Advanced Persistent Validations to counter Advanced Persistent Threats

用高级持续的验证去应对高级持续的攻击威胁

Speaker: Amritam Putatunda

Position: Product Manager – Apps and Security

Date: 2014/09/25

Todays IT CHALLENGES 今天IT面临的挑战

More devices

And attacks continue to rise

And your users want it all now

Connecting from more places

Accessin g more

..and you can see less of it

And it has to be fast

From more sources

ISC

...and now its all moving

And it has to work over wirelessalways

The Planet of the Apps "The internet is changing"

互联网是一个充满应用的世界,并且应用在时时变化

- Millions of different Apps with new one cropping up each day.
- Every other organization is adopting BYOD
- Applications access data differently
- Security implications magnify with attacks hidden within apps.

Mobile Malware -The fastest growing type of malware.

移动终端的恶意软件是增长最快的恶意软件类型

How does it change the threat landscape

- Millions of phones/tablets/PC's accessing Data
- Until now Malware's were still at the stage of Phishing, scamming.
- Expected to grow exponentially with Apps.
- OS security models are beginning to break.
- "UI State Inference and Novel Android Attacks"

SCAMS

PHISHING

SPAM

MALICIOUS APPS

Attackers becoming vicious each passing day

攻击者在过去的每一个天都在变化:形式更多样,更具威胁

ADVANCED PERSISTENT THREAT – Propagation APT的工作方式-传播

Porousness and inherent vulnerabilities in devices magnifying the viciousness of APTs

Infections through Social Media

通过社交媒体感染传播

Infection through Dodgy Websites "Drive by Downloads"

通过欺诈网站感染传播

Sample example of Drive By Downloads

由于点击恶意链接而误下载各种恶意软件

www.very_dodgy_url.com

www.xxx_123.com

www.porn_zxcv.com

China Internet Security Conference 中国互联网安全大会

Drive By Downloads-Vicious in mobiles

移动终端上的恶意链接更隐蔽危害更大

- Url's on phones are shortened
- Websites look different Mobile phones.
- SMS, Whatsapp, Viber, weibo messages
- One unmindful click enough for attackse

http://short.url

Successful Infection Always Follows Deeper Penetration

成功的感染植入后,紧接着的是进一步渗透

- Extract personal information
- Install Utilities, Malwares
- Dig Deeper into the system
- Corrupt/Encrypt or Hide Data
- Make a Bot and do nothing

Advanced Data Leakages

数据泄露问题

- Leakage through Video cams
- Recording Keystrokes/History
- Record meeting/call data
- SMS copiers, remote login utilities, rootkits

Modern APT breeding grounds of Large Botnet ISC

APT可以产生大规模的僵尸网络

Sophisticated Botnets – The Swiss army knife of Attackers

Hardware Infrastructure

- •DHCP
- •VPN
- •Web Proxy
- •IDS/IPS
- •Firewall/Router ACL
- •IPSec Gateways
- •HIDS/HIPS
- •Endpoint Protections
- •Redundant Hardware

Forensic and Investigation

- •Robust Logging
- Proxy Logs
- Authentication Logs
- •IDS Alerts
- •Host-based Logs
- •Firewall Logs
- •Full Content Traffic Captures
- Netflow
- •Server Event Logs
- •Workstation Event Logs

Efficient Network Design

- •Proper Network Segmentation
- •Well Defined DMZ
- •Wifi and Wireless Zoning
- •IP Address Schemas
- •Public Facing device control
- •Overview of NW Infrastructure

Stages in APT Mitigation 预防抵御APT攻击的不同阶段

Validation Techniques:

- Practice every stages of APT Mitigations
 - Phishing Attack
 - Malware Delivery
 - Data Ex-filteration
 - Lateral Movements
- Device validation and procurement best practices
- Continuously improve Attack Detection Time(ADT)
- Continuous practice of D.C.A.R cycle (Detect -> Collect -> Assess -> Remediate)

Validating Phishing and Spam Email detection/prevention mechanism

对钓鱼网站和垃圾邮件监测识别系统的验证

APT Step 1- Phishing and Spam email generation

- Generate different types of phishing emails.
- Create new variants-Pictured Spam, Scrambled Spam
- Extensive Phishing with more than hundred plus phishing techniques
- False positives assessments

Validate Malware/Exploit and Vulnerability delivery mitigation

对于病毒和漏洞攻击防御系统的验证

APT Step 2- User compromise and Bot to C&C message simulation

- Malware/Vulnerability delivery through various apps.
- Weibo, Gmail, SMTP every app/protocol can be a delivery vehicle.
- Simulate Bot to C&C communication.

Validating Alarms, Loggings, Distraction and Decoy efficiency

验证报警、日志、反欺骗系统等系统的效率

APT Step 3- Generation of Logs, Decoys and Distractions

- Generate extremely common and low-end attacks
- Generate different severity of Logs.
- Validate logging efficiency from each devices
- •Generate volumetric DDOS Attacks.

Validate Data Leakage, Data Ex-filteration, Lateral Movements mitigation

验证防数据泄露系统

APT Step 4- Data Leakage and Persistency

- Leakage simulation through encrypted and non-encrypted apps.
- Data Leakage policy validation
- Lawful Interception efficiency assessments
- Validate multiple data leakage protection against multiple Vehicle and data types.

467 2.731570	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.146.86	TCP	70 microsoft-ds > 14375 [ACK] Seq=619 Ack=992 win=13032 Len=0 TSval=765935569
468 2.731575		1.1.146.86	SMB2	154 TreeConnect Response
469 2.731590	1.1.146.86	1.2.135.103	TCP	70 14375 > microsoft-ds [ACK] Seq=992 Ack=703 Win=13032 Len=0 TSval=765935728
470 2.731594	1.1.146.86	1.2.135.103	SMB2	320 Create Request File: cred_Carddetail.txt
471 2.731608	1.2.135.103	1.1.146.86	TCP	70 microsoft-ds > 14375 [ACK] Seg=703 Ack=1242 Win=14480 Len=0 TSval=76593587
472 2.731613	1.2.135.103	1.1.146.86	SMB2	346 Create Response File: cred_Carddetail.txt
473 2.731626	1.1.146.86	1.2.135.103	TCP	70 14375 > microsoft-ds [ACK] Seg=1242 Ack=979 Win=14480 Len=0 TSval=76593602
474 2.732557	1.1.146.86	1.2.135.103	TCP	1518 [TCP segment of a reassembled PDU]
475 2.734556	1.1.146.86	1.2.135.103	TCP	1518 [TCP segment of a reassembled PDU]
476 2.734575	1.1.146.86	1.2.135	SMB2	499 Write Request Len: 3206 Off: 0 File: cred_Carddetail.txt
477 2.734585	1.2.135.103	46.86	TCP	70 microsoft-ds > 14375 [ACK] Seq=979 Ack=4138 Win=17376 Len=0 TSval=76595968
478 2 479 2 Credcarddetails.txt is sent through 480 2 SMB to the server.			TCP	70 microsoft-ds > 14375 [ACK] Seq=979 Ack=4567 Win=18824 Len=0 TSval=76595978
			SMB2	154 Write Response
			TCP	70 14375 > microsoft-ds [ACK] Seg=4567 Ack=1063 win=15928 Len=0 TSval=7659599
481 2.			SMB2	162 Close Request File: cred_Carddetail.txt
482 2.734634	1.2.135.103	1.1.146.86	TCP	70 microsoft-ds > 14375 [ACK] Seq=1063 Ack=4659 win=20272 Len=0 TSval=7659600
483 2.734638	1.2.135.103	1.1.146.86	SMB2	198 Close Response
ARA 2 72465A	1 2 135 103	1 1 146 R6	TCD	70 microenft_de ~ 1/275 [ctv /cv] son_1101 /cb_/650 win_20272 on_0 tsval_76
				III.

Validating Protection against Attack polymorphism

对于攻击各种变化形态的验证

Every Malware, Exploit and Vulnerability can be hidden through evasion

techniques.

Validating Resiliency against Vulnerability Exploitatio

进行漏洞攻击的弹性验证

Source	Destination	Protocol Length Info
1.1.120.216	1.2.127.34	TCP 66 afs3-errors > https [SYN] Seq=0 win=16383 Len=0 MSS=1460 WS
1.2.127.34	1.1.120.216	TCP 66 https > afs3-errors [SYN, ACK] Seq=0 Ack=1 win=16383 Len=0 I
1.1.120.216	1.2.127.34	TCP 66 arss-errors > nccps [ack] seq=1 ack=1 Win=16383 Len=0 MSS=1
1.1.120.216	1.2.127.34	TLSv1.1 29 Client Hello, Encrypted Heartbeat
1.2.127.34	1.1.120.216	TLSv1.1 108 Encrypted Heartbeat
1.1.120.216	1.2.127.34	TCP 64 af53 errors > https [FIN, ACK] Seq=241 Ack=1030 Win=16383 L
1.2.127.34	1.1.120.216	TCP 64 https > afs3-errors [FIN, ACK] Seq=1030 Ack=241 Win=16383 L
1.2.127.34	1.1.120.216	TCP 64 https > afs3-errors [ACK] Seq=1031 Ack=242 Win=16383 Len=0
1.1.120.216	1.2.127.34	TCP 64 afs3-errors > https [ACK] Seq=242 Ack=1031 Win=16383 Len=0

23

ISC

Validations against Botnet Lifecycle Protections

对僵尸网络各环节保护能力进行验证

- ✓ Cutwail
- ✓ Zeus
- ✓ SpyEye
- ✓ ZeroAccess
- ✓ Duqu
- ✓ BlackEnergy
- ✓ TDL4
- ✓ PushDO
- ✓ TDW
- ✓ Customized Bot validation

ISC

Traditional DDOS Assessments

Layer 3 IP / ICMP

- ✓ DDoS IP Frag Attack
- ✓ DDoS ICMP Request Flood Attack
- ✓ DDoS ICMP Response Flood Attack

Layer 4 UDP

- ✓ LOIC UDP53 DoS Attack
- ✓ DDoS UDP Fragmentation
- ✓ DDoS Non-Spoofed UDP Flood
- ✓ DDoS UDP Flood

Layer 4 TCP

- ✓ DDoS SYN Flood
- ✓ DDoS PSH-ACK Attack
- ✓ DDoS Fake Session Attack
- ✓ DDOS SYN-ACK Flood Attack
- ✓ DDoS Rcv Wnd Size

Next Generation DDOS

Layer 7 Apps

- ✓ DDoS DNS Reflect Attack
- ✓ DDoS DNS Reflect Zombie
- ✓ LOIC HTTP DoS Attack
- ✓ DDoS SIP Invite Flood
- ✓ DDoS Redirect
- ✓ DDoS DNS Flood
- ✓ DDoS Excessive GET POST
- ✓ DDoS Slow POST
- ✓ DDoS Recursive GET
- **✓ DDOS NTP**
- ✓UE DDOS Generation

Unique

- ✓ DDoS SlowLoris
- ✓ DDoS Smurf Attack
- ✓ DDoS TDL4 CC HTTP Flood
- ✓ MultiVERB DDoS
- ✓ RUDY DDoS
- ✓ LOIC TCP8080 DoS Attack

Application Performance Under Attack

在攻击下的应用业务性能
•Benchmarking performance of real network traffic

- Applications efficiency for attack mitigations
- Average Security Effectiveness

	Vendor A	Vendor B	Vendor C
Avg Sec effectiveness *	48%	52%	28%

Advanced Persistent Validations

高级的可持续验证

NETWORK RESILIENCY VALIDATION

网络的弹性验证

Summary 小结

- The Internet, Applications and Attacks have changed
- Our defense in comparison have not changed.
- To counter newer attacks resilient networks are needed.
- Advanced Validations is the only way to assure network protection against attacks.