Julia 科学计算开源工具链 - 从了解到入门

刘贵欣

通常从 MATLAB 或 Python 转过来的用户有以下疑问:

这个函数为什么报错了,怎么跟我预期的不一样?

对于XXX问题,该用什么函数?

- 多维数组
- 基本线性代数
- 运行时间测试
- 数据读写
- 运筹优化
- 张量网络

· Julia 具有原生的数组实现,并提供了许多方便的基本函数。

函数	描述
eltype(A)	A 中元素的类型
length(A)	A 中元素的数量
ndims(A)	A 的维数
<pre>size(A)</pre>	一个包含 A 各个维度上元素数量的元组
<pre>size(A,n)</pre>	A 第 n 维中的元素数量
axes(A)	一个包含 A 有效索引的元组
axes(A,n)	第 n 维有效索引的范围
eachindex(A)	一个访问 A 中每一个位置的高效迭代器
stride(A,k)	在第 k 维上的间隔 (stride) (相邻元素间的线性索引距离)
strides(A)	包含每一维上的间隔 (stride) 的元组

```
j \cup lia > A = randn(4,4)
4×4 Matrix{Float64}:
 -0.0653551
             0.800785
                         0.399488
                                   -1.12979
 0.280816 -1.70278
                         0.422952
                                    0.560208
 -0.259381 -0.630157
                        -0.624698
                                   -1.08722
 -0.413353
             0.172939
                         0.210217
                                    0.973692
julia> length(A)
16
j∪lia> ndims(A)
julia> size(A)
(4, 4)
julia> strides(A)
(1, 4)
```

• Julia 具有原生的数组实现,可用于数组遍历的函数有:eachindex,eachrow,eachcol 等

```
julia> A = collect(reshape(1:16, 4, 4))
4×4 Matrix{Int64}:
       9 13
   6 10 14
   8 12 16
julia> for xi in eachindex(A)
          println(A[xi])
```

```
julia> for row_i in eachrow(A)
           println(row_i)
[1, 5, 9, 13]
[2, 6, 10, 14]
[3, 7, 11, 15]
[4, 8, 12, 16]
julia> for col_i in eachcol(A)
           println(col_i)
       end
[1, 2, 3, 4]
[5, 6, 7, 8]
[9, 10, 11, 12]
[13, 14, 15, 16]
```

• Julia 具有原生的数组实现,还可用于数组遍历的函数有:length

```
julia> A = collect(reshape(1:16, 4, 4))
4×4 Matrix{Int64}:
   6 10 14
      11 15
   8 12 16
julia> length(A)
16
j∪lia> for xi in 1:length(A)
          println(A[xi])
```

MATLAB

```
L = length(X) 返回 X 中最大数组维度的长度, 等价于 max(size(X))

X = zeros(3,7);
L1 = length(X)

L1 = 7

L2 = max(size(X))
```

• Julia 拥有真正的一维数组。列向量的大小为 N,而不是 N x 1。

```
julia> mat = reshape(collect(1:16), (4,4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> vec_slice = mat[1, :]
4-element Vector{Int64}:
 1
  5
 9
 13
julia> vec_mat = reshape([1 9;5 13], :, 1)
4×1 Matrix{Int64}:
  1
  5
  9
 13
julia> vec_slice = vec_mat
false
```

MATLAB

• Julia 数组在分配给另一个变量时不会被复制。在 A=B 之后, 改变 B 的元素也会改变 A 的元素。

```
julia> x = y = z = [1, 2, 3]
3-element Vector{Int64}:
 2
 3
julia> z[1] = 4
julia> y
3-element Vector{Int64}:
 2
 3
julia> x
3-element Vector{Int64}:
 4
 2
```


1. 与其他语言的显著差异: https://cn.julialang.org/JuliaZH.jl/latest/manual/noteworthy-differences/

• Julia 包含了绝大多数常见基本线性代数操作。在调用函数前请: using LinearAlgebra

```
j∪lia> <mark>using</mark> LinearAlgebra
julia> A = [4 9 2; 3 5 7;8 1 6]
3×3 Matrix{Int64}:
   9 2
3 5 7
8 1 6
julia> tr(A)
15
j∪lia> det(A)
360.0
julia> inv(A)
3×3 Matrix{Float64}:
 0.0638889 -0.144444
                           0.147222
 0.105556
              0.0222222
                          -0.0611111
 -0.102778
              0.188889
                          -0.0194444
```

```
julia> diagvec = diag(A)<
3-element Vector{Int64}:
 4
 5
 6
julia> diag(diagvec)'
ERROR: ArgumentError: use
Stacktrace:
 [1] diag(A::Vector{Int64}
   @ LinearAlgebra D:\Prod
 [2] top-level scope
   @ REPL[15]:1
julia> diagm(diagvec)
3×3 Matrix{Int64}:
    0
   0 6
```

注意与 np.diag() 和 MATLAB 中的 diag 函数的区别,这两者的行为是

- 1. 如果是二维数组,返回对角元素;
- 2. 如果是一维数组,返回对角为该一维数组,其余元素为0的稠密矩阵;

更多函数见于https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#Standard-functions

本征值分解

```
j∪lia> <mark>using</mark> LinearAlgebra
julia> A = [5 3 4;3 2 6;4 6 8]
3×3 Matrix{Int64}:
   3 4
   2 6
    6 8
j∪lia> F = eigen(A)
Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
 -1.7492969445703608
  2.388393961699327
 14.360902982871064
vectors:
3×3 Matrix{Float64}:
  0.0910829 0.877897 0.470107
 -0.864349 -0.164756 0.475138
  0.494575 -0.449614 0.743803
julia> F.v ← 按Tab 补全元素
values vectors
```

```
只取本征向量
julia> eigvecs(A) ←
3×3 Matrix{Float64}:
 0.0910829 0.877897 0.470107
 -0.864349 -0.164756
                     0.475138
 0.494575 -0.449614 0.743803
                                 只取本征值
j∪lia> eigvals(A) ←
3-element Vector{Float64}:
 -1.7492969445703783
 2.3883939616993146
14.360902982871064
                                 只取最小本征值
julia> eigmin(A)
-1.7492969445703783
j∪lia> eigmax(A)
                                 只取最大本征值
14.360902982871064
```

更多函数见于https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#Standard-functions

• Julia 具有丰富的矩阵类型,同时也为这些类型开发了专用的高效实现。以对称三角矩阵和对角矩阵为例,

```
julia> I(4) ← 単位矩阵

4×4 Diagonal{Bool, Vector{Bool}}:

1 · · · ·

· 1 · ·

· · 1 ·

· · 1 ·
```

• Julia 具有丰富的矩阵类型,同时也为这些类型开发了专用的高效实现。

Matrix type	+	-	*	V	Other functions with optimized methods
Symmetric				MV	inv, sqrt, exp
Hermitian				MV	inv, sqrt, exp
UpperTriangular			MV	MV	inv, det, logdet
UnitUpperTriangular			MV	MV	inv, det, logdet
LowerTriangular			MV	MV	inv, det, logdet
UnitLowerTriangular			MV	MV	inv, det, logdet
UpperHessenberg				ММ	inv, det
SymTridiagonal	М	М	MS	MV	eigmax, eigmin
Tridiagonal	М	М	MS	MV	
Bidiagonal	М	М	MS	MV	
Diagonal	М	М	MV	MV	inv, det, logdet, /
UniformScaling	М	М	MVS	MVS	7

• M : matrix-Matrix

• V : matrix-Vector

• S: matrix-Scalar

• Julia 中也提供了诸多常见的矩阵分解方法。

Julia 中的矩阵分解方法(不完全统计)

矩阵 A 的特性	矩阵分解方法
正定	Cholesky (<u>cholesky</u>)
稠密的对称 / 厄米	Bunch-Kaufman (<u>bunchkaufman</u>)
稀疏的对称 / 厄米	LDLt(1dlt)
三角	LU (<u>1u</u>)
实对称的三对角	LDLt(1dlt)
一般方阵	LU (<u>1u</u>)
一般非方阵	QR (<u>gr</u>)

Bunch-Kaufman 分解: A = P'*U*D*U'*P

```
julia> using LinearAlgebra
julia> A = [15 3 4;3 22 1;4 1 8]
3×3 Matrix{Int64}:
15 3 4
 3 22 1
 4 1 8
julia> F = bunchkaufman(A); # F is a BunchKaufman object
julia> F.P' * F.U * F.D * F.U' * F.P
3×3 Matrix{Float64}:
15.0 3.0 4.0
 3.0 22.0 1.0
 4.0 1.0 8.0
```

更多函数见于 https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#man-linalg-factorizations

通常我们需要查看一段代码的运行时间,一个直接的想法是使用 @time 宏

```
julia> a = randn(2^2);
julia> @time sum(a);
  0.041319 seconds (36.73 k allocations: 2.431 MiB, 91.93% compilation time)
julia> @time sum(a);
  0.003185 seconds (1 allocation: 16 bytes)
julia> @time sum(a);
  0.001774 seconds (1 allocation: 16 bytes)
julia> @time sum(a);
  0.001813 seconds (1 allocation: 16 bytes)
```

但是,由于著名的编译延迟问题,@time 第一次得到的结果并不准确

为了避免编译延迟带来的影响,一个可行的方案是会通过多次运行取平均(不含第一次), 这就需要用到 BenchmarkTools

```
julia> using BenchmarkTools
julia> a = rand(2^2);
julia> @btime sum(a);
 1.006 ms (1 allocation: 16 bytes)
julia> @benchmark sum(a)
BenchmarkTools.Trial: 3902 samples with 1 evaluation.
 Range (min ... max): 1.007 ms ... 4.140 ms | GC (min ... max): 0.00% ... 0.00%
 Time (median): 1.211 ms GC (median): 0.00%
 Time (mean \pm \sigma): 1.262 ms \pm 191.235 \mus | GC (mean \pm \sigma): 0.00% \pm 0.00%
                 Histogram: frequency by time
 1.01 ms
                                                        2 ms <
 Memory estimate: 16 bytes, allocs estimate: 1.
```

但是,对于一些比较大型的问题,采用这种多次运行的方案将会非常耗时。此时推荐 TimerOutputs.jl

```
using TimerOutputs
     const to = TimerOutput();
     function time_test()
         Otimeit to "nest 1" begin
             sleep(0.1)
             # 3 calls to the same label
             @timeit to "level 2.1" sleep(0.03)
10
             @timeit to "level 2.1" sleep(0.03)
             @timeit to "level 2.1" sleep(0.03)
12
             @timeit to "level 2.2" sleep(0.2)
13
         end
14
         Otimeit to "nest 2" begin
15
             @timeit to "level 2.1" sleep(0.3)
             @timeit to "level 2.2" sleep(0.4)
17
         end
18
     end
     time_test()
     show(to)
```

			Time		Allocations		
Tot / % measured:		1.58	Bs / 75	.0%	21.5MiB / 0.0%		
Section	ncalls	time	%tot	avg	alloc	%tot	avg
nest 2	1	762ms	64.1%	762ms	2.05KiB	48.5%	2.05KiB
level 2.2	1	435ms	36.6%	435ms	144B	3.3%	144B
level 2.1	1	327ms	27.5%	327ms	448B	10.4%	448B
nest 1	1	426ms	35.9%	426ms	2.17KiB	51.5%	2.17KiB
level 2.2	1	218ms	18.4%	218ms	144B	3.3%	144B
level 2.1	3	100ms	8.4%	33.4ms	432B	10.0%	144B

如果临时需要将小矩阵输出到 txt 文件中,那么可以考虑使用 DelimitedFiles (stdlib) 或 Printf (stdlib)

```
1    using DelimitedFiles
2
3    a = 1:10
4    b = a.^2 + a
5
6    open("result1.dat", "w") do io
7        println(io, "a b")
8        writedlm(io, [a b])
9    end
```

大规模数据读写

HDF5(Hierarchical Data Format 5)是一种用于高性能计算领域的数据格式

• HDF5.jl: Julia 语言封装的HDF5接口

• JLD2.jl: 纯 Julia 实现的数据读写包,兼容 HDF5 格式

```
c = h5open("mydata.h5", "r") do file
    read(file, "A")
end
```

HDF5.jl

```
jldopen("example.jld2", "w") do file
   file["bigdata"] = randn(5)
end
```

JLD2.jl

源代码

```
using JLD2
     using Printf
     using BenchmarkTools
     n = 10
     a = rand(n, n)
     function largeio(a)
         jldopen("example.jld2", "w") do file
             file["bigdata"] = a
11
         end
12
     end
13
     function largeio2(a)
15
         open("example2.dat", "w") do io
             for ix in eachindex(a)
17
                 @printf(io, "%.4f\n", a[ix])
18
             end
19
         end
     end
```

性能比较表

n	largeio	largeio2	加速比
10	3.7ms	140 µs	0.03x
100	3.8ms	1.14ms	0.3x
1000	12ms	116ms	9.7x
2000	37ms	508ms	13.7x
4000	121ms	2.02s	16.7x

总结: 当矩阵规模较大时, JLD2 写入加速效果显著

接下来,我们将开始在开源世界的冒险!

・・・Julia Hub 是 Julia 官方提供的科学计算商业服务平台。Julia 用户可以使用它来探索整个生态

https://juliahub.com/ui/Packages?t=optimization

JuliaNLSolvers / Optim

± 9.8k 1025 MIT 1.7.8

Optimization functions for Julia

Optim —— 单变量及多变量的无约束优化

jump-dev / JuMP

Modeling language for Mathematical Optimization (linear, mixed-integer, conic, semidefinite, nonlinear)

JuMP—— 求解器无关的代数建模语言+各大求解器接口

无约束优化两者都可,约束优化多用 JuMP

Rosenbrock 函数

$$f(x, y) = (a - x)^2 + b(y - x^2)^2$$

性质:

- 1.当 $(x, y) = (a, a^2)$ 时,取全局最小值: f(x, y) = 0
- 2. 全局最小值位于一处抛物线形谷内,但全局最小值附近函数比较平缓,故难以精确寻得全局最小值;

$$a = 1, b = 10$$

Rosenbrock 函数最小值


```
using Optim

rosenbrock(x) = (1.0 - x[1])^2 + 10.0 * (x[2] - x[1]^2)^2

result = optimize(rosenbrock, zeros(2), BFGS())

x, y = Optim.minimizer(result)

fmin = minimum(result)

println("x = $x, y = $y")

println("fmin = $fmin")
```

```
* Work counters
Seconds run: 0 (vs limit Inf)
Iterations: 11
f(x) calls: 32
Vf(x) calls: 32
```

```
x = 0.9999999992667803, y = 0.999999998533542 fmin = 5.376111424228077e-19
```

JuMP

- 求解器无关的代数建模语言
- 各大求解器 wrapper (Ipopt, Gurobi)
- 线性/非线性规划
- 混合整数规划
- second-order conic
- semidefinite

```
using JuMP
     import Ipopt
     using Test
     function example_rosenbrock()
         model = Model(Ipopt.Optimizer)
         set_silent(model)
         @variable(model, x)
         @variable(model, y)
         @objective(model, Min, (1 - x)^2 + 10 * (y - x^2)^2)
10
11
         optimize!(model)
12
         Test.@test termination_status(model) == LOCALLY_SOLVED
13
         Test.@test primal_status(model) == FEASIBLE_POINT
         Test.@test objective_value(model) ≈ 0.0 atol = 1e-10
14
15
         Test.@test value(x) \approx 1.0
         Test.@test value(y) \approx 1.0
17
         println("x = $(value(x)), y = $(value(y))")
18
     end
19
     example_rosenbrock()
20
```

向量
$$A_{\alpha} = \frac{\alpha}{A}$$

矩阵
$$A_{lphaeta}=rac{lpha}{eta}$$

3阶张量
$$B_{\alpha\beta\gamma} = \frac{\alpha}{\beta}$$

爱因斯坦求和规则

矩阵乘法
$$\sum_{\beta} A_{\alpha\beta} B_{\beta\gamma} = \frac{\alpha}{A} \frac{\beta}{B} \frac{\beta}{B}$$

矩阵求迹
$$\operatorname{Tr}(A_{\alpha\beta})=$$
 α

张量缩并
$$\sum_{\alpha,\gamma} A_{\alpha\delta} B_{\alpha\beta\gamma} C_{\gamma\epsilon} = A$$
 C δ

首先,我们还是利用 **JuliaHub** 查找要用到的软件包,预备关键词: tensor 和 einsum,并根据搜索框返回结果多次尝试,筛选出的包如下:

ITensor / ITensors

A Julia library for efficient tensor computations and tensor network calculations

chakravala / Grassmann

± 24 - ☆ 429 AGPL-3.0 0.8.6

(Grassmann-Clifford-Hodge) multilinear differential geometric algebra

首先,我们还是利用 JuliaHub 查找要用到的软件包,预备关键词:tensor 和 einsum,并根据搜索框 返回结果多次组合尝试,筛选出的包如下:

ITensor / ITensors

A Julia library for efficient tensor computations and tensor network calculations

chakravala / Grassmann

± 24 ~~ ☆ 429 AGPL-3.0 0.8.6

(Grassmann-Clifford-Hodge) multilinear differential geometric algebra

Jutho / TensorKit

A Julia package for large-scale tensor computations, with a hint of category theory

□ Documentation

→ Source

under-Peter / OMEinsum

± 53 ← ☆ ☆ 150 MIT 0.7.5

One More Einsum for Julia! With runtime order-specification and high-level adjoints for AD

Jutho / TensorOperations

± 180 → ☆ 374 MIT 4.0.7

Julia package for tensor contractions and related operations

± 400 1 ☆ 566 MIT 0.3.7 mcabbott / Tullio

automatic-differentiation

julia einsum

notation

tensor

Jutho / TensorOperations

± 180

☆ 374 MIT 4.0.7

Julia package for tensor contractions and related operations

under-Peter / OMEinsum

One More Einsum for Julia! With runtime order-specification and high-level adjoints for AD

```
using OMEinsum
using TensorOperations
using TimerOutputs
# Create a TimerOutput, this is the main type that keeps track of everything.
const to = TimerOutput()
a_cpu = randn(Float64, 4, 1000, 1000)
b_cpu = randn(Float64, 4, 1000, 1000)
@timeit to "einsum_cpu" @ein block_cpu[p, b, n, m] := a_cpu[p, n, o] * b_cpu[b, o, m]
@timeit to "tensor_cpu" @tensor block_cpu[p, b, n, m] := a_cpu[p, n, o] * b_cpu[b, o, m]
```

:= 指生成新的张量

如果要做基于MPS(Matrix Product State) 量子多体模拟工作,首选 ITensors

- Intelligent Indices
- Quantum Physics Tools
- Quantum Number Conserving ITensors
- MPS and MPO Algorithms

```
1    using ITensors
2
3    let
4    # For example:
5    i = Index(2,"i")
6    j = Index(3,"j")
7    T = randomITensor(i,j)
8    @show T
9    end
```

```
using ITensors
let
 N = 100
 sites = siteinds("S=1",N)
  os = OpSum()
  for j=1:N-1
    os += "Sz",j,"Sz",j+1
    os += 1/2, "S+", j, "S-", j+1
    os += 1/2, "S-", j, "S+", j+1
  end
  H = MPO(os, sites)
  psi0 = randomMPS(sites,10)
  nsweeps = 5
  maxdim = [10, 20, 100, 100, 200]
  cutoff = [1E-10]
  energy, psi = dmrg(H,psi0; nsweeps, maxdim, cutoff)
 return
end
```

ITensors 文档: https://itensor.github.io/ITensors.jl/stable/

JuliaGPU 为多种GPU 平台实现了支持, 其中最好用的是 CUDA.jl。

CUDA.jl 不仅可以用于编写 CUDA内核,也 可直接使用Julia 语法操作多维数组。

oneAPI.jl

AMDGPU.jl

Metal.jl

CUDA.jl 已经实现了Julia 中的绝大部分多维数组操作

```
julia> using CUDA
julia> CUDA.zeros(4,4)
4×4 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> mat = CUDA.randn(4,4)
4×4 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
 1.42798
              1.62652 -2.33491
                                1.83148
                                  0.84477
 -1.32568
          0.400546
                        2.15678
 0.000137211 0.111303 0.922282 0.201765
 1.57575
          -0.253458 -1.61895
                                  0.80799
julia> CUDA.sum(mat)
6.3743014f0
```

```
julia> CUDA.svd(mat)
LinearAlgebra.SVD{Float32, Float32, CuArray{Float32, 2, CUDA.
r}}
U factor:
4×4 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
 -0.736945 0.592402 0.305386
                                 0.112738
 0.443447 0.763351 -0.268347 -0.385539
            0.217108 -0.410857
 0.13807
                                 0.874642
 -0.491124 -0.138634 -0.816042 -0.27139
singular values:
4-element CuArray{Float32, 1, CUDA.Mem.DeviceBuffer}:
 4.622511
 2.268726
 0.9148959
 0.3834122
Vt factor:
4×4 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
 -0.522244 -0.190629 0.778703 -0.290763
 -0.169453 0.58562
                       0.30319
                                 0.732401
 -0.54007
            0.601525 -0.38213
                                 -0.447738
  0.637865
            0.5088
                       0.394556 -0.422583
```

cuTENSOR

NVIDIA 官方开发的高性能张量计算库,支持:

- 混合精度张量计算
- 复数-实数乘法操作
- 最高支持 64 维张量
- 常用张量操作(缩并,逐元素计算)

•

cuTensorNet

NVIDIA 官方基于cuTENSOR 开发的高性能张量网络库

- 创建张量网络结构
- 对任意张量网络搜索优化缩并路径
- 基于内存约束搜索sliced 缩并路径
- 创建张量网络态 (量子电路模拟)
- 张量分解 (QR & SVD)

•

先安装CUDA.jl。考虑到 cuTENSOR 和 cuTensorNet 的兼容性,将CUDA 版本设置为 11.8

```
julia> using CUDA

julia> CUDA.set_runtime_version!(v"11.8")
[ Info: Configure the active project to use CUDA 11.8; please re-start Julia for this to take effect.
```

然后安装 cuTENSOR 和 cuTensorNet

```
(example2023) pkg> add cuTENSOR
Resolving package versions...
```

```
(example2023) pkg> add cuTensorNet
   Resolving package versions...
   Installed cuTensorNet - v1.1.1
     Updating `~/workspace/example2023/Project.toml`
   [448d79b3] + cuTensorNet v1.1.1
     Updating `~/workspace/example2023/Manifest.toml`
   [448d79b3] + cuTensorNet v1.1.1
        [b75408ef] + cuQuantum_jll v22.11.13+0
```

基于 cuTENSOR 的缩并

pb 维度为 4 nom 维度为 dim

CPU: Tensoroperations.@tensor

GPU: Tensoroperations.@cutensor

GPU: using cuTENSOR

```
modesA = ['p', 'b', 'n', 'm']
modesU = ['p', 'n', 'o']
modesV = ['b', 'o', 'm']

At = CuTensor(block_gpu, modesA)
Vt = CuTensor(b_gpu, modesV)

print("cuTENSOR einsum: ")
CUDA.@time At = Ut * Vt
```


- 1. 用 CUDA 做缩并更快
- 2. 在自己的包可性能无损地使用 cuTENSOR

基于cuTensorNet 的张量奇异值分解


```
block_gpu = CuArray(convert(Array, block_cpu))
23
     u_gpu =CuArray{Float64}(undef, (4, dim_i, dim_i))
     s_gpu =CuVector{Float64}(undef, (dim_i,))
24
25
     v_gpu =CuArray{Float64}(undef, (4, dim_i, dim_i))
     modesA = ['p', 'b', 'n', 'm']
27
     modesU = ['p', 'n', 'o']
28
29
     modesV = ['b', 'o', 'm']
30
31
     print("svd_gpu_$dim_i: ")
32
     CUDA.@time CUDA.@sync cuTensorNet.svd!(block_gpu, modesA, u_gpu, modesU, s_gpu, v_gpu, modesV)
```

- 基本线性代数: LinearAlgebra (stdlib)
- 运行时间测试: BenchmarkTools (精准测试), TimerOutputs (耗时程序)
- 数据读写: DelimitedFiles (stdlib), HDF5 & JLD2 (大规模数据读写)
- 运筹优化: Optim (单变量及多变量的无约束优化) , JuMP (代数建模语言 + 约束优化)
- 张量网络: ITensors (MPS), TensorOperations, OMEinsum (高维张量网络收缩)