Bayesian Additive Regression Trees

Lecture 23 - CS 689, Spring 2023

- Last time: decision trees and their ensembles
 - 1. Individual decision trees
 - 2. DTree ensemble with random forests
 - 3. DTree ensembles with greedy optimization forward stagewise learning and gradient boosted trees (next slide)

Rest of today: Bayesian learning for decision tree ensemble

Algorithm 16.4: Gradient boosting

- ı Initialize $\underline{f_0(\mathbf{x})} = \operatorname{argmin}_{\boldsymbol{\gamma}} \sum_{i=1}^N L(y_i, \phi(\mathbf{x}_i; \boldsymbol{\gamma}));$
- 2 for m = 1 : M do
- 3 Compute the gradient residual using $r_{im} = -\left[\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{f(\mathbf{x}_i) = f_{m-1}(\mathbf{x}_i)}$
- Use the weak learner to compute γ_m which minimizes $\sum_{i=1}^N (r_{im} \phi(\mathbf{x}_i; \boldsymbol{\gamma}_m))^2$
- 5 Update $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \phi(\mathbf{x}; \boldsymbol{\gamma}_m);$
- 6 Return $f(\mathbf{x}) = f_M(\mathbf{x})$

Clamp wite / Step size

Review: MCMC for Bayesian pred.

• Goal: want posterior predictive $p(y|x, \chi^{Tr}, \gamma^{Tr}) = \int_{\mathcal{O}} p(\theta|\chi^{Tr}, \gamma^{Tr}) p(y|x, \theta) d\theta$ $\sum_{S=1}^{S} p(y|x, \theta^{(S)}) \qquad \text{for } \theta^{(S)} p(\theta|\chi^{Tr}, \gamma^{Tr})$

- Method: Approximate with samples from the parameter posterior
 - No closed form, but can use Markov Chain Monte Carlo

MCMC: key algorithms

Algorithm 24.2: Metropolis Hastings algorithm

```
1 Initialize x^0;
2 for s = 0, 1, 2, \dots do
```

Define $x = x^s$; λ

Sample $x' \sim q(x'|x)$; Compute acceptance probability

Compute $r = \min(1, \alpha)$;

Sample $u \sim U(0,1)$;

Set new sample to

$$x^{s+1} = \begin{cases} x' & \text{if } u < r \\ x^s & \text{if } u \ge r \end{cases}$$

Algorithm 1 Gibbs sampler

Initialize $x^{(0)} \sim q(x)$

for iteration $i = 1, 2, \dots$ do

$$x_1^{(i)} \sim p(X_1 = x_1 | X_2 = x_2^{(i-1)}, X_3 = x_3^{(i-1)}, \dots, X_D = x_D^{(i-1)})$$

 $x_2^{(i)} \sim p(X_2 = x_2 | X_1 = x_1^{(i)}, X_3 = x_3^{(i-1)}, \dots, X_D = x_D^{(i-1)})$

$$x_D^{(i)} \sim p(X_D = x_D | X_1 = x_1^{(i)}, X_2 = x_2^{(i)}, \dots, X_D = x_{D-1}^{(i)})$$

end for

$$\widehat{\rho}(\widehat{\theta}) = \widehat{\rho}(\widehat{\theta}) \, \widehat{\rho}(\widehat{Y}/\widehat{Y}, \widehat{\theta})$$

$$\widehat{\rho}(\widehat{\theta}) = \widehat{\rho}(\widehat{\theta}) \, \widehat{\rho}(\widehat{Y}/\widehat{Y}, \widehat{\theta})$$

$$\widehat{\rho}(\widehat{\theta}) = \widehat{\rho}(\widehat{\theta}) \, \widehat{\rho}(\widehat{Y}/\widehat{Y}, \widehat{\theta})$$

BART: BAYESIAN ADDITIVE REGRESSION TREES^{1,2}

By Hugh A. Chipman, Edward I. George and Robert E. McCulloch

Acadia University, University of Pennsylvania and
University of Texas at Austin

Model:

ensemble
$$f(x) = \sum_{j=1}^{m} g_j(x)$$

Ly one tree

 $P(g) : \text{ prov on tree 5}$
 $P(J(x,f) : \text{ Wellhood}, N(f(x), \sigma^2)$

Postura over ensembles: P(f/Y to yet) CP(f) P(Yt/Xt/f)

Uncertainty-aware predictions

 If we had samples of posterior ensembles, we could do lots of nice probabilistic inferences / predictions!

(5) ~ P(f/X, ~) 55 P(1=t/f(s))

Model and Prior Structure

File
$$Y = S_{j=1}^{m} g(x; T_{j}, M_{j}) + E_{j} E_{j} M_{j} G_{j}$$

$$P(T_{i}, M_{i}) - (T_{m}, M_{m}), \sigma) = p(\sigma) [T_{j} P(T_{j})] F_{j} M_{j} M_{j}$$

Tree structure prior

Med to regularize size/shape of frogs

Note at depth d, is nontroveral with rosb

L (1+d) B

Meperforans

- Uniform distribs: What vorable & Flit on

2 what shwahly by use:

any distribs set

Data-driven priors > (Mis 1 Ti) ~ N(Mm, Fm)

• Variance term: conjugate inverse chi square AyAM

My, Jai- helden ytr

Backfitting MCMC

Gibbs sampler to resample one tree at a time, and variance

Partial residuals

$$\begin{array}{ll}
\tilde{R}_{i} = & \underbrace{\left\{ \begin{array}{l}
Y_{i} - Z_{k \neq j} \ g(x_{i}, T_{k}, M_{k}) \right\}_{i=1..N}} \\
P(T_{i}, M_{i} \mid T_{i}) M_{i}, X_{i} \times \\
P(T_{i}, M_{i} \mid T_{i}) M_{i}, X_{i} \times \\
& \underbrace{\left\{ \begin{array}{l}
Y_{i} - Y_{i} \times \\
Y_{i}$$

Tree proposal & resampling

Proposal distribution from old to new tree:

Learrounding

a part ante Avation, São For each tree i, (Tis) Mis) ~ MH acceptance for P(TiMi/Ri, o) $\sigma^{(s)} \sim P(\sigma) T_{,M,\sigma,X,Y}$ (con) yet $\{T_{1}, M_{1}, T_{2}, T_{m}, M_{m}, \sigma^{(s)}\}$