

Design and Implementation of Vectorized Pseudorandom Number Generators

Master's Thesis Defense and Presentation

Markus Pawellek

May 25, 2020

Outline

Introduction

Pseudorandom Number Generators

Design of the Library

Vectorization and SIMD Architectures

Xoroshiro128+

Mersenne Twister MT19937

Uniform Distribution Functions

Evaluation and Results

Conclusions and Future Work

What do we need random numbers for?

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

Goals:

vectorize existing PRNGs

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- vectorize existing PRNGs
- create a software library and design a good API

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- vectorize existing PRNGs
- create a software library and design a good API
- apply library to physical problems

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- vectorize existing PRNGs
- create a software library and design a good API
- apply library to physical problems
- compare performance to other implementations

Pseudorandom Number Generators

What is a random sequence?

What is a random sequence?

existing formal concepts not applicable to computer systems

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

Unreproducibility

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

- Unreproducibility
- Speed Limitations

Pseudorandom Number Generator Definition

 $S \dots$ Set of States

 $T \dots$ Transition Function

 $U \dots$ Set of Possible Outputs

 $G \dots$ Generator Function

$$\mathfrak{G} \coloneqq (S, T, U, G), \qquad T \colon S \to S, \qquad G \colon S \to U$$
 $s_0 \in S, \qquad s_{n+1} \coloneqq T(s_n), \qquad u_n \coloneqq G(s_n)$

Design of the Library

pXart: header-only library written in C++

- pXart: header-only library written in C++
- support for CMake and build2

- pXart: header-only library written in C++
- support for CMake and build2
- providing online documentation

▶ PRNGs: MT19937, Xoroshiro128+, MSWS

- ▶ PRNGs: MT19937, Xoroshiro128+, MSWS
- real and integer uniform distributions

- ▶ PRNGs: MT19937, Xoroshiro128+, MSWS
- real and integer uniform distributions
- different seeding facilities

Vectorization and SIMD Architectures

Single Instruction Multiple Data

- Single Instruction Multiple Data
- processor contains vector registers multiple elements

- Single Instruction Multiple Data
- processor contains vector registers multiple elements
- processor operates on all values simultaneously

SIMD Implementations

Actual Hardware:

SIMD Implementations

Actual Hardware:

SSE, AVX and AVX512 instruction sets by Intel

Actual Hardware:

- SSE, AVX and AVX512 instruction sets by Intel
- Assembler Instructions | Automatic Vectorization | SIMD Intrinsics

Actual Hardware:

- SSE, AVX and AVX512 instruction sets by Intel
- Assembler Instructions | Automatic Vectorization | SIMD Intrinsics

Actual Hardware:

- SSE, AVX and AVX512 instruction sets by Intel
- Assembler Instructions | Automatic Vectorization | SIMD Intrinsics

Why should we vectorize PRNGs manually?

performance and speed

Actual Hardware:

- SSE, AVX and AVX512 instruction sets by Intel
- Assembler Instructions | Automatic Vectorization | SIMD Intrinsics

- performance and speed
- use full functionality of today's processors

Actual Hardware:

- SSE, AVX and AVX512 instruction sets by Intel
- Assembler Instructions | Automatic Vectorization | SIMD Intrinsics

- performance and speed
- use full functionality of today's processors
- no automatic vectorization possible

Actual Hardware:

- SSE, AVX and AVX512 instruction sets by Intel
- Assembler Instructions | Automatic Vectorization | SIMD Intrinsics

- performance and speed
- use full functionality of today's processors
- no automatic vectorization possible
- external vectorized code needs random numbers

$$x, y \in \mathbb{R}, \qquad r^2 = x^2 + y^2$$

Xoroshiro128+

Xoroshiro128+ Scheme

Xoroshiro128+ Scheme

scrambled linear PRNG

Xoroshiro128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

Xoroshiro 128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

• period: $2^{128} - 1$

Xoroshiro 128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

- period: $2^{128} 1$
- jump operations

several parallelization techniques for multiple streams

- several parallelization techniques for multiple streams
- ▶ here: multiple instances of the same generator

- several parallelization techniques for multiple streams
- ▶ here: multiple instances of the same generator
- seeding and parameter variations for multiple streams

Mersenne Twister MT19937

de-facto standard

- de-facto standard
- ► linear PRNG

- de-facto standard
- ► linear PRNG
- ▶ 19937-bit state, 32-bit output

- de-facto standard
- ▶ linear PRNG
- ▶ 19937-bit state, 32-bit output

• period: $2^{19937} - 1$

- de-facto standard
- ► linear PRNG
- ▶ 19937-bit state, 32-bit output

- period: $2^{19937} 1$
- ► 623-dimensional equidistributed

MT19937 Abbreviation

moving all elements with one transition is inefficient

- moving all elements with one transition is inefficient
- instead do n transitions at once

- moving all elements with one transition is inefficient
- \triangleright instead do n transitions at once
- example with n=8 and m=5; reality with n=624 and m=397

example: two-element-vector; reality: up to eight-element-vector

- example: two-element-vector; reality: up to eight-element-vector
- add vector-register-sized buffer at the end

- example: two-element-vector; reality: up to eight-element-vector
- add vector-register-sized buffer at the end
- copy generated head to the end and do the vectorized loop

Uniform Distribution Functions

Real Uniform Distribution: Floating-Point Encoding

$$x = (-1)^s \cdot m \cdot 2^{e-o}$$

- ► IFFF 754
- we use only normalized numbers

get random integer

- get random integer
- shift bits with highest entropy into fraction part

- get random integer
- shift bits with highest entropy into fraction part
- ightharpoonup set sign and exponent to put floating-point value in range [1,2)

- get random integer
- shift bits with highest entropy into fraction part
- lacktriangle set sign and exponent to put floating-point value in range [1,2)
- subtract one from result

unbiased uniform integer algorithms should not be vectorized

- unbiased uniform integer algorithms should not be vectorized
- use simple multiplication-based approximation

$$x \in \mathbb{N}_0, \ x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

- unbiased uniform integer algorithms should not be vectorized
- use simple multiplication-based approximation

$$x \in \mathbb{N}_0, \ x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

use 64-bit multiplication for 32-bit integers

- unbiased uniform integer algorithms should not be vectorized
- use simple multiplication-based approximation

$$x \in \mathbb{N}_0, \ x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

- use 64-bit multiplication for 32-bit integers
- bias can be neglected for typical simulations

Evaluation and Results

Consistency and Correctness: Unit Tests, API Tests, Examples

- Consistency and Correctness: Unit Tests, API Tests, Examples
- Statistical Performance: TestU01, dieharder

- Consistency and Correctness: Unit Tests, API Tests, Examples
- ► Statistical Performance: TestU01, dieharder
- \blacktriangleright Performance: Filling a Cache, Monte Carlo π

Table: MT19937 Monte Carlo π Benchmark for 10^8 Samples

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38{ m s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

Table: MT19937 Monte Carlo π Benchmark for 10^8 Samples

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

ightharpoonup pXart is faster in Monte Carlo π benchmark

Table: MT19937 Monte Carlo π Benchmark for 10^8 Samples

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38{ m s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

- ightharpoonup pXart is faster in Monte Carlo π benchmark
- scalar interface of RNGAVXLIB reduces performance

Table: MT19937 Monte Carlo π Benchmark for 10^8 Samples

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

- ightharpoonup pXart is faster in Monte Carlo π benchmark
- scalar interface of RNGAVXLIB reduces performance
- Intel MKL VSL always fills vector of data

Table: MT19937 Monte Carlo π Benchmark for 10^8 Samples

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38{ m s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

- ightharpoonup pXart is faster in Monte Carlo π benchmark
- scalar interface of RNGAVXLIB reduces performance
- Intel MKL VSL always fills vector of data
- benchmarks are biased

	pXart	RNGAVXLIB	Intel MKL VSL
Portable	V	X	×
Good API	~	×	×
Open Source	V	✓	×
Documentation	~	×	✓
Alternative Distributions	×	✓	✓
AVX512 Support	×	×	✓
Header-Only	V	X	×
Build System Support	V	X	×

Conclusions and Future Work

photon simulation and path tracing

- photon simulation and path tracing
- vectorized PRNGs speedup code even with caches

- photon simulation and path tracing
- vectorized PRNGs speedup code even with caches
- ► MT19937 or Xoroshiro 128+?

alternative distributions

- alternative distributions
- seeding mechanisms for thread support

- alternative distributions
- seeding mechanisms for thread support
- AVX512 support

- alternative distributions
- seeding mechanisms for thread support
- ► AVX512 support
- latency optimizations

- alternative distributions
- seeding mechanisms for thread support
- ► AVX512 support
- latency optimizations
- application to real-world problems

Thank you for Your Attention!

References

- Barash, L. Yu., Maria S. Guskova und Lev. N. Shchur: Employing AVX Vectorization to Improve the Performance of Random Number Generators. Programming and Computer Software, 43(3):145–160, 2017.
- (2) Intel: Intel Intrinsics Guide, 2019. https://software.intel.com/sites/landingpage/ IntrinsicsGuide/, besucht: 2019-11-21.
- (3) Intel: Intel® Math Kernel Library, 2019. https://software.intel.com/en-us/mkl, besucht: 2019-11-30.
- (4) Kneusel, Ronald T.: Random Numbers and Computers. Springer, 2018, ISBN 978-3-319-77697-2.
- (5) Landau, David P. und Kurt Binder: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press – University of Cambridge, fourth edition Auflage, 2014, ISBN 978-1-107-07402-6.

- (6) L'Ecuyer, Pierre: Uniform Random Number Generation. Annals of Operations Research, 53:77–120, Dezember 1994.
- (7) Patterson, David A. und John L. Hennessy: Computer Organization and Design. Morgan Kaufmann – Elsevier, fifth edition Auflage, 2014, ISBN 978-0-12-407726-3.
- (8) Pawellek, Markus: Design and Implementation of Vectorized Pseudorandom Number Generators and their Application to Simulations of Photon Propagation, 2019. https://github.com/lyrahgames/pxart/blob/master/ docs/thesis/main.pdf, besucht: 2020-05-25.
- (9) Pawellek, Markus: pxart, 2019. https://github.com/lyrahgames/pxart, besucht: 2019-12-11.
- (10) Pharr, Matt, Wenzel Jakob und Greg Humphreys: Physically Based Rendering. Morgan Kaufmann – Elsevier, third edition Auflage, 2016, ISBN 978-0-12-800645-0.

Appendix: Pseudorandom Number Generator Concept

$$s_0 \sim \mathcal{U}_S, \quad u_1 \leftarrow \mathcal{G}(), \quad u_2 \leftarrow \mathcal{G}(), \quad u_3 \leftarrow \mathcal{G}(), \quad \dots$$

Appendix: Pseudorandom Number Generator Example

$$s_0 \coloneqq 0, \qquad (s_n) = \overline{2310}, \qquad (u_n) = \overline{0110}$$

Appendix: Pseudorandom Number Generator Example

construction of "good" PRNG is difficult

Appendix: Pseudorandom Number Generator Example

- construction of "good" PRNG is difficult
- pseudorandom number sequences will be periodic

Appendix: pXart Usage in C++

```
#include <pxart/pxart.hpp>
//
std::random_device rd{};
pxart::mt19937 rng1{};
pxart::mt19937 rng1{rd};
pxart::mt19937 rnq1{pxart::mt19937::default_seeder{rd()}};
//
pxart::xrsr128p rng2{rng1};
//
const auto x = pxart::uniform<float>(rng1);
//
const auto y = pxart::uniform(rng2, -1.0f, 1.0f);
```


$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N}$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 87}{100} = 3.48$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 765}{1000} = 3.06$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 7856}{10000} = 3.1424$$

Appendix: Example Usage

```
// ...
#include <pxart/pxart.hpp>
// ...
pxart::mt19937 rng{};
const int samples = 100000000;
int pi = 0;
for (auto i = samples; i > 0; --i) {
  const auto x = pxart::uniform<float>(rng);
 const auto v = pxart::uniform<float>(rng);
 pi += (x * x + v * v <= 1);
pi = 4.0f * pi / samples;
// ...
```

Appendix: Processor

Appendix: Memory Hierarchy

Appendix: MT19937 SIMD Leap Frogging

vectorized generator will give same output as scalar one, only faster

Appendix: MT19937 Speed-Up Monte Carlo π

Appendix: Xoroshiro128+ Speed-Up Monte Carlo π

