REMARKS

Claims 3 and 6-12, as amended in previous papers and herein, and new claims 13-18 are pending in the application. Applicants thank Examiner Marx for the courtesies extended in the interview with Applicants' attorney on August 5, 2003.

Applicants request reconsideration and withdrawal of the rejection of claims 3, and 6-12 under 35 U.S.C. § 103(a) because the P.T.O. has not established a prima facie case for obviousness as required under recognized patent practice and procedure as well as by case law. To establish a prima facie case for obviousness, the P.T.O. must show that all claim limitations are taught or suggested. M.P.E.P. § 2143.03; In re Royka, 180 USPQ 580 (CCPA 1974); In re Wilson, 165 USPQ 494, 496 (CCPA 1970) ("All words in a claim must be considered in judging the patentability of that claim against the prior art."). In the present Office Action, the P.T.O. cites Sengupta et al. (1990) taken with Kubicek et al. to support the rejection. The P.T.O.'s rejection is based, in part, on the statement on page 2 that "In view of the similarity of the metabolic pathways involved in the biosynthesis of cellulolytic enzymes, including enzyme preparations containing high cellobiase, in fungi one of ordinary skill in the art would have had a reasonable expectation of success in obtaining a similar improvement in the stability of the excreted cellobiase produced, at least when using 50 µg/ml tunicamycin or 2-deoxy-D-glucose in the process (See, e.g., Kubicek et al, page 398, col 2)." Applicants respectfully submit that the Examiner's interpretation of Kubicek is incorrect. Kubicek, on page 398, col 2, states that "Recently Merivuori et al. (1985) reported, based on experiments using the Nglycosylation specific inhibitor tunicamycin, that N-linked glycosylation is not necessary for cellulase secretion, but it improves the stability of the secreted protein in T. reesei." The Examiner has apparently interpreted the word "it" in the final phrase of that sentence as referring to tunicamycin. While that is one possible interpretation, an examination of the Merivuori reference (copy enclosed) reveals that the antecedent of "it" is N-linked glycosylation, rather than tunicamycin. For example, Merivuori states in the Summary that "Endoglucanase activity in culture broths from tunicamycin grown mycelia was more thermolabile and protease-sensitive than the same activity from control cultures." If

Serial No.: 09/773,365 Page 5

Kubicek is read in light of Merivuori. Applicants suggest that is not possible to interpret Kubicek as reciting that tunicamycin improves the stability of the secreted protein in *T. reesei*. Applicants, therefore, submit that neither Kubicek nor Sengupta, either separately or in combination, would lead one of ordinary skill in the art to have had a reasonable expectation of success in obtaining an improvement in the stability of excreted cellobiase in the presence of a glycosylation inhibitor, and respectfully request that the rejection under 35 U.S.C. § 103(a) be withdrawn.

In a previous response to an Office Action, Applicants submitted that Kubicek should be withdrawn as a reference, because it does not disclose the production of cellobiase in the presence of a glycosylation inhibitor, pointing out that Kubicek is a study of endoglucanase, an enzyme distinct from cellobiase. In the present Office Action, the P.T.O. states that "it is admitted that Kubicek discloses that the 'production and secretion of cellobiase in *Trichoderma reesei*' was studied in presence of glycosylation inhibitors." However, Kubicek is a study of inhibition of glycosylation in non-growing mycelia and protoplasts of *Trichderma reesei*. (See, e.g., first sentence of the abstract). In contrast, the present application is directed to enhancement of cellobiase activity of *Termitomyces clypeatus* in growing mycelial cultures. (See, e.g., page 5, first paragraph). Hence, in order to reach a favorable conclusion of prosecution of this application, Applicants have amended Claim 3 to reflect this distinction.

In the present office action, the P.T.O. states that the specification provides on page 9 for a range of 0.05-2 mg/ml for glycosylation inhibitors. In order to reach a favorable conclusion of prosecution of this application, Applicants have amended Claim 3 to recite a range of from about 10 µg/ml to-about 2 mg/ml, the lower figure being found at least page 9 table 1, regarding an increase in cellobiase activity (compared to control) observed in the presence of 10 µg/ml tunicamycin. Furthermore, in response to the P.T.O.'s contention that no clear definition of "high" activity is found in the as-filed specification, claim 3 has been amended to indicate that cultures with high activity exhibit an increase in cellobiase activity with respect to control cultures that are not treated with a glycosylation inhibitor.

Serial No.: 09/773,365 Page 6

Applicants believe that all claim amendments find support in the specification as filed and/or the original claims, as follows. In Claim 3, reference to a method for producing an enzyme preparation from a growing culture of *Termitomyces cypeatus* is supported at least by Claim 3 as originally filed and on page 5, lines 2-11; support for a sterilized medium containing from about 10 μg/ml to about 2 mg/ml can be found at least on page 9, table 1 (2nd and 7th entries); support for growing the mycelial culture can be found at least on page 5, line 3; support for enzyme preparation containing cellobiase activity that is increased at least about 1.15-fold to about 97-fold in comparison to cellobiase activity produced by the same organism under the same conditions in absence of the glycosylation inhibitor can be found at least on page 9, table 1, first and second entries (ratio of 1.2075:1.044) and table 2, first and fifth entries (ratio of 140.60:1.443).

In Claim 8, support for 1-deoxynojirimycin can be found at least in Claim 8 as originally filed and on page 9, table 1.

In Claim 13, support for an enzyme preparation containing high cellobiase activity is an enzyme preparation containing cellobiase activity that is at least about 2.2 units/ml and for a sterilized medium contains about 0.05 mg/ml 2-deoxy-D-glucose can be found at least on page 9, table 1 (4th entry).

In Claim 14, support for an enzyme preparation containing cellobiase activity that is at least about 50 units/ml wherein the sterilized medium contains about 1 mg/ml 2-deoxy-D-glucose can be found at least on page 9, table 1 (5th entry).

In Claim 15, support for an enzyme preparation having cellobiase activity that is at least about 90 units/ml, wherein the sterilized medium contains about 300 μ g/ml 2-deoxy-D-glucose can be found at least on page 9, table 2 (3rd entry).

In Claim 16, support for an enzyme preparation having cellobiase activity that is at least about 140 units/ml, wherein the sterilized medium contains about 1 mg/ml 2-deoxy-D-glucose and further contains about 500 μ g/ml mannose can be found at least on page 9, table 2 (4th entry).

Serial No.: 09/773,365 Page 7

In Claim 17, support for an enzyme preparation having cellobiase activity that is at least about 6.18 units/ml, wherein the sterilized medium contains at least about 2 mg/ml glucono-lactone can be found at least on page 9, table 1 (7th entry).

In Claim 18, support for an enzyme preparation having cellobiase activity that is at least about 1.4 units/ml, wherein the sterilized medium contains at least about 80 μ M 1-deoxynojirimycin can be found at least on page 9, table 1 (3rd entry).

It is believed that the claims are in a condition for allowance and such favorable action is respectfully requested. If, however, any of the claims are deemed by the P.T.O. not to be in a condition for allowance, Applicants request an interview with the P.T.O. so that any remaining issues can be resolved. Should any questions arise, the P.T.O. is requested to contact the undersigned attorney.

Dated: August 19, 2003

Respectfully submitted,

Saul L. Zackson, Ph.D.

Reg. No. 52,391

Harness, Dickey & Pierce, P.L.C.

7700 Bonhomme, Suite 400

St. Louis, Missouri 63105

(314) 726-7500 - Telephone

(314) 726-7501 -- Facsimile

Effects of tunicamycin on secretion and enzymatic activities of cellulase from *Trichoderma reesei*

Hannele Merivuori, Jeffrey A. Sands, and Bland S. Montenecourt

Department of Biology and Biotechnology Research Center Lehigh University, Bethlehem, PA 18015, USA

Summary. The effects of tunicamycin, an inhibitor of N-asparagine linked glycosylation, on the synthesis, secretion, and activities of the cellulases produced by Trichoderma reesei wild type QM6a and hypersecreting mutant RL-P37 were studied. Neither the level of secreted cellulase nor the total amount of secreted protein was affected by the drug at a concentration (5 µg/ml) that slightly inhibited growth. SDS-polyacrylamide gel electrophoretic mobilities of proteins secreted during growth in tunicamycin were similar to those of proteins from control cultures that had their Nlinked oligosaccharides removed by endoglycosidase H. Isoelectric focusing patterns of secreted proteins were also altered by growth in the presence of tunicamycin. All of the bands stained with Schiff's reagent, indicating that the secreted cellulases contained O-linked oligosaccharides in addition to N-linked sugars. Endoglucanase activity in culture broths from tunicamycin grown mycelia was more thermolabile and protease-sensitive than the same activity from control cultures. Thus, N-asparagine linked oligosaccharides do not appear to be necessary for T. reesei cellulase secretion or activity, but do seem to contribute to the stability of the enzymes. The role of O-linked oligosaccharides is being investigated.

Introduction

The cellulases produced by the filamentous fungus *Trichoderma reesei* consist of a complex mixture of enzymes that degrade cellulose into soluble oligosaccharides and glucose (Gong et al. 1978; Gritzali and Brown 1979). Enzymes in-

volved in the cellulase complex are (a) endo-β-(1,4)-glucanases (EC 3.2.1.4), which cut randomly the β -(1,4)-linkages between glucose residues in cellulose, (b) (1,4)-β-D-glucan cellobiohydrolases (EC 3.2.1.91), which are exo-β-(1,4)-glucanases and cleave cellobiosyl units from the non-reducing ends of oligosaccharides and (c) (1,4)-β-glucosidases (EC 3.2.1.21), that cleave cellobiose into glucose. The precise mechanism of action of these enzymes is not clearly understood but it is generally accepted that endoglucanases and cellobiohydrolases act synergistically to convert crystalline cellulose into cellodextrins and cellobiose. These soluble cellulose derivatives are then converted to glucose by the action of β -glucosidases (Montenecourt 1983, a review).

The cellulases of Trichoderma reesei have undergone extensive study in view of their potential application in the conversion of renewable biomass to fermentable sugars. Many of the enzymes in the cellulase complex have been purified to homogeneity (Håkansson et al. 1979; Fägerstam and Pettersson 1979; Shoemaker et al. 1983). The Nterminal amino acid sequences of CBH I, CBH II and ENDO II were reported several years ago (Pettersson et al. 1981) and recently the entire amino acid sequence of CBH I has been elucidated (Fägerstam et al. 1984). Additionally, the gene for CBH I has been cloned into Escherichia coli (Shoemaker et al. 1983; Teeri et al. 1983) and the regulatory regions, intervening sequences and structural regions were sequenced (Shoemaker et al. 1983). Numerous reports have indicated that the cellulases of Trichoderma occur as multiple forms in the culture supernatant and the major enzymes have been shown to be glycoproteins (Fägerstam et al. 1984; Kubicek 1981; Sheir-Neiss and Montenecourt 1984; Shoemaker and Brown 1978).

H. Merivuori et al.: Se

Although con made in understan level, little is knov volved in the activ lar glycoprotein e stam et al. 1984: 1984) have shown lases secreted by 1 and the hypersecre proteins. Pentide a mutant OM 9414 h contains both N-a sidically linked ca 1984). Presumably. cosidases contain We have initiated : the carbohydrate i reesei cellulases. W mycin, an antibioti ificus, which specidolichol-mediated suki et al. 1975: study the role of N cretion and enzym the presence of tur glycosidically link prevented but the h linked oligosaccha residues proceeds 1 a useful tool which effect of specific ol protein secretion as

Materials and meth

T. reesei strains and cult reesei QM6a and hypers and Montenecourt 198 Stock cultures of QM6a agar (Difco) and stock (Vogel 1956) containing cellulose (Solka Floc. B 1.5% agar. Submerged fe Vogel's medium contain Cultures were inoculated centration of 2 x 105 sp shaker (250 rpm) at room in lactose medium, var (Sigma, St. Louis, Mo.) v was continued for an ad 24 hour intervals and ce mycelia; the supernatant protein and enzymatic ac were collected on glass I distilled water and used

Cellulase assays. Supernate centration by the method precipitated with 0.15% d

Offprint requests to: B. S. Montenecourt

yplied Microbiology ytechnology pringer-Verlag 1985

tivities

plex are (a) endo-β-which cut randomly glucose residues in 1 cellobiohydrolases co-β-(1,4)-glucanases from the non-reducand (c) (1,4)-β-glucoeave cellobiose into sm of action of these stood but it is generases and cellobiohyo convert crystalline nd cellobiose. These ret then converted to cosidasés (Montene-

erma reesei have uniew of their potential n of renewable bio-Many of the enzymes ; been purified to ho-1979; Fägerstam and et al. 1983). The Nes of CBH I, CBH II ed several years ago ecently the entire amhas been elucidated tionally, the gene for into Escherichia coli i et al. 1983) and the ning sequences and enced (Shoemaker et have indicated that a occur as multiple atant and the major to be glycoproteins cek 1981; Sheir-Neiss oemaker and Brown

Although considerable headway has been made in understanding cellulases at the molecular level, little is known of the sequence of events involved in the active secretion of these extracellular glycoprotein enzymes. Recent studies (Fägerstam et al. 1984; Sheir-Neiss and Montenecourt 1984) have shown that all of the detectable cellulases secreted by the wild type QM6a, QM 9414 and the hypersecreting mutant RL-P37 are glycoproteins. Peptide analyses of CBH I from T. reesei mutant QM 9414 have suggested that this enzyme contains both N-asparagine linked and O-glycosidically linked carbohydrate (Fägerstam et al. 1984). Presumably, the endoglucanases and β-glucosidases contain similar carbohydrate linkages. We have initiated studies to determine the role of the carbohydrate in secretion and activity of T. reesei cellulases. We report here the use of tunicamycin, an antibiotic from Streptomyces lysosuperificus, which specifically inhibits the synthesis of dolichol-mediated protein glycosylation (Takatsuki et al. 1975; Tkacz and Lampen 1975), to study the role of N-linked glycosylation on the secretion and enzymatic activities of cellulases. In the presence of tunicamycin, the formation of Nglycosidically linked oligosaccharide chains is prevented but the biosynthesis of O-glycosidically linked oligosaccharides to serine and threonine residues proceeds normally. Thus, tunicamycin is a useful tool which allows an in vivo study of the

Materials and methods

T. reesei strains and culture conditions. Wild type Trichoderma reesei QM6a and hypersecreting mutant RL-P37 (Sheir-Neiss and Montenecourt 1984) have been previously described. Stock cultures of QM6a were maintained on potato dextrose agar (Difco) and stock cultures of RL-P37 on Vogel's salts (Vogel 1956) containing 0.1% proteose peptone (Difco), 1% cellulose (Solka Floc, BW200, Brown Co., Berlin, NH) and 1.5% agar. Submerged fermentation studies were carried out in Vogel's medium containing 1% lactose as the carbon source. Cultures were inoculated with 10-day old spores at a final concentration of 2×10^5 spores, ml and incubated on a rotary shaker (250 rpm) at room temperature. After 24 h germination in tactose medium, varying concentrations of tunicamycin (Sigma, St. Louis, Mo.) were added to the culture and growth was continued for an additional 72 h. Samples were taken at 24 hour intervals and centrifuged (2,000 rpm) to remove the mycelia; the supernatant fluid was then analyzed for soluble protein and enzymatic activities. After 72 h of growth, mycelia were collected on glass fiber filters, washed three times with distilled water and used for dry weight determinations

effect of specific oligosaccharide chains on glyco-

protein secretion and enzymatic activities.

Cellulase assays. Supernatants were analyzed for protein concentration by the method of Lowry et al. (1957). Samples were precipitated with 0.15% deoxycholate and 72% TCA (Petterson

1983) prior to assay. Enzymatic activities were analyzed according to the methods of Mandels et al. (1976) in 0.05 M circutae buffer pH 4.8 at 50°C. Reducing sugars were quantified by the dinitrosalicyclic acid method (Miller 1969). \$\beta_2\$-glucosidase activity was measured using cellobiose (Sigma, St. Louis, Mo.) as substrate. Glucose was analyzed enzymatically by glucose oxidase. Peroxidase (Sigma) assay. Supernatants from the final time point were concentrated approximately 50-fold by ultrafiltration using PM-10 membranes (Amicon, Danvers, Ma.).

In vitro clearage by endoglycosidase H. To 100 µl of concentrated culture fluid, 100 µl 0.05 M Na-acetate buffer pH 5.3 were added, followed by 0.01 U of endoglycosidase H (EC 3.2.1.96, Miles Laboratories, Elkhart, In.). After incubation at 37°C for 72 h, the samples were boiled for 10 minutes to stop the reaction.

Electrophoresis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out in 11% slab gels in an Aquabogue (Brookhaven, N. Y.) gel apparatus Model 100 according to Laemili (1970). Apparent molecular weights were calculated according to Weber and Osborn (1969) using Sigma high molecular weight standards. Isoelectric focusing (IEF) was performed in 6% polyacrylamide slab gels containing 2% ampholytes, pH 4—6.5 (LKB), in Aquabogue gel apparatus Model 400. Equal amounts of protein were applied to each slot. IEF gels were run at 100 volts for 16 h followed by 300 volts for 6 h.

Both SDS-PAGE and isoelectric focusing gels were stained for protein with Coomassie blue R250 (Eastman Kodak Co., Rochester, N. Y.) and for carbohydrate with periodic acid/Schiff's reagent (Sigma). Cellulase enzyme activities in isoelectric focusing gels were localized employing agarose overlays containing either carboxymethyl cellulose or ball beaten Avicel as described previously (Sheir-Neiss and Montenecourt 1984).

Stability studies. Thermostability of endoglucanases in crude culture fluids was determined by preincubation at 60°C for up to 120 min. pH stability was measured over the pH range 3-9, using 0.05 M citrate buffer for pH range 3.0-5.5 and 0.05 M Na phosphate buffer for pH range 6.0-9.0.

Sensitivity to proteases. Crude culture fluids were incubated with trypsin (EC 3.4.21.4., Sigma), and proteinase K (Sigma protease Type XI). For trypsin digestion, 100 μl of culture fluid was added to 400 μl of 0.1 M Na-phosphate buffer pH 8.9. 50 μl of trypsin stock solution (1 mg/ml) was added and the mixture was incubated at 37 °C for 2 h, at which time 40 μl HCl was added to stop the reaction. In control samples 50 μl of distilled water was added in place of trypsin. Proteinase K digestions were carried out in 0.01 M Tris-HCl pH 7.8 as described for trypsin digestion by using 2 μl of proteinase K stock solution (20 mg/ml).

Results

Effect of tunicamycin on growth and secretion

The cellulases secreted by wildtype and hypersecretory mutants of *Trichoderma reesei* are glycoproteins, presumably having both O-linked and N-linked oligosaccharides. It was therefore of interest to determine the effect of tunicamycin, an inhibitor of N-linked glycosylation, on the secretion and activities of the *T. reesei* cellulase complex.

The effects of various concentrations (0—40 µg/ml) of tunicamycin on growth of wildtype Trichoderma reesei QM6a and hypersecreting mutant RL-P37 were determined (Fig. 1). Tunicamycin at 2.5 µg/ml had no detectable effect on growth of either strain, while at 5.0 µg/ml of the drug growth was inhibited slightly for both QM6a and RL-P37, as determined by final dry weights. Higher concentrations of tunicamycin significantly reduced growth; consequently, concentrations of 2.5 and 5.0 µg/ml were chosen for subsequent experiments. Under these conditions neither the level of secreted cellulase nor the total amount of secreted protein was affected following

Fig. 1. The effect of tunicamycin on growth of *T. reesei* wild type QM6a and hypersecreting mutant RL-P37

growth in the presence of tunicamycin (Table 1). Furthermore, no change in the final yield of endoglucanase, filter paper, or β -glucosidase activities could be demonstrated.

Effect of tunicamycin on electrophoretic mobilities of extracellular enzymes

SDS-polyacrylamide gel electrophoretic analyses of proteins synthesized and secreted in the presence of tunicamycin showed that the effects of growth in the presence of the drug were very similar to those of in vitro cleavage by endoglycosi-

Fig. 2. SDS-PAGE analysis of proteins secreted by T. reesei QM6a and RL-P37. Cultures were grown in Vogel's-lactose medium in the presence (5 µg/ml) or absence of tunicamycin. Lanes: 1, QM6a control culture; 2, QM6a control, secreted proteins treated with endoglycosidase H; 3, QM6a tunicamycin-grown culture; 4, QM6a tunicamycin-grown culture; secreted proteins treated with endoglycosidase H; 5, RL-P37 control culture, secreted proteins treated with endoglycosidase H; 7, RL-P37 tunicamycin-grown culture; 8, RL-P37 tunicamycin-grown culture; secreted proteins treated with endoglycosidase H. The numbers to the left of lane S indicate molecular weights (×10³) of marker proteins

Table 1. Effect of growth in presence of tunicamycin on cellulase secretion by T. reesei

Strain	Tunicamycin μg ml	Protein $mg (\times 10^{-2})$ mg dry weight	Endoglucanase IU mg dry weight	Filter paper $\frac{\text{IU (} \times 10^{-2}\text{)}}{\text{mg dry weight}}$	B-Glucosidase IU (× 10 ⁻²) mg dry weight
QM6a	0	1.3	1.0	7.6	1.4
	2.5	1.3	1.0	7.9	1.3
	5.0	1.1	1.1	9.0	1.0
RL-P37	0	5.2	4.2	14.5	3.4
	2.5	8.0	3.1	13.5	2.8
	5.0	6.3	3.2	17.0	2.3

All data for 96 h of growth

dase H of secreted absence of tunican some of the secr while others did no particular, the two taining cellobiohya well as other protei lar weight range of served in repeated and have a slightly mycin and endo H for both the wild ty secreting mutant R

To further char secreted cellulases ence of tunicamyci

Fig. 3. Effect of growth isoelectric focusing of sei P37. The pH gradient in control culture: 2, QM6a nicamycin at 2.5 µg/ml; ence of tunicamycin at 5, RL-P37 culture grown 2.5 µg/ml; 6, RL-P37 cul mycin at 5.0 µg/ml. CBI-mase

amycin (Table 1). nal yield of endocosidase activities

·horetic-mobilities

phoretic analyses reted in the preshat the effects of ug were very simie by endoglycosi-

is secreted by *T. reesei* own in Vogel's-lactose beenee of tunicamycin. Mda control, secreted H; 3, QM6a tunicamycin-grown culture, secosidase H; 5, RL-P37 tunicamycin-grown culture, secreted H. The numbers to the hts (×10³) of marker

B-Glucosidase IU (× 10 ⁻²) mg dry weight				
1.4				
1.3				
1.0				
3.4				
2.8				
2.3				

dase H of secreted glycoproteins produced in the absence of tunicamycin (Fig. 2). The mobilities of some of the secreted proteins were increased while others did not show a noticeable change. In particular, the two prominent diffuse bands, containing cellobiohydrolase and endoglucanase as well as other proteins, corresponding to a molecular weight range of 50,000 to 80,000, were observed in repeated experiments to become sharper and have a slightly higher mobility in the tunicamycin and endo H samples than in the controls for both the wild type strain QM6a and the hypersecreting mutant RL-P37.

To further characterize the properties of the secreted cellulases following growth in the presence of tunicamycin, slab gel isoelectric focusing

Fig. 3. Effect of growth in the presence of tunicamycin on isoelectric focusing of secreted cellulases from QM6a and RL-P37. The pH gradient in the gel was 4.0—6.5. Lanes: 1, QM6a control culture: 2, QM6a culture grown in the presence of tunicamycin at 2.5 µg/ml; 3, QM6a culture grown in the presence of tunicamycin at 5.0 µg/ml; 4, RL-P37 control culture; 5, RL-P37 culture grown in the presence of tunicamycin at 2.5 µg/ml; 6, RL-P37 culture grown in the presence of tunicamycin at 5.0 µg/ml. CBH, cellobiohydrolase; EG, endoglucanycin at 5.0 µg/ml. CBH, cellobiohydrolase; EG, endoglucanycin at 5.0 µg/ml. CBH, cellobiohydrolase;

analyses were performed. The presence of tunicamycin in the growth medium had a clear effect on isoelectric focusing patterns of the cellulases secreted from both QM6a and RL-P37 (Fig. 3). As a result of the addition of tunicamycin, there were noticeable changes in the banding patterns for both strains. These changes included shifts in the position of some bands and a decrease in the number of multiple bands in the acidic CBH region.

All the protein bands in isoelectric focusing and SDS-PAGE patterns stained with Schiff's reagent, confirming that all of the detectable proteins secreted by T. reesei were glycoproteins. Proteins secreted by cells growing in the presence of tunicamycin still were readily stained by Schiff's reagent, indicating that the attachment of some of the oligosaccharides to T. reesei cellulases is not inhibited by the drug. In the case of CBHI, it has been reported that the enzyme contains both Nand O-linked oligosaccharide (Fägerstam et al. 1984). Our results indicate that most, and perhaps all, of the secreted proteins of T. reesei contain significant amounts of O-linked (tunicamycin resistant) oligosaccharides.

Cellulase activities of the isoelectric focused proteins were qualitatively assayed by overlaying unfixed gels with an agarose gel containing Avicel 105 (cellulose) and incubating under conditions that allow clearing zones to develop due to cellulase activity in the bands in the IEF gel. We observed that the enzymes secreted from cells grown in the presence of tunicamycin were able to hydrolyze Avicel, but the activities of some of the bands seemed to be lower than for the controls (data not shown). The explanation for the lack of an effect of tunicamycin on enzyme activities in crude culture supernatants but the possible presence of an effect for some of the electrophoretically separated enzymes is unknown at this time.

Stability studies

Oligosaccharides are known to act as stabilizing factors for a variety of glycoproteins that have been biochemically characterized. For the *Trichoderma reesei* enzymes secreted by cells grown in the presence of tunicamycin, we observed a slight decrease in the thermostability of total endoglucanase activity in crude culture fluids for both QM6a and RL-P37 (Fig. 4). The decreased thermostability was very reproducible and evident in the initial slope of the 60°C inactivation curve. There were some minor changes in pH optima of

Fig. 4. Thermostabilities of crude endoglucanase activity from *T. reesei* cultures grown in the presence (5 µg/ml) (●) and absence (○) of tunicamycin. Preincubation was at 60° C for 0—120 min. The results presented are the average of three independent experiments

the enzymes produced in the presence of tunicamycin, but the overall shapes of the curves were not noticeably affected by the loss of the N-linked carbohydrate (data not shown). Endoglucanases in the crude culture fluid of QM6a and RL-P37

Table 2. Effect of growth in presence to tunicamycin on sensitivity of crude secreted endoglucanase to proteases

Strain	Tunicamycin (µg/ml)		se activity (%) re- er exposure to pro-	
		Trypsin	Proteinase K	
OM6a	0	86	71	
4	2.5	70	69	
	5.0	67	60	
RL-P37	0	87	88	
KL 15.	2.5	70	69	
	5.0	69	61	

grown in the presence of tunicamycin showed somewhat enhanced sensitivity to trypsin and proteinase K compared to the endoglucanases of control cultures (Table 2).

Discussion

The effect of tunicamycin on the synthesis and secretion of glycoproteins has been evaluated in many eukaryotic systems. The results obtained with animal cells, viruses and lower eukaryotes following treatment with tunicamycin have been diverse and have resulted in an inability to formulate generalizations concerning the role of Nlinked oligosaccharides in enzyme activity and secretion. In this regard the most closely related system to Trichoderma which has been investigated to date is that of yeast, for which several enzymes have been studied. Invertase and acid phosphatase, which are highly glycosylated (50% carbohydrate), have been shown to be synthesized in an inactive form in the presence of tunicamycin (Kuo and Lampen 1974), presumably due to the fact that the unglycosylated forms of the enzymes are unable to form the proper tertiary configuration for the active enzyme. On the other hand, synthesis of active yeast alkaline phosphatase, which contains approximately 8% carbohydrate. is unaffected by tunicamycin. Although the enzyme was non-glycosylated, it was secreted normally and retained full activity (Onishi et al. 1979). An intermediate response was shown for the vacuolar enzyme carboxypeptidase Y (Hasilik and Tanner 1978). Tunicamycin was shown to depress enzyme synthesis and activity but did not abolish it completely and the enzyme formed in the presence of the antibiotic was shown to be unglycosylated. Tunicamycin was shown to have little or no effect upon exo-1,3-β-D-glucanase, a carbohydrase similar to cellulase (Sanchez et al. 1982). In the case of the β -1,3-glucanase, the activation energy and the K_m value of the glycosylated and non-glycosylated forms were shown to be identical and the investigators concluded that glycosylation was not necessary for either secretion or proper conformational folding of this enzyme. Thus, no clear cut role can be assigned for the carbohydrate moieties of yeast glycoproteins and their function may vary according to the ultimate location of the enzyme (vacuole or periplasmic) or the amount or location of the carbohydrate in the mature enzyme.

The results presented here suggest that the cellulases of *Trichoderma* conform more with the β -

H. Merivuori et al.: Secret

1.3-glucanase and al than with veast inve-In addition, they pro in support of the bir stam et al. (1984) tha reesei cellulase comp linked carbohydrate. invertase of Fusarium 1981) and distinct fro contains only N-glyco lation of proteins in T. via a pathway similar and animal cells which icholphosphate intern by tunicamycin. Block not appear to affect (the secreted proteins o cellulases, suggesting carbohydrate is not ne of the enzymes to the formation of an enzyn formation. The unders of the extracellular p presence of tunicamy electrophoretic mobilii gels, as readily seen i containing cellobiohynases (Fig. 2). Growth mycin resulted in chan ing patterns of both t endoglucanases. In the region at pH 4.0-4.5 bands capable of solub ing with carboxymethy seven to four or five an massie stain was enhan in protein content in bands in the control sa differences in glycosyla erogeneity of the ac (Fig. 3).

Changes in the isoel the endoglucanases in t also observed. The major ward the more acidic e additional bands appetreated samples which what A possible explanation the seemingly single propertually contains more that of N-glycosylation mighterent amino acid group derglycosylated forms a dient. A second possibly proteins represented in

camycin showed to trypsin and ndoglucanases of

synthesis and seeen evaluated in results obtained lower eukaryotes mycin have been nability to formuthe role of Nne activity and selosely related sysbeen investigated h several enzymes nd acid phosphaed (50% carbohysynthesized in an of tunicamycin mably due to the ns of the enzymes ertiary configurathe other hand, line phosphatase, 8% carbohydrate, Although the enwas secreted norty (Onishi et al. e was shown for ptidase Y (Hasilik was shown to detivity but did not enzyme formed in is shown to be unshown to have lit->-glucanase, a car-: (Sanchez et al. lucanase, the actiie of the glycosyns were shown to irs concluded that v for either secrefolding of this enan be assigned for east glycoproteins ording to the ultiicuole or periplasn of the carbohy-

aggest that the cel-1 more with the β - 1.3-glucanase and alkaline phosphatase of yeast than with yeast invertase and acid phosphatase. In addition, they provide physiological evidence in support of the biochemical studies of Fägerstam et al. (1984) that the polypeptides of the T. reesei cellulase complex contain both N- and Olinked carbohydrate, a situation reported for the invertase of Fusarium (Nishizawa and Maruyama 1981) and distinct from the yeast invertase which contains only N-glycosylation. N-linked glycosylation of proteins in Trichoderma appears to occur via a pathway similar to that described in yeast and animal cells which involves a lipid linked dolicholphosphate intermediate and can be blocked by tunicamycin. Blockage of N-glycosylation does not appear to affect O-glycosylation, the yield of the secreted proteins or the activity of the secreted cellulases, suggesting that N-asparagine linked carbohydrate is not necessary for proper targeting of the enzymes to their extracellular location or formation of an enzymatically active tertiary conformation. The underglycosylated forms of some of the extracellular proteins synthesized in the presence of tunicamycin have slighty increased electrophoretic mobilities in SDS polyacrylamide gels, as readily seen in the diffuse major bands containing cellobiohydrolase I and endoglucanases (Fig. 2). Growth in the presence of tunicamycin resulted in changes in the isoelectric focusing patterns of both the cellobiohydrolases and endoglucanases. In the acidic cellobiohydrolase I region at pH 4.0-4.5, the number of multiple bands capable of solubilizing Avicel but not reacting with carboxymethylcellulose decreased from seven to four or five and the intensity of the Coomassie stain was enhanced indicating an increase in protein content in comparison to equivalent bands in the control samples. Thus suggests that differences in glycosylation contribute to the heterogeneity of the acidic cellobiohydrolase I (Fig. 3).

Changes in the isoelectric focusing patterns of the endoglucanases in the region near pH 5 were also observed. The major band at pH 5 shifted toward the more acidic end of the gel and several additional bands appeared in the tunicamycin treated samples which were absent in the controls. A possible explanation for this observation is that the seemingly single protein band at pH 5.0 actually contains more than one protein. Blockage of N-glycosylation might result in exposure of different amino acid groups that would allow the underglycosylated forms to separate in a pH gradient. A second possible explanation is that the proteins represented in the major band at pH 5.0

consist of a complex held together by oligosaccharide chains and that the absence of some of the carbohydrate chains due to growth in the presence of tunicamycin results in easy dissociation of the complex. Such a complex of mixed cellulolytic activities has been postulated and identified from lyophilized culture filtrates of T. reesei QM 9414 (Sprey and Lambert 1983, 1984). Finally, if the N-linked carbohydrates function to protect the enzyme from endogenous or exogenous proteolytic degradation, inhibition of the carbohydrate addition in vivo might allow enhanced posttranslational proteolytic modification of the cellulases which would directly affect both SDS-PAGE and IEF protein separation patterns.

At levels which prevented N-linked glycosylation, tunicamycin did not cause a reduction in the overall levels of secreted protein or cellulase activities, but the underglycosylated endoglucanases were more thermolabile and more sensitive to proteases than the fully glycosylated forms, suggesting that the oligosaccharide chains enhance the structural stability of T. reesei cellulases. The conformation of underglycosylated forms may be slightly different from the fully glycosylated enzymes. Thus the proteins may maintain their activity under optimal conditions but be less stable at elevated temperatures and more accessible to proteases.

Similar effects of underglycosylation on enzyme stability have been reported for several other glycoprotein enzymes of lower eukaryotic origin. In the case of yeast exo-1,3 β -glucanase, the underglycosylated form synthesized in the presence of tunicamycin was more sensitive to thermal and pH inactivation than the fully glycosylated enzyme (Sanchez et al. 1982). In an additional study, which dealt with the cellulases of the thermophilic fungus Humicola isolensis, partial removal in vitro of the carbohydrate moieties from cellobiohydrolase and endoglucanase resulted in decreased thermal and pH stabilities of the enzymes but did not significantly affect the specific activities (Hayashida and Yoshioka 1980).

The results presented in this paper thus indicate that the N-linked oligosaccharides do not play a crucial role in secretion and enzymatic activities of cellulases of Trichoderma reesei but do enhance thermal stability and protection against proteases. The results are also consistent with the suggestion that cellulases form complexes which may be held together at least in part by the oligosaccharide interactions. Much of the carbohydrate present in the fully glycosylated forms of the T. reesei cellulases appears to be of the O-

type, the formation of which is unaffected by the presence of tunicamycin. We are currently investigating the role of the O-linked carbohydrate in synthesis, secretion and stability of *Trichoderma* cellulases. A definitive understanding of the role of the carbohydrate in the synthesis and activity of *T. reesei* cellulases will aid in the development of new more efficient cellulolytic strains and increased hydrolysis efficiency.

Acknowledgement. This work was supported by grant DE-AC02-83 ER13106 from the U.S. Department of Energy, Office of Basic Energy Sciences.

References

- Fägerstam LG, Pettersson LG (1979) The cellulolytic complex of *Trichoderma reesei* QM 9414. An immunological approach. FEBS Letters 98:363—367
- Fägerstam LG, Pettersson LG, Engstrom FA (1984) The primary structure of a 1.4-β-glucan cellobiohydrolase from the fungus Trichoderma reesei QM 9414. FEBS Lett 167:309-315
- Gong CS, Ladisch MR, Tsao GT (1978) Biosynthesis, purification and mode of action of cellulases of *Trichoderma reesei*. Adv Chem Ser 181:261--287
- Gritzali M, Brown RD (1979) The cellulase system of Trichoderma. Adv Chem Ser 181:237-260
- Håkansson U, Fågerstam I.G, Pettersson LG (1979) A 1,4-glucan glucanohydrolase form the cellulolytic fungus T. viride QM 9414. Biochem J 179:141-149
- Hasilik A, Tanner W (1978) Carbohydrate moiety of carboxypeptidase Y and perturbation of its biosynthesis. Eur J Biochem 91:567-575
- Hayashida S, Yoshioka H (1980) The role of carbohydrate moiety on thermostability of cellulases from Humicola insolens YH-8. Agric Biol Chem 44:481-487
- Kubicek CP (1981) Release of carboxymethyl cellulase and β-glucosidase from cell walls of Trichoderma reesei. Eur J Appl Microbiol Biotechnol 13:226-231
- Kuo SC, Lampen JO (1974) Tunicamycin: an inhibitor of glycoprotein biosynthesis. Biochem Biophys Res Comm 58:287-295
 Laemmli UK (1970) Cleavage of structural proteins during the
- assembly of the head of bacteriophage T₄. Nature (London) 227:680–685
- Lowry OH, Roseborough NF, Farr AL, Randall RF (1951)
 Protein measurements with the folin phenol reagent. J Biol
 Chem 193:265
- Mandels M (1982) Cellulases. Ann Reports Ferm Processes 5:35-78
- Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. In: Gaden EL, Mandels MH, Reese ET, Spano LA (eds) Enzymatic conversion of cellulosic materials: technology and application. John Wiley and Sons, NY, p 21
- Miller GL (1969) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426-428

Montenecourt BS (1983) Trichoderma reesei cellulases, Trends in Biotechnology, Vol. 1, pp 156-161

- Nishizawa M, Maruyama Y (1981) Glycoprotein structure of microconidial invertase from Fusarium oxysporum. Agr Biol Chem 45: 149-157
- Onishi HR, Tkacz JS, Lampen JO (1979) Glycoprotein nature of yeast alkaline phosphatase. J Biol Chem 254:11943—11952
- Pettersson LG, Fågerstam LG, Bhikhabbai R, Leandoer K (1981) The cellulase complex of *Trichoderma reesei*. Ekman Days 3:39-42
- Peterson GL (1983) Determination of total protein. Meth Enzymol 91:95-119
- Sanchez A, Villanueva JR, Villa TG (1982) Effect of tunicamycin on exo-1,3-\(\beta\)-c glucanase synthesis and secretion by cells and protoplasts of Saccharomyces cerevisiae. J Gen Microbiol 128:3051 – 3060
- Sheir-Neiss G, Montenecourt BS (1984) Characterization of the secreted cellulases of *Trichoderma reesei* wild type and mutants during controlled fermentations. Appl Microbiol Biotechnol 20:46-53
- Shoemaker SP, Brown RD (1978) Characterization of endol,4-β-glucanase purified from *Trichoderma viride*. Biochem Biophys Acta 523:147—161
- Shoemaker S, Watt K, Tsitovsky G, Cox R (1983a) Characterization and properties of cellulases purified from Trichoderma reeses strain L27. Bio/Technol 1:687-690
- Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kovak S, Myambo K, Innis M (1983b) Molecular cloning of exocellobiohydrolase 1 derived from *Trichoderma reesei* strain L27. Bio/Technol 1:691-696
- Sprey B, Lambert C (1983) Delicate exoproteins. Demonstration of multienzyme complexes within the culture fluid of Trichoderma reesei. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, pp 50-75
- Sprey B, Lambert C (1984) Heterogeneity of cellulase complexes from Trichoderma reesei: A preparative isoelectric focusing study of some extracellular hydrolases. FEMS Microbiol Lett 23:227-232
- Takatsuki A, Kohno K, Tamura G (1975) Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agri Biol Chem 39:2089—2091
- Tarentino AL, Plummer TH, Maley F (1974) The release of intact oligosaccharides from specific glycoproteins by endoβ-N-acetylglucanase H. J Biol Chem 249:818–824
- Teeri T, Salovuori I, Knowles J (1983) The molecular cloning of the major cellulase gene from *Trichoderma reesei*. Biol Technol 1:696-699
- Tkacz JS, Lampen JO (1975) Tunicamycin inhibition of polyisoprenol-N-acetyl-glucosaminyl phosphate formation in calf-liver microsomes. Biochem Biophys Res Comm 65: 248 – 257
- Vogel HF (1956) A convenient growth medium for Neurospora (medium V). Microbiol Genet Bull 13:42-43
- Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecylsulfate polyacrylamide gel electrophoresis. J Biol Chem 244:4406-4412

Received January 25, 1985/Revised June 20: 1985

Acetylene red isolated from systems

Alasdair H. Neilson

Swedish Environmental I

Summary. Acetylene bacteriaceae have b sludge plants treatin food industries (103 | composting plants h 106 cells per g wet we lected strains of all ta tures were able to drates, polyols, amin as sole sources of car genase were attained of carbon substrates mole C2H4·min-1·m glucose and sucrose, and lower levels for c mole C₂H₄·min - 1·m trogen compounds w sources of nitrogen d synthesis of nitrogena found for some strai cosamine. Samples fro vated sludge system sl lene reduction corres 26 μg N·h-1·l-1, anfluent and effluent w net increase in nitroge lated with the presenc ing Enterobacteriacea pure strains isolated mean nitrogenase spε C2H4 min -1 mg prot cluded that endogenor ceae contained in som waters could successfu addition of combined 1 treatment plants.