Homework 4 Written

Points: 35

The pdf you submit must look exactly like this with the answers and all supporting works shown on the the page with the question.

Last Name	First Name	Student ID
Ahmed	Fareeha	999307283
		· A.
Partner Last Name	Partner First Name	Partner Student ID

1. (3) Given that you have a Fully Associative cache of size 2^10 bytes with a line size of 16 bytes show how an Address of 29 bits would be partitioned.

S=1 set LS=16
Set bits=
$$log_2(s) = log_2(1) = 0$$

offsetbits= $log_2(linesize) = log_2(16) = 4$
tag= leftover

Tag	Set	offs et]
26-4	none	3-0	

2. (3) Given that you have Direct Mapped cache of size 2^12 bytes with a line size of 32 bytes show how an Address of 50 bits would be partitioned.

$$W=1$$

 $\#Set = \frac{\# 1.ines}{W} = 128$
 $\#1.ines = \frac{c}{1.ines.12e} = \frac{32.768}{256} - 128$

set bits = $log_2(s) = log_2(126) = 7$ # offset bits = $log_2(32) = 9$

tag	set	offset)
49 - 12	11 - 5	4 - 0

3. (3)Given that you have a 5 way Set Associate cache of size 5242880 bytes with a line size of 64 bytes show how an Address of 64 bits would be partitioned.

Tag	set	offset
63 - 20	19 - 6	5-0

- 4. (3 per) Here is a string of hex address references given as byte addresses: 1, 2, 3, 1A, A,1B, 16, 14, 3, 12, 9, 23,3A, 5, 19, 1, 9
 - 1. Assuming a direct mapped cache with a total size of 16 bytes and a line size that is 1 byte. that is initially empty, label each reference in the list as a hit or miss and show the final contents of the cache tag bits for each line. If a line is not written to leave its tag bits blank. Compute the hit rate for this example.

Hines =
$$\frac{C}{11008120} = 16$$

Hines = $\frac{C}{11008120} = 16$

Hines = $\frac{Address}{1799} = 16$

Hines = $\frac{17-4}{8-0}$

Hines = $\frac{1992(16)}{17-4} = 4$

Hoffset bits = $\frac{1992(16)}{17-4} = 4$

Hag | Value

set	tag	Value	
0 0000			2
1 0001	0000	1	HR:
2 0010	1000	12	
3 001	1 0010	23	
1 0 10	0 0001	14	
5 010	0000	গ্ৰ	
6 6 1 1	0 0001	16	
7 0 1 1	1		
7	1 0000	q	
10 1 0 1	1)	3 A	
4 1 0 1	10001	1B	
12 1 1 0	1		
3110)		
4111	0	' .	
15 1	1		

2. Repeat 4.1 but for a direct mapped cache that is 16 bytes big and has a line size of 4 bytes

#Innes =
$$\frac{c}{\ln u \operatorname{size}} = \frac{1b}{9} = 4$$

#set = $\frac{4! \ln es}{N} = \frac{4}{1} = 4$

#set bits = $\log_2(4 \operatorname{set}) = \log_2(4) = 2$

of set bits = $\log_2(4 \operatorname{set}) = \log_2(4) = 2$

HR: 4/17

15	10000000000000000000000000000000000000
3	00000011
TA	00011010
11	00001010
IB	0001.1011
16	00010110
11	Thu01000 1
12	00010010
9	100001001
13	00100011
36	00111010
5	10000000
1 1	000 11001

3. Repeat 4.1 but for a two way set associative cache that is 16 bytes big and has a line size of 1 byte. Assume an LRU replacement strategy is used.

#Ines =
$$\frac{C}{|\text{Inesize}|} = \frac{16}{1} = 16$$

set = $\frac{16}{N} = \frac{16}{2} = 8$

set bits = $\frac{19}{2}(8) = 3$

offset bits = $\frac{19}{2}(10) = 10$

000 tag	val I	U 1	Tag 2	val 2	Age 2
10000 100	9 3 A	× 10 × 10	00000	91 LA 12	0X° 0X°1
1 1 0 60010 1 0 1 00009 1 0 0 00010 0 1 1 00100	23 14 5 14	X o	00011	18	х 1

HR: 1/17

4. Repeat 4.1 but for a fully associative cache that is 16 bytes big and has a line size of 1 byte. Assume an LRU replacement strategy is used.

$$S=1$$
 (= 16 LS = 1
 $H_S(t|b)H_S = log_2(1) = 0$
 $H_O(f_S(t|b)H_S = log_2(1) = 0$

Address				
Tag	Set	offset		
9)	X	×		

		_
١	taq 1	Yal
+	00000001	١.
t	00000010	2
ł	00000011	3
+	00001010	IA
-		A
	00 00 10 10	A
Ì	00011011	18
	00010110	16
7	00010100	14
,	00010010	12.
	00001001	9
1	00100011	23
	00111010	3A
1	10100000	5.
	00011001	119
		-
_		1

1 2 3 1A A 1B 16 14 3 12 9 23 3A 5 19 1 9 M M M M M M M M H H

5. Repeat 4.1 but for a fully associative cache that is 16 bytes big and has a line size of 4 bytes. Assume an LRU replacement strategy is used.

$$S=1 \rightarrow \#selb117=0$$
LS=4, # $\#frelb113=1092(4)=2$ Address
$$\boxed{Tag} \quad |offset|$$
 $7-2 \quad |-0|$
 $tag \quad |o0| \quad |o1| \quad |o1| \quad |fgeb| \quad |ax| \quad$

3

HR: 5/17.