Lecture 16 Deep Learning for Human Pose Estimation

Human pose estimation

Applications

Action recognition

Human Parsing

Game / Animation

Challenges

Traditional Methods

Figure Drawing

- Cylinders for each body parts
- Join up the cylinders

Pictorial Structures

- Unary templates
- Pairwise springs

Fischler & Elschlager 1973
Felzenszwalb & Huttenlocher 2005

Mixtures of Parts

 Unary template for each mixture type

Yang & Ramanan 2011

DeepPose

First deep learning based algorithms for human pose estimation

Alexander Toshev × Christian Szegedy

- ☐ By Google in CVPR 2014
- ☐ Cascade of DNN regressors

Can you tell which part is from an image patch?

What about this patch?

DeepPose: Holistic human pose estimation as a DNN

Initial stage

Training: Minimizing L2 distance between the prediction and the true pose vector.

$$\arg\min_{\theta} \sum_{(x,y)\in D_N} \sum_{i=1}^k ||\mathbf{y}_i - \psi_i(x;\theta)||_2^2$$

Cascade of Pose Regressors

- due to the fixed input size of 220 × 220, the network has limited capacity to look at detail
 - ☐ it learns filters capturing pose properties at coarse scale

Stage s

Pipeline

Experiments

Method	A	rm	L	84	
	Upper	Lower	Upper	Lower	Ave.
DeepPose-st1	0.5	0.27	0.74	0.65	0.54
DeepPose-st2	0.56	0.36	0.78	0.70	0.60
DeepPose-st3	0.56	0.38	0.77	0.71	0.61
Dantone et al. [2]	0.45	0.25	0.65	0.61	0.49
Tian et al. [24]	0.52	0.33	0.70	0.60	0.56
Johnson et al. [13]	0.54	0.38	0.75	0.66	0.58
Wang et al. [25]	0.565	0.37	0.76	0.68	0.59

0.70

0.56

Percentage of Correct Parts (PCP) at 0.5 on LSP.

Initial stage I

stage 2

stage 3

Limitations

- → Low accuracy in high precision region
- →One prediction per image. No candidate.
- →What if the initial estimate is very far from the groundtruth?

Solution: use heatmaps

SolutionHeatmaps regression

Efficient Object Localization Using Convolutional Networks

CVPR 2015

- ☐ NYU team (Yann LeCun)
- ☐ Larger and wilder dataset
 - ☐ MPII Human Pose Estimation DB
 - ☐ 20000+ images from YouTube

Multi-Resolution Heatmap Regressor

<u>Observation</u>: The spatial invariance achieved by pooling layers comes at the price of limiting spatial localization accuracy.

Cascade Heatmap Regression Model

Experiments

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Upper Body	
Gkioxari et al.		36.3	26.1	15.3	-	-	1940	25.9	-
Sapp & Taskar		38.0	26.3	19.3	2		-	27.9	-
Yang & Ramanan		56.2	41.3	32.1	36.2	33.2	34.5	43.2	44.5
Pishchulin et al.	74.2	49.0	40.8	34.1	36.5	34.4	35.1	41.3	44.0
This work 4x	96.0	91.9	83.9	77.7	80.9	72.2	64.8	84.5	82.0

Performance improvement from cascaded model

Comparison with prior-art: MPII (PCKh @ 0.5)

Missing point?

- → These methods lack of structure modeling
- → Still have the same problem as DeepPose: What if the true part is not in the cropped region?

Context matters

Which part corresponds to a body part?

Context matters

Which part corresponds to a body part?

Local Image Evidence is Weak

Certain parts are easier to detect than others

Part Context is a Strong Cue

Part detection confidences provide spatial context cues

Structure also matters...

Structured Feature Learning

Deep Mixture of Parts

Iterative Error Feedback

Stacked Hourglass

Convolutional Pose Machine

CVPR 2016 CMU

Previous Work: Pose Machine (ECCV 14)

Stage I Confidence

Previous Work: Pose Machine (ECCV 14)

Stage II Confidence

Previous Work: Pose Machine (ECCV 14)

Stage III Confidence

CPM: Learning Feature Representations

Convolutional Architectures for Feature Embedding

CPM: Learning Feature Representations

Convolutional Architectures for Feature Embedding

Full Pipeline

Receptive field is quite important

Spatial Context from Heatmaps

Intermediate Supervision Addresss Vanishing Gradients

Experiments

Iterative Error Feedback

CVPR 2016

- Model dependencies in the output spaces
- Learning error feedback is easier than learning prediction directly
- Similar goal with Active Appearance Models (AAMs): end-to-end learning

Framework

Running Example

Submitted to ECCV 16
Jia Deng's Group

Keypoints

- ❖ Repeated bottom-up, top-down
- ❖ Intermediate supervision

Why is cascade not efficient enough?

Refinement of position within a local window could not offer much in the way of improvement for:

occluded limb

limb out of the window

We need to search over all scales of image

Hourglass Design: Capture information at every scale

Review:

- ☐ Local appearance: essensial for part detection
- ☐ Global understanding: orientation of the body, limb arrangement, relationships between parts, ...

Previous work: Tompson et al. CVPR15 Combine features from multi-resolution image

Single branch with bottom-up,top-down mechanism

Hourglass Design

- Two stacked hourglass module
- Layers are identical across each module

Intermediate Supervision

- Generate predictions
 - ➤ The network splits and produces a set of heatmaps (blue)
 - > The loss are applied on the prediction

- ❖ A 1x1 convolution re-maps the heatmaps to match the number of channels of the intermediate features.
 - ➤ These are added together before continuing forward.

Experiments

Results on FLIC dataset (PCK@0.2)

*	Elbow	Wrist
Tompson et al.[16]	93.1	89.0
Chen et al.[25]	95.3	92.4
Toshev et al. [24]	92.3	82.0
Sapp et al.[1]	76.5	59.1
Ours	98.2	95.2

Results: MPII dataset (PCKh@0.5)

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Total
Tompson et al., NIPS'14	95.8	90.3	80.5	74.3	77.6	69.7	62.8	79.6
Carreira et al., arXiV'15	95.7	91.7	81.7	72.4	82.8	73.2	66.4	81.3
Tompson et al., CVPR'15	96.1	91.9	83.9	77.8	80.9	72.3	64.8	82.0
Pishchulin et al., arXiV'15	94.1	90.2	83.4	77.3	82.6	75.7	68.6	82.4
Wei et al., arXiV'16	97.7	94.5	88.3	83.4	87.9	81.9	78.3	87.9
Our model	97.6	95.4	90.0	85.2	88.7	85.0	80.6	89.4

Component Analysis

Initial prediction vs. final prediction

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle
Initial prediction	96.7	92.9	85.0	79.8	83.7	78.6	74.3
Final prediction	97.7	94.6	88.5	88.3	87.5	83.0	79.0

Summary

- ☐ Receptive field size is essential
 - ☐ larger receptive field incorporates more context information
- ☐ Process features at both local and global context is essential
 - ☐ Iterative Error Feedback
 - ☐ Convolutional Pose Machine
 - ☐ Stacked Hourglasses

Other interesting papers

- Toshev, Alexander, and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." CVPR 2014.
- Tompson, Jonathan J., et al. "Joint training of a convolutional network and a graphical model for human pose estimation." NIPS, 2014.
- Chen, Xianjie, and Alan L. Yuille. "Articulated pose estimation by a graphical model with image dependent pairwise relations." NIPS, 2014.
- Jain, Arjun, et al. "Learning human pose estimation features with convolutional networks." ICLR, 2014.
- Jain, Arjun, et al. "Modeep: A deep learning framework using motion features for human pose estimation." ACCV, 2014.
- Tompson, Jonathan, et al. "Efficient object localization using convolutional networks." CVPR. 2015.
- Fan, Xiaochuan, et al. "Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation." CVPR, 2015.
- Pfister, Tomas, James Charles, and Andrew Zisserman. "Flowing convnets for human pose estimation in videos." ICCV, 2015.
- Chu, Xiao, et al. "Structured feature learning for pose estimation." CVPR, 2016.
- Yang, Wei, et al. "End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation." CVPR, 2016.
- Gkioxari, Georgia, Alexander Toshev, and Navdeep Jaitly. "Chained Predictions Using Convolutional Neural Networks." ECCV,2016.