法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

神经序列模型I

主讲人: 史兴 07/05/2017

提纲

- □ 机器学习回顾
- □神经网络基础
- □小试牛刀
- □ NNLM

□ Word2Vec

- □ 模型
 - - □ linear model 线性模型

$$\widehat{y}_i = \sum_{j=1}^d w_j x_{ij} \ x_i \in R^d$$

■ 参数 parameter

$$\square \Theta = \{w_j | j = 1, \dots, d\}$$

- 超参数 hyperparameter
 - \Box d

- □ 数据
 - Training Data 训练集
 - $\Box T = \{(x_i, y_i) | i = 1, ..., N\}$
 - Development/Validation Data 验证集
 - □ 防止过拟合 (overfitting)
 - Test Data 测试集
 - Train Data <> Dev Data <> Test Data 五不重合
- □ 正确流程(以线性模型为例)
 - 1. 选择超参数d
 - 2. 在训练集上训练,得到参数Θ
 - 3. 在验证集上进行预测,回到步骤1
 - 4. 选出最佳超参数,重新训练,得到最优模型
 - 5. 用最优模型在测试集上进行测试

- □ 正确流程(以考试为例为例)
 - Train/Dev/Test = 五年模拟/三年高考/当年高考
 - 超参数:做题的顺序
 - 正确流程
 - 1. 选择一种做题的顺序d
 - 2. 做一遍"五年模拟"训练一下自己
 - 3. 在"三年高考"上测试一下自己,回到步骤1
 - 1. 如果没有这一步?
 - 2. 如果使用"五年模拟"来测试?
 - 4. 用最佳顺序在五年模拟上重新训练一遍自己。
 - 5. 参加当年高考
 - 1. 如果提前搞到了高考试题?

- □目标函数

 - $L(\Theta, T)$: Loss function
 - □ 衡量模型对训练集的拟合度
 - \square Square Loss: $L(\Theta, T) = \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
 - \blacksquare $\Omega(\Theta)$: Regularization
 - □ 衡量模型的复杂度 (死记硬背VS解题规律)
 - \square L2 Norm: $\Omega(\Theta) = \sum_{j=1}^{d} w_j^2$

- □优化目标函数

 - Batch Gradient Descent 梯度下降法
 - 1. 初始化参数
 - Θ = uniform(d)
 - 2. 计算偏导数

$$\nabla \Theta = \frac{\partial \text{Obj}(\Theta, T)}{\partial \Theta} = \frac{\partial}{\partial \Theta} \sum_{i=1}^{N} Obj(\Theta, x_i, y_i)$$

- 3. 更新参数
- 4. 更新learning rate η, 返回2, 直到收敛

□ Supervised Learning基本框架

- □优化目标函数
 - Batch Gradient Descent
 - □ 必须遍历所有的训练数据才更新一次
 - Stochastic Gradient Descent 随机梯度下降法
 - 1. 初始化参数
 - Θ = uniform(d)
 - 2. 随机抽取一个数据点 (x_i, y_i) ,计算偏导数

- 3. 更新参数
- 4. 适当的条件更新learning rate η , 返回2, 直到收敛

- □ 优化目标函数
 - Batch Gradient Descent
 - □ 必须遍历所有的训练数据才更新一次
 - Stochastic Gradient Descent
 - □ 每看见一个数据点就更新,非常不稳定
 - Mini-batch Gradient Descent Mini-batch梯度下降法
 - 1. 初始化参数
 - Θ = uniform(d)
 - 2. 随机抽取m个数据点 $T_m = \{(x_i, y_i) | i = k_1, ..., k_m\}$,计算偏导数

- 3. 更新参数
- 4. 适当的条件更新learning rate η , 返回2, 直到收敛

□优化目标函数

优化方法	特点	类比
Batch GD	稳定,更新慢	看24史
Stochastic GD	不稳定,更新快	看"万历十五年"
Mini-batch GD	稳定,更新快	看三国演义

- □ 超参数选择
 - Grid Search
 - □ 在高维空间中对一定区域进行遍历
 - Random Search
 - □ 随机在高维空间中选择若干超参数

- □ 超参数选择
 - Grid Search
 - □ 在高维空间中对一定区域进行遍历
 - Random Search
 - □ 随机在高维空间中选择若干超参数

- □ 判别式/生成式模型
 - 判别式模型 discriminative model
 - \square P(y|x)
 - □ 关注于从x到y的映射
 - 情感分析 p(+1/0/-1|句子)
 - □ 只能predict,不能生成数据
 - 生成式模型generative model
 - \square P(y,x)
 - □ 关于于对X和Y的联合分布
 - 情感分析 p(+1/0/-1, 句子) = p(-1/0/1) * p(句子|-1/0/1)
 - □ 可以用来生成数据
 - □ 每个生成式模型都有一个生成故事 Generative Story

- □总结
 - \blacksquare 模型: $\hat{y}_i = f(x_i, \Theta)$
 - 数据: Train/Dev/Test 正确流程
 - 目标函数: $Obj(\Theta,T) = L(\Theta,T) + \Omega(\Theta)$
 - 优化目标函数: batch/stochastic/minibatch GD
 - 超参数选择: Grid Search/Random Search
 - 判别式模型/生成式模型

- □ 神经网络 Neural Network
 - 模型: $\hat{y}_i = f(x_i, \Theta)$
 - □ 线性运算符: y = Wx + b
 - □ 非线性运算符/激活函数/activation function
 - sigmoid, tanh, ReLU, softmax, embedding lookup ...
 - 数据: Train/Dev/Test 正确流程
 - 目标函数: $Obj(\Theta,T) = L(\Theta,T) + \Omega(\Theta)$
 - □ loss function: cross-entropy
 - ☐ Regulation: Dropout
 - □ 计算目标函数: Forward Propagation
 - 口 计算 $\frac{\partial \text{Obj}(\Theta,T)}{\partial \Theta}$: Backward Propagation
 - 优化目标函数: batch/stochastic/minibatch GD
 - 超参数选择: Grid Search/Random Search
 - 判别式模型/生成式模型

- □ Forward/Backward Propagation 前向/反向传播算法
 - ☐ Forward Propagation

$$\widehat{y}_i = f(x_i, \Theta)$$

$$= f_n(f_{n-1} \dots f_1(x_i) \dots)$$

$$= f_{\theta_n} \circ f_{\theta_{n-1}} \circ \dots \circ f_{\theta_1}(x_i)$$

$$J(\Theta, D) = Loss(\Theta, D) + \Omega(\Theta)$$

$$= \sum L(\Theta, y_i, \hat{y}_i) + \Omega(\Theta)$$

$$= \sum l_{y_i} \circ f_{\theta_n} \circ f_{\theta_{n-1}} \circ \cdots \circ f_{\theta_1}(x_i)$$

- □ Backward Propagation 反向传播算法
 - $\frac{\partial J(\Theta,D)}{\partial \Theta} = \{ \frac{\partial J}{\partial \theta_j} | j = 1, \dots, n \}$

- □ Backward Propagation 反向传播算法
 - □ 导数计算的链式法则

 - 例子: 求导: log(x²)

□ Backward Propagation 反向传播算法

$$\square \quad \frac{\partial J}{\partial \theta_j} = \sum_i \frac{\partial}{\partial \theta_j} l_{y_i} \circ f_{\theta_n} \circ \cdots \circ f_{\theta_j} \circ \cdots \circ f_{\theta_1}(x_i)$$

- $\square \quad \text{If in,} \quad \frac{\partial J}{\partial \theta_j} = \sum_i \frac{\partial J}{\partial f_{\theta_j}} \frac{\partial f_{\theta_j}}{\partial \theta_j} = \sum_i \frac{\partial J}{\partial z_j} \frac{\partial f_{\theta_j}}{\partial \theta_j}$

$$\Box J(\Theta, D) = \sum l_{y_i} \circ f_{\theta_n} \circ f_{\theta_{n-1}} \circ \cdots \circ f_{\theta_1}(x_i)$$

$$\Box Z_n Z_{n-1} Z_1$$

$$\square \frac{\partial J}{\partial z_n} \frac{\partial z_n}{\partial z_{n-1}} \dots \frac{\partial z_{j+1}}{\partial z_j} \dots \frac{\partial z_2}{\partial z_1}$$

$$\square \ \frac{\partial f_{\theta_n}}{\partial \theta_n} \ \frac{\partial f_{\theta_{n-1}}}{\partial \theta_{n-1}} \ \dots \ \frac{\partial f_{\theta_j}}{\partial \theta_j} \ \dots \ \frac{\partial f_{\theta_1}}{\partial \theta_1}$$

$$\square \frac{\partial J}{\partial \theta_n} \frac{\partial J}{\partial \theta_{n-1}} \dots \frac{\partial J}{\partial \theta_j} \dots \frac{\partial J}{\partial \theta_1}$$

黑色的为数值(numpy array),蓝色的为函数(function)

```
operator f {
matrix input;
matrix d_input;
matrix *output;
matrix *d_output;
matrix theta;
matrix d_theta;
// cpu version
function forward(){}
function compute_d_input(){}
function compute_d_theta(){}
// gpu version
function forward_gpu(){}
function compute_d_input_gpu(){}
function compute_d_theta_gpu(){}
```

- □ 矩阵求导的定义
 - d标量/d向量

$$\frac{\partial y}{\partial \mathbf{x}} = \left[\frac{\partial y}{\partial x_1} \ \frac{\partial y}{\partial x_2} \ \cdots \ \frac{\partial y}{\partial x_n} \right].$$

■ d标量/d矩阵

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{p1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{p2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1q}} & \frac{\partial y}{\partial x_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}} \end{bmatrix}.$$

- □ 线性变换
 - 为了统一,假设x,y都是行向量
 - y = xW + b

 - 保证形状是关键

- □ 非线性变换: sigmoid
 - $y = \sigma(x) = \frac{1}{1 + e^{-x}}$

 - 值域[0,1]
 - □ 做概率
 - □ 做开关
 - □ 做"挤压"
 - 导数的绝对值
 - □ 只在0附近比较大
 - elementwise

- □ 非线性变换: tanh
 - $y = tanh(x) = \frac{1 e^{-2x}}{1 + e^{-2x}}$

 - 值域[-1,1]
 - □做"挤压"
 - 导数的绝对值
 - □ 只在0附近比较大
 - ☐ google: batch normalization
 - elementwise

- □ 非线性变换: ReLU

 - 值域[0,+∞]
 - □ 仅仅是线性变换
 - 导数的绝对值
 - □ 0 或 1
 - elementwise

□ 非线性变换: softmax

$$y_{j} = softmax (x)_{j} = \frac{e^{x_{j}}}{\sum_{i=1}^{d} e^{x_{i}}}$$

- 值域[0,1]
 - □ 做概率
- 导数的绝对值□ 0 或 1
- not elementwise

X	4	-4	3
у	0.7308	0.0003	0.2689

- □ 非线性变换: embedding lookup
 - $y = ebl(x) = W[x,:] w \in R^{|v|*d}$
 - $\frac{\partial y}{\partial W[x,:]} = \frac{\partial J}{\partial y}$
 - 作用: int -> embedding

0.4	1	-1
0.2	0.4	0.3
-0.3	2	-3
0.4	2	3
0.8	3	-0.5

$$|V| = 5; d=3$$

$$x = 2$$

0.2 0.4 0.3

У

Forward

W

- □ 非线性变换: embedding lookup
 - $y = ebl(x) = W[x,:] w \in R^{|v|*d}$
 - $\frac{\partial y}{\partial W[x,:]} = \frac{\partial J}{\partial y}$
 - 作用: int -> embedding

0	0	0
0.3	-0.2	0.4
0	0	0
0	0	0
0	0	0

$$|V| = 5; d=3$$

$$x = 2$$

$$\frac{\partial}{\partial t}$$

 $\frac{\partial y}{\partial W}$ Backward

- □ Loss function: cross-entropy

 - 作业题1: 拉格朗日法求CE的最小值
 - 多分类问题, y一般为one-hot vector.
 - \square y = [0,0,1] \hat{y} = [0.2,0.2,0.6] CE = ?
 - $\square CE(y, \hat{y}) = y_j \log \hat{y}_j ; y_j = 1$

☐ Loss function: cross-entropy

$$\frac{\partial CE}{\partial \widehat{y_j}} = -\frac{y_j}{\widehat{y_j}} = -\frac{1}{\widehat{y_j}};$$

■ 结合softmax

$$\square \frac{\partial y_i}{\partial x_i} = y_i (1 - y_i); \frac{\partial y_i}{\partial x_j} = -y_i y_j$$

$$\frac{\partial CE}{\partial x_i} = \frac{\partial CE}{\partial \widehat{y_j}} \frac{\partial \widehat{y_j}}{\partial x_i}$$

$$\Box -\frac{1}{\widehat{y_j}}\widehat{y_j}(1-\widehat{y_j}) = \widehat{y_j} - 1; if i = j$$

$$\Box -\frac{1}{\widehat{y_i}} * -\widehat{y_i}\widehat{y_j} = \widehat{y_i}; \quad if \ i \neq j$$

☐ Cross-entropy + Softmax

X	4	-4	3
ŷ	0.7308	0.0003	0.2689
y	0	0	1
CE		-log(0.2689)	
$\frac{\partial CE}{\partial x_i}$	0.7308	0.0003	0.2689-1

☐ Cross-entropy + Softmax

Θ	X	4	-4	3
	ŷ	0.7308	0.0003	0.2689
	y	0	0	1
	CE	$-\log(0.2689)$		
$ abla\Theta$	$\frac{\partial CE}{\partial x_i}$	0.7308	0.0003	0.2689-1
$\Theta - \eta \nabla \Theta$	X _{new}	4-0.7308	-4 – 0.0003	3-0.2689+1

按比例"推所有,拉一个"

- □ 总结一下
 - 线性运算符:
 - \Box y = Wx + b
 - 非线性运算符/激活函数/activation function
 - □ sigmoid
 - □ tanh
 - □ ReLU
 - □ softmax
 - embedding lookup
 - Loss
 - □ cross-entropy
 - + softmax: "按比例推所有,拉一个"

- ☐ bigram neural network
 - $p(w_n|w_{n-1})$
 - 词汇集 V = {a,b,c}
 - ■训练数据
 - □ {abc, acb,bca}
 - □ ab, bc, ac, cb, bc, ca
 - 字符串转化成数字
 - □ a:0, b:1, c:2

loss cross-entropy h5 b:0 softmax h4 output embedding h3 Tanh h2 linear transform h1 input embedding a:0

loss h3 cross-entropy [0.07982977 0.7530659] h5 b:0 h2 softmax $[0.08 \ 0.98]$ h4 linear_w linear_b output embedding [[1.2 0.2] [0. 0.5]h3 $[-0.4 \ 0.4]]$ Tanh h1 [0.4 1.] h2 linear transform input_embed h1 [[0.4 1.][0.2 0.4]input embedding [-0.3 2.]] a:0

loss ce cross-entropy 0.810028205586 h5 h5 b:0 [0.351601 0.444846 0.203553] softmax h4 output embedding h4 [0.673236 0.908465 0.12666425] h3 Tanh output_embed output_embed_b h2 [[-1. 1.] [0. 0.5 0.] [0.4 0.5] linear transform $[-0.3 \ 0.2]]$ h1 input embedding a:0

loss cross-entropy h5 b:0 softmax djdh4 h4 djd_output_embed_b output embedding djd_output_embed h3 djdh3 Tanh djdh2 h2 _linear__b djd_linear_w djd linear transform h1 djdh1 input embedding djd_input_embed a:0

- □ 程序展示
 - 地址:
 - https://github.com/shixing/xing_nlp/tree/master/LM/NNLM/toy.py
 - 运行环境
 - □ 需要安装numpy (如果之前安装了anaconda, 那么anaconda中是包含numpy的,不需要再次安装)

- □ 程序展示
 - 挑战:
 - □ toy.py:包含了五处错误,找到这五处错误。
 - □ 10ite.correct.txt 包含了正确的结果的输出。
 - □理解神经网络调试的困难之处以及常见bug。
 - □ Debug的一般方法:
 - 看代码
 - 在小样倒上面手算
 - 做gradient_check

- □ n-gram 潜在的问题:
 - P(梨|水果 包含) P(苹果|水果 包含)
 - □对"词"的理解有限
 - Neural Network Language Model
 - □ N-gram 上下文的长度有限
 - Recurrent NN Language Model

"abc"

Bengio, Yoshua, et al. "A neural probabilistic language model." *Journal of machine learning research* 3.Feb (2003): 1137-1155.

Embedding的作用: 对"词"的理解有限-

词法的相似性 good, better

语法的相似性 see, saw

语义相似性 dog, cat

为什么Embedding会有这样的作用?

Embedding的每一维相当于是机器学习出来的特征

所谓的"特征学习/表示学习" representation learning

ICLR
International Conference on Learning
Representations

Deep learning的核心原因之一

□ 线性模型! 快+大数据

□ 线性模型?!快+大数据

- □著名的类比
 - \blacksquare King Man + Woman = Queen

Male-Female

- □ 著名的类比
 - \blacksquare King Man + Woman = Queen
 - \blacksquare King Queen = Man Woman
 - 进一步的实验:
 - ☐ King, Man, Woman, ? (easy)
 - ☐ King, Man, ?, ? (hard!)
 - □ 没有那么神奇
 - 只要把King/Queen, Man/Woman聚类在一起

- □ 著名的类比
 - \blacksquare King Man + Women = Queen
- □ 评价Word2Vec的一个任务
 - 4词类比:
 - □ Athens Greece Rome Italy (语义)
 - □ write writes sit sits (词法)
 - □ 一共19558对
 - 准确率越高,word2vec越好么?

- □用途
 - 寻找近义词
 - 用来作为别的自然语言任务的特征值
 - 用来为别的Neural Network做初始化

- □ 应用展示: 超参数搜索
 - 地址:
 - https://github.com/shixing/xing_nlp/tree/master/word2 vec
 - 运行环境
 - ☐ Tensorflow 1.2
 - 实验流程
 - □ 首先进入word2vec文件夹
 - □ 首先运行 bash prepare.sh (mac机器运行bash prepare.mac.sh)

- □ 应用展示: 超参数搜索
 - 实验流程
 - □ 首先进入word2vec文件夹
 - □ 首先运行 bash prepare.sh (mac机器运行bash prepare.mac.sh)
 - □ 运行默认设置
 - python word2vec.py --train_data text8.small --eval_data questions-words.txt --save_path temp
 - □ 可以改变的超参数及其范围(其他参数不能修改):
 - embedding_size: 10-400
 - learning_rate: 0.0001 10
 - batch_size: 4–512
 - window_size: 1-20
 - python word2vec.py --train_data text8.small --eval_data questions-words.txt --save_path temp --embedding_size 20 -- learning_rate 1.0 --batch_size 48 --window_size 10

- □ 应用展示: 超参数搜索
 - 超参数搜索策略
 - ☐ Gird Search
 - □ Random Search
 - ☐ Coordinate Descent
 - 假设有两个超参数X,y
 - 随机初始化x,线性搜索最佳的y,得到y_best
 - 固定y_best, 线性搜索x, 得到x_best
 - 不断迭代,知道x,y稳定下来
 - 工程技巧(不能让机器闲着)
 - □ 多机器运行
 - □ 写bash script连续运行

- □ 应用展示: 超参数搜索
 - 排行榜
 - □ 将你的最好的结果写在这里:
 - http://collabedit.com/qvpc6
 - 只写昵称和分数,不要暴露自己的超参数
 - □ 第五次课前, 我们会统计结果
 - 第一名,得到神秘奖励一份。

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 大数据分析挖掘

- 新浪微博: ChinaHadoop

