inverior Code

 If a computation produces the same value in every loop iteration, move it out of the loop

An expression can be moved out of the loop if all its operands are invariant in the loop

t1 = 100*Nfor i = 1 to Nx = x + 1for j = 1 to N a(i,j) = 100*N + 10*i + j + x

After Compiles Optimizations - ex.: Copy Proposition, Algebraic Simplification.

CSE - Common Sb-Expression

Elimination

Usefulness of LICM:

Reducing work inside a loop nest is very beneficial - CSE of Expression = > x instructions become x/2;

- LICM of Expression = Dx instructions become x/N.

Invariant Operands

- · Constant Values
- · Variables whose definitions are outside the loop
- Operand has only one reaching definition and that definition is loop invariant

- · Statement can be moved only if
 - All the Uses are Dominated by the Statement
 - The Exit of the Loop is Dominated by the Statement

- Clearly a single definition is a safe restrictions
 - There could be many definition with the same value

Conditions

- Defs. of B and C outside the Loop
- · Exit Dominated by Statement
- · Uses of A dominated by Statemen

Handling Nested Loops Process loops from innermost to outermost

Gosithm For LICM:

Observations

- Loop Invariant
 - · Operands are defined outside loop or invariant themselves
- Code Motion
 - Not all loop invariant instructions can be moved to pre-header.
 3.

Algorithm

- Find Invariant Expression
- Check Conditions for Code Motion
- Apply Code Transformation

Detecting Loop Investigat Computation

Algorithm

- 1. Compute Reaching Definitions for every variable in every Basic Block
- 2. Mark Invariant a statement s: a = b+c if
 - All definitions of b and c that reach the statement s are outside the loop
 - What about constants b, c?

Repeat: Mark Invariant if

- All reaching definitions of b are outside the loop, or
- There is exactly one reaching definition for b, and it is from a loopinvariant statement inside the loop
- Idem for c
- · Until no changes to set of loop-invariant statements.

Code letion Algerithm	First Summery
V	Loop Invariant Code Motion
• Given: a set of nodes in a loop	Important and Profitable Transformation
Compute Reaching Definitions Compute Loop Invariant Computation	1
Compute Dominators	Precise Definition and Algorithm for Loop Invariant computation
Find the exits of the loop, nodes with successors outside the loop	computation —
Candidate Statement for Code Motion:	Precise Algorithm for code motion
Loop Invariant	
In blocks that dominate all the Exits of the Loop	Combination of Several Analyses
Assign to variable not assigned to elsewhere in the loop	Use of Reaching Definitions (DU-chains)
In blocks that dominate all blocks in the loop that use the variable assigned Perform a depth-first search of the blocks	Use Dominators
Move candidate to pre-header if all the invariant operations it depends on	- Use Dominators
have been moved	
)
Induction Variables in	Lceps
7	
• What is an Induction Variable?	Importance
For a given loop variable v is an induction variable iff	Pervasive in Computations that Manipulate Arrays
Its value Changes at Every Iteration	Allow for Understanding of Data Access Patterns in Memory Access
Is either incremented or decremented by a Constant Amount	Support Transformations Tailored to Memory Hierarchy
Either Compile-time Known or Symbolically Constant	Can Be Eliminated with Strength Reduction
	Substantially reduce the weight of address calculations
• Classification:	Combination with CSE
 Basic Induction Variables 	• Example: for $i = 1$ to N
• A single assignment in the loop of the form $x = x + constant$	for i = 1 to N $+1 = 0a(i.1)$
• Example: variable i in for $i = 1$ to 10	for j = 1 to N a(i,j) = b(i,j) t2 = &b(i,1)
 Derived Induction Variables 	for j = 1 to N
 A linear function of a basic induction variable 	*t1 = *t2
• variable \hat{j} in the loop assigned $\hat{j} = c_1 * i + c_2$	t1 += 8 $t2 += 8$
Detection of Induction Variables	- 1
Algorithm:	Example between the slices SO and 57.
Inputs: Loop L with Reaching Definitions and Loop Invariant	Confidence of the sounds
Output: For each Induction Variable j the triple (i,c,d) s.t. the value	50 and 57.
of $j = i * c + d$	
 Find the Basic Induction Variables by Scanning the Loop L such that each Basic Induction Variable has (i,1,0) 	Second Summery
Search for variables k with a single assignment to k of the form:	Induction Variables
• $k = j * b$, $k = b*j$, $k = j/b$, $k = +j$ with b a constant and j a basic	Change Values at Every Iteration of a Loop by a Constant amount
induction variable	Basic and Derived Induction Variables with Affine Relation
Check if the assignment dominates the definition points for j	
	Great Opportunity for Transformations
	Pervasive in Loops that Manipulation Array Variables
	Loop Control and Array Indexing
	Combination of Various Analyses and
	Transformations
	- Dominators, Reaching Definitions
	 Strength Reduction, Dead Code Elimination and Copy Propagation and Common Sub-Expression Elimination
	and Common Sub-Expression Elimination