Pass Task 8.1P: PCA dimensionality reduction

Task description:

PCA (Principle Component Analysis) is a dimensionality reduction technique that projects the data into a lower dimensional space. It can be used to reduce high dimensional data into 2 or 3 dimensions so that we can visualize and hopefully understand the data better.

In this task, you use PCA to reduce the dimensionality of a given dataset and visualize the data.

You are given:

Breast cancer dataset which can be retrieved from:

```
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
detailed info available at: https://scikit-
```

learn.org/stable/modules/generated/sklearn.datasets.load breast cancer.html

- PCA(n components=2)
- 3D plot settings: (Please refer to prac7 for 3D plot examples) from mpl_toolkits.mplot3d import Axes3D

```
fig = plt.figure(figsize=(10, 8))
cmap = plt.cm.get_cmap("Spectral")
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=10, azim=10)
ax.scatter(x,y,z, c=cancer.target, cmap=cmap)
```

Other settings of your choice

You are asked to:

- use StandardScaler() to first fit and transform the cancer.data,
- apply PCA (n_components=2) to fit and transform the scaled cancer.data set
- print the scaled dataset shape and PCA transformed dataset shape for comparison
- create 2D plot with the first principal component as x axis and the second principal component as y axis
- set proper xlabel, ylabel for the 2D plot
- print the PCA component shape and component values
- create a 3D plot with the first 3 features (as x,y and z) of the scaled cancer.data set
- create a 3D plot with the first principal component as x axis and the second principal component as y axis, no value for z axis
- set proper title for the two 3D plots

Sample output as shown in the following figures are for demonstration purposes only. Yours might be different from the provided.

Original shape: (569, 30) Reduced shape: (569, 2) PCA component shape: (2, 30) PCA components:

	componence.					
11	0.21890244	0.10372458	0.22753729	0.22099499	0.14258969	0.23928535
	0.25840048	0.26085376	0.13816696	0.06436335	0.20597878	0.01742803
	0.21132592	0.20286964	0.01453145	0.17039345	0.15358979	0.1834174
	0.04249842	0.10256832	0.22799663	0.10446933	0.23663968	0.22487053
	0.12795256	0.21009588	0.22876753	0.25088597	0.12290456	0.13178394]
-	-0.23385713	-0.05970609	-0.21518136	-0.23107671	0.18611302	0.15189161
	0.06016536	-0.0347675	0.19034877	0.36657547	-0.10555215	0.08997968
	-0.08945723	-0.15229263	0.20443045	0.2327159	0.19720728	0.13032156
	0.183848	0.28009203	-0.21986638	-0.0454673	-0.19987843	-0.21935186
	0.17230435	0.14359317	0.09796411	-0.00825724	0.14188335	0.27533947]]

Submission:

Submit the following files:

- 1. Your program source code (e.g. task8_1.ipynb)
- 2. A screen shot of your program running

Check the following things before submitting:

1. Add proper comments to your code