

Exercice :1. Sous espace stable par l'opérateur de dérivation

Déterminer les sous espace vectoriels stables par l'endomorphisme D de dérivation dans $\mathbb{K}[X]$

Solution :1

Le sous espace nul et l'espace $\mathbb{K}[X]$ sont stables par D , cherchons les sous espaces stables non triviaux . Soit F un sous espace stable par l'opérateur de dérivation , on va distinguer deux cas :

- ① Si F est de dimension finie non nul F. Soient (P_1,\ldots,P_r) une base de F et $m=\max(\deg P_1,\ldots,\deg P_r)$. Il est clair que $F\subset\mathbb{K}_m[X]$. Soit $i_0\in[\![1,r]\!]$ tel que $\deg P_{i_0}=m$, la famille $(P_{i_0},P'_{i_0},\ldots,P^{(m)}_{i_0})$ est une famille de degré échelonnée donc elle est libre et par suite $\dim\left(\mathcal{V}ect(P_{i_0},P'_{i_0},\ldots,P^{(m)}_{i_0})=m+1$, or $\mathcal{V}ect(P_{i_0},P'_{i_0},\ldots,P^{(m)}_{i_0})\subset\mathbb{K}_m[X]$, alors $\mathcal{V}ect(P_{i_0},P'_{i_0},\ldots,P^{(m)}_{i_0})=\mathbb{K}_m[X]$. comme F est stable par D, alors $\mathcal{V}ect(P_{i_0},P'_{i_0},\ldots,P^{(m)}_{i_0})\subset F$ c'est à dire $\mathbb{K}_m[X]\subset F$ donc $F=\mathbb{K}_m[X]$
- ② Si F est de dimension infinie.Alors $\forall n \in \mathbb{N}$, $F \not\subset \mathbb{K}_n[X]$ ce qu'est équivalent de dire que $\forall n \in \mathbb{N}$, $\exists P \in F$, $m = \deg P > n$. Soit $n \in \mathbb{N}$ et $P \in F$ $m = \deg P > n$. La famille $(P, P', \ldots, P^{(m)})$ est une famille libre de $\mathbb{K}_m[X]$, comme famille de degré échelonnée d'éléments de $\mathbb{K}_m[X]$, de cardinal est égale à m+1, alors $\mathbb{K}_m[X] = \mathcal{V}ect(P, P', \ldots, P^{(n)})$ et par stabilité de F par D, on a $\mathcal{V}ect(P, P', \ldots, P^{(n)}) \subset F$, c'est à dire que $\mathbb{K}_m[X] \subset F$ et comme $\mathbb{K}_m[X] \subset \mathbb{K}_m[X]$, alors $\mathbb{K}_m[X] \subset F$ et ceci pour tout entier naturel P donc P de P

Exercice :2.L'ordre et le rang d'une matrice

Soit n un entier non nul et A une matrice carrée d'ordre n a coefficients réels.

- ① On suppose que $A^2 + A + I_n = 0$.Montrer que n est pair
- ② On suppose que $A^3 + A^2 + A = 0$. Montrer que le rang de A est pair

🗞 Solution :2

- ① Le polynôme $X^2 + X + 1$ est annulateur de A donc les valeurs propres de A sont dans $\{j, j^2\}$ et par suite si n est impaire , alors χ_A admet au moins une racine réelle c'est à dire que A admet une valeur propre réelle ce qu'est absurde donc n est paire
- ② On a $A(A^2 + A + I_n) = 0_n$ donc d'après le lemme des noyaux

$$\ker u_A \oplus \ker(u_A^2 + u_A + id_{\mathbb{K}^n}) = \mathbb{K}^n$$

Ou u_A désigne l'endomorphisme canoniquement associé à A. Le sous espace $F = \ker(u_A^2 + u_A + id_{\mathbb{K}^n})$ est stable par u_A , notons v l'endomorphisme induit par u_A sur F. Si F est de dimension impaire, alors χ_v est de degré impaire, donc admet au moins une racine réelle c'est à dire que v aura au moins une valeur propre réelle λ , et comme le polynôme $X^2 + X + 1$ est un polynôme annulateur de v, alors λ est une racine réelle de ce polynôme ce qui est absurde, donc la dimension de F est paire. Or d'après le théorème du rang on a v0 d'ou le résultat

Exercice :3.

Soit A une matrice inversible d'orde n à coefficient dans C. Déterminer le polynôme caractéristique de la matrice A^{-1}

Solution :3

Soit λ un scalaire non nul, on a :

$$\begin{split} \chi_{A^{-1}}(\lambda) &= \det(A^{-1} - \lambda.I_n) = \det\left(A^{-1}\left(I_n - \lambda.A\right)\right) \\ &= \frac{(-\lambda)^n}{\det A} \det\left(A - \frac{1}{\lambda}.I_n\right) = \frac{(-\lambda)^n}{\det A} \chi_A\left(\frac{1}{\lambda}\right) \end{split}$$

Autremen

On montre facilement que $Sp(A^{-1}) = \left\{\frac{1}{\lambda}, \lambda \in Sp(A)\right\}$, comme χ_A est scindé sur \mathbb{C} , alors on a pour tout $x \in \mathbb{C}^*$

$$\chi_{A^{-1}}(x) = (-1)^n \prod_{k=1}^n \left(x - \frac{1}{\lambda_k} \right) = \frac{(-1)^n}{\prod_{k=1}^n \lambda_k} x^n \prod_{k=1}^n \left(\lambda_k - \frac{1}{x} \right) = \frac{(-x)^n}{\det A} \chi_A \left(\frac{1}{x} \right)$$

Exercice :4.

Soit A, B et P trois matrices carrés non nulles à coefficients dans $\mathbb C$

- ① Montrer que $\chi_A(B) \in \mathcal{G}L_n(\mathbb{C}) \Leftrightarrow \mathcal{S}p(A) \cap \mathcal{S}p(B) = \phi$
- ② Montrer que si AP = PB, alors A et B ont au moins une valeur propre commune

Solution :4

- ① $(i): (\Rightarrow)$. Supposons que $\chi_A(B) \in \mathcal{G}l_n(\mathbb{C})$, le polynôme caractéristique de A est scindé sur \mathbb{C} , donc $\chi_A = (-1)^n \prod_{k=1}^n (X \lambda_k)$ et par suite $\chi_A(B) = (B \lambda_1.I_n).....(B \lambda_n.I_n)$, l'hypothèse assure que pour tout $i \in [\![1,n]\!]$, $B \lambda_i.I_n$ est inversible, c'est à dire que $\forall i[\![1,n]\!]$, $\lambda_i \notin \mathcal{S}p(B)$, ce qui veut dire que $\mathcal{S}p(A) \cap \mathcal{S}p(B) = \phi$ $(ii): (\Leftarrow)$ Supposons que $\mathcal{S}p(A) \cap \mathcal{S}p(B) = \phi$, alors $\forall \lambda \in \mathcal{S}p(A)$, $\lambda \notin \mathcal{S}p(B)$ c'est à dire que $B \lambda.I_n \in \mathcal{G}L_n(\mathbb{K})$. Et comme
- $\chi_A(B) = (B \lambda_1.I_n)....(B \lambda_n.I_n)$, alors $\chi_A(B)$ est inversible comme produit de matrice inversibles
- ② Supposons que AP = PB, alors par une récurrence facile on a :

$$\forall k \in \mathbb{N} , A^k P = PB^k$$

Et par linéarité on a $\forall Q \in \mathbb{K}[X]$, Q(A)P = PQ(B), en particulier pour $Q = \chi_A$, on a $0_n = P\chi_A(B)$, ce qui entraine alors que $0_n = P.\chi_A(B)$ et par suite $\chi_A(B)$ est non inversible et d'après la question précédente $\mathcal{S}p(A) \cap \mathcal{S}p(B) \neq \phi$, d'ou le résultat

Exercice :5

Soit A et B deux matrices carrées à coefficients complexes . Montrer les propositions suivantes sont équivalentes :

- ① $\forall C \in \mathcal{M}_n(\mathbb{C})$, $\exists X \in \mathcal{M}_n(\mathbb{C})$, AX XB = C
- ② $\forall X \in \mathcal{M}_n(\mathbb{C})$, $AX = XB \Rightarrow X = 0$
- ③ $\chi_B(A)$ est inversible
- ④ A et B n'ont pas de valeur propre commune

Solution :5

- ① $(1\Rightarrow 2)$ En prenant $C=0_n$, alors d'après l'hypothèse il existe une unique matrice X dans $\mathcal{M}_n(\mathbb{C})$ telle que AX-XB=0 et comme la matrice nulle est aussi solution, alors $X=0_n$
- $(2 \Rightarrow 1)$ Notre hypothèse nous permet de dire que l'endomorphisme

$$\varphi: \begin{cases} \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}) \\ X \longmapsto AX - XB \end{cases}$$

est injective et comme on est en dimension finie , alors c'est un automorphisme de $\mathcal{M}_n(\mathbb{C})$ d'ou le résultat

- $3 (3 \Leftrightarrow 4)$ est immédiate d'après l'exercice précéent
- \P Pour $(2\Rightarrow 3)$, on montre sa contraposée supposons , alors que $\chi_A(B)$ est non inversible , donc A et B admettent une valeur propre commune A, soit alors U un vecteur propre de A associé à A et A0 un vecteur propre de A0 associé à A0 et A1 et A2 et A3 associé à A4 et A4 et A5 associé à A6 et A6 posons A5 et A6 et A6 posons A8 et A9 et A9
- ③ (3 ⇒ 2). Supposons que $\chi_A(B)$ est inversible et soit X une matrice d'ordre n vérifiant AX = XB, alors par une récurrence facile on a $\forall k \in \mathbb{N}$, $A^kX = XB^k$ et par linéairité on a $\chi_A(A)X = X\chi_A(B) = 0_n$, alors l'inversibilité de $\chi_A(B)$ entraine que $X = 0_n$ d' ou le résultat

Soit *A* une matrice de $\mathcal{M}_n(\mathbb{C})$.Montrer que les propositions suivantes sont équivalentes

- ① A est nilpotente
- ② A est semblable à une matrice triangulaire supérieure dont les éléments diagonaux sont tous nuls
- $3 \forall k \in \mathbb{N}^*, tr(A^k) = 0$

Solution :6

Remarque :Si T est une matrice triangulaire supérieure (inférieure) de coefficients diagonaux t_1, \ldots, t_n , alors pour tout entier naturel non nul k la matrice T^k est triangulaire supérieure (inférieure) de coefficients diagonaux t_n^k, \ldots, t_n^k

- ① $(1 \Rightarrow 2)$ La matrice A est nilpotente donc elle admet 0 comme seule valeur propres et par suite A est trigonalisable donc semblable à une matrice triangulaire supérieure dont les éléments diagonaux sont ses valeurs propres donc nuls
- ② $(2\Rightarrow 3)$ Soit P une matrice inversible et T une matrice triangulaire supérieure dont les éléments diagonaux sont nuls tels que $A=P^{-1}TP$, alors par une récurrence facile on montre que $\forall k\in\mathbb{N}^*$, $A^k=P^{-1}T^kP$, et par suite $\forall k\in\mathbb{N}^*$, $tr(A^k)=0$
- ③ $(3\Rightarrow 1)$. Supposons que $\forall k\in\mathbb{N}$, $tr(A^k)=0$, montrons que A est nilpotente c'est à dire que son spectre est réduit à $\{0\}$. Raisonnons par l'absudre et supposons que A admet au moins une valeur propre non nulle , soit alors $\lambda_1,\ldots,\lambda_r$ les valeurs propres non nulles de A de multiplicité respectivement $m_{\lambda_1},\ldots,m_{\lambda_r}$, comme on travaille dans \mathbb{C} , alors on a $\forall k\in\mathbb{N}^*$, $tr(A^k)=\sum_{i=1}^r m_{\lambda_i}\lambda_i^k$. On va s'intéresser au r égalités suivantes

$$\forall k \in \llbracket 1,r
rbracket, \sum_{i=1}^r m_{\lambda_i} \lambda_i^k = 0$$

Ce qui se traduit matriciellement par :

$$\underbrace{\begin{pmatrix} \lambda_1 & \dots & \lambda_r \\ \lambda_1^2 & \dots & \lambda_r^2 \\ \vdots & \ddots & \vdots \\ \lambda_1^r & \dots & \lambda_r^r \end{pmatrix}}_{\begin{pmatrix} \lambda_1 \\ m_{\lambda_2} \\ \vdots \\ m_{\lambda_r} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Ceci d'une part d'autre part on a

$$det A = \left(\prod_{k=1}^{r} \lambda_k\right) \begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_r \\ \vdots & \ddots & \vdots \\ \lambda_1^{r-1} & \dots & \lambda_r^{r-1} \end{vmatrix} = \left(\prod_{k=1}^{r} \lambda_k\right) \cdot \left(\prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i)\right) \neq 0$$

Ce qui entraine que $\begin{pmatrix} m_{\lambda_1} \\ m_{\lambda_2} \\ \vdots \\ m_{\lambda_1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ ce qui contredit la définition de la multiplicité d'une valeur propre, on conclut alors que A est nilpotent

Exercice :7.Sous espaces caractéristiques

Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle et u un endomorphisme de E. Pour toute valeur propre $\lambda \in \mathbb{K}$ de multiplicité m_{λ} , on pose $F_{\lambda} = \ker (u - \lambda.Id_E)^{m_{\lambda}}$ appelé sous espace caractéristique associé à λ Montrer que pour toute valeur propre λ de u le sous espace caractéristique associé à λ est de dimension la multiplicité de λ

Soit λ une valeur propre de u de multiplicité m_{λ} , donc

$$\chi_u = (X - \lambda)^{m_\lambda} Q(X) \text{ avec } Q(\lambda) \neq 0$$

D'après le théorème décomposition des noyaux on a $E=F_{\lambda}\oplus\ker Q(u)$. Posons $d_{\lambda}=\dim F_{\lambda}$, on a F est Stable par u donc

$$\forall x \in F$$
, $(u_F - \lambda.id_F)^{m_\lambda} = 0_{\mathcal{L}(F)}$

Ce qui montre que $u_F - \lambda.id_E$ est nilpotent et par suite $\chi_{v-\lambda.id_F} = (-X)^d$. Or $\chi_v = \det\left((v-X.id_F) = \det\left((v-\lambda.id_F) - (X-\lambda).id_F\right)\right)$

$$= \det(v - X.id_F) = \det((v - \lambda.id_F) - (X - \lambda).id_F)$$

$$= \chi_{v-\lambda.id_F}(X-\lambda) = (-1)^d (X-\lambda)^d$$

 $=\chi_{v-\lambda.id_F}(X-\lambda)=(-1)^d(X-\lambda)^d$ Comme F et $\ker Q(u)$ sont stables , alors $\chi_u=\chi_v\chi_w$ avec w l'endomorphisme induit par u sur $\ker Q(u)$ et avec la convention $\chi_w=1$ si $\ker Q(u) = \{0_E\}$. Donc $(X - \lambda)^{m_{\lambda}}Q = (-1)^d(X - \lambda)^d\chi_w: (*)$. Si λ est une racine de χ_w alors il existe

 $x \in \ker Q(u)$, $w(x) = u(x) = \lambda . x$, et comme $Q(u)(x) = Q(\lambda) . x = 0$, alors $Q(\lambda) = 0$ ce qui absurde, donc $\chi_w(\lambda) \neq 0$, et par suite $\forall p \in \mathbb{N}^*$, $(X - \lambda) \wedge \chi_w = 1$

$$\forall p \in \mathbb{N}^*$$
, $(X - \lambda) \wedge \chi_w = 1$

Et de l'égalité (*) en déduit que $(X - \lambda)^{m_{\lambda}}$ divise $(X - \lambda)^{d}\chi_{w}$ et comme $\chi_{w} \wedge (x - \lambda)^{m_{\lambda}}$, alors d'après Gaus on a $(X - \lambda)$ divise $(X - \lambda)^{d}$ ce qui entraine que $m_{\lambda} \leq d$. De même de l'égalité (*) on a $(X - \lambda)^{d}$ divise $(X - \lambda)^{m_{\lambda}}Q$ et comme $Q \wedge (X - \lambda)^{d} = 1$, alors $(X - \lambda)^{d}$ divise $(X - \lambda)^{m_{\lambda}}Q$ et comme $(X - \lambda)^{d} = 1$, alors $(X - \lambda)^{d}$ divise $(X - \lambda)^{m_{\lambda}}Q$ et comme $(X - \lambda)^{d} = 1$, alors $(X - \lambda)^{d}$ divise $(X - \lambda)^{m_{\lambda}}Q$ et comme $(X - \lambda)^{d} = 1$, alors $(X - \lambda)^{d}$ divise $(X - \lambda)^{d} = 1$, alors $(X - \lambda)^{d}$ divise $(X - \lambda)^{d} = 1$. qui entraine que $d \le m_\lambda$ et par suite l'égalité

Exercice :8

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle , u un endomorphisme de E , λ une valeur propre de u de multiplicité m_{λ} et p un entier naturel non nul.

① Montrer que la multiplicité de λ en tant que racine de π_u est le plus petit entier naturel vérifiant

$$\ker (u - \lambda . id_E)^p = \ker (u - \lambda . id_E)^{p+1}$$

② En déduire que : dim $E_{\lambda}(u) = m_{\lambda} \Leftrightarrow \lambda$ est une racine simple de π_u

Solution :8

- ① . Notons n_{λ} la multiplicité de λ comme racine de π_u et posons $\pi_u = (X \lambda)^{n_{\lambda}} Q$ avec $Q(\lambda) \neq 0$ et $P = (X \lambda)^q Q$.
 - ① Si $q > n_{\lambda}$, alors π_u divise le polynôme Q d'après le lemme de décomposition des noyaux on a

$$E = \ker(u - \lambda . id_E)^{n_\lambda} \oplus \ker Q(u) = \ker(u - \lambda . id_E)^q \oplus \ker Q(u)$$

Ce qui entraine alors que $\dim \ker(u - \lambda.id_E)^{n_\lambda} = \dim \ker(u - \lambda.id_E)^q$, or la suite $\left(\ker(u - \lambda.id_E)^k\right)_{k \in \mathbb{N}}$ est une suite croissante au sens de l'inclusion (Voir les grands classiques d'algèbre linéaire), ce qui nous permet de conclure que $\ker(u-\lambda.id_E)^q=\ker(u-\lambda.id_E)^{n_\lambda}$

② Si $q < n_\lambda$, alors le polynôme $P = (X - \lambda)^q$. Q n'est pas divisible par π_u , donc il n'est pas annulateur de u donc en appliquant toujours le lemme de décomposition des noyaux , on a $\ker P(u) = \ker (u - \lambda.id_E)^q \oplus \ker Q(u)$ et comme $P(u) \neq 0_{\mathcal{L}(E)}$, alors $\ker P(u)$ est inclus strictement dans

 $E = \ker(u - \lambda . id_E)^{n_\lambda} \oplus \ker Q(u)$ en passant au dimensions on a :

$$\dim \ker(u - \lambda . id_E)^q + \dim \ker Q(u) < \dim \ker(u - \lambda . id_E)^{n_\lambda} + \dim \ker Q(u)$$

Ce qui entraine que dim $\ker(u - \lambda.id_E)^q < \dim \ker(u - \lambda.id_E)^{n_\lambda}$ et par suite que $\ker(u - \lambda.id_E)^q$ est inclus strictement dans $\ker(u - \lambda.id_E)^q$ $\lambda . id_E)^{n_\lambda}$.On a alors démontrer que

$$\forall q > n_{\lambda}$$
, $\ker(u - \lambda . id_E)^{n_{\lambda}} = \ker(u - \lambda . id_E)^q$

$$\forall q < n_{\lambda}$$
, $\ker(u - \lambda.id_E)^q \neq \ker(u - \lambda.id_E)^{n_{\lambda}}$

② (\Rightarrow). Si dim $E_{\lambda}(u) = m_{\lambda}$, alors d'après l'exercice précédent on a dim $\ker(u - \lambda.id_E) = \dim \ker(u - \lambda.id_E)^{m_{\lambda}}$ ce qui entraine que le plus petit entier non nul p vérifiant $\ker (u - \lambda . id_E)^p = \ker (u - \lambda . id_E)^{p+1}$ est égale à 1 c'est à dire que la multiplicité de λ en tant que racine de π_u est

 (\Leftarrow) . Si λ est une racine simple de π_u , alors $\ker(u - \lambda.id_E) = \ker(u - \lambda.id_E)^2$ ce qui entraine alors que $\ker(u - \lambda.id_E) = \ker(u - \lambda.id_E)^{m_\lambda}$ et par suite d'après l'exercice précédent on a dim $\ker(u - \lambda . id_E) = m_{\lambda}$

Exercice :9.Caractérisation de la multiplicité m_{π_λ} d'une valeur propre

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, u un endomorphisme deE et λ une valeur propre de E.

- ① Montrer que les assertions suivantes sont équivalentes :
 - (i) $E_{\lambda}(u) = \ker(u \lambda Id_E)^2$
 - (ii) $E_{\lambda}(u) \oplus \mathcal{I}m(u \lambda Id_{E}) = E$
 - (iii) $E_{\lambda}(u)$ possède un supplémentaire stable par u
 - (iv) La dimension de $E_{\lambda}(u)$ est égale à la multiplicité de λ dans le polynôme caractéristique de u.
 - (v) λ est une racine simple du polynôme minimale de u
- ② Montrer que dans ces conditions , $\mathcal{I}m(u \lambda Id_E)$ est le seul supplémentaire de $E_{\lambda}(u)$ stable par u

Solution :9

Soit λ une valeur propre de u de multiplicité m_{λ} , on a alors

$$\chi_u = (X - \lambda)^{m_\lambda} Q$$
 , avec , $Q(\lambda) \neq 0$

1 $(i \Rightarrow ii)$. Supposons que $E_{\lambda}(u) = \ker(u - \lambda . id_E)^2$, alors d'après le théorème du rang il suffit de montrer que $E_{\lambda}(u) \cap \mathcal{I}m(u - \lambda . id_E)$ {0}. Soit alors $x \in E_{\lambda} \cap \mathcal{I}m(u - \lambda.id_E)$, on a

$$(u - \lambda . id_E)(x) = 0$$
 et $\exists a \in E$, $x = (u - \lambda . id_E)(a)$

Ce qui entraine que $(u - \lambda . id_E)^2(a) = 0$ c'est à dire que $a \in \ker(u - \lambda . id_E)^2$ et comme $\ker(u - \lambda . id_E)^2 = \ker(u - \lambda . id_E)$,

alors $x = (u - \lambda . id_E)(a) = 0$ d'ou le résultat

 $(ii \Rightarrow iii)$ Si $E_{\lambda}(u) \oplus \mathcal{I}m(u - \lambda.id_E) = E$, alors il est clair que $\mathcal{I}m(u - \lambda.id_E)$ est un sous supplémentaire de $E_{\lambda}(u)$ stable par u

 $(iii \Rightarrow iv)$. Soit F un supplémentaire stable par u de $E_{\lambda}(u)$, notons v $(resp\ w)$ l'endomorphisme induit sur $E_{\lambda}(u)$ $(resp\ F)$, alors on a $\chi_u = \chi_v \chi_w$, or $v=\lambda.id_{E_\lambda}$, alors $\chi_u=(\lambda-X)^{\dim E_\lambda}.\chi_w$. En raisonnant de la même façon que l'exercice précédent , on montre que $\chi_w(\lambda) \neq 0$ et enfin de

$$(X - \lambda)^{m_{\lambda}} Q = \chi_w (\lambda - X)^{\dim E_{\lambda}(u)}$$

Et

$$\forall p \in \mathbb{N}^*$$
, $Q \wedge (X - \lambda)^p = \chi_w \wedge (X - \lambda)^p = 1$

 $\forall p \in \mathbb{N}^* \text{ , } Q \wedge (X - \lambda)^p = \chi_w \wedge (X - \lambda)^p = 1$ On en déduit que $(X - \lambda)^{m_\lambda}$ divise $(X - \lambda)^{\dim E_\lambda}$ et $(X - \lambda)^{\dim E_\lambda(u)}$, divise $(X - \lambda)^m$ ce qui entraine alors que $m_\lambda = \dim E_\lambda(u)$ Pour $(iv \Rightarrow v)$ et $v \Rightarrow i$ voir l'exercice précédent

2 On suppose que $E_{\lambda}(u) \oplus \mathcal{I}m(u-\lambda.id_E) = E$. Soit F un sous espace supplémentaire stable par u de $E_{\lambda}(u)$. Montrons que $F = \mathcal{I}m(u - \lambda.id_E)$, notons w l'endomorphisme induit par u sur F, w' l'endomorphisme induit par u sur $\mathcal{I}mu$ et v l'endomorphisme induit sur $E_{\lambda}(u)$ par u.On a $\chi_u = \chi_v \chi_w = \chi_v \cdot \chi_{w'}$ ce qui entraine que $\chi_w = \chi_{w'}$ donc $\chi_{w'}(w) = 0_{\mathcal{L}(1)}$

Un endomorphisme u d'un C-espace E de dimension finie est dit semi simple si tout sous espace stable par u admet un supplémentaire stable par u.Montrer que u est semi simple si, et seulement si il est diagonalisable

Solution :10

- ① Supposons que u est diagonalisable , soit B une base de diagonalisation de u et F un sous espace stable par u . Si B_1 une base de F , d'après le théorème de la base incomplète, il existe une sous famille B_2 de B telle que (B_1, B_2) est un e base de E. Le sous espace $G = \mathcal{V}ect(B_2)$ est un
- ② Supposons que tout sous espace de E stable par u possède un supplémentaire stable par u. Soit $\{\lambda_1, \ldots, \lambda_r\}$ le spectre de u, si on pose $F = \bigoplus_{k=1}^r E_\lambda(u)$, alors il est clair que F est non réduit au singleton $\{0\}$, soit G un supplémentaire stable par u de F dans E. Si $G \neq \{0_E\}$, alors l'endomorphisme u_G induit sur G par u admet au moins une valeur propre dans $\mathbb C$, donc un vecteur propre associé à cette valeur propre est alors un élément non nul de F et de G ce qui absurde , donc $G = \{0\}$ et par suite $\bigoplus_{k=1}^r E_{\lambda}(u) = E$

Montrer que le polynôme minimal d'un endomorphisme u d'un $\mathbb K$ espace E de dimension fini non nulle admet un nombre fini de diviseur unitaire

11: Solution

On pose $\pi_u = \prod_{k=1}^r P_k^{\alpha_k}$ avec P_1, \ldots, P_r sont des polynômes irréductibles unitaires de $\mathbb{K}[X]$. Remarauons que si D est un diviseur unitaire de π , alors $D = \prod_{k=1}^r P_k^{\alpha_k'}$ avec $\forall k \in [\![1,r]\!]$, $\alpha_k' \in [\![0,\alpha_k]\!]$. On verfie aisement en utilisant l'unicité de la décopomsition en facteurs irrédictubles que

$$\varphi: \begin{cases} \mathcal{D}_{\pi_u} \to \prod_{k=1}^r \llbracket 0, \alpha_k \rrbracket \\ D \longmapsto (\alpha'_1, \dots, \alpha'_r) \end{cases}$$

 $\varphi: \begin{cases} \mathcal{D}_{\pi_u} \to \prod_{k=1}^r \llbracket 0, \alpha_k \rrbracket \\ D \longmapsto (\alpha_1', \dots, \alpha_r') \end{cases}$ est une bijection et par suite $Card\left(\mathcal{D}_{\pi_u}\right) = \prod_{k=1}^r (1+\alpha_k)$ Avec \mathcal{D}_{π_u} désigne l'ensemble des diviseurs unitaire de π_u

Exercice :12

Soit *E* un espace de dimension finie non nulle *n* , *u* un endomorphimse de *E* et *x* un vecteur de *E*,

- ① Montrer qu'il existe un unique polynôme unitaire de degré minimal noté $\pi_{x,u}$ tel que $\pi_{x,u}(u)(x) = 0_E$
- ② Vérifier que $\pi_{x,u}$ divise π_u
- ③ En déduire que $\{\pi_{x,u} , x \in E \text{ et } x \neq 0_E\}$ est fini

Solution :12

Soit x un vecteur non nul de E

- ① On montre facilement que $I_{x,u} = \{P \in \mathbb{K}[X], P(u)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$ contenant π_u , donc il est engendré par un unique polynôme unitaire Q. Par définition du générateur unitaire d'un idéal non nul de $\mathbb{K}[X]$ est clair que le polynôme Q est celui qu'on cherche
- ② On a déja dit à la question précédente que $\pi_u \in I_{x,u}$, donc $\pi_{x,u}$ divise π_u
- ③ D'après l'exercice précédent le polynôme π_u admet un nombre fini de diviseurs unitaire, donc l'ensemble $\{\pi_{x,u}, x \in E, x \neq 0_E\}$ est fini

Exercice :13

Soit E un espace de dimension finie non nulle n et u un endomorphisme cyclique de E c'est à dire il existe un vecteur non nul x_0 tel que $E = Vect (u^k(x_0))$

① Montrer que l'application

$$\varphi_{x_0,u}: \begin{cases} \mathbb{K}[X] \to E \\ P \longmapsto P(u)(x_0) \end{cases}$$

est une application linéaire , surjective de noyau $\pi_u.\mathbb{K}[X]$

- ② Montrer que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une base de *E*
- ③ En déduire que $\pi_u = (-1)^n \chi_u$
- ④ Donner la matrice de *u* dans cette base

1 1.1 La linéarité de $\varphi_{x,u}$ est clair

1.2 Soit $y \in E$, alors on a

$$y \in \mathcal{V}ect(u^k(x)) \Leftrightarrow \exists r \in \mathbb{N}^*, \exists (\alpha_0, \dots, \alpha_r) \in \mathbb{K}^r, y = \sum_{k=0}^r \alpha_k u^k(x_0) = P(u)(x_0)$$

Avec $P = \sum_{k=0}^{n} \alpha_k X^k$ d'ou la surjectivité de $\varphi_{x,u}$

1.3 Soit P un polynôme à coefficients dans $\mathbb K$, on a

$$P \in \ker \varphi_{x,u} \Leftrightarrow P(u)(x_0) = 0$$

Soit $k \in \mathbb{N}$, on a:

$$P(u)(u^k(x_0)) = P(u)ou^k(x_0) = u^koP(u)(x_0) = u^k(P(u)(x_0)) = 0_E$$

L'endomorphisme P(u) est nule sur une famille génératrice , ce qui entraine alors que $P(u) = 0_{\mathcal{L}(E)}$ et par suite que $P \in \pi_u$. $\mathbb{K}[X]$,et donc $\ker \varphi_{x,u} \subset \mathbb{K}[X]$, l'autre inclusion est évidente , donc $\ker \varphi_{x,u} = \pi_u$. $\mathbb{K}[X]$

- 2 Soit $x \in E$, d'après la première question on a : $\exists P \in \mathbb{K}[X]$, $x = P(u)(x_0)$ d'après le théorème de Cayley-Hamilton on a $x = R(u)(x_0)$ tel que R est le reste de la divison euclidienne de P par χ_u et comme $R \in \mathbb{K}_{n-1}[X]$, alors $x \in \mathcal{V}ect(x_0,u(x_0),\ldots,u_{n-1}(x_0))$ et par suite $(x_0,u(x_0),\ldots,u^{n-1}(x_0))$ est une famille génératrice de E, donc c'est une base de E
- 3 On sait que deg $\pi_u \leq n$. Supposons que deg $\pi_u < n$ et posons $\pi_u = \sum_{k=0}^r a_k X^k$, on a par définition de π_u , on a $\pi_u(u) = 0_{\mathcal{L}(E)}$ ce qui entraine que $\pi_u(u)(x_0) = 0$, c'est à dire $a_0x_0 + a_1u(x_0) + \dots + a_ru^r(x_0) = 0_E$ et comme $(x_0, u)(x_0), \dots, u^r(x_0)$) est une sous famille de la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$, alors elle est libre donc $\forall k \in \llbracket 0, r \rrbracket$, $a_k = 0$, donc $\pi_u = 0_{\mathcal{L}(E)}$ ce qui est absurde donc r = n et comme π_u divise χ_u , alors $\pi_u = (-1)^n \chi_u$
- ① Si on pose $u^n(x_0) = \sum_{k=0}^{n-1} \alpha_k \cdot u^k(x_0)$, alors la matrice de u dans la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est :

$$\begin{pmatrix} 0 & 0 & \dots & & \alpha_0 \\ 1 & 0 & \dots & & \alpha_1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \alpha_{n-1} \end{pmatrix}$$

Exercice :14

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle .Montrer l'équivalence suivante : $\{0_E\}$ et E sont les seuls sous espaces stables par si, et seulement si χ_u est irréductible dans $\mathbb{K}[X]$

Solution :14

① (\Rightarrow). Supposons que $\{0_E\}$ et E sont les seuls sous espaces stables par u. Pour tout vecteur non nul z de E, le sous espace $E_u(z) = \mathcal{V}ect\left(u^k(z)\right)$ est un sous espace stable par u et comme il n'est pas nul , alors il est égale à E , et par suite l'endomorphisme u est cyclique et donc $\pi_{z,u} = \pi_u = (-1)^n \chi_u$.

Soit P un diviseur unitaire de χ_u différent de 1 et distincts de χ_u , ce qui entraine que $\chi_u = P.Q$ avec $\deg Q \in [\![1,n-1]\!]$ Soit x un vecteur non nul de E, posons y = P(u)(x). Si $y \neq 0_E$, alors $\pi_{y,u} = \pi_u$ et on a $Q(u)(y) = (PQ)(u)(y) = \pi_{y,u}(u)(y) = 0$ et par suite π_u divise Q ce qui'est absurde , donc $P(u)(x) = 0_E$ et donc π_u divise P et par suite $P = \pi_u$ ce qui est absurde , donc P est soit 1 S0 soit R1 et comme R2 de qui'est alors R3 et irréductible

② (\Leftarrow). Supposons que χ_u est irréductible dans $\mathbb{K}[X]$ et soit F un sous espace non nul stable par u. Soit x un élément non nul de F, d'après l'exercice (7) le polynôme $\pi_{x,u}$ est un diviseur de π_u donc de χ_u et comme il est irréductible , alors $\pi_{x,u} = \chi_u$ ce qui entraine alors que $E = \mathcal{V}ect(u^k(x)) \subset F$ car F est stable par u ,d'ou le résultat

Exercice :15

Soit A et B deux matrices carrées d'ordre n

- ① Montrer que si A est inversible , alors $\chi_{AB}=\chi_{BA}$
- 2 Dans cette question on se propose de montrer dans le cas générale

 $\chi_{AB} = \chi_{BA}$ par plusieurs méthodes

A). Première méthode

- ① Soit $r \in \mathbb{N}^*$, montrer que $\chi_{I_rB} = \chi_{BI_r}$
- ② En déduire que $\chi_{AB} = \chi_{BA}$

B).Deuxième méthode

Soit $x \in \mathbb{K}$, on pose pour t dans \mathbb{K} , $P(t) = \chi_{(A-t,I_n)B}(x) - \chi_{B(A-t,I_n)}(x)$

- ① Montrer que P est une fonction polynômiale en t
- ② Montrer que *P* s'annule une infinité de fois sur K
- ③ En déduire que $\chi_{AB}(x) \chi_{BA}(x) = 0$ et puis que $\chi_{AB} = \chi_{BA}$

C). Troisième méthode

Soit $\lambda \in \mathbb{K}$.

① Etablir que :

$$\begin{pmatrix} \lambda.I_n - BA & B \\ 0 & \lambda.I_n \end{pmatrix} \cdot \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} \cdot \begin{pmatrix} \lambda.I_n & B \\ 0 & \lambda.I_n - AB \end{pmatrix}$$

② En déduire que $\chi_{AB} = \chi_{BA}$

Exercice :15

D). Quatrième méthode

- ① Montrer que l'ensemble des matrice inversible à coefficients dans $\mathbb K$ est un ouvert dense dans $\mathcal M_n(\mathbb K)$
- ② En déduire que $\chi_{AB} = \chi_{BA}$

Solution :15

① Si A est inversible , alors on a $AB = A(BA)A^{-1}$, donc AB et BA sont semblables donc elles ont même polynôme caracéristique

2 A). Première méthode

① Soit $r \in \mathbb{N}^*$,on a

$$J_r = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r} \end{pmatrix}$$
 , posons $B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$

avec

$$B_1\in\mathcal{M}_r(\mathbb{K})$$
 , $B_2\in\mathcal{M}_{r,n-r}(\mathbb{K})$, $B_3\in\mathcal{M}_{n-r,r}(\mathbb{K})$ et $B_4\in\mathcal{M}_{n-r}(\mathbb{K})$

On a

On a
$$J_r B = \begin{pmatrix} B_1 & * \\ 0_{n-r,r} & 0_{n-r} \end{pmatrix} \ et \ BJ_r = \begin{pmatrix} B_1 & 0_{r,n-r} \\ * & 0_{n-r} \end{pmatrix}$$
 ces dexu matrice sont des matrices triangulaires par blocs donc on a $\chi_{J_r B} = \chi_{BJ_r} = (-x)^{n-r} \chi_{B_1}$

② Posons r = rg(A), alors il existe deux matrices inversible P et Q telle que $A = PJ_rQ$, donc:

$$\chi_{AB} = \chi_{P(J_rQB)} = \chi_{J_r(QBP)} = \chi_{Question1} \chi_{Q(BPJ_r)} = \chi_{B(PJ_rQ)} = \chi_{BA}$$

$$\chi_{AB} = \chi_{P(J_rQB)} = \chi_{B(PJ_rQ)} = \chi_{BA}$$

$$\chi_{AB} = \chi_{P(J_rQB)} = \chi_{B(PJ_rQ)} = \chi_{BA}$$

B). Deuxième méthode

Soit $(x,t) \in \mathbb{K}^2$.

- ① Si on pose $A=(a_{i,j})_{i,j}$ et $B=(b_{i,j})_{i,j}$, alors le coefficient générique de $(A-t.I_n)B$ est $C_{i,j}(t)=\sum_{k=1}^n(a_{i,k}-t\delta_{i,k})b_{k,j}$ et par suite celui $\det\left(A-t.I_n\right)B-xI_n \text{ est } d_{i,j}(t)=C_{i,j}(t)-x\delta_{i,j} \text{ , par suite on a } \det\left((A-t.I_n)B-xI_n\right)=\sum_{\sigma\in\mathcal{S}_n}\varepsilon(\sigma)\prod_{k=1}^nd_{k,\sigma(k)}(t) \text{ et comme } C_{i,j} \text{ sont } d_{i,j}(t)=C_{i,j}(t)-x\delta_{i,j} \text{ , par suite on a } d_{i,j}(t)=C_{i,j}(t)-x\delta_{i,j}(t)-x\delta_{i,j}(t)$ des fonctions polynomiales en t de degré inferieure ou égale à 1, alors $d_{i,j}$ aussi et par suite $\det\left((A-t.I_n)B-x.I_n\right)$ est une fonction polynômiale en t de degré inferieure ou égale à n. De même pour $\det\left(B(A-t.I_n)-x.I_n\right)$ est une fonction polynômiale en t de degré inférieure ou égale à n ce qui entraine que P est une fonction polynômiale en t de degré inférieure ou égale à n
- ② On a $\forall t \in \mathbb{K}$, $t \notin \mathcal{S}p(A)$, $A t.I_n \in \mathcal{G}L_n(\mathbb{K})$ et d'après la première question on a P(t) = 0 et comme $\mathcal{S}p(A)$ est fini et \mathbb{K} est infini, alors P admet une infinité de point d'annulation et par suite P=0 ce qui entraine que P(0)=0, c'est à dire que $\chi_{AB}(x)-\chi_{BA}(x)=0$ et ceci pour tout x dans $\mathbb K$, donc le polynôme $\chi_{AB}-\chi_{BA}$ admet une infinité de racines donc il est nul d'ou l'égalité : $\chi_{AB}=\chi_{BA}$

② On a alors:

$$\det\begin{pmatrix} \lambda.I_n - BA & B \\ 0 & \lambda.I_n \end{pmatrix} \cdot \det\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} = \lambda^n \det(\lambda.I_n - BA)$$

et

$$\det\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} \cdot \det\begin{pmatrix} \lambda . I_n & B \\ 0 & \lambda . I_n - AB \end{pmatrix} = \lambda^n \det(\lambda . I_n - AB)$$

 $\det\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix}. \det\begin{pmatrix} \lambda.I_n & B \\ 0 & \lambda.I_n - AB \end{pmatrix} = \lambda^n \det(\lambda.I_n - AB)$ On a donc $: \forall \lambda \in \mathbb{K}^*$, $\det(AB - \lambda.I_n) = \det(BA - \lambda.I_n)$ ce qui entraine que le polynôme $\det(AB - X.I_n) - \det(BA - X.I_n)$ admet une infinité de racine donc il est nul c'est à dire $\chi_{AB}=\chi_{BA}$

D)Quatrième méthode

L'espace vectoriel $\mathcal{M}_n(\mathbb{K})$ est de dimension finie donc toutes ses normes sont équivalentes , on est alors libre de choisir chaque fois la norme qui nous convient

- ① L'application det : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ qui à chaque A associé son déterminant est continue et comme \mathbb{K}^* est un ouvert de \mathbb{K} , alors son image réciproque par det est un ouvert de $\mathcal{M}_n(\mathbb{K})$ à savoir $\mathcal{G}L_n(\mathbb{K})$
- Montrons maintenant la densité .Soit A une matrice carrée d'ordre n comme le spectre de A est fini , alors $\exists n_0 \in \mathbb{N}$, $\forall p \geq n_0$, $\frac{1}{p} \notin \mathbb{N}$ $\mathcal{S}p(A)$ si on pose alors pour $p\geq n_0$, $A_p=A-rac{1}{p}.I_n$, alors la suite $(A_p)_{p\geq n_0}$ est une suite de matrices inversibles de limite la matrice Ace qui prouve la densité de $GL_n(\mathbb{K})$ dans l'espace $\mathcal{M}_n(\mathbb{K})$
- ② Soit $(A,B) \in \mathcal{M}_n(\mathbb{K})^2$. Par densité de $\mathcal{G}L_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})$, alors il existe une suite $(A)_p$ de matrices inversibles telle que $A_p \to A$.D'après la première question on a $\forall p \in \mathbb{N}$, $\chi_{A_pB} = \chi_{BA_p}$
 - . Le produit matriciel est une application bilinéaire continue , alors les suites $(A_pB)_p$ et $(BA_p)_p$ convergent respectivement vers
 - . L'application $M \longmapsto \chi_M$ est continue sur $\mathcal{M}_n(\mathbb{K})$ comme composée de deux applications continues à savoir det , c'est un résultat du cours et $M \longmapsto M - XI_n$ qu'est une application lipschitzienne. donc en passant à la limite quand p tend vers $+\infty$, on a $\chi_{AB} = \chi_{BA}$

Exercice :16

Montrer qu'une matrice de permutation à coefficients dans C est diagonalisable

Solution :16

On note \mathcal{P}_n l'ensemble des matrices de permutations , il est clair que (\mathcal{P}_n, \times) est un groupe . L'application :

$$\Sigma: \begin{cases} \mathcal{S}_n \to \mathcal{P}_n \\ \sigma \longmapsto P_\sigma \end{cases}$$

Est un isomorphisme de groupe donc l'ensemble \mathcal{P}_n est fini de cardinal n! et donc d'après le théorème de Lagrange vue dans la fiche 1 on a $\forall \sigma \in \mathcal{S}_n$, $P_{\sigma}^{n!} = I_n$ ce qui entraine que le polynôme $X^{n!} - 1$ est un polynôme annulateur de P_{σ} et comme il est scindé et à racine simple dans \mathbb{C} , alors elle est diagonalisable

Exercice :17

Soient n un entier naturel non nul et A une matrice à coefficients réels dont le polynôme caractéristique est scindé . Montrer que

$$tr\left(A^2 + A + I_n\right) \ge \frac{3n}{4}$$

ॐSolution :17

Le plolynôme χ_A est scindé sur $\mathbb R$, donc A est trigonalisable dans $\mathcal M_n(\mathbb R)$.Il existe une matrice inversible P et une matrice triangulaire supérieure T à coefficients réelles telles que $A=PTP^{-1}$.On a alors $A^2+A+I_n=P(T^2+T+I_n)P^{-1}$ et par suite si on désigne par $\lambda_1,\ldots,\lambda_n$ les valeurs propres de A, alors on a

$$tr(A^{2} + A + I_{n}) = \sum_{k=1}^{n} (\lambda_{k}^{2} + \lambda_{k} + 1)$$

Or $\forall t \in \mathbb{R}$, $t^2+t+1=\left(t+\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}$, ce qui entraine alors que $tr(A^2+A+I_n)\geq \sum_{k=1}^n\frac{3}{4}=\frac{3n}{4}$

Exercice :18

Soit n un entier non nul et A une matrice carrée à coefficients réels telle que $A^3 = A + I_n$. Montrer que det A > 0

Solution :18

La matrice A est inversible car elle annule le polynôme $P=X^3-X-1$ à coefficient constant non nul, donc son déterminant est non nul. Le polynôme P est scindé à racines simples dans $\mathbb C$, donc A est diagonalisable dans $\mathcal M_n(\mathbb C)$. Le polynôme P a trois racines complexe : une racine réelle α et une racine complexe non réelle β et son conjugué $\overline{\beta}$. Posons m_α L multiplicité de la valeur propre α ($m_\alpha=0$ si α n'est pas valeur propre de A) et m_β la multiplicité de la valeur propre β ($m_\beta=0$ si β , n'est pas valeur propre de A).

®..Remarquons que $\alpha.\beta.\overline{\beta}=(-1)^3\frac{a_0}{a_3}$ avec $a_0(respa_n)$ est le coefficient constant (dominant) de P ce qui entraine alors que $\alpha.|\beta|^2=1>0$ ce qui prouve alors que $\alpha>0$

 $ilde{}$.On a déterminant de A est alors égale $\alpha^{m_{\alpha}}|\beta|^{2.m_{\beta}}>0$

Exercice :19

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de rang r. Montrer qu'il existe un polynôme annulateur de u de degré r+1

Solution :19

Le rang de u est égale à r, alors d'après le théorème du rang la dimension du ker u est égale à n-r, soit alors $B=(e_1,\dots,e_{n-r},\dots,e_n)$ une base de E adaptée à ker u.La matrice de u dans cette base est de la forme $M=\begin{pmatrix} 0_{n-r} & U \\ 0_r & V \end{pmatrix}$ par une récurrence facile on a $\forall k \in \mathbb{N}^*$, $M^k=\begin{pmatrix} 0_{n-r} & UV^{k-1} \\ 0_r & V^k \end{pmatrix}$ et par linéarité on a

$$\forall Q \in \mathbb{K}[X] \text{ , } MQ(M) = \begin{pmatrix} 0_{n-r} & UQ(V) \\ 0_r & VQ(V) \end{pmatrix}$$

Si on pose $P = X\chi_V$, alors on a $P(M) = 0_n$ et comme deg $P = 1 + \deg \chi_V = 1 + r$, alors le polynôme P convient

Exercice :20.Une preuve du théorème du Cayley Hamilton

Soit *E* un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$ et $u \in \mathcal{L}(E)$.

① On suppose qu'il existe $x_0 \in E$ tel que $(u^i(x_0))_{i \in \{0...n-1\}}$ est une base de E. On pose

$$u^{n}(x_{0}) = \sum_{k=0}^{n-1} a_{k} u^{k}(x_{0})$$

① Calculer χ_u en fonction des a_k .

② En déduire que $\chi_u(u) = 0_{\mathcal{L}(E)}$.

② Pour $x \in E$ tel que $x \neq 0_E$, on pose

$$E_u(x) = \mathcal{V}ect\left\{u^k(x_0), k \in \mathbb{N}\right\}$$

① Montrer que $E_u(x)$ admet une base de la forme $(x, u(x), \dots, u^{p-1}(x))$.

② En déduire que $\chi_u(u)(x) = 0$.

3 Retrouver le théorème de Cayley Hamilton

① 1.1 La matrice de u relativement à la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est :

$$M = \begin{pmatrix} 0 & 0 & \cdots & \cdots & a_0 \\ 1 & 0 & \cdots & \cdots & a_1 \\ 0 & 1 & 0 & \cdots & \cdots & a_2 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 1 & a_{n-1} \end{pmatrix}$$

En éfféctuant l'opération $L_1 \leftarrow L_1 + \sum_{k=2}^n X^{k-1} L_k$, et en developpant par rapport à la première ligne on a $\chi_u = (-1)^n \left(X^n - \sum_{k=0}^{n-1} a_k X^k \right)$

 $1.2 \ \text{Pour montrer que } \chi_u(u) = 0_{\mathcal{L}(E)} \text{ , il suffit de montrer que } \chi_u(u) \text{ est nulle dans la base } (x_0, u(x_0), \dots, u^{n-1}(x_0)) \text{ . Soit alors } k \in \llbracket 0, n-1 \rrbracket_{p}(x_0) \text{ alors } k \in \llbracket 0, n-1 \rrbracket_{p}(x_0) \text$ on a $\chi_u(u) (u^k(x_0)) = (\chi_u(u) \circ u^k) (x_0) = u^k (\chi_u(u)(x_0)) = u^k (0_E) = 0_E$, d'ou le résultat

2 2.1 Posons $A_u(x) = \{k \in \mathbb{N}, (x, u(x), \dots, u^{k-1}(x_0)) \text{ est libre} \}$, on a $A_u(x)$ est non vide car il contient 1 et il est majoré par la dimension de $E_u(x)$, donc admet un plus grand élément noté pOn montre maintenant par récurrence que :

$$\forall k \geq p$$
 , $u^k(x) \in \mathcal{V}ect\left(u^l(x), l \in \llbracket 1, p-1 \rrbracket\right)$

Pour k = p c'est clair

Soit $k \ge p$, supposons que $u^k(x) \in Vect\left(u^l(x), l \in [1, p-1]\right)$. On a :

$$u^{k+1}(x) = u\left(u^k(x)\right) \in u\left(\operatorname{Vect}\left(u^l(x), l \in [1, p-1]\right)\right)$$

= $\operatorname{Vect}\left(u(x), \dots, u^p(x)\right) \subset \operatorname{Vect}\left(u^l(x), l \in [1, p-1]\right)$

D'ou

$$\forall k \geq p$$
 , $u^k(x) \in \mathcal{V}ect\left(u^l(x), l \in [1, p-1]\right)$

, c'est à dire que $E_u(x) = \mathcal{V}ect\left(u^l(x), l \in [1, p-1]\right)$ ce qui est équaivalent de dire que $(x, u(x), \dots, u^{p-1}(x))$ est une famille génératrice de $E_u(x)$ et comme la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre, alors c'est une base de $E_u(x)$

2.2 L'espace $E_u(x)$ est stable par u, si on note v l'endomorphisme, alors $E_u(x)$ admet une base de la forme $(x,v(x),\ldots,v^{p-1}(x))$, donc $\chi_v(v)(x) = 0$ ce qui entraine alors que $\chi_u(u)(x) = 0$

3 Soit $x \in E$, si x = 0, alors $\chi_u(u)(x) = 0$ et si $x \neq 0_E$, alors d'après la question précédente on a $\chi_u(u)(x) = 0$, ce qui entraine alors que $\chi_u(u) = 0_{\mathcal{L}(E)}$

Exercice :21.Commutant d'un endomorphisme

Soit f un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel de dimension finie n ,on note par

$$C(f) = \{ g \in \mathcal{L}(E) , fog = gof \}$$

① Montrer que : C(f) est un sous espace vectoriel de L(E)

 ${\Bbb Q}$ Montrer qu'un endomorphisme g est un élément de ${\cal C}(f)$ si et seulement si chaque sous espace propre de f est stable par g .

③ En déduire que $\dim(\mathcal{C}(f)) = \sum_{\lambda} m_{\lambda}^2$ où m_{λ} est la multiplicité de la valeur propre de λ .

4 On suppose que les valeurs propres de f sont simples . Montrer que $(id_{\ell}, f, \dots, f^{n-1})$ est une base de $\mathcal{C}(f)$.

Solution :21

C'est clair

② . (\Rightarrow) .C'est du cours

 $.(\Leftarrow)$. Supposons que tous les sous espaces propres de f sont stables par g, comme f est diagonalisable, alors $(*): E = \oplus_{k=1}^r E_{\lambda_k}(f)$, donc pour montrer que g commute avec f il suffit de montrer que ceci à lieu sur tout sous espace propre de f. Soit $k \in [1, r]$ et $x \in \tilde{E}_{\lambda_k}(f)$, on a $f \circ g(x) = f(g(x)) = \lambda_k \cdot g(x)$ car $g(x) \in E_{\lambda_k}(f)$ ceci d'une part d'autre part on a $g \circ f(x) = g(f(x)) = g(\lambda_k \cdot x) = \lambda_k \cdot g(x)$ ce qui prouve l'égalité de gof et fog sur chaque sous espace propre de f , et par suite l'égalité

 \odot Soit g un endomorphisme de E . D'après la question précédente g est un élément de C_f si et seulement si, la matrice de g dans une base de Eadaptée à la décomposition (*) est de la forme :

$$\begin{pmatrix} A_{E_{\lambda_1}(f)} & 0 & \dots & \dots & 0 \\ 0 & A_{E_{\lambda_2}(f)} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & A_{E_{\lambda_r}(f)} \end{pmatrix}$$

Considérons maintenant l'application:

$$\varphi: \begin{cases} \mathcal{C}_f \longrightarrow \prod_{k=1}^r \mathcal{M}_{\dim\left(E_{\lambda_k}(f)\right)}(\mathbb{K}) \\ g \longmapsto \left(A_{E_{\lambda_1}(f)}, \dots, A_{E_{\lambda_r}(f)}\right) \end{cases}$$

L'application φ est un isomorphisme d'espace vectoriel, donc les deux espaces ont même dimension et par suite dim $\mathcal{C}_f = \sum_{k=1}^r \left(\dim \left(E_{\lambda_k} \right) \right)^2$

① Si on suppose que les valeurs propres de f sont simples ,alors $\forall k \in [\![1,r]\!]$, $\dim\left(E_{\lambda_k}\right) = 1$,ce qui entraine que $\dim\mathcal{C}_f = n$.Le degré du polynôme minimal de l'endomorphisme f est égale à n, car il admet n racines distinctes , ce qui entraine alors que $\dim\mathbb{K}[f] = n$ et qu'il admet la famille (id_E,f,\ldots,f^{n-1}) comme base (Voir le cours de l'arithmétique des entiers et des polynômes) .Or $\mathbb{K}[f] \subset \mathcal{C}_f$, alors on a égalité et par suite (id_E,f,\ldots,f^{n-1}) est une base de \mathcal{C}_f

👺 Exercice :22.Diagonalisation simultanée

Soit f et g deux endomorphismes d'un espace vectoriel de dimension finie ,diagonalisables qui commutent. Montrer que f et g admettent une base de diagonalisation commune .

On a f est diagonalisable , alors si on désigne par $\lambda_1,\ldots,\lambda_r$ les valeurs propres distinctes de f , alors on a $E=\bigoplus_{k=1}^r E_{\lambda_k}(f)$, et comme f et g commutent , alors pour tout entier $k\in [\![1,r]\!]$, le sous espace $E_{\lambda_k}(f)$ est stable par g , notons alors g_k l'endomorphisme induit par g sur $E_{\lambda_k}(f)$, comme g est diagonalisable , alors pour $k\in [\![1,r]\!]$, l'endomorphisme g_k est diagonalisable donc il existe une base g_k de l'espace g_k de l'espace g_k donc de g_k donc de g_k . Si on pose g_k est diagonalisable al fois des vecteurs propres de g_k donc de g_k de diagonalisation commune de g_k de diagonalisation com

Exercice :23

Soit A et B deux matrices carrées d'ordre n diagonalisables ayant même spectre et telles que $\forall k \in \mathbb{N}$, $tr(A^k) = tr(B^k)$. Montrer que A et B sont semblables

Solution :24

Soit $\lambda_1,\ldots,\lambda_p$ des valeurs propres distinctes de A (etB) et m_1,\ldots,m_p et m'_1,\ldots,m'_p les ordres de multiplicités respectivement de A et de B, il s'agit de montrer que $\forall i \llbracket 1,p \rrbracket$, $m_i=m'_i$. L'égalité $tr(A^k)=tr(B^k)$ pour $k\in\mathbb{N}$ s'écrit $\sum_{i=1}^p m_i\lambda_i^k=\sum_{i=1}^p m'_i\lambda_i^k$ ce qui équivalent de dire $\sum_{i=1}^p \lambda_i^k(m_i-m'_i)=0$, ce qui se traduit matriciellement par

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_p \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{p-1} & \lambda_2^{p-1} & \dots & \lambda_p^{p-1} \end{pmatrix} \begin{pmatrix} m_1 - m_1' \\ \vdots \\ \vdots \\ m_p - m_p' \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

Comme les valeurs propres sont distinctes donc la matrice de Vandermande $\begin{pmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_p \\ \vdots & \vdots & \vdots & \vdots \\ \lambda^{p-1} & \lambda^{p-1} & & \lambda^{p-1} \end{pmatrix}$ est inversible et par suite $\forall i \llbracket 1, p \rrbracket$, $m_i' = \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sum_{j=1}^{p-1$

 m'_i , donc les matrices A et B sont semblables à une même matrice diagonale ce qui entraine alors A et B sont semblables

Exercice :25

Soit n un entier naturel non nul et A une matrice à coefficients dans $\mathbb R$, telle que

$$A^3 = A + 6I_n$$

Montrer que : $\exists (p,q) \in \mathbb{N}^2$, det $A = 2^p 3^q$ avec p + 2q = n

Solution :25

Le polynôme $P = X^3 - X - 6$ est un polynôme annulateur de A, il est scindé à racines simples dans \mathbb{C} :

$$P = (X - 2)(X + 1 + i\sqrt{2})(X + 1 - i\sqrt{2})$$

Il en résulte que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$, car elle annule un polynôme scindé à racine simples dans \mathbb{C} et que $\mathcal{S}p_{\mathbb{C}}(A) \subset \left\{2,-1+i\sqrt{2},-1-2\sqrt{2}\right\}$. Si $-1+i\sqrt{2}$ est une valeur propre de A de multiplicité q, alors $-1-i\sqrt{2}$ est aussi une valeur propre de multiplicité aussi égale à q, si 2 est une valeur propre de A notons p sa multiplicité . Si $-1+i\sqrt{2}$ (resp 2) n'est pas une valeur propre de A, on convient de poser

q = 0(resp p0): on a alors:

$$\det A = 2^p \left(-1 + i\sqrt{2}\right)^q \left(-1 - i\sqrt{2}\right)^q = 2^p \left(|-1 + i\sqrt{2}|^2\right)^q = 2^p 3^q$$

Il est alors clair que p + 2q = n

Exercice :26

Soit *A* une matrice carrée d'ordre *n* à coefficient réels et *B* la transposée de sa comatrice. Montrer que tout vecteur propre de *A* est vecteur propre de *B*

On a $AB = BA = \det A.I_n$

- ① Si rg(A) = n, alors A est inversible et $B = (\det A).A^{-1}.$ Si λ est une valeur propre de A, alors elle est non nulle, soit X un vecteur propre de A associé à $\lambda.$ On a $AX = \lambda.X$ ce qui entraine que $A^{-1}X = \frac{1}{\lambda}X$ et donc $BX = \frac{\det A}{\lambda}X$ ce qui prouve alors que X est un vecteur propre de B associé à la valeur propre $\frac{\det A}{\lambda}$
- ② Si $rg(A) \le n-2$, alors dans ce cas B est la matrice nulle et par suite tout vecteur non nul de E est un vecteur propre de B en particulier ceux de A
- ③ Si rg(A) = n 1, alors dans ce cas le rang de B est 1, voir la fiche révision sup , et par suite B admet 0 comme valeur propre d'ordre au moins égale à n 1. Soit U un vecteur propre de A associé à la valeur propre 0, si on désigne par f l'endomorphisme de \mathbb{C}^n associé canoniquement à A, alors son noyau est une droite vectoriel engendré par le vecteur ${}^tU = (\alpha_1, \ldots, \alpha_n)$. Comme det A = 0 alors $AB = BA = 0_n$ ce qui entraine alors que $\forall j \in [\![1,n]\!]$, $AV_j = 0$ ou V_j désigne la jeme colonne de B ce qui entrâine alors que les tV_j sont des vecteurs propres de f associés à la valeurs propre 0 ce qui entraine alors que

$$\forall j \in \llbracket 1, n
rbracket$$
 , $\exists \lambda_j \in \mathbb{K}$, $V_j = \lambda_j.^t U$

Si on pose $Y = (\lambda_1, ..., \lambda_n)$, on a B = UY ce qui entraine que

$$BU = UYU = \left(\sum_{i=1}^{n} \lambda_i \alpha_i\right) U$$

Ce qui veut dire que U est un vecteur propre de B associé à la valeur propre $\sum_{k=1}^{n'} \lambda_k . \alpha_k$

Dans le cas ou U est un vecteur propre associé à une valeur propre λ non nulle .On a alors $BAU = \lambda BU$ et comme λ est non nulle , alors BU = 0 et par suite U est un vecteur propre de B associé à la valeur propre 0

Exercice :27.Une solution à l'aide de Maple

On considère la matrice
$$A = \begin{pmatrix} 6 & -6 & 5 \\ -4 & -1 & 10 \\ 7 & -6 & 4 \end{pmatrix}$$

- ① Déterminer le polynôme caractéristique et le polynôme minimal de *A*
- ② Déterminer les valeurs propres et les sous espaces propres de A .
- ③ La matrice *A* est elle diagonalisable?
- ① Déterminer une matrice triangulaire T et une matrice inversible P telles que P^{-1} .A.P = T

Solution :27

Nous allons commencer par charger le bibliothèque linalg qui comporte de nombreuses instructions relatives aux matrices : >with(linalg);

BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinto, crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvalues, eigenvectors, eigenvects, entermatrix, equal, exponential, extend, ffgausselim, fibonacci, forwardsub, frobenius, gausselim, gaussjord, geneqns, genmatrix, grad, hadamard, hermite, hessian, hilbert, htranspose, ihermite, indexfunc, innerprod, intbasis, inverse, ismith, issimilar, iszero, jacobian, jordan, kernel, laplacian, leastsqrs, linsolve, matadd, matrix, minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim, rowspace, rowspan, rref, scalarmul, singularvals, smith, stackmatrix, submatrix, subvector, sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose, vandermonde, vecpotent, vectdim, vector, wronskian

Commençons par définir la matrice A:

>A :=matrix(3,3,[6,-6,5,-4,-1,10,7,-6,4]);

$$A := \begin{pmatrix} 6 & -6 & 5 \\ -4 & -1 & 10 \\ 7 & -6 & 4 \end{pmatrix}$$

① On obtient le polynôme caractéristique et le polynôme minimal de A à l'aide des instructions charpoly et minpoly :

>P := charpoly(A, x);

$$P := x^3 - 9x^2 + 15x + 25$$

$$Q := x^3 - 9x^2 + 15x + 25.$$

Attention l'instruction charpoly retourne le déterminant de la matrice $x.I_n - A$

On peut aussi déterminer les valeurs propres de A en utilsant la commande solve

> *solve*(P); c'est à dire on résoud l'équation P(x) = 0

Les sous espaces propres sont obtenus à l'aide de la commande eigenvects

 $> eigenvects(A); [5, 2, [1, 1, 1]], [1, 1, [\frac{5}{2}, \frac{15}{4}, 1]]$

On remarque alors que la dimension du sous espace propres associé à la valeurs propres 5 est de dimension 1, donc la matrice A n'est diagonalisable mais elle est trigonalisable comme le polynôme caractéristique de A est scindé sur \mathbb{R}

$$>T := jordan(A, P'); T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$$
 et avec la commande $evalm(P)$ on obtient la matrice P de passage

$$>P := evalm(P); P = \begin{pmatrix} \frac{5}{3} & 11 & -\frac{2}{3} \\ \frac{5}{2} & 11 & -\frac{5}{2} \\ \frac{2}{2} & 11 & -\frac{2}{2} \end{pmatrix}$$

On peut vérifier le résultat à l'aide de la commande evalm >evalm(P*T*inverse(P)); on retrouve bien la matrice A