Stat 435 Lecture Notes 4b

Xiongzhi Chen Washington State University

Contents

Ridge regression: basic	s														
Overview				 				 		 					
Settings				 				 		 					
Optimization				 				 		 					
Intercept term				 				 		 					
Solution path				 				 		 					
Bias-variance trade-off				 				 		 					
Bias-variance trade-off															
Select tuning parameter															
idge regression: speci	al case														
Special model				 				 		 					
LSE and ridge estimate															
Three estimators															
idge regression: appli	antion														
Scale equivariance															
-															
Illustration															
Illustration															
Inference															
Inference				 • •	 •		• •	 	•	 	٠	 •	 ٠		
ASSO: basics															
Settings															
Optimization				 				 		 					
Solution path				 				 		 					
Bias-variance trade-off				 				 		 					
Select tuning parameter	r			 				 		 					
ASSO estimate: speci	al case														
Special model				 				 		 					
LSE and LASSO estima															
LSE and LASSO estima															
Three estimators															
Timee estimators		• •	• •	 	 •	• •		 • •	•	 	•	 •	 •	• •	
ASSO: application															
Illustration															
Illustration															
Illustration															
Inference				 				 		 					
Inference															

Ridge and LASSO estimates	
Three optimizations	
Three estimators	
Ridge and LASSO estimates	
Ridge and LASSO estimates	
Ridge and LASSO regressions	
License and session Information	

Ridge regression: basics

Overview

Ridge regression

- applies regardless of magnitues of sample size n and number of predictors p
- shrinks estimated coefficients compared to least squares estimate (LSE)
- is able to produce LSE
- presents a way to estimate coefficients when n

Ridge regression often produces a biased estimate with smaller variance than LSE, and it is a bias-variance trade-off technique.

Settings

- Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$
- Observations: $(y_i, x_{i1}, x_{i2}, \dots, x_{ip}), i = 1, \dots, n$, where y_i is the *i*th observation for Y and x_{ij} that
- Estimate $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1, \dots, \hat{\beta}_n)$ of $\boldsymbol{\beta} = (\beta_1, \dots, \beta_n)$, and $\hat{\beta}_0$ of β_0
- Fitted model: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \ldots + \hat{\beta}_p x_{ip}$
- Residuals: $e_i = y_i \hat{y}_i$

Optimization

• The ridge estimate $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = (\hat{\beta}_{1}, \dots, \hat{\beta}_{p})$ is the $\boldsymbol{\beta} = (\beta_{1}, \dots, \beta_{p})$ that minimizes

$$L_2(\beta_0, \boldsymbol{\beta}, \lambda) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^p \beta_i^2$$

- $\sqrt{\sum_{i=1}^p \beta_i^2}$ is written as $\|\boldsymbol{\beta}\|_2$, i.e., the l_2 -norm of $\boldsymbol{\beta}$
- ∑_{i=1}ⁿ (y_i ŷ_i)² is just the RSS
 λ∑_{i=1}^p β_i² is called a regularizer or penalty
 L₂(β₀, β, λ) is referred to as an l₂-regularized RSS
- no penalty on β_0

Intercept term

- Recall $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}), i = 1, \dots, n$, where x_{ij} is the *i*th observation for X_j
- Let **X** be the $n \times p$ matrix whose *i*th row is \mathbf{x}_i
- X is called a design matrix (when factors as predictors are properly coded)

If the variables X_i , i = 1, ..., p are centered, i.e., the columns of \mathbf{X} , to have mean zero before ridge regression is performed, then the estimated intercept will be

$$\hat{\beta}_0 = \bar{y} = \sum_{i=1}^n y_i / n$$

Solution path

Recall the objective function

$$L_2(\beta_0, \boldsymbol{\beta}, \lambda) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^p \beta_i^2$$

and its solution $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = (\hat{\beta}_{1}, \dots, \hat{\beta}_{p})$

- no penalty on estimated β_0
- $\lambda = 0$ gives the LSE, and $\lambda = \infty$ forces $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = 0$
- some $0 < \lambda < \infty$ strikes a balance between LSE and $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = 0$

Note: The ridge solution has explicit reprentation.

Bias-variance trade-off

Ridge regression works best in situations where the least squares estimates have high variance:

- $\lambda = 0$: ridge estimate is the LSE and is unbiased
- $\lambda > 0$: bias increases and variance decreases usually
- $\lambda = \infty$: estimated coefficients are all zero

Bias-variance trade-off

p=45 predictors and n=50 observations; all $\beta_j\neq 0$

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

Select tuning parameter

The optimal value λ^* of the tuning parameter λ is ofen determined by k-fold cross-validation:

- Pick a sequence of s values for λ as $\lambda_1, \lambda_2, \dots, \lambda_s$
- For each λ_l , apply k-fold cross-validation to estimate the test error of the corresponding model
- Set λ^* as the value among the s values of λ for which the estimated test error is the smallest

Ridge regression: special case

Special model

- Assume the design matrix $\mathbf{X} = \mathbf{I}_p$, i.e., the identity matrix
- Consider a linear regression model without an intercept, i.e., forcing $\beta_0=0$

If n = p and $\mathbf{X} = \mathbf{I}_p$, then we have a very special model:

$$y_j = \beta_j + \varepsilon_j, j = 1, \dots, p$$

Note: $\mathbf{X} = \mathbf{I}_p$ is referred to as an *orthogonal design*

LSE and ridge estimate

For the special model

$$y_j = \beta_j + \varepsilon_j, j = 1, \dots, p,$$

• the LSE (i.e., least squares estimate) is

$$\hat{\beta}_i = y_i$$

• the l_2 -regularized RSS becomes

$$L_2(\beta_0, \boldsymbol{\beta}, \lambda) = \sum_{i=1}^{p} (y_i - \beta_j)^2 + \lambda \sum_{i=1}^{p} \beta_i^2$$

and the ridge estimate is

$$\hat{\beta}_{j,\lambda}^R = y_j/(1+\lambda)$$

Three estimators

FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple setting with n = p and X a diagonal matrix with 1's on the diagonal. Left: The ridge regression coefficient estimates are shrunken proportionally towards zero, relative to the least squares estimates. Right: The lasso coefficient estimates are soft-thresholded towards zero.

Ridge regression: application

Scale equivariance

- Recall the design matrix X, whose (i,j)th entry x_{ij} is the ith observation of predictor X_j
- Ridge regression estimates depend on the scale of predictors
- Before applying ridge regression, it is best to standardize predictors as follows

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}}$$

where $\bar{x}_j = n^{-1} \sum_{i=1}^n x_{ij}$ • The resulting ridge gression estimates are called *standardized estimates*

Illustration

Modelling the Credit data set

- Response Balance
- Predictors Income, Limit, Rating and Student

Illustration

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$.

Inference

- The method of bias correction can be used to conduct inference on ridge estimates
- Canonical assumptions involve Gaussian random errors
- Asymptotic theory on testing coefficients is based on Gaussian limiting distributions
- P-values from testing can be obtained

Note: "High-Dimensional Inference: Confidence Intervals, p-Values and R-Software hdi" by Ruben Dezeure, Peter Buhlmann, Lukas Meier and Nicolai Meinshausen

Inference

- Tesing $H_{j0}: \beta_j = 0$ versus $H_{j1}: \beta_j \neq 0$
- P-values for testing if the coefficient of each of Income, Limit, Rating and Student:

Income Limit Rating StudentYes 1.183510e-236 1.655880e-15 6.850389e-19 1.808087e-132

LASSO: basics

Settings

- Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$
- Observations: $(y_i, x_{i1}, x_{i2}, \dots, x_{ip}), i = 1, \dots, n$, where y_i is the *i*th observation for Y and x_{ij} that for X_j
- Estimate $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_p)$ of $\beta = (\beta_1, \dots, \beta_p)$, and $\hat{\beta}_0$ of β_0
- Fitted model: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \ldots + \hat{\beta}_p x_{ip}$
- Residuals: $e_i = y_i \hat{y}_i$

Optimization

• The LASSO estimate $\hat{\boldsymbol{\beta}}_{\lambda}^{L} = (\hat{\beta}_{1}, \dots, \hat{\beta}_{p})$ is the $\boldsymbol{\beta} = (\beta_{1}, \dots, \beta_{p})$ that minimizes

$$L_1(\beta_0, \boldsymbol{\beta}, \lambda) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^p |\beta_i|$$

- $\sum_{i=1}^{p} |\beta_i|$ is written as $||\beta||_1$, i.e., the l_1 -norm of β
- $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$ is just the RSS $\lambda \sum_{i=1}^{p} |\beta_i|$ is called a regularizer or penalty $L_1(\beta_0, \boldsymbol{\beta}, \lambda)$ is referred to as an l_1 -regularized RSS
- no penalty on β_0

Solution path

Recall the objective function

$$L_1(\beta_0, \boldsymbol{\beta}, \lambda) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^p |\beta_i|$$

and its solution $\hat{\boldsymbol{\beta}}_{\lambda}^{L} = (\hat{\beta}_{1}, \dots, \hat{\beta}_{p})$

- no penalty on estimated β_0
- $\lambda = 0$ gives the LSE, and $\lambda = \infty$ forces $\hat{\boldsymbol{\beta}}_{\lambda}^{L} = 0$
- some $0 < \lambda < \infty$ strikes a balance between LSE and $\hat{\boldsymbol{\beta}}_{\lambda}^{L} = 0$
- some $\hat{\beta}_j$'s, $j = 1, \dots, p$, can be exactly zero

Bias-variance trade-off

LASSO works best in situations where some coefficients are extactly zero:

- $\lambda = 0$: LASSO estimate is the LSE and is unbiased
- $\lambda > 0$: bias increases and variance decreases usually, and some estimated coefficients are zero
- $\lambda = \infty$: estimated coefficients are all zero

Select tuning parameter

The optimal value λ^* of the tuning parameter λ is ofen determined by k-fold cross-validation:

- Pick a sequence of s values for λ as $\lambda_1, \lambda_2, \dots, \lambda_s$
- For each λ_l , apply k-fold cross-validation to estimate the test error of the corresponding model
- Set λ^* as the value among λ as $\lambda_1, \lambda_2, \dots, \lambda_s$ for which the estimated test error is the smallest

LASSO estimate: special case

Special model

• Recall $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}), i = 1, \dots, n$, where x_{ij} is the *i*th observation for X_j

- Let **X** be the $n \times p$ matrix whose ith row is \mathbf{x}_i
- Consider a linear regression model without an intercept, i.e., forcing $\beta_0 = 0$

If n = p and $\mathbf{X} = \mathbf{I}_p$, then we have a very special model:

$$y_j = \beta_j + \varepsilon_j, j = 1, \dots, p$$

LSE and LASSO estimate

For the special model

$$y_j = \beta_j + \varepsilon_j, j = 1, \dots, p,$$

• the LSE (i.e., least squares estimate) is

$$\hat{\beta}_j = y_j$$

• the l_1 -regularized RSS becomes

$$L_1(\beta_0, \boldsymbol{\beta}, \lambda) = \sum_{i=1}^{p} (y_i - \beta_j)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$

LSE and LASSO estimate

The LASSO estimate, more complicated than LSE and ridge estimate, is:

$$\hat{\beta}_{j,\lambda}^L = \left\{ \begin{array}{ll} 0 & \text{if} & |y_j| \leq \lambda/2 \\ y_j - \lambda/2 & \text{if} & y_j > \lambda/2 \\ y_j + \lambda/2 & \text{if} & y_j < -\lambda/2 \end{array} \right.$$

Note: compare the above with LSE $\hat{\beta}_j = y_j$ and ridge estimate

$$\hat{\beta}_{j,\lambda}^R = y_j/(1+\lambda)$$

Three estimators

FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple setting with n = p and X a diagonal matrix with 1's on the diagonal. Left: The ridge regression coefficient estimates are shrunken proportionally towards zero, relative to the least squares estimates. Right: The lasso coefficient estimates are soft-thresholded towards zero.

LASSO: application

Illustration

Modelling the Credit data set

- Response Balance
- Predictors Income, Limit, Rating and Student

Illustration

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of λ and $\|\hat{\beta}_{\lambda}^{L}\|_{1}/\|\hat{\beta}\|_{1}$.

Illustration

p = 45 predictors and n = 50 observations; 43 β_i 's are 0

FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set from Figure 6.9. Right: The corresponding lasso coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.

Inference

- The method of bias correction can be used to conduct inference on LASSO estimates
- Canonical assumptions involve Gaussian random errors

- Asymptotic theory on testing coefficients is based on Gaussian limiting distributions
- P-values from testing can be obtained

Note: "High-Dimensional Inference: Confidence Intervals, p-Values and R-Software hdi" by Ruben Dezeure, Peter Buhlmann, Lukas Meier and Nicolai Meinshausen

Inference

- Tesing $H_{j0}: \beta_j = 0$ versus $H_{j1}: \beta_j \neq 0$ P-values for testing if the coefficient of each of Income, Limit, Rating and Student:

Limit Rating StudentYes Income 2.160475e-255 1.039480e-101 1.923041e-133 1.896622e-128

Ridge and LASSO estimates

Three optimizations

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $|\beta_1| + |\beta_2| \le s$, while the red ellipses are the contours of $the\ RSS.$

Three estimators

FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple setting with n = p and X a diagonal matrix with 1's on the diagonal. Left: The ridge regression coefficient estimates are shrunken proportionally towards zero, relative to the least squares estimates. Right: The lasso coefficient estimates are soft-thresholded towards zero.

Ridge and LASSO estimates

p = 45 predictors and n = 50 observations; all $\beta_j \neq 0$

FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on a simulated data set. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted against their \mathbb{R}^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

Ridge and LASSO estimates

p = 45 predictors and n = 50 observations; 43 β_j 's are 0

FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso. The simulated data is similar to that in Figure 6.8, except that now only two predictors are related to the response. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted against their \mathbb{R}^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

Ridge and LASSO regressions

- Ridge regression performs better when the response is a function of many predictors, all with coefficients of roughly equal size
- LASSO performs better when a relatively small number of predictors have substantial coefficients and the remaining predictors have very small or zero coefficients
- Both ridge and LASSO regression yield a reduction in variance at the expense of a small increase in biases, when the LSE have excessively high variance
- LASSO performs variable selection while ridge regression does not

License and session Information

```
License
```

```
> sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19043)
Matrix products: default
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
[7] base
other attached packages:
[1] knitr 1.21
```

```
loaded via a namespace (and not attached):

[1] compiler_3.5.0 magrittr_1.5 tools_3.5.0

[4] htmltools_0.3.6 yaml_2.2.0 Rcpp_1.0.3

[7] stringi_1.2.4 rmarkdown_1.11 stringr_1.3.1

[10] xfun_0.4 digest_0.6.18 evaluate_0.12
```