Определение 1. Множество называется *конечным*, если оно пусто или равномощно множеству $\{1, 2, \ldots, n\}$ для некоторого натурального n. Говорят, что множество *бесконечно*, если оно не является конечным.

Определение 2. Множества X и Y называются *равномощными*, если существует взаимно однозначное отображение $f: X \to Y$. Обозначение: |X| = |Y|.

Определение 3. Множество называется *конечным*, если оно пусто или равномощно множеству $\{1, 2, ..., n\}$ для некоторого натурального n. Говорят, что множество *бесконечно*, если оно не является конечным.

Определение 4. Множество называется *счётным*, если оно равномощно множеству натуральных чисел \mathbb{N} . Говорят, что множество *не более чем счётно*, если оно конечно или счётно. Множество называется *несчётным*, если оно бесконечно и не является счётным.

3адача 1° . Докажите, что всякое подмножество счётного множества не более чем счётно.

Задача 2. Докажите, что следующие множества счётны:

- a) $\{x \in \mathbb{N} \mid x$ делится на $9\}$;
- **б**) \mathbb{Z} :
- в)° конечное объединение счётных множеств;
- \mathbf{r}) $^{\circ}$ счётное объединение счётных множеств.

Задача 3*. Найдите алгебраическое выражение от двух переменных x и y, задающее взаимно однозначное соответствие между множеством неотрицательных целых чисел и множеством точек плоскости, координаты которых — неотрицательные целые числа.

Задача 4. Докажите, что счётно

- а) множество точек плоскости, координаты которых целые числа;
- **б)** множество \mathbb{Q} ;
- в)° декартово произведение счётных множеств;
- г) множество предложений в русском языке;
- \mathbf{J}) множество алгебраических¹ чисел.
- е) множество конечных подмножеств множества N.

Задача 5. Счётно ли а) множество точек плоскости, обе координаты которых рациональны;

- б) множество всех треугольников на плоскости, координаты вершин которых рациональны;
- в)* множество всех многоугольников на плоскости, координаты вершин которых рациональны?

Задача 6. Счётно ли любое бесконечное множество непересекающихся

- а) интервалов длины более 1 на прямой;
- **б)**° интервалов на прямой;
- в) кругов на плоскости;
- ${f r}$) восьмёрок на плоскости (восьмёрка это две касающиеся внешним образом окружности; восьмёрки могут быть разных размеров);
- д)* букв «Т» (любых размеров) на плоскости?

1	2 a	2 6	2 B	2 Г	3	4 a	4 б	4 B	4 Г	4 Д	4 e	5 a	5 6	5 B	6 a	6 6	6 B	6 г	6 Д

 $^{^{1}}$ Число a алгебраично, если найдётся многочлен P(x) с рациональными коэффициентами, такой что P(a)=0

Листок №15 Страница 2

Задача 7° .

- а) Докажите, что в любом бесконечном множестве найдется счётное подмножество.
- **б)** Пусть A не более чем счётно, а B бесконечно. Докажите, что $|A \cup B| = |B|$.

Задача 8. Равномощны ли следующие множества точек:

- а) интервал и отрезок;
- б) полуокружность (без концов) и прямая;
- в) интервал и прямая;
- \mathbf{r}) квадрат² и круг;
- д) квадрат и плоскость;
- е) отрезок и счётное объединение множеств, равномощных отрезку?

Задача 9. Докажите, что множество S бесконечных последовательностей из 0 и 1 и множество всех подмножеств множества $\mathbb N$ равномощны.

Задача 10^{\circ}. а) Дана бесконечная вправо и вниз таблица из 0 и 1. Как по этой таблице составить бесконечную строку из 0 и 1, которая не совпадёт ни с одной из строк таблицы?

б) Докажите, что множество S из задачи 9 несчётно.

Определение 5. Говорят, что множество *имеет мощность континуум* (*континуально*), если оно равномощно множеству S из задачи 9.

Задача 11°. (*Теорема Кантора-Бернштейна*) Если множество A равномощно подмножеству множества B и множество B равномощно подмножеству множества A, то A и B равномощны.

Задача 12. Докажите, что любой круг и любое круговое кольцо на плоскости равномощны.

Задача 13. Докажите, что следующие множества континуальны:

- а) множество взаимно однозначных отображений из N в N;
- б) множество бесконечных последовательностей натуральных чисел.

Задача 14. (*Теорема Кантора*) Может ли множество быть равномощно множеству всех своих подмножеств?

Задача 15*. (*Парадокс Деда Мороза*) Ровно за минуту до Нового Года Дед Мороз выдаёт Васе 10 конфет, после чего одну конфету у него забирает. За полминуты до НГ он ещё раз повторяет эту операцию. За четверть минуты — ещё раз. И так далее до бесконечности. Сколько конфет будет у Васи в Новом Году?

Задача 16*. Дано множество M положительных чисел. Известно, что для любого его конечного подмножества $N \subset M$, сумма всех чисел из N не превосходит 1. Докажите, что множество M не более чем счётно.

Задача 17*. Пусть множество S имеет мощность континуум. Докажите, что $|S \times S| = S$.

7 a	7 б	8 a	8 6	8 B	8 г	8 д	8 e	9	10 a	10 б	11	12	13 a	13 б	14	15	16	17

²Квадрат в этом листке — это квадрат с внутренностью, например множество точек (x,y), где $0 \leqslant x,y \leqslant 1$.