

C1100 系列无线模块硬件接口手册_V2.2

此文档适用于如下产品

	后缀	蜂窝模式	GNSS	频段	TAF 封装
C1100	MGGT	CatM/NB/GPRS	支持	全球频段	支持
	NGGT	NB 单模	支持	全球频段	支持
C1100C	-	-	-	-	-

目录

1.	引言	7
	1.1. 文档目的	7
	1.2. 内容一览	7
	1.3. 相关文档	7
	1.4. 修订记录	8
	1.5. 缩略语	9
2.	产品简介	11
	2.1. 特性列表	13
	2.2. C1100 系列无线模块工作模式	15
	2.3. 系统功能框图	17
3.	应用接口及功能描述	19
	3.1. 86-pin LCC PAD 接口定义	19
	3.2.电源接口及外围电路设计	26
	3.2.1. C1100 MGGT VBAT 输入	26
		26
	3.2.2. C1100 NGGT VBAT 输入	28
		28
	3.2.3. C1100C VBAT 输入	28
		28
	3.3. 开机与复位接口	29
		29
	3.3.1. 开机	29
	3.3.2 关机	30
	3.3.2. RESET 复位控制	30
	3.3.2.1. 复位管脚	30
	3.3.2.2. AT 命令复位	31
	3.4. USB 接口	32
	3.4.1. USB 接口描述	32
	3.4.2. USB 参考电路	32
	3.4.3. USB 驱动	33
	3.4.3.1. Linux 系统加载 C1100 系列无线模块的 USB 驱动过程	34
	3.4.3.1.1 USB 串口驱动添加	34
	3.4.3.1.2 增加具体设备驱动	34
	3.4.3.1.3 USB 串口驱动过滤 NDIS 接口	34
	3.4.3.1.4 USB 串口驱动加载方法	34
	3.4.3.2. Linux 系统下 C1100 系列无线模块交互 AT 过程	34
	3.4.3.3. Linux 系统下 C1100 系列无线模块拨号上网过程	36
	3.5. UART 接口	38
	3.5.1. UART 接口描述	38
	3.5.2. UART1 接口参考电路	38
	3.5.3. UART1 接口描述	39

	3.6. C1100 MGGT/C1100 NGGT 的 PSM 和唤醒控制	40
	3.7. C1100 系列无线模块休眠和唤醒控制	40
	3.7.1. C1100 MGGT/C1100 NGGT 的休眠和唤醒控制	40
	3.7.2. C1100C 的休眠和唤醒控制	41
	3.8. USIM 接口	42
	3.8.1. USIM 卡接口描述	42
	3.8.2. USIM 卡接口参考设计	42
	3.9. 状态指示接口	43
	3.9.1. 状态指示接口信号描述	43
	3.9.2. 状态指示参考电路	44
	3.10. GPIO 接口	44
	3.11. 天线接口	45
	3.11.1. 天线连接方式	45
	3.11.1.1. 焊接式天线	45
	3.11.1.2. 使用 RF 连接器连接天线	46
	3.11.1.3. 天线 RF 连接器	47
	3.11.1.4. RF 转接线	47
	3.11.2. C1100 系列无线模块的 GNSS 天线接法	47
	3.11.2.1.无源 GNSS 天线接法	47
	3.11.2.2.有源 GNSS 天线接法	48
	3.11.3. C1100 系列无线模块的 RF 输出功率	48
	3.11.4. C1100 系列无线模块的 RF 接收灵敏度	50
	3.11.5. C1100 系列无线模块工作频率	51
	3.11.6. C1100 系列无线模块天线要求	52
4.	机械特性	54
	4.1. 模块 3D 图	54
	4.2. 模块 2D 结构图	54
	4.3. C1100 系列无线模块应用端封装推荐	54
5.	各种业务下的功耗	55
6.	电气特性	60
	6.1. 推荐工作电压范围	60
	6.2. 环境温度范围	60
		60
		60
		60
	6.3. 接口工作状态电气特性	60
	6.4. 环境可靠性要求	
	6.5. ESD 特性	

表格目录

表 1: 版本修订记录	8
表 2: 缩略语描述对照表	9
表 3 : C1100 MGGT 频段配置	11
表 4 : C1100 NGGT 频段配置	11
表 5 : C1100C 频段配置	11
表 6: C1100 系列无线模块管脚功能概述	12
表 7 : C1100 系列无线模块主要特性列表	13
表 8 : C1100 系列无线模块接口	14
表 9 : C1100 MGGT 无线模块工作模式	15
表 10 : C1100 NGGT 无线模块工作模式	16
表 11 : C1100C 无线模块工作模式	16
表 12 : C1100 系列无线模块管脚定义表	20
表 13 : C1100 系列无线模块电源相关接口	26
表 14 : C1100 系列无线模块开关机与复位相关接口	29
表 15 : C1100/C1100C VID、PID 号与映射串口名	32
表 16 : C1100 系列无线模块 USB 接口	32
表 17 : C1100 系列无线模块默认 VID 和 PID	33
表 18 : C1100 系列无线模块 UART 接口	38
表 19 : C1100 系列无线模块 USIM 接口	42
表 20 : C1100 系列无线模块状态指示接口信号接口	43
表 21 : C1100 系列无线模块 GPIO 接口表	44
表 22 : C1100 系列无线模块天线接口	45
表 23 : C1100 MGGT 的 RF 输出功率表	48
表 24 : C1100 NGGT 的 RF 输出功率表	49
表 25 : C1100C 的 RF 输出功率表	50
表 26 : C1100 MGGT 的 RF 接收灵敏度	50
表 27 : C1100 NGGT 的 RF 接收灵敏度	51
表 28: C1100C的 RF接收灵敏度	51
表 29 : C1100 MGGT 工作频率	51
表 30 : C1100 NGGT 工作频率	52
表 31 : C1100C 工作频率	52
表 32 : C1100 MGGT 天线指标要求	52
表 33 : C1100 NGGT 天线指标要求	53
表 34 : C1100C 天线指标要求	53
表 35 : C1100 MGGT 模块各频段功耗	55
表 36 : C1100 NGGT 模块各频段功耗	57
表 37 : C1100C 模块各频段功耗	58
表 38 : C1100 系列无线模块推荐工作电压范围	60
表 39 : C1100 系列无线模块温度范围	60

表 40 : C1	100 系列无线模块普通数字 IO 信号的逻辑电平	60
表 41 : C1	100 系列无线模块接口电源工作状态电特性	61
表 42 : C1	100 系列无线模块环境可靠性要求	61
表 43 : C1	100 MGGT/C1100 NGGT 接口抗 ESD 特性	61
表 44 · C1	100C 接口抗 ESD 特性	62

插图目录

图 1 : C1100 系列无线模块系统框图	18
图 2 : C1100 系列无线模块 pin 序图	19
图 3 : C1100 MGGT 模块 VBAT 电路参考(并联电解电容)	27
图 4 : C1100 MGGT 模块 VBAT 电路参考(并联钽电容)	27
图 5 : C1100 系列无线模块开机控制	30
图 6 : C1100 系列无线模块 RESET 控制模块复位参考电路	31
图 7 : C1100 系列无线模块 RESET 时序图	31
图 8 : C1100 系列无线模块 USB 接口参考设计图	33
图 9 : C1100 系列无线模块流控设计参考	39
图 10: 休眠和唤醒控制过程示意图	
图 11 : C1100 系列无线模块 USIM 接口参考设计图	42
图 12 : C1100 系列无线模块网络指示灯参考设计图	44
图 13 : C1100 系列无线模块外接焊接式天线参考设计图	46
图 14 : C1100 系列无线模块使用 RF 连接器连接天线参考设计图	
图 15 : GNSS 无源天线接法	48
图 16 : GNSS 有源天线接法	48
图 17 : C1100 系列无线模块推荐封装尺寸	54

1. 引言

C1100 系列无线模块是联想懂的通信研发的无线通信模块,它同时支持 GNSS 定位导航服务,包括 C1100 MGGT、C1100 NGGT、C1100C,其中:

C1100 MGGT 支持 eMTC/NB-IoT/EGPRS:

C1100 NGGT 支持单 NB-IoT:

C1100C 支持 LTE CAT1。

C1100 系列无线模块的低功耗、高性能特点,使其特别适合物联网终端的无线连接。可广泛应用于智能家居、智能医疗、智能城市、智能环保、车联网等领域。

1.1. 文档目的

本文详细阐述了 C1100 系列无线模块的基本功能及主要特点、硬件接口及使用方法、结构特性、功耗指标和电气特性,指导用户将 C1100 系列无线模块嵌入各种应用终端的设计。

1.2. 内容一览

本文共分为以下几部分:

- ◆ 第1章,主要介绍文档目的、相关资料、修订记录、缩略语解释等;
- ◆ 第2章,描述 C1100 系列无线模块的基本功能和主要特点:
- ◆ 第3章,详细描述 C1100 系列无线模块各个硬件接口的功能、特性和使用方法;
- ◆ 第4章,详细描述 C1100 系列无线模块结构方面的特性和注意事项:
- ◆ 第5章,详细描述 C1100 系列无线模块各种业务下的功耗;
- ◆ 第6章,详细描述 C1100 系列无线模块电气特性。

1.3. 相关文档

- ◆ C1100 系列无线模块规格说明;
- ◆ C1100 系列无线模块 AT 指令集;
- ◆ C1100 系列无线模块 EVB 用户手册;
- ◆ C1100 系列无线模块参考设计电路;
- ◆ C1100 系列无线模块应用业务流程手册。

1.4. 修订记录

表 1: 版本修订记录

版本	姓名	发布时间	修订描述
			1.增加 SIM 检测逻辑更改的 AT 命令
V0.6		2017-04-22	2.合并 C1100 和 C1100C 相关的参数
			3.增加关机 AT 命令的描述
V0.6		2017-05-06	1.增加 PSM 描述
VU.6		2017-03-06	2.修改 ESD 和关机漏电流
V0.7		2017-05-12	更新了 NB 的灵敏度
V0.8		2017-06-14	2.2. C1100 系列无线模块的工作模式中控制休眠
			的 UART1_DTR 电平由"低"修改为"高";
			3.1. 表 9 C1100 系列无线模块管脚定义表 修改
			Pin36、45、67/68/69 的功能描述;
			3.2.1.1. 增加使用电池供电的说明;
			3.2.3.增加在模块正常开机 15 秒的时间范围内不
			能控制 RESET 的说明;
			3.4.2 增加流控参考设计图的图序编号;
			3.4.3 的 2)修改低功耗控制 DTR 和 DSR 的描述;
			3.5. 更改为 C1100 的 PSM 和唤醒控制,原 3.5.
			及以后的依次后推;
			3.6.修改 C1100 系列无线模块的休眠唤醒控制;
			3.10. 修改对开启有源天线供电的说明。
			4.2. 修改模块 2D 结构图
			4.3. 修改标题名称
V0.9		2017-06-22	1. 修改模块封装
			2. 修改模块频段信息
V2.0		2017-06-29	1.增加 C1100 NGGT 的信息
			2.增加新名词解释信息
			3.增加休眠唤醒图示
			4.更换 C1100 系列封装
			5.修改 POWER_ON#、RESET#、DTR 的电平范
			围,支持 1.8~3.3V
V2.1		2017-08-13	修改 C1100 MGGT、C1100 NGGT 天线指标中
			的 TRP、TIS 数值。
V2.2		2017-09-18	添加 edrx 状态的描述,补充 C1100 NGGT 的发
			射功率数据和 MGGT 的接收灵敏度数据

1.5. 缩略语

表 2: 缩略语描述对照表

缩写	6倍抽处对照衣 描 述	中文描述
AMR	Adaptive Multi-rate	自适应多速率
BER	Bit Error Rate	误码率
bps	bits per second	比特每秒
BTS	Base Transceiver Station	基站收发信台
PCI	Peripheral Component Interconnect	外设部件互连
CS	Circuit Switched (CS) domain	电路域
CSD	Circuit Switched Data	电路交换数据
DCE	Data communication equipment	数据电路终端设备
DRX	Discontinuous Reception	非连续接收
DTE	Data terminal equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EGPRS	Enhanced General Packet Radio Service	增强型数据速率GSM
EDGE	Enhanced Data rates for GSM Evolution	增强型数据速率GSM演进技术
eDRX	Enhanced Discontinuous Reception	增强型非连续接收
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型GSM
EMC	Electromagnetic Compatibility	电磁兼容性
eMTC	enhanced Machine Type Communications	基于LTE的演进物联网通信
ESD	Electrostatic Discharge	静电释放
FR	Frame Relay	帧中继
GMSK	Gaussian Minimum Shift Keying	高斯最小移频键控
GPIO	General Purpose Input Output	通用输入/输出
GPRS	General Packet Radio Service	通用分组无线系统
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
HR	Half Rate	半速
HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
HSPA	HSPA High-Speed Packet Access	高速分组接入
IEC	International Electro-technical Commission	国际电工技术委员会
IMEI	International Mobile Equipment Identity	国际移动设备标识
I/O	Input/Output	输入/输出
IOT	Internet Of Thing	物联网
ISO	International Standards Organization	国际标准化组织
ITU	International Telecommunications Union	国际电信联盟
LED	Light Emitting Diode	发光二极管
LTE	Long Term Evolution	长期演进技术
M2M	Machine to machine	机器到机器

缩写	描述	中文描述
MCU	Micro Control Unit	微处理单元
МО	Mobile Originated	移动台发起的
MT	Mobile Terminated	移动台终止的
NB-IoT	Narrow Band-Internet Of Thing	窄带物联网
NTC	Negative Temperature Coefficient	负温度系数
PC	Personal Computer	个人计算机
РСВ	Printed Circuit Board	印制电路板
PCS	Personal Cellular System	个人蜂窝系统
PCI	Peripheral Component Interconnect	外设部件互连
PCM	Pulse Code Modulation	脉冲编码调制
PCS	Personal Communication System	GSM1900
PDU	Packet Data Unit	分组数据单元
PPP	Point-to-point protocol	点到点协议
PS	Packet Switched	分组交换
PSM	Power Saving Mode	功耗节省模式
QPSK	Quadrate Phase Shift Keying	正交相位移频键控
RTC	Real-Time Clock	实时时钟
SIM	Subscriber Identity Module	用户识别模块
TCP/IP	Transmission Control Protocol/ Internet Protocol	传输控制协议/互联网协议
UART	Universal asynchronous receiver-transmitter	通用异步收/发器(机)
USIM	Universal Subscriber Identity Module	通用用户识别模块
UMTS	Universal Mobile Telecommunications System	通用移动通信系统
USB	Universal Serial Bus	通用串行总线
WCDMA	Wideband Code Division Multiple Access	宽带码分多址

2. 产品简介

下表为 C1100 系列无线模块的频段配置:

表 3: C1100 MGGT 频段配置

	C1100 MGGT
FDD-LTE eMTC	B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28
TDD-LTE eMTC	B39
分集接收	不支持
NB-IoT	B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28
EGPRS	B2/B3/B5/B8
GNSS	GPS+BeiDou+GLONASS

表 4: C1100 NGGT 频段配置

	C1100 NGGT
分集接收	不支持
NB-IoT	B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28
GNSS	GPS+BeiDou+GLONASS

表 5: C1100C 频段配置

NO. CLECK MICH.	
	C1100C
FDD-LTE CAT1	B1/B3/B5
TDD-LTE CAT1	B41
分集接收	支持
GNSS	GPS+BeiDou+GLONASS

C1100 系列无线模块采用先进的高度集成设计方案,将射频、基带集成在一块 PCB 上,完成无线接收、发射、基带信号处理和音频信号处理功能(C1100 MGGT、C1100 NGGT 语音功能保留),采用单面布局,对外应用接口为 LCC PAD 方式。C1100 系列无线模块支持AT 命令扩展,可以实现用户个性化定制方案。

C1100 系列无线模块接口功能概况见下表 6。

注:保留,指硬件管脚仅做预留,但是需要不同的软件版本支持。

表 6: C1100 系列无线模块管脚功能概述

功能	C1100 MGGT	C1100 NGGT	C1100C
供电管脚	支持	支持	支持
电源输出(1.8V/2.85V)	支持	支持	支持
天线接口	主天线、GNSS	主天线、GNSS	主天线、分集天线、GNSS
开机键	支持	支持	支持
复位键	支持	支持	支持
SIM 卡接口	USIM/SIM	USIM	USIM
网络状态指示灯	支持	支持	支持
ADC	支持	支持	支持
UART	支持	支持	支持
USB 接口	支持	支持	支持
GPIO	支持	支持	支持
PCM	保留	保留	支持
I2C 接口	保留	保留	保留
SPI 接口	保留	保留	保留
OPEN DRAIN 输出	保留	保留	保留
PHY SGMII 接口	不支持	不支持	保留

2.1. 特性列表

表 7: C1100 系列无线模块主要特性列表

产品特性		#述 描述				
结构尺寸		26.0×24.0×2.5mm				
重量		<5 克				
固定方式		LCC PAD 焊接				
	C1100 MGGT	3.1V~4.2V(推荐值 3.8V)				
电源电压	C1100 NGGT	3.1V~4.2V(推荐值 3.8V)				
	C1100C	3.3V~4.2V(推荐值 3.8V)				
		TDD-LTE eMTC: B39;				
		FDD-LTE eMTC:				
	C1100 MGGT	B1/B2/B3/B4/B5/B8/B12/B13	8/B17/B18/B19/B20/B26/B28;			
工作频段		NB-IoT: B1/B2/B3/B4/B5/B8/	/B12/B13/B17/B18/B19/B20/B26/B28;			
211900		EGPRS: B2/B3/B5/B8				
	C1100 NGGT	NB-IoT: B1/B2/B3/B4/B5/B8/	/B12/B13/B17/B18/B19/B20/B26/B28;			
	C1100C	FDD-LTE CAT1: B1,B3,B5				
	CTIOC	TDD-LTE CAT1: B41				
			FDD: 375Kbps(DL),375Kbps(UL)			
	C1100 MGGT	LTE eMTC	TDD: 375Kbps(DL),375Kbps(UL)			
			支持 Release 13 category M			
数据业务		NB-IoT	32Kbps(DL),72Kbps(UL)			
		EGPRS	384Kbps(DL),160Kbps(UL)			
	C1100 NGGT	NB-IoT	32Kbps(DL),72Kbps(UL)			
	C1100C	LTE CAT1	10.3/5.2Mbps			
GNSS		,				
频率		1561MHz~1602MHz				
天线类型		默认支持有源天线,若使用无源天线加隔直电容。				
通道数		≥44 通道				
定位精度		< 10M				
A-GPS		保留				
接收灵敏度		Acquisition	-140dBm			
1女1人人(現/人		Tracking	-153dBm			
		Cold Start	60S			
首次定位时间		Warm Start 45S				
		Hot Start <1S				
工作温度	T	-40℃~+85℃				
	C1100 MGGT	VBAT,GND:空气放电±2KV,接触放电±500V				
ESD	C1100 NGGT	射频天线接口:空气放电±2KV,接触放电±500V				
		其它接口:空气放电±2KV,接触放电±500V				

产	品特性	描述					
		VBAT,GND:空气放电±8KV,接触放电±4KV					
	C1100C	射频天线接口:空气放电±2KV,接触放电±500V					
		其它接口:空气放电±2KV,接触放电±500V					
	C1100 MGGT	Class 3 (0.25 W) for eMTC/NB-loT					
最大发射	CTTOO MGGT	Class 12 (0.5W) for EGPRS					
功率	C1100 NGGT	Class 3 (0.25 W) for NB-IoT					
	C1100C	Class 3 (0.25 W) for TDD-LTE/FDD-LTE					
		关机漏电流: 5μA					
	C1100 MGGT	Idle 模式: TBD					
	CTIOUNGGT	PSM 模式: 7μA					
		数据模式: TBD					
		关机漏电流: 5μA					
功耗	C1100 NGGT	Idle 模式: TBD					
切代	CTIOUNGGT	PSM 模式: 7μA					
		数据模式: TBD					
	C1100C	关机漏电流: 11μA					
		Idle 模式: TBD					
		通话模式: TBD					
		数据模式: TBD					
AT 命令		支持标准 AT 指令集(Hayes 3GPP TS 27.007 和 27.005)					
VI hh A		支持 Lenovo Connect 扩展 AT 指令集					
		RoHS					
		ccc					
		СТА					
	C1100 MGGT	GCF					
认 证		PTCRB					
И И.		FCC					
		CE					
	C1100 NGGT C1100C	RoHS					
		ccc					
		СТА					

表 8: C1100 系列无线模块接口

模块型号	管脚	C1100 MGGT	C1100 NGGT	C1100C
电源接口	3 个 VBAT 管脚, 22 个 GND 管脚			
	1 个主天线接口	支持	支持	支持
天线接口	1 个分集天线接口	不支持	不支持	支持
	1个 GNSS 天线接口	支持	支持	支持
电压输出	1 个 1.8V 电源输出 (50mA)	支持	支持	支持
电压制山	1 个 2.85V 电源输出(50mA)	义付	义付	义付
开机键	1 个 POWER_ON#接口	支持	支持	支持

模块型号	管脚	C1100 MGGT	C1100 NGGT	C1100C	
	(支持 1.8~3.3V I/O)				
复位管	1个 RESET#接口	支持	支持	支持	
交匹日	(支持 1.8~3.3V I/O)	×10	711	714	
网络指示灯	1个 NET_STATUS 输出接口	支持	支持	支持	
SIM 卡接口	支持 3V、1.8V 电平	USIM/SIM	只支持 USIM	只支持 USIM	
USB接口	1组 USB2.0 High-Speed 接口	支持	支持	支持	
	1 组全功能 8 线制 UART1 接口	支持	支持	支持	
UART	1 组无流控 2 线制 Debug UART 接	支持	支持	支持	
	口,主要用于输出调试信息	义付	又付		
GPIO □	1.8V	10 路,保留	10 路,保留	6路,保留	
	1 组睡眠和唤醒管脚:				
休眠与唤醒	复用 UART1 的 DTR/DSR	支持	支持	支持	
	(DTR 支持 1.8~3.3V I/O)				
PCM 接口	1 组 PCM 接口	保留	保留	支持	
SPI 接口	1组 SPI 接口	保留	保留	保留	
I2C 接口	1 组 I2C 接口	保留	保留	保留	
120 接口	(内部上拉 2.2K Ω到 1.8V 电源)	水田	水田	沐 田	
开漏输出	1 个开漏输出管脚	保留	保留	保留	
时钟输出	2个时钟输出管脚	保留	保留	保留	
1 1 JUI I	(19.2MHz 和 32KHz)	が田	NO	IN 田	
强制下载测 试点	USB_BOOT	支持	支持	支持	
			1	1	

2.2. C1100 系列无线模块工作模式

C1100 系列无线模块工作模式一览

表 9: C1100 MGGT 无线模块工作模式

	模 式	描 述
正常	空闲	模块已经开机并成功注册到网络,系统处于空闲状态,已经做好了数据收发的准备。
工 作	连接	模块和移动网络处于电话或数据连接状态,正在和网络进行交互,模块此时的功耗取决于网络环境、网络设置、参数配置及数据速率。
飞行模式		模块的射频电路不工作,不能注册到网络,无法与网络进行数据交互。飞行模式通过 AT+CFUN=4 进入。
最小功能		系统在不断电的情况下关闭包括射频、USIM等绝大部分功能,仅维持一个最小系统工作。最小功能通过 AT+CFUN=0 进入。

低功耗	休眠	即移动终端常规的休眠模式,此模式下,系统会周期性地监听网络寻呼,而在一个周期的其余大部分时间关掉包括射频在内的大部分功能块,所以模块的功耗相对于空闲模式会很小。此时模块的功耗大小取决于网络侧的寻呼周期,即 DRX 参数。一般地,移动网络的寻呼周期在 0.32~5.12 秒之间。
	eDRX	eDRX 是 Re1-13 中新增的功能。和休眠模式类似,eDRX 也是模块通过移动终端周期性监听网络寻呼来大幅降低功耗的,但寻呼周期比休眠模式要长更多,最长能到 2.91 小时。用户可以通过 AT+CEDRXS 命令来配置终端请求的 eDRX 寻呼周期参数,但最终 eDRX 寻呼周期参数有网络下行信令确认。详见《C1100_AT 手册》。
	PSM	在此模式下,整个系统除 RTC 还在工作外,其他的所有功能均被关闭,最大程度降低了系统功耗(几乎相当于关机)。对于基站而言,在 PSM 模式下,模块为不可达状态。只有当和网络协商的定时器 T3412 超时或被 MCU 唤醒时,模块才退出 PSM 重新与基站进行连接和交互。用户可以通过 AT+CPSMS 命令设置终端请求的 PSM 时间参数,并有网络下行信令确认。详见《C1100_AT 手册》。
美 机		关机模式下,模块不工作。

表 10: C1100 NGGT 无线模块工作模式

模式	描述					
IDLE	模块已经开机并成功注册到网络,系统处于空闲状态,已经做好了收发的准备。					
CONNECT	模块处于工作状态,正在和网络进行数据交互,模块此时的功耗取决于网络环境、网络					
CONNECT	设置、参数配置及数据速率。					
OFFLINE	模块的射频电路不工作,无法与网络进行发送和接收。OFFLINE通过AT+CFUN=4进入。					
最小功能	在不断电的情况下关闭包括射频、USIM 等绝大部分功能块,仅维持最小系统工作。最					
取小切肥	小功能通过 AT+CFUN=0 进入。					
	模块在 PSM 模式下,关闭大部分功能(除 RTC),以到达最大程度降低功耗作用。对					
PSM	于基站而言,在 PSM 模式下,模块为不可达状态。只有当相关业务定时器超时或被 MCU					
	唤醒时,模块才退出 PSM 进入 IDLE 模式,进而与基站进行数据交互。					
关机	关机模式下,模块不工作。					

表 11: C1100C 无线模块工作模式

模式	描述						
IDLE	模块已经开机并成功注册到网络,系统处于空闲状态,已经做好了收发的准备。						
CONNECT	模块处于工作状态,正在和网络进行数据交互,模块此时的功耗取决于网络环境、网络						
CONNECT	设置、参数配置及数据速率。						
OFFLINE	模块的射频电路不工作,无法与网络进行发送和接收。OFFLINE 通过 AT+CFUN=4 进入。						
最小功能	在不断电的情况下关闭包括射频、USIM 等绝大部分功能块,仅维持最小系统工作。最						
取小切肥	小功能通过 AT+CFUN=0 进入。						
休眠	模块关掉大部分功能块,但会间隙地与网络进行同步,可以接收数据,此时模块的功耗						

	降到很低。UART1_DTR 被拉高或 USB 被挂起都会触发模块进入休眠模式,详见 3.7。
关机	关机模式下,模块不工作。

2.3. 系统功能框图

图 1 是 C1100 系列无线模块系统框图:

图 1: C1100 系列无线模块系统框图

- ☆ 射频部分包括:
 - 1) 射频收发信机
 - 2) 射频主集与分集天线开关(C1100 MGGT/C1100 NGGT 不支持分集, C1100C 支持分集)
 - 3) 射频功放
 - 4) GNSS 声表滤波器
- ☆ PMU 部分包括:
 - 1) 电源管理单元 PMU
 - 2) 时钟
 - 3) 控制逻辑
- ☆ 模拟/数字基带部分包括:
 - 1) 模拟/数字基带芯片
 - 2) 存储器,包含 NAND FLASH 和 LPDDR2
 - 3) 数字接口

3. 应用接口及功能描述

3.1. 86-pin LCC PAD 接口定义

图 2: C1100 系列无线模块 pin 序图

表 12: C1100 系列无线模块管脚定义表

备注:

I/O 状态: I=输入; O=输出; P/I=电源输入; P/O=电源输出;

上电复位时数字 IO 管脚状态: PD=下拉; PU=上拉; NP=悬空。此状态为模块从上电到程序接管之前的 IO 管脚状态,此状态为硬件初始状态,程序不可控。

NC:硬件未定义,外部悬空处理; RESERVED: 表示硬件管脚预留,软件未定义。

管脚 序号	功能	电平(V)	1/0	上电复位时数 字 IO 管脚状态	功能
1	VBAT	-	P/I		模块主电源输入,详见 3.2
2	VBAT	-	P/I		模块主电源输入,详见 3.2
3	VBAT	-	P/I		模块主电源输入,详见 3.2
4	GND	-	-		地
5	POWER_ON#	1.8~3.3	1		模块开机信号,低有效,高电平支持 1.8~3.3V IO,VLmax=0.2V
6	GND	-	-		地
7	IIC_SDA	1.8	I/O	PU	IIC 接口数据信号,内部上拉 2.2KR 电阻到 1.8V
8	IIC_SCL	1.8	I/O	PU	IIC 接口时钟信号,内部上拉 2.2KR 电阻到 1.8V
9	UART1_DTR	1.8~3.3	ı	PD	UART1 的 DTR(Data-Terminal-Ready)信号,数据终端准备就绪,低有效。
					高电平支持 1.8~3.3V IO。可用于模块休眠唤醒功能,详见 3.7
10	UART1_DCD	1.8	0	NP	UART1 的 DCD(Data-Carrier-Detect)信号,用于数据载波检测,低有效。 如果 DCE 已经接通通信链路,DCE 将 DCD 拉低通知 DTE
11	UART1_RI	1.8	0	PD	UART1 的 RI(Ring),振铃。
12	UART1_DSR	1.8	0	PD	UART1 的 DSR(Data-Set-Ready),数据设备准备就绪,低有效。可用于模块休眠唤醒功能,详见 3.7
13	VOUT_1V8	-	P/O		1.8V 电源输出,最大 50mA

管脚序号	功能		电平(V)	1/0	上电复位时数 字 IO 管脚状态	功能
14	USB_BOOT		1.8	I		拉高至 1.8V 开机进入 USB 强制下载模式,需要外部增加测试点
15	GND		-	-		地
16	C1100 MGGT C1100 NGGT	RESERVED	-	-		保留
	C1100C	SGMII_TX_P	-	-		SGMII 网口 TX+
17	C1100 MGGT C1100 NGGT	RESERVED	-	-		保留
	C1100C	SGMII_TX_N	-	-		SGMII 网口 TX-
18	C1100 MGGT C1100 NGGT	RESERVED	-	-		保留
	C1100C	SGMII_RX_P	-	-		SGMII 网口 RX+
19	C1100 MGGT C1100 NGGT	RESERVED	-	-		保留
	C1100C	SGMII_RX_N	-	-		SGMII 网口 RX-
20	GND		-	-		地
21	GND		-	-		地
22	RESERVED		-	-		保留
23	UART1_RX		1.8	I	PD	串口 1 的信号输入
24	UART1_TX		1.8	0	PD	串口 1 的信号输出
25	UART1_CTS		1.8	I	PD	串口 1 的硬件流控 CTS(Clear-To-Send)信号,低有效
26	UART1_RTS		1.8	0	PD	串口 1 的硬件流控 RTS(Ready-To-Send)信号,低有效
27	PCM_SYNC		1.8	I/O	PD	PCM 帧同步
28	PCM_CLK		1.8	I/O	PD	PCM 时钟

管脚序号	功	力能	电平(V)	I/O	上电复位时数 字 IO 管脚状态	功能	
29	PCM_DO		1.8	0	PD	PCM 数据输出	
30	PCM_DI		1.8	I	PD	PCM 数据输入	
31	GND		-	-		地	
32	SPI_CLK		1.8	0	PD	SPI 接口时钟信号,只支持主模式	
33	SPI_DO		1.8	0	PD	SPI 接口数据输出信号,只支持主模式	
34	SPI_DI		1.8	I	PD	SPI 接口数据输入信号,只支持主模式	
35	SPI_CS		1.8	0	PD	SPI 接口片选信号,只支持主模式	
36	19.2M_CLK_OU	Т		0		19.2MHz 数字时钟输出,给外部 PCM 音频 CODEC 提供时钟,仅在 PCM 功能开启时输出,保留	
37	GPIO1		1.8	I/O	PD	GPIO,保留	
38	GPIO2		1.8	I/O	PU	GPIO,保留	
39	GPIO3		1.8	I/O	PD	GPIO,保留	
40	GPIO4		1.8	I/O	PD	GPIO, 保留	
41	WTD/GPIO5		1.8	I/O	PD	外部 Watchdog 的喂狗信号(保留)	
42	NET_STATUS		1.8	0	PD	网络状态指示灯,驱动能力 2mA,需要外接 NPN 三极管驱动 LED	
43	GND		-	-		地	
44	GND		-	-		地	
45	GND		-	-		地	
46	C1100 MGGT C1100 NGGT	NC	-	-		C1100 MGGT/C1100 NGGT 无分集,该管脚悬空	
	C1100C	ANT_DIV		1		分集天线接口	
47	GND		-	-		地	
48	GND		-	-		地	

管脚序号	Ţ	力能	电平(V)	I/O	上电复位时数 字 IO 管脚状态	功能	
49	UART_DB_TX		1.8	0	PD	调试串口的数据输出,仅供调试使用	
50	UART_DB_RX		1.8	ı	PD	调试串口的数据输入,仅供调试使用	
51	GPIO6		1.8	I/O	PU	GPIO,保留	
52	GNSS_1PPS		1.8	0	PD	GNSS 1PPS 同步信号,保留	
53	GNSS_EXT_PV	/R_EN	1.8	0	PD	保留	
54	GND		-	-		地	
55	GND		-	-		地	
56	ANT_GNSS		-			GNSS 天线接口	
57	GND		-	-		地	
58	GND		-	-		地	
59	C1100 MGGT C1100 NGGT	GPIO7	1.8	I/O	PD	GPIO,保留	
	C1100C	SGMII_RST_N	1.8	0		SGMII reset 管脚,不用请悬空	
60	C1100 MGGT C1100 NGGT	GPIO8	1.8	I/O	PD	GPIO,保留	
60	C1100C	SGMII_MDIO_C LK	1.8	I/O		SGMII MDIO(Management Data Input/Output) CLK 管脚,不用请悬空	
64	C1100 MGGT C1100 NGGT	GPIO9	1.8	I/O	PD	GPIO,保留	
61	C1100C	SGMII_MDIO_D ATA	1.8	I/O		SGMII MDIO(Management Data Input/Output) DATA 管脚,不用请悬空	
62	C1100 MGGT C1100 NGGT	GPIO10	1.8	I/O	PD	GPIO,保留	

管脚 序号	Ļ	力能	电平(V)	I/O	上电复位时数 字 IO 管脚状态	功能
	C1100C	SGMII_INT_N	1.8			SGMII INT 管脚,不用请悬空
63	C1100 MGGT C1100 NGGT	NC	-	-		未定义
	C1100C	SGMII_PU_VDD		P/O		SGMII MDIO 上拉电源
64	GND		-	-		地
65	GND		-	-		地
66	GND		-	-		地
67	ANT_MAIN		-	ı		主天线
68	GND		-	-		地
69	GND		-	-		地
70	GND		-	-		地
71	RESERVED		-	ı		保留
72	32K_CLK_OUT			0		32KHz 时钟输出,保留。
73	ADC3		ı			模数转换输入,测量范围 0.1~1.7V
74	ADC2		ı			保留
75	ADC1		-	1		模数转换输入,测量范围 0.1~1.7V
76	LED_OD#		-	0		开漏输出(current sink),可用于直接控制 LED
77	USB_DM		3.3	I/O		USB2.0 接口 DM 信号
78	USB_DP		3.3	I/O		USB2.0 接口 DP 信号
79	GND		-	-		地
80	RESET#		1.8~3.3	ı		系统复位信号输入,低有效,高电平支持 1.8V~3.3V IO 电平
81	VOUT_2V85		-	P/O		2.85V 电源输出,50mA

管脚 序号	功能	电平(V)	1/0	上电复位时数 字 IO 管脚状态	功能
82	USIM DET	1.8	1	Н	SIM 卡检测,
02	OSIWI_DET	1.0		11	支持通过 AT+LSUIMHSPOL 配置 SIM 卡检测电平逻辑,详见 3.8 章。
83	USIM_CLK	1.8/3.0	0		USIM 卡时钟信号
84	USIM_DATA	1.8/3.0	I/O		USIM 卡数据信号,模块已经内部上拉 10KΩ 电阻到 USIM_VCC
85	USIM_RESET	1.8/3.0	0		USIM 卡复位信号
86	USIM_VCC	-	P/O		USIM 卡电源输出,50mA

3.2.电源接口及外围电路设计

本节描述和电源相关的接口,涉及的接口如下:

表 13: C1100 系列无线模块电源相关接口

管脚名	输入	管脚序号	描述	
			C1100 MGGT	模块供电,DC3.1~4.2V, 3.8V(Type)
VBAT	1	1,2,3	C1100 NGGT	模块供电,DC3.1~4.2V, 3.8V(Type)
			C1100C	模块供电,DC3.3~4.2V, 3.8V(Type)
VOUT_1V8	0	13	电源输出,1.8V	, 50mA
VOUT_2V85	0	81	电源输出, 2.85	V, 50mA
GND	-	4,6,15,20,21,31,43, 44,45,47,48,54,55,5 7,58,64,65,66,68,69 ,70,79	地	

3.2.1. C1100 MGGT VBAT 输入

C1100 MGGT模块供电采用单电源供电方式,推荐VBAT范围在3.1~4.2V之间。在GPRS 网络模式下数据传输时,瞬间大功率发射会形成高达2A的电流峰值(外部电路未接稳压电容时),从而导致VBAT大的纹波出现,造成模块端VBAT压降瞬间过低。

为保证模块能正常工作,要求电源供电必须具备足够的供电能力。如果 VBAT 模块端压降低于 3.1V,会影响射频性能。任何时候都必须保证模块端 VBAT 的电压不低于 2.5V,否则会造成模块断电异常关机。

在确保 VBAT 电源供电能力足够(3.8V,1A 连续负载、2A 瞬时负载能力)的前提下,电路接法依照下图所示,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容(C_1),若结构受限,可用两个并联(470uF/6.3V)钽电容或三个(220uF/6.3V)替代,再并上几个小容值 33pF,0.1uF,10uF 的陶瓷电容。

注意:

如果模块是使用电池直接供电,且电池到模块的 VBAT 管脚距离小于 5cm,可以省掉电解电容或钽电容。

图 3: C1100 MGGT 模块 VBAT 电路参考(并联电解电容)

图 4: C1100 MGGT 模块 VBAT 电路参考(并联钽电容)

注意:

- 1) VBAT 的走线宽度须大于 2mm;
- 2) 100nF, 33pF 等小电容能有效减少高频信号对电源的干扰;
- 3) 对于使用电池供电,如果 VBAT 走线不长的话,可以省掉 2200uF 电容;
- 4) 5.1V, 500mW 的稳压管能有效抑制电源线上的浪涌冲击;
- 5) 为了防止 ESD 对模块的损坏, VBAT 上需要增加 TVS。

3.2.2. C1100 NGGT VBAT 输入

C1100 NGGT模块供电采用单电源供电方式,推荐VBAT范围在3.1V~4.2V之间。C1100 NGGT工作在 NB-IoT模式下最大功率时,最大电流不超过400mA。为预留一定的余量,建议客户对电源选型供电能力保证500mA以上。

在确保 VBAT 电源供电能力足够(3.8V,500mA 连续负载)的前提下,在 VBAT 输入靠近模块侧接一个(1000uF/10V)电解电容,若结构受限,可用一个(470uF/6.3V)钽电容或两个(220uF/6.3V)替代,再并上几个小容值 33pF,0.1uF,10uF 的陶瓷电容。

如果模块是使用电池直接供电,且电池到模块的 VBAT pin 距离小于 5cm,可以省掉电解电容或钽电容。

注意:

- 1) VBAT 的走线宽度须大干 1mm:
- 2) 100nF, 33pF 等小电容能有效减少高频信号对电源的干扰;
- 3) 对于使用电池供电,如果 VBAT 走线不长的话,供电端可以只保留 220uF 电容;
- 4) 5.1V, 500mW 的稳压管能有效抑制电源线上的浪涌冲击;
- 5) 为了防止 ESD 对模块的损坏, VBAT 上需要增加 TVS。

3.2.3. C1100C VBAT 输入

C1100C 模块供电采用单电源供电方式,推荐 VBAT 范围在 3.3~4.2V 之间。在 TDD 网络模式下数据传输时,瞬间大功率发射会形成高达 1.8A 的电流峰值(外部电路未接稳压电容时),从而导致 VBAT 大的纹波出现,造成模块端 VBAT 压降瞬间过低。

在确保 VBAT 电源供电能力足够(3.8V,1A 连续负载、2A 瞬时负载能力)的前提下,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容,若结构受限,可用两个并联(470uF/6.3V)钽电容或三个(220uF/6.3V)替代,再并上几个小容值 33pF,0.1uF,10uF 的陶瓷电容。

注意:

- 1) VBAT 的走线宽度须大于 1mm:
- 2) 100nF, 33pF 等小电容能有效减少高频信号对电源的干扰;
- 3) 对于使用电池供电,如果 VBAT 走线不长的话,可以省掉 2200uF 电容:
- 4) 5.1V, 500mW 的稳压管能有效抑制电源线上的浪涌冲击;
- 5) 为了防止 ESD 对模块的损坏, VBAT 上需要增加 TVS。

3.3. 开机与复位接口

本节描述和开机与复位相关的接口,涉及的接口如下:

表 14: C1100 系列无线模块开关机与复位相关接口

管脚名	输入	管脚序号	描述
POWER_ON#	I	5	开机键,内部上拉至 0.8V,低电平有效,支持 1.8~3.3V I/O, VLmax=0.2V
RESET#	1	80	复位,内部上拉至 1.8V,低电平 有效,支持 1.8~3.3V I/O

3.3.1. 开机

在 VBAT 供电条件下,POWER_ON#用于控制模块的开机。POWER_ON#管脚内部上拉到 0.8V。通过外部 MCU 的控制可实现 C1100 系列无线模块的开机。外围电路需要对 POWER_ON#进行控制,模块在关机状态,VBAT 持续供电,拉低 POWER_ON# 超过 1s 后再拉高,可以让模块开机。

POWER_ON#支持 1.8~3.3V 电平标准,如果客户 MCU 为 3.3V 或 1.8V 的 IO 可以直接控制,不需要电平转换。该管脚低电平有效的最高电平为 0.2V,也就是至少低于 0.2V,才认为是一个有效的低电平。

如下图,MCU_POWER_ON 是 MCU 给 C1100 系列无线模块的控制信号,可以实现模块的开机。建议客户 MCU 通过一个 GPIO (如图中标示的 MODULE_STATE 这个网络) 检测模块的 VOUT 1.8V 来确定是模块是否开机成功。

给模块供电后,拉低 POWER_ON# 1s 后再拉高,检查 VOUT_1.8V 是否为高电平,表示模块已经开机成功,否则未开机成功。

- ❖ 模块在关机状态, 拉低 POWER_ON #1s 后拉高, 可以让模块开机;
- ❖ POWER ON#不能实现关机功能;
- ❖ 模块在开机状态,通过 AT 指令: AT\$QCPWRDN 可以让模块关机;
- ◆ 对于 C1100 MGGT/C1100 NGGT, POWER_ON#管脚不能一直拉低, 否则无法进入 PSM 模式。

图 5: C1100 系列无线模块开机控制

3.3.2 关机

C1100(N/C)只能通过 AT 命令 AT\$QCPWRDN 实现关机,详见《C1100_AT 手册》。

3.3.2. RESET 复位控制

C1100 系列无线模块复位方式有两种: RESET 管脚复位、AT 命令复位。

AT 命令是软复位; RESET 管脚复位是硬件复位,使用 RESET 不会走正常的关机流程,可能会导致系统的数据丢失,所以这种复位的方式只可在模块出现异常时使用。

注意:

- 1) 模块在开机后 15S 之内, 不需要额外对模块进行复位;
- 2) 对比有一些单片机系统,在单片机开机以后,需要外部拉 RESET 管脚进行单片机内部 电路和寄存器进行复位。C1100 系列无线模块在开机后,会自动对内部相关电路和寄存器进行复位,不需要客户额外进行复位操作。为了保证模块能够正常启动,在 POWER_ON#动作后的 15 秒內请勿将 RESET 拉低。

3.3.2.1. 复位管脚

C1100 系列无线模块的 PIN80 为 RESET 输入。当需要复位 C1100 系列无线模块时,将此管脚拉低,模块即可复位。

复位管脚支持 1.8~3.3V 电平标准,如果客户 MCU 为 3.3V 或 1.8V 的 IO 可以直接控制。

● 需要 MCU 控制 C1100 系列无线模块的复位, 需要给模块一个低电平 T 时长(100mS < T_{rst} < 2S) 脉冲;

关于 RESET 的参考电路如下图,MCU_RESET 是应用端给的 RESET 控制信号,可以控制 C1100 系列无线模块的复位。模块内部已经将 RESET 上拉到 1.8V,客户电路 RESET 请勿接上下拉电阻。若 RESET 接对地电容,不应该超过 100pF,负载电容过大,会导致电容充放电影响 RESET 管脚的时序控制。

注意:

模块的 VBAT 供电后,在准备开机时,当 POWER_ON#开始下拉时间起,15S 之内不允许对 RESET 进行下拉操作。

图 6: C1100 系列无线模块 RESET 控制模块复位参考电路

3.3.2.2. AT 命令复位

AT 命令复位有两种方式:

一种是: AT^RESET;

另一种是:设置 AT+CFUN=7 后再设置 AT+CFUN=6 进行重启。

3.4. USB 接口

3.4.1. USB 接口描述

C1100 系列无线模块提供一组 USB2.0 High-Speed 接口。C1100 系列无线模块加载驱动之后,会在操作系统上映射出 5 个串口。下表为 C1100 系列无线模块的 VID、PID 与操作系统上映射的串口名称。

表 15: C1100/C1100C VID、PID 号与映射串口名

模块	VID	PID	映射串口
C1100 MGGT C1100 NGGT	0x2DF3	0x6B3D	DIAG □、NMEA □、Modem □、modem_AT □、NDIS □
C1100C	0x1C9E	0x9B3C	ADB □、modem □、AT □、Pipe □、NDIS □。

表 16: C1100 系列无线模块 USB 接口

77 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
PIN Name	I/O	PIN No.	描述		
USB_DM	I/O	77	USB2.0 接口 DM 信号。		
USB_DP	I/O	78	USB2.0 接口 DP 信号。		

3.4.2. USB 参考电路

C1100 系列无线模块 USB 接口应用参考电路如下图所示。

图 8: C1100 系列无线模块 USB 接口参考设计图

- 1) 为降低 USB 高速数据传输时的信号干扰,在 USB_DM 和 USB_DP 接口电路上串接共模滤波器可提高数据传输正确率;
- 2) 为提高 USB 接口的抗静电性能,推荐在 USB_DP、USB_DM 接口电路上加 ESD 保护器件,建议使用结电容小于 0.5pF 的 ESD 器件;
- 3) 为确保 USB 工作可靠,设计时还需更多考虑对 USB 的保护,比如 Layout 时对 USB 的保护,需要对 USB_DP、USB_DM 做差分 90Ω 的阻抗控制,尽可能远离干扰信号。
- ❖ PCB 走线避免有分支或端头线。

3.4.3. USB 驱动

C1100 系列无线模块支持:

- Windows 操作系统
- Linux 操作系统

下表为 C1100 系列无线模块默认 VID 与 PID:

表 17: C1100 系列无线模块默认 VID 和 PID

模块	VID	PID
C1100 MGGT C1100 NGGT	VID_2DF3	PID_6B3D
C1100C	VID_1C9E	PID_9B3C

3.4.3.1. Linux 系统加载 C1100 系列无线模块的 USB 驱动过程

3.4.3.1.1 USB 串口驱动添加

在 Linux 系统中通常使用 USB 转串口的驱动。驱动添加需要配置 Linux 内核,方法如下: cd kernel

make menuconfig

device drivers->usb support->usb serial converter support

选中如下组件:

USB driver for GSM modems

选中后保存配置。

3.4.3.1.2 增加具体设备驱动

打开内核源码文件 option.c(路径一般为 drivers/usb/serial/option.c); 在源码中找到 option_ids 数组,在数组中添加联想懂的通信产品的 VID 和 PID; C1100 和 C1100C 的 VID 与 PID 不同,具体见表 17。

3.4.3.1.3 USB 串口驱动过滤 NDIS 接口

由于 USB 串口跟 NDIS 都属于非标准 CDC 设备,需要防止 NDIS 口被 USB 串口驱动加载而导致无法正常加载 NDIS 口驱动。有三种方式可以解决:

- 1) 比较新的 kernel 版本(3.8 以上),在 option.c 中的 opiton_ids 中添加 blacklist,驱 动在加载时会自动跳过 blacklist 指定的 interface;设置 interface 4 不加载 option驱动;添加 blacklist 到 option ids 数组中。
- 2) 对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先增加 C1100 系列无线模块的 PID 和 VID: 在 probe 函数内判断当前 interface 号进行过滤。
- 3) 对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe()函数开始增加如下判断来过滤 NDIS 接口。

3.4.3.1.4 USB 串口驱动加载方法

加载 USB 串口驱动: sudo modprobe option 使用 dmesg 命令查看系统 log, 确认端口都加载上了 USB 驱动。

3.4.3.2. Linux 系统下 C1100 系列无线模块交互 AT 过程

1) 请将 USIM/SIM 正确插入应用终端,将天线连接到 C1100 系列无线模块的射频连接

器。C1100系列无线模块开机,加载USB驱动,获取USB端口: ttyUSB0~ttyUSB4。

2) 启动 Linux 系统串口应用程序 minicom,使用如下指令:

#minicom -s

在 minicom 菜单中选择 "Serial port setup":

-----如果是C1100 MGGT/C1100 NGGT,配置"Serial device "为/dev/ttyUSB3; 注意: C1100 MGGT/C1100 NGGT 的 Modem(ttyUSB3)可以发 AT 命令, 其他不能发 AT 指令;

-----如果是 C1100C, 配置 "Serial device "为/dev/ttyUSB2;**注意: C1100C** 的串口中 AT(ttyUSB2), Modem(ttyUSB1)可以发 AT 命令, 其他不能发 AT 指令;

修改完毕后退出到 minicom 菜单,选择"Save setup as df1 "保存配置后选择"exit" 退出 minicom 配置:

3) 通过 minicom 发送 AT 指令进行系统测试

#minicom

将会得到如下的返回结果:

------ 以 下 是 C1100 MGGT/C1100 NGGT 返 回 结 果

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB3

Press CTRL-A Z for help on special keys

-----以下是 C1100C 返回结果------

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB2

Press CTRL-A Z for help on special keys

输入 AT 指令(打开回显):

ATE

如果系统工作正常,将会得到如下的返回结果:

OK

输入如下指令(查询版本信息):

AT+LCTSW

将会得到类似如下 C1100 系列无线模块的 Firmware 版本信息:

SoftwareVersion: QB10003.1.0_MX11

InnerVersion: QB10003_0016_0.0.1_L0308_EFS1.0

AP: QB10001 0016 0.0.1 L0308 MX11OK

输入如下指令(查询信号):

AT+CSQ

将会得到如下信号强度和误码率信息:

+CSQ: 20,74

OK

输入如下指令(注册状态):

AT+CREG?

将会得到如下注册信息:

+CREG: 0,1

OK

输入如下指令(网络运营商信息):

AT+COPS?

将会得到如下运营商信息(不同运营商返回字段不同。以中国移动 USIM 卡为例):

+COPS: 0,0,"CMCC",2

OK

3.4.3.3. Linux 系统下 C1100 系列无线模块拨号上网过程

- 1) 重复 C1100 系列无线模块的 USB 加载过程和 AT 交互流程。确保 C1100 系列无线模块正确注册到网络,信号强度 CSQ 返回的第一个参数在 13 以上;
- 2) 确认 Linux 系统带有 pppd 应用程序,如果系统没有 pppd,请安装 kppp,里面 带有 pppd 应用程序;
- 3) 建立拨号配置文件/etc/ppp/chat/gprs-connect-chat

在其中加入如下配置:

TIMEOUT 15

ABORT "DELAYED" ABORT "BUSY" ABORT "ERROR"

ABORT "NO DIALTONE" ABORT "NO CARRIER"

TIMEOUT 40
" \rAT

OK ATS0=0 OK ATE0V1

OK AT+CGDCONT=1,"IP","CMNET"

OK ATDT*99***1#

CONNECT '

注:插入不同运营商的卡,AT+CGDCONT=1,"IP","CMNET"最后一个参数不同,请咨询当地的运营商获取 APN。

- 4) 修改 pppd 的配置文件/etc/ppp/options 找到 auth 字样的行然后将其改为#auth, 这样在拨号过程中就不会提示需要身份 验证:
- 5) 建立拨号配置文件/etc/ppp/peer/gprs 在其中加入配置如下

(C1100 MGGT/C1100 NGGT 必须指定 Modem 口是 ttyUSB3; C1100C 必须指

定 Modem 口是 ttyUSB1):

Usage: root>pppd call gprs

/dev/ttyUSB1

该行内容,如果是 C1100 MGGT/C1100 NGGT 替换为 /dev/ttyUSB3; 如 C1100C 替换为 /dev/ttyUSB1

115200

crtscts

modem

#noauth

debug

nodetach

#hide-password

usepeerdns

noipdefault

defaultroute

0.0.0.0:0.0.0.0

ipcp-accept-local

ipcp-accept-remote

#lcp-echo-failure 12

#lcp-echo-interval 3

#noccp

#novj

#novjccomp

#persist

connect '/usr/sbin/chat -s -v -f /etc/ppp/chat/gprs-connect-chat'

6) 拨号上网,使用如下指令:

#pppd call gprs

ifconfig 如果出现如下回显,多出了一个 ppp0 网口,说明拨号已经成功: ppp0 Link encap:Point-to-Point Protocol inet addr:10.182.207.113 P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:62 (62.0 b) TX bytes:101 (101.0 b)

7) 测试连接 Internet

测试是否连接 Internet, 用如下指令:

ping 119.75.217.56

测试是否 ping 通 baidu 的 IP 地址。如果 ping 不通,需要给本机加条路由,使用如下指令:

route add default gw 10.64.64.64

注: 10.64.64.64: 运营商的 ip 地址, 即上述红色字体部分。

如果 IP 地址能 ping 通, 而 ping 域名不通, 如下指令:

ping www.baidu.com

则需要添加 DNS 到/etc/resolv.conf。

8) Linux 断开网络(必须 kill 当前的 pppd,才能进行下一次 pppd),需要 kill pppd 进程(这个过程需要一段时间,中间可能无响应),使用如下指令:

killall pppd

3.5. UART 接口

C1100 系列无线模块提供两个 UART 接口。UART1 是全功能串口,默认用于 AT 命令通道和数据接入,UART_DB 默认用于调试通道。

3.5.1. UART 接口描述

C1100 系列无线模块的 UART 接口见下表。

表 18: C1100 系列无线模块 UART 接口

表 10. CI100 永月光気侯久 GAN 女中					
管脚名	I/O	管脚序号	上电复位时数 字 IO 管脚状态	描述	
				串口 1 的 DTR(Data-Terminal-Ready)信	
UART1_DTR	I	9	PD	号,数据终端准备就绪,低有效。支持	
				1.8~3.3V IO 电平	
				串口 1 的 DCD(Data-Carrier-Detect)信	
UART1_DCD	0	10	NP	号,用于数据载波检测,低有效。如果 DCE	
UARTI_DCD		10	INP	已经接通通信链路,DCE 将 DCD 拉低通	
				知 DTE。	
UART1_RI	0	11	PD	串口 1 的 RI(Ring),振铃。	
UART1_DSR	0	12	PD	串口 1 的 DSR(Data-Set-Ready),数据设	
UARTI_DSR		12	12 FD	备准备就绪,低有效。	
UART1_RX	I	23	PD	串口1的信号输入。	
UART1_TX	0	24	PD	串口1的信号输出。	
UART1_CTS	S I 25	PD	串口 1 的硬件流控 CTS(Clear-To-Send)		
UARTI_CTS		25	25 PD	信号,低有效。	
UART1_RTS	O 26		DD	串口 1 的硬件流控 RTS(Ready-To-Send)	
UANTI_NIS		26 PD		信号,低有效。	
UART_DB_TX	0	49	PD	调试串口的数据输出,仅供调试使用。	
UART_DB_RX	I	50	PD	调试串口的数据输入,仅供调试使用。	

备注:

上电复位时数字 IO 管脚状态: PD=下拉; PU=上拉; NP=悬空。此状态为模块从上电到程序接管之前的 IO 管脚状态,此状态为硬件默认状态,程序不可控。

3.5.2. UART1 接口参考电路

C1100 系列无线模块 UART1 提供的是全 UART 接口。C1100 系列无线模块作为 DCE (Data Communication Equipment),客户应用端作为 DTE (Data terminal equipment)。

- 若将 C1100 系列无线模块的 UART1 口作为数据接入口,考虑数据传输的稳定,建议 必须连接硬件流控 CTS 和 RTS;
- 若将 C1100 系列无线模块设计成使用 AT 指令交互的方式,此时可以不考虑硬件流控的连接。

图 9: C1100 系列无线模块流控设计参考

3.5.3. UART1 接口描述

1) UART1_RTS/UART1_CTS: 串口硬件流控信号, DCE 和 DTE 的 RTS/CTS 需要交 叉连接;

UART 的波特率可设置为:

2400,4800,9600,19200,38400,57600, 115200,230400,460800,921600;

波特率设置可用 AT 指令设置,设置之后模块保存设置。AT 指令是:

AT+IPR=<value>

<value>:

2400,4800,9600,19200,38400,57600,115200,230400,460800,921600

注意: 默认的波特率是 115200, 且 Data Bits=8, Parity=None, Stop Bits=1, Flow Control=None。

- 2) UART1_DTR 和 UART1_DSR 可以用于模块的休眠、唤醒控制,见 3.7;
- 3) C1100 系列无线模块的 UART 接口是 1.8V 电平(UART1_DTR 支持 1.8~3.3V IO 电平),如果要转换成 RS232 电平(比如 PC 的 RS232 接口)就需要电平转换芯片进行电平再转换;
- 4) 建议对 UART 接口进行 ESD 保护设计。

3.6. C1100 MGGT/C1100 NGGT 的 PSM 和唤醒控制

C1100 MGGT/C1100 NGGT 支持 PSM 模式,在 PSM 模式下的耗流很小,只有约 7uA。 当 C1100 MGGT/C1100 NGGT 进入 PSM 模式以后,模块内部除 RTC 部分外,其它的功能包括 VOUT、USB、串口、ADC 等子接口都停止工作,模块不再对外输出信号或响应外部信号。只有通过将 POWER_ON#拉低才能将模块从 PSM 模式下唤醒。可以通过 AT+CPSMS(USIM 在位有效)来打开、关闭 PSM 模式并设置 PSM 周期等参数。

注意:

由于 POWER_ON#用于将 C1100 MGGT/C1100 NGGT 从 PSM 模式唤醒,所以如果需要 C1100 MGGT/C1100 NGGT 支持 PSM 模式,POWER_ON#在开机后不能一直被拉低。

3.7. C1100 系列无线模块休眠和唤醒控制

C1100 MGGT/C1100 NGGT 和 C1100C 的休眠唤醒机制的控制不同, C1100 MGGT/C1100 NGGT 只能通过 UART1_DTR 进行控制,见 3.7.1;而 C1100C 根据和 MCU 的通信接口的不同有 2 种控制方式,见 3.7.2。

3.7.1. C1100 MGGT/C1100 NGGT 的休眠和唤醒控

制

不论使用 USB 还是串口,C1100 MGGT/C1100 NGGT 都使用 UART1_DTR 来控制模块休眠或唤醒。

C1100 MGGT/C1100 NGGT 开机后 DTR 默认内部是拉高的,如果用户使用 MCU 控制 C1100 MGGT/C1100 NGGT,建议用户的 MCU 在控制模块开机后先将 C1100 MGGT/C1100 NGGT 的 UART1 管脚拉低,使得 C1100 MGGT/C1100 NGGT 处于唤醒状态,需要触发 C1100 MGGT/C1100 NGGT 休眠时再将 UART1_DTR 拉高。

UART1_DTR 为边沿触发的中断信号,当其从低跳变为高,且保持高,则会触发 C1100 MGGT/C1100 NGGT 进入休眠模式;当其发生从高到低的跳变,且保持低,则将触发 C1100 MGGT/C1100 NGGT 从休眠模式唤醒。

图 10: 休眠和唤醒控制过程示意图

C1100 MGGT/C1100 NGGT 进入休眠状态后,UART1_DSR 会对外输出高电平,而在其他正常的工作模式下则输出低电平。

3.7.2. C1100C 的休眠和唤醒控制

C1100C 模块根据客户使用的通信接口的不同有 2 种休眠和唤醒的控制机制,具体描述如下:

- 1) 一线休眠机制:用于使用 USB 通信的方式,如果 MCU 端的 USB 拔出或 MCU 将 USB 总线挂起,会触发 C1100C 进入休眠状态,而 MCU 端的 USB 插入或 MCU 将 USB 总线加载,会将 C1100C 从休眠状态唤醒;
- 2)两线休眠机制:用于使用 UART 通信的方式,此时使用 UART1 的 DTR 和 DSR 两个管脚做休眠、唤醒控制和状态表征。UART1_DTR 是边沿触发的中断信号,如果C1100C 的 UART1_DTR 被 MCU 从低拉高,则触发 C1100C 进入休眠,C1100C 休眠后会将 UART1_DSR 置为高,MCU 可通过此状态获知模块已经休眠;如果C1100C 的 UART1_DTR 被 MCU 从高拉低,则触发 C1100C 从休眠状态唤醒,C1100C 唤醒后会将 UART1_DSR 置为低,MCU 可通过此状态获知模块已经进入工作状态:
- 3) C1100C 开机后默认内部是拉高,如果用户使用 MCU 控制 C1100C,建议用户在做 MCU 的开机初始化时先将 C1100C 的 UART1_DTR 管脚拉低,使得 C1100C 处于唤 醒状态,需要触发 C1100C 休眠时再将 UART1_DTR 拉高。详细时序参考图 10。
- ❖ 需要注意的是这 2 种控制方式不能混用,否则会造成系统错误判断。

3.8. USIM 接口

C1100 MGGT 支持 USIM 卡和 SIM 卡,C1100 NGGT 只支持 USIM 卡,C1100C 支持 USIM 卡。

3.8.1. USIM 卡接口描述

C1100 系列无线模块的 USIM/SIM 卡接口支持 1.8/3.0V 的卡, USIM 接口信号见下表。

表	19:	C1100	系列无线模块	USIM 接口

PIN Name	I/O	PIN No.	描述
USIM_DET	I	82	SIM 卡插入检测,配合带卡在位检测功能的 SIM 卡座使用。模块内部上拉到 1.8V。高电平有效,表示检测到 SIM 卡插入; 低电平表示检测到 SIM 卡拔出。如不需使用 SIM 卡热插拔功能,该管脚必须悬空。支持通过 AT 命令(AT+LSUIMHSPOL)控制 SIM 卡检测逻辑,详情见 3.8.2。
USIM_CLK	0	83	USIM 卡时钟信号
USIM_DATA	I/O	84	USIM 卡数据信号
USIM_RESET	0	85	USIM 卡复位信号
USIM_VCC	P/O	86	USIM 卡电源输出,50mA

3.8.2. USIM 卡接口参考设计

C1100 系列无线模块的 USIM 接口参考设计见下图:

图 11: C1100 系列无线模块 USIM 接口参考设计图

- 1) USIM_DATA 需要一个上拉电阻到 USIM_VCC, 此上拉电阻预留不贴;
- 2) 为避免瞬间电压过载,在 USIM_DATA, USIM_CLK 和 USIM_RESET 线路上各串一个 22Ω 的电阻;

- 3) 为提高抗静电能力,在 USIM_VCC, USIM_DATA, USIM_CLK 和 USIM_RESET 线路上加 ESD 保护器件:
- 4) 为使 USIM_VCC 更稳定,在 USIM_VCC 线路上加滤波电容,推荐使用 2.2uF 和 100nF 并联对地:
- 5) 为消除高频干扰信号的影响,在 USIM_DATA 和 USIM_CLK 线路上加滤波,推荐使用 33pF 电容对地:
- 6) USIM_DET 是 USIM 卡在位侦测输入接口,与带卡在位检测的 SIM 卡座上对应的管 脚相连,该信号电平状态决定了 USIM 卡是否插入。该信号模块内部上拉到 1.8V,程 序默认 SIM 卡检测管脚高电平有效,表示检测到 SIM 卡插入;低电平表示检测到 SIM 卡拔出。

注意:

- 1) 请按照 USIM DET 的有效电平选择匹配的 USIM 卡;
- 2) 如果实际使用不需 USIM 热插拔功能, USIM_DET 务必悬空。
- 3) 支持通过 AT 命令控制 USIM_DET 的检测电平逻辑的变换,这样可以增加客户 SIM 卡 检测电路的灵活性。该 AT 命令如下:

AT+LSUIMHSPOL=1 高电平有效,高电平表示 SIM 卡在位。

AT+LSUIMHSPOL=0 低电平有效,低电平表示 SIM 卡在位。

3.9. 状态指示接口

模块提供 1 个状态指示接口信号 NET_STATUS,用于指示网络状态。同时可以通过 VOUT_1V8 指示模块开机与否。

3.9.1. 状态指示接口信号描述

C1100 系列无线模块的状态指示接口信号描述见下表。

表 20: C1100 系列无线模块状态指示接口信号接口

PIN Name	1/0	PIN No.	描述			
				快闪(100ms On/800ms Off)	搜网	
				慢闪(100ms On/3000ms Off)	注册成功	
NET_STATUS	ATUS O 42	网络状态指示灯	速闪(100ms On/300ms Off)	数据传输		
INET_OTATOO		0 42	0 42 M3	いいはいいいい。		飞行模式、关机状态
			关闭	或出错状态(无 SIM		
					卡或者注册失败)	

注意:

可以将 Pin13(VOUT_1V8)用于指示模块是处于开机状态还是关机状态。当模块开机成功以后,VOUT_1V8 输出高电平。可以用于接客户 MCU 的 GPIO 口或 LED 指示灯,用于指示模块开机成功。

3.9.2. 状态指示参考电路

C1100 系列无线模块的状态指示控制参考电路见下图。

图 12: C1100 系列无线模块网络指示灯参考设计图

3.10. GPIO 接口

C1100 系列无线模块提供了多个 GPIO, 有的 GPIO 默认定义了别的功能。

表 21: C1100 系列无线模块 GPIO 接口表

PIN Name	1/0	PIN NO.	上电复位时数字 10 管脚状态	描述
GPIO1	I/O	37	PD	1.8V 电平
GPIO2	I/O	38	PU	1.8V 电平
GPIO3	I/O	39	PD	1.8V 电平
GPIO4	I/O	40	PD	1.8V 电平
GPIO5/WTD	I/O	41	PD	1.8V 电平,保留
GPIO6	I/O	51	PU	1.8V 电平
GPIO7(C1100C 不支持)	I/O	59	PD	1.8V 电平;
GPIO8(C1100C 不支持)	I/O	60	PD	1.8V 电平;
GPIO9(C1100C 不支持)	I/O	61	PD	1.8V 电平;
GPIO10(C1100C 不支持)	I/O	62	PD	1.8V 电平;

备注:

上电复位时数字 IO 管脚状态: PD=下拉; PU=上拉; NP=悬空。此状态为模块从上电到程序接管之前的 IO 管脚状态,此状态为硬件默认状态,程序不可控。

3.11. 天线接口

C1100 系列无线模块提供了下列天线接口

表 22: C1100 系列无线模块天线接口

PIN Name	PIN Num.	描述
ANT_DIV	46	分集天线接口
(C1100 MGGT/C1100 NGGT为NC)	40	(C1100 MGGT/C1100 NGGT 不支持分集)
ANT_GNSS	56	GNSS 天线接口
ANT_MAIN	67	主天线接口

C1100 系列无线模块天线部分的参考设计分为两种,一种是使用焊接式天线,一种是使用射频 50 欧姆天线连接器的方式。射频线走线尽可能的短,射频线要求必须作 50 欧姆阻抗控制,匹配器件建议靠近天线侧摆放。

C1100 系列无线模块的 GNSS 默认支持有源天线的直流供电(3.0V), 所以客户在设计 GNSS 的外部电路时需要注意, 如果使用无源天线, 则 ANT_GNSS 上需要串联 1 颗 27pF 电容对直流供电进行隔离。

注意:

当开启有源天线供电时,不能将 GNSS 短路到地,否则烧坏 GNSS 内部供电 IC 的风险。

3.11.1. 天线连接方式

3.11.1.1. 焊接式天线

C1100 系列无线模块使用焊接式天线时天线部分参考原理图如下:

图 13: C1100 系列无线模块外接焊接式天线参考设计图

C1100 系列无线模块使用焊接式天线的设计注意事项:

- 1) PI 型匹配网络(L1, C2, C3)靠近天线焊盘(TP1)放置, GND 焊盘(TP2)与天线焊盘 (TP1)的最近边距离 0.70 mm;
- 2) 如果是 4 层或以上 PCB 叠层,建议对天线焊盘下的相邻层挖空,减少相邻层地对天线焊盘的寄生电容效应;
- 3) 射频线走线需要控制 50 欧姆阻抗;
- **4)** 对于 GNSS 有源天线,图 13 中的 C1 更换为 0Ω 电阻。

3.11.1.2. 使用 RF 连接器连接天线

C1100 系列无线模块天线使用连接器时天线部分原理图如下:

图 14: C1100 系列无线模块使用 RF 连接器连接天线参考设计图

天线连接器(J1)推荐型号为 HIROSE 的 UF.L-R-SMT Connector。

C1100 系列无线模块使用天线连接器的设计注意事项:

- 1) 天线匹配网络(L1, C2, C3)靠近天线连接器(J1)放置;
- 2) 射频线走线需要控制 50 欧姆阻抗;
- 3) 对于 GNSS 有源天线,图 14 中的 C1 更换为 0Ω 电阻。

3.11.1.3. 天线 RF 连接器

当 C1100 系列无线模块应用端使用 RF 连接器,推荐使用 HIROSE 的 UF.L-R-SMT 型号的 RF Connector。如 U.FL-LP-040,U.FL-LP-066,U.FL-LP(V)-040,U.FL-LP-062,U.FL-LP-088。

3.11.1.4. RF 转接线

当应用端使用 RF Connector 时,需要仔细选择 RF 转接线。需要选择尽可能小损耗的 RF 转接线。推荐使用如下射频损耗需求的 RF 转接线。

C1100 MGGT 推荐 RF 转接线损耗要求:

- Band5/8/12/13/17/18/19/20/26/28<1dB
- Band1/2/3/4/39<1.5dB

C1100 NGGT 推荐 RF 转接线损耗要求:

- Band5/8/12/13/17/18/19/20/26/28<1dB
- Band1/2/3/4<1.5dB

C1100C 推荐 RF 转接线损耗要求:

- Band1<1.5dB
- Band3<1.5dB
- Band5<1dB
- Band41<2dB

更多详细信息,请见 http://www.hirose.com

3.11.2. C1100 系列无线模块的 GNSS 天线接法

3.11.2.1.无源 GNSS 天线接法

GNSS 无源天线接法如下图

图 15: GNSS 无源天线接法

3.11.2.2.有源 GNSS 天线接法

GNSS 有源天线的接法如下图:

图 16: GNSS 有源天线接法

3.11.3. C1100 系列无线模块的 RF 输出功率

C1100 MGGT 的 RF 输出功率见下表:

表 23: C1100 MGGT 的 RF 输出功率表

Manage and the second s			
Band	Max	Min	
eMTC			
Band1	23dBm±2dB	≤ -40 dBm	
Band2	23dBm±2dB	≤ -40 dBm	
Band3	23dBm±2dB	≤ -40 dBm	
Band4	23dBm±2dB	≤ -40 dBm	

Band	Max	Min
Band5	23dBm±2dB	≤ -40 dBm
Band8	23dBm±2dB	≤ -40 dBm
Band12	23dBm±2dB	≤ -40 dBm
Band13	23dBm±2dB	≤ -40 dBm
Band17	23dBm±2dB	≤ -40 dBm
Band18	23dBm±2dB	≤ -40 dBm
Band19	23dBm±2dB	≤ -40 dBm
Band20	23dBm±2dB	≤ -40 dBm
Band26	23dBm±2dB	≤ -40 dBm
Band28	23dBm±2dB	≤ -40 dBm
Band39	23dBm±2dB	≤ -40 dBm
NB-IoT		
Band1	23dBm±2dB	≤ -40 dBm
Band2	23dBm±2dB	≤ -40 dBm
Band3	23dBm±2dB	≤ -40 dBm
Band4	23dBm±2dB	≤ -40 dBm
Band5	23dBm±2dB	≤ -40 dBm
Band8	23dBm±2dB	≤ -40 dBm
Band12	23dBm±2dB	≤ -40 dBm
Band13	23dBm±2dB	≤ -40 dBm
Band17	23dBm±2dB	≤ -40 dBm
Band18	23dBm±2dB	≤ -40 dBm
Band19	23dBm±2dB	≤ -40 dBm
Band20	23dBm±2dB	≤ -40 dBm
Band26	23dBm±2dB	≤ -40 dBm
Band28	23dBm±2dB	≤ -40 dBm
EGPRS		
Band2	24dBm±3dB	5dBm±5dB
Band3	24dBm±3dB	5dBm±5dB
Band5	27dBm±2dB	5dBm±5dB
Band8	27dBm±2dB	5dBm±5dB

C1100 NGGT的 RF输出功率见下表:

表 24: C1100 NGGT 的 RF 输出功率表

Band	Max	Min
NB-IoT		
Band1	23dBm±2dB	≤ -40 dBm
Band2	23dBm±2dB	≤ -40 dBm
Band3	23dBm±2dB	≤ -40 dBm
Band4	23dBm±2dB	≤ -40 dBm
Band5	23dBm±2dB	≤ -40 dBm
Band8	23dBm±2dB	≤ -40 dBm
Band12	23dBm±2dB	≤ -40 dBm
Band13	23dBm±2dB	≤ -40 dBm
Band17	23dBm±2dB	≤ -40 dBm
Band18	23dBm±2dB	≤ -40 dBm

Band19	23dBm±2dB	≤ -40 dBm
Band20	23dBm±2dB	≤ -40 dBm
Band26	23dBm±2dB	≤ -40 dBm
Band28	23dBm±2dB	≤ -40 dBm

C1100C的 RF输出功率见下表:

表 25: C1100C的 RF 输出功率表

Band	Max	Min
LTE FDD		
Band1	23dBm±2dB	≤ -40 dBm
Band3	23dBm±2dB	≤ -40 dBm
Band5	23dBm±2dB	≤ -40 dBm
LTE TDD		_
Band41	23dBm±2dB	≤ -40 dBm

3.11.4. C1100 系列无线模块的 RF 接收灵敏度

表 26: C1100 MGGT 的 RF 接收灵敏度

Band	Receive sensitivity
eMTC	
Band1	TBD
Band2	TBD
Band3	<-99.3 dBm
Band4	TBD
Band5	<-100.8dBm
Band8	<-98.8dBm
Band12	TBD
Band13	TBD
Band17	TBD
Band18	TBD
Band19	TBD
Band20	TBD
Band26	TBD
Band28	TBD
Band39	TBD
NB-loT	
Band1	-130dBm
Band2	-130dBm
Band3	-130dBm
Band4	-130dBm
Band5	-130dBm
Band8	-130dBm
Band12	-130dBm
Band13	-130dBm
Band17	-130dBm

Band	Receive sensitivity
Band18	-130dBm
Band19	-130dBm
Band20	-130dBm
Band26	-130dBm
Band28	-130dBm
EGPRS	
Band2	MS5<-92dBm MS9<-80dBm
Band3	MS5<-92dBm MS9<-80dBm
Band5	MS5<-92dBm MS9<-80dBm
Band8	MS5<-92dBm MS9<-80dBm

表 27: C1100 NGGT 的 RF 接收灵敏度

Band	Receive sensitivity
NB-loT	
Band1	TBD
Band2	TBD
Band3	TBD
Band4	TBD
Band5	TBD
Band8	TBD
Band12	TBD
Band13	TBD
Band17	TBD
Band18	TBD
Band19	TBD
Band20	TBD
Band26	TBD
Band28	TBD

表 28: C1100C的 RF接收灵敏度

Band	Receive sensitivity (PRX+DRX BW 10M)
LTE FDD	
Band1	<-98dBm
Band3	<-95dBm
Band5	<-96dBm
LTE FDD	
Band41	<-97 dBm

3.11.5. C1100 系列无线模块工作频率

表 29: C1100 MGGT 工作频率

Band	Transmit	Receive	
B1	1920~1980MHz	2110~2170MHz	
B2	1850~1910 MHz	1930~1990 MHz	

В3	1710~1785MHz	1805~1880MHz	
B4	1710~1755 MHz	2110~2155 MHz	
B5	824~849MHz	869~894MHz	
B8	880~915MHz	925~960MHz	
B12	699~716 MHz	729~746 MHz	
B13	777~787 MHz	746~756 MHz	
B17	704~716 MHz	734~746 MHz	
B18	815~830 MHz	860~875 MHz	
B19	830~845 MHz	875~890 MHz	
B20	832~862 MHz	791~821 MHz	
B26	814~849 MHz	859~894 MHz	
B28	703~748 MHz	758~803 MHz	
B39	1880~1920MHz		

表 30: C1100 NGGT 工作频率

Band	Transmit	Receive
B1	1920~1980MHz	2110~2170MHz
B2	1850~1910 MHz	1930~1990 MHz
B3	1710~1785MHz	1805~1880MHz
B4	1710~1755 MHz	2110~2155 MHz
B5	824~849MHz	869~894MHz
B8	880~915MHz	925~960MHz
B12	699~716 MHz	729~746 MHz
B13	777~787 MHz	746~756 MHz
B17	704~716 MHz	734~746 MHz
B18	815~830 MHz	860~875 MHz
B19	830~845 MHz	875~890 MHz
B20	832~862 MHz	791~821 MHz
B26	814~849 MHz	859~894 MHz
B28	703~748 MHz	758~803 MHz

表 31: C1100C 工作频率

Band	Transmit	Receive	
B1	1920~1980MHz	2110~2170MHz	
B3	1710~1785MHz	1805~1880MHz	
B5	824~829MHz	869~894MHz	
B41	2555~2655MHz		

3.11.6. C1100 系列无线模块天线要求

表 32: C1100 MGGT 天线指标要求

D I	VSWR	G	ain	Efficiency SAR	CAD	TRP	TIS
Band	1.5	Peak	Avg.		(dBm)	(dBm)	
B1						>17	<106
B2						>17	<106
B3						>17	<106
B4						>17	<106

B5						>17	<106
B8						>17	<106
B12						>17	<106
B13	<2.5:1	>0dBi	>-4dBi	>40%	<1.6	>17	<106
B17					W/Kg	>17	<106
B18						>17	<106
B19						>17	<106
B20						>17	<106
B26						>17	<106
B28						>17	<106
B39						>17	<106

表 33: C1100 NGGT 天线指标要求

Donal	VSWR	G	ain	F (f) = 1 = 1 = 1	CAD	TRP	TIS
Band	1.5	Peak	Avg.	Efficiency	SAR	(dBm)	(dBm)
B1						>17	<106
B2						>17	<106
B3						>17	<106
B4						>17	<106
B5					<1.6 W/Kg	>17	<106
B8				>-4dBi >40%		>17	<106
B12						>17	<106
B13	<2.5:1	>0dBi	>-4dBi			>17	<106
B17						>17	<106
B18							>17
B19						>17	<106
B20					>17	<106	
B26						>17	<106
B28						>17	<106
B39						>17	<106

表 34: C1100C 天线指标要求

		G	Gain				TIS			
Band	VSWR	Peak	Avg.	Efficiency	SAR	TRP (dBm)	(PRX+DRX BM 10M) (dBm)			
B1	<2.5:1								19	<-94
B3		>0dBi	>-4dBi	>40%	<1.6	19	<-91			
B5		\2.5.1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>-4uDi	2 4 0 /6	W/Kg	19	<-92			
B41						19	<-93			

4. 机械特性

4.1. 模块 3D 图

我们提供完整的结构图。如果需要 3D 图档建模,请联系索取 C1100 系列无线模块的 3D 文档。

4.2. 模块 2D 结构图

我们提供完整的结构图。如有需要请联系索取。

图 17: C1100 系列无线模块推荐封装尺寸

4.3. C1100 系列无线模块应用端封装推荐

客户设计时需要的封装文件,包括原理图封装图和 PCB 封装图。我们有专门的推荐资料,需要时请联系索取。

5. 各种业务下的功耗

C1100 系列无线模块各种频段的功耗(VBAT 供电: 3.8V)见下表。

表 35: C1100 MGGT 模块各频段功耗

Test Type	MGGT 模块各规段 Channel/	Power Control	Call Current (mA)			
тезі туре	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current
eMTC	TBD	Max TX	TBD	TBD	TBD	TBD
Band3 1	TBD	Power	TBD	TBD	TBD	TBD
Barrao 1	TBD	1 00001	TBD	TBD	TBD	TBD
OMTC	TBD	Max TX	TBD	TBD	TBD	TBD
eMTC Band2	TBD	Power	TBD	TBD	TBD	TBD
	TBD	1 OWC1	TBD	TBD	TBD	TBD
aMTO	TBD	May TV	TBD	TBD	TBD	TBD
eMTC Band3	TBD	Max TX Power	TBD	TBD	TBD	TBD
Bariao	TBD	1 Owel	TBD	TBD	TBD	TBD
LATO	TBD		TBD	TBD	TBD	TBD
eMTC Band4	TBD	Max TX Power	TBD	TBD	TBD	TBD
Бапач	TBD	1 Owel	TBD	TBD	TBD	TBD
-MTO	TBD	May TV	TBD	TBD	TBD	TBD
eMTC Band5	TBD	Max TX Power	TBD	TBD	TBD	TBD
	TBD	rowei	TBD	TBD	TBD	TBD
MTO	TBD		TBD	TBD	TBD	TBD
eMTC Band8	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danuo	TBD	rowei	TBD	TBD	TBD	TBD
MTO	TBD		TBD	TBD	TBD	TBD
eMTC Band12	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danutz	TBD	Fower	TBD	TBD	TBD	TBD
MTO	TBD		TBD	TBD	TBD	TBD
eMTC Band13	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danuis	TBD	Fower	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
eMTC	TBD	Max TX	TBD	TBD	TBD	TBD
Band17	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
eMTC	TBD	Max TX	TBD	TBD	TBD	TBD
Band18	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
eMTC	TBD	Max TX	TBD	TBD	TBD	TBD
Band19	TBD	Power	TBD	TBD	TBD	TBD

Test Type	Channel/	Power Control	Call Current (mA)			
rest type	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current
LATO	TBD	NA. TV	TBD	TBD	TBD	TBD
eMTC Band20	TBD	Max TX Power	TBD	TBD	TBD	TBD
Dariuzu	TBD	rowei	TBD	TBD	TBD	TBD
AMTO	TBD	May TV	TBD	TBD	TBD	TBD
eMTC Band26	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danazo	TBD	1 Owel	TBD	TBD	TBD	TBD
- MTO	TBD	Marrity	TBD	TBD	TBD	TBD
eMTC Band28	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danazo	TBD	1 OWEI	TBD	TBD	TBD	TBD
. NATO	TBD	M. TV	TBD	TBD	TBD	TBD
eMTC Band39	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danus	TBD	rowei	TBD	TBD	TBD	TBD
NDLE	TBD	M. TV	TBD	TBD	TBD	TBD
NB-IoT Band1	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danui	TBD	rowei	TBD	TBD	TBD	TBD
ND L T	TBD		TBD	TBD	TBD	TBD
NB-IoT Band2	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danuz	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band3	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band4	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band5	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band8	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band12	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band3	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band17	TBD	Power	TBD	TBD	TBD	TBD

Test Type	Channel/	Power Control	Call Current (mA)			
rest Type	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current
NDLT	TBD	M. TV	TBD	TBD	TBD	TBD
NB-IoT Band18	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danaro	TBD	i owei	TBD	TBD	TBD	TBD
ND I-T	TBD	Marray	TBD	TBD	TBD	TBD
NB-IoT Band19	TBD	Max TX Power	TBD	TBD	TBD	TBD
Danuty	TBD	rowei	TBD	TBD	TBD	TBD
ND L T	TBD	N4 T)/	TBD	TBD	TBD	TBD
NB-IoT Band20	TBD	Max TX Power	TBD	TBD	TBD	TBD
Bariu20	TBD	Fower	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT Band26	TBD	Max TX Power	TBD	TBD	TBD	TBD
Dariu20	TBD	Fowei	TBD	TBD	TBD	TBD
	TBD	>/	TBD	TBD	TBD	TBD
NB-IoT Band28	TBD	Max TX Power	TBD	TBD	TBD	TBD
Dariuzo	TBD	rowei	TBD	TBD	TBD	TBD
50000	TBD	M. TV	TBD	TBD	TBD	TBD
EGPRS Band2	TBD	Max TX Power	TBD	TBD	TBD	TBD
Dariuz	TBD	Fower	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
EGPRS Band3	TBD	Max TX Power	TBD	TBD	TBD	TBD
Darius	TBD	rowei	TBD	TBD	TBD	TBD
50000	TBD	N4 T)/	TBD	TBD	TBD	TBD
EGPRS Band5	TBD	Max TX Power	TBD	TBD	TBD	TBD
Dariuo	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
EGPRS	TBD	Max TX	TBD	TBD	TBD	TBD
Band8	TBD	Power	TBD	TBD	TBD	TBD

表 36: C1100 NGGT 模块各频段功耗

Test Type	Channel/	Power Control	Call Current (mA)				
тезстуре	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current	
ND L. F	TBD	Ma TV	TBD	TBD	TBD	TBD	
NB-IoT Band1	TBD	Max TX Power	TBD	TBD	TBD	TBD	
Danui	TBD		TBD	TBD	TBD	TBD	
ND L. F	TBD	Ma TV	TBD	TBD	TBD	TBD	
NB-IoT Band2	TBD	Max TX Power	TBD	TBD	TBD	TBD	
Dariuz	TBD	rowei	TBD	TBD	TBD	TBD	
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD	

Test Type	Channel/	Power Control	Call Current (mA)			
rest Type	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current
Band3	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band4	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band5	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band8	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band12	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band3	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band17	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band18	TBD	Power	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band19	TBD	Power	TBD	TBD	TBD	TBD
	TBD	>/	TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX	TBD	TBD	TBD	TBD
Band20	TBD	Power	TBD	TBD	TBD	TBD
NDLT	TBD		TBD	TBD	TBD	TBD
NB-IoT	TBD	Max TX Power	TBD	TBD	TBD	TBD
Band26	TBD	Fower	TBD	TBD	TBD	TBD
	TBD		TBD	TBD	TBD	TBD
NB-IoT Band28	TBD	Max TX Power	TBD	TBD	TBD	TBD
Dalluzo	TBD	rowei	TBD	TBD	TBD	TBD

表 37: C1100C 模块各频段功耗

Test Type	Channel/	Power	Call Current (mA)
	Configuration	Control	

		Level	Power	Avg. Current	Min. Current	Max. Current
500 LT5	CH18100	14 TV	22.4	660.70	643.60	675.35
FDD-LTE Band1	CH18300	Max TX Power	21.9	562.20	553.53	593.14
Danui	CH18500	rowei	22.0	653.10	645.17	665.17
	CH19300	>/	21.5	650.80	646.16	655.20
FDD-LTE Band3	CH19575	Max TX	21.4	574.60	570.20	580.12
Darius	CH19850	Power	21.4	605.00	599.14	612.57
	CH20450	>/	22.4	507.90	503.82	511.46
FDD-LTE Band5	CH20525	Max TX Power	22.5	563.00	559.25	567.00
Danus	CH20600	rowei	22.5	583.70	579.75	587.20
	CH40340	Max TX	21.8	439.50	436.29	442.24
TDD-LTE Band41	CH40740		21.9	397.30	392.11	407.16
Dallu4 I	CH41140	Power	21.9	428.30	424.26	432.14

6. 电气特性

6.1. 推荐工作电压范围

表 38: C1100 系列无线模块推荐工作电压范围

Parameter	Description	Min	Туре	Max	Unit
	C1100 MGGT	3.1	3.8	4.2	
	C1100 NGGT	3.1	3.8	4.2	V
	C1100C	3.3	3.8	4.2	
VBAT	RMS 平均供电电流	0		0.9	Α
	在每个时隙的瞬时压降, I _{VBAT} 峰值电流可能达到2A (每4.6ms的时隙功率发射)			300	mV
CDIO	数字 IO 的电平供电电压	-0.3	1.8	2.16	V
GPIO	关机模式供电电压	-0.25		0.25	V

如果 C1100 MGGT/C1100 NGGT 的 VBAT 模块端压降低于 3.1V(C1100C 为 3.3V), 会影响射频性能。任何时候都必须保证模块端 VBAT 的电压不低于 2.5V, 否则会造成模块断电异常关机。

6.2. 环境温度范围

C1100系列无线模块推荐在-30~+75℃环境下工作。建议应用端在环境恶劣条件下考虑温控措施。同时提供模块的受限操作温度范围,此温度条件下,可能某些RF指标超标。同时建议模块应用终端在一定温度条件下储存。超出此范围模块可能不能正常工作或者损坏。

表 39: C1100 系列无线模块温度范围

Temperature	Min	Туре	Max	Unit
环境温度	-30	25	75	$^{\circ}$
受限操作温度	-40 ~ -30		75 ~ 85	$^{\circ}$
储存温度	-45		90	$^{\circ}$

6.3. 接口工作状态电气特性

V_L: 逻辑低电平;V_H: 逻辑高电平;

表 40: C1100 系列无线模块普通数字 IO 信号的逻辑电平

Ciamal		V _L	V_{H}	I linit	
Signal	Min	Max	Min	Max	Unit

数字输入	-0.3	0.3* V _{DD-PX}	0.7* V _{DD-PX}	V _{DD-PX} +0.5	V
数字输出	GND	0.45	V _{DD-PX} -0.45	V_{DD-PX}	V

注意:

 $V_{DD-PX}=1.8V$

UART1_DTR高电平支持1.8~3.3V IO

表 41: C1100 系列无线模块接口电源工作状态电特性

Parameter	1/0	Min		Type	Max	Unit
		C1100 MGGT	3.1			
VBAT	1	C1100 NGGT	3.1	3.8	4.2	V
		C1100C	3.3			
USIM_VCC	0	1.7/2.75		1.8/2.85	1.9/2.95	V

6.4. 环境可靠性要求

表 42: C1100 系列无线模块环境可靠性要求

测试项目	测试条件				
低温存储测试	温度-45℃±3℃,关机状态下持续24小时				
高温存储测试	温度 +90℃±3℃ ,关机状态下持续 24 小时				
温度冲击试验	关机状态下,分别在温度-45℃和+90℃环境下持续0.5h,温度转换时间<3min,共进行24个循环				
高温高湿试验	温度+90℃±3℃,湿度90~95%RH,关机状态下持续24小时				
低温运行测试	温度-30℃±3℃,工作状态下持续24小时				
高温运行测试	温度+75℃±3℃,工作状态下持续24小时				
震动测试	按照下表所示的要求进行震动测试: 频率 随机振动ASD(加速度谱密度) 5~20Hz 0.96m²/s³ 20~500Hz 0.96m²/s³(20Hz处),其它-3dB/倍频程				

6.5. ESD 特性

C1100系列无线模块是一款消费终端产品。虽然模块设计时已经考虑了ESD的问题,并做了ESD防护,但是考虑C1100系列模块在运输和二次开发也可能有ESD问题发生,所以开发者要考虑最终产品ESD问题的防护,请参考文档中的接口设计的推荐电路。

对于C1100系列无线模块的ESD允许的放电范围参考下表。

表 43: C1100 MGGT/C1100 NGGT 接口抗 ESD 特性

Part	Air discharge	Contact discharge
VBAT,GND	±2KV	±500V
Antenna port	±2KV	±500V
Other port	±2KV	±500V

注意:

为降低C1100 MGGT/C1100 NGGT的关机漏电流,在模块的电源和USB接口并未加ESD保护(减少ESD器件对地的漏电流)。所以C1100 MGGT/C1100 NGGT对比C1100C在电源和USB接口抗ESD特性更弱。

表 44: C1100C 接口抗 ESD 特性

Part	Air discharge	Contact discharge
VBAT,GND	±8KV	±4KV
Antenna port	±2KV	±500V
Other port	±2KV	±500V