

AUTHOR
Collin Real (yhi267)

Problem 1 - Boston housing dataset

Import package and load Boston dataset

```
library(MASS)
library(ggplot2)
library(dplyr)
library(tidyr)
library(corrplot)
library(epiDisplay)
library(mice)
library(caret)
library(dlookr)
```

data(Boston)

Boston dataset data dictionary

?Boston

nrow(Boston)

[1] 506

ncol(Boston)

[1] 14

1a) How many rows are in this Boston data set? How many columns? What do the rows and columns represent?

Rows: 506 Columns: 14

Column descriptions:

crim - per capita crime rate by town.

zn - proportion of residential land zoned for lots over 25,000 sq.ft.

indus - proportion of non-retail business acres per town.

chas - Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox - nitrogen oxides concentration (parts per 10 million).

rm - average number of rooms per dwelling.

age - proportion of owner-occupied units built prior to 1940.

dis - weighted mean of distances to five Boston employment centres.

rad - index of accessibility to radial highways.

tax - full-value property-tax rate per \$10,000.

ptratio - pupil-teacher ratio by town.

black - 1000(Bk-0.63)² Bk is the proportion of blacks by town.

Istat - lower status of the population (percent).

medv - median value of owner-occupied homes in \$1000s.

1b) Make some pairwise scatterplots of the predictors (columns) in this data set. Describe your findings.

```
str(Boston)
'data.frame':
               506 obs. of 14 variables:
$ crim
                0.00632 0.02731 0.02729 0.03237 0.06905 ...
         : num
               18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ zn
         : num
$ indus : num
               2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
                0000000000...
$ chas
         : int
               0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ nox
         : num
                6.58 6.42 7.18 7 7.15 ...
$ rm
         : num
               65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ age
         : num
               4.09 4.97 4.97 6.06 6.06 ...
$ dis
         : num
$ rad
         : int
                1 2 2 3 3 3 5 5 5 5 ...
                296 242 242 222 222 222 311 311 311 311 ...
$ tax
         : num
                15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ ptratio: num
$ black : num
                397 397 393 395 397 ...
$ lstat : num
                4.98 9.14 4.03 2.94 5.33 ...
                24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
$ medv
Boston$chas = as.numeric(Boston$chas)
Boston$rad = as.numeric(Boston$rad)
converted_dtypes = str(subset(Boston, select = c("chas", "rad")))
               506 obs. of 2 variables:
'data.frame':
$ chas: num 0000000000...
$ rad : num
            1 2 2 3 3 3 5 5 5 5 ...
```

```
pairs(Boston,
    pch = 21,
    col = 'blue',
    bg = 'lightblue',
    gap = 0,
    labels = colnames(Boston),
    )
```



```
corrplot(round(cor(Boston),2),
    diag = TRUE,
    sig.level = 0.5,
    method = "pie",
    insig = "blank",
    tl.col = "black",
    tl.srt = 45,
    type = "upper")
```


The scatter and correlation plot help illustrate correlations between two predictors. Our plots identified that predictor indus has been strong positive correlations with other predictors, such as nox, age, rad, tax, and Istat. They also identified that chas has pretty much no correlation to any of the other predictors. Other than these findings, there seems to be no other strong patterns between the relationships of two variables. ### 1c) Are any of the predictors associated with per capita crime rate? If so, explain the relationship.

```
cor(Boston$crim, Boston[-1])
```

```
zn indus chas nox rm age dis

[1,] -0.2004692 0.4065834 -0.05589158 0.4209717 -0.2192467 0.3527343 -0.3796701

rad tax ptratio black lstat medv

[1,] 0.6255051 0.5827643 0.2899456 -0.3850639 0.4556215 -0.3883046
```

Predictors with a strong positive correlation with per capita crime rate are rad (index of accessibility to radial highways) and tax (property tax rate > \$10,000). Moderate positive correlations can be seen for variables indus, nox, age, and lstat. Moderate negative correlations: dis, black, and medv. ### 1d) Do any of the census tracts of Boston appear to have particularly high crime rates? Tax rates? Comment on the range of each predictor.

```
cat("Range crime rates:\n")
```

Range crime rates:

```
range(Boston$crim)
```

[1] 0.00632 88.97620

```
cat("Range tax rates:\n")
```

Range tax rates:

```
range(Boston$tax)
```

[1] 187 711

405 8 5

```
high_crime_suburbs <- subset(Boston, crim > 40)
cat("Suburbs with high crime rates:\n")
```

Suburbs with high crime rates:

```
high_crime_suburbs
```

```
crim zn indus chas
                            nox
                                               dis rad tax ptratio black lstat
                                   rm
                                        age
381 88.9762 0
                18.1
                       0 0.671 6.968
                                      91.9 1.4165
                                                   24 666
                                                              20.2 396.90 17.21
405 41.5292 0
               18.1
                        0 0.693 5.531
                                      85.4 1.6074 24 666
                                                              20.2 329.46 27.38
406 67.9208 0
               18.1
                       0 0.693 5.683 100.0 1.4254 24 666
                                                             20.2 384.97 22.98
411 51.1358
               18.1
                       0 0.597 5.757 100.0 1.4130
                                                   24 666
                                                              20.2
                                                                     2.60 10.11
            0
               18.1
                                                              20.2 88.27 36.98
415 45.7461 0
                       0 0.693 4.519 100.0 1.6582
                                                   24 666
419 73.5341
               18.1
                        0 0.679 5.957 100.0 1.8026
                                                   24 666
                                                              20.2 16.45 20.62
    medv
381 10.4
```

```
406 5.0
411 15.0
415 7.0
419 8.8
```

```
high_tax_suburbs <- subset(Boston, tax > 600)
cat("Suburbs with high tax rates:\n")
```

Suburbs with high tax rates:

```
high_tax_suburbs
```

```
crim zn indus chas
                                                 dis rad tax ptratio black
                              nox
                                     rm
                                          age
    8.98296
              0 18.10
                         1 0.770 6.212
                                         97.4 2.1222
                                                      24 666
                                                                 20.2 377.73
357
358
     3.84970
              0 18.10
                         1 0.770 6.395
                                         91.0 2.5052
                                                      24 666
                                                                 20.2 391.34
359
    5.20177
              0 18.10
                         1 0.770 6.127
                                         83.4 2.7227
                                                      24 666
                                                                 20.2 395.43
                         0 0.770 6.112
360
     4.26131
              0 18.10
                                         81.3 2.5091
                                                      24 666
                                                                 20.2 390.74
    4.54192 0 18.10
                         0 0.770 6.398 88.0 2.5182
361
                                                      24 666
                                                                 20.2 374.56
     3.83684
              0 18.10
                          0 0.770 6.251
                                         91.1 2.2955
                                                      24 666
362
                                                                 20.2 350.65
363
     3.67822
              0 18.10
                         0 0.770 5.362
                                         96.2 2.1036
                                                      24 666
                                                                 20.2 380.79
    4.22239
364
              0 18.10
                         1 0.770 5.803 89.0 1.9047
                                                      24 666
                                                                 20.2 353.04
     3.47428
              0 18.10
                         1 0.718 8.780
                                         82.9 1.9047
                                                      24 666
365
                                                                 20.2 354.55
366
    4.55587
              0 18.10
                         0 0.718 3.561
                                         87.9 1.6132
                                                      24 666
                                                                 20.2 354.70
367
    3.69695
              0 18.10
                          0 0.718 4.963
                                         91.4 1.7523
                                                      24 666
                                                                 20.2 316.03
368 13.52220
              0 18.10
                         0 0.631 3.863 100.0 1.5106
                                                      24 666
                                                                 20.2 131.42
369
    4.89822
              0 18.10
                         0 0.631 4.970 100.0 1.3325
                                                      24 666
                                                                 20.2 375.52
370
    5.66998
              0 18.10
                         1 0.631 6.683
                                         96.8 1.3567
                                                      24 666
                                                                 20.2 375.33
371
    6.53876
              0 18.10
                         1 0.631 7.016
                                        97.5 1.2024
                                                      24 666
                                                                 20.2 392.05
    9.23230
              0 18.10
                         0 0.631 6.216 100.0 1.1691
                                                                 20.2 366.15
372
                                                      24 666
373
    8.26725
              0 18.10
                         1 0.668 5.875
                                         89.6 1.1296
                                                      24 666
                                                                 20.2 347.88
374 11.10810
              0 18.10
                         0 0.668 4.906 100.0 1.1742
                                                      24 666
                                                                 20.2 396.90
375 18.49820
              0 18.10
                         0 0.668 4.138 100.0 1.1370
                                                                 20.2 396.90
                                                      24 666
376 19.60910
              0 18.10
                         0 0.671 7.313 97.9 1.3163
                                                      24 666
                                                                 20.2 396.90
377 15.28800
              0 18.10
                         0 0.671 6.649
                                         93.3 1.3449
                                                      24 666
                                                                 20.2 363.02
378 9.82349
              0 18.10
                          0 0.671 6.794
                                         98.8 1.3580
                                                      24 666
                                                                 20.2 396.90
379 23.64820
              0 18.10
                         0 0.671 6.380
                                         96.2 1.3861
                                                      24 666
                                                                 20.2 396.90
380 17.86670
              0 18.10
                         0 0.671 6.223 100.0 1.3861
                                                      24 666
                                                                 20.2 393.74
381 88.97620
                          0 0.671 6.968
                                         91.9 1.4165
              0 18.10
                                                      24 666
                                                                 20.2 396.90
382 15.87440
              0 18.10
                         0 0.671 6.545
                                         99.1 1.5192
                                                      24 666
                                                                 20.2 396.90
   9.18702
              0 18.10
                         0 0.700 5.536 100.0 1.5804
                                                      24 666
                                                                 20.2 396.90
383
384 7.99248
              0 18.10
                         0 0.700 5.520 100.0 1.5331
                                                      24 666
                                                                 20.2 396.90
385 20.08490
                         0 0.700 4.368
                                         91.2 1.4395
              0 18.10
                                                      24 666
                                                                 20.2 285.83
386 16.81180
              0 18.10
                          0 0.700 5.277
                                         98.1 1.4261
                                                      24 666
                                                                 20.2 396.90
387 24.39380
              0 18.10
                         0 0.700 4.652 100.0 1.4672
                                                      24 666
                                                                 20.2 396.90
                         0 0.700 5.000
                                         89.5 1.5184
388 22.59710
              0 18.10
                                                      24 666
                                                                 20.2 396.90
389 14.33370
              0 18.10
                         0 0.700 4.880 100.0 1.5895
                                                      24 666
                                                                 20.2 372.92
                         0 0.700 5.390
390
   8.15174
              0 18.10
                                         98.9 1.7281
                                                      24 666
                                                                 20.2 396.90
391
    6.96215
              0 18.10
                         0 0.700 5.713 97.0 1.9265
                                                      24 666
                                                                 20.2 394.43
392
    5.29305
                         0 0.700 6.051
                                         82.5 2.1678
                                                      24 666
              0 18.10
                                                                 20.2 378.38
393 11.57790 0 18.10
                         0 0.700 5.036
                                        97.0 1.7700
                                                      24 666
                                                                 20.2 396.90
394 8.64476
              0 18.10
                         0 0.693 6.193
                                         92.6 1.7912
                                                      24 666
                                                                 20.2 396.90
395 13.35980
              0 18.10
                         0 0.693 5.887
                                         94.7 1.7821
                                                      24 666
                                                                 20.2 396.90
396
   8.71675
              0 18.10
                          0 0.693 6.471
                                         98.8 1.7257
                                                      24 666
                                                                 20.2 391.98
207
    E 0720E
                                        06 0 1 6760 24 666
```

397	3.07203	Ø	10.10	U	0 <u>.09</u> 3	0.403	90.0	1.0700	24	000	ZV • Z	290.90
398	7.67202	0	18.10	0	0.693	5.747	98.9	1.6334	24	666	20.2	393.10
	38.35180	0	18.10	0	0.693	5.453	100.0	1.4896	24	666	20.2	396.90
400	9.91655		18.10	0	0.693			1.5004		666		338.16
	25.04610		18.10	0				1.5888		666		396.90
	14.23620		18.10	_				1.5741		666		396.90
403	9.59571		18.10	_				1.6390				376.11
				0						666		
	24.80170		18.10	0	0.693			1.7028		666		396.90
	41.52920		18.10	0	0.693			1.6074		666		329.46
	67.92080		18.10	0				1.4254		666		384.97
	20.71620		18.10	0				1.1781		666		370.22
408	11.95110	0	18.10	0	0.659	5.608	100.0	1.2852	24	666	20.2	332.09
409	7.40389	0	18.10	0	0.597	5.617	97.9	1.4547	24	666	20.2	314.64
410	14.43830	0	18.10	0	0.597	6.852	100.0	1.4655	24	666	20.2	179.36
411	51.13580	0	18.10	0	0.597	5.757	100.0	1.4130	24	666	20.2	2.60
412	14.05070	0	18.10	0	0.597	6.657	100.0	1.5275	24	666	20.2	35.05
413	18.81100	0	18.10	0	0.597	4.628	100.0	1.5539	24	666	20.2	28.79
414	28.65580	0	18.10	0	0.597	5.155	100.0	1.5894	24	666	20.2	210.97
415	45.74610	0	18.10	0	0.693	4.519	100.0	1.6582	24	666	20.2	88.27
416	18.08460		18.10	0				1.8347	24	666	20.2	27.25
	10.83420		18.10		0.679			1.8195		666	20.2	21.57
	25.94060		18.10	0	0.679			1.6475		666		127.36
	73.53410		18.10	0				1.8026		666	20.2	16.45
	11.81230		18.10	_	0.718							48.45
				0				1.7940		666	20.2	
	11.08740		18.10					1.8589		666		318.75
422	7.02259		18.10	_	0.718			1.8746		666		319.98
	12.04820		18.10	0	0.614			1.9512		666		291.55
424	7.05042		18.10	0	0.614			2.0218		666	20.2	2.52
425	8.79212		18.10	0	0.584	5.565	70.6	2.0635	24	666	20.2	3.65
426	15.86030	0	18.10	0	0.679	5.896	95.4	1.9096	24	666	20.2	7.68
427	12.24720	0	18.10	0	0.584	5.837	59.7	1.9976	24	666	20.2	24.65
428	37.66190	0	18.10	0	0.679	6.202	78.7	1.8629	24	666	20.2	18.82
429	7.36711	0	18.10	0	0.679	6.193	78.1	1.9356	24	666	20.2	96.73
430	9.33889	0	18.10	0	0.679	6.380	95.6	1.9682	24	666	20.2	60.72
431	8.49213	0	18.10	0	0.584	6.348	86.1	2.0527	24	666	20.2	83.45
432	10.06230	0	18.10	0	0.584	6.833	94.3	2.0882	24	666	20.2	81.33
433	6.44405		18.10		0.584			2.2004		666	20.2	
434	5.58107		18.10		0.713			2.3158		666		100.19
	13.91340		18.10		0.713			2.2222		666		100.63
	11.16040		18.10		0.740			2.1247		666		109.85
	14.42080		18.10		0.740			2.0026		666	20.2	
	15.17720		18.10					1.9142		666	20.2	
	13.67810		18.10		0.740			1.8206		666	20.2	
440	9.39063		18.10					1.8172		666		396.90
	22.05110		18.10					1.8662		666		391.45
442			18.10		0.740			2.0651		666		385.96
443	5.66637		18.10					2.0048		666		395.69
444	9.96654		18.10					1.9784		666		386.73
445	12.80230	0	18.10	0	0.740	5.854	96.6	1.8956	24	666	20.2	240.52
446	10.67180	0	18.10	0	0.740	6.459	94.8	1.9879	24	666	20.2	43.06
447	6.28807	0	18.10	0	0.740	6.341	96.4	2.0720	24	666	20.2	318.01
448	9.92485	0	18.10	0	0.740	6.251	96.6	2.1980	24	666	20.2	388.52
449	9.32909	0	18.10	0	0.713	6.185	98.7	2.2616	24	666	20.2	396.90
450	7.52601		18.10		0.713			2.1850		666		304.21
451	6.71772		18.10		0.713			2.3236		666	20.2	0.32
450			40 40					2 2552				255

452	5.44114	0	18.10	0	0./13	6.655	98.2	2.3552	24	666	20.2	355.29	
453	5.09017	0	18.10	0	0.713	6.297	91.8	2.3682	24	666	20.2	385.09	
454	8.24809	0	18.10	0	0.713	7.393	99.3	2.4527	24	666	20.2	375.87	
455	9.51363	0	18.10	0	0.713	6.728	94.1	2.4961	24	666	20.2	6.68	
456	4.75237	0	18.10	0	0.713	6.525	86.5	2.4358	24	666	20.2	50.92	
457	4.66883	0	18.10	0	0.713	5.976	87.9	2.5806	24	666	20.2	10.48	
458	8.20058	0	18.10	0	0.713	5.936	80.3	2.7792	24	666	20.2	3.50	
459	7.75223	0	18.10	0	0.713	6.301	83.7	2.7831	24	666	20.2	272.21	
460	6.80117	0	18.10	0	0.713	6.081	84.4	2.7175	24	666	20.2	396.90	
461	4.81213	0	18.10	0	0.713	6.701	90.0	2.5975	24	666	20.2	255.23	
462	3.69311	0	18.10	0	0.713	6.376	88.4	2.5671	24	666	20.2	391.43	
463	6.65492	0	18.10	0	0.713	6.317	83.0	2.7344	24	666	20.2	396.90	
464	5.82115	0	18.10	0	0.713	6.513	89.9	2.8016	24	666	20.2	393.82	
465	7.83932	0	18.10	0	0.655	6.209	65.4	2.9634	24	666	20.2	396.90	
466	3.16360	0	18.10	0	0.655	5.759	48.2	3.0665	24	666	20.2	334.40	
467	3.77498	0	18.10	0	0.655	5.952	84.7	2.8715	24	666	20.2	22.01	
468	4.42228	0	18.10	0	0.584	6.003	94.5	2.5403	24	666	20.2	331.29	
469	15.57570	0	18.10	0	0.580	5.926	71.0	2.9084	24	666	20.2	368.74	
470	13.07510	0	18.10	0	0.580	5.713	56.7	2.8237	24	666	20.2	396.90	
471	4.34879	0	18.10	0	0.580	6.167	84.0	3.0334	24	666	20.2	396.90	
472	4.03841	0	18.10	0	0.532	6.229	90.7	3.0993	24	666	20.2	395.33	
473	3.56868	0	18.10	0	0.580	6.437	75.0	2.8965	24	666	20.2	393.37	
474	4.64689	0	18.10	0	0.614	6.980	67.6	2.5329	24	666	20.2	374.68	
475	8.05579	0	18.10	0	0.584	5.427	95.4	2.4298	24	666	20.2	352.58	
476	6.39312	0	18.10	0	0.584	6.162	97.4	2.2060	24	666	20.2	302.76	
477	4.87141	0	18.10	0	0.614	6.484	93.6	2.3053	24	666	20.2	396.21	
478	15.02340	0	18.10	0	0.614	5.304	97.3	2.1007	24	666	20.2	349.48	
479	10.23300	0	18.10	0	0.614	6.185	96.7	2.1705	24	666	20.2	379.70	
480	14.33370	0	18.10	0	0.614	6.229	88.0	1.9512	24	666	20.2	383.32	
481	5.82401	0	18.10	0	0.532	6.242	64.7	3.4242	24	666	20.2	396.90	
482	5.70818	0	18.10	0	0.532	6.750	74.9	3.3317	24	666	20.2	393.07	
483	5.73116	0	18.10	0	0.532	7.061	77.0	3.4106	24	666	20.2	395.28	
484	2.81838	0	18.10	0	0.532	5.762	40.3	4.0983	24	666	20.2	392.92	
485	2.37857	0	18.10	0	0.583	5.871	41.9	3.7240	24	666	20.2	370.73	
486	3.67367	0	18.10	0	0.583	6.312	51.9	3.9917	24	666	20.2	388.62	
487	5.69175	0	18.10	0	0.583	6.114	79.8	3.5459	24	666	20.2	392.68	
488	4.83567	0	18.10	0	0.583	5.905	53.2	3.1523	24	666	20.2	388.22	
489	0.15086	0	27.74	0	0.609	5.454	92.7	1.8209	4	711	20.1	395.09	
490	0.18337	0	27.74	0	0.609	5.414	98.3	1.7554	4	711	20.1	344.05	
491	0.20746	0	27.74	0	0.609	5.093	98.0	1.8226	4	711	20.1	318.43	
492	0.10574	0	27.74	0	0.609	5.983	98.8	1.8681	4	711	20.1	390.11	
493	0.11132	0	27.74	0	0.609	5.983	83.5	2.1099	4	711	20.1	396.90	
	lstat med	V											
357	17.60 17.	8											
358	13.27 21.	7											
250	11 40 22	7											

359 11.48 22.7

360 12.67 22.6

361 7.79 25.0

362 14.19 19.9

363 10.19 20.8

364 14.64 16.8

365 5.29 21.9

366 7.12 27.5

367 14.00 21.9

368 13.33 23.1

```
369 3.26 50.0
370 3.73 50.0
371 2.96 50.0
372 9.53 50.0
373 8.88 50.0
374 34.77 13.8
375 37.97 13.8
376 13.44 15.0
377 23.24 13.9
378 21.24 13.3
379 23.69 13.1
380 21.78 10.2
381 17.21 10.4
382 21.08 10.9
383 23.60 11.3
384 24.56 12.3
385 30.63 8.8
386 30.81 7.2
387 28.28 10.5
388 31.99 7.4
389 30.62 10.2
390 20.85 11.5
391 17.11 15.1
392 18.76 23.2
393 25.68 9.7
394 15.17 13.8
395 16.35 12.7
396 17.12 13.1
397 19.37 12.5
398 19.92 8.5
399 30.59 5.0
400 29.97 6.3
401 26.77 5.6
402 20.32 7.2
403 20.31 12.1
404 19.77 8.3
405 27.38 8.5
406 22.98 5.0
407 23.34 11.9
408 12.13 27.9
409 26.40 17.2
410 19.78 27.5
411 10.11 15.0
412 21.22 17.2
413 34.37 17.9
414 20.08 16.3
415 36.98 7.0
416 29.05 7.2
417 25.79 7.5
418 26.64 10.4
419 20.62 8.8
420 22.74 8.4
421 15.02 16.7
422 15.70 14.2
423 14.10 20.8
```

```
424 23.29 13.4
425 17.16 11.7
426 24.39 8.3
427 15.69 10.2
428 14.52 10.9
429 21.52 11.0
430 24.08 9.5
431 17.64 14.5
432 19.69 14.1
433 12.03 16.1
434 16.22 14.3
435 15.17 11.7
436 23.27 13.4
437 18.05 9.6
438 26.45 8.7
439 34.02 8.4
440 22.88 12.8
441 22.11 10.5
442 19.52 17.1
443 16.59 18.4
444 18.85 15.4
445 23.79 10.8
446 23.98 11.8
447 17.79 14.9
448 16.44 12.6
449 18.13 14.1
450 19.31 13.0
451 17.44 13.4
452 17.73 15.2
453 17.27 16.1
454 16.74 17.8
455 18.71 14.9
456 18.13 14.1
457 19.01 12.7
458 16.94 13.5
459 16.23 14.9
460 14.70 20.0
461 16.42 16.4
462 14.65 17.7
463 13.99 19.5
464 10.29 20.2
465 13.22 21.4
466 14.13 19.9
467 17.15 19.0
468 21.32 19.1
469 18.13 19.1
470 14.76 20.1
471 16.29 19.9
472 12.87 19.6
473 14.36 23.2
474 11.66 29.8
475 18.14 13.8
476 24.10 13.3
477 18.68 16.7
478 24.91 12.0
```

```
479 18.03 14.6

480 13.11 21.4

481 10.74 23.0

482 7.74 23.7

483 7.01 25.0

484 10.42 21.8

485 13.34 20.6

486 10.58 21.2

487 14.98 19.1

488 11.45 20.6

489 18.06 15.2

490 23.97 7.0

491 29.68 8.1

492 18.07 13.6

493 13.35 20.1
```

1e) How many of the census tracts in this data set bound the Charles river?

```
charles_river_suburbs <- sum(Boston$chas == 1)
cat("Number of suburbs bound to Charles River:", charles_river_suburbs, "\n")</pre>
```

Number of suburbs bound to Charles River: 35

```
charles_river_suburbs
```

[1] 35

1f) What is the median pupil-teacher ratio among the towns in this data set?

```
median_ptratio <- median(Boston$ptratio)
cat("Median pupil-teacher ratio:", median_ptratio, "\n")</pre>
```

Median pupil-teacher ratio: 19.05

```
median_ptratio
```

[1] 19.05

Problem 2 - Soybean data

Import packages and data

```
library(mlbench)
data(Soybean)
```

```
str(Soybean)
```

```
'data.frame': 683 obs. of 36 variables:

$ Class : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 ...
```

```
$ date
                 : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
                 : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
$ plant.stand
                 : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
$ precip
                 : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
$ temp
                 : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 2 1 1 ...
$ hail
                 : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
$ crop.hist
                 : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
$ area.dam
                 : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
$ sever
                 : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
$ seed.tmt
$ germ
                 : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
                : Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
$ plant.growth
                 : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
$ leaves
                 : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ leaf.halo
                 : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
$ leaf.marg
$ leaf.size
                 : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
                 : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
$ leaf.shread
$ leaf.malf
                 : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ leaf.mild
                 : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
$ stem
                 : Factor w/ 2 levels "0", "1": 2 1 1 1 1 2 1 1 1 ...
$ lodging
               : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
$ stem.cankers
$ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
$ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
$ ext.decay
                : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
$ mycelium
                 : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ sclerotia
                 : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 1 ...
$ fruit.pods
$ fruit.spots
                : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
                 : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
$ seed
                 : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ mold.growth
$ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ seed.size
                 : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ shriveling
$ roots
                 : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
```

2a) Investigate the frequency distributions for the categorical predictors. Are any of the distributions degenerate in the ways discussed earlier in this chapter?

Class

brown cnot

	Frequency	Percent	Cum.	percent
brown-spot	92	13.5		13.5
frog-eye-leaf-spot	91	13.3		26.8
alternarialeaf-spot	91	13.3		40.1
phytophthora-rot	88	12.9		53.0
brown-stem-rot	44	6.4		59.4
anthracnose	44	6.4		65.9
rhizoctonia-root-rot	20	2.9		68.8
purple-seed-stain	20	2.9		71.7
powdery-mildew	20	2.9		74.7
phyllosticta-leaf-spot	20	2.9		77.6
downy-mildew	20	2.9		80.5
diaporthe-stem-canker	20	2.9		83.5
charcoal-rot	20	2.9		86.4
bacterial-pustule	20	2.9		89.3
bacterial-blight	20	2.9		92.2
2-4-d-injury	16	2.3		94.6
diaporthe-pod-&-stem-blight	15	2.2		96.8
cyst-nematode	14	2.0		98.8
herbicide-injury	8	1.2		100.0
Total	683	100.0		100.0

date

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
5	149	21.8	86.7	21.8	86.8
4	131	19.2	64.9	19.2	65.0
3	118	17.3	45.7	17.3	45.7
2	93	13.6	28.4	13.6	28.4
6	90	13.2	99.9	13.2	100.0
1	75	11.0	14.8	11.0	14.8
0	26	3.8	3.8	3.8	3.8
NA's	1	0.1	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

plant.stand

predictor :

	Frequency	%(NA+) cur	n.%(NA+)	%(NA-) cu	ım.%(NA−)
0	354	51.8	51.8	54.7	54.7

predict	or:				
	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
2	459	67.2	94.4	71.2	100.0
1	112	16.4	27.2	17.4	28.8
0	74	10.8	10.8	11.5	11.5
NA's	38	5.6	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
1	374	54.8	66.5	57.3	69.5
2	199	29.1	95.6	30.5	100.0
0	80	11.7	11.7	12.3	12.3
NA's	30	4.4	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

hail

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA−)
0	435	63.7	63.7	77.4	77.4
1	127	18.6	82.3	22.6	100.0
NA's	121	17.7	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

crop.hist

219 218

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
2	219	32.1	65.7	32.8	67.3
3	218	31.9	97.7	32.7	100.0
1	165	24.2	33.7	24.7	34.5
0	65	9.5	9.5	9.7	9.7
NA's	16	2.3	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

area.dam

predictor : %(NA-) cum.%(NA-) Frequency %(NA+) cum.%(NA+) 1 227 33.2 51.2 33.3 51.3 3 27.4 99.9 27.4 187 100.0 2 145 21.2 72.5 21.3 72.6 0 123 18.0 18.0 18.0 18.0 NA's 1 0.1 100.0 0.0 100.0 Total 683 100.0 100.0 100.0 100.0

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
1	322	47.1	75.7	57.3	92.0
0	195	28.6	28.6	34.7	34.7
NA's	121	17.7	100.0	0.0	100.0
2	45	6.6	82.3	8.0	100.0
Total	683	100.0	100.0	100.0	100.0

seed.tmt

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	305	44.7	44.7	54.3	54.3
1	222	32.5	77.2	39.5	93.8
NA's	121	17.7	100.0	0.0	100.0
2	35	5.1	82.3	6.2	100.0
Total	683	100.0	100.0	100.0	100.0

germ

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
1	213	31.2	55.3	37.3	66.2
2	193	28.3	83.6	33.8	100.0
0	165	24.2	24.2	28.9	28.9
NA's	112	16.4	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

plant.growth

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	441	64.6	64.6	66.1	66.1
1	226	33.1	97.7	33.9	100.0
NA's	16	2.3	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

leaves

		Frequency	Percent	Cum.	percent
1		606	88.7		88.7
0		77	11.3		100.0
	Total	683	100.0		100.0

leaf.halo

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
2	342	50.1	87.7	57.1	100.0
0	221	32.4	32.4	36.9	36.9
NA's	84	12.3	100.0	0.0	100.0
1	36	5.3	37.6	6.0	42.9
Total	683	100.0	100.0	100.0	100.0

leaf.marg

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	357	52.3	52.3	59.6	59.6
2	221	32.4	87.7	36.9	100.0
NA's	84	12.3	100.0	0.0	100.0
1	21	3.1	55.3	3.5	63.1
Total	683	100.0	100.0	100.0	100.0

leaf.size

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
1	327	47.9	55.3	54.6	63.1
2	221	32.4	87.7	36.9	100.0
NA's	84	12.3	100.0	0.0	100.0
0	51	7.5	7.5	8.5	8.5
Total	683	100.0	100.0	100.0	100.0

leaf.shread

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	487	71.3	71.3	83.5	83.5
NA's	100	14.6	100.0	0.0	100.0
1	96	14.1	85.4	16.5	100.0
Total	683	100.0	100.0	100.0	100.0

leaf.malf

Missing

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	554	81.1	81.1	92.5	92.5
NA's	84	12.3	100.0	0.0	100.0
1	45	6.6	87.7	7.5	100.0
Total	683	100.0	100.0	100.0	100.0

leaf.mild

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	535	78.3	78.3	93.0	93.0
NA's	108	15.8	100.0	0.0	100.0
1	20	2.9	81.3	3.5	96.5
2	20	2.9	84.2	3.5	100.0
Total	683	100.0	100.0	100.0	100.0

stem

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
1	371	54.3	97.7	55.6	100.0
0	296	43.3	43.3	44.4	44.4
NA's	16	2.3	100.0	0.0	100.0
Total	683	100.0	100.0	100.0	100.0

lodging

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	520	76.1	76.1	92.5	92.5
NA's	121	17.7	100.0	0.0	100.0
1	42	6.1	82.3	7.5	100.0
Total	683	100.0	100.0	100.0	100.0

stem.cankers

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA_)	cum.%(NA-)
_	. ,				
0	379	55.5	55.5	58.8	58.8
3	191	28.0	94.4	29.6	100.0
1	39	5.7	61.2	6.0	64.8
NA's	38	5.6	100.0	0.0	100.0
2	36	5.3	66.5	5.6	70.4
Total	683	100.0	100.0	100.0	100.0

canker.lesion

predictor:									
	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)				
0	320	46.9	46.9	49.6	49.6				
2	177	25.9	84.9	27.4	89.9				
1	83	12.2	59.0	12.9	62.5				
3	65	9.5	94.4	10.1	100.0				
NA's	38	5.6	100.0	0.0	100.0				
Total	683	100.0	100.0	100.0	100.0				

2

0

fruiting.bodies

1

Missing

3

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	473	69.3	69.3	82	82
NA's	106	15.5	100.0	0	100
1	104	15.2	84.5	18	100
Total	683	100.0	100.0	100	100

ext.decay

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	497	72.8	72.8	77.1	77.1
1	135	19.8	92.5	20.9	98.0
NA's	38	5.6	100.0	0.0	100.0
2	13	1.9	94.4	2.0	100.0
Total	683	100.0	100.0	100.0	100.0

mycelium

predictor :

	Frequency	%(NA+) cur	n.%(NA+)	%(NA-) (cum.%(NA-)
0	639	93.6	93.6	99.1	99.1

NA's	38	5.6	100.0	0.0	100.0
1	6	0.9	94.4	0.9	100.0
Total	683	100.0	100.0	100.0	100.0

int.discolor

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	581	85.1	85.1	90.1	90.1
1	44	6.4	91.5	6.8	96.9
NA's	38	5.6	100.0	0.0	100.0
2	20	2.9	94.4	3.1	100.0
Total	. 683	100.0	100.0	100.0	100.0

sclerotia

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	625	91.5	91.5	96.9	96.9
NA's	38	5.6	100.0	0.0	100.0
1	20	2.9	94.4	3.1	100.0
Total	683	100.0	100.0	100.0	100.0

fruit.pods

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA−)
0	407	59.6	59.6	67.9	67.9
1	130	19.0	78.6	21.7	89.6
NA's	84	12.3	100.0	0.0	100.0
3	48	7.0	87.7	8.0	100.0
2	14	2.0	80.7	2.3	92.0
Total	683	100.0	100.0	100.0	100.0

345

fruit.spots

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	345	50.5	50.5	59.8	59.8
NA's	106	15.5	100.0	0.0	100.0
4	100	14.6	84.5	17.3	100.0
1	75	11.0	61.5	13.0	72.8
2	57	8.3	69.8	9.9	82.7
Total	683	100.0	100.0	100.0	100.0

seed

predictor: Frequency %(NA+) cum.%(NA+) %(NA-) cum.%(NA-)

0 476 69.7 80.5 80.5 69.7 1 115 16.8 86.5 19.5 100.0 13.5 NA's 92 100.0 0.0 100.0 683 Total 100.0 100.0 100.0 100.0

mold.growth

predictor :

•					
	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	524	76.7	76.7	88.7	88.7
NA's	92	13.5	100.0	0.0	100.0
1	67	9.8	86.5	11.3	100.0
Total	683	100.0	100.0	100.0	100.0

seed.discolor

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	513	75.1	75.1	88.9	88.9
NA's	106	15.5	100.0	0.0	100.0
1	64	9.4	84.5	11.1	100.0
Total	683	100.0	100.0	100.0	100.0

seed.size

predictor :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	532	77.9	77.9	90	90
NA's	92	13.5	100.0	0	100
1	59	8.6	86.5	10	100
Total	683	100.0	100.0	100	100

shriveling

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
0	539	78.9	78.9	93.4	93.4
NA's	106	15.5	100.0	0.0	100.0
1	38	5.6	84.5	6.6	100.0
Total	683	100.0	100.0	100.0	100.0

Problematic distributions can be seen for variables: int.discolor, leaf.malf, leaf.mild, leaves, lodging, mycelium, mold.growth, roots, sclerotia, seed.discolor, seed.size, and shriveling. Many of these variables only have two factors that is dominated by a single factor.

2b) Roughly 18 % of the data are missing. Are there particular predictors that are more likely to be missing? Is the pattern of missing data related to the classes?

```
Soybean %>%
  plot_na_intersect(only_na = TRUE, typographic = TRUE, n_intersacts = 7)
```

Missing with intersection of variables

34 variables have missing data. Hail, server, seed.tmt, and lodging are all missing from the 121 incomplete cases. These predictors are more likely to be missing. In 55 cases, we identified that the first 16 variables are missing from left to right, indicating a potential pattern of missing data related to classes.

```
missing_total <- colSums(is.na(Soybean))
missing_total</pre>
```

Class	date	plant.stand	precip	temp
0	1	36	38	30
hail	crop.hist	area.dam	sever	seed.tmt
121	16	1	121	121
germ	plant.growth	leaves	leaf.halo	leaf.marg
112	16	0	84	84
leaf.size	leaf.shread	leaf.malf	leaf.mild	stem
84	100	84	108	16
lodging	stem.cankers	canker.lesion	fruiting.bodies	ext.decay
121	38	38	106	38
121 mycelium	38 int.discolor	38 sclerotia	106 fruit.pods	38 fruit.spots
mycelium	int.discolor	sclerotia	fruit.pods	fruit.spots
mycelium 38	int.discolor 38	sclerotia 38	fruit.pods 84	fruit.spots 106
mycelium 38 seed	int.discolor 38 mold.growth	sclerotia 38 seed.discolor	fruit.pods 84 seed.size	fruit.spots 106 shriveling

```
missing_pct <- missing_total / nrow(Soybean) * 100
missing_pct</pre>
```

Class	مدماء	mlan+ a+and		± a.m.a
Class	date	plant.stand	precip	temp
0.0000000	0.1464129	5.2708638	5.5636896	4.3923865
hail	crop.hist	area.dam	sever	seed.tmt
17.7159590	2.3426061	0.1464129	17.7159590	17.7159590
germ	plant.growth	leaves	leaf.halo	leaf.marg
16.3982430	2.3426061	0.0000000	12.2986823	12.2986823
leaf.size	leaf.shread	leaf.malf	leaf.mild	stem
12.2986823	14.6412884	12.2986823	15.8125915	2.3426061
lodging	stem.cankers	canker.lesion	fruiting.bodies	ext.decay
17.7159590	5.5636896	5.5636896	15.5197657	5.5636896
mycelium	int.discolor	sclerotia	fruit.pods	fruit.spots
5.5636896	5.5636896	5.5636896	12.2986823	15.5197657
seed	mold.growth	seed.discolor	seed.size	shriveling
13.4699854	13.4699854	15.5197657	13.4699854	15.5197657
roots				

4.5387994

```
sorted_missing <- sort(missing_pct, decreasing = TRUE)
sorted_missing</pre>
```

hail	sever	seed.tmt	lodging	germ
17.7159590	17.7159590	17.7159590	17.7159590	16.3982430
leaf.mild	fruiting.bodies	fruit.spots	seed.discolor	shriveling
15.8125915	15.5197657	15.5197657	15.5197657	15.5197657
leaf.shread	seed	mold.growth	seed.size	leaf.halo
14.6412884	13.4699854	13.4699854	13.4699854	12.2986823
leaf.marg	leaf.size	leaf.malf	fruit.pods	precip
12.2986823	12.2986823	12.2986823	12.2986823	5.5636896
stem.cankers	canker.lesion	ext.decay	mycelium	int.discolor
5.5636896	5.5636896	5.5636896	5.5636896	5.5636896
sclerotia	plant.stand	roots	temp	crop.hist
5.5636896	5.2708638	4.5387994	4.3923865	2.3426061
plant.growth	stem	date	area.dam	Class
2.3426061	2.3426061	0.1464129	0.1464129	0.0000000
leaves				
0.0000000				

```
missing_preds <- names(sorted_missing)[sorted_missing > 0]
missing_preds
```

```
[1] "hail"
                       "sever"
                                         "seed.tmt"
                                                            "lodging"
[5] "germ"
                       "leaf.mild"
                                         "fruiting.bodies" "fruit.spots"
[9] "seed.discolor"
                       "shriveling"
                                         "leaf.shread"
                                                           "seed"
                                         "leaf.halo"
[13] "mold.growth"
                       "seed.size"
                                                            "leaf.marg"
[17] "leaf.size"
                       "leaf.malf"
                                         "fruit.pods"
                                                            "precip"
                       "canker.lesion"
                                         "ext.decay"
                                                           "mycelium"
[21] "stem.cankers"
                                                           "roots"
[25] "int.discolor"
                       "sclerotia"
                                         "plant.stand"
[29] "temp"
                       "crop.hist"
                                         "plant.growth"
                                                            "stem"
[33] "date"
                       "area.dam"
```

2c) Develop a strategy for handling missing data, either by eliminating predictors or imputation.

To handle missing data, my strategy would drop variables with degenerate distributions and impute missing values using the k-nearest neighbors algorithm. The algorithm would determine what observations are normally grouped together based on complete observations in the dataset.

Problem 3 - Oil dataset

Import Data

```
data(oil)
```

Examine data structure

```
str(oilType)
```

```
Factor w/ 7 levels "A", "B", "C", "D", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
```

Oil Type data table

```
table(oilType)

oilType
A B C D E F G
37 26 3 7 11 10 2
```

3a) Use the sample function in base R to create a completely random sample of 60 oils. How closely do the frequencies of the random sample match the original samples? Repeat this procedure several times of understand the variation in the sampling process.

```
process.
 samp1 <- sample(oilType, 60, replace = FALSE, prob = NULL)</pre>
 table(samp1)
samp1
 ABCDEFG
24 17 3 4 6 6 0
 samp2 <- sample(oilType, 60, replace = FALSE, prob = NULL)</pre>
 table(samp2)
samp2
 ABCDEFG
24 18 2 5 6 4 1
 samp3 <- sample(oilType, 60, replace = FALSE, prob = NULL)</pre>
 table(samp3)
samp3
 ABCDEFG
20 18 3 7 6 5 1
 samp4 <- sample(oilType, 60, replace = FALSE, prob = NULL)</pre>
 table(samp4)
samp4
 ABCDEFG
22 16 2 4 9 6 1
```

The sampling function produces accurate random samples, and the frequencies of these samples closely match the original, but there is some minor variation that is insignificant.

3b) Use the caret package function createDataPartition to create a stratified random sample. How does this compare to completely random samples?

```
set.seed(318)
```

```
strat_samp <- createDataPartition(oilType, p = .70, times = 20)
strat_samp <- lapply(strat_samp, function(x, y) table(y[x]), y = oilType)
head(strat_samp, 3)</pre>
```

```
$Resample01
```

```
A B C D E F G 26 19 3 5 8 7 2 $Resample02

A B C D E F G 26 19 3 5 8 7 2 $Resample03

A B C D E F G A B C D E F G
```

26 19 3 5 8 7 2

This sampling technique allocates the equal samples to each class for every round of sampling to minimize the variance of each sample.

3c) With such a small samples size, what are the options for determining performance of the model? Should a test set be used?

Leave one out cross validation is the best option for assessing the performance of a model when the dataset is small and unbalanced. This method uses every data point as a test set once with the rest as the training set. This provides the same number of performance estimates as data points that can be averaged to get a more precise measure. This method uses a test set.

3d) Try different samples sizes and accuracy rates to understand the trade-off between the uncertainty in the results, the model performance, and the test set size.

```
binom.test(20, 76)
```

```
Exact binomial test
```

```
binom.test(45, 76)
```

Exact binomial test

data: 45 and 76

number of successes = 45, number of trials = 76, p-value = 0.1354
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.4732913 0.7035155
sample estimates:
probability of success
0.5921053

```
binom.test(15, 76)
```

Exact binomial test

As we increase the number of sample sizes, the accuracy of our model increases. The width of our 95% confidence interval and our p-value also increases, indicating that more samples can decrease the significance of our predictor.

Briefly discuss what is the bias-variance tradeoff in statistics and predictive modeling.

Bias and variance are the two main components of prediction errors in a model. Bias errors are the difference between a model's predictions and actual values. These errors arise when the model does not adequately learn the patterns of our data. The model is oversimplified and not accounting for all features, underfitting the data. Variance errors occur when the model memorizes the data rather than learn, causing the target function's estimate to substantially change with different training data. The model fails to make generalizations about data it hasn't seen, overfitting the data. The bias-variance trade-off is the attempt to balance between errors caused from bias vs. variance.