برخی توزیعهای احتمال

فصل پنجم

متغير تصادف برنولي

$$S = \{e_1, e_2\}$$

آزمایش برنولی: آزمایش تصادفی با دو برآمد ممکن

برآمدی که مورد بررسی است را پیروزی و برآمد دیگر را شکست در نظر می گیریم

احتمال پیروزی $1 \leq p \leq 1$ و احتمال شکست q = 1 - p است

مثال: پرتاب یک سکه، سالم یا معیوب بودن یک قطعه، اتصال یا عدم اتصال یک مدار، آفتابی یا ابری بودن هوا و ...

متغیر تصادفی برنولی: اگر نتیجه ی آزمایش پیروزی بود X=0 در غیر این صورت X=0 تابع جرم احتمال

$$f_X(x) = p^x q^{1-x}$$
 $x = 0, 1$

متغیرهای تصادفی دوجملهای، هندسی و دوجملهایٔ مثلفیٰ نشگاه رازی

متغیر تصادفی دوجملهای: یک آزمایش برنولی در شرایط یکسان و به طور مستقل n بار تکرار می شود و متغیر تصادفی X بیانگر تعداد تعداد پیروزی ها است.

$$f_X(x) = \binom{n}{x} p^x q^{n-x} \quad x = 0, 1, \dots, n$$

متغیر تصادفی هندسی: یک آزمایش برنولی در شرایط یکسان و به طور مستقل آنقدر تکرار می شود تا برای نخستین بار به پیروزی برسیم و X بیانگر تعداد آزمایش های اجرا شده است.

$$f_X(x) = p^r q^{x-1}$$
 $x = 1, 2, ...$

متغیر تصادفی دوجملهای منفی: یک آزمایش برنولی در شرایط یکسان و به طور مستقل آنقدر تکرار می شود تا برای r امین بار به پیروزی برسیم و X بیانگر تعداد آزمایش های اجرا شده است.

$$f_X(x) = {x-1 \choose r-1} p^r q^{x-r} \quad x = r, r+1, \dots$$

متغير تصادفى فوق هندسى

یک جامعه دارای یک ویژگی معین (پیروزی) یک جامعه دارای یک ویژگی معین (پیروزی) و سایر N-M-M عضو باقی مانده فاقد این ویژگی (شکست) هستند. از این جامعه به تصادف و بدون جایگذاری تعداد N-M-M انتخاب می شود و متغیر تصادفی N بیانگر تعداد پیروزی ها (افراد با ویژگی معین در بین اعضای انتخاب شده) است.

$$f_X(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} \quad x = \max(0, n-N+M), \dots, \min(n, M)$$

متغير تصادفى پواسون

یک پیشامد خاص (مانند زمین لرزه، معیوب شدن یک دستگاه، اتصال در یک مدار و 0.0 در امتداد یک پیوستار (زمان یا فضا) با نرخ ثابت و معین $0 > \lambda > 0$ در حال رخ دادن است و متغیر تصادفی X بیانگر تعداد رخدادهای این پیشامد در یک واحد زمان یا فضا است

$$f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 $x = 0, 1, \dots$

متغير تصادفي يكنواخت ونهايى

متغیر تصادفی یکنواخت پیوسته: نقطه ای به تصادف از بازه ی $\mathbb{R} \subset \mathbb{R}$ انتخاب و متغیر تصادفی X بیانگر نقطه ی انتخاب شده است.

$$f_X(x) = \frac{1}{b-a} \quad a < x < b$$

متغیر تصادفی نمایی: طول عمر یک سیستم (قطعهی الکترونیک) ممکن است دارای تابع چگالی احتمال زیر باشد

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \quad x > 0$$

توزيع نرمال

تابع چگالی احتمال یک متغیر تصادفی نرمال با میانگین $0 < \mu < \infty$ و انحراف معیار $\sigma > 0$ به شکل زیر است

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$$

توزيع نرمال استاندارد

توزیع نرمال استاندارد: توزیع نرمال با میانگین صفر و انحراف معیار یک

$$Z = \frac{X - \mu}{\sigma}$$

استاندارسازی یک متغیر تصادفی نرمال غیر استاندارد

تابع توزيع نرمال استاندارد

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

تقریب عددی انتگرال در جدولهای انتهای کتاب یا نرمافزار

عبداله جلیلیان، گروه آمار، دانشگاه رازی

	واريانس	امید ریاضی	تابع جرم/چگالی احتمال	تکیهگاه	توزيع
-	Var(X) = pq	E[X] = p	$f_X(x) = p^x q^{1-x}$	0, 1	برنولی
	Var(X) = npq	E[X] = np	$f_X(x) = \binom{n}{x} p^x q^{n-x}$	$0,1,\ldots,n$	دوجملهای
	$Var(X) = \frac{q}{p^2}$	$E[X] = \frac{1}{p}$	$f_X(x) = pq^{x-1}$	1, 2,	هندسي
	$Var(X) = \frac{rq}{p^2}$	$E[X] = \frac{r}{p}$	$f_X(x) = {x-1 \choose r-1} p^r q^{x-r}$	$r, r+1, \ldots$	دوجملهای منفی
	$X) = \frac{N-n}{N-1} n \frac{M}{N} \frac{N-n}{N}$	$E[X] = n \frac{M}{N}$	$f_X(x) = {M \choose x} {N-M \choose n-x} / {N \choose n}$	$0, 1, \ldots, n$	فوق هندسي
	$Var(X) = \lambda$	$E[X] = \lambda$	$f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$	0, 1, 2,	پواسون
	$Var(X) = \frac{(b-a)^2}{12}$	$E[X] = \frac{a+b}{2}$	3	[a,b]	یکنواخت پیوسته
	$Var(X) = \theta^2$	$E[X] = \theta$	$f_X(x) = \frac{1}{b-a}$ $f_X(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$	$(0,\infty)$	غایی
	$Var(X) = \sigma^2$	$E[X] = \mu$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$(-\infty, \infty)$	نرمال