Coordination and Response

Systems for coordination: Nervous system + Endocrine system

Organization of the nervous system

- Central nervous system (CNS) [brain & spinal cord] vs. Peripheral nervous system (PNS) [nerves]
- Somatic nervous system (SNS) vs. Autonomic nervous system (ANS)
- ANS: Sympathetic vs. Parasympathetic
- Neural pathways (e.g. input \rightarrow processing \rightarrow output)

Cerebrum

- Gray matter & white matter
- Cerebral lobes
 - Occipital lobe: vision
 - Frontal lobe: judgment, planning, personality, concentration, speaking, movement
 - <u>Parietal lobe:</u> somatosensation, integration of various senses
 - <u>Temporal lobe:</u> audition, olfaction, speech, declarative memory, high-level visual processing
 - Insular lobe: gustation, vestibular sensation, visceral sensation, motor control
- Functional areas
 - Sensory areas: conscious awareness of sensation
 - Motor areas: control voluntary movement
 - Association areas: higher mental functions (e.g. learning)
- Cortical homunculus (in somatosensory cortex & motor cortex)
- Basal ganglia (nuclei): movement, motivation

Diencephalon

- **Epithalamus:** connection between limbic system & other parts of the brain, regulation of circadian rhythms (by **pineal gland**)
- Thalamus: gateway (relay center) to the cortex
- **Hypothalamus:** autonomic control, endocrine control, stress response, temperature regulation, thirst & osmoregulation, sleep & wakefulness, reward center, appetite control, emotional reactions

Brainstem

- Brainstem consists of midbrain, pons, medulla oblongata
- Regulation of heart rate, breathing, blood pressure, swallowing, digestion
- Reticular formation: alertness

Cerebellum

- Adjustment in postural muscles of the body
- Programming & fine-tuning of movements

Classification of senses

- General senses: Receptors are <u>scattered</u> throughout the body
- Special senses: Receptors are <u>localized</u> at specialized areas
- Visceral Senses: Receptors are located internally

Sensory receptors: Interface between the environment & the nervous system

• Mechanoreceptors / Thermoreceptors / Photoreceptors / Chemoreceptors / Nociceptors

Sensory modalities

• Mechanoception (e.g. touch & pressure)

- Thermoception (cold vs. warm)
- Vision [stimulus: light]
- Audition [stimulus: sound waves]
- Vestibular sensation (balance)
- Gustation (taste)
- Olfaction (smell)

Excitable tissues

- Tissues that have the ability to respond to stimuli (sudden changes in the environment)
- Nerves and muscles are excitable tissues
 - composed of excitable cells (neurons and myocytes) that generate and transmit <u>electrical</u> <u>impulses</u> along the cell membrane

Synapses

- Information transfer across a chemical synapse:
 - 1. Action potential arrives at axon terminal
 - 2. Voltage-gated Ca^{2+} channels open $\rightarrow Ca^{2+}$ influx
 - 3. Ca²⁺ acts as a messenger
 - 4. Neurotransmitter is released by exocytosis
 - 5. Neurotransmitter diffuses across the synaptic cleft & binds to receptors → Ion influx
 - 6. Graded potential (EPSCs / IPSPs) is generated at postsynaptic terminal

Neuromuscular junction:

- Site where motor neuron activates the muscle to contract
- Excitation-contraction coupling

Release of neurotransmitter acetylcholine (ACh) from motor neuron

- → Binding to ACh receptors on motor end-plate of muscle cells
- → Influx of Na⁺ depolarizes motor end-plate
- → Action potentials
- → Biochemical reactions inside muscle cells
- → Muscle contraction

Endocrine system: influences metabolic activities of cells via hormones

Major endocrine glands:

- Hypothalamus & pituitary
- Thyroid & parathyroid
- Adrenal glands & pancreas
- Pineal gland
- Gonads (Testes / Ovaries)

Hormones: chemical substances released from cells into blood to elicit responses at specific site(s)

- Amino acid-based hormones vs. Steroid hormones
- Mechanisms of actions:
 - Alter plasma membrane permeability
 - Stimulate protein synthesis
 - Activate or deactivate enzyme systems
 - Induce secretory activity
 - Stimulate mitosis