武汉大学 2019-2020 第一学期 《高等数学 A》(A 卷) 试题

- 1、(6分) 求极限 $\lim_{x\to 0} \frac{x(e^{5x}-1)}{\sin 3x^2}$.
- 2、(6分) 求曲线 $y = x^3 3x^2 + 24x 19$ 在拐点处的切线方程。
- 3、(6分)确定函数 $f(x) = |x| \sin \frac{1}{x}$ 的间断点,并判定其类型。
- 4、(6分) 已知 f(x) 在 $(-\infty, +\infty)$ 上连续, f(0) = 0 , f'(0) = 1 , $F(n) = \lim_{x \to \infty} x f(\frac{1}{n}) \sin \frac{n}{x}$, 求 $\lim_{n \to \infty} F(n)$.
- 5、(6分)设 f(x)在($-\infty$,+ ∞)上连续,且对任何 x、y有 f(x+y) = f(x) + f(y),求定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x+f(x)\sin x)\sin x dx$ 的值。
- 6、(6分) 设 f(x) 为连续函数,函数 y = y(x) 由方程 $\int_1^x yt dt + \int_{y^2}^2 u^2 du = \int_1^2 f(x) dx$ 确定,求 $\frac{dy}{dx}$.
- 7、(6分) 若 $f(x) = \frac{1}{x^2 + 1} + \sqrt{1 x^2} \int_0^1 f(x) dx$,求 $\int_0^1 f(x) dx$.
- 8、(10分) 设函数 f(x) 满足方程 $f''(x) + 2f'(x) + \frac{3}{4}f(x) = 0$.
 - (1) 证明反常积分 $\int_0^{+\infty} f(x)dx$ 收敛; (2) 若 f(0) = 1, f'(0) = 1, 求 $\int_0^{+\infty} f(x)dx$ 的值。
- 9、(8 分) 设 $f(x) = \begin{cases} x+1, & x<0 \\ x & , & x \geq 0 \end{cases}$,求 $\varphi(x) = \int_{-1}^{x} f(t) dt$ 在 [-1,1] 上的表达式,并研究 $\varphi(x)$ 在 [-1,1] 上的连续性和可微性。
- 10、(10 分)设平面图形 D 是由 $y = \sin x$, $y = \cos x$ (其中 $0 \le x \le \frac{\pi}{2}$)及直线 $x = 0, x = \frac{\pi}{2}$ 所围成的平面图形; 求: 1)平面图形 D 的面积; 2)平面图形 D 绕 x 轴旋转一周所成的立体体积。
- 11、(8 分)设 a > 1, $f(x) = a^x ax$ 在 $(-\infty, +\infty)$ 内的驻点为 x(a),问 a 为何值时 x(a) 最小,并求最小值。
- 12、(10 分)设 y = y(x)由参数方程 $\begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$ 所确定,求 $\lim_{x \to 1^+} \frac{dy}{dx}$ 和 $\lim_{x \to 1^+} \frac{d^2 y}{dx^2}$
- 13、(5分)设函数 $f(x)=\int_0^x (t-t^2)\sin^{2n}t dt$ (n是正整数),证明: 当 $x \ge 0$ 时成立

$$f(x) \le \frac{1}{(2n+2)(2n+3)} \, .$$

14、(7分) 设函数 f(x) 在 [a,b] 上具有连续二阶导数,且 $f''(x) \ge 0$ ($x \in [a,b]$)。又已知 $\varphi(x)$ 是 闭区间 [a,b] 上的非负连续函数,且满足 $\int_a^b \varphi(x) dx = 1$. 证明:

(1)
$$a \le \int_a^b x \varphi(x) dx \le b$$
; (2) $\int_a^b f(x) \varphi(x) dx \ge f[\int_a^b x \varphi(x) dx]$.

武汉大学 2019-2020 第一学期 《高等数学 A》试题 A 参考答案

1、(6分) 求极限
$$\lim_{x\to 0} \frac{x(e^{5x}-1)}{\sin 3x^2}$$
.

解:
$$\lim_{x\to 0} \frac{x(e^{5x}-1)}{\sin 3x^2} = \lim_{x\to 0} \frac{5x^2}{3x^2} = \frac{5}{3}$$

2、(6分) 求曲线 $y = x^3 - 3x^2 + 24x - 19$ 在拐点处的切线方程。

解 由
$$y'=3x^2-6x+24$$
, $y''=6x-6=0$,得 $x=1$,又 $y'''(1)=6\neq 0$ 所以点 $(1,3)$ 为曲线拐点,而 $y'(1)=21$,故拐点处的切线方程为: $y=21x-19$

3、(6分)确定函数 $f(x) = |x| \sin \frac{1}{x}$ 的间断点,并判定其类型。

解: 由在 x = 0 处 f(x) 无意义,故 x = 0 是函数 f(x) 的间断点,又 $\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| \sin \frac{1}{x} = 0$

故x = 0是 f(x) 的第一类可去间断点。

4、(6分) 已知 f(x) 在 $(-\infty,+\infty)$ 上连续, f(0) = 0, f'(0) = 1, $F(n) = \lim_{x \to \infty} x f(\frac{1}{n}) \sin \frac{n}{x}$, 求 $\lim_{n \to \infty} F(n)$.

解: 由
$$F(n) = nf(\frac{1}{n})\lim_{x \to \infty} \frac{\sin \frac{n}{x}}{\frac{n}{x}} = nf(\frac{1}{n})$$
, $\mathbb{Z}\lim_{x \to 0} F(x) = \lim_{x \to 0} \frac{f(x)}{x} = f'(0) = 1$

由归结原理知 $\lim_{n\to\infty} F(n) = \lim_{n\to\infty} nf(\frac{1}{n}) = f'(0) = 1$

5、(6分)设 f(x)在($-\infty$,+ ∞)上连续,且对任何 x、y有 f(x+y)=f(x)+f(y),

求定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x + f(x)\sin x)\sin x dx$ 的值。

解: 由 f(x+y) = f(x) + f(y) 则有 f(x) = f(0) + f(x) 故 f(0) = 0

$$f(x) = f(0) - f(-x) = -f(-x)$$
 故 $f(x)$ 为奇函数,而 $f(x)\sin^2 x$ 是奇函数,

所以
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \sin^2 x dx = 0$$

而 $x \sin x$ 是偶函数,所以 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx = 2 \int_{0}^{\frac{\pi}{2}} x \sin x dx = -2 \int_{0}^{\frac{\pi}{2}} x d(\cos x)$

$$= -2(x\cos x) \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos x dx \Big) = 2 \int_{0}^{\frac{\pi}{2}} d(\sin x) = 2\sin x \Big|_{0}^{\frac{\pi}{2}} = 2$$

6、(6分)设
$$f(x)$$
 为连续函数,函数 $y = y(x)$ 由方程 $\int_{1}^{x} yt dt + \int_{y^{2}}^{2} u^{2} du = \int_{1}^{2} f(x) dx$ 确定,求 $\frac{dy}{dx}$

解: 两边对
$$x$$
 求导数得: $y'\int_{1}^{x} tdt + yx - y^{4} 2yy' = 0$

即: $y'\frac{1}{2}(x^{2}-1) + yx - y^{4} 2yy' = 0$
 $y'[\frac{1}{2}(x^{2}-1) - 2y^{5}] = -xy$ 故有: $\frac{dy}{dx} = \frac{2xy}{4y^{5} - x^{2} + 1}$

7、(6分) 若 $f(x) = \frac{1}{x^{2} + 1} + \sqrt{1 - x^{2}} \int_{0}^{1} f(x) dx$,求 $\int_{0}^{1} f(x) dx$.

解 由 $f(x) = \frac{1}{x^{2} + 1} + \sqrt{1 - x^{2}} \int_{0}^{1} f(x) dx$,令 $A = \int_{0}^{1} f(x) dx$,则有 $f(x) = \frac{1}{x^{2} + 1} + A\sqrt{1 - x^{2}}$,所以有 $\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1}{x^{2} + 1} dx + A \int_{0}^{1} \sqrt{1 - x^{2}} dx = \frac{\pi}{4}(1 + A)$ 所以 $\int_{0}^{1} f(x) dx = \frac{\pi}{4 - \pi}$.

8、(10分) 设函数 f(x) 满足方程 $f''(x) + 2f'(x) + \frac{3}{4}f(x) = 0$.

(1) 证明反常积分 $\int_0^{+\infty} f(x)dx$ 收敛; (2) 若 f(0)=1, f'(0)=1, 求 $\int_0^{+\infty} f(x)dx$ 的值。

解: (1) 法一 由 $f''(x) + 2f'(x) + \frac{3}{4}f(x) = 0$,故有对应的特征方程 $r^2 + 2r + \frac{3}{4} = 0$,解之得 $r_1 = -\frac{3}{2}, r_2 = -\frac{1}{2} \quad 故 \quad f(x) = C_1 e^{\frac{3}{2}x} + C_2 e^{\frac{1}{2}x}$

$$\exists f = \frac{1}{2}, r_2 = \frac{1}{2}$$

$$\exists f = \frac{1}{2}, r_2 = \frac{1}{2}$$

$$\exists f = \frac{1}{2}, r_2 = \frac{1}{2}, r_2 = \frac{1}{2}, r_3 = \frac{1}{2}, r_4 = \frac{1}{2}, r_4 = \frac{1}{2}, r_5 = \frac{1}{2$$

所以反常积分 $\int_{a}^{+\infty} f(x)dx$ 收敛;

法二 由 $f''(x) + 2f'(x) + \frac{3}{4}f(x) = 0$, 故有对应的特征方程 $r^2 + 2r + \frac{3}{4} = 0$,

解之得
$$r_1 = -\frac{3}{2}, r_2 = -\frac{1}{2}$$
 故 $f(x) = C_1 e^{-\frac{3}{2}x} + C_2 e^{-\frac{1}{2}x}$

曲对
$$\forall A > 0$$
,有 $|\int_0^A f(x)dx| = (-\frac{2}{3}C_1e^{-\frac{3}{2}x} - 2C_2e^{-\frac{1}{2}x})|_0^A = -\frac{2}{3}C_1e^{-\frac{3}{2}A} - 2C_2e^{-\frac{1}{2}A}) - (-\frac{2}{3}C_1 - 2C_2)|$

$$= |\frac{2}{3}C_1(1 - e^{-\frac{3}{2}A}) + 2C_2(1 - e^{-\frac{1}{2}A})| < \frac{2}{3}|C_1| + 2|C_2| = M$$

所以反常积分 $\int_0^{+\infty} f(x)dx$ 收敛;

(2) 由
$$f(0)=1, f'(0)=1$$
,故有 $C_1+C_2=1, -\frac{3}{2}C_1-\frac{1}{2}C_2=1$,从而有 $C_1=-\frac{3}{2}, C_2=\frac{5}{2}$ 所以有 $\int_0^{+\infty}f(x)dx=4$

9、(8 分) 设 $f(x) = \begin{cases} x+1, & x<0 \\ x, & x \ge 0 \end{cases}$,求 $\varphi(x) = \int_{-1}^{x} f(t) dt$ 在 [-1,1] 的表达式,并研究 $\varphi(x)$ 在 [-1,1] 的连续性和可微性。

解 当
$$x \in [-1,0)$$
 时, $\varphi(x) = \int_{-1}^{x} f(t) dt = \int_{-1}^{x} (t+1) dt = \frac{1}{2}x^2 + x + 1$

当
$$x \in [0,1]$$
时, $\varphi(x) = \int_{-1}^{x} f(t) dt = \int_{-1}^{0} (t+1) dt + \int_{0}^{x} t dt = \frac{1}{2}x^{2} + \frac{1}{2}$

所以有 $\varphi(x) = \begin{cases} \frac{x^{2}}{2} + x + \frac{1}{2}, & -1 \le x < 0 \\ \frac{x^{2}}{2} + \frac{1}{2}, & 0 \le x \le 1 \end{cases}$

且 $\varphi(0) = \frac{1}{2}$, $\lim_{x \to 0^{-}} \varphi(x) = \lim_{x \to 0^{-}} (\frac{x^{2}}{2} + x + \frac{1}{2}) = \frac{1}{2}$, $\lim_{x \to 0^{+}} \varphi(x) = \lim_{x \to 0^{-}} (\frac{x^{2}}{2} + \frac{1}{2}) = \frac{1}{2}$
 $\varphi'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{\frac{x^{2}}{2} + x + \frac{1}{2} - \frac{1}{2}}{x} = 1$;

 $\varphi'_{+}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{x^{2}}{2} + \frac{1}{2} - \frac{1}{2} = 0$

10、(8分)设平面图形 D 是由 $y = \sin x$, $y = \cos x$ (0 $\leq x \leq \frac{\pi}{2}$) 及直线 x = 0 , $x = \frac{\pi}{2}$ 所围 成的平面图形,求: 1) 平面图形 D 的面积; 2) 平面图形 D 绕x 轴旋转一周所成的 立体体积。

解: 1)
$$s = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) dx = 2(\sqrt{2} - 1)$$

2) $s = \pi \int_{0}^{\frac{\pi}{4}} (\cos^{2} x - \sin^{2} x) dx + \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin^{2} x - \cos^{2} x) dx$
 $= \pi \int_{0}^{\frac{\pi}{4}} \cos 2x dx - \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2x dx = \pi$

11、(8分)设 $a > 1, f(x) = a^x - ax$ 在 $(-\infty, +\infty)$ 内的驻点为x(a),问a为何值时x(a)最小, 并求最小值。

解:由
$$y' = a^x \ln a - a = 0$$
 得驻点 $x(a) = 1 - \frac{\ln \ln a}{\ln a}$ 又 $x'(a) = \frac{\ln \ln a - 1}{a(\ln a)^2} = 0$ 得 唯一驻点 $a = e^e$ 当 $a > e^e$ 时, $x'(a) > 0$;当 $a < e^e$ 时, $x'(a) < 0$; 所以 $a = e^e$ 为 $x(a)$ 的极小值点,即为最小值点。 故最小值为 $x(e^e) = 1 - \frac{1}{a(\ln a)^2} = 0$

故最小值为 $x(e^e)=1-\frac{1}{e}$.

12、(10 分) 设 y = y(x) 由参数方程 $\begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$ 所确定,求 $\lim_{x \to 1^+} \frac{dy}{dx}$ 和 $\lim_{x \to 1^+} \frac{d^2y}{dx^2}$.

解: 由
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{-\sin t}{2t} = -\frac{\sin t}{2t}$$
 $\overline{m} \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(-\frac{\sin t}{2t}\right) \cdot \frac{dt}{dx} = \frac{d}{dt}\left(-\frac{\sin t}{2t}\right) \cdot \frac{1}{\frac{dx}{dt}}$

$$= \frac{d}{dt} \left(-\frac{\sin t}{2t} \right) \cdot \frac{1}{2t} = -\frac{1}{2} \frac{t \cos t - \sin t}{t^2} \cdot \frac{1}{2t} = \frac{\sin t - t \cos t}{4t^3}.$$

$$tin \lim_{x \to 1^+} \frac{dy}{dx} = \lim_{t \to 0} \frac{-\sin t}{2t} = \frac{-1}{2}; \quad \lim_{x \to 1^+} \frac{d^2y}{dx^2} = \lim_{t \to 0} \frac{\sin t - t\cos t}{4t^3} = \frac{1}{12}$$

13、(5分) 设函数 $f(x) = \int_{0}^{x} (t-t^{2}) \sin^{2n} t dt$ (*n* 是正整数),证明: 当 $x \ge 0$ 时成立

$$f(x) \le \frac{1}{(2n+2)(2n+3)}.$$

证明 由于 $f'(x) = (x - x^2) \sin^{2n} x$, 则当 0 < x < 1时 f'(x) > 0, 当 x > 1时 $f'(x) \le 0$,

因此 f(x) 在点 x=1 取 $[0,+\infty)$ 上的最大值。于是

$$f(x) \le \int_0^1 (t - t^2) \sin^{2n} t dt \le \int_0^1 (t - t^2) t^{2n} dt = \frac{1}{(2n+2)(2n+3)}, (x \ge 0)$$
.

14、(7分) 设函数 f(x) 在 [a,b] 上具有连续二阶导数,且 $f''(x) \ge 0$ ($x \in [a,b]$)。又已知 $\varphi(x)$ 是 闭区间 [a,b] 上的非负连续函数,且满足 $\int_a^b \varphi(x) dx = 1$. 证明:

(1) $a \le \int_a^b x \varphi(x) dx \le b$; (2) $\int_a^b f(x) \varphi(x) dx \ge f \left[\int_a^b x \varphi(x) dx \right]$.

证明: (1) 对于 $x \in [a,b]$,由于 $\varphi(x)$ 非负,则显然成立 $a\varphi(x) \le x\varphi(x) \le b\varphi(x)$

由于 $\int_a^b \varphi(x) dx = 1$, 上式在 [a,b] 上取定积分得: $a \le \int_a^b x \varphi(x) dx \le b$

(2) 取 $x_0 = \int_a^b x \varphi(x) dx$,则 $x_0 \in [a,b]$.由于函数 f(x) 在 [a,b] 上具有连续二阶导数,且 $f''(x) \ge 0$ ($x \in [a,b]$)。由泰勒公式得 $f(x) \ge f(x_0) + f'(x_0)(x - x_0), x \in [a,b]$,因此 $\varphi(x) f(x) \ge \varphi(x) f(x_0) + f'(x_0)(x \varphi(x) - x_0 \varphi(x)), x \in [a,b]$

取积分得到 $\int_{a}^{b} \varphi(x) f(x) dx \ge f(x_0) \int_{a}^{b} \varphi(x) dx + f'(x_0) \left(\int_{a}^{b} x \varphi(x) dx - x_0 \int_{a}^{b} \varphi(x) dx \right)$ $= f(x_0) = f\left[\int_{a}^{b} x \varphi(x) dx \right]$