Chương 6 MẠNG HAI CỬA

.1. a. Xác định các phần tử của các ma trận A, Z, Y, H của mạch hình sau, với $Z_1 =$

b. Nếu cho $Z_1=8K\Omega$, $Z_2=4K\Omega$, xác định dòng cung cấp I_1 và áp trên tải U_2 khi áp nguồn cung cấp là $U_1=48V$ với tải có tổng trở $R_L=\infty$, $6K\Omega$, 0

ĐS: a.
$$A = \begin{vmatrix} 2 & 15 \\ 0.2 & 2 \end{vmatrix}$$
; $Z = \begin{vmatrix} 10 & 5 \\ 5 & 10 \end{vmatrix}$; $Y = \begin{vmatrix} \frac{2}{15} & \frac{1}{15} \\ \frac{1}{15} & \frac{2}{15} \end{vmatrix}$; $H = \begin{vmatrix} 7.5 & 0.5 \\ 0.5 & 0.1 \end{vmatrix}$

b.
$$I_1 = 6mA$$
, $U_2 = 24V$
 $I_1 = 7mA$, $U_2 = 12V$
 $I_1 = 8mA$, $U_2 = 0$

6.2. Xác định ma trận A

 10Ω , $Z_2 = 5\Omega$.

ĐS: A =
$$\begin{vmatrix} 1 + \frac{Z_1}{Z_3} & \frac{Z_1 Z_2 + Z_2 Z_3 + Z_1 Z_3}{Z_3} \\ \frac{1}{Z_3} & 1 + \frac{Z_2}{Z_3} \end{vmatrix}$$

6.3. Cho mạng hai cửa hình Γ trên hình 6.3.

- a) Hãy xác định hệ tham số A bằng phương pháp ngắn và hở mạch 1-1', 2-2'
- b) Biến đổi về hệ tham số Y và Z.
- c) Kiểm chứng lại kết quả hệ tham số Y bằng phương pháp ngắn hở mạch 1-1', 2-2'
- d) Tính các trị số của tham số A tại tần số f=228kHz khi Z₁ là L≈27,95mH; Z₂ là C≈24nF

- **6.4**. Cho mạng hai cửa hình "T" và hình " π " trên hình 6.4.
- a) Hãy xác định ma trận A của chúng.
- b) Nhận xét tính chất "tương hỗ" của các ma trận trên

- **6.5**. Tìm ma trận Y và Z của các mạng hai cửa hình T và hình π ở bài tập 6.5 và nhận xét tính chất "tương hỗ" của các ma trận đó.
- **6.6.** Cho mạng hai cửa hình 5.4. Hãy xác định hệ tham số H của mạng hai cửa này bằng phương pháp ngắn và hở mạch 1-1', 2-2'.
- 6.7. Xác định ma trận Y và H. Nghiệm lại các điều kiện đối xứng của mạng hai cửa.

ĐS:

$$Y = \begin{vmatrix} 0.06 & -0.05 \\ -0.05 & 0.06 \end{vmatrix}$$

$$H = \begin{vmatrix} 16.7 & 0.83 \\ -0.83 & 0.0183 \end{vmatrix}$$

$$Y_{11} = Y_{22}, Y_{12} = Y_{21}$$

$$H_{12} = -H_{21}, \Delta H = 1$$

6.8. Xác định ma trận A

ĐS:

$$A = \begin{vmatrix} 5.55 & 545.45 \\ 0.0545 & 5.55 \end{vmatrix}$$

6.9. Xác định thông số ma trận A của mạng hai cửa trên hình 6.9.

- **6.10.** Xác định thông số ma trận A của mạng hai cửa trên hình 6.10, biết Z_1 =(1 + j2) Ω , Z_2 =-j Ω , Z_3 =(-2-j5) Ω , Z_4 = j Ω .
- **6.11.** Tìm hàm truyền đạt phức theo điện áp của mạng hai cửa hình 6.11.
- 6.12. Xác định ma trận Y, A

$$Y = \begin{vmatrix} 0.01029 & -0.00828 \\ -0.00771 & 0.01 \end{vmatrix}$$
$$A = \begin{vmatrix} 1.297 & 129.7 \\ 0.005 & 1.335 \end{vmatrix}$$

- 6.13. Cho mạng hai cửa như hình 6.13
 - a. Xác định ma trận Z
 - b. Tính trở kháng vào cửa 1 khi mắc cửa 2 một điện trở R

ĐS:

$$Z = \begin{vmatrix} R_1 + R_3 & R_3 \\ R_3 - \mu R_1 & R_2 + R_3 \end{vmatrix}$$
$$Z_V = Z_{11} - \frac{Z_{12} \cdot Z_{21}}{R + Z_{22}}$$

6.14. Xác định ma trận A trong mạch hình 6.14

ĐS: a.
$$A = \begin{vmatrix} 0.5 + j0.5 & 20 + j20 \\ -0.0125 + j0.0375 & 0.5 + j0.5 \end{vmatrix}$$
 b. $A = \begin{vmatrix} 1 + j & 10 + j20 \\ 0.02 - j0.04 & 2 \end{vmatrix}$

- **6.15.** Cho mạng hai cửa với $Z_1/2 = 2Z_2 = 10+j10 \Omega$.
 - a. Xác định ma trận A
 - b. Xác định áp đầu vào cửa (1-1') để áp ngõ ra cửa (2-2') là 20V
 - c. Giả sử khi ngắn mạch cửa vào (1-1') và áp nguồn cung cấp ở cửa (2-2') là 100mV, xác định dòng của nguồn cấp cửa (2-2')
 - d. Xác định chỉ số Waltmet khi dòng vào cuộn dòng là \dot{I}_1 và áp hai đầu cuộn áp là \dot{U}_2 khi cho đầu ra hở mạch và áp tác dụng lên đầu vào là $u(t) = 80\sin(\omega t + 45^0)V$

ĐS:

a.
$$A = \begin{vmatrix} 10 & 10 + j20 \\ 0.02 - j0.04 & 2 \end{vmatrix}$$

b. 56.6 V c. 4.47 mA d. 64W

6.16. Xác định ma trận Y

ĐS:

$$Y = \begin{vmatrix} \frac{j}{60} & \frac{j}{30} \\ \frac{j}{30} & \frac{j}{60} \end{vmatrix}$$

6.17. Xác định ma trận A

ĐS:

$$A = \begin{vmatrix} 1 - 2\omega^{2} + j4\omega & 4 - 2\omega^{2} + j6\omega \\ -2\omega^{2} + j2\omega & 1 - 2\omega^{2} + j4\omega \end{vmatrix}$$

6.18. Xác định ma trận H

$$\mathbf{DS:} \ \mathbf{H} = \begin{vmatrix} \mathbf{R}1 + \frac{1-\alpha}{\left(\frac{1}{R^2} + j\omega\mathbf{C}\right)} & \frac{\mathbf{R}2}{\mathbf{R}2 + \frac{1}{j\omega\mathbf{C}}} \\ -\frac{(\alpha + j\omega\mathbf{C}\mathbf{R}2)}{1 + j\omega\mathbf{C}\mathbf{R}2} & \frac{1}{\mathbf{R}2 + \frac{1}{j\omega\mathbf{C}}} \end{vmatrix}$$

6.19. Cho mạng hai cửa với ma trận
$$[A] = \begin{bmatrix} 1+j\omega & 1-\omega^2+j\omega \\ j\omega & 1-\omega^2 \end{bmatrix}$$

- a. Tìm ma trận [Z]
- b. Xây dựng sơ đồ hình T ứng với ma trận [Z] vừa tìm và xác định trị số các thông số mạch.

6.20. Cho mạng hai cửa với ma trận
$$[Y] = \begin{bmatrix} 1 + \frac{1}{j\omega} & -\frac{1}{j\omega} \\ -\frac{1}{j\omega} & j(\omega - \frac{1}{\omega}) \end{bmatrix}$$

- a. Xây dựng sơ đồ hình π ứng với ma trận trên và xác định trị số các thông số mạch.
- b. Tìm ma trận [Z]
- **6.21.** Cho mạng hai cửa với ma trận [Y] trong bài tập 6.21.
 - 1. Xác định ma trân A
 - 2. Tìm hàm truyền đạt phức của mạch khi:
 - a) Không mắc tải.
 - b) Mắc tải là Z_t=jω.
 - 3. Tìm tổng trở đầu vào của khi mắc tải Z_t=jω

6.22. Cho mạng hai cửa hình 6.21 với $R=R_1=1\Omega$, L=1H, C=1F. Xác định hàm truyền đạt phức theo điện áp và theo dòng điện

- **6.23**. Cho mạng hai cửa hình 6.22 với L=10 mH, $R=20 \Omega$. Tần số của tín hiệu tác động là 2000 rad/s. Tại tần số này:
- a) Xác định ma trận A
- b) Khi mắc tải Z_t là điện trở R_t =10 Ω nối tiếp với điện dung C_t =50 μ F, hãy tính *tổng trở đầu vào của* mạng hai cửa (tách riêng phần điện trở thuần và phần phản kháng: Z_V = R_V + jX_V).
- c) Tính hàm truyền đạt phức $T(j\omega) = \frac{\dot{U}_{2m}}{\dot{U}_{1m}}$ khi *mắc tải như trên* (viết dưới dạng

 $T(j\omega) = \left|T(j\omega)\right| e^{j\theta(\omega)} \).$

d) Theo biểu thức hàm truyền đạt phức vừa tìm trên hãy xác định *công suất tác dụng ra tải* khi điện áp tác động ở đầu vào là:

$$u_1(t)=10 \sin (2000t+\frac{\pi}{4})$$
 (V)

6.24. Tìm hàm truyền đạt phức theo điện áp và vẽ đặc tính biên độ tần số của các mạch hình 6.24.

6.25. Cho mạng hai cửa hình 6.24 với

$$\dot{U}_1 = 10 \text{ V}, Z_1 = Z_3 = 1\Omega, Z_2 = -j\Omega, Z_4 = j\Omega,$$

Z_t= 1 Ω. Hãy xác định công suất tác dụng trên tải.

- **6.26**. Cho mạng hai cửa hình 6.25 có $Z_1 = Z_3 = Z_5 = Z_t = 5\Omega$, $Z_2 = Z_4 = Z_6 = -j5 \Omega$. Xác định I_1 , I_2 và U_2 biết $U_1 = 20V$.
- **6.27**. Cho mạng hai cửa hình 6.26 được mắc hoà hợp phụ tải, có $Z_1 = Z_5 = 1$ Ω , $Z_2 = Z_4 = -j$ Ω , $Z_3 = j$ Ω , nguồn tác động là điện áp : $u_1(t) = 10\sqrt{2}$ sin ωt (V). Hãy xác định:

- a. Tổng trở đặc tính
- b. Các giá trị hiệu dụng $I_1,\,U_2,\,I_2$
- **6.28**. Cho mạng hai cửa hình 6.27. Biết L=10mH, C=12,5μF.
- $u_1(t)=30sin(2000t+\pi/2)[V]$. Hãy xác định:
 - a. Ma trận A và tổng trở đặc tính
 - b. Tính điện áp và dòng điện tức thời ở đầu ra.

Hình 6.27

6.29. Cho mạng hai cửa hình 6.28 mắc hoà hợp phụ tải có $Z_1=1 \Omega$, $Z_2=-j \Omega$, $U_1=4V$. Hãy xác định U_2 , U_3 , I_1 , I_2 và I_3 .

Hình 6.28

6.30. Cho mạng hai cửa hình 5.22 có $C_1 = C_2 = 1F$, $C_3 = 0.5F$, $R_1 = 0.5$ Ω , $R_2 = R_t = 1$ Ω .

Xác định:

- a. Ma trận A
- b. Hàm truyền theo điện áp.
- c. Tổng dẫn truyền đạt Y_{21} .

- **6.31**. Cho mạng hai cửa hình 6.30 khi mắc tải là $Z_2 = R_t = 2 \Omega$ thì có:
 - Hàm truyền đạt phức theo điện áp:

$$T(j\omega) = \frac{\dot{U}_2}{\dot{U}_1} = \frac{4}{3 + j2\omega}$$

- Tổng trở truyền đạt

$$Z_{21}(j\omega) = \frac{\dot{U}_2}{\dot{I}_1} = \frac{2}{1 + \dot{J}_4\omega}$$

Tìm tổng trở đầu vào $Z_V(j\omega)$ và hàm truyền

đạt phức theo dòng điện $T_1(j\omega) = \frac{\dot{I}_2}{\dot{I}_1}$

- **6.32.** Cho mạng hai cửa hình 6.31 có $R=1\Omega$, C=1F, $R_1=1\Omega$, L=1 H. Xác định:
 - a. Ma trận Y
 - b. Hàm truyền đạt phức theo điện áp khi mắc tải $R_{\rm t} = \! 1 \; \Omega$

Hình 6.31