FLOATING POINT NUMBERS

Introduction

Anandha Gopalan (with thanks to R. Hayden and N. Dulay)

axgopala@imperial.ac.uk

Why do we need this: large, small and fractional numbers

World population

>7, 000, 000, 000 people

One light year

One solar mass

9, 130, 000, 000, 000 km

Electron diameter

Electron mass

Smallest measurable length of time

0.000, 000, 000, 000, 000, 000, 01 m

0.000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 1 sec

Pi (to 14 decimal places) 3.14159 26535 8979...

Standard rate of VAT

20%

Googol

1 followed by a 100 zeros ©

Large integers

Example: How can we represent integers up to 30 decimal digits long?

• **Binary**: $2^X = 10^{30} \Rightarrow X = \log_2(10^{30}) \approx 100$ bits (1 decimal digit ≈ 3.32 bits)

• **BCD**: $30 \times 4 = 120$ bits

• **ASCII**: $30 \times 8 = 240$ bits

Floating point numbers

Recall scientific notation:

$M \times 10^E$	Decimal
$M \times 2^E$	Binary

This is the basis for most floating point representation schemes

- M is the coefficient (aka. significand, fraction or mantissa)
- E is the **exponent** (aka. **characteristic**)
- 10 (or for binary, 2) is the radix (aka. base)
- No. of bits in exponent determines the range (bigness/smallness)
- No. of bits in coefficient determines the precision (exactness)

Zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Zones of expressibility:

Real vs. floating point numbers

	Mathematical real	Floating point number
Range	-∞ + ∞	Finite
No. of values	(Uncountably) infinite	Finite
Spacing	?	Gap between numbers varies
Errors	?	Incorrect results are possible

Some questions (assume signed 3-digit coefficient and a signed 2-digit exponent as before):

- What are the **closest** floating point numbers to .001 \times 10⁻⁹⁹ ? What is the **gap** between this number and them?
- What about $.001 \times 10^{-50}$?

Normalised floating point numbers

 Depending on how you interpret the coefficient, floating point numbers can have multiple forms, e.g.:

$$0.023 \times 10^4 = 0.230 \times 10^3$$

= 2.3×10^2
= 0.0023×10^5

- For hardware implementations it is desirable for each number to have a unique floating point representation, a normalised form
- We'll normalise coefficients in the range [1, ... R) where R is the base, e.g.:

Normalised forms (base 10)

Number	Normalised form
23.2×10^4	2.32×10^{5}
-4.01×10^{-3}	-4.01×10^{-3}
$343\ 000 \times 10^{0}$	3.43×10^{5}
$0.000\ 000\ 098\ 9 \times 10^{0}$	9.89×10^{-8}

Binary fractions

Binary	Decimal
0.1	0.5
0.01	0.25
0.001	0.125
0.11	0.75
0.111	0.875
0.011	0.375
0.101	0.625

Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}
0	1	1	0	1

$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = 0.40625$$

32	16	8	4	2	1
	0	1	1	0	1

$$\bullet \ \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}
0	1	1	0	1

$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = 0.40625$$

32	16	8	4	2	1
	0	1	1	0	1

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer:
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2}$$

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4}$$

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8}$$

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

$$0.1 = \frac{1.6}{16}$$

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16}$$

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16} = \frac{1}{16} + \frac{1.2}{32}$$

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16} = \frac{1}{16} + \frac{1.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{0.2}{32}$$

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{2} = \frac{1}{2} + \frac{0.375}{2} = \frac{1}{2} + \frac{0.75}{4} = \frac{1}{2} + \frac{1.5}{8}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{0.5}{8} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16}$$

So the answer is **0.1011**

What is the decimal value 0.1 in binary?

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16} = \frac{1}{16} + \frac{1.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{0.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{1.6}{256}$$

. . .

Normalised forms (base 2)

Number	Normalised form
100.01×2^{1}	1.0001×2^3
1010.11×2^2	1.01011×2^{5}
0.00101×2^{-2}	1.01×2^{-5}
1100101×2^{-2}	1.100101×2^4

Floating point multiplication

$$N_1 \times N_2 = (M_1 \times 10^{E_1}) \times (M_2 \times 10^{E_2})$$

= $(M_1 \times M_2) \times (10^{E_1} \times 10^{E_2})$
= $(M_1 \times M_2) \times (10^{E_1+E_2})$

- That is, we multiply the coefficients and add the exponents
- Example:

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$

= 14.04×10^3

• We must also **normalise the result**, so final answer is 1.404×10^4

Truncation and rounding

- For many computations, the result of a floating point operation is too large to store in the coefficient
- Example (with a 2-digit coefficient):

$$(2.3 \times 10^1) \times (2.3 \times 10^1) = 5.29 \times 10^2$$

- Truncation \rightarrow 5.2 \times 10²
- Rounding \rightarrow 5.3 \times 10²

(biased error)

(unbiased error)

Floating point addition

• A floating point addition such as $4.5 \times 10^3 + 6.7 \times 10^2$ is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

$$N_1 + N_2 = (M_1 \times 10^{E_1}) + (M_2 \times 10^{E_2})$$

= $(M_1 + M_2 \times 10^{E_2 - E_1}) \times 10^{E_1}$

 To align, choose the number with the smaller exponent and shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$

= $5.17 \times 10^{3} = 5.2 \times 10^{3}$
(rounded)

Exponent overflow and underflow

- Exponent overflow occurs when the result is too large i.e. when the result's exponent > maximum exponent
- Example: if max exponent is 99 then $10^{99} \times 10^{99} = 10^{198}$ (overflow)

To handle **overflow**, set value as infinity or raise an exception

- Exponent underflow occurs when the result is too small i.e. when the result's exponent < smallest exponent
- **Example:** if min exponent is -99 then $10^{-99} \times 10^{-99} = 10^{-198}$ (underflow)

To handle **underflow**, set value as zero or raise an exception

Comparing floating point values

- Because of the potential for producing inexact results, comparing floating point values should account for close results
- If we know the desired magnitude and precision of results, we can adjust for closeness (epsilon). For example:

$$a = b$$
 $(b - \epsilon) < a < (b + \epsilon)$
 $a = 1$ $1 - 0.0000005 < a < 1 + 0.0000005$
 $0.9999995 < a < 1.0000005$

 A more general approach is to calculate closeness of two numbers based on the relative size of the two numbers being compared