MEMO NUMBER: 02 DATE: October 6, 2017 TO: EFC LaBerge

FROM: Sabbir Ahmed, Jeffrey Osazuwa, Howard To, Brian Weber

SUBJECT: Background Homework

1 Background

A Galois Field is a field with a finite number of elements. The nomenclature GF(q) is to indicate a Galois field with a elements. For GF(q) in general, a must be a power of a prime. The best known and most used Galois field is GF(2), the binary field.

2 Show that $x^3 + x^2 + x^0$ is irreducible in GF(2)[x]

$$x = 0: (0)^3 + (0)^2 + (0)^0 = 0 + 0 + 1 = 1 (not \ a \ root)$$
$$x = 1: (1)^3 + (1)^2 + (1)^0 = 1 + 1 + 1 = 1 (not \ a \ root)$$
$$\therefore x^3 + x^2 + x^0 \text{ has no roots in } GF(2)[x].$$

3 Generate the 8 elements of $GF(2^3)$ using the primitive polynomial $x^3+x^2+x^0$.

Let
$$\beta \in GF(2^3)$$
 be a root of $x^3 + x^2 + x^0 \implies \beta^3 + \beta^2 + \beta^0$
 \therefore The coefficients are in $GF(2) \implies \beta^3 = \beta^2 + \beta^0$

 \because a field has additive and multiplicative identities:

$$\therefore 0, 1 = \beta^0 \in GF(2^3)$$

 $\therefore \beta^1 \in GF(2^3) \ (\because \ closure \ of \ multiplication)$

$$\therefore \beta^2 \ \epsilon \ GF(2^3) \ (\because \ assumption)$$

$$\therefore \beta^3 \epsilon GF(2^3) \ (\because \beta^3 = \beta^2 + \beta^0)$$

$$\therefore \beta^4 = \beta^1 \times \beta^3$$

$$= \beta^1 (\beta^2 + \beta^0)$$

$$= \beta^3 + \beta^1$$

$$= \beta^2 + \beta^1 + \beta^0$$

$$\therefore \beta^4 \ \epsilon \ GF(2^3)$$

Table 1: The 8 Element Vectors of $x^3 + x^2 + x^0$ in GF(2)[x]

Element	Polynomial Form	Symbol
0	0 + 0 + 0	000
β^0	$0 + 0 + \beta^0$	001
β^1	$0 + \beta^1 + 0$	010
β^2	$\beta^2 + 0 + 0$	100
β^3 β^4	$\beta^2 + 0 + \beta^0$	101
	$\beta^2 + \beta^1 + \beta^0$	111
eta^5	$0 + \beta^1 + \beta^0$	011
eta^6	$\beta^2 + \beta^1 + 0$	110
β^7	$0 + 0 + \beta^0$	001

4 Generate the addition (bitwise XOR) and multiplication tables for the implementation of GF(2)[x]

Table 2: Addition Table for $x^3+x^2+x^0 \ \ \text{in} \ GF(2)[x]$

+	0	$oldsymbol{eta^0}$	$oldsymbol{eta^1}$	$oldsymbol{eta^2}$	$oldsymbol{eta^3}$	$oldsymbol{eta^4}$	$oldsymbol{eta^5}$	$oldsymbol{eta^6}$
0	0	eta^0	β^1	β^2	β^3	β^4	eta^5	β^6
$oldsymbol{eta^0}$	β^0	0	eta^5	β^3	β^2	eta^6	eta^1	β^4
$oldsymbol{eta^1}$	β^1	eta^5	0	eta^6	eta^4	eta^3	eta^0	β^2
$oldsymbol{eta^2}$	β^2	eta^3	eta^6	0	eta^0	eta^5	eta^4	β^1
$oldsymbol{eta^3}$	β^3	β^2	eta^4	eta^0	0	eta^1	eta^6	eta^5
$oldsymbol{eta^4}$	β^4	eta^6	eta^3	eta^5	eta^1	0	β^2	β^0
$oldsymbol{eta^5}$	β^5	eta^1	eta^0	eta^4	eta^6	β^2	0	β^3
$oldsymbol{eta^6}$	β^6	eta^4	β^2	β^1	eta^5	eta^0	β^3	0

Table 3: Multiplication Table for $x^3 + x^2 + x^0$ in GF(2)[x]

×	0	$oldsymbol{eta^0}$	$oldsymbol{eta^1}$	$oldsymbol{eta^2}$	$oldsymbol{eta^3}$	$oldsymbol{eta^4}$	eta^5	$oldsymbol{eta^6}$
0	0	0	0	0	0	0	0	0
$oldsymbol{eta^0}$	0	eta^0	eta^1	β^2	eta^3	eta^4	eta^5	eta^6
$oldsymbol{eta^1}$	0	eta^1	β^2	eta^3	eta^4	eta^5	eta^6	β^0
$oldsymbol{eta^2}$	0	β^2	β^3	eta^4	eta^5	eta^6	eta^0	β^1
$oldsymbol{eta^3}$	0	β^3	eta^4	eta^5	eta^6	eta^0	eta^1	β^2
$oldsymbol{eta^4}$	0	eta^4	eta^5	eta^6	eta^0	eta^1	β^2	β^3
eta^5	0	eta^5	eta^6	eta^0	eta^1	eta^2	eta^3	β^4
$oldsymbol{eta^6}$	0	eta^6	eta^0	β^1	β^2	β^3	β^4	β^5