

Variáveis Primitivas e Controle de Fluxo

Capítulo II

Variáveis

No Java existem dois tipos de variáveis, as Primitivas e as de Referência

• Primitivas: nome associado a um espaço de memória.

Tipos Primitivos em Java

Classificação	Tipo	Tamanho	Descrição
Inteiro	byte	8 bits	Utilizado quando o consumo de memória é importante, principalmente em vetores (-127 a 127)
	short	16 bits	Utilizado quando o consumo de memória é importante, principalmente em vetores (-32.768 a 32.767)
	int	32 bits	Bastante utilizado para representar números inteiros (-2147483648 a 2147483647)
	long	64 bits	Utilizando quando o intervalo necessário excede os valores de int (-2^63 a 2^63-1)
Ponto flutuante	float	32 bits	Precisão simples com até 7 dígitos decimais (de acordo com a IEEE 754-2008)
	double	64 bits	Precisão simples com até 15 dígitos decimais (de acordo com a IEEE 754-2008)
Lógico	boolean	indefinido	Utilizado para para flag simples, true e false
Caractere	char	16 bits	Utilizada para armazenar um caractere Unicode, a partir da versão 1.5 (ou 2SE 5.0 o UTF-16 é utilizado)

-2^(numero de bits - 1) até 2^(numero de bits - 1) - 1

Variáveis

• Referência: nome associado a um ponteiro que aponta para um espaço de memória. Referenciando um objeto.

String palavra = "Oi"; Carro fusca;

Classe String

String não é um tipo de variável e sim uma classe. Por isso ela é escrita com a primeira letra maiúscula. Esta classe é dotada de vários atributos e métodos que facilitam muito a nossa vida.

Manipulando métodos da classe String

<u>Trabalhando String em Java</u>

Algumas convenções Java para variáveis (Boas práticas)

✓ Uma declaração de variável por linha, seguida de comentário;

```
float nota;  // Nota do aluno
float media;  // Média das notas
```

- ✓ Nome de variáveis: devem começar com letras (minúsculas), \$ ou _; Se for um nome composto as primeiras letras das palavras subsequentes devem ser maiúsculas;
- ✓ Utilize o padrão: "camel case";

double saldoContaCorrente;

✓ Nome de constantes: devem ser sempre maiúsculas. Usa-se underline (_) para separar nomes compostos; final int CREDITOS MATRICULA = 27;

Algumas convenções Java para variáveis (Boas práticas)

- ✓ Quando inicializar uma variável sempre indique o tipo do número, caso ela não seja do tipo inteiro (int);
- ✓ Para float:

✓ Para double:

double
$$a = 10.0$$
; double $b = 10.2$;


```
Exemplos de promoção e casting ( ou conversion )
✓ Vamos analisar o seguinte trecho de código:
✓ Exemplo 01:
       int a = 5;
       int b = 2:
       double resultado;
       resultado = a / b;
                                                POR QUE?
       System.out.println("Resultado: " + resultado);
O resultado esperado seria: "Resultado: 2.5"
Porém na saída obtemos o valor: "Resultado: 2.0"
Resultado: 2.0
BUILD SUCCESSFUL (total time: 0 seconds)
```


Isso acontece pois as variaveis do tipo "a" e "b" são ambas do tipo inteiro, assim o compilador identifica que o resultado esperado também deve ser do tipo inteiro.

✓ Como resolvemos este problema?

```
✓ Solução exemplo 01:
    int a = 5;
    int b = 2;
    double resultado;
    resultado = (double) a / b;

System.out.println("Resultado: " + resultado);

Resultado: 2.5
```

BUILD SUCCESSFUL (total time: 1 second)


```
Exemplos de promoção e casting ( ou conversion )
✓ Vamos analisar o seguinte trecho de código:
✓ Exemplo 02:
    double a = 5.5;
    int b;
                     Erro!
                  Não é possível
                converter de double
                    para int
    System.out.println("Resultado: " + b);
               b = a;
      1 error
      BUILD FAILED (total time: 1 second)
```


Isso acontece pois uma variável do tipo **double** não pode ser atribuida a uma variável do tipo **int**.

- ✓ Como resolvemos este problema?
- √ Solução exemplo 02:

```
double a = 5.5;
int b;

b = (int) a;
Utilizamos o
"casting"
novamente!
```

System.out.println("Resultado: " + b);

Resultado: 5 <-- BUILD SUCCESSFUL

Porém, perceba que houve uma perda de informação ao fazermos o casting.

Tabela casting

DE \ PARA	byte	short	char	int	long	float	double
byte		Implícito	char	Implícito	Implícito	Implícito	Implícito
short	byte		char	Implícito	Implícito	Implícito	Implícito
char	byte	short		Implícito	Implícito	Implícito	Implícito
int	byte	short	char		Implícito	Implícito	Implícito
long	byte	short	char	int		Implícito	Implícito
float	byte	short	char	int	long		Implícito
double	byte	short	char	int	long	float	

Conhecendo o Printf

Conversor	Descrição	
d	Representa decimal	
f	Representa ponto flutuante	
S	Representa uma String	
n	Quebra de linha (Recomendado pela Oracle ao invés de \n)	
06	Fixa a saída em 6 caracteres, adicionando zeros se necessário	
+	Exibe o sinal (positivo ou negativo)	
.3	Exibe 3 casas depois da vírgula	
8.3	Exibe 8 casas	

Exemplos

```
double pi = 3.141 592 653;
int decimal = 123456;
double numDouble = 12345.123456;
String texto = "Teste formatação!";
System.out.format("%d %n", decimal);
System.out.format("%f %n", pi);
System.out.format("%s %n", texto);
System.out.printf("%+d %n", decimal);
System.out.printf("%08d %n", decimal);
System.out.printf("%8.3f %n", numDouble);
```


C206 – Programação Orientada a Objetos

Entrada de dados

Para entrada de dados via dispositivo padrão (terminal) utilizamos da classe **Scanner**Não se esqueça do import!

import java.util.Scanner;

Sempre que terminar de utilizar o objeto "sc", é necessário fechar este recurso.

```
Scanner sc = new Scanner(System.in);
System.out.println("Entre com um valor de byte: ");
byte b = sc.nextByte();
System.out.println("Entre com um valor de short: ");
short s = sc.nextShort();
System.out.println("Entre com um valor de int: ");
int i = sc.nextInt();
System.out.println("Entre com um valor de long: ");
long l = sc.nextLong();
System.out.println("Entre com um valor de float: ");
float f = sc.nextFloat();
System.out.println("Entre com um valor de double: ");
double d = sc.nextDouble();
System.out.println("Entre com uma cadeia de String: ");
String texto = sc.nextLine();
System.out.println("Entre com uma cadeia de String sem espaço: ");
String textoSemEspaco = sc.next();
sc.close():
```

Entrada de dados

Para ler variáveis do tipo char, nós utilizamos uma String auxiliar e pegamos apenas sua primeira letra e convertemos em char através do método charAt.

```
Scanner sc = new Scanner(System.in);
```

```
String leitura = sc.nextLine();
char letra = leitura.charAt(0);
```

sc.close();

O número indicado no método indica em qual posição vamos pegar a letra, neste caso a primeira letra na posição O

Controle de Fluxo

```
IF-ELSE
```

```
if ( num1 == num2 )
    System.out.println("Os numeros sao iguais");
if ( num1 != num2 )
    System.out.println("Os numeros sao diferentes");
if ( num1 > num2 )
    System.out.println("num1 é maior que num2");
if ( num1 < num2 )
    System.out.println("num2 é maior que num1");
if ( num1 >= num2 )
    System.out.println("num1 é maior ou igual à num2");
```

Operador	Descrição
==	Igual à
!=	Diferente de
>	Maior que
>=	Maior ou igual à
<	Menor que
<=	Menor ou igual à

Operador	Descrição
&&	E
	OU

```
if ( (media >= 60) && (freq > 0.75) ) {
    System.out.println("Aluno Aprovado!");
} else if ( (media < 30) || (freq < 0.75) ) {
    System.out.println("Aluno Reprovado!");
} else {
    System.out.println(" NP3 !");
}</pre>
```


Controle de Fluxo

Expressões condicionais ternárias (Opcional ao ifelse) Exemplo:

```
if(media >= 60 && freq > 0.75) {
    System.out.println("Aprovado!");
}else{
    System.out.println("NP3");
}
```

```
System.out.println((media >= 60 && freq > 0.75 ? "Aprovado" : "NP3"));

Condição verdadeiro falso
```

Como se lê: "a condição é verdadeira (?), se sim "Aprovado", caso contrário (:) "NP3".

Incremento

Decremento

Decremento

+=

-=

instituto Nacional de Telecomunicações

```
Estruturas de repetição
While
int contador = 0:
System.out.println("Imprimindo valores impares" +
        " de 0 a 30");
while (contador < 30) {
    if ( contador % 2 == 1 ) {
       System.out.println(contador);
                                        Operador
                                                      Descrição
    contador ++:
                                                   Incremento
                                           ++
```



```
Estruturas de repetição
```

For

Instituto Nacional de Telecomunicações

Estruturas de repetição

Switch-Case

```
Scanner sc = new Scanner(System.in);
int op; //opção
op = sc.nextInt();
switch(op){
    case 1:
        System.out.println("Opção 01");
        break;
    case 2:
        System.out.println("Opção 02");
        break:
    case 3:
        System.out.println("Opção 03");
        break:
    default:
        System.out.println("Opção inválida");
        break:
sc.close();
```

Caso nenhuma das opções seja a correta o bloco default é executado

Operadores

Aplicável
somente
em
inteiros

Operador	Descrição
=	Atribuição
!	Complemento (Inverte valor de boolean)
+	Adição
-	Subtração
*	Multiplicação
/	Divisão
%	Módulo
&	Lógica E (bit a bit)
	Lógica OU (bit a bit)
٨	Lógica XOR (bit a bit)
~	Inversor (bit a bit)

Mateiral de Apoio

Variáveis Primitivas e Controle de Fluxo - Caelum

Exercícios

 De acordo com a opção do usuário imprima a tabela verdade do operador desejado. (E ou OU).

2. Crie um programa que calcule o IMC (Índice de Massa Corporal) e mostre o grau de obesidade de acordo com o resultado. Fórmula do imc = (peso

/ altura²).

IMC	Classificação	
abaixo de 18,5	abaixo do peso	
entre 18,6 e 24,9	Peso ideal (parabéns)	
entre 25,0 e 29,9	Levemente acima do peso	
entre 30,0 e 34,9	Obesidade grau I	
entre 35,0 e 39,9	Obesidade grau II (severa)	
acima de 40	Obesidade III (mórbida)	

Exercícios

- 3. Faça uma calculadora que dado 2 números informados pelo usuário realize as seguintes operações (de acordo com a opção do usuário): soma, subtração, multiplicação, divisão e exponencial.
- 4. Escreva um programa que repita a leitura de uma senha até que ela seja válida. Para cada leitura de senha incorreta informada, escrever a mensagem "Senha Invalida". Quando a senha for informada corretamente deve ser impressa a mensagem "Acesso Permitido" e o algoritmo encerrado. Considere que a senha correta é o valor 2002.

Obrigado!