Machine-Level Programming III: Procedures

CSE 238/2038/2138: Systems Programming

Instructor:

Fatma CORUT ERGIN

Slides adapted from Bryant & O'Hallaron's slides

Passing control

- To beginning of procedure code
- Back to return point

Passing data

- Procedure arguments
- Return value

Memory management

- Allocate during procedure execution
- Deallocate upon return
- Mechanisms all implemented with machine instructions
- x86-64 implementation of a procedure uses only those mechanisms required

```
int Q(int i)
{
  int t = 3*i;
  int v[10];
  .
  return v[t];
}
```

- Passing control
 - To beginning of procedure code
 - Back to return point
- Passing data
 - Procedure arguments
 - Return value
- Memory management
 - Allocate during procedure execution
 - Deallocate upon return
- Mechanisms all implemented with machine instructions
- x86-64 implementation of a procedure uses only those mechanisms required

```
P(...) {
    = Q(x);
  print(y)
    Q(int i)
  int t = 3*i;
  int v[10];
  return v[t];
```

Passing control

- To beginning of procedure code
- Back to return point

Passing data

- Procedure arguments
- Return value

Memory management

- Allocate during procedure execution
- Deallocate upon return
- Mechanisms all implemented with machine instructions
- x86-64 implementation of a procedure uses only those mechanisms required

```
P(...) {
  print (y
int Q(int i)
  int t = 3*i;
  int v[10];
  return v[t];
```

Passing control

- To beginning of procedure code
- Back to return point

Passing data

- Procedure arguments
- Return value

■ Memory management

- Allocate during procedure execution
- Deallocate upon return
- Mechanisms all implemented with machine instructions
- x86-64 implementation of a procedure uses only those mechanisms required

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

x86-64 Stack

- Region of memory managed with stack discipline
 - Memory viewed as array of bytes.
 - Different regions have different purposes.

x86-64 Stack

Stack "Top" Stack Pointer: %rsp **Increasing** Addresses Region of memory managed with stack discipline **Grows toward lower addresses** Stack Grows ■ Register %rsp contains lowest stack address address of "top" element

Stack "Bottom"

x86-64 Stack: Push

x86-64 Stack: Push

Stack "Bottom"

x86-64 Stack: Push

x86-64 Stack: Pop

x86-64 Stack: Pop

x86-64 Stack: Pop

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Code Examples

```
long mult2(long a, long b)
{
  long s = a * b;
  return s;
}

400550: mov %rdi,%rax # a
  400553: imul %rsi,%rax # a * b
  400557: retq # Return
```

Procedure Control Flow

- Use stack to support procedure call and return
- Procedure call: call label
 - Push return address on stack
 - Jump to label
- Return address:
 - Address of the next instruction right after call
 - Example from disassembly
- Procedure return: ret
 - Pop address from stack
 - Jump to address


```
0000000000400550 <mult2>:
   400550: mov %rdi,%rax
   •
   400557: retq
```

400557:

retq

```
0x130
0000000000400540 <multstore>:
                                       0x128
                                       0x120
  400544: callq 400550 <mult2>
                                               0x400549
                                       0x118
  400549: mov %rax, (%rbx) ←
                                        %rsp
                                               0 \times 400550
                                        %rip
0000000000400550 <mult2>:
  400550: mov %rdi,%rax ←
```

20

0x118

```
0x130
0000000000400540 <multstore>:
                                       0x128
                                       0x120
  400544: callq 400550 <mult2>
                                       0x118
                                               0x400549
  400549: mov %rax, (%rbx) ___
                                                0x118
                                        %rsp
                                               0 \times 400557
                                         %rip
0000000000400550 <mult2>:
  400550: mov %rdi,%rax
  400557:
           retq
```

```
0000000000400550 <mult2>:
   400550: mov %rdi,%rax
   •
   400557: retq
```

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustrations of Recursion & Pointers

Procedure Data Flow

Registers

■ First 6 arguments

■ Return value

Stack

Only allocate stack space when needed

Data Flow Examples

```
void multstore(long x, long y, long *dest)
   long t = mult2(x, y);
   *dest = t;
              0000000000400540 <multstore>:
                # x in %rdi, y in %rsi, dest in %rdx
                400541: mov %rdx,%rbx # Save dest
                400544: callq 400550 <mult2> # mult2(x,y)
                # t in %rax
                400549: mov %rax,(%rbx) # Save at dest
```

```
long mult2(long a, long b)
{
  long s = a * b;
  return s;
}

# a in %rdi, b in %rsi
  400550: mov %rdi,%rax # a
  400553: imul %rsi,%rax # a * b
  # s in %rax
  400557: retq # Return
```

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Stack-Based Languages

Languages that support recursion

- e.g., C, Pascal, Java
- Code must be "Reentrant"
 - Multiple simultaneous instantiations of single procedure
- Need some place to store state of each instantiation
 - Arguments
 - Local variables
 - Return pointer

Stack discipline

- State for given procedure needed for limited time
 - From when called to when return
- Callee returns before caller does

Stack allocated in *Frames*

state for single procedure instantiation

Call Chain Example

```
who(...)
{
    amI();
    amI();
}
```

Procedure amI () is recursive

Example Call Chain

Stack Frames

- Contents
 - Return information
 - Local storage (if needed)
 - Temporary space (if needed)

Stack Pointer: %rsp -----

Frame Pointer: %rbp_ (Optional) Frame for proc

Stack "Top"

Previous Frame

Management

- Space allocated when enter procedure
 - "Set-up" code
 - Includes push by call instruction
- Deallocated when return
 - "Finish" code
 - Includes pop by ret instruction

Stack

Stack

Stack

Stack

Stack

x86-64/Linux Stack Frame

Current Stack Frame ("Top" to Bottom)

- "Argument build:"Parameters for function about to call
- Local variablesIf can't keep in registers
- Saved register context
- Old frame pointer

Caller Stack Frame

- Return address
 - Pushed by call instruction
- Arguments for this call

Example: incr

```
long incr(long *p, long val) {
   long x = *p;
   long y = x + val;
   *p = y;
   return x;
}
```

```
incr:
  movq (%rdi), %rax
  addq %rax, %rsi
  movq %rsi, (%rdi)
  ret
```

Register	Use(s)
%rdi	Argument p
%rsi	Argument val , y
%rax	x , Return value

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Initial Stack Structure

Resulting Stack Structure


```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rdi	&v1
%rsi	3000

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rdi	&v1
%rsi	3000

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rax	Return value

Updated Stack Structure


```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

Updated Stack Structure

```
Rtn address ← %rsp
```


Register	Use(s)
%rax	Return value

Final Stack Structure

Register Saving Conventions

- When procedure yoo calls who:
 - yoo is the caller
 - who is the callee
- Can register be used for temporary storage?

```
yoo:

movq $15213, %rdx
call who
addq %rdx, %rax

ret
```

```
who:

• • •

subq $18213, %rdx

• • •

ret
```

- Contents of register %rdx overwritten by who
- This could be trouble → something should be done!
 - Need some coordination

Register Saving Conventions

- When procedure yoo calls who:
 - yoo is the caller
 - who is the callee
- Can register be used for temporary storage?
- Conventions
 - "Caller Saved"
 - Caller saves temporary values in its frame before the call
 - "Callee Saved"
 - Callee saves temporary values in its frame before using
 - Callee restores them before returning to caller

x86-64 Linux Register Usage #1

- %rax
 - Return value
 - Also caller-saved
 - Can be modified by procedure
- %rdi, ..., %r9
 - Arguments
 - Also caller-saved
 - Can be modified by procedure
- %r10, %r11
 - Caller-saved
 - Can be modified by procedure

x86-64 Linux Register Usage #2

- %rbx, %r12, %r13, %r14
 - Callee-saved
 - Callee must save & restore
- %rbp
 - Callee-saved
 - Callee must save & restore
 - May be used as frame pointer
 - Can mix & match

■ %rsp

- Special form of callee save
- Restored to original value upon exit from procedure

Example: incr

- Where are a0, ..., a9 passed?
 rdi,rsi,rdx,rcx,r8,r9,stack
- Where are b0, ..., b4 passed? rdi, rsi, rdx, rcx, r8
- Which registers do we need to save?

 Ill posed question. Need assembly

 rbx,rbp,r9(during first call to add5)

Example: incr

```
add10:
 pushq %rbp
 pushq %rbx
 movq %r9, %rbp
 call add5
 movq %rax, %rbx
 movq 48(%rsp), %r8
 movq 40 (%rsp), %rcx
 movq 32(%rsp), %rdx
 movq 24(%rsp), %rsi
 movq %rbp, %rdi
  call add5
  addq %rbx, %rax
 popq %rbx
 popq %rbp
  ret
```

```
add5:

addq %rsi, %rdi

addq %rdi, %rdx

addq %rdx, %rcx

leaq (%rcx,%r8), %rax

ret
```



```
long call_incr2(long(x)) {
   long v1 = 15213;
   long v2 = incr(&v1, 3000);
   return(x+v2;
}
```

Initial Stack Structure

- x comes in register %rdi
- We need %rdi for the call to incr.
- Where should be put **x**, so we can use it after the call to **incr**?

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```

Initial Stack Structure

```
Rtn address --- %rsp
```

Resulting Stack Structure


```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```

Initial Stack Structure

Resulting Stack Structure


```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```


- x saved in %rbx
- A callee saved register

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```


- x saved in %rbx
- A callee saved register

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```


- x is safe in %rbx
- Return result in %rax

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```


■ Return result in %rax

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret
```

Initial Stack Structure

Final Stack Structure

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Recursive Function

```
pcount r:
 movl $0, %eax
        %rdi, %rdi
 testq
        .L6
 je
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq
        %rdi
 call
        pcount r
 addq
        %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Recursive Function Terminal Case

<u> </u>	
movl	\$0, %eax
testq	%rdi, %rdi
je	.L6
pushq	%rbx
movq	%rdi, %rbx
andl	\$1, %ebx
\mathtt{shrq}	%rdi
call	pcount_r
addq	%rbx, %rax
popq	%rbx
.L6:	

rep; ret

pcount r:

```
RegisterUse(s)Type%rdixArgument%raxReturn valueReturn value
```

Recursive Function Register Save

```
movl $0, %eax
testq %rdi, %rdi
je .L6
pushq %rbx
movq %rdi, %rbx
andl $1, %ebx
shrq %rdi
call pcount_r
addq %rbx, %rax
popq %rbx
.L6:
rep; ret
```

pcount r:

Register	Use(s)	Туре
%rdi	x	Argument

Recursive Function Call Setup

Register	Use(s)	Туре
%rdi	x >> 1	Rec. argument
%rbx	x & 1	Callee-saved

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Recursive Function Call

Register	Use(s)	Туре
%rbx	x & 1	Callee-saved
%rax	Recursive call return value	

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Recursive Function Result

Register	Use(s)	Туре
%rbx	x & 1	Callee-saved
%rax	Return value	

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Recursive Function Completion

```
pcount r:
 movl $0, %eax
        %rdi, %rdi
 testq
 je
        . L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq
        %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Register	Use(s)	Туре
%rax	Return value	Return value

Observations About Recursion

Handled Without Special Consideration

- Stack frames mean that each function call has private storage
 - Saved registers & local variables
 - Saved return pointer
- Register saving conventions prevent one function call from corrupting another's data
 - Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)
- Stack discipline follows call / return pattern
 - If P calls Q, then Q returns before P
 - Last-In, First-Out

Also works for mutual recursion

P calls Q; Q calls P

x86-64 Procedure Summary

Important Points

- Stack is the right data structure for procedure call / return
 - If P calls Q, then Q returns before P
- Recursion (& mutual recursion) handled by normal calling conventions
 - Can safely store values in local stack frame and in callee-saved registers
 - Put function arguments at top of stack
 - Result return in %rax
- Pointers are addresses of values
 - On stack or global

