

Limites et continuité

1. Limites

1.1. Définitions.

Définition 1.1

Soit $a \in \mathbb{R}$.

- On dit qu'une propriété est vraie au voisinage de a si elle est vraie sur un intervalle de la forme |a-h,a+h|, avec h>0. Un tel intervalle est appelé voisinage de a.
- On appelle voisinage à gauche de a un intervalle du type [a-h,a], h>0.
- On appelle voisinage à droite de a un intervalle du type [a, a + h], h > 0.
- On dit qu'une propriété est vraie au voisinage $de + \infty$ si elle est vraie sur un intervalle du type $]A, +\infty[$, $A \in \mathbb{R}$. Un tel intervalle est appelé voisinage $de + \infty$.
- On dit qu'une propriété est vraie au voisinage $de \infty$ si elle est vraie sur un intervalle du type $]-\infty, A[$, $A \in \mathbb{R}$. Un tel intervalle est appelé voisinage $de \infty$.

Proposition 1.2

Si $a \in \mathbb{R}$, l'intersection d'un nombre finis de voisinages de a est un voisinage de a.

Exemple 1.3

- $x \mapsto \sqrt{x}$ n'est pas définie au voisinage de 0 (seulement au voisinage à droite de 0).
- tan n'est pas définie au voisinage de $+\infty$.

Définition 1.4

Soit $f: I \to \mathbb{R}$ une application et $a \in \overline{\mathbb{R}}$ un élément ou une extrémité de I. Soit $\ell \in \overline{\mathbb{R}}$. On dit que f tend vers ℓ en a si pour tout voisinage V de ℓ , il existe un voisinage W de a tel que pour tout $x \in W \cap I$, $f(x) \in V$.

Remarque 1.5

On peut reformuler cette définition suivant que $a \in \mathbb{R}$ ou $a = \pm \infty$ comme ci-dessous.

- (1) On dit que f tend $vers \ \ell \in \mathbb{R}$ en $a \in \mathbb{R}$ si $\forall \varepsilon > 0, \ \exists \ \eta > 0$ tel que pour tout $x \in I$ vérifiant $|x a| \le \eta$, on a $|f(x) \ell| \le \varepsilon$.
- (2) On dit que f tend vers $\ell \in \mathbb{R}$ à gauche (resp. à droite) de $a \in \mathbb{R}$ si
- $\forall \varepsilon > 0, \ \exists \eta > 0 \ \text{tel que pour tout } x \in I \ \text{vérifiant } a \eta \le x \le a, (\text{resp. } a \le x \le a + \eta), \text{ on a } |f(x) \ell| \le \varepsilon.$
 - (3) On dit que f tend $vers \ \ell \in \mathbb{R}$ $en + \infty$ si $+ \infty$ est une borne de I et $\forall \varepsilon > 0, \ \exists A \in \mathbb{R}$ tel que pour tout $x \in I$ vérifiant $x \geq A$, on a $|f(x) \ell| \leq \varepsilon$.

- (4) On dit que f tend $vers \ \ell \in \mathbb{R}$ en $-\infty$ si $-\infty$ est une borne de I et $\forall \varepsilon > 0, \ \exists A \in \mathbb{R}$ tel que pour tout $x \in I$ vérifiant $x \leq A$, on a $|f(x) \ell| \leq \varepsilon$.
- (5) f tend $vers + \infty$ $(resp. -\infty)$ en $a \in \mathbb{R}$ si $\forall A \in \mathbb{R}, \exists \eta > 0$ tel que pour tout $x \in I$ vérfiant $|x a| \le \eta$, on a $f(x) \ge A$ (resp. $f(x) \le A$).
- (6) f tend $vers + \infty$ $(resp. vers \infty)$ $en + \infty$ si $+ \infty$ est une borne de I et $\forall A \in \mathbb{R}, \exists M \in \mathbb{R}$ tel que pour tout $x \in I$ vérifiant $x \geq M$, on a $f(x) \geq A$ (resp. $f(x) \geq A$).
- (7) f tend $vers + \infty$ $(resp. vers \infty)$ $en \infty$ si ∞ est une borne de I et $\forall A \in \mathbb{R}, \exists M \in \mathbb{R}$ tel que pour tout $x \in I$ vérifiant $x \leq M$, on a $f(x) \geq A$ (resp. $f(x) \geq A$).

Remarque 1.6

- Noter que f n'a pas forcément besoin d'être définie en a pour y admettre une limite.
- Le fait que f admette une limite en a ne dépend que de ce qu'il se passe au voisinage de a.

Proposition 1.7

Si f admet une limite $\ell \in \mathbb{R}$ en $a \in \overline{R}$, alors ℓ est unique. On l'appelle la limite de f(x) quand x tend vers a, notée $\lim_{x \to a} f(x)$.

Remarque 1.8

On a aussi unicité de la limite à gauche (ou à droite) en un réel a. On note $\lim_{x\to a^-} f(x)$ la limite à gauche de f en a et $\lim_{x\to a^+} f(x)$ la limite à droite de f en a.

Proposition 1.9

f admet une limite ℓ en $a \in \mathbb{R}$ si et seulement si elle admet ℓ pour limite à gauche et à droite en a.

Proposition 1.10

Si f admet une limite finie en $a \in I$, alors cette limite vaut f(a). On dit alors que f est continue en a.

Remarque 1.11

Cet énoncé est encore correct avec les limites à gauche et à droite de f en a où f est définie.

Définition 1.12

Si f admet une limite finie ℓ en $a \in \mathbb{R}$ et n'est pas définie en a, on peut la prolonger en une fonction g définie sur $I \cup \{a\}$ en posant $g(a) = \ell$. Cette fonction est continue en a.

Proposition 1.13

- * f tend vers $+\infty$ en $a \in \mathbb{R}$ si et seulement si f tend vers $+\infty$ gauche ou droite de a.
- * Si f tend vers $+\pm\infty$ en a, f ne peut avoir de limite finie en a.
- * f tend vers $+\infty$ en a si et seulement si -f tend vers $-\infty$ en a.

1.2. Propriétés élémentaires.

Proposition 1.14

Si f admet une limite finie ℓ en a, alors f est bornée au voisinage de a.

Proposition 1.15

- (1) Une fonction f qui admet une limite finie $\ell > 0$ en a est strictement positive au voisinage de a.
- (2) Une fonction f qui tend vers $+\infty$ en a est strictement positive au voisinage de a.

DÉMONSTRATION.

- (1) Soit V un voisinage de a tel que pour tout $x \in V \cap I$, $|f(x) \ell| < \frac{\ell}{2}$. On a alors le rsultat sur $V \cap I$.
- (2) Soit V un voisinage de a tel que $\forall x \in I \cap V, f(x) > 0$: on a le rsultat.

Proposition 1.16

Si f et g coïncident sur un voisinage de a, et si f admet une limite ℓ en a, alors g admet pour limite ℓ en a.

Proposition 1.17

f tend vers $\ell \in \mathbb{R}$ en a si et seulement s'il existe une fonction g définie sur un voisinage V de a telle que $\forall x \in V, \ |f(x) - \ell| \leq g(x)$ et $\lim_{x \to a} g(x) = 0$.

Corollaire 1.18

Si f tend vers ℓ en a, alors |f| tend vers $|\ell|$ en a.

Théorème 1.19: Caractérisation séquentielle de la limite

f admet pour limite ℓ en a si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ tendant vers a, $(f(x_n))_{n\in\mathbb{N}}$ tend vers ℓ .

Remarque 1.20

Ce théorème permet de prouver de nombreux résultats sur les limites de fonctions à partir des résultats analogues sur les suites.

1.3. Opérations sur les limites.

Proposition 1.21

Soient f et g deux fonctions tendant respectivement vers $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ en a. Alors f+g tend vers $\ell+\ell'$ et fg tend vers $\ell\ell'$. Si de plus $\ell' \neq 0$, alors $\frac{f}{g}$ tend vers $\frac{\ell}{\ell'}$.

Limites et continuité

Proposition 1.22

Si f tend vers $+\infty$ en a et g est bornée au voisinage de a, alors f+g tend vers $+\infty$ en a.

Si f tend vers $+\infty$ en a et g est minorée par un réel strictement positif au voisinage de a, alors fg tend vers $+\infty$ en a.

Remarque 1.23

On dispose bien sûr d'énoncés équivalents en $-\infty$.

Proposition 1.24

Si f tend vers 0 en a, et f reste strictement positive sur un voisinage de a privé de a, alors $\frac{1}{f}$ tend vers $+\infty$ en a. Si f ne s'annule pas sur un voisinage de a privé de a, alors $\frac{1}{|f|}$ tend vers $+\infty$ en a.

Proposition 1.25

Soit $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ tel que $f(I) \subset J$. Si f tend vers b en a et g tend ℓ en b, alors $g \circ f$ tend vers ℓ en a.

1.4. Limites et inégalités.

Théorème 1.26: Théorème de la limite monotone

Soit $f:]a, b[\to \mathbb{R}$ croissante.

- Si f est majorée au voisinage de b, alors f admet $\sup_{t\in]a,b[}f(t)$ pour limite à gauche en b. Sinon f tend vers $+\infty$ à gauche en b.
- Si f est minorée au voisinage de a, alors f admet $\inf_{t\in]a,b[}f(t)$ pour limite à droite en a. Sinon f(t) tend vers $-\infty$ à droite en a.

Corollaire 1.27

Soit $f:]a, b[\to \mathbb{R}$ décroissante.

- Si f est majorée au voisinage de a, alors f admet $\sup_{t\in]a,b[}f(t)$ pour limite à droite en a. Sinon f(t) tend vers $+\infty$ à droite en a.
- Si f est minorée au voisinage de b, alors f admet $\inf_{t\in]a,b[}f(t)$ pour limite à gauche en b. Sinon f(t) tend vers $-\infty$ à gauche en b.
- Une application monotone définie sur un intervalle admet des limites à gauche et à droite en tout point a de cet intervalle qui n'est pas une extrêmité, et on a (si par exemple f est croissante) $\lim_{x\to a^-} f(x) \le f(a) \le \lim_{x\to a^+} f(x)$.

Proposition 1.28

Supposons que $f \leq g$ au voisinage de a. Si f tend vers $+\infty$ en a, g aussi. Si g tend vers $-\infty$ en a, f aussi.

Proposition 1.29

Supposons que $f \leq g \leq h$ au voisinage de a. Alors si f et h tendent vers $\ell \in \mathbb{R}$ en a, g tend aussi vers ℓ en a.

2. Fonctions continues sur un intervalle

2.1. Premières propriétés.

Définition 2.1

On dit que $f: I \to \mathbb{R}$ est continue sur I si f est continue en chaque point de I, i.e. $\lim_{x \to a} f(x) = f(a)$ pour tout point $a \in I$.

Remarque 2.2

Pour les extrêmités de I ce sont bien sûr des limites à gauche ou à droite.

Proposition 2.3

- (1) Si f est continue sur I, |f| aussi.
- (2) La somme et le produit de deux fonctions f et g continues sur I sont continues sur I.
- (3) Le quotient d'une fonction f continue sur I par une fonction g continue sur I ne s'annulant pas sur I est continue sur I.
- (4) Si f est continue sur I, g est continue sur J avec $f(I) \subset J$ alors $g \circ f$ est continue sur I.
- (5) Si f et g sont continues sur I, sup(f,g) et $\inf(f,g)$ sont continues sur I.

Proposition 2.4

Si f est continue sur I, alors pour tout intervalle $J \subset I$, $f_{|J}$ est continue sur J.

Remarque 2.5

Si f est continue sur I et admet une limite finie en une des extrêmités de I n'appartenant pas à I, on peut la prolonger par continuité en ce point.

2.2. Image d'un segment par une application continue.

Proposition 2.6

Soit $f:[a,b]\to\mathbb{R}$ continue telle que f(a)f(b)<0. Alors il existe $c\in a,b$ tel quf(c)=0.

Théorème 2.7: Théorème des valeurs intermédiaires

Soit $f: I \to \mathbb{R}$ continue, si on a $a < b \in I$, $\alpha = f(a)$, $\beta = f(b)$, alors pour tout $\gamma \in]\alpha, \beta[$, il existe $c \in]a, b[$ tel que $f(c) = \gamma$.

Corollaire 2.8

L'image d'un intervalle par une application continue est un intervalle.

Théorème 2.9

L'image par une application continue d'un segment est un segment.

2.3. Continuité de la fonction réciproque.

Proposition 2.10

Soit $f: I \to \mathbb{R}$ une application monotone. Alors f est continue si et seulement si f(I) est un intervalle.

Théorème 2.11

Soit $f: I \to J$ une application bijective monotone. Alors f^{-1} est continue.

3. Continuité uniforme

Définition 3.1

Soit f une fonction définie sur une partie D de $\mathbb R$ à valeurs réelles. On dit que f est uniformément continue sur D si

$$\forall \varepsilon > 0, \forall x \in D, \ \exists \eta > 0, \ \forall y \in D \cap]x - \eta, x + \eta[, \ |f(x) - f(y)| \le \varepsilon.$$

Remarque 3.2

- La notion de continuité uniforme n'a pas de sens en un point.
- La différence avec la continuité "simple" est que le η est le même pour tous les $x \in D$, d'où la dénomination "uniforme".

Exemple 3.3

- (1) La fonction $f: x \mapsto x^2$ n'est pas uniformément continue sur \mathbb{R}^+ .
- (2) La fonction f est uniformément continue sur [0,1].
- (3) La fonction $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Définition 3.4

On dit qu'une fonction est lipschitzienne sur D s'il existe $k \in \mathbb{R}^+$ tel que pour tout $(x, y) \in D$, $|f(x) - f(y)| \le k|x - y|$.

Proposition 3.5

Toute fonction lipschitzienne sur D est uniformément continue sur D.

Théorème 3.6: Heine

Toute fonction continue sur un segment est uniformément continue sur ce segment.

4. Extension aux fonctions à valeurs complexes

Définition 4.1

- (1) On dit que f est bornée s'il existe M > 0 tel que pour tout $t \in I$, $|f(t)| \leq M$.
- (2) On dit que f admet pour limite ℓ en $a \in I$ ou a extrêmité de I si $|f \ell|$ tend vers 0 en a. Cette limite est alors unique.

Proposition 4.2

- (1) Si f admet une limite ℓ en $a \in I$, alors $\ell = f(a)$. On dit que f est continue en a.
- (2) f est bornée si et seulement si Re(f) et Im(f) le sont, si et seulement si |f| l'est.
- (3) f admet une limite en a si et seulement si Re(f) et Im(f) en admettent une. On a alors $\lim_{x \to a} f(x) = \lim_{x \to a} \text{Re}(f)(x) + i \lim_{x \to a} \text{Im}(f)(x)$.
- (4) f est donc continue en a si et seulement si Re(f) et Im(f) le sont.
- (5) Si f admet une limite en a, alors elle est borne au voisinage de a.

Corollaire 4.3

Si f tend vers ℓ en a et g tend vers ℓ' , alors f+g tend vers $\ell+\ell'$, fg tend vers $\ell\ell'$ et si $\ell'\neq 0$, $\frac{f}{g}$ tend vers $\frac{\ell}{\ell'}$.

Définition 4.4

On dit que $f: I \to \mathbb{C}$ est continue sur I si elle est continue en chaque point de I.

Proposition 4.5

- (1) La somme et le produit de deux fonctions continues sont continues. Le quotient d'une fonction continue par une fonction continue ne s'annulant pas est continue.
- (2) f est continue sur I si et seulement si Re(f) et Im(f) le sont.
- (3) Si f est continue, |f| aussi.

Remarque 4.6

Si f est continue sur un segment I, |f| admet un minmum et un maximum.