Exemples Terminologie et notions de base Représentation et primitives de base Fermeture transitive Tri topologique

Graphes orientés

Alix Munier-Kordon et Maryse Pelletier

LIP6 Université P. et M. Curie Paris

21003 Initiation à l'algorithmique

Plan du cours

- Exemples
- Terminologie et notions de base
- Représentation et primitives de base
- 4 Fermeture transitive
- Tri topologique

Personnages en relation

Figure: Graphe G = (V, A). Sommets \leftrightarrow personnages, arc \leftrightarrow relation

Déterminer toutes les personnes que Morpheus connait ?

Tâches en relation de précédence

Figure: Sommets ↔ tâches, arc ↔ relation de précédence

Peut-on déterminer un ordre (total) des tâches qui respecte les contraintes de précédence ?

Définition

Definition

Un graphe orienté G est défini par un couple G = (V, A), où V est un ensemble de sommets et A un ensemble d'arcs.

Figure: $V = \{1, 2, 3, 4\}, A = \{(4, 1), (4, 2), (2, 3), (3, 4)\}.$

Terminologie

Pour tout sommet $u \in V$,

- $\Gamma^+(u) = \{v \in V, (u, v) \in A\}$ est l'ensemble des successeurs de u.
- $\Gamma^-(u) = \{v \in V, (v, u) \in A\}$ est l'ensemble des prédécesseurs de u.
- Un *chemin* est une séquence de sommets et d'arcs $\nu = v_1 e_1 v_2 e_2 \cdots v_n e_n v_{n+1}$ avec $v_i \in V$ pour $i \in \{1, \dots, n+1\}$ et $e_i = (v_i, v_{i+1}) \in A$ pour $i \in \{1, \dots, n\}$.
- Un chemin élémentaire est un chemin qui ne passe pas deux fois par le même sommet.
- Un *circuit* est un chemin ν tel que $v_{n+1} = v_1$.

Degré et $\frac{1}{2}$ -degrés d'un graphe orienté

Definition

Soit G = (V, A) un graphe orienté.

- $d^+(u) = |\Gamma^+(u)|$ est le $\frac{1}{2}$ -degré sortant de u.
- $d^-(u) = |\Gamma^-(u)|$ est le $\frac{1}{2}$ -degré entrant de u.
- $d(u) = d^{+}(u) + d^{-}(u)$ est le degré de u.

Theorem

Pour tout graphe G = (V, A) orienté,

$$\sum_{v \in V} d^{+}(v) = \sum_{v \in V} d^{-}(v) = |A|$$

Par récurrence sur le nombre d'arcs.

Forte connexité et composantes fortement connexes

Soit la relation \mathcal{R}_{FC} définie sur V^2 par : $u\mathcal{R}_{FC}v$ ssi il existe un chemin dans G de u à v et de v à u.

$$\mathcal{R}_{FC} = \begin{array}{ll} \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\} \cup \\ & \{(1,2),(2,1),(2,3),(3,2),(1,3),(3,1),(4,5),(5,4)\} \end{array}$$

Relations d'équivalence

Soit \mathcal{R} une relation définie dans un ensemble A.

Definition

 \mathcal{R} est une *relation d'équivalence* sur A si

- \mathcal{R} est réflexive : $x\mathcal{R}x$,
- \mathcal{R} est symétrique : si $x\mathcal{R}y$ alors $y\mathcal{R}x$,
- \mathcal{R} est transitive : si $x\mathcal{R}y$ et si $y\mathcal{R}z$ alors $x\mathcal{R}z$.

Definition

Soir \mathcal{R} une relation d'équivalence sur A, la classe d'équivalence d'un élément x de A est l'ensemble des éléments y de A qui sont en relation avec x.

Remarque : Les classes d'équivalence forment une partition.

Forte connexité et composantes fortement connexes

Theorem

 \mathcal{R}_{FC} est une relation d'équivalence sur V.

Definition

Les classes d'équivalence de la relation \mathcal{R}_{FC} sont désignées par les composantes fortement connexes de G.

Un graphe est fortement connexe si la relation \mathcal{R}_{FC} ne possède qu'une seule classe d'équivalence.

Pour l'exemple, les classes d'équivalence sont $\{1, 2, 3\}$, $\{4, 5\}$ et $\{6\}$.

Quel(s) arcs(s) faut-il rajouter au minimum pour obtenir un graphe fortement connexe ?

Arborescence

Une arborescence est un graphe orienté $G_r = (V, A)$ construit à partir d'un arbre T = (V, E) et d'un sommet $r \in V$.

- \bullet G_r et T ont les mêmes sommets ;
- Les arcs de G_r correspondent aux arêtes de T orientés du sommet r vers les feuilles.

r est *la racine* de G_r . Il s'agit de l'unique sommet de G_r sans prédécesseur.

Matrice sommet-arc pour G = (V, A) orienté

M est une matrice $|V| \times |A|$ telle que, $\forall a = (i, j) \in A$

- M[i, a] = 1, M[j, a] = -1;
- **2** $\forall k \in V \{i, j\}, M[k, a] = 0.$

$$M = \begin{pmatrix} -1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 \\ 1 & 1 & 0 & -1 & 0 \end{pmatrix}$$

Matrice sommet-sommet pour G = (V, A) orienté

R est une matrice $|V| \times |V|$ telle que, $\forall (i,j) \in V^2$

- **1** $R[i,j] \in \{0,1\}$;
- 2 $R[i,j] = 1 \text{ ssi } a = (i,j) \in A.$

$$R = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

Listes de successeurs pour G = (V, A) orienté

Pour $i \in V$, L[i] est la liste des sommets successeurs de i.

$$L[1] = []$$

 $L[2] = [3]$
 $L[3] = [1, 4]$
 $L[4] = [1, 2]$

Taille en mémoire des trois représentations

Soit G = (V, A) un graphe orienté :

	Taille mémoire	
Matrice sommet-arcs	$\Theta(V \times A)$	
Matrice sommet-sommet	$\Theta(V ^2)$	
Listes de successeurs	$\Theta(\max(V , A))$	

Complexité des primitives d'accès aux arcs

Soit G = (V, A) un graphe orienté :

- G.existeArc(i,j): True ssi $(i,j) \in A$;
- ② G.listeSuccesseurs(i): pour $i \in V$, $\Gamma^+(i)$;
- **③** G.listePredecesseurs(i): pour $i \in V$, $\Gamma^-(i)$.

Num. primitives	1	2	3
Matrice som-a	$\mathcal{O}(m)$	$\mathcal{O}(m \times n)$	$\mathcal{O}(m \times n)$
Matrice som-som	Θ(1)	$\Theta(n)$	Θ(<i>n</i>)
Liste de Succ.	$\mathcal{O}(d^+(i))$	Θ(1)	Θ(<i>m</i>)

$$\overline{n=|V|, m=|A|.}$$

Fermeture transitive

Soit \mathcal{R} une relation définie dans un ensemble V.

Definition

La fermeture transitive de \mathcal{R} est la relation \mathcal{R}' dans V définie par $x\mathcal{R}'y$ ssi il existe k>0 et une suite x_0,x_1,\cdots,x_k d'éléments de V tels que $x_0=x$, $x_k=y$ et $x_{i-1}\mathcal{R}x_i$ pour $i=1,\cdots,k$.

La fermeture transitive de $\mathcal{R} = \{(1,2),(2,3),(3,2),(3,4)\}$ est

$$\mathcal{R}' = \{(1,2), (2,3), (3,2), (3,4), (1,3), (2,4), (2,2), (3,3)\}.$$

Calcul de la fermeture transitive

Soit $\mathcal R$ une relation définie dans un ensemble V. La matrice M associée à $\mathcal R$ est la matrice booléenne $|V| \times |V|$ définie par :

$$M[x,y] = \begin{cases} 1 & \text{si } x \mathcal{R}y \\ 0 & \text{sinon} \end{cases}$$

Pour
$$\mathcal{R} = \{(1,2), (2,3), (3,2), (3,4)\},\$$

$$M = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Calcul de la fermeture transitive

On pose $M^1 = M$ et $\forall k > 1$, $M^k = M^{k-1} \times M$, où \times est la multiplication de matrices booléennes.

Lemma

Pour tout entier k > 0 et tout couple $(x, y) \in V^2$, $M^k[x, y] = 1$ ssi il existe x_0, x_1, \ldots, x_k tels que $x_0 = x$, $x_k = y$ et $x_{i-1}\mathcal{R}x_i$ pour $i = 1, \ldots, k$.

$$M^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad M^3 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Par exemple, $M^2[1,3] = 1$ car $1\mathcal{R}2$ et $2\mathcal{R}3$.

Calcul de la fermeture transitive

Theorem

La matrice M' associée à la fermeture transitive de \mathcal{R}' de \mathcal{R} vaut

$$M'=\sum_{k=1}^{|V|}M^k.$$

$$M^4 = M^2$$
 $M' = M + M^1 + M^2 + M^3 + M^4 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Complexité du calcul : $\Theta(|V|^4)$.

Exemple: existence d'un chemin

Soit G = (V, A) un graphe orienté. Pour tout $(u, v) \in V^2$, uRv ssi u = v ou il existe un arc $(u, v) \in A$.

Exemple: existence d'un chemin

Pour tout couple $(u, v) \in V^2$, M'[u, v] = 1 si il existe un chemin de u à v dans G.

A quelle condition deux sommets u et v sont dans la même composante fortement connexe ?

Ordre topologique

Soit G = (V, A) un graphe orienté sans circuit.

Definition

L'ordre topologique dans V est défini par :

 $u \le v$ ssi il existe un chemin de u à v dans G.

$$1 \leq 1 \qquad 1 \leq 9 \qquad 5 \leq 6 \quad \text{mais} \quad 5 \not \leq 12$$

Relations d'ordre

Soit \mathcal{R} une relation définie dans un ensemble V.

Definition

 \mathcal{R} est une *relation d'ordre* sur V si

- R est réflexive,
- \mathcal{R} est antisymétrique : si $x\mathcal{R}y$ et si $y\mathcal{R}x$ alors x=y,
- R est transitive.

Ordre *total* si tous les éléments sont comparables. Ordre *partiel* sinon.

Relations d'ordre, ordre topologique

Theorem

Si G = (V, A) est un graphe orienté sans circuit alors l'ordre topologique sur V est une relation d'ordre.

Remarques:

- il est nécessaire que le graphe soit sans circuit pour que la relation soit antisymétrique,
- l'ordre topologique peut être total ou partiel.

Tri topologique

Definition

Soit G un graphe orienté sans circuit. Un *tri topologique* de G est une liste (u_1, \ldots, u_n) des sommets de G telle que :

 $i < j \Rightarrow$ il n'y a pas de chemin de u_i à u_i .

(1,7,4,10,2,5,12,11,6,3,8,9) est un tri topologique (1,7,4,10,2,5,8,12,11,6,3,9) n'en est pas un.

◆ロト ◆団 ▶ ◆ 草 ▶ ◆ 草 ・ りへで

Rang d'un sommet

Definition

Soit *G* un graphe orienté sans circuit. Le *rang* d'un sommet *u* est défini récursivement :

$$rang(u) = \begin{cases} 0 \text{ si } u \text{ n'a pas de prédécesseur} \\ 1 + \max\{rang(v) \mid v \text{ prédécesseur de } u\} \text{ sinon} \end{cases}$$

Remarque : cette définition a un sens car le graphe est sans circuit.

Rang d'un sommet, exemple

Tri topologique, existence

Theorem

Si un graphe orienté est sans circuit alors il admet un tri topologique.

La preuve est basée sur le lemme suivant :

Lemma

Si G est un graphe orienté sans circuit ayant n sommets alors :

- il existe u_1, \ldots, u_n tels que rang $(u_1) \leq \ldots \leq \operatorname{rang}(u_n)$
- $si \operatorname{rang}(u_1) \leq \ldots \leq \operatorname{rang}(u_n)$ alors (u_1, \ldots, u_n) est un tri topologique.

Tri topologique, algorithme

Soit G = (V, E) un graphe orienté sans circuit. Initialement L est une liste vide et tous les sommets sont à traiter.

- Pour tout sommet u on pose $\Delta(u) = d^-(u)$ (demi-degré entrant de u).
- On choisit un sommet u tel que $\Delta(u) = 0$:
 - on ajoute *u* à *L*,
 - pour chaque successeur v de u on pose $\Delta(v) = \Delta(v) 1$,
 - le sommet *u* n'est plus à traiter.
- On réitère l'étape précédente tant qu'il y a des sommets à traiter.

