线性方程组的直接解法

杜磊

dulei@dlut.edu.cn

大连理工大学 数学科学学院 创新园大厦 B1207

2017年11月

内容提要

- 1 三角形方程组和三角分解
- 2 选主元三角分解
- ③ 平方根法 (Cholesky 分解法)
- 4 Vandermonde 方程组的解法
- 5 Toeplitz 方程组的解法
- 6 稀疏方程组的解法

三角形方程组

• 下三角方程组

$$\begin{bmatrix} l_{11} & & & & & \\ l_{21} & l_{22} & & & & \\ l_{31} & l_{32} & l_{33} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

前代法 (Forward Substitution)

Algorithm 1 向前代入算法(向量式)

- 1: **for** j = 1 : n 1 **do**
- $2: b_j = b_j/l_{jj};$
- 3: $b(j+1:n) = b(j+1:n) L(j+1:n,j)b_j$;
- 4: end for

Algorithm 2 向前代入算法(展开式)

- 1: **for** j = 1 : n 1 **do**
- 2: $b_j = b_j / l_{jj}$;
- 3: **for** i = j + 1 : n **do**
- 4: $b_i = b_i l_{ij}b_j;$
- 5. end for
- 6: end for

三角形方程组

• 上三角方程组

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ & u_{22} & u_{23} & \cdots & u_{2n} \\ & \vdots & \vdots & \vdots \\ & u_{n-1,n-1} & u_{n-1,n} \\ & & & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix}$$

回代法 (Backward Substitution)

Algorithm 3 向后代入算法(向量式)

```
1: for j = n : 2 do
```

$$2: y_j = b_j/u_{jj};$$

3:
$$y(1:j-1) = y(1:j-1) - u(1:j-1,j)y_j$$
;

4: end for

Algorithm 4 向后代入算法(展开式)

- 1: **for** j = n : 2 **do**
- $2: y_j = b_j/u_{jj};$
- 3: **for** i = 1 : j 1 **do**
- 4: $y_i = y_i u_{ij}y_j;$
- 5: end for
- 6: end for

矩阵三角分解

LU 分解

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} l_{11} & & & \\ l_{21} & l_{22} & & \\ l_{31} & l_{32} & l_{33} & \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ & u_{22} & u_{23} & u_{24} \\ & & u_{33} & u_{34} \\ & & & & u_{44} \end{bmatrix}$$

■ LU 分解应用:

- ☞ 求解线性方程组
- ☞ 矩阵求逆
- ☞ 行列式
- **F**

矩阵三角分解

高斯变换

$$L_{k} = I - l_{k}e_{k}^{T} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{k+1,k} & 1 & \\ & & \vdots & & \ddots & \\ & & -l_{n,k} & & 1 \end{bmatrix}$$

- 高斯变换 L_k 性质:
 - ☞ 单位矩阵的秩 1 修正

$$L_i L_j = I - l_i e_i^T - l_j e_j^T, \text{ if } i < j$$

分解存在性定理

定理 (充要条件): 主元 $a_{ii}^{(i-1)}(i=1,\ldots,k)$ 均不为零的充要条件是 A 的 i 阶顺序主子阵 $A_i(i=1,\ldots,k)$ 都是非奇异的.

证明. 略. □

定理 (分解唯一性): 若 $A\in\mathbb{R}^{n\times n}$ 的顺序主子阵 $A_k\in\mathbb{R}^{k\times k}(k=1,\ldots,n-1)$ 均非奇异, 则存在唯一的单位下三角阵 $L\in\mathbb{R}^{n\times n}$ 和上三角阵 $U\in\mathbb{R}^{n\times n}$, 使得 A=LU.

证明. 略. □

内容提要

- 三角形方程组和三角分解
- ② 选主元三角分解
- ③ 平方根法(Cholesky 分解法)
- 4 Vandermonde 方程组的解法
- ⑤ Toeplitz 方程组的解法
- 6 稀疏方程组的解法

为什么选主元?

● 主元为 0

$$\left[\begin{array}{cc} 0 & 2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2.00 \\ 2.00 \end{array}\right]$$

● 主元值较小

$$\begin{bmatrix} 0.001 & 1.00 \\ 1.00 & 2.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.00 \\ 3.00 \end{bmatrix}$$
 (1)

例 f 1: 假定在 f 3 位 f 10 进制的浮点数下求解方程组 m (1),用高斯消去法可得

$$\hat{L} = \begin{bmatrix} 1 & 0 \\ 1000 & 1 \end{bmatrix}, \quad \hat{U} = \begin{bmatrix} 0.001 & 1.00 \\ 0 & -1000 \end{bmatrix}$$

初等置换矩阵 (Permutation Matrix)

● 初等置换矩阵

● 性质:

$$I_{pq} = I_{pq}^T = I_{pq}^{-1}$$

$$\operatorname{det}(I_{pq}) = -1$$

全主元高斯消去法 (Gaussian Elimination with Complete Pivoting)

定理: 设 $A\in\mathbb{R}^{n\times n}$, 则存在排列矩阵 $P,Q\in\mathbb{R}^{n\times n}$, 以及单位下三角阵 $L\in\mathbb{R}^{n\times n}$ 和上三角阵 $U\in\mathbb{R}^{n\times n}$, 使得

$$PAQ = LU,$$

而且 L 的所有元素均满足 $|l_{ij} \le 1$, U 的非零对角元的个数等于矩阵 A 的秩.

证明 见构造过程.

计算实例

例 2: 考虑线性方程组 Ax = b, 其中右端项为 b = randn(n, 1), 而系数矩阵 为 A 为,

\mathbf{H} . 矩阵 A 进行 LU 分解可得

接上页.

纵轴表示相对残差 ||b - Ax||/(||A||||x||).

内容提要

- 三角形方程组和三角分解
- ② 选主元三角分解
- ③ 平方根法 (Cholesky 分解法)
- 4 Vandermonde 方程组的解法
- ⑤ Toeplitz 方程组的解法
- 6 稀疏方程组的解法

对称正定矩阵

- 等价性质
 - ☞ 矩阵 A 为对称正定矩阵 (对于所有非零向量 x, 都有 $x^{T}Ax > 0$)
 - ☞ 矩阵 A 所有特征值均为正数
 - **☞** 矩阵 A 的顺序主子式都为正
- 若 A 为对称正定矩阵,以下性质成立
 - ☑ A 的任意主子阵都对称正定
 - A 的所有对角元素都是正的,且 $\max_{i \neq j} \{|a_{ij}|\} < \max_i \{a_{ii}\}$,即绝对值最大的元素出现在对角线上.

Cholesky 分解定理

定理 (Cholesky 分解定理): 若 $A \in \mathbb{R}^{n \times n}$ 对称正定,则存在一个对角元均 为正数的下三角阵 $L \in \mathbb{R}^{n \times n}$, 使得

$$A = LL^{\mathrm{T}}$$
.

上式称为 Cholesky 分解, 其中的 L 称做 A 的 Cholesky 因子.

证明. 略.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & & & \\ l_{21} & l_{22} & & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ & l_{22} & \cdots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \end{bmatrix}$$

$$\begin{bmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ & l_{22} & \cdots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \end{bmatrix}$$

Cholesky 分解: 方式一(按列计算)

Algorithm 5 比较两边对应元素计算 L

1: **for** j = 1 : n **do**

2:
$$l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2\right)^{1/2};$$

3: **for** i = j + 1 : n **do**

4:
$$l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}\right) / l_{jj};$$

5: end for

6: end for

Cholesky 分解: 方式二(按列计算)

若将矩阵 A 分成 2×2 块, 对其可有如下分解

$$A = \left[\begin{array}{cc} a_{11} & u^{\mathrm{T}} \\ u & A_1 \end{array} \right] = \left[\begin{array}{cc} l_{11} \\ \frac{u}{l_{11}} & I \end{array} \right] \left[\begin{array}{cc} 1 \\ & A_1 - \frac{uu^{\mathrm{T}}}{l_{11}^2} \end{array} \right] \left[\begin{array}{cc} l_{11} & \frac{u^{\mathrm{T}}}{l_{11}} \\ & I \end{array} \right]$$

Cholesky 分解: 方式二(按列计算)

Algorithm 6 秩一更新矩阵右下块

- 1: **for** j = 1 : n 1 **do**
- 2: $A(j,j) = \sqrt{A(j,j)};$
- 3: A(j+1:n,j) = A(j+1:n,j)/A(j,j);
- 4: **for** i = j + 1 : n **do**
- 5: A(i:n,i) = A(i:n,i) A(i:n,j)A(j,j);
- 6: end for
- 7: end for
- 8: $A(n,n) = \sqrt{A(n,n)}$;

Cholesky 分解: 方式三(按行计算)

若已知 A 的 k-1 阶顺序主子阵 A_{k-1} 的 Cholesky 分解 $A_{k-1}=L_{k-1}L_{k-1}^{\mathrm{T}}$, 则 A 的 k 阶顺序主子阵 A_k 有如下 Cholesky 分解

$$A_k = \begin{bmatrix} A_{k-1} & u \\ u^{\mathrm{T}} & a_{kk} \end{bmatrix} = \begin{bmatrix} L_{k-1} \\ v^{\mathrm{T}} & l_{kk} \end{bmatrix} \begin{bmatrix} L_{k-1}^{\mathrm{T}} & v \\ & l_{kk} \end{bmatrix},$$

其中未知量 v_i l_{kk} 可通过求解下列方程组的到

$$L_{k-1}v = u,$$

$$l_{kk} = \sqrt{a_{kk} - v^{\mathrm{T}}v}.$$

改进的平方根法: LDLT 分解

为避免开方运算,我们可求 A 如下形式的分解

$$A = LDL^{\mathrm{T}},$$

其中 L 是单位下三角矩阵, D 是对角元素为正数的对角矩阵. 这一分解称作 LDL^{T} 分解.

$$A = \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ \vdots & \ddots & \ddots & & \\ l_{n1} & \cdots & l_{n,n-1} & 1 \end{bmatrix} \begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & d_n \end{bmatrix} \begin{bmatrix} 1 & l_{21} & \cdots & l_{n1} \\ & 1 & \ddots & \vdots \\ & & \ddots & l_{n,n-1} \\ & & & 1 \end{bmatrix}.$$

Algorithm 7 LDL^T 分解

- 1: for j = 1 : n do
- 2: **for** i = 1 : j 1 **do**
- 3: v(i) = A(j, i)A(i, i);
- 4: end for
- 5: A(j,j) = A(j,j) A(j,1:j-1)v(1:j-1);
- 6: A(j+1:n,j) = (A(j+1:n,j) A(j+1:n,1:j-1)v(1:j-1))/A(j,j);
- 7: end for

内容提要

- 三角形方程组和三角分解
- ② 选主元三角分解
- ③ 平方根法 (Cholesky 分解法)
- 4 Vandermonde 方程组的解法
- ⑤ Toeplitz 方程组的解法
- 6 稀疏方程组的解法

Vandermonde 方程组的解法

求解 Vandermonde 方程组 $V\alpha = y$.

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix}.$$

Vandermonde 矩阵性质:

Vandermonde 方程组的解法

根据插值多项式理论知, 存在唯一的不超过 n 次的多项式

$$p_n(x) = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0,$$

使得 $p_n(x)$ 在节点 x_i 处满足

$$p_n(x_i) = f(x_i) = y_i, i = 0, 1, \dots, n.$$

可按以下步骤求 $p_n(x)$ 的系数 $\alpha_0, \alpha_1, \dots, \alpha_n$:

① 求 $p_n(x)$ 的 Newton 表达式

$$p_n(x) = c_0 + \sum_{k=1}^n c_k \prod_{i=0}^{k-1} (x - x_i);$$

② 将 Vandermonde 表达式 $p_n(x)$ 按 x 的幂展开, 即得 $p_n(x)$ 的系数 $\alpha_0, \alpha_1, \dots, \alpha_n$.

Vandermonde 方程组的解法

根据 Newton 插值多项式理论知, 系数 c_k 为 $p_n(x)$ 在 x_0, x_1, \dots, x_k 处的 k 阶 差商 (也称均差).

定义 (一阶差商): 称 $f[x_0,x_1]=\frac{f(x_1)-f(x_0)}{x_1-x_0}$ 为函数 f(x) 关于点 x_0,x_1 的一阶差商. $f[x_0,x_1,x_2]=\frac{f[x_0,x_2]-f[x_1,x_2]}{x_2-x_1}$ 为函数 f(x) 的二阶差商. 一般地, 称

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_0, \cdots, x_{k-2}, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_{k-1}}$$

为函数 f(x) 的 k 阶差商.

差商的基本性质

1 k 阶差商均可表示为函数 $f(x_0), f(x_1), \dots, f(x_k)$ 的线性组合, 即

$$f[x_0, x_1, \cdots, x_k] = \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}.$$

这个性质表明差商与节点排序无关,即

$$f[x_0, x_1, \cdots, x_k] = f[x_1, x_0, \cdots, x_k] = \cdots f[x_1, \cdots, x_k, x_0].$$

差商表

例如, 当 n=4 时, 计算过程可列表如下:

例如, 当 n=4 时, 计算过程可列表如下:

矩阵向量形式计算差商

记 n+1 阶矩阵 D_k, L_k 分别为

$$D_k = \operatorname{diag}(1, \dots, 1, x_k - x_0, x_{k+1} - x_1, \dots, x_n - x_{n-k}),$$

$$L_k = \left[egin{array}{ccc} I_{k-1} & 0 \ 0 & ilde{L}_k \end{array}
ight],$$
其中 $ilde{L}_k = \left[egin{array}{cccc} 1 & & & \ -1 & 1 & & \ & \ddots & \ddots & \ & & -1 & 1 \end{array}
ight].$

则有

$$c = D_n^{-1} L_n \cdots D_1^{-1} L_1 y, \tag{2}$$

其中
$$c = [c_0, c_1, \dots, c_n]^T$$
, $y = [p_n(x_0), \dots, p_n(x_n)]^T$.

计算多项式系数 $\alpha_0, \alpha_1, \cdots, \alpha_n$

求出 Newton 多项时候, 可按如下方式递推展开 $p_n(x)$:

$$p_0(x) = c_n,$$

 $p_k(x) = c_{n-k} + (x - x_{n-k})p_{k-1}(x), k = 1, \dots, n.$

记

$$U_k = \left[egin{array}{ccc} I_k & 0 \ 0 & ilde{U}_k \end{array}
ight],$$
其中 $ilde{U}_k = \left[egin{array}{cccc} 1 & -x_{n-k} & & & & & & \\ & \ddots & \ddots & & & & & \\ & & 1 & -x_{n-k} & & & \\ & & & 1 & & & \end{array}
ight],$

则多项式 $p_n(x)$ 系数作成的向量 $\alpha = [\alpha_0, \cdots, \alpha_n]^T$ 可表示为

$$\alpha = U_0 U_1 \cdots U_n c. \tag{3}$$

综上,由 (2)和 (3),可快速求解 Vandermonde 方程组.

Lagrange Interpolation

$$p_n(x) = \sum_{j=0}^n f_j l_j(x), \ l_j(x) = \frac{\prod_{k=0, k \neq j}^n (x_j - x_k)}{\prod_{k=0, k \neq j}^n (x - x_k)}.$$

Barycentric Lagrange Interpolation

记

$$l(x) = (x - x_0)(x - x_1) \cdots (x - x_n).$$

定义

$$w_j = \frac{1}{\prod_{k=0, k \neq j}^{n} (x - x_k)}, \quad j = 0, \dots, n,$$

可知

$$w_j = \frac{1}{l'(x_j)},$$

进而

$$l_j(x) = l(x) \frac{w_j}{x - x_j},$$

最终

$$p_n(x) = l(x) \sum_{j=0}^{n} \frac{w_j}{x - x_j} f_j.$$

内容提要

- 三角形方程组和三角分解
- ② 选主元三角分解
- ③ 平方根法(Cholesky 分解法)
- 4 Vandermonde 方程组的解法
- 5 Toeplitz 方程组的解法
- 6 稀疏方程组的解法

Toeplitz 方程组的解法

考虑对称正定Toeplitz 方程组 Tx = b, $T \in \mathbb{R}^{n \times n}$,

$$\begin{bmatrix} t_0 & t_1 & t_2 & \cdots & \cdots & t_{n-1} \\ t_1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ t_2 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & t_2 \\ \vdots & \ddots & \ddots & \ddots & \ddots & t_1 \\ t_{n-1} & \cdots & \cdots & t_2 & t_1 & t_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}.$$

Toeplitz 矩阵性质:

- Toeplitz 矩阵的线性组合仍然为 Toeplitz 矩阵;
- Toeplitz 矩阵的转置仍然为 Toeplitz 矩阵;
- Toeplitz 矩阵的元素相对于交叉对角线对称.

先考虑一类特殊右端项的 Toeplitz 方程组 Tx = b,

$$\begin{bmatrix} t_0 & t_1 & t_2 & \cdots & \cdots & t_{n-1} \\ t_1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ t_2 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & t_2 \\ \vdots & \ddots & \ddots & \ddots & \ddots & t_1 \\ t_{n-1} & \cdots & \cdots & t_2 & t_1 & t_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} -t_1 \\ -t_2 \\ \vdots \\ \vdots \\ -t_{n-1} \\ -t_n \end{bmatrix}.$$

有端项元素 −t_n 为任意给定实数.

记
$$T_k x^{(k)} = -b^{(k)}, k = 1, 2, \dots, n$$
, 如下所示

$$\begin{bmatrix} t_0 & t_1 & t_2 & \cdots & \cdots & t_{k-1} \\ t_1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ t_2 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & t_2 \\ \vdots & \ddots & \ddots & \ddots & \ddots & t_1 \\ t_{k-1} & \cdots & \cdots & t_2 & t_1 & t_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_k \end{bmatrix} = - \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ \vdots \\ t_k \end{bmatrix}.$$

若已知 $x^{(k)}$, 试求解 $T_{k+1}x^{(k+1)} = -b^{(k+1)}$, 即

$$\left[\begin{array}{cc} T_k & E_k b^{(k)} \\ (E_k b^{(k)})^{\mathrm{T}} & t_0 \end{array}\right] \left[\begin{array}{c} z^{(k)} \\ \alpha \end{array}\right] = - \left[\begin{array}{c} b^{(k)} \\ t_{k+1} \end{array}\right].$$

展开

$$\left[\begin{array}{cc} T_k & E_k b^{(k)} \\ b^{(k)^{\mathrm{T}}} E_k & t_0 \end{array}\right] \left[\begin{array}{c} z^{(k)} \\ \alpha \end{array}\right] = - \left[\begin{array}{c} b^{(k)} \\ t_{k+1} \end{array}\right],$$

可得

$$T_k z^{(k)} + \alpha E_k b^{(k)} = -b^{(k)},$$

 $b^{(k)^{\mathrm{T}}} E_k z^{(k)} + \alpha t_0 = -t_{k+1}.$

解得

$$z^{(k)} = T_k^{-1}(-b^{(k)} - \alpha E_k b^{(k)}) = x^{(k)} - \alpha T_k^{-1} E_k b^{(k)},$$

$$\alpha(t_0 - b^{(k)^{\mathrm{T}}} E_k T_k^{-1} E_k b^{(k)}) = -t_{k+1} - b^{(k)^{\mathrm{T}}} E_k x^{(k)}.$$

由 T_k 对称正定,可得 $T_k^{-1}E_k = E_k T_k^{-1}$ 成立,从而

$$z^{(k)} = x^{(k)} - \alpha T_k^{-1} E_k b^{(k)} = x^{(k)} + \alpha E_k x^{(k)},$$

$$\alpha (t_0 + b^{(k)^{\mathrm{T}}} x^{(k)}) = -t_{k+1} - b^{(k)^{\mathrm{T}}} E_k x^{(k)}.$$

由

$$\left[\begin{array}{cc}I_k\\b^{(k)^{\mathrm{T}}}E_k&1\end{array}\right]\left[\begin{array}{cc}T_k&E_kb^{(k)}\\b^{(k)^{\mathrm{T}}}E_k&t_0\end{array}\right]\left[\begin{array}{cc}I_k&E_kb^{(k)}\\&1\end{array}\right]=\left[\begin{array}{cc}T_k\\&t_0+b^{(k)^{\mathrm{T}}}x^{(k)}\end{array}\right],$$

知
$$t_0 + b^{(k)^{\mathrm{T}}} x^{(k)} > 0$$
,可得 $\alpha = (t_{k+1} + b^{(k)^{\mathrm{T}}} E_k x^{(k)}) / (t_0 + b^{(k)^{\mathrm{T}}} x^{(k)})$.

一般右端项的 Toeplitz 方程组的解法

可将 Yule-Walker 方程组的求解过程推广求解任意右端项的 Toeplitz 方程组.

内容提要

- 三角形方程组和三角分解
- ② 选主元三角分解
- ③ 平方根法 (Cholesky 分解法)
- 4 Vandermonde 方程组的解法
- 5 Toeplitz 方程组的解法
- 6 稀疏方程组的解法

三对角方程组

带状方程组

图及其对应的邻接矩阵.

重新排序后的图及其对应的邻接矩阵.

不同排序对比


```
      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (*)

      (*)
      (
```

带宽小但计算量,存储量不一定少

解稀疏方程组的一般步骤

- 排序 (ordering) 以减少 fill-in;
- ② 矩阵符号分解 (Symbolic factorization);
- 3 矩阵数值分解 (Numerical factorization);
- 利用向前,向后代入求解下三角,上三角方程组.

稀疏线性方程组求解专著

想法: 为使未标注结点 z 的行带宽较小, 标注结点 y 后, 应尽快对结点 z 排序.

参考文献: E. Cuthill and J. Mckee, Reducing the bandwidth of sparse symmetric matrices, Proceeding ACM '69 Proceedings of the 24th national conference, 157-172, 1969.

Reverse Cuthill-McKee ordering

Algorithm 8 RCM ordering

- 1: 选定初始结点 r, 令 $x_1 = r$,
- 2: **for** i = 1 : n **do**
- 3: 查找结点 xi 所有未标号的邻接点,并按结点度数从小到大排序;
- 4: end for
- 5: 反向重排序 $y_1 = x_n, y_2 = x_{n-2}, \dots, y_n = x_1$.

参考文献: A. George, Computer Implementation of the Finite Element Method, Tech. Rept. STAN-CS-208, Stanford University, 1971.

若选取结点 g 为初始结点,即 $x_1 = g$,重排序后结果如下图所示:

若选取结点 a 为初始结点, 即 $x_1 = a$, 重排序后结果如下图所示:

RCM ordering 实例 (选取初始结点)

含有 8 个结点的无向图.

结点 6 为根的层结构.

RCM ordering 实例 (选取初始结点)

Minimum degree ordering

想法: 为减少 fill-in, 选取右下块列向量中非零元素最少的.

参考文献: A. George, J. Liu, The evolution of the Minimum Degree Ordering Algorithm, SIAM Review. 31(1): 1-19, 1989.

Minimum Degree Ordering

Algorithm 9 MD ordering

- 1: 初始 i=1;
- 2: **for** i = 2 : n **do**
- 3: 在消去图 $G_{i-1} = (X_{i-1}, E_{i-1})$ 中选取度数最小的结点 x_i ; 结点度数从小到大排序;
- 4: 从 G_{i-1} 中删除结点 x_i 生成新的消去图 $G_i = (X_i, E_i)$;
- 5: end for

含有7个结点的无向图.

MD ordering 实例 (逐步选取过程)

想法: 为减少 fill-in, 将图分割后出现的零矩阵快能保持不变.

参考文献: A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical Analysis, 10(2): 345-363, 1973.

ND ordering **实例**

A one-level dissection ordering of a 10×10 regular grid.

86	87	88	89	. 90	100	40	39	38	37
81	82	83	84	85	99	36	35	34	33
76	77	78	79	80	98	32	31	30	29
71	72	73	74	75	97	28	27	26	25
66	67	68	69	70	96	24	23	22	21
61	62	63	64	65	95	20	19	18	17
56	57	58	59	60	94	16	15	14	13
51	52	53	54	55	93	12	11	10	9
46	47	48	49	50	92	8	7	6	5
41	42	43	44	45	91	40 36 32 28 24 20 16 12 8 4	3	2	1

ND ordering **实例**

A nested dissection ordering of a 10×10 regular grid.

78	77	85	68	67	100	29	28	36	20
76	75	84	66	65	99	27	26	35	19
80	79	83	70	69	98	31	30	34	21
74	73	82	64	63	97	25	24	33	18
72	71	81	62	61	96	23	22	32	17
90	89	88	87	86	95	40	39	38	37
54	53	60	46	45	94	10	9	16	3
52	51	59	44	43	93	8	7	15	2
56	55	58	48	47	92	12	11	14	4
50	49	57	42	41	91	6	5	13	1

计算程序包

- LAPACK
- SuiteSparse
- MUMPS
- SuperLU

本 节 完!