РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра теории вероятностей и кибербезопасности

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

дисциплина: Сетевые технологии

Студент:	Демидова Екатерина Алексеевна					
-	_					
Группа:	НКНбд-01-21					

МОСКВА

Постановка задачи

Цель данной работы — изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

Задание: требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями. Данные для работы представлены в таблице 1.

Таблица 1. Варианты сетей

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1	100BASE-	100BASE-TX,	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 96	92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2	100BASE-	100BASE-TX,	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 95	85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м
3	100BASE-	100BASE-TX,	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 60	95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4	100BASE-	100BASE-TX,	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 70	65 м	ТХ, 10 м	TX, 4 M	ТХ, 90 м	ТХ, 80 м
5	100BASE-	100BASE-TX,	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 60	95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6	100BASE-	100BASE-TX,	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 70	98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Выполнение работы

Сначала оценим работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой моделью. Диаметр домена коллизий вычисляется как сумма длин сегментов. Длина сегмента, соединяющего повторители, может быть более 5 м, если при этом диаметр домена коллизий не превышает допустимый для данной конфигурации предел.

Мы рассматриваем конфигурации, где все сегменты ТХ и присутствуют два повторителя класса 2, значит предельно допустимый диаметр домена коллизий 205 м. Рассчитаем для каждого варианта сети в задании сумму сегментов. В результате получим, что во всех вариантах диаметр домена коллизий превышает допустимый для данной конфигурации предел в 205 м. Следовательно работоспособными являются те конфигурации, в которых длина сегмента 4, соединяющего повторители, не более 5. То есть работоспособными являются сети 1, 3, 4. Результаты расчетов приведены в таблице 2.

Теперь ценим работоспособность 100-мегабитной сети Fast Ethernet в соответствии со второй моделью. Наихудшие пути в домене коллизий:

- 1. Сегмент 1 сегмент 4 сегмент 5
- 2. Сегмент 1 сегмент 4 сегмент 6
- 3. Сегмент 2 сегмент 4 сегмент 6
- Сегмент 5 сегмент 6
- Сегмент 2 сегмент 4 сегмент 6
- 6. Сегмент 2 сегмент 4 сегмент 6

Все рассматриваемые сегменты являются сегментами 100BASE-TX и в них используется витая пара категории 5. Время для двойного оборота на сегментах будем рассчитывать, умножая длину сегмента на удельное время двойного оборота равное 1,112 би/м. Просуммируем для каждого варианта полученные значения для всех сегментов наихудшего пути и прибавим время двойного оборота двух повторителей класса II (92 би/м для каждого) и пары терминалов с интерфейсами ТХ(100 би/м). Для учёта непредвиденных задержек к полученному результату добавим ещё 4 битовых интервала и сравним результат с числом 512. Если полученный результат не превышает 512 би, то сеть считается работоспособной. То есть по второй модели рабочими считаются те же варианты сетей, что и по первой модели, а именно

Таблица 2. Расчёт работоспособности сети по первой модели

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Длина домена коллизий	Длина сегмента, соединяющего повторители
1	96	92	80	5	97	97	467	5
2	95	85	85	90	90	98	543	90
3	60	95	10	5	90	100	360	5
4	70	65	10	4	90	80	319	4
5	60	95	10	15	90	100	370	15
6	70	98	10	9	70	100	357	9

Таблица 3. Расчёт работоспособности сети по второй модели

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Сумма времен двойного оборота, би	С учетом запасных 4 би
1	96	92	80	5	97	97	504,176	508,176
2	95	85	85	90	90	98	598,696	602,696
3	60	95	10	5	90	100	506,4	510,4
4	70	65	10	4	90	80	473,04	477,04
5	60	95	10	15	90	100	517,52	521,52
6	70	98	10	9	70	100	514,184	518,184

Заключение

В результате выполнения лабораторной работы были изучены принципы технологий Ethernet и Fast Ethernet. Также были практически освоены методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet, а именно была реализована оценка работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.