INF623

2024/1

Inteligência Artificial

A2: Busca no espaço de estados II

Plano de aula

- ▶ Algoritmos de busca sem informação
 - ▶ Busca em profundidade
 - ▶ Iterativa vs. recursiva
 - ▶ Busca de custo uniforme
- Função Heurística
- ▶ Algoritmos de busca informada
 - ▶ Busca guloso pela melhor escolha
 - ▶ △*

Algoritmo genérico de busca em árvore

Os algoritmos de busca em árvore seguem a mesma estrutura geral:

if filho not in alcancado or custo filho < custo[filho]:</pre>

fronteira.append(filho)

alcancado.append(filho)

custo[filho] = custo filho

```
def busca-arvore(s, g, A, T, C):
 1. fronteira = [s] # Inicializar a fronteira com o estado inicial s
 2. alcancado = {s} # Marcar nó inicial como visitado
 3. custo[s] = 0  # Inicializar custo do estado inicial
 4. while fronteira não estiver vazia:
       n = fronteira.pop() # Escolher um nó da fronteira para expandir
 6.
       if n == g:  # Verificar se o nó n escolhido é o estado final g
           return caminho entre s e g
       for filho in T(n, A(n)):
                                                 # Expandir o nó n escolhido usando função de ações A
 8.
 9.
            custo filho = custo[n] + C(n, filho) # Calcular custo de chegar até o filho por n
```

A principal diferença entre os algoritmos é a estratégia de expansão do nó n; Usamos diferentes estruturas de dados para implementar essas estratégias.

alcancado é uma tabela hash (dicionário em python) utilizada para evitar ciclos.

10.

11.

13.

Busca em profundidade (iterativa)

Fronteira é uma pilha (LIFO)

- Nós do primeiro caminho
- Nós do segundo caminho
- Nós do terceiro caminho
- **...**

Tempo	Nó	Fronteira (pilha)	Alcançado
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

Busca em profundidade (iterativa)

Fronteira é uma pilha (LIFO)

- Nós do primeiro caminho
- Nós do segundo caminho
- Nós do terceiro caminho
- **)** ...

Tempo	Nó	Fronteira (pilha)	Alcançado
1	S	[d, e, p]	{s, d, e, p}
2	р	[d, e, q]	{s, d, e, p, q}
3	q	[d, e]	{s, d, e, p, q}
4	е	[d, h,+]	{s, d, e, p, q, h, r}
5	r	[d, h, f]	{s, d, e, p, q, h, r, f}
6	f	[d, h, g]	{s, d, e, p, q, h, r, f}
7	g	[d, h]	{s, d, e, p, q, h, r, f}
8			
9			
10			
11			
12			

Busca em profundidade (iterativa)

Fronteira é uma pilha (LIFO)

- Nós do primeiro caminho
- Nós do segundo caminho
- Nós do terceiro caminho
- **...**

Implementação iterativa da busca em profundidade

```
def BFS(s, g, A, T, \bigcirc):
 1. pilha = [s]
                                Na DFS, a fronteira é uma pilha (LIFO)
 2. alcancado = \{s\}
3 \cdot \text{custo}(s) = 0
 4. while pilha não estiver vazia:
 5.
                              # Escolher o último nó da fila para expandir
        n = pilha.pop()
        if n == q:
 6.
                              # Verificar se o nó n escolhido é o estado final q
            return caminho entre s e g
 8.
        for filho in T(n, A(n)): # Expandir o nó n escolhido usando função de ações A
              custo filho - custo[n] + C(n, filho) # Calcular custo de chegar até o filho por n
 10.
              if filho not in alcancado or custo filho < custo [filho]:
 11.
                 pilha.append(filho)
 12.
                 alcancado.append(filho)
                                                    Na DFS, também não é necessário manter os custos
```


Implementação recursiva da busca em profundidade

```
def DFS_util(n, g, A, T, alcancado):
    1. if n == g:
    2.    return caminho entre s e g
    3. for filho in T(n, A(n)):
    4.    if filho not in alcancado:
    5.    alcancado.append(n)
    6.    DFS util(filho, g, A, T, alcancado)
```

```
def DFS(s, g, A, T):
    1.alcancado = {s}
    2.DSF util(s, g, A, T, alcancado)
```

Na implementação recursiva, a fronteira é a pilha de chamadas recursivas das função DFS_util

Para espaços de busca muito grandes com estrutura de árvore finita, é comum implementar a DFS sem detecção de ciclos para otimização de memória!

Busca em profundidade (recursiva)

Fronteira é a pilha da recursão

- Nós do primeiro caminho
- Nós do segundo caminho
- Nós do terceiro caminho
- **...**

Tempo	Nó	Alcançado	
1	s[]	{s}	
2	d[s]	{s, d}	
3	b[d]	{s, d, b}	
4	a[b]	{s, d, b, a}	
5	c[d]	{s, d, b, a, c}	
6	e[d]	{s, d, b, a, c, e}	
7	h[e]	{s, d, b, a, c, e, h}	
8	p[h]	{s, d, b, a, c, e, h, p}	
9	q[h]	{s, d, b, a, c, e, h, p, q}	
10	r[e]	{s, d, b, a, c, e, h, p, q, r}	
11	f[r]		
12	g[f]		

Busca em profundidade (recursiva)

Fronteira é a pilha da recursão

Expandir o nó mais profundo primeiro

- Nós do primeiro caminho
- Nós do segundo caminho
- Nós do terceiro caminho

...

Propriedade da busca em profundidade

Complexidade de tempo

No pior caso, terá que processar a árvore toda. Seja m a profundidade total (finita) da árvore, a complexidade de tempo é $O(b^m)$

Complexidade de espaço

Armazena os irmãos de cada nó no caminho até a raiz, portanto complexidade de espaço é O(bm)

Completo

Apenas se a árvore de busca for finita (ou usando verificação de ciclos).

Ótimo

Não, ele a solução mais à esquerda (recursivo) ou à direita (iterativo), independente de custo

Exercício 1: Quando utilizar busca em profundidade?

Se a DFS não é ótima e completa apenas em árvores finitas, porque utilizar esse algoritmo?

R: Quando o grafo do problema de busca é estruturalmente uma árvore finita, a busca em profundidade é uma excelente solução pois utiliza consideravelmente menos memória que a busca em largura. Exemplos em IA:

- Satisfação de restrição
- Satisfatibilidade proposicional
- Programação lógica

Busca de custo uniforme (Algoritmo de Dijkstra)

Fronteira é uma fila de prioridade

Expandir o nó n com caminho de menor custo g(n)

Tempo	Nó	Fronteira (heap)	Alcançado
1	BH(0)	OP(100) , CL(100)	OP(100), CL(100)
2	OP(100)	CL(100), PN(180), TX(300)	OP(100), CL(100), PN(180), TX(300)
3	CL(100)	PN(180) , TX(300), PF(190)	OP(100), CL(100), PN(180), TX(300), PF(190)
4	PN(180),	TX(300), PF(190) , TX(215)	OP(100), CL(100), PN(180), TX(215), PF(190)
5	PF(190)	TX(300), TX(215) , VIC(220)	OP(100), CL(100), PN(180), TX(215), PF(190), VIC(220)
6	TX(215)	TX(300), VIC(220)	OP(100), CL(100), PN(180), TX(215), PF(190), VIC(220)
7	VIC(220)	TX(300)	OP(100), CL(100), PN(180), TX(215), PF(190), VIC(220)

Propriedade da busca de custo uniforme

Complexidade de tempo

Explora todos os nós com custo menor que o da melhor solução C^* . Se as ações custam no mínimo ϵ , então complexidade de tempo $O(b^{C^*/\epsilon})$

Complexidade de espaço

Armazena aproximadamente todos os nós dos C^*/ϵ níveis até a solução ótima C^* , portanto complexidade de espaço também é $O(b^{C^*/\epsilon})$

Completo

Assumindo que C^* é finito e $\epsilon > 0$, sim!

Ótimo

Sim! Referência para a prova em anexo.

Estruturas de dados de busca

Todos os algoritmos de busca são os mesmos. O que muda são as estratégias de fronteira.

- Conceitualmente, todas as fronteiras são filas de prioridade
- Na prática, na BFS e DFS podemos evitar o custo log(n) da fila de prioridades utilizando uma fila e uma pilha, respectivamente
- É possível implementar todas os algoritmos em uma única função, passando o objeto da fronteira como parâmetro

Problema da busca de custo uniforme

Considere a busca de custo uniforme no seguinte problema de busca de caminho mais curto em um grid (todos as ações tem custo 1):

O algoritmo busca igualmente em todas as direções.

Como evitar expandir estados claramente não promissores?

Função Heurística

Uma função heurística $h(n): S \to \mathbb{R}^+$ recebe como entrada um estado n e retorna uma estimativa da distância entre n e g.

- São definidas de maneira particular para cada problema de busca
- Por exemplo, para o problema de caminho mais curto:
 - Distância Manhattan: $h(n) = |x_n x_g| + |y_n y_g|$
 - Distância Euclidiana: $h(n) = \sqrt{(x_n x_g)^2 + (y_n y_g)^2}$

Algoritmo de busca gulosa pela melhor escolha

Fronteira é uma fila de prioridade

Expandir o nó n que parece estar mais próximo do estado final — aquele com menor h(n)

Exercício: Você consegue imaginar um problema onde esse algoritmo não seria ótimo?

R: O algoritmo de busca gulosa pela melhor escolha não considera o custo g(n) dos nós!

Algoritmo A*

Fronteira é uma fila de prioridade

Expandir o nó n que parece mais próximo com caminho de menor custo — aquele com menor f(n) = g(n) + h(n)

A* pode ser visto como a combinação da busca de custo uniforme com a busca gulosa por melhor escolha:

- ▶ Custo uniforme: ordena por custo do caminho g(n)
- lacktriangle Melhor escolha: ordena pela função heurística h(n)

Exercício: o algoritmo A* é ótimo?

A solução encontrada pelo A* no grafo abaixo é ótima? Execute o algoritmo e mostre a árvore de nós expandidos.

Qual o problema com essa função heurística?

 $h(n) > h^*(n)$, onde $h^*(n)$ é o custo ótimo entre $n \in g$

Função heurística admissível

Uma função heurística h é **admissível** se:

$$0 \le h(n) \le h^*(n)$$
, onde $h^*(n)$ é o custo ótimo entre n e g

O algoritmo A^* é ótimo apenas se h for admissível!

A maior parte do trabalho na resolução de problemas difíceis de busca consiste em encontrar heurísticas admissíveis.

Contornos de busca

Busca de custo uniforme

Expande igualmente em todas as direções.

Algoritmo A*

Expande principalmente em direção ao estado final, mas protege suas apostas para garantir a otimização

Próxima aula

A4: Busca local e otimização l

Formalização e exemplos de problemas de busca local. Algoritmos subida de encosta, têmpera simulada e busca em feixe.

