

AI 보안 기술개발 교육

# 머신러닝(Machine Learning)의 이해





AI 보안 기술개발 교육

# 머신러닝의 이해

- 1. Scikt-Learn 라이브러리
- 2. 데이터 분할
- 3. 교차 검증
- 4. 탐색적 데이터 분석



#### Scikit-Learn 라이브러리

- 머신러닝 알고리즘을 구현한 오픈소스 라이브러리 중 가장 유명한 라이브러리 중 하나
- 일관되고 간결한 API가 강점이며, 문서화가 잘되어 있음
- 알고리즘은 파이썬 클래스로 구현되고, 데이터 셋은 Numpy 배열, Pandas DataFrame 및 SciPy 희소행렬 등 사용가능



#### Scikit-Learn 데이터 표현 - Feature Matrix

- 표본(sample)은 데이터셋이 설명하는 개별 객체를 나타냄
- 특징(feature)은 각 표본을 연속적인 수치값, 부울값, 이산값으로 표현하는 개별 관측치를 의미
- 표본: 행렬의 행
- 행의 개수: n\_samples
- 특징(feature): 행렬의 열
- 열의 개수: n\_features
- 관례적으로 특징행렬은 변수 X에 저장
- [n\_samples, n\_features] 형태의 2차원 배열 구조를 사용 (주로 Numpy 배열, Pandas DataFrame, SciPy 희소행렬을 사용)

## Scikit-Learn 데이터 표현 - Target Vector

- 연속적인 수치값, 이산 클래스/레이블을 가짐
- 길이: n\_samples
- 관례적으로 대상벡터는 변수 y에 저장
- 1차원 배열 구조를 사용 (주로 Numpy 배열, Pandas Series를 사용)
- 특징 행렬로부터 예측하고자 하는 값의 벡터
- 종속 변수, 출력 변수, 결과 변수, 반응 변수 라고도 함

## Scikit-Learn 데이터 표현 - Target Vector

- 연속적인 수치값, 이산 클래스/레이블을 가짐
- 길이: n\_samples
- 관례적으로 대상벡터는 변수 y에 저장
- 1차원 배열 구조를 사용 (주로 Numpy 배열, Pandas Series를 사용)
- 특징 행렬로부터 예측하고자 하는 값의 벡터
- 종속 변수, 출력 변수, 결과 변수, 반응 변수 라고도 함



```
import seaborn as sd
iris = sd.load dataset('iris')
iris.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal length 150 non-null float64
sepal_width 150 non-null float64
petal length 150 non-null float64
petal_width 150 non-null float64
species 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB
```

iris.head()

|   | sepal_length | sepal_width | petal_length | petal_width | species |
|---|--------------|-------------|--------------|-------------|---------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | setosa  |

Feature Matrix와 Target Vector를 나누는 작업 필요

```
X = iris.drop('species', axis=1)
X.head()
```

"species" 열이 삭제된 X 데이터프레임(Feature Matrix) 생성

```
sepal_length sepal_width petal_length petal_width
0
             5.1
                          3.5
                                         1.4
                                                       0.2
             4.9
                          3.0
                                         1.4
1
                                                       0.2
             4.7
                          3.2
                                         1.3
2
                                                       0.2
3
             4.6
                          3.1
                                         1.5
                                                       0.2
             5.0
                           3.6
                                         1.4
4
                                                       0.2
```

```
y = iris['species']
y.head()
```

```
0 setosa
```

4 setosa

```
Name: species, dtype: object
```

"species" 열을 추출하여 y Series(Target Vector) 생성

<sup>1</sup> setosa

<sup>2</sup> setosa

<sup>3</sup> setosa

```
X = iris.drop('species', axis=1)
X.head()
```

"species" 열이 삭제된 X 데이터프레임(Feature Matrix) 생성

```
sepal_length sepal_width petal_length petal_width
0
             5.1
                          3.5
                                         1.4
                                                       0.2
             4.9
                          3.0
                                         1.4
1
                                                       0.2
             4.7
                          3.2
                                         1.3
2
                                                       0.2
3
             4.6
                          3.1
                                         1.5
                                                       0.2
             5.0
                           3.6
                                         1.4
4
                                                       0.2
```

```
y = iris['species']
y.head()
```

```
0 setosa
```

4 setosa

```
Name: species, dtype: object
```

"species" 열을 추출하여 y Series(Target Vector) 생성

<sup>1</sup> setosa

<sup>2</sup> setosa

<sup>3</sup> setosa



# 1

#### 데이터 준비



- 2 모델 클래스 선택
- 3 모델 인스턴스 생성과 하이퍼파라미터 선택

입력데이터(x), 출력데이터(y)가 모두 연속형 수치 데이터이므로 그에 맞는 분석 모델을 선택

```
from sklearn.linear_model import LinearRegression
regr = LinearRegression()
```

선형회귀 객체(인스턴스) 생성 - 디폴트

```
from sklearn.linear_model import LinearRegression
regr = LinearRegression(fit_intercept = True)
```

선형회귀 객체(인스턴스) 생성 -(fit\_intercept=True라는 하이퍼파라미터를 제공)

4

#### 특징 행렬과 대상 벡터 준비

```
X = x.reshape(-1, 1)
print(X.shape, y.shape)
(100, 1) (100,)
```

5

#### 모델을 데이터에 적합

regr.fit(X, y) X, y에 맞는 선형회귀 모델을 적합(모델 생성)
LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)

regr.coef\_ 모델의 기울기

array([2.9855087])

regr.intercept\_ 모델의 y 절편

0.9878534341975644

# 6

#### 새로운 데이터를 이용해 예측

```
x_new = np.linspace(-1, 11, num=100)

X_new = x_new.reshape(-1, 1)
X_new.shape

(100, 1)

y_pred = regr.predict(X_new)

plt.plot(X_new, y_pred, c='red')
plt.scatter(X, y)

35

25

20

10

5

0

2 4
```

10

7

#### 모델 평가

```
from sklearn.metrics import mean_squared_error

rmse = np.sqrt(mean_squared_error(y, y_pred))

print(rmse)

13.708237122486333
```

### 데이터 레이블링

```
import seaborn as sd
                      from sklearn.preprocessing import LabelEncoder
import pandas as pd
                      encoder = LabelEncoder()
iris = sd.load dataset('iris')
                      y = encoder.fit transform(y)
X = iris.drop('species', axis=1)
                      y = iris['species']
                         iris['species'].value_counts()
                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
virginica
       50
                         setosa
       50
                         versicolor
       50
Name: species, dtype: int64
```

TargetVector 에 대한 Labeling 필요

#### 데이터 분할

머신러닝/딥러닝 학습데이터는 훈련(training) 데이터, 검증(validation) 데이터 및 테스트(test)로 분할(split)하여 사용

전체 데이터(Original Data, 100%)

훈련(training) 데이터 테스트(test) 데이터 (85%, 80%, 70%) (15%, 20%, 30%) 훈련(training) 데이터 검증(validation) 데이터 테스트(test) 데이터 (50%)(30%)(20%)모델 구축을 위한 데이터 모델 성능향상을 위한 예측 및 성능 평가를 위한 (문제집) 데이터(모의고사) 데이터(수능시험)

훈련 데이터 : 모델의 훈련 및 가중치 업데이트 등의 목적으로 사용

검증 데이터 : 훈련된 모델의 평가 및 최종 모델을 선정하기 위해 사용

테스트 데이터 : 모델의 예측 및 평가를 위해 사용

#### 데이터 분할

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=25)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

(120, 4) (30, 4) (120,) (30,)

pd.Series(y_train).value_counts()

2     42
     0     41
     1     37
     dtype: int64
```

#### 데이터 분할

- 랜덤 층화 샘플링
- 각 층별 배분된 표본을 단순임의추출의 방법으로 표본을 추출

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, shuffle=True, stratify=y, random_state=25)

pd.Series(y_train).value_counts()

2     40
1     40
```

0 40 dtype: int64

- 교차검증의 개념 및 절차
- ① 교차 검증 1단계에서는 데이터를 학습용과 테스트용으로 나눔
- ② 모델의 테스트 성능을 기록
- ③ 교차 검증의 매 단계마다 다른 파티션으로 위의 작업을 수행
- ④ 모델의 최종 성능은 매 단계의 테스트 성능을 평균 계산

교차 검증은 모델의 변동성을 줄여주며 오버피팅 방지 효과

교차 검증을 통해 모든 데이터를 학습용 데이터로 사용할 수 있음

- k 폴드 교차 검증(K-fold Cross Validation)
- 데이터를 무작위로 k개의 동일한 크기인 폴드로 분할 (보통 k값으로 3, 5, 10을 많이 사용)
- 각 시행 단계에서 특정 폴드를 테스트용으로, 나머지는 학습용으로 사용
- 각 폴드를 테스트 세트로 한 번씩 사용하고 이 과정을 k번 반복 시행함
- 최종적으로 모델 성능의 평균을 계산
- k = 5, repeat = 5

| 반복시행 | 폴드1 | 폴드2 | 폴드3 | 폴드4 | 폴드5 |
|------|-----|-----|-----|-----|-----|
| 1    | 테스트 | 학습  | 학습  | 학습  | 학습  |
| 2    | 학습  | 테스트 | 학습  | 학습  | 학습  |
| 3    | 학습  | 학습  | 테스트 | 학습  | 학습  |
| 4    | 학습  | 학습  | 학습  | 테스트 | 학습  |
| 5    | 학습  | 학습  | 학습  | 학습  | 테스트 |

```
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=3)

from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y, cv = 5)

array([0.966666667, 0.966666667, 0.93333333, 0.96666667, 1. ])
```

■ 단일 관측치 제거 방식(LOOCV)

Leave-one-out cross validation

검증을 시행할 때 마다 한 지점을 제외한 모든 지점에서 훈련

- 매 시행 단계에서 테스트 샘플을 고정하는 방식
- 데이터를 n개의 서브세트로 분할하고, n개 중 1개를 테스트용으로 두고 n-1개로 학습을 수행
- 데이터 크기가 n이면 n번의 교차 검증을 수행

#### **Grid Search**

```
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
X = iris.data
y = iris.target
from sklearn.linear model import LinearRegression
from sklearn.model_selection import GridSearchCV
params = {"fit_intercept": [True, False],
          "normalize": [True, False]}
grid = GridSearchCV(LinearRegression(), params, iid=True, cv=7)
```

#### **Grid Search**

```
grid.fit(X, y)
GridSearchCV(cv=7, error_score='raise-deprecating',
             estimator=LinearRegression(copy X=True, fit intercept=True,
                                        n_jobs=None, normalize=False),
             iid=True, n jobs=None,
             param_grid={'fit_intercept': [True, False],
                         'normalize': [True, False]},
             pre dispatch='2*n jobs', refit=True, return train score=False,
             scoring=None, verbose=0)
grid.best params
{'fit intercept': True, 'normalize': False}
model = grid.best_estimator
model
LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
```

# 탐색적 데이터 분석(Exploratory Data Analysis)

■ 탐색적 데이터 분석(Exploratory Data Analysis)이란?
 존 튜키라는 미국의 저명한 통계학자가 창안한 자료 분석 방법론
 데이터가 가지고 있는 본연의 특징과 의미를 찾는 것을 목적으로 함
 데이터를 다양한 각도에서 관찰하고 이해하는 과정
 데이터를 분석하기 전에 통계적인 방법이나 시각화 도구를 활용하여 데이터를 직관적으로



출처: https://statkclee.github.io/ml/ml-eda.html

- 관측값 : 총 6,497건 (레드 와인: 1,599건, 화이트 와인: 4,898건)
- 입력변수: 12개 (고정산, 휘발산, 구연산, 잔여당, 염화물, 무수아황산, 총이산화황, 밀도, 산성도, 황산염, 알콜도수와 같은 와인의 물리화학적 특성들과 red, white의 와인 타입)
- 출력변수: 1개 (와인품질평가점수, 가장 낮은 품질 1점 ~ 가장 높은 품질 10점)
- 데이터 수집
- https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv
- https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv

■ 데이터 파일 read 및 데이터프레임 구성 확인

```
redwine = pd.read_csv("data/winequality-red.csv", sep=";", header=0)
redwine["type"] = "red"
redwine.head()
```

|   | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | рН   | sulphates | alcohol | quality | type |
|---|---------------|------------------|-------------|----------------|-----------|---------------------|----------------------|---------|------|-----------|---------|---------|------|
| 0 | 7.4           | 0.70             | 0.00        | 1.9            | 0.076     | 11.0                | 34.0                 | 0.9978  | 3.51 | 0.56      | 9.4     | 5       | red  |
| 1 | 7.8           | 0.88             | 0.00        | 2.6            | 0.098     | 25.0                | 67.0                 | 0.9968  | 3.20 | 0.68      | 9.8     | 5       | red  |
| 2 | 7.8           | 0.76             | 0.04        | 2.3            | 0.092     | 15.0                | 54.0                 | 0.9970  | 3.26 | 0.65      | 9.8     | 5       | red  |
| 3 | 11.2          | 0.28             | 0.56        | 1.9            | 0.075     | 17.0                | 60.0                 | 0.9980  | 3.16 | 0.58      | 9.8     | 6       | red  |
| 4 | 7.4           | 0.70             | 0.00        | 1.9            | 0.076     | 11.0                | 34.0                 | 0.9978  | 3.51 | 0.56      | 9.4     | 5       | red  |

redwine.shape

(1599, 13)

■ 데이터 파일 read 및 데이터프레임 구성 확인

```
whitewine = pd.read_csv("data/winequality-white.csv", sep=";", header=0)
whitewine["type"] = "white"
whitewine.head()
```

|   | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | рН   | sulphates | alcohol | quality | type  |
|---|---------------|------------------|-------------|----------------|-----------|---------------------|----------------------|---------|------|-----------|---------|---------|-------|
| 0 | 7.0           | 0.27             | 0.36        | 20.7           | 0.045     | 45.0                | 170.0                | 1.0010  | 3.00 | 0.45      | 8.8     | 6       | white |
| 1 | 6.3           | 0.30             | 0.34        | 1.6            | 0.049     | 14.0                | 132.0                | 0.9940  | 3.30 | 0.49      | 9.5     | 6       | white |
| 2 | 8.1           | 0.28             | 0.40        | 6.9            | 0.050     | 30.0                | 97.0                 | 0.9951  | 3.26 | 0.44      | 10.1    | 6       | white |
| 3 | 7.2           | 0.23             | 0.32        | 8.5            | 0.058     | 47.0                | 186.0                | 0.9956  | 3.19 | 0.40      | 9.9     | 6       | white |
| 4 | 7.2           | 0.23             | 0.32        | 8.5            | 0.058     | 47.0                | 186.0                | 0.9956  | 3.19 | 0.40      | 9.9     | 6       | white |

whitewine.shape

(4898, 13)

0.76

0.28

0.70

0.04

0.56

0.00

2.3

1.9

1.9

0.092

0.075

0.076

■ red/white 데이터프레임 병합 및 컬럼명 변경

```
wine = redwine.append(whitewine)
wine.shape
(6497, 13)
wine.columns = wine.columns.str.replace(' ', '_')
wine.head()
                volatile_acidity_citric_acid_residual_sugar_chlorides_free_sulfur_dioxide_total_sulfur_dioxide_density
                                                                                                                   pH sulphates alcohol quality type
0
            7.4
                          0.70
                                     0.00
                                                     1.9
                                                             0.076
                                                                                                           0.9978 3.51
                                                                                                                             0.56
                                                                                                                                                5
                                                                                 11.0
                                                                                                                                                    red
                                                                                                                                                5
1
            7.8
                          0.88
                                     0.00
                                                     2.6
                                                             0.098
                                                                                 25.0
                                                                                                           0.9968 3.20
                                                                                                                             0.68
                                                                                                                                                    red
```

15.0

17.0

11.0

54.0

60.0

34.0

0.9970 3.26

0.9980 3.16

0.9978 3.51

0.65

0.58

0.56

9.8

9.8

9.4

5

6

5

red

red

red

7.8

11.2

7.4

2

3

#### ■ 요약통계 확인

| wine.describe() |               |                  |             |                |             |                     |                      |             |             |             |  |
|-----------------|---------------|------------------|-------------|----------------|-------------|---------------------|----------------------|-------------|-------------|-------------|--|
|                 | fixed_acidity | volatile_acidity | citric_acid | residual_sugar | chlorides   | free_sulfur_dioxide | total_sulfur_dioxide | density     | рН          | sulphates   |  |
| count           | 6497.000000   | 6497.000000      | 6497.000000 | 6497.000000    | 6497.000000 | 6497.000000         | 6497.000000          | 6497.000000 | 6497.000000 | 6497.000000 |  |
| mean            | 7.215307      | 0.339666         | 0.318633    | 5.443235       | 0.056034    | 30.525319           | 115.744574           | 0.994697    | 3.218501    | 0.531268    |  |
| std             | 1.296434      | 0.164636         | 0.145318    | 4.757804       | 0.035034    | 17.749400           | 56.521855            | 0.002999    | 0.160787    | 0.148806    |  |
| min             | 3.800000      | 0.080000         | 0.000000    | 0.600000       | 0.009000    | 1.000000            | 6.000000             | 0.987110    | 2.720000    | 0.220000    |  |
| 25%             | 6.400000      | 0.230000         | 0.250000    | 1.800000       | 0.038000    | 17.000000           | 77.000000            | 0.992340    | 3.110000    | 0.430000    |  |
| 50%             | 7.000000      | 0.290000         | 0.310000    | 3.000000       | 0.047000    | 29.000000           | 118.000000           | 0.994890    | 3.210000    | 0.510000    |  |
| 75%             | 7.700000      | 0.400000         | 0.390000    | 8.100000       | 0.065000    | 41.000000           | 156.000000           | 0.996990    | 3.320000    | 0.600000    |  |
| max             | 15,900000     | 1.580000         | 1.660000    | 65.800000      | 0.611000    | 289.000000          | 440.000000           | 1.038980    | 4.010000    | 2.000000    |  |

■ 출력변수 quality 확인

pd.DataFrame(wine.quality.value\_counts())

|   | quality |
|---|---------|
| 6 | 2836    |
| 5 | 2138    |
| 7 | 1079    |
| 4 | 216     |
| 8 | 193     |
| 3 | 30      |
| 9 | 5       |

wine.groupby('type')['quality'].value\_counts().unstack('type')

| type    | red   | white  |
|---------|-------|--------|
| quality |       |        |
| 3       | 10.0  | 20.0   |
| 4       | 53.0  | 163.0  |
| 5       | 681.0 | 1457.0 |
| 6       | 638.0 | 2198.0 |
| 7       | 199.0 | 880.0  |
| 8       | 18.0  | 175.0  |
| 9       | NaN   | 5.0    |

#### ■ 각 변수별 분포

```
plt.figure(figsize=(12,12))
for i in range(1,12):
    plt.subplot(3,4,i)
    sns.distplot(wine.iloc[:,i])
plt.tight_layout()
plt.show()
```



#### ■ 상관분석

wine\_corr = wine.corr()
wine\_corr

상관계수 R은 -1≤R≤1 범위 1에 가까우면 양의 상관관계 -1에 가까우면 음의 상관관계 0에 가까우면 상관관계 없음

|                      | fixed_acidity | volatile_acidity | citric_acid | residual_sugar | chlorides | free_sulfur_dioxide | $total\_sulfur\_dioxide$ | density   |
|----------------------|---------------|------------------|-------------|----------------|-----------|---------------------|--------------------------|-----------|
| fixed_acidity        | 1.000000      | 0.219008         | 0.324436    | -0.111981      | 0.298195  | -0.282735           | -0.329054                | 0.458910  |
| volatile_acidity     | 0.219008      | 1.000000         | -0.377981   | -0.196011      | 0.377124  | -0.352557           | -0.414476                | 0.271296  |
| citric_acid          | 0.324436      | -0.377981        | 1.000000    | 0.142451       | 0.038998  | 0.133126            | 0.195242                 | 0.096154  |
| residual_sugar       | -0.111981     | -0.196011        | 0.142451    | 1.000000       | -0.128940 | 0.402871            | 0.495482                 | 0.552517  |
| chlorides            | 0.298195      | 0.377124         | 0.038998    | -0.128940      | 1.000000  | -0.195045           | -0.279630                | 0.362615  |
| free_sulfur_dioxide  | -0.282735     | -0.352557        | 0.133126    | 0.402871       | -0.195045 | 1.000000            | 0.720934                 | 0.025717  |
| total_sulfur_dioxide | -0.329054     | -0.414476        | 0.195242    | 0.495482       | -0.279630 | 0.720934            | 1.000000                 | 0.032395  |
| density              | 0.458910      | 0.271296         | 0.096154    | 0.552517       | 0.362615  | 0.025717            | 0.032395                 | 1.000000  |
| рН                   | -0.252700     | 0.261454         | -0.329808   | -0.267320      | 0.044708  | -0.145854           | -0.238413                | 0.011686  |
| sulphates            | 0.299568      | 0.225984         | 0.056197    | -0.185927      | 0.395593  | -0.188457           | -0.275727                | 0.259478  |
| alcohol              | -0.095452     | -0.037640        | -0.010493   | -0.359415      | -0.256916 | -0.179838           | -0.265740                | -0.686745 |
| quality              | -0.076743     | -0.265699        | 0.085532    | -0.036980      | -0.200666 | 0.055463            | -0.041385                | -0.305858 |

■ 상관분석 – 양의 상관관계

양의 상관 관계를 가지는 변수들 (구연산, 무수아황산, 산성도, 황산염, 알콜도수)

■ 상관분석 – 음의 상관관계

음의 상관 관계를 가지는 변수들 (고정산, 휘발산, 잔여당, 염화물, 총이산화황, 밀도)

■ 상관분석 - heat map

```
import seaborn as sns

plt.figure(figsize=(15,15))
sns.heatmap(wine_corr,color = "k", annot=True)
```



■ 상관분석 - box plot

```
plt.figure(figsize=(15,5))
sns.boxplot(x="quality", y="fixed_acidity", data=wine)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x21038e85240>





Nank yes