NONDETERMINISTIC FINITE AUTOMATA

- The main characteristic of a DFA is that for each input symbol, the automaton can move to only one state from any given current state.
- Consider a DFA that accepts strings over the alphabet $\Sigma = \{0, 1\}$ that starts with a 0 and ends with a 1.

Consider now the following finite automaton:

This machine also accepts strings that start with a O and end with 1.

Observe that if the machine is at state q_1 and a 1 arrives, the machine goes to state q_2 and stays at q_1 at the same time.

This machine is not a DFA because there is a situation in which an input symbol causes the automaton to move to more than one state.

In this case, the NFA will consider both possibilities.

The NFA will make a "copy" of itself. One copy continues the computation at state q_1 while the other continues at state q_2 .

Effectively, the NFA is said to be in two states, q_1 and q_2 .

This is in contrast with a DFA since DFAs can only be in one state at any given time.

- The given graph is the state diagram for a *nondeterministic finite* automaton (NFA).
- Because an NFA can move to more than one state given a single input symbol, an NFA is said to have "choices."
- Take the given NFA as an example. If the NFA is currently in state q_1 and an input symbol 1 arrives, the NFA has the option of staying in state q_1 or going to state q_2 .

 Notice also that in an NFA, it is possible for a state not to have a transition edge for one or more input symbols.

In the given example, take note that for state q_o , there is a transition edge for input symbol 0 but none for 1.

If a copy of the NFA is at state q_o and an input symbol 1 arrives, this copy stops processing because it has nowhere to go. This copy of the NFA simply "dies." Similarly, if a copy of the NFA is at q_2 and a 1 or a 0 arrives, this copy also stops processing and dies.

Here is an example to illustrate how an NFA processes strings:

Given the following NFA:

Determine if the string 01011 will be accepted.

1. Initially, the NFA will be at state q_o .

Assume the first input symbol (o) arrives.

So the NFA goes to state q_1 .

2. The second input symbol (1) arrives.

The NFA has two options, either it stays at q_1 or goes to q_2 .

The machine will try both possibilities at the same time.

The machine made another copy of itself.

One copy to continue the processing at q_1 and the other at q_2 .

3. Assume now that the third input symbol (0) arrives.

One copy of the NFA (the one at q_1) stays at q_2 .

The other copy (the one at q_2) dies because it has nowhere to go.

At this point, there will only be one remaining copy of the NFA (the one that is still at q_1).

4. Assume now that the fourth input symbol (1) arrives.

There are again two options, either stay at q_1 or go to q_2 .

The NFA will again consider both possibilities.

5. Assume now that the fifth and last input symbol (1) arrives.

One copy of the NFA (the one at q_1) has the option of staying at q_1 or going to q_2 . As usual, the NFA will consider both.

The other copy (the one at q_2) stops processing.

There are two copies of the NFA.

One copy is currently at state q_1 and the other at state q_2 . Since one of the copies is at a final state, the NFA accepts the string 01011.

If there is no copy of the NFA that is in a final state, then the string will be rejected.

Another example:

Given the following NFA:

Determine if the string 110110 will be accepted.

110110

input

1

1. Initially, the NFA will be at state q_o .

Assume that the first input symbol (1) arrives.

The NFA has two options, either to stay at q_o or go to q_1 . The machine will try both possibilities.

There will now be two copies of the NFA.

One copy is at state q_o while the other is at state q_1 .

110110

input

1

1

2. Assume the second input symbol (1) arrives

The copy of the NFA which is at state q_o has two options— stay at q_o or go to q_1 . The machine will try both possibilities.

The copy which is at state q_1 will go to q_2 .

There will now be three copies of the NFA.

One is at state q_o , the second one is at state q_1 , and the third is at state q_2 .

110110

3. Assume the third input symbol (o) arrives.

The copy of the NFA which is at state q_o stays at q_o .

The copy which is at state q_1 goes to q_2 .

And the copy which is at q_2 goes to state q_3 .

input

1

1

110110

4. Assume the fourth input symbol (1) arrives.

The copy of the NFA which is at state q_o has two options. Stay at q_o or go to q_{τ} . The machine will try both possibilities.

The copy which is at state q_2 will go to q_3 .

The copy which is at state q_3 stops computing because it has nowhere to go.

input

1

1

0

110110

5. Assume the fifth input symbol (1) arrives.

The copy of the NFA which is at state q_o has two options—stay at q_o or go to q_1 . The machine will try both possibilities.

The copy which is at state q_1 will go to q_2 .

The copy which is at q_3 dies.

input

1

1

0

1

110110

6. Assume the sixth and final input symbol (0) arrives.

The copy of the NFA which is at state q_o stays at q_o .

The copy at state q_1 goes to q_2 .

The copy at state q_2 goes to q_3 .

110110

The NFA is now at three states, q_0 , q_2 , and q_3 .

Since one of these states is a final state (q_3) , then the NFA accepts the input string 110110.

 One other difference between an NFA and a DFA is that an NFA may have ε-transitions. An ε-transition is shown below:

Whenever there is an ε -transition from state q_i to state q_j , this means that once an NFA goes to state q_i , it has the option of staying at q_i or it can go right away to state q_j even without any additional input arriving.

Example:

Given the following NFA:

Determine if the string 010010 will be accepted

1. Initially, the NFA will be at state q_o .

Assume the first input symbol (o) arrives.

The NFA goes to q_1 .

At q_1 , it has the option of immediately going to q_2 without any new input symbol arriving (because of the ϵ -transition from q_1 to q_2).

The NFA will consider both and will be in two states, q_1 and q_2 .

2. Assume the second input symbol (1) arrives.

The copy of the NFA which is at state q_1 stops computing since it has nowhere to go.

The copy at q_2 will go to q_0 .

The NFA will only be in one state which is q_o .

Assume the third input symbol (o) arrives.

The NFA goes to q_1 .

Once at q_1 , it has the option of immediately going to q_2 without any new input symbol arriving.

The NFA will consider both and will be in two states, q_1 and q_2 .

4. Assume the fourth input symbol (o) arrives.

The copy of the NFA which is at state q_1 stays at q_2 .

Since there is an ϵ -transition from q_1 to q_2 , it will also immediately go to q_2 .

The other copy of the NFA (the one at state q_2) stops because it has nowhere to go.

input state $q_0 \text{ (start)}$ $q_0 \text{ (start)}$ $q_1 \text{ } q_2 \text{ } q_2$

5. Assume the fifth input symbol (1) arrives.

The copy of the NFA which is at state q_1 stops since it has nowhere to go.

The remaining copy of the NFA (the one at state q_2) goes to q_0 .

input

0

0

0

The NFA goes to q_1 .

At q_1 , it has the option of immediately going to q_2 without any new input symbol arriving (because of the ε -transition from q_1 to q_2).

0

0

0

1

0

state

The NFA will then be at state q_1 and state q_2 .

Since one of these states is a final state (q_1) , the string 010010 is accepted.

- The formal definition of a NFA is similar to that of a DFA.
- The main difference lies in the transition function.
- The transition function of an NFA must consider the possibility of state transitions even if there is no input symbol (ε-transitions).
- The transition function must also consider the possibility that the NFA may go to several states given the same input symbol.

DIFFERENCES BETWEEN NFAs AND DFAs

- To summarize the differences between an NFA and a DFA:
 - 1. NFAs can move to more than one state from any given current state. They can therefore be in several states at the same time.
 - 2. In a given state, NFAs may not necessarily have a transition edge for each symbol in the alphabet.
 - 3. NFAs can move to a state even without any input symbol arriving (ϵ -transitions).

Example:

• The formal definition of this NFA is a 5-tuple $N_1 = \{Q, \Sigma, \delta, q_o, F\}$ where:

1.
$$Q = \{q_0, q_1, q_2\}$$

2.
$$\Sigma = \{0, 1\}$$

$$\delta$$
:

	0	1	ε
$q_{ m o}$	$q_{_1}$		
$q_{_1}$	$q_{_1}$	q_{1}, q_{2}	
q_2			

4. Start State =
$$q_o$$

5.
$$F = \{q_2\}$$

Another example:

• The formal definition of this NFA is a 5-tuple $N_2 = \{Q, \Sigma, \delta, q_o, F\}$ where:

1.
$$Q = \{q_0, q_1, q_2\}$$

2.
$$\Sigma = \{0, 1\}$$

$$\delta$$
:

	0	1	3
$q_{\rm o}$	$q_{_1}$		
$q_{_1}$	$q_{_1}$		q_2
q_2		q_{o}	

4. Start State =
$$q_o$$

5.
$$F = \{q_1\}$$

