应用统计学Ⅱ第4讲 聚类分析

Instructor: 郝壮

haozhuang@buaa.edu.cn School of Economics and Management Beihang University

May 22, 2022

聚类分析的意义

现代的数据信息特点:

- 样本点数量巨大
- 指标变量众多

如何消除规模与复杂程度之间的关系?

- 对数据分类-聚类分析
- 对指标分类-提炼主要因素 (PCA)

例1. 各地区二氧化硫与粉尘排放数据(2014)

散点图的应用:两个变量,多个样本点.散点图是一个非常有用的可视化工具.

例2. 2015.5.4- 2015.7.31. 2617支股票

变量: 振幅(风险), 收益率.

直接使用原始数据, 很难观察股市特征

聚类分类示例

为了更清晰地对数据进行描述, 我们可以对股票按照风格 进行分类

中信风格指数划分的股票风格分类

- 规模因素: 以流通市值表示
- 净市值比(简称B/P值):净资产除以总市值

表 4-1 中信风格股票分类

	低 B/P 值	高 B/P 值
高市值	大盘成长	大盘价值
中等市值	中盘成长	中盘价值
低市值	小盘成长	小盘价值

- 直接使用海量数据, 很难观察股市特征
- 分类之后, 更容易发现数据中隐含的模式

分类-用户画像-精准营销

分类后,可以根据用户画像预测用户类型,并根据预测的类型进行精准营销

分类-用户画像-精准营销

文本聚类

Source: https://maksimekin.github.io/
COVID19-Literature-Clustering/plots/t-sne_
covid-19_interactive.html

用什么指标测度样本点相似性?

一. 样本点之间的相似性测度-距离 $e_i \in \mathbf{R}^p$ $e_i \to e_k$ 的相似程度: $d(e_i, e_k)$

定义: 距离 $d(\cdot, \cdot): \Omega \times \Omega \to \mathbf{R}^+$

距离应该满足如下性质

- (1) $d(x,y) \ge 0$, $\forall x,y \in \Omega$ (正定性) d(x,y) = 0 当且仅当 x = y
- (2) d(x, y) = d(y, x) (对称性)
- (3) $d(x, y) \le d(x, z) + d(z, y)$ (三角不等式)

相似性度量 - 距离

- 在聚类分析中,如果样本点为有限维定量指标,常用明考夫斯基距离 (Minkowski distance).
- 余弦距离(衡量文本之间的相似度常用).

明考夫斯基距离

明考夫斯基距离:

$$d_q(x, y) = \left[\sum_{j=1}^{p} |x_j - y_j|^q\right]^{1/q}$$

p为指标的个数. x和y表示任意两个样本点. 如根据家庭成员个数, 平均年龄, 收入, 对家庭进行聚类, 则指标个数有3个.

- q = 1 时, 即绝对值距离: $d_1(x, y) = \sum_{j=1}^{p} |x_j y_j|$
- q=2 时,即欧式距离: $d_2(x,y)=\sqrt{\sum_{j=1}^p (x_j-y_j)^2}$ (最常用)
- $q = \infty$ 时,即切比雪夫距离: $d_{\infty}(x,y) = \max_{1 \le j \le p} |x_j y_j|$

- 最常用的是**欧氏距离.** 它的优点是: 坐标经旋转变换后, 点和点之间距离保持不变.
- 采用明氏距离时,应采用相同量纲的变量.(如果量纲不同,首先做数据标准化)
- 尽可能避免数据的多重相关性.

文本数据的相似性测度-余弦距离

例: N个文本中关键词出现与否的记录. 要识别N个文本的相似性(以2个记录为例).

	记录1	记录2
安检	1	0
安排	0	0
安全	0	0
安心	1	1
安装	0	1
奥蒂斯	0	0
奥林匹克	1	0
奥运	0	0
八里	0	1
白河	0	0
百吨	0	0
办法	0	0.

文本数据的相似性测度-余弦距离

夹角余弦 C_{jk}

$$C_{jk} = \frac{\sum_{i} x_{ij} \cdot x_{ik}}{\sqrt{\sum_{i} x_{ij}^2} \sqrt{\sum_{i} x_{ik}^2}}$$

其中, jk表示第j列数据和第k列数据(本例中为第j和第k个文本), i表示第i个指标, 变量 (本例中为第i个关键词).

 $0 \le c_{jk} \le 1$, C_{jk} 越接近1, 两个文本越相似. 其中

$$x_{ij} \cdot x_{ik} = \begin{cases} 1 & x_{ij} = 1, & x_{ik} = 1 \\ 0 & x_{ij} = 1, & x_{ik} = 0 \\ 0 & x_{ij} = 0, & x_{ik} = 1 \\ 0 & x_{ij} = 0, & x_{ik} = 0 \end{cases}$$

聚类方法

- K-均值聚类, K-means clustering (动态聚类)
- 分层聚类, Hierarchical clustering (系统聚类)

K-均值聚类 (K-means cluster, quick cluster)

K-均值聚类

- ①有n个样本点, 要分成K类;
- ②每一类中的元素能充分聚合;
- ③类与类之间的要充分区分.

组内的相似性越大,组间差别越大,聚类就越好

k -均值聚类 (K-means clustering)

k-均值聚类基本步骤

- 1 确定类的个数 k
- 2 随机抽取 k 个样本点作为 k 个类中心 (也可根据经验 选取k个类中心)
- 3 将每个样本点分配到距离其最近的类中心
- 4 重新计算类中心
- 5 重复第 3, 4 步直到样本点的类别不再变化或者达到了 最大迭代次数

基本思路

k-均值聚类是一个迭代聚类算法

特点

- ① K-means是聚类的经典方法; 适用于大型的据表; 计 算速度很快;
- ② 要事先确定要划分的类数K.

例: 市场调查时, 就4000个人对衣着偏好提问, 要求把他们的回答迅速分成K类.

如何选择K

- 如何衡量聚类质量(goodness of clustering)?
- 组内距越小越好, 组间距越大越好.
- 组内平方和:

tot.within
$$= \sum_{k=1}^{k} \sum_{x_i \in C_k} (x_i - \mu_k)^2$$

其中 μ_k 为第 k 个类 C_k 的中心.

问题: 组内平方和如何随 k 变化? (碎石图)

如何选择K

碎石图(Scree plot)

Stata中进行K-均值聚类(K-means clustering)

help cluster help cluster kmeans

课堂演示-Stata案例: 体育课上对80个学生身体指标的测量,包括柔韧度,速度,力量 flexibility, speed和strength 三个指标. 利用这三个指标,对学生进行分组,用于制定针对性的体育锻炼方案.

. use 身体指标.dta, clear

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
grp	80	2.8125	1.243655	1	4
flexibility	80	4.402625	2.788541	.03	9.97
speed	80	3.875875	3.121665	.03	9.79
strength	80	6.439875	2.449293	.05	9.57

graph matrix flex speed strength

由统计图可知, 学生身体指标存在差异化, 而且视觉上存在着明显分组, 所以可以进行聚类, 决定将数据分成4组, 以便于制定针对性训练方案.

如果想分成4组, 为便于复制结果, 用"seed"固定伪随机数生成起始点.

- //1. 利用option krandom() 随机选择 k 个观测作为起始类中心
- //2. 利用seed命令 s(kr(385617)) 赋予随机初始伪随机数以保证结果可复制性(reprodu
- //3. 利用option keepcenters 生成4类的类均值并附在数据最后(第81-84观测)
- . cluster k flex speed strength, k(4) name(g4abs) s(kr(385617)) mea(ab

结果: 1. 多出一列分组信息 2. 81-84观察为各组中心点

. list	-				
	grp	flexib~y	speed	strength	g4abs
1.	2	3.6	6.11	2.07	3
2.	4	1.12	.33	9.01	4
3.	3	8.69	8.9	3.83	1
4.	2	2.67	8.61	.36	3
5. I	4	2.78	1.69	8.64	4
I					
76.	4	2.44	1.6	8.51	4
77.	4	2.34	1.66	8.91	4
78.	1	5.08	1.05	5.46	2
79.	4	1.67	.87	8.7	4
80.	3	9.52	9.17	4.21	1
81. I		8.852	8.743333	4.358	
	•				•
82.	•	5.9465	3.4485	6.8325	•
83.	•	3.157	6.988	1.641	•
84.	•	1.969429	1.144857	8.478857	

检查各组最大值, 最小值, 均值. 分析各组有什么特点.

drop in 81/L // drop those with missing information

tabstat flex speed strength, by(g4abs) stat(min mean max)

g4abs	flexib~y	min, mean, speed	strength	egories	of:	g4abs
	8.12 8.852	8.05 2 8.743333	3.61 4.358			
2	+	9.79 2 1.05				
	7.89	3.4485 5.32	7.66			
	2.29	5.11 6.988 8.87	.05 1.641			
4	.03	.03 .03 .1.144857	7.38			
		2.17	9.57	←□→		र ≣ ⊁ ∢ :

- 组1,15人,柔韧性和速度已经较好,仅需对力量进行训练
- 组2, 20人, 速度训练要着重, 其他训练也要加强
- 组3, 10人, 加强柔韧性和力量训练
- 组4,35人,加强柔韧性和速度训练

数据可视化:利用画图命令graph可将分组结果展示在图上,并将类别号用为画图符号

. graph matrix flex speed strength, m(i) mlabel(g4abs) mlabpos(0)

分成两组结果会怎样?

cluster k flex speed strength, k(3) name(g3abs) s(kr(385617)) mea(abs) graph matrix flex speed strength, m(i) mlabel(g3abs) mlabpos(0)

系统聚类/分层聚类 (Hierachical clustering)

- 系统聚类/分层聚类算法也是一种迭代算法
- 它不需要提前指定分类个数
- 不适用大规模数据
- 分层聚类输出一个树状结构,可以指出从粗到细的所有 分类结果

系统聚类/分层聚类步骤

- 1 每个样本点自成一类
- 2 选择最近的两个类聚成一类
- 3 计算新的类与类之间的距离
- 4 重复第 2, 3 步直至所有的样本点聚为一类

系统树图/树状图/谱系图(dendrogram)

例: 学科相似程度

每层高度代表类间不同的程度(距离). 思考:

- 如果分成3类是哪3类
- 如果分成4类是哪4类

如何计算类 C_1 与类 C_2 之间的距离? 聚合指数

聚合分析(agglomerative cluster analysis): 类(group) 与 类(group)不同程度的度量. 主要的聚合方法:

- 1 最短距离法(single linkage, default): D $(C_1, C_2) = \min_{\substack{x_i \in C_1 \\ y_j \in C_2}} \left\{ d\left(x_i, y_j\right) \right\}.$
- 2 最长距离法(complete linkage): D $(C_1, C_2) = \max_{\substack{x_i \in C_1 \\ y_j \in C_2}} \left\{ d\left(x_i, y_j\right) \right\}.$
- 3 重心法(centroid linkage): $D(C_1, C_2) = d(\bar{x}, \bar{y})$.
- 4 类平均法(average linkage): $D(C_1, C_2) = \frac{1}{l \times m} \sum_{x_i \in C_1} \sum_{y_j \in C_2} d(x_i, y_j)$. (各类中所有样本点距离总和的平均值)
- 5 ...

其中 $d(\cdot, \cdot): \Omega \times \Omega \to \mathbb{R}^+$ 是样本点之间的距离.

(Stata: help cluster linkage -> Hierarchical cluster-analysis methods)

用系统聚类法对下面数据进行聚类.

要求:

• 使用绝对值距离计算样本点距离 $d^2(w_i, w_k) = \sum_{i=1}^2 |x_{ij} - x_{kj}|;$

• 使用最短距离法测度聚合指数 $D(G_1, G_2) = \min_{\substack{x_i \in G_1 \ y_j \in G_2}} \{d(x_i, y_j)\}.$

销售员	销售量 (百件)	回收款项 (万元)	
w_1	1	0	
w_2	1	1	
w_3	3	2	
w_4	4	3	
w_5	2	5	

(绝对值距离例: w1和w2间距离:

$$d^{2}(w_{1},w_{2}) = |1-1| + |0-1| = 1)$$

I. 构造距离矩阵:

$$\begin{pmatrix} w_1 & w_2 & w_3 & w_4 & w_5 \\ w_1 & 0 & 1 & 4 & 6 & 6 \\ w_2 & 0 & 3 & 5 & 5 \\ w_4 & 0 & 0 & 2 & 4 \\ w_5 & 0 & 0 & 4 \\ w_5 & 0 & 0 \end{pmatrix}$$

 $\| \cdot w_1 \cdot \dots \cdot w_5$ 自成一类: $h_1 \cdot \dots \cdot h_5$ 选择最接近的两元素 聚成一类:

$$h_6 = w_1 \cup w_2 = h_1 \cup h_2$$

 $D(h_1, h_2) = d(w_1, w_2) = 1$

平台高度: $f(h_6) = 1$

$$D(w_3, h_6) = \min \{d(w_3, w_1), d(w_3, w_2)\} = \min \{4, 3\} = 3$$

 $D(w_4, h_6) = \min \{d(w_4, w_1), d(w_4, w_2)\} = \min \{6, 5\} = 5$
 $D(w_5, h_6) = \min \{6, 5\} = 5$
取最相似的并成一类: $h_7 = w_3 \cup w_4, f(h_7) = 2$

IV. 计算新类之间的关系: w_5, h_6, h_7

$$D(w_5, h_7) = \min \{d(w_5, w_3), d(w_5, w_4)\} = \min \{4, 4\} = 4$$

 $D(h_6, h_7) = \min \{D(h_6, w_3), D(h_6, w_4)\} = \min \{3, 5\} = 3$
取最相似的并成一类: $h_8 = h_6 \cup h_7$

平台高度: f(h₈) = 3

V. 计算新类之间的关系: w_5, h_8

$$D(w_5, h_8) = \min \{D(w_5, h_6), D(w_5, h_7)\} = \min \{4, 5\} = 4$$
 $h_9 = w_5 \cup h_8$ $f(h_9) = 4$

由于所有点已聚为一类, 计算停止, 转入绘聚类图.

VI. 绘制聚类图: 二分树法

分成二类: $(w_1, w_2, w_3, w_4)(w_5)$

分成三类: $(w_1, w_2), (w_3, w_4), (w_5)$

等等.

原始数据

销售员	销售量 (百件)	回收款项 (万元)		
w_1	1	0		
w_2	1	1		
w_3	3	2		
w_4	4	3		
W ₅	2	5		

若分成3类的类重心:

销售员	销售量	回收款项
G1	1	0.5
G2	3.5	2.5
G3	2	5

(思考3类各有什么特点?)

怎样判断应分为几类更合适

标度突变法: 谱系图中截取到的高度变化均较大时的类数可以作为分类数量. Only a guideline.

cluster linkage – Hierarchical cluster analysis help cluster linkage

```
use 推销员问题.dta, clear
//所有聚类方法
help cluster
// 系统聚类方法
help cluster linkage
// 测度聚合指数: linkage 测度样本点距离: measure
// 最短距离测度聚合指数, 绝对值距离测度样本点距离
cluster s 销售量 回收款项, measure(L1) // or measure(absolute)
cluster tree
```



```
// 最短距离测度聚合指数, 欧式距离测度样本点距离 cluster s 销售量 回收款项 //or measure(Euclidean), or measure(L2) cluster s 销售量 回收款项, measure(Euclidean) cluster tree
```


* 距离高度变化(因为聚合指数测度方法变化), 其他不变

定性变量的聚类分析

假设有5个人, 他们的身体特征指标如下. 试对样本点进行分类(既有定量变量, 又有定性变量)

id	身高 (公分)	体重 (斤)	眼睛形状	鼻子形状	习惯用手	性别
1	166	120	单	高	右	女
2	175	145	双	低	右	男
3	168	135	单	高	右	男
4	167	100	双	低	右	女
5	174	150	双	低	左	男

若对该数据进行聚类,由于身高体重有和dummy variable不同的量纲,对距离的影响非常大!

如何消除量纲?

定性变量的聚类分析

可能处理方法: 把所有变量都化成哑变量处理.

お記している。
$$x_1 = \begin{cases} 1 & \hat{\beta} = 170 \\ 0 & \hat{\beta} = 170 \end{cases}$$
 $x_2 = \begin{cases} 1 & \hat{\phi} = 130 \\ 0 & \hat{\phi} = 130 \end{cases}$
 $x_3 = \begin{cases} 1 & \chi \\ 0 & \hat{\phi} = 130 \end{cases}$
等等

定性变量的聚类分析

可能处理方法: 把所有变量都化成哑变量处理.

id	身高	体重	眼睛	鼻子	习惯用手	性别
lu lu	(x_1)	(x_2)	(x_3)	(x_4)	(x_5)	(x ₆)
10	0	0	0	1	0	1
2^{0}	1	1	1	0	0	0
3^{0}	0	1	0	1	0	0
40	0	0	1	0	0	1
50	1	1	1	0	1	0

对样本点的分类主要是根据两点之间的共同特征的多少进行的:相似的样本点比不相似的样本点应具有更多的共同特征(常思测度方法 医配法 matching)

特征. (常用测度方法: 匹配法 matching)

Stata中进行分层聚类案例2: 定性变量或哑变量聚类分析

use https://www.stata-press.com/data/r16/homework, clear

cluster s a1-a60, measure(matching)
cluster tree

	a1	a2	a3	a4	a5	a6
1	0	0				1
2						0
3						0
4						1
5						1
6						0
7						0
8						1
9						0
10						0
11						1

Stata中进行分层聚类案例2: 定性变量或哑变量聚类分析

拓展知识: 其他常用的聚类分析模型

机器学习中的无监督方法

- 单指标分裂聚类法(DIV)
- 基于密度的聚类算法
- 自组织映射 (SOM)
- 混合模型聚类, EM(软聚类)
- ...

应用统计学Ⅱ 作业4暨上机实验10

1, 下表给出6种精神治疗药物的3种临床测量指标数据, 请利用分层聚类方法做聚类分析(分别采用最短距离法和最长距离法), 给出树状图/谱系图, 并对聚类结果进行解释

变量 药物	吸入量	疗效	依赖性
速可眠	5	9	20
LSD	6	11	2
安定	4	5	20
吗啡	6	9	46
仙人球毒碱	5	7	1
酒精	3	1	12

2,请采用聚类分析的方法,对"污染数据(2014)"进行分类分析.并解释各类的意义.