Intern Detail

Field	Details
Name	Prashant Raj
College Name	Rajkiya Engineering College, Banda
Branch	B.Tech – Information Technology
Roll Number	2307340139004
Internship	SmartInternz
Provider	
Internship	Data Analytics using Power BI
Domain	
Project Title	Visualizing the Future of Farming: A Power BI Project
	on Smart Irrigation and Plant Growth
Project Type	Group Project (Self-led)
Project	Predicting plant growth stages using environmental
Description	and management data with Power BI dashboards

Final Project

on

Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth

- Introduction
 - Project overviews
 - Objectives
- Project Initialization and Planning Phase
 - Define Problem Statement
 - Initial Project Planning
 - Project Proposal (Proposed Solution)
- Data Collection and Preprocessing Phase
 - Data Exploration and Preprocessing
 - Data Quality Report
 - Data Collection Plan and Raw Data Sources Identified
- Data Visualization
 - Framing Business Questions
 - Developing Visualizations
- Dashboard
 - Dashboard Design File
- Report
 - Story Design File
- Performance Testing
 - 7.1 Utilization of Data filters
 - o 7.2 No of Calculation Field
 - 7.3 No of Visualization
- Conclusion/Observation
- Future Scope
- Appendix
 - Source Code
 - GitHub & Project Demo Link

Introduction

Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth:

Project Overview

Agriculture is facing mounting pressure to feed a growing global population while minimizing environmental impact. With water scarcity and climate variability becoming more prominent challenges, the adoption of smart irrigation and precision farming is no longer optional—it's essential.

This project titled "Visualizing the Future of Farming" leverages Power BI to analyze and visualize agricultural data with a focus on smart irrigation and plant growth optimization. Using publicly available datasets and advanced data visualization techniques, the project provides actionable insights to help farmers, researchers, and policymakers make data-driven decisions.

The interactive dashboards created showcase how data filtering, calculated fields, and key visualizations can highlight performance variations in different soil types (e.g., clay, loam, sand) and the impact of irrigation strategies on crop yield and plant health.

Objectives

- To analyse plant growth data across multiple soil types using Power BI.
- To build interactive and dynamic dashboards that support smart irrigation decisions.
- To provide insights on resource optimization like water usage and soil performance.
- To demonstrate real-world use of Business Intelligence tools in agriculture.
- To encourage the use of data-driven techniques for sustainable farming practices.

Project Initialization and Planning Phase

Date	28-07-2025
Team ID	Prashant Raj
Project Name	Visualizing the Future of Farming:
Maximum Marks	3 Marks

Problem Statements:

The Customer Problem Statement helps you focus on what matters to create experiences people will love. A well-articulated customer problem statement allows you and your team to find the ideal solution for your customers' challenges. Throughout the process, you'll also be able to empathize with your customers, which helps you better understand how they perceive your product or service.

Problem	I am	I'm trying to	But	Because	Which makes
Statement	(Customer)				me feel
(PS)					
PS-1	A small-	Improve crop	I don't have	Traditional	Frustrated and
	scale farmer	yield using	access to data-	methods don't	unsure about
		smart irrigation	driven insights	tell me when	making the right
				and how much	farming
				to irrigate	decisions
PS-2	An	Track the	Data from	There's no	Inefficient in
	agricultural	efficiency of	farms is	centralized tool	decision-making
	officer	irrigation	unorganized	that visualizes	and
		systems in	and hard to	performance in	overwhelmed
		different	interpret	real-time	
		regions			
PS-3	A farm	Understand	I don't know	I lack real-time,	Uncertain about
	equipment	what kind of	what	location-based	customer needs
	distributor	irrigation	challenges	insights	and how to
		solutions are	farmers face		market
		most needed	with irrigation		effectively
			or crop growth		
PS-4	An agri-tech	Recommend	I don't have	My clients can't	Less convincing,
	consultant	sustainable	visual data to	understand raw	and my advice
		farming	support my	data without	feels less
		practices	analysis	visuals	credible

Initial Project Planning

Date	28-07-2025
Team ID	Prashant Raj
Project Name	Visualizing the Future of Farming:
	A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	4 Marks

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional	User	User Story /	Story	Priority	Team	Sprin	Sprint
	Requirement	Story	Task	Point		Member	t	End Date
	(Epic)	Numbe		s		s	Start	(Planned
		r					Date)
Sprint	Data Collection &	USN-1	As a user, I	3	High	Self	21-	21-07-
-1	Preparation		want the data				07-	2025
			to be collected				2025	
			from reliable					
			agricultural					
			sources so					
			that it reflects					
			realistic					
			conditions.					
Sprint	Data Cleaning	USN-2	As a user, I	2	High	Self	22-	23-07-
-1			want missing				07-	2025
			and duplicate				2025	
			data to be					
			cleaned,					
			ensuring that					
			the dataset is					
			accurate.					
Sprint	Data Modelling	USN-3	As a user, I	3	Mediu	Self	24-	24-07-
-2			want		m		07-	2025
			relationships				2025	
			between data					
			tables to be					
			clearly					
			defined, so I					
			can analyse					
			them in Power					
			BI.					

Sprint -2	Dashboard Design	USN-4	As a user, I want to view plant growth performance by soil type, fertilizer, and irrigation via an interactive dashboard.	4	High	Self	24- 07- 2025	27-07- 2025
Sprint -3	Smart Insights & Recommendation s	USN-5	As a user, I want the system to recommend best growth conditions based on key influencers.	3	Mediu m	Self	27- 07- 2025	27-07- 2025
Sprint -3	Dashboard Testing	USN-6	As a user, I want to ensure the dashboard is error-free and filters work as expected.	2	Mediu m	Self	27- 07- 2025	27-07- 2025
Sprint -4	Project Documentation	USN-7	As a user, I want complete documentatio n for my Power BI solution, so it can be reviewed or reused.	2	Mediu m	Self	28- 07- 2025	28-07- 2025
Sprint -4	Final Presentation	USN-8	As a user, I want a summarized report and visuals to be ready for final evaluation.	2	High	Self	28- 07- 2025	28-07- 2025

Project Initialization and Planning Phase

Date	28-07-2025
Team ID	Prashant Raj
Project Title	Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	3 Marks

Project Proposal

Project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Proposal

Project Overvi	ew
Section	Details
Objective	The primary objective of this project is to design an interactive Power BI
	dashboard that visualizes the effects of environmental and operational factors
	(such as soil type, irrigation frequency, sunlight, humidity, and fertilizers) on plant
	growth, enabling farmers and Agri-policy makers to make data-driven decisions in
	smart farming.
Scope	The scope of this project includes: - Collecting and cleaning agricultural and
	environmental datasets - Creating meaningful visualizations using Power BI -
	Analysing the relationships between variables affecting plant growth - Providing
	actionable insights through user-friendly dashboards The project is limited to a
	single growing season and controlled environment data, with future potential for
	real-time integration and scaling.
Problem State	ement
Section	Details
Description	Farmers and agriculture professionals lack access to visual, data-driven insights
	that could help optimize irrigation, fertilizer use, and soil selection for better crop
	yield. Decisions are still largely made based on experience or traditional practices,
	which may not be efficient under changing climate conditions.
Impact	Solving this problem empowers users with data-backed decisions, leading to: -
	Improved crop yield and resource optimization - Reduced wastage of water and
	fertilizer - Increased awareness and adoption of smart farming technologies -
	Potential for scaling toward precision agriculture at regional and national levels
Proposed Solu	tion

Section	Details
Approach	Collect data from public sources and experimental setups - Clean, preprocess,
	and analyse data in Power BI - Design interactive visualizations using charts,
	slicers, decomposition trees, and key influencers - Provide insights into which
	environmental conditions and farming inputs lead to optimal growth - Summarize
	findings into actionable suggestions for farmers and policy makers
Key Features	Dynamic filters for soil type, irrigation, and fertilizer selection - Decomposition
	tree for analysing growth by soil types - Key influencers visual to identify major
	drivers of growth - Donut charts and bar graphs for comparing fertilizer and
	humidity impact - Environment score calculation to simplify multi-variable
	evaluation - Data-driven recommendations for smart irrigation practices

Resource Requirements

Resource Type	Description	Specification/Allocation			
Hardware	Hardware				
Computing Resource	CPU/GPU specifications, number of cores	2 x NVIDIA V100 GPUs			
Memory	RAM specifications	8 GB			
Storage	Disk space for data, models, and logs	1 TB SSD			
Software					
Frameworks	Python frameworks	Flask			
Libraries	Additional libraries	scikit-learn, pandas, NumPy			
Development Environment	IDE, version control	Jupyter Notebook, Git			
Data	Data				
Data	Source, size, format	Kaggle dataset, 10,000 images			

Data Collection and Preprocessing Phase

Date	28-07-2025
Team ID	Prashant Raj
Project Title	Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	10 Marks

Data Exploration and Preprocessing

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Data Exploration and Preprocessing

Section	Description
Data Overview	The dataset contains 193 records and 7 columns, including: Soil Type, Sunlight
	Hours, Water Frequency, Fertilizer Type, Temperature, Humidity, and Growth
	Milestone. These fields are used to understand the relationship between
	environmental and input factors on plant growth.
Data Cleaning	Minor text inconsistencies in categorical fields were normalized (e.g., "organic"
	vs. "Org") All entries verified for logical accuracy (e.g., temperature range and
	humidity values).
Data	Used Power Query for: Filtering data by soil type and fertilizer, sorting by growth
Transformation	milestones, creating new calculated columns (e.g., Growth_per_Hour =
	Growth_Milestone / Sunlight_Hours), Pivoting to analyse fertilizer performance
	across soil types
Data Type	Converted Soil Type, Fertilizer Type, and Water Frequency to text format
Conversion	Ensured Temperature, Humidity, Sunlight Hours, and Growth Milestone are in
	numeric format.
Column Splitting	No splitting required Merged environmental metrics (Humidity, Temperature,
and Merging	Sunlight Hours) to form an Environmental Score for advanced insights.
Data Modelling	Single-table model used (no complex relationships needed).
	DAX measures created for insights: Average Growth, Growth Rate per
	Temperature, Max Growth by Soil Type - Interactive slicers and filters added for
	soil, water, and fertilizer type.
Save Processed	Cleaned dataset saved within Power BI (.pbix) file Backup version of the
Data	processed data exported to Excel and CSV for reuse and external analysis.

Data Collection and Preprocessing Phase

Date	28-07-2025
Team ID	Prashant Raj
Project Titl	Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	3 Marks

Data Quality Report

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Collection and Preprocessing Phase

Data Quality Report Template

Data Source	Data Quality Issue	Severity	Resolution Plan
Smart Farming	Missing values in	Moderat	Use mean imputation for missing values
Data	humidity and sunlight	е	or apply KNN imputation if patterns exist
	columns		in nearby records.
Fertilizer Usage	Inconsistent labelling of	Low	Apply data standardization using string
& Growth	fertilizer types (e.g.,		normalization techniques to unify all
	"Org", "Organic", "org.")		entries (e.g., convert all to lowercase and
			map synonyms).
Temperature &	Some extreme	High	Use Z-score method to detect and
Humidity	temperature outliers		remove outliers or cap them using IQR-
Records	(e.g., >70°C) that are		based clipping.
	unrealistic		
Soil Performance	Duplicate rows with	Moderat	Use Power Query or pandas. drop
Data	identical soil and	е	duplicates () to remove duplicate entries
	irrigation values		and retain unique records.

Data Collection Plan & Raw Data Sources

Date	28-07-2025
Team ID	Prashant Raj
Project Title	Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	2 Marks

Data Collection Plan & Raw Data Sources Identification

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavour.

Data Collection Plan

Section	Description
Project Overview	This project aims to analyse the relationship between soil type, irrigation
	frequency, environmental conditions (humidity, temperature, sunlight), and
	plant growth performance. The objective is to create a Power BI dashboard
	that supports data-driven decisions in smart farming.
Data Collection Plan	The data was collected from multiple sources, including agricultural research
	datasets, public environmental data APIs, and manually recorded
	experimental
	data from controlled farming environments.
Raw Data Sources	Data includes environmental metrics, soil types, fertilizer types, and plant
Identified	growth outcomes. Sources are in CSV and Excel formats.

Raw Data Sources

Source	Description	Location/URL	Forma	Size	Access
Name			t		Permission
					s
Smart	Contains	[Custom/Offline Data]	CSV	~1	Private
Farming	information			MB	(Created for
Data	on soil type,				project)
	water				
	frequency,				
	humidity,				
	temperature,				
	and growth				
	outcome.				
	Used for				
	visualizing				

	environmenta				
	l impact.				
Fertilizer	Contains	[Custom/Offline Data]	Excel	~50	Private
Usage &	types of			0 KB	
Growth	fertilizers				
	used (organic,				
	chemical,				
	none) and				
	associated				
	plant growth				
	milestones.				
Dataset 3:	Environmenta	https://data.gov.in	CSV	~5	Public
Temperatur	l dataset			MB	
e &	showing				
Humidity	average				
Records	temperature				
	and humidity				
	across				
	farming				
	zones.				
Dataset 4:	Benchmark	https://www.kaggle.com/agriculture	Excel	~2	Public
Soil	soil growth	<u>-dataset</u>		MB	
Performanc	performance				
e Data	under				
	different				
	irrigation				
	strategies				
	from				
	agriculture				
	research				
	articles.				

Business Question and Visualization Report

Date	28-07-2025
Team ID	Prashant Raj
Project Nar	Visualizing the Future of Farming:
	A Power BI Project on Smart Irrigation and Plant Growth
Maximum	5 Marks
Marks	

Visualization development refers to the process of creating graphical representations of data to facilitate understanding, analysis, and decision-making. The goal is to transform complex datasets into visual formats that are easy to interpret, enabling users to gain insights and make informed decisions. Visualization development involves selecting appropriate visual elements, designing layouts, and using interactive features to enhance the user experience. This process is commonly associated with data visualization tools and platforms, and it plays a crucial role in business intelligence, analytics, and reporting

Business Questions and Visualisation

The process involves defining specific business questions to guide the creation of meaningful and actionable visualizations in Power BI. Well-framed questions help in identifying key metrics, selecting relevant data, and building visualisation that provide insights. To create a comprehensive Business Question and Visualization Report, follow these steps:

Q1. Which soil type supports the highest total plant growth?

Clay soil supports the highest total growth with 67 units, followed by sandy (64 units) and loam (62 units), as per the decomposition tree analysis.

Q2. What impact does temperature have on total plant growth?

A decrease in temperature below 60.59°C (sum) causes the average Total_Growth to decrease by 1.76 units, as shown by the Key Influencers visual.

Q3. Which watering frequency proves most beneficial for plant growth?

Daily watering frequency shows better and more consistent growth results, especially when combined with clay soil.

Q4. Which fertilizer type contributes most to plant growth milestones?

Organic fertilizers account for the highest contribution (39.58%) to growth milestones, followed closely by chemical fertilizers (37.5%).

Q5. How does humidity affect overall plant growth?

Higher humidity levels correlate with better growth results, especially in clay soil conditions. Average humidity in optimal growth cases was around 59.11%.

Q6. What combination of conditions leads to optimal plant growth?

The best results were observed in clay soil, with daily watering, high humidity (around 59%), and moderate temperature (around 34°C), when organic fertilizers were used.

Q7. How can this dashboard benefit agricultural decision-makers?

It provides interactive visual insights on how different environmental and input factors impact growth, enabling data-driven decisions for crop planning and irrigation policy.

Q8. What are the key insights for future smart irrigation systems?

Future systems should:

- Prioritize clay-based fields
- Automate watering frequency based on temperature and humidity
- Promote use of organic fertilizers
- Use real-time environmental monitoring to adjust irrigation dynamically

Dashboard Design

Date	28-07-2025
Team ID	Prashant Raj
Project Name	Visualizing the Future of Farming:
Maximum Marks	5 Marks

Activity 1: Interactive and visually appealing dashboards

Description:

This Power BI dashboard provides an interactive, data-driven insight into how various factors—such as soil type, irrigation frequency, temperature, humidity, sunlight, and fertilizer type—affect plant growth.

It helps farmers, agriculture officers, and consultants to make smarter irrigation and soil management decisions by analysing environmental data and plant performance metrics.

Dashboard Components Used:

Component	Description / Purpose
Table	Displays detailed data by soil type, watering frequency, humidity, sunlight, ar
	temperature. This allows users to scan raw values and understand
	environmental conditions per soil type.
Waterfall Chart –	Illustrates how changes in temperature affect total plant growth. The increas
Avg Temperature by	decrease bars show how growth varies across temperature bands.
Temperature	
Key Influencers Visual	Automatically identifies the most significant factor influencing Total_Growth.
	In this case, it shows that when temperature drops below 60.59, growth
	decreases by 1.76 units on average.
Donut Chart –	Represents the distribution of plant growth milestones across fertilizer types
Growth Milestone by	organic, chemical, or none. This helps users compare fertilizer effectiveness.
Fertilizer Type	
Bar Chart –	Displays average humidity distribution, giving an overview of environmental
Avg Humidity by Humidity	moisture levels across the dataset.
Decomposition Tree	Breaks down Total Growth by Soil type (clay, sandy, loam), allowing users
	to visually drill into which soil performs best in terms of growth.

Insights Gained:

- Clay soil shows the highest total growth, followed by sandy and loam.
- **Temperature** has a direct impact on growth—lower temps significantly reduce performance.

- Organic and chemical fertilizers perform much better than using none.
- **Daily watering** appears to work better in certain soil types like clay.
- Clay soil showed the highest total plant growth (67 units) compared to sandy (64) and loam (62).
- **Daily watering frequency** provided more consistent growth results, especially in clay and sandy soils.
- Temperature plays a crucial role:
- When the sum of temperature drops below 60.59, the average plant growth decreases by 1.76 units.
- **Humidity** and **sunlight** levels were more optimal in clay soils, contributing to better growth performance.
- Organic and chemical fertilizers led to the majority of growth milestones:

Organic: 39.58%Chemical: 37.5%No fertilizer: 22.92%

Use Cases:

- Farmers can determine the ideal soil and watering conditions.
- Agri-scientists can research environmental impact on growth.
- Government planners can support data-driven farming policies.

Report

Date	28-07-2025
Team ID	Prashant Raj
Project Name	Visualizing the Future of Farming:
Maximum Marks	5 Marks

The report provides an analysis of soil conditions and their impact on plant growth:

1. Sunlight Exposure:

- a. Clay soil received the highest average sunlight at 7.27 hours
- b. Sandy soil followed with 6.76 hours
- c. Loam soil received 6.41 hours

2. Humidity Levels:

- a. Humid conditions had the highest average humidity at 74.02%
- b. This was 75.53% higher than dry areas (41.23%)
- c. Moderate humidity was recorded at 60.10%

3. Temperature Effects:

a. Temperature significantly impacted growth

- b. Cold temperature ranges decreased growth performance by 9.70 units compared to warm conditions
- 4. Watering Frequency and Growth:
 - a. Daily watering resulted in the highest growth milestones (51%)
 - b. Weekly watering followed at 49%
 - c. Bi-weekly watering was also mentioned but percentage not specified
- 5. Additional Data:

a. Current humidity: 58.16%b. Current sunlight: 6.76

c. Current temperature: 25.08

The report highlights the importance of various environmental factors on plant growth, emphasizing the roles of soil type, sunlight exposure, humidity, temperature, and watering frequency.

Conclusion / Observation

The "Future Grow Tech — Smart Farming" Power BI project successfully demonstrates the power of data visualization and analytics in modern agriculture. By analysing key parameters such as soil type, nutrient levels, and crop performance, the project provides farmers, agronomists, and stakeholders with a data-driven approach to enhance crop yield and optimize farming practices.

Key Observations:

- Soil Types (Clay, Loam, Sand) exhibit varying performance based on different nutrient levels and crop suitability.
- Through calculated KPIs and visualizations, users can easily identify which soil performs best for specific crop types.
- Utilization of filters, slicers, and calculated fields enhances user interactivity and provides a customized view of data.
- The dashboard empowers users with quick insights for making informed decisions, promoting sustainable agriculture.
- Performance testing validates that the report is optimized with efficient use of resources, ensuring smooth operation even with large datasets.

Overall Impact:

This project bridges the gap between technology and traditional farming, showcasing how Power BI can transform agricultural data into actionable insights. It serves as a scalable model for future implementations across various regions and crop types, contributing to the advancement of smart farming practices in India and beyond.

Future Scope

The current project lays the foundation for data-driven decision-making in smart farming. However, to further enhance its capabilities and impact, several future developments can be envisioned:

1. Integration with IoT Sensors

Description: Real-time data from IoT devices (e.g., soil moisture sensors, weather stations) can be integrated directly into Power BI.

Benefit: Enables live monitoring and predictive insights for crop health and irrigation scheduling.

2. Predictive Analytics with Machine Learning

Description: Leverage Azure ML or Python/R scripts within Power BI to predict crop yields, pest risks, and soil degradation.

Benefit: Allows for proactive planning and early warning systems to improve farm productivity.

3. Geo-Spatial Analysis

Description: Incorporate geographical data visualization (using ArcGIS or map visuals in Power BI) to analyse regional performance.

Benefit: Helps in region-wise crop performance tracking and soil quality mapping.

4. Mobile Dashboard Accessibility

Description: Optimize dashboards for mobile devices through Power BI Mobile.

Benefit: Farmers and agronomists can access insights on the field, increasing convenience and actionability.

5. Expansion to Other Crop Types and Regions

Description: Extend the model to include a wider variety of crops and diverse soil zones.

Benefit: Makes the solution scalable for different states and farming ecosystems.

6. Multi-Language Support

Description: Add support for regional languages within the Power BI reports.

Benefit: Ensures inclusive access for non-English-speaking users across India.

Appendix

Project Resources

1. Source Code & Data Files

- o. The data preprocessing, DAX calculations, and Power Query transformations used in this project are available in the Power BI .pbix file.
- o. File Name: Future Grow Tech Smart Farming.pbix

2. GitHub Repository

- o. All project resources, documentation, and version control are hosted on GitHub.
- o. GitHub Link
- o. https://github.com/praj07022/PowerBi

3. Project Demo Video

o. A brief walkthrough of the dashboard with features explanation.

https://www.youtube.com/watch?v=4K29qGV9Q4g

Additional Resources

- Data Source: [Kaggle, FAO USDA, Indian Gov-data.gov.in]
- Tools Used:
 - Microsoft Power BI
 - Microsoft Excel (for preprocessing)
 - o Power Query Editor
 - DAX (Data Analysis Expressions)