

1st EuroProofNet Dedukti School

Introduction to proof system interoperability, the Dedukti language and the Lambdapi tool

Frédéric Blanqui

Deduc⊢eam

Thank you

Nicolas Tabareau, Matthieu Sozeau and their colleagues

for the local organization in Nantes of

Women in EuroProofnet and the 1st Dedukti school!

Outline

Introduction to proof system interoperability

 λ Π-calculus modulo rewriting

Dedukti language

Lambdapi too

Libraries of formal proofs today

Library	Nb files	Nb objects*
Coq Opam	16,000	473,000
Isabelle AFP	7,000	90,000
Lean Mathlib	2,000	81,000
Mizar Mathlib	1,400	77,000
HOL-Light	500	35,000

^{*} type, definition, theorem, ...

Libraries of formal proofs today

Library	Nb files	Nb objects*
Coq Opam	16,000	473,000
Isabelle AFP	7,000	90,000
Lean Mathlib	2,000	81,000
Mizar Mathlib	1,400	77,000
HOL-Light	500	35,000

type, definition, theorem, ...

- ▶ Every system has basic libraries on integers, lists, . . .
- ► Some definitions/theorems are available in one system only

Libraries of formal proofs today

Library	Nb files	Nb objects*
Coq Opam	16,000	473,000
Isabelle AFP	7,000	90,000
Lean Mathlib	2,000	81,000
Mizar Mathlib	1,400	77,000
HOL-Light	500	35,000

type, definition, theorem, ...

- Every system has basic libraries on integers, lists, . . .
- ► Some definitions/theorems are available in one system only
- ⇒ Can't we translate a proof between two systems automatically?

Interest of proof interoperability

- Avoid duplicating developments and losing time
- Facilitate development of new proof systems
- Increase reliability of formal proofs (cross-checking)
- ► Facilitate validation by certification authorities
- Relativize the choice of a system (school, industry)
- Provide multi-system data to machine learning

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- ▶ It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)
- ▶ Is it reasonable to have n(n-1) translators for n systems?

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- ▶ It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)
- ls it reasonable to have n(n-1) translators for n systems?

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a system S as a theory D(S) in D

Example: D = predicate calculus allows one to represent S = geometry, S = arithmetic, S = set theory, ... not well suited for functional computations and dependent types

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a system S as a theory D(S) in D

Example: D= predicate calculus allows one to represent S= geometry, S= arithmetic, S= set theory, ... not well suited for functional computations and dependent types

Better: $D = \lambda \Pi$ -calculus modulo rewriting allows one to represent also: S=HOL, S=Coq, S=Agda, S=PVS, ...

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework *D*:

1. translate $t \in A$ in $t' \in D(A)$

3. translate $u' \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework *D*:

- 1. translate $t \in A$ in $t' \in D(A)$
- 2. identify the axioms and deduction rules of A used in t' translate $t' \in D(A)$ in $u' \in D(B)$ if possible
- 3. translate $u' \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework *D*:

- 1. translate $t \in A$ in $t' \in D(A)$
- 2. identify the axioms and deduction rules of A used in t' translate $t' \in D(A)$ in $u' \in D(B)$ if possible
- 3. translate $u' \in D(B)$ in $u \in B$
- \Rightarrow represent in the same way functionalities common to A and B

The modular $\lambda \Pi / \mathcal{R}$ theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories

Dedukti, an assembly language for proof systems

Libraries currently available in Dedukti

System	Libraries	
HOL-Light	OpenTheory	
Matita	Arith	
Coq	Stdlib parts, GeoCoq	
Isabelle	HOL.Complex_Main 🗰 (AFP soon?)	
Agda	Stdlib parts (\pm 25%)	
PVS	Stdlib parts	
TPTP	E 69%, Vampire 83%	

Case study:

Matita/Arith → OpenTheory, Coq, PVS, Lean, Agda

http://logipedia.inria.fr

Functionalities

Today

Outline

Introduction to proof system interoperability

 $\lambda\Pi$ -calculus modulo rewriting

Dedukti language

Lambdapi too

```
\begin{array}{lll} \lambda\Pi/\mathcal{R} = & & & \\ \lambda & & & \text{simply-typed $\lambda$-calculus} \\ + \Pi & & & \text{dependent types, e.g. array}(n) \\ + \mathcal{R} & & & \text{identification of types modulo rewrites rules $I \hookrightarrow r$} \end{array}
```

```
\lambda \Pi / \mathcal{R} =
                                                       simply-typed \lambda-calculus
+ \Pi
                                              dependent types, e.g. array(n)
                     identification of types modulo rewrites rules I \hookrightarrow r
+ \mathcal{R}
terms t, u =
                                                                     sort of types
TYPE
                                                                  global constant
                                                                    local variable
X
tu
                                                                       application
\lambda x:t,u
                                                                       abstraction
\Pi x:t,u
                                                             dependent product
t \rightarrow u
                                      abbreviation for \Pi x : t, u when x \notin u
```

 $\begin{array}{c} \text{theory} = \\ \Sigma \\ + \, \mathcal{R} \end{array}$

sequence of type declarations for global constants set of rewrite rules $l \hookrightarrow r$ including rules on types!

```
theory =
    Σ
                           sequence of type declarations for global constants
+\mathcal{R}
                                                                 set of rewrite rules l \hookrightarrow r
                                                                 including rules on types!
typing = \ldots +
  \Gamma, x : A \vdash t : B \quad \Gamma \vdash \Pi x : A, B : TYPE
                                                                           Γ: types of
             \Gamma \vdash \lambda x : A, t : \Pi x : A, B
                                                                                local variables
          \Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A
                \Gamma \vdash tu : B\{x \mapsto u\}
               \Gamma \vdash t : A \quad A \equiv_{\beta R} B
                                                                 \equiv_{\beta \mathcal{R}}: equational theory
                        \Gamma \vdash t : B
                                                                      generated by \beta and \mathcal{R}
```

Properties of the $\lambda\Pi$ -calculus modulo rewriting

$\lambda\Pi/\mathcal{R}$ enjoys all the properties of $\lambda\Pi$:

- unicity of types modulo $\equiv_{\beta \mathcal{R}}$
- decidability of $\equiv_{\beta \mathcal{R}}$ and type-checking

assuming that $\hookrightarrow_{\beta \mathcal{R}}$:

- ▶ terminates: there is no infinite $\hookrightarrow_{\beta R}$ sequences
- ▶ is confluent: the order of $\hookrightarrow_{\beta \mathcal{R}}$ steps does not matter
- ▶ \mathcal{R} preserves typing: if $I\theta : A$ and $I \hookrightarrow r \in \mathcal{R}$ then $r\theta : A$

There exists (certified) tools for checking those properties

Outline

Introduction to proof system interoperability

 λ Π-calculus modulo rewriting

Dedukti language

Lambdapi too

What is Dedukti?

Dedukti is a concrete language for defining $\lambda \Pi / \mathcal{R}$ theories

There are several tools to check the correctness of Dedukti files:

Kocheck https://github.com/01mf02/kontroli-rs

Dkcheck https://github.com/Deducteam/dedukti

► Lambdapi https://github.com/Deducteam/lambdapi

Efficiency: Kocheck > Dkcheck > Lambdapi Features: Kocheck < Dkcheck < Lambdapi

Dkcheck and Lambdapi can export $\lambda \Pi / \mathcal{R}$ theories to:

- ▶ the HRS format of the confluence competition
- ► the XTC format of the termination competition extended with dependent types

How to install and use Kocheck?

Installation:

```
cargo install -- git https://github.com/01mf02/kontroli-rs
```

Use:

kocheck file.dk

How to install and use Dkcheck?

Installation:

```
Using Opam:
```

```
opam install dedukti
```

Compilation from the sources:

```
git clone https://github.com/Deducteam/dedukti.git
cd dedukti
make
make install
```

Use:

```
dk check file.dk
```

Dedukti syntax

BNF grammar:

```
https://github.com/Deducteam/Dedukti/blob/master/syntax.bnf
```

file extension: .dk

comments: (; ... (; ... ;) ... ;)

identifiers:

 $(a-z|A-Z|0-9|_)+$ and {| arbitrary string |}

Terms

```
Type
id
id.id
term term ... term
id [: term] => term
[id:] term -> term
( term )
```

sort for types
variable or constant
constant from another file
application
abstraction
[dependent] product

Command for declaring/defining a symbol

```
modifier* id param* : term [:= term] .
                                         param ::= (id : term)
modifier's:
```

- def: definable
- thm: never reduced
- AC: associative and commutative
- private: exported but usable in rule left-hand sides only
- injective: used in subject reduction

```
N : Type.
O : N.
s : N \rightarrow N.
def add : N -> N -> N.
thm add_com :
  x:N \rightarrow y:N \rightarrow Eq (add x y) (add y x) := ...
```

Command for declaring rewrite rules

[
$$id *] (term --> term)^+$$
.

```
[x y]
x + 0 --> x
x + s y --> s (x + y).
```

Dkcheck tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)

Queries and assertions

```
#INFER term .
#EVAL term .
(#ASSERT | #ASSERTNOT) term (:|==) term .
(\#CHECK \mid \#CHECKNOT) term (:|==) term.
#INFER O.
#EVAL add 2 2.
#ASSERT 0 : N.
#ASSERTNOT O : N \rightarrow N.
\#ASSERT add 2 2 == 4.
#ASSERTNOT add 2 2 == 5.
```

Importing the declarations of other files

```
file1.dk:
A : Type.

file2.dk:
#REQUIRE file1.
a : file1.A.
```

Outline

Introduction to proof system interoperability

 λ Π-calculus modulo rewriting

Dedukti language

Lambdapi tool

What is Lambdapi?

Lambdapi is an interactive proof assistant for $\lambda\Pi/\mathcal{R}$

- ▶ has its own syntax and file extension .lp
- can read and output .dk files
- symbols can have implicit arguments
- symbol declaration/definition generates typing/unification goals
- goals can be solved by structured proof scripts (tactic trees)
- **•** . . .

Where to find Lambdapi?

Webpage: https://github.com/Deducteam/lambdapi

User manual: https://lambdapi.readthedocs.io/

Libraries:

https://github.com/Deducteam/opam-lambdapi-repository

How to install Lambdapi?

- 2 possibilities:
- 1. Using Opam:

```
opam install lambdapi
```

2. Compilation from the sources:

```
git clone https://github.com/Deducteam/lambdapi.git
cd lambdapi
make
make install
```

How to use Lambdapi?

2 possibilities:

1. Command line (batch mode):

lambdapi check file.lp

- 2. Through an editor (interactive mode):
- Emacs
- VSCode

Lambdapi automatically (re)compiles dependencies if necessary

How to install the Emacs interface?

- 3 possibilities:
- 1. Nothing to do when installing Lambdapi with opam
- 2. From Emacs using MELPA:

```
M-x package-install RET lambdapi-mode
```

3. From sources:

```
make install_emacs
```

```
+ add in ~/.emacs:
```

```
(load "lambdapi-site-file")
```


shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

How to install the VSCode interface?

From the VSCode Marketplace

VSCode interface

File lambdapi.pkg

developments must have a file lambdapi.pkg describing where to install the files relatively to the root of all installed libraries

```
package_name = my_lib
root_path = logical.path.from.root.to.my_lib
```

Importing the declarations of other files

```
lambdapi.pkg:
package_name = unary
root_path = nat.unary
file1.lp:
symbol A : TYPE;
file2.lp:
require nat.unary.file1;
symbol a : nat.unary.file1.A;
open nat.unary.file1;
symbol a' : A;
file3.lp:
require open nat.unary.file1 nat.unary.file2;
symbol b := a;
```

Lambdapi syntax

BNF grammar:

 $\verb|https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf|$

file extension: .1p

comments: /* ... /* ... */ or // ...

identifiers: UTF16 characters and {| arbitrary string |}

Terms

```
TYPE sort for types (id.)*id variable or constant term term ... term application \lambda id [: term], term abstraction \Pi id [: term], term dependent product term \rightarrow term non-dependent product ____ unknown term [let id [: term] := term in term (term)
```

Command for declaring/defining a symbol

modifier's:

- constant: not definable
- opaque: never reduced
- associative
- ► commutative
- private: not exported
- protected: exported but usable in rule left-hand sides only
- sequential: reduction strategy
- ▶ injective: used in unification

Examples of symbol declarations

```
symbol N: TYPE;
symbol 0: N;
symbol s: N \to N;
symbol +: N \to N \to N; notation + infix right 10;
symbol \times: N \to N \to N; notation \times infix right 20;
```

Command for declaring rewrite rules

```
rule term \hookrightarrow term (with term \hookrightarrow term)^*;
```

pattern variables must be prefixed by \$:

```
rule x + 0 \hookrightarrow x
with x + s \Leftrightarrow y \hookrightarrow s (x + y);
```

Lambdapi tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)

Command for adding rewrite rules

Lambdapi supports:

overlapping rules

```
rule \$x + 0 \hookrightarrow \$x
with \$x + s \$y \hookrightarrow s (\$x + \$y)
with 0 + \$x \hookrightarrow \$x
with s \$x + \$y \hookrightarrow s (\$x + \$y);
```

matching on defined symbols

```
rule (x + y) + z \hookrightarrow x + (y + z);
```

non-linear patterns

```
rule x - x \hookrightarrow 0;
```

Lambdapi tries to automatically check:

local confluence (AC symbols/HO patterns not handled yet)

Higher-order pattern-matching

```
\begin{array}{l} \text{symbol R:TYPE;} \\ \text{symbol } \text{O:R;} \\ \text{symbol } \sin: \mathbb{R} \to \mathbb{R}; \\ \text{symbol } \cos: \mathbb{R} \to \mathbb{R}; \\ \text{symbol } \text{D:} (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R}); \\ \\ \text{rule D } (\lambda \text{ x, } \sin \text{ $F.[x])} \\ &\hookrightarrow \lambda \text{ x, D $F.[x] \times \cos \text{ $F.[x];} } \\ \text{rule D } (\lambda \text{ x, $$V.[])} \\ &\hookrightarrow \lambda \text{ x, 0;} \end{array}
```

Non-linear matching

Example: decision procedure for group theory

```
symbol G : TYPE;
symbol 1 : G;
symbol \cdot: G \rightarrow G \rightarrow G; notation \cdot infix 10;
symbol inv : G \rightarrow G;
rule (x \cdot y \cdot z \hookrightarrow x \cdot (y \cdot z)
with 1 \cdot $x \hookrightarrow $x
with x \cdot 1 \hookrightarrow x
with inv x \cdot x \hookrightarrow 1
with x \cdot inv x \hookrightarrow 1
with inv x \cdot (x \cdot y) \hookrightarrow y
with x \cdot (inv x \cdot y) \hookrightarrow y
with inv 1 \hookrightarrow 1
with inv (inv $x) \hookrightarrow $x
with inv (\$x \cdot \$y) \hookrightarrow \text{inv } \$y \cdot \text{inv } \$x;
```

Defining inductive-recursive types

because symbol and rule declarations are separated, one can easily define inductive-recursive types in Dedukti or Lambdapi:

```
// lists without duplicated elements constant symbol L : TYPE; symbol \notin : N \to L \to Prop; notation \notin infix 20; constant symbol nil : L; constant symbol cons x l : Prf(x \notin l) \to L; rule \_ \notin nil \hookrightarrow \top with x \notin cons \ y \ - \hookrightarrow x \neq y \land x \notin sl;
```

Command for generating induction principles

```
inductive N : TYPE = 0 : N | s : N \rightarrow N;
```

is equivalent to:

```
\begin{array}{l} {\rm symbol}\ N\ :\ {\rm TYPE}\,;\\ {\rm symbol}\ 0\ :\ N;\\ {\rm symbol}\ s\ :\ N\to N;\\ {\rm symbol}\ {\rm ind}\_N\ ({\rm p}\ :\ N\to {\rm Prop})\\ {\rm (case}\_0\ :\ {\rm Prf}({\rm p}\ 0))\\ {\rm (case}\_s\ :\ \Pi\ x\ :\ N,\ {\rm Prf}({\rm p}\ x)\to {\rm Prf}({\rm p}({\rm s}\ x)))\\ {\rm (n}\ :\ N)\  \  :\ {\rm Prf}({\rm p}\ n);\\ {\rm rule}\ {\rm ind}\_N\ {\rm $p}\ {\rm $c0}\ {\rm $cs}\ 0 \hookrightarrow {\rm $c0}\\ {\rm with}\ {\rm ind}\_N\ {\rm $p}\ {\rm $c0}\ {\rm $cs}\ ({\rm s}\ {\rm $x)}\\ {\rm \hookrightarrow}\ {\rm $cs}\ {\rm $x}\ ({\rm ind}\_N\ {\rm $p}\ {\rm $c0}\ {\rm $cs}\ {\rm $x)} \end{array}
```

Lambdapi handles strictly positive parametric inductive types

Example of inductive-inductive type

```
/* contexts and types in dependent type theory
Forsberg's 2013 PhD thesis */
// contexts
inductive Ctx : TYPE :=
\square: Ctx
| \cdot | \Gamma : Ty \Gamma \rightarrow Ctx
// types
with Ty : Ctx \rightarrow TYPE :=
U F : Ty F
\mid P \Gamma a : Ty (\cdot \Gamma a) \rightarrow Ty \Gamma;
```

Queries and assertions

```
print id ;
type term;
compute term;
(assert | assertnot) id * \vdash term(:|\equiv) term;
print N; // constructors and induction principle
print +; // type and rules
type x;
compute 2 \times 5;
assert 0 : N;
assertnot 0 : N \rightarrow N;
assert x y z \vdash x + y \times z \equiv x + (y \times z);
assertnot x y z \vdash x + y \times z \equiv (x + y) \times z;
```

Reducing proof checking to type checking

(aka the Curry-Howard isomorphism)

```
// type of propositions
symbol Prop : TYPE;
symbol = : N \rightarrow N \rightarrow Prop; notation = infix 1;
// interpretation of propositions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop → TYPE;
// examples of axioms
symbol = -refl x : Prf(x = x);
symbol =-s x y : Prf(x = y) \rightarrow Prf(s x = s y);
symbol ind_N (p : N \rightarrow Prop)
  (case_0: Prf(p 0))
  (case_s: \Pi x : N, Prf(p x) \rightarrow Prf(p(s x)))
  (n : N) : Prf(p n);
```

Stating an axiom vs Proving a theorem

Stating an axiom:

```
opaque symbol 0_is_neutral_for_+ x :
  Prf (0 + x = x);
// no definition given now
// one can still be given later with a rule
```

Proving a theorem:

```
opaque symbol 0_is_neutral_for_+ x :
   Prf (0 + x = x) :=
// generates the typing goal Prf (0 + x = x)
// a proof must be given now
begin
   ... // proof script
end;
```

Goals and proofs

symbol declarations/definitions can generate:

- ▶ typing goals $x_1: A_1, ..., x_n: A_n \vdash ?: B$
- ▶ unification goals $x_1: A_1, ..., x_n: A_n \vdash t \equiv u$

these goals can be solved by writing proof 's:

- ▶ a proof is a ;-separated sequence of proof_step 's
- a proof_step is a tactic followed by as many proof 's enclosed in curly braces as the number of goals generated by the tactic

tactic 's for unification goals:

► solve (applied automatically)

Example of proof

```
opaque symbol 0_is_neutral_for_+ x :
   Prf(0 + x = x)

= begin
induction
   {simplify; reflexivity;}
   {assume x h; simplify; rewrite h; reflexivity;}
end;
```

Tactics for typing goals

- ▶ simplify [id]
- refine term
 - ▶ assume id⁺
 - ▶ generalize id
 - apply term
 - ▶ induction
 - ▶ have id : term
 - ► reflexivity
 - ► symmetry
 - rewrite [right] [pattern] term
- ▶ why3

like Coq SSReflect

calls external provers

Lambdapi's additional features wrt Dkcheck/Kocheck

Lambdapi is an interactive proof assistant for $\lambda \Pi / \mathcal{R}$

- has its own syntax and file extension 1p
- can read and output dk files
- supports Unicode characters and infix operators
- symbols can have implicit arguments
- symbol declaration/definition generates typing/unification goals
- goals can be solved by structured proof scripts (tactic trees)
- provides a rewrite tactic similar to Coq/SSReflect
- can call external (first-order) theorem provers
- provides a command for generating induction principles
- provides a local confluence checker
- handles associative-commutative symbols differently
- supports user-defined unification rules