COMS W4701: Artificial Intelligence

Lecture 6: Dynamic Programming

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Bellman optimality equations

Dynamic programming for MDPs

Value iteration

Policy iteration

Markov Decision Processes

MDPs: Stochastic, sequential decision problems

- Set of states S, set of actions A
- Transitions T(s, a, s') = Pr(s'|s, a)
- Rewards R(s, a, s'), discount γ
- We see state-action-reward (s, a, r, s, a, r, ...) sequences

Can derive the following functions

- Policy $\pi: S \to A$, assignment of action to each state
- Value $V^{\pi}: S \to \mathbb{R}$, expected state utilities if following π

Recursive Relationship

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

- This is a function on every state in the state space
- For a given state s, we can alternatively write $V^{\pi}(s)$ as a recursive function of successor state values

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

因为是recursively的 最终 $V\pi$ 会被cancel

• $V^{\pi}(s)$ is a weighted average of (immediate reward plus discounted successor state values)

Solving for Values

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

• Suppose we know the model (T, R), discount γ , and a fixed policy π

• Then the above is a system of |S| linear equations in the |S| unknowns $V^{\pi}(s)$

• Linear solvers: ${}^{\sim}O(|S|^3)$ time, can find $V^{\pi}(s)$

Example: Mini-Gridworld

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- States: A, B, C; actions: left, right; $\gamma = 0.5$
- Policy: $\pi(s) = \text{left } \forall s$
- Rewards: R(s, a, A) = +3, R(s, a, B) = -2, R(s, a, C) = +1

- Transitions: Pr(intended direction) = 0.8, Pr(opposite direction) = 0.2
- V^{π} can be found by solving 3 linear equations:

$$V^{\pi}(A) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(-2 + 0.5V^{\pi}(B))$$

$$V^{\pi}(B) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(C) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(1 + 0.5V^{\pi}(C))$$

Bellman Optimality Equations

Our goal is to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
 对于每个state找best action

Bellman optimality equations are nonlinear!

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$

$$V^* = \operatorname{max}_{\pi} V^{\pi}$$

Value Function to Policy

- We don't know (yet) how to solve for V^* from scratch
- We do know how to find V^* given π^* (solve linear system)
- Bellman equation tells us how to find π^* given V^*

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- Everything on the RHS is known!
- Solving for complete policy takes $O(|S|^2|A|)$ time

Example: Mini-Gridworld

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- States: A, B, C; actions: left, right
- Transitions and rewards same as before

• Given
$$V^*(A) = 4.06, V^*(B) = 4.36, V^*(C) = 1.39$$

• Find $\pi^*(B)$:

$$\gamma = 0.5$$
 $\pi^*(B) = \operatorname{argmax} \begin{cases} 0.8(3 + 0.5V^*(A)) + 0.2(1 + 0.5V^*(C)) & \text{Left} \\ 0.8(1 + 0.5V^*(C)) + 0.2(3 + 0.5V^*(A)) & \text{Right} \end{cases}$

State-Action Values

- We can also tidy up the Bellman equations by defining state-action values (Q-values) of Q-states
- Interpretation: Agent has committed to an action, but transition has not yet resolved

$$Q(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma V^*(s')]$$

$$= \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma \max_{a'} Q(s',a')]$$

$$V^*(s) = \max_a Q(s, a)$$
 $\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$

Solving the Bellman Equations

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- How to solve for V^* ?
- We have |S| nonlinear equations (because of max)!
- lacktriangle Dynamic programming: *Iterate* on **time-limited values** V_i

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

Bellman equation rewritten as Bellman update rule

Value Iteration

Idea: Repeatedly applying *Bellman update* to approximations of value function brings it closer to optimal (true) values V^*

- Initialize: $V_0(s) \leftarrow 0$ for all states s
- Loop from i = 0:
 - For each state $s \in S$:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

• Until $\max_{s} |V_{i+1}(s) - V_i(s)| < small threshold$

Example: Mini-Gridworld

$$V_{i+1}(s) \leftarrow \max_{\alpha} \sum_{s'} T(s, \alpha, s') [R(s, \alpha, s') + \gamma V_i(s')]$$

- States: A, B, C; actions: L, R
- Rewards received when entering state

- Transitions: Pr(intended direction) = 0.8, Pr(opposite direction) = 0.2
- Initialize: $(V_0(A), V_0(B), V_0(C)) = (0,0,0)$ $\gamma = 0.5$

$$\begin{pmatrix} V_1(A) \\ V_1(B) \\ V_1(C) \end{pmatrix} = \begin{pmatrix} \max[0.8(3+0.5(0))+0.2(-2+0.5(0)), 0.8(-2+0.5(0))+0.2(3+0.5(0))] \\ \max[(0.8(3+0.5(0))+0.2(1+0.5(0)), 0.8(1+0.5(0))+0.2(3+0.5(0))] \\ \max[(0.8(-2+0.5(0))+0.2(1+0.5(0)), 0.8(1+0.5(0))+0.2(-2+0.5(0))] \end{pmatrix} = \begin{pmatrix} 2 \\ 2.6 \\ 0.4 \end{pmatrix}$$

• V_2, V_3, \dots until convergence

Example: Race Car

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_2(2) = \max(1[1+1(2)], 0.5[2+1(2)] + 0.5[2+1(1)])$$

= $\max(3, 3.5)$

$$V_2(\bullet) = \max(0.5[1+1(2)] + 0.5[1+1(1)], 1[-10+1(0)])$$

= $\max(2.5, -10)$

Iterative Policy Evaluation

- Iterative update idea can also be used to solve for values of a fixed policy!
- Alternative to solving linear system; no max since actions are fixed

- Initialize $V_0(s)$ for all states s
- Loop from i = 0:
 - For each state $s \in S$:

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

• Until $\max_{s} |V_{i+1}(s) - V_i(s)| < small threshold$

Convergence of Value Iteration

- The Bellman update is a contraction mapping
- Fact 1: Bellman update does not change optimal values V^* (fixed point)

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

■ Fact 2: The $\max norm \|V_i - V^*\| = \max_{S} |V_i(s) - V^*(s)|$ between any value function V_i and V^* satisfies

$$||V_{i+1} - V^*|| \le \gamma ||V_i - V^*||$$

• Each update shrinks "error" in V by factor of γ !

Rate of Convergence

Value iteration converges exponentially fast

- Recall that a state's value is bounded by $\frac{|r_{\text{max}}|}{1-\gamma}$
- After k passes of value iteration, error is bounded by $\gamma^k \frac{|r_{\text{max}}|}{1-\gamma}$
- The smaller the γ , the faster that the error shrinks
- Tradeoff: Decisions become more myopic, future rewards less appealing

Values to Policy

- The goal of value iteration is to eventually extract an optimal policy
- We already know how to find π^* given V^* :

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- Observation: We don't require optimal values
- Only relative values matter

Policy may converge long before values do

Policy Iteration

- Idea: A policy can be computed at any point during value iteration
- We can improve on policy directly, leading to better values, leading to a better policy, and so on...
- Initialize $\pi_1(s)$ arbitrarily, $V^{\pi_0}(s) \leftarrow 0$ for all states s
- Loop from i = 1:
 - Policy evaluation: Compute V^{π_i} using $V^{\pi_{i-1}}$ as initial values
 - Policy improvement: From V^{π_i} , find new policy π_{i+1}
- Until $\pi_{i+1} = \pi_i$

Policy Evaluation

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

• Review: System of |S| linear equations in |S| unknowns

• Alternatively, take an iterative approach:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This is just value iteration without max!
- Can be faster if initialized with values of similar policy

Policy Improvement

- Given values for a fixed policy, how can we improve it?
- Consider taking "greediest" action at each state:

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$

• If π_i already optimal, then $V^{\pi_i} = V^*$ and $\pi_{i+1} = \pi_i$

- Otherwise, V^{π_i} can be moved closer to V^* by changing some actions
- Updating policy using argmax analogous to updating values using max

Example: Mini-Gridworld

- States: A, B, C; actions: L, R
- Rewards received when entering state

- Transitions: Pr(intended direction) = 0.8, Pr(opposite direction) = 0.2
- Suppose we initialize $(\pi_0(A), \pi_0(B), \pi_0(C)) = (R, R, R)$
- **Evaluate** policy (either solve linear eqs or iterate Bellman-style):

$$(V_0(A), V_0(B), V_0(C)) = (-0.333, 1.75, 0.958)$$

$$v = 0.5$$

Improve policy:

$$\begin{pmatrix} \pi_1(A) \\ \pi_1(B) \\ \pi_1(C) \end{pmatrix} = \begin{pmatrix} \operatorname{argmax} \left[0.8 \left(3 + 0.5 V_0(A) \right) + 0.2 \left(-2 + 0.5 V_0(B) \right), -0.333 \right] \\ \operatorname{argmax} \left[\left(0.8 \left(3 + 0.5 V_0(A) \right) + 0.2 \left(1 + 0.5 V_0(C) \right), 1.75 \right] \\ \operatorname{argmax} \left[\left(0.8 \left(-2 + 0.5 V_0(B) \right) + 0.2 \left(1 + 0.5 V_0(C) \right), 0.958 \right] \end{pmatrix} = \begin{pmatrix} L \\ L \\ R \end{pmatrix}$$

Value Iteration vs Policy Iteration

$$V_0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow \cdots \longrightarrow V^*$$

$$\downarrow \\ \pi^*$$

- Computes values only
- Keeps track of values only

 Each sweep consists of one iterative policy evaluation (sum) and policy improvement (max)

- Computes values and policy
- Keeps track of policy only

 Each sweep consists of many iterative policy evaluations (sum) and policy improvement (argmax)

Algorithm Complexity

• Each sweep of value iteration takes $O(|S|^2|A|)$ time

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

• Each sweep of policy iteration takes $O(|S|^3 + |S|^2|A|)$ time

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$$

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$

In practice, complexity is also strongly dependent on problem at hand

Algorithm Complexity

- Value iteration: $O(|S|^2|A|)$
- Policy iteration: $O(|S|^3 + |S|^2|A|)$
- Value iteration: Number of sweeps depends on γ and error threshold
- Increases dramatically for high discount factor
- Policy iteration: Policy evaluation typically much more efficient than $O(|S|^3)$
- Fewer sweeps needed overall to converge

Summary

- Dynamic programming solves MDPs exactly by using recursive relationships among the state values
- Bellman updates push values and policies toward the optimal solution

 Value iteration: Compute and converge toward optimal values for all states, then extract policy

 Policy iteration: Alternate between evaluating a current policy and improving the policy