Sleep efficiency prediciton

Zuzanna Nasiłowska, Maria Nowacka

Spis treści:

- Wprowadzenie oraz opis danych
- Wczytanie danych
- Analiza danych
- Podsumowanie

1. Wprowadzenie

Sen odgrywa kluczową rolę w naszym życiu, wpływając na zdrowie fizyczne, kondycję psychiczną lub ogólną jakość życia. Jako studenci często spotykamy się z problemem niedostatecznego snu, co jest nie tylko wynikiem intensywnego trybu życia pod kątem nauki oraz pracy, ale również wpływu różnych czynników, takich jak stres, nawyki żywieniowe czy używki. W rozmowach z naszymi kolegami wielokrotnie pojawia się temat problemów z zasypianiem, niskiej jakości snu czy odczuwania zmęczenia mimo przespanych godzin. Zainsporowało to nas do spojrzenia na zadane zagadnienie z perspektywy statystyki.

CEL ANALIZY

Głównym celem analizy naszego zadanego problemu jest zbadanie czynników wpływających na jakość snu, mierzoną jako jej efektywność. Podejście ze strony statystycznej pozowli nam uzyskać ciekawe spostrzeżenia, które pomogą nam w odpowiedzi na pytania dotyczące tego, jakie zmienne mogą być kluczowe w poprawie jakości snu studentów, ale również ludzi w różnym przedziale wiekowym.

1.1 Pochodzenie danych

Użyty przez nas w raporcie zestaw danych pt: "Sleep Efficiency Prediction" jest dostępny na platformie Kaggle.

- źródło: Kaggle (udostępnione przez użytkownika o nazwie Ishhjain)
- licencja: Brak informacji na stronie (Unknown)

1.2 Opis zmiennych

1) **ID**: Unikalny identyfikator każdego wpisu, jednostki brak, możliwe wartości: liczby całkowite, statystyki opisowe:

• średnia: 309.5

• wartość minimalna: 1

• wartość maksymalna: 610

• odchylenie standardowe: 178.55

2) **Age**: Wiek, jednostka: lata, możliwe wartości liczbowe około od 1 do 100, statystyki opisowe:

• **średnia**: 40.34

wartość minimalna: 9wartość maksymalna: 69

• odchylenie standardowe: 13.08

- 3) Gender: Płeć, jednostka: brak, możliwe wartości: Famale (kobieta), Male (Mężczyzna).
- 4) Bedtime: Godzina położenia się spać, format: data i czas, jednostka: godzina i minuty.
- 5) Wakeup time: Godzina obudzenia się, Format: data i czas, jednostka: godziny i minuty.
- 6) **Sleep duration**: Czas trwania snu, jednostka: godziny, możliwe wartości: od 0 do 24, statystyki opisowe:

• **średnia**: 7.45

wartość minimalna: 5
wartość maksymalna: 10
odchylenie standardowe: 0.84

7) **Sleep efficiency**: efektywność snu, jednostki brak, możliwe wartości: z przedziału (0,1), statystyki opisowe:

• **średnia**: 0.79

wartość minimalna: 0.5
wartość maksymalna: 0.99
odchylenie standardowe: 0.13

8) **REM sleep percentage**: Procent snu REM, jednostka: procenty, możliwe wartości: od 0 do 100, statystyki opisowe:

• średnia: 22.57

wartość minimalna: 15
wartość maksymalna: 30
odchylenie standardowe: 3.55

9) **Deep sleep percentage**: Procent snu głębokiego, jednostka: procenty, możliwe wartości: 0 do 100, statystyki opisowe:

• **średnia**: 53.16

wartość minimalna: 18wartość maksymalna: 75

• odchylenie standardowe: 15.50

10) **Light sleep percentage**: Procent snu lekkiego, jednostka: procenty, możliwe wartości: 0 do 100, statystyki opisowe:

• **średnia**: 24.27

wartość minimalna: 7 wartość maksymalna: 63

• odchylenie standardowe: 15.11

11) **Awakenings**: Przebudzenia podczas snu, jednostka: liczba całkowita, możliwe wartości: od 0 w górę, statystyki opisowe:

• **średnia**: 1.68

wartość minimalna: 0
wartość maksymalna: 4

• odchylenie standardowe: 1.34

12) **Caffeine consumption**: Spożycie kofeiny, jednostka: miligramy, możliwe wartości: od 0 w górę, statystyki opisowe:

• **średnia**: 24.53

wartość minimalna: 0
wartość maksymalna: 200

• odchylenie standardowe: 32.35

13) **Alcohol consumption**: Spożycie alkoholu, jednostka: unjce, możliwe wartości: od 0 w górę, statystyki opisowe:

• **średnia**: 1.12

wartość minimalna: 0
wartość maksymalna: 5

• odchylenie standardowe: 1.60

- 14) Smoking status: Status palenia, możliwe wartości: "Yes" (pali) lub "No" (nie pali)
- 15) **Exercise frequency**: Częstotliwość ćwiczeń w tygodniu, jednostka: liczba dni, możliwe wartości: od 0 do 7, statystyki opisowe:

• **średnia**: 1.78

wartość minimalna: 0
wartość maksymalna: 5

• odchylenie standardowe: 1.41

PYTANIA BADAWCZE

W celu realizacji tematu skonstruowałyśmy kilka pytań badawczych:

- Jakie czynniki mają wpływ na efektywność snu (alkohol, kofeina, sport)?
- Czy istnieje wiązek między długością snu a efektywnością i strukturą?
- Jak różne grupy demograficzne różnią się pod względem snu?
- Czy ilość przebudzeń w ciągu nocy wpływa na jakość snu?
- Czy czas pójścia spać ma znaczenie?

2. Wczytanie danych

Pierwszym krokiem wprowadzającym do analizy danych będzie ich wprawidłowe wczytanie. Nastęnie musimy zadbać o odpowednie typy danych.

```
Column DataType
Gender character
Bedtime character
Wakeup.time character
Smoking.status character
```

Możemy zauważyć, że wybrane kolumny mają typ zmiennych 'character'. Chcielibyśmy to zmienić, aby łatwiej się na nich pracowało. Zmienione typy danych widzimy w tabeli.

```
Column DataType
1 Gender factor
2 Bedtime POSIXct
3 Wakeup.time POSIXct
4 Smoking.status factor
```

3. Analiza danych

Przyjrzyjmy się naszym danym, sprawdzając ich histogramy.

Histogramy dla wszystkich kolumn

Z histogramów możemy odczytać:

- Większość badanych osób jest dorosła.
- Większość badanych nie pije alkoholu.
- Większość osób budzi się w ciągu nocy.
- Większoćś badanych nie pije kawy.
- Większość osób się wysypia lepiej niż gorzej.
- Badane społeczeńswto jest dosyć zróżnicowane pod względem aktywności fizycznej, choć niewiele jest osób nadmiernie aktywnych.

Sprawdźmy, które zmienne są ze sobą skorelowane. Wykorzystujemy metodę Spearmana.

Macierz korelacji metoda Spearmana

Widzimy, że niektóre zmienne (procent snu głębokeigo i lekkiego) są od siebie ściśle zależne, a inne nie wpływają na siebie nawzajem. Wybierzemy teraz 6 najbardziej skorelowanych zmiennych i skupimy się na nich w dalszej analizie.

Macierz korelacji metoda Spearmana

W dalszej części raportu przyjmy się bliżej zależnością między jakością snu a spożyciem kofeiny i alkoholu oraz aktywnością fizyczną.

Wplyw spozycia kawy na efektywnosc snu


```
data <- read.csv('sleep.csv')
data_better <- data %>%
   mutate(
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 36 rows containing non-finite outside the scale range (`stat_smooth()`).


```
data_better <- data_better[!is.na(data_better$Exercise.frequency), ]

# Podział na kategorie
data_better$Exercise.frequency <- cut(data_better$Exercise.frequency,</pre>
```

Wplyw aktywnosci fizycznej na efektywnosc snu


```
# Usunięcie braków danych w kolumnie Smoking.status i Sleep.efficiency (jeśli są)
data_better <- data_better[!is.na(data_better$Smoking.status) & !is.na(data_better$Sleep.eff
# Tworzenie boxplota
ggplot(data_better, aes(x = Smoking.status, y = Sleep.efficiency)) +
    geom_boxplot(fill = "darkseagreen", outlier.color = "hotpink", outlier.size = 2) +
    labs(title = "Wpływ palenia na efektywność snu",</pre>
```

```
x = "Status palenia (yes = pali, no = nie pali)",
y = "Efektywność snu") +
theme_minimal() +
theme(
  plot.title = element_text(hjust = 0.5)
)
```

Wplyw palenia na efektywnosc snu 1.0 0.9 0.8 0.7 0.6 No Yes

Status palenia (yes = pali, no = nie pali)