The group G is isomorphic to the group labelled by [60, 8] in the Small Groups library. Ordinary character table of $G \cong S3 \times D10$:

5	\overline{a}	5b	2a	3a	15a	15b	6a	2b	10a	10b	2c
	1	1	1	1	1	1	1	1	1	1	1
	1	1	-1	1	1	1	-1	1	1	1	-1
E(5) +	$-E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0
$E(5)^2$ -	$+E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0
	1	1	1	1	1	1	1	-1	-1	-1	-1
	1	1	-1	1	1	1	-1	-1	-1	-1	1
E(5) +	$-E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	-2	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0
$E(5)^2$ -	$+E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0
:	2	2	2	-1	-1	-1	-1	0	0	0	0
:	2	2	-2	-1	-1	-1	1	0	0	0	0
2*E(5) +	$-2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0		(-)	$-E(5)^2 - E(5)^3$	0	0	0	0	0
$2*E(5)^2$	$+2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0	0	0	0

Trivial source character table of $G \cong S3 \times D10$ at p = 5: Normalisers N_i

· ·	-														
p-subgroups of G up to conjugacy in G				P_1						P_2					
Representatives $n_j \in N_i$	1a	2a	2b	3a	2c	6a	1 <i>a</i>	2b	3a	2a	2c				
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	5	-1	5	5	-1	-1	0	0	0	0	0				
$ \left \ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $	5	1	5	5	1	1	0	0	0	0	0				
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $		-1	-5	5	1	-1	0	0	0	0	0				
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $	5	1	-5	5	-1	1	0	0	0	0	0				
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} \ \right $	10	-2	0	-5	0	1	0	0	0	0	0				
$ \left[\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} \ \right] $	10	2	0	-5	0	-1	0	0	0	0	0				
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1				
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $	1	1	-1	1	-1	1	1	-1	1	1	-1				
$ \left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $	1	-1	1	1	-1	-1	1	1	1	-1	-1				
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $	1	-1	-1	1	1	-1	1	-1	1	-1	1				
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \ \right $	2	2	0	-1	0	-1	2	0	-1	2	0				
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-2	0	-1	0	1	2	0	-1	-2	0				

 $P_2 = Group([(1, 24, 5, 36, 13)(2, 30, 8, 42, 18)(3, 33, 10, 45, 21)(4, 35, 12, 47, 23)(6, 39, 15, 50, 27)(7, 41, 17, 52, 29)(9, 44, 20, 54, 32)(11, 46, 22, 55, 34)(14, 49, 26, 57, 38)(16, 51, 28, 58, 40)(19, 53, 31, 59, 43)(25, 56, 37, 60, 48)]) \cong C5$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(3,43)(4,4$