构造方法解中值定理風險证明流程。

产的信息. 构色→ F的信息. ↓中值定理 含于(3)的式子 英冊3 F'(3)的式子 1. 证明高阶至为常值——插值多农式构造、

2. 承积 | 复含函数型确的函数(微分方程况)

3. 达布定理及例题。

构题思路中的日相反,根据于(3)的礼子,猜测下具有怎样的形式。

egla:

星路:一要还于"(x+)=3, 即记于"(xo)-3=0.

设确助函数为9, 网9"(xx)= f"(xx)-3=0.

 $\Rightarrow 9''(x) = f''(x) - 3x + C_1 \Rightarrow 9'(x) = f'(x) - \frac{3}{2}x^2 + C_1x + C_2$

 $\Rightarrow \int (x) = \int (x) - \frac{1}{2}x^2 + \frac{1}{2}x^2 + C_{2x}$ (C3万有中名,因为常数没不影响 带号玩果).

·确定常数 C1、C2:

• 计算(g(-1)=g(0)=g(1)) \Rightarrow , $\begin{cases} \frac{1}{2}+\frac{1}{2}-C_{2}=f(0)\\ -\frac{1}{2}+\frac{1}{2}+C_{2}+1=f(0) \end{cases} \Rightarrow \begin{cases} C_{1}=2f(0)\\ C_{2}=2f(0) \end{cases}$

迎明:由思路中9的构造 9H)=g(0)=g(1).

ラヨ引を(ロロ)、考えを(ロロ)、「まり(は、)=g'(えり=0、又g'(ロ)この、

=> =1= C31,0) =1= (0,32) 5+ g"(1)=g"(1)=0.

=> => => € (1,12), &t. 9" (x0) =0. \$ 1.0 f"(x0)-3=0.

eg 92:

题路:一类似上题, 证明 三阶至为常数,则多信确助函数 g(x)=f(x)-p(x),p(x)为三次多项书. 题件安证 f''(气) 答于 关于 f(o).f(r).f'(o),f'(r) 的常数.

移列平便用三次 2000 定证、则 设证 2000

即松三次多对代(x) = $ax^3 + bx^2 + cx + d$, st. f(0) = P(0), f(1) = P(1), f'(0) = P'(0), f'(1) = P'(1). (多级代括值)

· 计等: P(x)= ax3+bx2+cx+d , P'(x)= 3ax2+2bx+c.

$$\begin{cases}
d = f(0) \\
a+b+c+d = f(1).
\end{cases}$$

$$\begin{array}{l}
a = 2 \text{ if } f(0) - f(1) \text{ } + \text{ if } f(0) + f'(1) \text{ } \\
b = -3 \text{ if } f(0) - f(1) \text{ } -2 \text{ } f'(0) - f'(1).
\end{cases}$$

$$\begin{array}{l}
c = f'(0) \\
3\alpha + 2b + C = f'(1)
\end{array}$$

$$\begin{array}{l}
c = f'(0) \\
d = f(0)
\end{array}$$

一个计算报话:

$$f(x) = ax^{3} - bx^{2} - cx = d = 0$$

$$f(0) = a \cdot 0 - b \cdot 0 - c \cdot 0 - d = 0.$$

$$f(0) = a \cdot 1^{3} - b \cdot 1^{2} - c \cdot 1 - d = 0.$$

$$f'(0) = a \cdot 3 \cdot 0 - b \cdot 2 \cdot 0 - c \cdot 0 = 0.$$

$$f'(1) = a \cdot 3 \cdot 1^{2} - b \cdot 2 \cdot 1 - c \cdot 1 = 0.$$

证明: 含g(x)=f(x)-p(x), p(x)+n上竹堆, 由构连知, g(x)=g(1)=0 => =3, E(211), g'(3,)=0.

又 9'(ロ)=9'(ロ)=9'(えい)=0 ショ季り、モ(ロ、えい)、ヨリュ、モ(ロ、えい)、 ヨ"(リン)=9"(リュ)=0

Ppfm(3)=60=12 [f10)-f11]+6 [f(0)+f(1)], 即題自所证.

出现了题目中黑证明的结构,故考尼含g(x)= (C,x+(z) f(x).

f(x) + 2-b f'(x). then, in g'(2)=0 => f(2)+ 2+ 4 f'(

可關係 (取-个解的可), 况 g(x)= (x-b) f(x).

i2例:由思路万得引(x)=(x-6)°f(x).

星程 g(a)=g(b)=D, スリヨをc(a,b) s.tg(を)=0 = NUMf(を)=とな f(を)

eg 14:

思路: 「本题与上题有类似的地方,都是证明关于fi,f的一次毒剂次式等于O.

回00仍经利用乘积的方法构造确助函数,

沒量到: [f(x)eg(x)]'= [f'(x)+f(x)g'(x)] eg(x), 出视了要论的结构。

证明·全F(x)=每f(x)eg(x),油f(a)=f(b)=0 ⇒ F(a)=F(b)=0.

Polle = € (a,b). F'(E)=[f'(E)+f(E)g'(E)] e g'(E) = = f'(E)+f(E)g'(E)=D.

e915:

思路: 「要從 习
$$\xi \in (0^{n})$$
 , $f(\xi)f'(\xi) + f''(\xi) = 0$
设意 $(f^2)' = 2ff'$ $(f')' = f''$.

由的构造 F(X)= 生于2(X) + +1(X), 对下使用 Polle 即可得到 M处

由条件、下(1)= = 2×2 - 2=0、则带还需要 = 16(0,1). F(1)= = = f(1)+f(1)=0.

京即立十(中旬)=0 联想的(中)=-中,

双切近 G(x)= 立x + f(x), brog G(0)= G(1)=-1.

企解: F(x). G(x) to 上 M世. 由 G(0)=G(1)=6-1 PMB 3 1 (1), G'(1)=1+f'(1)=0.

Ջ F(0)=0. F(g)= f(g) [½ + f(g)]=0. = Rolle = ε ε (0,1), F(ε)=f(ε)f(ε)+f'(ε)=0

2966:

里路:厂双中值问题,气把勤之一看作常数处理,这里气将了多非常数。

電視パ (3) + 【3+227+ ナリカ)」ナイランコー

又出稅了 $eg(\phi)$ (以 的 结构), ${F(x) = (x - 202) + \frac{1}{f'(y)}} f(x)$, 证明 F'(3) = 20 到 f(x) $f(x) = \frac{2}{f'(y)}$

想办话我产中两个相同的函数值再用Rollegt但这里设定使F(0)=F(2021)不可能。

校 气形引 f(x)=1, 由介值定理, 这是显然的.

论研:由介值交强、录206(0,2021), s.t. f(x0)=1、 \$\lagrange, \frac{1}{2}6(x.2021), s.t f(g) = \frac{f(2=21) - f(x)}{2021 - x} = \frac{1}{2021 - x}. 下的显路中极道、则下(包)=0,下(1)= C大024+ 1/1, 1f(x0)=0. 由Rolle, ヨると(0,x0). sカF(3)=f(3)+ [3-2021+ 1/(り)]f(3)=0. 即题目所址、

小纸:以上辅助色数的构造都高不开对式于的观察 即什么样的我子本年可以得到的需要的我子? 最后一章 学完后有一个段通用的方法 —— 微分方程线. 这里仅给出一个较重要的情形: f(3)+g(3)+(3)=0, m全F(x)=f(x)e 「g(x)dx 则万得 F'(x)=[f(x)+g(x)f(x)] e等「gowdx

eg 17: 思语:「不妨f+'(a)>o,f'-(b)<0,示意瞬间:(a,f(a)) (x,f(x))=f(a)) 先利用介值,找出符合Rolle条件的两点

每用Rolle 松明多数为0」

不妨取-至xxc(a, a+6), 刚 f(xxx > f(a) > f(b). f在[x, 6]上运復 ⇒ ∃xi∈[x, b]. 8.6 f(x,)=f(a).

Polle = 3 € (a, xi) € (a,b), s.t f'(3)=0,

饵刀: 由歐路 松明寺函数具有介值程.

灵磁: 厂给出的已知条件是关于寻数的信息、由此不采用 Rolle. 讨论导函数性质考虑 Darbowx. 先做一个小处理: 全产(x)= f(x)-f(a),则有产(a)=0, f'(a)=0, 寒粒子((3)= f'(5)(b-a). 声杨连 F(x)= e-(b-a)x. f(x)。 需必 336(a,b). s.t. F'(3)=0.

3000 A Parhoux, 考尼反近沿。

以析:全压(x)= e-(b-a)x· [f(x)-f(o)]、 k让. 假设 b (ξ(3)+ (f(3)+ (f(3)-f(a)) (b-c)

⇒ ∀x∈(a,b), F'(x)+O、由 Parboxix 定难, 不妨假设 ∀x∈Za,b], F'(x)>0.(如径可干代替 (四 则下年城,则下(c)= 又-(b-a)x下f(c)-f(a)]>F(a)=o= f(c)>f(a).

F'(x)= R=(b-a)x [f'(x)- (b-a). (f(x)-f(a))] =7 F'(c) = e-(b-a)c [f'(c)-(b-a)(f(c)-f(c))]=-e-(b-a)c(b-a)[f(c)-f(a)]>0=) f(c)(-f(a))