```
ln[5]:= GeneralLinearAnizatropy[\alpha0_, U0_, \chi0_, \theta0_, \beta0_, P0_] :=
      Module \{\alpha = \alpha 0, U = U0, \chi = \chi 0, \theta = \theta 0, \beta = \beta 0, P = P0\}
        (*\alpha - dissipation, \alpha=v/\omega, \omega \rightarrow \omega (1+i\alpha)*)
       (*U - anizatropy: p^2=4\pi e^2*n/m, b=eB/(mc), v=p^2/\omega^2,
       u=b^2/\omega^2, and with dissipation: v\rightarrow v(1-i\alpha), u\rightarrow U(1-i\alpha)*
       (*\chi - dimensionless wave vector magnitude; \chi=k_0L, and L=1*)
       (*\theta - ngel between wave vector and XOZ*)
       (*\beta - angle between wave vector and magnetic field direction*)
       (*P - wave polarisation; 2d-vector*)
        (*Plasma configuration*)
       X = 3; (*plasma boundary*)
       \Delta = 0.05; (*smoothing width, in parts of plasma whight*)
       n = 1/\Delta; smoothingFunc = Function \left[x, \left(1 - \left(\frac{x}{y}\right)^{2n}\right)^{-1}\right];
       v = Function \left[ x, \left( \frac{X^2 - x^2}{X^2 - 1} \right) * smoothingFunc[x] * (1 - i * \alpha) \right]; u = U (1 - i * \alpha);
      Eps =  \begin{pmatrix} 1 - \frac{v[x]}{1-u} & \dot{n} \frac{\sqrt{u}}{1-u} v[x] & 0 \\ -\dot{n} \frac{\sqrt{u}}{1-u} v[x] & 1 - \frac{v[x]}{1-u} & 0 \\ \end{pmatrix}; 
        (*Plot[{Re[Eps[[3,3]]],Im[Eps[[3,3]]]},{x,-2X,2X}]*)
        ===============+)
       (*Wave configuration*)
       A = 1; (*wave magnitude*)
       k = \chi \begin{pmatrix} \cos[\theta] \sin[\beta] \\ \sin[\theta] \\ \cos[\theta] \cos[\beta] \end{pmatrix}^{T} [[1]]; \text{ (*wave vector*)}
       E = \frac{A}{Norm[P]} \begin{pmatrix} Cos[\beta] & -Sin[\theta] Sin[\beta] \\ 0 & Cos[\theta] \\ -Sin[\beta] & -Sin[\theta] Cos[\beta] \end{pmatrix}.P;
       B = \frac{k \times E}{\gamma}; \text{ (*Magnetic field (!!!ESCAPE_SEQUENCE!!!)*)}
        (*Maxwell equations*)
       GeneralSystem = {
            (*Ex[x]*Eps[x][[1,1]]*Ey[x]*Eps[x][[1,2]]==kz*By[x]-ky*Bz[x],
           Bx[x] = ky \times Ez[x] - kz \times Ey[x], \star)
           Ey'[x] == i * x * \left(ky * \frac{(kz * By[x] - ky * Bz[x] - Ey[x] * Eps[[1, 2]])}{Eps[[1, 1]]} + Bz[x]\right),
            (*Ey'[x] == i * \chi * (ky * Ex[x] + Bz[x]) *)
```

```
Ez'[x] == i * \chi * \left(kz * \frac{(kz * By[x] - ky * Bz[x] - Ey[x] * Eps[[1, 2]])}{Eps[[1, 1]]} - By[x]\right),
            (*Ez'[x] == i * \chi * (kz * Ex[x] - By[x]) *)
            By'[x] == i * \chi * (ky * (ky * Ez[x] - kz * Ey[x]) - Eps[[3, 3]] * Ez[x]),
            (*By'[x] == i*\chi*(ky*Bx[x]-Eps[x][[3,3]]*Ez[x])*)
           Bz'[x] == i * \chi * \left(kz * (ky * Ez[x] - kz * Ey[x]) + Eps[[2, 1]] * \right)
                                \frac{(kz * By[x] - ky * Bz[x] - Ey[x] * Eps[[1, 2]])}{Eps[[1, 1]]} + Eps[[2, 2]] * Ey[x]
                        (*Bz'[x] == i*\chi * (kz*Bx[x] + Eps[x][[2,1]] * Ex[x] + Eps[x][[2,2]] * Ey[x]) *)
        \[ \langle \ \{ \kx \rightarrow k[[1]] \rangle \chi, \ky \rightarrow k[[2]] \rangle \chi, \kz \rightarrow k[[3]] \rangle \chi\};
GeneralInitials =
    \{Ey[2X] = E[[2]], Ez[2X] = E[[3]], By[2X] = B[[2]], Bz[2X] = B[[3]]\};
Sol = NDSolveValue[{GeneralSystem, GeneralInitials},
        {Ey, Ez, By, Bz}, {x, -2 X, 2 X}];
 (*Polarisation rotations*)
Transmitted =
   If\left[P[[1]] = 0, \frac{Conjugate[P[[2]]]}{Abs[P[[2]]]}, \frac{Conjugate[P[[1]]]}{Abs[P[[1]]]}\right] \begin{pmatrix} \frac{P_{1[1]}}{Norm[P]} \\ \frac{P[[2]]}{Norm[P]} \end{pmatrix}^{T}[[1]];
 (*Transmitted wave*)
IW =
         \begin{pmatrix} \cos[\beta] & 0 & -\sin[\beta] \\ -\sin[\beta] \sin[\theta] & \cos[\theta] & -\cos[\beta] \sin[\theta] \end{pmatrix} \cdot \begin{pmatrix} \frac{(kz*By[x]-ky*Bz[x]-Ey[x]*By[x]-Ey[x]*By[x]-Ey[x]*By[x]-Ey[x]*By[x]-Ey[x]+By[x]-Ey[x]+By[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey[x]-Ey
            1]] /. \{kx \rightarrow k[[1]] / \chi, ky \rightarrow k[[2]] / \chi, kz \rightarrow k[[3]] / \chi, Ey[x] \rightarrow Sol[[1]][x],
            \texttt{Ez}\hspace{.08cm}[\texttt{x}] \rightarrow \texttt{Sol}\hspace{.08cm}[\texttt{[2]}\hspace{.08cm}] \hspace{.18cm}[\texttt{x}] \hspace{.18cm}, \hspace{.18cm} \texttt{By}\hspace{.08cm}[\texttt{x}] \rightarrow \texttt{Sol}\hspace{.08cm}[\texttt{[3]}\hspace{.08cm}] \hspace{.18cm}[\texttt{x}] \hspace{.18cm}, \hspace{.18cm} \texttt{Bz}\hspace{.08cm}[\texttt{x}] \rightarrow \texttt{Sol}\hspace{.08cm}[\texttt{[4]}\hspace{.08cm}] \hspace{.18cm}[\texttt{x}] \hspace{.18cm}\};
        a /. NSolve[{a * Exp[i * k[[1]] (-2 X)] + b * Exp[-i * k[[1]] (-2 X)] == IW[[1]] /. x \rightarrow
      \ a /. NSolve[{a * Exp[i * k[[1]] (-2 X)] + b * Exp[-i * k[[1]] (-2 X)] == IW[[2]] /. x →
                |<sup>T</sup>[[1]];
Initial =
    \begin{split} & \text{If}\Big[\text{IP}[[1]] = 0, \ \frac{\text{Conjugate}[\text{IP}[[2]]]}{\text{Abs}[\text{IP}[[2]]]}, \ \frac{\text{Conjugate}[\text{IP}[[1]]]}{\text{Abs}[\text{IP}[[1]]]}\Big] \left(\frac{\frac{\text{IP}[[1]]}{\text{Norm}[\text{IP}]}}{\frac{\text{IP}[[2]]}{\text{Norm}[\text{IP}]}}\right)^{\intercal}[[1]]; \end{aligned} 
 (*Initial wave*)
RW = \left( \begin{array}{ccc} \cos[\pi - \beta] & 0 & -\sin[\pi - \beta] \\ -\sin[\pi - \beta] \sin[-\theta] & \cos[-\theta] & -\cos[\pi - \beta] \sin[-\theta] \end{array} \right).
                             \{kx \rightarrow k[[1]] / \chi, ky \rightarrow k[[2]] / \chi, kz \rightarrow k[[3]] / \chi, Ey[x] \rightarrow Sol[[1]][x],
           Ez[x] \rightarrow Sol[[2]][x], By[x] \rightarrow Sol[[3]][x], Bz[x] \rightarrow Sol[[4]][x];
```

```
RP =
                                   (b /. NSolve[{a * Exp[i * k[[1]] (-2 X)] + b * Exp[-i * k[[1]] (-2 X)] == RW[[1]] /. x →
                                 b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] + b * Exp[-i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . NSolve[{a * Exp[i * k[[1]] (-2 X)] = RW[[2]] / . x \rightarrow Bx + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x + b / . x 
                                              <sup>†</sup>[[1]];
                            Reflected =
                               If\left[RP[[1]] = 0, \frac{Conjugate[RP[[2]]]}{Abs[RP[[2]]]}, \frac{Conjugate[RP[[1]]]}{Abs[RP[[1]]]}\right]
                             (*Reflected wave*)
                             (*Dissipation*)
                            Dissipation = 1 - \frac{Norm[RP]}{Norm[IP]};
                             {Eps, k, Sol, Initial, Reflected, Transmitted, Dissipation}
 In[102]:= DissipationFrom\Theta = \{\};
                    begining = -\pi/4; end = \pi/4; nstep = 100;
                    {\tt ProgressIndicator[Dynamic[(\Theta-begining)\ /\ (end-begining)]]}
                    For |\Theta| = \text{begining}, \Theta < \text{end}, \Theta + = (\text{end} - \text{begining}) / \text{nstep},
                           DissipationFrom⊕ = Append DissipationFrom⊕,
                                        \left\{\Theta, \text{ GeneralLinearAnizatropy}\left[0.000001, 0.000001, 30, \Theta, \frac{\pi}{2}, \{0, 1\}\right][[7]]\right\}\right];
                        ];
                    {\tt ListPlot[DissipationFrom\Theta, PlotRange \rightarrow Full]}
Out[104]=
                                                                                                 0.30
                                                                                                 0.25
                                                                                                 0.20
Out[106]=
                                                                                                 0.15
                                                                                                 0.10
```

0.05

-0.5