§ 6. Jordan 標準形(べき零行列の場合)

輪講#3

2025-02-24

べき零行列

べき零行列

べき零行列

• 正方行列 N がべき零であるというのは, $N^k = O$ となるような k が存在すること.

例:
$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$ はべき零.

定理 6.1: $N \in M_n(\mathbb{C})$ がべき零 $\Leftrightarrow N$ のすべての固有値が 0.

Proof:

- (⇒) 固有値 λ の固有ベクトル v に N を左から然るべき回数掛けると, $\mathbf{0} = N^k v = \lambda^k v$ より $\lambda = 0$.
- (⇐) 固有多項式は $\phi_N(x) = x^n$. Cayley-Hamilton の定理より $N^n = O$.

Remark 対角化可能なべき零行列は零行列に限る.

べき零行列のべきの上界

定理 6.2: $N \in M_n(\mathbb{C})$ をべき零行列とする. k を $N^k = O$ となる最小の自然数とすると, $k \leq n$.

Proof: $N^{k-1} \neq O$ より $N^{k-1}x \neq 0$ なる $x \in \mathbb{C}^n$ がとれる.

Claim $x, Nx, \dots, N^{k-1}x$ は一次独立.

- ・ 線型関係式 $\sum_{0 \leq i \leq k} c_i N^i x = 0$ を考える.
- 両辺に N^{k-1} を左から掛けることで $c_0 = 0$ を得る.
- 同様に $N^{k-2}, ..., N, I$ を左から掛けることで線型関係式が自明であることがいえる.

したがって,特に $k \leq n$ がいえる.

Jordan 細胞,Jordan 標準形

定義 6.1: $\lambda \in \mathbb{C}$ に対して,次の $J(\lambda; n)$ を Jordan 細胞という:

$$J(\lambda;n) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix} \in M_n(\mathbb{C}).$$

Jordan 細胞を用いて,次のように表される正方行列を Jordan 標準形 という:

$$\begin{pmatrix} J(\lambda_1;m_1) & & & \\ & J(\lambda_2;m_2) & & \\ & & \ddots & \\ & & J(\lambda_r;m_r) \end{pmatrix} \in M_{m_1+\dots+m_r}(\mathbb{C}).$$

定理 6.3: $N \in M_n(\mathbb{C})$ がべき零行列ならば,ある正則な $P \in M_n(\mathbb{C})$ が存在し,

$$P^{-1}NP = \begin{pmatrix} J(0;m_1) & & & \\ & J(0;m_2) & & \\ & & \ddots & \\ & & & J(0;m_r) \end{pmatrix}.$$

証明の流れはおおまかには次のようになる:

- 1. べき零行列 N には,増大列 $\{\mathbf{0}\} \subseteq \operatorname{Ker} N \subseteq \dots \subseteq \operatorname{Ker} N^k = \mathbb{C}^n$ が付随する.
- 2. 増大列に"沿う"ような良い具合の基底をとっていく.
- 3. A をこの基底で取り換えると Jordan 標準形になっている.

Setup

N=O なら始めから Jordan 標準形になっているので,以下では $N\neq O$ とする.

- k を, $N^k = O$ となるような最小の自然数とする. $\rightsquigarrow 2 \le k \le n$.
- $W_j = \operatorname{Ker} N^j$ を "j 次の Kernel" と呼ぶことにする(これは一般的でない名称).

次のような増大列をイメージする:

$$\{\mathbf{0}\} = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_{k-1} \subseteq W_k = \mathbb{C}^n.$$

N は正則でない (:: N の固有値はすべて $0 \Leftrightarrow \det N = 0)$ から,

$$\{\mathbf{0}\} = W_0 \subsetneq W_1 \subseteq \cdots \subseteq W_{k-1} \subseteq W_k = \mathbb{C}^n.$$

- $1 \le j \le k$ について $d_j = \dim W_j \dim W_{j-1}$ とすると, d_j はつねに非負.
 - $\rightarrow \sum_{j=1}^k d_j = \dim \mathbb{C}^n \dim \{\mathbf{0}\} = n.$

増大列の様子

増大列の直和分割

べき零行列の Jordan 標準形

Remark V の部分空間 W に対して, $V=W\oplus\widetilde{W}$ なる \widetilde{W} が存在する.

直和分解の因子に名前をつける

 U_k

 U_{k-1}

 U_{k-1}

Check! U_{j} は" N^{j} imes でやっと 0 になる"ベクトル全体によって張られる部分空間.

線型独立な $x_1, \dots, x_{d_k} \in U_k$ によって W_{k-1} の基底を延長して W_k の基底とする.

このとき, $x_1, ..., x_{d_k}$ は次の条件を満たしている:

- 1. $\langle Nx_1, \dots, Nx_{d_k} \rangle \subseteq U_{k-1}$.
 - x_i は " N^k でやっと 0 になる"から, Nx_i は " N^{k-1} でやっと 0" になる.
- 2. $Nx_1, ..., Nx_{d_L}$ は線型独立.
 - $\sum_{j} c_{j} N x_{j} = 0 \Rightarrow N \left(\sum_{j} c_{j} x_{j} \right) = 0 \Rightarrow \sum_{j} c_{j} x_{j} \in W_{1} \Rightarrow \sum_{j} c_{j} x_{j} \in W_{k-1}.$
 - もし $\sum_j c_j x_j \neq \mathbf{0}$ であれば $x_j \notin W_{k-1}$ に矛盾するので, $\sum_j c_j x_j = \mathbf{0}$.
 - x_1, \dots, x_{d_k} は線型独立だったから $c_1 = \dots = c_{d_k} = 0$.

$\operatorname{Im}_N U_k \subseteq U_{k-1}$ の様子・

余った部分の基底をとる.

W_{k-2} の上段でも同様の現象が起こる.

べき零行列の Jordan 標準形

 U_{k-1} の基底は $Nx_1, ..., Nx_{d_k}, x_{d_k+1}, ..., x_{d_{k-1}}$ になっている.

 ${
m Im}_N\,U_k\subseteq U_{k-1}$ と Nx_1,\cdots,Nx_{d_k} の線型独立性を示したときとまったく同様にして次が成り立つ:

- $\bullet \ \operatorname{Im}_N U_{k-1} = \langle N^2 \boldsymbol{x}_1, \cdots, N^2 \boldsymbol{x}_{d_k}, N \boldsymbol{x}_{d_k+1}, \cdots, N \boldsymbol{x}_{d_{k-1}} \rangle \subseteq U_{k-2}.$
- $N^2x_1, \cdots, N^2x_{d_k}, Nx_{d_k+1}, \cdots, Nx_{d_{k-1}}$ は一次独立.
 - ・次のように換言してもよい: $N \times$ によって U_{k-1} は退化しない.つまり, $\dim \operatorname{Im}_N U_{k-1} = d_{k-1}$.

$\operatorname{Im} U_{k-1} \subseteq U_{k-2}$ の様子・

例によって余った部分の基底をとる.

增大列再訪

\mathbb{C}^n の基底

べき零行列の Jordan 標準形

以上のような操作を繰り返すことにより $\mathbb{C}^n=W_k=U_k\oplus\cdots\oplus U_1$ の基底をとることができる.

 U_k の基底

$$oldsymbol{x}_1, ..., oldsymbol{x}_{d_k}$$

$$U_{k-1}$$
の基底

$$Noldsymbol{x}_1, \cdots, Noldsymbol{x}_{d_k}$$

$$oldsymbol{x}_{d_k+1}, \cdots, oldsymbol{x}_{d_{k-1}}$$

.

:

٠.

$$U_1$$
の基底

$$N^{k-1} oldsymbol{x}_1, \cdots, N^{k-1} oldsymbol{x}_{d_k}$$

$$N^{k-2} \boldsymbol{x}_{d_k+1}, \cdots, N^{k-2} \boldsymbol{x}_{d_{k-1}}$$

$$oldsymbol{x}_{d_2+1}, \cdots, oldsymbol{x}_{d_1}$$

視点の変換:"seed"により基底が生成されていく. べき零行列の Jordan 標準形

- "余った部分"でとった基底 x_l を seed と見る.
- $d_j+1 \leq l \leq d_{j-1}$ なら、 $x_l \in U_j$ は"レベルjの seed".

 U_k の基底

 U_{k-1} の基底

:

 U_1 の基底

$$x_{d_k+1}, \cdots, x_{d_{k-1}} \ dots \ N \ dots \ N \ dots \ N^{k-2} x_{d_k+1}, \cdots, N^{k-2} x_{d_{k-1}}$$

٠.

 $oldsymbol{x}_{d_2+1}, \cdots, oldsymbol{x}_{d_1}$

べき零行列の Jordan 標準形

$P_{i,l}$ の構成

レベルjの seed x_l は,一次独立なベクトルの列を生成している.

$$oldsymbol{x}_l
ightarrow N oldsymbol{x}_l
ightarrow \cdots
ightarrow N^{j-1} oldsymbol{x}_l (
ightarrow N^j oldsymbol{x}_l = oldsymbol{0}).$$

これを並べることで、 $n \times j$ 行列 $P_{i,l}$ をとる.

$$\begin{split} P_{j,l} &= \left(N^{j-1}\boldsymbol{x}_l \ N^{j-2}\boldsymbol{x}_l \ \cdots \ N\boldsymbol{x}_l \ \boldsymbol{x}_l\right). \\ \rightsquigarrow NP_{j,l} &= \left(\mathbf{0} \ N^{j-1}\boldsymbol{x}_l \ \cdots \ N\boldsymbol{x}_l \ \boldsymbol{x}_l\right) \end{split}$$

$$= (N^{j-1} \boldsymbol{x}_l \ N^{j-2} \boldsymbol{x}_l \ \cdots \ N \boldsymbol{x}_l \ \boldsymbol{x}_l) \begin{pmatrix} 0 \ 1 \ 0 \ \cdots \ 0 \ 0 \\ 0 \ 0 \ 1 \ \cdots \ 0 \ 0 \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ 0 \ 0 \ 0 \ \cdots \ 0 \ 1 \\ 0 \ 0 \ 0 \ \cdots \ 0 \ 0 \end{pmatrix}$$

$$= P_{j,l}J(0;j).$$

Check! $P_{j,l}$ は,レベル l の seed x_l による長さ j のベクトル列.

Pの構成

次のようにして $P_{i,l}$ を並べることで, $n \times n$ 行列 P を構成する.

$$P = (P_{k,1} \cdots P_{k,d_k} \cdots P_{1,d_2+1} \cdots P_{1,d_1}).$$

結局先程の基底を並べかえているだけなので,P は当然正則.

$$\begin{split} NP &= \begin{pmatrix} NP_{k,1} & \cdots & NP_{k,d_k} & \cdots & NP_{1,d_2+1} & \cdots & NP_{1,d_1} \end{pmatrix} \\ &= \begin{pmatrix} P_{k,1}J(0;d_k) & \cdots & P_{k,d_k}J(0;d_k) & \cdots & P_{1,d_2+1}J(0;1) & \cdots & P_{1,d_1}J(0;1) \end{pmatrix} \end{split}$$

$$= \overbrace{\left(P_{k,1} \ \cdots \ P_{k,d_k} \ \cdots \ P_{1,d_2+1} \ \cdots \ P_{1,d_1}\right)}^{P} \left(\begin{matrix} J(0;d_k) \\ & \ddots \\ & & J(0;d_k) \\ & & \ddots \\ & & & J(0;1) \\ & & & & \ddots \\ & & & & J(0,1) \end{matrix}\right)$$

以上より,N と相似な Jordan 標準形の存在が示された.

$$P^{-1}NP = \begin{pmatrix} J(0;d_k) & & & & & \\ & \ddots & & & & \\ & & J(0;d_k) & & & \\ & & & \ddots & & \\ & & & & J(0;1) & & \\ & & & & \ddots & \\ & & & & & J(0,1) \end{pmatrix}$$

Jordan 細胞の分布は d_j の分布によって定まる.

 $ightsymbol{
ightsymbol{ iny}}$ サイズ d_j の Jordan 細胞が $d_j - d_{j+1}$ 個.

余談:主格転倒

Question $P = (P_{k,1} \cdots P_{k,d_k} \cdots P_{1,d_2+1} \cdots P_{1,d_1})$ は本当に n 本のベクトルを含むのか?

- P を構成する行列のうち,サイズが n imes j なのは $P_{j,d_{j+1}+1}, \cdots, P_{j,d_j}$ の $d_j d_{j+1}$ 個.
- したがって,P に含まれるベクトルは合計で $\sum_{j=1}^k j(d_j-d_{j+1})$ 本.
- $\sum_{j=1}^{k} j(d_j d_{j+1}) = n$ を計算するのは意外と難しい.

主格転倒テク 積の和を計算するときに、添字を取り換えるテクニック.

- •「j が d_j-d_{j+1} 個寄与する」という視点を転換して,「 d_j がいくつ寄与するか」を考える.
- d_i の寄与は j (j-1) = 1.
- したがって $\sum_{j} j(d_j d_{j+1}) = \sum_{d_j} d_j = d_1 + \dots + d_n = n$.