Given Conditions, P(s) = 1

a)

$$A \subset S$$
 $P(A^{c}) = 1 - P(A)$
 $P(A^{c}) + P(A) = 1 = P(A \cup A^{c})$
 $P(A^{c}) = 1 - P(S)$
 $P(A^{c}) = 1 - P(S)$
 $P(A^{c}) = 1 - P(S)$

b) IF
$$A \subset B$$
, then $P(A) \leq P(B)$
then
 $B = AU(B \cap A^c)$

$$P(A) + P(B \cap A^{c}) = P(AU(B \cap A^{c}))$$

$$= P(B)$$
Probability lies between $(O < P < 1)$

$$\therefore P(B \cap A^{c}) \ge O$$

$$\therefore P(A) < P(B)$$

P(AUB) = P(A) + P(B) - P(A ∩ B) have A&B are events .: AC, BC, AUB, AMB, AMB, BMA on also events

os per venn diagram ANB, ANBC & BNAC are disjoint

```
coin tossed 5 times
S = - - - (25) = 32 ways
    A= { 4 coins shows head f
 a>
      = 9 5c, 9 = 5
     P(A) = 5/32 = 0.156
 b) B= { these are more heads than tails}
        for majority there are 3 conditions
        No. of heads = 3,4,5
        = 5c3 + 5c4 + 5c - ( НИННН)
        = 10 + 5 fl
        = 16
p(B) = 16/32 = 0.5
       D = { Atleast 3 tails }
c>
         " Tails = 3,4,5
        = 5c3 + 5c4 + 5c5
         = 10+5+1
         = 16
p(D) = 16/32 = 0.5
     P(A^{c}) = 1 - P(A) = 1 - (5/32) = 27/32

P(D) = 16/32
     P(A^{c}) =  { No. of heads = 1,2,3,5,0}

P(D) =  { No. of tails = 3,4,5}
       P(ACAD): P(AC) + P(D) - P(ACAD)
= 16/32
     P(A'UD) = P(A') + P(D) - P(A' n D)
               = 27/32 + 16/32 - 16/32
                 = 2732
     P(A'UD) = 0.84375
<>
    P(BUD) = P(B) + P(D) + P(B )
    here P(B \cap D) = 0 because B \cap D = \emptyset
    : p(PUB) = 05 + 0.5
```

```
P(A) + P(A') = 1 ___
      P(A) = 0.6, P(A^c) = 0.4 ______ From (1)

P(B) = 0.7  P(B^c) = 0.3 ______ from (1)

P(A^c \cap B^c) = 0.12
     if A b B are disjoint sets
a) |
     P(AMB)+P(A) + P(B) = P(AUB)
0.7 + 0.6 = P(AUB)
1.3 = P(AUB)
                     Probability
      Probability 

1
      as well as
     P(A'NB') = 0.12
     P(A \cap B) \neq 0
     P(A^{c} \cap B^{c}) = P((A \cup B)^{c})

= 1 - P(A \cup B)

O \cdot 12 = 1 - P(A) - P(B) + P(A \cap B)

(O \cdot 30 + O \cdot 12) = P(A \cap B)
      : p(ANB) = 0.42
        for A & B to disjoint P(ANB)=0
        : here A&B are not disjoint.
         (AS P(A \cap B) + 0)
b) P(AUBC)
    P(B) = P(A \cap B) + P(A^{c} \cap B)

0.7 = 0.42 + P(A^{c} \cap B)

P(A^{c} \cap B) = 0.28
      P(AUB^c) = P((A^c \cap B)^c)

P(AUB^c) = I - P(A^c \cap B)
       P(AUB() = 0.72
```

C) A & B are disjoint events

$$P(A) \cdot P(B) = P(ADB)$$
thus,

Events A& B are independent

d) conditional Probability (AB)

Question 4:

a) Read the description of the data frame and briefly comment on the information it provides. Solution:

Data Description:

- Columns = 23, and Rows = 146
- The data frame has film names, their year, Rotten Tomatoes ratings, Metacritic ratings, IMDB scores, user scores, and fan reviews
- Collection from Fandango

b) Create an object from variable rottentomatoes and another from variable metacritic. For each find the sum, average, median, minimum, and maximum values, and report those values.

Solution:

For rottentomatoes

- sum= 8884
- mean= 60.84932
- median= 63.5
- min= 5
- max = 100

For Metacritic

- sum= 8586
- mean= 58.80822
- median= 59
- min= 13
- max= 94

Code:

```
rottentomatoes <- fandango$rottentomatoes</pre>
metacritic <- fandango$metacritic</pre>
# RottenTomatoes
sum(rottentomatoes)
mean(rottentomatoes)
median(rottentomatoes)
min(rottentomatoes)
max(rottentomatoes)
# Metacritic
sum(metacritic)
mean (metacritic)
median(metacritic)
min(metacritic)
max(metacritic)
summary(rottentomatoes)
summary(metacritic)
```

Output

```
> sum(rottentomatoes)
[1] 8884
> mean(rottentomatoes)
[1] 60.84932
> median(rottentomatoes)
[1] 63.5
> min(rottentomatoes)
```

```
[1] 5
> max(rottentomatoes)
[1] 100
> # Metacritic
> sum(metacritic)
[1] 8586
> mean(metacritic)
[1] 58.80822
> median(metacritic)
[1] 59
> min(metacritic)
[1] 13
> max(metacritic)
[1] 94
> summary(rottentomatoes)
   Min. 1st Qu.
                Median
                            Mean 3rd Qu.
                                            Max.
   5.00
          31.25
                  63.50
                           60.85
                                   89.00
                                          100.00
> summary(metacritic)
   Min. 1st Qu.
                           Mean 3rd Qu.
                 Median
                                            Max.
  13.00
         43.50
                  59.00
                           58.81 75.00
                                            94.00
```

```
■ Source on Save 🥄 🎢 🗸 📗
                                                               Run 🛂 🛊 🔛 Source 🗸
      rottentomatoes <- fandango$rottentomatoes
      metacritic <- fandango$metacritic
  12 sum(rottentomatoes)
  13 mean(rottentomatoes)
  14 median(rottentomatoes)
  15 min(rottentomatoes)
  16 max(rottentomatoes)
  19 sum(metacritic)
 20 mean(metacritic)
21 median(metacritic)
  22 min(metacritic)
     max(metacritic)
 summary(rottentomatoes)summary(metacritic)
21:19 (Top Level)
                                                                                           R Script $
Console Terminal ×
                    Background Jobs

    R 4.2.2 · ~/ 
    → Mecacritic

[1] 8586
[1] 58.80822
[1] 59
[1] 13
[1] 94
  Min. 1st Qu. Median
5.00 31.25 63.50
                           Mean 3rd Qu.
                                             Max.
                          60.85 89.00 100.00
> summary(metacritic)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
  13.00
        43.50 59.00
                          58.81 75.00
                                           94.00
```

c) Using the code and explanations from SIDS, section 2.3 (this is your second textbook) create a scatterplot for rottentomatoes against metacritic. Comment on your findings.

Solution: Scatterplot:

Code:

Description:

- Point shows the movie/flim
- Almost positive correlation between both axis.
- Both range from 0 to 100

d) Using SIDS, section 2.7 and 2.8, obtain a boxplot and a barplot rottentomatoes. Comment on your findings.

Solution:

D.1 = Boxplot

Description:

- Most of the ratings come between the 60-80 range. And Approximately 70 is the median.
- The boxplot also demonstrates that some of the points outside the outliers indicate that some films have extremely high or low ratings.
- A boxplot is a standardized way of displaying the distribution of data based on a five-number summary ("minimum", first quartile [Q1], median, third quartile [Q3], and "maximum")

Code:

D.2 = Barplot

Description:

- Provides Generalization of frequency of rating
- We can see that most of the movies have ratings between 60 to 80. And there are some movies with almost 100 and less than 60 ratings.
- Barplot provides a general idea of the frequency of each rating.

Code:

Graph:

e) Using SIDS, section 2.7, obtain a side-by-side boxplot of rottentomatoes scores split by fandango_stars (make sure use the factor version of fandango_stars)

Description:

- Provides information related to rottentomato score and fandango stars
- The variable fandango_stars is converted to factor categorical variable using factor() function. The boxplots are ordered according to fandango_stars.

Code:

