

Displays

Stephen J. Guy

Sep 24, 2017

Recap

- What does alpha in an image represent
 Partial coverage of the pixel
- You put a pixel of α = .5 on top of a pixel of α = .4 What is the resulting alpha?
 - $\alpha = .7$
- What is the resulting color (in terms of A and B)?
 - \circ C = $\alpha_A A + (1-\alpha_A) \alpha_B B$ (not premultiplied)
 - \circ C' = A' + (1- α_A) B' (pre-multiplied)
- What where the two steps in image morphing?
 - Warp two images to same shape
 - o Then blend
 - o Start with initial shape colors, move to final 3

Discussion

- Aliasing
 - You should be seeing it frequently in many applications, movies, media, images, etc.
- HW1
 - o Start with just nearest neighbor sampling

Overview

- Display Technologies
 - o CRTs & Gamma Correction
- Image Storage
 - o Frame Buffers
- Color Theory

Pixel Intensity (Gamma)

- The intensity of a pixel controls the gun's voltage
 - Luminance (intensity) does not vary directly with voltage!
- Input voltage does not map linearly to output response
 - o Luminance = Voltagegamma
 - o Non zero min luminance
 - o CRT with gamma of 2.5 ->

Liquid Crystal Display • (Used in both LCD TVs and LED TVs) Namatic Liquid Crystal Polarizer Transparer Conductor

Figure 2.4 from H&B

Q: Does an exponential gamma model work well here?

Gamma Values

- · Gamma varies by device
 - o CRT monitors 2.5
 - o Inkjet Printers 1.8
 - o Old Macs 1.8
 - o sRGB standard 2.2
 - o NTSC TV 2.2

- Television
 - o Gamma precorrected at broadcast (or in camera)
- JPEG, MPEG
 - Gamma stored with the values
- sRGB Web standard
 - o Encoded with $\gamma = 1/2.2$ to get a linear response

Gamma Correction

• If your storing a value as a integer image buffer:

luminance
$$\propto \left(\frac{i}{255}\right)^{\gamma}$$

• To make a "gamma-corrected" image use this equation to convers (0.f – 1.f) to an int:

$$i = int(256 * f^{\frac{1}{\gamma}})$$

• $\gamma = 2.2$ is a safe value

Gamma is Good!

- Humans eye sensitivity varies with brightness
 - Very sensitive to differences in dark tones
 - o Insenstivite to differences in light tones
 - o Approx. follows a power law!
- Bits are better used for darker regions
 - o 70% of numbers used in bottom half of colors

Color Lookup Framebuffer

- Store indices (usually 8 bits) in framebuffer
- Display controller looks up the RGB values to send

Direct Color Framebuffer

- Stores the actual intensities of R, G, B in framebuffer
- 24 bits per pixel = 8 bits red, 8 bits green, 8 bits blue
- 16 bits per pixel = ? bits red, ? bits green, ? bits blue

Overview

- Display Technologies
 CRTs & Gamma Correction
- Image Storage
 Frame Buffers
- Color Theory

What is Color?

- Artists often refer to colors as tints, shades, and tones of pure pigments
 - o Tint: mixture with white
 - o Shade: mixture with black
 - Tones: mixture with black and white
- Gray: no color at all (aka. neutral)

tints

- tints and shades are inherently related to the pure color
 - "same" color but lighter, darker, paler, etc.

© 2008 Steve Marschner •

Describing Colors

- Color perception usually described with
 - Hue: Distinguishes between colors: red, green, yellow, etc.
 - Saturation: How far a color is from gray of equal intensity
 - Lightness: The perceived intensity reflected from an object
- Lightness also called brightness if the object is emitting light instead of reelecting it

Specifying Colors

- These are models, where does color come from?
 - ols Color a physical property of light?

21

What is Light?

- Light is electromagnetic radiation
 - exists as oscillations of different frequency (or, wavelength)

22

[Lawrence Berkeley Lab / MicroWorlds]

EM Spectrum

- · Visible light frequencies range between ...
 - Red = 4.3 x 10¹⁴ hertz (700nm)
 - Violet = 7.5 x 10¹⁴ hertz (400nm)

Figures 15.1 from H&B

Measuring Light

Salient property is the spectral power distribution (SPD)
 the amount of light present at each wavelength
 units: Watts per nanometer (tells you how much power you'll find in a narrow range of wavelengths)

Color Science

- Color is a human perception
 Not a property of light!
- Color Science studies how to map Physical light description to a Perceptual color sensation

© 2008 Steve Marschner •

- Human eye very similar to camera
- Light is measured by the photoreceptors in the retina
 - o Respond to visible light
 - Different types respond to different wavelengths

Colorimetry

- · Maps physical properties of lights to subjective values
- Much known since the 1930s o But important refinements came latter

Physical

Perceptual

29

Visible Light

- · Hue = dominant frequency (highest peak)
- Saturation = excitation purity (ratio of highest to rest)
- Lightness = luminance (area under curve)

Figures 15.3-4 from H&B

Subtractive color

- Produce desired spectrum by subtracting from white light (usually via absorption by pigments)
- Photographic media (slides, prints) work this way
- Leads to C, M, Y as primaries
- Approximately: 1 R, 1 G, 1 B

Specifying Colors

- We need to represent colors with a number
 Generally 3 points in a Color Space
- Examples:
 - o RGB
 - o HSV
 - o CMY
- A point in the space specifies a linear combination of weights:
 - os = RR + GG + BB for some spectra R, G, B

Color Spaces

- Why 3 dimensions?Are you sure three is enough?
- What are the "best" color spaces?
 Do they reflect the human visual system?

37

Color Matching

- Shine combinations of laser at two points
 - o Allow users to adjust weights of lasers
 - o C = Color to be matched
 - o RGB = Lasers (700nm, 546nm, 435nm)

C + R = G + B

Conclusion: Humans have trichromatic vision

Linear Color Matching

Grassman's Laws:

1. Scaling the color and the primaries by the same factor preserves the match:

$$2C = 2R + 2G + 2B$$

2. To match a color formed by adding two colors, add the primaries for each color:

$$C_1 + C_2 = (R_1 + R_2) + (G_1 + G_2) + (B_1 + B_2)$$

RGB Spectral Colors

- Match each pure color in the visible spectrum (rainbow)
- Record the color coordinates as a function of wavelength _{0.4.1}

Just Noticeable Differences

- The human eye can distinguish hundreds of thousands of different colors
- When two colors differ only in hue, the wavelength between just noticeably different colors varies with the wavelength!
 - · More than 10 nm at the extremes of the spectrum
 - · Less than 2 nm around blue and yellow
 - Most JND hues are within 4 nm.
- Altogether, the eye can distinguish about 128 fully saturated hues
- Human eyes are less sensitive to hue changes in less saturated light (not a surprise)

Announcements

- HW1 is Due Monday 10/2
- HW2 will not be due until around 10/8 & 10/23
 - o 3D Graphics
 - o Ray-tracing

