IBM APPLIED DATA SCIENCE CAPSTONE

Co-working Facility Recommendation based on Attractiveness of Neighbourhood in Toronto

(Toronto_Clusters)

INTRODUCTION

- Coworking and flexi work space traction in recent years
- Attractive to independent contractors, independent scientists, telecommuting and work-at-home professionals
- Many new companies and institutions which are into providing coworking or flexi workspace facilities
- Analysis of Toronto's neighbourhoods will be helpful to these companies and also for any company who plans to relocate to Toronto.

Problem Description

- > Issues with Coworking and flexi work space
 - High maintenance costs (rentals, free services such as coffee, gym etc.)
 - Profitability directly depends on the occupancy rates and overhead costs
- Choosing correct location is a key success factor
- ➤ Most potential neighbourhoods are which have :
 - Surrounding facilities such as cafes, restaurants
 - Average real estate rental is low
 - Cater to larger size of cluster/ population
- ➤ Similarity of neighbourhood is very important for success of a coworking facility, so we also need to find the right cluster.

Data

Criteria for selection/ Data Required	Data source
Size of cluster	Number of postal codes is taken as surrogate of largeness of size/population
Facilities such as cafes, restaurants	Foursquare data (via explore option)
Average real estate rental	Kaggle dataset (pre-cleaned)

Toronto - Neighborhoods

Methodology

1. Collect & Inspect Data

- 1. Drop missing data,
- 2. Group Foursquare data based on postal codes

2. Explore data and Preprocessing

- 1. Geolocate neighborhood data
- 2. Encode data,
- 3. Explore rental data to see out-liers
- 4. Compute average rental for each neighborhood

3. Data Analysis and Modeling

- 1. Identify top 5 common locations in each neighborhood
- 2. Using K-Means clustering to identify 4 clusters
- 3. Appending average rentals to identify the preferred location

Results

Cluster name	Average Rental	No of postal	Number of venues	Preferred (Yes/
		codes/ Area size		No)
Cluster 1 (cls_1)	\$6163.31	6	High	No
Cluster 2 (cls_2)	\$1677.25	8	High	Yes
Cluster 3 (cls_3)	\$1300.00	1	Very Low	No
Cluster 3 (cls_3)	\$1825.00	1	Very Low	No

As per the analysis above neighbourhood cluster2 (cls_2) is the preferred choice as check all the criteria/ factors i.e. larger areas as highest number of postal codes (8), thereby highest surrounding facilities such as cafes, restaurants in the cluster and lowest average real estate rental (\$1677.25).

Appendix

