Coping with NP-Completeness

Theory of Computation

CISC 603, Spring 2020, Daqing Yun

3-SAT

Problem 13.1. **3-SAT Problem**.

Input: given a boolean formula in format of

$$\psi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge \cdots \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3),$$

where every clause contains at most 3 literals (boolean variables).

Question: is there an assignment to x_1, x_2, x_3 that makes ψ is true?

brute-force? $O(2^n)$ Can we do better?

Observations

Problem 13.1. **3-SAT Problem**.

Input: given a boolean formula in format of

$$\psi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge \cdots \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3),$$

where every clause contains at most 3 literals (boolean variables). **Question**: is there an assignment to x_1, x_2, x_3 that makes ψ is true?

- Do we check certain clauses multiple times?
- Do all clauses contain three literal variables?
- We have tried *divide and conquer*, how about *decrease and conquer*?

Let $t(x_i)$ be the evaluated value of literal x_i or $\overline{x_i}$ $(i \in \{1, 2, 3\})$. let $a = t(x_1), b = t(x_2), c = t(x_3)$ Let $t(x_i)$ be the evaluated value of literal x_i or $\overline{x_i}$ $(i \in \{1, 2, 3\})$. let $a = t(x_1), b = t(x_2), c = t(x_3)$

Algorithm 1 3-SAT (ψ)

```
1: if \psi is empty then
```

- return True;
- 3: if ψ has a clause contains one literal a then
- 4: $\psi = \psi[a \text{ is True}]$
- 5: return 3-SAT(ψ)
- 6: if ψ has a clause contains two literals a and b then
- 7: $\psi_1 = \psi[a \text{ is False, } b \text{ is True}]$
- 8: $\psi_2 = \psi[a \text{ is True}]$
- 9: **return** $3\text{-SAT}(\psi_1) \cup 3\text{-SAT}(\psi_2)$
- 10: if ψ has a clause contains three literals a, b, and c then
- 11: $\psi_1 = \psi[a \text{ is False}, b \text{ is False}, c \text{ is True}]$
- 12: $\psi_2 = \psi[a \text{ is False}, b \text{ is True}]$
- 13: $\psi_3 = \psi[a \text{ is True}]$
- 14: **return** $3\text{-SAT}(\psi_1) \cup 3\text{-SAT}(\psi_2) \cup 3\text{-SAT}(\psi_3)$

Time Complexity

• Did we really improve it?

The running time complexity of Algorithm 1 is

$$T(n) = T(n-1) + T(n-2) + T(n-3).$$

by solving equation $x^n = x^{n-1} + x^{n-2} + x^{n-3}$, we get $x \approx 1.84$, thus

$$T(n) = \mathcal{O}(1.84^n).$$

Largest Independent Set

DEFINITION 13.2. An independent set S of a graph G(V, E) is a subset of the vertices in G such that there is no edge between any two vertices in S.

Definition 13.3. Independent Set Problem

Instance: a graph G(V, E), integer $k \leq |V|$.

Question: does G contain an independent set of size at least k?

PROBLEM 13.4. Largest Independent Set Problem

Input: a graph G(V, E).

Question: what is the size of the largest independent set of G(V, E)?

Brute-Force

Using a brute-force approach, as for each vertex $v \in G$, there are two possibilities, i.e., either v is in the largest independent set or not.

Let us use a V-bit binary number x to represent the solution, each bit $x_i(i = 1, 2, \dots, |V|)$ of x indicates if a vertex v_i is in the largest independent set or not, i.e., either 1 (in the set) or 0 (not in the set).

 $O(2^{n})$

I mean "so far" in this class

The best we can do so far is to try to reduce the base of the exponential running time complexity, i.e., reduce x in $\mathcal{O}(x^n)$.

It seems that there is no short cut but repeatedly picking and checking

What if we pick a vertex *v* arbitrarily?

If we pick v arbitrarily without considering its degree at Line 3, the running time of complexity of Algorithm 2 is T(n) = 2T(n-1), i.e., T(n) is still $\mathcal{O}(2^n)$.

What if we pick a vertex v with non-zero degree?

```
Algorithm 2 LISBruteForce(G(V, E))

1: if E is \emptyset then

2: return |V|

3: Pick v \in V such that N(v) is not \emptyset

4: G_1 = G - \{v\}

5: G_2 = G - \{v\} - \{N(v)\}

6: k_1 = \text{LIS}(G_1)

7: k_2 = \text{LIS}(G_2)

8: return \max\{k_1, k_2 + 1\}
```

let N(v) denote the set of neighbouring vertices of vertex v

Time Complexity

$$T(n) = T(n-1) + T(n-2).$$

$$T(n) = \mathcal{O}(x^n)$$
 $x^n = x^{n-1} + x^{n-2}$, $T(n) = \mathcal{O}(1.618^n)$.

Algorithm 2 LISBruteForce(G(V, E))

- 1: if E is \emptyset then
- 2: $\mathbf{return} |V|$
- 3: Pick $v \in V$ such that N(v) is not \emptyset
- 4: $G_1 = G \{v\}$
- 5: $G_2 = G \{v\} \{N(v)\}$
- 6: $k_1 = LIS(G_1)$
- 7: $k_2 = LIS(G_2)$
- 8: **return** $\max\{k_1, k_2 + 1\}$

Approximation?

- Very hard for general cases unless P is equal to NP
- Focus on special cases, try a greedy approach

Note: this algorithm runs in polynomial time, but may not give us optimal solution

Algorithm 3 LISGreedy(G(V, E))

```
    S ← ∅
    while G is not empty do
    Let v be a node with minimal degree in G;
    S ← S ∪ {v};
    Remove v and its neighbors from G
    return S
```

Approximation?

- How bad can it be?
- When picking v, how many nodes can be removed at most thus can not be in the IS? Call this number Δ
- We have $|V S| \le \Delta \cdot |S|$ and S + |V S| = n, thus

$$\Delta \cdot |S| + |S| \ge n$$
 \Longrightarrow $|S| \cdot (\Delta + 1) \ge n$, i.e., $|S| \ge \frac{n}{\Delta + 1}$

Algorithm 3 LISGreedy(G(V, E))

- 1: $S \leftarrow \emptyset$
- 2: while G is not empty do
- 3: Let v be a node with minimal degree in G;
- 4: $S \leftarrow S \cup \{v\};$
- 5: Remove v and its neighbors from G
- 6: $\mathbf{return} S$

a $\frac{1}{\Delta+1}$ -approximation algorithm

Bin-Packing

PROBLEM 13.5. Bin-Packing Problem

Input: given n items with weights a_1, a_2, \ldots, a_n $(1 > a_1 \ge a_2 \ge \ldots \ge a_n > 0)$, and m bins that can hold any subset of the items with total weight up to 1; **Question**: find out the minimal number of bins needed to pack all n items.

Let us also try to design greedy algorithms

Bin-Packing

PROBLEM 13.5. Bin-Packing Problem

Input: given n items with weights a_1, a_2, \ldots, a_n $(1 > a_1 \ge a_2 \ge \ldots \ge a_n > 0)$, and m bins that can hold any subset of the items with total weight up to 1; **Question**: find out the minimal number of bins needed to pack all n items.

We open up bins one by one and consider items in their index-increasing order.

We open bin 1 and put item 1 into it, consider bin 1 as the current bin and check next item: if the item fits the current opened bin, put it into the current bin;

otherwise, close the current bin and put the item into a newly-opened bin and consider this new bin as the current bin. Take next item and repeat checking.

Linear time, O(n)

Approximation?

PROBLEM 13.5. Bin-Packing Problem

Input: given n items with weights a_1, a_2, \ldots, a_n $(1 > a_1 \ge a_2 \ge \ldots \ge a_n > 0)$, and m bins that can hold any subset of the items with total weight up to 1; **Question**: find out the minimal number of bins needed to pack all n items.

$$OPT \le NF \le 2 \cdot \sum a_i \le 2 \cdot OPT$$
.

Notice that it is impossible that any two consecutive bins are both filled with items of total weight ≤ 0.5

Any two consecutive bins are filled with items whose total weight is ≥ 1 To fill in all items with a total weight $\sum a_i$, we need NF $\leq 2 \cdot \sum a_i$ bins.

 $\sum a_i$ is the lower bound in which case no space in any bin is left "wasted"

LIS

- Formulate LIS as an LP
- Using rounding to get a feasible solution

LIS

- Formulate LIS as an LP
- Using rounding to get a feasible solution

Define a variable x_v associated with a node $v \in V$ as,

$$x_v = \begin{cases} 1, & \text{if } v \text{ is in the LIS} \\ 0, & \text{otherwise,} \end{cases}$$
 (13.3)

thus the corresponding transformed LP is given in Problem 13.6.

PROBLEM 13.6. LIS Problem as an LP.

$$\max \sum_{v} x_{v} \,, \tag{13.4}$$

subject to

$$x_u + x_v \le 1, \text{ for all } (u, v) \in E, \tag{13.5}$$

$$0 \le x_v \le 1, \text{ for all } v \in V. \tag{13.6}$$

Minimal Vertex Cover

A vertex cover of a graph G(V, E) is a subset U of V such that every edge of G has at least one endpoint in U [4].

PROBLEM 13.7. Minimal Vertex Cover Problem

Input: a graph G(V, E), an integer k.

Question: is there a vertex cover U of G including at most k vertices?

Algorithm 4 VCBruteForce(G(V, E), k)

- 1: **if** k == 0 **then**
- 2: **return** (|E| == 0)
- 3: Pick an edge $(u, v) \in E$
- 4: $G_1 = (V \{u\}, E \{(u, w) | w \in V\}) // u \text{ is in VC}$
- 5: $G_2 = (V \{v\}, E \{(v, w) | w \in V\}) // v \text{ is in VC}$
- 6: **return** $VC(G_1, k-1) \cup VC(G_2, k-1)$

$$T(n,k) = 2T(n-1,k-1) \le 2^2T(n-2,k-2)\dots$$

= $2^{k-1}T(n-(k-1),1) = 2^{k-1} \cdot (n-(k-1)) = \mathcal{O}(2^k \cdot n)$

Minimal Vertex Cover

• Eliminating the *n* from $\mathcal{O}(2^k \cdot n)$ using preprocessing

In observation of that if u's degree is larger than k, i.e., degree(u) > k, then u must be in the VC if there is one exists, otherwise, a VC does not exist.

Suppose there are m vertices whose degrees are larger than k.

Algorithm 5 VCFaster(G(V, E), k)

- 1: Find all m vertices with degrees larger than k
- 2: if m > k then
- 3: **return** False
- 4: Remove these m vertices and corresponding edges from G
- 5: Remove vertices with 0 degree, i.e., the isolated vertices
- 6: Denote the updated graph as G'
- 7: **if** |V'| > 2k(k-m) **then**
- 8: **return** False
- 9: **return** VC(G', k-m)

$$T(n) = \mathcal{O}(2^k \cdot n) = \mathcal{O}(2^k \cdot 2k(k-m)) = \mathcal{O}(2^k \cdot k^2).$$

MVC

MVC as an ILP

MVC problem could be expressed as an ILP as follows, where $x_i \in \{0, 1\}$ with x = 1 indicates $v_i \in U$ and 0 otherwise:

$$\min \sum_{i=1}^{|V|} x_i,$$

subject to

 $x_i + x_j \ge 1$, for each edge $e(i, j), x_i \in \{0, 1\}$.

MVC

• Get a feasible solution via rounding

Now we change the restrictions to be

$$x_i + x_j \ge 1$$
, for each edge $e(i, j)$, $0 \le x_i \le 1$,

and get the corresponding LP.

Solving this LP in polynomial, we get its optimal solution, denoted as

$$\mathbf{x} = (x_1, x_2, \dots, x_{|V|}), \ 0 \le x_i \le 1, \ \text{for } i = 1, 2, \dots, |V|.$$
 (13.7)

We use a rounding method: if $x_i \ge 0.5$, then x_i is rounded up to 1.0, otherwise x_i is rounded down to 0.0, to get a feasible solution to MVC, denoted as

$$\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_{|V|}^*), \ x_i^* \in \{0, 1\}, \ \text{for } i = 1, 2, \dots, |V|.$$
 (13.8)

Note that \mathbf{x}^* must produce a vertex cover (i.e., a feasible solution) due to the constraint $x_i + x_j \ge 1$ that indicates at least one of x_i or x_j has to be ≥ 0.5 .

Approximation?

$$OPT_{ILP} \leq \sum_{i=1}^{|V|} x_i^*$$

 $OPT_{LP} \leq OPT_{ILP}$

$$x_i^* \leq 2x_i$$

$$OPT_{ILP} \leq \sum_{i=1}^{|V|} x_i^* \leq$$

$$\sum_{i=1}^{|V|} 2x_i = 2 \sum_{i=1}^{|V|} x_i = 2 \cdot \text{OPT}_{LP} \le 2 \cdot \text{OPT}_{ILP}$$

Thanks!

Questions?