
1. What is a spectrogram? What is its use?

 A spectrogram is a visual representation of the frequency content of a signal as a function of the temporal or spatial domain. Spectrograms are used to image changes in frequency, usually through time. Some applications of spectrograms are phonetic visualizations, seismographs, and music visualizers.

2. Describe in a few sentences how you would implement one.

• First I would acquire the targeted data in digital form. Next I would convert the data into a format of evenly spaced times versus amplitudes. Next I would window the data by breaking it up into disjoint, adjacent, and equally sized subsets of the original data. Next I would apply a discrete fourier transform to these subsets of the data and use the nyquist frequency of the time data to construct frequency versus amplitude plots. Finally I would image the frequency versus amplitude content of the data in each subset and stitch all of these images together in either a heat map or video.

3. Spectral Analyzer Code (See Lab07.m)

- The code should display a single matlab window that updates as the fast fourier transform of each window is computed.
- The code will output a video file named animation.avi.