Label Attention Network для последовательной классификации по нескольким меткам

Галина Боева

Московский физико-технический институт

Курс: Моя первая научная статья /М05-304 Эксперт: к.ф-м.н А. Зайцев

2024

Цель исследования

Проблема

Современные подходы фокусируются на архитектуре преобразования последовательных данных, вводящей self-attention к элементам в последовательности. В этом случае мы учитываем временные взаимодействия событий, но теряем информацию о взаимозависимостях меток.

Цель работы

Создание подхода, основанного на механизме собственного внимания над метками, предшествующими прогнозируемому шагу.

Задачи работы

- 1) изучение существующих моделей, работающих в области предсказаний множества меток
- разработка метода на основе внимания для предсказания множества меток
- 3) валидация разработанных методов
- 4) обоснование причинно-следственных связей с помощью построения графа на основе внимания

Обзор литературы

- Классификация с несколькими метками. Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, and Elke Rundensteiner. Recurrent halting chain for early multi-label classification. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1382–1392, 2020. Wenyu Zhang, Devesh K Jha, Emil Laftchiev, and Daniel Nikovski.Multi-label prediction in time series data using deep neural networks. arXiv preprint arXiv:2001.10098, 2020.
- метками. Xiao Shou, Tian Gao, Shankar Subramaniam, Debarun Bhattacharjya, and Kristin Bennett. Concurrent multi-label prediction in event streams. In AAAI Conference on Artificial Intelligence, 2023.

▶ Основные подходы для задачи классификации с несколькими

Fan Zhang, Shuai Wang, Yongjie Qin, and Hong Qu. Conv-based temporal sets prediction for next-basket recommendation. In 2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE), pages 419–425. IEEE, 2023.

Постановка задачи

Пусть $\mathcal{U} = \{u_1, u_2, \dots, u_N\}$ - это набор из N элементов.

Каждый элемент $u_i, 1 \leq i \leq N$, связан с последовательностью временных множеств $\mathcal{S}_i = \{s_i^1, s_i^2, \dots, s_i^T\}$, где T - число наблюдаемых временные метки.

Набор $s_i^j, 1 \leq i \leq N, 1 \leq j \leq T$, представляет собой набор произвольного количества меток, выбранных из словаря $\mathcal{Y} = \{y_1, y_2, \ldots, y_L\}$ размера L. Цель задачи предсказания временных множеств состоит в том, чтобы предсказать последующий набор меток \hat{s}_i^{T+1} , то есть,

$$\hat{s}_{i}^{T+1} = g(s_{i}^{1}, s_{i}^{2}, s_{i}^{T}, \mathbf{W}),$$
 (1)

где ${f W}$ относится к обучаемым параметрам функции g.

Предложенный метод

Пусть $\mathbf{X} \in \mathbb{R}^{L \times D}$ — матрица представлений всех меток из словаря $\mathcal{Y} = \{y_1, y_2, \dots, y_L\}$. Для каждой временной метки $j, 1 \leq j \leq T$ создается временное представление $\mathbf{t}_j \in \mathbb{R}^D$, как это сделано в [1]. Для каждого момента времени $t_j, 1 \leq j \leq T$ образуется матрица представлений $\mathbf{Z} \in \mathbb{R}^{L \times D}$. I-я строка, $1 \leq I \leq L$, матрицы \mathbf{Z} , обозначаемая как $\mathbf{Z}^{(I,:)}$, равна сумме представлений временных меток, в которых метка $y_i \in \mathcal{Y}$ отображается как элемент набора:

$$\mathbf{Z}^{(l,:)} = \sum_{j|y_l \in s_i^l} \mathbf{t}_j. \tag{2}$$

Тогда:

$$\mathbf{G} = \mathbf{X} \oplus \mathbf{Z}.\tag{3}$$

Для выявления зависимостей меток $\tilde{\mathbf{G}}$:

$$\tilde{\mathbf{G}} = \operatorname{softmax}(\frac{\mathbf{QK}^{\mathsf{T}}}{\sqrt{2D}})\mathbf{V}.$$
 (4)

Слой предсказания:

$$\hat{\mathbf{f}} = \operatorname{sigmoid}(\tilde{\mathbf{G}}\mathbf{W}^{\operatorname{out}} + b^{\operatorname{out}}).$$
 (5)

Предложенный метод

Рассматриваемая функция потерь:

$$\mathcal{L}_{i} = -\frac{1}{L} \sum_{l=1}^{L} \left(\mathbf{I}_{l} \log \mathbf{\hat{f}}^{(l)} + \mathbf{I}_{l}^{'} \log \left(1 - \mathbf{\hat{f}}^{(l)} \right) \right), \tag{6}$$

где $\mathbf{I}_I = \mathbf{I}\{y_I \in s_i^{T+1}\}$ является индикаторной функцией метки y_I , которая является членом множества s_i^{T+1} , в то время как $\mathbf{I}_I^{'}$ — это индикаторная функция с противоположным условием $\mathbf{I}_I^{'} = \mathbf{I}\{y_I \notin s_i^{T+1}\}$. Мы обозначим I-ю составляющую прогнозируемого вектора оценки достоверности $\hat{\mathbf{f}}$ как $\hat{\mathbf{f}}^{(I)}$.

Рис.: Общий пайплайн получения глобальных представлений

Вычислительный эксперимент: Данные

Таблица: Статистика наборов данных для прогнозирования временных наборов.

Dataset	#Sets	MdnSS	MaxSS	Vocab	MnLen	#Seqs
Mimic III	17 849	5	23	169	2.7	6636
Instacart	115 604	6	43	134	16.5	7000

- Mimic III датасет, состоящий из медицинских карт пациентов из отделения интенсивной терапии. Событие, связанное с пациентом, включает в себя время поступления в больницу и набор классификационных кодов заболеваний.
- ▶ Instacart набор данных содержит записи о заказах товаров пользователями. Товары из маркетплейсов и магазинов.

Вычислительный эксперимент: Основные результаты

Таблица: Сравнение подхода our LANET с существующими моделями для прогнозирования временных наборов на основе четырех наборов данных. Выделены наилучшие значения, а вторые по значению подчеркнуты.

Data	Model	Weighted F1↑	Weighted ROC-AUC↑	Hamming Loss↓
Mim	SFCNTSP	0.3791 ± 0.0081	0.7034 ± 0.0024	0.0377 ± 0.0004
	DNNTSP	0.3928 ± 0.0030	0.6926 ± 0.0003	0.0365 ± 0.0003
	GPTopFreq	0.4291 ± 0.0073	0.6912 ± 0.0028	0.0398 ± 0.0005
	TCMBN	0.4979 ± 0.0180	0.8670 ± 0.0095	0.0305 ± 0.0008
	LANET(ours)	0.8214 ± 0.0224	0.9852 ± 0.0023	0.0220 ± 0.0001
Ins	SFCNTSP	0.1672 ± 0.0112	0.6852 ± 0.0448	0.0581 ± 0.0004
	DNNTSP	0.4160 ± 0.0009	0.7913 ± 0.0004	0.0541 ± 0.0002
	GPTopFreq	$\overline{0.4087 \pm 0.0079}$	0.7736 ± 0.0039	0.0529 ± 0.0008
	TCMBN	0.3687 ± 0.0065	0.8187 ± 0.0030	$\overline{0.0530 \pm 0.0005}$
	LANET(ours)	0.6159 ± 0.0029	0.9445 ± 0.0008	0.0474 ± 0.0003

Вычислительный эксперимент: Дополнительные исследования

Рис.: Зависимость качества LANET от размера векторных представлений.

Рис.: Зависимость качества LANET от количества голов во внимании.

Рис.: Зависимость качества LANET от количества слоев энкодера.

Graph attention

Рис.: Интерпретация взаимосвязи [2] надписей с помощью слоя attention. Слева приведен рисунок, показывающий взаимосвязь между подмножеством надписей и их вербальной интерпретацией. Рядом с графиком приведена тепловая карта, которая иллюстрирует взаимосвязь всех возможных надписей в наборе данных Instacart. Справа представлены измененные графики, которые получены в результате удаления метки с наибольшим весом внимания из всех возможных значений и соответствующего распределения весов на тепловой карте. Данные получены из набора данных Instacart.

Заключение

- ▶ Проведены исследования по анализу различных наборов данных, используемых при сравнении реализованной модели LANET.
- Проведены ряд экспериментов для задачи классификации с несколькими метками на двух различных выборках и сравнение с базовыми подходами в данной области.
- Проведен анализ причинно-следственных связей в self-attention, где используется графовый подход на основе построения РАС для взаимосвязи меток.
- Проведена оценка метрики в зависимости от гиперпараметра, отвечающего за размер входных представлений, количество голов во внимании и также количества слоев энкодера.

Статья подана в апреле 2024 года на конференцию ЕСАІ.

- 1. Kovtun E.*, **Boeva G.*** Label Attention Network for sequential multi-label classification: you were looking at a wrong self-attention // arXiv 2023.
- 2. Zhuzhel, V.*, Grabar, V.*, **Boeva, G.***, Zabolotnyi, A.*, Stepikin, A.*, Zholobov, V.*, Ivanova, M., Orlov, M., Kireev, I., Burnaev, E., Rivera-Castro, R., Zaytsev, A.:Continuous-time convolutions model of event sequences (2023)
- * одинаковый вклад в статью Вклад: разработка идеи статьи, базовые подходы, исследование устойчивости модели и графовая интерпретация внимания

Благодарность

Алексей Зайцев Елизавета Ковтун Андрей Шульга Владислав Жужель Александр Степикин Всеволод Грабарь Артем Заболотный Владимир Жолобов

Xiao Shou, Tian Gao, Shankar Subramaniam, Debarun Bhattacharjya, and Kristin Bennett.

Concurrent multi-label prediction in event streams.

In AAAI Conference on Artificial Intelligence, 2023.

Raanan Y Rohekar, Yaniv Gurwicz, and Shami Nisimov. Causal interpretation of self-attention in pre-trained transformers. Advances in Neural Information Processing Systems, 36, 2024.