Computer Vision

Class 03

Raquel Frizera Vassallo

Projective 2D Geometry

Summary

- Points and Lines
- Ideal Points
- Lines at Infinity
- Projective Plane
- Projective Transformations

Points and Lines

• Homogeneous representation of lines

$$ax + by + c = 0 \rightarrow (a, b, c)^{T}$$
$$(ka)x + (kb)y + kc = 0, \forall k \neq 0 \rightarrow k(a, b, c)^{T}$$
$$(a, b, c)^{T} \sim k(a, b, c)^{T}$$

 $l = (a,b,c)^T$

Equivalence class of vectors.

Set of all equivalence classes in $\mathbb{R}^3 - (0,0,0)^T$ forms \mathbb{P}^2

• Homogeneous representation of points

$$x = (x, y)^T \to \text{Cartesian Space}$$

 $x = (x, y, 1)^T \to \text{Homogeneous Space}$

Point $x = (x, y, 1)^T$ is on the line $l = (a, b, c)^T$ if and only if ax + by + c = 0

Thus
$$(x, y, 1)(a, b, c)^T = 0 \to x^T l = 0$$

Also
$$(x, y, 1)^T \sim k(x, y, 1)^T, \forall k \neq 0$$

• The point x lies on the line l if and only if

$$x^T l = l^T x = 0$$

Point homogeneous coordinates

$$x = (x_1, x_2, x_3)^T$$
 but only 2DOF

Line representation

$$l = (a, b, c)^T$$

• Intersections of lines \rightarrow points

The intersection of two lines l and l' is $p = l \times l'$

$$p = l_1 \times l_2 = \hat{l}_1 l_2 = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$l_1 \times l_2 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} p = (1, 1, 1)^T \end{bmatrix}$$

$$p = l_1 \times l_2 = \hat{l}_1 l_2 = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Exemplos:
$$l_2 = (1,0,-1)^T$$
 $y = 1$
 $l_1 = (0,1,-1)^T$

x = 1

y=3

$$p = l_1 \times l_2 = \hat{l}_1 l_2 = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$l_2 = (-5,1,7)^{\mathrm{T}}$$

$$l_1 = (1,-2,4)$$

$$l_1 = (0,1,-1)^{\mathrm{T}}$$

$$l_1 \times l_2 = \begin{bmatrix} -1\\-1\\-1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \longrightarrow p = (1,1,1)^T$$

$$\begin{array}{c} \textbf{\textit{l}}_{2} = (-5,1,7)^{\mathrm{T}} & p = l_{1} \times l_{2} = \hat{l_{1}}l_{2} = \begin{bmatrix} 0 & -4 & -2 \\ 4 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 1 \\ 7 \end{bmatrix} \\ \textbf{\textit{l}}_{1} = (1,-2,4)^{\mathrm{T}} & \begin{bmatrix} -5 \\ 1 \\ 7 \end{bmatrix} \end{array}$$

$$l_1 \times l_2 = \begin{bmatrix} -18 \\ -27 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \longrightarrow p = (2, 3, 1)^T$$

Lines from points

The line through points p_1 and p_2 is $l = p_1 \times p_2$

$$l = ?$$
 $p_1 = (1, 2, 1)^T$ $p_2 = (3, 5, 1)^T$ $l = p_1 \times p_2$

Lines from points

The line through points p_1 and p_2 is $l = p_1 \times p_2$

$$p_2 \qquad l = \hat{p}_1 p_2 = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

Lines from points

The line through points p_1 and p_2 is $l = p_1 \times p_2$

$$p_1 = (1, 2, 1)^T$$
 $p_2 = (3, 5, 1)^T$ $l = p_1 \times p_2$

$$p_2 \qquad l = \hat{p_1}p_2 = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

$$l = (3, -2, 1)^T$$
 \longrightarrow $3x - 2y + 1 = 0$

$$3x - 2y + 1 = 0$$

Parallel lines

$$l = (a, b, c)^{T} \text{ and } l' = (a, b, c')^{T}$$

$$l \times l' = (b, -a, 0)^{T}$$

$$(b, -a) \text{ tangent vector}$$

$$\begin{vmatrix} a & b & c \\ a & b & c' \\ i & j & k \end{vmatrix} = (c' - c)(b, -a, 0)^{T}$$

$$(a, b) \text{ normal direction} \longrightarrow n^{T}(b, -a) = 0$$

$$n = (a, b)$$

Parallel lines

Line
$$x = 1 \to l_1 = (1, 0, -1)^T$$

Line
$$x = 2 \to l_2 = (1, 0, -2)^T$$

Tangent vector (0,-1,0) or (0,1,0)

Normal vector (1,0,0)

Example

$$l_1 = (1, 0, -1)^T$$
 $l_2 = (1, 0, -2)^T$ $p_\infty = l_1 \times l_2$

$$p_{\infty} = \hat{l}_1 l_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$p_{\infty} = (0, 1, 0)^T$$
 Tangent vector

$$n^{T}(0,1,0) = 0 \rightarrow n = (1,0,0)^{T}$$
 \longrightarrow Normal direction

$$l_1 = (1, 0, -1)^T$$
 $l_2 = (1, 0, -2)^T$ $p_\infty = l_1 \times l_2$

$$l_2 = (1, 0, -2)^T$$

$$p_{\infty} = l_1 \times l_2$$

$$p_{\infty} = \hat{l}_1 l_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$p_{\infty} = (0, 1, 0)^T$$
 Tangent vector

$$n^{T}(0,1,0) = 0 \rightarrow n = (1,0,0)^{T}$$
 Normal direction

$$l_{2} = (6, 2, -10)^{\mathrm{T}}$$

$$l_{1} = (3, 1, 2)^{\mathrm{T}}$$

$$l_1 = (3, 1, 2)^T$$
 $l_2 = (6, 2, -10)^T$ $p_\infty = l_1 \times l_2$

$$p_{\infty} = l_1 \times l_2$$

$$x = 1 \quad x = 2$$

$$l_1 = (1, 0, -1)^2$$

$$l_1 = (1, 0, -1)^T$$
 $l_2 = (1, 0, -2)^T$ $p_\infty = l_1 \times l_2$

$$p_{\infty} = l_1 \times l_2$$

$$p_{\infty} = \hat{l}_1 l_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$p_{\infty} = (0, 1, 0)^T$$
 Tangent vector

$$n^{T}(0,1,0) = 0 \rightarrow n = (1,0,0)^{T}$$
 Normal direction

$$(3,1,2)^{\mathrm{T}}$$

$$l_1 = (3, 1, 2)^T$$
 $l_2 = (6, 2, -10)^T$ $p_\infty = l_1 \times l_2$

$$l_1 = (3, 1, 2) \qquad l_2 = (0, 2, -10) \qquad p_{\infty} = l_1 \times l_2$$

$$l_2 = (6, 2, -10)^{\mathrm{T}} \qquad p_{\infty} = \hat{l}_1 l_2 = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ -10 \end{bmatrix} = \begin{bmatrix} -14 \\ 42 \\ 0 \end{bmatrix} \text{ dividing by -14}$$

Ideal points and lines at infinity

Ideal points $\rightarrow (x_1, x_2, 0)^T$

Line at infinity $\rightarrow l_{\infty} = (0, 0, 1)^{T}$

$$\mathbb{P}^2 = \mathbb{R}^2 \cup l_{\infty}$$
 Note that in \mathbb{P}^2 there is no distinction between ideal points and others

Duality

- Duality principle:
 - To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

$$x \longrightarrow l$$

$$x^{T}l = 0 \longrightarrow l^{T}x = 0$$

$$x = l \times l' \longrightarrow l = x \times x'$$

Model of the projective plane

- Projective Plane at $x_3 = 1$
- Rays through the origin \rightarrow points
- Planes through the origin \rightarrow lines
- Two non-identical rays lie on a plane \rightarrow two points define a line
- Two planes intersect in one ray \rightarrow two lines intersect in a point
- Rays representing ideal points $(x_1, x_2, 0)$ and the plane representing the line at infinity are parallel to the plane $x_3 = 1 \rightarrow x_1 x_2$ plane

Projective Transformation

Projective Transformations

- A projectivity is an invertible mapping from points in \mathbb{P}^2 (homogeneous 3-vectors) to points in \mathbb{P}^2 that maps lines into lines.
- If three points x_1 , x_2 and x_3 lie on a line, than $h(x_1)$, $h(x_2)$, and $h(x_3)$ also do.
- There is a non-singular 3 x 3 matrix H that: h(x) = Hx

A hierarchy of transformations

Projective linear group $\rightarrow 8DOF$

Affine group (last row (0,0,1)) \rightarrow 6DOF

Similarity group (isotropic scaling) \rightarrow 4DOF

Isometry group (upper left 2x2 orthogonal) $\rightarrow 3DOF$

Class I: Isometries

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \varepsilon \cos \theta & -\sin \theta & t_x \\ \varepsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{array}{c} \varepsilon = \pm 1 \\ \text{orientation preserving: } \varepsilon = 1 \\ \text{orientation reversing: } \varepsilon = -1 \end{array}$$

- (iso = same, metric = measure)
- 3DOF (1 rotation, 2 translation)
- Special cases: pure rotation, pure translation
- Orientation preserving \rightarrow Euclidean Transformation
- Invariants: length, angle, area

$$x' = H_E x = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} x$$

$$R^T R = I$$

Class I: Isometries

• Example: Euclidean Transformation

Homogeneous:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \tau_x \\ w_{21} & w_{22} & \tau_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Cartesian:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} \tau_x \\ \tau_y \end{bmatrix}$$

Class II: Similarities

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad x' = H_S x = \begin{bmatrix} sR & t \\ 0^T & 1 \end{bmatrix} x$$

$$R^T R = I$$

- (isometry + scale)
- 4DOF (1 scale, 1 rotation, 2 translation)
- Also know as equi-form (shape preserving)
- Invariants: ratios of length, angle, ratios of areas, parallel lines

Class II: Similarities

Example

Homogeneous:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \rho w_{11} & \rho w_{12} & \tau_x \\ \rho w_{21} & \rho w_{22} & \tau_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Cartesian:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \rho w_{11} & \rho w_{12} \\ \rho w_{21} & \rho w_{22} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} \tau_x \\ \tau_y \end{bmatrix}$$

Class III: Affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad A = R(\theta)R(-\phi)DR(\phi) \qquad D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
$$\mathbf{x}' = \mathbf{H}_A \mathbf{x} = \begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix} \mathbf{x}$$

- 6DOF (2 scale, 2 rotation, 2 translation)
- non-isotropic scaling! (2DOF: scale ratio and orientation)
- Invariants: parallel lines, ratios of parallel lengths, ratios of areas

Class III: Affine transformations

• Example

$$A = R(\theta)R(-\phi)DR(\phi) \qquad D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$$
$$x' = H_A x = \begin{bmatrix} A & t\\ 0^T & 1 \end{bmatrix} x$$

Class IV: Projective transformations

$$\mathbf{x}' = \mathbf{H}_P x = \begin{bmatrix} A & t \\ \nu^T & \nu \end{bmatrix} x \qquad \qquad \nu = (\nu_1, \nu_2)^T$$

- 8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)
- Action non-homogeneous over the plane
- Invariants: cross-ratio of four points on a line (ratio of ratio)
- **Perspectivity:** When two coordinate frames (on two planes) are both Euclidean, then the mapping defined by central projection is called perspectivity (more restricted than an arbitrary projectivity)

Class IV: Projective transformations

Mapping between planes

Transformation between two images induced by a world plane

Transformation between two images with the same camera centre

Transformation between Planes 1 and 2: Perspectivity

Overview of transformations

Overview of transformations

Projective
$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids).

The line at infinity l_{∞}

Similarity
$$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Ratios of lengths, angles. The circular points I,J

Euclidean
$$\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Angles, lengths, areas, parallel lines.

Action of affinities and projectivities on points at infinity

• Affinities: Points at infinity stays at infinity, but move along line

$$\begin{bmatrix} A & t \\ 0^T & \nu \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ 0 \end{bmatrix}$$

• **Projectivities:** Points at infinity becomes finite, allows to observe vanishing points, horizon

$$\begin{bmatrix} A & t \\ \nu^T & \nu \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \nu_1 x_1 + \nu_2 x_2 \end{bmatrix}$$

Credits

Richard Hartley and Andrew Zisserman.
 Multiple View Geometry in Computer Vision.
 Cambridge, ISBN 0521623049