

planetmath.org

Math for the people, by the people.

determinant inequalities

Canonical name DeterminantInequalities
Date of creation 2013-03-22 15:34:46
Last modified on 2013-03-22 15:34:46
Owner Andrea Ambrosio (7332)

Last modified by Andrea Ambrosio (7332)

Numerical id 12

Author Andrea Ambrosio (7332)

Entry type Result
Classification msc 15A15

There are a number of interesting inequalities bounding the determinant of a $n \times n$ complex matrix A, where ρ is its spectral radius:

1)
$$|\det(A)| \le \rho^n(A)$$

2)
$$|\det(A)| \le \prod_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}| \right) = \prod_{i=1}^{n} ||a_{i}||_{1}$$

3) $|\det(A)| \le \prod_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij}| \right) = \prod_{j=1}^{n} ||a_{j}||_{1}$

3)
$$|\det(A)| \le \prod_{j=1}^n (\sum_{i=1}^n |a_{ij}|) = \prod_{j=1}^n ||a_j||_1$$

4)
$$|\det(A)| \le \prod_{i=1}^n \left(\sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \prod_{i=1}^n ||a_i||_2$$

5)
$$|\det(A)| \le \prod_{j=1}^n \left(\sum_{i=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \prod_{j=1}^n ||a_j||_2$$

5) $|\det(A)| \leq \prod_{j=1}^n \left(\sum_{i=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \prod_{j=1}^n ||a_j||_2$ 6) if A is Hermitian positive semidefinite, $\det(A) \leq \prod_{i=1}^n a_{ii}$, with equality if and only if A is diagonal.

Inequalities 4)-6) are known as "Hadamard's inequalities".

(Note that inequalities 2)-5) may suggest the idea that such inequalities could hold: $|\det(A)| \leq \prod_{i=1}^n ||a_i||_p$ or $|\det(A)| \leq \prod_{j=1}^n ||a_j||_p$ for any $p \in \mathbb{N}$; however, this is not true, as one can easily see with $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and p = 3. Actually, inequalities 2)-5) give the best possible estimate of this kind.) Proofs:

1) $|\det(A)| = |\prod_{i=1}^n \lambda_i| = \prod_{i=1}^n |\lambda_i| \le \prod_{i=1}^n \rho(A) = \rho^n(A)$. 2) If A is singular, the thesis is trivial. Let then $\det(A) \ne 0$. Let's define B = DA, $D = diag(d_{11}, d_{22}, \dots, d_{nn}), d_{ii} = \left(\sum_{j=1}^{n} |a_{ij}|\right)^{-1}$. (Note that d_{ii} exist for any i, because $\det(A) \neq 0$ implies no all-zero row exists.) So $||B||_{\infty} = \max_i \left(\sum_{j=1}^n |b_{ij}| \right) = 1$ and, since $\rho(B) \leq ||B||_{\infty}$, we have:

$$|\det(B)| = |\det(D)| |\det(A)| = \left(\prod_{i=1}^n \sum_{j=1}^n |a_{ij}|\right)^{-1} |\det(A)| \le \rho^n(B) \le ||B||_{\infty}^n = 1,$$

from which:

$$|\det(A)| \le \prod_{i=1}^n \left(\sum_{j=1}^n |a_{ij}|\right).$$

- 3) Same as 2), but applied to A^T .
- 4)-6) See related proofs attached to "Hadamard's inequalities".