Mathematics Performance in Secondary Education

Yao-Chih Hsu, Xuan-Chun Wang, and Wen-Lee Sin

June 5, 2025

Outline

- Introduction
- Data Visualization
- 3 Dimensionality Reduction
- 4 Regression
- Conclusion
- 6 References

Introduction

Introduction

• Dataset: *Math-Students Performance Data* from Kaggle (Shamim, 2025).

Introduction

Introduction

- Dataset: *Math-Students Performance Data* from Kaggle (Shamim, 2025).
- Variables G1, G2, G3, and absences were provided by the school.
- Remaining variables were collected via questionnaires and are mostly categorical.

Introduction

Analyze G3 to identify influential variables.

Data Grouping

We grouped the data into the following:

Groups	Variables			
support	schoolsup, famsup, paid			
family	address, famsize, Pstatus, guardian,			
	traveltime, famrel			
parents	Medu, Fedu, Mjob, Fjob			
performance	failures, studytime, absences			
alcohol	Dalc, Walc, health			
after_class	activities, freetime, goout			
school_choice	reason, nursery, higher			
score	G1, G2, G3			

The variables not yet assigned to any group are:

sex, age, internet, romantic.

Data Visualization

GP (Gabriel Pereira) MS (Mousinho da Silveira)

age

PCA

We compared four models:

- Original + MLR
- MDS + MLR
- \bullet MDS + PCA + MLR
- MDS + PCA 80% + MLR

The variables in the dataset transformed by MDS are as follows:

Q-Q plots of MLR

Variables of Reduced MLR

Method	Selected Features			
Original (Reduced) + MLR	failures, goout, Mjob_at_home,			
	romantic, schoolsup			
MDS (Reduced) $+$ PCA $+$ MLR	after_class_dim2, romantic,			
	parents_dim2			

Table 1: Selected Features by Different Methods

Original data + MDS + Stepwise + PCA

PC1 (school_choice_dim1)
PC2 (after_class_dim1)

PC1 (parent_dim2)
PC2 (romantic)

Conclusion

Model	R ²	Adj. R ²	MSE	P-value	A.I.C
Original + MLR	0.30	0.20	58.03	0.9985	2013.87
MDS + MLR	0.16	0.11	65.08	0.5948	2036.70
MDS + PCA + MLR	0.16	0.11	65.08	0.9639	2036.70
MDS + PCA 80% + MLR	0.13	0.10	81.21	0.9227	2035.49
Original (Reduced) + MLR	0.19	0.18	288.71	0.0375	1995.23
MDS (Reduced) + PCA + MLR	0.08	0.07	204.60	0.7878	2036.42
Paper Proposed $+$ MLR	0.19	0.17	176.54	0.6199	2003.04

Table 2: Comparison of model performance metrics

The variables selected by the paper: absences , schoolsup , higher , failures , Mjob

Conclusion

Model	TOP1	TOP2	TOP3
Original + MLR	higher	Fjob_teacher	failures
MDS + MLR	romantic	support_dim2	after_class_dim2
MDS + PCA + MLR	alcohol_dim1	after_class_dim1	age
MDS + PCA 80% + MLR	performance_dim2	alcohol_dim1	age
Original (Reduced) + MLR	failures	Mjob_at_home	schoolsup
MDS (Reduced) + PCA + MLR	parents_dim2	romantic	parents_dim2
Paper Proposed + MLR	higher	failures	Mjob_health

Table 3: Most important feature to each model

Conclusion

The variables we selected are:

failures, Mjob, schoolsup

Conclusion

References

- Cortez, P. (2008). Student Performance [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5TG7T
- Cortez, P., & Silva, A. M. (2008). Using data mining to predict secondary school student performance.
- Shamim, A. (2025). *Math students performance data*. Kaggle. https://www.kaggle.com/datasets/adilshamim8/math-students