Ré-échantillonage en apprentissage automatique

Fabrice Rossi

Université Paris 1 Panthéon Sorbonne

2018

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Estimation de performances

Problème fondamental de l'apprentissage

- détermination des paramètres d'un modèle
- comparaison de modèles (méta-paramètres)
- prévision du comportement futur

Difficile

- estimation biaisée : le meilleur modèle a toujours les meilleures performances
- données = vrai modèle + bruit : un modèle « trop bon » apprend le bruit
- garanties mathématiques trop lâches

Solution simple

Découpage des données

- ensemble d'apprentissage : estimation des paramètres
- ensemble de validation : comparaison de modèles (réglage des méta-paramètres)
- ensemble de test : évaluation finale du modèle retenu

Limitations

- nécessite d'être riche en données
- compromis entre les qualités des différentes estimations (paramètres vs méta-paramètres vs prévision des performances futures)
- effets du découpage

Solutions plus efficaces

Ré-échantillonage

- classe de méthodes basées sur des tirages aléatoires dans les données
- généralisation du principe de découpage (notamment)
- richesse en données remplacée par richesse en puissance de calcul

Nombreuses variantes et extensions

- cas extrême : leave-one-out (et Jackknife)
- bootstrap
- validation croisée (et ses variantes)
- tests empiriques (permutation test)

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

7

Cadre mathématique

Hypothèses classiques

- variables explicatives à valeurs dans \mathcal{X}
- lacktriangle variable à expliquer à valeurs dans ${\cal Y}$
- ▶ phénomène sous-jacent : un couple de variables aléatoires (X,Y) à valeurs dans $\mathcal{X} \times \mathcal{Y}$, de loi \mathcal{P}
- ▶ un jeu de données : $\mathcal{D} = (X_i, Y_i)_{1 < i < N}$, avec $(X_i, Y_i) \sim \mathcal{P}$
- les observations sont supposées indépendantes (en plus d'être identiquement distribuées)

Qualité d'un modèle

- ▶ fonction de perte / de \mathcal{Y}^2 dans \mathbb{R}^+
- ▶ risque $L(g) = E_{(X,Y)\sim P}\{I(g(X),Y)\}$
- lacktriangledown modèle optimal $g^* = \arg\min_g L(g)$ et risque optimal $L^* = \inf_g L(g)$

R

Approximation et bruit

Cas de la régression

- ▶ perte quadratique : $I_2(p,t) = (p-t)^2$
- ▶ modèle optimal : $g^*(x) = E_{(X,Y)\sim P}\{Y|X=x\}$
- décomposition de l'erreur

$$L_2(g) = \underbrace{E_{(X,Y) \sim \mathcal{P}}\{(g(X) - g^*(X))^2\}}_{\text{approximation}} + \underbrace{E_{(X,Y) \sim \mathcal{P}}\{(Y - g^*(X))^2\}}_{\text{bruit}}$$

Discrimination

- ▶ perte 0/1 : $I(p,t) = \mathbb{I}_{p\neq t}$
- ▶ modèle optimal : $g^*(x) = \arg\min_{y \in \mathcal{Y}} \mathbb{P}_{(X,Y) \sim \mathcal{P}}(Y = y | X = x)$
- résultat similaire avec une mesure d'approximation plus complexe

Difficulté : coller au modèle optimal sans coller au bruit

9

Compromis biais/variance

Plusieurs jeux de données

- $\triangleright \mathcal{D}$ distribué selon \mathcal{P}^N
- un modèle par jeu de données : $g_{\mathcal{D}}$
- décomposition ponctuelle :

$$\begin{split} E_{\mathcal{D} \sim \mathcal{P}^N}\{I_2(g_{\mathcal{D}}(x), g^*(x))\} = &\underbrace{\left(E_{\mathcal{D}' \sim \mathcal{P}^N}\{g_{\mathcal{D}'}(x)\} - g^*(x)\right)^2}_{\text{biais}^2} \\ &+ \underbrace{E_{\mathcal{D} \sim \mathcal{P}^N}\{(g_{\mathcal{D}}(x) - E_{\mathcal{D}' \sim \mathcal{P}^N}\{g_{\mathcal{D}'}(x)\})^2\}}_{\text{variance}} \\ &+ \underbrace{E_{(X,Y) \sim \mathcal{P}}\{(Y - g^*(X))^2 | X = x\}}_{\text{bruit}} \end{split}$$

En pratique

- modèle simple : fort biais et faible variance
- modèle complexe : faible biais et forte variance

Illustration numérique

Données

- x_i déterministe : grille régulière sur $[-\pi,\pi]$, 51 points
- $Y_i = \sin(x_i) + \varepsilon_i$, avec les ε_i i.i.d. $\mathcal{N}(0, \sigma^2)$, avec $\sigma = 0.2$
- ▶ 50 répétitions de l'expérience

Exemple

Illustration numérique

Modèle

- Kernel ridge regression avec un noyau gaussien
- $g(x) = \sum_{i=1}^{N} \alpha_i \exp(-\sigma(x-x_i)^2)$
- paramètre de régularisation fixé à une valeur relativement faible
- \blacktriangleright on montre l'effet de σ

Example

Exemple

Exemple

En résumé

En résumé

En résumé

Comportement général

- la variance du modèle est directement liée au sur-apprentissage
- quand le modèle colle aux données, sa variance explose
- un bon modèle est à l'équilibre : le prix à payer pour un faible biais est un niveau minimal de variance

Deux idées majeures

- pour étudier la variance d'un modèle, on peut simuler des ensembles d'apprentissage : techniques de ré-échantillonage
- si on sait simuler plusieurs ensembles d'apprentissage, on peut utiliser un modèle moyen : techniques de combinaison de modèles

Procédure générale

Objectifs

- choix de modèle (méta-paramètres)
- évaluation des performances du modèle choisi

Procédure

- deux niveaux de ré-échantillonage (ou de partition)
- un niveau externe d'évaluation
- un niveau interne de choix de modèle
- construction de plusieurs modèles

Exemple

- un ensemble de test et un ensemble d'apprentissage
- ré-échantillonage sur l'ensemble d'apprentissage
- évaluation directe sur l'ensemble de test

Dans la suite

Point principal

- ▶ l'estimation des performances par ré-échantillonage
- avantages/inconvénients des différentes méthodes
- bonnes pratiques

Point secondaire

- les procédures complètes
- cas particuliers intéressants

Statistiques et apprentissage

Statistiques

- un estimateur quelconque $\hat{\theta}$
- caractérisé par son biais et sa variance : espérances sous la distribution des données
- on estime ces quantités par ré-échantillonage

Apprentissage

- ightharpoonup un modèle quelconque \hat{g}
- caractérisé par son risque $L(\hat{g})$: espérance sous la distribution d'une observation
- on estime le risque par ré-échantillonage

$$E_{\mathcal{D} \sim \mathcal{P}^N} \{ \hat{\theta} - \theta \}$$
 $E_{(X,Y) \sim \mathcal{P}} \{ I(\hat{g}(X), Y) \}$

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Jackknife

Méthode statistique

- ▶ Estimateur $\hat{\theta} = f(X_1, ..., X_N)$
- ► Estimation partielle $\hat{\theta}_{-k} = f(X_1, ..., X_{k-1}, X_{k+1}, ..., X_N)$
- Estimateur Jackknife

$$\hat{\theta}^* = N\hat{\theta} - \frac{N-1}{N} \sum_{k=1}^{N} \hat{\theta}_{-k}$$

Justification

- ▶ Pseudo valeur $\hat{\theta}_k^* = N\hat{\theta} (N-1)\hat{\theta}_{-k}$
- $\hat{\theta}^*$ est la moyenne des pseudo valeurs
- vient du cas de l'estimateur de l'espérance par la moyenne empirique

$$x_k = N\left(\frac{1}{N}\sum_{j=1}^{N}x_j\right) - (N-1)\left(\frac{1}{N-1}\sum_{j=1, j\neq k}^{N}x_j\right)$$

Réduction de biais

Estimation du biais

estimation jackknife du biais

$$B_{jack} = (N-1) \left(\frac{1}{N} \sum_{k=1}^{N} \hat{\theta}_{-k} - \hat{\theta} \right)$$

- ▶ le facteur (N-1) permet une correction exacte à l'ordre 1 (bias en $\frac{1}{N}$)
- ▶ l'estimateur $\hat{\theta}^*$ est débiaisé

$$\hat{\theta}^* = N\hat{\theta} - \frac{N-1}{N} \sum_{k=1}^{N} \hat{\theta}_{-k}$$
$$= \hat{\theta} - B_{jack}$$

Leave-one-out (LOO)

Utilisation en apprentissage

- on ne conserve que l'idée de base : estimation avec une observation en moins
- ▶ modèle $g = A(Z_1, ..., Z_n)$ où A est un algorithme d'apprentissage (avec $Z_i = (X_i, Y_i)$)
- ► modèle *loo* $g_{-k} = A(Z_1, ..., Z_{k-1}, Z_{k+1}, ..., Z_n)$
- estimation de la performance

$$\hat{L}_{loo}(g) = \frac{1}{N} \sum_{k=1}^{N} I(g_{-k}(X_k), Y_k)$$

Procédure très différente

- ▶ chaque terme $I(g_{-k}(X_k), Y_k)$ utilise toutes les données
- on n'estime donc pas le biais d'un estimateur

En pratique

Avantages

- $ightharpoonup \hat{L}_{loo}(g)$ a en général un biais faible
- ▶ aucun phénomène aléatoire : chaque observation est utilisée de la même façon (N − 1 en apprentissage, 1 fois en évaluation)
- parallélisation évidente

Inconvénients

- $\hat{L}_{loo}(g)$ a en général une variance élevée
- temps de calcul très élevé : N modèles à ajuster sur presque toutes les données

Version efficace

Coût algorithmique

- le calcul de $\hat{L}_{loo}(g)$ demande l'estimation de N modèles
- ▶ le leave-one-out est inutilisable en général avec des données volumineuses et/ou des modèles complexes
- sauf pour certains modèles linéaires

Modèles linéaires

- Y : vecteur des Y_i
- ▶ Ŷ : ensemble des prévisions du modèle
- \blacktriangleright dans certains modèles « linéaires », on $\hat{\mathbf{Y}}=\mathbf{SY}$ pour une matrice \mathbf{S} de lissage
- ▶ dans ce cas, on a souvent

$$\hat{L}_{loo}(g) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \mathbf{SY}_i}{1 - S_{ii}} \right)^2$$

Régression linéaire

Rappels

- ▶ X : matrice des X_i en ligne (avec un 1 en dernière position)
- ▶ **Y** : vecteur des *Y_i*
- régression linéaire : $\mathbf{Y} \simeq \mathbf{X}\beta$
- β optimal au sens des moindres carrés : $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

Leave-one-out

- on a alors $\hat{\mathbf{Y}} = \underbrace{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{\mathbf{S}} \mathbf{Y}$
- et dans cette situation

$$\hat{L}_{loo}(g) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - \mathbf{SY}_i}{1 - S_{ii}} \right)^2$$

Conséquences

Coût

- le surcoût algorithme du calcul de $\hat{L}_{loo}(g)$ est essentiellement négligeable
- ▶ l'estimation leave-one-out est donc « gratuite » pour ces modèles

Applications

- pour le modèle linéaire : sélection de variables (mais il existe de nombreuses autres solutions)
- pour les modèles plus généraux :
 - ightharpoonup régression ridge : sélection du paramètre λ de régularisation
 - kernel ridge régression : idem + sélection du noyau

Kernel ridge regression

Noyau

Un noyau K de \mathcal{X}^2 dans \mathbb{R} est une fonction qui vérifie

- ightharpoonup K(x,y) = K(y,x)

Kernel ridge regression

- ▶ modèle de la forme $g(x) = \sum_{j=1}^{N} \alpha_j K(x_j, x)$
- $\hat{\alpha}$ optimal solution de

$$\min_{\alpha \in \mathbb{R}^N} \sum_{i=1}^N \left(y_i - \sum_{j=1}^N \alpha_j K(x_j, x_i) \right)^2 + \lambda \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j K(x_i, x_j)$$

extension non linéaire de la régression ridge

Kernel ridge regression

Leave-one-out

- on montre que $\hat{\alpha} = (K + \lambda I_N)^{-1} Y$
- et que

$$\hat{\mathbf{Y}} = \underbrace{K(K + \lambda I_N)^{-1}}_{\mathbf{S}} Y$$

la formule du leave-one-out s'applique

Astuce algorithmique

- 1. calcul de la SVD de $\mathbf{K} = (K(x_i, x_j))_{i,j}, \mathbf{K} = \mathbf{UDV}^T$
- 2. calcul de la matrice diagonale $\mathbf{W}(\lambda)$ de termes diagonaux $W(\lambda)_{ii} = \frac{1}{D_{ii} + \lambda}$
- 3. calcul de $S(\lambda) = VW(\lambda)U^T$

TP LOC

Objectifs

- prise en main du leave-one-out
- expérimentation biais versus variance

Mise en œuvre

- 1. engendrer des données artificielles (plusieurs jeux)
- 2. programmer la kernel ridge regression avec sélection automatique de λ par leave-one-out
- 3. sélection des paramètres du noyau de la même façon
- 4. courbes erreur/biais/variance/etc.

Résultats

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Validation croisée

Objectifs

- réduire la variance du leave-one-out : plus d'exemples en évaluation
- réduire le temps de calcul du leave-one-out : moins de modèles à construire
- conserver un rôle identique à chaque observation

Solution

- ▶ partition aléatoire de $\{1,...,N\}$ en K blocs (les *folds*), $C_1,...,C_K$
- $\triangleright \kappa(i)$: numéro du bloc de l'observation (X_i, Y_i)
- $ightharpoonup g_{-k}$: modèle appris sur les données dans tous les blocs sauf C_k
- estimateur du risque

$$\hat{L}_{cv}(g) = \frac{1}{N} \sum_{i=1}^{N} I(g_{-\kappa(i)}(X_i), Y_i)$$

Conséquences

Compromis

- plus K est grand
 - plus le temps de calcul est élevé (attention, c'est plus subtil que ça!)
 - plus le biais diminue : les données d'apprentissage grossissent avec
 K
 - plus la variance augmente : moins de données d'évaluation
- ▶ on considère qu'un bon compromis est K entre 5 et 10

Difficultés

- pas de version rapide
- effet du choix de K?
- effet du choix des blocs?

Validation croisée $(\lambda \text{ fixe})$

Validation croisée vs LOO

Stratification

Problème

- les blocs sont déterminés aléatoirement
- la distribution des données dans un bloc peut être « trop différente » de la distribution globale

Solution: stratification

- méthode générale : on s'arrange pour que la variable Y soit distribuée de façon identique dans chaque bloc
- en pratique :
 - ▶ cas Y discrète : on cherche à avoir $\mathbb{P}(Y = y | C_k) = \mathbb{P}(Y = y)$
 - ▶ cas Y continue : on cherche à avoir $\mathbb{P}(Y \in U | C_k) = \mathbb{P}(Y \in U)$ pour quelques U bien choisis (par exemple un découpage basé sur les percentiles de Y)
- ▶ systématique pour Y discrète, plus controversée pour Y continue
- extension à X, mais controversée

Validation croisée stratifiée

Validation croisée stratifiée vs de base

Piège classique

Effets de la variance de la validation croisée

- les estimateurs $\hat{L}_{cv}(g)$ et $\hat{L}_{loo}(g)$ ont une variance non négligeable (comparativement à la variance naturelle induite par les données)
- ▶ peut-on comparer $\hat{L}_{cv}(g_1)$ et $\hat{L}_{cv}(g_2)$?
- en théorie : pas directement, il faut tenir compte de la variance

Solutions

- 1. technique coûteuse :
 - ▶ plusieurs validations croisées : $\hat{L}_{cv,1}(g), \dots, \hat{L}_{cv,p}(g)$
 - ▶ tests appariés (Wilcoxon) : on compare $\hat{L}_{cv,j}(g_1)$ et $\hat{L}_{cv,j}(g_2)$ sur les mêmes blocs
- 2. technique plus simple : on estime la variance par $\widehat{\text{Var}}_{cv}(g) = \tfrac{1}{N} \sum_{i=1}^N \left(I(g_{-\kappa(i)}(X_i), Y_i) \hat{L}_{cv}(g) \right)^2 \text{ (test t de Welch)}$
- 3. variante basique : une seule validation croisée à blocs identiques pour tous les modèles

Validation croisée stratifiée

Validation croisée stratifiée unique

Estimation basique de la variance

Validations croisées

Exemple

- ▶ on reprend le même exemple
- ▶ un jeu de données unique
- ► 50 validations croisées stratifiées

Validations croisées

Bilan

Comportement général

- plus le modèle est complexe plus le tirage des blocs a d'effets
- la variance de la perte estime plutôt bien la variance induite par le tirage des blocs
- la stratification a des effets complexes sur la variance de l'estimateur

Bonnes pratiques

- à minima, comparer les modèles sur les mêmes blocs (une seule partition fixée)
- si possible, étudier l'effet du tirage des blocs, au moins sur quelques modèles importants

Concrètement

K plus proches voisins

- 1. tirer un découpage en P blocs, C_1, \ldots, C_P
- 2. pour *k* allant de 1 à N (impair seulement)
 - 2.1 pour i allant de 1 à p
 - 2.1.1 « calculer » le classifieur $g_{-i,k}$ des k plus proches voisins sur tous les blocs sauf C_i
 - 2.1.2 calculer ses prévisions sur Ci
 - 2.2 calculer $\hat{L}_{cv}(g_k)$ à partir des prévisions sur les C_i
- 3. $k^* = \arg\min_k \hat{L}_{cv}(g_k)$
- 4. « calculer » le classifieur g_{k^*} des k^* plus proches voisins sur l'ensemble des données

Attention

- $\hat{L}_{cv}(g_{k^*})$ est un estimateur biaisé de $L(g_{k^*})$
- en théorie, il faudrait utiliser un nouveau jeu de données pour estimer $L(g_{k^*})$
- ou une nouvelle validation croisée...

Validation croisée aléatoire

Objectifs

- séparer la proportion apprentissage/validation du nombre de modèles construits
- réduire l'impact du tirage des blocs

Méthode

- ▶ paramètres : une proportion p et un nombre de tirages B
- ▶ on tire aléatoirement B sous-ensembles de $\{1,...,N\}$, $A_1,...,A_B$ avec $|A_k| = Np$
- ▶ g_b : modèle appris sur A_b
- estimateur du risque

$$\hat{L}_{rrcv}(g) = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{N - |A_b|} \sum_{i \notin A_b} I(g_b(X_i), Y_i)$$

En pratique

Paramètres

- **▶** *B* :
 - considération de coût en temps de calcul
 - ▶ un grand B réduit la variance induite par les tirages
- ▶ p:
 - ▶ rôle comparable à K pour la validation croisée classique
 - valeurs typiques entre 0,5 et 0,8

Autres aspects

- stratification possible
- appariement conseillé (mêmes tirages pour un ensemble de modèles)

attention très grande variance

Validations croisées aléatoires

Validations croisées aléatoires sans appariement

TP caret

Objectifs

- prise en main de caret
- expérimentation de la variabilité des résultats

Mise en œuvre

- 1. installer le package caret de R
- 2. sélection automatique des paramètres de la *kernel ridge regression* par validation croisée :
 - 2.1 à partir d'une liste de vecteurs d'indices (les C_k)
 - 2.2 liste engendrée par createFolds de caret
- 3. prise en main de la fonction train de caret :
 - 3.1 fonctionnement « automatique »
 - 3.2 contrôle fin pour les appariements par exemple

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Bootstrap

Méthode statistique

- ▶ Estimateur $\hat{\theta} = f(X_1, ..., X_N) = f(\mathcal{D})$
- Échantillon bootstrap $\mathcal{D}^b = (X_1', \dots, X_N')$: tirage uniforme avec remise dans \mathcal{D}
- ▶ on approche la distribution de $\hat{\theta}$ (induite par \mathcal{D}) par celle de $\hat{\theta}(\mathcal{D}^b)$

Application

- application canonique : estimation de la variance d'un estimateur
- ▶ pour B échantillons (de l'ordre de 500 au moins) :

$$\widehat{\sigma^2}_{boot}(\widehat{\theta}) = \frac{1}{B-1} \sum_{b=1}^{B} \left(\widehat{\theta}(\mathcal{D}^b) - \widehat{\theta}_{boot}(\mathcal{D}) \right)^2,$$

avec

$$\hat{\theta}_{boot}(\mathcal{D}) = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}(\mathcal{D}^b)$$

Utilisation en apprentissage

Approche originale (Efron 1979 [Efr79])

• estimateur étudié : $\hat{\theta} = L(g) - \hat{L}(g)$ où $\hat{L}(g)$ est le risque empirique

$$\hat{L}(g) = \frac{1}{N} \sum_{i=1}^{N} I(g(X_i), Y_i)$$

- estimation de l'espérance de $\hat{\theta}$ par bootstrap
- ▶ on a

$$\hat{ heta}_{boot}(\mathcal{D}) = rac{1}{B} \sum_{b=1}^{B} \left(\hat{L}(g_b) - \hat{L}_b(g_b)
ight),$$

où g_b désigne le modèle appris sur l'échantillon bootstrap \mathcal{D}^b et \hat{L}_b le risque empirique sur \mathcal{D}^b

▶ risque empirique corrigé : $\hat{L}_{boot}(g) = \hat{L}(g) + \hat{\theta}_{boot}(D)$

Utilisation en apprentissage

Estimation directe : *leave-one-out bootstrap* (Efron 1983 [Efr83])

- ▶ point de vue proche de la validation croisée aléatoire
- ▶ on sait que \mathcal{D}^b contient en moyenne 63,2 % de \mathcal{D}
- ▶ on peut donc estimer l'erreur sur $\overline{\mathcal{D}^b}$ (les 36,8 % restant)

$$\hat{L}_{loob}(g) = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{|\overline{\mathcal{D}^b}|} \sum_{i \in \overline{\mathcal{D}^b}} I(g_b(X_i), Y_i)$$

ightharpoonup biais parfois important (équivalent à la validation croisée à K=2 blocs)

Techniques de correction du biais

Bootstrap .632 (Efron 1983 [Efr83])

- ▶ le *leave-one-out bootstrap* surestime en général le risque
- compensation en combinant avec le risque empirique
- ▶ estimateur .632

$$\hat{L}_{.632}(g) = 0.368 imes \hat{L}(g) + 0.623 imes \hat{L}_{loob}(g)$$

Techniques de correction du biais

Bootstrap .632+ (Efron & Tibshirani 1997 [ET97])

- amélioration de l'estimateur .632 en cas de sur-apprentissage massif
- ► taux d'erreur sans information

$$\hat{\gamma} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} I(g(X_i), Y_j)$$

taux de sur-apprentissage relatif

$$\hat{\mathcal{R}} = rac{\hat{\mathcal{L}}_{loob}(g) - \hat{\mathcal{L}}(g)}{\hat{\gamma} - \hat{\mathcal{L}}(g)}$$

estimateur .632+

$$\hat{L}_{.632+}(g) = rac{0,368 imes (1-\hat{R})\hat{L}(g) + 0,632 imes \hat{L}_{loob}(g)}{1-0,368 imes \hat{R}}$$

Loo Bootstrap

Exemple

- ▶ toujours les mêmes données
- échantillons bootstrap identiques pour toutes les données
- versions testées :
 - correction de biais
 - ► leave-one-out
 - ▶ .632
- λ fixé
- ► *B* = 100 (relativement petite valeur)

Estimation de biais

Estimation de biais

Loo Bootstrap

Bootstrap .632

Bootstrap .632+

Bootstrap en pratique

En statistiques

- très nombreuses variantes
 - version paramétrique
 - version « régularisée »
 - etc.
- en général éloignées des considérations de l'apprentissage

En apprentissage

- bénéficie des mêmes bonnes pratiques que la validation croisée :
 - stratification
 - structuration
 - bootstrapping de toute la chaîne d'apprentissage
- généralement très coûteux
- bonne correction du biais avec les versions améliorées (sauf dans des cas extrêmes)

Bootstrap stratifié

Principe

- même idée générale que pour la validation croisée :
 - 1. découpage $\mathcal Y$ en sous-ensembles (naturellement les classes pour $|\mathcal Y|<\infty$)
 - 2. un échantillon bootstrap par sous-ensemble
 - 3. combinaison des sous-ensembles
- ► très classique en statistiques
- ne change rien aux procédures décrites jusqu'à présent

Bagging

Principe

- ▶ ne pas jeter les modèles g_b construits sur les échantillons bootstrap
- construire un modèle moyen $g = \frac{1}{B} \sum_{b=1}^{B} g_b$
- ▶ profiter du biais faible d'un modèle à grand variance
- composant essentiel des forêts aléatoires

Estimation Out-of-bag

- ▶ O_i : ensemble des \mathcal{D}^b qui ne contiennent pas i
- conduit à un estimateur $\hat{L}_{oob}(g)$

$$\hat{L}_{oob}(g) = \frac{1}{N} \sum_{i=1}^{N} I\left(\frac{1}{|O_i|} \sum_{b \in O_i} g_b(X_i), Y_i\right)$$

Bagging

Bonnes pratiques

- assez robuste au sur-apprentissage (par rapport au nombre d'échantillons)
- peu de paramètres à optimiser dans certains cas
 - ▶ il suffit de prendre B « grand » (500 à 5000)
 - pour les forêts aléatoires, on peut éventuellement optimiser le taux de sélection des variables

Stratification

- ▶ indispensable pour Y discret
- ▶ à intégrer dans le bootstrap
- n'est pas mise en œuvre par défaut dans certains packages (par exemple randomForest)
- cf la suite du cours

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Données structurées

Hypothèse fondamentale

- ▶ les données sont indépendantes et identiquement distribuées
- le ré-échantillonnage s'appuie largement sur cette hypothèse
- qui est fausse dans certains situations :
 - données temporelles
 - données spatiales
 - plus généralement : données structurées
- cœur du problème pour la validation croisée : la dépendance entre les blocs induit une sous-estimation des erreurs
- pour l'estimation de type loo bootstrap

Illustration

Données temporelles

- ▶ modélisation auto-régressive $Y_i \simeq f(Y_{i-k}, Y_{i-k+1}, \dots, Y_{i-1})$
- mauvaise idée :
 - ► considérer les couples (X_i, Y_i) avec $X_i = (Y_{i-k}, Y_{i-k+1}, \dots, Y_{i-1})$
 - utiliser une validation croisée classique : l'algorithme voit le futur!

Solutions ad hoc

- ▶ mécanisme rolling :
 - ▶ on apprend sur $Y_1, ..., Y_{i-1}$ et on évalue sur Y_i
 - en faisant varier i de k + 1 à N
- variantes possibles :
 - prévisions à horizon supérieur à 1
 - ▶ origine mouvante (ne pas partir de 1 mais de i T)

Validation structurée

Solution générale (Roberts et al 2016 [RBC+17])

- objectif : « garantir » l'indépendance entre les blocs
- solution : validation croisée structurée (block cross-validation)

Structures

- idée de base : découper les données en structures indépendantes (block par opposition aux folds)
- ▶ construire les blocs aléatoirement à partir des structures
- difficulté : déterminer les structures

Cas temporel

Cas temporel

- il suffit de prendre des observations contiguës temporellement
- on peut éventuellement supprimer les observations qui induisent des superpositions

Exemple

- modélisation auto-régressive d'ordre k
- ▶ données mise sous la forme $X_i = (Y_{i-k}, Y_{i-k+1}, \dots, Y_{i-1})$
- ▶ structures de la forme $S_p = ((X_p, Y_p), \dots, (X_{p+l}, Y_{p+l}))$
- ▶ on garde un écart de l + k + 1 entre les structures :
 - \triangleright S_p puis $S_{p+l+k+1}$
 - ▶ cela revient à découper la série en tranches de la forme Y_{p_k} à Y_{p+l} et à supprimer les superpositions
- classiquement blocs = structures

Bonnes pratiques

État de l'art

- les publications ne sont pas très concluantes sur le sujet :
 - exemples connus où une validation croisée naïve ne fonctionne pas
 - mais aussi des études dans lesquelles la situation est moins claire
- le cas temporel est le plus étudié, mais les autres structures sont importantes aussi (effets géographiques, notamment)

Que retenir?

- pour les données temporelles, il semble que même une VC naïve soit plus efficace que l'approche rolling
- compromis délicat entre la gestion des dépendances et la bonne utilisation des données
- éviter le super naïf : ne jamais évaluer sur des données déjà vues !

Plan

Introduction

Compromis biais variance

Leave-one-out

Validation croisée

Bootstrap

Données structurées

Que faut-il valider/bootstrapper?

Processus d'apprentissage

- pré-traitement (normalisation, ACP, etc.)
- équilibrage des données (cf le cours spécifique)
- sélection de variables
- choix des méta-paramètres (ou du modèle)

À valider/boostrapper

- ▶ Tout!
- plus sérieusement :
 - la question se pose surtout pour les pré-traitements
 - tout le reste a une influence très importante sur le résultat final
 - on risque le sur-apprentissage et/ou une sous-estimation des erreurs futures en ne validant pas certains aspects
- principe : la validation croisée doit reproduire l'intégralité du processus d'apprentissage

Validation à deux niveaux

Sur-apprentissage de « second ordre »

Dans certaines situations, le processus d'apprentissage est trop complexe pour que les estimations de performances utilisées pour l'ajuster restent valides après cet ajustement

Validation croisée à deux niveaux

- 1. découper aléatoirement les données en K blocs C_1, \ldots, C_K
- 2. pour e allant de 1 à K
 - 2.1 pour *i* dans $\{1, ..., K\} \setminus \{e\}$
 - 2.1.1 apprendre les modèles étudiés sur les C_j avec $j \neq e$ et $j \neq i$
 - 2.1.2 calculer les prévisions sur des modèles sur le bloc C_i
 - 2.2 calculer $\hat{L}_{cv}^{-e}(g)$ pour chaque modèle g
 - 2.3 apprendre le meilleur modèle au sens de $\hat{L}^{-e}_{cv}(g)$ sur les C_j avec $j \neq e$
 - 2.4 calculer les prévisions du modèle sur C_e
- 3. calculer $\hat{L}_{cv}(g)$
- 4. appliquer une validation croisée classique (sur les mêmes blocs) pour obtenir le modèle final

Conclusion

Message principal

Toujours utiliser une méthode valide d'estimation du risque d'un modèle

Mais aussi...

- valider/boostrapper l'intégralité de la chaîne d'apprentissage
- attention aux dépendances cachées entre blocs : structurer le re-échantillonnage
- stratifier et équilibrer
- tout ceci coûte cher!

Bibliographie I

B Efron

Bootstrap methods: Another look at the jackknife.

Ann. Statist., 7(1):1-26, 01 1979.

Bradley Efron.

Estimating the error rate of a prediction rule: Improvement on cross-validation.

Journal of the American Statistical Association, 78(382):316-331, 1983.

Bradley Efron and Robert Tibshirani.

Improvements on cross-validation: The .632+ bootstrap method. Journal of the American Statistical Association, 92(438):548-560, 1997.

David R. Roberts, Volker Bahn, Simone Ciuti, Mark S. Bovce, Jane Elith, Gurutzeta Guillera-Arroita, Severin Hauenstein, José J. Lahoz-Monfort, Boris Schröder, Wilfried Thuiller, David I. Warton, Brendan A. Wintle, Florian Hartig, and Carsten F. Dormann. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure.

Ecography, 2017.

Licence

Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International.

https://creativecommons.org/licenses/by-sa/4.0/deed.fr

Version

Dernier commit git: 2018-09-05

Auteur : Fabrice Rossi (Fabrice.Rossi@apiacoa.org)

Hash git: 1726ab8d06f33e54d8b61a3c473b2724ef18d86c