

We claim:

1 1. A method for routing signals in a network comprising a backbone and a plurality of
2 peering partners, wherein each peering partner is connected to the backbone, the method
3 comprising:

4 developing an address space map of the network, wherein the address space map
5 associates topological regions of the network with a particular set of signal
6 addresses; and

7 using the address space map to route signals on the backbone.

1 2. The method of claim 1, wherein signals are routed on the backbone using cold potato
2 routing.

1 3. The method of claim 2, wherein cold potato routing carries a signal on the backbone
2 to the backbone connection closest to the topological region of the network corresponding to the
3 signal's address.

1 4. The method of claim 1, wherein the peering partners route signals to the backbone
2 using hot potato routing.

1 5. The method of claim 4, wherein hot potato routing places a signal on the backbone
2 connection closest to the topological region of the network corresponding to the signal's address.

1 6. The method of claim 1, wherein using the address space map to route signals further
2 comprises:

3 injecting a route preference for a route into the network; and

4 deaggregating a route that is aggregated across a plurality of topological regions of
5 the network according to the address space map.

1 7. A method for modifying routing using an address space map of a system having a
2 plurality of networks connected to a backbone via a plurality of entry points, the method
3 comprising:

4 monitoring the entry points of a plurality of messages arriving from the plurality of
5 networks;

6 correlating the plurality of message entry points with their associated message source
7 address ranges to develop an address space map of the system; and

8 using the address space map to implement modified routing.

1 8. The method of claim 7, wherein using the address space map to implement modified
2 routing further comprises:

3 subject to a determination that the amount of messages from a first source address
4 range arriving from a first path exceeds a first threshold amount, preferencing
5 all messages to a destination address within the first source address range to
6 travel via the first path.

1 9. The method of claim 8, wherein using the address space map to implement modified
2 routing further comprises:

3 subject to a determination that the first path has not been preferenced, and further
4 subject to a determination that the amount of messages from the first source
5 address range arriving from the first path exceeds a second threshold amount,
6 deaggregating a published route associated with the first source address range.

1 10. The method of claim 9, wherein the first source address range is a group of addresses
2 corresponding to the same Internet Protocol address and mask.

1 11. The method of claim 9, wherein the first threshold is a preset percentage of the total
2 amount of messages from a first source address range.

1 12. The method of claim 9, wherein the second threshold is a preset percentage of the
2 total amount of messages from a first source address range.

1 13. A method for performing traffic routing management in a network, the method
2 comprising:

3 monitoring source address ranges for a plurality of signals;

4 monitoring arrival network connection points for the plurality of signals; and

5 developing an address space map of the network.

- 1 14. The method of claim 13, further comprising:
- 2 using the address space map to route a signal to a network connection point closest to
- 3 a destination address range of the signal.
- 1 15. The method of claim 14, wherein using the address space map further comprises:
- 2 preferencing a route table route that is not selected naturally according to a network
- 3 routing protocol and is not prohibited according to a network configuration
- 4 parameter, subject to a determination that the route exceeds a signal quantity
- 5 threshold.
- 1 16. The method of claim 15, wherein the network routing protocol is the Border
- 2 Gateway Protocol.
- 1 17. The method of claim 15, wherein preferencing a route table route includes modifying
- 2 the local preferences for the route.
- 1 18. The method of claim 15, wherein the signal quantity threshold is a preset percentage
- 2 of the total number of signals from the source address range corresponding to the route.
- 1 19. The method of claim 15, wherein the signal quantity threshold is a preset number of
- 2 signals.
- 1 20. The method of claim 14, wherein using the address space map further comprises:
- 2 injecting a new route within the source address range of a signal into the network.

1 21. The method of claim 20, wherein the step of injecting a new route includes issuing a
2 route announcement using a Border Gateway Protocol session from an external system.

1 22. The method of claim 14, wherein using the address space map further comprises
2 reconciling differences between the address map and existing routes in the network.

1 23. The method of claim 13, wherein each source address range is an Internet Protocol
2 address including a prefix length.

1 24. The method of claim 13, wherein the network connection point is an interface.

1 25. The method of claim 13, wherein developing the address space map of the network
2 further comprises:

3 collecting route entries from a route table on a router in the network; and
4 compiling signal traffic statistics entries on the monitored plurality of signals passing
5 through the router in the network, wherein each signal traffic statistics entry
6 includes a measure of the quantity of signals corresponding to a source
7 address range.

1 26. The method of claim 25, further including correlating each signal traffic statistics
2 entry with a route entry.

1 27. The method of claim 27, wherein each signal is an Internet Protocol packet.

1 28. The method of claim 25, wherein each signal traffic statistics entry further
2 comprises:

3 an Internet Protocol address;
4 a prefix length for the Internet Protocol address range; and
5 an associated route entry.

1 29. The method of claim 25, wherein each route entry comprises an advertised Border
2 Gateway Protocol route.

1 30. The method of claim 13, wherein the plurality of signals monitored includes the
2 signals sent within the network.

1 31. The method of claim 13, wherein the plurality of signals monitored includes a
2 sampled portion of the signals sent within the network.

1 32. The method of claim 13, wherein the plurality of signals monitored includes:
2 a set of signals sent within the network; and
3 a set of signals generated to fill in portions of the address space map of the network.

1 33. The method of claim 13, wherein the plurality of signals monitored includes a set of
2 signals generated to provide substantially equal signal coverage of the network.

1 34. The method of claim 13, wherein monitoring is performed automatically and
2 automatically used to develop the address space map.

1 35. The method of claim 14, wherein the process of using the address space map is
2 performed automatically.

1 36. The method of claim 15, wherein preferencing a route table route is performed
2 automatically.

1 37. The method of claim 20, wherein injecting a new route is performed automatically.

1 38. The method of claim 25, wherein compiling signal traffic statistics is performed
2 automatically.

1 39. A computer program product for performing traffic routing management in a
2 network, the computer program product comprising:

3 a computer readable medium that stores program code including:

4 program code that monitors source address ranges for a plurality of signals;

5 program code that monitors arrival network connection points for the plurality of
6 signals; and

7 program code that develops an address space map of the network.

1 40. The computer program product of claim 39, further comprising:

2 program code that uses the address space map to route a signal to a network
3 connection point topologically closest to a destination address range of the
4 signal.

1 41. The computer program product of claim 40, wherein program code that uses the
2 address space map further comprises:

3 program code that preferences a route table route that is not selected naturally
4 according to a network routing protocol and is not prohibited according to a
5 network configuration parameter, subject to a determination that the route
6 exceeds a signal quantity threshold.

1 42. The computer program product of claim 40, wherein program code that uses the
2 address space map further comprises:

3 program code that injects a new route within the source address range of a signal into
4 the network.

1 43. The computer program product of claim 40, wherein program code that uses the
2 address space map further comprises program code that reconciles differences between the
3 address map and existing routes in the network.

1 44. The computer program product of claim 39, wherein program code that develops the
2 address space map of the network further comprises:

3 program code that collects route entries from a route table on a router in the network;
4 and

5 program code that compiles signal traffic statistics entries on the monitored plurality
6 of signals passing through the router in the network, wherein each signal

7 traffic statistics entry includes a measure of the quantity of signals
8 corresponding to a source address range.

1 45. The computer program product of claim 44, further including program code that
2 correlates each signal traffic statistics entry with a route entry.

1 46. A method for managing the routing of signals in a network, comprising:
2 receiving route entries from a route table in the network;
3 receiving Internet Protocol statistics data entries on signals flowing through one or
4 more routers on the network, wherein each Internet Protocol statistics data
5 entry includes a measure of the quantity of signals corresponding to a signal
6 source address range;
7 developing an address space map of the network using the route entries and Internet
8 Protocol statistics data entries; and
9 implementing the address space map.

1 47. The method of claim 46, wherein implementing the address space map comprises
2 selecting a preferred route.

1 48. The method of claim 47, wherein selecting the preferred route comprises:
2 selecting as the preferred route a route entry that is not selected naturally according to
3 a network routing protocol and is not prohibited according to a network
4 configuration parameter, subject to a determination that the route exceeds a
5 signal quantity threshold.

1 49. The method of claim 48, wherein the network routing protocol is the Border
2 Gateway Protocol.

1 50. The method of claim 47, wherein implementing the address space map further
2 comprises selecting a deaggregation route.

1 51. The method of claim 50, wherein selecting the deaggregation route comprises:

2 selecting as the deaggregation route a route corresponding to a Internet Protocol
3 statistics data entry, wherein the route is more specific than the route table
4 route currently announced to the network.

1 52. The method of claim 51, wherein the more specific route has a longer prefix length.

1 53. A computer program product for managing the routing of signals in a network, the
2 computer program product comprising:

3 a computer readable medium that stores program code including:
4 program code that receives route entries from a route table in the network;
5 program code that receives Internet Protocol statistics data entries on signals
6 flowing through one or more routers on the network, wherein each Internet
7 Protocol statistics data entry includes a measure of the quantity of signals
8 corresponding to a signal source address range;

9 program code that develops an address space map of the network using the route
10 entries and Internet Protocol statistics data entries; and

11 program code that implements the address space map.

1 54. The computer program product of claim 53, wherein program code that implements
2 the address space map comprises program code that selects a preferred route.

1 55. The computer program product of claim 54, wherein the program code that selects
2 the preferred route comprises:

3 program code that selects as the preferred route a route entry that is not selected
4 naturally according to a network routing protocol and is not prohibited
5 according to a network configuration parameter, subject to a determination
6 that the route exceeds a signal quantity threshold.

1 56. The computer program product of claim 54, wherein program code that implements
2 the address space map further comprises program code that selects a deaggregation route.

1 57. The computer program product of claim 56, wherein the program code that selects
2 the deaggregation route comprises:

3 program code that selects as the deaggregation route a route corresponding to a
4 Internet Protocol statistics data entry, wherein the route is more specific than
5 the route table route currently announced to the network.

1 58. In a system comprising a backbone connected to a content provider and a first
2 network connected to a content user, wherein the first network is connected by one or more
3 connections to a backbone, a method for routing traffic between the content provider and the
4 content user comprising:

5 placing the content provider traffic onto the backbone;

6 routing the traffic on the backbone to the first network; and

7 placing the traffic onto the connection between the first network and the backbone
8 that is topologically closest to the content user.

1 59. The method of claim 58, wherein the content provider is connected to the backbone
2 via an access point.

1 60. The method of claim 58, wherein the content provider is a World Wide Web content
2 provider.

1 61. The method of claim 58, wherein the system further includes a second network
2 connected to a content user, the method further including:

3 determining whether traffic was sent to the system via the first network or the second
4 network and selecting the network sending traffic to the system;

5 routing the traffic on the backbone to the selected network; and

6 placing the traffic onto the connection between the selected network and the
7 backbone that is topologically closest to the content user.

- 1 62. A system for routing network traffic, comprising:
- 2 a backbone;
- 3 a plurality of points of presence on the backbone, wherein each point of presence
- 4 collects traffic data and sends the traffic data to a network operations center;
- 5 and
- 6 a network operations center coupled to the backbone for receiving the traffic data,
- 7 analyzing the traffic data, and automatically modifying the routing policy of
- 8 the system based upon the analyzed data.
- 1 63. The system of claim 62, further including:
- 2 a plurality of peering partner networks, each peering partner network connected to the
- 3 backbone at one or more points of presence.
- 1 64. The system of claim 63, wherein each peering partner network is paid a fee for all
- 2 traffic the peering partner network receives from the backbone.
- 1 65. The system of claim 64, wherein at least one peering partner network provides transit
- 2 connections to other Internet service providers that are not part of a peering partner network.
- 1 66. The system of claim 62, further including:
- 2 one or more peering partners networks, each peering partner network connected to the
- 3 backbone at nine or more points of presence by an OC-3 line connection.

1 67. The system of claim 62, wherein each point of presence comprises:

2 a router for routing traffic between the backbone and one or more peering partner
3 networks, and wherein the router further generates Internet Protocol statistics
4 reports and reads the route tables and sends the Internet Protocol statistics
5 reports and the route tables to a computer; and

6 the computer for receiving the Internet Protocol statistics reports and the route tables
7 and sending the Internet Protocol statistics reports and the route tables to the
8 network operations center.

1 68. The system of claim 67, wherein the computer further correlates the Internet Protocol

2 statistics reports and the route tables.

1 69. The system of claim 67, wherein the computer further receives preferred routes from

2 the network operations corresponding to a new routing policy.

1 70. The system of claim 69, wherein the computer further compares the new routing

2 policy to an existing routing policy, and implements the differences between the new and the
3 existing routing policies.

1 71. The system of claim 62, wherein the backbone is a Dense Wave Division

2 Multiplexing system.

1 72. The system of claim 62, wherein each point of presence automatically collects traffic

2 data and the network operations center automatically analyzes the traffic data.

3