Definition 0.0.1: Andra ordningens DE

Denna DE definieras i denna form:

$$ay''(t) + by'(t) + cy(t) = 0$$

Lösning: Vi ser att $y=e^{rt}$ som löser differentialekvationen om och endast om r löser den karaktäristiska ekvationen:

$$ar^2 + br + c = 0$$

Fall 1: $r_1 \neq r_2 \land r_1, r_2 \in \mathbb{R}$:

$$y(t) = Ae^{r_1t} + Be^{r_2t}$$

Fall 2: $r_1 = r_2 \wedge r_1, r_2 \in \mathbb{R}$:

$$y(t) = (A + Bt)e^{rt}$$

Fall 3: $r_1, r_2 \in \mathbb{C}, r_{1,2} = \alpha \pm \beta i$:

$$y(t) = e^{\alpha t} (A\cos\beta t + B\sin\beta t)$$