

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	13
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_G-21-13
Název vzdělávacího materiálu:	Vratné změny stavu ideálního plynu
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Vratné změny stavu ideálního plynu

Vratné změny stavu jsou ideální změny, u kterých předpokládáme, že v každém okamžiku je ideální plyn v rovnovážném stavu – v celém objemu má stejné stavové veličiny.

Změna za stálého objemu – izochorická (V = konst.)

Izochorický ohřev plynu:

$$p\cdot V=m\cdot r\cdot T$$

$$\frac{p_1 \cdot V_1}{T_1} = m \cdot r = \frac{p_2 \cdot V_2}{T_2}$$

$$V_1 = V_2 = V$$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 nebo $\frac{p_1}{p_2} = \frac{T_1}{T_2}$

Tlak i teplotu udáváme v absolutních hodnotách.

Jednorázová práce W=0

 $W_{\rm t} = \left(p_{\rm l} - p_{\rm 2}\right) \cdot V$ Při ohřevu je $W_{\rm t}$ záporná, musíme ji dodat, při ochlazování je $W_{\rm t}$ kladná, získaná.

$$U_2 - U_1 = Q - W$$

$$W = 0$$

Přivedené teplo $Q = \Delta U = m \cdot c_v \cdot \Delta T$

$$q = c_v \cdot \Delta T = c_v \cdot (T_2 - T_1)$$

Změna za stálého tlaku – izobarická (p = konst.)

$$p_1 = p_2 = konst = p$$

$$\frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 nebo $\frac{V_1}{V_2} = \frac{T_1}{T_2}$

absolutní práce:

$$W = p \cdot (V_2 - V_1)$$

technická práce $W_{\scriptscriptstyle t}=0$

$$I_2 - I_1 = Q - W_t$$

$$S Q = I_2 - I_1 = m \cdot c_p \cdot (T_2 - T_1)$$

Přivedené teplo:

$$q = i_2 - i_1 = c_p \cdot (T_2 - T_1)$$

Změna za stálé teploty – izotermická (T = konst.)

Tato změna je v p – V diagramu je znázorněna rovnoosou hyperbolou. Čím nižší je teplota, tím více se izoterma přibližuje osám p, V.

$$\frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2}$$

$$p_1 \cdot V_1 = p_2 \cdot V_2 = konst$$

Entalpie

$$\Delta I = c_P \cdot m \cdot \Delta T$$

Vnitřní energie

$$\Delta U = c_V \cdot m \cdot \Delta T$$

 $\Delta T = 0$ protože T = konst.

$$I_2 - I_1 = Q - W_T \rightarrow 0 = Q - W_T \rightarrow Q = W_t$$

$$U_2 - U_1 = Q - W \rightarrow 0 = Q - W \rightarrow Q = W$$

$$\text{Potom: } W = W_{\scriptscriptstyle t} = Q = m \cdot r \cdot T \cdot \ln \cdot \frac{V_{\scriptscriptstyle 2}}{V_{\scriptscriptstyle 1}} = m \cdot r \cdot T \cdot 2, \\ 3 \cdot \log \cdot \frac{V_{\scriptscriptstyle 2}}{V_{\scriptscriptstyle 1}} = 2, \\ 3 \cdot m \cdot r \cdot T \cdot \log \frac{p_{\scriptscriptstyle 1}}{p_{\scriptscriptstyle 2}}$$

Při izotermické kompresi je práce i teplo záporné, při izotermické expanzi kladné.

Změna bez výměny tepla s okolím – izoentropická (adiabatická) – $\Delta q = 0$

Adiabatická změna stavu je změna bez výměny tepla s okolím. Za takové změny považujeme změny, které probíhají velmi rychle. V praxi většina kompresí a expanzí v tepelných strojních. Rovnici adiabatické změny můžeme odvodit jen za použití vyšší matematiky. V p – V diagramu je adiabata znázorněna hyperbolou vyššího řádu.

$$p \cdot V^{\kappa} = konst$$

$$p_1 \cdot V_1^{\kappa} = p_2 \cdot V_2^{\kappa}$$

$$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{\kappa} \rightarrow \frac{V_1}{V_2} = \left(\frac{p_2}{p_1}\right)^{\frac{1}{\kappa}}$$

Základní rovnice ideálního plynu:

$$\begin{array}{c}
p \cdot V = m \cdot r \cdot T \to p = \frac{m \cdot r \cdot T}{V} \\
p_1 \cdot V_1^{\kappa} = p_2 \cdot V_2^{\kappa} \\
\frac{m \cdot r \cdot T_1}{V_1} \cdot V_1^{\kappa} = \frac{m \cdot r \cdot T_2}{V_2} \cdot V_2^{\kappa}
\end{array}$$

$$T_1 \cdot V_1^{\kappa-1} = T_2 \cdot V_2^{\kappa-1} \longrightarrow$$

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\kappa - 1}$$

$$\frac{V_2}{V_1} = \left(\frac{T_1}{T_2}\right)^{\frac{1}{\kappa - 1}}$$

Podobně:

$$V = \frac{m \cdot r \cdot T}{p}$$

$$p_1 \cdot \left(\frac{m \cdot r \cdot T_1}{p_1}\right)^{\kappa} = p_2 \cdot \left(\frac{m \cdot r \cdot T_2}{p_2}\right)^{\kappa}$$

$$\frac{p_1 \cdot T_1^{\kappa}}{p_1^{\kappa}} = \frac{p_2 \cdot T_2^{\kappa}}{p_2^{\kappa}}$$

$$\frac{T_1^{\kappa}}{p_1^{\kappa-1}} = \frac{T_2^{\kappa}}{p_2^{\kappa-1}}$$

$$\boxed{\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\kappa - 1}{\kappa}}}$$

$$\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\frac{\kappa}{\kappa - 1}} = \left(\frac{V_2}{V_1}\right)^{\kappa}$$

Vztah pro absolutní a technickou práci můžeme odvodit z rovnice prvního zákona termodynamiky.

Pro adiabatickou změnu platí: vnitřní energie $q = \frac{Q}{Q} = 0$

$$u_2 - u_1 = \overset{=0}{q} - w$$
, $u = c_v \cdot \Delta T$, $c_v = \frac{r}{\kappa - 1}$

$$c_{v} = \frac{r}{\kappa - 1}$$

$$w = u_1 - u_2 = c_v \cdot (T_1 - T_2)$$

$$w = \frac{r}{\kappa - 1} \cdot (T_1 - T_2) = \frac{r \cdot T_1}{\kappa - 1} \cdot \left(1 - \frac{T_2}{T_1}\right)$$

Vztah pro absolutní práci 1 kg plynu:

$$w = \frac{1}{\kappa - 1} \cdot r \cdot T_1 \cdot \left(1 - \frac{T_2}{T_1} \right)$$

Pro konkrétní množství plynu:

$$W = \frac{1}{\kappa - 1} \cdot m \cdot r \cdot T_1 \cdot \left(1 - \frac{T_2}{T^1}\right)$$

Podle toho, které stavové veličiny známe, můžeme za výraz $m \cdot r \cdot T_1$ dosadit $p_1 \cdot V_1$ a za poměr

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\kappa-1} = \left(\frac{p_1}{p_2}\right)^{\frac{\kappa-1}{\kappa}}, \text{ potom získáme např. vztah:}$$

$$W = \frac{1}{\kappa - 1} \cdot p_1 \cdot V_1 \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]$$

Stejným způsobem můžeme odvodit vztah pro technickou práci:

$$i_2 - i_1 = q - w_t = 0 - w_t = -w_t$$

$$(i = c_p \cdot T)$$

$$w_t = i_1 - i_2 = c_p \cdot (T_1 - T_2);$$
 $c_p = \kappa \cdot c_v = \frac{\kappa \cdot r}{\kappa - 1}$

$$c_p = \kappa \cdot c_v = \frac{\kappa \cdot r}{\kappa - 1}$$

$$w_{t} = \frac{\kappa}{\kappa - 1} \cdot r \cdot T_{1} \cdot \left(1 - \frac{T_{2}}{T_{1}}\right)$$

$$W_{t} = \frac{\kappa}{\kappa - 1} \cdot m \cdot r \cdot T_{1} \cdot \left(1 - \frac{T_{2}}{T_{1}}\right)$$

$$W_{t} = \frac{\kappa}{\kappa - 1} \cdot p_{1} \cdot V_{1} \cdot \left(1 - \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\kappa - 1}{\kappa}}\right)$$

Př.: Pístový kompresor adiabaticky ($\Delta Q = 0$) stlačuje 1 m³/s vzduchu z tlaku p1 = 0,1 MPa na tlak p₂ = 0,5 MPa. Určete teplotu T₂ po stlačení, je–li původní teplota T₁ = 20 °C = 293 K a výkon hnacího elektromotoru.

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} \longrightarrow T_2 = T_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 293 \cdot \left(\frac{0.5}{0.1}\right)^{\frac{1.4 - 1}{1.4}} = 464K = 191 \, ^{\circ}C$$

 $\mathbf{m} \cdot \mathbf{r} \cdot \mathbf{T}_1 = \mathbf{p}_1 \cdot \mathbf{V}_1$

$$P = \frac{W_{t}}{t} = \frac{\kappa}{\kappa - 1} \cdot m \cdot r \cdot T_{1} \cdot \left(1 - \frac{T_{2}}{T_{1}}\right) = \frac{\kappa}{\kappa - 1} \cdot p_{1} \cdot V_{1} \cdot \left(1 - \frac{T_{2}}{T_{1}}\right) = \frac{\kappa}{\kappa - 1} \cdot 0.1 \cdot 10^{6} \cdot \frac{\frac{m^{3}}{5}}{1} \cdot \left(1 - \frac{464}{293}\right) = -204266 \text{ W}$$

- znamená, že práce byla spotřebovaná.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.