

Applications in Engineering Mechanics

Dr. Wayne Whiteman

Director of the Office of Student Services and Senior Academic Professional School of Mechanical Engineering

This course addresses the modeling and analysis of static equilibrium problems with an emphasis on real world engineering systems and problem solving.

Applications in Engineering Mechanics Overview

Equilibrium of Rigid Bodies

Review "Introduction to Engineering Mechanics"

Structural Applications

Frame/Machines
Plane Trusses
Space Trusses
Cables

Internal Forces in Beams

Shear Force and Bending Moment Diagrams

Effects of Friction on Static Equilibrium

Impending slipping Impending tipping

Module 14 Learning Outcomes

- Determine Internal Shear Forces and Bending Moments in multiforce members.
- Sketch a Shear Force Diagram for a multiforce member

Internal Forces and Bending Moments in Multiforce Members

Sign Convention

Shear Force

Positive

(CW on Material)

Negative 1

(CCW on Material)

Bending Moment

Smiley Face

Frowny Face

Differential Beam Element

The negative value of the load at a point equals the slope (rate of change) of shear diagram

Shear Force

$$\sum F_{y} = 0$$

$$V - q dx - V - dV = 0$$

$$-q = \frac{dV}{dx}$$

Differential Beam Element

$$-q = \frac{dV}{dx}$$

$$\int_{V_1}^{V_2} dV = -\int_{x_1}^{x_2} q \ dx$$

$$\Delta V = -\int_{x_1}^{x_2} q \ dx$$

The change in shear between two points equals negative the area under the load curve