# NLP Core using NLTK

Dr. Muhammad Nouman Durrani

Natural language processing (NLP) is **the ability of a computer program to understand human language as it is spoken and written** -- referred to as natural language. It is a component of artificial intelligence (AI).

#### **NLTK**

- NLTK is a leading platform for building Python programs to work with human language data.
- It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for:
  - classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries

# Introduction to Text Processing: Extracting, transforming and selecting features

#### Consider the following examples:

- Google search
- 2008 U.S Presidential Elections.
- google translate



# Introduction to Text Processing: Extracting, transforming and selecting features

- So what do the above examples have in common?
- **TEXT processing**. All the above three scenarios deal with massive amount of text to perform tasks
- Humans deal with text format quite intuitively

#### Introduction to Text Processing

- A computer can match two strings and tell you whether they are same or not.
- But how do we make computers tell you about football or Ronaldo when you search for Messi?

Word Embeddings

- The process of breaking down a text paragraph into smaller chunks such as words or sentences is called Tokenization
- Token is a single entity that is building blocks for sentence or paragraph

#### **Sentence Tokenization**

Sentence tokenizer breaks text paragraph into sentences

```
from nltk.tokenize import sent_tokenize text="""Hello Mr. Smith, how are you doing today? The weather is great, and city is awesome. The sky is pinkish-blue. You shouldn't eat cardboard""" tokenized_text=sent_tokenize(text)
```

print(tokenized\_text)

['Hello Mr. Smith, how are you doing today?', 'The weather is great, and city is awesome.', 'The sky is pinkish-blue.', "You shouldn't eat cardboard"]

#### **Word Tokenization**

Word tokenizer breaks text paragraph into words

```
from nltk.tokenize import word_tokenize tokenized_word=word_tokenize(text) print(tokenized_word)
```

```
['Hello', 'Mr.', 'Smith', ',', 'how', 'are', 'you', 'doing', 'today', '?', 'The', 'weather', 'is', 'great', ',', 'and', 'city', 'is', 'awesome', '.', 'The', 'sky', 'is', 'pinkish-blue', '.', 'You', 'should', "n't", 'eat', 'cardboard']
```

Frequency Distribution

```
from nltk.probability import FreqDist
fdist = FreqDist(tokenized_word)
print(fdist)
```

<FreqDist with 25 samples and 30 outcomes>

```
fdist.most_common(2)

[('is', 3), (',', 2)]
```

Frequency Distribution Plot

import matplotlib.pyplot as plt
fdist.plot(30,cumulative=False)
plt.show()



# Tokenize Non-English Languages Text

To tokenize other languages, you can specify the language like this:

from nltk.tokenize import sent\_tokenize

mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour." print(sent\_tokenize(mytext, "french"))

#### The result will be like this:

['Bonjour M. Adam, comment allez-vous?', "J'espère que tout va bien.", "Aujourd'hui est un bon jour."]

### Stopwords

- Stopwords considered as noise in the text. Text may contain stop words such as is, am, are, this, a, an, the, etc.
- In NLTK for removing stopwords, you need to create a list of stopwords and filter out your list
  of tokens from these words

```
from nltk.corpus import stopwords
stop_words=set(stopwords.words("english"))
print(stop_words)
```

{'their', 'then', 'not', 'ma', 'here', 'other', 'won', 'up', 'weren', 'being', 'we', 'those', 'an', 'them', 'which', 'him', 'so', 'yourselves', 'what', 'own', 'has', 'should', 'above', 'in', 'myself', 'against', 'that', 'before', 't', 'just', 'into', 'about', 'most', 'd', 'where', 'our', 'or', 'such', 'ours', 'of', 'doesn', 'further', 'needn', 'now', 'some', 'too', 'hasn', 'more', 'the', 'yours', 'her', 'below', 'same', 'how', 'very', 'is', 'did', 'you', 'his', 'when', 'few', 'does', 'down', 'yourself', 'i', 'do', 'both', 'shan', 'have', 'itself', 'shouldn', 'through', 'themselves', 'o', 'didn', 've', 'm', 'off', 'out', 'but', 'and', 'doing', 'any', 'nor', 'over', 'had', 'because', 'himself', 'theirs', 'me', 'by', 'she', 'whom', 'hers', 're', 'hadn', 'who', 'he', 'my', 'if', 'will', 'are', 'why', 'from', 'am', 'with', 'been', 'its', 'ourselves', 'ain', 'couldn', 'a', 'aren', 'under', 'll', 'on', 'y', 'can', 'they', 'than', 'after', 'wouldn', 'each', 'once', 'mightn', 'for', 'this', 'these', 's', 'only', 'haven', 'having', 'all', 'don', 'it', 'there', 'until', 'again', 'to', 'while', 'be', 'no', 'during', 'herself', 'as', 'mustn', 'between', 'was', 'at', 'your', 'were', 'isn', 'wasn'}

#### Stopwords

```
filtered_sent=[]

for w in tokenized_sent:

    if w not in stop_words:
        filtered_sent.append(w)

print("Tokenized Sentence:",tokenized_sent)

print("Filterd Sentence:",filtered_sent)
```

```
Tokenized Sentence: ['Hello', 'Mr.', 'Smith', ',', 'how', 'are', 'you', 'doing', 'today', '?']
Filterd Sentence: ['Hello', 'Mr.', 'Smith', ',', 'today', '?']
```

#### Get Synonyms From WordNet

- WordNet is a database built for natural language processing
- It includes groups of synonyms and a brief definition

```
from nltk.corpus import wordnet

syn = wordnet.synsets("pain")

print(syn[0].definition())

print(syn[0].examples())
```

a symptom of some physical hurt or disorder

['the patient developed severe pain and distension']

# Get Synonyms From WordNet

You can use WordNet to get synonymous words like this:

```
from nltk.corpus import wordnet

synonyms = []

for syn in wordnet.synsets('Computer'):

for lemma in syn.lemmas():

synonyms.append(lemma.name())

print(synonyms)
```

Synsets represent the set of different senses of a particular word.

Whereas lemmas as the synonyms within each sense.

The words in a Synset are known as Lemmas.

```
The output is:
```

['computer', 'computing\_machine', 'computing\_device', 'data\_processor', 'electronic\_computer', 'information\_processing\_system', 'calculator', 'reckoner', 'figurer', 'estimator', 'computer']

# **Get Antonyms From WordNet**

- You can get the antonyms of words the same way
- Use the lemmas before adding them to the array
- it's an antonym or not

```
from nltk.corpus import wordnet
antonyms = []
for syn in wordnet.synsets("small"):
    for I in syn.lemmas():
        if l.antonyms():
            antonyms.append(l.antonyms()[0].name())
print(antonyms)
```

```
['large', 'big', 'big']
```

# **NLTK Word Stemming**

- Word stemming means removing affixes from words and returning the root word. (The stem of the word working is work.)
- Search engines use this technique when indexing pages, so many people write different versions for the same word and all of them are stemmed to the root word
- NLTK has a class called PorterStemmer that uses this algorithm.

```
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('working'))
```

The result is: work.

# Lemmatizing Words Using WordNet

 Word lemmatizing is similar to stemming, but the difference is the result of lemmatizing is a real word

```
When we stem some words, it will result as follows:
```

```
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('increases'))
The result is: increas.
```

When we lemmatize the same word using NLTK WordNet, the result is increase:

```
from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() print(lemmatizer.lemmatize('increases'))
The result is increase.
```

# Lemmatizing Words Using WordNet

- If we try to lemmatize a word like "playing", it will end up with the same word
  - This is because the default part of speech is nouns
  - To get verbs, adjective, or adverb, we should specify it (See Example)
  - Actually, this is a very good level of text compression.
  - We end up with about 50% to 60% compression

```
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))
print(lemmatizer.lemmatize('playing', pos="n"))
print(lemmatizer.lemmatize('playing', pos="a"))
print(lemmatizer.lemmatize('playing', pos="r"))
```

```
The result is:

play
playing
playing
playing
playing
```

#### Part of speech tagging (POS)



 Part-of-speech tagging is used to assign parts of speech to each word of a given text (such as nouns, verbs, pronouns, adverb, conjunction, adjectives, interjection) based on its definition and its context.

```
text = "vote to choose a particular man or a group (party) to represent
them in parliament"
tex = word_tokenize(text) #Tokenize the text
for token in tex:
print(nltk.pos_tag([token]))
```

```
[('vote', 'NN')]
[('to', 'TO')]
[('choose', 'NN')]
[('a', 'DT')]
[('particular', 'JJ')]
[('man', 'NN')]
[('or', 'CC')]
[('a', 'DT')]
[('group', 'NN')]
[('(', '(')]
[('party', 'NN')]
[(')', ')')]
[('to', 'TO')]
[('represent', 'NN')]
[('them', 'PRP')]
[('in', 'IN')]
[('parliament', 'NN')]
```

# **POS**: Tags and Descriptions

| Tag  | Description                              |  |  |  |
|------|------------------------------------------|--|--|--|
| CC   | Coordinating conjunction                 |  |  |  |
| CD   | Cardinal number                          |  |  |  |
| DT   | Determiner                               |  |  |  |
| EX   | Existential there                        |  |  |  |
| FW   | Foreign word                             |  |  |  |
| IN   | Preposition or subordinating conjunction |  |  |  |
| IJ   | Adjective                                |  |  |  |
| JJR  | Adjective, comparative                   |  |  |  |
| JJS  | Adjective, superlative                   |  |  |  |
| LS   | List item marker                         |  |  |  |
| MD   | Modal                                    |  |  |  |
| NN   | Noun, singular or mass                   |  |  |  |
| NNS  | Noun, plural                             |  |  |  |
| NNP  | Proper noun, singular                    |  |  |  |
| NNPS | Proper noun, plural                      |  |  |  |
| PDT  | Predeterminer                            |  |  |  |
| POS  | Possessive ending                        |  |  |  |
| PRP  | Personal pronoun                         |  |  |  |

| Tag   | Description                          |  |  |  |
|-------|--------------------------------------|--|--|--|
| PRP\$ | Possessive pronoun                   |  |  |  |
| RB    | Adverb                               |  |  |  |
| RBR   | Adverb, comparative                  |  |  |  |
| RBR   | Adverb, superlative                  |  |  |  |
| RP    | Particle                             |  |  |  |
| SYM   | Symbol                               |  |  |  |
| то    | to                                   |  |  |  |
| UH    | Interjection                         |  |  |  |
| VB    | Verb, base form                      |  |  |  |
| VBD   | Verb, past tense                     |  |  |  |
| VBG   | Verb, gerund or present participle   |  |  |  |
| VBN   | Verb, past participle                |  |  |  |
| VBP   | Verb, non3rd person singular present |  |  |  |
| VBZ   | Verb, 3rd person singular present    |  |  |  |
| WDT   | Whdeterminer                         |  |  |  |
| WP    | Whpronoun                            |  |  |  |
| WP\$  | Possessive whpronoun                 |  |  |  |
| WRB   | Whadverb                             |  |  |  |

# Named entity recognition



 It is the process of detecting the named entities such as the person name, the location name, the company name, the quantities and the monetary value.

```
text = "Google's CEO Sundar Pichai introduced the new Pixel at Minnesota Roi Centre
Event" #importing chunk library from nltk
from nltk import ne_chunk # tokenize and POS Tagging before doing chunk
token = word_tokenize(text)
tags = nltk.pos_tag(token)
chunk = ne_chunk(tags)
chunk
```

### **NER: Named Entity Recognition**



#### **POS Tagging Output:**

Tree('S', [Tree('GPE', [('Google', 'NNP')]), ("'s", 'POS'), Tree('ORGANIZATION', [('CEO', 'NNP'), ('Sundar', 'NNP'), ('Pichai', 'NNP')]), ('introduced', 'VBD'), ('the', 'DT'), ('new', 'JJ'), ('Pixel', 'NNP'), ('at', 'IN'), Tree('ORGANIZATION', [('Minnesota', 'NNP'), ('Roi', 'NNP'), ('Centre', 'NNP')]), ('Event', 'NNP')])

# Chunking



- Chunking means picking up individual pieces of information and grouping them into bigger pieces.
- In the context of NLP and text mining, chunking means grouping of words or tokens into chunks.

```
text = "We saw the yellow dog"
token = word_tokenize(text)
tags = nltk.pos_tag(token)
reg = "NP: {<DT>?<JJ>*<NN>}"
a = nltk.RegexpParser(reg)
result = a.parse(tags)
print(result)
(S We/PRP saw/VBD (NP the/DT yellow/JJ dog/NN))
```

### What are Word Embeddings?

- Word Embeddings are the texts converted into numbers
  - There may be different numerical representations of the same text.

#### Why do we need Word Embeddings?

- Many Machine Learning algorithms and almost all Deep Learning Architectures are incapable of processing strings or plain text in their raw form.
- A Word Embedding format generally tries to map a word using a dictionary to a vector.

#### What are Word Embeddings?

- Word Embeddings are the texts converted into numbers
  - There may be different numerical representations of the same text.

#### Why do we need **Word Embeddings**?

- Many Machine Learning algorithms and almost all Deep Learning Architectures are incapable of processing strings or plain text in their raw form.
- With huge amount of data that is present in the text format, it is imperative to extract knowledge out of it and build applications.
- They require numbers as inputs to perform any sort of job, be it classification, regression etc. in broad terms.
- Some real world applications of text applications are sentiment analysis of reviews by Amazon etc., document or news classification or clustering by Google etc.
- A Word Embedding format generally tries to map a word using a dictionary to a vector.

#### What are Word Embeddings?

Take a look at this example – sentence="Word Embeddings are Word converted into numbers"

- A word in this sentence may be "Embeddings" or "numbers" etc.
- A dictionary may be the list of all unique words in the sentence.
  - So, a dictionary may look like ['Word', 'Embeddings', 'are', 'Converted', 'into', 'numbers']
- A **vector** representation of a word may be a one-hot encoded vector where 1 stands for the position where the word exists and 0 everywhere else.
- The vector representation of "numbers" in this format according to the above dictionary is [0,0,0,0,0,1] and of converted is[0,0,0,1,0,0].

# One-hot encoding (CountVectorizing)

- The most basic and naive method for transforming words into vectors is to count occurrence of each word in each document. Such an approach is called countvectorizing or one-hot encoding.
  - The idea is to collect a set of documents (they can be words, sentences, paragraphs or even articles) and count the occurrence of every word in them.
  - The columns of the resulting matrix are words and the rows are documents.

```
from sklearn.feature extraction.text import CountVectorizer
corpus = [
'This is the first document.',
'This document is the second document.',
'And this is the third one.',
'Is this the first document?',
vectorizer = CountVectorizer()
X = vectorizer.fit transform(corpus)
print(vectorizer.get feature names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
print(X.toarray())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
[[011100101]
 [0 2 0 1 0 1 1 0 1]
 [100110111]
 [0 1 1 1 0 0 1 0 1]]
```

from sklearn.feature\_extraction.text import CountVectorizer

```
corpus = [
'This is the first document.',
'This document is the second document.',
'And this is the third one.',
'Is this the first document?',
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
print(X.toarray())
                               ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
                               [[0 1 1 1 0 0 1 0 1]
                                [0 2 0 1 0 1 1 0 1]
                                [10011011]
                                [0 1 1 1 0 0 1 0 1]]
```

```
from sklearn.feature extraction.text import CountVectorizer
vectorizer = CountVectorizer()
sample_text = ["One of the most basic ways we can numerically represent words "
               "is through the one-hot encoding method (also sometimes called "
               "count vectorizing)."]
# To actually create the vectorizer, we simply need to call fit on the text
# data that we wish to fix
vectorizer.fit(sample text)
# Now, we can inspect how our vectorizer vectorized the text
# This will print out a list of words used, and their index in the vectors
print('Vocabulary: ')
print(vectorizer.vocabulary )
Vocabulary:
{'one': 12, 'of': 11, 'the': 15, 'most': 9, 'basic': 1, 'ways': 18, 'we': 19, 'can': 3, 'numericall
y': 10, 'represent': 13, 'words': 20, 'is': 7, 'through': 16, 'hot': 6, 'encoding': 5, 'method': 8,
'also': 0, 'sometimes': 14, 'called': 2, 'count': 4, 'vectorizing': 17}
```

```
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
sample_text = ["One of the most basic ways we can numerically represent words "
               "is through the one-hot encoding method (also sometimes called "
                "count vectorizing)."]
# To actually create the vectorizer, we simply need to call fit on the text
# data that we wish to fix
vectorizer.fit(sample_text)
# Now, we can inspect how our vectorizer vectorized the text
# This will print out a list of words used, and their index in the vectors
print('Vocabulary: ')
                                                          The converse mapping from feature name to column
                                                          index is stored in the vocabulary_ attribute of the
print(vectorizer.vocabulary_)
                                                          vectorizer:
Vocabulary:
{'one': 12, 'of': 11, 'the': 15, 'most': 9, 'basic': 1, 'ways': 18, 'we': 19, 'can': 3, 'numericall
y': 10, 'represent': 13, 'words': 20, 'is': 7, 'through': 16, 'hot': 6, 'encoding': 5, 'method': 8,
'also': 0, 'sometimes': 14, 'called': 2, 'count': 4, 'vectorizing': 17}
```

```
# If we would like to actually create a vector, we can do so by passing the
# text into the vectorizer to get back counts
                                            Full vector:
                                            vector = vectorizer.transform(sample text)
                                            Hot vector:
                                            [[00000010000000000000000]]
# Our final vector:
                                            Hot, one and Today:
                                            [[000000100000000000000]
print('Full vector: ')
                                            print(vector.toarray())
                                            One swoop:
# Or if we wanted to get the vector for one word [[1 1 1 1 2 1 3]]
print('Hot vector: ')
print(vectorizer.transform(['hot']).toarray())
# Or if we wanted to get multiple vectors at once to build matrices
print('Hot, one and Today: ')
print(vectorizer.transform(['hot', 'one', 'of']).toarray())
# We could also do the whole thing at once with the fit transform method:
print('One swoop:')
new text = ['Today is the day that I do the thing today, today']
new vectorizer = CountVectorizer()
print(new vectorizer.fit transform(new text).toarray())
```

```
# If we would like to actually create a vector, we can do so by passing the
# text into the vectorizer to get back counts
vector = vectorizer.transform(sample_text)
                                        Full vector:
                                        # Our final vector:
                                        Hot vector:
                                        [[000000100000000000000]]
print('Full vector: ')
                                        Hot, one and Today:
print(vector.toarray())
                                        # Or if we wanted to get the vector for one word:
                                         print('Hot vector: ')
print(vectorizer.transform(['hot']).toarray())
# Or if we wanted to get multiple vectors at once to build matrices
print('Hot, one and Today: ')
print(vectorizer.transform(['hot', 'one', 'of']).toarray())
```

```
# We could also do the whole thing at once with the fit_transform method:

print('One swoop:')

new_text = ['Today is the day that I do the thing today, today']

new_vectorizer = CountVectorizer()

print(new_vectorizer.fit_transform(new_text).toarray())

One swoop:

[[1 1 1 1 2 1 3]]
```

- Word counts are a good starting point, but are very basic
  - One issue with simple counts is that some words like "the" or "many other non-stop words" will appear many times and their large counts will not be very meaningful in the encoded vectors
- TF-IDF feature numerical representations where words are represented by their term frequency multiplied by their inverse document frequency
  - Term Frequency: This summarizes how often a given word appears within a document
     The number of times a word appears in a document divided by the total number of words in the document.
     Every document has its own term frequency

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,j}}$$

 $tf_{ij}$  = number of occurrences of i in j

 Inverse Document Frequency: The log of the number of documents divided by the number of documents that contain the word w

Inverse document frequency determines the weight of rare words across all documents in the corpus

This downscales words that appear a lot across documents

$$idf(w) = log(\frac{N}{df_t})$$

 $idf(w) = log(\frac{N}{df_{\iota}})$   $df_{\iota} = \text{number of documents containing } i$  N = total number of documents

Combining these two we come up with the TF-IDF score (w) for a word in a document in the corpus. It is the product of tf and idf:

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

TF-IDF are word frequency scores that try to highlight words that are more interesting, e.g. frequent in a document but not across documents

Let's take an example to get a clearer understanding.

Sentence 1: The car is driven on the road.

Sentence 2: The truck is driven on the highway.

- In this example, each sentence is a separate document.
- Calculate the TF-IDF for the above two documents, which represent our corpus.

| Word    | TF  |     | IDF            | TF*IDF |       |
|---------|-----|-----|----------------|--------|-------|
| VVOIG   | Α   | В   | IDI            | Α      | В     |
| The     | 1/7 | 1/7 | log(2/2) = 0   | 0      | 0     |
| Car     | 1/7 | 0   | log(2/1) = 0.3 | 0.043  | 0     |
| Truck   | 0   | 1/7 | log(2/1) = 0.3 | 0      | 0.043 |
| Is      | 1/7 | 1/7 | log(2/2) = 0   | 0      | 0     |
| Driven  | 1/7 | 1/7 | log(2/2) = 0   | 0      | 0     |
| On      | 1/7 | 1/7 | log(2/2) = 0   | 0      | 0     |
| The     | 1/7 | 1/7 | log(2/2) = 0   | 0      | 0     |
| Road    | 1/7 | 0   | log(2/1) = 0.3 | 0.043  | 0     |
| Highway | 0   | 1/7 | log(2/1) = 0.3 | 0      | 0.043 |

```
from sklearn.feature extraction.text import TfidfVectorizer
# list of text documents
text = ["The quick brown fox jumped over the lazy dog.",
         "The dog.",
         "The fox"]
                                               With Tfidftransformer you will systematically compute word counts
# create the transform
                                               using CountVectorizer and then compute the Inverse Document
vectorizer = TfidfVectorizer()
                                               Frequency (IDF) values and only then compute the Tf-idf scores.
# tokenize and build vocab
vectorizer.fit(text)
                                               With Tfidfvectorizer on the contrary, you will do all three steps at
# summarize
                                               once. Under the hood, it (i) tokenize documents and computes the
print(vectorizer.vocabulary )
                                               word counts, (ii) learn the vocabulary and inverse document frequency
print(vectorizer.idf )
                                               weightings IDF values, and (iii) Tf-idf scores all using the same dataset.
# encode document
vector = vectorizer.transform([text[0]])
# summarize encoded vector
print(vector.shape)
print(vector.toarray())
{'the': 7, 'quick': 6, 'brown': 0, 'fox': 2, 'jumped': 3, 'over': 5, 'lazy': 4, 'dog': 1}
[1.69314718 1.28768207 1.28768207 1.69314718 1.69314718 1.69314718
1.69314718 1.
(1, 8)
[[0.36388646 0.27674503 0.27674503 0.36388646 0.36388646 0.36388646
 0.36388646 0.42983441]]
```

```
# summarize
print(vectorizer.vocabulary_)
print(vectorizer.idf_)
# encode document
vector = vectorizer.transform([text[0]])
# summarize encoded vector
print(vector.shape)
print(vector.toarray())
```

| Term  | Count |
|-------|-------|
| This  | 1     |
| is    | 1     |
| about | 2     |
| Messi | 4     |

| Term   | Count |
|--------|-------|
| This   | 1     |
| is     | 2     |
| about  | 1     |
| Tf-idf | 1     |

- Sample tables give the count of terms(tokens/words) in two documents.
- TF = (Number of times term t appears in a document)/(Number of terms in the document)
  - TF(This,Document1) = 1/8
  - TF(This, Document2)=1/5
- It denotes the contribution of the word to the document i.e words relevant to the document should be frequent.
- For Example: A document about Messi should contain the word 'Messi' in large number.

#### How exactly does TF-IDF work?

• IDF = log(N/n), where, N is the number of documents and n is the number of documents a term t has appeared in.

```
IDF(This) = log(2/2) = 0.
```

- How do we explain the reasoning behind IDF? Ideally, if a word has appeared in all the
  document, then probably that word is not relevant to a particular document.
- But if it has appeared in a subset of documents then probably the word is of some relevance to the documents it is present in.

Let us compute IDF for the word 'Messi'.

```
IDF(Messi) = log(2/1) = 0.301.
```

Now, let us compare the TF-IDF for a common word 'This' and a word 'Messi'

```
TF-IDF(This, Document1) = (1/8) * (0) = 0 TF-IDF(This, Document2) = (1/5) * (0) = 0
```

TF-IDF(Messi, Document1) = (4/8)\*0.301 = 0.15

- For Document1, TF-IDF method heavily penalizes the word 'This' but assigns greater weight to 'Messi'.
- So, 'Messi' is an important word for Document1 from the context of the entire corpus.