Теория вероятностей. Лекция десятая Измеримые множества и отображения

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

13.11.2018

Условное матожидание отн-но σ -алгебры

Пусть имеются полная группа событий H_1,\ldots,H_k,\ldots $(\Omega=\bigsqcup_{i=1}^\infty H_i)$ и порожденная ей σ -алгебра $\mathcal{H}=\sigma(H_1,\ldots,H_k,\ldots)$. Пусть $q_i\stackrel{\triangle}{=}\mathbb{P}(H_i)>0$.

Условным математическим ожиданием $\mathbb{E}(\xi|\mathcal{H})$ дискретной случайной величины ξ относительно σ -алгебры $\mathcal{H} = \sigma(H_1, \ldots, H_k, \ldots)$ называют отображение $\mathbb{E}(\xi|\mathcal{H}): \Omega \to \mathbb{R}$, действующее по правилу:

$$\Omega \ni \omega \mapsto \mathbb{E}(\xi | \mathcal{H})(\omega) \stackrel{\triangle}{=} \begin{cases} \sum_{i \in \mathbb{N}} x_i \mathbb{P}(\xi = x_i | H_1), & \text{если } \omega \in H_1; \\ \dots \\ \sum_{i \in \mathbb{N}} x_i \mathbb{P}(\xi = x_i | H_k), & \text{если } \omega \in H_k; \\ \dots \end{cases}$$

будем говорить, что условное матожидание существует, если, конечно, все выражения выше определены и конечны.

Условное матожидание отн-но случайной величины

Рассмотрим некоторые дискретные случайные величины ξ, η ; случайная величина η , принимающая на каждом H_i некоторое свое значение, порождает σ -алгебру

$$\sigma(\eta) = \sigma\{\eta^{-1}(x) \mid x \in \mathbb{R}\} = \sigma\{H_1, \dots, H_k, \dots\}.$$

Условное матожидание ξ относительно случайной величины η зададим формулой $\mathbb{E}(\xi|\eta) \equiv \mathbb{E}(\xi|\sigma(\eta))$, то есть как функцию из Ω в \mathbb{R} . Иногда его вводят как функцию из области значений случайной величины η в \mathbb{R} , т.е. как регрессию.

Характеристическое свойство условного матожидания

 18^0 Для случайной величины ξ ($\mathbb{E}\xi^2 < +\infty$) и случайной величины η среди всех таких $h: \mathbb{R} \to \mathbb{R}$, что $\mathbb{E}(h^2(\eta)) < +\infty$, невязка $\mathbb{E}(\xi - h(\eta))^2$ достигает минимума при $h_0(\eta) = \mathbb{E}(\xi|\eta)$.

Снова условное матожидание в табличке

По совместному распределению пишется регрессия

(Y,X)	x_1	x_2	x_3	 $\mathbb{P}(Y = y_j)$	$\mathbb{E}(X Y)$
y_1	p_{11}	p_{12}	p_{13}	 q_1	$h_0(y_1) \stackrel{\triangle}{=} \frac{1}{q_1} \sum_{i=1}^{\infty} x_i p_{1i}$
y_2	p_{21}	p_{22}	p_{23}	 q_2	$h_0(y_2) \stackrel{\triangle}{=} \frac{1}{q_2} \sum_{i=1}^{\infty} x_i p_{2i}$
y_3	p_{31}	p_{32}	p_{33}	 q_3	$h_0(y_3) \stackrel{\triangle}{=} \frac{1}{q_3} \sum_{i=1}^{\infty} x_i p_{3i}$
				 	• • •

Подумать: можно ли было минимизировать что-то другое? Чем лучше, или хуже, использовать невязки $\mathbb{E}|\xi-h(\eta)|, \, \mathbb{E}|\xi-h(\eta)|^r (r>1)?$ Подумать: сумеете получить схожие формулы для минимизации $\mathbb{E}|\xi-h(\eta)|, \, \mathbb{E}|\xi-h(\eta)|^4$ или $\mathbb{E}|\xi-h(\eta)|^{3/2}$?

Стандартные свойства условного матожидания: [с-но]

Если не касаться вопросов существования (свойств 8^0 - 13^0)

- 0^0 $\mathbb{E}(1_A|\mathcal{H}) = \mathbb{P}(A|\mathcal{H})$ для всех $A \in \mathcal{F}$.
- $1^0 \mathbb{E}(\xi|\mathcal{H}) \ge 0$, если $\xi \ge 0$ для всех $\omega \in \Omega$.
- 2^0 $\mathbb{E}(\xi_1|\mathcal{H}) \geq \mathbb{E}(\xi_2|\mathcal{H})$, если $\xi_1(\omega) \geq \xi_2(\omega)$ для всех $\omega \in \Omega$.
- $3^0 \ \mathbb{E}(c|\mathcal{H}) = c$ для вырожденной случайной величины $c \in \mathbb{R};$ более того, $\mathbb{E}(\xi|\mathcal{H}) = \xi$ для \mathcal{H} -измеримой ξ , в частности, всегда $\mathbb{E}(f(\xi)|\xi) = f(\xi), \ \mathbb{E}(\xi|\xi) = \xi.$
- $4^0~\mathbb{E}(c\xi|\mathcal{H})=c\mathbb{E}(\xi|\mathcal{H})$ для $c\in\mathbb{R},$ более того, $\mathbb{E}(\eta\xi|\mathcal{H})=\eta\mathbb{E}(\xi|\mathcal{H}),$ если $\eta~\mathcal{H}$ -измерима.
- $5^0 \mathbb{E}(\xi_1|\mathcal{H}) + \mathbb{E}(\xi_2|\mathcal{H}) = \mathbb{E}(\xi_1 + \xi_2|\mathcal{H}).$
- 6^0 $\eta_1\mathbb{E}(\xi_1|\mathcal{H})+\eta_2\mathbb{E}(\xi_2|\mathcal{H})=\mathbb{E}(\eta_1\xi_1+\eta_2\xi_2|\mathcal{H})$ для \mathcal{H} -измеримых η_1,η_2 .
- 7^0 $\mathbb{E}(\xi\eta|\mathcal{H})=\mathbb{E}(\xi|\mathcal{H})\mathbb{E}(\eta|\mathcal{H})$, если $\xi 1_H,\eta 1_H$ независимы для всех $H\in\mathcal{H}$.

"Условные" свойства условного матожидания [с-но]

Предполагая, что все нужные условные матожидания существуют...

$$\mathbb{E}(\xi|\mathcal{G}) = \xi$$
 тогда и только тогда, когда ξ \mathcal{G} -измерима (т.е. $\{\omega \in \Omega | \xi(\omega) = x\} \in \mathcal{G}$ для всех x).

$$15^0 \ \mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}\xi$$
, если ξ независима относительно \mathcal{G} ;

в частности,
$$\mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}\xi$$
 для $\mathcal{G} = \{\Omega, \emptyset\}$.

$$16^0 \mathbb{E}(\xi|\mathcal{H}) = \mathbb{E}(\mathbb{E}(\xi|\mathcal{G})|\mathcal{H})$$
 при $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$;

в частности,
$$\mathbb{E}(\xi|\eta) = \mathbb{E}(\mathbb{E}(\xi|\eta,\zeta)|\eta)$$
,

$$\mathbb{EE}(\xi|\mathcal{G}) = \mathbb{E}\xi$$
,

$$\mathbb{P}(A)$$
 = $\mathbb{EP}(A|\mathcal{G})$ для всех $A \in \mathcal{F}$

(формула полной вероятности),

$$\mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}(\xi|\mathbb{E}(\xi|\mathcal{G}))$$

(свойство Дуба).

[С-но; 0,5 баллов] $\mathbb{E}(\xi\mathbb{E}(\eta|\mathcal{G})) = \mathbb{E}(\eta\mathbb{E}(\xi|\mathcal{G}))$.

Условная дисперсия и не только

Пусть ξ, η — дискретные случайные величины, и ξ интегрируема с квадратом (существует $\mathbb{E}\xi^2$).

Введем условную дисперсию $\mathbb{D}(\xi|\eta):\Omega o\mathbb{R}$ правилом:

$$\mathbb{D}(\xi|\eta) \stackrel{\triangle}{=} \mathbb{E}\big((\xi - \mathbb{E}(\xi|\eta))^2|\eta\big) = \mathbb{E}\big(\xi^2|\eta\big) - \big(\mathbb{E}(\xi|\eta)\big)^2.$$

Считаем:

$$\mathbb{E}(\mathbb{D}(\xi|\eta)) = \mathbb{E}(\xi - \mathbb{E}(\xi|\eta))^{2}$$

$$= \mathbb{E}((\xi - E\xi) - \mathbb{E}(\xi - (\mathbb{E}\xi|\eta)))^{2}$$

$$= \mathbb{D}\xi - 2\mathbb{E}(\xi - E\xi)\mathbb{E}(\xi - E(\xi|\eta)) + \mathbb{E}(\mathbb{E}(\xi|\eta) - \mathbb{E}(\mathbb{E}(\xi|\eta)))^{2}$$

$$= \mathbb{D}\xi - \mathbb{D}\mathbb{E}(\xi|\eta).$$

Условная дисперсия в качестве "теоремы Пифагора"

 $17^0~$ Для интегрируемой с квадратом дискретной случайной величины ξ

$$\mathbb{D}\xi = \mathbb{E}(\mathbb{D}(\xi|\eta)) + \mathbb{D}(\mathbb{E}(\xi|\eta));$$

в частности, $\mathbb{D}\xi=\mathbb{D}(\mathbb{E}(\xi|\eta)), \mathbb{E}(\mathbb{D}(\xi|\eta))=0$, в точности если $\sigma(\xi)\subset\sigma(\eta)$, то есть $\xi=\mathbb{E}(\xi|\eta)=h(\eta)$ для какой-то h; более того, $\mathbb{D}\xi=\mathbb{E}(\mathbb{D}(\xi|\eta)), \mathbb{D}(\mathbb{E}(\xi|\eta))=0$ для независимых ξ,η .

Подумать: теперь несложно доказать, что для любых интегрируемых с квадратом случайных величин η_1,η_2,ξ выполнено

$$\mathbb{D}(\mathbb{E}(\xi|\eta_1,\eta_2)) = \mathbb{D}(\mathbb{E}(\xi|\eta_1)) + \mathbb{D}(\mathbb{E}(\xi|\eta_2)) \leq \mathbb{D}\xi$$

для независимых η_1, η_2 ; но ведь независимых величин можно взять больше, чем две...

Вступайте в ряды Фурье!

Что разобрали:

- распределение случайных величин
- медиана и математическое ожидание
- независимость случайных величин
- производящие функции как матожидание
- дисперсия, ковариация и корреляция
- векторные случайные величины и их распределения
- энтропия и условная энтропия
- условное математическое ожидание

Мы научились находить зависимость одной случайной величины с помощью другой случайной величины:

- 1) линейную (как и любую наперед заданную двухпараметрическую) надо рассчитать соответствующие дисперсии и ковариацию, для чего достаточно знать матожидания;
- 2) произвольного вида надо рассчитать условное матожидание одной случайной величины относительно другой, для чего достаточно знать их совместное распределение.

Ограничения, от которых мы будем избавляться

Для подсчета $\mathbb{E}(X|Y)$:

- 1. использовалось суммирование по значениям X, то есть предполагалось, что значений у X не более чем счетное число;
- 2. предполагалось, что вероятность каждого значения Y не равна нулю, то есть значений у Y тоже не более чем счетное число. О том, что делать в общем случае вся оставшаяся часть семестра.

Первый шаг здесь — ввести σ -алгебру над Ω = \mathbb{R} . С этого и начнем...

- борелевские множества и мера Лебега
- случайные величины и измеримые отображения
- функции распределения
- абсолютно случайные величины и не только
- математическое ожидание как интеграл
- совместные функции распределения
- условное математическое ожидание как интеграл

Геометрическая вероятность. Вопросы

Пример 1. Алгебра ли $\mathcal{F} = \{[a,b] \subset [0,1]\}$? Нет, надо рассмотреть всевозможные конечные объединения всевозможных промежутков из [0,1].

Подумать: как задать на $lpha(\mathcal{F})$ длину.

Пример 2. Алгебра ли множество Π всех прямоугольников на $[0,1]^2$? Нет, не годятся даже всевозможные конечные объединения прямоугольников $\alpha(\Pi)$. Проще взять $\alpha(\mathcal{F}) \otimes \alpha(\mathcal{F})$.

Подумать: имеется ли в $\alpha(\mathcal{F})\otimes\alpha(\mathcal{F})$ какой-нибудь треугольник? Подумать: как задать на $\alpha(\mathcal{F})\otimes\alpha(\mathcal{F})$ площадь.

Геометрическая вероятность. Решения

Пример 3. Борелевские множества на открытом вправо промежутке. Рассмотрим открытый вправо промежуток $I \subset \mathbb{R}$ и полукольцо \mathcal{I} всех открытых вправо полуинтервалов $[a,b) \subset I$. Ее можно продолжить до σ -алгебры $\sigma(\mathcal{I})$, σ -алгебры борелевских множеств. А как выглядят $\sigma(\mathbb{R})$, $\mathcal{R}(\mathbb{R})$? Подумать. А что будет, если начать со всех открытых влево промежутков, отрезков, интервалов? Подумать. А как вероятность определить на таких множествах?

Пример 4. Борелевские множества на плоскости. Рассмотрим два открытых вправо промежутка $I_1,I_2 \subset \mathbb{R}$ и множества $\mathcal{I}_1,\mathcal{I}_2$ всех открытых вправо полуинтервалов в I_1,I_2 . Элементы $\sigma(\mathcal{I}_1) \otimes \sigma(\mathcal{I}_2)$ называют борелевскими множествами на $I_1 \times I_2$. Подумать: воспользовавшись этим примером, покажите, почему

 σ -алгебра удобнее, как измеримая структура, чем алгебра.

Два определения борелевских множеств

Определение 1.1. [очень умное, пользоваться им мы почти не будем] Для топологического пространства (Ω,τ) , где τ - совокупность всех открытых подмножеств множества Ω , под σ -алгеброй борелевских множеств понимается $\sigma(\tau)$,

$$\mathcal{B}_{\Omega} \stackrel{\triangle}{=} \sigma(\tau).$$

Определение 1.2. [рабочее]

Минимальную σ -алгебру, содержащую все n-мерные параллелепипеды $\{[a,b]\times\ldots\times[c,d]\subset\mathbb{R}^n\}$, называют борелевской σ -алгеброй над \mathbb{R}^n , а ее элементы — борелевскими множествами множества \mathbb{R}^n ,

$$\mathcal{B}_{\mathbb{R}^n} \stackrel{\triangle}{=} \sigma\{[a,b] \times \ldots \times [c,d] \subset \mathbb{R}^n\}.$$

 $\begin{tabular}{ll} \hline \end{tabular}$ Подумать: покажите, почему эти определения эквивалентны для \mathbb{R}^n . $\begin{tabular}{ll} \hline \end{tabular}$ покажите, что эти определения совпадают с определениями предыдущего слайда для $I=I_1=I_2=\mathbb{R}$.

Мера Лебега и не только

Борелевской мерой каждого параллелепипеда $[a,b] imes \ldots imes [c,d]$ назовем

$$\lambda([a,b]\times\ldots\times[c,d])=(b-a)\cdot\ldots\cdot(d-c).$$

Эта функция счетно-аддитивна на полукольце всех параллелепипедов. По теореме Каратеодори мы можем ее продолжить на все элементы из $\mathcal{B} \stackrel{\triangle}{=} \sigma(\tau)$, то есть на все борелевские множества.

Определение 2. Так доопределенную меру λ называют мерой Лебега.

Геометрическая вероятность. Итог

Эксперимент удовлетворяет геометрическому определению вероятности, если все его исходы можно изобразить в виде некоторого борелевского множества Ω , причем $0 < \lambda(\Omega) < +\infty$, а вероятность любого его борелевского подмножества зависит только от лебеговской меры (длины, площади, объема, ... n-мерного объема) этого подмножества и задается по формуле

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(\Omega)}, \forall A \in \mathcal{B}.$$

Лебеговские множества. Пополнение меры

Итак, имея меру на всех борелевских подмножествах, мы можем свести геометрическую вероятность к общей схеме. Полученную нами меру (как и всякую другую меру) можно попробовать распространить и дальше. Рассмотрим алгебру нулевых (пренебрежимых) множеств:

$$\mathcal{N} = \{ N \mid \exists A \in \mathcal{B}, N \subset A, \lambda(A) = 0 \},$$

а с ней — σ -кольцо лебеговских множеств $\sigma(\mathcal{B} \cup \mathcal{N})$.

Замечание. Так пополненное σ -кольцо уже учитывает исходную меру λ , в отличие от конструкции Каратеодори.

Теперь продолжим меру на все лебеговские множества правилом $\lambda(N) = 0 \Rightarrow \lambda|_{2^N} \equiv 0 \qquad \forall N \in \mathcal{B}.$

Замечание. Такую операцию пополнения можно делать с любой мерой.

Определение 3. [на вырост] Меру μ со свойством $\mu(N)$ = $0 \Rightarrow \mu|_{2^N} \equiv 0$ для всех $N \in \mathcal{F}$ называют полной.

Случайные величины. Определения

Итак, задано некоторое вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Определение 4.1. Случайной (скалярной) величиной ξ называется такая функция $\xi:\Omega\to\mathbb{R}$, что для любого борелевского множества $B\in\mathcal{B}$ выполнено

$$\xi^{-1}(B) = \{\omega \mid \xi(\omega) \in B\} \in \mathcal{F}.$$

Определение 4.2. Случайной (скалярной) величиной ξ называется такая функция $\xi:\Omega\to\mathbb{R}$, что для всех $a,b\in\mathbb{R}$ (a< b) выполнено

$$\xi^{-1}\big(\big(a,b\big]\big) = \big\{\omega\,\big|\, a < \xi(\omega) \le b\big\} \in \mathcal{F}.$$

Определение 4.3. Случайной (скалярной) величиной ξ называется такая функция $\xi:\Omega\to\mathbb{R}$, что для всех $b\in\mathbb{R}$ выполнено

$$\xi^{-1}((-\infty,b]) = \{\omega \mid \xi(\omega) \le b\} \in \mathcal{F}.$$

Случайные величины. Эквивалентность

Теорема 1. Определения 4.1-4.3 эквивалентны.

Доказательство.

Очевидно, что из 4.1 следует 4.2, а из 4.2 следует 4.3. Покажем, что из 4.3 следует 4.1.

Рассмотрим класс

$$\{B \subset \mathbb{R} \mid \xi^{-1}(B) \in \mathcal{B}\},\$$

он замкнут относительно не более чем счетного применения теоретико-множественных операций. Следовательно, это σ -алгебра. Он заведомо содержит все $(-\infty,b]$. Следовательно, он содержит минимальную σ -алгебру, их содержащую, то есть \mathcal{B} .

О минимальности

Подумать. Следующие определения эквивалентны:

- ξ случайная величина;
- $\sigma\{\{\omega \mid \xi(\omega) \in B\} \mid B \in \mathcal{B}\} \subset \mathcal{B};$
- $\sigma\{\{\omega \mid \xi(\omega) < x\} \mid x \in \mathbb{R}\} \subset \mathcal{B};$
- $\sigma\{\{\omega \mid \xi(\omega) \leq x\} \mid x \in \mathbb{R}\} \subset \mathcal{B};$
- $\sigma\{\{\omega \mid \xi(\omega) \geq x\} \mid x \in \mathbb{R}\} \subset \mathcal{B};$
- $\sigma\{\{\omega \mid \xi(\omega) > x\} \mid x \in \mathbb{R}\} \subset \mathcal{B};$
- $\sigma\{\{\omega \mid y < \xi(\omega) < x\} \mid x, y \in \mathbb{R}, y < x\} \subset \mathcal{B};$
- $\sigma\{\{\omega \mid y \leq \xi(\omega) \leq x\} \mid x, y \in \mathbb{R}, y < x\} \subset \mathcal{B}$
- Однако в этот список нельзя добавить $\sigma\{\{\omega \mid \xi(\omega) = x\} \mid x \in \mathbb{R}\} \subset \mathcal{B}.$
- Сейчас мы дали много эквивалентных друг другу определений $\sigma(\xi)$. Для определенности примем:

$$\sigma(\xi) \stackrel{\triangle}{=} \sigma\{\{\omega \,|\, \xi(\omega) \in B\} \,|\, B \in \mathcal{B}\}.$$

Что получили в рамках избавления от ограничений

- борелевские множества и мера Лебега
- случайные величины и измеримые отображения
- функции распределения
- абсолютно случайные величины и не только
- математическое ожидание как интеграл
- совместные функции распределения
- условное математическое ожидание как интеграл

Мы нашли подходящую σ -алгебру на \mathbb{R} , теперь мы умеем работать хотя бы с геометрической вероятностью. Мы дали определение случайной величине без каких-либо требований на мощность ее значений и нашли какой σ -алгебре она соответствует. Теперь надо научиться работать с такими объектами...