Redução de A para B para prova de indecidibilidade

A: problema indecidível cuja indecibilidade já foi provada

B: problema que eu quero provar que é indecidível

Prova por contradição:

- Supor que B é decidível e que a mT R decide B
- Construir uma mT S que decide A usando a mt R
- Como A é indecidível, chegamos a uma contradição, então B é indecidível

A escrita da mT S (usando R) é a redução

Problemas indecidíveis

 $\mathcal{L}_{MT_{reg}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem regular}\}.$

- A linguagem reconhecida por uma máquina de Turing também pode ser reconhecida por um dispositivo computacional mais simples?
- $\mathcal{L}_{MT_{reg}} \equiv$ Uma certa máquina de Turing é equivalente a algum autômato finito?

 $\mathcal{L}_{MT_{reg}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem regular}\}.$

Teorema 3.20

A linguagem $\mathcal{L}_{MT_{reg}}$ não é decidível.

Esquema da Prova

- Supor que $\mathcal{L}_{MT_{reg}}$ é decidível e mostrar que a linguagem \mathcal{L}_{MT} é decidível (contradição).
- Supor que máquina de Turing R decide $\mathcal{L}_{MT_{reg}}$ e construir máquina de Turing S que decide \mathcal{L}_{MT} .
 - Como S pode usar R como subrotina???

Esquema da Prova

- Como S pode usar R como subrotina????
 - S recebe $\langle M, w \rangle$ e modifica M tal que a máquina M'' resultante reconheça uma linguagem regular se e somente se M aceita w.
 - Se M não aceita w, M'' reconhece a linguagem $\{0^n1^n \mid n \geq 0\}$.
 - ▶ Se M aceita w, M'' reconhece a linguagem regular Σ^* .

 $\mathcal{L}_{MT_{reg}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem regular}\}.$

Teorema 3.20

A linguagem $\mathcal{L}_{MT_{reg}}$ não é decidível.

Demonstração.

- Funcionamento de M'' com a cadeia x:
 - 1. Se x é da forma $0^n 1^n$, M'' aceita.
 - 2. Caso contrário, M'' chama M com entrada w.
 - 3. Se *M* aceita, *M*" aceita.

M" funciona aceitando automaticamente todas as cadeias de 0n1n. Adicionalmente se M aceita w, M" aceita todas as outras cadeias.

 $\mathcal{L}_{MT_{reg}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem regular}\}.$

Teorema 3.20

A linguagem $\mathcal{L}_{MT_{reg}}$ não é decidível.

Demonstração.

- Supor que máquina de Turing R decide $\mathcal{L}_{MT_{reg}}$.
- ► Construir máquina de Turing S que decide \mathcal{L}_{MT} .
- Funcionamento de S com a entrada $\langle M, w \rangle$:
 - 1. Usar a descrição de M e w para construir a máquina M''.
 - 2. Chamar R com entrada $\langle M'' \rangle$.
 - 3. Se R aceita, S aceita. Se R rejeita, S rejeita.
- ► Se R decidisse $\mathcal{L}_{MT_{reg}}$, S decidiria $\mathcal{L}_{MT}!!!$

INF/UFG – TC 2012/2 – Humberto Longo

Redutibilidade (206 - 219 de 759)

Redução a partir de Lhalt ={<M,w> I mT M pára com a cadeia w}.

Problemas indecidíveis

Supor que LMTe é decidida por R e construir S para decidir Lhalt

 $\mathcal{L}_{MT_{\varepsilon}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } M(\langle \varepsilon \rangle) \text{ p\'ara}\}.$

Teorema 3.21

A linguagem $\mathcal{L}_{MT_{\varepsilon}}$ não é decidível.

INF/UFG - TC 2012/2 - Humberto Longo

Redutibilidade (207 – 219 de 759)

Construir M' com base em M e w de forma que L(M') = e sse M pára com w, isto é,

M' pára com e sse M pára com w.

Redução a partir de Lhalt ={<M,w> I mT M pára com a cadeia w}.

Problemas indecidíveis

 $\mathcal{L}_{2MTs} = \{\langle M_1, M_2, w \rangle \mid M_1 \text{ e } M_2 \text{ são MT's e } M_1(\langle w \rangle) = M_2(\langle w \rangle)\}.$

Teorema 3.23

A linguagem \mathcal{L}_{2MTs} não é decidível.

INF/UFG - TC 2012/2 - Humberto Longo

Redutibilidade (209 - 219 de 759)

Exercícios:

Provar que as seguintes linguagens são indecidíveis através de redução

- $\mathcal{L}_{MT_{llc}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma } LLC\}.$
- $\mathcal{L}_{MT_{dec}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e decidível}\}.$
- $\mathcal{L}_{MT_{fin}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem finita} \}.$
- ▶ $\mathcal{L}_{MT_{\square}} = \{\langle M \rangle \mid M \text{ \'e uma MT e } L(M) \text{ \'e } \square \}.$

 $\mathcal{L}_{MT_{=}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ e } M_2 \text{ são MT's e } L(M_1) = L(M_2)\}.$

Teorema 3.27

A linguagem $\mathcal{L}_{MT_{=}}$ não é decidível.

- É possível provar este teorema fazendo a redução de \mathcal{L}_{MT} para $\mathcal{L}_{MT_=}$.
- Pode-se reduzir qualquer outra linguagem não decidível para $\mathcal{L}_{MT_{=}}$. Por exemplo, $\mathcal{L}_{MT_{\emptyset}}$.

 $\mathcal{L}_{MT_{=}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ e } M_2 \text{ são MT's e } L(M_1) = L(M_2) \}.$

Teorema 3.28

A linguagem $\mathcal{L}_{MT_{=}}$ não é decidível.

Esquema da Prova

- Mostrar que se $\mathcal{L}_{MT_{=}}$ é decidível, então $\mathcal{L}_{MT_{\emptyset}}$ também é decidível.
- ▶ Reduzir $\mathcal{L}_{MT_{\emptyset}}$ para $\mathcal{L}_{MT_{=}}$:
 - \mathcal{L}_{MT_0} : a linguagem de uma MT é vazia?
 - $\mathcal{L}_{MT_{=}}$: as linguagens de duas MT's são iguais?
 - Se uma das linguagens for vazia, testar se a segunda é vazia.
 - $\mathcal{L}_{MT_{\emptyset}}$ é um caso especial de $\mathcal{L}_{MT_{=}}$, onde uma das máquinas fica fixa para reconhecer a linguagem vazia.

 $\mathcal{L}_{MT_{=}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ e } M_2 \text{ são MT's e } L(M_1) = L(M_2) \}.$

Teorema 3.28

A linguagem $\mathcal{L}_{MT_{=}}$ não é decidível.

Demonstração.

- ▶ Supor que máquina de Turing R decide $\mathcal{L}_{MT_{=}}$.
- ► Construir máquina de Turing S que decide $\mathcal{L}_{MT_{\emptyset}}$.
- ▶ Funcionamento de S com a entrada $\langle M \rangle$:
 - 1. Chamar R com entrada $\langle M, M' \rangle$, onde M' é uma máquina de Turing que rejeita todas as entradas.
 - 2. Se R aceita, S aceita. Se R rejeita, S rejeita.
- ► Se R decide $\mathcal{L}_{MT_{=}}$, S decide $\mathcal{L}_{MT_{\emptyset}}$.
- Pelo Teorema 3.19, $\mathcal{L}_{MT_{\emptyset}}$ não é decidível. Logo, $\mathcal{L}_{MT_{=}}$ também não pode ser decidível.