

Aula 2 Definição e classificação de sinais e operações básicas

EA614 ANÁLISE DE SINAIS

Sinais: Definição e Exemplos

Sinais são funções de uma ou mais variáveis independentes, que contêm informações sobre o comportamento ou natureza de algum fenômeno.

Oppenheim, Willsky e Nawab (2010)

Unidimensional f(t)

Bidimensional f(x, y)

Tridimensional f(x, y, t)

ightharpoonup Definição: f(t), $t \in \mathbb{R}$

ightharpoonup Definição: f[n], $\overline{n} \in \mathbb{Z}$

Sinais de Tempo Discreto

 \blacktriangleright Amostragem: $f[n] = f(nT_s), n \in \mathbb{Z}$

Sinais Analógicos e Digitais

Tempo Contínuo

Analógico

Digital

Tempo Discreto

Sinais Periódicos e Aperiódicos

▶ Um sinal f(t) é periódico se, e somente se, existir um valor T, tal que: f(t) = f(t + T)

Oppenheim, Willsky e Nawab (2010)

▶ Em um caso geral, $f(t) = f(t + mT), m \in \mathbb{Z}$ sendo que, o menor valor de T é conhecido como período fundamental do sinal de tempo contínuo (T_0) .

▶ Para sinais em tempo discreto, temos: $f[n] = f[n + mN], m \in \mathbb{Z}$

Sinais de Energia

▶ A energia de um sinal complexo f(t) ou f[n] é definida como:

$$E_{\infty} = \int_{-\infty}^{\infty} |f(t)|^2 dt$$
 ou $E_{\infty} = \sum_{-\infty}^{\infty} |f[n]|^2$

Regra Geral:

▶ Uma condição necessária (não é suficiente!) para que um sinal tenha energia finita é que a sua magnitude convirja para 0 à medida que $|t| \rightarrow \infty$.

Sinais de Potência

A potência média em um intervalo de duração infinita para um sinal complexo f(t) ou f[n] é definida como:

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(t)|^2 dt$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |f[n]|^{2}$$

- Podemos notar que (para TC): $P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T}$
 - ▶ Desta forma, se $E_{\infty} < \infty$, então $P_{\infty} = 0$. Agora, se $P_{\infty} > 0$, $E_{\infty} = \infty$, necessariamente. Isso implica que um sinal não será ao mesmo tempo de Energia e de Potência.

Sinais Determinísticos e Estócásticos

$$f(t) = 5sen\left(\frac{\pi}{5}t\right)$$

Definição em termos probabilísticos

- Média
- Desvio-padrão (ou Variância)
- ...

Sinais Determinísticos e Estócásticos

$$f(t) = \cos\left(2\pi 239t + \frac{\pi}{5}\right) + 0.1\cos(2\pi 132.5t + 2\pi) + \cos\left(2\pi 58.45t + \frac{\pi}{9}\right) + \cos(2\pi 17.3t + \pi)$$

Operações Básicas com Sinais

Intuição...

Quais destes sons representam a transformação da variável independente *t* descrita nas respectivas equações?

Som original, chamaremos de f(t)

Deslocamento no Tempo

Reflexão no Tempo

Generalização

▶ Suponha agora que um sinal y(t) é obtido a partir de x(t) com as seguintes transformações:

$$y(t) = x(at + b)$$

em que, a e b são números reais fornecidos.

- 1. Se a < 0, o sinal estará refletido no tempo
- 2. Se |a| > 1, o sinal será comprimido no tempo
- 3. Se |a| < 1, o sinal será expandido no tempo
- 4. Se $b \neq 0$, o sinal estará deslocado no tempo