Part-of-speech tagging

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

First chunk for today

- Parts of speech (POS)
- Tagsets
- POS Tagging
 - Rule-based tagging
 - HMMs and Viterbi algorithm

Parts of Speech

- 8 (ish) traditional parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 - Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
 - Lots of debate within linguistics about the number, nature, and universality of these
 - We'll completely ignore this debate.

POS examples

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly
- P preposition of, by, to
- PRO pronoun I, me, mine
- DET determiner the, a, that, those

POS Tagging

The process of assigning a part-of-speech or lexical class marker to each word in a collection.

the	DET
koala	N
put	V
the	DET
keys	N
on	P
the	DET
table	N

Why is POS Tagging Useful?

- First step of a vast number of practical tasks
- Sentiment
 - Proportions of POS tags can be good features; can disambiguate
- Speech synthesis
 - How to pronounce "lead"?
 - INsult inSULTOBject obJECT
 - OVERflow overFLOW
 - CONtent conTENT
- Information extraction
 - Finding names, relations, etc.
- Machine Translation

Open and Closed Classes

- Closed class: a small fixed membership
 - Prepositions: of, in, by, ...
 - Auxiliaries: may, can, will had, been, ...
 - Pronouns: I, you, she, mine, his, them, ...
 - Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have these 4, but not all!

Open Class Words

Nouns

- Proper nouns (Boulder, Granby, Eli Manning)
 - English capitalizes these.
- Common nouns (the rest).
- Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)

Adverbs: tend to modify things

- Unfortunately, John walked home extremely slowly yesterday
- Directional/locative adverbs (here,home, downhill)
- Degree adverbs (extremely, very, somewhat)
- Manner adverbs (slowly, slinkily, delicately)

Verbs

In English, have morphological affixes (eat/eats/eaten)

Closed Class Words

Examples:

- prepositions: on, under, over, ...
- particles: up, down, on, off, ...
- determiners: a, an, the, ...
- pronouns: she, who, I, ...
- conjunctions: and, but, or, ...
- auxiliary verbs: can, may should, ...
- numerals: one, two, three, third, ...

Prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

English Particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

Conjunctions

and	514,946	vet	5,040	considering	174	forasmuch as	0
	134,773	yet	*		131		0
that	,	since	4,843	lest		however	
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
so	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

POS Tagging Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a set of tags to work with
- Could pick very coarse tagsets
 - N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
 - PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist

Penn TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both		left quote	or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	ир, off			

Using the Penn Tagset

- The/DT grand/JJ jury/NN commmented/ VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/ PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

POS Tagging

- Words often have more than one POS: back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous	(1 tag)	44,019		38,857	
Ambiguous (2	–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Two Methods for POS Tagging

- 1. Rule-based tagging
 - (ENGTWOL)
- 2. Stochastic
 - 1. Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - MEMMs (Maximum Entropy Markov Models)

Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

• she: PRP

promised: VBN,VBD

• to TO

back: VB, JJ, RB, NN

• the: DT

• bill: NN, VB

 Etc... for the ~100,000 words of English with more than 1 tag

Assign Every Possible Tag

NN
RB
VBN
JJ
VB
PRP VBD
TO
VB
DT
NN
She promised to back the bill

Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when VBNIVBD follows "<start> PRP"

NN

RB

VBN

PRP VBD

O VB DT NN

VB

She promised to back the bill

Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of Bayesian inference
 - Foundational work in computational linguistics
 - Bledsoe 1959: OCR
 - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w₁...w_n.

Getting to HMMs

• We want, out of all sequences of n tags $t_1...t_n$ the single tag sequence such that $P(t_1...t_n|w_1...w_n)$ is highest.

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax_x f(x) means "the x such that f(x) is maximized"

Getting to HMMs

 This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
 - Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

likelihood prior
$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \ \overbrace{P(w_1^n|t_1^n)}^{\text{prior}} \ \overbrace{P(t_1^n)}^{\text{prior}}$$

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Two Kinds of Probabilities

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be:
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two Kinds of Probabilities

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

Example

- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race|NN) = .00057
- P(race|VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
- So we (correctly) choose the verb reading

Hidden Markov Models

 What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)

Markov Chain for Weather

Markov Chain for Words

Markov Chain: "First-order observable Markov Model"

- A set of states
 - $Q = q_1, q_2...q_N$; the state at time t is q_t
- Transition probabilities:
 - a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.
 - Each a_{ij} represents the probability of transitioning from state i to state j
 - The set of these is the transition probability matrix A
- Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Current state only depends on previous state

$$P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$$

Markov Chain for Weather

- What is the probability of 4 consecutive hot days?
- Sequence is hot-hot-hot
- I.e., state sequence is 1-1-1-1
- P(1,1,1,1) =
 - $\pi_1 a_{11} a_{11} = 0.2 \times (0.6)^3 = 0.0432$

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

- States $Q = q_1, q_2...q_{N_1}$
- Observations $O = o_1, o_2 ... o_{N}$
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, ..., v_v\}$
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}$ $a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$
- Observation likelihoods
 - Output probability matrix $B=\{b_i(k)\}$

$$b_i(k) = P(X_t = o_k \mid q_t = i)$$

• Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Eisner Task

Given

Ice Cream Observation Sequence: 1,2,3,2,2,3...

Produce:

Weather Sequence: H,C,H,H,H,C...

HMM for Ice Cream

Transition Probabilities

Observation Likelihoods

Decoding

 Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea.
 - Luckily dynamic programming helps us here

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) **returns** best-path

create a path probability matrix *viterbi*[N+2,T] for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow \underset{s'.s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s'.s}$ $viterbi[q_F,T] \leftarrow \max^{N} viterbi[s,T] * a_{s,q_F}$; termination step

 $backpointer[q_F,T] \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}$; termination step

return the backtrace path by following backpointers to states back in time from $backpointer[q_F, T]$

Viterbi Example

Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

Evaluation

- So once you have you POS tagger running how do you evaluate it?
 - Overall error rate with respect to a goldstandard test set.
 - Error rates on particular tags
 - Error rates on particular words
 - Tag confusions...

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

Summary

- Parts of speech
- Tagsets
- Part of speech tagging
- HMM Tagging
 - Markov Chains
 - Hidden Markov Models