Cross-section:

Cross-section calculated by *crosssection.f*, based on [1]. Command line:

When executed, create file *crosskaml.dat* with:

$$\frac{d^2\sigma(E_\nu, T_{e^+})}{dE_\nu dT_{e^+}}$$

Effective cross-section:

Based on L/E binning (fig.5 in [2]), we calculate an effective cross-section based on that particular energy binning with program *espectrokamland.le.f*:

gfortran -o e.exe espectrokamland.le.f -lmathlib -lkernlib

where the following is calculated:

$$\frac{d\sigma(E_{\nu})}{dE_{\nu}} = \int_{\tilde{T}_{e^{+}}^{min}}^{\tilde{T}_{e^{+}}^{max}} d\tilde{T}_{e^{+}} \int dT_{e^{+}} R(T_{e^{+}}, \tilde{T}_{e^{+}}) \frac{d^{2}\sigma(T_{\nu}, T_{e^{+}})}{dT_{\nu}dT_{e^{+}}}$$

where

$$R(T_{e^+}, \tilde{T}_{e^+}) = \frac{1}{\sqrt{2\pi\sigma_T^2}} \exp\left[-\left(\frac{\tilde{T}_{e^+} - T_{e^+}}{2\sigma_T}\right)^2\right]$$

with

$$\sigma_T = 0.065 \sqrt{T_{e^+}}$$

Statistical Analysis:

The χ^2 analysis is performed with routine *chi2.f* and subroutines *subchi2.f* and *subspec.f*:

gfortran -o c.exe chi
2.f subchi
2.f subspec.f -lmathlib

Table 1: Neutrino flux parameters

Table 1. Neutrino nux parameters					
ϕ_i	0.570	0.295	0.078	0.057	
a_0	0.870	0.896	0.976	0.793	
a_1	-0.160	-0.239	-0.162	-0.080	
a_2	0910	-0.0981	-0.079	-0.1085	

which calculates the rates and χ^2 of KamLAND. We used the following expression for the χ^2 , based on Poisson statystics:

$$\chi^2 = 2\sum_{i} \left[fR_i^{th} - R_i^{exp} + R_i^{exp} log\left(\frac{R_i^{exp}}{fR_i^{th}}\right) \right] + \left(\frac{1-f}{0.041}\right)^2$$

where the χ^2 is minimized in the total flux normalization factor f.

Flux and Data:

The Flux is calculated through the following parameterization:

$$\phi = \sum_{j=1,4} \phi_j \exp\left(a_{0,j} + a_{1,j}E_{\nu} + a_{2,j}E_{\nu}^2\right)$$

where the factors a and ϕ_i are provided by KamLAND, table 1.

We assume the same flux composition for all reactors. We use 22 reactors with the distances and contributions to total flux in KamLAND given by table 2

References

- [1] P. Vogel and J. F. Beacom, "Angular distribution of neutron inverse beta decay, anti-neutrino(e) + p \rightarrow e+ + n," Phys. Rev. D **60**, 053003 (1999) doi:10.1103/PhysRevD.60.053003 [hep-ph/9903554].
- [2] A. Gando *et al.* [KamLAND Collaboration], "Constraints on θ_{13} from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND," Phys. Rev. D **83**, 052002 (2011) doi:10.1103/PhysRevD.83.052002 [arXiv:1009.4771 [hep-ex]].

Table 2: Reactors				
name	contribution (%)	distance (km)		
	30.9	160		
	13.8	179		
	9.0	191		
	7.9	88		
	7.6	138		
	7.5	214		
	7.4	146		
	3.8	349		
	3.5	351		
	1.3	141		
	1.2	295		
	0.9	138		
	0.8	401		
	0.7	431		
	0.6	561		
	0.4	754		
	0.2	830		
	0.2	783		
	0.8	712		
	0.6	735		
	0.5	709		
	0.5	986		