Chapter 11

Minimum Spanning Tree Recitation.

11.1 The Spanning Tree Problem.

Definition 11.1.1. A spanning tree T of a graph G = (V, E) is a subset of edges in E such that T is a tree (having no cycles), and the graph (V, T) is connected.

Problem 11.1.1 (MST). Let G=(V,E) be a weighted graph with weight function $w:E\to\mathbb{R}$. We extend the weight function to subsets of E by defining the weight of $X\subset E$ to be $w(X)=\sum_{e\in X}w(e)$. The minimum spanning tree (MST) of G is the spanning tree of G that has the minimal weight according to w. Note that in general, there might be more than one MST for G.

Definition 11.1.2. Let $U \subset V$. We define the cut associated with U as the set of outer edges of U, namely all the edges $(u,v) \in E$ such that $u \in U$ and $v \notin U$. We use the notation $X = (U, \bar{U})$ to represent the cut. We say that $E' \subset E$ respects the cut if $E' \cap X = \emptyset$.

Lemma 11.1.1 (The Cut-Lemma). Let T be an MST of G. Consider a forest $F \subset T$ and a cut X that respects X (i.e. $F \cap X = \emptyset$). Then $F \cup \arg\min_e w(e)$ is also contained in some MST. Note that it does not necessarily have to be the same tree T.

Proof. If $e \in T$ then $F \cup \{e\} \subset T$ and we done. So consider the second case $e \notin T$. The intersection $T \cap X$ must not be empty, otherwise there is no path connecting vertices on the opposite ends of the cut ¹, and that is contradiction for T be a spanning tree. Denote by $e' \in T \cap X$ ². And consider $T' = T/\{e'\} \cup \{e\}$.

Our goal is to prove that T' is a minimum spanning tree, let's start with showing that T' is a spanning tree. Assume that T' is not a spanning tree, since T' has |V|-1 edges, T must have cycle (otherwise T' is a tree with |V| vertices $\Rightarrow T'$ is a spanning tree). Denote by u and v the ends vertices of e (i.e (u,v)=e). \square

In the lecture, you have seen the Kruskal algorithm for finding an MST. This algorithm constructs the MST iteratively, where in each step it holds a forest F contained in the MST and then looks for the minimal edge in a cut that it respects.

¹In notations of Definition 11.1.2, no path connects vertices in U to vertices in \bar{U}

²If F spans either U or \bar{U} then there is only one such e'. A good exercise would be prove it.

Note that since F has no cycles, any edge $e \subset E$ that does not close a cycle in F must belong to some cut X that is respected by F. By enforcing the order of edges being examined to be increasing in weight, it follows that the first edge that does not close a cycle is also the one with the minimum weight among them. Therefore, by Lemma 11.1.1, we can conclude that the forest obtained by adding e into F is contained in the MST, and we can continue with it.

```
Result: Returns MST of given G=(V,E,w) 1 sorts the E according to w 2 define F_0=\emptyset and i\leftarrow 0 3 for e\in E in sorted order do 4 | if F_i\cup\{e\} has no cycle then 5 | F_{i+1}\leftarrow F_i\cup\{e\} 6 | i\leftarrow i+1 7 | end 8 end 9 return F_i
```

Algorithm 1: Kruskal alg.

Claim 11.1.1. Let G be a connected graph containing a cycle C. Then subtracting an edge of C gives a connected graph.

Proof. Assume trough contradiction that a graph $G' = G/\{e\}$, where $e \in C$ is not connected. Means that there are two vertices u and v that has a path between them in G but, no such a path in G' denote that path by $\mathcal P$ and observes that $e \in \mathcal P$ otherwise $\mathcal P$ would be also $u \leadsto v$ path in G'.

Denote the ends of e by (x,y)=e. Also, denote C by $\langle x_0,x_1,...x_i,x,y,y_0,...,y_j\rangle$, where $y_j=x_0$ and there is an inequality for any other pair of vertices (we used the cycle definition). Then, there is a path $x\leadsto y$ in C, defined by $\langle x_i,x_{i-1},...,x_1,x_0,y_{j-1},y_{j-2},...,y_0,y\rangle$. We denote this path by \mathcal{P}' . By replacing e in \mathcal{P} with \mathcal{P}' , we obtain a path $u\leadsto x\leadsto^{\mathcal{P}'}y\leadsto v$, which is a path between u and v that does not contain e. This contradicts the assumption that there is no path between u and v in u.