

Recommender Systems

Motivation

Aplicaciones en Internet

Recommender systems

Products, webs, news, videos, ...

Examples:

From scarcity to abundance

Exhibition space is a scarce resource in traditional commerce

So is the weather on TV, trailers in the movies, etc.

The website allows the dissemination of product information at almost no cost

From scarcity to abundance

More options require better filters

Recommendation engines (Recommendation engines)

Types of recommendations

Manual

- Favourite lists
- Prepared by critics and experts

Simple aggregators

Top 10, Most Popular, Most Recent

Adjusted to the interests of each user

• Amazon, Netflix,....

Example: Predicting movie ratings

User rates movies using one to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Pretty Woman				
Titanic				
Algo para Recordar				
La Jungla de Cristal				
Skyfall				
	I			

 n_u = no. users n_m = no. movies r(i,j) = 1 if user j has rated movie i $y^{(i,j)}$ = rating given by user j to movie i (defined only if r(i,j)=1)

In our notation, r (i, j) = 1 if the user j has scored the movie i, and y(i, j) is his score for that movie. Consider the following example (number of movies $n_m = 2$, number of users $n_u = 3$):

	Usuario 1	Usuario 2	Usuario 3
Movie 1	0	1	?
Movie 2	?	5	5

What are the values for r(2,1) and $y^{(2,1)}$?

- \Box $r(2,1)=0, y^{(2,1)}=1$
- \Box $r(2,1)=1, y^{(2,1)}=1$
- \Box $r(2,1)=0, y^{(2,1)}=$ undefined
- \Box $r(2,1)=1, y^{(2,1)}=$ undefined

Recommender Systems

Content-based recommendations

Content-based recommender systems

Movie	Alicia (1)	Paco (2)	Elena (3)	Pepe (4)	x_1 (romance)	x_2 (action)
Pretty Woman	5	5	0	0	0.9	0
Titanic	5	?	?	0	1.0	0.2
Algo para Recordar	?	4	0	?	1.0	0
La Jungla de Cristal	0	0	5	4	0	1.0
Skyfall	0	0	5	?	0.1	0.9

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

Consider the ratings:

Movie	Alicia (1)	Paco (2)	Elena (3)	Pepe (4)	x_1 (romance)	x_2 (action)
Pretty Woman	5	5	0	0	0.9	0
Titanic	5	?	?	0	1.0	0.2
Algo para Recordar	?	4	0	?	1.0	0
La Jungla de Cristal	0	0	5	4	0	1.0
Skyfall	0	0	5	?	0.1	0.9

Which of the following vectors is a reasonable value for $\theta^{(3)}$? Remember that $x_0 = 1$

- \Box $\theta^{(3)} = [0; 5; 0]$
- \Box $\theta^{(3)} = [1; 0; 4]$
- $\Theta^{(3)} = [0; 0; 1]$
- \Box $\theta^{(3)} = [0; 0; 5]$

Problem formulation

r(i,j) = 1 if user j has rated movie i (0 otherwise) $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$

 $\begin{array}{l} \theta^{(j)} = \text{parameter vector for user } j \\ x^{(i)} = \text{feature vector for movie } i \\ \text{For user } j \text{ , movie } i \text{ , predicted rating: } (\theta^{(j)})^T (x^{(i)}) \end{array}$

 $m^{(j)}$ = no. of movies rated by user jTo learn $\theta^{(j)}$:

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{i=1}^{n_u} \sum_{i: r(i, i) = 1} \left((\theta^{(j)})^T x^{(i)} - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{i=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Recommender Systems

Colaborative Filtering

Internet Applications

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Pretty Woman	5	5	0	0	0.9	0
Titanic	5	?	?	0	1.0	0.2
Algo para Recordar	?	4	0	?	1.0	0
La Jungla de Cristal	0	0	5	4	0	1.0
Skyfall	0	0	5	?	0.1	0.9

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Pretty Woman	5	5	0	0	0.9	0
Titanic	5	?	?	0	1.0	0.2
Algo para Recordar	?	4	0	?	1.0	0
La Jungla de Cristal	0	0	5	4	0	1.0
Skyfall	0	0	5	?	0.1	0.9

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \ \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)},\ldots,\theta^{(n_u)}$, to learn $x^{(1)},\ldots,x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $x^{(1)}, \ldots, x^{(n_m)}$ (and movie ratings), can estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$,
can estimate $x^{(1)}, \dots, x^{(n_m)}$

Suppose we use gradient descent to minimize

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Which of the following is a correct gradient update rule for i≠0?

Recommender Systems

Collaborative filtering algorithm

Internet Applications

Collaborative filtering optimization objective

Given $x^{(1)}, \ldots, x^{(n_m)}$, estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

 $\theta^{(1)}, \dots, \theta^{(n_u)} \ 2 \underbrace{\sum_{j=1}^{n} \sum_{i:r(i,j)=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{i=$

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, estimate $x^{(1)}, \dots, x^{(n_m)}$:
$$\min_{x^{(1)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ (n_i) = n \\ (n_i) =$$

Collaborative filtering algorithm

- 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,\ldots,n_u, i=1,\ldots,n_m$:

$$\begin{aligned} x_k^{(i)} &:= x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \\ \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \end{aligned}$$

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

Recommender Systems

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)					
Pretty Woman	5	5	0	0		Γμ	E	\cap	٦٦
Titanic	5	?	?	0		$\begin{bmatrix} 5 \\ 5 \end{bmatrix}$) ?	$\frac{0}{2}$	
Algo para Recordar	?	4	0	?	Y =	$\frac{9}{2}$; 1		$\begin{bmatrix} 0\\2 \end{bmatrix}$
La Jungla de Cristal	0	0	5	4	<i>I</i> —	,	4 0	5	·
Skyfall	0	0	5	?		0	0	5	$\frac{4}{0}$
	l					Įυ	U	\mathbf{o}	υĮ

Collaborative filtering

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Predicted ratings:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad \begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & & \vdots & & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

ine
$$X = \begin{bmatrix} - & (x^{(1)})^T & - \\ & \vdots & \\ - & (x^{(n_m)} & - \end{bmatrix}, \ \Theta = \begin{bmatrix} - & (\theta^{(1)})^T & - \\ & \vdots & \\ - & (\theta^{(n_u)} & - \end{bmatrix}$$

How can we compactly express
$$\begin{bmatrix} (x^{(n_m)} & - \end{bmatrix} & \begin{bmatrix} \vdots & \ddots & \vdots \\ (x^{(n_m)})^T(\theta^{(1)}) & \dots & (x^{(n_m)})^T(\theta^{(n_u)}) \end{bmatrix}$$
$$\vdots & \ddots & \vdots \\ (x^{(n_m)})^T(\theta^{(1)}) & \dots & (x^{(n_m)})^T(\theta^{(n_u)}) \end{bmatrix}$$

$$\Box X \Theta^T$$

$$\Box X^T \Theta$$

 $\Box X\Theta$

$$\neg \Theta^T X^T$$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find movies j related to movie i?

5 most similar movies to movie i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Aplicaciones en Internet

Recommender Systems

Implementation detail: Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	_	Г~	_	0	0	٦٦
Pretty Woman	5	5	0	0	?	_	5	5	0	0	$\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$
Titanic	5	?	?	0	?	V -	$\begin{vmatrix} 5 \\ 2 \end{vmatrix}$	1		$\frac{0}{2}$	$\begin{bmatrix} \cdot \\ 2 \end{bmatrix}$
Algo para Recordar	?	4	0	?	?	I =		$\frac{4}{0}$	5	; 1	$\begin{bmatrix} \cdot \\ 2 \end{bmatrix}$
La Jungla de Cristal	0	0	5	4	?		$\begin{bmatrix} 0 \end{bmatrix}$	0	5	0	$\begin{bmatrix} \cdot \\ \gamma \end{bmatrix}$
Skvfall	0	0	5	?	?		L	J	9	J	٠.٦

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \qquad \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

User 5 (Eve):

We have talked about normalisation on average. However, we do not apply feature scaling, that is, we have not scaled the scores by dividing them by the range (max - min). This is because
☐ This type of scaling is not useful when the value to predict is a real number.
☐ Movie scores are already comparable (e. g. from 0 to 5 stars), so they are already or the same scale.
☐ Subtracting the mean is mathematically equivalent to dividing by rank.
☐ In this way the algorithm is more computationally.

Inclusion of biases:

Motivation:

- Some users tend to give higher scores and others tend to give lower scores: user bias.
- Some movies also tend to receive better ratings than others: biased movies.

We can introduce these biases into our formulation:

- User bias j: b_i
- Movie i bias: b_i

Inclusion of biases:

Prediction without biases: $\hat{y}^{(i,j)} = \mu_i + (\theta^{(j)})^T x^{(i)}$

Prediction including biases: $\hat{y}^{(i,j)} = \mu_i + b_j + b_i + (\theta^{(j)})^T x^{(i)}$

Cost function without biases:

$$J(\Theta, X) = \frac{1}{2} \sum_{(i,i): r(i,j)=1} \left(\mu_i + \left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \left\| \theta^{(j)} \right\|^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \left\| x^{(i)} \right\|^2$$

Cost function including biases:

$$J(\Theta, X, \{b_j\}, \{b_i\}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} \left(\mu_i + b_j + b_i + \left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right)^2$$

$$+ \frac{\lambda}{2} \sum_{j=1}^{n_u} \left\| \theta^{(j)} \right\|^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \left\| x^{(i)} \right\|^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} b_j^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} b_i^2$$