

School of Computer Science and Engineering

Winter Semester 2023-2024

Continuous Assessment Test – II

SLOT: E2+TE2

Programme Name & Branch : B.Tech -CSE

Course Name & code: BCSE309L & Cryptography and Network Security

Class Number (s): Applicable to All Faculty Name (s): Applicable to All

Exam Duration: 90 Min. Maximum Marks: 50

Answer ALL the questions

Q.No.	Question	Max	CO	BL
		Marks		
1.	a) You have captured the ciphertext C=20 sent to a user whose	5	CO2	BL3
	public key is e=13, n=77, in an RSA Public Key System. Is it			
	possible to compute the plain text M?			
	b) Describe the man-in-the-middle attack and show that the	5		
	shared secret key between the communicators remains the			
	same for the inputs p=11, g=2, $X_A = 9$, and $X_B = 4$.			
2.	Suppose Alice and Bob use an Elgamal scheme with a common	10	CO2	BL5
	prime $q = 157$ and a primitive root $\alpha = 5$.			
	i. If Bob has public key $Y_B = 10$ and Alice chose the random			
	integer $k = 3$, what is the ciphertext of $M = 9$?			
	ii. If Alice now chooses a different value of k so that the			
	encoding of $M = 9$ is $C = (25, C2)$, what is the integer $C2$?			
3.	Perform Elliptic Curve Encryption using $E_{13}(10,6)$ and	10	CO2	BL3
	$G(5,5)$. The value of the private key, $n_b = 5$, $P_m = (6, 8)$, and			
	chooses the random k value as 2.			

4.	a) Compute the value of the padding field, length filed, and number of blocks in MD5 if the length of the message 4000 bits.	5	CO3	BL4
	b) Find the output of the logical functions F, G, H, and I used in MD5 round opeartions if the initial value of the buffers are as follows:	5		
	A – 01234567			
	B – 89abcdef			
	C – fedcba98			
	D - 76543210			
5.	Using the ElGamal Digital signature scheme, User A chose p=13,		CO3	BL4
	q=2, private key $X_A = 3$, $H(m) = 11$, $k = 5$. He announces the			
	global components publicity.	2		
	(i) Find the publich key Y _A	2		
	(ii) How user A does the signing process to compute (S1, S2)?	4		
	(iii) How user B does the verification process?	4		

1) a)
$$e=13$$
 $h=77$
 $P=11$, $Q=7$
 $P=11$, $Q=11$, $Q=1$

$$t = 14 - (-23) \times 2$$

$$PT = 20 \mod 77$$

$$X_A = 9$$
 $X_B = 4$

$$K1 = B^{\alpha} \mod P$$

$$K2 = A^{\alpha} \mod P$$

$$\begin{bmatrix} A = b \end{bmatrix}$$

$$P = 13, \ 9 = 2$$

$$X_{A} = 3$$
 $m = 11$ $K = 5$

$$\times_A = 3$$

$$= 23 \mod 13$$

a)
$$S2 = 2^{K \mod P}$$

$$=$$
 2^5 mod 13

		1	1	t,	t ₂	1 +	1
2 2 2	Y, 12 5	7 ₂ 5 2 1	2 1 0	0 1 -2 5	- 2 5 -12	-2 5 -12	
	1	0	V			1	

$$t = t_{1} - t_{2} \times 2$$

$$= 0 - 1 \times 2$$

$$t = -2$$

$$t = 1 - (-2) \times 2$$

$$= 1 - (-4)$$

$$t = 5$$

$$t = -2 - 5 \times 2$$

$$= -2 - 10$$

$$t = -12$$

$$52 = \left(x^{-1} \left(m - x_{A} s_{1}\right)\right) \mod P - 1$$

$$\left[5 \cdot \left(11 - 9 \cdot 6\right)\right] \mod 12$$

$$52 = \left[5 \cdot \left(11 - 54\right)\right] \mod 12$$

$$= \left[5 \cdot \left(-43\right)\right] \mod 12$$

$$= -215 \mod 12$$

$$= 12 - \left(215 \mod 12\right)$$

$$= 12 - 11$$

$$= 12 - 11$$

$$= 12 - 11$$

$$= 13 - 11$$

$$= 13 - 11$$

$$= 14 - 11$$

$$= 15 - 12$$

$$= 12 - 11$$

$$= 13 - 11$$

$$= 14 - 11$$

$$= 15 - 12$$

$$= 13 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 14 - 11$$

$$= 1$$

$$V_1 = 9^m \mod P$$

$$V_1 = 9^m \mod P$$

$$= 2^{11} \mod 13$$

$$V_1 = 7$$

 $V2 = (7A)^{31} \cdot (S1)^{52} \mod P$ $= 8^{6} \cdot 6^{5} \mod 13$ $= 12 \cdot 6 \mod 13$

4(a) Mossage = 4000 biss

Padding Bits

64 bits loss than the multiple
of 5121

512×8 = 4096

4096 - 64 = 4032

padding Bits = 32 bits

4096/512= 8 512-bit black

$$2(a)$$
 $9 = 157$ $\alpha = 5$

i)
$$Y_B = 10$$
 $K = 3$ $M = 9$

$$K = (Y_B)^K \mod 9$$

$$=10^3 \mod 157$$

$$=5^3$$
 mod 157

$$C1 = 125$$

$$(c_1, c_2) = (125, 51)$$

$$g(b)$$
 $9=157$ $9=5$

$$y_{B} = 10 \quad k = ? \quad M = 9$$

$$C = (25, C2)$$
 $C2 = ?$

$$C2 = K, M \mod 2$$

$$K = 10$$
 mod 157

$$(K = 122)$$
 $C2 = 122.9 \mod 157$

$$C_{2} = 15^{6}$$

3. ECC Solution

Perform Elliptic Curve Encryption and Decryption using $E_{13}(10,6)$ and G(5,5). And the value of the private key, $n_b=5$ & chooses the random k value as 2.

Find the corresponding public key (P_b) of the given private key

$$P_h = n_h * G = 5 * (5,5)$$

And as we know the curve is $E_{13}(10,6)$,

$$p = 13$$
, $a = 10$, $b = 6$

So, first let us calculate

$$2 * G = G + G$$

Where G = (5,5).

$$2 * G = 2 * (5,5) = (7,4)$$

After we find 2 * G, we perform the next step, which is to find $3 * G = (X_3, Y_3)$

$$(X_3, Y_3) = 3 * G = 2 * G + G = (7,4) + (5,5)$$

Here we have,

$$X_1 = 7$$
, $Y_1 = 4$

$$X_2 = 5$$
, $Y_2 = 5$

we find λ

$$\lambda = \frac{Y_2 - Y_1}{X_2 - X_1} \mod p = \frac{5 - 4}{5 - 7} \mod 13$$
$$= \frac{1}{(-2)} \mod 13 = \frac{-1}{2} \mod 13 = -1 * 2^{-1} \mod 13$$

,

$$2^{-1} \mod 13 = 7$$

$$\lambda = -1 * 2^{-1} \mod 13 = -7 \mod 13$$

$$= 13 - 7 \mod 13 = 6$$

And now we got $\lambda = 6$, we find X_3 and Y_3 ,

Finding X_3 ,

$$X_3 = (\lambda^2 - X_1 - X_2) \mod p = (6^2 - 7 - 5) \mod 13$$

= $(36 - 7 - 5) \mod 13 = 24 \mod 13 = 11$

Finding Y_3 ,

$$Y_3 = (\lambda * (X_1 - X_3) - Y_1) \mod p = (6 * (7 - 11) - 4) \mod 13$$

= (-28) mod 13 = 13 - 28 mod 13 = 13 - 2 = 11

Hence, we have

$$3 * G = (X_3, Y_3) = (11, 11)$$

And now that we have 3 * G and 2 * G, we can now evaluate 5 * G,

$$5 * G = 3 * G + 2 * G = (11,11) + (7,4)$$
 (20)

Here let us consider

$$(X_3, Y_3) = 5 * G$$

 $(X_1, Y_1) = (11,11)$
 $(X_2, Y_2) = (7,4)$

First, we have to find λ ,

$$\lambda = \frac{Y_2 - Y_1}{X_2 - X_1} \mod p = \frac{4 - 11}{7 - 11} \mod 13$$
$$= \frac{7}{4} \mod 13 = 7 * 4^{-1} \mod 13$$

So first we can find $4^{-1} \mod 13$,

Let us start from Z = 1,

Z	$\frac{Z*4-1}{13}$ is integer?
1	No
2	No
3	No
4	No
5	No
6	No
7	No
8	No
9	No
10	Yes

$$4^{-1} \mod 13 = 10$$

$$\lambda = 7 * 4^{-1} \mod 13 = 7 * 10 \mod 13 = 70 \mod 13 = 5$$

And now we got $\lambda = 5$, we find X_3 and Y_3 ,

Finding X_3 ,

$$X_3 = (\lambda^2 - X_1 - X_2) \mod p = (5^2 - 11 - 7) \mod 13$$

= $(25 - 11 - 7) \mod 13 = 7 \mod 13 = 7$

Finding Y_3 ,

$$Y_3 = (\lambda * (X_1 - X_3) - Y_1) \mod p = (5 * (11 - 7) - 11) \mod 13$$

= 98 mod 13 = 9

Hence, we have

$$(X_3, Y_3) = (7, 9)$$

 $5 * G = 3 * G + 2 * G = (11,11) + (7, 4) = (7, 9)$

Hence,

$$P_b = 5 * G = 5 * (5,5) = (7,9)$$

 $P_b = (7,9)$

Let us now perform encryption on plain text $P_m(6,8)$ and random number k = 2. Obtain the cipher text C_m .

$$C_m = \{k * G, P_m + k * P_h\}$$

First let us consider the first part of \mathcal{C}_m , ,

$$k * G = 2 * G = 2 * (5,5) = (7,4)$$

 $k * G = (7,4)$

Now let us move to the second part, where we have to find $P_m + k * P_b$,

First, we have to find $k * P_b$,

$$k * P_b = 2 * (7,9)$$

And let,

$$(X_3, Y_3) = 2 * P_b = P_b + P_b$$

$$X = 7, Y = 9$$

And we find λ , by substituting the X, Y

$$\lambda = \frac{(3*X^2+a)}{2*Y} \mod p = \frac{(3*7^2+10)}{2*9} \mod 13$$
$$= \frac{157}{18} \mod 13 = 157*18^{-1} \mod 13$$

Let us start from Z = 1,

Z	$\frac{Z*18-1}{13}$ is integer?
1	No
2	No
3	No
4	No
5	No
6	No
7	No
8	Yes

the value of $18^{-1} \ mod \ 13 = 8$

So, substituting $18^{-1} \mod 13$,

$$\lambda = 157 * 18^{-1} \mod 13 = 157 * 8 \mod 13$$

= 1 * 8 \mod 13 = 8

So, we got,

$$\lambda=8$$
 , $X=5$ and $Y=5$

Now, we find X_3 and Y_3 ,

Finding X_3 ,

$$X_3 = (\lambda^2 - 2 * X) \mod p = (8^2 - 2 * 7) \mod 13$$

= $(64 - 14) \mod 13 = 50 \mod 13 = 11$

Finding Y_3 ,

$$Y_3 = (\lambda * (X - X_3) - Y) \mod p = (8 * (7 - 11) - 9) \mod 13$$
$$= (8 * (-4) - 9) \mod 13 = (-32 - 9) \mod 13$$
$$= (-41) \mod 13 = 13 - 41 \mod 13 = 13 - 2 = 11$$

Hence, we have

$$(X_3, Y_3) = (11, 11)$$

So,

$$k * P_b = 2 * (7,9) = (X_3, Y_3) = (11,11)$$

So, now that we have found $k \ast P_b$, we can compute the 2nd part of \mathcal{C}_m , Let,

$$(X_3, Y_3) = P_m + k * P_b,$$

We know that,

$$P_m = (6.8)$$

$$P_m + k * P_b = (X_3, Y_3) = (6.8) + (11.11)$$

Let us consider,

$$(X_1, Y_1) = (6,8)$$

 $(X_2, Y_2) = (11,11)$

First, we have to find λ ,

$$\lambda = \frac{Y_2 - Y_1}{X_2 - X_1} \mod p = \frac{11 - 8}{11 - 6} \mod 13$$
$$= \frac{3}{4} \mod 13 = 3 * 5^{-1} \mod 13$$

So first we can find $5^{-1} \mod 13$,

Let us start from Z = 1,

Z	$\frac{Z*5-1}{13}$ is integer?
1	No
2	No
3	No
4	No
5	No
6	No
7	No
8	Yes

$$5^{-1} \mod 13 = 8$$

$$\lambda = 3 * 5^{-1} \mod 13 = 3 * 8 \mod 13$$

$$= 24 \mod 13 = 11$$

And now we got $\lambda=11$, we find X_3 and Y_3 ,

Finding X_3 ,

$$X_3 = (\lambda^2 - X_1 - X_2) \mod p = (11^2 - 11 - 6) \mod 13$$

= $(121 - 11 - 6) \mod 13 = 104 \mod 13 = 0$

Finding Y_3 ,

$$Y_3 = (\lambda * (X_1 - X_3) - Y_1) \mod p = (11 * (6 - 0) - 8) \mod 13$$

$$= 58 \mod 13 = 6$$

Hence, we have

$$(X_3, Y_3) = (0.6)$$

 $P_m + k * P_b = (6.8) + (11.11) = (0.6)$

Now that we have also got the second component of the \mathcal{C}_m , we have completed calculating the cipher text, ,

$$C_m = \{k * G, P_m + k * P_b\} = \{(7,4), (0,6)\}$$

MD5 Solution

word A: 01 23 45 67 word B: 89 AB CD EF word C: FE DC BA 98 word D: 76 54 32 10

Round	Primitive function g	g(b, c, d)
I	F(b, c, d)	(b∧c) ∨ (b∧d)
2	G(b, c, d)	(b ^ d) v (c ^ d)
3	H(b, c, d)	b⊕c⊕d
4	I(b, c, d)	c ⊕ (b ∨ d)

1000 1001 1010 1011 1100 1101 111> 11/1 AND 1111 1110 1101 1100 1011 1010 1001 1000 1000 1000 1000 1000 1000 1000 1000 BN C = 0000 1000 0100 0010 0010 000 1000 0000 0111 0110 0101 0100 0011 0010 000) 0000 0110 0101 0100 001) 0016 000/ 1116 - BND = 1000 1000 (000 1000) (000 (00) 1000 1000 BAC = 11111 1110 11011100 1011 1010 1001 1000 8 B F So, find F = FEDC BA98 B 1000 1001 1010 1011 1100 1101 1110 1111 DO 1100 010 010 010 0110 0010 0001 0000 @10 000 000 000 000 0000 0000 0000 BND = 1000 JAND 1001 1110 1/01 1/00 1011 1010 C: 1111 1011 1100 1101 1110 1010 1001 JD = 1000 1000 1000 1000 1000 1000 100 1000 100 C170 -