Vorlesungsskript

Num. Lin. Algebra

Num. Lin. Algebra Konrad Rösler

Inhaltsverzeichnis

1. Einleitung	2
2. Das Gauß-Verfahren I	
2.1. Gaußsche Eliminationsverfahren und LR-Zerlegung	4

Num. Lin. Algebra Inhaltsverzeichnis Konrad Rösler

Definitionen

Num. Lin. Algebra Konrad Rösler

1. Einleitung

Wichtige Aufgabenklassen der linearen Algebra sind lineare Gleichungssysteme.

Gegeben: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

Gesucht: Ein/alle $x \in \mathbb{R}^m$ mit Ax = b

Herkunft:

• "direkt" aus der Anwendung, z.B. Beschreibung von Netzwerken, Tragwerk

- "indirekt" als Diskretisierung von stationären Prozessen, z.B. Belastung einer Membran
- "mittelbar" durch die Linearisierung nichtlinearer Modelle, z.B. Newton-Verfahren, Approximation von Lösungen gewöhnlicher DGL, notwendige Optimalitätsbedingungen

Klassifizierung:

• m = n: A quadratisch

Generische Situation: A regulär

⇒ ∃! Lösung

• m < n: "Unterbestimmtes System"

Generische Situation:

$$\begin{split} \operatorname{rg}(A) &= m \text{ (Vollrang)} \\ A & \widehat{=} [A_1 A_2] \quad A_1 \in \mathbb{R}^{m \times m} \end{split}$$

Lösungsmenge:

$$\mathcal{L} = \{x \in \mathbb{R}^n \mid Ax = b\} = \{x = x^+ + h, h \in \ker(A)\}$$

=(n-m)-dimensionale lineare Mannigfaltigkeit

Gesucht ist dann z.B. norm-minimale Lösung (Kap. 5)

• m > n: "Überbestimmtes System"

lösbar
$$\iff b \in \text{im}(A) = \{ y \in \mathbb{R}^m \mid \exists x : Ax = y \}$$

Generisch nicht lösbar!

Sinnvoll: Bestimme $\bar{x} \in \mathbb{R}^m$, so dass

$$\|A\bar{x}-b\|=\min_{x\in\mathbb{R}^m}\|Ax-b\|$$

 $\| \cdot \| =$ geeignete Norm, $\bar{x} =$ Bestapproximierender für diese Norm.

Mögliche Ansätze:

 $\bullet \ \| \ \|_{\infty} \colon \|Ax - b\|_{\infty} = \mathrm{max}_{1 \leq i \leq m} \left| \left(Ax - b \right)_i \right|$

Ein nichtglattes Optimierungsproblem auch als lineares Optimierungsproblem fomulierbar, schwierig zu lösen für m bzw. n groß.

- $\|\ \|_1 \colon \|Ax-b\|_1 = \sum_{i=1}^m |Ax-b|$

Wie bei ∥ ∥ stückweise lineares Optimierungsproblem.

Aber stabil gegen Ausreißer.

≘ lineares Quadratmittelproblem, kleinste Quadrateproblem (Kap. 5)

Verfahren zur Lösung von LGS:

Direkte Verfahren:

- Transformation der Daten (A,b) in endlich viele in ein leichter zu lösendes LGS $\tilde{A}x=\tilde{b} \cong$ CG-Verfahren
- Transformationen lassen sich oftmals als Faktorisierung von A interpretieren

$$A = L \cdot R$$
 bzw. $A = Q \cdot R$

• Dafür i.d.R. Zugriff auf Elemente von $A \Longrightarrow$ limitiert die Größe der Matrix!

Kap. 2-5

Indirekte Verfahren:

- Ausgehend von einem Startvektor x^0 Iteration zur Berechnung von x^k mit $Ax^k \approx b$ Hierbei wird oftmals nur das Matrix-Vektor-Produkt Av benötigt! (Kap. 6)
- Eigenwertprobleme

Stabilitätsanalyse von Bauwerken. Verfahren dazu: numerische Optimierung

2. Das Gauß-Verfahren I

 $\text{Jetzt: } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n, \quad x : Ax = b?$

Satz 2.1: Existenz und Eindeutigkeit einer Lösung

Sei $A\in\mathbb{R}^{m\times n}$ eine Matrix mit $\det(A)\neq 0$ und $b\in\mathbb{R}^n$. Dann existiert genau ein $x\in\mathbb{R}^n$ mit

$$Ax = b$$

Beweis: lineare Algebra

 \implies Anwendung von Algorithmen zur Berechnung von x sinnvoll! Wie?

2.1. Gaußsche Eliminationsverfahren und LR-Zerlegung

≘ direktes Verfahren für quadratische System

Erste Idee: Systeme spezieller Struktur, z.B.

$$Rx = c, \quad R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ 0 & \ddots & \dots \\ 0 & 0 & r_{mn} \end{pmatrix} \in \mathbb{R}^{n \times n}, \quad c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$$

Rx = c

$$\begin{split} r_{nn}x_n &= c_n \Longrightarrow x_n = \frac{c_n}{r_{nn}}, \quad r_{nn} \neq 0 \\ r_{n-1n-1}x_{n-1} + r_{n-1n}x_n &= c_{n-1} \\ x_{n-1} &= \frac{c_{n-1} - r_{n-1n}x_n}{r_{n-1n-1}}, \quad r_{n-1n-1} \neq 0 \end{split}$$

Algorithmus 2.2: Rückwärtssubsitution

$$x_n = \frac{c_n}{r_{nn}} \quad \text{falls } r_{nn} \neq 0$$

$$\vdots$$

$$x_i = \frac{c_i - \sum_{j=i+1}^n r_{ij} x_j}{r_{ii}} \quad \text{falls } r_{ii} \neq 0$$

$$\vdots$$

$$x_1 = \frac{c_1 - \sum_{j=2}^n r_{1j} x_j}{r_{11}} \quad \text{falls } r_{11} \neq 0$$

Algo. 2.2 anwendbar, wenn $\det(R) \neq 0$ (vgl. Theo. 2.1)

Wichtiger Aspekt dieser Vorlesung: Aufwandsabschätzung

Aufwand: i-te Zeile je n-i Additionen und Multiplikationen und 1 Division insgesamt:

$$\sum_{i=1}^{n} (i-1) = \frac{n(n-1)}{2} = \mathcal{O}(n^2)$$

Addition und Multiplikationen und n Divsionen.