

Applied Natural Language Processing

Info 256

Lecture 9: Lexical semantics (Feb 19, 2019)

David Bamman, UC Berkeley

Lexical semantics

"You shall know a word by the company it keeps"

[Firth 1957]

DISTRIBUTIONAL STRUCTURE ZELLIG S. HARRIS

(b) The fact that, for example, not every adjective occurs with every noun can be used as a measure of meaning difference. For it is not merely that different members of the one class have different selections of members of the other class with which they are actually found. More than that: if we consider words or morphemes A and B to be more different in meaning than A and C, then we will often find that the distributions of A and B are more different than the distributions of A and C. In other words, difference of meaning correlates with difference of distribution.

The distribution of an element will be understood as the sum of all its environments. An environment of an element A is an existing array of its co-occurrents, i.e. the other elements, each in a particular position, with which A occurs to yield an utterance. A's co-occurrents in a particular position are called its selection for that position.

everyone likes	
a bottle of	 is on the table
you can drink	if you're over 21
a cocktail with	 and seltzer

Context

"You shall know a word by the company it keeps"

[Firth 1957]

 A few different ways we can encode the notion of "company" (or context).

everyone likes _____ is on the table

you can drink _____ if you're over 21

and seltzer

a cocktail with

Distributed representation

- Vector representation that encodes information about the distribution of contexts a word appears in
- Words that appear in similar contexts have similar representations (and similar meanings, by the distributional hypothesis).

Term-document matrix

	Hamlet	Macbeth	Romeo & Juliet	Richard III	Julius Caesar	Tempest	Othello	King Lear
knife	1	1	4	2		2		2
dog	2		6	6		2		12
sword	17	2	7	12		2		17
love	64		135	63		12		48
like	75	38	34	36	34	41	27	44

Context = appearing in the same document.

Vector

Vector representation of the document; vector size = V

Hamlet
1
2
17
64
75

King Lear
2
12
17
48
44

Vectors

knife	1	1	4	2	2	2
sword	17	2	7	12	2	17

Vector representation of the term; vector size = number of documents

Weighting dimensions

Not all dimensions are equally informative

TF-IDF

- Term frequency-inverse document frequency
- A scaling to represent a feature as function of how frequently it appears in a data point but accounting for its frequency in the overall collection
- IDF for a given term = the number of documents in collection / number of documents that contain term

TF-IDF

- Term frequency $(tf_{t,d})$ = the number of times term t occurs in document d; several variants (e.g., passing through log function).
- Inverse document frequency = inverse fraction of number of documents containing (D_t) among total number of documents N

$$tfidf(t,d) = tf_{t,d} \times \log \frac{N}{D_t}$$

IDF

	Hamlet	Macbet h	Romeo & Juliet	Richard III	Julius Caesar	Tempes t	Othello	King Lear
knife	1	1	4	2		2		2
dog	2		6	6		2		12
sword	17	2	7	12		2		17
love	64		135	63		12		48
like	75	38	34	36	34	41	27	44

IDF
0.12
0.20
0.12
0.20
0

IDF for the informativeness of the terms when comparing documents

PMI

- Mutual information provides a measure of how independent two variables (X and Y) are.
- Pointwise mutual information measures the independence of two outcomes (x and y)

PMI

$$\log_2 \frac{P(x,y)}{P(x)P(y)}$$

w = word, c = context

$$\log_2 \frac{P(w,c)}{P(w)P(c)}$$
 What's this value for w and c that never occur together?

$$PPMI = \max\left(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0\right)$$

	Hamlet	Macbet h	Romeo & Juliet	Richard III	Julius Caesar	Tempest	Othello	King Lear	total
knife	1	1	4	2		2		2	12
dog	2		6	6		2		12	28
sword	17	2	7	12		2		17	57
love	64		135	63		12		48	322
like	75	38	34	36	34	41	27	44	329
total	159	41	186	119	34	59	27	123	748

$$PMI(love, R\&J) = \frac{\frac{135}{748}}{\frac{186}{748} \times \frac{322}{748}}$$

Term-context matrix

- Rows and columns are both words; cell counts = the number of times word w_i and w_j show up in the same document.
- More common to define document = some smaller context (e.g., a window of 2 tokens)

Dataset

- the big dog ate dinner
- the small cat ate dinner
- the white dog ran down the street
- the yellow cat ran inside

DOG terms (window = 2)

the big ate dinner the white ran down

CAT terms (window = 2)

the small ate dinner the yellow ran inside

Term-context matrix

contexts

	the	big	ate	dinner	
dog	2	1	1	1	
cat	2	0	1	1	

 Each cell enumerates the number of time a context word appeared in a window of 2 words around the term.

Term-context matrix

	aardvark	 computer	data	pinch	result	sugar	
apricot	0	 0	0	1	0	1	
pineapple	0	 0	0	1	0	1	
digital	0	 2	1	0	1	0)	
information	0	 1	6	0	4	0	

Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus, showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the word *digital* is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Dataset

- the big dog ate dinner
- the small cat ate dinner
- the white dog ran down the street
- the yellow cat ran inside

DOG terms (window = 2)

L: the big, R: ate dinner,

L: the white, R: ran

down

CAT terms (window = 2)

L: the small, R: ate dinner, L: the yellow, R: ran inside

Term-context matrix

contexts

	L: the big	R: ate dinner	L: the small	L: the yellow	
dog	1	1	0	0	
cat	0	1	1	1	

 Each cell enumerates the number of time a directional context phrase appeared in a specific position around the term.

write a book write a poem

- First-order co-occurrence (syntagmatic association): write co-occurs with book in the same sentence.
- Second-order co-occurrence (paradigmatic association): book co-occurs with poem (since each co-occur with write)

Syntactic context

WORD	CONTEXTS
australian	scientist/amod ⁻¹
scientist	australian/amod, discovers/nsubj ⁻¹
discovers	scientist/nsubj, star/dobj, telescope/prep_with
star	discovers/dobj ⁻¹
telescope	discovers/prep_with ⁻¹

Lin 1998; Levy and Goldberg 2014

Target Word	BoW5	BoW2	DEPS
	nightwing	superman	superman
	aquaman	superboy	superboy
batman	catwoman	aquaman	supergirl
	superman	catwoman	catwoman
	manhunter	batgirl	aquaman
	dumbledore	evernight	sunnydale
	hallows	sunnydale	collinwood
hogwarts	half-blood	garderobe	calarts
	malfoy	blandings	greendale
	snape	collinwood	millfield
	nondeterministic	non-deterministic	pauling
	non-deterministic	finite-state	hotelling
turing	computability	nondeterministic	heting
	deterministic	buchi	lessing
	finite-state	primality	hamming
	gainesville	fla	texas
	fla	alabama	louisiana
florida	jacksonville	gainesville	georgia
	tampa	tallahassee	california
	lauderdale	texas	carolina
	aspect-oriented	aspect-oriented	event-driven
	smalltalk	event-driven	domain-specific
object-oriented	event-driven	objective-c	rule-based
	prolog	dataflow	data-driven
	domain-specific	4gl	human-centered
	singing	singing	singing
	dance	dance	rapping
dancing	dances	dances	breakdancing
	dancers	breakdancing	miming
	tap-dancing	clowning	busking

Cosine Similarity

$$cos(x,y) = \frac{\sum_{i=1}^{F} x_i y_i}{\sqrt{\sum_{i=1}^{F} x_i^2} \sqrt{\sum_{i=1}^{F} y_i^2}}$$

- We can calculate the cosine similarity of two vectors to judge the degree of their similarity [Salton 1971]
- Euclidean distance measures the magnitude of distance between two points
- Cosine similarity measures their orientation

Intrinsic Evaluation

 Relatedness: correlation (Spearman/Pearson) between vector similarity of pair of words and human judgments

word 1	word 2	human score
midday	noon	9.29
journey	voyage	9.29
car	automobile	8.94
professor	cucumber	0.31
king	cabbage	0.23

Intrinsic Evaluation

 Analogical reasoning (Mikolov et al. 2013). For analogy Germany: Berlin:: France: ????, find closest vector to v("Berlin") - v("Germany") + v("France")

			target
possibly	impossibly	certain	uncertain
generating	erating generated shrinking		shrank
think	thinking	look	looking
Baltimore	Maryland	Oakland	California
shrinking	shrank	slowing	slowed
Rabat	Morocco	Astana	Kazakhstan

Sparse vectors

"aardvark"

V-dimensional vector, single 1 for the identity of the element

Α	0
а	0
aa	0
aal	0
aalii	0
aam	0
Aani	0
aardvark	1
aardwolf	0
	0
zymotoxic	0
zymurgy	0
Zyronion	
Zyrenian	0
Zyrian	0
	•
Zyrian	0
Zyrian Zyryan	0
Zyrian Zyryan zythem	0 0 0
Zyrian Zyryan zythem Zythia	0 0 0 0
Zyrian Zyryan zythem Zythia zythum	0 0 0 0 0

Dense vectors

Singular value decomposition

 Any nxp matrix X can be decomposed into the product of three matrices (where m = the number of linearly independent rows)

Singular value decomposition

 We can approximate the full matrix by only considering the leftmost k terms in the diagonal matrix

Singular value decomposition

 We can approximate the full matrix by only considering the leftmost k terms in the diagonal matrix (the k largest singular values)

	Hamlet	Macbeth	Romeo & Juliet	Richard III	Julius Caesar	Tempest	Othello	King Lear
knife	1	1	4	2		2		2
dog	2		6	6		2		12
sword	17	2	7	12		2		17
love	64		135	63		12		48
like	75	38	34	36	34	41	27	44

knife	
dog	
sword	
love	
like	

Hamle t	Macbet h	Romeo & Juliet	Julius Caesar	Tempe st	Othello	King Lear

Low-dimensional representation for terms (here 2-dim)

knife	
dog	
sword	
love	
like	

Low-dimensional representation for documents (here 2-dim)

Hamle t	Macbet h	Romeo & Juliet	Julius Caesar	Othello	King Lear

Latent semantic analysis

- Latent Semantic Analysis/Indexing (Deerwester et al. 1998) is this process of applying SVD to the term-document co-occurence matrix
- Terms typically weighted by tf-idf
- This is a form of dimensionality reduction (for terms, from a D-dimensionsal sparse vector to a Kdimensional dense one), K << D.

dist sim + dist rep

- Term-term co-occurrence matrix
- SVD to yield lowdimensional representation

	bank	interest	finals
cash	300	210	133
sport	75	140	200

Figure 1: A collocation matrix.

Figure 2: A vector model for context.

7.embeddings/ DistributionalSimilarity.ipynb

- Explore context choices for distributional vectors
- Find more similar words
- Understands which contexts were important for determining similarity.