Designing, Visualizing and Understanding Deep Neural Networks

Lecture 6: Convolutional Networks II

CS 182/282A Spring 2019
John Canny

Slides originated from Efros, Karpathy, Ransato, Seitz, and Palmer

Last Time: Backpropagation

Backprop Efficiency: matrix-vector multiply only and common subexpressions.

Example: a real neural network (Tensorflow style):

Last Time: Convolution Layers

activation map

Last Time: Convolution Layers

Projects! The Project Proposal page is up

This Time: Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Handwritten digit classification

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

. . .

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used LRNorm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

1. Train on Imagenet

1. Train on Imagenet

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

1. Train on Imagenet

image 3. If you have medium sized conv-64 dataset, "finetune" conv-64 instead: use the old weights maxpool as initialization, train the full conv-128 network or only some of the conv-128 maxpool higher layers conv-256 conv-256 retrain bigger portion of the maxpool network, or even all of it. conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

1. Train on Imagenet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2)	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-25 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
	N	max	pool	ė.	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
***************************************			pool	Sa ton Guet Sent Sent I	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
			4096		
			4096		
			1000		Ĭ
		soft-	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)					
1141 01. [22+x22+x0] Hichory. 22+ 22+ 0=1001 params. 0	ConvNet Configuration				
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	С	D	_	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight layers	16 weight	19	
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers			
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	put (224×22)	× .			
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	cc	
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	max	COINS OF	-		
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	co	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-128	conv3-128	conv3-128	co	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	max		_		
	conv3-256	conv3-256	conv3-256	co	
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	conv3-256	conv3-256 conv1-256	conv3-256 conv3-256	co	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		COHV1-250	COHV3-250	CO	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	max		CO		
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co	
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512	conv3-512	co	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv1-512	conv3-512	co	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		•		col	
		pool	2 512	_	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	co	
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	COIIV3-312	conv1-512	conv3-512	co	
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		CONVI-312	CONVO-312	col	
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	maxpool				
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	FC-4096				
- Land and the second s	FC-4096				
		1000			
	soft-	-max			

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	5000			
114 OT. [224722470] History. 224 224 0-1001 paramo. 0	ConvNet Configuration			
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	C	D	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight	16 weight	19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	put (224×2)	X.	_	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	conv3-64	conv3-64 conv3-64	conv3-64	cc
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	conv3-64 max	conv3-64	cc	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	co
	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	max			
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	co
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	conv3-256	conv3-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		conv1-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296		naal		co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	pool conv3-512	conv3-512	co
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512	conv3-512	co
·		conv1-512	conv3-512	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296				co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		pool		
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	conv3-512	conv3-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		conv1-512	conv3-512	CO
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	maxpool			
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	FC-4096			
1 O. [1X1X1000] Memory. 1000 params. 4030 1000 = 4,030,000	FC-4096			
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)	FC-1000			
TOTAL params: 138M parameters	soft-max			
101/12 paramo. Toom paramotoro				

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                         Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M arams: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                         Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                         early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                         Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                         in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```

Slide based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0)				
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0			k s					2
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0						6		ik V

Fun features:

Only 5 million params!
 (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Kaiming He, Xiangyu Zhang, Shaoqing Re

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Slide from Kaiming He's recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

(slide from Kaiming He's recent presentation)

CIFAR-10 experiments

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training on 8 GPU machine

at runtime: faster than a VGGNet! (even though it has 8x more layers)

(slide from Kaiming He's recent presentation)

[He et al., 2015]

[He et al., 2015]

Case Study: ResNet [™]

[He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Case Study: ResNet

[He et al., 2015]

Case Study: ResNet

[He et al., 2015]

(this trick is also used in GoogLeNet)

Case Study: ResNet [He et al., 2015]

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
3		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 3$
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
9	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^{9}

Summary

- ConvNets stack CONV,ReLU,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Early architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX

 but recent advances such as ResNet/GoogLeNet use only Conv-ReLU, 1x1 convolutions, global max pooling and Softmax

Activation Functions: Biological Inspiration

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

1.0 0.8 0.5 0.5 0.5 0.5 -10 -5 5 10

tanh tanh(x)

Leaky ReLU max(0.1x, x)

 $\mathbf{Maxout} \quad \max(w_1^Tx + b_1, w_2^Tx + b_2)$

ELU

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Sigmoid (logistic function)

$$\sigma(x) = 1/(1+e^{-x})$$

- Squashes numbers to range [0,1] can kill gradients.
- A key element in LSTM networks "control signals"
- Good for learning "logical" functions, good for non-linear control (robots)
- Not as good for image networks (replaced by RELU)
- Not zero-centered

Consider what happens when the input to a neuron (x) is always positive:

What can we say about the gradients on w?

Consider what happens when the input to

a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

allowed gradient update directions

allowed gradient update directions

hypothetical optimal w

vector

What can we say about the gradients on w? Always all positive or all negative :((this is also why you want zero-mean data!)

- Squashes numbers to range [-1,1]
- Zero centered (nice)
- Still kills gradients when saturated :(
- Also used in LSTMs for bounded, signed values.
- Not as good for binary functions

[LeCun et al., 1991]

ReLU (Rectified Linear Unit)

- Computes $f(x) = \max(0, x)$
- Does not saturate (in +region)
- Converges faster than sigmoid/tanh on image data (e.g. 6x)
- Not suitable for logical functions
- Not for control in recurrent nets

[Krizhevsky et al., 2012]

ReLU (Rectified Linear Unit)

- Computes $f(x) = \max(0, x)$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

What happens when x = -10? What happens when x = 0? What happens when x = 10?

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Converges faster than sigmoid/tanh on image data(e.g. 6x)
- · will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Converges faster than sigmoid/tanh on image data (e.g. 6x)
- · will not "die".

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into α (parameter)

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Maxout "Neuron"

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die! $\max(w_1^Tx+b_1,w_2^Tx+b_2)$ can learn:

Problem: doubles the number of parameters/neuron:(

TLDR: In practice:

Try everything. Usually:

- Use ReLU on early image layers.
- Try out Leaky ReLU / Maxout / ELU.
- Use sigmoids for smooth functions, e.g. robot control.
- Sigmoids are also good for logical functions AND/OR.

Weight Initialization

Weight Initialization

- Q: what happens when W=0 init is used?

Weight Initialization

First idea: Fixed random initialization

e.g. gaussian with zero mean and fixed variance

$$W_{ij} \sim \mathcal{N}(0, 0.0001)$$

Works OK for small networks. Used in Alexnet.

Problem is that activations are scaled by weights in the forward pass.

If the initial weights are too small/large, the activations will vanish or explode during the forward pass.

The gradients will do the same in the backward pass...

Activations with Random Weight init

Analysis of activation growth

Consider a linear layer (affine or convolutional), and define the **fan-in F** as the number of input neurons that contribute to each output.

- For an affine layer, the fan-in is just the number of neurons in the input layer.
- For a convolutional layer, the fan-in is $F_H \times F_W \times C$ where C is the depth of the input layer.

Then each output activation

$$a_{out} = \sum_{i=1}^{F} W_i a_i$$

and assuming the activations and weights are independent, same variance:

$$Var(a_{out}) = F Var(W) Var(a_{in})$$

To get the same variance on input and output, we want Var(W) = 1/F

Xavier Initialization

```
input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean 0.001198 and std 0.627953 hidden layer 2 had mean -0.000175 and std 0.480651 hidden layer 3 had mean 0.000655 and std 0.407723 hidden layer 4 had mean -0.000306 and std 0.357108 hidden layer 5 had mean -0.000142 and std 0.320917 hidden layer 6 had mean -0.000142 and std 0.209116 hidden layer 7 had mean -0.000228 and std 0.273387 hidden layer 8 had mean -0.000291 and std 0.254935 hidden layer 9 had mean 0.000361 and std 0.239266 hidden layer 10 had mean 0.000139 and std 0.228008
```

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization
```

"Xavier initialization" [Glorot et al., 2010]

Accounting for ReLUs

```
input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.398623 and std 0.582273 hidden layer 2 had mean 0.272352 and std 0.403795 hidden layer 3 had mean 0.186076 and std 0.276912 hidden layer 4 had mean 0.136442 and std 0.196885 hidden layer 5 had mean 0.09568 and std 0.140299 hidden layer 6 had mean 0.072234 and std 0.103280 hidden layer 7 had mean 0.049775 and std 0.072748 hidden layer 8 had mean 0.035138 and std 0.051572 hidden layer 9 had mean 0.025404 and std 0.038583 hidden layer 10 had mean 0.018408 and std 0.026076
```

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization
```

Our analysis assumed that layers were linear. Not accurate with ReLU layers.

ReLU adjustment to Xavier

```
input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.825232 hidden layer 2 had mean 0.553614 and std 0.825335 hidden layer 3 had mean 0.553614 and std 0.813855 hidden layer 4 had mean 0.545867 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.836992 hidden layer 6 had mean 0.587103 and std 0.8369935 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.839348 hidden layer 9 had mean 0.552531 and std 0.845357 hidden layer 10 had mean 0.552531 and std 0.844523
```

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in/2) # layer initialization
```

He et al., 2015 (note additional /2) factor of 2 doesn't seem like much, but it applies multiplicatively 150 times in a large ResNet.

"you want unit gaussian activations? just make them so."

Consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathrm{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}} \qquad \text{this is a vanilla differentiable function...}$$

Batch Norm: Per-Activation (default) or Spatial

Batch Norm: Spatial

"you want unit gaussian activations? just make them so."

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Note, the network can learn:

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$

$$\beta^{(k)} = \mathbf{E}[x^{(k)}]$$

to recover the identity mapping.

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\}; Parameters to be learned: \gamma, \beta
```

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \hspace{1cm} \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \hspace{1cm} \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Reduces need for dropout

Un-normalization!! Re-compute and apply the optimal scaling and bias for each neuron! Learn γ and β (same dims as μ and σ^2). It can (should?) learn the identity mapping!

[loffe and Szegedy, 2015]

Batch Normalization Gradients

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^m \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^m \frac{\partial \ell}{\partial y_i}$$

Don't need these directly, they are subexpressions for the other gradients.

Think of this as backprop for the nodes \hat{x} , $\sigma_{\mathcal{B}}^2$, $\mu_{\mathcal{B}}$, which are all internal to the minibatch update.

Batch Normalization Gradients

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

Gradient to propagate to the input layer

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i$$
$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$

Batch Normalization Gradients

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$
Gradients for the learnable parameters γ and β .

BatchNorm is just a linear scale/bias layer in the limit of large batch sizes (μ , σ^2).

BatchNorm is just a linear scale/bias layer in the limit of large batch sizes (μ , σ^2).

?? Linear weight layer should already have optimal scale/bias in its output

BatchNorm is just a linear scale/bias layer in the limit of large batch sizes (μ , σ^2).

?? Any bias/scaling by the batch norm layer should be over-ruled by the second linear weight layer.

Hard to argue that it is doing normalization, since it will often learn the identity...

Is it really a pseudo-random regularizer (via $1/\sqrt{\sigma^2}$), like dropout?

Seems to reduce need for dropout

Does it enact a kind of activation/gradient clipping?

Batch Norm

Allows higher learning rates

Gradient Magnitudes:

Gradient Clipping by Value:

Simply limit the magnitude of each gradient:

$$\overline{g}_i = \min(g_{\max}, \max(-g_{\max}, g_i))$$

so $|\bar{g}_i| \leq g_{\text{max}}$. But how to set g_{max} ? Use minibatch stats?

Gradient Clipping by Norm:

Clip to limit the norm of the gradient:

clipped_grad[i] = grad[i] * clip_norm / max(norm(grad), clip_norm)

Still need to set clip_norm, use a multiple of median norm(grad)?

One-bit Gradients!

If we clip all gradient dimensions, we are left only with their sign: $\bar{g}_i = g_{\rm max}(-1,1,1,-1,1,\dots)$

This actually works on some problems with little or no loss of accuracy!: (see <u>"1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs"</u> by Seide et al. 2014)

Dropout

"randomly set some neurons to zero in the forward pass"

i.e. multiply by random bernoulli variables with parameter p.

(b) After applying dropout.

Note, p is the probability of keeping a neuron (note, incorrect in assignment 1)

[Srivastava et al., 2014]

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

Waaaait a second...
How could this possibly be a good idea?

Waaaait a second... How could this possibly be a good idea?

Waaaait a second... How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model, gets trained on only ~one datapoint.

At test time....

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

(this can be shown to be an approximation to evaluating the whole ensemble)

At test time....

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test time the output of this neuron is x.

What would its output be during training time, in expectation? (e.g. if p = 0.5)

We can do something approximate analytically

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Dropout Summary

```
Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active, higher = less dropout
def train_step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
  out = np.dot(W3, H2) + b3
```

drop in forward pass

scale at test time

More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
  H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
                                                                     test time is unchanged!
def predict(X):
  # ensembled forward pass
  H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  out = np.dot(W3, H2) + b3
```

Summary

- ConvNet Case Studies:
 - LeNet
 - AlexNet
 - VGG
 - GoogLeNet
 - ResNet
- Activation Functions and typical uses
- Weight Initialization principles
- Batch Normalization
- Dropout