Contrôle continu Nº 1

Exercice 1 : Système libre non amorti

8 pts

2 pts

1 pts

2 pts

On considère un système composé d'une tige de masse M et de de longueur 2L Qui peut pivoter dans le plan vertical autour du point O. Les deux extrémités sont attachées à des bâtis par l'intermédiaire d'un ressort de raideur k.

A l'équilibre la tige est verticale et les ressorts sont au repos.

La tige est écartée de son état d'équilibre puis relâchée sans vitesse initiale pour osciller librement. La période des oscillations mesuré est de 1 s.

1- Calculer l'énergie cinétique du système en fonction de θ .

$$E_c = \frac{1}{2}J\dot{\theta}^2 = \frac{1}{2}\frac{M(2L)^2}{12}\dot{\theta}^2 = \frac{ML^2}{6}\dot{\theta}^2$$

2- Calculer l'énergie potentielle du système en fonction de θ .

$$E_p = \frac{1}{2}k(L\theta)^2 + \frac{1}{2}k(L\theta)^2 = kL^2\theta^2$$

3- Etablir l'équation de mouvement du système et donner l'expression de la pulsation propre ω_0 .

L'équation de Lagrange pour ce système s »crit :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0 \quad avec \quad L = \frac{ML^2}{6} \dot{\theta}^2 - kL^2 \theta^2$$

$$\frac{ML^2}{3} \ddot{\theta} + 2kL^2 \theta = 0 \rightarrow \ddot{\theta} + \frac{6k}{M} \theta = 0$$

$$d'ou \quad \omega_0 = \sqrt{\frac{6k}{M}}$$

4- Si L=1 m et la M=0.5 kg calculer la constante de raideur k.

$$T = 1s \ donc \ \omega_0 = \frac{2\pi}{T} \to \boxed{\omega_0 = \ 2\pi \ rads^{-1}}$$

$$Or \ \omega_0 = \sqrt{\frac{6k}{M}} = 2\pi \to \boxed{k = \frac{0.5 * 4\pi^2}{6} = 3.23 \ Nm^{-1}}$$
 1 pts

Remarque : on donne g=9.81 m/s² et π =3.14.

Exercice 2 : Système libre amorti

On reprend le système de l'exercice 1 et on introduit un amortisseur de constante α .

On écarte le système et on laisse le système évoluer librement. On constate ١. que l'amplitude des oscillations représente le tiers de l'amplitude initiale au bout de 5 oscillations. En déduire la constante d'amortissement α.

Aide : utiliser le décrément logarithmique

$$D_c = \frac{1}{n} \ln \left(\frac{X_0}{X_n} \right) = \frac{1}{5} \ln \left(\frac{X_0}{\frac{X_0}{4}} \right) = 0.2 \ln(4) \rightarrow \boxed{D_c = 0.28}$$

1 pts

Or

⊊1 pts

Contrôle continu Nº 1

$$D_c = \delta T_a = \frac{\delta 2\pi}{\sqrt{\omega_0^2 - \delta^2}} \rightarrow \boxed{\delta = \frac{D_c^2 \omega_0^2}{4\pi^2 + D_c^2} = 0.078}$$

On introduisant la fonction de dissipation $D_{\scriptscriptstyle S}=\frac{1}{2}\alpha \left(L\dot{\theta}\right)^2=\frac{1}{2}\alpha L^2\dot{\theta}^2$ dans l'équation de mouvement elle devient :

$$\ddot{\theta} + \frac{3\alpha}{M}\dot{\theta} + \frac{6k}{M}\theta = 0 \quad d'ou \,\delta = \frac{3\alpha}{2M}$$

On en déduit que $\alpha = \frac{2M\delta}{3} \rightarrow \alpha = 0.026 \ kgs^{-1}$

- Pour la suite, on choisit pour l'amortisseur la valeur de $\alpha = \frac{4\pi}{2}$ kgm/s. II.
 - a. Que devient l'expression de la réponse du système $\theta(t)$ dans ce cas.

$$\delta = \frac{2\pi}{M} = 4\pi > \omega_0 \to \theta(t) = c_1 e^{r_1 t} + c_1 e^{r_2 t}$$

$$avec r_1 = -\delta - \sqrt{\delta^2 - \omega_0^2} = -131 \ et \ r_2 = -\delta + \sqrt{\delta^2 - \omega_0^2} = -25$$

b. Si à l'instant t=0, $\theta(0)$ =0,3 et $\dot{\theta}(0)=0$. Trouver les constantes d'intégration.

$$\begin{cases} c_1+c_2=0.3\\ r_1c_1+r_2c_2=0 \end{cases}$$
 On résout ce système on a $c_1=\frac{0.3r_2}{1-r_1}=-0.057$ et $c_2=-\frac{r_1}{r_2}c_1=0.29$
$$\theta(t)=-0.057e^{-131t}+0.29e^{-25t}$$

Tracer qualitativement la courbe $\theta(t)$.

√ 1 pts

Contrôle continu Nº 1

Exercice 3: Système forcé

5 pts

On applique maintenant une force sur l'extrémité de la barre

 $F = F_0 \cos(\omega t)$.

- 1- Ecrire l'équation du mouvement du système dans ce cas.
 - La force est directement appliquée sur la basse donc elle intervient dans l'équation de Lagrange
 - Comme c'est une rotation, il faut ajouter le moment de la force F

$$\frac{ML^{2}}{3}\ddot{\theta} + \alpha L^{2}\dot{\theta} + 2kL^{2}\theta = LF_{c}\cos(\omega t) \rightarrow \frac{\ddot{\theta} + \frac{3\alpha}{M}\dot{\theta} + \frac{6k}{M}\theta = A_{0}\cos(\omega t)}{avec\ A_{0} = \frac{3F_{0}}{ML}}$$

2- En régime permanent, donner l'expression de l'amplitude des vibrations ainsi la constante de déphasage en fonction de F_o , δ , ω_0 et ω .

En régime permanent la solution s'écrit

$$\theta(t) = \frac{A_0}{\sqrt{(\omega_0^2 - \delta^2)^2 + 4\delta^2 \omega^2}} \cos(\omega t + \Phi)$$

1 pts

Avec

$$A_0 = \frac{3F_0}{ML} \quad et \ \Phi = arctan\left(-\frac{2\delta\omega}{\sqrt{\omega_0^2 - \delta^2}}\right)$$

1 pts

3- Calculer ces constantes.

$$A_0 = \frac{3*10}{0.5*1} = 60$$
 $\Phi = 88.86$ °

On donne $F_0 = 10N$, $\omega = 10$ rad/s