TD 3. Connexité, acyclicité et arbres

Exercice 1. Connexité de graphes de haut degré

Montrer qu'un graphe à n sommets où le degré de chacun d'eux est supérieur ou égal à $\frac{n-1}{2}$ est connexe.

Exercice 2. Complémentaire d'un graphe

Pour tout graphe G, son complémentaire \bar{G} est le graphe sur le même ensemble de sommets avec tout couple de sommets $\{x,y\}$ étant soit une arête de G, soit une arête de \bar{G} (ou exclusif). Dit autrement, $\{x,y\}$ est une arête de \bar{G} si, et seulement si, $\{x,y\}$ n'est pas une arête de G.

- (a) Montrer qu'au moins l'un des deux graphes G et \bar{G} est connexe.
- (b) Peuvent-ils être tous les deux connexes?

Exercice 3. Longs cycles dans les graphes réguliers

Soit un graphe non orienté G.

- (a) On considère un chemin γ maximal de G. On note s et t ses extrémités. Montrer que tous les voisins de t appartiennent à γ .
- (b) On suppose que G est k-régulier, pour un $k \geq 2$. Montrer que G possède un cycle de longueur au moins k+1.

Exercice 4. Arêtes d'un graphe connexe

Soit G un graphe connexe.

- (a) Montrer qu'il existe un sommet s du graphe tel que le sous-graphe obtenu à partir de G en supprimant s reste connexe.
- (b) En conclure une borne minimale sur le nombre d'arêtes d'un graphe connexe.
- (c) Quel est le nombre maximal d'arêtes dans un graphe connexe?
- (d) Quel est le nombre maximal d'arêtes dans un graphe à deux composantes connexes, si l'une composante connexe est de taille p et l'autre de taille n-p?
- (e) En déduire le nombre maximal d'arêtes dans un graphe non connexe.
- (f) Donner un algorithme pour tester la connexité d'un graphe. Quelle est sa complexité?

Exercice 5. Nombre de graphes connexes

Le but de cet exercice est de trouver une formule de récurrence pour le cardinal C_n de l'ensemble C_n des graphes connexes à n sommets numérotés $1, \ldots, n$. Pour cela, on va exprimer le nombre de graphes non nécessairement connexes à n sommets en fonction des $(C_i)_{i < n}$.

- (a) Décrire l'ensemble C_n pour n=3, puis n=4.
- (b) Considérons les graphes à n sommets dans lesquels le sommet 1 appartient à une composante connexe de taille k. Combien y a-t-il de telles composantes connexes possibles?
- (c) En déduire une formule de récurrence sur les $(C_i)_{i < n}$.

Exercice 6. Arêtes d'un graphe acyclique

Soit G = (S, A) un graphe connexe acyclique et $a \in A$ une arête de G.

- (a) Montrer que le graphe $G' = (S, A \setminus \{a\})$ (obtenu en supprimant l'arête a de G) n'est pas connexe, et qu'il possède deux composantes connexes.
- (b) Quel est le nombre maximal d'arêtes d'un graphe acyclique?
- (c) Quel est le nombre maximal d'arêtes d'un graphe acyclique à k composantes connexes?

Exercice 7. Degrés dans les arbres

- (a) Montrer qu'un arbre qui possède un sommet de degré k a au moins k feuilles.
- (b) Soit A un arbre à n sommets, et, pour tout $i \in [1, n]$, soit n_i le nombre de sommets de A de degré i. Montrer que

$$n_1 - n_3 - 2n_4 - \ldots - (n-3)n_{n-1} = 2$$
.

Exercice 8. Caractérisations des arbres

Pour tout graphe G = (V, E), et toute paire $\{x, y\}$ de sommets de G, on définit les graphes $G \ominus \{x, y\} = (V, E \setminus \{x, y\})$ et $G \oplus \{x, y\} = (V, E \cup \{x, y\})$.

On considère les propriétés suivantes :

- 1. G est connexe et acyclique;
- 2. pour tous sommets x et y de G, il existe un *unique* chemin de x à y dans G;
- 3. G est connexe *minimal*;

(pour tous sommets x et y de G adjacents, $G \ominus \{x, y\}$ n'est pas connexe)

4. G est acyclique maximal.

(pour tous sommets x et y de G non adjacents, $G \oplus \{x,y\}$ contient au moins un cycle)

- 5. G est connexe et a n-1 arêtes.
- 6. G est acyclique est a n-1 arêtes.

Montrer que ces propriétés sont équivalentes.