SUMÁRIO

Capitulo 1 - UJT ou TUJ OK

- 1.1 Introdução, 1
- 1.2 Estrutura Interna, 1
- 1.3 Símbolo, 1
- 1.4 Circuito Equivalente, 2
- 1.5 Identificação dos Terminais, 3
- 1.6 Polarização do UJT, 3
- 1.7 Funcionamento, 3
- 1.8 Curva Característica, 5
- 1.9 Definição de Parâmetros, 5
- 1.10 Oscilador de Relaxação, 6
- 1.11 Função dos Componentes do Oscilador de Relaxação, 7

Dk

1.12 - Cálculo do Oscilador de Relaxação, 8

Capítulo 2 - PUT ou TUP

- 2.1 Introdução, 14
- 2.2 Estrutura Interna, 14
- 2.3 Circuitos Equivalentes, 14
- 2.4 Identificação dos Terminais, 15
- 2.5 Polarização e Condução, 16
- 2.6 Oscilador de Relaxação, 17
- 2.7 Circuito VCO, 19

Capítulo 3 - SCR ou RCS

- 3.1 Introdução, 20
- 3.2 Histórico, 20
- 3.3 Estrutura Interna, 20
- 3.4 Símbolo, 21
- 3.5 Circuitos Equivalentes, 21

3.6 - Identificação dos Terminais, 21
3.7 - Funcionamento, 23
3.7.1 - Polarização Direta Anodo-Catodo e Gate Aberto, 23
3.7.2 - Polarização Reversa Anodo-Catodo e Gate Aberto, 24
3.7.3 - Polarização Direta Anodo-Catodo e Polarização Direta Gate-Catodo, 24
3.8 - Influência do Sinal do Gate, 25
3.9 - Etapas dos Circuitos com SCR, 25
3.10 - Curva Característica do SCR, 25
3.11 - Cálculo de Polarização do SCR em C.C., 26
3.12 - Codificação da Série TIC, 27
3.13 - Vantagens e Desvantagens dos Tiristores em Relação aos Relés, 28

3.14 - Métodos de Disparo do SCR, 28
3.14.1- Disparo por Tensão de Breakover, 28

3.14.2- Disparo Através de Sinal Aplicado ao Gate, 28

3.14.3- Disparo por ruído (Sinais de Interferência), 29

3.14.4- Disparo pelo Efeito dv/dt, 29

3.14.5- Disparo por Temperatura, 30

3.14.6- Disparo pela Luz, 30

3.15- SCRs de Potência, 31

3.15.1- SCR Parafuso ou Rosca, 31

3.15.2- SCR Disco, 33

3.16 - Thyodul, 33

3.17 - Circuitos Aplicativos de SCR em C.C., 34

3.17.1- Temporizador com SCR, 34

3.17.2- Chave de Código, 34

3.17.3- Circuitos de Alarmes, 35

3.18 - SCR em Corrente Alternada, 36

3.19 - Cálculo da Tensão Média e Eficaz na Carga, 39

3.19.1- Definição do Valor Médio, 39

3.19.2- Definição de Valor Eficaz ou RMS, 39

3.19.3- Cálculo do Valor de V_{DC} e V_{RMS} nos Circuitos de ½ Onda, 40

3.20 - Cálculo das correntes média e eficaz na carga, 44

3.21 - Processos de Chaveamento, 45

3.22 - Meios de Propagação da RFI, 45

3.23 -Dimmer Progamável com SCR, 46

Capítulo 4 - Dados Técnicos de Tiristores.

- 4.1 Introducilo, 47
- 4.2 Dados Técnicos de Tensão, 47
- 4.3 Dudos Técnicos de Corrente, 49
- 4.4 Dados Técnicos Gate-Catodo, 49
- 4.5 Taxas de Incremento, 49
- 4.6 Outros Dados Técnicos, 50
- 4.7 Proteção para Tiristores, 50
 - 4.7.1- Proteção Contra Curto-Circuito, 50
 - 4.7.2- Proteção Contra Sobretensão, 50
 - 4.7.3- Proteção Contra Alto di/dt, 50
 - 4.7.4- Proteção Contra Alto dv/dt, 50
- 4.8 Especificação de SCR para Circuitos de Controle de Potência, 50

and article

Capítulo 5 - DIAC.

- 5.1 Introdução, 53
- 5.2 Estrutura Interna, 53
- 5.3 Símbolo, 53
- 5.4 Teste de Diac, 54
- 5.5 Curva Característica, 54
- 5.6 Aplicações para o Diac, 54
 - 5.6.1- Proteção contra Sobretensão, 55
 - 5.6.2- Gerador de Dente-de-Serra, 55
 - 5.6.3- Circuito de Disparo de Triac, 56

Capítulo 6 - TRIAC. Ok

- 6.1 Introdução, 57
- 6.2 Estrutura Interna, 57
- 6.3 Símbolo, 58
- 6.4 Teste do Triac, 58
- 6.5 Curva Característica, 58
- 6.6 Sensibilidades de Disparo, 59
- 6.7 Controle de Potência com Triac, 59
- 6.8 Desvantagens do Triac em Relação ao SCR, 62

Capítulo 7 - Circuitos de Disparo de Tiristores. ok X ras

- 7.1 Introdução, 63
- 7.2 Disparo de Tiristores com Sinal C.C. no Gate, 63
- 7.3 Disparo de Ttiristores com Sinal C.A. no Gate, 63
- 7.4 Disparo de Tiristores Através de Pulsos, 64
- 7.5 Considerações Sobre o Circuito de Disparo, 64
- 7.6 Circuito de Disparo Sincronizado com a Rede, 65
- 7.7 Transformador de pulso (TP), 67
 - 7.7.1 Transformador de Pulso de dois Enrolamentos, 67
 - 7.7.2 Transformador de Pulso de Três Enrolamentos, 70
- 7.8 Acopladores Ópticos ou Isoladores Ópticos, 71
 - 7.8.1- Tipos de Acopladores Ópticos, 72
 - 7.8.1.1 Acopladores Ópticos com Fotodiodo, 72
 - 7.8.1.2 Acoplador Óptico com Fototransistor, 72

Capítulo 8 - Circuitos Integrados TCA - 780 e TCA - 785 ok

- 8.1 Introdução, 77
- 8.2 Descrição do Princípio de Funcionamento, 77
- 8.3 Pinagem dos CI's TCA-780 e TCA-785, 79
- 8.4 Circuito com o TCA-780/785, 80
- 8.5 Cálculo com TCA 780 e TCA 785, 82 8.5.1- Cálculo da Tensão Controle, 82
 - 8.5.2- Cálculo da Rampa, 84
 - 8.5.3- Cálculo de R5, 87
 - 8.5.4- Cálculos para os Pinos 14 e 15, 87
- 8.6 Circuitos Aplicativos para TCA-780 e TCA-785, 90

Capítulo 9 - Conversores Estáticos

- 9.1 Introdução, 92
- 9.2 Conversor C.C.-C.C.:Chopper, 92
 - 9.2.1- Controle PWM, 93
 - 9.2.2- Modulação em Frequência, 94

	9.2.3- Variação de T _{ON} e T, 94
9.3	- Circuitos de Comutação para SCR, 95
	9.3.1- Comutação Forçada com Capacitor em Paralelo, 9
	9.3.2- Comutação Forçada em Rede L.C, 97
9.4	- Inversores, 99
	9.4.1- Ponte Inversora Monofásica, 99
	9.4.2- Ponte Inversora Trifásica, 101
	9.4.3- Inversor com Transformador, 103
9.5	- Controladores de Tensão C.A, 106
	9.5.1- Controle de Fase, 107
	9.5.2- Zero Crossing Switch ou Controle ON-OFF, 107
9.6	- Cicloconversores, 109
	9.6.1- Cicloconversor Monofásico, 110
	9.6.2- Cicloconversor Trifásico 112

Capítulo 10 - Retificadores

10.1	- Introdução, 114					
10.2	- Nomencla	tura de Retificadores, 114				
10.3	- Retificadores não Controlados, 114					
	10.3.1	- Retificador Monofásico não Controlado, 114				
	10.3.1.1	- Retificador Monofásico não Controlado de ½ onda, 115				
	10.3.1.2	- Retificador Monofásico não Controlado de Onda Completa, 119				
	10.3.1.2.1	-Retificador Monofásico não Controlado de Onda Completa com Transformador em Center Tape, 120				
	10.3.1.2.2	-Retificador Monofásico não Controlado de Onda Completa em Ponte, 123				
	10.3.2	- Retificador Trifásico não Controlado de 1/2 Onda, 126				
	10.3.3	- Retificador Trifásico não Controlado de Onda Completa				

10.4 - Retificador Controlado, 137

10.4.1 - Retificador Monofásico Controlado de 1/2 Onda, 138

(Ponte Graetz), 132

10.4.2 - Retificador Monofásico Controlado de Onda Completa, 141

10.4.3 - Retificador Trifásico Controlado de ½ Onda, 143

10.4.4 - Retificador Trifásico Controlado de Onda Completa, 146

10.5 - Retificador Monofásico Semicontrolado, 151

10.6 - Retificador Trifásico Semicontrolado, 153

Capítulo 11 - Conversores com Carga Indutiva

- 11.1 Introdução, 154
- 11.2 Conversor Monofásico Controlado de ½ Onda, 154
- 11.3 Conversor Monofásico de ½ Onda com Diodo de Circulação, 156
- 11.4 Conversor Monofásico Controlado de Onda Completa com Carga Indutiva, 156
- 11.5 Ábaco de Puschlowiski, 159
- 11.6 Conversor Monofásico Controlado de Onda Completa com Diodo de Circulação, 163.
- 11.7 Classificação dos Conversores Quanto ao Quadrantre de Operação, 163
- 11.8 Conversor Monofásico Semicontrolado com Carga Indutiva, 164
- 11.9 Conversor Trifásico Controlado de ½ Onda com Carga Indutiva, 165
- 11.10 Conversor Trifásico Controlado de ½ Onda com Diodo de Circulação, 167
- 11.11 Conversor Trifásico Controlado de Onda Completa com Carga Indutiva, 168
- 11.12 Conversor Trifásico Controlado de Onda Completa com Diodo de Circulação, 170
- 11.13 Conversor Trifásico Semicontrolado com Carga Indutiva, 170

Capítulo 12 - Dispositivos de Potência

- 12.1 Introdução, 172
- 12.2 Transistor Bipolar de Potência, 172
- 12.3 Mosfet de Potência, 172
- 12.4 GTO (Gate Turn-Off), 173
- 12.5 IGBT ou COMFET, 173

Capítulo 13 - Tranformador de Corrente (TC) e Shunt

- 13.1 Introdução, 175
- 13.2 T.C. (Transformador de Corrente), 175
 13.2.1 Tipos de Transformador de Corrente, 175
- 13.3 Shunt, 177

Capitulo 14 - No-Break ou UPS

- 14.1 Introdução, 179
- 14.2 -Constituição do No-Break On-Line, 179
- 14.3 Situações de Funcionamento do No-Break On-Line, 180
 - 14.3.1 Rede Normal, 180
 - 14.3.2 Falta de Energia da Rede, 180
 - 14.3.3 Retorno de Energia da Rede, 181
- 14.4 Operação Em Paralelo e Sistemas Redundantes, 182

Capítulo 15 - Sistema de Energia Para Telecomunicações

- 15.1 Introdução, 183
- 15.2 Características do Sistema de Energia, 184
- 15.3 Tipos de Consumidores, 184
- 15.4 Fontes de Tensão C.A.,184
- 15.5 GMG (Grupo Moto Gerador), 185
- 15.6 USCA (Unidade de Supervisão de Corrente Alternada), 185
- 15.7 Sistema Completo de Energia para Consumidores C.C.,187
 - 15.7.1 USCC (Unidade de Supervisão de Corrente Contínua), 188
 - 15.7.2 Conversor Aditivo, 158
 - 15.7.3 Diodo By-Pass, 188
 - 15.7.4 Bateria, 188
 - 15.7.5 Unidade Retificadora, 188
 - 15.7.5.1- Regime de Flutuação, 189
 - 15.7.5.2- Regime de Equalização, 189
 - 15.7.5.3- Regime Carga Especial, 189

Capítulo 16 - Controle de Velocidade de Motor C.A.

- 16.1 Introdução, 190
- 16.2 Considerações Básicas Sobre o Motor de Indução, 190
 - 16.2.1 Análise do Conjugado Motor, 191
 - 16.2.2 Análise do Conjugado Resistente, 191
 - 16.2.2.1- Conjugado Resistente Constante,192
 - 16.2.2.2- Conjugado Resistente Proporcional ao Quadrado da Velocidade, 193

- 16.2.3 Conceito de Escorregamento ou Deslizamento, 193
- 16.3 Formas de Controle de Velocidade do Motor de Indução, 193
- 16.4 Controle de Velocidade Através do Escorregamento, 194
 - 16.4.1 Controle de Velocidade Através da Variação da Tensão Estatórica, 194
 - 16.4.2 Controle de Velocidade Através de Resistência Rotórica, 197
 - 16.4.3 Controle de Velocidade com Cascasta Subsícrona, 197
- 16.5 Controle de Velocidade com Tensão e Frequência Variáveis, 197
 - 16.5.1 Conversão Indireta de Frequência, 199 -
 - 16.5.1.1- Acionamento com Retificador Controlado + Inversor de Frequência, 199
 - 16.5.1.2- Acionamento com Retificador não Controlado + Chopper + Inversor de Tensão, 200
 - 16.5.1.3- Acionamento com Retificador Não Controlado + Inversor PWM, 202
 - 16.5.2 Acionamento com Conversão Direta de Frequência:
 Cicloconversor, 204
- 16.6 Cuidados na Utilização de Conversores para o Acionamento de Motores de Indução, 205
- 16.7 Tipos de Frenagem do Motor de Indução, 206
 - 16.7.1 Frenagem por Contra-Corrente, 206
 - 16.7.2 Frenagem por Tensão C.C. aplicada ao Estator, 206
 - 16.7.3 Frenagem por Resistor, 206
 - 16.7.4 Frenagem Regenerativa, 206
- 16.8 Aplicações para o Controle de Velocidade de Motores de Indução, 207

Capítulo 17 - Controle de Velocidade de Motor C.C.

- 17.1 Introdução, 209
- 17.2 Equações Básicas do Motor C.C. Independente, 209
- 17.3 Considerações Sobre o Controle de Velocidade do Motor CC, 210
- 17.4 Controle de Velocidade Através da tensão de Campo ou de Excitação, 210
- 17.5 Controle de Velocidade Através da Tensão de Armadura, 211
- 17.6 Controle Misto de Velocidade, 211
- 17.7 Formas de Parada do Motor C.C., 211
 - 17.7.1 -Parada por Inércia, 211
 - 17.7.2 Parada por Frenagem, 212
 - 17.7.2.1 Frenagem Resistiva, 212
 - 17.7.2.2 Frenagem Regenerativa, 213

17.8		tes de Operação da Máquina C.C., 213				
17.9	- Acionam	sento em 1 Quadrante, 214				
17.10	- Acionam	emo em 2 Quadrantes, 214				
17.11	- Actionamento em 4 Quadrantes, 215					
	17.11.1	- Conversor de 2 Quadrantes e Chave de Reversão de Armadura, 216				
	17.11.2 - Conversor Dual, 216 17.11.2.1- Conversor Dual sem Corrente de Circulação, 217 17.11.2.2- Conversor Dual com Corrente de Circulação, 218					
		ACL Author				
Capí	tulo 18 - S	Sensores de Proximidade				
18.1	- Introduçã	io, 221				
18.2	- Informações Gerais Sobre Sensores, 221					
	18.2.1	- Funções de Saída, 221				
	18.2.2	- Proteções Incorporadas aos Sensores, 222				
	18.2.3	- Configurações Elétricas em Corrente Contínua, 222				
	18.2.3.1.	- Sensoresde Corrente Contínua de 3 e 4 Fios, 222				
	18.2.3.1.	1 - Sensores de Proximidade DC com Saída NPN, 222				
	18.2.3.1.	2 - Sensores de Proximidade DC com Saída PNP, 224				
	18.2.3.2	- Sensores de Corrente Contínua Namur, 225				
	18.2.3.3	- Sensores de Saída Progamável, 225				
	18.2.4	- Sensores de Proximidade AC (Saída a 2 Fios), 225				
	18.2.4.1	- Sensores de Proximidade AC (Saída a Três ou Quatro Fios), 227				
	18.2.5	- Fonte de Alimentação para os Sensores, 228				
	18.2.6	- Ligação Série de Sensores DC, 228				
	18.2.7	- Ligação Paralela de Sensores DC, 228				
	18.2.8	- Ligação Série de Sensores AC (Dois e Três Fios), 229				
	18.2.9	- Ligação Paralela de Sensores AC, 229				
	18.2.10	- Recomendações para Utilização dos Sensores da Sense, 229				
	18.2.11	- Sensores Embutidos e não Embutidos, 230				
18.3	- Sensores	de Proximidade Indutivos, 230				
	18.3.1	- Vantagens do Sensores Indutivos,231				
	18.3.2	- Construção Eletrônica Básica, 231				
	18.3.3	- Princípio de Funcionamento, 231				
	18.3.4	- Termos e Denominações dos Sensores Indutivos, 232				
	18.3.5	- Denominações das Características Elétricas dos Sensores, 232				
	18.3.6	- Codificação para os Sensores Indutivos da Linha Sense, 232				

18.4

- Sensores de Proximidade Capacitivos, 233

	18.4.1	- Campos de Aplicações, 233	
	18.4.2	- Princípio de Funcionamento, 233	
	18.4.3	- Ajuste de Sensibilidade, 234	
	18.4.4	- Cuidados com os Sensores Capacitivos, 234	
	18.4.5	-Codificação de Sensores Capacitivos da Linha Sense, 235	
	18.4.6	- Termos e Denominações para os Sensores Capacitivos, 235	
18.5	- Sensores	Fotoelétricos, 235	
	18.5.1	- Princípio de Funcionamento, 235	
	18.5.2	- Tipos de Construções, 236	
	18.5.2.1	- Sensor Fotoelétrico Sistema por Barreira, 236	
	18.5.2.2	- Sensor Fotoelétrico Fotosensor ou por Difusão, 236	
	18.5.2.3	- Sensor Fotoelétrico Sistema Refletivo com Espelho Prismático,236	
	18.5.3	- Modos de Operação dos Sensores Fotoelétricos, 237	
	18.5.4	- Codificação para os Sensores Fotoelétricos da Linha Sense, 239	
	18.5.5	- Fibra Óptica para Sensores Fotoelétricos, 240	
	18.5.5.1	- Princípio de Funcionamento, 240	
	18.5.5.2	- Modos de Operação, 240	
18.6	- Aspectos	Físicos dos Sensores de Proximidade, 240	
	18.6.1	- Sensores de Proximidade Indutivo, 240	
	18.6.2	- Sensores de Proximidade Capacitivo, 244	
	18.6.3	- Sensores de Proximidade Fotoelétrico, 244	

The Part All Countries are the Market Market and the Street West and the

and the second of the second o

The state of the s The control of the state of the