Hyper Parameter Tuning GridSearchCV

- · Data Ingestion
- EDA
- · Feature Engineering
- · Feature Scaling
- Model Training
- · Performance Metrics
- · Hyper parameter Tuning

```
In [1]: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   data=pd.read_csv("https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/
```

In [2]: data.head()

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
In [3]: data['quality'].value_counts()
```

```
Out[3]: 5 681
6 638
```

7 199

4 53 8 18

3 10

Name: quality, dtype: int64

```
In [4]: | data['quality'].unique()
```

Out[4]: array([5, 6, 7, 4, 8, 3], dtype=int64)

```
In [5]: data.columns
```

In [6]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [7]: data.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
fixed acidity	1599.0	8.319637	1.741096	4.60000	7.1000	7.90000	9.200000	15.90000
volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900	0.52000	0.640000	1.58000
citric acid	1599.0	0.270976	0.194801	0.00000	0.0900	0.26000	0.420000	1.00000
residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000	2.20000 0.07900	2.600000 0.090000	15.50000 0.61100
chlorides	1599.0	0.087467	0.047065	0.01200	0.0700			
free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000	14.00000	21.000000	72.00000
total sulfur dioxide	oxide 1599.0 46.467	46.467792	32.895324	6.00000 22	22.0000	38.00000	62.000000	289.00000
density	1599.0	0.996747	0.001887	0.99007	0.9956	0.99675	0.997835	1.00369
рН	1599.0	3.311113	0.154386	2.74000	3.2100	3.31000	3.400000	4.01000
sulphates	1599.0	599.0 0.658149	0.169507	0.33000	0.5500	0.62000	0.730000	2.00000
alcohol	1599.0 10.422983	1.065668	8.40000	9.5000	10.20000	11.100000	14.90000	
quality	1599.0	5.636023	0.807569	3.00000	5.0000	6.00000	6.000000	8.00000

In [8]: data.corr()

Out[8]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.057731

In [9]: data.columns

In [11]: sns.stripplot(data=data,y=data['alcohol'],x=data['quality'])
sns.set(rc={"figure.figsize":(10, 7)})

In [12]: sns.stripplot(data=data,y=data['total sulfur dioxide'],x=data['quality'])
sns.set(rc={"figure.figsize":(10, 12)})


```
In [13]: sns.barplot(x='quality',data=data,y='alcohol')
```

Out[13]: <AxesSubplot:xlabel='quality', ylabel='alcohol'>

In [14]: sns.pairplot(data,hue="quality", diag_kind="hist")

Out[14]: <seaborn.axisgrid.PairGrid at 0x2367df8e0d0>

In [15]: data.head()

Out[15]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
X=data.drop('quality',axis=1)
In [16]:
In [17]:
            X.head()
Out[17]:
                                                                          free
                                                                                      total
                            volatile
                                      citric
                   fixed
                                              residual
                                                        chlorides
                                                                        sulfur
                                                                                    sulfur
                                                                                            density
                                                                                                       pН
                                                                                                            sulphates
                                                                                                                        alcohol
                 acidity
                            acidity
                                       acid
                                                 sugar
                                                                      dioxide
                                                                                   dioxide
             0
                     7.4
                               0.70
                                       0.00
                                                   1.9
                                                            0.076
                                                                          11.0
                                                                                      34.0
                                                                                             0.9978
                                                                                                      3.51
                                                                                                                  0.56
                                                                                                                            9.4
             1
                     7.8
                               0.88
                                       0.00
                                                   2.6
                                                            0.098
                                                                          25.0
                                                                                      67.0
                                                                                             0.9968
                                                                                                      3.20
                                                                                                                  0.68
                                                                                                                            9.8
             2
                     7.8
                               0.76
                                       0.04
                                                   2.3
                                                            0.092
                                                                          15.0
                                                                                      54.0
                                                                                             0.9970
                                                                                                      3.26
                                                                                                                  0.65
                                                                                                                            9.8
              3
                                                                                             0.9980
                     11.2
                               0.28
                                       0.56
                                                   1.9
                                                            0.075
                                                                          17.0
                                                                                      60.0
                                                                                                      3.16
                                                                                                                  0.58
                                                                                                                            9.8
              4
                     7.4
                               0.70
                                       0.00
                                                   1.9
                                                            0.076
                                                                                             0.9978 3.51
                                                                                                                  0.56
                                                                                                                            9.4
                                                                          11.0
                                                                                      34.0
In [18]:
            y=data['quality']
In [19]:
            y.head()
                   5
Out[19]:
            0
            1
                   5
                   5
            2
            3
                   6
                   5
            4
            Name: quality, dtype: int64
In [20]:
            from sklearn.model_selection import train_test_split
            X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.33,random_state=42)
In [21]:
            X_test.head()
Out[21]:
                                                                                      total
                                                                           free
                              volatile
                                        citric
                      fixed
                                                residual
                                                          chlorides
                                                                         sulfur
                                                                                    sulfur
                                                                                            density
                                                                                                       pН
                                                                                                            sulphates
                                                                                                                        alcohol
                     acidity
                               acidity
                                         acid
                                                  sugar
                                                                       dioxide
                                                                                   dioxide
               803
                        7.7
                                 0.56
                                         0.08
                                                    2.50
                                                              0.114
                                                                           14.0
                                                                                      46.0
                                                                                             0.9971
                                                                                                      3.24
                                                                                                                  0.66
                                                                                                                             9.6
               124
                        7.8
                                 0.50
                                         0.17
                                                    1.60
                                                              0.082
                                                                           21.0
                                                                                     102.0
                                                                                             0.9960
                                                                                                      3.39
                                                                                                                  0.48
                                                                                                                             9.5
               350
                       10.7
                                 0.67
                                         0.22
                                                    2.70
                                                              0.107
                                                                           17.0
                                                                                      34.0
                                                                                             1.0004
                                                                                                      3.28
                                                                                                                  0.98
                                                                                                                            9.9
               682
                        8.5
                                 0.46
                                         0.31
                                                    2.25
                                                              0.078
                                                                           32.0
                                                                                      58.0
                                                                                             0.9980
                                                                                                      3.33
                                                                                                                  0.54
                                                                                                                            9.8
              1326
                        6.7
                                 0.46
                                         0.24
                                                    1.70
                                                              0.077
                                                                           18.0
                                                                                      34.0
                                                                                             0.9948
                                                                                                     3.39
                                                                                                                  0.60
                                                                                                                           10.6
In [22]:
            X train.head()
Out[22]:
                                                                           free
                                                                                     total
                              volatile
                                        citric
                      fixed
                                                residual
                                                          chlorides
                                                                         sulfur
                                                                                    sulfur
                                                                                            density
                                                                                                       pН
                                                                                                            sulphates
                                                                                                                        alcohol
                     acidity
                               acidity
                                         acid
                                                  sugar
                                                                       dioxide
                                                                                   dioxide
               548
                       12.4
                                0.350
                                         0.49
                                                     2.6
                                                              0.079
                                                                           27.0
                                                                                      69.0
                                                                                            0.99940
                                                                                                      3.12
                                                                                                                  0.75
                                                                                                                           10.4
               355
                        6.7
                                0.750
                                         0.01
                                                     2.4
                                                              0.078
                                                                           17.0
                                                                                      32.0
                                                                                            0.99550
                                                                                                      3.55
                                                                                                                  0.61
                                                                                                                           12.8
              1296
                                0.630
                                                                                                      3.20
                        6.6
                                         0.00
                                                     4.3
                                                              0.093
                                                                           51.0
                                                                                      77.5
                                                                                            0.99558
                                                                                                                  0.45
                                                                                                                            9.5
               209
                                0.300
                                                     2.1
                                                              0.054
                                                                            7.0
                                                                                            0.99800
                                                                                                                  0.88
                                                                                                                           10.5
                        11.0
                                         0.58
                                                                                      19.0
                                                                                                      3.31
```

0.090

1.9

16.0

63.0

0.99650

3.19

9.6

0.82

8.4

140

0.745

0.11

```
In [23]: y_train.head()
Out[23]: 548
                 6
         355
                 6
         1296
                 5
         209
                 7
         140
                 5
         Name: quality, dtype: int64
In [24]: y_test.head()
Out[24]: 803
                 6
         124
                 5
         350
                 6
         682
                 5
         1326
                 6
         Name: quality, dtype: int64
In [25]: | from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler()
         scaler
Out[25]: StandardScaler()
         scaler.fit(X_train)##calculate the mean and std dev
In [26]:
Out[26]: StandardScaler()
In [27]: |print(scaler.mean_)
         [ 8.30345472  0.53246499  0.26933707  2.54691877  0.08772736  15.91223156
          46.76330532 0.99677933 3.31453782 0.65881419 10.41521942]
In [28]: | X_train_tf=scaler.fit_transform(X_train)
         X train tf
Out[28]: array([[ 2.40069523, -1.03103722, 1.12742595, ..., -1.26096312,
                  0.52726134, -0.01431863],
                 [-0.93967131, 1.22920403, -1.32502245, ..., 1.52622836,
                 -0.28225704, 2.24363201],
                 [-0.99827424, 0.55113165, -1.37611513, ..., -0.74241587,
                  -1.20742091, -0.86105011],
                 . . . ,
                 [-0.6466567, 0.49462562, -1.06955908, ..., 1.26695473,
                 -0.68701624, -0.86105011],
                 [-0.23643625, -1.87862768, 0.4121285, ..., 0.03540501,
                  0.81637505, 1.39690052],
                 [-1.46709761, -1.3700734, -0.04770558, ..., 0.48913386,
                 -0.68701624, 2.90220094]])
In [29]: X_test_tf=scaler.transform(X_test)
In [30]:
         from sklearn.svm import SVC
         model=SVC(kernel='linear', random_state=42)
         model
Out[30]: SVC(kernel='linear', random_state=42)
```

```
In [31]: |model.fit(X_train_tf,y_train)
Out[31]: SVC(kernel='linear', random state=42)
In [32]: model.score(X_train_tf,y_train)
Out[32]: 0.5994397759103641
In [33]: y_pred=model.predict(X_test_tf)
In [34]: y_test.head()
Out[34]: 803
                 6
                 5
         124
                 6
         350
                 5
         682
         1326
                 6
         Name: quality, dtype: int64
In [35]: | from sklearn.metrics import accuracy_score
In [36]: | accuracy_score(y_pred,y_test)
Out[36]: 0.5587121212121212
In [37]:
         from sklearn.model selection import GridSearchCV
         parameters=[{"C":[1,10,100,1000],'kernel':['linear']},
                    {"C":[1,10,100,1000], 'kernel':['rbf'], 'gamma':[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0
         gridSearch=GridSearchCV(estimator=model,param_grid=parameters,
                                 scoring="accuracy",
                                 cv=10,
                                 n jobs=-1)
         gridSearch=gridSearch.fit(X_train_tf,y_train)
         C:\Users\prasa\anaconda3\lib\site-packages\sklearn\model_selection\_split.py:676: User
         Warning: The least populated class in y has only 8 members, which is less than n_split
         s=10.
           warnings.warn(
In [38]: | accuracy=gridSearch.best_score_
In [39]: accuracy
Out[39]: 0.6554690204222914
In [40]: |gridSearch.best_params_
Out[40]: {'C': 10, 'gamma': 0.8, 'kernel': 'rbf'}
In [41]:
         model=SVC(C=10,kernel='rbf',gamma=0.8,random_state=42)
         model
Out[41]: SVC(C=10, gamma=0.8, random_state=42)
In [42]: model.fit(X_train_tf,y_train)
Out[42]: SVC(C=10, gamma=0.8, random_state=42)
```

```
In [43]: y_pred=model.predict(X_test_tf)
In [44]: model.score(X_train_tf,y_train)
Out[44]: 0.9971988795518207
In [45]: | from sklearn.metrics import accuracy_score
          accuracy=accuracy_score(y_test,y_pred)
In [46]: accuracy
Out[46]: 0.6193181818181818
In [47]: from sklearn.linear_model import LogisticRegression
          regressor=LogisticRegression()
          regressor
Out[47]: LogisticRegression()
In [48]: regressor.fit(X_train_tf,y_train)
Out[48]: LogisticRegression()
In [49]: y_pred2=regressor.predict(X_test_tf)
In [50]: regressor.score(X_train_tf,y_train)
Out[50]: 0.6218487394957983
In [51]: | from sklearn.metrics import accuracy_score
In [52]: |accuracy_score(y_test,y_pred2)
Out[52]: 0.571969696969697
         import numpy as np
In [53]:
          C=np.linspace(1,100,10)
          penalty = ['11', '12']
Out[53]: array([ 1., 12., 23., 34., 45., 56., 67., 78., 89., 100.])
         solver_options = ['newton-cg', 'lbfgs', 'liblinear', 'sag']
In [54]:
         multi_class_options = ['ovr', 'multinomial']
class_weight_options = ['None', 'balanced']
          param_grid = dict(C=C,penalty=penalty,solver = solver_options, multi_class = multi_class
```

```
nan
          0.51174282
                             nan 0.43702838 0.43702838 0.50987366 0.38285739
                                        nan
                                                   nan 0.40437002 0.40437002
                             nan
                 nan 0.38101419]
           warnings.warn(
         grid.best_score_
In [56]:
Out[56]: 0.6041796469366563
In [57]:
         grid.best_params_
Out[57]: {'C': 1.0,
           'class_weight': 'None',
           'multi_class': 'ovr',
           'penalty': '12',
           'solver': 'newton-cg'}
         from sklearn.linear_model import LogisticRegression
In [58]:
         regressor=LogisticRegression(C=5.5,class_weight='None',multi_class='ovr',solver='newton
         regressor
Out[58]: LogisticRegression(C=5.5, class weight='None', multi class='ovr',
                             solver='newton-cg')
In [59]: regressor.fit(X_train_tf,y_train)
Out[59]: LogisticRegression(C=5.5, class_weight='None', multi_class='ovr',
                             solver='newton-cg')
In [60]: |y_pred_Grid=regressor.predict(X_test_tf)
In [61]: | accuracy_score(y_test,y_pred_Grid)
Out[61]: 0.5606060606060606
```

grid = GridSearchCV(estimator=regressor, param_grid=param_grid, cv=10, scoring = 'accurate to the second param_grid in the second param_grid

nan

nan

nan 0.51080824

nan

nan

nan

nan 0.37541537

nan 0.60417965 0.60417965

nan

nan

grid.fit(X_train_tf, y_train)

nan 0.60417965

nan

nan

nan

nan

nan

nan

0.43702838 0.43702838 0.50987366 0.410964

nan

nan 0.40437002 0.40437002

nan

nan

nan