Implementing classifiers on the dataset and Parameter Tuning

1) Decision Trees

Experiment	Classifier	Train/Test Ratio	Minsplit	СР	Outcome (Accuracy)
1		80,20	45	0.04	54%
2		80,20	45	0.06	63%
3		80,20	45	0.09	64%
4		80,20	45	0.005	64%
5		80,20	55	0.005	68%
6		80,20	60	0.005	69%
7		80,20	60	0.009	69.5%
8		80,20	60	0.05	62%
9		80,20	40	0.05	59%
10		90,10	60	0.009	77%

<u>Decision Trees Parameter Tuning: (Parameters -> Minsplit, CP)</u>

- 1. Firstly, an increase in CP by keeping Minsplit constant, leads to an increase in accuracy.
- 2. Similarly, decrease in CP by keeping Minsplit constant, leads to an decrease in accuracy which can be observed -> experiments [7:8].
- 3. Furthermore, an increase / decrease on Minsplit keeping CP constant, leads to corresponding increase and decrease in accuracy.
- 4. Finally, keeping Minisplit higher and CP lower we can get to better accuracy. The best accuracy is observed in the 10th experiment for a Train/Test ratio of 90,10.

2) Perceptron

Experiment	Classifier	Train/Test Ratio	stepmax	r	Outcome
'		•	•		(Accuracy)
1		80,20	1e+05	1	99.1%
2		80,20	1e+05	5	99.2%
3		80,20	1e+05	25	98.9%
4		80,20	1e+05	55	99.15%
5		80,20	1e+05	550	99.3%
6		80,20	1e+04	550	99.5%
7		80,20	1e+03	550	99.3%
8		80,20	1e+02	550	99.42%
9		80,20	1e+08	550	99.35%

<u>Perceptron Parameter Tuning: (Parameters -> Stepmax, r)</u>

- 1.We started experiments with very less repetitions gradually increasing it keeping stepmax constant.
- 2.As the number of reps (r) increased, accuracy increased -> Experiments [1:5].
- 3.Effect of stepmax on accuracy is minimal. -> Experiments [5:9]

Hence, the best parameter Values would be r= 550 or more.

3) Neural Net

Experiment	Classifier	Train/Test Ratio	hidden	rep	Outcome (Accuracy)
1		80:20	3	1	98.22%
2		80:20	3	2	99.31%
3		80:20	3	3	98.69%
4		80:20	2	2	98.92%
5		80:20	2	1	98.77%
6		80:20	4	2	98.73%
7		80:20	c(2,1)	2	98.97%
8		80:20	c(3,2)	2	99.07%
9		80:20	c(2,2)	2	99.14%
10		95:05	3	2	99.51%

Neural net Parameter Tuning: (Parameters -> hidden, rep)

- 1. Tried with some random values for hidden and rep first.
- 2.We got maximum on hidden = 3 and rep = 2 for 80:20 split as 99.31 -> Experiment [2] 3.then tried increasing, decreasing rep and hidden we got less accuracy -> Experiments [3:6]
- 4.Also tried with 2 hidden layers with different node combinations which also gave less accuracy -> Experiments [7:9]
- 5.Then we Increased split on Train/Test data, Accuracy went up from 99.31 to 99.51 which is obvious considering more training data. -> Experiments [2 & 10]

Hence, the best parameter Values would be hidden = 3 and rep = 2.

4) SVM

Experiment	Classifier	Train/Test Ratio	Cost	gamma	Outcome (Accuracy)
1		80,20	100	0.001	63%
2		80,20	100	0.0005	65%
3		80,20	100	0.00005	68%
4		80,20	10000	0.001	61%
5		80,20	100000	0.001	57%
6		80,20	700000	0.001	50%
7		80,20	700000	0.005	49%
8		80,20	700000	0.0001	62%
9		80,20	700000	0.0005	59%
10		80,20	700000	0.00001	44%
11		80,20	100000	0.00001	63%
12		85,15	100	0.00005	70%

<u>SVM Parameter Tuning: (Parameters -> Cost, gamma)</u>

- 1. First we tried decreasing gamma keeping cost constant, which leads to increase in accuracy. -> Experiments [1:3]
- 2. Similarly, increase in gamma keeping cost constant leads to decrease in accuracy which can be observed in -> experiments [6, 7 and 8, 9]
- 3. Finally, increase in cost keeping gamma constant leads to decrease in accuracy which can be observed in -> experiments [4, 5 and 6].
- 4. Ideally, keeping the values of cost (100) and gamma (0.00005) low and Train/Test ratio of 85,15 leads to best accuracy in the above set of experiments. -> Experiment [12]

5) Naïve Bayes

Experiment	Classifier	Train/Test Ratio	Threshold	Laplace	Outcome (Accuracy)
1		80:20	0.00001	0	59.01%
2		80:20	0.00005	0	55.73%
3		80:20	0.0001	0	63.93%
4		80:20	0.001	0	65.57%
5		80:20	0.01	0	63.93%
6		80:20	0.01	1	63.93%
7		80:20	0.01	2	63.93%
8		80:20	0.01	3	65.57%
9		95:05	0.001	0	68.75%

Naive Bayes Parameter Tuning: (Parameters -> Threshold, Laplace)

- 1. First we tried without laplace parameter with very less threshold values.
- 2. We observed best Accuracy on Threshold = 0.001 -> Experiments [1:5]
- 3. We varied Laplace from 0 to 3 keeping Threshold constant, Which did not affect accuracy much. -> Experiments [5:8]
- 4.Then we Increased split on Train/Test data, Accuracy went up from 65.57 to 68.75 which is obvious considering more training data. -> Experiments [4 & 9]

Hence, the best parameter Values would be Threshold = 0.001 and Laplace = 0.