Bài ghi môn "Lý thuy t t i u_Luu Thi Lan Huong"

Ch ng 1

BÀITOÁNT I UT NG QUÁT VÀ NG D NG

1.1. Bài toán t i u t ng quát và phân lo i

1. Gi i thi u bài toán t i u t ng quát

Lý thuy t t i u là m t trong l nh v c kinh i n c a toán h c có nhi u nh h ng n nhi u l nh v c khoa h c công ngh , kinh t xã h i.

M t ph ng án t i u là m t ph ng án kh thi và t t nh t, t c là ph ng án làm cho hàm m c tiêu t k t qu min (max) và ph i th a mãn các i u ki n yêu c u c a bài toán (th a mãn các i u ki n ràng bu c).

Trong mô hình toán h c, m c tiêu c a bài toán c bi u di n b i hàm: $f(x) \to \min(\max) v$ i x là m t bi n ho c vecto bi n $x = (x_1, x_2, ..., x_n)$

Bi n x ho c vector bi n $x = (x_1, x_2, ..., x_n)$ th ng có yêu c u ph i th a mãn m t s i u ki n nào ó. T p h p các i u ki n c a các bi n thì c g i là i u ki n ràng bu c và c bi u di n b i mi n D (mi n ràng bu c).

D ng t ng quát c a bài toán t i u:

Làm c c ti u/c c i m t hàm m c tiêu: $f(x) \rightarrow \min(\max)$ (1)

The a man các i u ki n ràng bu c $x \in D$ (2)

Yêu c u: Tìm x th a mãn (2) và làm c c ti u/c c i hàm m c tiêu (1)

 x^* (m t b các giá tr c th c a $(x_1, x_2, ..., x_n)$), th a mãn i u ki n (1) & (2) g i là ph ng án t i u

N u x ch th a mãn i u ki n (2) g i x là ph ng án ch p nh n c hay ph ng án.

Thí d 1:

Tìm x sao cho: $f(x) = x^3 - 3x + 1 \rightarrow \max (3)$

V i:
$$x \in D = [-2,2; 1,8]$$
 (4)

V i $\forall x \in [-2,2; 1,8]$ là m t ph ng án $\Leftrightarrow -2,2 \le x \le 1,8$

Bài toán t ng ng bài toán tìm giá tr 1 n nh t (GTLN) c a f(x) khi $-2.2 \le x \le 1.8$

Ph ng pháp tìm GTLN (ã h c trong gi i tích 1) th c hi n nh sau:

- Tìm các c c tr c a f(x), tính các giá tr c c tr, tính các giá tr t i các u mút c a mi n D, sau ó so sánh tìm ra giá tr 1 n nh t (hay nh nh t).

Tìm các i m d ng f'(x) = 0. Tính f(x) t i các i m d ng

Tìm f(-2,2); f(1,8)

V y
$$f'(x) = 3x^2 - 3 = 0 \iff x = \pm 1$$

$$f(1) = -1$$

$$f(-1) = 3$$

$$f(-2,2) = -3,048$$

$$f(1,8) = 1,432$$

Do ó $f \max = 3 \text{ khi } x^* = -1$

Thí d 2: Bài toán ti u có th không có i u ki n ràng bu c, b t k giá tr nào c a x ho c vecto x c ng là m t ph ng án ch p nh n c. V y ch c n tìm x b t k sao cho f(x) min(max).

Có th i u ki n ràng bu c c xác nh trong hàm m c tiêu ó là mi n xác nh c a hàm m c tiêu

Tìm ph ng án t i u c a bài toán $Z = \sqrt{a^2 - x^2 - y^2} \rightarrow \max$ (5)

i u ki n ràng bu c c xác nh t i u ki n xác nh c a hàm Z, t c là $a^2 - x^2 - y^2 \ge 0$, hay mi n ràng bu c c a bài toán là: $x^2 + y^2 \le a^2$, (6)

(5) – (6) là bài toán tìm c c tr hàm hai bi n

Ph ng pháp gi i: Dùng ph ng pháp tìm c c tr hàm 2 bi n

- Tîm i m d ng
$$\begin{cases} Z_x = 0 \Rightarrow x = 0 \\ Z_y = 0 \Rightarrow y = 0 \end{cases}$$
 Có 1 i m d ng M(0,0)

- Sau ó ng d ng $\,$ n i u k t lu n $\,$ c $M(0,\!0)$ là c c $\,$ i.

Ph ng án t i u
$$x^* = (0,0)$$
 Zmax = Z(0,0) = a

Thí d 3: Tìm ph ng án t i u c a bài toán sau:

$$f(x) = 8x_1 + 6x_2 \rightarrow \max$$

V i i u ki n ràng bu c

$$\begin{cases} 4x_1 + 2x_2 \le 60 & (a) \\ 2x_1 + 4x_2 \le 48 & (b) \\ x_1, x_2 \ge 0 \end{cases}$$

Gi i ra $x^* = (12,6)$, $f \max = 132$

2. Phân lo i các bài toán t i u

Các bài toán t i u chính là các bài toán qui ho ch toán h c (Mathematics – programming)

• Bài toán t i u tuy n tính: hàm m c tiêu và t t c các ràng bu c u có d ng tuy n tính. Thí d : bài toán thí d 3 là bài toán t i u tuy n tính.

- Bài toán t i u phi tuy n: trong ó hàm m c tiêu ho c ít nh t m t i u ki n ràng bu c là phi tuy n (có ch a ít nh t m t y u t phi tuy n b c 2, logic, m ...). Thí d : Bài toán thí d 1, thí d 2 là bài toán t i u phi tuy n.
- Bài toán t i ur ir c: khi bi n ho c giá tr hàm m c tiêu là r ir c. Có th chia nh sau:
 - T i u nguyên (quy ho ch nguyên): các bi n ho c các hàm m c tiêu nh n các giá tr nguyên.
 - T i u th: là m t d ng c bi t c a bài toán t i u r i r c. Có các nh là các i m r i r c. Kí hi u: $X = \{A, B, C, D\}$. T p c nh $E = \{e_1, e_2, ..., e_8\}$ ho c $E = \{(A, D); (A, B); ... \}$. Tìm ng i ng n nh t c a th th a mãn i u ki n nào ó.
- Bài toán quy ho ch ng (nh ng k t qu c a bài toán b c sau thì ph thu c vào k t qu c a b c tr c).

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4$$

• Bài toán t i u a m c tiêu: là bài toán trong ó có nhi u hàm m c tiêu c n ph i t i u trên cùng m t mi n ràng bu c.

$$f_i(x)$$
 min(max), i = 1, 2, ..., n
 $x \in D$

Trong ó có nhi u hàm m c tiêu có th il p nhau.

Khi gi i bài toán này ph i k t h p hài hòa các l i ích (giá tr) t c c a hàm m c tiêu.

1.2. ng d ng c a lý thuy t t i u

1. Ph ng pháp mô hình hóa

Nhi u v n th c t , kinh t , khoa h c và xã h i u có th gi i quy t b ng ph ng pháp t i u toán h c. Quan tr ng là t th c t ph i xây d ng m t mô hình toán h c thích h p. T ó s d ng ph ng pháp t i u gi i cùng v i công c thích h p.

Các b c c n thi t khi áp d ng ph ng pháp mô hình hóa:

- B c1: Kho sát v n tho t, phát hin v n c ngi i quy t b ng ph ng pháp t i u.
- **B** c 2: Phát bi u các i u ki n ràng bu c và hàm m c tiêu d i d ng nh tính.
- **B** c 3: L a ch n các bi n quy nh và sau ó nh l ng hóa các i u ki n ràng bu c và hàm m c tiêu. T ó xây d ng mô hình nh l ng và mô hình toán h c (mô hình t i u).
- **B** c 4: Thu th p s li u và l a ch n ph ng pháp toán h c thích h p gi i mô hình.

- **B c** 5: Xây d ng thu t toán và quy trình gi i. L a ch n công c (gi y bút, máy tính) có th l p trình cho bài toán y.
- **B** c6: ánh giá k t qu thu c. N u phù h p th c t nó cho k t qu t i u khi ó ch ng t mô hình chúng ta xây d ng úng, h p lý, vì v y ch p nh n k t qu . N u không phù h p th c t thì ph i xem xét và i u ch nh mô hình.
- K t lu n: C n có s h p tác c a các chuyên gia chuyên ngành (ch ng h n k thu t i n, i n t ...), chuyên gia v tin h c, toán h c gi i quy t các bài toán th c t .

M ts thu t ng trong quá trình xây d ng mô hình:

- Toán ng d ng (Applied Mathematic)
- V n trù h c (Operation Research OR)
- Khoa h c qu n lý (Management Science MS)
- ng d ng máy tính (Computer Application)
- Mô hình t i u (Optimization models)
- Quy ho ch (Programming)

2. M ts ng d ng c a lý thuy t t i u

Xét m t s thí d d n n mô hình t i u.

Thí d 4: Bài toán phân ph i i n n ng.

Có ba h ph t i c n c cung c p i n t hai ngu n i n cách xa nhau. Giá thành truy n t i m t n v i n n ng (hao t n + chi phí b o d ng ng dây, tram) t ngu n th i (i = 1, 2) n h th j (j = 1, 2, 3) là Cij. Kh n ng cung c p c a m i ngu n i n b gi i h n b i tr 1 ng c a chúng là A_1 , A_2 . Nhu c u c a các h tiêu th c n ph i áp ng là B_1 , B_2 , B_3 . Hãy l p k ho ch phân ph i i n n ng kh thi sao cho t ng chi phí truy n t i là nh nh t.

Gi i

- L p $m\hat{o}$ hình toán h c

Gi thi t:

i u ki n cân b ng thu phát: $\sum thu = \sum phát$

T c
$$\sum_{i=1}^{2} A_i = \sum_{j=1}^{3} B_j$$

t bi n x_{ij} là l ng i n chuy n t tr m cung c p th i n h tiêu th th j; ta có $x_{ij} \ge 0; i=1,2; j=1,2,3$ (i u ki n không âm c a bi n)

T ng chi phí truy n t i: $\sum_{i=1}^{2} \sum_{j=1}^{3} C_{ij} x_{ij}$

V y có hàm m c tiêu:
$$f(x) = \sum_{i=1}^{2} \sum_{j=1}^{3} C_{ij} x_{ij} \to \min$$
 (1)

i u ki n ràng bu c:

T ng l ng i n t tr m 1: $x_{11} + x_{12} + x_{13} \le A_1$ T ng l ng i n t tr m 2: $x_{21} + x_{22} + x_{23} \le A_2$ T ng l ng i n c a h 1: $x_{11} + x_{21} = B_1$ (2) T ng l ng i n c a h 2: $x_{12} + x_{22} = B_2$ T ng l ng i n c a h 3: $x_{13} + x_{23} = B_3$ i u ki n không âm c a các bi n $x_{11}, x_{12}, ..., x_{23} \ge 0$

Bài toán t i u tuy n tính chính là bài toán tìm các giá tr (1) th a mãn các i u ki n (2).

Thí d 5: Bài toán xây d ng h th ng truy n t i i n.

M thuy n (X_0) có 5 xã X_1 , X_2 , X_3 , X_4 , X_5 . Xây d ng h th ng truy n t i i n t huy n n t t c các xã. Gi a hai a i m có th thay i c ng dây v i chi phí c cho trong hình 1. Hãy l p các ph ng án xây d ng h th ng i n có th n i li n các xã vào huy n v i t ng chi phí là nh nh t.

Hình 1: Các gi thi t c a bài toán

ây là m t bài toán t i u trên th c gi i b ng thu t toán PRIM, KRUSKAL

Hình 2 – K t qu (gi i b ng thu t toán PRIM). Ta có:

S ng dây c n xây d ng t i u nh hình 2, t ng chi phí u t nh nh t: $f_{\min} = 15$

Thí d 6: Bài toán l p k ho ch s n xu t t i u v i tài nguyên có h n.

M t nhà máy s n xu t hai lo i s n ph m (I) và (II) t hai lo i nguyên li u A và B. Bi t r ng m i s n ph m lo i I c n 4 n v nguyên li u A và 2 n v nguyên li u B; m i s n ph m lo i (II) c n 2 n v nguyên li u A và 4 n v nguyên li u B. Khi bán m t s n ph m lo i I lãi 8 n v ti n, khi bán 1 s n ph m lo i (II) lãi 6 n v ti n. Hãy l p k ho ch s n xu t sao cho thu lãi nhi u nh t v i s d tr nguyên li u có h n: 60 n v nguyên li u A và 48 n v nguyên li u B.

Bài gi i

L p mô hình: Bi n quy t nh x_1, x_2 là s s n ph m lo i (I), (II) c n s n xu t.

T ng lãi: Hàm m c tiêu
$$f(x) = 8x_1 + 6x_2 \rightarrow \max$$
 (1)

i u ki n ràng bu c:

T ng s nguyên li u A:
$$4x_1 + 2x_2 \le 60$$

T ng s nguyên li u B: $2x_1 + 4x_2 \le 48$
 $x_1, x_2 \ge 0$ (2)

V y ta có bài toán t i u v i hàm m c tiêu (1) th a mãn i u ki n ràng bu c (2). ây là bài toán TUTT trong thí d 3.

Bài toán 7: Bài toán v n t i

Ng i ta c n ch g o t hai kho K_1 , K_2 t i ba n i nh n T_1 , T_2 , T_3 . L ng g o có hai kho và nhu c u t i các n i tiêu th cùng v i giá c c v n t i chuy n t kho K_i n T_j (i=1,2;j=1,2,3) cho b i b ng sau:

TT	T_1	T_2	T ₃
Kho	35(T)	25(T)	45(T)
K_1	5	2	3
30(T)			
K_2	2	1	1
75(T)			

G i là bài toán "v n t i", có ph ng pháp gi i riêng tuy nhiên có th a v gi i bài toán t i u tuy n tính.

G i x_{ij} là l ng g o chuy n t K_i n T_j , $x_{ij} \ge 0, i = \overline{1,2}; j = \overline{1,3}$.

Hàm m c tiêu:
$$f(x) = 5x_{11} + 2x_{12} + 3x_{13} + 2x_{21} + x_{22} + x_{23} \rightarrow \min$$
 (1)

i u ki n ràng bu c:
$$5x_{11} + 2x_{12} + 3x_{13} \le 30$$

 $2x_{21} + x_{22} + x_{23} \le 75$
 $5x_{11} + 2x_{21} = 35$
 $2x_{12} + x_{22} = 25$
 $3x_{13} + x_{23} = 45$
 $x_{ij} \ge 0, i = \overline{1,2}; j = \overline{1,3}$ (2)

Ch ng 2

T I UTUY NTÍNH

2.1. Bài toán t i u tuy n tính t ng quát

2.1.1. hí d m u v mô hình t i u tuy n tính (QHTT).

Ta xét m t bài toán kinh t v l p k ho ch s n xu t: Gi s m t n v kinh t nông nghi p s n xu t hai lo i s n ph m I và II. s n xu t ra m t n v s n ph m I c n có 4 n v nguyên li u lo i A và 2 n v nguyên li u lo i B, các ch tiêu ó cho m t n v s n ph m lo i II là 2 và 4.

L ng d tr nguyên li u lo i A và B hi n có là 60 và 48 (n v). Hãy xác nh ph ng án s n xu t (xác nh s s n ph m c n s n xu t cho m i lo i) t l i nhu n l n nh t, bi t l i nhu n / n v s n ph m bán ra là 8 và 6 (n v ti n t) cho các s n ph m lo i I và II.

Ta có th mô hình hóa bài toán này d i d ng toán h c nh sau:

- G is s n ph m lo i I và lo i II c n s n xu t l n l t là x_1 và x_2 , ($x_1, x_2 \ge 0$)
- Ta có 1 i nhu n thu c là $z = 8x_1 + 6x_2$
- M c tiêu th nguyên li u lo i A là $4x_1 + 2x_2$ (không c v t quá 60)
- M c tiêu th nguyên li u lo i A là $2x_1 + 4x_2$ (không c v t quá 48).
- V y vi c l p k hoach s n xu t a v vi c gi i bài toán sau:
- Tìm x_1 , x_2 sao cho làm c c i hàm $z = 8x_1 + 6x_2$, và th a mãn các i u ki n ràng bu c:

$$\begin{cases} 4x_1 + 2x_2 \le 60 \\ 2x_1 + 4x_2 \le 48 \\ x_1, x_2 \ge 0 \end{cases}$$

- Vi tlid id ng m t bài toán quy ho ch toán h c:

Hàm m c tiêu:
$$z = 8x_1 + 6x_2 \rightarrow max$$
 (1)

i u ki n ràng bu c

$$\begin{cases} 4x_1 + 2x_2 \le 60 \\ 2x_1 + 4x_2 \le 48 \\ x_1, x_2 \ge 0 \end{cases}$$
 (2)

Gi i bài toán này, ta có phang án ti u $X^* = (12, 6)$, $z_{max} = 132$.

- Bài toán (1) (2) có d ng c a mô hình t i u toán h c, h n n a, t t c các bi u th c c a hàm m c tiêu và các i u ki n ràng bu c u có d ng tuy n tính (là các a th c v i các bi n quy t nh x_j xu t hi n trong mô hình u b c 1), v y bài toán trên là m t bài toán quy ho ch tuy n tính.
- T ng quát hóa bài toán trên, v i nhi u bi n quy t nh và nhi u i u ki n ràng bu c, ta có th phát bi u bài toán quy ho ch tuy n tính d ng t ng quát nh sau:

2.1.2. Bài toán quy ho ch tuy n tính t ng quát.

Bài toán quy ho ch tuy n tính (QHTT) t ng quát có d ng:

- Tìm c c i (c c ti u) c a hàm:

$$z = C_1 x_1 + C_2 x_2 + \dots + C_n x_n \to \max / \min$$
 (3)

th a mãn các i u ki n ràng bu c:

$$\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \leq b_{1} \\ \dots \\ a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} \geq b_{i} \\ \dots \\ a_{j1}x_{1} + a_{j2}x_{2} + \dots + a_{jn}x_{n} = b_{j} \\ \dots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m} \\ x_{1}, x_{2}, \dots, x_{k} \geq 0, voi k \leq n \end{cases}$$

$$(4)$$

Trong ó:

- Z = f(X) g i là hàm m c tiêu c a bài toán, $X = (x_1, x_2, ..., x_n)$ là vecto n thành ph n (m t b n giá tr hay còn g i là m t i m trong không gian n chi u). ó C_j các h s c a hàm m c tiêu (j=1, 2, ..., n)
- H i u ki n (4) g i là h ràng bu c, trong ó m t s i u ki n ràng bu c d ng b t ng th c (\leq), m t s ràng bu c d ng b t ng th c (\geq), m t s ràng bu c d ng ng th c (=). Các bi n quy t nh (có th không ph i là t t c) có i u ki n không âm. Mi n D xác nh b i h ràng bu c (6) g i là mi n ràng bu c.
 - Matr n c a h ràng bu c có d ng:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- M t ph ng án (hay ph ng án kh thi) là m t vector $X = (x_1, x_2, ..., x_n)$ th a mãn h ràng bu c (4). Rỗ ràng m i i m $(x_1, x_2, ..., x_n)$ thu c mi n ràng buôc D u là m t ph ng án, vì v y mi n D còn g i là t p ph ng án.
 - Ph ng án t i u (optimal solution) là m t ph ng án, mà giá tr hàm m c tiêu t i ó t c c i (hay c c ti u). Ph ng án t i u th ng c ký hi u là X^* hay X-opt.

2.1.3. Ph ng pháp th gi i bài toán quy ho ch tuy n tính

Ph ng pháp th có ý ngh a minh ho và giúp hi u b n ch t m t s khái ni m c b n. gi i ví d trên ta th c hi n các b c sau ây.

 \underline{B} c 1: V mi n ràng bu c (mi n các ph ng án kh thi) là t p h p các ph ng án kh thi (hay các ph ng án, nói m t cách ng ng n). M i ph ng án c th hi n qua b s (x_1, x_2) còn g i là véc t nghi m, tho mãn t t c các ràng bu c \tilde{a} có k c i u ki n không âm c a các bi n (xem hình I.1).

- Tr ch t chúng ta v th $4x_1 + 2x_2 = 60$ b ng cách xác nh hai i m trên th: $(x_1 = 0; x_2 = 30)$ và $(x_2 = 0; x_1 = 15)$.

Hình 1.1. Ph ng pháp th gi i bài toán QHTT

th trên là m t ng th ng chia m t ph ng làm hai n a m t ph ng: m t ph ng m các i m (x_1,x_2) tho mãn $4x_1+2x_2 \leq 60$; m t ph n tho mãn $4x_1+2x_2 \geq 60$. Ta tìm c n a m t ph ng tho mãn $4x_1+2x_2 \leq 60$.

- T $\,$ ng t , có th $\,$ v $\,$ th $\,$ $2x_1+4x_2=48$ b $\,$ ng cách xác $\,$ nh hai $\,$ i $\,$ m thu $\,$ c $\,$ th $\,$ ($x_1=0$, $x_2=12$) và ($x_2=0$, $x_1=24$). Sau $\,$ ó tìm $\,$ n $\,$ m $\,$ t ph $\,$ ng tho $\,$ mãn $2x_1+4x_2\leq 48$.
- Lúc này, giao c a hai n a m t ph ng tìm c trên cho ta t p h p các i m (x_1, x_2) tho mãn các ràng bu c. Tuy nhiên, tho mãn i u ki n không âm c a các bi n, ta ch xét các i m n m trong góc ph n t th nh t. V y mi n các ph ng án kh thi là mi n gi i h n b i t giác OABC (còn g i là n hình vì là mi n t o nên b i giao c a các n a m t ph ng).
 - <u>B</u> <u>c</u> 2: Trong mi n (OABC) ta tìm i m (x_1, x_2) sao cho $z = 8x_1 + 6x_2$ t giá tr 1 n nh t.

 $\it Cách 1: Dùng$ ng mg mc. Tùy theo giá tr $\, c \, a \, x_1, \, x_2$ mà z có nh ng mc giá tr $\, khác$ nhau.

- $-V \qquad \text{ng} \qquad \text{ng m c: } 8x_1+6x_2=c \text{, ta c\'o th} \quad \text{ch n gi\'a tr c b t k , nh ng ch n c} = 24 \text{ l\`a}$ b is chung c a 6 v à 8 vi c t m to các i m c t hai tr c to thu n l i h n, v i các s nguyên, m c c = 24, d dàng t m c hai i m n m trên ng òng m c này là $(x_1=0; x_2=4)$ v à $(x_2=0; x_1=3)$. Các i m n m trên ng ng m c này u cho giá tr hàm m c tiêu z=24.
- T ng t, có th v ng ng m c th hai: $8x_1 + 6x_2 = 48$ i qua hai i m ($x_1 = 0$; $x_2 = 8$) và ($x_2 = 0$; $x_1 = 6$). Chúng ta nh n th y, n u t nh ti n song song ng ng m c lên trên theo h ng c a véc t pháp tuy n \vec{n} (8,6) thì giá tr c a hàm m c tiêu $z = 8x_1 + 6x_2$ t ng lên.

V y giá tr z l n nh t t c khi ng ng m c i qua i m B(12, 6) (tìm c $x_1 = 12$; $x_2 = 6$ b ng cách gi i h ph ng trình $4x_1 + 2x_2 = 60$ và $2x_1 + 4x_2 = 48$).

 $\textbf{\textit{K}}$ t lu n: Trong các ph ng án kh thi thì ph ng án t i u là $(x_1=12; x_2=6)$. T i ph ng án này, giá tr hàm m c tiêu là 1 n nh t $z_{max}=8.12+6.6=132$.

Nh n xét: Ph ng án t i u c a bài toán trên (hay các BTQHTT khác), n u có, luôn t c t i m t trong các nh c a mi n ph ng án D, hay còn g i là các i m c c biên c a D (i m c c biên là i m thu c D, mà không th tìm c m t o n th ng nào c ng thu c D nh n i m ó là i m

trong). Nh n xét trên ây là m t nh lý toán h c ã c ch ng minh m t cách t ng quát. Nói m t cách hình nh, mu n t c ph ng án t i u cho các BTQHTT thì c n ph i "m o hi m" i xét các i m c c biên c a mi n ph ng án, và c ng ch c n xét các i m c c biên là , vì bài toán n u có ph ng án t i u thì ch t c t i m t ph ng án c c biên nào ó. T ó ta a ra cách 2 gi i bài toán QHTT.

Cách 2: T nh n xét trên, tìm ph ng án t i u ta ch c n so sánh giá tr c a hàm m c tiêu t i các i m c c biên c a mi n rang bu c D..

u tiên ch n i m c c biên O(0, 0), tính giá tr f t i O: f(0, 0) = 0;

T i i m c c biên A(0,12) tính giá tri f(0, 12) = 72;

T i i m c c biên C (15,0), tính giá tr f(15, 0) = 120;

T i i m c c biên B (12,6), tính giá tr f(12, 6) = 132.

So sánh giá tr hàm m c tiêu t i các i m c c biên nói trên, giá tr max z t t i i m B(12, 6). V y ph ng án t i u X*= (12, 6), giá tr c c i hàm m c tiêu z_{max} = f(12, 6) = 132. Bài toán ã c gi i.

2.1.4. Quy trình t ng quát gi i bài toán QHTT

■ Nh n xét v ph ng pháp th

T ph ng pháp th, ta có nh n xét chung v ph ng pháp gi i bài toán QHTT nh sau: tìm ph ng án t i u c a BTQHTT ta xu t phát t m t i m c c biên nào ó, tìm cách c i thi n hàm m c tiêu b ng cách i t i i m c c biên k nó. Ti p t c nh v y cho t i khi tìm c ph ng án t i u. Trong tr ng h p BTQHTT có ph ng án t i u thì quy trình gi i này s k t thúc sau m t s h u h n b c (do s i m c c biên là h u h n) nh n c ph ng án t i u.

i v i BTQHTT ang xét, quy trình gi i c minh ho nh sau:

N u xu t phát t i O (0,0) ch n m t trong 2 nh k , ta có hai h ng i n ph ng án t i u t t i ph ng án c c biên B(12,6):

Hình 1.2. Quá tình i n ph ng án t i u c a bài toán QHTT

V i bài toán QHTT ch có hai bi n nh trên thì t p ph ng án là m t a giác l i. Khi bài toán có nhi u h n hai bi n thì ta có t p ph ng án là "t p l i a di n", ây là toán h c khá ph c t p, v i s bi n l n h n 3 thì không th bi u di n hình h c. D a trên quá trình gi i bài toán QHTT trên th v i hai bi n, ng i ta t ng quát hóa quy trình gi i bài toán QHTT, làm c s xây d ng thu t toán "n hình" gi i bài toán QHTT trong các tr ng h p t ng quát.

■ S kh i gi i bài toán quy ho ch tuy n tính

Quy trình gi i BTQHTT t ng quát có s kh i gi n l c nh trình bày trên hình 1.3. Trong s này, vì m c ích trình bày v n n gi n, chúng ta không c p t i các tr ng h p khi BTQHTT có mi n ph ng án là t p r ng (lúc ó ta không tìm c ph ng án xu t phát) c ng

nh khi ta không tìm c i m c c biên k t t h n m c dù i u ki n t i u ch a tho mãn (lúc ó t p các giá tr hàm m c tiêu z không b ch n).

Hình 1.3 . S kh i quá trình gi i bài toán QHTT

2.2. Các d ng c bi t c a bài toán quy ho ch tuy n tính

C s lý lu n c a thu t toán n hình d a trên quy trình gi i c trình bày trong s kh i trên. Ta ph i b t u b ng m t ph ng án c c biên xu t phát. tìm c ph ng án c c biên xu t phát, bài toán ph i c a v d ng chính t c, sau ó là d ng chu n.

2.2.1. Bài toán QHTT d ng chính t c

2.2.1.1 nh ngh a bài toán QHTT d ng chính t c

nh ngh a 2.1. Bài toán QHTT (3) – (4) c g i là d ng chính t c n u th a mãn các i u ki n sau:

- (a) các ràng bu c u là ng th c
- (b) t t c các bi n u có i u ki n không âm. ($x_i \ge 0 \ \forall j$)

Nh v y, bài toán QHTT d ng chính t c có d ng:

Hàm m c tiêu:

$$z = C_1 x_1 + C_2 x_2 + ... + C_n x_n \to \max / \min$$
 (5)

Các i u ki n ràng bu c:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ x_1, x_2, \dots, x_n \ge 0 \end{cases}$$

$$(6)$$

2.2.1.2 a bài toán QHTT t ng quát v d ng chính t c

Khi bài toán không tha mãn các i u ki n(a) và / ho c(b) trên ây, ta tìm cách bi n i nó tro thành bài toán dong chính toc. Ta xét các trong hope tho thông qua các thí dong thình toc.

Tr ng h p các ràng bu c u có d u (≤).

B ng cách thêm n bù (hay bi n bù: *slack variables*) có h s +1 vào v trái ràng bu c t ng ng và có h s 0 trong hàm m c tiêu. Ta có BTQHTT d ng chính t c t ng ng bài toán ban u.

Thí d 2.1: Xét bài toán

v i các ràng bu c
$$\begin{cases} 4 x_1 + 2 x_2 \le 60 \\ 2 x_1 + 4 x_2 \le 48 \\ x + x_2 \ge 0 \end{cases}$$

Ta a BTQHTT v d ng chính t c b ng cách thêm hai n bù x_3 và x_4 . Các n bù này có h s +1 trong ph ng trình ràng bu c và có h s 0 trong hàm m c tiêu. Ta có BTQHTT d ng chính t c t ng bài toán ban u:

$$z = 8x_1 + 6x_2 + 0x_3 + 0x_4 \rightarrow max$$

v i các ràng bu c

$$\begin{cases} 4x_1 + 2x_2 + x_3 = 60 \\ 2x_1 + 4x_2 + x_4 = 48 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Tr ng h p có i u ki n ràng bu c v i d u (≥).

B ng cách thêm n bù (hay bi n bù: *slack variables*) có h s -1 vào v trái ràng bu c t ng ng và có h s 0 trong hàm m c tiêu. Ta có BTQHTT d ng chính t c t ng ng bài toán ban u

$$z = 8x_1 + 6x_2 \rightarrow max$$

v i các ràng bu c

$$\begin{cases} 4x_1 + 2x_2 \le 60 \\ 2x_1 + 4x_2 \ge 48 \\ x_1, x_2 \ge 0 \end{cases}$$

Ta thêm n bù x_3 v i h s +1 vào v trái ràng bu c th nh t nh thí d trên (ng v i i u ki n ràng bu <math>c là (\le) , và n bù x_4 v i h s -1 vào v trái rang bu c th hai. Các n bù này có h s 0 trong hàm m c tiêu. Ta có BTQHTT d ng chính t c t ng ng bài toán ban u:

$$z = 8x_1 + 6x_2 + 0x_3 + 0x_4 \rightarrow max$$

v i các ràng bu c

$$\begin{cases} 4x_1 + 2x_2 + x_3 = 60 \\ 2x_1 + 4x_2 - x_4 = 48 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Tr ng h p có bi n không d ng.

Bài toán QHTT có th có bi n nào ó có i u ki n không d ng $x_j \le 0$ (th c t ít g p, nh ng v lý thuy t v n ph i xét n). Bài toán ã vi ph m i u ki n (b) trong nh ngh a 2.1, a v d ng chính t c ta i bi n $x_i^* = -x_i$, khi ó bi n m i x_i^* s có i u ki n $x_i^* \ge 0$.

Thí d : Xét bài toán

$$z = 8x_1 - 6x_2 \rightarrow max$$

v i các ràng bu c

$$\begin{cases} 4x_1 + 2x_2 + x_3 \le 60 \\ 2x_1 + 4x_2 - x_4 = 48 \\ x_1 \ge 0, x_2 \le 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

Bi n x_2 có i u ki n không d ng, a v d ng chính t c ta th c hi n phép i bi n: $x'_2 = -x_2$, khi ó x'_2 s có i u ki n $x'_2 \ge 0$. Bài toán ban u c a v bài toán t ng ng:

$$z = 8x_1 + 6x'_2 \rightarrow \max$$
v i các ràng bu c
$$\begin{cases} 4x_1 - 2x'_2 + x_3 \le 60 \\ 2x_1 - 4x'_2 - x_4 = 48 \\ x_1, x'_2, x_3, x_4 \ge 0 \end{cases}$$

Sau ó ti p t c áp d ng ph ng pháp thêm n bù a bài toán v d ng chính t c.

Tr ng h p có bi n không có gi thi t v d u (bi n v i d u tu ý). Bài toán QHTT có th có bi n x_j nào ó không có gi thi t v d u (khi ó bi n x_j có th có d u tu ý, th c t ít g p, nh ng v lý thuy t v n ph i xét n). Bài toán ã vi ph m i u ki n (b) trong nh ngh a 1.1. a v d ng chính t c ta i bi n $x_j = x'_j - x''_j$, v i $x'_j \ge 0$.

Thí d 2.2: Xét bài toán

$$z = 8x_1 + 6x_2 \rightarrow max$$

v i các ràng bu c

$$\begin{cases} 4x_1 + 2x_2 \le 60 \\ 2x_1 + 4x_2 \le 48 \\ x_1 \ge 0, x_2 & \text{tu } \circ \end{cases}$$

Lúc này ta vi t bi n x_2 d i d ng $x_2 = x'_2 - x''_2 v$ i $x'_2 \ge 0$, $x''_2 \ge 0$.

Bài toán tr thành:

$$z = 8x_1 + 6x'_2 - 6x''_2 \rightarrow max$$

Các ràng bu c s là

$$\begin{cases} 4x_1 + 2 \ x'_2 - 2x''_2 & \leq 60 \\ 2x_1 + 4 \ x'_2 - 4x''_2 & \leq 48 \\ x_1, \ x'_2 \ , \ x''_2 & \geq 0 \end{cases}$$

Sau ó ti p t c áp d ng ph ng pháp thêm n bù a bài toán v d ng chính t c.

K t lu n: Bao gi c ng a c bài toán QHTT b t k (các bi n có d u tu ý, các ràng bu c có th \leq hay \geq) v d ng chính t c.

2.2.2. Bài toán QHTT d ng chu n và ph ng án c b n

2.2.2.1 nh ngh a bài toán QHTT d ng chu n

nh ngh a 2.2. Bài toán QHTT (5) – (6) c g i là d ng chu n n u th a mãn các i u ki n sau:

- (a) Bài toán ph i d ng chính t c.
- (b) Các h s b_i v ph i là không âm.
- (c) M i ph $\ \, \text{ng trình ràng bu c ph i có m t} \ \, \textit{nc s} \,$, $\ \, \text{ó là n có h s} \,$ +1 và không có m t t c các ph $\ \, \text{ng trình khác}.$

2.2.2.2 a bài toán QHTT d ng chính t c v d ng chu n

Gi s bài toán QHTT ã d ng chính t c, n u nó vi ph m các i u ki n (b) và / ho c (c) trong nh ngh a 1.2, thì ta s th c hi n các bi n i a nó v d ng chu n.

- N u có v ph i $b_i < 0$: Ta ch c n nhân c 2 v c a ràng bu c t ng ng v i -1, c $b_i > 0$.
- N u bài toán không n c s :

V i ràng bu c th i không có n c s , ta thêm vào n gi x_{n+i} không âm v i h s b ng +1 vào v trái c a ràng bu c ó làm n c s . n gi này s có h s -M trong hàm m c tiêu, n u là bài toán $z \to \max$, (và có h s là M, n u là bài toán $z \to \min$), v i M là s d ng l n tùy ý.

V i các phép bi n i trên, m i bài toán QHTT d ng chính t c u có th a v d ng chu n.

Nh n xét: Khi bài toán QHTT ã d ng chu n, ma trân h s c a h ràng buôc s có d ng c bi t: i c t cu i cùng c a ma tr n này ng v i các n c s , s là các vecto ch có thành ph n th i có giá tr b ng 1, các thành ph n khác cùng c t u b ng không.

B ng cách x p x p th t các ràng bu c phù h p, h ràng bu c c a bài toán QHTT d ng chu n luôn có d ng:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &+ x_{n+2} &= b_2 \\ & \dots & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &+ x_{n+m} = b_m \\ x_1, x_2, \dots, x_n, x_{n+1}, x_{n+2}, \dots x_{n+m} \ge 0 \end{cases}$$

$$(9)$$

V i ma tr n h ràng bu c có d ng:

$$\mathbf{A} = \begin{bmatrix} a_{11} \, a_{12} \dots \, a_{1n} & 1 & 0 \dots \dots & 0 \\ a_{21} \, a_{22} \dots \, a_{2n} & 0 & 1 \dots & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} \, a_{m2} \dots \, a_{mn} & 0 & 0 \dots & \dots & 1 \end{bmatrix}$$
(10)

2.2.2.3 Ph ng án c b n c a bài toán QHTT d ng chu n.

nh ngh a 2.3. Phong án cob n coa bài toán QHTT dong chu n là mot phong án có giá troca các n không phoi n cos u b ng 0.

■ Ph ng án c b n xu t phát c a bài toán QHTT d ng chu n

$$X^0 = (0, 0, ...0, b_1, b_2, ...b_m)$$

Thí d: a bài toán QHTT sau v d ng chu n, và tìm m t ph ng án c b n xu t phát::

Hàm m c tiêu: $z = 9x_1 + 6x_2 \rightarrow \max$

V i các ràng bu c:

$$\begin{cases} 3x_1 + 3x_2 \le 36 & (1) \\ 4x_1 + 2x_2 = 40 & (2) \\ x_1, x_2 \ge 0 \end{cases}$$

* a v d ng chính t c.

Thêm n bù x_3 vào ràng bu c (1) khi ó ta có:

Hàm m c tiêu m i: $z = 8x_1 + 6x_2 + 0x_3 \rightarrow \max$

i u ki n ràng bu c m i:

$$\begin{cases} 3x_1 + 3x_2 + x_3 &= 36 & (1) \\ 2x_1 + 4x_2 &= 48 & (2) \\ x_1, x_2, x_3 \ge 0 & \end{cases}$$

* Ki m tra các n c s .

Ràng bu c (1) \tilde{a} có n c s x_3 , ta th y thi u m t n c s chuo ràng bu c (2), do ó thêm m t n gi x_4 , n gi này có h s +1 trong ràng bu c (2), nh ng có h s -M ($M \ge 0$, r t 1 n) trong hàm m c tiêu. Bài toán a v d ng chu n nh sau:

$$z = 8x_1 + 6x_2 + 0x_3 - Mx_4 \rightarrow \max$$

i u ki n:

$$\begin{cases} 3x_1 + 3x_2 + x_3 & = 36\\ 2x_1 + 4x_2 & + x_4 & = 48\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Ph ng án c b n xu t phát: $X^1 = (x_1, x_2, x_3, x_4) = (0, 0, 36, 40)$

Chú ý: Ta c n phân bi t n bù và n gi:

- 1. n bù dùng a bài toán QHTT t ng quát v d ng chính t c, còn n gi a bài toán QHTT d ng chính t c v d ng chu n.
- 2. Trong các ràng bu c, h s c a n bù có th b ng +1 ho c -1, h s c a n gi luôn luôn b ng +1.
- 3. Trong hàm m c tiêu, h s c a n bù luôn b ng 0, còn h s c a n gi là -M (n u z È max), và là M (n u z È min)

2.3 Gi i bài toán Quy ho ch tuy n tính

2.3.1. Thu t toán n hình (v i bài toán $z \to max$)

- i u ki n gi i c bài toán t i u tuy n tính b ng ph ng pháp n hình: Bài toán ph i d ng chu n và có m t ph ng án c b n xu t phát X¹
- Theo ph n 1.2, ta luôn luôn a c bài toán v d ng chu n và tìm c m t ph ng án c b n xu t phát.
- Các b c c a thu t toán n hình:

B c1: Xu t phát:

L p b ng $\,$ n hình (1) ng v i ph $\,$ ng án xu t phát $X^{(1)}$: xác $\,$ nh các $\,$ n c $\,$ s $\,$ các h $\,$ s $\,$ a vào b ng $\,$ n hình kh $\,$ i $\,$ u.

B c 2: Ki m tra i u ki n t i u

- (a) Tính các Δ_i
- (b) Ki m tra i u ki n t i u: $\Delta_i \ge 0 \ \forall j$.

N u th a mãn: d ng thu t toán. Chuy n sang b c 4.

N u vi ph m i u ki n t i u, t c là còn có giá tr $\Delta_j \!<\! 0$ (v i c t j nào ó), chuy n b c 3.

B c 3: Bin ib ng.

- (a) Ch n c t xoay
- (b) Ch n dòng xoay
- (c) Xác nh ph n t tr c
- (d) Xác nh n c s m i a vào, và n c s c lo i kh i b ng n hình m i
- (e) Tính toán các h s trong b ng n hình (2) ng v i ph ng án X⁽²⁾, sau ó chuy n sang b c 2. Quá trình này l p l i cho n khi th a mãn i u ki n t i u thì chuy n sang b c

4, ho c phát hi n bài toán không có ph $\;\;$ ng án t $\;i\;\;$ u n u có $\Delta_j<0$ mà theo c $\;t$ này m $\;i\;$ $a_{ii}<0.$

<u>B c 4</u>: Xác nh nghi m bài toán.

(a) Ph ng án t i u:

Gi s i u ki n t i u th a mãn b ng n hình th (k) ng v i ph ng án trong b ng là $X^{(k)} = (x_1, x_2, ..., x_n, 0, 0, ...0)$, t c là các n bù và n gi $x_{n+1}, x_{n+2}, ..., x_m$ u có giá tr b ng 0, khi ó ta ch n ph ng án t i u c a bài toán g c là :

$$X^* = (x_1, x_2, ..., x_n).$$

- (b) Giá tr hàm m c tiêu: $z_{max} = f(X^*)$.
- Ta s trình bày các b c c a thu t toán thông qua thí d sau:

Thi d: Tìm ph ng án t i u cho bài toán:

$$z = 8x_1 + 6x_2 \rightarrow \max$$

V i các i u ki n ràng bu c:

$$\begin{cases} 4x_1 + 2x_2 \le 60 & (a) \\ 2x_1 + 4x_2 \le 48 & (b) \\ x_1, x_2 \ge 0 \end{cases}$$

a) av d ng chính t c

Thêm các n bù x_3 , x_4 vào các ràng bu c (a), (b). Bài toán c a v d ng chính t c:

$$z = 8x_1 + 6x_2 + 0x_3 + 0x_4 \to \max$$

i u ki n ràng bu c:

$$\begin{cases} 4x_1 + 2x_2 + x_3 & = 60 \\ 2x_1 + 4x_2 & + x_4 & = 48 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

b) av d ng chu n.

Bài toán \tilde{a} d ng chu n v i các n c s là x_3 và x_4 , ta có ngay m t ph ng án c b n xu t phát là $X^1 = (x_1, x_2, x_3, x_4) = (0, 0, 60, 48)$

Khi bài toán ã tha mãn i u ki n (a) và (b) thì vi c gi i bài toán b ng phong pháp nhình, g m các b c sau:

<u>B c l</u>: Kh i u.

L p b ng $\,$ n hình (1) ng v i ph $\,$ ng án xu t phát $X^{(1)}$: xác $\,$ nh các $\,$ n c $\,$ s , các $\,$ h $\,$ s $\,$ a vào b $\,$ ng $\,$ n hình kh $\,$ i $\,$ u.

B c2: Kim traiu kintiu

- (a) Tính các Δ_i
- (b) Ki m tra i u ki n t i u: $\Delta_i \ge 0 \ \forall i$.

N u th a mãn: d ng thu t toán. Chuy n sang b c 4.

N u vi ph m i u ki n t i u, t c là còn có giá tr $\Delta_j \!<\! 0$ (v i c t j nào ó), chuy n b c 3.

Sau hai b c trên, ta có b ng n hình u tiên, v i các giá tr Δ_j dòng cu i. Do i u ki n t i u b vi ph m, ta chuy n sang b c 3.

B ng n hình (1)

Hệ số c _i	Ân cơ sở	Ph. án	$c_1 = 8$	$c_2 = 6$	$c_3 = 0$	$c_4 = 0$
			\mathbf{x}_1	\mathbf{x}_2	X ₃	x_4
0	x ₃	60	4	2	1	0
0	X4	48	2	4	0	1
$\Delta_{i} = \sum_{i} c_{i} \cdot a_{ij} - c_{i}$			$\Delta_1 = -8$	$\Delta_2 = -6$	$\Delta_3 = 0$	$\Delta_4 = 0$

<u>B c 3</u>: Bi n i b ng.

- (a) Ch n c t xoay: ng v i Δ_i < 0 nh nh t, ó là Δ_1 = -8. C t xoay là c t 1.
- (b) Ch n dòng xoay: trên c t xoay, tìm dòng ng v i min $\frac{b_i}{a_{ij}}$ v i $a_{ij} \ge 0$. Trong b n n hình (1) là dòng 1.
- (c) Xác nh ph n t tr c là ph n t giao c a dòng xoay và c t xoay. (ph n t c ánh d u trong b ng n hình (1).
- (d) Xác nh n c s m i là n ng v i c t xoay a vào, và n c s c ng v i hàng xoay lo i kh i b ng n hình m i. Trong b ng n hình (1): n a vào là x_1 , n lo i ra s là x_3 . Sau ó l p b ng n hình m i ng v i c s m i.
- (e) Tính toán các h s trong b ng n hình m i (b ng 2), ta nh n c ph ng án $X^{(2)}$:

 Chia t t c dòng xoay c cho ph n t tr c (k c c t ph ng án), sau ó chuy n dòng m i vào v trí t ng ng b ng m i (g i là dòng xoay m i).
 - Bi n i các ph n t cùng c t v i côt xoay c có d ng vecto n v , v i ph n t tr c b ng 1, b ng phép bi n i Gauss cho ma tr n h s và c c t ph ng án, a k t qu vào b ng m i

sau ó chuy n sang b c 2.

B ng nhình (2)

Hệ số c _i	Ân cơ sở	Ph. án	$c_1 = 8$	$c_2 = 6$	$c_3 = 0$	$c_4 = 0$
			x ₁	X ₂	X3	X ₄
8	x ₁ x ₄	15 18	1 0	1/2	1/4 -1/2	0 1
$\Delta_{i} = \sum_{i} c_{i}$	c _i .a _{ii} - c _i	5.3	$\Delta_1 = 0$	$\Delta_2 = -2$	$\Delta_3 = 2$	$\Delta_4 = 0$

V i b ng nhình (2), i u ki n t i u ch a th a mãn, b c 3 c l p l i, ta nh n c b ng nhình (3), v i ph ng án X^3 .

B ng $n \sinh (3)$

Hệ số c _i	Ân cơ sở	Ph. án	$c_1 = 8$	$c_2 = 6$	$c_3 = 0$	$c_4 = 0$
			\mathbf{x}_1	x ₂	X3	\mathbf{x}_4
8	x ₁	12	1	0	1/3	1/6
6	x ₂	6	0	1	-1/6	1/3
$\Delta_{i} = \sum_{i} c_{i}$	c _i .a _{ij} - c _i		$\Delta_1 = 0$	$\Delta_2 = 0$	$\Delta_3 = 5/3$	$\Delta_4 = 2/3$

i u ki n t i u ã th a mãn v i b ng (3): $\Delta_i \ge 0 \ \forall j$. Chuy n sang b c 4.

<u>B c 4</u>: Xác nh nghi m bài toán.

(a) Ph ng án trên b ng là t i u: $X^3 = (12, 6, 0, 0)$

khi ó ta ch n ph ng án t i u c a bài toán g c là:

$$X^* = (12, 6).$$

(b) Giá tr hàm m c tiêu: $f_{max} = f(X^*) = 8*12+6*6 = 132$.

2.3.2. Thu t toán n hình m r ng.

Khi bài toán QHTT d ng chu n có các n gi x_i (j = n+k, ..., n+m), thì bài toán có dang:

$$z = c_1 x_1 + c_2 x_2 + ;;; + c_n x_n + c_{n+1} x_{n+1} + ... - M x_{n+k} - ... - M x_m \stackrel{\sim}{\to} max$$

V i các i u ki n ràng bu c:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} & = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & + x_{n+2} & = b_2 \\ & \dots & \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & + x_{n+k} & = b_k \\ & \dots & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & + x_{n+m} = b_m \\ x_1, x_2, \dots, x_n, x_{n+1}, x_{n+2}, \dots x_{n+m} \ge 0 \end{cases}$$

- Trong ó, các ngi là $x_{n+k}, x_{n+k+1}, ..., x_{n+m}$. Các n này s có h s trong hàm m c tiêu là -M (v i bài toán $z \to max$), trong ó M là s d ng r t 1 n.
- Bài toán trên c g i là bài toán M, (hay bài toán ánh thu). Thu t toán n hình gi i bài toán này c g i là thu t toán n hình m r ng, hay thu t toán M, (hay ph ng pháp ánh thu), thu t toán hoàn toàn gi ng nh thu t toán n hình thông th ng cho bài toán không có n gi , ch c n l u ý khi so so sánh các Δ_j thì chú ý r ng -M là s âm r t nh , nh h n m i s âm c th nào ó.

Xét thí d gi i bài toán QHTT b ng ph ng pháp n hình m r ng:

Thí d 2: Gi i bài toán sau b ng ph ng pháp n hình:

$$z = 9x_1 + 6x_2 \rightarrow \text{max}$$

i u ki n:

(I)
$$\begin{cases} 3x_1 + 3x_2 \le 36 & (1) \\ 4x_1 + 2x_2 = 40 \\ x_1, x_2 \ge 0 \end{cases}$$

* a v d ng chính t c.

Thêm n bù x_3 vào ràng bu c (1) khi ó ta có:

$$z = 8x_1 + 6x_2 + 0x_3 \rightarrow \max$$

i u ki n:

(II)
$$\begin{cases} 3x_1 + 3x_2 + x_3 &= 36\\ 2x_1 + 4x_2 &= 40 \quad (2)\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

* Ki m tra các n c s .

Ta th y thi u m t n c s do ó thêm m t n gi x_4 vào (2) làm n c s .

$$z = 8x_1 + 6x_2 + 0x_3 - Mx_4 \rightarrow \max$$

i u ki n:

(II)
$$\begin{cases} 3x_1 + 3x_2 + x_3 & = 36\\ 2x_1 + 4x_2 & + x_4 & = 40\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Ph ng án xu t phát: $x^1 = (x_1, x_2, x_3, x_4) = (0, 0, 36, 40)$

2	Cơ	P/án	9	6	0	-M	← C _i
C_{i}	sở	b _i	x_1	x_2	x_3	x_4	
0	x_3	36	3	3 2	1	0	
-M	x_4	40	4	2	0	1	re:
			$\Delta_1 = -4M - 9$	$\Delta_2 = -2M - 6$	$\Delta_3 = 0$	$\Delta_4=0$	
0	<i>x</i> ₃	6	0	3/2	1	-3/4	
9	x_1	10	1	1/2	0	1/4	
			$\Delta_1 = 0$	$\Delta_2 = -\frac{3}{2}$	$\Delta_3 = 0$	$\Delta_4 = \frac{9}{4} + M > 0$	→Khi đã loại 1 ẩn giả thì loại
6	x_2	4	0	1	2/3		cả cột chứa ẩn giả.
9	x_1	8	1	0	-1/3		gia.
		300	$\Delta_1 = 0$	$\Delta_2 = 0$	$\Delta_3 = 1$		

b ng $\,$ n hình cu $\,$ i, $\,$ i u ki n t $\,$ i u $\,$ ã th a mãn, ph $\,$ ng án t $\,$ i u $\,$ c a bài toán $\,$ M là $\,$ X = (8, 4, 0, 0)

Ph ng án t i u c a bài toán g c là: $X^* = (8, 4)$.

Giá tr c c i c a hàm m c tiêu là: $z_{max} = f(X^*) = 9^*8 + 6^*4 = 96$.

Chú ý: V i bài toán M (có n gi)

- N u v i 1 ph ng án th a mãn i u ki n t i u mà n gi có giá tr khác 0 thì bài toán không có l i gi i ($f_{\rm max} \to -\infty$, $f_{\rm min} \to +\infty$).
- Khim t ngi b lo i thì nó s lo i v nh vi n, do ó s b c t t ng ng.

2.3.3. Thu t toán n hình v i bài toán $z \stackrel{.}{\triangleright} min$.

Tr ng h p này, các b c c a thu t toán n hình và thu t toán n hình m r ng t ng t nh v i bài toán $z \stackrel{.}{\vdash} max$, ch chú ý m t s thay i sau:

1. b c 2: Ki m tra i u ki n t i u là: $\Delta_i \leq 0 \ \forall j$.

N u vi ph m i u ki n t i u, t c là còn có giá tr $\Delta_i > 0$ (v i c t j nào ó), chuy n b c 3.

2. b c 3: Ch n c t xoay ng v i c t có $\Delta_j > 0$ l n nh t. Bài toán không có ph ng án t i u n u có $\Delta_i > 0$ mà theo c t này m i $a_{ij} < 0$.

Các b c ch n dòng xoay và bi n i b ng nh tr ng h p bài toán z È max.

3. V i bài toán có n gi (ph ng pháp n hình m r ng), h s c a n gi trong hàm m c tiêu là M. Các b c còn l i theo các chú ý trên.

2.4. Gi i bài toán quy ho ch tuy n tính trên máy tính

2.4.1. Gi i bài toán quy ho ch tuy n tính trong Excel

Excel là m t ph n m m óng gối th ng ph m c s d ng r ng rãi trong tính toán, t ng h p d li u, x lý phân tích s li u th ng kê, gi i các bài toán t i u / quy ho ch v.v... i v i bài toán quy ho ch phi tuy n, khi s d ng ph n m m Excel, nói chung chúng ta ch có th tìm c ph ng án t i u a ph ng mà không th tìm c ph ng án t i u toàn c c. Chính vì v y, ch nên s d ng Excel gi i các BTQHTT.

Tr cht, phi ch chn r ng máy tính cab n có Excellã ccài t trình gi i QHTT Solver.

Trong MS Excell 2003: Vào Tool -> Solve, n u ch a có Solve thì vào Tool -> Add Ins.. cài thêm công c Solve)

Trong MS Excell 2007 và cao h n: th c hi n cài t solver theo các h ng d n trong c a s h i tho i sau:

Thid . Gi i BTQHTT

Tr ch t, ng i gi i ph i nh p d li u nh trên hình I.4.

Hình 1.4. Nh p d li u cho bài toán quy ho ch tuy n tính trong Excel

Nh v y, c n ch n vùng ô B3 và B4 cho hai bi n x_1 và x_2 , v i giá tr ban u u b ng 0. Ti p theo, nh p các h s hàm m c tiêu, h s các ràng bu c và h s v ph i vào các ô t ng ng các c t C, D, E và F. Sau ó có th gỗ tr c ti p công th c, ho c dùng hàm SUMPRODUCT tính giá tr c a hàm m c tiêu $z=8x_1+6x_2$ và ghi vào ô C6 . T ng t tính giá tr các v trái c a các ràng bu c và ghi vào các ô D6 và E6 . Lúc này chúng ta s nh n c b ng s li u xu t phát nh trên hình I.5.

Hình 1.5. S li u xu t phát c a bài toán quy ho ch tuy n tính

Th c hi n l nh Tools > Solver b ng cách tr c tiên nh p ô giá tr hàm m c tiêu C6 vào khung Set Target Cell, nh p các ô B3 và B4 ch a giá tr các bi n x_1 và x_2 vào khung By Changing Cell. Sau ó, nh p các ràng bu c b ng cách nháy chu t máy tính vào nút Add... nh ch ra trên hình I.6 cho ràng bu c: $2x_1 + 4x_2$ ½ 48, t c là E6 <= F4.

Hình 1.6. Nh p các ràng bu c cho bài toán quy ho ch tuy n tính

Chú ý r ng khi gi i bài toán d ng c c i hoá ta c n nháy chu t vào nút Max. Cu i cùng, chúng ta ã nh p xong t t c các i u ki n c a bài toán nh trên hình I.7.

Hình 1.7. Các i u ki n c a bài toán ã nh p xong

Cu i cùng ta nháy nút Solve, h p tho i Solve Results s hi n ra nh trên hình 1.8.

Hình 1.8. H p tho i Solver Results khi gi i bài toán.

Bôi en toàn b các l a ch n trong khung *Report* nh n c k t qu chi ti t bao g m c phân tích nh y (*Sensitivity analysis*) và nháy nút OK. K t qu bài toán hi n ra trên hình I.9.

	E6	<u> </u>	=SUMPROI	DUCT(B3:B4	,E3:E4)	1/0
	А	В	С	D	E	F
1						
2		biến	hệ số HMT	hệ số RB1	hệ số RB2	hệ số VP
3	x1	12	8	4	2	60
4	x2	6	6	2	4	48
5			giá trị HMT	giá trị RB1	giá trị RB2	
6			132	And in contrast of the last of	48	

Hình 1.9. K t qu bài toán trên màn hình máy tính.

Nh v y, ph ng án t i u c a bài toán trên là $x_1 = 12$, $x_1 = 6$ và giá tr c c i c a hàm m c tiêu là z = 132. Ngoài ra, có th phân tích chi ti t h n k t qu c a bài toán thông qua các báo cáo *Answer Report* và *Sensitivity Report* nh n c trên màn hình máy tính (hình 1.10).

Hình 1.10. K t qu chi ti t c a bài toán

Ta th y t i c t *Status Slack* có các *Binding* u b ng 0. i u này có ngh a là các ràng bu c u c tho mãn ch t v i d u "=". Còn c t *Langrange Multiplier* cho ta bi t các giá tr t i u c a các bi n i ng u t ng ng (còn g i là các giá c nh *Shadow Prices* nh giá các ngu n d tr / h s v ph i trong m t s bài toán th c t).

2.4.2. Gi i bài toán quy ho ch tuy n tính b ng ph n m m MATLAB.

Xem module Linprog trong Matlab.

Solve linear programming problems Equation

Finds the minimum of a problem specified by

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Syntax

```
x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
x = linprog(problem)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)
```

Description

linprog solves linear programming problems.

- x = linprog(f, A, b) solves min f' *x such that A*x b.
- x = linprog(f, A, b, Aeq, beq) solves the problem above while additionally satisfying the equality constraints Aeq*x = beq. Set A = [] and b = [] if no inequalities exist.
- x = linprog(f, A, b, Aeq, beq, lb, ub) defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range lb x ub. Set Aeq = [] and beq = [] if no equalities exist.
- x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point.
- x = linprog(f, A, b, Aeq, beq, lb, ub, x0, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
- x = linprog(problem) finds the minimum for problem, where problem is a structure described in Input Arguments.

Create the structure problem by exporting a problem from Optimization Tool, as described in Exporting to the MATLAB Workspace.

- [x,fval] = linprog(...) returns the value of the objective function fun at the solution x: fval = f' *x.
- [x,fval,exitflag] = linprog(...) returns a value exitflag that describes the exit condition.
- [x,fval,exitflag,output] = linprog(...) returns a structure output that contains information about the optimization.

[x,fval,exitflag,output,lambda] = linprog(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the output fval is [].

Input Arguments

<u>Function Arguments</u> contains general descriptions of arguments passed into linprog. <u>Options</u> provides the function-specific details for the options values.

problem	f	Linear objective function vector f
	Aineq	Matrix for linear inequality constraints
	bineq	Vector for linear inequality constraints
	Aeq	Matrix for linear equality constraints
	beq	Vector for linear equality constraints
	lb	Vector of lower bounds
	ub	Vector of upper bounds
	x0	Initial point for x, active set algorithm only
	solver	'linprog'
	options	Options structure created with optimset

Output Arguments

<u>Function Arguments</u> contains general descriptions of arguments returned by linprog. This section provides function-specific details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

1	Function converged to a solution x.
0	Number of iterations exceeded options.MaxIter.
-2	No feasible point was found.
-3	Problem is unbounded.
-4	NaN value was encountered during execution of the algorithm.
-5	Both primal and dual problems are infeasible.
-7	Search direction became too small. No further progress could be made.

lambda Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of the structure are:

lower Lower bounds 1b

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the optimization. The fields of the structure are:

iterations Number of iterations

algorithm Optimization algorithm used

cgiterations 0 (large-scale algorithm only, included for backward

compatibility)

construiolation Maximum of constraint functions

message Exit message

Options

Optimization options used by lingrog. Some options apply to all algorithms, and others are only relevant when using the large-scale algorithm. You can use optimset to set or change the values of these fields in the options structure, options. See Optimization Options for detailed information.

LargeScale Use large-scale algorithm when set to 'on' (default). Use medium-scale algorithm when set to 'off'.

Medium-Scale and Large-Scale Algorithms

Both the medium-scale and large-scale algorithms use the following options:

Diagnostics Display diagnostic information about the function to be minimized or solved. The choices are 'on' or the default 'off'.

Display Level of display.

- 'off' displays no output.
- 'iter' displays output at each iteration. The 'iter' option only works with the large-scale and medium-scale simplex algorithms.
- 'final' (default) displays just the final output.

MaxIter Maximum number of iterations allowed, a positive integer. The default is:

- 85 for the large-scale algorithm
- 10*numberOfVariables for the simplex algorithm
- 10*max(numberOfVariables, numberOfInequalities + numberOfBounds) for the medium-scale active-set algorithm

TolFun Termination tolerance on the function value, a positive scalar. The default is:

- 1e-8 for the large-scale algorithm
- 1e-6 for the simplex algorithm

• The option is not used for the medium-scale active-set algorithm

Medium-Scale Algorithm Only

The medium-scale algorithm uses the following option:

Simplex If 'on', linprog uses the simplex algorithm. The simplex algorithm uses a built-in starting point, ignoring the starting point x0 if supplied. The default is 'off'. See Medium-Scale linprog Simplex Algorithm for more information and an example.

Thí d 2.3.

```
Find x that minimizes
f(x) = -5x_1 - 4x_2 - 6x_3,
subject to
x_1 - x_2 + x_3 20
3x_1 + 2x_2 + 4x_3 42
3x_1 + 2x_2 \quad 30
0 \quad x_1, 0 \quad x_2, 0 \quad x_3.
First, enter the coefficients
f = [-5; -4; -6]
A = [1 -1 1]
        3
            2
                4
        3
            2
               0];
b = [20; 42; 30];
lb = zeros(3,1);
Next, call a linear programming routine.
[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);
Entering x, fval,... gets
x =
       0.0000
     15.0000
       3.0000
Fval =
```