

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Sterowanie Procesami Ciągłymi

Sprawozdanie nr 1 Charakterystyki częstotliwościowe

Prowadzący: dr hab. inż. Grzegorz Mzyk

> Wykonała: Zuzanna Mejer, 259382

> > Termin zajęć: czwartek TP, 9:15

Spis treści

1	Cel ćwiczenia	2
2	Zależność charakterystyki czasowej układu od wartości pulsacji pobudzenia sinusoidalnego	2
	2.1 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega = 0, 1 \dots \dots$	2
	2.2 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=1$	3
	2.3 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=10$	5
	2.4 Porównanie	5
3	Badania w dziedzinie częstotliwościowej	7
	3.1 Charakterystyka amplitudowo-fazowa	7
	3.2 Analiza charakterystyki częstotliwościowej układu opóźniającego z inercją	
4	Podsumowanie i wnioski	9

1 Cel ćwiczenia

Głównymi celami ćwiczenia było: zbadanie zależności odpowiedzi systemu w dziedzinie czasu od pulsacji pobudzenia sinusoidalnego; zapoznanie się z różnymi rodzajami charakterystyk częstotliwościowych oraz zbadanie wpływu wartości parametrów układu opóźniającego z inercją na charakterystykę częstotliwościową układu.

2 Zależność charakterystyki czasowej układu od wartości pulsacji pobudzenia sinusoidalnego

Badany jest asymptotycznie stabilny układ liniowy o zadanej transmitancji:

$$K(s) = \frac{1}{s^2 + 0, 1s + 1},\tag{1}$$

który pobudzany jest sygnałem sinusoidalnym o ogólnym wzorze:

$$u(t) = \sin(\omega t), \tag{2}$$

gdzie ω to pulsacja. Odpowiedź układu liniowego na pobudzenie sinusoidalne w stanie ustalonym ma postać:

$$y_{ust}(t) = A \cdot \sin(\omega t + \varphi), \tag{3}$$

gdzie: A to amplituda, ω to pulsacja oraz φ to przesunięcie fazowe. Wiedząc, że pulsacja odpowiedzi systemu ω jest identyczna jak pulsacja sygnału wejściowego, zbadano jaka jest zależność między pulsacją sygnału wejściowego a amplitudą A i przesunięciem fazowym φ odpowiedzi systemu. Do badań przyjęto 3 wartości pulsacji: $\omega=0,1,\,\omega=1,\,\omega=10,\,$ co oznacza, że układ o transmitancji 1 pobudzono kolejno: $u_1(t)=sin(0,1t),\,u_2(t)=sin(1t)$ oraz $u_3(t)=sin(10t)$. Zbudowano następujący schemat w Simulinku:

Rysunek 1: Schemat w Simulinku do badania odpowiedzi układu na pobudzenie sinusoidalne

2.1 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=0,1$

Pobudzono układ sygnałem $u_1(t) = sin(0,1t)$. Poniżej przedstawiono porównanie pobudzenia sinusoidalnego (kolor czarny na wykresie) z odpowiedzią systemu (kolor czerwony na wykresie).

Rysunek 2: Odpowiedź systemu o transmitancji K(s) na pobudzenie $u_1(t) = sin(0, 1t)$

Odpowiedź układu prawie idealnie pokrywa się z pobudzeniem sinusoidalnym. Amplituda wynosi A=1 oraz przesunięcie fazowe $\varphi=0$.

2.2 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega = 1$

Pobudzono układ sygnałem $u_2(t) = sin(1t)$. Poniżej przedstawiono porównanie pobudzenia sinusoidalnego (kolor czarny na wykresie) z odpowiedzią systemu (kolor czerwony na wykresie).

Rysunek 3: Odpowiedź systemu o transmitancji K(s) na pobudzenie $u_2(t) = sin(1t)$

Na Rysunku 3 przedstawiony został fragment odpowiedzi układu. Widać na nim, że amplituda odpowiedzi układu wzrasta. Stabilizuje się znacznie później na wartości $A\approx 10$, co przedstawia Rysunek 4:

Rysunek 4: Amplituda odpowiedzi systemu wynosi 10

Widać, że funkcje są względem siebie przesunięte o jakiś kąt. Ze względu na to, że osie na wykresie są w dziedzinie czasu, nie można bezpośrednio odczytać przesunięcia fazowego. Aby wyznaczyć przesunięcie fazowe można skorzystać ze wzoru:

$$\varphi = \frac{2\pi}{T} \cdot \tau. \tag{4}$$

Wiedząc, że: $\frac{2\pi}{T} = \omega$, można zapisać ten wzór w postaci:

$$\varphi = \omega \cdot \tau, \tag{5}$$

gdzie τ to różnica wartości przecięć funkcji z osią x, czyli $\tau=x_2-x_1$. Na Rysunku 5 wybrano punkty przecięcia dwóch funkcji z osią x. Z Rysunku można odczytać, że: $x_2=17,24$ oraz $x_1=15,762$. Ponadto, do wzoru potrzebna jest pulsacja, która jest zadana: $\omega=1$.

Rysunek 5: Dane do wyznaczenia przesunięcia fazowego

Zatem:

$$\varphi = 1 \frac{rad}{s} \cdot (17, 24s - 15, 762s) = 1,478rad \approx 84,68^{\circ}$$
(6)

Przesunięcie fazowe między pobudzeniem a odpowiedzią układu wynosi $\varphi \approx 84,68^{\circ}$.

2.3 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=10$

Pobudzono układ sygnałem $u_3(t) = sin(10t)$. Poniżej przedstawiono porównanie pobudzenia sinusoidalnego (kolor czarny na wykresie) z odpowiedzią systemu (kolor czerwony na wykresie).

Rysunek 6: Odpowiedź systemu o transmitancji K(s) na pobudzenie $u_3(t) = \sin(10t)$

Na Rysunku 6 zaznaczono najbardziej wychylony punkt, który oznacza amplitudę odpowiedzi układu: $A \approx 0,1$. Ponadto, z Rysunku 6 można odczytać przesunięcie fazowe. Obydwa wykresy przechodzą przez oś x w tych samych punktach (zaznaczono jeden taki punkt na rysunku), jednak ich przesunięcie fazowe nie jest równe 0, a 180°. Można to wywnioskować po tym, że kiedy na jednym wykresie lokalnie jest "górka", na drugim lokalnie jest "dolina". To oznacza, że są odwrócone w fazie o $\varphi = 180^\circ$.

2.4 Porównanie

Powyższe badania potwierdziły, że wzmocnienie amplitudy A oraz przesunięcie fazowe φ są zależne od ω . Nie ma jednak jednoznacznej i uniwersalnej zależności dla każdego typu systemów jak ω wpływa na amplitudę i przesunięcie fazowe, ale można to sprawdzić na przykład za pomocą charakterystyk Bodego. Dla układu o transmitancji 1 charakterystyka Bodego wygląda następująco:

Rysunek 7: Charakterystyka Bodego dla układu o transmitancji $K(s) = \frac{1}{s^2 + 0, 1s + 1}$

Z rozważań wynikło, że:

- 1. kiedy $\omega = 0, 1$, amplituda A = 1 i przesunięcie fazowe $\varphi = 0^{\circ}$;
- 2. kiedy $\omega=1$, amplituda A=10 i przesunięcie fazowe $\varphi\approx 84,68^\circ;$
- 3. kiedy $\omega = 10$, amplituda A = 0, 1 i przesunięcie fazowe $\varphi = 180^{\circ}$.

Można zauważyć, że zgadza się to z amplitudą i przesunięciem fazowym ukazanym na charakterystyce Bodego:

- 1. kiedy $\omega=0,1,$ amplituda $A=0dB=20\cdot log\frac{x}{1}=1$ i przesunięcie fazowe $\varphi=0^\circ;$
- 2. kiedy $\omega=1$, amplituda $A=20dB=20\cdot log\frac{x}{1}=10$ i przesunięcie fazowe $\varphi\approx-90^\circ;$
- 3. kiedy $\omega=10,$ amplituda $A=-40dB=20\cdot log\frac{x}{1}=0,1$ i przesunięcie fazowe $\varphi=-180^{\circ}.$

3 Badania w dziedzinie częstotliwościowej

3.1 Charakterystyka amplitudowo-fazowa

Podana została transmitancja układu:

$$K(s) = \frac{1}{s+1}. (7)$$

Obliczono transmitancję widmową układu:

$$K(j\omega) = \frac{1}{j\omega + 1} = \frac{1 \cdot (1 - j\omega)}{(1 + j\omega) \cdot (1 - j\omega)} = \frac{1 - j\omega}{1 + \omega^2}$$
(8)

oraz wydzielono części rzeczywistą i urojoną transmitancji widmowej:

$$Re(K(j\omega)) = \frac{1}{1+\omega^2} \tag{9}$$

$$Im(K(j\omega)) = \frac{-\omega}{1+\omega^2}. (10)$$

Na ich podstawie można wygenerować charakterystykę częstotliwościową, która stanowi rzut trójwymiarowej krzywej w przestrzeni (ω , $ReK(j\omega)$, $ImK(j\omega)$), gdzie $\omega \in [0,\infty)$, na płaszczyznę $(ReK(j\omega), ImK(j\omega))$. Na poniższych rysunkach przedstawiono schemat w Simulinku (8) oraz charakterystykę częstotliwościową układu o wyznaczonej transmitancji (9).

Rysunek 8: Schemat Simulink do rysowania charakterystyki częstotliwościowej

Rysunek 9: Charakterystyka częstotliwościowa układu o transmitancji $K(s) = \frac{1}{s+1}$

Charakterystyka przechodzi przez 1 ćwiartkę, gdyż jest to charakterystyka układu pierwszego rzędu. Ma swój początek w punkcie (1,0j) i koniec w punkcie (0,0j).

3.2 Analiza charakterystyki częstotliwościowej układu opóźniającego z inercją

Transmitancja układu opóźniającego z inercją to:

$$K(s) = \frac{k}{Ts+1} \cdot e^{-s\tau},\tag{11}$$

gdzie k to wzmocnienie, T to stała czasowa oraz τ to opóźnienie układu. Wartości tych trzech parametrów mają wpływ na charakterystykę amplitudowo-fazową układu. Przyjmując przykładowe dane:

- \bullet k = 1
- T = 1
- $\bullet \ \tau = 2$

transmitancja układu wyniesie:

$$K(s) = \frac{1}{s+1} \cdot e^{-2s},\tag{12}$$

czyli transmitancja widmowa będzie miała postać:

$$K(j\omega) = \frac{1}{j\omega + 1} \cdot e^{-2j\omega} = \frac{1}{1 + j\omega} \cdot (\cos(2\omega) - j\sin(2\omega)) =$$

$$= \frac{\cos(2\omega) - j\sin(2\omega)}{1 + j\omega} \cdot \frac{1 - j\omega}{1 - j\omega} = \frac{\cos(2\omega) - j\omega\cos(2\omega) - j\sin(2\omega) - \omega\sin(2\omega)}{1 + \omega^2} =$$

$$= \frac{\cos(2\omega) - \omega\sin(2\omega)}{1 + \omega^2} + j \cdot \frac{-\omega\cos(2\omega) - \sin(2\omega)}{1 + \omega^2}$$
(13)

Część rzeczywista oraz urojona transmitancji widmowej wynoszą:

$$Re(K(j\omega)) = \frac{\cos(2\omega) - \omega\sin(2\omega)}{1 + \omega^2}$$
(14)

$$Im(K(j\omega)) = \frac{-\omega cos(2\omega) - sin(2\omega)}{1 + \omega^2}$$
(15)

Na ich podstawie i korzystając ze schematu Simulink 8 wygenerowano charakterystykę częstotliwościową:

Rysunek 10: Charakterystyka częstotliwościowa układu o transmitancji $K(s) = \frac{1}{s+1} \cdot e^{-2s}$

Charakterystyka ma postać spirali, która ma swój początek w punkcie (1, 0j) ze względu na wartość wzmocnienia k = 1 oraz zbiega do punktu (0, 0j).

4 Podsumowanie i wnioski

- 1. Podczas ćwiczenia wykazano, że charakterystyka czasowa odpowiedzi systemu na pobudzenie sinusoidalne zależy od wartości zadanej pulsacji ω . W odpowiedzi systemu zmienia się amplituda oraz przesunięcie fazowe, natomiast pulsacja zostaje identyczna jak pulsacja sygnału pobudzającego.
- 2. Charakterystyka czasowa odpowiedzi systemu na pobudzenie sinusoidalne odwzorowuje charakterystykę Bodego w dziedzinie częstotliwości. Z charakterystyk czasowych wyznaczono amplitudy oraz przesunięcia fazowe odpowiedzi układu, które okazały się poprawne i zgodne z tym, co pokazywał wykres Bodego.
- 3. Z charakterystyki częstotliwościowej można odczytać amplitudę oraz przesunięcie fazowe. W zależności od rzędu badanego układu, wykres przechodzi przez różną liczbę ćwiartek wykresu dla układu pierwszego rzędu będzie to jedna ćwiartka, dla układu drugiego rzędu dwie ćwiartki itd.
- 4. Charakterystyka częstotliwościowa układu opóźniającego z inercją przypomina spiralę zawijającą się dookoła początku układu współrzędnych. Jej wygląd zależy od parametrów wzmocnienia k, stałej czasowej T oraz opóźnienia τ .

5. Od wzmocnienia zależy gdzie rozpocznie się spirala (dla k=1 zaczynała się w punkcie (1, 0j)). Od opóźnienia zależy jak "rozległa" jest spirala (dla $\tau=2$ będzie sięgać dalej niż dla $\tau=1$). W miarę zwiększania stałej czasowej spirala zbliża się do 0 (dla T=1 spirala zawijała się dookoła punktu 0, natomiast dla T=0, charakterystyka byłaby okręgiem, a nie spiralą).