Tuning Zero Shot into Few shot via Self-prompting for Classification

Michael Gunn, Justin Lin, Gaozheng Liu, Lilesh Kurella, Kulbir Singh Ahluwalia

Motivation

- Few shot performance while not using any outside data
- Models contain significant internal parametric knowledge
 - Can generate their own labeled data
- Previous work has fine tuned on generated pseudo-labeled data
 - Or retrieved pregenerated examples as few-shot examples
- We aim to generate highly relevant examples with labels at inference time to improve classification accuracy

Background

Research Objective:

- Addressing the gap between zero-shot and few-shot performance in language models.
- Novel approach: Transforming zero-shot queries into few-shot by self-generating example prefixes.

- Methodology & Key Inspirations:

- **Previous Approaches:** Fine-tuning models on generated examples (e.g., FewGen, SuperGen, Zero-Gen)
- Influential Works: Insights from Self-Instruct and ODQA's self-prompting method
- **Unique focus:** Employing self-prompting in a frozen language model for real-time context generation in classification tasks.

- Benchmarking:

- Evaluating with SuperGLUE, particularly the Words In Context (WiC) dataset.
- Evaluating Stanford Sentiment Treebank (SST2)

Pipeline – WiC specific

- Key Functionalities:
 - Baseline Test: Uses a basic prompt without additional context.
 - Self-Prompting Method: Generates and uses example prompts for additional context.
- Self-Prompting Method Process Flow:
 - Load Pre-trained Model and Tokenizer: meta-llama/Llama-2-13b-chat-hf
 - Context Generation: For each instance, generate example sentences for both "same sense" and "different sense" scenarios using target words.
 - Full Prompt Generation: Combine current prompt with the same sense and different sense examples generated by the model
 - Answer Extraction: Parse and Extract answer from model after passing combined prompt through model
 - **Evaluation:** compare model response with ground truth
- Outcome Measurement:
 - Track the number of correctly answered instances.
 - Calculate and log accuracy after processing each instance.

Experiments

- Datasets:
 - Words in Context (WiC), Stanford Sentiment Treebank (SST2)
- Models:
 - LLama2-13b-chat (4 bit quantized), Mistral
- Number of few shot generated examples

Results on WiC

Accuracy	Baseline	4-shot*	12-shot*	16-shot*	Filtered k-shot
Llama2 13b (4bit quantized)	60%	55%	59%	64%	-
Mistral v0.1	55%	-	-	-	-

^{*4} shot for WiC means

- 1 same sense example pair generated using s1, 1 different sense example pair generated using s1
- 1 same sense example pair generated using s2, 1 different sense example pair generated using s2

Tried using Flan-T5 large, mistral, and llama2-7b but each required making new pipeline to handle formatting differences in generation

^{*}All tests other than baseline were performed on 250 items. Baseline used 500 items

Results on SST2

Accuracy	Baseline	2 shot*	6 shot*	Filtered k-shot
Llama2 13b	89.2%	93%	93%	-

*6 shot for SST2 means

- 3 **positive** examples generated using **s**, 3 **negative** examples generated using **s**

Tried using Flan-T5 large, mistral, and llama2-7b but each required making new pipeline to handle formatting differences in generation

*All tests other than baseline were performed on 200 items. Baseline used 500 items

Example: "Is pretty damned funny"

- Baseline: Negative Wrong
- Few Shot: Positive Correct

Why it doesn't work better

- Generated examples are not gold quality, some could mislead
- Previous research has indicated that examples correctness isn't very important, primarily demonstrate the label space
 - It is already understanding the label space without examples, consistently can give labels as answer
- Small models don't use few shot examples well
 - Variation of chain of thought, which has been shown to be an emergent property
 - 512 token context window means number of examples is limited
- Slows down inference, limiting how many variations we could test
 - Prompt tuning for smaller models makes large impact

WiC Bad Example

Consider the following sentence.

Sentence 1: You have a two-hour window of clear weather to finish working on the lawn

Generate 5 diverse sentences containing the word window where window has a different meaning than in the reference sentence.

Sentence 2: The window of opportunity for the new project is now open.

- - -

Sentence 5: The window of the store was covered in posters and signs.

Sentence 2 is a bad example

Filtering

- Our self generated examples demonstrated 3 general shortcomings:
 - Sentence structure can be very similar to provided reference sentence
 - Addressed by changing prompt to ask for "diverse sentences with different structures"
 - Sentences generated can be completely incorrect for the desired label
 - Ask for same word sense, some examples use word with different word sense
 - Sentences doesn't contain target word or encompass the goal
 - These could be retried for generation, or passed to not use examples

Future work

- Larger models perform better with few-shot examples
- Larger models have better chain of thought reasoning capability
 - Our pipeline pulls on CoT capabilities, since asking it to generalize from examples of each label requires it to understand those are related to the problem instance
- Large models would require less parsing effort

Filtering examples

- Our self generated examples demonstrated 3 general shortcomings:
 - Sentence structure can be very similar to provided reference sentence
 - Addressed by changing prompt to ask for "diverse sentences with different structures"
 - Sentences generated can be completely incorrect for the desired label
 - Ask for same word sense, some examples use word with different word sense
 - Sentences doesn't contain target word or encompass the goal
 - These could be retried for generation, or passed to not use examples
- Generation of semantic embeddings for S1 and S2 using Sub-Sentence Encoder:
 - Compared the contextual similarity between the target word in S1 and S2.
 - Can Output a similarity score between the self-generated sentences [S1,S2] pair.
- Filtering of self-generated data:
 - Similar word sense: Use the top 2 similarity scores (>0.8 cosine similarity)
 - Different word sense: Use the bottom 2 similarity scores (<0.2 cosine similarity)

Category	Cosine Similarity Score	Sentence 1	Sentence 2	Ground Truth Label	Subsentence Encoder Label
Same Sense	0.947683	The flowers bloomed early this summer .	The sun shone brightly during the summer .	1	1
Same Sense	0.947683	The flowers bloomed early this summer .	The children enjoyed their summer break from school.	1	1
Different Sense	-0.033768	The flux prevents oxides from forming on the metal during the soldering process.	The government is in flux .	0	0
Different Sense	-0.026298	The flux prevents oxides from forming on the metal during the soldering process.	His opinions are in flux .	0	0

Results on WiC

Accuracy	Baseline	4-shot*	12-shot*	16-shot*
Llama2 13b (4bit quantized)	60%	55%	59%	64%
Mistral v0.1	55%	-	-	-
Llama2 13b (4bit quantized) + Filtered k-shot (Using model label)				60%
Llama2 13b (4bit quantized) + Filtered k-shot (Using subencoder label)				56%

^{*4} shot for WiC means

- 1 same sense example pair generated using s1, 1 different sense example pair generated using s1
- 1 same sense example pair generated using s2, 1 different sense example pair generated using s2

Tried using Flan-T5 large, mistral, and llama2-7b but each required making new pipeline to handle formatting differences in generation

*All tests other than baseline were performed on 250 items. Baseline used 500 items

Future work

- Larger models perform better with few-shot examples
- Larger models have better chain of thought reasoning capability
 - Our pipeline pulls on CoT capabilities, since asking it to generalize from examples of each label requires it to understand those are related to the problem instance
- Large models would require less parsing effort
- The similarity score threshold for filtration could be set to self-generate until semantically diverse examples are obtained.
- Subsentence encoder can be used to correct self-generated labels which can assist in increasing the accuracy.

Prompt engineering

1. Prompting for generation of examples

a. Use the format to include self-generated examples from first inference:

```
i. <s>[INST] <<SYS>>
ii. {{ system_prompt }}
iii. <</SYS>>
iv. {{ user msg 1 }} [/INST] {{ model answer 1 }} </s><s>[INST] {{ user msg 2 }} [/INST]
```

- b. **System _prompt** = The task is to label whether the word {target} is being used with the same word sense. Consider the following examples:
- c. **User_msg_1** = "Generate 2 sentences where {word} has similar meaning as Sentence 1: {sentence1}. Generate 2 sentences where {word} has similar meaning as Sentence 2: {sentence2}. Generate 2 sentences where {word} has different meaning as Sentence 1: {sentence1}. Generate 2 sentences where {word} has different meaning as Sentence 2: {sentence2}."
- d. **Model_answer_1** = "[S1,S2,Label], [S1,S2,Label], [S1,S2,Label]"
- e. **User_msg_2** = Determine if the word '{target}' in each pair of sentences is used with a broadly similar meaning or if there's a significant difference in its usage. Focus on the overarching sense of the word, rather than subtle nuances. Does '{target}' have a broadly similar meaning in both sentences? Answer 'yes' for similar or 'no' for different.
- f. [TODO: Show example:]

2. Change in accuracy for the following cases:

- a. For each example pair, generate the "same" with 75% or higher similarity of the sense. generate the "difference" with 75% or higher difference in sense
- b. Generate pairs of examples based on the original pair, rather than generating sense "same" or "different" as one sentence in the pair.
- c. Generate explanation for the self-generated label (Kulbir)
- d. Different quantizations [4 bit, 8 bit, 16 bit]

Filtering and Evaluation of generated examples

- 1. Generation of semantic embeddings for S1 and S2:
 - a. Sub-Sentence Encoder Embeddings: Can compare the contextual similarity between the target word in S1 and S2.
 - i. Can Outputs a similarity score between the input [S1,S2] pair given a condition.
 - ii. In our case, Condition = Target word or a description of target word from either S1 or S2.
 - b. SimCSE embeddings: used to generate positive(similar semantically) or negative(different semantically) labels
 - Embeddings are generated for the entire sentence without focus on target word.
- 2. Filtering of self-generated data:
 - a. Similar word sense: Use the top 2 positive similarity scores
 - b. Different word sense: Use the top 2 negative similarity scores
- 3. The similarity score threshold for filtration could be set to self-generate until semantically diverse examples are obtained.
- 4. Evaluation:
 - a. Step1: Extraction of generated label
 - b. Step2: Use ground truth label to compute accuracy
 - c. [TODO: Prompt larger LLMs to:
 - i. get better explanations for the generated label ⇒ see if that makes any difference in accuracy
 - ii. For the self-generated [S1,S2] pairs, generate labels using a larger LLM and see if that makes a difference in accuracy
 - 1. (check if having a correct label matters or not)