

Matt Brems
Data Science Immersive, GA DC

• Recall: What is a loss function?

• Recall: What is a loss function?

• Recall: What are common loss functions we've used?

Recall: What is a loss function?

Recall: What are common loss functions we've used?

Recall: What purposes do our loss function serve?

LOSS FUNCTION

• What do we do with this?

LOSS FUNCTION

• What do we do with this?

• How do we do it?

- Gradient descent is:
 - an iterative method
 - used to identify the optimal value of parameters
 - by optimizing an objective function.

- Gradient descent is:
 - an iterative method
 - used to identify the optimal value of parameters
 - by optimizing an objective function.
- Algorithm Sketch:
 - 1. Start by making a guess for the optimal parameter value.
 - 2. Calculate the loss given that parameter value.
 - 3. Update guess to decrease loss.
 - 4. Keep going until loss is "sufficiently minimized."

$$\hat{\beta}_{1,i+1} \coloneqq \hat{\beta}_{1,i} - \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$$

$$\hat{\beta}_{1,i+1} \coloneqq \hat{\beta}_{1,i} - \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$$

- α: Learning Rate
 - Controls how fast we move with each step.

$$\hat{\beta}_{1,i+1} \coloneqq \hat{\beta}_{1,i} - \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$$

- α: Learning Rate
 - Controls how fast we move with each step.
- $\frac{\partial L}{\partial \beta_1}$: Gradient of Loss Function with respect to β_1 .
 - Tells us direction of steepest slope. (Gravity!)

• Goal: Find the best possible value for $\hat{\beta}_1$.

$$\hat{\beta}_{1,i+1} \coloneqq \hat{\beta}_{1,i} - \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$$

• Keep going until $\hat{\beta}_{1,i+1} - \hat{\beta}_{1,i}$ is sufficiently small. (Why?)

• Step o: Instantiate model.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

INTUITIVE RECAP

- When fitting a model, we:
 - Identify some loss function to optimize.
 - Pick a first guess.
 - Take a step of fixed size in the "best" direction.
 - Keep going until we've found the minimum of our loss function!

LOGISTIC REGRESSION

• Let's walk through an example of using gradient descent to optimize parameters for logistic regression.

LOGISTIC REGRESSION LOSS FUNCTION

What do we want our loss function to look like in logistic regression?

LOGISTIC REGRESSION LOSS FUNCTION

• The loss function used in logistic regression is called the "cross-entropy."

$$L(y_i, \hat{y}_i) = y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)$$

Why would this be a good choice of loss function?

LOGISTIC REGRESSION MODEL

• Suppose I fit a model with two slopes and a *y*-intercept: $\beta_0 + \beta_1 x_1 + \beta_2 x_2$

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

LOGISTIC REGRESSION MODEL

- Suppose I fit a model with two slopes and a *y*-intercept: $\beta_0 + \beta_1 x_1 + \beta_2 x_2$
- Instantiate the model. $(\hat{\beta}_0, \hat{\beta}_1, \text{ and } \hat{\beta}_2 \text{ are empty placeholders.})$

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

LOGISTIC REGRESSION MODEL

- Suppose I fit a model with two slopes and a *y*-intercept: $\beta_0 + \beta_1 x_1 + \beta_2 x_2$
- Instantiate the model. $(\hat{\beta}_0, \hat{\beta}_1, \text{ and } \hat{\beta}_2 \text{ are empty placeholders.})$
- Pick α .

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

LOGISTIC REGRESSION MODEL

- Suppose I fit a model with two slopes and a *y*-intercept: $\beta_0 + \beta_1 x_1 + \beta_2 x_2$
- Instantiate the model. $(\hat{\beta}_0, \hat{\beta}_1, \text{ and } \hat{\beta}_2 \text{ are empty placeholders.})$
- Pick α .
- Pick starting guesses for $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$.

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

LOGISTIC REGRESSION MODEL

- Pick starting guesses for $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$.
- Calculate gradients:

•
$$\frac{\partial L}{\partial \beta_0} = (y_i - \hat{y}_i)$$

•
$$\frac{\partial L}{\partial \beta_1} = x_1 (y_i - \hat{y}_i)$$

•
$$\frac{\partial L}{\partial \beta_0} = (y_i - \hat{y}_i)$$
•
$$\frac{\partial L}{\partial \beta_1} = x_1(y_i - \hat{y}_i)$$
•
$$\frac{\partial L}{\partial \beta_2} = x_2(y_i - \hat{y}_i)$$

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

LOGISTIC REGRESSION MODEL

Calculate gradients:

$$\bullet \quad \frac{\partial L}{\partial \beta_0} = (y_i - \hat{y}_i)$$

•
$$\frac{\partial L}{\partial \beta_1} = x_1 (y_i - \hat{y}_i)$$

•
$$\frac{\partial L}{\partial \beta_0} = (y_i - \hat{y}_i)$$
•
$$\frac{\partial L}{\partial \beta_1} = x_1(y_i - \hat{y}_i)$$
•
$$\frac{\partial L}{\partial \beta_2} = x_2(y_i - \hat{y}_i)$$

Update guesses!

•
$$\hat{\beta}_{0,1} = \hat{\beta}_{0,0} - \alpha(y_i - \hat{y}_i)$$

•
$$\hat{\beta}_{1,1} = \hat{\beta}_{1,0} - \alpha x_1 (y_i - \hat{y}_i)$$

•
$$\hat{\beta}_{2,1} = \hat{\beta}_{2,0} - \alpha x_2 (y_i - \hat{y}_i)$$

- Step o: Instantiate model.
- Step 1: Select a "learning rate" α .
- Step 2: Select a "starting point" $\hat{\beta}_{1,0}$.
- Step 3: Calculate the gradient of the loss function w.r.t. parameter $\frac{\partial L}{\partial \beta_1}$.
- Step 4: Calculate $\hat{\beta}_{1,i+1} = \hat{\beta}_{1,i} \alpha \left[\frac{\partial L}{\partial \beta_1} \right]$.
- Step 5: Check value of $\hat{\beta}_{1,i+1} \hat{\beta}_{1,i}$.
- Step 6: Repeat steps 3 through 5 until "stopping condition" is met.
- Step 7: $\hat{\beta}_1 = \hat{\beta}_{1,n}$, where *n* is the number of iterations of gradient descent.

INTUITIVE RECAP

- When fitting a model, we:
 - Identify some loss function to optimize.
 - Pick a first guess.
 - Take a step of fixed size in the "best" direction.
 - Keep going until we've found the minimum of our loss function!

POTENTIAL PITFALLS

Gradient Descent

Big learning rate Small learning rate

- If our step size is too big, we may never converge!
 - If our step size is too small, it may take a very long time for us to converge!

POTENTIAL PITFALLS

 Depending on the shape of the loss function, gradient (slope of the curve) may be close to zero, meaning that learning occurs very slowly.

POTENTIAL PITFALLS

- Depending on the shape of the loss function, we may converge to a local optimum.
- This is one reason we attempt to choose convex loss functions.
- Shockingly, this isn't a major problem.

SOLUTION 1: STOCHASTIC GRADIENT DESCENT

- One way to attempt to protect against some of these pitfalls is to use **stochastic gradient descent**, which means that, at each step, we draw α from some distribution so that we aren't taking a step of fixed size.
- Practically, we could fit a model in this manner multiple times. If we repeatedly get nearly identical results, we can be more confident that we've arrived at the global optimum.

SOLUTION 2: CHANGE STARTING POINTS

 Another way to attempt to protect against some of these pitfalls is to change the starting points of the algorithm.

MACHINE LEARNING = GRADIENT DESCENT

