

24/03/2016

HAVOK CLOTH DEMO (GDC 2010)

© Havok https://www.youtube.com/watch?v=wcds8eY93Zk

DEFORMABLE SOLIDS IN GAMES

1D: ropes, hair

2D: cloth, clothing

3D: fat, tires, organs

- In fact all real objects are 3D
- In practice, approximate object with a lower dimensional model if possible ~ for efficiency
- Dimension reduction substantially saves simulation time

MASS SPRING SYSTEMS

Approach:

- Spatially discretize an object into component point masses
- Represent internal forces between mass points using massless elastic
 springs
- Compute positions and velocities at discrete time steps

Pros:

- Easy to implement
- Reasonably fast

Some problems:

- Lack of preservation of volume
- Behaviour is heavily dependent on mesh topology and choice of springs
- Hard to find springs that correspond with real-world parameter values of specific materials

Content based on [Mueller'08]

MASS SPRING SYSTEMS

Rope: Chain

 Additional springs for bending and torsional resistance needed

Cloth: triangle mesh

 Additional springs for shearing and bending resistance needed

Soft body: tetrahedral mesh

MASS SPRING PHYSICS

Mass point: mass m_i , position x_i , velocity v

Spring motion based on Hooke's Law (Linear Strain model)

$$X_{i} \xrightarrow{f} \underbrace{-f}_{X_{i}}$$

$$\downarrow l_{0}$$

$$\mathbf{f} = \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{\left|\mathbf{x}_{j} - \mathbf{x}_{i}\right|} \left[k_{s} \left(\left|\mathbf{x}_{j} - \mathbf{x}_{i}\right| - l_{o}\right) + k_{d} \left(\mathbf{v}_{j} - \mathbf{v}_{i}\right) \cdot \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{\left|\mathbf{x}_{j} - \mathbf{x}_{i}\right|} \right]$$

where: k_s , k_d are the stretching and damping coefficients

TIME INTEGRATION: EXPLICIT EULER

ODE (Newton):

$$\dot{\boldsymbol{v}} = \frac{f}{m}$$

$$\dot{x} = v$$

Using Explicit Euler Integration: $x_i^{t+1} = x_i^t + \Delta t v_i^t$

$$\boldsymbol{x}_i^{t+1} = \boldsymbol{x}_i^t + \Delta t \boldsymbol{v}_i^t$$

$$\boldsymbol{v}_i^{t+1} = \boldsymbol{v}_i^t + \Delta t \frac{1}{m_i} \sum_j \boldsymbol{f}(\boldsymbol{x}_i^t, \boldsymbol{v}_i^t, \boldsymbol{x}_j^t, \boldsymbol{v}_j^t)$$

Assumes velocity and force constant within timestep Δt

• Correct solution would be $x(t = \Delta t) = x(t) + \int_{t}^{t+\Delta t} v(t)dt$

EXPLICIT INTEGRATION ISSUES

Accuracy

- Can be improved with higher-order implicit schemes e.g. runge-kutta;
 or by decreasing size of time-steps (usually at the cost of efficiency)
- Not always critical in real-time applications

Stability

- Leads to over-shooting
- Critical for real-time applications e.g. games

9 IMPLICIT INTEGRATION

Use values of next time-step on the right hand side of the equation

$$x_i^{t+1} = x_i^t + \Delta t v_i^{t+1}$$

$$v_i^{t+1} = v_i^t + \Delta t \frac{1}{m_i} \sum_j f(x_i^{t+1}, v_i^{t+1}, x_j^{t+1}, v_j^{t+1})$$

Reasoning:

- Don't extrapolate blindly
- Arrive at a physically-based configuration

10 IMPLICIT INTEGRATION

Need to solve:
$$\Delta v = h M^{-1} \left(f_0 + \frac{\partial f}{\partial x} h(v_0 + \Delta v) + \frac{\partial f}{\partial v} \Delta v \right)$$

where **M** is an $n \times n$ mass matrix with diagonals representing masses, h is the time step (a.k.a. Δt)

- rewrite as $\left(\mathbf{M} h \frac{\partial f}{\partial \mathbf{r}} h^2 \frac{\partial f}{\partial \mathbf{r}}\right) \Delta \mathbf{v} = h \left(\mathbf{f}_0 + h \frac{\partial f}{\partial \mathbf{r}} \mathbf{v}_0\right)$
- use Conjugate Gradient Method to solve a linear equation of the form

$$m{r} = m{A} \Delta m{v} - m{b}$$
 where $A = \left(m{M} - h \frac{\partial f}{\partial v} - h^2 \frac{\partial f}{\partial x} \right)$

and
$$b = h \left(f_0 + h \frac{\partial f}{\partial x} v_0 \right)$$

A detailed Practical Explanationis provided in "Implementing the implicit Euler method for massspring systems" by Mikko Kauppila. available at: http://hugi.scene.org/online/hugi28/

IMPLICIT INTEGRATION ISSUES

Unconditionally stable (for any Δt)

Have to solve a system of equations for velocities

- n mass point, 3n unknowns
- Non-linear when the forces are non-linear in the positions (as with springs)
- Linearize force at each time step

Slow → need large time steps

Some temporal details disappear, numerical damping

COMPARISON OF INTEGRATORS FOR A SPRING

Explicit Euler:

- Fast but unstable
- $x_2 = x_1 + v_1 \Delta t$
- $v_2 = v_1 + \omega^2 x_1 \Delta t$

• Slow but

$$v_2 = v_1 + \omega^2 x_2 \Delta t$$

Semi-Implicit Euler

- Fast and "stable enough"
- $x_2 = x_1 + v_2 \Delta t$
- $v_2 = v_1 + \omega^2 x_1 \Delta t$

N.B. $\omega = \frac{k_S}{m}$ For any spring constant k_S and mass m

Semi-implicit Euler is used in Bullet, Box2D and Open Dynamics Engine (ODE)

Catto, E. "Soft Constraints: Reinventing the Spring" GDC 2011 Talk. 2011. https://box2.googlecode.com

VERLET INTEGRATION

Originated in molecular dynamics (central difference approximation: find x based on previous frame and next frame)

$$x(t + \Delta t) = 2x(t) - x(t - \Delta t) + a(t)\Delta t^{2}$$
Position

Acceleration

- Velocity-free formulation:
 - velocity implicitly represented by current and previous positions
 - Need to store current and previous x
- Not always accurate but fast and stable
- Everything depends on position so good for constraints (e.g. Rag dolls, cloth)

Change this to something like 1.99 to induce drag

```
// Verlet integration step

void ParticleSystem::Verlet() {
   for(int i=0; i<NUM_PARTICLES; i++) {
        Vector3& x = m_x[i];
        Vector3 temp = x;
        Vector3& oldx = m_oldx[i];
        Vector3& a = m_a[i];
        x += x-oldx+a*fTimeStep*fTimeStep;
        oldx = temp;
   }
}</pre>
```

Jakobsen GDC 2001 talk: Advanced Character Physics http://www.floatingorigin.com/mirror/jacobson_01.shtml

MASS SPRING SYSTEM FOR CLOTH

See Curtain Demo

OPEN THE CURTAIN

Kinect + Cloth video by Ferhat Sen http://vimeo.com/20964926 Based on Curtain demo by Jared Counts. http://www.openprocessing.org/sketch/20140

CLOTH

Flexible material consisting of a network of natural or artificial fibres

Basic behaviour:

- Stretch/Compression: Displacement along warp or weft direction.
 - Can't compress at all.
 - Stretched to a limit of ~ 10 percent.
- Shear: Displacement along diagonal directions.
- Bend: Curvature of cloth surface.
 - Easy to bend.
- Drape
- Wrinkle/Buckling

PROPERTIES OF CLOTH

Hard to simulate because it has,

- Many primitives and/or nodes within the model
- High degree of freedom at those nodes
- Not perfectly elastic, has stiffness against stretch
- Variety of properties.

Must decide between Simple Model vs. Realism.

Often modelled as elastically deformable solids

 However cloth behaviour is different from normal elastic models: Non linear response to strain

Yalcin & Yaldiz, Techniques for animating cloth, Lecture Notes. Bilkent University. 2009.

MASS-SPRING CLOTH SIMULATION

Provot [Provot95]: a lattice of springs chosen in a grid structure to model deformable dynamic properties.

- Springs are good for linear strain representation
- Not quite enough to capture 2d/3d elastic behaviour e.g. Shear & Bulk Modulus
 - Need to account for this some other way!

[Provot95] Provot. X, "Deformation constraints in a mass-spring model to describe rigid cloth behaviour" Graphics Interface 1995.

MASS-SPRING SYSTEM FOR CLOTH

Point masses e.g. Particle system:

- Specify distance constraint using flexible spring model:
 - Structural springs : adjacent springs, resist stretching/compression. Typically high $k_{\it S}$
 - Shear springs : diagonals on grid, resist shearing
 - Bend (flexion) springs: between every 2nd or 3rd particle, Resist bending

Images © Yalcin and Yildiz

PROBLEMS WITH BASIC MODEL

(a) Initial position

(b) After 200 iterations

Problems:

- Edge springs stretch more than other springs: locally concentrated deformation (super-elasticity) ~ unrealistic, high oscillation
- Hard to associate constants (e.g. bend) with real physical parameters

INCREASING STIFFNESS

Obvious solution to reducing super elastic effect but has problems

High stiffness can lead to instability (Provot uses explicit integration):

- Must take more shorter time steps to ensure stability
- Leads to more processing time for same length of animation
 - For a stiffness value k_S of a mass μ , and a natural period of oscillation defined as

$$T_0 \approx \pi \sqrt{\frac{\mu}{k_S}}$$

the timestep Δt must be less than T_0

Small timestep

Large timestep

CONSTRAINING DEFORMATIONS

The "Rigid Cloth" Technique [Provot95]

- Goal: avoid super elastic effect without excessively decreasing Δt
- Solution:
 - Simulate Mass-spring systems as usual
 - Calculate deformation rate of each spring
 - Iff deformation rate > critical deformation rate τ_c
 - Apply "dynamic inverse procedure" to limit deformation to $au_{\mathcal{C}}$
 - e.g. If τ_C = 0.1, springs should not ever exceed 110% length

Adjustment of a "super-elongated" spring linking two loose masses [Provot 95].

PRACTICAL EXAMPLE

```
void SatisfyConstraints()
{
            const int numIterations = 10;
             for (int i=0; i<numIterations; i++)</pre>
                  for (int k=0; k< m_numConstraints; k++)</pre>
                         // Constraint 1 (Floor)
                        if (g floorCollisions)
                               for (int v=0; v<m_numPoints; v++)</pre>
                                 if (m_points[v].curPos.y < 0.0f) m_points[v].curPos.y = 0.0f;</pre>
                         // Constraint 2 (Cloth)
                         Constraint* c = &m constraints[k];
                         D3DXVECTOR3& p0 = m_points[c->index0].curPos;
                         D3DXVECTOR3& p1 = m points[c->index1].curPos;
                         D3DXVECTOR3 delta = p1-p0;
                         float len = D3DXVec3Length(&delta);
                         float diff = (len - c->restLength) / len;
                         p0 += delta*0.5f*diff;
                         p1 -= delta*0.5f*diff;
                   // Keep these two points contraints to there original position
                  float gap = g_gap;
                  m_points[0].curPos
                                               = D3DXVECTOR3(0,
                                                                                g_disOffFloor, 0);
                  m_points[g_width-1].curPos = D3DXVECTOR3((g_width-1)*gap, g_disOffFloor, 0);
      }
```


RESULTS (1)

After 200 frames of animation

No constraints

Constraints Applied to structural springs

With Constraints applied to structural and shear springs

RESULTS (2)

"Rigid" Technique $\tau_{C} = 0.05$

Basic Spring-Mass

Low Stiffness

High Stiffness

Position based dynamics

- For cloth and other deformable objects
- Omit velocity layer deal with positions directly: Somewhat related to verlet + constraints discussed earlier
- Manipulate positions to satisfy constraints e.g.
 - if penetration is detected, instead of applying a force or impulse, move objects to enforce noninterpenetration and update to appropriate velocities

Muller et al Position Based Dynamics. VRIPhys 2006.

http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf

Baraff & Witkin: Large time steps in cloth simulation

Uniform triangular mesh

Continuum model: solve internal energy equations

Implicit Integration: System of equations solved by modified Conjugate Gradient method

Adaptive time step: leads to graceful degradation

Cloth as Inverse Kinematics [Desbrun et al '99]. Hybrid approach:

Mass-spring system: Force based simulation Solve with Inverse Kinematics to ensure stiffness

Implicit Euler integration

Mathieu Desbrun, Peter Schroder, and Alan Barr. "Interactive animation of structured deformable objects" In *Proceedings Graphics interface 1999*.

Cloth on the GPU

 Particle collision and update can be done in shaders (several papers on this)

Overview:

- For every particle, apply external forces
- In each relaxation step, for each cloth particle
 - Evaluate the spring constraints and forces
 - For every intersectable scene geometry, check for collisions and solve collisions by moving the particle out of collided volume.

- Cloth is stored as a texture where each pixel is the position of a cloth vertex.
- 3 rotating textures are used to hold the previous frames, for Verlet integration
- To update cloth, draw a full-screen guad into one of the position textures and do the work in the pixel shader.
- To draw cloth, draw a vertex buffer where each vertex's texture coordinates lookup into the position texture, do lookup in the vertex shader

Cyril Zeller. Cloth Simulation - White Paper, nVidia. http://portal.acm.org/citation.cfm?id=1187158 http://developer.download.nvidia.com/whitepapers/2007/SDK10/Cloth.pdf

Geometric solution on GPU

 Assumes tightly stretched over surface ~ apply geometric techniques to fake effects such as wrinkling

Jörn Loviscach. Wrinkling coarse meshes on the GPU. In Proceedings of Eurographics 2006.

MANY OTHER WORKS: SOME SURVEYS BELOW

- N. Magnenat-Thalmann, F.Corder, M.Keckeisen, S.Kimmerle "Simulation of Clothes for Real-time Applications" Eurographics 2004 Tutorials
- http://cg.cs.unibonn.de/en/publications/paper-details/egtutorial-2004/
- J. Long, K. Burns, J. Yang. "Cloth Modelling and Simulation A literature Survey" in Proceedings of the Third international conference on Digital human modelling. 2011
- http://link.springer.com/chapter/10.1007%2F978
 -3-642-21799-9_35

TRY IT YOURSELF: CLOTH SIMULATION

[N.B. Optional. No marks; unless this is chosen as a part of Assignment 6. All external resources used should be cited]

Jesper Mosegaards's Cloth Simulation Tutorial

- Summarizes most of the points discussed here
- Featuring:
 - Particle system
 - Verlet integration
 - Iterative constraint satisfaction
 - Forces e.g. wind
 - Collisions (with sphere)
- http://cg.alexandra.dk/?p=147

Also: Ben Kenwright "Position-based Dynamics (e.g. Verlet)" Practical Tutorial, Edinburgh Napiers University

 http://games.soc.napier.ac.uk/study/pba practicals/Practical%2003%20-%20Position%20Based%20Dynamics.pdf

OTHER MASS SPRING MODELS

NON-GRID STRUCTURES

For an unstructured mesh:

- Structural springs correspond to 1-neighbourhood
- Shearing and bending to a 2-neighbourhood

1 - neighbourhood

2 - neighbourhood

EXAMPLE: PLANTS AND TREES

3D SOLIDS

Discretise object into 3d rectilinear grid (voxels)

 In addition to shearing diagonals we need spatial diagonals that counter volume loss (approximate the bulk modulus)

Unstructured solid meshes can be voxelised

 Mesh points in between grid nodes are updated by trilinear interpolation

Muller, M., Teschner, M., and Gross, M. Physically-Based Simulation of Objects Represented by Surface Meshes. In Computer Graphics International 2004.

TETRAHEDRAL DECOMPOSITION

Split mesh up into tetrahedra

Note that interior details are important (not just surface)

Delauney tetrahedralization

Springs between vertices and 2+ neighbourhoods depending on rigidity

Various tetrahedralization solutions exist

e.g. tetgen: http://tetgen.berlios.de/

HAIR SIMULATION

MASS SPRING SYSTEMS

Advantages:

- Simplicity e.g. compared to FEM
- Nice extension of particle systems

Disadvantages:

- Volume preservation + Degenerate cases e.g. inverted tetrahedra
 - some solutions but can be expensive
- Not an accurate representation of complex solids: fine details incorrect
 - Solved with supplementary springs e.g. bending, torsional springs
 - But finding parameter values that fit real-world behaviour is difficult
 - Design of the mass-spring network can be impractical for complex structures

REQUIRED READING*

*questions in Assignment 7 may be based on Required Readings

Seminal paper on easy spring-mass cloth simulation (N.B. not the first cloth paper):

- Xavier Provot: "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behaviour"
 - http://graphics.stanford.edu/courses/cs468-02winter/Papers/Rigidcloth.pdf

Matthias Mueller - Realtime Physics. Siggraph 2008 Course Notes

- Chapter 3 Mass-spring Systems: Section 3.1 3.6
- http://www.matthiasmueller.info/realtimephysics/

OTHER REFERENCES

D. Baraff. "Implicit Methods for Differential Equations" - Siggraph 2001 Course Notes on Physically Based Modelling. Lecture D.

http://www.pixar.com/companyinfo/research/pbm2001/pdf/notesd.pdf

Ben Kenwright "Position-based Dynamics (e.g. Verlet)" Practical Tutorial, Edinburgh Napiers University

• http://games.soc.napier.ac.uk/study/pba practicals/Practical%2003%20-%20Position%20Based%20Dynamics.pdf

John. T. Foster. "Brief Explanation of Integration Schemes",

http://engineering.utsa.edu/~foster/me4603/files/integration.pdf

M. Adil Yalçın, Cansın Yıldız "Techniques for animating Cloth" unpublished survey, Bilkent University. 2009.

- http://www.cs.bilkent.edu.tr/~cansin/projects/cs567-animation/cloth/cloth-paper.pdf
- M. Kauppila. "Implementing the implicit Euler method for mass-spring systems"
- available at: http://hugi.scene.org/online/hugi28/

Michael Hauth: "Numerical Techniques for Cloth Simulation" Siggraph 2003 Course Notes (The math required for cloth)

http://www.gris.uni-tuebingen.de/people/staff/mhauth/tutorials/Vis03/SIG2003Tut29INumerics.pdf

42 ASSIGNMENT 6 MEETINGS NEXT WEEK

Monday 16/03/2015		Thursdo
14:00	Xinwei Xiong	10:00
14:15	Brendan O'Connor	10:15
14:30	Hao Guan	10:30
14:45	Tony Cullen	10:45
15:00	Yafei Qu	
15:15	Fan Li	
15:30	Saloni Sharma	
15:45	Sarah Noonan	

Thursday 19/03/2015		
10:00	Jeremiah Dunne	
10:15	Giovanni Campo	
10:30	Huangxiang Wang	
10:45	Patrick O'Halloran	

43 **TO DO**

Check Baraff Notes PBM for integration

Check "Implicit Euler Method for Mass-springs" and see if we can make a slide on this

http://hugi.scene.org/online/hugi28/hugi%2028%20-%20coding%20corner%20uttumuttu%20implementing%20the%20implici t%20euler%20method%20for%20mass-spring%20systems.htm

Some equations in: http://web.cse.ohio-state.edu/~whmin/courses/cse788-2011-fall/results/KoChih_Wang/finalReport.htm

Abstract Slide 22 - see f there are other examples?

Decide on Required Reading