CG	LEU	A	27	78.805	63.740	3.447	1.00 23.1		
ATOM	222		LEU		27	77.737		4.429	1.00 28.4	_	
							64.155			_	
ATOM	223		PEA		27	80.040	63.300	4.174	1.00 22.3		С
ATOM	224	N	ASN	Α	28	78.804	60.075	0.562	1.00 19.63		
ATOM	225	CA	ASN		28	78.097	58.926	-0.013	1.00 18.4		
											C
ATOM	226	С	ASN		28	77.098	58.404	0.985	1.00 17.4		С
ATOM	227	0	ASN	A	28	77.467	58.130	2.122	1.00 15.99	ЭА	0
ATOM	228	CB	ASN	A	28	79.059	57.817	-0.346	1.00 17.43		Č
						3.003	3			. A	C

ATOM	229	CG	ASN	A 2	79.868	58.114	-1.556	1.00 22.09	A	С
ATOM	230		ASN	_		58.837	-2.434	1.00 21.00	A	ŏ
ATOM	231		ASN			57.573	-1.622	1.00 22.09	A	N
MOTA	232	N	IPE			58.222	0.566	1.00 13.33	A	N
MOTA	233	CA	ILE			57.964	1.501	1.00 15.06	A	С
MOTA	234	С	ILE	A 2	73.969	56.724	1.072	1.00 15.98	A	С
MOTA	235	0	ILE	A 2	73.495	56.628	-0.071	1.00 16.00	A	0
ATOM	236	CB	ILE	A 2	73.777	59.164	1.569	1.00 17.19	A	С
ATOM	237		ILE			60.443	1.960	1.00 16.84	A	Č
ATOM	238		ILE				2.579			
						58.876		1.00 15.77	A	C
ATOM	239		ILE			60.409	3.359	1.00 18.72	A	С
ATOM	240	N	LEU			55.787	1.997	1.00 15.17	A	N
MOTA	241	CA	LEU	A 3	73.110	54.541	1.743	1.00 16.63	A	С
ATOM	242	С	LEU	A 3	71.623	54.825	1.455	1.00 17.89	A	С
ATOM	243	0	LEU	A 30	71.000	55.542	2.186	1.00 17.80	A	0
ATOM	244	CB	LEU	A 30	73.251	53.629	2.964	1.00 14.92	A	С
ATOM	245	CG	LEU			52.335	2.947	1.00 24.85	A	č
MOTA	246		LEU			51.336	1.962	0.00 19.90		č
									A	
ATOM	247		LEU			51.625	4.210	0.00 19.96	A	С
ATOM	248	N	VAL			54.224	0.405	1.00 15.67	A	N
MOTA	249	CA	VAL			54.390	0.066	1.00 17.96	A	С
ATOM	250	С	VAL	A 3:	68.865	53.269	0.715	1.00 18.65	A	С
ATOM	251	0	VAL	A 33	69.101	52.060	0.440	1.00 21.01	A	0
ATOM	252	CB	VAL	A 31	69.461	54.358	-1.471	1.00 21.10	A	С
ATOM	253		VAL			54.309	-1.806	1.00 23.22	A	č
ATOM	254		VAL			55.554	-2.073	1.00 19.69	A	č
ATOM	255	N	ASP			53.656	1.591	1.00 18.25	A	N
MOTA	256	CA	ASP			52.712	2.456	1.00 20.14	A	С
ATOM	257	С	ASP	A 32	65.712	52.942	2.457	1.00 18.89	A	С
MOTA	258	0	ASP	A 32	65.217	53.839	3.144	1.00 18.73	A	0
ATOM	259	CB	ASP	A 32	67.748	52.832	3.905	1.00 20.81	A	С
ATOM	260	CG	ASP	A 32	67.163	51.747	4.850	1.00 27.29	A	С
ATOM	261		ASP			50.729	4.345	1.00 28.02	A	ő
MOTA	262		ASP			51.817	6.113	1.00 29.94	A	
	263									0
ATOM		N	THR			52.108	1.735	1.00 15.71	A	N
MOTA	264	CA	THR			52.284	1.753	1.00 16.65	A	С
ATOM	265	С	THR	A 33	62.839	51.643	2.958	1.00 18.62	A	С
ATOM	266	0	THR .	A 33	61.627	51.707	3.086	1.00 19.27	A	0
ATOM	267	CB	THR .	A 33	62.855	51.726	0.459	1.00 17.78	A	С
ATOM	268	OG1	THR .	A 33	63.088	50.330	0.395	1.00 17.76	A	o
ATOM	269		THR		63.526	52.289	-0.756	1.00 20.47	A	č
ATOM	270	N	GLY .		63.645	51.078	3.854	1.00 19.46	A	
										И
ATOM	271	CA	GLY .		63.137	50.457	5.065	1.00 22.82	A	С
ATOM	272	C	GLY .		63.251	51.314	6.315	1.00 24.98	A	С
MOTA	273	0	GLY :		63.033	50.830	7.434	1.00 24.60	A	0
ATOM	274	N	SER	A 35	63.601	52.578	6.130	1.00 18.89	A	N
ATOM	275	CA	SER :	A 35	63.672	53.543	7.231	1.00 21.21	A	С
ATOM	276	С	SER 2	A 35	63.376	54.978	6.749	1.00 18.57	A	С
ATOM	277	0	SER I	A 35	63.245	55.229	5.535	1.00 21.32	A	o
ATOM	278	СВ	SER 2		65.045	53.420	7.880	1.00 21.69	A	č
ATOM	279	OG	SER I		66.063	53.982	7.078	1.00 20.28		
ATOM	280	N	SER A						A	0
					63.253	55.940	7.678	1.00 18.30	A	N
MOTA	281	CA	SER I		62.727	57.267	7.347	1.00 20.36	A	С
ATOM	282	С	SER A		63.545	58.455	7.889	1.00 21.41	A	С
ATOM	283	0	SER A	A 36	63.101	59.594	7.809	1.00 19.92	A	0
ATOM	284	CB	SER A	A 36	61.267	57.375	7.824	1.00 25.82	A	С
ATOM	285	OG	SER A	A 36	60.485	56.344	7.230	1.00 25.30	A	0
MOTA	286	N	ASN Z		64.748	58.181	8.396	1.00 19.59	A	N
ATOM	287	CA	ASN Z		65.676	59.222	8.853	1.00 20.44	A	Ċ
ATOM	288	C	ASN I		66.852	59.444	7.907	1.00 17.40	A	
ATOM	289	Ö			67.426					C
			ASN I			58.484	7.386	1.00 17.40	A	0
ATOM	290	CB	ASN Z		66.262	58.847	10.225	1.00 19.75	A	С
ATOM	291	ÇG	ASN 2		65.330	59.162	11.365	1.00 25.09	A	С
MOTA	292	OD1	ASN A	A 37	65.323	60.288	11.888	1.00 26.01	A	0
MOTA	293	ND2	ASN A	A. 37	64.555	58.177	11.776	1.00 21.61	A	N
MOTA	294	N	PHE 1	8E A	67.217	60.704	7.697	1.00 18.60	A	N
ATOM	295	CA	PHE 2		68.450	61.064	7.013	1.00 17.76	A	c
ATOM	296	C	PHE 2		69.494	61.330	8.089	1.00 17.46	A	Č
ATOM	297	ŏ	PHE 2		69.356					
						62.288	8.837	1.00 18.26	A	0
MOTA	298	CB	PHE A		68.236	62.307	6.143	1.00 17.46	A	C
ATOM	299	CG	PHE A		69.466	62.776	5.366	1.00 18.60	A	С
ATOM	300		PHE /		70.391	61.896	4.828	1.00 17.37	A	С
ATOM	301		PHE A		69.657	64.124	5.127	1.00 24.93	A	С
ATOM	302	CE1	PHE A	A 38	71.488	62.350	4.104	1.00 19.65	A	С
ATOM	303		PHE A		70.747	64.586	4.384	1.00 19.49	A	C
ATOM	304	CZ	PHE A		71.669	63.701	3.881	1.00 23.24	A	č
ATOM	305	N	ALA A		70.467	60.430	8.224	1.00 18.71	A	N
							~	_,,,,	••	47

ATOM	306	CA	ALA	А	39	71.480	60.508	9.272	1.00 18.80	A	С
ATOM	307	C	ALA		39	72.866	60.348	8.667	1.00 20.90	A	
MOTA											C
	308	0	ALA		39	73.104	59.439	7.862	1.00 20.32	A	0
MOTA	309	CB	ALA		39	71.225	59.457	10.334	1.00 17.93	A	С
MOTA	310	N	VAL	A	40	73.792	61.223	9.058	1.00 19.20	A	N
ATOM	311	CA	VAL	A	40	75.145	61.189	8.526	1.00 18.03	A	С
ATOM	312	С	VAL	А	40	76.193	61.242	9.640	1.00 18.42	A	C
ATOM	313	ŏ	VAL		40	76.027	61.985	10.580	1.00 15.83	A	ŏ
					_						
ATOM	314	CB	VAL		40	75.398	62.372	7.587	1.00 19.32	A	С
MOTA	315	CG1	VAL	A	40	74.430	62.354	6.382	1.00 24.72	A	С
ATOM	316	CG2	VAL	A	40	75.304	63.711	8.319	1.00 25.33	A	С
ATOM	317	N	GLY	A	41	77.272	60.490	9.488	1,00 18.41	A	N
ATOM	318	CA	GLY		41	78.444	60.626	10.354	1.00 13.03	A	c
ATOM	319	c	GLY		41	78.921	62.049	10.463	1.00 16.57	A	č
					41						
ATOM	320	0	GLY			78.986	62.780	9.486	1.00 16.35	A	0
ATOM	321	N	ALA		42	79.186	62.482	11.688	1.00 18.46	A	N
ATOM	322	CA	ALA	А	42	79.513	63.880	11.952	1.00 16.09	A	С
ATOM	323	С	ALA	Α	42	80.745	63.987	12.843	1.00 21.94	A	С
ATOM	324	0	ALA	А	42	81.068	65.059	13.334	1.00 21.99	A	0
ATOM	325	ÇВ	ALA		42	78.326	64.558	12.613	1.00 19.21	A	č
ATOM	326	N	ALA		43						
						81.444	62.873	12.985	1.00 17.43	A	N
ATOM	327	CA	ALA		43	82.584	62.752	13.899	1.00 19.03	A	С
ATOM	328	С	ALA	Α	43	83.590	61.822	13.222	1.00 22.11	A	С
ATOM	329	0	ALA	A	43	83.186	60.977	12.414	1.00 18.84	A	0
ATOM	330	CB	ALA	A	43	82.131	62.185	15.216	1.00 20.66	A	C
ATOM	331	N	PRO		44	84.880	61.964	13.530	1.00 21.75	A	N
MOTA	332	CA	PRO		44	85.928	61.128	12.903	1.00 22.99	A	С
ATOM	333	С	PRO	A	44	86.039	59.692	13.422	1.00 21.03	A	С
ATOM	334	0	PRO	A	44	87.044	59.283	13.989	1.00 22.42	A	0
ATOM	335	CB	PRO	A	44	87.204	61.930	13.173	1.00 23.97	A	С
ATOM	336	CG	PRO		44	86.923	62.655	14.467	1.00 21.28	A	Č
ATOM	337	ÇD	PRO		44	85.466	63.000				
								14.406	1.00 22.65	A	С
ATOM	338	N	HIS		45	85.004	58.904	13.175	1.00 19.15	A	N
MOTA	339	CA	HIS		45	85.011	57.491	13.493	1.00 19.87	A	С
MOTA	340	С	HIS	A	45	86.074	56.884	12.559	1.00 23.49	A	С
MOTA	341	0	HIS	A	45	86.161	57.279	11.408	1.00 18.76	A	0
ATOM	342	CB	HIS		45	83.600	56.898	13.231	1.00 20.18	A	č
ATOM	343	CG	HIS		45	83.499	55.426	13.491	1.00 20.56		
										A	C
ATOM	344		HIS		45	82.921	54.900	14.628	1.00 27.21	A	N
MOTA	345		HIS		45	83.911	54.369	12.753	1.00 20.97	A	С
ATOM	346	CE1	HIS	Α	45	82.989	53.579	14.577	1.00 20.15	A	С
ATOM	347	NE2	HIS	A	45	83.572	53.234	13.443	1.00 26.79	A	N
ATOM	348	N	PRO		46	86.900	55.958	13.039	1.00 23.59	A	N
ATOM	349	CA	PRO		46	87.999	55.418	12.221	1.00 26.27		
					_					A	C
ATOM	350	C	PRO		46	87.618	54.722	10.881	1.00 23.39	A	С
MOTA	351	0	PRO		46	88.449	54.679	9.975	1.00 27.08	A	0
MOTA	352	CB	PRO	Α	46	88.677	54.416	13.175	1.00 24.42	A	С
ATOM	353	CG	PRO	Α	46	87.621	54.034	14.147	1.00 27.39	A	С
ATOM	354	CD	PRO	Α	46	86.863	55.335	14.378	1.00 25.05	A	С
ATOM	355	N	PHE		47	86.410	54.192	10.783	1.00 25.26	A	N
ATOM	356	CA	PHE		47		53.538				
						85.924		9.560	1.00 25.03	A	C
MOTA	357	С	PHE		47	85.523	54.517	8.446	1.00 22.84	A	С
ATOM	358	0	PHE	A	47	85.309	54.084	7.325	1.00 25.36	A	0
ATOM	359	CB	PHE	A	47	84.678	52.671	9.832	1.00 27.84	A	С
ATOM	360	CG	PHE	A	47	84.888	51.503	10.769	1.00 32.30	A	С
ATOM	361		PHE		47	86.141	51.176	11.282	1.00 36.05	A	č
ATOM	362		PHE		47	83.794	50.722		1.00 35.59		
ATOM	363				47			11.134		A	C
			PHE			86.297	50.098	12.133	1.00 32.80	A	С
MOTA	364		PHE		47	83.945	49.635	12.004	1.00 36.20	A	С
ATOM	365	CZ	PHE	A	47	85.197	49.326	12.489	1.00 37.31	A	С
ATOM	366	N	LEU	Α	48	85.377	55.804	8.761	1.00 19.13	A	N
ATOM	367	CA	LEU	Α	48	84.818	56.789	7.835	1.00 18.71	A	С
ATOM	368	C	LEU		48	85.829	57.499	6.963	1.00 22.04		
										A	C
MOTA	369	0	LEU		48	86.798	58.086	7.451	1.00 22.43	A	0
MOTA	370	CB	LEU		48	84.019	57.848	B.602	1.00 17.69	A	С
ATOM	371	CG	LEU		48	82.797	57.361	9.367	1.00 14.97	A	С
ATOM	372	CD1	LEU	Α	48	82.068	58.567	9.926	1.00 18.29	A	С
ATOM	373		LEU		48	81.839	56.567	8.517	1.00 19.80	A	Č
ATOM	374	N	HIS		49	85.553	57.517	5.666	1.00 19.90		
										A	N
ATOM	375	CA	HIS		49	86.310	58.348	4.715	1.00 23.16	A	C
MOTA	376	С	HIS		49	86.115	59.862	4.903	1.00 23.74	A	С
MOTA	377	0	HIS		49	87.033	60.658	4.676	1.00 24.96	A	0
ATOM	378	CB	HIS	Α	49	85.901	58.027	3.277	1.00 24.78	A	С
MOTA	379	CG	HIS		49	86.253	56.648	2.822	1.00 18.81	A	č
ATOM	380		HIS		49	87.368	56.386	2.054	1.00 23.64	A	N
			HIS		49				1.00 17.53		
ATOM	381					85.623	55.463	2.989		A	c
ATOM	382	CEI	HIS	A	49	87.408	55.095	1.779	1.00 20.49	A	С

MOTA 383 NE2 HIS A 86.361 2.331 1.00 25.00 N 49 54.512 A 1.00 23.13 **ATOM** ARG A 84.900 60.274 5.255 N 384 N 50 A ARG A 1.00 24.92 5.496 ATOM 385 CA 50 84.603 61.682 A C 1.00 22.50 **ATOM** 386 С ARG A 50 83.387 61.768 6.398 A С ARG A ATOM 387 0 50 82.761 60.763 6.692 1.00 20.11 0 ATOM 388 CB ARG A 50 84.335 62.435 4.200 1.00 31.00 A C ATOM 84.028 61.549 3.065 1.00 30.52 389 CG ARG A 50 C 1.00 33.45 ATOM 390 CD ARG A 50 83.871 62.231 1.758 A С ARG A 1.00 35.30 ATOM 391 NE 50 83.103 61.374 0.862 N Α ATOM 392 ARG A 50 -0.430 1.00 41.98 CZ 82.912 61.613 A C -1.000 1.00 41.62 ATOM 393 NH1 ARG A 50 83.440 62,692 N A 1.00 41.63 ATOM NH2 ARG A 50 82.188 60.765 -1.159 N 394 A 83.097 1.00 19.69 6.868 ATOM 395 N TYR A 51 62.978 A N 1.00 19.01 ATOM 396 CA TYR A 51 81.968 63.193 7.727 A C 1.00 17.45 ATOM 397 С TYR A 51 81.513 64.641 7.644 A C 1.00 19.82 ATOM 398 0 TYR A 51 82.257 65.509 7.198 0 A MOTA 399 СВ TYR A 51 82.305 62.792 9.175 1.00 17.00 A С ATOM 400 CG TYR A 83.594 63.414 9.694 1.00 19.81 С 1.00 22.49 ATOM 401 CD1 TYR A 51 84.807 62.799 9.494 А С ATOM 402 CD2 TYR A 51 83.574 64.625 10.391 1.00 27.51 C A 85.996 1.00 29.01 ATOM 403 TYR A 51 63.363 9.962 C CE1 A 84.755 10.853 1.00 22.34 c ATOM 404 CE2 TYR A 51 65,198 A 405 85.959 64.561 1.00 26.38 С ATOM CZ TYR A 51 10.639 A 87.153 1.00 27.75 ATOM 406 OH TYR A 51 65.103 11.102 A O 1.00 16.76 80.267 ATOM 407 N TYR A 52 64.861 8.039 A N ATOM 408 CA TYR A 52 79.630 66.167 8.044 1.00 15.41 A C ATOM 409 С TYR A 52 80.251 67.057 9.094 1.00 18.19 C A ATOM 410 0 TYR A 52 80.252 66.703 10.268 1.00 18.86 A 0 ATOM 411 CB TYR A 52 78.163 65.968 8.360 1.00 16.96 C ATOM 412 CG TYR A 52 77.241 67.158 8.365 1.00 17.78 A C CD1 77.491 68.311 1.00 19.54 ATOM 413 TYR A 52 7.617 C A 9.075 1.00 20.48 ATOM CD2 TYR A 52 76.057 67.095 C 414 A ATOM 415 CE1 TYR A 52 76.608 69.378 7.664 1.00 17.41 A C MOTA 416 CE2 TYR A 52 75.160 68.137 9.089 1.00 21.75 A C ATOM 417 CZTYR A 52 75.443 69.280 8.373 1.00 20.07 A C MOTA 418 OH TYR A 52 74.507 70.291 8.424 1.00 24.27 A 0 MOTA 419 N GLN A 53 80.748 68.214 8.671 1.00 21.06 N A 81.372 420 GLN A 69.186 1.00 22.83 ATOM CA 53 9.580 C GLN A 70.420 ATOM 421 C 53 80.474 9.662 1.00 18.33 A С MOTA 422 o GLN A 53 80.601 71.340 8.878 1.00 23.76 o A MOTA 423 СВ GLN A 53 82.779 69.535 9.079 1.00 22.30 С Α GLN A 83.750 68.353 MOTA 424 CG 9.108 1.00 24.84 53 Α C CD GLN A MOTA 425 53 85.187 68,690 8.695 1.00 31.20 C Α ATOM 426 OE1 GLN A 53 85.490 68.915 7.504 1.00 32.31 A 0 68.696 ATOM 427 NE2 GLN A 53 86.080 9.671 1.00 27.07 Α N ATOM 428 N ARG A 54 79.537 70.385 10.597 1.00 20.86 A N MOTA 429 CA ARG A 54 78.545 71.442 10.758 1.00 21.52 A С MOTA 430 С ARG A 54 79.164 72.827 10.939 1.00 25.15 C Α MOTA 431 0 ARG A 78.568 73.828 10.536 1.00 26.20 0 A MOTA 432 СВ ARG A 54 77.629 71.138 11.918 1.00 21.46 Α C ATOM 433 CG ARG A 54 76.652 69.995 11.655 1.00 22.36 C A ARG A 75.989 69.437 CD 1.00 24.51 MOTA 434 54 12.869 C A 1.00 20.24 435 NE ARG A 76.919 68.779 13.780 ATOM 54 A N ARG A 1.00 23.34 ATOM 436 CZ 54 76.609 68.376 14.997 A C ATOM 437 NH1 ARG A 54 75.389 68.574 15.485 1.00 26.99 А N ATOM 438 NH2 ARG A 54 77.534 67.786 15.739 1.00 21.22 N Α ATOM 439 N GLN A 55 80.362 72.880 11.523 1.00 25.18 N Α 440 CA GLN A 81.055 11.741 1.00 25.49 MOTA 55 74.153 A C GLN A 1.00 27.22 ATOM 441 C 55 81.403 74.886 10.453 С Α 442 0 GLN A 55 81.623 76.106 10.471 1.00 31.96 0 MOTA Α СВ GLN A 1.00 25.44 ATOM 443 55 82.342 73.951 12.586 C A CG GLN A 83.508 1.00 26.87 ATOM 444 73.285 11.866 55 Α С CD GLN A 1.00 22.47 ATOM 445 55 83.607 71.787 12,100 A С ATOM 446 OE1 GLN A 55 84.649 71.186 11.858 1.00 28.14 A 0 MOTA 447 NE2 GLN A 55 82.531 71.192 12.526 1.00 19.06 N A ATOM 448 N LEU A 56 81.478 74.148 9.347 1.00 26.29 A N ATOM 449 CA LEU A 56 81.846 74.711 8.055 1.00 26.09 А С LEU A 7.224 1.00 28.01 ATOM 450 С 56 80.646 75.193 A С ATOM 451 0 LEU A 56 80.835 75.716 6.131 1.00 30.64 0 А CB LEU Α 56 7.251 1.00 28.42 MOTA 452 82,667 73.703 С Α 7.849 CG LEU А 56 83.966 1.00 29.81 MOTA 453 73.147 A С CD1 LEU A 6.814 1.00 33.56 ATOM 454 56 84.685 72.309 A С LEU A MOTA 455 CD2 56 84.896 74.243 8.364 1.00 28.02 Α С MOTA 456 N SER A 57 79.432 75.055 7.760 1.00 27.95 N 457 CA SER A 57 78.199 75.322 7.009 1.00 27.26 MOTA С 1.00 26.45 ATOM 458 С SER A 57 77.432 76.528 7.548 С Α ATOM 459 0 SER A 57 76.970 76.523 8.701 1.00 27.40

							20					
ATOM	460	СВ	SER	A	57	77.287	74.086	7.037	1.00	27.30	A	С
ATOM	461	OG	SER		57	76.004	74.353	6.482	1.00	24.82	A	0
ATOM	462	N	SER		58	77.250	77.541	6.704	1.00		A	N
ATOM	463	CA	SER		58	76.540	78.753	7.112	1.00		A	C
ATOM	464	C	SER		58	75.049	78.502	7.294	1.00		A A	C O
ATOM	465	O CB	SER SER		58 58	74.367 76.761	79.198 79.879	8.059 6.097	1.00		A	c
ATOM ATOM	466 467	OG	SER		58	76.449	79.481	4.769	1.00		A	ŏ
ATOM	468	N	THR		59	74.552	77.473	6.608	1.00		A	N
ATOM	469	CA	THR		59	73.128	77.222	6.528	1.00	28.82	A	С
ATOM	470	C	THR	A	59	72.637	76.209	7.545	1.00		A	С
ATOM	471	0	THR		59	71.431	75.989	7.648	1.00		A	0
ATOM	472	CB	THR		59 50	72.745	76.825	5.079 4.512	1.00		A A	c o
ATOM ATOM	473 474	CG2	THR THR		59 59	73.712 72.851	75.937 78.040	4.175	1.00		A	Č
ATOM	475	N	TYR		60	73.559	75.630	8.325	1.00		A	N
ATOM	476	CA	TYR		60	73.204	74.716	9.405	1.00	27.01	A	С
ATOM	477	С	TYR	A	60	72.359	75.391	10.487	1.00		A	С
ATOM	478	0	TYR		60	72.671	76.504	10.908	1.00		A	0
ATOM	479	CB	TYR		60	74.475	74.108	10.024	1.00		A	C
ATOM	480 481	CG	TYR TYR		60 60	74.208 73.616	73.401 72.137	11.319 11.341	1.00		A A	C
ATOM ATOM	482	CD2	TYR		60	74.507	74.016	12.539	1.00		A	č
ATOM	483	CEI	TYR		60	73.344	71.495	12.545	1.00		A	Ċ
ATOM	484	CE2	TYR		60	74.242	73.384	13.741	1.00	35.99	A	С
ATOM	485	CZ	TYR		60	73.661	72.128	13.739	1.00		A	С
ATOM	486	OH	TYR		60	73.406	71.510	14.936	1.00		A	0
MOTA	487	N	ARG		61	71.302	74.710 75.137	10.934 12.074	1.00	29.78 32.29	A A	N C
ATOM ATOM	488 489	CA C	ARG ARG		61 61	70.489 70.289	73.137	13.056		35.05	A	Č
ATOM	490	õ	ARG		61	69.781	72.931	12.695		33.45	A	ŏ
ATOM	491	CB	ARG		61	69.113	75.638	11.635		34.98	A	С
ATOM	492	CG	ARG	A	61	69.146	76.790	10.663		33.55	A	С
ATOM	493	CD	ARG		61	67.756	77.209	10.187		39.45	A	C
MOTA	494	NE	ARG		61	67.802	78.053	8.991 8.267		43.50 43.32	A A	N C
ATOM ATOM	495 496	CZ NH1	ARG ARG		61 61	66.737 65.517	78.400 77.969	8.591		43.64	A	N
ATOM	497		ARG		61	66.896	79.173	7.201		43.55	A	N
MOTA	498	N	ASP	A	62	70.681	74.222	14.302		32.81	A	N
MOTA	499	CA	ASP		62	70.488	73.277	15.385		34.32	A	c
ATOM	500	С	ASP		62	69.019	73.222	15.812		35.83	A	С 0
MOTA MOTA	501 502	O CB	ASP ASP		62 62	68.368 71.385	74.257 73.703	15.972 16.561		37.43 36.21	A A	Č
ATOM	503	CG	ASP		62	71.724	72.567	17.509		37.73	A	
ATOM	504		ASP		62	71.078	71.513	17.462	1.00		A	0
MOTA	505	OD2	ASP		62	72.632	72.654	18.366		38.06	A	
ATOM	506	N	LEU		63	68.504	72.009	16.000		32.04	A	N
ATOM ATOM	507 508	CA C	LEU		63 63	67.151 67.155	71.799 71.580	16.496 18.003		33.21 31.37	A A	
MOTA	509	ŏ	LEU		63	66.108	71.522	18.621		33.62	A	ő
ATOM	510	СВ	LEU		63	66.489	70.603	15.793	1.00	32.30	A	С
ATOM	511	CG	LEU		63	65.919	70.957	14.417		37.47	A	
ATOM	512	~-~	LEU	_	63	65.566	69.688	13.604		37.52	A	_
ATOM ATOM	513 514	N N	ARG		63 64	64.696 68.345	71.880 71.460	14.549 18.580		37.36 34.84	A A	
ATOM	515	CA	ARG		64	68.514	71.279	20.012		34.85	A	
ATOM	516	C	ARG		64	67.687	70.109	20.516		37.89	A	
ATOM	517	0	ARG		64	66.925	70.220	21.474	1.00	37.04	A	0
ATOM	518	CB	ARG		64	68.180	72.583	20.753		37.97	A	
ATOM	519	CG	ARG		64	68.865	73.821	20.152		37.97	A	
ATOM	520	CD NE	ARG		64 64	68.726	75.089 74.699	21.000 22.367		41.38 47.96	A A	
MOTA MOTA	521 522	CZ	ARG ARG		64	69.447 69.722	75.629	23.275		49.03	A	
ATOM	523		ARG		64	69.491	76.907	23.009		49.64	A	
ATOM	524		ARG		64	70.226	75.281	24.451		49.89	A	
MOTA	525	N	LYS		65	67.844	68.973	19.843		34.71	A	
ATOM	526	CA	LYS		65	67.212	67.732	20.266		35.06	A	
ATOM ATOM	527 528	С 0	LYS LYS		65 65	68.076 68.655	66.577 66.665	19.771 18.695		30.42	A A	
ATOM	529	СВ	LYS		65	65.801	67.642	19.676		39.80	A	
ATOM	530	CG	LYS		65	64.967	66.448	20.138		43.42	A	
MOTA	531	CD	LYS	A	65	63.513	66.564	19.672		47.97	A	C
MOTA	532	CE	LYS		65	62.653	65.440	20.263		50.01	A	
MOTA	533 534	NZ N	LYS		65 66	61.233 68.190	65.463 65.522	19.797 20.565		51.34	A A	
ATOM ATOM	535	CA	GLY GLY		66	68.190	64.339	20.363		31.55	A	
MOTA	536	C	GLY		66	67.996	63.249	19.616		32.06	A	

ATOM	537	0	GLY	A	66	66.772	63.399	19.632	1.00	33.71	F	. 0
ATOM	538	N	VAL	A	67	68.617	62.153	19.163	1.00	30.61	7	N N
ATOM	539	CA	VAL		67	67.927	60.946	18.675	1.00	32.04	7	C
ATOM	540	C	VAL		67	68.756	59.693	18.978	1.00	32.39	Į	, c
ATOM	541	ŏ	VAL		67	69.982	59.724	18.870		29.49	7	
ATOM	542	СВ	VAL		67	67.663	61.024	17.158		34.97	7	
ATOM	543		VAL		67	66.568	61.988	16.878		40.45	7	
						68.912	61.440	16.387		36.19	,	
ATOM	544	CG2			67					32.50	7	
MOTA	545	N	TYR		68	68.108	58.602	19.384				
ATOM	546	CA	TYR		68	68.817	57.361	19.709		36.46	7	
ATOM	547	С	TYR		68	68.113	56.190	19.062		34.88	7	
ATOM	548	0	TYR	A	68	66.962	55.916	19.383		36.97	2	
MOTA	549	CB	TYR	Α	68	68.902	57.148	21.229	1.00	36.07	1	
MOTA	550	CG	TYR	A	68	69.801	55.993	21.670	1.00	41.81	2	
ATOM	551	CD1	TYR	Α	68	69.460	54.665	21.395	1.00	43.38	7	
ATOM	552	CD2	TYR	A	68	70.981	56.226	22.379	1.00	44.20	7	A C
ATOM	553	CE1	TYR	A	68	70.274	53.605	21.798	1.00	43.39	1	A C
ATOM	554	CE2	TYR	Α	68	71.805	55.167	22.789	1.00	44.55	2	7 C
ATOM	555	CZ	TYR		68	71.444	53.863	22.492	1.00	45.41	2	A C
ATOM	556	ОН	TYR		68	72.242	52.807	22.897	1.00	47.48	1	. 0
ATOM	557	N	VAL		69	68.826	55.477	18.196		33.48	7	A N
ATOM	558	CA	VAL		69	68.249	54.404	17.376		34.57	7	
		C	VAL		69	68.922	53.080	17.716		34.34	1	
MOTA	559					69.996	52.793	17.192		28.53	1	
ATOM	560	0	VAL		69						1	
ATOM	561	СВ	VAL		69	68.440	54.691	15.866		35.13		
ATOM	562		VAL		69	67.944	53.526	15.002		38.45	1	
MOTA	563	CG2	VAL	Α	69	67.754	56.000	15.484		36.74	1	
MOTA	564	N	PRO	Α	70	68.319	52.269	18.588		39.88	1	
ATOM	565	CA	PRO	Α	70	68.846	50.922	18.830	1.00	43.50	2	
MOTA	566	С	PRO	Α	70	68.577	50.028	17.629	1.00	47.11	7	A C
ATOM	567	0	PRO	Α	70	67.551	50.175	16.960	1.00	41.77	1	0
ATOM	568	CB	PRO	Α	70	68.097	50.428	20.077	1.00	44.42	7	A C
ATOM	569	CG	PRO		70	67.031	51.423	20.368	1.00	43.58	1	A C
ATOM	570	CD	PRO		70	67.125	52.554	19.397		42.11	7	A C
ATOM	571	N	TYR		71	69.527	49.140	17.367		51.98		A N
ATOM	572	CA	TYR		71	69.474	48.179	16.276		56.73		A C
	573	C	TYR		71	69.683	46.796	16.908		58.39		A C
ATOM						69.428	46.618	18.105		57.75		. 0
ATOM	574	0	TYR		71							a c
ATOM	575	CB	TYR		71	70.558	48.519	15.229		57.66		
MOTA	576	CG	TYR		71	70.091	49.405	14.090		59.91		4 C
ATOM	577		TYR		71	70.760	50.591	13.779		60.36		4 C
MOTA	578		TYR		71	68.995	49.049	13.304		61.59		Y C
MOTA	579	CE1	TYR	A	71	70.334	51.408	12.725		60.84		A C
MOTA	580	CE2	TYR	Α	71	68.568	49.857	12.249	1.00	62.07	7	A C
ATOM	581	CZ	TYR	A	71	69.241	51.035	11.966	1.00	63.27	1	A C
MOTA	582	OH	TYR	Α	71	68.818	51.840	10.924	1.00	64.04	1	O A
ATOM	583	N	THR	A	72	70.147	45.832	16.114	1.00	61.01	7	A N
ATOM	584	CA	THR		72	70.319	44.444	16.556	1.00	60.90	2	A C
ATOM	585	С	THR		72	71.093	44.294	17.877	1.00	59.74		A C
ATOM	586	ō	THR		72	70.491	44.060	18.931		58.04		A 0
ATOM	587	СВ	THR		72	70.993	43.609	15.431		62.06		A C
MOTA	588	OG1	THR		72	72.170	44.276	14.951		61.28		. o
	589	CG2	THR		72	70.090	43.514	14.196		63.15		a c
MOTA								17.800				A N
ATOM	590	N	GLN		73	72.418	44.402			57.85		
MOTA	591	CA	GLN		73	73.287	44.461	18.971		57.41 54.83		A C
ATOM	592	C	GLN		73	74.155	45.726	18.850				A C
MOTA	593	0	GLN		73	75.303	45.747	19.299		57.07		A 0
ATOM	594	CB	GLN		73	74.153	43.194	19.060		58.83		A C
MOTA	595	CG	GLN		73	73.865	42.294	20.273		60.65		A C
ATOM	596	CD	GLN		73	74.720	42.630	21.504		63.27		A C
ATOM	597	OE1	GLN	A	73	75.959	42.582	21.450	1.00	61.11		A O
ATOM	598	NE2	GLN	A	73	74.058	42.943	22.619	1.00	61.34		A N
ATOM	599	N	GLY	Α	74	73.591	46.763	18.223	1.00	48.16		A N
ATOM	600	CA	GLY		74	74.262	48.041	18.020		42.89	1	A C
MOTA	601	C	GLY		74	73.290	49.214	18.016		38.35		A C
ATOM	602	ō	GLY		74	72.224	49.115	18.625		39.09		A 0
MOTA	603	N	LYS		75	73.656	50.320	17.360		32.71		A. N
MOTA	604	CA	LYS		75 75	72.844	51.554	17.362		31.39		A C
										24.85		A C
ATOM	605	C	LYS		75 76	73.525	52.762	16.664				
ATOM	606	0	LYS		75	74.685	52.698	16.338		21.55		
MOTA	607	CB	LYS		75	72.483	51.946	18.800		34.61		A C
ATOM	608	CG	LYS		75	73.667	52.144	19.731		39.32		A C
MOTA	609	CD	LYS		75	74.545	53.318	19.299		39.96		A C
MOTA	610	CE	LYS		75	75.034	54.144	20.451		40.91		A C
MOTA	611	NZ	LYS		75	74.297	55.407	20.464		45.34		A N
ATOM	612	N	TRP	A	76	72.782	53.843	16.434		22.44		A N
ATOM	613	CA	TRP	A	76	73.372	55.173	16.224	1.00	25.02		A C

ATOM	614	С	TRP	A	76	72.594	56.201	17.012	1.00 23	3.16	A	С
ATOM	615	0	TRP		76	71.429	56.007	17.353	1.00 21	1.34	A	0
ATOM	616	CB	TRP		76	73.512	55.570	14.732	1.00 24	4.36	A	С
ATOM	617	CG	TRP		76	72.243	55.752	13.957	1.00 25		A	C
									1.00 26		A	c
ATOM	618	CD1	TRP		76	71.643	54.833	13.136				
ATOM	619		TRP		76	71.424	56.932	13.896	1.00 23		A	С
ATOM	620	NE1	TRP	Α	76	70.491	55.364	12.595	1.00 27	7.23	A	N
ATOM	621	CE2	TRP	A	76	70.348	56.656	13.030	1.00 25	5.91	A	С
ATOM	622	CE3	TRP		76	71.497	58.202	14.479	1.00 24	4.01	A	С
ATOM	623		TRP		76	69.349	57.595	12.752	1.00 26		A	C
									1.00 20			č
ATOM	624		TRP		76	70.512	59.124	14.202			A	
ATOM	625	CH2			76	69.448	58.818	13.345	1.00 25		A	С
MOTA	626	N	GLU	A	77	73.291	57.271	17.354	1.00 22	2.20	A	N
ATOM	627	CA	GLU	A	77	72.753	58.327	18.164	1.00 24	4.84	A	С
MOTA	628	С	GLU	A	77	73.255	59.632	17.575	1.00 22	2.78	A	С
ATOM	629	0	GLU		77	74.386	59.723	17.089	1.00 19		A	0
ATOM	630	СВ	GLU		77	73.214	58.140	19.621	1.00 28		A	C
					77		59.331	20.529	1.00 35		A	Č
ATOM	631	CG	GLU			72.959						
MOTA	632	CD	GLU		77	73.323	59.057	21.980	0.50 36		A	С
ATOM	633	OE1	GLU	A	77	74.397	58.470	22.222	0.50 42	2.18	A	0
ATOM	634	OE2	GLU	Α	77	72.536	59.431	22.878	0.50 39	9.02	A	0
ATOM	635	N	GLY	A	78	72.418	60.651	17.573	1.00 24	4.09	A	N
ATOM	636	CA	GLY		78	72.811	61.883	16.933	1.00 25	5.68	A	C
ATOM	637	c	GLY		78	72.160	63.134	17.453	1.00 25		A	č
							63.116					
ATOM	638	0	GLY		78	71.328		18.350	1.00 27		A	0
ATOM	639	N	GLU		79	72.579	64.234	16.861	1.00 23		A	N
ATOM	640	CA	GLU	Α	79	72.078	65.542	17.187	1.00 23	3.88	A	С
ATOM	641	C	GLU	Α	79	71.283	65.981	15.979	1.00 22	2.32	A	С
ATOM	642	0	GLU	A	79	71.800	65.979	14.875	1.00 26	6.62	A	0
ATOM	643	CB	GLU		79	73.255	66.487	17.457	1.00 23		A	С
ATOM	644	CG	GLU		79	74.109	66.052	18.641	1.00 29		A	ç
MOTA	645	CD	GLU		79	75.420	66.826	18.790	1.00 33		A	С
ATOM	646	OE1	GLU	A	79	76.205	66.467	19.685	1.00 34		A	0
ATOM	647	OE2	GLU	A	79	75.670	67.782	18.030	1.00 37	7.21	A	0
ATOM	648	N	LEU	A	80	70.017	66.338	16.180	1.00 22	2.69	A	N
ATOM	649	CA	LEU	A	80	69.184	66.809	15.075	1.00 24	4.78	A	С
ATOM	650	C	LEU		80	69.419	68.267	14.685	1.00 26		A	Č
ATOM	651	0	LEU		80	69.596	69.139	15.528	1.00 26		A	0
ATOM	652	CB	LEU		80	67.704	66.617	15.403	1.00 26		A	С
MOTA	653	CG	LEU	А	80	67.233	65.168	15.432	1.00 31	1.35	A	С
ATOM	654	CD1	LEU	Α	80	65.863	65.082	16.077	1.00 28	8.71	A	С
ATOM	655	CD2	LEU	Α	80	67.212	64.609	14.015	1.00 32	2.32	A	С
ATOM	656	N	GLY	A	81	69.390	68.525	13.383	1.00 23	3.46	A	N
ATOM	657	CA	GLY		81	69.500	69.861	12.822	1.00 22		A	C
ATOM		c.	GLY		81	68.854	69.916	11.448	1.00 26		A	Č
	658											
ATOM	659	0	GLY		81	68.308	68.927	11.002	1.00 22		A	0
ATOM	660	N	THR		82	68.884	71.065	10.787	1.00 26		A	N
MOTA	661	CA	THR	A	82	68.530	71.138	9.369.	1.00 28	8.52	A	С
ATOM	662	С	THR	Α	82	69.634	71.813	8.631	1.00 25	5.22	A	С
ATOM	663	0	THR	A	82	70.436	72.529	9.225	1.00 27	7.82	A	0
ATOM	664	CB	THR		82	67.190	71.888	9.127	1.00 29		A	c
ATOM	665		THR		82	67.310	73.253	9.554	1.00 27		A	ō
				-								
ATOM	666		THR		82	66.069	71.306	9.972	1.00 30		A	С
ATOM	667	N	ASP		83	69.704	71.567	7.326	1.00 24		A	N
ATOM	668	CA	ASP	A	83	70.679	72.180	6.447	1.00 22	2.11	A	C
ATOM	669	C	ASP	A	83	70.241	71.993	5.009	1.00 24	4.09	A	С
ATOM	670	0	ASP	Α	83	69.261	71.285	4.741	1.00 26	6.17	A	0
ATOM	671	CB	ASP		83	72.075	71.559	6.652	1.00 24	4.10	A	С
ATOM	672	CG	ASP		83	73.213	72.542	6.376	1.00 26		A	Č
ATOM	673		ASP		83	73.067	73.513	5.580	1.00 27		A	0
MOTA	674		ASP		83	74.328	72.409	6.924	1.00 25		A	0
MOTA	675	N	LEU	Α	84	70.973	72.591	4.081	1.00 26	6.89	A	N
ATOM	676	CA	LEU	A	84	70.641	72.502	2.658	1.00 27	7.35	A	С
ATOM	677	С	LEU		84	71.224	71.225	2.078	1.00 28	8.51	A	С
ATOM	678	0	LEU		84	72.398	70.936	2.266	1.00 25		A	ō
ATOM	679	CB	LEU		84	71.193	73.717	1.915	1.00 29		A	č
ATOM	680	CG	LEU			70.550	75.047	2.345	1.00 23		A	c
					84							
ATOM	681		LEU		84	71.025	76.228	1.501	1.00 30		A	C
ATOM	682		LEU		84	69.027	74.949	2.301	1.00 30		A	С
MOTA	683	N	VAL	A	85	70.392	70.465	1.373	1.00 25	5.49	A	N
ATOM	684	CA	VAL	Α	85	70.790	69.203	0.768	1.00 28	8.08	A	С
ATOM	685	С	VAL		85	70.523	69.177	-0.737	1.00 27		A	С
ATOM	686	ō	VAL		85	69.511	69.686	-1.213	1.00 27		A	ŏ
ATOM	687	СВ	VAL		85	70.063	68.028	1.439	1.00 27		A	č
											Ā	
ATOM	688		VAL		85	70.564	66.696	0.875	1.00 2			C
ATOM	689		VAL		85	70.273	68.084	2.950	1.00 29		A	С
ATOM	690	N	SER	A	86	71.451	68.587	-1.472	1.00 28	8.67	A	N

ATOM	691	CA	SER	A	86	71.331	68.409	-2.913	1.00 30.97	A	С
MOTA	692	С	SER	A	86	71.823	67.015	-3.293	1.00 31.51	A	C
ATOM	693	0	SER		86	72.512	66.354	-2.509	1.00 25.69	A	0
ATOM	694	CB	SER		86	72.138	69.485	-3.642	1.00 33.70	A	C
ATOM ATOM	695 696	OG	SER		86 87	71.607	69.737	-4.930 -4.494	1.00 42.01	A A	N O
ATOM	697	N CA	ILE		87	71.459 71.895	66.563 65.277	-5.006	1.00 24.97	A	C
ATOM	698	Ç.	ILE		87	72.489	65.559	-6.384	1.00 29.06	A	č
ATOM	699	0	ILE	A	87	71.737	65.734	-7.354	1.00 27.25	A	0
MOTA	700	CB	ILE	A	87	70.713	64.275	-5.094	1.00 25.77	A	С
ATOM	701	CG1			87	70.062	64.090	-3.729	1.00 26.43	A	С
MOTA	702	CG2	ILE		87	71.187	62.939	-5.631	1.00 23.43	A	C
ATOM ATOM	703 704	CD1	ILE PRO		87 88	68.758 73.817	63.332 65.654	-3.747 -6.453	1.00 29.21 1.00 29.18	A A	C N
ATOM	705	CA	PRO		88	74.531	66.013	-7.689	1.00 30.76	A	ĉ
MOTA	706	С	PRO		88	74.063	65.286	-8.956	1.00 32.20	A	c
ATOM	707	0	PRO	A	88	73.924	65.938	-9.987	1.00 33.45	A	0
MOTA	708	CB	PRO		88	75.971	65.632	-7.358	1.00 31.55	A	С
MOTA	709	CG	PRO		88	76.067	65.895	-5.896	1.00 30.46	A	C
ATOM ATOM	710 711	CD N	PRO HIS		88 89	74.762 73.857	65.455 63.972	-5.339 -8.872	1.00 28.40 1.00 27.36	A	C
ATOM	712	CA	HIS		89	73.332	63.162	-9.978	1.00 27.36	A A	N C
ATOM	713	c	HIS		89	71.871	62.815	-9.715	1.00 29.29	A	č
ATOM	714	0	HIS	A	89	71.449	61.661	-9.847	1.00 28.09	A	0
ATOM	715	CB	HIS		89	74.173	61.907	-10.160	1.00 28.17	A	С
ATOM	716	CG	HIS		89	75.632		-10.362	1.00 38.05	A	С
ATOM	717		HIS		89	76.120		-11.478	1.00 41.06	A	N
ATOM ATOM	718 719		HIS HIS		89 89	76.708 77.435	61.905	-9.588 -11.384	1.00 38.74 1.00 40.63	A A	C
ATOM	720		HIS		89	77.817		-10.248	1.00 41.19	A	N
ATOM	721	N	GLY		90	71.120	63.846	-9.334	1.00 32.50	A	N
ATOM	722	CA	GLY	A	90	69.696	63.769	-9.051	1.00 31.86	A	С
ATOM	723	С	GLY		90	69.005	64.963	-9.686	1.00 30.26	A	С
ATOM	724	0	GLY		90	69.524		-10.644	1.00 31.12	A	0
ATOM ATOM	725 726	N CA	PRO PRO		91 91	67.861 67.175	65.382 66.565	-9.158 -9.691	1.00 32.37 1.00 34.88	A A	C
ATOM	727	C	PRO		91	67.987	67.835	-9.410	1.00 39.91	A	č
ATOM	728	ŏ	PRO		91	68.764	67.852	-8.458	1.00 38.58	A	ŏ
ATOM	729	CB	PRO	A	91	65.837	66.579	-8.937	1.00 35.23	A	C
ATOM	730	CG	PRO		91	66.049	65.738	-7.711	1.00 34.49	A	C
ATOM	731	CD	PRO		91	67.164	64.807	-7.994	1.00 33.82	A	С
ATOM	732	N	ASN		92	67.809	68.863	-10.238	1.00 43.06	A	И
ATOM ATOM	733 734	CA C	ASN ASN		92 92	68.496 67.841	70.152	-10.086 -9.034	1.00 45.05 1.00 44.59	A A	C
ATOM	735	ŏ	ASN		92	67.368	72.156	-9.337	1.00 44.08	Ä	ŏ
ATOM	736	CB	ASN		92	68.546		-11.441	1.00 47.21	A	Ċ
ATOM	737	CG	ASN	A	92	69.438	72.079	-11.431	1.00 50.71	A	С
MOTA	738		ASN		92	70.604		-11.044	1.00 52.68	A	0
ATOM	739		ASN		92	68.895		-11.863	1.00 52.24	A	N
ATOM ATOM	740 741	N CA	VAL		93 93	67.830 67.205	70.592 71.310	-7.789 -6.691	1.00 41.78 1.00 36.70	A A	C N
ATOM	742	C	VAL		93	68.043	71.217	-5.428	1.00 35.54	A	Č
ATOM	743	Ō	VAL		93	68.907	70.353	-5.304	1.00 36.77	A	ō
MOTA	744	CB	VAL	A	93	65.794	70.772	-6.374	1.00 38.91	A	С
ATOM	745		VAL		93	64.868	70.960	-7.573	1.00 37.74	A	С
ATOM	746		VAL		93	65.848	69.310	-5.921	1.00 37.34	A	С
ATOM ATOM	747 748	N CA	THR		94 94	67.772 68.320	72.139 72.119	-4.513 -3.178	1.00 33.85	A	N
ATOM	749	C	THR		94	67.170	72.293	-2.216	1.00 35.85 1.00 36.41	A A	C
ATOM	750	ō	THR		94	66.283	73.119	-2.443	1.00 38.29	A	ŏ
MOTA	751	CB	THR		94	69.327	73.252	-3.009	1.00 37.46	A	Č
MOTA	752		THR		94	70.459	73.016	-3.855	1.00 37.95	A	0
MOTA	753		THR		94	69.910	73.256	-1.599	1.00 39.22	A	С
ATOM	754	N	VAL		95	67.162	71.515	-1.143	1.00 32.79	A	N
ATOM ATOM	755 756	CA C	VAL		95 95	66.110 66.660	71.652 71.686	-0.155	1.00 32.68	A	C
ATOM	757	0	VAL		95 95	67.762	71.240	1.261 1.499	1.00 30.49	A A	С 0
ATOM	758	СВ	VAL		95	65.071	70.544	-0.291	1.00 36.55	A	ç
ATOM	759		VAL		95	64.479	70.568	-1.709	1.00 38.67	A	č
ATOM	760		VAL		95	65.663	69.183	0.025	1.00 33.09	A	С
ATOM	761	N	ARG		96	65.883	72.244	2.181	1.00 30.99	A	N
ATOM ATOM	762 763	CA	ARG		96 96	66.212 65.620	72.215	3.597	1.00 29.56	A	С
ATOM ATOM	763 764	С 0	ARG ARG		96 96	64.402	70.957 70.809	4.208 4.302	1.00 28.73 1.00 30.19	A A	C
ATOM	765	СВ	ARG		96	65.686	73.459	4.320	1.00 33.02	A	O C
ATOM	766	CG	ARG		96	65.976	73.474	5.835	.1.00 36.80	A	č
ATOM	767	CD	ARG		96	65.954	74.863	6.457	1.00 38.14	A	č

MOTA	768	NE	ARG	A	96	67.041	75.677	5.929	1.00	37.92	1	A N	ı
MOTA	769	CZ	ARG		96	68.265	75.747	6.442		37.97	1		
ATOM ATOM	770 771		ARG		96 96	68.600 69.160	75.050 76.512	7.524 5.846		38.44 33.62	I		
ATOM	772	N	ALA		97	66.503	70.048	4.606		24.74	7		
ATOM	773	CA	ALA		97	66.126	68.764	5.167		27.21	7		
ATOM	774	C	ALA		97	66.541	68.668	6.614		22.38	I		
ATOM ATOM	775 776	O CB	ALA ALA		97 97	67.523 66.801	69.278 67.648	7.026 4.380		23.68 24.80	7		
ATOM	777	N	ASN		98	65.796	67.884	7.378		21.67	7		
ATOM	778	CA	ASN	A	98	66.281	67.388	8.644	1.00	22.81	7		
ATOM	779	C	ASN		98	67.502	66.503	8.409		25.29	7		
ATOM ATOM	780 781	O CB	ASN ASN		98 98	67.538 65.184	65.738 66.605	7.451 9.351		21.43 23.87	Į.		
ATOM	782	CG	ASN		98	64.033	67.503	9.805		31.55	Ī		
MOTA	783		ASN		98	64.257	68.532	10.448	1.00	28.77	7		
ATOM	784		ASN		98	62.801	67.115	9.469		29.01	7		
ATOM ATOM	785 786	N CA	ILE		99 99	68.517 69.693	66.652 65.781	9.255 9.240		23.47 21.95	I I		
ATOM	787	C	ILE		99	70.048	65.437	10.685		19.63	Į.		
ATOM	788	0	ILE		99	70.186	66.339	11.529	1.00	24.71	F		
ATOM	789	CB	ILE		99	70.902	66.475	8.586		22.78	P		
ATOM ATOM	790 791	CG2			99 99	70.571 72.076	66.968 65.544	7.184 8.527		19.57 25.77	P.		
ATOM	792		ILE		99	71.663	67.806	6.568		26.04	A A		
ATOM	793	N	ALA	A	100	70.167	64.149	10.968		17.47	A		
MOTA	794	CA	ALA		100	70.721	63.657	12.223	1.00		2 A		
ATOM ATOM	795 796	C O	ALA		100	72.245 72.742	63.532 62.697	12.075 11.325	1.00		24		
ATOM	797	СВ			100	70.116	62.345	12.607	1.00		<i>)</i> .		
ATOM	798	N	ALA			72.981	64.369	12.804	1.00		A		
ATOM	799	CA	ALA			74.436	64.308	12.819		19.52	2 A		
MOTA MOTA	800 801	c o	ALA ALA		101	74.849 74.595	63.244 63.358	13.813 15.017	1.00	19.24	.ZA		
ATOM	802	СВ	ALA			75.052	65.702	13.163	1.00		A		
MOTA	803	N	ILE		102	75.398	62.150	13.311	1.00		ZA.		
ATOM	804	CA	ILE			75.660	60.973	14.129	1.00		A		
ATOM ATOM	805 806	c o	ILE			76.952 77.978	61.245 61.511	14.892 14.288	1.00		A		
ATOM	807	СВ	ILE			75.842	59.690	13.277	1.00		A A		
MOTA	808	CG1	ILE	A	102	74.554	59.374	12.505	1.00		A		
ATOM	809	CG2	ILE			76.224	58.519	14.178	1.00		A		
ATOM ATOM	810 811	CD1 N	ILE THR			74.673 76.866	58.276 61.146	11.472 16.212	1.00		A		
ATOM	812	CA	THR			77.982	61.450	17.114	1.00		A A		
ATOM	813	C	THR			78.451	60.245	17.925	1.00		A		
ATOM	814	0	THR		103	79.504	60.296	18.556	1.00		A		
ATOM ATOM	815 816	CB OG1	THR		103 103	77.556 76.344	62.579 62.216	18.073 18.746	1.00		A		
ATOM	817	CG2	THR			77.183	63.831	17.317	1.00		A A		
ATOM	818	N	GLU			77.668	59.168	17.934	1.00		A		
ATOM	819	CA	GLU		104	78.061	57.917	18.576		19.81	A		
ATOM ATOM	820 821	C 0	GLU GLU			77.351 76.208	56.767 56.921	17.877 17.465	1.00 2	_	A		
ATOM	822	СВ	GLU			77.725	57.928	20.088	1.00		A A		
ATOM	823	CG	GLU			78.291	56.737	20.854	1.00		A		
ATOM	824	CD	GLU			77.964	56.726	22.350	1.00		A		
ATOM ATOM	825 826		GLU GLU			77.594 78.089	57.785 55.637	22.928 22.961	1.00 4		A A		
ATOM	827	N	SER			78.043	55.649	17.693	1.00		A		
ATOM	828	CA	SER			77.446	54.481	17.026	1.00 2		A		
ATOM	829	C	SER			78.126	53.167	17.421	1.00 2		A		
ATOM ATOM	830 831	O CB	SER SER			79.260 77.440	53.151 54.676	17.929 15.490	1.00 2		A A		
ATOM	832	OG	SER			78.758	54.663	15.012	1.00 2		A		
MOTA	833	N	ASP			77.400	52.072	17.214	1.00 2	22.55	A		
ATOM	834	CA	ASP			77.913	50.733	17.411	1.00 2		A		
ATOM ATOM	835 836	С 0	ASP ASP			77.315 76.094	49.839 49.837	16.312 16.093	1.00 2		A		
ATOM	837	СВ	ASP			77.556	50.196	18.792	1.00 2		A A		
ATOM	838	CG	ASP	A	106	77.998	48.751	18.973	0.50		A		
ATOM	839		ASP			79.136	48.520	19.419	0.50	35.18	A	0	
atom Atom	840 841	OD2 N	ASP LYS			77.279 78.190	47.781	18.668	0.50 3		A		
ATOM ATOM	842		LYS			77.820	49.123 48.161	15.618 14.572	1.00 2		A A		
ATOM	843		LYS			76.966	48.753	13.446	1.00 2		A		
MOTA	844	0	LYS	A	107	76.176	48.054	12.825	1.00 2	22.57	A		

ATOM 845 LYS A 107 CB 77.139 46.935 15.195 1.00 27.43 C MOTA 846 CG LYS A 107 78.066 46.130 16.101 1.00 32.24 A С ATOM 847 CD LYS A 107 1.00 33.50 77.314 45.034 16.835 A C ATOM 848 78.004 CE LYS A 107 44.328 17.899 0.00 31.63 A C ATOM 849 NZ LYS A 107 79.348 43.882 17.435 0.00 31.79 N ATOM B50 PHE A 108 N 77.151 50.043 13.187 1.00 22.67 A N ATOM 851 CA PHE A 108 76.412 50.770 12.161 1.00 20.97 A C ATOM 852 C PHE A 108 77.306 50.946 10.954 1.00 19.92 A C ATOM 853 0 PHE A 108 77.016 50.416 9.875 1.00 21.69 Α O ATOM 854 СВ PHE A 108 75.946 1.00 19.57 52,125 12.691 A C ATOM 855 CG PHE A 108 75.153 52.921 11.701 1.00 20.66 A C ATOM 856 CD1 PHE A 108 73.870 52,520 11.338 1.00 25.16 A C ATOM 857 CD2 PHE A 108 75.688 54.053 11.107 1.00 22.61 A C ATOM 858 CE1 PHE A 108 73.139 53.250 10.405 1.00 25.50 A С ATOM 859 PHE A 108 CE2 74.963 54.790 10.190 1.00 22.84 A C ATOM 860 CZ PHE A 108 73.677 54.381 9.832 1.00 26.62 A С ATOM PHE A 109 861 N 78.401 51.682 11.129 1.00 20.35 N A ATOM 862 CA PHE A 109 79.372 51.887 10.044 1.00 20.96 C A ATOM 863 С PHE A 109 80.123 50.581 9.813 1.00 19.74 A С 80.361 ATOM 864 0 PHE A 109 49.824 10.769 1.00 24.70 A 0 ATOM 865 СВ PHE A 109 80.325 53.065 1.00 19.85 10.348 Α С MOTA 866 CG PHE A 109 79.617 54.398 10.489 1.00 16.19 A C ATOM 78.862 867 CD1 PHE A 109 54.897 9.435 1.00 22.18 С ATOM 868 CD2 PHE A 109 79.726 55.162 11.633 1.00 22.85 А С ATOM 869 CE1 PHE A 109 78.197 56.107 9.532 1.00 21.10 A С ATOM 870 CE2 PHE A 109 79.066 56.377 11.728 1.00 21.43 С A ATOM 871 PHE A 109 CZ 78.284 56.841 10.663 1.00 22.40 A C ATOM 872 N ILE A 110 80.460 50.285 8.556 1.00 24.38 A N ATOM 873 CA ILE A 110 81.176 49.060 8.204 1.00 23.73 С A ATOM 874 С ILE A 110 82.627 49.382 7.863 1.00 25.17 С A ATOM 875 0 ILE A 110 82.917 50.295 1.00 21.65 7.077 Α 0 ATOM 876 CB ILE A 110 80.510 48.364 1.00 23.43 6.998 A С ATOM 877 CG1 ILE A 110 79.073 47.944 7.330 1.00 26.13 С Α ATOM 878 CG2 ILE A 110 81,354 47.171 6.511 1.00 27.63 С 879 ATOM CD1 ILE A 110 78.262 47.542 6.104 1.00 29.01 A С ATOM 880 N **ASN A 111** 83.535 48.616 8.453 1.00 24.01 Α N MOTA 881 CA **ASN A 111** 84.958 48.786 8.213 1.00 25.66 Α C ATOM 882 C **ASN A 111** 85.302 1.00 21.62 48.367 6.782 Α С ATOM 883 0 **ASN A 111** 85.122 47.210 6.395 1.00 24.50 Α 0 ÇВ MOTA 884 **ASN A 111** 85.762 47.950 9.219 1,00 26,77 A C ATOM 885 CG **ASN A 111** 87.239 48.324 9.252 1.00 30.39 С A ATOM 886 OD1 **ASN A 111** 87.614 49.478 9.012 1.00 29.76 A 0 MOTA 887 ND2 **ASN A 111** 88.081 47.348 9.588 1.00 28.98 A ATOM 888 **GLY A 112** 85.815 N 49.310 6.008 1.00 21.53 Α N ATOM 889 CA **GLY A 112** 86.127 49.082 4.604 1.00 26.83 Α С ATOM 890 С **GLY A 112** 85.073 49.602 3.630 1.00 27.54 А С ATOM 891 O **GLY A 112** 85.274 49.562 2.419 1.00 26.87 O Α 892 ATOM N **SER A 113** 83.950 50.086 4.145 1.00 28.16 A N ATOM 893 CA **SER A 113** 82.869 50.607 3.301 1.00 23,29 A C MOTA 894 С **SER A 113** 83.152 52.034 2.864 1.00 22.88 Α C ATOM 895 **SER A 113** 0 83.981 52.730 3.462 1.00 22.23 A 0 ATOM 896 CB **SER A 113** 81.537 50.544 1.00 26.77 4.053 A Ç ATOM 897 OĢ **SER A 113** 81.450 51.622 4.968 1.00 32.46 o A ATOM 898 N **ASN A 114** 82.451 52,469 1.818 1.00 19.83 A N ATOM 899 CA **ASN A 114** 82.632 53.785 1.195 1.00 20.70 A C 900 **ASN A 114** ATOM С 81.400 54.686 1.349 1.00 17.94 A C ATOM 901 0 **ASN A 114** 81.228 55.627 0.596 1.00 20.08 A 0 ATOM 902 CB **ASN A 114** 82.973 53.574 -0.303 1.00 20.54 A C ATOM 903 CG **ASN A 114** 83.533 54.827 -1.004 1.00 26.09 A С ATOM 904 OD1 **ASN A 114** 83.189 55.100 -2.165 1.00 29.37 A 0 ATOM 905 ND2 **ASN A 114** 84.441 55.540 -0.348 1.00 22.18 A N ATOM 906 TRP A 115 80.558 54.414 2.354 1.00 16.89 A N ATOM 907 CA TRP A 115 79.453 55.295 2.658 1.00 16.46 A C ATOM 908 TRP A 115 C 79.548 55.772 4.100 1.00 18.12 A С 909 MOTA 0 TRP A 115 80.184 55.126 4.943 1.00 20.65 o A 910 ATOM TRP A 115 CB 78.093 54.631 2.393 1.00 18.60 A c ATOM 911 CG TRP A 115 77.869 53.335 3.061 1.00 18.81 Α ATOM 912 CD1 TRP A 115 78.058 52.098 1.00 27.02 2.520 A С ATOM 913 CD2 TRP A 115 77.372 53.109 4.403 1.00 19.85 Α С ATOM 914 NEI TRP A 115 77.734 51.123 3.434 1.00 28.07 A N ATOM 915 **CE2 TRP A 115** 77.311 51.716 4.597 1.00 28.04 A C MOTA 916 CE3 TRP A 115 76.983 53.943 5.453 1.00 21.36 C ATOM 917 CZ2 TRP A 115 76.877 51.142 5.799 1.00 27.30 A C ATOM 918 CZ3 TRP A 115 76.544 53.371 6.643 1.00 22.49 C A ATOM 919 CH2 TRP A 115 76.510 51.996 1.00 24.66 6.808 A C ATOM 920 N **GLU A 116** 78.910 56.905 4.345 1.00 18.09 Α N ATOM 921 CA **GLU A 116** 79.049 57.666 5.584 1.00 18.37 C

96

MOTA	922	C	GLU	J 2	A 116	77.72	58.110	6.220	1 00	21.39		π.	~
MOTA	923				A 116							A	С
						77.71				19.69		A	0
MOTA	924				A 116	79.89		5.282	1.00	21.09		A	С
MOTA	925	CG	GLU) 2	A 116	81.298	3 58.664	4.834	1.00	30.57		A	С
ATOM	926	CD	GLU	3 2	A 116	81.499				19.12			
MOTA	927				A 116							A	С
						80.945				25.47		A	0
MOTA	928				A 116	82.237	7 57.811	2.889	1.00	30.78		A	0
ATOM	929	N	GLY	. 1	A 117	76.601	L 57.670	5.680	1.00	15.48		A	N
MOTA	930	CA			A 117	75.302							
ATOM	931									14.95		A	С
					A 117	74.221		5.523	1.00	17.22		A	С
ATOM	932	0	GLY	. 7	A 117	74.517	7 56.329	4.686	1.00	15.79		A	0
ATOM	933	N	ILF	: 7	118	72.980				18.20			
ATOM	934				118							A	И
						71.810				12.85		A	С
ATOM	935		ILE	P	118	70.668	57.692	5.108	1.00	15.45		A	С
ATOM	936	0	ILE	P	1118	70.426	58.691	5.805	1.00	15.49		Α	0
ATOM	937	CB	TIF		118	71.401				16.49			
ATOM	938											A	С
					118	70.260				20.60		A	С
MOTA	939				118	70.977	56.368	7.820	1.00	18.54		A	С
MOTA	940	CD:	LILE	A	118	69.959	53.672	6.975	1.00	22.49		A	С
ATOM	941	N			119	69.973							
ATOM	942									16.51		A	N
		CA			119	68.850		3.520	1.00	17.34		A	C
ATOM	943	С	LEU	A	119	67.605	57.332	3.631	1.00	17.57		A	Ç
ATOM	944	0	LEU	A	119	67.370	56.426			17.07		A	ŏ
ATOM	945	СВ			119	69.061							
										16.12		A	C
ATOM	946	CG			119	67.954	59.469	1.461	1.00	20.50		A	С
ATOM	947	CD1	. LEU	Α	119	67.744	60.734	2.237	1.00	21.51		A	C
ATOM	948	CD2	T.EIT	Δ	119	68.286							
ATOM										22.00		A	C
	949	N			120	66.817	57.600	4.659	1.00	15.26		A	N
MOTA	950	ÇA	GLY	A	120	65.590	56.864	4.892	1.00	16.17		A	С
MOTA	951	С	GLY	Α	120	64.506		3.975		16.03			
ATOM	952	0			120							A	С
						64.131		4.102		20.14		A	0
MOTA	953	N	LEU	A	121	64.011	56.582	3.064	1.00	15.98		A	N
ATOM	954	CA	LEU	Α	121	63.037	57.010	2.038	1.00	16.93		A	C
ATOM	955	С	LEU	A	121	61.586		2.330					
ATOM	956	ŏ			121					18.71		A	С
						60.683		1.530	1.00	20.26		A	0
ATOM	957	СВ			121	63.460	56.449	0.682	1.00	16.32		A	С
ATOM	958	CG	LEU	A	121	64.699	57.128	0.084		18.18		A	Č
MOTA	959	CD1	LEU			65.208							
ATOM	960							-1.167		17.74		A	C
			LEU			64.505		-0.230	1.00	19.83		A	С
MOTA	961	N	ALA	A	122	61.377	55.931	3.440	1.00	17.96		A	N
ATOM	962	CA	ALA	Α	122	60.037	55.568	3.916		19.62		A	
ATOM	963	С			122								С
						59.307	56.740	4.589	1.00	24.01		A	С
ATOM	964	0			122	59.734	57.890	4.476	1.00	24.71		A	0
ATOM	965	CB	ALA	Α	122	60.130	54.361	4.829	1.00	20.17		A	C
ATOM	966	N	TYR	Δ	123	58.185	56.447	5.256					
ATOM	967	CA								23.30		A	N
					123	57.265	57.473	5.703	1.00	25.93		A	С
MOTA	968	С	TYR	Α	123	57.492	57.894	7.163	1.00	23.41		A	С
ATOM	969	0	TYR	Α	123	58.146	57.192	7.931		25.28		A	ō
MOTA	970	CB			123	55.836							
							56.968	5.559		25.54		A	С
MOTA	971	CG			123	55.441	56.697	4.129	1.00	24.32		A	С
ATOM	972	CD1	TYR	А	123	55.015	57.724	3.310	1.00	25.79		A.	С
ATOM	973	CD2	TYR	Α	123	55.491	55.421	3.609		26.50			
ATOM	974		TYR									A.	С
						54.622	57.486	1.998	1.00	28.42		A.	С
MOTA	975		TYR			55.120	55.171	2.293	1.00	27.28		A.	С
ATOM	976	CZ	TYR	Α	123	54.678	56.195	1.501	1.00	25.25		A.	С
ATOM	977	OH			123	54.315	55.950	0.184		26.89			
ATOM	978	N										A	0
			ALA			56.879	59.014	7.519	1.00	29.24	1	A.	N
ATOM	979	CA	ALA			57.082	59.664	8.820	1.00	30.24		A.	C
MOTA	980	С	ALA	Α	124	56.708	58.812	10.018		35.27		Ą	č
ATOM	981	0	ALA			57.302							
							58.953	11.091		33.99	i i	4	0
ATOM	982	CB	ALA	А	124	56.356	60.972	8.858	1.00	31.62	1	A	С
ATOM	983	N	GLU	A	125	55.754	57.903	9.834		34.28		Ā	N
ATOM	984	CA	GLU			55.295							
							57.003	10.894		37.92		3	С
ATOM	985	C	GLU			56.415	56.274	11.647	1.00	37.65	7	4	C
ATOM	986	0	GLU	A	125	56.299	56.030	12.853	1.00	38.82	7	A	0
ATOM	987	СВ	GLU			54.330	55.968	10.293		40.24			
ATOM	988	CG	GLU									A	С
						53.444	55.252	11.295		45.50	2	7	С
ATOM	989	CD	GLU			52.121	55.962	11.496	1.00	52.07	7	4	С
ATOM	990	OE1	GLU	A	125	52.131	57.123	11.977		54.94		Ä	ŏ
MOTA	991	OF.2	GLU	Δ	125	51.075							
							55.364	11.163	1.00		1	ł	0
ATOM	992	N	ILE			57.491	55.918	10.941	1.00	31.63	7	A.	N
ATOM	993	CA	ILE	A	126	58.585	55.155	11.525		28.26	7		Ċ
ATOM	994	С	ILE			59.866	55.991						
ATOM	995	ŏ						11.687	1.00		7		С
			ILE			60.920	55.440	11.948	1.00	28.24	7	4	0
ATOM	996	CB	ILE	Α	126	58.878	53.883	10.690	1.00		7		C
MOTA	997	CG1	ILE	A	126	59.197	54.235	9.234	1.00		Ī		
ATOM	998	CG2	ILE	Σ	126	57.699							C
71011	220	002		ra.	140	57.099	52.908	10.764	1.00	31.40	P		С

MOTA	999	כח)	TT.E	2 2	A 126	59.677	53.053	8.429	1.00 29.82		_	_
ATOM											A	С
	1000	N	ALA		A 127	59.751	57.298	11.493	1.00 26.38		А	N
MOTA	1001	CA	AL	1	127	60.844	58.222	11.762	1.00 28.14		A	С
MOTA	1002	С	AT.Z	٠, 2	A 127	61.072			1.00 30.57			
ATOM											A	С
	1003	0			A 127	60.139		14.056	1.00 27.34		A	0
MOTA	1004	CB	AL	1 7	127	60.516	59.588	11.228	1.00 26.20		A	С
MOTA	1005	N	ARC	3 7	128	62.323	58.479	13.650	1.00 32.29		A	N
ATOM	1006	CA			128							
						62.686		15.042	1.00 32.33		A	С
MOTA	1007	С	ARC	3 F	128	63.110	60.172	15.214	1.00 32.76		A	С
MOTA	1008	0	ARG	; z	128	63.673	60.773	14.288	1.00 28.12		A	ō
ATOM	1009	СВ			128	63,775						
								15.468	1.00 33.84		A	С
MOTA	1010	CG	ARG	i F	128	63.268	56.329	15.638	1.00 39.19		A	С
ATOM	1011	CD	ARG	3 F	128	64.006	55.302	14.843	1.00 43.32		A	C
MOTA	1012	NE			128	63.338						
								14.915	1.00 49.88		A	N
ATOM	1013	CZ			128	63.811	52.881	14.384	1.00 49.47		A	С
ATOM	1014	NH1	. ARG	; A	128	63.115	51.757	14.508	1.00 52.74		A	N
ATOM	1015				128	64.968		13.731				
									1.00 50.48		A	N
MOTA	1016	N			129	62.816	60.791	16.364	1.00 31.47		A	N
ATOM	1017	CA	PRC) A	129	62.218	60.159	17.553	1.00 34.71		A	С
MOTA	1018	С	PRC	Δ (129	60.705		17.479	1.00 34.15			
ATOM	1019	ŏ									A	С
					129	60.172		18.229	1.00 37.59	1	A	0
MOTA	1020	CB	PRC) A	129	62.498	61.176	18.670	1.00 32.03		A	С
ATOM	1021	CG	PRC) A	129	62.887	62.461	18.005	1.00 33.32		A	c
ATOM	1022	CD			129							
						63.036		16.548	1.00 34.13	2	A	С
ATOM	1023	N	ASP	Α	130	60.031	60.701	16.626	1.00 34.80	2	A.	N
ATOM	1024	CA	ASP	A	130	58.604	60.519	16.390	1.00 38.13	,	A	С
MOTA	1025	C			130	58.234	60.967					
								14.976	1.00 36.50		A.	С
ATOM	1026	0			. 130	59.075	61.471	14.227	1.00 36.70	2	A.	0
ATOM	1027	ÇВ	ASP	Α	130	57.779	61.280	17.450	1.00 39.51	2	A.	С
ATOM	1028	CG	ASP	A	130	58.154	62.756	17.558	1.00 44.22			
											A	С
ATOM	1029				130	58.795	63.139	18.571	1.00 51.20	7	A	0
ATOM	1030	QD2	ASP	A	130	57.839	63.614	16.705	1.00 44.98	7	A	0
ATOM	1031	N	ASP	А	131	56.963	60.814	14.623	1.00 38.18		Ą	
ATOM	1032	CA			131	56.511						N
							61.090	13.261	1.00 38.88	Į	4	С
ATOM	1033	С	ASP	Α	131	56.397	62.569	12.911	1.00 36.53	7	A.	С
ATOM	1034	0	ASP	Α	131	55.943	62.905	11.827	1.00 35.45		A	0
ATOM	1035	CB			131	55.191	60.346					
								12.950	1.00 39.38	I	4	C
MOTA	1036	CG			131	54.010	60.844	13.771	1.00 41.70	P	¥.	С
ATOM	1037	OD1	ASP	Α	131	54.067	61.976	14.296	1.00 42.89	F	4	0
ATOM	1038	OD2	ASP	Δ	131	52.970	60.165	13.935				
ATOM	1039								1.00 42.85	P		0
		N			132	56.801	63.462	13.815	1.00 37.22	P	i.	N
ATOM	1040	CA	SER	A	132	56.825	64.891	13.495	1.00 34.53	P	A.	С
ATOM	1041	С	SER	А	132	58.138	65.313	12.811	1.00 32.93	P		Č
ATOM	1042	0			132							
						58.242	66.415	12.301	1.00 31.50	P	١.	0
ATOM	1043	CB			132	56.569	65.733	14.753	1.00 36.86	A	L.	С
ATOM	1044	OG	SER	A	132	57.784	66.236	15.282	1.00 41.97	A		0
ATOM	1045	N			133	59.142						
							64.442	12.800	1.00 33.79	A		N
ATOM	1046	CA			133	60.371	64.730	12.053	1.00 32.04	A	L	С
ATOM	1047	C	LEU	Α	133	60.174	64.308	10.601	1.00 30.10	A		C
ATOM	1048	0	LEU	A	133	60.179	63.117	10.279	1.00 31.31			
ATOM	1049	СВ			133					A		0
						61.586	64.035	12.652	1.00 30.30	A	L	С
ATOM	1050	CG	LEU	A	133	62.901	64.622	12.116	1.00 31.05	A		С
MOTA	1051	CD1	LEU	Α	133	63.289	65.900	12.891	1.00 30.64	A		Č
ATOM	1052		LEU			64.000						
							63.606	12.180	1.00 26.23	A		С
ATOM	1053	N	GLU			60.028	65.294	9.734	1.00 32.24	A		N
MOTA	1054	CA	GLU	Α	134	59.630	65.044	8.362	1.00 30.89	A		C
ATOM	1055	С	GLU			60.812	64.398	7.611	1.00 30.52			
ATOM	1056	ō	GLU							A		С
						61.938	64.919	7.650	1.00 27.23	A		0
MOTA	1057	CB	GLU	Α	134	59.088	66.332	7.709	1.00 35.75	A		С
ATOM	1058	CG	GLU	А	134	59.723	66.804	6.414	1.00 41.00			
ATOM	1059	CD	GLU							A		С
						59.016	68.022	5.819	1.00 43.25	A		С
ATOM	1060		GLU			59.719	68.930	5.302	1.00 45.72	A		0
MOTA	1061	OE2	GLU	А	134	57.763	68.096	5.869	1.00 48.16	A		
ATOM	1062	N	PRO									0
						60.566	63.249	6.975	1.00 25.18	A		N
MOTA	1063	CA	PRO			61.581	62.606	6.119	1.00 24.30	A		С
ATOM	1064	С	PRO	A	135	62.039	63.453	4.958	1.00 19.94	A		c
MOTA	1065	0	PRO			61.337	64.319					
								4.481	1.00 23.86	A		0
MOTA	1066	CB	PRO			60.847	61.379	5.579	1.00 22.83	A		С
ATOM	1067	CG	PRO	Α	135	59.796	61.109	6.573	1.00 25.70	A		C
MOTA	1068	CD	PRO			59.328	62.450					
ATOM	1069	N	PHE					7.020	1.00 24.61	A		С
						63.243	63.160	4.474	1.00 19.75	A		N
ATOM	1070	CA	PHE			63.850	63.848	3.367	1.00 20.77	A		С
ATOM	1071	С	PHE	Α	136	62.945	64.000	2.166	1.00 25.10	A		
ATOM	1072	ō	PHE									С
						62.798	65.099	1.632	1.00 23.63	A		0
ATOM	1073	СВ	PHE			65.094	63.106	2.886	1.00 21.20	A		С
ATOM	1074	CG	PHE	Α	136	65.704	63.716	1.669	1.00 19.23	A		č
MOTA	1075		PHE			66.414						
W1011	20.0			-	100	00.414	64.905	1.758	1.00 26.30	A		С

MOTA	1076	CD	2 PHE	Δ.	136	65.522	63.144	0.421	1 0	23.32		
ATOM	1077										7	
			1 PHE			66.962		0.626	1.0	25.62	F	, c
MOTA	1078	CE	2 PHE	A :	136	66.078	63.727	-0.719	1.0	23.61	F	, c
ATOM	1079	CZ	PHE	A :	136	66.787	64.903	-0.615		29.48	F	
ATOM	1080	N		A :		62.402		1.694				
ATOM	1081									21.94	F	
		CA	PHE			61.655		0.444	1.0	20.25	7	C
MOTA	1082	С	PHE	A :	137	60.396	63.749	0.582	1.00	21.90	7	, c
ATOM	1083	0	PHE	Α .	137	59.966	64.370	-0.379		24.14	P	
ATOM	1084	СВ										
			PHE			61.271		-0.026		18.67	7	C
ATOM	1085	CG	PHE	A :	137	61.039	61.440	-1.491	1.00	20.54	2	L C
MOTA	1086	CD:	L PHE	A :	137	62.099	61.302	-2.361		23.22	A	
ATOM	1087		PHE			59.757		-2.003				
										22.93	A	
ATOM	1088		L PHE			61.900	61.241	-3.721	1.00	27.68	A	C
MOTA	1089	CE2	PHE	A 3	137	59.551	61.462	-3.374	1.00	20.33	A	
ATOM	1090	CZ	PHE	A 1	137	60.616		-4.232		22.33		
ATOM	1091	N	ASP								A	
						59.814		1.775		22.45	A	N N
ATOM	1092	CA	ASP	A]	138	58.649	64.582	2.081	1.00	25.79	A	C
ATOM	1093	С	ASP	A 1	L38	59.020	66.055	1.966	1.00	27.43	A	
ATOM	1094	0	ASP			58.296		1.326				
										30.80	A	_
MOTA	1095	CB	ASP			58.124	64.309	3.479	1.00	27.52	A	C
ATOM	1096	CG	ASP	A 1	L38	57.419	62.982	3.596	1.00	33.12	A	. с
ATOM	1097	ODI	ASP	A 1	138	56.177	63.001	3.674		41.90	A	
ATOM	1098		ASP									
						58.004	61.870	3.644		36.84	A	. 0
ATOM	1099	N	SER			60.141	66.452	2.573	1.00	25.82	A	. N
ATOM	1100	CA	SER	A 1	39	60.662	67.825	2.393	1.00	26.28	A	
ATOM	1101	С	SER	A 1	39	60.957	68.169	0.940		26.44		
ATOM	1102										A	
		0	SER			60.719	69.293	0.496	1.00	28.87	A	0
ATOM	1103	CB	SER	A 1	.39	61.951	68.049	3.204	1.00	21.06	A	С
MOTA	1104	OG	SER	A 1	39	61.769	67.663	4.541		25.91	A	
ATOM	1105	N	LEU			61.493						
							67.212	0.188		24.71	A	
ATOM	1106	CA	LEU			61.816	67.443	-1.209	1.00	24.32	A	С
ATOM	1107	С	LEU	A 1	40	60.547	67.732	-2.019	1.00	26.78	A	
ATOM	1108	0	LEU	A 1	40	60.555	68.649	-2.851		28.93		
ATOM											A	
	1109	СВ	LEU			62.555	66.253	-1.819	1.00	25.33	A	С
ATOM	1110	CG	LEU	A 1	40	62.797	66.212	-3.332	1.00	27.48	A	С
ATOM	1111	CD1	LEU	A 1	40	63.903	67.142	-3.762		30.78		
ATOM	1112		LEU								A	
						63.124	64.795	-3.764	1.00	32.40	A	С
MOTA	1113	N	VAL			59.482	66.964	-1.774	1.00	27.82	A	N
ATOM	1114	CA	VAL	A 1	41	58.236	67.121	-2.539		27.51	A	c
ATOM	1115	С	VAL			57.548						
							68.440	-2.159		33.11	A	С
MOTA	1116	0	VAL			57.054	69.159	-3.024	1.00	34.42	A	0
ATOM	1117	CB	VAL	A 1	41	57.268	65.953	-2.319	1.00	30.35	A	С
ATOM	1118	CG1	VAL			55.923	66.224					
								-2.980		31.75	A	С
ATOM	1119		VAL			57.849	64.666	-2.885	1.00	30.79	A	С
ATOM	1120	N	LYS	A 1	42	57.541	68.747	-0.868	1.00	32.37	A	N
MOTA	1121	CA	LYS	A 1	42	56.876	69.931	-0.338		37.06		
ATOM	1122	C	LYS								A	С
						57.527	71.211	-0.828	1.00	34.32	A	С
ATOM	1123	0	LYS	A 1	42	56.826	72.191	-1.091	1.00	35.77	A	0
ATOM	1124	CB	LYS	A 1	42	56.876	69.897	1.187	1.00	37.65	A	С
ATOM	1125	CG	LYS	A 1	42	56.135	71.055	1.850				
										44.63	A	С
ATOM	1126	CD	LYS			55.689	70.702	3.264	1.00	46.28	A	С
ATOM	1127	CE	LYS	A 1	42	54.644	71.684	3.779	1.00	49.93	A	С
ATOM	1128	NZ	LYS	A 1	42	54.400	71.364	5.250		45.29	A	N
ATOM	1129	N	GLN									
						58.848	71.196	-0.999		30.71	A	N
ATOM	1130	CA	GLN	A 1	43	59.602	72.415	-1.260	1.00	32.98	A	С
ATOM	1131	С	GLN	A 1	43	59.948	72.655	-2.726		31.39	A	С
ATOM	1132	0	GLN .			60.393	73.754	-3.071				
	1133									35.65	A	0
ATOM		CB	GLN .			60.900	72.429	-0.443	1.00	29.67	A	С
ATOM	1134	CG	GLN .	A 14	43	60.712	72.505	1.045	1.00	29.86	A	С
MOTA	1135	CD	GLN .	A 14	43	62.033	72.359	1.785		22.99	A	č
ATOM	1136		GLN .			62.072	71.774					
		7770	0211					2.871		32.84	A	0
ATOM	1137		GLN :			63.100	72.879	1.202	1.00	24.10	A	N
ATOM	1138	N	THR .	A 14	44	59.767	71.650	-3.588	1.00	30.44	A	N
ATOM	1139	CA	THR			60.095	71.786	-5.011		31.63		
ATOM	1140	C.									A	С
			THR :			58.950	71.268	-5.887	1.00	32.37	A	С
ATOM	1141	0	THR :			57.910	70.882	-5.368	1.00	35.67	A	0
ATOM	1142	CB	THR I	A 14	14	61.405	71.032	-5.365		35.08	A	
ATOM	1143		THR I			61.169	69.613					C
		000	mus :					-5.395		34.32	A	0
ATOM	1144		THR I			62.458	71.221	-4.298	1.00	34.68	A	С
ATOM	1145	N	HIS 2	A 14	15	59.165	71.247	-7.203		36.14	A	N
ATOM	1146	CA	HIS A			58.193	70.682	-8.155				
ATOM	1147	C								39.38	A	С
			HIS 2			58.512	69.232	-8.562	1.00	37.43	A	С
ATOM	1148	0	HIS A	A 14	15	57.961	68.715	-9.544		33.33	A	ŏ
ATOM	1149	CB	HIS A			58.097	71.563	-9.409				
ATOM	1150	CG	HIS I							43.05	A	C
						57.493	72.910	-9.154		47.15	A	С
ATOM	1151		HIS A			56.200	73.072	-8.703	1.00	50.46	A	N
ATOM	1152	CD2	HIS A	A 14	15	58.006	74.157	-9.284		49.69	A	Č
											A	C

ATOM	1153	CE	1 HIS	A	145	55.941	74.36	1 -8.570	1.0	0 51.63	A	~
MOTA	1154		2 HIS									C
						57.021				0 51.86	A	N
MOTA	1155		VAL	A	146	59.379	68.56	5 -7.798	1.0	0 33.76	A	N
MOTA	1156	CA	VAL	Α	146	59.705	67.16	3 -8.059	1.0	29.14	Α	C
ATOM	1157	С			146	58.472						
ATOM		_								22.43	A	С
	1158				146	57.885		3 -6.697	1.0	24.83	A	0
MOTA	1159	CB	VAL	A	146	60.921	66.69	5 -7.206	1.0	27.14	A	С
ATOM	1160	CG	l VAL	A	146	61.151	65.185	5 -7.339		27.28	A	č
ATOM	1161		Z VAL									
						62.178				26.85	Α	С
ATOM	1162		PRO	Ą	147	58.045	65.483	3 -8.744	1.00	26.48	A	N
ATOM	1163	CA	PRO	Α	147	56.864	64.63	7 -8.557	1.00	26.08	A	C
ATOM	1164	C	PRO	Δ	147	57.049						
ATOM	1165				147					22.97	A	С
		-				58.185				27.41	A	0
ATOM	1166	СВ	PRO	A	147	56.749	63.885	-9.882	1.00	25.30	A	С
ATOM	1167	CG	PRO	A	147	57.462	64.717	7 -10.865	1.00	27.21	A	č
ATOM	1168	CD	PRO			58.636		-10.089				
ATOM	1169									25.24	A	С
		N	ASN			55.963		-6.711	1.00	21.69	Α	N
MOTA	1170	CA	ASN	A	148	56.014	62.466	5 -5.551	1.00	21.05	A	С
MOTA	1171	С	ASN	Α	148	56.167	60.969	-5.908		21.77	A	č
ATOM	1172	0	ASN			55.305						
							60.152			21.62	А	0
ATOM	1173	CB	ASN			54.797	62.717	-4.670	1.00	23.86	A	С
MOTA	1174	CG	ASN	Α	148	54.878	62.024	-3.338	1.00	22.10	A	С
ATOM	1175	ODI	ASN	А	148	55.967	61.652			20.69		
ATOM	1176		2 ASN								A	0
						53.716	61.795			25.43	A	N
MOTA	1177	N	LEU			57.291	60.629	-6.524	1.00	20.43	A	N
ATOM	1178	CA	LEU	Α	149	57.666	59.252	-6.775	1.00	22.50	A	C
ATOM	1179	С	LEU	Δ	149	59.152	59.110					
										21.20	A	С
ATOM	1180	0	LEU			59.838	60.073	-7.389	1.00	19.54	Α	0
ATOM	1181	CB	LEU	Α	149	56.859	58.654	-7.927	1.00	25.03	A	С
ATOM	1182	CG	LEU	Α	149	57.349	58.789	-9.346		28.60	A	č
ATOM	1183		LEU									
						56.502		-10.267		30.70	A	С
MOTA	1184	CD2	LEU			57.237	60.237	-9.725	1.00	30.68	A	C
ATOM	1185	N	PHE	А	150	59.678	57.919	-6.745	1.00	18.27	A	N
MOTA	1186	CA	PHE	Α	150	61.044	57.586					
ATOM	1187									18.21	A	С
		C	PHE			61.116	56.104	-7.566	1.00	17.26	Α	С
ATOM	1188	0	PHE	A.	150	60.229	55.324	-7.235	1.00	17.41	A	0
ATOM	1189	CB	PHE	A	150	62.054	57.925			16.20	A	Č
ATOM	1190	CG	PHE			61.904	57.072					
										15.43	А	C
ATOM	1191		PHE			61.042	57.450	-3.805	1.00	18.11	A	C
ATOM	1192	CD2	PHE	A	150	62.614	55.885	-4.681	1.00	17.12	A	С
ATOM	1193	CE1	PHE	A	150	60.883	56.655			16.60		Č
ATOM	1194		PHE								A	
						62.477	55.092		1.00	16.66	Α	С
ATOM	1195	CZ	PHE			61.588	55.468	-2.576	1.00	18.98	A	С
ATOM	1196	N	SER	Α	151	62.143	55.741	-8.320	1.00	15.58	A	N
ATOM	1197	CA	SER			62.353	54.360					
ATOM	1198									13.42	A	С
		C	SER			63.779	53.904	-8.612	1.00	15.43	Α	С
ATOM	1199	0	SER	A	151	64.717	54.708	-8.638	1.00	17.96	A	0
ATOM	1200	CB	SER	Α	151	61.880	54.171	-10.200		18.86	A	c
ATOM	1201	OG	SER	Δ	151	62.440		-11.021				
										19.88	A	0
ATOM	1202	N	LEU			63.932	52.603	-8.401	1.00	15.64	A	N
ATOM	1203	CA	LEU	A :	152	65.213	51.992	-8.105	1.00	16.25	A	С
ATOM	1204	С	LEU	A :	152	65.456	50.817	-9.015		17.29	A	Č
ATOM	1205	0	LEU			64.596	49.925					
								-9.143		17.99	Α	0
MOTA	1206	CB	LEU			65.248	51.493	-6.650	1.00	16.35	A	С
MOTA	1207	CG	LEU .	A :	152	65.317	52.590	-5.590	1.00	18.65	Α	С
MOTA	1208	CD1	LEU .	A :	152	65.177	51.994	-4.208		19.71	A	Č
ATOM	1209		LEU			66.585	53.418					
								-5.725		19.60	A	С
ATOM	1210	N	GLN .			66.618	50.820	-9.646	1.00	19.70	A	N
ATOM	1211	CA	GLN :			67.115	49.692	-10.419	1.00	19.09	A	С
ATOM	1212	С	GLN :			68.422	49.296	-9.747		17.61	A	č
ATOM	1213	0	GLN :			69.438	49.964					
								-9.921		22.26	A	0
ATOM	1214	CB	GLN :			67.368		-11.883	1.00	23.44	A	С
ATOM	1215	CG	GLN 2			67.771	48.873	-12.721	1.00	24.58	A	С
ATOM	1216	CD	GLN 2			68.573		-13.957		26.89	A	č
ATOM	1217		GLN 2			69.610						
								-13.895		32.38	A	0
ATOM	1218		GLN 2			68.116	48.681	-15.089	1.00	27.76	Α	N
ATOM	1219	N	LEU 2	A I	154	68.392	48.247	-8.941		17.74	A	N
ATOM	1220	CA	LEU Z			69.618	47.726	-8.329		21.30	A	
ATOM	1221	C										C
			LEU A			70.186	46.576	-9.166	1.00	28.90	A	С
ATOM	1222	0	LEU 2	A]	154	69.479	45.609	-9.464	1.00	29.97	A	0
ATOM	1223	СВ	LEU A	A 1	L54	69.339	47.276	-6.898		21.73	A	č
ATOM	1224	CG	LEU I			68.556						~
							48.277	-6.046		22.21	A	С
ATOM	1225		LEU 2			68.239	47.712	-4.686	1.00	25.89	A	С
ATOM	1226	CD2	LEU 1	A 1	L54	69.266	49.619	-5.888		22.60	A	С
ATOM	1227	N	CYS I			71.461	46.678	-9.537		32.67	A	N
ATOM	1228	CA						-9.557				
			CYS A			72.096		-10.442		36.54	A	C
ATOM	1229	С	CYS A	٦ ٦	155	73.103	44.805	-9.720	1.00	41.47	A	С

ATOM	1230	0	CYS A 155	72.719	43.815 -	9.116 1.00	1 42 64		_
		_					43.64	A	0
MOTA	1231			72.744		1.616 1.00	36.93	A	С
MOTA	1232	SG	CYS A 155	71.580		2.528 1.00	37.02	A	S
MOTA	1233	N	GLY A 156	74.389	45.122 -	9.802 1.00	49.66	A	N
ATOM	1234			75.416					
							52.13	A	C
ATOM	1235		GLY A 156	75.784	43.035 -	9.897 1.00	54.64	A	С
ATOM	1236	0	GLY A 156	75.586	41.937 -	9.372 1.00	55.03	A	o
ATOM	1237	N	ALA A 157	76.323					
ATOM							58.96	A	N
	1238			76.935	42.104 -13	1.872 1.00	59.70	A	С
ATOM	1239	C	ALA A 157	76.142	40.799 -13	1.808 1.00	61.26	A	С
ATOM	1240	0	ALA A 157	76.543			63.37		
MOTA	1241							A	0
			ALA A 157	78.377	41.881 -13	1.396 1.00	61.07	A	С
ATOM	1242	N	ALA A 168	81.887	41.703 -9	5.577 1.00	52.10	A	N
ATOM	1243	CA	ALA A 168	82.673			51.66	A	C
ATOM	1244		ALA A 168						
				81.807			49.66	A	С
ATOM	1245		ALA A 168	80.833	44.234 -5	5.270 1.00	47.62	A	0
MOTA	1246	CB	ALA A 168	83.302	42.585 -7	7.389 1.00	52.14	A	С
ATOM	1247	N	SER A 169	82.169			48.50		
ATOM	1248		SER A 169					A	N
				81.455			47.11	A	С
ATOM	1249		SER A 169	80.128	46.241 -7	7.693 1.00	45.49	A	C
ATOM	1250	0	SER A 169	80.102	45.793 -8		42.21	A	ō
ATOM	1251	CB	SER A 169	82.336					
ATOM							48.06	A	С
	1252	OG	SER A 169	81.625		7.812 1.00	53.03	A	0
ATOM	1253	N	VAL A 170	79.036	46.648 -7	7.048 1.00	40.36	A	N
MOTA	1254	CA	VAL A 170	77.714			36.88		
ATOM	1255	c	VAL A 170					A	C
				77.329			33.45	A	С
ATOM	1256	0	VAL A 170	77.980	49.050 -7	7.751 1.00	27.09	A	0
ATOM	1257	CB	VAL A 170	76.636	46.100 -6		35.68	A	č
ATOM	1258	CG1	VAL A 170	76,978					
							38.27	A	С
ATOM	1259		2 VAL A 170	76.471	46.986 -5	.476 1.00	36.83	A	С
ATOM	1260	N	GLY A 171	76.256	48.174 -8	.905 1.00	30.02	A	N
MOTA	1261	CA	GLY A 171	75.760			28.27		
ATOM	1262	c	GLY A 171					A	С
				74.250		.521 1.00	23.99	A	C
MOTA	1263	0	GLY A 171	73.567	48.502 -9	.456 1.00	30.07	A	0
ATOM	1264	N	GLY A 172	73.748	50.704 -9		22.93	A	N
ATOM	1265	CA	GLY A 172	72.321					
ATOM							24.79	A	С
	1266	С	GLY A 172	71.921	52.328 -10	.318 1.00	21.72	A	С
ATOM	1267	0	GLY A 172	72.755	53.177 -10	.586 1.00	20.97	A	0
ATOM	1268	N	SER A 173	70.615	52.576 -10		20.55	A	
ATOM	1269	CA	SER A 173						N
				70.056	53.881 -10		19.75	A	С
ATOM	1270	С	SER A 173	68.934	54.169 -9	.642 1.00	17.92	A	С
ATOM	1271	0	SER A 173	68.098	53.318 -9	.396 1.00	19.13	A	0
ATOM	1272	СВ	SER A 173	69.490	53.959 -12				
ATOM	1273						20.34	A	С
		OG	SER A 173	70.498	53.718 -13	.025 1.00	23.31	A	0
ATOM	1274	N	MET A 174	68.935	55.371 -9	.085 1.00	19.22	A	N
ATOM	1275	CA	MET A 174	67.794			19.42	A	Ç
ATOM	1276	С	MET A 174	67.284					
							20.07	A	С
ATOM	1277	0	MET A 174	67.936	58.150 -9	.226 1.00	18.63	A	0
ATOM	1278	CB	MET A 174	68.156	56.332 -6	.953 1.00	19.01	A	C
ATOM	1279	CG	MET A 174	66.982					
ATOM	1280		MET A 174				22.45	A	С
		SD		67.349	57.388 -4	.532 1.00	24.52	A	S
ATOM	1281	CE	MET A 174	68.659	58.440 -4	.766 1.00	27.89	A	C
ATOM	1282	N	ILE A 175	66.135	56.904 -9		21.08		
ATOM	1283	CA	ILE A 175	65.469	57.972 -10			A	N
		_					16.99	A	С
MOTA	1284	C	ILE A 175	64.484			16.84	A	С
ATOM	1285	0	ILE A 175	63.468	58.119 -9	.242 1.00	19.54	A	0
ATOM	1286	CB	ILE A 175	64.740	57.415 -11		22.71		
ATOM	1287		ILE A 175	65.645				A	C
					56.492 -12		21.64	A	С
ATOM	1288		ILE A 175	64.160	58.559 -12	.633 1.00	22.47	A	С
ATOM	1289	CD1	ILE A 175	66.942	57.124 ~13.	.192 1.00	21.34	A	C
ATOM	1290	N	ILE A 176	64.820					
ATOM	1291						22.11	A	N
		CA	ILE A 176	64.012		.396 1.00	22.51	A	С
MOTA	1292	С	ILE A 176	63.045	61.581 -9.	230 1.00	23.28	A	Č
ATOM	1293	0	ILE A 176	63.464	62.397 -10.				
ATOM	1294	СВ	ILE A 176				27.99	A	0
				64.908			24.59	A	С
ATOM	1295		ILE A 176	65.914	60.917 -6.	718 1.00	27.72	A	С
MOTA	1296	CG2	ILE A 176	64.059			26.83	A	č
ATOM	1297		ILE A 176	65.274	_				
							30.97	A	С
ATOM	1298	N	GLY A 177	61.762			23.04	A	N
ATOM	1299	CA	GLY A 177	60.711	62.169 -9.		23.58	A	C
ATOM	1300	С	GLY A 177	60.114	61.540 -10.				
ATOM	1301	ŏ					27.69	A	С
			GLY A 177	59.224	62.125 -11.		29.57	A	0
ATOM	1302	N	GLY A 178	60.561	60.340 -11.	160 1.00	24.14	A	N
ATOM	1303	CA	GLY A 178	60.023	59.706 -12.		26.72		
ATOM	1304	C	GLY A 178					A	C
				60.460	58.295 -12.		27.37	A	С
ATOM	1305	0	GLY A 178	61.017	57.610 -11.	712 1.00	24.67	A	O
ATOM	1306	N	ILE A 179	60.153	57.861 -13.			A	
						1.00	44.33	A	N

ATOM	1307	CA	ILE	A 179	60.475	56.54	1 -14.300	1 0	0 28.10	A	~
ATOM	1308			A 179	61.277				0 30.00		-
MOTA							3 -15.591			A	-
	1309			A 179			0 -16.367	1.0	0 29.66	A	0
MOTA	1310	CB	ILE	A 179	59.174	55.75	1 -14.552	1.0	0 28.71	A	С
MOTA	1311	CG	1 ILE	A 179	58.240	55.83	3 -13.314	1.0	0 31.09	A	_
MOTA	1312	CG	2 ILE	A 179	59.480		9 -14.890		0 32.54	A	_
ATOM	1313			A 179	_						_
					56.941		6 -13.456		0 35.50	A	C
ATOM	1314		ASP	A 180	62.241	55.80	6 -15.795	1.0	0 29.78	A	N
ATOM	1315	CA	ASP	A 180	63.094	55.78	3 -16.983	1.0	0 32.20	A	С
ATOM	1316	C	ASP	A 180	62.895		0 -17.703		0 30.45	A	_
ATOM	1317			A 180							_
					63.345		9 -17.240		0 27.79	A	0
ATOM	1318			A 180	64.566	55.95	5 -16.576	1.0	0 31.37	A	С
ATOM	1319	CG	ASP	A 180	65.488	56.15	1 -17.759	1.0	0 37.38	A	С
MOTA	1320	OD	1 ASP	A 180	65.155	55.69	2 -18.868	1.00	0 40.09	A	
ATOM	1321	OD	2 ASP	A 180	66.577		6 -17.670		37.04		-
ATOM	1322			A 181						A	
ATOM					62.235		4 -18.856		34.60	A	N
	1323			A 181	61.829		8 -19.592	1.00	34.97	A	С
ATOM	1324	С	HIS	A 181	62.986	52.43	4 -20.108	1.00	35.24	A	С
MOTA	1325	0	HIS	A 181	62.825	51.229	9 -20.323		34.58	A	ŏ
ATOM	1326	СВ		A 181	60.868		5 -20.721		38.80		
ATOM	1327	CG		A 181						A	C
					59.662		2 -20.233		38.66	A	С
ATOM	1328		HIS		58.846	53.959	9 -19.234	0.50	38.35	A	N
MOTA	1329		2 HIS		59.158	55.649	9 -20.580	0.50	40.41	A	С
ATOM	1330	CE:	LHIS	A 181	57.880	54.828	3 -18.998		40.15	A	č
ATOM	1331	NE	2 HIS	A 181	58.045		-19.803		40.15		
ATOM	1332	N		A 182						A	N
					64.167		5 -20.244		33.98	A	N
ATOM	1333	CA		A 182	65.369		9 -20.589	1.00	34.19	A	С
MOTA	1334	С	SER	A 182	65.834	51.304	-19.484	1.00	31.16	A	С
ATOM	1335	0	SER	A 182	66.638	50.418	-19.736		29.95	A	ō
ATOM	1336	CB	SER	A 182	66.507		-20.966				
MOTA	1337	OG		A 182					36.56	A	С
					66.853		-19.886		39.80	A	0
ATOM	1338	N		A 183	65.318	51.458	-18.261	1.00	28.19	A	N
ATOM	1339	CA	LEU :	A 183	65.719	50,607	-17.156	1.00	26.88	A	С
ATOM	1340	С	LEU :	A 183	64.920	49.310	-17.012		26.28	A	č
ATOM	1341	0		A 183	65.267		-16.178				
ATOM	1342	СВ		A 183					21.62	A	0
					65.646		-15.838	1.00	26.71	A	С
ATOM	1343	CG		A 183	66.557	52.620	-15.805	1.00	30.09	A	С
MOTA	1344	CD1	LEU A	A 183	66.413	53.360	-14.479	1.00	28.34	A	Ċ
ATOM	1345	CD2	LEU 2	A 183	67.997		-16.027		33.43	A	č
ATOM	1346	N		A 184	63.865						
ATOM	1347						-17.822		26.39	A	N
		CA		A 184	63.038	47.935	-17.710	1.00	22.78	A	С
ATOM	1348	С		A 184	62.486	47.453	-19.040	1.00	22.69	A	С
ATOM	1349	0	TYR A	A 184	62.380	48.227	-19.990	1.00	23.92	A	ō
ATOM	1350	CB	TYR A	184	61.856		-16.742				
ATOM	1351	CG		184					22.73	A	С
ATOM	1352				60.726		-17.193		20.79	A	С
			TYR A		59.540	48.523	-17.735	1.00	21.72	A	С
ATOM	1353		TYR A		60.812	50.410	-17.035	1.00	23.49	A	С
ATOM	1354	CE1	TYR A	A 184	58.500	49.357	-18.123	1.00	23.85	A	Ċ
ATOM	1355	CE2	TYR A	184	59.776		-17.395		21.72		č
ATOM	1356	CZ	TYR A		58.616		-17.949			A	
ATOM	1357	OH							23.96	A	С
			TYR F		57.603		-18.306	1.00	27.89	A	0
ATOM	1358	N	THR A		62.082	46.190	-19.048	1.00	26.60	A	N
ATOM	1359	CA	THR A	185	61.397	45.590	-20.194	1.00	23.12	A	С
ATOM	1360	С	THR A	185	60.012		-19.777		26.64	A	
MOTA	1361	0	THR A		59.754		-18.608		24.65		C
ATOM	1362	СВ	THR A		62.215					A	0
							-20.801		25.79	A	С
ATOM	1363		THR A		62.261	43.299	-19.906	1.00	28.94	A	0
ATOM	1364	CG2	THR A	185	63.702	44.791	-20.980	1.00	32.36	A	С
MOTA	1365	N	GLY A	186	59.127	44.998	-20.762		30.22	A	N
ATOM	1366	CA	GLY A		57.765		-20.489		28.03		
ATOM	1367	C	GLY A							A	С
					57.019		-19.805		24.17	A	С
ATOM	1368	0	GLY A		57.380		-19.927	1.00	29.37	A	0
ATOM	1369	N	SER A	187	55.952	45.365	-19.102	1.00	23.81	A	N
ATOM	1370	CA	SER A	187	55.062		-18.488		21.71	A	Ċ
ATOM	1371	С	SER A		55.311		-16.996		19.66		
ATOM	1372	ō	SER A		55.732					A	C
							-16.426		20.42	A	0
ATOM	1373	CB	SER A		53.601		-18.750	1.00	23.20	A	С
ATOM	1374	OG	SER A		52.695	46.740	-18.000	1.00	25.16	A	0
MOTA	1375	N	LEU A	188	55.046		-16.390		18.89	A	N
ATOM	1376	CA	LEU A		54.965		-14.928		17.77		
ATOM	1377	C	LEU A		53.629			_		A	С
							-14.466		19.39	A	С
ATOM	1378	0	LEU A		52.601	47.299	-15.082	1.00	21.63	A	0
ATOM	1379	CB	LEU A	188	55.067	49.054	-14.470	1.00	18.74	A	Ċ
MOTA	1380	CG	LEU A	188	56.433		-14.522		18.45	A	č
	1381		LEU A		56.311		-14.556		20.69		
ATOM	1382		LEU A		57.295					A	c
	1383						-13.305		19.48	A	С
ATOM	1202	N	TRP A	103	53.670	46.295	-13.384	1.00	13.99	A	N

ATOM	1384	CA	TRP	A	189	52.524	45 838	-12.633	1 0	0 15.66	A	~
ATOM	1385	C			189	52.595		-11.245		0 16.26	A	C
ATOM	1386	0	TRP	A	189	53.650	-	~10.633		0 17.41	A	ŏ
ATOM	1387	CB	TRP	A	189	52.542		-12.516		15.88	A	č
MOTA	1388	CG			189	52.121	43.681	-13.817	1.0	0 18.59	A	Č
ATOM	1389		L TRP			52.916		-14.898	1.0	21.85	A	č
MOTA	1390		2 TRP			50.800	43.262	-14.200	1.0	18.24	A	Ċ
ATOM	1391		LTRP			52.189	42.888	-15.919	1.00	23.05	Α	N
MOTA	1392		2 TRP			50.885	42.772	-15.522	1.0	19.78	A	С
MOTA	1393		TRP			49.552		-13.570		15.96	A	С
ATOM	1394		TRP			49.777		-16.224		20.18	A	С
ATOM	1395		TRP			48.436		-14.274		17.80	A	С
MOTA	1396		TRP			48.570		-15.590		16.72	A	С
MOTA	1397	N			190	51.467		-10.739		14.59	A	N
MOTA MOTA	1398	CA			190	51.425				14.85	A	С
ATOM	1399 1400	C			190	50.631				17.95	A	С
ATOM	1401	O CB			190 190	49.564				13.30	A	0
ATOM	1402	CG			190	50.864 51.635				13.88	A	С
ATOM	1403		TYR			52.573		-10.515		15.59	A	C
ATOM	1404		TYR			51.339		-9.977 -11.866) 15.38) 17.42	A	C
ATOM	1405		TYR			53.237		-10.760		17.56	A	C
ATOM	1406		TYR			52.018		-12.685		14.93	A	C
ATOM	1407	CZ	TYR			52.954		-12.107		18.74	A A	C
ATOM	1408	OH	TYR			53.638		-12.865		17.23	A	C
ATOM	1409	N	THR			51.182		-7.139		16.74	A	N
MOTA	1410	CA	THR			50.568		-5.953		15.64	A	C
ATOM	1411	C	THR			50.304	-	-5.008		17.89	A	c
ATOM	1412	0	THR			51.106		-4.975		16.52	A	ŏ
ATOM	1413	CB	THR	A	191	51.520		-5.357		16.95	A	č
ATOM	1414		THR			50.861	44.672	-4.325		19.32	A	ŏ
MOTA	1415	CG2	THR			52.768	46.057	-4.680	1.00	16.37	A	Ċ
ATOM	1416	N	PRO			49.168	47.686	-4.309	1.00	20.12	A	N
MOTA	1417	CA	PRO			48.944	48.801	-3.365	1.00	21.23	A	С
ATOM	1418	С	PRO			49.911	48.871	-2.178	1.00	17.60	A	С
ATOM	1419	0	PRO			50.370	47.856	-1.643	1.00	24.36	A	0
ATOM	1420	СВ	PRO			47.504	48.585	-2.876	1.00	21.11	A	С
ATOM	1421	CG	PRO			46.881	47.748	-3.955	1.00	22.26	A	С
ATOM	1422	CD	PRO			47.980	46.828	-4.424		23.51	A	C
MOTA	1423	N	ILE			50.235	50.099	-1.797		21.72	A	N
ATOM ATOM	1424 1425	CA	ILE			50.881	50.339	-0.515		22.71	Α	С
ATOM	1425	C O	ILE			49.758	50.230	0.508		23.63	A	С
ATOM	1427	СВ	ILE .			48.881	51.079	0.568		29.68	A	0
MOTA	1428		ILE .			51.550	51.713	-0.453		24.36	A	C
ATOM	1429		ILE .			52.730 52.036	51.781	-1.438		24.14	A	C
ATOM	1430		ILE .			53.313	51.993 53.171	0.987 -1.629		24.12	A	C
ATOM	1431	N	ARG .			49.764	49.145	1.257		22.49 29.07	A	C N
ATOM	1432	CA	ARG			48.696	48.887	2.199		32.57	A A	
ATOM	1433	C	ARG			48.547	50.005	3.219		33.92	A	C C
ATOM	1434	0	ARG 2			47.446	50.517	3.435		36.50	A	ŏ
ATOM	1435	CB	ARG 2	Α	194	48.940	47.592	2.930		31.65	A	č
ATOM	1436	CG	ARG 2	A	194	47.768	47.245	3.797		32.32	A	č
ATOM	1437	CD	ARG 2	A	194	48.031	46.137	4.719		34.05	A	Ċ
MOTA	1438	NE	ARG A			46.832	45.833	5.482	1.00	37.69	A	N
ATOM	1439	CZ	ARG I			46.774	44.914	6.424	1.00	43.49	A	С
ATOM	1440		ARG A			47.853	44.211	6.726	1.00	45.66	A	N
ATOM	1441		ARG A			45.636	44.700	7.079		44.35	A	N
ATOM	1442	N	ARG A			49.668	50.353	3.839		35.28	A	N
MOTA	1443	CA	ARG A			49.740	51.436	4.817		35.11	A	С
ATOM ATOM	1444 1445	C	ARG A			51.059	52.190	4.631		32.34	A	С
ATOM	1445	O CB	ARG A			52.089	51.576	4.401		28.84	A	0
ATOM	1447	CG	ARG A			49.683	50.857	6.226		35.59	A	C
ATOM	1448	CD	ARG A			49.645 48.907	51.910	7.339		40.30	A	С
MOTA	1449	NE	ARG A			49.734	51.460 50.619	8.591 9.458		43.51 44.69	A	C
ATOM	1450	CZ	ARG A			50.582	51.069	10.387		44.69	A	N
ATOM	1451		ARG A			50.753	52.371	10.585		46.19	A n	C
ATOM	1452		ARG A			51.274	50.201	11.124		46.12	A	N
ATOM	1453	N	GLU A			51.016	53.508	4.766		33.16	A A	N
ATOM	1454	CA	GLU A			52.167	54.353	4.500		34.04	A	N C
ATOM	1455	С	GLU F			52.963	54.554	5.774		31.83	A A	C
ATOM	1456	0	GLU F			52.790	55.566	6.460		35.74	A	Ö
ATOM	1457	CB	GLU A			51.728	55.699	3.953		33.34	Ā	č
ATOM	1458	ÇG	GLU F			50.986	55.643	2.624		38.79	A	č
ATOM		CD	GLU A			50.230	56.927	2.341	1.00	42.74	A	Ċ
ATOM	1460	OE1	GLU A	١ :	196	49.199	57.182	3.009	1.00	47.60	A	ō

MOTA	1461	OE2	GLI	J 2	A 196	50.661	57.688	1.450	1.00 42.51	A	0
MOTA	1462	N			A 197	53.805	53.567	6.075	1.00 29.99	A	N
ATOM	1463	CA			A 197	54.773	53.629	7.184	1.00 32.01	A	C
MOTA MOTA	1464 1465	C			A 197 A 197	56.104 56.938	53.059 53.829	6.668	1.00 29.04	A	C
ATOM	1466	СВ			A 197	54.229	52.970	6.210 8.474	1.00 30.54 1.00 31.92	A A	O C
ATOM	1467	CG			A 197	53.800	51.538	8.412	1.00 36.08	A	c
ATOM	1468	CD1	TRI	? 2	A 197	53.091	50.926	7.418	1.00 36.38	A	č
MOTA	1469				A 197	54.023	50.532	9.414	1.00 40.65	A	С
ATOM	1470				A 197	52.887	49.605	7.726	1.00 40.70	A	N
ATOM ATOM	1471 1472				A 197 A 197	53.446	49.337	8.948	1.00 41.77	A	c
ATOM	1473				A 197	54.672 53.486	50.518 48.146	10.658 9.680	1.00 41.22 1.00 43.13	A A	C
ATOM	1474				197	54.720	49.337	11.381	1.00 40.93	A	C
ATOM	1475	CH2			197	54.129	48.166	10.891	1.00 42.69	A	č
ATOM	1476	N			198	56.303	51.746	6.699	1.00 24.59	A	N
ATOM ATOM	1477 1478	CA			198	57.184	51.077	5.740	1.00 25.69	A	C
ATOM	1478	C O			198 198	56.456 55.317	51.094 51.519	4.391 4.305	1.00 22.71 1.00 25.15	A	C
ATOM	1480	СВ			198	57.455	49.620	6.110	1.00 25.15	A A	0
ATOM	1481	CG			198	58.137	49.394	7.453	1.00 32.69	A	c
MOTA	1482				198	59.514	49.273	7.541	1.00 36.04	A	Č
ATOM	1483				198	57.393	49.289	8.627	1.00 35.45	A	С
ATOM	1484				198	60.146	49.054	8.769	1.00 35.82	A	С
ATOM ATOM	1485 1486	CEZ			198	58.015	49.079	9.865	1.00 36.80	A	C
ATOM	1487	OH			198	59.385 60.007	48.962 48.744	9.927 11.143	1.00 38.75 1.00 38.81	A A	С 0
ATOM	1488	N			199	57.142	50.654	3.347	1.00 38.81	A	Ŋ
MOTA	1489	CA			199	56.497	50.364	2.048	1.00 21.41	A	Ċ
MOTA	1490	С			199	55.866	48.991	2.152	1.00 18.46	A	С
ATOM	1491	0			199	56.471	47.969	1.784	1.00 18.42	A	0
ATOM ATOM	1492 1493	CB CG			199	57.521	50.484	0.914	1.00 21.15	A	C
ATOM	1494				199	57.861 56.965	51.927 52.770	0.640 -0.020	1.00 18.31 1.00 17.27	A A	C
ATOM	1495				199	59.078	52.478	1.059	1.00 17.27	A	C
ATOM	1496				199	57.275	54.106	-0.239	1.00 18.14	A	č
MOTA	1497				199	59.394	53.799	0.816	1.00 14.53	A	. С
ATOM	1498	CZ			199	58.510	54.608	0.178	1.00 17.63	A	С
ATOM ATOM	1499 1500	И			199	58.822	55.911	-0.024	1.00 17.71	A	0
ATOM	1501	CA			200	54.664 54.004	48.979 47.722	2.742 3.098	1.00 21.57 1.00 22.77	A A	N C
ATOM	1502	С			200	53.206	47.182	1.904	1.00 16.75	A	Č
ATOM	1503	0	GLU	A	200	52.457	47.916	1.322	1.00 24.39	A	ŏ
ATOM	1504	CB			200	53.030	47.909	4.260	1.00 24.90	A	С
ATOM ATOM	1505 1506	.CD CG			200	52.680	46.604	4.946	1.00 27.85	A	С
ATOM	1507				200	51.514 51.081	46.716	5.919 6.278	1.00 28.16	A	C
ATOM	1508				200	50.987	47.840 45.649	6.300	1.00 35.16 1.00 34.56	A A	0
ATOM	1509	N			201	53.386	45.920	1.596	1.00 22.87	A	N
MOTA	1510	CA			201	52.595	45.240	0.554	1.00 21.15	A	Ċ
MOTA	1511	С			201	52.057	43.892	1.045	1.00 26.77	A	С
MOTA	1512 1513	0			201	52.462	43.402	2.103	1.00 26.68	A	О
ATOM ATOM	1514	CB CG1			201 201	53.455	44.997	-0.684 -1.198	1.00 22.52	A	C
ATOM	1515				201	54.593	43.991	-0.400	1.00 22.34 1.00 23.70	A A	C
ATOM	1516	N			202	51.187	43.262	0.248	1.00 20.41	A	N
ATOM	1517	CA			202	50.579	41.984	0.632	1.00 24.08	A	Ċ
ATOM	1518	C			202	50.901	40.908	-0.404	1.00 23.18	A	С
ATOM ATOM	1519 1520	O CP			202 202	50.569	41.064	-1.572	1.00 21.92	A	0
ATOM	1521	CB CG1				49.041 48.697	42.119 43.058	0.801	1.00 24.91	A	C
ATOM	1522	CG2				48.410	40.742	1.967 1.042	1.00 28.97 1.00 26.55	A A	C C
ATOM	1523	CD1				47.237	43.384	2.081	1.00 28.35	A	Ċ
ATOM	1524	N			203	51.552	39.836	0.037	1.00 20.58	A	N
ATOM	1525	CA			203	51.806	38.642	-0.749	1.00 23.06	A	С
MOTA	1526	C			203	50.600	37.712	-0.588	1.00 23.74	A	С
MOTA MOTA	1527 1528	O CB			203 203	50.113 53.097	37.480	0.521	1.00 25.10	A	0
ATOM	1529	CG1				54.310	37.940 38.807	-0.293 -0.656	1.00 24.14 1.00 25.32	A A	C
ATOM	1530	CG2				53.196	36.561	-0.924	1.00 23.32	A	C
MOTA	1531	CD1	ILE	A	203	55.655	38.280	-0.193	1.00 30.24	Ä	č
ATOM	1532	N	VAL			50.065	37.249	-1.705	1.00 24.79	A	N
ATOM	1533	CA	VAL			48.827	36.465	-1.685	1.00 22.84	A	С
ATOM ATOM	1534 1535	С 0	VAL			49.050	34.992	-2.011	1.00 27.15	A	C
ATOM ATOM	1536	СВ	VAL			48.192 47.764	34.158 37.091	-1.721	1.00 28.57	A	0
ATOM	1537	CG1				47.505	38.524	-2.640 -2.253	1.00 21.80 1.00 20.60	A A	C
		_	_	_	-			e . a J J	1.00 £0.00	n	_

ATOM 1538 CG2 VAL A 204 48.210 -4.075 36.970 1.00 24.51 C Α ATOM 1539 ARG A 205 N 50.191 34.678 -2.612 1.00 24.48 N Α ATOM 1540 CA ARG A 205 50.540 33.330 -3.018 1.00 27.35 C A ATOM 1541 С ARG A 205 52.049 33,204 -3.2071.00 32.98 A С ATOM 1542 0 ARG A 205 52,755 34.167 -3.5631.00 24.15 0 ATOM 1543 CB ARG A 205 49.815 -4.325 32.977 1.00 30.35 A C ATOM 1544 CG ARG A 205 49.857 31.540 -4.763 1.00 33.44 C 1545 ATOM CD ARG A 205 49.122 31.314 -6.095 1.00 36.40 C ATOM 1546 ARG A 205 NE 49.502 30.060 -6.747 1.00 40.66 N A ATOM 1547 CZ ARG A 205 48.730 28.978 -6.838 1.00 44.96 C A ATOM 1548 NH1 ARG A 205 47.510 28.961 -6.3121.00 49.55 Α N ATOM 1549 NH2 ARG A 205 49.185 27.893 -7.457 1.00 48.81 A N ATOM 1550 VAL A 206 N 52.548 32.004 -2.961 1.00 31.90 Α N ATOM 1551 CA VAL A 206 53.955 31.713 -3.133 1.00 31.00 A C ATOM 1552 С **VAL A 206** 54.077 30.348 -3.747 1.00 36.19 A C ATOM 1553 0 **VAL A 206** 29.380 53.523 -3.227 1.00 37.64 A 0 ATOM 1554 СВ **VAL A 206** 31.762 54.727 -1.7861.00 34.34 C CG1 VAL A 206 ATOM 1555 56.208 31.653 -2.026 1.00 38.60 C ATOM 1556 CG2 VAL A 206 54.407 33.029 -1.020 1.00 34.28 A C ATOM -4.889 1557 N **GLU A 207** 54.746 30.296 1.00 35.57 Α N MOTA 1558 CA **GLU A 207** 55.129 29.059 -5.525 1.00 40.01 Α C 56.630 ATOM 1559 С **GLU A 207** 28.880 -5.382 1.00 43.14 A C ATOM 1560 0 **GLU A 207** 57.371 29.858 -5.263 1.00 38.43 A 0 СВ MOTA 1561 **GLU A 207** 54.766 29.102 -7.007 1.00 41.74 Δ C ATOM 1562 CG **GLU A 207** 53.270 29.123 -7.274 1.00 41.66 A С ATOM 1563 CD **GLU A 207** 52.934 29.348 -8.733 1.00 41.56 С A ATOM 1564 OE1 GLU A 207 53.854 29.540 -9.548 1.00 40.42 0 ATOM 1565 OE2 GLU A 207 51.733 29.347 -9.071 1.00 47.50 Α 0 ATOM 1566 ILE A 208 N 57.063 27.620 -5.371 1.00 44.90 N Α ATOM 1567 CA ILE A 208 58.462 27.260 -5.592 1.00 48.28 А C ATOM 1568 С ILE A 208 58.488 26,248 -6.737 1.00 50.10 C Α ATOM 1569 0 ILE A 208 57.926 25.155 -6.628 1.00 48.21 A O ATOM 1570 ILE A 208 CB 59.106 26.692 -4.312 1.00 48.76 A С ATOM 1571 CG1 ILE A 208 59.185 27.770 -3.227 1.00 50.92 А С ATOM 1572 CG2 ILE A 208 60.499 26.179 -4.607 1.00 50.10 C A ATOM 1573 CD1 ILE A 208 59.221 27.225 -1.8351.00 52.20 C ATOM 1574 **ASN A 209** 59.102 N 26.647 -7.846 1.00 51.40 N ATOM 1575 CA **ASN A 209** 59.111 25.882 -9.091 1.00 56.38 С ATOM 1576 C **ASN A 209** 57.756 25.851 -9.827 1.00 56.68 А C ATOM 1577 O **ASN A 209** 57.689 25.425 -10.982 1.00 55.91 A O ATOM 1578 CB ASN A 209 59.636 24.456 -8.847 1.00 58.04 A C ATOM 1579 CG **ASN A 209** 60.332 23.865 -10.064 1.00 60.28 A C ATOM 1580 OD1 ASN A 209 60.251 22.656 -10.316 1.00 65.04 A 0 24.707 -10.820 ATOM 1581 ND2 ASN A 209 61.025 1.00 62.80 Α N ATOM 1582 N **GLY A 210** 56.696 26.338 -9.181 1.00 56.56 N A ATOM 1583 CA **GLY A 210** 55.345 26.202 -9.699 1.00 56.62 C A ATOM 1584 C **GLY A 210** 54.374 25.584 -8.708 1.00 57.30 С 1585 MOTA 0 **GLY A 210** 53.169 25.564 -8.959 1.00 58.65 Α 0 ATOM 1586 N **GLN A 211** 54.885 25.094 ~7.582 1.00 56.04 A N 1587 ATOM CA **GLN A 211** 54.071 24.409 -6.589 1.00 56.19 A С ATOM 1588 С **GLN A 211** 53.873 25.311 -5.383 1.00 55.79 С A MOTA 1589 0 **GLN A 211** 54.839 25.720 -4.748 1.00 51.74 0 A ATOM 1590 CB **GLN A 211** 54.761 23.112 -6.168 1.00 58.40 С A MOTA 1591 CG GLN A 211 54.940 22.113 -7.308 1.00 60.83 A C 1592 ATOM CD **GLN A 211** 55.915 20.988 -6.973 1.00 64.24 Α Ç MOTA 1593 OE1 **GLN A 211** 56.594 20.463 -7.863 1.00 64.43 0 1594 NE2 GLN A 211 MOTA 55.983 20.614 -5.694 1.00 66.64 ATOM 1595 N **ASP A 212** 52.628 25.626 -5.048 1.00 54.01 A N ATOM 1596 CA **ASP A 212** 52.407 26.569 -3.959 1.00 56.91 A C ATOM 1597 С **ASP A 212** -2.575 52.447 25.914 1.00 57.30 A C ATOM 1598 0 **ASP A 212** 52.369 24.693 -2.454 1.00 55.10 Α 0 СВ 1599 ATOM **ASP A 212** 51.157 27.428 -4.209 1.00 56.98 A С ATOM 1600 CG **ASP A 212** 49.890 26.788 -3.737 1.00 57.67 С A ATOM 1601 OD1 **ASP A 212** 25.680 49.566 -4.2121.00 57.46 A 0 MOTA 1602 OD2 **ASP A 212** 49.139 27.347 -2.909 1.00 59.70 O 1603 ATOM N **LEU A 213** 52.623 26.738 -1.545 1.00 58.77 N 1604 CA ATOM **LEU A 213** 52.860 26.263 -0.176 1.00 60.89 С 1605 LEU A 213 ATOM С 51.546 26.024 0.566 1.00 61.05 C A 1606 0 **LEU A 213** 25.356 ATOM 51.518 1.596 1.00 58.81 a ATOM 1607 CB **LEU A 213** 53.725 27.270 1.00 61.26 0.598 A C ATOM 1608 CG **LEU A 213** 55.223 27.312 0.263 1.00 62.51 A C 1609 CD1 **LEU A 213** ATOM 55.490 27,170 -1.2341.00 62.99 C A 1610 MOTA CD2 LEU A 213 55.857 28.602 0.793 1.00 63.51 A C MOTA 1611 N LYS A 214 50.470 26.602 0.039 1.00 62.93 A N 1612 CA ATOM LYS A 214 49.107 26.273 0.441 1.00 65.41 C A 1613 С ATOM LYS A 214 48.812 26.553 1.915 1.00 64.81 C Α 0 ATOM 1614 LYS A 214 47.985 25.872 2.523 1.00 66.72

ATOM	1615	СВ	T.VC	ъ	214	48.781	24.808	0.083	1.00 66.77		A	С
ATOM	1616	CG			214				1.00 69.56			
						47.364	24.625	-0.469			A	C
ATOM	1617	CD			214	46.931	23.158	-0.553	1.00 70.85		A	C
MOTA	1618	CE	LYS	A	214	45.423	23.023	-0.346	1.00 70.83		A	С
MOTA	1619	NZ	LYS	A	214	44.873	21.747	-0.879	1.00 72.20		A	N
MOTA	1620	N	MET	Α	215	49.465	27.568	2.480	1.00 62.76		A	N
ATOM	1621	CA	MET	A	215	49.187	27.959	3.862	1.00 61.10		A	С
ATOM	1622	c			215	48.402	29.267	3.925	1.00 57.64		A	Č
ATOM	1623	0			215	48.495	30.102	3.024	1.00 57.95		A	0
MOTA	1624	CB			215	50.474	28.035	4.701	1.00 62.37		A	С
ATOM	1625	CG	MET	A	215	51.555	28.957	4.190	1.00 63.11		A	С
MOTA	1626	SD	MET	A	215	53.067	28.833	5.203	1.00 62.67		A	s
ATOM	1627	CE			215	54.211	28.376	3.978	1.00 62.72		A	Č
MOTA	1628	N		_	216	47.599	29.420	4.976	1.00 53.34			
											A	N
MOTA	1629	CA			216	46.873	30.660	5.220	1.00 52.79		A	С
MOTA	1630	C			216	47.755	31.819	4.770	1.00 51.45		A	С
ATOM	1631	0	ASP	A	216	48.861	32.008	5.283	1.00 45.58		A	0
MOTA	1632	CB	ASP	A	216	46.517	30.792	6.705	1.00 53.42		A	С
ATOM	1633	CG	ASP	Α	216	45.523	31.911	6.981	1.00 55.05		A	С
ATOM	1634		ASP			45.109	32.639	6.045	1.00 53.37		A	ŏ
ATOM	1635		ASP			45.096						
							32.134	8.132	1.00 59.33		A	0
ATOM	1636	N			217	47.285	32.567	3.779	1.00 49.19		A.	N
ATOM	1637	CA	CYS	A	217	48.119	33.601	3.172	1.00 49.39		A.	С
ATOM	1638	С	CYS	Α	217	48.345	34.770	4.144	1.00 48.78		A.	C
MOTA	1639	0	CYS	A	217	49.274	35.554	3.966	1.00 49.38		A	Ó
ATOM	1640	СВ			217	47.515	34.072	1.843	1.00 46.23			
											A.	C
ATOM	1641	SG			217	45.917	34.862	2.016	1.00 48.31		A	s
MOTA	1642	N	LYS	A	218	47.489	34.869	5.166	1.00 48.17		A.	N
ATOM	1643	CA	LYS	A	218	47.671	35.792	6.291	1.00 46.87		A.	С
ATOM	1644	С	LYS	Α	218	49.055	35.646	6.937	1.00 44.90		A	C
ATOM	1645	Ö			218	49.632	36.624	7.446	1.00 37.36		A.	ŏ
ATOM	1646	СВ	LYS			46.585	35.551					
								7.345	1.00 48.51		A.	C
ATOM	1647	CG	LYS			46.222	36.772	8.167	1.00 52.96		A	С
ATOM	1648	CD			218	44.760	36.731	8.616	1.00 54.70	1	A.	С
MOTA	1649	CE	LYS	Α	218	44.287	38.081	9.134	1.00 56.36		Ą	С
ATOM	1650	NZ	LYS	Α	218	42.812	38.224	8.965	1.00 58.19	1	A	N
ATOM	1651	N	GLU	Α	219	49.579	34.425	6.899	1.00 41.30		A	N
ATOM	1652	CA	GLU			50.894	34.118	7.460	1.00 41.57		Ā	c
ATOM												
	1653	С	GLU			52.043	34.739	6.674	1.00 41.40		A	С
ATOM	1654	0	GLU			53.112	35.003	7.245	1.00 38.39	2	A	0
ATOM	1655	CB	GLU	Α	219	51.129	32.603	7.526	1.00 42.52	1	A.	С
ATOM	1656	CG	GLU	Α	219	50.072	31.806	8.284	1.00 43.99		A	С
ATOM	1657	CD	GLU	А	219	50.103	32.015	9.793	1.00 49.15		Ā	Č
ATOM	1658		GLU			49.422	31.235	10.503				
ATOM									1.00 49.54		4	0
	1659		GLU			50.786	32.950	10.276	1.00 47.89		7	0
MOTA	1660	N	TYR			51.851	34.902	5.364	1.00 35.85	2	4	N
MOTA	1661	CA	TYR	Α	220	52.867	35.487	4.479	1.00 35.18	1	4	С
ATOM	1662	С	TYR	A	220	53.164	36.913	4.830	1.00 28.13	2	4	С
ATOM	1663	0	TYR	Α	220	54.185	37.465	4.445	1.00 34.25	7	A	0
ATOM	1664	СВ	TYR	A	220	52.413	35.452	3.004	1.00 36.98		Ā	Č
ATOM	1665	CG	TYR			52.256	34.069	2.389				
	1666		TYR						1.00 37.36		ł.	C
ATOM						51.233	33.809	1.478	1.00 37.78		7	С
ATOM	1667		TYR			53.132	33.026	2.702	1.00 40.58	2	4	С
ATOM	1668	CEI	TYR	А	220	51.093	32.557	0.894	1.00 38.43	2	1	С
ATOM	1669	CE2	TYR	Ą	220	52.996	31.775	2.136	1.00 40.55	7	1	С
ATOM	1670	CZ	TYR	А	220	51.962	31.539	1.233	1.00 41.11	7		C
ATOM	1671	OH	TYR	А	220	51.819	30.299	0.656	1.00 42.27	7		ō
ATOM	1672	N	ASN			52.230	37.542	5.520	1.00 33.23	7		N
ATOM	1673	CA	ASN			52.322	38.933	5.865	1.00 35.09	7		C
MOTA	1674	С	ASN			52.201	39.102	7.363	1.00 31.87	7	1	С
ATOM	1675	0	ASN	Α	221	51.682	40.126	7.831	1.00 33.51	I	1	0
ATOM	1676	CB	ASN	Α	221	51.201	39.649	5.143	1.00 36.43	I		С
ATOM	1677	CG	ASN			51.102	39.213	3.695	1.00 37.85	7		C
ATOM	1678		ASN			50.157	38.521		1.00 37.83			
ATOM	1679		ASN					3.300		F		0
						52.119	39.561	2.910	1.00 28.28	P		N
ATOM	1680	N	TYR			52.668	38.088	8.091	1.00 39.46	F	1	N
ATOM	1681	CA	TYR			52.401	37.971	9.525	1.00 42.38	F	1	C
ATOM	1682	С	TYR	A	222	53.237	39.004	10.244	1.00 43.57	F	1	С
ATOM	1683	0	TYR			54.475	38.894	10.348	1.00 33.19	F		ō
ATOM	1684	ĊВ	TYR			52.673	36.559					
								10.071	1.00 45.87	F		C
ATOM	1685	CG	TYR			52.591	36.428	11.592	1.00 48.19	P		С
ATOM	1686		TYR			51.870	37.337	12.382	1.00 51.26	F	١.	C
MOTA	1687		TYR			53.241	35.392	12.236	1.00 51.18	P	١.	С
ATOM	1688	CE1	TYR	Α	222	51.815	37.204	13.774	1.00 52.32	P		С
ATOM	1689		TYR			53.192	35.245	13.616	1.00 52.66			č
ATOM	1690	CZ	TYR			52.481	36.154		1.00 54.09	F		č
ATOM	1691	ОН						14.381				
ATOM	1031	On	TYR	n	444	52.436	36.004	15.751	1.00 56.15	P		0

ATOM	1692	N	ACD	7	223	52.486	39.968	10.768	1.00 46.73	Į	N N
MOTA	1693	CA			223	52.934	41.294	11.099	1.00 47.06	I	
MOTA	1694	С	ASP	A	223	52.865	42.194	9.864	1.00 43.47	F	7 C
MOTA	1695	0	ASP	A	223	52.008	43.088	9.777	1.00 45.70	7	. 0
ATOM	1696	CB									
					223	54.339	41.289	11.693	1.00 50.64	F	
ATOM	1697	CG	ASP	A	223	54.663	42.585	12.348	1.00 48.82	F	C
ATOM	1698	OD1	ASP	A	223	54.041	42.879	13.392	1.00 56.19	Į	• 0
ATOM	1699		ASP			55.483	43.386	11.871	1.00 54.79	I	
MOTA	1700	N			224	53.745	41.920	8.908	1.00 43.90	I	
MOTA	1701	CA	LYS	Α	224	54.128	42.889	7.872	1.00 43.50	I	, C
MOTA	1702	С	LYS	A	224	54.720	42.221	6.651	1.00 38.65	F	
ATOM	1703	ō			224	55.321			1.00 37.31		
							41.177	6.749		F	
ATOM	1704	CB			224	55.234	43.791	8.425	1.00 44.84	F	, c
MOTA	1705	CG	LYS	Α	224	54.814	45.182	8.824	1.00 49.52	F	7 C
ATOM	1706	CD	LYS	Α	224	56.030	46.109	8.874	1.00 50.93	F	
ATOM	1707	CE			224	56.970	45.783	10.029	1.00 52.43	7	
ATOM	1708	NZ			224	58.303	45.329	9.550	1.00 53.74	P	
ATOM	1709	N	SER	A	225	54.605	42.855	5.487	1.00 34.67	P	N
ATOM	1710	CA	SER	Α	225	55.428	42.463	4.347	1.00 29.36	P	
ATOM	1711	C			225	55.923	43.766	3.727			
									1.00 23.18	P	
MOTA	1712	0			225	55.109	44.637	3.491	1.00 24.20	A	. 0
ATOM	1713	CB	SER	A	225	54.634	41.642	3.319	1.00 33.54	7	C
ATOM	1714	OG	SER	A	225	54.443	40.303	3.737	1.00 31.33	P	
ATOM	1715	N			226	57.235	43.914		1.00 24.65		
								3.514		P	
MOTA	1716	CA			226	57.814	45.209	3.080	1.00 24.70	ZA.	C
MOTA	1717	С	ILE	A	226	58.879	45.132	1.973	1.00 20.50	24	C
MOTA	1718	0	ILE	A	226	59.568	44.138	1.762	1.00 22.18	A	
ATOM	1719	СВ	ILE			58.378					
							46.052	4.318	1.00 26.96	A	
MOTA	1720	CGI	ILE	A	226	59.715	45.495	4.804	1.00 29.94	ZA.	· c
MOTA	1721	CG2	ILE	Α	226	57.350	46.153	5.417	1.00 29.80	ZA.	C
ATOM	1722	CD1	ILE	А	226	60.392	46.347	5.918	1.00 30.64	A	
ATOM	1723		VAL								
		N				59.046	46.229	1.249	1.00 21.76	A	
MOTA	1724	CA	VAL	А	227	60.073	46.314	0.221	1.00 20.70	. A	C
MOTA	1725	С	VAL	Α	227	61.187	47.177	0.820	1.00 22.68	A	. c
ATOM	1726	0	VAL	A	227	60.949	48.339	1.114	1.00 25.66	Ä	
	1727										
ATOM		СВ	VAL			59.486	46.982	-1.036	1.00 22.09	A	, C
ATOM	1728	CG1	VAL	А	227	60.466	46.919	-2.217	1.00 22.41	A	С
ATOM	1729	CG2	VAL	Α	227	58.172	46.322	-1.385	1.00 22.10	A	. c
ATOM	1730	N	ASP	Δ	228	62.377	46.598	1.025	1.00 25.94	A	
ATOM	1731	CA	ASP								
						63.488	47.250	1.750	1.00 26.69	A	
MOTA	1732	С	ASP	A	228	64.859	47.181	1.053	1.00 25.68	A	. с
ATOM	1733	0	ASP	A	228	65.552	46.160	1.089	1.00 28.14	A	. 0
ATOM	1734	CB	ASP	А	228	63.610	46.628	3.151	1.00 30.80	A	
ATOM	1735	CG	ASP			64.507					
							47.435	4.073	1.00 36.12	A	
ATOM	1736	ODI	ASP	A	228	65.240	48.316	3.575	1.00 32.68	A	. 0
ATOM	1737	OD2	ASP	А	228	64.544	47.261	5.315	1.00 43.13	A	. 0
ATOM	1738	N	SER	А	229	65.273	48.283	0.448	1.00 20.40	A	
ATOM	1739	CA	SER			66.534					
							48.352	-0.261	1.00 19.83	A	
ATOM	1740	С	SER			67.766	48.269	0.668	1.00 20.00	A	C
ATOM	1741	0	SER	Α	229	68.848	47.998	0.202	1.00 20.19	A	. 0
ATOM	1742	CB	SER	Α	229	66.608	49.641	-1.084	1.00 19.70	A	
ATOM	1743	OG	SER								
						66.651	50.793	-0.239	1.00 20.04	A	
ATOM	1744	N	GLY	A	230	67.582	48.539	1.955	1.00 24.02	A	N
ATOM	1745	CA	GLY	Α	230	68.666	48.429	2.928	1.00 30.23	A	С
ATOM	1746	С	GLY	А	230	69.016	46.983	3.270	1.00 32.91	A	С
ATOM	1747	o	GLY			70.179					
							46.641	3.517	1.00 37.27	A	
ATOM	1748	N	THR			67.998	46.129	3.290	1.00 35.70	A	N
ATOM	1749	CA	THR	А	231	68.157	44.736	3.700	1.00 36.19	A	С
MOTA	1750	С	THR	Α	231	68.647	43.943	2.502	1.00 36.17	A	
ATOM	1751	0	THR			68.125	44.098	1.392	1.00 36.88	A	
ATOM	1752										
		CB	THR			66.811	44.203	4.216	1.00 36.06	A	С
MOTA	1753	OG1	THR	А	231	66.371	44.988	5.333	1.00 41.33	A	0
ATOM	1754	CG2	THR	Α	231	66.931	42.806	4.770	1.00 39.41	A	C
ATOM	1755	N	THR			69.676	43.117	2.701	1.00 34.96	A	Ŋ
ATOM	1756	CA									
			THR			70.213	42.299	1.624	1.00 31.73	A	
MOTA	1757	С	THR			69.299	41.111	1.311	1.00 35.19	A	C
ATOM	1758	0	THR	Α	232	69.149	40.754	0.150	1.00 34.98	A	0
ATOM	1759	СВ	THR			71.612	41.737	1.968	1.00 36.41	A	
MOTA	1760		THR			72.502	42.796	2.338	1.00 33.05	A	0
ATOM	1761	CG2	THR	A	232	72.274	41.136	0.735	1.00 36.22	A	С
ATOM	1762	N	ASN	A	233	68.735	40.502	2.352	1.00 38.19	A	
ATOM	1763	CA	ASN			68.029	39.230	2.211			č
									1.00 41.17	A	
ATOM	1764	С	ASN			66.520	39.365	2.052	1.00 40.23	A	С
MOTA	1765	0	ASN	A	233	65.922	40.416	2.327	1.00 39.76	A	0
MOTA	1766	CB	ASN .			68.307	38.323	3.420	1.00 43.40	A	C
ATOM	1767	CG	ASN			69.767	37.864	3.503			č
									1.00 44.47	A	
ATOM	1768	ODI	ASN .	A	233	70.293	37.678	4.593	1.00 53.39	A	0

						10,				
ATOM	1769			A 233	70.409	37.667	2.360	1.00 47.21	A	
ATOM	1770	N		A 234	65.927	38.259	1.613	1.00 39.45	A	
ATOM	1771	CA		A 234	64.497	38.025	1.667	1.00 35.83	A	
ATOM ATOM	1772 1773	c o		A 234	64.178	37.466	3.035	1.00 31.21	A	
ATOM	1774	СВ		A 234 A 234	64.504 64.119	36.342 37.022	3.319 0.562	1.00 35.53 1.00 41.31	A A	
ATOM	1775	CG		A 234	62.727	36.992	-0.082	1.00 41.31	A	
ATOM	1776			A 234	62.447	35.596	-0.613	1.00 45.40	A	
MOTA	1777			A 234	61.630	37.429	0.851	1.00 42.45	A	
ATOM	1778	N		A 235	63.564	38.263	3.906	1.00 39.51	A	
ATOM	1779	CA	ARG	A 235	63.200	37.811	5.254	1.00 37.00	A	
ATOM	1780	C		A 235	61.737	37.315	5.290	1.00 38.00	A	C
MOTA	1781	0		A 235	60.863	37.918	4.699	1.00 31.41	A	
MOTA	1782	CB		A 235	63.434	38.930	6.278	1.00 40.50	A	
MOTA MOTA	1783 1784	CG		A 235 A 235	64.843	39.557	6.210	1.00 43.67	A	C
ATOM	1785	NE		A 235	65.208 65.177	40.478 39.774	7.378 8.659	1.00 46.74 1.00 49.76	A	C
ATOM	1786	CZ		A 235	64.729	40.272	9.823	1.00 52.94	A A	N C
ATOM	1787			A 235	64.272	41.522	9.918	1.00 51.18	A	N
ATOM	1788			A 235	64.743	39.503	10.914	1.00 51.36	A	N
ATOM	1789	N	LEU	A 236	61.473	36.226	6.008	1.00 37.36	A	N
MOTA	1790	CA		A 236	60.156	35.571	5.992	1.00 37.98	A	С
MOTA	1791	С		A 236	59.691	35.254	7.408	1.00 39.27	A	С
ATOM	1792	0_		A 236	60.503	34.847	8.230	1.00 37.29	A	0
ATOM ATOM	1793	CB		A 236	60.238	34.271	5.210	1.00 37.66	A	C
ATOM	1794 1795	CG		A 236 A 236	60.689	34.363	3.745	1.00 36.72	A	C
ATOM	1796			A 236	60.713 59.784	32.994 35.269	3.135 2.922	1.00 34.34	A	C
ATOM	1797	N		A 237	58.399	35.408	7.719	1.00 37.91 1.00 37.12	A A	C N
ATOM	1798	CA		A 237	57.939	35.039	9.061	1.00 37.12	A	C
ATOM	1799	С		A 237	58.324	33.600	9.304	1.00 36.04	A	č
ATOM	1800	0	PRO .	A 237	58.364	32.870	8.326	1.00 31.43	A	ō
ATOM	1801	CB		A 237	56.425	35.222	8.985	1.00 36.23	A	С
ATOM	1802	CG		A 237	56.243	36.263	7.917	1.00 36.72	A	С
ATOM	1803	CD		A 237	57.297	35.918	6.887	1.00 37.44	A	С
MOTA	1804	И		A 238	58.647	33.213	10.538	1.00 34.49	A	И
ATOM ATOM	1805 1806	CA C		A 238 A 238	59.098	31.839	10.805	1.00 34.56	A	C
ATOM	1807	Ö		A 238	58.322 58.908	30.780 29.860	10.051 9.452	1.00 32.78 1.00 32.03	A A	C
ATOM	1808	СВ		A 238	58.881	31.433	12.243	1.00 34.24	A	o C
ATOM	1809	CG		A 238	59.299	32.363	13.281	1.00 30.75	A	č
MOTA	1810	CD		A 238	58.868	31.768	14.539	1.00 5.80	A	Č
MOTA	1811	CE	LYS 2	A 238	57.493	31.846	14.975	1.00 27.32	A	С
MOTA	1812	NZ		A 238	57.007	31.123	16.239	1.00 32.55	A	N
ATOM	1813	N		A 239	56.998	30.879	10.142	1.00 28.36	A	N
ATOM	1814	CA		A 239	56.149	29.747	9.735	1.00 37.49	A	C
ATOM ATOM	1815 1816	С О		A 239 A 239	56.292 56.310	29.508	8.233	1.00 35.49	A	C
ATOM	1817	CB		A 239	54.675	28.360 29.990	7.762 10.108	1.00 30.89 1.00 39.29	A A	0
ATOM	1818	CG		A 239	54.110	28.997	11.108	1.00 46.03	A	C
ATOM	1819	CD		A 239	52.700	29.406	11.566	1.00 48.69	A	č
ATOM	1820	CE		A 239	51.634	28.404	11.117	1.00 50.81	A	č
MOTA	1821	NZ		A 239	50.243	28.846	11.463	1.00 49.91	A	N
MOTA	1822	N		A 240	56.411	30.614	7.497	1.00 32.65	A	N
ATOM	1823	CA		A 240	56.599	30.569	6.057	1.00 32.95	A	С
ATOM	1824	C		A 240	58.018	30.172	5.684	1.00 28.03	A	С
ATOM ATOM	1825 1826	O CB		A 240 A 240	58.201 56.323	29.484	4.704	1.00 26.73	A	0
ATOM	1827			A 240	56.411	31.928 31.801	5.390 3.908	1.00 28.86 1.00 29.02	A	c
ATOM	1828			A 240	54.963	32.517	5.818	1.00 29.02	A A	C
ATOM	1829	N		A 241	59.019	30.655	6.430	1.00 33.40	A	N
ATOM	1830	CA		A 241	60.402	30.267	6.159	1.00 34.11	A	Č
MOTA	1831	С		A 241	60.559	28.745	6.338	1.00 32.98	A	č
MOTA	1832	0	PHE A	4 241	61.100	28.029	5.470	1.00 29.40	A	ō
MOTA	1833	CB		4 241	61.360	30.997	7.095	1.00 35.69	A	С
ATOM	1834	CG		241	62.748	30.459	7.057	1.00 39.37	A	С
ATOM	1835		PHE A		63.601	30.785	6.012	1.00 42.58	A	С
ATOM ATOM	1836 1837		PHE A		63.197 64.895	29.583	8.047	1.00 42.39	A	C
ATOM	1837		PHE F		64.895 64.479	30.272	5.968	1.00 43.06	A	C
ATOM	1839	CZ		241	65.329	29.073 29.419	8.007 6.964	1.00 38.87 1.00 43.23	A	C
ATOM	1840	N		242	60.075	28.249	7.468	1.00 43.23	A A	C
ATOM	1841	CA	GLU A		60.011	26.800	7.696	1.00 32.78	A	C M
ATOM	1842	C	GLU A		59.505	26.025	6.487	1.00 33.79	A	c
MOTA	1843	0	GLU A		60.160	25.083	6.053	1.00 35.48	A	ŏ
MOTA	1844	СВ	GLU P	242	59.123	26.473	8.899	1.00 37.43	A	č
ATOM	1845	CG	GLU F	242	59.830	26.686	10.217	1.00 43.87	A	č
										-

ATOM	1846	CD	GLU	Δ	242	60.878	25.635	10.508	1.00	45.01	Α	С
ATOM	1847		GLU			61.759	25.906	11.358		45.07	A	ō
MOTA	1848	QE2	GLU			60.818	24.545	9.888		52.08	A	0
ATOM	1849	N	ALA	Α	243	58.358	26.437	5.942	1.00	34.61	A	N
ATOM	1850	CA	ALA	A	243	57,752	25.723	4.804	1.00	36.67	A	С
ATOM	1851	C			243	58.531	25.984	3.523		35.54	A	c
MOTA	1852	0			243	58.735	25.093	2.706		30.69	A	0
ATOM	1853	CB	ALA	Α	243	56.307	26.138	4.615	1.00	36.74	A	С
ATOM	1854	N	A.TA	A	244	58.961	27.231	3.375	1.00	36.29	A	N
								2.224		36.28		Ċ
ATOM	1855	CA			244	59.717	27.682				A	
ATOM	1856	С	ALA	A	244	60.970	26.841	2.063		36.59	A	С
ATOM	1857	0	ALA	Α	244	61.133	26.184	1.058	1.00	35.35	A	0
ATOM	1858	СВ	A.T.A	Δ	244	60.073	29.142	2.383	1.00	34.54	A	С
						61.853		3.064				
ATOM	1859	N			245		26.884			38.90	A	N
ATOM	1860	CA	VAL	А	245	63.002	25.982	3.143	1.00	42.56	A	С
ATOM	1861	C	VAL	Α	245	62.658	24.500	2.899	1.00	40.13	Α	С
ATOM	1862	0			245	63.341	23.835	2.114	1.00	40.38	Α	0
ATOM		СВ			245	63.742	26.130	4.515		43.37	A	č
	1863											
ATOM	1864	CG1	VAL	А	245	64.651	24.918	4.821	1.00	47.23	A	C
ATOM	1865	CG2	VAL	Α	245	64.541	27.420	4.534	1.00	44.13	Α	С
ATOM	1866	N	LYS	A	246	61.627	23.974	3.556	1.00	39.54	Α	N
ATOM	1867	CA			246	61.270	22.556	3.352		44.44	A	Ĉ
MOTA	1868	С			246	61.172	22.215	1.859	1.00	43.12	Α	С
ATOM	1869	0	LYS	A	246	61.745	21.233	1.407	1.00	40.51	Α	0
ATOM	1870	CB	LYS	А	246	59.965	22.180	4.068	1.00	46.80	A	С
		CG			246		20.695	3.924		50.38	A	č
ATOM	1871					59.575						
ATOM	1872	CD	LYS	A	246	58.263	20.380	4.653	1.00	52.29	A	С
ATOM	1873	CE	LYS	A	246	57.530	19.182	4.042	1.00	54.52	Α	C
ATOM	1874	NZ	T.VS	Δ	246	58.452	18.072	3.656		53.80	A	N
					247							
MOTA	1875	N				60.473	23.051	1.097		44.68	A	N
ATOM	1876	CA	SER	Α	247	60.282	22.809	-0.337	1.00	45.24	Α	С
ATOM	1877	С	SER	Α	247	61.505	23.062	-1.226	1.00	43.18	Α	С
ATOM	1878	0			247	61.653	22,423	-2.258	1 00	38.59	A	Ó
ATOM	1879	CB			247	59.126	23.654	-0.869		45.97	A	С
ATOM	1880	OG	SER	Α	247	59.035	23.478	-2.266	1.00	42.87	Α	0
MOTA	1881	N	ILE	Α	248	62.345	24.027	-0.861	1.00	47.83	A	N
ATOM	1882	CA	ILE			63.534	24.348	-1.658		50.81	A	С
MOTA	1883	С	ILE			64.570	23.241	-1.475		52.35	A	C
ATOM	1884	0	ILE	А	248	65.200	22.787	-2.440	1.00	48.20	A	0
ATOM	1885	CB	ILE	А	248	64.116	25.716	-1.260	1.00	51.35	A	С
ATOM	1886	CG1	ILE	Δ	248	63.101	26.823	-1.548		50.95	Α	С
ATOM	1887		ILE			65.428	25.983	-2.015		51.10	A	С
ATOM	1888	CD1	ILE	А	248	63.447	28.154	-0.913	1.00	51.52	Α	С
ATOM	1889	N	LYS	Α	249	64.725	22.814	-0.227	1.00	53.72	Α	N
ATOM	1890	CA	LYS	Δ	249	65.451	21.585	0.108	1 00	59.31	A	С
MOTA	1891	C	LYS			65.021	20.377	-0.745		61.00	A	С
ATOM	1892	0	LYS	А	249	65.871	19.634	-1.233	1.00	58.84	Α	0
MOTA	1893	СB	LYS	Α	249	65.260	21.257	1.598	1.00	61.17	Α	С
ATOM	1894	CG	LYS	А	249	66.419	20.522	2.240	1.00	63.43	Α	С
ATOM	1895	CD	LYS			66.187	20.317	3.740		65.86	A	č
ATOM	1896	CE	LYS			66.299	21.620	4.530	1.00	67.19	A	C
ATOM	1897	NZ	LYS	А	249	66.791	21.417	5.929	1.00	68.30	Α	N
MOTA	1898	N	ALA	Α	250	63.711	20.207	-0.942	1.00	63.51	A	N
ATOM	1899	CA	ALA			63.160	19.006	-1.589		66.01	A	C
ATOM	1900	С	ALA			63.564	18.839	-3.059		67.43	A	C
MOTA	1901	0	ALA			64.214	17.861	-3.408		67.59	A	0
ATOM	1902	CB	ALA	Α	250	61.635	18.974	-1.455	1.00	65.47	Α	С
ATOM	1903	N	ALA			63.185	19.783	-3.917		69.93	A	N
ATOM	1904	CA	ALA			63.539	19.694	-5.342		70.60	A	C
ATOM	1905	С	ALA			64.985	20.123	-5.633		70.50	A	С
ATOM	1906	0	ALA	A	251	65.364	20.268	-6.794	1.00	69.29	A	0
ATOM	1907	CB	ALA			62.547	20.488	-6.212		70.96	A	С
										70.95		
ATOM	1908	N	SER			65.778	20.338	-4.582			A	N
ATOM	1909	CA	SER	Α	252	67.213	20.562	-4.718	1.00	72.23	A	С
ATOM	1910	С	SER	A	252	68.016	19.483	-3.985	1.00	73.46	Α	С
ATOM	1911	o	SER			69.189	19.680	-3.661		71.37	A	ō
ATOM	1912	СВ	SER			67.582	21.951	-4.189		72.68	A	C
ATOM	1913	OG	SER			67.505	21.999	-2.775		73.18	A	0
ATOM	1914	N	SER	A	253	67.389	18.332	-3.756	1.00	75.44	A	N
MOTA	1915	CA	SER			68.011	17,239	-3.011		77.44	A	Ċ
ATOM	1916	С	SER			69.079	16.491	-3.819		79.67	A	С
MOTA	1917	0	SER			69.783	15.645	-3.263		79.72	A	0
ATOM	1918	CB	SER	Α	253	66.944	16.250	-2.532	1.00	77.46	A	С
ATOM	1919	OG	SER			66.037	16.870	-1.637		76.30	A	ō
										81.88		
ATOM	1920	N	THR			69.196	16.799	-5.116			A	N
MOTA	1921	CA	THR			70.232	16.215	-5.983		83.80	A	С
ATOM	1922	С	THR	A	254	71.624	16.245	-5.334	1.00	85.34	A	С

ATOM	1923	0	THR	A	254	72.423	15.330	-5.538	1.00 8	35.86		A	0
								-7.360	1.00 8				
MOTA	1924	CB	THR			70.270	16.936					A	C
ATOM	1925	OG1	THR	А	254	68.992	16.851	-7.999	1.00 8			A	О
MOTA	1926	CG2	THR	A	254	71.205	16.228	-8.342	1.00 8	33.62		A	С
ATOM	1927	N	GLU			71.909	17.296	-4.565	1:00 8	36.72		A	N
									1.00 8				
MOTA	1928	CA	GLU			73.121	17.354	-3.746				A	С
ATOM	1929	С	GLU	А	255	72.785	17.714	-2.302	1.00 8	38.51		A	С
ATOM	1930	0	GLU	A	255	72.017	18.643	-2.048	1.00 8	39.05		A	0
ATOM	1931	CB	GLU			74.103	18.379	-4.307	1.00 8	87 94		A	C
ATOM	1932	CG	GLU			74.553	18.101	-5.731	1.00 8			A	С
ATOM	1933	CD	GLU	А	255	75.403	19.222	-6.297	1.00 8	38.85		A	С
ATOM	1934	OE1	GLU	A	255	76.162	19.847	-5.521	1.00 8	38.18		A	0
ATOM	1935	OE2				75.308	19.478	-7.518	1.00 8	19.16		A	O
MOTA	1936	N			256	73.367	16.973	-1.361	1.00 8		•,	A	N
ATOM	1937	CA	LYS	А	256	73.181	17.233	0.066	1.00 8	39.70		A	С
ATOM	1938	С	LYS	Α	256	74.060	18.406	0.515	1.00 8	39.43		A	С
ATOM	1939	ō	LYS			75.211	18.519	0.090	1.00 9	90.96		A	0
					_			0.878	1.00 8			A	č
ATOM	1940	CB	LYS			73.524	15.976						
ATOM	1941	CG	LYS	A	256	73.344	16.118	2.390	1.00 8			A	С
MOTA	1942	CD	LYS	Α	256	73.488	14.778	3.106	1.00 8	39.76		A	С
ATOM	1943	CE	LYS			74.916	14.250	3.037	1.00 8	19.66		A	С
							13.099	3.955	1.00 8			A	N
ATOM	1944	NZ	LYS			75.135							
ATOM	1945	N	PHE	А	257	73.509	19.278	1.359	1.00 8	38.33		A	N
ATOM	1946	CA	PHE	Α	257	74.277	20.358	1.988	1.00 8	37.80		A	С
ATOM	1947	С	PHE	Δ	257	73.957	20.434	3.486	1.00 8	35.90		A	С
									1.00 8			A	ō
ATOM	1948	0			257	72.901	19.963	3.916					
ATOM	1949	CB	PHE	Α	257	73.977	21.698	1.307	1.00 8	38.75		A	С
ATOM	1950	CG	PHE	Α	257	74.158	21.672	-0.188	1.00 9	90.18		A	С
ATOM	1951		PHE			73.128	22.071	-1.035	1.00 9	0.73		A	С
			PHE									A	č
ATOM	1952	-				75.358	21.243	-0.747	1.00 9				
ATOM	1953	CE1	PHE	A	257	73.295	22.043	-2.417	1.00 9			A	С
ATOM	1954	CE2	PHE	A	257	75.530	21.208	-2.125	1.00 9	91.35		A	С
ATOM	1955	CZ	PHE	Δ	257	74.499	21.611	-2.961	1.00 9	91.69		A	С
		-						4.282	1.00 8			A	N
ATOM	1956	N			258	74.857	21.019						
ATOM	1957	CA	PRO	A	258	74.671	21.079	5.743	1.00 8	33.94		A	С
ATOM	1958	С	PRO	Α	258	73.334	21.697	6.182	1.00 8	33.10		A	С
ATOM	1959	0			258	72.764	22.519	5.459	1.00 8	32.64		A	0
						75.840		6.218	1.00 8			A	Ċ
ATOM	1960	CB			258		21.957						
ATOM	1961	CG	PRO	A	258	76.862	21.878	5.141	1.00 8	34.54		A	С
ATOM	1962	CD	PRO	Α	258	76.116	21.664	3.861	1.00 8	34.44		A	С
ATOM	1963	N	ASP	А	259	72.852	21.302	7.360	1.00 8	31.28		A	N
		CA	ASP			71.608	21.847	7.916	1.00 7			A	C
ATOM	1964												
ATOM	1965	С	ASP	А	259	71.767	23.327	8.300	1.00 7			A	С
ATOM	1966	0	ASP	A	259	70.804	24.097	8.228	1.00 7	75.77		A	0
ATOM	1967	CB	ASP	А	259	71.140	21.025	9.133	1.00 8	30.43		A	С
	1968	CG	ASP			69.749	20.420	8.947	1.00 8			A	C
MOTA													
ATOM	1969		ASP			69.433	19.944	7.832	1.00 8			A	0
ATOM	1970	OD2	ASP	A	259	68.906	20.364	9.870	1.00 8	32.81		A	0
ATOM	1971	N	GLY	A	260	72.981	23.716	8.694	1.00 7	72.15		A	N
ATOM	1972	CA	GLY			73.280	25.095	9.051	1.00 6			A	С
ATOM	1973	С	GLY			73.394	26.055	7.873	1.00 6	–		A	С
ATOM	1974	0	GLY	Α	260	73.306	27.266	8.055	1.00 6	52.06		A	0
ATOM	1975	N	PHE	A	261	73.601	25.529	6.670	1.00 6	51.00		A	N
ATOM	1976	CA	PHE	A	261	73.582	26.350	5.456	1.00 5	59.12		A	С
				_								_	
MOTA	1977	C			261	72.247	27.101	5.311	1.00 5			A.	C
ATOM	1978	0			261	72.217	28.296	5.013	1.00 4			A	0
ATOM	1979	ÇВ	PHE	Α	261	73.833	25.475	4.222	1.00 5	9.54		A	С
ATOM	1980	CG	PHE	А	261	73.504	26.148	2.920	1.00 5	58.56		A	С
ATOM	1981		PHE			74.289	27.187	2.447	1.00 5			A	С
MOTA	1982		PHE			72.415	25.741	2.169	1.00 5			A	С
MOTA	1983	CE1	PHE	A	261	73.996	27.807	1.259	1.00 5	56.77		A	С
MOTA	1984	CE2	PHE	A	261	72.118	26.359	0.972	1.00 5	58.83		A	С
ATOM	1985	CZ			261	72.912	27.393	0.516	1.00 5			A	С
					262				1.00 5				
ATOM	1986	N				71.151	26.389	5.557				A	N
ATOM	1987	CA			262	69.813	26.949	5.396	1.00 5			A	С
ATOM	1988	С	TRP	Α	262	69.475	27.995	6.467	1.00 5	58.02		A	С
ATOM	1989	ō			262	68.525	28.760	6.296	1.00 5			A	o
									1.00 5				
MOTA	1990	CB			262	68.759	25.832	5.406				A	C
MOTA	1991	ÇG			262	69.026	24.721	4.432	1.00 6			A	С
ATOM	1992	CD1	TRP	Α	262	69.372	23.430	4.730	1.00 6	51.96		A	C
MOTA	1993		TRP			68.974	24.800	3.003	1.00 6			A	Č
									1.00 6				
ATOM	1994		TRP			69.535	22.704	3.574				A	N
MOTA	1995		TRP			69.298	23.520	2.498	1.00 6			A	С
ATOM	1996	CE3	TRP	A	262	68.688	25.824	2.092	1.00 6	62.89		A	С
ATOM	1997		TRP			69.343	23.240	1.132	1.00 6			A	č
									1.00			A	
MOTA	1998		TRP			68.729	25.543	0.731					C
MOTA	1999	CH2	TRP	A	262	69.057	24.260	0.267	1.00 6	oj.92		A	С

ATOM	2000	N	LEU	A	263	70.236	28.025	7.563	1.00 56.89	7	N
ATOM	2001	CA			263	70.040	29.026		1.00 57.55		
										P	
MOTA	2002	C			263	71.038	30.204		1.00 55.97	P	
MOTA	2003	0			263	71.084	31.020		1.00 51.83	P	. 0
MOTA	2004	CB	LEU	A	263	70.102	28.355	10.010	1.00 58.30	F	C
ATOM	2005	CG	LEU	A	263	68.913	27.494	10.470	1.00 61.17	P	C
MOTA	2006	CD1	LEU	Α	263	67.569	28.209	10.298	1.00 62.02	P	
MOTA	2007		LEU			68.900	26.160		1.00 61.49	P	
MOTA	2008	N			264	71.821	30.300		1.00 54.23	P	
ATOM	2009	CA	GLY	A	264	72.793	31.378	7.352	1.00 55.51	7	C
ATOM	2010	С	GLY	A	264	73.964	31.272	8.318	1.00 53.62	P	C
ATOM	2011	0	GLY	A	264	74.657	32.259	8.582	1.00 52.01	P	. 0
ATOM	2012	N			265	74.180	30.057		1.00 52.02	7	
ATOM	2013	CA			265	75.202	29.749		1.00 52.34	P	
ATOM	2014	C			265	76.498	29.185		1.00 51.88	A	
ATOM	2015	0			265	77.521	29.092		1.00 50.86	P	. 0
MOTA	2016	CB	GLU	Α	265	74.620	28.757	10.823	1.00 53.23	A	C
ATOM	2017	CG	GLU	Α	265	73.484	29.351	11.651	1.00 56.42	24	, c
ATOM	2018	CD	GLU	А	265	72.811	28.342	12.572	1.00 59.67	2	
ATOM	2019		GLU			73.053	27.121		1.00 62.41	A	
		OE2									
MOTA	2020				265	72.029	28.777	13.451	1.00 58.43	A	
MOTA	2021	N			266	76.444	28.781		1.00 48.71	7	N
ATOM	2022	CA	GLN	A	266	77.650	28.438	7.197	1.00 50.93	P	C
MOTA	2023	С	GLN	A	266	77.436	28.743	5.726	1.00 50.91	A	C
ATOM	2024	0	GLN	А	266	76.300	28.790	5.262	1.00 48.81	A	
ATOM	2025	СВ			266	77.919	26.957	7.385	1.00 51.13	2 A	
ATOM	2026	CG			266	79.152	26.489	6.603	0.00 20.00	A	
ATOM	2027	CD	GLN	A	266	79.377	25.016	6.849	0.00 20.00	24	C
ATOM	2028	OE1	GLN	A	266	79.286	24.174	5.970	0.00 20.00	A	. 0
ATOM	2029	NE2	GLN	Α	266	79.677	24.718	8.129	0.00 20.00	A	N
ATOM	2030	N	LEU	А	267	78.523	28.947	4.988	1.00 52.35	A	
ATOM	2031	CA			267	78.414	29.197	3.555			
									1.00 55.74	A	
ATOM	2032	C			267	78.794	27.955	2.759	1.00 55.94	A	
ATOM	2033	0			267	79.623	27.161	3.189	1.00 55.10	A	. 0
ATOM	2034	CB	LEU	Α	267	79.228	30.427	3.117	1.00 57.95	A	C
ATOM	2035	CG	LEU	Α	267	80.592	30.763	3.719	1.00 59.40	A	. c
ATOM	2036	CD1	LEU	A	267	81.667	29.797	3.226	1.00 61.73	A	
ATOM	2037		LEU			80.966	32,199	3.379	1.00 59.25	A	
	2038				268						
ATOM		N				78.141	27.778	1.614	1.00 59.08	A	
ATOM	2039	CA			268	78.394	26.635	0.734	1.00 63.27	A	. C
ATOM	2040	С	VAL	Α	268	79.437	27.028	-0.317	1.00 65.28	A	C
ATOM	2041	0	VAL	Α	268	79.581	28.206	-0.628	1.00 65.73	A	. 0
ATOM	2042	CB	VAL	А	268	77.072	26.103	0.084	1.00 63.60	A	
ATOM	2043		VAL			76.461	27.114	-0.900	1.00 64.14	A	
ATOM	2044		VAL			77.302	24.759	-0.593	1.00 63.65	A	
ATOM	2045	N			269	80.182	26.050	-0.830	1.00 67.59	A	. N
MOTA	2046	CA	CYS	Α	269	81.255	26.315	-1.794	1.00 70.85	A	С
ATOM	2047	С	CYS	А	269	81.288	25.302	-2.943	1.00 71.91	A	C
ATOM	2048	0	CYS	Α	269	81.068	24.106	-2.740	1.00 70.92	А	
ATOM	2049	CB			269	82.618	26.330	-1.086	1.00 71.01	A	
ATOM	2050	SG			269	82.804	27.634				
								0.160		A	
MOTA	2051	N			270	81.560	25.804	-4.147	1.00 73.59	A	
ATOM	2052	CA			270	81.768	24.975	-5.335	1.00 74.68	A	C
MOTA	2053	С	TRP	Α	270	83.036	25.412	-6.065	1.00 75.66	A	С
MOTA	2054	0	TRP	A	270	83.455	26.563	-5.952	1.00 74.31	A	0
ATOM	2055	СВ			270	80.584	25.108	-6.289	1.00 75.03	A	
ATOM	2056	CG			270	79.330	24.451	-5.812	1.00 74.79	A	
			TRP								
ATOM	2057					79.034	23.118	-5.848	1.00 74.58	A	
ATOM	2058		TRP			78.191	25.099	-5.239	1.00 74.13	A	
MOTA	2059		TRP			77.781	22.898	-5.329	1.00 74.78	A	N
ATOM	2060	CE2	TRP	Α	270	77.241	24.098	-4.946	1.00 74.47	A	С
ATOM	2061	CE3	TRP	А	270	77.875	26.431	-4.939	1.00 73.49	A	
ATOM	2062	CZ2	TRP	А	270	76.000	24.386	-4.372	1.00 74.22	A	
	2063		TRP								
MOTA						76.649	26.715	-4.371	1.00 73.73	A	
ATOM	2064		TRP			75.727	25.696	-4.088	1.00 73.99	A	
ATOM	2065	N	GLN			83.633	24.497	-6.827	1.00 77.31	A	
ATOM	2066	CA	GLN	A	271	84.835	24.808	-7.603	1.00 78.64	A	С
ATOM	2067	С	GLN	Α	271	84.559	25.956	-8.579	1.00 79.98	A	
ATOM	2068	o	GLN			83.424	26.136	-9.025	1.00 79.95	A	
ATOM	2069	СВ	GLN					-8.378			
						85.233	23.565		1.00 78.38	A	
ATOM	2070	CG	GLN			85.694	22.427	-7.461	0.00 20.00	A	
ATOM	2071	CD	GLN			86.108	21.239	-8.297	0.00 20.00	A	С
ATOM	2072	OE1	GLN	Α	271	86.517	20.197	-7.812	0.00 20.00	A	0
ATOM	2073	NE2	GLN	A	271	85.995	21.443	-9.624	0.00 20.00	A	
ATOM	2074	N	ALA			85.596	26.733	-8.891	1.00 81.27	A	
	2075	CA	ALA					-9.736			
ATOM						85.467	27.927		1.00 82.23	A	
MOTA	2076	С	ALA	A	212	84.604	27.706	-10.989	1.00 82.74	A	С

2077 MOTA ALA A 272 85.006 27.012 -11.926 1.00 82.97 O MOTA 2078 CB ALA A 272 86.850 28.443 -10.131 1.00 82.17 С MOTA 2079 N **GLY A 273** 83.408 28.289 -10.977 1.00 83.80 N MOTA 2080 CA **GLY A 273** 82.523 28.301 -12.132 1.00 84.66 С ATOM 2081 **GLY A 273** 81.761 27.008 -12.373 C 1.00 84.93 C 26.720 -13.511 MOTA 2082 **GLY A 273** 81.383 1.00 86.15 0 ATOM 2083 N THR A 274 81.509 26.250 -11.305 1.00 84.63 N A ATOM 2084 THR A 274 80.861 24.940 -11.396 CA 1.00 84.75 A C 2085 C THR A 274 ATOM 79.570 24.921 -10.581 1.00 84.35 C 23.880 -10.064 79.158 ATOM 2086 0 THR A 274 1.00 82.91 0 A ATOM 2087 CB THR A 274 81.812 23.828 -10.895 1.00 85.61 ATOM 2088 OG1 THR A 274 82.135 24.043 -9.514 1.00 85.37 ATOM 2089 CG2 THR A 274 83.162 23.879 -11.618 1.00 86.24 C A MOTA 2090 N THR A 275 78.929 26.079 -10.480 1.00 84.51 N A MOTA 2091 CA THR A 275 77.719 26.213 -9.688 1.00 85.22 А C 2092 ATOM С THR A 275 76.535 25.616 -10.451 1.00 84.97 C A ATOM 2093 THR A 275 76.311 25.959 -11.614 0 1.00 83.74 Α 0 ATOM 2094 СВ THR A 275 1.00 85.63 77.450 27.690 -9.370 Α C 2095 ATOM OG1 THR A 275 78.649 28.313 -8.889 1.00 87.20 A 0 ATOM 2096 CG2 THR A 275 76.472 -8.210 27.827 1.00 86.40 A C 2097 24.718 -9.808 ATOM N PRO A 276 75.790 1.00 84.86 N Α ATOM 2098 CA PRO A 276 74.591 24.138 -10.420 1.00 84.84 Α C MOTA 2099 С PRO A 276 73.386 25.087 -10.330 1.00 84.60 А С MOTA 2100 PRO A 276 72.759 25.213 0 -9.270 1.00 83.40 A 0 PRO A 276 ATOM 2101 CB 74.363 22.864 -9.599 1.00 85.26 С A ATOM 2102 CG PRO A 276 74.945 23.160 -8.247 1.00 84.89 A C ATOM PRO A 276 76.033 -8.456 2103 CD 24.178 1.00 84.87 A C 25.757 -11.441 ATOM 2104 N TRP A 277 73.084 1.00 83.87 Α N 2105 ATOM CA 26.671 -11.512 TRP A 277 71.945 1.00 82.59 A С ATOM 2106 С TRP A 277 70.645 25.914 -11.259 1.00 78.91 Α C ATOM 2107 0 TRP A 277 69.868 26.253 -10.361 1.00 76.37 0 ATOM 2108 CB TRP A 277 71.852 27.327 -12.903 1.00 84.62 C A ATOM 2109 TRP A 277 28.426 -13.258 CG 72.863 1.00 86.23 С MOTA 2110 TRP A 277 28.743 -14.520 CD1 73.299 1.00 86.71 С A 29.358 -12.371 ATOM 2111 CD2 TRP A 277 73.518 1.00 86.55 C A ATOM 2112 NE1 TRP A 277 74.186 29.792 -14.473 1.00 86.87 A N ATOM 2113 CE2 TRP A 277 74.340 30.190 -13.171 1.00 87.19 A C 29.573 -10.982 31.211 -12.632 ATOM **CE3 TRP A 277** 2114 73.503 1.00 86.48 С 2115 ATOM CZ2 TRP A 277 75.129 1.00 87.46 С Α ATOM 2116 CZ3 TRP A 277 74.291 30.587 -10.449 1.00 86.65 С MOTA 2117 CH2 TRP A 277 75.092 31.392 -11.273 1.00 87.15 A С ATOM 2118 **ASN A 278** 70.450 24.864 -12.052 N 1.00 75.16 N Α MOTA 2119 **ASN A 278** 69.149 24.232 -12.228 CA 1.00 71.96 C Α 2120 23.332 -11.094 ATOM С **ASN A 278** 68.678 1.00 68.53 Α C ATOM 2121 O **ASN A 278** 67.516 22.952 -11.057 1.00 65.41 Α 0 23.456 -13.544 ATOM 2122 CB **ASN A 278** 69.145 1.00 71.99 A С MOTA 2123 CG ASN A 278 69.124 24.372 -14.749 1.00 73.02 С A 68.090 ATOM 2124 OD1 ASN A 278 24.528 -15.397 1.00 75.67 A 0 ND2 ASN A 278 ATOM 2125 70.261 25.002 -15.043 1.00 71.03 ATOM 2126 N ILE A 279 69.567 23.002 -10.164 1.00 67.52 N ATOM 2127 CA ILE A 279 69.188 22.191 -9.006 1.00 66.60 C A MOTA 2128 С ILE A 279 68.277 22.978 -8.046 1.00 63.12 C Α MOTA 2129 o ILE A 279 67.509 22.382 ~7.293 1.00 61.43 A O 2130 ATOM CB ILE A 279 70.451 21.673 -8.266 1.00 69.14 А C ATOM 2131 CG1 ILE A 279 20.801 -9.196 71.311 1.00 70.33 A C 2132 CG2 ILE A 279 -7.004 ATOM 70.069 20.890 1.00 70.79 С ATOM 2133 CD1 ILE A 279 70.601 19.582 -9.773 1.00 71.75 A C N PHE A 280 ATOM 2134 68.364 24.310 -8.089 1.00 58.16 2135 MOTA CA PHE A 280 67.577 25.184 -7.215 1.00 54.73 А С ATOM 2136 С PHE A 280 66.327 25.723 -7.929 1.00 48.44 С A -9.065 MOTA 2137 O PHE A 280 66.404 26.160 1.00 42.63 0 A 2138 CB PHE A 280 MOTA 68.440 26.352 -6.737 1.00 54.07 Α С ATOM 2139 CG PHE A 280 69.641 25.934 -5.950 1.00 56.01 A C 2140 CD1 PHE A 280 70.860 ATOM 25.735 -6.582 1.00 56.28 A С 2141 CD2 PHE A 280 MOTA 69.554 25.741 -4.578 1.00 56.86 A С 2142 CE1 PHE A 280 ATOM 71.975 25.351 -5.861 1.00 58.79 A С 2143 CE2 PHE A 280 ATOM 70.663 25.351 -3.846 1.00 58.48 С MOTA 2144 C2 PHE A 280 71.880 25.158 1.00 58.24 -4.487 A C -7.253 MOTA 2145 N PRO A 281 65.183 25.713 1.00 46.45 A N 2146 CA PRO A 281 MOTA 63.933 26.153 -7.873 1.00 45.34 A С -7.930 2147 MOTA C PRO A 281 63.830 27.670 1.00 46.32 Α C 2148 MOTA 0 PRO A 281 64.540 28.377 -7.209 1.00 44.85 Α 0 ATOM 2149 PRO A 281 62.875 25.625 -6.9111.00 47.02 Α C 2150 CG ATOM PRO A 281 63.552 25.707 -5.574 1.00 48.68 C 2151 CD ATOM PRO A 281 64.985 25.312 -5.845 1.00 47.62 C A 2152 N ATOM VAL A 282 62.942 1.00 44.02 28.158 -8.783 N CA ATOM 2153 **VAL A 282** 62.594 29.567 -8.785 1.00 44.12

MOTA	2154	С	VAL	A	282	61.625	29.811	-7.650	1.00	44.35	P	c c
ATOM	2155	0			282	60.976	28.886			43.30	P	
ATOM	2156	CB			282	61.977		-10.119		44.10	P	
MOTA MOTA	2157 2158		VAL			62.930 60.621		-11.259 -10.368		40.34	P	
ATOM	2159	N N			283	61.555	31.048			40.14	P	
ATOM	2160	CA			283	60.502	31.421			42.52	7	
MOTA	2161	С			283	59.656	32.479		1.00	39.13	P	C
MOTA	2162	0			283	60.171	33.297			35.09	7	
MOTA	2163	CB			283	61.043	31.847			43.69	P	
ATOM ATOM	2164 2165		ILE			59.925 62.174	32.432 32.818			46.75	P	
ATOM	2166		ILE			60.216	32.406			47.98	P	
ATOM	2167	N			284	58.350	32.359			35.81	P	
ATOM	2168	CA			284	57.354	33.282			33.91	P	
ATOM	2169	С			284	56.555	33.814			32.23	P	
ATOM ATOM	2170 2171	O CB			284 284	56.080 56.457	33.051 32.574			31.03 31.65	<i>I</i> A <i>I</i> A	
ATOM	2172	OG			284	57.075	32.546			35.60	7	
ATOM	2173	N			285	56.455	35.137			25.42	2	
ATOM	2174	CA	LEU	A	285	55.588	35.760	-5.069	1.00	24.59	2 A	
MOTA	2175	С			285	54.478	36.397			21.13	A	
ATOM	2176	0			285	54.770	37.108			19.53	A	
ATOM ATOM	2177 2178	CB CG			285 285	56.348 57.674	36.799 36.297			27.87 27.04	2A 2A	
ATOM	2179		LEU			58.356	37.456			31.32	A	
ATOM	2180		LEU			57.428	35.159	-2.702		29.67	2A	
MOTA	2181	N			286	53.233	36.065	-5.587	1.00	22.23	A	N
MOTA	2182	CA			286	52.112	36.768	-6.196		22.87	A	
ATOM	2183	C			286	51.807	37.909	-5.280		20.51	A	
ATOM ATOM	2184 2185	O CB			286 286	51.686 50.871	37.712 35.898	-4.069 -6.336		23.12	A A	
ATOM	2186	CG			286	50.989	34.755	-7.339		20.36	A	
ATOM	2187		TYR			51.857	33.691	-7.125		27.97	A	
MOTA	2188		TYR			50.168	34.720	-8.477	1.00	22.74	A	C
MOTA	2189		TYR			51.937	32.641	-8.024		28.14	A	
ATOM ATOM	2190 2191	CEZ	TYR		286	50.243 51.125	33.661 32.630	-9.393 -9.148		19.26	A	
ATOM	2192	OH	TYR			51.123		-10.033		24.29 23.89	A A	
ATOM	2193	N	LEU			51.672	39.113	-5.849		17.57	A	
MOTA	2194	CA	LEU	A	287	51.327	40.293	-5.084		18.37	A	
ATOM	2195	С	LEU			49.902	40.714	-5.367		19.30	A	
ATOM	2196	0	LEU			49.413	40.525	-6.486		17.31	A	
ATOM ATOM	2197 2198	CB CG	LEU			52.291 53.759	41.429 41.076	-5.435 -5.143		16.99 19.76	A A	
ATOM	2199		LEU			54.689	42.131	-5.672		21.23	A	
MOTA	2200		LEU			53.943	40.852	-3.653		27.06	A	
ATOM	2201	N	MET			49.250	41.310	-4.369		17.49	A	
ATOM	2202	CA	MET			47.906	41.869	-4.524		14.88	A	
ATOM ATOM	2203 2204	С 0	MET MET			47.938 48.833	42.861 43.675	-5.688 -5.798		17.43 16.72	A	
ATOM	2205	СВ	MET		288	47.471	42.597	-3.798		19.44	A A	
ATOM	2206	CG	MET			46.150	43.315	-3.360		21.18	A	
MOTA	2207	SD	MET	A	288	45.656	44.123	-1.787		27.75	A	
ATOM	2208	CE	MET			45.045	42.809	-0.930		26.84	A	
ATOM	2209	N	GLY			46.961	42.792	-6.574		15.66	A	
ATOM ATOM	2210 2211	CA C	GLY GLY			46.942 46.143	43.753 45.000	-7.664 -7.381		17.02 16.69	A A	
ATOM	2212	ŏ	GLY			45.655	45.211	-6.267		16.95	A	
MOTA	2213	N	GLU			45.922	45.786	-8.425		16.66	A	
ATOM	2214	CA	GLU			45.190	47.057	-8.298		17.93	A	
MOTA	2215	C	GLU			43.656	46.888	-8.251		18.47	A	
ATOM ATOM	2216 2217	O CB	GLU GLU			42.944 45.541	47.782	-7.800 -9.465		20.92	A	
ATOM	2217	CG	GLU			47.003	47.958 48.349	-9.465 -9.525		21.26	A A	
ATOM	2219	CD	GLU			47.243		-10.450		21.06	A	
ATOM	2220	OE1	GLU	A	290	47.442		-11.696		22.85	A	
ATOM	2221		GLU			47.229	50.657	-9.934	1.00	23.70	A	
ATOM	2222	N	VAL			43.175	45.765	-8.763		19.67	A	
ATOM ATOM	2223 2224	CA C	VAL VAL			41.752 41.323	45.506	-8.963		19.72	A	
ATOM	2225	0	VAL			42.084	44.329	-8.092 -7.867		18.87 18.96	A A	
ATOM	2226	СВ	VAL			41.488		-10.467		20.83	A	
ATOM	2227		VAL			40.050		-10.722		24.34	A	
ATOM	2228		VAL			41.848		-11.311		20.67	A	
MOTA		N	THR			40.088	44.379	-7.592		19.56	A	
MOTA	2230	CA	THR	A	292	39.548	43.301	-6.774	T.00	20.18	A	С

-7.445 1.00 20.54 39.725 C MOTA 2231 THR A 292 41.949 C 39.429 -8.610 1.00 17.81 0 ATOM 2232 0 THR A 292 41.803 ATOM 2233 СВ THR A 292 38.068 43.581 -6.5241.00 23.16 С 37.967 44.736 -5.684 1.00 26.50 ATOM OG1 THR A 292 2234 37.402 -5.738 1.00 25.56 A C ATOM THR A 292 42.452 2235 CG2 40.209 40.975 ~6.689 1.00 18.34 ATOM ASN A 293 2236 N 1.00 19.39 40.397 A C ATOM 2237 CA **ASN A 293** 39.597 -7.126 ATOM 2238 С **ASN A 293** 41.474 39.420 -8.218 1.00 20.71 A C 1.00 19.32 ATOM 2239 0 **ASN A 293** 41.536 38.375 -8.822 Α 0 ATOM 2240 CB **ASN A 293** 39.066 38.968 -7.5791.00 18.84 A C 2241 **ASN A 293** 38.142 38.594 -6.414 1.00 23.11 A C MOTA CG ATOM 2242 OD1 **ASN A 293** 38.573 38.422 -5.267 1.00 24.46 Α 0 36.863 1.00 24.82 ATOM 2243 ND2 ASN A 293 38.438 -6.724 Α N ATOM 2244 N **GLN A 294** 42.338 40.424 -8.416 1.00 20.83 A N **GLN A 294** 43.381 40.392 -9.443 1.00 16.07 C ATOM 2245 CA 44.748 40.529 -8.794 1.00 18.30 A C ATOM 2246 C **GLN A 294** 44.968 -8.011 1.00 19.08 **GLN A 294** 41.445 Α 0 ATOM 2247 0 41.537 -10.438 1.00 16.09 ATOM 2248 CB **GLN A 294** 43.178 A C ATOM 2249 CG **GLN A 294** 44.307 41.763 -11.435 1.00 14.15 A C ATOM 2250 CD **GLN A 294** 45.315 42.825 -10.969 1.00 15.00 Α C 2251 **GLN A 294** 44.928 43.902 -10.501 1.00 17.11 0 ATOM OE1 A 46.599 42.514 -11.111 1.00 12.44 ATOM 2252 NE2 **GLN A 294** A N 1.00 17.25 N 2253 **SER A 295** 45.645 39.617 -9.146 A ATOM N ATOM 2254 CA **SER A 295** 47.016 39.617 -8.650 1.00 17.43 C **SER A 295** 47.979 39.581 -9.840 1.00 18.06 A С ATOM 2255 С 47.556 39.486 -10.992 1.00 16.54 **SER A 295** 0 ATOM 2256 0 A 38.420 -7.738 1.00 16.97 CB SER A 295 C ATOM 2257 47.247 A -8.475 1.00 17.63 ATOM 2258 OG **SER A 295** 47.161 37.211 A 0 -9.563 1.00 13.70 ATOM 2259 N PHE A 296 49.279 39.722 Δ N ATOM 2260 CA PHE A 296 50.326 39.457 -10.543 1.00 16.16 A С PHE A 296 51.456 38.721 -9.823 1.00 17.11 C ATOM 2261 С 38.654 -8.612 PHE A 296 51.463 1.00 14.83 ATOM 2262 0 A 0 40.734 -11.217 2263 СВ PHE A 296 50.833 1.00 16.09 C ATOM PHE A 296 51.510 41.703 -10.290 1.00 13.78 A C ATOM 2264 CG 50.757 42.537 -9.504 1.00 12.99 ATOM 2265 CD1 PHE A 296 A C 52.888 41.759 -10.202 1.00 16.17 CD2 PHE A 296 A C ATOM 2266 43.451 -8.653 c 51.359 1.00 15.39 ATOM 2267 CE1 PHE A 296 A 42.693 -9.339 MOTA 2268 CE2 PHE A 296 53.502 1.00 12.59 A C 43.519 -8.580 ATOM 2269 CZ PHE A 296 52.718 1.00 15.93 A C ATOM 2270 N ARG A 297 52.388 38.150 -10.564 1.00 18.57 A N ATOM 2271 CA ARG A 297 53.501 37.470 -9.908 1.00 21.97 A C 37.955 -10.429 1.00 19.76 ATOM 2272 С ARG A 297 54.830 2273 0 ARG A 297 54.990 38.238 -11.612 1.00 20.21 А o ATOM 53.391 35.959 -10.045 1.00 27.12 ARG A 297 C ATOM 2274 CB A 35.442 -11.323 ARG A 297 1.00 25.39 ATOM 2275 CG 53.915 A C 53.887 33.904 -11.434 1.00 28.85 ATOM 2276 CD ARG A 297 A C ATOM 2277 NE ARG A 297 54.152 33.532 -12.810 1.00 28.07 A N ATOM 2278 czARG A 297 53.625 32.493 -13.435 1.00 29.23 A C 2279 NH1 ARG A 297 52.808 31.664 -12.800 1.00 29.79 ATOM N NH2 ARG A 297 53.942 32.273 -14.708 1.00 33.36 N ATOM 2280 A ATOM 2281 N ILE A 298 55.769 38.034 -9.501 1.00 22.62 2282 CA ILE A 298 57.171 38.264 -9.776 1.00 22.52 A C ATOM 2283 57.926 36.968 -9.461 1.00 20.35 c MOTA С ILE A 298 A 0 57.616 36.268 -8.498 1.00 24.62 0 2284 ILE A 298 MOTA A 57.700 39.494 -8.963 1.00 20.28 C MOTA 2285 CB TLE A 298 A 57.778 -7.453 1.00 21.96 ATOM 2286 CG1 ILE A 298 39.216 A C MOTA 2287 CG2 ILE A 298 56.838 40.708 -9.257 1.00 20.40 A C MOTA 2288 CD1 ILE A 298 58.375 40.390 -6.628 1.00 19.78 C A 2289 THR A 299 58.900 36.671 -10.297 1.00 27.12 N MOTA N A 2290 THR A 299 59.621 35.404 -10.271 1.00 27.28 ATOM CA C 2291 THR A 299 61.114 35.702 -10.229 1.00 26.61 A c ATOM С 0 THR A 299 61.614 36.337 -11.139 1.00 28.84 0 ATOM 2292 Α CB THR A 299 59.291 34.640 -11.560 1.00 27.03 2293 C MOTA A 57.902 34.287 -11.572 1.00 32.46 ATOM 2294 OG1 THR A 299 A 0 60.001 33.283 -11.620 1.00 28.77 ATOM 2295 CG2 THR A 299 A C 1.00 31.26 ATOM 2296 N ILE A 300 61.803 35.268 -9.175 A N ATOM 2297 CA ILE A 300 63.270 35.393 -9.098 1.00 33.70 С ATOM 2298 ILE A 300 63.938 34.033 -9.195 1.00 39.02 C C ATOM 2299 ILE A 300 63.273 32.989 -9.287 1.00 37.86 0 63.729 36.107 1.00 35.95 MOTA 2300 CB ILE A 300 -7.793 C A CG1 2301 ILE A 300 63.443 35.258 -6.566 1.00 37.33 ATOM A C 63.049 37.457 -7.639 1.00 35.67 ATOM 2302 CG2 ILE A 300 С 1.00 39.22 CD1 ILE A 300 64.152 35.715 -5.318 ATOM 2303 A C 1.00 39.05 65.265 ATOM 2304 N LEU A 301 34.067 -9.161 N 66.093 1.00 37.54 ATOM 2305 CA LEU A 301 32.901 -9.421 C ATOM 2306 **LEU A 301** 67.013 32.602 -8.255 1.00 38.40 C C ATOM 2307 0 **LEU A 301** 67.182 33.428 -7.371 1.00 36.53

ATOM	2308	CB	LEU	A	301	66.933	33.169	-10.664	1.00	36.30		A	С
ATOM	2309	CG			301	66.126		-11.937		34.74		A	č
MOTA	2310		LEU			67.030		-13.022		32.47		A	C
ATOM	2311	CD2	LEU	Α	301	65.387	32.196	-12.430	1.00	39.84		A	C
ATOM	2312	N	PRO	Α	302	67.619	31.420	-8.264	1.00	39.73		A	N
ATOM	2313	CA			302	68.706	31.113	-7.335	1 00	41.84		A	С
ATOM	2314	С			302	69.828	32.157	-7.387		41.87		A.	С
ATOM	2315	0	PRO	Α	302	70.427	32.420	-6.356	1.00	45.40		A	0
ATOM	2316	CB	PRO	Α	302	69.208	29.759	-7.834	1.00	41.99		A.	С
MOTA	2317	CG	PRO	Δ	302	68.031	29.157	-8.495	1 00	42.63		A	C
MOTA	2318	CD			302	67.321	30.285	-9.150		40.17		A	С
MOTA	2319	N	GLN	Α	303	70.094	32.759	-8.546	1.00	40.21		A	N
ATOM	2320	CA	GLN	A	303	71.197	33.721	-8.659	1.00	41.56		A	Ç
ATOM	2321	С	GLN	А	303	70.933	34.984	-7.824	1.00	43.24		A	С
ATOM	2322	ō			303	71.837	35.788	-7.598		38.56			ŏ
												A.	
ATOM	2323	CB			303	71.523		-10.119		44.66		A	С
MOTA	2324	CG	GLN	А	303	70.564	33.666	-11.201	1.00	47.40		A	С
ATOM	2325	CD	GLN	A	303	70.716	32.201	-11.545	1.00	50.63		A	С
ATOM	2326	OE1	GLN	А	303	69.911	31.372	-11.120		55.64		A	0
ATOM	2327		GLN			71.742				51.86			
								-12.332				A.	N
MOTA	2328	N			304	69.689	35.145	-7.382	1.00	41.50		A.	N
MOTA	2329	CA	GLN	A	304	69.273	36.282	-6.589	1.00	46.43		A.	C
ATOM	2330	C.	GLN	Α	304	69.293	35.906	-5.100	1.00	47.20		A	С
ATOM	2331	0			304	69.738	36.705	-4.270		45.43		A.	ō
ATOM	2332	CB			304	67.871	36.735	-7.046		49.88		A	С
ATOM	2333	CG	GLN	А	304	67.862	37.811	-8.157	1.00	51.33		A.	С
MOTA	2334	CD	GLN	A	304	68.273	37.315	-9.548	1.00	54.63		A.	С
ATOM	2335	OE1	GLN	A	304	67.918	37.933	-10.556	1.00	54.99		A.	0
ATOM	2336	NE2											
						69.031	36.224	-9.607		57.60		A	N
ATOM	2337	N			305	68.838	34.694	-4.760		47.73		A.	N
ATOM	2338	CA	TYR	A	305	68.895	34.241	-3.364	1.00	51.85		A.	С
ATOM	2339	С	TYR	A	305	70.132	33.385	-3.029	1.00	53.38		A.	С
ATOM	2340	ō			305	70.267	32.911	-1.903		53.57		A.	ō
ATOM	2341	CB	TYR			67.573	33.577	-2.910		52.81		A.	С
ATOM	2342	CG	TYR	A	305	67.247	32.202	-3.471	1.00	53.16		A.	С
ATOM	2343	CD1	TYR	Α	305	67.828	31.052	-2.943	1.00	52.42		A	С
ATOM	2344	CD2	TYR	A	305	66.309	32.053	-4.494	1.00	52.93		A.	С
ATOM	2345		TYR			67.515	29.789	-3.446		53.23		A	
													С
ATOM	2346		TYR			65.985	30.796	-5.002		53.91		A.	С
ATOM	2347	CZ	TYR	A	305	66.592	29.669	-4.474	1.00	53.62		A.	С
ATOM	2348	OH	TYR	Α	305	66.272	28.425	-4.971	1.00	53.84		A	0
ATOM	2349	N	LEU	Α	306	71.033	33.228	-3.997		55.03		Ā	N
ATOM													
	2350	ÇA	LEU			72.355	32.633	-3.777		61.56		A.	C
ATOM	2351	С	LEU	А	306	73.390	33.700	-4.150	1.00	63.69		A.	С
ATOM	2352	0	LEU	А	306	73.663	33.946	-5.332	1.00	64.04		Ą	0
ATOM	2353	CB	LEU	Α	306	72.559	31.361	-4.610	1.00	62.70		A.	С
ATOM	2354	CG	LEU			72.418	29.992	-3.934		65.11		Ā	c
	2355		LEU										
ATOM						71.256	29.932	-2.950		65.92		A.	С
ATOM	2356	CD2	LEU	А	306	72.262	28.920	-5.001	1.00	65.99		4	С
ATOM	2357	N	ARG	А	307	73.965	34.321	-3.126	1.00	67.42		4	N
ATOM	2358	CA	ARG	Α	307	74.753	35.546	-3.285	1.00	69.54		A	С
ATOM	2359	C	ARG		307	76.226	35.241	-3.045		70.36		Ā	
													С
ATOM	2360	0	ARG			76.568	34.726	-1.981		69.95		A	0
ATOM	2361	CB	ARG	А	307	74.270	36.631	-2.302	1.00	70.52		4	С
MOTA	2362	CG	ARG	А	307	73.942	36.126	-0.885	1.00	71.76		4	С
ATOM	2363	CD	ARG	А	307	73.347	37.158	0.060		71.91		Ą	С
ATOM	2364	NE	ARG			74.308	37.604	1.064		71.58			
												4	N
MOTA	2365	CZ	ARG			75.160	38.609	0.900		72.31		<i>}</i>	С
ATOM	2366		ARG			75.184	39.300	-0.239	1.00	72.16	1	4	N
ATOM	2367	NH2	ARG	А	307	75.998	38.930	1.882	1.00	72.17	1	Ą	N
ATOM	2368	N	PRO	Α	308	77.095	35.520	-4.022	1.00	71.45		A	N
ATOM	2369	CA	PRO			78.544	35.396	-3.809		72.19			
			PRO									4	С
ATOM	2370	С				79.011	36.173	-2.576		73.28		Ā	С
ATOM	2371	0	PRO			78.712	37.362	-2.461		73.54		A	0
ATOM	2372	CB	PRO	A	308	79.144	35.999	-5.089	1.00	72.26	1	4	С
ATOM	2373	CG	PRO	A	308	78.083	35.844	-6.123		71.35		À	c
ATOM	2374	CD	PRO			76.775	35.937	-5.400		71.33			
												4	С
ATOM	2375	N	VAL			79.698	35.500	-1.656		75.03		4	N
ATOM	2376	CA	VAL	Α	309	80.253	36.151	-0.472	1.00	77.51	2	A.	C
ATOM	2377	С	VAL	Α	309	81.604	36.759	-0.842	1.00	79.98		4	C
ATOM	2378	ŏ	VAL			82.613	36.051	-0.877		79.39		4	ō
ATOM	2379	CB	VAL			80.412	35.162	0.708		77.15		1	С
ATOM	2380		VAL			81.097	35.838	1.896	1.00	76.95	1	4	С
ATOM	2381	CG2	VAL	А	309	79.056	34.605	1.118	1.00	76.88	2	4	С
ATOM	2382	N	GLU			81.596	38.065	-1.130		83.03		À	N
ATOM	2383	CA	GLU			82.777	38.833	-1.562		84.93			c
ATOM	2384	С	GLU	M	210	83.980	37.940	-1.953	1.00	86.11		4	С

ATOM	2385	0	GLU	A	310	83.862	37.110	-2.864	1.00 8	5.97		A	0
ATOM	2386	СВ			310	83.131	39.882	-0.488	1.00 8			A	Č
MOTA	2387	CG			310	83.937	41.076	-0.997	1.00 8			A	С
MOTA	2388	CD			310	83.130	42.368	-1.053	1.00 8			A	С
MOTA MOTA	2389		GLU			82.756	42.794	-2.166	1.00 8			A D	0
MOTA	2390 2391	N N			311	82.873 85.130	42.962 38.129	0.018 -1.304	1.00 B			A A	N N
ATOM	2392	CA	ASP			86.230	37.175	-1.390	1.00 8			A	C
MOTA	2393	С			311	86.260	36.411	-0.071	1.00 8			A	Č
MOTA	2394	0	ASP	A	311	85.615	36.817	0.902	1.00 8	7.73		A	0
MOTA	2395	CB	ASP		311	87.580	37.879	-1.616	1.00 8			A	С
ATOM	2396	CG			311	87.502	39.029	-2.619	1.00 8			A	C
ATOM ATOM	2397 2398		ASP ASP		311	88.543 86.457	39.686 39.356	-2.848 -3.222	1.00 9			A A	0
ATOM	2399	N			312	86.995	35.302	-0.043	1.00 8			A	N
ATOM	2400	CA	VAL	A	312	87.233	34.565	1.201	1.00 8			A	C
MOTA	2401	С			312	88.737	34.311	1.376	1.00 8			A	С
ATOM	2402	0			312	89.440	33.985	0.414	1.00 8			A	0
ATOM ATOM	2403 2404	CB CG1	VAL VAL		312	86.407 84.949	33.238	1.271	1.00 8			A	C
ATOM	2405		VAL			87.009	33.489 32.145	0.890 0.392	1.00 8			A A	C
ATOM	2406	N	ALA		313	89.218	34.475	2.608	1.00 8			A.	N
ATOM	2407	CA	ALA			90.649	34.372	2.916	1.00 8			A	C
ATOM	2408	С	ALA			91.138	32.925	3.070	1.00 8			A	С
MOTA	2409	0	ALA			92.311	32.633	2.816	1.00 8			A.	0
ATOM ATOM	2410 2411	CB N	ALA THR			90.965 90.236	35.166 32.029	4.176 3.478	1.00 8			A A	C
ATOM	2412	CA	THR			90.576	30.625	3.735	1.00 8			A.	С
MOTA	2413	С	THR			90.165	29.692	2.581	1.00 8			A	c
MOTA	2414	0	THR	A	314	90.059	28.474	2.768	1.00 8	7.87		A	0
MOTA	2415	CB	THR		314	89.941	30.148	5.079	1.00 8			A	С
ATOM ATOM	2416		THR			88.581	30.591	5.184	1.00 8			A.	0
ATOM	2417 2418	CG2 N			315	90.631 89.946	30.799 30.262	6.276 1.393	1.00 8			A. A.	C N
ATOM	2419	CA	SER			89.610	29.484	0.194	1.00 8			A.	C
ATOM	2420	С	SER			89.806	30.289	-1.099	1.00 8			A	č
MOTA	2421	0	SER	A	315	90.082	31.491	-1.061	1.00 8	5.17		A	0
MOTA	2422	CB	SER			88.161	28.971	0.268	1.00 8			A	С
ATOM ATOM	2423 2424	og N	SER			88.053	27.650	-0.240	1.00 8			A	0
ATOM	2425	CA	GLN			89.666 89.668	29.609 30.261	-2.238 -3.551	1.00 8			A. A.	N N
ATOM	2426	C	GLN			88.529	29.737	-4.435	1.00 8			A.	c
ATOM	2427	0	GLN	A	316	88.656	29.684	-5.660	1.00 8			A.	0
ATOM	2428	CB	GLN			91.021	30.062	-4.242	1.00 8			A	С
ATOM	2429	CG	GLN			91.420	31.209	-5.162	1.00 8			A.	C
ATOM ATOM	2430 2431	CD OE1	GLN GLN		316	91.981 91.229	32.399 33.262	-4.402 -3.946	1.00 8			A. A.	0
ATOM	2432	NE2	GLN			93.302	32.444	-4.259	1.00 8			A	Ŋ
ATOM	2433	N	ASP	A	317	87.413	29.374	-3.800	1.00 8			A	N
ATOM	2434	CA	ASP			86.250	28.806	-4.486	1.00 8		1	A.	С
ATOM	2435	C	ASP			85.150	29.855	-4.659	1.00 7			A.	С
MOTA MOTA	2436 2437	O CB	ASP ASP		317	85.250 85.696	30.958 27.619	-4.121 -3.683	1.00 7			A. A.	0
ATOM	2438	CG	ASP			86.445	26.327	-3.945	1.00 8			A.	C
ATOM	2439	OD1	ASP	A	317	85.860	25.251	-3.706	1.00 8			Α.	ō
ATOM	2440	OD2	ASP	A	317	87.616	26.284	-4.381	1.00 8	3.59		A.	0
MOTA	2441	N	ASP			84.113	29.504	-5.421	1.00 7			Ą	N
ATOM	2442 2443	CA	ASP			82.894	30.315	-5.525	1.00 7			A	C
ATOM ATOM	2444	С О	ASP ASP			81.909 81.025	29.982 29.137	-4.398 -4.565	1.00 7			A A	0
ATOM	2445	СВ	ASP			82.212	30.093	-6.880	1.00 7			Ā	č
ATOM	2446	CG	ASP	A	318	83.043	30.590	-8.044	1.00 7			A	C
ATOM	2447		ASP			84.270	30.781	-7.874	1.00 7		1	A	0
MOTA	2448		ASP			82.550	30.811	-9.170	1.00 7			A	0
ATOM ATOM	2449 2450	N CA	CYS			82.065 81.211	30.653	-3.259 -2.094	1.00 7			A	N
ATOM	2451	C	CYS			80.044	30.428 31.414	-2.062	1.00 6			A A	C
ATOM	2452	ō	CYS			80.235	32.611	-2.258	1.00 6			À	o
ATOM	2453	СВ	CYS	A	319	82.026	30.554	-0.803	1.00 7			Ā	c
ATOM	2454	SG	CYS			83.414	29.394	-0.686	1.00 7			A.	S
ATOM	2455	N	TYR			78.839	30.899	-1.832	1.00 6			A.	N
ATOM ATOM	2456 2457	CA C	TYR TYR			77.645 77.013	31.728 31.498	-1.691 -0.320	1.00 6 1.00 6			A A	C
ATOM	2457	o	TYR			77.332	30.523	0.365	1.00 6			A.	С О
ATOM	2459	CB	TYR			76.611	31.384	-2.764	1.00 6			À	č
ATOM	2460	CG	TYR			77.108	31.323	-4.198	1.00 6		1	Ą	Ċ
ATOM	2461	CD1	TYR	A	320	77.957	30.302	-4.632	1.00 6	4.73		A.	С

MOTA	2462	CD2	TYR	Α	320	76.682	32.260	-5.139	1.00	64.78		A	С
MOTA	2463	CE1			320	78.390	30.239	-5.961		64.57		A	C
ATOM	2464	CE2	TYR	Α	320	77.106	32.202	-6.465	1.00	64.30		A	С
MOTA	2465	CZ	TYR	Α	320	77.957	31.193	-6.871	1.00	64.35		A	С
MOTA	2466	OH			320	78.374	31.146	-8.185		62.89		A	0
ATOM	2467	И	LYS		321	76.111	32.392	0.076		59.11		A	N
ATOM	2468	CA			321	75.320	32.189	1.286		58.36		A	С
ATOM	2469	C			321	73.816	32.265	0.996		55.24		A	C
ATOM	2470	O			321	73.353	33.065	0.181		47.87		A	0
MOTA MOTA	2471 2472	CB CG			321 321	75.747 74.853	33.160 34.371	2.398 2.629		59.88 62.72		A A	C
ATOM	2473	CD			321	75.277	35.120	3.888		64.37		A	c
ATOM	2474	CE			321	74.699	34.483	5.145		64.91		A	c
ATOM	2475	NZ			321	74.999	35.289	6.363		66.23		A	N
ATOM	2476	N			322	73.062	31.401	1.664		51.88		A	N
ATOM	2477	CA	PHE	A	322	71.619	31.397	1.531	1.00	49.73		A	С
MOTA	2478	С	PHE	Α	322	71.087	32.737	2.019	1.00	49.06		A	C
ATOM	2479	0			322	71.346	33.148	3.154	1.00	45.51		A	0
ATOM	2480	CB			322	70.999	30.235	2.321		49.10		A	C
ATOM	2481	CG			322	69.573	29.925	1.935		44.63		A	С
MOTA	2482				322	68.563	29.921	2.894		45.73		A	C
ATOM	2483				322	69.248	29.629	0.623		39.25		A	C
ATOM ATOM	2484 2485		PHE		322	67.252 67.950	29.634	2.539		44.70		A	C
ATOM	2486	CEZ			322	66.947	29.351 29.353	0.261 1.218		41.50 42.07		A A	C
ATOM	2487	N			323	70.339	33.399	1.142		47.94		A A	N
ATOM	2488	CA			323	69.901	34.771	1.336		46.61		A	C
ATOM	2489	c			323	68.426	34.839	1.712		44.07		A	Č
ATOM	2490	ō			323	67.809	35.887	1.548		33.93		A	ō
ATOM	2491	СВ			323	70.133	35.564	0.054		49.38		A	Ċ
MOTA	2492	N			324	67.853	33.725	2.169	1.00	37.73		A	N
ATOM	2493	CA	ILE	A	324	66.520	33.746	2.739	1.00	38.21		A	С
ATOM	2494	С	ILE	Α	324	66.643	33.442	4.214	1.00	34.73		A	С
ATOM	2495	0			324	67.442	32.611	4.619	1.00	36.43		A	0
ATOM	2496	CB			324	65.577	32.736	2.038		38.89		A	С
ATOM	2497		ILE			65.714	32.862	0.518		38.34		A.	С
ATOM	2498		ILE			64.126	32.960	2.495		40.76		A	С
ATOM ATOM	2499 2500	N	ILE		325	64.684 65.840	32.110 34.112	-0.277 5.020		41.65		A.	C
ATOM	2501	CA			325	66.013	34.112	6.460		32.69 38.71		A. A.	И
ATOM	2502	C			325	64.722	34.407	7.139		39.64		A.	c
ATOM	2503	ŏ			325	63.792	34.883	6.509		40.29		A	ō
ATOM	2504	СВ			325	67.150	34.953	6.925		40.03		A.	č
ATOM	2505	OG			325	66.788	36.327	6.838		38.81		A	ō
ATOM	2506	N	GLN	A	326	64.677	34.221	8.440	1.00	38.99		A.	N
MOTA	2507	CA	GLN	Α	326	63.414	34.244	9.134	1.00	39.09		A	С
MOTA	2508	С			326	63.294	35.561	9.885	1.00	36.76		A.	С
ATOM	2509	0			326	64.259	36.297	10.004		39.83		A	0
ATOM	2510	CB			326	63.287	33.011	10.037		41.88		A.	С
MOTA	2511	CG			326	64.481	32.024	9.957		45.10		A.	C
ATOM ATOM	2512 2513	CD OE1			326	64.374 65.393	30.817	10.892		50.52 51.97		A.	C
MOTA	2514	NE2				63.151	30.286 30.388	11.322 11.202		51.73		A. A.	O N
ATOM	2515	N	SER			62.108	35.878	10.374		30.92		A.	N
ATOM	2516	CA	SER			61.904	37.188	10.988		35.17		A	c
MOTA	2517	С	SER			60.788	37.140	11.993	1.00	36.09		A	C
ATOM	2518	0	SER	Α	327	59.978	36.208	12.018		38.75		A	0
MOTA	2519	CB	SER	A	327	61.578	38.259	9.921	1.00	35.42		A.	С
MOTA	2520	OG	SER			60.882	39.380	10.482	1.00	33.54		A	0
MOTA	2521	N	SER			60.723	38.174	12.808		31.04		A.	N
ATOM	2522	CA	SER			59.597	38.328	13.697		37.93		A	С
ATOM	2523	C	SER			58.868	39.654	13.520		39.07		A.	C
MOTA	2524	0	SER			57.960	39.967	14.296		43.35		A.	0
MOTA	2525	CB	SER SER			60.086	38.167	15.123		41.74		A.	С
ATOM ATOM	2526 2527	OG N	THR			60.967 59.257	39.227 40.409	15.485 12.492		45.41 37.31		A.	0
ATOM	2528	CA	THR			58.675	41.715	12.186		40.83		A.	И
ATOM	2529	C	THR			58.020	41.713	10.797		39.53		A. A	C
ATOM	2530	ŏ	THR			57.814	42.771	10.737		37.06		A.	0
ATOM	2531	СВ	THR			59.770	42.814	12.193		42.95		A.	c
ATOM	2532		THR			60.831	42.455	11.287		41.26		Ā	ŏ
ATOM	2533		THR			60.441	42.933	13.558		44.90		Ā	Č
ATOM	2534	N	GLY			57.724	40.510	10.270		37.04		A.	N
MOTA	2535	CA	GLY			57.032	40.358	8.988		35.68		A.	C
ATOM	2536	С	GLY			57.929	39.930	7.836		34.85		4	С
ATOM	2537	0	GLY			59.067	39.526	8.047		32.50		A.	0
ATOM	2538	N	THR	A	331	57.398	39.974	6.605	1.00	33.39	1	Ą	N

ATOM THR A 331 58.207 5.419 1.00 28.89 2539 CA 39,709 C ATOM 2540 С THR A 331 58.979 40.971 4.998 1.00 27.79 C ATOM THR A 331 58.496 5.175 1.00 33.40 0 2541 0 42.086 A ATOM 2542 CB THR A 331 39.267 4.249 1.00 30.99 57.320 A C 4.561 MOTA OG1 THR A 331 38.020 1.00 30.88 2543 56.695 A 0 2.983 CG2 THR A 331 1.00 33.73 ATOM 2544 58.157 38,989 A Ç MOTA 2545 N VAL A 332 60.177 40.764 4.470 1.00 22.23 N A ATOM 2546 CA **VAL A 332** 61.065 41.847 3.989 1.00 27.82 С A ATOM 2547 С VAL A 332 61.630 41.466 2.632 1.00 24.10 C MOTA 2548 **VAL A 332** 62.394 40.540 2.501 1.00 26.31 0 0 2549 VAL A 332 62.274 1.00 28.52 MOTA CB 42.139 4.935 С ATOM 2550 CG1 **VAL A 332** 63.138 43.293 4.367 1.00 32.83 С A ATOM 2551 CG2 VAL A 332 61.801 42.468 6.329 1.00 30.87 C Α ATOM 2552 MET A 333 61,242 42,199 1.591 1.00 29.37 N N A CA **MET A 333** 61,760 1.00 23.35 ATOM 2553 41,968 0.251 А С MET A 333 63.012 42.813 1.00 26.09 ATOM 2554 C -0.015А С ATOM 2555 0 MET A 333 62.920 43.935 -0.512 1.00 22.66 A 0 ATOM 2556 СВ **MET A 333** 60.687 42.296 -0.804 1.00 26.84 А С ATOM 2557 CG **MET A 333** 59.550 41.295 -0.855 1.00 28.90 С A ATOM 2558 SD MET A 333 58.086 41.883 -1.807 1.00 33.93 ATOM 2559 MET A 333 58.640 41.701 -3.325 1.00 30.83 CE C 1.00 26.44 2560 **GLY A 334** 64.179 ATOM N 42,265 0.294 N 65.428 ATOM 2561 CA **GLY A 334** 43.015 0.190 1.00 28.29 C A ATOM 2562 С **GLY A 334** 66.044 43.002 -1.185 1.00 28.85 Α С ATOM 2563 0 **GLY A 334** 65.370 42.791 -2.185 1.00 28.04 O A 67.350 1.00 29.46 ATOM 2564 N ALA A 335 43.220 -1.243Α N 1.00 28.30 ATOM 2565 CA ALA A 335 68.097 43.214 -2.489 A С ATOM 2566 С ALA A 335 67.939 41.952 -3.3301.00 31.11 A С ATOM 2567 o ALA A 335 68.001 42.021 -4.563 1.00 29.82 MOTA 2568 **ALA A 335** 69.578 43.470 -2.206 1.00 34.20 CB ATOM 2569 N VAL A 336 67.738 40.805 -2.671 1.00 31.66 N А ATOM 2570 CA **VAL A 336** 67.506 39.532 -3.349 1.00 35.42 Α C 2571 VAL A 336 66.412 39.733 1.00 32.46 ATOM С -4.393C Α 2572 66.626 39.464 1.00 36.08 ATOM 0 VAL A 336 -5.574 A 0 ATOM 2573 CB VAL A 336 67.096 38.405 -2.341 1.00 38.14 С A VAL A 336 66.466 1.00 41.63 MOTA 2574 CG1 37.196 -3.057A C 2575 CG2 VAL A 336 MOTA 68.294 37.960 -1.518 1.00 42.38 A C ATOM 2576 N **ILE A 337** 65.271 40.248 -3.944 1.00 32.57 N A ATOM 2577 CA ILE A 337 64.130 40.507 -4.832 1.00 31.81 A C MOTA 2578 С ILE A 337 64.389 41.687 -5.760 1.00 29.91 С ATOM 2579 0 **ILE A 337** 64.231 41.592 -6.969 1.00 27.22 A 0 2580 MOTA СВ ILE A 337 62.835 40.731 -4.005 1.00 34.05 С A ATOM 2581 CG1 ILE A 337 62.466 39.472 -3.216 1.00 37.53 C Α 2582 CG2 ILE A 337 61.668 -4.903 1.00 34.31 ATOM 41.174 A C CD1 ILE A 337 38.383 1.00 39.14 ATOM 2583 61.814 -4.043 A C MET A 338 ATOM 2584 N 64.813 42.816 -5.202 1.00 28.42 A N ATOM 2585 CA MET A 338 64.909 44.038 -5.998 1.00 27.14 C A ATOM 2586 С MET A 338 65.914 43.969 -7.1541.00 28.91 С A 2587 MET A 338 65.753 44.650 -8.166 1.00 28.30 ATOM o 0 2588 CB MET A 338 65.195 45.214 1.00 25.93 ATOM ~5.067 A С ATOM 2589 CG MET A 338 64.083 45.457 -4.082 1.00 27.03 С A ATOM 2590 SD MET A 338 64.367 46.907 -3.076 1.00 25.07 s A 2591 48.235 ATOM CE MET A 338 64.174 -4.312 1.00 20.81 A C 2592 43.142 ~7.040 N **GLU A 339** 66.954 1.00 29.81 ATOM A N 67.909 2593 **GLU A 339** MOTA CA 43.018 -8.142 1.00 32.30 Α С ATOM 2594 С **GLU A 339** 67.318 42.371 -9.403 1.00 30.06 C A ATOM 2595 0 GLU A 339 67.874 42.502 -10.488 1.00 33.61 0 A 2596 CB **GLU A 339** 69.174 42.269 -7.704 1.00 33.90 ATOM С -7.027 2597 **GLU A 339** 70.197 43.177 MOTA CG 1.00 38.40 А С 2598 -6.107 ATOM CD **GLU A 339** 71.139 42.424 1.00 42.07 С Α ATOM 2599 OE1 **GLU A 339** 71.439 41.242 -6.391 1.00 39.96 A 0 ATOM 2600 OE2 GLU A 339 71.570 43.015 -5.095 1.00 43.98 0 Α ATOM 2601 **GLY A 340** 66,187 41.687 -9.259 1.00 30.73 N N A 41.165 -10.411 2602 **GLY A 340** ATOM CA 65.475 1.00 29.00 Ά С 2603 42.169 -11.162 ATOM С **GLY A 340** 64.626 1.00 25.72 Α C ATOM 2604 0 **GLY A 340** 64.289 41.949 -12.331 1.00 25.52 A 0 ATOM 2605 N PHE A 341 64.278 43.281 -10.509 1.00 21.32 A N ATOM 2606 PHE A 341 63.243 44.173 -11.017 CA 1.00 17.05 Α C ATOM 2607 С PHE A 341 63.561 45.656 -10.971 1.00 19.54 A C ATOM 2608 PHE A 341 64.379 1.00 20.37 0 46.111 -10.174 0 A 43.899 -10.222 2609 61.961 ATOM CB PHE A 341 1.00 18.19 A С 2610 61.630 ATOM CG PHE A 341 42.440 -10.137 1.00 20.96 С ATOM 2611 CD1 PHE A 341 61,108 41.770 -11.237 1.00 22.17 A С CD2 PHE A 341 ATOM 2612 61.910 41.717 1.00 23.21 С -8.998 ATOM 2613 PHE A 341 60.853 40.399 -11.160 CE1 1.00 17.74 A C ATOM 2614 CE2 PHE A 341 61.650 40.351 -8.939 1.00 23.34 С АТОМ 2615 CZ PHE A 341 61.134 39.705 -10.012 1.00 24.23

ATOM	2616	N	TYR	A	342	62.952	46.413	-11.875	1.00 17.67	A	N
ATOM	2617	CA			342	62.820	47.837	-11.702	1.00 17.52	A	С
ATOM	2618	C			342	61.608		-10.810	1.00 22.25	A	С
ATOM	2619	ŏ			342	60.494		-11.100	1.00 19.30	A	0
ATOM	2620	CB			342	62.656		-13.040	1.00 17.92	A	Ċ
ATOM	2621	CG			342	62.654		-13.067	1.00 18.37	A	č
MOTA	2622		TYR			63.668		-12.467	1.00 19.68	A	č
										A	Č
MOTA	2623		TYR			61.681		-13.765	1.00 23.05		
ATOM	2624		TYR			63.684		-12.562	1.00 22.84	A	C
ATOM	2625		TYR			61.693		-13.868	1.00 22.40	A	С
ATOM	2626	CZ	TYR	A	342	62.693		-13.264	1.00 22.81	A	С
ATOM	2627	OH	TYR	A	342	62.667	54.131	-13.385	1.00 26.20	A	0
ATOM	2628	N	VAL	A	343	61.840	48.777	-9.705	1.00 15.05	A	N
MOTA	2629	CA	VAL	A	343	60.827	49.008	-8.688	1.00 17.53	A	С
MOTA	2630	С	VAL	A	343	60.510	50.494	-8.598	1.00 14.20	A	С
MOTA	2631	0	VAL	A	343	61.378	51.334	-8.376	1.00 15.91	A	0
ATOM	2632	CB	VAL	A	343	61.259	48.442	-7.305	1.00 15.41	A	С
ATOM	2633	CG1	VAL	A	343	60.123	48.560		1.00 18.03	A	С
ATOM	2634		VAL			61.704	47.022		1.00 18.07	A	Ċ
ATOM	2635	N			344	59.231	50.791		1.00 11.66	A	N
ATOM	2636	CA			344	58.682	52.123		1.00 12.22	A	č
ATOM	2637	C			344	57.903	52.401		1.00 13.35	A	č
ATOM	2638	0			344	56.875	51.802		1.00 16.24	A	0
ATOM	2639	СВ			344	57.774		-10.027	1.00 15.89	A	C
ATOM	2640		VAL			57.159		-10.035	1.00 18.74	A	С
ATOM	2641		VAL			58.587		-11.280	1.00 18.50	A	С
ATOM	2642	N	PHE	A	345	58.418	53.322	-6.713	1.00 16.40	A	N
ATOM	2643	CA	PHE	A	345	57.771	53.763	-5.483	1.00 15.06	A	С
ATOM	2644	С	PHE	Α	345	56.833	54.934	-5.754	1.00 15.39	A	С
ATOM	2645	0	PHE	A	345	57.192	56.113	-5.655	1.00 17.43	A	0
ATOM	2646	CB	PHE	Α	345	58.846	54.062	-4.416	1.00 17.40	A	С
ATOM	2647	CG			345	59.670	52.855	-4.040	1.00 15.11	A	С
ATOM	2648		PHE			60.702	52.386		1.00 13.07	A	Č
ATOM	2649		PHE			59.402	52.153	-2.882	1.00 13.71	A	Č
ATOM	2650		PHE			61.446	51.242	-4.510	1.00 15.84	A	č
ATOM	2651		PHE				51.040	-2.507		A	č
						60.169			1.00 11.40		
ATOM	2652	CZ			345	61.186	50.581	-3.327	1.00 15.67	A	C
ATOM	2653	N			346	55.633	54.601	-6.206	1.00 16.44	A	N
ATOM	2654	CA			346	54.671	55.593	-6.672	1.00 15.35	A	С
ATOM	2655	С			346	53.855	56.101	-5.495	1.00 16.03	A	С
ATOM	2656	0			346	52.711	55.700	-5.254	1.00 19.50	A	0
MOTA	2657	CB			346	53.800	54.986	-7.778	1.00 18.03	A	С
MOTA	2658	CG	ASP	A	346	52.872	55.995	-8.420	1.00 25.99	A	С
ATOM	2659	OD1	ASP	Α	346	52.844	57.166	-7.967	1.00 28.56	A	0
ATOM	2660	OD2	ASP	A	346	52.120	55.680	-9.382	1.00 23.57	A	0
ATOM	2661	N	ARG	A	347	54.491	56.978	-4.725	1.00 17.55	A	N
ATOM	2662	CA	ARG			53.908	57.497	-3.499	1.00 21.29	A	С
ATOM	2663	С	ARG			52.632	58.294	-3.785	1.00 18.95	A	Č
ATOM	2664	ō	ARG			51.701	58.266	-2.991	1.00 22.26	A	ŏ
ATOM	2665	СВ	ARG			54.932	58.369	-2.765	1.00 19.24	A	č
ATOM	2666	CG	ARG			56.184	57.635	-2.282	1.00 13.24		Ċ
	2667	CD								A	
ATOM					347	57.359	58.594	-2.059	1.00 23.46	A	C
MOTA	2668	NE			347	57.009	59.652	-1.092	1.00 23.99	A	N
ATOM	2669	CZ			347	57.403	59.691		1.00 30.72	A	С
ATOM	2670		ARG			57.031	60.700	0.959	1.00 32.59	A	N
ATOM	2671		ARG			58.174	58.745	0.696	1.00 27.96	A	N
MOTA	2672	N			348	52.590	58.959	-4.936	1.00 21.83	A	N
ATOM	2673	CA	ALA	A	348	51.439	59.780	-5.327	1.00 24.64	A	С
ATOM	2674	С	ALA	A	348	50.148	58.953	-5.399	1.00 28.25	A	С
ATOM	2675	0	ALA			49.056	59.426	-5.028	1.00 24.96	A	0
ATOM	2676	СВ	ALA			51.721	60.425	-6.668	1.00 24.31	A	c
ATOM	2677	N	ARG			50.282	57.724	-5.896	1.00 25.65	A	N
ATOM	2678	CA	ARG			49.151	56.806	-6.029	1.00 25.84	A	Ĉ
MOTA	2679	c	ARG			49.168	55.627	-5.077	1.00 25.58	A	č
ATOM	2680	o	ARG			48.460	54.653		1.00 25.28	A	Ö
ATOM	2681	СВ	ARG					-5.319 -7.459			
		CG				49.100	56.276	-7.459	1.00 29.93	A	C
ATOM	2682		ARG			49.176	57.344	-8.488	1.00 33.60	A	C
ATOM	2683	CD	ARG			48.502	57.000	-9.775	1.00 36.74	A	C
MOTA	2684	NE	ARG			48.827		~10.763	1.00 42.71	A	N
ATOM	2685	CZ	ARG			48.278		-10.814	1.00 48.30	A	С
ATOM	2686		ARG			47.316	59.600	-9.964	1.00 46.44	A	N
ATOM	2687	NH2	ARG	A	349	48.686	60.072	-11.751	1.00 50.26	A	N
ATOM	2688	N	LYS	Α	350	49.954	55.721	-3.989	1.00 23.32	A	N
MOTA	2689	CA	LYS			50.022	54.700	-2.945	1.00 24.27	A	С
ATOM	2690	С	LYS			50.163	53.310	-3.549	1.00 19.69	A	c
ATOM	2691	0	LYS			49.374	52.429	-3.260	1.00 20.60	A	ŏ
ATOM	2692	СВ	LYS			48.757	54.704	-2.079	1.00 28.78	A	č
		~ ~	0				34.704	2.0.0		••	-

-1.231 1.00 34.60 MOTA 2693 CG LYS A 350 48.522 55.929 C MOTA 2694 LYS A 350 47.436 55.639 -0.141 1.00 37.26 С CD MOTA 2695 CE LYS A 350 47.719 54.361 0.695 1.00 36.46 С ATOM 2696 NZ LYS A 350 46.822 54.210 1.887 1.00 40.30 N MOTA 2697 ARG A 351 53.140 -4.420 1.00 19.35 N N 51.147 A ATOM 2698 ARG A 351 51.371 -5.063 1.00 17.19 CA 51.855 C A ATOM 52.842 1.00 15.48 2699 С ARG A 351 51.641 -5.383 A C ATOM 2700 n ARG A 351 53.609 52.576 -5.490 1.00 17.66 A 0 1.00 15.07 MOTA 2701 CB **ARG A 351** 50.501 51.758 -6.328 A C ATOM 2702 CG ARG A 351 50.851 52.687 -7.388 1.00 17.01 С A MOTA 2703 CD ARG A 351 49.837 52.667 -8.565 1.00 17.81 C MOTA 2704 NE ARG A 351 50.304 53.485 -9.674 1.00 17.24 A N MOTA 2705 ARG A 351 49.711 53.543 -10.862 1.00 23.21 CZ C ATOM 2706 NH1 ARG A 351 48.651 52.804 -11.095 1.00 21.30 A N ATOM 2707 NH2 ARG A 351 50.213 54.312 -11.831 1.00 24.26 A N MOTA 2708 ILE A 352 53.240 50.376 -5.500 1.00 17.16 N A N 54.581 2709 ILE A 352 50.022 -5.928 1.00 16.38 ATOM CA C A -7.208 ILE A 352 1.00 15.28 ATOM 2710 С 54.510 49.221 Α C -7.277 ATOM 2711 O ILE A 352 53.800 48.234 1.00 15.77 A O MOTA 2712 CB ILE A 352 55.303 49.167 -4.857 1.00 17.10 A C MOTA 2713 CG1 ILE A 352 55.387 49.937 -3.540 1.00 24.67 A С -5.322 MOTA 2714 CG2 ILE A 352 56.740 1.00 17.46 48.790 C 55.844 ATOM 2715 CD1 ILE A 352 49.129 -2.381 1.00 28.46 С A MOTA 2716 N **GLY A 353** 55.291 49.633 -8.199 1.00 14.93 A N MOTA 2717 CA **GLY A 353** 55.345 48.949 -9.481 1.00 14.98 A C 2718 **GLY A 353** 56.559 48.090 -9.631 1.00 15.46 MOTA С C Α MOTA **GLY A 353** 57.649 -9.185 1.00 14.60 2719 O 48.466 A 0 46,936 -10,290 2720 N PHE A 354 56.385 1.00 15.06 N MOTA А 46.043 -10.577 57.469 ATOM 2721 CA PHE A 354 1.00 14.45 A С ATOM 2722 C PHE A 354 57.482 45.781 -12.064 1.00 15.57 А С ATOM 2723 O PHE A 354 56.431 45.590 -12.685 1.00 17.67 A ATOM 2724 СВ PHE A 354 57.285 44.716 -9.860 1.00 16.68 C A 2725 PHE A 354 c MOTA CG 57.443 44.793 -8.362 1.00 16.38 ATOM 2726 CD1 PHE A 354 56.371 45.164 -7.563 1.00 16.54 С A ATOM 2727 CD2 PHE A 354 58.640 44.430 ~7.756 1.00 19.54 С A MOTA 2728 CE1 PHE A 354 56.490 45.231 -6.177 1.00 20.88 С Α 2729 CE2 PHE A 354 58.771 -6.362ATOM 44.487 1.00 19.27 С A 57.684 MOTA 2730 CZ PHE A 354 44.906 -5.571 1.00 15.66 Α C 45.766 -12.606 ATOM 2731 N ALA A 355 58.684 1.00 18.28 Α N ATOM 2732 CA **ALA A 355** 58.922 45.384 -13.999 1.00 16.49 A С ATOM 2733 С ALA A 355 60.245 44.644 -14.081 1.00 19.90 A С 2734 ALA A 355 61.106 44.777 -13.211 ATOM 0 1.00 21.15 Α 0 2735 46.569 -14.878 ATOM СВ ALA A 355 58.922 1.00 17.48 С Α 43.827 -15.120 ATOM 2736 N VAL A 356 60.399 1.00 20.94 N A ATOM 2737 VAL A 356 61.650 43.107 -15.305 CA 1.00 21.72 C А 44.111 -15.553 2738 ATOM С VAL A 356 62.776 1.00 19.54 С A 44.989 -16.402 42.087 -16.473 ATOM VAL A 356 62.672 2739 0 1.00 21.35 A 0 2740 CB ATOM VAL A 356 61.562 1.00 19.47 A С MOTA 2741 CG1 VAL A 356 62.936 41.435 -16.724 1.00 20.92 С A MOTA 2742 CG2 VAL A 356 60.517 41.025 -16.174 1.00 23.31 A C 2743 SER A 357 63.853 43.982 -14.793 N ATOM N 1.00 24.48 ATOM 2744 CA SER A 357 64.963 44.919 -14.883 1.00 26.30 Α С ATOM 2745 С **SER A 357** 65.767 44.633 -16.142 1.00 26.78 С A 2746 ATOM 0 **SER A 357** 66.071 43.481 -16.420 1.00 30.47 0 A ATOM 44.775 -13.676 2747 CB **SER A 357** 65.896 1.00 25.63 С A ATOM 2748 OG 67.009 **SER A 357** 45.645 -13.815 1.00 30.40 0 A 45.682 -16.867 2749 ATOM N ALA A 358 66.128 1.00 32.11 A N 45.567 -18.029 ATOM 2750 CA ALA A 358 67.012 1.00 36.75 A C 45.147 -17.666 ATOM 2751 С ALA A 358 68.445 1.00 38.55 A C MOTA 2752 O ALA A 358 69.233 44.838 -18.560 1.00 42.49 A 0 1.00 37.17 ATOM 2753 СВ **ALA A 358** 67.025 46.881 -18.802 A C 2754 68.782 45.129 -16.374 ATOM N CYS A 359 1.00 39.61 ATOM 2755 CA CYS A 359 70.124 44.742 -15.920 1.00 41.87 A С ATOM 2756 70.169 43.490 -15.049 С CYS A 359 1.00 42.74 C A 43.132 -14.550 45.913 -15.175 2757 ATOM 0 CYS A 359 71.241 1.00 45.60 0 A 70.801 2758 ATOM CB C CYS A 359 1.00 41.64 A ATOM 2759 SG CYS A 359 70.275 46.154 -13.447 1.00 42.44 А S ATOM 2760 N HIS A 360 69.040 42.811 -14.847 1.00 42.50 A N MOTA 2761 CA HIS A 360 69.071 41.569 -14.081 1.00 43.24 A C ATOM 2762 HIS A 360 69.903 40.538 -14.848 С 1.00 44.08 A C 2763 69.932 40.545 -16.089 ATOM 0 HIS A 360 1.00 37.43 0 2764 ATOM СВ HIS A 360 67.665 1.00 43.88 А C 41.037 -13.772 ATOM 2765 CG HIS A 360 67.018 40.307 -14.909 1.00 42.46 A C ATOM 2766 ND1 HIS A 360 66.587 1.00 43.80 40.941 -16.054 N A 2767 ATOM 66.711 38.997 -15.067 1.00 43.40 CD2 HIS A 360 A C ATOM 2768 66.053 CE1 HIS A 360 40.053 -16.876 1.00 42.29 A C ATOM 2769 NE2 HIS A 360 66.107 38.867 -16.295 1.00 40.67 N

WO 2004/011641 120 ATOM 2770 VAL A 361 70.604 39.688 -14.108 1.00 46.31 N N 71.444 38.671 -14.736 ATOM 2771 CA VAL A 361 1.00 53.46 С MOTA 2772 C VAL A 361 70.569 37.519 -15.208 1.00 55.15 С MOTA 2773 69.788 36.965 -14.433 1.00 55.26 VAL A 361 0 0 MOTA 72.584 VAL A 361 38.144 -13.812 1.00 55.33 A С 2774 CB 39.146 -13.769 2775 CG1 VAL A 361 73.724 1.00 58.02 ATOM A С CG2 VAL A 361 72.086 ATOM 2776 37.824 -12.392 1.00 57,18 A C 70.687 ATOM 2777 N HIS A 362 37.191 -16.491 1.00 58.23 A N 69.957 ATOM 2778 ÇA HIS A 362 36.071 -17.078 1.00 61.27 A С ATOM 2779 HIS A 362 70.886 35.268 -17.991 1.00 63.90 А С С 35.470 -17.978 ATOM 2780 0 HIS A 362 72.106 1.00 63.06 A 0 MOTA 2781 CB HIS A 362 68.707 36.570 -17.820 1.00 61.80 A С 68.987 37.603 -18.869 2782 CG HIS A 362 1.00 64.30 Α С 2783 ND1 HIS A 362 69.075 38.949 -18.582 1.00 65.54 A N 2784 CD2 HIS A 362 69.176 37.491 -20.206 1.00 66.55 C Α 39.621 -19.694 38.760 -20.694 1.00 66.26 2785 CE1 HIS A 362 69.318 A C 69.384 2786 NE2 HIS A 362 1.00 67.04 A N 1.00 66.38 70.311 2787 N **ASP A 363** 34.348 -18.765 Α N 2788 CA ASP A 363 71.086 33.477 -19.645 1.00 68.15 С A 32.971 -20.779 33.787 -21.466 2789 С ASP A 363 70.180 1.00 69.51 A С 2790 O **ASP A 363** 69.558 1.00 68.87 A 0 2791 CB **ASP A 363** 71.711 32.343 -18.820 1.00 67.85 С 2792 **ASP A 363** 70.722 31.702 -17.869 1.00 67.03 CG А C 2793 OD1 ASP A 363 71.157 31.015 -16.923 1.00 67.42 Α 0 31.839 -17.981 2794 OD2 ASP A 363 69.490 1.00 67.25 А o 2795 **GLU A 364** 70.111 31.651 -20.981 1.00 71.44 N Α N 2796 CA **GLU A 364** 69.186 31.037 -21.944 1.00 71.30 A С 30.026 -21.289 2797 **GLU A 364** С 68,223 1,00 69,20 А С 2798 29.569 -21.938 O **GLU A 364** 67.280 1.00 70.14 Α 0 2799 CB **GLU A 364** 69,980 30.351 -23.069 1.00 73.26 A С 2800 CG **GLU A 364** 69.968 31.097 -24.399 1.00 74.89 A C 2801 CD **GLU A 364** 70.651 32.451 -24.320 1.00 76.70 A C 2802 GLU A 364 32.494 -24.028 OE1 71.868 1.00 77.66 0 Α 33.476 -24.549 2803 OE2 **GLU A 364** 69.969 1.00 79.09 A 0 2804 PHE A 365 68.455 29.685 -20.017 1.00 66.67 N N A 2805 CA PHE A 365 67.630 28.704 -19.299 1.00 64.31 A С 2806 PHE A 365 66.403 29.347 -18.633 С 1.00 61.08 Ά C PHE A 365 2807 29.082 -19.026 65.266 0 1.00 62.40 A 0 2808 CB PHE A 365 27.959 -18.245 68.464 1.00 65.86 Α С 26.886 -18.819 2809 CG PHE A 365 69.365 1.00 67.96 A С 2810 CD1 PHE A 365 70.557 27.227 -19.461 1.00 68.71 A С 2811 CD2 PHE A 365 69.029 25.538 -18.705 1.00 68.02 A С 2812 CE1 PHE A 365 71.395 26.241 -19.989 1.00 68.45 А ¢ 2813 24.545 -19.232 CE2 PHE A 365 69.860 1.00 68.28 С A 2814 CZPHE A 365 71.045 24.899 -19.874 1.00 68.33 C Α ARG A 366 2815 66.636 30.183 -17.624 N 1.00 54.06 Α N

ATOM MOTA ATOM ATOM ATOM ATOM MOTA MOTA ATOM MOTA ATOM MOTA ATOM ATOM ATOM MOTA MOTA ATOM ATOM MOTA ATOM 2816 CA ARG A 366 65.544 30.804 -16.874 1.00 49.84 Δ C ARG A 366 32.305 -16.729 MOTA 2817 65.747 С 1.00 48.18 A C 2818 66.867 MOTA 0 ARG A 366 32.816 -16.857 1.00 47.96 А 0 30.159 -15.490 ATOM 2819 CB ARG A 366 65.424 1.00 47.56 A C MOTA 2820 ARG A 366 65.240 28.655 -15.525 1.00 43.64 CG A С ATOM 2821 CD ARG A 366 64.974 28.012 -14.174 1.00 38.98 A С ATOM 2822 NE ARG A 366 66.159 27.987 -13.327 1.00 41.26 Α N ATOM 2823 CZARG A 366 66.242 27.371 -12.147 1.00 36.86 C Α MOTA 2824 NH1 ARG A 366 65.203 26.718 -11.644 1.00 42.11 A N 2825 ARG A 366 67.375 27.413 -11.471 ATOM NH2 1.00 36.33 Α N THR A 367 ATOM 2826 N 64.654 33.009 -16.446 1.00 46.71 А N ATOM 2827 CA THR A 367 64.675 34.468 -16.397 1.00 46.92 С A THR A 367 ATOM 2828 С 63.746 35.043 -15.331 1.00 44.72 C A THR A 367 34.435 -14.973 MOTA 2829 0 62.744 1.00 42.54 A 0 ATOM 2830 CB THR A 367 64.306 35.019 -17.783 1.00 46.57 A С MOTA 2831 OG1 THR A 367 65.143 34.406 -18.774 1.00 49.10 0 A ATOM 2832 CG2 THR A 367 64.628 36.484 -17.902 1.00 48.33 C A ATOM 2833 N ALA A 368 64.105 36.219 -14.819 1.00 43.12 N Α 2834 ALA A 368 ATOM CA 63.206 36.976 -13.962 1.00 37.88 Α С ATOM 2835 ALA A 368 61.990 37.417 -14.772 1.00 31.67 С A C ATOM ALA A 368 37.780 -15.946 2836 0 62.091 1.00 33.05 A 0 2837 ALA A 368 63,920 38.185 -13.359 ATOM CB 1.00 37.36 С Α ATOM 2838 · N ALA A 369 60.827 37.407 -14.133 1.00 30.27 Α MOTA 2839 CA ALA A 369 59.608 37.776 -14.828 1.00 25.65 С Α ATOM 2840 ALA A 369 58.590 38.454 -13.917 С 1.00 18.85 C A 2841 ALA A 369 58.574 38.264 -12.707 ATOM 1.00 26.84 A 0 ALA A 369 ATOM 2842 CB 58.988 36.559 -15.484 1.00 26.18 A C ATOM 2843 N VAL A 370 57.772 39.267 -14.543 1.00 21.79 N Α VAL A 370 56.623 39.891 -13.921 ATOM 2844 CA 1.00 22.63 С A 55.460 ATOM VAL A 370 39.580 -14.864 2845 С 1.00 23.34 C ATOM 2846 0 VAL A 370 55.491 39.970 -16.007 1.00 23.37

MOTA	2847	СВ	VAL	A	370	56.806	41.403	-13.783	1.00	24.21	A	С
MOTA	2848		VAL			55.606		-13.069		20.64	A	С
MOTA	2849		VAL			58.091		-13.021		24.95	A	С
ATOM ATOM	2850 2851	N CA			371 371	54.435 53.364		-14.367 -15.208		23.45 26.07	A A	С
ATOM	2852	C			371	52.005		-14.556		21.52	A A	c
ATOM	2853	ŏ			371	51.886		-13.346		22.32	A	ŏ
ATOM	2854	СВ			371	53.593		-15.452		29.04	A	Č
ATOM	2855	CG			371	54.667		-16.508		37.79	A	C
MOTA	2856	CD	GLU			55.383		-16.373		42.98	A	С
ATOM	2857	OE1				55.957		-17.389		47.96	A	0
MOTA MOTA	2858 2859	OE2 N	GLU		372	55.428 50.997		-15.271 -15.375		46.63	A A	O N
ATOM	2860	CA			372	49.629		-14.902		20.28	A	c
MOTA	2861	С			372	48.652		-16.060		21.84	A	С
MOTA	2862	0	GLY	A	372	49.087	39.076	-17.231		23.46	A	0
MOTA	2863	N			373	47.355		-15.790		20.69	A	N
MOTA	2864	CA			373	46.758		-14.455		18.48	A N	C
MOTA MOTA	2865 2866	С 0			373 373	46.427 46.197		-14.050 -14.906		19.08 22.98	A A	C
ATOM	2867	СВ			373	45.466		-14.607		20.66	A	č
ATOM	2868	CG	PRO		373	45.050		~16.023		22.14	A	С
ATOM	2869	CD			373	46.328		-16.811		21.78	A	С
ATOM	2870	N			374	46.385		-12.742		15.75	A	N
MOTA	2871	CA			374	45.882		-12.195		16.86	A	C
MOTA MOTA	2872 2873	C O	PHE			44.622 44.370		-11.376 -10.943		21.99 19.16	A A	0
ATOM	2874	СВ	PHE			46.973		-11.360		16.65	A	č
ATOM	2875	CG	PHE			48.148		-12.170		19.99	A	Č
MOTA	2876	CD1	PHE	Α	374	48.097		-12.936	1.00	23.38	A	С
MOTA	2877		PHE			49.294		-12.221		22.80	A	С
ATOM	2878		PHE			49.189		-13.711		27.21	A	C
ATOM ATOM	2879 2880	CEZ	PHE			50.385 50.341		-12.980 -13.722		22.14 25.11	A A	C
ATOM	2881	N	VAL			43.822		-11.207		21.84	A	N
ATOM	2882	CA	VAL			42.614		-10.407		22.25	A	С
MOTA	2883	С	VAL	A	375	42.948	34.876	-9.049	1.00	20.48	A	С
MOTA	2884	0	VAL			43.281	33.695	-8.943		24.24	A	0
ATOM	2885	CB	VAL			41.439		-11.016		24.98	A	C
ATOM ATOM	2886 2887		VAL			40.206 41.117		-10.119 -12.404		22.92	A A	C
ATOM	2888	N	THR			42.881	35.710	-8.023		22.65	A	N
ATOM	2889	CA	THR			43.104	35.291	-6.637		22.10	A	С
MOTA	2890	С	THR			42.027	35.873	-5.737	1.00	17.23	A	С
MOTA	2891	0	THR			41.856	37.081	-5.647		20.58	A	0
ATOM	2892	CB	THR		376 376	44.490	35.777	-6.137		23.66	A	C
ATOM ATOM	2893 2894		THR		-	45.515 44.873	35.417 35.046	-7.080 -4.844		25.31 26.58	A A	o C
ATOM	2895	N	LEU			41.265	35.010	-5.080		22.23	A	N
MOTA	2896	CA	LEU	A	377	40.199	35.472	-4.205	1.00	23.50	A	С
MOTA	2897	C	LEU			40.708	35.632	-2.776		27.50	A	С
ATOM	2898	0	LEU			41.710	35.019	-2.401		28.12	A.	0
ATOM ATOM	2899 2900	CB CG	LEU			39.046 38.541	34.481	-4.217 -5.622		26.48	A A	C
ATOM	2901		LEU			37.314	33.287	-5.496		30.60	A.	c
ATOM	2902		LEU			38.247	35.344	-6.466		29.52	A	c
ATOM	2903	N	ASP			39.981	36.441	-2.014		29.13	A	N
ATOM	2904	CA	ASP			40.177	36.631	-0.574		35.27	A	C
ATOM	2905	C	ASP			41.540	37.210	-0.251		33.60	A	Ç
ATOM	2906	0	ASP			42.134	36.858	0.760		36.99	A.	0
ATOM ATOM	2907 2908	CB CG	ASP ASP			40.002 38.627	35.325 34.762	0.196 0.070		33.08 36.04	A A	C
ATOM	2909		ASP			37.654	35.549	-0.049		31.19	A.	Ö
ATOM	2910		ASP			38.441	33.532	0.097		41.39	A	ō
ATOM	2911	N	MET			42.026	38.096	-1.110	1.00	34.47	A	N
ATOM	2912	CA	MET			43.349	38.682	-0.933		33.96	A	С
ATOM	2913	C	MET			43.396	39.613	0.270		34.59	A 2	C
ATOM ATOM	2914 2915	O CB	MET MET			44.449 43.782	39.755 39.449	0.871 -2.186		37.56 30.92	A A	C
ATOM	2916	CG	MET			44.041	38.562	-3.375		28.94	A A	C
ATOM	2917	SD	MET			44.749	39.489	-4.761		26.10	A	s
ATOM	2918	CE	MET			43.486	40.462	-5.207	1.00	25.48	A	C
ATOM	2919	N	GLU			42.268	40.233	0.615		41.66	A	N
ATOM	2920	CA	GLU			42.182	41.091	1.805		46.13	A	C
ATOM ATOM	2921 2922	0	GLU			42.498 43.208	40.308	3.080 3.957		47.68 50.01	A A	C
atom Atom	2922	СВ	GLU			40.803	40.810	1.927		48.86	A A	0
						10.005	/41					~

MOTA	2924	CG	GLU	J A	380	40.743	43.189	1.446	1.00 51.99	A	С
MOTA	2925				380	40.851	43.338		1.00 55.58		
										A	Ç
MOTA	2926				380	40.498	42.385	-0.799	1.00 56.65	A	0
ATOM	2927	OE2	GLU	IA	380	41.282	44.426	-0.524	1.00 57.63	A	0
ATOM	2928	N	ASP	Δ (381	41.997	39.075		1.00 46.10	A	N
ATOM	2929				381						
						42.296	38.192		1.00 46.90	A	С
MOTA	2930	С	ASP	' А	381	43.774	37.804	4.428	1.00 44.71	A	С
MOTA	2931	0	ASP	A	381	44.167	37.175	5.402	1.00 45.68	A	0
ATOM	2932	СВ			381	41.448	36.911		1.00 45.21		
										A	С
ATOM	2933	CG			381	40.052	37.059	3.994	0.00 50.29	A	С
ATOM	2934	OD1	ASP	A	381	39.485	37.731	4.881	0.00 50.63	A	0
ATOM	2935	OD2	ASP	Α (381	39.440	36.553		0.00 50.70	A	ŏ
ATOM											
	2936				382	44.587	38.137		1.00 43.03	A	N
MOTA	2937	CA	CYS	A	382	46.026	37.939	3.526	1.00 42.15	A	С
ATOM	2938	С	CYS	A	382	46.693	39.021	4.400	1.00 41.50	A	C
MOTA	2939	0			382						
						47.808	38.827		1.00 43.47	A	0
MOTA	2940	CB			382	46.669	37.897	2.137	1.00 41.83	A	С
MOTA	2941	SG	CYS	A	382	45.985	36.643	1.026	1.00 38.22	A	S
MOTA	2942	N	GLY	- Α	383	45.999	40.133		1.00 43.76	A	N
ATOM											
	2943	CA			383	46.521	41.233		1.00 47.67	A	С
MOTA	2944	С	GLY	Α	383	46.200	41.165	6.939	1.00 51.51	A	С
MOTA	2945	0	GLY	Α	383	45.034	41.086	7.329	1.00 52.22	A	0
ATOM	2946	N			384	47.239	41.220	7.772			
									1.00 55.14	A	N
ATOM	2947	CA			384	47.092	41.146	9.227	1.00 57.40	A	С
ATOM	2948	С	TYR	. A	384	46.613	42.453	9.878	1.00 58.55	A	С
ATOM	2949	0	TYR	Δ	384	47.216	43.508	9.687	1.00 56.79	A	
											0
MOTA	2950	CB			384	48.414	40.719	9.865	1.00 57.72	A	С
ATOM	2951	CG	TYR	A	384	48.357	40.643	11.375	1.00 60.49	A	С
ATOM	2952	CD1	TYR	A	384	47.657	39.623	12.015	1.00 61.73	A	Ċ
ATOM	2953		TYR			48.994					
							41.598	12.167	1.00 62.68	A	С
ATOM	2954		TYR			47.597	39.551	13.408	1.00 61.50	A	С
ATOM	2955	CE2	TYR	A	384	48.941	41.536	13.561	1.00 62.87	A	С
ATOM	2956	CZ	TYR	Δ	384	48.242	40.510	14.173	1.00 62.60		
										A	С
ATOM	2957	ОН			384	48.188	40.443	15.548	1.00 62.41	A	0
MOTA	2958	N	ASN	А	385	45.540	42.359	10.666	1.00 60.14	A	N
ATOM	2959	CA	ASN	A	385	45.049	43.478	11.471	1.00 62.13	A	С
ATOM	2960	C			385	45.450					
							43.295	12.938	1.00 63.14	A	С
ATOM	2961	10CT				46.043	44.168	13.582	1.00 64.31	A	0
MOTA	2962	CB	ASN	А	385	43.524	43.592	11.362	1.00 62.36	A	С
ATOM	2963	CG	ASN	Δ	385	43.037	43.666	9.918	1.00 63.95	A	č
ATOM	2964										
			ASN			42.654	42.654	9.326	1.00 64.71	A	0
MOTA	2965	ND2	ASN	A	385	43.043	44.866	9.351	1.00 63.38	A	N
ATOM	2966	20CT	ASN	A	385	45.193	42.257	13.550	1.00 63.30	A	o
ATOM	2967	0	нон								
					1	79.629	68.206	12.595	1.00 19.21	W	0
MOTA	2968	0	нон	W	2	49.015	47.109	-12.447	1.00 16.55	W	0
ATOM	2969	0	HOH	W	3	85.976	52.179	5.603	1.00 21.59	W	0
ATOM	2970	0	нон		4	80.248	66.497				
								15.419	1.00 25.04	W	0
ATOM	2971	0	нон		5	75.516	59.444	-7.006	1.00 20.45	W	0
MOTA	2972	0	нон	W	6	64.679	60.731	5.508	1.00 20.67	W	0
ATOM	2973	0	нон	W	7	52.200	57.481	-0.615	1.00 36.49	W	ō
ATOM	2974	ō									
			нон		8	52.125		-18.355	1.00 30.59	W	0
MOTA	2975	0	HOH	W	9	66.983	62.454	10.671	1.00 21.40	W	0
ATOM	2976	0	HOH	W	10	44.515	33.044	-12.767	1.00 22.53	W	0
ATOM	2977	0	нон		11	80.173	73.603	4.481	1.00 33.04		
										W	0
ATOM	2978	0	нон		12	47.807		-13.972	1.00 20.13	W	0
ATOM	2979	0	нон	W	13	80.860	50.315	0.203	1.00 26.62	W	0
ATOM	2980	0	HOH	W	14	55.473	70.139	-4.604	1.00 53.88	W	0
ATOM	2981	0	нон		15	74.472	71.225	-0.260			
									1.00 39.12	W	0
ATOM	2982	0	НОН		16	40.544	39.218	-3.509	1.00 31.61	W	0
ATOM	2983	0	нон	W	17	80.450	59.844	12.764	1.00 26.37	W	0
ATOM	2984	0	HOH	W	18	66.075	77.514	3.855	1.00 38.59	W	ō
ATOM	2985		нон								
		0			19	85.138	68.322	12.518	1.00 27.81	W	0
ATOM	2986	0	нон	W	20	87.998	70.949	7.571	1.00 53.38	W	0
ATOM	2987	0	HOH	W	21	87.495	66.754	13.176	1.00 21.08	W	o
ATOM	2988	0	нон		22	49.756	30.124	-1.047	1.00 45.82		
										W	0
MOTA	2989	0	нон		23	49.361	33.536	13.751	1.00 66.10	W	0
ATOM	2990	0	HOH	W	24	67.788	54.838	10.862	1.00 28.51	W	0
ATOM	2991	0	нон		25	50.160	45.140	-1.881	1.00 27.20		
										W	0
ATOM	2992		нон		26	82.766	67.175	5.119	1.00 34.54	W	0
ATOM	2993	0	нон	W	27	45.592	32.973	-7.823	1.00 33.43	W	0
ATOM	2994	0	нон	W	28	81.090	55.720	18.331	1.00 22.44	w	ŏ
ATOM	2995		нон		29						
						43.057	33.861	0.341	1.00 80.20	W	0
ATOM	2996		нон		30	61.780	27.615	13.286	1.00 58.09	W	0
MOTA	2997	0	нон	W	31	50.466	45.953	8.884	1.00 40.45	W	o
MOTA	2998		нон		32	83.327	58.106	0.741	1.00 25.84		
										W	0
ATOM	2999		нон		33	81.327	48.709	18.206	1.00 36.23	W	0
MOTA	3000	0	нон	W	34	72.944	38.241	4.000	1.00 50.15	W	0
											-

123 ATOM 3001 HOH W 40.727 -19.960 48.453 1.00 41.17 0 ATOM 3002 HOH W 36 66.664 48.548 5.951 1.00 33.26 0 ATOM 3003 нон w 58.083 43.778 -17.062 0 37 1.00 24.83 W 0 3004 ATOM 55.799 0 HOH W 60.814 38 5.110 1.00 39.72 W 0 3005 ATOM HOH W 0 39 79.293 52.119 13.860 1.00 21.39 0 ATOM 3006 77.511 0 HOH W 40 45.900 20.280 1.00 50.24 W 0 ATOM 3007 O HOH W 41 50.802 43.439 -20.117 1.00 42.67 0 ATOM 3008 O нон w 42 66.106 19.960 -9.172 1.00 47.01 o ATOM 3009 o HOH W 43 63.894 58.910 -19.204 1.00 76.51 0 ATOM 3010 0 HOH W 44 76.257 41.684 15.651 1.00 62.92 W 0 MOTA 3011 50.279 -18.015 HOH W 45 54.819 1.00 21.51 W 0 ATOM 3012 O HOH W 46 65.401 64.403 6.138 1.00 24.60 W O MOTA 3013 0 HOH W 47 53.853 55.150 -11.636 1.00 29.65 W 0 ATOM 3014 0 HOH W 48 68.908 -5.703 67.519 1.00 33.79 W ò ATOM 3015 0 HOH W 79,968 6.743 49 52.673 1.00 26.80 W 0 ATOM 3016 HOH W 48.181 44.979 -10.637 0 50 1.00 17.31 W 0 3017 ATOM O HOH W 51 53.488 60.669 -0.029 1.00 31.52 W ATOM 3018 0 HOH W 52 62.724 61.887 9.306 1.00 24.34 o ATOM 3019 0 HOH W 53 64.870 59.282 19.837 1.00 40.43 W 0 ATOM 3020 ٥ HOH W 54 67.034 55.997 8.478 1.00 18.91 O MOTA 3021 нон w 55 81.783 69.009 13.884 1.00 24.02 W 0 62.338 ATOM 3022 HOH W 56 60.129 2.848 1.00 20.26 W O ATOM 3023 0 HOH W 57 59.948 49.626 1.00 20.58 3.509 W 0 ATOM 3024 0 HOH W 58 74.315 61.973 -6.807 1.00 24.90 W 0 ATOM 3025 0 W HOH 59 72.754 0.023 44.483 1.00 30.57 W 0 3026 ATOM 0 HOH W 85.756 60 65.674 6.462 1.00 34.66 W O ATOM 3027 HOH W O 61 65.197 62.897 8.395 1.00 24.15 W 0 3028 HOH W ATOM 0 62 83.185 55,955 4.621 1.00 21.13 W 0 ATOM 3029 O HOH W 63 68.666 31.435 6.797 1.00 32.75 0 ATOM 3030 0 HOH W 64 70.959 50.115 -0.021 1.00 24.74 0 ATOM 3031 HOH W 70.634 0 65 69.168 18.081 1.00 35.02 W 0 ATOM 3032 0 HOH W 66 83.133 65.815 2.329 1.00 28.15 W 0 ATOM 3033 HOH W 67 81.369 1.00 41.54 0 47,920 15.072 W 0 MOTA 3034 HOH W 1.00 38.69 0 68 87.299 59.567 9.845 W O 3035 ATOM ٥ HOH W 69 41.854 32.167 -5.319 1.00 34.05 W 0 3036 HOH W ATOM 0 70 87.742 64.125 6.529 1.00 68.19 W 0 HOH W MOTA 3037 0 71 72.460 68.092 12.019 1.00 27.07 W 0 ATOM 3038 0 HOH W 72 65.274 42.384 -19.635 1.00 61.51 0 ATOM 3039 0 HOH W 73 85.768 65.313 2.708 1.00 45.28 0 62.071 ATOM 3040 0 HOH W 74 26.325 -12.323 1.00 30.75 0 MOTA 3041 0 HOH W 75 53.548 58.246 7.753 1.00 35.77 W 0 3042 MOTA HOH W 76 48.415 35.384 -17.283 1.00 49.88 W 0 3043 ATOM 0 HOH W 77 63.389 66.452 1.00 24.26 6.071 W 0 ATOM 3044 HOH W 78 0 82.811 58.045 -3.976 1.00 49.01 W 0 3045 HOH W ATOM 0 44.456 -1.977 79 73.849 1.00 46.53 W 0 3046 ATOM 0 HOH W 80 52.297 -10.384 45.102 1.00 27.65 W 0 **АТОМ** 3047 нон м 0 81 65.497 47.590 -7.949 1.00 22.50 W O ATOM 3048 O HOH W 82 60.385 50.571 -20.969 1.00 35.94 W 0 ATOM 3049 O HOH W 83 73.977 51.153 ~13.532 1.00 42.34 0 ATOM 3050 0 HOH W 84 73.807 75.017 -0.696 1.00 45.17 0 3051 ATOM HOH W 85 89.302 56.875 9.021 1.00 36.01 W 0 ATOM 3052 HOH W 86 59.573 59.896 2.947 1.00 37.55 W 0 3053 o нон w ATOM 87 69.343 40.980 1.00 33.99 6.123 W O 3054 58.960 -10.022 ATOM 0 HOH W 88 52.716 1.00 38.62 W 0 3055 ATOM 0 HOH W 68.265 89 71.368 20.363 1.00 40.93 W 0 MOTA 3056 0 HOH W 90 58.025 24.259 10.874 1.00 64.35 0 ATOM 3057 0 HOH W 91 79.324 57.854 -5.249 1.00 28.34 o MOTA 3058 0 HOH W 92 52.049 42.888 4.777 1.00 33.22 O MOTA 3059 0 HOH W 93 58.572 51.240 -21.845 1.00 39.18 W o MOTA 3060 0 HOH W 59.801 -15.372 94 58.399 1.00 34.06 W 0 MOTA 3061 0 HOH W 95 51.199 63.163 -3.700 1.00 34.26 W O 3062 ATOM HOH W 96 39.751 42.093 5.333 1.00 63.63 0 W ATOM 3063 0 HOH W 97 69.523 12.319 62.377 1.00 37.67 W O 3064 0 HOH W 98 ATOM 57.972 57.007 14.799 1.00 35.19 W 0 3065 0 HOH W 99 ATOM 62.896 33.477 -11.943 1.00 76.49 W O 3066 O HOH W 100 56.466 -5.817 77.078 ATOM 1.00 21.61 W 0 HOH W 101 ATOM 3067 0 58.723 72.174 10.770 1.00 45.78 0 ATOM 3068 O HOH W 102 82.563 53.786 6.291 1.00 28.84 0 ATOM 3069 0 **HOH W 103** 59.353 71.034 3.910 1.00 33.97 W 0 3070 HOH W 104 MOTA 64.748 30.333 -21.491 1.00 39.71 W 0 ATOM 3071 **HOH W 105** 74.634 59.328 -12.866 1.00 40.33 W 0 3072 O HOH W 106 42.543 -19.877 ATOM 55.438 1.00 35.74 W O ATOM 3073 0 **HOH W 107** 77.532 77.780 -0.830 1.00 47.95 O 3074 HOH W 108 68.989 -11.545 0 ATOM 65.148 1.00 51.49 o

41.274 -18.333

16.334

13.406

59.049

50.040

1.00 41.55

1.00 47.49

1.00 68.55

O

0

57,778

55.086

81.228

3075

3076

3077

0

0

0

HOH W 109

HOH W 110

HOH W 111

ATOM

ATOM

ATOM

ATOM 3078 0 HOH W 112 39.213 39.599 -0.284 1.00 54.99 0 MOTA 3079 38.933 -17.692 HOH W 113 58.054 1.00 30.12 o MOTA 3080 0 HOH W 114 46.682 50.824 -7.093 1.00 27.96 0 ATOM 3081 **HOH W 115** 0 56.111 63.217 -0.389 1.00 31.05 0 ATOM 3082 HOH W 116 0 83.364 67.774 0.538 1.00 32.16 0 MOTA 3083 O HOH W 117 48.343 27.854 7.458 1.00 45.35 0 MOTA HOH W 118 3084 0 62,036 71.098 6.922 1.00 37.49 0 ATOM 3085 O **HOH W 119** 50.470 55.859 8.484 1.00 50.28 0 MOTA 3086 O 48.282 -21.628 HOH W 120 59.219 1.00 49.61 0 ATOM 3087 O HOH W 121 70.795 46.171 0.982 1.00 42.89 W O ATOM 3088 O **HOH W 122** 67.725 50.769 1.00 44.67 8.365 W 0 ATOM 3089 O **HOH W 123** 62.717 69.639 -10.878 1.00 52.07 W 0 ATOM 3090 HOH W 124 41.588 -20.165 0 60.253 1.00 31.75 W 0 ATOM 3091 **HOH W 125** 40.595 48.954 -7.729 1.00 24.22 W 0 ATOM 3092 o HOH W 126 60.544 37.484 -18.077 1.00 33.87 W 0 ATOM 3093 0 HOH W 127 65.662 55.956 21.772 1.00 33.55 0 ATOM 3094 HOH W 128 0 65.944 31.897 -19.969 1.00 51.23 O ATOM 3095 0 HOH W 129 61.793 76.127 1.749 1.00 56.51 W 0 ATOM 3096 **HOH W 130** O 85.302 59.460 0.012 1.00 36.81 W 0 ATOM 3097 0 HOH W 131 51.594 64.021 -6.048 1.00 58.01 W 0 3098 **ATOM** O HOH W 132 54.042 66.667 -6.161 1.00 63.77 W 0 MOTA 3099 0 **HOH W 133** 62.332 75.297 4.414 1.00 55.75 W 0 ATOM 3100 o HOH W 134 46.059 -20.292 50.042 1.00 73.57 W 0 HOH W 135 53.491 -11.459 ATOM 3101 79.366 1.00 45.91 W O ATOM 3102 HOH W 136 62.077 57.368 -20.403 1.00 50.99 W 0 ATOM 3103 0 HOH W 137 70.534 49.754 8.111 1.00 67.69 W O ATOM 3104 HOH W 138 o 78.803 66.881 19.280 1.00 33.48 W 0 ATOM 3105 HOH W 139 0 83.041 34,659 -5.519 1.00 42.03 W Ω ATOM 3106 0 HOH W 140 77.602 56.674 -9.068 1.00 43.32 W Ω 3107 ATOM 0 HOH W 141 80.073 75.620 15.238 1.00 30.64 W 0 ATOM 3108 0 HOH W 142 80.099 63.907 -8.340 1.00 39.92 W O ATOM 3109 0 HOH W 143 56.033 68.239 -6.044 1.00 52.71 W 0 ATOM 3110 0 HOH W 144 53.413 63.896 -8.009 1.00 35.96 W 0 HOH W 145 ATOM 3111 89.147 64.107 9.192 1.00 45.54 W O ATOM 3112 HOH W 146 37.356 37.399 -3.003 1.00 37.40 W 0 ATOM 3113 0 HOH W 147 71.841 -7.695 68.945 1.00 67.24 W 0 ATOM 3114 0 HOH W 148 65.710 25.459 1.815 1.00 68.03 W О MOTA 3115 0 HOH W 149 54.563 32.460 14.878 1.00 45.89 W O ATOM HOH W 150 3116 O 69.771 32.591 -13.970 1.00 38.39 W 0 ATOM 3117 0 HOH W 151 40.372 41.672 -3.643 1,00 35.36 W 0 ATOM 3118 0 HOH W 152 67,233 45.846 -10.950 1.00 26.82 W 0 ATOM 3119 0 HOH W 153 38.766 47.051 -8.023 1.00 28.56 W 0 ATOM 3120 HOH W 154 0 81.319 69.504 -2.622 1.00 45.91 W ATOM 3121 HOH W 155 53.761 29.575 -15.833 1.00 38.29 W 0 ATOM 3122 o HOH W 156 56.342 73.135 -5.405 1.00 68.20 W o ATOM 3123 HOH W 157 0 53.773 72.306 -0.902 1.00 67.09 W 0 ATOM 3124 0 HOH W 158 79.692 66.676 -5.072 1.00 50.12 W 0 ATOM 3125 0 HOH W 159 -7.677 73.232 38.089 1.00 45.17 W 0 ATOM 3126 0 HOH W 160 46.657 52.288 -3.310 1.00 36.02 W 0 ATOM 3127 0 HOH W 161 68.327 19.772 -0.212 1.00 70.84 W 0 ATOM 3128 О HOH W 162 57.706 29.223 -8.479 1.00 39.36 W 0 ATOM 3129 O HOH W 163 80.380 78.795 5.802 1.00 56.31 W 0 MOTA 3130 0 HOH W 164 56.675 59.728 -19.716 1.00 51.35 W 0 ATOM 3131 0 HOH W 165 72.021 78.865 1.00 57.63 10.056 W O MOTA 3132 0 HOH W 166 61.187 22.723 11.672 1.00 52.43 O ATOM 3133 0 HOH W 167 52.637 65.982 -3.596 1.00 43.55 W 0 ATOM 3134 О HOH W 168 77.094 59.049 -11.764 1.00 53.68 W 0 ATOM 3135 0 HOH W 169 82.297 55.117 -5.408 1.00 56.75 W 0 ATOM 3136 0 HOH W 170 44.896 54.140 -2.621 1.00 44.26 W 0 ATOM 3137 0 HOH W 171 75.662 48.265 9.068 1.00 31.34 W ٥ ATOM 3138 0 HOH W 172 62.322 26.608 -15.255 1.00 73.50 W 0 ATOM 3139 HOH W 173 70.503 79.530 7.957 1.00 46.42 W 0 ATOM 3140 0 HOH W 174 78.756 79.738 3.636 1.00 57.59 W ATOM 3141 0 HOH W 175 63.567 48.079 7.690 1.00 56.49 W 0 ATOM 3142 0 HOH W 176 73,105 50.182 8.251 1.00 62.98 0 ATOM 3143 0 HOH W 177 74.155 72.309 -2.546 1.00 63.14 W 0 ATOM 3144 0 HOH W 178 65.269 74.588 10.615 1.00 38.50 W 0 ATOM 3145 0 **HOH W 179** 77.404 52.712 -10.561 1.00 40.86 W 0 ATOM 3146 0 HOH W 180 53.494 69.486 -1.573 1.00 61.27 W 0 ATOM 3147 0 HOH W 181 44.408 15.946 43.630 1.00 63.55 W 0 ATOM 3148 0 HOH W 182 45.148 9.428 46.355 1.00 58.76 0 ATOM 3149 0 HOH W 183 78.021 -0.246 49.570 1.00 32.19 0 ATOM 3150 **HOH W 184** 81.804 50.829 -2.6071.00 38.10 W 0 ATOM 3151 0 **HOH W 185** 88.410 73.240 7.564 1.00 56.30 0 ATOM 3152 0 HOH W 186 61.080 15.948 66.476 1.00 68.96 0 ATOM 3153 HOH W 187 0 45.110 31.905 1.445 1.00 67.43 0 ATOM 3154 0 **HOH W 188** 49.200 55.926 12.964 1.00 72.28

ATOM	3155	0	HOH W 189	71.187	76.958 15.269	1.00 39.87	W	_
ATOM	3156		HOH W 190	73.886			W	0
MOTA	3157		HOH W 191	69.355			W	0
MOTA	3158		HOH W 192	82.777			W	0
MOTA	3159	_	HOH W 193	39.736			W	0
MOTA	3160		HOH W 194	52.055			W	0
ATOM	3161		HOH W 195	71.314			W	0
ATOM	3162		HOH W 196	61.950				0
ATOM	3163		HOH W 197	84.051			W W	0
ATOM	3164		HOH W 198	76.032				0
ATOM	3165		HOH W 199	73.266			W W	0
ATOM	3166		HOH W 200	82.129			W	0
ATOM	3167	ŏ	HOH W 201	83.221			W	0
ATOM	3168	ō	HOH W 202	59.652			W	0
ATOM	3169	ō	HOH W 203	78.123			W	0
MOTA	3170	ō	HOH W 204	77.637	76.375 11.568		W	0
ATOM	3171	ō	HOH W 205	58.555	48.938 13.305		W	Ö
ATOM	3172	ō	HOH W 206	57.638	66.927 18.153		W	
ATOM	3173	ō	HOH W 207	58.312	43.498 7.697		W	0
ATOM	3174	ō	HOH W 208	44.538	28.297 3.536		W	0
ATOM	3175	ō	HOH W 209	59.595	53.833 19.308		W	
ATOM	3176	Ō	HOH W 210	57.084	51.317 14.707		W	0
ATOM	3177	ō	HOH W 211	49.436	21.830 -1.938	1.00 51.78	W	
ATOM	3178	ō	HOH W 212	60.734	77.657 4.018	1.00 73.34	W	0
ATOM	3179	ō	HOH W 213	79.123	83.308 3.898	1.00 /3.34		0
ATOM	3180	ŏ	HOH W 214	57.523	61.921 -13.519	1.00 83.20	W	0
ATOM	3181	ō	HOH W 215	71.168	43.072 5.167	1.00 37.25	W	0
ATOM	3182	ŏ	HOH W 216	76.653	84.242 3.301	1.00 41.82	W	0
ATOM	3183	ŏ	HOH W 217	42.382			W	0
ATOM	3184	ŏ	HOH W 217		40.135 17.622	1.00 61.51	W	0
ATOM	3185	ŏ	HOH W 219	78.733	69.517 -5.343	1.00 61.81	W	0
ATOM	3186	Ö	HOH W 220	62.986	22.749 -4.555	1.00 42.82	W	0
ATOM	3187	Ö	HOH W 221	60.743	44.247 9.220	1.00 48.58	W	0
ATOM	3188	o	HOH W 221	57.413	29.275 -13.554	1.00 41.77	W	0
ATOM	3189	Ö		71.784	39.808 -3.358	1.00 49.72	W	0
ATOM	3190	ö	HOH W 223 HOH W 224	74.571	63.700 -13.618	1.00 53.93	W	0
ATOM	3191			71.261	51.431 -13.741	1.00 41.48	W	0
ATOM	3192	0	HOH W 225	78.559	79.217 0.998	1.00 50.39	W	0
ATOM	3193		HOH W 226	68.431	42.241 17.534	1.00 51.33	W	0
ATOM		0	HOH W 227	74.858	56.378 23.475	1.00 62.51	W	0
ATOM	3194 3195	0	HOH W 228	79.307	60.745 22.219	1.00 40.98	W	0
ATOM	3196	0	HOH W 229	60.314	68.573 10.249	1.00 29.74	W	0
ATOM	3197	0	HOH W 230	61.602	71.621 -9.518	1.00 51.81	W	0
ATOM		0	HOH W 231	49.899	42.585 7.057	1.00 35.46	W	0
MOTA	3198 3199	0	HOH W 232	46.590	57.769 2.535	1.00 69.32	M	0
ATOM	3200	0	HOH W 233	45.044	34.173 -1.541	1.00 50.34	W	0
ATOM	3200	0	HOH W 234	71.447	46.668 -18.182	1.00 58.66	W	0
ATOM	3201	Ö	HOH W 235 HOH W 236	73.000	43.214 -18.003	1.00 45.06	W	0
ATOM	3202		HOH W 237	43.370	55.663 -1.011	1.00 61.60	W	0
ATOM	3203	0		74.007	57.458 ~17.330	1.00 59.05	W	0
ATOM		0	HOH W 238	78.277	52.906 -16.612	1.00 65.63	W	0
ATOM	3205 3206	0	HOH W 239	77.796	59.191 -8.755	1.00 45.94	W	0
ATOM	3207	0	HOH W 240	84.436	60.164 -3.135	1.00 53.03	W	0
ATOM	3207	0	HOH W 241	65.112	49.259 9.447	1.00 53.21	W	0
ATOM	3209		HOH W 242	63.207			W	0
ATOM	3210	0	HOH W 243	89.242	51.621 10.559	1.00 37.79	M	0
ATOM	3211	0	HOH W 244	88.861	58.033 -1.500	1.00 63.56	W	0
ATOM	3212		HOH W 245	80.840	77.800 12.517	1.00 43.88	W	0
ATOM	3212	0	HOH W 246 HOH W 247	77.216	83.653 0.754	1.00 66.92	W	0
				69.579	67.222 23.238	1.00 67.75	W	0
ATOM ATOM	3214 3215	0	HOH W 248 HOH W 249	75.887	51.320 21.816	1.00 72.66	W	0
		0		68.191	78.916 4.291	1.00 52.82	W	0
ATOM	3216	0	HOH W 250	82.004	63.181 21.579	1.00 30.60	W	0
ATOM	3217	0	HOH W 251	76.390	67.886 21.910	1.00 51.17	W	0
MOTA	3218	0	HOH W 252	53.503	60.921 17.416	1.00 72.58	W	0
ATOM	3219	0	HOH W 253	60.509	46.370 -23.693	1.00 62.40	W	0
ATOM	3220	0	HOH W 254	53.842	41.622 -18.205	1.00 43.31	W	0
ATOM	3221	0	HOH W 255	48.037	45.876 -0.170	1.00 42.34	W	0
ATOM	3222	0	HOH W 256	44.592	45.050 2.573	1.00 46.37	W	0
ATOM	3223	0	HOH W 257	40.130	44.608 4.624	1.00 61.11	W	0
MOTA	3224	0	HOH W 258	69.355	47.143 5.898	1.00 60.82	W	0
ATOM	3225	0	HOH W 259	34.957	32.570 1.397	1.00 47.77	W	0
ATOM	3226	0	HOH W 260	61.555	31.492 -14.640	1.00 63.05	W	0
ATOM	3227	0	HOH W 261	43.862	53.451 -5.566	1.00 71.67	W	0
ATOM	3228	0	HOH W 262	84.234	48.309 0.364	1.00 54.03	W	ō
ATOM	3229	0	HOH W 263	87.932	51.816 -3.215	1.00 57.80	W	ō
ATOM	3230	0	HOH W 264	82.425	63.456 -6.283	1.00 62.42	W	ō
ATOM	3231	0	нон w 265	80.271	28.172 9.463	1.00 40.70	W	ŏ
								-

126

MOTA	3232	0	HOH W 26	73.963	30.020	4.302	1.00 26.30	W	0
ATOM	3233	0	HOH W 26	83.112	71.680	1.066	1.00 51.04	W	0
ATOM	3234	0	HOH W 268	63.047	54.124	10.355	1.00 50.34	W	0
MOTA	3235	0	HOH W 269	83.682	62.329	-4.165	1.00 42.75	W	0
ATOM	3236	0	HOH W 270	61.547	73.522	-7.931	1.00 47.36	W	0
MOTA	3237	0	HOH W 27:	60.577	53.517	13.966	1.00 53.55	W	0
MOTA	3238	0	HOH W 272	54.580	71.014	-6.905	1.00 46.69	W	0
ATOM	3239	0	HOH W 27	77.926	39.031	-0.508	1.00 49.59	W	0
ATOM	3240	0	HOH W 27	69.669	49.137	-17.891	1.00 45.33	W	0
ATOM	3241	0	HOH W 275	44.777	49.840	1.964	1.00 44.62	W	0
ATOM	3242	0	HOH W 27	48.453	54.600	5.308	1.00 39.43	W	0
ATOM	3243	0	HOH W 27	51.764	32.262	13.155	1.00 71.42	W	0
MOTA	3244	0	HOH W 278	60.951	29.296	11.161	1.00 53.99	W	0
ATOM	3245	0	HOH W 279	68.206	23.452	8.777	1.00 50.70	W	0
ATOM	3246	0	HOH W 280	87.567	24.412	-10.981	1.00 49.42	W	0
MOTA	3247	0	HOH W 281	81.650	24.690	-15.233	1.00 46.79	W	0
MOTA	3248	0	HOH W 282	83.121	29.023	-15.678	1.00 59.22	W	0
MOTA	3249	0	HOH W 283	81.854	31.654	-13.384	1.00 44.68	W	0
ATOM	3250	0	HOH W 284	43.424	43.922	-5.261	1.00 38.18	W	0
MOTA	3251	0	HOH W 285	80.484	32.987	-6.395	1.00 39.87	W	0
MOTA	3252	I	IOD J 1		57.842	15.501	0.75 23.63	J	I
MOTA	3253	I	IOD J 2		50.334	15.785	0.50 35.87	J	I
ATOM END	3254	I	IOD J 3	51.528	57.888	-13.233	0.50 56.82	J	I

<u>CLAIMS</u>

- 1. A BACE protein, which comprises the sequence set out in residues 45 to 455 of SEQ ID NO:2 (43 to 453 SwissProt P56817), or a fragment thereof comprising residues corresponding to 58 to 398 of SEQ ID NO:2, modified by the following changes:
 - (a) substitution or deletion of at least one residue which is a proteolytic cleavage site recognised by clostripain; and optionally
 - (b) the replacement of from 1 to 30 other amino acids by an equivalent or fewer number of amino acids.
- 2. A protein according to claim 1 wherein at least one of residues 44, 47, 57, 58 and 59 of SEQ ID NO:2 are substituted.
 - 3. A protein according to claim 1 or 2 wherein residues 58 and/or 59 are lysine.
 - 4. A protein according to any one of the preceding claims wherein the asparagine residues at positions 155, 174, 225 and 356 (SwissProt P56817 153, 172, 223 and 354) are replaced by glutamine residues.
 - 5. A protein according to any one of the preceding claims wherein the fragment is truncated at the C-terminus such that at least residues 449 et seq. of SEQ ID NO:2 are absent.
 - 6. A method of making a truncated BACE protein, which method comprises proteolytically cleaving the protein of any one of the preceding claims.
 - 7. The method of claim 6 wherein said cleavage is at and including one or more of residues 44, 47, 57, 58 and 59.
 - 8. A BACE protein obtained or obtainable by the method of claim 7.
 - A protein according to claim 8 wherein the N-terminal is residue 45 of SEQ ID NO:2.
 - 10. A protein according to claim 1 which is selected from: (a) SEQ ID 6; (b) SEQ ID 8; (c) SEQ ID 10; (d) SEQ ID 12; (e) SEQ ID 14; (f) SEQ ID 16; (g) SEQ ID 18; or a

- protein according to claim 7 which is selected from (h) SEQ ID 19; (i) SEQ ID 20; (j) SEQ ID 21.
- 11. Nucleic acid encoding the protein of any one of claims 1 to 5 or 8 to 10.
- 12. A vector comprising the nucleic acid of claim 11.
- 13. A host cell comprising the vector of claim 12.
- 14. A process for producing the protein of any one of claims 1 to 5 or 8 to 10 comprising the steps of: (a) culturing the host cell of claim 13 under conditions suitable for expression of the protein; and optionally (b) isolating the expressed recombinant BACE protein.
 - 15. A process for producing refolded recombinant BACE protein comprising the steps of: (a) solubilising the recombinant BACE; (b) diluting the solubilised BACE into an aqueous buffer containing 10 to 50 mM sulfobetaine; and (c) maintaining the diluted solution at low temperature and at high pH for at least 2 weeks.
- 16. A process for producing a crystal of BACE comprising the step of refolding recombinant BACE protein according to the process of claim 14.
- 17. A process for producing a crystal of a BACE protein comprising the step of growing the crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME, 180-220 mM ammonium iodide and 180-220 mM tri-sodium citrate pH 6.4-6.6, and optionally 0-5% glycerol.
- 18. A process according to any one of claims 15 to 17 wherein the BACE protein is human BACE.
- 19. A process according to any one of claims 15 to 17 wherein the BACE protein is as defined in any one of claims 1 to 5 or 8 to 10.
- 20. A crystal of a BACE protein having a hexagonal space group P6₁22.
- 21. The crystal of claim 20 having unit cell dimensions of a=b=103.2 Å, c=169.1 Å, $\alpha = \beta = 60^{\circ}$, $\gamma = 120^{\circ}$, and a unit cell variability of 5% in all dimensions.

- 22. A crystal of a BACE protein comprising a structure defined by all or a portion of the co-ordinates of Table $1 \pm a$ root mean square deviation from the C α atoms of less than 0.5Å.
- 23. A crystal of the protein of any one of claims 1 to 5 or 8 to 10.
- 24. The crystal of any one of claims 20 to 23 having a resolution better than 2.5 Å.
- 25. The crystal of any one of claims 20 to 24 which is soaked with one or more compound(s) to form co-complex structures.
- 26. The crystal of any one of claims 20 to 24 wherein the BACE is co-crystallized with one or more compound(s) to form co-crystallized structures.
- 27. The crystal of any one of claims 20 to 24 which is an apo crystal.
- 28. A computer-based method for the analysis of the interaction of a molecular structure with a BACE protein, which comprises:
 - (a) providing a structure comprising a three-dimensional representation of BACE or of a portion of BACE, which representation comprises all or a portion of the coordinates of Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å;
 - (b) providing a molecular structure to be fitted to said BACE structure; and
 - (c) fitting the molecular structure to the BACE structure of (a).
- 29. The method of claim 28 wherein the molecular structure to be fitted is in the form of a model of a pharmacophore.
- 30. The method of claim 28 or 29 wherein the three-dimensional representation is a model constructed from all or a portion of the coordinates of Table $1 \pm a$ root mean square deviation from the C α atoms of less than 0.5Å.
- 31. The method of claim 30 wherein the model is: (a) a wire-frame model; (b) a chicken-wire model; (c) a ball-and-stick model; (d) a space-filling model; (e) a stick-model; (f) a ribbon model; (g) a snake model; (h) an arrow and cylinder model; (i) an electron density map; (j) a molecular surface model.

- 32. A computer-based method for the analysis of molecular structures which comprises:
 - (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å ("selected coordinates");
 - (b) providing the structure of a molecular structure to be fitted to the selected coordinates; and
 - (c) fitting the structure to the selected coordinates of the BACE structure.
- 33. The method of claim 32 wherein the selected coordinates are of at least 5, 10, 50, 100 or 500 atoms.
- 34. The method of any one of claims 28 to 33 wherein the coordinates of Table 1 represent a binding pocket.
- The method of claim 34 wherein the coordinates of Table 1 comprise those relating to residues SER71, GLY72, LEU91, ASP93, GLY95, SER96, VAL130, PRO131, TYR132, THR133, GLN134, ILE171, ILE179, ILE187, ALA188, ARG189, PRO190, TRP258, TYR259, ASP284, LYS285, ASP289, GLY291, THR292, THR293, ASN294, ARG296 and ARG368 (based on the numbering of SwissProt P56817).
- 36. A computer-based method of rational drug design comprising the method of any one of claims 28 to 35.
- 37. A computer-based method of rational drug design comprising:
 - (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å ("selected coordinates");
 - (b) providing the structures of a plurality of molecular fragments;
 - (c) fitting the structure of each of the molecular fragments to the selected coordinates; and

- (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.
- 38. A method for identifying a candidate modulator of BACE comprising the steps of:
 - (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table $1 \pm a$ root mean square deviation from the Ca atoms of less than 0.5\AA ; and
 - (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.
- 39. The method of any one of claims 28 to 38 further comprising the step of:
 - (a) obtaining or synthesising the molecular structure or modulator; and
 - (b) contacting the molecular structure or modulator with BACE to determine the ability of the molecular structure or modulator to interact with BACE.
- 40. A method of assessing the ability of a candidate modulator to interact with BACE which comprises the steps of:
 - (a) obtaining or synthesising said candidate modulator;
 - (b) forming a crystallized complex of a BACE protein of claims 1 to 5 or 8 to 10 and said candidate modulator; and
 - (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.
- A method for determining the structure of a compound bound to BACE, said method comprising:
 - (a) mixing BACE with the compound to form a BACE-compound complex;
 - (b) crystallizing the BACE-compound complex; and

- (c) determining the structure of said BACE-compound(s) complex by reference to the data of Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å.
- 42. A method for determining the structure of a compound bound to BACE, said method comprising:
 - (a) providing a crystal of BACE;
 - (b) soaking the crystal with one or more compound(s) to form a complex; and
 - (c) determining the structure of the complex by employing the data of Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å.
- 43. A method of determining the three dimensional structure of a BACE homologue or analogue of unknown structure, the method comprising the steps of:
 - (a) aligning a representation of an amino acid sequence of the BACE homologue or analogue with the amino acid sequence of the BACE of Table $1 \pm a$ root mean square deviation from the C α atoms of less than 0.5Å to match homologous regions of the amino acid sequences;
 - (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table $1 \pm a$ root mean square deviation from the $C\alpha$ atoms of less than 0.5Å; and
 - (c) determining a conformation for the BACE homologue or analogue which substantially preserves the structure of said matched homologous regions.
- 44. A method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising (i) establishing communication with a remote device containing computer-readable data comprising at least one of:
 - (a) atomic coordinate data according to Table $1 \pm a$ root mean square deviation from the C α atoms of less than 0.5Å, said data defining the three-dimensional

structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE;

- (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table $1 \pm a$ root mean square deviation from the $C\alpha$ atoms of less than 0.5\AA ;
- (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table $1 \pm a$ root mean square deviation from the C α atoms of less than 0.5Å;
- (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å; and
- (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and
- (ii) receiving said computer-readable data from said remote device.
- 45. A computer system containing one or more of:
 - (a) atomic coordinate data according to Table $1 \pm a$ root mean square deviation from the $C\alpha$ atoms of less than 0.5Å, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof;
 - (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table $1 \pm a$ root mean square deviation from the $C\alpha$ atoms of less than 0.5\AA ;
 - (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table $1 \pm a$ root mean square deviation from the C α atoms of less than 0.5Å;
 - (d) atomic coordinate data of a target BACE protein generated by interpreting X ray crystallographic data or NMR data by reference to the data of Table $1 \pm a$ root mean square deviation from the $C\alpha$ atoms of less than 0.5\AA ; or

- (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 46. The computer system of claim 45 comprising: a computer-readable data storage medium comprising data storage material encoded with the computer-readable data;
 - (a) a working memory for storing instructions for processing said computerreadable data; and
 - (b) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design.
- 47. A method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table $1 \pm a$ root mean square deviation from the Ca atoms of less than 0.5Å, and either
 - (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein or
 - (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1 \pm a root mean square deviation from the C α atoms of less than 0.5Å.
- 48. A method of preparing a composition comprising identifying a molecular structure or modulator according to the method of any one of claims 28 to 40, and admixing the molecule with a carrier.
- 49. A process for producing a medicament, pharmaceutical composition or drug, the process comprising: (a) identifying a molecular structure or modulator according to the method as defined in any one of claims 28 to 40; and (b) preparing a medicament, pharmaceutical composition or drug containing the optimised modulator molecule.
- 50. A process according to claim 49 which comprises (a) identifying a molecular structure or modulator according to the method as defined in any one of claims 28 to 40; (b) optimising the structure of the modulator molecule; and (c) preparing a

- medicament, pharmaceutical composition or drug containing the optimised modulator molecule.
- 51. A compound identified, produced or obtainable by the process or method of any one of claims 28 to 40.
- 52. A compound of claim 51 or composition thereof for use in medicine.

FIGURE 1

FIGURE 2

Sequence Listings

SEQ ID 1: shows the DNA sequence coding for the BACE protein, BACE WT.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCCACGCACCCAGCACGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCCC CTGGGGCTGCGCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCACCCCTTGG ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEQ ID 2: shows the deduced amino acid sequence for BACE WT.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRRGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 3: shows the DNA sequence coding for the BACE protein, BACE N->Q.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCCACGCACCAGCACGCATCCGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCACCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACCCCTTGG AACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC

ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC
GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC
ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTCAGC
GCTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTG
GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCACATCACCATCATCAC
CACTAA

SEQ ID 4: shows the deduced amino acid sequence for BACE N->Q.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRRGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDESHHHHHH

SEO ID 5: shows the DNA sequence coding for the BACE WT R56KR57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCCACGCACCAGCACGCATCCGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCACCCCTTGG ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGCCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEQ ID 6: shows the deduced amino acid sequence for BACE WT R56KR57K

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGKKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 7: shows the DNA sequence coding for the BACE WT R57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGAGTGCTGCCT GCCCACGCCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCCC CTGGGGCTGCCGCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCAAGGGC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCACCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC **AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC** AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCACCCCTTGG ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGCCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEQ ID 8: shows the deduced amino acid sequence for BACE WT R57K.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 9: shows the DNA sequence coding for the BACE WT R57DEL.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCACGGCACCAGCACGGCATCCGGCTGCCCTGCGCAGCGGCCTGGGGGGCCCCCC CTGGGGCTGCGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCAGGGGCAGC TTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATG ACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTT GCAGTGGGTGCTGCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGC ACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGG ATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATC TCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGC ATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGAGTGGTAT TATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAG GAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAG AAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCT GATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGTGCAAGCAGCACCACCCCTTGGAAC ACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGAC TGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATCATG GAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCT TGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTGGAC ATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

. SEQ ID 10: shows the deduced amino acid sequence for BACE WT R57de1.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRGSFVEMVDNLRGKSGQ GYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVS IPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGFP LNQSEVLASVGGSMIIGGIDHŞLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNL RLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLRP VEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDC GYNIPQTDES

SEQ ID 11: shows the DNA sequence coding for the BACE N->Q R56KR57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCCACGGCACCAGCACGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCACCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCACCCCTTGG AACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGCCÁGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCACATCACCATCATCAC CACTAA

SEQ ID 12: shows the deduced amino acid sequence for BACE N->Q R56KR57K

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGKKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDESHHHHHH

SEQ ID 13: shows the DNA sequence coding for the BACE N->Q R56KR57K no His.

SEQ ID 14: shows the deduced amino acid sequence for BACE N->Q R56KR57K no His

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGKKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 15: shows the DNA sequence coding for the BACE N->Q R57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCCACGCACCCAGCACGCATCCGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCCAGGGCTACTACGTGGAG. ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGCAAGCAGCACCACCCCTTGG AACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCACATCACCATCATCAC

SEQ ID 16: shows the deduced amino acid sequence for BACE N->Q R57K

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDESHHHHHH

SEQ ID 17: shows the DNA sequence coding for the BACE N->Q R57DEL.

CATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCCCTGGGGCTGCCCCGGGAGACCGACGAAGAGCCCG AGGAGCCCGGCAGGGCAGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATG ACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCAGTGGGTGCTGCCCCCCA CCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACA ATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGA GATTGCCAGGCCTGACGACTCCCTGGAGCCTTTCTTTGACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCC ATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTATGAGGTGATCATTGTGCG GGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCA CCAACCTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCT GATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCCCCTTGGAACATTTTCCCAGTCATCTCACT CTACCTAATGGTTGAGGTTACCCAGCAGTCCTTCCGCATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATG TGGCCACGTCCCAAGACGACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATCATG GAGGGCTTCTACGTTGTCTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCTTGCCATGTGCACGATGAGTT CACATCACCATCACCACTAA

SEQ ID 18: shows the deduced amino acid sequence for BACE N->Q R57del

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRGSFVEMVDNLRGKSGQ GYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVS IPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGFP LQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNL RLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLRP VEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDC GYNIPQTDESHHHHHH

SEQ ID 19: shows the amino acid sequence of BACE WT R56KR57K crystallised.

LPRETDEEPEGKKGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQ
LSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARP
DDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVII
VRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPW
NIFPVISLYLMGEVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKR
IGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQTDES

SEQ ID 20: shows the amino acid sequence of BACE N->Q R56KR57K no His as crystallised.

LPRETDEEPEEPGKKGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQ LSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARP DDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVII VRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPW NIFPVISLYLMGEVTQQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKR IGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQTDES

SEQ ID 21: shows the amino acid sequence of BACE N->Q R56KR57K crystallised.

LPRETDEEPEGKKGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQ
LSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARP
DDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVII
VRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPW
NIFPVISLYLMGEVTQQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKR
IGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQTDESHHHHHH

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☑ BLACK BORDERS
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.