Mechanics of Materials

Lecture 24 - Discontinuity Functions

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

20 Apr, 2020

1

schedule

- 20 Apr Beam Deflection (discontinuity functions)
- 20 Apr Exam 3a Due by midnight
- 22 Apr Beam Deflection (superposition)
- 24 Apr Recitation, HW9 Due
- 27 Apr Statically Indeterminate Beams

outline

- slope and displacement
- discontinuity functions

3

slope and displacement

curvature

- When talking about displacement in beams, we use the coordinates v and x, where v is the vertical displacement and x is the horizontal position
- In this notation, curvature is formally related to displacement according to

$$\frac{1}{\rho} = \frac{d^2v/dx^2}{[1 + (dv/dx)^2]^{3/2}} = \frac{M}{EI}$$

4

curvature

■ The previous equation is difficult to solve in general, but for cases of small displacement, $(dv/dx)^2$ will be negligible compared to 1, which then simplifies to

$$\frac{d^2v}{dx^2} = \frac{M}{EI}$$

flexural rigidity

- In general, M, is a function of x, but EI (known as the flexural rigidity) is a constant along the length of the beam
- In this case, we can say

$$EI\frac{d^{2}v}{dx^{2}} = M(x)$$

$$EI\frac{d^{3}v}{dx^{3}} = V(x)$$

$$EI\frac{d^{4}v}{dx^{4}} = w(x)$$

6

boundary conditions

- If a support restricts displacement, but not rotation, we will have a boundary condition of v = 0 at that point
- Supports that restrict rotation give a boundary condition that $\theta=0$

continuity conditions

- If we have a piecewise function for M(x), not all integration constants can be found from the boundary conditions
- Instead, we must also use continuity conditions to ensure that the slope and displacement are continuous at every point
- In other words, for two sets of functions, $\theta_1(x)$ and $v_1(x)$, $\theta_2(x)$, and $v_2(x)$, $\theta_1(a)=\theta_2(a)$ and $v_1(a)=v_2(a)$

8

slope

For small displacements, we have

$$\theta \approx \tan(\theta) = dv/dx$$

example 12.1

Determine the maximum deflection if EI is constant.

10

example 12.4

Determine the displacement at C, EI is constant.

discontinuity functions

discontinuity functions

- Direct integration can be very cumbersome if multiple loads or boundary conditions are applied
- Instead of using a piecewise function, we can use discontinuity functions

Macaulay functions

 Macaulay functions can be used to describe various loading conditions, the general definition is

$$\langle x-a\rangle^n = \begin{cases} 0 & \text{for } x < a \\ (x-a)^n & \text{for } x \geq a \end{cases} n \geq 0$$

13

singularity functions

 Singularity functions are used for concentrated forces and can be written

$$w = P\langle x - a \rangle^{-1} = \begin{cases} 0 & \text{for } x \neq a \\ P & \text{for } x = a \end{cases}$$

discontinuity functions

TABLE 12-2			
Loading	Loading Function $w = w(x)$	Shear $V = \int w(x)dx$	Moment $M = \int V dx$
M_0 $x \rightarrow a$	$w = M_0 \langle x - a \rangle^{-2}$	$V = M_0 \langle x - a \rangle^{-1}$	$M = M_0 \langle x - a \rangle^0$
P -x- -a-	$w = P\langle x - a \rangle^{-1}$	$V = P\langle x - a \rangle^0$	$M = P\langle x - a \rangle^1$
$ \begin{array}{c c} & w_0 \\ \hline & x \longrightarrow \\ & a \longrightarrow \end{array} $	$w = w_0 \langle x - a \rangle^0$	$V = w_0 \langle x - a \rangle^1$	$M = \frac{w_0}{2} \langle x - a \rangle^2$
slope = m	$w = m\langle x - a \rangle^1$	$V = \frac{m}{2} \langle x - a \rangle^2$	$M = \frac{m}{6} \langle x - a \rangle^3$

15

discontinuity functions

- 1. We add these up for each loading case along our beam
- 2. We integrate as usual to find displacement from load, slope, or moment

integration

- discontinuity functions follow special rules for integration
- when $n \ge 0$, they integrate like a normal polynomial
- when n < 0, they instead follow

$$\int \langle x - a \rangle^n dx = \langle x - a \rangle^{n+1}$$

17

signs

- we need to be careful to match the sign convention
- loads are defined as positive when they act upward
- moments are defined as positive when they act clockwise

example 12.5

19