Cap. 1 Ótica Geométrica

Natureza da Luz:

- Luz como Onda
- Reflexão Refração
- Lei de Snell
- Prismas Dispersão

Natureza da Luz

Luz como Onda

A Luz é um ingrediente fundamental para a vida na Terra (fotossíntese).

A Luz tem carácter <u>ondulatório</u> (explica a interferência e difração) e <u>corpuscular</u> (explica reflexão e refração).

A Luz constitui parte do <u>espetro eletromagnético.</u> Propaga-se, com velocidade $c = 3 \times 10^8$ m/s, no vácuo.

Energia da radiação (fotão) : **E** = *hf*

h (Constante de Planck) = 6.63 x 10⁻³⁴ J.s

f = frequência

Natureza da Luz

A Luz é uma Onda Electromagnética

A luz propaga-se a uma velocidade

$$c = \lambda f \quad (3 \cdot 10^8 \ m/s)$$

Espetro Eletromagnético

Espetro Eletromagnético

Conceito de Raios-Frente de Onda

Em ótica geométrica é conveniente representar a luz por raios, que indicam a direção e o sentido de propagação da onda.

Absorvida

refletida

Refratada

Válido para comprimentos de onda << relativamente ao tamanho do objeto

Reflexão da Luz

 $\theta_{i} = \theta_{r}$ Raio incidente θ_{i} Raio reflectido normal

 θ_i – ângulo de incidência

 θ_r – ângulo de reflexão

Reflexão especular

Reflexão difusa

Quando a luz passa de um meio para outro:

- A sua velocidade altera-se
- Os raios transmitidos são desviados: Refratados

Indice de Refração

O ângulo de refração depende das propriedades do sen $(\theta_i) = \frac{v_2}{v} sen(\theta_i)$ dois meios e do ângulo de incidência:

$$sen(\theta_{t}) = \frac{v_{2}}{v_{I}} sen(\theta_{t})$$

Num meio a luz propaga-se com uma velocidade inferior a "c"

O Indice de refração dum meio é a razão entre as velocidades da luz no vazio e no meio

$$n_i = \frac{c}{v_i}$$

$$\begin{vmatrix} v_i = \frac{c}{n_i} \Rightarrow sen(\theta_t) = \frac{n_1}{n_2} sen(\theta_t) \end{vmatrix}$$

Substância	Índice de refracção
Diamante	2.419
Vidro	1.66
Gelo	1.31
Cloreto de Sódio	1.544
Benzeno	1.501
Álcool etílico	1.361
Glicerina	1.473
Água	1.333
Ar	1.000293
Dióxido de Carbono	1.00045

Refração

Lei de Snell

$$n_2 \operatorname{sen}(\theta_t) = n_1 \operatorname{sen}(\theta_t)$$

Para qualquer onda:

$$v_i = \lambda_i f$$

е

$$n_i = \frac{c}{v_i}$$

$$v_1 n_1 = v_2 n_2 \Longrightarrow \lambda_1 n_1 = \lambda_2 n_2$$

Importante:

- Como as ondas mecânicas, a frequência da luz é constante.
- Só muda o comprimento de onda e a velocidade.

Refração

Consequência da Lei de Snell:

Quando a luz passa de um meio de índice de refração n₁ para um meio de índice de refração n₂ os raios refratados

aproximam-se da normal se:

$$sen(\theta_t) = \frac{n_1}{n_2} sen(\theta_t)$$
$$n_2 > n_1 \implies \theta_t < \theta_t$$

Refração

Quando a luz passa de um meio de índice de refração n₁ para um meio de índice de refração n₂ os raios refratados

afastam-se da normal se:

Índice de Refração

Para uma determinada substância, o índice de refração é função inverse do comprimento de onda.

Prismas

Por isso os prismas decompõem a Luz Branca: Dispersão

@Brooks/Cole Publishing Company/ITP

Prismas-Dispersão

A Luz Vermelha que tem um comprimento de onda maior e menos desviada que a Luz Azul

O Azul do Céu

Devido às partículas da atmosfera a luz do sol é sofre uma <u>dispersão</u>, mas como vimos este <u>dispersão</u> é maior para os comprimentos de onda <u>curtos</u>, ou seja, para os azul comparados com os vermelhos.

Perto do meio dia o céu é <u>azul</u>, enquanto a luz proveniente direitamente do sol (ou seja o sol), à qual falta a componente azul, é mais <u>amarela</u>.

O Azul do Céu

Ao fim do dia os raios de sol atravessam uma espessura de atmosfera maior que ao meio dia, a <u>dispersão</u> é mais importante. Esta espessura é suficiente para dispersar alem do azul, o verde e uma parte do amarelo.

O céu é agora mais rose e o sol mais laranja.

Reflexão Interna Total

A <u>reflexão interna total</u> ocorre quando o ângulo de refração é superior a <u>90°</u>, ou seja, não há transmissão de luz, <u>toda</u> a luz é

Ótica Geométrica

Convenções e Notações

- p Distância do Objeto ao elemento ótico
- q Distância do elemento Ótico à Imagem
- h Altura do Objeto
- h' Altura da Imagem
- m = h' / h Ampliação lateral
- f Distância focal do elemento ótico.
- Raio de curvatura da interface esférica.

Todas estas grandezas podem ser positivas ou negativas

Tipos de Espelho

Imagens formadas por reflexão

Espelhos côncavos

Para obter a imagem criada por um espelho esférico precisamos de dois raios:

- •Um incide no espelho no vértice
 V e reflecte-se com o mesmo ângulo θ.
- •O outro passa pelo centro de curvatura, C, incide perpendicularmente ao espelho e é reflectido sobre si próprio.

Imagens formadas por reflexão

Espelhos côncavos

$$tg \ \alpha = \frac{h}{p - R}$$

е

$$tg \ \alpha = -\frac{h'}{R - q}$$

 \rightarrow

$$\frac{h'}{h} = -\frac{R - q}{p - R}$$

mas

$$\frac{h'}{h} = -\frac{q}{p}$$

→

$$\frac{h'}{h} = -\frac{R - q}{p - R} = -\frac{q}{p}$$

Espelhos côncavos

Equação dos espelhos

$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R} = \frac{1}{f}$$

Onde f é a <u>Distância focal</u> do espelho O ponto F distante do espelho de f é o Foco

$$f = \frac{R}{2}$$

Ponto focal

$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R} = \frac{1}{f}$$

A posição da imagem de um Objeto formada por reflexão não depende do raio incidente considerado.

Todos os raios considerados convergem no mesmo ponto!

Construção de Imagens

Qualquer que seja o elemento Ótico, 2 raios são suficiente para construir a imagem.

<u>Raios</u>

- 1. Paralelo ao eixo Ótico e é refletido através do foco.
- 2. Passa pelo do foco e é refletido paralelamente ao eixo.
- 3. Passa pelo centro de curvatura e é refletido sobre si próprio.
- 4. Bate no vértice e é refletido simetricamente.

Ex:

Espelhos côncavos

Objeto antes do Foco(p>f)

Imagem Real

$$m = \frac{h'}{h} = -\frac{q}{p} < 0$$

Objeto <u>entre</u> o Foco e o espelho (p<f)
Imagem Virtual

$$m = \frac{h'}{h} = -\frac{q}{p} > 0$$

Espelhos Convexos

Qualquer que seja a posição de um <u>Objeto Real</u> criam uma <u>Imagem</u> <u>virtual</u>.

Mas!!!

De um Objeto virtual criam uma Imagem real.

Imagens Virtuais

$$m = \frac{h'}{h} = -\frac{q}{p} > 0$$

Espelhos planos

Qualquer que seja a posição de um <u>Objeto Real</u> criam uma <u>Imagem virtual</u>.

Mas!!!

De um Objeto virtual criam uma Imagem real.

Imagens Virtuais

$$m = \frac{h'}{h} = -\frac{q}{p} > 0$$

Conjunto de Espelhos

Vamos ver agora as imagens formadas por um conjunto de dois espelhos.

Conceitos inicias (validos também para as lentes):

- Temos dois Objetos e duas imagens.
- •O primeiro espelho cria do Objeto Ob₁ uma imagem Im₁.
- •Este imagem torna-se o Objeto para o segundo espelho: $Im_1=Ob_2$
- •O segundo espelho forma então a segunda e ultima imagem, Im₂.

$$\frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{f_1} = \frac{2}{R_1}$$

Formação da primeira imagem Im_1 pelo espelho 1.

$$\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2} = \frac{2}{R_2}$$

Formação da segunda imagem Im₂ pelo espelho 2 sendo o Objeto a imagem Im₁.

Conjunto de Espelhos

$$\frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{f_1} = \frac{2}{R_1}$$

$$\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2} = \frac{2}{R_2}$$

Equação de ligação

$$p_2 = d - q_1$$

Equação válida sempre, qualquer que sejam os elementos Óticos.

Ampliação lateral

$$m = m_1 \cdot m_2 = \left(-\frac{q_1}{p_1}\right) \cdot \left(-\frac{q_2}{p_2}\right) = \frac{h'}{h}$$

Dois meios transparentes, índices de refração n₁ e n₂:

$$|n_2>n_1|$$

Superfície esférica de raio R (Interface entre os meios)

Aproximação de raios para-axiais, ($\underline{\theta}$ pequenos, raios próximos do eixo Ótico)

$$\begin{cases} sen \ \theta \approx \theta \\ tg \ \theta \approx \theta \end{cases}$$

Aplicada à Lei de Snell:

$$n_1 \operatorname{sen}(\theta_1) = n_2 \operatorname{sen}(\theta_2)$$

$$n_1 \theta_1 = n_2 \theta_2$$

Aplicando aos triângulos OPC e PIC, a propriedade de o ângulo exterior a um triângulo ser igual a soma dos ângulos opostos

$$\theta_1 = \alpha + \beta$$
$$\beta = \theta_2 + \gamma$$

$$n_1 \theta_1 = n_2 \theta_2$$

$$\longrightarrow$$

$$n_1 \alpha + n_2 \gamma = (n_2 - n_1) \beta$$

Para ângulos pequenos.

$$tg \ \alpha \approx \alpha \approx \frac{d}{p}$$

$$tg \ \beta \approx \beta \approx \frac{d}{R}$$

$$tg \ \gamma \approx \gamma \approx \frac{d}{q}$$

$$n_1 \alpha + n_2 \gamma = (n_2 - n_1) \beta$$

$$\rightarrow$$

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{\left(n_2 - n_1\right)}{R}$$

Equação das interfaces refratoras

A posição da imagem de um objecto formada por refração (como no caso da reflexão) não depende do raio incidente considerado.

Todos os raios considerados convergem no mesmo ponto!

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{\left(n_2 - n_1\right)}{R}$$

Imagens formadas por refração

Caso particular: Superfícies planas

$$R = \infty \Longrightarrow q = -p \frac{n_2}{n_1}$$

Imagens formadas por refração

Considera-se uma lente, de índice n, constituída de duas superfícies esféricas de raios R_1 e R_2 . O objeto está perto da lente.

A primeira interface produz a imagem Im₁. Este imagem torna-se o objecto, Ob₂, para a segunda interface, que assim produz a imagem Im₂

Imagens formadas por refração

Assim temos para a 1^a interface (Ob₁ - Im₁):

$$\frac{1}{p_1} + \frac{n}{q_1} = \frac{n-1}{R_1}$$

para a 2^a interface $(Ob_2 - Im_2)$:

$$\frac{n}{p_2} + \frac{1}{q_2} = \frac{1 - n}{R_2}$$

Equação de ligação

$$p_2 = d - q_1$$

Lentes Finas

Na aproximação das Lentes Finas considera-se que d ≈ 0:

$$p_2 = -q_1$$

$$\frac{1}{p} + \frac{1}{q} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{f}$$

Equação dos fabricantes de Lentes

Lentes Finas

Lentes Convergentes

Lentes Divergentes

Lentes Convergentes

- 1. Paralelo ao eixo ótico e é refratado através do foco, F.
- 2. Passa pelo foco F' e é refratado paralelamente ao eixo.
- 3. Passa pelo centro da lente e não é desviado.

Ex:

Lentes Convergentes

Objeto <u>antes</u> do foco, F' (p > f)
Imagem Real

$$m = \frac{h'}{h} = -\frac{q}{p} < 0$$

$$m = \frac{h'}{h} = -\frac{q}{p} > 0$$

Lentes Divergentes

Qualquer que seja a posição de um Objeto Real criam uma Imagem virtual.

Mas!!! De um Objeto virtual criam uma Imagem real.

A primeira lente cria do objeto Ob₁ uma imagem Im₁ que se torna o objeto da segunda lente Im₁=Ob₂.

$$\frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{f_1}$$

$$p_2 = d - q_1$$

$$\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2}$$

Equação de ligação

$$p_2 = d - q_1$$

Equação válida <u>sempre</u> qualquer que sejam os elementos óticos.

Ampliação lateral

$$m = m_1 \cdot m_2 = \left(-\frac{q_1}{p_1}\right) \cdot \left(-\frac{q_2}{p_2}\right) = \frac{h'}{h}$$

 I_1 real - Ob₂ real - I_2 real

$$p_1 e q_1 > 0$$

$$p_2 e q_2 > 0$$

$$m_1 < 0$$
; $m_2 < 0$; $m > 0$

 I_1 real – Ob_2 virtual – I_2 real

$$p_1 e q_1 > 0$$

$$p_2 < 0 e q_2 > 0$$

 $m_1 < 0 ; m_2 > 0 ; m < 0$

 I_1 virtual – Ob_2 real – I_2 real

 $m_1 > 0$; $m_2 < 0$; m < 0

I₁ real – Ob₂ real – I₂ virtual

 $p_1 e q_1 > 0$

$$p_2 > 0 e q_2 < 0$$

 $m_1 < 0$; $m_2 > 0$; m < 0

Conjunto de Elementos Óticos

 I_1 real – Ob_2 real – I_2 real

$$p_1 e q_1 > 0$$

$$p_2 e q_2 > 0$$

 $m_1 < 0$; $m_2 < 0$; m > 0

Conjunto de Elementos Óticos

 I_1 real – Ob_2 real – I_2 virtual

$$p_1 e q_1 > 0$$

$$p_2 > 0 e q_2 < 0$$

$$m_1 < 0$$
; $m_2 > 0$; $m < 0$