Principles of AI Engineering

Exercise 03

Training a Random Forest Model for GitHub Issue Classification

Syed Muhammed Hassan Ali

Source Code

Training the Random Forest Model

Content

- Objective: Classify GitHub issues into categories like bugs, enhancements, and questions.
- Dataset: GitHub Issues dataset containing text descriptions.
- Model: Random Forest Classifier using scikit-learn.
- Approach:
 - a. Data Preprocessing
 - b. Feature Extraction with TF-IDF
 - c. Model Training with Cross-Validation
 - d. Evaluation and Serialization for Deployment

Model Pipeline Components

1. Text Preprocessor:

- Functionality:
 - Removes noise (URLs, special characters)
 - Normalizes text (lowercase, whitespace)
 - Tokenizes and lemmatizes text
 - Removes stop words
- Benefit: Ensures clean and consistent input for the model.

2. **TF-IDF Vectorizer:**

- Purpose: Converts text into numerical features.
- Parameters:
 - max_features=5000
- Benefit: Highlights important words while minimizing common word impact.

3. Random Forest Classifier:

- Configuration:
 - n_estimators=100
 - max_depth=None
 - random_state=42
- Benefit: Handles large feature spaces and provides robust classification.

Training and Evaluation of the Model

Training Methodology:

- Used scikit-learn's RandomForestClassifier.
- Applied cross-validation for reliable performance assessment.
- Serialized model using joblib for future deployment.

Evaluation Metrics:

- Overall Accuracy: 73%
- Bug Classification:
 - Precision: 76%, Recall: 79%
- Enhancement Classification:
 - Precision: 70%, Recall: 80%
- Question Classification:
 - Precision: 61%, Recall: 9% (due to class imbalance)

Drawbacks of Random Forest with Concept Drift

1. Inflexibility to New Data:

- Static after initial training—requires complete retraining for updates.
- Unable to learn from streaming data or new patterns.

2. Memory and Computational Overhead:

- Stores multiple decision trees, increasing memory usage.
- High computational cost for retraining.

3. Feature Space Limitations:

- Fixed vocabulary—fails to recognize new or evolving terms.
- Sensitive to distributional changes in input data.

Addressing Concept Drift - Alternative Models

Alternative: SGDClassifier (Stochastic Gradient Descent)

Advantages:

- Incremental Learning with partial_fit—adapts to new data.
- Reduced Memory Usage—only stores model parameters.
- Efficient for streaming and real-time data updates.

• Implementation Strategy:

- Regular updates with new data.
- Monitoring for significant performance drops.
- Applying a sliding window approach for recent data patterns.

Conclusion and Future Work

• Summary:

- Successfully trained a Random Forest model for issue classification.
- Modularized components for integration into a Flask app.
- Identified Random Forest limitations under concept drift.

Future Directions:

- Experiment with adaptive models like SGDClassifier.
- Enhance dataset with balanced classes.
- Deploy model in Flask for real-time predictions.