2: Schemes

Exercise 1.22

Glueing Sheaves. Suppose X is a topological space with an open covering $\{U_i\}_{i\in\Lambda}$ where we denote the intersections by: $U_{ij}:=U_i\cap U_j$ and $U_{ijk}:=U_i\cap U_j\cap U_k$. Suppose we are given, for each $i\in\Lambda$ a sheaf \mathfrak{F}_i on U_i together with the family of sheaf isomorphisms:

$$\{\varphi_{ij}:\mathfrak{F}_i|_{U_{ij}}\longrightarrow\mathfrak{F}_j|_{U_{ij}}\}_{i,j\in\Lambda}$$

Prove that we can glue the family of sheaves $\{F_i\}$ into a sheaf on X by proving that there exists a sheaf \mathfrak{F} on X such that $\mathfrak{F}|_{U_i} = \mathfrak{F}_i$. For this to be possible we require that the family of sheaf isomorphisms $\{\varphi_{ij}\}$ satisfy the following functorial properties:

- 1. $\varphi_{ii} = \operatorname{Id}_{\mathfrak{F}_i|_{U_i}}$ for all $i \in \Lambda$.
- 2. For all $i, j, k \in \Lambda$ the representations of $\varphi_{ij}, \varphi_{jk}$ and φ_{ik} over the open set U_{ijk} satisfy $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ or equivalently we have the commutative diagram:

Proof. First we write explicitly what condition 2 means. The representation of φ_{ij} the open set $U = U_{ijk} \subseteq U_{ij}$ is the morphism

$$\mathfrak{F}_i|_{U_{ij}}(U) \stackrel{(\varphi_{ij})_U}{\longrightarrow} \mathfrak{F}_j|_{U_{ij}}(U).$$

At first glance it might not be to clear how we can compose these morphisms, but there is a natural equality that can help us deduce the commutative diagram for condition 2:

$$\mathfrak{F}_i|_{U_{ii}}(U) = \mathfrak{F}_i|_{U_{ik}}(U).$$

This equality is indeed true because if $s \in \mathfrak{F}_i|_{U_{ij}}(U)$ is a section and since $U_{ij} \cap U_{ik} = U_{ijk} = U_{ijk}$