максимальное значение скорости бруска V_m . За промежуток времени 2τ его скорость изменяется от $-V_m$ до $+V_m$, при этом он движется равноускоренно, поэтому

$$V_m = -V_m + \mu g \cdot 2\tau.$$

Откуда следует $V_m = \mu g \, \tau \approx 1.0 \, \text{м/c}$, что в десять раз больше максимальной скорости ленты, поэтому предположение о том, что в моменты времени, когда скорости бруска и ленты равны, ускорение ленты превышает по модулю μg полностью оправдано. Максимальное смещение бруска при таком движении, амплитуда его колебаний, определяется формулой

$$X_m = V_m \tau = \mu g \tau^2 \approx 0.98 M$$

Заметим, что закон движения бруска не зависит от закона движения ленты, если только последняя движется по периодическому закону с достаточно большой амплитудой. В частности, наше решение остается справедливым, если ускорение ленты изменяется в тех же пределах, но по гармоническому закону. Так же отметим, что утверждение о равенстве периодов вынужденных колебаний и вынуждающей силы справедливо для любых типов колебаний.

11.5 Гидродинамический удар в трубах возникает при резкой остановке течения воды, в следствие возникновения сил препятсвующих этому движению. После перекрывания трубы в

жидкости возникает волна сжатия которая движется co скоростью звука В воде C. Следовательно **3a** малый промежуток времени Δt останавливается столб воды

длиной $l=c\Delta t$. Сила F, которая приводит к остановке, с одной стороны равна PS, (где P- избыточное давление в трубе, S - площадь поперечного сечения трубы), а с другой определяется вторым законом Ньютона $F\Delta t = m\Delta V$. Приравнивая эти выражения, получим

$$c\Delta t S \rho V = P S \Delta t$$
.

Откуда находим избыточное давление

$$P = \rho c V$$
.

Интересно отметить, что в данном случае численное значение $P \approx 1.5 \cdot 10^6 \ \Pi a \approx 15 \ amm$.

Найдем теперь толщину стенок трубы, которые могут выдержать

пятикратное превышение этого давления. Выделим на стенке трубы небольшой участок длиной l и видимый из центра под малым углом $\Delta \alpha$. Сила давления $P\Delta S = Pr \Delta \alpha l$ должна быть уравновешена силами упругости, возникающими в стенках трубы T, модуль суммы которых равен

$$T\Delta\alpha = \sigma h l \Delta\alpha$$
,

где σ - механическое напряжение в стенках трубы, которое не превышает σ_{np} . Учитывая, что давление должно в n=5 раз превышать давление гидродинамического удара, получим из условия равновесия

$$ncV \rho r \Delta \alpha l = \sigma_{np} lh \Delta \alpha$$
.

Из этой формулы следует

$$h = \frac{nc\rho Vr}{\sigma_{np.}} \approx 1.1 \cdot 10^{-3} \,\mathrm{M}$$