$$F^{\leftarrow}(u) = \inf\{x \,:\, F(x) \geq u\} = \min\{x \,:\, F(x) \geq u\}\,, \quad 0 < u < 1.$$

Proposición

Dada F una función de distribución cumulativa:

- a) $u \leq F(x) \iff F^{\leftarrow}(u) \leq x$.
- b) Si $U \sim \mathrm{Uniforme}(0,1) \Longrightarrow F^\leftarrow(U)$ tiene función cumulativa de distribución F (es decir $\mathcal{L}(X) = \mathcal{L}(F^\leftarrow(U))$).
- c) Si F es continua $\implies F(X) \sim \mathrm{Uniforme}(0,1)$.

a) Sup. que NEF(X), ent. F (u) = x por del Othora, Sup. que F (W) EX: PD MEF(X). Sea (an) non E /x: F(x) >u).t. lim an - F (u), Como F es cont. por la de recha, ent. $lim F(a_n) - F(F(u))$ UL F (an) Para toda n

Int. UE lim F(an) - F (F (ul)) F_{n} , $\chi \in F(F^{-}(v)) \leq F(x)$ Fr. UL F(X)

b) PD.
$$L(x) = L(F^{\leftarrow}(M), M \sim M(0,1))$$

$$P(F^{\leftarrow}(M) \leq x) - P(M \leq F(x))$$

$$= F(x)$$

$$\vdots \qquad L(F^{\leftarrow}(M)) = L(x)$$

c) Sea F cont. (P, D) $F(x) \sim W(0, 1)$. $\mathbb{P}\left(F(X) \leq X\right) = \mathbb{P}\left(X \leq F^{-1}(X)\right)$ $-F(F^{-1}(x)) = X - P(U \leq X)$ a(b =) F(a) < F(b)

Si
$$\times \text{exp}(\lambda)$$
, ent.
 $F(x) = 1 - e^{\lambda x}$.
 $X = 1 - e^{\lambda y}$ (=) $1 - x = e^{\lambda y}$.
 $(-1) = -1$ (1- x) = y .
 $(-1) = -1$ (x) $(x) =$

Sea
$$\times$$
 ~Beta $(\frac{1}{2},\frac{1}{2})$
 P, Ω . $\frac{2}{7}$ arcsin $(5\times)$ ~ $U(0,1)$
 $g(x) = \frac{1}{4}$
 $G(x) = \begin{pmatrix} x \\ -x \end{pmatrix}$
 $G(x) = \begin{pmatrix} x \\ -x \end{pmatrix}$
 $G(x) = \begin{pmatrix} x \\ -x \end{pmatrix}$
 $G(x) = \begin{pmatrix} x \\ -x \end{pmatrix}$

Por $G(X) \sim W(0,1)$ $= \frac{2}{3} arcsm(JX) \sim W(0,1)$