GDSC EPITA Introduction to Deep Learning Workshop

Philippe Bouchet EPITA SANTE 2023

Presentation ~ 30 min

Workshop ~ 1h30

Summary

- Who am I?
- What is Al?
- Deep learning in the real world
- But how does it work?
- QnA

This is <u>NOT</u> an advanced deep learning course.

This is a workshop for budding AI and DL enthusiasts. No maths! ;)

Who am I?

- Philippe Bouchet
- EPITA Majeure SANTE 2023, Healthcare Major
- We specialize in:
 - Al and image processing for healthcare
 - Tech solutions for medical problems
 - Brain tumor detection
 - Segmentation of gray/white matter
 - Bridging the gap between developers and doctors

What's the difference between AI, ML and DL?

- Artificial Intelligence
 - NPCs in video games
 - Minimax algorithm
 - A* path search algorithm

A* pathfinding algorithm

Minimax algorithm

- Artificial Intelligence
- Machine Learning
 - Using data to improve a statistical model's accuracy
 - Supervised learning (labeled data)
 - Classification, regression

X	У
1	10
2	20
3	30

How do we **estimate** the value of the new data?

X	у
1	10
2	20
3	30
4	?

How do we **estimate** the value of the new data?

$$f(x) = 10 * x$$

X	у
1	10
2	20
3	30
4	40

Linear regression example

- $n_samples = 200$
- n_features = 1
- We have a dataset that maps X to y
- **Goal**: Function *f* that best fits the data
- f(x) = ax + b, what is a and what is b?

Linear regression example

- $n_samples = 200$
- n_features = 1
- We have a dataset that maps x to y
- Function *f* that best fits the data?

$$f(x) = 35.59x + 2.227$$

- Artificial Intelligence
- Machine Learning
- Deep Learning
 - Deep learning because we use deep neural networks
 - NLP
 - Image segmentation

• What is a neural network?

• What is a neural network?

- What is a neural network?
 - Input layer
 - Hidden layer
 - Output layer

- What is a neural network?
 - Input layer
 - Hidden layer
 - Output layer
- Parameters
 - Weights
 - Biases
 - Linear operations

- What is a neural network?
 - Input layer
 - Hidden layer
 - Output layer
- Parameters
 - Weights
 - Biases
 - Linear operations
- Useful for simple tasks in ML
 - Classification
 - Regression

Limitations

- Only linear activations
- 2 dimensions in this example
- What about 784 dimension?

Add more hidden layers!

- Deep Neural Network
 - Non linear models
 - Time consuming computation
 - More capacity to learn

Output Layer Input Layer 6 neurons 50 neurons 100 neurons 200 neurons 500 neurons Hidden Layers

https://en.wikipedia.org/wiki/Universal approximation theorem

An example of a DNN (Deep Neural Network)

Convolutional Neural Networks

- Convolution kernel (5x5)
- Max-pool to reduce size
- Repeat
- Fully connected
- Prediction

Original Image

Example Feature Maps

Convolution

Softmax

- Generative Adversarial Network (GAN):
 - Ian J. Goodfellow et al. 2014
 - Generates fake images from noise
 - Discriminator guess if it's a real image or not
 - Generator is updated with loss

https://arxiv.org/pdf/1406.2661.pdf

Deep learning in the real world - Some examples

This person does not exist

https://thispersondoesnotexist.com/

Deep learning in the real world - Some examples

Image segmentation:

Facebook's detectron

https://github.com/facebookresearch/Detectron

Deep learning in the real world - Some examples

Brain tumor segmentation

What are the frameworks to develop DNN models?

- Python
 - Tensorflow, simple API with Keras
 - PyTorch, a bit difficult to get into

- Python
- C/C++/FORTRAN
 - Low-level GPU Optimizations with CUDA
 - Deep learning depends on GPUs

• But why GPUs?

- But why GPUs?
 - Many cores (ALUs)
 - Parallelizable code
 - Accelerate model training

• But what about in daily life?

- Deep learning is used everywhere!
 - To unlock your phone with face ID

- Deep learning is used everywhere!
 - To unlock your phone with face ID
 - When you use Google translate

- Deep learning is used everywhere!
 - To unlock your phone with face ID
 - When you use Google translate
 - Virtual assistants (Alexa, Siri)

- Deep learning is used everywhere!
 - To unlock your phone with face ID
 - When you use Google translate
 - Virtual assistants (Alexa, Siri)
 - Colourisation of black and white images

- Deep learning is used everywhere!
 - To unlock your phone with face ID
 - When you use Google translate
 - Virtual assistants (Alexa, Siri)
 - Colourisation of black and white images
 - Snapchat filters

- Deep learning is used everywhere!
 - To unlock your phone with face ID
 - When you use Google translate
 - Virtual assistants (Alexa, Siri)
 - Colourisation of black and white images
 - Snapchat filters

...and the list goes on!

- Multilayer Perceptron (MLP)
 - Earliest neural network
 - Input layer
 - Hidden layer
 - Output layer

Feed forward

- Input is passed forward through the network
- Weights and biases extract interesting features

- Feed forward
- Back propagation
 - Backward pass through the network
 - Update weights and biases
 - Better correspond with desired output
 - Gradient descent

- Feed forward
- Back propagation
 - Backward pass through the network
 - Update weights and biases
 - Better correspond with desired output
 - o Gradient descent with normalized values!

This is a <u>VERY</u> simplified explanation!

Normalize to find the focal minimum much faster.

- For this workshop
 - Using Jupyter notebooks
 - Using Tensorflow 2.0
 - Access to Google colab for GPUs

- For this workshop
 - Using Jupyter notebooks
 - Using Tensorflow 2.0
 - Access to Google colab for GPUs
- The task
 - Create your own custom Deep Learning model to classify images!

Thank you!

Any questions?

