Giải Đề CTMT&HN 11/2011 SPKT Create by GaOnline

Câu 1:

MOV [1003], SS

<u>Câu 2:</u>

LES CX, [0203];

ES← [0206, 0205]

 $CX \leftarrow [0204, 0203]$

<u>Câu 3:</u>

AX = ?

MOV AX, 01B3h; AX \leftarrow 01B3h

MOV BL, 16; BL \leftarrow 16 = 10h

AX / BL =>

Thương cất vào AL

Dư cất vào AH DIV BL;

01B3 / 10 = 1Bh du 03h => AL = 1Bh AH = 03h

AX = AH: AL = 031Bh

Câu 4: Double word có nghĩa là 2 word (4 byte) mà 2 số Hex là 1 byte và đọc theo kiểu little andian nên giá trị của double word cần tìm là 75543413h

MOV AL, A5H Câu 5:

CBW

AX = ?

CBW; vì $AL = A5h > 80h \Rightarrow AH = 0FFh$

Kết luân AX = FFA5h

Câu 6:

4 vị trí thấp nhất là 0E 00 CD FF

 $S \hat{o} th \hat{u} nh \hat{a} t : 00 0E = 0000 0000 0000 1110$

Vì bit đầu tiên bên trái là bit 0 nên đây là số dương và số đó là 14 (10)

Số thứ hai: FFCD = 1111 1111 1100 1101

Vì bit đầu tiên bên trái là bit 1, nên đây là số âm, áp dụng luật bù 2 cho 15 bit ngoài cùng bên phải

111 1111 1100 1101 000 0000 0011 0010 (đảo bit) 1 000 0000 0011 0011 = 51⇒ Số thứ hai là -51 (10) Vậy hai số cần tìm là 14 và -51 (trong hệ thập phân) <u>Câu 7</u>: AX = ? (Hex)Val DB 5; Khai báo vùng nhớ Val có kiểu DB (1 byte) chứa giá trị 5 MOV AH, 0; AH \leftarrow 0 MOV AL, -48 IDIV Val; (Số nhị phân của số 50) -48= 0011 0000 1 0010 1111 1101 0000 (Đảo bit) D 0(16) = 208 (trong hệ thập phân) Thương cất vào AL Dư cất vào AH AX / Val => IDIV Val; 208/5 = 41 du 3AL = 41 = 29hAH = 3 = 03h \Rightarrow Vây AX = 0329h Câu 8

MOV AX, DS:[SI]; AX \leftarrow DS:[SI] MOV ES: [DI], AX; ES: [DI] \leftarrow AX Thực chất 2 lệnh trên là di chuyển nội dung ở DS: [SI] vào ES: [DI], thanh ghi AX chỉ làm nhiệm vụ trung gian.

ADD SI, 2; SI
$$\leftarrow$$
 SI +2

ADD DI, 2; DI
$$\leftarrow$$
 DI +2

⇒ Lệnh tương đương MOVSW

<u>Câu 9</u>: AL, SI, CX = ? (Hex)

GRADES DB 15, 12, 14, 10, 18, 16, 11, 17, 19, 9 ; Khai báo vùng nhớ GRADES có kiểu DB (1 byte) chứa các giá trị 15, 12, 14, 10, 18, 16, 11, 17, 19, 9

MOV AL, 0; AL $\leftarrow 0$

MOV SI, 1; SI \leftarrow 1

MOV CX, 5; CX \leftarrow 5

L1:

ADD AL, GRADES [SI]; $AL \leftarrow AL + GRADES[1]$

;
$$AL = 0 + 12 = 12$$

ADD SI, 2; SI
$$\leftarrow$$
 SI +2; SI = 1 + 2= 3

LOOP L1; $CX \leftarrow CX - 1$, Nếu CX # 0 thì nhảy tới L1.

Đầu tiên: CX ← CX - 1 = 5 - 1 = 4 # 0

Nhảy tới L1:

ADD AL, GRADES [SI];

$$AL \leftarrow AL + GRADES [3] = 12 + 10 = 22$$

ADD SI, 2; SI =
$$3 + 2 = 5$$

Lần 2: $CX \leftarrow CX - 1 = 4 - 1 = 3 \# 0$

Nhảy tới L1:

ADD AL, GRADES [SI];

$$AL \leftarrow AL + GRADES [5] = 22 + 16 = 38$$

ADD SI, 2; SI =
$$5 + 2 = 7$$

Lần 3: $CX \leftarrow CX - 1 = 3 - 1 = 2 \# 0$

Nhảy tới L1:

$$AL \leftarrow AL + GRADES [7] = 38 + 17 = 55$$

ADD SI, 2; SI =
$$7 + 2 = 9$$

Lần 4:
$$CX \leftarrow CX - 1 = 2 - 1 = 1 \# 0$$

Nhảy tới L1:

ADD AL, GRADES [SI];

ADD SI, 2; SI =
$$9 + 2 = 11$$

Lần 5:
$$CX \leftarrow CX - 1 = 1 - 1 = 0$$

Không Nhảy tới L1:

Kết thúc chương trình

Kết luận:
$$AL = 64 (10) = 40h$$
, $SI = 11$, $CX = 0$

Câu 10:

$$AX = ? (Hex)$$

MOV AX, 0Ah; AX \leftarrow 0Ah

MOV BX, 0Eh; BX \leftarrow 0Eh

ADD AL, BL; AL \leftarrow AL + BL

AAA

	0000 0001 0000 1110
Kết luận $AX = 010E$	1
<u>Câu 11</u> :	AX = ? (Hex)
ADD AL, AH;	MOV AX, 7736H; AX ← 7736h
	ADD AL, AH; AL \leftarrow AL + AH
	DAA AH AL
	0111 0111 0011 0110
	0111 0111
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
DAA +	0110
	0111 0111 1011 0011 AF ← 1
	>9Fh or CF =1 ? (AL > 9 Fh)
	0110 0000
	0111 0111 0001 0011 CF ← 1
Vậy AX = 77	

<u>Câu 12</u>:

Xóa đi nửa cao của AL

$$AL = ? (Hex)$$

MOV DX, 0205h; DX ← 0205h

MOV AL, DH; AL ← DH

$$; AL = 02h$$

MOV CL, 10; CL ← 10= 0Ah

MUL CL; AX ← AL * CL= 02h * 0Ah = 0014h

ADD AL, DL; AL \leftarrow AL + DL = 14h + 05h= 19h

Vây AL = 19h

Câu 13: Nội dung vùng nhớ ARR =?

ARR DW 10, 20, 40, 50, 60, ? ; Khai báo vùng nhớ ARR có kiểu DW (2 byte) chứa các giá trị 10, 20, 40, 50, 60, ?

ARR Ban Đầu

00	10
01	00
02	20
03	00
04	40
05	00
06	50
07	00
08	60
09	00
0A	??
0B	??

Vì ARR có kiểu DW nên số 10 sẽ được lưu trong 2 ô nhớ 00 và 01

STD; DF = 1

LEA SI, ARR + 8h; SI $\leftarrow 0 + 8h = 8$

LEA DI, ARR + 0Ah; DI = 0Ah

MOV CX, 3; CX \leftarrow 3

REP MOVSW; lặp lại lệnh MOVSW 3 lần (do CX = 3)

Lần 1: MOVSW

[ES: DI+1, ES: DI] \leftarrow [DS: SI+1, DS: SI]

 \Leftrightarrow [ES: 0A+1, ES: 0A] \leftarrow [DS: 8+1, DS: 8] (Vì lúc này DI= 0A, SI=8)

$$\Leftrightarrow$$
 [ES: 0B, ES: 0A] \leftarrow 0060

$$SI \leftarrow SI - 2 = 8 - 2 = 6$$
; $SI = 6$

DI
$$\leftarrow$$
 DI -2 = 0A - 2 = 8; DI =8

Lần 2: MOVSW

[ES: DI+1, ES: DI]
$$\leftarrow$$
 [DS: SI+1, DS: SI]

$$\Leftrightarrow$$
 [ES: 9, ES: 8] \leftarrow 0050

Do DF= 1 hướng xử chuỗi giảm DI, SI giảm 2

$$SI \leftarrow SI - 2 = 6 - 2 = 4$$
; $SI = 4$

DI
$$\leftarrow$$
 DI -2 = 8 - 2 = 6; DI =6

Lần 3: MOVSW

[ES: DI+1, ES: DI]
$$\leftarrow$$
 [DS: SI+1, DS: SI]

$$\Leftrightarrow$$
 [ES: 6+1, ES: 6] \leftarrow [DS: 4+1, DS: 4] (Vì lúc này DI= 6, SI =4)

$$\Leftrightarrow$$
 [ES: 7, ES: 6] \leftarrow 0040

Do DF= 1 hướng xử chuỗi giảm DI, SI giảm 2

$$SI \leftarrow SI - 2 = 4 - 2 = 2$$
; $SI = 2$

DI
$$\leftarrow$$
 DI -2 = 6 - 2 = 4; DI =4

MOV WORD PTR [DI], 30; [ES:DI+1, ES:DI] \leftarrow 30

Mà lúc này DI = 4 (kết quả sau 3 lần lặp)

⇔ [ES:5, ES:4] ←30

Kết luận ARR 10, 20, 30, 40, 50, 60 (trong hệ thập phân)

ARR kết quả

00	10
01	00
02	20
03	00
04	30
05	00
06	40
07	00
08	50
09	00
0A	60
0B	00

Câu 14: AX=? (dạng Dec)

Mem DW 8

MOV AX, Mem; AX ← 8

SHL AX, 1; AX ← AX *2= 16

MOV BX, AX; BX
$$\leftarrow$$
 AX
; BX = 16
SHL AX, 1; AX \leftarrow AX * 2= 32
SHL AX, 1; AX \leftarrow AX * 2= 64
ADD AX, BX; AX \leftarrow AX + BX = 64 + 16= 80

Vay AX = 80 (Dec)

<u>Câu 15</u>:

MOV CX, 7; CX \leftarrow 7

CLD; DF =0; hướng xử lí chuỗi theo chiều tăng

REP MOVSW; lặp lại lệnh MOVSW 7 lần (do CX=7) mỗi lần sẽ di chuyển 1 word dữ liệu từ [DS:SI+1, DS: SI] vào [ES:DI+1, ES, DI] và tăng SI, DI lên 2, sau 7 lần sẽ di chuyển được 7 word theo yêu cầu của đề.

⇒ Vậy AX = 088Eh