FICHE DE VALIDATION DU LOGICIEL MASCARET V7P0

Validation du noyau transcritique

Validation du traitement des confluents

Numéro du cas test : 21

Auteur : Fabrice ZAOUI

Description

Une étude d'onde de submersion nécessite souvent le traitement d'un ou plusieurs confluents. En ces points, l'onde se divise pour se propager dans deux vallées différentes : la vallée principale vers l'aval et l'affluent. Ceci provoque un écrêtement de l'onde plus à l'aval mais augmente l'emprise des zones inondées dans l'affluent. Enfin, la vidange de celui-ci amène dans certains cas un second pic de débit dans la vallée principale.

Il est donc important de traiter correctement un confluent. Depuis la version 4 de Mascaret, une méthode particulière a été mise en œuvre. Elle repose sur un couplage simplifié entre le modèle 1D et un modèle 2D localisé à la zone de confluence. Le domaine 2D présente une géométrie simplifiée et fabriquée par le code lui-même.

Les principes de la méthode ainsi que de nombreux tests ont été décrits en détail dans un précédent rapport 1 .

On étudie ici la propagation d'une onde de submersion qui arrive dans la retenue de Couesque (voir la figure 1) supposée vide (propagation sur fond sec). Les résultats sont comparés à ceux fournis par la version éléments finis de Telemac2D.

Données géométriques

L'onde de submersion est supposée arriver par le bras court, bief 1, où la pente des fonds est de l'ordre de 10%; elle débouche alors dans la retenue de Couesque. Le bief aval, bief 2, se prolonge sur 1000~m. Le bief 3, qui sera appelé affluent dans notre cas mais qui dans la réalité est la vallée principale a une longueur de 12~km et la pente des fonds est de 0.4%.

L'hexagone de confluence est défini à l'aide d'un premier calcul en bief unique. La cote maximale atteinte après l'onde est alors utilisée pour définir la géométrie de la zone de confluence. La figure 2 décrit la zone inondée à cette cote ainsi que les limites qui ont été choisies pour chaque bief.

Données numériques

Le domaine 1D a été maillé avec des cellules de $100\ m$ de longueur.

Le frottement est pris en compte avec un coefficient de Strickler de 40 dans tout le domaine.

A l'amont du bief 1, le débit est imposé. La forme de l'hydrogramme est donnée sur la figure 3.

A l'aval, on suppose que la cote est constante à 245 m, mais un passage en torrentiel 500 m à l'amont enlève toute influence à cette condition limite. Enfin, un débit nul est imposé à l'entrée du bief 3.

La simulation a été faite sur 7000 pas de temps avec un CFL de 0.8 représentant un peu moins de 3 heures de temps réel.

Résultats

Les figures 4 à 7 présentent l'évolution temporelle des cotes et débits à l'aval (dans l'affluent) et à l'amont de la confluence. Ces résultats sont comparables avec ceux obtenus par les versions précédentes du code ². Les figures 5 et 7 comparent les résultats entre Mascaret1D et Telemac2D.

La dynamique dans le confluent est bien respectée à la montée de l'onde. Cependant, le confluent a tendance à se vidanger tôt. Ceci donne une erreur sur la cote maximale atteinte dans l'affluent. Le débit dans l'affluent est qualitativement correct : le remplissage et la vidange sont globalement bien traités ; avec une petite restriction sur l'instant où le débit s'inverse.

Le débit oscille de manière assez importante et pour des raisons encore inexpliquées. Enfin, à l'aval du confluent le débit est qualitativement correct.

^{1.} F. Maurel, Traitement des confluents dans le logiciel MASCARET 4.0 - Principe de la méthode et éléments de validation, Rapport HE-43/96/067/A

^{2.} N. Goutal, C. Rissoan, Note de validation du code Mascaret v5p0, note EDF HP-73/2000/041/A

Table 1 – Bilan volumique (Mm^3)

	Domaine total	Confluent seul
volume initial	1.52	$10 \ 10^{-6}$
volume entré aux frontières	25.99	25.86
volume sorti aux frontières	22.53	25.41
volume final	5.44	0.22
Erreur	$4.6 \ 10^{-1}$	$-2.3 \ 10^{-1}$
Erreur relative	$9.2 \ 10^{-2}$	$-5.1 \ 10^{-1}$

De plus comme indiqué sur le tableau 1, le bilan de masse dans le modèle est satisfaisant (les volumes sont donnés en Mm^3). Le traitement du confluent est quasi conservatif et entraàone une erreur en masse tout à fait acceptable pour les études d'onde de submersion.

Conclusion

Ce cas test ainsi que ceux présentés dans la note spécifique au traitement des confluents montre le bon comportement global de cette méthode :

- dynamique d'une onde de submersion respectée;
- possibilité de traiter les écoulements permanents;
- prise en compte de la géométrie locale;
- écoulement indifférement fluvial ou torrentiel;
- conservation de la masse satisfaisante

 ${\tt Figure~1-Localisation~de~l'onde~de~submersion}$

FIGURE 2 – Hexagone de confluence

Figure 3 – Evolution du débit en entrée du modèle

Figure 4 – Cote à 1 km en amont de la confluence (bief 3, x=11 km)

Figure 5 – Débit à 1 km en amont de la confluence (bief 3, x=11 km)

FIGURE 6 – Cote à 1 km en aval de la confluence (bief 2, $x=8.3\ km)$

FIGURE 7 – Débit à 1 km en aval de la confluence (bief 2, $x=8.3\ km)$