Weak Schur numbers P05 - Formation à la recherche 1A

Romain Ageron, Paul Castéras, Thibaut Pellerin, Yann Portella Encadrants : Arpad Rimmel, Joanna Tomasik

3 juin 2021

En 1917, le russe **Issai Schur** pose le problème suivant :

En 1917, le russe **Issai Schur** pose le problème suivant :

- Pour $n \ge 1$ un entier
- Et k ≥ 1 un autre entier (= nombre de couleurs)

En 1917, le russe **Issai Schur** pose le problème suivant :

- Pour $n \ge 1$ un entier
- Et k ≥ 1 un autre entier (= nombre de couleurs)

Question

Peut-on colorier les entiers de 1 à *n* de sorte que si deux nombres ont la même couleur, leur somme n'est pas de cette couleur? Si oui, un tel coloriage est dit sans sommes.

Pour n = 13 et k = 3, le coloriage

1 2 3 4 5 6 7 8 9 10 11 12 13.

vérifie cette propriété.

Pour n = 13 et k = 3, le coloriage

1 2 3 4 5 6 7 8 9 10 11 12 13.

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Pour n = 13 et k = 3, le coloriage

1 2 3 4 5 6 7 8 9 10 11 12 13.

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Sur l'exemple, on ne peut rajouter 14 : en fait, on S(3) = 13.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres <u>différents</u> de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième nombre de Schur faible.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres <u>différents</u> de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième **nombre de Schur faible**.

$$S(2) = 4 \text{ mais } WS(2) = 8$$

On connaît exactement S(k) pour $k \leq 5$, et WS(k) pour $k \leq 4$.

On connaît exactement S(k) pour $k \leq 5$, et WS(k) pour $k \leq 4$.

- Pour montrer que S(k) = n, il faut :
 - Trouver un coloriage sans sommes de [1, n] à k couleurs
 - Montrer qu'on ne peut pas colorier [1, n+1].

On connaît exactement S(k) pour $k \leq 5$, et WS(k) pour $k \leq 4$.

- Pour montrer que S(k) = n, il faut :
 - Trouver un coloriage sans sommes de [1, n] à k couleurs
 - Montrer qu'on ne peut pas colorier [1, n+1].
- En pratique, on se contente de **minorer** S(k) :
 - Inégalités récursives
 - Recherche de coloriages par ordinateur

Les recherches récentes sur le sujet se focalisent sur les méthodes numériques.

- On fixe *k* et on essaye de colorier le plus loin possible
- Plusieurs façon d'encoder le problème :
 - Arbre → Monte-Carlo Tree Search sur un espace de recherche restreint
 - Formules booléennes → solveur SAT

Les recherches récentes sur le sujet se focalisent sur les méthodes numériques.

- On fixe k et on essaye de colorier le plus loin possible
- Plusieurs façon d'encoder le problème :
 - Arbre \rightarrow Monte-Carlo Tree Search sur un espace de recherche restreint
 - Formules booléennes → solveur SAT
- Améliorations des bornes inférieures pour $k \ge 5$
- Temps de calcul : le calcul exact de S(5) via un solveur SAT a demandé 20 années de calcul machine!

La borne inférieure établie par I. Schur est :

$$S(n+1) \geqslant 3S(n)+1 \Longrightarrow S(n) \geqslant \frac{3^n-1}{2}$$

Une première piste pour améliorer cette borne est proposée par H. L. Abbott et D. Hanson en 1972. Ils prouvent :

$$S(n+m) \geqslant S(n)(2S(m)+1) + S(m)$$

Que font-ils concrètement?

Un exemple pour n = m = 2:

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40

$$S(4) \ge S(2)(2S(2)+1)+S(2)=40$$

• F. Rowley améliore cette approche théorique en 2020.

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.
- **Notre contribution** : recherche de SF-templates intéressants

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.
- Notre contribution : recherche de SF-templates intéressants
- Recette : SF-template = Partition sans somme + condition suivante :

$$\forall i \in \llbracket 1, n-1 \rrbracket, \forall (x,y) \in A_i^2, x+y > p \Longrightarrow x+y-p \notin A_i$$

En fait, l'exemple précédent faisait déjà apparaître un SF-template, en voici un autre :

1 2 3 4 5 6 7 8 9 -

Quelques résultats!

n	8	9	10	11
33 S(n-3) + 6	5 286	17 694	55 446	174 444
111 S(n-4) + 43	4927	17 803	59 539	186 523
380 S(n-5) + 148	5 088	16 868	60 948	203 828
1140 S(n-6) + 528	5 088	15 348	50 688	182 928
n	12	13	14	15
33 S(n-3) + 6	587 505	2 011 290	6726330	21 072 090
111 S(n-4) + 43	586 789	1 976 176	6 765 271	22 624 951
380 S(n-5) + 148	638 548	2 008 828	6 765 288	23 160 388
1140 S(n-6) + 528	611 568	1 915 728	6 026 568	20 295 948

Premières inégalités obtenues par Rowley :

•
$$WS(n+1) \ge 4S(n) + 2$$

•
$$WS(n+2) \geqslant 13\dot{S}(n) + 8$$

• Notre inégalité généralisée :

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

$$WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$$

• On cherche un template à n couleurs de cardinal $WS^+(n)$ tel que : $WS(n+k) \ge S(k)WS^+(n) + b$

• Or
$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

• Par conséquent, $WS^+(n) \geqslant WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$

n	8	9	10	11	
4S(n-1)+2	6722	21146	71214	243794	
13 S(n-2) + 8	6976	21848	68 726	231 447	
42 S(n-3) + 24	6744	22536	70584	222036	
n	12	13	14	15	
4S(n-1)+2	815 314	2554194	8 045 162	27061154	
13S(n-2)+8	792 332	2649772	8 301 132	26146778	
42S(n-3)+24	747 750	2559840	8 560 800	25886224	

- Approche par template : répétition d'un motif
- Nouveaux templates pour les nombres de Schur
- Généralisation des templates aux nombres de Schur faibles

Comparaison des bornes inférieures pour les nombres de Schur

п	1	2	3	4	5	6	7	8	9	10	11	12
Avant Rowley	1*	4*	13*	44*	160*	536	1 680	5 041	15 124	51 120	172 216	575 664
Rowley								5 286	17 694	60 320	201 696	631 840
Nos résultats									17 803	60 948	203 828	638 548

^{*} désigne une valeur exacte

Comparaison des bornes inférieures pour les nombres de Schur faibles

п	1	2	3	4	5	6	7	8	9	10	11	12
Avant Rowley	2*	8*	23*	66*	196	582	1740	5 201	15 596	51 520	172 216	575 664
Rowley						642	2 146	6 976	21 848	70 778	241 282	806 786
Nos résultats									22 536	71 214	243 794	815 314

^{*} désigne une valeur exacte

19/1

- Publication d'un article sur nos résultats
- Recherche de meilleurs templates
- Étude des bornes supérieures

Merci pour votre attention