

CS211 Digital Logic (H)

Assignment 2 Due on 23:55, Jul. 20, 2022

Write down your answer to the questions in the given box with **detailed** procedures. For design questions, only drawing the circuit will lead to zero point.

Question: 1 2 3 4 5 Total Points: 10 20 20 20 30 100 Score: 1 1 2 3 4 5 Total Points: 10 20 20 20 30 100 1. (10 points) Design a four-bit 2's complementer with only OR and XOR gates. 2. (20 points) Design a combinational circuit with three inputs, x, y, and z, and three outputs, B, and C. When the binary input is 0, 1, 2, or 3, the binary output is two greater than the input When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.	Name:				Stu	dent ID	:			
1. (10 points) Design a four-bit 2's complementer with only OR and XOR gates. 2. (20 points) Design a combinational circuit with three inputs, x , y , and z , and three outputs, B , and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input		Question:	1	2	3	4	5	Total		
 (10 points) Design a four-bit 2's complementer with only OR and XOR gates. (20 points) Design a combinational circuit with three inputs, x, y, and z, and three outputs, B, and C. When the binary input is 0, 1, 2, or 3, the binary output is two greater than the input 		Points:	10	20	20	20	30	100	1	
 2. (20 points) Design a combinational circuit with three inputs, x, y, and z, and three outputs, B, and C. When the binary input is 0, 1, 2, or 3, the binary output is two greater than the input 	,	Score:								
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input	1. (10 points) Desiç	gn a four-bit	2's con	npleme	nter wi	th only	OR and	d XOR ga	ates.	
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input										
B, and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is two greater than the input	2 (20 points) Doois	nn a combin	otional	oirouit	with th	roo inn	uto a	· and ·	and three out	nuto 1
When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.	B, and C . When t	the binary in	put is 0), 1, 2, o	r 3, the	binary	output	is two g	greater than th	e input.
	When the binary i	input is 4 , 5 , 6	6, or 7, 1	the bina	ary outp	out is o	ne less	than th	e input.	

3.	(20 points) A minority circuit is a combinational circuit whose output is equal to 0 if the input variables have more 1's than 0 's. The output is 1 otherwise. Design a 3-input minority circuit by finding the circuit's truth table, Boolean equation, and a logic diagram.
4.	(20 points) An 8-to-1 MUX has inputs A , B , and C connected to selection lines S_2 , S_1 , and S_0 , respectively. The data inputs I_0 to I_7 are connected as $I_1=I_2=I_7=1$, $I_3=I_5=0$, $I_0=I_4=D$, and $I_6=D'$. Determine the Boolean expression of the MUX output.
5.	(30 points) Implement the Boolean function $F(A,B,C,D)=\sum (1,2,4,10,12,13,15)$ using (a) decoder and external gates, and (b) 8-to-1 MUX and external gates.