Proofs and Programs

Phillipe Audebaud * ENS de Lyon

Contents

Ι	(Pure) λ -Calculus	2
1	Computing with functions?	2
2	Church λ -calculus (informally)	2
3	A toolbox on λ -calculus	3

^{*}https://perso.ens-lyon.fr/philippe.audebaud/PnP/

Basis

• Lecture: Tue 8h-10h (Philippe Audebaud)

• Tutorial: We 8h-10h (Aurore)

10 Weeks of courses (3x3), which is really low.

$$Final\ mark = 50\% \cdot CC + 50\% \cdot Exam$$

No mid-time exam, but weekly homework.

Warning Presence at the courses and tutorial will have an impact on the marks.

Prerequisites

- L2.2 \rightarrow Logical (Natacha P., Chapter 1 & 2):
 - Proof theory
 - Formal system for logic inference.
- λ -calculus
- Category theory

Part I

(Pure) λ -Calculus

1 Computing with functions?

How do we do mathematics?

- A Having structures: numbers, spaces (points, vectors, functions) \rightarrow Eilenberg-Mac Lane (\sim 1942) Category theory
- B Build, explore, transform structures \rightarrow Church (~ 1930) λ -Calculus
- C Compare "stuff": equality \to Voevoski (\sim 2006) Algebraic topology \to search HoTT (Hight order Type Theory)
- D Provide a framework (rules) to reasoning on all that! \rightarrow 1st point

2 Church λ -calculus (informally)

$$f:A \to B$$

$$x \mapsto e$$

Given $a \in A$, f(a) is the "replacement of the occurrence of x in e by a"

$$f \stackrel{\text{def}}{=} \lambda x.e$$
 (λ -abstraction)
 $f \ a = (\lambda a.e) \ a$ (Application)

Notation

is the replacement in e of all the occurrences of a by x.

Example

1.

$$\lambda x.x$$

$$x \mapsto x$$

is the identity function

2.

$$\lambda x.y$$

$$x \mapsto y$$

Here x and y are variables, $x \neq y$. $(\lambda x.y)$ a leads to $y < a/x > \equiv y$

$$(\lambda x.a) \ b \rightarrow_{\beta} a < b/x >$$

 \rightarrow_{β} is a binary relation on lambda-terms \Rightarrow idea of computation on terms.

Notion of α -equivalence

$$\lambda x.a \stackrel{?}{=}_{\alpha} \lambda y.b$$

Pick a *fresh* variable, let say z,

$$a < z/x > =_{\alpha} b < z/y >$$

All the results and proofs will be done under the quotient implied by the α -equivalence

3 A toolbox on λ -calculus

Let \mathcal{X} be a measurable set of variables, ranged over by x, y, z, ...

Definition 1. A λ -term e is generated by the grammar:

$$a, b, e... := x \in \mathcal{X} \mid \lambda x.e \mid a b$$

The set of λ -terms is denoted Λ .

Definition 2 (Free variable). The set of free variables in e, denoted FV(e) is defined inductively:

- if $e \equiv x \in \mathcal{X}$, $FV(x) \equiv \{x\}$
- if $e \equiv \lambda x.a_0$, $FV(\lambda x.a_0) \equiv FV(a_0) \setminus \{x\}$
- if $e \equiv a_1 \ a_2$, $FV(a_1 \ a_2) \equiv FV(a_1) \cup FV(a_2)$

A term e is closed if $FV(e) = \emptyset$

Definition 3 (Substitution). Given $x \in \mathcal{X}$, $a \in \Lambda$, the substitution of (all the) occurrences of a in $e \in \Lambda$, denoted e < a/x > is:

• if
$$y \in \mathcal{X} \setminus \{x\}, \ y < a/x > \equiv y \ and \ x < a/x > \equiv a$$

•
$$(\lambda y.e) < a/x >= \lambda y.e < a/x >$$

•
$$(e f) < a/x >= (e < a/x >) f < a/x >$$

Definition 4 (\rightarrow_{β} reduction).

Example

1.

$$(\underbrace{\lambda x.(\lambda y.y) \ a}_{\Rightarrow_{\beta}(\lambda x.(\lambda y.y)) \ b}) \xrightarrow{\beta} ((\lambda y.y) \ a) < b/x > \equiv ((\lambda y.y) \ < b/x >) a < b/x >$$
$$\equiv (\lambda y.y) \ a < b/x >$$

2.

$$(\lambda x.y) \ a \to_{\beta} y$$

3.

$$(\lambda x.x \ x)(\lambda x.x \ x) \rightarrow_{\beta} (x \ x) < \lambda x.x \ x/x > \text{ or } (x \ x) < \lambda y.y \ y/x >$$

 $(\lambda x.x \ x)(\lambda x.x \ x)$

Russell paradox: we get an infinite β -reduction!

$$\rightarrow_{\beta} \subseteq \beta_0 \subseteq \underbrace{\beta}_{\beta-\text{reduction}} = \beta_0^*$$

 \rightarrow_{β}^{*} is the β -reduction, noted \rightarrow_{β}

Definition 5 (β_0 -contraction). Let $a, b \in \Lambda$. $a \beta_0 b$ is defined by cases:

- $x \beta_0 x$
- $(\lambda x.u)v \beta_0 u < v/x >$
- $(\lambda x.u) \beta_0 (\lambda x.v)$ if $u \beta_0 v$
- $(u \ v) \ \beta_0 \ (u' \ v) \ if \ u \ \beta_0 \ u'$
- $(u \ v) \ \beta_0 \ (u \ v') \ if \ v \ \beta_0 \ v'$