EECS 120 Spring 97 MT2 Solutions-Prof. Fearing

Problem 1.

M(f).

M(f)=(1/2) delta(f-1000)+(1/2) delta(f+1000)

 $X_1(f)=M(f)=(1/2)[delta(f-10^6+delta(f+10^6))]$ =(1/4)delta(f-106-103)+(1/4)delta(f-106+103)+(1/4)delta(f+106-103)+(1/4)delta(f+106+103)

EECS 120 Spring 97 MT2 Solutions-Prof. Fearing

Note: All these problems can also be easily done graphically

F)

Problem 2

Note: All $y_1(r)$, $y_2(r)$, $y_3(r)$ thre periodic. The horizontal axis has units of seconds.

tHe Harawalloway 4.Ki-coszat coszu(10) = {cm 2m(m)-{ 4 \$ a.at. 200 (20)4: THE structed 4 20 the Melle contre e contr 44(4) = CH (SH 10#

A) What is 2,(1), the compact of the filter for imput y,(1) ? 2,(1) in incompact of the

C)

Problem 3

B)

What fraction of the power in X(/) is at the charles frequency /, 1 1/8 = 1

Power at less tokyle is 2 1/9 = 1

Problem 4

A)

What is the minimum tumber of zeros the system must have? 2

Cyeter must have 2 to a ; H(v. 6) = 0 and cyeter to read to

Poles and terral must appear to complex analysis point

Sketch and label the pole-zero diagram for a stable system (using a minimum number of poles and zeros) which would have the given magnitude response. Note: $H(\omega = 0) = 0.1$ $H(\omega = 10) = 0$

Problem 5

h.(1): demys to final value of 1 = pole at origin possible solutions: Dor E khile) ... kh.le) k>0 Impulse response Auger: E h, (t): decays to zero all poles in LHP no oscillations - all police on real half Anua it possible solutions: Cor F he(t) = \$ = - tutt) - \$ = - tot (1) he(i) + \$ = - tot (4) hy(e): osc. Nathons abs complex conjugate poles possible solutions: Gor I or B oscillations increase in magnitude with time as police in RHP Solution : G hy(t): decays to porters where potent origin possible solutions 1 Dor & looking at grouph above => conserve D he(4): oscillations a complex conjugate polis possible showers 6, B. L. I oscillations decrease to magnitude with the as poles in LAP possible answers B, but the sin is od the ook khe(t) khe(t)

he(t): drays to zero as all poles in little trapments to be assisted to a sillations as all poles in little trapments.

daswer ! C

possible solutions Cart

EECS 120 Sp 97 MT2 Solutions

These pole-zero diagrams are possible answers for the questions of Problem 5. All diagrams represent causal systems.

1- c	tu(t)	G+3-3;)(1·3·3 -2·2	10 1 10 1	(511)(5010) * Se	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	1· σ	-2-2	B	- 14 +4 -10 -1	4
5-1 · 4 · B. 1/4) · ~ (14) + 2- (14)	A+B+- 0 A+- 0 B+2	514 - 3. 5(5110) - 3.	A A A A A A A A A A A A A A A A A A A	16-10-241-4-4-4	
	Г <u>Б</u>	-10 -103		<u> </u>	
	₩	142x10	12-12-12 12-12-12 7-12-12-13 (3-13-1-12) (3-13-1-12) (3-13-1-12) (3-13-1-12)	× -1+2πj	
(t) = e ^t cos Jutu(t) + i e ^t sin 2st u(t) EECS 120 Spring 97 MT2 S	G	-10 -2 -1-2+) 0 -1-2+) 0 -1-2+) 0 -1-2+)	A-LE-PAM	-1-2x X	h; (t) * e-t - <u>_</u> t e ^{-t} ; 10

Problem 6

A)

With
$$d(r) = 0$$
, compare $\frac{Y(r)}{X(r)} = \frac{4ks}{s^{\alpha}+4ks+4}$

B) For which values of & is the system shible?

1: __k>0

be salling, no boles 12 RHP or jurans

(turps for a angle poles)

C)

Hem y'(1) =

(It limit exists, answer should be a manualpage)

O(s) = 43-442-4

O(s) = 43-442-4

O(s) = 412-412-4

D)

[4 pts.] d) Let d(r) = 0 and x(r) a rieli), with & a. 1.

$$Y(s) = \frac{4s}{s^2 + 4s + 4} \times (s)$$

$$Y(s) = \frac{4s}{s^2 + 4s + 4} \times (s)$$

$$Y(s) = \frac{4s}{s(s^2 + 4s + 4)} \times (s) = \frac{4}{s(s)} \times (s)$$