#29

Ι

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re PATENT APPLICATION of

ESCH et al.

Group Art Unit: 1103

Rule 62 Continuation of Appln. No.: 08/594,327

Examiner: Hendrickson

Filed: June 6, 1997

FOR: PRECIPITATED SILICAS

DECLARATION UNDER 37 CFR 1.132

Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

- I, Udo Görl, a citizen of Germany, hereby declare and state as follows:
 - 1. I hold a doctoral degree in chemistry from (academic degree and field)

University of WUERZBURG and have worked in the field of (Academic Institution)

Rubber Technology for more than 10 years.

(Specialty) (years of experience)

am an author on more than $\frac{10}{\text{(number)}}$ scientific publications and

a great number of presentations and patents
(insert other professional experience if desired)

I currently hold the position of Manager Product Development Silicas

(current title and place of and Silanes at Degussa AG, Rubber Chemicals and Pigments Division employment)

Applied Technology.

Dr. Udo Gpr1

- I am an Inventor on Patent Application No. 08/594,327. I am familiar with the Office Action of December 6, 1996 in the subject application, and with the presently pending claims, a copy of which is attached. In the Office Action, claims 1 and 7 were rejected under 35 U.S.C. § 102(b) or § 103 as allegedly lacking novelty or being obvious over Lagarde et al. (U.S. Patent No. 4,704,425).
- 3. Under my direct supervision, tests were conducted to compare the properties of the presently claimed compositions with those in the Lagarde patent.
- 4. Silicic acids Ultrasil 3370 GR (oven-dried) and Ultrasil 3380 GR (flash-dried) were tested in the recipe of U.S. Patent 4,704,425, column 14, as shown in attached Table 1. Both of these products are examples of the invention disclosed and claimed in the above-referenced patent application.
- 5. During the determination of the vulcanizate data the same test methods were used insofar as details were provided (see Table V of the present application). Attached Table 2 shows a comparison of the analytic data of the silicic acids in U.S. Patent 4,704,425 (column 13, table IV) with the data measured on

the compositions of the present invention as recited in claims 1 and 7 ("93 200 FH").

- 6. Attached Table 3 compares the vulcanizate data from Table V of U.S. Patent 4,704,425 with the values of compositions of the present invention (93 200 FH). It is clear that the products of the invention have a markedly higher reinforcement behavior (modulus 300%) than the silicic acid from U.S. Patent 4,704,425. The products according to the invention also show advantages in DIN wear (abrasion loss). The remaining data (resistance to rupture, elongation to rupture, resistance to tear) is very heavily influenced by the modulus. Substantial advantages are seen with the compositions of the invention in respect to these characteristics.
- 7. It is clear from these comparative tests that the compositions according to the present invention are different from those of Lagarde et al., as described in U.S. Patent 4,704,425, and exhibit marked advantages over the compositions of Lagande. Thus, the compositions are novel and not obvious from the Lagarde patent.
- 8. I declare further that all statements made on information and belief are believed to be true, and further that

these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both under Section 1001 of Title 18 of the United States Code and such willful false statements may jeopardize the validity of the instant patent specification or any patent issuing thereon.

By fel for

Date 4. Sept. 1997

TABLE 1: Formulation

Buna 1509	100
Silica	50
PEG 4000	3
ZnO	3
Stearic acid	1
Octylated diphenyl amine (OCD)	2
MBTS	0,75
DOTG	1,6
Sulfur	2,5

TABLE 2: Analytical Data

		Silicas according US 4,704,425		Silicas according 93 200 FH	
		Flash Dried	Oven Dried	Flash Dried	Oven Dried
СТАВ	[m²/g]	250	250	165	165
BET	[m²/g]	260	260	170	180
рH	-	4,7	4,9	6,5	6,3
DBP	[ml/100g]	350	250	205	195

TABLE 3: Vulcanizate Data

		Silicas according US 4,704,425		Silicas according 93 200 FH	
		Flash Dried	Oven Dried	Flash Dried	• Oven Dried
Modulus 100 %	[MPa]	1,49	1,49	1,7	1,7
Modulus 300 %	[Mpa]	2,25	2,53	3,7	4,0
Abrasion loss	[mm³]	159	154	142	140
Resistance to Rupture	[MPa]	18,5	15,9	11,9	10,3
Elongation to Rupture	- [%]	803	. 821	550	510
Resistance to Tear	[N/mm]	>40	>40	30	30

LLSBURY MADISON SUTRO

ESCH et al. -- Rule 62 Continuation of Appln. No.: 08/594,327

Currently pending claims:

1. Precipitated silica having the following physicochemical properties:

BET surface area	35 to 350 m²/g
BET/CTAB surface area ratio	0.8 to 1.1
Pore volume, PV	1.6 to 3.4 ml/g
Silanol group density, ml of NaOH	·
consumed in raising pH to 9	6 to 20 ml
Average aggregate size	250 to 1500 nm
CTAB surface area	30 to 350 m^2/g
DBP value	150 to 300 ml/100 g
V ₂ /V ₁ by Hg porosimetry	0.19 to 0.46
DBP/CTAB	1.2 to 3.5

7. The precipitated silica according to claim 1, wherein the DBP/CTAB ratio is 1.2 to 2.4.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

MOV O Z 1998

In re PATENT APPLICATION of

ESCH et al.

Group Art Unit: 1754

Appln. No.: 08/870,591

Examiner: Hendrickson

Filed: June 6, 1997

FOR: PRECIPITATED SILICAS

DECLARATION UNDER 37 CFR 1.132

Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

- I, Udo Görl, a citizen of Germany, hereby declare and state as follows:
- 1. I hold a doctoral degree in chemistry from the
 UNIVERSITY OF WUERZBURG and have worked in the field of
 Rubber Technology for more than 10 years. I am an author on more
 than 10 scientific publications and a great number of
 presentations and patents. I currently hold the position of

 Manage Research & Development Powder Rubber Technology PKV 6mbH, D-45764 Made (current title and place of employment)

 Germany
- 2. I am an Inventor on Patent Application No. 08/594,327. I am familiar with the Office Actions of December 6, 1996, September 29, 1997 and June 8, 1998 in the subject application, and with the presently pending claims, a copy of which is attached. In the Office Actions, claims 1 and 7 were rejected

ESCH et al. -- Appln. No. 08/870,591

under 35 U.S.C. § 102(b) or § 103 as allegedly lacking novelty or being obvious over Johnson et al. (U.S. Patent No. 4,681,750).

- 3. Under my direct supervision, tests were conducted to compare the properties of the presently claimed compositions with those in the Johnson patent ('750).
- 4. Silicic acid Ultrasil 3380, according to the present invention, and LV 6589, which was manufactured in accordance with the data contained in the '750 patent, were compared using a high silicic acid-filled PKU tread mixture based on L-SBR/BR.
- 5. The attached tables show a comparison of the analytic data and rubber technology characteristics of Ultrasil 3380 and LV 6589. Substantial advantages are seen with the composition of the invention in respect to these characteristics. This is especially clear in the strength values and in the modulus, but also in the ball rebound (corresponding to lower rolling resistance) and in the tan δ at 0° (higher values signifying better wet skid resistance properties). The evaluation of the dispersion using a 10-point scale (Phillips method) shows that 3380 is two steps better than LV 6589. Most of these application technology advantages are associated with the lower Sears number

ESCH et al. -- Appln. No. 08/870,591

of the present invention, which stems from the different manner of precipitation.

- 6. It is clear from these comparative tests that the compositions according to the present invention are different from those of Johnson et al., as described in U.S. Patent 4,681,750, and exhibit marked advantages over the compositions of Johnson et al. Thus, the compositions are novel and not obvious from the Johnson patent.
- 7. I declare further that all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both under Section 1001 of Title 18 of the United States Code and such willful false statements may jeopardize the validity of the instant patent specification or any patent issuing thereon.

By Mo So

_______ Date 15th October, 1998

Comparison of 3380 with LV 6589

1) Analytical Data

SENT BY: CUSHMAN 202 822-094

	CTAB m²/g	pН	DBP g/100g	Sears value V2[ml]
3380	165	6.5	278	17.5
LV 6589	163	6.3	312	20.6

2) Rubber Technology

Test Method	Unit	3380	LV 6589	Norm
ML 1+4	_	73	77	DIN 53523/3
Strength	Mpa	13.2	11.9	DIN 53504
300% modulus	Мра	11.7	11.0	DIN 53504
Break Stretch	%	330	320	DIN 53504
Break Energy	τ	59.9	52.0	DIN 53504
Hardness	•	66	67	DIN 53505
Ball Rebound 60°C	%	61.3	58.1	ASTM D 5308
DIN Abrasion	mm ³	58	61	DIN 53516
Loss Angle tano (0°C)	-	0.473	0.434	DIN 53513
Dispersion (Philips)	_	9	7	ISO/DIS 11345

ESCH et al. -- Appln. No. 08/870,591

Currently pending claims:

1. Precipitated silica having the following physicochemical properties:

35 to 350 m^2/g BET surface area BET/CTAB surface area ratio 0.8 to 1.1 Pore volume, PV 1.6 to 3.4 ml/g Silanol group density, ml of NaOH 6 to 20 ml consumed in raising pH to 9 250 to 1500 nm Average aggregate size $30 \text{ to } 350 \text{ m}^2/\text{g}$ CTAB surface area 150 to 300 ml/100 g DBP value 0.19 to 0.46 V_2/V_1 by Hg porosimetry DBP/CTAB 1.2 to 3.5

7. The precipitated silica according to claim 1, wherein the DBP/CTAB ratio is 1.2 to 2.4.