Poznámky - lineární algebra I Petr Chmel

Definice 1 (Matice, vektor, * notace). Reálná matice $m \times n$ je obdélníkové schéma (tabulka) reálných čísel. Prvek na pozici (i, j) matice (tedy v i-tém řádku a j-tém sloupci) značíme a_{ij} . Množinu všech reálných matic typu $m \times n$ značíme $\mathbb{R}^{m \times n}$. Je-li m = n, nazýváme matici čtvercovou.

Reálný n-rozměrný sloupcový vektor je matice typu $n \times 1$, řádkový je matice typu $1 \times n$. i-tý řádek matice značíme A_{i*} , j-tý sloupec matice značíme A_{*j} .

Definice 2 (Soustava lineárních rovnic a matice soustavy). Mějme soustavu m lineárních rovnic o n neznámých:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

kde a_{ij}, b_i jsou dané koeficienty a x_i jsou neznámé. Řešením rozumíme každý vektor $x \in \mathbb{R}^n$ vyhovující všem rovnicím.

Matice soustavy je matice A, rozšířená matice soustavy je matice (A|b).

Definice 3 (Elementární řádkové úpravy). Elementární řádkové úpravy jsou

- 1. vynásobení *i*-tého řádku reálným číslem $\alpha \neq 0$,
- 2. přičtení α -násobku j-tého řádku k i-tému řádku, přičemž $i \neq j \land \alpha \in \mathbb{R}$,
- 3. výměna i-tého a j-tého řádku.

Tvrzení 1 (Elementární úpravy a množina řešení). Elementární řádkové operace zachovávají množinu řešení soustavy.

Důkaz. Stačí ukázat, že ke každé operaci existuje inverzní operace.

Definice 4 (Odstupňovaný tvar matice - REF). Matice $A \in \mathbb{R}^{m \times n}$ je v řádkově odstupňovaném tvaru, pokud existuje r takové, že platí

- řádky $1, \ldots, r$ jsou nenulové
- řádky $r+1,\ldots,m$ jsou nulové
- pro $p_i = \min\{j; a_{ij} \neq 0\}$ platí $p_1 < p_2 < \ldots < p_r$

Pozice $(1, p_1), \ldots, (r, p_r)$ se nazývají pivoty, sloupce p_1, \ldots, p_r se nazývají bázické, ostatní sloupce jsou nebázické.

Definice 5 (Hodnost). Hodností matice (značeno rank(A)) rozumíme počet nenulových řádků po převodu do odstupňovaného tvaru.

Věta 1 (Gaussova eliminace). Cíl: REF tvar

Definice 6 (Redukovaný řádkově odstupňovaný tvar matice - RREF). Matice je v RREF tvaru, pokud je v REF tvaru a navíc platí

- $a_{1p_1} = a_{2p_2} = \ldots = a_{rp_r}$
- pro každé $i \in [r]$ je $a_{1p_i} = a_{2p_i} = \ldots = a_{i-1,p_i} = 0$.

Věta 2 (Gauss-Jordanova eliminace). Cíl: RREF tvar.

Důsledek 1 (Frobeniova věta). Soustava (A|b) má (aspoň jedno) řešení právě tehdy, když $\operatorname{rank}(A) = \operatorname{rank}(A|b)$

Definice 7 (Operace s maticemi). Dvě matice se rovnají, pokud mají stejné rozměry a všechny prvky. Součet dvou matic stejného typu je matice téhož typu s $c_{ij} = a_{ij} + b_{ij}$.

Násobek matice skalárem je matice stejného typu se všemi prvky vynásobenými týmž skalárem. Součin matic $A \in \mathbb{R}^{m \times p}, A \in \mathbb{R}^{p \times n}$ je $(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$.

Tvrzení 2 (Vlastnosti součtu, násobku a součinu). 1. A + B = B + A

2.
$$(A+B)+C=A+(B+C)$$

3.
$$A + 0 = A$$

4.
$$A + (-1)A = 0$$

5.
$$\alpha(\beta A) = (\alpha \beta)A$$

6.
$$1A = A$$

7.
$$\alpha(A+B) = \alpha A + \alpha B$$

8.
$$(\alpha + \beta)A = \alpha A + \beta A$$

9.
$$(AB)C = A(BC)$$

10.
$$A(B+C) = AB + AC$$

11.
$$(A + B)C = AC + BC$$

12.
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

13.
$$0A = A0 = 0$$

14.
$$I_m A = A I_n = A$$
, kde $A \in \mathbb{R}^{m \times n}$

Důkaz. Triviální □

Definice 8 (Transpozice). Nechť $A \in \mathbb{R}n \times m$ je matice. Pak $A^T \in \mathbb{R}^{m \times n}$ je transponovaná matice s prvky $(A^T)_{ij} = aji$.

Tvrzení 3 (Vlastnosti transpozice). 1. $(A^T)^T = A$

2.
$$(A+B)^T = A^T + B^T$$

3.
$$(\alpha A)^T = \alpha A^T$$

4.
$$(AB)^T = B^T A^T$$

Důkaz. Triviální, technické cvičení.

Definice 9 (Symetrická, diagonální, horní trojúhelníková a dolní trojúhelníková matice). Matice $A \in \mathbb{R}^{n \times n}$ je symetrická, pokud $A^T = A$.

Matice $A \in \mathbb{R}^{n \times n}$ je diagonální, pokud $i \neq j \Rightarrow a_{ij} = 0$.

Matice $A \in \mathbb{R}^{m \times n}$ je horní trojúhelníková, pokud $i > j \Rightarrow a_{ij} = 0$.

Matice $A \in \mathbb{R}^{m \times n}$ je dolní trojúhelníková, pokud $j > i \Rightarrow a_{ij} = 0$.

Definice 10 (Regulární, singulární matice). Matice $A \in \mathbb{R}^{n \times n}$ je regulární, pokud soustava Ax = 0 má právě jedno řešení. V opačném případě se matice nazývá singulární.

Tvrzení 4 (Charakterizace regulární matice). Nechť $A \in \mathbb{R}^{n \times n}$. Pak NTJE:

- 1. A je regulární
- 2. RREF(A) = I
- 3. $\operatorname{rank}(A) = n$

Důkaz. Plyne z rozboru Gaussovy-Jordanovy eliminace.

Tvrzení 5 (Charakterizace regulární matice). Nechť $A \in \mathbb{R}^{n \times n}$. Pak NTJE:

- 1. A je regulární
- 2. pro nějaké $b \in \mathbb{R}^n$ má soustava Ax = b jediné řešení
- 3. pro každé $b \in \mathbb{R}^n$ má soustava Ax = b jediné řešení

Důkaz. Plyne z rozboru Gaussovy-Jordanovy eliminace a předchozího tvrzení.

Tvrzení 6 (O součinu dvou regulárních matic). Nechť $A, B \in \mathbb{R}^{n \times n}$ jsou regulární matice. Pak AB je také regulární.

 $D\mathring{u}kaz$. Buď x řešení ABx=0. Označme y=Bx. Pak lze soustavu přepsat jako Ay=0. Z regularity A plyne y=0. Pak Bx=0, tedy x=0 z regularity B.

Tvrzení 7 (O součinu regulárních a singulárních matic). Nechť $A, B \in \mathbb{R}^{n \times n}$ jsou matice. Je-li alespoň jedna z nich singulární, pak AB je také singulární.

 $D\mathring{u}kaz.$ Uvažme dva případy: Nejprve B je singulární. Pak $\exists x\neq 0: y=Bx=0.$ Pak (AB)x=A(Bx)=Ay=0.

Nyní nechť A je singulární. Pak $\exists y \neq 0 : Ay = 0 \land \exists x \neq 0 : Bx = y$. Pak (AB)x = A(Bx) = Ay = 0.

Poznámka (Matice elementárních řádkových úprav). Vynásobení řádku $\alpha \neq 0$: Jednotková matice, jen s α na řádku.

Přičtení α -násobku: Jednotková matice, jenom s α na řádku, do nějž se píše a sloupci čísla násobeného řádku. Výměna dvou řádků: Jednotková matice s prohozením dvou řádků. Tyto matice jsou regulární (triv).

Tvrzení 8 (Rozklad RREF na součin regulární matice a původní matice). Nechť $A \in \mathbb{R}^{m \times n}$. Pak RREF(A) = QA, kde $Q \in \mathbb{R}^{m \times m}$ je regulární matice.

 $D\mathring{u}kaz$. RREF(A) získáme aplikací konečně mnoha elementárních řádkových úprav. Nechť jdou reprezentovat maticemi E_1, E_2, \ldots, E_k . Pak $RREF(A) = E_k \ldots E_2 E_1 A = QA$, kde $Q = E_k \ldots E_2 E_1$. A protože jednotlivé matice E_i jsou regulární, i jejich součin Q je regulární.

Tvrzení 9 (Rozklad na součin matic elementárních úprav). Každá regulární matice $A \in \mathbb{R}^{n \times n}$ se dá vyjádřit jako součin konečně mnoha elementárních matic.

 $D\mathring{u}kaz$. Pokud k úpravami jsem chopen upravit matici A na I_n , pak jinými k úpravami lze matici I_n převést na A. Jde o to, že každá elementární úprava má svoji inverzi. Tedy existují matice E_1, E_2, \ldots, E_k elementárních úprav tak, že $E_k \ldots E_2 E_1 = A$

Definice 11 (Inverzní matice). Buď $A \in \mathbb{R}^{n \times n}$. Pak A^{-1} je inverzní matice k matici A, pokud splňuje $A^{-1}A = AA^{-1} = I_n$.

Věta 3 (O existenci inverzní matice). Buď $A \in \mathbb{R}^{n \times n}$. Je-li A regulární, pak k ní existuje inverzní matice a je určena jednoznačně. Naopak, pokud má A inverzní matici, musí být regulární.

 $D\mathring{u}kaz$. Existence: z regularity A plyne $Ax = e_j$ má jediné řešení pro každé $j \in [n]$, označme tato řešení x_j . Vytvořme matici A^{-1} se sloupci x_1, \ldots, x_j . Nyní ukážeme $AA^{-1} = I_n$ po sloupcích: $(AA^{-1})_{*j} = A(A^{-1})_{*j} = Ax_j = e_j = (I_n)_{*j}$.

Druhou rovnost ukážeme trikem - uvažme výraz $A(A^{-1}A - I) = AA^{-1}A - A = IA - A = 0$. Matice $A(A^{-1}A - I)$ je tedy nulová a její j-tý sloupec je nulový vektor: $A(A^{-1}A - I)_{*j} = 0$. Z regularity A dostáváme $(A^{-1}A - I)_{*j} = 0$. To platí pro každé $j \in [n]$, tedy $A^{-1}A = I$.

Jednoznačnost: Nechť máme $B: AB = BA = I_n$. Pak $B = BI_n = BAA^{-1} = IA^{-1} = A^{-1}$, tedy B musí být rovno naší zkonstruované matici A^{-1} .

Inverze implikuje regularitu: Nechť pro A existuje inverzní matice. Pak x buď řešení soustavy Ax = 0. Pak $x = I_n x = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}0 = 0$. Tedy A je regulární.

Tvrzení 10 (O regularitě transponované matice). Je-li A regulární, je i A^T regulární.

 $D\mathring{u}kaz$. Je-li A regulární, existuje A^{-1} . Tedy $AA^{-1}=A^{-1}A=I$. Toto transponujme: $(AA^{-1})^T=(A^{-1}A)^T=I^T$, tedy $(A^{-1})^TA^T=(A^{-1})^TA^T=I$. Vidíme, že A^T má inverzní matici, a tedy je regulární.

Věta 4 (Jedna rovnost stačí). Nechť $A, B \in \mathbb{R}^{n \times n}$. Je-li AB = I, pak obě matice jsou regulární a navzájem k sobě inverzní.

 $D\mathring{u}kaz$. Regularita plyne z tvrzení o součinu dvou regulárních matic a součinu regulární a singulární matice - I_n je regulární. Dále odvodíme: $B = BI = BAA^{-1} = A^{-1}$, $A = AI = ABB^{-1} = B^{-1}$.

Věta 5 (Výpočet inverzní matice). Buď $A \in \mathbb{R}^{n \times n}$. Nechť matice $(A|I_n)$ typu $n \times 2n$ má RREF tvar $(I_n|B)$. Pak $B = A^{-1}$. Netvoří-li první část RREF jednotkovou matici, je A singulární.

 $D\mathring{u}kaz$. Je-li $RREF(A|I_n)=(I_n|B)$, potom dle věty o rozkladu RREF existuje regulární matice Q taková, že $(I_n|B)=Q(A|I_n)$, neboli po roztržení na dvě části: $I_n=QA,\ B=QI_n$. První rovnost říká $Q=A^{-1}$, druhá $B=Q=A^{-1}$.

Netvoří-li první část RREF I_n , pak A je singulární.

Tvrzení 11 (Vlastnosti inverzní matice). Buďte $A, B \in \mathbb{R}^{n \times n}$. Pak:

- 1. $(A^{-1})^{-1} = 1$
- 2. $(A^T)^{-1} = (A^{-1})^T$
- 3. $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$ pro $\alpha \neq 0$
- 4. $(AB)^{-1} = B^{-1}A^{-1}$

 $D\mathring{u}kaz$. 1. Inverze k A^{-1} je $A \times AA^{-1} = I$

- 2. Z věty o regularitě transponované matice
- 3. Plyne z $(\alpha A)(\frac{1}{\alpha}A^{-1}) = \frac{\alpha}{\alpha}AA^{-1} = I$
- 4. Plyne z $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$.

Věta 6 (Jednoznačnost RREF - bez dk.). RREF tvar matice je jednoznačně určen.

Grupy a tělesa

Definice 12 (Grupa). Buď $\circ: G^2 \to G$ binární operace na G. Pak grupa je dvojice (G, \circ) splňující:

- 1. $\forall a, b, c \in G : (a \circ b) \circ c = a \circ (b \circ c)$ (asociativita)
- 2. $\exists e \in G : \forall a \in G : e \circ a = a \circ e = a \text{ (neutrální prvek)}$
- 3. $\forall a \in G \exists b \in G : b \circ a = a \circ b = e \text{ (inverzní prvek)}$

Pokud je splněna následující podmínka, pak grupu nazveme Abelovou (komutativní) grupou:

$$4. \ \forall a, b \in G : a \circ b = b \circ a$$

Tvrzení 12 (Základní vlastnosti v grupě). Pro prvky grupy (G, \circ) platí následující vlastnosti:

- 1. $a \circ c = b \circ c$ implikuje a = b (krácení)
- 2. neutrální prvek e je určen jednoznačně
- 3. pro každé $a \in G$ je jeho inverzní prvek určen jednoznačně
- 4. rovnice $a \circ x = b$ má právě jedno řešení $\forall a, b \in G$
- 5. $(a^{-1})^{-1} = a$
- 6. $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$

 $D^{u}kaz$. Triviální

Definice 13 (Podgrupa). Podgrupa grupy (G, \circ) je grupa (H, \diamond) taková, že $H \subseteq G$ a $\forall a, b \in H : a \circ b = a \diamond b$. Značíme $(H, \diamond) \leq (G, \circ)$

Definice 14 (Permutace, inverzní permutace, skládání permutací a znaménko permutace). Permutace na konečné množině X je bijekce $p: X \to X$. Množina permutací na [n] se značí S_n .

Transpozice je permutace s jedním cyklem (i,j) délky dva a ostatními cykly délky 1. Buď $p \in S_n$. Pak inverzní permutace k p je p^{-1} definovaná jako $p^{-1}(i) = j \Leftrightarrow p(j) = i$.

Nechť $p, q \in S_n$. Pak složená permutace $p \circ q$ je $(p \circ q)(i) = p(q(i))$.

Nechť se permutace $p \in S_n$ skládá z k cyklů. Pak znaménko permutace je číslo $\operatorname{sgn}(p) = (-1)^{n-k}$. Pokud je znaménko 1, řekneme, že permutace je sudá. Pokud je znaménko -1, jedná se o permutaci lichou.

Věta 7 (O znaménku složení permutace a transpozice). Nechť $p \in S_n$ a $(i, j) = t \in S_n$ je transpozice. Pak $sgn(p) = -sgn(p \circ t) = -sgn(t \circ p)$

Důkaz. Dokážeme jen $\operatorname{sgn}(p) = -\operatorname{sgn}(p \circ t)$, druhá rovnost je analogická. Pokud jsou i, j v témže cyklu: cyklus se rozpadne do dvou. Pokud jsou i, j ve dvou rozdílných cyklech, tyto dva cykly se spojí v jeden. Tedy znaménko se zaručeně změní, protože se změnil počet cyklů o 1.

Definice 15 (Těleso). Těleso je množina T spolu se dvěma komutativními binárními operacemi +, · splňující:

- 1. $(\mathbb{T}, +)$ je Abelova grupa, kde neutrální prvek značíme 0 a inverzní prvek k a je -a
- 2. $(\mathbb{T}\setminus\{0\},\cdot)$ je Abelova grupa s neutrálním prvkem 1 a inverzním prvkem a^{-1} .
- 3. $\forall a, b, c \in \mathbb{T} : a(b+c) = ab + ac$

Z tohoto nutně vyplývá, že $1 \neq 0$.

Tvrzení 13 (Základní vlastnosti v tělese). Pro prvky tělesa platí následující vlastnosti:

- 1. 0a = 0
- 2. $ab = 0 \Rightarrow a = 0 \lor b = 0$
- 3. -a = (-1)a

Důkaz. Technické cvičení

Lemma 1 (Násobky v tělese prvočíselné velikosti). Nechť n je prvočíslo a $0 \neq a \in \mathbb{Z}_n$. Pak $\{0, 1, \dots, n-1\} = \{0a, 1a, \dots, (n-1)a\}$.

Sporem. Nechť ak = al pro $k \neq l$. Pak ovšem a(k - l) = 0, tedy $a = 0 \lor k = l$, což je spor.

Věta 8 (Těleso prvočíselné velikosti). \mathbb{Z}_n je těleso právě tehdy, když n je prvočíslo.

 $D\mathring{u}kaz$. n není prvočíslo: Pak $n=kl:k,l\neq 0$, tedy v tělese $kl=0 \land k\neq 0 \land l\neq 0$ - spor. n je prvočíslo: ověříme všechny předpoklady z definice tělesa..

Definice 16 (Charakteristika tělesa). Charakteristika tělesa je nejmenší n takové, že součet n jedniček dává nulu. Pokud takové n neexistuje, definujeme ji jako 0.

Tvrzení 14 (O charakteristice tělesa). Charakteristika tělesa je buď nula nebo prvočíslo.

 $D\mathring{u}kaz$. Charakteristika nemůže být 1 z netriviality tělesa. Dále nechť n=pq. Pak můžeme zapsat součet n jedniček jako součin součtů p a q jedniček. Z vlastností tělesa plyne, že $p=0 \lor q=0$, což je spor.

Věta 9 (Malá Fermatova věta). Nechť p je prvočíslo a buď $0 \neq a \in \mathbb{Z}_p$. Pak v \mathbb{Z}_p platí: $a^{p-1} = 1$.

 $D\mathring{u}kaz$. Dle lemmatu o násobcích v tělese prvočíslené velikosti platí $\{0,1,\ldots,n-1\}=\{0a,1a,\ldots,(n-1)a\}$. Dále víme, že 0=0a, tedy $\{1,\ldots,n-1\}=\{1a,\ldots,(n-1)a\}$. Nyní všechny prvky vynásobíme: $1\cdot 2\cdot\ldots (n-1)=(1a)(2a)\ldots ((n-1)a)$. Po zkrácení $1\cdot 2\cdot\ldots (n-1)$ získáme $1=a^{p-1}$.

Vektorové prostory

Definice 17 (Vektorový prostor). Nechť $\mathbb T$ je těleso s neutrálními prvky 0 pro +, 1 pro ·. Vektorovým prostorem nad tělesem $\mathbb T$ rozumíme množinu V s operacemi sčítání vektorů $+: V^2 \to V$ a násobení vektoru skalárem $: \mathbb T \times V \to V$ splňující $\forall \alpha, \beta \in \mathbb T, u, v \in V$:

- 1. (V,+) je Abelova grupa s neutrálním prvkem o a inverzním prvkem k v -v
- 2. $\alpha(\beta v) = (\alpha \beta)v$
- 3. 1v = v
- 4. $(\alpha + \beta)v = \alpha v + \beta v$
- 5. $\alpha(u+v) = \alpha u + \alpha v$

Tvrzení 15 (Základní vlastnosti vektorů). V prostoru V nad $\mathbb T$ platí

- 1. $\forall v \in V : 0v = o$
- 2. $\forall \alpha \in \mathbb{T} : \alpha o = o$
- 3. $\forall v \in V, \alpha \in \mathbb{T} : \alpha v = o \Rightarrow \alpha = 0 \lor v = o$
- 4. $\forall v \in V : (-1)v = v$

Důkaz. Triviální, technické cvičení

Definice 18 (Podprostor). Když V je vektorový prostor nad \mathbb{T} , pak $U \subseteq V$ je podprostorem V, pokud tovří vektorový prostor nad \mathbb{T} se stejně definovanými operacemi.

Tvrzení 16 (O průniku podprostorů). Nechť V je vektorový prostor nad \mathbb{T} a mějme $V_i, i \in I$ jako libovolný systém podprostorů. Pak $\cap_{i \in I} V_i$ je opět podprostor V.

 $D\mathring{u}kaz$. Stačí ověřit uzavřenost na sčítání, násobky a obsahování o.

Definice 19 (Lineární obal). Nechť V je vektorový prostor nad \mathbb{T} a $W \subseteq V$. Pak lineární obal W značený $\mathrm{span}(W)$ je průnik všech podprostorů V obsahujících W, tedy $\mathrm{span}(W) = \bigcap_{U:W \subseteq U \twoheadrightarrow V}$.

Definice 20 (Lineární kombinace). Nechť V je vektorový prostor nad \mathbb{T} a $v_1, \ldots, v_n \in V$. Pak lineární kombinací vektorů v_1, \ldots, v_n rozumíme výraz typu $\sum_{i=1}^n \alpha_i v_i$, kde $\alpha_i \in \mathbb{T}$.

Věta 10 (Lineární obal jako množina lineárních kombinací). Nechť V je vektorový prostor nad \mathbb{T} a mějme $v_1, \ldots, v_n \in V$. Pak span $\{v_1, \ldots, v_n\} = \{\sum_{i=1}^n \alpha_i v_i : \alpha_i \in V\}$.

 $D\mathring{u}kaz$. Inkluze zprava doleva: Lineární obal je uzavřený na sčítání a násobky, tedy musí obsahovat všechny lineární kombinace.

Inkluze zleva doprava: Množina lineárních kombinací obsahuje mj. všechny z vektorů, tedy musela být jednou z množin (vektorových prostorů), z nichž se dělal průnik. A všechny tyto prostory jsou uzavřené na sčítání a násobky, tedy obsahují všechny lineární kombinace.

Definice 21 (Lineární nezávislost konečné a nekonečné množiny). Nechť $v_1, \ldots, v_n \in V$, kde V je vektorový prostor nad \mathbb{T} . Pak vektory v_1, \ldots, v_n jsou lineárně nezávislé pokud rovnost $\sum_{i=1}^n \alpha_i v_i = o$ nastane jen pro $\alpha_1 = \ldots = \alpha_n = 0$. V opačném případě jsou vektory lineárně nezávislé.

Pokud $M \subseteq V$ je nekonečná množina vektorů, je M lineárně nezávislá, pokud každá konečná podmnožina M je lineárně nezávislá. Jinak je lineárně závislá.

Věta 11 (Charakterizace lineárně nezávislých vektorů). Nechť V je vektorový prostor nad \mathbb{T} a $v_1, \ldots, v_n \in V$. Pak vektory v_1, \ldots, v_n jsou lineárně závislé právě tehdy když existuje $k \in [n] : v_k = \sum_{i \neq k} \alpha_i v_i$ pro nějaké $\alpha_1, \ldots, \alpha_n \in \mathbb{T}$, tedy $v_k \in \text{span}\{v_1, \ldots, v_k - 1, v_k + 1, \ldots, v_n\}$.

 $D\mathring{u}kaz$. " \Rightarrow ": Jsou-li vektory lineárně závislé, existuje netriviální lineární kombinace rovna nule. Tedy pro $\beta_1, \ldots, \beta_n \exists k \in [n] : \beta_k \neq 0 \land \sum_{i=1}^n \beta_i a_i = o$. Pak upravíme do tvaru $\beta_k v_k = -\sum_{i \neq k} \beta_i v_i$, což po přepsání vyhovuje.

" \Leftarrow ": Máme rovnost $v_k = \sum_{i \neq k} \alpha_i v_i$, takže po úpravě na $o = \sum_{i \neq k} \alpha_i v_i - v_k$ máme požadovanou netriviální lineární kombinaci.

Důsledek 2. Nechť V je vektorový prostor nad \mathbb{T} a $v_1, \ldots, v_n \in V$. Pak vektory v_1, \ldots, v_n jsou lineárně závislé právě tehdy, když existuje $k \in [n]$ takové, že: $\operatorname{span}\{v_1, \ldots, v_n\} = \operatorname{span}\{v_1, \ldots, v_k - 1, v_k + 1, \ldots, v_n\}$.

 $D\mathring{u}kaz.$ " \Rightarrow ": Vektory jsou LZ, tedy z předchozí věty plyne, že obaly jsou stejné. " \Leftarrow ": Platí rovnost, tedy $\exists k \in [n]: v_k \in \operatorname{span}\{v_1, \dots, v_k - 1, v_k + 1, \dots, v_n\}$.

Definice 22 (Báze vektorového prostoru). Nechť V je vektorový prostor nad \mathbb{T} . Pak bází rozumíme libovolný systém generátorů V.

Věta 12 (O jednoznačnosti souřadnic). Nechť $v_1, \ldots, v_n \in V$ je báze V. Pak pro každý vektor existují jednoznačně určené koeficienty $\alpha_1, \ldots, \alpha_n \in \mathbb{T}$ takové, že $u = \sum_{i=1}^n \alpha_i v_i$.

 $D\mathring{u}kaz$. Vektory tvoří bázi, takže existence vyjádření je z definice. Jednoznačnost ukážeme sporem: Ať existují dvě rozdílná vyjádření s koeficienty α_i, β_i . Pak ovšem $u = \sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n \beta_i v_i$. Tedy $o = u - u = \sum_{i=1}^n \alpha_i v_i - \sum_{i=1}^n \beta_i v_i = \sum_{i=1}^n (\alpha_i - \beta_i) v_i$, tedy z lineární nezávislosti $\alpha_i = \beta_i \forall i \in [n]$.

Definice 23 (Souřadnice). Nechť $B = v_i : i \in [n]$ je báze vektorového prostoru V nad \mathbb{T} a vektor $v \in V$ má vyjádření $v = \sum_{i=1}^{n} \alpha_i v_i$. Pak souřadnicemi vektoru u vzhledem k bázi B rozumíme koeficienty $\alpha_1, \ldots, \alpha_n$ a vektor souřadnic značíme $[u]_B = (\alpha_+, ldots, \alpha_n)^T$.

Věta 13 (O existenci báze). Každý vektorový prostor má bázi.

 $D\mathring{u}kaz$. Důkaz provedeme jen pro konečně generovaný prostor. Nechť v_1, \ldots, v_n je systém generátorů V. Jsou-li lineárně nezávislé, již tvoří bázi. Nejsou-li, pak můžeme najít vektor takový, že je lineární kombinací ostatních vektorů. Tento postup můžeme opakovat, dokud nezredukujeme dostatečně.

Věta 14 (Steinitzova věta o výměně). Nechť V je vektorový prostor s lineárně nezávislým systémem x_1, \ldots, x_m a systémem generátorů x_1, \ldots, x_n . Pak platí:

- 1. m < n
- 2. existují navzájem různé indexy k_1,\ldots,k_{n-m} takové, že $x_1,\ldots,x_m,y_{k_1},\ldots,y_{k_{n-m}}$ tvoří systém generátorů V.

Indukcí podle m. 1.IK: m = 0 - triviální.

2.IK: Uvažme vektory x_1,\ldots,x_{m-1} - ty jsou lineárně nezávislé - a podle IP: $m-1 \le n$. Kdyby n-1=m, pak vektory x_1,\ldots,x_{m-1} jsou generátory V a dostáváme $v_m \in \operatorname{span} x_1,\ldots,x_{m-1}$, což je spor s lineární nezávislostí. Tím máme dokázáno první tvrzení.

Nyní druhá část: Uvažme lineární kombinace $x_m = \sum_{i=1}^{m-1} \alpha_i x_i + \sum_{j=1}^{n-m+1} \beta_j y_{l_j}$, což si můžeme dovolit díky tomu, že vektory v sumě generují V. Kdyby všechny β_i byly nulové, jednalo by se o spor s lineární nezávislostí. Proto existuje k takové, že $\beta_k \neq 0$. Pak dle lemmatu o výměně lze vyměnit tyto y_{l_k} za x_m a pak budou vektory $x_1, \ldots, x_m, y_{l_1}, \ldots, y_{l_{k-1}}, y_{l_{k+1}}, \ldots, y_{l_{n-m+1}}$ opět generovat V.

Důsledek 3 (O velikosti báze). Všechny báze konečně generovaného vektorového prostoru jsou stejně velké.

Důkaz. Mějme dvě odlišné báze. Ze Steinitzovy věty o výměně: můžeme prohodit jejich vlastnosti, tedy $m \le n \land n \le m \Rightarrow m = n$.

Definice 24 (Dimenze). Dimenze nějakého konečně generovaného prostoru je velikost nějaké jeho báze, dimenze nekonečně generovaného prostoru je ∞ . Značíme dim V.

Věta 15 (Vztah počtu prvků systému k dimenzi). Pro vektorový prostor V platí:

- 1. Nechť x_1, \ldots, x_m jsou lineárně nezávislé. Pak $m \leq \dim V$. Pokud si jsou rovny, pak x_1, \ldots, x_m je báze V.
- 2. Nechť y_1, \ldots, y_n jsou generátory V. Pak $n \ge \dim V$. Pokud si jsou rovny, pak y_1, \ldots, y_n je báze V.

 $D\mathring{u}kaz$. Nechť $d = \dim V$ a z_1, \ldots, z_d je báze V.

- 1. x_1, \ldots, x_m jsou lineárně nezávislé, tedy dle Steinitzovy věty je $m \leq d$. Pokud m = d, tak ze stejné věty lze systém doplnit o m d = 0 vektorů na systém generátorů V, tedy na bázi.
- 2. y_1, \ldots, y_n jsou generátory V, tedy dle Steinitzovy věty je $n \ge d$. Když n = d, pak pokud y_1, \ldots, y_n jsou LN, tvoří bázi. Kdyby ovšem byly závislé, pak lze jeden vynechat a získat systém generátorů o velikosti n-1, což je spor protože pak by platilo $d \le n-1$ dle Steinitzovy věty, což vede ke sporu.

Věta 16 (Rozšíření lineárně nezávislého systému na bázi). Každý lineárně nezávislý systém vektorového prostoru V lze rozšířit na bázi V.

Důkaz. Nechť x_1, \ldots, x_m jsou lineárně nezávislé a z_1, \ldots, z_d je báze V. Podle Steinitzovy věty lze doplnit vektory x pomocí vektorů z na bázi.

Definice 25 (Spojení podprostorů). Nechť U,V jsou podprostory W. Pak spojení podprostorů U,V je definováno jako $U+V:=\{u+v:u\in U,v\in V\}$.

Věta 17 (Spojení podprostorů jako lineární obal jejich sjednocení). Nechť U, V jsou podprostory W. Pak $U + V = \operatorname{span}(U \cup V)$.

 $D\mathring{u}kaz$. Inkluze zleva doprava je triviální: span $(U \cup V)$ je uzavřený na součty. Inkluze zprava doleva: Stačí ukázat, že U+V obsahuje U,V a je podprostorem W. První část je zřejmá, pro druhou uvažme $x_1,x_2 \in U+V$. Vektory umíme vyjádřit jako $x_1=u_1+v_1,x_2=u_2+v_2:u_1,u_2\in U,v_1,v_2\in V$. Pak $x_1+x_2=u_1+v_1+u_2+v_2=(u_1+u_2)+(v_1+v_2)\in U+V$, tedy je uzavřený na sčítání. Pro uzavřenost

na násobky uvažme $x=u+v\in U+V, u\in U, v\in V, \alpha$ skalár. Pak $\alpha x=\alpha(u+v)=\alpha u+\alpha v\in U+V$, tedy jsme uzavření i na násobky.

Věta 18 (O dimenzi spojení a průniku). Nechť U, V jsou podprostory W. Pak $\dim(U+V) + \dim(U\cap V) = \dim U + \dim V$.

 $D\mathring{u}kaz$. $U\cap V$ je podprostor W, tedy má konečnou bázi z_1,\ldots,z_p . Podle věty o rozšíření lineárně nezávislého systému na bázi U tvaru $z_1,\ldots,z_p,x_1,\ldots,x_m$. Podobně ji můžeme rozšířit na bázi V tvaru $z_1,\ldots,z_p,y_1,\ldots,y_n$. Stačí ukázat, že vektory $z_1, \ldots, z_p, x_1, \ldots, x_m, y_1, \ldots, y_n$ tvoří bázi U+V. Nejprve ukážeme, že jsou generátory, pak, že jsou lineárně nezávislé.

"Generujícnost": Pro $z \in U + V$: $z = u + v, u \in U, v \in V$. Tedy $u = \sum \alpha_i z_i + \sum \beta_j x_j$, stejně $v = \sum \alpha_i z_i + \sum \beta_j x_j$ $\sum \gamma_i z_i + \sum \delta_k y_k. \text{ Potom } z = \sum (\alpha_i + \gamma_i) z_i + \sum \beta_j x_j + \sum \delta_k y_k, \text{ tedy } z \text{ je lineární kombinací našich vektorů.}$ "Lineární nezávislost": Bud' $\sum \alpha_i z_i + \sum \beta_j x_j + \sum \gamma_k y_k = o. \text{ Chceme ukázat, že všechny koeficienty musí být nulové. Označme } z := \sum \alpha_i z_i + \sum \beta_j x_j = -\sum \gamma_k y_k. \text{ Zjevně } z \in U \cap V, \text{ tedy } z = \sum \delta_i z_i. \text{ Tím dostáváme } z = \sum \delta_i z_i = -\sum \gamma_k y_k, \text{ neboli } \sum \delta_i z_i + \sum \gamma_k y_k = o. \text{ Jediná lineární kombinace je triviální (z toho, že to je}$ báze V). Z toho už plyne, že všechny koeficienty musí být nulové.

Definice 26 (Maticové prostory: sloupcový, řádkový, jádro). Nechť $A \in \mathbb{T}^{m \times n}$. Pak definujeme

- 1. sloupcový prostor $S(A) := \operatorname{span}\{A_{*1}, \dots, A_{*n}\}$
- 2. řádkový prostor $\mathcal{R}(A) := \mathcal{S}(A^T)$
- 3. jádro matice $Ker(A) := \{x \in \mathbb{T}^n : Ax = o\}$

Věta 19 (Maticové prostory a RREF). Nechť $A \in T^{m \times n}$ a A^R její RREF tvar s pivoty na pozicích $(1, p_1), \ldots, (r, p_r), \text{ kde } r = \text{rank}(A). \text{ Pak}$

- 1. nenulové řádky A^R (tedy vektory $A_{1*}^R, \ldots, A_{r*}^R$) tvoří bázi $\mathcal{R}(A)$,
- 2. sloupce $A_{*p_1}, \ldots, A_{*p_r}$ tvoří bázi $\mathcal{S}(A)$
- 3. $\dim \mathcal{R}(A) = \dim \mathcal{S}(A) = r$.

 $D\mathring{u}kaz$. Z věty o rozkladu RREF na součin regulární a původní matice víme, že $A^R = QA$.

- 1. Podle tvrzení o prostorech a násobení regulární maticí zleva je $\mathcal{R}(A) = \mathcal{R}(QA) = \mathcal{R}(A^R)$. Nenulové řádky A^R jsou lineárně nezávislé, tedy tvoří bázi.
- 2. Nejprve ukážeme, že sloupce A^R tvoří bázi $\mathcal{S}(A^R)$. Protože jsou jednotkové, jsou jistě nezávislé a generují celý prostor, neboť libovolný nebázický sloupec lze vyjádřit za pomoci těch bázických. Nyní dle tvrzení o prostorech a násobení regulární maticí zleva máme jistotu, že i sloupce A tvoří bázi (tedy jsou LN a generují ostatní sloupce).
- 3. Zjevné.

Věta 20 (O dimenzi jádra a hodnosti matice). Pro každou matici $A \in \mathbb{T}^{m \times n}$ platí dim $\operatorname{Ker}(A) + \operatorname{rank}(A) = n$.

 $D\mathring{u}kaz$. Nechť dim Ker(A)=k a vektory v_1,\ldots,v_k jsou báze jádra. Pak $Av_1=\ldots=Av_k=o$. Pak rozšíříme bázi o vektory v_{k+1}, \ldots, v_n . Pak stačí ukázat, že vektory Av_{k+1}, \ldots, Av_n tvoří bázi $\mathcal{S}(A)$, protože hodnost je rovna dimenzi sloupcového prostoru (tedy n-k).

"Generujícnost": Mějme $y \in \mathcal{S}(A)$. Pak y = Ax pro nějaké $x \in \mathbb{T}^n$. Toto x lze vyjádřit jako $\sum \alpha_i v_i$.

Dosazením: $y = Ax = A(\sum \alpha_i v_i) = \sum \alpha_i Av_i = \sum_{i=k+1}^n \alpha_i (Av_i)$. "Lineární nezávislost": Buď $\sum_{i=k+1}^n \alpha_i Av_i = o$. Pak platí $A(\sum_{i=k+1}^n \alpha_i v_i) = o$, čili $\sum_{i=k+1}^n \alpha_i v_i$ je v jádru matice. Proto $\sum_{i=k+1}^{n} \alpha_i v_i = \sum_{i=1}^{k} \beta_i v_i$ pro nějaké skaláry β . Přepisem dostaneme, že alfy a bety jsou nulové.

Lineární zobrazení

Definice 27 (Lineární zobrazení). Nechť U,V jsou vektorové prostory nad \mathbb{T} . Zobrazení $f:U\to V$ je lineární, pokud $\forall x, y \in U, \alpha \in \mathbb{T}$ platí:

1.
$$f(x+y) = f(x) + f(y)$$

2. $f(\alpha x) = \alpha f(x)$

Tvrzení 17 (Vlastnosti lineárních zobrazení). Nechť $f: U \to V$ je lineární zobrazení. Pak

- 1. $f(\sum \alpha_i x_i) = \sum \alpha_i f(x_i) \forall \alpha_i \in \mathbb{T}, x_i \in U, i \in [n].$
- 2. f(o) = o

 $D\mathring{u}kaz$. 1 z definice + rozšíření indukcí.

$$2 f(o) = f(0o) = 0f(o) = o.$$

Definice 28 (Obraz a jádro lineárního zobrazení). Nechť $f: U \to V$ je lineární zobrazení. Pak

- 1. obraz je $f(U) := \{f(x) : x \in U\}$
- 2. jádro je $\operatorname{Ker}(f) := \{x \in U : f(x) = o\}$

Věta 21 (O prostém lineárním zobrazení). Nechť $f: U \to V$ je lineární zobrazení. Pak NTJE:

- 1. f je prosté
- 2. $Ker(f) = \{o\}$
- 3. obraz libovolné lineárně nezávislé množiny je lineárně nezávislá množina.

 $D\mathring{u}kaz$. Ukážeme $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$: " $1 \Rightarrow 2$ ": $f(o) = o \Rightarrow o \in \text{Ker}(f)$. Ale f je prosté, tedy jádro jiný prvek neobsahuje.

"2 \Rightarrow 3": Nechť $x_1, \ldots, x_n \in U$ lineárně nezávislé a nechť $\sum \alpha_i f(x_i) = o$. Pak $f(\sum \alpha_i x_i) = o$, tedy $\sum \alpha_i x_i$ náleží do jádra zobrazení, které ovšem obsahuje jen nulový vektor, tedy máme z lineární nezávislosti $a_i = 0 \forall i \in [n]$.

" $3 \Rightarrow 1$ ": Sporem předpokládejme, že existují $x, y \in U$: f(x) = f(y). Potom o = f(x) - f(y) = f(x - y). Vektor o ovšem představuje lineárně závislou množinu, tedy x - y musí být z 3 také lineárně závislá, tedy $x - y = 0 \Rightarrow x = y$, což je spor.

Věta 22 (Jednoznačnost lineárního zobrazení vzhledem k obrazům báze). Nechť U, V jsou prostory nad \mathbb{T} a x_1, \ldots, x_n báze U. Pak pro libovolné vektory $y_1, \ldots, y_n \in V$ existuje právě jedno lineární zobrazení takové, že $f(x_i) = y_i \forall i \in [n]$.

 $D\mathring{u}kaz$. "Existence". Mějme $x \in U$. Pak $x = \sum \alpha_i x_i$. Pak $f(x) = f(\sum \alpha_i x_i) = \sum \alpha_i f(x_i) = \sum \alpha_i y_i$. Pak jen ověříme linearitu.

"Jednoznačnost". Mějme $f,g:f(x_i)=g(x_i)=y_i \forall i\in[n]$. Pak pro libovolné $x\in U:f(x)=f(\sum\alpha_ix_i)=\sum\alpha_if(x_i)=\sum\alpha_iy_i=\sum\alpha_ig(x_i)=g(\sum\alpha_ix_i)=g(x)$. Tedy $\forall x\in U:f(X)=g(x)$, tedy tato zobrazení musí být stejná.

Definice 29 (Matice lineárního zobrazení). Nechť $f: U \to V$ je lineární zobrazení, $B_1 = \{x_1, \ldots, x_n\}$ báze U nad \mathbb{T} , $B_2 = \{y_1, \ldots, y_m\}$ báze V nad \mathbb{T} . Nechť $f(x_j) = \sum a_{ij}y_i$. Potom matice $A \in \mathbb{T}^{m \times n}$ s prvky a_{ij} se nazývá matice lineárního zobrazení vzhledem k bázím B_1, B_2 a značí se $B_2[f]_{B_1}$

Věta 23 (Maticová reprezentace lineárního zobrazení). Nechť $f: U \to V$ je lineární zobrazení, $B_1 = \{x_1, \ldots, x_n\}$ báze $U, B_2 = \{y_1, \ldots, y_m\}$ báze V. Pak $\forall x \in U : [f(x)]_{B_2} = B_2[f]_{B_1} \cdot [x]_{B_1}$.

 $\begin{array}{ll} \textit{Důkaz.} \;\; \textit{Označme} \;\; A := \;\;_{B_2}[f]_{B_1}. \;\; \textit{Bud'} \;\; x \in U, \;\; \textit{tedy} \;\; x = \sum \alpha_i x_i, \;\; \textit{tedy} \;\; [x]_{B_1} = (\alpha_1, \ldots, \alpha_n)^T. \;\; \textit{Pak} \;\; f(x) = f(\sum \alpha_j x_j) = \sum \alpha_j f(x_j) = \sum \alpha_j (\sum a_{ij} y_i) = \sum \sum \alpha_j a_{ij} y_i = \sum (\sum \alpha_j a_{ij}) y_i. \;\; \textit{Tedy} \;\; \sum \alpha_j a_{ij} \;\; \textit{reprezentuje} \;\; i-tou \;\; \textit{souřadnici} \;\; \textit{vektoru} \;\; [f(x)]_{B_2}, \;\; \textit{ale jeho hodnota je} \;\; (A[x]_{B_1})_i, \;\; \textit{což je} \;\; i-tá \;\; \textit{složka} \;\; \textit{vektoru} \;\; B_2[f]_{B_1} \cdot [x]_{B_1}. \;\; \Box$

Věta 24 (Jednoznačnost matice lineárního zobrazení). Nechť $f: U \to V$ je lineární zobrazení, B_1 je báze U, B_2 je báze V. Pak jediná matice A splňující $[f(x)]_{B_2} = A \cdot [x]_{B_1}$ je $B_2[f]_{B_1}$.

Důkaz. Nechť se báze B_1 sestává z vektorů x_1, \ldots, x_n . Pro spor předpokládejme, že f má dvě maticové reprezentace pomocí matic $A \neq A'$. Tedy existuje vektor $s \in \mathbb{T}^n$ takový, že $As \neq A's$. Takový vektor lze volit například jako jednotkový s jedničkou na takové pozici, ve kterém sloupci se matice liší. Definujme $x := \sum s_i x_i$. Pak $[f(x)]_{B_2} = As \neq A's = [f(x)]_{B_2}$, což se spor s jednoznačností souřadnic.

Definice 30 (Matice přechodu). Nechť V je vektorový prostor a B_1, B_2 dvě jeho báze. Pak maticí přechodu od B_1 k B_2 nazveme matici $B_2[id]_{B_1}$.

Tvrzení 18 (O složeném lineárním zobrazení). Nechť $f:U\to V, g:V\to W$ jsou lineární zobrazení. Pak složené zobrazení $g\circ f$ je opět lineární zobrazení.

 $D^{u}kaz$. Ověřit z definice.

Věta 25 (O matici složeného lineárního zobrazení). Nechť $f: U \to V, g: V \to W$ jsou lineární zobrazení, B_1 báze U, B_2 báze V, B_3 báze W. Pak $B_3[g \circ f]_{B_1} = B_3[g]_{B_2} \cdot B_2[f]_{B_1}$.

 $D\mathring{u}kaz$. $\forall x\in U: [(g\circ f)(x)]_{B_3}=[g(f(x))]_{B_3}={}_{B_3}[g]_{B_2}\cdot [f(x)]_{B_2}={}_{B_3}[g]_{B_2}\cdot {}_{B_2}[f]_{B_1}\cdot [x]_{B_1}$. Díky jednoznačnosti matice lineárního zobrazení je součin hledaná matice.

Definice 31 (Izomorfismus). Izomorfismus mezi prostory U, V je bijekce $f: U \to V$. Pokud mezi U a V existuje izomorfismus, říkáme, že U, V jsou izomorfní.

Tvrzení 19 (Vlastnosti izomorfismu).

- 1. Je-li $f:U\to V$ izomorfismus, pak i inverzní funkce existuje a je izomorfismus.
- 2. Jsou-li $f:U\to V, g:V\to W$ izomorfismy, pak $g\circ f:U\to W$ je také izomorfismus.
- 3. Je-li $f: U \to V$ izomorfismus, pak libovolná báze U se zobrazuje na bázi V.
- 4. Je-li $f: U \to V$ izomorfismus, pak dim $U = \dim V$.

Důkaz. 1. Vzájemná jednoznačnost je dána, stačí ověřit linearitu.

- 2. Plyne z tvrzení o složeném lineárním zobrazení.
- 3. Mějme bázi B_1 prostoru U, která je nutně LN. Pak i $f(B_1)$ je LN a navíc každý vektor $x \in U$ je těmito vektory generovaný, takže je to báze.

4. Plyne z 3.

Tvrzení 20 (Izomorfismus \mathbb{T}^n a n-dimenzionálního prostoru nad \mathbb{T}). Nechť V je vektorový prostor nad \mathbb{T} s dimenzí n a bází B. Pak zobrazení $x \mapsto [x]_B$ je izomorfismus mezi V a \mathbb{T}^n .

 $D\mathring{u}kaz$. Nechť báze sestává z vektorů v_1, \ldots, v_n . Snadno nahlédneme, že je to lineární zobrazení a že je prosté (z jednoznačnosti souřadnic). Surjekce plyne z toho, že každá n-tice představuje souřadnice nějakého vektoru. Linearitu dokážeme triviální úpravou.

Věta 26 (Izomorfismus n-dimenzionálních prostorů). Všechny n-dimenzionální prostory nad $\mathbb T$ jsou navzájem izomorfní.

 $D\mathring{u}kaz$. Všechny prostory jsou izomorfní s \mathbb{T}^n a z vlastností izomorfismu plyne, že jsou tedy všechny izomorfní.

Věta 27 (O dimenzi jádra a obrazu). Nechť $f: U \to V$ je lineární zobrazení, U, V prostory nad \mathbb{T} , B_1 báze U, B_2 báze V. Označme $A = B_2[f]_{B_1}$. Pak:

- 1. $\dim \operatorname{Ker}(f) = \dim \operatorname{Ker}(A)$
- 2. $\dim f(U) = \dim \mathcal{S}(A) = \operatorname{rank}(A)$.

 $D\mathring{u}kaz$. 1: Podle 4. vlastnosti izomorfismu stačí sestrojit izomorfismus mezi jádry. Izomorfismem může být např. zobrazení $x \in \text{Ker}(f) \mapsto [x]_{B_1}$. Z izomorfismu \mathbb{T}^n a n-dimenzionálního prostoru nad \mathbb{T} víme, že je lineární a prostá. Stačí ukázat, že je na. Pro $x \in \text{Ker}(f) : o = [o]_{B_2} = [f(x)]_{B_2} = {}_{B_2}[f]_{B_1} \cdot [x]_{B_1}$, tedy $[x]_{B_1}$ náleží do jádra matice A. Stejně i naopak.

2: Mějme dim U=n, dim V=m. Opět sestrojíme izomorfismus mezi f(U) a $\mathcal{S}(A)$, a to takto: $y\in f(U)\mapsto [y]_{B_2}$. A opět je zobrazení lineární a prosté. Dále pro $y\in f(U)$ existuje $x\in U$ takové, že f(x)=y. Nyní $[y]_{B_2}=[f(x)]_{B_2}=A[x]_{B_1}$, tedy $[y]_{B_2}$ náleží do sloupcového prostoru $\mathcal{S}(A)$. A naopak, pro každé $b\in \mathcal{S}(A)$ existuje $a\in \mathbb{T}^n$ takové, že b=Aa. Tedy pro vektor $x\in U$ takový, že $[x]_{B_1}=a$ platí $y:=f(x)\in f(U)\wedge [y]_{B_2}=[f(x)]_{B_2}=A[x]_{B_1}=Aa=b\in \mathcal{S}(A)$.

Definice 32 (Lineární funkcionál a duální prostor). Nechť V je vektorový prostor nad \mathbb{T} . Pak lineární funkcionál je libovolné lineární zobrazení z V do \mathbb{T} . Duální prostor, též značený V*, je vektorový prostor všech lineárních funkcionálů.

Afinní podprostory

Definice 33 (Afinní podprostor). Buď V vektorový prostor nad \mathbb{T} . Pak afinní podprostor je jakákoliv množina $M \subseteq V$ tvaru $M = U + a\{v + a : v \in V\}$, kde $a \in V$ a U je vektorový podprostor V.

Věta 28 (Charakterizace afinního podprostoru). Nechť V je vektorový podprostor nad \mathbb{T} charakteristiky různé od 2, a buď $\emptyset \neq M \subseteq V$. Pak M je afinní, tj. je tvaru M = U + a právě tehdy, když $\forall x, y \in M, a \in \mathbb{T}$ platí $\alpha x + (1 - \alpha)y \in M$.

 $D\mathring{u}kaz$. Implikace " \Rightarrow ": Mějme $x,y\in M$, tedy jsou tvaru $x=u+a,y=v+a:u,v\in U$. Pak $\alpha x+(1-\alpha)y=\alpha u+\alpha a+(1-\alpha)v+(1-\alpha)a=\alpha u+(1-\alpha)v+a$, což odpovídá.

Implikace " \Leftarrow ": Ukážeme, že stačí zvolit libovolné $a \in M$ pevně a $U := M - M = x - y : x, y \in M$. Tedy ukážeme, že M = (M - M) + a.

Inkluze zleva doprava: $x \in M$: $x = x - a + a \in (M - M) + a = U + a$.

Inkluze zprava doleva: Mějme $x-y+a\in (M-M)+a$. Protože $x,y,a\in M$, dostáváme, že afinní kombinace $a/2+x/2\in M$ a také $2(a/2+x/2)-(1-2)y=x-y+a\in M$.

Věta 29 (O afinních podprostorech a řešení soustav lineárních rovnic). Množina řešení soustavy Ax = b je prázdná nebo afinní. Je-li neprázdná, můžeme tuto množinu řešení vyjádřit ve tvaru $Ker(A) + x_0$, kde x_0 je libovolné řešení soustavy.

 $D\mathring{u}kaz$. Pokud x_1 je řešením, pak lze psát $x_1 = x_1 - x_0 + x_0$. Stačí ukázat, že $x - 1 - x_0 \in \text{Ker}(A)$. Dosazením $A(x_1 - x_0) = Ax_1 - Ax_0 = b - b = 0$. Tedy $x_1 \in \text{Ker}(A) + x_0$. Naopak, je-li $x_2 \in \text{Ker}(A)$, pak $x_2 + x_0$ je řešením soustavy, jelikož $A(x_2 + x_0) = Ax_2 + Ax_0 = 0 + b = b$.

Definice 34 (Dimenze afinního podprostoru). Dimenze afinního podprostoru M = U + a je definována jako $\dim(M) := \dim(U)$.

Definice 35 (Afinní nezávislost). Vektory x_0, \ldots, x_n jsou afinně nezávislé, pokud vektory $x_1 - x_0, \ldots, x_n - x_0$ jsou lineárně nezávislé. V opaném případě vektory nazýváme afinně závislé.

Seznam témat

1	Definice (Matice, vektor, * notace)
2	Definice (Soustava lineárních rovnic a matice soustavy)
3	Definice (Elementární řádkové úpravy)
1	Tvrzení (Elementární úpravy a množina řešení)
4	Definice (Odstupňovaný tvar matice - REF)
5	Definice (Hodnost)
1	Věta (Gaussova eliminace)
6	Definice (Redukovaný řádkově odstupňovaný tvar matice - RREF)
2	Věta (Gauss-Jordanova eliminace)
1	Důsledek (Frobeniova věta)
7	Definice (Operace s maticemi)
2	Tvrzení (Vlastnosti součtu, násobku a součinu)
8	Definice (Transpozice)
3	Tvrzení (Vlastnosti transpozice)
9	Definice (Symetrická, diagonální, horní trojúhelníková a dolní trojúhelníková matice)
10	Definice (Regulární, singulární matice)
4	Tvrzení (Charakterizace regulární matice)
5	Tvrzení (Charakterizace regulární matice)
6	Tvrzení (O součinu dvou regulárních matic)
7	Tvrzení (O součinu regulárních a singulárních matic)
	Poznámka (Matice elementárních řádkových úprav)
8	Tvrzení (Rozklad RREF na součin regulární matice a původní matice)
9	Tvrzení (Rozklad na součin matic elementárních úprav)
11	Definice (Inverzní matice)
3	Věta (O existenci inverzní matice)
10	Tvrzení (O regularitě transponované matice)
4	Věta (Jedna rovnost stačí)
5	Věta (Výpočet inverzní matice)
11	Tvrzení (Vlastnosti inverzní matice)
6	Věta (Jednoznačnost RREF - bez dk.)
12	Definice (Grupa)
12	Tvrzení (Základní vlastnosti v grupě)
13	Definice (Podgrupa)
14	Definice (Permutace, inverzní permutace, skládání permutací a znaménko permutace)
7	Věta (O znaménku složení permutace a transpozice)
15	Definice (Těleso)
13	Tvrzení (Základní vlastnosti v tělese)
1	Lemma (Násobky v tělese prvočíselné velikosti)
8	Věta (Těleso prvočíselné velikosti)
16	Definice (Charakteristika tělesa)
14	Tvrzení (O charakteristice tělesa)
9	Věta (Malá Fermatova věta)
17	Definice (Vektorový prostor)

15	Tvrzení (Základní vlastnosti vektorů)	6
18		6
16		6
19		6
20		6
10		6
21		7
11	* /	7
$\overline{2}$	· · · · · · · · · · · · · · · · · · ·	7
- 22		7
12	• /	7
23		7
13		7
14	,	7
3	· · · · · · · · · · · · · · · · · · ·	8
24		8
15		8
16	, , ,	8
25		8
17	\ - \ \ - \ \ /	8
18		8
26	- ,	9
19		9
20	_ /	9
$\frac{20}{27}$		9
17	Tvrzení (Vlastnosti lineárních zobrazení)	
28	Definice (Obraz a jádro lineárního zobrazení)	
$\frac{20}{21}$	Věta (O prostém lineárním zobrazení)	
$\frac{21}{22}$	Věta (Jednoznačnost lineárního zobrazení vzhledem k obrazům báze)	
29	Definice (Matice lineárního zobrazení)	
$\frac{23}{23}$	Věta (Maticová reprezentace lineárního zobrazení)	
$\frac{25}{24}$	Věta (Jednoznačnost matice lineárního zobrazení)	
30	Definice (Matice přechodu)	
18	Tvrzení (O složeném lineárním zobrazení)	
25	Věta (O matici složeného lineárního zobrazení)	
31	Definice (Izomorfismus)	
19	Tvrzení (Vlastnosti izomorfismu)	
$\frac{19}{20}$	Tvrzení (Izomorfismus \mathbb{T}^n a n -dimenzionálního prostoru nad \mathbb{T})	. <u>1</u>
$\frac{26}{26}$		1
$\frac{20}{27}$		1
32	,	2
33	- ,	
ээ 28	\/	2
29 24		2
$\frac{34}{35}$,	2
บบ	Definite (Annua hezavisios)	. 4