Wide Angle Scattering and Pair Distribution Functions

Dr Katharina Edkins
The University of Manchester
@k_edkins

Overview

- Diffraction
 - What are the effects of increasing disorder?
- Small vs wide angle scattering
- Pair distribution function
- Examples

Diffraction

$$n\lambda = 2d \sin(\theta)$$

Diffraction

$$n\lambda = 2d \sin(\theta)$$

Birkbeck College

The effect of temperature

The effect of dislocation

Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine. E.J. Chan, T.R. Welberry, D.J. Goossens, A.P. Heerdegen, A. Beasley, P.J. Chupas DOI:10.1107/S0108768109015857

Nanoscale structure

Wide vs small angle scattering

Wide Angle Scattering < 10⁻⁹ m

Small Angle Scattering > 10⁻⁹ m

Wide vs small angle scattering

$$q = \frac{4\pi \sin(\theta)}{\lambda}$$

Amorphous poly(phosphoamidate), data acquired with Cu K α radiation (λ = 1.54 Å)

Polym. Chem., 2016, 7, 5004–5010

$$g(r) = \frac{1}{\rho} \left(\sum_{i \neq 0} \delta(r - r_i) \right)$$

$$N - 1$$

Measurement in reciprocal space gives structure factor F(q)

$$F(q) = \sum_{i,j} (2 - \delta_{i,j}) c_i c_j b_i b_j S_{i,j}(q)$$

$$S_{i,j}(q) = 1 + \frac{1}{N} \left(\sum_{i \neq j} e^{-iq(r_i - r_j)} \right)$$

ntensity (a.u.) 20 Partial structure factor

F(q) and S(q) are related to respective g(r) by Fourier Transform

Indomethacin in polymer

V. Petkov, Y. Ren, S. Kabekkodu, D. Murphy, Phys. Chem. Chem. Phys., 2013, 15, 8544

Silver nanoparticles in zeolite

Structure solution from WAXS

Problem: fitting of too many parameters to one structure factor!

Wide-angle neutron scattering

WANS

$$F(q) = \sum_{i,j} (2 - \delta_{i,j}) c_i c_j b_i b_j S_{i,j}(q)$$

Water

i	j	c _i	c_j	<i>b_i,</i> fm	<i>b_j,</i> fm	$c_i c_j b_i b_j = w_{ij}$, fm
0	0	1/3	1/3	0.5804	0.5804	0.0374
0	Н	1/3	2/3	0.5804	-0.3741	-0.0482
Н	Н	2/3	2/3	-0.3741	-0.3741	0.0622

Heavy water

i	j	c _i	c_j	<i>b_i,</i> fm	<i>b_j,</i> fm	$c_i c_j b_i b_j = w_{ij}$, fm
0	0	1/3	1/3	0.5804	0.5804	0.0374
0	D	1/3	2/3	0.5804	0.6674	0.0861
D	D	2/3	2/3	0.6674	0.6674	0.1980

WANS

WANS

- Each isotopic mixture gives one structure factor
- Different correlations can be extracted from each structure factor

Generation of structural models

EPSR (empirical potential structure refinement)

Generation of structural models

Applications

Water

A. Soper, C.J. Benmore, Phys. Rev. Lett., 101, 065502

Antifreeze effect

Small peptides

Drug compounds

Ionic liquid/ salt melt

Imidazole-imidazole distance

Imidazole-chloride distance

C. Hardacre, J.D. Holbrey, S.E.J. McMath, D.T. Bowron, A.K. Soper, J. *Chem. Phys.*, 2003, **118**, 273

Heterogeneous catalysis

T.G.A. Youngs, H. Manyar, D.T. Bowron, L.F. Gladden, C. Hardacre, Chem. Sci., 2013, 4, 3484

Conclusion

- Wide angle scattering gives atomic resolution data
- Potential samples are
 - disordered crystalline materials
 - Nanomaterials
 - Solutions
 - Glasses
- Using WANS and WAXS in combination with Monte Carlo simulation can give a structural snap-shot of the disordered phase