Chapitre 4: Couche réseau

- Objectifs du chapitre:
- Compréhension des principes qui soustendent la couche réseau :
 - Routage (sélection du chemin)
 - x Problèmes d'échelle
 - Fonctionnement des routeurs
 - Sujets particuliers :IPv6, mobilité.
- Implantation dans l'Internet

Survol:

- Services de la couche réseau
- Principe du routage : sélection du chemin
- Routage hiérarchique
- > IP
- Transfert fiable des protocoles de routage de l'Internet
 - x Intra-domaine
 - x Inter-domaine
- Qu'y a-t-il dans un routeur?
- > IPv6
- Mobilité

Fonctions de la couche réseau

- Transport de paquets d'expéditeur vers des récepteurs
- Protocoles de la couche réseau dans chaque machine et routeur

Trois fonctions importantes:

- Identification du chemin: la route suivie par les paquets de la source à la destination. Algorithmes de routage.
- Commutation : déplacement de paquets de l'entrée du routeur à la sortie appropriée.
- Établissement d'appel: quelques architectures de réseau requièrent un établissement d'appel avant que les données ne puissent circuler.

Modèle du service réseau

Q: Quel modèle de service pour des « canaux » transportant des données de l'origine à destination?

- Garanties de bande passante?
- Préservation de l'espace inter-paquet (sans gigue)?
- Livraison sans perte?
- Livraison ordonnée?
- Feedback à l'expéditeur sur la congestion?

La plus importante abstraction fournie par la couche réseau:

Circuit virtuel ou datagramme?

Circuits virtuels

- « Un chemin de source à destination qui se comporte comme un circuit téléphonique»
 - x En performance
 - × Par les actions réseau le long du chemin
- Établissement d'appel avant que les données ne puissent circuler
- Chaque paquet transporte un identificateur de CV (pas l'ID de l'hôte de destination)
- Chaque routeur le long du chemin conserve un état pour chaque connexion
 - x La connexion de niveau transport n'existe que dans les noeuds terminaux
- Des liens, des ressources du routeur (bande passante, tampons) peuvent être allouées aux CV
 - x Pour obtenir une performance similaire à celle d'un circuit.

<u>Circuits virtuels: protocoles de</u> <u>signalisation</u>

- Utilisés pour établir, gérer, rompre les CV
- Utilisés dans ATM, frame-relay, X.25
- Pas utilisés dans l'Internet contemporain

Réseaux de datagrammes: modèle de l'Internet'

- Pas d'établissement d'appel à la couche réseau
- Routeurs : pas d'état sur les connexions de bout à bout
 - Pas de notion de « connexion » au niveau réseau
- Les paquets sont routés à l'aide de l'ID de destination

La paquets peuvent suivre des chemins différents pour un

même couple origine-destination

4: couche réseau

liaison de données physique

Modèles de service de la couche réseau:

ch	nitecture			Garanties ?			Congostion
Réseau				Perte	Ordre	Timing	Congestion feedback
	Internet	best effort	Sans	non	non	non	non (dérivé de la perte)
	ATM	CBR	Débit constant	oui	oui	oui	pas de congestion
	ATM	VBR	Débit garanti	non	oui	oui	pas de congestion
	ATM	ABR	Minimum garanti	non	oui	non	oui
	ATM	UBR	Sans	non	oui	non	non

- Modèle de l'Internet en révision: IntServ, DiffServ
 - x Chapitre 6

Datagramme ou CV réseau: pourquoi?

Internet

- Échange de données entre ordinateurs
 - Service «élastique», sans contrainte de timing strict
- Des systèmes terminaux «intelligents»
 - Peuvent s'adapter, exécuter un contrôle, détecter des erreurs
 - Simplicité dans le réseau, complexité en périphérie
- Plusieurs types de liens
 - x Différentes caractéristiques
 - x difficulté d'uniformité du service

ATM

- Évolution de la téléphonie
- Conversation humaine:
 - Besoins de timing strict, fiabilité
 - Nécessité de garanties de service
- Systèmes terminaux sans «intelligence»
 - x Téléphones
 - Complexité à l'intérieur du réseau

Routage

Protocole de routage

Objectif: déterminer le «bon» chemin (une séquence of routeurs) à travers le réseau, de source à destination

Abstraction de graphe pour les algorithmes de routage:

- Les noeuds du graphe sont les routeurs
- Les arcs sont les liens physiques
 - Coût du lien: délai, \$ coût, ou niveau de congestion

«bon» chemin:

- Typiquement le chemin de coût le plus faible
- D'autres déf. sont possible

<u>Classification des algorithmes de</u> <u>routage</u>

Information globale ou décentralisée?

Globale:

- Tous les routeurs ont une topologie complète, info sur le coût des liens
- Algorithmes de type «état des liens»

Décentralisée:

- Le routeur connait les voisins qui lui sont connectés physiquement, et le coût des liens.
- Processus de calcul itératif, échange d'info avec les voisins
- Algorithmes à «vecteur de distance»

Statique or dynamique? Statique:

Les routes changent lentement

Dynamique:

- Les routes évoluent plus rapidement
 - x Mises à jour périodiques
 - En réponse au changement du coût des liens

Un algorithme de type «état des liens»

Algorithme de Dijkstra

- La topologie, le coût des liens sont connus de tous les noeuds
 - Réalisé par innondation de l'état des liens
 - Tous les noeuds ont la même info
- On calcule le chemin de coût le plus faible de soi jusqu'à toutes les destinations
 - On obtient une table de routage pour ce noeud
- Itération: après k itérations, on connait les chemins de poid le plus faible pour ... destinations

Notation:

- C(i,j): coût du lien entre les noeuds i et j. Le coût est infini s'il n'y a pas de lien direct
- D(v): valeur courante du coût du chemin vers le noeud v
- p(v): noeud précédent v
 sur le chemin de la source à v
- N: ensemble des noeuds pour lesquels le chemin de poids le plus faible est connu

11

Algorithme de Dijkstra

```
Initialisation:
   N = \{A\}
   Pour tous les noeuds v
    si v adjacent à A
5
      alors D(v) = c(A,v)
      sinon D(v) = infini
   Boucle
    trouver w, pas dans N, tel que D(w) est minimum
   ajouter w à N
   ajuster D(v) pour tout v adjacent à w et non dans N:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
15 jusqu'à ce que tous les noeuds soient dans N
```

Algorithme de Dijkstra: exemple

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	infini	infini
1	AD	2,A	4,D		2,D	infini
2	ADE	2,A	3,E			4,E
3	ADEB		3,E			4,E
4	ADEBC					4,E

5 ADEBCF

Attention : on calcule le plus court chemin à A, et non l'arbre de coût minimal

Routage hiérarchique

- Agrégation de routeurs en régions, «systèmes autonomes» (AS)
- Routeurs dans le même
 AS exécutent le même
 protocole
 - × Protocole de routage «intra-AS»
 - Des routeurs dans des AS différents peuvent exécuter des protocoles de routage différents.

Routeurs-passerelles

- Routeurs spéciaux dans les AS
- Exécutent un routage intra-AS avec tous les autres routeurs de l'AS
- Egalement responsables pour des destinations hors de l'AS
 - Validisent un protocole de routage inter-AS avec les autres routeurs-passerelles

Routage hiérarchique

Situation idéale:

- Tous les routeurs sont identiques
- Le réseau est «plat»
- ... ceci n'est pas le cas en pratique

échelle: avec 200 million de destinations:

- On ne peut stocker toutes les destinations dans les tables de routage!
- L'échange de cette information saturerait les liens!

Autonomie administrative

- internet = réseau of réseaux
- Chaque administrateur de réseau veut gérer le routage dans son domaine

Routage Intra-AS et Inter-AS

Routage Intra-AS and Inter-AS

Nous allons examiner des protocoles de routage inter et intra domaine.

La couche réseau de l'Internet

Fonctions de la couche réseau de l'hôte et du routeur :

Addressage IP

Addresse IP:

- Partie réseau (bits de poids élevé)
- Partie hôte (bits de poids faible)
- Qu'est-ce qu'un réseau?
 (dans la perspective de l'adresse IP)
 - Des interfaces ayant la même partie réseau dans leur adresse
 - Qui peuvent communiquer sans intervention d'un routeur

réseau consistant de 3 réseaux IP (avec des adresses commençant par 223, les premiers 24 bits forment l'adresse réseau)

Adressage IP: introduction

- Adresse IP:
 identificateur de 32 bit pour hôte,
 interface du routeur
- Interface: connexion entre hôte, routeur et lien physique
 - Les routeurs ont typiquement plusieurs interfaces
 - Les hôtes peuvent avoir plusieurs interfaces
 - Les adresses sont associées à l'interface et non à l'hôte

Adressage IP

Comment trouver les réseaux?

- Détacher chaque interface du routeur et de l'hôte
- Créer des îlots de réseaux isolés

21

Système interconnecté consistant de 6 réseaux

Adresses IP

La notion de réseau étant établie, revoyons la structure d'adresse:

Adressage de classe:

Adressage IP: CIDR

Adressage de classe :

- × Utilisation inefficace de l'espace d'adressage, gaspillage
- p.ex., un réseau de classe B alloue assez d'adresse pour 65K hôtes, même s'il n'y en a que 2K

CIDR: Classless InterDomain Routing

- x La partie réseau de l'adresse est de longueur arbitraire
- x Le format d'adresse : a.b.c.d/x, où x est # bits de la partie réseau de l'adresse

200.23.16.0/23

Comment obtenir une adresse IP?

Q: Comment l'hôte obtient-il son adresse?

- Codée dans un fichier
 - × Wintel: control-panel->network->configuration->tcp/ip->properties
 - × UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: obtention dynamique d'adresse : «plug-and-play»
 - x L'hôte diffuse un msg «DHCP discover»
 - x Le serveur DHCP répond avec un msg «DHCP offer»
 - x L'hôte requiert l'adresse IP: msg «DHCP request»
 - x Le serveur DHCP envoie l'adresse: msg «DHCP ack»

Scénario client-serveur DHCP

Scénario client-serveur DHCP

Comment obtenir une adresse IP?

Réseau (portion réseau):

Une partie de l'espace alloué à l'ISP:

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organisation 0	11001000	00010111	<u>0001000</u> 0	00000000	200.23.16.0/23
Organisation 1	11001000	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organisation 2	11001000	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
•••		• • • • • • • • • • • • • • • • • • • •		••••	••••
Organisation 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Adressage hiérarchique : agrégation des routes

Le routage hiérarchique facilite un annonce compacte de l'information de route:

Adressage hiérarchique : routes plus spécifiques

ISPs-R-Us a une route plus spécifique vers l'organisation 1

Adressage IP: le dernier mot ...

- Q: Comment l'ISP obtient-t-il un bloc d'adresse?
- R: ICANN: Internet Corporation for Assigned Names and Numbers
 - x Alloue les adresses
 - x gère DNS
 - Assigne les noms de domaines, règle les disputes

Datagramme IP:

misc	source	dest	
fields	IP addr	IP addr	data

- Le datagramme ne change pas, dans son cheminement de source à destination
- Les champs d'adresse nous intéressent tout particulièrement.

Table de routage dans A

. 4510 40	or carage as	
Dest. Net.	next router	Nhops
223.1.1		1
223.1.2	223.1.1.4	2
223.1.3	223.1.1.4	2
223.1.1.1		

31

misc			
fields	223.1.1.1	223.1.1.3	data

En commençant à A, étant donné un datagrame IP addressé à B:

- Chercher l'adresse réseau de B
- Vérifier si B est sur le même réseau que A
- La couche liaison de données enverra la datagramme dans une trame directemment de A à B

misc			
fields	223.1.1.1	223.1.2.3	data

Partant de A, dest. E:

- Vérifier l'adresse réseau de E
- E sur un réseau différent
 - x A, E ne sont pas directement connectés (est-ce vrai ?)
- Table de routage: routeur suivant (next hop) vers E est 223.1.1.4
- La couche liaison envoie un datagramme au routeur 223.1.1.4
- Le datagramme arrive à 223.1.1.4
- A suivre ...

Dest. Net.	next router	Nhops
223.1.1		1
223.1.2	223.1.1.4	2
223.1.3	223.1.1.4	2

misc			
fields	223.1.1.1	223.1.2.3	data

Arrivée à 223.1.4, destiné pour 223.1.2.2

- Vérifier l'adresse réseau de E
- E sur le même réseau que l'interface du routeur 223.1.2.9
 - Le routeur et E sont connectés
- La couche liaison envoie un datagramme à 223.1.2.2 via l'interface 223.1.2.9
- Le datagramme arrive à 223.1.2.2!!!

Format du datagramme IP

Protocole IP numéro de version longueur du header (bytes) «type» de données

> nombre maximal de sauts restant (décrémenté à chaque routeur)

protocole de niveau supérieur qui reçoit l'info

Fragmentation & réassemblage IP

Les liens réseaux ont des MTU (taille de transfert max.) - trame le plus large possible.

x différents types de lien, différents MTU

 Les datagrammes IP trop grands sont fragmentés dans le réseau

> un datagramme devient plusieurs datagrammes

> «réassemblage» final à destination

 des parties de l'entête IP permettent de reconnaître et de réordonner les fragments

Fragmentation & réassemblage IP

ICMP: Internet Control Message Protocol

 Utilisés par les hôtes, les routeurs et passerelles pour communiquer de l'information de niveau réseau.

X	Cas d'erreur: hôte, réseau,
	port ou protocole
	inatteignable

 Requête et réponse d'écho (utilisé par ping)

Réseau, mais par-dessus IP :

 Les messages ICMP sont transportés par des datagrammes IP

Message ICMP: type, code plus les premiers 8 octets du datagramme IP qui a causé l'erreur.

<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Routage dans l'Internet

- L'Internet global consiste de Systèmes Autonomes (AS) interconnectés entre eux :
 - x Stub AS: petite organisation: une seule connexion vers d'autres AS
 - Multihomed AS: grande compagnie (sans trafic de transit): connexions multiples vers d'autres AS
 - Transit AS: fournisseur de service, inter-reliant plusieurs ISPs
- Routage à deux niveaux :
 - x Intra-AS: l'administrateur est responsible du choix de l'algorithme de routage dans le réseau
 - Inter-AS: seul standard pour le routage inter-AS: BGP

Hiérarchie des AS de l'Internet

Routeurs de périphérie Intra-AS (gateway externe)

Routers internes Inter-AS (gateway)

Routage Intra-AS

- Connu également sous le nom de Interior Gateway Protocols (IGP)
- Les protocoles de ce type les plus connus:
 - x RIP: Routing Information Protocol
 - × OSPF: Open Shortest Path First
 - x IGRP: Interior Gateway Routing Protocol (propre à Cisco)

RIP (Routing Information Protocol)

- Algorithme du vecteur de distance
- Inclu dans la distribution BSD-UNIX en 1982
- Métrique de distance : # de sauts (max = 15 sauts)
- Vecteurs de distance : échangés chaque 30 sec via Response Message (une annonce)
- Chaque annonce: route vers un maximum de 25 réseaux de destination

RIP (Routing Information Protocol)

Table de routage de D

Traitement de la table RIP

- Les tables de RIP routing sont gérées par un processus de niveau applicatif appelé route-d (daemon)
- Les annonces sont transmises dans des paquets UDP, répétés périodiquement.

Traitement de la table RIP (suite)

Routeur: giroflee.eurocom.fr

Destination	Gateway	Flags	Ref	Use	Interface
127.0.0.1	127.0.0.1	UH	0	26492	100
192.168.2.	192.168.2.5	U	2	13	fa0
193.55.114.	193.55.114.6	U	3	58503	le0
192.168.3.	192.168.3.5	U	2	25	qaa0
224.0.0.0	193.55.114.6	U	3	0	le0
default	193.55.114.129	UG	0	143454	

- Trois réseaux de classe C (LANs)
- Le routeur ne connait que les routes aux réseaux qui lui sont attachés (LANs)
- Le routeur par défaut est utilisé pour sortir
- Routage de l'adresse multicast : 224.0.0.0
- Interface de loopback (pour débogage)

OSPF hiérarchique

OSPF hiérarchique

- Hiérarchie de 2 niveaux : zone locale et backbone.
 - x Annonces d'E.L. seulement dans la zone
 - Chaque noeud a une image détaillée de la topologie de sa propre zone seulement; ne connait que la direction des réseaux dans les autres zones, via un plus court chemin.
- Routeurs de périphérie de zone : résumé des distances vers les réseaux de sa zone, annonce aux autres routeurs de même type.
- Routeurs Backbone : routage OSPF limité au backbone.
- Routeurs de périphérie : connecté aux autres ASs.

Routage Inter-AS dans l'Internet: BGP

Routage Internet inter-AS: BGP

- BGP (Border Gateway Protocol): la norme de fait.
- Protocole de type Path Vector :
 - x Similaire au protocole de vecteur de distance
 - Chaque Border Gateway diffuse à ses voisins (pairs) le chemin complet jusqu'à destination (c.-à-d., la séquence de ASs) vers la destination
 - » BGP dirige vers des réseaux (ASs), et non des hôtes individuels
 - × P.ex., le gateway X peut envoyer son chemin vers la destination Z :

Chemin (X,Z) = X,Y1,Y2,Y3,...,Z

RoutageInternet inter-AS: BGP

- Supposons que: le gateway X envoye son chemin vers un gateway W
- W peut garder le chemin proposé par X ou non
 - Pour des raisons diverses de coût, politique (ne pas passer par un concurrent de l'AS), prévention de boucle.
- Si W choisit le chemin annoncé par X, alors: Chemin (W,Z) = w, Chemin (X,Z)
- Note: X peut contrôler le trafic incident par l'annonce qu'il fait à ses pairs :
 - \times P.ex., ne pas routeur du trafic vers Z -> ne pas annoncer de route vers Z

BGP: contrôle de qui route vers nous.

- > A,B,C sont des réseaux de fournisseurs de service
- X,W,Y sont des consommateurs (de tels réseaux)
- X est dual-homed: attaché à 2 réseaux.
 - x X ne veut pas router B via X vers C
 - x .. donc X n'annonce pas à B de route vers C

BGP: contrôle de qui route vers nous

Figure 4.5-BGPnew: a simple BGP scenario

- A annonce à B le chemin AW
- B annonce à X le chemin BAW
- B devrait-il annoncer à C le chemin BAW?
 - Non! B ne reçoit pas de revenus pour router CBAW puisque ni W ni C ne sont ses clients
 - x B veut forcer C à router à w via A
 - x B veut router seulement vers/de ses clients!

Survol de l'architecture d'un routeur

Deux fonctions clefs des routeurs:

- Exécuter les algorithmes et protocoles de routage (RIP, OSPF, BGP)
- Commuter les datagrammes d'un lien d'entrée vers un lien de sortie.

53

Fonctions d'entrée

Couche liaison de données:

p.ex., Ethernet voir chapitre 5

Commutation décentralisée:

- Etant donné la dest. du datagramme, identifier le port de sortie à l'aide de la table de routage dans la mémoire du port d'entrée.
- Objectif: traitement complet au débit d'entrée
- File d'attente : si les datagrammes arrivent plus rapidement que le taux d'acheminement dans la «fabric»

File dans le port d'entrée

- La «fabric» est plus lente que les ports d'entrée combinés -> une mise en file peut résulter à l'entrée.
- Phénomène dit «Head-of-the-Line (HOL) blocking» : un datagramme bloqué à l'entrée empêche les autres de passer
- Résulte en un délai de file et des pertes dues au débordement du tampon d'entrée.

Trois types de «fabric» (ou matrices de commutation)

Commutation via la mémoire

- » Routeurs de première génération:
- Le paquet est copié par le (unique) CPU du système
- La vitesse est limitée par la bande passante de la mémoire (2 transitions de bus par datagramme)

- Routeurs modernes:
- Le processeur d'entrée exécute la lecture et la copie en mémoire

Cisco Catalyst 8500

Commutation via un bus

- Le datagramme est copié de la mémoire du port d'entrée à la mémoire du port de sortie via un
- Contention d'accès du bus: la vitesse de commutation est limitée par la bande passante du bus.

bus partagé.

 Bus 1 Gbps, Cisco 1900: vitesse suffisante pour les routeurs d'accès et d'entreprise (mais pas régional ou de coeur)

Commutation via un réseau d'interconnexion

- Dépasser les limites de bande passante d'un bus
- Les réseaux Banyan, parmis d'autres réseaux d'interconnexion développés à l'origine pour des multiprocesseurs
- Conception moderne: fragmentation des datagrammes en cellules de longeur fixe, et commutation des cellules dans la matrice (temps déterministes).
- Cisco 12000: commutation de Gbps à travers le réseau d'interconnexion

Ports de sortie

- Un tampon est requis quand les datagrammes arrivent plus rapidement que le débit de transmission
- Une discipline d'ordonnancement détermine le datagramme à transmettre parmis ceux qui sont dans la file.

File d'attente en sortie

- Attente quand le taux d'arrivée dépasse le débit de transmission.
- Attente et perte sont dûs au débordement du tampon du port de sortie.

<u>IPv6</u>

- Motivation initiale: l'espace d'adresse 32-bit sera complètement alloué d'ici 2008.
- Motivation additionnelle:
 - x Le format de l'en-tête devrait faciliter (donc accélérer) traitement et acheminement.
 - x Autres modifications pour traiter la QS
 - Nouvelle adresse «anycast» : acheminer vers le «meilleur» serveur d'un groupe.
- Format du datagramme IPv6 :
 - x En-tête de longueur fixe, de 40 octets.
 - x Aucune fragmentation n'est permise.

En-tête IPv6 (suite)

Priorité: identifie la priorité parmis les datagrammes du flot Etiquette de flot: identifie les datagrammes d'un même flot (mais le concept de flot n'est pas bien défini).

En-tête suivant: identifie le protocole de couche supérieure pour les données

<u>Autres modification par rapport à</u> <u>IPv4</u>

- Checksum: retiré pour réduire le temps de traitement à chaque saut.
- Options: permises, mais hors de l'en-tête, et annoncée par l'«autre en-tête».
- > ICMPv6: nouvelle version d'ICMP
 - x Types de messages additionnels, p.ex. «paquet trop grand»
 - x Functions de gestion de groupe multicast.

Transition d'IPv4 à IPv6

- Tous les routeurs ne peuvent pas être mis à jour simultanément.
 - x Pas de jour cible
 - x Comment un réseau peut-il être opéré dans un environnement mixte?
- Deux approches sont proposées :
 - » Double pile: des routeurs possédant les deux piles peuvent effectuer la traduction entre les formats.
 - x Tunnel: IPv6 peut être transporté comme un datagramme IPv4 par des routeurs Ipv4

Approche de la double pile

Tunnel

Network Address Translation (NAT)

- Exploitation d'adresses de réseaux privées (non routées à travers l'Internet)
- > Permet
 - x Compensation pour le manque d'adresses
 - x Dissimulation de machines
- Inconvénients
 - x Problèmes connexes pour les applications
 - x Perte de la transparence de la connectivité de bout à bout
- Fonctionnement
 - Conversion d'adresses internes privées en adresses externes publiques
 - x Conversion adresses + ports internes.
 - × Selon les contraintes des applications.