

Figure 1.1: Three types of Iris flowers: Setosa, Versicolor and Virginica. Used with kind permission of Dennis Kramb and SIGNA.

index	sl	sw	pl	pw	label
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
50	7.0	3.2	4.7	1.4	Versicolor
149	5.9	3.0	5.1	1.8	Virginica

Table 1.1: A subset of the Iris design matrix. The features are: sepal length, sepal width, petal length, petal width. There are 50 examples of each class.

covariates, or predictors; this is often a fixed-dimensional vector of numbers, such as the height and weight of a person, or the pixels in an image. In this case, $\mathcal{X} = \mathbb{R}^D$, where D is the dimensionality of the vector (i.e., the number of input features). The output \mathbf{y} is also known as the label, target, or response.² The experience E is given in the form of a set of N input-output pairs $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$, known as the training set. (N is called the sample size.) The performance measure P depends on the type of output we are predicting, as we discuss below.

1.2.1 Classification

In **classification** problems, the output space is a set of C unordered and mutually exclusive labels known as **classes**, $\mathcal{Y} = \{1, 2, ..., C\}$. The problem of predicting the class label given an input is also called **pattern recognition**. (If there are just two classes, often denoted by $y \in \{0, 1\}$ or $y \in \{-1, +1\}$, it is called **binary classification**.)

1.2.1.1 Example: classifying Iris flowers

As an example, consider the problem of classifying Iris flowers into their 3 subspecies, Setosa, Versicolor and Virginica. Figure 1.1 shows one example of each of these classes.

^{2.} Sometimes (e.g., in the statsmodels Python package) x are called the exogenous variables and y are called the endogenous variables.

[&]quot;Probabilistic Machine Learning: An Introduction". Online version. November 23, 2024