Autonomous Reinforcement Learning of Multiple Interrelated Tasks

ICDL-EpiRob 2019

Authors

Vieri Giuliano Santucci

Gianluca Baldassarre

Emilio Cartoni

Institute of Cognitive Sciences and Technologies, Rome, Italy <u>Laboratory of Computational Embodied Neuroscience</u>

Motivation of the Study

- Solving interrelated (hierarchical) tasks autonomously
- How this question can be addressed working on the level of task selection?
- Open-ended learning => active task selection

Intrinsic Motivation

"The doing of an activity for its inherent satisfactions rather than for some separable consequence". (Ryan and Deci, 2000)

Preliminaries

N-Armed Bandit

- Repeatedly have to choose among n different actions
- After each action, receive a reward depends on the action you have taken
- Objective: Maximize the expected total reward over some time period

6

Img. Source: UC Berkeley CS188 Intro to AI - Course Materials

Contextual Bandit

- A.k.a: Associative search tasks
- Intermediate between N-Armed Bandit and RL

Contextual bandits

Reward is conditional to the state of the environment:

Rewards vary according to the state or context that the agent is operating. The agent has more data points to analyze to decide which action to take.

Markov Decision Process (MDP)

Markov Decision Process is a 4 tuple (S, A, T, R), where:

- S : Set of states
- A: Set of actions
- T: Transition probability P(s_{t+1}| s_t, a_t)
- R : Reward Function

Q-Learning Algorithm

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
      Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
      S \leftarrow S'
   until S is terminal
```

Problem Definition

- Learning of multiple goals => Learning of different policies π_g maximising different reward functions
- For each g the system aims to learn a policy

$$\pi_g^*(a|s) = \operatorname*{argmax}_{\pi} R_g(\pi_g) \tag{1}$$

- Competence: Ability of the system in achieving a goal
- Maximising Competence Function (C) instead of extrinsic reward
- C => sum of the C_q at each goal
- Π_t is the goal selection policy
- Allocate training time to the goals that guarantee the highest competence gain

Proposed solution

- Select the goal with the highest competence improvement
- Agent learns a policy to select goals

$$\Pi^* = \underset{\Pi}{\operatorname{argmax}} \ \delta C(\Pi_t) \tag{2}$$

If depends on environmental conditions

$$\Pi^*(s_t) = \underset{\Pi}{\operatorname{argmax}} \ \delta C(\Pi(s_t)) \tag{3}$$

- If the goals are interrelated => Treat as MDP
 - Transfer IM values between interrelated goals

Experiments and Results

Experiment Setup

- Simulated iCub robot
- Interrelated tasks of touching-to-activate different spheres
- 2 arms, each 4 DOF
- Wrist joint fixed, end-effectors are scoops
- Sensor at each scoop to determine touch

3 Different Experiment Scenarios

- No relations / N-armed bandit
- 2. Environmental dependence / Contextual bandit
- 3. Multiple Interrelated Tasks / MDP

Fig. 6. Structure of the third experimental scenario. Black arrows indicate positive dependencies, and red arrows negative dependencies.

Compared Systems

- 1. GRAIL (Santucci et al. 2016, TCDS)
- 2. C-GRAIL
- 3. M-GRAIL

GRAIL

A four level architecture:

- Goal formation
- 2. Goal Selector
- 3. Expert Selector
- 4. Expert

Fig. 3. Four-level hierarchical architecture of GRAIL: 1) goal-formation mechanisms with the IR-V and the ER-M; 2) goal-selector; 3) expert-selector; and 4) experts. The CB-IM signal is also presented in the figure, together with the GM reinforcement signal.

CB-IM Signal

- Competence: Ability of the system in achieving a goal
- A predictor that is trying to anticipate the achievement of the desired state
- PEI of the predictor is the IM signal
- Input: The selected goal
- **Output:** Predicted probability that the event associated to the selected goal will happen [0,1]

$$PEI_{t} = \frac{\sum_{i=t-(2T-1)}^{t-T} |PE|_{i}}{T} - \frac{\sum_{i=t-(T-1)}^{t} |PE|_{i}}{T}$$
(8)

Selection Rule

Softmax selection rule

$$p_k = \frac{\exp\left(\frac{Q_k}{\tau}\right)}{\sum_{i=0}^n \exp\left(\frac{Q_n}{\tau}\right)}$$

Exponential Moving Average (EMA) $Q_k^t = Q_k^{t-1} + \alpha \left(\operatorname{ir} - Q_k^{t-1} \right)$

$$Q_k^{t-1} + \alpha \left(\text{ir} - Q_k^{t-1} \right)$$

18

(3)

C-GRAIL

- Modify Goal Selector of GRAIL
- Context can be:
 - Standard state features
 - The status of different goals
- Selects goals as in contextual bandit, different EMAs are associated with different contexts
- Goal selection => Softmax Rule

Fig. 2. A schema of the architecture implemented in C-GRAIL and M-GRAIL. Differently from GRAIL, the new architectures use context as input to the goal selector. Note that for all the architectures the expert selector and experts are goal-specific.

M-GRAIL

- Goal Selector takes same input as in C-GRAIL
- Goal selection as an MDP
- Models temporal interdependencies between goals (Q-Learning)
- Goal selection => Softmax Rule

Fig. 2. A schema of the architecture implemented in C-GRAIL and M-GRAIL. Differently from GRAIL, the new architectures use context as input to the goal selector. Note that for all the architectures the expert selector and experts are goal-specific.

First Experiment: No Relations Between Tasks

Fig. 3. Performance of GRAIL in the first experiment. Average over 10 replications of the experiment. Shadows show the confidence intervals.

Second Experiment: Environmental Dependence

Second Experiment: Environmental Dependence

Fig. 5. Trials wasted by GRAIL and C-GRAIL in selecting tasks that cannot be performed.

CF

Third Experiment: Multiple Interrelated Tasks

Third Experiment: Multiple Interrelated Tasks

Fig. 8. Trials wasted by C-GRAIL and M-GRAIL in selecting tasks that cannot be performed.