

A model of planning in human complex problem solving

▶ Recurse

Jeroen Olieslagers¹, Zahy Bnaya¹, Wei Ji Ma^{1,2}

Center for Neural Science¹ and Department of Psychology², New York University

The implementation $\overline{\mathbf{Algorithm}}$ solve_puzzle(s) ▶ Ultimate goal of the game $a_{\texttt{init}} \leftarrow \texttt{find_solving_move}(s)$ $\pi \leftarrow [a_{\texttt{init}}]$ while $\pi \neq \emptyset$ do $a \leftarrow \pi.pop()$ if $is_valid_move(s, a)$ then $s \leftarrow \mathtt{make_move}(s, a)$ ▶ Execution phase $\pi \leftarrow \mathtt{extend_plan}(s,\pi)$ ▶ Replanning end if end while **Algorithm** extend_plan (s, π) ▷ Select most recently planned move $a \leftarrow \pi[\texttt{end}]$ $C \leftarrow \texttt{find_blocking_cars}(s, a)$ ▶ AND node creation if $C = \emptyset$ then ▶ If move is valid, end planning phase return π end if $c \leftarrow \texttt{choose_car}(s, C)$ ▶ AND node selection $\tilde{A} \leftarrow \texttt{find_unblocking_moves}(s, a, c)$ ▶ OR node creation \triangleright OR node selection $\tilde{a} \leftarrow \texttt{choose_move}(s, \tilde{A})$ ▶ Plan extension $\pi.\mathtt{push}(ilde{a})$

return extend_plan (s, π)

The representation

- model could propose
- "Unravel" from bottom up to find plans
- By itself, not sufficient to guarantee a solution
- Replanning is almost always necessary
- OR nodes
- Decisions
- Represent unblocking moves
- Either one unblocks the parent • Subject plans along one of these

AND nodes

- Subgoals
- Represent cars that block parent move
- Must be moved out of the way before parent move is possible
- One subgoal considered at a time

- Model fitting
- Past moves inform which chain a subject is on
- Each chain has a different probability according to model parameters:
 - γ : stopping probability
 - λ : lapse rate
 - **h**: heuristics to decide which AND/OR node to expand
- Based on last move in chain, probabilities over chains turn into probabilities over moves