

โครงงาน : เครื่องวัดระยะทาง Distance Meter

รหัสวิชา 03603323 วิชา Embedded Systems

จัดทำโดย

นาย ปฐมพงษ์ อินต๊ะใจ	รหัสนิสิต	5630300474
น.ส. ปภาวรา อาชีววณิช	รหัสนิสิต	5630300482
นาย ใกรวิชญ์ ยาแก้ว	รหัสนิสิต	5730300085

เสนอ

อาจารย์จิรวัฒน์ จิตประสูติวิทย์

คณะวิศวกรรมศาสตร์ศรีราชา สาขาวิศวกรรมคอมพิวเตอร์และสารสนเทศศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรีราชา

1.ที่มาและจุดประสงค์

ปัจจุบันมีการนำเทก โน โลยีมาใช้เพื่ออำนวยความสะควกในชีวิตประจำวันแต่ในที่นี้ เป็น การนำ Sensor ที่วัดความเร็วเสียงที่อุณหภูมิห้องแล้วแสดงผลออกทั้งหน้าจอเพื่อเป็นการหาระย ทาง (distance) ระหว่างจุดสองจุด เนื่องจากปัจจุบันมีอุปกรณ์และเครื่องมีที่สนับสนุนเครื่องมือ วัดผ่านระบบดิจิทัลทางเราจึงได้คิดที่จะทำโคงงานนี้ขึ้นมา โดยการคาดคะเนที่มี Error ใกล้เคียง กับค่าที่วัดจริง และ สามารถนำไปใช้ได้จริง

2.ขั้นตอนการทำงาน

- 2.1 อุปกรณ์ที่ใช้
 - 2.1.1 pin Header
 - 2.1.2 เซนเซอร์ Ultrasonic Module HC-SR04 Distance Measuring Transducer \ Sensor
 - 2.1.3 Resister 500 ohm
 - 2.1.4 LCD(Blue Screen) 16x2 LCD with backlight of the LCD Screen ฟร็อม I2C Interface
 - 2.1.5 Lithium Battery Charging and protect one plate + protection 2in1 18650 lithium

battery charging board

- 2.1.6 สไกด์สวิตซ์
- 2.1.7 สายไฟ
- 2.1.8 แบตเตอรี่ แบบ Li-ion 18650 2850mah
- 2.1.9 Nucleo-32
- 2.1.10 pcb
- 2.1.11 กล่อง
- 2.1.12 jumper 4 pin
- 2.1.13 dc dc stepUp Module
- 2.1.14 HR-SC04 Ultrasonic 4 pin
- 2.1.15 LED 3 mm

2.2 การทำงาน

เครื่องวัดระยะทาง ใช้วัดระยะทางด้วยโมคุลอัลตร้าโซนิค เมื่อสั่งสัญญานเข้าที่ ขา trig ของโมคุล เป็นการสั่งคลื่นเสียงออกไปกระทบวัตถุและสะท้อนกลับมา จากนั้น จะได้สัญญานทางขา Echo กลับมา โดยความกว้าง pulse ของสัญญานดังกล่าวคือเวลาที่ เสียงใช้เดินทาง mcu วัดความกว้าง pulse จาก TIM capture 2ค่า ขอบขาขึ้นและขาลง และไปคำนวนระยะทางโดยความเร็วเสียงคือ 331+0.6(t) m/s เมื่อ t คืออุณหภูมิ สามารถ คำนวนระยะทางได้จาก (ความเร็วเสียง x ระยะเวลาที่เสียงเดินทางไปและกลับ) /2 เมื่อ ได้ค่าระยะทางแล้ว จะแสดงผลผ่านทางจอ LCD ที่มีการสื่อสารรูปแบบ i2c และ เข้า คอมพิวเตอร์ด้วย uart อีกทั้งยังมีส่วน interrupt จากสวิตช์ที่นำไปใช้ในการเปลี่ยนหน่วย วัดระหว่าง cm และ inch

2.3 การออกแบบวงจร

ภาพที่ 2.3.1 Schematic

โมคุลชาร์ททำหน้าที่ชาร์ตและจ่ายไฟจากแบตเตอร์รี่ มีโมคุล stepUP เพื่อจ่ายไฟ ให้ mcu โดยมีสวิตช์ และ led เพื่อทำการเปิดปิด ส่วนของ lcd ต่อใช้งานแบบ i2c,ultrasonic และสวิตช์เปลี่ยนการคำนวน ใช้ gpio I/O

ภาพที่ ออกแบบใน CubeMx

ภาพที่ 2.3.2 วงจร 2 มิติ

ภาพที่ 2.3.3 วงจร 3 มิติ

ภาพที่ 2.3.4 ลงอุปกรณ์จริง

วีดิโอการทดลอง : https://drive.google.com/file/d/1JE92YKRpQ2qpM0uttkVXJdVbRTdZCLQJ/view?usp= sharing

2.4โปรแกรม

ภาพที่ 2.4.1 ผังการทำงาน

Uart

```
sprintf(stringUsart, "Dist:%.3f CM\r\n" ,distance);
HAL_UART_Transmit(&huart2, (uint8_t*)stringUsart, strlen(stringUsart), HAL_MAX_DELAY);
```

เป็นการนำค่าระยะทางที่อ่านได้ใส่ในสตริงเพื่อส่งทาง uart ไปยังคอมพิวเตอร์ที่ ความเร็ว 115200

```
void lcd_send_cmd (char cmd)
  char data_u, data_l;
     uint8_t data_t[4]; //data transmit
data_u = cmd&0xf0; // upper
    data_l = (cmd<<4)&0xf0; // lower
data_t[0] = data_u|0x0c;; //en=1, rs=0
data_t[1] = data_u|0x08; //en=0, rs=0</pre>
     data_t[2] = data_l | 0x0c;; //en=1, rs=0
data_t[3] = data_l | 0x08; //en=0, rs=0
     HAL_I2C_Master_Transmit (&hi2c1, 0x4E,(uint8_t *) data_t, 4, 100);
void lcd_send_data (char data)
     char data_u, data_l;
     uint8_t data_t[4];
     data u = data&0xf0; //upper
     data_1 = (data<<4)&0xf0; //lower
     data_t[0] = data_u|0x0d; //en=1, rs=0 data_u|0x05;
data_t[1] = data_u|0x09; //en=0, rs=0
     data_t[2] = data_l|0x0d; //en=1, rs=0
     data_t[3] = data_1|0x09; //en=0, rs=0
     HAL_I2C_Master_Transmit (&hi2c1, 0x4E,(uint8_t *) data_t, 4, 100);
void lcd init (void)
     lcd_send_cmd (0x01);
     lcd_send_cmd (0x02);
lcd_send_cmd (0x28);
lcd_send_cmd (0x0c);
     lcd_send_cmd (0x80);
```

การสื่อสาร i2c lcd โดยส่งทีละ 4bit upper และ lower เมื่อนำมา or กับ controlcode ก็จะ ได้คำสั่งที่ต้องส่งให้ lcd (ใช้address 000)

Ultrasonic

-Trig

```
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_SET);
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET);
```

เป็นการสั่งให้ ultrasonic ส่งสัญญานออกไปสะท้อนกับวัตถุ

-Echo

```
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)//////
{
    if(htim -> Instance == TIM3)
    {
        input_capture1 = __HAL_TIM_GET_COMPARE(&htim3,TIM_CHANNEL_2); //read tim3ch2 capture value
    }
    else if(htim -> Instance == TIM14)
    {
        input_capture2 = __HAL_TIM_GET_COMPARE(&htim14,TIM_CHANNEL_1); //read tim3ch2 capture value
    }
}
```

เป็นการ ใช้ TIM capture โดย TIM3 จับขอบขาขึ้น TIM14 จับขอบขาลง แล้วนำเวลาที่ได้มาลบกันก็จะได้ความกว้างของ pulse ของคลื่นที่เข้ามา

-Calculate Distance

```
void distance (float time, int unit)
  float temp = 30.0;
  float speed_of_sound = 0.0;
  speed of sound = 331+0.6*(temp);
  float distance = 0.0;
  distance = (speed of sound * time)/2;
  distance = distance/1000;
  switch (unit)
     //sprintf(stringLCD, "%d", Unit);
      sprintf(stringLCD, "Dist:%.3f CM", distance);
      lcd init ();
     lcd_send_string (stringLCD);
      //printf("unit = %f m", distance);
      break:
    case 1:
      distance = distance*0.393701;
      sprintf(stringLCD, "Dist: %.3f Inch", distance);
      lcd init ();
      lcd send string (stringLCD);
     break;
 }
```

การจะวัดความเร็วด้วยเสียงนั้นต้องกำหนด ค่าตัวแปร 1 ตัวมีหน่วย เมตร/วินาที ใน ที่นี้คือ Speed_of_sound ซึ่งประกาศไว้เก็บค่าความเร็วของเสียงโดยมีสูตรคำนวณทางฟิสิกส์คือ V(t) = 331 + 0.6(T); โดย T เป็นหน่วยอุณหภูมิอุณหภูมิในที่นี้คือ อุณหภูมิห้องเฉลี่ยที่ 30 องศา โดยมีการแปลงหน่วย 2 ค่า คือหน่วย เซนติเมตร และ หน่วยนิ้ว

-Interrupt

```
void HAL GPIO EXTI Callback (uint16 t GPIO Pin)
   sw1 = HAL GPIO ReadPin(GPIOA, GPIO PIN 9);
   sw2 = HAL GPIO ReadPin(GPIOA, GPIO PIN 10);
   if (sw1 == 0 & sw2 == 0)
   -{
    else if (sw1 == 0 & sw2 == 1)
     Unit = 0;
     sprintf(stringLCD, "Unit : Centimetre");
     lcd init ();
     lcd_send_string (stringLCD);
    else if (sw1 == 1 & sw2 == 0)
     Unit = 1;
     sprintf(stringLCD, "Unit : Inch");
     lcd_init ();
     lcd_send_string (stringLCD);
    else if (sw1 ==1 & sw2 == 1)
   }
```

Function นี้เป็นการรับค่าสวิชไปเปลี่ยนการคำนวนหน่วย cm กับ inch โดย เริ่มแรกต้องประกาศขาสวิตซ์ sw1, sw2 จากนั้นใส่เงื่อนไข if, else เพื่อเช็คว่า สวิตซ์ที่ เปลี่ยนนั้นต้องการให้แสดงหน่วย cm หรือ inch ถ้า sw1 เป็น 0 และ sw2 เป็น 1 ให้แสดงหน่วย cm, ถ้า sw1 เป็น 1 และ sw2 เป็น 0 ให้แสดงหน่วย inch และ ถ้า sw1 และ sw2 เป็น 1 กับ sw1 และ sw2 เป็น 0 จะไม่มีผลอะไร

3.ผลการทดสอบ

- อุปกรณ์ที่ใช้วัดระยะคือ ตลับเมตร

ตารางการทคสอบ (หน่วยวัค เซนติเมตร)				
ครั้งที่	ระยะทางจริง(ซ.ม.)	ระยะทางที่วัดได้(ซ.ม.) % ความคลาดเค		
1	4	4.233	5.825	
2	6	6.98	16.33	
3	13	13.436	3.35	
4	27	28.269	4.7	
5	35	35.249	0.7	
6	40	40.659	1.64	
7	55	55.142	0.25	
8	64	66.314	3.615	
9	70	70.498	0.711	
10	85	84.981	-0.02	
11	91	91.085	0.093	
12	95	95.103	0.108	
13	100	99.841	-0.159	
14	120	119.331	-0.55	
15	130	129.654	-0.27	
16	140	139.6	-0.28	
17	150	149.167	-0.55	
18	200	199.279	-0.36	
19	300	298.395	-0.53	
20	350	349.174	-0.23	
เฉลี่ย		5.587		

ตารางการทคสอบ (หน่วยวัค นิ้ว)				
ครั้งที่	ระยะทางจริง(นิ้ว)	ระยะทางที่วัดได้(นิ้ว)	% ความกลาดเกลื่อน	
1	2	2.107	5.35	
2	4	4.191	4.775	
3	7	7.832	11.88	
4	12	12.916	7.63	
5	19	19.305	1.605	
6	25	25.557	2.228	
7	35	35.175	0.5	
8	40	40.259	0.647	
9	55	55.029	0.05	
10	67	66.571	-0.65	
11	70	71.729	2.47	
12	75	74.609	-0.521	
13	80	80.174	0.217	
14	88	87.937	-0.07	
15	90	89.998	-0.002	
16	99	98.723	-0.27	
17	105	104.425	-0.54	
18	125	124.55	-0.36	
19	135	135.222	0.16	
20	140	140.012	0.0085	
เฉลี่ย		3.357		

ภาพการเปรียบเทียบระยะทางจริงกับระยะทางที่วัดได้(หน่วย เซนติเมตร)

ภาพการเปรียบเทียบระยะทางจริงกับระยะทางที่วัดได้(หน่วย นิ้ว)

4.สรุป

โครงงานนี้ ได้นำความรู้จากการเรียนมาใช้จริง ทั้งการออกแบบ 2d 3d การออกแบบลาย 2งจร มีการสื่อสารผ่านโปร โตคอล i2c uart มีการนำ interrupt และ Timer มาใช้เพื่อสร้าง เครื่องวัดระยะทางซึ่งสามารถใช้งานได้ตามผลการทดลองที่ระยะใกล้ความคาดเคลื่อนจะมีมาก แมื่อระยะห่างออกไปค่าความคาดเคลื่อนก็น้อย และสามารถเปลี่ยนการวัดเป็น cm และ inch ได้ ในระยะที่ระบุไว้ในเสปคโมคุล 4-400cm จึงสามารถพกพานำไปใช้งานจริงในการวัดระยะต่าง แทนไม้บรรทัดและตลับเมตรได้

แหล่งอ้างอิง

- [1] STM32F042K6 datasheet, สืบค้นเมื่อวันที่ 11 ธันวาคม 2560, จากชื่อเว็บไซต์:
 http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32f0-series/stm32f0x2/stm32f042k6.html
- [2] การใช้งาน LCD , สืบค้นเมื่อวันที่ 11 ธันวาคม 2560, จากชื่อเว็บไซต์:

http://www.thaieasyelec.com/article-wiki/review-product-article/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%83%E0%B8%8A%E0%B9%89%E0%B8%87%E0%B8%B2%E0%B8%99-character-lcd-display-%E0%B8%81%E0%B8%B1%E0%B8%9A-arduino-%E0%B8%95%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%882-

%E0%B8%A3%E0%B8%B9%E0%B8%9B%E0%B9%81%E0%B8%9A%E0%B8%9 A%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%8A%E0%B8 %B7%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B8%95%E0%B9%88%E0% B8%AD%E0%B9%81%E0%B8%9A%E0%B8%9A-i2c.html

- [3] Hc-sr04 datasheet, สืบค้นเมื่อวันที่ 11 ธันวาคม 2560, จากชื่อเว็บไซต์: http://www.micropik.com/PDF/HCSR04.pdf
- [4] Ultrasonic, สืบค้นเมื่อวันที่ 11 ธันวาคม 2560, จากชื่อเว็บไซต์: http://www.mtechlog.com/2015/09/using-ultrasonic-sensor-with-arduino.html