8 29102024-164339

Даны значения s-параметров:

Freq	s ₁₁		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2

Выбрать Г-образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 2 на частоте 3.4 ГГц так, чтобы отрезки длинной линии имели угловые электрические длины меньше $\frac{\pi}{2}$, то есть $\theta_{\Pi} < \frac{\pi}{2}$ и $\theta_{T} < \frac{\pi}{2}$.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широполосной нагрузкой $R=18~\mathrm{Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=4.7~\Gamma\Gamma$ ц и $f_{\rm B}=11.3~\Gamma\Gamma$ ц, модули коэффициентов отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.77 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

- 1) 1.4 дБ
- 2) 2.8 дБ
- 3) 5.7 дБ
- 4) 1.9 дБ

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте $5.3~\Gamma\Gamma$ ц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: 0.63 - 0.78i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 14.3 cm
- 2) 28.3 cm
- 3) 69.2 см
- 4) 54.5 cm

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика?

Рисунок 3 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.65~f_{\scriptscriptstyle \rm B}$:

```
s_{11} = -0.368 + 0.168\mathrm{i} . (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

- 1) 31 O_M
- 2) 86 Om
- 3) 81 Om
- 4) 37 Om

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.203 мм и с волновым сопротивлением 47 Ом;
- 2 толщиной 0.305 мм и с волновым сопротивлением 53 Ом;
- 3 толщиной 0.406 мм и с волновым сопротивлением 56 Ом;
- 4 толщиной 0.508 мм и с волновым сопротивлением 56 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

- 1) 1
- 2) 2
- 3) 3
- 4) 4