En introduction à l'**Apprentissage Artificiel**

Antoine Cornuéjols

MMIP, AgroParisTech, Paris

7 février 2008

Un exemple

- Les fondements
- 2 En pratique
- Conclusions et perspectives

Plan

- Les fondements
 - Critère de performance
 - Critère inductif
 - Dilemme fondamental
 - Régularisation
 - ullet Exploration de ${\cal H}$
- 2 En pratique
- 3 Conclusions et perspectives

Que signifie : avoir un bon modèle du monde ?

Identifier une dépendance cible :

- P_{XY}
- Fonction cible $f: \mathcal{X} \to \mathcal{Y}$

Identifier une dépendance cible :

- P_{XY}
- Fonction cible $f: \mathcal{X} \to \mathcal{Y}$

Prédire correctement

$$\mathcal{X} \to \mathcal{Y}$$
 $x \mapsto \operatorname{decision} \operatorname{bayésienne}(x)$ OU $x \mapsto \operatorname{decision}(x) = f(x)$

Identifier une dépendance cible :

- P_{XY}
- Fonction cible $f: \mathcal{X} \to \mathcal{Y}$

Prédire correctement

$$\mathcal{X} o \mathcal{Y}$$
 $x \mapsto \operatorname{decision} \operatorname{bay\'esienne}(x)$

OU $x \mapsto \operatorname{decision}(x) = f(x)$

Expliquer le monde

$$h(\cdot) = f(\cdot)$$

Identifier une dépendance cible :

- P_{XY}
- Fonction cible $f: \mathcal{X} \to \mathcal{Y}$

Prédire correctement

$$\mathcal{X} \to \mathcal{Y}$$

 $x \mapsto \text{decision bayesienne}(x)$

ou $x \mapsto \operatorname{decision}(x) = f(x)$

Expliquer le monde

$$h(\cdot) = f(\cdot)$$

Figure: Modèle de génération des exemples.

Plus réalistement

Figure: Modèle de génération des exemples.

Prédictions correctes (la plupart du temps)

$$L(h) = \mathbf{P}_{\chi y} \{ h(\mathbf{x}) \neq y \}$$

Plus réalistement

Figure: Modèle de génération des exemples.

Prédictions correctes (la plupart du temps)

$$L(h) = \mathbf{P}_{\chi y} \{ h(\mathbf{x}) \neq y \}$$

Expliquer le monde

$$h(\cdot) \approx f(\cdot)$$

Fonction de perte : $\ell(h): \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$ $(x,y) \mapsto \ell(h(x),y)$

Fonction de perte :
$$\ell(h): \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$$

 $(x,y) \mapsto \ell(h(x),y)$

Risque réel : espérance de perte

$$R(h) = \mathbb{E}[\ell(h(x), y)] = \int_{x \in \mathcal{X}} \ell(h(x), y) \, \mathbf{P}_{\mathcal{X}\mathcal{Y}} \, d(x, y)$$

Décision bayésienne

Règle de Bayes

$$P(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_i) P(C_i)}{p(\mathbf{x})}$$

Décision bayésienne

$$C_k = \underset{C_k \in \mathcal{H}}{\operatorname{ArgMax}} P(C_k | \boldsymbol{x})$$

Décision bayésienne

Règle de Bayes

$$P(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_i) P(C_i)}{p(\mathbf{x})}$$

Décision bayésienne

$$C_k = \underset{C_k \in \mathcal{H}}{\operatorname{ArgMax}} P(C_k | \boldsymbol{x})$$

Il faut connaître $P(C_k)$ et les lois de probabilité $p(x|C_i)$!

L'apprentissage Ingrédients

Les critères inductifs

Mais, on ne connaît pas $\mathbf{P}_{\mathcal{X}\mathcal{Y}}$

Échantillon d'apprentissage supposé représentatif

$$S_m = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$$

Les critères inductifs

Mais, on ne connaît pas $\mathbf{P}_{\mathcal{X}\mathcal{Y}}$

Échantillon d'apprentissage supposé représentatif

$$S_m = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$$

Minimisation du Risque Empirique

$$R_m(\mathbf{h}) = \frac{1}{m} \sum_{i=1}^m \ell(\mathbf{h}(\mathbf{x}_i), y_i)$$

Les critères inductifs Minimisation du Risque Empirique

MRE

Choisir l'hypothèse \hat{h} telle que : $\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} \big[R_{Emp}(h) \big]$

$$R_{\text{Emp}}(h) = \frac{1}{m} \sum_{(\boldsymbol{x}_i, \boldsymbol{u}_i) \in S} \ell(h(\boldsymbol{x}_i), \boldsymbol{u}_i)$$

Les critères inductifs

Autres critères

Compression maximale d'information

Choisir l'hypothèse \hat{h} telle que : $\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} [L(\mathcal{S}_m)]$

$$L(S_m) = L(h) + L(S_m|h)$$

MLE et MAP

Choisir l'hypothèse \hat{h} telle que :

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{ArgMax}} \frac{l(h)}{l} = \underset{h \in \mathcal{H}}{\operatorname{ArgMax}} \ln \left[p(\mathcal{S}_m | h) \right]$$
 (MLE)

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{ArgMax}} \, p(\mathcal{S}_m | h) \, p(h) \tag{MAP}$$

L'apprentissage Ingrédients

Des hypothèses et des modèles

Nombreuses formes possibles :

- "simple" plus proche(s) voisin(s)
- SVM
- Modèles linéaires
- Modèles bayésiens
- Réseaux de neurones ; Modèles de Markov à états cachés (HMM)
- Arbres de décision
- Règles (ILP : Induction of Logic Programs)
- Grammaires

L'apprentissage Ingrédients

Les critères inductifs

doivent vérifier ...

Les entrées doivent **se traduire en** « **différences** » exploitables dans \mathcal{H}

Un dilemme fondamental

Le compromis biais-variance

FIG.: Les différents types d'erreurs.

Capacité de ${\cal H}$

Qualité de l'estimation

$$|R(h) - R_{\text{Emp}}(h)| \leq_P fct(\text{diversit\'e}_{\mathcal{H}}, m)$$

- Dimension de Vapnik-Chervonenkis
- Complexité de Rademacher
- BIC
- AIC
- ...

Critère inductif régularisé

Corriger le MRE en contrôlant la capacité de \mathcal{H} (ou la complexité de h)

Critère inductif régularisé

Contrôler $d_{\mathcal{H}}$

- "Sélection de modèle"
- 2 Puis choix de $h \in \mathcal{H}$

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{R_{Emp}(h)}{R_{Emp}(h)} + \operatorname{Capacit\'e}(\mathcal{H}) \right]$$

Critère inductif régularisé

Contrôler $d_{\mathcal{H}}$

- "Sélection de modèle"
- 2 Puis choix de $h \in \mathcal{H}$

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{R_{Emp}(h) + \operatorname{Capacit\'e}(\mathcal{H})}{} \right]$$

Régularisation

• Contrôler directement la complexité de h

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{R_{Emp}(h)}{R_{Emp}(h)} + \lambda \operatorname{Reg}(h) \right]$$

Optimisation du critère inductif régularisé

Minimisation du ϕ -risque empirique

- "hinge loss"
- Fonction de perte exponentielle
- ...

Optimisation du critère inductif régularisé

Minimisation du ϕ -risque empirique

- "hinge loss"
- Fonction de perte exponentielle
- ...

Deux rôles:

- Régulariser
- Faciliter l'optimisation
 - Différentiabilité
 - Convexité

L'apprentissage Ingrédients

Exploration de ${\mathcal H}$

Structures sur ${\cal H}$

Exploration de \mathcal{H}

Structures sur ${\cal H}$

Pas de \mathcal{H}

Plus-proches-voisins

Fondements Pratique Conclusion Perf. MRE Biais-variance Régularisation Exploration

Exploration de \mathcal{H} Structures sur \mathcal{H}

Pas de \mathcal{H}

Plus-proches-voisins

${\cal H}$ muni d'une distance

Réseaux de neurones ; régression logistique ; modèles bayésiens ; HMM ; ...

- Optimisation directe (e.g. pseudo-inverse)
- Adaptation itérative = descente de gradient

Fondements Pratique Conclusion Perf. MRE Biais-variance Régularisation Exploration

Exploration de ${\cal H}$

Structures sur \mathcal{H}

Pas de \mathcal{H}

Plus-proches-voisins

\mathcal{H} muni d'une distance

Réseaux de neurones ; régression logistique ; modèles bayésiens ; HMM ; ...

- Optimisation directe (e.g. pseudo-inverse)
- Adaptation itérative = descente de gradient

${\cal H}$ muni d'une relation de généralité

Inférence grammaticale ; Induction de règles ; Apprentissage relationnel

- Apprentissage symbolique
- Bruit

Plan

- 2 En pratique
 - Choix de \mathcal{H}
 - Les données
 - L'évaluation

L'apprentissage

Ingrédients

Types d'espaces d'hypothèses

Types d'espaces d'hypothèses

Modèles génératifs

Demandent $p(\mathbf{x}|\mathcal{C}_k)$ et $p(\mathcal{C}_k)$

Types d'espaces d'hypothèses

Modèles génératifs

Demandent $p(\mathbf{x}|\mathcal{C}_k)$ et $p(\mathcal{C}_k)$

Fonctions de décision

- Fonctions composées de fonctions de base
- Méthodes à Noyaux (Kernel methods)

Types d'espaces d'hypothèses

Fondements

Modèles génératifs

Demandent $p(\mathbf{x}|\mathcal{C}_k)$ et $p(\mathcal{C}_k)$

Fonctions de décision

- Fonctions composées de fonctions de base
- Méthodes à Noyaux (Kernel methods)

Approches constructives

- ullet Spécialisation dans l'espace ${\mathcal X}$
- Modèles hiérarchiques ou "profonds" (Deep models)

Setimer $p(x|\mathcal{C}_k)$ (et $p(\mathcal{C}_k)$) $\forall \mathcal{C}_k$ par le *Principe du Maximum de Vraisemblance* (MLE)

- **1** Estimer $p(x|\mathcal{C}_k)$ (et $p(\mathcal{C}_k)$) $\forall \mathcal{C}_k$ par le Principe du Maximum de Vraisemblance (MLE)
- Décider, en utilisant le théorème de Bayes :

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k) p(C_k)}{p(\mathbf{x})}$$

avec
$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x}|\mathcal{C}_k) p(\mathcal{C}_k)$$

Fondements

Choix de \mathcal{H} Modèles génératifs

- **1** Estimer $p(x|\mathcal{C}_k)$ (et $p(\mathcal{C}_k)$) $\forall \mathcal{C}_k$ par le **Principe du Maximum de Vraisemblance** (MLE)
- Décider, en utilisant le théorème de Bayes :

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k) \ p(\mathcal{C}_k)}{p(\mathbf{x})}$$

avec $p(\mathbf{x}) = \sum_{k} p(\mathbf{x}|\mathcal{C}_k) p(\mathcal{C}_k)$

Exemple : Deux classes supposées gaussiennes de mêmes matrices de covariance

$$p(\mathbf{x}|\mathcal{C}_k) \ = \ \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu_k)^{\top} \Sigma^{-1}(\mathbf{x} - \mu_k)\right\}$$

Modèles probabilistes discriminatifs

• Estimer directement $p(C_k|x)$ en utilisant un modèle paramétré

Exemple: Deux classes et régression logistique

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})} = \sigma(\mathbf{w}^{\top}\mathbf{x})$$

- **1** Fonction de vraisemblance : $p(\mathbf{y}|\mathbf{w}) = \prod_{i=1}^{m} \sigma(\mathbf{w}^{\top} x_i)^{y_i} \{1 \sigma(\mathbf{w}^{\top} x_i)\}^{(1-y_i)}$
- Ponction d'erreur : $E(\mathbf{w}) = -\ln p(\mathbf{y}|\mathbf{w}) = -\sum_{i=1}^{m} \{ y_i \ln \sigma(\mathbf{w}^{\top} \mathbf{x}_i)_i + (1 - y_i) \ln (1 - \sigma(\mathbf{w}^{\top} \mathbf{x}_i)_i) \}$
- Optimisation par descente de gradient

Modèles probabilistes discriminatifs

• Estimer directement $p(\mathcal{C}_k|x)$ en utilisant un modèle paramétré

Exemple: Deux classes et régression logistique

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})} = \sigma(\mathbf{w}^{\top}\mathbf{x})$$

- **1** Fonction de vraisemblance : $p(\mathbf{y}|\mathbf{w}) = \prod_{i=1}^{m} \sigma(\mathbf{w}^{\top} x_i)^{y_i} \{1 \sigma(\mathbf{w}^{\top} x_i)\}^{(1-y_i)}$
- Ponction d'erreur : $E(\mathbf{w}) = -\ln p(\mathbf{y}|\mathbf{w}) = -\sum_{i=1}^{m} \{ y_i \ln \sigma(\mathbf{w}^{\top} \mathbf{x}_i)_i + (1 - y_i) \ln (1 - \sigma(\mathbf{w}^{\top} \mathbf{x}_i)_i) \}$
- Optimisation par descente de gradient

Moins de paramètres à estimer.

Fonctions de décision à base de dictionnaire

- $h(x, w) = \sum_{i=1}^{n} w_i g_i(x) + w_0$
- où les $g_i(x)$ sont des **fonctions de base**

Fonctions de décision à base de dictionnaire

- $\bullet h(x, \mathbf{w}) = \sum_{i=1}^{n} w_i g_i(x) + w_0$
- où les $g_i(x)$ sont des **fonctions de base**

Exemple: Perceptron multi-couches

Fonctions de décision par noyaux

•
$$h(\mathbf{x}) = \sum_{i \text{ "critiques"}} \alpha_i y_i \frac{\mathbf{K}(\mathbf{x}, \mathbf{x}_i)}{\mathbf{K}(\mathbf{x}, \mathbf{x}_i)} + \alpha_0$$

• où les $K_i(\cdot,\cdot)$ sont des **fonctions noyaux**

Fonctions de décision par noyaux

• où les $K_i(\cdot,\cdot)$ sont des **fonctions noyaux**

$$K_G(\mathbf{x}, \mathbf{x}_i) = \exp\left(-\frac{||\mathbf{x}, \mathbf{x}_i||^2}{2 \sigma^2}\right)$$

$$K_L(\mathbf{x}, \mathbf{x}_i) = \mathbf{x}^{\top} \mathbf{x}_i$$

$$K_{Poly1}(\boldsymbol{x}, \boldsymbol{x}_i) = (\boldsymbol{x}^{\top} \boldsymbol{x}_i)^d$$

$$K_{Poly2}(\mathbf{x}, \mathbf{x}_i) = (\mathbf{x}^{\top} \mathbf{x}_i + c)^d$$

$$K_{sig}(\mathbf{x}, \mathbf{x}_i) = \tanh(\kappa \mathbf{x}^{\top} \mathbf{x}_i + \theta)$$

Fonctions de décision par noyaux

- $h(\mathbf{x}) = \sum_{i \text{ "critiques"}} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) + \alpha_0$
- où les $K_i(\cdot, \cdot)$ sont des **fonctions noyaux**

$$K_G(\mathbf{x}, \mathbf{x}_i) = \exp\left(-\frac{||\mathbf{x}, \mathbf{x}_i||^2}{2\sigma^2}\right)$$

 $K_L(\mathbf{x}, \mathbf{x}_i) = \mathbf{x}^{\top} \mathbf{x}_i$

$$K_{Poly1}(\boldsymbol{x}, \boldsymbol{x}_i) = (\boldsymbol{x}^{\top} \boldsymbol{x}_i)^d$$

$$K_{Poly2}(\mathbf{x}, \mathbf{x}_i) = (\mathbf{x}^{\top} \mathbf{x}_i + c)^d$$

$$K_{sig}(\mathbf{x}, \mathbf{x}_i) = \tanh(\kappa \mathbf{x}^{\top} \mathbf{x}_i + \theta)$$

$$K_{sig}(\mathbf{x}, \mathbf{x}_i) = \tanh(\kappa \mathbf{x}^{\top} \mathbf{x}_i + \theta)$$

Exemple: Séparateurs à Vastes Marges (SVM)

Fonctions de décision par noyaux : Les SVM

$$h^*(\mathbf{x}) = (\mathbf{w}^* \mathbf{x}) + w_0^* = \sum_{i=1}^m \alpha_i^* u_i . \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}) \rangle + w_0^*$$

Fonctions de décision par spécialisation

$$h_{\mathcal{X}} = h_{\mathcal{X}_1} \times h_{\mathcal{X}_2} \times \ldots \times h_{\mathcal{X}_n}$$

 $\mathcal{X} = h_{\mathcal{X}_1} \cup h_{\mathcal{X}_2} \cup \ldots \cup h_{\mathcal{X}_n}$

Exemple : Arbres de décisions

Fonctions de décision par vote

L'apprentissage Ingrédients

Fondements Pratique Conclusion ${\cal H}$ Données Évaluation

Les données

Caractéristiques à prendre en considération

Représentativité

- ullet $P_{\mathcal{X}}$ biaisé : classe sous échantillonnée
- $P_{\mathcal{Y}|\mathcal{X}}$ biaisé : bruit ; dérive de concept

Dimension de l'espace

Réduction de dimension

Déséquilibre des classes

Rééquilibrer

Déséquilibre faux positifs / faux négatifs

Techniques ad hoc

Évaluation des résultats

Précision en prédiction

Précision ; Rappel ; Validation croisée ; ... ; Courbe ROC ; test d'hypothèses

Souci principal: I'overfitting

Évaluation des résultats

Précision en prédiction

Précision ; Rappel ; Validation croisée ; ... ; Courbe ROC ; test d'hypothèses

Souci principal: l'overfitting

Avec degré de confiance ou de probabilité

- Fct de coût adaptée (e.g. entropie croisée)
- Distance à la frontière de décision
- ...

Évaluation des résultats

Précision en prédiction

Précision; Rappel; Validation croisée; ...; Courbe ROC; test d'hypothèses

Souci principal: I'overfitting

Avec degré de confiance ou de probabilité

- Fct de coût adaptée (e.g. entropie croisée)
- Distance à la frontière de décision

Interprétabilité de l'hypothèse

- Symbolique
- Simplicité

En théorie

Contrôle de l'overfitting

- Fonctions de décision
 - Mesure de capacité (d_{VC}, ...)
- Modèles génératifs
 - **AIC**: Pénalisation = 2 × nb de paramètres libres (suppose que le modèle est correct, sinon modèle trop complexe)
 - **BIC**: Pénalisation = $\log m \times$ nb de paramètres libres

En théorie

Contrôle de l'overfitting

- Fonctions de décision
 - Mesure de capacité (d_{VC}, ...)
- Modèles génératifs
 - AIC : Pénalisation = 2 x nb de paramètres libres (suppose que le modèle est correct, sinon modèle trop complexe)
 - **BIC**: Pénalisation = $\log m \times$ nb de paramètres libres

En pratique

Validation croisée

- Nombre de paramètres (ou AIC ou BIC)
- Nombre de **concepts** (apprentissage relationnel ; arbre de décision)
- Nombre d'itérations (RNs, Boosting)

Plan

- Conclusions et perspectives
 - Le paradigme et ses frontières
 - Les directions

Autres tâches d'apprentissage

- Non supervisé
- Semi-supervisé
- Transduction
- Apprentissage de tri (ranking)
- Apprentissage de recommandations
- Apprentissage de politique d'action (par renforcement)
- Apprentissage à partir d'explications

Le paradigme ... et ses limites

- Lien entre passé et futur : distributions $P_{\mathcal{X}}$ et $P_{\mathcal{Y}|\mathcal{X}}$ supposées stationnaires
- Données i.i.d.

Dans le paradigme

- Très grosses Bases de Données
- Recherche de "Deep models" (modèles causaux hiérarchiques)
- Apprentissage et jeux (adversaire ; transfert)

Dans le paradigme

- Très grosses Bases de Données
- Recherche de "Deep models" (modèles causaux hiérarchiques)
- Apprentissage et jeux (adversaire ; transfert)

Renouvellement

- Apprentissage-en-ligne et flux de données
 - Pas de stockage possible : "one-pass learning"
 - Dérive de concept possible
 - Information dans la séquence d'exemples
- Rationalité limitée
 - Intelligence ambiante

L'avenir ...

... commence ici!

MERCI!