Предисловие

Во второй том справочника включены описания микропроцессорных комплектов микросхем, широко применяемых в электронной и электронно-вычислительной аппаратуре, в порядке возрастания номеров серий, начиная с серии K1801. Во втором томе сохранена структура представления данных, прииятая для первого тома.

Вначале даются обшие сведения о микропроцессорном комплекте, его составе, условиях эксплуатации, особениостях применения, конструктивном исполнении. Затем приводится описание каждой микросхемы, входящей в комплект, которое включает в себя условиое графическое обозначение микросхемы, назначение выводов корпуса, времениые диаграммы работы, статические и динамические параметры, снстему микрокоманд. Описание каждого комплекта микропроцессорных микросхем заканчивается конкретными рекомендациями по его применению в аппаратуре.

В приложениях приведены сведения о конструктивном исполнении корпусов микросхем, краткие сведения о новых микропроцессорных комплектах, освоенных промышлениостью за время подготовки к изданию справочинка, а также общая характеристика и перечни микросхем запоминающих устройств и цифровых микросхем, применяемых при проектировании микропроцессорных систем.

Глава 11 Микропроцессорный комплект серии К1801

Микропроцессорный комплект серии K1801, микросхемы которого изготовляются по n-МДП-техиологии, предназначен для построения широкого класса микроконтроллеров, мик-

ро-ЭВМ, управляющих микропроцессорных систем. Высокая функциональная мощность, сравнительно высокое быстродействие при умеренной потребляемой мощности, совмести-

Таблица 11.1

Тип микросхемы	Функцнональное назначение	Тнп корпуса
K1801BM1	16-разрядиый микропроцессор, 500 тыс. операций «Регистр — регистр» в секунду	429.42-5
KM1801BM2	16-разрядный микропроцессор, 1 млн. операций «Регистр—регистр» в секунду	2123.40-6
KM1801BM3	16-разрядный микропроцессор, 1,5 млн. операций «Регистр—регистр» в секунду	2136.64-1
К1801ВП1-30	Управление динамическим ОЗУ	429.42-5
К1801ВП1-33	Контроллер интерфейса параллельного ввода/вывода	429.42-5
К1801ВП1-34	Устройство передачи информации	429.42-5
К1801ВП1-35	Устройство последовательного ввода вывода	429.42-5
KP1801PE2	Постояниое запоминающее устройство	239.24-1
Қ573РФ3	Репрограммируемое ПЗУ	210Б.24-5

Таблица 11.2		_	Ι	Іродо	лжение
Параметр	Обозначение	Значения параметров макс. (мнн)	Параметр	Обозначение	Значення параметров макс. (мин)
Выходное напряжение низкого уровня, В Выходное напряжение высокого уровня, В Ток утечки на входе, мкА Ток утечки на выходе, мкА	U _{OL} U _{OH} I _{LI} I _{LO}	0,5 (2,4) 1 10	Входное напряжение низкого уровня, В Входное напряжение высокого уровня, В Входная емкость, пФ Выходная емкость, пФ	U _{IL} U _{IH} C _I C _O	0,7 (2,2) 10 15

Параметр	Обозиачение	Значения параметров: макс. (мнн.)
Напряжение питания, В Максимальное входное напряжение, В Минимальное входное напряжение, В Выходной ток низкого уровня, мА Выходиой ток высокого уровня, мА Емкость нагрузки, пФ Температура окружающей среды, °С	$egin{array}{c} U_{CC} \ U_{I\ max} \ U_{I\ min} \ I_{OL} \ I_{OH} \ C_{L} \ T \end{array}$	1

мость по системе команд с самыми массовыми в стране микроЭВМ семейства «Электроника» обеспечивают МПК серии К1801 практически неограниченные области применения.

В состав серии К1801 входят микросхемы однокристальных микропроцессоров, способных вести обработку 16-разрядных операндов, периферийных контроллеров, созданиых на основе базового матричного кристалла серии К1801ВП1 и микросхемы ПЗУ (табл. 11.1).

Общие для всех микросхем комплекта электрические параметры приведены в табл. 11.2.

Общие для всех микросхем комплекта предельно допустимые значения электрических параметров приведены в табл. 11.3.

11.1. Микросхема К1801ВМ1

Микросхема K1801BM1 — однокристальный 16-разрядный микропроцессор (ОМП), предназначен для обработки цифровой информации в системах управления технологическими процессами, в контрольно-измерительной аппаратуре и системах связи, а также решения в составе ЭВМ инженерно-технических и экономических задач.

Условное графическое обозначение микросхемы приведено на рис. 11.1, назначение выводов — в табл. 11.4, структурная схема показана на рис. 11.2.

В состав микросхемы входят следующие основные функциональные блоки, объединенные информационно-управляющими связями:

16-разрядный операционный блок, выполняющий операции формирования адресов команд и операндов, логические и арифметические, хранения операндов и результатов;

блок микропрограммного управления, вырабатывающий последовательность микрокоманд на основе кода принятой команды. В нем за-

Рис. 11.1. Условное графическое обозначение К1801 ВМ1

кодирован полный набор микрокоманд для всех типов команд;

блок прерываний, организующий приоритетную систему прерываний ОМП. Выполняет прием и предварительную обработку внешних и внутренних запросов на прерывание вычислительного процесса;

интерфейсный блок, выполняющий обмены информацией между ОМП и устройствами,

Рис. 11.2. Структурная схема К1801ВМ1

Таблица 11.4

Вывод	Обозначение	Тип вывода	Функциональное назначенне выводов
1	CLC	Вход	Синхронизация
2	SACK	Вход	Подтверждение выборки
3, 6, 26, 27	SP	_	Резервные
4	DMGO	Выход	Предоставление прямого доступа
5	DM <i>R</i> *	Вход	Требование прямого доступа
7	SEL1	Выход	Выборка первого регистра вво- да/вывода
8	SEL2	Выход	Выборка второго регистра ввода/ вывода
9—20, 22—2 5	AD0 -AD15	Вход/вы- ход	Разряды адреса/данных
21	GND	_	Общий
28	BSY	Выход	Сигнал занятости канала
29	DCLO	Вход	Авария источника питания
30	ACLO	Вход	Авария сетевого питания
31	IRQ1	Вход	Первый запрос радиального пре- рывания
32	IRQ2	Вход	Второй запрос радиального преры- вания
33	IRQ3	Вход	Третий запрос радиального пре- рывания
34	INIT	Вход вы- ход	Установка исходного состояния
<i>35</i>	VIRQ	Вход	Требование прерывания
36	IAKO	Выход	Предоставление прерывания
<i>37</i>	DOUT	Выход	Вывод данных (запись данных)
38	DIN	Выход	Ввод данных (чтение данных)
39	RPLY	Вход	Синхронизацня пассивного устрой ства (ответ)
4 0	WTBT	Выход	Вывод байта (запись/байт)
41	SYNC	Выход	Сиихронизация активного устрой- ства (обмен)
42	U_{cc}		Напряжение питания

расположенными на системной магистрали. Осуществляет арбитраж при операциях пря мого доступа к памяти. В интерфейсиом блоке формируется последовательность управляющих сигналов системной магистрали;

блок системной магистрали, связывающий внутреннюю магистраль ОМП с внешней. В нем производится управление усилителями приема и выдачи информации на совмещенные выводы адресов и данных;

схема тактирования, обеспечивающая синхронизацию внутренних блоков.

Основные параметры К1801ВМ1:

Разрядность	•	. 16 двоичных разрядов
Представление чисел		. Дополнительный код с фиксированной запятой
Система команд .	•	. Безадресная, одно- адресная, двухадрес- н ая

Виды адресации

Регнстровая, кос венио-регистровая автоиикрементная, косвенно автоинкре ментная, косвенио автодекремеитная, иидексная, косвеино индексная

Число регистров общего назначения (РОН) Число линий запросов на прерывания Системная магистраль

4
Типа МПИ с совмещениыми шинами
для передачи
адреса и даниых
64К байт
От 100 кГц
до 5 МГц

Адресное пространство Тактовая частота

Максимальное быстро действие выполнения команд сложения в со ставе ЭВМ при регистро вом методе адресации

До 500 тыс операций/с До 1,2 Вт

Потребляемая мощность

Сигналы ADO—AD15 определяют адреса и данные, которые передаются по совмещенной системной магистрали

Группы сигналов SYNC, DIN, DOUT, WTBT, RPLY управляют передачей информации по системной магистрали Сигнал SYNC, вырабатываемый процессором, означает, что адрес находится на выводах системной магистрали Этот сигнал сохраняет активный уро вень до окончания текущего обмена информацией

Сигнал RPLY означает, что данные приня ты или установлены на информационных вы водах Этот сигнал вырабатывается пассивным устройством в ответ на сигналы DIN и DOUT

Сигнал *DIN* предназначен для организации двух процедур обмена информацией по маги страли

ввода данных — ОМП вырабатывает DIN во время деиствия сигнала SYNC, когда опготов принять данные от пассивного устрои ства

ввода адреса вектора прерывания — сигнал DIN вырабатывается совместно с сигналом IAKO при пассивном уровне сигнала SYNC

Сигнал *DOUT* означает, что данные, выда ваемые ОМП, установлены на выводах систем ной магистрали

Сигнал WTBT предназначен для организа ции двух процедур обмена информацией

вырабатывается в адресной части цикла для указания о том, что далее следует вывод даниых (слова или байта),

формируется при выводе данных из ОМП для указания о выводе байта

Сигнал VIRQ вырабатывается внешним устройством для информирования ОМП о том, что оно готово передавать адрес вектора прерываний В ответ на этот сигнал (если преры

вание разрешено) ОМП вырабатывает сигналы DIN и IAKO

Сигнал IRQ1 определяет положение внеш него переключателя «Программа — пульт» Низкий уровень этого сигнала означает, что переключатель должен находиться в положе нни «Пульт» Этот сигнал переводит ОМП в состояние, аиалогичное состоянию после вы полнения команды HALT

Сигналы IRQ2 и IRQ3 вызывают прерывание программы, выполняемой процессором, по фиксированным адресам 000100 * и 000270 соответственно Прерывание происходит при пе реходе сигналов из высокого уровня в низкий

Сигнал IAKO ОМП вырабатывается в ответ на внешний сигнал VIRQ Этот сигнал яв ляется выходным для ОМП и входным для первого устройства, подключенного к систем ной магистрали (электрически ближе распо ложенного к ОМП и, следовательно, имеющего более высокий приоритет) Если это устройст во не требовало прерываний (не устанавливало сигнал VIRQ), то оно транслирует сигнал IAKO к следующему устройству Устройство, требующее прерывания ОМП, запрещает распространение этого сигнала Сигнал IAKO, последовательно проходя через все устройства, обеспечивает их поочередиый опрос и различный приоритет обслуживания

Сигнал DMR вырабатывает внешнее актив ное устройство, требующее передачи ему системной магистрали

Сигнал *DMGO* процессор устанавливает в ответ на внешний сигнал *DMR* Этот сигнал последовательно проходит через внешние устройства и предоставляет системную магистраль устройству с наивысшим приоритетом, запросившему прямой доступ к памяти Это устройство прекращает трансляцию сигнала *DMGO* и устанавливает сигнал *SACK*, который вырабатывается устройством прямого доступа к памяти (ПДП) в ответ на сигнал *OMII DMGO* Сигнал *SACK* означает, что устройство ПДП может производить обмен данными, используя стандартные циклы обращения к системной магистрали

Сигнал BSY предназначен для управления устройствами умощнения магистрали Низкий уровень этого сигнала означает, что ОМП на чинает обмен по магистрали Переход сигнала из низкого уровня в высокий означает окон чание обмена

Сигнал аварии источника питания *DCLO* вызывает установку ОМП в исходное состоя ние и появление сигнала *INIT* Сигнал аварии сетевого питання *ACLO* означает переход ОМП на обработку прерывания по сбою питания Высокий уровень этого сигнала означает, что сетевое напряжение питания в норме

При появлении одного из сигналов обращения к внешним регистрам расширения вво да/вывода SEL1, SEL2 адрес на выводах системной магистрали соответствует адресу од

^{*} Значения адресов, векторов прерываний, кодов команд приводятся в восьмеричной системе счисления

ного из внешних регистров расширения ввода/вывода. Сигиал SEL1 устанавливается при обращении по фиксированному адресу 177716, сигнал SEL2— по адресу 177714.

Совместно с сигналами DIN или DOUT происходит соответственно ввод данных в ОМП из регистров или вывод из ОМП на регистры. Установка сигнала RPLY от регистров расширения ввода/вывода не требуется. По длительности сигналы SEL1 и SEL2 совпадают с сигналом BSY.

Для режима пуска ОМП при включенни пнтания необходимо обеспечить временную последовательность сигналов *DCLO* н *ACLO*, представленную на рис. 11.3.

После включения напряжения питания ОМП устанавливает сигнал INIT и ожидает снятия сигнала DCLO. После снятия сигнала DCLO происходят ввод информации из регистра расширения ввода/вывода по адресу 177716 и формирование значений счетчика команд (СК). В разряды 0—7 СК загружается нулевая информация, в разряды 8—15—информация из соответствующих разрядов регистра ввода/вывода, обращение к которому происходит по сигналу SEL1.

Регистр состояния процессора загружается константой 340. Микросхема анализирует состояние запросов на прерывания. Если незамаскированных запросов нет, то происходят ввод первой команды и ее выполнение.

Сигнал INIT является ответом ОМП на сигнал DCLO. Его используют для установки периферийной части системы в нсходное состояние. При вводе этого сигнала в ОМП пронсходит сброс триггеров запроса радиальных прерываний и блокирования сигнала DMR.

Системная магистраль позволяет адресовать 64К байта. Верхние 8К байт адресного пространства резервируются для управления периферийными устройствами и регистрами

Рис. 11.3. Временная диаграмма режима начального пуска K1801BM1 при включении питания

данных. Системиая магистраль ОМП позволяет организовать канал обмена информацией, аналогичный каналу ЭВМ «Электроника-60», в котором связь между двумя устройствами осуществляется по принципу «активиый — пассивный».

Активное устройство управляет прохождением информации по системной магистрали, разрешает прерывания, обеспечивает предоставление прямого доступа к памяти. Пассивное устройство передает информацию только под управлением активного устройства.

При обращении ОМП к памяти или виешним устройствам возможны следующие виды обменов (циклов) информацией по системиой магистрали: «Ввод» (чтение), «Вывод» (запись), «Ввод — пауза — вывод» (Чтение — модификация — запись).

Цикл «Ввод — пауза — вывод» включает ввод данных, выполнение арифметико-логических операций и вывод результата без повторения передачи адреса, т. е. результат записывается по адресу последиего выбранного операнда.

Ниже иллюстрируются иекоторые виды обмена информацией по системной магистрали.

При выполнении цикла «Ввод» даиные передаются от пассивного устройства к активиому. Временная диаграмма этого цикла приведена на рис. 11.4. Черта над обозначением сигнала указывает, что активным уровнем является низкий уровень сигнала.

Порядок выполнения операций следующий: процессор на выводах системной магистрали устанавливает адрес и выдает сигиал BSY;

синхроино с выдачей и снятием адреса ОМП устанавливает и снимает снгнал синхронизации SYNC, по которому происходит запоминание адреса пассивным устройством;

после установки сигнала SYNC ОМП снимает адрес, устанавливает сигнал DIN и ожидает поступление сигнала RPLY от пассивного устройства. Если в течение 64 тактов частоты синхронизации сигнал не появился, то ОМП переходит к обслуживанию внутреннего прерывания по ошноке обращения к системной магистрали;

после приема сигнала RPLY ОМП принимает данные от пасснвного устройства н снимает сигнал DIN:

после снятия сигнала DIN пассивное устройство сиимает сигнал RPLY, завершая операцию передачи данных;

после снятия сигнала *RPLY* пассивным устройством ОМП снимает сигналы *SYNC* и *BSY*. Если системная магистраль не предоставляется устройству ПДП, то ОМП сразу после снятия снгнала *SYNC* может начать новый цикл обращення к магистрали. В этом случае сигнал *BSY* не снимается.

Во время цикла «Ввод» сигнал WTBT не вырабатывается.

Кроме ОМП активным устройством на системной магистрали может быть устройство ПДП. В режиме ПДП обмен информацией происходит без вмешательства ОМП под управлением устройства ПДП. Последиее выпол-

Рис. 11.4. Временная диаграмма цикла «Ввод». Заштрихована область прихода сигнала RPLY, для которой соблюдается даниая диаграмма: $t_1 = 40 \div 70$ нс; $t_2 = 50 \div 80$ ис

Рис. 11.5. Временная диаграмма цикла прямого доступа к памяти

няет адресацию, синхронизацию, вырабатывает управляющие сигналы для организацин стандартиых циклов обращения к системной магистрали.

Временная днаграмма ПДП приведена на рис. 11.5. Устройство ПДП устанавливает сигнал DMR, в ответ на который ОМП формирует сигнал DMGO, затем, получив сигнал DMGO, вырабатывает сигнал SACK и снимает сигнал DMGO и ожидает завершение операции ПДП. Устройство ПДП начинает выполнять циклы передачи данных, аналогичные циклам «Ввод», «Вывод» или «Ввод — пауза — вывод». После окоичания обмена данными устройство ПДП снимает сигнал SACK, возвращая управленне магистралью процессору.

Регистры общего назначения (РОН) используются в качестве индексных и накопительных регистров автоинкрементной и автодекрементной адресаций. Среди восьми РОН два регистра (R6 и R7) имеют спецнальное назначение. Регистр R6 используется в качестве указателя стека (УС) и содержит адрес последней ячейки стека, R7 является счетчиком команд (СК) и содержит адрес очередной выполняемой команды.

Кроме РОН программно доступным регистром является регистр состояния процессора (РСП), содержащий информацию о текущем приоритете ОМП, значения кодов условий ветвлений программы, состояние Т-бита, нспользуемого при отладке программы и вызывающего прерывание программы:

Если 7-й разряд РСП находится в состоянии 1, то внешние устройства ие могут вызвать прерывание текущей программы, в противном случае внешиие устройства вызывают прерывание.

Установка отдельных разрядов кодов ветвлення выполняется в следующих случаях:

Z = 1, если результат равен 0;

N=1, если результат отрицателен;

C=1, если в результате выполнения операцин произошел перенос из самого старшего разряда или если при операциях сдвига вправо или влево из самого младшего или самого старшего разряда была выдвинута 1;

V=1, если в результате выполнения операции произошло арифметическое переполнение.

При загрузке информации в РСП может быть установлен нли очищен Т-разряд. Если он установлен, то после завершения выполиения текущей команды будет вызвано прерывание программы с адресом вектора прерывания 14. Используют Т-разряд в отладочных программах для организации такого режима выполнения отлаживаемой программы, при котором исполнение интересующих пользователя команд вызывает прерывание программы и переход на программу связи с оператором. Для работы совместно с системным ПЗУ в РСП введены два дополнительных разряда (10 и 11), обеспечивающих изменение режима реак ции на прерывания.

Система команд ОМП K1801BM1 (табл. 11.5) соответствует ЭВМ типа «Электрони-ка-60».

Безадресные команды содержат только код операции.

Формат одноадресных команд имеет внд

коп		N aдp	1етод есации		PÔH
15	6	5	3	2	0

Разряды 15—6 содержат код операции, определяющий исполняемую комаиду. Разряды 5—0 образуют 6-разрядное поле адресации операнда приемника, которое, в свою очередь.

Таблица 11.5

Обозначе- ние коман- ды	Код команды	Команда
HALT	000000	Останов
WAIT	000001	Ожиданне
RTI,	000002	Возврат нз прерывания
BPT	000003	Командное прерыванне для отладки
1OT	000004	Командное прерыванне для ввода/вывода
RESET	100005	Сброс внешинх устройств
RTT	000006	Возврат из прерывания
JMP	0001 <i>DD</i>	Безусловный переход
RTS	0 0 020 <i>R</i>	Возврат нз подпрограм- мы
JSR	004 <i>RDD</i>	Обращенне к подпро- грамме
EMT	104000— 104377	Командное прерыванне для системных программ
TRAP	104400 —104777	Командное прерыванне
NOP	000240	Нет операции
CI.C	000241	Очнстка С
CLV	000242	Очнстка V
CLZ	000244	Очистка Z
CLN	000250	Очистка N
SEC	000261	Установка С
SEV	000262	Установка <i>V</i>
SE Z	000264	Установка <i>Z</i>
SEN	000270	Установка <i>N</i>
SCC	000277	Установка всех разрядов (N, Z, V, C)
ссс	000257	Очнстка всех разрядов (N, Z, V, C)
SWAB	0003DD	Перестановка байтов
CLR(B)	*050 <i>D</i> D	Очнстка
COM(B)	*051 <i>DD</i>	Инвертирование
INS(B)	*052 <i>DD</i>	Прибавление 1
DEC(B)	*053 <i>DD</i>	Вычитание 1
NEG(B)	*054 <i>DD</i>	Изменение знака
ADC(B)	*055DD	Прибавление переноса
SBC(B)	*056DD	Вычитание переноса
TST (B)	*057 <i>DD</i>	Проверка
ROR(B)	*060 <i>DD</i>	Циклический сдвиг впра- во
ROL (B)	*061 <i>DD</i>	Циклический сдвиг влево
ASR (B)	*062 <i>DD</i>	Арифметнческий сдвиг вправо
ASL (B)	*063 <i>DD</i>	Арифметический сдвиг влево
MARK	0061 <i>NN</i>	Восстановление указателя стека (УС)
S <i>XT</i>	0067 <i>DD</i>	Расширенне знака
MTPS	1064SS	Запись слова состояния процессора (ССП)
MFPS	1067 <i>DD</i>	Чтенне ССП
MOV(B)	*ISSDD	Пересылка
CMP(B)	*2SSDD	Сравнение
B/T (B)	*3SSDD	Проверка разрядов
BIC(B)	*4SSDD	Очистка разрядов
3/S	*5SSDD	Логнческое сложение
XOR	074 <i>RDD</i>	Исключающее ИЛИ
ADD	06SSDD	Сложенне
SUB	16SSDD	Вычнтание
BR	0004XXX	Ветвление безусловное
BNE	0010XXX	Ветвление, если не равно 0
BEQ	0014 <i>XXX</i>	Ветвление, если равно 0

Обозначе- нне ко- манды	Код команды	Команда
BGE	0020XXX	Ветвление, еслн больше н равно 0
BLT	0024 <i>XXX</i>	Ветвление, если мень- ше 0
BGT	0030XXX	Ветвление, если больше 0
BLE	0034 <i>XXX</i>	Ветвленне, если меньще нлн равно 0
SOB	077 <i>PRNN</i>	Вычитание 1 и ветвление
BPL	1000 <i>XXX</i>	Вствленне, если плюс
BMI	10 04 XXX	Ветвление, если минус
BHI	101 0XXX	Ветвление, если больше
BLOS	1014 <i>XXX</i>	Ветвленне, если меньше нли равно
BVC	102 0 XXX	Ветвленне, если нет арифметнческого пере- полнення
BVS	1024 <i>XXX</i>	Ветвленне, еслн арифме- тнческое переполнение
BHIS, BCC	10 30 XXX	Ветвленне, если больше нли равно
BLO, BCS	1034 <i>XXX</i>	Ветвленне, если меньше

Примечание. B — байтовые команды; SS — поле адресации операнда источника; DD — поле адресации операнда прнемника; NN — смещение (6 разрядов); XXX — смещение (8 разрядов); R — регистр общего иазначения.

состоит из двух полей: разряды 2—0 определяют один из восьми РОН, который использует данные команды; разряды 5—3 определя-

ют метод адресацин. Разряд 3 определяет прямую нли косвенную адресацию.

Формат двухадресных команд имеет вид

Поле адресации операнда источника используется для выборки операнда источника, поле адресации операнда приемника — для выборки операнда источника и занесения результата.

Источниками прерываний, расположенными в соответствии с приоритетностью обработки (при одновременном появлении нескольких запросов), являются:

ошибка обращения к магистрали;

резервный или запрещенный код в регистре команд;

Т-бит в РСП;

сигнал аварии сетевого питания ACLO; снгналы радиальных прерываний IRQ1, IRQ2, IRQ3;

сигнал векторного прерывания VIRQ.

Установка 7-го разряда РСП в 1 позволяет игнорировать сигналы прерывания VIRQ, IRQ2, IRQ3.

Прерыванне текущего процесса и последующая его обработка пронзводятся после выполнення очередной команды. Прерывание по ошибке обращення к системной магистрали (обращение по адресу несуществующей ячейки

Рис. 11.6. Временная днаграмма приема адреса вектора прерывания. Заштрихована область прихода сигнала RPLY, для которой соблюдается данная диаграмма: $t_1 = 40 \div 70$ нс

^{*} Разряд, принимающий зиачения: 0—для команд с операцией над словами; 1— для комаид с операцией над байтами

намяти или регистра внешиего устройства) может прервать выполнение программы на любой фазе исполнения команды.

Временная диаграмма приема вектора прерывания показана на рис. 11.6. Последовательность операций при этом следующая. Устройство, которому необходимо обслуживание, выставляет сигнал требования прерывания VIRQ. Если прерыванне разрешено, то ОМП помещает в стек содержимое СК и РСП и последовательно устанавливает сигналы DIN и IAKO. Устройство принимает сигнал IAKO и запрещает его распространение к другим устройствам, помещает адрес вектора прерывания на выводы системной магистрали, вырабатывает сигнал RPLY и синмает сигнал VIRQ.

Процессор принимает адрес вектора прерывания и последовательно сиимает сигналы DIN и IAKO. Устройство завершает передачу вектора и снимает сигнал RPLY.

Микросхема ОМП загружает новое содержимое СК и РСП из двух последовательных ячеек, первая из которых определяется адресом вектора прерывания, после чего переходит к выполнению программы обслуживания данного устройства.

Основные параметры микросхемы K1801BM1 приведены в табл. 11.2 н 11.3.

11.2. Микросхема КМ1801ВМ2

Микросхема KM1801BM2 — однокристальный микропроцессор, является дальнейшим развитием ОП K1801BM1. Она обладает бо-

Рис. 11.7. Условное графическое обозначение KM1801BM2

лее высоким быстродействием, расширенной системой команд и рядом новых функциональных возможностей.

Основные параметры КМ1801ВМ2

Быстродействие выполне-	
ния регистровых комаид ти-	
па «Сложение»	До 1000 тыс. операций/с
Быстродействие выполне-	-
ния команд тнпа «Умноже-	
нне»	До 100 тыс. операций/с
Максимальная тактовая ча-	•
стота	10 МГц
Мощность потребления	До 1,7 Вт

Условное графическое обозначение микросхемы приведено на рис. 11.7, структурная схема показана на рис. 11.8. Назначение выводов соответствует микросхеме K1801BM1 и имеет следующие особенности.

Сигнал выходной тактовой синхронизации *CLCO* имеет частоту, равную половине частоты входной синхронизации *CLCI*. Он предназначен для органнзации систем, обладающих повышенной надежностью, в которых иесколько процессоров должны работать синхронно.

ко процессоров должны работать синхронно. Микросхема КМ1801ВМ2 наряду с снихронной адресной частью обмена по системной магистрали имеет возможность асинхронной работы при передаче адреса. Это обеспечивается с помощью входиого сигнала AR «Адрес принят». После выдачи адреса на системную магистраль ОМП ожидает появления сигнала AR. Низкий уровень входного сигнала AR свидетельствует о том, что пассивное устройство приняло адрес и ОМП может продолжать цикл обмена по системной магистрали.

Микросхема ОМП обладает встроенной логической схемой обращения в область адресного пространства от 160000 до 163777 включительно. Для обращения в эту область используются сигналы WRQ и WAKI, которые могут применяться для организации обмена в многопроцессорных вычислительных системах.

Сигнал SEL, устанавливаемый процессором в фазе чтения одновременно с сигналом DIN, определяет процедуру чтения внешнего регистра ввода/вывода. Обычно таким регистром является регистр начальных условий пуска ОМП в составе ЭВМ. Если ОМП устанавливает сигнал SEL в фазе выдачи адреса, то это означает, что обмен ндет с системной памятью, в качестве которой используется микросхема КР1801РЕ2. Системная память помимо специальных программ (начального пуска, резидентного тестового обеспечения, пультового терминала) позволяет расширять систему команд с помощью программной реализации в ней дополнительных команд.

Системная память при работе с ОМП является «скрытой», т. е. ее адреса в программном режиме не занимают адресного пространства ОЗУ. Тем самым она дополняет оперативную память. Системная память программно

Рис. 11.8. Структурная схема КМ1801ВМ2

доступна с помощью специальных команд ОМП.

Сигнал HALT аналогичен сигналу IRQ1, сигнал EVNT «Прерывание от таймера» аналогичен сигналу IRQ2 в ОМП K1801BM1.

По сравнению с K1801BM1 ОМП KM1801BM2 может выполнять дополнительные команды расширенной арифметики (табл. 11.6). Команды плавающей запятой (MUL, DIV, ASH, FDIV) выполняются на программиом уровне с помощью системного ПЗУ KP1801PE2.

Таблица 11.6

Обозначе- ние коман- ды	Код	Команда
MUL DIV ASH	070RSS 071RSS 072RSS	Умножение Деление Сдвиг на <i>N</i> разрядов
ASHC FADD	073 <i>RSS</i> 07500 <i>R</i>	одного слова Сдвиг на N разрядов двойного слова Сложение с плавающей
FSUB	07501 <i>R</i>	запятой Вычитание с плавающей запятой
FMUL	07502 <i>R</i>	Умножение с плавающей
FDIV	07503 <i>R</i>	запятой Деление с плавающей запятой

11.3. Микросхема КМ1801ВМ3

Микросхема KM1801BM3 — 16-разрядный однокристальный микропроцессор, включающий операционный блок, блок микропрограмм-

ного управления, блок прерываний, диспетчер памяти и блок управления системиой магистрали.

Отличительной особенностью KM1801BM3 являются большой объем адресуемой памяти, высокое быстродействие и возможность подключения сопроцессора арифметики чисел с плавающей запятой (СППЗ).

Основные параметры КМ1801ВМ3

Разрядность чисел и команд	16 разрядов с воз- можностью представ ления и обработки 32-разрядных слов
Объем адресуемой памя-	
ти	4М байт
	Микропрограммный
	72 с фиксированной
	запятой, 46 с пла-
	вающей запятой
	(при подключении
	СППЗ)
Число регистров общего	,
иазначення	8
Производительность опе-	
раций «Регистр — ре-	
гистр»	Сложение в потоке
•	1,5 млн. операцнй/с;
	умножение 100 тыс.
	операций/с; деление
	50 тыс. операций/с
Число линий запросов на	
прерывание	4
Мощность потребления .	1,5 Вт

Условное графическое обозначение микросхемы приведено на рис. 11.9, назначение выводов — в табл. 11.7, структурная схема показана на рис. 11.10.

Микросхема содержит шесть регистров общего иазначения (R0-R5), три регистра —

Условное графическое обозначение KM1801BM3

Рис 11.10. Структурная схема КМ1801ВМ3

указателя стека R6 (SP), используемых в режимах операционной системы (KSP), пользователя $(U\dot{S}P)$ и в пультовом режиме (HSP), и регистр R7, который служит также счетчиком команд (PC). Регистр SP содержит адрес последней заполненной ячейки стека, а РС адрес команды, следующей за выполняемой.

Программно доступным регистром является также регистр состояния процессора PSW. Информация, содержащаяся в PSW, влияет на режимы выполнения команд и прерываний, определяет режим работы диспетчера памяти:

Регистр PSW доступен также из процессора по физическому адресу 17777776.

Назначение разрядов регистра PSW: разряды 0-3 (N, Z, V, C) — признаки знака, нуля, переполнения и переноса, описываюрезультат последией выполненной щие команды:

разряд 4 (T) — признак режима отладки; разряды 5, 6, 7 — код приоритета внешних

прерываний IRQ (3—0); разряды 13, 12 — предыдущий режим ра-

боты МП;

разряды 15, 14 — текущий режим работы МП (11 — режим пользователя, 00 — режим

операционной системы).

микросхеме используются три типа комаид безадресные, одноадресные и двухадресные. В безадресных командах код команды содержит только код операции. В кодах одноадресных и двухадресных команд содержится информация, определяющая: выполняемую функцию (код операции); регистры общего назначения, используемые при выборке операндов, метод адресацин.

КМ1801ВМЗ включает команд Система команды МП КМ1801ВМ2 и дополнительные команды, которые приведены в табл. 11.8.

Диспетчер памяти обеспечивает:

расширение емкости адресуемой памяти с 64К до 256К или до 4М байт;

преобразование виртуальных адресов в физические и защиту памяти в системах с разделением времени;

использование различных областей адресов для режима пользователя и режима операционной системы (ОС).

Расширение емкости адресуемой памяти осуществляется преобразованием 16-разряднопамяти го виртуального адреса в 18- или 22-разрядный физический адрес. Преобразование выполняется с помощью набора 16 регистров — адресов страниц РАР и 16 регистров — описателей страниц PDR

Таблица 11.7

10—25			
	AD0—AD15	Вход, выход	Мультнплексирование во времени информации ад
26-30	A16—A20	Diver	ресов и данных Адресная ннформация
$\frac{20-30}{31}$	A21/NS	Выход Выход	Мультиплексирование во времени информации ад
	7121/140	Быход	реса A21 н ннформации о том, что считываетс нз памяти: команда или данные
3	SYNC	Выход	Фронт сигнала. Указывает на то, что выда адрес. Обмен по магистралн продолжается до
1	DIN	Выход	тех пор, пока присутствует снгнал Сигнал управления вводом данных
2 5	DOUT	Выход	Сигнал управления выводом данных
5	RPLY	Вход	Сигнал ответа. Указывает на то, что данные вы ставлены на магистрали во время чтения или при
63	WTBT	Выход	няты во время записи Во время фронта сигнала SYNC указывает на тигобмена: запись либо чтение. Во время записи ин формации указывает на формат данных: байт ил слово
4	SSYNC	Вход	Сигнал ответа при опознании адреса, вызывае снятие адреса с магистрали
6	DMG	Выход	Сигнал разрешения на захват магистралн по пря мому доступу к памяти
7	SACK	Вход	Сигнал подтверждения запроса прямого доступ к памяти
8 9	DMR	Вход	Сигнал запроса прямого доступа к памяти
33	GND INIT	Вход выход	Общий Сигнал установки периферийной части системы
46	ACLO	Вход	начальное состояние Сигнал включения источника питания переменно
47	HĻLT	Вход	го напряжения Сигнал останова
48-51	IRQ3—IRQ0	Вход	Сигналы запроса на прерыванне МП
43 62	U_{cc}	_	Напряжение питания
52	IAK DCLO	Выход Вход	Сигнал разрешення прерывания Сигнал включения источника питания постоянно го напряження
53	FPPTRP	Вход/выход	Сигнал прерывания от СППЗ
54	FPPRD	Вход	Во время включения МП высокий уровень ука зывает, что СППЗ подключен, далее низки уровень указывает, что СППЗ готов начать вы полнение следующей команды
55 56	HLTM DREADY	Выход Вход	Сигнал указывает, что МП в пультовом режиме Сигнал указывает, что СППЗ выставил на маги
57	FL	Вход	страль данные во время процедуры записи Сигналы длинного целого
58	FD	Вход	Сигналы двойной точности
59 60	WO	Вход	Сигнал режима включения МП
61	CLC LIN	Вход	Тактовый сигнал
32	GND1	Выход	Снгнал стробирует в СППЗ загрузку команды Общий
64	U_{cc}	_	Напряжение питания

II римечание. Выводы 38--41 не задействованы.

Обозначе- нне ко- манды	Код	Команда
MFPD	1065 <i>SS</i>	Засылка данных в стек текущей моды по адресу
MFPI	0065 <i>SS</i>	предварительной моды Засылка команды в стек текущей моды по адресу
MTPD	1066 <i>SS</i>	предварительной моды Засылка данных из стека текущей моды по адресу
MTPI	0066 <i>SS</i>	предварительной моды Засылка команды нз сте- ка текущей моды по ад- ресу предварительной моды

 Π р н м е ч а н и е. SS — поле адресации операнда источника.

Диспетчер памяти преобразует все адреса автоматически, поэтому пользователь работает в области виртуальных адресов. Область виртуального адреса делится на восемь отдельных страниц. Каждая виртуальная страница имеет свой код защиты. Есть три вида защиты памяти: разрешены запись и чтение, разрешено только чтение, запрещен любой доступ. Все попытки запрещенного доступа вызывают прерывание МП.

Диспетчер памяти обеспечивает три режима работы: ОС, пользователя и пультовый. Для каждого режима работы существует свой набор регистров *PAR/PDR*.

Регистры PAR/PDR включают два набора по восемь 27-разрядных регистров PAR/PDR для режимов ОС и пользователя и четыре 16-разрядных регистра адреса страницы PARH для обеспечения пультового режима. Физические адреса регистров PAR/PDR приведены в табл. 11.9.

При 18-разрядном физическом адресе базовый адрес страницы в регистре *PAR* содержится в разрядах 0—11, а при 22-разрядном— в разрядах 0—15.

Таблица 11.9

Номер	Режн	иы <i>ОС</i>	Режимы пользоват	
регист- ра	PAR	PDR	PAR	PDR
0	17772340	17772300	17777640	17777600
1	17772342	17772502	17777642	17777602
2	17772344	17772304	17777644	17777604
3	17772346	17772306	17777646	17777606
4	17772350	17772310	17777650	17777610
5	17772352	17772312	17777652	17777612
6	17772354	17772314	17777654	17777614
7	17772356	17772316	17777656	17777616

Поле PLF определяет длину страницы в блоках (один блок — 32 слова) и позволяет установить ее от 0 до 177_8 .

Разряд 3 (ED) — направление расширения страницы: при ED=0 — расширение вверх, при ED=1 — расширение вниз. Прн расширенин вверх PLF устанавливается на 1 больше необходимой длины. Прн расширении вниз в PLF заноснтся дополнительный код длины страницы.

Поле ACF определяет тип доступа к странице памяти: 00 — недоступна, прерывание при любом обращенин; 01 — доступна только по чтению, прерывание при попытке записи; 10 — не используется, прерывание при любом обращенин; 11 — разрешены чтение и запись.

Разряд 6 (W) — признак записи, указывает, что в страницу произведена запись. Разряд W очищается автоматически при записи в PAR и PDR данной страницы. Установлен этот признак может быть только аппаратно логической схемой управления диспетчера памяти $(Д\Pi)$.

Регистры состояния диспетчера памяти. Диспетчер памяти содержит три регистра состояний: SRO, SR2, SR3. Четвертый регистр состояния SR1 аппаратно не реализован, и при обращенин по адресу этого регистра (17777574) всегда считываются нули. В случае нарушення условня защиты памятн процессор немедленно прерывается и переходит к программе обработки прерывания по вектору 250₈ в области памяти ОС. Регистры состояния SRO и SR2 служат для анализа возникшего прерывання.

Регистр *SR0* (адрес 17777572) содержнт флаги ошибок, бит разрешення преобразования адреса в ДП и другую информацию, необходимую ОС для обработки ошибки и возврата к прерванной программе.

Формат регистра SRO имеет вид

Назначение разрядов регистра SRO: разряд 15 (NR) — ошибка по запрету доступа. Возникает при попытке обращения к недоступной или неиспользуемой страиице;

разряд 14 (PL) — ошибка по нарушению длины страницы;

разряд 13 (RO) — ошибка по записи. Возникает при попытке записи в страницу, доступную только по чтению;

разряд 8 (М) — бит, устанавливающий диагностический режим работы ДП; при установленном М выполняется преобразование адреса только последиего обращения в память приемника;

разряды 5, 6 -- режим МП (пользователя илн ОС), при обращении к которому произошла ошнбка ДП;

разряды 1, 2, 3 — номер страницы, при обращении к которой произошла ошнбка ДП;

разряд 0 (EN) — бит включения ДП. При EN = 1 выполняются преобразование адресов и защита памяти в ДП.

Perистр SR2 (адрес 17777576) содержит внртуальный адрес первого слова выполняемой команды. Он не изменяется, если в данной команде произошло прерывание по ошибке ДП. Доступеи только по чтению.

Регистр SR3 (адрес 1777757) содержит два разряда. Разряд 4 содержит бит AS. При AS=1 адрес физический, 22-разрядный, при AS=0-18-разрядный. Разряд 5 содержит бит UM. При UM = 1 устанавливается для внешней аппаратуры режим включения схем преобразования адресов.

Формирование физического адреса в ДП изображено на рис. 11.11.

В сумматоре выполняется сложение виртуального адреса VA (разряды 6—12) с выбранным PAR (разряды 0—11) при 18-разрядном адресе и PAR (разряды 0—15) при 22-разрядном адресе. В результате полный физический адрес содержит разряды 0-5 виртуального адреса и разряды 6-17 (21) - результат суммы.

Система прерываний процессора. Прерывания делятся на аппаратурные и командные. Часть аппаратных прерываний вызывает немедленный переход к их обработке. Это так называемые фатальные ошибки. Они возникают при ошибках системной магистрали, ДП. СППЗ. Анализ таких аппаратных прерываний, как авария источника питания, внешинй сигнал HALT, прерываний IRQ (разряды 0-3), переполиения стека в моде операцнонной системы производится после завершения очередной команды в соответствии с приоритетом, указанным в табл. 11.10. К командам прерывания относятся ЕМТ, TRAP, BPT, IOT, а также (если учитывать алгоритм выполиения) и резервные коды. Вектора прерываний приведены в табл. 11.11.

При прерывании МП помещает в стек РС и PSW и считывает новые значения PC и PSWиз ячеек, определяемых вектором прерывания, причем загрузка PC и PSW ведется на области памяти операционной системы. Особый случай представляет собой возинкновение фатальной ошибки в ходе выполнения микропрограммы обработки прерывания, так называемой «двойной ошибки». В этом случае процессор переходит в пультовый режим.

В пультовой режим процессор переходит при: выполнении команды HALT в моде ОС;

Рис. 11.11. Формирование физического адреса

возникиовенни «двойной ошибки»; возникновенни внешнего сигнала HALT=0 и отсутствии в этот момент других, более приоритетных прерываний.

При входе в пультовый режим процессор загружает в стек HSP константу 100000_8 ; загружает в стек регистры PSW и PC; заносит в

Таблица 11.10

Прноритет	Прерыванне
Высший	Команда <i>HALT</i> Нечетный адрес Ошибка ДП Зависанне Команды прерывания Прерывание по Т-биту
Самый низкий	Переполнение стека Сбой питання Внешний сигнал <i>HALT</i> IRQ3
	i. IRQ0

Таблица 11.11

Ве	ектор	Прерыванне
	004	Зависание, нечетиый адрес, переполнение стека
	010	Резервные и запрещенные ко- манды
	014	Прерывание по Т-биту
	020	Прерывание по команде
	024	Сбой питання
	030	Прерыванне по команде МТРІ
	034	Команды прерывания
	250	Ошибка диспетчера памятн
	244	Прерывание СППЗ
Из	систем-	IRQ3— IPQ0
	магист-	-
рали	I	

Рис. 11.12. Временные днаграммы циклов «Чтение» (а), «Запись» (б) и «Чтение/модификация запись» (в)

Рис. 11.13. Временная диаграмма цикла «Запрос/предоставление прямого доступа»

pe- PARH		уаль- адрес	ие	Назначенне регистра
Номер гистра	VAI5	VA14	Значение адрес	PARH
0	0	0	170000	Формирование на- чального адреса про-
1	0	1	167600	чального адреса ОЗУ программы пульто-
2	1	0		вого режима Адресация ко всей
3	1	1	177600	области памяти Формирование начального адреса страницы старшего банка

регистр *PSW* значение 340₈, а в *PC* — 0; включает ДП на преобразование виртуальных адресов в 22-разрядные физические и переходит к выполнению программы, расположенной по виртуальному адресу 0.

В ДП с целью реализации пультового режима введены четыре регистра адреса страницы *PARH* (табл. 11.12), адресация к которым производится двумя старшими разрядами виртуального адреса. Регистр *PARH2* позволяет осуществлять обращение ко всему адресному пространству путем записи в иего соответствующего кода. Адрес регистра *PARH2*—177512.

В пультовом режиме существуют некоторые отличия в выполненин команд и прерываний. Например, команды *RT1* и *RTT* выполняются без учета значения T-бита.

При включении питання извне устанавливается снгнал *DCLO* и МП переходит в режим ожидания сигнала *ACLO*. При поступлении сигнала *ACLO* МП начинает выполнение одной из процедур начального пуска в зависимости от снгнала *WO*:

WO=0. МП загружает PSW содержимым 26-й ячейки памяти, PC— содержимым 24-й ячейки н начинает выполненне программы с этого адреса;

WO=1. МП загружает в PSW константу 340, а PC=173000 и начинает выполнение программы с этого адреса.

При выполненни любой команды МП осуществляет хотя бы одно обращение к каналу, называемое циклом обращения к каналу. Перед каждым циклом МП осуществляет процедуру захвата канала.

Цикл «Чтение». Цикл разделен на фазы передачи адреса н прнема данных. Адрес из МП сопровождается сигналом SYNC, синмается после прнема сигнала SSYNC, и затем выставляется сигнал DIN. Микросхема переключает элементы входа/выхода на выводах ADO—

AD15 на прием и ожидает сигнал RPLY. Фаза приема данных. После прнема снгнала RPLY МП принимает данные и снимает сигналы DIN н SYNC.

Цикл «Запись». Передача адреса сопровождается сигналом WTBT, который синмается одновременно со снятнем адреса и указывает, что происходит цикл «Запись». После окончания фазы передачи адреса МП выставляет на выводы ADO-AD15 данные и сигнал DOUT и ожидает сигнал RPLY После приема сигнала RPLY МП снимает сигнал DOUT, даиные н снгнал SYNC. По снятию сигнала DOUT пассивное устройство снимает сигнал RPLY.

«Чтенне — модификация — запись». Цикл разделен на фазы передачи адреса, при ема н записи данных. Фаза записн начинается после того, как пассивное устройство сняло сигнал RPLY в ответ на снятие сигнала DIN.

Временные диаграммы циклов «Чтение», «Запись» и «Чтение — модификация — запись» изображены на рис. 11.12, циклов «Запрос предоставление прямого доступа» — на рис. 11.13.

Основные параметры мнкросхемы КМ1801ВМЗ приведены в табл. 11.2 и 11.3.

11.4. Микросхема К1801ВП1-30

Микросхема К1801ВП1-30 построена на основе базового матричного крнсталла микросхемы К1801ВП1. Она предназначена для управления ОЗУ (УОЗУ) динамического типа, на основе микросхем серии выполненного К565РУЗ и КР565РУ6, и выполняет:

прием, хранение и преобразование адреса для накопителя ОЗУ;

регенерацию памяти;

связь накопителя ОЗУ и буферного регистра данных с каналом передачи информации ЭВМ типа «Электроннка-60»;

специальные функции управления системными областями памяти при работе с ОМП K1801BM1.

Условное графическое обозначение микросхемы приведено на рнс. 11.14, назначение выводов — в табл. 11.13, структурная схема по-казана на рис. 11.15, временные диаграммы работы — на рис. 11.16.

В состав структурной схемы входят счетчик адресов регенерации (СЧАР), буферный регистр адреса (БРА), мультиплексор адресов (МПА), регистр режима (РР), компаратор ад-

Таблица 11.13

Вывод	Обозначение	Тип вывода	Функциональное назначение выводов		
1, 2	AD5, AD4	Входы	Разряды адреса данных		
3, 4	AD3, AD2	Входы/	Разряды адреса данных		
57	101 1011	выходы		7	
0/	AD1, AD14, AD0	Входы	Разряды адреса'данных	$\frac{7}{5}$ 0 AB MCC	}
8	DIN	Вход	Чтение данных	4 02	A0
9	DOUT	Вход	Запись данных	3 • 3	A1 A2
10	CLC	Вход	Синхронизация	4 94	A3
11	RASO	Выход	Сопровождение адреса строки	41 0 5	A4
			накопителя (полублок I)	40 67	A5
12	LOCK	Выход	Блокировка	39 08	A5
13	RPLY	Выход	Ответ	第 9	
14	C	Выход	Сигнал стробировання записн в	36 9 10	RASO
15	DWE	D	буферный регистр данных	<i>100</i> 1 1	
15 16	DME RAS1	Выход Выход	Выборка данных памяти		rasi q Casu q
10	KASI	Быход	Сигнал сопровождения адреса	77 4 / /	CASI C
17	RSEL	Вход	строки накопителя Выборка регистра режима	" 	WE d
18	WE	Выход	Сигнал сопровождения записн в	32 SYNC	772 4
- •	" - 2	Jaman	накопитель		DME O
19	CASO	Выход	Сигнал сопровождення адреса	9 1	1
		:	столбца накопителя (полублок I)	23 OWTRT	c
20	CAS1	Выход	Сигнал сопровождения адреса	33 MSFI	
			столбца накопителя (полублок ІІ)	77 1 2221 14	LOOK
21	GND		Общий	BO BCLO	
22—28		Выход	Разряды адреса накопителя	10	RPLY ¢
29 30	WTBT	Вход	Запись, байт	7020	
30 31	DCLO AD15	Вход Вход	Авария источника питания		BND
$\frac{31}{32}$	SYNC	Вход Вход	Разряд адреса/даиных Обмен	Ll	U _{CC}
33	MSEL	Вход	Выборка памяти		
34-41			Разряды адреса данных	Рис. 11.14. Условн	юе гр
42	U_{cc}		Напряжение питания	ческое обозна	
				77400413174	0.0

К1801ВП1-30

Рис. 11.15. Структурная схема К1801ВП1-30

ресов (КМПА), блок синхронизации (БС), бу-

ферные усилители мощности (УМ).

Счетчик адресов регенерации включает делитель тактовой частоты (разряды 0—5) и счетчик адресов (разряды 6—13). В режиме регенерации содержимое разрядов 7—13 через МПА поступает на выводы A0—A6 и является

апресом регенерации (АР).

Буферный регистр адреса содержит 16 разрядов и предназначен для хранения адреса, поступающего по системной магистрали. Содержимое разрядов 1—7 при выдаче адреса строки (AC) поступает через МПА на выводы A0-A6, при выдаче адреса колонки (AK) иа выводы A0-A6 поступает содержимое разрядов 8—14. Кроме того, содержимое разрядов 8—14 поступает на КМПА для выработки сигналов LOCK. Содержимое разряда 0 исполь-

зуется в БС для определения номера байта при выполнении процедуры записи байта. Сигнал SYNC фиксирует запись информации в БРА.

Мультиплексор адресов предназначен для раздельной во времени выдачи адреса ОЗУ в виде 7-разрядных АС и АК при циклах обмена с накопителем ОЗУ, а также 7-разрядного АР.

Регистр режима предназначен для хранения служебных признаков режима работы ОМП K1801BM1. Содержит два разряда (PP2 и PP3), доступных по чтению и записн из системной магистрали (разряды AD2 и AD3). Информация, хранимая в PP, влияет на установку сигнала LOCK.

Компаратор адресов вырабатывает сигнал блокировки LOCK, служащий для выборки областей системного ПЗУ и блокировки этих областей в адресном пространстве внешних устройств. Установка сигнала иа выводе LOCK

происходит в следующих случаях:

адрес находится в диапазоне 160000---163777 при наличии 1 в PP2;

адрес находится в диапазоне 160000— 173777 при наличии 1 в *PP3*;

адрес обращения находится в диапазоне 173000-173777 независимо от состояния PP2 и PP3.

Компаратор адресов вырабатывает признак «Свой» для БС при обращении по адресу в диапазоне 177600—177677, который осуществляет запуск БС при отсутствии сигнала MSEL Выделение данной области системного ОЗУ происходит при низком уровне сигнала DCLO.

Блок синхроннзации вырабатывает сигнал управления внутренними узлами УОЗУ, накопителем ОЗУ, внешним буферным регистром данных, а также отрабатывает сигналы управления по каналу ЭВМ.

Регенерация информации в накопителе ОЗУ динамического типа пронзводится по принципу: один цикл регенерации по одному адресу строки в течение периода, равного

Рис. 11.16. Временные диаграммы работы К1801ВП1-30

64 периодам тактового сигнала *CLC*. Полная регенерация информации в памяти по всем адресам происходит за 2 мс при тактовой частоте 4,2 МГц. В БС введена схема запуска текущего цикла регенерации к окончанию цикла обмена информацией. При отсутствии циклов обмена с памятью в течение времени, равного 32 пернодам тактовой частоты после получения БС запроса на регенерацию, очередной цикл регенерации производится принуднтельно.

Запрос на очередной цикл регенерации происходит через 16 периодов тактовой частоты

после изменения адреса СЧАР.

Снгналы *RAS0* и *RAS1* вырабатываются одновременно.

Диапазон изменения частоты тактового сигнала CLC от 4,2 до 8 $M\Gamma_{\rm H}$.

Цикл чтения из памяти возможен при: сигиале *SYNC*, фиксирующем адрес обращення *AD0—AD15* в БРА; снгнале *MSEL*; отсутствии снгиала *WTBT* в адресиой части; отсутствин очередного цикла регенерации памяти.

Выходные сигналы *DME* и *RPLY* УОЗУ вырабатывает при иаличии входного сигнала

DIN.

Сигнал RASO устанавливается в том случае, если при выдаче адреса AD15 = 1, а сигнал RAS1 — если AD15 = 0.

Сигналы *CAS0* и *CAS1* вырабатываются одновременно.

Цикл записи в память возможен при: сигнале \overline{SYNC} , фиксирующем адрес обращения AD0-AD15 в БРА; сигнале MSEL; сигнале \overline{WTBT} , который в адресной части является признаком записн; сигнале DOUT; отсутствии очередного цикла регенерации памяти.

При записи байта УОЗУ вырабатывает сигнал \overline{CASO} , если AD0=1 в адресной части. При записи слова УОЗУ вырабатывают сигналы \overline{CASO} и \overline{CASO} одновременно.

Сигнал блокировки LOCK УОЗУ вырабатывает в фазе выдачи адреса. Задержка появления сигнала LOCK относительно установки адреса на выводе ADO—AD15 не более 100 нс.

Микросхема УОЗУ приходит в состояние готовности за время, соответствующее прохождению семи синхронизирующих импульсов *CLC*.

Сигнал *DCLO* производит установку СЧАР в нулевое состояние и PP в режим «останов».

Основные параметры K1801BП1-30 приведены в табл. 11.2 и 11.3.

11.5. Микросхема К1801ВП1-33

Микросхема Қ1801ВП1-33 применяется для органнзации интерфейса накопителя на гибких магнитных дисках (НГМД) тнпа «Электроника ГМД-7012». Совместно с микросхемой К1801ВП1-34 выполняет функции контроллера интерфейса 16-разрядного программируемого параллельного ввода/вывода и контроллера байтового параллельного интерфейса.

Условные графические обозначения и структурные схемы интерфейса НГМД, контроллера интерфейса параллельного ввода/вывода и контроллера байтового параллельного интерфейса приведены на рис. 11.17 и 11.18, иазначение выводов дано в табл. 11.14.

Интерфейс накопителя на гнбких магнитных дисках. Установка микросхемы в режим интерфейса НГМД производится подачей на выводы RCO-RC3 напряжения высокого уровня.

Микросхема осуществляет передачу информации между процессором и контроллером НГМД с помощью регистра команд и состояния (РКС), регистра данных (РД). Регистры считываются и загружаются программно.

Регистр команд и состояния имеет следу-

ющий формат:

Назначение разрядов регистра:

GO (Пуск) — инициирует прием контроллером НГМД команды (только для записи);

F1—F3 — разряды команды (только для записи);

US (Выбор привода) — указывает на выбор одного из двух дисководов для выполнения требуемой команды (только для записи);

DONE (Завершено) — указывает на то, что выполнение команд завершено (только для чтения):

IE (Предоставление прерывания) — устанавливается программно для осуществления прерывания по завершенин выполнения команды, сбрасывается канальным сигналом INIT (для чтения и записи);

TR (Требование передачи) — требование записи (считывания) данных через регистр данных (только для чтения):

данных (только для чтения); INIT (Установка) — устанавливается программно для приведения НГМД в исходное состояние;

ERROR (Ошибка) — устанавливается, если в процессе выполнения команды произошла ошибка (только для чтения).

Разряды 8—13 не используются.

Список команд приведен в табл. 11.15.

Регистр данных имеет следующий формат:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0

Разряды 0-7 предназначены для хранения данных (D0-D7).

Разряды 8—15 не используются.

Интерфейсные сигналы контроллера НГМД включают:

SET (Начальная установка — вырабатывается микросхемой для приведения механизма и электронной части НГМД в исходное состояние:

DONE (Завершено) — устанавливается контроллером НГМД для индикации того, что текущая команда выполнена (либо в случае ошибки);

ошибкн); RUN (Пуск) — устанавливается микросхемой для инициирования передачи команды или байта данных;

OUT (Вывод) — вырабатывается контроллером НГМД для указания направления передачи байта информации (при иизком уровие сигнала информации передается от НГМД к микросхеме);

TR (Запрос передачи) — устанавливается контроллером НГМД для индикации того, что он готов принять (передать) байт информации;

DI (Вход данных) — линня для приема последовательной информации;

DO (Выход даиных) — линия для передачи последовательной информации;

SHFT (Сдвиг) — линия синхронизации при-

ема (передачи) последовательной информации; длительность отрицательного импульса не менее 200 нс, период 1 мкс;

ERR (Ошибка) — устанавливается контроллером НГМД при обнаружении ошибки; при этом прекращается выполнение текущей команды и устанавливается сигнал DONE.

С помощью выводов *RC4* и *RC5* можно переадресовать регистры микросхемы. Соответственно изменяются адреса векторов прерываний. Адреса регистров и векторов прерываний, соответствующие комбинациям уровней напряжений на выводах *RC4*, *RC5*, приведены в табл. 11.16.

При низком уровне сигнала *DONE* запись команды, содержащей лог. 1 в нулевом разряде, в регистр команд вызывает установку сигнала *RUN*, который инициирует прием команды контроллером НГМД. Контроллер НГМД снимает сигнал *DONE* и выставляет на линию *SHFT* серию из восьми импульсов. После снятия сигнала *DONE* происходит сброс сигнала *RUN*, а серия импульсов синхронизирует выдачу команды в последовательиом коде

Таблина 11.14

	Таблица 11.14		
	Вывод Обозначение	Тип вывода	Функциональное назначение выводов
	Интерфейс нако	пителя на ги	бких магнитных дисках
2 RCO FDI DO 27 RCI RUN 28 RC2 SET 29 RCJ VIRQ 35 RC4 VIRQ 36 RC5 IAKO 36 26 DI ADO 9 T SHFT ADI 10 JJ DONE ADJ 12 JJ DONE ADJ 12 R DOUT AD6 15 R AD7 16 JJ IAKI AD7 16 JJ IAKI AD7 16 JJ IAKI AD7 16 JJ IAKI AD8 17 AD8 17 AD9 18 AD10 20 AD11 22 AD10 19 AD10 20 AD11 22 AD10 22 AD11 22 AD10 22 AD10 22 AD10 22 AD11 22 AD10 23 AD10 24 AD10 25 AD	1—6 RC3, RC0—RC5 SHFT OUT AD0—AD7 17—20 AD8—AD11, AD12, AD14 AD15 GND BS DI DO RUN SET 30 ERR 31 DONE 32 TR 33 IAKI 34 INIT 35 VIRQ 36 IAKO 37 DOUT 38 DIN RPLY WTBT SYNC Ucc	Входы Вход Входы/ выходы Входы Входы Вход Вход Вход Вход Вход Вход Вход Вход	Выбор режима Сдвиг данных Вывод данных Разряды адреса/данных Разряды адреса/данных Разряд адреса/данных Общий Внешнее устройство Вход данных Выход данных Пуск Начальная установка Ошибка Завершено Требование передачи Разрешение прерывания Установка исходиого состояния Требование прерывания Предоставление прерывания Чтение данных Запись данных Ответ Запись/байт Обмеи Напряжение питания
	Контроллер инте	ерфейса пара	аллельного ввода/вывода
а) Рис. 11.17. Условное графическое обозначение К1801ВП1-33 в режиме ннтерфейса НГМ (а)	1—4 RC3, RC0, RC1, RC2 5 RD0 6 RD1 7 CSR0	Входы Выход Вход Выход	Выбор режима Задержка ответа Задержка ответа Регистр состояния <i>РСО</i>

2	RCO	PIC	DTR 27
3			NDR 28
4	RC1	1	BIR 29 50R 29
\neg	RC2	ĺ	ORR 4 37
1	RC3		CSRO 7
5	RDO	1	60/1/
<u>6</u>]	7.76
	RDI	1	IAKO 9
<i>J2</i>	REQA		ADO 10
.70			AD2 + 77
<u> </u>	REQ8		474 13
33		1	AD5 44
	IAKI		AD7 16
34	INIT		AD8 17 AD9 18
47	SYNC		A7110 1 19
	DIN		ADI1 20
4/1	DOUT WTBT		AD12 0 24 AD14 24
27		1	AD15 25
	<i>8\$</i>		RPLY 39
27 *	6ND		U _{CC} * 42
_		5)	
•.	•	-7	
2	RCO	BPIC	IN 27
ا لــك	RC7	DI 10	28
4	RC2		SET 29

Вывод	Обозначение	Тип вывода	Функциональное назначение выводов
 8	CSR1	Выход	Регистр состояния РС1
9—16	ADOAD7	Входы, выходы	Разряды адреса/данных
	AD8—AD11, AD12, AD14	Входы	Разряды адреса/даниых
21	GND	_	Общий
25	AD15	Выход	Разряд адреса данных
2.3	BS	Вход	Внешиее устройство
26	BIR	Выход	Вывод старшего байта
27	DTR	Выход	Ввод данных
28	NDR	Выход	Вывод данных
29	BOR	Выход	Вывод младшего байта
30	REQB	_Вход	Требование В
31	ORR	Выход	Чтение выходиого регистра
32	REQA	Вход	Требование А
33	IAK1	Вход	Предоставление прерывания
34	INIT	Вход	Установка
35	VIRQ	Выход	Требование прерывания
36	IAKO	Выход	Предоставление прерывания
37	DOUT	Вход	Запись данных (по каналу)
<i>38</i>	DIN	Вход	Чтение данных (по каналу)
39	RPLY	Выход	Ответ
4 0	WTBT	Вход	Запись/байт
	SYNC	Вход	Обмен
42	U_{cc}	I -	Напряжение питания

2	000	2272		27
$\frac{2}{3}$	RCD	BPIC	IN (28
4	RC7		0079	29
	RC2		SET 6	
40	<i>50-5</i>		AD-50	7
26	sc-s		SC-A	8
_ `	00 0		36 A	
7	AO-A		VIRQ 4	35
5	AC-A		IAKO d	36
`	AU A		IAND	
<u> 30</u> _	ERR		ADO C	9
3/			ADI 6	10
<u></u>	DONE		AD2	1/2
<i>J</i> 2	TR		AJJ 9	13
	///		AD4 9	/4
1	REQ		ADS 6	15
<i>]</i>			AD7	16 17
	IAKI		A 118	18
J 4	TUTT		AD9	19
	INIT		ADIO 9	20
41	SYNC	:	ADI2	22
<u> 38</u> <u> 37</u>	DIN		A 11/4	24
<u> </u>	דעטע		AD15	25
23	85		RPLY	39
21	00		17.27	, 42
")	K GNII		UCC >	+2
. '		A)		I
		0)		

Контроллер байтового параллельного интерфейса

			• *
	REQ	Вход	Требование
24	RCO—RC2	Входы	Выбор режима
5	AO-A	Вход	Готовность приемника
6	AC-A	Вход	Запрос приемника
6 7 8	AC-S	Выход	Запрос источника
8	SC-A	Выход	Стробирующий сигнал прием-
			ника
916	AD0-AD7	Входы	Разряды адреса/данных
!		выходы	,
<i>17−20</i> ,	AD8AD11,	Входы	Разряды адреса/данных
22, 24	AD12, AD14		1 /4 / / / / / / / / / / / / / / / /
25	AD15	Выход	Разряд адреса/данных
21	GND		Общий
23	BS	Вход	Внешнее устройство
26	SC-S	Вход	Стробирующий сигнал источ-
1			ника
27	IN	Выход	Ввод данных
28	OUT	Выход	Вывод данных
29	SET	Выход	Начальная установка
30	ERR	Вход	Ошибка
31	DONE	Вход	Завершено
32	TR	Вход	Требование передачи
33	IAKI	Вход	Предоставление прерывания
34	INIT	Вход	Установка
	VIRQ	Вход	Требование прерывания
36	IAKÔ	Выход	Предоставление прерывания
37	DOUT	Вход	Запись данных (по каналу)
38 39	DIN	Вход	Чтение данных (по каиалу)
39	RPLY	Выход	Ответ
40	SO-S	Вход	Готовность источника
41	SYNC	Вход	Обмеи
42	U_{cc}		Напряжение питания

Рис 11.17. Условное графическое обозначение К1801ВП1-33 в режимах контроллера интерфейса параллельного ввода, вывода (б) и контроллера байтового параллельного интерфейса (в)

на вывод DO. В зависимости от принятого кода команды контроллер НГМД устанавливает сигналы OUT и TR. При установлениом сигнале TR в зависимости от состояния сигнала OUT обращение к регистру данных вызывает установку сигнала RUN, который сбрасывается после снятия сигнала TR, и серию импульсов на выводе SHFT (восемь для синхронизации адреса вектора и дорожки, семь для синхронизации данных). По окончании выполнения команды устанавливается сигнал DONE,

Рис. 11.18. Структурная схема K1801ВП1-33 в режнмах интерфейса НГМД (а), контроллера ннтерфейса параллельного ввода/вывода (б) и контроллера байтового параллельного интерфейса (в)

который используется для работы по прерыванию. Требование прерывания VIRQ возникает с появлением сигнала DONE при наличии в регистре команд разрешения прерывания IE.

Временные диаграммы процедур «Запись в буфериый регистр» и «Чтение буфериого реги-

стра» приведены на рис. 11.19.

Коитроллер интерфейса параллельного ввода вывода. Установку микросхемы в режим контроллера интерфейса параллельного ввода/вывода производят подачей определенных уровней напряжения на выводы RCO—RC3. Помимо выбора режима работы микросхемы

Таблица 11.15

Функция	Код микроконструк- ции		
	FI	F 2	F 3
Запись в буферный ре	0	0	0
гистр Чтение буферного реги	1	0	0
стра Запись сектора	0	1	0
Чтение сектора Не используется	Ô	ò	1
Чтение регистра	1	0	1
Запись сектора с метко	0	1	1
Чтение регистра ошибк	1	1	1

Вывод	Обозна- чение	Уровень	Адрес РКС	Адрес РД	Адрес вектора прерыва- ння
5 6	RC4 RC5	Низкий Низкий	177170	177172	264
5 6	RC4 RC5	Высокий Низкий	177174	177176	270
5 6	RC4 RC5	Низкий Высокий	177200	177202	274
5 6	RC4 RC5	Высокий Высокий	XXXXX0	XXXXX2	XXX

 Π римечание. X — состояние разрядов адреса безразличио.

комбинации напряжений иа этих выводах осуществляют переадресацию регистров и векторов прерываний. Адреса регистров и вектора прерываний, соответствующие определенным комбинациям напряжений иа выводах *RCO—RC3* в режиме контроллера параллельного ввода/вывода, приведены в табл. 11.17.

Микросхема осуществляет прнем и передачу информации с помощью регистра состояння (РС), регистра приемиика (РП) и регистра источника (РИ). Регистры источника и прнемника выполиены на двух микросхемах К1801ВП1-34. Структурная схема контроллера приведена на рис. 11.20.

Микросхема содержит регистр состояния, компаратор адресов, блок прерываний и блок управления регистрами РП и РИ. Регистр состояния имеет следующий формат:

Назначение разрядов регистра РС следующее:

CSR1, CSR0 (PCO1, PCO0) — разряды, которые могут использоваться для имитации запросов прерывания в режиме автономной проверки (для чтения и записи);

REQA (Требование A) — требование прерывания A (только для чтения);

REQB (Требование B) — требование прерывания B (только для чтения);

IEA (Разрешение A) — разрешение прерывания A, сбрасывается сигналом \overline{INIT} (для чтения и записи);

IEB (Разрешение B) — разрешение прерывання B, сбрасывается сигналом \overline{INIT} (для чтення и записи).

Сигиалы управлення регнстрами приемника и источника:

DTR (Ввод даниых) — вырабатывается микросхемой при чтении регистра приемника;

NDR (Вывод даниых) — вырабатывается микросхемой при записи в регистр-источник;

BIR (Вывод старшего байта) — вырабатывается микросхемой при записи старшего байта в регистр-источник;

BOR (Вывод младшего байта) — вырабатывается микросхемой при записи младшего байта в регистр-источиик;

ORR (Чтение выходного регистра) — вырабатывается микросхемой при чтении регистраисточника:

RDO (Задержка ответа, выход) — выход разрыва цепочки формирования сигнала RPLY;

RD1 (Задержка ответа, вход) — вход разрыва цепочки формирования сигиала RPLY.

С помощью RC-цепочки, включенной между выводами RD1 и RD0, можно увеличивать длительность импульсов \overline{DTP} и \overline{NDR} .

Требованне прерывания VIRQ возинкает при появлении хотя бы одного из сигналов

Рис. 11.19. Временные диаграммы процедур «Запись в буферный регистр» (а) и «Чтение буферного регистра» (б)

Вывод	Обозначение	Уровень сигнала	Адрес РС	Адрес РИ	Адрес РП	Адрес вектора прерывания А (В)
1 2 3 4	RC3 RC0 RC1 RC2	Низкий Высокий Низкий Высокий	167770	167772	167774	300 (304)
1 2 3 4	RC3 RC0 RC1 RC2	Высокий Высокий Низкий Высокий	167760	1677762	167764	310 (314)
1 2 3 4	RC3 RC0 RC1 RC2	Низкий Низкий Высокий Высокий	167750	167752	167754	320 (324)
1 2 3 4	RC3 RC0 RC1 RC2	Высокий Низкий Высокий Высокий	167740	167442	167744	330 (334)
1 2 3 4	RC3 RC0 RC1 RC2	Низкий Высокий Высокий Высокий	xxxxxo	XXXXX2	XXXXX4	XX0 (XX4)

REQA, REQB при наличии в регистре состояния соответствующего разрешения прерываний IEA, IEB При одновременном появлении сигналов REQA и REQB более высокий приори-

тет имеет требование В. Выполнение процедуры прерывания стандартное.

Контроллер байтового параллельного интерфейса. Установку микросхемы в режим кон-

Рис. 11.20. Структуриая схема контроллера интерфейса параллельного ввода/вывода

троллера байтового параллельного интерфейса производят подачей определениых уровией напряжения на выводы RCO-RC2. Помимо выбора режима работы микросхемы комбинацин напряжений на этих выводах осуществляют переадресацию регистров и векторов прерываний. Адреса регистров и векторов прерываний, соответствующие определенным комбинациям напряжений на выводах RCO-RC2, приведены в табл. 11.18.

Микросхема осуществляет прием и передачу информации с помощью регистров состояния источника (РСИ) и приемника (РСП), регистров источника (РИ) и приемника (РП).

Регистры источника и приемиика выполнены на одной микросхеме К1801ВП1-34. Структурная схема контроллера приведена на рис. 11.21. Микросхема содержит регистры состояння РСИ и РСП, компаратор адресов, блок прерываний и блок управления регистрами РИ, РП.

Регистр состояния источника имеет следующий формат:

Назначение разрядов регистра:

IEA — разрешение прерывания по приему, сбрасывается начальным сигналом INIT (для чтения и записи);

AR — требование приема (только для чтсния);

Рис. 11.21. Структурная схема контроллера интерфейса байтового параллельного ввода вывода

ERR — ошибка (только для чтения). Регистр состояния приемника имеет следующий формат:

Назиачение разрядов регистра:

DONE — завершено (только для чтения); IET — разрешение прерывания по передаче, сбрасывается канальным сигналом INIT (для чтения и записи);

Таблица 11.18

таодица п. 16							
Вывод	О б озна- чение	Уровень сигнала	Адрес РСИ	Адрес РП	Адрес РСП	Адрес РИ	Адрес вектора прерывания источника (приемиика)
2 3 4	RC0 RC1 RC2	Низкий Низкий Низкий			177514	177516	200
2 3 4	RC0 RC1 RC2	Высокий Низкий Низкий	177560	177562	177564	177566	60 (64)
2 3 4	RC0 RC1 RC2	Ннэкий Высокий Низкий	177550	177552	177554	177556	70 (74)
2 3 4	RC0 RC1 RC2	Высокий Высокий Низкнй	177570	177572	177574	177576	170 (174)
2 3 4	RC0 RC1 RC2	Ннзкий Низкий Высокий	XXXXXO	XXXXX2	XXXXX4	XXXXX6	XXO (XX4)

Рис. 11.22. Временные диаграммы работы К1801ВП1-33 в режимах приема (а) и передачи (б) информации

TR — требование передачи (только для чтения);

SET — начальная установка (только для записи);

ERR — ошибка (только для чтення).

Работа микросхемы на прием информации. При отсутствии сигнала $\overline{SO-S}$ «Готовность источника» в регистре состояния источника установлен бит ERR «Ошибка», микросхема к работе не готова.

При появлении сигиала $\overline{SO-S}$ микросхема устанавливает сигнал $\overline{AC-S}$ «Запрос источника», ответом на который является $\overline{SC-S}$ «Стробирующий сигнал источника». При поступлении сигнала $\overline{SC-S}$ в регистре состояния источника устанавливается бит \overline{AR} «Требование приема», который при наличии бита \overline{IEA} «Разрешение прерывания по приему» вызывает запрос прерывания. При чтении регистра приемника вырабатывается сигнал \overline{IN} «Ввод данных» и снимается сигнал $\overline{AC-S}$.

Сигнал AC-S может установнться вновь только после снятия сигиала SC-S. Времениы́ диаграммы работы микросхемы при приеме и передаче ниформации приведены на рис. 11.22.

Работа микросхемы на передачу информации. При отсутствии сигнала $\overline{AO-A}$ «Готовность приемника» микросхема к работе не готова. При наличии сигналов $\overline{AO-A}$ и $\overline{AC-A}$ «Запрос приемника» микросхема после записи информации в регистр-источник вырабатывает $\overline{SC-A}$ «Стробнрующий сигнал приемиика», который сбрасывается после снятия сигнала $\overline{AC-A}$. Во время записи в регистр-источник вырабатывается сигнал \overline{OUT} «Вывод данных».

Состояния сигиалов регистра состояння приемника *ERR*, *TR* соответствуют состояниям

Рис. 11.23. Условиое графическое обозначение K1801BП1-34 в режимах передачи информации (a), буфериого регистра даиных (b), выдачи вектора прерывания и компаратора адреса (a)

одноименных сигналов приемника.

Запрос на прерывание по передаче информацин возникает при налични сигнала REQ «Требование» и установленном бите IET «Разрешение прерывания по передаче» в регистре состояния. Путем внешнего соединения вывода REQ с каким-либо выводом состояния приемника можно вызывать запрос прерывания по любому из состояний приемиика. Прн записи 1 в 14-й разряд регистра состояния приемника, а также при канальном сигнале INIT возникает сигнал SET и пронсходит начальная установка.

Основные параметры микросхемы К1801ВП1-33 приведены в табл. 11.2 и 11.3.

11.6. Микросхема К1801ВП1-34

Микросхема K1801BП1-34 предназначена для использования совместно с микросхемой K1801BП1-33 для организации интерфейса 16-разрядного программируемого параллельного ввода/вывода, байтового параллельного интерфейса. Она работает в режимах устройства передачи информации, буферного регистра данных, устройства выдачи вектора прерывания и компаратора адреса.

Условные графические обозначения микросхемы для трех режимов работы приведены на рис. 11.23, структурные схемы — на рис. 11.24, назначение выводов показано в табл. 11.19, временные диаграммы работы — на рис. 11.25.

Устройство передачи информации (УПИ). Установку микросхемы в режим устройства передачи информации производят подачей на вывод *RCO* напряжения высокого уровня, а на вывод *RCI* — напряжения низкого уровня.

Рис, 11.24. Структурные схемы K1801BП1-34 в режимах передачи информации (а), буферного регистра данных (б), выдачи вектора прерывания и компаратора адреса (в)

Вывод	Обозначенне	Тип вывода	Функциона льно е назначение выводов
	1		'

Устройство передачи информации при RC0 = 1 и RC1 = 0

1, 2	RC1, RC0	Входы	Выбор режима
<i>3</i> —8.	B0B5	Входы	Данные В
35, 36	B6, B7		
9—16	<i>CO</i> — <i>C</i> 7	Входы выходы	Данные канала
17—20,		Выходы	Данные D
22-25	D4D7	·	
21	GND		Общий
26 33	A0-A7	Входы	Данные А
34	R	Вход	Сброс данных
<i>37</i> , <i>38</i>	CD, CB	Входы	Разрешение выдачи цанных
39	COM	Вход	Инвертирование данных
40	C	Вход	Запись данных
41	CA	Вход	Разрешения выдачи данных А
42	U_{CC}		Напряжения питаиия
			·

Буферный регистр даниых при $RC\theta = 0$ и RCI = 1

1, 2	RC1, RC0	Входы	Выбор режима
3-8,	D8—D13,	Входы	Даиные
<i>2633</i> ,	D0D7,		
35, 36	D14, D15		
<i>9—20</i> ,	AD0-AD11,	Выходы	Данные канала
<i>22—25</i>	AD12AD15		
21	GND		Общий
34	<i>DME</i>	Вход	Разрешение выдачи данных
<i>37-39</i> ,		_	Не используются
41			
40	<i>C</i>	Вход	Запись данных
42	U_{CC}		Напряжение питания

Устройство выдачи вектора прерывания и компаратора адреса при RCO=1 и RCI=0

1, 2	RC1, RC0	Входы	Выбор режима
38	S11—S16	Входы	Установка разрядов вектора прерывания
9	SB	Выход	Устройство выбрано
10	VIRQ	Выход	Запрос на прерывание
<i>11—20</i> ,	AD2—AD11,	Входы выходы	Разряды адреса данных
22	AD12		
21	GND		Общий
23	BS	Вход	Внешнее устройство
<i>24</i> , <i>25</i> ,			Не используются
4 0			•
	S1S8,	Входы	Установка разрядов адреса
	S9, S10		·
34	<i>IAKI</i>	Вход	Разрешение прерывания
<i>3</i> 7	VIRI	Вход	Запрос прерывания
<i>38</i>	DIN	Вход	Чтение данных
39	RPLY	Выход	Ответ
41	SYNC	Вход	Обмеи
4 2	$ U_{CC} $	l —	Напряжение питания
	1	!	<u> </u>

Рис. 11.25. Временные диаграммы работы K1801BП1-34 в режимах УПИ (a), буферного регистра данных (б), выдачи вектора прерывания (s) и компаратора адреса (c)

С помощью управляющих сигналов CA п CB входная информация A0—A7 и B0—B7 соответственно передается на двунаправленные выводы C0—C7. В зависимости от сигнала COM информация передается в прямом или инверсном виде. Сигналом C производится запись информации с выводов C0—C7 в буферный регистр. С буферного регистра информация с помощью сигнала \overline{CD} выдается на выводы D0—D7 в зависимости от сигнала \overline{COM} в прямом или инверсном виде. Сигнал \overline{R} обнуляет буферный регистр.

Буферный регистр данных. Установку микросхем в режим буферного регистра данных производят подачей на вывод RCO напряження низкого уровня, а на вывод RC1 — напря

жения высокого уровня.

Входная информация с выводов D0-D15 сигналом С записывается в 16-разрядный буферный регистр, Сигнал DME разрешает выдачу информации с буферного регистра на выводы A0-A15, которые при высоком уровне сигнала DME находятся в отключенном состоя-

Устройство выдачи вектора прерывания и компаратор адреса. Установку мнкросхемы в режим устройства выдачи вектора прерывания и компаратора адреса производят подачей на выводы RC0 и RC1 напряжения высокого уровня.

Старшие шесть разрядов требуемого адреса вектора прерывания устанавливаются на

выводах S11-S16

Адрес, необходимый для сравнения, должен устанавливаться на выводах S1-S10. Состояния S1-S10 и AD3-AD12 сравниваются при наличин сигнала \overline{BS} . При сраннении вырабатывается сигнал \overline{SB} , который запоминается в триггере на все время присутствия сигнала SYNC.

Основные параметры К1801ВП1-34 приведены в табл. 11.2 и 11.3.

11.7. Микросхема К1801ВП1-35

Микросхема **К1801ВП1-35** — асинхронный приемопередатчик для внешних устройств, ра ботающих на линию связи с последовательной передачей информации, предназначен для преобразования параллельной информации в последовательную и наоборот.

Условное графическое обозначение микросхемы приведено на рис. 11.26, назначение вы водов — в табл. 11.20, структурная схема пока

зана на рис. 11.27.

В состав микросхемы входят:

блок системной магистрали, обеспечивающий связь параллельного канала с регистрами микросхемы;

блок синхронизации, обеспечивающий запись и чтение информации, а также синхронизацию работы микросхемы по системной магистрали;

Таблина 11.20

	Вывод	Обозпачение	Тип вывода	Функциональное назначение выводов
	1	CLC	Вход	Синхронизация
•	2	EVNT	Выход	Прерывания по таймеру 50 Гп
7/	36	FR0FR3	Вход	Выбор скорости обмена
J4 INIT SART GND *21	7, 8	NBO, NB1	Вход	Выбор формата
41 SYNC Ucc * 42	9-16, 22	AD0-AD7	Входы	Разряды адреса/данных
77 11/1/		AD12	выходы	,
0 4 3	1720	AD8AD11	Входы	Разряды адреса данных
33 TAKI 1 10	21	GND		Общий
, ————————————————————————————————————	23, 24	ACLO, ACLI	Входы	Выбор адреса
	25	AD15	Выход	Разряд адреса/данных
27 4 7 7	26	BS	Вход	Выбор внешнего устройства
24 1020	27	TF	Выход	Сигнал передатчика
1/100/	28	1P	Вход	Сигнал приемника
0 1/7	29	BSYD	Вход	Сигиал занятости последова-
1 10 1 0 1 10			_	тельного канала
30 up m 19	30	NP	Вход	Установка паритета
J2 PEV 11 20	31	HALT	Выход	Останов
12 \$\frac{22}{25}	32	PEV'	Вход	Установка четности или нечет-
12020 1 1/0				ности
J FRO RPLV 39	33	IAKI	Вход	Сигнал предоставления преры-
4 501	2.4			вания по каналу
5 FR2 VIKU 9 76	34	INIT	Вход	Установка
5 FRJ IAKO 30	35	VIRQ	Выход	Требование векторного преры-
$\frac{26}{88}$ BS $\frac{EVNT}{31}$	0.0	1.4.22		вания
HALT \$ J	36	IAKO	Выход	Предоставление прерывания
28 BSY II 7F 27	37	DOUT	Вход	Запись данных
28 IP //	38	D1N'	Вход	Чтение (анных
Line and the second	39	RPLY	Выход	Ответ
	40	DCLO	Вход	Авария источника питация
Рис. 11.26. Условиое гра-	41	SYNC	Вход	Обмен
фическое обозначение	42	U_{Cc}		Напряжение питання
K 180 LR [H - 35			1	Į .

K1801B[H-35

Рис. 11.27. Структурная схема К1801ВП1-35

компаратор адресов и управляющих спгналов, производящий выбор по адресу регистров микросхемы и выработку сигналов на запись или чтение информации;

блок режима работы, устанавливающий работу микросхемы в различных форматах данных, а также с паритетом или без паритета:

блоки приемника и передатчика, состоящие из регистра состояния, сдвигового регистра и буфериого параллельного регистра; блок селектора скоростей, обеспечивающий работу микросхемы на разных скоростях обмена информации по последовательному каналу, а также выработку сигнала *EVNT* с частотой 50 Гц.

Временные диаграммы прнема и выдачи посылки приведены на рис. 11.28 и 11.29.

Микросхема обеспечивает по последова тельному каналу:

Рис. 11,28. Временная диаграмма приема посылки

Рис. 11.29. Временная диаграмма выдачи посылки

скорости обмена при тактовой частоте $4608~\mathrm{k}\Gamma_\mathrm{U}$ 50, 75, 100, 150, 200, 300, 600, 1200, 2400, 4800, 9600, 19 200 бод;

прием и выдачу посылки в форматах 5, 7 или 8 информационных бит;

формирование двух стоповых бит, причем в формате 5 бит — 1,5 стоповых бита;

формирование и контроль бита паритета (четности или нечетности), а также работу без бита паритета.

Адреса регистров и векторов прерывания — сменные по группам (табл. 11.21).

Регистр состояния приемника имеет формал

Назначение разрядов регистра:

разряды 0—5, 8—11, 13, 14 не используются, читаются как лог. 0;

разряд 6 — разрешение работы приемника по прерыванию. Если разряд установлен в 1, то прерывание разрешено, если в 0 — запрещено. Доступен по записи и чтению, сбрасывается в 0 по сигналу INIT;

разряд 7 — флаг состояния приеминка. Устанавливается в 1 при поступлении посылки в буферный регистр приемника. Сбрасывается в 0 по окоичании чтения посылки буферного регистра приемника или по сигналу INIT, доступен по чтению.

Флаг состояния приемника устанавливается в 1 от предыдущей посылки или от исходного состояния «Стоп» на линии при включении источика питания после приема первой посылки;

разряд 12 — ошибка переполнения. Устанавливается в 1, если в сдвиговый регистр приемника поступило более одной посылки без чтения из буферного регистра приемника первой поступившей посылки. При этом независимо от числа поступивших в канал приемника посылок в буферном регистре сохраняется первая посылка. Находится в 0, если поступившая в буферный регистр посылка читается до окоичания поступления в сдвиговый регистр последнего ииформационного бита следующей посылки. Сбрасывается в 0 по окончании чтения буферного регистра приемника или по сигналу INIT, доступен по чтению;

разряд 15 — ошибка в принятой посылке. Устанавливается в 1, если есть ошибка паритета в прииятой посылке и установлено условие контроля паритета. В противном случае находится в 0. Признак ошибки сбрасывается в 0 с момента чтения содержимого буферного регистра приемника или по сигналу INIT. Доступен по чтению.

Таблица 11.21

Регистр	Группа 1	Группа 2	Группа 3	Группа 4
Регистр состояния	177560	176560	176570	XXXXXO
	177562	176562	176572	XXXXX2
приемника Регистр состояния пе-	177564	176564	176574	XXXXX4
редатчика Буферный регистр пе-	177566	176566	176576	XXXXX6
редатчика Адрес вектора пре-	060	360	370	$XX\theta$
рывания приемника Адрес вектора преры- вания передатчика	061	364	374	XX‡

Буферный регистр приемника, доступный по чтению, имеет формат

разряды 0-7 содержат посылку, принятую с линии. В разряде 0 находится первый бит посылки, в разряде 7 — восьмой. При установленном контроле бита паритета он следует за последним битом посылки. При формате 8 бит он анализируется микросхемой, но в буферный регистр не поступает.

Низкий уровень бита в посылке на входе IP соответствует лог. 1, высокий уровень лог. 0 в буферном регистре приемника;

разряды 8-15 не используются, читаются как лог. 0.

Регистр состояния передатчика имеет формат

Назначение разрядов регистра:

разряд 0 — разрыв линии. Если разряд 0 установлен в 1, то на выходе ТГ устанавливается высокий уровень (состояние «Старт») при условии, что на входе BSYQ — низкий. Если на входе BSYD высокий уровень, то на выходе ТЕ устанавливается низкий (состояние «Стоп»). При этом посылка не выходит и установка 0 разряда в 1 этот уровень не изменяет. Доступен по записи и чтению. Сбрасывается в 0 по сигналу INIT;

разряд 2 — проверка работы. Если разряд 2 установлен в 1, то посылка с выхода TF поступает также и на канал приеминка. Сбрасывается в 0 по сигналу INIT. При этом вход IP для приема посылок с линии закрыт. Доступеи по записи и чтению;

разряд 6 — разрешение работы передатчика по прерыванию. Если разряд 6 установлен в 1, то прерывание разрешено, если в 0 — запрещено. Доступен по записи и чтению. Сбрасывается в 0 по сигналу INIT;

разряд 7 — флаг состояния передатчика. Устанавливается в 1 в момент выдачи посылки на линию или по сигналу DCLO. Сбрасывается в 0 по записи информации в буферный регистр передатчика. Состояние лог. 1 свидетельствует о том, что буфериый регистр передатчика пустой. Если запись информации в буферный регистр передатчика произошла во время выдачн посылкн, то следующая посылка начинается сразу же по окончании предыдущей. Доступен по чтению;

разряды 3-5, 8-15 не используются, читаются как лог. 0.

Буферный регистр передатчика, доступный по записи, имеет формат

Назначение разрядов регистра:

разряды 0-7 — разряды данных для передачи посылки на линию. В разряд 0 записывается первый бит посылки, в разряд 7 восьмой. По окончании записи данных в бупередатчика регнстр происходит запись данных в сдвиговый регистр передатчика. С выхода ТГ посылка поступает на линию при условии, что на входе BSYD низкий уровень.

При соблюдении условия формирования бита паритета он автоматически следует за последним битом посылки. При записи лог. 1 в буферный регистр передатчика данный бит иа выходе *TF* имеет низкий уровень, при записи лог. 0 — высокий.

При чтенин по адресу буферного регистра передатчика читывается адрес источника вектора прерывания. При этом разряды 8-15 читаются как лог. 0.

Запрос на прерывание от приемника возникает, если разряды 6 и 7 его регистра состояния установлены в 1. При обработке запроса на прерывание читается адрес вектора прерывания приемника.

Запрос на прерывание от передатчика возннкает, если разряды 6 и 7 его регистра состояния установлены в 1. При обработке запроса на прерывание читается адрес вектора прерывания передатчика.

Источники адресов векторов прерываний

имеют формат

Назначение разрядов регистра:

разряд 2 — указатель адреса вектора прерывания. Наличие 0 в разряде 2 указывает на адрес вектора прерывания приемника, наличие 1 — передатчика.

разряды 3-7 — сменная часть адреса вектора прерывания. Если выбрана четвертая группа адресов регистров и источников адресов векторов прерываний, то разряды 3-7 читаются как лог. 0;

разряды 0, 1, 8-15 не используются, читаются как лог. 0.

Приоритет запроса от приемника выше приоритета запроса от передатчика.

По окончании приема посылки при отсутствии сигнала «Стоп» (разрыв линии) микросхема устанавливает на выходе HALT сигиал низкого уровня. Сигнал высокого уровня на

Вывод	Обозлачение	Группа 1	Группа 2	Группа З	Группа 4
23 24	ACL0 ACL1	0 0	1 0	0	i i

Примечание При заданной комбниации ACL0=1, ACL1=1 регистры микросхемы выбираются по адресу, состоящему из разрядов 1 и 2, и по сигналу BS На разряды адреса 3—12 микросхема ие реагирует Группа 4 адресов может быть использована для внешнего произвольного набора адресов регистров и внешнего источника адресов векторов прерываний микросхемы

Таблица 11.23

Вывод	Обозначе- иие	Бнт 5	Бит 7	Бнт 8
7 8	N B0 N B1	<i>X</i> 0	0	1 1

 Π римечание X — состояние входа безразлично

Таблица 11.24

Скорость обмена, бод	<i>FP3</i> , вы- вод 6	FP2, вы- вод 5	<i>FPI</i> , вы вод 4	<i>FP0</i> , вы вод 3
50 75 100 150 200 300 600 1200 2400 4800 9600 19 200	0 0 0 0 0 0 0 1 1	0 0 0 1 1 1 0 0	0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1

Таблица 11.25

Режим рабогы с паритетом	Вывод <i>30</i>	Вывод 32
Нег формирования бита паритета и контроля па-	1	X
ритета Формирование бита чет- ности и контроль четно-	0	I
сти Формирование бита не- четности и контроль не- четности	0	0

Примечание X - состояние входа безразлично.

выходе *HALT* устанавливается по сигналу INIT.

При тактовой частоте 4608 кГц на выходе EVNT микросхема обеспечивает частоту импульсных сигналов 50 Гц со скважностью 2.

Выбор групп адресов регистров и источников адресов векторов прерываний производится заданием комбинаций уровней на входах *ACLO* и *ACL1* (табл. 11.22).

Выбор форматов посылок по последовательному каналу производится заданием комбинаций уровней на входах *NBO* и *NBI* (табл. 1123).

Выбор скорости обмена по последовательному каналу производится заданием комбинаций уровней на входах FPO—FP3 (табл. 11.24).

Выбор режима работы с паритетом нли без него, а также режима работы с паритетом по четности или нечетности задается комбинациями уровней на входах NP и PEV (табл. 11.25).

Основные параметры микросхемы К1801ВП1-35 приведены в табл. 11.2, 11.3.

11.8. Микросхема КР1801РЕ2

Микросхема КР1801РЕ2 — постоянное запоминающее устройство емкостью 65536 бит с организацией 4096×16 разрядов, предназначено для построения блоков памяти микро-ЭВМ различного назначения.

Условное графическое обозначение микросхемы приведено на рис. 11.30, назначение выводов — в табл. 11.26, структурная схема по-казана на рис. 11.31, времениая диаграмма работы — на рис. 11.32.

Входы и выходы в микросхеме совмещены,

Рис. 11 30 Условиое графическое обозначение KP1801PE2

Вывод	Обозначение	Тип вывода	Функцнональное назначение выводов
,	RD	Вход	Сигнал «Чтение»
2	AN	Вход	Сигнал «Ответ»
2 3	SYN	Вход	Сигнал «Синхронизация»
4—11	AD4—AD11	Входы/вы-	Разряды адреса/данных
12	GND	ходы	Общий
13—16	AD3— $AD0$	Входы 'вы-	Разряды адреса/данных
17 —20	AD12—AD15	ходы Входы, вы-	Разряды адреса/данных
23 24	CS Ucc	ходы Вход	Сигнал выбора микросхем Напряжение питания

Примечание Выводы 21 и 22 ие задействованы.

поэтому передача данных осуществляется в мультиплексиом режиме.

Микросхема использует четыре управляющих сигнала:

SIN — «Синхроиизация», обеспечивает запись адреса во входной регистр микросхемы;

RD — «Разрешение чтения», обеспечивает выдачу считанной информации на общую магистраль при наличии сигнала «Синхронизация»;

AN — «Ответ», сопровождает информацию, которая поступает из ПЗУ на общую магистраль;

CS — «Выбор кристалла», нозволяет осуществлять дополнительную выборку.

Наличие трехразрядиого программируемого интерфейса (адресные входы A13—A15) позволяет включать параллельно до восьми микросхем ПЗУ. Для выборки слова из ПЗУ необходимо подать код адреса слова на входы A1—A12, а код данной микросхемы — на входы A13—A15. В этом случае можно включать параллельио до восьми микросхем. При этом вход D0 не участвует в выборке адресов ПЗУ, а информация снимается с выходов D0—D15.

Рис. 11.31. Структурная схема КР1801РЕ2

Рис. 11.32. Временная диаграмма работы КР1801РЕ2

Основные электрические характеристики микросхемы KP1801PE2 привелены в табл. 11.27.

Таблица 11.27

Параметр	Обозна- чение	Значения параметров [макс (мнн)]		
		КРІ801РЕ2А	KP1801PE25	
Выходное напряжение низкого уровня*, В Выходное напряжение высокого уровня**, В	U _{OL}	0,5	0,5	

Параметр	Обозна- чение	Значения параметров [макс. (мин.)]		
	обо 4ен	KP1801PE2A	KP1801PE25	
Мощиость потребле-	P_{CCS}	220	220	
иия в режиме хране- ния, мВт Мощность потребле- ния в режи-	P_{CCD}	330	330	
ме обмена, мВт Входной ток высокого уровня,	I_{IH}	15	15	
мкА Входной ток иизкого	I_{IL}	15	15	
уровня, мкА Время вы- борки раз- решения, ис	t_{CO}	300	500	

^{*} При /о=3,2 мА. ** При /о=400 мкА.

11.9. Микросхема К573РФ3

Микросхема K573PФ3 — перепрограммируемое постоянное запоминающее устройство с ультрафиолетовым стиранием и электрической записью информации емкостью 65 536 бит, с организацией 4096×16 разрядов.

Рис. 11.33. Условное графическое обозначение К573РФ3

Таблица 11.28

Вывод	Об означение	Тип вывода	Фуикциональное назначение выводов
1	RE	Вход	Сигнал «Чтение»
1 2 3	RPLY	Вход	Сигнал «Ответ»
3	ČE	Вход	Сигиал «Синхронизация»
4-11		Входы/	Разряды адреса/данных
	1101 11011	выходы	, softwar and son demand
12	GND		Общий
13-16		Входы/	Разряды адреса/данных
		выходы	
<i>17—20</i>	AD12—AD15	Входы/	Разряды адреса/даниых
		выходы	
21	U_{CC1}		Напряжение питания +5 B,
			в режиме программирова-
_		_	ния +18 В
22	WE/RE	Вход	Сигнал «Запись/считыва-
		1 _	ине»
23	CS	Вход	Сигнал выбора микросхемы
<i>24</i>	U_{CC2}	_	Напряжение питання +5 В

Рис. 11.34. Структурная схема К573РФ3

Микросхема предназначена для построения блоков памяти микро-ЭВМ широкого назначения.

Информационная емкость, адресация ячеек микросхем:

Қ573РФ3			64K	04096
Қ573РФ31			32K	0 - 2047
К573РФ32		_	32K	2048-4096

Условное графическое обозначение микросхемы приведено на рис. 11.33, назначение выводов — в табл. 11.28, структуриая схема показана на рис. 11.34, временная диаграмма работы — на рис. 11.35.

Входы и выходы в микросхеме совмещены, поэтому передача данных осуществляется в мультиплексиом режиме.

Три старших разряда используются для программирования кода микросхемы, что позволяет осуществлять выборку одной из восьми микросхем на общую магистраль без построения дополнительного дешифратора.

Микросхема К573РФЗ использует четыре управляющих сигнала:

Рис. 11.35. Временная диаграмма работы К573РФЗ

Параметр	Обозна- ченне	Значение параметро [макс (мин.)]
Выходное напряжение иизкого уровня, В Выходное иапряжение высокого уровия, В Ток потребления, мА	U_{OL} U_{OH} I_{CC}	0,5 (2,4) 40
Динамический ток потреб- ления, мА	I_{CCD}	80
Входной ток низкого уров- ня, мкА	l_{IL}	1,0
Входной ток высокого уров- ня, мкА Время выборки разреше-	t_{IH}	550
ния, нс Время сохранения выходной	t _{ROH}	100
ннформации после сигнала чтения, нс Время записи информации, мс *	$t_{\mathcal{H}}$	50

^{*} Допускается производить записи информации до трех раз

Таблица 11.30

Параметр	Обозна- чение	Значение параметров [макс. (мин)]
Напряжение питания в режиме считывания, В Напряжение в режиме программирования, В Напряжение сигнала входной информации, В	U _{CCI} U _{CC?} U _{IL} U _{IH}	7 21 (-0,3) 7

CE — «Обмен», обеспечивает запись адреса во входной регистр адреса микросхемы;

WE/RE — «Чтение / программирование», определяет режим работы микросхемы;

RE — «Разрешение чтения», обеспечивает

выдачу считанной информации на общую магистраль при наличии сигнала «Обмен»;

RPLY - «Ответ», сопровождает информацню, которая поступает из ППЗУ на общую магистраль.

Кроме этих сигналов имеется сигиал CS, который позволяет осуществлять дополнительную выборку.

Основные электрические параметры микросхемы К573РФЗ приведены в табл. 11.29, предельные значения электрических режимов -в табл. 11.30.

11.10. Рекомендации по применению

Высокая степень интеграции микропроцессорного комплекта БИС серии К1801, реализующего принципы магистрально-модульной организации, наличие в составе комплекта однокристальных микропроцессоров и периферийных микросхем позволяют применять его для создания высокоэффективных микропроцессорных средств.

Одним из примеров применения комплекта являются выпускаемые промышленностью одноплатные микро-ЭВМ ряда «Электроии-ка-MC1201», предназначенные для использования в различных вычислительных и управляющих системах.

Микро-ЭВМ состоит из функционально законченных модулей, объединенных между собой по магистральному принципу (рис. 11.36). Системная магистраль (канал), выполненная в соответствии с интерфейсом МПИ, позволяет адресовать 32К 16-разрядных слов или 64К байт (только по записи).

В адресном пространстве принято использовать нижнюю область с адресами 0-376 в качестве адресов векторов прерываний. Верхняя область слов адресного пространства от 160000 до 177776 используется для адресов регистров внешних устройств. Активиым устройством в канале обычно является процессор. Кроме него активными в каиале могут быть устройства, способные работать в режиме прямого доступа к памяти.

Рис. 11.36. Структура одноплатной микро-ЭВМ на микросхемах серии К1801

Рис. 11.37. Структурная схема блока ОЗУ

Процессор микро-ЭВМ выполнен на основе ОМП K1801BM1 нли KM1801BM2.

Оперативиое запоминающее устройство состоит из накопителя ииформации (НОЗУ), устройства управления ОЗУ (УОЗУ), буферного регистра данных (БРД), блока управления выборкой банков памяти. НОЗУ собран на 32 микросхемах К565РУЗ (КР565РУ6). Полная емкость накопителя составляет 32К 16-разрядных слов (восемь банков памяти по 4К слов каждый).

Устройство управления ОЗУ выполняется на микросхеме К1801ВП1-30. Для построения производительных вычислительных систем, работающих на максимальной тактовой частоте до 10 МГц, рекомеидуется совместно с ОМП КМ1801ВМ2 применять в качестве УОЗУ микросхему К1801ВП1-13, выполняющую функции, аналогичные К1801ВП1-30, но на более высокой частоте.

Буферный регистр данных выполняется иа микросхеме K1801BП1-34 и служит для временного хранення даиных после завершения их выборки из НОЗУ до окончания передачи по каналу в активное устройство. Таким образом, динамическое ОЗУ для активного устройства функционирует аналогично ОЗУ статического типа.

Блок выборки байтов (БВБ) предназначен для отключения с помощью набора переключателей отдельных банков ОЗУ из адресного пространства. Вместо них могут быть подключены ПЗУ пользователей, выполненные на микросхемах КР1801РЕ2 и К573РФ3.

Системное ПЗУ (СПЗУ) выполняется на микросхеме КР1801РЕ2 и содержит программы режимов начального пуска, пультового режима, иачальных загрузчиков с накопителей

на гибких магнитных дисках, резидентного проверяющего теста.

Устройство байтового параллельного интерфейса (УБПИ) предназначено для связи микро-ЭВМ с внешними устройствами по асинхронным параллельным каналам ввода/вывода. Состоит из устройства управления байтовым параллельным интерфейсом (БПИ) на микросхеме К1801ВП1-33 и ряда переключателей, а также из устройства передачи ииформации (УПИ) на микросхеме К1801ВП1-34. Осуществляет обмен с системным каналом с помощью четырех виутренних регистров, организует прерывания от приемиика и передатчика. Адресация регистров УБПИ задается переключателями, установленными на плате. Эти переключатели изменяют также адреса векторов прерывания, выдаваемых УБПИ при процедуре векторного прерывания программы.

Устройство последовательного ввода/вывода (УПВВ) предназначено для связи микро-ЭВМ с внешними устройствами по асинхронному последовательному каиалу, выполнено на микросхеме К1801ВП1-35. Связь УПВВ с внешним устройством осуществляется с помощью узла оптронной развязки (УОР) по линии типа «20 мА токовая петля».

Устройство интерфейса накопителя на гибких магнитных дисках (УИГМД) выполняется на микросхеме К1801ВП1-33. Осуществляет обмен информации с НГМД с помощью двух внутренних регистров; может производить прерывание программы с выдачей адреса вектора прерываний.

Регистр начального пуска (РНП) предназначен для указания адреса и кода программы режима начального пуска.

Приемопередатчики *ПП1—ПП4* служат для усиления и электрической развязки сигналов.

Блок управления приемопередатчиками (БУПП) предназначен для переключения иаправления ПП1 при передаче сигналов системного канала.

Генераторы тактовых импульсов (ГТИ1 и и ГТИ2) предназначены для выработки тактирующих импульсов для ПРЦ, ОЗУ, УПВВ. Генератор ГТИ1 выполняется по схеме с использованием времязадающих элементов,

ГТИ2 — на основе кварцевого резонатора частотой 4,608 МГц.

Корректор сигналов канала (КСК) выполняет функции временных привязок сигналов канала к работе ПРЦ при использовании микросхемы К1801ВМ1.

Структурная схема блока ОЗУ с применением микросхем K1801BП1-30 и K1801BП1-34 приведена на рис. 11.37.

Глава 12

Микропроцессорный комплект серии КР1802

Мнкропроцессорный комплект серии КР1802 представляет собой 8/16-разрядные секционные микросхемы для построения высокопроизводительных ЭВМ и устройств радиоэлектронной аппаратуры, включая РЭА цифровой обработки сигналов. Отличительной особенностью комплекта является широкий набор функциональных расширителей (умножителей, делителей, сдвигателей), многоадресных регистров общего и специального назиачения и коммутационных устройств.

Основные свойства комплекта:

неограниченное наращивание разрядности; микропрограммируемость;

возможность эмуляции произвольной системы команд;

гибкая архитектура и большой выбор микросхем;

высокое быстродействие.

Микросхемы МПК, требующие максимального быстродействия, выполнены по ЭСЛ-схемотехнике с обрамлением ТТЛШ (КР1802ИМ1, КР1802ИП1, КМ1802ВР4, КМ1802ВР5, КР1802КП1). Остальные микросхемы выполнены по ТТЛШ-схемотехнике.

Состав микросхем комплекта и их назначеине приведены в табл. 12.1. Серия КР1802 может быть дополнеиа микросхемами серий К589 и КМ1804.

Микросхемы КР1802 и КМ1802 работают при напряжении питания +5 В $\pm 5\%$. Обеспечивается полная совместимость с микросхемами других серий, имеющих ТТЛ- и ТТЛШ-уровни логических сигналов ($U_{OL} < 0.5$ В, $U_{OH} \ge 2.4$ В). Для тактирования микросхем применяется однофазная синхронизация с частотой 10-20 МГц для различных применений

12.1. Микросхема КР1802ВС1

Микросхема КР1802ВС1 микропроцессорной секции (МС) — 8-разрядная наращиваемая секция устройства обработки данных, предназиачена для выполнения следующих операций:

арифметическое сложение и вычитание в дополнительном коде;

логические операции конъюнкции, дизъюнкции, инверсии и сложение по модулю 2;

арифметические, логические и циклические сдвиги вправо и влево на один разряд.

Таблица 12.1

Тип микросхемы	Функциональное назначение	Тип корпуса
КР1802BC1 КР1802ИР1 КР1802ВР1 КР1802ВР2 КР1802ВР3 КМ1802ВР4 КМ1802ВР5 КР1802ИМ1 КР1802ИП1 КР1802ВВ1 КР1802ВВ2 КР1802ВВ3 КР1802ВВ3	8-разрядная микропроцессорная секция Двухадресные регистры общего назначения на 16×4 бита 16-разрядный арифметический расширитель 8-разрядная секция последовательного умножителя/делителя 8-разрядный параллельный умножитель 12-разрядный параллельный умножитель 16-разрядный параллельный умножитель 4-разрядный параллельный умножитель 4-разрядная 4-входовая секция сумматора/вычитателя Многоадресные ассоциативные регистры на 40 бит Схема обмена информацией Схема интерфейса Программируемый адаптер последовательного интерфейса 4-разрядная секция многофункционального коммутатора ма-	2206.42-1 239.24-2 2206.42-1 2206.42-1 2206.42-1 2136.64-1 2136.64-1 2207.48-4 2207.48-4 2206.42-1 2121.28-1 2207.48-4
	гистралей на четыре направления	