- Package Options Include Plastic and Ceramic DIPs and Ceramic Flat Packages
- Dependable Texas Instruments Quality and Reliability

#### description

These devices contain four independent 2-input-NOR line drivers. They perform the Boolean function  $Y = \overline{A} + \overline{B}$  or  $Y = \overline{A} \cdot \overline{B}$ . The SN54128 is designed to drive 75 ohm lines. The SN74128 is designed to drive 50 ohm lines.

The SN54128 is characterized for operation over the full military temperature range of  $-55\,^{\circ}\text{C}$  to  $125\,^{\circ}\text{C}$ . The SN74128 is characterized for operation from 0 °C to 70 °C.

## logic diagram (each driver)



### logic symbol†



<sup>&</sup>lt;sup>†</sup>This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

#### SN54128 . . . J OR W PACKAGE SN74128 . . . N PACKAGE (TOP VIEW)



## schematic (each driver)



Resistor values shown are nominal.

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)      | ************************                | 7 V             |
|---------------------------------------|-----------------------------------------|-----------------|
| Input voltage                         | • • • • • • • • • • • • • • • • • • • • | 5.5 V           |
| Operating free-air temperature range: | SN54'                                   | - 55°C to 125°C |
|                                       | SN74'                                   | 0°C to 70°C     |
| Storage temperature range             |                                         | -65°C to 150°C  |

NOTE 1: Voltage values are with respect to network ground terminal.

## recommended operating conditions

|                 |                                |      | SN54128 |      | SN74128 |     |        |      |
|-----------------|--------------------------------|------|---------|------|---------|-----|--------|------|
|                 |                                | MIN  | NOM     | MAX  | MIN     | NOM | MAX    | TINU |
| Vcc_            | Supply voltage                 | 4.5  | 5       | 5.5  | 4.75    | 5   | 5.25   | V    |
| V <sub>IH</sub> | High-level input voltage       | 2    |         |      | 2       |     |        | V    |
| VIL             | Low-level input voltage        |      |         | 0.8  |         |     | 0.8    | V    |
| ЮН              | High-level output current      |      |         | - 29 |         |     | - 42.4 | mA   |
| loL             | Low-level output current       |      |         | 48   |         |     | 48     | mA   |
| TA              | Operating free-air temperature | - 55 |         | 125  | 0       |     | 70     | °c   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER        | TEST CONDITIONS †                                                          | MIN TY | # MAX | UNIT |
|------------------|----------------------------------------------------------------------------|--------|-------|------|
| VIK              | V <sub>CC</sub> = MIN, I <sub>I</sub> = - 12 mA                            |        | 1.5   | V    |
|                  | $V_{CC} = MIN$ , $V_{IL} = 0.8 \text{ V}$ , $I_{OH} = -2.4 \text{ mA}$     | 2.4 3  | .4    |      |
| $v_{OH}$         | V <sub>CC</sub> = MIN, V <sub>IL</sub> = 0.4 V, I <sub>OH</sub> = -13.2 mA | 2.4    |       | V    |
|                  | V <sub>CC</sub> = MIN, V <sub>IL</sub> = 0.4 V, I <sub>OH</sub> = MAX      | 2      |       | 1    |
| VOL              | V <sub>CC</sub> = MIN, V <sub>IH</sub> = 2 V, I <sub>OL</sub> = 48 mA      | 0.2    | 6 0.4 | V    |
| П                | V <sub>CC</sub> = MAX, V <sub>1</sub> = 5.5 V                              |        | 1     | mΑ   |
| liH.             | V <sub>CC</sub> = MAX, V <sub>I</sub> = 2.4 V                              |        | 40    | μА   |
| lL.              | V <sub>CC</sub> = MAX, V <sub>1</sub> = 0.4 V                              |        | - 1.6 | mA   |
| los§             | V <sub>CC</sub> = MAX                                                      | - 70   | 180   | mA   |
| <sub>1</sub> ссн | V <sub>CC</sub> = MAX                                                      | 1      | 2 21  | mA   |
| CCL              | V <sub>CC</sub> = MAX                                                      | 3      | 3 57  | mA   |

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

## switching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ (see note 2)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS                       |                        |    | TYP | MAX | UNIT |
|------------------|-----------------|----------------|---------------------------------------|------------------------|----|-----|-----|------|
| <sup>t</sup> PLH | A or B          | A or B Y       | $R_L$ = 133 $\Omega$ ,                | C <sub>L</sub> = 50 pF |    | 6   | 9   | ns   |
| *PHL             |                 |                |                                       |                        |    | 8   | 12  | ns   |
| <sup>t</sup> PLH |                 |                | $R_L = 133  \Omega$ , $C_L = 150  pF$ | C = 150 oF             |    | 10  | 15  | ns   |
| tPHL             |                 |                |                                       |                        | 12 | 18  | П5  |      |

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

<sup>‡</sup> All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C. § Not more than one output should be shorted at a time.