$\frac{16.8}{\sqrt{f_{cm}}} = \frac{16.8}{\sqrt{43}}$

Relative humidity of the ambient environment	RH	75.00		
Depth of the section	$h_{section}$	400.00	\overline{mm}	
Width of the section	$b_{section}$	1000.00	mm	Consider 1000mm when working with slake
Cross-sectional area	A_c	400000	mm^2	
$h_{section} \cdot b_{section} = 400 \cdot 1000 = 400000$				
Characteristic compressive cylinder strength of concrete at 28 days	f_{ck}	35.00	MPa	
Mean value of concrete cylinder compressive strength at 28 days	f_{cm}	43.00	MPa	BS EN 1992-1-1 Table 3.1
$f_{ck}+8=35+8=43$				
Perimeter of the member in contact with the atmosphere	u	1000.00	mm	The values is for a 1m slab
Age of concrete in days at the moment considered	t	2557.00	days	7 years is considered
age of concrete at loading in days	t_0	28.00	days	Typically 28 days but may be 7 days for rapid construction
Coefficient to consider the influence of the concrete strength	α_1	0.87		B.8c
$\left(rac{35}{f_{cm}} ight)^{0.7} = \left(rac{35}{43} ight)^{0.7}$				
Coefficient to consider the influence of the concrete strength	$ lpha_2 $	0.96		B.8c
$\left(rac{35}{f_{cm}} ight)^{0.2} = \left(rac{35}{43} ight)^{0.2}$				
oefficient to consider the influence of the concrete strength	α_3	0.90		B.8c
$\left(rac{35}{f_{cm}} ight)^{0.5} = \left(rac{35}{43} ight)^{0.5}$				
Notional size of the member	h_0	800.00	mm	B.6
$\frac{2 \cdot A_c}{u} = \frac{2 \cdot 400000}{1000}$				
nterim value for calculation below $eta_{H,i}$	nterim1	1630.11		B.8a
$1.5 \cdot \left(1 + \left(0.012 \cdot RH ight)^{18} ight) \cdot h_0 + 250 = 1.5 \cdot \left(1 + \left(0.012 \cdot 75 ight)^{18} ight)$	$\cdot 800 + 2$	250		
nterim value for calculation below $eta_{H,i}$	nterim2	1605.66		B.8b
$1.5 \cdot \left(1 + (0.012 \cdot RH)^{18} ight) \cdot h_0 + 250 \cdot lpha_3 = 1.5 \cdot \left(1 + (0.012 \cdot 75)^{18} ight)$		$0+250\cdot 0.9$	0	
Coefficient depending on the relative humidity (RH in %) and the notional member size	eta_H	1353.29		B.8a & B.8b
$egin{cases} \min\left(eta_{H,interim1},1500 ight), & ext{if } f_{cm} \leq 35 \ \min\left(eta_{H,interim2},1500\cdotlpha_3 ight), & ext{otherwise} \end{cases} = egin{cases} \min\left(1630.11, \ \min\left(1605.66, ight) \end{cases}$	1500), 1500 · 0.9	if 4.	$3 \leq 35$ erwise	
Coefficient to describe the development of creep with time after eta_c oading	$_{c}(t,t_{0})$	0.88		В.7
$\left(rac{t-t_0}{eta_H+t-t_0} ight)^{0.3} = \left(rac{2557-28}{1353.29+2557-28} ight)^{0.3}$				
Factor to allow for the effect of concrete age at loading on the notional creep coefficient	$eta(t_0)$	0.49		B.5
$rac{1}{0.1+{t_0}^{0.2}} = rac{1}{0.1+28^{0.2}}$				
Factor to allow for the effect of concrete strength on the notional creep eta	$\beta(f_c m)$	2.56		B.4

$\varphi_{RH.interim1}$	1.27	В.За
,,	I	
$arphi_{RH,interim2}$	1.18	B.3b
$(87) \cdot 0.96$		
onal creep $arphi_{RH}$	1.18	B.3a & B.3b
$3 \le 35$ erwise		
$arphi_0$	1.48	B.2
$arphi(t,t_0)$	1.30	BS EN 1992-1-1 Annex B (B.1)
	$(37) \cdot 0.96$ onal creep (φ_{RH}) $(3 \leq 35)$ erwise (φ_0)	$arphi_{RH,interim2}$ 1.18 $(37) \cdot 0.96$ $(3 \leq 35)$ erwise $(3 \leq 35)$ $(3$

 $arphi_0 \cdot eta_c(t,t_0) = 1.48 \cdot 0.88$