Written (LaTeX) Assignment 0

Alyssa Sawyer, HMC'26 Collaborators: N/A

Due Friday, September 12 on Canvas

Solutions/Proofs.

- 1. We will exhibit and verify a homeomorphism between $S^1 \{(-1,0)\}$ and \mathbb{R} .
 - a. Our homeomorphism is as follows: $f(x) = \frac{y}{x+1}$.
 - b. This is a homeomorphism. We will show that by first showing it is continuous and then proving that it has a continuous inverse.
 - i. It is clearly continuous since $x \neq -1$ is in $S^1 \{(-1,0)\}$ and that is the only possible value that could cause the function to not be continuous.
 - ii. Next, we can solve for the inverse by switching the variables and solving for y, which gives us $f^{-1}(x) = (-\frac{1-\sqrt{1+4x}}{2}, -\frac{1-\sqrt{1+4x}}{2})$. This function is also continuous, as desired.
- 2. Now, we will prove that $\{(x,y,z) \in \mathbb{R}^3 \mid x^2+y^2+z^2=1\}-\{(0,0,-1)\}$ is homeomorphic to \mathbb{R}^2 .
- 3. §2 #4. Let $A \subset X$; suppose $r: X \to A$ is a continuous map such that r(a) = a for each $a \in A$. (The map r is called a *retraction* of X onto A.) If $a_0 \in A$, show that $r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ is surjective.