ПРАКТИЧНА РОБОТА 13

Побудова простих графічних інтерфейсів та візуалізація даних Система опінювання

№	Тема	К-ть балів
1.	Задача 1	1
2.	Задача 2	1,2
3.	Задача 3	1,3
4.	Задача 4	2
5.	Звіт до практичної роботи	0,5
	Всього за практичну роботу	6
6.	ІНДЗ-1	1
7.	ІНДЗ-2	1
8.	ІНДЗ-3	1
9.	ІНДЗ-4	1
	Всього	10

1. Бібліотека matplotlib для Windows зазвичай інсталюється в таких програмних комплексах, як Anaconda, Enthought Canopy, Algorete Loopy та ін. Приклад роботи з середовищем розробки Spyder з Anaconda наведено на рис. 1

Рис. 1. Робота y Spider

Для підключення модулю для побудови графіків у код скрипту на початку дописують import matplotlib.pyplot as plt

Дуже поширеною практикою є заміна назви matplotlib.pyplot на еквівалентну – plt, щоб скоротити код. Побудова графіків для функцій виду y = f(x) реалізується за допомогою методу plot(), який приймає 2 параметри: набори значень x та y:

```
X = range(100)
Y = [value ** 2 for value in X]
plt.plot(X, Y)
plt.show()
```


Рис. 2. Отриманий графік y = f(x)

За допомогою функції plot() побудуйте графіки відповідно до свого варіанту

7.0	Su vonomocom pynkum prot() novyvyume t			
No	Функція	No	Функція	
1.	$f(x) = \frac{1}{10} \left(x - \frac{x^{\frac{3}{2}}}{10} \right)^{2} + \arcsin(2x + 1)$	7.	$f(x) = 2.87^{x^3} - 3.06x^2 + $	
	\		$\cos\left(\frac{x^2+1}{3}-\log_2(\sin x^4)\right)$	
2.	$f(x) = -1.7\pi x^3 + 2\arccos 7e^{-x}$	8.	$f(x) = \log_2(7x\cos(arcctg\ (2x^5$	
	$+ 3 \ln \left 5 \operatorname{tg} x^{\frac{2}{3}} \right $		-1)+7x)	
3.	$f(x) = \sin x \cos x + x^5 - 12 \ln 3x$	9.	$f(x) = \sec(\lg 3x - \cos 2x)^3$	
			$-\sqrt[4]{x^3-2x+7}$	
4.	$f(x) = \sin x^{\ln 5 - \sqrt{2x^3}} + e^{x - 1}$	10.	$f(x) = 4x^3 -$	
	, , ,		$\sqrt{\ln(13x - sh x) + arctg(x + 1)}$	
5.	$f(x) = 7x^2 \sin\left(\frac{1}{7x^2}\right) + sh \ 5x^3$	11.	$f(x) = -2.5\sin x^3 + e^{-\sqrt{ctg} 5x^2} + 1$	
6.	$f(x) = x - \frac{\cos x - \sin x}{\sin x + \cos x} + e^{-3x^4 + 2}$	12.	$f(x) = tg(x^2 - 5x + 7)$	
	$\sin x + \cos x$		$+e^{\sin(\arccos(5x)-1)}$	

2. Полярна система координат використовується для побудови графіків, що відображають процеси та явища, що залежать від кутів. Наприклад, потужність динаміка, яка залежить від кута, з якого її вимірюють. Також циклічні дані, на зразок щорічної чи щоденної статистики, можна зручно зобразити в полярних координатах.

Побудуємо графік функції, записаної в полярних координатах (рис. 3)

```
import numpy as np
import matplotlib.pyplot as plt
T = np.linspace(0 , 2 * np.pi, 1024)
plt.axes(polar = True)
plt.plot(T, 1. + .25 * np.sin(16 * T), c= 'k')
plt.show()
```


Рис. 3. Графік функції $\rho(\varphi) = 1.0 + 0.25 \sin 16\varphi$

Екземпляр Axes явно створюється за допомогою pyplot.axes(). За допомогою опційного параметра polar буде задано виконання проекції в полярні координати.

Побудуйте графік кривої відповідно до свого варіанту.

№	Назва	Функція	Система	Проміжок
			координат	
1.	Серце	$(x^2 + y^2 - 1)^3 = x^2 y^3$	Декартова	Підібрати
2.	Квітка	$r = \sqrt{1 + \cos(6t)}$	Полярна	$t \in [-4\pi, 4\pi]$
3.	Каннабола	$r = (1 + 0.9\cos(8t)) \cdot$	Полярна	$t \in [0, 2\pi]$
		$(1 + 0.1\cos(24t))$.		
		$(1 + \sin(t)) \cdot (1 - 0.02\sin(200t))$		
4.	Овал Кассіні	$(x^2 + y^2)^2 -$	Декартова	Підібрати
		$2c^2(x^2 - y^2) = a^4 - c^4$		
5.	Овал Кассіні	$\rho^4 - 2c^2\rho^2\cos(2\varphi) = a^4 - c^4$	Полярна	Підібрати
6.	Фігури	$x(t) = A\sin(at + \delta)$	Декартова	Підібрати
	Ліссажу	$y(t) = B\sin(bt)$		
7.	Логарифмічна	$r = ae^{b\theta}$ afo $\theta = \frac{1}{b}\ln(r/a)$	Полярна	Підібрати
	крива	D .		
8.	Логарифмічна	$x(t) = r\cos t = ae^{bt}\cos t,$	Декартова	Підібрати
	крива	$y(t) = r \sin t = ae^{bt} \sin t$		
9.	Троянда	$\frac{\rho = a \sin(k\varphi)}{(x^2 + y^2 - ay)^2 = l^2(x^2 + y^2)}$	Полярна	Підібрати
10.	Равлик	$(x^2 + y^2 - ay)^2 = l^2(x^2 + y^2)$	Декартова	Підібрати
	Паскаля			
11.	Равлик	$\rho = l - a \sin \varphi$	Полярна	Підібрати
	Паскаля			
12.	Синусоїдальна	$r^n = a^n \cos(n\varphi)$	Полярна	Підібрати
	спіраль			

3. Як і раніше, згенеруємо певні тестові дані, встановимо екземпляр (instance) Axes3D та передамо йому дані:

```
import numpy as np
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
x = np.linspace(-3, 3, 256)
```

```
y = np.linspace(-3, 3, 256)
X, Y = np.meshgrid(x, y)
Z = np.sinc(np.sqrt(X ** 2 + Y ** 2))
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot_surface(X, Y, Z, cmap=cm.gray)
plt.show()
```


Дві матриці, X та Y, створені для зберігання координат для регулярної сітки. Обчислюємо матрицю Z та скалярне поле функції від X та Y. Викликаємо метод plot_surface(), який приймає X, Y, Z, щоб відобразити скалярне поле як 3D-поверхню. Кольори обираються з colormap (опційний параметр стар) відповідно до значень з матриці Z.

Побудова параметричної тривимірної поверхні

До цього функція plot_surface() використовувалась для побудови графіку для скалярного поля (функції у вигляді f(x, y) = z). Проте бібліотека matplotlib дозволяє будувати загальні, параметричні тривимірні поверхні. Продемонструємо це, нарисувавши тор:

```
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# Генерація сітки (mesh) для тору
angle = np.linspace(0, 2 * np.pi, 32)
theta, phi = np.meshgrid(angle, angle)
r, R = .25, 1.
X = (R + r * np.cos(phi)) * np.cos(theta)
```

```
Y = (R + r * np.cos(phi)) * np.sin(theta)
Z = r * np.sin(phi)
# Ποκας ciπκ (mesh)
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlim3d(-1, 1)
ax.set_ylim3d(-1, 1)
ax.set_zlim3d(-1, 1)
ax.plot_surface(X, Y, Z, color = 'w', rstride = 1, cstride = 1)
plt.show()
```


Побудуйте поверхню відповідно до свого варіанту. Відобразіть значення, що використовувалися при побудові.

№	Назва	<i>Ф</i> ункція	Система	Проміжок
745	Пазва	Функція		проміжок
			координат	
1.	Поверхня Діні	$x(u, v) = \cos(u)\sin(v)$ $y(u, v) = \sin(u)\sin(v)$ $z(u, v) = \cos(v) + \ln\left(\tan\left(\frac{v}{2}\right)\right) + 0.2u$	Декартова	$u \in [0, 4\pi]$ $v \in [1e - 3, 2]$
2.	Мушля	$\begin{cases} x = \frac{5}{4} \left(1 - \frac{v}{2\pi} \right) \cos 2v \left(1 + \cos u \right) + \cos 2v \\ y = \frac{5}{4} \left(1 - \frac{v}{2\pi} \right) \sin 2v \left(1 + \cos u \right) + \sin 2v \\ z = \frac{10v}{2\pi} + \frac{5}{4} \left(1 - \frac{v}{2\pi} \right) \sin u + 15 \\ z = x^3 - 3xy^2 \end{cases}$	Декартова	$0 \le u \le 2\pi,$ $-2\pi \le v \le 2\pi$
3.	Мавпяче сідло	$z = x^3 - 3xy^2$	Декартова	Підібрати
4.	Катеноїд	$\begin{cases} x = \operatorname{ch}(u) \cos v \\ y = \operatorname{ch}(u) \sin v \end{cases}$	Декартова	$v \in [0, 2\pi)$ $u \in R$
5.	Гіперболічний параболоїд	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ $(x = uv)$	Декартова	Підібрати
6.	Парасолька Уітні	v = u	Декартова	Підібрати
7.	Стрічка Мебіуса	$\begin{cases} z = v^2 \\ x = \left(1 + \frac{v}{2}\cos\left(\frac{u}{2}\right)\right)\cos u \\ y = \left(1 + \frac{v}{2}\cos\left(\frac{u}{2}\right)\right)\sin u \\ z = \frac{v}{2}\sin\frac{u}{2} \end{cases}$	Декартова	Підібрати

8.	Тор	$\begin{cases} x(\varphi, \psi) = (R + r\cos\varphi)\cos\psi \\ y(\varphi, \psi) = (R + r\cos\varphi)\sin\psi \\ z(\varphi, \psi) = r\sin\varphi \end{cases}$	Декартова	$\varphi, \psi \in [0, 2\pi)$
9.	Ластів'ячий хвіст	$\begin{cases} x = u \\ y = 2v^3 + uv \\ z = 3v^4 + uv^2 \end{cases}$	Декартова	Підібрати
10.	Коноїд	$\begin{cases} x = v \cos u + lf(u) \\ y = v \sin u + mf(u), \\ z = nf(u) \end{cases}$	Декартова	Підібрати
11	Пляшка Клейна	$\begin{cases} x = \left(r + \cos\frac{u}{2}\sin v - \sin\frac{u}{2}\sin 2v\right)\cos u \\ y = \left(r + \cos\frac{u}{2}\sin v - \sin\frac{u}{2}\sin 2v\right)\sin u \\ z = \sin\frac{u}{2}\sin v + \cos\frac{u}{2}\sin 2v \end{cases}$	Декартова	Підібрати
12.	Гелікоїд	$\begin{cases} x = u \cos v \\ y = u \sin v \\ z = hv \end{cases}$	Декартова	Підібрати

4. Зберіть текстовий редактор — програмний проект з глави 2 книги «Tkinter GUI Application Development Blueprints» за авторством Б. Чаударі (В. Chaudhary). Детально опишіть у звіті основні будівельні блоки програмного коду.

ІНДЗ

- 1. Зберіть текстовий редактор програмний проект з глави 3 книги «Tkinter GUI Application Development Blueprints» за авторством Б. Чаударі (В. Chaudhary). Детально опишіть у звіті основні будівельні блоки програмного коду.
- 2. Зберіть текстовий редактор програмний проект з глави 4 книги «Tkinter GUI Application Development Blueprints» за авторством Б. Чаударі (В. Chaudhary). Детально опишіть у звіті основні будівельні блоки програмного коду.
- 3. Зберіть текстовий редактор програмний проект з глави 5 книги «Tkinter GUI Application Development Blueprints» за авторством Б. Чаударі (В. Chaudhary). Детально опишіть у звіті основні будівельні блоки програмного коду.
- 4. Зберіть текстовий редактор програмний проект з глави 6 книги «Tkinter GUI Application Development Blueprints» за авторством Б. Чаударі (В. Chaudhary). Детально опишіть у звіті основні будівельні блоки програмного коду.