Exercise 1*

Consider the following labelled transition system.

- 1. Decide whether the state s satisfies the following formulae of Hennessy-Milner logic:
 - (a) $s \stackrel{?}{\models} \langle a \rangle t t$
 - (b) $s \models \langle b \rangle tt$
 - (c) $s \models [a] ff$
 - (d) $s \models [b] ff$
 - (e) $s \models [a]\langle b \rangle tt$
 - (f) $s \stackrel{?}{\models} \langle a \rangle \langle b \rangle tt$
 - (g) $s \stackrel{?}{\models} [a]\langle a \rangle [a][b]ff$
 - (h) $s \models \langle a \rangle (\langle a \rangle tt \wedge \langle b \rangle tt)$
 - (i) $s \stackrel{?}{\models} [a] (\langle a \rangle t t \vee \langle b \rangle t)$
 - (j) $s \stackrel{?}{\models} \langle a \rangle ([b][a]ff \wedge \langle b \rangle tt)$
 - (k) $s \models \langle a \rangle ([a](\langle a \rangle tt \wedge [b]ff) \wedge \langle b \rangle ff)$
- 2. Compute the following sets according to the denotational semantics for Hennessy-Milner logic.
 - [[a][b]ff] = ?
 - $[\langle a \rangle (\langle a \rangle t t \wedge \langle b \rangle t)] = ?$
 - [[a][a][b]ff] = ?
 - $\llbracket [a] (\langle a \rangle t t \vee \langle b \rangle t) \rrbracket = ?$

Exercise 2

Find (one) labelled transition system with an initial state s such that it satisfies (at the same time) the following properties:

- $s \models \langle a \rangle (\langle b \rangle \langle c \rangle tt \land \langle c \rangle tt)$
- $s \models \langle a \rangle \langle b \rangle ([a]ff \wedge [b]ff \wedge [c]ff)$
- $s \models [a]\langle b\rangle([c]ff \land \langle a\rangle t)$

Exercise 3*

Consider the following labelled transition system.

It is true that $s \not\sim t$, $s \not\sim v$ and $t \not\sim v$. Find a distinguishing formula of Hennessy-Milner logic for the pairs

- \bullet s and t
- \bullet s and v
- \bullet t and v.

Exercise 4*

For each of the following CCS expressions decide whether they are strongly bisimilar and if no, find a distinguishing formula in Hennessy-Milner logic.

- 1. b.a.Nil + b.Nil and b.(a.Nil + b.Nil)
- 2. a.(b.c.Nil + b.d.Nil) and a.b.c.Nil + a.b.d.Nil
- 3. $a.Nil \mid b.Nil$ and a.b.Nil + b.a.Nil
- 4. $(a.Nil \mid b.Nil) + c.a.Nil$ and $a.Nil \mid (b.Nil + c.Nil)$

Home exercise: verify your claims in CAAL and check whether you found the same distinguishing formula as the tool.

Exercise 5 (optional)

Prove that for every Hennessy-Milner formula F and every state $p \in Proc$:

$$p \models F \quad \text{if and only if} \quad p \in \llbracket F \rrbracket \, .$$

Hint: use induction on the structure of the formula F.