数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

逻辑代数基础

逻辑代数基础

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

最小项—最大项相互转换

● 设有三变量A、B、C的最小项,如 m_5 = AB'C,对其求反得

$$m'_5 = (AB'C)'$$

$$= A' + B + C'$$

$$= M_5$$

• 对于n 变量中任意一对最小项 m_i 和最大项 M_i ,都是互补的,即:

$$m_i' = M_i$$

或

$$M_i' = m_i$$

最小项—最大项对比

	最小项	最大项
定义	乘积项	和项
举例	$A' \cdot B \cdot C$	A'+B+C
编号	m_3	M_4
	有且仅有一个最小项值为1	有且仅有一个最大项值为0
	全体最小项之和为1	全体最大项之积为0
 性质	任何两个最小项之积为0	任何两个最大项之和为1
	只有一个变量不同的最小项 的和等于各相同变量之积	只有一个变量不同的最大项 的乘积等于各相同变量之和
关系	$m_i = M_i'$ Ξ	

逻辑函数转换成标准与或式(2)

最小项之和形式(标准与或式),利用A+A'=1

例

$$Y(A, B, C, D) = AB'C'D + A'CD + AC$$

$$= AB'C'D + A'CD(B + B') + AC(B + B')(D + D')$$

$$= AB'C'D + A'BCD + A'B'CD + ABCD + AB'CD + ABCD' + AB'CD'$$

$$= m_3 + m_7 + m_9 + m_10 + m_11 + m_14 + m_15$$

$$= \sum m_i(3, 7, 9, 10, 11, 14, 15)$$

逻辑函数转换成标准与或式(1)

• 最小项之和形式(标准与或式),利用 A + A' = 1

例1
$$Y(A, B, C) = ABC' + BC$$

 $= ABC' + BC(A + A')$
 $= ABC' + ABC + A'BC$
 $= m_3 + m_6 + m_7$
 $= \sum m_i(3, 6, 7)$

逻辑函数转换成标准或与式

- 将给定逻辑函数式化为若干多项式相乘的或与形式,利用 AA'=0 将每个乘积项中缺少的变量补全,就可以将或与形式化为最大项之积的形式
- 例:

$$Y(A, B, C) = AB' + AC$$

$$= (A + B)(A' + C)(B + C)$$

$$= (A + B + CC')(A' + BB' + C)(AA' + B + C)$$

$$= (A + B + C)(A + B + C')(A' + B' + C)(A' + B + C)$$

$$= M_0 \cdot M_1 \cdot M_4 \cdot M_6$$

$$= \prod M(0, 1, 4, 6)$$

最小项之和—最大项之积转换(1)

若函数最小项之和为:
$$Y = \sum_{i=0}^{\infty} m_i$$

则此函数的反函数必为:
$$Y' = \sum_{i=0}^{N-1} m_k (k \neq i)$$

由真值表得:
$$Y(A, B, C) = m_3 + m_6 + m_7$$

 $= \sum m_i(3, 6, 7)$
 $\therefore Y'(A, B, C) = m_0 + m_1 + m_2 + m_4 + m_5$
 $= \sum m_k(0, 1, 2, 4, 5)$
 $\therefore Y(A, B, C) = (m_0 + m_1 + m_2 + m_4 + m_5)'$
 $= m'_0 \cdot m'_1 \cdot m'_2 \cdot m'_4 \cdot m'_5$
 $= \prod M_i(0, 1, 2, 4, 5)$

输入			输出
Α	В	C	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

最小项之和—最大项之积转换(2)

- 写出逻辑函数的真值表,由真值表写出最小项和最大项
 - 标准与或式写法: 由真值表确定逻辑函数为"1"的项作为函数的最小项(乘积项)。若输入变量取"1",则写成原变量;若输入变量取值为"0",则写成反变量。不同的输出1为和的关系
 - 标准或与式写法: 由真值表确定逻辑函数为"0"的项作为函数的最大项(和项)。若输入变量取"1",则写成反变量;若输入变量取值为"0",则写成原变量。不同的输出"0"为积的关系

利用真值表转换举例

● 试将下列函数利用真值表转化成两种标准形式

$$Y(A, B, C) = AB + A'C + B'C'$$

● 标准最小项之和(与或)形式

$$Y(A, B, C) = \sum m(0, 1, 3, 4, 6, 7)$$

= $A'B'C' + A'B'C + A'BC + ABC' + ABC$

● 标准最大项之积(或与)形式

$$Y(A, B, C) = \prod M(2, 5)$$

= $(A + B' + C)(A' + B + C')$

输入		输出	
Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

利用添加项转换成标准式

利用A + A' = 1及AA' = 0 将逻辑函数变换为与或式和或与式

标准"与或"式: 先将函数化成"与或"式, 在与项中利用公式 A + A' = 1
 添加所缺的逻辑变量, 写成最小项的形式

• 标准"或与"式:将逻辑函数化为"或与"式,若某一和项因缺少一个变量不是最大项,则在这项中添加此变量与这个变量的反变量之积这一项,再利用A = A + BB' = (A + B)(A + B')使之成为最大项

标准与或式举例

● 试利用添加项的方法将下面逻辑函数转化成与或标准式

$$Y(A, B, C) = AB'C'D + A'CD + AC$$

解: 利用 (A+A' =1)

$$Y(A, B, C) = AB'C'D + A'CD + AC$$

$$= AB'C'D + A'CD(B + B') + AC(B + B')(D + D')$$

$$= AB'C'D + A'BCD + A'B'CD + ABCD + ABCD' + AB'CD + AB'CD'$$

$$= m_9 + m_7 + m_3 + m_{15} + m_{14} + m_{11} + m_{10}$$

$$= \sum m(3, 7, 9, 10, 11, 14, 15)$$

标准或与式举例

● 试用添加项方法将下面逻辑函数转化成或与标准式

$$Y(A, B, C) = (A + B')(A' + B' + C')$$

解: 利用 (AA' = 0)

$$Y(A, B, C) = (A + B')(A' + B' + C')$$

$$= (A + B' + CC')(A' + B' + C')$$

$$= (A + B' + C)(A + B' + C')(A' + B' + C')$$

$$= M_2 M_3 M_7$$

$$= \prod M(2, 3, 7)$$

两种标准形式的变换方法练习

● 将下面逻辑函数转化成两种标准式,并求其反函数

$$Y(A, B, C) = A'BC + AC + B'C$$

逻辑化简

● "简"的含义:

- 最简与或式: 最简的与或式所含乘积项最少, 且每个乘积项中的因子也最少

- 最简或与式: 最简的或与式所含和项最少, 且每个和项中的相加的项也最少

• 公式化简法

● 卡诺图化简法

化简方法

- 公式化简法
 - 并项法、吸收法、消项法
 - 消因子法
 - 配项法
 - 利用*A*+*A*=*A*重复写入
 - 利用*A*+*A*′=1乘(*A*+*A*′)后拆项
- 卡诺图化简法

反复使用逻辑代数的基本公式和常用 公式消去函数式中多余的乘积项和多 余因子,以求得函数式的最简形式

公式化简法(1)

● 例,将下列逻辑式化为最简与或式

$$Y = AB'C + A'BC + ABC' + ABC$$

● 解法一, 配项法 (配项*ABC*) :

$$Y = AB'C + A'BC + ABC' + ABC$$

$$= AB'C + ABC + (A'BC + ABC) + (ABC' + ABC)$$

$$= AC(B' + B) + (A' + A)BC + AB(C' + C)$$

$$= AC + BC + AB$$

公式化简法(2)

● 解法─, 配项法(配项ABC):

$$Y = AB'C + A'BC + ABC' + ABC$$

$$= AB'C + A'BC + ABC' + C$$

$$= AB'C + A'BC + AB$$

$$= AB'C + (A'C + A)B$$

$$= AB'C + BC + AB$$

$$= (AB' + B)C + AB$$

$$= AC + BC + AB$$

公式化简法 (与非式)

• 德摩根定律应用 $(A \cdot B \cdot C)' = A' + B' + C'$ $(A + B + C)' = A' \cdot B' \cdot C'$

● 例,将下列函数化成与非-与非式:

$$Y = AC + BC + AB$$

$$Y = (Y')'$$

$$= ((AC + BC + AB)')'$$

$$= ((AC)'(BC)'(AB)')'$$

公式化简法 (或与式)

● 例,应用德摩根定律:

$$(A \cdot B \cdot C)' = A' + B' + C'$$
$$(A + B + C)' = A' \cdot B' \cdot C'$$

$$Y = AC + BC + AB$$
$$= B'C' + A'B' + A'C''$$
$$= (A + B)(A + C)(B + C)$$

• 应用分配率:

$$A + BC$$
$$= (A + B)(A + C)$$

$$Y = AC + BC + AB$$

$$= (AC + BC + A)(AC + BC + B)$$

$$= (A + BC)(B + AC)$$

$$= (A + B)(A + C)(B + C)$$

公式化简法 (与或式)

● 例,转成与或式,利用最小项

$$Y = AC + BC + AB$$

$$= ABC + AB'C + A'BC + ABC'$$

$$= (A'B'C' + A'BC' + A'B'C + AB'C')'$$

$$= (A'C' + A'B'C + AB'C')'$$

$$= (B'C' + A'B' + A'C')'$$

公式化简 (或非-或非式)

● 例,

$$Y = AC + BC + AB$$

$$= (A'C' + B'C' + A'B')'$$

$$= (Y')'$$

$$= (((B'C' + A'B' + A'C')')')'$$

$$= ((B + C)' + (A + B)' + (A + C)')'$$

公式化简法小结

卡诺图

- Karnaugh, Maurice. The Map Method for Synthesis of Combinational Logic Circuits. Transactions of American Institute of Electrical Engineers part I. November 1953, 72 (9): 593–599.
- 将逻辑函数的最小项之和的以图形的方式表示出来
- 以 2ⁿ个小方块分别代表 n 变量的所有最小项,并将它们排列成矩阵,而且使几何位置相邻的两个最小项在逻辑上也是相邻的(只有一个变量不同),就得到表示 n 变量全部最小项的卡诺图

2变量卡诺图结构

十进制	Α	В	最小项
0	0	0	$A'B'$ (m_0)
1	0	1	$A'B(m_1)$
2	1	0	$AB' (m_2)$
3	1	1	$AB(m_3)$

编号	格雷码
0	00
1	01
2	11
3	10

3变量卡诺图结构

十进制	АВС	最小项
0	0 0 0	$A'B'C'(m_0)$
1	0 0 1	$A'B'C(m_1)$
2	0 1 0	$A'BC'(m_2)$
3	0 1 1	$A'BC(m_3)$
4	1 0 0	$AB'C'(m_4)$
5	1 0 1	$AB'C(m_5)$
6	1 1 0	$ABC'(m_6)$
7	1 1 1	$ABC(m_7)$

	ВС	B=0		B	=1
Α		00	01	11	10
	0	m_0	m_1	m_3	m_2
	1	m_4	m_5	m_7	m_6

编号	格雷码
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

卡诺图与格雷码

编号	格雷码
0	0
1	1

编号	格雷码
0	00
1	01
2	11
3	10

编号	格雷码
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

编号	格雷码
0	0000
1	0 001
2	0 011
3	0 010
4	0 110
5	0 111
6	0 101
7	0 100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

卡诺图的循环邻接

二变量卡诺图

三变量卡诺图

四变量卡诺图

	CD	C:	=0	C=1			
AB		00	01	11	10		
A=0 A=1	00	m_0	m_1	m_3	m_2		
	01	m_4	m_5	m_7	m_6		
	11	m_{12}	m_{13}	m_{15}	$ m_{14} $		
	10	m_8	m_9	m_{11}	m_{10}		

卡诺图化简方法

- 任何一个逻辑函数都可以用卡诺图来表示,函数值等于其卡诺图中填入 "1"的那些最小项之和。
- 将逻辑函数表示为卡诺图的方法:
 - 真值表,填卡诺图
 - 表达式
 - 化成最小项,填卡诺图
 - •一般与或式,填卡诺图

根据真值表填卡诺图

最小项 编号	ABC	Υ	
m_0	000	0	
m_1	001	1	
m_2	010	0	
m_3	011	1	
m_4	100	1	
m_5	101	1	
m_6	110	0	
m_7	111	0	

根据函数式填卡诺图(1)

$$Y = A'BC' + ABD + AC$$

$$= A'BC'D + A'BC'D' + ABCD + ABC'D + ABCD + AB'CD + ABCD' + AB'CD'$$

$$= m_5 + m_4 + m_{15} + m_{13} + m_{15} + m_{11} + m_{14} + m_{10}$$

$$= \sum m(4, 5, 10, 11, 13, 14, 15)$$

	CD	C=0		C=1		CD		C=0		C=1	
AB		00	01	11	10	AB		00	01	11	10
	00		m_1	m_3	m_2	>	00	0	0	0	0
0	01	m_4	m_5	m_7	m_6	0	01	1	1	0	0
	11	m_{12}	m_{13}	m_{15}	m_{14}	Þ	11	0	1	1	1
<u>"</u>	10	m_8	m_9	m_{11}	m_{10}	"	10	0	0	1	1

根据函数式填卡诺图(2)

● 由一般与或式 填卡诺图示例: 三变

$$Y = AB + A'C$$

练习题

● 画出下列函数的卡诺图

$$Y_1 = AB' + B + BCD$$

$$Y_2(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 15)$$

$$Y_3 = A' + B' + C' + ABCD$$

卡诺图化简原则

- 基本原理
 - 相邻最小项可以合并,并消去不同的因子
- 合并最小项原则
 - 两个相邻最小项可合并为一项,消去一对因子
 - 四个相邻最小项可合并为一项,消去两对因子
 - 八个相邻最小项可合并为一项,消去三对因子
 - -2^n 个相邻最小项可合并为一项,消去 n 对因子
 - 合并后的结果中只包含这些最小项的公共因子

卡诺图化简步骤

- 将函数化为最小项之和的形式
- 画出表示该逻辑函数的卡诺图
- 找出可以合并的最小项
- 选取化简后的乘积项,选取原则:
 - 这些乘积项应包含函数式中所有的最小项
 - 所有的乘积项数目最少
 - 每个乘积项包含的因子最少

即覆盖图中所有的1 即圈成的矩形最少

卡诺图典型合并情况

卡诺图化简无效情况

卡诺图化简举例

• 例: Y(A, B, C) = AC' + A'C + B'C + BC'

$$Y(A, B, C) = AC' + B'C + A'B$$
 $Y(A, B, C) = AB' + A'C + BC'$

$$Y(A, B, C) = AB' + A'C + BC'$$

结果不唯一

最小项函数的卡诺图化简

• 将逻辑函数: $Y = \sum m(4,5,6,13,14,15)$ 化成最简与或式,以及或与式

解:

圈卡诺图中的"1",得到最简与或式

$$Y = A'BC' + ABD + BCD'$$

圈卡诺图中的"0",得到最简或与式

$$Y' = B(A' + C + D)(A + C' + D')$$

卡诺图化简的灵活性和局限性

- 可以圈 "1"得到最简 "与或式";也可以圈 "0",得到最简 "或与式"
 - 逻辑函数的卡诺图中,"0"的数目远小于"1"的时候,圈"0"得到Y'
 - 因为Y + Y' = 1,填1部分之和为Y,那么圈 "0" 部分之和必然为Y'
 - 当需要将函数化为最简的"与或非式"时,圈"0"部分之和必然为Y',再取非
 - 要求得到Y'的化简结果时, 圈 "0" 可直接得到

● 局限性:

- 输入的逻辑变量增多时, 手动方法难于实现

AB	DE _000	001	011	010	110	111	101	100
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4
01	m_8	m_9	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}
10	m_{16}	m_{17}	m_{19}	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}

逻辑代数基础

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

逻辑函数约束项的概念

- 对输入变量取值的限制称为约束,逻辑函数中被约束的项叫约束项
- 例:设有三个逻辑变量A、B、C分别表示一台电动机的正转、反转和停止,若
 - A = 1表示电动机正转;
 - B = 1表示电动机反转;
 - C = 1表示电动机停止

$$Y_1 = AB'C'$$

$$Y_2 = A'BC'$$

$$Y_3 = A'B'C$$

$$A'B'C' + A'BC + AB'C + ABC' + ABC = 0$$

这些恒等于 "0" 的最小项称为函数 Y_1 , Y_2 , Y_3 的约束项

变量取值 ABC	最小项	电机动作
000	$A'B'$ C' (m_0)	禁止
001	$A'B'C(m_1)$	停止
010	$A'BC'(m_2)$	反转
011	$A'BC(m_3)$	禁止
100	AB' C' (m_4)	正转
101	$AB'C(m_5)$	禁止
110	$ABC'(m_6)$	禁止
111	$ABC(m_7)$	禁止

逻辑函数任意项的概念

- 在输入变量某些取值下,函数值为"1"或为"0"不影响逻辑电路的功能, 在这些取值下为"1"的最小项称为任意项
- 例:上述电动机,若A、B、C三个控制变量出现两个以上同时为1或者同时为0时,电路能自动断电,那么Y₁、Y₂、Y₃等于1还是0已无关紧要,电动机肯定会受到保护而停止运行
- 当A=B=C=1时,对应最小项ABC写入 Y_1 ,则 $Y_1=1$;不写入 Y_1 ,则 $Y_1=0$ 。 Y_1 为0或1都是允许的,所以 ABC写入与否也都是可以的,故ABC为 Y_1 的任意项
- 如8421BCD码取值为0000~1001十个状态,而
 1010~1111这六个状态不会出现,故取 "0" 或取 "1" 对函数没有影响,这些项就是任意项

	变量取值 ABC	最小项	电机动作
	000	$A'B'$ C' (m_0)	停止
•	001	$A'B'C(m_1)$	停止
	010	$A'BC'(m_2)$	反转
	011	$A'BC(m_3)$	停止
	100	AB' C' (m_4)	正转
	101	$AB'C(m_5)$	停止
	110	$ABC'(m_6)$	停止
	111	$ABC(m_7)$	停止

具有无关项的逻辑函数

- 约束项和任意项,可以写入函数式,也可不包含在函数式中,并不影响函数的实际逻辑功能;其值可以取"1",也可以取"0"
- 用 "d" 或者 "×" 表示。
- 表示方法

$$Y = \sum_{i=1}^{n} m + \sum_{i=1}^{n} d$$
,其中 $\sum_{i=1}^{n} d$ 为无关项

$$\begin{cases} Y = \sum m + \sum d \\ \text{约束条件: } \sum d = 0 \end{cases}$$

具有无关项的逻辑函数的化简

- 合理利用无关项,可使得函数进一步简化
- 加入 (或去掉) 无关项, 应使化简后的项数最少, 每项因子最少
 - 从卡诺图上直观地看,加入无关项的目的是为矩形圈最大,矩形组合数最少

步骤

- 将给定的逻辑函数的卡诺图画出来
- 将无关项中的最小项在用 "×" 表示出来
- 化简时,根据需要无关项可以作为"1"也可作"0"处理,以得到相邻最小项矩形组合最大(包含"1"的个数最多)为原则

具有无关项的逻辑函数的化简举例(1)

例,试化简
$$Y(A,B,C,D) = \sum m(2,4,6,8) + d(10,11,12,13,14,15)$$

解:

- 1. 画卡诺图,用 "x" 标出无关项
- 2. 设置无关项 $m_{10} m_{12} m_{14} 为 "1", m_{11} m_{13} m_{15} 为 "0"$
- 3. 合并相邻项,写出表达式

$$Y = AD' + BD' + CD'$$

具有无关项的逻辑函数的化简举例(2)

例,试简化下列逻辑函数,写最简成与或式和或与式

$$\begin{cases} Y(A,B,C,D) = A'BC' + A'BCD' + AB'CD' + AB'CD \\ \text{约束条件: } A \odot B = 0 \end{cases}$$

解:约束条件为, A'B' + AB = 0 即AB的取值不能相同,卡诺图如右

圈 "1" , 得函数的最简 "与或式"

$$Y = AC + A'C' + CD'$$

圈 "0",得函数的最简 "或与式"

$$Y = (A' + C)(A + C' + D')$$

问题和建议?

