1												_							
												$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
		+ θχ	+					' β	×			$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
		$\partial_{\kappa}\omega^{ heta_{\mathcal{C}}}$	$\omega^{\kappa\lambda\theta}$ -	+ _θ			$+ \theta \theta^{\chi}$	$\partial_\lambda \omega_{lphaeta}$	$\partial^\lambda \omega^{ heta \kappa}$			$\alpha \ \sigma_{1}^{\#2} \ \alpha \ \tau_{1}^{\#1} \ \alpha \ \tau_{1}^{\#2}$	0	0	0	0	0	0	0
	α 4 +	k k k	$^{\prime}_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}$	$_{K\Theta}\partial^{K}f$	<i>-</i> _θ ,	-γα-	$^{1\theta}\partial^{\kappa}\omega_{c}$	$^{eta}\omega_{'}^{\lambdalpha}$	$\omega_{\lambda}^{\alpha}$			$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_3}$	0	0	0
5	$_3 \partial_{\prime} \omega^{KA}_{K} \partial^{\prime} \omega_{\alpha}^{\alpha} +$	$_{\kappa}\omega^{\alpha\beta\theta}$ - $\frac{2}{3}$ r_{2} ∂	$_{\kappa}\omega^{ heta\kappa\lambda}$ - $_{r_3}\partial_{lpha}\omega$	$f_{\alpha}^{\ \ \theta} - \frac{1}{6} t_2 \partial^{\alpha} f$	$-\frac{2}{3}t_2\omega_{1K\theta}\partial^K$	$\frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\ \ \kappa} \partial^{\kappa} f$	$^{\prime}+rac{1}{3}r_{2}\partial_{\kappa}\omega^{lphaeta}$	$_{\lambda}\omega_{\alpha\beta}^{\prime}+\frac{2}{3}r_{2}\partial$	$\omega^{\theta \kappa}_{\ \kappa} + 3 r_3 \partial_{\epsilon}$	$\omega^{lphaeta\chi}$ $\sigma_{lphaeta\chi}$		$\tau_1^{\#1}_+ \alpha_\beta$	$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
S	$rac{2}{3}t_{2}\;\omega_{_{K}\lambda}^{\;K\Lambda}\;\omega_{_{K}\lambda}^{\;\prime}+rac{1}{3}t_{2}\;\omega_{_{K}\lambda}^{\;\prime}\;\omega_{^{K\Lambda}}^{\;\prime}-r_{3}\partial_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	$_{\kappa}^{'}\partial_{\theta}\omega_{\alpha\beta}^{} - \frac{1}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{2}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} +$	$3 r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \theta^{\beta \kappa \lambda} - 3 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \theta^{\beta \kappa \omega}^{\kappa \lambda \theta}$	$2 r_3 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} +$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\alpha\lambda} + \frac{1}{3}t_2\omega_{/\theta\kappa}\partial^\kappa f^{\prime\theta} - \frac{2}{3}t_2\omega_{/\kappa\theta}\partial^\kappa f^{\prime\theta} -$	$\frac{1}{3}t_2\ \omega_{\theta IK}\ \partial^K f^{I\theta} + \frac{2}{3}t_2\ \omega_{\theta KI}\ \partial^K f^{I\theta} - \frac{1}{6}t_2\ \partial^\alpha f^\lambda_{\ K}\ \partial^K f_{\lambda\alpha} -$	$\frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\beta}^{\theta} + \frac{1}{6}t_2\partial_\kappa f^{\beta}_{\theta}\partial^\kappa f_{\beta}^{\theta} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$	$rac{2}{3}r_2\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta heta}^{-rac{2}{3}}r_2\partial^\beta\omega_{,}^{lpha\lambda}\partial_\lambda\omega_{lphaeta}^{}^{}+rac{2}{3}r_2\partial^\beta\omega_{,}^{\lambdalpha}\partial_\lambda\omega_{lphaeta}^{}^{}$	$4 r_3 \partial^\beta \omega_{\lambda}^{\lambda \alpha} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} - 3 r_3 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} + 3 r_3 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \rho}$	Added source term: $\left f^{lphaeta}\; \iota_{lphaeta} + \omega^{lphaeta\chi}\; \sigma_{lphaeta\chi} ight $		$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
Lagrangian density	$\omega_{\kappa\lambda}' + \frac{1}{3}t$	$^{etapprox}_{\kappa}\partial_{eta}\omega_{lphaeta}^{\ \ \kappa}$	$_{\lambda}^{\alpha}{}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ -	$_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$	$_{\kappa}^{\prime}\partial^{\kappa}f_{\alpha\lambda}+\frac{1}{3}$	$_{\kappa} \partial^{\kappa} f^{\prime \theta} + \frac{2}{3} t$	$^{\lambda}\partial^{\kappa}f_{\lambda}^{\ \theta}+\frac{1}{6}$	$^{ hetalphaeta}\partial^{\kappa}\omega_{lphaeta heta}^{-}$	$^{,\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime}$	source terr		$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
Lagrang	$\frac{2}{3}t_2\omega_{\kappa}^{\kappa}$	$\frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}_{\kappa}$	$3 r_3 \partial_{\alpha} \omega_{\alpha}$	$2 r_3 \partial_{\theta} \omega_{\mu}$	$\frac{1}{6}t_2\partial^{\alpha}f^{\lambda}$	$\frac{1}{3}t_2 \omega_{\theta \prime \prime}$	$rac{1}{6}t_2\partial_\kappa f_{arepsilon}$	$\frac{2}{3} r_2 \partial_{\kappa} \omega^{\prime}$	$4 r_3 \partial^{\beta} \omega_{\mu}$	Added s			$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$ au_1^{\#1} + ^{lphaeta}$	$\sigma_1^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$
								į			7 I C	-							

0	0	
0	0	Source constraints
		SO(3) irreps
0	0	$ \tau_{0^{+}}^{\#2} == 0 $
		$\tau_{0+}^{\#1} == 0$
0	0	$\tau_{1}^{\#2\alpha} == 0$
		$\tau_{1}^{\#1\alpha} == 0$
0	0	$\sigma_{1}^{\#2\alpha} == 0$
		$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$
0	0	$\sigma_{2}^{\#1\alpha\beta\chi} == 0$
		$\tau_{2+}^{\#1\alpha\beta} == 0$
$_{1}^{#_{1}}+^{\alpha}$	$_{1}^{#2}+^{\alpha}$	$\sigma_{2^{+}}^{\#1\alpha\beta}=0$
f	f	Total #:

 $\omega_{1}^{\#2} +^{\alpha}$

 $\bar{l}\sqrt{2}kt_2$

 \neg I \bowtie

 $\omega_1^{\#1} +^{\alpha\beta}$

 $\omega_{1^{-}}^{\#2}$

 $\omega_{1^{-}}^{\#1}$

3 2

 $\sqrt{2}t_2$

 $\omega_1^{\#_+^2} +^{\alpha\beta}$

 $\begin{cases} \frac{i}{t}kt_2 \\ 3 \\ \frac{k^2}{t_2} \end{cases}$

 $\frac{1}{3}$ $i k t_2$

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,kt_2$

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $k^2 r_3$

 $\omega_{1}^{\#_{1}} +^{\alpha}$

	0	0			τ ^{#1} 2		0	0				
	0	0)	$\sigma_{2}^{\#1}$	0	0	0				
	0	0	·			$\sigma_{2}^{\#1} + ^{lphaeta}$	$\tau_{2}^{\#1} + ^{\alpha\beta}$	$\sigma_{2^{-}}^{\#1} +^{\alpha\beta\chi}$				
20	† ⁴ /	$f_{2+}^{#1} + \alpha \beta$	$\alpha \beta \chi$	_								
‡	$\omega_2^{*+} + \alpha^p$	$f_{2+}^{#1}$	π π π π π π π	ω_{2}^{-}			$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
	σ_0^3	#1)+	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_{0}^{\sharp 1}$		+5		_			
<u> </u>		<u>l</u> 2 r ₃	0	0	0	1	$_{+}^{i1}f_{0}^{\#2}$	0	0	0 0	0	
<u> </u>	(0	0	0		$f_{0}^{#1}$	3 0	0	0	0	
· 			0	0	0		$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0	
l †	0		0	0	$\frac{1}{k^2 r_2 + t_2}$			$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_{0}^{#2} +$	$\omega_{0}^{\#1}\dagger$	

 $\sigma_{2^{-}}^{\#1} \alpha \beta \chi$

	Massive particle									
	Pole residue:	$-\frac{1}{r_2} > 0$								
2	Polarisations:	1								
- :	Square mass:	$-\frac{t_2}{r_2} > 0$								
	Spin:	0								
	Parity:	Odd								

(No massless particles)