P7计时器说明文档

计时器模式0:

计时器模式1:

模块接口

信号名 方向 描述

信号名	方向	描述
clk	I	时钟
reset	I	复位
Addr [31:2]	I	地址输入
WE	I	写使能
Din [31:0]	I	32位数据输入
Dout [31:0]	0	32位数据输出
IRQ	О	中断请求

计数模式

模式0

- 当计数器倒计数为0 后,计数器停止计数,此时控制寄存器中的使能Enable自动变为0。当使能Enable 被设置为1 后,初值寄存器值再次被加载至计数器,计数器重新启动倒计数。
- 模式0 通常用于产生定时中断。例如,为操作系统的时间片调度机制提供定时。模式0 下的中断信号将持续有效,直至控制寄存器中的中断屏蔽位被设置为0

模式1

- 当计数器倒计数为0后,初值寄存器值被自动加载至计数器,计数器继续倒计数。
- 模式1通常用于产生周期性脉冲。例如,可以用模式1产生步进电机所需的步进 控制信号。不同于模式0,模式1下计数器每次计数循环中只产生一周期的中断信 号。

寄存器

偏移	寄存器	寄存器描述	R/W	复位值
0h	CTRL	控制寄存器	R/W	0
4h	PRESET	初值寄存器	R/W	0
8h	COUNT	计数值寄存器	R	0

控制寄存器 (CTRL)

读取CTRL寄存器时,未定义位始终为0

名称	BIT位置	描述
IM	3	中断屏蔽 0: 禁止中断 1: 允许中断
Mode	2: 1	模式选择 00: 方式0 01: 方式1 10: 未定义 11: 未定义
Enable	0	计数器使能 0: 停止计数 1: 允许计数

名称	BIT位置	描述
PRESET	31: 0	32位计数初值

计数值寄存器 (COUNT)

只读,不可写入

名称	BIT位置	描述
COUNT	31: 0	32位计数值

编程说明

- 1) 在允许计数器计数前,应首先停止计数;然后加载初值寄存器;再允许计数。
- 2) 无论哪种模式,如果不需要产生中断,则应屏蔽中断。

用户操作规范

模式0

1.IDLE (00)

可行操作

- 修改ctrl [3:0],调整模式以及控制状态
- 修改preset,设置计时器加载初值
- reset,复位至状态IDLE(00)
- 读CTRL、PRESET、COUNT寄存器

不可行操作

• 不可修改count

误操作修改count无作用, 因为后续将使用preset值

2.LOAD (01)

可行

- 修改ctrl [3:0],调整模式以及控制状态
- 修改preset,设置计时器加载初值
- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器

不可行

不可修改count

误操作修改count无作用,因为后续将使用preset值

3.CNT (10)

可行

- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器
- 修改计数器使能,若被store类指令修改为0,则停止计数
- 修改ctrl [3:0],调整模式以及控制状态

不可行

- 修改preset
- 修改count

可以修改preset的值,但是对当前count无作用,因为在LOAD状态已经将preset写入count。

4.INT (11)

可行

- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器
- 修改preset,设置加载寄存器初值

不可行

- 修改count
- 修改ctrl [3:0],调整模式以及控制状态

误操作修改count无作用,因为进入LOAD状态将使用preset值。若修改ctrl[0]值为1将导致继续计数。

模式1

1.IDLE (00)

可行操作

- 修改ctrl [3:0],调整模式以及控制状态
- 修改preset,设置计时器加载初值
- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器

不可行操作

• 不可修改count

误操作修改count无作用, 因为后续将使用preset值

2.LOAD (01)

可行

- 修改ctrl [3:0],调整模式以及控制状态
- 修改preset,设置计时器加载初值
- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器

不可行

• 不可修改count

误操作修改count无作用,因为后续将使用preset值

3.CNT (10)

可行

- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器
- 修改计数器使能,若被store类指令修改为0,则停止计数
- 修改ctrl [3:0],调整模式以及控制状态

不可行

- 修改preset
- 修改count

可以修改preset的值,但是对当前count无作用,因为在LOAD状态已经将preset写入count。

4.INT (11)

可行

- reset, 复位至状态IDLE (00)
- 读CTRL、PRESET、COUNT寄存器
- 修改preset,设置加载寄存器初值

不可行

- 修改count
- 修改ctrl [3:0],调整模式以及控制状态

误操作修改count无作用,因为进入LOAD状态将使用preset值。误修改ctrl[0]为0将导致无法继续计数以产生周期中断。