

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number: 0 346 710 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 10.11.93 (51) Int. Cl. 5: C12N 15/12, C12N 5/10,
C12P 21/02
(21) Application number: 89110096.8
(22) Date of filing: 03.06.89

(54) cDNAs coding for members of the carcinoembryonic antigen family.

(30) Priority: 16.06.88 US 207678
21.11.88 US 274107

(43) Date of publication of application:
20.12.89 Bulletin 89/51

(45) Publication of the grant of the patent:
10.11.93 Bulletin 93/45

(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI NL SE

(56) References cited:
EP-A- 263 933
EP-A- 0 212 880

BIOCHEM. BIOPHYS. RES. COMMUN., vol.
142, no. 2, 30th January 1987, pages 511-518;
R. OIKAWA et al.: "Primary structure of hu-
man carcinoembryonic antigen (CEA) de-
duced from cDNA sequence"

MOL CELL BIOL., vol. 7, 1987, page
3221-3230; R. BEAUCHEMIN et al.: "Isolation
and characterization of full-length functional
cDNA clones for human carcinoembryonic
antigen"

(73) Proprietor: MILES INC.
One Mellon Center
500 Grant Str.
Pittsburgh, PA 15219-2502(US)

(72) Inventor: Barnett, Thomas R., Dr.
27 Jeffrey Road
East Haven, CT 06513(US)
Inventor: Elting, James J., Dr.
5 Heatherwood Drive
Madison, CT 06443(US)
Inventor: Kamarck, Michael E.
86 Russell Road
Bethany, CT 06525(US)
Inventor: Kretschmer, Axel, Dr.
Richard-Zörner-Strasse 32
D-5060 Bergisch Gladbach 1(DE)

(74) Representative: Dänner, Klaus, Dr. et al
Bayer AG
Konzernverwaltung RP
Patente Konzern
D-51368 Leverkusen (DE)

BEST AVAILABLE COPY

EP 0 346 710 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

ETR0041
#13

PROC. NATL ACAD. SCI. USA, vol. 85, September 1988, pages 6959-6963; Y. HINODA et al.: "Molecular cloning of a cDNA coding biliary glycoprotein I: primary structure of a glycoprotein immunologically crossreactive with carcinoembryonic antigen"

GENE, vol. 71, no. 2, November 1988, pages 439-449; B.C. ROONEY et al.: "Molecular cloning of a cDNA for human pregnancy-specific B1-glycoprotein: homology with human carcinoembryonic antigen and related proteins"

Description**BACKGROUND OF THE INVENTION****5 Field of the Invention**

The present invention concerns nucleic acid sequences which code for carcinoembryonic antigen (CEA) antigen family peptide sequences.

10 Background Information

Carcinoembryonic antigen was first described by Gold and Freedman, *J. Exp. Med.*, 121, 439-462, (1965). CEA is characterized as a glycoprotein of approximately 200,000 molecular weight with 50-60% by weight of carbohydrate. CEA is present during normal human fetal development, but only in very low concentration in the normal adult intestinal tract. It is produced and secreted by a number of different tumors.

CEA is a clinically useful tumor marker for the management of colorectal cancer patients. CEA can be measured using sensitive immunoassay methods. When presurgical serum levels of CEA are elevated, a postsurgical drop in serum CEA to the normal range typically indicates successful resection of the tumor. Postsurgical CEA levels that do not return to normal often indicate incomplete resection of the tumor or the presence of additional tumor sites in the patient. After returning to normal levels, subsequent rapid rises in serum CEA levels usually indicate the presence of metastases. Slower postsurgical rises from the normal level are most often interpreted to indicate the presence of new primary tumors not previously detected. Post surgical management of colon cancer patients is thus facilitated by the measurement of CEA.

CEA is a member of an antigen family. Because of this, the immunoassay of CEA by presently available methods is complicated by the fact that CEA is but one of several potentially reactive antigens. There have been at least sixteen CEA-like antigens described in the literature. Since some of these appear to be the same antigen described by different investigators, the actual number of different antigens is somewhat less than this number. Nonetheless, there is a complex array of cross-reactive antigens which can potentially interfere with an immunoassay of the CEA released by tumors. It is known that serum levels of CEA-like antigens are elevated in many non-cancerous conditions such as inflammatory liver diseases and also in smokers. It is important that immunoassays used for the monitoring of cancer patient status not be interfered with by these other CEA-like antigens. Conversely, it is important to be able to distinguish the antigens by immunoassays because of the possibility that different tumor types may preferentially express different forms of CEA. If so, then the ability to reliably measure the different forms of CEA can provide the means to diagnose or more successfully treat different forms of cancer.

The members of the "CEA family" share some antigenic determinants. These common epitopes are not useful in distinguishing the members of the antigen family and antibodies recognizing them are of little use for measuring tumor-specific CEA levels.

U.S.P. 3,663,684, entitled "Carcinoembryonic Antigen and Diagnostic Method Using Radioactive Iodine", concerns purification and radioiodination of CEA for use in a RIA.

U.S.P. 3,697,638 describes that CEA is a mixture of antigens (components A and B in this case). U.S.P. 3,697,638 mentions methods for separating and radioiodinating each component and their use in specific RIA's.

U.S.P. 3,852,415, entitled "Compositions for Use in Radioimmunoassay, as Substitute for Blood Plasma Extract in Determination of Carcinoembryonic Antigen" relates to the use of a buffer containing EDTA and bovine serum albumin as a substitute for plasma as a diluent for CEA RIA's.

U.S.P. 3,867,363, entitled "Carcinoembryonic Antigens", is directed to the isolation of CEA components A and B, their labelling and use in a RIA.

U.S.P. 3,927,193, entitled "Localization of Tumors by Radiolabelled Antibodies", concerns the use of radiolabelled anti-CEA antibodies in whole body tumor imaging.

U.S.P. 3,956,258, entitled "Carcinoembryonic Antigens", relates to the isolation of CEA components A and B.

U.S.P. 4,086,217, entitled "Carcinoembryonic Antigens", is directed to the isolation of CEA components A and B.

U.S.P. 4,140,753, entitled "Diagnostic Method and Reagent", concerns the purification of a CEA isomer called CEA-S1 and its use in a RIA.

U.S.P. 4,145,336, entitled "Carcinoembryonic Antigen Isomer", relates to the antigen CEA-S1.

U.S.P. 4,180,499, entitled "Carcinoembryonic Antigens", describes a process for producing CEA component B.

U.S.P. 4,228,236, entitled "Process of Producing Carcinoembryonic Antigen", is directed to the use of the established cell lines LS-174T and LS-180 or clones or derivatives thereof for the production of CEA.

5 U.S.P. 4,272,504, entitled "Antibody Adsorbed Support Method for Carcinoembryonic Antigen Assay", concerns two concepts for the radioimmunoassay of CEA. First, U.S.P. 4,272,504 relates to a sample pretreatment in the form of heating to 65 to 85°C at pH 5 to precipitate and eliminate extraneous protein. Second, it describes the use of a solid phase antibody (either on beads or tubes) as a means to capture analyte and radiolabelled CEA tracer.

10 U.S.P. 4,299,815, entitled "Carcinoembryonic Antigen Determination", concerns diluting a CEA sample with water and pretreating by heating to a temperature below which precipitation of protein will occur. The pretreated sample is then immunoassayed using RIA, EIA, FIA or chemiluminescent immunoassay.

15 U.S.P. 4,349,528, entitled "Monoclonal Hybridoma Antibody Specific for High Molecular Weight Carcinoembryonic Antigen", is directed to a monoclonal antibody reacting with 180 kD CEA, but not with other molecular weight forms.

U.S.P. 4,467,031, entitled "Enzyme-Immunoassay for Carcinoembryonic Antigen", relates to a sandwich enzyme immunoassay for CEA in which the first of two anti-CEA monoclonal antibodies is attached to a solid phase and the second monoclonal is conjugated with peroxidase.

20 U.S.P. 4,489,167, entitled "Methods and Compositions for Cancer Detection", describes that CEA shares an antigenic determinant with alpha-acid glycoprotein (AG), which is a normal component of human serum. The method described therein concerns a solid-phase sandwich enzyme immunoassay using as one antibody an antibody recognizing AG and another antibody recognizing CEA, but not AG.

25 U.S.P. 4,578,349, entitled "Immunoassay for Carcinoembryonic Antigen (CEA)", is directed to the use of high salt containing buffers as diluents in CEA immunoassays.

EP 113072-A, entitled "Assaying Blood Sample for Carcinoembryonic Antigen - After Removal of Interfering Materials by Incubation with Silica Gel", relates to the removal from a serum of a plasma sample of interfering substances by pretreatment with silica gel. The precleared sample is then subjected to an immunoassay.

30 EP 102008-A, entitled "Cancer Diagnostics Carcinoembryonic Antigen - Produced from Perchloric Acid Extracts Without Electrophoresis", relates to a procedure for the preparation of CEA from perchloric acid extracts, without the use of an electrophoresis step.

EP 92223-A, entitled "Determination of Carcinoembryonic Antigen in Cytosol or Tissue - for Therapy Control and Early Recognition of Regression", concerns an immunoassay of CEA, not in serum or plasma, but in the cytosol fraction of the tumor tissue itself.

35 EP 83103759.6, entitled "Cytosole-CEA-Measurement as Predictive Test in Carcinoma, Particularly Mammacarcinoma", is similar to EP 92223-A.

EP 83303759, entitled "Monoclonal Antibodies Specific to Carcinoembryonic Antigen", relates to the production of "CEA specific" monoclonal antibodies and their use in immunoassays.

WO 84/02983, entitled "Specific CEA-Family Antigens, Antibodies Specific Thereto and Their Methods of Use", is directed to the use of monoclonal antibodies to CEA-meconium (MA)-, and NCA-specific epitopes in immunoassays designed to selectively measure each of these individual components in a sample.

40 All of the heretofore CEA assays utilize either monoclonal or polyclonal antibodies which are generated by immunizing animals with the intact antigen of choice. None of them address the idea of making sequence specific antibodies for the detection of a unique primary sequence of the various antigens. They do not cover the use of any primary amino acid sequence for the production of antibodies to synthetic peptides or fragments of the natural product. They do not include the concept of using primary amino acid sequences to distinguish the CEA family members. None of them covers the use of DNA or RNA clones for isolating the genes with which to determine the primary sequence.

DEFINITIONSNucleic Acid Abbreviations

5	A	adenine
	G	guanine
	C	cytosine
	T	thymidine
10	U	uracil

Amino Acid Abbreviations:

15	Asp	aspartic acid
	Asn	asparagine
	Thr	threonine
20	Ser	serine
	Glu	glutamic acid
	Gln	glutamine
	Pro	proline
25	Gly	glycine
	Ala	alanine
	Cys	cysteine
30	Val	valine
	Met	methionine
	Ile	isoleucine
35	Leu	leucine
	Tyr	tyrosine
	Phe	phenylalanine
	Trp	tryptophan
40	Lys	lysine
	His	histidine
	Arg	arginine

45 Nucleotide - A monomeric unit of DNA or RNA containing a sugar moiety (pentose), a phosphate, and a nitrogenous heterocyclic base. The base is linked to the sugar moiety via the glycosidic carbon (1' carbon of the pentose) and that combination of base and sugar is called a nucleoside. The base characterizes the nucleotide. The four DNA bases are adenine ("A"), guanine ("G"), cytosine ("C"), and thymine ("T"). The four RNA bases are A, G, C and uracil ("U").

50 DNA Sequence - A linear array of nucleotides connected one to the other by phosphodiester bonds between the 3' and 5' carbons of adjacent pentoses.

55 Functional equivalents - It is well known in the art that in a DNA sequence some nucleotides can be replaced without having an influence on the sequence of the expression product. With respect to the peptide this term means that one or more amino acids which have no function in a particular use can be deleted or replaced by another one.

Codon - A DNA sequence of three nucleotides (a triplet) which encodes through mRNA an amino acid, a translation start signal or a translation termination signal. For example, the nucleotide triplets TTA, TTG,

CTT, CTC, CTA and CTG encode the amino acid leucine ("Leu"), TAG, TAA and TGA are translation stop signals and ATG is a translation start signal.

Reading Frame - The grouping of codons during translation of mRNA into amino acid sequences.

During translation, the proper reading frame must be maintained. For example, the sequence
5 GCTGGTTGTAAG may be translated in three reading frames or phases, each of which affords a different amino acid sequence

GCT GGT TGT AAG - Ala-Gly-Cys-Lys

10 G CTG GTT GTA AG - Leu-Val-Val

GC TGG TTG TAA G - Trp-Leu-(STOP).

Polypeptide - A linear array of amino acids connected one to the other by peptide bonds between the

15 alpha-amino and carboxy groups of adjacent amino acids.

Genome - The entire DNA of a cell or a virus. It includes inter alia the structural genes coding for the polypeptides of the cell or virus, as well as its operator, promoter and ribosome binding and interaction sequences, including sequences such as the Shine-Dalgarno sequences.

Structural Gene - A DNA sequence which encodes through its template or messenger RNA ("mRNA") a

20 sequence of amino acids characteristic of a specific polypeptide.

Transcription - The process of producing mRNA from a structural gene.

Translation - The process of producing a polypeptide from mRNA.

Expression - The process undergone by a structural gene to produce a polypeptide. It is a combination of transcription and translation.

25 Plasmid - A non-chromosomal double-stranded DNA sequence comprising an intact "replicon" such that the plasmid is replicated in a host cell. When the plasmid is placed within a unicellular organism, the characteristics of that organism may be changed or transformed as a result of the DNA of the plasmid. For example, a plasmid carrying the gene for tetracycline resistance (Tet^R) transforms a cell previously sensitive to tetracycline into one which is resistant to it. A cell transformed by a plasmid is called a "transformant".

30 Phage or Bacteriophage - Bacterial virus, many of which consist of DNA sequences encapsulated in a protein envelope or coat ("capsid protein").

Cloning Vehicle - A plasmid, phage DNA or other DNA sequence which is capable of replicating in a host cell, which is characterized by one or a small number of endonuclease recognition sites at which such DNA sequences may be cut in a determinable fashion without attendant loss of an essential biological function of the DNA, e.g., replication, production of coat proteins or loss of promoter or binding sites, and which contains a marker suitable for use in the identification of transformed cells, e.g., tetracycline resistance or ampicillin resistance. A cloning vehicle is often called a vector.

Cloning - The process of obtaining a population of organisms or DNA sequences derived from one such organism or sequence by asexual reproduction.

40 Recombinant DNA Molecule or Hybrid DNA - A molecule consisting of segments of DNA from different genomes which have been joined end-to-end outside of living cells and have the capacity to infect some host cell and be maintained therein.

CDNA Expression Vector - A prokaryotic cloning vehicle which also contains sequences of nucleotides that facilitate expression of cDNA sequences in eukaryotic cells. These nucleotides include sequences that 45 function as eukaryotic promoter, alternative splice sites and polyadenylation signals.

Transformation/Transfection - DNA or RNA is introduced into cells in such a way as to allow gene expression. "Injected" referred to herein concerns the introduction of RNA or DNA by a viral vector into the host.

"Injected" referred to herein concerns the microinjection (use of a small syringe) of DNA into a cell.

50 CEA antigen family (CEA gene family) - a set of genes (gene family) and their products (antigen family) that share nucleotide sequences homologous to partial cDNA LV-7 (CEA-(a)) and as a result of these similarities also share a subset of their antigenic epitopes. Examples of the CEA antigen family include CEA (=CEA-(b)), transmembrane CEA (TMCEA) = CEA-(c) and normal crossreacting antigen NCA (=CEA-(d)).

SUMMARY OF THE INVENTION

The present invention concerns the following DNA sequences designated as TM-2 (CEA-(e)), TM-3 (CEA-(f)), TM-4 (CEA-(g)), KGCEA1 and KGCEA2, which code for CEA antigen family peptide sequences:

5

SEQUENCE AND TRANSLATION OF cDNA OF TM-2

10

10

30

50

CAGCCGTGCTCGAACGCGTCTGGAGCCAAAGCTCTCCTCCACAGGTGAAGACAGGGCA

15

70

90

110

GCAGGAGACACCATGGGCACCTCTCAGCCCCACTTCACAGAGTGCCTGTACCCCTGGCAG
MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln

20

130

150

170

GGGCTTCTGCTCACAGCCTCACTTCTAACCTCTGGAACCCGCCACACTGCCAGCTC
GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu

25

190

210

230

ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGGAGGTTCTTCTCCTGTCCAC
ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis

30

250

270

290

AATCTGCCCAAGCAACTTTTGCTACAGCTGGTACAAAGGGAAAGAGTGGATGGCAAC
AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn

35

310

330

350

CGTCAAATTGTAGGATATGCAATAGGAACCTAACAAAGCTACCCAGGGCCCGCAAACACC
ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer

40

370

390

410

45

GGTCGAGAGACAATATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC
GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp

50

ACAGGATTCTACACCCCTACAACTCATAAAGTCAGATCTTGTAATGAAAGAACCAACTGG
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

490 510 530
 CAGTTCCATGTATAACCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACCTCCAACCCT
 GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro
 5

550 570 590
 GTGGAGGACAAGGATGCTGTGCCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC
 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr
 10

610 630 650
 CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly
 15

670 690 710
 AACAGGACCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATTGAGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu
 20

730 750 770
 ATACAGAACCCAGTGAGTGGGAACCGCAGTGACCCAGTCACCTTGAAATGTCACCTATGGC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly
 25

790 810 830
 CCGGACACCCCCACCATTCCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
 ProAspThrProThrIleSerProSerAspThrTyrArgProGlyAlaAsnLeuSer
 30

850 870 890
 CTCTCCTGCTATGCAGCCTTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAACA
 LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr
 35

910 930 950
 TTCCAGCAAAGCACACAAGAGCTTTATCCCTAACATCACTGTGAATAATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer
 40

970 990 1010
 TATAACCTGGCACCCAAATAACTCAGTCACTGGCTGCAACAGGACCAAGTCAAGACGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle
 45

1030 1050 1070
 5 ATAGTCACTGATAATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGCCATTGCTGCC
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly

 1090 1110 1130
 10 ATGTGATTGGAGTAGTGGCCCTGGTTGCTCTGATAGCACTAGCCCTGGCATGTTTCTG
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

 1150 1170 1190
 15 CATTTCGGGAAGACCGGCAGGGCAAGCGACCAGCGTGATCTCACAGAGCACAAACCTCA
 HisPheGlyLysThrGlyArgAlaSerAspGlnArgAspLeuThrGluHisLysProSer

 1210 1230 1250
 20 GTCTCCAACCACACTCAGGACCAC'TCCAATGACCCACCTAACAAAGATGAATGAAGTTACT
 ValSerAsnHisThrGlnAspHisSerAsnAspProProAsnLysMetAsnGluValThr

 1270 1290 1310
 25 TATTCTACCCCTGAACCTTGAGGCCAGCAACCCACACAACCAACTTCAGCCTCCCCATCC
 TyrSerThrLeuAsnPheGluAlaGlnGlnProThrGlnProThrSerAlaSerProSer

 1330 1350 1370
 30 CTAACAGCCACAGAAATAATTTATTCAAGTAGAAAAAGCAGTAATGAAACCTGTCCTGC
 LeuThrAlaThrGluIleIleTyrSerGluValLysLysGln

 1390 1410 1430
 35 TCACTGCAGTGCTGATGTATTCAGTCTCTCACCCCTCATCACTAGGAGATTCCCTTCCC

 1450 1470 1490
 40 CTGTAGGGTAGAGGGGTGGGAGAGAAACAACTTCTCCTACTCTTCCCTAATAGGC

 1510 1530 1550
 45 ATCTCCAGGCTGCCCTGGTCACTGCCCTCTCTCAGTGTCATAGATGAAAGTACATTGGG

 1570 1590 1610
 50 AGTCTCTAGGAAACCCAAACCTTCCTTGTCATTGAAATTTGGCAAAGCTGACTTGGAAAG

1630

1650

1670

AGGGACCAGAACTTCCCCCTCCCTTCCCCCTTCCCAACCTGGACTTGTAAACTTGCC

5

1690

1710

1730

TGTTTCAGAGGCACTCATTCCTTCCCACCCCCAGTCCTGTCCTATCACTCTAATTCCGATTT

10

1750

1770

1790

GCCATAGCCTTGAGGTTATGTCCTTTCCATTAAGTACATGTGCCAGGAAACACCGAGAG

15

1810

1830

1850

AGAGAAAAGTAAACGGCAGTAATGCTTCTCCTATTCTCAAAGCCTGTGTAACTACCA

20

1870

1890

1910

AAGAGAAGAAAATCAAATATAACCAATAGTGAATGCCACAGGTTGTCCACTGTCAG

25

1930

1950

1970

GGTTGTCTACCTGTAGGATCAGGTCTAACGCACCTTGGTGCTTAGCTAGAATACCACCTA

30

1990

2010

2030

ATCCTTCTGGCAAGCCTGTCTTCAGAGAACCCACTAGAACGAACTAGGAAAATCACTTG

35

2050

2070

2090

CCAAAATCCAAGGCAATTCTGATGGAAAATGCAAAAGCACATATATGTTTAATATCTT

40

2110

2130

2150

TATGGGCTCTGTTCAAGGCAGTGCTGAGAGGGAGGGTTATAGCTTCAGGAGGGAAACCAAG

45

2170

2190

2210

CTTCTGATAAACACAATCTGCTAGGAACCTGGGAAAGGAATCAGAGAGCTGCCCTTCAGC

50

55

EP 0 346 710 B1

2230	2250	2270
<code>GATTATTTAAATTGTTAAAGAATACACAATTGGGTATTGGGATTTCCTTCTC</code>		
5 2290	2310	2330
<code>TGAGACATTCCACCATTTAATTTGTAAGCTTATTTATGTGAAAAGGGTTATTTT</code>		
10 2350	2370	2390
<code>ACTTAGCTTAGCTATGTCAGCCAATCCGATTGCCTAGGTGAAAAGAAACCAACCGAAATCC</code>		
15 2410	2430	2450
<code>CTCAGGTCCCTGGTCAGGAGCCTCTCAAGATTTTGTCAAGAGCTCAAATAGAAA</code>		
20 2470	2490	2510
<code>ATAAGAAAAGGTTTCTTCATTCATGGCTAGAGCTAGATTAACTCAGTTCTAGGCACC</code>		
25 2530	2550	2570
<code>TCAGACCAATCATCAACTACCATTCTATTCCATGTTGCACCTGTGCATTTCCTGTTGC</code>		
30 2590	2610	2630
<code>CCCCATTCACTTGTCAGGAAACCTTGGCCTCTGCTAAGGTGATTGGCCTTGAGAAG</code>		
35 2650	2670	2690
<code>TGGGAGCACCCCTACAGGGACACTATCACTCATGCTGGTGGCATTGTTACAGCTAGAAAG</code>		
40 2710	2730	2750
<code>CTGCACTGGTGCTAATGCCCTTGGAAATGGGCTGTGAGGAGGAGGATTATAACTAG</code>		
45 2770	2790	2810
<code>GCCTAGCCTTTAACAGCCTCTGAATTTATCTTCTATGGGTCTATAAAATGT</code>		
50 2830	2850	2870
<code>ATCTTATAATAAGGAAGGACAGGGAGGAAGACAGGCAAATGTACTTCACCCAGTCT</code>		

2890

2910

2930

TCTACACAGATGGAATCTCTTGGGGCTAAGAGAAAGGTTTATTCTATATTGCTTACCT

5

2950

2970

2990

GATCTCATGTTAGGCCTAACAGAGGCTTCTCCAGGAGGATTAGCTTGGAGTTCTCTATACT

10

3010

3030

3050

CAGGTACCTCTTCAGGGTTTCTAACCTGACACGGACTGTGCATACTTCCCTCATCC

15

3070

3090

3110

ATGCTGTGCTGTGTTATTAATTTCTGGCTAAGATCATGTCTGAATTATGTATGAAA

20

3130

3150

3170

ATTATTCTATGTTTATAATAAAATAATATATCAGACATCGAAAAAA

25

30

35

40

45

50

55

SEQUENCE AND TRANSLATION OF cDNA OF TM-3

5

10

30

50

10 CAGCCGTGCTCGAAGCGTTCTGGAGCCCAAGCTCTCCTCCACAGGTGAAGACAGGGCCA

70

90

110

15 GCAGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGCCTGACCCCTGGCAG
MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln

130

150

170

20 GGGCTTCTGCTCACAGCCTCACTTCAACCTCTGGAACCCGCCACCCTGCCAGCTC
GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu

190

210

230

25 ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGAAAGGAGGTTCTTCTCCTGTCCAC
ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuValHis

30

250

270

290

AATCTGCCCAAGCAACTTTGGCTACAGCTGGTACAAAGGGAAAGAGTGGATGGCAC
AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn

35

310

330

350

CGTCAAATTGTAGGATATGCAATAGGAACCTAACAAAGCTACCCAGGGCCGCAAACAGC
ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer

40

370

390

410

GGTCGAGAGACAATATAACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAATGAC
GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp

45

50

55

430

450

470

5 ACAGGATTCTACACCCCTACAAGTCATAAAGTCAGATCTTGTGAATGAAGAAGCAACTGG
 ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

490

510

530

10 CAGTTCCATGTATAACCGGAGCTGCCAAGGCCCTCCATCTCCAGCAACAACCTCCAACCC
 GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

550

570

590

15 GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAACCTAC
 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrTyr

610

630

650

20 CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

670

690

710

25 AACAGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATGAGTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

730

750

770

30 ATACAGAACCCAGTGAGTGCAGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

35 790

810

830

CCGGACACCCCCACCATTCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
 ProAspThrProThrIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer

40

45

50

55

850 870 890

5 CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAACA
LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

910 930 950

10 TTCCAGCAAAGCACACAAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

970 990 1010

15 TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCACAGTCAAGACGATC
TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

1030 1050 1070

20 ATAGTCACTGAGCTAAGTCAGTAGTAGCAAAGCCCCAAATCAAAGCCAGCAAGACCACA
IleValThrGluLeuSerProValValAlaLysProGlnIleLysAlaSerLysThrThr

1090 1110 1130

25 GTCACAGGAGATAAGGACTCTGTGAACCTGACCTGCTCCACAAATGACACTGGAATCTCC
ValThrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer

1150 1170 1190

30 ATCCGTTGGTTCTTCAAAAACCAGAGTCTCCCGTCCTGGAGAGGATGAAGCTGTCCCAG
IleArgTrpPhePheLysAsnGlnSerLeuProSerSerGluArgMetLysLeuSerGln

1210 1230 1250

35 GGCAACACCACCCCTCAGCATAAACCTGTCAAGAGGGAGGATGCTGGGACGTATTGGTGT
GlyAsnThrThrLeuSerIleAsnProValLysArgGluAspAlaGlyThrTyrTrpCys

40

45

50

55

1270 1290 1310
 5 GAGGTCTCAACCAATCAGTAAGAACCAAAGCGACCCATCATGCTGAACGTAAACTAT
 GluValPheAsnProIleSerLysAsnGlnSerAspProIleMetLeuAsnValAsnTyr

 1330 1350 1370
 10 AATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGCCATTGCTGGCATTGTGATTGGA
 AsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGlyIleValIleGly

 1390 1410 1430
 15 GTAGTGGCCCTGGTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTGCATTCGGGAAG
 ValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeuHisPheGlyLys

 1450 1470 1490
 20 ACCGGCAGCTCAGGACCACTCCAATGACCCACCTAACAAAGATGAATGAAGTTACTTATTC
 ThrGlySerSerGlyProLeuGln

 1510 1530 1550
 25 TACCCCTGAACTTGAAGCCCCAGCAACCCACACAACCAACTTCAGCCTCCCCATCCCTAAC

 1570 1590 1610
 30 AGCCACAGAAAATAATTATTAGAAGTAAAAAACAGTAGTAATGAAACCTGAAAAAAAAAA

 1630
 35 AAAAAAAA

 40

 45

 50

 55

SEQUENCE AND TRANSLATION OF cDNA OF TM-4

5 10 30 50
 CAGCCGTGCTCGAACCGTTCCTGGAGCCAAAGCTCTCCTCACAGGTGAAGACAGGCCA
 10 70 90 110
 GCAGGAGACACCATGGGCACCTCTCAGCCCCACTTCACAGAGTSCGTGTACCCCTGGCAG
 MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln
 15 130 150 170
 GGGCTTCTGCTCACAGCCTCACTTCTAACCTCTGGAACCCGCCACCACTGCCAGCTC
 GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu
 20 190 210 230
 ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGAAAGGAGGTTCTCTCCTGTCAC
 ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuValHis
 25 250 270 290
 AATCTGCCCAAGCAACTTTTGCTACAGCTGGTACAAAGGGAAAGAGTGGATGGCAAC
 AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn
 30 310 330 350
 CGTCAAATTGTAGGATATGCAATAGGAACCTAACAAAGCTACCCAGGGCCCGCAAACAGC
 ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer
 35
 370 390 410
 GCTCGAGAGACAATATAACCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAACGAC
 GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp
 40
 430 450 470
 ACAGGATTCTACACCCCTACAACTCATAAAGTCAGATCTTGTGAATGAAGAACCAAACCTGGA
 ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

490

510

530

5 CAGTTCCATGTATAACCGGAGCTGCCAACGCCCTCCATCTCCAGCAACA
 GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

550

570

590

10 GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAA
 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrTyr

610

630

650

15 CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

670

690

710

20 AACAGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATTGAGTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

730

750

770

25 ATACAGAACCCAGTGAGTGCGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

790

810

830

30 CGGGACACCCCCACCATTCCCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
 ProAspThrProThrIleSerProSerAspThrTyrArgProGlyAlaAsnLeuSer

850

870

890

35 CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGCAACA
 LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

910

930

950

40 TTCCAGCAAAGCACACAAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

970

990

1010

45 TATAACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCAAGTCAAGACGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

50

55

1030 1050 1070

5 ATAGTCACTGATAATGCTCTACCACAAAGAAAATGGCCTCTCACCTGGGCCATTGCTGGC
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly

1090 1110 1130

10 ATTGTGATTGGAGTAGTGGCCCTGGTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTG
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

1150 1170 1190

15 CATTTCGGGAAGACCAGGCAGCTCAGGACCACCCAATGACCCACCTAACAAAGATGAAATGA
 HisPheGlyLysThrGlySerSerGlyProLeuGln

1210 1230 1250

20 AGTTACTTATTCTACCCCTGAACCTTGAAAGCCCAGCAACCCACACAACCAACTTCAGCCTC

1270 1290 1310

25 CCCATCCCTAACAGGCCACAGAAAATATTATTCAGAAGTAAAAAAAGCAGTAAATGAAACCT

1330

30 GAAAAAAAAAAAAAAA

The present invention is also directed to a replicable recombinant cloning vehicle ("vector") having an insert comprising a nucleic acid, e.g., DNA, which comprises a base sequence which codes for a CEA peptide or a base sequence hybridizable therewith.

This invention also relates to a cell that is transformed/transfected, infected or injected with the above described replicable recombinant cloning vehicle or nucleic acid hybridizable with the aforementioned cDNA. Thus the invention also concerns the transfection of cells using free nucleic acid, without the use of a cloning vehicle.

Still further, the present invention concerns a polypeptide expressed by the above described transfected, infected or injected cell, which polypeptide exhibits immunological cross-reactivity with a CEA, as well as labelled forms of the polypeptide. The invention also relates to polypeptides having an amino acid sequence, i.e., synthetic peptides, or the expression product of a cell that is transfected, injected, infected with the above described replicable recombinant cloning vehicles, as well as labelled forms thereof. Stated otherwise, the present invention concerns a synthetic peptide having an amino acid sequence corresponding to the entire amino acid sequence or a portion thereof having no less than five amino acids of the aforesaid expression product.

The invention further relates to an antibody preparation specific for the above described polypeptide.

Another aspect of the invention concerns an immunoassay method for detecting CEA or a functional equivalent thereof in a test sample comprising

- (a) contacting the sample with the above described antibody preparation, and
- (b) determining binding thereof to CEA in the sample.

The invention also is directed to a nucleic acid hybridization method for detecting a CEA or a related nucleic acid (DNA or RNA) sample in a test sample comprising

- (a) contacting the test sample with a nucleic acid probe comprising a nucleic acid, which comprises a base sequence which codes for a CEA peptide sequence or a base sequence that is hybridizable therewith, and
- (b) determining the formation of the resultant hybridized probe.

The present invention also concerns a method for detecting the presence of carcinoembryonic antigen or a functional equivalent thereof in an animal or human patient *in vivo* comprising

- 5 a) introducing into said patient a labeled (e.g., a radio-opaque material that can be detected by X-rays, radiolabeled or labeled with paramagnetic materials that can be detected by NMR) antibody preparation according to the present invention and
- b) detecting the presence of such antibody preparation in the patient by detecting the label.

In another aspect, the present invention relates to the use of an antibody preparation according to the present invention for therapeutic purposes, namely, attaching to an antibody preparation radionuclides, toxins or other biological effectors to form a complex and introducing an effective amount of such complex 10 into an animal or human patient, e.g., by injection or orally. The antibody complex would attach to CEA in a patient and the radionuclide, toxin or other biological effector would serve to destroy the CEA expressing cell.

BRIEF DESCRIPTION OF THE DRAWINGS

15 Fig. 1 is a schematic representation of the transmembrane CEA's

DETAILED DESCRIPTION OF THE INVENTION

20 In the parent application 87111/68, published as EP-A-263 933, applicants described the following CEA's:

	ATCC No.
25	CEA-(a) partial CEA (pcLV7)
	CEA-(b) full coding CEA (pc 15LV7)
	CEA-(c) TM-1 (FL-CEA; pc 19-22)
	CEA-(d) NCA (pcBT 20)
	67709
	67710
	67711

30 In the present application, applicants described the following CEA's:

	ATTC No.
35	CEA-(e) TM-2 (pc E22)
	CEA-(f) TM-3 (pc HT-6)
	CEA-(g) TM-4.
	67712
	67708

ATCC Nos. 67708, 67709, 67710, 67711 and 67712 were all deposited with the American Type Culture

40 Collection on May 25, 1988.

45

50

55

The sequences for CEA-(a), CEA-(b), CEA-(c) and CEA-(d) are given hereinbelow:

CEA- (a) :

5

CG CGT TTA CAC AAC CAC CAC CCC ATC AAA CCC TTC ATC ACC AGC AAC AAC TCC AAC AAC CCC GTG
 10 CAG GAT GAG GAT CCT GTA GCC TTA ACC TGT GAA CCT GAG ATT CAG AAC ACA ACC TAC CTC
 TGG TGG GTA AAT AAT CAG AGC CTC CCG GTC AGT CCC AGG CTG CAG CTG TCC AAT GAC AAC
 15 AGG ACC CTC ACT CTA CTC AGT GTC ACA AGG AAT GAT GTA GGA CCC TAT GAG TGT GGA ATC
 CAG AAC GAA TTA AGT GTT GAC CAC AGC GAC CCA GTC ACC CAG CGA TTC CTC TAT GGC CCA
 GAC GAC CCC ACC ATT TCC CCC TCA TAC ACC TAT TAC CCT CCA GGG GTG GAA CCT CAG CCT
 20 CTC TCC CAT CCA GCC TCT AAC CCA CCT CCA CAG TAT TCT TGG CTG ATT GAT GGG ACC GTC
 CAG CAA CAC ACA CAA GAG CTC TTT ATC TCC AAC ATC ACT GAG AAG AAC ACC GCA CTC TAT
 25 ACC TGC CAG CCC ATT AAC TCA GCC AGT GGC ACA GCA GGA CTA CAG TCA AGA CAA TCA CAG
 TCT CTG CGG ATG CCC AAG CCC TCC ATC ACC AAC AAC TCC AAA CCC GTG GAG GAC AAG
 GAT CGC TGT GGC CTI CAC TGT GAA CCT GAG CCT CAG AAC ACA ACC TAC CTG TGG TGG GTA
 30 AAT CGT CAG AGC CTC CCA GTC AGT CCC AGG CTG CAG CTG TCC AAT GGC AAC AGG ACC CTC
 ACT CTA TTC AAT GTC ACA AGA AAT GAC GCA AGA GGC TAT GTA TGT GGA ATC CAG AAC TCA
 35 GTG AGT GCA AAC CCC AGT GAC CCA GTC ACC CTG GAT GTC CTC TAT GGG CGG GAC ACC CCC
 ATC ATT TCC CCC CCC CC

40

(b)

45

10

20

30

40

50

C ACC ATG GAG TCT CCC TCG GCC CCT CTC CAC AGA TGG TGC ATC CCC TGG CAG AGG CTC
 Met Glu Ser Pro Ser Ala Pro Leu His Arg Trp Cys Ile Pro Trp Gln Arg Leu

50

55

EP 0 346 710 B1

60 70 80 90 100 110
 · · · · · ·
 5 CTG CTC ACA GCC TCA CTT CTA ACC TTC TGG AAC CCG CCC ACC ACT GCC AAG CTC ACT
 Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr Thr Ala Lys Leu Thr
 1 2 3

120 130 140 150 160 170
 · · · · · ·
 10 ATT GAA TCC ACG CCG TTC AAT GTC GCA GAG GGG AAG GAG GTG CTT CTA CTT GTC CAC
 Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly Lys Glu Val Leu Leu Leu Val His
 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

180 190 200 210 220
 · · · · ·
 15 AAT CTG CCC CAG CAT CTT TTT GGC TAC AGC TGG TAC AAA GGT GAA AGA GTG GAT GGC
 Asn Leu Pro Gln His Leu Phe Gly Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

230 240 250 260 270 280
 · · · · · ·
 20 AAC CGT CAA ATT ATA GGA TAT GTA ATA GGA ACT CAA CAA GCT ACC CCA GGG CCC GCA
 Asn Arg Gln Ile Ile Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala
 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

290 300 310 320 330 340
 · · · · · ·
 30 TAC AGT GGT CGA GAG ATA ATA TAC CCC AAT GCA TCC CTG CTG ATC CAG AAC ATC ATC
 Tyr Ser Gly Arg Glu Ile Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Ile Ile
 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

350 360 370 380 390 400
 · · · · · ·
 35 CAG AAT GAC ACA GGA TTC TAC ACC CTA CAC GTC ATA AAG TCA GAT CTT GTG AAT GAA
 Gln Asn Asp Thr Gly Phe Tyr Thr Leu His Val Ile Lys Ser Asp Leu Val Asn Glu
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

410 420 430 440 450
 · · · · ·
 40 GAA GCA ACT GGC CAG TTC CGG GTA TAC CCG GAG CTG CCC AAG CCC TCC ATC TCC AGC
 Glu Ala Thr Gly Gln Phe Arg Val Tyr Pro Glu Leu Pro Lys Pro Ser Ile Ser Ser
 99 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

460 470 480 490 500 510
 · · · · · ·
 45 AAC AAC TCC AAA CCC GTG GAG GAC AAG GAT GCT GTG GCC TTC ACC TGT GAA CCT GAG
 Asn Asn Ser Lys Pro Val Glu Asp Lys Asp Ala Val Ala Phe Thr Cys Glu Pro Glu
 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

EP 0 346 710 B1

	520	530	540	550	560	570
5	ACT CAG GAC GCA ACC TAC CTG TGG TGG GTA AAC AAT CAG AGC CTC CCG GTC AGT CCC Thr Gln Asp Ala Thr Tyr Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155					
	580	590	600	610	620	
10	AGG CTG CAG CTG TCC AAT GGC AAC AGG ACC CTC ACT CTA TTC AAT GTC ACA AGA AAT Arg Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn Val Thr Arg Asn 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174					
	630	640	650	660	670	680
15	GAA CAA GCA AGC TAC AAA TGT GAA ACC CAG AAC CCA GTG AGT GCC AGG CGC AGT GAT Glu Gln Ala Ser Tyr Lys Cys Glu Thr Gln Asn Pro Val Ser Ala Arg Arg Ser Asp 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193					
20	690	700	710	720	730	740
25	TCA GTC ATC CTG AAT GTC CTC TAT GGC CCG GAT GCC CCC ACC ATT TCC CCT CTA AAC Ser Val Ile Leu Asn Val Leu Tyr Gly Pro Asp Ala Pro Thr Ile Ser Pro Leu Asn 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212					
	750	760	770	780	790	
30	ACA TCT TAC AGA TCA GGG GAA AAT CTG AAC CTC TCC TGC CAC GCA GCC TCT AAC CCA Thr Ser Tyr Arg Ser Gly Glu Asn Leu Asn Leu Ser Cys His Ala Ala Ser Asn Pro 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231					
	800	810	820	830	840	850
35	CCT GCA CAG TAC TCT TGG TTT GTC AAT GGG ACT TTC CAG CAA TCC ACC CAA GAG CTC Pro Ala Gln Tyr Ser Trp Phe Val Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250					
40	860	870	880	890	900	910
45	TTT ATC CCC AAC ATC ACT GTG AAT AAT AGT GGA TCC TAT ACG TGC CAA GCC CAT AAC Phe Ile Pro Asn Ile Thr Val Asn Asn Ser Gly Ser Tyr Thr Cys Gln Ala His Asn 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269					
	920	930	940	950	960	970
50	TCA GAC ACT GGC CTC AAT AGG ACC ACA GTC ACG ACG ATC ACA GTC TAT GCA GAG CCA Ser Asp Thr Gly Leu Asn Arg Thr Thr Val Thr Ile Thr Val Tyr Ala Glu Pro 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288					

EP 0 346 710 B1

	980	990	1000	1010	1020	
5	CCC AAA CCC TTC ATC ACC AGC AAC AAC TCC AAC CCC GTG GAG GAT GAG GAT GCT GTA Pro Lys Pro Phe Ile Thr Ser Asn Asn Ser Asn Pro Val Glu Asp Glu Asp Ala Val 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307					
10	1030	1040	1050	1060	1070	1080
	GCC TTA ACC TGT GAA CCT GAG ATT CAG AAC ACA ACC TAC CTG TGG TGG GTA AAT AAT Ala Leu Thr Cys Glu Pro Glu Ile Gln Asn Thr Thr Tyr Leu Trp Trp Val Asn Asn 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326					
15	1090	1100	1110	1120	1130	1140
	CAG AGC CTC CCG GTC AGT CCC AGG CTG CAG CTG TCC AAT GAC AAC AGG ACC CTC ACT Gln Ser Leu Pro Val Ser Pro Arg Leu Gln Leu Ser Asn Asp Asn Arg Thr Leu Thr 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345					
20	1150	1160	1170	1180	1190	
	CTA CTC AGT GTC ACA AGG AAT GAT GTA GGA CCC TAT GAG TGT GGA ATC CAG AAC GAA Leu Leu Ser Val Thr Arg Asn Asp Val Gly Pro Tyr Glu Cys Gly Ile Gln Asn Glu 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364					
25	1200	1210	1220	1230	1240	1250
	TTA AGT GTT GAC CAC AGC GAC CCA GTC ATC CTG AAT GTC CTC TAT GGC CCA GAC GAC Leu Ser Val Asp His Ser Asp Pro Val Ile Leu Asn Val Leu Tyr Gly Pro Asp Asp 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383					
30	1260	1270	1280	1290	1300	1310
	CCC ACC ATT TCC CCC TCA TAC ACC TAT TAC CGT CCA GGG GTG AAC CTC AGC CTC TCC Pro Thr Ile Ser Pro Ser Tyr Thr Tyr Tyr Arg Pro Gly Val Asn Leu Ser Leu Ser 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402					
35	1320	1330	1340	1350	1360	
	TGC CAT GCA GCC TCT AAC CCA CCT GCA CAG TAT TCT TGG CTG ATT GAT GGG AAC ATC Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Leu Ile Asp Gly Asn Ile 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421					
40	1370	1380	1390	1400	1410	1420
	CAG CAA CAC ACA CAA GAG CTC TTT ATC TCC AAC ATC ACT GAG AAG AAC AGC GGA CTC Gln Gln His Thr Gln Glu Leu Phe Ile Ser Asn Ile Thr Glu Lys Asn Ser Gly Leu 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440					

EP 0 346 710 B1

	1430	1440	1450	1460	1470	1480
5	TAT ACC TGC CAG GCC AAT AAC TCA GCC AGT GGC CAC AGC AGG ACT ACA GTC AAG ACA Tyr Thr Cys Gin Ala Asn Asn Ser Ala Ser Gly His Ser Arg Thr Thr Val Lys Thr 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459					
10	1490	1500	1510	1520	1530	1540
	ATC ACA GTC TCT GCG GAC GTG CCC AAG CCC TCC ATC TCC AGC AAC AAC TCC AAA CCC Ile Thr Val Ser Ala Asp Val Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478					
15	1550	1560	1570	1580	1590	
	GTG GAG GAC AAG GAT GCT GTG GCC TTC ACC TGT GAA CCT GAG GCT CAG AAC ACA ACC Val Glu Asp Lys Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Ala Gin Asn Thr Thr 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497					
20	1600	1610	1620	1630	1640	1650
	TAC CTG TGG TGG GTA AAT GGT CAG AGC CTC CCA GTC AGT CCC AGG CTG CAG CTG TCC Tyr Leu Trp Trp Val Asn Gly Gin Ser Leu Pro Val Ser Pro Arg Leu Gin Leu Ser 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516					
25	1660	1670	1680	1690	1700	1710
	AAT GGC AAC AGG ACC CTC ACT CTA TTC AAT GTC ACA AGA AAT GAC GCA AGA GCC TAT Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn Val Thr Arg Asn Asp Ala Arg Ala Tyr 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535					
30	1720	1730	1740	1750	1760	
	GTA TGT GGA ATC CAG AAC TCA GTG AGT GCA AAC CGC AGT GAC CCA GTC ACC CTG GAT Val Cys Gly Ile Gin Asn Ser Val Ser Ala Asn Arg Ser Asp Pro Val Thr Leu Asp 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554					
35	1770	1780	1790	1800	1810	1820
	GTC CTC TAT GGG CCG GAC ACC CCC ATC ATT TCC CCC CCA GAC TCG TCT TAC CTT TCG Val Leu Tyr Gly Pro Asp Thr Pro Ile Ile Ser Pro Pro Asp Ser Ser Tyr Leu Ser 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573					
40	1830	1840	1850	1860	1870	1880
	GGA GCG AAC CTC AAC CTC TCC TGC CAC TCG GCC TCT AAC CCA TCC CCG CAG TAT TCT Gly Ala Asn Leu Asn Leu Ser Cys His Ser Ala Ser Asn Pro Ser Pro Gin Tyr Ser 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592					

EP 0 346 710 B1

	1890	1900	1910	1920	1930	
5	TGG CGT ATC AAT GGG ATA CCG CAG CAA CAC ACA CAA GTT CTC TTT ATC GCC AAA ATC Trp Arg Ile Asn Gly Ile Pro Gln Gln His Thr Gln Val Leu Phe Ile Ala Lys Ile 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611					
10	1940	1950	1960	1970	1980	1990
	-	-	-	-	-	-
	ACG CCA AAT AAT AAC GGG ACC TAT GCC TGT TTT GTC TCT AAC TTG GCT ACT GGC CGC Thr Pro Asn Asn Asn Gly Thr Tyr Ala Cys Phe Val Ser Asn Leu Ala Thr Gly Arg 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630					
15	2000	2010	2020	2030	2040	2050
	-	-	-	-	-	-
	AAT AAT TCC ATA GTC AAG AGC ATC ACA GTC TCT GCA TCT GGA ACT TCT CCT GGT CTC Asn Asn Ser Ile Val Lys Ser Ile Thr Val Ser Ala Ser Gly Thr Ser Pro Gly Leu 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649					
20	2060	2070	2080	2090	2100	2110
	-	-	-	-	-	-
	TCA GCT GGG GCC ACT GTC GGC ATC ATG ATT GGA GTG CTG GTT GGG GTT GCT CTG ATA Ser Ala Gly Ala Thr Val Gly Ile Met Ile Gly Val Leu Val Gly Val Ala Leu Ile 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668					
25	2120	2130	2140	2150	2160	
	-	-	-	-	-	-
	TAG CAG CCC TGG TGT AGT TTC TTC ATT TCA GGA AGA CTG ACA GTT GTT TTG CTT CTT 30					
	2170	2180	2190	2200	2210	2220
	-	-	-	-	-	-
	CCT TAA AGC ATT TGC AAC AGC TAC AGT CTA AAA TTG CTT CTT TAC CAA GGA TAT TTA					
35	2230	2240	2250	2260	2270	2280
	-	-	-	-	-	-
	CAG AAA ATA CTC TGA CCA GAG ATC GAG ACC ATC CTA GCC AAC ATC GTG AAA CCC CAT					
40	2290	2300	2310	2320	2330	
	-	-	-	-	-	-
	CTC TAC TAA AAA TAC AAA AAT GAG CTG GGC TTG GTG GCG CGC ACC TGT AGT CCC AGT					
45	2340	2350	2360	2370	2380	2390
	-	-	-	-	-	-
	TAC TCG GGA GGC TGA GGC AGG AGA ATC GCT TGA ACC CGG GAG GTG GAG ATT GCA GTG					

EP 0 346 710 B1

2400 2410 2420 2430 2440 2450
AGC CCA GAT CGC ACC ACT GCA CTC CAG TCT GGC AAC AGA GCA AGA CTC CAT CTC AAA
5
2460 2470 2480 2490 2500
AAG AAA AGA AAA GAA GAC TCT GAC CTG TAC TCT TGA ATA CAA GTT TCT GAT ACC ACT
10
2510 2520 2530 2540 2550 2560
GCA CTG TCT GAG AAT TTC CAA AAC TTT AAT GAA CTA ACT GAC AGC TTC ATG AAA CTG
15
2570 2580 2590 2600 2610 2620
TCC ACC AAG ATC AAG CAG AGA AAA TAA TTA ATT TCA TGG GGA CTA AAT GAA CTA ATG
20
2630 2640 2650 2660 2670 2680
AGG ATA ATA TTT TCA TAA TTT TTT ATT TGA AAT TTT GCT GAT TCT TTA AAT GTC TTG
25
2690 2700 2710 2720 2730
TTT CCC AGA TTT CAG GAA ACT TTT TTT CTT TTA AGC TAT CCA CTC TTA CAG CAA TTT
30
2740 2750 2760 2770 2780 2790
GAT AAA ATA TAC TTT TGT GAA CAA AAA TTG AGA CAT TTA CAT TTT ATC CCT ATG TGG
35
2800 2810 2820 2830
TCG CTC CAG ACT TGG GAA ACT ATT CAT GAA TAT TTA TAT TGT ATG
40
45

CEA-(c):

5

10

30

50

10 CAGCCGTGCTCGAACGGTTCCTGGAGCCCCAAGCTCTCCTCCACAGGTGAAGACAGGGCCA

15 GCAGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGC GTGTACCCCTGGCAG

15 MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln

130

150

170

20 GGGCTCTGCTCACAGCCTCACTCTAACCTTCTGGAACCCGCCACCTGCCAGCTC
GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu

190

210

230

25 ACTACTGAATCCATGCCATCAATGTTGCAGAGGGAAAGGAGGTTCTCTCCTTGCCAC
ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis

250

270

290

30 AATCTGCCCAAGCAACTTTTGCTACAGCTGGTACAAAGGGAAAGAGTGGATGGCAAC
AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn35 310 330 350
CGTCAAATTGTAGGATATGCAATAGGAAC TCAACAAGCTACCCAGGGCCCGCAAACAGC
ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer40 370 390 410
GGTCGAGAGACAATATA CCCCAATGCATCCCTGCTGATCCAGAACGTCA CCGAATGAC
GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp45 430 450 470
ACAGGATTCTACACCC TACAAGTCATAAAGTCAGATCTTGTGAATGAAGAAGCAACTGGA
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

50 490 510 530

(2)

5	10	30	50
	CAGCCGTGCTCGAACCGTTCTGGAGCCCCAACGCTCTCCTCCACAGGTGAAGACAGGGCCA		
10	70	90	110
	GCAGGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGGGTACCCCTGGCAG MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln		
15	130	150	170
	GGGCTTCTGCTCACAGCCTCACTTCTAACCTCTGGAACCCGCCAACACTGCCAGCTC GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu		
20	190	210	230
	ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGAGGTTCTTCTCTTGTCAC ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis		
25	250	270	290
	AATCTGCCCAAGCAACTTTTGCTACAGCTGGTACAAGGGGAAAGAGGTGGATGGCAAC AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn		
30	310	330	350
	CGTCAAAATTGTAGGATATGCAATAGGAACCTCAAACAAAGCTACCCAGGGCCGCAACAGC ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer		
35	370	390	410
	GGTCGAGAGACAATATAACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp		

45

50

55

430

450

470

ACAGGATTCTACACCCCTAC~~A~~AGTCATA~~A~~GTCA~~G~~ATCTTGTGAATGAAGAAGC~~A~~ACTGG~~A~~
 ThrGly~~Phe~~Tyr~~Thr~~LeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

5

490

510

530

CAGTTCCATGTATA~~CCC~~GGAGCTGCCAAGCCCTCCATCTCCAGCAACA~~ACTCC~~AA~~CC~~CT
 Gln~~Phe~~His~~Val~~Tyr~~Pro~~GluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

10

550

570

590

GTGGAGGAC~~A~~GGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAACCTAC
 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

15

610

630

650

CTGTGGTGGATAAACAA~~T~~CAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

20

670

690

710

AACAGGACCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCTATGAGTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

25

730

750

770

ATACAGAACCCAGTGAGTGC~~G~~AACCGCAGTGACCCAGTCACCTTGAATGT~~CAC~~CTATGGC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

30

790

810

830

CCGGACACCCCCACCATT~~CC~~CTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
 ProAspThrProThrIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer

40

45

50

55

EP 0 346 710 B1

550

870

890

CTCTCTGCTATGCCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGAAACA
 LeuSerCystYrAlaSerAsnPro?ProAlaGlnTyrSerTrpLeuIleAsnGlyThr

5

910

930

950

TTCCAGCAGCACACAAAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
 ?heGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

10

970

990

1010

TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCACAGTCAAGACGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

15

1030

1050-

1070

ATAGTCACTGAGCTAAGTCCAGTAGTAGCAAAGCCCCAAATCAAAGCCAGCAAGACCACA
 IleValThrGluLeuSerProValValAlaLysProGlnIleLysAlaSerLysThrThr

20

1090

1110

1130

25

GTCACAGGAGATAAGGACTCTGTGAAACCTGACCTGCTCCACAAATGACACTGGAAATCTCC
 ValThrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer

30

1150

1170

1190

ATCCGTTGGTTCTCAAAAACCAGAGTCTCCCGTCTCGGAGAGGGATGAAGCTGTCCCAG
 IleArgTrpPhePheLysAsnGlnSerLeuProSerSerGluArgMetLysLeuSerGln

35

1210

1230

1250

40

GGCAACACCAACCTCAGCATAAACCTGTCAAGAGGGAGGATGCTGGGACGTATTGGTGT
 GlyAsnThrThrLeuSerIleAsnProValLysArgGluAspAlaGlyThrTyrTrpCys

45

50

55

1270 1290 1310
 GAGGTCTTCAACCCAAATCAGTAAGAACCAAAGCGACCCCATCATGCTGAACGTAAACTAT
 GluValPheAsnProIleSerLysAsnGlnSerAspProIleMetLeuAsnValAsnTyr
 5

1330 1350 1370
 ATGCTCTACCACTAAGAAAATGGCCTCTCACCTGGGGCCATTGCTGGCATTGTGATTGGA
 10 AsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGlyIleValIleGly

1390 1410 1430
 15 GTAGTGGCCCTGGTTGCTCTGATAGCAGTAGGCCCTGGCATGTTTCTGCATTCGGGAAG
 ValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeuHisPheGlyLys

1450 1470 1490
 20 ACCGGCAGCTCAGGACCACTCCAATGACCCACCTAACAAAGATGAATGAAGTTACTTATTC
 ThrGlySerSerGlyProLeuGln

25 1510 1530 1550
 TACCCCTGAACCTTGAAAGCCCCAGCAACCCACACAACCAACTTCAGCCTCCCCATCCCTAAC

30 1570 1590 1610
 AGCCACAGAAATAATTATTCAAGAAGTAAAAAAAGCACTAATGAAACCTGAATTTAAAAAA

35 1630
 AAAA

40

45

50

55

(3)

5 10 30 50

CAGCCGCTGCTCGAAGCGTTCTGGAGCCCCAACGCTCTCCCTCCACAGGTCAAACACAGGGCCA

10 70 90 110

GCAGGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGCCTGTACCCCTGGCAG
MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln

15 130 150 170

GGGCTTCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCGCCACCAC TGCCCAGCTC
GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu

20 190 210 230

ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGAGGTTCTTCCTGTCCAC
ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuValHis

25 250 270 290

AATCTCCCCCAGCAACTTTTGCTACAGCTGGTACAAAGGGGAAGAGTGGATGGCAAC
AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluAspValAspGlyAsn

30 310 330 350

CCTCAAATTGTAGGATAATGCAATAGGAACCTAACAAAGCTACCCCAAGGGCCCCAAACAGC
ArgGinIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer

35 370 390 410

GGTCGAGAGACAAATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC
GlyAspGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp

40 430 450 470

ACAGGGATTCTACACCCCTACAAAGTCATAAAAGTCAGATCTTGTGAATGAAAGAAGCAACTGGAA
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

490 510 530
 5 CAGTTCCATGTATAACCCGGAGCTGCCCAAGCCCTCCATCTCCAGCAAACAACTCCAAACCT
 Gln?heHisValTyr?ProGluLeu?ProLysProSerIleSerSerAsnAsnSerAsnPro

 550 570 590
 10 GTGGAGGACAAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC
 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

 610 630 650
 15 CTGTGGTGGATAAACAAATCAGAACCTCCCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

 670 690 710
 20 AACAGGACCCCTCACTCTACTCAGTGTCAAAAGCAATGACACAGGACCCATGACTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

 730 750 770
 25 ATACAGAACCCAGTGAGTGCAGAACCGCAGTGACCCAGTCACCTGAATGTCACCTATGGC
 IleGlnAsn?ProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

 30

 790 810 830
 35 CCGGACACCCCCACCAATTCCCCCTTCAGACACCTATTACCGTCCAGGGCAAACCTCAGC
 ProAspThr?ProThrIleSerProSerAspThrTyrArgProGlyAlaAsnLeuSer...

 850 870 890
 40 CCTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAGATGGAA
 LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

 910 930 950
 45 TTCCAGCAAAAGCACACAAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

 50 970 990 1010
 55 TATACCTGCCACGCCAATAAC?CAGTCAC?CCCTGCACACGGACCACAGTCACGACGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

1030 1050 1070
 5 ATAGTCACTGATAATGCCTTACCAACAAGAATGGCCTCTCACCTGGGCCATTGCTGGC
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly

 1090 1110 1130
 10 ATTGTGATTGGAGTAGTGCCCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCCTG
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

 1150 1170 1190
 15 CATTTCGGGAAGACCGGGCAGCTCAGGACCCACTCCAATGACCCACCTAACAAAGATGAATGA
 HisPheGlyLysThrGlySerSerGlyProLeuGln

 1210 1230 1250
 20 AGTTACTTATTCTACCCCTGAACTTTGAAGCCCAGCAACCCACACAAACCAACTTCAGCCTC

 1270 1290 1310
 25 CCCATCCCTAACAGCCACACGAAATAATTTATTCAAGAACTAAAAAAAGCAGTAATGAAACCT

 1330
 30 GAAAAA.....

 35

 40

 45

 50

 55

(4)

5	1	acagcacagctgacagccgtactcaggaagcttctggatcctaggttatctccacagag	60
	61	gagzaacacaaacgcagcagagaccatggggccctctcagccctccctgcacacaccc MetGly?ProLeuSerAlaProProCysThrHisLeu	120
10	121	atcacttggaaagggggtctgcacacagcatcactttaaacttctggatccgcccaca. IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProTh:	180
	181	actccccaaatgcacgtcattgaaaccccaagccacccaaatgttctgaggggaaggatgttc ThrAlaGlnValThrileGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
15	241	ctacttgtccacaatttgcacccagaatcttgctggctacatttgtacaaaaggccaaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrileTrpTyrLysGlyGlnMet	300
	301	acatacgtctaccattacattacatcatatgttagtagacggtaaagaattatataatggg ThrTyrValTyrHisTyrIleThrSerTyrValValAspGlyGlnArgileIleTyrGly	360
20	361	cctgcatacgtggggagaaaaaggatatatccaaatgcacccctgctgtatccagaatgtc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
	421	acgcggaggatgcaggatccatcacacatcataaagcgacgcgatggactgga ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
25	481	ggagtaactggacatttcacccatcaccttacacccatggagactccaaagccctccatctcc GlyValThrGly?His?heThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
	541	agcaacccatccatcccaggcaggccatggaggctgtgatcttaacctgtgatccatgcg SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAsp?rcAla	600
30	501	actccacgcgcaacgttaccatgtggatgtatgtcagacgcctccatgtactcacaccc Thr?ProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	660
	561	tgcacgtgtccaaacccacaggacccttttatatttgtgtcacaaatgttatattgc LeuGlnLeuSe:LysThrAsnArgThrLeu?heIle?heGlyValTh:LysTyrIleAla	720
35	621	gcacccatgtaatgtgaaatacggacccatgtggatgtccacccgcgtgacccatgc Gly?ProTyrGluCysGlulIleArgAsnProValSerAlaSerArgSerAspProValThr	780
	681	ctgaatctcccccacgtgtccacccatcacatcacatcaacaacttacccatgc LeuAsnLeuLeuProLysLeuSerLysProTyrileThrileAsnAsnLeuAsn?roArg	840
40	741	gacaaataggatgtttacccatgtgttgcacgttgcacccatgttgc GluAsnLysAspValLeuThr?heThrCysGlu?roLysSerGluAsnTy:ThrTyrIle	900
	801	tggggctaaatgttcagagccctccatgtcagtccacgggtaaagcgacccattggaaac TrpTrpLeuAsnGlyGlnSerLeuProValSerFrcArgValLysArgProIleGluAsn	960
45	861	ggatcccttacccatgtcacgagaaatgaaacacggacccatgtgc ArgileLeuIleLeuProAsnValThrArgAsnGluThrGlyProTyrGlnCysGluIle	1020
	1021	cgccaccgatatggatccgcagtgcacccatgttgc ArgAspArgTyrGlyGlyIleArgSerAspProValThrLeuAsnValLeuTyrGlyPro	1080

EP 0 346 710 B1

1081	gaccccccacgttacccttattcaccttaccgttcaggagaaaacctacttt AspLeuProSerIleTyrProSerPheThrTyrArgSerGlyGluAsnLeuTyrPhe	1140
1141	tccctgcgttcgggtggatctaaacccacgggcacaatattcttgacaaattaatgggaatgttt SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1200
5		
1261	cagctatcaccacaaagctctatccccaaataactacaaagcatagtggcttat GlnLeuSerGlyGlnIlysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	1263
10		
1261	gcttgcgtctgttcgttaactcagccacttggcaaggaaagctccaaatccatcacagtcaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
1321	gtctctgactggatattaccctgaattctacttagttcctccaattccattttctccatg ValSerAspTrpIleLeuProEnd	1380
15		
1381	gaatcacgaagagcaagacccactctgttccagaagccctataatctggagggtggacaac 1441	1440
1441	tcgatgttaatttcatggaaaaccccttgcacatgtgagccactcagaactcacc 1501	1500
1501	zaaatgttcgcacccataacaacagactactcaaactgttaaaaccaggataagaagttatg 1561	1560
1561	acttcacactgtggacatgtttccaaagatgtcataacaagactcccatcatgacaagg 1621	1620
1621	ctccacccttactgtctgcattgccttcacttgcaggataatgcgtcat 1681	1680
1681	tagaatttccatgttagtagttcgaggtaacaacagactgtcagatatgtcatctca 1741	1740
1741	acctcaaacttttcgttaacatctcaggaaatgtggctctccatctgcatacagg 1801	1800
20		
1801	ctcccaatagaatgaaatgcacacagagatattgcctgtgtgtttgcagagaaatgtggat 1861	1860
1861	taatggatggaaatgcattatagtagactcttcattaaatgcacattgtgtggat 1921	1920
1921	gctctcaccatttcctaagagatacagtgtaaaggacgtgacagtaatactgattctagca 1981	1980
	gatataaacatgttaccacatggaaaaaa	2010

25 end

30

35

40

45

50

55

(5)

1	gggtggatccctaggctcatctccataggggagaacacacatacagcagagaccatggga	59
	MetGly	
5	ccccctctcagccccctccctgcactcagcacatcacctggaaggggctccgtcacagca	119
	ProLeuSerAla?ProProCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	
10	tcaactttaaacttctggAACCTGCCACCCACTGCCAAGTAATAATTGAAGGCCAGCCA	179
	SerLeuLeuAsnPheTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	
15	cccaaaggTTCTGGGGGAAGGATGTTCTTACTGTCCACAAATTGCCCGAGAACATTCTT	239
	ProLysValSer:GluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	
20	actggctacatctggTACAAGGGCAAATGACGGACCTCTACCATTACATTACATCATAT	299
	ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	
25	gtatgtacggtaaaatttatatatgggcctgcctacagtggacgagaaacagtataattcc	359
	ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	
30	aatgcatccctgtctgatccagaatgtcacacaggaggatgcaggatcctacaccc tacac	419
	AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	
35	atcataaaagcgaggcgatggactggaggactaactggatatttcactgtcaccc tatac	479
	IleIleLysAr?GlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	
40	tcggagactccczaagcgctccatctccagcagcaacttaaaccccaggaggatcatggag	539
	SerGluThrPrcLysArgSerIleSerSerAsnLeuAsnProArgGluValMetGlu	
45	gctgtgcgttzaatctgtgatccctgagactccggatgcagactacatgtgggtgtcaaat	599
	AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	
50	ggtcagaaccccttatgactcacagggtgcagctgtccaaaaccacaggacccttat	659
	GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	
55	ctatgggtgtcacaaagtatattgcagggccctatgaatgtgaaatacggaggggatgt	719
	LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	
60	agtgccagccgcagtgaccccaatgcaccctgaatctcccccgaagctgcccacgccttac	779
	SerAlaSerAr?SerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	
65	atcaccatcaacaacttaaaccccaggagaagaaggatgtgttagccctcacatgtgaa	839
	IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	
70	cctaagagtccgaactcacctacattggggctaaatggtcagacgcctccggcagt	899
	ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	
75	ccgagggtaaagcgacccattgaaaacaggatactcatttacccaggatgtgtcacgagaat	959
	ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	
80	gaaacaggaccctatcaatgtgaaatacgggaccgatatggggatccgcagtaaccca	1019
	GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	

1020	gtcacccctgaaatcgccttatggccagaccccccaattaccctactcacctat ValThrLeuAsnValLeuTyrGlyProAspLeuProArgIleTyrProTyrPheThrTyr	1079
1080	taccgttcaggagaaaacctcgacttgcctgcttgccgactctaaccaccggccagag TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	1139
5		
1140	tattttggccatataatggaaagtttcagctatcaggacaaaagctcttataccccaa TyrPheTrpThrIleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	1199
10		
1200	attactacaatcatagcggctctatgcttgctcgtaactcagccactggcaag IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	1259
1260	gaaatctccaaatccatgatagtcaaagtctctggccatggaaaccagacagag GluIleSerLysSerMetIleValLysValSerGlyProCysHisGlyAsnGlnThrGlu	1319
1320	tctcattaatggctgcccaatagagacactgagaaaaagaacaggttataccatg SerHisEnd	1379
75		
1380	aaattcaagacaagaagaaaaaggctcaatgttattggactaaataatcaaaaggataa	1439
1440	tgtttcataattttattggaaatgtgctgatttttggaaatgttttttattctccagatt	1499
1500	tatgaacttttttcttcagcaattggtaaagtatacttttggaaacaaaaattgaaaca	1559
1560	tttgcattttgtctctatctgagtgccccc 1591	

20

2. Replizierbares rekombinantes Kloniergehikel mit einem eine Nucleinsäure nach Anspruch 1 umfassenden Insert.

25 3. Zelle, die mit einem rekombinanten Kloniergehikel nach Anspruch 2 transfiziert, infiziert oder injiziert ist.

4. Verfahren zur Herstellung eines Polypeptids, umfassend die Schritte
 (a) des Kultivierens der Zelle nach Anspruch 3,
 (b) des Gewinnens des durch diese Zelle exprimierten Polypeptids.

30 5. Verfahren zur Herstellung eines gegen ein Polypeptid gerichteten Antikörpers, umfassend die Schritte
 (a) des Herstellens des Polypeptids durch das Verfahren des Anspruchs 4,
 (b) des Injizierens des Polypeptids in einen Wirt, der zur Bildung von Antikörpern befähigt ist, und
 (c) des Gewinnens der Antikörper.

35

Reverendations

40 1. Acide nucléique comprenant une séquence de bases qui code pour une séquence peptidique, caractérisé en ce que le groupe d'acides nucléiques est de l'ADN choisi parmi le groupe de cinq séquences ci-après :

45

50

10 30 50

CAGCCGTGCTCGAAGCGTTCTGGAGCCCCAAGCTCTCCTCACAGGTGAAGACAGGGCCA

5 70 90 110

GCAGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGACTGCCGTGACCCCTGGCAG
 10 MetGlyHisLeuSerAla?ProLeuHisArgValArgValProTrpGln

130 150 170

CGGCTTCTGCTCACAGCCTCACTCTAACCTCTGGAACCCGGCCCACCACTGCCAGCAG
 15 GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTyrAsnProProThrThrAlaGlnSer

190 210 230

ACTACTGAATCCATGCCATTCAATGTTGAGAGGGAAAGGAGGTTCTCTCCTTGCCAC
 20 ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis

250 270 290

ATCTGCCCAAGCAACTTTTGCTACAGCTGGTACAAAAGGGAAAAGACTGGATGCCAAC
 25 AsnLeuProGlnGlnLeuPheGlyTyrSerTyrPheLysGlyGluArgValAspGlyAsn

310 330 350

CGTCAAATTGTAACGATATGCCATTAGGAACCTAACAAAGCTACCCAGGGCCCGCAAAACAGC
 30 ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrPheGlyProAlaAsnSer

370 390 410

GGTCGAGAGACAATAACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC
 35 GlyArgGluThrIleTyrProAsnAlaSerLeuIleGlnAsnValThrGlnAsnAsp

430 450 470

ACAGGATTCTACACCCCTACAAGTCATAAAGTCAGATCTTGTGAATGAAAGAACGAACTGGA
 40 ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

45

50

55

	490	510	530
5	CAGTTCCATGATAACCGGGAGCTGCCAAGCCCTCATCTCCAGCAACAACTCCAACCCCT GlnPheHisValTy:PtoGluLeu?ProLys?ProSerIleSerSerAsnAsnSerAsnPro		
	550	570	590
10	GTGGAGGACAAAGGATGCTGTGCCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC ValGluAspLysAspAlaValAlaPheThr:CysGluProGluThrGlnAspThrThrTyr		
	610	630	650
15	CTGTGGTGGATAAACAAATCAGAGCCTCCCCGTCAAGTCCCAGGCTGCAGCTGTCCAAATGGC LeuTrp?PheAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly		
	670	690	710
20	AACAGGACCCCTCACTCTACTCAGTGTCAAAAGGAATGACACAGGACCCATTGACTGTGAA AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTy:PheCysGlu		
	730	750	770
25	ATACAGAAACCCAGTGAGTGCGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTTAATGGC IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly		
	790	810	830
30	CCGGACACCCCCACCATTTCCCTTCAGACACACCTATTACCGTCCAGGGGCAAAACCTCAGC ProAspThr?PheSer?ProSerAspThrTyrArgProGlyAlaAsnLeuSer		
	850	870	890
35	CTCTCCTGCTATGCCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTATCAATGGAAACA LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr		
	910	930	950
40	TTCCAGCAAGGACACACAGAGCTCTTATCCCTAACATCACTGTCAATAATAGTGGATCC PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer		
	970	990	1010
45	TATACCTGCCACCCCCAAATACACTCACTCACTGGCTGCACAGGACCAACAGTCACAGACCCATC TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle		
50			

1030 1050 1070
 5 ATAGTCACTGATAATGCTCTACCACAAAGAAAATGCCCTCTCACCTGGGGCCATTGCCTGGC
 IleValThrAspAsnAlaLeuPheGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly

 1090 1110 1130
 10 ATTTGATGGAGTAGTGGCCCTCGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTC
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

 1150 1170 1190
 15 CATTTCGGGAGAGACCGGCAGGGCAAGCCACCAGCGTGATCTCACAGAGCACAAACCCCTCA
 HisPheGlyLysThrGlyArgAlaSerAspGlnArgAspLeuThrGluHisLysProSer

 1210 1230 1250
 20 GTCTCCAACCACTCAGGACCACTCCAATGACCCACCTAACAAAGATGATGAAGTTACT
 ValSerAsnHisThrGlnAspHisSerAsnAspProAsnLysMetAsnGluValThr

 1270 1290 1310
 25 TATTCACCTGAACTTGAAGCCCCAGCAACCCACACAACCAACTTCAGCCTCCCCATCC
 TyrSerThrLeuAsnPheGluAlaGlnGlnProThrGlnProThrSerAlaSerProSer

 1330 1350 1370
 30 CTAACAGCCACAGAAATAATTATTAGAAGTAAAAAAAGCAGTAATGAAACCTGTCTGC
 LeuThrAlaThrGluIleIleTyrSerGluValLysLysGln

 1390 1410 1430
 35 TCACTGCAGTGCTGATGTATTCAAGTCTCTCACCCCTCATCACTAGGAGATTCCCTTCCC

 1450 1470 1490
 40 CTGTAGGGTAGAGGGGTGGGCACAGAAACAACCTTCTCTACTCTCCCTCTAAATAGGC

 1510 1530 1550
 45 ATCTCCAGGCTGGCTGGTCAGTGGCCCTCTCACGTGCTAAATAGATGAAAGTACATTGGG

 1570 1590 1610
 50 AGTCTGTAGGAAACCCAAACCTTCTTCATTGAAATTGGCAAAGCTCACTTGGGAAAG

1630	1650	1670
AGGGACCAAGAACTTCCCCCTCCCTTCCCCTTTCCCCAACCTGGACTTGTAAACTTCCC		
5		
1690	1710	1730
TGTTCAGAGCACTCATTCCCTCCCACCCCCAGTCCTGTCCTATCACTCTAATTCCGATTT		
10		
1750	1770	1790
GCCATAGCCTTGAGGTTATGCTCTTCCATTAAAGTACATGTGCCAGGAAAACACCGAGAG		
15		
1810	1830	1850
AGAGAAAAGTAAACGGCAGTAATGCTTCTCCTATTTCTCCAAAGCCTTGTGTGAACTAGCA		
20		
1870	1890	1910
AAGAGAAAGAAATCAAATATAACCAAATAGTGAATGCCACAGGTTGTCCACTGTCAG		
25		
1930	1950	1970
GGTTGTCTACCTGTAGGATCAGGCTCTAAGCACCTTGGTCTTAGCTAGAAATACCACCTA		
30		
1990	2010	2030
ATCCCTCTGGCAAGCCTGCTTCAGAGAAACCCACTAGAAGCAACTAGGAAAAATCACTTG		
35		
2050	2070	2090
CCAAAATCCAAGCCAAATCCCTGATGAAATGCAAAACCAACATATACTTTAAATCTT		
40		
2110	2130	2150
TATGGCTCTGTTCAAGGCAGTGCTGAGAGGGAGGGGTTATAGCTTCAGGAGGGAAACAG		
45		
2170	2190	2210
CTTCTGATAAAAGACAATCTGCTAGGAACCTTGGAAAGGAATCAGAGAGCTGCCCTTCAGC		

50

2230 2250 2270
 CATTATTTAAATTGTTAAAGAAATACACAATTGGGGTATTGGATTTCTCCCTTTCTC
 5
 2290 2310 2330
 TGAGACATTCACCATTAAATTGGTAACTGCCTTATTTATGCAAAAGGGTTATTTT
 10
 2350 2370 2390
 ACTTAGCTTAGCTATGTCAGCAAATCCGATTGCCCTAGGTGAAAGAAAACCACCGAAAATCC
 15
 2410 2430 2450
 CTCAGGTCCCTGGTCAGGAGCCTCTCAAGATTTTTGTCAGAGGCTCCAATAGAAA
 20
 2470 2490 2510
 ATAAGAAAAAGGTTTCTTCATTCACTGGCTAGAGCTAGATTAACTCAGTTCTAGGCACC
 25
 2530 2550 2570
 TCAGACCAAATCATCAACTACCATTCTATTCCATGTTGCACCTGTGCATTTCTGTTGC
 30
 2590 2610 2630
 CCCCATTCACCTTGTCAGGAACCTGGCCTCTGCTAAGGTGTATTCGTCCCTGAGAAG
 35
 2650 2670 2690
 TGGGAGCACCCCTACAGGGACACTATCACTCATGCTGGTGGCATTGTTACAGCTAGAAG
 40
 2710 2730 2750
 CTGCACTGGTGTAAATGCCCTTGGAAATGGGCTGTGAGGAGGAGGATTATAACTAG
 45
 2770 2790 2810
 GCCTAGCCTCTTTAACAGCCTCTGAAATTATCTTCTATGGGTCTATAAATGT
 50
 2830 2850 2870
 ATCTTATAATTAACGAAAGCACAGGAGGAAGACAGGCAAATGTACTTCTCACCCAGCT

EP 0 346 710 B1

2890

2910

2930

TCTACACAGATGGAATCTCTTGGGCTAAGAGAAAAGTTTATTCTATATTGCTTACCT

5

2950

2970

2990

GATCTCATGTTAGGCCTAAGAGGCCCTTCAGGAGGATTAGCTTGGAGTTCTATACT

10

3010

3030

3050

CAGGTACCTCTTCAGGGTTTCTAACCCCTGACACGGACTGTGCATACTTTCCCTCATCC

15

3070

3090

3110

ATGCTGTGCTGTGTTATTTAATTTTCTGGCTAAGATCATGTCCTGAATTATGTATGAAA

20

3130

3150

3170

ATTATTCTATGTTTATAATAATAATATATCAGACATCGAAAAAA,

25

30

35

40

45

50

55

(2)

	10	30	50
5	CAGCCCGTGCCTGAAAGCGTTCTGGAGCCCCAAGCTCTCCACAGGTGAAGACAGGGCCA		
10	70	90	110
	GCAGGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGGGTGTACCCCTGGCAG MetGlyHisLeuSerAlaPheLeuHisArgValArgValProTrpGln		
15	130	150	170
	GGGCTTCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCGCCACCACTGCCAGCTC GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu		
20	190	210	230
	ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGAGGTTCTTCTCCTGTCCAC ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis		
25	250	270	290
	AATCTGCCCAAGCAAACTTTGCTACAGCTGGTACAAAGGGGAAGAGTGGATGGCAAC AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn		
30	310	330	350
	CGTCATAATTGAGGATATGCAATAGGAACCTAACAGCTACCCAGGGCCCGCAAACAGC ArgGinIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer		
	370	390	410
40	GGTCGAGAGACAAATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAACGAC GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp		

45

50

55

430

450

470

ACAGGATTCTACACCCTACAGTCATAAAGTCAGATCTTGTGAATGAAGAAGCAACTGG
 ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluAlaThrGly

5

490

510

530

CAGTTCCATGTATAACCGGAGCTGCCAACGCCCCTCATCTCCAGCAACAACCTCCAAACCC
 GlnPheHisvalTyrPheGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

550

570

590

15 GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC
 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

610

630

650

20 CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

670

690

710

25 AACAGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATGAGTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

30

730

750

770

ATACAGAACCCAGTGAGTGCGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

35

790

810

830

CCGGACACCCCCACCATTTCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
 ProAspThrProThrIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer

40

45

50

55

850

870

890

5 CTCTCTGCTATGCCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAAACA
 LeuSerCystYrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

10 TTCCAGCAAGCACACAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

15 TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCACAGTCAAGACGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrile

20 ATAGTCACTGAGCTAAGTCCAGTAGTAGCAAAGCCCCAAATCAAAGCCAGCAAGACCACA
 IleValThrGluLeuSerProValValAlaLysProGlnIleLysAlaSerLysThrThr

25 GTCACAGGAGATAAGGACTCTGTGAAACCTGACCTGCTCCACAAATGACACTGGAATCTCC
 ValThrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer

30 ATCCGTTGGTTCTTCAAAAACCAGAGTCTCCCGTCCTCGGAGAGGATGAAGCTGTCCCAG
 IleArgTrpPhePheLysAsnGlnSerLeuProSerSerGluArgMetLysLeuSerGln

35 1210 1230 1250
 GGCAACACCACCCCTCAGCATAAACCTGTCAGAGGGAGGATGCTGGGACGTATTGGTGT
 GlyAsnThrThrLeuSerIleAsnProValLysArgGluAspAlaGlyThrTyrTerCys

45

50

55

1270

1290

1310

5 GAGGTCTCAACCCAAATCAGTAAAGAACCAAGCGACCCCATCATGCTGAACGTAAACTAT
 GluValPheAsnProIleSerLysAsnGlnSerAspProIleMetLeuAsnValAsnTyr

1330

1350

1370

10 AATGCTCTACCACAAAGAAAAATGCCCTCTCACCTGGGCCATTGCTGGCATTGTGATTGGA
 AsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGlyIleValIleGly

1390

1410

1430

15 CTAGTGGCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTGCATTCGGGAAG
 ValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeuHisPheGlyLys

20 1450

1470

1490

ACCGGCAGCTCAGGACCACTCCAATGACCCACCTAACAAAGATGAATGAAGTTACTTATTCT
 ThrGlySerSerGlyProLeuGln

25 1510

1530

1550

TACCCCTGAACTTTGAGGCCAGCAACCCACACAAACCAACTTCAGCCTCCCCATCCCTAAC

30 1570

1590

1610

AGCCACAGAAATAATTATTAGAAGTAAAAAGCAGTAATGAAACCTGA~~AAA~~AAAAAA

35 1630

~~AAAAAAAAAA~~

40

45

50

55

(3)

5

10

30

50

CAGCCCTGCTCGAAGCCTTCTGGACCCCCAAAGCTCTCCACAGGTGAAGAACATGGCCA

10

70

90

110

CCAGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGCCTGTACCCCTGCCAG
MetGlyHisLeuSerAla?ProLeuHisArgValArgValProTrpGln

15

130

150

170

20 CGGCTTCTGCTCACAGCCCTCACTTCTAACCTTCTGGAACCCGCCACCCTGCCAGCTC
GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsn?ProProThrThrAlaGinLeu

25

190

210

230

ACTACTGAATCCATGCCATTCAATGTTCCAGAGGGGAAGGGAGGTTCTTCTCCTTGCCAC
ThrThrGluSerMet?ProPheAsnValAlaGluGlyLysGluValLeuLeuValHis

30

250

270

290

AATCTGCCCTAGCAACTTTGGCTACAGCTGGTACAAAGGGAAAGAGTGGATGCCAAC
AsnLeu?ProGlnGlnLeu?PheGlyTy?SerTrpTyrLysGlyGluArgValAspGlyAsn

35

310

330

350

CGCCAAATTGTAGGATAATGCAAATAGGAACACTAACAAAGCTACCCAGGGCCCGAACAGC
ArgGinIleValGlyTyrAlaIleGlyThrGlnGlnAlaThr?ProGly?ProAlaAsnSer

40

370

390

410

GCTCGAGAGACAATAACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC
GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp

45

430

450

470

50 ACAGGATTCTACACCCCTACAGTCATAAAAGTCAGATCTGTGAATGAAACAAAGCAACTGGA
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

55

490 510 530

5 CAGTTCCATGTATAACCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACCTCCAAACCT
GlnPheHsValtyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

550 570 590

10 GTGGAGGACARGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC
ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

610 630 650

15 CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGCC
LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

670 690 710

20 AACAGGACCCCTCACTCTACTCAGTGTACAAAGGAATGACACAGGACCCATTGACTGTGAA
AsnArgThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

730 750 770

25 ATACAGAACCCAGTGAGTGCACACCGCAGTGACCCAGTCACCTGAATGTCACCTATGGC
IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

810 830

30 CCGACACCCCCACCATTTCCCTTCAGACACCTATTACCGTCCAGGGCAAACCTCAGC
ProAspThrProThrIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer.

850 870 890

35 CCTCTCTCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAAACA
LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

910 930 950

40 TTCCAGGAAAGCACACAAAGAGCTCTTATCCCTAACATCAGTGTGAATAATAGTCGATCC
PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

970 990 1010

45 TATACCTGCCACGCCAATAACTCAGTCACCTGGCTGCCACAGGACCAAGTCAGGACGATC
TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

1030 1050 1070
 5 ATAGTCACTGATAATGCTCTACCAACAAGAAAATGGCCTCTCACCTGGCCCCATTGCCTGGC
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSer?ProGlyAlaIleAlaGly

 1090 1110 1130
 10 ATTGTGATTGGACTAGTGGCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTG
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

 1150 1170 1190
 15 CATTTCGGGAAAGACCGGGCAGCTCAGGACCCTCAATGACCCACCTAACACAGATGAATGA
 HisPheGlyLysThrGlySerSerGlyProLeuGln

 20 1210 1230 1250
 AGTTACTTATTCTACCCCTGAACTTGAAGCCCAGCAACCCACACAACCAACTTCAGCCTC

 25 1270 1290 1310
 CCCATCCCTAACAGCCACAGAAAATAATTTATTCAAGTAAAAAAGCAGTAATGAAACCT

 30 1330
 GAAAAA.....

 35

 40

 45

 50

 55

{ 4 }

1081	gaccccccacccatccattcacctattaccgttcaggagaaaaacctctacttt	1140
	AspLeuProSerIleTyrProSerPhrThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	
1141	tccctccctcgggtggcacaatattcttggacaattaatgggaagttt	1200
5	SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	
1201	cagstatcaaggccaaagctcttatcccccaaataactacaaaggcatagtgggccttat	1260
	GlnLeuSerGlyGlnLysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	
1261	gcttcctcttgttaactcagccacttggcaaggaaagctccaaatccatcacaatcaaa	1320
10	AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	
1321	gtctctgacccgatattaccctgaattctacttagttccctccaaattccatttctccatg	1380
	ValSerAspTspileLeuProEnd	
1381	gaatcacgaagagcaagaccactctgttccagaagccctataatctggagggtggacaac	1440
1441	tgcgtgtaaatttcatggaaaacccttgcacatgtgagccactcagaactcacc	1500
1501	aaaatgttcgacaccataacaacacagctactcaaactgtaaaccaggataagaagtgtatg	1560
1561	acttcacactgtggacagttttcaaaagatgtcataacaagactcccatcatgacaagg	1620
1621	ctccaccctctactgtctgtcatgcctgcctttcaacttggcaggataatgcagtcat	1680
1681	tagaatttcacatgttagtagcttctgagggtaaacaacagagtgtagatgtcatctca	1740
1741	acctcaaactttacgtAACATCTCAGGGAAATGTGGCTCTCCATCTGCATAACAGGG	1800
20	1801 ctcccaataatagaatgtggacacacagagatattgcctgtgtgtttcagagaagatggttcta	1860
1861	tazagatgtggaaazgctgaaattatagtagagtcctttaaatgcacattgtgtggatg	1920
1921	gcttcaccattcctaagagatacagtgtaaaaacgtgtacagtaataactgattctagca	1980
1981	gaataaacatgttaccacatttgcaaaaaaa	2010

25 end

30

35

40

45

50

55

(5)

1	gggtggatccctaggctcatctccatagggagaacacacatacagcagagaccatgggaa	59
5	MetGly	
60	ccccctcagcccccctccctgcactcagcacatcacatggaaaggggctccctgctcacagca	119
	ProLeuSerAla?ProProCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	
120	tcacttttaaaccttctggaaacctgcccaccactgcccagaataattgaagcccaqcca	179
10	SerLeuLeuAsn?heTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	
180	cccaaagtccctggaggggaaaggatgtttctacttgtccacaatttgcggcagaatctt	239
	ProLysValSe:GluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	
240	actggctacatctggatacaaaggggcaaattgacggaccttaccattacattacatcatat	299
15	ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	
300	gttagtagacggtcaaaattatataatgggcctgcctacagtggacgagaaacagtatattcc	359
	ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	
360	aatgcatccctgctgtatccagaatgtcacacaggaggatgcaggatcctacaccccttacac	419
20	AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	
420	atcataaaggcaggcgatggactggaggagtaactggatatttactgtcaccttatac	479
	IleIleLysArgGlyAspGlyThrGlyValThrGlyTyrPheThrValThrLeuTyr	
480	tccggagactcccaagcgctccatctccagcagcaacttaaaccggagggtcatggag	539
25	SerGluThrProLysArgSerIleSerSerAsnLeuAsnProArgGluValMetGlu	
540	gctgtgcgttaatctgtatccctgagactccggatgcaagctacctgtgggtgctgaat	599
	AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	
600	ggtcagaaccccttatgactcacaggttgcagctgtccaaaaccaacaggacccttat	659
30	GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	
660	ctatttgggtcacaaagtatattgcagggccctatgaatgtgaaatacggaggggagtg	719
	LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	
720	agtgccagccgcagtgaccaggactcaccctgaatctcctcccgaagctgcccacgccttac	779
35	SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	
780	atcaccatcaacaacttaaaccggaggagaagaaggatgtgttagccttacactgtgaa	839
	IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	
840	cctaagagtcggaactacacctacatttggtggtctaaatggtcagagcctccggcgtact	899
40	ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	
900	ccgagggtaaagcgaccattgaaaacaggataactcatttacccagtgtcacgagaaat	959
	ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	
960	gaaacaggaccctatcaatgtgaaatacgggaccgatgtggcatccggcagtaaccca	1019
45	GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	

20

2. Véhicule de clonage recombinant apte à une réPLICATION, comportant un produit d'insertion comprenant
un acide nucléique selon la revendication 1.

25 3. Cellule qui a été transfectée, infectée par un véhicule de clonage recombinant selon la revendication 2,
ou à laquelle on a injecté ce dernier.

30 4. Procédé pour préparer un polypeptide, ledit procédé comprenant les étapes consistant à :
(a) cultiver la cellule selon la revendication 3, et
(b) récupérer le polypeptide exprimé par ladite cellule.

35 5. Procédé pour préparer un anticorps dirigé contre un polypeptide, ledit procédé comprenant les étapes
consistant à :
(a) préparer ledit polypeptide par le procédé selon la revendication 4,
(b) injecter ledit polypeptide dans un hôte capable de produire des anticorps, et
(c) récupérer lesdits anticorps.

40

45

50

55

FIG.1

CAGTTCCATGTATAACCGGAGCTGCCAAGCCCTCCATCTCCAGCAACAACCTCAACCCT
GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

5

550 570 590

GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAACCTAC
ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

10

610 630 650

CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

15

670 690 710

AACAGGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATTGAGTGTGAA
AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

20

730 750 770

ATACAGAACCCAGTGAGTGCAGACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGC
IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

25

790 810 830

CCGGACACCCCCACCATTCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
ProAspThrProThrIleSerProSerAspThrTyrArgProGlyAlaAsnLeuSer

30

850 870 890

CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAACA
LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

35

910 930 950

TTCCAGCAAAGCACACAAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

40

970 990 1010

TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCAAGTCAAGACGATC
TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

45

1030 1050 1070

55

ATAGTCACTGAGCTAAGTCCAGTAGTAGCAAAGCCCCAAATCAAAGCCAGCAAGACCACA
 IleValThrGluLeuSerProValValAlaLysProGlnIleLysAlaSerLysThrThr

5 1090 1110 1130
 GTCACAGGAGATAAGGACTCTGTGAACCTGACCTGCTCCACAAATGACACTGGAATCTCC
 ValThrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer
 10
 1150 1170 1190
 ATCCGTTGGTTCTTCAAAAACCAGAGTCTCCCGTCCTCGGAGAGGATGAAGCTGTCCCAG
 IleArgTrpPhePheLysAsnGlnSerLeuProSerSerGluArgMetLysLeuSerGln
 15
 1210 1230 1250
 GGCAACACCAACCCCTCAGCATAAACCTGTCAAGAGGGAGGGATGCTGGGACGTATTGGTGT
 GlyAsnThrThrLeuSerIleAsnProValLysArgGluAspAlaGlyThrTyrTrpCys
 20
 1270 1290 1310
 GAGGTCTTCAACCCAATCAGTAAGAACCAAAGCGACCCCATCATGCTGAACGTAAACTAT
 GluValPheAsnProIleSerLysAsnGlnSerAspProIleMetLeuAsnValAsnTyr
 25
 1330 1350 1370
 AATGCTCTACCACAAAGAAAATGCCCTCTCACCTGGGCCATTGCTGGCATGTGATTGGA
 AsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGlyIleValIleGly
 30
 1390 1410 1430
 GTAGTGGCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTGCATTCGGGAAG
 ValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeuHisPheGlyLys
 35
 1450 1470 1490
 ACCGGCAGGGCAAGCGACCAGCGTGATCTCACAGAGCACAAACCCCTCAGTCTCCAACCA
 ThrGlyArgAlaSerAspGlnArgAspLeuThrGluHisLysProSerValSerAsnHis
 40
 1510 1530 1550
 ACTCAGGACCACTCCAATGACCCACCTAACAAAGATGAATGAAGTTACTTATTCTACCCCTG
 ThrGlnAspHisSerAsnAspProProAsnLysMetAsnGluValThrTyrSerThrLeu
 45
 1570 1590 1610
 . . .

AAC TTT GAA GCC CAG CA ACC CAC ACA ACC AACT CAG CCT CCC AT CC CTA AC AGC CACA
Asn Phe Glu Ala Gln Gln Pro Thr Gln Pro Thr Ser Ala Ser Pro Ser Leu Thr Ala Thr

5	1630	1650	1670
	GAA ATA ATT TATT CAG AAG TAAAAA AGC AG TA AT GAA AAC CT GT C CT G CT C ACT GC AGT GC Glu Ile Ile Tyr Ser Glu Val Lys Lys Gln		
10	1690	1710	1730
	TG AT GT ATT CA AGT CT CT C ACC CT CAT C ACT CAG GAG ATT C TT C CC CT GT AGGG TAGA		
15	1750	1770	1790
	GGGG TGGGG ACAG AA ACA ACT TT CT CCT ACT CTT CCT CTA AT AGG C AT CT CC AGG CT G		
20	1810	1830	1850
	CCT GGT C ACT G C C C C T C T CAG T GT CA AT AG AT GAA AG T AC ATT GGG AGT CT GT AGG AA		
25	1870	1890	1910
	ACC CA AC C TT C TT GT C ATT GAA ATT GG CAA AG CT GACT T TGG AA AG AGGG ACC AGA AC		
30	1930	1950	1970
	TT C CC C T C C C T C C C T T C C A AC CT GG ACT T GT T TAA ACT TGC CT GT CAG AGC AC		
35	1990	2010	2030
	TC AT T C C T C C C A C C C C A G T C C T GT C CT AT C ACT C T A AT T CGG ATT GCC AT AGC C TT G		
40	2050	2070	2090
	AG GT T AT GT C C T T T C AT TA AGT AC AT GT GCC AGG AA AC AG CG AG AG AG AG AA AG T AAA		
45	2110	2130	2150
	CGG CAG TA AT GCT T CT C CT ATT CT C C A AGC C TT GT GT GAA CT AGC A AAG AGA AAG AAAA		
50	2170	2190	2210
	TCA AA AT AT A ACC A AT AGT GAA AT GCC AC AGG TT GT CC ACT GT CAG GG TT GT C AC CT		

2230	2250	2270
GTAAGGATCAGGGTCTAACGCACCTGGTGCTTAGCTAGAATAACCACCTAACCTCTGGCA		
5		
2290	2310	2330
AGCCTGTCTTCAGAGAACCCACTAGAAAGCAACTAGGAAAAATCACTGCCAAAATCCAAG		
10		
2350	2370	2390
GCAATTCCCTGATGGAAAATGCAAAAGCACATATATGTTTAATATCTTATGGGCTCTGT		
15		
2410	2430	2450
TCAAGGCAGTGCTGAGAGGGAGGGGTTATAGCTTCAGGAGGGAACCAGCTCTGATAAAC		
20		
2470	2490	2510
ACAATCTGCTAGGAAC TTGGAAAGGAATCAGAGAGCTGCCCTCAGCGATTATTTAAAT		
25		
2530	2550	2570
TGTTAAAGAATAACACAATTGGGTATTGGGATTTCTCTTCTGAGACATTCCA		
30		
2590	2610	2630
CCATTTAATTTGTAAC TGCTTATTATGTGAAAAGGGTTATTTTACTTAGCTTAGC		
35		
2650	2670	2690
TATGTCAGCCAATCCGATTGCCCTAGGTGAAAAGAAACCACCGAAATCCCTCAGGTCCCTT		
40		
2710	2730	2750
GGTCAGGAGCCTCTCAAGATTTTGTCAAGAGCTCCAAATAGAAAATAAGAAAAGGT		
45		
2770	2790	2810
TTTCTTCATTCATGGCTAGAGCTAGATTAACCTAGTTCTAGGCACCTCAGACCAATCA		
50		
2830	2850	2870
TCAACTACCATTCTATTCCATGTTGCACCTGTGCATTTCTGTTGCCCCCCATTCACTT		

2890 2910 2930
 TGTCAAGGAAACCTTGGCCTCTGCTAAGGTGTATTTGGTCCTTGAGAAGTGGGAGCACCCCT
 5

2950 2970 2990
 ACACGGGACACTATCACTCATGCTGGTGGCATTGTTACAGCTAGAAAGCTGCACCTGGTGC
 10

3010 3030 3050
 TAATGCCCTTGGAAATGGGGCTGTGAGGAGGAGGATTATAACTTAGGCCTAGCCTCTT
 15

3070 3090 3110
 TTAACAGCCCTCTGAAATTATCTTTCTTCTATGGGGCTATAAATGTATCTTATAATAA
 20

3130 3150 3170
 AAAGGAAGGACAGGAGGAAGACAGGCAAATGTACTTCTCACCCAGTCTTCTACACAGATG
 25

3190 3210 3230
 GAATCTCTTGGGCTAAGAGAAAGGTTTATTCTATATTGCTTACCTGATCTCATGTTA
 30

3250 3270 3290
 GGCTAAGAGGCTTCTCCAGGAGGATTAGCTGGAGTTCTCTATACTCAGGTACCTCTT
 35

3310 3330 3350
 TCAGGGTTTCTAACCCCTGACACGGACTGTGCATACTTCCCTCATCCATGCTGTGCTGT
 40

3370 3390 3410
 GTTATTTAATTTCCTGGCTAAGATCATGTCTGAATTATGTATGAAAATTATTCTATGT
 45

3430 3450
 TTTTATAATAAAAAATAATATCAGACATCGAAAAAAAAAA

(d)

10 20 30 40 50

5 CC 666 66A CAC 6CA 666 CCA ACA 6TC ACA 6CA 6CC C16 ACC AGA 6CA 1TC C16 GAG C1C

60 70 80 90 100 110

10 RAG C1C TCT ACA AAG A66 T66 ACA 6A6 AAG ACA 6CA 6A6 ACC ATG 66A CCC CCC TCA
Met Gly Pro Pro Ser

120 130 140 150 160 170

15 GCC CCT CCC T6C AGA T16 CAT 6TC CCC T66 AAG 6A6 6TC C16 C1C ACA GCC TCA C11
Ala Pro Pro Cys Arg Leu His Val Pro Trp Lys Glu Val Leu Leu Thr Ala Ser Leu

180 190 200 210 220 230

20 C1A ACC T1C TGG AAC CCA CCC ACC ACT 6CC RAG CTC ACT ATT 6AA 1CC A66 CCA 11C
Leu Thr Phe Trp Asn Pro Pro Thr Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe
1 2 3 4 5 6 7 8 9

240 250 260 270 280

25 AAT 6TC 6CA 6A6 666 AAG 6A6 6T1 C11 C1A C1C 6CC CAC AAC C16 CCC CAG RAY C61
Asn Val Ala Glu Gly Lys Glu Val Leu Leu Leu Ala His Asn Leu Pro Glu Asn Arg
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

290 300 310 320 330 340

30 ATT 667 TAC A6C T6G TAC AAA GGC GAA ABA 616 BAT GGC AAC AG1 C1A ATT 61A 66A
Ile Glu Tyr Ser Trp Tyr Lys Glu Glu Arg Val Asp Glu Asn Ser Leu Ile Val Glu
27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

350 360 370 380 390 400

35 TAT 6TA ATA 66A ACT CAA CAA 6C1 ACC CCA 666 CCC 6CA TAC AGT 66T CGA 6A6 ACA
Tyr Val Ile Glu Thr Glu Glu Ala Thr Pro Glu Pro Ala Tyr Ser Glu Arg Glu Thr
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

410 420 430 440 450

40 ATA TAC CCC AAT 6CA TCC C16 C16 ATC C66 AAC 6TC ACC CAG RAY GAC ACA 66A T1C
Ile Tyr Pro Asn Ala Ser Leu Leu Ile Glu Asn Val Thr Glu Asn Asp Thr Glu Phe
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

460 470 480 490 500 510

45 TAC ACC C1A CAA 61C ATA AAG TCA BAT CTT 616 AAT, 6AA 6AA 6CA ACC 66A CAG T1C
Tyr Thr Leu Glu Val Ile Lys Ser Asp Leu Val Asn Glu Glu Ala Thr Glu Glu Phe
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

520 530 540 550 560 570

50 CAT 6TA TAC CCC 6A6 C16 CCC AAG CCC TCC ATC TCC A6C AAC AAC 1CC AAC CCC 616
His. Val Tyr Pro Glu Leu Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

EP 0 346 710 B1

	580	590	600	610	620															
5	GAG	34C	RAG	BAT	GCT	616	6CC	TTC	ACC	16T	6AA	CCC	6A6	6T1	CAG	RAC	ACA	ACC	TAC	
	Glu	Asp	Lys	Ksp	Ala	Val	Ala	Phe	Thr	Cys	Glu	Pro	Glu	Val	Gln	Asn	Thr	Thr	Tyr	
	124	125	126	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141
	630	640	650	660	670	680														
10	C16	TGG	166	6T1	ART	66T	CAG	AGC	C1C	CCC	6T6	AGT	CCC	6G6	CTG	C16	1CC	2AT		
	Leu	Irp	Irp	Val	Asn	Gly	Gln	Ser	Leu	Pro	Val	Ser	Pro	Arg	Leu	Gln	Leu	Ser	Asn	
	143	144	145	146	147	148	150	151	152	153	154	155	156	157	158	159	160	161		
	690	700	710	720	730	740														
15	6GC	RAC	AGG	ACC	C1C	ACT	C1A	C1C	AGC	6T6	AAA	AGB	AGC	6A1	GCA	6G6	TCT	TAT	6AA	
	Gly	Asn	Arg	Thr	Leu	Thr	Leu	Leu	Ser	Val	Lys	Arg	Asn	Asp	Ala	Gly	Ser	Tyr	Gly	
	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	
	750	760	770	780	790	800														
20	16T	6AA	ATA	CAG	AGC	CCA	6G6	AGT	6CC	AGC	6G6	AGT	6AC	6T1	6TC	1AT	6TC			
	Cys	Glu	Ile	Gly	Asn	Pro	Ala	Ser	Ala	Asn	Arg	Ser	Asp	Pro	Val	Ihr	Leu	Asn	V11	
	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	199
	810	820	830	840	850															
25	C1C	TAT	6GC	CCA	6AT	6GC	CCC	ACC	ATT	TCC	CCC	7CA	RAG	6CC	AAT	1AC	EGT	CCA	6G6	
	Ipr	Tyr	Gly	Pro	Asp	Gly	Pro	Ihr	Ile	Ser	Pro	Ser	Lys	Ala	Asn	Iyr	Arg	Pro	Gly	
	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	
	860	870	880	890	900	910														
30	GAA	AAT	C16	RAC	C1C	TCC	16C	CAC	6CA	6CC	TCT	AAC	CCA	6C1	6CA	6AB	TAC	TCT	1GG	
	Glu	Asn	Leu	Asn	Leu	Ser	Cys	His	Ala	Ala	Ser	Asp	Pro	Ala	Gln	Tyr	Ser	Ipr		
	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	
	920	930	940	950	960	970														
	III	ATC	AAI	6GG	AGC	11C	CAG	CAA	CAA	6AB	C1C	111	6TC	CCC	6AC	6TC	ACT			
	Phe	Ile	Asn	Gly	Ihr	Phe	Gly	6In	6In	Ser	Ihr	6In	Gly	Leu	Phe	Ile	Pro	Asn	Ile	Thr
	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244
35	980	990	1000	1010	1020															
	616	AAI	AAI	AGC	6GA	TCC	TAT	ATG	TGC	CAA	6CC	CAT	RAC	6CA	6CC	ACT	6GC	C1C	AAT	
	Val	Asn	Asn	Ser	Gly	Ser	Ihr	Ihr	Ihr	Cys	Gln	Ala	His	Asn	Ser	Ala	Ihr	Gly	Leu	Asn
	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	
40	1030	1040	1050	1060	1070	1080														
	AGG	ACC	ACA	AGC	ATG	ATC	ACA	6TC	TCT	6GA	AGT	6C1	6C1	C1C	TCA	GCT	616			
	Arg	Ihr	Ihr	V11	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	Ihr	
	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	
45	1090	1100	1110	1120	1130	1140														
	6CC	ACC	6TC	6GC	ATC	AGC	ATI	6GA	616	C16	6CC	AGG	616	6C1	C16	ATA	TAG	6AB	CCC	
	Ala	Ihr	V11	Gly	Ile	Ihr	Ile	Gly	V11	Leu	Ala	Arg	V11	Ala	Leu	Ile	---			
	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	

EP 0 346 710 B1

1150 1160 1170 1180 1190

TGG TGT ATT TIC GAT ATT TCA GGA AGA CTG GCA GAT TGG ACC AGA CCC TGA ATT CTT

5

1200 1210 1220 1230 1240 1250

CTA GCT CCT CCA ATC CCA TTT TAT CCC ATG GAA CCA CTA AAA ACA AGG TCT GCT CTG

10

1260 1270 1280 1290 1300 1310

CTG CTG AAG CCC TAT ATG CTG GAG ATG GAC AAC TCA ATG AAA ATT TAA AGG AAA AAC

15

1320 1330 1340 1350 1360 1370

CCT CAG GCG TGA GGT GTC TGC CAC TCA GAG ACT TCA CCT AAC TAG AGA CAG GCA AAC

20

1380 1390 1400 1410 1420

TGC AAA CCA AAC CTC TTT CGC TTG GCA GGA TGA TGG TGT CAT TAG TAT TIC ACA AGA

25

1430 1440 1450 1460 1470 1480

AGT AGC TIC AGA GGG TAA CTT AAC AGA GTA GAT CTA TCT TGT CAA TCC CAA GGT

30

1490 1500 1510 1520 1530 1540

TTT ACA TAA AAT AAG CGA TCC TTT AGT GCA CCC AGT GAC TGA CAT TAG CAG CAT CTT

35

1550 1560 1570 1580 1590

TAA CAC AGC GGT GTC TTC AAG TGT ACA GTC GTC CTT TIC AGA GTT GGG ATT ACT CCA

40

1600 1610 1620 1630 1640 1650

ACT GAA ATG TTA AGG AAG AGG ATA GAT CCA ATT AAA AAA ATT TAA AAC CAA TTT GAA

45

1660 1670 1680 1690 1700 1710

AGG AAA AAA GAA CAC AGG AGA TTC GAG TCT ACT TGA GTT AGC ATA ATA CAG AGG TCC

50

1720 1730 1740 1750 1760

CCT CTA CTT TAA CTT TTA CAA AAA AGT AAC CTC AAC TAA TCT GAT GTT AAC CAA TGT

1770 1780 1790 1800 1810 1820
 ATT TAT T16 TCT 56T TCT 61T TCC T16 T1C CAA T1T GAC AAA ACC AAC TAT T5T TCT 16T
 5

1830 1840 1850 1860 1870 1880
 ATT GTA T1G CCC AGG 666 AGC TAT AAC TGT ACT 161 AGA G16 616 C16 C11 TAA 61T
 10

1890 1900 1910 1920 1930 1940
 CAT AAA TCA CAN ATA AAA GGC ATT TAG CTC TAT AAC TAA AAA AAA AAA AAA AAA AAA AAA
 15

1950 1960
 AAA AAA AAA AAA AAA AAA GAA AAA

20 A schematic relationship of the transmembrane CEA's, namely TM-1 (CEA-(c)), TM-2 (CEA-(e)), TM-3 (CEA-(f)) and TM-4 (CEA-(g)) is depicted in Fig. 1:

Assuming TM-1 is composed of five sections as depicted in Fig. 1, namely 10, 12, 14, 16 and 18, TM-2 differs from TM-1 in that the 100 amino acid (100 AA) section 14 is deleted and at splice point 20 between 25 sections 12 and 16, surprisingly an extra amino acid, namely Asp occurs.

TM-3 is the same as TM-1 except that section 18 is truncated at splice point 22, i.e., a section of 70 amino acids is deleted and results in a new section made up of subsections 24 + 26. Surprisingly, however, six new amino acids (section 26) occur. Another example of formation of a novel amino acid sequence resulting from a deletion of nucleic acid sequence is for platelet derived growth factor-A.

30 TM-4 is the same as TM-2 up until the end of subsection 24.

Subsection 24 is contained in section 18 of TM-1 and TM-2, but is not depicted in Fig. 1 for TM-1 and TM-2.

Some CEA epitopes are unique. These are the epitopes which have been useful for distinguishing the various CEA-like antigens immunologically. Peptide epitopes are defined by the linear amino acid sequence 35 of the antigen and/or features resulting from protein folding. The information required for protein folding is encoded in the primary amino acid sequence. Therefore, antigenic differences ultimately result from differences in the primary structure of the different CEA molecules. The differences residing in the CEA protein in the CEA species can thus be determined by determining the primary amino acid sequences. This can be most readily accomplished by cloning and sequencing each of the genes for CEA. To determine 40 which gene products will be most useful for cancer diagnosis, unique probes can be selected for each gene and expression of each gene can be determined in different tumor types by nucleic acid hybridization techniques. The present invention provides a tool with which to identify potential genes coding for different members of the CEA family and to determine the theoretical primary amino acid sequences for them. Using the method of automated peptide synthesis, peptides can then be synthesized corresponding to unique 45 sequences in these antigens. With these peptides, antibodies to these sequences can be produced which, in the intact CEA molecule, might not be recognized by the animal being immunized. Having accomplished this, advantage can then be taken of the differences in these antigens to generate specific immunoassays for the measurement of each antigen.

A wide variety of host/cloning vehicle combinations may be employed in cloning the double-stranded 50 nucleic acid prepared in accordance with this invention. For example, useful cloning vehicles may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences, such as various known derivatives of SV40 and known bacterial plasmids, e.g., plasmids from E. coli including col E1, pCR1, pBR322, pMB89 and their derivatives, wider host range plasmids, e.g., RP4, and phage DNAs, e.g., the numerous derivatives of phage, e.g., NM989, and other DNA phages, e.g., M13 and Filamentous single-stranded DNA phages and vectors derived from combinations of plasmids and phage DNAs such as 55 plasmids which have been modified to employ phage DNA or other expression control sequences or yeast plasmids such as the 2 μ plasmid or derivatives thereof. Useful hosts may include bacterial hosts such as strains of E. coli, such as E. coli HB 101, E. coli X1776, E. coli X2282, E. coli MRCI and strains of

Pseudomonas, Bacillus subtilis, Bacillus stearothermophilus and other E. coli, bacilli, yeasts and other fungi, animal or plant hosts such as animal (including human) or plant cells in culture or other hosts. Of course, not all host/vector combinations may be equally efficient. The particular selection of host/cloning vehicle combination may be made by those of skill in the art after due consideration of the principles set forth without departing from the scope of this invention.

Furthermore, within each specific cloning vehicle, various sites may be selected for insertion of the nucleic acid according to the present invention. These sites are usually designated by the restriction endonuclease which cuts them. For example, in pBR322 the PstI site is located in the gene for beta-lactamase, between the nucleotide triplets that code for amino acids 181 and 182 of that protein. One of the two HindII endonuclease recognition sites is between the triplets coding for amino acids 101 and 102 and one of the several Taq sites at the triplet coding for amino acid 45 of beta-lactamase in pBR322. In similar fashion, the EcoRI site and the PVUII site in this plasmid lie outside of any coding region, the EcoRI site being located between the genes coding for resistance to tetracycline and ampicillin, respectively. These sites are well recognized by those of skill in the art. It is, of course, to be understood that a cloning vehicle useful in this invention need not have a restriction endonuclease site for insertion of the chosen DNA fragment. Instead, the vehicle could be cut and joined to the fragment by alternative means.

The vector or cloning vehicle and in particular the site chosen therein for attachment of a selected nucleic acid fragment to form a recombinant nucleic acid molecule is determined by a variety of factors, e.g., the number of sites susceptible to a particular restriction enzyme, the size of the protein to be expressed, the susceptibility of the desired protein to proteolytic degradation by host cell enzymes, the contamination of the protein to be expressed by host cell proteins difficult to remove during purification, the expression characteristics, such as the location of start and stop codons relative to the vector sequences, and other factors recognized by those of skill in the art. The choice of a vector and an insertion site for a particular gene is determined by a balance of these factors, not all sections being equally effective for a given case.

Methods of inserting nucleic acid sequences into cloning vehicles to form recombinant nucleic acid molecules include, for example, dA-dT tailing, direct ligation, synthetic linkers, exonuclease and polymerase-linked repair reactions followed by ligation, or extension of the nucleic acid strand with an appropriate polymerase and an appropriate single-stranded template followed by ligation.

It should also be understood that the nucleotide sequences or nucleic acid fragments inserted at the selected site of the cloning vehicle may include nucleotides which are not part of the actual structural gene for the desired polypeptide or mature protein or may include only a fragment of the complete structural gene for the desired protein or mature protein.

The cloning vehicle or vector containing the foreign gene is employed to transform an appropriate host so as to permit that host to replicate the foreign gene and to express the protein coded by the foreign gene or portion thereof. The selection of an appropriate host is also controlled by a number of factors recognized by the art. These include, for example, the compatibility with the chosen vector, the toxicity of proteins encoded by the hybrid plasmid, the ease of recovery of the desired protein, the expression characteristics, biosafety and costs. A balance of these factors must be struck with the understanding that not all hosts may be equally effective for expression of a particular recombinant DNA molecule.

The level of production of a protein is governed by two major factors: the number of copies of its gene within the cell and the efficiency with which those gene copies are transcribed and translated. Efficiency of transcription and translation (which together comprise expression) is in turn dependent upon nucleotide sequences, normally situated ahead of the desired coding sequence. These nucleotide sequences or expression control sequences define *inter alia*, the location at which RNA polymerase interacts to initiate transcription (the promoter sequence) and at which ribosomes bind and interact with the mRNA (the product of transcription) to initiate translation. Not all such expression control sequences function with equal efficiency. It is thus of advantage to separate the specific coding sequences for the desired protein from their adjacent nucleotide sequences and fuse them instead to other known expression control sequences so as to favor higher levels of expression. This having been achieved, the newly engineered nucleic acid, e.g., DNA, fragment may be inserted into a multicopy plasmid or a bacteriophage derivative in order to increase the number of gene copies within the cell and thereby further improve the yield of expressed protein.

Several expression control sequences may be employed as described above. These include the operator, promoter and ribosome binding and interaction sequences (including sequences such as the Shine-Dalgarno sequences) of the lactose operon of E. coli ("the lac system"), the corresponding sequences of the tryptophan synthetase system of E. coli ("the trp system"), the major operator and promoter regions of phage λ ($O_L P_L$ and $O_R P_R$), the control region of Filamentous single-stranded DNA phages, or other sequences which control the expression of genes of prokaryotic or eukaryotic cells and

their viruses. Therefore, to improve the production of a particular polypeptide in an appropriate host, the gene coding for that polypeptide may be selected and removed from a recombinant nucleic acid molecule containing it and reinserted into a recombinant nucleic acid molecule closer or in a more appropriate relationship to its former expression control sequence or under the control of one of the above described expression control sequences. Such methods are known in the art.

As used herein "relationship" may encompass many factors, e.g., the distance separating the expression enhancing and promoting regions of the recombinant nucleic acid molecule and the inserted nucleic acid sequence, the transcription and translation characteristics of the inserted nucleic acid sequence or other sequences in the vector itself, the particular nucleotide sequence of the inserted nucleic acid sequence and other sequences of the vector and the particular characteristics of the expression enhancing and promoting regions of the vector.

Further increases in the cellular yield of the desired products depend upon an increase in the number of genes that can be utilized in the cell. This is achieved, for illustration purposes, by insertion of recombinant nucleic acid molecules engineered into the temperate bacteriophage λ (NM989), most simply by digestion of the plasmid with a restriction enzyme, to give a linear molecule which is then mixed with a restricted phage λ cloning vehicle (e.g., of the type described by N. E. Murray et al, "Lambdoid Phages That Simplify the Recovery of In Vitro Recombinants", *Molec. Gen. Genet.*, 150, pp. 53-61 (1977) and N. E. Murray et al, "Molecular Cloning of the DNA Ligase Gene From Bacteriophage T4", *J. Mol. Biol.*, 132, pp. 493-505 (1979)) and the recombinant DNA molecule recircularized by incubation with DNA ligase. The desired recombinant phage is then selected as before and used to lysogenize a host strain of *E. coli*.

Particularly useful λ cloning vehicles contain a temperature-sensitive mutation in the repression gene *cI* and suppressible mutations in gene *S*, the product of which is necessary for lysis of the host cell, and gene *E*, the product of which is major capsid protein of the virus. With this system, the lysogenic cells are grown at 32°C and then heated to 45°C to induce excision of the prophage. Prolonged growth at 37°C leads to high levels of production of the protein, which is retained within the cells, since these are not lysed by phage gene products in the normal way, and since the phage gene insert is not encapsulated it remains available for further transcription. Artificial lysis of the cells then releases the desired product in high yield.

In addition, it should be understood that the yield of polypeptides prepared in accordance with this invention may also be improved by substituting different codons for some or all of the codons of the present DNA sequences, these substituted codons coding for amino acids identical to those coded for by the codons replaced.

Finally, the activity of the polypeptides produced by the recombinant nucleic acid molecules of this invention may be improved by fragmenting, modifying or derivatizing the nucleic acid sequences or polypeptides of this invention by well-known means, without departing from the scope of this invention.

The polypeptides of the present invention include the following:

- (1) the polypeptides expressed by the above described cells,
- (2) polypeptides prepared by synthetic means,
- (3) fragments of polypeptides (1) or (2) above, such fragments produced by synthesis of amino acids or by digestion or cleavage.

Regarding the synthetic peptides according to the invention, chemical synthesis of peptides is described in the following publications: S.B.H. Kent, *Biomedical Polymers*, eds. Goldberg, E.P. and Nakajima, A. (Academic Press, New York), 213-242, (1980); A.R. Mitchell, S.B.H. Kent, M. Engelhard and R.B. Merrifield, *J. Org. Chem.*, 43, 2845-2852, (1978); J.P. Tam, T.-W. Wong, M. Riemen, F.-S. Tjoeng and R.B. Merrifield, *Tet. Letters*, 4033-4036, (1979); S. Mojsov, A.R. Mitchell and R.B. Merrifield, *J. Org. Chem.*, 45, 555-560, (1980); J.P. Tam, R.D. DiMarchi and R.B. Merrifield, *Tet. Letters*, 2851-2854, (1981); and S.B.H. Kent, M. Riemen, M. Le Doux and R.B. Merrifield, *Proceedings of the IV International Symposium on Methods of Protein Sequence Analysis*, (Brookhaven Press, Brookhaven, NY), in press, 1981.

In the Merrifield solid phase procedure, the appropriate sequence of L-amino acids is built up from the carboxyl terminal amino acid to the amino terminal amino acid. Starting with the appropriate carboxyl terminal amino acid attached to a polystyrene (or other appropriate) resin via chemical linkage to a chloromethyl group, benzhydrylamine group, or other reactive group of the resin, amino acids are added one by one using the following procedure. The peptide-resin is:

- (a) washed with methylene chloride;
- (b) neutralized by making for 10 minutes at room temperature with 5% (v/v) diisopropylethylamine (or other hindered base) in methylene chloride;
- (c) washed with methylene chloride;
- (d) an amount of amino acid equal to six times the molar amount of the growing peptide chain is activated by combining it with one-half as many moles of a carbodiimide (e.g., dicyclohexylcarbodiimide,

or diisopropylcarbodiimide) for ten minutes at 0°C, to form the symmetric anhydride of the amino acid. The amino acid used should be provided originally as the N-alpha-tert.-butyloxycarbonyl derivative, with side chains protected with benzyl esters (e.g., aspartic or glutamic acids), benzyl ethers (e.g., serine, threonine, cysteine or tyrosine), benzyloxycarbonyl groups (e.g., lysine) or other protecting groups commonly used in peptide synthesis;

5 (e) the activated amino acid is reacted with the peptide-resin for two hours at room temperature, resulting in addition of the new amino acid to the end of the growing peptide chain;

(f) the peptide-resin is washed with methylene chloride;

10 (g) the N-alpha-(tert.-butyloxycarbonyl) group is removed from the most recently added amino acid by reacting with 30 to 65%, preferably 50% (v/v) trifluoroacetic acid in methylene chloride for 10 to 30 minutes at room temperature;

(h) the peptide-resin is washed with methylene chloride;

(i) steps (a) through (h) are repeated until the required peptide sequence has been constructed.

The peptide is then removed from the resin and simultaneously the side-chain protecting groups are 15 removed, by reaction with anhydrous hydrofluoric acid containing 10% v/v of anisole or other suitable (aromatic) scavenger. Subsequently, the peptide can be purified by gel filtration, ion exchange, high pressure liquid chromatography, or other suitable means.

In some cases, chemical synthesis can be carried out without the solid phase resin, in which case the 20 synthetic reactions are performed entirely in solution. The reactions are similar and well known in the art, and the final product is essentially identical.

Digestion of the polypeptide can be accomplished by using proteolytic enzymes, especially those enzymes whose substrate specificity results in cleavage of the polypeptide at sites immediately adjacent to the desired sequence of amino acids.

Cleavage of the polypeptide can be accomplished by chemical means. Particular bonds between amino 25 acids can be cleaved by reaction with specific reagents. Examples include the following: bonds involving methionine are cleaved by cyanogen bromide; asparaginyl-glycine bonds are cleaved by hydroxylamine.

The present invention has the following advantages:

(1) The nucleic acids coding for TM-1, TM-2 and TM-3 can be used as probes to isolate other members of the CEA gene family.

30 (2) The nucleic acids coding for TM-1, TM-2 and TM-3 can be used to derive oligonucleotide probes to determine the expression of TM-1, TM-2, TM-3 and other CEA genes in various tumor types.

(3) TM-1, TM-2, TM-3 and TM-4 nucleotide sequences can be used to predict the primary amino acid sequence of the protein for production of synthetic peptides.

35 (4) Synthetic peptides derived from the above sequences can be used to produce sequence-specific antibodies.

(5) Immunoassays for each member of the CEA antigen family can be produced with these sequence-specific antibodies and synthetic peptides.

(6) The aforementioned immunoassays can be used as diagnostics for different types of cancer if it is determined that different members of the CEA family are clinically useful markers for different types of 40 cancer.

Peptides according to the present invention can be labelled by conventional means using radioactive moieties (e.g., ¹²⁵I), enzymes, dyed and fluorescent compounds, just to name a few.

Several possible configurations for immunoassays according to the present invention can be used. The 45 readout systems capable of being employed in these assays are numerous and non-limiting examples of such systems include fluorescent and colorimetric enzyme systems, radioisotopic labelling and detection and chemiluminescent systems. Two examples of immunoassay methods are as follows:

(1) An enzyme linked immunoassay (ELISA) using an antibody preparation according to the present invention (including Fab or F(ab)' fragments derived therefrom) to a solid phase (such as a microtiter plate or latex beads) is attached a purified antibody of a specificity other than that which is conjugated to the enzyme. This solid phase antibody is contacted with the sample containing CEA antigen family members. After washing, the solid phase antibody-antigen complex is contacted with the conjugated anti-peptide antibody (or conjugated fragment). After washing away unbound conjugate, color or fluorescence is developed by adding a chromogenic or fluorogenic substrate for the enzyme. The amount of color or fluorescence developed is proportional to the amount of antigen in the sample.

55 (2) A competitive fluorometric immunoassay using fluorescently labelled peptide or synthetic peptides of the sequences for TM-2, TM-2, TM-3 and TM-4. In this example, the purified peptide expressed by cells or synthetic peptides thereof are fluorescently labelled. To a solid phase is attached a purified antibody. This solid phase is then contacted with sample containing CEA antigen family members to which has

been added fluorescent peptide probe. After binding, excess probe is washed away the amount of bound probe is quantitated. The amount of bound fluorescent probe will be inversely proportional to the amount of antigen in the sample.

In the nucleic acid hybridization method according to the present invention, the nucleic acid probe is conjugated with a label, for example, an enzyme, a fluorophore, a radioisotope, a chemiluminescent compound, etc. In the most general case, the probe would be contacted with the sample and the presence of any hybridizable nucleic acid sequence would be detected by developing in the presence of a chromogenic enzyme substrate, detection of the fluorophore by epifluorescence, by autoradiography of the radioisotopically labelled probe or by chemiluminescence. The detection of hybridizable RNA sequences can be accomplished by (1) a dot blot methodology or (2) an *in situ* hybridization methodology. Methods for these last two techniques are described by D. Gillespie and J. Bresser, "mRNA Immobilization in Nal: Quick Blots", *Biotechniques*, 184-192, November/December 1983 and J. Lawrence and R. Singer, "Intracellular Localization of Messenger RNAs for Cytoskeletal Proteins", *Cell*, 45, 407-415, May 9, 1986, respectively. The readout systems can be the same as described above, e.g., enzyme labelling, radiolabelling, etc.

As stated above, the invention also relates to the use in medicine of the aforementioned complex of the invention.

The invention further provides a pharmaceutical composition containing as an active ingredient a complex of the invention in the form of a sterile and/or physiologically isotonic aqueous solution.

For parenteral administration, solutions and emulsions containing as an active ingredient the complex of the invention should be sterile and, if appropriate, blood-isotonic.

It is envisaged that the active complex will be administered perorally, parenterally (for example, intramuscularly, intraperitoneally, or intravenously), rectally or locally.

Example 1: Preparation of cDNA in pcE22 which codes for TM2-CEA [CEA-(e)]

25 Example 1a: RNA Preparation

Messenger RNA was prepared by the proteinase K extraction method of J. Favolaro, R. Treisman and R. Kamen, *Methods in Enzymology*, 65, 718, Academic Press, Inc. (1980), followed by oligo dT cellulose chromatography to yield poly A+ RNA (3'-polyadenylated eukaryotic RNA containing most mRNA sequences that can be translated into polypeptides). To obtain approximately 100 µg of poly A+ RNA, approximately 3×10^8 cells of transfected 23.411 (ATCC No. CRL 9731, deposited with the ATCC on June 1, 1988), that expresses TM-1, TM-2, TM-3 and TM-4, Kamarck et al, *Proc. Natl. Acad. Sci., USA*, 84, 5350-5354, August 1987, were harvested from roller bottles after late logarithmic growth. Cells were lysed by homogenization in an ice-cold solution of 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.0, 0.5% NP40®, 4 mM dithiothreitol and 20 units of placental ribonuclease inhibitor/ml. Sodium deoxycholate was then added to 0.2%. Cytoplasm and nuclei were separated by centrifugation of the homogenate at 12,000xg for 20 minutes. The cytoplasmic fraction was mixed with an equal volume of 0.2 M Tris-HCl, pH 7.8, 25 mM EDTA, 0.3 M NaCl, 2% sodium dodecyl sulfate and 400 µg/ml of proteinase K, incubated for 1 hour at 37 °C, then extracted once with an equal volume of phenol/chloroform (1:1/v:v) solution. Nucleic acids were obtained by ethanol precipitation of the separated aqueous phase. Total RNA was enriched by passage in 0.5 M NaCl, 10 mM Tris-HCl, pH 7.8, 0.1% sarcosyl® through an oligo dT(12-18) cellulose column. After washing, bound RNA was eluted in the same solution without sodium chloride.

45 Example 1b: Reverse Transcription of mRNA

Ten micrograms of poly A+ RNA were primed for reverse transcription with oligo dT(12-18) and pdN₆ primers. One hundred microliter reaction was performed for 4 hours at 42 °C with 200 units AMV reverse transcriptase (Life Science, Inc. St. Petersburg, Florida, U.S.A.). The RNA component of the cDNA/mRNA hybrids was replaced with the second complementary strand by treatment with RNase H, *E. coli* DNA polymerase I and *E. coli* DNA ligase at 12 °C and 22 °C for 1.5 hours each. Molecular ends were polished by treatment with T4 DNA polymerase. cDNA was phenol/chloroform extracted and purified over a "SEPHADEX® G-50" spun column prepared in 10 mM Tris-HCl, pH 7.8, 1 mM EDTA (TE).

55 Example 1c: Cloning of pcE22 (plasmid cDNA E22)

Synthetic DNA linkers 5' pCCCGGG 3'
 3' GGGCCCTTAA 5'

were attached to the ends of cDNA by blunt end ligation with excess T4 DNA ligase. Excess linkers were removed by chromatography through "SEPHADEX® G-50" (medium) in TE, and by fractionation on 0.8% low melting agarose gel. Based on Northern blot analysis of poly A+ RNA of the 23.411 cell line, the size of the CEA-related mRNA was estimated at 3.6 kb. Therefore, cDNA fragments between 2 and 4 kb were recovered from gel slices and fragments were ethanol precipitated. After resuspension of cDNA in TE, EcoRI-cleaved lambda gt10 arms were added to cDNA at an estimated molar ratio of 1:1. Ligation proceeded at 7°C for 2 days in the presence of T4 DNA ligase. Aliquots of the ligation reaction were added to commercially-obtained packaging mix (Stratagene, San Diego, California, U.S.A.). Five million phage particles were obtained after in vitro packaging and infection of E. coli host NM514.

10 Example 1d: Screening of Recombinant Library

Five hundred thousand packaged lambda particles were plated on lawns of E. coli NM514 and replicate patterns were lifted onto nitrocellulose sheets as described by W.D. Benton and R.W. Davis, Science 196, 180-182, (1977). Positive phage were selected by hybridization with ³²P-labeled LV7 cDNA insert probe that contained a domain repeated among various CEA family members. By multiple rounds of screening. Phage from individual plaques were amplified and titered, and these were used to prepare small quantities of recombinant phage DNA.

20 Example 1e: DNA Manipulation

Phage DNA was prepared according to T. Maniatis, E. Fritsch and J. Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, (1982). DNA segments were isolated from low melting agarose gels and inserted for subcloning into Bluescript plasmid vectors (Stratagene, San Diego, California, U.S.A.). DNA sequencing was performed by the dideoxy termination method of F. Sanger, S. Nicklen and A. Coulson, Proc. Natl. Acad. Sci., U.S.A., 74, 5463-5467, (1977). The nucleic acid and translated sequence for cDNA in pcE22 is given hereinabove (TM-2 (CEA-(e)).

Example 2: Preparation of cDNA in pcHT-6 which Partically Codes for TM3-CEA [CEA-(f)]

30 Example 2a: RNA Preparation

Messenger RNA was prepared by the proteinase K extraction method of J. Favolaro, R. Treisman and R. Kamen, Methods in Enzymology, 65 718, Academic Press, Inc. (1980), followed by oligo dT cellulose chromatography to yield poly A+ RNA (3'-polyadenylated eukaryotic RNA containing most mRNA sequences that can be translated into polypeptides). To obtain approximately 100 ug of poly A+ RNA, approximately 3×10^8 cells of HT-29 tumor cells (ATCC HTB38) were harvested from roller bottles after late logarithmic growth. Cells were lysed by homogenization in an ice-cold solution of 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.0, 0.5% NP40®, 4 mM dithiothreitol and 20 units of placental ribonuclease inhibitor/ml. Sodium deoxycholate was then added to 0.2%. Cytoplasm and nuclei were separated by centrifugation of the homogenate at 12,000xg for 20 minutes. The cytoplasmic fraction was mixed with an equal volume of 0.2 M Tris-HCl, pH 7.8, 25 mM EDTA, 0.3 M NaCl, 2% sodium dodecyl sulfate and 400 µg/ml of proteinase K, incubated for 1 hour at 37°C, then extracted once with an equal volume of phenol/cholorform (1:1/v:v) solution. Nucleic acids were obtained by ethanol precipitation of the separated aqueous phase. Total RNA was enriched by passage in 0.5 M NaCl, 10 mM Tris-HCl, pH 7.8, 0.1% sarcosyl® through an oligo dT(12-18) cellulose column. After washing, bound RNA was eluted in the same solution without sodium chloride.

50 Example 2b: Reverse Transcription of mRNA

Ten micrograms of HT-29 poly A+ RNA were primed for reverse transcription with oligo dT(12-18) and pdN₆ primers. One hundred microliter reaction was performed for 4 hours at 42°C with 200 units AMV reverse transcriptase (Life Science, Inc. St. Petersburg, Florida, U.S.A.). The RNA component of the cDNA/mRNA hybrids was replaced with the second complementary strand by treatment with RNase H, E. coli DNA polymerase I and E. coli DNA ligase at 12°C and 22°C for 1.5 hours each. Molecular ends were polished by treatment with T4 DNA polymerase. cDNA was phenol/chloroform extracted and purified over a "SEPHADEX® G-50" spun column prepared in 10 mM Tris-HCl, pH 7.8, 1 mM EDTA (TE).

Example 2c: Cloning of pcHT-6 (plasmid cDNA HT-6)

Synthetic DNA linkers 5' pCCCGGG 3'
 3' GGGCCCTTAA 5'

5 were attached to the ends of cDNA by blunt end ligation with excess T4 DNA ligase. Excess linkers were removed by chromatography through "SEPHADEX® G-50" (medium) in TE, and by fractionation on 0.8% low melting agarose gel. Based on Northern blot analysis of poly A+ RNA of the HT-29 cell line, the size of the CEA-related mRNA was estimated at 2.2 kb. Therefore, cDNA fragments between 2 and 3 kb were recovered from gel slices and fragments were ethanol precipitated. After resuspension of cDNA in TE,
 10 EcoRI-cleaved lambda gt10 arms were added to cDNA at an estimated molar ratio of 1:1. Ligation proceeded at 7°C for 2 days in the presence of T4 DNA ligase. Aliquots of the ligation reaction were added to commercially-obtained packaging mix (Stratagene, San Diego, California, U.S.A.). Five million phage particles were obtained after in vitro packaging and infection of E. coli host NM514.

15 Example 2d: Screening of Recombinant Library

Five hundred thousand packaged lambda particles were plated on lawns of E. coli NM514 and replicate patterns were lifted onto nitrocellulose sheets as described by W.D. Benton and R.W. Davis, Science, 196, 180-182, (1977). Positive phage were selected by hybridization with ³²P-labeled LV7 cDNA insert probe that
 20 contained a domain repeated among various CEA family members. By multiple rounds of screening. Phage from individual plaques were amplified and titered, and these were used to prepare small quantities of recombinant phage DNA.

Example 2e: DNA Manipulation

25 Phage DNA was prepared according to T. Maniatis, E. Fritsch and J. Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, (1982). DNA segments were isolated from low melting agarose gels and inserted for subcloning into Bluescript plasmid vectors (Stratagene, San Diego, California, U.S.A.). DNA sequencing was performed by the dideoxy termination method of F. Sanger, S. Nicklen and A. Coulson,
 30 Proc. Natl. Acad. Sci., U.S.A., 74, 5463-5467, (1977). The nucleic acid and translated sequence for cDNA in HT-6 not complete at the 5' end of its coding region, but the nucleotide sequence and restriction map of the HT-6 insert indicates that it is related to nucleic acid sequences of cDNA clones coding for CEA-(c) and CEA-(e). The nucleotide sequence of HT-6 insert differs from these clones at only nucleotide position 1463 to 1515 and 1676 to 2429 of the CEA-(c) cDNA. It is inferred from this result that the pcHT-6 insert is a
 35 partial coding sequence for CEA-(f) and the presumed nucleic acid and translated sequence of CEA-(f) is given hereinabove (TM-3 (CEA-(f))).

Example 3: Preparation of cDNA which codes for TM4-CEA [CEA-(g)]40 Example 3a: RNA Preparation

Messenger RNA is prepared by the proteinase K extraction method of J. Favolaro, R. Treisman and R. Kamen, Methos in Enzymology, 65, 718, Academic Press, Inc. (1980), followed by oligo dT cellulose chromatography to yield poly A+ RNA (3'-polyadenylated eukaryotic RNA containing most mRNA sequences that can be translated into polypeptides). To obtain approximately 100 ug of poly A+ RNA, approximately 3×10^8 cells of transfectant 23.411 or tumor cell line HT-29 (ATCC HTB 38) are harvested from roller bottles after late logarithmic growth. Cells are lysed by homogenization in an ice-cold solution of 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.0, 0.5% NP40®, 4 mM dithiothreitol and 20 units of placental ribonuclease inhibitor/ml. Sodium deoxycholate was then added to 0.2%. Cytoplasm and nuclei
 45 are separated by centrifugation of the homogenate at 12,000xg for 20 minutes. The cytoplasmic fraction is mixed with an equal volume of 0.2 M Tris-HCl, pH 7.8, 25 mM EDTA, 0.3 M NaCl, 2% sodium dodecyl sulfate and 400 µg/ml of proteinase K, incubated for 1 hour at 37°C, then extracted once with an equal volume of phenol/cholorform (1:1/v:v) solution. Nucleic acids are obtained by ethanol precipitation of the separated aqueous phase. Total RNA is enriched by passage in 0.5 M NaCl, 10 mM Tris-HCl, pH 7.8, 0.1%
 50 sarcosyl through an oligo dT(12-18) cellulose column. After washing, bound RNA is eluted in the same solution without sodium chloride.
 55

Example 3b: Reverse Transcription of mRNA

Ten micrograms of 23.411 or HT 29 poly A + RNA are primed for reverse transcription with oligo dT(12-18) and pdN₆ primers. One hundred microliter reaction was performed for 4 hours at 42°C with 200 units 5 AMV reverse transcriptase (Life Science, Inc. St. Petersburg, Florida, U.S.A.). The RNA component of the cDNA/mRNA hybrids is replaced with the second complementary strand by treatment with RNase H, *E. coli* DNA polymerase I and *E. coli* DNA ligase at 12°C and 22°C for 1.5 hours each. Molecular ends are polished by treatment with T4 DNA polymerase. cDNA is phenol/chloroform extracted and purified over a "SEPHADEX® G-50" spun column prepared in 10 mM Tris-HCl, pH 7.8, 1 mM EDTA (TE).

10 Example 3c: Cloning of cDNA for CEA-(g)

Synthetic DNA linkers 5' pCCCGGG 3'
 3' GGGCCCTTAA 5'

15 are attached to the ends of cDNA by blunt end ligation with excess T4 DNA ligase. Excess linkers are removed by chromatography through "SEPHADEX® G-50" (medium) in TE, and by fractionation on 0.8% low melting agarose gel. Based on Northern blot analysis of poly A + RNA of the 23.411 and HT-29 cell lines, the size of the CEA-related mRNA is estimated at 1.7 kb. Therefore, cDNA fragments between 1 and 2 kb are recovered from gel slices and fragments are ethanol precipitated. After resuspension of cDNA in 20 TE, EcoRI-cleaved lambda gt10 arms are added to cDNA at an estimated molar ratio of 1:1. Ligation proceeds at 7°C for 2 days in the presence of T4 DNA ligase. Aliquots of the ligation reaction are added to commercially-obtained packaging mix (Stratagene, San Diego, California, U.S.A.). Phage particles are obtained after in vitro packaging and infection of *E. coli* host NM514.

25 Example 3d: Screening of Recombinant Library

Five hundred thousand to one million packaged lambda particles are plated on lawns of *E. coli* NM514 and replicate patterns are lifted onto nitrocellulose sheets as described by W.D. Benton and R.W. Davis, 30 *Science*, 196, 180-182, (1977). Positive phage are selected by hybridization with ³²P-labelled LV7 cDNA insert probe that contained a domain repeated among various CEA family members. By this selection method, positive phage are obtained after multiple rounds of screening. Phage from individual plaques are amplified and titered, and these are used to prepare small quantities of recombinant phage DNA.

35 Example 3e: DNA Manipulation

Phage DNA is prepared according to T. Maniatis, E. Fritsch and J. Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, (1982). DNA segments are isolated from low melting agarose gels and inserted for subcloning into Bluescript plasmid vectors (Stratagene, San Diego, California, U.S.A.). DNA sequencing is performed by the dideoxy termination method of F. Sanger, S. Nicklen and A. Coulson, Proc. 40 Natl. Acad. Sci., U.S.A., 74, 5463-5467, (1977). The nucleotide and translated sequence for a cDNA coding for CEA-(g) is given hereinabove (TM-4 (CEA-(g))).

Example 4: Screening of a KG-1 cDNA Library with ³²P-labelled CEA Probe, LV7 (CEA-(A))

45 A segment of cDNA coding for a portion of carcinoembryonic antigen [LV7 or CEA-(a)] was radiolabelled by random priming and used to detect homologous sequences on filter replicas of a commercial cDNA library prepared from KG-1 cells in bacteriophage vector λ gt11 (Clontech Laboratories, Inc., Palo Alto, CA, U.S.A.). Hybridizations were performed at 68°C in 2xSSPE (1xSSPE - 0.15 M NaCl, 0.01 M sodium phosphate and 1 mM EDTA, pH 7), 5x Denhardt's solution and 100 μg of denatured salmon sperm DNA per ml, and post-hybridization washes were in 0.2xSSC, 0.25% sodium dodecyl sulfate.

50 Positive phage were picked, rescreened to homogeneity, and amplified for production of DNA. cDNA inserts were excised from phage DNA with EcoRI endonuclease and subcloned into the EcoRI site of the plasmid vector pBluescript KS. DNA sequencing on double-stranded DNA was by the method of Sanger et al, supra. The sequences of two different inserts from the KG-1 cDNA library are shown below:

pCKGCEA1:

1	acagcacagctgacagccgtactcaggaagcttctggatcctaggcttatctccacagag	60
5	61 gagaacacacaaggcagcagagaccatggggccctctcagcccctccctgcacacaccc MetGlyProLeuSerAlaProProCysThrHisLeu	120
10	121 atcacttggaaagggggtcctgctcacagcatcactttaaacttctggaatccgcccaca IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProThr	180
15	181 actgccaagtcacgattgaagcccagccacccaaagttctgaggggaaggatgttctt ThrAlaGlnValThrIleGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
20	241 ctacttgtccacaattgccccagaatcttgctggctacattggtacaaaggccaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrIleTrpTyrLysGlyGlnMet	300
25	301 acatacgttaccattacattacatcatatgttagtagacggtaaaaattatatatggg ThrTyrValTyrHisTyrIleThrSerTyrValValAspGlyGlnArgIleIleTyrGly	360
30	361 cctgcatacagtggaaagaaaaagagatattccaatgcattccctgctgatccagaatgtc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
35	421 acgcaggaggatgcaggatcctacacccatcacatcataaagcgacgcgatggactgga ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
40	481 ggagtaactggacatttcacccatcacccatcacctggagactcccaagccctccatctcc GlyValThrGlyHisPheThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
45	541 agcagcaacttaatcccaggaggccatggaggctgtgtatcttaacctgtgatccctgcg SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAspProAla	600
50	601 actccagcccaagctaccagtgtggatgaatggtcagagccctccatgactcacagg ThrProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	660
55	661 ttgcagctgtccaaaaccaacaggaccctttatattggtgtcacaaagtatattgca LeuGlnLeuSerLysThrAsnArgThrLeuPheIlePheGlyValThrLysTyrIleAla	720
60	721 ggaccctatgaatgtgaaatacggAACCCAGTGGAGTCAGTGCAGCCAGTCACC GlyProTyrGluCysGluIleArgAsnProValSerAlaSerArgSerAspProValThr	780
65	781 ctgaatctccctccaaagctgtccaaggccctacatcacaatcaacaacttaaaccccaga LeuAsnLeuLeuProLysLeuSerLysProTyrIleThrIleAsnAsnLeuAsnProArg	840
70	841 gagaataaggatgtcttaacccatgtgtggatggactaaggactgagaactcacccat GluAsnLysAspValLeuThrPheThrCysGluProLysSerGluAsnTyrThrTyrIle	900
75	901 tggggctaaatggtcagggccctccctgtcagtcggcggtaaagcgacccattgaaaac TrpTrpLeuAsnGlyGlnSerLeuProValSerProArgValLysArgProIleGluAsn	960
80	961 aggatcctcatttacccaatgtcacgagaaatgaaacaggacccatcaatgtgaaata ArgIleLeuIleLeuProAsnValThrArgAsnGluThrGlyProTyrGlnCysGluIle	1020
85	1021 cgggaccgatatggcatccgcaggcaggatcaccctgaatgtcctctatggtcca ArgAspArgTyrGlyIleArgSerAspProValThrLeuAsnValLeuTyrGlyPro	1080

1081	gacctccccagcatttacccatttcattcacctattaccgttcaggagaaaacctctacttt AspLeuProSerIleTyrProSerPheThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	1140
1141	tcctgcggcggtgagtctaaccacggcacaatattcttggacaattaatggaaagttt SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1200
5		
1201	cagctatcaggacaaaagctcttatccccaaataactacaaaggcatagtggtcttat GlnLeuSerGlyGlnLysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	1260
10		
1261	gcttgctctgtcgtaactcagccactggcaaggaaagctccaaatccatcacagtcaaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
1321	gtctctgactggatattaccctgaattctactagttccccaattccatttctccatg ValSerAspTrpIleLeuProEnd	1380
15		
1..1	gaatcacgaagagcaagacccactctgttccagaagccctataatctggagggtggacaac tcgatgtaaatttcatggaaaaccctgtacactgacatgtgagccactcagaactcacc	1440
1501	aaaatgttcgacaccataacaacagctactcaaactgtaaaccaggataagaagtgtatg	1500
1561	acttcacactgtggacaggttttcaaaagatgtcataacaagactcccattcatgacaagg	1560
1621	ctccaccctctactgtctgtcatgcctgcctttacttggcaggataatgcgtcat	1620
1681	tagaatttcacatgttagtagttctgagggtaaacaacagactgtcagatatgtcatctca	1680
1741	acctcaaactttacgtacatctcaggaaatgtggctctccatcttgcatacaggg	1740
20		
1801	ctcccaatagaaatgaacacagagatattgcctgtgtttcagagaagatggttcta	1800
1861	taaagagttagggaaagctgaaattatagtagtagtgcacattgtgtggatg	1860
1921	gcttcaccatccataagagatacagttaaaaaacgtgacagtaatactgattctagca	1920
1981	gaataaacatgttaccacatttgcaaaaaaaaaaaa	1980
		2010
25	pcKGCEA2:	
1	gggtggatccctaggctcatctccatagggagaacacacatacagcagagaccatggga MetGly	59
30		
60	ccccctctcagccccctccctgcactcagcacatcacctggaaaggggctcctgctcacagca ProLeuSerAlaProProCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	119
120	tcactttaaacttctggAACCTGCCACCACTGCCAGTAATAATTGAAGCCAGCCA SerLeuLeuAsnPheTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	179
35		
180	cccaaagtctggggaaaggatgttctacttgcacattgtccacaattgtccccagaatctt ProLysValSerGluGlyLysAspValLeuLeuValHisAsnLeuProGlnAsnLeu	239
240	actggctacatctggtaaaaggccaaatgacggaccttaccattacattacatcatat ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	299
40		
300	gttagtagacggtaaaattatatatgggcctgcctacagtggacgagaaaacagtatattcc ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	359
360	aatgcattccctgctgatccagaatgtcacacaggaggatgcaggatctacac AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	419
45		
420	atcataaaggcgaggcgatggactggaggactggatatttactgtcacctatac IleIleLysArgGlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	479
480	tcggagactcccaagcgctccatctccagcagcaacttaaaccaggaggcatggag SerGluThrProLysArgSerIleSerSerAsnLeuAsnProArgGluValMetGlu	539

540	gctgtgcgcttaatctgtatcctgagactccggatgcaggacttgcgtttgtgaat AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	599
5	600 ggtcagaaccccttatgactcacaggttgcagctgtccaaaaccacaggacccttat GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	659
	660 ctatttgggtcacaaagtataattgcagggccctatgaatgtgaaatacggaggggagtg LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	719
10	720 agtgccagccgcagtgaccaggtcaccctgaatctcctcccaagctgcccatgccttac SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	779
	780 atcaccatcaacaactaaaccccagggagaagaaggatgtgttagccttcacctgtgaa IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	839
15	840 cctaagagtccgaactacacctaatttgggtgctaaatggtcagagcctccggcgtcagt ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	899
	900 ccgagggtaaagcgaccattgaaaacaggatactcatctacccttcgtcagcggaaat ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	959
20	960 gaaacaggaccctatcaatgtgaaatacgggaccgatatggtggcatccgcagtaaccc GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	1019
	1020 gtcaccctgaatgtcccttatggtccagacctccccagaatttacccttacttcacccat ValThrLeuAsnValLeuTyrGlyProAspLeuProArgIleTyrProTyrPheThrTyr	1079
25	1080 taccgttcaggagaaaaacctcgacttgtccgtttgcggactctaaccaccggcagag TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	1139
	1140 tattttggacaattaatggaaagtttcagcttatcaggacaaaagctttatcccccaa TyrPheTrpThrIleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	1199
30	i 10 attactacaaatcatagcgggctctatgtctgtttgttaactcagccactggcaag IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	1259
	1260 gaaatctccaaatccatgatagtcaaagtcttgcctgcctatggaaaccagacagag GluIleSerLysSerMetIleValLysValSerGlyProCysHisGlyAsnGlnThrGlu	1319
35	1320 tctcattaatggctgccacaatagagacactgagaaaaagaacaggttataccttcatg SerHisEnd	1379
	1380 aaattcaagacaaagaagaaaaaggctcaatgttattggactaaataatcaaaggataa 1440 tttttcataattttattggaaaatgtgtctgattcttggaaatgtttattctccagatt 1500 tatgaactttttctcagcaattgtaaagtatactttgtaaacaaaattgaaaca 1560 tttgttttgccttatctgagtgccccccc 1591	1439 1499 1559

40

It will be appreciated that the instant specification and claims are set forth by way of illustration and not limitation and that various modifications and changes may be made without departing from the scope of the present invention.

45

Claims

1. A nucleic acid comprising a base sequence which codes for a peptide sequence, characterized in that the group nucleic acid is a DNA selected from the following group of five sequences:

50

10	30	50
CAGCCGTGCTCGAAGCGTTCTGGAGCCAAAGCTCTCCTCACAGGTGAAGACAGGGCCA		
5		
70	90	110
GCAGGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGGGTGTACCCCTGGCAG		
MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln		
10		
130	150	170
GGGCTTCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCGCCACCTGCCAGC		
15	GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu	
190	210	230
ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGAGGTTCTCTCCTGTCCAC		
20	ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuValHis	
250	270	290
AATCTGCCAGCAAACCTTTGGCTACAGCTGGTACAAGGGAAAGAGTGATGCCAAC		
25	AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn	
310	330	350
CGTCAAATTGTTAGGATATGCAATAGGAACCTCAACAAGCTACCCAGGGCCCGCAAACAGC		
30	ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer	
35		
370	390	410
GGTCGAGAGACAATAACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC		
GlyArgGluThrIleTyrProAsnAlaSerIeuLeuIleGlnAsnValThrGlnAsnAsp		
40		
430	450	470
ACAGGATTCTACACCCTACAAAGTCATAAAGTCAGATCTTGTGAATGAAGAACGAACTGGA		
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluAlaThrGly		
45		

490	510	530
CAGTTCCATGTATAACCGGAGCTGCCAAGCCCTCCATCTCCAGCAACA ⁵ GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro		
550	570	590
¹⁰ GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACA ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr		
610	630	650
¹⁵ CTGTGGTGGATAAACAAATCAGAGCCTCCCGGTCA GTCCCAGGCTGCAGCTGTCCAATGGC LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly		
670	690	710
AACAGGACCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATTGAGTGTGAA AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu		
730	750	770
ATACAGAACCCAGTGAGTGCAGACCCAGTGACCCAGTCACCTTGAATGTCACCTATGCC IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly		
790	810	830
CCGGACACCCCCACCATTCCCTTCAGACACCTATTACCGTCCAGGGCHAAACCTCAGC ³⁵ ProAspThrProThrIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer		
850	870	890
CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAAATGAAACA ⁴⁰ LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr		
910	930	950
⁴⁵ TTCCAGCAAAGCACACAAGAGCTTTATCCCTAACATCACTGTGAATAATAGTGGATCC PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer		
970	990	1010
⁵⁰ TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCCAGTCAGACCGATC TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle		

1030 1050 1070
 5 ATAGTCACTGATAATGCTCTACCACAAAGAAAATGGCCTCTCACCTGGGGCCATTGCAGGC
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly

 1090 1110 1130
 10 ATTGTTGATTGGAGTAGTGGCCCTGGTTGCTCTGATAGCAGTAGGCCCTGGCATGTTTCTG
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

 1150 1170 1190
 15 CATTTCGGGAAGACCGGCAGGGCAAGCGAACCGCGTGATCTCACAGAGCACAAACCTCA
 HisPheGlyLysThrGlyArgAlaSerAspGlnArgAspLeuThrGluHisLysProSer

 1210 1230 1250
 20 GTCTCCAAGCACACTCAGGACCCTCAATGACCCACCTAACAAAGATGAATGAAGTTACT
 ValSerAsnHisThrGlnAspHisSerAsnAspProProAsnLysMetAsnGluValThr

 1270 1290 1310
 25 TATTCTACCCCTGAACCTTGAGCCCCAGCAACCCACACAACCAACTTCAGCCCTCCCCATCC
 TyrSerThrLeuAsnPheGluAlaGlnGlnProThrGlnProThrSerAlaSerProSer

 1330 1350 1370
 30 CTAACAGCCACAGAAATAATTATTCAAGTAAAAAGCAGTAATGAAACCTGTCCCTGC
 LeuThrAlaThrGluIleIleTyrSerGluValLysGln

 1390 1410 1430
 35 TCACTGCAGTGCTGATGTATTCAAGTCTCTCACCCCTCATCACTAGGAGATTCCCTTCCC

 1450 1470 1490
 40 CTGTAGGGTAGAGGGGTGGGGACAGAAACAACTTCTCTACTCTTCCCTAATAGGC

 1510 1530 1550
 45 ATCTCCAGGCTGCCTGGTCAGTGCCCCCTCTCTCAGTGTCATAAGATGAAAGTACATTGGG

 1570 1590 1610
 50 AGTCTGTAGGAAACCCAACCTTCTTGTCAATTGAAATTGGCAAAGCTGACTTTGGGAAAG

1630

1650

1670

AGGGACCAGAACTTCCCCCTCCCTTCCCCCTTTTCCCAACCTGGACTTGTAAAC'TTGCC

5

1690

1710

1730

TGTCAGAGCACTCATTCCCTTCCCACCCCCAGTCCTGTCCTATCACTCTAATTGGATTT

10

1750

1770

1790

GCCATAGCCTTGAGGTTATGTCCTTTCCATTAAGTACATGTGCCAGGAACAGCGAGAG

15

1810

1830

1850

ACAGAAAGTAAACGGCAGTAATGCTTCTCCTATTCCTCAAAGCCTTGTGTGAACTAGCA

20

1870

1890

1910

AAGAGAAGAAAATCAAATATAACCAATAGTGAATGCCACAGGTTGTCCACTGTCAG

25

1930

1950

1970

GGTTGTCTACCTGTAGGATCAGGGTCTAACGCACCTTGGTGCTTAGCTAGAAATACCACCTA

30

1990

2010

2030

ATCCTTCTGGCAAGCCTGTCTTCAGAGAACCCACTAGAAGCAACTAGGAAAAATCACTTG

35

2050

2070

2090

CCAAAATCCAAGGCAATTCTGATGGAAAATGCAAAAGCACATATATGTTTAATATCTT

40

2110

2130

2150

TATGGGCTCTGTTCAAGGCAGTGCTGAGAGGGAGGGTTATAGCTTCAGGGAGGGAAACCAAG

45

2170

2190

2210

CTTCTGATAAAACACAATCTGCTAGGAACCTGGAAAGGAATCAGAGAGCTGCCCTTCAGC

50

55

EP 0 346 710 B1

2230	2250	2270
GATTATTTAAATTGTTAAGAATAACACAATTGGGTATTGGGATTTCTCCTTC		
5 2290	2310	2330
TGAGACATTCACCATTAAATTGTAACGCTTATTATGTGAAAAGGGTTATTTT		
10 2350	2370	2390
ACTTAGCTTAGCTATGTCAGCCAATCCGATTGCCTTAGGTGAAAAGAAACCACCGAAATCC		
15 2410	2430	2450
CTCAGGTCCCTGGTCAGGAGCCTCTCAAGATTTTTGTCAGAGGCTCAAATAGAAA		
20 2470	2490	2510
ATAAGAAAAGGTTCTTCATTCATGGCTAGAGCTAGATTAACTCAGTTCTAGGCACC		
25 2530	2550	2570
TCAGACCAATCATCAACTACCATTCTATTCCATGTTGCACCTGTGCATTTCTGTTGC		
30 2590	2610	2630
CCCCATTCACTTGTCAAGGAAACCTTGGCCTCTGCTAAGGTGTATGGTCCCTTGAGAAG		
35 2650	2670	2690
TGGGAGCACCCCTACAGGGACACTATCACTCATGCTGGTGGCATTGTTACAGCTAGAAAG		
40 2710	2730	2750
CTGCACTGGTCTAATGCCCTTGGAAATGGGCTGTGAGGAGGAGGATTAACTTAG		
45 2770	2790	2810
GCCTAGCCTTTAACAGCCTCTGAAATTATCTTCTATGGGTCTATAAAATCT		
50 2830	2850	2870
ATCTTATAATAAGGAAGGACAGGGAGGAAGACAGGCAAATGTACTTCTCACCCACTCT		

2890

2910

2930

TCTACACAGATGGAATCTCTTGGGGCTAAGAGAAAGGTTTATTCTATATTGCTTACCT

5

2950

2970

2990

GATCTCATGTTAGGCCTAACAGGGCTTCCTCCAGGAGGATTAGCTGGAGTTCTCTATACT

10

3010

3030

3050

CAGGTACCTCTTCAGGGTTTCTAACCCCTGACACGGACTGTGCATACTTCCCTCATCC

15

3070

3090

3110

ATGCTGTGCTGTGTTATTAATTTCCTGGCTAACATCATGTCTGAATTATGTATGAAA

20

3130

3150

3170

ATTATTCTATGTTTATAATAAAAAATAATATCAGACATCGAAAAAAAAA,

25

30

35

40

45

50

55

(2)

5	10	30	50
	CAGCCGTGCTCGAAGCGTTCTGGAGCCCAAGCTCTCCTCCACAGGTGAAGACAGGGCCA		
10	70	90	110
	GCAGGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGCCTGTACCCCTGGCAG MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln		
15	130	150	170
	GGGCTTCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCGCCACCACTGCCAGCTC GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu		
20	190	210	230
	ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGAGGTTCTCCTGTCCAC ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis		
25	250	270	290
	AATCTGCCAGCAACTTTTGCTACAGCTGGTACAAAGGGAAAGAGTGGATGGAAC AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn		
30	310	330	350
	CGTCAAATTGAGGATATGCAATAGGAACCTAACAAAGCTACCCCAGGGCCCGCAAACAGC ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer		
35	370	390	410
	GGTCGAGAGACAATATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAATGAC GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp		
40			
45			
50			

430 450 470

5 ACAGGATTCTACACCCCTACAAAGTCATAAAGTCAGATCTTGTGAATGAAGAAGCAACTGG
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

490 510 530

10 CAGTTCCATGTATAACCCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACCTCCAACCC
GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro

550 570 590

15 GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC
ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

610 630 650

20 CTGTGGTGGATAAACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC
LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

670 690 710

25 AACAGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATGAGTGTGAA
AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

730 750 770

30 ATACAGAACCCAGTGAGTGCACCGCAGTGACCCAGTCACCTTGAAATGTCACCTATGGC
IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

790 810 830

35 CCGGACACCCCCACCATTCCCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
ProAspThrProThrIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer

40

45

50

55

850

870

890

5 CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAACA
 LeuSerCystYrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

910

930

950

10 TTCCAGCAAAGCACACAAGAGCTCTTATCCCTAACATCACTGTGAATAATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

970

990

1010

15 TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCAACAGGACCACAGTCAAGACCGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrile

20

1030

1050

1070

ATAGTCACTGAGCTAAGTCCAGTAGTAGCAAAGCCCCAAATCAAAGCCAGCAAGACCACA
 IleValThrGluLeuSerProValValAlaLysProGlnIleLysAlaSerLysThrThr

25

1090

1110

1130

GTCACAGGAGATAAGGACTCTGTGAACCTGACCTGCTCCACAAATGACACTGGAATCTCC
 ValThrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer

30

1150

1170

1190

35

1210

1230

1250

40

ATCCGTTGGTTCTTCAAAAACCAGAGTCTCCGCTCGGAGAGGATGAAGCTGTCCCAG
 IleArgTrpPhePheLysAsnGlnSerLeuProSerSerGluArgMetLysLeuSerGln

45

50

55

1270

1290

1310

GAGGTCTCAACCAATCACTAAGAACCAAAGCGACCCCATCATGCTGAACGTAAACTAT
 5 GluValPheAsnProIleSerLysAsnGlnSerAspProIleMetLeuAsnValAsnTyr

1330

1350

1370

AATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGCCATTGCTGGCATTGTGATTGGA
 10 AsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGlyIleValIleGly

1390

1410

1430

15 GTAGTGGCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTGCATTCGGGAAG
 ValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeuHisPheGlyLys

1450

1470

1490

20 ACCGGCAGCTCAGGACCCTCCAATGACCCACCTAACAAAGATGAATGAAGTTACTTATTC
 ThrGlySerSerGlyProLeuGln

25 1510

1530

1550

TACCCCTGAACCTTGAAAGCCCAGCAACCCACACAAACCAACTTCAGCCTCCCCATCCCTAAC

30 1570

1590

1610

AGCCACAGAAATAATTTATTCAAGAAGTAAAAAAAGCAGTAATGAAACCTGAAAAAAAAAAA

35 1630

AAAAAAAAAA

40

45

50

55

(3)

5

10

30

50

CAGCCGTGCTCGAACCGTTCTGGAGCCCAAGCTCTCCACAGGTGAACACAGGGCCA

10

70

90

110

GCAGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGAGTGGTGTACCCCTGGCAG
MetGlyHisLeuSerAlaProLeuHisArgValArgValProTrpGln

15

130

150

170

20 GGGCTTCTGCTCACAGCCTCACTTCTAACCTTCTGGAACCCGCCACCACTGCCAGCTC
GlyLeuLeuLeuThrAlaSerLeuLeuThrPheTrpAsnProProThrThrAlaGlnLeu

30

190

210

230

25 ACTACTGAATCCATGCCATTCAATGTTGCAGAGGGGAAGGAGGTTCTCTCCTGTCCAC
ThrThrGluSerMetProPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis

250

270

290

AATCTGCCCAAGCACTTTTGCTACAGCTGGTACAAAGGGAAAGAGTGGATGGCAAC
AsnLeuProGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn

35

310

330

350

CGTCAAATTGTAGGATATGCAATAGGAACCTAACAGCTACCCAGGGCCCGCAACAGC
ArgGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrProGlyProAlaAsnSer

40

370

390

410

GGTCGAGAGACAATATAACCCAAATGCATCCCTGCTGATCCAGAACGTCACCCAGAAATGAC
GlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp

45

430

450

470

ACAGGATTCTACACCCCTACAAAGTCATAAAAGTCAGATCTTGTGAATGAAAGCAAC'TGGA
ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluGluAlaThrGly

55

EP 0 346 710 B1

490 510 530

CAGTTCCATGTATAACCGGGAGCTGCCAAGCCCTCCATCTCCAGCAACAACCTCCAACCC
 GlnPheHisValTyrProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro
 5

550 570 590

GTGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACACAAACCTAC
 10 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr

610 630 650

15 CTGTGGTGCATAAACAAATCAGAGCCTCCCGGTCACTCCCAGGCTGCAGCTGTCCAATGGC
 LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly

670 690 710

20 AACAGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATGAGTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu

730 750 770

25 ATACAGAACCCAGTGAGTGCACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly

30

790 810 830

35 CCGGACACCCCCACCATTCCCCCTTCAGACACCTATTACCGTCCAGGGGCAAACCTCAGC
 ProAspThrProThrIleSerProSerAspThr-TyrArg-ProGlyAlaAsnLeuSer

850 870 890

40 CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAACA
 LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr

910 930 950

45 TTCCAGCAAAGCACACAAGAGCTCTTATCCCTAACATCAGTGAATAATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer

970 990 1010

50 TATACCTGCCACGCCAATAACTCAGTCACTGGCTGCACAGGACCAAGTCAAGACGATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle

1030

1050

1070

5 ATAGTCACTGATAATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGCCATTGCTGGC
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly

1090

1110

1130

10 ATTCTGATTGGACTAGTGGCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTG
 11 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu

1150

1170

1190

15 CATTTCGGGAAGACCGGCAGCTCAGGACCACTCCAATGACCCACCTAACAAAGATGAATGA
 HisPheGlyLysThrGlySerSerGlyProLeuGln

20 1210 1230 1250
 AGTTACTTATTCTACCCCTGAACCTTGAAAGCCCAGCAACCCACACAACCAACTTCAGCCTC

25 1270 1290 1310
 CCCATCCCTAACAGCCACAGAAATAATTATTCAAGAAGTAAAAAAGCAGTAATGAAACCT

30 1330
 31 GAAAAAAAAAAAAAA

35

40

45

50

55

(4)

5	1 acagcacagctgacagccgtactcaggaagcttctggatcctaggcttatctccacagag	60
	61 gagaacacacaaggcagcagagaccatggggccctctcagccccccctgcacacaccc MetGlyProLeuSerAlaProProCysThrHisLeu	120
10	121 atcacttggaaaggggggctctgctcagcatcactttaaacttcttggaaatcccccaca... IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProThr	180...
	181 actgccccaaagtacgattgaagccccagccacccaaagtttcttggggaaaggatgttctt ThrAlaGlnValThrIleGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
15	241 ctacttgcacaaatttgcaccaatcttgcgttgcatacttggatcacaaggccaaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrIleTrpTyrLysGlyGlnMet	300
	301 acatacgctaccattacattacatcatatgttagtagacggtaaagaattatataatggg ThrTyrValTyrHistYrIleThrSerTyrValValAspGlyGlnArgIleIleTyrGly	360
20	361 cctgcatacagtggaaagaaaaggtatattccaatgcatttcgttgcataatgtc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
	421 acgcaggaggatgcaggatcctacacccatcataaaagcgacgcgttgcactggaaatgg ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
25	481 ggagtaactggacatttccacccatcacacccatggagactccaaaggccatctcc GlyValThrGlyHisPheThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
	541 agcagcaacttaatcccaggggggcatggaggctgtgtatcttaacctgtgtatcc SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAspProAla	600
30	601 actccagcccaagctaccatggggatgaatggtcagacccctccatgactcacagg ThrProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	660
	661 ttgcagctgtccaaaaccaacaggacccttttatatttgggtgcacaaagtatattgc LeuGlnLeuSerLysThrAsnArgThrLeuPheIlePheGlyValThrLysTyrIleAla	720
	721 ggaccctatgaatgtgaaatacggAACCCAGTGAGTGCGAGCCGAGTCACC GlyProTyrGluCysGluIleArgAsnProValSerAlaSerArgSerAspProValThr	780
35	781 ctgaatctccctccaaagctgtccaaaggccctacatcacaatcaacaacttaaaccc LeuAsnLeuLeuProLysLeuSerLysProTyrIleThrIleAsnAsnLeuAsnProArg	840
	841 gagaataaggatgtcttacccatgtgaacctaagagtgagaactacacccat GluAsnLysAspValLeuThrPheThrCysGluProLysSerGluAsnTyrThrTyrIle	900
40	901 tggggctaaatggtcagacccctgtcagtcgtccaggtaaaggcgacccattgaaaac TrpTrpLeuAsnGlyGlnSerLeuProValSerProArgValLysArgProIleGluAsn	960
	961 aggatccctatttacccaaatgtcagcagaaatgaaacaggacccatcaatgtgaaata ArgIleLeuIleLeuProAsnValThrArgAsnGluThrGlyProTyrGlnCysGluIle	1020
45	1021 cgggaccgataatggtggcatccgcagtgcaccaggccatcaatgtgaaata ArgAspArgTyrGlyGlyIleArgSerAspProValThrLeuAsnValLeuTyrGlyPro	1080

1081	gaccccccagcattacccttcatcaccttaccgttcaggagaaaacactacttt AspLeuProSerIleTyrProSerPheThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	1140
5 1141	tcctgcttcggtgagtctaaccacggcacaatattcttgcacaattaatggaaagttt SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1200
-1201	cagctatcaggacaaaagctctctateeeccaaataactacaaaggcatagtggcttat GlnLeuSerGlyGlnLysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	1260
10 1261	gcttgctctgtcgtaactcagccactggcaagggaaagctccaaatccatcacagtcaaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
1321	gtctctgactggatattaccctgaattctacttagttcctccaattccatttctccatg ValSerAspTrpIleLeuProEnd	1380
75 1381	gaatcacgaagagaagacccactctgttccagaagccctataatctggagggtggacaac tcgatgtaaattcatggaaaaaccctgtacgtacatgtgagccactcagaactcacc	1440
1441	aaaatgttcgacaccataacaacacagctactcaaactgtaaaccaggataagaagttgatg	1500
1501	acttcacactgtggacagttttcaaagatgtcataacaagactccccatcatgacaagg	1560
1561	ctccaccctctactgtctgtcatgcctgcctttcacttgcaggataatgcagtcat	1620
1621	tagaatttcacatgttagtagcttctgagggtaacaacacagagtgtcagatatgtcatctca	1680
20 1681	acctccaaactttacgtAACATCTCAGGGAAATGTGGCTCTCCATCTGCATAACAGGG	1740
1741	ctccccatagaaatgaacacacagagatattgcctgtgtttgcagagaagatggttcta	1800
1801	taaagatggaaagctgaaaattatagtagagttcctttaaatgcacattgtgtggatg	1860
1861	gctctaccatTCCTAAGAGATAAGTGTAAAGACGTGACAGTAATAACTGATTCTAGCA	1920
1921	gaataaacatgttaccacatttgcaaaaaaaaaa	1980
1981		2010

25 and

30

35

40

45

50

55

(5)

1	gggtggatcctaggctcatctccataggggagaacacacatacagcagagaccatggga	59
5	MetGly	
60	ccccctctcagccccctccctgcactcagcacatcacatggaaaggggctcctgctcacagca ProLeuSerAlaProProCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	119
10	tcacttttaacttctggAACCTGCCACCACTGCCAAGTAATAATTGAAGCCAGCCA SerLeuLeuAsnPheTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	179
180	cccaaagtctgaggggaaggatgttctacttgtccacaattgccccagaatctt ProLysValSerGluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	239
15	actggctacatctggtacaaaggccaatgacggaccttaccattacattacatcatat ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHistYrIleThrSerTyr	299
300	gttagtagacggtaaaattatatatggcctgcctacagtggacgagaaacagtatattcc ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	359
20	aatgcattccctgctgatccagaatgtcacacaggaggatgcaggatctcacaccc AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	419
420	atcataaagcgaggcgatggactggaggacttgatatttactgtcaccttatac IleIleLysArgGlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	479
25	tcggagactccaaagcgctccatctccagcagcaacttaaaccccaggaggatggag SerGluThrProLysArgSerIleSerSerAsnLeuAsnProArgGluValMetGlu	539
540	gctgtgcgttaatctgtgatcctgagactccggatgcaagctacctgtgggtgctgaat AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	599
30	ggtcagaaccccttatgactcacaggttgcagctgtccaaaaccaacaggacccttat GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	659
660	ctatttgggtcacaaagtatattgcagggccctatgaatgtgaaatacggagggagtg LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	719
35	agtgccagccgcagtgaccaggatcaccctgaatctcctccgaagctgcccacgccttac SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	779
780	atcaccatcaacaacttaaaccccaggggagaagaaggatgtgttagccttcacctgtgaa IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	839
40	cctaagagtcgaaactacacctacatttggtgctaaatggtcagagcctccggcagt ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	899
900	ccgagggtaaagcgaccattgaaaacaggatactcatttacccaggatgttcacgagaaat ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	959
45	gaaacaggaccctatcaatgtgaaatacgggaccgatatggtgcatccgcagtaaccca GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	1019

1020	gtcacccctgaatgtcctctatggtccagaccccccagaatttaccctacttcacctat	1079
	ValThrLeuAsnValLeuTyrGlyProAspLeuProArgIleTyrProTyrPheThrTyr	
5 1080	taccgttcaggagaaaacctcgacttgcctgcttgccgactctaaccaccggcagag	1139
	TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	
1140	tattttggacaattaatggaaagtttcagctatcaggacaaaagctcttatccccaa	1199
	TyrPheTrpThrIleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	
10 1200	attactacaaatcatagcgggctctatgcttgcgtactcaggccactggcaag	1259
	IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	
1260	gaaatctccaaatccatgatagtcaaagtctctggccatggaaaccagacagag	1319
	GluIleSerLysSerMetIleValLysValSerGlyProCysHisGlyAsnGlnThrGlu	
15 1320	tctcattaatggctgccacaatagagacactgagaaaaagaacaggttatacctcatg	1379
	SerHisEnd	
20 1380	aaattcaagacaagaagaaaaaggctcaatgttattggactaaataatcaaaggataa	1439
1440	tgttttcataatttttattggaaaatgtgctgatcttggaatgttttattctccagatt	1499
1500	tatgaactttttcttcagaattggtaaagtatactttgtaaacaaaattgaaaca	1559
1560	tttgcttttgcctctatctgagtgccccc	1591

2. A replicable recombinant cloning vehicle having an insert comprising a nucleic acid of claim 1.

25 3. A cell that is transfected, infected or injected with a recombinant cloning vehicle of claim 2.

4. A method for preparing a polypeptide, said method comprising the steps of
 (a) culturing the cell of claim 3
 (b) recovering the polypeptide expressed by said cell.

30 5. A method for preparing an antibody directed against a polypeptide said method comprising the steps of
 (a) preparing said polypeptide by the method of claim 4
 (b) injecting said polypeptide into a host capable of producing antibodies and
 (c) recovering said antibodies.

35 Patentansprüche

1. Nucleinsäure, umfassend eine Basen-Sequenz, die für eine Peptid-Sequenz codiert,
 dadurch gekennzeichnet, daß die Gruppen-Nucleinsäure eine DNA ist, die aus der folgenden Gruppe
 40 von fünf Sequenzen ausgewählt ist:

10 30 50

CAGCCCGTGCCTGGAAAGCCGTTCTGGACCCCCAAGCTCTCCACAGGTGAAGACACGGCCA

5 70 90 110

CCACGGAGACACCATGGGGCACCTCTCAGCCCCACTTCACAGACTGCGTGTAACCCCTGGCAG
MetGlyHisLeuSerAlaPheLeuHisArgValArgValProTrpGln

10 130 150 170

GCCCTTCTGCTCACAGCCTCACTTCTAACCTTCTGGAAACCCCCCACCACGTGCCAGCCT
15 GlyLeuLeuLeuThrAlaSerLeuLeuThrPheAsnProPheThrAlaGlnLeu

190 210 230

ACTACTGAAATCCATGCCATTCAATGTTGAGAGGGAGGGTCTTCCTTGTCCAC
20 ThrThrGluSerMetPheAsnValAlaGluGlyLysGluValLeuLeuLeuValHis

250 270 290

AATCTGCCCAACGCAACTTTTGCTACAGCTGGTACAAAGGGAAAGAGCTGGATGCCAAC
25 AsnLeuPheGlnGlnLeuPheGlyTyrSerTrpTyrLysGlyGluArgValAspGlyAsn

310 330 350

CCTCAAAATTCTACCGATAATGCAAATACCAACTCAACAGCTACCCAGGGCCCGCAAAACAC
30 AspGlnIleValGlyTyrAlaIleGlyThrGlnGlnAlaThrPheGlyProAlaAsnSer

370 390 410

CGTCCGAGAGACAATATACCCCAATGCATCCCTGCTGATCCACGACGTACCCAGAAATGAC
35 GlyArgGluThrIleTyrProAsnAlaSerIleGlnAsnValThrGlnAsnAsp

430 450 470

ACAGGGATTCTACACCCCTACAGTCATAAAACTCAGATCTTCTGAATGAAAGAACCAACTGG
40 ThrGlyPheTyrThrLeuGlnValIleLysSerAspLeuValAsnGluAlaThrGly

45

50

55

490 510 530
 CAGTTCCATGATAACCGGGAGCTGCCAAGCCCTCATCTCCAGCAACACTCCAACCT
 GlnPheHisValTy:ProGluLeuProLysProSerIleSerSerAsnAsnSerAsnPro
 5
 550 570 590
 GTGGAGGACAAAGCATGCFGTGCCCTTCACCTGTGAAACCTGAGACTCAGGACACPAACCTAC
 10 ValGluAspLysAspAlaValAlaPheThrCysGluProGluThrGlnAspThrThrTyr
 610 630 650
 CTGTGGTGCAAAACAATCAGAGCCTCCCGTCAGTCCCAGGCTCCAGCTGTCCAATGCC
 LeuTrpPheAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly
 20 670 690 710
 AACAGGACCCCTCACTCTACTCAGTGTACAAGGAATGACACAGGACCCATTGACTGTGAA
 AsnArgThrLeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu
 730 750 770
 ATACAGAACCCAGTGAGTGCGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGCC
 IleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly
 30 790 810 830
 CCGGACACCCCCACCATTTCCCTTCAGACACCTATTACCGTCCAGGGGCAAAACCTCAGC
 ProAspThrProIleSerProSerAspThrTyrTyrArgProGlyAlaAsnLeuSer
 850 870 890
 CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAAATGGAA
 LeuSerCysTyrAlaAlaSerAsnProProAlaGlnTyrSerTrpLeuIleAsnGlyThr
 40 910 930 950
 TTCCAGCAAGCACACAAAGACCTCTTATCCCTAACATCAGTGTGAAATPATAGTGGATCC
 PheGlnGlnSerThrGlnGluLeuPheIleProAsnIleThrValAsnAsnSerGlySer
 45
 970 990 1010
 TATAACCTGCCACCCCAATAACTCAGTCACCTGGCTGCAACAGGACCAACAGTCAGACCCATC
 TyrThrCysHisAlaAsnAsnSerValThrGlyCysAsnArgThrThrValLysThrIle
 50

1030 1050 1070
 ATAGTCACTGATAATGCTCTACCACAAAGAAAAATGCCCTCTCACCTGGGCCATTGCCTGG
 IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly
 5

1090 1110 1130
 ATTGTGATGGAGTAGTGGCCCTGGTGCTCTGATAGCAGTAGCCCTGGCATGTTTCTG
 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCys?heLeu
 10

1150 1170 1190
 CATTTCGGGAAGACCGGGCAGGGCAAGCGACCAGCGTGATCTCACAGAGCACAACCCCA
 15 HisPheGlyLysThrGlyArgAlaSerAspGlnArgAspLeuThrGluHisLysProSer

1210 1230 1250
 20 GTCTCCAACCACACTCAGGACCACTCCAATGACCCACCTAACAAAGATGAATGAAGTTACT
 ValSerAsnHisThrGlnAspHisSerAsnAspProProAsnLysMetAsnGluValTh:
 Val

1270 1290 1310
 25 TATTCACCCCTGAACCTTGAAGGCCAGCAACCCACACAAACCAACTTCAGCCTCCCCATCC
 TyrSerThrLeuAsnPheGluAlaGlnGlnProThrGlnProThrSerAlaSerProSer

1330 1350 1370
 30 CTAACAGCCACAGAAAATAATTTATTCAAGAAGTAAAAAAAGCAGTAATGAAACCTGTCCCTGC
 LeuThrAlaThrGluIleIleTyrSerGluValLysGln

1390 1410 1430
 35 TCACTGCAGTGCTGATGTATTCAAGTCTCTCACCCCTCATCACTAGGAGATTCTTCCC

1450 1470 1490
 40 CTGTAGGGTAGAGGGGTGGGGACACAAACAACTTCTCCTACTCTTCCCTTAATAGGC

1510 1530 1550
 45 ATCTCCAGGCTGCCCTGGTCACCTCCCCCTCTCAGTGTCAATTAGATGAAAGTACATTGGG

1570 1590 1610
 50 AGTCTGTAGGAAACCAACCTTCTTGTCAATTGAAATTGGCAAAAGCTGACTTGGGAAG

1630 1650 1670
 ACGGACCAGA=ACTTCCCCCTCCCTCCCCTTTCCCACCTGGACTTGTAAACTTCCC
 5
 1690 1710 1730
 TCTTCAGAGCACTCATTCCTTCCCACCCCCAGTCCTGTCTATCACTCTAATTGGATT
 10
 1750 1770 1790
 GCCATAGCCTGAGGTATGTCCCTTTCCATTAAAGTACATGTGCCAGGAAAACACGGAGAG
 15
 1810 1830 1850
 AGAGAAAAGTA=ACGGCAGTAATGCTTCTCTATTCTCCAAAGCCTGTGTGAACTAGCA
 20
 1870 1890 1910
 AAGAGAAGAAATCAAATATAACCAATAGTGAATGCCACAGGTTGTCCACTGTCAG
 25
 1930 1950 1970
 GGTTGTCTACCTGTAGGATCAGGGTCTAACACCTGGTGCTTAGCTAGAAATACCACCA
 30
 1990 2010 2030
 ATCCTTCTGCAAGCCTGTCTCAGAGAACCCACTAGAACGAACTAGGAAAAATCACTTG
 35
 2050 2070 2090
 CCAAAATCCAAGGCAATTCTGATGGAATAAGCAAAAGCACATATACTGTTTAATACTT
 40
 2110 2130 2150
 TATGGCTCTGTTCAAGGCAGTGCTGAGAGGGAGGGGTTATAGCTTCAGGAGGGAACCG
 45
 2170 2190 2210
 CTTCTGATAAAGACAACTGCTAGGAACCTTGGAAAGGAATCAGAGAGCTGCCCTTCAGC

2230	2250	2270
GATTATTTAATTGTTAAGAAATAACACAATTGGGGTATTGGGATTTCTCCCTTTCTC		
5		
2290	2310	2330
TGAGACATTCACCATTAAATTTTGTAACTGCTTATTTATGTGAAAAGGGTTATTT		
10		
2350	2370	2390
ACCTAGCTTAGCTATGTCAGCCAAATCCGATTGCCCTAACGTGAAAAGAAACCAACCGAAATCC		
15		
2410	2430	2450
CTCAGGTCCCCTGGTCAGGAGCCTCTCAAGATTTTTGTCAGAGGCTCCAAATAGAAA		
20		
2470	2490	2510
ATAAGAAAAAGTTTCTTCATTCATGGCTAGAGCTAGATTTACTCAGTTCTAGGCACC		
25		
2530	2550	2570
TCAGACCAAATCATCAACTACCATTCTATTCCATTTGCACCTGTGCATTTCCTGTC		
30		
2590	2610	2630
CCCCATTCACTTTGTCAAGGAAACCTTGGCCTCTGCTAAGGTGTATTGGCTTGAGAAG		
35		
2650	2670	2690
TGGGAGCACCCCTACAGGGACACTATCACTCATGCTGGTGGCATTTACAGCTAGAAAG		
40		
2710	2730	2750
CTGCACCTGGTGCTAATGCCCTTGGAAATGGGGCTGTGAGGAGGAGGATTATAACTTAG		
45		
2770	2790	2810
CCCTAGCCTCTTTAACAGCCCTCTGAAATTATCTTCTATGGGGCTATATAATGT		
50		
2830	2850	2870
ATCTTATAATAAGGAAGGACAGGGAGGAAGACAGGGAAATGTACTTCTCACCCACTCT		

2890

2910

2930

TCTACACAGATGGAATCTCTTGGGCTAAGACAAAGGTTTATTCTATATTGCTTACCT

5

2950

2970

2990

GATCTCATGTTAGGCCTAAGAGGCTTCAGGAGGATTAGCTGGACTCTCTATACT

10

3010

3030

3050

CAGGTACCTCTTCAAGGTTTCTAACCCCTGACACGGACTGTGCATACTTCCCTCATCC

15

3070

3090

3110

ATGCTGTGCCTGTTATTAATTTCTGGCTAAGATCATGTCTGAATTATGTATGAAA

20

3130

3150

3170

ATTATTCTATGTTTTATAAATAAAAATAATATATCAGACATCGAAAAAATAAAAA,

25

30

35

40

45

50

55

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.