PwC Data-Lympics Challenge # 1

What's to come...

- 1. Introduction
- 2. Team Members
- 3. Challenge # 1
 - a. Problem Statement
 - b. Proposed Solution
 - c. Outcome
 - d. Visualization
- 4. Failures
- 5. Key Learnings
- 6. Business Case and Application
- 7. Future Work

HK Nova Team Members...

We are a team from **HKUST**

Challenge # 1: Computer Vision

Problem Statement

- With the input source as video, analyze the frames and detect number plates.
- Store these number plates digitally and export them into a db (CSV in our case)
- Email this CSV

Proposed Solution

- Yolo V2
- DarkNet 19
- PYTHON

Outcome

- 1. CSV with timestamp, number plate and total count
- 2. Output videos with bounding boxes
- Our Algorithm developed using YOLOV2 and custom feature-engineering
- 4. Readme explaining outcome

YOLOV2 Architecture

Proposed Solution: Architecture

Outcome

YoloV2 + DarkNet: Pros and Cons

Pros

- Faster than similar pre-trained models
- Accuracy of 80-95%
- Avoids false positive detection

Cons

- Problems with detecting small blurry objects
- Annotated only 200 datasets

Failures...Part of Life:)

Ideas and Models that failed:(

- Cropping the image
- Grayscaling the image (canny)
- Tesseract
- RPNET (PYTORCH)

Limitations of our model...

Given the time constraints:

- 1. Model spits out duplicate entries for vehicles detected
- 2. Reflective surfaces confuse the model
- 3. Two number plates in the same vehicle: picks it as one
- 4. Languages other than English are NOT detected by the model

Proposed Solution: Generic Applications

Proposed Solution: Specific Application to Risk Assurance

Vehicle/License Fraud

Credit Card Fraud

Currency Fraud

Proposed Solution: Cyber Crime and Credit Card Fraud

Global impact of cybercrime

The percentage of internet users who were victims of online crimes from October 2016 to September 2017

Chargeback rates by country	2016	
Brazil	3.55%	
Mexico	2.82%	
Russia	0.82%	
France	0.65%	
Germany	0.54%	
Belgium	0.54%	
United Kingdom	0.51%	
United States	0.47%	
Netherlands	0.40%	
Spain	0.24%	
China	0.18%	
Japan	0.18%	

Future Work

- 1. By using a combination of Fast RCNN and YOLOV3 to avoid false positives
- 2. Train the model with more images with false positives
- 3. Train the model with annotated images of license plates
- 4. Plot a live graph of objects detected (matplot lib)
- 5. iOS and Android App for real-time analysis for other applications mentioned above

Questions & Feedback

