1. Lefschetz Fixed-Point Theory

Definition 1.1. The global Lefschetz number of f is the intersection number $I(\Delta, graph(f))$, denoted L(f).

Theorem 1.2. (Smooth Lefschetz Fixed-Point Theorem) Let $f: X \to X$ be a smooth map on a compact orientable manifold. If $L(f) \neq 0$, then f has a fixed point.

Proposition 1.3. L(f) is a homotopy invariant.

Proposition 1.4. If f is homotopic to the identity, then L(f) equals the Euler characteristic of X. In particular, if X admits a smooth map $f: X \to X$ that is homotopic to the identity and has no fixed points, then $\chi(X) = 0$.

Definition 1.5. $f: X \to X$ is a Lefschetz map if $graph(f) \ \overline{\cap} \ \Delta$

Proposition 1.6. Every map $f: X \to X$ is homotopic to a Lefschetz map.

Given any x a fixed point of a Lefschetz map, we have $graph(f) \ \ \overline{\cap} \ \Delta$ if and only if

(1.7)
$$graph(df_x) + \Delta_x = T_x(X) \times T_x(X).$$

And this implies that df_x has no nonzero fixed point.

Definition 1.8. A fixed point x is a Lefshetz fixed point of f if df_x has no nonzero fixed point.

So f is a Lefschetz map if and only if all its fixed points are Lefschetz. If x is a Lefschetz fixed point, we denote the orientation number of (x, x) in the intersection $\Delta \cap graph(f)$ by $L_x(f)$, called the local Lefschetz number of f at x. Thus for f Lefschetz map,

(1.9)
$$L(f) = \sum_{f(x)=x} L_x(f).$$

x is a Lefschetz fixed point if and only if $df_x - I$ is an isomorphism of $T_x(X)$.

Proposition 1.10. The local Lefschetz number $L_x(f)$ at a Lefschetz fixed point is 1 if the isomorphism $df_x - I$ preserves orientation on $T_x(X)$, and -1 if the isomorphism reverses orientation. That is the sign of $L_x(f)$ equals the sign of the determinant of $df_x - I$.

Proposition 1.11. The Euler characteristic of S^2 is 2.

Corollary 1.12. Every map of S^2 that is homotopic to the identity must possess a fixed point. In particular, the antipodal map is not homotopic to the identity.

Proposition 1.13. The surface of genus k admits a Lefschetz map homotopic to the identity, with one source, one sink, and 2k saddles. Consequently, its Euler characteristic is 2-2k.

Proposition 1.14. (Splitting Proposition) Let U be a neighborhood of the fixed point x that contains no other fixed points of f. Then there exists a homotopy f_t of f such that f_t has only Lefschetz fixed points in U, and each f_t equals f outside some compact subset of U.

1

Definition 1.15. Suppose that x is an isolated fixed point of f in \mathbb{R}^k . If B is a small closed ball centered at x that contains no other fixed point, then the degree of map

$$(1.16) z \to \frac{f(z) - z}{|f(z) - z|}$$

is called the local Lefschetz number of f at x, denoted $L_x(f)$.

Proposition 1.17. At Lefschetz fixed points, the two definitions of $L_x(f)$ agree.

Proposition 1.18. Suppose that the map f in \mathbb{R}^k has an isolated fixed point at x, and let B be a closed ball around x containing no other fixed point of f. Choose any map f_1 that equals f outside some compact subset of Int(B) but has only Lefschetz fixed points in B. Then

(1.19)
$$L_x(f) = \sum_{f_1(z)=z} L_z(f_1),$$

for any $z \in B$.

Theorem 1.20. (Local Computation of the Lefschetz Number). Let $f: X \to Y$ be any smooth map on a compact manifold, with only finitely many fixed points. Then the global Lefschetz number equals the sum of the local Lefschetz numbers:

(1.21)
$$L(f) = \sum_{f_x(x)} L_x(f).$$

2. Exercises

Proposition 2.1. Let $A: V \to V$ be a linear map. Then the following statements are equivalent:

- (1) 0 is an isolated fixed point of A.
- (2) $A I : V \to V$ is an isomorphism.
- (3) 0 is a Lefschetz fixed point of A.
- (4) A is a Lefschetz map.

Proposition 2.2. The following are equivalent

- (1) x is a Lefschetz fixed point of $f: X \to X$.
- (2) 0 is a Lefschetz fixed point of $df_x: T_x(X) \to T_x(X)$.
- (3) df_x is a Lefschetz map.

Proof. If x Lefschetz fixed point of f, we have $df_x - I$ isomorphism and then by previous proposition, this is equivalent to 0 is a Lefschetz fixed point of df_x . And also by 3,4 in previous proposition, we know that 2,3 are equivalent.

Proposition 2.3. The map f(x) = 2x on \mathbb{R}^k has $L_0(f) = 1$ and f(x) = 0.5x has $L_0(f) = (-1)^k$.

Proof. Only fixed point of f is 0 and 0 is a Lefschetz fixed point since $df_0 - I = Ior - 0.5I$ isomorphism. Then we have $L_0(f) = det(df_0 - I)$.

Proposition 2.4. $\chi(X \times Y) = \chi(X)\chi(Y)$.

Proof. Since any map f is homotopic to some Lefschetz maps, we can pick f, g homotopic to id_X and id_Y . Thus $\chi(X) = L(f)$ and $\chi(Y) = L(g)$. Also $f \times g$ is homotopic to $id_X \times id_Y = id_{X \times Y}$. Then we have $\chi(X \times Y) = L(f \times g)$. To compute $L(f \times g)$, we know (2.5)

$$L(f \times g) = \sum_{x,y:f(x)=x,g(y)=y} L_{(x,y)}(f \times g) = \sum_{x,y:f(x)=x,g(y)=y} L_{x}(f)L_{y}(g) = L(f)L(g).$$

Then we have

(2.6)
$$\chi(X \times Y) = \chi(X)\chi(Y).$$

Proposition 2.7. Summing local Lefschetz numbers does not define a homotopy invariant without the compactness assumption.

Proof. Pick any $A, B \ n \times n$ matrices such that det(A - I) > 0 and det(B - I) < 0. \mathbb{R}^n contractible so we have A homotopic to B but L(A) = 1 while L(B) = -1. \square

Proposition 2.8. The Euler characteristic of a compact connected Lie group is zero.

Proof. Let the compact connected Lie group be G and let $g \in G$ such that $g \neq 1$. Define $f: G \to G$ by $f(x) = g \cdot x$. This smooth map is homotopic to id_G but has no fixed point. Then we know

(2.9)
$$\chi(G) = L(f) = 0.$$

3. Exterior Algebra

Theorem 3.1. Let $\{\phi_1, ..., \phi_k\}$ be a basis for V^* . Then the p-tensors $\{\phi_{i_1}, ..., \phi_{i_p}\}$ form a basis for $\mathcal{T}^p(V^*)$. Consequently, the dimension is k^p .

Lemma 3.2. If Alt(T) = 0, then $T \wedge S = S \wedge T = 0$.

Theorem 3.3. If $\{\phi_1, ..., \phi_k\}$ is a basis for V^* , then $\phi_I = \phi_{i_1} \wedge ... \wedge \phi_{i_p}$ such that $1 \leq i_1, ..., i_p \leq k$ is a basis for $\Lambda^p(V^*)$. Consequently, dimension is $\binom{k}{n}$.

Corollary 3.4. The wedge product satisfies the following anticommutativity relation:

$$(3.5) T \wedge S = (-1)^{pq} S \wedge T,$$

when $T \in \Lambda^p(V^*)$ and $S \in \Lambda^q(V^*)$.

Theorem 3.6. If $A: V \to V$ is a linear map, then $A^*T = (det A)T$ for every $T \in \Lambda^k(V^*)$, where k = dim V. In particular, if $\phi_1, ..., \phi_k \in \Lambda^1(V^*)$, then

(3.7)
$$A^*\phi_1 \wedge ... \wedge A^*\phi_k = (det A)\phi_1 \wedge ... \wedge \phi_k.$$