

编译原理 Complier Principles

Lecture 4
Syntax Analysis: Top-Down

赵帅

计算机学院 中山大学

Before we start...

So, please pay attention and catch up!

Mind Map[思维导图]

Mind Map[思维导图]

- Most compilers use either Top-Down or Bottom-Up parsers.
- Bottom-up parsing [自底向上分析]
 - ◆ Begin at the leaves (the bottom) and working up towards the root (the top).
 - ◆Tries to reduce[规约] the input string to the start symbol.

 - ◆ Parser code structure nothing like grammar.
 - □ Very difficult to implement manually.
 - Automated tools exist to convert to code (e.g., Yacc, Bison).

◆Example

- ♦ Grammar G(S): S \rightarrow AB; A \rightarrow aA | a; B \rightarrow bB | b;
- Language? L(G)={ambn|m,n≥1}
- ◆ Sentence: aabb;

S ⇒ AB $\Rightarrow AbB$ $\Rightarrow AbB$ $\Rightarrow AbB$ $\Rightarrow Abb$ $\Rightarrow aAbb$ $\Rightarrow aAbb$ $\Rightarrow aabb$ (5) B reduce to S. $\Rightarrow b reduce to B.$ (2) aA reduce to A. $\Rightarrow aabb$ (1) a reduce to A.

Reverse of rightmost derivation!

- Top-Down parsing [自顶向下分析]
 - ◆Starting from the root (*top*) and create the leaves (*down*) of the parse tree in a pre-defined order(depth-first)[深度优先,先根次序/前序].
 - ◆Top-down parsing can be viewed as **finding a leftmost derivation**[寻求最左推导] for an input string. *Why not rightmost or arbitrary derivation?*
 - ◆ Review: *In each step of derivation*, the following choices need to be made:
 - □ Choice of the non-terminal to be replaced. [替换哪个非终结符] Leftmost!
 - □ Choice of the production to be applied for a non-terminal. [使用文法中哪个规则来替换] Key Problem!
 - ◆ Question: At each step of a top-down parse, What is the key problem?

- Top-Down parsing [自顶向下分析]
 - ◆Once a production is chosen, we try to match the terminal symbols in the production body with the input string.
 - ◆ Parser code structure closely mimics grammar.
 - Manually implementation is feasible.
 - Automated tools exist to convert to code. (e.g. ANTLR)
- Top-Down vs. Bottom-Up [对比]
 - ◆ Top-down: easier to understand and implement manually. (E.g. ANTLR)
 - ◆ Bottom-up: more powerful, can be implemented automatically. (E.g. YACC/Bison)

◆Example

- ♦ Grammar G(S): S \rightarrow AB; A \rightarrow aA | a; B \rightarrow bB | b;
- ◆ Sentence: aabb;

$$S \Rightarrow AB$$
 (1)
 $\Rightarrow aAB$ (2)
 $\Rightarrow aaB$ (3)
 $\Rightarrow aabB$ (4)
 $\Rightarrow aabb$ (5)

 $S \Rightarrow AB$ (5) B reduce to S. $\Rightarrow AbB$ (4) bB reduce to B. $\Rightarrow Abb$ (3) 2^{nd} b reduce to B. $\Rightarrow aAbb$ (2) aA reduce to A. $\Rightarrow aabb$ (1) 2^{nd} a reduce to A.

Leftmost derivation

Top-Down

Leftmost reduction Bottom-Up

Mind Map[思维导图]

Top-down Parsing[自顶向下分析]

- Recursive-descent parsing[RDP, 递归下降语法分析]
 - ◆A general form[通用形式] of top-down parsing.
 - ◆ A recursive-descent parsing program consists of a set of *procedures*, one for each non-terminal.
 - ◆ Execution begins with the procedure for the start symbol, which halts and announces success if its procedure body scans the entire input string.

```
void A() {
                                                         How to choose A-production?
           Choose an A-production, A \to X_1 X_2 \cdots X_k;
1)
                                                         It's not specified, so the pseudocode is
2)
           for ( i = 1 \text{ to } k ) {
3)
                 if (X_i is a nonterminal)
                                                         nondeterministic[伪代码是不确定的].
                        call procedure X_i();
                 else if (X_i equals the current input symbol a)
5)
                        advance the input to the next symbol;
                 else /* an error has occurred */;
```

RDP with backtracking[回溯]

- RDP may require <u>backtracking</u>.
- Approach: for a non-terminal in the derivation, productions are tried in some order until
 - ◆ A production is found that generates a portion of the input, or
 - ◆ No production is found that generates a portion of the input, in which case backtrack to previous non-terminal.
- Terminals of the derivation are compared against input
 - ◆ Match: advance input, continue parsing
 - ◆ Mismatch: backtrack, or fail
- Parsing fails if no derivation generates the entire input.

RDP with backtracking[回溯]

- In the analysis process, when a non-terminal is successfully matched with an alternative, the match may be temporary.
- If a mismatch occurs, backtracking[回溯] will be performed.
- G[S]: S \rightarrow xAy; A \rightarrow ** | *, whether the input string **x** * **y** is its sentence?

Left Recursion Problem[左递归问题]

- A grammar is left recursive[左递归] if it has a non-terminal **A** such that there is a derivation $\mathbf{A} \stackrel{+}{\Rightarrow} \mathbf{A} \boldsymbol{\alpha}$.
- Sentence can grow infinitely without consuming input.(Into an infinite loop!)
- Top-down parsing methods cannot handle left-recursive problems.[自顶向下语法分析方法不能处理左递归的文法]

Left Recursion Problem[左递归问题]

- Immediate left recursion [直接/立即左递归]
 - ♦ There is a production $A \rightarrow A\alpha$.
- Non-immediate left recursion [间接/非立即左递归]
 - ◆ Left recursion involving derivation of 2+ step.
 - $\bullet A \rightarrow B\beta$; $B \rightarrow A\alpha$.
- A transformation is needed to *eliminate left recursion*. [需要一个转换方法来消除左递归]
- Rewrite the grammar so that it is right recursive. [改为右递归]

- Immediate left recursion[直接左递归的消除]
 - ◆ Grammar: A → Aα | β (α≠β, β doesn't start with A)
 - ◆ rewrite the rule of A as the following form equivalently:
 - ♦ Grammar: A → β A'; A' → α A' | ε (right recursion)

```
G[A]: A \rightarrow A\alpha \mid \beta
A \Rightarrow A\alpha
\Rightarrow A\alpha\alpha
\Rightarrow A\alpha\alpha\alpha
\Rightarrow A\alpha\alpha\alpha
.....
\Rightarrow A\alpha...\alpha
\Rightarrow \beta\alpha...\alpha
```

Remove Left Recursion

- Immediate left recursion can be eliminated by the following technique, which works for any number of A-productions.
 - ◆ First, group the productions as

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 ... \mid \beta_n$$
 where no β_i begins with an A.

◆Then, replace the A-productions by

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid ... \mid \beta_n A' \quad AND \quad A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid ... \mid \alpha_m A' \mid \epsilon$$

• Exercise-Remove Immediate left recursion.

- Non-Immediate left recursion[非直接左递归的消除]
 - ♦ Grammar: $S \rightarrow Qc \mid c; Q \rightarrow Rb \mid b; R \rightarrow Sa \mid a$.
 - ◆ Although there is no immediate left recursion, S, Q and R are all left recursion.

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Rb \mid b$
 $R \rightarrow Sa \mid a$

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Sab \mid ab \mid b$
 $R \rightarrow Sa \mid a$

Left Recursion!

$$S \rightarrow Sabc \mid abc \mid bc \mid c$$

 $Q \rightarrow Sab \mid ab \mid b$
 $R \rightarrow Sa \mid a$

- The following algorithm systematically eliminates left recursion from a grammar[直接/间接]. It is guaranteed to work if:
 - \bullet the grammar has no cycles (derivations of the form A $\stackrel{t}{\Rightarrow}$ A)
 - \bullet the grammar has no ϵ -productions (productions of the form A \rightarrow ϵ).
 - ◆ These two can be eliminated systematically from a grammar.
- Algorithm: Eliminating left recursion.
 - ♦ INPUT: Grammar G with no cycles or ε —productions.
 - ◆ OUTPUT: An equivalent grammar with no left recursion.
 - METHOD: Apply the following 3 steps to G. Note that the resulting non-left-recursive grammar may have ϵ -productions.

- ♦ Step 1: Arrange all non-terminals of grammar G in some order A_1 , A_2 ,..., A_n ;
- ◆ Step 2 : Execute in order obtained in Step 1:

```
FOR i:=1 TO n DO
FOR j:=1 TO i-1 DO
```

Replace each production of the form $A_i \rightarrow A_j \gamma$ by the productions $A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid ... \delta_k \gamma$, where $A_j \rightarrow \delta_1 \mid \delta_2 \mid ... \delta_k$ are all current A_i -productions;

eliminate the immediate left recursion among the A_i-productions;

END

END

◆Step 3 : Simplify the grammar obtained from Step 2 --- remove the production rules of non-terminal that can never be reached from the start symbol.

• Example: Consider Grammar G(S): (ILR = immediate left recursion)

$$R \rightarrow Sa \mid a$$

$$Q \rightarrow Rb \mid b$$

$$R \rightarrow Sa \mid a$$
 $Q \rightarrow Rb \mid b$ $S \rightarrow Qc \mid c$

- Step 1: non-terminal order: R,Q,S; (A₁, A₂, A₃)
- Step 2: (i=1) For R, there is no ILR;

```
(i=2,j=1) Replace production Q \rightarrow Rb by the productions R
   \rightarrow Sa | a, which generates Q \rightarrow Sab | ab | b; not ILR
(i=3,j=1) No operations.
```

(i=3,j=2) Replace production $S \rightarrow Qc$ by the productions $Q \rightarrow Sab$ ab | b, which generates $S \rightarrow Sabc$ | abc | bc | c; contain ILR; (continue...)


```
(continue...) (\alpha) (\beta) (i=3,j=2) S \rightarrow Sabc | abc | bc | c contains ILR. Eliminate ILR about S:
```

$$S \rightarrow abcS' \mid bcS' \mid cS'$$
 $S' \rightarrow abcS' \mid \epsilon$ $Q \rightarrow Sab \mid ab \mid b$ $R \rightarrow Sa \mid a$

• Step 3: Simplify the grammar and get Final Grammar:

$$S \rightarrow abcS' \mid bcS' \mid cS' \quad S' \rightarrow abcS' \mid \epsilon$$

(Q&R's production is included by S)

- Question: What will happen if the order in step 1 is different
- Again, consider G(S): $S \rightarrow Qc \mid c \mid Q \rightarrow Rb \mid b \mid R \rightarrow Sa \mid a$
- Exercise: If the order in step 1 is S,Q,R, the final grammar without ILR is? (was R, Q, S in the previous example)

$$S \rightarrow Qc \mid c$$
 $Q \rightarrow Rb \mid b$
 $R \rightarrow bcaR' \mid caR' \mid aR'$
 $R' \rightarrow bcaR' \mid \epsilon$
 $S \rightarrow abcS' \mid bcS' \mid cS' S' \rightarrow abcS' \mid \epsilon$
 $S \rightarrow abcS' \mid \epsilon$

• Different order in Step1 may cause the final grammar different in form[可能在形式上不同], but it is not difficult to prove that they are equivalent.

Recursive-descent parsing[递归下降语法分析]

- Recursive-descent parsing [RDP, 递归下降语法分析]
 - ◆ A general form of top-down parsing.
 - ◆ RDP is a simple and general parsing strategy.
 - Left-recursion must be eliminated first. (Can be eliminated automatically using some algorithm)
 - ◆ However it is not popular because of backtracking.
 - Backtracking requires <u>re-parsing</u> the same string.
 - □Tried to solve problem *in any possible ways*[穷尽一切可能的试探法] which is inefficient.(can take exponential time)
 - Also removing already added nodes in parse tree is troublesome.

Mind Map[思维导图]

Predictive Parsing[预测分析]

• Predictive Parsing[预测分析法]

- ◆A special case of recursive-descent parsing without backtracking[无回溯].
- ◆ Predictive parsing chooses the correct production by looking ahead at the input a fixed number of symbols, typically we may look only at one.(that is ,the next input symbol)
- ◆ Restrictions on the grammar to avoid backtracking.[LL(k)]

Predictive Parsing[预测分析]

- A parser with no backtracking [无回溯]: select the correct alternative through given next input terminal(s)[下一个输入符号/终结符]
- A predictive parser chooses the production to apply solely on the basis of [选取产生式的依据]
 - ◆ Next input symbol(s).
 - ◆ Current non-terminal being processed.

```
G(S): S \rightarrow aBD | bBB; B \rightarrow c | bce; D \rightarrow d parsing input "abced" requires no backtracking
```

Given input terminal(s) a, cannot choose between two rules.

Common Prefix[共同前缀]

• G[S]: S \rightarrow xAy; A \rightarrow ** | *, If the current matching symbol is *, the next step is to expand A, and A \rightarrow α_1 | α_2 |... | α_n . How to choose α_i ?

- (1) If there is a unique α_i with * as the head, replace using this unique α_i .
- Left factoring[提取左公因子]: Rewrite the productions to <u>defer the</u> <u>decision</u> until enough of the input has been seen that we can make the right choice. [推后决定直至可选择]

Left factoring[提取公共左因子]

- For each non-terminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$, replace all of the A-productions $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \mid \alpha \beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , by $A \rightarrow \alpha A' \mid \gamma$; $A' \rightarrow \beta_1 \mid \beta_2 \mid \mid \beta_n$.
- Repeatedly apply this transformation until no two alternatives for a non-terminal have a common prefix.
- Example: $G[S]: S \rightarrow abc \mid abd \mid ae;$
 - ◆Step1: $S \rightarrow aA'$; $A' \rightarrow bc \mid bd \mid e$;
 - ◆Step2: S \rightarrow aA'; A' \rightarrow bB' | e; B' \rightarrow c | d;

Predictive Parsing[预测分析]

- Patterns in grammars that prevent predictive parsing [并非总是能预测分析]:
 - ◆Left Recursion Problem [左递归问题]
 - Lookahead symbol changes only when a terminal is matched.
 - □ *Q:* How to solve? A: Remove Left Recursion.
 - ◆ Common Prefix[共同前缀] Cause Backtracking Problem.
 - □ Q: How to solve? A: Left factoring.
 - ◆ Question: After left factoring, Can we <u>completely</u> avoid the backtracking and do predictive parsing? What if $S \rightarrow EBD \mid FBB$; $E \rightarrow a...$; $F \rightarrow a...$

G(S): S \rightarrow aBD | bBB; B \rightarrow c | bce; D \rightarrow d FIRST && FOLLOW! parsing input "abced" requires no backtracking

FIRST[终结首符集]

- During top-down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α) [终结首符集] (α is *any string* of grammar symbols)
 - ◆ Define FIRST(α) to be the set of terminals that begin strings[串的终结首符的集合] derived from α . FIRST(α) = {a | $\alpha \stackrel{*}{\Rightarrow} a..., a \in V_T$ }
 - \bullet AND if $\alpha \Rightarrow \varepsilon$, then ε is also in FIRST(α).
 - Consider two(or more) A-productions A $\rightarrow \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint sets [不相交的集合]. We can then choose between these Aproductions by looking at the next input symbol a, since a can be in at most one of FIRST(α) and FIRST(β), not both.

FOLLOW[后继终结符号集]

- Question: And then, If for an input symbol α and the non-terminal A ($A \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n$), but for any α_i , $\alpha \notin FIRST$ (α_i), in this case, how to choose α_i , or draw a conclusion of grammatical errors?
- FOLLOW(A): For <u>nonterminal</u> A, to be the set of terminals a that can appear immediately to the right of A in some sentential form; that is, FOLLOW(A) = $\{a \mid S \stackrel{*}{\Rightarrow} ... Aa..., a \in V_T \}$. [在某些句型中紧跟在A右边的终结符号的集合]
 - ◆In addition, if A can be the rightmost symbol in some sentential form, then \$ is in FOLLOW(A); recall that \$ is a special "endmarker"[结束标记] symbol that is assumed not to be a symbol of any grammar.

FOLLOW[后继终结符号集]

- Question: For an input symbol \boldsymbol{a} and the non-terminal \boldsymbol{A} ($\boldsymbol{A} \rightarrow \boldsymbol{\alpha}_1$ $\mid \boldsymbol{\alpha}_2 \mid ... \mid \boldsymbol{\alpha}_n$), but for any $\boldsymbol{\alpha}_i$, $\boldsymbol{a} \notin FIRST$ ($\boldsymbol{\alpha}_i$), in this case, how to choose $\boldsymbol{\alpha}_i$, or draw a conclusion of grammatical errors?
- Answer: if $\varepsilon \in FIRST(\alpha_i)$, then when $a \in FOLLOW(A)$, select A $\rightarrow \alpha_i$, otherwise, grammatical error.
- Example: G(S): S \rightarrow aA | d; A \rightarrow bAS | ϵ . String : abd.

```
S abd

\Rightarrow aA abd

\Rightarrow abAS abd

\Rightarrow abS abd

FIRST(aA)= {a}

FIRST(d) = {d}

FIRST(bAS)= {b}
```

 \Rightarrow abd

HOW TO compute FIRST & FOLLOW?

Compute FIRST[计算FIRST集合的方法]

- To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any FIRST set:
 - ◆ Rule1: If X ∈ V_T, then FIRST(X) = {X}. [X是终结符]
 - ♦ Rule2: If X ∈ V_N and X → ε exists, then add ε to FIRST(X). [非终结符,空式]
 - ◆ Rule3: If X ∈ V_N and X → $Y_1Y_2Y_3...Y_k$, then [非终结符,非空式]
 - □ If for some Y_i and a terminal a: ① $\varepsilon \in \text{all of FIRST}(Y_1),..., \text{FIRST}(Y_{i-1}), \text{ i.e., } Y_1...Y_{i-1} \Leftrightarrow \varepsilon$; ② $\alpha \in \text{FIRST}(Y_i) \setminus \{\varepsilon\}$. Then, $\alpha \in \text{FIRST}(X)$.
 - □ E.g.,
 - □ Everything in FIRST(Y₁) \ {ε} is surely in FIRST(X).
 - \blacksquare If Y_1 doesn't derive ε , then we add nothing more.
 - **□** But if $Y_1 \stackrel{*}{\Rightarrow} ε$, then we add FIRST(Y_2) \ {ε}, and so on...
 - □ Add ε to FIRST(X), if ε is in FIRST(Y_i) for all i=1,2,...k.

Compute FIRST[计算FIRST集合的方法]

- Next, we can compute FIRST for any string $\alpha = X_1X_2...X_n$ [符号串]
 - \bullet Add all non- ϵ symbols of FIRST(X₁) to FIRST(α).
 - ♦ Add non-ε symbols of FIRST(X_i), 2≤i≤n, to FIRST(α), if FIRST(X_1), ..., FIRST(X_{i-1}) all contain ε. [前k-1个都包含空串]
 - \bullet Add ε to FIRST(α), if FIRST(X_1), ..., FIRST(X_n) all contain ε .

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆FIRST(E):{
 - **♦** FIRST(T):{
 - ♦ FIRST(E'):{ + , ε
 - ♦ FIRST(T'):{ * , ε
 - ◆ FIRST(F):{ (, id

Apply rules for the first time:

 $E \rightarrow TE'$ FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE'$ FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain ε

 $E' \rightarrow \varepsilon \ \underline{\varepsilon} \ add \ to \ FIRST(E')$

 $T \rightarrow FT'$ FIRST(F) add to FIRST(T), FIRST(F) doesn't contain ε

 $T' \rightarrow *FT' FIRST(*)$ add to FIRST(T'), FIRST(*) doesn't contain ε

 $T' \rightarrow \varepsilon \varepsilon add to FIRST(T')$

 $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id FIRST(id) add to FIRST(F)$

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{
 - ◆ FIRST(T):{ (, id
 - ♦ FIRST(E'):{ +, ε
 - ♦ FIRST(T'):{ *, ε
 - ◆ FIRST(F):{ (, id

It is necessary to determine whether the FIRST set has changed after each rule application. first time YES!

Apply rules for the second time:

 $E \rightarrow TE'$ FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE' \frac{FIRST(+)}{add} \frac{dd}{dt} \frac{dt}{dt} \frac{FIRST(E')}{ft} \frac{FIRST(+)}{ft} \frac{dt}{dt} \frac{dt$

 $E' \rightarrow \varepsilon \, \underline{\varepsilon} \, add \, to \, FIRST(E')$

 $T \rightarrow FT'$ FIRST(F) add to FIRST(T), FIRST(F) doesn't contain ε

 $T' \rightarrow *FT' FIRST(*) add to FIRST(T'), FIRST(*) doesn't contain <math>\varepsilon$

 $T' \rightarrow \varepsilon \varepsilon$ add to FIRST(T')

 $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id FIRST(id)$ add to FIRST(F)

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{ (, id
 - ◆ FIRST(T):{ (, id
 - ♦ FIRST(E'):{ +, ε
 - ♦ FIRST(T'):{ *, ε
 - ◆ FIRST(F):{ (, id

It is necessary to determine whether the FIRST set has changed after each rule application. second time YES!

Apply rules for the third time:

 $E \rightarrow TE' FIRST(T) add to FIRST(E), FIRST(T) doesn't contain <math>\varepsilon$ $E' \rightarrow +TE' FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain <math>\varepsilon$

 $E' \rightarrow \varepsilon \, \underline{\varepsilon} \, add \, to \, FIRST(E')$

 $T \rightarrow FT' \ \underline{FIRST(F)} \ add \ to \ \underline{FIRST(T)}, \ FIRST(F) \ doesn't \ contain \ \varepsilon$ $T' \rightarrow *FT' \ \underline{FIRST(*)} \ add \ to \ \underline{FIRST(T')}, \ FIRST(*) \ doesn't \ contain \ \varepsilon$ $T' \rightarrow \varepsilon \ \underline{\varepsilon} \ add \ to \ \underline{FIRST(T')}$

 $F \rightarrow (E) \underline{FIRST('(') \ add \ to \ FIRST(F), \ FIRST('(') \ doesn't \ contain \ \varepsilon}$ $F \rightarrow id \ FIRST(id) \ add \ to \ FIRST(F)$

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{ (, id }
 - ◆ FIRST(T):{ (, id }
 - ◆ FIRST(E'):{ +, ε }
 - ♦ FIRST(T'):{ *, ε}
 - ◆FIRST(F):{ (, id }

It is necessary to determine whether the FIRST set has changed after each rule application. third time YES!

Apply rules for the 4th time:

 $E \rightarrow TE' \ FIRST(T) \ add \ to \ FIRST(E), \ FIRST(T) \ doesn't \ contain \ \varepsilon$ $E' \rightarrow +TE' \ FIRST(+) \ add \ to \ FIRST(E'), \ FIRST(+) \ doesn't \ contain \ \varepsilon$

 $E' \rightarrow \varepsilon \, \underline{\varepsilon} \, add \, to \, FIRST(E')$

 $T \rightarrow FT' \ \underline{FIRST(F)} \ add \ to \ \underline{FIRST(T)}, \ FIRST(F) \ doesn't \ contain \ \varepsilon$ $T' \rightarrow *FT' \ \underline{FIRST(*)} \ add \ to \ \underline{FIRST(T')}, \ FIRST(*) \ doesn't \ contain \ \varepsilon$ $T' \rightarrow \varepsilon \ \varepsilon \ add \ to \ FIRST(T')$

 $F \rightarrow (E) \underline{FIRST('(') \ add \ to \ FIRST(F), \ FIRST('(') \ doesn't \ contain \ \varepsilon}$ $F \rightarrow id \ FIRST(id) \ add \ to \ FIRST(F)$

It is necessary to determine whether the FIRST set has changed after each rule application. 4th time NO!

- To compute FOLLOW(A) for all non-terminals A, apply the following rules until nothing can be added to any FOLLOW set.
 - ◆ Rule1: Place \$ in FOLLOW(S), where S is the start symbol.
 - Rule2: If there is a production A \rightarrow αBβ, then everything in FIRST(β) except ε is in FOLLOW(B).
 - ♦ Rule3: If there is a production A → αB, or a production A → αBβ, where FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW(B).
- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - FIRST(E):{ (, id }; FIRST(T):{ (, id } ; FIRST(E'):{ +, ε } ; FIRST(T'):{ *, ε } ; FIRST(F):{ (, id }.

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆FOLLOW(E):{\$
 - ◆ FOLLOW(T):{ +, \$
 - ◆ FOLLOW(E'):{ \$
 - ◆ FOLLOW(T'):{
 - ◆ FOLLOW(F):{

Apply rules for the first time:

- ◆ Place \$ in FOLLOW(E), since E is the start symbol.
- \bullet E \rightarrow TE'
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - since FIRST(E') contains ε, then everything in FOLLOW(E) is in FOLLOW(T).
- $\bullet \quad E' \rightarrow +TE' \mid \epsilon$
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E') is in FOLLOW(E').
 - since FIRST(E') contains ε, then everything in FOLLOW(E') is in FOLLOW(T).

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | i , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆ FOLLOW(E):{\$
 - ◆ FOLLOW(T):{ +, \$
 - ◆ FOLLOW(E'):{ \$
 - ◆ FOLLOW(T'):{+, \$
 - ◆ FOLLOW(F):{ *, +, \$

Apply rules for the first time:

- \bullet T \rightarrow FT'
 - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T) is in FOLLOW(T').
 - □ Since FIRST(T') contains ε, then everything in FOLLOW(T) is in FOLLOW(F).
- ♦ T' → *FT' | ε
 - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T') is in FOLLOW(T').
 - since FIRST(T') contains ε, then everything in FOLLOW(T') is in FOLLOW(F).

- Example: $G[E]: E \rightarrow TE'; E' \rightarrow +TE' \mid \epsilon; T \rightarrow FT'; T' \rightarrow *FT' \mid \epsilon; F \rightarrow FT' \mid \epsilon; F \rightarrow FT'; T' \rightarrow *FT' \mid \epsilon; F \rightarrow FT' \mid \epsilon; F \rightarrow$ (E) | i , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆ FOLLOW(E):{ \$, }
 - ◆ FOLLOW(T):{ +, \$, }
 - ◆ FOLLOW(E'):{ \$, }
 - ◆FOLLOW(T'):{ +, \$
 - ♦ FOLLOW(F): $\{*, +, $$ ← $E \rightarrow TE'$

Apply rules for the first time:

- \bullet F \rightarrow (E) | id
 - \Box FIRST(')') except ε is in FOLLOW(E).

Since FOLLOW sets has changed at the first time, Apply rules for

the second time:

- - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - \Box Since FIRST(E') contains ε , then everything in FOLLOW(E) is in FOLLOW(T).

- Example: $G[E]: E \rightarrow TE'; E' \rightarrow +TE' \mid \epsilon; T \rightarrow FT'; T' \rightarrow *FT' \mid \epsilon; F \rightarrow FT' \mid \epsilon; F \rightarrow FT'; T' \rightarrow *FT' \mid \epsilon; F \rightarrow FT' \mid \epsilon; F \rightarrow$ (E) | i , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.

 - ◆ FOLLOW(T):{ +, \$, }
 - ◆ FOLLOW(E'):{ \$, }
 - ◆ FOLLOW(T'):{ +, \$, }
 - ♦ FOLLOW(F): $\{*, +, \$, \}$ ↑ \rightarrow FT'

- \Box FIRST(E') except ε is in FOLLOW(T).
- Everything in FOLLOW(E') is in FOLLOW(E').
- Since FIRST(E') contains ε , then everything in FOLLOW(E') is in FOLLOW(T).
- - FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T) is in FOLLOW(T').
 - Since FIRST(T') contains ε , then everything in FOLLOW(T) is in FOLLOW(F).

- Example: $G[E]: E \rightarrow TE'; E' \rightarrow +TE' \mid \epsilon; T \rightarrow FT'; T' \rightarrow *FT' \mid \epsilon; F \rightarrow FT' \mid \epsilon; F \rightarrow FT'; T' \rightarrow *FT' \mid \epsilon; F \rightarrow FT' \mid \epsilon; F \rightarrow$ (E) | i , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.

 - ◆ FOLLOW(T):{ +, \$,) }
 - ◆ FOLLOW(E'):{ \$,) }
 - ◆ FOLLOW(T'):{ +, \$,) }
 - ♦ FOLLOW(F): $\{*, +, \$, \}$ \rightarrow F \rightarrow (E) | id

- - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T') is in FOLLOW(T').
 - \Box Since FIRST(T') contains ε , then everything in FOLLOW(T') is in FOLLOW(F).
 - - \Box FIRST(')') except ε is in FOLLOW(E).

Since FOLLOW sets has changed at the second time, Apply rules

for the third time:

◆ EXERCISE! -Ans: no FOLLOW set will be changed.

LL(1) Grammar[LL(1)文法]

- <u>Predictive parsers</u>, that is, recursive-descent parsers needing no backtracking, can be constructed for a class of grammars called <u>LL(1)</u>.
- A grammar G is LL(1) **if and only if** whenever any two distinct productions of G [G的任意两个不同的产生式], A $\rightarrow \alpha \mid \beta$, the following conditions hold:
 - \bullet For no terminal a do both α and β derive strings beginning with a.
 - \bullet At most one of α and β can derive the empty string.
 - If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A). Likewise, if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then β does not derive any string beginning with a terminal in FOLLOW(A).

LL(1) Grammar[LL(1)文法]

- The first two conditions are equivalent to the statement that $FIRST(\alpha)$ and $FIRST(\beta)$ are disjoint sets [不相交的集合].
- The third condition is equivalent to stating that if ε is in FIRST(β), then FIRST(α) and FOLLOW(A) are disjoint sets, and likewise if ε is in FIRST(α).
- LL(1) Grammar does not contain left recursion. [LL(1)文法不含左递归]
- LL(1) Grammar is not ambiguous. [LL(1)文法不是二义的]

LL(1)/LL(k) Grammar[LL(1)/LL(k)文法]

- LL (1) grammar.
 - **◆ L:** The first "L" in LL(1) stands for scanning the input from left to right.
 - **♦ L:** The second "L" for producing a leftmost derivation.
 - ♦ 1: The "1" for using one input symbol of lookahead at each step to make parsing action decisions.
- LL (k) grammar.
 - ♦ k: using k input symbols of lookahead at each step to make parsing action decisions.
- Many languages are LL(k), in fact many are LL(1).
- Is LL(0) useful at all?
 - ◆ Grammar where rules can be predicted with no lookahead.
 - \Rightarrow That means, there can only be one rule per non-terminal.
 - ♦⇒ That means, this language can have only one string.

LL(1) Parser Implementation[实现]

- <u>Recursive</u> LL(1) parser for G[S]: $S \rightarrow A$ | B; $A \rightarrow a$; $B \rightarrow b$.
 - ◆maintaining a stack implicitly. [隐式维护栈]

- Is there a way to express above code more concisely? [简洁]
 - ◆ *Non-recursive* LL(1) parsers
 - □ Use a predictive parsing table. [预测分析表]
 - maintaining a stack explicitly. [显式维护栈]
 - □ Table-driven parser. [表驱动]

```
void S(){
     token = Next(); // lookahead
     if(token == a) // 'A' starts with 'a'
          A(); // call procedure A()
     else if (token == b) // 'B' starts
with 'b'
          B(); // call procedure B()
     else
           return; // error, reject.
```

Non-recursive LL(1) Parser [非递归]

- Input buffer: contains the string to be parsed, followed by the endmarker \$.
- Stack: holds a sequence of grammar symbols and the symbol \$ to mark the bottom of the stack. It may contain:
 - ◆ Terminals that have yet to matched against the input symbol.
 - ◆ Non-terminals that have yet to be expanded.

- Parsing Table M[A,a]: an entry containing production "A→..." or error.
- Predictive Parsing Program: Execute the action according to <stack top, current input symbol>

LL(1) Parse Table [预测分析表]

G[E] :
$E \rightarrow TE'$
$E' \rightarrow +TE' \mid \epsilon$
$T \rightarrow FT'$
$T' \rightarrow *FT' \mid \epsilon$
$F \rightarrow (E) \mid id$

		id	+	*	()	\$
	E	E → TE′			E → TE′		
	E'		E′ → +TE′			E′ → ε	E' → ε
	Т	$T \rightarrow FT'$			T → FT'		
	T'		T' → ε	T' → *FT'		T′ → ε	T′ → ε
-		F \ '.1			F \ /F\		
	n_tormi	$F \rightarrow id$			F → (E)		

Next input symbol, lists all possible terminals and \$

all non-terminals in the grammar

One action for each <non-terminal, next input>, it "predicts" the correct action based on one lookahead

- Reject on reaching error state
- Accept on end of input & empty stack

LL(1) Parsing Algorithm [非递归算法]

- Initial state [初始态]
 - ◆Input: A string w and a parsing table M for grammar G. Input Buffer: w\$.
 - ◆ Stack: start symbol followed by '\$' at bottom.
 - ◆ Assume X: symbol at the top of the stack, a: current input symbol.
- General idea [总体思路]: repeat one of two actions
 - ◆ Expand symbol at top of stack by applying a production
 - ◆ Match terminal symbol at top of stack with input token

LL(1) Parsing Algorithm [非递归算法]

- Algorithm Step-by-Step based on <X, a>:
 - ◆ X: symbol at the top of the stack
 - ◆a: current input token
 - ♦ If $X \subseteq V_T$, [栈顶符号为终结符] and
 - $\square X == a == \$$, declare **SUCCESS**, stop parsing.
 - ¬X == a != \$, pop X from stack and move the current input symbol forward one.
 - ¬X!= a, declare ERROR, input is rejected, stop parsing.
 - ♦ If $X \subseteq V_N$, [栈顶符号为非终结符] and
 - M[X, a] has a production about X, pop X and push right side of production to stack.

- When using parse table for predictive parsers, if the grammar does not conform to the specification of LL (1) grammar:
 - ◆ the grammar should be rewritten into LL (1) grammar by removing left recursion and backtracking, then the parse table should be constructed.
- Example: consider G[E] to recognize "id + id * id"

G[E]:	
$E \rightarrow TE'$	
$E' \rightarrow +TE'$	3
$T \rightarrow FT'$	
$T' \rightarrow *FT'$	3
$F \rightarrow (F) \mid id$	

	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E′ → +TE′			E′ → ε	E′ → ε
Т	T → FT'			T → FT'		
T'		T' → ε	T′ → *FT′		T' → ε	T′ → ε
F	F o id			F → (E)		

Matched	Stack	Input	Action
	E\$	id + id * id\$	E → TE′
	TE'\$	id + id * id\$	T → FT'
	FT'E'\$	id + id * id\$	F ightarrow id
	idT'E'\$	id + id * id\$	match id
id	T'E'\$	+ id * id\$	T′ → ε
id	E'\$	+ id * id\$	E' → +TE'
id	+TE'\$	+ id * id\$	match +
id +	TE'\$	id * id\$	T → FT'
id +	FT' E'\$	id * id\$	F ightarrow id
id +	idT' E'\$	id * id\$	match id
id + id	T' E'\$	* i d \$	T' → *FT'
id + id	*FT'E'\$	* i d \$	match *

Matched	Stack	Input	Action
id + id *	FT'E'\$	i d \$	F o id
id + id *	idT'E'\$	id\$	match id
id + id * id	T'E'\$	\$	T′ → ε
id + id * id	E'\$	\$	E′ → ε
id + id * id	\$	\$	ACCEPT

The parser mimics a leftmost derivation.

HOW TO construct LL(1) Parse Table?

Construct LL(1) Parse Table [构建预测分析表]

- Use **FIRST** and **FOLLOW** sets into a predictive parsing table M[A,a], and the algorithm is based on the following idea:
 - ♦ The production A \rightarrow α is chosen if the next input symbol a is in FIRST (α).
 - ♦ The only complication occurs when $\alpha = \epsilon$ or, more generally, $\alpha \stackrel{*}{\Rightarrow} \epsilon$. In this case:
 - \blacksquare we should again choose A \rightarrow α , if the current input symbol is in FOLLOW(A),
 - or if the \$ on the input has been reached and \$ is in FOLLOW (A).

Construct LL(1) Parse Table [构建预测分析表]

- <u>Algorithm</u>: For each production $A \rightarrow \alpha$ of the grammar, do the following:
 - \bullet For each terminal α in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
 - ♦ If ε ∈ FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A,b]. If ε ∈ FIRST(α) and \$ ∈ FOLLOW(A), add A \rightarrow α to M[A, \$] as well.
 - ◆If, after performing the above, there is no production at all in M[A, a], then set M[A, a] to error (which we normally represent by an empty entry in the table).

Construct LL(1) Parse Table [构建预测分析表]

Symbol	FIRST	FOLLOW
E	(, i	\$,)
E'	+, ε	\$,)
Т	(, i	+, \$,)
T'	*, E	+, \$,)
F	(, i	*,+,\$,)

G[E]: $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	E → TE′			E → TE'		
E'		E′ → +TE′			E′ → ε	E' → ε
Т	$T \rightarrow FT'$			T → FT'		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε

Production	FIRST(α)
E → TE′	(, i
E' → +TE'	+
T → FT'	(, i
T' → *FT'	*
F → (E)	(
F o id	id
E' → ε	FOLLOW
T′ → ε	FOLLOW

Example!

Determine If Grammar is LL(1)[判断LL(1)文法]

- Observation [直观依据]
 - ◆ If a grammar is LL(1), then each of its LL(1) table entry contains at most one rule.
 - ♦ Otherwise, it is not LL(1).

	id	+	*	()	\$
E	E → TE′			$E \rightarrow TE'$		
E'		E' → +TE'			E' → ε	E′ → ε
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

- Two methods to determine if a ...
 - ◆ Construct LL(1) table, and check if there is a multi-rule entry.
 - ◆ Check each rule as if the table is getting constructed

 G is LL(1) if and only if for any two distinct productions $A \rightarrow \alpha \mid \beta$:
 - \bullet FIRST(α) \cap FIRST(β) = φ
 - \bullet If β derives ϵ , then FIRST(α) \cap FOLLOW(A) = ϕ(Mentioned before)

Non-LL(1) Grammar [非LL(1)文法]

- Assume that a grammar is not LL(1). How to solve?
 - ◆ Case1- the language may still be LL(1)
 - □ Try to rewrite grammar to LL(1) grammar [remove left-recursion & left-factoring]
 - □ Try to remove ambiguity in grammar.
 - ◆ Case2- If Case-1 fails, language may not be LL(1)
 - □ It's impossible to resolve conflict at the grammar level.
 - Programmer chooses which rule to use for conflicting entry (if choosing that rule is always semantically correct)
 - □ Otherwise, use a more powerful parser (e.g. LL(k), LR(1))

LL(1) Time and Space Complexity[复杂度]

- Linear time and space relative to length of input.
- Time: each input symbol is consumed within a constant number of steps.
 - ◆ If symbol at top of stack is a terminal: Matched immediately in one step.
 - ♦ If symbol at top of stack is a non-terminal:
 - Matched in at most N steps, where N = number of rules.
 - □ Since no left-recursion, cannot apply same rule twice without consuming input.

LL(1) Time and Space Complexity[复杂度]

- Space: smaller than input (after removing $X \rightarrow \varepsilon$)
 - ◆ Right side of production is always longer or equal to left side of production
 - Derivation string expands monotonically.
 - Derivation string is always shorter than final input string.
 - ◆ Stack is a subset of derivation string (unmatched portion)
- LL(k)'s size of parse table = O(|N|*|T|^k)[prevent LL(2) ... LL(k) from wide usage]
 - ◆ N = number of non-terminals, T = number of terminals

Summary

- Top-down Parsing; RDP with backtracking, predictive parsing.
- Left Recursion Problem, remove left recursion: immediate / non-immediate.
- Left-factoring.
- FIRST, FOLLOW.
- LL(1)/LL(k) Grammar.
- Recursive / Non-recursive LL(1) parser implementation.
- Use LL(1) Parse Table.
- Construct LL(1) Parse Table.

Mind Map[思维导图]

