Matrix Forensics

A brief guide to efficient linear algebra

RICHARD BARNES

Contents

1	Nomenclature	4
2	Derivatives	5
3	Matrix Rogue Gallery	6
	3.1 Non-Singular vs. Singular Matrices	6
	3.2 Diagonal Matrix	6
	3.3 Dyads	7
	3.4 Hermitian Matrix	8
	3.5 Idempotent Matrix	8
	3.6 Orthogonal Matrix	9
	3.7 Positive Definite	10
	3.8 Positive Semi-Definite	11
	3.9 Projection Matrix	11
	3.10 Singular Matrix	11
	3.11 Symmetric Matrix	12
	3.12 Skew-Hermitian	12
	3.13 Toeplitz Matrix, General Form	13
	3.14 Toeplitz Matrix, Discrete Convolution	13
	3.15 Triangular Matrix	13
	3.16 Vandermonde Matrix	14
4	Matrix Decompositions	16
	4.1 LLT/UTU: Cholesky Decomposition	16
	4.2 LDLT	16
	4.3 PCA: Principle Components Analysis	16
	4.4 QR: Orthogonal-triangular	16
	4.5 SVD: Singular Value Decomposition	17
	4.6 Eigenvalue Decomposition for Diagonalizable Matrices	19
	4.7 Eigenvalue (Spectral) Decomposition for Symmetric Matrices	19
	4.8 Schur Complements	20
5	Matrix Properties	21
6	Transpose Properties	22
7	Determinant Properties	23
8	Trace Properties	24

CONTENTS	3
70111E1115	U

9	Inverse Properties	25
10	Pseudo-Inverse Properties 10.1 Moore-Penrose Pseudoinverse	26 26
11	Hadamard Identities	27
12	Eigenvalue Properties	28
13	Norms 13.1 Matrices 13.1.1 Frobenius norm 13.1.2 Operator Norms 13.1.3 Spectral Radius 13.2 Vectors	29 29 29 29 30 31
14	Bounds 14.1 Matrix Gain	32 32 32 32
15	Linear Equations15.1 Least-Squares	34 34 34
16	$1_r^T\mathbf{A}1_c$	36
17	$\mathbf{x}^T \mathbf{A} \mathbf{x}$	37
18	Algorithms 18.1 Gram-Schmidt	38 38

1 Nomenclature

- \mathbf{A} Matrix. (Column) vector. \mathbf{a} Scalar. a \mathbf{A}_{ij} Matrix indexed. Returns ith row and jth column. $\mathbf{A} \circ \mathbf{B}$ Hadamard (element-wise) product of matrices A and B. $\mathcal{N}(\mathbf{A})$ Nullspace of the matrix \mathbf{A} . $\mathcal{R}(\mathbf{A})$ Range of the matrix A. $det(\mathbf{A})$ Determinant of the matrix \mathbf{A} . $eig(\mathbf{A})$ Eigenvalues of the matrix \mathbf{A} . \mathbf{A}^H Conjugate transpose of the matrix A. \mathbf{A}^T Transpose of the matrix \mathbf{A} . \mathbf{A}^{+} Pseudoinverse of the matrix **A**. $\mathbf{x} \in \mathbb{R}^n$ The entries of the n-vector \mathbf{x} are all real numbers. $\mathbf{A} \in \mathbb{R}^{m,n}$ The entries of the matrix A with m rows and n columns are all real numbers. $\mathbf{A} \in \mathbb{S}^n$ The matrix \mathbf{A} is symmetric and has n rows and n columns. \mathbf{I}_n Identity matrix with n rows and n columns.
 - $\{0\}$ The empty set

2 Derivatives

For general A and X (no special structure):

$$\partial \mathbf{A} = 0 \text{ where } \mathbf{A} \text{ is a constant}$$

$$\partial(c\mathbf{X}) = c\partial \mathbf{X}$$

$$\partial(\mathbf{X} + \mathbf{Y}) = \partial \mathbf{X} + \partial \mathbf{Y}$$

$$\partial(tr(\mathbf{X})) = tr(\partial(\mathbf{X}))$$

$$\partial(\mathbf{XY}) = (\partial \mathbf{X})\mathbf{Y} + \mathbf{X}(\partial \mathbf{Y})$$

$$\partial(\mathbf{X} \circ \mathbf{Y}) = (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y})$$

$$\partial(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}(\partial \mathbf{X})\mathbf{X}^{-1}$$

$$\partial(\det(\mathbf{X})) = tr(\det(\mathbf{X})\partial \mathbf{X})$$

$$\partial(\det(\mathbf{X})) = \det(\mathbf{X}) tr(\mathbf{X}^{-1}\partial \mathbf{X})$$

$$\partial(\ln(\det(\mathbf{X}))) = tr(\mathbf{X}^{-1}\partial \mathbf{X})$$

$$\partial(\mathbf{X}^{T}) = (\partial \mathbf{X})^{T}$$

$$\partial(\mathbf{X}^{H}) = (\partial \mathbf{X})^{H}$$

$$(12)$$

3 | Matrix Rogue Gallery

3.1 Non-Singular vs. Singular Matrices

For $\mathbf{A} \in \mathbb{R}^{n,n}$ (initially drawn from [1, p. 574]):

Non-Singular

A is invertible

The columns are independent

The rows are independent

 $\det(\mathbf{A}) \neq 0$

 $\mathbf{A}\mathbf{x} = 0$ has one solution: $\mathbf{x} = 0$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ has one solution: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

A has n nonzero pivots **A** has full rank r = n

The reduced row echelon form is $\mathbf{R} = \mathbf{I}$

The column space is all of \mathbb{R}^n

The row space is all of \mathbb{R}^n

All eigenvalues are nonzero $\mathbf{A}^T \mathbf{A}$ is symmetric positive definite

 \mathbf{A} has n positive singular values

Singular

A is not invertible

The columns are dependent

The rows are dependent

 $\det(\mathbf{A}) = 0$

 $\mathbf{A}\mathbf{x} = 0$ has infinitely many solutions

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ has either no or infinitely many solutions

A has r < n pivots

 ${\bf A}$ has rank r < n

 ${f R}$ has at least one zero row

The column space has dimension r < n

The row space has dimension r < n

Zero is an eigenvalue of $\bf A$

 $\mathbf{A}^T \mathbf{A}$ is only semidefinite

A has r < n singular values

3.2 Diagonal Matrix

$$A = \operatorname{diag}(a_1, \dots, a_n) = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix}$$
 (13)

3.3. DYADS 7

Square matrix. Entries above diagonal are equal to entries below diagonal. Number of "free entries": $\frac{n(n+1)}{2}$.

Special Properties

$$eig(A) = a_1, \dots, a_n \tag{14}$$

$$\det(A) = \prod_{i} a_{i} \tag{15}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{a_1} & & \\ & \ddots & \\ & & \frac{1}{a_n} \end{bmatrix}$$
 (16)

3.3 Dyads

 $\mathbf{A} \in \mathbb{R}^{m,n}$ is a dyad if it can be written as

$$\mathbf{A} = \mathbf{u}\mathbf{v}^T \quad \mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n \tag{17}$$

Special Properties

- \bullet The columns of A are copies of u scaled by the values of v.
- The rows of **A** are copies of \mathbf{u}^T scaled by the values of \mathbf{v} .
- If **A** is a dyad, it acts on a vector **x** as $\mathbf{A}\mathbf{x} = (\mathbf{u}\mathbf{v}^T)\mathbf{x} = (\mathbf{v}^T\mathbf{u})\mathbf{x}$.
- $\mathbf{A}\mathbf{x} = c\mathbf{u}$ (**A** scales **x** and points it along **u**).
- $\bullet \ \mathbf{A}_{ij} = \mathbf{u}_i \mathbf{v}_j.$
- If $\mathbf{u}, \mathbf{v} \neq 0$, then rank $(\mathbf{A}) = 1$.
- If m = n, **A** has one eigenvalue $\lambda = \mathbf{v}^T \mathbf{u}$ and eigenvector \mathbf{u} .

• A dyad can always be written in a normalized form $c\tilde{\mathbf{u}}\tilde{\mathbf{v}}^T$.

3.4 Hermitian Matrix

 $\mathbf{H} \in \mathbb{C}^{m,n}$ is Hermitian iff

$$\mathbf{H} = \mathbf{H}^H \tag{18}$$

where \mathbf{H}^H is the conjugate transpose of \mathbf{H} .

For $\mathbf{H} \in \mathbb{R}^{m,n}$, Hermitian and symmetric matrices are equivalent.

Special Properties

$\mathbf{H}_{ii} \in \mathbb{R}$	(19)
$\mathbf{H}\mathbf{H}^H = \mathbf{H}^H\mathbf{H}$	(20)
$\mathbf{x}^H\mathbf{H}\mathbf{x} \in \mathbb{R} \ \ \forall \mathbf{x} \in \mathbb{C}$	(21)
$\mathbf{H}_1 + \mathbf{H}_2 = \text{Hermitian}$	(22)
$\mathbf{H}^{-1} = \text{Hermitian}$	(23)
$\mathbf{A} + \mathbf{A}^H = \text{Hermitian}$	(24)
$\mathbf{A} - \mathbf{A}^H = \text{Skew-Hermitian}$	(25)
$\mathbf{AB} = \text{Hermitian iff } \mathbf{AB} = \mathbf{BA}$	(26)
$\det(\mathbf{H}) \in \mathbb{R}$	(27)
$ ext{eig}(\mathbf{H}) \in \mathbb{R}$	(28)

3.5 Idempotent Matrix

A matrix **A** is idempotent iff

$$\mathbf{A}\mathbf{A} = \mathbf{A} \tag{29}$$

Special Properties

$$\mathbf{A}^n = A \ \forall n \tag{30}$$

$$\mathbf{I} - \mathbf{A} \ \text{is idempotent} \tag{31}$$

$$\mathbf{A}^H \ \text{is idempotent} \tag{32}$$

$$\mathbf{I} - \mathbf{A}^H \ \text{is idempotent} \tag{33}$$

$$\operatorname{rank}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}) \tag{34}$$

$$\mathbf{A}(I - \mathbf{A}) = 0 \tag{35}$$

$$\mathbf{A}^+ = \mathbf{A} \tag{36}$$

$$f(s\mathbf{I} + t\mathbf{A}) = (\mathbf{I} - \mathbf{A})f(s) + \mathbf{A}f(s + t) \tag{37}$$

$$\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} \implies \mathbf{A}\mathbf{B} \text{ is idempotent} \tag{38}$$

$$\operatorname{eig}(\mathbf{A})_i \in \{0, 1\} \tag{39}$$

$$\mathbf{A} \text{ is always diagonalizable} \tag{40}$$

 $\mathbf{A} - \mathbf{I}$ may not be idempotent.

3.6 Orthogonal Matrix

$$U = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(41)$$

A matrix ${\bf U}$ is orthogonal iff:

$$\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = I \tag{42}$$

Square matrix. The columns form an orthonormal basis of \mathbb{R}^n .

Special Properties

- The eigenvalues of U are placed on the unit circle.
- The eigenvectors of **U** are unitary (have length one).
- \mathbf{U}^{-1} is orthogonal.

$$\mathbf{U}^T = \mathbf{U}^{-1} \tag{43}$$

$$\mathbf{U}^{-T} = \mathbf{U} \tag{44}$$

$$\mathbf{U}^T \mathbf{U} = \mathbf{I} \tag{45}$$

$$\mathbf{U}\mathbf{U}^T = \mathbf{I} \tag{46}$$

$$\det(\mathbf{U}) = \pm 1 \tag{47}$$

Orthogonal matrices preserve the lengths and angles of the vectors they operator on. The converse is true: any matrix which preserves lengths and angles is orthogonal.

$$\|\mathbf{U}\mathbf{x}\|_{2}^{2} = (\mathbf{U}\mathbf{x})^{T}(\mathbf{U}\mathbf{x}) = \mathbf{x}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{x} = \mathbf{x}^{T}\mathbf{x} = \|\mathbf{x}\|_{2}^{2} \quad \forall \mathbf{x}$$
(48)

$$\|\mathbf{U}\mathbf{A}\mathbf{V}\|_{F} = \|\mathbf{A}\|_{F} \quad \forall \mathbf{A}, \mathbf{U}, \mathbf{V} \text{ with } U, Vorthogonal$$
 (49)

3.7 Positive Definite

 $\mathbf{A} \in \mathbb{S}^n$ is positive definite (denoted $\mathbf{A} \succ 0$) if any of the following are true:

- $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \forall \mathbf{x} \in \mathbb{R}^n$.
- $eig(\mathbf{A}) > 0$

Special Properties

- If **A** is PD and invertible, \mathbf{A}^{-1} is also PD.
- If **A** is PD and $c \in \mathbb{R}$ then c**A** is PD.
- The diagonal entries \mathbf{A}_{ii} are real and non-negative, so $\operatorname{tr}(\mathbf{A}) \geq 0$.
- $det(\mathbf{A}) > 0$
- For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{A}^T \mathbf{A} \succ 0 \iff \mathbf{A}$ is full-column rank $(\operatorname{rank}(\mathbf{A}) = n)$
- For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{A}\mathbf{A}^T \succ 0 \iff \mathbf{A}$ is full-row rank $(\operatorname{rank}(\mathbf{A}) = m)$
- $\mathbf{P} \succ 0$ defines a full-dimensional, bounded ellipsoid centered at the origin and defined by the set $\mathcal{E} = \{\mathbf{x} \in \mathbb{R}^n : x^T \mathbf{P}^{-1} x \leq 1\}$. The eigenvalues λ_i and eigenvectors u_i of \mathbf{P} define the orientation and shape of the ellipsoid. u_i are the semi-axes while the lengths of the semi-axes are given by $\sqrt{\lambda_i}$. Using the Cholesky decomposition, $\mathbf{P}^{-1} = \mathbf{A}^T \mathbf{A}$, an equivalent definition of the ellipsoid is $\mathcal{E} = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{A}\mathbf{x}||_2 \leq 1\}$.

3.8 Positive Semi-Definite

A is positive semi-definite (denoted $\mathbf{A} \succeq 0$) if any of the following are true:

- $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$.
- $eig(\mathbf{A}) \geq 0$

Special Properties

- For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{A}^T \mathbf{A} \succeq 0$
- For $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{A}\mathbf{A}^T \succeq 0$
- The positive semi-definite matrices \mathbb{S}^n_+ form a convex cone. For any two PSD matrices $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n_+$ and some $\alpha \in [0, 1]$:

$$\mathbf{x}^{T}(\alpha \mathbf{A} + (1 - \alpha)\mathbf{B})\mathbf{x} = \alpha \mathbf{x}^{T} \mathbf{A} \mathbf{x} + (1 - \alpha)\mathbf{x}^{T} \mathbf{B} \mathbf{x} \ge 0 \quad \forall \mathbf{x}$$
 (50)

$$\alpha \mathbf{A} + (1 - \alpha) \mathbf{B} \in \mathbb{S}_{+}^{n} \tag{51}$$

• For $\mathbf{A} \in \mathbb{S}^n_+$ and $\alpha \geq 0$, $\alpha \mathbf{A} \succeq 0$, so \mathbb{S}^n_+ is a cone.

3.9 Projection Matrix

A square matrix P is a projection matrix that projects onto a vector space S iff

$$\mathbf{P}$$
 is idempotent (52)

$$\mathbf{P}\mathbf{x} \in \mathcal{S} \ \forall \mathbf{x} \tag{53}$$

$$\mathbf{Pz} = \mathbf{z} \ \forall \mathbf{z} \in \mathcal{S} \tag{54}$$

3.10 Singular Matrix

A square matrix that is not invertible.

 $\mathbf{A} \in \mathbb{R}^{n,n}$ is singular iff $\det \mathbf{A} = 0$ iff $\mathcal{N}(A) \neq \{0\}$.

3.11 Symmetric Matrix

 $\mathbf{A} \in \mathbb{S}^n$ is a symmetric matrix if $\mathbf{A} = \mathbf{A}^T$ (entries above diagonal are equal to entries below diagonal).

$$\begin{bmatrix} a & b & c & d & e & f \\ b & g & l & m & o & p \\ c & l & h & n & q & r \\ d & m & n & i & s & t \\ e & o & q & s & j & u \\ f & p & r & t & u & k \end{bmatrix}$$

$$(55)$$

Special Properties

$$\mathbf{A} = \mathbf{A}^T \tag{56}$$

Number of "free entries": $\frac{n(n+1)}{2}$.

If **A** is real, it can be decomposed into $\mathbf{A} = \mathbf{Q}^T \mathbf{D} \mathbf{Q}$ where **Q** is a real orthogonal matrix (the columns of which are eigenvectors of **A**) and **D** is real and diagonal containing the eigenvalues of **A**.

For a real, symmetric matrix with non-negative eignevalues, the eigenvalues and singular values coincide.

3.12 Skew-Hermitian

A matrix $\mathbf{H} \in \mathbb{C}^{m,n}$ is Skew-Hermitian iff

$$\mathbf{H} = -\mathbf{H}^H \tag{57}$$

3.13 Toeplitz Matrix, General Form

Constant values on descending diagonals.

$$\begin{bmatrix} a_{0} & a_{-1} & a_{-2} & \dots & a_{-(n-1)} \\ a_{1} & a_{0} & a_{-1} & \ddots & \vdots \\ a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\ a_{n-1} & \dots & \dots & a_{2} & a_{1} & a_{0} \end{bmatrix}$$

$$(58)$$

3.14 Toeplitz Matrix, Discrete Convolution

Constant values on main and subdiagonals.

$$\begin{bmatrix}
h_{m} & 0 & 0 & \dots & 0 & 0 \\
\vdots & h_{m} & 0 & \dots & 0 & 0 \\
h_{1} & \vdots & h_{m} & \dots & 0 & 0 \\
0 & h_{1} & \ddots & \ddots & 0 & 0 \\
0 & 0 & h_{1} & \ddots & h_{m} & 0 \\
0 & 0 & 0 & \ddots & \vdots & h_{m} \\
0 & 0 & 0 & \dots & h_{1} & \vdots \\
0 & 0 & 0 & \dots & 0 & h_{1}
\end{bmatrix}$$
(59)

3.15 Triangular Matrix

$$\begin{bmatrix} a & b & c & d & e & f \\ g & h & i & j & k \\ & l & m & n & o \\ & & & p & q & r \\ & & & & s & t \\ & & & & & u \end{bmatrix} \begin{bmatrix} a & & & & & \\ b & g & & & & \\ c & h & l & & & \\ d & i & m & p & & \\ e & j & n & q & s \\ f & k & o & r & t & u \end{bmatrix}$$
(60)

Square matrices in which all elements either above or below the main diagonal are zero. An upper (left) and a lower (right) triangular matrix are shown above.

For an upper triangular matrix $A_{ij} = 0$ whenever i > j; for a lower triangular matrix $A_{ij} = 0$ whenever i < j.

Special Properties

$$eig(A) = diag(A) \tag{61}$$

$$\det(A) = \prod_{i} \operatorname{diag}(A)_{i} \tag{62}$$

The product of two upper (lower) triangular matrices is still upper (lower) triangular.

The inverse of a nonsingular upper (lower) triangular matrix is still upper (lower) triangular.

3.16 Vandermonde Matrix

$$V = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{bmatrix}$$
(63)

Alternatively,

$$V_{i,j} = \alpha_i^{j-1} \tag{64}$$

Uses

Polynomial interpolation of data.

Special Properties

•
$$\det(V) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

4 Matrix Decompositions

4.1 LLT/UTU: Cholesky Decomposition

If **A** is symmetric, positive definite, square, then

$$\mathbf{A} = \mathbf{U}^T \mathbf{U} = \mathbf{L} \mathbf{L}^T \tag{65}$$

where ${\bf U}$ is a unique upper triangular matrix and ${\bf L}$ is a unique lower-triangular matrix.

4.2 LDLT

If **A** is a non-singular symmetric definite square matrix, then

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T = \mathbf{L}^T\mathbf{D}\mathbf{L} \tag{66}$$

where **L** is a unit lower triangular matrix and **D** is a diagonal matrix. If $\mathbf{A} \succ 0$, then $\mathbf{D}_{ii} > 0$.

4.3 PCA: Principle Components Analysis

Find normalized directions in data space such that the variance of the projections of the centered data points is maximal. For centered data $\tilde{\mathbf{X}}$, the mean-square variation of data along a vector \mathbf{x} is $\mathbf{x}^T \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T \mathbf{x}$.

$$\max_{\mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T \mathbf{x}$$
 (67)

Taking an SVD of $\tilde{\mathbf{X}}\tilde{\mathbf{X}}^T$ gives $H = \mathbf{U}_r\mathbf{D}^2\mathbf{U}^T$, which is maximized by taking $\mathbf{x} = \mathbf{u}_1$. By repeatedly removing the first principal components and recalculating, all the principal axes can be found.

4.4 QR: Orthogonal-triangular

For $\mathbf{A} \in \mathbb{R}^{n,n}$, $\mathbf{A} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is orthogonal and \mathbf{R} is an upper triangular matrix. If \mathbf{A} is non-singular, then \mathbf{Q} and \mathbf{R} are uniquely defined if diag(\mathbf{R}) are imposed to be positive.

Algorithms

Gram-Schmidt.

4.5 SVD: Singular Value Decomposition

Any matrix $\mathbf{A} \in \mathbb{R}^{m,n}$ can be written as

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T = \sum_{i=1}^r \sigma_i u_i v_i^T \tag{68}$$

where

$$U = \text{eigenvectors of } \mathbf{A}\mathbf{A}^T \qquad \mathbb{R}^{m,m} \tag{69}$$

$$D = \operatorname{diag}(\sigma_i) = \sqrt{\operatorname{diag}(\operatorname{eig}(\mathbf{A}\mathbf{A}^T))} \qquad \mathbb{R}^{n,m}$$
 (70)

$$V = \text{eigenvectors of } \mathbf{A}^T \mathbf{A}$$
 $\mathbb{R}^{n,n}$ (71)

Let σ_i be the non-zero singular values for $i=1,\ldots,r$ where r is the rank of \mathbf{A} ; $\sigma_1 \geq \ldots \geq \sigma_r$.

We also have that

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i \tag{72}$$

$$\mathbf{A}^T \mathbf{u}_i = \sigma_i \mathbf{v}_i \tag{73}$$

$$\mathbf{U}^T \mathbf{U} = \mathbf{I} \tag{74}$$

$$\mathbf{V}^T \mathbf{V} = \mathbf{I} \tag{75}$$

 ${f D}$ can be written in an expanded form:

$$\tilde{\mathbf{D}} = \begin{bmatrix} \mathbf{D} & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{bmatrix}$$
 (76)

The final n-r columns of **V** give an orthonormal basis spanning $\mathcal{N}(\mathbf{A})$. An orthonormal basis spanning the range of **A** is given by the first r columns of **U**.

$$\|\mathbf{A}\|_F^2 = \text{Frobenius norm} = \text{tr}(\mathbf{A}^T \mathbf{A}) = \sum_{i=1}^r \sigma_i^2$$
 (77)

$$\|\mathbf{A}\|_2^2 = \sigma_1^2 \tag{78}$$

$$\|\mathbf{A}\|_{*} = \text{nuclear norm} = \sum_{i=1}^{r} \sigma_{i}$$
 (79)

The **condition number** κ of an invertible matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ is the ratio of the largest and smallest singular value. Matrices with large condition numbers are closer to being singular and more sensitive to changes.

$$\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_n} = \|A\|_2 \cdot \left\|A^{-1}\right\|_2 \tag{80}$$

Low-Rank Approximation

Approximating $\mathbf{A} \in \mathbb{R}^{m,n}$ by a matrix \mathbf{A}_k of rank k>0 can be formulated as the optimization probem

$$\min_{\mathbf{A}_k \in \mathbb{R}^{m,n}} \|\mathbf{A} - \mathbf{A}_k\|_F^2 : \operatorname{rank} \mathbf{A}_k = k, 1 \le k \le \operatorname{rank}(\mathbf{A})$$
(81)

The optimal solution of this problem is given by

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T \tag{82}$$

where

$$\frac{\|\mathbf{A}_k\|_F^2}{\|\mathbf{A}\|_F^2} = \frac{\sigma_1^2 + \ldots + \sigma_k^2}{\sigma_1^2 + \ldots + \sigma_r^2}$$
(83)

$$1 - \frac{\|\mathbf{A}_k\|_F^2}{\|\mathbf{A}\|_F^2} = \frac{\sigma_{k+1}^2 + \ldots + \sigma_r^2}{\sigma_1^2 + \ldots + \sigma_r^2}$$
(84)

is the fraction of the total variance in **A** explained by the approximation \mathbf{A}_k .

Range and Nullspace

$$\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{V}_{nr}) \tag{85}$$

$$\mathcal{N}(\mathbf{A})^{\perp} \equiv \mathcal{R}(\mathbf{A}^T) = \mathcal{R}(\mathbf{V}_r) \tag{86}$$

$$\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{U}_r) \tag{87}$$

$$\mathcal{R}(\mathbf{A})^{\perp} \equiv \mathcal{N}(\mathbf{A}^T) = \mathcal{R}(\mathbf{U}_{nr}) \tag{88}$$

where \mathbf{V}_r is the first r columns of V and $V_n r$ are the last [r+1,n] columns; similarly for \mathbf{U} .

Projectors

The projection of \mathbf{x} onto $\mathcal{N}(\mathbf{A})$ is $(\mathbf{V}_{nr}\mathbf{V}_{nr}^T)\mathbf{x}$. Since $\mathbf{I}_n = \mathbf{V}_r\mathbf{V}_r^T + \mathbf{V}_{nr}\mathbf{V}_{nr}^T$, $(\mathbf{I}_n - \mathbf{V}_r\mathbf{V}_r^T)\mathbf{x}$ also works. The projection of \mathbf{x} onto $\mathcal{R}(\mathbf{A})$ is $(\mathbf{U}_r\mathbf{U}_r^T)\mathbf{x}$.

If $\mathbf{A} \in \mathbb{R}^{m,n}$ is full row rank $(\mathbf{A}\mathbf{A}^T \succ 0)$, then the minimum distance to an affine set $\{x : \mathbf{A}\mathbf{x} = \mathbf{b}\}, \mathbf{b} \in \mathbb{R}^m$ is given by $\mathbf{x}^* = \mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}$.

If $\mathbf{A} \in \mathbb{R}^{m,n}$ is full column rank $(\mathbf{A}^T \mathbf{A} \succ 0)$, then the minimum distance to an affine set $\{x : \mathbf{A}\mathbf{x} = \mathbf{b}\}, \mathbf{b} \in \mathbb{R}^m$ is given by $\mathbf{x}^* = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$.

Computational Notes

Since $\sigma \approx 0$, a numerical rank can be estimated for the matrix as the largest k such that $\sigma_k > \epsilon \sigma_1$ for $\epsilon \geq 0$.

4.6 Eigenvalue Decomposition for Diagonalizable Matrices

For a square, diagonalizable matrix $\mathbf{A} \in \mathbb{R}^{n,n}$

$$\mathbf{A} = U\Lambda U^{-1} \tag{89}$$

where $U \in \mathbb{C}^{n,n}$ is an invertible matrix whose columns are the eigenvectors of **A** and Λ is a diagonal matrix containing the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **A** in the diagonal.

The columns $\mathbf{u}_1, \dots, \mathbf{u}_n$ satisfy

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i \quad i = 1, \dots, n \tag{90}$$

4.7 Eigenvalue (Spectral) Decomposition for Symmetric Matrices

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ can be factored as

$$\mathbf{A} = U\Lambda U^T = \sum_{i}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^T \tag{91}$$

where $U \in \mathbb{R}^{n,n}$ is an orthogonal matrix whose columns \mathbf{u}_i are the eigenvectors of \mathbf{A} and Λ is a diagonal matrix containing the eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ of \mathbf{A} in the diagonal. These eigenvalues are always real. The eigenvectors can always be chosen to be real and to form an orthonormal basis.

The columns $\mathbf{u}_1, \dots, \mathbf{u}_n$ satisfy

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i \quad i = 1, \dots, n \tag{92}$$

4.8 Schur Complements

For $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{B} \in \mathbb{S}^n$, $\mathbf{X} \in \mathbb{R}^{n,m}$ with $\mathbf{B} \succ 0$ and the block matrix

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{bmatrix} \tag{93}$$

and the Schur complement of A in M

$$S = \mathbf{A} - \mathbf{X}\mathbf{B}^{-1}\mathbf{X}^{T} \tag{94}$$

Then

$$\mathbf{M} \succeq 0 \iff S \succeq 0 \tag{95}$$

$$\mathbf{M} \succ 0 \iff S \succ 0 \tag{96}$$

5 | Matrix Properties

$$A(B+C) = AB + AC$$
 (left distributivity) (97)

$$(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$$
 (right distributivity) (98)

$$\mathbf{AB} \neq \mathbf{BA}$$
 (in general) (99)

$$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$
 (associativity) (100)

6 | Transpose Properties

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T \tag{101}$$

$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T \tag{102}$$

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1} \tag{103}$$

7 Determinant Properties

Geometrically, if a unit volume is acted on by \mathbf{A} , then $|\det(\mathbf{A})|$ indicates the volume after the transformation.

$$\det(I_n) = 1 \tag{104}$$

$$\det(\mathbf{A}^T) = \det(\mathbf{A}) \tag{105}$$

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})} = \det(\mathbf{A})^{-1}$$
(106)

$$\det(AB) = \det(BA) \tag{107}$$

$$\det(AB) = \det(A)\det(B) \quad \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n,n}$$
(108)

$$\det(c\mathbf{A}) = c^n \det(\mathbf{A}) \quad \mathbf{A} \in \mathbb{R}^{n,n}$$
 (109)

$$\det(\mathbf{A}) = \prod \operatorname{eig}(\mathbf{A}) \tag{110}$$

8 | Trace Properties

For $\mathbf{A} \in \mathbb{R}^{n,n}$

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii} \tag{111}$$

$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B}) \tag{112}$$

$$tr(c\mathbf{A}) = c tr(\mathbf{A}) \tag{113}$$

$$tr(\mathbf{A}) = tr(\mathbf{A}^T) \tag{114}$$

For A, B, C, D of compatible dimensions,

$$tr(\mathbf{A}^T \mathbf{B}) = tr(\mathbf{A} \mathbf{B}^T) = tr(\mathbf{B}^T \mathbf{A}) = tr(\mathbf{B} \mathbf{A}^T)$$
(115)

$$tr(\mathbf{ABCD}) = tr(\mathbf{BCDA}) = tr(\mathbf{CDAB}) = tr(\mathbf{DABC})$$
(116)

(Invariant under cyclic permutations)

9 | Inverse Properties

The inverse of $\mathbf{A} \in \mathbb{C}^{n,n}$ is denoted \mathbf{A}^{-1} and defined such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n \tag{117}$$

where I_n is the $n \times n$ identity matrix. **A** is nonsingular if \mathbf{A}^{-1} exists; otherwise, **A** is singular.

If individual inverses exist

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{118}$$

more generally

$$(\mathbf{A}_1 \mathbf{A}_2 \dots \mathbf{A}_n)^{-1} = \mathbf{A}_n^{-1} \dots \mathbf{A}_2^{-1} \mathbf{A}_1^{-1}$$
 (119)

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1} \tag{120}$$

10 | Pseudo-Inverse Properties

For $\mathbf{A} \in \mathbb{R}^{m,n}$, a pseudoinverse satisfies:

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A} \tag{121}$$

$$\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+} \tag{122}$$

$$(\mathbf{A}\mathbf{A}^+)^T = \mathbf{A}\mathbf{A}^+ \tag{123}$$

$$(\mathbf{A}^{+}\mathbf{A})^{T} = \mathbf{A}^{+}\mathbf{A} \tag{124}$$

10.1 Moore-Penrose Pseudoinverse

$$\mathbf{A}^{+} = \mathbf{V}\mathbf{D}^{-1}\mathbf{U}^{T} \tag{125}$$

where the foregoing comes from a singular-value decomposition and $\mathbf{D}^{-1} = \operatorname{diag}(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_r})$

Special Properties

- $\mathbf{A}^+ = \mathbf{A}^{-1}$ if $\mathbf{A} \in \mathbb{R}^{n,n}$ and \mathbf{A} is square and nonsingular.
- $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$, if $\mathbf{A} \in \mathbb{R}^{m,n}$ is full column rank $(r = n \le m)$. \mathbf{A}^+ is a left inverse of \mathbf{A} , so $\mathbf{A}^+ \mathbf{A} = \mathbf{V}_r \mathbf{V}_r^T = \mathbf{V} \mathbf{V}^T = \mathbf{I}_n$.
- $\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$, if $\mathbf{A} \in \mathbb{R}^{m,n}$ is full row rank $(r = m \le n)$. \mathbf{A}^+ is a right inverse of \mathbf{A} , so $\mathbf{A} \mathbf{A}^+ = \mathbf{U}_r \mathbf{U}_r^T = \mathbf{U} \mathbf{U}^T = \mathbf{I}_m$.

11 | Hadamard Identities

$$(\mathbf{A} \circ \mathbf{B})_{ij} = A_{ij}B_{ij} \ \forall i,j$$

$$\mathbf{A} \circ \mathbf{B} = \mathbf{B} \circ \mathbf{A}$$

$$(127) [2]$$

$$\mathbf{A} \circ (\mathbf{B} \circ \mathbf{C}) = (\mathbf{A} \circ \mathbf{B}) \circ \mathbf{C}$$

$$\mathbf{A} \circ (\mathbf{B} + \mathbf{C}) = \mathbf{A} \circ \mathbf{B} + \mathbf{A} \circ \mathbf{C}$$

$$a(\mathbf{A} \circ \mathbf{B}) = (a\mathbf{A}) \circ \mathbf{B} = \mathbf{A} \circ (a\mathbf{B})$$

$$(\mathbf{A}^T \circ \mathbf{B}^T) = (\mathbf{A} \circ \mathbf{B})^T$$

$$(\mathbf{A}^T \circ \mathbf{B}^T) = (\mathbf{A} \circ \mathbf{B})^T$$

$$(\mathbf{A}^T \circ \mathbf{B}^T) = (\mathbf{A} \circ \mathbf{B})^T$$

$$(132)$$

$$(x^T \mathbf{A}x) = \sum_{i,j} ((xx^T) \circ \mathbf{A})$$

$$(133)$$

12 | Eigenvalue Properties

 $\lambda \in \mathbb{C}$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n,n}$ and $u \in \mathbb{C}^n$ is a corresponding eigenvector if $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{u} \neq 0$. Equivalently, $(\lambda \mathbf{I}_n - \mathbf{A})\mathbf{u} = 0$ and $\mathbf{u} \neq 0$. Eigenvalues satisfy the equation $\det(\lambda \mathbf{I}_n - \mathbf{A}) = 0$.

Any matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ has n eigenvalues, though some may be repeated. λ_1 is the largest eigenvalue and λ_n the smallest.

$$\operatorname{eig}(\mathbf{A}\mathbf{A}^T) = \operatorname{eig}(\mathbf{A}^T\mathbf{A}) \tag{134}$$

(Note that the number of entries in $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ may differ significantly leading to different compute times.)

$$\operatorname{eig}(\mathbf{A}^T \mathbf{A}) \ge 0 \tag{135}$$

Computation

TODO: eigsh, small eigen value extraction, top-k

13 Norms

13.1 Matrices

Matrix norms satisfy some properties:

$$f(\mathbf{A}) \ge 0 \tag{136}$$

$$f(\mathbf{A}) = 0 \iff \mathbf{A} = 0 \tag{137}$$

$$f(c\mathbf{A}) = |c|f(\mathbf{A}) \tag{138}$$

$$f(\mathbf{A} + \mathbf{B}) \le f(\mathbf{A}) + f(\mathbf{B}) \tag{139}$$

Many popular matrix norms also satisfy "sub-multiplicativity": $f(\mathbf{AB}) \leq f(\mathbf{A})f(\mathbf{B})$.

13.1.1 Frobenius norm

$$\|\mathbf{A}\|_F = \sqrt{\operatorname{tr} \mathbf{A} \mathbf{A}^H} \tag{140}$$

$$\|\mathbf{A}\|_{F} = \sqrt{\operatorname{tr} \mathbf{A} \mathbf{A}^{H}}$$

$$= \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |\mathbf{A}_{ij}|^{2}}$$

$$(140)$$

$$= \sqrt{\sum_{i=1}^{m} \operatorname{eig}(A^{H}A)_{i}}$$
 (142)

Special Properties

$$\|\mathbf{A}\mathbf{x}\|_{2} \leq \|\mathbf{A}\|_{F} \|\mathbf{x}\|_{2} \quad \mathbf{x} \in \mathbb{R}^{n} \tag{143}$$

$$\|\mathbf{A}\mathbf{B}\|_{F} \le \|\mathbf{A}\|_{F} \|\mathbf{B}\|_{F} \tag{144}$$

13.1.2**Operator Norms**

For $p = 1, 2, \infty$ or other values, an operator norm indicates the maximum inputoutput gain of the matrix.

$$\|\mathbf{A}\|_{p} = \max_{\|\mathbf{u}\|_{p}=1} \|\mathbf{A}\mathbf{u}\|_{p} \tag{145}$$

$$\|\mathbf{A}\|_1 = \max_{\|\mathbf{u}\|_1 = 1} \|\mathbf{A}\mathbf{u}\|_1 \tag{146}$$

$$= \max_{j=1,\dots,n} \sum_{i=1}^{m} |\mathbf{A}_{ij}| \tag{147}$$

$$\|\mathbf{A}\|_{\infty} = \max_{\|\mathbf{u}\|_{\infty} = 1} \|\mathbf{A}\mathbf{u}\|_{\infty} \tag{149}$$

$$= \max_{j=1,\dots,m} \sum_{i=1}^{n} |\mathbf{A}_{ij}| \tag{150}$$

$$= Largest absolute row sum (151)$$

$$\|\mathbf{A}\|_2 = \text{``spectral norm''} \tag{152}$$

$$= \max_{\|\mathbf{u}\|_2=1} \|\mathbf{A}\mathbf{u}\|_2 \tag{153}$$

$$= \sqrt{\max(\operatorname{eig}(\mathbf{A}^T \mathbf{A}))}$$
 (154)

= Square root of largest eigenvalue of
$$\mathbf{A}^T \mathbf{A}$$
 (155)

Special Properties

$$\|\mathbf{A}\mathbf{u}\|_{p} \le \|\mathbf{A}\|_{p} \|\mathbf{u}\|_{p} \tag{156}$$

$$\|\mathbf{A}\mathbf{B}\|_{p} \le \|\mathbf{A}\|_{p} \|\mathbf{B}\|_{p} \tag{157}$$

(158)

13.1.3 Spectral Radius

Not a proper norm.

$$\rho(\mathbf{A}) = \operatorname{spectral\ radius}(\mathbf{A}) = \max_{i=1,\dots,n} |\operatorname{eig}(\mathbf{A})_i|$$
 (159)

Special Properties

$$\rho(\mathbf{A}) \le \|\mathbf{A}\|_p \tag{160}$$

$$\rho(\mathbf{A}) \le \min(\|\mathbf{A}\|_1, \|\mathbf{A}\|_{\infty}) \tag{161}$$

(162)

13.2. VECTORS 31

13.2 Vectors

P-norm:

$$\|\mathbf{x}\|_{p} = (\sum_{i} |\mathbf{x}_{i}|^{p})^{1/p}$$
 (163)

14 | Bounds

14.1 Matrix Gain

$$\lambda_{\min}(\mathbf{A}^T \mathbf{A}) \le \frac{\|\mathbf{A}\mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} \le \lambda_{\max}(\mathbf{A}^T \mathbf{A})$$
 (164)

$$\max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} = \|\mathbf{A}\|_{2} = \sqrt{\lambda_{\max}(\mathbf{A}^{T}\mathbf{A})} \implies \mathbf{x} = u_{1}$$
 (165)

$$\min_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} = \sqrt{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})} \implies \mathbf{x} = u_{n}$$
 (166)

14.2 Norms

For $\mathbf{x} \in \mathbb{R}^n$

$$\frac{1}{\sqrt{n}} \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1} \leq \sqrt{\operatorname{card}(\mathbf{x})} \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{2} \leq n \|\mathbf{x}\|_{\infty} \quad (167)$$

For any $0 we have that <math>\|\mathbf{x}\|_q \le \|\mathbf{x}\|_p$.

14.3 Rayleigh quotients

The Rayleigh quotient of $\mathbf{A} \in \mathbb{S}^n$ is given by

$$\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \mathbf{x} \neq 0 \tag{168}$$

$$\lambda_{\min}(\mathbf{A}) \le \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \le \lambda_{\max}(\mathbf{A}) \quad \mathbf{x} \ne 0$$
 (169)

$$\lambda_{\max}(A) = \max_{\mathbf{x}: \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = u_1$$
 (170)

$$\lambda_{\min}(A) = \min_{\mathbf{x} : \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = u_n$$
 (171)

where u_1 and u_n are the eigenvectors associated with λ_{\max} and λ_{\min} , respectively.

15 | Linear Equations

The linear equation $\mathbf{A}\mathbf{x} = \mathbf{y}$ with $\mathbf{A} \in \mathbb{R}^{m,n}$ admits a solution iff $\operatorname{rank}([\mathbf{A}\mathbf{y}]) = \operatorname{rank}(\mathbf{A})$. If this is satisfied, the set of all solutions is an affine set $\mathcal{S} = \{\mathbf{x} = \bar{\mathbf{x}} + z : z \in \mathcal{N}(\mathbf{A})\}$ where $\bar{\mathbf{x}}$ is any vector such that $\mathbf{A}\bar{\mathbf{x}} = \mathbf{y}$. The solution is unique if $\mathcal{N}(\mathbf{A}) = \{0\}$.

 $\mathbf{A}\mathbf{x} = \mathbf{y}$ is overdetermined if it is tall/skinny (m > n); that is, if there are more equations than unknowns. If $\operatorname{rank}(\mathbf{A}) = n$ then $\dim \mathcal{N}(\mathbf{A}) = 0$, so there is either no solution or one solution. Overdetermined systems often have no solution $(\mathbf{y} \notin \mathcal{R}(\mathbf{A}))$, so an approximate solution is necessary.

 $\mathbf{A}\mathbf{x} = \mathbf{y}$ is underdetermined if it is short/wide (n > m); that is, if has more unknowns than equations. If $\operatorname{rank}(\mathbf{A}) = m$ then $\mathcal{R}(\mathbf{A}) = \mathbb{R}^m$, so $\dim \mathcal{N}(\mathbf{A}) = n - m > 0$, so the set of solutions is infinite. Therefore, finding a single solution that optimizes some quantity is of interest.

 $\mathbf{A}\mathbf{x} = \mathbf{y}$ is square if n = m. If \mathbf{A} is invertible, then the equations have the unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$.

15.1 Least-Squares

For an overdetermined system we wish to find:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \tag{172}$$

Since $\mathbf{A}\mathbf{x} \in \mathcal{R}(\mathbf{A})$, we need a point $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* \in \mathcal{R}(\mathbf{A})$ closest to \mathbf{y} . This point lies in the nullspace of \mathbf{A}^T , so we have $\mathbf{A}^T(\mathbf{y} - \mathbf{A}\mathbf{x}^*) = 0$. There is always a solution to this problem and, if $\operatorname{rank}(\mathbf{A}) = n$, it is unique.

$$\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y} \tag{173}$$

15.2 Minimum Norm Solutions

For undertermined systems in which $\mathbf{A} \in \mathbb{R}^{m,n}$ with m < n. We wish to find

$$\min_{\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{y}} \|\mathbf{x}\|_2 \tag{174}$$

The solution \mathbf{x}^* must be orthogonal to $\mathcal{N}(\mathbf{A})$, so $\mathbf{x}^* \in \mathcal{R}(\mathbf{A}^T)$, so $\mathbf{x}^* = \mathbf{A}^T c$ for some c, so $\mathbf{A}\mathbf{A}^T c = \mathbf{y}$, therefore:

$$\mathbf{x}^* = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \mathbf{y} \tag{175}$$

$\mathbf{16} \mid \mathbf{1}_r^T \mathbf{A} \mathbf{1}_c$

Reduces to: Scalar

Notation: For $\mathbf{A} \in \mathbb{R}^{r \times c}$, $\mathbf{1}_r$ is in $\mathbb{R}^{r \times 1}$ and $\mathbf{1}_c$ is in $\mathbb{R}^{c \times 1}$.

Plain English: The sum of the elements of the matrix.

Algorithm: Traverse all the element of the matrix in order keeping track of the sum. For applications where accuracy is important and the matrices have a large dynamic range, Kahan summation or a similar technique should be used.

Update Algorithm: If an entry changes, subtract its old value from the sum and add its new value to the sum.

$\mathbf{17} \mid \mathbf{x}^T \mathbf{A} \mathbf{x}$

Reduces to: Scalar

Notation: A must be in $\mathbb{R}^{i \times i}$. \mathbf{x} is in $\mathbb{R}^{i \times 1}$.

Plain English: TODO
Algorithm: TODO

Update Algorithm: We make use of the identity $(\mathbf{x}^T \mathbf{A} \mathbf{x}) = \sum_{i,j} ((\mathbf{x} \mathbf{x}^T) \circ \mathbf{A})$. If an entry $\mathbf{A}_{i,j}$ in the matrix changes subtract its old value $\mathbf{x}_i \mathbf{x}_j \mathbf{A}_{ij}$ and add

the new value $\mathbf{x}_i \mathbf{x}_j \mathbf{A}'_{ij}$. If an entry \mathbf{x}_i changes TODO.

18 | Algorithms

18.1 Gram-Schmidt

TODO

Bibliography

- [1] Gilbert Strang. Introduction to Linear Algebra. 2016.
- [2] Elizabeth Million. The hadamard product. http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf, 2007.