Class: MATH 2410

Naive Set Theory

Set Notation

Universal set Empty set $\emptyset = \{\}, \text{ Remember: } \forall A (\emptyset \subset A)$ Power set $\mathcal{P}(A)$ is the set of all the subsets of A. Partition of AA collection of nonempty, pairwise-disjoint subsets whose union is A. Element of \in . Example: $2 \in \{1, 2, 3\}$ Subset of \subseteq . Example: $\{A, B, C\} \subseteq \{B, C, D\}$ $A \subseteq B \Leftrightarrow \forall x$ Proper subset of \subset . Example: $\{A, B, C\} \subset \{A, B, C, D\}$ Intersection $\bigcap_{i \in I} A_i = \{ x \in \mathbb{U} | \forall i \in I, x \in A_i \}$ $A \cap B = \{x \in \mathbb{U} | x \in A \land x \in B\}$ $\bigcup_{i \in I} A_i = \{ x \in \mathbb{U} | \exists i \in I, x \in A_i \}$ Union $A \cup B = \{x \in \mathbb{U} | x \in A \lor x \in B\}$ Difference $A \backslash B = \{ x \in A | x \notin B \}$ $A\Delta B = (A \backslash B) \cup (B \backslash A)$ Symmetric difference Cartesian Product $A \times B = \{(x, y) | x \in A \land y \in B\}$ $A^C = \bar{A} = \{ x \in \mathbb{U} | x \notin A \}$ Complement of

Cardinality

 $\begin{array}{lll} \text{Cardinality}(|A|) & \text{The number of elements in a set.} \\ \text{finite set} & \text{Let } X \text{ be a finite set then } |X| \in \mathbb{N} \\ \text{countable set} & \text{A set } S \text{ is countable if and only if that is} \\ & \text{finit or } |S| = |\mathbb{N}|. \\ \text{aleph null.} & \aleph_0 = |\mathbb{N}| \\ \end{array}$

Axiom 1 (Axiom of extensionality) Two sets are equal if and only if they have the same elements.

Theorem 1 Let A and B be sets, then |A| = |B| if and only if there is a one-to-one correspondence from A to B.

Theorem 2 If A and B are countable, then $A \cup B$ is countable.

Theorem 3 (Cantor's Theorem) For every set A, $|A| < |\mathcal{P}(A)|$.

Theorem 4 (Schröder–Bernstein) If there are injective function(one-to-one) functions $f:A\to B$ and $g:B\to A$, then there is a one-to-one correspondence between A and B. In other words If A and B are set with $|A|\neq |B|$ and $|B|\neq |A|$, then |A|=|B|.

Theorem 5 (Well-Ordering Principle) Every nonempty subset of \mathbb{N} has a least element.

Properties 1 Let S be the universal set. • if $A \subseteq B$ and $B \subseteq A$ then A = b. • $\forall A, A \subseteq A$ • $|\mathcal{P}(A)| = 2^{|A|}$ • $A \cup A = A \cap A = A$

- $\bullet \ A \cup \emptyset = A \bullet A \cap \emptyset = \emptyset \bullet A \cup S = S \bullet A \cap S = A$
- \bullet $(A \cup B) \cup C = A \cup (B \cup C) \bullet (A \cap B) \cap C = A \cap (B \cap C)$
- $\bullet \ A \cup B = B \Leftrightarrow A \subseteq B \bullet A \cup B = A \Leftrightarrow A \subseteq B \bullet A \backslash B \neq B \backslash A$
- $A \backslash \emptyset = A$ $A \backslash S = \emptyset$ $A \backslash \emptyset = A \Leftrightarrow A \subseteq B$ $A \backslash S = A^C$
- $\bullet \ A \times (B \cup C) = (A \times B) \cup (A \times C) \bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $\bullet \ (A \cup B)^C = A^C \cap B^C \bullet (A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C) = A \cap (B \setminus C)$
- \bullet $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Functions

Functions	A rule that assigns each input exactly one
	output.
Domain	The set of all input of a function. $(X \text{ in } f: X \to X)$
Codomain	The set of all output a function $(Y \text{ in } f: X \to Y)$
Range	Is the subset of Y of elements that have an
	antecedent in X by f
$f: x \to y$	a function f with a domain x and a codomain y .
Recursive f.	
Injective	every element of the codomain is the image of
	$f(a) = f(b) \Rightarrow a = b$
	at most one element from the domain.
Surjective	every element of the codomain is the image of
	at least one element from the domain.
Bijection	A function that is Injective and Surjective .
Image	$f(A) = \{f(a) \in Y : a \in A\}, \text{ where } A \subset \text{domain.}$
Inverse Image	$f^{-1}(B) = \{ f(b) \in X : b \in B \}, \text{ where}$
	$B \subset \text{codomain}$.
Set of Function	B^A contains all functions from A to B $(A \to B)$.

Counting

n-bit string

bit string weight the number of $\mathbf{1}$ in a bit string. $\mathbf{B_k^n}$ the set of all $\mathbf{n\text{-}bit}$ strings of weight \mathbf{k} . Factorial $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$

Additive Principle

General Definition: if event A can occur in m ways, and even B can occur in n **disjoint** (A and B can't apen at the same time.) ways, then A and B can occur in m + n ways.

Set Definition: Given 2 sets A and B, then $|A \cup B| = |A| + |B| - |A \cap B|$. Given 3 sets A, B and C, then $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |C \cap B| + |A \cap B \cap C|$.

Multiplicative Principle

General Definition: if event A can occur m ways, and each possibility for A allows for exactly n ways for event B, then the event "A and B" can occur $m \cdot n$ ways.

Set Definition: Given 2 sets A and B, we have $|A \times B| = |A| \cdot |B|$.

Permutations

Definition: Ordered selections of k distinct elements drawn from an n-element set.

• Without repetition: $P(n,k) = \frac{n!}{(n-k)!}$. • With repetition of symbols allowed from an alphabet of size m: m^k length-k strings.

Combinations

Definition: Unordered selections of k elements from an n-element set.

• Without repetition: $C(n,k) = \binom{n}{k}$. • With repetition allowed: $C_{\text{rep}}(n,k) = \binom{n+k-1}{k}$.

Binomial coefficient

Formula: n choose $k = \binom{n}{k} = \frac{n!}{(n-k)!k!}$

Theorem 6 (Binomial Theorem) $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Properties 2 • $\binom{n}{k}$ is the number of subset of size n each of cardinality $k. \bullet \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \bullet \binom{n}{k} = |\mathbf{B_k^n}| \bullet \sum_{k=0}^n \binom{n}{k} = 2^n$

Symbolic Logic

Name	Symbol	Translate to	
Conjunction	$A \wedge B$	A and B .	(
Disjonction	$A \vee B$	$A ext{ or } B.$	Ι
Negation	$\neg A$	not A .	7
Condition/Implication	$A \Rightarrow B$	if A then B .	\mathbf{c}
Bicondition	$A \Leftrightarrow B$	if and only if A then B .	t
Exclusive Disjunction	$A \oplus B$	Either A or B , but not be	th.
Universal	$\forall x$	For all x 's.	
Existential	$\exists x$	There is at least one x .	_
Unique Existential	$\exists ! x$	There is exactly one x .	F
Equivalence	$A \equiv B$	A is identical to B .	c

Converse: $B \Rightarrow A$ is the converse of $A \Rightarrow B$.

Contrapositive: $\neg B \Rightarrow \neg A$ is the Contrapositive of $A \Rightarrow B$.

Important Equivalences & Properties

- $\bullet \neg (\neg A) \equiv A \bullet p \land T \equiv p \bullet p \land \bot \equiv \bot \bullet p \lor T \equiv T \bullet p \lor \bot \equiv p$
- $\bullet \ A \oplus B \equiv (A \lor B) \land \neg (A \land B) \bullet p \Rightarrow q \equiv \neg q \Rightarrow \neg p \bullet p \Rightarrow q \equiv \neg p \lor q$
- $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$ $\neg (p \Leftrightarrow q) \equiv \neg p \Leftrightarrow q \equiv p \Leftrightarrow \neg q$
- $\bullet \neg B \Rightarrow \neg A \equiv A \Rightarrow B$

Properties 3 • $A \lor B \equiv B \lor A \bullet A \lor (B \lor C) \equiv C \lor (A \lor B)$

- $A \land B \equiv B \land A$ $A \land (B \land C) \equiv C \land (A \land B)$ $A \oplus B \equiv B \oplus A$
- \bullet $A \oplus (B \oplus C) \equiv C \oplus (A \oplus B)$

deMorganLaws

- $\bullet \neg \forall x P(x) = \exists x P(\neg x) \bullet \neg \exists x P(x) = \forall x P(\neg x)$ $\bullet \neg \exists x \exists y P(x,y) = \forall x \exists y P(\neg x,y) \bullet \neg (\bigwedge_{i=0}^{n} a_i) \equiv \bigvee_{i=0}^{n} \neg a_i$
- $\bullet \neg (\bigvee_{i=0}^{n} a_i) \equiv \bigwedge_{i=0}^{n} \neg a_i$

Proofs

Rules of inference

Modus Ponens	If $p \Rightarrow q$ and p , then q .
Modus Tollens	If $p \Rightarrow q$ and $\neg q$, then $\neg p$.
Hypothetical Syllogism	If $p \Rightarrow q$ and $q \Rightarrow R$, then $p \Rightarrow r$.
Disjunctive Syllogism	If $p \vee q$ and $\neg q$, then p .
Addition	If p , then $p \vee q$.
Simplification	If $p \wedge q$, then p .
Conjuction	If p and q , then $p \wedge q$.
Absorption	If $p \Rightarrow q$, then $p \Rightarrow (p \land q)$.
Resolution	If $P \vee Q$ and $\neg P \vee R$, then $Q \vee R$

Direct Proof

Goal: Prove $p \Rightarrow q$.

Idea: Assume p and use definitions/algebra to derive q. **Template:** Assume p. [derive consequences] Therefore q.

Proof by Contrapositive

Goal: Prove $p \Rightarrow q$.

Idea: Instead of proving $p \Rightarrow q$, prove $\neg q \Rightarrow \neg p$.

Template: To prove $p \Rightarrow q$, assume $\neg q$ and derive $\neg p$; therefore $\neg q \Rightarrow \neg p$, so $p \Rightarrow q$.

Proof by Counter Example

Goal: Disprove $\forall x P(x)$ (show $\exists x \neg P(x)$).

Idea: Exhibit a specific counterexample x_0 with $\neg P(x_0)$.

Template: Identify the claim form (usually $\forall x P(x)$). Choose a concrete x_0 in the domain and verify $\neg P(x_0)$ holds by computation or definition checking.

Proof by Cases

Goal: Prove the claim.

Idea: Split into exhaustive, mutually exclusive cases and prove the claim in each case.

Template: Partition the domain into cases C_1, \ldots, C_k that cover all possibilities. For each i, assume C_i and show the statement holds. Conclude it holds in all cases by exhaustion.

Proof by Contradiction

Goal: Prove a statement S.

Idea: Assume $\neg S$ and derive a contradiction; conclude S.

Template: Suppose $\neg S$. [Deduce an impossibility such as $P \wedge \neg P$ or a known falsehood.] Contradiction; therefore S.

Proof by Mathematical Induction

Goal: Prove $\forall n \geq n_0, P(n)$.

Base Case: Verify $P(n_0)$ (and additional initial values if re-

Inductive Step: Assume P(k) holds for an arbitrary $k \geq n_0$ (inductive hypothesis) and show P(k+1) holds.

Conclusion: If both steps succeed, the principle of mathematical induction yields P(n) for all $n \geq n_0$.

Proof by Strong Induction

Goal: Prove $\forall n \geq n_0, \ P(n)$.

Base Case(s): Establish $P(n_0), P(n_0 + 1), \dots, P(n_0 + r)$ as needed.

Inductive Step: Assume $P(n_0), P(n_0 + 1), \dots, P(k)$ all hold (strong hypothesis) and deduce P(k+1).

Conclusion: By strong induction, P(n) holds for every $n > n_0$.