Lecture4(part1)

Topics covered: Arithmetic

Integers are represented as binary vectors

Suppose each word consists of 32 bits, labeled 0...31.

Value of the binary vector interpreted as unsigned integer is:

$$V(b) = b_{31} \cdot 2^{31} + b_{30} \cdot 2^{30} + b_{29} \cdot 2^{29} + \dots + b_{1} \cdot 2^{1} + b_{0} \cdot 2^{0}$$

More generally in N bits,

$$V(b) = \sum_{n=0}^{n=N-1} b_n 2^n$$

- ☐ We need to represent both positive and negative integers.
- ☐ Three schemes are available for representing both positive and negative integers:
 - Sign and magnitude.
 - ◆ 1's complement.
 - ♦ 2's complement.
- ☐ All schemes use the Most Significant Bit (MSB) to carry the sign information:
 - ◆ If MSB = 0, bit vector represents a positive integer.
 - ◆ If MSB = 1, bit vector represents a negative integer.

- ☐ Sign and Magnitude:
 - ◆ Lower N-1 bits represent the magnitude of the integer
 - ◆ MSB is set to 0 or 1 to indicate positive or negative
- ☐ 1's complement:
 - ◆ Construct the corresponding positive integer (MSB = 0)
 - ◆ Bitwise complement this integer
- ☐ 2's complement:
 - ◆ Construct the 1's complement negative integer
 - ◆ Add 1 to this

В	Values represented						
$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement				
0 1 1 1	+ 7	+7	+ 7				
0 1 1 0	+ 6	+6	+ 6				
0 1 0 1	+ 5	+5	+ 5				
0 1 0 0	+ 4	+ 4	+ 4				
0 0 1 1	+ 3	+3	+ 3				
0 0 1 0	+ 2	+2	+ 2				
0001	+ 1	+ 1	+ 1				
0000	+ 0	+0	+ 0				
1000	- 0	- 7	- 8				
1001	- 1	- 6	- 7				
1010	- 2	- 5	- 6				
1011	- 3	- 4	- 5				
1 1 0 0	- 4	- 3	- 4				
1 1 0 1	- 5	- 2	- 3				
1 1 1 0	- 6	- 1	- 2				
1 1 1 1	- 7	- 0	- 1				

Range of numbers that can be represented in N bits

Unsigned: $0 < V(b) < 2^N - 1$

Sign and magnitude: $-2^{N-1}-1 < V(b) < 2^{N-1}-1$

O has both positive and negative representation

One's complement:: $-2^{N-1}-1 < V(b) < 2^{N-1}-1$

0 has both positive and negative representation

Two's complement:: $-2^{N-1} < V(b) < 2^{N-1} - 1$

O has a single representation, easier to add/subtract.

Value of a bit string in 2's complement

How to determine the value of an integer given:

Integer occupies N bits.

2's complement system is in effect.

Binary vector b represents a negative integer, what is V(b).

Write

$$b = 1 b_{n-1} b_{n-2} b_{n-3} \dots b_1 b_0$$

Then

$$V(b) = -2^{n-1} + b_{n-2}2^{n-2} + b_{n-3}2^{n-3} + \dots + b_22^2 + b_12^1 + b_02^0$$

$$(v(b) = -2^{n-1} + b_{n-2}2^{n-2} + b_{n-3}2^{n-3} + \dots + b_22^2 + b_12^1 + b_02^0$$
showing negative and positive parts of the expression)

So, in 4 bits, 1011 is

$$v(1011) = -8 + 3 = -5$$

Addition of positive numbers

Add two one-bit numbers

To add multiple bit numbers:

- ·Add bit pairs starting from the low-order or LSB (right end of bit vector)
- ·Propagate carries towards the high-order or MSB (left end of bit vector)

Addition and subtraction of signed numbers

- ☐ We need to add and subtract both positive and negative numbers.
- □ Recall the three schemes of number representation.
- □ Sign-and-magnitude scheme is the simplest representation, but it is the most awkward (inapplicable) for addition and subtraction operations. (has two forms for the zero number)
- ☐ 2's complement is the most efficient method for performing addition and subtraction of signed numbers.

Rules for addition and subtraction of signed numbers in 2's complement form

- ☐ To add two numbers:
 - ◆ Add their n-bit representations.
 - ◆ Ignore the carry out from MSB position.
 - Sum is the algebraically correct value in the 2's complement representation as long as the answer is in the range -2^{n-1} through $+2^{n-1}-1$.
- \square To subtract two numbers X and Y(X-Y):
 - lacktriangle Form the 2's complement of Y.
 - lacktriangle Add it to X using Rule 1.
 - lacktriangle Result is correct as long as the answer lies in the range -2^{n-1} through $+2^{n-1}-1$.

Addition Operations using Two's complement

The main advantage of using two's complement is converting subtraction into addition

Note: Don't forget to neglect the carry bit

Subtraction Operations using Two's complement

Overflow in integer arithemtic

- □ When the result of an arithmetic operation is outside the representable range an <u>arithmetic overflow</u> has occurred.
 - ♦ Range is -2^{n-1} through $+2^{n-1}-1$ for n-bit vector.
- ☐ When adding unsigned numbers, carry-out from the MSB position serves as the overflow indicator.
- □ When adding signed numbers, this does not work.
- \Box Using 4-bit signed numbers, add +7 and +4:
 - ◆ Result is 1011, which represents -5.
- ☐ Using 4-bit signed integers, add -4 and -6:
 - ◆ Result is 0110, which represents +6.

Overflow in integer arithmetic (contd..)

- Overflow occurs when both the numbers have the same sign.
 - ◆ Addition of numbers with different signs cannot cause an overflow.
- □ Carry-out signal from the MSB (sign-bit) position is not a sufficient indicator of overflow when adding signed numbers.
- \square Detect overflow when adding X and Y:
 - ◆ Examine the signs of X and Y.
 - lacktriangle Examine the signs of the result S.
 - lacktriangle When X and Y have the same sign, and the sign of the result differs from the signs of X and Y, overflow has occurred.
 - How to detect overflow by a logical circuit?

Overflow =?????????

Addition/subtraction of signed numbers

X _i	У _i	Carry-in c_i	$Sum s_i$	Carry-out c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_{i} = \overline{X}_{i} \overline{Y}_{i} C_{i} + \overline{X}_{i} Y_{i} \overline{C}_{i} + X_{i} \overline{Y}_{i} \overline{C}_{i} + X_{i} Y_{i} C_{i} = X_{i} \oplus Y_{i} \oplus C_{i}$$

$$C_{i+1} = Y_{i} C_{i} + X_{i} C_{i} + X_{i} Y_{i}$$

Example:

$$\frac{X}{Z} = \frac{7}{13} = \frac{0}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{0} \cdot \frac{1$$

At the ith stage:

Input:

 c_i is the carry-in

Output:

 s_i is the sum

 c_{i+1} carry-out to $(i+1)^{st}$ state

Addition logic for a single stage

Full Adder (FA): Symbol for the complete circuit for a single stage of addition.

- •Recall X Y is equivalent to adding 2's complement of Y to X.
- ·2's complement is equivalent to 1's complement + 1.
- $\bullet X Y = X + \overline{Y} + 1$
- ·2's complement of positive and negative numbers is computed similarly.

n-bit adder/subtractor

Adder inputs:

$$x_i, y_i, c_o = 0$$

Subtractor inputs:

$$X_i, \overline{Y}_i, c_o=1$$

n-bit adder/subtractor (contd..)

Detecting overflows

- Overflows can only occur when the sign of the two operands is the same.
- Overflow occurs if the sign of the result is different from the sign of the operands.
- □ Recall that the MSB represents the sign.
 - \bigstar $x_{n-1}, y_{n-1}, s_{n-1}$ represent the sign of operand x, operand y and result s respectively.
- Circuit to detect overflow can be implemented by the following logic expressions:

$$Overflow = x_{n-1}y_{n-1}\bar{s}_{n-1} + \bar{x}_{n-1}\bar{y}_{n-1}s_{n-1}$$

$$Overflow = c_n \oplus c_{n-1}$$

- •Cascade n full adder (FA) blocks to form a n-bit adder.
- ·Carries propagate or ripple through this cascade, <u>n-bit ripple carry adder.</u>

Carry-in c_0 into the LSB position provides a convenient way to perform subtraction.

Kn-bit numbers can be added by cascading kn-bit adders.

Each *n*-bit adder forms a block, so this is cascading of blocks. Carries ripple or propagate through blocks, <u>Blocked Ripple Carry Adder</u>

Computing the add time

Consider Oth stage:

- • c_I is available after 2 gate delays.
- • s_I is available after 1 gate delay.

Computing the add time (contd..)

Cascade of 4 Full Adders, or a 4-bit adder

- • s_0 available after 1 gate delays, c_1 available after 2 gate delays.
- • s_1 available after 3 gate delays, c_2 available after 4 gate delays.
- • s_2 available after 5 gate delays, c_3 available after 6 gate delays.
- • s_3 available after 7 gate delays, c_4 available after 8 gate delays.

For an *n*-bit adder, s_{n-1} is available after 2n-1 gate delays c_n is available after 2n gate delays.

Recall the equations:

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Second equation can be written as:

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

We can write:

$$c_{i+1} = G_i + P_i c_i$$

$$where G_i = x_i y_i \text{ and } P_i = x_i + y_i$$

- $\bullet G_i$ is called generate function and P_i is called propagate function
- • G_i and P_i are computed only from x_i and y_i and not c_i , thus they can be computed in one gate delay after X and Y are applied to the inputs of an n-bit adder.

Carry lookahead

$$\begin{split} c_{i+1} &= G_i + P_i c_i \\ c_i &= G_{i-1} + P_{i-1} c_{i-1} \\ \Rightarrow c_{i+1} &= G_i + P_i (G_{i-1} + P_{i-1} c_{i-1}) \\ continuing \\ \Rightarrow c_{i+1} &= G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2} c_{i-2})) \\ until \\ c_{i+1} &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + ... + P_i P_{i-1} ... P_1 G_0 + P_i P_{i-1} ... P_0 c_0 \end{split}$$

- •All carries can be obtained 3 gate delays after X, Y and c_0 are applied.
 - -One gate delay for P_i and G_i
 - -Two gate delays in the AND-OR circuit for c_{i+1}
- ·All sums can be obtained 1 gate delay after the carries are computed.
- •Independent of n, n-bit addition requires only 4 gate delays.
- This is called <u>Carry Lookahead</u> adder.

Carry-lookahead adder

Carry lookahead adder (contd..)

 \square Performing *n*-bit addition in 4 gate delays independent of *n* is good only theoretically because of fan-in constraints.

$$c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + ... + P_i P_{i-1} ... P_1 G_0 + P_i P_{i-1} ... P_0 c_0$$

- □ Last AND gate and OR gate require a fan-in of (n+1) for a n-bit adder.
 - For a 4-bit adder (n=4) fan-in of 5 is required.
 - Practical limit for most gates.
- ☐ In order to add operands longer than 4 bits, we can cascade 4-bit Carry-Lookahead adders. Cascade of Carry-Lookahead adders is called Blocked Carry-Lookahead adder.

Blocked Carry-Lookahead adder

Carry-out from a 4-bit block can be given as:

$$c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$$

Rewrite this as:

$$P_0^I = P_3 P_2 P_1 P_0$$

$$G_0^I = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

Subscript I denotes the blocked carry lookahead and identifies the block.

Cascade 4 4-bit adders, c_{16} can be expressed as:

$$c_{16} = G_3^I + P_3^I G_2^I + P_3^I P_2^I G_1^I + P_3^I P_2^I P_1^0 G_0^I + P_3^I P_2^I P_1^0 P_0^0 c_0$$

Blocked Carry-Lookahead adder (contd..)

After x_i , y_i and c_0 are applied as inputs:

- G_i and P_i for each stage are available after 1 gate delay.
- P^I is available after 2 and G^I after 3 gate delays.
- All carries are available after 5 gate delays.
- c_{16} is available after 5 gate delays.
- s_{15} which depends on c_{12} is available after 8 (5+3)gate delays (Recall that for a 4-bit carry lookahead adder, the last sum bit is available 3 gate delays after all inputs are available)

Multiplication of unsigned numbers

		,		X			0		(13) Multiplicand M (11) Multiplier Q
			,		_	1	_	1	Partial product (PP) #1
				1	1	0	1		Partial product (PP) #2
			0	0	0	0			Partial product (PP) #3
_		1	1	0	1				Partial product (PP) #4
	1	0	0	0	1	1	1	1	(143) Product P

- •Product of 2 n-bit numbers is at most a 2n-bit number.
- ·We should expect to store a double-length result.

Unsigned multiplication can be viewed as addition of shifted versions of the multiplicand.

Multiplication of unsigned numbers (contd..)

- ☐ We added the partial products at end.
 - ◆ Alternative would be to add the partial products at each stage.
- ☐ Rules to implement multiplication are:
 - ◆ If the *i*th bit of the multiplier is 1, shift the multiplicand and add the shifted multiplicand to the current value of the partial product.
 - Hand over the partial product to the next stage
 - Value of the partial product at the start stage is 0.

Multiplication of unsigned numbers (contd..)

Typical multiplication cell

Combinatorial array multiplier

Combinatorial array multiplier

Product is: $p_7, p_6, ... p_0$

Multiplicand is shifted by displacing it through an array of adders.

Combinatorial array multiplier (contd..)

- ☐ Combinatorial array multipliers are:
 - Extremely inefficient.
 - ◆ Have a high gate count for multiplying numbers of practical size such as 32-bit or 64-bit numbers.
 - ◆ Perform only one function, namely, unsigned integer product.
- ☐ Improve gate efficiency by using a mixture of combinatorial array techniques and sequential techniques requiring less combinational logic.

Sequential multiplication

- □ Recall the rule for generating partial products:
 - ♦ If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand to the current partial product.
 - Multiplicand has been shifted <u>left</u> when added to the partial product.
- □ However, adding a left-shifted multiplicand to an unshifted partial product is equivalent to adding an unshifted multiplicand to a right-shifted partial product.

Sequential multiplication (contd..)

- ·Load Register A with 0.
- Registers are used to store multiplier and multiplicand.
- •Each cycle repeat the following: steps:
- 1. If the LSB $q_0=1$:
 - -Add the multiplicand to A.
 - -Store carry-out in flip-flop C
- Else if $q_0 = 0$
 - -Do not add.
- 2. Shift the contents of register A and Q to the right, and discard q_{0}

Sequential multiplication (contd..)

