Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

> Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

> > Звіт

з лабораторної роботи №4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження ітераційних циклічних алгоритмів» Варіант <u>6</u>

Виконав	пт-15, волинець кирило михаилович		
студент	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета - дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 6

6. Визначити n-не число Фібоначі. Числа Фібоначі визначаються за рекурентною формулою: $f0=0,\,f1=1,\,f_i=f_{i-1}+fi_{-2}$, i>1

2. Побудова математичної моделі.

Складемо таблицю імен змінних.

Змінна	Tun	Ім'я	Призначення
Номер числа Фібоначі	Цілочисельний	n	Вхідні
Попереднє число	Цілочисельний	f_i-2	Проміжні
Поточне число	Цілочисельний	f_i-1	Проміжні, результат
Число-результат	Цілочисельний	f_i	Проміжні

За умовою f0 = 0, а f1 = 1, тоді можна визначити їх як початкові значення для f_i-2 та f_i-1 . Тоді за циклом, кількість ітерацій якого залежить від f_i-1 , будемо сумувати попереднє і поточне числа, записувати результат в змінну f_i , а потім зміщати попереднє та поточне ($f_i-2 = f_i-1$; $f_i-1 = f_i$).

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо початкові значення, кількість ітерацій а також сам цикл.
- Крок 2. Просумуємо попередні числа Фібоначі
- Крок 3. Зсунемо попередні числа Фібоначі

Псевдокод:

кінець

```
Крок 1:
початок
      введення n
      f_i-2 = 0
     f_i-1 = 1
      поки n-1>0 повторити:
            Зсув попередніх чисел Фібоначі
            n = n - 1
      все повторити
      вивести f_i-1
кінець
Крок 2:
початок
      введення n
     f_i-2 = 0
      f_i-1=1
      поки n-1>0 повторити:
            f_i = f_{i-2} + f_{i-1}
            Зсув попередніх чисел Фібоначі
            n = n - 1
      все повторити
      вивести f_i-1
кінець
Крок 3:
початок
      введення п
      f_i-2 = 0
      поки n - 1 > 0 повторити:
            f_i = f_{i-2} + f_{i-1}
           f_i-2 = f_i-1
           f_i-1=f_i
            n = n - 1
      все повторити
      вивести f_i-1
```

Блок-схема:

Перевірка

	Випадок 1	Випадок 2
1	початок	початок
2	Введення п = 1	Введення п = 5
5	$n-1 \le 0$	
6		$f_i = 0 + 1 = 1$
		$f_i-2 = 1$
		$f_i-1 = 1$
		n = 4
7		$f_i = 1 + 1 = 2$
		$f_i-2 = 1$
		$f_i-1=2$
		n = 3
8		$f_i = 1 + 2 = 3$
		$f_i-2=2$
		$f_i-1 = 3$
		n=2
9		$f_i = 2 + 3 = 5$
		$f_i-2 = 3$
		f_i-1 = 5
		n = 1
10		n-1 <= 0
11	Виведення 1	Виведення 5
12	кінець	кінець

Висновки

Ми дослідили особливості роботи арифметичних циклів та набули практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи ми отримали алгоритм для знаходження числа Фібоначі за номером, декомпозували задачу на 3 кроки: визначилт початкові значення, кількість ітерацій а також сам цикл, просумували попередні числа Фібоначі, зсунули попередні числа Фібоначі. В процесі випробування ми розглянули випадки з виконанням цикла та без і отримали результат 1; 5.