$\begin{array}{c} \text{Vorlesung 1} \\ \text{02.11.2020} \end{array}$

Ziele:

- 1. Maßtheorie \to Lebesgue-Maß (Volumen von Teilmengen des \mathbb{R}^n bestimmen)
- 2. Integral
rechnung für Funktionen $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ \to Lebesgue-Integrale (Satz von Fubini, ...)
- 3. Version des Hauptsatzes \rightarrow Satz von Gauß

Ι Maße und messbare Funktionen

Notation:

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Def. I.1

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Bem.:

1. $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$ Denn: $\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$

Denn:
$$\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$$

- 2. $\emptyset = X \setminus X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \implies A \setminus B \in \mathcal{A}$ Denn: $A \setminus B = A \cap (X \setminus B)$

Bsp.:

- 1. $\mathcal{P}(X)$ ist σ -Algebra, $\{\emptyset, X\}$ ist σ -Algebra
- 2. später: Menge aller messbaren Mengen eines äußeren Maßes bildet eine σ -Algebra.

Satz I.2

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Beweis. $(A_i)_{i\in I}$ sei eine Familie von σ -Algebren bezüglich X.

Offensichtlich gilt:
$$X \in \bigcap_{i \in I} \mathcal{A}_i$$

Sei $A \in \bigcap_{i \in I} \mathcal{A}_i \implies A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \bigcap_{i \in I} A_i$

Analog für die abzählbare Vereinigung.

Def. I.3

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Bem.:

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Bsp.:

- 1. Ist $E \subseteq X$ und $\mathcal{E} = \{E\} \implies \sigma(\mathcal{E}) = \{\emptyset, E, X \setminus E, X\}$
- 2. Sei (X, d) ein metrischer Raum. $\mathcal{O} \subseteq \mathcal{P}(X)$ sei das System der offenen Mengen. Die von \mathcal{O} erzeugte σ -Algebra heißt **Borel-\sigma-Algebra** $\mathbb{B}(\mathcal{O}) = \mathbb{B}$. Ihre Elemente heißen **Borelmengen**.
- 3. Seien $X \neq \emptyset$, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ eine Abbildung und das Urbild von $C \subseteq Y$: $f^{-1}(C) := \{x \in X | f(x) \in C\}$. Dann ist $f^{-1}(\mathcal{C}) := \{f^{-1}(C) | C \in \mathcal{C}\}$ eine σ -Algebra bzgl. X. Begründung:
 - $-X \in f^{-1}(\mathcal{C})$, denn $f^{-1}(Y) = X$ und $Y \in \mathcal{C}$
 - $f^{-1}(C) \in f^{-1}(\mathcal{C}) \iff C \in \mathcal{C},$ $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$
 - Erinnerung: $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- 4. Sei X eine beliebige Menge und $(E)_i \subseteq \mathcal{P}(X)$, $i \in I$, Mengensysteme, dann gilt: $\sigma(\bigcup_{i \in I} \mathcal{E}_i) = \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i))$ Begründung:
 - Klar: ⊆
 - Andererseits enthält $\sigma(\bigcup_{i \in I} \mathcal{E}_i)$ das System $\bigcup_{i \in I} \sigma(\mathcal{E}_i)$ und ist eine σ -Algebra $\Longrightarrow \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i)) \subseteq \sigma(\bigcup_{i \in I} \mathcal{E}_i)$

Notation:

 $\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\} \text{ mit } -\infty < a < +\infty, \ \forall a \in \mathbb{R}$

Def. I.4

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s = \infty$ und $\forall r \in \mathbb{R} : s_k \in (r, \infty]$ für k hinreichend groß
- (iii) $s = -\infty$ und $\forall r \in \mathbb{R} : s_k \in [-\infty, r)$ für k hinreichend groß
- $(s_k) \subseteq \mathbb{R}$ ist genau dann in \mathbb{R} konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm \infty$ divergiert.

Bsp.:

- $-s_k$ monoton $\implies s_k$ konvergiert in $\bar{\mathbb{R}}$
- $-a_k \ge 0 \implies \sum_{k \in \mathbb{N}} a_k \in \bar{\mathbb{R}}$
- Eine Menge $U \subseteq \mathbb{R}$ ist genau dann offen, wenn $U \cap \mathbb{R}$ offen ist und im Fall +∞ ∈ U (bzw. $-\infty \in U$) ein $a \in \mathbb{R}$ existiert, sodass $(a, \infty] \subseteq U$ (bzw. $[-\infty, a) \subset U$) ist.
- Die Borel- σ -Algebra $\bar{\mathbb{B}}$ auf $\bar{\mathbb{R}}$ wird durch die offenen Mengen in $\bar{\mathbb{R}}$ erzeugt. Es gilt: $\bar{\mathbb{B}} = \{B \cup E | B \in \mathbb{B}, E \subseteq \{-\infty, +\infty\}\}$

Notation:

 $\sup \emptyset := -\infty$, $\inf \emptyset := +\infty$ konsistent mit $A, B \subseteq \mathbb{R}$ gilt $A \subseteq B \implies \sup A < \sup B$ und $\inf A \ge \inf B$

Def. I.5

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu : \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}, i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad (\sigma\text{-Additivität})$

Das Tripel (X, \mathcal{A}, μ) heißt **Maßraum**.

Bem.:

1. Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

2. Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \le \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Def. I.6

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -endlich, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$.

Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Bsp.:

- 1. Sei X eine beliebige Menge, $\mathcal{A} = \mathcal{P}(X)$, für $x \in X$ sei $\delta_x(A) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ (Dirac-Maß)
 - Es gilt $\delta_x(A) \in \{0,1\}, \, \delta_x(\emptyset) = 0, \, \delta_x(X) = 1.$
 - Sei $A=\bigcup_{k\in\mathbb{N}}A_k$ gegeben mit A_k paarweiße disjunkt und $x\in A\implies x\in A_k$ für genau ein $k\in\mathbb{N}\implies \sigma$ -Additivität.
 - Für $x \notin A$ gilt sowieso $\delta_x A = 0$
 - ⇒ Das Dirac-Maß ist ein Wahrscheinlichkeits-Maß
- 2. **Zählmaß:** X beliebige Menge

Vorlesung 2

06.11.2020

$$card: \mathcal{P}(X) \to [0, \infty]$$

$$card(A) := \begin{cases} \text{Anzahl der Elemente von A,} & \text{falls A endlich} \\ \infty, sonst \end{cases}$$
Für $A = \bigcup_{i=1}^{n} A_i$ endlich und paarweiße disjunkt ist die σ_i A

Für $A = \bigcup_{k \in \mathbb{N}} A_k$ endlich und paarweiße disjunkt ist die σ -Additivität klar.

Sei A unendlich und $A = \bigcup_{k \in \mathbb{N}} A_k$.

- (a) nur endlich viele A_k nicht-trivial $\implies \exists k_0 : A_{k_0}$ ist unendlich
- (b) abzählbar viele A_k sind nicht-trivial \implies Behauptung
- ⇒ Behauptung

Zählmaß ist σ -endlich $\Leftrightarrow X$ ist abzählbar Zählmaß ist endlich $\Leftrightarrow X$ ist endlich

Bsp.:

X beliebige Menge, $A \subseteq \mathcal{P}(X)$ σ-Algebra, $\mu(A) = 0 \ \forall A \in \mathcal{A}$

Satz I.7 (Stetigkeitseigenschaften von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$
 folgt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) \le \sum_{i\in\mathbb{N}} \mu(A_i)$$

Bem.:

- 1. (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- 2. Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden.

Begründung:

$$\begin{aligned} A_k &= k, k+1, \ldots \subseteq \mathbb{N} \\ & card(A_k) = \infty \ \forall k \in \mathbb{N} \\ & \text{Aber: } card(\bigcap_{i \in \mathbb{N}} A_i) = card(\emptyset) = 0 \end{aligned}$$

Beweis.

(i)
$$\tilde{A}_1 := A_1, \ \tilde{A}_k := A_k \setminus A_{k-1}, \ k \ge 2$$
 $\tilde{A}_i \text{ sind paarweiße disjunkt.}$

$$\bigcup_{i \in \mathbb{N}} \tilde{A}_i = \bigcup_{i \in \mathbb{N}} A_i$$

$$\mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} \tilde{A}_i) = \sum_{i \in \mathbb{N}} \mu(\tilde{A}_i) = \lim_{k \to \infty} (\sum_{i=1}^k \mu(\tilde{A}_i)) = \lim_{k \to \infty} \mu(\bigcup_{i=1}^k A_k) = \lim_{k \to \infty} \mu(A_k)$$

(ii)
$$A'_k := A_1 \setminus A_k \implies A'_1 \subseteq A'_2 \subseteq \dots$$

Es gilt: $\mu(A_1) = \mu(A_1 \cap A_k) + \mu(A_1 \setminus A_k) = \mu(A_k) + \mu(A'_k)$
 $\implies \mu(A_1) - \lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(A'_k) \stackrel{(i)}{=} \mu(\bigcup_{k \in \mathbb{N}} A'_i) = \mu(A_1 \setminus \bigcap_{i \in \mathbb{N}})$
 $= \mu(A_1) - \mu(\bigcap_{i \in \mathbb{N}} A_i)$

(iii) Es genügt, die Folge $B_1 = A_1, \ B_i \stackrel{i \geq 2}{=} A_i \setminus \bigcup_{j=1}^{i-1} A_j$ zu betrachten. $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i \text{ und } (B_i) \text{ ist paarweiße disjunkt.}$ $\Longrightarrow \mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \mu(B_i) \leq \sum_{i \in \mathbb{N}} \mu(A_i)$

Def. I.8

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A \in \mathcal{A}$ mit $\mu(A) = 0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt vollständig, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0$ $\Longrightarrow N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.:

Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen:

Sei (X, \mathcal{A}, μ) Maßraum und \mathcal{T}_{μ} sei das System aller Mengen $N \subseteq X$ für die keine μ Nullmenge $B \in \mathcal{N}(\mu)$ existiert mit $N \subseteq B$. Es gilt:

$$\mu$$
 vollständig $\Leftrightarrow \mathcal{T}_{\mu} \subseteq \mathcal{A}$

Definiere auf $\bar{A}_{\mu} := \{A \cup N | A \in \mathcal{A}, N \in \mathcal{T}_{\mu}\}$ die Mengenfunktion $\bar{\mu}$ durch $\bar{\mu}(A \cup N) := \mu(A) \ \forall A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$

Bem.:

$$\bar{\mu}$$
 ist wohldefiniert: $A \cup N = B \cup P$ mit $A, B \in \mathcal{A}, P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0$: $P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \le \mu(B) + \mu(C) = \mu(B)$ Symm $\implies \mu(A) = \mu(B)$

 $\bar{\mu}$ heißt **Vervollständigung** von μ

Satz I.9

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Beweis. Offensichtlich:

- 1. $\mathcal{A} \subseteq \bar{\mathcal{A}}_{u}$
- 2. \mathcal{T}_{μ} ist abgeschlossen unter Abz. \bigcup

 \mathcal{A} ist auch abgeschlossen unter abzählbarer Vereinigung

 $\implies A_{\mu}$ abgeschlossen unter abzählbarer Vereinigung

Sei $x \in \bar{\mathcal{A}}_{\mu}$. Für $E \in \bar{\mathcal{A}}_{\mu}$ ex. ein $A \in \mathcal{A}$, $N \in \mathcal{T}_{\mu}$ und $B \in \mathcal{A}$ und $N \subseteq B$ mit $\mu(B) = 0$, sodass $E = A \cup N$

$$\implies B \setminus N \in \mathcal{T}_{\mu}$$

$$\implies X \setminus E = (X \setminus (A \cup B)) \cup (B \setminus N) \in \bar{\mathcal{A}}_{\mu}$$

 $\implies \mathcal{A}_{\mu}$ ist σ -Algebra

 $\bar{\mu}$ ist Maß (ist klar)

Sei $M \subseteq B = A \cup N$ mit $A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$ und $\bar{\mu}(B) = \mu(A) = 0$

Aus $M = (M \cap A) \cup (M \cap N) \in \mathcal{T}_{mu} \cup \mathcal{T}_{\mu} = \mathcal{T}_{\mu} \in \bar{\mathcal{A}}_{\mu}$

 $\implies \bar{\mu}$ ist vollständig.

Satz I.10

 (X, \mathcal{A}, μ) Maßraum und $(X, \bar{\mathcal{A}}_{\mu}, \bar{\mu})$ sei Vervollständigung. Ferner sei (X, \mathcal{B}, ν) ein vollständiger Maßraum mit $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$ und $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Beweis. Aus $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} folgt: $\mathcal{N}(\mu) \subseteq \mathcal{N}(\nu) \implies \mathcal{T}_{\mu} \subseteq \mathcal{T}_{\mu}$ vollständig $\implies \mathcal{T}_{\nu} \subseteq \mathcal{B} \implies \mathcal{T}_{\mu} \subseteq \mathcal{B} \implies \bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$

Da $\bar{\mu}$ auf $\bar{\mathcal{A}}_{\mu}$ vollständig durch μ auf \mathcal{A} bestimmt ist, folgt sofort $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$, da $\mu = \nu$ auf \mathcal{A} .

Def. I.11

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume. Eine Abbildung $f: X \to Y$ heißt $\mathcal{A} - \mathcal{C} - \mathbf{messbar}$, falls $f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Notation:

Falls \mathcal{A}, \mathcal{C} klar sind, bezeichnen wir f einfach als messbar.

Bsp.:

1. $(X, \mathcal{A}), (Y, \mathcal{C})$ beliebige messbare Räume. Sei $y_0 \in Y$ und $f: X \to Y, f(x) = y_0 \ \forall x \in X$ $\implies f \text{ ist } \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

2. $\chi_R: X \to \mathbb{R}, \chi_R(x) = \begin{cases} 1, \text{ falls } x \in E \subseteq X \\ 0, \text{ sonst} \end{cases}$

 \mathbb{R} wird versehen mit Borel- σ -Algebra \mathcal{B} . Für (X, \mathcal{A}) messbarer Raum gilt: $\chi_R \mathcal{A}$ - \mathcal{B} -messbar $\Leftrightarrow E \in \mathcal{A}$

3. Komposition messbarer Abbildungen ist messbar.

 $(X, \mathcal{A}), (Y, \mathcal{C}), (Z, \mathcal{D})$ messbare Räume.

 $f: X \to Y \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

 $g: Y \to Z$ C-D-messbar

 $\implies g \circ f: X \to Z \text{ ist } A\text{-}\mathcal{D}\text{-messbar, denn:}$

 $(g \circ f)^{-1}(\mathcal{D}) = f^{-1}(g^{-1}(\mathcal{D})) \subseteq f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Lemma I.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f : X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar.

Beweis. Es gilt: $f^{-1}(\mathcal{C}) = f^{-1}(\sigma(\mathcal{E})) \stackrel{s.Blatt1}{=} \sigma(f^{-1}(\mathcal{E})) \subseteq \sigma(\mathcal{A}) = \mathcal{A}$

Bsp.:

1. Jede stetige Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ ist \mathbb{B}^n - \mathbb{B}^n -messbar (man sagt: f ist **borel-messbar**). Denn $\mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\})$ und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)

2. Sei $X \neq \emptyset$ Menge, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ Abbildung. Nach Bsp. aus 1. Vorlesung ist $f^{-1}(\mathcal{C})$ σ -Algebra. Offensichtlich ist $f^{-1}(\mathcal{C}) \subseteq \mathcal{P}(X)$ die kleinste σ -Algebra und f messbar.

Notation:

Multiplikation und Division in $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$

$$s * (\pm \infty) = (\pm \infty) * s = \begin{cases} \pm \infty &, \text{ falls } s \in (0, \infty] \\ 0 &, \text{ falls } s = 0 \\ \mp \infty &, \text{ falls } s \in [-\infty, 0) \end{cases}$$

$$\frac{1}{t} = 0 \text{ für } t = \pm \infty$$

Def. I.13

 (X, \mathcal{A}) messbarer Raum und $D \in \mathcal{A}$.

Eine Funktion $f: D \to \overline{\mathbb{R}}$ heißt numerische Funktion.

Lemma I.14

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f: D \to \mathbb{R}$.

Dann sind folgende Aussagen äquivalent:

(i) f ist \mathcal{A} - \mathbb{B}^1 -messbar

(ii) $\forall \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$

(iii) $\{f \le s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(v) $\{f \ge s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

Beweis. \mathbb{B}^1 wird erzeugt durch die offenen Mengen und $\pm \infty \implies (i) \Leftrightarrow (ii)$

 $(iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Leftrightarrow (vi) denn:$

(iv)
$$\Longrightarrow$$
 (iii): $f \le s = \bigcap_{k \in \mathbb{N}} \{f < s + \frac{1}{k}\}$
(iii) \Longrightarrow (vi): $\{f > s\} = D \setminus \{f \le s\}$
(vi) \Longrightarrow (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$
(v) \Longrightarrow (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(iii)
$$\implies$$
 (vi): $\{f > s\} = D \setminus \{f \le s\}$

(vi)
$$\Longrightarrow$$
 (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$

(v)
$$\Longrightarrow$$
 (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(ii)
$$\implies$$
 (vi), denn: $\{f > s\} = f^{-1}(s, \infty) \cup f^{-1}(\{\infty\}) \in \mathcal{A}$

Für ein offenes Intervall (a,b) gilt: $f^{-1}((a,b)) = \{f > a\} \cap \{f < b\} \in \mathcal{A}$ Eine der Aussagen (und damit alle) (iii) - (vi) gelte.

Mann kann zeigen: Jede offene Menge $U \subseteq \mathbb{R}$ lässt sich als abzählbare Vereinigung $\mathcal{U} = \bigcup I_k$ von offenen Intervallen $I_k = (a_k, b_k)$ schreiben (siehe Blatt 2).

In (iii) - (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.: $\{f \ge s\} = \bigcap \{f > q\}$

> Vorlesung 3 09.11.20

Lemma I.15

Sei (X, \mathcal{A}) ein messbarer Raum, $D \in \mathcal{A}$ und $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar. Dann sind die Mengen $\{f < g\} := \{x \in D : f(x) < g(x)\}\$ und $\{f \le g\} := \{x \in D : f(x) \le g(x)\}\$ Elemente aus \mathcal{A} .

Beweis. Es gilt:
$$\{f < g\} = \bigcup_{q \in \mathbb{Q}} (\{f < g\} \cap \{g > q\}) \in \mathcal{A}$$
, denn: $\{f < g\}, \{g > q\} \in \mathcal{A}$ (s. Lemma I.14) $\{f \leq g\} = D \setminus \{f > g\} \in \mathcal{A}$

Bem.:

Im folgenden Satz sind die Grenzfunktionen paarweiße definiert, z.B.: $\liminf f_x: X \to \mathbb{R}$ ist definiert durch: $(\liminf f_k)(x) := \liminf f_k(x)$

Satz I.16

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f_k : D \to \mathbb{R}$ Folge von \mathcal{A} -messbaren Funktionen. Dann sind auch folgende Funktionen A-messbar:

$$\inf_{k \in \mathbb{N}} f_k, \sup_{k \in \mathbb{N}} f_k, \lim_{k \to \infty} \inf_{k \to \infty} f_k, \lim_{k \to \infty} \sup_{k \to \infty} f_k$$

Beweis. Für $s \in \mathbb{R}$ gilt:

$$\{\inf_k f_k \ge s\} = \bigcap_{k \in \mathbb{N}} \{f_k \ge s\} \in \mathcal{A}, \text{ denn nach Lemma I.14 ist } \{f_k \ge s\} \in \mathcal{A}$$

$$\{\sup_k f_k \le s\} = \bigcap_{k \in \mathbb{N}} \{f_k \le s\} \in \mathcal{A}$$

$$\text{Lemma I.14}, \text{ a.c. } f_k = 1.44$$

 $\stackrel{\text{Lemma I.14}}{\Longrightarrow}$ inf f_k , sup f_k sind \mathcal{A} -messbar

 $\liminf_{k\to\infty} f_k = \sup_{k\in\mathbb{N}} (\inf_{l\geq k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

 $\limsup_{k \to \infty} f_k = \inf_{k \in \mathbb{N}} (\sup_{l \ge k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

Notation:

Seien $D \in \mathcal{A}$ und $f: D \to \mathbb{R}$, dann sind $f^{\pm}: D \to [0, \infty]$ definiert durch: $f^+ := max(f,0) \ge 0$ und $f^- := max(-f,0) = -min(f,0) \ge 0$ $\implies f = f^+ - f^-, |f| = f^+ + f^-$

Satz I.17

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}, f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ max(f,g), \ min(f,g), \ |f|, \ fg, \ rac{f}{g}$$

auf ihren Definitionsbereichen, die in \mathcal{A} liegen \mathcal{A} -messbar.

Beweis.

1. $f, g: D \to \mathbb{R}$

$$- \{f + g < t\} = \bigcup_{\substack{r,s \in \mathbb{Q} \\ r + s < t}} \{f < r\} \cap \{g < s\} \in \mathcal{A}$$

$$\{-f < t\} = \{f > -t\} \in \mathcal{A}$$

$$\Longrightarrow f + g, -f\mathcal{A}\text{-messbar. Ebenso } \alpha f \text{ für } \alpha \in \mathbb{R}$$

- Für $\mathcal{C} \in C^{\infty}(\mathbb{R})$ ist $\mathcal{C} \circ f$ messbar, denn für $\mathcal{U} \subseteq \mathbb{R}$ offen ist $\mathcal{C}^{-1}(\mathcal{U})$ offen und damit $(\mathcal{C} \circ f)^{-1}(\mathcal{U}) = f^{-1}(\mathcal{C}^{-1}(\mathcal{U})) \in \mathcal{A}$ $\implies f^{\pm} \text{ sind } \mathcal{A}\text{-messbar (wähle } \mathcal{C}(s)) = max(\pm s, 0))$ $\Rightarrow |f| = f^{+} + f^{-},$ $max(f,g) = \frac{1}{2}(f+g+|f-g|) \text{ und}$ $min(f,g) = \frac{1}{2}(f+g-|f-g|) \text{ sind } \mathcal{A}\text{-messbar}$

$$min(f,g) = \frac{1}{2}(f+g-|f-g|)$$
 sind \mathcal{A} -messbar

$$-f^2 = \mathcal{C} \circ f$$
 mit $\mathcal{C}(s) = s^2$ und
$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2) \mathcal{A}\text{-messbar}$$

$$-\frac{1}{g}$$
 ist A -messbar, denn:

$$\left\{\frac{1}{g} < s\right\} = \begin{cases} \left\{\frac{1}{s} < g < 0\right\} & , s < 0\\ \left\{g < 0\right\} & s = 0\\ \left\{g < 0\right\} \cup \left\{g > \frac{1}{2}\right\} & s > 0 \end{cases}$$

2. f, g beliebig

Betrachte
$$f_k(x) = \begin{cases} k & , f(x) \ge k \\ -k & , f(x) \le -k \in \mathbb{R} \\ f(x) & , \text{ sonst} \end{cases}$$

Analog $g_k(x)$. f_k, g_k sind \mathcal{A} -messbar $\forall k$

Punktweise gilt: $f_k(x) \to f(x), g_k(x) \to g(x)$

Ebenso: $f_k + g_k \to f + g, \alpha f_k \to \alpha f, ..., f_k g_k \to f g$ punktweise.

Der Allgemeine Fall folgt aus 1. und Satz I.16.

Notation:

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr für μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört. Zum Beispiel bedeutet für Funktionen $f,g:X \to \overline{\mathbb{R}}$ die Aussage " $f(x) \leq g(x)$ für μ -fast alle $x \in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x \in X \setminus N$ gilt: $f(x) \leq g(x)$. Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D \in \mathcal{A}$ definiert ist und $\mu(X \setminus D) = 0$.

Bsp.: ("Konvergenz μ -fast überall")

Eine Folge von Funktionen $f_k: D \to \overline{\mathbb{R}}$ konvergiert punktweise μ -fast überall gegen $f: D \to \overline{\mathbb{R}}$, wenn es eine μ -Nullmenge N gibt, so dass $\forall x \in D \setminus N$ gilt:

$$\lim_{k \to \infty} f_k(x) = f(x)$$

Ziel:

Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Def. I.18

 (X, \mathcal{A}, μ) Maßraum. Eine auf $D \in \mathcal{A}$ definierte Funktion $f : D \to \overline{\mathbb{R}}$ heißt μ -messbar (auf X), wenn $\mu(X \setminus D) = 0$ und $f \mathcal{A}|_{\mathcal{D}}$ -messbar ist. $(\mathcal{A}|_{\mathcal{D}} := \{A \cap D | A \in \mathcal{A}\}$, siehe Blatt 1)

Bem.:

- 1. Unterscheiden zwischen A-messbaren Funktionen (auf X), die <u>überall</u> auf X definiert sind, und μ -messbaren Funktionen (auf X), die in der Regel nur μ -fast <u>überall</u> definiert sind.
- 2. Analog zu \mathcal{A} -Messbarkeit verwenden wir μ -Messbarkeit auf für Funktionen, die nur auf Teilmengen definiert sind:

Sei (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$. $f : E \to \mathbb{R}$ heißt μ -messbar (auf D), wenn $E \subseteq D$ in \mathcal{A} liegt mit $\mu(D \setminus E) = 0$ und $f \mathcal{A}|_{E}$ -messbar.

- 3. " $f = g \mu$ -fast überall"ist eine Äquivalenzrelation auf der Menge aller Funktionen
- 4. Sei $D \in \mathcal{A}, f: D \to \mathbb{R}$ μ -messbar. Dann ex. eine \mathcal{A} -messbare Funktion $g: X \to \mathbb{R}$ mit f = g auf D, z.B.: $g = \begin{cases} f & \text{, auf } D \\ 0 & \text{, auf } X \setminus D \end{cases}$

Somit übertragen sich die Sätze I.16 und I.17 auf μ -messbare Funktionen.

Vorlesung 4 13.11.20

Lemma I.19

 (X, \mathcal{A}, μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \tilde{f} mit $\tilde{f} = f$ μ -fast überall μ -messbar.

 $\begin{array}{l} \textit{Beweis.} \text{ Sei } f \text{ auf } D \in \mathcal{A} \text{ definiert mit } \mu(X \setminus D) = 0 \text{ und sei } \tilde{f} \text{ auf } \tilde{D} \subseteq X \text{ definiert.} \\ \text{Vor.} \implies \exists \text{ Nullmenge } N \text{ mit } X \setminus N \subseteq \cap \tilde{D} \text{ und } \tilde{f}(x) = f(x) \ \forall x \in X \setminus N \\ \implies X \setminus \tilde{D} \subseteq N \\ \stackrel{\mu\text{-vollständig}}{\Longrightarrow} X \setminus \tilde{D} \in \mathcal{A} \implies \tilde{D} \in \mathcal{A}. \end{array}$

Weiter gilt:

$$\{x \in \tilde{D} | \tilde{f}(x) < s\} = \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in \tilde{D} \cap (X \setminus N) | \ \tilde{f}(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in D \cap (X \setminus N) | \ f(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in D | \ f(x) < s\} \setminus \{x \in D \cap N | \ f(x) < s\}$$

$$=: A \cup B$$
Do f u -messbar ist, folgt, dass $B \in A$

Da f μ -messbar ist, folgt, dass $B \in \mathcal{A}$ μ -vollständig $\implies A \in \mathcal{A} \implies \{x \in \tilde{D} | \tilde{f}(x) < s\} \in \mathcal{A} \ \forall s$

Weiter ist $\{x \in \tilde{D} | \ \tilde{f}(x) < s\} \subseteq \tilde{D} \implies \{x \in \tilde{D} | \ \tilde{f}(x) < s\} \in \mathcal{A}|_{\tilde{D}} \Leftrightarrow \tilde{f} \ \mu\text{-messbar}$

Satz I.20

 (X, \mathcal{A}, μ) vollständiger Maßraum und seien $f_k, k \in \mathbb{N}, \mu$ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Beweis. Sei f_k auf $D_k \in \mathcal{A}$ definiert. Dann sind alle f_k , $k \in \mathbb{N}$, auf $D := \bigcap_{k \in \mathbb{N}} D_k$ definiert und $X \setminus D$ ist μ -Nullmenge $E := \{x \in D | \lim_{k \to \infty} f_k(x) \neq f(x)\}$ und betrachte

$$\tilde{f}_k(x) = \begin{cases} f_k(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}, \ \tilde{f}(x) = \begin{cases} f(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}$$

Es gilt $\tilde{f} = \lim_{k \to \infty} \tilde{f}_k \stackrel{\text{Satz I.16}}{\Longrightarrow} \tilde{f}$ ist \mathcal{A} -messbar

Vor.: $(X \setminus D) \cup E$ ist μ -Nullmenge $\stackrel{\text{Lemma I.14}}{\Longrightarrow} f$ ist μ -messbar.

Satz I.21 (Egorov)

 (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$ Menge mit $\mu(D) < \infty$ und f_n, f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n \to f$ μ -fast überall. Dann existiert $\forall \epsilon > 0$ eine Menge $B \in \mathcal{A}$ mit $B \subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Beweis.
$$E := \{x \in D | f_n(x), f(x) \text{ sind endlich und } f_n(x) \to f(x) \}$$

Vor. $\Longrightarrow \exists \mu\text{-Nullmenge } N \text{ mit } D \setminus E \subseteq N$
O.B. $E = D$ (sonst erstetze D durch $D \setminus N$)
Sei $C_{i,j} := \bigcup_{n=j}^{\infty} \{x \in D | |f_n(x) - f(x)| > 2^{-i} \}, i, j \in \mathbb{N}$
Satz I.17 $\Longrightarrow C_{i,j} \in \mathcal{A} \text{ und } C_{i,j+1} \subseteq C_{i,j} \ \forall i,j \in \mathbb{N}$
 $\mu(D) < \infty \stackrel{\text{Satz I.7}}{\Longrightarrow} \lim_{j \to \infty} \mu(C_{i,j}) = \mu(\bigcap_{j \in \mathbb{N}} C_{i,j}) = 0, \text{ denn } f_n \to f$
Sei $\epsilon > 0$ gegeben
 $\Longrightarrow \forall i \in \mathbb{N} \ \exists N(i) \in \mathbb{N} \text{ mit } \mu(C_{i,N(i)}) < \epsilon * 2^{-i}$
Setze $B := D \setminus \bigcup_{i \in \mathbb{N}} C_{i,N(i)} \in \mathcal{A} \text{ und } \mu(D \setminus B) = \mu(\bigcup_{i \in \mathbb{N}} C_{i,N(i)}) \stackrel{\text{Satz I.7}}{\le} \sum_{i \in \mathbb{N}} \mu(C_{i,N(i)}) < \epsilon$
 $\forall i \in \mathbb{N} \ \forall x \in B \ \forall n > N(i) \text{ gilt:}$

$$|f_n(x) - f(x)| \le 2^{-i} \implies f_n \to f \text{ auf } B$$

II Äußere Maße

Def. II.1

Sei X eine Menge. Eine Funktion $\mu: \mathcal{P}(X) \to [0, \infty]$ mit $\mu(\emptyset) = 0$ heißt **äußeres** Maß auf X, falls gilt:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \implies \mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i)$$

Bem.:

- 1. Die Begriffe σ -additiv, σ -subadditiv, σ -endlich, endlich, monoton sowie Nullmenge und μ -fast überall werden wie für Maße definiert. (Man ersetze überall \mathcal{A} durch $\mathcal{P}(X)$)
- 2. Ein äußeres Maß ist monoton, σ -subadditiv und insbesondere endlich subadditiv (d.h. $A \subseteq \bigcup_{i=1}^n A_i \implies \mu(A) \le \sum_{i=1}^n \mu(A_i)$)

Def. II.2

Sei μ äußeres Maß auf X. Die Menge $A \subseteq X$ heißt μ -messbar, falls $\forall S \subseteq X$ gilt:

$$\mu(S) \ge \mu(S \cap A) + \mu(S \setminus A).$$

Das System aller μ -messbaren Mengen wird mit $\mathcal{M}(\mu)$ bezeichnet.

Bem.:

Da $S = (S \cap A) \cup (S \setminus A)$ folgt aus Def. II.1:

$$\mu(S) < \mu(S \cap A) + \mu(S \setminus A)$$

d.h.: A messbar $\Leftrightarrow \mu(S) = \mu(S \cap A) + \mu(S \setminus A) \ \forall \ S \subseteq X$

Bsp.:

Jedes auf $\mathcal{P}(X)$ definierte Maß ist ein äußeres Maß (Satz I.7), also sind das DiracMaß und das Zählmaß äußere Maße.

Satz II.3

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

Dann ist μ ein äußeres Maß.

 $(\inf \emptyset = \infty)$

Beweis. Mit $\emptyset \subseteq \emptyset \in \mathcal{Q}$ folgt $\mu(\emptyset) = 0$. Sei $E \subseteq \bigcup_{i \in \mathbb{N}} E_i$ mit $E, E_i \subseteq X$ und $\mu(E_i) < \infty$.

$$\underline{\text{z.z.:}} \ \mu(E) \leq \sum_{i \in \mathbb{N}} \mu(E_i)$$

Wähle Überdeckungen $E_i \subseteq \bigcup_{j \in \mathbb{N}} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$, so dass zu $\epsilon > 0$ gegeben gilt:

$$\sum_{j\in\mathbb{N}} \lambda(P_{i,j}) < \mu(E_i) + 2^{-i} * \epsilon , \forall i \in \mathbb{N}$$

$$\implies E \subseteq \bigcup_{i,j \in \mathbb{N}} P_{i,j} \text{ und damit } \mu(E) \le \sum_{i,j \in \mathbb{N}} \lambda(P_{i,j}) \le \sum_{i \in \mathbb{N}} (\mu(E_i) + 2^{-i} * \epsilon) = \sum_{i \in \mathbb{N}} \mu(E_i) + \epsilon$$

Mit $\epsilon > 0$ folgt $\mu(E) \le \sum_{i \in \mathbb{N}} \mu(E_i)$

Satz II.4

Sei $\mu: \mathcal{P}(X) \to [0,\infty]$ äußeres Maß auf X. Für M $\subseteq X$ gegeben erhält man durch $\mu \llcorner M: \mathcal{P}(X) \to [0,\infty], \mu \llcorner M(A) := \mu(A \cap M)$ ein äußeres Maß $\mu \llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen. Es gilt:

 $A \mu$ -messbar $\implies A \mu \sqcup M$ -messbar

Beweis. Aus der Definition folgt sofort, dass $\mu \sqcup M$ ein äußeres Maß ist. Weiter gilt für $A \subseteq X$ μ -messbar und $S \subseteq X$ beliebig:

$$\begin{split} \mu \llcorner M(S) &= \mu(S \cap M) \\ &\geq \mu((S \cap M) \cap A) + \mu((S \cap M) \setminus A) \\ &= \mu((S \cap A) \cap M) + \mu((S \setminus A) \cap M) \\ &= \mu \llcorner M(S \cap A) + \mu \llcorner M(S \setminus A) \end{split}$$

⇒ Behauptung

Satz II.5

 μ äußeres Maß auf X. Dann gilt:

$$N \text{ μ-Nullmenge} \implies N \text{ μ-messbar}$$

$$N_k, k \in \mathbb{N}, \mu\text{-Nullmengen} \implies \bigcup_{k \in \mathbb{N}} N_k \text{ μ-Nullmenge}$$

Beweis. Sei $\mu(N)=0$. Für $S\subseteq X$ folgt aus Monotonie: $\mu(S\cap N)\leq \mu(N)=0,\ \mu(S)\geq \mu(S\setminus N)=\mu(S\cap N)+\mu(S\setminus N)\implies N$ μ -messbar Zweite Behauptung folgt aus σ -Subadditivität.

Bem.:

 $\mathcal{M}(\mu)$ enthält alle Nullmengen $N\subseteq X$ und damit auch deren Komplemente (siehe Satz II.7). Es kann sein, dass keine anderen Mengen μ -messbar sind.

Bsp.:

Auf X bel. definiere: $\beta(A) = \begin{cases} 0 & , A = \emptyset \\ 1 & , \text{ sonst} \end{cases} \beta$ ist äußeres Maß.

Es sind nur \emptyset und X β -messbar, denn für X = S folgt aus der Annahme, dass A β -messbar ist: $1 \ge \beta(A) + \beta(X \setminus A)$

Vorlesung 5 16.11.20

Lemma II.6

Seien $A_i \in \mathcal{M}(\mu), i = 1, ..., k$, paarweiße disjunkt und μ äußeres Maß. Dann gilt $\forall S \subseteq X$:

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \sum_{i=1}^{k} \mu(S \cap A_i)$$

Beweis. $\underline{k} = 1$: trivial $k \ge 2$: $A_k \mu$ -messbar

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \mu((S \cap \bigcup_{i=1}^{k} A_i) \cap A_k) + \mu((S \cap \bigcup_{i=1}^{k} A_i) \setminus A_k)$$

$$= \mu(S \cap A_k) + \mu(S \cap \bigcup_{i=1}^{k} A_k)$$

$$\stackrel{\text{IV}}{=} \sum_{i=1}^{k} \mu(S \cap A_i)$$

Satz II.7

Sei $\mu : \mathcal{P}(X) \to [0, \infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Beweis. Notation: Schreibe \mathcal{M} statt $\mathcal{M}(\mu)$ Es gilt:

$$-x \in \mathcal{M}$$
, denn: $\forall S \subseteq X$ ist:
 $\mu(S \cap X) + \mu(S \setminus X) = \mu(S) + \mu(\emptyset) = \mu(S)$

- Sei
$$A \in \mathcal{M} \implies X \setminus A \in \mathcal{M}$$
, denn $\forall S \subset X$ gilt: $\mu(S \cap (X \setminus A)) + \mu(S \setminus (X \setminus A)) = \mu(S \setminus A) + \mu(S \cap A) = \mu(S)$

Als nächstes zeigen wir:

 $A, B \in \mathcal{M} \implies A \cap B \in \mathcal{M} \ \forall S \subseteq X$ gilt:

$$\mu(S) = \mu(S \cap A) + \mu(S \setminus A)$$

$$\mu(S \cap A) = \mu(S \cap A \cap B) + \mu((S \cap A) \setminus B)$$

$$\mu(S \setminus (A \cap B)) = \mu((S \setminus (A \cap B)) \cap A) + \mu((S \setminus (A \cap B)) \setminus A)$$

$$= \mu((S \cap A) \setminus B) + \mu(S \setminus A)$$

$$\implies \mu(S) = \mu(S \cap (A \cap B)) + \mu(S \setminus (A \cap B))$$

$$\implies A \cup B \in \mathcal{M}, \text{ denn:}$$

$$A \cup B = X \setminus ((X \setminus A) \cap (X \setminus B))$$

Per Induktion:

 \mathcal{M} ist abgeschlossen unter endlichen Durchschnitten und Vereinigungen.

<u>Jetzt:</u> μ ist σ -additiv auf \mathcal{M} .

Seien $A_j, j \in \mathbb{N}$, paarweiße disjunkt mit $A_j \in \mathcal{M} \ \forall j \in \mathbb{N}$

Wähle $S = A_1 \cup A_2$ und benutze $A_1 \in \mathcal{M}$

$$\implies \mu(S) = \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \ \ (= \mu(S \cap A_1) + \mu(S \setminus A_1))$$

Induktion: Dasselbe gilt für endliche disjunkte Vereinigungen.

$$\sum_{j \in \mathbb{N}} \mu(A_j) = \lim_{k \to \infty} \sum_{j=1}^k \mu(A_j) = \lim_{k \to \infty} \mu(\bigcup_{j=1}^k A_j)$$

$$\leq \mu(\bigcup_{j \in \mathbb{N}} A_j) \stackrel{\sigma\text{-Subadd.}}{\leq} \sum_{j=1}^k \mu(A_j)$$

$$\implies \mu(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} \mu(A_j) \implies \text{Behauptung}$$

Als letztes: \mathcal{M} ist abgeschlossen unter abzählbaren Vereinigungen Seien $A_j \in \mathcal{M}, j \in \mathbb{N}$. O.B. seien A_j paarweise disjunkt, sonst betrachte

$$\begin{split} \tilde{A}_i &:= A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \\ \text{Für } S \subseteq X \text{ folgt mit } \bigcup_{i=1}^k A_i \in \mathcal{M} : \end{split}$$

$$\mu(S) = \mu(S \cap \bigcup_{i=1}^{k} A_i) + \mu(S \setminus \bigcup_{i=1}^{k} A_i)$$

$$\stackrel{\text{Lemma II.6}}{\geq} \sum_{i=1}^{k} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i) \quad \forall k \in \mathbb{N}$$

Lasse $k \to \infty$

$$\implies \mu(S) \ge \sum_{i \in \mathbb{N}} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\stackrel{\sigma\text{-Subadd.}}{\ge} \mu(\bigcup_{i \in \mathbb{N}} (S \cap A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$= \mu(S \cap (\bigcup_{i \in \mathbb{N}} A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{M}$$

Vollständigkeit von μ : siehe Lemma II.5

Lemma II.8

 μ äußeres Maß, $A_i \in \mathcal{M}(\mu), i \in \mathbb{N}$.

Dann gelten:

i) Aus
$$A_1 \subseteq ... \subseteq A_i \subseteq A_{i+1} \subseteq ...$$
 folgt $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

ii) Aus
$$A_1 \supseteq ... \supseteq A_i \supseteq A_{i+1} \supseteq ...$$
 mit $\mu(A_1) < \infty$ folgt $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

Beweis. Folgt aus Satz I.7 und Satz II.7

Def. II.9

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt \bigcup -stabil (bzw. \bigcap -stabil, \-stabil), wenn $A \cup B \in \mathcal{A}$ (bzw. $A \cap B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$) $\forall A, B \in \mathcal{A}$ gilt.

Bem.:

J-stabil impliziert Stabilität bzgl. endlicher Vereinigung. Ebenso ∩-stabil.

Def. II.10

Ein Mengensystem $\mathcal{R} \subset \mathcal{P}(X)$ heißt **Ring** über X, falls:

- i) $\emptyset \in \mathcal{R}$
- ii) $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$
- iii) $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$

 \mathcal{R} heißt **Algebra**, falls zusätzlich $X \in \mathcal{R}$.

Bsp.:

- i) Für $A \subset X$ ist $\{\emptyset, A\}$ ein Ring, aber für $A \neq X$ keine Algebra.
- ii) System aller endlichen Teilmengen einer bel. Menge ist ein Ring.
- iii) Ebenso System aller höchstens abzählbaren Teilmengen.

Bem.:

Für $A, B \in \mathcal{R}$ gilt: $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ Ringe sind \bigcup -stabil, \bigcap -stabil, \bigvee -stabil

Def. II.11 (Im Aufschrieb II.10)

Sei $\mathcal{R} \subseteq \mathcal{P}(X)$ Ring. Eine Funktion $\lambda : \mathcal{R} \to [0, \infty]$ heißt **Prämaß** auf \mathcal{R} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{R}, i \in \mathbb{N}$, paarweiße disjunkt mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

Bem.:

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, Nullmenge und fast-überall werden wie für Maße definiert.

Bsp.:

- i) \mathcal{R} Ring über X. $\lambda(A) = \begin{cases} 0 & H = \emptyset \\ \infty & \text{sonst} \end{cases}$
- ii) \mathcal{R} sei Ring der endlichen Teilmengen einer beliebigen Menge X und $\lambda = card|_{\mathcal{R}}$ ist Prämaß
- iii) Alle Maße sind Prämaße. Inbesondere äußere Maße eingeschränkt auf die messbaren Mengen.

Def. II.12 (Im Aufschrieb II.11)

 λ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Ein äußeres Maß μ auf X (bzw. ein Maß auf \mathcal{A}) heißt **Fortsetzung** von λ , falls gilt:

i)
$$\mu|_{\mathcal{R}} = \lambda$$
, d.h. $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

ii) $\mathcal{R} \subseteq \mathcal{M}(\mu)$ (bzw. $\mathcal{R} \subset \mathcal{A}$), d.h. alle $A \in \mathcal{R}$ sind μ -messbar

Satz II.13 (Caratheodory-Fortsetzung — Im Aufschrieb II.12)

 $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

 μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Beweis.

i) $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

Wir haben $\mu(A) \leq \lambda(A)$ aus Def. mit $A_1 = A, A_2 = ... = \emptyset$

Für $\lambda(A) \leq \mu(A)$ reicht es zz, dass:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \text{ mit } A_i \in \mathcal{R} \implies \lambda(A) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

Betrachte paarweise disjunkte Mengen $B_i = (A_i \setminus \bigcup_{j=1}^{i-1} A_j) \cap A \in \mathcal{R}$

$$\implies \lambda(A) = \lambda(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \lambda(B_i) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

ii) Jedes $A \in \mathcal{R}$ ist μ -messbar.

Sei $A \in \mathcal{R}, S \subseteq X$ bel. mit $\mu(S) < \infty$. Zu $\epsilon > 0$ wähle $A_i \in \mathcal{R}$, sodass $S \subseteq \bigcup_{i \in \mathbb{N}} (A_i \cap A)$ und $S \setminus A \subseteq \bigcup_{i \in \mathbb{N}} (A_i \setminus A)$

$$\implies \mu(S \cap A) + \mu(S \setminus A) \le \sum_{i \in \mathbb{N}} \lambda(A_i \cap A) + \sum_{i \in \mathbb{N}} \lambda(A_i \setminus A)$$
$$= \sum_{i \in \mathbb{N}} \lambda(A_i) \le \mu(S) + \epsilon$$

Lasse $s \downarrow 0 \implies A \in \mathcal{M}(\mu)$

Für $\mu(S) = \infty$ ist das trivial.

Lemma II.14 (Im Aufschrieb II.13)

 μ sei Caratheodory-Fortsetzung des Prämaßes $\lambda: \mathcal{R} \to [0, \infty]$ auf dem Ring \mathcal{R} über X. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \mu$ auf \mathcal{R} , dann gilt $\forall E \in \sigma(\mathcal{R})$: $\tilde{\mu}(E) \leq \mu(E)$

Beweis.
$$\forall E \in \sigma(\mathcal{R}) : E \subseteq \bigcup_{i \in \mathbb{N}} P_i \text{ mit } P_i \in \mathcal{R}$$

$$\implies \tilde{\mu}(E) \le \sum_{i \in \mathbb{N}} \tilde{\mu}(P_i) = \sum_{i \in \mathbb{N}} \lambda(P_i)$$

Bilde Infimum über alle solche Überdeckungen $\implies \tilde{\mu}(E) \leq \mu(E)$

> Vorlesung 6 20.11.20

Satz II.15 (Im Aufschrieb II.14)

Sei $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Dann ex. ein Maß μ auf $\sigma(\mathcal{R})$ mit $\mu = \lambda$ auf \mathcal{R} . Diese Fortsetzung ist eindeutig, falls λ σ -endlich ist.

Beweis. Existenz folgt aus Satz II.13 und Satz II.7 $(\sigma(\mathcal{R}) \subseteq \mathcal{M}(\mu))$. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \lambda$ auf \mathcal{R} . Für $A_i \in \mathcal{R}$ und $\bigcup_{i=1}^n A_i = A \in \sigma(\mathcal{R})$ folgt aus Satz I.7.

$$\tilde{\mu}(A) = \lim_{n \to \infty} \tilde{\mu}(\bigcup_{i=1}^{n} A_i) = \lim_{\substack{n \to \infty \\ \infty}} \mu(\bigcup_{i=1}^{n} A_i) = \mu(A). \text{ Für } E \in \sigma(\mathcal{R}) \text{ mit } \mu(E) < \infty \text{ und } \epsilon > 0$$

ex. Mengen
$$A_i \in \mathcal{R}, A = \bigcup_{i=1}^{\infty} A_i$$
 mit $E \subseteq A$ und $\mu(A) \le \mu(E) + \epsilon \implies \mu(A \setminus B) \le \epsilon$.

Aus $\mu(A) = \tilde{\mu}(A)$ und Lemma II.14 (i.A. II.13) folgt

$$\mu(E) \le \mu(A) = \tilde{\mu}(A) = \tilde{\mu}(E) + \tilde{\mu}(A \setminus E) \le \tilde{\mu}(E) + \mu(A \setminus E) \le \tilde{\mu}(E) + \epsilon.$$

Lasse $\epsilon > 0$ und betrachte $\tilde{\mu}(E) \le \mu(E)$ (Lemma II.14 / i.A. II.13) $\implies \mu(E) = \tilde{\mu}(E)$. Sei nun λ σ -endlich. Dann ex. o.B.d.A. paarweise disjunkte $X_n \in \mathcal{R}$ mit $\mu(X_n) < \infty$

und
$$X = \bigcup_{n=1}^{\infty} X_n$$
. Für $E \in \sigma(\mathcal{R})$ bel. folgt:

$$\mu(E) = \sum_{n=1}^{\infty} \mu(E \cap X_n) = \sum_{n=1}^{\infty} \tilde{\mu}(E \cap X_n) = \tilde{\mu}(E) \implies \mu = \tilde{\mu} \text{ auf } \sigma(\mathcal{R}).$$

Satz II.16 (Regularität der Caratheodory-Fortsetzung — i.A. II.15)

Sei μ Caratheodory-Fortsetzung des Prämaßes $\lambda : \mathcal{R} \to [0, \infty]$ auf Ring \mathcal{R} über X. Dann ex. $\forall D \subseteq X \text{ ein } E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E) = \mu(D).$ $(\mu \text{ ist "reguläres "äußeres Maß})$

Beweis.

$$\mu(D) = \infty \to \text{W\"ahle } E = X$$

 $\mu(D) \leq \infty$: Aus Def. von Caratheodory-Fortsetzung folgt $\forall n \in D \subseteq E^n = \bigcup_{i=1}^{\infty} A_i^n$ mit

$$A_i^n \in \mathcal{R} \text{ und } \sum_{i=1}^\infty \lambda(A_i^n) \leq \mu(D) + \tfrac{1}{n}. \text{ W\"{a}hle } E := \bigcap_{n=1}^\infty E^n \implies E \in \sigma(\mathcal{R}) \text{ mit } D \subseteq E \text{ und } E = 0$$

SS20/21Prof. Lamm

 $\forall n \in \mathbb{N} \text{ gilt:}$

$$\mu(D) \leq \mu(E) \leq \mu(E^n) \leq \sum_{i=1}^{\infty} \mu(A_i^n) = \sum_{i=1}^{\infty} \lambda(A_i^n) \leq \mu(D) + \frac{1}{n} < \infty. \ n \to \infty \implies \mu(E) = \mu(D).$$

Satz II.17 (i.A. II.16)

Sei λ ein σ -endliches Prämaß auf Ring \mathcal{R} über X und sei $\mu: \mathcal{P}(X) \to [0, \infty]$ die Caratheodory-Fortsetzung von λ . Dann ist $\mu|_{\mathcal{M}(\mu)}$ die Vervollständigung von $\mu|_{\sigma(\mathcal{R})}$ und $\mathcal{M}(\mu)$ ist die vervollständigte σ -Algebra von $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}}$

D.h. $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} = \mathcal{M}(\mu)$. Insbesondere ex. genau eine Fortsetzung von $\lambda : \mathcal{R} \to [0, \infty]$ zu einem vollständigen Maß auf $\mathcal{M}(\mu)$.

Beweis. Satz II.7 $\Longrightarrow \mu|_{\mathcal{M}(\mu)}$ ist vollständiges Maß. Satz I.10 $\Longrightarrow \sigma(\mathcal{R})_{\mu|_{\sigma(\mathcal{R})}} \subseteq \mathcal{M}(\mu)$. Sei $D \in \mathcal{M}(\mu)$ mit $\mu(D) < \infty$. Wähle $E \in \sigma(\mathcal{R})$ mit $D \subseteq E$.

Aus Satz II.16 (i.A. II.15) $\implies \mu(D) = \mu(E) = \mu(E \cap D) + \mu(E \setminus D) = \mu(D) + \mu(E \setminus D)$ $(D)) \implies \mu(E \setminus D) = 0.$

 $\lambda \text{ σ-endlich} \implies \exists X_n \in \mathcal{R} \text{ mit } X = \bigcup_{n=1}^{\infty} X_n \text{ und } \mu(X_n) < \infty \ \forall n \in \mathbb{N}.$ Für $D \in \mathcal{M}(\mu)$ bel. setze $D_n := \bigcup_{k=1}^n D \cap X_k \implies D_n \subseteq D_{n+1} \ \forall n \in \mathbb{N} \text{ mit } \mu(D_n) < \infty,$ $D = \bigcup_{n=1}^{\infty} D_n.$

Wie bewiesen ex. $E_n \supset D_n$ mit $E_n \in \sigma(\mathcal{R})$ und $\mu(E_n \setminus D_n) = 0$. Für $E = \bigcup_{n=1}^{\infty} E_n \supset D$

folgt $E \in \sigma(\mathcal{R})$ mit $\mu(E \setminus D) \leq \sum_{n=1}^{\infty} \mu(E_n \setminus D_n) = 0$. Satz II.16 (i.A. II.15) $\Longrightarrow \exists N \in \sigma(\mathcal{R}) \text{ mit } N \supset (E \setminus D) \text{ und } \mu(E \setminus D) = \mu(N) = 0 \Longrightarrow D = (E \setminus N) \cup (D \cap N) \Longrightarrow \mathcal{M}(\mu) = \overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} \Longrightarrow \text{Vervollständigung von } \mu|_{\sigma(\mathcal{R})} \text{ ist}$ $\mu|_{\mathcal{M}(\mu)}$.

Eindeutigkeit folgt jetzt daraus und aus Satz II.15 (i.A. II.14).

Lemma II.18 (i.A. II.17)

 $\lambda:\mathcal{R}\to [0,\infty]$ σ -endliches Prämaß auf Ring $\mathcal{R}\subseteq\mathcal{P}(X)$ mit Caratheodory-Fortsetzung $\mu.$ $D\subseteq X$ ist genau dann μ -messbar, wenn eine der folgenden Bedingungen gilt:

- i) $\exists E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E \setminus D) = 0$
- ii) $\exists C \in \sigma(\mathcal{R})$ mit $C \subseteq D$ und $\mu(D \setminus C) = 0$

Def. II.19

Ein Mengensystem $\mathcal{Q} \subseteq \mathcal{P}(X)$ heißt **Halbring** über X, falls:

- i) $\emptyset \in \mathcal{Q}$
- ii) $P, Q \in \mathcal{Q} \implies P \cap Q \in \mathcal{Q}$
- iii) $P,Q\in\mathcal{Q}\implies P\setminus Q=\bigcup_{i=1}^kP_i$ mit endlich vielen paarweise disjunkten $P_i\in\mathcal{Q}$

Bsp.:

X beliebige Menge. $\mathcal{Q} := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$

Bem.:

 $I \subseteq \mathbb{R}$ heißt Intervall, wenn es $a, b \in \mathbb{R}$ mit $a \leq b$ gibt, sodass: $(a, b) \subseteq I \subseteq [a, b]$. Das System aller Intervalle bezeichnen wir mit \mathcal{I} .

Ein achsenparalleler n-dim. Quader (kurz: Quader) ist Produkt $Q = I_1 \times ... \times I_n \subseteq \mathbb{R}^n$ von Intervallen. Das System aller Quader wird mit \mathcal{Q}^n bezeichnet.

Satz II.20 (i.A. II.19)

 \mathcal{I} ist ein Halbring.

Beweis. $\varnothing \in \mathcal{I}$, denn $\varnothing = (a,a)$ für $a \in \mathbb{R}$ bel. Seien $I,J \subset \mathbb{R}$ Intervalle mit Grenzen $a \leq b$ bzw. $c \leq d$. Für $I \cap J \neq \varnothing$ ist $max(a,c) \leq min(b,d)$ und $(max(a,c), min(b,d)) \subset I \cap J \subset [max(a,c), min(b,d)] \implies I \cap J \in \mathcal{I}$.

Wegen $I \setminus J = I \setminus (I \cap J)$ können wir o.B. $J \subset I$ annehmen.

Setze $I' = x \in I \setminus J : x \le c$, $II' = x \in I \setminus J : x \ge d$.

Falls $I' \cap II' \neq \emptyset \implies c = d \in I \setminus J \implies J = \emptyset \implies I \setminus J = I$.

Andernfalls $(I' \cap II' = \emptyset)$ gilt: $I \setminus J = I' \cup II'$ wobei $(a, c) \subset I' \subset [a, c], (d, b) \subset II' \subset [d, d].$

Satz II.21 (i.A. II.20)

Für i=1,...,n sei \mathcal{Q}_i Halbring über X_i . Dann ist $\mathcal{Q}:=\{P_1\times...\times P_n\mid P_i\in\mathcal{Q}_i\}$ ein Halbring über $X_1\times...\times X_n$.

Beweis. Nur für n = 2 (Rest per Induktion)

1 Es ist $\emptyset = \emptyset \times \emptyset \in \mathcal{Q}$

2 Für
$$P = I_1 \times I_2$$
 und $Q = J_1 \times J_2$ gilt: $P \cup Q = (I_1 \cup J_1) \times (I_2 \cup J_2) \in \mathcal{Q}$

 $3 P \setminus Q = ((I_1 \cup J_1) \times I_2 \setminus J_2) \cup ((I_1 \setminus J_1) \times I_2)$

Sowohl $I_2 \setminus J_2$ als auch $I_1 \setminus J_1$ sind als disjunkte Verbindungen darstellbar, da \mathcal{Q}_1 , \mathcal{Q}_2 Halbringe sind. $\Longrightarrow P \setminus Q \in \mathcal{Q}$.

Satz II.22 (i.A. II.21)

 Q^n ist ein Halbring.

Vorlesung 7 23.11.20

Satz II.23 (i.A. II.22)

 \mathcal{Q} Halbring über X und \mathcal{F} sei das System aller endlichen Vereinigungen $F = \bigcup_{i=1}^{\kappa} P_i$ von Mengen $P_I \in \mathcal{Q}$. Dann ist \mathcal{F} der von \mathcal{Q} erzeugte Ring.

Beweis. Jeder Ring \mathcal{R} mit $\mathcal{Q} \supset \mathcal{R}$ enthält $\mathcal{F} \Longrightarrow$ Reicht zu zeigen: \mathcal{F} ist ein Ring. Es gilt: $\emptyset \in \mathcal{F}$

$$E, F \in \mathcal{F}. \text{ Sei } E = \bigcup_{i=1}^{k} P_i, F = \bigcup_{j=1}^{m} Q_j, P_1, Q_i \in \mathcal{Q}$$

$$\Longrightarrow E \setminus F = (\bigcup_{i=1}^{k} P_i) \setminus (\bigcup_{j=1}^{m} Q_j) = \bigcup_{i=1}^{k} (P_i \setminus (\bigcup_{j=1}^{m} Q_j)) = \bigcup_{i=1}^{k} (\bigcap_{j=1}^{m} P_i \setminus Q_j)$$

$$E, F \in \mathcal{F} \Longrightarrow E \cup F \in \mathcal{F}.$$

$$z.z. \mathcal{F} \text{ ist } \cap \text{-stabil}$$

$$E \cap F = (\bigcup_{j=1}^{m} kP_i) \cap (\bigcup_{j=1}^{m} Q_j) = \bigcup_{i=1}^{m} k \bigcup_{j=1}^{m} (P_i \cap Q_j) \in \mathcal{F}.$$

Bsp.:

- 1. Q^n alle Quader $Q \subseteq \mathbb{R}^n$ \Longrightarrow erzeugter Ring \mathcal{F}^n . Elemente davon nennen wir **Figuren**.
- 2. $Q := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$ \implies erzeugter Ring \mathcal{F} : Ring der endlichen Teilmengen von X.

Lemma II.24 (i.A. II.23)

 \mathcal{Q} Halbring über X, \mathcal{F} der von \mathcal{Q} erzeugte Ring. $\Longrightarrow \sigma(\mathcal{Q}) = \sigma(\mathcal{F})$

Beweis.
$$Q \subset \mathcal{F} \implies \sigma(Q) \subset \sigma(\mathcal{F})$$

 $\sigma(Q) \cup \text{-stabil} \implies \mathcal{F} \subset \sigma(Q) \implies \sigma(\mathcal{F}) \subset \sigma(Q)$

Lemma II.25 (i.A. II.24)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Zu jedem $F\in\mathcal F$ existieren paarweise disjunkte $P_1,...,P_k\in\mathcal Q$ mit $F=\bigcup_{i=1}^k P_i$

Beweis. Sei $F \in \mathcal{F}$.

Satz II.22 (i.A. Satz II.21)
$$\implies F = \bigcup_{l=1}^{m} Q_l \text{ mit } Q_l \in \mathcal{Q} \implies F = \bigcup_{l=1}^{m} (Q_l \setminus \bigcup_{j=1}^{l-1} Q_j),$$

(wobei $Q_l \setminus \bigcup_{j=1}^{l-1}$ paarweise disjunkt).

z.z. $Q \setminus \bigcup_{i=1}^{m} Q_i$ mit $Q, Q_1, ..., Q_n$ besitzt eine disjunkte Zerlegung in Q.

Induktion: n=1 Folgt aus Definition von Halbring. Sei $Q\setminus\bigcup_{i=1}^mQ_i$ disjunkte Zerlegung

schon gefunden: $Q \setminus \bigcup_{i=1}^{m} Q_i = \bigcup_{j=1}^{k} P_j$

$$\implies Q \setminus \bigcup_{i=1}^{n+1} Q_i = (\bigcup_{j=1}^k P_j) \setminus Q_{n+1} = \bigcup_{j=1}^k (P_j \setminus Q_{n+1}) \ (P_j \setminus Q_{n+1} \text{ paarweise disjunkt}).$$

Nach Def. von \mathcal{Q} ist $P_i \setminus Q_{n+1}$ disjunkte Ver. von Elementen in \mathcal{Q} .

Def. II.26 (i.A. II.25)

Sei $\mathcal{Q} \subseteq \mathcal{P}(X)$ Halbring. Eine Funktion $\lambda : \mathcal{Q} \to [0, \infty]$ heißt **Inhalt** auf \mathcal{Q} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{Q}$ paarweiße disjunkt mit $\bigcup_{i=1}^n A_i \in \mathcal{Q}$ gilt: $\lambda(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \lambda(A_i)$

 λ heißt **Prämaß** auf $\mathcal Q,$ falls λ $\sigma\text{-additiv}$ auf $\mathcal Q$ ist.

D.h. für $A_i \in \mathcal{Q}$ paarweiße disjunkt $(i \in \mathbb{N})$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{Q} : \lambda(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \lambda(A_i)$

Bem.:

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, ... sind wie vorher definiert. Ist $\mathcal Q$ in Def. II.26 [i.A. II.25] ein Ring, so stimmt die Definition des Prämaßes mit Def. II.11 [i.A. II.10] überein.

Satz II.27 (i.A. II.26)

 λ Inhalt auf Halbring $\mathcal Q$ und $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Dann ex. genau ein Inhalt $\bar{\lambda}:\mathcal F\to [0,\infty]$ mit $\bar{\lambda}(Q)=\lambda(Q)\ \forall Q\in\mathcal Q.$

Beweis. $F = \bigcup_{i=1}^{k} P_i$ mit $P_i \in \mathcal{Q}$ paarweise disjunkt.

Lemma II.24 (i.A. Lemma II.23), so muss für jede Fortsetzung gelten:

$$\bar{\lambda}(F) = \sum_{i=1}^{k} \bar{\lambda}(P_i) = \sum_{i=1}^{k} \lambda(P_i)$$

Ex: Definiere $\bar{\lambda}$ durch $\bar{\lambda}(F) = \sum_{i=1}^{k} \lambda(P_i)$.

 $\bar{\lambda}$ wohldefiniert. Sei $F = \bigcup_{i=1}^k P_i = \bigcup_{j=1}^l Q_j$ paarweise disjunkt mit $Q_j \in \mathcal{Q}$.

$$\implies Q_j = \bigcup_{i=1}^k Q_j \cap P_i, \ j = 1, ..., l, \ P_i = \bigcup_{j=1}^l P_i \cap Q_j, \ i = 1, ..., k$$

$$\implies \sum_{j=1}^{l} \lambda Q_j = \sum_{j=1}^{l} \sum_{i=1}^{k} \lambda(P_i \cap Q_j) = \sum_{j=1}^{l} \sum_{i=1}^{k} \lambda(Q_k \cap P_i) = \sum_{i=1}^{k} \lambda(P_i)$$

 $\Longrightarrow \bar{\lambda}$ wohldefiniert Sei $F = \bigcup_{i=1}^{k} F_i$ paarweise disjunkt mit $F_i \in \mathcal{F}$, $F \in \mathcal{F}$. Schreibe $F_i = \bigcup_{j=1}^{m_i} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$

$$\implies \bar{\lambda}(F) = \sum_{i=1}^k \sum_{i=1}^{m_i} \bar{\lambda}(P_{i,j}) = \sum_{i=1}^k \sum_{j=1}^{m_i} \lambda(P_{i,j}) = \sum_{i=1}^k \bar{\lambda}(F_i) \implies \bar{\lambda} \text{ Inhalt.}$$

Lemma II.28 (i.A. II.27)

 λ Inhalt auf Halbring \mathcal{Q} über X

 λ ist monoton und subadditiv

Beweis. Satz II.27 (i.A. Satz II.26) \implies o.B. Q ist Ring

$$\implies P, Q \in \mathcal{Q}, Q \supset P \implies \lambda(Q) = \lambda(P) + \lambda(Q \setminus P) \ge \lambda(P) \to \lambda \text{ ist monoton.}$$

Für
$$P_i \in \mathcal{Q}$$
, $i = 1, ..., k$ folgt
$$\lambda(\bigcup_{i=1}^k P_i) = \lambda(\bigcup_{i=1}^k (P_i \setminus (\bigcup_{j=1}^{i-1} P_j))) = \sum_{i=1}^k \lambda(P_i \setminus (\bigcup_{j=1}^{i-1} P_j)) \le \sum_{i=1}^k \lambda(P_i)$$

Bsp.:

Auf Q^n elementargeometrisches Volumen vol^n .

Sei $Q \in \mathcal{Q}$ mit $Q = I_1 \times ... \times I_n, I_j \subseteq \mathbb{R}$ Intervall mit Intervallgrenzen $a_j \leq b_j$

$$vol^n(Q) = \prod_{j=1}^n (b_j - a_j) \ge 0$$

Satz II.29 (i.A. II.28)

 $vol^n(.)$ ist ein Inhalt auf \mathcal{Q}^n

Beweis. $vol^n(\varnothing) = 0$

Endliche Additivität per Induktion

Für n=1 sind \mathcal{Y}_{I_j} Riemann-Int. und für $I_1,...,I_k$ paarweise disjunkt gilt:

$$\begin{aligned} &vol^1(\bigcup_{i=1}^k I_i) = \int\limits_{\mathbb{R}} \sum\limits_{i=1}^k \mathcal{Y}_{I_i}(x) dx = \sum\limits_{i=1}^k \int\limits_{\mathbb{R}} \mathcal{Y}_{I_i}(x) dx = \sum\limits_{i=1}^k vol^1(I_i). \\ &\text{Sei jetzt Aussage für } vol^{n-1} \text{ im } \mathbb{R}^{n-1} \text{ schon bewiesen. Betrachte für } Q = I_1 \times \ldots \times I_m \in \mathcal{Q}^n \end{aligned}$$

den y-Schnitt.

 $Q^y = x \in \mathbb{R}^{n-1} : (x,y) \in Q = I_1 \times ... \times I_{n-1}$ falls $y \in I_n$ (\varnothing sonst). Es gilt: $vol^{n-1}(Q^y) = vol^{n-1}(I_1 \times ... \times I_{n-1})\mathcal{Y}_{I_n}(y)$ und für jede paarweise disjunkte Zerlegung von $Q = \bigcup i = 1^k Q_i$ mit $Q_i \in \mathcal{Q}^n$ gilt:

$$Q^{y} = (\bigcup_{i=1}^{k} Q_{i})^{y} = \bigcup_{i=1}^{k} Q_{i}^{y}$$

$$\implies vol^{n}(\bigcup_{i=1}^{k} Q_{i}) = vol^{n}(Q) = vol^{n-1}(I_{1} \times ... \times I_{n-q})vol^{1}(I_{n})$$

$$= vol^{n-1}(I_{1} \times ... \times I_{n-1}) \int_{\mathbb{R}} \mathcal{Y}_{I_{n}}(y)dy = \int_{\mathbb{R}} vol^{n-1}(\bigcup_{i=1}^{k} Q_{i}^{y})dy = \sum_{i=1}^{n} \int_{\mathbb{R}} vol^{n-1}(Q_{i}^{y})dy$$

$$= \sum_{i=1}^{l} vol^{n}(Q_{i})$$

Satz II.30 (i.A. II.29)

 $\lambda: \mathcal{Q} \to [0,\infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$, \mathcal{R} der von \mathcal{Q} erzeugte Ring und $\bar{\lambda}: \mathcal{R} \to [0,\infty]$ der eindeutig bestimmte Inhalt auf \mathcal{R} mit $\bar{\lambda}|_{\mathcal{Q}} = \lambda$ (Satz II.27 / i.A. II.26), so ist $\bar{\lambda}$ ein Prämaß auf \mathcal{R} .

Beweis. Sei $F = \bigcup_{i=1}^{\infty} F_i$ mit $F, F_i \in \mathcal{R}$ und F_i paarweise disjunkt.

Lemma II.25 (i.A. Lemma II.24) $\implies \exists$ paarweise disjunkte Zerlegungen $F = \bigcup_{j=1}^k P_j$

und
$$F_i = \bigcup_{k=1}^{k_i} P_{i,k}$$
 mit $P_j, P_{i,k} \in \mathcal{Q}$

$$\implies P_j = \bigcup_{i=1}^{\infty} (P_j \cap F_i) = \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{k_i} (P_j \cap P_{i,k}) \text{ paarweise disjunkt}$$

$$\lambda \text{ Prämass} \implies \lambda(P_j) = \sum_{i=1}^{\infty} \sum_{k=1}^{k_i} \lambda(P_j \cap P_{i,k}) = \sum_{i=1}^{\infty} \bar{\lambda}(P_j \cap F_i)$$

$$\implies \bar{\lambda}(F) = \sum_{j=1}^{k} \lambda(P_j) = \sum_{j=1}^{k} \sum_{i=1}^{\infty} \bar{\lambda}(P_j \cap F_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{k} \bar{\lambda}(p_j \cap F_i) = \sum_{i=1}^{\infty} \bar{\lambda}(F_i)$$

$$\implies \bar{\lambda} \text{ ist Prämass}$$

Vorlesung 8 27.11.20

Bem.:

Satz II.27 (i.A. II.26) $\implies \bar{\lambda}(F) = \sum_{i=1}^{n} \lambda(Q_i)$ für $F \in \mathcal{R}$ mit $F = \bigcup_{i=1}^{n} Q_i$ mit paarweise disjunkten $Q_i \in \mathcal{Q}$ (Lemma II.25 / i.A. II.24). Betrachte äußere Maße für λ auf \mathcal{Q} und $\bar{\lambda}$ auf \mathcal{R} aus Satz II.3.

Es gilt: $Q \subseteq \mathcal{R}, \lambda = \bar{\lambda}$ auf Q

$$\begin{split} &\inf\{\sum_{k\in\mathbb{N}}\lambda(Q_k)\mid Q_k\in\mathcal{Q}, E\subseteq\bigcup_{k\in\mathbb{N}}Q_k\}\\ &\geq\inf\{\sum_{i\in\mathbb{N}}\lambda(\bar{F}_i)\mid F_i\in\mathcal{R}, E\subseteq\bigcup_{i\in\mathbb{N}}F_i\}\\ &=\inf\{\sum_{i\in\mathbb{N}}\sum_{j=1}^{j_i}\lambda(Q_{i,j})\mid F_i=\bigcup_{j=1}^{j_i}Q_{i,j}, Q_{i,j}\in\mathcal{Q}, E\subseteq\bigcup_{i\in\mathbb{N}}\bigcup_{j=1}^{j_i}Q_{i,j}\}\\ &=\inf\{\sum_{k\in\mathbb{N}}\lambda(Q_k)\mid Q_k\in\mathcal{Q}, E\subseteq\bigcup_{k\in\mathbb{N}}Q_k\} \end{split}$$

Satz II.31 ((i.A. II.30))

 $\lambda: \mathcal{Q} \to [0, \infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{Q} konstruierte äußere Maß, d.h. $\forall E \subseteq X$ ist:

$$\mu(E) = \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{Q}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

Bem.:

Satz II.16 (i.A. II.15) $\implies \mu$ ist reguläres äußere Maß

Satz II.7 $\implies \mu$ ist vollständiges Maß auf $\mathcal{M}(\mu)$

 $(X, \mathcal{M}(\mu), \mu|_{\mathcal{M}(\mu)})$ ist Vervollständigung von $(X, \sigma(\mathcal{Q}), \mu|_{\sigma\mathcal{Q}})$ und ist auf $\mathcal{M}(\mu)$ eindeutig bestimmt (Satz II.17 / i.A. II.16).

Speziell: $D \subseteq X$ μ -messbar $\Leftrightarrow \exists C \in \sigma(Q)$ mit $C \subseteq D$ und $\mu(D \setminus C) = 0$ (Lemma II.18 / i.A. II.17)

Satz II.32 ((i.A. II.31))

Für einen Inhalt λ auf Ring \mathcal{R} und $A_i \in \mathcal{R}, i \in \mathbb{N}$, betrachte:

- i) λ ist Prämaß auf \mathcal{R}
- ii) Für $A_i \subseteq A_{i+1} \subseteq \dots$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt: $\lambda(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{n \to \infty} \lambda(A_n)$
- iii) Für $A_i\supseteq A_{i+1}\supseteq\dots$ mit $\lambda(A_1)<\infty$ und $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{R}$ gilt: $\lambda(\bigcap_{i\in\mathbb{N}}A_i)=\lim_{n\to\infty}\lambda(A_n)$
- iv) Für $A_i \supseteq A_{i+1} \supseteq \dots$ mit $\lambda(A_1) < \infty$ und $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$ gilt: $\lim_{i \to \infty} \lambda(A_i) = 0$

Dann gilt: i) \Leftrightarrow ii) \Longrightarrow iv)

Ist λ endlich, d.h. $\lambda(A) < \infty \ \forall A \in \mathcal{R}$, dann sind i) - iv) äquivalent.

 $Beweis. i) \implies ii) \implies iii)$ Siehe Beweis von Satz I.7

- iii) \implies iv) ist trivial
- ii) \implies i) Seien $A_n \in \mathcal{R}$ paarweise disjunkt mit $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$

$$\Rightarrow B_n := \bigcup_{i=1}^n A_i \text{ erfüllt Bed. von ii) mit } \bigcup_{n=1}^\infty B_n = \bigcup_{i=1}^\infty A_i \in \mathcal{R}$$

$$\Rightarrow \lambda(\bigcup_{n=1}^\infty A_n) = \lim_{n \to \infty} \lambda(B_n) = \lim_{n \to \infty} \sum_{i=1}^n \lambda(A_i) = \sum_{i=1}^\infty \lambda(A_i)$$

$$\lambda \text{ endlich. z.z. iv)} \Rightarrow \text{ii)}$$

$$\implies \lambda(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \lambda(B_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda(A_i) = \sum_{i=1}^{\infty} \lambda(A_i)$$

Sei $(A_i) \subset \mathcal{R}$ monoton aufsteigende Folge mit $A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{R}$. Für $B_n := A \setminus A_n$ gilt

$$B_n > B_{n+1} \text{ und } \bigcap^{\infty} B_n = \varnothing.$$

$$B_n > B_{n+1} \text{ und } \bigcap_{n=1}^{\infty} B_n = \emptyset.$$
iv) $\Longrightarrow \lim_{n \to \infty} \lambda(B_n) = 0 \Longrightarrow \lambda(B_n) = \lambda(A \setminus A_n) = \lambda(A) - \lambda(A_n)$
 $\Longrightarrow \lim_{n \to \infty} \lambda(A_n) = \lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i) \Longrightarrow \text{ ii)}$

$$\implies \lim_{n \to \infty} \lambda(A_n) = \lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i) \implies \text{ii})$$

Das Lebesgue-Maß III

Der elementargeometrische Inhalt $vol^n: \mathcal{Q}^n \to [0, \infty]$ ist ein Prämaß auf dem Halbring Q^n im \mathbb{R}^n

Beweis. Sei
$$P = \bigcup_{i=1}^{\infty} P_i$$
 mit $P_i \cap P_j = \emptyset$ für $i \neq j, P, P_i \in \mathcal{Q}^n \ \forall i \in \mathbb{N}$.

Satz II.27 (i.A. Satz II.26) $\implies vol^n$ ist Inhalt auf Ring $\mathcal{F}^n \implies \sum_{i=1}^{\infty} vol^n(P_i)$

$$= \lim_{k \to \infty} \sum_{i=1}^{k} vol^{n}(P_{i}) = \lim_{k \to \infty} vol^{n}(\bigcup_{i=1}^{k} P_{i}) \le vol^{n}(P).$$

 $= \lim_{k \to \infty} \sum_{i=1}^k vol^n(P_i) = \lim_{k \to \infty} vol^n(\bigcup_{i=1}^k P_i) \leq vol^n(P).$ Wähle zu $\epsilon > 0$ offene Quader $Q_i \supset P_i$ und einen kompakten Quader $Q \subset P$ mit $\sum_{i=1}^\infty vol^n(Q_i) < \sum_{i=1}^\infty vol^n(P_i) + \frac{\epsilon}{2}, \ vol^n(P) < vol^n(Q) + \frac{\epsilon}{2}.$ Satz von Heine-Borel (Satz (XIV).22 Ana1): Q wird von endlich vielen Quadern $Q_i \times ... \times Q_k$ überdeckt $Q \subset P = \bigcup_{i=1}^\infty P_i \subset \bigcup_{i=1}^\infty Q_i)$

$$Q_i \times ... \times Q_k$$
 überdeckt $(Q \subset P = \bigcup_{i=1}^{\infty} P_i \subset \bigcup_{i=1}^{\infty} Q_i)$

$$\implies vol^n(P) < vol^n(Q) + \frac{\epsilon}{2} \le \sum_{i=1}^k vol^n(Q_i) + \frac{\epsilon}{2} < \sum_{i=1}^\infty vol^n(P_i) + \epsilon.$$

Lasse
$$\epsilon > 0 \implies vol^n(P) \le \sum_{i=1}^{\infty} vol^n(P_i)$$
.

Das n-dimensionale äußere Lebesgue-Maß einer Menge $E \subseteq \mathbb{R}^n$ ist definiert durch

$$\lambda^{n}(E) := \inf\{\sum_{k \in \mathbb{N}} vol^{n}(Q_{k}) \mid Q_{k} \in \mathcal{Q}^{n}, E \subseteq \bigcup_{k \in \mathbb{N}} Q_{k}\}$$

 $\lambda^n|_{\mathcal{M}(\lambda^n)}$ ist das **n-dimensionale Lebesguemaß**.

Bem nach Satz II.31 (i.A. II.30) $\implies \lambda^n$ regulär und vollständig auf $\mathcal{M}(\lambda^n)$

Lemma III.3

Betrachte für $k \in \mathbb{N}_0$ die Würfelfamilie $\mathcal{W}_k = \{Q_{k,m} := 2^{-k}(m+[0,1]^n) \mid m \in \mathbb{R}^n\}$

und definiere für $E \subseteq \mathbb{R}^n$ die Mengen

$$F_k(E) := \left\{ \begin{array}{l} \{Q \in \mathcal{W}_k \mid Q \subseteq E\} & F^k(E) := \left\{ \begin{array}{l} \{Q \in \mathcal{W}_k \mid Q \cap E \neq \emptyset\} \end{array} \right. \end{array} \right.$$

Dann gilt:

- i) $F_k(E)$ und $F^k(E)$ sind abgeschlossene Vereinigungen von abzählbar vielen kompakten Quadern mit paarweise disjunktem Inneren.
- ii) $F_1(E) \subseteq F_2(E) \subseteq ... \subseteq E \subseteq ... \subseteq F^2(E) \subseteq F^1(E)$
- iii) $F_k(E) \supseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) > s^{-k}\sqrt{n}\}\$ $F^k(E) \subseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) \leq s^{-k}\sqrt{n}\}\$
- iv) $\dot{E} \subseteq \bigcup_{k \in \mathbb{N}} F_k(E) \subseteq E$, $\bar{E} \supseteq \bigcap_{k \in \mathbb{N}} F^k(E) \supseteq E$

Beweis. $\bigcup \{Q : Q \in W_k\} = \mathbb{R}^n \ \forall k \in \mathbb{N}.$

 W_k hat abzählbar viele Elemente, die Würfel aus W_k sind kompakt mit paarweise disjunktem Inneren und jede beschränkte Menge wird nur von endlich vielen Würfeln aus W_k getroffen. $\Longrightarrow F_k(E), F^k(E)$ sind abgeschlossen \Longrightarrow i)

 $Q_{k,m}$ ist Vereinigung der 2^n Teilwürfel $Q_{k+1,2m+l}$ mit $l \in \{0,1\}^n$ und es gilt

 $Q_{k,m} \subset E \implies Q_{k+1,2m+l} \subset E \ \forall l \in \{0,1\}^n$

 $Q_{k+1,2m+l} \cap E \neq \emptyset \implies Q_{k,m} \cap E \neq \emptyset$ wobei $l \in \{0,1\}^n$

 $\Longrightarrow F_k(E) \subset F_{k+1}(E), F^k(E) \supset F^{k+1}(E) \Longrightarrow ii)$

Denn für $x \in E$ bel. existiert ein $Q \in W_k$ mit $x \in Q$.

Sei nun $x \in \mathbb{R}^n$ mit $dist(x, \mathbb{R}^n \setminus E) > 2^{-k}\sqrt{n} \implies \exists Q \in W_k \text{ mit } x \in Q \text{ und aus } dist(Q) = 2^{-k}\sqrt{n} \text{ folgt } Q \subset E \implies x \in F_k(E) \implies \{x \in \mathbb{R}^n : dist(x, \mathbb{R}^n \setminus E) > 2^{-k}\sqrt{n}\} \subset F_k(E).$

Ist $x \in F^k(E) \implies \exists Q \in W_k \text{ mit } x \in Q \text{ und } Q \cap E \neq \emptyset \implies x \in F^k(E) \implies dist(x, E) \leq dist(Q) \leq 2^{-k} \sqrt{n} \implies \text{iii})$

iv) folgt sofort aus iii) und Def. von \check{E} bzw. \bar{E} .

Vorlesung 9 30.11.20

Lemma III.4

Die Borelmengen \mathcal{B}^n sind die vom Halbring \mathcal{Q}^n der Quader, dem Ring \mathcal{F}^n der Figuren, und dem System \mathcal{C}^n der abgeschlossenen Mengen des \mathbb{R}^n erzeugten σ -Algebra, d.h. $\sigma(\mathcal{Q}^n) = \mathcal{B}^n = \sigma(\mathcal{Q}^n) = \sigma(\mathcal{F}^n) = \sigma(\mathcal{C}^n)$

Beweis. siehe Aufschrieb

Satz III.5

Für λ^n gilt:

- 1. Alle Borelmengen sind Lebesgue-messbar
- 2. Zu $E \subseteq \mathbb{R}^n$ \exists Borelmenge $B \supseteq E$ mit $\lambda^n(B) = \lambda^n(E)$
- 3. $\lambda^n(K) < \infty \ \forall K \subseteq \mathbb{R}^n$ kompakt

Beweis. siehe Aufschrieb

Lemma III.6

Für $E \subseteq \mathbb{R}^n$ beliebig gilt:

i)
$$\lambda^n(E) = \inf\{\lambda^n(U) \mid U \text{ offen }, U \supset E\}$$

ii)
$$\lambda^n(E) = \inf\{\lambda^n(K) \mid K \text{ kompakt }, K \subset E\}, \text{ falls } E \lambda^n\text{-messbar}$$

Satz III.7

 $D \subseteq \mathbb{R}^n$ ist genau dann λ^n -messbar, wenn eine der beiden Bedingungen gilt:

- i) \exists Borlemenge $E \supset D$ mit $\lambda^n(E \setminus D) = 0$
- ii) \exists Borlemenge $C \subset D$ mit $\lambda^n(D \setminus C) = 0$

Es kann $E=\bigcap_{i\in\mathbb{N}}U_i$ mit U_i offen und $C=\bigcup_{j\in\mathbb{N}}A_j$ mit A_j abgeschlossen gewählt werden.

Satz III.8 (Satz von Lusin)

Sei $A \subseteq \mathbb{R}^n$ offen mit $\lambda^n(A) < \infty$ und sei f λ^n -messbar auf A mit Werten in \mathbb{R} . Dann existiert $\forall \epsilon > 0$ ein $K = K_\epsilon \subseteq A$ kompakt, mit:

- i) $\lambda^n(A \setminus K) < \epsilon$
- ii) $f|_k$ ist stetig

Vorlesung 10 4.12.20

Def. III.9

Ein äußeres Maß μ auf \mathbb{R}^n heißt **Borelmaß**, falls gilt:

- 1. Alle Borelmengen sind μ -messbar
- 2. $\mu(K) < \infty \ \forall K \subseteq \mathbb{R}^n \ \text{kompakt}$

Bem.:

 λ^n ist Borelmaß nach Satz III.5.

Ein äußeres Maß μ auf \mathbb{R}^n heißt translationsinvariant, falls

 $\mu(E+a) = \mu(E) \ \forall E \subset \mathbb{R}^n, a \in \mathbb{R}^n \ \mathrm{mit} \ E+a := \{x+a \mid x \in E\}$

Bemerke: $vol^n: \mathcal{Q}^n \to [0, \infty]$ ist translationsinvariant $\implies \lambda^n$ ist translationsinvariant.

Lemma III.10

Ist μ translations invariantes Borelmaß auf \mathbb{R}^n , so ist jede Koordinaten-Hyperebene $H:=\{x\in\mathbb{R}^n\mid x_i=c\}(i=1,...,n)$ eine μ -Nullmenge.

Beweis. siehe Aufschrieb

Satz III.11

Sei μ translations invariantes Borelmaß auf \mathbb{R}^n . Dann gilt mit $\theta := \mu([0,1]^n)$:

$$\mu(E) = \theta \lambda^n(E) \quad \forall \ \lambda^n$$
-messbaren $E \subseteq \mathbb{R}^n$

Beweis. siehe Aufschrieb

Lemma III.12

 $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^n$ lipschitz-stetig mit Konstante Λ bzgl. $||.||_{\infty}$. Dann gilt:

$$\lambda^n(f(E)) \le \Lambda^n \lambda^n(E) \quad \forall E \subseteq U$$

Beweis. siehe Aufschrieb

Satz III.13

 $U \subseteq \mathbb{R}^n$ offen und $f \in C^1(U, \mathbb{R}^n)$. Dann gilt:

- 1. $N \subseteq U \lambda^n$ -Nullmenge $\implies f(N) \lambda^n$ -Nullmenge
- 2. $E \subseteq U \lambda^n$ -messbar $\implies f(E) \lambda^n$ -messbar

Beweis. siehe Aufschrieb

Satz III.14

Sei $S \in O(\mathbb{R}^n)$ und $a \in \mathbb{R}^n$, dann gilt:

$$\lambda^n(S(E) + a) = \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Beweis. siehe Aufschrieb

Lemma III.15 (Polarzerlegung)

 $\forall S \in GL(\mathbb{R}^n) \; \exists \; \text{Diagonal matrix} \; \Lambda \; \text{mit Einträgen} \; \lambda_i > 0, i = 1, ..., n \; \text{und}$ $T_1, T_2 \in O(\mathbb{R}^n)$, sodass $S = T_1 \Lambda T_2$

Beweis. siehe Aufschrieb

Satz III.16 (Lineare Transformationsformel)

Für eine lineare Abbildung $S: \mathbb{R}^n \to \mathbb{R}^n$ gilt:

$$\lambda^n(S(E)) = |det(S)| \ \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Beweis. siehe Aufschrieb

Bsp.:

$$\lambda_1, ..., \lambda_n > 0, \ E = \{ x \in \mathbb{R}^n \mid (\frac{x_1}{\lambda_1})^2 + ... + (\frac{x_n}{\lambda_n})^2 < 1 \}$$

$$\lambda_1, \dots, \lambda_n > 0, \ E = \{ x \in \mathbb{R}^n \mid (\frac{x_1}{\lambda_1})^2 + \dots + (\frac{x_n}{\lambda_n})^2 < 1 \}$$

$$\text{mit } \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in GL(\mathbb{R}^n) \text{ gilt } E = \Lambda(B_1(0))$$

Satz III.16 $\implies \lambda^n(E) = \lambda^n(\Lambda(B_1(0))) = \lambda_1 \cdot ... \cdot \lambda_n \cdot \lambda^n(B_1(0))$

Bsp.: (Vitali 1905)

 $\mathcal{P}(\mathbb{R}^n) \neq \mathcal{M}(\lambda^n)$

Beweis siehe Aufschrieb.

IV Lebesgue-Integral

Def. IV.1

X Menge, μ äußeres Maß. Eine funktion $\zeta: X \to \mathbb{R}$ heißt μ -Treppenfunktion, wenn sie μ -messbar ist und nur eindlich viele Funktionswerte annimmt.

Die Menge $\mathcal{T}(\mu)$ der μ -Treppenfunktionen ist ein \mathbb{R} -Vektorraum. Wir setzen

$$\mathcal{T}^+(\mu) = \{ \zeta \in \mathcal{T}(\mu) \mid \zeta \ge 0 \}$$

Bsp.:

 $E \subseteq X, \psi_E : X \to \mathbb{R}, \psi_E(x) = \begin{cases} 1 & , x \in E \\ 0 & , \text{ sonst} \end{cases}$ Es ist: $\psi_E \mu$ -Treppenfunktion $\Leftrightarrow E \in \mathcal{M}(\mu)$

Sei $\zeta \geq 0, \zeta = \sum_{i=1}^k s_i \psi_{A_i}$ mit A_i messbar und $s_i \geq 0$ und die A_i sind paarweise disjunkt. So eine Darstellung heißt **einfach**.

Wir setzen:

$$(\star) I(\zeta) := \sum_{i=1}^{k} s_i \mu(A_i)$$

Für $\zeta = 0$ folgt $I(\zeta) = 0 \cdot \mu(X) = 0$

Jedes $\zeta \in \mathcal{T}^+(\mu)$ besitzt eine einfache Darstellung, z.B. können wir für s_i die endlich vielen Funktionswerte wählen und $A_i = \{\zeta = s_i\}$

Lemma IV.2

Das Integral $I: \mathcal{T}^+(\mu) \to [0, \infty]$ ist durch (\star) wohldefiniert. Für $\zeta, \phi \in \mathcal{T}^+(\mu)$ und $\alpha, \beta \in [0, \infty)$ gilt:

i)
$$I(\alpha \zeta + \beta \psi) = \alpha I(\zeta) + \beta I(\psi)$$

ii)
$$\zeta \leq \psi \implies I(\zeta) \leq I(\psi)$$

Beweis. siehe Aufschrieb

Bem.:

Für A_i messbar und $s_i \ge 0$ folgt aus i) auch für A_i nicht disjunk:

$$I(\zeta) = \sum_{i=1}^{k} s_i \mu(A_i) \quad \text{für } \zeta = \sum_{i=1}^{k} s_i \psi_{A_i}$$

Def. IV.3 (Lebesgue-Integral)

Für $f: X \to [0, \infty]$ μ -messbar, setze

$$\int f d\mu = \sup\{I(\zeta) \mid \zeta \in \mathcal{T}^+(\mu), \zeta \le f\}$$

 ζ heißt **Unterfunktion** von f.

Ist $f:X\to [-\infty,\infty]$ μ -messbar und sind die Integrale von f^\pm nicht beide unendlich, so setzen wir

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu \in [-\infty, \infty]$$

Bem.:

Für $f \geq 0$ sind beide Schritte kompatibel, denn dann gilt $f = f^+$ und $f^- = 0$

Lemma IV.4

Für $f \in \mathcal{T}^+(\mu)$ gilt: $\int f d\mu = I(f)$

Beweis. siehe Aufschrieb

Bsp.:

 $\chi_{\mathbb{O}}$ ist eine λ^1 -Treppenfunktion und es gilt:

$$\int_{0}^{\infty} \chi_{\mathbb{Q}} d\lambda^{1} = I(\chi_{\mathbb{Q}}) = 0 \cdot \lambda^{1}(\mathbb{R} \setminus \mathbb{Q}) + 1 \cdot \lambda^{1}(\mathbb{Q}) = 0 + 1 \cdot 0 = 0$$

Def. IV.5

 $f: X \to \mathbb{R}$ heißt integrierbar bzgl. μ , wenn sie μ -messbar ist und wenn gilt:

$$\int f d\mu \in \mathbb{R} \Leftrightarrow \int f^+ d\mu + \int f^- d\mu < \infty$$

Bsp.:

 $\mu = card, X = \mathbb{N}_0$

z.z.: $f: \mathbb{N}_0 \to \mathbb{R}$ ist bzgl. card auf \mathbb{N}_0 integrierbar $\implies \sum_{k \in \mathbb{N}} f(k)$ absolut konvergent

Dann gilt: $\int f dcard = \sum_{k \in \mathbb{N}} f(k)$

Beweis siehe Aufschrieb

Satz IV.6

 $f,g:X\to \mathbb{R}$ μ -messbar. Ist $f\leq g$ μ -fast überall und $\int f^-d\mu<\infty$, so existieren beide Integrale und es ist: $\int fd\mu\leq \int gd\mu$

"≥"gilt entsprechend wenn $f^+d\mu < \infty$

Bem.:

$$f, g: X \to \overline{\mathbb{R}}, f \mu$$
-messbar und $g = f \mu$ -fast überall $\stackrel{\text{Kapitel II}}{\Longrightarrow} g \mu$ -messbar Satz IV.6 $\Longrightarrow \int g^{\pm} d\mu = \int f^{\pm} d\mu \Longrightarrow \int f d\mu = \int g d\mu$

Vorlesung 12 11.11.2020

Bem.:

Einschub: zum Beweis von Satz III.7 siehe Aufschrieb

Lemma IV.7 (Tschebyscheff-Ungleichung)

Für $f: X \to [0, \infty]$ μ -messbar mit $\int f d\mu < \infty$ gilt:

$$\mu(\{f \geq s\}) \leq \begin{cases} \frac{1}{s} \cdot \int f d\mu & \text{ für } s \in (0, \infty) \\ 0 & \text{ für } s = \infty \end{cases}$$

Beweis. siehe Aufschrieb

Lemma IV.8

Sei $f: X \to \overline{\mathbb{R}}$ μ -messbar.

- i) ist $\int f d\mu < \infty \implies \{f = \infty\}$ ist μ -Nulllmenge
- ii) ist $f \ge 0$ und $\int f d\mu = 0 \implies \{f > 0\}$ ist μ -Nullmenge

Beweis. siehe Aufschrieb

Satz IV.9

Zu $f: X \to [0, \infty]$ μ -messbar gibt es eine Folge $f_k \in \mathcal{T}^+(\mu)$ mit $f_0 \leq f_1 \leq \dots$ und $\lim_{k \to \infty} f_k(x) = f(x) \ \forall x \in X.$

Beweis. siehe Aufschrieb

Satz IV.10 (Monotonie Konvergenz / Beppo-Levi)

Seien $f_k: X \to [0,\infty]$ μ -messbar mit $f_1 \leq f_2 \leq \dots$ und $f: X \to [0,\infty]$ mit $f(x) := \lim_{k \to \infty} f_k(x)$. Dann gilt:

$$\int f d\mu = \lim_{k \to \infty} \int f_k \ d\mu$$

Satz IV.11

 $f,g:X\to \bar{\mathbb{R}}$ integrierbar bzgl. μ , so ist auch $\alpha f+\beta g$ integrierbar $\forall \alpha,\beta\in\mathbb{R}$ und es gilt:

$$\int (\alpha f + \beta g) \ d\mu = \alpha \int f d\mu + \beta \int g d\mu$$

Beweis. siehe Aufschrieb

Def. IV.12

Sei μ ein äußeres Maß auf X und $E\subseteq X$ sei μ -messbar. Dann setzen wir, falls das rechte Integral existiert

$$\int_{E} f d\mu = \int f \chi_{E} d\mu$$

f heißt auf E integrierbar, wenn $f\chi_E$ integrierbar ist.

Bem.:

Wegen $(f\chi_E)^{\pm} = f^{\pm}\chi_E \leq f^{\pm}$ existiert das Integral von f über E auf jeden Fall dann, wenn $\in fd\mu$ existiert. (Speziell für $f \geq 0$)

Bsp.:

 $\alpha \in \mathbb{R}, \ f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = ||x||^{-\alpha}$

$$\int_{\mathbb{R}^n \setminus B_1(0)} f d\lambda^n < \infty \Leftrightarrow \alpha > n$$

$$\int_{B_1(0)} f d\lambda^n < \infty \Leftrightarrow \alpha < n$$

Beweis siehe Aufschrieb

Vorlesung 13 14.12.20

Satz IV.13

Sei $f: X \to \overline{\mathbb{R}}$ μ -messbar. Dann gelten:

- i) f integrierbar $\Leftrightarrow |f|$ integrierbar
- ii) Es gilt: $|\int f d\mu| \leq \int |f| d\mu$, falls das Integral von f existiert
- iii) Ist $g: X \to [0, \infty]$ μ -messbar mit $|f| \le g$ μ -fast überall und $\int g d\mu < \infty$, so ist f integrierbar

Bsp.:

 $f: \mathbb{R}^n \to \overline{\mathbb{R}} \ \lambda^n$ -messbar und es gelte für ein $C \in [0, \infty]$: $|f(x)| \leq C||x||^{-\alpha}$ fast überall in $B_{\epsilon}(0)$ mit $(\alpha < n)$ bzw. $|f(x)| \leq C||x||^{-\alpha}$ fast überall in $\mathbb{R}^n \setminus B_{\epsilon}(0)$ mit $\alpha > n$ $\implies f$ ist auf $B_{\epsilon}(0)$ bzw. $\mathbb{R}^n \setminus B_{\epsilon}(0)$ integrierbar

V Konvergenzsätze und L^n -Räume

Bsp.:

Punktweise Konvergenz reicht nicht für Konvergenz der Integrale.

Für
$$\epsilon > 0$$
 sei $f_{\epsilon} : \mathbb{R} \to \mathbb{R}, f_{\epsilon} = \frac{1}{2\epsilon} \chi_{[-\epsilon, \epsilon]}$
Es gilt $f_{\epsilon}(x) = 0$ für $\epsilon < |x|$
 $\implies f(x) := \lim_{\epsilon \downarrow 0} f_{\epsilon}(x) = \begin{cases} 0, & \text{für } x \neq 0 \\ \infty, & \text{für } x = 0 \end{cases}$
Weiter $\int f_{\epsilon} d\lambda^{1} = \frac{1}{2\epsilon} \lambda^{1}([-\epsilon, \epsilon]) = 1 \ \forall \epsilon > 0$
 $\implies \int f d\lambda^{1} = 0 < 1 = \lim_{\epsilon \downarrow 0} f_{\epsilon} d\lambda^{1}$

Satz V.1 (Lemma von Fatou)

 $f_k: X \to [0, \infty]$ Folge von μ -messbaren Funktionen.

Für $f: X \to \overline{\mathbb{R}}, f(x) = \liminf_{h \to \infty} f_k(x)$ gilt:

$$\int f d\mu \le \liminf_{k \to \infty} \int f_k d\mu$$

Beweis. siehe Aufschrieb

Satz V.2 (Dominierte Konvergenz bzw. Satz von Lebesgue)

 f_1, f_2, \dots Folge von μ -messbare Funktionen und $f(x) = \lim_{k \to \infty} f_k(x)$ für μ -fast alle $x \in X$. Es gebe eine integrierbare Funktion $g: X \to [0, \infty]$ mit $\sup_{k \in \mathbb{N}} |f_k(x)| \leq g(x)$ für μ -fast alle g. Form ist f integrierbar und f $f \downarrow \mu = \lim_{k \to \infty} f f_k \downarrow \mu$

für μ -fast alle x. Fann ist f integrierbar und $\int f d\mu = \lim_{k \to \infty} \int f_k d\mu$.

Es gilt sogar $||f_k \cdot f||_{L^1(y)} := \int |f_k - f| d\mu \to 0$

Beweis. siehe Aufschrieb

Bem.: (Anwendung)

Vergleich Riemann- \int mit Lebesgue- \int

Sei I=[a,b] kompaktes Intervall, $f:I\to\mathbb{R}$ beschränkt. Unterteilungspunkte $a=x_0\le\dots\le x_N=b\to \text{Zerlegung }Z$ von I mit Teilintervallen $I_j=[x_{j-1},x_j]$

$$\bar{S}_Z(f) = \sum_{j=1}^{N} (\sup_{I_j} f)(x_j - x_{j-1}), \quad \underline{S}_Z(f) = \sum_{j=1}^{N} (\inf_{I_j} f)(x_j - x_{j-1})$$

Für Zerlegungen Z_1, Z_2 mit Verfeinerung $Z_1 \cup Z_2$

$$\implies \underline{\mathbf{S}}_{Z_1}(f) \leq \underline{\mathbf{S}}_{Z_1 \cup Z_2}(f) \leq \bar{S}_{Z_1 \cup Z_2}(f) \leq \bar{S}_{Z_2}(f)$$

f heißt Riemann-integrierbar mit Integral $\int_a^b f(x)dx = S$, falls gilt:

$$\sup_{Z} \underline{S}_{Z}(f) = \inf_{Z} \bar{S}_{Z}(f) = S$$

Satz V.3

 $f: I \to \mathbb{R}$ beschränkt auf kompaktem Intervall I = [a, b]. Dann gilt: f Riemann-integrierbar $\Leftrightarrow \lambda^1(\{x \in I \mid f \text{ ist nicht stetig in } x\}) = 0$

In diesem Fall ist f auch Lebesgue-integrierbar und die Integrale stimmen überein.

Beweis. siehe Aufschrieb

Satz V.4

X metrischer Raum, μ Maß auf Y und $f: X \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. $\mu \ \forall x \in X$.

Betrachte $F: X \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Sei $f(\cdot, y)$ stetig in $x_0 \in X$ für μ -fast alle $y \in Y$. Weiter gebe es eine μ -integrierbare Funktion $g: Y \to [0, \infty]$, so dass für alle $x \in X$ gilt: $|f(x, y)| \leq g(y) \ \forall y \in Y \setminus N_X$ mit einer μ -Nullmenge N_x .

Dann ist F stetig in x_0 .

Beweis. siehe Aufschrieb

Vorlesung 14

18.12.20

Satz V.5

Sei $I \subseteq \mathbb{R}$ offenes Intervall, μ Maß auf Y und $f: I \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. μ für alle $x \in I$.

Setze $F: U \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Es sei $f(\cdot, y)$ in x_0 differenzierbar für μ -fast alle $y \in Y$ und es existiere $g: Y \to [0, \infty]$ μ -integrierbar mit

$$\frac{|f(x,y) - f(x_0,y)|}{|x - x_0|} \le g(y) \ \forall x \in I \ \forall y \in Y \setminus N_x$$

mit einer μ -Nullmenge N_x . Dann folgt:

$$F'(x_0) = \int \frac{\partial f}{\partial x}(x_0, y) d\mu(y)$$

Lemma V.6

 $\mathcal{U} \subseteq \mathbb{R}^n$ offen, μ Maß auf Y und $f: \mathcal{U} \times Y \to \mathbb{R}$ mit f integrierbar bzgl. $\mu \ \forall x \in \mathcal{U}$. Betrachte $F: \mathcal{U} \to \mathbb{R}, F(x) = \int f(x,y) d\mu(y)$

Es gebe eine μ -Nullmenge $N \subseteq Y$, so dass $\forall y \in Y \setminus N$ gilt:

$$f(\cdot,y) \in C^1(\mathcal{U})$$
 und $|D_x f(x,y)| \leq g(y)$ mit $g: Y \to [0,\infty]$ integrierbar

 $\implies F \in C^1(\mathcal{U}) \text{ und } \forall x \in \mathcal{U} \text{ gilt:}$

$$\frac{\partial F}{\partial x_i}(x) = \int \frac{\partial f}{\partial x_i}(x,y) d\mu(y)$$

Beweis. siehe Aufschrieb

Bsp.:

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = ? \quad \text{Betrachte } F: [0, \infty] \to \mathbb{R}, F(t) = \int_{0}^{\infty} e^{-tx} \frac{\sin x}{x} dx$$

 $f(t,x):=e^{-tx}\frac{\sin(x)}{x}$ hat für $t\geq \delta$ die Abschätzungen $|f(t,x)|, |\partial_t f(t,x)|\leq e^{-\delta x}=:g(x)\in L^1([0,\infty))$ Lemma V.6 $\Longrightarrow \forall t>0$ gilt:

$$F'(t) = \int_0^\infty e^{-tx} (-\sin x) dx$$

$$= [e^{-tx} \cos x]_{x=0}^{x=\infty} + t \int_0^\infty e^{-tx} \cos x dx$$

$$= -1 + t^2 \int_0^\infty e^{-tx} \sin x dx$$

$$= -1 - t^2 F'(t)$$

$$\implies F'(t) = \frac{-1}{1+t^2}$$

... (siehe Aufschrieb)

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}$$

Def. V.7 (L^p -Norm)

Für μ -messbares $f: X \to \overline{\mathbb{R}}$ und $1 \le p \le \infty$ setzen wir

$$||f||_{L^p(\mu)} := \begin{cases} (\int |f|^p d\mu)^{1/p} & \text{, für } 1 \le p < \infty \\ \inf\{s > 0 \mid \mu(\{|f| > s\}) = 0\} & \text{, für } p = \infty \end{cases}$$

auf $\mathcal{L}^p(\mu) = \{ f : X \to \bar{\mathbb{R}} \mid f\mu - \text{messbar}, ||f||_{L^p(\mu)} < \infty \}$

Betrachte Äquivalenzrelation $f \sim g \Leftrightarrow f(x) = g(x)$ für μ -fast alle $x \in X$, und definiere den L^p -Raum durch $\mathcal{L}^p(\mu)/_{\sim}$.

Def. V.8

Für $E \subseteq X$ messbar und $f: E \to \overline{\mathbb{R}}$ sei $f_0: X \to \overline{\mathbb{R}}$ die **Fortsetzung** mit $f_0(x) = 0 \ \forall x \in X \setminus E$. Wir setzen dann

$$\mathcal{L}^p(E) := \{ f : E \to \bar{\mathbb{R}} \mid f_0 \in \mathcal{L}^p(\mu) \}$$

und $L^p(E,\mu) := \mathcal{L}^p(E)/_{\sim}$.

Proposition V.9

Für $1 \leq p \leq \infty$ ist $(L^p(\mu), ||\cdot||_{L^p(\mu)})$ ein normierter Vektorraum. Insbesondere gelten für $\lambda \in \mathbb{R}$ und $f, g \in L^p(\mu)$:

- 1. $||f||_{L^p} = 0 \implies f = 0 \mu$ -fast überall
- 2. $f \in L^p(\mu), \lambda \in \mathbb{R} \implies \lambda f \in L^p(\mu), ||\lambda f||_{L^p} = |\lambda| ||f||_{L^p}$
- 3. $f, g \in L^p(\mu) \implies f + g \in L^p(\mu) \text{ und } ||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Beweis. siehe Aufschrieb

Lemma V.10 (Youngsche Ungleichung)

Für $1 < p, q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und $x, y \ge 0$ gilt: $xy \le \frac{x^p}{p} + \frac{y^q}{q}$

П

Satz V.11 (Höldersche Ungleichung)

Für μ -messbare $f, g: X \to \mathbb{R}$ gilt: $|\int fgd\mu| \le ||f||_{L^p}||g||_{L^p}$, falls $1 \le p, q \le \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$

Beweis. siehe Aufschrieb

Satz V.12 (Minkowski-Ungleichung)

Für $f,g\in L^p(\mu)$ mit $1\leq p\leq \infty$ gilt: $||f+g||_{L^p}\leq ||f||_{L^p}+||g||_{L^p}$

Beweis. siehe Aufschrieb

Lemma V.13

Sei $1 \le p < \infty$ und $f_k = \sum_{j=1}^k u_j$ mit $u_j \in L^p(\mu)$. Falls $\sum_{j=1}^k ||u_j||_{L^p} < \infty$, so gelten:

- i) $\exists \mu$ -Nullmenge $N: f(x) = \lim_{k \to \infty} f_k(x) \ \forall x \in X \setminus N \text{ ex.}$
- ii) mit f := 0 auf gilt $f \in L^p(\mu)$
- iii) $||f f_k||_{L^p} \to 0$ mit $k \to \infty$

Beweis. siehe Aufschrieb

Vorlesung 15 21.12.20

Satz V.14 (Satz von Riesz-Fischer)

 $(L^p(\mu), ||\cdot||_{L^p})$ ist vollständig, also ein Banachraum. $(1 \le p \le \infty)$

Beweis. siehe Aufschrieb

Lemma V.15

Konvergiert f_k gegen f in $L^p(\mu)$, so konvergiert eine Teilfolge f_{k_j} punktweise μ -fast überall gegen f.

Bsp.:

Im Fall $p < \infty$ kann im Allgemeinen nicht auf die Wahl einer Teilfolge verzichtet werden: Jedes $n \in \mathbb{N}$ besitzt die eindeutige Darstellung $n = 2^k + j$ mit $k \in \mathbb{N}_0, 0 \le j < 2^k$

Definiere damit
$$f_n: [0,1] \to \mathbb{R}, f_n(x) = \begin{cases} 1 & \text{, falls } j \cdot 2^{-k} \le x \le (j+1)2^{-k} \\ 0 & \text{, sonst} \end{cases}$$

$$\int_{0}^{1} f_n(x)dx = 2^{-k} < \frac{2}{n} \to 0 \text{ mit } n \to \infty$$

Ändererseits: $\limsup_{n\to\infty} f_n(x)=1 \ \forall x\in [0,1),$ denn zu $x\in [0,1),$ $k\in \mathbb{N}$ können wir

 $j \in \{0,1,...,2^k-1\}$ wählen mit $j \cdot 2^{-k} \leq x < (j+1)2^{-k}$

 $\implies f_n(x) = 1 \text{ für } n = 2^k + j$

 \implies Folge konvergiert nicht punktweise λ^1 -fast überall gegen 0.

Bem.:

Jetzt betrachten wir $\mu = \lambda^n$ im \mathbb{R}^n .

Im \mathbb{R}^n haben wir eine Metrik.

Def. V.16

Der **Träger** einer Funktion $f: \Omega \to \mathbb{R}, \Omega \subseteq \mathbb{R}^n$ offen, ist die Menge

$$spt(f) = \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$$

Der Raum der stetigen Funktionen mit kompaktem Träger in Ω wird mit $C_c^0(\Omega)$ bezeichnet.

Für $K\subseteq\Omega$ kompakt sei $dist(\cdot,K):\mathbb{R}^n\to[0,\infty), dist(x,K)=\inf_{z\in K}||x-z||$ die

Abstandsfunktion von K.

Wir benötigen:

- 1. $dist(\cdot, K)$ ist Lipschitz-stetig mit Konstante 1
- $2. \ dist(\mathbb{R}^n \setminus \Omega, K) = \inf_{x \in \mathbb{R}^n \setminus \Omega} dist(x, K) > 0$

Satz V.17

Sei $\Omega \subseteq \mathbb{R}^n$ offen und $1 \leq p < \infty$. Dann existiert zu jedem $f \in C^p(\Omega)$ eine Folge $f_k \in C_c^0(\Omega)$ mit $||f_k - f||_{L^p(\Omega)} \to 0$ mit $k \to \infty$.

Beweis. siehe Aufschrieb

Bem.:

 $BC^0(\Omega)$ bezeichnet die Menge der beschränkten, stetigen Funktionen auf Ω . Mit Supremumsnorm $||\cdot||_{sup}$ ist diese ein Banachraum.

... (Rest siehe Aufschrieb)

Satz V.18

Für $f \in L^2(I,\mathbb{C})$ konvergiert f_n gegen f in $L^2(I,\mathbb{C})$? (bezieht sich auf Bem. vorher)

Beweis. siehe Aufschrieb

Bem.:

Sei $\ell^2(\mathbb{C})$ der Raum aller komplexen Folgen $c=(c_k)_{k\in\mathbb{Z}}$ mit $||c||_{\ell^2}^2=2\pi\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$

 $\ell^2(\mathbb{C})$ ist vollständig (folgt aus Riesz-Fischer angewandt auf das Zählmaß auf \mathbb{Z})

Lemma V.19

Die Abbildung $\mathcal{F}: (L^2(I,\mathbb{C}), ||\cdot||_{L^2}) \to (\ell^2(\mathbb{C}), ||\cdot||_{\ell^2}), \mathcal{F}(f) = (\hat{f}(k))_{k \in \mathbb{Z}}$ ist eine Isometrie von Hilberträumen.

Beweis. siehe Aufschrieb

Bem.:

Die Konvergenz der Fourierreihe ist ein Spezialfall des Spektralsatzes für selbstadjungierte Operatoren. Dieser verallgemeinert die Diagonalisierbarkeit symmetrischer Matrizen (siehe LA) auf ∞ -dimensionalen Räume.

Hier ist der Operator $H=-\frac{d^2}{dx^2}$ ein Endomorphismus auf $C^{\infty}_{Per}(I)$

$$H: C^{\infty}_{Per}(I) \to C^{\infty}_{Per}(I), Hf = -\frac{d^2f}{dx^2}$$

Part. Int. $\implies \langle Hf, g \rangle_{L^2} = \langle f, Hg \rangle_{L^2} \ \forall f, g \in C^{\infty}_{Per}(I) \text{ sowie } \langle Hf, f \rangle_{L^2} = ||\frac{df}{dx}||^2_{L^2} \geq 0$

Die w_k sind Eigenfunktionen von den Eigenvektoren $\lambda_k = k^2$:

 $Hw_k = \lambda^2 w_k \ \forall k \in \mathbb{Z}$

Satz V.18: Der von den Eigenfunktionen w_k aufgespannte Raum ist dicht in $L^2(I,\mathbb{C})$

Vorlesung 16 08.01.21

Satz V.20 (Vitali)

Sei $f_n \in L^p(\mu), 1 \leq p \leq \infty$, eine Folge mit $f_n \to f$ punktweise fast überall. Dann sind folgende Aussagen äquivalent:

- a) $f \in L^p(\mu)$ und $||f_n f||_{L^p} \to 0$
- b) Mit $\lambda(A) = \limsup_{A} \int_{A} |f_n|^p d\mu$ gilt:
 - 1) zu $\epsilon>0$ ∃ $\delta>0$ mit $\lambda(A)<\epsilon$ $\forall A$ messbar mit $\mu(A)<\delta$
 - 2) zu $\epsilon > 0$ \exists E messbar mit $\mu(E) < \infty$ und $\lambda(X \setminus E) < \epsilon$

Im Fall p = 1 heißt eine Folge mit 1) und 2) gleichgradig integrierbar.

VI Satz von Fubini

Bem.: (Prinzip von Cavalieri)

Haben zwei Körper in jeder Höhe Schnitte von gleichem Flächeninhalt, so haben sie auch auch das gleiche Volumen.

Bsp.: 1. Volumen eines Kegels.

Sei $B \subseteq \mathbb{R}^2$ ein Gebiet mit Flächeninhalt |B| = A.

Betrachte $C = \{s(b,1) \mid b \in B, 0 \le s \le 1\}$

Für $k \in [0, 1]$ ist der k-Schnitt von C die Menge

$$C_k = \{a \in \mathbb{R}^2 \mid (a, b) \in C\} = \{h \cdot b \mid b \in B\} = kB$$

 $|C_k| = k^2 A$ Nach Cavalieri hängt vol(C) nur von A ab.

Wir schreiben vol(C) = V(A). Es gilt V(kA) = kV(A) für $k \in \mathbb{N}$, betrachte dazu ... (siehe Aufschrieb)

2. Betrachte in $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ die Mengen und die Inhalte der Zugehörigen z-Schnitte:

Zylinder
$$Z = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le 1, 0 \le z \le 1\}, |Z_z| = \pi$$

Kegel $C = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le z, 0 \le z \le 1\}, |C_z| = \pi z^2$
Halbkugel $H = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le \sqrt{1 - z^2}, 0 \le z \le 1\}, |H_z| = \pi (1 - z^2)$

$$\implies |Z_z| = |C_z| + |H_z| \stackrel{Cavalieri}{\implies} vol(H) = vol(Z) - vol(C) = \pi - \frac{\pi}{3} = \frac{2}{3}\pi$$
$$\implies vol(C) : vol(H) : vol(Z) = 1 : 2 : 3 \text{ (Archimedes)}$$

Def. VI.1

Seien α, β äußere Maße auf X, Y. Das **Produktmaß** $\alpha \times \beta$ einer Menge $E \subseteq X \times Y$ ist

$$(\star) \quad \alpha \times \beta(E) = \inf\{\sum_{j=1}^{\infty} \alpha(A_j)\beta(B_j) \mid A_j, B_j \text{ messbar}, E \subseteq \bigcup_{j=1}^{\infty} A_j \times B_j\}$$

П

Lemma VI.2

 $\alpha \times \beta$ ist ein äußeres Maß

Beweis. siehe Aufschrieb

Lemma VI.3

Sei $P = A \times B$. Eine Produktmenge, d.h. A, B sind messbar bzgl. α bzw. β . Dann gilt $\alpha \times \beta(P) = \alpha(A)\beta(B)$ und P ist $\alpha \times \beta$ -messbar.

Beweis. siehe Aufschrieb

Satz VI.4 (Cavalierisches Prinzip)

Seien α und β σ -endliche äußere Maße auf X bzw. Y, und $D \subseteq X \times Y$ sei $\alpha \times \beta$ -messbar. Dann ist $D_y = \{x \in X \mid (x,y) \in D\}$ α -messbar für β -fast alle $y \in Y$. Die Funktion $y \mapsto \alpha(D_y)$ ist β -messbar und es gilt:

$$(\alpha \times \beta)(D) = \int_{Y} \alpha(D_y) \ d\beta(y)$$

Vorlesung 17

11.01.21

Beweis. siehe Aufschrieb

Bem.:

Die Rollen von α und β können vertauscht werden, d.h. man betrachtet das β -Maß des X-Schnittes $D_x0\{y\in Y\mid (x,y)\in D\}$ und integriert bzgl. α

$$\implies \alpha \times \beta(D) = \int_{V} \alpha(D_y) \ d\beta(y) = \int_{V} \beta(D_x) \ d\alpha(x)$$

Bsp.:

Man kann nicht auf die σ -Endlichkeit verzichten.

$$D := \{(x, y) \in [0, 1] \times [0, 1] \mid x = y\} \subseteq \mathbb{R} \times [0, 1]$$
$$\int_{\mathbb{R}} card(D_x) d\lambda^1(x) = 1 \neq 0 = \int_{[0, 1]} \lambda^1(D_y) \ dcard(y)$$

Mit $I_k = \left[\frac{k-1}{n}, \frac{k}{n}\right]$ gilt $D = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=1}^{\infty} I_k \times I_k\right) \implies D$ ist messbar bzgl. $\lambda^1 \times card$

Lemma VI.5

Es gilt $\lambda^n = \lambda^k \times \lambda^m$ für k+m=n

Beweis. siehe Aufschrieb

Vorlesung 18 15.01.21

Bsp.:

1. Volumen α_n der Kugel $B = \{z \in \mathbb{R}^n \mid ||z|| < 1\}$. Für $y \in [-1,1)$ ist $B_y = \{x \in \mathbb{R}^{n-1} \mid ||x|| < |1-y^2|^{1/2}\}$

$$\alpha_{n} = \int_{-1}^{1} \lambda^{n-1}(B_{y}) \ dy = \alpha_{n-1} \int_{-1}^{1} (1 - y^{2})^{\frac{n-1}{n}} \ dy$$

$$\stackrel{y = \cos \theta}{=} \alpha_{n-1} A_{n}, \text{ mit } A_{n} = \int_{0}^{\pi} \sin^{n} \theta \ d\theta$$

$$\stackrel{part.Int.}{\Longrightarrow} A_{n} = \frac{n-1}{n} A_{n-2} \ \forall \ n \ge 2, \text{ dabei sind } A_{0} = \pi, A_{1} = 2$$

$$\Longrightarrow A_{2k} = \frac{2k-1}{2k} \cdot \dots \cdot \frac{1}{2} A_{0} = \pi \prod_{j=1}^{k} \frac{2j}{2j+1}$$

$$A_{2k+1} = \frac{2k}{2k+1} \cdot \dots \cdot \frac{2}{3} A_{1} = 2 \prod_{j=1}^{k} \frac{2j}{2j+1}$$

$$\Longrightarrow A_{2k+1} A_{2k} = \frac{2\pi}{2k+1} \text{ bzw. } A_{2k} A_{2k-1} = \frac{\pi}{k}$$

$$\Longrightarrow \alpha_{2k} = (A_{2k} A_{2k-1}) \dots (A_{3} A_{2}) \alpha_{0} = \frac{\pi^{k}}{k!}$$

$$\alpha_{2k+1} = (A_{2k} A_{2k-1}) \dots (A_{3} A_{2}) \alpha_{1} = \frac{\pi^{k}}{(k+\frac{1}{2})(k-\frac{1}{2}) \dots \frac{1}{2}}$$

Bem: $\alpha_k \to 0$ mit $k \to \infty$

2. Für $A \subseteq \mathbb{R}^n$ sei $K(A) = \{y(x,1) \in \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n-1} \mid 0 < y < 1, x \in A\}$ Beh: A messbar bzgl. $\lambda^n \implies K(A)$ λ^{n+1} -messbar und $\lambda^{n+1}(K(A)) = \frac{1}{n+1}\lambda^n(A)$ (siehe Aufschrieb)

Def. VI.6

Eine Funktion $f:X\to [-\infty,\infty]$ heißt σ -endlich bzgl. des äußeren Maßes μ , falls gilt:

f ist μ -messbar und $\{f \neq 0\}$ ist σ -endlich

Satz VI.7 (Fubini)

Seien α, β äußere Maße auf X bzw. Y und $f: X \times Y \to \mathbb{R}$ sei σ -endlich bzgl. $\alpha \times \beta$. Ist das Integral $\int f \ d(\alpha \times \beta)$ definiert, so gilt:

- 1. Für β -fast alle $y \in Y$ ist $f(\cdot, y)\alpha$ -messbar, und $\int\limits_X f(x, y) \ d\alpha(x)$ existiert.
- 2. $y \mapsto \int\limits_X f(x,y) \ d\alpha(x)$ ist β -messbar und $\int\limits_Y \int\limits_X f(x,y) \ d\alpha(x) \ d\beta(y)$ existiert.
- 3. $\iint_{X \times Y} f \ d(\alpha \times \beta) = \iint_{Y \times X} f(x, y) \ d\alpha(x) \ d\beta(y)$

Der Satz gilt auch mit vertauschten Reihenfolgen der Integrationen, also folgt:

$$\int_{X\times Y} f \ d(\alpha \times \beta) = \int_{Y} \int_{X} f(x,y) \ d\alpha(x) \ d\beta(y) = \int_{X} \int_{Y} f(x,y) \ d\beta(y) \ d\alpha(x)$$

Zusatz: Ist $f: X \times Y \to \overline{\mathbb{R}}$ σ -endlich und $\int\limits_{Y} \int\limits_{X} |f(x,y)| \ d\alpha(x) \ d\beta(y) < \infty$, so ist f integrierbar bzgl. $\alpha \times \beta$ und der Satz damit anwendbar.

Beweis. siehe Aufschrieb

Bsp.:

 $\begin{cases}
\int_{-1}^{1} \int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} dy dx = \pi \\
1. \int_{-1}^{1} \int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} dx dy = -\pi
\end{cases}$ $\begin{cases}
\det \frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{\partial}{\partial x} \frac{\partial}{\partial y} \arctan(\frac{x}{y}) \text{ für } y \neq 0 \\
\text{Fubini} \implies \text{Integral bzgl. } \lambda^2 = \lambda^1 \times \lambda^1 \text{ ex nicht!}
\end{cases}$

2.

$$\int_{-1}^{1} \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dx dy = 0 = \int_{-1}^{1} \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dy dx$$

Aber das λ^2 -Integral über $[-1,1)^2$ ex. nicht, da

$$\int_{[0,1)^2} \frac{xy}{(x^2+y^2)^2} d\lambda^2(x,y) = \int_0^1 \int_0^1 \frac{xy}{(x^2+y^2)^2} dx dy = \frac{1}{2} \int_0^1 (\frac{1}{y} - \frac{y}{1+y^2}) dy = \infty$$

Bsp.:

 μ äußeres Maß auf X und $f: X \to [0, \infty]$ sei σ -endlich bzgl. μ . Ist $\mathcal{C}: [0, \infty] \to [0, \infty]$ stetig mit $\mathcal{C}(0) = 0$, sowie auf $(0, \infty)$ stetig differenzierbar mit $\mathcal{C}'(t) \geq 0$, so gilt:

$$\int\limits_X \mathcal{C}(f(x)) \ d\mu(x) = \int\limits_0^\infty \mathcal{C}'(t) \mu(\{f > t\}) \ dt$$

(Begründung siehe Aufschrieb)

Vorlesung 19 18.01.21

Satz VI.8

 $\Omega \subseteq \mathbb{R}^n$ offen. Für $f \in C^1_C(\Omega)$ und $g \in C^1(\Omega)$ gilt:

$$\int_{\Omega} (\partial_j f) g dx = -\int_{\Omega} f(\partial_j g) dx \quad \forall \ 1 \le j \le n \ (dx \stackrel{\circ}{=} d\lambda^n)$$

Beweis. siehe Aufschrieb

Bem.:

1. partielle Integration wird oft mit \triangledown und div formuliert:

$$f \in C^1_C(\Omega), X \in C^1(\Omega, \mathbb{R}^n)$$

$$\int\limits_{\Omega} < \nabla f, x > dx = -\int\limits_{\Omega} f(divX) dx$$

$$(< \nabla f, X > = \sum_{i=1}^n \partial_i fX_i, fdivX = \sum_{i=1}^n f\partial_i X_i)$$

2. Der Satz von Fubini gilt auch für kartesische Produkte mit endlich vielen (statt nur zwei) Faktoren. Man zeige analog zu Lemma VI.5, dass in einem endlichen Produkt von Maßen beliebig Klammern gesetzt oder weggelassen werden können. Fubini wird dann per Induktion über die Anzahl der Faktoren bewiesen.

Der Transformationssatz VII

Def. VII.1

Eine Abbildung $\Phi: \mathcal{U} \to \mathcal{V}$, $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$ offen, heißt C^1 -Diffeomorphismus, falls Φ bijektiv ist und Φ , Φ^{-1} stetig differenzierbar sind.

Bsp.: (Polarkoordinaten in \mathbb{R}^n)

$$\Phi: (0, \infty) \times (0, 2\pi) = \mathcal{U} \to \mathcal{V} = \mathbb{R}^2 \setminus \{(x, 0) \mid x \ge 0\}$$

$$\Phi(r, \mathcal{C}) = (r\cos(\mathcal{C}), r\sin(\mathcal{C}))$$

$$\Phi(r, \mathcal{C}) = (r \cos(\mathcal{C}), r \sin(\mathcal{C}))$$

$$\Phi^{-1}(x, y) = \begin{cases} (r, \arccos(\frac{x}{r})) &, \text{ falls } y \ge 0\\ (r, 2\pi - \arccos(\frac{x}{r})) &, \text{ falls } y < 0 \end{cases}$$

$$r = \sqrt{x^2 + y^2}$$

Für x < 0 filt alternativ $\Phi^{-1}(x,y) = (r, \frac{\pi}{2} + \arccos(\frac{x}{r}))$ $\implies \Phi^{-1}$ glatt auf ganz $\mathcal{V} \implies \Phi^{C^1}$ Diffeomorphismus.

Bem.: (Notation)

$$x \in \mathbb{R}^n, \delta > 0$$

$$Q(x, \delta) = \{ y \in \mathbb{R}^n \mid ||y - x||_{\infty} \le \delta \}, ||x||_{\infty} = \max_{1 \le k \le n} |x_k|$$

Lemma VII.2

Sei $\mathcal{U} \subseteq \mathbb{R}^n$ offen, $x_0 \in \mathcal{U}$ und $\Phi : \mathcal{U} \to \mathbb{R}^n$ mit $D\Phi(x_0) \in GL_n(\mathbb{R})$. Gegeben sei eine Folte $Q_j = Q(x_j, \phi_j) \subseteq \mathcal{U}$ mit $\phi_j \to 0$ und $x_0 \in Q_j \ \forall \ j \in \mathbb{N}$. Dann gilt:

$$\limsup_{j\to\infty}\frac{\lambda^n(\Phi(Q_j))}{\lambda^n(Q_j)}\leq |det D\Phi(x_0)|$$

Satz VII.3 (Transformationsformel)

 $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$ offen, $\Phi : \mathcal{U} \to \mathcal{V}$ C^1 -Diffeomorphismus. Ist $A \subseteq \mathcal{U}$ λ^n -messbar, so ist auch $\Phi(A)$ λ^n -messbar und es gilt:

1.
$$\lambda^n(\Phi(A)) = \int_A |\det D\Phi(x)| dx$$

Weiter gilt für jede λ^n -messbare Funktion $f: \mathcal{V} \to \bar{\mathbb{R}}$

2.
$$\int_{\mathcal{V}} f(y)dy = \int_{\mathcal{U}} f(\Phi(x)) |\det D\Phi(x)| dx \quad (dy = d\lambda^{n}(y))$$

falls eines der Integrale definiert ist.

Beweis. siehe Aufschrieb

Vorlesung 20 22.01.2021

Bsp.:

1.

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = e^{-(x^2 + y^2)} = e^{-||(x,y)||^2}$$
$$\int_{\mathbb{R}^2} f d\lambda^2 \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}} e^{-x^2} (\int_{\mathbb{R}} e^{-y^2} dy) dx = (\int_{\mathbb{R}} e^{-x^2} dx)^2$$

Für Polarkoordinaten $\Phi: (0,\infty) \times (0,2\pi) \to \mathbb{R}^2 \setminus \{(x,0) \mid x \geq 0\}$ gilt:

$$\det D\Phi(r,\Theta) = r$$

Da $\{(x,0) \mid x \geq 0\}$ eine λ^2 -Nullmenge ist, folgt aus der Transformationsformel:

$$\int_{\mathbb{R}^2} f d\lambda^2 = \int_{(0,\infty)\times(0,2\pi)} e^{-r^2} r \ d\lambda^2(r,\Theta)$$

$$\stackrel{\text{Fubini}}{=} \int_0^\infty e^{-r^2} r \left(\int_0^{2\pi} d\Theta\right) dr$$

$$= 2\pi \int_0^\infty e^{-r^2} r \ dr$$

$$= 2\pi [-\frac{1}{2}e^{-r^2}]_{r=0}^{r=\infty}$$

$$= \pi$$

$$\implies \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

2. Spezialfall $\Phi: \mathcal{U} \to \mathcal{V}C^1$ -Diffeomorphismus ist Einschränkung einer linearen Abbildung.

$$\Longrightarrow \Phi(x) = Sx \text{ mit } S \in GL_n(\mathbb{R})$$

$$\Longrightarrow D\Phi(x) = S \ \forall \ x \in \mathcal{U}$$

$$\stackrel{Trafo}{\Longrightarrow} \lambda^n(S(D)) = |\det S| \lambda^n(D) \text{ (siehe Satz ???)}$$
bzw.
$$\int_{\mathcal{V}} f(y) d\lambda^n(y) = |\det S| \int_{\mathcal{U}} f(Sx) d\lambda^n(x)$$

3. Polarkoordinaten im \mathbb{R}^3

$$\Phi(r, \Theta, \phi) = (r \sin(\Theta) \cos(\phi), r \sin(\Theta) \sin(\phi), r \cos(\Theta))$$

ist C^{∞} -Diffeomorphismus der offenen Mengen $\mathcal{U}=(0,\infty)\times(0,\pi)\times(0,2\pi)$ und $\mathcal{V}=\mathbb{R}^3\setminus\{(x,0,z)\mid x\geq 0\}$

Inverse:

$$r = \sqrt{x^2 + y^2 + z^2}, \Theta = \arccos(\frac{z}{r})$$

$$\phi = \begin{cases} \arccos(\frac{x}{\sqrt{x^2 + y^2}}) &, \text{ für } y \ge 0 \\ 2\pi - \arccos(\frac{x}{\sqrt{x^2 + y^2}}) &, \text{ für } y \le 0 \end{cases}$$

$$D\Phi(r, \Theta, \phi) = \begin{pmatrix} \sin(\Theta)\cos(\phi) & r\cos(\Theta)\cos(\phi) & -r\sin(\Theta)\sin(\phi) \\ \sin(\Theta)\sin(\phi) & r\cos(\Theta)\sin(\phi) & r\sin(\Theta)\cos(\phi) \\ \cos(\Theta) & -r\sin(\Theta) & 0 \end{pmatrix}$$

$$\implies \det D\Phi = r^2\sin(\Theta)$$

$$E := [r_1, r_2] \times [\Theta_1, \Theta_2] \times [\phi_1, \phi_2]$$

$$\lambda^3(\Phi(E)) = \int_{r_1}^{r_2} \int_{\Theta_1}^{\Theta_2} \int_{\Phi_2}^{\phi_2} r^2\sin(\Theta)d\phi d\Theta dr = \frac{r_2^3 - r_1^3}{3}(\cos(\Theta_1) - \cos(\Theta_2))(\phi_2 - \phi_1)$$

Bem.:

Ziel: Umrechnung von Differentialoperatoren

Begriff: $\Phi: \mathcal{U} \to \mathcal{V}$ C^k -Diffeomorphismus zwischen \mathcal{U}, \mathcal{V} offen.

Gramsche Matrix $g \in C^{k-1}(\mathcal{U}, \mathbb{R}^{n \times n}), g = (g_{i,j})$

$$g(x) = D\Phi(x)^{\top} D\Phi(x) \text{ bzw.} g_{i,j}(x) = <\frac{\partial \Phi}{\partial x_i}(x), \frac{\partial \Phi}{\partial x_j}(x) >$$

Für Polarkoordinaten im \mathbb{R}^3 gilt:

$$(g_{i,j}(r,\Theta,\phi))_{1 \le i,j \le 3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2(\Theta) \end{pmatrix}$$

Allgemein gilt:

g(x) ist symmetrisch und strikt positiv definit, denn

$$\langle g(x)v, v \rangle = \langle D\Phi(x)^{\top} D\Phi(x)v, v \rangle = |D\Phi(x)v|^2 > 0$$

für $v \neq 0$ und $D\Phi(x) \in GL_n(\mathbb{R}) \implies g(x)$ ist invertierbar.

Wir setzen: $g^{ij}(x) = (g(x)^{-1})_{ij}$... (Rest siehe Aufschrieb)

Satz VII.4

Sei $\Phi \in C^1(\mathcal{U}, \mathcal{V})$ Diffeomorphismus zwischen $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$ offen mit gramscher Matrix (g_{ij})

1. Für $v \in C^1(\mathcal{V})$ gilt mit $\mu = v \circ \Phi$:

$$(\nabla v) \circ \Phi = D\Phi \cdot \nabla_g u \ , \ \nabla_g u := \sum_{i,j=1}^n g^{ij} \frac{\partial u}{\partial x_i} e_j$$

2. Für $y \in C^1(\mathcal{V}, \mathbb{R}^n)$ gilt mit $y \circ \Phi = D\Phi x$:

$$(div(y)) \circ \Phi = div_g x := \frac{1}{\sqrt{det(g)}} \sum_{j=1}^n \frac{\partial}{\partial x_j} (\sqrt{det(g)} x_j)$$

3. Ist $\Phi \in C^2(\mathcal{U}, \mathcal{V}), v \in C^2(\mathcal{V}), u = v \circ \Phi$

$$\implies (\triangle v) \circ \Phi = div_g \nabla_g u = \frac{1}{\sqrt{det(g)}} \sum_{i,j=1}^n \frac{\partial}{\partial x_i} (\sqrt{det(g)} g^{ij} \frac{\partial u}{\partial x_j})$$

Beweis. siehe Aufschrieb

Bsp.: (Laplace in Polarkoordinaten im \mathbb{R}^3)

$$\nabla_g u = \frac{\partial u}{\partial r} e^r + \frac{1}{r^2} \frac{\partial u}{\partial \Theta} e^{\Theta} + \frac{1}{r^2 \sin^2(\Theta)} \frac{\partial u}{\partial \phi} e^{\phi}$$

$$div_g x = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 x^r) + \frac{1}{\sin(\Theta)} \frac{\partial}{\partial \Theta} (\sin(\Theta) x^{\Theta}) + \frac{\partial x^{\phi}}{\partial \phi}$$

$$\triangle_g u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial u}{\partial r}) + \frac{1}{r^2 \sin(\Theta)} \frac{\partial}{\partial \Theta} (\sin(\Theta) \frac{\partial u}{\partial \Theta}) + \frac{1}{r^2 \sin^2(\Theta)} \frac{\partial^2 u}{\partial \phi^2}$$

 $e^r, e^{\Theta}, e^{\phi}$ Standardbasis im (r, Θ, ϕ) -Raum und $x^r, x^{\Theta}, x^{\phi}$ sind zugehörige Koordinaten

$$v(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}} \implies u = r^{-1}$$
$$\implies \triangle v \circ \Phi = \triangle_q u = 0 \text{ auf } \mathbb{R}^3 \setminus \{0\}$$