Properties of Indifference Curve

- 1. Infinite number of indifference curves
- 2. They are negatively sloped
- 3. They are convex to origin
- 4. Do not intersect each other
- 5. Do not touch either axis
- 6. They need not be parallel

Infinite Number of ICs

In a commodity space there can be a lot of indifference curves

A higher IC shows higher satisfaction because it represents larger quantities.

An lower indifference curve shows lower satisfaction, because it represents smaller quantities of x and y.

ICs have negative slope

The negative slope shows that that as the consumer increases the quantity of x, he will have to decrease the quantity of y to keep the utility constant.

Quantity of y \uparrowQuantity of x \downarrow

Convex to origin

ICs are always convex to origin

Reason

As a consumer has more and more units of x, in order to get any more of x, he loses less and less of y.

Slope of IC ... MRS falls along the IC

Commodity x and y are substitute, but not perfect

Do not intersect each other

IC₂ is higher IC and shows higher satisfaction IC₁ is lower IC and shows lower satisfaction M is preferred over N, being on higher IC, M > N Suppose IC₁ and IC₂ intersect each other K = M....being on the same IC K = N....being on the same IC K can only be equal to M and N if M = NBut we have proved that M > N So two ICs can not intersect each other

Do not touch either axis

If an IC touches any axis, consumer purchases only one good, which is against the philosophy of indifference curve theory.

Definition of IC involves TWO goods

They need not be parallel

All the ICs are convex to origin

But their convexity depends upon MRS

Different ICs may have different MRS

So different ICs may be not be parallel

