Sense Sentiment Similarity: An Analysis

Mitra Mohtarami et al.

Presented by Shih-Ming Wang NLPLab, Institute of Information Science, Academia Sinica

12-23-2015

Outline

Introduction

Related Work

Topic Model
Distributional Context

Word Vector for Sentiment Similarity

Experiments

Tasks

Settings

Results

Error Analysis

Conclusion

Introduction

- Word similarity which similarity?
- A brief History¹
- Distributional Semantic represent a word by its context
 - Document as context LSA, LDA learns semantic relatedness (e.g. "boat" - "water")
 - Nearby words as context word2vec, PMI factorization learns semantic similarity (e.g. "boat" - "ship")
- Not capturing accurate sentiment polarity?

https://www.gavagai.se/blog/2015/09/30/ a-brief-history-of-word-embeddings/

Topic Model

- Assume documents belong to some hidden topics, and each topic has different frequent words
- Latent Semantic Analysis (LSA) apply SVD to factor term-document co-occurrence matrix ($M = W\Sigma D^T$)
- Latent Dirichlet Allocation (LDA) Bayesian analysis on unigram model
 - Assume k topics, each represented by V dimension vector as distribution over vocabulary
 - Each word represented by k dimension vector as distribution over topics

Distributional Ccontext

- PMI factorization apply SVD on word-word concurrence matrix ($M = W\Sigma C^T$)
- skip-gram optimizing the probability of the concurrence of a word and its nearby words
- The two have been shown to be alike theoretically and empirically
- For word similarity, distributional context is better than topic models

Word Vector for Sentiment Similarity I

- Goal measure sentiment similarity given two words X, Y
- Methods
 - Construct two d-dimensional vectors \vec{X} , \vec{Y}
 - Apply similarity function Sim(X, Y), (cosine, correlation?)
 - Determine a threshold for Sim (middle of the range of S?)
- Solution
 - Measure the relation of a word to 12 emotion categories
 - Apply correlation

$$Sim(X, Y) = \sum_{i=1}^{d} (\vec{X}_i - \bar{X})(\vec{Y}_i - \bar{Y})/(n-1)S_{\vec{X}}S_{\vec{Y}}$$

• Determine a threshold by considering synonyms, antonyms of X, Y

Word Vector for Sentiment Similarity II

- Step1 Build Vectors
- Emotion categories: anger, disgust, fear, guilt, sadness, shame, interest, joy, surprise, desire, love, courage
- Select synonyms for each category as seeds
 - Balance Select equal amount of synonyms for each category
 - Relevant Choose most similar synonyms according to semantic similarity scores computed by LSA
- For a word X and a category catk $\vec{X}_k = \sum_i coocur(X, seed_i)$ seed;∈cat_k
- Problem: coocur is often 0
- Solution: $\vec{X}_k = \sum \sum coocur(W, seed_i)$ $W \in svnset(X) seed_i \in cat_k$

Word Vector for Sentiment Similarity III

- **Step2** Similarity Function $Sim(X, Y) = corr(\vec{X}, \vec{Y})$
- Step3 Similarity Threshold
- For two similar words X, Y, and their antonyms \sim X, \sim Y
 - $Sim(\vec{X}, \vec{Y}) > Sim(\vec{X}, \sim \vec{Y})$
 - $Sim(\vec{X}, \vec{Y}) > Sim(\sim \vec{X}, \vec{Y})$
- Threshold: $Max{Sim(\vec{X}, \sim \vec{Y}), Sim(\sim \vec{X}, \vec{Y})}$
- With threshold 0. define $Sim(X, Y) = corr(\vec{X}, \vec{Y}) - Max\{corr(\vec{X}, \sim \vec{Y}), corr(\sim \vec{X}, \vec{Y})\}$
- Empirically better than taking $Sim(X, Y) = corr(\vec{X}, \vec{Y})$

Tasks

- Indirect yes/no question answer pairs (IQAP) Inference
 - $Sim(Adj_Q, Adj_A) > 0$ leads to answer yes
- Sentiment Orientation Prediction
 - Pick 7 pwords and 7 nwords
 - polarity(w) = $\sum_{p \in pwords} Sim(w, p) \sum_{p \in nwords} Sim(w, n)$
- Compare different similarity function PMI, LSA, proposed

Settings

- Training
 - 50k movie reviews for calculating concurrence (PMI & proposed)
 - TASA, 61k documents for LSA
- Testing
 - IQAP, 125 Question/Answer pairs
 - MPQA 4000 positive/negative words

Results

Method	Precision	Recall	F1
PMI	60.61	58.70	59.64
LSA	66.70	54.95	60.26
Proposed	75.03	77.85	76.41

Table: IQAP Results

Method	Precision	Recall	F1
PMI	56.20	56.36	55.01
LSA	66.31	66.89	66.26
Proposed	73.07	73.89	73.11

Table: Sentiment Polarity Results

Error Analysis I

- Noise in emotion categories?
 - Apply SVD on word-category matrix (|V|x12)
 - 11 dimension achieves best F1 on sentiment polarity task

• Balance and relevance

Error Analysis II

• Role of synonyms and antonyms

Strategies	Precision	Recall	F1
w/o Ants and Syns	67.79	68.47	67.57
with Syns	71.47	72.25	71.43
with Ants	68.34	69.04	68.12
with Ants and Syns	73.07	73.89	73.11

Conclusion

- A method to construct word vector from prior knowledge is proposed
- Correlation is used to measure sentiment similarity for words
- Outperforms baselines on two tasks