Grupo:

1. Responda.

1.1 Sean
$$z_1, z_2 \in \Box$$
 tal que $|z_1| = |z_2| = 1 \land z_1 z_2 \neq -1$. Demuestre que $\frac{z_1 + z_2}{1 + z_1 z_2} \in \Box$.

- 1.2 Encuentre una raíz primitiva sexta de 1. Represéntela gráficamente.
- 2. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x + y + kz + wz = 1\\ 3x + 4y + 2z + kw = 1\\ 2x + 3y - z + w = 1\\ -2kz + (6 - k)w = a \end{cases} a, k \in \mathbb{K}$$

- 2.1 Halle los valores de los parámetros para los cuales la matriz del sistema presentado es inversible.
- **2.2** Clasifique el dicho sistema para $a, k \in \mathbb{K}$ atendiendo a la existencia y unicidad de las soluciones.
- **2.3** Obtenga la solución del sistema para a = 6, k = 0.
- **2.4** Diga una solución particular del sistema AX = 0 donde A es la matriz del sistema dado.
- **3.** (opcional) Sean $z_1, z_2 \in \Box$ con $u = \sqrt{z_1 z_2}$. Demostrar que $|z_1| + |z_2| = \left| \frac{z_1 + z_2}{2} u \right| + \left| \frac{z_1 + z_2}{2} + u \right|$.

Examen Intrasemestral Ciencia de la Computación Nombre: Algebra I

2016-2017

- **1.1** Sean $z_1, z_2 \in \Box$ tal que $|z_1| = |z_2| = 1 \land z_1 z_2 \neq -1$. Demuestre que $\frac{z_1 + z_2}{1 + z_1 z_2} \in \Box$.
- 1.2 Encuentre una raíz primitiva sexta de 1. Represéntela gráficamente.
- 2. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x + y + kz + & wz = 1 \\ 3x + 4y + 2z + & kw = 1 \\ 2x + 3y - z + & w = 1 \\ & -2kz + (6-k)w = a \end{cases}$$
 $a, k \in \mathbb{K}$

- 2.1 Halle los valores de los parámetros para los cuales la matriz del sistema presentado es inversible.
- **2.2** Clasifique el dicho sistema para $a, k \in \mathbb{K}$ atendiendo a la existencia y unicidad de las soluciones.
- **2.3** Obtenga la solución del sistema para a = 6, k = 0.
- **2.4** Diga una solución particular del sistema AX = 0 donde A es la matriz del sistema dado.
- **3.** (opcional) Sean $z_1, z_2 \in \Box$ con $u = \sqrt{z_1 z_2}$. Demostrar que $|z_1| + |z_2| = \left| \frac{z_1 + z_2}{2} u \right| + \left| \frac{z_1 + z_2}{2} + u \right|$.