

Introduction To Real-Time Quantitative PCR (qPCR)

SABiosciences, A QIAGEN Company

www.sabiosciences.com

Samuel Rulli, Ph.D.

<u>Samuel.Rulli@QIAGEN.com</u>

support@sabiosciences.com

The Seminar Topics

- Work flow & applications :RNA and DNA
- qPCR for gene expression: What is the change in gene expression during differentiation?
- Factors influencing the performance of a qPCR assay
- RNA purity and integrity
- Reverse Transcription
- qPCR, reporter chemistries and characteristics of assay
- Analyzing qPCR curves
- Data & analysis

What does Real-Time qPCR Stands for?

- Real-time qPCR is a sensitive and reliable method for detection and quantification of nucleic acids (DNA,& RNA (cDNA) levels.
- It is based on detection and quantification of fluorescence emitted from a reporter molecule at real time.
- This detection occurs during the accumulation of the PCR product with each cycle of amplification, thus allows monitoring the PCR reaction during early & exponential phase where the first significant increase in the amount of PCR product correlates to the initial amount of target template.

Applications for qPCR

- Gene Expression Profiling Analysis
- miRNA Expression Profiling Analysis

- SNP Genotyping & allelic discrimination
- Somatic Mutation Analysis
- Copy Number Detection/Variation Analysis
- Chromatin IP Quantification
- DNA Methylation Detection
- Pathogen Detection
- Viral Quantification

Work Flow: A Brief Look

Application example: gene expression changes during differentiation

Osteogenesis - Day 16

Neurogenesis – 72 hr

Differentiation protocol
Collect Total RNA at different time points
Measure 1 HKG and 1 GOI (TNFα)
Repeat experiment 3x (biological replicates)

Applications for qPCR

- Gene Expression Profiling Analysis
- miRNA Expression Profiling Analysis

DNA

- SNP Genotyping & allelic discrimination
- **Somatic Mutation Analysis**
- Copy Number Detection/Variation Analysis
- Chromatin IP Quantification
- DNA Methylation Detection
- Pathogen Detection
- Viral Quantification

Work Flow: A Brief Look

Factors Critical For A Successful Assay

- DNA or RNA sample preparation --- Template quality
 - Choose appropriate sample preparation kits/reagents (inhibitors can compromise RT or PCR Reaction
- Reverse transcription for converting RNA to cDNA
 - Choose RT kits (type of RT, which type of primers, controls?)
- Assay design: chemistry, specificity, PCR efficiency, & throughput & cost
 - Choose validated assay, or need to validate our own?
- Running PCR
 - Choose commercial mastermix or make own (primer, probe, master mix)
- Data analysis tool
 - User friendly & streamlined data analysis module

RNA Isolation

- RNA Isolation:
 - Qiazol?
 - Column based method (RNeasy?)
 - Both: Efficient lysis and inhibition of RNases; molecular grade RNA
 - miRNA? Use a kit specific for miRNA and mRNA

Qiazol:

phenol/guanidine-based lysis

Instant inactivation of RNases
Instant end of biological activities

Column cleanup:

Molecular biology grade RNA

RNeasy Lipid tissue mini Kit

RNA Sample Quality

Spectroscopic: measure 260/280 and 230/280

OD260 is used to calculate amount of nucleic acid

260/280 ratio (typical minimum value 1.8)

260/230 ratio (typical minimum value 1.7)

Low ratio may indicate protein, QIAzol, Carbohydrates, Guanidine HCL, Absorbance measurements do not show integrity of RNA

Denaturing RNA Agarose Gel

Used to detect integrity of RNA (usually through ribosomal bands)

QIAxcel Automate RNA integrity analysis

qPCR Components & Steps: Overview

qPCR Components & Steps: Overview

Reverse Transcription

Used to make cDNA copy of RNA

Reagents:

Reverse transcriptase – many different kinds

dNTPs

Buffers for RT

Primers

Random pentamers or hexamers?

Oligo-dT?

Both?

Control RNA to monitor reverse transcription kit?

Note: Make sure that RT reaction is linear

Do not try to reverse transcript too much RNA

Sensitivity of qPCR step is dependent on good RT reaction

Monitor RT reaction to ensure equal RT efficiency across all samples

What is in a PCR Reaction?

PCR= Polymerase Chain Reaction Exponential Amplification of DNA in single tube

DNA Template (ss or ds)

dNTPs.

- 1. Heat denature template (~95C)
- 2. Anneal Primer (~60C)
- 3. Extend primer (~60C)
- 4. Repeat (~95C)

Heat denature

DNA Template (ss or ds)

dNTPs.

- 1. Heat denature template (~95C)
- 2. Anneal Primer (~60C)
- 3. Extend primer (~60C)
- 4. Repeat (~95C)

4. Repeat (~95C)

DNA Template (ss or ds)

- dNTPs.

- 1. Heat denature template (~95C)
- 2. Anneal Primer (~60C)
- 3. Extend primer (~60C)
- 4. Repeat (~95C)

dNTPs.

- 1. Heat denature template (~95C)
- 2. Anneal Primer (~60C)
- 3. Extend primer (~50 to ~70C)
- 4. Repeat (~95C)

qPCR Reaction: Measure DNA amount at end of each cycle to get ratio of DNA or absolute amount (if using a standard)

- 1. Heat denature template (~95C)
- 2. Anneal Primer (~60C)
- 3. Extend primer (~50 to ~70C)
- 4. Measure Amount of PCR Product
- 5. Repeat (~95C)

Real-Time qPCR Fluorescence Chemistry

DNA binding agents

Two most commonly used chemistries in qPCR community

Hydrolysis Probes

Dual-labeled Hydrolysis (Taqman®) probe

Others, such as hybridization probes

-Molecular beacon and scorpion probes

SYBR® Green I Assay: Fluorescent DNA Binding Dye

SYBR I binds to double-strand DNA but not single strand DNA. Little fluorescence emitted from SYBR I in solution.

SYBR I upon binding to double-strand DNA emits fluorescence very brightly Simple & cost saving

The SYBR I signal intensities correlate with DNA amplified (amplicon amount) thus the initial **sample** input amounts

High Specificity Is Required when using SYBR Green since SYBR I binds all double-strand DNA (non-specific or primer dimmer).

Understanding Kinetics in PCR

Hydrolysis Based Probe - - - Taqman® Probe Assay

The fluorescence of the reporter dye is suppressed by the quencher

Primer binding followed by extension

Probe cleavage by Taq to free the reporter dye thus the fluorescence intensity correlates with the initial sample input amounts.

Taq has 5'→ 3' exonuclease activity

Each amplicon needs a sequence-specific probe (cost & time)

Understanding Kinetics in PCR

Characteristics of a good qPCR Assay

Amplification efficiency: 100% during exponential phase

Sensitivity: Able to detect down to reasonable quantities of template in 1 reaction (10-50 copies)

Specificity: 1 assay, 1 target: (no off-target amplification or primer-dimers)

Amplification Analysis: standard curve and single curve analysis

Sensitivity: How many copies can my assay detect?

Sensitivity is very important for low expressed genes or where there is limited sample

Method 1: Use primers to make PCR product, T/A clone, grow-up, isolate, quantitate and use for qPCR reactions

Method 2: Use gDNA as template and use mass of gDNA to calculate copy number and assume 1 target per genome (or actually calculate targets using bioinformatics)

Figure 4: RT² Profiler PCR Arrays and RT² qPCR Assays Have Sufficiently Wide Dynamic Ranges.

Specificity: SYBR Green

Single peak dissociation curves

Single gel bands of predicted size

Melt Curve Analysis: The General Program Steps

- Rapid heating of amplified samples to 94°C to denature the DNA
- Cooling the sample to 60°C to let DNA double strands anneal
- Slowly heating (by increasing the temperature, usually 0.2°C/sec) the sample while plotting the fluorescent signal versus temperature.
- As the temperature increases, and DNA melts, the fluorescent signal should decrease.
- There will be a significant drop of the signal when 50% DNA melts.

Melting Curve Analysis --- Normalized Reporter Plot

Plot - Normalized Reporter (Fluorescence/Passive dye signal)

Samples	Tm
Gene A	77.36
Gene B	78.94

Temperature

Melt Curve Analysis --- 1st Negative Derivative Plot

Plot - - - 1st negative Derivative Reporter

Single melt curve of each amplicon is required for specificity validation!

Temperature

Experimental Setup

Gene 1 Gene 1 sample 1 sample 1 (n=3) (n=1)

Do I need technical replicates?
Technical = variation of technique
-machine dependent
-pipetting accuracy

Do I need biological replicates? -biological variation

Biological replicates are better than technical replicates

- ■Biological Replicates: 3 different experiments
 - ■Shows variability due to experiment
- ■Technical replicates: 3 different measurements for same step
 - ■Shows variability due to pipetting, machine, enzymes, etc.

Sacrifice Technical replicates for biological replicates, always do at least 3 to

Get fold change and p value (or other statistics such as 95% confidence interval)

Thermal Cycling Programs

Table 4. Cycling conditions* for Applied Biosystems, Bio-Rad, Stratagene, and Eppendorf cyclers

Cycles	Duration	Temperature	Comments
1	10 min	95°C	HotStart DNA Taq Polymerase is activated by this heating step.
40	15 s	95°C	
	1 min	60°C	Perform fluorescence data collection.

1 Instrument default melt curve program

Melt curve analysis (SYBR Only)

Stratagene Mxp3005p

Run qPCR - - - Results

How To Define/Set Up The Baseline

Linear Amplification Plot

-Automated Baseline Option

if an instrument has a adaptive baseline function

-Define manually:

- (1) Use <u>linear view</u> of the plot
- (2) Set up the baseline reading from cycle #2 to the cycle that 2 cycles before the earliest visible amplification
- (3) Usually a baseline falls in **3-15** cycles

How To Define Threshold

Log View Amplification Plot

- Use log view of amplification plot
- Threshold should be higher than baseline (higher than the noise level)
- Threshold should at LOWER 1/3 or 1/2 of the linear phase of amplification
- Linear phase = exponential phase
- Different runs across samples for the same experiments should have the same threshold for comparison

Reference Genes (Housekeeping Genes) For Normalization

Any changes?

Gene of interest A in untreated cells

GOI A in drug treated cells

Reference Gene B in untreated cells

Ref Gene B in drug treated cells

The expression level of a reference gene remain consistent under experimental conditions or different tissues

- A Reference Gene is aimed to normalize possible variations during:
 - Sample prep & handling (e.g use the same number of cells from a start)
 - RNA isolation (RNA quality and quantity)
 - Reverse transcription efficiency across samples/experiments
 - PCR reaction set up
 - PCR reaction amplification efficiencies

Commonly Used Housekeeping Genes

Table 7. Housekeeping genes commonly used as endogenous references

	Gene sy	ymbol	Relative expression level*	
Gene	Human	Mouse	Human	Mouse
18S ribosomal RNA	RRN18S	Rn 18s	++++	++++
Actin, beta	ACTB	Actb	+++	+++
Glyceraldehyde-3-phosphate dehydrogenase	GAPDH	— Gapdh	+++	+++
Phosphoglycerate kinase 1	PGK1	Pgk1	+++	++
Peptidylprolyl isomerase A	PPIA	Ppia	+++	+++
Ribosomal protein L13a	RPL13A	→ Rpl13a	+++	+++
Ribosomal protein, large, PO	RPLPO		+++	
Acidic ribosomal phosphoprotein PO		Arbp		+++
Beta-2-microglobulin	B2M	→ B2m	++ - +++	++ - +++
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide	YWHAZ	Ywhaz	++ - +++	+
Succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	SDHA	Sdha	++	+
Transferrin receptor	TFRC	Tfrc	++	+
Aminolevulinate, delta-, synthase 1	ALAS1	Alas 1	+	+
Glucuronidase, beta	GUSB	Gusb	+	+
Hydroxymethylbilane synthase	HMBS	Hmbs	+	++ - +++
Hypoxanthine phosphoribosyltransferase 1	HPRT1	→ Hprt1	+	+
TATA box binding protein	TBP	Tbp	+	+
Tubulin, beta	TUBB		+	
Tubulin, beta 4		Tubb4		+

^{* &}quot;+" indicates relative abundance of the transcripts. → HKGs in RT² Profiler PCR Arrays

Data Analysis website

- 1.) Average Ct values for all gene replicates
- 2.) Calculate Delta Ct value between GOI and HKG for each experiment
- 3.) Average Delta Ct values between experiments (replicates)
- 4.) Calculate Delta-Delta Ct values (Delta Ct experiment- Delta Ct control)
- 5.) Calculate Fold Change 2^(-Delta Delta Ct)

Normalized Gene Expression Level

Any changes?

Target Gene A in control cells

Target Gene A in drug treated cells

Reference Gene B in control cells

Ref Gene B in drug treated cells

 \longrightarrow Δ Ct = Ct (Target A -treated) – Ct (Ref B-treated)

 \rightarrow Δ Ct = Ct (Target A-control) – Ct (Ref B-control)

 $\triangle \Delta \Delta$ Ct = Δ Ct (treated) – Ct (control)

Normalized target gene expression level = $2^{(-\triangle\triangle Ct)}$

Delta Delta Ct Method: A Look of Amplification Plots

 $\triangle \triangle Ct = \triangle Ct (TNF\alpha_{treat} - GAPDH_{treat}) - \triangle ct (TNF\alpha_{control} - GAPDH_{control})$

The fold change = $2^{(-\triangle\triangle Ct)}$

Data Analysis website

1.) Average Ct values for all gene replicates

	Control 1	Control 2	Control 3	Ехр 1	Ехр 2	Ехр 3
GAPDH	17.2	18	19	17	18	17.5
TNFa	31	32.3	33.4	26	27.2	26.8

2.) Calculate Delta Ct value: GOI-HKG

TNFa-GAPDH	13.8	14.3	14.4	9	9.2	9.3

3.) Average Delta Ct values between experiments (replicates)

Average	14.17	9.17

4.) Calculate Delta-Delta Ct values (Delta Ct experiment- Delta Ct control)

DD Ct	-5.00

5.) Calculate Fold Change 2^(-Delta Delta Ct)

TNF α is up-regulated 32 fold in the treated cells versus the control

http://www.sabiosciences.com/dataanalysis.php

http://www.sabiosciences.com/dataanalysis.php

Ask now or contact Technical Support M – F, 9 AM – 6 PM EST

Telephone: (888) 503-3187

Email: support@SABiosciences.com

Thank you!