Supply chain uncertainty and diversification

THOMAS BOURANY, IGNACIA CUEVAS, AND GUSTAVO GONZÁLEZ Columbia University, University of Chicago and Central Bank of Chile

Disclaimer: The views and opinions expressed are those of the authors and do not necessarily reflect those of the Central Bank of Chile

Supply chain disruption risk and firms' sentiments

Figure 1: Average sentiment

Figure 2: Average risk

- ► Hassan et al. (2023): Text-based measures on earning calls dedicated to the event of interest: "Supply chain risk"
 - Sentiment: perceived impact on the **mean** of the firm's economic outlook
 - Risk: perceived impact on the **variance** of the firm's economic outlook

Research question and results

- ▶ How does supply chain uncertainty affect firms' sourcing decision?
 - Would firms be sourcing from foreign countries to diversify against this risk? Or will they be re-shoring instead?
 - Would firms import from cheaper or less risky/riskier countries?

Research question and results

- How does supply chain uncertainty affect firms' sourcing decision?
 - Would firms be sourcing from foreign countries to diversify against this risk? Or will they be re-shoring instead?
 - Would firms import from cheaper or less risky/riskier countries?
- ► This project:
 - Multi-country sourcing model with supply chain idiosyncratic and aggregate uncertainty
 - Counterfactual analysis: changes in uncertainty and impact on firms sourcing, both on the extensive and intensive margin

Research question and results

- How does supply chain uncertainty affect firms' sourcing decision?
 - Would firms be sourcing from foreign countries to diversify against this risk? Or will they be re-shoring instead?
 - Would firms import from cheaper or less risky/riskier countries?
- ► This project:
 - Multi-country sourcing model with supply chain idiosyncratic and aggregate uncertainty
 - Counterfactual analysis: changes in uncertainty and impact on firms sourcing, both on the extensive and intensive margin
- Preview of the results:
 - Theoretically, ambiguous effect of risks
 - ▶ Firm-level uncertainty affects sourcing capability: option-value effect
 - > Aggregate risk affects market demand: hedging effect
 - Increase in uncertainty increases foreign sourcing via both margins: Option value effect dominates hedging effect
 - Mean-preserving uncertainty was not the only mechanism at play during the post-Covid-19 trade disruption events

Related Literature

- Sourcing models
 - Antràs and Helpman (2004), Antràs and Helpman (2006), Antràs, Fort, and Tintelnot (2017), Bernard and Moxnes (2018)
 - Study supply chain disruption risk in multi-country sourcing model
- ► Uncertainty in trade
 - ► Theory: Grossman, Helpman, and L'Huillier (2023), Grossman, Helpman, and Sabal (2023), Gervais (2021, 2018)
 - Multi-country model allows for sourcing interdependencies and to separate effect of cost and uncertainty, aggregate and idiosyncratic.
 - Structural estimation with micro data and counterfactual analysis
 - ► Tariff policy uncertainty: Handley et al. (2020), Handley and Limão (2017), Charoenwong et al. (2023)
 - General framework for policy, supply-chain risk, and trade shocks
 - Trade disruption shocks Carreras-Valle (2021), Castro-Vincenzi (2022), Lafrogne-Joussier et al. (2022)
 - Analyze uncertainty and firm's sourcing choice using structural model
 - ▶ Empirical literature on propagation through trade networks: Caselli et al. (2020), Boehm et al. (2019), Carvalho et al. (2021), LaBelle et al. (2021), D'Aguanno et al. (2021)
 - Study of firms' joint sourcing and diversification decision

Model: Set-up and timeline

- ► Multi-country sourcing model inspired from Antràs, Fort, and Tintelnot (2017)
 - I countries. Origin: i, Destination: j.
 - Final-good producers in j, with productivity φ , produce a single variety with monopolistic competition using a unit measure of intermediate inputs
 - Sourcing from set of countries $\mathcal{I}_j(\varphi)$
 - Trade from intermediate good firms in countries $i \in I$, perfect competition, productivity follows Fréchet distribution with shape θ : $\mathbb{P}(a_i(\nu,\varphi) \geq a) = e^{-T_i a^{\theta}}$

Model: Set-up and timeline

- ► Multi-country sourcing model inspired from Antràs, Fort, and Tintelnot (2017)
 - I countries. Origin: i, Destination: j.
 - Final-good producers in j, with productivity φ , produce a single variety with monopolistic competition using a unit measure of intermediate inputs
 - Sourcing from set of countries $\mathcal{I}_j(\varphi)$
 - Trade from intermediate good firms in countries $i \in I$, perfect competition, productivity follows Fréchet distribution with shape θ : $\mathbb{P}(a_i(\nu,\varphi) \geq a) = e^{-T_i a^{\theta}}$
 - Supply chain risk from i to j for firm φ : aggregate and idiosyncratic shock

$$p_{ij}(\nu,\varphi) \equiv \tau_{ij} \; \bar{\gamma}_{ij} \; \bar{\gamma}_{ij}(\varphi) \; w_i$$

Model: Set-up and timeline

- ► Multi-country sourcing model inspired from Antràs, Fort, and Tintelnot (2017)
 - I countries. Origin: i, Destination: j.
 - Final-good producers in j, with productivity φ , produce a single variety with monopolistic competition using a unit measure of intermediate inputs
 - Sourcing from set of countries $\mathcal{I}_j(\varphi)$
 - Trade from intermediate good firms in countries $i \in I$, perfect competition, productivity follows Fréchet distribution with shape θ : $\mathbb{P}(a_i(\nu,\varphi) \geq a) = e^{-T_i a^{\theta}}$
 - Supply chain risk from i to j for firm φ : aggregate and idiosyncratic shock

$$p_{ij}(\nu,\varphi) \equiv \tau_{ij} \ \overline{\gamma}_{ij} \ \overline{\gamma}_{ij}(\varphi) \ w_i$$

- Household consumes final goods as a CES bundle with elasticity σ
- Three-stages firms decisions

Model: Firm Behavior Conditional on Sourcing Strategy, $\mathcal{I}_j(\varphi)$

▶ Share of intermediate input purchases for realized shocks:

$$\mathcal{X}_{ij}(\varphi, \gamma) = \frac{T_i(\tau_{ij} \, \bar{\gamma}_{ij} \, \tilde{\gamma}_{ij} (\varphi) \, w_i)^{-\theta}}{\Theta_j(\varphi, \bar{\gamma}_{ij} \tilde{\gamma}_{ij} (\varphi))} \text{ if } i \in \mathcal{I}_j$$

- $\Rightarrow T_i(\tau_{ij}\bar{\gamma}_{ij}\gamma_{ij}(\varphi)w_i)^{-\theta}$: sourcing potential of country i from the point of view of firm φ in country j
- \Rightarrow $\Theta_j(\varphi, \bar{\gamma}_{ij}\tilde{\gamma}_{ij}(\varphi)) \equiv \sum_{k \in \mathcal{I}_j(\varphi)} T_k(\tau_{kj}\bar{\gamma}_{kj}\tilde{\gamma}_{kj}(\varphi)w_k)^{-\theta}$: sourcing capability of firm φ in country j
- ⇒ Ex-post Eaton and Kortum, within the firm

Model: Choice of Set of Countries to Import from, $\mathcal{I}_i(\varphi)$

Choice of \mathcal{I} using ex-ante profits, with $\mathcal{I}_i(\varphi) = \{i : \mathbb{1}_{ii} = 1\}$:

$$\max_{\substack{\mathbb{1}_{ij} \in \{0,1\}_{i=1}^{I}}} \mathbb{E}(\pi_{j}(\varphi,\gamma)) = \mathbb{E}\left(\underbrace{\varphi^{\sigma-1}}_{\text{prod}} \left(\eta \underbrace{\sum_{i=1}^{I} \mathbb{1}_{ij} T_{i} \left(\tau_{ij} \bar{\gamma}_{ij} \tilde{\gamma}_{ij}(\varphi) w_{i}\right)^{-\theta}}_{\text{sourcing capability}}\right)^{\frac{\sigma-1}{\theta}} \underbrace{B_{j}(\bar{\gamma})}_{\text{market demand}}\right) - w_{j} \underbrace{\sum_{i=1}^{I} \mathbb{1}_{ij} f_{ij}}_{\text{sourcing capability}}$$

With market demand in *j* defined as

$$B_j(\bar{\gamma}) \equiv \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} \right)^{1 - \sigma} E_j P_j(\bar{\gamma})^{\sigma - 1}$$

Effect through price index Price index

Decomposition: What determines profits?

▶ The firms maximizes expected profit for their sourcing decision

$$\mathbb{E}\big[\pi(\varphi,\gamma)\big] = \varphi^{\sigma-1}\Big(\underbrace{\Theta_H(\varphi,\mathbb{E}[\gamma])^{\frac{\sigma-1}{\theta}}}_{\text{Sourcing capability for expected shock}} \\ + \underbrace{\mathbb{E}\big[\Theta_H(\varphi,\gamma)^{\frac{\sigma-1}{\theta}} - \Theta_H(\varphi,\mathbb{E}[\gamma])^{\frac{\sigma-1}{\theta}}\big]}_{\text{Risk effect on capability}}\Big) \times \underbrace{\mathbb{E}\big(B_H(\bar{\gamma})\big)}_{\text{Expected market demand}} \\ + \varphi^{\sigma-1}\underbrace{Cov(\Theta_H(\varphi,\gamma)^{\frac{\sigma-1}{\theta}},B_H(\bar{\gamma}))}_{\text{Covariance btw sourcing capability \& market demand}} - \underbrace{w_j \sum_{i \in \mathcal{I}(\varphi)} f_{ij}}_{\text{Fixed cost of sourcing}} f_{ij}$$

Profit Decomposition – 3 Countries Example

Profit and Firm sourcing

Data Description

- Proprietary administrative data from the Central Bank of Chile:
 - Customs country-to-firm level data: import unit values, quantities, origin countries, and product categories
 - Tax Form 29: sales and materials purchases
 - Unemployment Funds: employer-employee level data.
 - Quarterly panel from 2012 to 2023.
- Publicly available data (yearly):
 - (i) CEPII gravity data set (population weighted distance, and common language): 2003-2021.
 - (ii) World Bank WGI (control of corruption): 2003-2021.

Structural Estimation: Step 1, Average Sourcing Potential

We want to estimate the parameters and risk $\bar{\gamma}_{ij}, \tilde{\gamma}^n_{ij}, f^n_{ij}$

- ► Take θ and σ from Antràs et al. (2017), so $\theta = 1.789$ and $\sigma = 3.85$, $\Rightarrow (\sigma 1)/\theta = 1.593 > 1$
- Use model-derived relationship:

$$\log \chi_{ij,t}^n = \underbrace{\log T_i - \theta \left(\log \tau_{ij} + \log w_i\right)}_{\log \bar{\xi}_i} \underbrace{-\theta \left(\log \bar{\gamma}_{ij,t} + \log \tilde{\gamma}_{ij,t}^n\right)}_{\log \epsilon_{it}^n} - \log \Theta_{j,t}^n(\gamma)$$

if $i \in \mathcal{I}_i$, and re-write it in terms of a country FE and a firm-level error term

▶ Take log differences and set domestic sourcing potential to 1 so that:

$$\log \chi_{ij,t}^n - \log \chi_{jj,t}^n = \log \bar{\xi}_i + \log \epsilon_{i,t}^n$$

Run OLS using data on firms' total imports from each country, wage bill, and total input usage to measure shares, to obtain $\bar{\xi}_i$

Structural Estimation: Step 2, Estimating Shocks

Let us define $\hat{\xi}_{i,t} = T_i (\tau_{ij} \bar{\gamma}_{ij,t} w_i)^{-\theta}$ and $\hat{\epsilon}_{i,t}^n = (\tilde{\gamma}_{ij,t}^n)^{-\theta}$, take first-differences over log sourcing share differences to identify shocks:

$$\Delta_{t,t-4} \left(\log \mathcal{X}_{ij,t}^n - \log \mathcal{X}_{jj,t}^n \right) = \Delta_{t,t-4} \left(\log \hat{\xi}_{i,t} + \log \hat{\epsilon}_{i,t}^n \right)$$

- Recover shocks as:
 - $-\Delta_{t,t-4}\log\hat{\xi}_{i,t} = -\theta\log\bar{\gamma}_{i,t}/\bar{\gamma}_{i,t-4}$
 - $-\Delta_{t,t-4}\log\hat{\epsilon}_{i,t}^n = -\theta\log\tilde{\gamma}_{i,t}^n/\tilde{\gamma}_{i,t-4}^n$
- ▶ To recover $\bar{\gamma}_{ij,t}$ and $\tilde{\gamma}^n_{ij,t}$, and $\bar{\sigma}^2$ and $\tilde{\sigma}^2$, we assume
 - Trend process follows random walk
 - Initial values are equal to 1, i.e., no shock,
 - Data follows a log-normal distribution.

Results. Chile-China/US

Structural Estimation: Step 3, Fixed Costs Estimation

- Use average 2012q1-2019q4 data.
- Firm-country fixed-costs depend on gravity related variables and control of corruption
 - o $f_{ij}^n \sim \log (\log \beta_c^f + \beta_d^f \log \operatorname{distance}_{ij} + \log \beta_l^f \operatorname{language}_{ij} + \beta_C^f \operatorname{control} \operatorname{of corruption}_i, \beta_{\operatorname{disp},f}^n)$
 - We assume $f_{jj}^n = 0$.
- SMM to estimate

$$\delta = [E, \bar{f}_{\mathsf{CHN}}, \bar{f}_{\mathsf{USA}}, \bar{f}_{\mathsf{ROW}}, \beta^n_{c,f}, \beta^n_{d,f}, \beta^n_{l,f}, \beta^n_{C,f}, \beta^n_{\mathsf{disp},f}]$$

- Draw shocks:
 - Draw aggregate and idiosyncratic shocks γ from previous distrib.
 - Draw firm productivity φ from a Pareto distribution.
 - Draw firm-level fixed costs from Normal distribution.

SMM

- ▶ Moment selection: m_k data, $\hat{m}_k(\delta)$ simulated
 - 1. Share of importers for all firms.
 - 2. Share of importers with firm sales below the median.
 - 3. Share of firms that import from each country.
 - $(I-1) \times 1$ vector of moments.
 - Share of firms whose input purchases from Chile are less than the median input purchases from Chile in the data.
- High dimensionality combinatorial problem:
 - ⇒ Use Jia's algorithm.
- $\qquad \qquad \mathsf{Minimize} \ \hat{\delta} = \mathsf{arg} \ \mathsf{min}_{\delta} \ \ \hat{y}(\delta)^{\top} \ \ \mathbf{W} \ \hat{y}(\delta)$
 - $lackbox{ We use } \hat{y}(\delta) = (\mathbf{m}/\hat{\mathbf{m}}(\delta) 1)$ and assume $\mathbb{E}(\hat{y}(\delta_0)) = 0$ for the true parameter δ_0 .

Counterfactual exercise

- Estimate model using average values from 2012-2019
- Re-estimate model using average standard deviation for aggregate shocks in period 2020-2023

► Evaluate effects on shares of importing firms by country (extensive margin) and decompose effects on shares of intermediate purchases by country

- ▶ Evaluate correlation btw change in agg. uncertainty and these effects
- Evaluate effect on HHI

Change in aggregate uncertainty

Figure 3: Change in the mean and standard deviation of aggregate shock

(a) Change in $\mathbb{E}(\bar{\gamma}_{ij})$

Figure 3: Change in the mean and standard deviation of aggregate shock

Variation in aggregate and idiosyncratic uncertainty

Figure 5: Change in std dev of aggregate shock

Figure 6: Change in std dev of idiosyncratic shock

Change in proportion of importing firms

Figure 7: Share of importing firms by country

Figure 8: Extensive v/s intensive margin (% change)

Decomposition of average shares into margins

Extensive margin:

$$\lambda_{ij} = \int_{\varphi} \mathbb{1}\left\{i \in \mathcal{I}_{j}(\varphi)\right\} dG(\varphi)$$

Decomposition:

$$ar{\chi}_{ij} \equiv \mathbb{E}_{\gamma} \left[\int_{arphi} \chi_{ij}(arphi, \gamma) dG_j(arphi)
ight] = \underbrace{\lambda_{ij}}_{egin{array}{c} ext{extensive} \\ ext{margin} \end{array}} imes \underbrace{rac{ar{\chi}_{ij}}{\lambda_{ij}}}_{egin{array}{c} ext{intensive} \\ ext{margin} \end{array}}$$

▶ We hence plot, for each country *i*, the decomposition:

$$\Delta\%ar{\chi}_{ij}pprox\Delta\%\lambda_{ij}+\Delta\%rac{ar{\chi}_{ij}}{\lambda_{ij}}$$

Figure 9: Extensive v/s intensive margin (% change)

Conclusion

Conclusion:

- a. Theoretically, main effect from decrease in overall cost through increased competition. However, uncertainty affects firms' sourcing decisions non trivially.
- b. Counterfactual:
 - Increase in uncertainty increases foreign sourcing via both the extensive margin and the intensive margin.
- c. Even though aggregate uncertainty has two opposing forces, the option value effect dominates over the hedging effect.
- Next steps:
 - Introduce aggregate shocks correlation (Covid-19)
 - Any feedback for the future of the project is very welcome

References I

- Antràs, P., T. C. Fort, and F. Tintelnot (2017). The margins of global sourcing: Theory and evidence from us firms. *American Economic Review* 107(9), 2514–64.
- Antràs, P. and E. Helpman (2004). Global sourcing. Journal of Political Economy 112(3), 552-580.
- Antràs, P. and E. Helpman (2006). Contractual frictions and global sourcing. *NBER Working Paper* (12747).
- Bernard, A. B. and A. Moxnes (2018). Networks and trade. Annual Review of Economics (10), 65-85.
- Boehm, C. E., A. Flaaen, and N. Pandalai-Nayar (2019). Input linkages and the transmission of shocks: Firm-level evidence from the 2011 tōhoku earthquake. *Review of Economics and Statistics* 101(1), 60–75.
- Carreras-Valle, M. J. (2021). Increasing inventories: The role of delivery times.
- Carvalho, V. M., M. Nirei, Y. U. Saito, and A. Tahbaz-Salehi (2021). Supply chain disruptions: Evidence from the great east japan earthquake. *The Quarterly Journal of Economics* 136(2), 1255–1321.
- Caselli, F., M. Koren, M. Lisicky, and S. Tenreyro (2020). Diversification through trade. *The Quarterly Journal of Economics* 135(1), 449–502.
- Castro-Vincenzi, J. (2022). Climate hazards and resilience in the global car industry.

References II

- Charoenwong, B., M. Han, and J. Wu (2023). Trade and foreign economic policy uncertainty in supply chain networks: Who comes home? *Manufacturing & Service Operations Management* 25(1), 126–147.
 - D'Aguanno, L., O. Davies, A. Dogan, R. Freeman, S. Lloyd, D. Reinhardt, R. Sajedi, and R. Zymek (2021). Global value chains, volatility and safe openness: Is trade a double-edged sword?. *Bank of england financial stability paper 46*.
 - Gervais, A. (2018). Uncertainty, risk aversion and international trade. *Journal of International Economics* 115, 145–158.
 - Gervais, A. (2021). Global sourcing under uncertainty. Canadian Journal of Economics/Revue Canadienne d'Économique 54(3), 1103–1135.
 - Grossman, G. M., E. Helpman, and H. L'Huillier (2023). Supply chain resilience: Should policy promote international diversification or reshoring? *Journal of Political Economy* 131(12), 3462–96.
 - Grossman, G. M., E. Helpman, and A. Sabal (2023). Resilience in vertical supply chains. *National Bureau of Economic Research*. (No. w31739).
 - Handley, K. and N. Limão (2017). Policy uncertainty, trade, and welfare: Theory and evidence for china and the united states. *American Economic Review* 107(9), 2731–2783.

25/28

Handley, K., N. Limão, R. D. Ludema, and Z. Yu (2020). Firm input choice under trade policy uncertainty. *National Bureau of Economic Research*. (w27910).

Bourany, Cueyas, and González, 2024

Supply chain uncertainty and diversification

References III

- Hassan, T. A., S. Hollander, L. Van Lent, M. Schwedeler, and A. Tahoun (2023). Firm-level exposure to epidemic diseases: Covid-19, sars, and h1n1. *The Review of Financial Studies* 36(12), 4919–4964.
- LaBelle, J., F. Leibovici, and A. M. Santacreu (2021). Global value chains and us economic activity during covid-19. *Available at SSRN 3885399*..
- Lafrogne-Joussier, R., J. Martin, and I. Mejean (2022). Supply shocks in supply chains: Evidence from the early lockdown in china. *IMF Economic Review*, 1–46.

► The price index is:

$$P_j(\bar{\gamma}) = \left(\int_{\tilde{\varphi}} \int_{\tilde{\gamma}(\varphi)} p_j(\varphi, \gamma)^{1-\sigma} d\tilde{\Psi}_j^{\varphi}(\tilde{\gamma}) dG_j(\varphi)\right)^{\frac{1}{1-\sigma}}$$

with:

$$p_j(arphi, \gamma) = rac{\sigma}{\sigma - 1} \underbrace{rac{1}{arphi} \left(\eta \Theta_j(arphi, \gamma)
ight)^{-rac{1}{ heta}}
ight)}_{mc_j(arphi)}$$

and
$$\eta = \left[\Gamma \left(rac{\theta + 1 -
ho}{ heta}
ight)
ight]^{rac{ heta}{1 -
ho}}$$

Proposition 1

1. Higher productivity firms will increase their expected profits by sourcing more from more or "better" countries:

$$\mathbb{E}\left(\Theta_{j}(\mathcal{I}_{j}(\varphi_{H},\gamma(\varphi_{H}))^{\frac{\sigma-1}{\theta}}B_{j}(\bar{\gamma})\right) > \mathbb{E}\left(\Theta_{j}(\mathcal{I}_{j}(\varphi_{L},\gamma(\varphi_{L}))^{\frac{\sigma-1}{\theta}}B_{j}(\bar{\gamma})\right)$$

- 2. If $\sigma 1 > \theta$, import countries are **complements** in the sourcing decisions
 - ▶ More productive firms source from more countries

Pecking order: Same ordering of countries if fixed costs are the same across firms

Back

Closing the model: gravity and HHI

- Outside sector, freely tradable and big enough to pin down wages
- Using free entry condition and Fubini's theorem:

$$N_{j} = \frac{\alpha L_{j}}{\sigma \left(\int_{\tilde{\varphi}_{j}}^{\infty} \int_{\tilde{\gamma}(\varphi)} \sum_{i \in \mathcal{I}_{j}(\varphi)} f_{ij} d\Psi_{ij}^{\varphi}(\tilde{\gamma}) dG_{i}(\varphi) + f_{ej} \right)}$$

Gravity:

$$M_{ij}(\bar{\gamma}) = \frac{E_j}{P_j(\bar{\gamma})^{1-\sigma/N_j}} \frac{Q_i}{\sum_k \frac{E_k}{P_k(\bar{\gamma})^{1-\sigma/N_k}} (\tau_{ik}\bar{\gamma}_{ik})^{-\theta} \Lambda_{ik}(\bar{\gamma})} (\tau_{ij}\bar{\gamma}_{ij})^{-\theta} \Lambda_{ij}(\bar{\gamma})$$

with $Q_i = \sum_k M_{ik}$ total production of intermediate inputs in i

► Model-implied HHI:

$$HHI_{j} = \sum_{i=1}^{I} \left(rac{T_{i}(au_{ij}ar{\gamma}_{ij}w_{i})^{- heta}\Lambda_{ij}(ar{\gamma})}{\sum_{k=1}^{I} T_{k}(au_{kj}ar{\gamma}_{kj}w_{k})^{- heta}\Lambda_{kj}(ar{\gamma})}
ight)^{2}$$

Parameterization

Variable	Definition	Value						
$SD(\gamma)$	Standard deviation of shock	0.25						
ρ	Substitutability across intermediate varieties	2.00						
1	Number of countries	3.00						
$T_D(au_D w_D)^{- heta}$	Domestic sourcing potential	1.00						
$T_{F1}(au_{F1}w_{F1})^{- heta}$	Sourcing potential Foreign 1	0.10						
$T_{F2}(\tau_{F2}w_{F2})^{-\theta}$	Sourcing potential Foreign 2	0.03						
N	Number of domestic firms	150						
f_D	Fixed cost of sourcing Domestic	0.00						
f_{F1}	Fixed cost of sourcing Foreign 1	0.22						
f_{F1}	Fixed cost of sourcing Foreign 2	0.12						
Calibration for high complementarity $(\sigma - 1)/\theta = 1.58$ following Antràs et al. (2017)								
σ	Elasticity of final demand	3.85						
θ	Productivity Fréchet distribution shape 1.79							
Calibration for medium complementarity $(\sigma-1)/ heta=1.00$								
σ	Elasticity of final demand	3.1						
θ	Productivity Fréchet distribution shape 2.1							
Calibration for low complementarity $(\sigma-1)/ heta=0.482$								
σ	Elasticity of final demand	2.30						
θ	Productivity Fréchet distribution shape 2.70							

Moments	Data	Model	
Share of importers	0.226	0.1959	
Share imp. w/sales below median	0.082	0.0848	
Median input purchases	124.430	112.56	

Figure 10: Model fit: share of importers by country

Jia's Algorithm

- Proposition: $\forall i$, define mapping $V_{ij}(\varphi, \mathcal{I})$ to be one whenever including country i in sourcing strategy \mathcal{I} raises firm-level expected profits $\mathbb{E}(\pi_j(\varphi, \mathcal{I}))$, and a value of zero o/w. Then, when $(\sigma 1)/\theta \geq 1$, $V_{ij}(\varphi, \mathcal{I}') \geq V_{ij}(\varphi, \mathcal{I})$ for $\mathcal{I} \subseteq \mathcal{I}'$
- ► Algorithm:
 - 1. Let $V_i^n(\mathcal{I}) = 1$ if mg. ben. of adding country i is positive and 0 o/w
 - 2. When starting from set $\underline{\mathcal{I}}$ (no countries), iteratively add each country to the set (lower bound set)
 - ▶ Optimal sourcing strategy: minimum # of countries s.t. $V_i^n(\mathcal{I}) = 1$
 - 3. Then, starting from set $\bar{\mathcal{I}}$, remove 1-by-1 and find optimal sourcing str. (upper bound set)
 - 4. If sets do not overlap, only consider profits of upper bound set

Figure 11: Sourcing potential and extensive margin

Estimated Aggregate Supply Chain Disruption Shocks

Figure 12: Aggregate supply chain disruption shock $\bar{\gamma}_{ij,t}$

Results: Fixed cost estimation

Table 2: Estimated Parameters Without Uncertainty									
Е	fc _{CHN}	fc _{USA}	fc _{ROW}	β_c^f	β_d^f	β_I^f	β_{C}^{f}	β_{disp}^f	
222.42	19.258	7.635	2.624	1.272	0.255	1.093	-0.368	0.691	

Figure 13: Estimated Sourcing Potential and Median Fixed Cost

