奥数教程第2版高中第一分册 P28.例7 求函数 $f(x) = x^2 + x \sqrt{x^2 - 1}$ 的值块. ·· f(x)自台定义士或是:(→∞,一]U[1,+∞). 对 $\forall x_1, x_2 \in [1, +\infty), x_1 < x_2$. 有: $1 \leq x_1 < x_2$. $| \leq \chi_1^2 < \chi_2^2 \qquad | \leq \chi_1^2 - | < \chi_2^2 - | \qquad | \leq \sqrt{\chi_1^2 - |} < \sqrt{\chi_2^2 - |}$ $0 < x_1 < x_2$ $\therefore 0 < x_1 \sqrt{x_1^2 - 1} < x_2 \sqrt{x_2^2 - 1}$ $|X||^{\frac{1}{2}} : | \leq |X_{1}^{2} + |X_{1}||X_{1}^{2} - 1| < |X_{2}^{2} + |X_{2}||X_{2}^{2} - 1|$ ·· $f(X_1) < f(X_2)$ ·· f(X) 在[1,+ ∞]上严格单调递增 $\therefore f(1) = 1, \quad \lim_{x \to +\infty} f(x) = +\infty \qquad \therefore \exists x \in [1, +\infty). \exists t \in [1,$ $\exists x \in (-\infty, -1] \exists f, \quad x^2 \geqslant 1$ $\therefore \quad x^2 - 1 \geqslant 0, \quad \sqrt{x^2 - 1} \geqslant 0.$ $-\sqrt{x^2-1} \leq 0 \qquad \therefore \qquad x \leq -1 \qquad \therefore \qquad x - \sqrt{x^2-1} \leq -1 < 0$ $= \frac{1}{1 - \frac{\sqrt{x^2 - 1}}{x}} = \frac{1}{1 + \frac{\sqrt{x^2 - 1}}{-x}} = \frac{1}{1 + \frac{\sqrt{x^2 - 1}}{|x|}} = \frac{1}{1 + \frac{\sqrt{x^2 - 1}}{\sqrt{x^2}}}$ $\frac{1}{1+\sqrt{1-\frac{1}{2}}}\in\left(\frac{1}{2},1\right]$

·· 当 $\times \in (-\infty, -1] \cup [1, +\infty)$ 时, $f(\mathbf{x}) \in (\frac{1}{2}, +\infty)$. $f(\mathbf{x})$ 的值域为 $(\frac{1}{2}, +\infty)$.