Algoritmusok és adatszerkezetek I. vizsga, 2015.12.15.

Az eljárásokat és függvényeket megfelelően elnevezett és paraméterezett struktogramok segítségével adjuk meg! A változókat alapértelmezésben a struktogramra vonatkozóan lokálisnak tekintjük.

1. Szemléltessük a <mark>kupacrendezés</mark>t az alábbi tömbre!

< 2; 9; 1; 3; 4; 6 >

Minden lesüllyesztés előtt jelöljük a csúcs mellett egy kis körbe tett sorszámmal, hogy ez a rendezés során a hányadik lesüllyesztés, akkor is, ha az aktuális lesüllyesztés nem mozdítja el a csúcsban lévő kulcsot! Minden valódi lesüllyesztés előtt jelöljük a lesüllyesztés irányát és útvonalát, s utána rajzoljuk újra a fát! (15p)

- 2. Adott a { [(2) 4 ({6} 8 {10})] 12 [14 (16)] } AVL fa. Rajzoljuk le a fát a csúcsok egyensúlyaival együtt! Szemléltessük a minKivesz művelet és az 5 beszúrását, mindkét esetben az eredeti fára! Jelöljük, ha ki kell egyensúlyozni, a kiegyensúlyozás helyét, és a kiegyensúlyozás után is rajzoljuk újra fát! A rajzokon jelöljük a csúcsok egyensúlyait is, a szokásos módon! Rajzoljuk le a hat általános kiegyensúlyozási séma közül azokat, amiket alkalmaztunk! (15p)
- 3. Valósítsuk meg rendezetlen, statikus tömb segítségével az előadásról ismert **PrSor** (elsőbbségi sor) osztályt! Legyen a maxKivesz() függvény futási ideje lineáris, míg a konstruktor, a prSorba(x) eljárás, a max(), a tele_e() és az üres_e() függvény metódusok futási ideje $\Theta(1)$. (Ötlet: A maximum helyét folyamatosan tartsuk nyilván!) (20p)
- **4.** Az L pointer egy FKCL (fejelemes, kétirányú, ciklikus, láncolt lista) fejelemére mutat. A lista nem üres, kezeléséhez felhasználhatók az előadásról ismert Elem2 osztály műveletei. Írjuk meg a MaxVégére(L) eljárást, ami a lista legnagyobb kulcsú elemét a lista végére fűzi! A program a listán csak egyszer menjen végig! $T(L) \in O(hossz(L))$. (15p)
- **5.** Adjuk meg az összefésülő rendezés (merge sort) struktogramját egyszerű láncolt listákra! Adjuk meg a "szétvág" eljárást is, az "összefésül" eljárást és a lista hosszát kiszámító függvényt viszont nem kell részletezni! Mekkora lesz a műveletigény? Röviden indokoljuk állításunkat! (20p)
- **6.** Mondjuk ki az <mark>összehasonlító rendezések műveletigényének alsó korlátjára vonatkozó két alaptétel</mark>t! Bizonyítsuk be a maximális műveletigényre vonatkozót! Mi a jelentősége ezeknek a tételeknek? (15p)

Algoritmusok és adatszerkezetek I. vizsga, 2015.12.22.

Az eljárásokat és függvényeket megfelelően elnevezett és paraméterezett struktogramok segítségével adjuk meg! Ne feledkezzünk meg a referencia paraméterek szükség szerinti jelöléséről sem! A változókat alapértelmezésben a struktogramra vonatkozóan lokálisnak tekintjük.

- 1. A bináris fa fogalmát ismertnek feltételezve, mondjuk ki a kupac definícióját! Szemléltessük az alábbi kupacra a 9, majd az eredmény kupacra a 8 beszúrásának műveletét! < 8; 8; 6; 6; 5; 2; 3; 1; 5; 4 >. Szemléltessük az eredeti kupacra a maxKivesz eljárás kétszeri végrehajtását! Minden művelet után rajzoljuk újra a fát! (15p)
- 2. A bináris fa fogalmát ismertnek feltételezve, definiáljuk a bináris keresőfa fogalmát! Írjuk meg a maxKivesz(t, max) utasítással meghívható, ciklust nem tartalmazó eljárást, ami a t bináris keresőfa maximális kulcsát max-ba másolja, majd a megfelelő csúcsot törli a fából! A felszabaduló memóriát adjuk vissza a szabad területnek! $T(h) \in O(h)$, ahol h = h(t) (15p)
- **3.** A bináris keresőfa fogalmát ismertnek feltételezve, mondjuk ki az AVL fa meghatározásához szükséges definíciókat!

Adott az { [(1) 2 (3 {4})] 6 [(7) 8] } AVL fa. Rajzoljuk le a fát a csúcsok egyensúlyaival együtt! Szemléltessük a 8 törlését és az 5 beszúrását, mindkét esetben az eredeti fára! Jelöljük, ha ki kell egyensúlyozni, a kiegyensúlyozás helyét, és a kiegyensúlyozás után is rajzoljuk újra fát! A rajzokon jelöljük a csúcsok egyensúlyait is, a szokásos módon! Rajzoljuk le a hat általános kiegyensúlyozási séma közül azokat, amiket alkalmaztunk! (20p)

- 4. Az L_1 és L_2 pointerek két egyszerű láncolt listát azonosítanak. Írjuk meg az összefűz (L_1, L_2) eljárást, ami $MT(n) \in \Theta(n)$ és $mT(n) \in \Theta(1)$ $(n = |L_1|)$ műveletigénnyel az L_1 lista után fűzi az L_2 listát! (15p)
- 5. Adjuk meg a beszúró rendezés optimalizált változatának struktogramját (beszúró_rendezés(A[1..n]))! Mi a fő ciklus invariánsa? Adjuk meg a minimális, a maximális és az átlagos műveletigényt! Indokoljuk állításainkat! (20p)
- 6. Tegyük fel, hogy a függvényeink a nemnegatív egész számok halmazáról a nemnegatív valós számok halmazára képeznek, és g is egy ilyen függvény! Adjuk meg a $\Theta(g)$, az O(g) és az $\omega(g)$ függvényhalmazok definícióját! 6.a, Igaz-e, hogy $2^{n+1} \in \Theta(2^n)$ Miért? 6.b, Igaz-e, hogy $2^{2n} \in O(2^n)$. Miért? 6.c, Igaz-e, hogy $2^{2n} \in O(2^n)$.

Név:	Neptun kód:

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.05.

Az eljárásokat és függvényeket megfelelően elnevezett és paraméterezett struktogramok segítségével adjuk meg! Ne feledkezzünk meg a referencia paraméterek szükség szerinti jelöléséről sem! A változókat alapértelmezésben a struktogramra vonatkozóan lokálisnak tekintjük.

- 1. Mi a rendezési feladat fogalma? Mekkora a beszúró rendezés műveletigénye? Szemléltessük a beszúró rendezést (insertion sort) a következő vektorra! < 7; 4; 1; 4; 3; 8; 9 >. Szemléltessük az előbbi vektorra az összefésülő rendezést (mergesort) is! Egyenlőtlen vágás esetén a bal oldali részvektor legyen eggyel rövidebb! Mekkora az összefésülő rendezés műveletigénye? Érdemes-e az előbbi gyors és lassú rendezéseket egyetlen rendezésben egyesíteni? Hogyan? Miért? (20p)
- 2. A d-edfokú B+ fák leveleinek milyen tulajdonságait ismeri? Adott a { [(2 4) 8 (8 10 12) 14 (14 16) 18 (20 22)] 24 [(24 26 28) 30 (30 32)] } negyedfokú B+ fa. Rajzoljuk le a fát! Szemléltessük az előadáson elhangzott algoritmus szerint a 18, a 25 és a 9 beszúrását, mindhárom esetben az eredeti fára! (20p)
- 3. Az L_1, L_2 pointerek egy-egy szigorúan monoton növekvő FKCL (fejelemes, kétirányú, ciklikus, láncolt lista) fejelemére mutatnak. A listák kezeléséhez felhasználhatók az előadásról isnert Elem2 osztály műveletei. Írjuk meg a különbség (L_1, L_2) eljárást, ami az L_1 lista elemei közül törli az L_2 listán is szereplő elemeket! Az L_2 lista változatlan, de az L_1 is szigorúan monoton növekvő marad. Mindkét listán legfeljebb egyszer menjünk végig! A felszabaduló listaelemeket adjuk vissza a szabad területnek! $MT(n_1, n_2) \in O(n_1 + n_2), mT(n_1, n_2) \in O(min(n_1, n_2))$, ahol n_1 az L_1 , n_2 az L_2 lista hossza. (20p)
- 4. A bináris fa fogalmát ismertnek feltételezve, definiáljuk a bináris keresőfa fogalmát! Írjuk meg a beszúr(t,k,s) ciklust nem tartalmazó $T(h) \in O(h)$ hatékonyságú rekurzív eljárást, ami megpróbál beszúrni a t bináris keresőfába egy k kulcsú csúcsot (akkor tudja beszúrni, ha nem talál ilyet), és az s, logikai típusú paraméterben visszaadja, hogy sikeres volt-e a beszúrás! A fa csúcsai Csúcs típusúak, azaz szülő pointert nem tartalmaznak. Igaz-e, hogy a fenti beszúr eljárásra $mT(h) \in \Theta(1)$? Miért? (20p)
- **5.** Bizonyítsuk be a következő állítást! Tetszőleges n csúcsú és h magasságú bináris fára $n-1 \ge h \ge \lfloor \lg n \rfloor$. Mikor lesz h=n-1 és miért? Bizonyítsuk be, hogy majdnem teljes bináris fák esetén a $h=\lfloor \lg n \rfloor$ egyenlőség teljesül! (20p)

Név:	Neptun kód:
------	-------------

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.12.

Az eljárásokat és függvényeket megfelelően elnevezett és paraméterezett struktogramok segítségével adjuk meg! Ne feledkezzünk meg a referencia paraméterek szükség szerinti jelöléséről sem! A változókat alapértelmezésben a struktogramra vonatkozóan lokálisnak tekintjük.

- 1. Írjuk le struktogram formában a gyorsrendezés (quicksort) programját! Szemléltessük a programban megadott szétvág/helyrevisz függvény/eljárás működését a következő vektorra! < 4; 9; 8; 1; 3; 7; 4 >. Mekkora a gyorsrendezés műveletigénye? Érdemes-e a gyorsrendezést és a beszúró rendezést egyetlen rendezésben egyesíteni? Hogyan? Miért? (20p)
- 2. Adott az { [$(1\ 2)\ 3\ (4\ 5)\]\ 6\ [(6\ 7)\ 8\ (8\ 9\ 10)\ 11\ (12\ 13)\ 14\ (14\ 15)\]\ }$ negyedfokú $\fbox{B+ fa}$. Rajzoljuk le a fát! Szemléltessük az ismert algoritmus szerint a 8, a 13 és az 1 törlését, mindhárom esetben az eredeti fára! (20p)
- 3. Az L_1, L_2 pointerek egy-egy monoton növekvő FL (fejelemes, egy-irányú, nemciklikus, láncolt lista) fejelemére mutatnak. Írjuk meg az összefésül (L_1, L_2) eljárást, ami az L_1 lista elemei közé fésüli az L_2 lista elemeit, azaz átfűzi őket rendezett módon az L_1 elemei közé! (Végül egyetlen lépésben az L_1 lista végére fűzi az L_2 listának az eredeti L_1 -belieknél \geq elemeit, ha vannak ilyenek.) Az L_1 lista monoton növekvő marad, L_2 üres lesz. Mindkét listán legfeljebb egyszer menjünk végig! $MT(n_1, n_2) \in O(n_1 + n_2), mT(n_1, n_2) \in O(min(n_1, n_2)),$ ahol n_1 az L_1 , n_2 az L_2 hossza. (20p)
- 4. A bináris fa fogalmát ismertnek feltételezve, definiáljuk a bináris keresőfa fogalmát! Írjuk meg a gykTöröl(t) ciklust nem tartalmazó $T(h) \in O(h)$ hatékonyságú rekurzív eljárást, ami a t nemüres bináris keresőfából törli a gyökércsúcsban található kulcsot a megfelelő csúccsal együtt! (Nem biztos, hogy a ténylegesen törölt csúcs t gyökércsúcsa.) A felhasznált eljárások, függvények kódját is részletezzük! A felszabaduló memóriát adjuk vissza a szabad területnek! A fa csúcsai Csúcs típusúak, azaz szülő pointert nem tartalmaznak. Igaz-e, hogy a gykTöröl eljárásra $mT(h) \in \Theta(1)$? Miért? (20p)
- **5.** Bizonyítsuk be a következő állítást! Tetszőleges n csúcsú nemüres kiegyensúlyozott bináris fa h magasságára $h \leq 1,45 \lg n$. (Elég a bizonyítás vázlata: az $\langle n_h \rangle$ és az $\langle F_h \rangle$ sorozatok jelentése és megadása, összefüggés a két sorozat között, n-re a kezdeti és a végső alsó becslés, ebből pedig h-ra felső becslés.) (20p)

Név:	Neptun kód:
1 1 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	repean near

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.19.

- 1. Egy bináris fa mikor szigorúan bináris? Mikor teljes? Mikor majdnem teljes? Ez utóbbi mikor balra tömörített, és mikor kupac? Szemléltessük az alábbi vektorban ábrázolt kupacra a 7, majd az eredmény kupacra a 8 beszúrásának műveletét! (7; 5; 7; 5; 3; 4; 6; 2; 1; 2). Szemléltessük az eredeti kupacra a maxKivesz eljárás végrehajtását! Mindkét beszúrás és a maxKivesz végrehajtása után is rajzoljuk újra a fát! (20p)
- 2. A bináris keresőfákat ismertnek feltételezve, mondjuk ki az AVL fa meghatározásához szükséges definíciókat! Rajzoljuk le a következő AVL fát a csúcsok egyensúlyaival együtt! { [({1} 2 {3}) 5 (6)] 7 [8 (9)] } Szemléltessük a 4 beszúrását és a 7 törlését, mindkét esetben az eredeti fára! Jelöljük, ha ki kell egyensúlyozni, a kiegyensúlyozás helyét, és a kiegyensúlyozás után is rajzoljuk újra fát! A rajzokon jelöljük a csúcsok egyensúlyait is, a szokásos módon! Rajzoljuk le a hat általános kiegyensúlyozási séma közül azokat, amiket alkalmaztunk! (20p)
- 3. Egy láncolt lista mikor egyszerű? Az L pointer egy nemüres, egyszerű lista első elemére mutat. Írjuk meg a szétoszt (L, L_1, L_2) eljárást, ami L első elemét a helyén hagyja, míg a megfelelő listaelemek átfűzésével a többi, az elsőnél kisebb-egyenlő kulcsú elemből az L_1 , a nagyobb kulcsú elemekből pedig az L_2 listát építi fel. Az L lista végül egyelemű lesz. Az L_1 és L_2 egyszerű listákban az elemek sorrendje tetszőleges, akár az eredeti sorrendjük fordítottja is lehet (a program így a legegyszerűbb). $T(n) \in \Theta(n)$, ahol n az L lista eredeti hossza. A program az L listát csak egyszer dolgozza fel! (20p)
- 4. A bináris fa fogalmát ismertnek feltételezve, mit értünk a bináris keresőfa alatt? Adott a $\mathbf{gykT\"{o}r\"{o}l}(f)$, $T(h(f)) \in O(h(f))$ hatékonyságú eljárás, ami az f nemüres bináris keresőfából törli a gyökércsúcsban található kulcsot a megfelelő csúccsal együtt. (Ezt nem kell megírni.) Ennek segítségével írjuk meg a $t\"{o}r\"{o}l(t,k,s)$ ciklust nem tartalmazó szintén $T(h(t)) \in O(h(t))$ hatékonyságú rekurzív eljárást, ami az s, logikai típusú paraméterben visszaadja, hogy talált-e a t bináris keresőfában k kulcsú csúcsot, és ha talált, a kulcsot és a megfelelő csúcsot törli a fából. A fát kizárólag a gyk $T\"{o}r\"{o}l(f)$ eljárás segítségével szabad módosítani. A fa csúcsai Csúcs típusúak, azaz szülő pointert nem tartalmaznak. (20p)
- 5. Adjuk meg a **kupacrendezés** (A[1..n]) és segédeljárásai struktogramjait! Igaz-e, hogy $(MT(n)) \in (\Theta(n \lg n))$? Miért? Igaz-e, hogy $(mT(n)) \in (\Theta(n))$? Miért? (20p)

Név:	Neptun kód:
	reputit Rod

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.21.

- 1. Egy bináris fa mikor szigorúan bináris? Mikor teljes? Mikor majdnem teljes? Ez utóbbi mikor balra tömörített, és mikor kupac? Szemléltessük a kupacrendezést a következő tömbre! $\langle 3; 9; 8; 2; 4; 6; 7; 5 \rangle$ Minden lesüllyesztés előtt jelöljük a csúcs mellett egy kis körbe tett sorszámmal, hogy ez a rendezés során a hányadik lesüllyesztés; akkor is, ha az aktuális lesüllyesztés nem mozdítja el a csúcsban lévő kulcsot! Minden valódi lesüllyesztés előtt jelöljük a lesüllyesztés irányát és útvonalát, s utána rajzoljuk újra a fát! A szemléltetést elég addig a pillantig elvégezni, amíg a vektor utolsó három eleme a végső helyére kerül. (20p)
- 2. A bináris fákat ismertnek feltételezve, mondjuk ki az AVL fa meghatározásához szükséges definíciókat! Rajzoljuk le a következő AVL fát a csúcsok egyensúlyaival együtt! { [1 (2)] 4 [(5) 6 ({7} 8)] } Szemléltessük a 3 beszúrását és a 4 törlését, mindkét esetben az eredeti fára! Jelöljük, ha ki kell egyensúlyozni, a kiegyensúlyozás helyét, és a kiegyensúlyozás után is rajzoljuk újra fát! A rajzokon jelöljük a csúcsok egyensúlyait is, a szokásos módon! Rajzoljuk le a hat általános kiegyensúlyozási séma közül azokat, amiket alkalmaztunk! (20p)
- **3.** Az A[1..m] tömb első n elemében egy bináris kupacot tárolunk $(m > 0 \land 0 \le n \le m)$.

Írjuk meg a **kupacba**(A[1..m], n, x) függvényt, ami beteszi a kupacba x-et! Akkor ad vissza **igaz** logikai értéket, ha a művelet sikeres volt. Próbáljunk meg minél hatékonyabb algoritmust írni! Mekkora a műveletigénye? Miért? (20p)

4. L_1 és L_2 is egy-egy fejelemes, egyirányú, nemciklikus láncolt lista fejelemére mutató pointer. Az L_2 lista kezdetben üres.

Írjuk meg a **páratlan_páros** (L_1, L_2) eljárást, ami az L_1 lista, eredetileg páros sorszámú elemeit **átfűzi** az L_2 listába! Az L_1 listában tehát, az eredetileg páratlan sorszámú elemei maradnak. A program minden listaelemet csak egyszer dolgozzon fel! $T(n) \in \Theta(n)$. A listaelemeknek csak a mut (mutató) mezőjéhez férünk hozzá. (20p)

5. Adjuk meg az összefésülő rendezés (A[1..n]) és segédeljárásai struktogramjait! Igaz-e, hogy $MT(n) \in \Theta(n \lg n)$? Miért? (20p)

Vév:	Neptun kód:

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.26.

1. (1.a) Hozzuk postfix formára az "5+8*(4/(9-7))-6*2/3" kifejezést, és (1.b) értékeljük ki az "58497-/*+62*3/-" lengyel formát, a gyakorlatról ismert algoritmusokat szemléltetve! (Feltesszük, hogy mindegyik szám egyjegyű, és mindegyik operátornak két operandusa van.) A vermet minden egyes kipakolás után újra kell lerajzolni.

Mekkora a lengyel forma kiértékelő algoritmus műveletigénye, ha mindegyik operandus egyjegyű szám, és mindegyik operatornak két operandusa van? Miért? (20p)

- 2. Milyen magas egy B+ fa? Milyen kapcsolatban áll ez a keresés, a beszúrás és a törlés műveletigényével? Adott az { [(1 2) 3 (4 5)] 6 [(7 8) 9 (9 10) 11 (11 12 13) 14 (15 16)] } negyedfokú B+ fa. Rajzoljuk le a fát! Szemléltessük az előadásról ismert algoritmus szerint a 11, a 15 és a 4 törlését, mindhárom esetben az eredeti fára! (20p)
- **3.** Az A[1..m] tömb első n elemében egy bináris kupacot tárolunk $(m > 0 \land 0 \le n \le m)$.

Írjuk meg a $\mathbf{maxKivesz}(A[1..m], n, x)$ függvényt, ami kiveszi a kupacból a legnagyobb elemét, és x-be teszi! Akkor ad vissza **igaz** logikai értéket, ha a művelet sikeres volt. Próbáljunk meg minél hatékonyabb algoritmust írni! Mekkora a műveletigénye? Miért? (20p)

4. Az L_1 pointer egy nemüres, fejelemes láncolt lista fejelemére mutat, az L_2 pointer pedig egy egyszerű láncolt lista elejére ($L_2 = \emptyset$ is lehet).

Írjuk meg a $\max \text{Atfűz}(L_1, L_2)$ eljárást, ami az L_1 lista legnagyobb kulcsú elemét átfűzi az L_2 lista elejére! A program az L_1 listán csak egyszer menjen végig! $T(n) \in \Theta(n)$, ahol n az L_1 lista hossza. A listaelemeknek a kulcs és a mut (mutató) mezőkön kívül más részei is lehetnek, de ezeket nem ismerjük. (A listaelemeket tehát nem tudjuk lemásolni.) (20p)

5. A bináris fákat ismertnek feltételezve, mondjuk ki az AVL fa meghatározásához szükséges definíciókat! Az AVL fa mérete és magassága között milyen összefüggést ismer? Mi ennek a jelentősége az AVL fa műveletei szempontjából? Melyek ezek a műveletek?

Adjuk meg az előadásról ismert $\mathbf{AVLbeszúr}(t,k,d)$ rekurzív eljárás struktogramját, ami a t AVL fába beszúrja a k kulcsot, a d logikai típusú paraméterben pedig visszadja, hogy a művelet hatására nőtt-e a fa magassága! A **balRészfaNőtt**(t,d) és a **jobbRészfaNőtt**(t,d) segédeljárásokat nem kell részletezni. (20p)