Optimal K-means and K-medoids Clustering

Zack Horton and Tanner Street December 13th, 2023

Problem & Motivation

- Background: Clustering groups similar observations in distinct groups
 - K-Means uses centroids
 - K-Medoids uses medoids
- Problem: Clustering is performed with heuristic algorithms
 - No guarantee of optimality
 - Results vary based on random initializations
- Goal: Formulate MIO models for K-Means and K-Medoids clustering
- Motivation: Address the shortcomings of heuristic algorithms while remaining scalable and time efficient

Data Collection

- Two datasets from UC Irvine Machine Learning Repository:
 Abalone and Similarity Prediction
- Abalone: 4,177 observations, 9 features (mostly continuous)
- Similarity Prediction: 100 observations, 17 features (mostly categorical)

Methodology

Variables for MIO: Observation i assigned to cluster k: $z_{ik} \in \{0, 1\}$

Values for cluster k's centroids: $c_{ki} \in \mathbb{R}$

Distance between i and cluster k's centroid: $d_{ij} \geq 0$

Optimal K-Means Formulation

Constraints for MIO:

Ensure Cluster Assignment:

$$\sum_{k=1}^K z_{ik} = 1 \;, \quad orall i \in [1,n] \;.$$

$$k=1$$

Distance (if Manhattan):
$$d_{ij} = |x_{ij} - c_{kj}|$$

$$egin{aligned} d_{ij} & \geq x_{ij} - c_{kj} - \mathbf{M} imes (1-z_{ik}) \;, & orall i \in [1,n], & orall j \in [1,p], & orall k \in [1,K] \ d_{ij} & \geq c_{kj} - x_{ij} - \mathbf{M} imes (1-z_{ik}) \;, & orall i \in [1,n], & orall j \in [1,p], & orall k \in [1,K] \end{aligned}$$

$$egin{aligned} ext{Distance (if Euclidean):} \quad d_{ij} = ||x_{ij} - c_{kj}||_2^2 \ d_{ij} & \geq (x_{ij} - c_{kj})^2 - \mathbf{M} imes (1 - z_{ik}) \ , \quad orall i \in [1, n], \quad orall j \in [1, p], \quad orall k \in [1, K] \end{aligned}$$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{p} d_{ij}$$

on:
$$l_{ij}$$

Variables for MIO:

Observation i assigned to cluster k: $z_{ik} \in \{0,1\}$ Observation i is medoid of cluster k: $m_{ik} \in \{0,1\}$

Values for cluster k's medoid: $c_{ki} \in \mathbb{R}$

Distance between i and cluster k's medoid: $d_{ij} \geq 0$

Optimal K-Medoids Formulation

Constraints for MIO:

Ensure Cluster Assignment:

$$\sum_{k=1}^K z_{ik} = 1 \ , \quad orall i \in [1,n]$$

Ensure Medoid Assignment:

$$egin{aligned} \sum_{i=1}^K m_{ik} &= 1 \;, \quad orall k \in [1,K] \ \sum_{k=1}^K m_{ik} &\leq 1 \;, \quad orall i \in [1,n] \ m_{ik} &\leq z_{ik} \;, \quad orall i \in [1,n], \quad orall k \in [1,K] \end{aligned}$$

Determine Medoid Values:

$$egin{aligned} x_{ij}' - \mathbf{M} imes (1-m_{ik}) &\leq c_{kj} \ , \quad orall i \in [1,n], \quad orall j \in [1,p], \quad orall k \in [1,K] \ c_{kj} &\leq x_{ij}' + \mathbf{M} imes (1-m_{ik}) \ , \quad orall i \in [1,n], \quad orall j \in [1,p], \quad orall k \in [1,K] \end{aligned}$$

 $egin{aligned} ext{Distance (if Manhattan):} \quad d_{ij} &= |x_{ij} - c_{kj}| \ d_{ij} &\geq x_{ij} - c_{kj} - \mathbf{M} imes (1 - z_{ik}) \;, \quad orall i \in [1, n], \quad orall j \in [1, p], \quad orall k \in [1, K] \ d_{ij} &\geq c_{kj} - x_{ij} - \mathbf{M} imes (1 - z_{ik}) \;, \quad orall i \in [1, n], \quad orall j \in [1, p], \quad orall k \in [1, K] \end{aligned}$

$$egin{aligned} ext{Distance (if Euclidean):} \quad d_{ij} &= ||x_{ij} - c_{kj}||_2^2 \ d_{ij} &\geq (x_{ij} - c_{kj})^2 - \mathbf{M} imes (1 - z_{ik}) \;, \quad orall i \in [1, n], \quad orall j \in [1, p], \quad orall k \in [1, K] \end{aligned}$$

Objective Function:

$$\min \sum_{i=1}^n \sum_{j=1}^p d_{ij}$$

Evaluation Procedure

 Compare heuristic and MIO models on each dataset using large variety of parameters

- Reasonable ranges for number of clusters and time limit were determined
- Metrics: Within-cluster sum of squares and average silhouette scores

Preprocessing	Percentage of Observations	Warm Start	Distance Metric	Number of Clusters	Time Limit [sec]
Normalized	10%	Yes	Euclidean	3	30
Scaled	25%	No	Manhattan	4	90
	75%			5	180

Key Findings

Analyzina Deculto	Sim	ilarity	Abalone		
Analyzing Results	K-Means	K-Medoids	K-Means	K-Medoids	
Avg % Improvement in WCSS: Heuristics to Opt. Warm Start	14%	15%	0.4%	-5.2%	
Avg % Improvement in WCSS: Opt. Cold Start to Opt. Warm Start	4%	1%	50%	50%	
Avg % Improvement in Silhouette: Heuristics to Opt. Warm Start	-1%	7%	-1%	14%	
Avg % Improvement in Silhouette: Opt. Cold Start to Opt. Warm Start	4%	1%	80%	54%	
Total % Euclidean Models w/o solution or no change to Heuristic	21%	11%	80%	14%	

THANK YOUQuestions?

Zack Horton zhhorton@mit.edu

Tanner Street street24@mit.edu

Similarity Dataset		Normalized	Scaled
Avg % Improvement in Silhouette:	K-Means	-5%	2%
Heuristics to Opt. Warm Start	K-Medoids	14%	-1%
Avg % Improvement in Silhouette:	K-Means	-7%	-1%
Heuristics to Opt. Cold Start	K-Medoids	14%	1%
Abalone Dataset		Normalized	Scaled
Abalone Dataset Avg % Improvement in Silhouette:	K-Means	Normalized -1%	Scaled -1%
	K-Means K-Medoids		
Avg % Improvement in Silhouette:		-1%	-1%

3				
Avg % Improvement in Silhouette:	K-Means	-6%	1%	1%
Heuristics to Opt. Warm Start	K-Medoids	5%	11%	5%
Avg % Improvement in Silhouette: Heuristics to Opt. Cold Start	K-Means	-5%	-1%	-6%
	K-Medoids	6%	15%	2%
Abalone Dataset		10% Obs.	25% Obs.	75% Obs.
Abalone Dataset Avg % Improvement in Silhouette:	K-Means	10% Obs. -1%	25% Obs. -1%	75% Obs. 0%
	K-Means K-Medoids			
Avg % Improvement in Silhouette:		-1%	-1%	0%

Similarity Dataset

10% Obs.

25% Obs.

75% Obs.