APPM 1360
Spring 2022
Quiz 2
02/01/2022
Time Limit: 10 Minute

Name: _____

Recitation Section:

$$T_n = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right], \quad \Delta x = \frac{b-a}{n}$$

$$M_n = \Delta x \left[f(\overline{x}_1) + \dots + f(\overline{x}_n) \right], \quad \Delta x = \frac{b-a}{n}, \quad \overline{x}_i = \frac{x_{i-1} + x_i}{2}$$

- 1. (10 points) Let $f(t) = e^{t^2}$.
 - (a) Draw a graph of f(t) on the interval [0,3].
 - (b) On the same graph, draw the trapezoids corresponding to T_3 , the trapezoidal rule approximation of $\int_0^3 f(t) dt$.
 - (c) Calculate T_3 . Leave your answer in terms of powers of e.
 - (d) Is T_3 an underestimate or overestimate of $\int_0^3 f(t) dt$?