P4:

Theorem: If A_1 and A_2 are independent events, then $\overline{A_1}$ and $\overline{A_2}$ are also independent.

Proof: Given that A_1 and A_2 are independent events.

Consider
$$P(\overline{A_1} \cap \overline{A_2}) = P(\overline{A_1 \cup A_2}) = 1 - P(A_1 \cup A_2)$$

$$= 1 - (P(A_1) + P(A_2) - P(A_1 \cap A_2))$$

$$= 1 - P(A_1) - P(A_2) + P(A_1 \cap A_2)$$

$$= 1 - P(A_1) - P(A_2) + P(A_1) \cdot P(A_2) \quad (\because A_1 \& A_2 \text{ are independent})$$

$$= P(\overline{A_1}) - P(A_2)(1 - P(A_1))$$

$$= P(\overline{A_1}) - P(A_2) \cdot P(\overline{A_1})$$

$$= P(\overline{A_1}) (1 - P(A_2))$$

$$= P(\overline{A_1}) \cdot P(\overline{A_2})$$

$$\Rightarrow P(\overline{A_1} \cap \overline{A_2}) = P(\overline{A_1}) \cdot P(\overline{A_2})$$

Thus, $\overline{A_1}$ and $\overline{A_2}$ are also independent.