Vorkurs Mathematik Blatt 8

Besprechung der Lösungen am 28.09.2023 in den Übungen

Hinweis: Sie dürfen bei Ihren Beweisen die bewiesenen Aussagen aus den Vorlesungen und auch folgende Aussage als bekannt voraussetzen:

Satz (Division mit Rest): Es seien a, b natürliche Zahlen mit $b \neq 0$. Dann existieren eindeutig bestimmte Zahlen $q, r \in \mathbb{N}_0$ mit $0 \leq r < b$ mit $a = q \cdot b + r$.

Aufgabe 1

Es seien $a_1, a_2, a_3 \in \mathbb{N}$ derart, dass die Zahl $a_1 \cdot a_2 \cdot a_3 + 1$ durch 3 teilbar ist. Zeigen Sie folgende Aussagen mit Hilfe eines Widerspruchsbeweises:

- (a) Keine der Zahlen a_1, a_2, a_3 ist durch 3 teilbar.
- (b) Mindestens eine der Zahlen a_1+1, a_2+1, a_3+1 ist durch 3 teilbar.
- (c) Bonusaufgabe: Zeigen Sie, dass analoge Aussagen gelten, wenn Sie k ($k \in \mathbb{N}$) Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ betrachten, so dass die Zahl $a_1 \cdot \ldots \cdot a_k + 1$ durch 3 teilbar ist.

Lösungsskizze:

Hier der Beweis für die folgende Aussage:

Es sei $k \in \mathbb{N}$. Weiter seien $a_1, \ldots, a_k \in \mathbb{N}$ derart, dass die Zahl $a_1 \cdot \ldots \cdot a_k + 1$ durch 3 teilbar ist. Zeigen Sie folgende Aussagen mit Hilfe eines Widerspruchsbeweises:

- (a) Keine der Zahlen a_1, \ldots, a_k ist durch 3 teilbar.
- (b) Mindestens eine der Zahlen $a_1 + 1, \dots, a_k + 1$ ist durch 3 teilbar.

Beweis:

(a) Nach Voraussetzung gilt $3 \mid (a_1 \cdot \ldots \cdot a_k + 1)$, d.h. es existiert ein $n \in \mathbb{N}$ mit

$$a_1 \cdot \ldots \cdot a_k + 1 = 3 \cdot n.$$

Angenommen, es gilt $3 \mid a_j$ für ein $j \in \{1, \ldots, k\}$, dann folgt nach den Teilbarkeitsregeln die Teilbarkeit $3 \mid (a_1 \cdot \ldots \cdot a_k)$. Somit existiert ein $m \in \mathbb{N}$ mit $a_1 \cdot \ldots \cdot a_k = 3 \cdot m$. Somit folgt die Gleichheit

$$1 = 3 \cdot n - a_1 \cdot \ldots \cdot a_k = 3 \cdot n - 3 \cdot m = 3 \cdot (n - m),$$

was (in jedem der Fälle für n und m) einen Widerspruch darstellt. Somit kann keine der Zahlen a_1, \ldots, a_k durch 3 teilbar sein.

(b) Wir nehmen an, dass keine der Zahlen a_1+1,\ldots,a_k+1 durch 3 teilbar ist. Dann gibt es (nach Division mit Rest) für jedes $j=1,\ldots,k$ ein $n_j\in\mathbb{N}$ und ein $r_j\in\{1,2\}$, sodass $a_j+1=3\cdot n_j+r_j$ gilt. Damit folgt $a_j=3\cdot n_j+(r_j-1)$, was für alle $j=1,\ldots,k$ die Gleichheit $r_j=2$ impliziert. Denn für $r_j=1$ wäre a_j durch 3 teilbar, was ein Widerspruch zu Teilaufgabe (a) wäre. Also ist $a_j=3\cdot n_j+1$ für $j=1,\ldots,k$. Wir betrachten nun die Zahl

$$a_1 \cdot \ldots \cdot a_k - 1 = (3 \cdot n_i + 1) \cdot \ldots \cdot (3 \cdot n_k + 1) - 1.$$

Durch Ausmultiplizieren des Produktes sehen wir, dass in jedem Summanden des Resultates der Faktor 3 vorkommt. Somit ist $a_1 \cdot \ldots \cdot a_k - 1$ durch 3 teilbar. Dies steht aber im Widerspruch dazu, dass nach Voraussetzung auch die Zahl $a_1 \cdot \ldots \cdot a_k + 1$ durch 3 teilbar ist. Somit war unsere Annahme falsch, und mindestens eine der Zahlen $a_1 + 1, \ldots, a_k + 1$ muss durch 3 teilbar sein.

Aufgabe 4 (Bonusaufgabe)

Nutzen Sie die Beweisidee von Euklid und Aufgabe 1(c), um zu zeigen, dass es sogar in der folgenden Menge

$$2+3\cdot\mathbb{N} := \{2+3\cdot n \mid n\in\mathbb{N}\} = \{5,8,11,\dots\}$$

natürlicher Zahlen unendlich viele Primzahlen gibt.

Hinweis: Nehmen Sie an, dass es nur endlich viele Primzahlen p_1, \ldots, p_n in der Menge $2 + 3 \cdot \mathbb{N}$ gibt, und betrachten Sie die natürliche Zahl

$$a := 3 \cdot p_1 \cdot \ldots \cdot p_n - 1.$$

Zeigen Sie mit Hilfe von Aufgabe 1(c), dass es dann eine Primzahl $p \in \mathbb{P}$ gibt mit p|a und $p \in 2 + 3 \cdot \mathbb{N}$.

Lösungsskizze:

Im Gegensatz zur Behauptung nehmen wir an, dass es nur endlich viele Primzahlen p_1, \ldots, p_n in $2 + 3 \cdot \mathbb{N}$ gibt, und betrachten die natürliche Zahl

$$a := 3 \cdot p_1 \cdot \ldots \cdot p_n - 1.$$

Es ist a > 1, und somit besitzt a nach Lemma aus Vorlesung einen Primteiler p. Da $3 \nmid a$ gilt, folgt $p \neq 3$. Wir zeigen nun, dass $p \in 2 + 3 \cdot \mathbb{N}$ gilt, d.h. dass $3 \mid (p+1)$.

Ist p=a, so ist $p+1=3\cdot p_1\cdot\ldots\cdot p_n$ ein Vielfaches von 3 und wir sind fertig. Ist p< a, so existiert ein $q\in\mathbb{N},\ q>1$, mit $a=p\cdot q$. Da nach Definition von a gilt, dass $3\mid (p\cdot q+1)$, folgt aus Aufgabe 1, Teil (b) allgemein, dass $3\mid (p+1)$ oder $3\mid (q+1)$ gelten muss. Im ersten Fall sind wir fertig, im zweiten Fall wiederholen wir das Verfahren für q anstelle von a. Schließlich finden wir nach endlich vielen Schritten einen Primteiler p von p0 mit $p\in 2+3\cdot\mathbb{N}$.

Nun fahren wir fort wie im Beweis von Euklid. Denn aufgrund der Annahme, dass nur endlich viele Primzahlen in der Menge $2+3\cdot\mathbb{N}$ existieren, muss $p\in\{p_1,\ldots,p_n\}$ gelten. Insbesondere gilt somit $p\mid (3\cdot p_1\cdot\ldots\cdot p_n)$. Da andererseits auch die Teilbarkeitsbeziehung $p\mid a$ besteht, muss nach den Teilbarkeitsregeln auch $p\mid 1$ gelten, ein Widerspruch. Es muss also unendlich viele Primzahlen in $2+3\cdot\mathbb{N}$ geben.