mg-merge-1-5

WYKŁAD 1

Rola systemów informayjnych w zarządzaniu

Przykłady systemów wspomagających zarządzanie

Model 7S

Model schematu organizacji (McKinsey)

- Strategia
- Systemy
- Struktura
- Styl zarządzania
- Kadry
- Umiejętności
- Wspólne wartości

System informacyjny wspomagający zarządzanie

- zbieranie danych dotyczących realizowanych procesów
 - np. dane o zakupach i klientach przy sprzedaży
- przetwarzanie zebranych danych
 - formułowanie prognoz
- modelowanie analityczne
- udostępnianie informacji opartych o zebrane i przetworzone dane
- wizualizacja informacji

Typy systemów

MRP

Material Requirements Planning

Posługuje się głównym planem produkcji do planowania zaopatrzenia w materiały. Rozszerzenie głównego planu umożliwia zaplanowanie dostaw materiałów wtedy, kiedy będą potrzebne.

Wejścia

- Główny plan produkcji
- Wykaz materiałów
- Czas realizacji zamówień
- Obecny poziom zapasów

Wyjścia

- Kalendarz dostaw
- ...

MRPII

Manufacturing Resource Planning

Rozszerza MRP o dodatkowe funkcje

- Poziom wyrobów
 - Zagregowane planowanie produkcji
 - Sterowanie zasobów
 - Planowanie zdolności produkcyjnej
 - Operatywne planowanie produkcji
- Poziom składników
 - Planowanie potrzeb materiałowych
 - Planowanie zdolności produkcyjnej
- Poziom operacji
 - Sterowanie zaopatrzeniem
 - Sterowanie produkcją

ERP

- Enterprise Resource Planning
- Zarządzanie całym przedsiębiorstwem, finanse, sprzedaż, produkcja, logistyka, kadry itd.
- OpenERP przykładowe rozwiązanie Open Source
- SAP najpopularniejsze komercyjne rozwiązanie
 - drogi
 - dedykowane dla dużych korporacji

CRM

- Customer Relationship Management
- Wspomaganie pozyskiwania klientów, sprzedaży, obsługi klientów, serwis
- Narzędzia
 - Sales Force Automation
 - Call Center
 - Knowledge Management
 - Campaign Management
 - Lead Management
 - Lead Management
 - Key Account Management zarządzanie klientami kluczowymi

Zarządzanie łańcuchem dostaw

- Operacyjne
 - Realizacja zaopatrzenia
 - Zarządzanie produkcją
 - Zarządzanie transportem
 - Zarządzanie magazynem
 - Zamówienia
 - Komunikacja z klientami
- Taktyczne
 - Planowanie i zarządzanie dostawami
 - Zaawansowane planowanie
 - Harmonogramowanie
 - Planowanie transportu
 - Prognozowanie zamówień
- Strategiczne
 - Zarządzanie strategiczne

Systemy ERP obsługują zagadnienia operacyjne i taktyczne

WYKŁAD 2

2024-02-26

Modelowanie architektury ArchiMate

- Warstwa motywacyjna
 - domena analityków biznesowych

- Warstwa strategiczna
 - określenie celów strategiczynch (np. skrócić czas realizacji zamówień przez wdrożenie systemu MRP)
- Warstwa architektury biznesowej
 - opis procesów biznesowych
- Aplikacja
 - mapowanie aplikacji i usług na procesy biznesowe
- Technologie
- Implementacja / migracje

Wymagania biznesowe

- Enterprise Architect komercyjny program do modelowania
- Można modelować bardziej skompikowane zależności między wymaganiami
- Proces biznesowy
 - diagram przedstawia relacje między aktywnościami
 - np. wystawienie faktury jest powiązane z określoną aplikacją
 - modeluje powiązanie między aktywnościami a funkcjonalnościami serwisów (mikroserwisów)
 - obszar biznesowy i obszar aplikacyjny (oprogramowanie, które wspomaga obszar biznesowy)

Widok aplikacji i usług

- HLD high level design
 - np. będzie wykorzystywana baza danych
 - określa jakie informacje będą przechowywane
- LLD low level design
 - np. będzie wykorzystywana baza Postgres
 - określone tabele

Infrastruktura

- Duży problem przy realizowaniu przedsięwzięcia
 - Ile serwerów potrzeba dla rozwiązania on-premise
 - Jakie parametry
 - Jaki software
 - Monolit czy mikroserwisy
- Skomplikowana konfiguracja przy rozwiązaniach chmurowych

- load balancing
- bezpieczeństwo
- logi

Architektura systemów zarządzania

- Rządzą się tymi samymi prawami co inne systemy informatyczne
- Firmy raczej preferują systemy oparte na sprawdzonych rozwiązaniach, często wykorzystuje się dużo gotowych modułów
- Jest dużo pracy przy konfiguracji gotowców

Architektury warstwowe

- 3-wastwowa
 - klient
 - serwer
 - baza danych
- 1-warstwowe i 2-wastwowe odchodzą z użycia

Architektury oparte o chmury obliczeniowe

- Nie wszystkie dane można trzymać w chmurach
- Firmy budują prywatne chmury
- Zalety chmury
 - Początkowe koszty (dyskusyjne)
 - Niezawodność
 - Gotowce
 - Skalowanie
 - Koszty administracji przerzucone na dostawcę chmury

Odoo

- System ERP
- Open source
- Oparty na PostgreSQL
- Modułowy, łatwy do rozbudowy
- Moduły pisane w Pythonie
- Gotowe moduły i predefiniowane tabele do księgowości, sprzedaży itd.
- Ok dla małych firm

SAP

- Duże koszty
- Bardzo rozbudowane moduły
- Dostosowane do międzynarodowych firm
 - Wspiera rozliczenia w różnych systemach finansowych itp.
- Bardziej specyficznie przystosowane moduły
 - np. specjalne dla przemysłu chemicznego
- Język ABAP ale są też interfejsy do Javy
- Predefiniowane procesy
- Ustandaryzowana struktura organizacja
 - podział na działy sprzedaży, marketingu itd.

Architektury mikroserwisowe

Mikroserwisy są trudniejsze do analizy

WYKŁAD 3

Modelowanie procesów biznesowych (2024-03-04)

Proces - zbiór działań przetwarzających surowce lub informacje w wyjściowe produkty lub informacje

Fundamentals of Business Process Management

APQC

Framework klasyfikacji procesów

Procesy operacyjne

- opracowanie wizji sstrategii
 - mało skomputeryzowane
 - systemy do monitorowania realizacji strategii
- rozwój, zarządzanie produktami i usługami
 - systemy MRP, MRPII
- marketing i sprzedaż

- zaopatrzenie, produkcja, dostawy
- obsługa klientów

Procesy zarządzania i wspomagania

- zarządzanie zasobami ludzkimi
- zarządzanie systemami informacyjnymi
- zarządzanie zasobami finansowymi
- nabywanie, budowa i zarządzanie mieniem
- zarządzanie ryzykiem, zgodność z regulacjami
- zarządzanie relacjami zewnętrznymi
- zarządzanie wiedzą, doskonaleniem i zmianami

Składowe procesu biznesowego

- Aktorzy
 - Klient
- Obiekty
- Zdarzenia
- Aktywności
- Punkty decyzyjne
- Wyniki

Cykl życia procesu

- Identyfikacja procesu
 - widzimy potrzebę budowy jakiegoś procesu
 - reorganizacja firmy, wzorowane na gotowcach
- Odkrywanie procesu
 - tworzenie iteracyjne
 - na podstawie informacji zwrotnej od klientów
- Analiza
- Przeprojektowanie
- Implementacja
- Monitorowanie
 - ważne
 - średni czas obsługi, liczba zleceń itd.
 - można je zasymulować

BPMN

- Business Process Model and Notation
- Graficzna notacji opisująca procesy biznesowe
- Ustandaryzowana, aktualnie w wersji 2.0

Typy modeli

- Procesy
- Choreografie
- Współpraca

Typy obiektów

- Węzły przepływu (flow nodes)
 - czynności
 - zdarzenia
 - · bramki elementy decyzyjne
- Połączenia (connecting objects)
- Miejsca realizacji procesu
 - baseny i tory (pools, swimlanes)
- Obiekty danych (data objects)
- Artefakty (artifacts)
 - elementy graficzne niebędące elementami przepływu
 - informacje uzupełniające
 - można definiować własne
 - adnotacje, grupy, powiązania
- Dekoratory (decorators)
 - odwzorowanie wzorców zachowań
 - komunikat (message)

Analiza przepływów - token

Standard BPMN rozważa analizę przepływów z wykorzystaniem tokenów (żetonów).

Zdarzenie w systemie generuje żeton, analizujemy co dzieje się z żetonem, czy dojdzie do

przewidzianego punktu końcowego. Pojęcie z symulatorów zdarzeń dyskretnych.

Podstawowe typy obiektów aktywnych

- Zdarzenie kółko
 - początkowe / pośrednie / końcowe
 - może być wyzwalane czasowo
 - może być wyzwalane przez wiadomość
 - ogólne
 - wysłanie / odebranie wiadomości
 - reguly
 - czas
 - anulowanie / zerwanie
 - · wyjątek / usterka
 - kompensaja
 - przerywające / nieprzerywające wątki procesów
 - przyczyny działań (catching)
 - skutki działań (thrownig)
- Zadanie (task) zaokrąglony prostokąt
- Bramka logiczna (gateway) romb

Bizagi modeler

- Komercyjny program
- Darmowa wersja

Zdarzenia

Wiadomość

- Może być zdarzeniem rozpoczynającym proces
 - złożono zamówienie
- Może być na końcu procesu
 - poinformowanie klienta o zrealizowanym zamówieniu

Kompensacja

- Cofnięcie aktywności (rollback)
- Np. cofnięcie rezerwacji hotelu po nieudanym zakupie biletów

Link

- Do uproszczenia diagramu
- Kontynuacja diagramu w innym miejscu

Sygnał

- Wiadomość musi mieć odbiorce i nadawcę
- Sygnał ma listę odbiorców

Warunek

- Jako zdarzenie
- Związane z taskiem
- Przerywające / nieprzerywające

Eskalacja

- Podjęcie określonych czynności żeby przywrócić system do stanu normalnego
- Np. powiadomienie administratora

Zadania

- Symbolizowane przez prostokąt
- Dodatkowe tryby
 - zapętlone
 - ad hoc
 - wiele instancji
 - kompensacja
- Typy zadań
 - service usługa sieciowa lub zautomatyzowana aplikacja
 - receive oczekiwanie na komunikat
 - send wysłanie komunikatu
 - user zadanie wykonywane przez człowieka wspieranego przez aplikację
 - manual zadanie wykonywane przez człowieka bez pomocy komputera
 - script zadania wykonywane przez system
 - reference odwołanie do już zdefiniowanych zadań

Bramki

- Symbolizowana przez romb
- XOR
 - wykluczająca, sterowana danymi
 - token może pójść tylko jedną ścieżką

- wykluczająca, sterowana zdarzeniami zdarzenie określa którą ścieżką pójdzie proces
- OR
 - żeton może pójść jedną lub wieloma ścieżkami
- AND
 - żeton może przejść dalej przy spełnieniu wszystkich warunków

Połączenia

- Przepływ (normal sequence flow)
- Przepływ warunkowy
- Przepływ (default sequence flow)
- Błąd (message flow)
- Asocjacja

Prezentacja graficzna

- Linia ciągła przebieg procesu
- ...

Partycje i tory

- Baseny i tory
- Między basenami strzałki przerywane

WYKŁAD 4

Modelowanie procesów biznesowych (2024-03-11)

Za 2 tyg kolokwium
Za tydzień ustalanie grup projektowych

Artefakty

- Opisy tekstowe
- Grupowanie zadań
- Obiekty danych
 - Informacja że coś jest w bazie danych
- Asocjacje

Proces biznesowy prywatny

Modeluje mały, prosty proces, np. dla pojedynczej osoby(?)

Proces biznesowy publiczny

- Pokazuje interakcję między procesem wewnętrznym a innym procesem lub aktorem
- Pokazuje, że jest interakcja ale nie interesuje nas jakie dokładnie czynności są wykonywane

Proces współpracy

- Pokazuje współpracę między procesami, pokazuje interakcje i wewnętrzen zadania w obu basenach
- Choreografia

Diagram choreografii

- Aktywności to interakcje, wymiany wiadomości
- Modeluje współpracę bez torów, basenów itp

Konwersacja

Diagram wysokopoziomowego modelu wymiany informacji między systemami

Symulacje

- Pomagają określić np. ile osób należy przydzielić do odpowiednich zadań
 - Parametryzuje pensje, liczby pracowników, czasy wykonywania zadań

Process Mining

- Zbiera się dane o istniejących procesach
- Analiza średnich czasów obsługi itp
- Element optymalizacji (właściwie poprawy wydajności)

Narzędzia do modelowania

- BizAgi
- Aris
- Enterprise architect

WYKŁAD 5

Modele analityczne (2024-03-18)

Kolokwium

- 5 pierwszych wykładów
- pytania otwarte
- odp takie jak na wykładzie o modelach analitycznych
- narysować bpmn na podstawie opisu słownego
- pytania teoretyczne o definicje
- przygotować model na podstawie (danych?)

Zgłosić zespoły projektowe na maila WSYZ - projekt, 3 osoby

Model

Model matematyczny jest odzwierciedleniem fragmentu rzeczywistości w formie zależności matematycznych

Wykład dotyczy modeli algebraicznych

- Model abstrakcyjny i model danych
- Model powinien być ogólny, a szczególna sytuacja jest opisywana przez dane
- Model podlega walidacji jak udowodnić poprawność

Model rzeczowy

- y = f(x, p)
 - $ullet x \in X$ wektor zmiennych decyzyjnych
 - $p \in P$ wektor parametrów
 - $ullet y \in Y$ wektor zmiennych wyjściowych
 - X zbiór decyzji dopuszczalnych
 - ullet Y zbiór ograniczeń na zmienne wyjściowe
 - P zbiór ograniczeń na parametry

Zadania analizy modelu

- Symulacja
- Symulacja odwrotna
- Optymalizacja jednokryterialna

Analiza wielokryterialna

Symulacja

- Na etapie weryfikacji modelu
- Podajemy przykładowe wejście i parametry
- Patrzymy, czy wyjścia mają sens

Symulacja odwrotna

- Jakie powinny być zmienne decyzyjne, żeby uzyskać określone wyjście
- Zadanie optymalizacji
- $\min_{x \in X} |y \hat{y}| + \rho |x \hat{x}|$
 - ρ czynnik regularyzacji

Optymalizacja

- Minimalizacja funkcji kosztu, określonego wyjścia
- Dotyczy jednego wyjścia
- $\min_{x \in X} q_i$

Analiza wielokryterialna

- Często konfliktowe cele (np. cena vs jakość)
- $\min_{x \in X} \mathbf{q}$

Klasyfikacja modeli

- Statyczne
 - liniowe jeśli się da, to najlepiej budować model liniowy, stosować aproksymacje, są łatwiejsze obliczeniowo, bardzo wydajne solvery
 - dyskretne
 - nieliniowe
- Dynamiczne
- Stochastyczne
- Inne (np. oparte o zbiory rozmyte)

Zadanie liniowe

- $ullet \min_{x \in X} c^T x$
- $Ax \leq b, x \geq 0$

Poziomica funkcji

....definicja

Rough set

Do wygooglowania

Operations research vs optimization

- Badania operacyjne zorientowane na zastosowania w przemyśle i usługach
- Optymalizacja bardziej ogólny kontekst

Modele w systemach zarządzania

• ...

Narzędznia do modelowania i rozwiązywania zadań optymalizacji

- Narzędzia do modelowania
 - AMPL
 - AIMMS
 - GAMS
 - GNU MathProg
 - Pyomo (python)
- Solwery optymalizacyjne
 - MINOS
 - CPLEX
 - GUROBI
 - GLPK

Model

- Specyfikacja symboliczna modelu (zbiory, indeksy, parametry, zmienne decyzyjne)....
- model a instancja modelu

Na kolokwium model ma być w postaci asbtrakcyjnej, sparametryzowanej