Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence

Yuki Takezawa 1,2 , Ryoma Sato 1,2 , Han Bao 1,2 , Kenta Niwa 3 , Makoto Yamada 2

 1 Kyoto University, 2 OIST, 3 NTT Communication Science Laboratories

Background

Decentralized learning

Decentralized learning can preserve privacy because it does not need to aggregate all training data into one server.

ightharpoonup Let the number of nodes be n and the loss function of node i be $f_i(x)$, decentralized learning is formulated as follows:

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x)$$
 (1)

Decentralized SGD

hd W is the mixing matrix that satisfies $\sum_i W_{ij} = \sum_j W_{ij} = 1$.

$$x_i^{(r+1)} = \sum_{j=1}^n W_{ij} \left(x_j^{(r)} - \eta \nabla F_j(x_j^{(r)}; \xi) \right)$$
 (2)

► Trade-off between communication cost and convergence rate

- ▶ The smaller the maximum degree of an underlying network topology is, the fewer the communication costs become.
- ▶ The faster the consensus rate (a.k.a. spectral gap) of a topology is, the faster the convergence rate of decentralized learning becomes.

Definition of consensus rate

- \triangleright Let x_i be the parameters that node i has.
- riangle Consensus rate is the speed that x_i reaches the average $\frac{1}{n}\sum_{j=1}^n x_i$ when x_i is updated as $x_i \leftarrow \sum_{j=1}^n W_{ij}x_j$.

Contribution

We propose Base-(k+1) Graph.

- \triangleright It is finite-time convergence for any number of nodes n and maximum degree k.
- ▶ It can endow Decentralized SGD with a faster convergence rate and more communication efficiency than existing graphs.

Topology	Convergence Rate ↓	Max Degree ↓	#Nodes n
Ring	$\mathcal{O}\left(\frac{1}{n\epsilon^2} + \frac{n^2}{\epsilon^{3/2}} + \frac{n^2}{\epsilon}\right)$	2	$\forall n \in \mathbb{N}$
Torus	$\mathcal{O}\left(\frac{1}{n\epsilon^2} + \frac{n}{\epsilon^{3/2}} + \frac{n}{\epsilon}\right)$	4	$\forall n \in \mathbb{N}$
Exp.	$\mathcal{O}\left(\frac{1}{n\epsilon^2} + \frac{\log_2(n)}{\epsilon^{3/2}} + \frac{\log_2(n)}{\epsilon}\right)$	$\lceil \log_2(n) \rceil$	$\forall n \in \mathbb{N}$
1-peer Exp.	$\mathcal{O}\left(\frac{1}{n\epsilon^2} + \frac{\log_2(n)}{\epsilon^{3/2}} + \frac{\log_2(n)}{\epsilon}\right)$	1	A power of 2
1-peer Hypercube	$\mathcal{O}\left(\frac{1}{n\epsilon^2} + \frac{\log_2(n)}{\epsilon^{3/2}} + \frac{\log_2(n)}{\epsilon}\right)$	1	A power of 2
Base- $(k+1)$ Graph	$\mathcal{O}\left(\frac{1}{n\epsilon^2} + \frac{\log_{k+1}(n)}{\epsilon^{3/2}} + \frac{\log_{k+1}(n)}{\epsilon}\right)$	k	$\forall n \in \mathbb{N}$

Related Work

► 1-peer Hypercube Graph & 1-peer Exp. Graph

- \triangleright They are finite-time convergence only when the number of nodes n is a power of two.
- \triangleright In the figure below, all edge weights are $\frac{1}{2}$.

Proposed Method

Base-(k+1) Graph

- \triangleright Edge weights are omitted when they are $\frac{1}{2}$.
- **Example of Base-2 Graph with** n = 3 (= 2 + 1)

	Node 1	Node 2	Node 3
Initial value	x_1	x_2	x_3
	$\frac{x_1 + x_2}{2}$	$\frac{x_1 + x_2}{2}$	x_3
	$\frac{x_1 + x_2}{2}$	$\frac{x_1 + x_2 + 4x_3}{6}$	$\frac{x_1 + x_2 + x_3}{3}$
	$\frac{x_1 + x_2 + x_3}{3}$	$\frac{x_1 + x_2 + x_3}{3}$	$\frac{x_1+x_2+x_3}{3}$

Example of Base-2 Graph with $n = 5 (= 2^2 + 1)$

Theorem (Length of Base-(k+1) Graph)

For any n and k, the length of Base-(k+1) Graph is less than or equal to $2\log_{k+1}(n)+2$.

Results

Figure: Left: I.I.D. Right: non-I.I.D.

Conclusions

We proposed Base-(k+1) Graph.

- ▶ Theoretically: It can achieve a faster convergence rate and more communication efficiency.
- > Experimentally: It can achieve stable training and high accuracy.

