Identificación

Nombre Autor: Vhanessa CardonaIdentificación Autor: 201728751

Algoritmo de Solución

- **Explicación:** El algoritmo de solución presentado se basa en programación dinámica. Para este algoritmo se cuentan con 2 métodos *processProblem()* y *gain()*, cada uno se presenta más adelante con su respectivo contexto. En términos generales, el algoritmo calcula la ganancia si se elige cada uno de los proveedores y si se seleccionan los primeros i productos para producir; la selección de en qué cantidades producir se realiza con el método *gain()* (explicación más adelante)

- Contexto del método processProblem():

E/S	Nombre	Tipo	Descripción
Е	n	nat	número de productos
Е	k	nat	número de proveedores
Е	a[n]	Array of nat	Kilos de madera para producir cada producto
Е	p[n]	Array of nat	Precio de venta de los productos
Е	m[k]	Array of nat	Kilos de madera de cada proveedor
Е	c[k]	Array of nat	Costo de la madera de cada proveedor
S	pr	nat	Índice del proveedor que maximiza la ganancia
S	g	nat	Ganancia máxima

Este método se desarrolla con programación dinámica, utilizando una matriz[n][k] para almacenar los valores de las ganancias de seleccionar el proveedor de la columna j y seleccionando solo productos entre la posición 0 e i.

$$gains[i][j] = \begin{cases} gain(i,j) \text{ si } i = 0\\ max(gains[i-1][j], gain[i,j]) \text{ si } i > 0 \end{cases}$$

Al finalizar el llenado de la matriz, la respuesta corresponde al máximo valor de la última fila de la matriz y el índice de la columna correspondiente.

Precondición:

$$|a| = n \land |p| = n \land |m| = k \land |c| = k \land n > 0 \land k > 0$$

- Contexto del método gain():

E/S	Nombre	Tipo	Descripción
Е	first i	not	Indice hasta el cual se van a considerar los
E	1118t_1	nat	productos
Е	Index_supplier	nat	Indice del proveedor
Е	n	nat	número de productos
Е	k	nat	número de proveedores
Е	a[n]	Array of nat	Kilos de madera para producir cada producto
Е	p[n]	Array of nat	Precio de venta de los productos
Е	m[k]	Array of nat	Kilos de madera de cada proveedor
Е	c[k]	Array of nat	Costo de la madera de cada proveedor
			Ganancia que se tiene al seleccionar al proveedor
S	g	nat	con índice Index_supplier y considerando los
			primeros first_i productos

Este método calcula el valor de la ganancia que se obtiene si se consideran los primeros i productos del array y si se selecciona el proveedor index_supplier. La forma de realizar este calculo consiste en añadir el número máximo de unidades del producto i, posteriormente el número máximo de unidades del producto i-1 y así hasta llegar al producto 0 o hasta que todos los kilos del proveedor ya se hallan utilizado. Cada vez que se añade una cantidad de unidades de un producto, se calcula el valor de venta total y se suma a la ganancia.

Precondición:

$$|a| = n \land |p| = n \land |m| = k \land |c| = k \land n > 0 \land k > 0$$

Postcondición:

$$g = \left(+j | (first_i \ge j \ge 0) \land (diferencia \ne 0) : diferencia$$

$$= diferencia - \left\lfloor \frac{kilosDisponibles}{a[j]} \right\rfloor * a[j] : \left\lfloor \frac{kilosDisponibles}{a[j]} \right\rfloor * p[j] \right)$$

$$- c[index_{supplier}]$$

Análisis de Complejidades Espacial y Temporal

- *gain()*

Temporal: O(i) *donde* i *son los primeros* i *productos*

Espacial: 6 * O(1) *donde el* 6 *corresponde a* 6 *int*

processProblem()

Temporal: $O(n^2 * k)$ *donde* n *es el* # *de productos* y k *el* # *de proveedores*

Espacial: O(n * k) *donde* n *es el* # *de productos* y k *el* # *de proveedores*

Comentarios Finales

La solución es en términos generales O(n³) lo cual se traduce en un buen desempeño