18.650 Homework 1

Maria Chrysafis

February 9, 2025

1 Expectation

Exercise 1.1

Suppose we play a game where we start with c dollars. On each play of the game, you either double or halve your money, with equal probability. What is your expected fortune after n trials?

Solution: Let X_i denote the amount of money you have after playing the game i times. When i = 0, by definition, $\mathbb{P}[X_0 = c] = 1$, and so, $\mathbb{E}[X_0] = c$. When i > 0,

$$\mathbb{E}[X_i] = \mathbb{E}\left[\frac{1}{2}\cdot(2\cdot X_{i-1}) + \frac{1}{2}\cdot\left(\frac{1}{2}\cdot X_i\right)\right] = \mathbb{E}\left[\frac{5}{4}X_{i-1}\right] = \frac{5}{4}\,\mathbb{E}\left[X_{i-1}\right].$$

It immediately follows that $\mathbb{E}[X_i] = \left(\frac{5}{4}\right)^i \cdot c$. Thus, after *n* trials, your expected fortune is $c \cdot \left(\frac{5}{4}\right)^n$.

Exercise 1.2

Show that Var[X] = 0 if and only if there is a constant c such that $\mathbb{P}[X = c] = 1$.

Solution: We first prove the easier direction, namely that if $\mathbb{P}[X=c]=1$, then [X]=0. In this case, $\mathbb{E}[X^2]=c^2$ and $\mathbb{E}[X]^2=c^2$ too, so $[X]=\mathbb{E}[X^2]-\mathbb{E}[X]^2=0$, as desired. As for the other direction,