UWAGA: W zadaniach o numerach od 1 do 6 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

Zadanie 1. (0 - 1pkt.)

Lokomotywa o masie 20 ton nadała szybkość 0,5 m/s stojącemu początkowo wagonowi o masie 22 ton. Jeżeli silnik lokomotywy wykonał w tym czasie pracę 12 kJ to energia stracona na pokonanie sił oporu była równa

- A. 1,5 kJ.
- B. 6,5 kJ.
- C. 6,75 kJ. D. 9,25 kJ.

Zadanie 2. (0 - 1pkt.)

Podczas startu w wyścigu Formuły 1 samochód rozpędził się do szybkości $100 \frac{\mathrm{km}}{\mathrm{h}}$ w czasie 1,7 sekundy. Średnie przyspieszenie, z jakim w tym czasie poruszał się ten samochód, miało wartość w przybliżeniu

A.
$$59 \frac{m}{s^2}$$

B.
$$16 \frac{m}{s^2}$$

C.
$$5.9 \frac{m}{s^2}$$

A.
$$59 \frac{m}{s^2}$$
. B. $16 \frac{m}{s^2}$. C. $5.9 \frac{m}{s^2}$. D. $1.6 \frac{m}{s^2}$.

Zadanie 3. (0 - 1pkt.)

Poniżej poziomu powierzchni cieczy o gęstości $800 \frac{\text{kg}}{\text{m}^3}$ znajduje się 60% objętości pływającego w niej jednorodnego ciała. Gęstość pływającego ciała jest równa

A.
$$800 \frac{\text{kg}}{\text{m}^3}$$
.

B.
$$600 \frac{\text{kg}}{\text{m}^3}$$

C.
$$480 \frac{\text{kg}}{\text{m}^3}$$
.

B.
$$600 \frac{\text{kg}}{\text{m}^3}$$
. C. $480 \frac{\text{kg}}{\text{m}^3}$. D. $320 \frac{\text{kg}}{\text{m}^3}$.

Zadanie 4. (0 - 1pkt.)

Pociąg pośpieszny jadący z Łodzi do Warszawy poruszający się na pewnym odcinku trasy z szybkością $160\frac{\text{km}}{\text{h}}$ mija się z pociągiem osobowym, jadącym z Warszawy do Łodzi z szybkością $80 \frac{\text{km}}{\text{k}}$. W chwili mijania się pociągów szybkość pociągu pośpiesznego względem osobowego, w porównaniu z szybkością pociągu osobowego względem pospiesznego, jest

- A. taka sama.
- B. dwa razy mniejsza.
- C. dwa razy większa.
- D. trzy razy większa.

Zadanie 5

Na wykresie poniżej przedstawiono zależność prędkości narciarza podczas zjeżdżania ze stoku góry w funkcji czasu.

Zadanie 5.1 (0 - 1 pkt)

Wartość bezwzględna przyspieszenia podczas hamowania była w porównaniu z przyspieszeniem podczas przyspieszania

- A. równa temu przyspieszeniu.
- B. dwa razy większa.
- C. dwa razy mniejsza.
- D. cztery razy mniejsza.

Zadanie 5.2 (0 - 1 pkt)

Droga jaką przebył narciarz podczas całego zjazdu była równa

- A. 400 m.
- B. 500 m.
- C. 600 m.
- D. 800 m.

Zadanie 5.3. (0 - 1 pkt.)

Podczas przyspieszania narciarza wartość wypadkowej sił, które na niego działały była

- A. równa zero.
- B. taka sama jak podczas hamowania.
- C. dwa razy większa niż podczas hamowania.
- D. dwa razy mniejsza niż podczas hamowania.

Zadanie 6. (0 - 1pkt.)

Kiedy ciecz styka się z ciałem stałym możliwe są dwie sytuacje – ciecz zwilża lub nie zwilża powierzchni ciała stałego. O tym, z którą z wyżej wymienionych sytuacji mamy do czynienia decydują siły

- A. ciężkości cząsteczek.
- B. tylko przylegania.
- C. tylko spójności.
- D. spójności i przylegania.

Zadanie 7

Oceń prawdziwość zdań w poniższych tabelach.

Zaznacz P, jeżeli zdanie jest prawdziwe lub F, jeżeli jest fałszywe.

Zadanie 7.1. (0 - 1 pkt.)

Jeżeli ciało porusza się ruchem jednostajnie zmiennym prostoliniowym, to siły działające na ciało równoważą się.	P	F
Ruch, w którym wartość szybkości ciała jest wprost proporcjonalna do czasu trwania ruchu, odbywa się pod wpływem stałej niezrównoważonej siły.	P	F
W swobodnym spadku z określonej wysokości czas spadania zależy od masy ciała.	P	F

Zadanie 7.2. (0 - 1 pkt.)

Oceń prawdziwość zdań w poniższej tabeli i zaznacz P, jeżeli zdanie jest prawdziwe, lub F, jeżeli jest fałszywe.

Zmiana energii potencjalnej ciała zależy od różnicy wysokości między poziomami, na których znajdowało się ciało.	P	F
Zasada zachowania energii mechanicznej jest spełniona tylko wtedy, gdy działające na ciało siły się równoważą.	P	F
Sprawność urządzenia jest tym mniejsza, im mniej jest traconej dostarczonej do niego energii.	P	F

UWAGA: W zadaniach o numerach 8 i 9 wybierz i zaznacz (otaczając kółkiem odpowiednią literę i cyfrę) właściwe stwierdzenie oraz jego poprawne uzasadnienie tworzące dokończenie rozpoczętego zdania.

Zadanie 8. (0 - 1 pkt)

Podczas wykonywania doświadczenia, w którym badano zależność przebytej drogi od czasu trwania ruchu stwierdzono, że w takich samych odstępach czasu ciało przebywało takie same drogi. Na tej podstawie wyciągnięto wniosek, że ciało poruszało się ruchem

A.	jednostajnym,			droga przebyta przez ciało nie zależała od czasu trwania ruchu.		
В.	jednostajnie przyspieszonym,	ponieważ	2.	droga przebyta przez ciało była wprost proporcjonalna do czasu trwania ruchu.		
C.	jednostajnie opóźnionym,		3.	wartość prędkości ciała była wprost proporcjonalna do czasu trwania ruchu.		

Zadanie 9. (0 – 1pkt.)

Podczas procesu krzepnięcia wody jej energia wewnętrzna

Α.	nie zmienia się,		1.	jest związany z dostarczaniem energii cieplnej.
В.	wzrasta,	ponieważ proces ten	2.	jest związany z odbieraniem energii cieplnej.
C.	maleje,		3.	przebiega w stałej temperaturze.

Zadanie 10. (0 - 3 pkt.)

Po zawieszeniu pewnego ciężarka na siłomierzu na jego skali odczytano wartość 1,5 N. Po
zawieszeniu innego ciężarka odczytano na skali siłomierza wartość 9 N. Wykaż, wykonując
odpowiednie obliczenia, że masa drugiego ciężarka była 6 razy większa od masy ciężarka
zawieszonego na siłomierzu w sytuacji pierwszej.

Zadanie 11. (0 - 5 pkt.)
Kierowca samochodu jadącego z szybkością $40\frac{\text{km}}{\text{h}}$ zaczął przyspieszać i po przejechaniu drogi
$100~\text{m}$ szybkość samochodu wzrosła do $90\frac{\text{km}}{\text{h}}$. Oblicz przyspieszenie samochodu przyjmując,
że samochód podczas zwiększania szybkości poruszał się ruchem jednostajnie przyspieszonym.

Zadanie 12. (0 - 5 pkt.)
Kolarz rozpoczynający wjazd na wzgórze ($v_0 = 0$) razem z rowerem ma masę równą 90 kg.
Podczas wjeżdżania na szczyt wzgórza mięśnie kolarza wykonały pracę równą 50 kJ. Na
szczycie wzgórza kolarz osiągnął szybkość $18\frac{\mathrm{km}}{\mathrm{h}}$. Oblicz wysokość wzgórza przyjmując,
że 20 % wykonanej przez mięśnie kolarza pracy, zostało stracone na pokonanie oporów ruchu.

Zadanie	13.	(0 -	5	pkt.)	1
---------	------------	------	---	-------	---

Podczas budowy domu pracownicy mieli dostarczyć na drugie piętro materiały budowlane.
Jeden z pracowników wnosił elementy po schodach a drugi skorzystał z kołowrotu
umieszczonego na drugim piętrze. Wykaż, pomijając wszelkie straty energii oraz analizując
siły działające na ramiona kołowrotu, promienie kołowrotu i jego liczbę obrotów, że pracownik
korzystający z maszyny prostej, jaką jest kołowrót, wykonał taką samą pracę przy użyciu
mniejszej siły w porównaniu z pracą pracownika używającego schodów, podczas dostarczania
takich samych materiałów budowlanych.