

# REPORT DOCUMENTATION PAGE

*Form Approved  
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

|                                                                                                 |                             |                              |                                    |                     |                                                                |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|------------------------------------|---------------------|----------------------------------------------------------------|--|
| 1. REPORT DATE (DD-MM-YYYY)                                                                     |                             |                              | 2. REPORT TYPE<br>Technical Papers |                     | 3. DATES COVERED (From - To)                                   |  |
| 4. TITLE AND SUBTITLE                                                                           |                             |                              |                                    |                     | 5a. CONTRACT NUMBER                                            |  |
|                                                                                                 |                             |                              |                                    |                     | 5b. GRANT NUMBER                                               |  |
|                                                                                                 |                             |                              |                                    |                     | 5c. PROGRAM ELEMENT NUMBER                                     |  |
|                                                                                                 |                             |                              |                                    |                     | 5d. PROJECT NUMBER<br><i>2302</i>                              |  |
|                                                                                                 |                             |                              |                                    |                     | 5e. TASK NUMBER<br><i>MIG2</i>                                 |  |
|                                                                                                 |                             |                              |                                    |                     | 5f. WORK UNIT NUMBER<br><i>346120</i>                          |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)                                              |                             |                              |                                    |                     | 8. PERFORMING ORGANIZATION REPORT                              |  |
| Air Force Research Laboratory (AFMC)<br>AFRL/PRS<br>5 Pollux Drive<br>Edwards AFB CA 93524-7048 |                             |                              |                                    |                     |                                                                |  |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                       |                             |                              |                                    |                     | 10. SPONSOR/MONITOR'S ACRONYM(S)                               |  |
| Air Force Research Laboratory (AFMC)<br>AFRL/PRS<br>5 Pollux Drive<br>Edwards AFB CA 93524-7048 |                             |                              |                                    |                     | 11. SPONSOR/MONITOR'S NUMBER(S)<br><i>Please see attached</i>  |  |
| 12. DISTRIBUTION / AVAILABILITY STATEMENT                                                       |                             |                              |                                    |                     |                                                                |  |
| Approved for public release; distribution unlimited.                                            |                             |                              |                                    |                     |                                                                |  |
| 13. SUPPLEMENTARY NOTES                                                                         |                             |                              |                                    |                     |                                                                |  |
| 14. ABSTRACT                                                                                    |                             |                              |                                    |                     |                                                                |  |
| <b>20030128 233</b>                                                                             |                             |                              |                                    |                     |                                                                |  |
| 15. SUBJECT TERMS                                                                               |                             |                              |                                    |                     |                                                                |  |
| 16. SECURITY CLASSIFICATION OF:                                                                 |                             |                              | 17. LIMITATION OF ABSTRACT         | 18. NUMBER OF PAGES | 19a. NAME OF RESPONSIBLE PERSON<br>Leilani Richardson          |  |
| a. REPORT<br>Unclassified                                                                       | b. ABSTRACT<br>Unclassified | c. THIS PAGE<br>Unclassified | <i>A</i>                           |                     | 19b. TELEPHONE NUMBER<br>(include area code)<br>(661) 275-5015 |  |

6302 MIG 2

**MEMORANDUM FOR PRS (In-House Publication)**

FROM: PROI (STINFO)

16 Mar 2001

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2001-053  
Miller, T.C., "Crack Growth Rates in a Propellant Under Various Conditions" (VuGraphs)

JANNAF 34<sup>th</sup> Structures & Mechanical Behavior Subcommittee Meeting (Statement A)  
(Cocoa Beach, FL, 26-30 Mar 01) (Deadline: 26 Mar 2001)

# CRACK GROWTH RATES IN A PROPELLANT UNDER VARIOUS CONDITIONS

27 Mar 01

Tim Miller

Engineer

Propulsion Directorate

Air Force Research Laboratory



# Introduction



Introduction  
Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Cracks develop during manufacturing, handling, and storage of rubbery particulate composites
- During the service life, the cracks may begin to grow, but may still be subcritical because the cracks may grow slower than the burn rate of the propellant
- Results for three types of specimens are described. This is done both at ambient and 1000 psi (6895 kPa) pressure.



# Complications in Propellant Fracture Analysis



Introduction

Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Propellant has unusual properties (time dependence, large deformations, inhomogeneous microstructure) and has not been analyzed as thoroughly as more conventional materials

- Conventional experimental approaches do not always work well because of these properties
- Service conditions vary from long-term low stress conditions caused by thermal loads during storage to short-term high stress conditions caused by pressurization during launch

# Experimental Procedure



Introduction

Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Specimen geometries and test matrix
- Test conditions
- Equipment



# Specimen Geometries and Test Matrix

## Introduction

## Experimental Procedure

## Results and Discussion

## Summary and Conclusions

| Specimen Type               | Figure                                                                                                                                                                                                                                                           | Test Conditions                                                            |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Single edge notched tension | <p><math>W = 1 \text{ in (} 25.4 \text{ mm)}</math><br/> <math>a = 0.1, 0.3 \text{ in (} 2.54, 7.62 \text{ mm)}</math><br/> <math>h = 3, 5 \text{ in (} 76.2, 127 \text{ mm)}</math><br/> thickness = 0.2, 0.5, 1.0, 1.5 in<br/> (5.08, 12.7, 25.4, 38.1 mm)</p> | Strain rate = 0.067 in/in/min,<br>ambient pressure, 1000 psi<br>(6895 kPa) |
| Biaxial stress              | <p><math>2W = 8 \text{ in (} 203.2 \text{ mm)}</math><br/> <math>2a = 1.5 \text{ in (} 38.1 \text{ mm)}</math><br/> <math>h = 2 \text{ in (} 50.8 \text{ mm)}</math><br/> thickness = 0.2 in (5.08 mm)</p>                                                       | Strain rate = 0.100 in/in/min,<br>ambient pressure                         |
| Surface cracked             | <p><math>a = c = 0.4 \text{ in (} 10.16 \text{ mm)}</math><br/> <math>l = W = 2 \text{ in (} 50.8 \text{ mm)}</math><br/> height = 2.75 in (69.85 mm)</p>                                                                                                        | Strain rate = 0.067 in/in/min,<br>1000 psi (6895 kPa) pressure             |

# Test Conditions

Introduction

Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Ambient temperature
- Ambient pressure and 6895 kPa pressure (nitrogen gas)
- Constant strain rate tests (0.067 - 0.100 mm/mm/min)

# Equipment



Introduction

Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Testing machine
- Pressure test chamber
- Videotape equipment





# Fixture Is Used to Apply Uniform Displacement Boundary Conditions



## Introduction

## Experimental Procedure

## Results and Discussion

## Summary and Conclusions



# Flowchart for Experimental Procedure



Introduction

### **Experimental procedure**

## Results and Discussion

### **Summary and Conclusions**



Nonsmooth or irregular?

# Nonuniform Crack Growth

## Introduction

## Experimental Procedure

## Results and Discussion

## Summary and Conclusions



# Results and Discussion

Introduction

Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Specimen Geometries (SENT, biaxial, surface cracked)

- Pressure Effects



# Comparison of Biaxial and SENT Specimen Growth Data



## Introduction

## Experimental Procedure

## Results and Discussion

## Summary and Conclusions

$$\frac{da}{dt} = C_1 K_1^{C_2} \text{ or } \log\left(\frac{da}{dt}\right) = \log(C_1) + C_2 \log(K_1)$$

| Specimen type | $\log(C_1)$ | $C_2$ | $\frac{da}{dt}$ (in/sec)  |
|---------------|-------------|-------|---------------------------|
| SENT          | -6.030      | 2.084 | $90 \text{ psi in}^{1/2}$ |
| Biaxial       | -6.590      | 2.375 | 0.00100<br>0.00032        |

# SENT and Surface Cracked Specimen Comparisons



## Introduction

## Experimental Procedure

## Results and Discussion

## Summary and Conclusions

- Similar growth rates found for both geometries
- Implication: SENT data can be used instead of testing with surface cracked specimens



# Ambient Vs. Pressurized Conditions



## Introduction

- Pressure causes crack growth to slow

## Experimental Procedure

- Microstructural explanation

## Results and Discussion

- Implication: ambient data may be overly conservative for ....

## Summary and Conclusions



# Combination of Data

## Introduction

## Experimental Procedure

## Results and Discussion

## Summary and Conclusions



# Summary and Conclusions



Introduction

Experimental  
Procedure

Results and  
Discussion

Summary and  
Conclusions

- Summary: this work has investigated the effect of pressure on fracture behavior of a rubbery particulate composite, and has compared the results for different crack geometries and different pressure conditions.  
Pressure delays the onset of crack growth and slows the subsequent growth rate. The results for the specimen geometries tested (both at ambient and 1000 psi (6895 kPa) pressure) show good agreement.
- Conclusions:
  - Good agreement between biaxial, SENT, and surface cracked specimens
  - Pressure inhibits the start of crack growth and slows the subsequent crack growth
  - Pressurized test data should be used to test for pressurized service conditions