Exercise: CasADi basics

For these exercises, assume the following objects are defined:

```
from casadi import * x = MX.sym("x"); y = MX.sym("y") # scalar symbol
p = MX.sym("p",2); A = MX.sym("A",4,5) # vector and matrix symbol
f = Function("f",[x,y],[sin(x)*y])
g = Function("g",[x],[sqrt(x),x**2])
h = Function("h",[x],[sin(x)*y])
F = lambda x,y: sin(x)*y
```

1 What's the type?

For each code snippet, encircle the character corresponding to the most appropriate data-type. When in doubt, enter the code snippet in Python and use type(.).

Nr	Code	MX (constant)	MX (other)	DM	Function	non-CasADi type
1	5	d	i	u	h	е
2	5+x	S	I	g	z	m
3	X-X	е	d	b	k	a
4	X==X	С	r	Z	u	V
5	x==y	m	t	S	j	f
6	A*x	a	r	V	w	С
7	A*0	0	t	е	a	f
8	<pre>gradient(sin(x),x)</pre>	h	е	р	m	g
9	<pre>gradient(x,x)</pre>	n	×	m	i	b
10	p[1]	q	С	j	m	0
11	A[:,0]	Z	е	f	m	u
12	f(1,2)	m	b	р	j	g
13	f(1,y)	j	h	I	r	q
14	g(9)	m	b	е	f	a
15	g(9)[0]	q	t	I	n	S
16	g(x)	m	a	q	r	0
17	g(x)[0]	b	g	С	у	0
18	g(x)[0][0]	i	r	0	j	u
19	h(x)	е	a	у	h	u
20	f.expand()	d	b	a	р	W
21	F	е	f	р	n	h
22	F(x,y)	g	е	b	a	0
23	F(1,2)	С	S	а	h	r

Solution: electro-encephalographer

2 Correct the error

```
Goal 1: Compose a Function x \mapsto \sin(x)
Tried: Function('m', {x}, {sin(x)})
NotImplementedError: Wrong number or type of arguments
for overloaded function 'new_Function'.
 Possible prototypes are:
   Function(str,[MX],[MX])
 You have: '(str,set,set)'
Correction: .....
Goal 2: Get first element of p vector
Tried: p(1)
TypeError: 'MX' object is not callable
Correction: .....
                             ............
Goal 3: Get last element of p vector
Tried: p[2]
Out of bounds error. Got elements in range [2,2],
which is outside the range [-2,2).
Correction:
Goal 4: Concatenate two symbolic expressions
Tried: M=np.zeros((2,1));M[0]=x;M[1]=y;
Implicit conversion of symbolic CasADi type to numeric matrix not supported.
This may occur when you pass a CasADi object to a numpy function.
Use an equivalent CasADi function instead of that numpy function.
Goal 5: Call Function f numerically for x=1,y=2
Tried: f[1,2]
'Function' object is not subscriptable
Correction: .....
Goal 6: Call Function f numerically with elements of p
Tried: f(p)
Incorrect number of inputs: Expected 2, got 1
```

```
Correction:
Goal 7: Create a Function that returns the square of f's output
Tried: f**2
unsupported operand type(s) for ** or pow(): 'Function' and 'int'
Correction: .....
Goal 8: Evaluate h for x = 5
Tried: h(5)
Cannot evaluate "f:(i0)->(o0) MXFunction" since variables [y] are free
Correction:
Goal 9: Compose a Function x \mapsto 5
Tried: Function('m',[5],[x])
Xfunction input arguments must be purely symbolic.
Argument O(iO) is not symbolic.
Correction:
Goal 10: Compose a Function x \mapsto \sin(x)
Tried: Function('m',[x],[sin])
NotImplementedError: Wrong number or type of arguments
for overloaded function 'new_Function'.
 Possible prototypes are:
   Function(str,[MX],[MX])
 You have: '(str,[MX],[function])
Correction: .....
                   ......
Goal 11: Compose a Function with two input arguments where the second one is ignored
Tried: Function('m',[x,x],[x])
The input expressions are not independent:
0: x
1: x.
Correction:
```

Page 3 Python

Solutions:

```
    Function('m',[x],[sin(x)])
    p[0]
    p[1]
    M=MX(np.zeros((2,1)));M[0]=x;M[1]=y or M=MX.zeros(2,1);M[0]=x;M[1]=y or M = vertcat(x,y) (preferred)
    f(1,2)
    f(p[0],p[1])
    Function("m",[x,y],[f(x,y)**2])
    h(MX(5))
    Function('m',[x],[5])
```

3 What's the type (part 2)?

Function('m',[x],[sin(x)])
 Function('m',[x,MX()],[x])

CasADi Functions can also be called with keyword-value arguments...

Nr	Code	MX (constant)	MX (other)	DM	Function	non-CasADi type	Error
1	f2(3)	k	0	i	a	t	d
2	f2(3,4)	f	Z	i	t	h	d
3	f2(y=4,x=3)	р	0	q	h	S	У
4	f2(y=4,x=3)["z"]	Х	0	р	g	a	j
5	f2(x=x,y=4)["z"]	С	r	q	u	d	Z
6	f2(x=3)	g	n	р	u	0	i
7	f(x=3)	r	n	u	k	f	р
8	f(3)	d	g	n	q	I	0
9	f2()	m	n	٧	С	r	j
10	f2()["z"]	r	×	t	У	a	g
11	g2(x)	0	u	d	n	i	m
12	g2(x=3)	b	m	a	V	0	q
13	g(3)	u	i	Z	С	n	q
14	g(3)[0]	b	r	a	У	р	j
15	g2(x=3)[0]	I	j	р	i	a	t
16	g2([])	у	n	h	q	е	р

Solution: disproportionate