# Graph Representation Learning





# Machine Learning Lifecycle

Machine Learning Lifecycle requires feature engineering. Feature engineering is painful! How can we make it easy?



# Feature Learning in Graphs

 Goal: Efficient task-independent feature learning for machine learning in graphs!



# Why is it hard?

- Modern deep learning toolbox is designed for simple sequences or grids
  - CNNs for fixed-size images/grids....



• RNNs or word2vec for text/sequences...



# Why is it hard?

- Networks are far more complex.
  - Complex topographical structure
  - No fixed node ordering or reference point.



### Node embedding

- Task: Give a graph G, we map each node in a network to a point in a low-dimensional space
  - Encode network information and generate node representation
  - Similarity of embedding between nodes approximates their original network similarity



# Example: Node Embedding

2D embedding of nodes of the Zachary's Karate Club network:



### Learning Node Embeddings

- Define a node similarity function similarity (u, v)
  - a measure of similarity in the original network
- Encoder ENC maps from nodes to embeddings  $\mathrm{ENC}(v) = z_v$
- Decoder DEC maps from embedding to the similarity score(e.g. dot product  $\mathbf{z}_v^T \mathbf{z}_u$ )
- Optimize the parameters of the encoder so that:



# How to define node similarity?

Should two nodes have similar embeddings if they...

- are connected?
- share neighbors?
- have similar "structural roles"?
- Random walk approaches for node embedding!
  - Expressivity: if random walk starting from a node visits another node with high probability, they are similar
  - Efficiency: only need to consider pairs that co-occur on random walks
- We will introduce DeepWalk, node2vec.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2014.

Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." *Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*. 2016.



# Random Walk Embeddings

 $\mathbf{z}_{u}^{T}\mathbf{z}_{v} \approx$ 

Probability that u and v co-occur on a random walk over the graph



Estimate probability of visiting node  $m{v}$  on a random walk starting from node  $m{u}$  using some random walk strategy  $m{R}$ 

Optimize embeddings to encode these random walk statistics

### Notation

- **Vector**  $z_u$ : the embedding of node u
- Probability  $P(v|z_u)$ :
  - The predicted probability of visiting node v on random walks starting from node u (our model prediction based on  $z_u$ )
- Softmax function:

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Turns vector of K real values (model predictions) into K probabilities that sum to 1

• Sigmoid function:



$$S(x) = \frac{1}{1 + e^{-x}}$$

S-shaped function that turns real values into the range of (0, 1).

### Feature Learning Objective

• Our goal is to learn a mapping  $z: u \to \mathbb{R}^d$ Such that:

$$\max_{z} \sum_{u \in V} \log P(N_R(u)|z_u)$$

 $N_R(u)$  neighborhood of u obtained by strategy R



Idea: Learn node embedding such that nearby nodes are close together in the network

### Random Walk Optimization $N_R(u)$

- ${f \cdot}$  Run short fixed-length random walks starting from each node on the graph using some strategy R
- For each node u collect  $N_R(u)$ , the multiset of nodes visited on random walks starting from u
- Optimize embeddings according to: Given node u, predict its neighbors  $N_R(u)$

$$\max_{z} \sum_{u \in V} \log P(N_R(u)|z_u)$$

### Random Walk Optimization $P(N_R(u)|z_u)$

- Assumption: Conditional likelihood factorizes over the set of neighbors  $P(N_R(u)|z_u) = \prod_{v \in N_R(u)} P(v|z_u)$
- The objective becomes:

$$\max_{z} \sum_{u \in V} \sum_{v \in N_R(u)} \log P(v|z_u)$$



• Softmax parametrization  $P(v|z_u)$ :

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_n)}$$

### Why softmax?

We want node v to be most similar to node u (out of all nodes n).

Intuition:  $\sum_{i} \exp(x_i) \approx \max_{i} \exp(x_i)$ 

### Random Walk Optimization



 Optimization random walk embedding is finding node embedding that minimize this loss function

# Negative Sampling

Reduce Computation Cost: Negative sampling

$$\log\left(\frac{\exp(\mathbf{z}_u^\top\mathbf{z}_v)}{\sum_{n\in V}\exp(\mathbf{z}_u^\top\mathbf{z}_n)}\right)$$
 分母很复杂,就不全算,算一个很小的子集 
$$\geq \log(\sigma(\mathbf{z}_u^\top\mathbf{z}_v)) - \sum_{i=1}^k \log(\sigma(\mathbf{z}_u^\top\mathbf{z}_{n_i})), n_i \sim P_V$$
 sigmoid function (makes each term a "probability" all nodes between 0 and 1)

Instead of normalizing w.r.t. all nodes, just normalize against k random "negative samples"  $n_i$ 

# Negative Sampling

- $n_i \sim P_v$
- Sample k negative nodes proportional to degree
- Two considerations for k (# negative samples):
  - Higher *k* gives more **robust** estimates
  - Higher k corresponds to higher **prior** on **negative events**. In practice,  $k = 5 \sim 20$

### Random Walk Embedding Framework

- Run short fixed-length random walks starting from each node on the graph using some strategy R.
- For each node u collect  $N_R(u)$ , the multiset of nodes visited on random walks starting from u
- Optimize embeddings using stochastic gradient descent with loss function

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

### How should we randomly walk?

- What strategies should we use to run these random walks?
- Simplest idea: Just run fixed-length, unbiased random walks starting from each node (DeepWalk from Perozzi et al., 2013)
  - The issue is that such notion of similarity is too constrained
- How can we generalize this?



### Biased Random Walk

- Second order random walk R: remember the previous step.
  - Richer node structures
- Use flexible, biased random walks that can trade off between local and global views of the network (Node2Vec, 2016).



Two strategies to define neighborhoods:

**Breadth First Search(BFS)** 

**Depth First Search(DFS).** 

### Walk of length 3 ( $N_R(u)$ ) of size 3):

$$N_{BFS}(u) = \{s_1, s_2, s_3\}$$
 Local microscopic view

$$N_{DFS}(u) = \{s_4, s_5, s_6\}$$
 Global macroscopic view

### Biased Random Walks

- Biased second order random walks to explore neighborhoods:
  - Random walk just traversed edge  $(s_1, w)$  and is now at w
  - Neighbors of w can only be:



### Tadeoff between BFS and DFS

- Two parameters to tune:
  - Return parameter p: the ratio between **BFS** and **return** to the previous node
  - In-out parameter q: the ratio between BFS and DFS



### Biased Random Walk



**BFS-like** walk: Low value of *p* 

DFS-like walk: Low value of q

transition prob. segmented based on distance from  $s_1$ 

### Node2vec Algorithm

- Compute random walk probabilities
- Simulate r biased random walks of length l starting from each node u
- Optimize the node2vec objective using Stochastic Gradient Descent

### Network Embedding as Matrix Factorization

- Inner product decoder with node similarity defined by edge connectivity is equivalent to matrix factorization of adjacency matrix
  - Exact factorization  $A = Z^T Z$  is generally not possible
  - We can approximate by

$$\min_{\mathbf{Z}} \left| |A - Z^T Z| \right|_2$$



### What does DeepWalk do?

 DeepWalk have a more complex node similarity definition based on random walks, equivalent to matrix factorization of:

# Volume of graph $vol(G) = \sum_{i} \sum_{j} A_{i,j}$ Diagonal matrix D $D_{u,u} = \deg(u)$ $\log \left(vol(G) \left(\frac{1}{T} \sum_{r=1}^{T} (D^{-1}A)^r \right) D^{-1}\right) - \log b$ context window size $T = |N_R(u)|$ Power of normalized adjacency matrix

### How to use node embedding

- Node classification: predict label based on embedding
- Link prediction: predict edge (i,j) based on  $f(z_i,z_i)$ , where we can concatenate, avg, product, or take a difference between embeddings:

```
Concatenate: f(z_i, z_i) = g([z_i, z_i])
```

Hadamard:  $f(z_i, z_j) = g(z_i * z_j)$  (per coordinate product)

Sum/Avg: 
$$f(z_i, z_j) = g(z_i + z_j)$$

- Distance:  $f(z_i, z_j) = g(||z_i z_j||_2)$  No one memory with in an cases:
- Must choose node similarity that matches your application.

# **Embedding Entire Graphs**

• Goal: Embed an entire graph G



### Approach

- Run a standard graph embedding
- Then just sum the node embeddings in the subgraph

$$Z_G = \sum_{v \in G} Z_v$$

 Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure

# Approach

 Idea: Introduce a "virtual node" to represent the (sub)graph and run a standard graph embedding technique



 Proposed by <u>Li et al., 2016</u> as a general technique for subgraph embedding

### Recommended Readings

- Different kinds of biased random walks:
  - Based on node attributes (Dong et al., 2017).
  - Based on a learned weights (Abu-El-Haija et al., 2017)
- Alternative optimization schemes:
  - Directly optimize based on 1-hop and 2-hop random walk probabilities (as in LINE from Tang et al. 2015).
- Network preprocessing techniques:
  - Run random walks on modified versions of the original network (e.g., Ribeiro et al. 2017's struct2vec, Chen et al. 2016's HARP).

### Note on Random Walk Embeddings

- This is unsupervised way of learning node embeddings
  - We are not utilizing node labels or features
  - The goal is to directly estimate a set of coordinates of a node so that some aspect of the network structure is preserved

- These embeddings are task independent
  - They are not trained for a specific task but can be used for any task

### Limitations of Random Walk Embedding

- Limitations of random walk based embedding methods:
  - O(|V|) parameters are needed:
    - No sharing of parameters between nodes
    - Every node has its own unique embedding
  - Inherently "transductive":
    - Cannot generate embeddings for nodes that are not seen during training
  - Do not incorporate node features:
    - Many graphs have features that we can and should leverage