Verteilte Systeme

Organisatorisches

Freie Universität Berlin

Secure Identity Research Group

Termine

- 13 Vorlesungen: 12.4. 5.7.2011, Di, 8:30-10:00
- 10 Übungstermine in voraussichtlich 2 Gruppen:
 - Fr, 8:30-10:00
 - N.N. (voraussichtlich Do 10-12)

Die Übungstermine in der ersten Woche (15.4.), an Ostern (23.4.) und Himmelfahrt (3.6.) entfallen.

Klausur: 12.7.2011

Freie Universität Berlin

Secure Identity Research Group

Scheinkriterien

- n-I Übungen Bearbeitet (E(n) = 9)
- n-2 Übungen im wesentlichen korrekt gelöst
- Anwesenheit in den den Tutorien (maximal zwei Fehltage)
- Bestehen der Klausur

Secure Identity Research Group

Literatur

- George Coulouris, Jean Dollimore, Tim Kindberg
 Distributed Systems Concepts and Design forth Edition
 Addison Wesley 2005
- Nancy A. Lynch
 Distributed Algorithms
 Morgan Kaufmann 1997
- A.S. Tanenbaum, M. v.Steen
 Distributed Systems: Principles and Paradigms
 Prentice Hall 2006

Freie Universität Berlin

Secure Identity Research Group

Verteilte Systeme

Einführung

Secure Identity Research Group

Was sind Verteilte Systeme?

- A distributed system is one in which components located at networked computers communicate and coordinate their actions only by passing messages. [Coulouris]
- Verteiltes System (distributed system):
 Prozessoren bzw. Prozesse haben keinen gemeinsamen
 Speicher und müssen daher über Nachrichten
 kommunizieren.
 [Löhr]

Freie Universität Berlin

Secure Identity Research Group

Was sind Verteilte Systeme?

- Nichtsequentielle (concurrent) Programmiersprache ohne gemeinsame Variable
- Betriebssystem mit grundsätzlich disjunkten Prozeß-Adreßräumen
- Multiprozessorsystem ohne gemeinsamen Speicher
- Mehrrechnersystem oder Rechnernetz
- Das Internet

Achtung! Abstraktionsebenen

Systeme können auf manchen Abstraktionsebenen Verteilt, auf anderen aber zentralisiert sein.

Beispiele:

- Nichtsequentielle Programmiersprache ohne gemeinsame Variable auf einem Unix-System
- Gemeinsame Objekte auf einem Middelware-System in einem Rechnernetz.

Freie Universität Berlin

Secure Identity Research Group

Wozu verteilte Systeme?

- Parallelverarbeitung
- Client/Server-Betrieb statt Teinehmerbetrieb
- Ausfallsicherheit
- Verteilte Anwendungen

- Netzwerkdienste
 - Dateiübertragung (file transfer)
 - Fernnutzung (remote login)
 - Ressourcenverbund (resource sharing)
 - Web, Chat, News,Videostreaming, ...

Secure Identity Research Group

Problemfelder

- hochgradige Nichtsequentialität
- unhandlicher Nachrichtenaustausch
- kein Gesamtzustand, der von allen Beteiligten beobachtbar wäre
- Fehlfunktionen von Rechnern und Kommunikationsnetz
- Heterogenität von Rechnern, Betriebssystemen, Teilnetzen
- dynamische Änderung der Systemstruktur
- Sicherheit viel stärker gefährdet als bei zentralisierten Systemen

Freie Universität

Secure Identity Research Group

Abwägung

 Verbergen der schwierigen Problembehandlung durch Bereitstellung geeigneter Abstraktionen für komfortable Anwendungsprogrammierung

versus

 Optimierung der Anwendung und Anpassung von Algorithmen an die konkreten Gegebenheiten im verteilten System

Freie Universität Berlin

Secure Identity Research Group

Verteilte Systeme

Klassifizierung von Kommunikationsdiensten

Secure Identity Research Group

Kommunikationssysteme

Kommunikationsdienst:

Operationen zum Senden/Empfangen von Nachrichten

Kommunikationsprotokoll:

Vereinbarung zwischen Sender und Empfänger darüber, wie die Daten/Nachrichten übertragen werden

entspricht in etwas der Implementierung eines Kommunikationsdienstes

Freie Universität Berlin

Secure Identity Research Group

Kommunikationssysteme

Kommunikationshardware:

Hardware, die verwendet wird um die Kommunikationsprotokolle auszuführen (Thema von TI-3 / Telematik)

Freie Universität Berlin

Secure Identity Research Group

Kommunikationsprotokolle

- Adressierung von Kommunikationspartnern
- Erkennung/Korrektur von Übertragungsfehlern
- Flußsteuerung (Pufferüberlauf, Stau)
- Vermittlung über Umwege (Routing)
- heterogene Datenrepräsentation

Secure Identity Research Group

Schichtenmodell

Freie Universität

Secure Identity Research Group

Kommunikationssysteme

- Wichtige Aspekte für Verteilte Systeme:
 - Erkennung/Korrektur von Übertragungsfehlern
 - Topologie
 - Verbindungslose vs. verbindungsorientierte
 Kommunikation

Freie Universität Berlin

Secure Identity Research Group

Übertragungsfehler

- Paketverlust
- Paketveränderung
- Paketduplizierung
- Paketreihenfolge

Freie Universität Berlin

18

Topologien

Punkt zu Punkt

Ring

Secure Identity Research Group

Stern

Bus

Freie Universität Berlin

Topologien

physisch: Bus logisch: Ring

Freie Universität Berlin

Secure Identity Research Group

Tuesday, 12. April 2011 20

Verbindungslose vs. verbindungsorientierte Dienste/Protokolle

- verbindungslos (connectionless) (z.B. IP, UDP)
 Nachrichten werden ohne Vorbereitung "bestmöglich" (best effort), aber ohne jede Zuverlässigkeitsgarantie (betr. Reihenfolge, Verlust, Duplizieren) übertragen.
- verbindungsorientiert (connection-oriented) (z.B.TCP, X.25)Sender und Empfänger stellen eine Verbindung zwischen- einander her, d.h. sie etablieren einen virtuellen Kanal, über den ein zuverlässiger Nachrichtenfluß möglich ist:

Invariante: die Folge der empfangenen Nachrichten ist Präfix der Folge der gesendeten Nachrichten

Lebendigkeit: jede gesendete Nachricht kann auch irgendwann empfangen werden.

Freie Universität Berlin

Secure Identity Research Group

Beispiel: Alternating Bit Protocol

realisiert zuverlässigen Simplex-Kanal (unidirektional) über unzuverlässigen Duplex-Kanal (bidirektional) mit Flußsteuerung und Fehlerbehandlung.

Idee:

- jede Nachricht einzeln quittieren (acknowledgement, ACK) wenn Quittung ausbleibt (timeout!), Nachricht wiederholen; wenn Nachricht ausbleibt, Quittung wiederholen.
- Nachrichten und Quittungen durchnumerieren.
- Durchnumerieren modulo 2 genügt.

Freie Universität Berlin

