SUMMARY REPORT: AMBIENT AIR MONITORING FOR ASBESTOS AND RESPIRABLE DUSTS BAY AREA RAPID TRANSIT SYSTEM-WIDE STATIONS WITH ASBESTOS-CONTAINING FIREPROOFING

PREPARED FOR:

MR. JONATHAN ROSSEN, CIH, CSP BAY AREA RAPID TRANSIT (BART) SYSTEM SAFETY DEPARTMENT 300 LAKESIDE DRIVE, 18TH FLOOR OAKLAND, CA 94612

PREPARED BY:

ENVIRONMENTAL, INC.Engineering and Environmental Consultants

1 LAKESIDE DRIVE, SUITE 215 OAKLAND, CA 94612 TEL: (510) 645-6200 EFAX: (415) 962-0736

SCA PROJECT NO.: K-11983

MARCH 15, 2016

SUMMARY REPORT AMBIENT AIR MONITORING FOR ASBESTOS & RESPIRABLE DUST **BAY AREA RAPID TRANSIT** SYSTEMWIDE STATIONS WITH ASBESTOS-CONTAINING FIREPROOFING

CONDUCTED FOR

MR. JONATHAN ROSSEN, CIH, CSP **BAY AREA RAPID TRANSIT (BART)** SYSTEM SAFETY DEPARTMENT 300 LAKESIDE DRIVE, 18TH FLOOR **OAKLAND, CA 94612**

MARCH 15, 2016

SCA PROJECT NO. K-11983

PREPARED BY:

GLENN R. CASS, PE, CIH, CAC #92-0092 VICE PRESIDENT

> SCA ENVIRONMENTAL, INC. 1 LAKESIDE DRIVE, SUITE 215 OAKLAND, CA 94612 TEL: (510) 645-6200

EFAX: (415) 962-0736

Abstract

This report summarizes the observations and results of ambient air testing for asbestos and total respirable dust conducted at the various Bay Area Rapid Transit (BART) stations with asbestos-containing fireproofing and/or vinyl asbestos floor tiles and mastics. The monitoring was conducted from February 22-24, 2016. The purpose of monitoring the stations with asbestos-containing fireproofing was to determine the level of airborne asbestos in the stations and to assess the potential hazards to occupants.

The sample results revealed airborne asbestos fiber levels ranging from <0.001 to 0.002 fibers/cc based on Phase Contrast Microscopy (PCM) analyses. These results indicate that the airborne asbestos concentration at all sites tested is statistically comparable to background levels, and is not affected by the presence of asbestos-containing construction materials, such as asbestos-containing fireproofing found throughout the structural members.

The downtown San Francisco stations experience black soot from the Muni-Metro system sharing a similar tunnel and ventilation system and from rail grinding activities. Airborne sampling was conducted for total respirable dust. In summary, total respirable dust concentrations were found to be as follows:

- Total respirable dust levels at the Embarcadero Center Station's Service Area adjacent to the Bike Room on the Concourse Level had a concentration ranging from 0.01 to 0.112 mg/m³ with a median concentration of 0.063 mg/m³, or well under the OSHA Permissible Exposure Limit of 5.0 mg/m³.
- Total respirable dust levels at the Embarcadero Center Station's Station Agent's Booth on the Concourse Level had a concentration ranging from 0.008 to 0.171 mg/m³ with a median concentration of 0.077 mg/m³, or well under the OSHA Permissible Exposure Limit of 5.0 mg/m³.
- Total respirable dust levels at the Montgomery Station's Fan Room 301 on the Platform Level had a concentration ranging from 0.011 to 0.103 mg/m³ with a median concentration of 0.068 mg/m³, or well under the OSHA Permissible Exposure Limit of 5.0 mg/m³.
- Total respirable dust levels at the Montgomery Station's Station Agent's Booth on the Concourse Level had a concentration ranging from 0.008 to 0.116 mg/m³ with a median concentration of 0.06 mg/m³, or well under the OSHA Permissible Exposure Limit of 5.0 mg/m³.

Finally, settled dust samples from the track bed at the Montgomery, Powell and Civic Center Station and the Glen Park Station Fan Room were analyzed for metal content with the following results (see Table 1):

- The Montgomery Street trackside soot sample has an elevated concentration (8,400 mg/kg) of zinc over the TTLC concentration of 5,000mg/kg, defining this material as a hazardous waste. STLC testing of cadmium, chromium, copper, lead and zinc are needed to determine the leachability of these metals. Previous soot sampling in 2011 showed similar concentrations for chromium, copper, lead and zinc for this station.
- The Powell Street trackside soot sample has an elevated concentration of cadmium (390 mg/kg), chromium (670 mg/kg), copper (3,100 mg/kg) and zinc (12,000 mg/kg) exceeding the Title 22 TTLC for each (see Table 7). STLC testing of cadmium, chromium, copper, lead, nickel and zinc are needed to determine the leachability of these metals. Previous soot sampling in 2011 showed similar concentrations for chromium, copper, lead, nickel and zinc for this station.
- The Civic Center trackside soot sample has an elevated concentration of antimony and copper over the TTLC concentrations of 500 and 2,500 mg/kg, respectively, defining this material as a hazardous waste. STLC testing of cadmium, chromium, copper, lead and zinc are needed to determine the leachability of these metals. Previous soot sampling in 2011 showed similar concentrations for chromium, copper, lead and zinc.

Table 1: CAM-17 Settled Dust Analyses

Metal	Glen Park Fan Room Soot TTLC (mg/kg)	Glen Park Fan Rm. Soot STLC (mg/l)	Mont- gomery Track Soot TTLC (mg/kg)	Powell Station Track Soot TTLC (mg/kg)	Civic Center Track Soot TTLC (mg/kg)	Title 22 Hazardous Waste TTLC Standard (mg/kg)	Title 22 Hazardous Waste STLC Std. (mg/l)	Comments
Antimony	50	NR	21	40	17,000 ⁽¹⁾	500	1.5	Below Title 22 TTLC Std. except
								Civic Center
Arsenic	18	NR	11	25	75	500	5.0	Below Title 22 TTLC Std.
Barium	460	NR	160	570	1,500	10000	100	Below Title 22 TTLC Std.
Beryllium	ND	NR	ND	ND	ND	75	0.75	Below Title 22 TTLC Std.
Cadmium	58	2.9	45 ⁽¹⁾	390(1)	ND	100 ⁽¹⁾	1.0	Above Title 22 STLC Std. @ Glenn Park & TTLC Std. @ Powell
Chromium	260	9.2	98 ⁽¹⁾	670 ⁽¹⁾	310 ⁽¹⁾	500 (CrVI)	5	Above Title 22 STLC Std. @ Glen Park & TTLC Std. @ Powell
Cobalt	30	NR	14	21	19	8000	80	Below Title 22 TTLC Std.
Copper	3,700	6.1	530 ⁽¹⁾	3,100 ⁽¹⁾	8,100(1)	2,500	25	Above Title 22 TTLC Std. for Glen Park, Powell & Civic Center
Lead	480	1.7 STLC & 0.14 TCLP	170 ⁽¹⁾	410 ⁽¹⁾	420 ⁽¹⁾	1,000	5.0	Below Title 22 TTLC & STLC Stds.
Mercury	ND	NR	0.32	0.58	0.43	20	0.2	Below Title 22 TTLC Std.
Molybdenum	57	NR	17	100	84	3500	350	Below Title 22 TTLC Std.
Nickel	190	NR	52	430 ⁽¹⁾	$230^{(1)}$	2000	20	Below Title 22 TTLC Std.
Selenium	ND	NR	ND	ND	ND	100	1.0	Below Title 22 TTLC Std.
Silver	ND	NR	0.99	1.9	8.1	500	5	Below Title 22 TTLC Std.
Thallium	ND	NR	ND	ND	ND	700	7.0	Below Title 22 TTLC Std.
Vanadium	34	NR	12	22	16	5000	24	Below Title 22 TTLC Std.
Zinc	9,800	790	8,400(1)	12,000 ⁽¹⁾	1,800 ⁽¹⁾	2400	250	Above Title 22 TTLC & STLC Stds. @ Glen Park & Above TTLC Std. @ Montgomery & Powell St. Stations

NR = None Recorded

ND = **None Detected**

⁽¹⁾ Requires STLC and TCLP analyses to fully characterize waste disposal requirement, but generally is considered a hazardous waste

Project Personnel

BAY AREA RAPID TRANSIT (BART)	
Certified Industrial Hygienist	Jonathan Rossen, CIH, CSP
SCA ENVIRONMENTAL, INC. (SCA)	
Certified Industrial Hygienist	Glenn R. Cass, PE, CIH, CAC #92-0092

Table of Contents

Tables

- 1. CAM-17 Settled Dust Analyses
- 2. Summary of Asbestos Standards
- 3. Summary of Respirable Dust Standards
- 4. Summary of Airborne Asbestos Sampling Results Stations with ACM Fireproofing
- 5. Respirable Dust Concentrations
- 6. Spot PM₁₀ and PM_{2.5} Readings
- 7. Settled Dust CAM-17 TTLC Metal Analyses
- 8. Glen Park Station Soot CAM-17 Metal Analyses Results
- 9. Glen Park Station Soot Bulk Asbestos Analyses

Attachments

- 1. Laboratory Results Airborne Asbestos at ACM Fireproofing Areas
- 2. Respirable Dust (PM₁₀) Sampling Results Embarcadero & Montgomery Street Stations
- 3. San Francisco Line Spot Sampling Results for PM₁₀ and PM₂.
- 4. CAM-17 Settled Dust Metals Analyses Montgomery, Powell & Civic Center Stations
- 5. CAM-17 Settled Dust Metals Analyses Glen Park Station
- 6. Glen Park Station Soot Bulk Asbestos Analyses
- 7. SCA Personnel Certifications

1.0 Introduction

This report summarizes the sampling results collected during the ambient air monitoring for asbestos conducted in the Bay Area Rapid Transit's system-wide stations with asbestos-containing fireproofing. The airborne asbestos sampling included the following stations:

- Powell Street Station, San Francisco, CA
- Montgomery Street Station, San Francisco, CA
- 12th Street Station, Oakland, CA
- 19th Street Station, Oakland, CA
- MacArthur Station, Oakland, CA
- Berkeley Main Station, Berkeley, CA
- Ashby Station, Berkeley, CA
- 16th Street Station, San Francisco, CA
- 24th Street Station, San Francisco, CA
- Rockridge Station, Oakland, CA
- Lafayette Station, Lafayette, CA

SCA Environmental, Inc. (SCA) conducted the monitoring from February 22, 2016 to February 24, 2016 at the request of the Bay Area Rapid Transit District's System Safety Department.

Portions of the systems' structural steel are protected with fireproofing that contains 5 to 10% Chrysotile asbestos. In addition, several other construction materials contain asbestos (including various vinyl floor tiles and mastics in various Train Control Rooms throughout the legacy stations. Asbestos is regulated as a respiratory carcinogen. In order to verify that the operations and maintenance program implemented for this building are working properly, testing for the levels of airborne asbestos fibers is conducted periodically.

2.0 Methodology

Asbestos

Ambient air samples for asbestos were collected at the following stations and quantities:

San Francisco

- Powell Street Station (2)
- Montgomery Street Station (2)

Oakland

- 12th Street Station (1)
- 19th Street Station (1)
- MacArthur Station (1)
- Berkeley Main Station (1)
- Ashby Station (1)

M-Line

- 16th Street (1)
- 24th Street (1)

C-Line

- Rockridge (1)
- Lafayette (1)

All the asbestos samples were analyzed by Phase Contrast Microscopy (PCM), except for the project blanks, in accordance with the National Institute for Occupational Safety and Health (NIOSH) method 7400. PCM results are calculated in fibers per cubic centimeter (f/cc).

All air samples were collected for an approximately 24 hour period using Buck Libra low flow, AC-operated or similar air pumps to maintain even flow rates. Samples were collected on Zefon International Inc. Model Z008BA 25-millimeter, 0.8-micrometer pore size, mixed cellulose ester membrane filters in open-faced cassettes with conductive cowls. Pump flow rates were calibrated against a primary standard.

The contract laboratories that provided analytical asbestos services for the project are summarized below:

Laboratory	Analysis Type	Accreditation
EMSL Analytical, Inc.	Phase Contrast	National Voluntary Laboratory Accreditation Program
San Leandro, CA	Microscopy	(NVLAP # 101048-3).
	(PCM) Asbestos	California Environmental Laboratory Accreditation
	Analyses	Program (ELAP #1620).
Asbestos TEM Laboratories,	Bulk Asbestos	National Voluntary Laboratory Accreditation Program
Inc.,	Analysis by	(NVLAP #101891-0).
Berkeley, CA	Polarized Light	California Environmental Laboratory Accreditation
	Microscopy (PLM)	Program (ELAP #1866).

Respirable Dust

Ambient sampling for total respirable dust was conducted at two downtown San Francisco stations, which experience black soot and dust deposits associated with the Muni-Metro system within the same tunnels and ventilation system and wheel grinding activities. Total respirable dust sampling was conducted at:

- Montgomery Street Station, San Francisco, CA
- Embarcadero Station, San Francisco, CA

Particulate readings were made utilizing a TSI Dust-Trak, which measures respirable dust or PM_{10} levels. Measurements are reported as mg/m^3 .

Particulate matter (PM) is a complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid coatings, and small droplets of liquid. These particles vary greatly in size, shape and chemical composition, and can be made up of many different materials, such as metals, soot, soil, dust, mold and fungi. Particles 10 microns or less in diameter are defines as "respirable particulate matter" or PM_{10} . Fine particles are 2.5 microns or less in diameter ($PM_{2.5}$) and can contribute significantly to regional haze and reduction in visibility.

Spot Particulate Sampling.

In addition to the longer-term respirable dust sampling at the two BART stations noted above, SCA conducted spot sampling at agent booths, ticket machines and trackside to determine typical PM₁₀ and PM_{2.5} concentrations for BART passengers and employees. Stations sampled included 24th Street through Embarcadero in San Francisco.

Particulate readings were made utilizing a TSI Dust-Trak, which measures PM _{2.5} and PM₁₀ levels.

Settled Dust Sampling

CAM-17 metal analyses were completed for settled dust samples collected in the Montgomery, Powell and Civic Center track beds by EPA Method 6010B/7470A by McCampbell Analytical Inc.'s ELAP-accredited laboratory in Pittsburg, CA. Additionally, CAM-17 TTLC, STLC and TCLP analyses were recently completed for settled dust in the Glen Park BART Station, which have been included herein for informational purposes. PLM analyses for asbestos were also recently conducted at the Glen Park Fan Room.

3.0 Applicable Standards

Asbestos

A summary of airborne asbestos standards applicable to this project is tabulated in Table 2 as follows:

Table 2: Summary of Asbestos Standards

Source	Level	Nature	Comments
Cal/OSHA ¹	0.1 f/cc	Occupational & mandatory	8-hour Time Weighted Average (TWA) Permissible Exposure Level (PEL) (triggers OSHA required training, medical examinations, etc.)
	1.0 f/cc		Excursion Limit (EL) for 30 minutes sampling duration
NIOSH ²	0.1 f/cc	Recommended	Occupational PEL
ACGIH ³	0.2 f/cc	Recommended	Occupational Threshold Limit Value (TLV) Notice of Intended Changes
Calif. Prop 65 ⁴	vague	Mandatory	Standard and monitoring method are unclear, but generally interpreted as comparable to outside ambient air
Bay Area Rapid	0.01 f/cc	Contractual &	Ambient air action level for occupied areas via PCM.
Transit	(PCM)	mandatory	Originating from AHERA ⁵ regulations and adopted by Bay Area Rapid Transit.
	70 str/mm ² (TEM)	Contractual & mandatory	Ambient air action level for occupied areas via TEM. Originating from AHERA ⁵ regulations and adopted by Bay Area Rapid Transit.

- 1 California Department of Industrial Relations, Division of Occupational Safety and Health, 8 CCR 1529.
- 2 National Institute of Occupational Safety and Health
- 3 American Conference of Governmental Industrial Hygienists, 2004
- 4 California Proposition 65
- 5 Asbestos Hazard Emergency Response Act (AHERA); 40 CFR Part 763

Respirable Dust

Extensive research indicates that exposure to PM_{10} and $PM_{2.5}$ levels exceeding current air quality standards is associated with increased risk of hospitalization for lung and heart-related respiratory illness, including emergency room visits for asthma. PM exposure is also associated with increased risk of premature deaths, especially in the elderly and people with pre-existing cardiopulmonary disease. In children, studies have shown associations between PM exposure and reduced lung function and increased respiratory symptoms and illnesses.

Table 3 below summarizes the applicable published Cal/OSHA and ACGIH permissible exposure limits for respirable dust as well as the California Air Resources Board's standards. Note that some of the addressed standards cover office environments and are not occupational exposure standards for BART station employees. In addition, many of these standards are arithmetic mean levels over a 24-hour or annual period; therefore, exposure within the BART system needs to be time-weighed against other daily or annual exposures outside the BART system.

Table 3: Summary of Respirable Dust Standards

Contaminant	Source	Level	Nature	Comments
Particulate	N/A	ambient	N/A	Compare against outdoor readings to indicate effectiveness of filter units in air handling system
	Cal/OSHA ¹	5 mg/m ³	Mandatory/ Occupational	8-hour TWA PEL for respirable dust
		10 mg/m^3		8-hour TWA PEL for total dust
	ACGIH ²	10 mg/m ³	Recommended/ Occupational	8-hour TWA TLV resulting in lung disorders
	EPA ³	0.05 mg/m ³	Recommended/ Indoor Occupancy (Offices)	National Ambient Air Quality Standard
Respirable Particles (PM ₁₀)	ASHRAE ⁴	0.05 mg/m ³	Recommended Indoor Occupancy (Offices)	Based on protecting office environments against respiratory morbidity in the general population and avoiding exacerbation of asthma with no carcinogens. Indoor concentrations are normally lower. Guideline level may lead to unacceptable deposition of "dust."
	CARB ⁵	0.05 mg/m ³ 0.02 mg/m ³	Recommended by CARB	24 hour California Air Resources Board Maximum Indoor Level Annual arithmetic mean level
	EPA ³	0.15 mg/m ³	Recommended by LEED Program (for Offices)	National Ambient Air Quality Standard
	LEED ⁶	0.05 mg/m ³	Recommended by LEED Program (for Offices) ⁶	8-hour TWA PEL for respirable dust for office environments using a TSI Sidepak Aerosol Monitor or PEM Sampler with PM ₁₀ lab analyses
Respirable Particles (PM _{2.5})	CARB ⁵	0.02 mg/m ³	Recommended by CARB	Annual arithmetic mean level
Table 1 Factories	EPA ³	0.035 mg/m ³	Recommended by EPA	24-hr arithmetic mean level

Table 1 Footnotes:

- California Department of Industrial Relations, Division of Occupational Safety and Health, Title 8 General Safety Orders §5155.
- 2. American Conference of Governmental Industrial Hygienists, 2016, Threshold Limit Values for Chemical Substances and Physical Agents
- 3. U.S. Environmental Protection Agency, National Ambient Air Quality Standard.
- 4. ASHRAE Standards 62-1989R, Appendix C-1, August 1996, and 62.1-2004, Appendix B.
- 5. California Air Resources Board, June 2005, "Draft for Public Review Report to the California Legislature Indoor Air Pollution in California," Table 4.1.
- 6. U.S. Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED), Indoor Air Quality testing, credit 3.2, November 2008.

CAM-17 Metals

Total Threshold Limit Concentrations (TTLC), Soluble Threshold Limit Concentrations (STLC), and Toxicity Characteristic Leaching Procedure (TCLP) limits are published under Title 22 of the California Code of Regulations §662261.24 for classifying hazardous waste. Applicable standards for the CAM-17 metals are included in Tables 1, 7 and 8 herein.

4.0 Results and Discussion

Asbestos

Sampling was conducted as part of the BART's Ambient Air Quality Monitoring Program, since the listed stations have asbestos-containing fireproofing. Sampling was conducted for an approximately 24-hour period from February 22 to February 24, 2016 in the San Francisco stations and February 23 to February 24, 2016 in the East Bay Stations.

At the request of Mr. Jonathan Rossen, CIH, CSP within BART's System Safety Department, SCA Environmental, Inc. (SCA) conducted visual inspections and ambient air testing. SCA's Environmental Scientist, Mr. Jerry Cook (Certified Asbestos Consultant #01-2925), conducted work under the direct supervision of Mr. Glenn Cass, PE, CIH of SCA. Mr. Cass is a Cal/OSHA registered Certified Asbestos Consultant (CAC #92-0092) and a Certified Industrial Hygienist (CIH).

The ambient air sampling results for the Stations are summarized in Table 4 below. The laboratory reports and field data sheets are included as Attachment 1. All observed asbestos-containing fireproofing was noted to be in "good" condition. No notable areas of imminent danger were observed within the representative areas viewed by SCA's Surveyor. Asbestos fireproofing on the Concourse Level of the Powell Street Station was significantly abated since the prior ambient air sampling in May 2011.

Background airborne fiber concentrations by PCM were as follows:

Table 4: Summary of Airborne Asbestos Results – Stations with ACM Fireproofing

Station	Location	Sample I.D.	Results	Comments
Station	Location	Sample 1.D.	(fibers/cc)	Comments
Lafavatta	Train Control	I AE TC102 1		Wall below the EDA's DCM
Lafayette	Train Control	LAF-TC103-1	< 0.001	Well below the EPA's PCM
D 1 1 1	Room w/VAT	DOGY 202 4	0.004	Clearance Air Standards of 0.01 f/cc
Rockridge	Janitor's Room 203	ROCK-203-1	0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
MacArthur	Break Room 102	MAC-102-1	0.002	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
Berkeley	Break Room 108	BERK-108-1	< 0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
Ashby	Elevator Room 204	ASH-204-1	< 0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
19 th St. Oakland	Mech. Room	19-108A-1	< 0.001	Well below the EPA's PCM
	108A			Clearance Air Standards of 0.01 f/cc
12 th St. Oakland	Electrical Room	12-107C-1	< 0.001	Well below the EPA's PCM
	107C			Clearance Air Standards of 0.01 f/cc
Montgomery	Coffee Shop	MONT-110-1	< 0.001	Well below the EPA's PCM
	Storage Rm.			Clearance Air Standards of 0.01 f/cc
Montgomery	Storage Room 111	MONT-111-2	< 0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
Powell	Police Break Room	POW-POL-BK-	< 0.001	Well below the EPA's PCM
		2		Clearance Air Standards of 0.01 f/cc
Powell	Storage Room 110	POW-110-1	< 0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
16 th St. Mission	Mech. Room 101A	16-101A-1	< 0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc
24 th St. Mission	Mech. Room 101A	24-101A-1	< 0.001	Well below the EPA's PCM
				Clearance Air Standards of 0.01 f/cc

All ambient station air samples were below BART's Perimeter Action Level of 0.01 fibers per cubic centimeter (fibers/cc). The results were generally found to be comparable to the previous sampling rounds completed by SCA and other Consultants.

Respirable Dust (PM₁₀)

SCA sampled for respirable dust at two San Francisco Stations to determine typical airborne dust concentrations. Sampling occurred during typical daytime and nighttime operations with the fans on as well as overnight. The purpose of this sampling was to determine the concentrations of black carbon soot arising from the Muni-Metro system, which shares a common ventilation system.

Total respirable dust concentrations were found to be as follows:

Table 5: Respirable Dust Concentrations

	Respirable Dust Concentrations Respirable Dust Concentration									
			_			ļ				
Location	Start	Sampling	Max.	Min. Level	Average	Permissible	Comments			
	Date	Time	Level	(mg/m^3)	Level	Exposure				
			(mg/m^3)		(mg/m3)	Limit				
						(mg/m^3)				
Embarcadero	2/22/16	19:30 hrs.	0.112	0.01	0.063	5.0	Well Below			
Concourse							8-hr. PEL			
Level										
Central										
Station @										
Bike Room										
Embarcadero	2/22/16	20:06 hrs.	0.171	0.008	0.077	5.0	Well Below			
Concourse							8-hr. PEL			
Level South										
Station										
Agent's										
Booth										
Montgomery	2/23/16	22:20 hrs.	0.103	0.011	0.068	5.0	Well Below			
Platform							8-hr. PEL			
Level										
Station Fan										
Room 301										
Montgomery	2/23/16	22:21 hrs.	0.116	0.008	0.06	5.0	Well Below			
Concourse							8-hr. PEL			
Level South										
Station										
Agent's										
Booth										

All sample results were found to be well under Cal/OSHA's occupational exposure standard of 5.0 mg/m³.

Spot PM₁₀ and PM_{2.5} Reading

The results of spot PM₁₀ and PM_{2.5} readings for various San Francisco Line stations are presented in Table 6.

Table 6: Spot PM₁₀ and PM_{2.5} Readings

				PM ₁₀ Concentrations (mg/m ³)			PM _{2.5} Co	PM _{2.5} Concentrations (mg/m ³)		
Station	Date	Time	Location	Max	Avg.	Min.	Max	Avg.	Min	
CAAQS Std. (1)					0.05			0.035		
Cal/OSHA 8-hr. PE	L Respirable Du	ıst ⁽²⁾			5					
19th St.	2/22/2016	8:13 a.m.	Agent Booth	0.055	0.052	0.048	0.035	0.033	0.029	
19th St.	2/22/2016	8:19 a.m.	Lower Trackside	0.081	0.071	0.061	0.065	0.048	0.035	
12th St.	2/22/2016	8:23 a.m.	Trackside	0.11	0.009	0.077	0.065	0.055	0.044	
12th St.	2/22/2016	8:43 a.m.	Ticket Machines	0.065	0.065	0.065	0.034	0.034	0.034	
12th St.	2/22/2016	8:47 a.m.	Agent Booth	0.045	0.042	0.039	0.034	0.03	0.026	
Montgomery	2/22/2016	9:57 a.m.	North Station Agent Booth	0.081	0.052	0.036	0.043	0.036	0.033	
Montgomery	2/22/2016	10:02 a.m.	North Ticket Machines	0.081	0.044	0.018	0.073	0.058	0.052	
Montgomery	2/22/2016	10:27 a.m.	Lower Level Trackway	0.136	0.104	0.076	0.08	0.057	0.07	
Powell	2/22/2016	10:56 a.m.	Police Squad Room	0.134	0.036	0.022	0.026	0.02	0.017	
Powell	2/22/2016	11:00 a.m.	Ticket Machines	0.082	0.079	0.045	0.057	0.05	0.044	
Powell	2/22/2016	11:04 a.m.	South Agent Booth	0.094	0.045	0.017	0.045	0.031	0.013	
Powell	2/22/2016	11:27 a.m.	Lower Level Trackway	0.084	0.066	0.048	0.054	0.044	0.035	
16th St.	2/22/2016	11:49 a.m.	Agent Booth	0.138	0.063	0.033	0.071	0.044	0.025	
16th St.	2/22/2016	11:53 a.m.	Ticket Machines	0.05	0.031	0.013	0.08	0.043	0.017	
16th St.	2/22/2016	11:58 a.m.	Trackway	0.155	0.085	0.032	0.082	0.061	0.025	
24th St.	2/22/2016	12:16 p.m.	Ticket Machines	0.131	0.064	0.031	0.06	0.04	0.017	
24th St.	2/22/2016	12:21 p.m.	Agent Booth	0.1	0.052	0.015	0.055	0.036	0.012	
24th St.	2/22/2016	12:27 p.m.	Trackway	0.136	0.092	0.04	0.081	0.072	0.05	
Civic Center	2/22/2016	1:09 p.m.	North Agent Booth	0.128	0.081	0.056	0.067	0.05	0.039	
Civic Center	2/22/2016	1:13 p.m.	North Ticket Machines	0.133	0.094	0.057	0.079	0.06	0.037	
Civic Center	2/22/2016	1:18 p.m.	Lower Trackway	0.111	0.087	0.066	0.076	0.053	0.046	
Embarcadero	2/22/2016	1:28 p.m.	Trackway	0.159	0.118	0.089	0.08	0.071	0.051	
Embarcadero	2/22/2016	1:34 p.m.	South Agent Booth	0.07	0.041	0.023	0.046	0.031	0.019	
Embarcadero	2/22/2016	1:36 p.m.	South Ticket Machines	0.077	0.018	0.007	0.013	0.008	0.004	
			Maximum	0.159	0.118	0.089	0.082	0.072	0.07	
			Minimum	0.045	0.009	0.007	0.013	0.008	0.004	

-				PM ₁₀ Co	ncentrations	(mg/m^3)	PM _{2.5} Co	oncentrations	(mg/m^3)
Station	Date	Time	Location	Max	Avg.	Min.	Max	Avg.	Min
CAAQS Std. ⁽¹⁾					0.05			0.035	
Cal/OSHA 8-hr. PEL Respirable Dust ⁽²⁾				5					
•		Average	0.102	0.062	0.042	0.058	0.044	0.032	

Source: (1) California Environmental Protection Agency Air Resources Board, April 25, 2005

http://www.arb.ca.gov/research/aaqs/caaqs/pm/pm.htm

(2) Table AC-1 Permissible Exposure Limits for Chemical Contaminants

https://www.dir.ca.gov/title8/5155table ac1.html

None of the spot measurements found PM_{10} levels exceeding Cal/OSHA's 8-hr. Permissible Exposure Limit of 5.0 mg/m³; Cal/OSHA has no established occupational standard for $PM_{2.5}$. While the short-term $PM_{2.5}$ exposures exceed the EPA/CARB level of 0.35 mg/m³, the EPA/CARB standard is an annual average concentrations. Passengers and employees need to weigh their exposures outside of the station with the time-weighted exposures indoors. Note that the airborne levels within the BART system largely contain carbon, cellulose, silica and iron as contaminants, based on previous bulk sample analyses.

Cleanup of the stations with HEPA-filtered vacuums would help reduce the airborne dust concentrations. Use of power washing would require proper filtering and disposal of the waste water because of its metal content.

Settled Dust

Settled dust samples were collected within the track bed at three San Francisco Stations to determine their metal content. Analyses were completed by McCampbell Analytical Inc.'s ELAP-accredited laboratory. The results of the CAM-17 analyses are as follows:

Table 7: Settled Dust CAM-17 TTLC Metal Analyses

	Sample	MONT- '-202-1	San POW	nple ELL- -302-1	Sample CIVIC- SOOT-402-1		Title 22 Hazardous Waste
CAM-17 Metal	TTLC (ppm)	STLC/ TCLP (mg/l)	TTLC (ppm)	STLC/ TCLP (mg/l)	TTLC (ppm)	STLC/ TCLP (mg/l)	TTLC/ STLC Standard*
Antimony	21	N/A	40	N/A	17,000	TBD	500 / 15
Arsenic	11	N/A	25	N/A	75	N/A	500 /5.0
Barium	160	N/A	570	N/A	1,500	N/A	10000 / 100
Beryllium	ND	N/A	ND	N/A	ND	N/A	75 / 0.75
Cadmium	45	TBD	390	TBD	ND	N/A	100 / 1.0
Chromium	98	TBD	670	TBD	310	TBD	500 (CrVI) / 5
Cobalt	14	N/A	21	N/A	19	N/A	8000 / 80
Copper	530	TBD	3,100	TBD	8,100	TBD	2500 / 25
Lead	170	TBD	410	TBD	420	TBD	1,000 / 5.0
Mercury	0.32	N/A	0.58	N/A	0.43	N/A	20 / 0.2
Molybdenum	17	N/A	100	N/A	84	N/A	3500 / 350
Nickel	52	N/A	430	TBD	230	TBD	2000 /20
Selenium	ND	N/A	ND	N/A	ND	N/A	100 / 1.0
Silver	0.99	N/A	1.9	N/A	8.1	N/A	500 / 5
Thallium	ND	N/A	ND	N/A	ND	N/A	700 / 7.0
Vanadium	12	N/A	22	N/A	16	N/A	2400/ 24
Zinc	8,400	TBD	12,000	TBD	1,800	TBD	5000 / 250

ND = None Detected NR = Not Reported

N/A = TTLC results under 10% of standard, so extraction testing is not required

TBD = To Be Determined

TTLC = Total Threshold Limit Concentration in ppm or mg/kg

STLC = Soluble Threshold Limit Concentrations in mg/liter

TCLP = Toxicity Characteristic Leaching Procedure in mg/liter

The results of the CAM-17 analyses are as follows:

- The Montgomery Street trackside soot sample has an elevated concentration (8,400 mg/kg) of zinc over the
 TTLC concentration of 5,000 mg/kg, defining this material as a hazardous waste. STLC testing of
 cadmium, chromium, copper, lead and zinc are needed to determine the leachability of these metals.
 Previous soot sampling in 2011 showed similar concentrations for chromium, copper, lead and zinc for this
 station.
- The Powell Street trackside soot sample has an elevated concentration of cadmium (390 mg/kg), chromium (670 mg/kg), copper (3,100 mg/kg) and zinc (12,000 mg/kg) exceeding the Title 22 TTLC for each (see Table 7). STLC testing of cadmium, chromium, copper, lead, nickel and zinc are needed to determine the leachability of these metals. Previous soot sampling in 2011 showed similar concentrations for chromium, copper, lead, nickel and zinc for this station.
- The Civic Center trackside soot sample has an elevated concentration of antimony and copper over the TTLC concentrations of 500 and 2,500 mg/kg, respectively, defining this material as a hazardous waste. STLC testing of cadmium, chromium, copper, lead and zinc are needed to determine the leachability of these metals. Previous soot sampling in 2011 showed similar concentrations for chromium, copper, lead and zinc.

For comparison purposes, recent sampling of soot in the Glen Park Fan Room found the following CAM-17 metal concentrations:

Table 8: Glen Park Station Soot CAM-17 Metal Analyses Results

Sample	Metal	Measured	Measured	Title 22 Hazardous	Comments
I.D.	Metai	TTLC (ppm)	TCLP/STLC	Waste TTLC/STLC	Comments
1.D.		TIEC (ppm)	(mg/l)	Standard	
GP-MV-7-	Antimony	50	NR	500 / 1.5	Below Title 22 TTLC
Soot	Antimony	30	IVIC	300 / 1.3	Std.
5000	Arsenic	18	NR	500 /5.0	Below Title 22 TTLC
	Arsenic	10	IVIX	30073.0	Std.
	Barium	460	NR	10000 / 100	Below Title 22 TTLC
	Darium	400	IVIC	10000 / 100	Std.
	Beryllium	ND	NR	75 / 0.75	Below Title 22 TTLC
	Berymum	ND	TVIC	757 0.75	Std.
	Cadmium	58	2.9	100 / 1.0	Above Title 22 STLC
	Caumum	30	2.7	100 / 1.0	Std.
	Chromium	260	9.2	500 (CrVI) / 5	Above Title 22 STLC
	Cinomium	200	7.2	300 (C1 11) / 3	Std.
	Cobalt	30		8000 / 80	Below Title 22 TTLC
	Coount	30		00007 00	Std.
	Copper	3700	6.1	2500 / 25	Above Title 22 TTLC
	Сорры	2.00	V-2	2007.20	Std.
	Lead	480	1.7 STLC &	1,000 / 5.0	Below Tile 22 TTLC &
			0.14 TCLP	,	STLC Stds.
GP-MV-7-	Mercury	ND		20 / 0.2	Below Title 22 TTLC
Soot					Std.
	Molybdenu	57		3500 / 350	Below Title 22 TTLC
	m				Std.
	Nickel	190		2000 /20	Below Title 22 TTLC
					Std.
	Selenium	ND		100 / 1.0	Below Title 22 TTLC
					Std.
	Silver	ND		500 / 5	Below Title 22 TTLC
					Std.
	Thallium	ND		700 / 7.0	Below Title 22 TTLC
					Std.
	Vanadium	34		5000 / 24	Below Title 22 TTLC
					Std.
	Zinc	9,800	790	2400 / 250	Above Title 22 TTLC
					& STLC Stds.

NR = Not Reported ND = None Detected

Polarized Light Microscopy (PLM) analyses for asbestos for the Glen Park Fan Room MV-7 found the following results:

Table 9: Glen Park Station Soot Bulk Asbestos Analyses

Sample I.D.	Location	Asbestos content	Comment
GP-MV-7-Soot	Glen Park Fan Room MV-7	None detected	Non-asbestos
	Floor Soot		

In summary the Glen Park Station Fan Room MV-7 soot analyses found the following:

The CAM-17 tests for Sample I.D. GP-MV-7-Soot show metal concentrations well under Title 22 hazardous materials standards, with the exception of cadmium, chromium, copper and zinc. These results are similar to the last round of sampling completed of settled dust in the Electrical Rooms at 24th & Mission and Civil Center Stations in 2014. SCA recommends the use of a half face-piece HEPA-filtered respirator within these areas unless a negative exposure assessment is completed. In lieu of the respiratory protection

for tradespersons, the Contractor may wish to HEPA vacuum these areas in advance of their work to reduce contact with the settled dust. HEPA vacuum debris will need to be disposed as hazardous waste.

- 2. Asbestos: Settled dust is non-asbestos per PLM analyses [SCA Sample I.D. GP-MV-7-Soot]. The majority of the soot consists of fiberglass fragments, carbon, cellulose, silica and iron.
- 3. Lead: A lead concentration in the sample is 480 ppm or under the Consumer Products Safety Council's limits for paints set in 1978. This concentration is considered minimal; however, any lead concentration can pose a health hazard if good work practices are not utilized in dusty areas. While not considered a hazardous waste at these levels, lead dust controls and personnel protection are still required under 8 CCR Section 1532.1 unless personal air sampling is conducted for a negative exposure assessment. Cal/OSHA does not consider a dust mask as adequate protection for lead hazards so a half face-piece HEPA-filtered respirator should be used for work within the Fan Room if a negative exposure assessment is not completed and the Contractor does not undertake HEPA vacuuming in advance of their work. Workers should always wash their hands before eating, drinking or smoking to protect against ingestion of heavy metals. Dirty coveralls should be handled in a manner to protect against bringing heavy metal home where they can affect the worker's family. Tyvek disposable coveralls or washable coveralls are recommended only if the Cal/OSHA action level of 30 mg/m³ is exceeded. Based on SCA's prior sampling, good work practices will keep workers well under this level.

Note that airborne metal analyses were not conducted for the San Francisco stations in 2016 as the prior sampling found airborne metal concentrations to be relatively low. For informational purposes the metal concentrations in May 2011 for the Powell, Montgomery and Embarcadero Stations were as follows:

- Airborne lead concentrations during the sampling periods all fell below 0.014 μg/m³, or less than the analytical detection limit. All perimeter airborne lead concentrations fell well below Cal/OSHA's Action Level or Permissible Exposure Level (PEL) of 30 μg/m³ and 50 μg/m³, respectively, as well as the National Ambient Air Quality Standard (NAAQS) of 1.5 μg/m³.
- Airborne iron concentrations during the sampling period ranged from <4.6 to 80 μg/m³. All airborne iron concentrations fell well below Cal/OSHA's Permissible Exposure Level (PEL) of 5,000 μg/m³.
- Airborne copper concentrations during the sampling period ranged from <0.11 to 1.1 μg/m³, or well below Cal/OSHA's Permissible Exposure Level (PEL) of 100 μg/m³ for copper fume.
- Airborne zinc concentrations during the sampling period all fell below 1.4 μ g/m³, or less than the analytical detection limit, or well below Cal/OSHA's Permissible Exposure Level (PEL) of 5,000 μ g/m³ for zinc fumes.
- Airborne nickel concentrations during the sampling period ranged from <0.11 to 0.39 μg/m³, or well below Cal/OSHA's Permissible Exposure Level (PEL) of 1,000 μg/m³.
- Airborne chromium concentrations during the sampling period all ranged from 0.12 to 0.21 μg/m³, or well below Cal/OSHA's Permissible Exposure Level (PEL) of 500 μg/m³.

Please feel free to contact me directly at (510) 517-1119 or gcass@sca-enviro.com if you have any questions or require any additional information.

Sincerely,

SCA ENVIRONMENTAL, INC.

Glenn R. Cass, PE, CIH, CAC #92-0092, CDPH #717

Vice-President

File/Disk: K-11983 BART Ambient

Attachment 1

Laboratory Results – Airborne Asbestos at ACM Fireproofing Areas

K-11983 2/22/16-2/24/16

SCA Environmental, Inc. PROJECT NAME Zone
Asbestos-containing Stations

650 Delancey St, #222, SF, CA 94107 1 Lakeside Drive, Suite 215, Oakland, CA 94612

Fax 415-9620736 415-9620736 Tel 415-8821675 510-6456200

BART Ambient Air Sampling SCA PRJ #
Activities DATE
Ambient Air Sampling

Modic	: 25mm 0.45micron MCE		. 2/22/10 was discard	led and a new sample col	nected due to a pump ma	ranction.		
	i: 25mm 0.45micron MCE f: AHERA-TEM	5F						
Sampling Type								
ANKS	BLANK			Rotom ID:	2310	Report #:	091602314	091603494
AMPLE LOC	19th St Rm 108A	12th St Rm 107C	M	Montgomery Rm 111	Powell Rm 110		16 th St Rm 101A	24 th St Rm 101A
TART (LPM)	19 St Kill 100A	2	Niontgomery Rm 110	2	2		2	1.8
OP (LPM)	1.8	2	1.8	1.8	1.8		1.8	1.6
	1.8	5	5	5	1.8	N/A 5	5	5
EIGHT (ft)	5 19-108A-1	5 12-107C-1	MONT-110-1	MONT-111-2	POWELL-110-1	•	-	5 24-101A-1
AMPLE I.D.								
UMP I.D.	8023	7321	8025	7364	7259	7355	7354	7134
VG. FLOW RATE (LPM)	1.9	2		1.9	1.9		1.9	1.7
IME ON (hh:mm)	08:04			09:52	10:23	10:50	12:38	12:11
IME OFF	08:03			08:46	08:55		09:19	09:32
AMPLED TIME (MIN.)	1439	1415		1374	1352		1241	1281
AMPLE VOL. (L.)	2734	2830	2664	2611	2569	N/A	2358	2178
icrogram / M^3 lead								
p b lead								
PCM] Total Fibers / cc	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TEM structures / cc								
AMPLE LOC	Powell Police Brk Rm	MacArthur Rm 102	•	Berkeley Rm 108	Lafayette Rm TC 103	Rockridge Rm 203		
ГART (LPM)	2	2	2	2	1.8	2		
TOP (LPM)	2	1.8	1.8	1.9	1.6	1.8		
EIGHT (ft)	5	5	5	5	5	5		
AMPLE I.D.	POW-POL-BK-2	MAC-102-1	ASH-204-1	BERK-108-1	LAF-TC-103-1	ROCK-203-1		
UMP I.D.	8025	7259		8028	7134	7364		
VG. FLOW RATE (LPM)	2.0	1.9		2.0	1.7	1.9		
IME ON (hh:mm)	09:04	10:57	11:18	11:38	12:25	13:12		
IME OFF	08:32			09:29	10:42	10:21		
AMPLED TIME (MIN.)	1408	1383	1337	1311	1337	1269		
AMPLE VOL. (L.)	2816	2628	2540	2556	2273	2411		
icrogram / M^3 lead								
p b lead								
PCM] Total Fibers / cc	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.001		
ΓΕΜ] structures / cc								
ampling Location Diagram			work zone	* sample location				

EMSL Analytical, Inc

464 McCormick Street, San Leandro, CA 94577

Phone/Fax: (510) 895-3675 / (510) 895-3680

http://www.EMSL.com sanleandrolab@emsl.com

 EMSL Order:
 091603214

 CustomerID:
 SCAE50

 CustomerPO:
 K11983

ProjectID:

Jerry Cook SCA Environmental 650 Delancy Street Suite 222 San Francisco, CA 94107 Phone: (415) 882-1675
Fax: (415) 962-0736
Received: 02/23/16 2:45 PM
Analysis Date: 2/29/2016

Collected:

Project: K11983 / BART AMBIENT

Test Report: Fiber Count by Phase Contrast Microscopy (PCM), NIOSH 7400 Method, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume (liters) _I	ibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc Notes
19-108A-1 091603214-0001			2734.00	<5.5	100	0.001	<7.01	<0.001
12-107C-1 091603214-0002			2830.00	<5.5	100	0.001	<7.01	<0.001
MONT-110-1 091603214-0003			2664.00	<5.5	100	0.001	<7.01	<0.001
MONT-111-2 091603214-0004			2611.00	<5.5	100	0.001	<7.01	<0.001
POW ELL-110-1 091603214-0005			2569.00	<5.5	100	0.001	<7.01	<0.001
PB-101A-1 091603214-0006			2358.00	<5.5	100	0.001	<7.01	<0.001
24-101A-1 091603214-0007			2178.00	<5.5	100	0.001	<7.01	<0.001
BLANK - HOLD 091603214-0008								Field Blank Not Analyzed

The results reported have been blank corrected as applicable.

Analyst(s)

Rui Cindy Geng (7)

Chris Dojlidko, Laboratory Manager or other approved signatory

*Following EMSL Analytical SOP Asbestos and Other Fibers by PCM. Limit of detection is 7 fibers/mm². Intra-laboratory Sr values: 5-20 fibers = 0.35, 21-50 fibers = 0.30, 51-100 fibers = 0.20. The laboratory is not responsible for data reported in fibers/cc, which is dependent on volume collected by non-laboratory personnel. Results have been blank corrected as applicable. EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc San Leandro, CA

Initial report from 02/29/2016 10:20:44

#091603214

-	CHAIN OF	CUSTODY FORM			CALL/TX	T with r	esults: (925) 219-	-5524
SCA	650 Delenous St	#222, SF, CA 94107	Tel 415-8821675	Fax 415-9620736	@messagii			3321
Environmental, Inc.		215, Oakland, CA 94612	510-6456200	415-9620736				
EMAIL HEADING:	(Project #) -	(Project Manager Initials) -	(Site Name/Address)	415-9620736 - (Date MMDD)	Email rpt	CUCa	invoice:	
				(Date Wilvide)	jcook@sca	-enviro.c	om & pgervasio@sca	ehs.com
	K11983	GRC	BART					
AB	EMSL				Email Prj Chuck Siu			lemo
COURIER	10					SII	10011110	פעע
LAB REP NOTIFIED:		Notification DATE/TIME Shipper REFERENCE I.D			Flame AA Wipes	तें ।	REMARK	PCM
AIRBILL/FLIGHT NO.: EST ARRIVAL DATE:		EST. ARRIVAL TIME			E S	0	M Std Poi M AHERA RB AHER RB AHER	its (each) M NIOSH
fethod Reference	7400 PCM	AHERA TEM	CARB-AHERA TEM 0.0	001 s/cc Detection Limit		울	ER PO	~ 보유
	PLM (asbestos) Flame AA (Lead)					A 10	Units (each) PCM NIOSH 7400 PLM Bulk
Sample Media	25 37 mm	0.45 Ø.8 micron	MCEF Bulk Water	Wipe			CARB 435 (400 Pt Ct) W prep PLM Std Point Count 400 TEM AHERA CARB AHERA 35-40 grid openings CARB AHERA 10-15 grid openings	
RESULTS DUE:	5 da	AM / PM					971 40 W	
HAIN OF CUSTODY I	DATA:						000	
Sending Info	Sam	ples submitted by	(SCA) on 0223	at 1600		-	9 9 9	
Received by Lab:	sam	ples received by ZA	(SCA) on 0223	1 2:45 pm		LEAD	200	
Received by Analyst:		ples received by	ons	it				
AMPLE ID	LITERS	Results	Ins/Blanks/Outs	- (W. 1)		1 to 9		1 to 9
9-108A-1	2734							
2-1070-1	2830					10 to 40		10 to 40
1027-111-2 POWE LL-110-	2664	12 11 12 12 12 12 13 13				6 hours		10 to 40
10NT-111-2	2611	The contract of				- W		100
POWELL-110-	2569					46		140
10-101A-1	2358	March 1997						
24-101A-1	2178					_		
						1 10 9		1 10 9
						24 hours		10 to 40
			4000			8 5		40
			F-35-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5					
						4		140
				The second second				
						1 to 9		1 10 9
BLANC	0 LITERS		BLANK					
	0 LITERS		BLANK			48 hou		10 to 40
	OLITERS		BLANK			5 6		6
NETRUCTIONS TO LAB 1. PICKUP requested: Gontact:	(delete items no	ot applicable AND circle items	applicable):			*		¥
Time of Call:								
2. Call SCA's contact to a 3. Analyze samples by PC		eipt of samples.				to 9		100
4. Analyze inside samp	les by PCM fir	rst; if any sample >0.01 f/cc,	, contact SCA.			Cal		9
5. If all samples are <0.01	f/cc, proceed w	vith items 6, 7 or 8, as noted.				to 5 days		=
7. Analyze all samples, inc	es only; stop if	f Avg >70 str/mm^2, contact S	SCA before analyzing or	utsides or blanks.		5 da) to 40
8. Do NOT analyze outsid	le or blank samp	ples.				15		10
9. Analyze by TEM only t 10. Scrial analysis; stop	the inside air sai	mple with the highest PCM rese (>1%); first trace (<0.1%);e	ult.	ster samples		40		146
11. Analyze all bulk samp	les, unless other	rwise indicated.				-		
		Supplies /Equipment		Qty		100		10
				X.5/		9		
		Hi-Vol (3040)						0
			8					9
teport Number:		Hi-Vol (3040)	8					9
Report Number:		Hi-Vol (3040) Lo-Vol (3020)	8			> 6 days		9 10 to 40

ver 2011

EMSL Analytical, Inc

464 McCormick Street, San Leandro, CA 94577 (510) 895-3675 / (510) 895-3680 Phone/Fax:

http://www.EMSL.com sanleandrolab@emsl.com EMSL Order: CustomerID: CustomerPO:

ProjectID:

091603494

SCAE50

Jerry Cook SCA Environmental 650 Delancy Street Suite 222 San Francisco, CA 94107 Phone: (415) 882-1675 (415) 962-0736 Fax: 02/24/16 1:45 PM Received: Analysis Date: 2/29/2016

Collected:

Project: K11983 BART AMBIENT

Test Report: Fiber Count by Phase Contrast Microscopy (PCM), NIOSH 7400 Method, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume (liters) _I	Fibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc Notes
LAF-TR103-1 091603494-0001			2273.00	<5.5	100	0.001	<7.01	<0.001
ROCK-203-1 091603494-0002			2411.00	6	100	0.001	7.64	0.001
MAC-102-1 091603494-0003			2628.00	11	100	0.001	14.0	0.002
BERK-108-1 091603494-0004			2556.00	<5.5	100	0.001	<7.01	<0.001
ASH-204-1 091603494-0005			2540.00	<5.5	100	0.001	<7.01	<0.001
PAW-POL BRK- 091603494-0006	2		2816.00	<5.5	100	0.001	<7.01	<0.001
BLANK-HOLD 091603494-0007								Field Blank Not Analyzed

The results reported have been blank corrected as applicable.

Analyst(s) Rui Cindy Geng (6)

Chris Dojlidko, Laboratory Manager or other approved signatory

*Following EMSL Analytical SOP Asbestos and Other Fibers by PCM. Limit of detection is 7 fibers/mm². Intra-laboratory Sr values: 5-20 fibers = 0.35, 21-50 fibers = 0.30, 51-100 fibers = 0.20. The laboratory is not responsible for data reported in fibers/cc, which is dependent on volume collected by non-laboratory personnel. Results have been blank corrected as applicable. EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. Samples analyzed by EMSL Analytical, Inc San Leandro, CA

Initial report from 02/29/2016 10:24:23

OrderID: 091603494

	CHAIN OF C	USTODY FORM			CA	L			rest			<u>د ک</u>	<u>''</u>		-
SCA	JE 211 OF C		Td	Fax	L		_9	2	5:	21	<u>q</u> .	ى	5	Z	4
3		222, SF, CA 94107	415-8821675	415-9620736	@ n	ness	ging	spri	tipes.c	com			9		1
mironmental, Inc.	L Lekoside Dr. #21	\$, Oakland, CA 94612	510-6456200 310-2580460	415-9620736 415-9620736	E.	النج	pt/4	coc	& in	voice:	:				
MAIL BEADING:	(Project #) - ((Project Manager Initials)	(Site Name/Address) -	(Date MMDD)	Γ		,				•				
			BART		jco	ok(a	SCB-c	nvin	o.com	& pge	:TV48	ю@	scae	hs.co	m
	K11983	GRC	AMBIENT	0224		~						_			
AB	54sc								iame: in Cas		hrist	ma C	Code	no	
DURIER			γ		<u> </u>	-1	al -	_	<u> </u>	<u> </u>	T =		61	-1-	
LAB REP NOTIFIED.	1	Notification DATE/TIME	:			Wipes	# <u>5</u>	11		\mathbf{S}		Ğ	2	김승	
AIRBILL/FLIGHT NO		Shipper REFERENCE I.I				\$	Units (each)	11	11	6		5	6	PLM BUIK	1
EST ARRIVAL DATE:		EST. ARRIVAL TIMI	·					11)				8	튀교	t
ethod Reference	7400 PCM	AHERA TEM	CARB-AHERA TEM 0.0	I s/cc Detection Limit			13	1	1	2 2	95	옼	E	1	ŀ
	PLM (asbestos)	Plame AA (Lead)					1	[[= 3		0	킾	2	:
Sample Media	€237 mgan (0.45 0. micron	MCEE Bulk Water	Wipe		1		11	- {	듨			S	- [Ì
ESULTS DUE:	1500	AM / PM	7					11	4 1	9			5		l
HAIN OF CUSTODY	DATA:				1		1	11)	0 0	2	8		1	1
Sending Info	-	les submitted by	(SCA) on	at			1	1 1		2	[PLM 8td Poim Court 400	 8	}	1
Received by Lab:	•	les received by	 `	13:45		[1	E		CARB AHERA 10-15 grid openings	5	(ļ	1
.		-	,		Ц	$oldsymbol{\perp}$	4	티	44	#	<u> </u>		Ш	1	ļ
Received by Analyst		les received by	A1				_	+1	1-1		1		ΙĪ		1-
MPLE ID		Results	Ins/Blanks/Outs				60	1	- } - 1		1			1	1
AF-12103-1	2273			{	} —		4	1 * 1				\vdash	┝╌┼	+	T
OCX - 203-1	2411	<u></u>				1		2	- { 1			Į (10.00
1AC2102-1	2628]	Ì		10 10 40	TOUTS.	l l		1	11			ľ
SERK-108-1	2556		<u> </u>			-	卡	3	+-	-	+-	╁┤	\vdash	+-	ť
ASH - 204-1	2540		T	<u> </u>	[¥	$\{ \ \}$	- { - {	- {	1	1		1	ł
Page POLB	2816						Įē	H	l l		ļ				Į₹
~ 7	T Calle		 	-]	Н	H	┿	11	++	+	┿	H	+	+	t
<u> </u>			 			1	8	11	- 1 1		1	11	1	Ì	E
		<u> </u>		-{			9	11	- 1 1		-	1 (1	1	12
	 		ļ		H		1=	2	777	1	+	\vdash 1	\vdash	+	t
			 	_}			10 to 40	24 hours	- 1 1	'	1	Н		1	10.00
						L	18	15	11	<u> </u>]_	1 1		_] _]8
							7	} {		7	Τ	П	П	Т	1
]	7		1	ě	1 1	- (1 1		ļ	1
	1				$oxed{oxed}$		Ľ							\perp	1
	 		1	┥	П	T		П		T	T	П	П	Τ	[
	 	 	 	(15				}			}	100
		 			Ш	\Box	٥			\sqcup	1	\sqcup	Ц	4	4
BLANC	OLITERS	<u></u> _	BLANK				5	48 hours			-				Įē
	OLITERS	<u> </u>	BLANK	_			15	ᅙ			}			ł	2 10 40
		1	1 200	T .		. I	5	13			1	╀┨	$\vdash \downarrow$	+	¥
	O LITTERS		BLANK		\vdash		_			—				ļ	Ę
	B (delete items not	applicable AND circle items	applicable):		П		Į.	[]			T		, ,		4.4
1. Pickup requested	B (delete items not	applicable AND circle items					ě							1	ŀ
	B (delete items not	applicable AND circle items	applicable):	 			Į.							4	∔
Contact Time of Call 2. Call SCA's contact to	B (delete items not acknowledge rece		applicable):	_			*							+	∔
1. Pickup requested Contact Time of Call 2. Call SCA's contact to 3. Analyze samples by P	B (delete items not acknowledge received.	ipt of sam pics.	applicable):				Į.							+	+
1. Pickup requested Contact Time of Call 2. Call SCA's contact to 3. Analyze samples by P 4. Analyze inside sam	B (delete items not acknowledge recei CM only. ples by PCM firs	ipt of samples. st; if any sample >0.01 f/cc	applicable):				¥0 1 to 9	4						+	18.0
Contact Time of Call Call SCA's contact to Analyze samples by Analyze inside sam I all samples are	B (delete items not acknowledge recei CM only. ples by PCM firs If t/ce, proceed with	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted.	applicable): 11.: c, contact SCA	sides or blanks			¥0 1 to 9	4							18.0
Contact Time of Call Call SCA's contact to Analyze samples bam S. If all samples are 4.0 Analyze inside sam S. If all samples are 4.0	acknowledge receives by PCM first If See, proceed with the sone of the sone, stop if A	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact	applicable): 11.: c, contact SCA	isides or blanks.			¥0 1 to 9	4							18.0
Contact Time of Call Coll SCA's contact to Analyze samples by P Analyze inside samples Analyze inside samples Analyze all samples are Analyze all samples, b B. Do NOT analyze outsi	acknowledge received only. acknowledge received only. ple fire, preced wife oldes only; stop if wedding outside as ide or beank sample	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les.	applicable): 11.: c, contact SCA SCA before analyzing our	isides or blanks.			>40 109 101040	3 to 5 days							1000
Contact Time of Call Coll SCA's contact to DAnalyze samples by P A. Analyze inside samp I. Analyze inside samp I. Analyze all samples are samples are Analyze all samples are R. Do NOT analyze out Analyze by TEM only	acknowledge recei CM only. pies by PCM firs If fee, proceed with pies only; stop if midding outside air sam ide or blank nampl The inside air sam	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. sple with the highest PCM re	applicable): 11.: c, contact SCA SCA before analyzing out				¥0 1 to 9	3 to 5 days							100
Contact Time of Call Coll SCA's contact to Analyze samples by P 4. Analyze inside sam 5. If all samples are Analyze inside sam 7. Analyze inside sam 9. Do NOT analyze out 9. Analyze out 9. Analyze by TEM only 10. Scrint analysis; sto	acknowledge received only. ples by PCM first fire, proceed with the color only; stop if a mending outside as the color of	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. ple with the highest PCM re (>1%); first trace (<0.1%);	applicable): 11.: c, contact SCA SCA before analyzing out				>40 109 101040	3 to 5 days							1000
Contact Time of Call Coll SCA's contact to DAnalyze samples by P 4. Analyze inside sam; 5. If all samples are Analyze inside sam; 6. Analyze inside sam; 7. Analyze inside sam; 8. Do NOT analyze outs 9. Analyze by TEM only 10. Scrint-analysis; sto	acknowledge received only. ples by PCM first fire, proceed with the color only; stop if a mending outside as the color of	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. ple with the highest PCM re (>1%); first trace (<0.1%);	applicable): 11.: c, contact SCA SCA before analyzing out				>40 1 to 9 10 to 40 ×40 1	3 to 5 days							1000
Contact Time of Catt Contact Time of Catt Coll SCA's contact to Analyze samples by P Analyze inside sam S. If all samples are to Analyze inside samp Analyze all samples, a Do NOT analyze outs Analyze by TEM only O. Schill analysis; sam It Analyze all bells and	acknowledge received only. ples by PCM first of fire, proceed with the ples only; stop if a methoding outside as ide or blank sample of first positive uples, miless others.	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. ple with the highest PCM re (>1%); first trace (<0.1%);	applicable): 11.: c, contact SCA SCA before analyzing out suit. except sheetrock and plast				109 100 40 ×40 10	3 to 6 days							S
Contact Time of Call Contact Time of Call Conf.	acknowledge received only. ples by PCM first of fire, proceed with the ples only; stop if a methoding outside as ide or blank sample of first positive uples, miless others.	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. ple with the highest PCM re (>1%); first trace (<0.1%); wine indicated.	applicable): 11.: c, contact SCA SCA before analyzing out	er samples.			>40 1 to 9 10 to 40 >40 1 to 9	3 to 6 days							183 181818
1. Pickup requested Contact Time of Call 2. Call SCA's contact to 3. Analyze samples by P 4. Analyze inside samples 5. If all samples are samples 6. Analyze inside samples 7. Analyze on the samples Do NOT analyze out 9. Analyze of 18. Serial analysis; sto	acknowledge received only. ples by PCM first of fire, proceed with the ples only; stop if a methoding outside as ide or blank sample of first positive uples, miless others.	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. sple with the highest PCM re (>1%); first trace (<0.1%); wise indicated. Supplies /Equipment	applicable): 11.: c, contact SCA SCA before analyzing out	er samples.			>40 1 to 9 10 to 40 >40 1 to 9	3 to 6 days							1 5 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1. Pickup requested Contact Time of Catt 2. Call SCA's contact to 3. Analyze samples to 4. Analyze inside sam 5. If all samples are 4.0 6. Analyze inside sam 7. Analyze all samples, to De NOT analyze out to 10. Scriet analysis; sto 11. Analyze all bulls sam teport Number:	acknowledge received only. ples by PCM first of fire, proceed with the ples only; stop if a methoding outside as ide or blank sample of first positive uples, miless others.	ipt of annuples. st; if any sample >0.01 f/cc th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact amples and blanks. les. aple with the highest PCM re (>1%); first trace (<0.1%); wine indicated. Supplies /Equipment Hi-Vol (3040) Lo-Vol (3020)	applicable): 11.: c, contact SCA SCA before analyzing out suit. except sheetrock and plast	er samples.			>40 1 to 9 10 to 40 >40 1 to 9	3 to 6 days							1 5 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
Contact Time of Call Contact Time of Call Conf.	acknowledge received only. ples by PCM first of fire, proceed with the ples only; stop if a methoding outside as ide or blank sample of first positive uples, miless others.	ipt of samples. st; if any sample >0.01 f/cc th items 6, 7 or 8, an noted. Avg >70 str/mm^2, contact amples and blanks. les. [2-1%]; first trace (<0.1%); whee indicated. Supplies /Equipment Hi-Vol (3040)	applicable): 11.: c, contact SCA SCA before analyzing out	er samples.			>40 1 to 9 10 to 40 >40 1 to 9	3 to 6 days							1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ver 2011

Attachment 2

 $Respirable\ Dust\ (PM_{10})\ Sampling\ Results-Embarcadero\ \&\ Montgomery\ Street\ Stations$

Instrument Name	DustTrak II PM ₁₀ Respirable Dust Sampling
Location Model Number	Embarcadero South Station Agent's Booth
	8530
Serial Number	8530100930
Firmware Version	3.4
Calibration Date	10/22/2015
Test Name	TEST1_005
Test Start Time	1:49:16 PM
Test Start Date	2/22/2016
Test Length [D:H:M]	0:20:06
Test Interval [M:S]	1:00
Mass Average [mg/m3]	0.077
Mass Minimum [mg/m3]	0.008
Mass Maximum [mg/m3]	0.171
Mass TWA [mg/m3]	0.092
Photometric User Cal	1
Flow User Cal	0
Errors	
Number of Samples	1206
PM ₁₀ Results	
Elapsed Time [s]	Mass [mg/m3]
60	
120	
180	
240	
300	
360	
420	
480	
540	
600	
660	
720	
780	
840	
900	
960	
1020	
1080	
1140	
1200	
1260	
1320	
1380	
1440	
1500	0.016

1560	0.019
1620	0.019
1680	0.02
1740	0.02
1800	0.023
1860	0.021
1920	0.021
1980	0.021
2040	0.021
2100	0.02
2160	0.021
2220	0.023
2280	0.025
2340	0.027
2400	0.03
2460	
	0.031
2520	0.031
2580	0.032
2640	0.032
2700	0.032
2760	0.036
	0.036
2820	
2880	0.036
2940	0.036
3000	0.036
3060	0.036
3120	0.037
3180	0.037
3240	
	0.038
3300	0.038
3360	0.039
3420	0.041
3480	0.041
3540	0.041
3600	0.042
3660	0.042
3720	0.04
3780	0.04
3840	0.04
3900	0.041
3960	0.042
4020	0.042
4080	0.042
4140	0.041
4200	0.042
4260	0.044
4320	0.06
	0.00

4380	0.075
4440	0.085
4500	0.093
4560	0.095
4620	0.089
4680	0.083
4740	0.078
4800	0.074
4860	0.073
4920	0.071
4980	0.073
5040	0.088
5100	0.083
5160	0.077
5220	0.073
5280	0.082
5340	0.092
5400	0.099
5460	0.092
5520	0.086
5580	0.081
5640	0.078
5700	0.083
5760	0.086
5820	0.089
5880	0.094
5940	0.101
6000	0.101
6060	0.101
6120	0.093
6180	0.086
6240	0.081
6300	0.077
6360	0.083
6420	0.089
6480	0.098
6540	0.113
6600	0.111
6660	0.104
6720	0.103
6780	0.101
6840	0.099
6900	0.096
6960	0.1
7020	0.102
7080	0.108
7140	0.114

7200	0.114
7260	0.113
7320	0.11
7380	0.108
7440	0.106
7500	0.108
7560	0.111
7620	0.114
7680	0.117
7740	0.117
7800	0.118
7860	0.116
7920	0.115
7980	0.117
8040	0.12
8100	0.122
8160	0.115
8220	0.111
8280	0.108
8340	0.111
8400	0.109
8460	0.108
8520	0.112
8580	0.121
8640	0.117
8700	0.113
8760	0.109
8820	0.11
8880	0.104
8940	0.105
9000	0.108
9060	0.11
9120	0.11
9180	0.109
9240	0.104
9300	0.1
9360	0.1
9420	0.098
9480	0.098
9540	0.103
9600	0.099
9660	0.095
9720	0.092
9780	0.085
9840	0.083
9900	0.088
9960	0.089
3300	0.069

10020	0.091
10080	0.095
10140	0.098
10200	0.103
10260	0.103
	0.103
10320	
10380	0.107
10440	0.102
10500	0.109
10560	0.108
10620	0.105
10680	0.103
10740	0.101
10800	0.103
10860	0.102
10920	0.099
10980	0.099
11040	0.102
11100	0.108
11160	0.107
11220	0.105
11280	0.103
11340	0.103
11400	0.1
11460	0.103
11520	0.101
11580	0.101
11640	0.105
11700	0.103
11760	0.104
11820	
	0.107
11880	0.11
11940	0.114
12000	0.118
12060	0.119
12120	0.116
12180	0.108
12240	0.105
12300	0.11
12360	0.107
12420	0.105
12480	0.109
12540	0.111
12600	0.115
12660	0.114
12720	0.116
12780	0.111

12840	0.109
12900	0.107
12960	0.104
13020	0.106
13080	0.108
13140	0.11
13200	0.111
13260	0.111
13320	0.112
13380	0.11
13440	0.107
13500	0.108
13560	0.112
13620	0.108
13680	0.098
13740	0.1
13800	0.103
13860	0.106
13920	0.106
13980	0.108
14040	0.108
14100	0.108
	0.114
14160	
14220	0.113
14280	0.111
14340	0.112
14400	0.111
14460	0.115
14520	0.117
14580	0.116
14640	0.113
14700	0.111
14760	0.108
14820	0.097
14880	0.101
14940	0.103
15000	0.104
15060	0.105
15120	0.113
15180	0.11
15240	0.116
15300	0.116
15360	0.103
15420	0.104
15480	0.1
15540	0.098
15600	0.101

15660 0.105 15720 0.115 15780 0.113 15840 0.116 15900 0.114 15960 0.114 16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16620 0.119 16680 0.119 16680 0.111 16800 0.114 16800 0.114 16800 0.123 16920 0.124 17040 0.122 1700 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17520 0.123 17580 0.124 1760 0.13 17820 0.132 17880 0.132 17880		
15780 0.113 15840 0.116 15900 0.114 15960 0.114 16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16540 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 1700 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.112 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.133 17880 <td>15660</td> <td>0.105</td>	15660	0.105
15780 0.113 15840 0.116 15900 0.114 15960 0.114 16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16540 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 1700 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.112 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.133 17880 <td>15720</td> <td>0.115</td>	15720	0.115
15840 0.116 15900 0.114 15960 0.114 16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16860 0.123 16920 0.124 16980 0.12 17040 0.122 1700 0.11 17220 0.109 17280 0.103 17340 0.103 17340 0.105 17580 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17880 0.132 17880 0.133 17940 0.131 18000 <td></td> <td></td>		
15900 0.114 15960 0.114 16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.12 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 1800 <td></td> <td></td>		
15960 0.114 16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.124 16980 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.133 17940 0.131 18000 0.128 18060 0.121 18120<		
16020 0.105 16080 0.099 16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17520 0.123 17580 0.123 17580 0.123 17640 0.125 17700 0.126 17760 0.13 17820 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.105 18240<		
16140 0.099 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17520 0.123 17580 0.124 1760 0.125 17700 0.125 17700 0.125 17780 0.125 17780 0.131 1880 0.133 17940 0.131 18000 0.122 18120 0.111 18180 0.105 18240 0.104 18360 </td <td>15960</td> <td>0.114</td>	15960	0.114
16140 0.095 16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.106 18360<	16020	0.105
16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.112 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18360 0.113	16080	0.099
16200 0.108 16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.112 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18360 0.113	16140	0.095
16260 0.111 16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.124 16980 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18360<	16200	
16320 0.111 16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17780 0.13 17820 0.13 17880 0.13 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18360 0.113		
16380 0.113 16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.106 18360 0.106		
16440 0.118 16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18300 0.106 18360 0.106		
16500 0.116 16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.13 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.106 18360 0.113		
16560 0.115 16620 0.119 16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.13 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.106 18360 0.113		
16620 0.119 16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18360 0.113		
16680 0.11 16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 1750 0.101 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18360 0.113	16560	0.115
16740 0.11 16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17160 0.111 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.132 17880 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113	16620	0.119
16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113	16680	0.11
16800 0.114 16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113	16740	0.11
16860 0.123 16920 0.124 16980 0.12 17040 0.122 17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113		0.114
16920 0.124 16980 0.12 17040 0.122 17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113		
16980 0.12 17040 0.122 17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113		
17040 0.122 17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 1800 0.121 18120 0.111 18240 0.104 18300 0.106 18360 0.113		
17100 0.111 17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17880 0.132 17880 0.133 17940 0.131 18000 0.128 1800 0.121 18120 0.111 18240 0.104 18300 0.106 18360 0.113		
17160 0.11 17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18240 0.104 18300 0.106 18360 0.113		
17220 0.109 17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18240 0.104 18300 0.106 18360 0.113		
17280 0.103 17340 0.106 17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17880 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18300 0.105 18240 0.104 18360 0.113	17160	0.11
173400.106174000.112174600.118175200.123175800.124176400.125177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113	17220	0.109
17400 0.112 17460 0.118 17520 0.123 17580 0.124 17640 0.125 17700 0.126 17760 0.13 17820 0.132 17880 0.133 17940 0.131 18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113	17280	0.103
174600.118175200.123175800.124176400.125177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113	17340	0.106
174600.118175200.123175800.124176400.125177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113	17400	0.112
175200.123175800.124176400.125177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113		
175800.124176400.125177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113		
176400.125177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113		
177000.126177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113		
177600.13178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113		
178200.132178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113		
178800.133179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113	17760	0.13
179400.131180000.128180600.121181200.111181800.105182400.104183000.106183600.113	17820	0.132
18000 0.128 18060 0.121 18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113	17880	0.133
180600.121181200.111181800.105182400.104183000.106183600.113	17940	0.131
180600.121181200.111181800.105182400.104183000.106183600.113	18000	0.128
18120 0.111 18180 0.105 18240 0.104 18300 0.106 18360 0.113		
18180 0.105 18240 0.104 18300 0.106 18360 0.113		
18240 0.104 18300 0.106 18360 0.113		
18300 0.106 18360 0.113		
18360 0.113		
18420 0.116		
	18420	0.116

18480	0.117
18540	0.122
18600	0.12
18660	0.12
18720	0.114
18720	0.114
18840	0.111
18900	0.121
18960	0.128
19020	0.13
19080	0.126
19140	0.121
19200	0.124
19260	0.125
19320	0.128
19380	0.127
19440	0.132
19500	0.129
19560	0.121
19620	0.108
19680	0.101
19740	0.101
19800	0.11
19860	0.111
19920	0.109
19980	0.102
20040	0.104
20100	0.111
20160	0.115
20220	0.12
20280	0.126
20340	0.128
20400	0.134
20460	0.126
20520	0.122
20580	0.116
20640	0.115
20700	0.12
20760	0.123
20820	0.124
20820	0.12
20880	0.12
21000	0.099
21060	0.099
21120	0.106
21180	0.109
21240	0.111

21300	0.108
21360	0.103
21420	0.101
21480	0.109
21540	0.119
21600	0.126
21660	0.129
21720	0.123
21780	0.112
21840	0.104
21900	0.105
21960	0.103
22020	0.111
22080	0.113
22140	0.114
22200	0.094
22260	0.096
22320	0.108
22380	0.114
22440	0.114
22500	0.116
22560	0.112
22620	0.104
22680	0.096
22740	0.09
22800	0.086
22860	0.082
22920	0.079
22980	0.077
23040	0.082
23100	0.097
23160	0.102
23220	0.106
23280	0.108
23340	0.11
23400	0.112
23460	0.115
23520	0.112
23580	0.114
23640	0.111
23700	0.109
23760	0.109
23820	0.113
23880	0.113
23940	0.115
24000	0.116
24060	0.11

24120	0.111
24180	0.106
24240	0.108
24300	0.108
24360	0.109
24420	0.108
24480	0.104
24540	0.104
24600	0.096
24660	0.097
24720	0.101
24780	0.1
24840	0.092
24900	0.088
24960	0.086
25020	0.09
25080	0.092
25140	0.099
25200	0.096
25260	0.099
25320	0.096
25380	0.097
25440	0.1
25500	0.101
25560	0.102
25620	0.101
25680	0.1
25740	0.103
25800	0.104
25860	0.099
25920	0.095
25980	0.094
26040	0.095
26100	0.092
26160	0.092
26220	0.089
26280	0.087
26340	0.093
26400	0.093
26460	0.092
26520	0.095
26580	0.093
26640	0.088
26700	0.09
26760	0.091
26820	0.089
26880	0.092

26940	0.092
27000	0.091
27060	0.086
27120	0.082
27180	0.084
27240	0.084
27300	0.082
27360	0.083
27420	0.084
27480	0.085
27540	0.089
27600	0.089
27660	0.085
27720	0.086
	0.089
27780	
27840	0.094
27900	0.097
27960	0.093
28020	0.087
28080	0.086
28140	0.083
28200	0.079
28260	0.076
28320	0.076
28380	0.083
28440	0.082
28500	0.079
28560	0.072
28620	0.073
28680	0.076
28740	0.078
28800	0.08
28860	0.077
28920	0.076
28980	0.084
29040	0.091
29100	0.09
29160	0.086
29220	0.089
29280	0.086
29340	0.084
29400	0.083
29460	0.081
29520	0.082
29580	0.083
29640	0.082
29700	0.081

29760	0.078
29820	0.075
29880	0.074
29940	0.072
30000	0.073
30060	
	0.076
30120	0.079
30180	0.083
30240	0.094
30300	0.1
30360	0.101
30420	0.094
30480	0.086
30540	0.082
30600	0.081
30660	0.081
30720	0.081
30780	0.084
30840	0.083
30900	0.08
30960	0.079
31020	0.076
31080	0.075
31140	0.08
31200	0.078
31260	0.068
31320	0.063
	0.066
31380	
31440	0.078
31500	0.09
31560	0.096
31620	0.097
31680	0.099
31740	0.096
31800	0.091
31860	0.09
31920	0.09
31980	0.092
32040	0.092
32100	0.089
32160	0.085
32220	0.087
32280	0.09
32340	0.088
32400	0.087
32460	0.085
32520	0.087

32580	0.085
32640	0.093
32700	0.096
32760	0.099
32820	0.095
32880	0.095
32940	0.092
33000	0.09
33060	0.084
33120	0.083
33180	0.084
33240	0.083
33300	0.082
33360	0.082
33420	0.079
33480	0.079
33540	0.073
33600	0.079
33660	0.075
33720	0.074
33780	0.077
33840	0.077
33900	0.077
33960	0.077
34020	0.069
34080	0.073
34140	0.065
34200	0.067
34260	0.069
34320	0.073
34380	0.074
34440	0.069
34500	0.067
34560	0.066
34620	0.065
34680	0.06
34740	0.06
34800	0.061
34860	0.06
34920	0.064
34980	0.068
35040	0.008
35100	0.069
35160	0.064
35220	0.059
35280	0.058
35340	0.058
JJJ4U	0.00

35400	0.06
35460	0.063
35520	0.061
35580	0.062
35640	0.058
35700	0.056
35760	0.054
35820	0.049
35880	0.049
35940	0.047
36000	0.045
36060	0.045
36120	0.045
36180	0.056
36240	0.064
36300	0.067
36360	0.061
36420	0.056
36480	0.056
36540	0.054
36600	0.054
36660	0.053
36720	0.052
36780	0.056
36840	0.056
36900	0.055
36960	0.054
37020	0.052
37080	0.052
37140	0.032
	0.048
37200	
37260	0.049
37320	0.05
37380	0.052
37440	0.052
37500	0.053
37560	0.048
37620	0.045
37680	0.047
37740	0.049
37800	0.051
37860	0.052
37920	0.048
37980	0.046
38040	0.042
38100	0.04
38160	0.038
30100	0.038

38220	0.038
38280	0.038
38340	0.038
38400	0.04
38460	0.044
38520	0.041
38580	0.039
38640	0.038
38700	0.037
38760	0.037
38820	0.035
38880	0.034
38940	0.034
39000	0.034
39060	0.034
39120	0.032
39180	0.032
39240	0.032
39300	0.031
39360	0.03
39420	0.03
39480	0.029
39540	0.029
39600	0.028
39660	0.028
39720	0.028
39780	0.028
39840	0.033
39900	0.042
39960	0.046
40020	0.045
40080	0.043
40140	0.04
40200	0.037
40260	0.04
40320	0.045
40380	0.047
40440	0.049
40500	0.051
40560	0.047
40620	0.046
40680	0.045
40740	0.045
40800	0.048
40860	0.051
40920	0.052
40980	0.049

41040	0.046
41100	0.047
41160	0.046
41220	0.045
41280	0.044
41340	0.043
41400	0.043
41460	0.043
41520	0.042
41580	0.042
41640	0.04
41700	0.039
41760	0.038
41820	0.036
41880	0.036
41940	0.034
42000	0.035
42060	0.032
42120	0.032
42180	0.032
42240	0.031
42300	0.03
42360	0.029
42420	0.028
42480	0.027
42540	0.026
42600	0.026
42660	0.024
42720	0.024
42780	0.023
42840	0.023
42900	0.023
42960	0.023
43020	0.022
43080	0.023
43140	0.022
43200	0.022
43260	0.021
43320	0.021
43380	0.022
43440	0.022
43500	0.02
43560	0.02
43620	0.02
43680	0.02
43740	0.019
43800	0.02

43860	0.02
43920	0.02
43980	0.021
44040	0.019
44100	0.018
44160	0.017
44220	0.017
44280	0.017
44340	0.018
44400	0.018
44460	0.018
44520	0.034
44580	0.036
44640	0.036
44700	0.032
44760	0.026
44820	0.026
44880	0.025
44940	0.025
45000	0.023
45060	0.023
45120	0.023
45180	0.023
45240	0.023
45300	0.022
45360	0.023
45420	0.024
45480	0.023
45540	0.024
45600	0.024
45660 45730	0.022
45720	0.02
45780	0.02
45840 45900	0.02 0.019
45960 45960	0.019
46020	0.019
46080	0.017
46140	0.017
46200	0.017
46260	0.016
46320	0.016
46380	0.017
46440	0.010
46500	0.017
46560	0.017
46620	0.017
70020	0.010

46680	0.017
46740	0.016
46800	0.018
46860	0.016
46920	0.016
46980	0.016
47040	0.016
47100	0.016
47160	0.016
47220	0.017
47280	0.018
47340	0.019
47400	0.019
47460	0.018
47520	0.019
47580	0.019
47640	0.019
47700	0.018
47760	0.018
47820	0.018
47880	0.018
47940	0.018
48000	0.018
48060	0.019
48120	0.019
48180	0.019
48240	0.019
48300	0.021
48360	0.021
48420	0.021
48480	0.019
48540	0.019
48600	0.019
48660	0.02
48720	0.019
48780	0.02
48840	0.018 0.017
48900 48960	0.017
49020	0.018
49080	0.019
49140	0.018
49200	0.018
49260	0.018
49320	0.017
49380	0.017
49440	0.017
13 1 10	5.517

49500	0.017
49560	0.017
49620	0.017
49680	0.016
49740	0.016
49800	0.015
49860	0.015
49920	0.015
49980	0.016
50040	0.015
50100	0.015
50160	0.015
50220	0.014
50280	0.015
50340	0.015
50400	0.014
50460	0.014
50520	0.014
50580	0.014
50640	0.014
50700	0.017
50760	0.015
50820	0.015
50880	0.015
50940	0.015
51000	0.014
51060	0.015
51120	0.015
51180	0.014
51240	0.014
51300	0.014
51360	0.014
51420	0.014
51480	0.022
51540	0.019
51600	0.018
51660	0.016
51720	0.015
51780	0.014
51840	0.015
51900	0.014
51960	0.014
52020	0.015
52080	0.013
52140	0.012
52200	0.012
52260	0.013

52320	0.014
52380	0.012
52440	0.012
52500	0.012
52560	0.012
52620	0.019
52680	0.03
52740	0.019
52800	0.013
52860	0.013
52920	0.013
52980	0.012
53040	0.013
53100	0.016
53160	0.014
53220	0.021
53280	0.015
53340	0.014
53400	0.013
53460	0.013
53520	0.014
53580	0.014
53640	0.013
53700	0.013
53760	0.012
53820	0.012
53880	0.013
53940	0.013
54000	0.012
54060	0.012
54120	0.012
54180	0.012
	0.011
54240	
54300	0.011
54360	0.012
54420	0.012
54480	0.012
54540	0.012
54600	0.012
54660	0.013
54720	0.012
54780	0.012
54840	0.012
54900	0.012
54960	0.012
55020	0.013
55080	0.013

55140	0.013
55200	0.013
55260	0.013
55320	0.014
55380	0.014
55440	0.014
55500	0.014
55560	0.014
55620	0.016
55680	0.014
55740	0.015
55800	0.015
55860	0.015
55920	0.016
55980	0.017
56040	0.017
56100	0.017
56160	0.017
56220	
56280	0.018 0.02
56340	0.02 0.026
56400	
56460	0.049
56520	0.042
56580	0.034
56640	0.035
56700	0.036
56760	0.04
56820	0.045
56880	0.045
56940	0.051
57000	0.064
57060	0.144
57120	0.1
57180	0.084
57240	0.065
57300	0.055
57360	0.045
57420	0.045
57480	0.047
57540	0.065
57600	0.061
57660	0.068
57720	0.062
57780	0.063
57840	0.058
57900	0.064

57960	0.055
58020	0.061
58080	0.083
58140	0.097
58200	0.089
58260	0.107
58320	0.095
58380	0.087
58440	0.072
58500	0.066
58560	0.069
58620	0.069
58680	0.057
	0.054
58740	
58800	0.056
58860	0.061
58920	0.071
58980	0.069
59040	0.067
59100	0.065
59160	0.075
59220	0.069
59280	0.067
59340	0.067
59400	0.085
59460	0.082
59520	0.079
59580	0.07
59640	0.065
59700	0.067
59760	0.066
59820	0.061
59880	0.06
59940	0.063
60000	0.078
60060	0.091
60120	0.095
60180	0.094
60240	0.105
60300	0.103
60360	0.107
60420	0.078
60480	0.084
60540	0.101
60600	0.101
60660	0.103
60720	0.14

60780	0.143
60840	0.146
60900	0.142
60960	0.139
61020	0.129
61080	0.111
61140	0.108
61200	0.123
61260	0.12
61320	0.118
61380	0.098
61440	0.094
61500	0.096
61560	0.12
61620	0.118
61680	0.113
61740	0.123
61800	0.123
61860	0.108
61920	0.105
61980	0.103
62040	0.102
62100	0.105
62160	0.109
62220	0.113
62280	0.113
62340	0.108 0.108
62400	
62460	0.102
62520	0.1
62580	0.107
62640	0.105
62700	0.11
62760	0.107
62820	0.093
62880	0.096
62940	0.095
63000	0.098
63060	0.103
63120	0.124
63180	0.118
63240	0.11
63300	0.112
63360	0.108
63420	0.108
63480	0.118
63540	0.142

63600	0.148
63660	0.139
63720	0.139
63780	0.143
63840	0.142
63900	0.145
63960	0.164
64020	0.153
64080	0.133
64140	0.144
64200	0.14
64260	0.147
64320	0.154
64380	0.146
64440	0.144
64500	0.142
64560	0.128
64620	0.126
64680	0.134
64740	0.144
64800	0.144
64860	0.147
64920	0.148
64980	0.14
65040	0.137
65100	0.127
65160	0.126
65220	0.126
65280	0.126
65340	0.126
65400	0.114
65460	0.115
65520	0.127
65580	0.129
65640	0.127
65700	0.13
65760	0.133
65820	0.145
65880	0.16
65940	0.149
66000	0.148
66060	0.146
66120	0.158
66180	0.147
66240	0.139
66300	0.144
66360	0.147
00000	0.147

66420	0.139
66480	0.138
66540	0.143
66600	0.142
66660	0.132
66720	0.118
66780	0.111
66840	0.108
66900	0.108
66960	0.108
67020	0.108
67080	0.101
67140	0.104
67200	0.104
67260	0.105
67320	0.101
67380	0.104
67440	0.098
67500	0.108
67560	0.105
67620	0.102
67680	0.1
67740	0.102
67800	0.115
67860	0.114
67920	0.134
67980	0.134
68040	0.133
68100	0.128
68160	0.133
68220	0.144
68280	0.133
68340	0.144
68400	0.141
68460	0.134
68520	0.135
68580	0.136
68640	0.128
68700	0.123
68760	0.126
68820	0.129
68880	0.126
68940	0.135
69000	0.134
69060	0.131
69120	0.143
69180	0.137

69240	0.142
69300	0.144
69360	0.142
69420	0.147
69480	0.149
69540	0.143
69600	0.148
69660	0.152
69720	0.16
69780	0.148
69840	0.147
69900	0.141
69960	0.141
70020	0.15
70080	0.147
70140	0.149
70200	0.143
70260	0.149
70320	0.146
70380	0.156
70440	0.16
70500	0.157
70560	0.162
70620	0.163
70680	0.16
70740	0.142
70800	0.144
70860	0.143
70920	0.166
70980	0.171
71040	0.171
71100	0.167
71160	0.158
71220	0.155
71280	0.158
71340	0.158
71400	0.157
71460	0.156
71520	0.149
71580	0.152
71640	0.152
71700	0.149
71700 71760	0.145
71820	0.145
71880	0.137
	0.142
71940	
72000	0.119

72060	0.123
72120	0.139
72180	0.127
72240	0.123
72300	0.137
72360	0.159

Instrument Name	DustTrak II PM ₁₀ Respirable Dust Sampling	
Location	Embarcadero Station Bike Rack Area	
Model Number	8530	
Serial Number	8530100913	
Firmware Version	3.4	
Calibration Date	12/23/2015	
Test Name	TEST 3_001	
Test Start Time	2:13:55 PM	
Test Start Date	2/22/2016	
Test Length [D:H:M]	0:19:30	
Test Interval [M:S]	10:00	
Mass Average [mg/m3]	0.063	
Mass Minimum [mg/m3]	0.01	
Mass Maximum [mg/m3]	0.112	
Mass TWA [mg/m3]	0.087	
Photometric User Cal	1	
Flow User Cal	0	
Errors	· ·	
Number of Samples	117	
Number of Samples	11,	
PM ¹⁰ Concentrations		
Elapsed Time [s]	Mass [mg/m3]	
600	0.025	
1200	0.04	
1800	0.064	
2400	0.076	
3000	0.082	
3600	0.086	
4200	0.088	
4800	0.09	
5400	0.094	
6000	0.095	
6600	0.097	
7200	0.101	
7800	0.106	
8400	0.098	
9000	0.09	
9600	0.091	
10200	0.093	
10800	0.099	
11400	0.105	
12000	0.107	
12600	0.099	
13200	0.098	
13800	0.095	
14400	0.097	
15000	0.1	

15600	0.1
16200	0.093
16800	0.093
17400	0.098
18000	0.1
18600	0.105
19200	0.108
19800	0.097
20400	0.092
21000	0.088
21600	0.083
22200	0.086
22800	0.092
23400	0.083
24000	0.078
24600	0.079
25200	0.078
25800	0.08
26400	0.076
27000	0.07
27600	0.066
28200	0.07
28800	0.065
29400	0.064
30000	0.068
30600	0.064
31200	0.072
31800	0.08
32400	0.078
33000	0.063
33600	0.052
34200	0.045
34800	0.034
35400	0.036
36000	0.038
36600	0.038
37200	0.033
37800	0.037
38400	0.042
39000	0.046
39600	0.046
40200	0.037
40800	0.028
41400	0.02
42000	0.015
42600	0.014
43200	0.017
.5255	0.017

43800	0.016
44400	0.018
45000	0.015
45600	0.015
46200	0.016
46800	0.016
47400	0.016
48000	0.015
48600	0.014
49200	0.013
49800	0.012
50400	0.012
51000	0.01
51600	0.01
52200	0.01
52800	0.01
53400	0.011
54000	0.014
54600	0.019
55200	0.023
55800	0.023
56400	0.028
57000	0.03
57600	0.03
58200	0.034
58800	0.035
59400	0.045
60000	0.06
60600	0.07
61200	0.089
61800	0.082
62400	0.084
63000	0.09
63600	0.089
64200	0.086
64800	0.093
65400	0.095
66000	0.089
66600	0.089
67200	0.094
67800	0.086
68400	0.093
69000	0.103
69600	0.112
70200	0.111

Instrument Name DustTrak II PM10 Respirable Location Montgomery Station Fan Room 30	
Model Number Serial Number Firmware Version	8530 8530100913 3.4
Calibration Date Test Name	12/23/2015 TEST 3 002
Test Start Time Test Start Date	10:18:38 AM 2/23/2016
Test Length [D:H:M]	0:22:20
Test Interval [M:S] Mass Average [mg/m3]	10:00 0.068
Mass Minimum [mg/m3] Mass Maximum [mg/m3]	0.011 0.103
Mass TWA [mg/m3]	0.091
Photometric User Cal Flow User Cal	1 0
Errors Number of Samples	134
	101
PM ₁₀ Results Elapsed Time [s]	Mass [mg/m3]
600	0.103
1200 1800	
2400	
3000 3600	
4200	
4800 5400	0.09 0.086
6000	0.086
6600 7200	0.085 0.092
7800	
8400	
9000 9600	0.097 0.094
10200	0.096
10800 11400	
12000	
12600	0.076
13200 13800	
14400	
15000	0.096

DustTrak II PM10 Respirable Montgomery Station Fan Room 301

	Montgomery Station Fan Room 301	
15600	(0.094
16200	(0.092
16800	(0.091
17400	(0.092
18000	(0.093
18600	(0.092
19200	(0.095
19800	(0.091
20400	(0.092
21000	(0.093
21600	(0.092
22200	(0.096
22800	(0.093
23400	(0.087
24000	(0.085
24600	(0.091
25200	(0.101
25800	(0.096
26400	(0.091
27000	(0.091
27600		0.1
28200	(0.097
28800	(0.098
29400	(0.103
30000		0.1
30600	(0.098
31200	(0.098
31800	(0.094
32400	(0.095
33000	(0.093
33600		0.09
34200	(0.093
34800	(0.093
35400	(0.092
36000	C	0.086
36600	(0.078
37200		0.075
37800	(0.073
38400	(0.068
39000	C	0.067
39600	C	0.072
40200		0.072
40800	(0.069
41400		0.07
42000	(0.069

DustTrak II PM10 Respirable Montgomery Station Fan Room 301

	Montgomery Station Fan Room 301		
42600		0.068	
43200		0.072	
43800		0.067	
44400		0.066	
45000		0.074	
45600		0.059	
46200		0.064	
46800		0.057	
47400		0.045	
48000		0.049	
48600		0.045	
49200		0.048	
49800		0.043	
50400		0.046	
51000		0.033	
51600		0.052	
52200		0.038	
52800		0.035	
53400		0.027	
54000		0.026	
54600		0.022	
55200		0.021	
55800		0.017	
56400		0.015	
57000		0.014	
57600		0.015	
58200		0.013	
58800		0.014	
59400		0.014	
60000		0.013	
60600		0.012	
61200		0.011	
61800		0.017	
62400		0.013	
63000		0.012	
63600		0.011	
64200		0.011	
64800		0.012	
65400		0.016	
66000		0.019	
66600		0.026	
67200		0.029	
67800		0.051	
68400		0.049	
69000		0.051	

DustTrak II PM10 Respirable Montgomery Station Fan Room 301

69600	0.059
70200	0.057
70800	0.056
71400	0.053
72000	0.058
72600	0.062
73200	0.064
73800	0.073
74400	0.074
75000	0.071
75600	0.072
76200	0.083
76800	0.095
77400	0.091
78000	0.096
78600	0.083
79200	0.075
79800	0.073
80400	0.084

Instrument Name	DustTrak II PM ₁₀ Respirable Dust	Results
Location	Montgomery South Station	
Model Number		8530
Serial Number		8530100930
Firmware Version		3.4
Calibration Date		10/22/2015
Test Name	TEST1_007	
Test Start Time		10:25:16 AM
Test Start Date		2/23/2016
Test Length [D:H:M]		0:22:21
Test Interval [M:S]		1:00
Mass Average [mg/m3]		0.06
Mass Minimum [mg/m3]		0.008
Mass Maximum [mg/m3]		0.116
Mass TWA [mg/m3]		0.077
Photometric User Cal		1
Flow User Cal		0
Errors		· ·
Number of Samples		1341
Number of Samples		1541
PM ₁₀ Results		
Elapsed Time [s]	Mass [mg/m3]	
60	. 3,	0.09
120		0.088
180		0.084
240		0.081
300		0.086
360		0.086
420		0.086
480		0.084
540		0.087
600		0.088
660		0.09
720		0.091
780		0.092
840		0.091
900		0.092
960		0.091
1020		0.089
1080		0.091
1140		0.092
1200		0.092
1260		0.094
1320		0.09
1380		0.09
1440		0.091
1500		0.09
_300		3.00

Montgomery South Station	
1560	0.091
1620	0.09
1680	0.1
1740	0.09
1800	0.092
1860	0.089
1920	0.083
1980	0.076
2040	0.072
2100	0.073
2160	0.079
2220	0.083
2280	0.084
2340	0.087
2400	0.084
2460	0.085
2520	0.087
2580	0.083
2640	0.082
2700	0.083
2760	0.081
2820	0.085
2880	0.086
2940	0.087
3000	0.087
3060	0.085
3120	0.088
3180	0.079
3240	0.072
3300	0.069
3360	0.077
3420	0.081
3480	0.075
3540	0.07
3600	0.073
3660	0.074
3720	0.072
3780	0.079
3840	0.084
3900	0.086
3960	0.083
4020	0.076
4080	0.071
4140	0.065
4200	0.065

Montgomery South Station	
4260	0.079
4320	0.087
4380	0.092
4440	0.094
4500	0.09
4560	0.089
4620	0.09
4680	0.089
4740	0.087
4800	0.088
4860	0.088
4920	0.089
4980	0.09
5040	0.092
5100	0.091
5160	0.091
5220	0.083
5280	0.078
5340	0.083
5400	0.086
5460	0.087
5520	0.086
5580	0.079
5640	0.072
5700	0.074
5760	0.078
5820	0.072
5880	0.075
5940	0.084
6000	0.086
6060	0.088
6120	0.083
6180	0.085
6240	0.089
6300	0.09
6360	0.091
6420	0.089
6480	0.09
6540	0.093
6600	0.091
6660	0.094
6720	0.095
6780	0.095
6840	0.092
6900	0.083

Montgomery South Station	
6960	0.079
7020	0.073
7080	0.078
7140	0.087
7200	0.091
7260	0.088
7320	0.09
7380	0.081
7440	0.073
7500	0.076
7560	0.084
7620	0.087
7680	0.087
7740	0.089
7800	0.094
7860	0.089
7920	0.081
7980	0.084
8040	0.076
8100	0.074
8160	0.084
8220	0.087
8280	0.088
8340	0.086
8400	0.085
8460	0.086
8520	0.087
8580	0.087
8640	0.086
8700	0.08
8760	0.073
8820	0.071
8880	0.081
8940	0.091
9000	0.089
9060	0.087
9120	0.088
9180	0.089
9240	0.09
9300	0.089
9360	0.091
9420	0.092
9480	0.09
9540	0.09
9600	0.093

Instrument Name	9
Location	

	Montgomery South Station	
9660	0	.091
9720	0	.096
9780	0	.095
9840	0	.099
9900	0	.094
9960		0.09
10020	0	.097
10080	0	.097
10140	0	.099
10200	0	.097
10260	0	.093
10320	0	.093
10380	0	.093
10440	0	.092
10500	0	.092
10560	0	.092
10620	0	.085
10680	0	.084
10740	0	.083
10800	0	.089
10860	0	.086
10920	0	.083
10980	0	.078
11040		.074
11100	0	.077
11160	0	.078
11220		.083
11280	0	.081
11340	0	.077
11400	0	.077
11460		.077
11520		0.08
11580		.078
11640		.077
11700		.076
11760		.078
11820		.079
11880		.078
11940		.077
12000		0.08
12060		.079
12120		.077
12180		.076
12240		.075
12300	0	.076

Instrument Name
Location

Montgomery South Station	
12360	0.081
12420	0.085
12480	0.086
12540	0.085
12600	0.086
12660	0.086
12720	0.083
12780	0.084
12840	0.081
12900	0.081
12960	0.079
13020	0.081
13080	0.086
13140	0.085
13200	0.083
13260	0.084
13320	0.084
13380	0.079
13440	0.082
13500	0.081
13560	0.08
13620	0.08
13680	0.08
13740	0.078
13800	0.077
13860	0.078
13920	0.081
13980	0.081
14040	0.085
14100	0.085
14160	0.089
14220	0.091
14280	0.087
14340	0.089
14400	0.088
14460	0.086
14520	0.084
14580	0.078
14640	0.078
14700	0.07
14760	0.077
14820	0.078
14880	0.075
14940	0.084
15000	0.088

Instrument Name	
Location	

Montgomery South Station	
15060	0.09
15120	0.091
15180	0.087
15240	0.088
15300	0.092
15360	0.088
15420	0.087
15480	0.085
15540	0.085
15600	0.085
15660	0.086
15720	0.087
15780	0.088
15840	0.086
15900	0.079
15960	0.074
16020	0.075
16080	0.075
16140	0.077
16200	0.081
16260	0.079
16320	0.079
16380	0.079
16440	0.08
16500	0.075
16560	0.079
16620	0.078
16680	0.07
16740	0.065
16800	0.064
16860	0.073
16920	0.066
16980	0.063
17040	0.069
17100	0.064
17160	0.06
17220	0.067
17280	0.074
17340	0.074
17400	0.064
17460	0.059
17520	0.057
17580	0.058
17640	0.071
17700	0.071

Instrument Name	9
Location	

Montgomery South Station	
17760	0.074
17820	0.077
17880	0.079
17940	0.08
18000	0.077
18060	0.071
18120	0.071
18180	0.064
18240	0.061
18300	0.057
18360	0.057
18420	0.058
18480	0.055
18540	0.054
18600	0.051
18660	0.051
18720	0.051
18780	0.049
18840	0.048
18900	0.047
18960	0.06
19020	0.066
19080	0.074
19140	0.077
19200	0.082
19260	0.085
19320	0.079
19380	0.079
19440	0.078
19500	0.072
19560	0.069
19620	0.068
19680	0.076
19740	0.08
19800	0.082
19860	0.077
19920	0.076
19980	0.077
20040	0.077
20100	0.078
20160	0.072
20220	0.072
20280	0.081
20340	0.078
20400	0.065

DustTrak II PM₁₀ Respirable Dust Results Montgomery South Station

0.069 0.07 0.071 0.077 0.072 0.068 0.068 0.07 0.065 0.065 0.068 0.08 0.078 0.072 0.071 0.066 0.065 0.059 0.067 0.074 0.066 0.063 0.064 0.065 0.062 0.069 0.068 0.063 0.058 0.054 0.054 0.052 0.055 0.058 0.056 0.058 0.054 0.055 0.061 0.059 0.057 0.053 0.055 0.056 0.059

Montgomery South Station	
20460	
20520	
20580	
20640	
20700	
20760	
20820	
20880	
20940	
21000	
21060	
21120	
21180	
21240	
21300	
21360	
21420	
21480	
21540	
21600	
21660	
21720	
21780	
21840	
21900	
21960	
22020	
22080	
22140	
22200	
22260	
22320	
22380 22440	
22500	
22560	
22620	
22680	
22740	
22800	
22860	
22920	
22980	
23040	
23100	

Instrument Name	9
Location	

Montgomery South	Station
23160	0.062
23220	0.064
23280	0.061
23340	0.068
23400	0.06
23460	0.066
23520	0.072
23580	0.066
23640	0.063
23700	0.065
23760	0.065
23820	0.065
23880	0.066
23940	0.066
24000	0.067
24060	0.072
24120	0.079
24180	0.077
24240	0.077
24300	0.076
24360	0.074
24420	0.071
24480	0.073
24540	0.071
24600	0.07
24660	0.071
24720	0.066
24780	0.065
24840	0.065
24900	0.065
24960	0.062
25020	0.064
25080	0.063
25140	0.065
25200	0.069
25260	0.065
25320	0.061
25380	0.068
25440	0.065
25500	0.065
25560	0.063
25620	0.054
25680	0.049
25740	0.047
25800	0.053

	Montgomery South Station	
25860		0.059
25920		0.059
25980		0.059
26040		0.062
26100		0.057
26160		0.054
26220		0.057
26280		0.07
26340		0.066
26400		0.07
26460		0.071
26520		0.071
26580		0.074
26640		0.065
26700		0.065
26760		0.067
26820		0.061
26880		0.065
26940		0.069
27000		0.068
27060		0.07
27120		0.074
27180		0.066
27240		0.069
27300		0.073
27360		0.074
27420		0.074
27480		0.068
27540		0.067
27600		0.073
27660		0.076
27720		0.079
27780		0.081
27840		0.079
27900		0.081
27960		0.078
28020		0.079
28080		0.072
28140		0.074
28200		0.07
28260		0.073
28320		0.07
28380		0.072
28440		0.075
28500		0.076

Montgomery South Station	
28560	0.08
28620	0.071
28680	0.069
28740	0.067
28800	0.067
28860	0.073
28920	0.08
28980	0.09
29040	0.088
29100	0.081
29160	0.082
29220	0.082
29280	0.082
29340	0.078
29400	0.073
29460	0.07
29520	0.069
29580	0.066
29640	0.058
29700	0.057
29760	0.06
29820	0.07
29880	0.071
29940	0.069
30000	0.061
30060	0.066
30120	0.06
30180	0.058
30240	0.057
30300	0.059
30360	0.061
30420	0.059
30480	0.057
30540	0.05
30600	0.047
30660	0.046
30720	0.05
30780	0.06
30840	0.065
30900	0.072
30960	0.07
31020	0.075
31080	0.074
31140	0.075
31200	0.077

Instrument Name	
Location	

Montgomery South Station	
31260	0.078
31320	0.072
31380	0.073
31440	0.073
31500	0.07
31560	0.072
31620	0.069
31680	0.069
31740	0.071
31800	0.074
31860	0.078
31920	0.076
31980	0.077
32040	0.083
32100	0.086
32160	0.087
32220	0.088
32280	0.089
32340	0.086
32400	0.085
32460	0.088
32520	0.089
32580	0.092
32640	0.093
32700	0.093
32760	0.09
32820	0.081
32880	0.075
32940	0.071
33000	0.068
33060	0.066
33120	0.063
33180	0.077
33240	0.087
33300	0.091
33360	0.088
33420	0.088
33480	0.089
33540	0.09
33600	0.091
33660	0.091
33720	0.094
33780	0.092
33840 33900	0.09 0.087
33300	0.087

Instrument Nam	e
Location	

Montgomery Sout	h Station
33960	0.086
34020	0.086
34080	0.084
34140	0.083
34200	0.084
34260	0.086
34320	0.09
34380	0.084
34440	0.083
34500	0.08
34560	0.077
34620	0.082
34680	0.082
34740	0.083
34800	0.084
34860	0.085
34920	0.091
34980	0.09
35040	0.09
35100	0.091
35160	0.09
35220	0.089
35280	0.084
35340	0.082
35400	0.082
35460	0.079
35520	0.078
35580	0.079
35640	0.082
35700	0.08
35760	0.076
35820	0.069
35880	0.064
35940	0.059
36000	0.061
36060	0.059
36120	0.057
36180	0.066
36240	0.071
36300	0.073
36360	0.075
36420	0.077
36480	0.081
36540	0.081
36600	0.08

Instrument Name
Location

Montgomery South Station	
36660	0.071
36720	0.069
36780	0.07
36840	0.073
36900	0.073
36960	0.07
37020	0.065
37080	0.062
37140	0.062
37200	0.071
37260	0.073
37320	0.072
37380	0.071
37440	0.069
37500	0.067
37560	0.067
37620	0.068
37680	0.069
37740	0.071
37800	0.067
37860	0.06
37920	0.061
37980	0.066
38040	0.067
38100	0.068
38160	0.069
38220	0.07
38280	0.071
38340	0.072
38400	0.071
38460	0.071
38520	0.07
38580	0.07
38640	0.07
38700	0.071
38760	0.07
38820	0.073
38880	0.074
38940	0.073
39000	0.071
39060	0.07
39120	0.068
39180	0.066
39240	0.067
39300	0.069

Instrument Name
Location

Montgomery South Station	
39360	0.07
39420	0.068
39480	0.068
39540	0.07
39600	0.071
39660	0.071
39720	0.072
39780	0.069
39840	0.067
39900	0.064
39960	0.062
40020	0.062
40080	0.066
40140	0.064
40200	0.064
40260	0.063
40320	0.062
40380	0.065
40440	0.067
40500	0.066
40560	0.064
40620	0.063
40680	0.063
40740	0.065
40800	0.067
40860	0.07
40920	0.071
40980	0.07
41040	0.07
41100	0.068
41160	0.067
41220	0.068
41280	0.069
41340	0.062
41400	0.059
41460	0.063
41520	0.067
41580	0.066
41640	0.067
41700	0.067
41760	0.068
41820	0.071
41880	0.068
41940	0.067
42000	0.065

Instrument Name	9
Location	

Montgomery South S	tation
42060	0.065
42120	0.068
42180	0.069
42240	0.067
42300	0.066
42360	0.067
42420	0.065
42480	0.065
42540	0.065
42600	0.068
42660	0.064
42720	0.063
42780	0.065
42840	0.062
42900	0.06
42960	0.06
43020	0.06
43080	0.062
43140	0.064
43200	0.065
43260	0.067
43320	0.067
43380	0.068
43440	0.068
43500	0.07
43560	0.068
43620	0.068
43680	0.067
43740	0.067
43800	0.075
43860	0.074
43920	0.071
43980	0.067
44040	0.066
44100	0.065
44160	0.065
44220	0.064
44280	0.063
44340	0.062
44400	0.064
44460	0.063
44520	0.066
44580	0.065
44640	0.059
44700	0.052

Instrument Name
Location

Montgomery South Station	
44760	0.045
44820	0.046
44880	0.043
44940	0.04
45000	0.036
45060	0.041
45120	0.045
45180	0.046
45240	0.045
45300	0.046
45360	0.036
45420	0.036
45480	0.034
45540	0.034
45600	0.034
45660	0.032
45720	0.034
45780	0.033
45840	0.032
45900	0.032
45960	0.034
46020	0.034
46080	0.046
46140	0.041
46200	0.037
46260	0.039
46320	0.034
46380	0.03
46440	0.029
46500	0.027
46560	0.028
46620	0.034
46680	0.037
46740	0.034
46800	0.032
46860	0.035
46920	0.032
46980	0.03
47040	0.03
47100	0.032
47160	0.033
47220	0.033
47280	0.03
47340	0.029
47400	0.031

Instrument	Name
Location	

Montgomery South Station	
47460	0.031
47520	0.03
47580	0.03
47640	0.027
47700	0.026
47760	0.025
47820	0.025
47880	0.025
47940	0.027
48000	0.033
48060	0.036
48120	0.036
48180	0.035
48240	0.034
48300	0.036
48360	0.035
48420	0.035
48480	0.03
48540	0.03
48600	0.031
48660	0.032
48720	0.035
48780	0.035
48840	0.032
48900	0.034
48960	0.035
49020	0.036
49080	0.033
49140	0.035
49200	0.034
49260	0.032
49320	0.034
49380	0.035
49440	0.038
49500	0.038
49560	0.038
49620	0.034
49680	0.032
49740	0.032
49800	0.031
49860	0.033
49920	0.033
49980	0.035
50040	0.034
50100	0.033

Instrument Name	
Location	

Montgomery South Station	
50160	0.033
50220	0.034
50280	0.035
50340	0.035
50400	0.036
50460	0.037
50520	0.035
50580	0.039
50640	0.038
50700	0.036
50760	0.037
50820	0.039
50880	0.037
50940	0.035
51000	0.034
51060	0.035
51120	0.033
51180	0.032
51240	0.034
51300	0.036
51360	0.036
51420	0.035
51480	0.036
51540	0.036
51600	0.034
51660	0.033
51720	0.032
51780	0.029
51840	0.028
51900	0.03
51960	0.034
52020	0.04
52080	0.039
52140	0.042
52200	0.041
52260	0.042
52320	0.055
52380	0.037
52440	0.034
52500	0.035
52560	0.035
52620	0.036
52680	0.037
52740	0.036
52800	0.033

Instrument Name	
Location	

0.033 0.031 0.031 0.032 0.033 0.035 0.034 0.033 0.031 0.035 0.033 0.034 0.034 0.035 0.035 0.036 0.036 0.036 0.036 0.036 0.035 0.036 0.035 0.035 0.037 0.036 0.036 0.035 0.034 0.035 0.034 0.034 0.034 0.032 0.031 0.031 0.029 0.029 0.028 0.027 0.026 0.025 0.025 0.023 0.022

		Mont	gome	ry So	uth St	tation	
5286	60						
5292	20						
5298	80						
5304	40						
5310	00						
5316	60						
5322	20						
5328	80						
5334	40						
5340	00						
5346	60						
5352	20						
5358	80						
5364	40						
5370	00						
5376	60						
5382	20						
5388	80						
5394	40						
5400	00						
5406	60						
5412	20						
5418	80						
5424	40						
5430	00						
5436	60						
5442	20						
5448	80						
5454	40						
5460	00						
5466	60						
5472	20						
5478	80						
5484	40						
5490	00						
5496	50						
5502							
5508							
5514							
5520							
5526							
5532							
5538							
5544							
5550	00						

Instrument Name
Location

${\bf DustTrak~II~PM_{10}~Respirable~Dust~Results}$

Montgomery South Station

Montgo	omery South Station
55560	0.022
55620	0.021
55680	0.02
55740	0.02
55800	0.019
55860	0.018
55920	0.017
55980	0.017
56040	0.018
56100	0.016
56160	0.017
56220	0.016
56280	0.016
56340	0.015
56400	0.015
56460	0.015
56520	0.015
56580	0.015
56640	0.015
56700	0.014
56760	0.014
56820	0.014
56880	0.013
56940	0.013
57000	0.013
57060	0.013
57120	0.013
57180	0.013
57240	0.013
57300	0.012
57360	0.012
57420	0.012
57480	0.012
57540	0.012
57600	0.012
57660	0.011
57720	0.012
57780	0.011
57840	0.011
57900	0.011
57960	0.011
58020	0.011
58080	0.011
58140	0.011
58200	0.01

Instrument Name	DustTrak II PM ₁₀ Respirable Dust Results
Location	Montgomery South Station

Montgomery South Station	
58260	0.01
58320	0.01
58380	0.01
58440	0.01
58500	0.01
58560	0.01
58620	0.01
58680	0.01
58740	0.01
58800	0.01
58860	0.01
58920	0.01
58980	0.01
59040	0.01
59100	0.01
59160	0.01
59220	0.01
59280	0.01
59340	0.01
59400	0.01
59460	0.01
59520	0.01
59580	0.01
59640	0.01
59700	0.01
59760	0.01
59820	0.01
59880	0.01
59940	0.01
60000	0.01
60060	0.01
60120	0.01
60180	0.01
60240	0.01
60300	0.01
60360	0.01
60420	0.01
60480	0.01
60540	0.01
60600	0.01
60660	0.01
60720	0.01
60780	0.01
60840	0.009
60900	0.009

Instrument Name	
Location	

Montgomery South Station	
60960	0.009
61020	0.009
61080	0.009
61140	0.009
61200	0.009
61260	0.01
61320	0.009
61380	0.009
61440	0.009
61500	0.009
61560	0.009
61620	0.009
61680	0.009
61740	0.009
61800	0.009
61860	0.009
61920	0.009
61980	0.009
62040	0.008
62100	0.009
62160	0.009
62220	0.009
62280	0.008
62340	0.009
62400	0.008
62460	0.008
62520	0.009
62580	0.012
62640	0.013
62700	0.016
62760	0.011
62820	0.016
62880	0.015
62940	0.016
63000	0.015
63060	0.014
63120	0.013
63180	0.013
63240	0.013
63300	0.013
63360	0.012
63420	0.013
63480	0.013
63540	0.013
63600	0.013

Instrument Name	DustTrak II PM ₁₀ Respirable Dust Results
Location	Montgomery South Station

Montgomery South Station	
63660	0.014
63720	0.013
63780	0.013
63840	0.013
63900	0.013
63960	0.012
64020	0.014
64080	0.012
64140	0.012
64200	0.011
64260	0.013
64320	0.016
64380	0.014
64440	0.014
64500	0.014
64560	0.014
64620	0.015
64680	0.014
64740	0.014
64800	0.015
64860	0.017
64920	0.021
64980	0.023
65040	0.027
65100	0.032
65160	0.03
65220	0.037
65280	0.034
65340	0.032
65400	0.029
65460	0.027
65520	0.024
65580	0.023
65640	0.023
65700	0.022
65760	0.021
65820	0.021
65880	0.021
65940	0.02
66000	0.019
66060 66130	0.02
66120 66180	0.021 0.02
66240	0.02
66300	0.02
00300	0.02

Instrument Name	DustTrak II PM ₁₀ Respirable Dust Results
Location	Montgomery South Station

	Dust frak ii Pivi ₁₀ Respirable Dust Results	
	Montgomery South Station	
66360		0.02
66420		0.02
66480)	0.02
66540		0.021
66600)	0.02
66660		0.022
66720)	0.022
66780)	0.021
66840)	0.023
66900)	0.024
66960)	0.024
67020		0.024
67080		0.023
67140		0.023
67200		0.023
67260		0.023
67320		0.024
67380		0.025
67440)	0.03
67500		0.035
67560)	0.038
67620)	0.035
67680)	0.031
67740)	0.03
67800)	0.028
67860)	0.028
67920)	0.027
67980)	0.026
68040)	0.026
68100)	0.025
68160		0.025
68220		0.032
68280		0.031
68340)	0.03
68400		0.028
68460		0.027
68520)	0.026
68580		0.026
68640		0.026
68700		0.027
68760		0.027
68820		0.026
68880		0.028
68940		0.038
69000		0.04

Instrument Name	9
Location	

Montgomery South Station	
69060	0.045
69120	0.047
69180	0.046
69240	0.05
69300	0.05
69360	0.05
69420	0.043
69480	0.042
69540	0.04
69600	0.037
69660	0.035
69720	0.034
69780	0.034
69840	0.033
69900	0.044
69960	0.051
70020	0.05
70080	0.05
70140	0.054
70200	0.056
70260	0.057
70320	0.057
70380	0.055
70440	0.058
70500	0.054
70560	0.055
70620	0.059
70680	0.063
70740	0.063
70800	0.063
70860	0.061
70920	0.059
70980	0.062
71040	0.064
71100	0.062
71160	0.062
71220	0.063
71280	0.064
71340	0.071
71400	0.073
71460	0.073
71520	0.071
71580	0.071
71640	0.072
71700	0.077

Instrument Name Location

Montgomery South Station	
71760	0.082
71820	0.08
71880	0.077
71940	0.079
72000	0.074
72060	0.071
72120	0.075
72180	0.076
72240	0.077
72300	0.075
72360	0.077
72420	0.076
72480	0.078
72540	0.081
72600	0.078
72660	0.078
72720	0.079
72780	0.084
72840	0.086
72900	0.087
72960	0.084
73020	0.081
73080	0.08
73140	0.08
73200	0.082
73260	0.081
73320	0.081
73380	0.081
73440	0.082
73500	0.08
73560	0.08
73620	0.08
73680	0.082
73740	0.085
73800	0.084
73860	0.083
73920	0.081
73980	0.079
74040	0.075
74100	0.075
74160	0.077
74220	0.072
74280	0.069
74340	0.071
74400	0.074

Instrument Name Location

Montgomery South Station	
	0.077
	0.077
	0.078
	0.082
	0.082
	0.081
	0.081
	0.081
	0.079
	0.078
	0.082
	0.08
	0.086
	0.087
	0.085
	0.083
	0.083
	0.083
	0.087
	0.085
	0.087
	0.087
	0.089
	0.09
	0.09
	0.091
	0.096
	0.096
	0.092
	0.095
	0.095
	0.099
	0.113
	0.111
	0.116
	0.115
	0.114
	0.108
	0.114
	0.114
	0.107
	0.114
	0.11
	0.101
	0.1
	Montgomery South Station

Instrument Name	
Location	

Montgomery South Station	
77160	0.099
77220	0.103
77280	0.111
77340	0.109
77400	0.105
77460	0.104
77520	0.105
77580	0.102
77640	0.105
77700	0.107
77760	0.107
77820	0.096
77880	0.095
77940	0.097
78000	0.094
78060	0.096
78120	0.08
78180	0.058
78240	0.046
78300	0.042
78360	0.043
78420	0.041
78480	0.042
78540	0.044
78600	0.048
78660	0.058
78720	0.063
78780	0.062
78840	0.062
78900	0.063
78960	0.064
79020	0.071
79080	0.072
79140	0.079
79200	0.079
79260	0.083
79320	0.089
79380	0.086
79440	0.088
79500	0.088
79560	0.092
79620	0.089
79680	0.09
79740	0.091
79800	0.092

Instrument Name	DustTrak II PM ₁₀ Respirable Dust I Montgomery South Station	Results
	⁷ 9860	0.097
7	9920	0.098
7	79980	0.099
8	30040	0.102
8	30100	0.1
8	80160	0.1
8	30220	0.099

0.101

0.097

0.099

0.097

80280

80340

80400

80460

Attachment 3

San Francisco Line Spot Sampling Results for PM_{10} and $PM_{2.5}$

				PM ₁₀ Concentrations	
Station	Date	Time	Location	Max	Avg.
CAAQS Std. ⁽¹⁾					0.05
Cal/OSHA 8-hr. PEL Re	espirable Dust	(2)			5
19th St.	2/22/2016	8:13 a.m.	Agent Booth	0.055	0.052
19th St.	2/22/2016	8:19 a.m.	Lower Trackside	0.081	0.071
12th St.	2/22/2016	8:23 a.m.	Trackside	0.11	0.009
12th St.	2/22/2016	8:43 a.m.	Ticket Machines	0.065	0.065
12th St.	2/22/2016	8:47 a.m.	Agent Booth	0.045	0.042
Montgomery	2/22/2016	9:57 a.m.	North Station Agent Booth	0.081	0.052
Montgomery	2/22/2016	10:02 a.m.	North Ticket Machines	0.081	0.044
Montgomery	2/22/2016	10:27 a.m.	Lower Level Trackway	0.136	0.104
Powell	2/22/2016	10:56 a.m.	Police Squad Room	0.134	0.036
Powell	2/22/2016	11:00 a.m.	Ticket Machines	0.082	0.079
Powell	2/22/2016	11:04 a.m.	South Agent Booth	0.094	0.045
Powell	2/22/2016	11:27 a.m.	Lower Level Trackway	0.084	0.066
16th St.	2/22/2016	11:49 a.m.	Agent Booth	0.138	0.063
16th St.	2/22/2016	11:53 a.m.	Ticket Machines	0.05	0.031
16th St.	2/22/2016	11:58 a.m.	Trackway	0.155	0.085
24th St.	2/22/2016	12:16 p.m.	Ticket Machines	0.131	0.064
24th St.	2/22/2016	12:21 p.m.	Agent Booth	0.1	0.052
24th St.	2/22/2016	12:27 p.m.	Trackway	0.136	0.092
Civic Center	2/22/2016	1:09 p.m.	North Agent Booth	0.128	0.081
Civic Center	2/22/2016	1:13 p.m.	North Ticket Machines	0.133	0.094
Civic Center	2/22/2016	1:18 p.m.	Lower Trackway	0.111	0.087
Embarcadero	2/22/2016	1:28 p.m.	Trackway	0.159	0.118
Embarcadero	2/22/2016	1:34 p.m.	South Agent Booth 0.07		0.041
Embarcadero	2/22/2016	1:36 p.m.	South Ticket Machines	0.077	0.018
	-		Maximum	0.159	0.118
			Minimum	0.045	0.009
			Average	0.102	0.062

Source: (1) California Environmental Protection Agency Air Resources Board, April 25, 200

http://www.arb.ca.gov/research/aaqs/caaqs/pm/pm.htm

(2) Table AC-1 Permissible Exposure Limits for Chemical Contaminants

https://www.dir.ca.gov/title8/5155table_ac1.html

(mg/m ³)	PM _{2.5} Concentrations (mg/m ³)			
Min.	Max	Max Avg.		
		0.035		
0.048	0.035	0.033	0.029	
0.061	0.065	0.048	0.035	
0.077	0.065	0.055	0.044	
0.065	0.034	0.034	0.034	
0.039	0.034	0.03	0.026	
0.036	0.043	0.036	0.033	
0.018	0.073	0.058	0.052	
0.076	0.08	0.057	0.07	
0.022	0.026	0.02	0.017	
0.045	0.057	0.05	0.044	
0.017	0.045	0.031	0.013	
0.048	0.054	0.044	0.035	
0.033	0.071	0.044	0.025	
0.013	0.08	0.043	0.017	
0.032	0.082	0.061	0.025	
0.031	0.06	0.04	0.017	
0.015	0.055	0.036	0.012	
0.04	0.081	0.072	0.05	
0.056	0.067	0.05	0.039	
0.057	0.079	0.06	0.037	
0.066	0.076	0.053	0.046	
0.089	0.08	0.071	0.051	
0.023	0.046	0.031	0.019	
0.007	0.013	0.008	0.004	
0.089	0.082	0.072	0.07	
0.007	0.013	0.008	0.004	
0.042	0.058	0.044	0.032	

Attachment 4

CAM-17 Settled Dust Metals Analyses – Montgomery, Powell & Civic Center Stations

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1602945

Report Created for: SCA Environmental, Inc.

1 Lakeside Drive, Suite 215

Oakland, CA 94612

Project Contact: Glenn Cass
Project P.O.: K11983
Project Name: K11983

Project Received: 02/23/2016

Analytical Report reviewed & approved for release on 03/01/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: SCA Environmental, Inc.

Project: K11983 **WorkOrder:** 1602945

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a16 reporting limit raised due to high metals content

Glossary of Terms & Qualifier Definitions

Client: SCA Environmental, Inc.

Project: K11983 **WorkOrder:** 1602945

Quality Control Qualifiers

F8 MS/MSD recovery and/or RPD was out of acceptance criteria; PDS validated the prep batch. If PDS recovery

was out of acceptance criteria, DLT validated the prep batch.

Analytical Report

Client:SCA Enviromental, Inc.WorkOrder:1602945Date Received:2/23/16 19:53Extraction Method:SW3050BDate Prepared:2/23/16-2/26/16Analytical Method:SW6020

Project: K11983 Unit: mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
Mont-Soot-202-1	1602945-001A	Solid	02/22/201	16 10:30 ICP-MS1	117119
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	21		0.50	1	02/25/2016 23:29
Arsenic	11		0.50	1	02/25/2016 23:29
Barium	160		5.0	1	02/25/2016 23:29
Beryllium	ND		0.50	1	02/25/2016 23:29
Cadmium	45		0.25	1	02/25/2016 23:29
Chromium	98		0.50	1	02/25/2016 23:29
Cobalt	14		0.50	1	02/25/2016 23:29
Copper	530		5.0	10	02/25/2016 19:56
Lead	170		0.50	1	02/25/2016 23:29
Mercury	0.32		0.050	1	02/25/2016 23:29
Molybdenum	17		0.50	1	02/25/2016 23:29
Nickel	52		0.50	1	02/25/2016 23:29
Selenium	ND		0.50	1	02/25/2016 23:29
Silver	0.99		0.50	1	02/25/2016 23:29
Thallium	ND		0.50	1	02/25/2016 23:29
Vanadium	12		0.50	1	02/25/2016 23:29
Zinc	8400		50	10	02/25/2016 19:56
Surrogates	REC (%)		<u>Limits</u>		
Terbium	99		70-130		02/25/2016 23:29
Analyst(s): DVH					

Analytical Report

Client:SCA Enviromental, Inc.WorkOrder:1602945Date Received:2/23/16 19:53Extraction Method:SW3050BDate Prepared:2/23/16-2/26/16Analytical Method:SW6020

Project: K11983 **Unit:** mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
Powell-Soot-302-1	1602945-002A	Solid	02/22/201	6 11:30 ICP-MS1	117119
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	40		0.50	1	02/25/2016 23:42
Arsenic	25		0.50	1	02/25/2016 23:42
Barium	570		5.0	1	02/25/2016 23:42
Beryllium	ND		0.50	1	02/25/2016 23:42
Cadmium	390		0.25	1	02/25/2016 23:42
Chromium	670		5.0	10	02/25/2016 20:02
Cobalt	21		0.50	1	02/25/2016 23:42
Copper	3100		5.0	10	02/25/2016 20:02
Lead	410		0.50	1	02/25/2016 23:42
Mercury	0.58		0.050	1	02/25/2016 23:42
Molybdenum	100		0.50	1	02/25/2016 23:42
Nickel	430		0.50	1	02/25/2016 23:42
Selenium	ND		0.50	1	02/25/2016 23:42
Silver	1.9		0.50	1	02/25/2016 23:42
Thallium	ND		0.50	1	02/25/2016 23:42
Vanadium	22		0.50	1	02/25/2016 23:42
Zinc	12,000		50	10	02/25/2016 20:02
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Terbium	105		70-130		02/25/2016 23:42
Analyst(s): DVH					

Analytical Report

Client:SCA Enviromental, Inc.WorkOrder:1602945Date Received:2/23/16 19:53Extraction Method:SW3050BDate Prepared:2/23/16-2/26/16Analytical Method:SW6020

Project: K11983 **Unit:** mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
Civic-Soot-402-1	1602945-003A	Solid	02/22/201	6 13:00 ICP-MS2	117260
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	17,000		25	50	02/26/2016 17:52
Arsenic	75		2.5	5	02/26/2016 11:10
Barium	1500		25	5	02/26/2016 11:10
Beryllium	ND		2.5	5	02/26/2016 11:10
Cadmium	ND		1.2	5	02/26/2016 11:10
Chromium	310		2.5	5	02/26/2016 11:10
Cobalt	19		2.5	5	02/26/2016 11:10
Copper	8100		25	50	02/26/2016 17:52
Lead	420		2.5	5	02/26/2016 11:10
Mercury	0.43		0.25	5	02/26/2016 11:10
Molybdenum	84		2.5	5	02/26/2016 11:10
Nickel	230		2.5	5	02/26/2016 11:10
Selenium	ND		2.5	5	02/26/2016 11:10
Silver	8.1		2.5	5	02/26/2016 11:10
Thallium	ND		2.5	5	02/26/2016 11:10
Vanadium	16		2.5	5	02/26/2016 11:10
Zinc	1800		25	5	02/26/2016 11:10
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Terbium	116		70-130		02/26/2016 11:10
Analyst(s): AC, BBO			Analytical Comm	nents: a16	

Quality Control Report

Client:SCA Environmental, Inc.WorkOrder:1602945Date Prepared:2/23/16BatchID:117119Date Analyzed:2/24/16Extraction Method:SW3050B

Instrument:ICP-MS2Analytical Method:SW6020Matrix:SoilUnit:mg/Kg

Project: K11983 **Sample ID:** MB/LCS-117119

1602930-001AMS/MSD 1602930-001APDS

QC Summary Report for Metals

		, -					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	49.8	0.50	50	-	100	75-125
Arsenic	ND	51.6	0.50	50	-	103	75-125
Barium	ND	513	5.0	500	-	103	75-125
Beryllium	ND	50.8	0.50	50	-	102	75-125
Cadmium	ND	50.4	0.25	50	-	101	75-125
Chromium	ND	51.3	0.50	50	-	103	75-125
Cobalt	ND	48.4	0.50	50	-	97	75-125
Copper	ND	52.7	0.50	50	-	105	75-125
Lead	ND	49.5	0.50	50	-	99	75-125
Mercury	ND	1.17	0.050	1.25	-	94	75-125
Molybdenum	ND	48.8	0.50	50	-	98	75-125
Nickel	ND	52.7	0.50	50	-	105	75-125
Selenium	ND	51.7	0.50	50	-	103	75-125
Silver	ND	49.6	0.50	50	-	99	75-125
Thallium	ND	51.1	0.50	50	-	102	75-125
Vanadium	ND	51.2	0.50	50	-	102	75-125
Zinc	ND	520	5.0	500	-	104	75-125
Surrogate Recovery							
Terbium	513	498		500	103	100	70-130

Quality Control Report

Client: SCA Environmental, Inc.

Date Prepared: 2/23/16 **Date Analyzed:** 2/24/16 **Instrument:** ICP-MS2 **Matrix:** Soil

Project: K11983 WorkOrder: 1602945

BatchID: 117119

Extraction Method: SW3050B Analytical Method: SW6020

Unit: mg/Kg

Sample ID: MB/LCS-117119

> 1602930-001AMS/MSD 1602930-001APDS

QC Summary Report for Metals

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	49.5	51.0	50	ND	99	102	75-125	3.08	20
Arsenic	55.6	55.2	50	5.709	100	99	75-125	0.704	20
Barium	616	774	500	91.16	105	137,F8	75-125	22.8,F8	20
Beryllium	51.2	51.8	50	ND	102	103	75-125	1.32	20
Cadmium	49.8	49.1	50	ND	99	98	75-125	1.38	20
Chromium	84.1	116	50	40.12	88	153,F8	75-125	32.2,F8	20
Cobalt	58.4	63.0	50	13.74	89	98	75-125	7.55	20
Copper	70.6	85.4	50	21.59	98	128,F8	75-125	19.0	20
Lead	54.8	60.0	50	6.298	97	107	75-125	8.92	20
Mercury	1.33	1.40	1.25	0.2199	89	94	75-125	5.20	20
Molybdenum	48.4	49.7	50	ND	96	99	75-125	2.63	20
Nickel	118	142	50	42.60	151,F8	199,F8	75-125	18.6	20
Selenium	50.8	49.9	50	ND	101	100	75-125	1.81	20
Silver	49.0	49.4	50	ND	98	99	75-125	0.772	20
Thallium	51.6	50.3	50	ND	103	101	75-125	2.45	20
Vanadium	116	127	50	86.84	57,F8	81	75-125	9.80	20
Zinc	556	573	500	52.57	101	104	75-125	3.08	20

Terbium 502 516 500 100 103 70-130 2.67 20

Analyte	PDS Result	SPK Val	SPKRef Val	PDS %REC	PDS Limits
Barium	675	500	91.16	117	80-120
Chromium	93.0	50	40.12	106	80-120
Copper	78.1	50	21.59	113	80-120
Nickel	102	50	42.60	118	80-120
Vanadium	142	50	86.84	110	80-120

Quality Control Report

Client:SCA Environmental, Inc.WorkOrder:1602945Date Prepared:2/25/16BatchID:117260Date Analyzed:2/26/16Extraction Method:SW3050B

Instrument:ICP-MS1Analytical Method:SW6020Matrix:SoilUnit:mg/Kg

Project: K11983 **Sample ID:** MB/LCS-117260

1602A64-001AMS/MSD 1602A64-001APDS

QC Summary Report for Metals

	Constitution of the second of									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits			
Antimony	ND	50.5	0.50	50	-	101	75-125			
Arsenic	ND	52.1	0.50	50	-	104	75-125			
Barium	ND	533	5.0	500	-	107	75-125			
Beryllium	ND	53.0	0.50	50	-	106	75-125			
Cadmium	ND	51.1	0.25	50	-	102	75-125			
Chromium	ND	51.2	0.50	50	-	102	75-125			
Cobalt	ND	54.0	0.50	50	-	108	75-125			
Copper	ND	53.1	0.50	50	-	106	75-125			
Lead	ND	53.8	0.50	50	-	108	75-125			
Mercury	ND	1.19	0.050	1.25	-	95	75-125			
Molybdenum	ND	50.8	0.50	50	-	102	75-125			
Nickel	ND	52.9	0.50	50	-	106	75-125			
Selenium	ND	53.7	0.50	50	-	107	75-125			
Silver	ND	51.4	0.50	50	-	103	75-125			
Thallium	ND	51.5	0.50	50	-	103	75-125			
Vanadium	ND	50.3	0.50	50	-	101	75-125			
Zinc	ND	538	5.0	500	-	108	75-125			
Surrogate Recovery										
Terbium	515	500		500	103	100	70-130			

Quality Control Report

Client: SCA Environmental, Inc.

Date Prepared: 2/25/16Date Analyzed: 2/26/16Instrument: ICP-MS1Matrix: Soil

Project: K11983

WorkOrder: 1602945

BatchID: 117260

Extraction Method: SW3050B

Analytical Method: SW6020 **Unit:** mg/Kg

Sample ID: MB/LCS-117260

1602A64-001AMS/MSD 1602A64-001APDS

QC Summary Report for Metals

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	30.2	49.8	50	ND	60,F8	99	75-125	49.1,F8	20
Arsenic	52.4	55.3	50	3.472	98	104	75-125	5.50	20
Barium	535	554	500	19.96	103	107	75-125	3.53	20
Beryllium	50.0	52.5	50	ND	100	105	75-125	5.03	20
Cadmium	47.7	51.0	50	ND	95	102	75-125	6.63	20
Chromium	84.7	85.1	50	31.25	107	108	75-125	0.401	20
Cobalt	54.4	56.6	50	5.024	99	103	75-125	4.07	20
Copper	52.8	55.2	50	3.789	98	103	75-125	4.50	20
Lead	52.8	55.4	50	2.362	101	106	75-125	4.75	20
Mercury	0.749	1.19	1.25	ND	59,F8	94	75-125	45.2,F8	20
Molybdenum	30.4	50.6	50	ND	61,F8	101	75-125	49.9,F8	20
Nickel	73.8	73.5	50	21.91	104	103	75-125	0.353	20
Selenium	50.4	52.7	50	ND	101	105	75-125	4.56	20
Silver	48.2	50.5	50	ND	96	101	75-125	4.69	20
Thallium	48.7	51.4	50	ND	97	103	75-125	5.30	20
Vanadium	83.8	84.0	50	30.89	106	106	75-125	0	20
Zinc	515	539	500	17.40	99	104	75-125	4.59	20
Surrogate Recovery									
Terhium	506	489	500		101	98	70-130	3 26	20

Terbium	506	489	500	101	98	70-130	3.26	20

Analyte	PDS Result	SPK Val	SPKRef Val	PDS %REC	PDS Limits	
Antimony	54.4	50	ND	109	80-120	
Mercury	1.35	1.25	ND	107	80-120	
Molybdenum	54.4	50	ND	109	80-120	

McCampbell Analytical, Inc.

Client ID

Mont-Soot-202-1

Powell-Soot-302-1

Civic-Soot-402-1

Matrix

Solid

Solid

Solid

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

10

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1602945 ClientCode: SCAO

3

7

	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:					Bill to:		Req	uested TAT:	5 days;
Glenn Cass SCA Enviromental, Inc. 1 Lakeside Drive, Suite 215 Oakland, CA 94612 (510) 645-6200 FAX: (510) 839-6200	cc/3rd Party: PO: ProjectNo:	K11983	ro.com; pgerva	sio@scaeh	Accounts Paya SCA Envirome 1 Lakeside Driv Oakland, CA 9- emuise@sca-id	ntal, Inc. ve, Suite 215 4612		e Received: e Logged:	02/23/2016 02/23/2016
						Requested T	ests (See legend	below)	

Α

Α

Α

Collection Date Hold

2/22/2016 10:30

2/22/2016 11:30

2/22/2016 13:00

Test Legend:

Lab ID

1602945-001

1602945-002

1602945-003

1 CAM17MS_TTLC_S	2	3	4
5	6	7	8
9	10	11	12

Project Manager:

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Client Name: SCA ENVIROMENTAL, INC.

1602945-003A Civic-Soot-402-1

McCampbell Analytical, Inc.

"When Quality Counts"

Solid

SW6020 (CAM 17)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

2/22/2016 13:00

5 days

WORK ORDER SUMMARY

OC Level: LEVEL 2

Project: Comments:	K11983		Date Logg	ed: 2/23/2016					
		WaterTrax	WriteOn EDF	Excel	☐ Fax ☑ Email	HardC	opyThirdPar	tyJ-flag	
Lab ID	Client ID	Matrix	Test Name	Containo /Compos		ve De- chlorinated	Collection Date & Time		ment Hold SubOut
1602945-001A	Mont-Soot-202-1	Solid	SW6020 (CAM 17)	1	8OZ GJ		2/22/2016 10:30	5 days	
1602945-002A	Powell-Soot-302-1	Solid	SW6020 (CAM 17)	1	8OZ GJ		2/22/2016 11:30	5 days	

8OZ GJ

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Work Order: 1602945

					5.8)				25									211211						,			
	McC	am	pbe	ell	Α	nc	ylk	rtic	CC	al,	In	С						(Cl	ΗA	IN	C	F	CI	JS.	TC	D	ΥΙ	RE	C	OR	₹D			
	1534 Wil		•												10	TU	IRN	ARC	UN	D T	IME	: RI	JSH[ו ב	l DA'	Y 🗆	2 1	DAY		3 DA	Y []	5 DA	Y	1
www.mccampbell.com / main@mccampbell.com												GeoTracker EDF PDF EDD Write On (DW) EQuIS 10 DAY																							
Telephone: (877) 252-9262 / Fax: (925) 252-9269											Effluent Sample Requiring "J" flag UST Clean Up Fund Project : Claim #																								
										1	0/)	al.			Eff	luen	t Sam	ple l	Requ	iring	"J"	flag	_	UST	Clea	n Up	Fun	d Pr	oject	 ;	Clair	n#		
Report To: GLENNCASS Bill To: GLENN CASS																			Anal	lysis	Req	uest													
Company: KA	Company: SCAENUIRONHENCALING [LAKESIDEDIH 25 OAKLANICA GUUG gerugs 100 Seques . com Tele: (50) 512 1119 F.Mail: 20050 500 - 2001100 (500)																																		
ILXE	SUPEDILH	2501	them	14	nar	Ma	Pac	200	451	00	50	9	els	5.0	om	647					ners											- 1			
Tere.					E-l	Mail	g	95	(e)	Sca	·-e	NU	110	,40	~~	8015) MTBE		552	0		ngei		_							tals					
Project #: KIIO	83					ject		_								M	1	149	118.1	٦	ပိ		ides			(AAs)				m		. 1			
Project Location:	BART	AME	KENT		Pu	rcha	se O	rder	# 1	KW	98	3				3015	1	90	ns (4	cide	lors	8	erbic		3	/PP	***	* * *		lvec					
Sampler Signatur	Sampler Signature: \Coo												1	reas	rbo	esti	20	icide	HH	OC	NO.	AHs	020	020		Disse	. 1								
		SAMP	MPLING			I IVII'A I IVII'A					55	SER	OD VED	Gas (8021/	5)	il & G	ydroca	1 (CI F	B's; A	P Pesti	cidic C	260 (V	270 (S	310 (P.	00.8 / 6	9/8/0	***(0	le for I							
SAMPLE ID	Location/ Field Point			iners	Vater	ıter	Water	L								TPH as G	esel (801	oleum O	oleum H	808 / 809	8082 PC	8141 (N	8151 (A	/624/8	1625/8	SIM/83	letals (20	letals (20	0.8 / 602	ter samp					
	Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO,	Other	BTEX & 7	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)***	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)***	Lab to Filter sample for Dissolved metals analysis					
MONT-500T- 2021	MONT-	3/23/16	1630	1	_			_	-			×		-	\vdash	-	H		_			-		_			V	/		H	\dashv	\neg	\dashv		\dashv
Power-5007-302-1		N.	1130	1							Т	X			T			П									X								
CIVIC-5007-402-1		VI	1300									K			Π												X								
	COLINA						1																							\Box	\Box			4	\neg
												Н				\vdash		\vdash				\vdash			\vdash						\Box		\neg	344	\neg
				\dashv		-	\vdash		-	H	\vdash	Н	Н	\vdash	-	\vdash	\vdash	\vdash		-	\vdash	-		-	\vdash	-	\dashv	-	\vdash	\vdash	-1	-1	\dashv	-	-
				\dashv		Н		_	_	_	_	Н		-	-	<u> </u>	⊢	\vdash	_	_	_		_	-	Н			-	\vdash	\vdash	\vdash	-	-		-
										_		Ш		_	_		L			_					\Box							\mathbf{H}	_	_	-
																				6											\Box				
												П	7							Г															
**MAI clients MUST disck																															glove	d, op	en alr	sam	ole
handling by MAI staff. No	on-disclosure	incurs an i	mmediate	\$250	surcho	arge a	ind the	e clie	nt Is su	bject	to ful	lleg	al lial	bility f	for har	m su	fered	. Than	k you	for yo	חט זטכ	dersta	nding	and f	or allo	wing	us to v	work s	afely.	Ē					
*** If metals are request	ed for water s	amples an	d the water					n the	chain	of cu	stody	, the	n MA					by E20	0.8.						na polyton	der water of the last						V		All and a second	
Relinquished By:		Date: 2/2/10	Time:	- 1	Rece	ived I	3: L		- 5	/	90	0				COMMENTS:																			
JC00/L 222/16 1500											OD CONDITIONAD SPACE ABSENT																								
Relinquished By: Date: Tin			Time:	T										CHLORINATED IN LAB																					
4		2/23	10/62	-				1	_	_						ROPRIATE CONTAINERS SERVED IN LAB																			
Relinquished By:		Date:	Time:	-	Rece	ived l	By:		7	-		11	1	1		VOAS O&G METALS OTHER HAZARDOUS:																			
				-										1	PRES	ERV	ATI	UN			p	H<2_													1

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №:	SCA Enviromental, Inc. K11983 1602945 Matrix: Solid			Date and Time Received: Date Logged: Received by:	2/23/2016 16:25 2/23/2016 Jena Alfaro	
Carrier:	Bernie Cummins (MAI Courier)			Logged by:	Jena Alfaro	
	Chain of C	ustod	y (COC) I	<u>nformation</u>		
Chain of custody	present?	Yes	•	No 🗌		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆		
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆		
Date and Time o	f collection noted by Client on COC?	Yes	✓	No 🗆		
Sampler's name	noted on COC?	Yes	✓	No 🗆		
	Sampl	e Rece	eipt Infor	<u>mation</u>		
Custody seals in	tact on shipping container/cooler?	Yes		No 🗆	NA 🗹	
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?	Yes	•	No 🗌		
Sample containe	ers intact?	Yes	✓	No 🗆		
Sufficient sample	e volume for indicated test?	Yes	•	No 🗆		
	Sample Preservation	on and	Hold Tir	me (HT) Information		
All samples rece	ived within holding time?	Yes	✓	No 🗆		
Sample/Temp Bl	ank temperature		Temp:		NA 🗸	
Water - VOA via	ls have zero headspace / no bubbles?	Yes		No 🗆	NA 🗹	
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗆	NA 🗹	
Samples Receive	ed on Ice?	Yes		No 🗹		
UCMR3 Samples	<u>s:</u>					
Total Chlorine	tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗸	
Free Chlorine t 300.1, 537, 53	tested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗆	NA 🗹	
* NOTE: If the "N	lo" box is checked, see comments below.					
Comments:		==				

Attachment 5

CAM-17 Settled Dust Metals Analyses – Glen Park Station

"When Quality Counts"

Analytical Report

WorkOrder: 1602801

Report Created for: SCA Environmental, Inc.

1 Lakeside Drive, Suite 215

Oakland, CA 94612

Project Contact: Glenn Cass **Project P.O.:** B-11978

Project Name: B-11978; Bart Glen Park Soot

Project Received: 02/19/2016

Analytical Report reviewed & approved for release on 02/26/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: SCA Environmental, Inc.

Project: B-11978; Bart Glen Park Soot

WorkOrder: 1602801

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a1 sample diluted due to matrix interference

Analytical Report

Client: SCA Environmental, Inc.

Date Received: 2/19/16 17:39

Date Prepared: 2/19/16

Project: B-11978; Bart Glen Park Soot

WorkOrder: 1602801

Extraction Method: SW3050B

Analytical Method: SW6020

Unit: mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
GP-MV-7-S00T	1602801-001A	Solid	02/19/201	6 08:15 ICP-MS3	116956
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	50		5.0	10	02/24/2016 13:44
Arsenic	18		5.0	10	02/24/2016 13:44
Barium	460		50	10	02/24/2016 13:44
Beryllium	ND		5.0	10	02/24/2016 13:44
Cadmium	58		2.5	10	02/24/2016 13:44
Chromium	260		5.0	10	02/24/2016 13:44
Cobalt	30		5.0	10	02/24/2016 13:44
Copper	3700		5.0	10	02/24/2016 13:44
Lead	480		5.0	10	02/24/2016 13:44
Mercury	ND		0.50	10	02/24/2016 13:44
Molybdenum	57		5.0	10	02/24/2016 13:44
Nickel	190		5.0	10	02/24/2016 13:44
Selenium	ND		5.0	10	02/24/2016 13:44
Silver	ND		5.0	10	02/24/2016 13:44
Thallium	ND		5.0	10	02/24/2016 13:44
Vanadium	34		5.0	10	02/24/2016 13:44
Zinc	9800		50	10	02/24/2016 13:44
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Terbium	102		70-130		02/24/2016 13:44
Analyst(s): AC			Analytical Comm	nents: a1	

Quality Control Report

Client:SCA Enviromental, Inc.WorkOrder:1602801Date Prepared:2/19/16BatchID:116956Date Analyzed:2/22/16Extraction Method:SW3050BInstrument:ICP-MS2Analytical Method:SW6020

Matrix: Soil Unit: mg/Kg

Project: B-11978; Bart Glen Park Soot Sample ID: MB/LCS-116956

1602813-001AMS/MSD

QC Summary Report for Metals Analyte MB LCS RL SPK MB SS **LCS** LCS %REC Result Result Val %REC Limits 51.0 ND 0.50 50 102 Antimony 75-125 Arsenic ND 45.4 0.50 50 91 75-125 ND 75-125 Barium 443 5.0 500 89 Beryllium ND 44.9 0.50 50 90 75-125 Cadmium ND 0.25 46.1 50 92 75-125 Chromium ND 45.1 0.50 50 75-125 90 Cobalt ND 0.50 50 89 75-125 44.4 ND 75-125 Copper 48.0 0.50 50 96 ND 0.50 75-125 Lead 44.0 50 88 Mercury ND 1.27 0.050 1.25 101 75-125 Molybdenum ND 49.3 0.50 50 -99 75-125 Nickel ND 47.1 0.50 50 94 75-125 Selenium ND 46.0 0.50 50 92 75-125 ND 89 75-125 Silver 44.3 0.50 50 Thallium ND 42.1 0.50 50 84 75-125 Vanadium ND 45.6 0.50 50 91 75-125 Zinc ND 475 5.0 500 95 75-125 **Surrogate Recovery** Terbium 496 502 500 99 100 70-130

Quality Control Report

Client:SCA Enviromental, Inc.WorkOrder:1602801Date Prepared:2/19/16BatchID:116956Date Analyzed:2/22/16Extraction Method:SW3050B

Instrument:ICP-MS2Analytical Method:SW6020Matrix:SoilUnit:mg/Kg

Project: B-11978; Bart Glen Park Soot **Sample ID:** MB/LCS-116956

1602813-001AMS/MSD

QC Summary Report for Metals

	Q 0 5 u 2	iiiiiiii j	сроген	71 1/10001					
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	49.2	53.3	50	ND	98	106	75-125	7.92	20
Arsenic	56.8	50.3	50	6.485	101	88	75-125	12.1	20
Barium	808	854	500	237.3	114	123	75-125	5.55	20
Beryllium	52.6	52.8	50	0.6708	104	104	75-125	0	20
Cadmium	52.8	49.3	50	ND	105	98	75-125	6.89	20
Chromium	105	99.9	50	55.49	100	89	75-125	5.30	20
Cobalt	62.9	60.9	50	14.52	97	93	75-125	3.29	20
Copper	99.9	85.0	50	42.67	114	85	75-125	16.2	20
Lead	61.8	61.8	50	15.24	93	93	75-125	0	20
Mercury	1.33	1.32	1.25	0.05820	102	101	75-125	1.06	20
Molybdenum	50.2	55.4	50	0.8484	99	109	75-125	9.84	20
Nickel	102	97.4	50	54.30	95	86	75-125	4.37	20
Selenium	49.7	48.3	50	ND	99	96	75-125	3.00	20
Silver	51.4	52.5	50	ND	103	105	75-125	2.10	20
Thallium	48.7	49.0	50	ND	97	98	75-125	0.675	20
Vanadium	139	120	50	81.07	116	78	75-125	14.6	20
Zinc	597	542	500	75.24	104	93	75-125	9.75	20
Surrogate Recovery									
Terbium	522	577	500		104	115	70-130	9.88	20

CHAIN-OF-CUSTODY RECORD

Page 1 of

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1602801

ClientCode: SCAO

Peguasted Tasts (See Jagend helow)

	WaterTra	x WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				1	Bill to:		Requ	uested TAT:	5 days;
Glenn Cass SCA Enviromental, Inc.	Email: cc/3rd Party:	gcass@sca-envir	o.com; pgerva	sio@scaeh	Accounts Paya SCA Envirome				
1 Lakeside Drive, Suite 215	PO:	B-11978			1 Lakeside Driv	/e, Suite 215	Date	e Received:	02/19/2016
Oakland, CA 94612 (510) 645-6200 FAX: (510) 839-6200	•	B-11978; Bart Gle	en Park Soot		Oakland, CA 94 emuise@sca-id		Date	e Logged:	02/19/2016

								Ve	questet	1 16212 (see leg	ena bei	, vv <i>j</i>			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1602801-001	GP-MV-7-S00T	Solid	2/19/2016 8:15		Α											

Test Legend:

1 CAM17MS_TTLC_S	2	3	4	
5	6	7	8	
9	10	11	12	

Project Manager: Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

1602801-001A GP-MV-7-S00T

McCampbell Analytical, Inc.

"When Quality Counts"

Solid

SW6020 (CAM 17)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com

chlorinated

& Time

2/19/2016 8:15

WORK ORDER SUMMARY

Client Name:	SCA ENVIRO	MENTAL, INC.			QC Level:	LEVEL 2				Work	Order:	1602801	
Project:	B-11978; Bart	Glen Park Soot			Client Contact:	Glenn Cas	S			Date 1	Logged:	2/19/2016	
Comments:					Contact's Email:	gcass@sca	a-enviro.com; pge	rvasio@scae	hs.com				
		WaterTrax	WriteOn	EDF	Excel	Fax	√ Email	HardCop	yThirdPart	y D-	flag		
Lab ID	Client ID	Matrix	Test Name		Containe	ers Bottle	& Preservative	De- (Collection Date	TAT	Sediment	Hold SubO	ut

/Composites

1

8OZ GJ

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Content

5 days

CHAIN OF CUSTODY RECORD

	1534 Wil ww.mcc Telepho	llow Pa	ell.com	Pitt	sbur nain	g, C ı@m	cco	456 imp	5-17 bell.	01 cor	n O	79	50	2)		Geo	Trac	ker E	DF [<u> </u>	PDF		EDD		Write	e On	(DW		EQ	uIS [_		0 DA	Y	.
										W	V					EII	luent	Sam	ipie i	Kequ	ırıng	••J″	ilagi	_	UST	Clea	n Up	Fun	d Pr	oject	Ц ;	Clair	n#		-
Report To:	Tenn	Cass			Bil	l To:		G	en	, C	455													Ana	ysis	Req	uest	1		-					┪
Company:	CA En		ental	nc																					Ĭ							\neg	$\neg \tau$	$\neg \tau$	ヿ
					11.									į.	7				1 -													- 1	- 1	- 1	
Tele: (510)51	7-1119				E-1	Mail	:	g ca	350	194	r-e	N.	10.	Lon	_	BE		520												sls		١	- 1		
Project #: B-11	178	_			Pro	ject	Nan	ne: [4 T	G	cy }	ail	.5	l'ari	-	IM	16	4/5	8.1)	11	only		des)			4s)				met	-		- 1	- 1	
Project Location:	Glen	Park 5	SF, CA	1:	Pu	rcha	se O	rder	# 1	3-1	197	8			71	15)		(166	s (41	des)	rs o		bici		<u>.</u>	PN.	*	*		ved	44		1		
Sampler Signatur			/									100				1/80		ase	роп	stici	oclo	ides	Her	CS)	SO	Hs/	20)*	.*(0)		ssoh	(NOTE!	١	- 1	- 1	- 1
	1	SAMI	PLING				M	ATI	RIX			1	ME	THO	D	(8021/ 8015) MTBE		Gre	car	1 Pe	, Ar	stic	C	S	(SV	(PA)	/ 60	602	*	r Di	<u></u>	- 1	- 1	- 1	
		SAMI	LING									I	RES	SERV	/ED	sas (છ	il &	ydru	1 (C	B's	P P	cidi	260	270	310	9.00	0.8	**(0	le fo	0	- 1	- 1	- 1	
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	нсг	HNO ₃	Other	BTEX & TPH as G	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)***	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)*	Lab to Filter sample for Dissolved metals analysis	Stuttup				
aP-MV-7-5005	FANRO.	1/16/11	8:15A-	1			Else.	l li				1	7						0.					-			~		_	-	\times	\dashv	\dashv	+	\dashv
ar 174 1 sus) and de)	PHIL	0.1015	-		-	-		-		-	4	\dashv	-		_	_	15			-	-			-		Δ	-			^	\dashv	-	\dashv	\dashv
				L		_						4	4				_															_	_	_	
				L								\perp																							
														i																				\neg	
												\top																					\neg	\top	\neg
											-	+	\dashv		\neg									_		-				_	-	\dashv	-	+	\dashv
				-		H		_		-	_	+	-	-			_	_			-	_	-	_	-		_			_	_	-		+	-1
				\vdash						_		4	_		35																				
																																			W
																																		18	
													T		E I				7													\neg			┪.
												\dashv	\dashv		10									_			_					\dashv	\dashv	+	\dashv
*MAI clients MUST discinandling by MAI staff. N	on-disclosure	incurs an	immediate	\$250	surche	arge a	nd the	clier	nt is sui	oject	to full	lega	llab	llity fo	r han	m suff	ered.	Thanl	c you	harm for yo	or ser	lous fu lersta	nture h	ealth and f	enda or allo	ngern wing	nent o	s a re: work s	sult of afely.	brief,	glove	d, ope	n air, s	sample	,
Relinquished By:		Date:	Time: 9:30	Br)	Rece	ived I	žy:	_	_	7	5		>	G H	CE/t° OOD EAD	CO:	NDIT	ION_	NT_		1	obe	(: Redi	why	re	less	LAS.	MEN	rs:	va	ر وس	neix	15	ماد	-
Relinquished By:	6	Date:	Time: /44		Rece	ived I	By:	2	_	2			_	A	PPR	OPR	IATE	CON LAE	TAI	NERS		_	j	0%	-4	Jr	tle	22	TI	U	510				
Relinquished By:		Date:	Time:		Rece	ived I	By:			and places				P	RESI	ERV	ATIO		AS	0&0		1ETA H<2_		ОТІ	IER	_ I	IAZA	RDO	US:	odgeseri in					

Sample Receipt Checklist

Client Name:	SCA Envi	romental, I	nc.			Date and Time Received:	2/19/2016 14:45
Project Name:	B-11978;	Bart Glen	Park Soot			Date Logged:	2/19/2016
WorkOrder №:	1602801		Matrix: Solid			Received by:	Jena Alfaro
Carrier:	Bernie Cu	mmins (MA	Al Courier)			Logged by:	Jena Alfaro
			Chain of C	Sustody	(COC)	Information	
Chain of custody	present?			Yes	•	No 🗆	
Chain of custody	signed whe	n relinquis	hed and received?	Yes	✓	No 🗆	
Chain of custody	agrees with	sample la	bels?	Yes	✓	No 🗌	
Sample IDs note	d by Client	on COC?		Yes	✓	No 🗆	
Date and Time o	f collection	noted by C	lient on COC?	Yes	✓	No 🗆	
Sampler's name	noted on C	OC?		Yes	✓	No 🗆	
			Samp	le Rece	eipt Info	rmation	
Custody seals in	tact on ship	ping contai	ner/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	er/cooler in	good cond	ition?	Yes	•	No 🗆	
Samples in prope	er container	s/bottles?		Yes	✓	No 🗆	
Sample containe	rs intact?			Yes	•	No 🗆	
Sufficient sample	e volume for	indicated	test?	Yes	•	No 🗆	
			Sample Preservati	on and	Hold Ti	me (HT) Information	
All samples rece	ived within I	nolding tim	e?	Yes	✓	No 🗌	
Sample/Temp Bl	ank temper	ature			Temp	:	NA 🗹
Water - VOA vial	s have zero	headspac	e / no bubbles?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for c	orrect pres	ervation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt	(Metal: <2;	522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?			Yes		No 🗸	
UCMR3 Samples	3:						
		acceptable	upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine t 300.1, 537, 539		cceptable	upon receipt for EPA 218.7,	Yes		No 🗌	NA 🗹
* NOTE: If the "N	lo" box is cl	necked, se	e comments below.				
Comments:				==:			

"When Quality Counts"

Analytical Report

WorkOrder: 1602801 A

Report Created for: SCA Environmental, Inc.

1 Lakeside Drive, Suite 215

Oakland, CA 94612

Project Contact: Glenn Cass **Project P.O.:** B-11978

Project Name: B-11978; Bart Glen Park Soot

Project Received: 02/19/2016

Analytical Report reviewed & approved for release on 03/03/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: SCA Environmental, Inc.

Project: B-11978; Bart Glen Park Soot

WorkOrder: 1602801

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a1 sample diluted due to matrix interference

Analytical Report

Client:SCA Enviromental, Inc.WorkOrder:1602801Date Received:2/19/16 17:39Extraction Method:CA Title 22Date Prepared:2/29/16Analytical Method:SW6020

Project: B-11978; Bart Glen Park Soot **Unit:** mg/L

STLC Metals

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
GP-MV-7-S00T	1602801-001A	Solid	02/19/2	016 08:15 ICP-MS3	117373
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Cadmium	2.9		0.050	1	03/03/2016 00:02
Chromium	9.2		0.10	1	03/03/2016 00:02
Copper	6.1		0.10	1	03/03/2016 00:02
Lead	1.7		0.10	1	03/03/2016 00:02
Zinc	790		1.0	1	03/03/2016 00:02

Analyst(s): BBO

Analytical Report

Client: SCA Environmental, Inc. WorkOrder: 1602801

Date Received: 2/19/16 17:39 **Extraction Method:** SW1311/SW3010

Date Prepared:2/29/16Analytical Method:SW6020Project:B-11978; Bart Glen Park SootUnit:mg/L

TCLP Metals

		T CEI MIC	CUID		
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
GP-MV-7-S00T	1602801-001A	Solid	02/19/20	16 08:15 ICP-MS2	117374
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Lead	0.14		0.10	1	03/01/2016 21:26

Analyst(s): BBO

Quality Control Report

Client:SCA Enviromental, Inc.WorkOrder:1602801Date Prepared:2/29/16BatchID:117373Date Analyzed:3/2/16Extraction Method:CA Title 22Instrument:ICP-MS3Analytical Method:SW6020

Matrix: Soil Unit: mg/L

Project: B-11978; Bart Glen Park Soot **Sample ID:** MB/LCS-117373

QC Summary Report for Metals (STLC)

	C	J	(-	- /			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Cadmium	ND	10.0	0.050	10	-	100	75-125
Chromium	ND	9.85	0.10	10	-	99	75-125
Copper	ND	10.1	0.10	10	-	101	75-125
Lead	ND	9.22	0.10	10	-	92	75-125
Zinc	ND	101	1.0	100	-	101	75-125

Quality Control Report

Client: SCA Environmental, Inc. WorkOrder: 1602801

Date Prepared: 2/29/16

BatchID: 117374

Date Analyzed: 3/1/16 **Extraction Method:** SW1311/SW3010

Instrument:ICP-MS2Analytical Method:SW6020Matrix:SoilUnit:mg/L

Project: B-11978; Bart Glen Park Soot **Sample ID:** MB/LCS-117374

1602B46-002AMS/MSD

QC Summary Report for Metals (TCLP)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Lead	ND	10.1	0.10	10	-	101	75-125

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Lead	9.38	9.62	10	ND	94	96	75-125	2.57	20

CHAIN-OF-CUSTODY RECORD

Page	1	of	
I ugc		OI	

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1602801 $\, {f A} \,$

ClientCode: SCAO

 WaterTrax
 WriteOn
 EDF
 Excel
 Fax
 ✓ Email
 HardCopy
 ThirdParty
 J-flag

Report to:

Glenn Cass

Email: gcass@sca-enviro.com; pgervasio@scaeh Accounts Payable

Requested TAT: 5 days;

SCA Environmental, Inc.

SCA Environmental, Inc.

SCA Environmental, Inc.

1 Lakeside Drive, Suite 215 PO: B-11978

Ookland CA 04612

ProjectNo: P 11978: Part Clap Park Soct

Oakland, CA 94612 ProjectNo: B-11978; Bart Glen Park Soot (510) 645-6200 FAX: (510) 839-6200

SCA Enviromental, Inc.

1 Lakeside Drive, Suite 215
Oakland, CA 94612
emuise@sca-ic.com

Date Received:

02/19/2016
02/19/2016
02/26/2016

									Rec	queste	d Tests ((See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4		5	6	7	8	9	10	11	12
1602801-001	GP-MV-7-S00T	Solid	2/19/2016 8:15		Α	Α											

Test Legend:

1	METALSMS_STLC_S	2 PBMS_TCLP_S	3	4
5		6	7	8
9		10	11	12

Project Manager: Prepared by: Jena Alfaro

Add-On Prepared By: Jena Alfaro

Comments: STLC Cd Cr Cu Pb Zn & TCLP Pb added 2/26/16 5D TAT

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:SCA ENVIROMENTAL, INC.QC Level:LEVEL 2Work Order:1602801Project:B-11978; Bart Glen Park SootClient Contact:Glenn CassDate Logged:2/19/2016Comments:STLC Cd Cr Cu Pb Zn & TCLP Pb added 2/26/16 5D TATContact's Email:gcass@sca-enviro.com; pgervasio@scaehs.comDate Add-On:2/26/2016

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1602801-001A	GP-MV-7-S00T	Solid	SW6020 (Lead) (TCLP)	1	8OZ GJ	2/19/2016 8:15	5 days*		
			SW6020 (Metals) (STLC) < Cadmium, Chromium, Copper, Lead, Zinc>				5 days*		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	1534 Wil ww.mcc Telepho	low Pa	ell.com	Pitts / m	bur	g, C @m	a. 9 cca	456 imp	5-17	701			60	2)		Geo	Trac	ker E	DF [1	PDF		EDD		Write	e On	(DW		EQu	uIS [_	550	10 DA	-	_
Report To:	Jenne	Cass			Bill	To:		G	en	1 5	435						-							Ana	lysis	Rea	uest			-		9	-	_	\dashv
	CA En	Nonn	ental 1	nc ·						,			2 !			W.									,				\neg		\neg	면		\neg	\dashv
Tele: (5/0) 5/1 Project #: B/ // Project Location: Sampler Signatur	1-1119 78 Glen		5, CA	,	E-N Pro	/Iail: ject cha:	Nam	g ca ne: É rder	ць; ВВРТ # 1	3-1	к-е су }	No.	10. 25	con	112	/8015) MTBE		ase (1664 / 5520	oons (418.1)	sticides)	; Aroclors only	des)	Herbicides)	Cs))Cs)	Is / PNAs)	***(07	0)***		solved metals	NoTE!	JPBZn 2			
•		SAMP	LING	T			M	ATI	RIX			I,		THO		(8021/		& Gre	rocar	CI Pe	s; Ar	Pestic	lic CI	0 (VO	O (SV	(PA)	8 / 60;	3 / 602	*	or Di	٩	9			
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO,	Other	BTEX & TPH as Gas	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)***	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)***	Lab to Filter sample for Dissolved metals analysis	Strifting	STICCOGG	TCLP PB		
GP-MV-7-5005	FANRM.	2/9/16	8:15A-	1	\neg		-					X				7											X		\Box		X	8	8		
1	,											T	\neg		7												-4				<u></u>				
												T	\neg																		\neg		\neg	\neg	
												7		- 1			1														\neg		\neg	\dashv	\Box
				\neg	\neg							T	\neg																			\neg			
				十	\neg		\neg				\neg	+	┪	\neg										_							\dashv	\dashv	\dashv	\dashv	
				\dashv	_		\dashv					+	\dashv	\neg						-				-	-			_		-	\dashv	\dashv	\dashv	\dashv	\dashv
				十	\dashv	\dashv	\dashv	\neg		-	-	+	\dashv			_		\vdash	-		-		-	-		-	-	-		-	\dashv	\dashv	\dashv	\dashv	-
				+	\dashv	\dashv	-		-	-	\dashv	+	\dashv	-			_	\vdash	_	-	-	-	_	-	-	-	-		-	-	\dashv	-	-	\dashv	
				+	\dashv	\dashv	\dashv	-			\dashv	+	\dashv	\dashv		_		-					_					_	-	\dashv	\dashv	\dashv	\dashv	\dashv	-
		-		+	\dashv	\dashv	\dashv	-	-	-	-	+	\dashv	_	5.4 59				-	_	_		_	_		-	-	_	\dashv	-	\dashv	\dashv	\dashv	\dashv	
MAI clients MUST discle handling by MAI staff. No * If metals are requeste	on-disclosure	incurs an i	mmediate :	\$250 st	urcha	rge a	nd the	clier	ıt is su	bject	to full	lega	l liab	ility fo	r han	m suff	ered.	Thank	c you	harm for yo	or ser ur und	ous fu lersta	iture h	ealth and f	enda or allo	ngerm wing t	nent a	s a re vork s	sult of afely.	brief,	glove	d, ope	en air,	samp	ile
Relinquished By:		Date:	Time: 9:30p	₹.) I	Recei	ved E	ž.	_	_	Z	5		MAI	G H	CE/t° OOD EAD	CO SPA	NDIT CE A	ION_	NT_		1	ose = 1	1: Redi	why	te	lese	COM!	MEN.	rs: In	/a	7.	ne)	33	o Je	7
Relinquished By:	60	Date:	Time: /44	5	Recei			2		2			-	A	PPR	OPR	ATE	CON LAB	TAI			_	j	0%	-6	Jr.	He	U	M	L	516				
Rélinquishéd By:		Date:	Time:]	Recei	ved B	ły:							P	RESI	ERVA	ATIO		AS	0&0		IETA I<2_	LS	ОТН	IER	E	IAZA	RDO	us:						

Attachment 6

Glen Park Station Soot Bulk Asbestos Analyses

POLARIZED LIGHT MICROSCOPY ANALYTICAL REPORT

EPA Method 600/R-93/116 or 600/M4-82-020

Page:

<u>1</u> of

Contact: Glenn Cass

Samples Indicated: 1

Report No. 339382

Reg. Samples Analyzed: 1

Address: SCA Environmental, Inc. - Oakland Split Layers Analyzed: 0

Date Submitted: Feb-23-16

Date Reported: Mar-01-16

1 Lakeside Drive #215

Oakland, CA 94612

Job Site / No. BART Glen Park
B-11978-GRC

		B-11978-GRC	
SAMPLE ID	ASBESTOS % TYPE	OTHER DATA 1) Non-Asbestos Fibers 2) Matrix Materials 3) Date/Time Collected 4) Date Analyzed	DESCRIPTION FIELD LAB
GP-WT-71-SOOT	None Detected	1) 10-20% Cellulose 2) 80-90% Calc, Qtz, Other m.p.	
Lab ID # 606-17302-001		3) 4) Mar-01-16	Debris-Black
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	
		1) 2)	
Lab ID #		3) 4)	

Detection Limit of Method is Estimated to be 1% Asbestos Using a Visual Area Estimation Technique

665	CHAIN OF C	CUSTODY FORM			CALL/	TXT w	ith res	ults:				
SCA Environmental, Inc.		Ste. 222, San Francisco, CA 94107 ste. 215, Oakland, CA 94612	Tel 415-882-1675 510-645-6200	Fax 415-962-0736 415-962-0736	@messa Email r	pt/CC	C & i	s.com nvoice: o@scaehs	com		17,1	e -
EMAIL HEADING:	(Project #) -	(Project Manager Initials) -	(Site Name/Address)	- (Date MMDD)		_ ~-		sca-emvir				
	3-1978	GRC	BART GlenPa	1 Alak	Email I	– • Prj Mgi	r Name	e :				
ATEM						Siu G	lenn Ca		stina Co	odemo		-T 0
COURIER						ting Da	ııa.					
LAB REP NOTIFIED: AIRBILL/FLIGHT NO.:		Notification DATE/TIME Shipper REFERENCE LL			Wipes			88	결말	SE	PCM P	
EST ARRIVAL DATE:		EST. ARRIVAL TIME			8	(G)		66	13	PLM Bulk CARB 435	N S	
Method Reference	7400 PCM	AHERA TEM (≤0.005 s/cc AnaSen	CARB-AHERA TEM 0.00	01 s/cc Ana Sensitivity	7 5	Units (each)		CARB AHERA 35-40 grid openings CARB AHERA 10-15 grid openings	PLM Std Point Count 400	PLM Bulk CARB 435 (400 Pt Ct) w/ prep	Units (each) PCM NIOSH 7400	
	PLM (asbestos	Flame AA (Lead)						2 2		8	74	
Sample Media		0.45 0,8 micron	MCEF Bulk Water	Wipe				2 2	S :	프	8	
RESULTS DUE:	50F	Y AM / PM						20	2	2		
CHAIN OF CUSTODY	1	1. 1/2	dial	MARCHA				0 0	8	0		A
Sending Info	1	ples submitted by	(SCA) on 31 911	at 10.0013	111		11	Per Per		8		ASBESTOS
Received by Lab:		ples received by	on 2/28/4	at 1 Dec			n An	2 2		11		12
Received by Analyst:		ples received by	on			+ 15	+	01	++	+	+	8
GP-WT-71-S	DOT	Results	Ins/Blanks/Outs			5		111			1 to 9	
C11 -1 11-3	1	1 H I TONATO				9	Ш					
				_	П	10 to			TT		6	6
						10 to 40	[F]	111	11	11	10 to 40	6 hours
				, 4	HH	100	1	+++	++	++	-	3
						¥ 6			11		>40	
				30		ا					٦	
						_			TT		-	
						109					109	
					HH	1	2		++	+		12
						10 to 40	3				10 to 40	24 hours
						8			8 8		3	2
						v						
			9			40					240	
					H	++	++	+++	++	++	_	-
						5					1 to	
	0 LITERS		BLANK			9	Ш				9	
	0 LITERS	(x)	BLANK			10 to					0	400
	0 LITERS		BLANK			10 to 40					10 to 40	48 hours
STRUCTIONS TO LAR 1. Pickup requested:	3 (delete items no	t applicable AND circle items	applicable):		++	1 1	' -	+++	++	+		Ni
Contact:						*					¥	
Time of Call:					H		44		+	4		
2. Call SCA's contact to a 3. Analyze samples by PC		npt of samples.				1 to					=	
 Analyze inside samp 	oles by PCM fire	st; if any sample >0.01 f/cc,	contact SCA.			0.9					to 9	
		th items 6, 7 or 8, as noted. Avg >70 str/mm^2, contact !	SCA before analyzing o	utsides or blanks		10 0		$\top \top \top$	\top	\top	10	3 to
7. Analyze all samples, in			umijemg o			10 to 40					10 to 40	to 5 days
8. Do NOT analyze outside		les. aple with the highest PCM resu	-14			0 45	-	+++	++	+	5	ays
10. Serial analysis; stor	at first positive	(>1%); first trace (<0.1%);e		ster samples.		<u>¥</u>					¥	
11. Analyze all bulk samp		wise indicated. ed. Authorized to perform clear	oun to most the detection	limit								
13	aon man require	u. Admorized to perform clear	nab to meet the detection	mmt.		шХ,				TT		
		G X M		0.1		to 9					to 9	
leport Number:	00	Supplies /Equipment		Qty	HH	- v		+++	++	++	_	v
3342	SZZ	Hi-Vol (3040)				10 to					10 to	0
	UV	Lo-Vol (3020)			Ш	to 40					to 40	ays
nvoice Number:		TEM / Pb cassettes (3520)		_		v		\prod	IT	IT		
		PCM cassettes (3500)				40					40	
		Bulk sampling supply (3710)	1		oxdot					$\perp \perp$		_

Attachment 7

SCA's Personnel Certifications

April 23, 2015

DEPARTMENT OF INDUSTRIAL RELATIONS
Division of Occupational Safety and Health
Asbestos Unit
2424 Arden Way, Suite 495
Sacramento, CA 95825-2417
(916) 574-2993 Office (916) 483-0572 Fax
http://www.dir.ca.gov/dirdatabases.html actu@dir.ca.gov

206240092C

3

SCA Environmental, Inc. Glenn Robert Cass 334 19th Street, 2nd floor Oakland

CA 94612

Dear Certified Asbestos Consultant or Technician:

Enclosed is your certification card. To maintain your certification, you must abide by the rules printed on the back of the certification card.

Your certification is valid for a period of one year. If you wish to renew your certification, you must apply for renewal at least 60 days <u>before</u> the expiration date shown on your card. [8 CCR 341.15(h)(1)].

Please hold and do not send copies of your required AHERA refresher renewal certificates to our office until you apply for renewal of your certification.

Certificates must be kept current if you are actively working as a CAC or CSST. The grace period is only for those who are not actively working as an asbestos consultant or site surveillance technician.

Please contact our office at the above address, fax number or email; of any changes in your contact/mailing information within 15 days of the change.

Sincerely.

Jeff Ferrell

Senior Safety Engineer

Attachment: Certification Card

cc: File

State of California
Division of Occupational Safety and Health
Certified Asbestos Consultant

Glenn Robert Cass

Certification No. 92-0092

Expires on **06/30/16**

This certification was issued by the Division of Occupational Selection of Health se authorized by Sections 7 185 of 56 for the Business and Professions Code.

Renewal - Card Attached (Revised 10/24/2012)

american board of industrial hygiene®

organized to improve the practice of industrial hygiene proclaims that

Glenn Robert Cass

having met all requirements of education, experience and examination, and ongoing maintenance, is hereby certified in the

of
INDUSTRIAL HYGIENE

and has the right to use the designations

CERTIFIED INDUSTRIAL HYGIENIST

CIH

Certificate Number

4847 A

Awarded:

December 14, 1990

Expiration Date:

June 1, 2018

Chair ABIH

Executive Director ABIH

STATE OF CALIFORNIA

DEPARTMENT OF INDUSTRIAL RELATIONS
Division of Occupational Safety and Health
Asbestos Unit
2424 Arden Way, Suite 495
Sacramento, CA 95825-2417
(916) 574-2993 Office (916) 483-0572 Fax
http://www.dir.ca.gov/dirdatabases.html
actu@dir.ca.gov/dirdatabases.html
actu@dir.ca.gov/dirdatabases.html

103202923C

220

SCA Environmental, Inc. Jerald S Cook 334 19th Street April 03, 2015

Oakland

'CA 94612

Dear Certified Asbestos Consultant or Technician:

Enclosed is your certification card. To maintain your certification, you must abide by the rules printed on the back of the certification card.

Your certification is valid for a period of one year. If you wish to renew your certification, you must apply for renewal at least 60 days <u>before</u> the expiration date shown on your card. [8 CCR 341.15(h)(1)].

Please hold and do not send copies of your required AHERA refresher renewal certificates to our office until you apply for renewal of your certification.

Certificates must be kept current if you are actively working as a CAC or CSST. The grace period is only for those who are not actively working as an asbestos consultant or site surveillance technician.

Please contact our office at the above address, fax number or email; of any changes in your contact/mailing information within 15 days of the change.

Sincerely.

Jeff Ferrell

Senior Safety Engineer

Attachment: Certification Card

cc: File

State of California
Division of Occupational Safety and Health
Certified Asbestos Consultant

Jerald S Cook of

Name/

Certification No. 101-29: Expires on 105/16/16

This certification was issued by the Division of Occupational Safety and the allines authorized by Section 7480 of the Business and Professions Code

Renewal - Card Attached (Revised 10/24/2012)

Inspector/Assessor

Delta Delt Jeraid S. Cook D # 9083

Board of Certified Safety Professionals Upon the recommendation of the

Board of Certified Safety Professionals, by virtue of the authority vested in it, has conferred on

Jerald S Cook

the credential of

Certified Safety Professional

and has granted the title as evidence of meeting the qualifications and passing the required examination so long as this credential is not suspended or revoked and is renewed annually and meets all recertification requirements.

June 23, 2012

DATE ISSUED

23226