Bayesian StatisticsBayes Theorem

Brani Vidakovic

ProfessorSchool of Industrial and Systems Engineering

Ingredients for Bayesian Inference

Observations X_1, \dots, X_n are modeled as

$$X_i \sim f(x_i|\theta), \qquad i = 1, ..., n$$

Joint distribution of sample $X_1, ..., X_n$ is

$$f(x_1|\theta) \times f(x_2|\theta) \dots f(x_n|\theta) = \prod_{i=1}^n f(x_i|\theta)$$

As a function of θ , the joint distribution $\prod_{i=1}^{n} f(x_i|\theta)$ is called **likelihood**

$$L(\theta|x_1,...,x_n) = \prod_{i=1}^n f(x_i|\theta)$$

Likelihood Principle:

All information about the experiment is contained in the likelihood

Example: Each X_i in a sample is exponential $\text{Exp}(\lambda)$. Let $X_1 = 2$, $X_2 = 3$, and $X_3 = 1$ be the observations. Then the likelihood is:

$$L(\lambda|x_1, x_2, x_3) = \lambda e^{-2\lambda} \times \lambda e^{-3\lambda} \times \lambda e^{-\lambda} = \lambda^3 e^{-6\lambda}$$

If the data are kept unspecified,

$$L(\lambda|x_1, x_2, x_3) = \lambda^3 e^{-\lambda \sum_{i=1}^3 x_i}$$

Let θ be a parameter in $f(x|\theta)$.

A prior is distribution on θ ,

$$\theta \sim \pi(\theta)$$
, $\theta \in \Theta$, $\Theta \equiv \text{parameter space}$.

The joint distribution of (X, θ) is $h(x, \theta)$.

Marginal dsitribution of X is

$$m(x) = \int_{\Theta} h(x,\theta) d\theta$$

Recall Bayes' Rule for events

$$P(AH_i) = P(A|H_i)P(H_i) = P(H_i|A)P(A)$$

$$\Rightarrow P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A)}$$

By Analogy

$$h(x,\theta) = f(x|\theta)\pi(\theta) = \pi(\theta|x)m(x)$$

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{m(x)}$$

Bayes Theorem

Example: Normal likelihood + Normal prior

$$\begin{bmatrix} x | \theta \sim N(\theta, \sigma^2), \ \sigma^2 \text{ known} \\ \theta \sim N(\mu, \tau^2), \ \mu, \tau^2 \text{ elicited} \end{bmatrix}$$

called hyperparameters

$$h(x,\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x-\theta)^2\right\} \times \frac{1}{\sqrt{2\pi\tau^2}} \exp\left\{-\frac{1}{2\tau^2} (\theta-\mu)^2\right\}$$

$$\exp\left\{-\frac{1}{2\sigma^2} (x-\theta)^2 - \frac{1}{2\tau^2} (\theta-\mu)^2\right\} \equiv$$

$$\exp\left\{-\frac{\sigma^2 + \tau^2}{2\sigma^2\tau^2} \left(\theta - \left(\frac{\tau^2}{\sigma^2 + \tau^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu\right)\right)^2 - \frac{1}{2(\sigma^2 + \tau^2)} (x-\mu)^2\right\}$$

$$\begin{cases} \theta \mid X \sim N\left(\frac{\tau^2}{\sigma^2 + \tau^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu, \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}\right) \\ X \sim N(\mu, \sigma^2 + \tau^2) \end{cases}$$

Posterior mean (mode, median) is

$$\frac{\tau^{2}}{\sigma^{2} + \tau^{2}} x + \frac{\sigma^{2}}{\sigma^{2} + \tau^{2}} \mu = w \times x + (1 - w) \times \mu$$
observed elicited

$$w=rac{ au^2}{\sigma^2+ au^2}; \qquad 1-w=rac{\sigma^2}{\sigma^2+ au^2}$$

$$au^2\gg\sigma^2\to w\approx 1, ext{the posterior mean close to } x$$

$$\sigma^2\gg\tau^2\to w\approx 0, ext{the posterior mean close to } \mu$$

Conjugate Families

 Note that for Normal Likelihood + Normal Prior → Posterior was Normal.

• If for likelihood f and prior π the prior and posterior belong to the same family of distributions, then the pair (f,π) is <u>conjugate</u>.

• If the pair (f,π) is conjugate, no need to calculate the normalizing constant in $f(x|\theta)\pi(\theta) \propto \pi(\theta|x)$.

Example: Binomial Likelihood and Beta Prior

$$X|p \sim \text{Bin}(n,p); \quad f(x|p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$p \sim \text{Be}(\alpha,\beta); \quad \pi(p) = \frac{1}{B(\alpha,\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

$$\pi(p|x) \propto f(x|p)\pi(p) =$$

$$= C \times p^{x+\alpha-1} (1-p)^{n-x+\beta-1}$$

$$\Rightarrow p|X \sim \text{Be}(x+\alpha,n-x+\beta).$$

$$X \sim \text{Be}(\alpha, \beta) \Rightarrow EX = \frac{\alpha}{\alpha + \beta}$$
 $E(p|X) = \frac{x + \alpha}{n + \alpha + \beta}$

$$E(p|X) = \frac{x + \alpha}{n + \alpha + \beta} = \frac{x}{n} \times \frac{n}{n + \alpha + \beta} + \frac{\alpha}{\alpha + \beta} \times \frac{\alpha + \beta}{n + \alpha + \beta}$$

$$\Rightarrow \frac{n}{n + \alpha + \beta} \times \frac{x}{n} + \frac{\alpha + \beta}{n + \alpha + \beta} \times \frac{\alpha}{\alpha + \beta}$$

$$\Rightarrow \frac{n}{n + \alpha + \beta} \times \frac{x}{n} + \frac{\alpha + \beta}{n + \alpha + \beta} \times \frac{\alpha}{\alpha + \beta}$$
prior mean

Exercise: Show that Poisson Likelihood and Gamma prior form a conjugate pair.

Hint:
$$x|\lambda \sim \text{Poi}(\lambda)$$
; $f(x|\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$
 $\lambda \sim \text{Ga}(\alpha, \beta)$; $\pi(\lambda) = \frac{\lambda^{\alpha-1}\beta^{\alpha}}{\Gamma(\alpha)}e^{-\beta\lambda}$
 $\pi(\lambda|x) \propto \lambda^{x+\alpha-1}e^{-(1+\beta)\lambda}$

$$\begin{split} X_1, \dots, X_n \sim N(\theta, \sigma^2), \ \theta \sim N(\mu, \tau^2) \\ \bar{X} \sim N\left(\theta, \frac{\sigma^2}{n}\right) \\ \theta | X_1, \dots, X_n &\equiv \theta | \bar{X} \sim N\left(\frac{\tau^2}{\frac{\sigma^2}{n} + \tau^2} \bar{X} + \frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{n} + \tau^2} \mu, \frac{\frac{\sigma^2}{n} \tau^2}{\frac{\sigma^2}{n} + \tau^2}\right) \end{split}$$

 $X_1, \dots, X_n \sim Poi(\lambda); \lambda \sim Ga(\alpha, \beta)$

$$\lambda | x \sim \text{Ga}\left(\sum x_i + \alpha, n + \beta\right)$$

Show that posterior mean is weighted average of \bar{X} and $\frac{\alpha}{\beta}$.

Only a handful conjugate pairs.

Limited modeling ability, but computation simple.

Examples

- 1. Jeremy's IQ
- 2. 10 flips of a coin; revisited
- 3. Poisson-Gamma

Example: Jeremy's IQ.

Jeremy models his IQ as $N(\theta, 80)$.

He is a GT student; prior on IQ of a GT student elicited as N(110,120).

Jeremy takes IQ test and scores X = 98.

Find the posterior for θ , find Bayes' estimator of θ .

$$X|\theta \sim N(\theta, 80), \quad \theta \sim N(110, 120)$$

$$\theta|X \sim N\left(\frac{120}{80 + 120} \times 98 + \frac{80}{80 + 120} \times 110, \frac{80 \times 120}{80 + 120}\right)$$

$$\sim N(102.8, 48)$$

The mean of the posterior is a Bayes estimator of a parameter

$$\Rightarrow \widehat{\theta_B} = 102.8$$

Classical statistician will estimate θ as $\hat{\theta}_{MLE} = 98$.

If an average for n=5 tests was $\bar{X}=98$, then

$$\theta | \bar{X} \sim N \left(\frac{120}{\frac{80}{5} + 120} \times 98 + \frac{\frac{80}{5}}{\frac{80}{5} + 120} \times 110, \frac{\frac{80}{5} \times 120}{\frac{80}{5} + 120} \right)$$
$$\sim N(99.4118, 14.1176)$$

Example: Ten flips of a fair coin, revisited

We discussed conjugacy of Binomial likelihood + Beta prior

Beta priors – excellent expressive power about the population proportion p.

Next: betaplots.m

A realistic prior on p:

$$p \sim \text{Be}(500,500)$$

Thus, the posterior for likelihood $X|p \sim \text{Bin}(10,p)$ and observed X=0 is

$$Be(0 + 500, 10 - 0 + 500).$$

Thus, the posterior mean is

$$\hat{p}_B = \frac{0+500}{10+500+500} = \frac{500}{1010} = \boxed{0.495}$$

 \rightarrow More realistic than frequentist's $\hat{p} = 0$.

Example: Poisson-Gamma.

Six plates containing large number of cells each are checked

 $X_1 = 2$, $X_2 = 0$, $X_3 = 1$, $X_4 = 5$, $X_5 = 7$, $X_6 = 1$ are the number of "marked" cells on the corresponding plates.

Assume $X_i | \lambda \sim \text{Pois}(\lambda)$.

Estimated λ if the prior on λ is Gamma with mean 4 and variance $\frac{1}{4}$.

Likelihood

$$\frac{\lambda^{2}}{2!}e^{-\lambda} \times \frac{\lambda^{0}}{0!}e^{-\lambda} \times \frac{\lambda^{1}}{1!}e^{-\lambda} \times \frac{\lambda^{5}}{5!}e^{-\lambda} \times \frac{\lambda^{7}}{7!}e^{-\lambda} \times \frac{\lambda^{1}}{1!}e^{-\lambda}$$

$$\propto \lambda^{16}e^{-\lambda} \quad (\infty \text{ "proportional to"})$$

Prior
$$\theta \sim Ga(\alpha, \beta)$$
, $E\theta = \frac{\alpha}{\beta} = 4$

$$Var\theta = \frac{\alpha}{\beta^2} = \frac{1}{4}$$

$$\Rightarrow \frac{1}{4} = \frac{\alpha}{\beta} \times \frac{1}{\beta} \Rightarrow \beta = 4 \times 4 = 16$$

$$\alpha = 4 \times 16 = 64$$

Posterior

$$\lambda | X \sim \text{Ga}\left(\alpha + \sum_{i} x_{i}, n + \beta\right)$$

The mean of posterior is

$$\hat{\lambda}_B = \frac{\alpha + \sum x_i}{n + \beta} = \frac{64 + 16}{6 + 16} = 3.6364$$

Frequentist estimate:
$$\hat{\lambda}_{MLE} = \bar{X} = \frac{16}{6} = 2.666$$

MLE	BAYES	PRIOR
2.66	3.6364	4

Summary

