CCGによる日本語文処理の モデリング

梶川康平 吉田遼 大関洋平 (東京大学)

2023年3月16日 言語処理学会

概要

- 人間は逐次的にどのようにして統語/意味構造を構築しているのか?
- 英語において、
 - ① CCGの右枝分かれ構造より左枝分かれ構造の方が、
 - ② さらにreveal操作という文処理方略が 認知的に妥当と主張されている
- <u>言語の構造が異なる日本語</u>においても同様の主張は成り立つのか?
 - 特に、日本語においては②は成り立たないように思われる。
 - → ①は成り立ったが、②は成り立たなかった。

Combinatory Categorial Grammar

Steedman (2000), 戸次 (2010)

- 形式文法として高い記述力をもつ (Joshi, 1985; Stabler, 2013)
- 型依存 (type-dependent) な組合せ規則により統語/意味構造を並行して計算
 - 単語の逐次的な合成による文の導出が可能

$$\frac{\text{Mary}}{NP^{\uparrow}}$$
 $\frac{\frac{\text{punched}}{S \setminus NP/NP}}{\frac{S \setminus NP}{S}} < \frac{\frac{\text{Mary}}{NP^{\uparrow}}}{\frac{S \setminus NP/NP}{S}} > B$ $\frac{\text{John}}{NP^{\uparrow}} < \frac{S \setminus NP/NP}{S} > B$ $\frac{\text{John}}{NP^{\uparrow}} < \frac{\text{Atd分かれ構造}}{S}$

► 英語における、左枝分かれ構造の(右枝分かれ構造に対する)妥当性は、 fMRIデータを通して示されている (Stanojevic' et al., 2021)

日本語の左枝分かれ構造

動詞に先んじた項同士の関係の計算を行う

- 心理言語学において、「verb-finalな日本語では、動詞を待たずに項構造が計算 されている」と主張されている (Kamide and Mitchell, 1999; Miyamoto, 2002; Isono and Hirose, 2022)
 - 特定の構造に対して検証済み
- →ナチュラリスティックコーパスを使った計算心理言語学的検証

Reveal操作

Stanojevic' and Steedman (2019)

• 後置修飾詞は、逐次的な文処理の障害となる (e.g., Hale, 2014)

- 1. 左枝分かれ構造は右枝分かれ構造に変換し(木の回転)
- 2. 後置修飾詞は既に作った構成素に付加する

► 英語におけるreveal操作の認知的妥当性は、fMRIデータを通して示されている (Stanojevic' et al., 2021; 2022) 5

日本語におけるreveal操作

- Reveal操作は日本語においても妥当な操作か?
- 1. 後置修飾詞がない (Greenberg, 1963)

- 2. 関係節が埋め込まれた文には、reveal操作を応用できる
 - そのような文は、典型的なgarden-path文 (#上, 1990)
- → 日本語の文処理では、reveal操作による予測に反するかも?

方法論

- 検証する仮説:
 - 日本語において、逐次的に構築している構造として
 - ① CCGの<u>右枝分かれ構造</u>より、<u>左枝分かれ構造</u>が妥当
 - ② 左枝分かれ構造より、reveal操作による構造が妥当
- データ:BCCWJ-EyeTrack (浅原ら, 2019)
 視線走査法による視線情報がアノテーションされたコーパス
- 橋渡し仮説:CompositionCount
- ▶尤度比検定で評価

木構造の獲得

右枝分かれ構造:depccg (Yoshikawa et al., 2017) のbest parse

- → 一部のcategoryを型繰り上げ(>**T**)
- →木を左方向に回転
- → <u>左枝分かれ構造</u>

木の回転の例 詳細は予稿集、appendixへ

橋渡し仮説: CompositionCount (cc)

- 各単語ごとに新たに構築される二分木の数 = 意味合成の数
 - 先行研究でのNodeCountと異なり、パーサー特有のunary ruleの影響を排した上で、意味計算という側面に注目した指標

9

統計分析

- ① CompositionCountの有効性検証
- ② Nested model comparisonによる仮説検証

Baseline:

```
RT ~ dependent + length + frequency + is_first + is_last +
 is_second_last + screenN + lineN + segmentN + (1|article)
 + (1|subj)
```

Data:

視線走査法による総注視時間、13,232/19,176のデータポイントを使用

有意水準:

 $\alpha = 0.05/t$ (tは検定数)

結果·考察

1. CompositionCountの有効性

	χ^2	df	p
Baseline < All	127.51	3	< 0.0001

→ CompositionCountそれ自体に眼球運動データを説明できる効果がある

ALL:

RT ~ [baselineの回帰式] + CCright + CCleft + CCreveal

結果·考察

2. 右枝分かれ vs. 左枝分かれ

	χ^2	df	p
Baseline < Right	91.438	1	< 0.0001
Baseline < Left	126.96	1	< 0.0001
Left < RightLeft	0.5483	1	0.459
Right < RightLeft	36.068	1	< 0.0001

- → 眼球運動データに説明力は、CCleft > CCright
- 日本語において逐次的に構築されていると考えられる構造として、 CCGの左枝分かれ構造の方が妥当

結果·考察

3. 左枝分かれ vs. reveal操作

	χ^2	$\mathrm{d}\mathrm{f}$	p
Baseline < Left	126.96	1	< 0.0001
Baseline < Reveal	125.72	1	< 0.0001
Reveal < LeftReveal	1.2392	1	0.2656
Left < LeftReveal	0.0004	1	0.9837

→ 眼球運動データに説明力は、CCleft ≮ CCreveal

日本語において逐次的に構築されていると考えられる構造として、 reveal操作による構造の方が妥当とは言えない

まとめ

• 日本語の逐次処理で構築される構造として、 CCGの右枝分かれ構造より左枝分かれ構造の方が妥当

• <u>動詞に先んじた項関係の計算</u>を、計算心理言語学の知見から支持

- 左枝分かれ構造よりreveal操作による構造の方が妥当とは言えない
 - reveal操作が<u>通言語的には妥当でない</u>ことを示唆
 - ➡ reveal操作を、その前提から考え直す必要性