# К блоку заданий IV. Исследование статистических связей.

Результаты эксперимента  $(x_1, y_1), ..., (x_n, y_n)$  можно трактовать как независимые реализации случайного вектора  $(\xi, \eta)$ . Необходимо проверить гипотезу независимости компонент этого вектора, оценить степень связности величин, а также построить наилучший прогноз одной величины по значениям другой величины.

Данные для обработки: столбец R (лист 2) – измерения  $\xi$  (X), столбец S (лист 2) – измерения  $\eta$ (Y)

- IV.1. Проверить гипотезу независимости по критерию сопряжённости хи-квадрат
- начальная точка, шаг и количество групп (с учётом бесконечных) в строке 15 (лист 1),
- уровень значимости  $\alpha$ : строка 15 (лист 1).
- **IV.2**. Построить оценку наилучшего линейного прогноза одной сл.в. по значениям другой сл.в., привести график линии регрессии и эллипса рассеяния в поле данных
- направление прогнозирования (Y через X или X через Y): строка 17 (лист 1)
- **IV.3**. Проверить гипотезу независимости в ситуации, когда можно считать распределение вектора  $(\xi, \eta)$  нормальным
- уровень значимости  $\alpha$ : строка 16 (лист 1)

## Теоретические основы

<u>Определения.</u> Две случайные величины  $\xi$ , $\eta$  называются *независимыми*, если для любых измеримых подмножеств A,B из пространств значений этих сл. в. выполняется равенство

$$\mathbf{P}\{\xi \in A \cap \eta \in B\} = \mathbf{P}\{\xi \in A\} \mathbf{P}\{\eta \in B\}.$$

Kоэффициентом корреляции между случайными величинами  $\xi, \eta$  называется величина

$$\rho = \frac{\sigma_{\xi\eta}}{\sigma_{\xi} \, \sigma_{\eta}},$$

где  $\sigma_{\xi}$ ,  $\sigma_{\eta}$  — стандартные отклонения  $\xi$ ,  $\eta$  соответственно,

$$\sigma_{\xi\eta} = \mathbf{E}[(\xi - \mu_{\xi})(\eta - \mu_{\eta})] = \mathbf{E}[\xi \, \eta] - \mu_{\xi} \, \mu_{\xi}$$

— так называемый коэффициент ковариации,  $\mu_{\xi}, \mu_{\eta}$  — математические ожидания  $\xi, \eta$  соответственно.

Если случайные величины независимы, то коэффициент корреляции равен  $\rho = 0$ .

*Уравнение линейной регрессии*  $\eta$  на  $\xi$  есть линейная функция  $y^*(x) = \beta \cdot x + \alpha$ , для которой достигается минимум (среди всех линейных функций) среднеквадратической ошибки линейного прогноза значений сл.в.  $\eta$  по значениям сл.в.  $\xi$ :

$$\mathbf{E}[\eta - (b \cdot \xi + a)]^2 = \min_{c,d} \mathbf{E}[\eta - (d \cdot \xi + c)]^2.$$

Если дисперсии  $\xi$ ,  $\eta$  конечны, то уравнение регрессии можно записать в виде:

$$y^*(x) = \rho \frac{\sigma_{\eta}}{\sigma_{\xi}} (x - \mu_{\xi}) + \mu_{\eta} = \beta x + \alpha,$$

$$\beta = \rho \frac{\sigma_{\eta}}{\sigma_{\xi}}, \qquad \alpha = \mu_{\eta} - \beta \mu_{\xi},$$

где x — переменная, принимающая возможные значения сл.в.  $\xi$ ,  $y^*$  — прогноз  $\eta$  при  $\xi=x$ .

Дисперсия ошибки прогноза (ocmamovная ducnepcuя) равна  $\sigma_{\eta}^2(1-\rho^2)$ .

Замечание I. Для прогноза  $\xi$  по значению  $\eta = y$  строится уравнение регрессии  $\xi$  на  $\eta$ :

$$x^*(y) = \rho \frac{\sigma_{\xi}}{\sigma_n} (y - \mu_{\eta}) + \mu_{\xi}.$$

Замечание II. На основе выборочных данных мы можем найти только оценку линейной регрессии, если заменим неизвестные параметры их соответствующими оценками.

Эллипс рассеяния представляет собой геометрическую характеристику изменчивости и зависимости случайных величин. Кроме области изменения случайного вектора (в основном), эллипс рассеяния показывает характер зависимости случайных величин. Из всего разнообразия геометрических фигур эллипс выбран по следующим причинам. Во-первых, эллипс имеет удобное аналитическое представление. Во-вторых, реальные данные показывают, что основная масса реализаций вектора визуально располагается внутри фигуры, подобной эллипсу. Наконец, у наиболее популярного двумерного нормального распределения линии постоянства функции плотности образованы именно эллипсами.

Определение. Пусть  $(\mu_{\xi}, \mu_{\eta})$  – вектор математических ожиданий  $(\xi, \eta), (\sigma_{\xi}^2, \sigma_{\eta}^2)$  – дисперсии  $(\xi, \eta), \rho$  – коэффициент корреляции. Эллипс относительно переменных (x, y), определяемый уравнением

$$\frac{\left(x-\mu_{\xi}\right)^{2}}{\sigma_{\xi}^{2}}-2\rho\frac{\left(x-\mu_{\xi}\right)}{\sigma_{\xi}}\frac{\left(y-\mu_{\eta}\right)}{\sigma_{\eta}}+\frac{\left(y-\mu_{\eta}\right)^{2}}{\sigma_{\eta}^{2}}=4(1-\rho^{2})$$

называется эллипсом рассеяния случайного вектора  $(\xi, \eta)$ .

Справедлива следующая

**Теорема. а)** Пусть  $|\rho| < 1$ , тогда эллипс рассеяния – единственный эллипс, равномерное распределение внутри которого имеет одинаковые с  $(\xi, \eta)$  математические ожидания  $(\mu_{\xi}, \mu_{\eta})$ , дисперсии  $(\sigma_{\xi}^2, \sigma_{\eta}^2)$  и коэффициент корреляции  $\rho$ .

- **6)** Если вектор  $(\xi, \eta)$  имеет двумерное нормальное распределение, то вероятность того, что он примет значение внутри своего эллипса рассеяния равна 0,865.
- **в)** Линии регрессии проходят через точки касания с эллипсом прямых, параллельных соответствующим осям координат.
- **Г)** Оси эллипса рассеяния параллельны осям координат лишь в случае, когда коэффициент корреляции  $\rho=0$ , т.е. компоненты вектора не коррелируют.
- **д)** Площадь эллипса рассеяния  $4\pi\sqrt{(1-\rho^2)}\sigma_\xi\sigma_\eta$ . Другими словами, вектор имеет малую область изменения не только при малых значениях дисперсий, но и при коэффициенте корреляции, близком к 1.

#### Описание статистических критериев

#### **IV.1.** Критерий сопряжённости хи-квадрат

**а)** Области значений признаков разбиваются соответственно на r и s интервалов  $(-\infty; X_1], (X_1; X_2], \dots, (X_{r-2}; X_{r-1}], (X_{r-1}; \infty) \quad \text{if} \quad (-\infty; Y_1], (Y_1; Y_2], \dots, (Y_{s-2}; Y_{s-1}], (Y_{s-1}; \infty);$ 

6) подсчитываются частоты (количества)

$$n_{kj} = \#((x_i, y_i) \in (X_{k-1}; X_k] \times (Y_{j-1}; Y_j])$$

попаданий всех пар выборочных данных в каждую двумерную ячейку  $(X_{k-1}; X_k] \times (Y_{j-1}; Y_j];$ 

|            | тел таолища п |          |          |              |              |              |
|------------|---------------|----------|----------|--------------|--------------|--------------|
| ξ<br>η     | $\leq X_1$    | $X_2$    |          | $X_{r-1}$    | $> X_{r-1}$  | Всего        |
| $>Y_{s-1}$ | $n_{s1}$      | $n_{s2}$ |          | $n_{s(r-1)}$ | $n_{sr}$     | $n_{s*}$     |
| $Y_{s-1}$  | $n_{(s-1)1}$  |          |          |              | $n_{(s-1)r}$ | $n_{(s-1)*}$ |
|            |               |          | $n_{kj}$ |              |              |              |
| $Y_2$      | $n_{21}$      |          |          |              | $n_{2r}$     | $n_{2*}$     |
| $\leq Y_1$ | $n_{11}$      | $n_{12}$ |          | $n_{1(r-1)}$ | $n_{1r}$     | $n_{1*}$     |
| Всего      | $n_{*1}$      | $n_{*2}$ |          | $n_{*(r-1)}$ | $n_{*r}$     | $n=n_{**}$   |

в) заполняется таблица частот

где в строке и столбце «Всего» вычисляются суммы  $n_{k*}$ ,  $n_{*i}$  соответствующих строк и столбцов - сумма чисел в строке «Всего» совпадает с суммой чисел в столбце «Всего» и равна общему объёму выборки n;

**г)** вычисляется статистика критерия сопряжённости

$$\mathbb{X}^{2} = n \sum_{k=1}^{r} \sum_{j=1}^{s} \frac{\left(\frac{n_{kj}}{n} - \frac{n_{*j}}{n} \frac{n_{k*}}{n}\right)^{2}}{\frac{n_{*j}}{n} \frac{n_{k*}}{n}} = \frac{1}{n} \sum_{k=1}^{r} \sum_{j=1}^{s} \frac{\left(n \, n_{kj} - n_{*j} \, n_{k*}\right)^{2}}{n_{*j} \, n_{k*}}.$$

**д)** Известно, что если случайные величины  $\xi$ ,  $\eta$  независимы, то значение  $\mathbb{X}^2$  представляет собой реализацию сл.в. с распределением, приближённо описываемым распределением хи-квадрат с v = (r - 1)(s - 1) степенями свободы.

е) Применить общую схему построения критерия, ориентируясь на то, что при справедливости нулевой гипотезы независимости ожидаются малые значения  $\chi^2$  (объяснить почему?).

#### **IV.3.** Эллипс рассеяния.

При построении эллипса рассеяния нужно решить уравнение, определяющее эллипс, относительно переменной y. Если обозначить  $u=\frac{x-\mu_\xi}{\sigma_\xi}$ ,  $v=\frac{y-\mu_\eta}{\sigma_\eta}$ , то уравнение перепишется в виде  $v^2-2\rho vu+v^2=4(1-\rho^2)$ . Решая это уравнение школьными методами, получим две ветви эллипса  $v = \rho u \pm \sqrt{(1-\rho^2)(4-u^2)}$ ,  $|u| \le 2$ . Т.о., уравнения ветвей эллипса рассеяния:

$$y_{12} = \mu_{\eta} + \rho \frac{\sigma_{\eta}}{\sigma_{\xi}} (x - \mu_{\xi}) \pm \frac{\sigma_{\eta}}{\sigma_{\xi}} \sqrt{1 - \rho^2} \sqrt{4\sigma_{\xi}^2 - (x - \mu_{\xi})^2},$$

при  $x \in [\mu_{\varepsilon} - 2\sigma_{\varepsilon}; \mu_{\varepsilon} + 2\sigma_{\varepsilon}].$ 

#### IV.2. Критерий независимости компонент двумерного случайного вектора

**а)** По выборочным данным  $(x_1, y_1), ..., (x_n, y_n)$  вычисляется коэффициент корреляции

$$R = \frac{1}{n S_x S_y} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}),$$

где  $\overline{x}$ ,  $\overline{y}$  — соответствующие выборочные средние,  $S_x$ ,  $S_y$  — выборочные стандартные отклонения (на основе смещённой выборочной дисперсии);

6) находится преобразование Стьюдента для выборочного коэффициента корреляции

$$t = \sqrt{n-2} \frac{R}{\sqrt{1-R^2}}.$$

- **в)** Известно, что, если выборка получена из двумерного нормального закона, значение t представляет собой реализацию случайной величины с распределением Стьюдента с  $\nu=n-2$  степенями свободы.
- **г)** Далее применить общую схему построения статистического критерия, ориентируясь на то, что при справедливости нулевой гипотезы независимости истинный коэффициент корреляции  $\rho$  равен нулю.

### Имярек Джон Карлович гр. 09-0101 (ZadanMS50)

# **Задание IV.1**. Проверка независимости по критерию хи-квадрат

- 1. Описание физической, биологической, медицинской, ... задачи.
- 2. Условия проведения эксперимента ...
- 3. Описание вероятностной модели наблюдений ...
- 4. Ожидания экспериментатора. Нулевая гипотеза  $H_0$ : ... при альтернативе  $H_1$ : ....
- 5. Уровень значимости  $\alpha = \cdots$ .
- 6. Применяемый критерий, тестовая статистика, процесс вычисления статистики. Вид критической области.
- 7. Функция распределение тестовой статистики ...
- 8. Критическая константа  $C_{\alpha}$  находится из уравнения
  - а. ..., т.е. равна ...-квантили распределения ...
  - b. Воспользовавшись ..., нашли, что  $C_{\alpha} = \cdots$ . Окончательный вид критической области ...

9.

### а. По представленным данным найдено

|                                  | 78,55             | 81,55 | 84,55          | 87,55            | >87,55 | Σ      |
|----------------------------------|-------------------|-------|----------------|------------------|--------|--------|
| >123,55                          | 0                 | 0     | 2              | 2                | 3      | 7      |
| 123,55                           | 0                 | 1     | 7              | 13               | 2      | 23     |
| 119,55                           | 1                 | 6     | 23             | 12               | 0      | 42     |
| 115,55                           | 0                 | 5     | 12             | 0                | 0      | 17     |
| 111,55                           | 2                 | 4     | 0              | 0                | 0      | 6      |
| Σ                                | 3                 | 16    | 44             | 27               | 5      | n = 95 |
| Статисти                         | ка Х <sup>2</sup> |       |                |                  |        | 75,75  |
| степени с                        | вободы            |       |                |                  |        | 16     |
| 2.5%-я критическая область       |                   |       | $\mathbb{X}^2$ |                  |        |        |
| Гипотеза независимости           |                   |       |                |                  |        |        |
| с критическим уровнем значимости |                   |       |                | p- $val < 0.001$ |        |        |

b. Критический уровень значимости p-value вычислялся по формуле  $p\text{-}val = \cdots = 9.6 \times 10^{-10}.$ 

Т.к. p-val ..., следует считать наблюдения зависимыми.

<u>Замечание I.</u> Если располагать ячейки слева-направо и снизу-вверх (как у меня), то можно увидеть направление зависимости; у меня – с ростом одной характеристики (X) наблюдается тенденция к увеличению другой характеристики (Y).

### Задание IV.2. Наилучший линейный прогноз, эллипс рассеяния

- 1. По результатам независимых измерений рентабельности и доходности n=95 предприятий найти оценки коэффициентов линейной среднеквадратической регрессии доходности ( $\xi$ ) на рентабельность ( $\eta$ ); представить график линии регрессии в поле всех данных; найти прогноз значения доходности при значении рентабельности  $\eta=79$ ; дать оценку точности прогноза, изобразить эллипс рассеяния.
- 2. Условия проведения эксперимента ...
- 3. По представленным данным найдено

| Коэффициент линейной регрессии           | $\beta = 0,667$      |
|------------------------------------------|----------------------|
| Уравнение регрессии $\xi$ на $\eta$      | x = 0,667 y + 65,732 |
| Прогноз при $y = 79$                     | x = 118.43           |
| Коэфф.корреляции                         | R = 0,537            |
| Стандарт.отклонение наблюдений прочности | $S_x = 3,611$        |
| Оценка стандарт. ошибки прогноза         | 3,046                |



**Вывод.** При таком невысоком значении коэффициента корреляции (R = 0.537; стандартная ошибка прогноза равна 3,05) прогностические качества линии регрессии очень низкие.

Замечание (для исполнения, но не для копипастирования в отчёт). Линии сетки в поле данных (серые, пунктирные) совпадают с границами ячеек задания IV.1. Такое представление помогает видеть правильность заполнения ячеек. Красный квадрат — центр данных, синяя линия — процесс нахождения прогноза с помощью линии регрессии (можно без стрелки).

### Задание IV.3. Проверка независимости по выборочному коэффициенту корреляции

- 1. Описание физической, биологической, медицинской, ... задачи.
- 2. Условия проведения эксперимента и наблюдаемый сл. вектор ...
- 3. Описание вероятностной модели наблюдений ...
- 4. Ожидания экспериментатора. Нулевая гипотеза  $H_0$ : ... при альтернативе  $H_1$ : ....
- 5. Уровень значимости  $\alpha = \cdots$ .
- 6. Применяемый критерий, тестовая статистика, процесс вычисления статистики. Вид критической области.
- 7. Функция распределение тестовой статистики ...
- 8. Критическая константа  $C_{\alpha}$  находится из уравнения
  - а. ..., т.е. равна ...-квантили распределения ...
  - b. Воспользовавшись ..., нашли, что  $C_{\alpha} = \cdots$ . Окончательный вид критической области ...

9.

#### а. По представленным данным найдено

|                                 | x            | у     |
|---------------------------------|--------------|-------|
| Среднее,                        | 119,64       | 80,81 |
| Дисперсия, s <sup>2</sup>       | 13,039       | 8,440 |
| Стандарт.отклонение s           | 3,611        | 2,905 |
| Объём выборки, п                | 103          | 103   |
| Коэффициент ко                  | 0.537        |       |
| 1100 4 4 112 110 111            | рролиции, и  | 0.557 |
| Преобразование С                |              | 6.392 |
| Преобразование С                |              |       |
| Преобразование С<br>5%-я критич | Стьюдента, t | 6.392 |

b. Критический уровень значимости p-value вычислялся по формуле  $p\text{-val} \, = \cdots = 2.6 \times 10^{-9}.$ 

Т.к. p-va..., следует считать отклонение выборочного коэффициента корреляции от нуля статистически ... значимым.