A Fuel Cell Propulsion System for a

Mini - UAV

P. Hendrick, D. Muzzalupo & D. Verstraete Royal Military Academy of Belgium

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 23 JUL 2004		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
A Fuel Cell Propul	5b. GRANT NUMBER						
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Royal Military Academy of Belgium				8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0016 contains color images	89, EOARD-CSP-03	3-5073 Micro Air Vo	ehicle Workshop.	, The origina	l document		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 37	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Outline

- Introduction
- Mission specification
- Feasibility Study
- Preliminary Design (with AAA)
- Mini-UAV lay-out
- Conclusions

Introduction (1)

- Mini-UAV propulsion : various
- Acoustic & IR --- > batteries
- RMA study: a stack of fuel cells integrated in the Mini-UAV (1.5 m spanwidth)

Introduction (2)

Dragon Eye
Mini-UAV
(USA – US Navy)
2001

Our starting point: Dragon Eye (US)

Characteristics:

- Span: 1,14 m

- Speed : 18 m/s

- Endurance: 45 - 60 min

Electric propulsion with batteries

Propulsion system mass: 1350 g

- MTOGW: 2150 g

- Payload:?

Our mission specification

- Payload: 1.0 kg (cam, nav, coms, PS)
- Engines: brushless DC motor with PEMFC
- Performance :
 - Max cruise speed : 16 18 m/s
 - Endurance: 50 60 minutes
 - Range : ~ 10 km
 - Direct climb to 1.000 ft

Over the hill mission

FC working principle

Main elements:

- electrodes (+ / -)
- electrolyte
- reactants
- products

Fuel Cells types

Types	SOFC	MCFC	PAFC	PEMFC	AFC	DMFC
	Solide	Molten	Phosphoric	Proton Exchange	Alcaline	Direct
	Oxyde Fuel	Carbonate Fuel	Acide Fuel	Membrane Fuel Cell	Fuel Cell	Methanol
(Cell	Cell	Cell			Fuel Cell
Electrolyte	ZrO2/Y2O3	Li2(K2)CO3	H3PO4	membrane polymère	KOH	H2SO4
Température	800-1000°C	650°C	160-	50-100°C	70-	70°C
			210°C		100°C	
combustible	H2,CO	H2,CO,CH4,mé	H2,CO	H2	H2	méthanol
possible		thanol				

Ideal Selected configuration for tests

PEMFC of 600 W

Why? Major arguments:

- Range of powers & power density & performance
- Functionnal temperature & start-up characteristics
- Fuel used (compactness)

Feasibility Study (1)

a/c drag:

- RMA data
- FX05 profile
- Mass estimation
- Power derived
- Wing area
- Stall speed

Feasibility Study (2)

Dimensions of FC:

- D & V → required power ~ 400 W
- Power for utilities (10 W camera, 22 W for 24-12V and 13 W for 24-6 V DC-DC convertors) → 50 W
- 450 W PEMFC dim & mass estimation
- Motor voltage fixes the number of cells → length (30 cells x 3 mm + side plates) ~ 160 mm
- Power & Voltage → current (27 A)
- Current & density (.332 A/cm²) $\rightarrow \phi_i \sim 40$ & $\phi_o \sim 110$ mm
- H2 consumption determined ~ 23 g
- GH2 at 300 b → composite tank (60 x 230) ~ 260 g

Feasibility study (3): Fuel Storage

 LH_2 or $GH_2 \rightarrow GH_2$ MP (or other promising storage methods)

Tank size ?

Feasibility Study (4)

Mass description:

- Mass of PEMFC: 525 g
- Mass of H2-fuel: 25 g
- Mass of full fuel tank: 260 g
- Mass of complete prop syst : 2.160 g
- Mass of payload, fuselage, wings & acc: 950 g
- Total mass: 3,1 kg

Mini-UAV

Configuration: Flying Wing + winglets

Preliminary study (1): iterations!

Preliminary Design (2)

Estimation of TOGW, OEW & MFW (generals of the iterative method):

- -TOGW = OEW + FW + Pay
- OEW = WE + TfoW + Crew
- Correlation : log TOGW = A + B log WE
- If A & B known → determine mission fuel fractions (Mff) & iterate
- With also: FW = (1 Mff) (1 + Mf,res) TOGW
- Mff ??? A & B ???

Preliminary Design (3)

Determination of Mff:

- Fuel fraction method for Mff (x of the Mffi)
- Fuel unintensive segments (statistical data)
- Fuel intensive segments (Breguet eq. for R & E)
- FC → Breguet eq N/A → hand calculation
- -Mff=0.9919

Preliminary Design (4)

Determination of A & B:

- Correlation : log TOGW = A + B log WE
- Problem : statistics N/A to UAV (mini !!)
- Own data base with electrical UAV & mini
- Small error for our PEMFC but PD 1
- -A = 0.1937 & B = 1.0094

Preliminary Design (5)

Results:

- -TOGW = 3.97 kg
- -WE = 2.92 kg
- -FW = 32 g
- Compared with 3.1 kg, 2.1 kg and 23 g

Preliminary Design (6)

Estimation of the drag polar:

- $-CD = Cdo + \triangle Cdo + CL^2/(AR e \pi)$
- Cdo = f / Sw (parasite area (f) method)
- Rationals : log Swet = c + d log TOGW or log f = a + b log Swet (a, b, c & d based on Cf)
- AGAIN PROBLEM (due to FW configuration)
- Other method : for FW, Swet/Sw ~ 2.1 (with SM)
- FW data \rightarrow AR = 5 & e = 0.85
- Try various Sw → Sw = 0.45 m^2 → CD
- $-CD = 0.0125 + 0 + 0.0749 CL^{2}$

Preliminary Design (7)

Preliminary Design (8)

Performance sizing:

- Restrictions on W/S at TO & W/P at TO
- Catapult launch & ventral or "net" ldg
- Vs in cruise & MTOGW: 12.1 m/s
- Climb: grad (Mil Specs) & Tclb of 2'
- Max cruise speed at MTOGW
- Maneuvering distance : nmax = 2.0 at MTOGW

Preliminary Design (9)

Preliminary Design (10)

Performance sizing:

- Try different Sw in order to increase performance and minimize engine
- Final results : (W/S)TO = 86 N/m² & (W/P)TO = 120 N/kW
- Power of the PEMFC = 325 W + 50 for acc
- We had selected one of 450 W → SF = 1.2

Selection of the wing (1)

Wing profile:

- Need of a fuselage (integrated in the planform)
- Clmax in accordance with sizing requirements
- Clmax ~ 1
- High taper ratio in order to decrease trim drag but "neglectible" here
- ¼ chord sweep (stability with 2-cambered profile)
- Eppler 325, AR = 0.6, Λ = 30° (Clmax = 0.96)

Selection of the wing (2)

Mini-UAV

Configuration: flying wing with winglets

Internal Elements: energy distribution

Internal architecture

PEMFC stack by Novars GmbH

- PEMFC of 600W

-Vc = 0.6V, Vtot = 24V (40 cells)

Special architecture

- mass = 780g

 $-\varnothing$ = 110mm

– L = 200mm ↓

Complete system : 220 Wh/kg energy density 2,27 kg mass system

Longitudinal Stability

StM:

- 4.8 cm
- **16.4 %**

Comparison with the Dragon Eye

	Dragon Eye	MAV PAC
Wingspan [m]	1,14	1,5
Speed [m/s]	18	18 max
Range [min]	60	60
Masses [g]		
Propulsion System	1350	2620
Complete Aircraft	2150	3950
Power [W]	300	450

The test bed at RMA

Schematic

Thrust measurement system

Our Fuel Cell

Technical datas

PEMFC stack of 500 We
32 cells and Vc=0.625V so
Vtot=20 V

A current of 25A is available
The mass is about 6kg (power density 3 x lower)

Cooling system:

- <200We forced air by 4 fans</p>
- >200We forced air+distilled water system

Conclusions (1)

- 1st: Basic calculations in order to check the feasibility
- Compatible PEMFC are available (\$!!)
- 2nd: More detailed calculations (AAA)
- Planform determined & stability possible
- Test Bench: Acquire knowledge about small PEMFC in practice

Conclusions (2)

- Improve current systems (fueling,storage,etc.) & control the required mass & volume of the whole propulsion system
- Miniaturise the complete propulsion system in a future exercice
- Increase the power density of complete FC propulsion system
- Future : other FC options
- Thanks to a few students from Fr & NI

Questions?

