BT 2020 — Numerical Methods for Biology Jan-May 2019 Quiz 1

February 19, 2019

Name: N Sowmya Manojna

Roll number: BE 17 B 0 07

Instructions: This examination is 'open notes'. You can only use your own hand-written notes. Answer all questions. Keep your answers brief and to the point.

There are a total of 3 pages in this question paper. Allotted time is 50 minutes.

Maximum marks: 40

1. (14 marks) Justify (as briefly as possible) whether each of the following statements is true or false. If the justification is incorrect, no credit will be awarded. Answer sub-questions in the correct

(a) The matrix
$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
 is not in echelon form

In a matrix that is in whom form, the numbers in a column under the first 1 should be zero $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix} \not \Rightarrow \not = 0$

(b) There are some special floating-point values that do not have a unique representation All froating point numbers now unique representation

Falle (c) The float Oxfffabcdefabcdefa is normalised

|111 1111 | | e = 111 1111 1111 | e = 111 1111 | 1111 | e = 111 | e = 1111 | e = 1111

3. (4 marks) IEEE also has a 16-bit notation where |e| = 5. What is the value of the smallest positive normalised floating point number that can be represented in 16 bits?

5 Lith: e

Jotal =
$$2^{5}-2$$
 $U = (2^{5}-2)/2$
 $V = 2^{4}-1 = 16-1-15$
 $V = 2^{4}-1 = 16-1-15$
 $V = 2^{4}-1 = 16-1-15$
 $V = 2^{4}-1 = 16-1-15$

smallest normalized

1.
$$(0)_{10}$$
 $(8)^{2}$

smallest $(8)^{2}$

smallest $(8)^{2}$

- Answer the remaining problems on a separate sheet -

- 4. (6 marks) You are given vectors of observations v and S, corresponding to the initial velocity of the reaction and substrate concentration for an enzyme-catalysed reaction that follows Michaelis—Menten kinetics. Write a small (MATLAB) function to return the values of $v_{\rm max}$ and K_M , given v and S.
- 5. (4 marks) Find matrices P and Q such that $P \times \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \times Q = \begin{bmatrix} 6 & 4 & 5 \\ 9 & 7 & 8 \\ 3 & 1 & 2 \end{bmatrix}$
- 6. (8 marks) Perform a Cholesky decomposition of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 5 & 0 & 0 \\ 0 & 0 & 16 & 4 \\ 0 & 0 & 4 & 65 \end{bmatrix}$$

*** END OF QUIZ 1 ***

$$\frac{1}{0} = \frac{(S) \cdot km}{k_{2}(EO)(S)}$$

$$\frac{1}{0} = \frac{1}{C} + \frac{km}{k_{2}(EO)(S)}$$

Umas

(ST)	OF THE	Bal
INSHI	(1)	Ser Ser
NA LOS	The state of the s	7
1	Mariett	3

	1		ĸ.	
		B	ï	١
		ü	E	d
		7	١	١
			а	v

iz I	Quiz	ıl/ Mic	d-Sem	End	-Semes		Make	-up	Date :		
mester 8	& Degre	e :				Course		1. 647.)	Part	t: 🔽	
Question	No.	1	2	3	4	5	6	7	8	9	10
Marks		1:	2 4	4	0	4	8	6 8			
11	12	13	14	15	16	17	18	19	20	Tot	tal
			swer on bo	4h aldaa	-6 4b			100.0	arrol.	82	
) <u>a=1</u>	9	1 =	=1 ! A2,02s.	7.a_	=0	# g	= 0	dg +	= 4 $C = 2$ he + if	= 4	
th +ec 0 + ec e(a) = t = = = = = = = = = = = = = = = = = =	= 0	000								4)-4	
$du + ec$ $0 + ec$ $e(a) = t$ $\frac{1}{2}e = t$			1			$\frac{f,h(d)}{h=0}$ $g^{2}fh^{2}f$ $f = \frac{1}{2}$				4)-4	

PAG = A'

$$A = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$A' = \begin{pmatrix} 6 & 4 & 5 \\ 9 & 7 & 6 \\ 3 & 1 & 2 \end{pmatrix}$$

$$A \rightarrow AI \quad (Aymul with R)$$

$$A \rightarrow AI \quad (Aymul with R)$$

$$All = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \end{pmatrix}$$

$$P_{I} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A \rightarrow AI \quad (Aymul with R)$$

$$A \rightarrow AI \quad$$