Lista 1 modulo 3

César A. Galvão - 19/0011572

2022-09-17

Contents

	3
Modelo e ANOVA	3
Estimadores	3
Gráficos de interação	4
Decomposição de graus de liberdade	5
Teste F	5
Tukey	6
Probabilidade de erro tipo II	6

Modelo e ANOVA

É utilizado o modelo de experimentos fatoriais, representado por:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + e_{ijk}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., b \quad k = 1, 2, ..., n$$

em que μ é a média geral, τ_i é o efeito do fator **vidro**, β_j é o efeito do fator **fósforo**, $(\tau\beta)_{ij}$ é o efeito de interação entre os dois fatores e e_{ijk} é o desvio do elemento. Portanto, existem $a \cdot b = 3 \cdot 2 = 6$ tratamentos possíveis para este experimento.

term	df	sumsq	meansq	statistic	p.value
phosphor	2	933.3333	466.6667	8.8421	0.0044
glass	1	14450.0000	14450.0000	273.7895	0.0000
phosphor:glass	2	133.3333	66.6667	1.2632	0.3178
Residuals	12	633.3333	52.7778	NA	NA

Pela tabela de ANOVA, os efeitos de ambos os fatores do experimento são significativos considerando mesmo $\alpha=0,01$. No entanto rejeita-se a hipótese de existência de interação entre os fatores. Ou seja, pode-se considerar os efeitos do tipo de vidro e do tipo de fósforo independentes.

Estimadores

μ		σ^2		
263.33	3 5	52.778		
$ au_1$		$ au_2$		
28.333	3 -2	28.333		
β_1	β_2	β_3		
-3.333	10	-6.667		

$\tau_1 \beta_1$	$ au_1eta_2$	$\tau_1 \beta_3$	$ au_2eta_1$	$ au_2eta_2$	$ au_2eta_3$
21.667	38.333	25	-28.333	-18.333	-38.333

Gráficos de interação

As linhas paralelas do gráfico a seguir sugerem não haver interação entre os fatores, além de indicar possível diferença entre o fósfóro tipo 2 e os demais para vidro tipo 1.

O gráfico seguinte também sugere não haver interação entre fatores, mas aparentemente deve haver uma diferença de desempenho quanto ao tipo de vidro, independentemente do tipo de fósforo.

Decomposição de graus de liberdade

A seguir são decompostos os graus de liberdade para o tipo de fósforo, quando o tipo de vidro é 1.

Teste F

A seguir, o teste F é realizado para os tipos de fósforo quando o tipo do vidro é 1. Considera-se H_0 como a igualdade entre efeitos de fósforo e H_1 a diferença de pelo menos um nível em relação aos demais. O p-valor do teste é calculado da seguinte forma:

$$\text{p-valor} = 1 - F\left(\frac{SQ_{\text{fosf}}/2}{QM_{\text{res}}}, gl1 = 2, gl2 = 12\right)$$

Obtém-se as seguintes probabilidades, indicando que não há, a nível de significância $\alpha=0,05$, diferença entre os tipos de fósforo.

Fosforo	P1	P2	P3
p-valor	0.3178	0.0976	0.7351

Tukey

O teste de Tukey é realizado utilizando a função TukeyHDS() e os resultados são expostos abaixo. Da mesma forma, a hipótese nula é rejeitada e diz-se que não há diferença entre os trsão superiores àqueles do teste F.

term	contrast	estimate	conf.low	conf.high	adj.p.value
phosphor:glass	2:1-1:1	16.6667	-3.2575	36.5908	0.1230
phosphor:glass	3:1-1:1	3.3333	-16.5908	23.2575	0.9918
phosphor:glass	3:1-2:1	-13.3333	-33.2575	6.5908	0.2855

Probabilidade de erro tipo II

Calcula-se a probabilidade de erro tipo 2 considerando:

- $\tau = \{20, -20\};$
- n = 9
- $\phi^2 = n \frac{\sum \tau^2}{n}$.
- $\phi = n \frac{1}{QM_{\text{res}}},$ $F_{\text{min}} = 5.3177$

Obtém-se erro tipo II igual muito próximo a zero, da ordem de $5\cdot 10^{-16}.$