```
In [1]: | # Many fantastic pieces of free and open-source software can be used a
        s key components to enable single cell analysis
        # using python notebook. This scripts showed how to import scanpy resu
        It into single cell explorer. The analytic code parts
        # are modified from scanpy tutorial "Clustering 3K PBMCs", the re-impl
        emntation of Seurat's (Satija et al., 2015)
        # guided clustering tutorial. We gratefully acknowledge all authors fo
        r Suerat and Scanpy and their contribution.
        # we use 10K healthy donor's PBMCs data obtained from 10x Genomics
        # uncomment the following codes if you need to download the data
        #!mkdir data
        #!wget http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc 10k v3/pb
        mc 10k v3 filtered feature bc matrix.tar.gz -0 data/pbmc 10k v3 filter
        ed feature bc matrix.tar.gz
        #!cd data; tar -xzf pbmc 10k v3 filtered feature bc matrix.tar.gz
In [2]: import scpipeline
        # other libs
        import os, sys, csv,json,datetime,time,math,scipy.stats,collections,re
        from sklearn import preprocessing;
        import numpy as np;
        import pandas as pd;
        import os.path;
        import scanpy;
        import scanpy.api as sc
        sc.settings.set_figure_params(dpi=80)
        /home/ubuntu/.local/lib/python3.6/site-packages/numba/errors.py:105: U
        serWarning: Insufficiently recent colorama version found. Numba requir
        es colorama >= 0.3.9
          warnings.warn(msg)
In [3]: ###
        p = scpipeline.ProcessPipline();
        dataPath='./data/filtered feature bc matrix/'; # the directory with t
        he `.mtx` file
        p.readData(dataPath)
                                                          # read 10X '.mtx'data,
        compute mitochondra fraction, and create p.data
        p.data
        --> This might be very slow. Consider passing `cache=True`, which enab
        les much faster reading from a cache file.
        filtered out 10502 genes that are detected in less than 1 cells
Out[3]: AnnData object with n obs \times n vars = 11769 \times 23036
            obs: 'n_genes', 'percent_mito', 'n_counts'
var: 'gene_ids', 'n_cells'
```

```
In [4]: ### p.data is the data object for use
sc.pl.highest_expr_genes(p.data, n_top=5)
```



```
In [5]: # QC function
# def QC(self,max_n_genes="" ,min_n_genes="",min_n_cells="",max_percen
t_mito="")
# scanpy tutorial QC(self,max_n_genes=2500 ,min_n_genes=200,min_n_cell
s=3,max_percent_mito=0.05)
p.QC(min_n_genes=200,min_n_cells=3)
```

filter cells filtered out 232 cells that have less than 200 genes expressed filter genes filtered out 2684 genes that are detected in less than 3 counts

In [6]: p.data


```
In [8]: sc.pl.scatter(p.data, x='n_counts', y='n_genes')
sc.pl.scatter(p.data, x='n_counts', y='percent_mito')
```



```
In [9]: p.QC(max_n_genes=5000, max_percent_mito=0.12)

# for those who are more famaliar with scanpy:
p.data = p.data[p.data.obs['n_genes'] < 5000, :]
p.data = p.data[p.data.obs['percent_mito'] < 0.12, :]

# filter n_genes < 5000</pre>
```

filter n_genes < 5000
filter percent_mito < 0.12</pre>

In [10]: # QC in scanpy will remove cell barcodes. However, for database loadin
g, adata should keep same number of barcodes as original one.
We copy data from p.data to adata, which will be used for loading to
database
adata = p.data.copy()

In [12]: #Logarithmize the data
 sc.pp.loglp(adata)

In [13]: adata.raw = adata

In [14]: # highly variable genes
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_di
sp=0.5)

--> added

'highly_variable', boolean vector (adata.var)

'means', float vector (adata.var)

'dispersions', float vector (adata.var)

'dispersions_norm', float vector (adata.var)

In [15]: sc.pl.highly_variable_genes(adata)

In [16]: adata = adata[:, adata.var['highly_variable']]
regress out effects of total counts per cell and the percentage of m
itochondrial genes.
sc.pp.regress_out(adata, ['n_counts', 'percent_mito'])
Scale each gene to unit variance. Clip values exceeding standard dev
iation 10.
sc.pp.scale(adata, max_value=10)

regressing out ['n_counts', 'percent_mito'] sparse input is densified and may lead to high memory use finished (0:00:19.69)

computing PCA on highly variable genes

In [18]: sc.pl.pca_variance_ratio(adata, log=True)


```
In [19]: | sc.pp.neighbors(adata, n neighbors=10, n pcs=40)
          computing neighbors
              using 'X_pca' with n_pcs = 40
              finished (0:00:07.82) --> added to `.uns['neighbors']`
              'distances', distances for each pair of neighbors
              'connectivities', weighted adjacency matrix
In [20]: sc.tl.umap(adata)
          computing UMAP
              finished (0:00:24.77) --> added
              'X umap', UMAP coordinates (adata.obsm)
In [21]: #sc.pl.umap(adata, color=['CD3D', 'NKG7', 'PPBP', 'IRF7', 'CD79A', 'CD1
          4', 'FCGR3A', 'CLEC9A', "MS4A1", "GNLY", 'FCER1A', "CD8A"])
sc.pl.umap(adata, color=['CD3D', 'CD19', 'CST3', 'FCER1A'])
In [22]: | sc.tl.leiden(adata)
          running Leiden clustering
              finished (0:00:01.47) --> found 23 clusters and added
              'leiden', the cluster labels (adata.obs, categorical)
In [23]: | sc.pl.umap(adata, color=['leiden'],legend loc='on data',title= "umap")
                                 umap
```


In [24]: | ## optional marker gene identification # sc.tl.rank_genes_groups(adata, 'leiden', method='t-test') # sc.pl.rank genes groups(adata, n genes=25, sharey=False)

```
In [25]: ### t-SNE has better seperation among cell clusters, easy for single c
    ell explorer users to lasso select cell clusters
    sc.tl.tsne(adata,n_pcs=40)
    sc.pl.tsne(adata, color='leiden', legend_loc='on data', title='tSNE')

computing tSNE
    using 'X_pca' with n_pcs = 40
WARNING: Consider installing the package MulticoreTSNE (https://githu b.com/DmitryUlyanov/Multicore-TSNE). Even for n_jobs=1 this speeds up the computation considerably and might yield better converged results.
    using sklearn.manifold.TSNE with a fix by D. DeTomaso finished (0:01:37.93) --> added
```

TSNE

4 7

8 9

15 22

17 19 14

6 21 2

3 13

20 16 18

tSNE1

'X tsne', tSNE coordinates (adata.obsm)

start insert to db
success
mapid: 5ccfb3c066adac0c7e7924c9

start insert to db
success
mapid: 5ccfb94266adac0c7e7924e3

```
In [ ]:
```