VERIFICATION OF TRANSLATION

I, Tetsu Yoshida, of Posz Law Group, PLC at 12040 South Lakes Drive, Suite 101, Reston, VA, 20191, do hereby state that I am competent in both Japanese and English, and that the attached document labeled Exhibit B is a true and accurate translation of the also attached document labeled Exhibit A to the best of my knowledge and belief.

Dated this 29th day of May, 2007

7037079112

Signature:

Tetsu Yoshida

DENSO

PAGE 1

To

TOYOTA MOTOR Co.

7037079112

Second Electronic Technical Dept., 22nd e-room, Mr. Kondo. T Second Electronic Technical Dept., 22nd e-room, Mr. Mori. T Fourth Electronic Technical Dept., 41st e-room, Mr. Aoki T

AISHIN SEIKI Co.

Electronic Technical Dept., 1st e-group, Mr. Takeuchi Element Tech-Development Dept., 2nd element development group, Mr. Goto Braking System Development Dept., 2nd system group, Mr. Sakata T

> IC of Unified Peripheral Devices for Standardized CPU **Development Specification** ABS-00-087 #4

DENSO Co.		Approved		<u> </u>
Safety Driving Te	echnology, 4th Dept.	Reviewed		
		Drafted		
DATE of Issue JUN. 13. 2001	Safety & Chassis Systems Eng. Dept. 4	No. ABS-00-087	1/	

PAGE 2

Povidal Bassad

	Record	
Marks		Contents of Revisal .
	2000/10/25	New Issue
#1	2000/11/21	Revisal of serial communication data bit table. Unite and disuse of flag portions in accordance with the revisal.
		(P.30, 35, 36, 36-2, 39, 40, 41, 42)
		Solenoid drive power monitoring logic (P.42)
		- disuse of leak monitor prohibit latch function during a ref. signal "fly-back"
#2	2000/12/13	P.7: Add note 1, add fVC5NG condition
		P.8: Add note 1, add fVC3NG condition
		P.9: Add fVSNNG condition
		P.13: Add details of input abnormal signal detection motions of a wheel rotation
		P.14-P.15: Add wheel rotation pulse check scheme plan
		P.16-P.20, P.22-P.24: Clarify I/F circuit inside IC for an application example
		P.18: Revise a typographical error in the title
	_	P.21: Add details of abnormal detection motion of oil

		sopoonuith colf. t
		sensor with self-check function
		P.25-P.30, P.35: Revised table for true/false function value
		P.33: Add performance outline wave pattern, add Note1
		P.34: Revised performance outline wave pattern
		P.36: Revised performance outline wave pattern, add
 -		Note_
		P.37: Add output frequency Q1 regulation
		P.39-P.42: Assign serial communication bits change
		schedule
	+	(improve flexibility of software structure)
_	- 	P.43: Add communication scheme (plan)
<u>.</u>		P.44-P.46: Monitor communication condition, add detailed explanation of communication condition monitoring
		P.51, Revise and add notes 1, 3
#3	2001/1/30	P.32: Add inside signal content explanation
		P.40: Revise data ID error, CPU -> IC , in communication
		_ schedule (two parts)
		P.41-P49: Divide a page of input/output data table
		P.42: Revise data ID errors (two portions)
		P.52: Note 3, add a bit replacement detail explanation
	_	Hereinafter, renumber page numerals
#4	2001/6/14	P17: 3 Threshold level VITHD1 of threshold input buffer,
		VITHD1 revised
		(correspondence with difficulty of changing chassis side
		FSW constant)
		P20: Revise open monitoring threshold level VIHANI of analog input buffer
		(correspondence to adjust a pressure sensor mode with a
		self-check function)
		P27, 41, 59: WTIR LED driver "active THEEA" logic
		-> change to "passive THILLA" logic
		However, possible to switch by a mask option
		(correspondence to a modification of system mode)
		P28, P29: Revise true/false function value table
		P40, 47, 48: Define serial communication data logic (the
		date being not in use), eliminate reference info. of active
		sensor
		P51, 52, 53: Revise typographical errors
		P60: Add a package outer shape
		P61: Change into a terminal arrangement final certified
		version

DATE of Issue JUN. 13. 2001	Safety & Chassis Systems Eng. Dept. 4	No. ABS-00-087	2/	

PAGE 3

3. Electronic Character / Thermal Character [4] Wheel Velocity Input Circuit

[4] Wheel	Velocity Input (<u> Circuit</u>							
(1) Wave	Pattern Shapin	ig Circuit		-					
Voc=4V~V	C5NGH, Tj=-4	0~150 °C unl	less particu	ular instruct	ions				
items	Marks	Marks conditions Min Typ May Unit							
Input bias currency	ISIN@	VSIN=0.7 to 1.5V	-70	-50	-30	μА			
Inside- resistance	rSFL@		6	15	27	kΩ			
for a filter circuit	rSREF@		60	100	150	kΩ			
Input clamp	VCHSIN@	ISIN=5mA, SREF=1V	2.67	2.9	3.3	V			
voltage	VCLSIN@	ISIN=5mA, SREF=1V	-1.0	-0.7	-0.4	V			
	VCHSFL1@	ISIN=5mA, SREF=1V	1.6	1.8	2.1	V			
	VCHSFL2@	ISIN=5mA, SREF=2V	2.0	2.3	2.7	V			
	VCLSFL@	ISIN=5mA, SREF=1V	0.2	0.4	0.6	V			
Input sensitivity	VSEN1@	fIN=20Hz at test circuit	100	135	146	m√pp			
	VSEN2@	fIN=60Hz at test circuit	106	e143	156	m∨pp			
	VSEN3@	fIN=500Hz at test circuit	335	500	620	m∨pp			
	VSEN4@	fIN=1kHz at test circuit	645	980	1210	mVpp			
	VSEN5@	fIN=2kHz at test circuit	1275	1945	2410	mVpp			

7037079112

Test circuit

DATE of Issue OCT.25, 2000	Safety & Chassis Systems Eng. Dept. 4	No. ABS-00-087	11/
		l i	

PAGE 4

3. Electronic Character / Thermal Character

[4] Wheel Velocity Input Circuit

LATANIEEL AEIO							
(2) Disconnect	(2) Disconnection Monitoring Circuit, Capacitor Leak Check Circuit						
Voc=4V~VC5NGH, Tj=-40~150 °C unless particular instructions							
items	Marks	conditions	Min	Тур	Max	Unit	
Disconnection Monitoring Voltage	VOP@		1.6	1.8	2.1	V	
Disconnection Monitoring Period	ISOF@		-	53	160	ms	
Disconnection Monitoring Resistance	rSOP		1.3	16	52	kΩ	
Clamp Voltage in a leak checking	VCSF@	ISIN=5mA to 5mA	2.3	2.55	2.7	V	
Leak	rLKCSFL		7	18	60	kΩ	
Monitoring Resistance	rLKCSREF		100	240	370	kΩ	
Leak Monitoring	tCSF@	CSFL@=33nF CREF@0.33µF	-	40	160	ms	

.7037079112

Logic

VCC=4V~\	Pattern Shaping /CNGH, Tj=-40~	Output Circu 150 °C unles	uit, Checkir ss particula	ng Output C	Circuit ns	
<u>items</u>	Marks	conditions	Min	Тур	Max	Unit
H Level Output Voltage	VOHSOUT@ VOHSOUTC	IO=1mA	VCC -0.5	-	-	V
L Level Output Voltage	VOLSOUT@ VOLSOUTC	IO=1mA	-	•	0.3	V

@=0,1,2,3

Check Output (SOUTC) Option Table

fSOCH	fSOCL	Output Channel
0	0	SOUT0
0	1	SOUT1
1	0	SOUT2
1	1	SOUT3

Output Status in a capacitor leak checking period

Output Channel	Output Status
SOUT0	Н
SOUT1	L.
SOUT2	Н
SOUT3	L

DATE of Issue OCT.25, 2000	Safety & Chassis Systems Eng. Dept. 4	No. ABS-00-087	12/

PAGE 5

[Wheel Velocity Input Malfunction Detection Process in details] Detection of wheel velocity sensor disconnection

In case that a wheel velocity sensor is disconnected, a voltage raises by inside bias. In case that the wheel velocity sensor passes a threshold of a monitored disconnection, a flag (SF@)is set, then sent to CPU.

Capacitor Leakage Check

7037079112

In order to monitor a leakage of a capacitor used as a filter, a check requirement signal is received from CPU. Then, a certain voltage, which is more than disconnection monitored voltage, is applied in order to check whether there is a capacitor leakage or not.

Items Disconnection Monitoring Resistance		Min	Typ	Max
		1.3kΩ	16kΩ	52kΩ
Disconnection Period	Monitoring		53ms	160ms
Disconnection	SFL@side	7kΩ	18kΩ	60kΩ
Monitoring Period	SREF@side	100kΩ	240kΩ	370kΩ
Leak Monitoring Period			40ms	160ms

- *1 Disconnection and leak monitoring periods are greatly affected by internal resistance (100k Ω) and external capacitance (0.33 μF). Therefore, it is possible to reduce a maximum monitoring period by using a high precision external capacitor.
- *2 Disconnection Monitoring Period is defined as a period from a disconnection of input of SIN@ until a set of fSF@. Similarly, leak monitoring period is defined as a period from a set of fCKC@ until a set of fSF@. Accordingly, there is a certain delay for CPU, the delay which is derived from a communication schedule.

Check of interference of wave pattern shaping output

Detect interference between pins by stabilizing a status of each wave pattern shaping output while the above capacitance leakage check is activated.

Output Status during a capacitor leakage check

Output	SOUT0	SOUT1	SOUT2	SOUT3
Channel	(fCKC0=1)	(fCKC1=1)	(fCKC2=1)	(fCKC3=1)
Output Status	н	<u> </u>	H	L

Output for input capture check

Output a wheel rotation output from SOUTC which is selected by output channel selection signal that comes from CPU

Selection Signal	Outnote Change
oolootton Olgnar	Output Channel

fSOCH	fSOCL	
0	0	SOUT0
0	1	SOUT1
	0	SOUT2
1	1	SOUT3

* IC also returns ISOCH and ISOCL. CPU receives that the output channel has been switched.

DATE of Issue DEC, 13, 2000	Safety & Chassis Systems Eng. Dept, 4	No. ABS-00-087	13/	
		 _	i	1

Wheel Velocity Pulse Check Scheme (plan)

PAGE 6

	ch0 ch1 ch2 ch3 ch3 ch4 serial com	GTIO GTI1 GTI2 CPU GTI3 GTI4
-	SERIAL COM	SE15
	Ch Switching Signal Outgoing: Ch selection requirement Incoming: Current Selection Ch	

DATE of Issue DEC. 13, 2000	Safety & Chassia Systems Eng. Dept. 4	No. ABB-00-087	14/
		<u> </u>	

(a flow chart on the left, top) Software Process Images (plan)

PAGE 7

(a flow chart on the right, top)

7037079112

(a second chart on the left)

'7037079112

Malfunction Judgment: A case is defined a malfunction where (1), (2), (3) all meet

- (1) Malfunction Judgment Counter M > 1
- (2) Malfunction Judgment Counter S > 3
- (3) | Malfunction Judgment Counter M + Normal Judgment Counter M --Maifunction Judgment Counter S - Normal Judgment Counter S | > 3

Normal Judgment: A case is defined a normal where (1) and (2) both meet

- (1) Normal Judgment Counter M>1
- (2) Normal Judgment Counter S>1

DATE of Issue DEC. 13, 2000	Safety & Chassis Systems Eng. Dept. 4	No. ABS-00-087	15/	
· · · · · · · · · · · · · · · · · · ·				

DENSO CORPORATION No. Share the Martin Albi Martin Albi Martin Albi Martin Albi Martin Albi Martin Albi

A least ADDRESSEE

DENSO CORPORATION 11, Street and Austral August 12, 2000

TOYOTA MOTOR(CO.)

22 配子室 22 電子室 41 電子室

ない西田

ーブル見直し、それに伴い フラグ 政略合、 P.35~P.42: シリフル温音bDでサイン、スケウュール交更 (ソフトウエア物館のフレキンピリディ自上) P.41:通信方法(本) 退加 P.44~P.48:通信社警宏视、通信于一夕宽视の容相及项出加 (P.30, 36, 38, 35-2, 39, 40, 41, 4Z P.34: 動作極概如數據正 P.36: 動作極概或數據正, 登記追加 P.37: 出力與達較QI與協密加 PSI,52,53; 53.53 2000/10/25 2000/14/21 2000/12/13 2001/6/14 200 F/1/30 BH S ₽ ¥

> SPECIFICATION 開発仕様書 ABSOCOBT \ DEVELOPMENT

Selfely & Cheesis Systems Eng. Dept.4
Withterword by BENSO CORPORATION DATE OF ISSUE Date JUNE STRUCT

Ha ABS-00-087

Salety & Chassis Systems Eng. Dept.4

が

Ŗ 鹽

PATE OF ISSUE

ン精酸酶 415mm SEIKJ C.C.S. J 条技虧的 第一電子G 竹内 殿 技術開発的 第二要素間発G 投棄 殿 - - - ナンステム開発室システム原2 G 近田T TA 存着每 不故插每 3.2001 PAGE 19/22 * RCVD AT 5/29/2007 10:12:13 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/6 * DNIS:2738300 * CSID:7037079112 * DURATION (mm-ss):05-44

標準化ECU用周辺機能統合IC

STANDARDIZED CPU

からろ

PERIPHERAL DEVICES

IC OF UNIFIED

AISHIN SEIKI (Co.)

一クチェック回路

Ę 9

(2) 断線後出回路、コンデンサリ 高式き電音は Ve=4V~VCSNSH, IF 40-1976 可目 39 条 可提供出発在 VOP®

ESOF

所給按出時間 新和限出权品

Š

· 電気的特性· 熟的特性 4] 車輪違入力回路

皂

8

9

R

9 R

.3

ISIN-SmA to SmA

VCSF

ノチェックト

しな出版 しな問題記

열모

388

무용무

8

CSFL@=33nF CREF@=0.33uF

AKCSREF RCSF@

Ę

DENSO CORPORATION

٠!

No. ABS-00-087

DENSO CORPORATION

뭐 電気的特性、熱的特性] <u>車輪速入力回路</u>

B SOUTE ş SORTE ケーション回覧(窓)

Safety & Charste Spriants Eng Dept.4
Arighs coams by DENSO CORPORATION ar Issue DATE

No. ABS-00-087

Exhibit A

25,2000 PAGE 20/22 * RCVD AT 5/29/2007 10:12:13 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/6 * DNIS:2738300 * CSID:7037079112 * DURATION (mm-ss):05-44

DATE OF ISSUE

180-00-BBA -ON

Salely & Cheeds Systems Eng. Dept.

Exhibit A

DENZO COBPORATION

OSNIGI

05/29/2007 10;08