Homework 3

Question 1

Consider $y\in (Xackslashar B_arepsilon(x)).$ Since d(x,y)>arepsilon, Then $\delta=d(x,y)-arepsilon>0.$ $0<\delta-d(y,m)$ =d(x,y)-arepsilon-d(y,m)

 $\forall m \in B_{\delta}(y)$ there will have $B_{\delta}(y \subseteq X \setminus \bar{B}_{\varepsilon}(x))$. Then we can know $m \in (X \setminus \bar{B}_{\varepsilon}(x))$. Then $X \setminus \bar{B}_{\varepsilon}(x)$ is open. Then $\bar{B}_{\varepsilon}(x)$ is closed.

 $\leq d(x,m) - \varepsilon$

Question 2

Consider $x_m \in Lim(x_n)$, we can know there exists $n_j, x_m = Lim_j x_n j$. Since (x_{nj}) is convergent subsequence. When $x = \lim_{n \to \infty} x_m$, There exists $m, x = Lim_j x_m$. We can conclude that $x \in Lim(x_n)$. Thus $Lim(x_n)$ is closed.

Question 3

Idea From Tianyue Cao

Consider $\{(x_n, y_n)\}_1^{\infty}$ be an arbitrary Cauchy sequence that converges to a point (x, y). There will be two cases, when f(x) < 0 or g(y) < f(x).

• Case 1:When f(x) < 0.

Consider $\varepsilon=-f(x)>0$. We can know $\lim_{n\to\infty}f\left(x_n\right)=f(x)$. By definition of limit, There will exists N such that $\forall n>N$.

$$|f(x_n) - f(x)| < arepsilon \ f(x_n) < f(x) + arepsilon = 0$$

Since $(x_n, y_n) \in \{(x, y) \mid 0 \le f(x) \le g(y)\}$, we have $f(x_n) \le 0$, which is a contradiction.

• Case 2: When g(y) < f(x).

Since both f and g are continuous, we can know $\lim_{n \to \infty} f(x_n) = f(x)$ and the $\lim_{n \to \infty} g(y_n) = g(y)$. By the definiton of limit,

- There will exists N_x such that for all $m>N_x$, We can know $|f(x_m)-f(x)|<rac{\epsilon}{2}$. Then we can know $f(x_m)< f(x)+rac{\epsilon}{2}$.
- \circ There will exists N_y such that for all $m>N_y$, We can know $|g\left(y_m
 ight)-g(y)|<rac{\epsilon}{2}$. Then we can know $g\left(y_m
 ight)>g(y)-rac{\epsilon}{2}$.

Then we can know $g\left(y_n\right)>g(y)-\frac{\epsilon}{2}=f(x)+\epsilon-\frac{\epsilon}{2}=f(x)+\frac{\epsilon}{2}>f\left(x_n\right).$ Since $m>\max\{N_x,N_y\}.$

Then there will have a contradiction. Since,

$$f(x_m,y_m)\in\{(x,y)\mid 0\leq f(x)\leq g(y)\}$$
 , We will have $f(x_n)\leq g(x_n)$.

Then we can know $0 \le f(x) \le g(y)$ implies that $(x,y) \in \{(x,y) \mid 0 \le f(x) \le g(y)\}$. We show all cauchy sequences in $\{(x,y) \mid 0 \le f(x) \le g(y)\}$ converge to a point in $\{(x,y) \mid 0 \le f(x) \le g(y)\}$. Thus it is closed.

Question 4

 (\Rightarrow) We know that S is oper under d(x,y), Thus it will also open under $d_f(x,y)$. and the f is strictly increasing. Consider $\forall x \in S, B_{\varepsilon}(x) \subseteq S$.

$$d(x,y) < \varepsilon \Rightarrow y \in S$$
 $x - \varepsilon < y < x + \varepsilon \Rightarrow y \in S$ (1)
 $a < b \Leftrightarrow f(a) < f(b)$

Since we know that S is also open under $d_f(x,y)$. we can combine two equation.

$$f(x-arepsilon) < f(y) < f(x+arepsilon) \Rightarrow y \in S$$

Consider $m = f(x + \varepsilon) - f(x) > 0$, and $n = f(x) - f(x - \varepsilon) > 0$.

$$d_f(x,y) < min\{m,n\}$$
 $\Rightarrow -m < f(x) - f(y) < n$
 $\Rightarrow f(x) - f(x + \varepsilon) < f(x) - f(y) < f(x) - f(x - \varepsilon)$
 $\Rightarrow f(x - \varepsilon) < f(y) < f(x + \varepsilon)$
 $\Rightarrow y \in S$

(\Leftarrow): We know f^{-1} is also increasing and continuous. By the prove above we can know S is open under $d_f(x,y)=|f(x)-f(y)|$, Then S is open under $(d_f)_{f^{-1}}(x,y)=|f^{-1}(f(x))-f^{-1}(f(y))|=d(x,y)$.

Thus by conclusion, we know the statement is true.