

Revues Systématiques et Méta-Analyses Concepts et Techniques

Mattia A. Fritz

TECFA, Université de Genève

Récouvrements conceptuels et techniques, mais différences dans la **méthodologie** (i.e. protocole) et dans la **portée envisagée/espérée**

Associées à haute valeur scientifique

Images tirés de la page <u>Hierarcy of evidence</u> sur wikipedia en anglais. Voir la page pour les attributions.

Mais aussi...

- > Histoire/utilité controversées
- > Difficiles et longues à mener
- > Techniques relativement récentes
- > Outils peu ou pas transparents
- > Méthodes en évolution
- > Hétérogénéité

BAD NEWS: THEY FINALLY DID A META-ANALYSIS OF ALL OF SCIENCE, AND IT TURNS OUT IT'S NOT SIGNIFICANT.

https://xkcd.com/2755/

Caractéristiques communes principales

Contact indirect avec la réalité

Un processus assez similaire aux Larges Langages Models (e.g. ChatGPT)

Systématique dans le sens...

> Rigoureuse et précise

Identification du périmètre, limitation des biais, représentativité du corpus.

> Recréer un système selon les spécifications

Documentation du processus, transparence des choix.

> Faisant partie d'un système

Intégration dans des pratiques existantes, adaptabilité à un système en évolution.

Revue systématique

VS.

La procédure doit être spécifiée comme la méthode dans une source primaire.

Revue Non-Systématique

La procédure ne doit pas forcément être spécifiée.

Revue systématique

VS.

Fear Of Missing Out

Revue Non-Systématique

Fear Of Better Options

La procédure pour une revue systématique

Démarche acceptée

- ☐ PRISMA Checklist
- ☐ Cochrane Handbook
- ☐ Campbell Collaboration
- ☐ Finding What Works in Health Care
- ☐ Critical Appraisal Skills Programme
- ☐ Autres...

Suivez-la!

Éléments conceptuels

Les éléments se combinent et influencent mutuellement dans un processus **itératif**, sauf si la revue a été <u>pré-enregistrée</u>.

Processus incrémental

Question et framework

Déterminent les

concepts

Query de recherche

Combine et adapte les concepts

Filtrage et codage

Évaluation et documentation des critères d'inclusion, qualité, éligibilité, etc.

Synthèse

Output pour application et/ou incrémentation des connaissances

La quantité d'information à connaitre est destinée toujours à augmenter!

Pour chaque étape...

Automatisation

- Le processus utilise un «script» automatisé/standardisé qui déclenche l'identification, l'extraction, l'évaluation et/ou le traitement automatisé de l'information
- Plus facile à évaluer, expliquer et/ou répliquer

Tâche humaine

- Le processus est fondé sur l'expertise et le jugement des chercheurs/parties prenantes qui évaluent les sources selon des critères explicites.
- Idéalement à limiter autant que possible (mais souvent inévitable) et à justifier de manière transparente

Organisation/Configuration

Le processus s'intéresse explicitement aux sources de variabilité potentielles, à l'émergence de patterns, à des facteurs intervenants, etc.

Agrégation

 Le processus vise à combiner plusieurs sources pour améliorer la précision, la fiabilité, la généralisation, ... des connaissances

Question et framework

Question et framework

> PICO/PECO (et extensions PICOS, PICOST, ...)

Population, Intervention/Exposition, Comparison, Outcome

> SPIDER

Sample, Phenomenon of Interest, Design, Evaluation, Research Type

> SPICE

Setting, Perspective, Intervention, Comparison, Evaluation

> CARE

Causation, Association, Risk, Etiology

Exemple de question PICO

Impact de la présentation d'affiches personnalisées en fonction du Big-Five sur l'intention de don du sang chez les nouveaux donneurs

Popultation | Intervention | Comparison | Outcomes

Exemple de question SPIDER

Efficacité des activités branchées et débranchées sur l'apprentissage de la pensée computationnelle pour des élèves du primaire dans des plans expérimentaux ou quasi-expérimentaux

Sample | Phenomenon of Interest | Design | Evaluation | Research Type

Protocole et query de recherche

Différents outils de recherche

Bases de données	Registres	Moteurs/Apps
□ PubMed	☐ Clinical Trials	□ EBSCO
□ PsycINFO	□ <u>osf</u>	Dimensions.ai
□ <u>Scopus</u>	□ PsyArXiv	□ <u>Swisscovery</u>
■ Web of Science	Grey Matters	☐ Google scholar
□ <u>EMBASE</u>		
□ ERIC		

Récouvrements entre les trois et souvent mécanismes internes cachés/pas transparents.

Syntaxe et interfaces différentes

Query (équation) de recherche

> Termes de la recherche

Stratégies pour définir les mots clés pour les concepts

> Opérateurs booléens

Combinaisons logiques des termes pour créer des queries puissantes

> Outils de ciblage

Affiner la recherche avec d'autres éléments que les termes

> Outils de flexibilité

Prendre en compte les variantes du langage

Termes de la recherche

Vocabulaire libre

Les chercheurs utilisent les termes de leur choix

Vocabulaire fermé

> Thesaurus/Taxonomies

Medical Subjet Headings (PubMed)

Psychological Index Terms (APA)

Emtree (EMBASE)

> Hedges ou query string
Parties de la query d'utilité commune
publiés dans des articles ou manuels

Opérateurs booléens

Stratégie de base

- > Pour chaque concept utiliser **OR** entre synonymes
 - > (pensée computationnelle **OR** pensée informatique)
 - > (primaire **OR** K9 **OR** élémentaire)
- > Lier chaque composé de synonymes avec AND
 - > (pensée computationnelle OR pensée informatique) **AND** (primaire OR K9 OR élémentaire)
- > Utiliser **NOT** au(x) niveau(x) nécessaires
 - > Attention : le fonctionnement de NOT dépend de l'outil de recherche
 - > Combinaison possible, par exemple NOT (qualitative OR compréhensive)

Outils de ciblage

> Critères communs

> Période, type de publication/journaux, public cible, méthode, language, ...

> Ciblage depuis l'interface ou la syntaxe (préférable)

("health psychology" OR "psychological health") AND ("stress" OR "mental health") NOT "anxiety" [Title/Abstract] AND ("2022/01/01"[Date - Publication]: "2023/12/31"[Date - Publication]) AND "randomized controlled trial"[Publication Type]

Outils de fléxibilité

- > Troncatures pour éviter de répéter des termes proches
 - > enseign* ⊂ enseignant-es, enseigner, enseignement, ...
- > Proximité pour des formulations alternatives
 - > "psychologie santé" [Title:~2] ⊂ psychologie et santé, psychologie de la santé, ...
 - depréssion NEAR(5) adolescence ⊂ depréssion pendant la période de l'adolescence

La syntaxe et l'application seulement à certains champs dépendent de l'outil de recherche adopté

Filtrage et codage

Flowchart des contributions retenues

"Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers).

Template du Workflow PRISMA

França, C., Santos, F., Martins, F., Lopes, H., Gouveia, B., Gonçalves, F., Campos, P., Marques, A., Ihle, A., Gonçalves, T., & Gouveia, É. R. (2022). Digital Health in Schools: A Systematic Review. *Sustainability*, 14(21), 13848. https://doi.org/10.3390/su142113848

[&]quot;If automation tools were used, indicate how many records were excluded by a human and how many were excluded by

Codage : catégoriser les contributions

#	Contribution	Année	[N]	[Type]	[Intervention]	[Outcome]	[Biais]	
1	Titre 1	2020	34	Qualitatif	4 activités branch.	Créativité	Faible	×
2	Titre 2	2021	60	RCT	Branch. vs debra.	Algorithme	Moyen	
3	Titre 3	2021	86	Quasi-Exp.	Branch. vs debra.	Abstraction	Haut	
4	Titre 4	2022	10	Longit.	6 activités debra.	Algorithme	Haut	8
•••		•••	•••	•••		•••	•••	

Les critères dépendent de la question, méthodologie, etc. Souvent deux chercheurs ou plus effectuent le codage indépendamment et ensuite négocient la version commune.

	Student age	N	DC definition	Stated learning goals	Implement. exposure	Interdisciplinary	Digital environments or tools	Approach (Chol, 2016)	Topics (Ribble, 2015)	(Garreno et al., 2017)
Accused et al. (2014)	Belgium 12.06	S60 students	Digital information processing and communication	Digital information processing	NA	NA	Web pages built on Flex framework, PHP & MySQL	(1), (2)	(a2), (b2)	(A)
5krzypek (2019)	USA 9-11	38 students	Online safety & the use of tablet	Increasing student and family engagement in school	8 1-h sessions	NA	Tablet and a free 4-month broadband access at home	(1)	(a1), (c2)	(B), (D)
ecker and Bishop (2016)	USA 12-14	150 students	Use social networks in a responsible and structured manner	Learning and reflecting on Twitter as a learning tool in science	80 min per week during science class	Science	Twitter	(1), (2), (3)	(a2), (b1), (c3)	(A), (B), (C)
(2012)	USA 14-15	120 students	Content privacy and ethical behaviors online	Learning geography with iPads	Several teaching periods over 4 months	Geography	iPads	(1), (2)	(82), (b2), (c1)	(A), (E)
Sindlet et al. (2020)	Denmark 11-15	NA	Make connections between students' digital projects and community. Empower students through digital project design	Describing how literacy could be developed through constructive and critical digital design processes	NA	Design, computational thinking	Digital tools and technologies (no precision)	(1), (2), (3)	(a2), (b1), (b2), (c1)	(C), (E)
(2016)	USA 9-12	~200 students	Engage children as digital participants through classroom instruction.	Produce digital content	Several teaching periods over a year	Math, Science	Digital cameras, media lab with computers, and WeVideo	(1), (2), (3)	(b1), (c3)	(B), (C)
et al. (2016)	USA 5-12	241 students	NA	Engage in a project for school improvement in technology-rich settings	Various projects (n – 6) (length not stated)	Various projects: interdisciplinary thanks to project-based learning	Various projects: Web-based videos, tPad, smart phones and iPod, Twitter	(1), (2)	(a1), (b1)	(A), (B), (C)
dt et al. (2012)	USA 15	8 students	Respect the impact of one's actions beyond the self on the larger collective.	Various. Implementing a digital culture in the context of a pilot after-school program.	After-school program, 15 instructional weeks, every Priday	interdisciplinary thanks to project-based learning	Various digital tools and technologies including Apple MobileMe, Vuvox, (Pod touch, web, MSPaint,	(1), (2), (3)	(a2), (b1), (h2), (c1)	(A), (B), (C), (E)
mierrez de Blume et al. (2016)	USA 8-10	28 students	A vital skill that leads to participation of youth in the creation of media and content	Improve metacognitive skills, as well as problem- solving and reasoning ability.	After school program, 10 1-h sessions	interdisciplinary thanks to project-based learning	iPods, MS PowerPoint, Windows MovieMaker Google Drive	(1), (2), (3)	(a2), (b1), (b2), (c1)	(C), (D)
ili (2015)	USA 9-10	8 students	Best practices online and information literacy	Embedding information literacy skills in the elementary school library.	Instruction by librarians & after- school Minecraft club during several months	no	Mac computers and MinecraftEDU	(1), (2)	(a2), (b2)	(A), (C)
Barrow (2014)	USA 12-18	5 classes	A participatory culture without barriers to civic engagement and creative expression	Teaching with social media	Various projects: Several teaching periods	Various projects: Social studies, English, Science, Religion	Various projects: Desktop computers, Moodle, Edmodo, Wiki, Biog, Google Docs	(1), (2)	(a1), (b1)	(B), (C)
ork (2018)	USA 6-18	26 teachess	NA	Enhance learning experiences	Various projects: Several teaching periods over 3 years	Various projects: Math, Science, English, language art, English as second language, physical science, health, education courses, social aciences	Various projects included in a wide BYOD initiative: tablet, smartphones, laptops, computer lab, kindies, QR codes, Google Translate/Doc, Mimeo, LiveScribe, Apple TV, Kahoot, Pinterest,	(1), (2), (3)	(a1), (b1), (b2), (c3)	(A), (B), (C), (E)

Tadlaoui-Brahmi, A., Çuko, K., & Alvarez, L. (2022). Digital citizenship in primary education: A systematic literature review describing how it is implemented. *Social Sciences & Humanities Open*, 6(1), 100348. https://doi.org/10.1016/j.ssaho.2022.100348

Risk of bias assessment

Il existe différents critères selon le type de source :

- RoB 2 tool (revised tool for Risk of Bias in randomized trials)
- ROBINS-E tool (Risk Of Bias in non-randomized Studies of Exposures)
- ROB ME (Risk Of Bias due to Missing Evidence in a synthesis)
- ROBINS-I tool (Risk Of Bias in Non-randomized Studies of Interventions)

Veloso, A., Vicente, S. G., & Filipe, M. G. (2020). Effectiveness of Cognitive Training for School-Aged Children and Adolescents With Attention Deficit/Hyperactivity Disorder: A Systematic Review. *Frontiers in Psychology*, 10. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02983

Différents niveaux de codage

Synthèses

Différents types de synthèses

> Narrative Meta-Reviews ou Meta-Syntheses

Analyse qualitative des contenus avec synthèse «humaine»

> Topic Modeling ou Cluster Analysis

Identification et catégorisation automatique des contenus

> Literature Trends et Co-citation Analysis

Analyse en réseau de la fréquence ou relations entre contributions

> Meta-Analysis

Aggrégation ou configuration d'indices quantitatifs

Topic modeling

Table 3. Latent Dirichlet allocation (LDA) supplementary analysis output.

Topic	Proportion
Medical/clinical skills for patients	33.00%
Group training and collaboration	25.80%
Training/practice on patients	14.80%
Research support	13.30%
Simulation and learning	13.10%

Lieneck, C., Wang, T., Gibbs, D., Russian, C., Ramamonjiarivelo, Z., & Ari, A. (2022). Interprofessional Education and Research in the Health Professions: A Systematic Review and Supplementary Topic Modeling. *Education Sciences*, 12(12), Article 12. https://doi.org/10.3390/educsci12120850

Co-Citation Analysis

Table 1. Top 10 cited documents, authors and journals.

Cited document	Frequency	Cited author	Frequency	Cited journal	Frequency
Bandura A (1986) Social foundations of thought and action	145	Bandura A	795	JAMA	1634
Bandura A (1997) Self-efficacy	74	Prochasica JO	538	American Journal of Public Health	1327
Ajzen I (1991) The theory of planned behaviour	66	Saltis JF	445	BMJ	1139
Prochaska JO et al. (1992) In search of how people change	51	Diclemente, CC	409	American Journal of Preventive Medicine	978
Prochaska JO and Diclemente CC (1983) Stages and processes of self-change in smoking	45	Glasgow RE	372	Preventive Medicine	965
Saron RM and Kenny DA (1986) The moderator-mediator variable distinction in social psychological research	43	Miller WR	348	Journal of Consulting and Clinical Psychology	958
Cohen J (1992) A power primer	41	Cohen	344	Health Psychology	915
Bandura A (1977) Self-efficacy	38	Ajzen I	343	The Lancet	854
Ajzen I and Fishbein M (1980) Understanding attitudes and predicting social behaviour	34	Rollnick S	341	Health Education Research	657
Radioff LS (1977) The CES-D Scale	31	Brug J	288	Pediatrics	653

Holman, D., Lynch, R., & Reeves, A. (2018). How do health behaviour interventions take account of social context? A literature trend and co-citation analysis. *Health: An Interdisciplinary Journal for the Social Study of Health, Illness and Medicine*, 22(4), 389-410. https://doi.org/10.1177/1363459317695630

Semi-Automated evidence synthesis in health psychology: current methods and future prospects

lain J. Marshall^a, Blair T. Johnson^b, Zigeng Wang^c, Sanguthevar Rajasekaran^c and Byron C. Wallace^d

^aPopulation Health Sciences, King's College London - Strand Campus, London, United Kingdom of Great Britain and Northern Ireland; ^bPsychological Sciences, University of Connecticut, Storrs, CT, USA; ^cComputer Sciences, University of Connecticut, Storrs, CT, USA; ^dKhoury College of Computer Sciences, Northeastern University, Boston, MA, USA

ABSTRACT

The evidence base in health psychology is vast and growing rapidly. These factors make it difficult (and sometimes practically impossible) to consider all available evidence when making decisions about the state of knowledge on a given phenomenon (e.g., associations of variables, effects of interventions on particular outcomes). Systematic reviews, meta-analyses, and other rigorous syntheses of the research mitigate this problem by providing concise, actionable summaries of knowledge in a given area of study. Yet, conducting these syntheses has grown increasingly laborious owing to the fast accumulation of new evidence; existing, manual methods for synthesis do not scale well. In this article, we discuss how semi-automation via machine learning and natural language processing methods may help researchers and practitioners to review evidence more efficiently. We outline concrete examples in health psychology, highlighting practical, open-source technologies available now. We indicate the potential of more advanced methods and discuss how to avoid the pitfalls of automated reviews.

ARTICLE HISTORY

Received 5 October 2019 Accepted 11 January 2020

KEYWORDS

Machine learning; natural language processing; semiautomation; evidence synthesis; health psychology; systematic review

Marshall, I. J., Johnson, B. T., Wang, Z., Rajasekaran, S., & Wallace, B. C. (2020). Semi-Automated evidence synthesis in health psychology: Current methods and future prospects. *Health Psychology Review*, 14(1), 145-158. https://doi.org/10.1080/17437199.2020.1716198

Méta-Analyses

Aussi pour les méta-analyses

Agrégation

- > Méta-Analyse classique
- Combiner plusieurs contributions pour augmenter la précision d'une estimation statistique

Configuration/Organisation

- > Sub-group/moderator meta-analysis ou méta-régression
- > Trouver des facteurs qui expliquent l'hétérogénéité entre résultats
- Formuler des nouvelles questions de recherche

Contributions ciblées

Identifier des contributions avec

- > **Design** similaire, souvent (quasi-)expérimentaux
- > Intervention(s) similaire(s)
- > Outcome(s) similaire(s)
- > Quantification du phénomène d'intérêt
 - > Taille de l'effet : Standardized Mean Difference, Odd Ratio, ...
 - > Estimation ponctuelle : Moyenne, Variance, ...

Méta-analyse classique

Study	Experimenta Total Mean SD		Standardised Mean Difference	SMD 95%-CI	Weight Weight (common) (random)
Expérience 1 Expérience 2 Expérience 3 Expérience 4 Expérience 5 Expérience 6 Expérience 7	50 115.00 15.00 20 125.50 15.90 10 105.00 13.00 90 111.40 13.70 25 101.50 16.20 60 117.50 18.20 30 112.10 14.70	20 102.80 13.80 10 111.00 16.40 90 101.50 11.90 25 106.20 12.80 60 103.40 15.60		0.99 [0.58; 1.41] - 1.49 [0.79; 2.20] -0.39 [-1.27; 0.50] 0.77 [0.47; 1.07] -0.32 [-0.87; 0.24] 0.83 [0.45; 1.20] 0.19 [-0.32; 0.70]	16.9%15.5%5.8%12.6%3.7%10.9%31.9%16.4%9.4%14.1%21.0%15.8%11.4%14.6%
Common effect model Random effects model Prediction interval Heterogeneity: $I^2 = 80\%$, τ^2		285	-2 -1 0 1 2	0.65 [0.48; 0.82] 0.54 [-0.08; 1.16] [-1.08; 2.16]	100.0% 100.0%

Pour chaque contribution, on calcule la taille de l'effet d'intérêt et on détermine l'effet cumulé avec une pondération proportionnelle à la taille de l'échantillon : plus grand l'échantillon, plus la contribution compte dans le calcul.

Nature de l'effet d'intérêt

Common/Equal/Fixed effect

- > Il existe **un «vrai et unique» effet**, commun à toutes les contributions
- Utilisé quand (1) contributions ont la même fonction, (2) pas de généralisation
- Les contributions avec grand N compte beaucoup plus que dans les effets random

Random effects

- > Il existe une distribution d'effets différents, mais liés sémantiquement
- Certain accord qu'il s'agit d'une mesure plus fiable dans la plupart des cas
- Les contributions avec petit N compte un peu plus que dans l'effet common/equal/fixed

Hétérogénéité entre contributions

285

- 100.0%
- > Il est pratique d'utiliser le I^2 , τ^2 , et le test Q (p < 0.05) rejette H₀ = pas d'hétérogénéité), mais leur interprétation et utilité sont controversées
- > Les intervalles de prédiction donnent une estimation dans une métrique plus facile à interpréter
 - > Larges intervalles = hétérogénéité entre études
 - > Si intervalle ⊂ 0, la taille de l'effet d'une future contribution pourrait être ~0

Publication bias

$$SE = \frac{\sigma}{\sqrt{n}}$$

Les effets devraient être distribués de manière symmétrique autour de l'effet cumulé et rester à l'intérieur du triangle.

Sub-group analysis

Mais souvent la **puissance statistique** de ce type de test est **faible**.

Méta-régression

Table 3 *Meta-Regression Analyses: Individual Moderator Model*

Moderator	Coefficient	Standard error	95% CI lower	95% CI upper	Z value	Q statistics
Publication year	0.0016	0.0017	-0.0016	0.0049	0.99	Q = 0.98, df = 1, p = .3230
Female	0.002	0.001	0	0.0041	1.97	Q = 3.86, df = 1, p = .0493
Sample size	-0.0001	0.0003	-0.0007	0.0005	-0.46	Q = 0.21, df = 1, p = .6455
Age	0.0097	0.0023	0.0052	0.0143	4.22	Q = 17.79, df = 1, p = .0000
Employed years	0.0272	0.0088	0.0099	0.0444	3.09	Q = 9.52, $df = 1$, $p = .0020$
Burnout items	0.0129	0.0037	0.0056	0.0202	3.47	Q = 12.01, df = 1, p = .0005
Burnout response options	-0.0081	0.016	-0.0395	0.0233	-0.5	Q = 0.25, df = 1, p = .6141
Burnout alpha	1.4345	0.3058	0.8351	2.0338	4.69	Q = 22.01, df = 1, p = .0000
Depression items	-0.001	0.0027	-0.0064	0.0043	-0.39	Q = 0.15, df = 1, p = .6986
Depression response options	0.0218	0.0233	-0.0238	0.0674	0.94	Q = 0.88, $df = 1$, $p = .3481$
Depression alpha	0.3123	0.5562	-0.7778	1.4023	0.56	Q = 0.32, df = 1, p = .5745

Les facteurs issues du codage des contributions sont utilisés comme des **covariés/prédicteurs** dans une régression linéaire où la **variable outcome est la taille de l'effet** de l'étude. Encore une fois la puissance statistique peut être limitée.

Limitations méta-analyses classiques

Limitation	Possible solution
Garbage in / garbage out	Séléction attentive des contributions
Plusieurs tests/études dans un article ou «clusters» de contributions	Multi/Three-Level Meta-Analysis ou Structural Equation Modeling Meta-Analysis
Comparaison entre interventions alternative plutôt que treatment vs contrôle	Network Meta-Analyses
Toute taille de l'effet peut être attendue à priori	Bayesian Meta-Analysis with priors

Multi- ou Three-Level Meta-Analysis

Structural Equation Modeling

Figure 3. Meta-analytic structural equation model: Self-determination theory interventions promote health behavior change via increased autonomous motivation and perceived competence. Solid lines indicate significant paths; dashed line indicates nonsignificant path; curved line indicates that autonomous motivation and perceived competence were allowed to covary $(r_+ = .38)$. * p < .05, ** p < .01, *** p < .001.

Network Meta-Analysis

Les différentes interventions sont comparées à une référence (e.g. groupe contrôle)

Note. The interval plot displays the standard mean difference (d), 95% confidence intervals, and predictive intervals when comparing each combination of interventions with the control. Active = active control; Standard = standard care; D = didactic; H = rehearsal; O = observation; R = reflection; F = feedback; M = mindfulness; CI = confidence interval; PrI = predictive interval.

Bayesian Meta-Analysis

Posterior distribution de la taille de l'effet en fonction de *priors* et des données observées. Souvent les *priors* sont néanmoins peu ou pas informatifs.

Bonilla, D. A., Moreno, Y., Gho, C., Petro, J. L., Odriozola-Martínez, A., & Kreider, R. B. (2021). Effects of Ashwagandha (Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis. *Journal of Functional Morphology and Kinesiology*, 6(1), Article 1. https://doi.org/10.3390/jfmk6010020

Conclusion

Discontinuité

- Invalider des pratiques, théories ou croyances
- Mettre en évidence des contradictions ou remettre en question l'efficacité d'une intervention
- Signaler des éléments manquants ou sousreprésentés
- Formuler des nouvelles hypothèses

Continuité

- Regrouper et consolider les connaissances actuelles (e.g. concepts, théories, ...)
- Corroborer l'efficacité d'une intervention sur un ou plusieurs phénomènes d'intérêt
- Favoriser l'adoption de pratiques ou postures

Société civile

- La revue systématique est principalement sollicitée par et/ou s'adresser à des figures professionnelles, des institutions, des organismes, des sociétés, etc.
- Transformer les connaissances en guides professionnelles, recommandations politiques/sociales/économiques, ...

Académie

- La revue systématique est principalement sollicitée par et/ou s'adresse à des chercheurs indépendants, des communautés de recherche, etc.
- Créer des socles communs au niveau du langage, des méthodes, des objectifs, ... de recherche

Large périmètre

 Créer des clusters de connaissances dont la similarité n'est pas évidente aux communautés scientifiques

Périmètre délimité

 Opérer à l'intérieur d'un cluster déjà établi et défini dans la littérature scientifique

Merci pour votre attention!

Mattia A. Fritz

TECFA, Université de Genève

mattia.fritz@unige.ch

This work is licensed under Attribution-NonCommercial-ShareAlike 4.0 International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

