

Improve Your English Essay with Al

W266 NLP with DL

University of California, Berkeley April 18, 2023

> Iris Lew Heesuk Jang Srila Maiti

Agenda

Motivation

Dataset

Approaches

Results

Conclusion & Future Work

Motivation

Dataset

The dataset presented here (the **ELLIPSE corpus**) comprises argumentative **essays written by 8th-12th grade English Language Learners (ELLs)**. The essays have been scored according to six analytic measures: **cohesion, syntax, vocabulary, phraseology, grammar, and conventions**.

Each measure represents a component of proficiency in essay writing, with greater scores corresponding to greater proficiency in that measure. The scores range from 1.0 to 5.0 in increments of 0.5.

Approaches

- Transformer based language models (Bert base cased and Bertweet base)
- Number of frozen and unfrozen layers
- Clustering
- Stratified Sampling
- Concatenated word embedding

Model - Architecture & Best Model

Model Architecture

Best Model

Test MCRMSE Trainable Layers Learning Rate Hidden Layers Hidden Units Batch Size Dropout Epochs 0,4590 12 0.00001 2 64 8 0.1 10

Hyper Parameter Tuning

Results - BERTbase-cased VS. BERTweetbase

Adjusted MCRMSE Scores

	BERT _{base-cased}	BERTweet _{base}	
0 trainable layers	0.6350	0.6549	
6 trainable layers	0.6271	0.6224	
12 trainable layers	0.5254	0.5536	

$\mathsf{BERT}_{\mathsf{base-cased}}$

% of Test Dataset Records that were *Correctly* Predicted Per Analytic Measure (Score within 0.5)

BERTweet_{base}

% of Test Dataset Records that were *Correctly* Predicted Per Analytic Measure (Score within 0.5)

	0 trainable layers	6 trainable layers	12 trainable layers	
Cohesion	29.8% (75.9%)	30.0% (75.7%)	33.8% (83.7%)	
Syntax	34.1% (76.8%)	33.2% (77.4%)	37.8% (84.7%)	
Vocabulary	37.5% (82.1%)	39.0% (83.3%)	44.2% (89.8%)	
Phraseology	31.3% (78.2%)	32.7% (79.6%)	44.1% (88.8%)	
Grammar	27.7% (74.2%)	27.8% (72.0%)	33.5% (81.2%)	
Conventions	31.7% (72.8%)	29.9% (74.5%)	38.1% (87.5%)	

	0 trainable layers	6 trainable layers	12 trainable layers
Cohesion	27.3% (72.7%)	29.4% (75.6%)	35.6% (83.1%)
Syntax	33.5% (73.4%)	33.1% (75.1%)	35.6% (84.0%)
Vocabulary	33.8% (80.2%)	36.5% (85.4%)	39.2% (86.7%)
Phraseology	29.8% (76.5%)	30.4% (79.2%)	35.4% (83.8%)
Grammar	25.0% (70.5%)	27.5% (74.3%)	36.5% (80.3%)
Conventions	30.9% (74.6%)	29.4% (75.0%)	35.6% (87.0%)

Results - BERTbase-cased VS. BERTweetbase

Clustering & Stratified Two-Fold Cross Validation

Adjusted MCRMSE Scores

	BERT _{base-cased}	BERTweetbase
0 trainable layers	0.6763	0.6907
6 trainable layers	0.6681	0.6688
12 trainable layers	0.6798	0.6652

(6.0-17.0) (17.5-23

(17.5-21.5)

(21.5-30.0)

BERT_{base-cased}

% of Test Dataset Records that were *Correctly* Predicted Per Analytic Measure (Score within 0.5)

BERTweet_{base}

% of Test Dataset Records that were *Correctly* Predicted Per Analytic Measure (Score within 0.5)

	0 trainable	6 trainable	12 trainable	0 trainable	6 trainable	12 trainable
	layers	layers	layers	layers	layers	layers
Cohesion	28.6%	28.2%	28.4%	28.0%	26.8%	25.4%
	(71.9%)	(73.9%)	(73.8%)	(70.0%)	(72.7%)	(72.0%)
Syntax	32.7%	30.0%	30.5%	30.7%	33.1%	32.2%
	(73.9%)	(73.4%)	(72.7%)	(72.4%)	(72.9%)	(73.9%)
Vocabulary	36.9%	37.2%	28.4%	31.2%	29.6%	29.6%
	(78.5%)	(79.2%)	(80.3%)	(77.7%)	(79.6%)	(81.2%)
Phraseology	30.5%	30.5%	29.0%	27.2%	30.5%	29.6%
	(73.4%)	(73.2%)	(73.1%)	(71.1%)	(73.3%)	(73.2%)
Grammar	27.8%	27.3%	24.5%	24.4%	25.8%	24.8%
	(70.0%)	(71.3%)	(70.2%)	(70.8%)	(70.5%)	(71.1%)
Conventions	30.8%	30.7%	28.6%	29.1%	30.9%	30.7%
	(71.8%)	(76.2%)	(70.4%)	(71.6%)	(73.9%)	(72.4%)

Conclusion

- With more unfrozen layers, the models were able to learn the training data
- Models struggled to predict extreme scores.
- Clustering through K-Means and K-fold cross validation to account for the lower and higher ends of the scores did not improve model performance

Future Work

- O1 Increase size of the input dataset
- O2 Introduce larger versions of BERT and BERT-derived models
- Evaluate essays together with key topical information
- Explore pre-transformer-based state-of-the-art models as well as models with BERT-based combinations

References

- 1. https://www.kaggle.com/competitions/feedback-prize-english-language-learning/overview
- 2. https://www.freepik.com/free-vector/illustration-light-bulb-ideas_3139696.htm#query=motivation%20icon&position=22&from_view=keyword&track=ais
- 3. https://fontawesome.com/
- 4. https://thenounproject.com/browse/icons/term/dataset/
- 5. https://www.kindpng.com/imgv/TbiwiRx_team-work-png-transparent-png/

