Computación Científica I

Laboratorio 3 Profesoras: Paola Arce, Raquel Pezoa

Luz Martínez lmartine@alumnos.inf.usm.cl Jorge Nacer jnacer@alumnos.inf.usm.cl

25 de junio de 2012

1. Instrucciones generales

El laboratorio es individual y está conformado por dos entregables: un informe y los códigos realizados. El informe debe ser elaborado en LATEX.

2. Objetivos

- Visualización de soluciones entregadas por mínimos cuadrados
- Comprender las ventajas y limitaciones del método.
- Estudiar el condicionamiento de las matrices de Vandermonde.

3. Sobre la entrega

- El plazo máximo de entrega es el próximo 9 de Julio, a las 23:55 hrs, vía moodle.
- El normbre del archivo debe ser lab3-InicialnombreApellido1.tar.gz,(ejemplo lab3-lmartinez.tar.gz) que debe contener un directorio llamado Informe que contenga los archivos .pdf y .tex correspondientes y otro directorio llamado Códigos con los archivos correspondientes.
- Se sancionará con 15 puntos menos en la nota final del laboratorio por cada día de atraso.
- Las copias serán sancionadas con nota cero (0) para todos los involucrados.

4. Mínimos Cuadrados

El laboratorio consiste en implementar el procedimiento que sigue en el lenguaje que más le acomode, entregando además un informe con sus gráficos, códigos, comentarios y conclusiones. Las pruebas a realizar son libres, el procedimiento solo es una guía para responder las preguntas.

1. Para la generación de datos, cree una grilla para el eje x. Genere los datos y usando la siguiente función

$$f(x) = 2\sin(2x) + 1,2\sin(5x) + \epsilon$$

donde ϵ es un error aleatorio uniformemente distribuido. Grafique los datos generados.

- 2. Mediante mínimos cuadrados encuentre el mejor polinomio que se ajuste a f(x). ¿Qué pasa a medida que crece el grado del polinomio?
- 3. Usando la matriz de Vandermonde que caracteriza el sistema, estudie su condicionamiento. ¿Qué sucede con la matriz y su condicionamiento a medida que se ajusta un grado menor del polinomio interpolador? Grafique como varía el número de condición con respecto al grado del polinomio.
- 4. Qué sucede si la función generadora de los datos ahora es $f(x) = 3x^4 + x^3 + 5x^2 + \epsilon$, qué polinomio obtiene usando mínimos cuadrados? Qué sucede si el grado del polinomio aumenta hasta n-1 (n es el número total de datos)?
- 5. Concluya de los procedimientos realizados anteriormente.

5. Evaluación

Item	Puntaje
Ejercicios 1-4	60
Conclusiones	40