

CONTENTS

SECTION 1: INTRODUCTION

- CASE STUDY
- DATASET
- SOME APPLICATIONS

SECTION 2: MODEL DESCRIPTION

- OBJECT DETECTION
- RETINANET (1): ARCHITECTURE
- RETINANET (2): FOCAL LOSS

SECTION 3: APPLICATION

- TRAINING
- RESULTS
- INFERENCE

SECTION 1: INTRODUCTION

Case Study

Dataset

WiderPerson: A Diverse Dataset for Dense Pedestrian Detection in the Wild
(S. Zhang, Y. Xie, J. Wan, H. Xia, S. Li, and G. Guo)

Some Applications

Autonomous Driving

Intrusion Detection

Crowd Counting

SECTION 2: MODEL DESCRIPTION

Object Detection

Two-stages Detector

R-CNN: Regions with CNN features

One-stage Detector

Object Detection

Two-stages Detector

One-stage Detector

*supposing 4 classes

one bounding box

Object Detection

One-stage Detector

RetinaNet (1): Architecture

RetinaNet (2): Imbalance effects on the Loss

- 100.000 easy vs 100 hard examples
- The contribute is **40x** bigger from easy/non-significant/background examples

RetinaNet (2): Imbalance effects on the Loss

- 10000 easy vs 100 hard examples
- The contribute is 40x bigger from easy/non-significant/background examples

Solution:

"press down" the Cross-Entropy function to reduce the loss value for easy examples

RetinaNet (2): Focal Loss

- Adds a factor $(1 p_t)^{\gamma}$ to the standard cross entropy function
- Setting $\gamma>0$ reduces the relative loss for well-classified examples (where $p_t>0.5$), putting more focus on hard, misclassified examples
- Optimal results for $\gamma = 2$

SECTION 3: APPLICATION

Learning Rate: 0.0001

Learning Rate: 0.0001

Batch Size: 32

Learning Rate: 0.0001

Batch Size: 32

Epochs: 15

Learning Rate: 0.0001

Batch Size: 32

Epochs: 15

Augmentation: No

Learning Rate: 0.0001

Batch Size: 32

Epochs: 15

Augmentation: No

Backbone: Resnet50

(freezed)

Results on Test Set

```
17833 instances of class pedestrians with average precision: 0.7904
185 instances of class riders with average precision: 0.0023
9335 instances of class partially-visible persons with average precision: 0.2263
409 instances of class ignore regions with average precision: 0.0000
661 instances of class crowd with average precision: 0.0001
Inference time for 1000 images: 0.2525
mAP using the weighted average of precisions among classes: 0.5702
mAP: 0.2038
```

Ground truth vs Prediction

Inference

Thanks for your attention