Step-1

Let A be a Hermitian matrix and c be any real scalar.

The objective is to show that cA is also Hermitian.

Step-2

A matrix A is said to be Hermitian if it is equal to the conjugate transpose, that is $A^{H} = A$.

Now consider the expression,

$$(cA)^{H} = \overline{c}A^{H}$$

= cA^{H} As c is real, so $\overline{c} = c$.
= cA As A is Hermitian, so $A^{H} = A$.

As $(cA)^H = cA$, for any real scalar c, so cA is **Hermitian**.

Step-3

Suppose c = i.

Now show that (iA) is skew-Hermitian.

A matrix A is said to be skew-Hermitian if $A = -A^H$.

Consider the expression,

$$(iA)^H = \bar{i}A^H$$

= $(-i)A^H$ Use $\bar{i} = -i$.
= $-iA$ As A is Hermitian, so $A^H = A$.

As $(iA)^H = -iA$, so iA is a skew-Hermitian.