Research Interests_

Computer Architecture, Non-Volatile Memory, Graph Analytics Accelerators

I have been interested in the hardware/software co-design of computing systems since my undergraduate study. I was first fascinated by the power of parallel computing (especially GPUs) and software-level optimizations; however, I then noticed that it is necessary to understand the hardware system to come up with a thorough solution. Therefore, I have been polishing my hardware design skills and designing my own chips (FPGAs and ASICs) since my master's study. Moreover, I set foot in the field of emerging memory and found that it is a promising candidate in the post-Moore's law era, so my master's thesis is about the performance modeling of a graph analytics accelerator based on non-volatile memory systems. Aside from these research topics, I have experience in some open-source RISC-V emulators and RV-based CNN accelerators.

Education

National Cheng Kung University (NCKU)

M.S. in Computer Science and Information Engineering, GPA: 4.3/4.3

Sep 2020 - Jun 2022

- Supervisor: Prof. Ing-Chao Lin
- Paper [1] published in ICCAD'22, Paper [2] published in TCAS-I
- Thesis: A Dual-Addressing Graph Processing Accelerator with Vertex Coalescing
- · Courses Taken: Computer Architecture, Deep Learning Integrated Circuit Design and Acceleration, Digital IC Design, Al-on-chip for Machine Learning and Inference, VLSI System Design, Computer Vision and Deep Learning

University of Hong Kong (HKU)

Hong Kong

B.E. in Computer Engineering, GPA: 3.08/4.3 (2nd honor upper division)

Sep 2014 - Jun 2018

- Supervisor: Prof. Cho-Li Wang
- Thesis: The performance optimization on TensorFlow framework on Mobile GPU devices using OpenCL

Research Experiences

Research Assistant, Institute of Information Science, Academia Sinica

Taipei

Graph processing on dual-addressing memory [ICCAD'22], Prof. Yuan-Hao Chang

Feb 2021 - Now

- Design a graph processing accelerator for dual-addressing memory (RCNVM).
- Propose two methods: Vertex-Merging (VM), and Aggressive-Vertex Merging (AVM). Both methods try to maximize cache block utilization and increase graph processing speed.
- · VM acquires speedup by merging vertices in a graph while AVM merge vertices more aggressively to achieve more speedup at the expense of tolerable resulting accuracy.

Research Assistant, Computer Architecture & IC Design Lab, NCKU

Tainan

CNN accelerator with CLIP-Q network quantization on FPGA [TCAS-I], Prof. Ing-Chao Lin

Sep 2020 - Jun 2022

- Design a hardware-software co-designed CNN accelerator based on the CLIP-Q network quantization algorithm.
- Implement the CLIP-Q algorithm from scratch and modify it such that it fits in resource-limited computing platform.
- Propose a hardward architecture that consists of 5 ×5 reconfigurable convolutional arrays.

Summer Intern, TCL Corporate Research (HK) Co., Ltd

Hona Kona

Assist researchers on Structure from Motion, SLAM algorithms

Summer 2016

Publications

- [1] W. Cheng, C.-F. Wu, Y.-H. Chang, and I.-C. Lin, "GraphRC: Accelerating Graph Processing on Dual-Addressing Memory with Vertex Merging," in Proc. of the 41st IEEE/ACM Int. Conf. on Comput.-Aided Des., San Diego CA, Oct. 2022, pp. 1–9. [Online]. Available: https://dl.acm.org/doi/10.1145/3508352.3549408
- [2] W. Cheng, I.-C. Lin, and Y.-Y. Shih, "An Efficient Implementation of Convolutional Neural Network With CLIP-Q Quantization on FPGA," IEEE Trans. Circuits Syst. I, vol. 69, no. 10, pp. 4093-4102. [Online]. Available: https: //ieeexplore.ieee.org/document/9849674/

Teachings.

Teaching Assist for a Short Course Taught by Prof. H. T. Kung, AI Accelerator with Good Performance 2022 Course (reserved for teachers and graduate students only) with 100+ students

Tainan

2021 Teaching Assist, Computer Organization Course (Undergraduate level) with 100+ students

2021 **Teaching Assist**, Deep Learning IC Design Course (Graduate level) Tainan

UPDATED ON DECEMBER 26, 2022

Honors & Awards

IEEE Tainan Section Best Master Thesis Award, Thesis title: A Dual-Addressing Graph Processing 2022

Accelerator with Vertex Coalescing

Tainan

2014-2018 HKU Foundation Scholarship for International Students, 240k HKD in total

2016-2017 Reaching Out Award scholarship from HKSAR gov., Sponsor my summer school study in UC Berkeley IEEE (Hong Kong) Final Year Project Merit Award, Project Title: The performance optimization on

Hong Kong Hong Kong

2018 TensorFlow framework on Mobile GPU devices using OpenCL Hong Kong

Projects

A complete SW/HW co-design system for mask detection SoC

Tainan

National Cheng Kung University

Sep 2021 - Dec 2021

- SoC consists of: pipelined RV32I core, I-cache/D-cache, AXI bus, DMA, DRAM/ROM controller, Interrupt manager, and CNN acceleration unit.
- Apply network compression and quantization on a mask detection NN model.
- Inference the compressed NN model on our SoC with HW acceleration.
- · SoC handles the booting sequence, data movements, the control of acceleration unit, and system interrupts.
- Github: https://github.com/WeiCheng14159/VSD_CNN_accelerator

Contribute to ria-jit (an open source RISC-V to x86 binary translator)

Tainan

National Cheng Kung University

Sep 2020 - Dec 2020

• Expose and fix a divide by zero bug with RISC-V compliance tests.

Details: https://hackmd.io/@WeiCheng14159/BJuwQJy_s Contribute to srv32 (an open source 3-stage pipeline RV32IM core)

Tainan

National Cheng Kung University

Sep 2020 - Dec 2020

• Verify and contribute RV32C instructions to the existing implementation.

• Details: https://hackmd.io/@WeiCheng14159/ryh1iJ1_o

Other Experiences _

Taiwan Semiconductor Research Institute

Cell-based Digitial IC Tapeout

2021

Participate in the design, tapeout, and verification of an UMC 0.18 um process digital IC

University of Hong Kong

Hong Kong

Class representative for CE major students

2015 - 2016, 2017 - 2018

Skills

Programming Python, C++/C, Verilog/SystemVerilog

Al Frameworks PyTorch, TensorFlow

EDA tools NC Verilog, Design Compiler, IC Compiler/Innovus

Miscellaneous Linux, Shell, ET_EX, Markdown, Git

Other Skills Qi-gong (A Chinese system of physical exercises and breathing control)

Languages ____

Mandarian, Taiwanese Native

English GRE: 320 (\sim 2027), TOEFL: 104 (\sim 2024)

UPDATED ON DECEMBER 26, 2022