Library import:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix
```

Load Dataset:

```
# Load dataset
iris = load_iris()

# Features
print(iris.feature_names)

# Labels
print(iris.target_names)
```

Convert dataFrame:

```
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
df.head()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Visualization dataset:

```
sns.countplot(x='target', data=df)
plt.title("Class Distribution")
plt.xticks(ticks=[0, 1, 2], labels=iris.target_names)
plt.show()
```


Split Dataset into Train &Test:

Evaluate Model: y_pred = model.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred)) # Classification Report print("\nClassification Report:") print(classification_report(y_test, y_pred, target_names=iris.target_names))

Accuracy: 0.93333333333333333

Classification Report:

	precision	recall	f1-score	support
setosa versicolor virginica	1.00 0.90 0.90	1.00 0.90 0.90	1.00 0.90 0.90	10 10 10
accuracy macro avg weighted avg	0.93	0.93	0.93 0.93 0.93	30 30 30

Confusion Metrics:


```
Visualization Decision Tree:
plt.figure(figsize=(14, 8))
plot_tree(model, filled=True, feature_names=iris.feature_names,
class_names=iris.target_names)
plt.title("Decision Tree Visualization")
plt.show()
```

