Homework 10 - Cardinalities

CS241

Finite sets

- 1. Let X, Y be finite sets. |x| = m, |Y| = n. $f: X \to Y$. What can you conclude about the m, n in the following cases? Match one of the statements (a) (e). Explain you answers.
 - f is surjective
 - \bullet f is injective
 - f is bijective
 - \bullet f is surjective, not bijective
 - f is injective, not surjective

(a)
$$m < n$$
, (b) $m \le n$, (c) $m = n$, (d) $m \ge n$, (e) $m > n$

Enumerable sets

2. We saw a bijection $B: \mathbb{N} \cup \{0\} \to \mathbb{Z}$

$$B: \mathbb{N} \cup \{0\} \to \mathbb{Z}$$

$$B(n) = \begin{cases} \frac{n+1}{2} & \text{if n odd} \\ -\frac{n}{2} & \text{if n even} \end{cases}$$

This is the bijection that maps the odd numbers to the positive integers, and the even numbers to the negative integers (and 0 to 0)

- (a) Find B(0), B(1), B(2), B(3), B(4), B(5), B(6), B(7)
- (b) Complete the following function definition, such that B^{-1} is the inverse bijection $\mathbb{Z} \to \mathbb{N} \cup \{0\}$

$$B^{-1}: \mathbb{Z} \to \mathbb{N} \cup \{0\}$$

$$B^{-1}(y) = \begin{cases} -1 & \text{if } y > 0 \\ \text{if } y \le 0 \end{cases}$$

- (c) $B^{-1}(-3)$, $B^{-1}(3)$, $B^{-1}(-10)$, $B^{-1}(10)$
- 3. Prove that the set $\mathbb{N} \setminus \{3, 10, 50\}$ is enumerable (Hint: use a split notation like in the bijections above)
- 4. Prove that the set $A = \{5\} \times \mathbb{N}$ is enumerable.
- 5. The set T is the set of all non-negative integers that have reminder of 3 when divided by 4.
 - (a) What are the 5 smallest elements of the set T?
 - (b) Find a bijection between $\mathbb{N} \cup \{0\}$ and the set T
 - (c) Find a bijection between \mathbb{N} and the set T above.
- 6. Consider the enumerable set \mathbb{N}
 - (a) Find a bijection $\mathbb{N} \to \mathbb{N}$ that is NOT the identity function on \mathbb{N} (so not the function f(x) = x)
 - (b) Find a function $\mathbb{N} \to \mathbb{N}$ that is injection but NOT surjective
 - (c) Find a function $\mathbb{N} \to \mathbb{N}$ that is surjective but NOT injective.
 - (d) Answer the above questions for the finite set $\{1, 2, 3, 4\}$. If no such function possible, explain why.
- 7. Consider the function $b_2 : \mathbb{N} \to \mathbb{Q}$ that we saw, illustrated by:

- (a) Find $b_2(4)$, $b_2(10)$
- (b) Is this function injective? surjective? bijective?
- (c) Let $a, b, m, n \in \mathbb{N}$. Find a condition to tell if $\frac{a}{b} = \frac{m}{n}$

Continuity of \mathbb{R}

8. Prove: the composition of 2 bijections is also a bijection:

Let $f: A \to B$,

 $g: B \to C$ be bijections.

Then $g \circ f : A \to C$ is a bijection.

- 9. Find bijections as described, graph these functions in their domain and co-domain:
 - (a) Find a bijection between the open interval (0,1) and the open interval (0,3) (Hint; f(x)=2x is a bijection $(0,1)\to(0,2)$)
 - (b) Find a bijection $(0,1) \rightarrow (2,3)$.
 - (c) Find a bijection $(0,1) \rightarrow (5,8)$
 - (d) Find a bijection $(-10, 10) \rightarrow (-0.1, 0.1)$
 - (e) Find a bijection between the closed interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and the closed interval: [-1, 1]

*Hint: Consider linear and trigonometric functions. Use a graphing calculator for visualization: https://www.desmos.com/calculator.

- 10. Find bijections as described:
 - (a) Find a bijection $(0,1) \rightarrow (-1,1)$
 - (b) Find a bijection $(-1,1) \rightarrow (-\frac{\pi}{2},\frac{\pi}{2})$
 - (c) Find a bijection $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$
 - (d) Using your previous answers, compose a bijection $(-1,1) \to \mathbb{R}$
 - (e) Using your previous answers, compose a bijection $(0,1) \to \mathbb{R}$
 - (f) Use a graphing calculator to verify you answers!
- 11. Watch the following video: https://www.youtube.com/watch?v=0xGsU8oIWjY Which bijections that we saw in class appear in this video? How is the last part of the video different then presented in lecture?