: 10/789,359

Filed

February 26, 2004

REMARKS

Claims 15-25, 27-30, 32, 34, 35, and 37-55 are pending in this application. Claims 25, 29, 32, 34, 43, 45, and 46 have been amended. Claims 1-14 have been canceled as drawn to nonelected subject matter. Claims 26, 31, 33, and 36 have been canceled. New Claims 53-55 have been added. Support for the amendments and new claims is found in the specification and claims as filed.

Claim Rejections - 35 U.S.C. § 102(b) - Lord et al.

Claims 15-17, 22-24, 27, 28, 29, 30, 32, 34-36, 40-43, 45, 46, 49, and 50-52 have been rejected under 35 U.S.C. §102(b) as anticipated by U.S. 5,569,186 (hereinafter "Lord"). "A rejection for anticipation under section 102 requires that each and every limitation of the claimed invention be disclosed in a single prior art reference." *See, e.g., In re Paulsen*, 31 U.S.P.Q.2d 1671 (Fed. Cir. 1994). Lord does not disclose every element of Applicants' claims, and therefore cannot be considered as an anticipating reference under 35 U.S.C. § 102(b).

Pending Claim 15, recites an integrated system comprising, *inter alia*, "a medicament delivery device, wherein the delivery device is physically detachably connectable to the receiver." Lord discloses a closed loop infusion pump system with removable glucose sensor including a sensor unit 16, a monitor 28 and an infusion pump 14. Examiner asserted, in the previous office action, that Fig. 1 shows the medicament delivery device 22 connectable to the receiver 14. However, Lord does not disclose the receiver 14 as being *physically detachably connectable* from the medicament delivery device 22. Accordingly, Lord does not disclose "a medicament delivery device, wherein the delivery device is physically detachably connectable to the receiver" as presently claimed.

Pending Claim 29 has been amended to recite an integrated system for monitoring and treating diabetes comprising, *inter alia*, a continuous glucose sensor, a receiver, a medicament delivery device, and a single point glucose monitor, "wherein the receiver is configured and arranged to calculate an amount of a medicament to delivery via the medicament delivery device using a glucose concentration measured by the single point glucose monitor." Lord neither teaches nor suggests such a configuration, "wherein the receiver comprises programming configured to calculate an amount of a medicament to delivery via the medicament delivery

10/789,359

Filed

February 26, 2004

device using a glucose concentration measured by the single point glucose monitor" as presently claimed.

Pending Claim 32 has been amended to recite an integrated system comprising, inter alia, a glucose sensor that substantially continuously measures glucose in a host, a receiver that receives a data stream, and a medicament delivery device, wherein the receiver comprises a processor that comprises a validation module comprising programming configured to validate the medicament delivery instructions prior to outputting the instructions, "wherein the validation module is configured to validate the medicament delivery instructions responsive to data obtained from a single point glucose monitor operably connectable to the receiver." Support for the amendment can be found in paragraph [0150] as filed. Lord discloses a system wherein the monitor 28 may be programmed ... to recommend a treatment program to allow patient verification and manually initiation, however Lord does not disclose a system "configured to validate the medicament delivery instructions responsive to data obtained from a single point glucose monitor operably connectable to the receiver" as presently claimed.

Pending Claim 34 has been amended to recite an integrated system comprising, inter alia, a glucose sensor, a receiver, and a medicament delivery device, wherein the receiver comprises a processor comprising "programming configured to estimate glucose values responsive to glucose sensor data and host's metabolic response" as presently claimed. Lord discloses a closed loop system comprising an infusion pump controlled automatically in response to glucose concentration measurements, however Lord does not disclose an integrated system comprising a processor comprising programming "configured to determine a host's metabolic response to the medicament delivery by evaluating the sensor data points substantially corresponding to delivery and release of the medicament delivery for the first time period, wherein the processor comprises programming configured to estimate glucose values responsive to glucose sensor data and host's metabolic response" as presently claimed.

Accordingly Applicant requests the rejections of Claims 15, 29, 32 and 34, and their corresponding dependent claims, be withdrawn.

: 10/789,359

Filed

February 26, 2004

Claim Rejections - 35 U.S.C. § 102(b) - Gough et al.

Claims 29 and 30 have been rejected under 35 U.S.C. §102(b) as anticipated by U.S. 4,703,756 (hereinafter "Gough"). "A rejection for anticipation under section 102 requires that each and every limitation of the claimed invention be disclosed in a single prior art reference." See, e.g., In re Paulsen, 31 U.S.P.Q.2d 1671 (Fed. Cir. 1994). Gough does not disclose every element of Applicants' claims, and therefore cannot be considered as an anticipating reference under 35 U.S.C. § 102(b).

Pending Claim 29 has been amended to recite an integrated system for monitoring and treating diabetes comprising, *inter alia*, a continuous glucose sensor, a receiver, a medicament delivery device, and a single point glucose monitor operably connectable with the receiver, "wherein the receiver is configured and arranged to calculate an amount of a medicament to delivery via the medicament delivery device using a glucose concentration measured by the single point glucose monitor." Gough discloses neither a single point monitor operably connectable with the receiver nor a system "wherein the receiver comprises programming configured to calculate an amount of a medicament to delivery via the medicament delivery device using a glucose concentration measured by the single point glucose monitor" as presently claimed. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejection - 35 U.S.C. § 103(a) - Lord et al. in view of Connelly et al.

Claims 18 and 21 have been rejected under 35 U.S.C. §103(a) as obvious over Lord et al. in view of U.S. Patent No. 6,589,229 ("Connelly et al."). It is well settled that the Examiner "bears the initial burden of presenting a prima facie case of unpatentability..." In re Sullivan, 498 F.3d 1345 (Fed. Cir. 2007). Until the Examiner has established a prima facie case of obviousness, the Applicant need not present arguments or evidence of non-obviousness. To establish a prima facie case of obviousness, the Examiner must establish at least three elements. First, the prior art reference (or references when combined) must teach or suggest all of the claim limitations: "All words in a claim must be considered in judging the patentability of that claim against the prior art." In re Wilson, 424 F.2d 1382, 165 U.S.P.Q. 494, 496 (CCPA 1970); see also M.P.E.P. § 2143.03. Second, there must be a reasonable expectation of success. In re Merck & Co., Inc., 800 F.2d 1091 (Fed. Cir. 1986); see also M.P.E.P. § 2143.02. And finally,

: 10/789,359

Filed

: February 26, 2004

the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious. Merely establishing that the claimed elements can be found in the prior art is not sufficient to establish a *prima facie* case of obviousness:

As is clear from cases such as <u>Adams</u>, a patent composed of several elements is <u>not</u> proved obvious merely by demonstrating that each of its elements was, independently, known in the prior art. KSR Int'l Co. v. Teleflex Inc., 127 S. Ct. 1727, 1741 (2007) (emphasis added).

Instead, the Court has made clear that the Examiner must establish a reason one of skill in the art would have combined the elements of the prior art, and that such reason must be more than a conclusory statement that it would have been obvious.

Often, it will be necessary for a court to look to interrelated teachings of multiple patents; the effects of demands known to the design community or present in the marketplace; and the background knowledge possessed by a person having ordinary skill in the art, all in order to determine whether there was an apparent reason to combine the known elements in the fashion claimed by the patent at issue. To facilitate review, this analysis should be made explicit. See In re Kahn, 441 F.3d 977, 988 (C.A.Fed.2006) ("[R]ejections on obviousness grounds cannot be sustained by mere conclusory statements; instead, there must be some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness"). KSR Int'l Co. v. Teleflex Inc., 127 S. Ct. 1727, 1740-1741 (2007).

Applicants respectfully submit that the pending claims as amended are not obvious under 35 U.S.C. § 103(a) for the reasons detailed below.

Claims 18 and 21 depend from Claim 15. As discussed above, Lord does not teach or suggest an integrated system comprising "a medicament delivery device, wherein the delivery device is physically detachably connectable to the receiver" as presently claimed. Connelly et al. teaches that it is known to practice daily insulin therapy with syringes and/or pumps, but, as in Lord, a "delivery device [that is] physically detachably connectable to the receiver" is neither taught nor suggested.

Because Lord et al. does not teach or suggest all the limitations of pending Claims 18 and 21, and because Connelly et al. does not include any teaching overcoming the deficiencies of Lord, a *prima facie* case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

: 10/789,359

Filed

February 26, 2004

Claim Rejection - 35 U.S.C. § 103(a) - Lord et al. in view of Mitragotri et al.

Claim 19 has been rejected under 35 U.S.C. §103(a) as obvious over Lord et al. in view of U.S. Patent No. 5,814,599 ("Mitragotri et al."). As discussed above, to establish a *prima facie* case of obviousness, the Examiner must establish at least three elements: the prior art reference (or references when combined) must teach or suggest all of the claim limitations; there must be a reasonable expectation of success; and the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious.

Claim 19 depends from Claim 15. As discussed above, Lord et al. does not teach or suggest an integrated system comprising "a medicament delivery device, wherein the delivery device is physically detachably connectable to the receiver." Mitragotri et al. teaches the use of a transdermal patch to administer insulin to a diabetic patient, but, as in Lord et al., a "delivery device [that is] physically detachably connectable to the receiver" is neither taught nor suggested.

Because Lord et al. does not teach or suggest all the limitations of pending Claim 19, and because Mitragotri et al. does not include any teaching overcoming the deficiencies of Lord, a *prima facie* case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejection - 35 U.S.C. § 103(a) - Lord et al. in view of Mullins et al.

Claim 20 and 44 have been rejected under 35 U.S.C. §103(a) as obvious over Lord et al. in view of U.S. Patent No. 3,219,533 ("Mullins et al."). As discussed above, to establish a *prima facie* case of obviousness, the Examiner must establish at least three elements: the prior art reference (or references when combined) must teach or suggest all of the claim limitations; there must be a reasonable expectation of success; and the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious.

Claim 20 depends from Claim 15. As discussed above, Lord et al. does not teach or suggest an integrated system comprising "a medicament delivery device, wherein the delivery device is physically detachably connectable to the receiver." Mullins et al. teaches an inhaler that sprays insulin for treating diabetes, but, as in Lord et al., a "delivery device [that is] physically detachably connectable to the receiver" is neither taught nor suggested.

10/789,359

Filed

February 26, 2004

Claim 44 depends from Claim 32. As discussed above, Lord et al. does not teach or suggest an integrated system "configured to validate the medicament delivery instructions responsive to data obtained from a single point glucose monitor operably connectable to the receiver" as presently claimed. Mullins et al. teaches an inhaler that sprays insulin for treating diabetes, but, as in Lord et al., an integrated system "configured to validate the medicament delivery instructions responsive to data obtained from a single point glucose monitor operably connectable to the receiver" is neither taught nor suggested.

Because Lord et al. does not teach or suggest all the limitations of pending Claims 20 and 44, and because Mullins et al. does not include any teaching overcoming the deficiencies of Lord, a prima facie case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejection - 35 U.S.C. § 103(a) - Lord et al. in view of Dionne et al.

Claim 25 and 37-39 have been rejected under 35 U.S.C. §103(a) as obvious over Lord et al. in view of U.S. Patent No. 6,083,523 to Dionne et al ("Dionne."). As discussed above, to establish a prima facie case of obviousness, the Examiner must establish at least three elements: the prior art reference (or references when combined) must teach or suggest all of the claim limitations; there must be a reasonable expectation of success; and the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious. If a proposed modification would render the prior art invention being modified unsatisfactory for its intended purpose, then there is no suggestion or motivation to make the proposed modification. See M.P.E.P. § 2143.01 V. See also, In re Gordon, 733 F.2d 900, 902 (Fed. Cir. 1984) (stating that "The mere fact that the prior art could be so modified would not have made the modification" obvious unless the prior art suggested the desirability of the modification.").

Pending Claim 25 recites an integrated system comprising, inter alia, a glucose sensor, a receiver, and a cell transplantation device, "wherein the receiver comprises a processor, and wherein the processor comprises programming configured to determine a host's metabolic response to cell transplantation by evaluating the sensor data points substantially corresponding to delivery or release of cells from the cell transplantation device" Lord discloses a closed loop infusion pump system, however does not disclose a "processor comprises programming

: 10/789.359

Filed

.

February 26, 2004

configured to determine a host's metabolic response to cell transplantation by evaluating the sensor data points substantially corresponding to delivery or release of cells from the cell transplantation device." Dionne discloses an implantable immunoisolatory vehicle for delivery of selected therapeutic products, including beta islet cells. Examiner asserted that it would have been obvious to modify the device of Lord to include the delivery of beta islet cells to a patient as taught by Dionne; however, such a modification would render Lord unsuitable for its intended purpose. Column 2, lines 65 – column 3, lines 37 describe the requirements for cell transplantation, namely, that cells (such as beta islet cells) can be transplanted within a physical barrier which would allow diffusion of nutrients, waste materials, and secreted products, but block the cellular and molecular effectors of immunological rejection. Namely, the release of beta islet cells via the infusion pump of Lord (rather than the transplantation of the cells within an immunomodulatory vehicle, as taught by Dionne) would cause the cells to be rejected by immunological attack (see col. 4, line 1 of Dionne), thus the cells would not be able to perform their intended function. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejection - 35 U.S.C. § 103(a) - Lord et al. in view of Mann et al.

Claims 47 has been rejected under 35 U.S.C. §103(a) as obvious over Lord et al. in view of U.S. Patent No. 7,025,743 ("Mann et al."). As discussed above, to establish a *prima facie* case of obviousness, the Examiner must establish at least three elements: the prior art reference (or references when combined) must teach or suggest all of the claim limitations; there must be a reasonable expectation of success; and the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious.

Claim 47 depends from Claim 32. As discussed above, Lord et al. does not teach or suggest an integrated system "configured to validate the medicament delivery instructions responsive to data obtained from a single point glucose monitor operably connectable to the receiver" as presently claimed. Mann teaches an inhaler that sprays insulin for treating diabetes, but, as in Lord, an integrated system "configured to validate the medicament delivery instructions responsive to data obtained from a single point glucose monitor operably connectable to the receiver" is neither taught nor suggested.

:

10/789,359

Filed

February 26, 2004

Because Lord does not teach or suggest all the limitations of pending Claim 47, and because Mann does not include any teaching overcoming the deficiencies of Lord, a *prima facie* case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejection - 35 U.S.C. § 103(a) - Lord et al. in view of Goode, Jr. et al.

Claims 48 has been rejected under 35 U.S.C. §103(a) as obvious over Lord et al. in view of U.S. Patent Publication No. 2005/0027180 to Goode et al. ("Goode"). As discussed above, to establish a *prima facie* case of obviousness, the Examiner must establish at least three elements: the prior art reference (or references when combined) must teach or suggest all of the claim limitations; there must be a reasonable expectation of success; and the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious.

Claim 48 depends from Claim 34. As discussed above, Lord does not disclose an integrated system comprising a processor comprising programming "configured to determine a host's metabolic response to the medicament delivery by evaluating the sensor data points substantially corresponding to delivery and release of the medicament delivery for the first time period, wherein the processor comprises programming configured to estimate glucose values responsive to glucose sensor data and host's metabolic response." Mann teaches a variety of algorithms for processing sensor analyte data, but, as in Lord, an integrated system comprising a processor comprising programming "configured to determine a host's metabolic response to the medicament delivery by evaluating the sensor data points substantially corresponding to delivery and release of the medicament delivery for the first time period, wherein the processor comprises programming configured to estimate glucose values responsive to glucose sensor data and host's metabolic response." is neither taught nor suggested.

Because Lord does not teach or suggest all the limitations of pending Claim 48, and because Goode does not include any teaching overcoming the deficiencies of Lord, a *prima facie* case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

10/789,359

Filed

February 26, 2004

No Disclaimers or Disavowals

Although the present communication may include alterations to the application or claims, or characterizations of claim scope or referenced art, the Applicants are not conceding in this application that previously pending claims are not patentable over the cited references. Rather, any alterations or characterizations are being made to facilitate expeditious prosecution of this application. The Applicants reserve the right to pursue at a later date any previously pending or other broader or narrower claims that capture any subject matter supported by the present disclosure, including subject matter found to be specifically disclaimed herein or by any prior prosecution. Accordingly, reviewers of this or any parent, child or related prosecution history shall not reasonably infer that the Applicants have made any disclaimers or disavowals of any subject matter supported by the present application.

Co-Pending Applications of Assignee

Applicant wishes to draw the Examiner's attention to the following co-pending applications of the present application's assignee.

Serial Number	Title	Filed
09/916386	MEMBRANE FOR USE WITH IMPLANTABLE DEVICES	7/27/2001
10/768889	MEMBRANE FOR USE WITH IMPLANTABLE DEVICES	1/29/2004
11/021162	SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICES	12/22/2004
08/811473	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	3/4/1997
09/447227	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	11/22/1999
11/021046	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	12/22/2004
10/153356	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	5/22/2002
11/404418	SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS	4/14/2006
11/280672	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	11/16/2005

11/280102	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE	11/16/2005
	SENSORS	
10/646333	OPTIMIZED SENSOR GEOMETRY FOR AN	8/22/2003
	IMPLANTABLE GLUCOSE SENSOR	
11/416058	OPTIMIZED SENSOR GEOMETRY FOR AN	5/2/2006
	IMPLANTABLE GLUCOSE SENSOR	
11/416346	OPTIMIZED SENSOR GEOMETRY FOR AN	5/2/2006
	IMPLANTABLE GLUCOSE SENSOR	
11/415631	OPTIMIZED SENSOR GEOMETRY FOR AN	5/2/2006
	IMPLANTABLE GLUCOSE SENSOR	
10/647065	POROUS MEMBRANES FOR USE WITH	8/22/2003
	IMPLANTABLE DEVICES	
10/842716	BIOINTERFACE MEMBRANES INCORPORATING	5/10/2004
	BIOACTIVE AGENTS	
11/416825	BIOINTERFACE MEMBRANES INCORPORATING	5/3/2006
	BIOACTIVE AGENTS	
11/416734	BIOINTERFACE MEMBRANES INCORPORATING	5/3/2006
	BIOACTIVE AGENTS	
11/654135	POROUS MEMBRANES FOR USE WITH	1/17/2007
	IMPLANTABLE DEVICES	
10/633367	SYSTEM AND METHODS FOR PROCESSING	8/1/2003
	ANALYTE SENSOR DATA	
12/102654	SYSTEM AND METHODS FOR PROCESSING	4/14/2008
	ANALYTE SENSOR DATA	
12/102729	SYSTEM AND METHODS FOR PROCESSING	4/14/2008
	ANALYTE SENSOR DATA	
12/102745	SYSTEM AND METHODS FOR PROCESSING	4/14/2008
	ANALYTE SENSOR DATA	
10/896637	ROLLED ELECTRODE ARRAY AND ITS METHOD	7/21/2004
•	FOR MANUFACTURE	
10/896639	OXYGEN ENHANCING MEMBRANE SYSTEMS	7/21/2004
	FOR IMPLANTABLE DEVICES	
11/410392	OXYGEN ENHANCING MEMBRANE SYSTEMS	4/25/2006
	FOR IMPLANTABLE DEVICES	
11/675063	ANALYTE SENSOR	2/14/2007
11/410555	OXYGEN ENHANCING MEMBRANE SYSTEMS	4/25/2006
IIITEOJJJ	FOR IMPLANTABLE DEVICES	1,20,2000
10/897377	ELECTROCHEMICAL SENSORS INCLUDING	7/21/2004
101021311	ELECTRODE SYSTEMS WITH INCREASED	1,21,200 T
	OXYGEN GENERATION	
10/897312	·	
10/897312	ELECTRODE SYSTEMS FOR ELECTROCHEMICAL	7/21/2004

10/632537	SYSTEM AND METHODS FOR PROCESSING	8/1/2003
11/038340	ANALYTE SENSOR DATA SYSTEM AND METHODS FOR PROCESSING	1/18/2005
11/036340	ANALYTE SENSOR DATA	1/16/2003
12/098359	SYSTEM AND METHODS FOR PROCESSING	4/4/2008
	ANALYTE SENSOR DATA	
12/098353	SYSTEM AND METHODS FOR PROCESSING	4/4/2008
	ANALYTE SENSOR DATA	
12/098627	SYSTEM AND METHODS FOR PROCESSING	4/7/2008
10/633404	ANALYTE SENSOR DATA SYSTEM AND METHODS FOR PROCESSING	8/1/2003
10/633404	ANALYTE SENSOR DATA	8/1/2003
11/865660	SYSTEM AND METHODS FOR PROCESSING	10/1/2007
11/003000	ANALYTE SENSOR DATA	10/1/2007
10/633329	SYSTEM AND METHODS FOR PROCESSING	8/1/2003
	ANALYTE SENSOR DATA	
10/648849	SYSTEMS AND METHODS FOR REPLACING	8/22/2003
	SIGNAL ARTIFACTS IN A GLUCOSE SENSOR	
	DATA STREAM	
11/498410	SYSTEMS AND METHODS FOR REPLACING	8/2/2006
	SIGNAL ARTIFACTS IN A GLUCOSE SENSOR	
11/5/2015	DATA STREAM	6/14/2007
11/763215	SILICONE COMPOSITION FOR BIOCOMPATIBLE MEMBRANE	6/14/2007
11/007920	SIGNAL PROCESSING FOR CONTINUOUS	12/8/2004
	ANALYTE SENSOR	
10/991353	AFFINITY DOMAIN FOR ANALYTE SENSOR	11/16/2004
11/007635	SYSTEMS AND METHODS FOR IMPROVING	12/7/2004
	ELECTROCHEMICAL ANALYTE SENSORS	
10/991966	INTEGRATED RECEIVER FOR CONTINUOUS	11/17/2004
 	ANALYTE SENSOR	
11/055779	BIOINTERFACE MEMBRANE WITH MACRO- AND	2/9/2005
10/102504	MICRO-ARCHITECTURE	4/15/2000
12/103594	BIOINTERFACE WITH MACRO- AND MICRO- ARCHITECTURE	4/15/2008
10/789359	INTEGRATED DELIVERY DEVICE FOR	2/26/2004
10//69339	CONTINUOUS GLUCOSE SENSOR	2/20/2004
11/004561	CALIBRATION TECHNIQUES FOR A	12/3/2004
, ~ ~ ~ ~ ~ ~	CONTINUOUS ANALYTE SENSOR	
11/543707	DUAL ELECTRODE SYSTEM FOR A	10/4/2006
	CONTINUOUS ANALYTE SENSOR	<u> </u>
11/543539	DUAL ELECTRODE SYSTEM FOR A	10/4/2006
	CONTINUOUS ANALYTE SENSOR	

11/543683	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/4/2006
12/111062	DUAL ELECTRODE SYSTEM FOR A	4/28/2008
12/111002	CONTINUOUS ANALYTE SENSOR	4/20/2000
11/543734	DUAL ELECTRODE SYSTEM FOR A	10/4/2006
	CONTINUOUS ANALYTE SENSOR	
11/034344	IMPLANTABLE DEVICE WITH IMPROVED RADIO	1/11/2005
	FREQUENCY CAPABILITIES	
11/034343	COMPOSITE MATERIAL FOR IMPLANTABLE	1/11/2005
10/020010	DEVICE	5/0/0004
10/838912	IMPLANTABLE ANALYTE SENSOR	5/3/2004
10/838909	IMPLANTABLE ANALYTE SENSOR	5/3/2004
10/838658	IMPLANTABLE ANALYTE SENSOR	5/3/2004
10/885476	SYSTEMS AND METHODS FOR MANUFACTURE	7/6/2004
	OF AN ANALYTE-MEASURING DEVICE	
11/088860	INCLUDING A MEMBRANE SYSTEM	2/12/2005
11/077759	TRANSCUTANEOUS MEDICAL DEVICE WITH VARIABLE STIFFNESS	3/10/2005
12/105227	TRANSCUTANEOUS MEDICAL DEVICE WITH	4/17/2008
12/103227	VARIABLE STIFFNESS	4/17/2000
11/077715	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077883	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077739	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077740	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077765	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/078230	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/078232	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077713	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077693	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/077714	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
12/101810	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2008
12/101790	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2008
11/077763	METHOD AND SYSTEMS FOR INSERTING A	3/10/2005
11/925603	TRANSCUTANEOUS ANALYTE SENSOR TRANSCUTANEOUS ANALYTE SENSOR	10/26/2007
11/923603	TRANSCUTANEOUS ANALYTE SENSOR TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
11/07/043	TRANSCUTANEOUS ANALYTE SENSOR TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
12/101806	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2008
11/360262	ANALYTE SENSOR	2/22/2006
11/300202	THE STREET	212212000

10/789,359 February 26, 2004 Appl. No. Filed

11/411656	ANALYTE SENSOR	4/26/2006
11/360299	ANALYTE SENSOR	2/22/2006
11/439630	ANALYTE SENSOR	5/23/2006
11/373628	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA FOR SENSOR CALIBRATION	3/9/2006
11/404929	ANALYTE SENSING BIOINTERFACE	4/14/2006
11/335879	CELLULOSIC-BASED INTERFERENCE DOMAIN FOR AN ANALYTE SENSOR	1/18/2006
11/654140	MEMBRANES FOR AN ANALYTE SENSOR	1/17/2007
11/413238	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	4/28/2006
11/157746	TRANSCUTANEOUS ANALYTE SENSOR	6/21/2005
11/157365	TRANSCUTANEOUS ANALYTE SENSOR	6/21/2005
11/158227	TRANSCUTANEOUS ANALYTE SENSOR	6/21/2005
11/334876	TRANSCUTANEOUS ANALYTE SENSOR	1/18/2006
11/360252	ANALYTE SENSOR	2/22/2006
11/360819	ANALYTE SENSOR	2/22/2006
11/333837	LOW OXYGEN IN VIVO ANALYTE SENSOR	1/17/2006
12/113724	LOW OXYGEN IN VIVO ANALYTE SENSOR	5/1/2008
12/113508	LOW OXYGEN IN VIVO ANALYTE SENSOR	5/1/2008
11/404417	SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS	4/14/2006
11/360250	ANALYTE SENSOR	2/22/2006
11/842151	ANALYTE SENSOR	8/21/2007
11/543396	ANALYTE SENSOR	10/4/2006
11/543490	ANALYTE SENSOR	10/4/2006
11/543404	ANALYTE SENSOR	10/4/2006
11/691426	ANALYTE SENSOR	3/26/2007
11/691432	ANALYTE SENSOR	3/26/2007
11/691424	ANALYTE SENSOR	3/26/2007
11/691466	ANALYTE SENSOR	3/26/2007
11/750907	ANALYTE SENSORS HAVING A SIGNAL-TO- NOISE RATIO SUBSTANTIALLY UNAFFECTED BY NON-CONSTANT NOISE	5/18/2007
11/855101	TRANSCUTANEOUS ANALYTE SENSOR	9/13/2007
12/055098	ANALYTE SENSOR	3/25/2008

:

12/054953	ANALYTE SENSOR	3/25/2008
11/515443	SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	9/1/2006
11/762638	SYSTEMS AND METHODS FOR REPLACING SIGNAL DATA ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM	6/13/2007
11/692154	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	3/27/2007
11/865572	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/1/2007
11/681145	ANALYTE SENSOR	3/1/2007
11/503367	ANALYTE SENSOR	8/10/2006
11/690752	TRANSCUTANEOUS ANALYTE SENSOR	3/23/2007
11/734184	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2007
11/734203	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2007
11/734178	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2007
11/445792	ANALYTE SENSOR	6/1/2006
12/055114	ANALYTE SENSOR	3/25/2008
12/055078	ANALYTE SENSOR	3/25/2008
12/055149	ANALYTE SENSOR	3/25/2008
12/055203	ANALYTE SENSOR	3/25/2008
12/055227	ANALYTE SENSOR	3/25/2008
11/546157	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	10/10/2006
10/846150	ANALYTE MEASURING DEVICE	5/14/2004
12/037830	ANALYTE MEASURING DEVICE	2/26/2008
12/037812	ANALYTE MEASURING DEVICE	2/26/2008
09/489588	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	1/21/2000
10/657843	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	9/9/2003
09/636369	SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES	8/11/2000
09/916858	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	7/27/2001
11/039269	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	1/19/2005
07/216683	BIOLOGICAL FLUID MEASURING DEVICE	7/7/1988
	·····	

10/789,359

Filed

February 26, 2004

Conclusion

In view of the foregoing amendments and remarks, it is respectfully submitted that the present application is in condition for allowance. Should the Examiner have any remaining concerns that might prevent the prompt allowance of the application, the Examiner is respectfully invited to contact the undersigned at the telephone number below.

Please charge any additional fees, including any fees for additional extension of time, or credit overpayment to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

By:

Rose M. Thiessen

Registration No. 40,202

Attorney of Record

Customer No. 20,995

(619) 235-8550

AMEND

5421545_3 052808