STAT151A Homework 3: Due February 23rd

Your name here

Normal intervals

For these problems, assume I give you a computer program that can compute the function $\Phi(z) = \mathbb{P}\left(\tilde{z} \leq z\right)$ where \tilde{z} is a standard scalar-valued random variable.

Let \tilde{x} denote a scalar-valued $N(\mu, \sigma^2)$ random variable. Using only $\Phi(z)$ and elementary arithmetic, construct functions that evaluate the following:

(a)

$$a \mapsto \mathbb{P}\left(\tilde{x} \le a\right)$$

(b)

$$b \mapsto \mathbb{P}\left(\tilde{x} \ge b\right)$$

(c)

$$a, b \mapsto \mathbb{P}\left(b \le \tilde{x} \le a\right)$$

(d)

$$a \mapsto \mathbb{P}\left(|\tilde{x}| \le a\right)$$

(e)

$$a \mapsto \mathbb{P}\left(|\tilde{x}| \ge a\right)$$

(f)

 $a \mapsto \mathbb{P}(|\tilde{x}| > a)$

(g)

 $a \mapsto \mathbb{P}\left(|\tilde{x}| = a\right)$

Multivariate CLT

Let \tilde{x}_n denote an IID sequence of random variables in \mathbb{R}^P (not necessarily normal), each with zero mean and finite covariance matrix Σ . Let $a \in \mathbb{R}^P$ denote a fixed vector.

(a)

Using the univariate CLT, find the limiting distribution of

 $\frac{1}{\sqrt{N}}\sum_{n=1}^{N}\boldsymbol{a}^{\intercal}\tilde{\boldsymbol{x}_{n}}.$

(b)

Using the multivariate CLT and the continuous mapping theorem, find the limiting distribution of

$$oldsymbol{a}^\intercal \left(rac{1}{\sqrt{N}} \sum_{n=1}^N ilde{x_n}
ight).$$

(c)

Now, suppose that P = 2 and

$$\Sigma = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

Note that we can write

$$ilde{oldsymbol{x}}_n = egin{pmatrix} ilde{oldsymbol{x}}_{n1} \ ilde{oldsymbol{x}}_{n2} \end{pmatrix},$$

where \tilde{x}_{n1} and \tilde{x}_{n2} are scalars. Find the limiting distributions of each of the following expressions:

$$\frac{1}{\sqrt{N}} \sum_{n=1}^{N} \tilde{\boldsymbol{x}}_{n1} \rightarrow ?$$

$$\frac{1}{\sqrt{N}} \sum_{n=1}^{N} \tilde{\boldsymbol{x}}_{n2} \rightarrow ?$$

$$\frac{1}{\sqrt{N}} \sum_{n=1}^{N} (\tilde{\boldsymbol{x}}_{n1} + \tilde{\boldsymbol{x}}_{n2}) \rightarrow ?$$

(This result demonstrates why it's not enough to only look at the marginal distribution of the vector components when using a multivariate CLT.)

Valid covariance matrices

Suppose I were to tell you that the vector-valued random variable \boldsymbol{x} has a covariance matrix $\operatorname{Cov}(\boldsymbol{x}) = \boldsymbol{\Sigma}$ where $\boldsymbol{\Sigma}$ is not positive semi-definite (i.e., $\boldsymbol{\Sigma}$ has at least one negative eigenvalue). Show that, if this were true, you could construct a scalar-valued random variable with *negative* variance, which is impossible.

(It follows from this argument every covariance matrix must be postive semi-definite.)