Tutorial Exercise 7

MA2.101: Linear Algebra (Spring 2022)

May 26, 2022

1 Recap: Linear Transformations

1.1

Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f(av) = af(v) for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but f is not linear.

Note: This shows that homogeneity alone is not enough to imply that a function is a linear map. Additivity alone is also not enough to imply that a function is a linear map.

1.2

Suppose that T is a linear map from V to F. Prove that if $u \in V$ is not in null(T), then

$$V = \text{null}(T) \oplus \{au : a \in F\}$$

2 Inner Product Spaces

2.1

Let A, B $\in C^{n \times n}$. Define the Frobenius inner product as $\langle A, B \rangle = tr(B^*A)$. Prove that this is an inner product?

2.2

 $\langle X,Y\rangle = |x_1y_1| + |x_2y_2|$ where X,Y $\in \mathbb{R}^2$. Verify if this is an inner product?

3 Linear Functionals

3.1

In R^3 , let $\alpha_1 = (1, 0, 1)$, $\alpha_2 = (0, 1, -2)$, $\alpha_3 = (-1, -1, 0)$. If f is a linear functional on R^3 such that $f(\alpha_1) = 1$, $f(\alpha_2) = -1$, $f(\alpha_3) = 3$ and if $\alpha = (a,b,c)$ then find $f(\alpha)$.

3.2

Let B= $\{\alpha_1,\alpha_2,\alpha_3\}$ be the ordered basis for C^3 defined by $\alpha_1=(1, 0, -1), \alpha_2=(1, 1, 1), \alpha_3=(2, 2, 0)$. Find the dual basis of B.