TRANSLATION of "Evaluation Methods for Ceramics" Printed and Published: March 31, 1997

(page 26, right Col. lines 25 - 26)

The lattice defects may be present even in fine particles. The lattice strain may make the precise measurement of the lattice constant difficult.

【物件名】

甲第9号証 BEST AVAILABLE CLIF

【添付書類】 3 111111111 8

69/

WILL DIE COPY

26 第1章 操作の評価法

模様や、HQL2 (高次ラウエゾーン) 線と呼ばれる白 又は黒のシャープを終が現れる。HOL2 線の現れ方か ら結晶の対称性が分かり、空間群や点群を決定するこ とができる。

3.2.3 高分价能像翻察

高分解他像観察からは原子配列に関する実空間の情 報が得られる。製象の第、入針電子線の方向。対物紋 りの大きさ、結晶の厚生及び無点外れ豊静が適正でな いと実際の単子配列を正しく再現する像は得られな い、観察の仕方によっては、実際に原子のある位置が 常に白文は黒の塾のコントラストを持つとは限らな い。コントラスト任無点外れ最や精晶の厚さに応じて 種を変化する。また。撮影した格子像の格子問題がX 親回折から家屋た住と一致しないこともよくある。"し かし、格子権を得るための結構の厚さは通常数十一四 以下でなければなちないので、超像粒子の観察には違 している。銀路による種本の超級粒子の南分解能体験 察による結晶構造解析に関する多くの研究やはよく知 られている。

ムライト超級粒子の格子像は図3に示した。図Bは 国7と同じテトラポッド状 250 超微粒子の中心部の 高分解能像である。テトラボルドを精成する4本の脚 のうち2年はそれぞれの (100) 面が互いに平行な双 品の関係にあるさと、中心部もウルツ都及であってそ れ以外の和単は把められないことなどか分かる。

最近は空間分解能を一層向上させるため、電光放射 型電子統(PBG)を装備した高分解能定金型透過電子 額限競も開発され、組織粒子の研究にも利用され始め ている**

4. 格子定数

格子定数の測定はメ激回折後や電子線回折法により

光上多來。 P.K. Sit 知微粒子の中心部の部分 解能像in

行われる。X額回折では粒子の集合体の平均値として の格子定数となる。 電子放置折では微粒子1個の格子 定数の測定も可能であるが、測定精度は劣る。

4.1 X線回折法

χ 禁回折装銀による粉末の格子定数制定の通常の方 注は"セラミックスのキャラクタリゼーション技 術***! にもあるので参照されたい。ここでは微粒子の 格子定数側定で問題になる点を礎つか取り上げる。

ディフラクトメーター法では、記録紙に描かれた回 折線のプロフィールかち回折線の位置を読み取り、最 小二乗法により格子定数を求めるのが一般的である。 微粒子の側定で問題になるのは、粒子が小さいことに よる回折線の広がりのため高い精度が得られないこと である、よく知られているように、X練回折線の広が りの幅Bは

$$B_{t} = 2\left(\frac{\ln 2}{\pi}\right)^{1/2} \frac{\lambda}{D\cos\theta} = \frac{0.94 \,\lambda}{D\cos\theta} \tag{1}$$

で与えられる。 ここでえばX線の彼長、8位プラッ グ州、 D は粒子の底径である。(1) 式は均一な大き さの立方体の粒子を仮定して導出されたもので、係数 QQ.94:は余り重要な意味はなく。1 としても差し支 えない。(1) 式より、粒子が小さくなるほど図析線 は広がり、回折線のピーク位置を正確に読み取ること 出国難になる。 粒子サイズの影響がなくなるのは、粒 子が約 100 am より大きくなってからである.

概粒子でも格子疾陥による格子並が存在することが ある、格子亞も格子定数の精密則定を困難にする。格 子遊によって、X線回折線の広がりや回折線位置のず れ、プロフィールの非対称性等が生じるためである。 倒えば、格子亞による格子面関係の変化率が Ad/d の場合、四折線の広がり B, は次式で与えられる"。

$$B_z = -2 \frac{\Delta d}{d} \tan \theta \qquad (2)$$

粒子薬のある微粒子の回折線の広がりは、(1)式 と(2)成の二つの寄与が重なったものとなる。注目 すべきことは、いずれの効果も角度もの大きい反射 ほど楽しいことである。

以上のような回折線の広がりがある場合格子定数を 水のるには、3季で述べたリートベルト技などの解析 シフトを用いたコンピューターによる解析が有効であ る.

撤粒子の格子定数がパルクの場合とどの程度異なる か系統的に関べた例は少ない、表4は MnF。(ルチル 烈、正方乱)の微粒子とパルグの格子定数である。

TOO ELEADIAM TOE

セラミックスの評価法 Evaluation Methods for Ceramics の社団法人 日本セラミックス協会 1998

平成5年3月51日 初版発行

定価 本体 4,800円 (税別)

福興者作者 日本セラミックス協会編集委員会基礎工學構座小委員会

発行 衛 角斑 宇田川 重 和

印刷 新 株式会社 枝 報 桌

発 行 所 社団法人 日本セラミックス協会

〒169 東京都新宿区百人町 2-22-17

演說 東京 (03)3362÷5231: (代)

米音に発表されたすべての記事内容は、社団法人日本モラミックス協会の許可なく転載・選挙することはできません。 1T--44B. ISBN-4-931298-06-0 C 3058