Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №3

по дисциплине «Математическая статистика»

Выполнил студент

группы 5030102/90101 Лаэтин Андрей Алексеевич

Проверил

Доцент, к.ф.-м.н. Баженов Александр Николаевич

Санкт-Петербург 2022

Содержание

\mathbf{C}_{1}	Список иллюстраций														3								
1	Пос	станов	ка за,	дачи				•		•							•				•		4
2	Teo	рия .																					4
	2.1	Боксп	лот Т	ьюки																			4
		2.1.1	Опре	еделен	ие .																		4
		2.1.2	Опис	сание																			4
		2.1.3	Пост	роени	e																		4
	2.2	Teope	тичесі	кая ве	роятн	ость	ВЫ	бро	СОВ													•	5
3	Про	ограми	мная	реали	ізаци	я													•		•		5
4	Рез	ультат	гы																				6
	4.1	Боксп	лот Т	ьюки																		•	6
	4.2	Доля	выбро	сов .																			8
	4.3	Teope	тичесі	кая ве	роятн	ость	ВЫ	бро	сов														9
5	Обо	уждеі	ние .																				9
G	Пъ	ипомо	ши																				a

Список иллюстраций

1	Нормальное распределение
2	распределение Коши
3	распределение Лапласа
4	распределение Пуассона
5	равномерное распределение

1 Постановка задачи

Для 5 распределений:

- 1. N(x,0,1) нормальное распределение
- 2. C(x, 0, 1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x, -\sqrt{3}, \sqrt{3})$ расномерное распределение

Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки. Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически.

2 Теория

2.1 Боксплот Тьюки

2.1.1 Определение

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей

2.1.2 Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.

2.1.3 Построение

Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего квартиля и полутора межквартильных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$
(1)

где X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 — третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

2.2 Теоретическая вероятность выбросов

Встроенными средствами языка программирования Python в среде разработки PyCharm можно вычислить теоретические первый и третий квартили распределений (Q_1^T и Q_3^T соответственно). По формуле (1) можно вычислить теоретические нижнюю и верхнюю границы уса (X_1^T и X_2^T соответственно). Выбросами считаются величины x, такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(2)

Теоретическая вероятность выбросов для непрерывных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T))$$
(3)

где $F(X) = P(x \le X)$ - функция распределения. Теоретическая вероятность выбросов для дискретных распределений

$$P_B^T = P(x < X_1^T) + P(x > x_2^T) = (F(X_1^T) - P(x = X_1^T)) + (1 - F(X_2^T))$$
(4)

где $F(X) = P(x \le X)$ - функция распределения

3 Программная реализация

Лабораторная работа выполнена на языке Python вресии 3.9 в среде разработки PyCharm. Использовались дополнительные библиотеки:

- 1. scipy
- 2. seaborn
- 3. matplotlib
- 4. math

В приложении находится ссылка на GitHub репозиторий с исходныи кодом.

4 Результаты

4.1 Боксплот Тьюки

Рис. 1: Нормальное распределение

Рис. 2: распределение Коши

Рис. 3: распределение Лапласа

Рис. 4: распределение Пуассона

Рис. 5: равномерное распределение

4.2 Доля выбросов

Округление доли выбросов:

Выборка случайна, поэтому в качестве оценки рассеяния можно взять дисперсию пуассоновского потока: $D_n \approx \sqrt{n}$

Доля
$$p_n = \frac{D_n}{n} = \frac{1}{\sqrt{n}}$$

Доля $p_n=\frac{D_n}{n}=\frac{1}{\sqrt{n}}$ Доля n=20 : $p_n=\frac{1}{\sqrt{20}}$ - примерно 0.2 или 20% Для n=100 : $p_n=\frac{1}{\sqrt{100}}$ - примерно 0.1 или 10%

Исходя из этого можно решить, сколько знаков оставлять в доле выброса.

Выборка	Доля выбросов	P_B^T
Normal n=20	0.059	
Normal n=100	0.057	
Cauchy n=20	0.154	
Cauchy n=100	0.185	
Laplace n=20	0.072	
Laplace $n=100$	0.080	
Poisson n=20	0.025	
Poisson $n=100$	0.016	
Uniform n=20	0.003	
Uniform $n=100$	0.001	

Таблица 1: Доля выбросов

4.3 Теоретическая вероятность выбросов

Распределение	Q_1^T	Q_3^T	X_1^T	X_2^T	P_B^T
Нормальное распределение	-0.674	0.674	-2.698	2.698	0.007
Распределение Коши	-1	1	-4	4	0.156
Распределение Лапласа	-0.490	0.490	-1.961	1.961	0.063
Распределение Пуассона	8	12	2	18	0.008
Равномерное распределение	-0.866	0.866	-3.464	3.464	0

Таблица 2: Теоретическая вероятность выбросов

5 Обсуждение

По данным, приведенным в таблице, можно сказать, что чем больше выборка, тем ближе доля выбросов будет к теоретической оценке. Однако в каждом правиле есть исключение, у нас им в очередной раз является распределение Коши. Доля выбросов у него не только не уменьшилась, но возросла. Хотя справедливо будет заметить, что тоже самое случилось с Лапласом. Тем не менее, Коши продолжает выделятся за счет повышенной доли выбросов по сравнению с другими распределениями.

Равномерное распределение не показало никаких выбросов. Для равномерного, Лапласа и Пуассона погрешность при выборке n=100 составила не более 2 %.

Боксплоты Тьюки в удобной форме показывает многие важные характеристики выборки, такие как медиана, первый и третий квартили и другие. Так, исходя из полученных рисунков, наглядно видно то, что мы довольно трудоёмко анализировали в предыдущих частях.

6 Приложение

Код программы GitHub URL: https://github.com/A21163/math-prob-stat