Chapter IR:IX

IX. Acquisition

- Crawling the Web
- Conversion
- Storing Documents

File formats

- Text stored in hundreds of incompatible file formats
 - Raw text, RTF, HTML, XML, Microsoft Word, ODF, PDF
- Other types of files also important
 - PowerPoint, Excel
- Typically use a conversion tool
 - Converts the document content into a tagged text format such as HTML
 - Retains some of the important formatting information that would be lost in plain text (words in headings, bold text etc. are important for weighting)
 - You can see this by clicking on the "cached" version of for instance PDF documents on any major search engine
 - For some document types (e.g., PowerPoint) the cached version might look unreadable
 - Still the content is important for indexing, not readability
 - HTML also has the advantage that the user does not need a specific application to show content

Character encoding

- Character encoding is a mapping between bits and glyphs
 - Getting from bits in a file to characters on a screen
 - Can be a major source of incompatibility
- English: ASCII
 - Established 1963
 - Encodes 128 letters, numbers, special characters, and control characters in 7 bits, extended with an extra bit for storage in bytes
- Other European (most): Latin-1 (ISO-8859-1)

Character encoding: Documents lie!

Even when documents say they are in ASCII or ISO 8859-1, you have to assume that they are lying, because it's extremely common for such documents to be actually encoded in Windows-1252.

If you assume that characters in the range 128–159 (decimal) are control characters rather than Windows punctuation (smart quotes, em dashes etc.) then your search results will look very messy.

Character encoding: Even more problems

- Other languages can have many more glyphs
 - Chinese has more than 40,000 characters, with over 3,000 in common use
- Many languages have multiple encoding schemes
 - For instance, CJK (Chinese-Japanese-Korean) family of East Asian languages, Hindi, Arabic
 - Must specify encoding
 - Can't have multiple languages in one file
- Unicode developed to address encoding problems

Unicode

- Single mapping from numbers to glyphs that attempts to include all glyphs in common use in all known languages
- Multiple languages possible in one file
- Many ways to translate Unicode numbers to glyphs
 - UTF-8, UTF-16, UTF-32
- Proliferation of encodings comes from a need for compatibility and to save space
 - UTF-8 uses one byte for English (ASCII), as many as 4 bytes for some traditional Chinese characters
 - Variable length encoding: more difficult to do string operations (count characters or jump to a position)
 - UTF-32 uses 4 bytes for every character
- Many applications use UTF-32 for internal text encoding (fast random lookup) and UTF-8 for disk storage (less space)

Unicode: UTF-8

Decimal	Hexadecimal	Encoding
0–127	0–7F	0xxxxxx
128–2047	80-7FF	110xxxxx 10xxxxxx
2048-55295	800-D7FF	1110xxxx 10xxxxxx 10xxxxxx
55296-57343	D800-DFFF	Undefined
57344-65535	E000-FFFF	1110xxxx 10xxxxxx 10xxxxxx
65536-1114111	10000-10FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

- \Box Greek letter pi (π) is Unicode symbol number 960
- ☐ In binary, 00000011 11000000 (3C0 in hexadecimal)
- □ Final encoding is **110**01111 **10**000000 (CF80 in hexadecimal)