

SEMIRINGS

Why

We abstract the properties of the natural numbers under natural addition and multiplication.

Definition

A semiring $(S, +, \cdot)$ satisfies all the properties of a ring (see Rings) except that addition + need not have additive inverses.

Examples

Set of natural numbers. The set $(\mathbf{N}, +, \cdot)$ where + and \cdot denote natural addition and multiplication respectively is a semiring.

Nonnegative real numbers with max and multiplication Notice that

$$\max(a, b) = \max(b, a)$$
 for all $a, b \in \mathbf{R}$

$$\max(a, \max(b, c)) = \max(\max(a, b), c)$$
 for all $a, b, c \in \mathbf{R}$

So max: $\mathbf{R}^2 \to \mathbf{R}$ is a commutative and associative operation. The identity is 0, $\max(a,0) = a$ for all $a \in \mathbf{R}_+$. Notice that there is no inverse element. Of course, \cdot is associative and has identities.

