Calculus II Homework Series basics

1. Express the infinite decimal number as a rational number.

(a)
$$0.\overline{9} = 0.99999...$$

(b)
$$1.\overline{6} = 1.6666...$$

(c)
$$1.\overline{3} = 1.3333...$$

(d)
$$1.\overline{19} = 1.191919...$$

$$\sum_{n=1}^{\infty} 3^{n+1} + 7^{n-1}$$

(e) $0.\overline{09} = 0.0909090909...$

(g) $2014.\overline{2014} = 2014.2014201420142014...$

(f) $2.\overline{16} = 2.16161616...$

(d)
$$\sum_{n=1}^{\infty} \frac{3^{n+1} + 7^{n-1}}{21^n}$$

(e)
$$\sum_{n=0}^{\infty} \frac{2^{n+1} + (-3)^{n-1}}{5^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n + 5^n}{10^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{5^n - 3^n}{7^n}$$

3. Sum the telescoping series (a sum is "telescoping" if it can be broken into summands so that consecutive terms cancel).

(a)
$$\sum_{n=0}^{\infty} \frac{-6}{9n^2 + 3n - 2}$$

(b)
$$\sum_{n=3}^{\infty} \frac{3}{n^2 - 3n + 2}$$
.

(c)
$$\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$
. (Hint: Use the properties of the logarithm to aim for a telescoping series).

4. Use partial fractions to sum the telescoping series (a sum is "telescoping" if it can be broken into summands so that consecutive terms cancel).

1

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{2n+1}{n^4+2n^3-n^2-2n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2n}{n^4 - 3n^2 + 1}$$

(d)
$$\sum_{n=3}^{\infty} \frac{n^2 + n + 2}{n^4 - 5n^2 + 4}$$