### 11 - Approximation techniques

Bayesian Statistics Spring 2022-2023

Josep Fortiana

Matemàtiques - Informàtica UB

Monday, May 22, 2023

### 11 - Approx. pdf's

Laplace approximation (uni- & multivariate)

Variational Bayes Inference

KL divergence and the ELBO

Candidate functions: Mean field VB (MFVB)

Computational VB

## Approximate Bayesian inference

Target –posterior, post. predictive, . . . pdf, is difficult to compute (that is, always).

#### Two paths:

- ► **Approximate:** Laplace, variational Bayes, EM, expectation propagation.
- ► Simulate: Independent or MC Monte Carlo.

## Laplace approximation

Target posterior pdf  $h(\theta|x) \approx A$  gaussian (normal) pdf.

Taylor expansion of  $h(\theta|x)$  up to second order.

J. Fortiana (Mat-Inf UB) 11 - Approx. pdf's 2023-05-22 4 / 39

### Variational Bayesian inference

A family of pdf's.

Find the pdf in this family closest to the target.

Closeness: Kullback-Leibler divergence.

## 11 - Approx. pdf's

#### Laplace approximation (uni- & multivariate)

Variational Bayes Inference

KL divergence and the ELBO

Candidate functions: Mean field VB (MFVB)

Computational VB

6/39

### **Univariate Laplace approximation**

Target function  $h(\theta)$ , e.g. a pdf, with a maximum.

$$q(\theta) \stackrel{\text{def}}{=} \log h(\theta)$$
.

Taylor expansion of  $q(\theta)$  around a (global) maximum:

$$\theta_0 = \arg\max_{\theta} q(\theta)$$
.

For a posterior pdf,  $\theta_0$  is the MAP estimator.

## **Taylor expansion**

$$egin{align} q( heta) &= q( heta_0) + ( heta - heta_0) \cdot q'( heta_0) + rac{1}{2} \left( heta - heta_0
ight)^2 \cdot q''( heta_0) + \cdots \ &pprox q( heta_0) - rac{1}{2} \left( heta - heta_0
ight)^2 \cdot |q''( heta_0)|, \end{split}$$

since  $q'(\theta_0) = 0$  and  $q''(\theta_0) < 0$  at the maximum.

## Taylor expansion

$$h( heta) = \exp(q( heta)) pprox A \cdot \exp\left\{-rac{1}{2}\left(rac{ heta - heta_0}{\sigma}
ight)^2
ight\},$$

Gaussian pdf, Normal
$$(\theta_0, \sigma^2)$$
, with  $\sigma^2 = \frac{1}{|q''(\theta_0)|}$ .

9/39 11 - Approx, pdf's

### Multivariate Laplace approximation

Target  $h(\theta)$ ,  $\theta$  p-dimensional,

$$q(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \log h(\boldsymbol{\theta}).$$

Taylor expansion of  $q(\theta)$  around a (global) maximum:

$$oldsymbol{ heta}_0 = \operatorname{arg\,max}_{oldsymbol{ heta}} q(oldsymbol{ heta})$$
 .

When  $h(\cdot)$  is a posterior pdf,  $\theta_0$  is the MAP estimator.

## **Multivariate Taylor expansion**

$$egin{aligned} q(oldsymbol{ heta}) &= q(oldsymbol{ heta}_0) + \dot{q}(oldsymbol{ heta}_0) \cdot (oldsymbol{ heta} - oldsymbol{ heta}_0) \ &+ rac{1}{2} \left(oldsymbol{ heta} - oldsymbol{ heta}_0
ight)' \cdot \ddot{q}(oldsymbol{ heta}_0) \cdot (oldsymbol{ heta} - oldsymbol{ heta}_0) + \cdots \ &pprox q(oldsymbol{ heta}_0) - rac{1}{2} \left(oldsymbol{ heta} - oldsymbol{ heta}_0
ight)' \cdot \left(-\ddot{q}(oldsymbol{ heta}_0)\right) \cdot \left(oldsymbol{ heta} - oldsymbol{ heta}_0
ight), \end{aligned}$$

since the gradient  $\dot{q}(\theta_0)=0$  and the Hessian  $\ddot{q}(\theta_0)$  is negative definite at the maximum.

## Multivariate Taylor expansion - Notations

 $\theta$ , etc., are  $p \times 1$  column vectors.

Derivatives represented with dots (prime to indicate matrix transposition).

Gradient  $\dot{q}(\theta_0)$  is a  $1 \times p$  row vector,

Hessian  $\ddot{q}(\theta_0)$  is a  $p \times p$  symmetric (neg. def.) matrix.

# Approximate pdf

$$egin{aligned} h(oldsymbol{ heta}) &= \exp(q(oldsymbol{ heta})) \ &pprox A \cdot \exp\left\{-rac{1}{2} \left(oldsymbol{ heta} - oldsymbol{ heta}_0
ight)' \cdot oldsymbol{\Sigma}^{-1} \cdot \left(oldsymbol{ heta} - oldsymbol{ heta}_0
ight)
ight\}, \end{aligned}$$

a Gaussian pdf,

Normal(
$$\theta_0$$
,  $\Sigma$ ), with  $\Sigma = -\ddot{q}(\theta_0)^{-1}$ .

## The R-INLA project

#### **Integrated Nested Laplace Approximations:**

#### The R-INLA project website

```
install.packages("INLA",dependencies=TRUE,
repos="https://inla.r-inla-download.org/R/stable")
```

## 11 - Approx. pdf's

Laplace approximation (uni- & multivariate)

#### Variational Bayes Inference

KL divergence and the ELBO

Candidate functions: Mean field VB (MFVB)

Computational VB

#### What is Variational?

#### Calculus of variations:

Find a real function g(s) in some set  $\mathscr{G}$  of functions such that:

$$\mathbb{F}[g] = \int_a^b F(g(s), s) \, ds \quad \text{is min (or max.)},$$

where  $F(\cdot, \cdot)$  is a given function.

# Maximum entropy pdf's

Example: pdf  $f(s \mid \mu, \sigma^2)$  with mean  $\mu$  and variance  $\sigma^2$ , maximizing:

$$\mathbb{H}[f(s \mid \mu, \sigma^2)] = -\int_a^b f(s \mid \mu, \sigma^2) \cdot \log f(s \mid \mu, \sigma^2) \, ds.$$

Solution with support on  $\mathbb{R}$  is Normal( $\mu$ ,  $\sigma^2$ ).

Jaynes (2003), Probability theory: the logic of science.

#### What is VB?



#### [David Blei's 2011 lecture]

#### What is VB?

```
Target: p(z \mid x) (Posterior pdf: z = parameters).
```

A family of simple pdf's: 
$$\{q(z; \nu)\}$$

"Distance" is 
$$KL(\cdot \| \cdot )$$
. Why?

• Acceptable approximation for posterior means and sd.

- Acceptable approximation for posterior means and sd.
- Quick for large data & many parameters:
   MCMC iterations take forever.

- Acceptable approximation for posterior means and sd.
- Quick for large data & many parameters:
   MCMC iterations take forever.

Microcredit Experiment (Rachael Meager, 2019),

Tamara Broderick, Variational Bayes and Beyond: Bayesian Inference for Big Data (ICML 2018 tutorial)

- Acceptable approximation for posterior means and sd.
- Quick for large data & many parameters:
   MCMC iterations take forever.

Microcredit Experiment (Rachael Meager, 2019),

Deep NN, e.g., Variational Autoencoders.

Tamara Broderick, Variational Bayes and Beyond: Bayesian Inference for Big Data (ICML 2018 tutorial)

Kingma DP, Welling M (2014), Auto-Encoding Variational Bayes.

## A large hierarchical model

K = 7 microcredit trials

(Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

 $N_k$  businesses in k-th site (900 to 17K)

Profit of *n*-th business at *k*-th site  $(1 \le n \le N_k)$ :

$$y_{kn} \sim \text{Normal}(\mu_k + T_{kn} \cdot \tau_k, \sigma_k^2),$$

#### Rachael Meager home page

## 11 - Approx. pdf's

Laplace approximation (uni- & multivariate)

Variational Bayes Inference

KL divergence and the ELBO

Candidate functions: Mean field VB (MFVB)

Computational VB

## Kullback-Leibler (KL) divergence

$$\mathsf{KL}(q \parallel p) = \mathsf{E}_q(\log \frac{q}{p})$$

J. Fortiana (Mat-Inf UB) 11 - Approx. pdf's 2023-05-22 23 / 39

## KL divergence properties

▶  $KL(q \parallel p) \neq KL(p \parallel q)$ . Not a symmetric "distance".

On regions where:

- ▶ Both *p* and *q* are large or both small  $\Rightarrow$  small contribution.
- ▶ When *q* is large and *p* small  $\Rightarrow$  big contribution.
- ▶ When *p* is large and *q* small  $\Rightarrow$  not so important.
- ►  $KL(q \parallel p) \ge 0$ .

#### **Convex functions**



#### **Convex functions**



A convex function is "like  $x^2$ ".

# Convexity and Jensen inequality - Summary

 $\varphi$  is *convex* if it seems an upwards parabola. Positive 2nd derivative.

Its graph lies under any secant line:

$$\varphi(t\cdot a+(1-t)\cdot b)\leq t\cdot \varphi(a)+(1-t)\cdot \varphi(b).$$

Jensen's inequality:

$$[\varphi \text{ convex}] \implies [\varphi(\mathsf{E}(Z)) \leq \mathsf{E}(\varphi(Z))].$$

─ log is a convex function.

#### The ELBO

$$p(x) = \int_{Z} p(x, z) dz = x\text{-marginal} = \text{``the evidence''}.$$

$$\log p(x) = \log \int_{Z} p(x, z) dz = \log \int_{Z} p(x, z) \frac{q(z)}{q(z)} dz$$

$$= \log \left( \mathbb{E}_{q} \left[ \frac{p(x, Z)}{q(Z)} \right] \right)$$
(Jensen)  $\geq \mathbb{E}_{q} \left[ \log p(x, Z) \right] - \mathbb{E}_{q} \left[ \log q(Z) \right].$ 

Evidence Lower Bound.

## KL divergence and the ELBO

$$\begin{aligned} \mathsf{KL}\big(q(z) \parallel p(z \mid x)\big) & \quad \mathsf{Conditional pdf:} \ p(z \mid x) = p(z, x)/p(x). \\ &= \mathsf{E}_q \left[ \log \frac{q(Z)}{p(Z \mid x)} \right] \\ &= \mathsf{E}_q \left[ \log q(Z) \right] - \mathsf{E}_q \left[ \log p(Z \mid x) \right] \\ &= \mathsf{E}_q \left[ \log q(Z) \right] - \mathsf{E}_q \left[ \log p(Z, x) \right] + \log p(x) \\ &= - \left( \mathsf{E}_q \left[ \log p(x, Z) \right] - \mathsf{E}_q \left[ \log q(Z) \right] \right) + \log p(x) \geq 0. \end{aligned}$$

### Maximizing the ELBO

```
Since \log p(x) does not depend on q, minimizing KL(\cdot \| \cdot) (with respect to the q family) is equivalent to maximizing the ELBO.
```

Procedure: choose a family of pdf's  $\{q(z, \nu)\}$ , depending on parameters  $\nu$ .

Then find the ELBO-maximizing  $\nu$ .

## 11 - Approx. pdf's

Laplace approximation (uni- & multivariate)

Variational Bayes Inference

KL divergence and the ELBO

Candidate functions: Mean field VB (MFVB)

Computational VB

#### Choice of candidate functions

Mean field approximation: from Physics.

Assume the variational family q factorizes:

For 
$$z = (z_1, \ldots, z_m)$$

$$q(z)=q(z_1,\ldots,z_m)=\prod_{i=1}^m q(z_i).$$

## Caution with a product of univariate factors



Bishop C (2006), PRML. Chap. 10, Figure 10.2.

# VB for $\mu$ and au (precision) of a 1D Gaussian pdf



Bishop C (2006), PRML. Chap. 10, Figure 10.4.

# 11 - Approx. pdf's

Laplace approximation (uni- & multivariate)

Variational Bayes Inference

KL divergence and the ELBO

Candidate functions: Mean field VB (MFVB)

**Computational VB** 

# **Direct optimization**

Direct computation of the minimum KL for a particular posterior pdf, for some given likelihood and prior.

Coordinate Ascent Variational Inference (CAVI):

Sequentially optimize each individual parameter, while holding the others fixed.

## Stochastic Variational Inference (SVI)

The coordinate ascent algorithm is inefficient for large data sets because we must optimize the local variational parameters for each data point before re-estimating the global variational parameters.

In a nutshell: Stochastic variational inference uses stochastic optimization to fit the global variational parameters.

See Stackexchange: Difference between Stochastic VI and VI?

Hoffman M, Blei D, Wang C, Paisley J (2013), *Stochastic variational inference.* 

## Black box VB inference (BBVI)

```
David Blei talk at 2018 PROBPROG conference: 
Black Box Variational Inference [YouTube]
```

```
[Blei's 2011 lecture]
```

[SLIDES] [2014 TechReport] [and Paper]

Manousakas, D. et al (2022)

"Black-box Coreset Variational Inference"

## Idea underlying BBVI

The key insight behind BBVI is that it's possible to write the gradient of the ELBO as an expectation:

$$\nabla_{\nu} \mathscr{L}(\nu) = \mathsf{E}_q[(\nabla_{\nu} \log q(z \mid \nu))(\log p(x, z) - \log q(z \mid \nu))].$$

So instead of evaluating a closed form expression for the gradient, we can use Monte Carlo samples and take the average to get a noisy estimate of the gradient.

See: Keyon Vafa (2017 blog entry),

Black Box Variational Inference for Logistic Regression

### Automatic differentiation VI (ADVI)

This method is implemented in Stan.

Kucukelbir A, Tran D, Ranganath R, Gelman A, Blei D (2017), *Automatic differentiation variational inference*.

Kucukelbir A, Ranganath R, Gelman A, Blei D (2017), *Automatic variational inference in Stan.*