SemiAuto Regression Report

Dataset: BOSTON

Generated on: 2025-06-01 02:07:21

Project Flow

Data Ingestion Data Preprocessifigature EngineeringModel Building Model EvaluationModel OptimizationFinal Evaluation

Table of Contents

- 1. Data Ingestion
- 2. Data Preprocessing
- 3. Feature Engineering
- 4. Model Building
- 5. Model Evaluation
- 6. Model Optimization (if performed)
- 7. Final Evaluation Results

1. Data Ingestion

This step involves loading and analyzing the original dataset to understand its structure and characteristics.

Dataset Overview

Dataset: boston

Train samples: 404, Test samples: 102

Target column: MEDV

Column Types

Original Columns:

CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, MEDV

Numerical Columns:

ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, MEDV

Categorical Columns:

None

Skewed Columns:

ZN, CHAS, NOX, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, MEDV

Normal Columns:

INDUS, RM

Columns with Nulls:

None

Columns with Outliers:

ZN, CHAS, RM, DIS, PTRATIO, B, LSTAT, MEDV

Highly Correlated Features

ZN:

- DIS: 0.6644

INDUS:

- NOX: 0.7637 - DIS: -0.7080 - TAX: 0.7208

NOX:

- INDUS: 0.7637 - AGE: 0.7315 - DIS: -0.7692 - TAX: 0.6680

RM:

- MEDV: 0.6954

AGE:

- NOX: 0.7315 - DIS: -0.7479

DIS:

- ZN: 0.6644

- INDUS: -0.7080 - NOX: -0.7692 - AGE: -0.7479

RAD:

- TAX: 0.9102

TAX:

- INDUS: 0.7208 - NOX: 0.6680 - RAD: 0.9102

LSTAT:

- MEDV: -0.7377

MEDV:

- RM: 0.6954

- LSTAT: -0.7377

Feature Distributions

Correlation Heatmap

2. Data Preprocessing

This step involves cleaning the dataset and preparing it for model training.

Preprocessed Data Preview

Training Data Sample (First 5 rows):

ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
-0.5267617	1.03323678	-1.3554220	0.88174876	-1.4280685	-2.4129959	-2.1745760	-0.9191851	-2.4259898	-7.8341603
-0.5267617	-0.4131595	-1.3554220	-4.5918952	-0.6800865	-2.4710876	-1.5008121	-1.1500485	-2.4370104	-7.5871578
-0.4291697	-0.7152182	-1.3554220	-14.247364	-0.4020630	-2.5077483	-1.1869138	-1.3571760	-2.4371810	-8.5884248
-0.5267617	1.03323678	-1.3554220	0.88174876	-0.3004503	-2.4315892	-2.2092622	-0.9191851	-2.4259898	-7.8341603
-0.5267617	-0.4131595	-1.3554220	-4.5918952	-0.8310942	-2.4538976	-1.6457566	-1.1500485	-2.4370104	-7.5871578

Test Data Sample (First 5 rows):

ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
-0.5267617	-1.0071114	-1.3554220	-6.9734881	0.14128238	-2.4330701	-1.9656247	-1.1165292	-2.4376487	-8.6389249
-0.4286824	-0.6643910	-1.3554220	-13.226896	0.62394248	-2.4984069	-1.5842204	-1.1500485	-2.4404629	-8.4599940
-0.5267617	2.43316256	-1.3554220	0.56077528	-0.4698048	-2.4106449	-2.2807843	-1.1500485	-2.4252493	-7.8630814
-0.5267617	-0.0254207	-1.3554220	-17.212319	-0.3540792	-2.5197655	-1.3671706	-1.1500485	-2.4371238	-8.1049531
-0.5267617	1.03323678	-1.3554220	6.32246663	-0.0266607	-2.4214963	-2.0659541	-0.9191851	-2.4259898	-7.8341603

3. Feature Engineering

This step involves creating new features or selecting the most important ones.

Feature Engineering Configuration

Applied Techniques:

Automated Feature Engineering: Yes SHAP-based Feature Selection: Yes

Transformed Data Preview

Transformed Training Data Sample (First 5 rows):

LSTAT - RM	PTRATIO - RM	LSTAT - ZN	AGE - LSTAT	AGE + LSTAT	LSTAT * PT	AGE * LSTAT	B - LSTAT	LSTAT + RAD	PTRATIO * RM
-0.1121800	-6.4060918	-1.0134868	-0.8727473	-3.9532445	12.0665544	3.71661358	-2.3627198	-2.4594337	11.1877182
-1.1335174	-6.9070713	-1.2868422	-0.6574837	-4.2846916	13.7600997	4.48157448	-2.0756388	-2.9636525	5.15992402
-1.4293086	-8.1863617	-1.4022018	-0.6763767	-4.3391200	15.7285978	4.59261934	-2.0682557	-3.1885477	3.45308822
-1.2583740	-7.5337099	-1.0320627	-0.8727647	-3.9904136	12.2120806	3.79042067	-2.3452278	-2.4780096	2.35377655
-0.9151671	-6.7560636	-1.2194996	-0.7076362	-4.2001590	13.2491609	4.28514676	-2.1445882	-2.8963099	6.30564322

Transformed Test Data Sample (First 5 rows):

LSTAT - RM	PTRATIO - RM	LSTAT - ZN	AGE - LSTAT	AGE + LSTAT	LSTAT * PT	AGE * LSTAT	B - LSTAT	LSTAT + RAD	PTRATIO * RM
-1.9399268	-8.7802072	-1.2718827	-0.6344257	-4.2317146	15.5383543	4.37622817	-2.0906403	-2.9151737	-1.2205279
-2.6172714	-9.0839365	-1.5646464	-0.5050780	-4.4917358	16.8635509	4.98014687	-1.8954643	-3.1433774	-5.2785497
-1.1573249	-7.3932766	-1.1003679	-0.7835152	-4.0377747	12.7942534	3.92243209	-2.2640033	-2.7771782	3.69411350
-1.5525462	-7.7508738	-1.3798638	-0.6131399	-4.4263911	15.4531110	4.80424947	-1.9842375	-3.0566741	2.86979607
-1.6123559	-7.8074996	-1.1122549	-0.7824796	-4.0605130	12.8403196	3.96887288	-2.2537760	-2.5582018	0.20886455

4. Model Building

This step involves training the regression model on the transformed data.

Model Selection

Selected Model:

CatBoost

Training timestamp: 2025-06-01 02:05:15

5. Model Evaluation

This step involves evaluating the performance of the trained model.

Performance Metrics

Original Model Performance:

Evaluation timestamp: 2025-06-01 02:06:31

Metric	Value
R ² Score	0.90503
Explained Variance Score	0.90621
Mean Squared Error	6.96439
Root Mean Squared Error	2.63901
Mean Absolute Error	1.78011
Mean Absolute Percentage Error	0.09830
Max Error	14.08738

6. Model Optimization

This step involves tuning the hyperparameters of the model to improve performance.

Error: Could not decode hyperparameters file. Optimization timestamp: 2025-06-01 02:06:31

7. Final Evaluation Results

This section presents the final performance of the optimized model.

Optimized Model Performance

Metric	Value
R ² Score	0.92211
Explained Variance Score	0.92212
Mean Squared Error	5.71206
Root Mean Squared Error	2.38999
Mean Absolute Error	1.80317
Mean Absolute Percentage Error	0.10152
Max Error	9.52735

Evaluation timestamp: 2025-06-01 02:06:31

Performance Comparison

Metric	Original Model	Optimized Model	Improvement
R ² Score	0.90503	0.92211	+1.89%
RMSE	2.63901	2.38999	+9.44%
MAE	1.78011	1.80317	-1.30%

Conclusion

Summary of the regression model development and performance.

This report summarizes the development of a regression model to predict MEDV using the boston dataset. A CatBoost regression model was trained and optimized using hyperparameter tuning. The optimization process improved the model's R² score from 0.90503 to 0.92211, representing a 1.89% improvement.

This automatic report was generated to provide insights into the model development process and performance metrics. It includes details about data preprocessing, feature engineering, model selection, and evaluation results.