

Multiple Imputation and subsequent calculations

Simon Ress | Ruhr-Universität Bochum September 22, 2022

Workshop at hr&c, Bochum, 2021

Content

- 1. Examplary Data Set
- 2. Missing Patterns
- 3. Slide with R Output
- 4. Figures caption

Examplary Data Set

Planing of the Data Set

Data Set Creation

```
#Create variables
set.seed(415)
Mann = ifelse(runif(5000,0,1) < 0.50,1,0)
Alter = as.numeric(cut(runif(5000,20,70), c(20,30,40,50,60)
FK = ifelse((Mann*0.2 + Alter*0.1 + runif(5000,0,0.6)) > 0
B2.1 = as.numeric(cut(FK*2 + rnorm(5000, 2, 0.35), c(0, 1, 2, 3)))
set.seed(1015)
B5.1 = as.numeric(cut(FK*1.5 + B2.1*0.2 + Alter*(-0.30) + B2.1*0.2 + Alter*(-0.30)) + B2.1*0.2 + Alter*(-0.30) + B2.1*0.2 + 
#Build data frame
df = data.frame(Mann, Alter, FK, B2.1, B5.1)
```

View Data Set

d # #	4189	0	1	0	2	3
##	4190	Mann	Alter	FK	B2.‡	в5.5
##	1 191	8	4	1	5	5
##	4 192	8	5	1	4	$\frac{4}{2}$
##	4 193	1	45	8	3	3
##	4 194	1	<u>1</u>	9	3	<u>4</u> 3
##	4 195	8	3	8	3	3
##	4196 6	9	3	9	2	3
##	4 197	1	<u>4</u> 3	8	3	3
##	4 198	1	5	1	3	3
##	4 199	8	2	8	3	3
##	1 300	8	3 4 2	8	43 32 32 32	3
##	1 201	8		8	3	3
##	12 02	8	4	9	2	52 42 22 43 32 33 23 43 32 28 28 24 28 32 28 28 32 32 32 32 32 32 32 32 32 32 32 32 32
	4303	tation arp	subsequent c 2	alculat	ions (at gra	(c), 202 3

Check

Missing Patterns

Missing Patterns: Missing completely at random (MCAR)

- Values are randomly missing in the dataset
 - Missing data values do not relate to any other data
 - There is no pattern to the actual values of the missing data themselves
- For instance, when smoking status is not recorded in a random subset of patients
- This is easy to handle, but unfortunately, data are almost never missing completely at random

MCAR: Inserting Missing values in data frame

Missing Patterns: Missing at random (MAR)

- Confusing and would be better stated as missing conditionally at random
- Missing data do have a relationship with other variables in the dataset
 - Whether a value is missing or not depends on other variables
- The actual values that are missing are random
- For example, smoking status is not documented in female patients because the doctor was too shy to ask

Missing Patterns: Missing not at random (MNAR)

- The pattern of missingness is related to other variables in the dataset
- In addition, the values of the missing data are not random
 - Whether a value is missing or not depends on other variables
- For example, when smoking status is not recorded in patients admitted as an emergency, who are also more likely to have worse outcomes from surgery

Main Repos

- Official GitHub Repo of Metropolis (formerly mtheme); older version in TeXLive
- My GitHub Repo for a local Ubuntu package of Metropolis formerly mtheme
- Manuel

Slide with Bullets

- Bullet 1
- Bullet 2
- Bullet 3

Slide with R Output

Slide with R Output

summary(cars)

```
dist
##
       speed
##
   Min. : 4.0
                Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
                Median : 36.00
##
   Median:15.0
##
   Mean :15.4
                Mean : 42.98
##
   3rd Qu.:19.0
                3rd Qu.: 56.00
##
   Max. :25.0
                Max. :120.00
```

Slide with Plot

Two column layout

Here is some text above which goes over to whole slide

- Description of plot
- Second point

and here some text below which goes over to whole slide

Breakout page

Figures caption

Figures caption

 $\textbf{Figure 1:} \ \, \mathsf{Figure:} \ \, \mathsf{Here} \ \, \mathsf{is} \ \, \mathsf{a} \ \, \mathsf{really} \ \, \mathsf{important} \ \, \mathsf{caption}.$

Using LaTeX Parts: Blocks

As one example of falling back into LATEX, consider the example of three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.