Sistema de Captura de Voz Direccional con Filtrado de Ruido para Reconocimiento de Voz

Cátedra: Control y Sistemas Titular: Garrido, Hernán JTP: Cáceres, Mauricio Alumno: Tassara, Renzo

Introducción

Parlante con IA

- Filtrar el sonido ambiente
- Orientar micrófonos hacia el hablante
- Eliminar señales de alta frecuencia producida por el mismo sistema

Parlante con IA

Parlante con IA

Desarrollo

Desarrollo

- Generación de sonido
- Movimiento de persona
- Subsistemas
- Control
- Filtrado

Generación de sonido

Generación de sonido

+

= Señal Generada

	Valor	Unidad
r_1	0.5	m
d	0.08	m
v_c	0.66	$\frac{m}{s}$
α_0	π	rad

$$r_2^2 = r_1^2 + d^2 - 2r_1 d\cos(\alpha)$$

$$\alpha = \alpha_0 + \omega t = \alpha_0 + \frac{v_c}{r_1}t$$

Subsistemas

Subsistema Mecánico Sonoro

	Valor	Unidad
$ ho_{aire}$	1.2	$rac{kg}{m^3}$
v_s	343.02	$\frac{m}{s}$
r_m	0.0004	$\dot{\mathbf{m}}$
r_{amb1}	0.8	\mathbf{m}
r_{amb2}	0.7	m

Subsistema Mecánico Sonoro

$$F = \sqrt{\rho_{aire} v_s I} \frac{A_m}{r}$$

$$F(t) = m\ddot{x} + c\dot{x} + kx$$

	Valor	Unidad
h	330e-6	m
$ ho_m$	2267	$rac{kg}{m^3} \ rac{m}{Pa}$
S_{mec}	2.e-9	$\frac{m}{Pa}$
ζ	0	Adimensional

$$m = V\rho_m = A_m h \rho_m = \pi r_m^2 h \rho_m$$

$$k = \frac{A_m}{S_{mec}} = \frac{\pi r_m^2}{S_{mec}}$$

$$c = \zeta c_c = \zeta 2 \sqrt{mk}$$

$$Valor Unidad$$

$$m = V \rho_m = A_m h \rho_m = \pi r_m^2 h \rho_m$$

$$m = 3.7604e-7$$

$$c = 0$$

$$kg$$

$$c = 0$$

$$k = 251.33$$

$$\frac{N_s}{m}$$

Subsistema Eléctrico

$$V = \frac{Q}{C} = \frac{Q}{A_m \frac{\epsilon_{aire}}{d-x}} = \frac{Q}{\pi r_m^2 \frac{\epsilon_{aire}}{d-x}}$$

Subsistema Eléctrico

Sistema completo de un micrófono

Control

Control

$$A_{10-1800Hz} = \sum A_i \Delta f$$

Ventana

Filtrado (Resta de señales) + Ganancias

Filtrado (FIR)

Esquema final

Resultados

Espectro de frecuencias de micrófonos

Espectro de frecuencias de micrófonos

Diferencia de áreas

Filtro restador

- Antes de filtro restador
- Después de filtro restador

Audio resultante

Audio antes del FIR

Audio después de FIR

Espectro de frecuencias de audio resultante

Escuchar audios

Conclusiones

Conclusiones

- Cancelación de ruido
- Filtrado de alta frecuencia
- Eficiencia de control

- Mayor cantidad de micrófonos, mejor cancelación de ruido ambiente, más complicado el control
- Hay un retraso en la señal de salida debido al filtro FIR aplicado, pero esto no es importante ya que no se necesita procesar la información de manera inmediata

Muchas Gracias