

IMD1122 Special Topics in Al Deep Learning

Training Neural Networks

Training Neural Networks

Part #01

Understanding how DL works

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$\mathbf{W}^* = \mathop{argmin} rac{1}{m} \sum_{i=1}^m \mathcal{L}\left(f(X^{(i)}; \mathbf{W}), y^{(i)}
ight)$$

$$\mathbf{W}^* = \mathop{argmin}_{\mathbf{W}} \ J(\mathbf{W})$$

Loss Optimization

Remember: our loss is a function of the network weights!!!

Loss Optimization - Gradient Descent

w1

Understanding how DL works

Input X Layer Weights Finding the right (data transformation) values of weights which minimize the Layer error Weights (data transformation) Weight **Predictions** True targets **Backpropagation** update Optimizer Loss function Loss score

Loss Functions Can Be Difficult to Optimize

Small learning rate (lr=0.001) converges slowly

Large learning rate (Ir=0.1) overshoot, become unstable and diverge

How to deal with this?

Idea 1:

Try lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!!

Design a adaptive learning rate that "adapts" to the landscape

Optimization Algorithms

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

Putting it all together

```
Mini-Batches
                       dataset = tf.data.Dataset.from tensor slices((train set x,train set y))
1 < b < m
                       dataset = dataset.shuffle(buffer size=64).batch(32)
                       model = tf.keras.Sequential([
                         tf.keras.layers.Dense(8, activation=tf.nn.relu, dtype='float64'),
  Model
                         tf.keras.layers.Dense(8, activation=tf.nn.relu, dtype='float64'),
                         tf.keras.layers.Dense(1, activation=tf.nn.sigmoid, dtype='float64')
                       # Instantiate a logistic loss function that expects integer targets.
                       loss = tf.keras.losses.BinaryCrossentropy()
Loss
Evaluation Metrics
                       # Instantiate an accuracy metric.
                       accuracy = tf.keras.metrics.BinaryAccuracy()
                       # Instantiate an optimizer.
                       optimizer = tf.keras.optimizers.SGD(learning rate=0.001)
Optimizer
```


Putting it all together

```
for i in range(500):
   # Iterate over the batches of the dataset.
    for step, (x, y) in enumerate(dataset):
     # Open a GradientTape.
     with tf.GradientTape() as tape:
       # Forward pass.
        logits = model(x)
        loss value = loss(y, logits)
     # Get gradients of loss wrt the weights.
      gradients = tape.gradient(loss value, model.trainable weights)
     optimizer.apply_gradients(zip(gradients, model.trainable weights))
     # Update the running accuracy.
      accuracy.update state(y, logits)
```

$$W = W - \alpha \frac{\partial J}{\partial W}$$

Mini-Batches Challenges

Training Neural Networks

Part #02

TRAIN A DEEP NEURAL NETWORK

=

MINI-BATCH

+

OPTIMIZATION ALGORITHMS

Update W and b

Optimization Algorithms - Exponentially Weighted Average → E Momentum RMSprop

Exponentially Weighted Average

Exponentially Weighted Average

$$egin{aligned} V_t &= eta V_{t-1} + (1-eta) heta_1 \ V_t &pprox rac{1}{1-eta} \ days \ of \ temperature \end{aligned}$$

Exponentially Weighted Average Bias Correction

Gradient Descent with Momentum

- Momentum takes into account the past gradients to smooth out the update.
- Formally, this will be the exponentially weighted average of the gradient on previous steps.

Gradient Descent with Momentum

On iteration t:

Compute dW, db on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW$$

$$v_{dh} = \beta v_{dh} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}$$
, $b = b - \alpha v_{db}$

Hyperparameters: α, β

$$\beta = 0.9$$

Gradient Descent with RMSprop

On iteration t:

Compute *dW*, *db* on the current mini-batch

$$s_{dW} = \beta s_{dW} + (1 - \beta)dW^2$$

$$s_{db} = \beta s_{db} + (1 - \beta)db^2$$

$$W = W - \alpha \frac{dW}{\sqrt{s_{dW}} + \varepsilon} \qquad b = b - \alpha \frac{db}{\sqrt{s_{db}} + \varepsilon}$$

$$\mathcal{E} = 10^{(-8)}$$

Hyperparameters: α , β

$$\beta = 0.9$$

Gradient Descent with Adam

On iteration t:

Compute *dW*, *db* on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW \qquad v_{db} = \beta v_{db} + (1 - \beta)db$$

$$s_{dW} = \beta s_{dW} + (1 - \beta)dW^{2} \qquad s_{db} = \beta s_{db} + (1 - \beta)db^{2}$$

$$v_{dW}^{correct} = v_{dW}/(1 - \beta_{1}^{t}) \qquad v_{db}^{correct} = v_{db}/(1 - \beta_{1}^{t})$$

$$s_{dW}^{correct} = s_{dW}/(1 - \beta_{2}^{t}) \qquad s_{db}^{correct} = s_{db}/(1 - \beta_{2}^{t})$$

$$W = W - \alpha \frac{v_{dW}^{correct}}{\sqrt{s_{dW}^{correct}} + \varepsilon} \qquad b = b - \alpha \frac{v_{db}^{correct}}{\sqrt{s_{db}^{correct}} + \varepsilon}$$

$$Hyperparameters: \alpha, \beta_{1}, \beta_{2} \qquad \beta_{1} = 0.9, \beta_{1} = 0.999$$

Learning Rate Decay

ldea: reduce α for each mini-bach t in order to smooth the gradient descent.

1. Choose a cost landscape

Select an <u>artificial landscape</u> $\mathcal{J}(w_1, w_2)$.

2. Choose initial parameters

On the cost landscape graph, drag the red dot to choose initial parameter values and thus the initial value of the cost.

3. Choose an optimizer

Select the optimizer(s) and hyperparameters.

Optimizer	Learning Rate	Learning Rate Decay	
✓ Gradient Descent	0,001	0	
✓ Momentum	0,001	0	
	0,001	0	
	0,001	0	

https://www.deeplearning.ai/ai-notes/optimization/

Neural Networks in Practice #01

Splitting Data & Regularization

Next

