10. Information Design

ECON 7219 – Games With Incomplete Information Benjamin Bernard

Informativeness of Experiments

Informativeness of Experiments

Does sodium explode in water?

- State of nature $\Theta = \{\vartheta_E, \vartheta_N\}$ indicates whether it explodes in water.
- To learn more about the state, we can design an experiment.
- Throw a block of sodium into a bucket of water and observe:
 - If the block explodes, we conclude $\theta = \vartheta_E$.
 - If the block does not explode, we conclude $\theta = \vartheta_N$.

Definition 10.1

Informativeness of Experiments

An experiment about an unknown state θ is the observation of a signal S with known conditional distribution $\pi(s \mid \vartheta)$ over some signal space S.

Learning from the experiment:

• If S and θ are correlated, we can learn from the experiment via

$$\nu(\vartheta \mid s) = \frac{\pi(s \mid \vartheta)\mu(\vartheta)}{\sum_{\vartheta'} \pi(s \mid \vartheta')\mu(\vartheta')}.$$

Mixing sodium with water:

• The experiment is perfectly informative since

$$\pi(\mathsf{Explosion} \mid \vartheta_{\mathsf{E}}) = 1, \qquad \pi(\mathsf{No} \; \mathsf{explosion} \mid \vartheta_{\mathsf{N}}) = 1.$$

Distribution of Posteriors

Informativeness of Experiments

Posteriors as random variables:

- Before conducting the experiment, the outcome *S* is unknown.
- The posterior $\nu(\vartheta) := \nu(\vartheta \mid S)$ for any $\vartheta \in \Theta$ is a [0,1]-valued random variable, taking value $\nu(\vartheta \mid s)$ for any $s \in \mathcal{S}$ with prior probability

$$P(S = s) = \sum_{\vartheta' \in \Theta} \pi(s \mid \vartheta') \mu(\vartheta').$$

- $\nu = (\nu(\vartheta_1), \dots, \nu(\vartheta_n))$ is thus a $\Delta(\Theta)$ -valued random variable.
- The distribution ψ of ν is an element from $\Delta(\Delta(\Theta))$.

Mixing sodium with water:

• If our prior is $\mu \in \Delta(\Theta)$, our posterior is $\delta_{\vartheta_E} 1_{\{\theta = \vartheta_E\}} + \delta_{\vartheta_N} 1_{\{\theta = \vartheta_N\}}$ with distribution $\mu \delta_{\vartheta_E} + (1 - \mu) \delta_{\vartheta_N}$, where δ is the Dirac measure.

Bayes-Plausible Posteriors

Definition 10.2

A distribution of posteriors $\psi \in \Delta(\Delta(\Theta))$ is Bayes plausible for a prior distribution $\mu \in \Delta(\Theta)$ if $\mathbb{E}_{\psi}[\nu] = \mu$.

Posteriors induced by experiment:

- Is ψ is induced by experiment $\pi(s|\vartheta)$, then ψ is supported on $(\nu(s))_{s\in\mathcal{S}}$.
- For each state $\vartheta \in \Theta$, we have

$$\begin{split} \mathbb{E}_{\psi}[\nu(\vartheta)] &= \sum_{\nu \,\in \, \text{supp} \, \psi} \psi(\nu) \nu(\vartheta) = \sum_{s \in \mathcal{S}} P(S = s) \nu(\vartheta \,|\, s) \\ &= \sum_{s \in \mathcal{S}} \pi(s \,|\, \vartheta) \mu(\vartheta) = \mu(\vartheta). \end{split}$$

• This implies that $\mathbb{E}_{\psi}[
u] = \mu$, hence ψ is Bayes plausible for μ .

Informativeness of Experiments

	ϑ_Y	ϑ_N
SY	0.6	0.1
s _N	0.4	0.9

Does she like me?

- The state of nature $\Theta = \{\vartheta_Y, \vartheta_N\}$ indicates whether she does.
- My experiment could be to ask her on a date with possible outcomes $s_n =$ "She says no" or $s_v =$ "She says yes."
- If $\mu_0 = 0.4$, the posterior beliefs after observing s_Y and s_N are

$$\nu(\vartheta_Y \mid s_Y) = \frac{\frac{3}{5} \cdot \frac{2}{5}}{\frac{3}{5} \cdot \frac{2}{5} + \frac{1}{10} \cdot \frac{3}{5}} = \frac{4}{5}, \qquad \nu(\vartheta_Y \mid s_N) = \frac{\frac{2}{5} \cdot \frac{2}{5}}{\frac{2}{5} \cdot \frac{2}{5} + \frac{9}{10} \cdot \frac{3}{5}} = \frac{8}{35}.$$

Going on a Date

Informativeness of Experiments

Posteriors as a random variable:

- The posterior of state ϑ_Y is $\nu(\vartheta_Y) = \frac{4}{5} \mathbb{1}_{\{S=s_Y\}} + \frac{8}{25} \mathbb{1}_{\{S=s_M\}}$.
- Since $P(S = s_Y) = \frac{3}{5} \cdot \frac{2}{5} + \frac{1}{10} \cdot \frac{3}{5} = \frac{3}{10}$, the distribution of posteriors is

$$\psi = \frac{3}{10}\delta_{\frac{4}{5}} + \frac{7}{10}\delta_{\frac{8}{35}}.$$

• The expectation of $\nu(\vartheta_Y)$ is $\frac{3}{10} \cdot \frac{4}{5} + \frac{7}{10} \cdot \frac{8}{35} = \frac{2}{5} = \mu(\vartheta_Y)$.

Mean-Preserving Spreads

Definition 10.3

A distribution ν is a mean-preserving spread (MPS) of a distribution μ if there exist random variables $N \sim \nu$, $M \sim \mu$, and ε such that $N \stackrel{d}{=} M + \varepsilon$ and $\mathbb{E}[\varepsilon \mid M = m] = 0$ for every $m \in \text{supp } \mu$.

Interpretation:

- Each realization m is spread in a mean-preserving way to supp ν such that, overall, the distribution ν is attained.
- Probability weights $\mu(m)$ are spread to supp ν in a mean-preserving way.

Increase in Variance:

- Note that N has the same mean as M, but higher variance.
- Does higher variance not typically imply higher uncertainty?

Perfectly Informative and Uninformative Signals

Perfectly informative signal:

• For finite Θ , the posterior ν after a perfectly informative signal satisfies

$$\nu = \sum_{\vartheta \in \Theta} \delta_{\vartheta} 1_{\{\theta = \vartheta\}} = \delta_{\theta}.$$

• The distribution of ν is thus "equal" to the distribution of θ :

$$P(\nu = \delta_{\vartheta}) = P(\theta = \vartheta).$$

- Nevertheless, the distinction between θ and δ_{θ} is an important one:
 - More variance in θ means more noise \Rightarrow less information.
 - ullet More variance in u means that information is partitioned into smaller information sets \Rightarrow more information.

Perfectly uninformative signal:

• Posterior $\nu = \delta_{\mu}$ is constant and equal to the prior distribution μ .

Visualization of a Mean-Preserving Spread

Mean-preserving spread:

- Suppose that $\Theta = \{\vartheta_1, \vartheta_2\}$ so that $\Delta(\Theta) = [0, 1]$.
- If $M \sim \mu$ is a $\Delta(\Theta)$ -valued random variable, then the weight $\mu(m)$ of each realization m is spread to supp ν in a mean-preserving way.
- The spread of m_i to supp $\nu = \{n_1, \dots, n_5\}$ corresponds to $\varepsilon \mid M = m_i$.
- Note that it is possible that the mean of μ has a larger probability weight after a mean-preserving spread than before.

Mean-Preserving Spreads and Bayes-Plausibility

Bayes plausibility and MPS:

• The notion of mean-preserving spreads is an extension of Bayes plausibility to conducting experiments with a non-trivial prior.

Experiments:

- Bayes plausibility implies that the distribution of posteriors induced by an experiment $\pi(s \mid \vartheta)$ is a mean-preserving spread of δ_u .
- Indeed, we can set $\varepsilon = \nu(\cdot | s) \mathbb{1}_{\{S=s\}} \mu$.
- Clearly, $\mathbb{E}[\varepsilon \mid M = \mu] = \mathbb{E}[\varepsilon] = 0$ since supp $M = \{\mu\}$.

Additional uses of MPS:

- Allows us to compare distribution of posteriors after two experiments.
- Does a mean-preserving spread always signify better information?

Comparisons of Experiments

Definition 10.4

Informativeness of Experiments

Suppose that Θ is finite.

- 1. A matrix R is row stochastic or column stochastic if $R_{ij} \in [0,1]$ and the sum over each row or column, respectively, equals 1.
- 2. Experiment S_1 with signals in S_1 is (Blackwell) more informative than experiment S_2 with signals in S_2 if there exists a column-stochastic $|S_2| \times |S_1|$ -matrix R with $\pi_2(\cdot | \vartheta) = R\pi_1(\cdot | \vartheta)$ for any state ϑ .

Interpretation:

- For any true state ϑ , the distribution $\pi_2(\cdot \mid \vartheta)$ is a garbling of $\pi_1(\cdot \mid \vartheta)$.
- Experiment 1 is statistically sufficient for experiment 2 because we can recover experiment 2 by garbling the outcome of experiment 1 with *R*.

Equivalent Comparisons of Experiments

Proposition 10.5

Suppose Θ is finite. For any prior $\mu \in \Delta(\Theta)$ and any experiments S_i for i = 1, 2 with distribution of posteriors ψ_i , the following are equivalent:

- 1. S_1 is more informative than experiment S_2 .
- 2. ψ_1 is a mean-preserving spread of ψ_2 .

Remark:

- The two notions are equivalent comparisons of the two experiments.
- Relation through garblings is easily interpreted, but in information design it is often easier to work with mean-preserving spreads.
- Many other notions are equivalent as well; see Blackwell (1953).
- The results also holds if Θ is any measure space.

Mean-Preserving Spread Associated with Experiments

Claim

Fix a prior μ and two experiments S_i for i = 1, 2 on $S_i = \{s_i^1, \dots, s_i^{n_i}\}$ such that the induced distribution of posteriors ψ_i is $\psi_i(\nu_i(\cdot | s_i)) = P(S_i = s_i)$. Then ψ_1 is a mean-preserving spread of ψ_2 if and only if there exists a row-stochastic $|S_2| \times |S_1|$ -matrix E with

$$\nu_2(\,\cdot\,|\,s_2^k) = \sum_{j=1}^{|\mathcal{S}_1|} E_{kj} \nu_1(\,\cdot\,|\,s_1^j), \qquad P(S_1 = s_1^j) = \sum_{k=1}^{|\mathcal{S}_2|} E_{kj} P\big(S_2 = s_2^k\big).$$

Proof of claim:

- If ψ_1 is an MPS of ψ_2 , there exists a $\Delta(\Theta)$ -valued random variable ε :
 - $\mathbb{E}\left[\varepsilon \mid \nu_2(\cdot \mid S_2) = \nu_2(\cdot \mid S_2^k)\right] = 0$ for every $S_2^k \in S_2$.
 - $\nu_1(\cdot | S_1)$ is distributed identically to $\nu_2(\cdot | S_2) + \varepsilon$.

Informativeness of Experiments

Proof of necessity:

- Note that $\varepsilon|_{S_2=s_2^k}$ has to spread $\nu(\cdot|s_2^k)$ to supp ψ_1 in a mean-preserving way, hence ε_k can only take values in $\nu(\cdot \mid s_1^j) - \nu(\cdot \mid s_2^k)$.
- Set $E_{ki} := P(\varepsilon = \nu(\cdot | s_1^k) \nu(\cdot | s_2^k) | S_2 = s_2^k)$.
- Conditional mean 0 implies that

$$0 = \mathbb{E}\left[\varepsilon \,\middle|\, S_2 = s_2^k\right] = \sum_{j=1}^{|S_1|} \left(\nu(\,\cdot\,|\,s_1^j) - \nu(\,\cdot\,|\,s_2^k)\right) E_{kj}.$$

Equality in distribution implies that

$$P(S_{1} = s_{1}) = P(\nu_{2}(\cdot | S_{2}) + \varepsilon = \nu_{1}(\cdot | s_{1}))$$

$$= \sum_{k=1}^{|S_{2}|} \underbrace{P(\nu_{2}(\cdot | S_{2}) + \varepsilon = \nu_{1}(\cdot | s_{1}) | S_{2} = s_{2}^{k})}_{=E_{ki}} P(S_{2} = s_{2}^{k}).$$

Informativeness of Experiments

Proof of sufficiency:

- Suppose that such a matrix E exist.
- For any $k=1,\ldots,|\mathcal{S}_2|$, let ε_k be a random variable independent of S_1 and S_2 such that

$$P(\varepsilon_k = \nu(\cdot | s_1^j) - \nu(\cdot | s_2^k)) = E_{kj}.$$

Define random variable ε by

$$\varepsilon = \sum_{k=1}^{|\mathcal{S}_2|} \varepsilon_k \mathbb{1}_{\left\{S_2 = s_2^k\right\}}.$$

ullet It follows as on the previous slide that $\mathbb{E} \left[arepsilon \, ig| \, \mathcal{S}_2 = \mathcal{S}_2^k
ight] \, = \, 0$ and that $\nu_1(\cdot | S_1)$ is distributed identically to $\nu_2(\cdot | S_2) + \varepsilon$.

Proof of Proposition 10.5

Informativeness of Experiments

Statement 2. implies statement 1.:

- Suppose ψ_1 is a mean-preserving spread of ψ_2 .
- By the claim, there exists row-stochastic matrix E such that

$$\pi_2(s_2^k \mid \vartheta) = \frac{\nu_2(\vartheta \mid s_2^k) P(S_2 = s_2^k)}{\mu(\vartheta)} = \sum_{j=1}^{|S_1|} \frac{E_{kj} \nu_1(\vartheta \mid s_1^j) P(S_2 = s_2^k)}{\mu(\vartheta)}$$
$$= \sum_{j=1}^{|S_1|} \underbrace{\frac{E_{kj} P(S_2 = s_2^k)}{P(S_1 = s_1^j)}}_{=:S_{ki}} \pi_1(s_1^j \mid \vartheta).$$

- R is column-stochastic since $\sum_{k=1}^{|S_2|} E_{ki} P(S_2 = S_2^k) = P(S_1 = S_1^j)$.
- We conclude that S_1 is more informative than S_2 .

Proof of Proposition 10.5

Statement 1. implies statement 2.:

- Suppose that S_1 is more informative that S_2 , that is, there exists a column-stochastic matrix R such that $\pi_2(\cdot \mid \vartheta) = R\pi_1(\cdot \mid \vartheta)$.
- The transformation $E_{kj} = \frac{R_{kj}P(S_1=s_1^j)}{P(S_2=s_1^k)}$ from the previous slide yields

$$\begin{split} \sum_{j=1}^{|S_1|} E_{kj} \, \nu_1(\vartheta \, | \, s_1^j) &= \sum_{j=1}^{|S_1|} \frac{R_{kj} \, \pi_1(s_1^j \, | \, \vartheta) \mu(\vartheta)}{P(S_2 = s_2^k)} \\ &= \frac{\pi_2(s_2^k \, | \, \vartheta) \mu(\vartheta)}{P(S_2 = s_2^k)} = \nu_1(\vartheta \, | \, s_2^k). \end{split}$$

Moreover, column-stochasticity of R implies that

$$\sum_{k=1}^{|S_2|} E_{kj} P(S_2 = s_2^k) = P(S_1 = s_1^j).$$

Decision problem:

- Suppose a single decision-maker must choose an action based on the outcome of an experiment S, that is, choose a decision rule $\sigma: \mathcal{S} \to \mathcal{A}$.
- Let $u(a, \vartheta)$ denote the utility of action $a \in \mathcal{A}$ in state ϑ and denote by $u(a) := (u(a, \vartheta_1), \dots, u(a, \vartheta_n))$ the vector of state-contingent payoffs.
- For decision rule σ , let $u(\sigma, \vartheta) = \mathbb{E}[u(\sigma(S), \vartheta) | \theta = \vartheta]$ denote the conditional expected value. Define the risk vector as

$$u(\sigma) := (u(\sigma, \vartheta_1), \ldots, u(\sigma, \vartheta_n)).$$

- Agents with different risk preferences value $u(\sigma)$ differently.
- Let $\mathcal{U}(S) := \{u(\sigma) \mid \sigma : S \to A\}$ denote the set of all feasible risk vectors when the agent observes experiment S.

Informativeness of Experiments

Theorem 10.6 (Blackwell, 1953)

Suppose that Θ is finite and that u(A) is compact and convex. For two experiments S_1 , S_2 , the following two statements are equivalent:

- 1. $\mathcal{U}(S_1) \supseteq \mathcal{U}(S_2)$.
- 2. S_1 is more informative than S_2 .

Interpretation:

- A single decision maker can attain a larger set of outcomes if and only if he is better informed.
- Consequently, the optimal decision rule under $\mathcal{U}(S_1)$ must be at least as good as under $\mathcal{U}(S_2)$ for any utility function the agent may have.
- Information is always valuable.

Summary

Experiments:

- Experiments allow us to gain additional information about the state.
- Additional information is always valuable.
- The distribution of posteriors after an experiment is a mean-preserving spread of the distribution of priors.

Importance for information design:

- Information designer provides information to the players through an appropriately chosen "experiment."
- Rationality of the players restricts the information designer to induce distributions over posteriors that are mean-preserving spreads of prior.

Second-Order Stochastic Dominance

Definition 10.7

Let X and Y be real-valued random variables with distribution functions F_X and F_Y , respectively. X second-order stochastically dominates Y if

$$\int_{-\infty}^{x} F_{Y}(t) dt \ge \int_{-\infty}^{x} F_{X}(t) dt$$

for all x with strict inequality at some x.

Relation to MPS:

- F_Y is a mean-preserving spread of F_X if and only if $\mathbb{E}[X] = \mathbb{E}[Y]$ and X second-order stochastically dominates Y.
- This is very helpful if Θ consists of two states because $\Delta(\Theta) \simeq [0,1]$, hence $\psi \in \Delta(\Delta(\Theta))$ is described by a distribution function on [0,1].

Check Your Understanding

True or false:

Informativeness of Experiments

- 1. The above distributions of posteriors are meanpreserving spreads of the distribution of priors.
- 2. Suppose $|\Theta|=2$ and $\mu=\delta_p$. The design of an experiment with 3 possible outcomes has 3 degrees of freedom.
- 3. If the distribution of posteriors has a higher mean than the prior, the distribution of posteriors is preferred by agents with any utility function.

Short-answer question:

4. Suppose a player has prior beliefs described by distribution function F. What is the most informative Bayes-plausible distribution of posteriors?

Literature

Informativeness of Experiments

D. Blackwell: Equivalent Comparisons of Experiments, Annals of Mathematical Statistics, 24 (1953), 265-272

Bayesian Persuasion

Bayesian Persuasion

Model:

- There are 2 players, called sender and receiver, who share a common prior $\mu \in \Delta(\Theta)$ about a state of nature $\vartheta \in \Theta$.
- The receiver takes an action $a \in \mathcal{A}$ that determines the payoffs $v(a, \vartheta)$ and $u(a, \vartheta)$ of the sender and receiver, respectively.

Persuasion:

- Sender designs an experiment S with conditional distribution $\pi(s \mid \vartheta)$.
- After observing the signal $s \in S$:
 - Both players update their beliefs via Bayes' rule to posterior $\nu(s)$.
 - The receiver takes an action a that maximizes $\mathbb{E}_{\nu(s)}[u(a,\theta)]$.
- Equilibrium selection: if multiple actions maximize the receiver's utility, we select the sender-preferred action $\widehat{a}(\nu)$ among them.

Relation to Single-Agent Decision Problems

Receiver's problem:

- The receiver precisely faces a single-agent decision problem.
- By Blackwell's theorem, any information is beneficial to the receiver.

Sender's problem:

- The sender designs the receiver's information environment.
- Can the sender benefit from persuasion even if the receiver is perfectly rational and is aware with what intent the signal was created?

Bayesian persuasion vs. information design:

- An information design problem is considered to be Bayesian persuasion if the designer (sender) is one of the players.
- Typically in Bayesian persuasion models there is only one receiver.

Sender's information:

- The sender may not know θ but decides how θ is investigated.
- The sender may learn θ but can credibly commit to an information revelation policy before learning θ .

Bayesian persuasion vs. cheap talk:

- Signals in cheap talk models are free and non-verifiable.
- Signals in Bayesian persuasion models are free and verifiable.
- One can view Bayesian persuasion also as cheap talk, in which the sender can commit to an information policy before learning the state.

Persuasion of a Judge

	$\vartheta_{\it G}$	ϑ_I
С	1,1	1,0
Α	0,0	0, 1

Trial in court:

- A defendant stands in court for trial. The states are $\Theta = \{\vartheta_G, \vartheta_I\}$, indicating whether the defendant is guilty or innocent.
- Suppose the common prior μ is that 30% of defendants are guilty.
- The judge wants to choose the just action: (C)onvict if the defendant is guilty and (A)cquit otherwise.
- The prosecutor wants to convince the judge to convict the defendant.

Persuasion of a Judge

	$\vartheta_{\it G}$	ϑ_I
С	1,1	1,0
A	0,0	0, 1

Choosing an experiment:

- The prosecutor's investigation is an experiment that results in evidence more frequently if the defendant is guilty.
- While the prosecutor can be selective about what to investigate, he/she is bound by law to reveal exculpatory evidence.
- Examples: the prosecutor can choose to look for forensic evidence at the crime scene or summon eye witnesses or expert witnesses.

Perfectly revealing investigation:

This is good for the judge and leads to a 30% conviction rate.

Completely uninformative investigation:

 The judge has not enough evidence to convict anybody and acquits every defendant. This is the worst-possible outcome for the prosecutor.

Optimal signal:

• Sender chooses signal distribution $\pi(s \mid \theta)$ that maximizes

$$\mathbb{E}_{\mu}[v(\widehat{a}(\nu(S)),\theta)],$$

where \hat{a} is the sender-preferred best response of the receiver.

• What should the signal space S be?

Proposition 10.8

Suppose that $\widehat{a}: \Delta(\Theta) \to \mathcal{A}$ is the equilibrium response to signal S. Then there exists an action recommendation S' with $S' \subseteq A$ such that the equilibrium response a_* to S' satisfies $a_*(\nu(s')) = s'$ and $a_*(\nu) = \widehat{a}(\nu)$.

Pooling signals:

- Let $S_a := \{ s \in S \mid \widehat{a}(\nu(s)) = a \}$ the signals, after which a is played.
- Pool signals in S_a and call the pooled signal a, that is, define signal S' with $S' \subseteq A$ via conditional distribution

$$\pi'(a \mid \vartheta) = \sum_{s \in \mathcal{S}_s} \pi(s \mid \vartheta),$$

where $\pi(s \mid \vartheta)$ is the conditional distribution of S.

Proof of Proposition 10.8

Posterior beliefs:

• Posterior beliefs after observing s' = a are

$$\nu(\vartheta \mid a) = \frac{\pi'(a \mid \vartheta)\mu(\vartheta)}{P(S' = a)} = \sum_{s \in \mathcal{S}_a} \frac{\pi(s \mid \vartheta)\mu(\vartheta)}{P(S \in \mathcal{S}_a)} = \sum_{s \in \mathcal{S}_a} \nu(\vartheta \mid s) \frac{P(S = s)}{P(S \in \mathcal{S}_a)}.$$

Obedience:

• By linearity of the expectation, for any $a' \in \mathcal{A}$, we obtain

$$\begin{split} \mathbb{E}_{\nu(a)}[u(a,\theta)] &= \sum_{s \in \mathcal{S}_a} \mathbb{E}_{\nu(s)}[u(a,\theta)] P(S=s \,|\, S \in \mathcal{S}_a) \\ &\geq \sum_{s \in \mathcal{S}_a} \mathbb{E}_{\nu(s)} \big[u(a',\theta) \big] P(S=s \,|\, S \in \mathcal{S}_a) = \mathbb{E}_{\nu(a)} \big[u(a',\theta) \big]. \end{split}$$

• Moreover, a must be the sender-preferred maximizer otherwise it would not be the sender-preferred action for one signal $s \in S_a$.

What Distributions Can the Sender Induce?

Simplifying the maximization problem:

- Sender can send an action recommendation without loss of generality.
- The distribution of posteriors is Bayes plausible for any signal.
- Is the converse true: can any Bayes-plausible distribution of posteriors be induced by some action recommendation?

Bayes plausibility:

- Suppose that ν is the common posterior after observing the signal.
- The interim expected utility of the sender is $\widehat{v}(\nu) := \mathbb{E}_{\nu} [v(\widehat{a}(\nu), \theta)].$
- The ex-ante expected utility under Bayes-plausible ψ is thus $\mathbb{E}_{\psi}[\widehat{v}(\nu)]$.

Any Bayes-Plausible Distribution Is Attainable

Lemma 10.9

The following statements are equivalent:

- 1. There exists a signal S with expected value $v_* = \mathbb{E}_{u}[v(\widehat{a}(\nu(s)), \theta)].$
- 2. There exists a Bayes-plausible distribution ψ with $v_* = \mathbb{E}_{\psi}[\widehat{v}(\nu)]$.

Importance:

- We already know $1. \Rightarrow 2.$, hence $2. \Rightarrow 1$ is the important direction.
- Instead of finding the optimal signal, the sender can instead solve:

$$\max_{\psi \in \Delta(\Delta(\Theta)) : \mathbb{E}_{\psi}[\nu] = \mu} \mathbb{E}_{\psi}[\widehat{v}(\nu)].$$

Since the signal matters only insofar as it affects the posteriors, this eliminates one level of indirection.

Proof of Lemma 10.9

Step 1, finite support:

- Suppose there exists Bayes-plausible ψ with $v_* = \mathbb{E}_{\psi}[\hat{v}(\nu)]$.
- Show that there exists a Bayes-plausible distribution ψ_* with expected value v_* that is finitely supported, i.e., supp $\psi_* = \{\nu_1, \dots, \nu_m\}$ with

$$\mathbb{E}_{\psi_*}[\widehat{\nu}(\nu)] = \sum_{k=1}^m \psi(\nu_k)\widehat{\nu}(\nu_k) = \nu_*.$$

• The is achieved by applying Caratheodory's theorem.

Theorem 10.10 (Caratheodory's Theorem)

For any set $\mathcal{X} \subseteq \mathbb{R}^d$ and any $x \in conv \mathcal{X}$, there exist x_1, \ldots, x_{d+1} in \mathcal{X} and $\lambda_1, \ldots, \lambda_{d+1}$ in [0,1] with $\sum_{i=1}^{d+1} \lambda_i = 1$ such that $x = \sum_{i=1}^{d+1} \lambda_i x_i$.

Step 1, finite support:

- Since Θ is finite, the space $\Delta(\Theta)$ corresponds to $[0,1]^{|\Theta|-1}$. The graph $\Gamma(\widehat{v}) := \{(\nu, \widehat{v}(\nu)) \mid \nu \in \Delta(\Theta)\} \text{ of } \widehat{v} \text{ is thus a subset of } \mathbb{R}^{|\Theta|}.$
- Bayes-plausibility implies that $(\mu, \nu_*) = \mathbb{E}_{\psi}[(\nu, \widehat{\nu}(\nu))]$, which must lie in conv $\Gamma(\hat{v})$ because the expectation is a contraction.
- By Theorem 10.10, there exists ψ_* with supp $\psi_* = \{\nu_1, \dots, \nu_{|\Theta|}\}$ and

$$\mu = \sum_{k=1}^{|\Theta|} \psi(\nu_k) \nu_k, \qquad \nu_* = \sum_{k=1}^{|\Theta|} \psi(\nu_k) \widehat{\nu}(\nu_k).$$

• We conclude that ψ_* is Bayes-plausible attaining v_* .

Step 2, construct a suitable signal:

- Choose a signal with values in $S = \{s_1, \dots, s_{|\Theta|}\}$ such that $\nu(s_k) = \nu_k$.
- We can attain this by setting

$$\pi(s_k \mid \vartheta) = \frac{\nu_k(\vartheta)\psi_*(\nu_k)}{\mu(\vartheta)}.$$

We verify that this indeed induces the right posteriors:

$$\nu(\vartheta \,|\, \mathsf{s}_k) = \frac{\pi(\mathsf{s}_k \,|\, \vartheta)\mu(\vartheta)}{\sum_{\vartheta'} \pi(\mathsf{s}_k \,|\, \vartheta')\mu(\vartheta')} = \frac{\nu_k(\vartheta)\psi_*(\nu_k)}{\sum_{\vartheta'} \nu_k(\vartheta')\psi_*(\nu_k)} = \nu_k(\vartheta).$$

This concludes the proof of Lemma 10.9.

Visualization of Proof

Visualization:

- For any prior $\mu \in \Delta(\Theta)$ and any Bayes-plausible distribution of posteriors ψ , the pair $(\mu, \mathbb{E}_{\psi}[\widehat{v}(\nu)])$ lies in the convex hull of $\Gamma(\widehat{v})$.
- Conversely, any $(\mu, \nu_*) \in \Gamma(\widehat{\nu})$ can be attained through persuasion.
- For fixed μ , persuasion leads to expected payoff $\widehat{v}(\mu)$.
- It is optimal for the sender to attain $V(\mu) = \sup\{v_* \mid (\mu, v_*) \in \Gamma(\widehat{v})\}.$

Theorem 10.11

Let $\widehat{a}(\nu)$ denote the equilibrium response and let $V(\nu)$ be the concavification of $\widehat{v}(\nu) = \mathbb{E}_{\nu}[v(\widehat{a}(\nu), \theta)]$. For prior any $\mu \in \Delta(\Theta)$:

- 1. Optimal persuasion yields an expected payoff of $V(\mu)$ to the sender.
- 2. The sender strictly benefits from persuasion if and only if $V(\mu) > \hat{v}(\mu)$.
- 3. The optimal distribution of posteriors ψ is supported on a finite subset $\{\nu_1, \ldots, \nu_{|\Theta|}\}\$ of $\{\nu \mid V(\nu) = \widehat{v}(\nu)\}.$
- **4**. The optimal signal is supported on $\{s_1, \ldots, s_{|\Theta|}\}$ with distribution

$$\pi(s_k \mid \vartheta) = \frac{\nu_k(\vartheta)\psi_*(\nu_k)}{\mu(\vartheta)}.$$

Persuasion of a Judge

Induced posteriors:

- The judge's equilibrium response is $\widehat{a}(\nu) = C1_{\{\nu>0.5\}} + A1_{\{\nu<0.5\}}$.
- The prosecutor's interim expected payoff is $\widehat{v}(\nu) = 1_{\{\nu > 0.5\}}$.
- The prosecutor strictly benefits from persuasion if $\mu \in (0, 0.5)$.
- The optimal distribution of posteriors is supported on $\{\nu_A, \nu_C\}$ with

$$\nu_A(\vartheta_G) = 0, \qquad \nu_C(\vartheta_G) = 0.5.$$

Persuasion of a Judge

	$\vartheta_{\it G}$	ϑ_I		
s _C	1	<u>3</u>		
s_A	0	<u>4</u> 7		

Optimal investigation:

- Bayes-plausibility implies $\psi(\nu_C)\nu_C(\vartheta_G) = \mu(\vartheta_G)$, hence $\psi(\nu_G) = 0.6$.
- The optimal signal takes values $\{s_A, s_C\}$ with distribution

$$\pi(s_A \mid \vartheta_I) = \frac{1 \cdot 0.4}{0.7} = \frac{4}{7}, \qquad \pi(s_C \mid \vartheta_G) = \frac{0.5 \cdot 0.6}{0.3} = 1.$$

The optimal investigation obfuscates the truth in state ϑ_I by pooling it with ϑ_G as much as it is allowed by Bayes plausibility.

Lobbying

	$\vartheta_{\it G}$	ϑ_B	
Р	−2 , 1	-2, -2	
R	1, -2	1,1	
Α	0,0	0,0	

Persuading a politician:

- A benevolent Politician is voting on a bill, whose net effect is either positive ϑ_G or negative ϑ_B with prior $\mu = P(\theta = \vartheta_G) = 0.6$.
- The Politician can (P)ass or (R)eject the bill or he/she can (A)bstain.
- Voting incorrectly is more hurtful than it is beneficial to vote correctly because politicians are afraid to be "on the wrong side of history."
- Suppose you represent an Interest Group who would like to see the bill rejected and you corroborate your lobbying efforts with a study.

Interest group aims to persuade a politician:

- Tobacco industry funds studies about the health effects of smoking.
- Pharmaceutical companies perform clinical trials to prove the effectiveness of their medication.

Concavification Approach

Finitely many states:

- Gives us extremely quick solutions to two-state persuasion problems.
- It is still useful with three states since $\Gamma(\hat{v})$ can still be visualized.
- For more states, the concavification approach is difficult to apply.

Infinitely many states:

- Suppose that $\Omega = [0,1]$ and that the sender's payoff depends only on the mean of the receiver's posterior, i.e., $\widehat{a}(\mu) = f(\mathbb{E}_{\mu}[\theta])$ for some f.
- This problem is similar to the case $|\Theta|=2$ via the transformation $\widehat{\mu}:=\mathbb{E}_{\mu}[\theta]$ and the concavification approach yields $V(\mu)$.
- While the optimal signal distribution cannot be deduced from it, we can see whether persuasion is necessary or not.

Lobbying With a Continuum of Policies

Benevolent politician:

- A benevolent Politician chooses a policy $a \in [0, 1]$.
- The optimal policy $\theta \in [0,1]$ is distribution according to $\mu \in \Delta([0,1])$.
- The Politician's utility is $u(\vartheta, a) = -(a \vartheta)^2$, that is, he/she aims to minimize the quadratic distance $\mathbb{E}_{\mu}[(a \theta)^2]$ of the true policy.

Interest group:

- The Interest Group has a preferred policy $a_* = \lambda \vartheta + (1 \lambda)\vartheta_*$, which depends on ϑ , but is biased towards ϑ_* .
- The utility function of the Interest Group is $u(a, \vartheta) = -(a a_*)^2$.
- What is the optimal study, the Interest Group should commission?

Check Your Understanding

Finding the optimal signal:

In which order do you carry out the following steps?

- 1. Find the receiver's best response.
- 2. Find the optimal signal distribution.
- 3. Concavify the sender's payoff function.
- 4. Find the sender's interim expected payoff function.
- 5. Determine the support of the distribution of posteriors.

True or false:

- 6. We cannot use Bayesian persuasion if the state is known to the sender.
- 7. Designing state propaganda is a problem of Bayesian persuasion.
- 8. Creating a Tinder profile is a problem of Bayesian persuasion.

Literature

R. Aumann and M.B. Maschler: Repeated Games with Incomplete Information, Chapter 6, MIT Press, 1995

E. Kamenica and M. Gentzkow: Bayesian Persuasion, American Economic Review, 101 (2011), 2590–2615

E. Kamenica: Bayesian Persuasion and Information Design, Annual Review of Economics, 11 (2019), 249-272

Information Design

Decomposition of Bayesian Games

Bayesian game:

• Consider a Bayesian game $\mathcal{G} = (\mathcal{I}, \Theta, \mathcal{T}, P, \mathcal{A}, u)$ over a finite set Θ of states of nature with a common prior P over $\Theta \times \mathcal{T}$.

Information Design

• Recall that $\vartheta \in \Theta$ are the payoff-relevant states and the type spaces \mathcal{T}_i capture the players' belief hierarchies over Θ .

Decomposition:

- A Bayesian game \mathcal{G} can be decomposed into:
 - the basic game $\mathcal{G}_0 = (\mathcal{I}, \Theta, \mu, \mathcal{A}, u)$ describes the game's mechanics as a function of state θ , where $\mu \in \Delta(\Theta)$ is the marginal of P.
 - the information structure $\mathcal{J} = (\mathcal{T}, \pi)$ describes the players' information / belief hierarchies about θ , where $\pi(\tau \mid \vartheta) = P(\tau \mid \vartheta)$.

Note: an information structure (\mathcal{T}, π) is a set of correlated experiments T_1, \ldots, T_n whose signals are the players' types.

Mechanism Design vs. Information Design

Mechanism design vs. information design:

• Mechanism design: given an information structure \mathcal{J} , what is the optimal basic game \mathcal{G}_0 that the mechanism designer can choose?

Information Design

• Information design: given a basic game \mathcal{G}_0 , what is the optimal information structure \mathcal{J} that the information designer can choose?

Providing information:

- Bayesian persuasion: the receiver is typically uninformed, hence the sender can induce any Bayes-plausible distribution of posteriors.
- If the receiver starts with some non-trivial initial information, the information designer can induce any mean-preserving spread.
- Multi-player information design with non-trivial initial information: we need to define a multi-player analogue to mean-preserving spreads.

Definition 10.12

1. An information structure (\mathcal{T}^*, π^*) is a combination of (\mathcal{T}^1, π^1) and (\mathcal{T}^2, π^2) if $\mathcal{T}_i^* = \mathcal{T}_i^1 \times \mathcal{T}_i^2$ and marg $_{\mathcal{T}^i} \pi^* = \pi^i$ for i = 1, 2, that is,

$$\pi^{i}(\tau_{i} \mid \vartheta) = \sum_{\tau_{-i} \in \mathcal{T}_{-i}} \pi^{*}(\tau_{i}, \tau_{-i} \mid \vartheta).$$

2. An information structure \mathcal{J}^* is an expansion of \mathcal{J}^1 if it is a combination of \mathcal{J}^1 and some other information structure \mathcal{J}^2 .

Omniscient information designer:

- Note that T^1 and T^2 may be correlated under π^* .
- Information designer can design experiments that depend not only on the underlying state, but also on the information players already have.

Definition 10.13

Information structure (\mathcal{T}^1, π^1) is individually sufficient for information structure (\mathcal{T}^2, π^2) if there exists a combination (\mathcal{T}^*, π^*) such that

$$\mathsf{marg}_{\mathcal{T}^1 \times \mathcal{T}_i^2} \pi^* (\tau_i^2 \mid \tau^1, \vartheta) = \frac{\sum_{\tau_{-i}^2} \pi^* (\tau^1, \tau_i^2, \tau_{-i}^2 \mid \vartheta)}{\sum_{\widetilde{\tau}_i^2 \tau_{-i}^2} \pi^* (\tau^1, \widetilde{\tau}_i^2, \tau_{-i}^2 \mid \vartheta)}$$

is independent of τ_{-i}^1 and ϑ for every player i.

Interpretation:

- Independence means that neither does T_i^2 provide any new information about T_{-i}^1 , nor does it provide new information about θ , given T_i^1 .
- Similarly to the single-player case, one can show that \mathcal{J}^1 is individually sufficient for \mathcal{J}^2 if and only if \mathcal{J}^1 is an expansion of \mathcal{J}^2 ,

Relation to Single-Player Case

Blackwell informativeness:

• If the conditional distribution of T_i^2 given T_i^1 is independent of θ , we can write it as a column-stochastic matrix R with:

Information Design

$$\pi^2(\,\cdot\,|\,\vartheta)=R\pi^1(\,\cdot\,|\,\vartheta).$$

Thus, R is the garbling matrix in Definition 10.4.

Mean-preserving spread:

- Each type τ_i is the posterior belief in $\Delta(\Theta)$ after one specific signal.
- Information structure (\mathcal{T}^*, π^*) is an expansion of (\mathcal{T}^1, π^1) if it is the combination of (\mathcal{T}^1, π^1) and some (\mathcal{T}^2, π^2) .
- Information structure (\mathcal{T}^2, π^2) is the map $\varepsilon | \mathcal{T}^1 = \tau^1$ that spreads each posterior τ^1 as visualized on Slide 9.

Bayes-Correlated Equilibrium

Definition 10.14

1. A decision rule $\rho: \Theta \times \mathcal{T} \to \Delta(\mathcal{A})$ is a distribution of action recommendations, which may be the result of an experiment on (θ, τ) .

Information Design

2. A decision rule ρ is a Bayes-correlated equilibrium of $(\mathcal{G}_0, (\mathcal{T}, \pi))$ if for every player i, every type $\tau_i \in \mathcal{T}_i$, and every deviation $a_i \in \mathcal{A}_i$,

$$\mathbb{E}_{\rho,\tau_i}[u_i(R,\theta)|R_i=r_i] \geq \mathbb{E}_{\rho,\tau_i}[u_i(a_i,R_{-i},\theta)|R_i=r_i],$$

where R is a random variable with conditional distribution $\rho(T,\theta)$ and

$$P_{\rho,\tau_i}(R_{-i}=r_{-i},\theta=\vartheta\,|\,R_i=r_i)=\frac{\sum_{\tau_{-i}}\rho(r_i,r_{-i}\,|\,\tau,\vartheta)\pi(\tau\,|\,\vartheta)\mu(\vartheta)}{\sum_{\tau_{-i},r_{-i}',\vartheta'}\rho(r_i,r_{-i}'\,|\,\tau,\vartheta')\pi(\tau\,|\,\vartheta)\mu(\vartheta)}.$$

 Players are aware of the conditional distribution of action recommendations R and obedience is incentive compatible, given r_i .

Theorem

Theorem 10.15

A decision rule ρ is a Bayes-correlated equilibrium of $(\mathcal{G}, \mathcal{J})$ if and only if there exist an expansion \mathcal{J}_* of \mathcal{J} and a Bayesian Nash equilibrium σ in $(\mathcal{G}, \mathcal{J}_*)$ such that ρ is the ex-ante distribution over outcomes induced by σ .

Implication:

- Any obedient decision rule can be implemented by:
 - Providing additional information to the players.
 - The players choosing a BNE of the information-designer's choice.¹
- If the information designer has an objective function $v: \Theta \times \mathcal{A} \to \mathbb{R}$, the goal is to maximize $\mathbb{E}_{\rho}[v(R,\theta)]$ over all Bayes-correlated equilibria.

¹This is identical to restricting attention to sender-preferred equilibria in problems of Bayesian persuasion.

Two-step approach:

- In a first step, we characterize the set of all incentive-compatible mechanisms / obedient decision rules.
- In a second step, we maximize the designer's objective function.
- This approach is also feasible in situations where concavification is difficult to apply because $\mathbb{E}_{\rho}[v(R,\theta)]$ is linear in ρ .

Partial implementation:

- The players choosing the information designer's preferred BNE is similar to partial implementation in mechanism design.
- More recent literature has analyzed adversarial implementation, where players choose the information designer's least-preferred BNE.

Proof of Theorem 10.15: Sufficiency

Finding an suitable expansion:

- Fix a Bayes-correlated equilibrium ρ in an information structure (\mathcal{T}, π) .
- Let (\mathcal{T}^*, π^*) be a combination of (\mathcal{T}, π) and (\mathcal{A}, π') such that

$$\pi^*(\tau, r \mid \vartheta) = \rho(r \mid \tau, \vartheta)\pi(\tau \mid \vartheta).$$

• By definition (\mathcal{T}^*, π^*) is an expansion of (\mathcal{T}, π) .

Verifying Bayesian Nash equilibrium:

- Define the obedient strategy profile σ by setting $\sigma_i(\tau_i, r_i; a_i) = 1_{\{a_i = r_i\}}$.
- Obedience of ρ implies that σ is a BNE.

Proof of Theorem 10.15: Necessity

Finding a suitable decision rule:

- Fix a BNE σ in some expansion (\mathcal{T}^*, π^*) of (\mathcal{T}, π) , that is, (\mathcal{T}^*, π^*) is the combination of (\mathcal{T}, π) and some (\mathcal{T}', π') .
- Let ρ be the ex-ante distribution over outcomes induced by σ .
- The probability assigned to each elementary outcome (a, τ, ϑ) is

$$\rho(\mathbf{a} \mid \tau, \vartheta)\pi(\tau \mid \vartheta)\mu(\vartheta) = \sum_{\tau' \in \mathcal{T}'} \sigma(\tau, \tau'; \mathbf{a})\pi^*(\tau, \tau' \mid \vartheta)\mu(\vartheta).$$

Verifying obedience:

• For any recommendation r_i and any action a_i ,

$$\begin{split} \mathbb{E}_{\rho,\tau_{i}}[u_{i}(a_{i},R_{-i},\theta) \mid R_{i} &= r_{i}] = \sum_{r_{-i},\tau_{-i},\vartheta} u_{i}(a_{i},r_{-i})\rho(r \mid \tau,\vartheta)\pi(\tau \mid \vartheta)\mu(\vartheta) \\ &= \sum_{r_{-i},\tau_{-i},\vartheta} u_{i}(a_{i},r_{-i}) \sum_{\tau' \in \mathcal{T}'} \sigma(\tau,\tau';r)\pi^{*}(\tau,\tau' \mid \vartheta)\mu(\vartheta) \\ &= \sum_{\tau'_{i} \in \mathcal{T}'_{i}} \sigma_{i}(\tau_{i},\tau'_{i};r_{i})\mathbb{E}_{\tau_{i},\tau'_{i},\sigma}[u_{i}(a_{i},A_{-i},\vartheta)] \end{split}$$

Information Design

• Since σ is a BNE for information structure (\mathcal{T}^*, π^*) , this expression is smaller than or equal to

$$\sum_{\tau_i' \in \mathcal{T}_i'} \sigma_i(\tau_i, \tau_i'; r_i) \mathbb{E}_{\tau_i, \tau_i', \sigma}[u_i(A, \vartheta)] = \mathbb{E}_{\rho, \tau_i}[u_i(R, \theta) | R_i = r_i].$$

Investment Game

Investment game:

- Investment yields a positive payoff $x \in (0,1)$ in the good state ϑ_G and a negative payoff of -1 in the bad state ϑ_B .
- Suppose that μ is uniform on $\Theta = \{\vartheta_G, \vartheta_B\}$ and that the government wants to maximize the probability of investment, i.e., $v(a, \vartheta) = 1_{\{a=l\}}$.
- Let us compare the one-player setting with and without prior information, as well as the one- vs. two-player setting.

Bayes-correlated equilibrium:

• A decision rule $\rho: \Theta \to \Delta(A)$ is a stochastic, state-contingent recommendation of investment. Denote $p_k = \rho(\vartheta_k; I)$.

Information Design

After seeing the recommendation to invest, the investor's posterior is

$$\nu(h_I) = \frac{\frac{1}{2}p_G}{\frac{1}{2}(p_G + p_B)}.$$

- The obedience constraint is thus $x\nu(h_I) (1 \nu(h_I)) \ge 0$.
- After seeing the recommendation not to invest, the posterior is

$$\nu(h_N) = \frac{\frac{1}{2}(1 - p_G)}{\frac{1}{2}(2 - p_G - p_B)}.$$

• The obedience constraint is thus $x\nu(h_N) - (1 - \nu(h_N)) \le 0$.

	$\vartheta_{\it G}$	ϑ_B	
1	$\frac{1}{2}$	$\frac{1}{2}X$	
Ν	0	$\frac{1}{2}(1-x)$	

Information Design

Ex-ante distribution $\rho(a \mid \vartheta)\mu(\vartheta)$ of optimal BCE

Maximizing objective:

• We maximize $V(p_G, p_B) = \mathbb{E}_{\varrho}[v(A, \theta)] = \frac{1}{2}(p_G + p_B)$ subject to

$$p_G x \ge p_B$$
, $1 - p_B \ge (1 - p_G)x$.

Note that the first constraint implies the second constraint, hence the government's objective is maximized at $p_G = 1$ and $p_B = x$.

	$\vartheta_{\it G}$	ϑ_B	
$ au_{\sf g}$	q	1-q	
$ au_b$	1-q	q	

Prior signal $\pi(\tau \mid \vartheta)$

Prior information:

- The investor observes a prior signal about the state, which is correct with probability $q > \frac{1}{2}$. The types are $\mathcal{T} = \{\tau_g, \tau_b\}$.
- A decision rule $\rho: \Theta \times \mathcal{T} \to \Delta(\mathcal{A})$ is now a recommendation that may depend on the true state and the realization of the prior signal.
- We parametrize it with a quadruple $(p_{Gg}, p_{Gb}, p_{Bg}, p_{Bb})$.

Bayes-correlated equilibrium:

• After seeing the recommendation to invest, the investor's posterior is

$$\nu(\tau_g, h_I) = \frac{q p_{Gg}}{q p_{Gg} + (1 - q) p_{Bg}}, \quad \nu(\tau_b, h_I) = \frac{(1 - q) p_{Gb}}{q p_{Bb} + (1 - q) p_{Gb}}.$$

Obedience constraints now have to be satisfied for each type, that is,

$$qp_{Gg}x \geq (1-q)p_{Bg}, \qquad (1-q)p_{Gb}x \geq qp_{Bb}.$$

After seeing the recommendation not to invest, the posterior is

$$\nu(\tau_g, h_N) = \frac{q(1 - p_{Gg})}{q(1 - p_{Gg}) + (1 - q)(1 - p_{Bg})}.$$

The obedience constraint are, therefore, given by

$$q(1-p_{Gg})x \leq (1-q)(1-p_{Bg}), \quad (1-q)(1-p_{Gb})x \leq q(1-p_{Bb}).$$

BCE for q = 0.8 and x = 0.55

Maximizing objective:

• We maximize $V(p_G, p_B) = \mathbb{E}_{\varrho}[v(A, \theta)] = \frac{1}{2}(p_G + p_B)$ subject to

$$p_G x \geq p_B, \qquad p_G \geq q - \frac{1-q}{x},$$

where we denote $p_G = qp_{Gg} + (1-q)p_{Gb}$ and $p_B = (1-q)p_{Bg} + qp_{Bb}$.

• The obedience constraint for no-investment becomes binding for q sufficiently large that investment becomes the default action.

Impact of Additional Information

Definition 10.16

Let $BCE(\mathcal{G},\mathcal{J})$ denote the set of all Bayes-correlated equilibrium outcomes in $(\mathcal{G},\mathcal{J})$. We say that information structure \mathcal{J} is more incentive-constrained than \mathcal{J}' if $BCE(\mathcal{G},\mathcal{J})\subseteq BCE(\mathcal{G},\mathcal{J}')$ for every basic game \mathcal{G} .

Theorem 10.17

Information structure $\mathcal J$ is individually sufficient for $\mathcal J'$ if and only if $\mathcal J$ is more incentive-constrained than $\mathcal J'$.

Interpretation:

 More prior information of the players means that the information designer can choose among a smaller set of information structures.

	1	Ν	
I	$x+\varepsilon, x+\varepsilon$	x, 0	ϑ_G
N	0, x	0,0	UG
	1	Ν	
I	$\varepsilon\!-\!1, \varepsilon\!-\!1$	-1 , 0	ϑ_B
Ν	0, -1	0,0	υB

Two investors:

- Investors get an extra utility of ε if they both invest.
- A decision rule $\rho: \Theta \times \mathcal{T} \to \Delta(\mathcal{A})$ is now a recommendation that may depend on the true state and the realization of the prior signal.
- Without loss of generality, we can restrict attention to symmetric decision rules and parametrize it by (p_G, r_G, p_B, r_B) , where r_{ϑ} is the probability that both receive a recommendation to invest.

	1	N		1	Ν
I	r_G	$p_G - r_G$	1	r _B	$p_B - r_B$
N	p _G — r _G	$1+r_G-2p_G$	Ν	$p_B - r_B$	$1+r_B-2p_B$
ϑ_G				ϑ	В

Investment recommendations:

- If $\max(0, 2p_{\vartheta} 1) \le r_{\vartheta} \le p_{\vartheta}$, then ρ is indeed a distribution.
- Since not investing is the default action without prior information, the obedience constraint after an investment recommendation is binding:

$$-p_B+p_Gx+(r_B+r_G)\varepsilon\geq 0.$$
 (1)

 The government aims to find the Bayes-correlated equilibrium that maximizes $p_B + p_G$. From (1) we see that we must have $p_G = r_G = 1$.

Strategic complements:

- If $\varepsilon > 0$, then r_B relaxes the obedience constraint.
- It is optimal to set $r_B = p_B$ and solve (1) to obtain

$$p_B=r_B=\frac{x+\varepsilon}{1-\varepsilon}.$$

Strategic substitutes:

- If ε < 0, then r_B tightens the obedience constraint.
- It is optimal to set $r_B = 0$ and solve (1) to obtain

$$p_B = \max(x + \varepsilon, 0) =: (x + \varepsilon)^+.$$

	1	Ν		1	Ν		1	N
1	1	0	1	$\frac{x+\varepsilon}{1-\varepsilon}$	0	1	0	$(x+\varepsilon)^+$
Ν	0	0	Ν	0	$\frac{1-x-2\varepsilon}{1-\varepsilon}$	Ν	$(x+\varepsilon)^+$	$1-2(x+\varepsilon)^+$
θ_G		$\vartheta_B, \varepsilon > 0$		$\vartheta_B, \varepsilon < 0$				

Strategic complements:

- If $\varepsilon > 0$, the optimal information structure is a public.
- It is commonly known among firms that they observe the same signal.

Strategic substitutes:

- If ε < 0, the optimal information structure is a private.
- The correlation among signals is minimized (= maximally negative).

Literature

D. Blackwell: Equivalent Comparisons of Experiments, Annals of Mathematical Statistics, 24 (1953), 265-272

O. Gossner: Comparisons of Information Structures, Games and Economic Behavior, **30** (2000), 44-63

D. Bergemann and S. Morris: Robust Predictions in Games with Incomplete Information, Econometrica, 81 (2013), 1251-1308

D. Bergemann and S. Morris: Bayes Correlated Equilibrium and the Comparison of Information Structures in Games, Journal of Economic Theory, 11 (2016), 487-522

S. Morris, D. Oyama, and S. Takahashi: Implementation via Information Design in Binary-Action Supermodular Games, preprint

Student Presentations

Criteria

Main tasks:

- Introduce the concepts and results covered in the paper.
- Explain what this paper contributed relative to the existing literature and why their contribution matters.
- Illustrate the results with at least one example.

This is a class, not a seminar series:

- Use the same notation that we have used throughout the class.
- Relate the topic to the other materials we have discussed.

Additional criteria:

- Is the material presented clearly? Was background information needed?
- Are the examples interesting? Are the slides well organized/layouted?

Logistics

Logistics:

- The presentation is done in groups of two and will last an hour.
- Please also write a 2–4 page LaTEX summary of the paper and its relation to the rest of the class.
- The grade will be adjusted to the difficulty of the paper.

Preparation:

- Instead of meeting in class as usual, student groups will with me individually in week 16 to discuss their ideas on how to present the paper.
- You can do this before week 16 already if you have read the paper.