

TEMA II: RANGO Y DETERMNANTE DE UNA MATRIZ

ÁLGEBRA

Grado en Ingeniería Informática. Escuela Superior de Ingeniería

> Alejandro Pérez Peña Departamento de Matemáticas

> > Curso 2015-2016

Contenido

- Rango de una matriz
- 2 Determinante de una matriz cuadrada
- Propiedades de los determinantes
- Aplicaciones de los determinantes

Rango de una matriz

Definición (Rango de una matriz)

Se llama **rango de una matriz**, y lo representamos por rg(A) al número de filas no nulas que aparecen en una matriz equivalente a la dada y que sea escalonada por filas. Dicho número coincide con el de columnas no nulas que aparecen en una matriz equivalente escalonada por columnas

Rango de una matriz

Definición (Rango de una matriz)

Se llama **rango de una matriz**, y lo representamos por rg(A) al número de filas no nulas que aparecen en una matriz equivalente a la dada y que sea escalonada por filas. Dicho número coincide con el de columnas no nulas que aparecen en una matriz equivalente escalonada por columnas

Ejemplo

② El rango de la matriz
$$A = \begin{pmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 0 & -1 \\ 3 & 4 & 0 & 0 \end{pmatrix}$$
 es 2.

El concepto de determinante, para matrices cuadradas, permite simplificar operaciones matriciales tales como el cálculo del rango o de la matriz inversa.

Definición (Determinante de una matriz cuadrada)

Sea A una matriz cuadrada de orden n,

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right),$$

el determinante de A, que representaremos por det(A) o bien por

$$|A| = \left| \begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|$$

es un número que definimos de la siguiente manera:

Definición (Determinante de una matriz cuadrada)

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

es un número que definimos de la siguiente manera:

•
$$Si n=1: |A| = |a_{11}| = a_{11}$$

• Si n=2:
$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

• Si n=3:

$$|A| = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| =$$

 $a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$ (Regla de Sarrus)

Ejemplo

•

$$|A| = \begin{vmatrix} 2 & -3 \\ -4 & 5 \end{vmatrix} = 10 - 12 = -2$$

•

$$|A| = \begin{vmatrix} 1 & -5 & -3 \\ 2 & 6 & -4 \\ -1 & -7 & 2 \end{vmatrix} =$$

$$= 1 \cdot 6 \cdot 2 + (-1) \cdot (-5) \cdot (-4) + 2 \cdot (-7) \cdot (-3) - 6 \cdot (-3) \cdot (-1) - 2 \cdot (-5) \cdot 2 - 1 \cdot (-4) \cdot (-7) = 0$$

$$= 12 - 20 + 42 - 18 + 20 - 28 = 8$$

Ejemplo

4

$$|A| = \begin{vmatrix} 2 & -3 \\ -4 & 5 \end{vmatrix} = 10 - 12 = -2$$

۳

$$|A| = \begin{vmatrix} 1 & -5 & -3 \\ 2 & 6 & -4 \\ -1 & -7 & 2 \end{vmatrix} =$$

$$= 1 \cdot 6 \cdot 2 + (-1) \cdot (-5) \cdot (-4) + 2 \cdot (-7) \cdot (-3) - 6 \cdot (-3) \cdot (-1) - 2 \cdot (-5) \cdot 2 - 1 \cdot (-4) \cdot (-7) = 12 - 20 + 42 - 18 + 20 - 28 = 8$$

Si n>3 es muy laborioso ar una expresión de |A| en términos semejantes a los dados para n=2 o n=3. Veremos ahora un método que permite reducir el cálculo de determinantes de orden n=1, y así sucesivamente, hasta los conocidos de órdenes 2 y 3. Para ello es necesario introducir dos nuevos conceptos:

Definición (Menor Complementario)

Dada una matriz cuadrada de orden $\mathfrak{n}, A \in M_{\mathfrak{n} \times \mathfrak{n}}(\mathbb{R})$, se llama **menor complementario del elemento** \mathfrak{a}_{ij} , y lo representaremos por det A_{ij} ó $|A_{ij}|$, al determinante de la matriz A_{ij} , de orden $\mathfrak{n}-1$ que resulta de suprimir en la matriz A la fila i y la columna j

Definición (Menor Complementario)

Dada una matriz cuadrada de orden $n, A \in M_{n \times n}(\mathbb{R})$, se llama menor com**plementario del elemento** a_{ii} , y lo representaremos por det A_{ii} $\delta |A_{ii}|$, al determinante de la matriz A_{ii} , de orden n-1 que resulta de suprimir en la matriz A la fila i y la columna j

Ejemplo

$$A = \begin{pmatrix} 1 & -5 & -3 \\ 2 & 6 & -4 \\ -1 & -7 & 2 \end{pmatrix} \qquad \det A_{23} = \begin{vmatrix} 1 & -5 \\ -1 & -7 \end{vmatrix} = -12$$

$$\det A_{23} = \begin{vmatrix} 1 & -5 \\ -1 & -7 \end{vmatrix} = -12$$

Definición (Adjunto de un elemento)

Dada una matriz cuadrada de orden \mathfrak{n} , A, llamaremos **adjunto del elemento** \mathfrak{a}_{ij} , y lo representaremos por α_{ij} al producto del menor complementario del elemento \mathfrak{a}_{ij} por $(-1)^{i+j}$, es decir,

$$\alpha_{ij} = (-1)^{i+j} \textit{det} \, A_{ij}$$

Definición (Adjunto de un elemento)

Dada una matriz cuadrada de orden \mathfrak{n} , A, llamaremos **adjunto del elemento** \mathfrak{a}_{ij} , y lo representaremos por α_{ij} al producto del menor complementario del elemento \mathfrak{a}_{ij} por $(-1)^{i+j}$, es decir,

$$\alpha_{ij} = (-1)^{i+j} \textit{det} \, A_{ij}$$

Ejemplo

En la matriz anterior.

$$A = \begin{pmatrix} 1 & -5 & -3 \\ 2 & 6 & -4 \\ -1 & -7 & 2 \end{pmatrix},$$

tenemos que

$$\alpha_{2,3} = (-1)^{2+3} det A_{23} = (-1)^5 (-12) = 12$$

Definición (Adjunto de un elemento)

Dada una matriz cuadrada de orden \mathfrak{n} , A, llamaremos **adjunto del elemento** \mathfrak{a}_{ij} , y lo representaremos por \mathfrak{a}_{ij} al producto del menor complementario del elemento \mathfrak{a}_{ij} por $(-1)^{i+j}$, es decir,

$$\alpha_{\mathfrak{i}\mathfrak{j}}=(-1)^{\mathfrak{i}+\mathfrak{j}}\text{det}\,A_{\mathfrak{i}\mathfrak{j}}$$

Observamos que el adjunto de un elemento es igual u opuesto al menor complementario, dependiendo de que la suma de los subíndices de filas y columnas sea par o impar.

Teorema

Dada una matriz cuadrada A de orden n, el valor de su determinante, es igual a la suma de los productos de los elementos de una fila cualquiera por sus respectivos adjuntos.

$$|A| = a_{i1}\alpha_{i1} + a_{i2}\alpha_{i2} + \dots + a_{in}\alpha_{in} \qquad \forall i \in \{1,2,\cdots,n\}$$

Teorema

Dada una matriz cuadrada A de orden n, el valor de su determinante, es igual a la suma de los productos de los elementos de una fila cualquiera por sus respectivos adjuntos.

$$|A| = a_{i1}\alpha_{i1} + a_{i2}\alpha_{i2} + \dots + a_{in}\alpha_{in} \qquad \forall i \in \{1,2,\cdots,n\}$$

Mediante este resultado, el cálculo de un determinante de orden $\mathfrak n$ se reduce al cálculo de n determinantes de orden $\mathfrak n-1$, cada uno de estos a $\mathfrak n-1$ determinantes de orden $\mathfrak n-2$, y así sucesivamente, llegaríamos a obtener determinantes de órdenes 2 ó 3 que ya sabemos calcular.

Ejemplo

Para calcular

$$|A| = \begin{vmatrix} -1 & 1 & 2 & 0 \\ 1 & 1 & 2 & -1 \\ 3 & 0 & 2 & 1 \\ 4 & 1 & 0 & 2 \end{vmatrix}$$

hacemos lo siguiente:

- Elegimos una fila cualquiera y calculamos los adjuntos de cada uno de sus elementos.
- Multiplicamos cada elemento por su adjunto correspondiente.
- Hacemos la suma de todos los productos obtenidos

Ejemplo

Para calcular

$$|A| = \left| \begin{array}{cccc} -1 & 1 & 2 & 0 \\ 1 & 1 & 2 & -1 \\ 3 & 0 & 2 & 1 \\ 4 & 1 & 0 & 2 \end{array} \right|$$

hacemos lo siguiente: Tomamos la fila primera y calculamos los adjunto de cada elemento

$$\alpha_{11} = (-1)^{1+1} \det(A_{11}) = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{vmatrix} = 8, \quad \alpha_{12} = (-1)^{1+2} \det(A_{12}) = -8$$

$$\alpha_{13} = (-1)^{1+3} \det(A_{13}) = \begin{vmatrix} 1 & 1 & -1 \\ 3 & 0 & 1 \\ 4 & 1 & 2 \end{vmatrix} = -6, \quad \alpha_{14} = (-1)^{1+4} \det(A_{14}) = -12$$

$$|A| = \alpha_{11}\alpha_{11} + \alpha_{12}\alpha_{12} + \alpha_{13}\alpha_{13} + \alpha_{14}\alpha_{14} = (-1)(8) + 1(-8) + 2(-6) + 0(-12) = -28$$

 El determinante de una matriz cuadrada A es igual al de su traspuesta. Es decir

$$det(A) = det(A^t)$$

El determinante de una matriz cuadrada A es igual al de su traspuesta.
 Es decir

$$det(A) = det(A^t)$$

Esta propiedad nos permite hablar de filas o de columnas indistintamente, y así podemos enunciar el teorema anterior diciendo:

Teorema

Dada una matriz cuadrada A, el valor de su determinante, se puede expresar en función de los adjuntos de los elementos de una fila o una columna de la siguiente forma:

$$\begin{split} |A| &= a_{i1}\alpha_{i1} + a_{i2}\alpha_{i2} + \dots + a_{in}\alpha_{in} \\ &= a_{1j}\alpha_{1j} + a_{2j}\alpha_{2j} + \dots + a_{nj}\alpha_{nj} \qquad \forall i,j \in \{1,2,\cdots,n\} \end{split}$$

El determinante de una matriz cuadrada A es igual al de su traspuesta.
 Es decir

$$det(A) = det(A^t)$$

- Si intercambiamos dos filas o columnas de una matriz cuadrada A, se obtiene otra matriz, cuyo determinante cambia únicamente de signo.
- III) Si una matriz A tiene dos filas o columnas iguales, entonces su determinante es cero.
- IV) Si todos los elementos de una fila o columna de una matriz cuadrada A son nulos, entonces su determinante es nulo.
- V) Si se multiplica una fila o una columna de una matriz cuadrada A por un escalar $k \in \mathbb{R}$, entonces el determinante de dicha matriz queda multiplicado por dicho número k.

- VI) Si una matriz cuadrada A tiene dos filas o columnas proporcionales, entonces su determinante es nulo.
- VII) Si los elementos de una fila o columna de una matriz son sumas de un número igual de términos, entonces su determinante es igual a la suma de tantos determinantes como sumandos figuren en la fila o columna, en los que, todas las filas o columnas permanecen inalteradas salvo la que esté formada por sumandos, que será reemplazada por el primer sumando para el primer determinante y así sucesivamente. Así tendríamos, por ejemplo

$$\begin{vmatrix} a_{11} & a_{12}^1 + a_{12}^2 + \cdots + a_{12}^T & a_{13} \\ a_{21} & a_{22}^1 + a_{22}^2 + \cdots + a_{22}^T & a_{23} \\ a_{31} & a_{32}^1 + a_{32}^2 + \cdots + a_{32}^T & a_{33} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & a_{12}^1 & a_{13} \\ a_{21} & a_{22}^1 & a_{23} \\ a_{31} & a_{32}^1 & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12}^2 & a_{13} \\ a_{21} & a_{22}^2 & a_{23} \\ a_{31} & a_{32}^2 & a_{33} \end{vmatrix} + \cdots + \begin{vmatrix} a_{11} & a_{12}^T & a_{13} \\ a_{21} & a_{22}^T & a_{23} \\ a_{31} & a_{32}^T & a_{33} \end{vmatrix}$$

- VIII) Si en una matriz cuadrada A, a los elementos de una fila o columna, se le suman una combinación lineal de sus paralelas, entonces el valor del determinante no varía.
 - Determinante del producto de dos matrices
 El determinante de un producto de dos matrices cuadradas es igual al producto de los determinantes de cada una de las matrices, es decir

$$det(A \cdot B) = det(A) \cdot det(B)$$

X) La suma de los productos de los elementos de una fila o columna por los adjuntos de una paralela vale cero.

Cálculo de determinantes

Para el cálculo de los determinantes, tomaremos de una fila (o columna) cualquiera i un elemento distinto de cero, para proceder mediante la aplicación de las propiedades de los determinates a hacer ceros en todos los elementos de la fila (o columna). Posteriormente calculamos el determinate de la matriz multiplicando los elementos de esa fila (o columna) por sus correspondientes adjuntos.

Cálculo de determinantes

Para el cálculo de los determinantes, tomaremos de una fila (o columna) cualquiera i un elemento distinto de cero, para proceder mediante la aplicación de las propiedades de los determinates a hacer ceros en todos los elementos de la fila (o columna). Posteriormente calculamos el determinate de la matriz multiplicando los elementos de esa fila (o columna) por sus correspondientes adjuntos.

Ejercicio 2.1: Calcular

$$|A| = \left| \begin{array}{cccc} -1 & 1 & 2 & 0 \\ 1 & 1 & 2 & -1 \\ 3 & 0 & 2 & 1 \\ 4 & 1 & 0 & 2 \end{array} \right|$$

Definición (Adjunta de una Matriz)

Dada una matriz cuadrada A de orden n, se llama **adjunta de una matriz A** y se representa por Adj(A) a la matriz que se obtiene al sustituir en A cada elemento por su adjunto correspondiente.

La adjunta de una matriz cuadrada se puede calcular siempre.

Definición (Adjunta de una Matriz)

Dada una matriz cuadrada A de orden n, se llama **adjunta de una matriz A** y se representa por Adj(A) a la matriz que se obtiene al sustituir en A cada elemento por su adjunto correspondiente.

La adjunta de una matriz cuadrada se puede calcular siempre.

Ejemplo

Así para la siguiente matriz de orden 3, sería

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}; \qquad Adj(A) = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 1 & 0 \\ -3 & 0 & 3 \end{pmatrix}$$

Con la definición anterior, podemos obtener un nuevo método para el cálculo de la inversa de una matriz invertible:

Teorema (Cálculo de la inversa)

Si A es una matriz regular o invertible, entonces se verifica

$$A^{-1} = \frac{1}{|A|} [Adj(A)]^{t}$$

Con la definición anterior, podemos obtener un nuevo método para el cálculo de la inversa de una matriz invertible:

Teorema (Cálculo de la inversa)

Si A es una matriz regular o invertible, entonces se verifica

$$A^{-1} = \frac{1}{|A|} [Adj(A)]^{\mathsf{t}}$$

Ejercicio 2.2: Demostrar el teorema anterior

Con la definición anterior, podemos obtener un nuevo método para el cálculo de la inversa de una matriz invertible:

Teorema (Cálculo de la inversa)

Si A es una matriz regular o invertible, entonces se verifica

$$A^{-1} = \frac{1}{|A|} [Adj(A)]^{t}$$

Ejemplo

$$A = \left(\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right); \qquad A^{-1} = \frac{1}{3} \left(\begin{array}{ccc} 1 & 1 & -3 \\ -2 & 1 & 0 \\ 0 & 0 & 3 \end{array}\right)$$

Teorema (Caracterización de una Matriz Invertible)

La condición necesaria y suficiente para que una matriz A cuadrada sea regular o invertible es que su determinante sea distinto de cero

$$|A| \neq 0$$

Definición (Menor de orden r)

Sea $A \in M_{m \times n}$ una matriz (no necesariamente cuadrada); sea r un número natural tal que $r \leqslant n$ y $r \leqslant m$. Cuando se suprimen n-r columnas y m-r filas de A, los elementos restantes forman una matriz cuadrada $r \times r$; decimos que es una matriz de orden $r \times r$ extraída de A. Al determinante de esta matriz le llamaremos menor de orden r de A.

Definición (Menor de orden r)

Sea $A \in M_{m \times n}$ una matriz (no necesariamente cuadrada); sea r un número natural tal que $r \leqslant n$ y $r \leqslant m$. Cuando se suprimen n-r columnas y m-r filas de A, los elementos restantes forman una matriz cuadrada $r \times r$; decimos que es una matriz de orden $r \times r$ extraída de A. Al determinante de esta matriz le llamaremos **menor de orden r de** A.

Ejercicio 2.3: Analizar los distintos menores que pueden obtenerse de la matriz

$$A = \left(\begin{array}{ccccc} 1 & 2 & 1 & -1 & 0 \\ 1 & 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & -1 & -2 \\ 2 & 2 & -1 & 2 & 3 \end{array}\right)$$

Teorema

Dada una matriz A de orden $m \times n$, se verifica que el rango de A es igual a r, rg(A) = r, si y sólo si existe un menor de orden r de A, distinto de cero y tal que todos los menores de orden r+1 sean nulos.

Teorema

Dada una matriz A de orden $\mathfrak{m} \times \mathfrak{n}$, se verifica que el rango de A es igual a \mathfrak{r} , $rg(A) = \mathfrak{r}$, si y sólo si existe un menor de orden \mathfrak{r} de A, distinto de cero y tal que todos los menores de orden $\mathfrak{r}+1$ sean nulos.

Con este teorema podemos dar una nueva definición de rango de una matriz:

Definición (Rango de una matriz)

Llamaremos **rango de una matriz** A al orden del mayor menor extraído de la matriz que sea distinto de cero.

Veamos un método para calcular el rango de una matriz,A, de orden $m \times n$ mediante la búsqueda de su mayor menor extraído no nulo.

• Supongamos que hemos encontrado un menor de orden p, $|M_p|$, distinto de cero. Podemos considerar, sin perdida de generalidad, que es el formado por las p primeras filas y las p primeras columnas:

Veamos un método para calcular el rango de una matriz,A, de orden $m \times n$ mediante la búsqueda de su mayor menor extraído no nulo.

- Supongamos que hemos encontrado un menor de orden $\mathfrak{p}, |\mathsf{M}_{\mathfrak{p}}|,$ distinto de cero. Podemos considerar, sin perdida de generalidad, que es el formado por las \mathfrak{p} primeras filas y las \mathfrak{p} primeras columnas:
 - 1. Formamos menores, $|M_{p+1}|$, de orden p+1 añadiendo la fila p+1 y, sucesivamente, las restantes columnas hasta la n-ésima. Pueden ocurrir dos cosas:
 - 1.1. Que aparezca un menor $|M_{p+1}|$, distinto de cero. En este caso, ya podemos decir que rg(A) > p+1 y pasamos al siguiente punto.
 - 1.2. Que todos los menores $|M_{v+1}|$ sean nulos. Pasamos al siguiente punto.

Veamos un método para calcular el rango de una matriz,A, de orden $m \times n$ mediante la búsqueda de su mayor menor extraído no nulo.

- Supongamos que hemos encontrado un menor de orden $\mathfrak{p}, |\mathsf{M}_{\mathfrak{p}}|,$ distinto de cero. Podemos considerar, sin perdida de generalidad, que es el formado por las \mathfrak{p} primeras filas y las \mathfrak{p} primeras columnas:
 - 2. Formamos menores, $|M_{p+2}|$, de orden p+2 añadiendo la fila p+2 y, de forma sucesiva, las restantes columnas hasta la n-ésima. Al igual que antes, habrá dos opciones:
 - 2.1. Que aparezca un menor $|M_{p+2}|$, distinto de cero. En este caso, ya podemos decir que rg(A) > p + 2 y pasamos al siguiente punto.
 - 2.2. Que todos los menores $|M_{p+2}|$ sean nulos. Pasamos al siguiente punto.

Veamos un método para calcular el rango de una matriz,A, de orden $m \times n$ mediante la búsqueda de su mayor menor extraído no nulo.

- Supongamos que hemos encontrado un menor de orden $\mathfrak{p}, |\mathsf{M}_{\mathfrak{p}}|,$ distinto de cero. Podemos considerar, sin perdida de generalidad, que es el formado por las \mathfrak{p} primeras filas y las \mathfrak{p} primeras columnas:
 - 3. Supongamos que hemos encontrado un menor de orden r, $|M_r|$, distinto de cero (siempre lo habrá, de lo contrario A sería la matriz nula) y continuamos el proceso de añadir filas. Pueden ocurrir dos cosas:
 - 3.1. Que lleguemos a la fila m-ésima, es decir se han acabado las filas.
 - 3.2. Que todos los menores, $|M_q|$, de orden q > r sean nulos.

El proceso habrá terminado, el mayor menor no nulo de A es $|M_r|$ y, consecuentemente, el $\operatorname{rq}(A)=r$

Ejemplo

El rango de la matriz
$$A = \begin{pmatrix} 1 & 2 & 1 & -1 & 0 \\ 1 & 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & -1 & -2 \\ 2 & 2 & -1 & 2 & 3 \end{pmatrix}$$
 es 3, ya que:

$$|1| \neq 0 \Longrightarrow \text{rango } A \geqslant 1$$

$$\begin{array}{|c|c|c|c|c|} \hline \bullet & 1 & 2 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ \hline \end{array} \neq 0 \Longrightarrow \mathsf{rango}\, A \geqslant 3$$

4

$$\left|\begin{array}{ccc|c} 1 & 2 & 1 & -1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 2 & -1 \\ 2 & 2 & -1 & 2 \end{array}\right| = 0, \quad \left|\begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & -2 \\ 2 & 2 & -1 & 3 \end{array}\right| = 0$$

Teorema

Si A es una matriz cuadrada de orden \mathfrak{n} , son equivalentes las siguientes afirmaciones:

- A es regular.
- **2** $|A| \neq 0$
- 3 El rango de A es n.