Lycée Buffon MPSI

DM 13 Année 2020-2021

## devoir à rendre le 26/04/2021

#### Problème:

Dans toute la suite, tout vecteur de  $\mathbb{R}^3$  sera assimilé à une matrice colonne de  $\mathcal{M}_{3,1}(\mathbb{R})$  de sorte que, pour toute matrice  $A \in \mathcal{M}_3(\mathbb{R})$  et tout vecteur X de  $\mathbb{R}^3$ , le produit matriciel AX soit correctement défini.

On considérera le produit scalaire usuel sur  $\mathbb{R}^3$ . Ainsi, si  $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$  et  $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ , alors leur produit scalaire est égal à  $(X|Y) = x_1y_1 + x_2y_2 + x_3y_3$ .

Comme le produit matriciel  ${}^tXY$  est égal à la matrice de taille  $1\times 1$ ,

$$(x_1y_1 + x_2y_2 + x_3y_3)$$
,

on identifiera matrice de  $\mathcal{M}_{1,1}(\mathbb{R})$  et réel, en notant  $(X|Y) = {}^t X Y$ .

Soit  $A \in \mathcal{M}_3(\mathbb{R})$ , on dit qu'un sous-espace vectoriel F de  $\mathbb{R}^3$  est **stable** par la matrice A si :

$$\forall X \in F, \quad AX \in F.$$

Soit  $A \in \mathcal{M}_3(\mathbb{R})$ , on dit qu'un vecteur X de  $\mathcal{M}_{3,1}(\mathbb{R})$  est un vecteur propre de A si X est non nul et s'il existe  $\lambda \in \mathbb{R}$  tel que  $AX = \lambda X$ .

On pourra admettre les résultats des parties I et IV et les utiliser dans la partie V

#### I. Contexte

Soit  $(a, b, c) \in \mathbb{R}^3$ . On considère une suite u telle que :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = au_{n+2} + bu_{n+1} + cu_n.$$

1. Montrer que, pour tout entier n, on a :

$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} \quad \text{avec} \quad A = \begin{pmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

#### II. Premier exemple

On suppose dans cette question que  $A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ .

- 2. (a) Déterminer les réels  $\lambda$  tels que  $A \lambda I_3$  soit non inversible.

  On pourra remarquer que le polynôme  $X^3 2X^2 X + 2$  possède 1 comme racine et le factoriser par X 1.
  - (b) En déduire qu'il existe une base de  $\mathcal{M}_{3,1}(\mathbb{R})$  constituée de vecteurs propres de A.
  - (c) Prouver que la matrice A est semblable à une matrice diagonale.
- 3. Prouver qu'il existe trois matrices  $R_1$ ,  $R_2$  et  $R_3$  de  $\mathcal{M}_3(\mathbb{R})$  tel que pour tout entier n, on ait  $A^n = R_1 + (-1)^n R_2 + 2^n R_3$ .

On ne demande pas de calculer explicitement ces matrices.

4. Soit *u* une suite vérifiant :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n$$

Prouver qu'il existe des constantes  $\alpha$ ,  $\beta$  et  $\gamma$  telles que :

$$\forall n \in \mathbb{N}, \quad u_n = \alpha 2^n + \beta + \gamma (-1)^n.$$

On ne demande pas d'expliciter les constantes  $\alpha$ ,  $\beta$  et  $\gamma$ .

### III. Second exemple

On suppose dans cette question que  $A = \begin{pmatrix} 4 & -5 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ .

- 5. (a) Déterminer les réels  $\lambda$  tels que  $A \lambda I_3$  soit non inversible.
  - (b) En déduire qu'il existe pas de base de  $\mathcal{M}_{3,1}(\mathbb{R})$  constituée de vecteurs propres de A.

6. On pose 
$$U = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$
.

Montrer que la droite vectorielle D engendrée par le vecteur U est stable par A.

7. On pose 
$$V = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$$
.

1

- (a) Prouver que l'espace vectoriel engendré par les vecteurs V et AV est un plan vectoriel. On le notera P.
- (b) Prouver que le vecteur  $A^2V$  appartient au plan P.
- (c) En déduire que le plan P est stable par la matrice A.

# IV. Résultats sur les droites et plans stables par une matrice de $\mathcal{M}_3(\mathbb{R})$ Dans cette partie, on considère une matrice $A \in \mathcal{M}_3(\mathbb{R})$ quelconque.

- 8. Soit D une droite vectorielle de  $\mathbb{R}^3$  dirigée par un vecteur U non nul. Prouver que la droite D est stable par la matrice A si, et seulement si, U est un vecteur propre de la matrice A.
- 9. Soit P un plan vectoriel de  $\mathbb{R}^3$ . On considère une base  $(X_1, X_2)$  de P et  $X_3$  un vecteur non nul normal à P.
  - (a) Prouver que le plan P est stable par la matrice A si, et seulement si, les vecteurs  $AX_1$  et  $AX_2$  appartiennent à P.
  - (b) Montrer que le vecteur  $AX_1$  appartient au plan P si, et seulement si, les vecteurs  $X_1$  et  ${}^tA$   $X_3$  sont orthogonaux.
    - On utilisera la notation matricielle du produit scalaire usuel sur  $\mathbb{R}^3$  donnée en préambule  $(X|Y) = {}^t X Y$ .
  - (c) En déduire que le plan P est stable par la matrice A si, et seulement si, le vecteur  $X_3$  est un vecteur propre de la matrice  ${}^tA$ .

### V. Fin du second exemple

On suppose de nouveau dans cette question que  $A = \begin{pmatrix} 4 & -5 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ .

- 10. Déterminer les droites vectorielles stables par la matrice A.
- 11. On admet que les valeurs propres de  ${}^tA$  sont 1 et 2. Déterminer les équations des plans vectoriels stables par la matrice A.
- 12. En déduire une base  $\mathcal{B} = (e_1, e_2, e_3)$  de  $\mathbb{R}^3$  telle que :
  - le vecteur  $e_1$  soit un vecteur propre de la matrice A associé à la valeur propre 2,
  - la droite engendrée par le vecteur  $e_2$  soit stable par la matrice A,
  - le plan P engendré par les vecteurs  $e_2$  et  $e_3$  soit stable par la matrice A.
- 13. Soit f l'endomorphisme de  $\mathbb{R}^3$  dont A est la matrice dans la base canonique.
  - (a) Déterminer la matrice de f dans la base  $\mathcal{B}$ .
  - (b) En déduire que la matrice A est semblable à une matrice de la forme

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & \delta \\ 0 & 0 & 1 \end{pmatrix} \text{ avec } \delta \in \mathbb{R}.$$

(c) Déterminer  $B^n$  pour tout entier naturel n.

14. En déduire que si une suite u vérifie :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 4u_{n+2} - 5u_{n+1} + 2u_n,$$

alors il existe des constantes  $\alpha$ ,  $\beta$  et  $\gamma$  telles que :

$$\forall n \in \mathbb{N}, \quad u_n = \alpha 2^n + \beta + \gamma n.$$

On ne demande pas d'expliciter les constantes  $\alpha$ ,  $\beta$  et  $\gamma$ .