北京师范大学附属实验中学 2015-2016 学年度第一学期初二年级数学期中试卷

试卷说明:

- 1. 本试卷共10页, I 卷共计四道大题, 27 道小题; II 卷共计3 道小题
- 2. 本试卷卷面总分 120 分, 其中 I 卷 100 分 II 卷 20 分, 考试时间为 100 分
- 3. 请将选择题答案填涂在机读卡上,填空题及解答题答案写在答题纸相应 位置处:
- 4. 一律不得使用涂改液及涂改带, 本试卷主观试题书写部分铅笔答题无效. 命题人:徐娅、吴勇 审题人: 陈平

一. 选择题: (每题 3 分, 共 30 分. 请将唯一正确的答案填涂在机读卡上.)

- 1. 在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘 -131, 其浓度为 0.0000963 贝克/立方米。数据 "0.0000963" 用科学记数法可 表示为(
 - A. 9.63×10^{-4} B. 9.63×10^{-5} C. 9.63×10^{4} D. 0.963×10^{-5}

- 2. 剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传. 下面四幅剪纸 作品中,属于轴对称图形的是(

- 3. 有理式① $\frac{2}{x}$, ② $\frac{x+y}{5}$, ③ $\frac{1}{2-a}$, ④ $\frac{x}{\pi-1}$ 中,是分式的有()
- B. 34 C. 13 D. 1234 A. (1)(2) 4. 如图,已知: △ABE≌△ACD, ∠1=∠2, ∠B=∠C, 不正确的等式是 (

 - A. AB=AC B. ∠BAE=∠CAD C. BE=DC
- D. AD=DE
- 5. 如图, 正方形 ABCD 的边长为 4, 将一个足够大的直角三角板的直角顶点 放于点 A 处,该三角板的两条直角边与CD 交于点 F,与CB 延长线交于点 E. 四 边形 AECF 的面积是 ().

1

A. 16 B. 12 C. 8 D. 4

第5题图

(

)

6. 下列各式中,正确的是().

A.
$$-\frac{-3x}{5y} = \frac{3x}{-5y}$$

B.
$$-\frac{a+b}{c} = \frac{-a+b}{c}$$

$$C. \quad \frac{-a-b}{c} = \frac{a-b}{-c}$$

D.
$$-\frac{a}{b-a} = \frac{a}{a-b}$$

7. 到三角形三顶点距离相等的点是三角形

A. 三条中线的交点

B. 三条高的交点

C. 三条角平分线的交点

D. 三边垂直平分线的交点

8. 将一个菱形纸片依次按图①,②的方式对折,然后沿图③中的虚线裁剪, 成图④样式,将纸展开铺平,所得到的图形是()

9. 关于x的方程 $\frac{x-1}{x-2} = \frac{m}{x-2} + 2$ 有增根,则m 的值是

A. -1

B. 0

C. 1 D. 2

10. 如图,有三种卡片,分别是边长为a的正方形卡 片1张,边长为b的正方形卡片9张和长宽为a、b的 长方形卡片 6 张, 现使用这 16 张卡片拼成一个大的 正方形,则这个大的正方形边长为()。

A. a + 3b

B. 3a+b

C. 2a + 2b

D. 4ab

2

二. 填空题: (每题 3 分, 共 24 分. 请将答案写在答题纸上.)

11. 当
$$x$$
_____时, 分式 $\frac{2}{2-x}$ 有意义;

- 12. 分解因式: mx-my=_____.
- 13. 当 x _____ 时, 分式 $\frac{5}{2x-3}$ 的值为正.

14. 已知
$$\frac{a}{b} = \frac{1}{2}$$
, 分式 $\frac{a+b}{2a-5b}$ 的值为______.

- 15. 若 $x^2 + mx 12 = (x+3)(x+n)$,则m的值______
- 16. 如右图, Δ ABC 中, AB=AC=14cm, AB 的垂直平分线 MN 交 AC 于 D, Δ DBC 的周长是 24cm,则 BC=____cm.

17. 如右图,等边 \triangle ABC 的边长为 1cm, D, E 分别是 AB, AC 上的点,将 \triangle ADE 沿直线 DE 折叠,点 A 落在点 A'处,且点在 \triangle ABC 外部,则阴影部分图形的周长为 cm.

18. 小睿同学在探究性课题的研究中发现了正多边形的一个规律: 下面四个图分别是正三角形ABC、正方形ABCD、正五边形ABCDE和正n边形ABCDE…F,点M、N分别是相邻两条边上的点且满足BM = CN,连接AM、BN,相交于点P,小睿通过证明 ΔABM 和 ΔBCN 全等,分别得到了在正三角形ABC 中, $\Delta APN = 60^\circ$: 在正方形 ΔBCD 中, $\Delta APN = 90^\circ$: 在正五边形 $\Delta BCDE$ 中, $\Delta APN = 108^\circ$ 。请沿着小睿的思路,尝试计算在正 $\Delta BCDE$ … $\Delta APN = 108^\circ$ 。(用含有 $\Delta BCDE$ … $\Delta BCDE$ … $\Delta BCDE$ … $\Delta APN = 108^\circ$ 。(用含有 $\Delta BCDE$ … ΔB

北京师范大学附属实验中学 2015—2016 学年度第一学期初二年级数学期中试卷(答题纸) 班级______ 姓名____ 学号____ 成绩_____

Ξ.	填空题:	(共24分.	请将答案写在横线上.)

15. . . 16. . . .

17. . 18. . .

三. 解答题: (共20分)

19. (4分) 计算:
$$\left(\frac{1}{2}\right)^{-1} + \left|-3\right| + \left(2 - \sqrt{3}\right)^{0} + \left(-1\right)^{-2}$$
.

20. (4分) 计算:
$$\frac{16-a^2}{a^2+8a+16} \div \frac{a-4}{2a+8} \bullet (a-2)$$

21. 先化简, 再求值: (共4分).

$$\left(\frac{1}{m-3} + \frac{1}{m+3}\right) \div \frac{2m}{m^2 - 6m + 9}$$
, $\sharp + m = 9$

解方程: (共8分)

22.
$$\frac{1}{x-5} = \frac{10}{x^2-25}$$

23.
$$\frac{2}{(x-2)(x-1)} - \frac{5}{x-1} = \frac{1}{x-2}$$

四. 解答题: (共26分)

24. (6分)已知:如图,C为BE上一点,点A、D分别在BE两侧,AB//ED,AB=CE,BC=ED.

求证: AC=CD

25. 列方程解应用题: (6分)

为了提高产品的附加值,某公司计划将研发生产的 1200 件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一: 甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 10 天;

信息二: 乙工厂每天加工的数量是甲工厂每天加工数量的 1.5 倍. 根据以上信息, 求甲、乙两个工厂每天分别能加工多少件新产品. 26. (共8分) 如图, 在Δ ABC中, AB > AC, AD平分∠BAC。

- (1) (2 分) 尺规作图: 在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);
- (2) (4分) 过点P作 $PE \perp AB$ 于点E, $PF \perp AC$ 于点F, 求证: BE = CF;

(3) (2分) 若AB = a, AC = b, 则 $BE = _____$, $AE = _____$

27. (共 6 分) 如图甲,在 \triangle ABC中, \triangle ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边在AD的右侧作正方形ADEF。

解答下列问题:

- (1) (4分) 如果AB = AC且 ∠BAC = 90°,
- ①如图乙, 当点D在线段BC上时(与点B不重合), 线段 CF、BD的位置关系为_____, 数量关系 为_____:
- ②如图丙,当点D在线段BC的延长线上时,①中的结论 是否仍然成立?请说明理由。

图丙

(2) (2分) 如果 $AB \neq AC$ 且 $\angle BAC \neq 90^{\circ}$,点D在线段BC上运动,试探究: 当 $\triangle ABC$ 满足一个什么条件时, $CF \bot BC$ (点C、F重合除外)? 画出相应图形(画图不写作法,不必尺规作图,准确即可)。

答: Δ ABC满足条件______ 图形:

北京师范大学附属实验中学

2015—2016 学年度第一学期初二年级数学期中试卷附加题(共 20 分) 班级_____ 姓名____ 学号____ 成绩____

1. (6分)请同学们观察

$$2^{2}-2=2(2-1)=2$$
, $2^{3}-2^{2}=2^{2}(2-1)=2^{2}$, $2^{4}-2^{3}=2^{3}(2-1)=2^{3}$

- (1) 写出表示一般规律的等式____;
- (2) 根据所总结的规律计算 2¹⁰ 2⁹ 2⁸ ····· 2² 2 = ______.
- 2. (6分)

(1) 如果
$$a + b = 0$$
, 则 $a \cdot \frac{1}{b} + b \cdot \frac{1}{a} = ____;$

如果
$$a + b + c = 0$$
, 则 $a\left(\frac{1}{b} + \frac{1}{c}\right) + b\left(\frac{1}{c} + \frac{1}{a}\right) + c\left(\frac{1}{a} + \frac{1}{b}\right) =$ ____;

$$(2) x_1 + x_2 + x_3 + \dots + x_n = 0$$
, y

$$x_1\left(\frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_{n-1}} + \frac{1}{x_n}\right) + x_2\left(\frac{1}{x_3} + \frac{1}{x_4} + \dots + \frac{1}{x_n} + \frac{1}{x_1}\right) + \dots + x_n\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_{n-1}}\right)$$

= _____(用含n的代数式表示)。

- 3. (8分)点P与点Q位于线段MN的两侧,
- (1) 如图甲,若 ΔPMN 和 ΔQMN 中,PI平分外角 ΔSPN ,并与线段MN的延长线交于点I,连接QI,若 ΔPMN 纪 ΔQMN ,求证: QI平分外角 ΔTQN ;

(2) 如图乙,若 ΔPMN 和 ΔQMN 中,PM+PN=QM+QN,且外角 ΔSPN 和 ΔTQN 的角平分线PI、QI相交于点I,连接MI,求证: MI平分 ΔPMQ 。

答案

一. 选择题: (每题 3 分, 共 30 分. 请将唯一正确的答案填涂在机读卡上.)

1	2	3	4	5	6	7	8	9	10
В	D	С	D	A	D	D	A	С	A

二. 填空题: (共24分. 请将答案写在横线上.)

11.
$$\neq 2$$
 . 12. $m(x-y)$.

13.
$$>\frac{3}{2}$$
 . 14. $-\frac{3}{8}$.

三. 解答题: (共20分)

$$=4-2a$$
 $\cdots \cdots 1$

方程两边同时乘以
$$(x-5)(x+5)$$
, ………………1 分 $x+5=10$

	解得 $x = 5$,	1分
	检验: 当 $x = 5$ 时, $(x - 5)(x + 5)$	(x) = 0, $(x) = 5$ 是增根,舍去
		1 分
	所以,原方程无解。	1分
23.	解: 方程两边同时乘以(x-1)(x-	- 2),1分
	2 - 5(x - 2) = x - 1	
	解得 $x = \frac{13}{6}$,	1分
	检验: 当 $x = \frac{13}{6}$ 时, $(x-1)(x-2)$	2)≠0,是原方程的解
		1分
	所以,原方程的解为 $x = \frac{13}{6}$ 。	1分
24.		2分
	iŒΔ ABC≌Δ CED (SAS)	3 分
	AC = CD	1分
25.	解:设甲工厂每天加工数量为x件,	则乙工厂每天加工数量为1.5x件。
		1分
	$\frac{1200}{x} = \frac{1200}{1.5x} + 10$	2 分
	解得 $x = 40$	1分
	检验: $x = 40$ 符合实际情况,	1 分
	所以乙工厂每天加工的数量为	11.5x = 60件
		1 分
	答:甲工厂每天加工数量为40件,	则乙工厂每天加工数量为60件。

26. 解: (1) ①尺规作图作线段BC的垂直平分线交AD于点P

	1分
②连接PB、PC	
$\dot{u}EPE=PF$	1分
Rt ∆ <i>PEB</i> ≌R	t Δ PFC (HL)2 分
$\therefore BE = CF$	1分
$(2)\frac{a-b}{2}, \frac{a+b}{2}$	
27. 解: (1) ①垂直,相等 ②成立。	争
$i\mathbb{E} \angle BAD = \angle CAF$	
$\triangle ABD \cong \triangle ACF$	(SAS)2 分
iECF = BD	1 分
$CF\perp BD$	1分
(2) $\angle ACB = 45^{\circ}$	1分
画图	1 分

附加卷

1. (1) $2^{n+1} - 2^n = 2^n(2-1) = 2^n$	3分
(2) 2	3分
2. (1) -2, -3	4分
(2) -n	2分
3. (1)法 1:证△ PMI ≌ △ QMI (SAS) 法 2: 过点I作IH ⊥ MS 于点H, 过点I	作 <i>IG</i> 上 <i>MT</i> 于点 <i>G</i>
üE RtΔ <i>PHI</i> ≌RtΔ <i>QGI</i>	4分
(2) 在 PS 上取一点 N' 使得 $PN' = NI$,在	EQT上取一点 N'' 使得 $QN'' = NI$,连接 $N'I$ 、
N''I, NI	1分
证Δ PNI≌Δ PN'I	1分
$\triangle QNI \cong \triangle QN''I$	1分
$\triangle MN'I \cong \triangle MN''I$	1分