

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
28. Juli 2005 (28.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/068828 A1

- (51) Internationale Patentklassifikation⁷: **F02N 17/08**, F02D 41/34
- (74) Gemeinsamer Vertreter: **ROBERT BOSCH GMBH**; Postfach 30 02 20, 70442 Stuttgart (DE).
- (21) Internationales Aktenzeichen: PCT/EP2004/052967
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (22) Internationales Anmeldedatum: 16. November 2004 (16.11.2004)
- (75) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **ROBERT BOSCH GMBH** [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität: 102004001716.6 13. Januar 2004 (13.01.2004) DE
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): **HEINSTEIN, Axel** [DE/DE]; Wenntalstr. 22, 71299 Wimsheim (DE).
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR THE OPERATION OF AN INTERNAL COMBUSTION ENGINE

(54) Bezeichnung: VERFAHREN ZUM BETREIBEN EINER BRENNKRAFTMASCHINE

Z1	S	V	A	B
Z2	V	A	B	S
Z3	B	S	V	A
Z4	A	B	S	V

(57) Abstract: Disclosed is a method for operating an internal combustion engine especially of a motor vehicle. Said internal combustion engine comprises a certain number of cylinders (Z1, Z2, Z3, Z4), in each of which a movable piston is accommodated that can run through a suction phase (S), a compression phase (V), a working phase (A), and an exhaust phase (B). The fuel can be injected directly into a combustion chamber that is delimited by the cylinder (Z1, Z2, Z3, Z4) and the piston. A first output signal (P1) is generated whose value changes whenever a transition from one phase to the next occurs in the internal combustion engine. A second output signal (P2) is generated whose value changes during every other transition between two phases of the internal combustion engine. The two output signals (P1, P2) are generated independently of each other, and the current phase of at least one of the cylinders (Z1, Z2, Z3, Z4) is determined from the two output signals.

[Fortsetzung auf der nächsten Seite]

WO 2005/068828 A1

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(57) Zusammenfassung: Es wird ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs beschrieben. Die Brennkraftmaschine weist eine Anzahl von Zylindern (Z1, Z2, Z3, Z4) auf, wobei in jedem der Zylinder (Z1, Z2, Z3, Z4) ein bewegbarer Kolben untergebracht ist, der eine Saugphase (S), eine Verdichtungsphase (V), eine Arbeitsphase (A) und eine Ausschiebephase (B) durchlaufen kann. Der Kraftstoff kann direkt in einen von dem Zylinder (Z1, Z2, Z3, Z4) und dem Kolben begrenzten Brennraum eingespritzt werden. Ein erstes Ausgangssignal (P1) wird erzeugt, das seinen Wert immer dann ändert, wenn ein Übergang von einer Phase zur nächsten Phase der Brennkraftmaschine vorhanden ist. Ein zweites Ausgangssignal (P2) wird erzeugt, das seinen Wert immer bei jedem zweiten Übergang zwischen zwei Phasen der Brennkraftmaschine ändert. Die beiden Ausgangssignale (P1, P2) werden unabhängig voneinander erzeugt, und aus den beiden Ausgangssignalen wird die aktuelle Phase zumindest eines der Zylinder (Z1, Z2, Z3, Z4) ermittelt.

5

10 Verfahren zum Betreiben einer Brennkraftmaschine

Stand der Technik

15

Die Erfindung geht aus von einem Verfahren zum Betreiben einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs
1. Die Erfindung betrifft ebenfalls ein entsprechendes Steuergerät für eine Brennkraftmaschine.

20

Ein derartiges Verfahren und ein derartiges Steuergerät sind aus der DE 197 43 492 A1 bekannt. Dort ist eine direkteinspritzende Brennkraftmaschine beschrieben, bei der in einem normalen Betrieb der Kraftstoff unter anderem auch während der Verdichtungsphase in den Brennraum der Brennkraftmaschine direkt eingespritzt werden kann.

25

Zum Starten der Brennkraftmaschine wird dort vorgeschlagen, den Kraftstoff in einer ersten Einspritzung in denjenigen Brennraum direkt einzuspritzen, dessen Kolben sich in der Arbeitsphase befindet. Danach wird der Kraftstoff mit Hilfe der zu dem Brennraum zugehörigen Zündkerze entzündet. Nachfolgend wird Kraftstoff in die anderen Zylinder der Brennkraftmaschine eingespritzt und entzündet, so dass die Brennkraftmaschine eine Drehbewegung beginnt.

35

Da bei dem beschriebenen Verfahren kein elektrischer Starter erforderlich ist, wird dieses Verfahren auch als Direktstart bezeichnet.

5

Zur Erkennung der Arbeitsphase der einzelnen Zylinder der Brennkraftmaschine ist bei der DE 197 43 492 A1 vorgesehen, dass der Drehzahlsensor der Brennkraftmaschine als Absolutwinkelsensor ausgebildet ist, der jederzeit und damit auch nach einem Stillstand der Brennkraftmaschine den Drehwinkel derselben angeben kann.

10

Aus der DE 199 60 984 A1 ist es bekannt, zur Vorbereitung eines Direktstarts die Brennkraftmaschine beim

15 vorhergehenden Auslaufen gezielt in eine für den Direktstart vorteilhafte Winkelstellung zu bewegen. Zu diesem Zweck ist dort eine Ventilsteuerung vorgesehen, mit der ein erwünschter Kolben beispielsweise gezielt bei einer Winkelstellung der Kurbelwelle von 90 Grad nach dem oberen
20 Totpunkt ausläuft.

Aufgabe und Lösung

Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben
25 einer Brennkraftmaschine und ein Steuergerät für eine Brennkraftmaschine zu schaffen, die einfach und kostengünstig aufgebaut sind.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach
30 dem Anspruch 1 sowie durch ein Steuergerät nach dem Anspruch 8 gelöst.

Mit Hilfe der beiden erfindungsgemäßen Ausgangssignale ist es möglich, beispielsweise denjenigen Zylinder zu
35 ermitteln, dessen Kolben sich in seiner Arbeitsphase

befindet. Zum Zwecke eines Direktstarts kann dann zuerst in diesen Zylinder Kraftstoff eingespritzt werden.

Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin,
5 dass kein Absolutwinkelsensor erforderlich ist. Statt dessen genügt es, die beiden Ausgangssignale insbesondere mit Hilfe zweier Sensoren zu ermitteln, die beispielsweise zwei Nockenwellen oder einer Kurbelwelle und einer Nockenwelle zugeordnet sind. Derartige Sensoren sind
10 wesentlich einfacher aufgebaut und damit wesentlich kostengünstiger als Absolutwinkelsensoren.

Bei einer vorteilhaften Weiterbildung der Erfindung werden die beiden Ausgangssignale einer UND- oder ODER-Verknüpfung unterzogen. Damit ist es möglich, festzustellen, ob ein
15 Direktstart ohne weiteres oder nur unter bestimmten Randbedingungen möglich erscheint. Durch diese Maßnahmen wird somit die Zuverlässigkeit des vorzunehmenden Direktstarts vorab überprüft.

20 Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle
25 beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung
30 bzw. in der Zeichnung.

Figur 1 zeigt ein schematisches Zeitdiagramm der Abfolge der Saug-, Verdichtungs-, Arbeits- und Ausschiebphasen einer vierzyindrigen Brennkraftmaschine, Figuren 2a und 2b zeigen schematische Zeitdiagramme der Ausgangssignale eines
35

ersten Ausführungsbeispiels eines Phasengebers, Figur 3 zeigt ein schematisches Zeitdiagramm eines Ergebnisses, das die Arbeitsphasen der einzelnen Zylinder der Brennkraftmaschine der Figur 1 kennzeichnet, Figuren 3a bis 5 3d zeigen schematische Zeitdiagramme der Ausgangssignale eines zweiten Ausführungsbeispiels eines Phasengebers, und Figuren 5a bis 5c zeigen schematische Zeitdiagramme von Ergebnissen, die die Arbeitsphasen der einzelnen Zylinder der Brennkraftmaschine der Figur 1 kennzeichnen.

10

In der Figur 1 der vorliegenden Patentanmeldung ist die Abfolge der einzelnen Phasen einer Brennkraftmaschine über der Zeit dargestellt. Diese Phasen entsprechen den in der DE 197 43 492 A1 dargestellten und dort näher erläuterten 15 Takten einer Brennkraftmaschine.

Gemäß der Figur 1 der vorliegenden Patentanmeldung weist die Brennkraftmaschine vier Zylinder Z1, Z2, Z3 und Z4 auf. In jedem dieser Zylinder wird zuerst in einer Ansauphase S 20 Luft über das Ansaugrohr der Brennkraftmaschine in den Brennraum angesaugt. Dann wird in einer Verdichtungsphase V die angesaugte Luft in dem Brennraum verdichtet. Gleichzeitig wird in dieser Verdichtungsphase V der Kraftstoff über ein Einspritzventil direkt in den Brennraum 25 eingespritzt. In einer nachfolgenden Arbeitsphase A wird der in dem Brennraum vorhandene Kraftstoff mit Hilfe einer Zündkerze entzündet. Der Kraftstoff verbrennt, wobei die dabei entstehende Expansion des Kraftstoff/Luft-Gemischs den Kolben der Brennkraftmaschine in Bewegung versetzt. 30 Danach wird in einer Ausschiebephase B das verbrannte Kraftstoff/Luft-Gemisch aus dem Brennraum ausgeschoben.

Die Kurbelwelle der Brennkraftmaschine hat nunmehr einen Winkel von 720 Grad durchlaufen und die erläuterten Phasen 35 der Brennkraftmaschine können wieder von vorne beginnen.

Die einzelnen Phasen S, V, A, B in den einzelnen Zylindern Z1, Z2, Z3, Z4 werden mit Hilfe mindestens einer Nockenwelle und zugehöriger Ventile gesteuert bzw. geregelt.

5

Die vorstehenden Phasen werden in den einzelnen Zylindern der Brennkraftmaschine versetzt zueinander durchlaufen. Die in der Figur 1 gezeigte Abfolge der Zylinder entspricht dabei der bekannten Abfolge einer vierzylindrigen Brennkraftmaschine, nämlich Z1 -> Z3 -> Z4 -> Z2 -> Z1 -> usw..

- In den Figuren 2a und 2b sind Ausgangssignale P1, P2 eines ersten Phasengebers dargestellt, der der Brennkraftmaschine der Figur 1 zugeordnet ist. Zur Erzeugung dieser Ausgangssignale sind zwei Geberräder vorgesehen, wobei jedem der Geberräder ein Sensor zugeordnet ist. Sind zwei Nockenwellen vorhanden, wovon im vorliegenden Ausführungsbeispiel ausgegangen wird, so sind diese beiden Nockenwellen mit jeweils einem Geberrad versehen. Ist nur eine Nockenwelle vorhanden, so kann zur Erzeugung der Ausgangssignale die Kurbelwelle und die Nockenwelle mit jeweils einem Geberrad versehen sein.
- 15
20
25
30
35
- Es ist auch möglich, dass nur ein einziges, sogenanntes Zwei-Spur-Geberrad vorhanden ist, das auf der einzigen Nockenwelle angeordnet ist, und dem ein entsprechender Sensor zugeordnet ist.
- Bei den Sensoren handelt es sich insbesondere um sogenannte True-Power-On-Sensoren, die bereits mit dem Einschalten der Brennkraftmaschine ohne eine Drehung des Geberrads die Stellung des Geberrads erkennen können. Ein derartiger Sensor ist beispielsweise in der DE 100 44 741 A1 beschrieben.

Die beiden Geberräder sind derart ausgebildet, dass die beiden Sensoren die Ausgangssignale P1, P2 gemäß den Figuren 2a und 2b erzeugen.

5

Das Ausgangssignal P1 ändert immer dann seinen Wert, wenn ein Übergang zwischen aufeinanderfolgenden Phasen in der Figur 1 vorhanden ist. Das Ausgangssignal P1 weist dabei die Werte "0" und "1" auf. Das Ausgangssignal P1 kennzeichnet damit die einzelnen Phasen der Brennkraftmaschine.

10

Das Ausgangssignal P2 wird unabhängig von dem Ausgangssignal P1 erzeugt. Das Ausgangssignal P2 ändert seinen Wert immer bei jedem zweiten Übergang zwischen aufeinanderfolgenden Phasen der Figur 1. Das Ausgangssignal P2 weist dabei ebenfalls die Werte "0" und "1" auf.

15

In der Figur 3 ist ein Ergebnis E dargestellt, das die Arbeitsphasen der einzelnen Zylinder der Brennkraftmaschine der Figur 1 kennzeichnet. Das Ergebnis E ergibt sich aus einer Kombination der Ausgangssignale P1 und P2 wie folgt: Ist P1=0 und P2=0, so ist E=Z1; ist P1=1 und P2=0, so ist E=Z3; ist P1=0 und P2=1, so ist E=Z4; und ist P1=1 und P2=1, so ist E=Z2.

20

Bei dem in dem Ergebnis E angegebenen Zylinder handelt es sich dabei immer um denjenigen Zylinder, der sich in seiner Arbeitsphase A befindet. Damit ist über das Ergebnis E in jedem Zeitpunkt ermittelbar, in welchen Phasen sich die einzelnen Zylinder der Brennkraftmaschine aktuell befinden.

25

Im Betrieb der Brennkraftmaschine wird dieselbe zur Vorbereitung eines Direktstarts beim Auslaufen gezielt in eine für den Direktstart vorteilhafte Winkelstellung

35

bewegt. Dies kann beispielsweise entsprechend der DE 199 60 984 A1 erfolgen.

Bei einem nachfolgenden Direktstart wird mit Hilfe der
5 beiden Ausgangssignale P1 und P2 der Figuren 2a und 2b
derjenige Zylinder der Brennkraftmaschine bestimmt, der
sich aktuell in seiner Arbeitsphase A befindet. Dieser
Zylinder kann mit Hilfe der erläuterten True-Power-On-
Sensoren sofort ermittelt werden.

10 In diesen Zylinder wird daraufhin zuerst Kraftstoff
eingespritzt und entzündet. Danach wird der Kraftstoff
aufeinanderfolgend in die weiteren Zylinder eingespritzt
und entzündet. Dies erfolgt dabei entsprechend der
15 erläuterten bekannten Abfolge der Zylinder.

Insgesamt ist damit ein Direktstart der Brennkraftmaschine
möglich, indem die Brennkraftmaschine beim Auslaufen für
einen nachfolgenden Direktstart vorbereitet wird, und indem
20 der sich in seiner Arbeitsphase befindende Zylinder mittels
eines Phasengebers ermittelt wird. Ein Absolutwinkelsensor
ist dabei nicht erforderlich.

In den Figuren 4a bis 4d sind Ausgangssignale P1S1, P1S2,
25 P2S1, P2S2 eines zweiten Phasengebers dargestellt, der der
Brennkraftmaschine der Figur 1 zugeordnet ist. Dieser
zweite Phasengeber entspricht weitgehend dem ersten
Phasengeber der Figuren 2a und 2b; insoweit wird auf die
dortigen Erläuterungen verwiesen. Der zweite Phasengeber
30 unterscheidet sich von dem ersten Phasengeber dadurch, dass
auf jedem der beiden Geberräder jeweils zwei Spuren
vorgesehen sind, und dass damit jedem der beiden Geberräder
auch jeweils zwei Sensoren für die beiden Spuren zugeordnet
sind.

Die beiden Geberräder und die jeweils zugehörigen beiden Spuren sind derart ausgebildet, dass die zugeordneten vier Sensoren die Ausgangssignale P1S1, P1S2, P2S1 und P2S2 gemäß den Figuren 4a bis 4d erzeugen. Dies kann

- 5 beispielsweise dadurch erreicht werden, dass die bereits erläuterten Geberräder der Figuren 2a und 2b des ersten Phasengebers herangezogen werden und zusätzlich jeweils noch mit einer zweiten Spur versehen werden. Diese zweite Spur kann beispielsweise durch entsprechende Öffnungen oder
10 dergleichen in dem jeweiligen Geberrad realisiert sein.

Das Ausgangssignal P1S1 entspricht den einzelnen Phasen der Brennkraftmaschine der Figur 1. Das Ausgangssignal P2S1 ändert seinen Wert immer bei jedem zweiten Übergang
15 zwischen aufeinanderfolgenden Phasen der Figur 1. Die Ausgangssignale P1S1 und P2S1 der Figuren 4a und 4c entsprechen den Ausgangssignalen P1 und P2 der Figuren 2a und 2b.

- 20 Das Ausgangssignal P1S2 weist aufeinanderfolgende Null- und Eins-Signale auf. Die Dauer der Eins-Signale entspricht einem vorgegebenen Wert, und auch der Abstand aufeinanderfolgender Eins-Signale entspricht einem vorgegebenen Wert.

25 Das Ausgangssignal P2S2 ist in gleicher Weise aufgebaut wie das Ausgangssignal P1S2. Das Ausgangssignal P2S2 ist jedoch um einen vorgegebenen Wert gegenüber dem Signal P1S2 zeitlich verschoben.

- 30 In den Figuren 5a bis 5c sind Ergebnisse E1, E2 und E3 dargestellt, die unter anderem die Arbeitsphasen der einzelnen Zylinder der Brennkraftmaschine der Figur 1 kennzeichnen.

Das Ergebnis E1 der Figur 5a entspricht dem Ergebnis E der Figur 3. Dieses Ergebnis E1 ergibt sich aus einer Kombination der Ausgangssignale P1S1 und P2S2 wie folgt:
Ist P1S1=0 und P2S1=0, so ist E1=Z1; ist P1S1=1 und P2S1=0,
5 so ist E1=Z3; ist P1S1=0 und P2S1=1, so ist E1=Z4; und ist P1S1=1 und P2S1=1, so ist E1=Z2.

Bei dem im Ergebnis E1 angegebenen Zylinder handelt es sich wiederum um denjenigen Zylinder, der sich in seiner 10 Arbeitsphase A befindet. Damit ist über das Ergebnis E1 in jedem Zeitpunkt ermittelbar, in welchen Phasen sich die einzelnen Zylinder der Brennkraftmaschine aktuell befinden.

Das Ergebnis E2 ergibt sich aus einer UND-Verknüpfung der 15 beiden Ausgangssignale P1S2 und P2S2. Ist das Ergebnis E2 gleich "1", so charakterisiert dies denjenigen Zeit- bzw. Winkelbereich, in dem ein Direktstart der Brennkraftmaschine ohne weiteres möglich erscheint.

20 Das Ergebnis E3 ergibt sich aus einer EXOR-Verknüpfung der beiden Ausgangssignale P1S2 und P2S2. Ist das Ergebnis E3 gleich "1", so charakterisiert dies denjenigen Zeit- bzw. Winkelbereich, in dem ein Direktstart der Brennkraftmaschine nur unter bestimmten Randbedingungen 25 möglich ist, beispielsweise nur bei einer Betriebstemperatur der Brennkraftmaschine, die sich in einem vorgegebenen Temperaturbereich befindet.

Ist weder das Ergebnis E2 gleich "1", noch das Ergebnis E3 30 gleich "1", so erscheint ein Direktstart nicht ohne weiteres oder zumindest nicht sicher möglich zu sein.

35 Im Betrieb der Brennkraftmaschine wird die Brennkraftmaschine zur Vorbereitung eines Direktstarts beim Auslaufen gezielt in eine für den Direktstart vorteilhafte

Winkelstellung bewegt. Dies kann beispielsweise, wie bereits erläutert wurde, entsprechend der DE 199 60 984 A1 erfolgen.

- 5 Bei einem nachfolgenden Direktstart wird mit Hilfe der beiden Ausgangssignale P1S1 und P2S1 der Figuren 4a und 4c derjenige Zylinder der Brennkraftmaschine bestimmt, der sich aktuell in seiner Arbeitsphase A befindet. Dieser Zylinder kann mit Hilfe der erläuterten True-Power-On-Sensoren sofort ermittelt werden.

Danach wird mit Hilfe der beiden Ausgangssignale P1S2 und P2S2 der Figuren 4b und 4d ermittelt, ob ein Direktstart ohne weiteres möglich erscheint. Dies ist dann der Fall, 15 wenn das Ergebnis E2 gleich "1" ist. In diesem Fall wird daraufhin in denjenigen Zylinder, der sich in seiner Arbeitsphase A befindet, zuerst Kraftstoff eingespritzt und entzündet. Danach wird der Kraftstoff aufeinanderfolgend in die weiteren Zylinder eingespritzt und entzündet. Dies 20 erfolgt dabei entsprechend der erläuterten bekannten Abfolge der Zylinder.

Ist das Ergebnis E2 ungleich "1", ist aber das Ergebnis E3 25 gleich "1", so wird geprüft, ob die erforderlichen Randbedingungen für einen Direktstart erfüllt sind, ob also beispielsweise die Brennkraftmaschine die erforderliche Betriebstemperatur aufweist. Ist dies der Fall, so wird der Direktstart dadurch fortgesetzt, dass daraufhin zuerst in denjenigen Zylinder, der sich in seiner Arbeitsphase A 30 befindet, Kraftstoff eingespritzt und entzündet wird, um danach die anderen Zylinder entsprechend der bekannten Abfolge mit Kraftstoff zu versorgen und zu entzünden.

Wird jedoch festgestellt, dass die erforderlichen 35 Randbedingungen nicht erfüllt sind, oder ist weder das

Ergebnis E2, noch das Ergebnis E3 gleich "1", so erscheint ein Direktstart der Brennkraftmaschine nicht ohne weiteres möglich zu sein. In diesem Fall kommen andere Verfahren zum Starten der Brennkraftmaschine zum Einsatz, die nicht

5 Gegenstand der vorliegenden Patentanmeldung sind.

Die vorstehend beschriebenen Verfahren zum Starten einer Brennkraftmaschine werden von einem Steuergerät ausgeführt, das ganz allgemein zur Steuerung und/oder Regelung der

10 Brennkraftmaschine vorhanden ist. Das Steuergerät kann insbesondere ein Computerprogramm enthalten, mit dem die erläuterten Verfahren zur Ausführung gebracht werden können.

Patentansprüche

- 10 1. Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem die Brennkraftmaschine eine Anzahl von Zylindern (Z1, Z2, Z3, Z4) aufweist, wobei in jedem der Zylinder (Z1, Z2, Z3, Z4) ein bewegbarer Kolben untergebracht ist, der eine Ansaugphase (S), eine Verdichtungsphase (V), eine Arbeitsphase (A) und eine Ausschiebephase (B) durchlaufen kann, und bei dem der Kraftstoff direkt in einen von dem Zylinder (Z1, Z2, Z3, Z4) und dem Kolben begrenzten Brennraum eingespritzt werden kann, dadurch gekennzeichnet, dass ein erstes Ausgangssignal (P1, P1S1) erzeugt wird, das seinen Wert immer dann ändert, wenn ein Übergang von einer Phase zur nächsten Phase der Brennkraftmaschine vorhanden ist, dass ein zweites Ausgangssignal (P2, P2S1) erzeugt wird, das seinen Wert immer bei jedem zweiten Übergang zwischen zwei Phasen der Brennkraftmaschine ändert, dass die beiden Ausgangssignale (P1, P1S1; P2, P2S2) unabhängig voneinander erzeugt werden, und dass aus den beiden Ausgangssignalen die aktuelle Phase zumindest eines der Zylinder (Z1, Z2, Z3, Z4) ermittelt wird.
- 20 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Ausgangssignale (P1, P1S1; P2, P2S2) von zwei Sensoren erzeugt werden, insbesondere von zwei sogenannten True-Power-On-Sensoren.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden Sensoren jeweils einem mit der Brennkraftmaschine gekoppelten Geberrad zugeordnet sind.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die beiden Geberräder zwei Nockenwellen der Brennkraftmaschine zugeordnet sind, oder dass eines der beiden Geberräder einer Kurbelwelle zugeordnet ist, und 10 dass das andere der beiden Geberräder einer Nockenwelle zugeordnet ist.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwei weitere Ausgangssignale (P1S2, P2S2) erzeugt werden, deren UND-Verknüpfung denjenigen 15 Zeit- bzw- Winkelbereich kennzeichnet, in dem ein Direktstart möglich erscheint.

6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwei weitere Ausgangssignale (P1S2, P2S2) erzeugt werden, deren EXOR-Verknüpfung denjenigen 20 Zeit- bzw- Winkelbereich kennzeichnet, in dem ein Direktstart nur unter bestimmten Randbedingungen möglich erscheint.

7. Computerprogramm für ein Steuergerät einer Brennkraftmaschine, dadurch gekennzeichnet, dass es zur 25 Anwendung in einem Verfahren nach einem der Ansprüche 1 bis 6 programmiert ist.

8. Steuergerät für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, wobei die Brennkraftmaschine eine Anzahl von Zylindern (Z1, Z2, Z3, Z4) aufweist, wobei in 30 jedem der Zylinder (Z1, Z2, Z3, Z4) ein bewegbarer Kolben untergebracht ist, der eine Saugphase (S), eine

Verdichtungsphase (V), eine Arbeitsphase (A) und eine Ausschiebephase (B) durchlaufen kann, und wobei der Kraftstoff direkt in einen von dem Zylinder (Z1, Z2, Z3, Z4) und dem Kolben begrenzten Brennraum eingespritzt werden

- 5 kann, dadurch gekennzeichnet, dass durch das Steuergerät ein erstes Ausgangssignal (P1, P1S1) erzeugt werden kann, das seinen Wert immer dann ändert, wenn ein Übergang von einer Phase zur nächsten Phase der Brennkraftmaschine vorhanden ist, dass durch das Steuergerät ein zweites
- 10 Ausgangssignal (P2, P2S1) erzeugt werden kann, das seinen Wert immer bei jedem zweiten Übergang zwischen zwei Phasen der Brennkraftmaschine ändert, dass die beiden Ausgangssignale (P1, P1S1; P2, P2S2) unabhängig voneinander erzeugt werden können, und dass durch das Steuergerät aus
- 15 den beiden Ausgangssignalen die aktuelle Phase zumindest eines der Zylinder (Z1, Z2, Z3, Z4) ermittelt werden kann.

9. Brennkraftmaschine insbesondere für ein Kraftfahrzeug, dadurch gekennzeichnet, dass ein Steuergerät nach Anspruch 8 vorgesehen ist.

1 / 2

Fig. 1

Z1	S	V	A	B
Z2	V	A	B	S
Z3	B	S	V	A
Z4	A	B	S	V

Fig. 2a

Fig. 2b

Fig. 3

E	Z4	Z2	Z1	Z3
---	----	----	----	----

2 / 2

Fig. 4a**Fig. 4b****Fig. 4c****Fig. 4d****Fig. 5a****Fig. 5b****Fig. 5c**

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/052967

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 F02N17/08 F02D41/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 F02N . F02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 475 566 A (FORD MOTOR COMPANY LIMITED; FORD-WERKE AKTIENGESELLSCHAFT; FORD FRANCE) 18 March 1992 (1992-03-18) abstract column 7, line 50 – column 8, line 28; figure 6 -----	1,7-9
X	US 5 809 973 A (IIDA ET AL) 22 September 1998 (1998-09-22) abstract column 7, line 60 – column 8, line 5; figure 2 column 9, line 30 – column 10, line 9 -----	1,7-9
Y	column 7, line 60 – column 8, line 5; figure 2 column 9, line 30 – column 10, line 9 -----	2-4
X	EP 1 284 349 A (NISSAN MOTOR CO., LTD) 19 February 2003 (2003-02-19) abstract paragraphs ‘0053!, ‘0054!; figures 15-17 ----- -/-	1,7-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

17 February 2005

Date of mailing of the international search report

25/02/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nicolás, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/052967

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 425 340 A (PETITBON ET AL) 20 June 1995 (1995-06-20) abstract column 2, lines 16-62 -----	1,7-9
X	US 5 680 846 A (BAUER ET AL) 28 October 1997 (1997-10-28) column 1, lines 15-35 -----	1,7-9
X	EP 0 846 852 A (C.R.F. SOCIETA' CONSORTILE PER AZIONI; C.R.F. SOCIETA CONSORTILE PER A) 10 June 1998 (1998-06-10) column 2, line 42 - column 3, line 12 -----	1,7-9
Y	US 2002/175678 A1 (BUTZMANN STEFAN) 28 November 2002 (2002-11-28) abstract paragraphs '0006!, '0009! -----	2-4

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/052967

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0475566	A	18-03-1992	US DE DE EP	5056360 A 69107553 D1 69107553 T2 0475566 A1	15-10-1991 30-03-1995 22-06-1995 18-03-1992
US 5809973	A	22-09-1998	JP JP DE KR SE SE	3223802 B2 10054272 A 19734226 A1 233934 B1 520023 C2 9702886 A	29-10-2001 24-02-1998 12-02-1998 15-12-1999 13-05-2003 10-02-1998
EP 1284349	A	19-02-2003	EP JP US	1284349 A2 2003129884 A 2003037771 A1	19-02-2003 08-05-2003 27-02-2003
US 5425340	A	20-06-1995	FR DE DE EP JP JP	2692623 A1 69301280 D1 69301280 T2 0576334 A1 3261212 B2 6058184 A	24-12-1993 22-02-1996 22-08-1996 29-12-1993 25-02-2002 01-03-1994
US 5680846	A	28-10-1997	DE DE EP	19517749 C1 59606264 D1 0743438 A2	04-07-1996 08-02-2001 20-11-1996
EP 0846852	A	10-06-1998	US EP DE DE ES	5758625 A 0846852 A1 69626122 D1 69626122 T2 2191734 T3	02-06-1998 10-06-1998 13-03-2003 21-08-2003 16-09-2003
US 2002175678	A1	28-11-2002	DE EP JP	10118819 A1 1251336 A2 2003149260 A	24-10-2002 23-10-2002 21-05-2003

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/052967

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F02N17/08 F02D41/34

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F02N F02D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 475 566 A (FORD MOTOR COMPANY LIMITED; FORD-WERKE AKTIENGESELLSCHAFT; FORD FRANCE) 18. März 1992 (1992-03-18) Zusammenfassung Spalte 7, Zeile 50 – Spalte 8, Zeile 28; Abbildung 6 -----	1,7-9
X	US 5 809 973 A (IIDA ET AL) 22. September 1998 (1998-09-22) Zusammenfassung Spalte 7, Zeile 60 – Spalte 8, Zeile 5; Abbildung 2 Spalte 9, Zeile 30 – Spalte 10, Zeile 9 -----	1,7-9
Y	Zusammenfassung Spalte 7, Zeile 60 – Spalte 8, Zeile 5; Abbildung 2 Spalte 9, Zeile 30 – Spalte 10, Zeile 9 -----	2-4
X	EP 1 284 349 A (NISSAN MOTOR CO., LTD) 19. Februar 2003 (2003-02-19) Zusammenfassung Absätze '0053!, '0054!; Abbildungen 15-17 ----- -/--	1,7-9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
17. Februar 2005	25/02/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Nicolás, C

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/052967

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 425 340 A (PETITBON ET AL) 20. Juni 1995 (1995-06-20) Zusammenfassung Spalte 2, Zeilen 16-62 -----	1,7-9
X	US 5 680 846 A (BAUER ET AL) 28. Oktober 1997 (1997-10-28) Spalte 1, Zeilen 15-35 -----	1,7-9
X	EP 0 846 852 A (C.R.F. SOCIETA' CONSORTILE PER AZIONI; C.R.F. SOCIETA CONSORTILE PER A) 10. Juni 1998 (1998-06-10) Spalte 2, Zeile 42 - Spalte 3, Zeile 12 -----	1,7-9
Y	US 2002/175678 A1 (BUTZMANN STEFAN) 28. November 2002 (2002-11-28) Zusammenfassung Absätze '0006!, '0009! -----	2-4

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/052967

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0475566	A	18-03-1992	US DE DE EP	5056360 A 69107553 D1 69107553 T2 0475566 A1		15-10-1991 30-03-1995 22-06-1995 18-03-1992
US 5809973	A	22-09-1998	JP JP DE KR SE SE	3223802 B2 10054272 A 19734226 A1 233934 B1 520023 C2 9702886 A		29-10-2001 24-02-1998 12-02-1998 15-12-1999 13-05-2003 10-02-1998
EP 1284349	A	19-02-2003	EP JP US	1284349 A2 2003129884 A 2003037771 A1		19-02-2003 08-05-2003 27-02-2003
US 5425340	A	20-06-1995	FR DE DE EP JP JP	2692623 A1 69301280 D1 69301280 T2 0576334 A1 3261212 B2 6058184 A		24-12-1993 22-02-1996 22-08-1996 29-12-1993 25-02-2002 01-03-1994
US 5680846	A	28-10-1997	DE DE EP	19517749 C1 59606264 D1 0743438 A2		04-07-1996 08-02-2001 20-11-1996
EP 0846852	A	10-06-1998	US EP DE DE ES	5758625 A 0846852 A1 69626122 D1 69626122 T2 2191734 T3		02-06-1998 10-06-1998 13-03-2003 21-08-2003 16-09-2003
US 2002175678	A1	28-11-2002	DE EP JP	10118819 A1 1251336 A2 2003149260 A		24-10-2002 23-10-2002 21-05-2003