

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A61K 31/20 A1	
(43)	International Publication Date: 15 October 1998 (15.10.98)
(22) International Filing Date: 20 March 1998 (20.03.98) (30) Priority Data: 60/042,366 27 March 1997 (27.03.97) US (71) Applicant (for all designated States except US): BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, Princeton, NJ 06543 (US).	81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: USE OF DOCOSAHEXANOIC ACID AND ARACHIDONIC ACID ENHANCING THE GROWTH OF PRETERM INFANTS

(57) Abstract

A method for enhancing the growth of preterm infants involving the administration of certain long chain polyunsaturated fatty acids. It is preferred that the infants are administered an infant formula containing a combination of docohexaenoic acid and arachidonic acid.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	и	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

USE OF DOCOSAHEXANOIC ACID AND ARACHIDONIC ACID ENHANCING THE GROWTH OF PRETERM INFANTS

Field of Invention

The present invention concerns enhancing the growth of preterm infants involving administration of infant formula containing a combination of docosahexaenoic and arachidonic acid.

Background of the Invention

The long chain polyunsaturated fatty acids (LC PUFA) have been shown to be important in infant development. Particularly, arachidonic acid (ARA) and docosahexaenoic acid (DHA) are LC PUFA that are of special interest in infant nutrition because they are found in high concentrations in the brain (Sastry PS, Lipids of nervous tissue: composition and metabolism. Progress Lipid Res 1985;24:69-176) and the retina (Fliesler SJ and Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Progress Lipid Res 1983;22:79-131). ARA (20:4n-6) and DHA (22:6n-3) are derived from the parent essential fatty acids linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) through alternate desaturation and elongation and accumulate rapidly in fetal neural tissue during the last months of gestation and the first months of postnatal life (Makrides M, Neuman MA, Byard RW, Simmer K, Gibson RA. Fatty composition of the brain, retina and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 1994;60:189-94).

-2-

Unlike term infants, preterm infants do not fully benefit from the maternal and placental LC PUFA supply during the last trimester of pregnancy. Even though preterm infants are capable of synthesizing both DHA and ARA from their 18 carbon precursors (Carnielli VP, Wattimena DJL, Luijendijk IHT, Boerlage A, Degenhart HJ, Sauer PJJ. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediat Res 1996;40:169-174), it remains unclear whether the rate of synthesis is adequate to meet the optimal needs for central nervous system accretion in the absence of a dietary supply of these fatty acids. Preterm infants are dependent on their own dietary supply of linoleic and α-linolenic acids through either human milk, which also contains small but significant amounts of ARA and DHA or through commercially available artificial formulas, none of which in the United States contain ARA and DHA.

It has been demonstrated in recent studies (Hoffman DR and Uauy R. Essentiality of dietary ω -3 fatty acids for premature infants: Plasma and red blood cell fatty acid composition. Lipids 1992;27:886-95) that the fatty acid composition of red blood cell membrane lipids in infants receiving formulas supplemented with DHA (0.35% of total fatty acids) was similar to human milk-fed infants. In the same study, Birch (Birch DG, Birch EE, Hoffman DR, Uauy RD. Retinal development in very-low-birth-weight infants fed diets differing in Omega-3 fatty acids. Investigation Ophthalmology Visual Science 1992;33:2365-76) found that retinal function improved with the provision of a dietary supply of DHA in very low birth weight infants.

- 3 -

The first year growth of preterm infants fed standard formula compared to marine oil LC PUFA supplemented formula was studied by Carlson et al. (Carlson SE, Cooke, RJ, Werkman SH, Tolley EA. First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 1992:27:901-907). The experimental formulas provided 0.2% of total fatty acids as DHA and also provided 0.3% as EPA (20:5n-3). This EPA concentration is higher than found in human milk while the DHA level is similar to human milk. Beginning at 40 weeks from conception, marine oil supplemented infants compared to controls had significantly lower weight, length, and head circumference. From this study, Carlson (Carlson SE, Werkman SH, Peeles JM, Cooke RJ, Tolley EA. Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci USA 1993;90:1073-77) hypothesized that dietary ARA could improve first year growth of preterm infants, in the context of restoring growth to the level of control formula containing no LC PUFA.

In another study (Montalto, FB, et al., Pediatric Research, Vol 39, page 316A, abstract no. 1878) it was shown that male infants fed marine oil supplemented formula (containing DHA but essentially no ARA) had, by 4 to 6 months, lower head circumference, length, weight and fat free mass than standard formula fed infants. A third study also showed decreased weight at 9 and 12 months corrected age in preterm infants fed marine oil supplemented formula (with LC PUFA) to 2 months corrected age compared with control formula containing no LC PUFA (Carlson SE, et al., Am. J. Clin. Nutr., 63 pp 687-97, 1996).

-4-

The prior art has demonstrated that infants with altered tissue LC PUFA levels, resulting from a lack of LC PUFA in their diets, may be at risk for neurological problems, may also have reduced scores on cognitive tests, and may have lower retinal development than human milk-fed infants. Worldwide regulatory organizations such as the WHO/FAO Expert Committee on Fats and Oils in Human Nutrition have recommended that LC PUFA be included in preterm infant formula. These recommendations have been made despite the negative effects observed of DHA supplements on growth. There has been no demonstration in the literature that ARA and DHA, particularly when added to infant formula, enhances the growth of infants above that demonstrated by control formulas not containing ARA and DHA.

Summary of the Invention

It has unexpectedly been discovered that preterm infants receiving infant formula supplemented with both DHA and ARA demonstrate enhanced growth. The present invention is directed to enhancing the growth of preterm infants comprising administering to said infants a growth enhancing amount of DHA and ARA.

Detailed Description of the Invention

As reported in a review of preterm infant growth by Carlson, SE, (The Jrnl of Pediatrics, vol 125, pp 533-8, 1994) "After adjusting for postconceptional age, preterm infants show a decline (rather

- 5 -

than a catch-up) in the normalized weight from approximately 2 to 4 months past expected term."

Several prior art studies have documented the value of administering DHA to infants. However, when DHA, either as the primary LC PUFA or combined with EPA, is administered to preterm infants, said infants suffer from decreased growth. It has been suggested that ARA may be beneficial to growth; however, heretofore the growth effects of administering both DHA and ARA to preterm infants have been unknown. It has been surprisingly discovered that administering the combination of ARA and DHA results in enhanced growth of infants relative to infants fed DHA alone. It has also been discovered that preterm infants administered an infant formula containing ARA and DHA exhibit enhanced growth relative to preterm infants fed control formula without DHA and ARA, such as those formulas currently used in modern nurseries. It has further been discovered that practice of the method of the invention results in growth of preterm infants catching up in an unexpected short time to a reference group of normal term breast fed infants.

The time to achieve growth similar or equivalent to normal term breast fed infants by practice of the method of the invention is less than 9 months corrected age; preferably less than 6 months corrected age, more preferably less than 4 months corrected age, even more preferably less than 2 months corrected age, and most preferably no greater than term corrected age.

The method of the invention requires a combination of DHA and ARA. The weight ratio weight of ARA:DHA can be about 1:2 to about 5:1, preferably about 1:1 to about 3:1, and more preferably

-6-

about 2:1.

In the method of the invention the combination of DHA and ARA is preferably administered as part of an infant formula. The infant formula for use in the present invention is preferably nutritionally complete and typically contains suitable types and amounts of lipid, carbohydrate, protein, vitamins and minerals. The amount of lipid or fat typically can vary from about 3 to about 7 g/100 kcal. The amount of protein typically can vary from about 1 to about 5 g/100 kcal. The amount of carbohydrate typically can vary from about 8 to about 12 g/100 kcal. Protein sources can be any used in the art, e.g., nonfat milk, whey protein, casein, soy protein, hydrolyzed protein, amino acids, and the like. Carbohydrate sources can be any used in the art, e.g., lactose, glucose, corn syrup solids, maltodextrins, sucrose, starch, rice syrup solids, and the like. Lipid sources can be any used in the art, e.g., vegetable oils such as palm oil, soybean oil, palmolein, coconut oil, medium chain triglyceride oil, high oleic sunflower oil, high oleic safflower oil, and the like. Conveniently, commercially available infant formula can be used. For example, Enfamil®, Enfamil® Premature Formula, Enfamil® with Iron, Lactofree®, Nutramigen®, Pregestimil®, ProSobee® (available from Mead Johnson & Company, Evansville, Indiana, U.S.A.), Similac®, Isomil®, Alimentum®, Neocare®, and Similac® Special Care (available from Ross Laboratories, Columbus, Ohio, U.S.A.), may be supplemented with suitable levels of ARA and DHA at the proper ratios and used in practice of the method of the invention.

The form of administration of the DHA and ARA in the method of the invention is not critical, as

-7-

long as a growth enhancing amount is administered. Most conveniently, the DHA and ARA are supplemented into infant formula which is then fed to the infants. Alternatively, the DHA and ARA can be administered as a supplement not integral to the formula feeding, for example, as oil drops, sachets, in combination with other nutrient supplements such as vitamins, and the like.

The growth enhancing amount of DHA is typically about 2.5 mg/kg of body weight/day to about 60 mg/kg of body weight/day, preferably about 6 mg/kg of body weight/day to about 40 mg/kg of body weight/day, more preferably about 12 mg/kg body weight/day to about 30 mg/kg body weight/day, and even more preferably about 18 mg/kg of body weight/day to about 24 mg/kg of body weight/day.

The growth enhancing amount of ARA is typically about 5 mg/kg of body weight/day to about 120 mg/kg of body weight/day, preferably about 12 mg/kg of body weight/day to about 80 mg/kg of body weight/day, more preferably about 24 mg/kg body weight/day to about 60 mg/kg body weight/day, and even more preferably about 36 mg/kg of body weight/day to about 48 mg/kg body weight/day.

The amount of DHA in infant formulas for use in the present invention typically varies from about 2 mg/100 kilocalories (kcal) to about 50 mg/100 kcal, preferably about 5 mg/100 kcal to about 33 mg/100 kcal, more preferably about 10 mg/100 kcal to about 25 mg/100 kcal, and even more preferably about 15 mg/100 kcal to about 20 mg/100 kcal.

- 8 -

The amount of ARA in infant formula for use in the present invention typically varies from about 4 mg/100 kcal to about 100 mg/100 kcal, preferably about 10 mg/100 kcal to about 67 mg/100 kcal, more preferably about 20 mg/100 kcal to about 50 mg/100 kcal, and even more preferably about 30 mg/100 kcal to about 40 mg/100 kcal.

The infant formula supplemented with oils containing DHA and ARA for use in the present invention can be made using standard techniques known in the art. For example, replacing an equivalent amount of an oil normally present, e.g., high oleic sunflower oil.

The source of the ARA and DHA can be any source known in the art such as fish oil, single cell oil, egg yolk lipid, brain lipid, and the like. The DHA and ARA can be in natural form, provided that the remainder of the LC PUFA source does not result in any substantial deleterious effect on the infant. Alternatively, the DHA and ARA can be used in refined form. It is preferred that the LC PUFA used in the invention contain little or no EPA. For example, it is preferred that the infant formulas used herein contain less than about 20 mg/100 kcal EPA; preferably less than about 10 mg/kcal EPA; more preferably less than about 5 mg/100 kcal EPA; and most preferably substantially no EPA.

Preferred sources of DHA and ARA are single cell oils as taught in U.S. patent nos. 5,374,657, 5,550,156, and 5,397,591, the disclosures of which are incorporated herein by reference in their entirety.

The following examples are to illustrate the invention but should not be interpreted as a limitation thereon.

-9-

EXAMPLES

I CLINICAL STUDY DESIGN

1. INTRODUCTION

This study is a double-blind, randomized, controlled parallel design, prospective trial of premature infant formulas containing microalgae and fungi-derived oils which contain a part of their constituents arachidonic acid and docosohexaenoic acid. Formula feeding subjects will be randomized into one of 3 feeding groups:

- premature formula plus DHA (about 0.13% of energy) and ARA (about 0.26% of energy)
- premature formula plus DHA (about 0.13% of energy)
- premature formula WITHOUT DHA and ARA

The products have the same nutrient composition (see Appendix A) and differ only in the level of DHA and ARA. The products will be blinded. The present order of formula has no relationship to randomization.

Normal, term, breast fed infants will be enrolled to provide a normal visual acuity reference.

Fifty evaluable subjects will be completed in each group. Premature infants will remain on study formulas after reaching 90 kcal/kg/d for a minimum of 28 days or until hospital discharge whichever is longer. After 28 days or discharge, whichever is longer, all premature infants will receive Enfamil or Enfalac with Iron. If medically indicated, ProSobee, Lactofree, Alactamil, Nutramigen, or Pregestimil may be used in place of Enfamil or Enfalac with Iron. Term infants will receive at least 85% of their nutrition from breast milk. Primary measures of effectiveness will include visual acuity and red blood cell membrane fatty acid profiles (i.e. DHA and ARA levels). The measure of safety will be growth and adverse experience reports.

2. SUBJECTS

2.1 SOURCE AND CHARACTERIZATION OF STUDY GROUP

Acceptable preterm subjects will be relatively healthy premature infants taking

- 10 -

preterm formula. Anticipated hospitalization should be sufficient to allow for 28 days of enteral intake \geq 90 kcal/kg/d and \geq 85% study formula intake. All races and both sexes will be eligible for the study.

2.2 INCLUSION CRITERIA

Preterm infants

- . Birth weight ≥ 900 g
- . Formula feeding at time of study enrollment
- . Anticipate enteral intake of ≥ 90 kcal/kg/day for ≥ 28 days before discharge home
- . Informed consent obtained

Term Infants:

- . 38 to 42 weeks gestation
- . Committed to breast feeding
- Informed Consent obtained

2.3 EXCLUSION CRITERIA

Preterm infants

≥1500 g at birth

Preterm and Term Infants:

- . History of underlying disease or congenital malformation which in the opinion of the investigator is likely to interfere with the evaluation of the subject
- . More than 24 days between birth and full oral feeds (≥ 90 kcal/kg/d)
- . Small (<10th percentile) for gestational age at birth (SGA)
- . Necrotizing enterocolitis as diagnosed by the physician

-11-

- Other gastrointestinal disease
- Impaired visual or ocular status at birth

2.4 CONCOMITANT MEDICATIONS, HOSPITALIZATIONS, ILLNESSES

- No medication which may effect FPL response may be used within 3 days of measurement.
 - No evidence of viral of bacterial infection during FPL testing.
- No medications known to effect lipid metabolism (e.g., heparin at therapeutic levels)

3. STUDY PRODUCT INFORMATION

3.1 FORMULATIONS

Nutrient composition is included as Appendix A.

4. STUDY PROCEDURES

4.2.1 ENROLLMENT

Enrollment will take place over a 6 month period. Ideally, sufficient subjects will be enrolled so that 10 subjects in each group complete the study at each site for the multi-center trial. A total of 50 infants per formula group will complete this trial.

4.2.2 SCHEDULE OF EVENTS (SEE FLOW CHART, SECTION 8.4)

4.2.2.1 RECRUITMENT

Mothers of eligible, healthy, preterm formula fed infants and term, breastfed infants will be contacted, the study explained to them, and if they are agreeable, written informed consent obtained.

Term infants may be enrolled anytime from birth until or during the 48 week visit.

- 12 -

4.2.2.2 RANDOMIZATION

Recruited formula fed subjects will be randomized into study groups. Randomization can occur anytime after enteral feeds reach 50 kcal/kg/day until commencement of full enteral feeds (i.e., ≥90 kcal/kg/day).

4.2.2.3 FEEDING

All premature infants will receive their assigned study formula after informed consent has been granted and enteral feeds are at least 50 kcal/kg/day. The infant will remain on study formula 28 days after reaching 90 kcal/kg/d or until hospital discharge, whichever is longer. Oral feeding amount, strength and rate will advance as appropriate for the clinical management of the infant.

All parents will be instructed not to feed solid foods during the study. The parents will be instructed that the study formula or breast milk is to serve as the sole source of food from enrollment to study end.

4.2.2.4 BASELINE DATA COLLECTION

The following data will be collected by the Investigator at the time of enrollment and randomization on the case report forms:

- . Informed consent of parent obtained.
- . Post conceptual age.
- That the subject is a premature infant, with Birth weight ≥900 gm and ≥1500 gm or a normal term infant between 38 and 42 weeks gestational age.
- That the preterm subject is receiving infant formula or term infant is committed to breast feeding.
- Anticipated preterm infant enteral intake of ≥90 kcal/kg/day for ≥28 days prior to discharge home.
- That the subject has no history of underlying disease, inborn error of metabolism, or congenital malformation which in the opinion of the Investigator is likely to interfere with the evaluation of the study formulas.

- That the subject is not small (<10th percentile) for gestational age at birth.
- That the subject does not have necrotizing enterocolitis as diagnosed by a physician.
- That the subject does not have a gastrointestinal disease.
- No more than 24 days between birth and full enteral feeds (i.e., ≥90 kcai/kg/day).
- . That the subject did not have impaired visual or ocular status at birth.
 - Birth date, sex, race.
 - Birth weight, length and head circumference

4.2.2.5 INVESTIGATOR PERIODIC DATA COLLECTION

"During hospitalization, preterm subjects will have their weight recorded daily while they are receiving study formula. Length and head circumference will be recorded weekly, along with an additional weight measurement. For a given subject, the same scale should be used for the weekly weight measurement."

"Weight, length, and head circumference will also be recorded at the 40, 48, and 57 week post conceptual age visit (preterm) and 56 and 119 days of age visit (term)."

4.2.2.6 BLOOD DRAW

When preterm infant enrolls in the study and again at termination of study formula (i.e., hospital discharge or 28 days after reaching 90 kcal/kg/d of study product), the Investigator will ascertain that the infant is essentially solely formula fed. If this criteria is met, 1.2 ml/blood will be drawn for blood lipids. The sample will be processed as described in Appendix B.

An attempt will also be made to draw a similar blood sample at the 48 weeks PCA visit when visual acuity is measured in both term and preterm infants.

4.2.2.7 VISUAL ACUITY BY FORCED CHOICE PREFERENTIAL LOOKING (FPL) AT 48 AND 57 WEEKS ± 4 DAYS POST-CONCEPTUAL AGE

When the infant is 48 and 57 weeks \pm 4 days post-conceptual age, trained persons at each study site will follow the Teller Acuity Card Procedure for the measurement of visual acuity of all study subjects. It is essential that only persons who are trained in the FPL procedure for determining visual acuity do the testing. If necessary, training of responsible persons and documentation of completion of successful training will be done at Children's Hospital Medical Center Ophthalmology Department in Seattle, Washington, according to the procedure attached as Appendix C.

If the infant cannot complete the procedure at 48 or 57 weeks \pm 4 days postconceptual age (i.e., too fussy, too sleepy, too inattentive) the test should be repeated within 7 days.

4.2.2.8 INTERIM EVALUATION

At preterm infant hospital discharge or 28 days after reaching 90 kcal/kg/d of study formula feeding, whichever is longer, the investigator will fill out an "Interim Evaluation" form. After reviewing the subject's records and discussion with the parents and staff, the investigator will indicate whether:

- . Whether or not the subject completed at least 28 days of study formula intake ≥90 kcal/kg/d and both blood samples obtained
- If the study was not completed, and reason
- Whether or not the subject received steroids (glucorticoids)
- . Investigator's evaluation of the study formula

The first and last dates study material was taken will be recorded.

4.2.2.9 FINAL EVALUATION

At the final study visit (57 weeks postconceptual age) or earlier if the subject drops out, the Investigator will fill out a "Final Evaluation" Case Report Form. After reviewing the subject's records and discussion with the parents, the Investigator will indicate whether the subject:

- 15 -

- (1) Completed feeding regiment and all study parameters (i.e., anthropometrics and visual acuity measured).
- (2) Did not complete feeding regimen.
- (3) Not completed and reason.

4.3 CLINICAL OBSERVATIONS

4.3.1 PHYSICAL EXAMINATIONS

Subjects will have weight, length and head circumferences recorded at birth, weekly while hospitalized, then at 40, 48, and 57 weeks \pm 4 days postconceptual age.

Body weight will be measured using an electronic balance or a double beam balance accurate to 10 g or ½ oz with non-detachable weights. During hospitalization, if more than one such balance is employed in the practice, either one balance should be designated the study balance and all study weights will be carried out on that balance for a particular subject, or the balances will be checked and certified to register the same weight throughout the range of weights expected. Outpatient weights will be obtained on a calibrated office scale.

Documentation indicating balance calibration of the outpatient balance carried out within 12 months of study initiation will be supplied to the Sponsor.

Length will be measured with the infant in recumbent position with the help of two examiners and a suitable measuring apparatus. One person holds the subject's head in contact with a fixed vertical headboard and a second person holds the subject's feet, toes pointing directly upward and, also applying gentle traction. The baby is measured from the headboard to the soles of the feet with a non-stretching tape measure.

Head circumference will be measured, employing a flexible, nonstretchable cloth or vinyl tape.

4.3.2 VISUAL ACUITY BY FORCED CHOICE PREFERENTIAL LOOKING (FPL)

Visual acuity will be determined at 48 and 57 weeks ± 4 days postconceptual age according to procedures outlined in Appendix C.

4.3.3 LABORATORY TESTS

Blood will be drawn from preterm infants by heel prick or venipuncture when study formula is begun and terminated. An attempt will be made to draw blood at 48 weeks \pm 4 days PCA from both term and preterm infants. Procedures for handling the blood are described in Appendix B.

FLOW CHART

4.4

- 17 -

Viait 3 57 wks ± 4d PCA (when the subject discontinues or completes) > > > Visit 2 48 wks ± 4d PCA TERM Physical > > > > > > Visit 1 40 wks ± 4d PCA > > Visit 3 57 wks ± 4d PCA > > > Visit 2 46 wks ± 4d PCA > > > > > > (when the subject discontinues or completes) Visit 1 40 wks ± 4d PCA PRETERM > > > > > Physical Termination of Study Formula † > > > > > Intake >50 kcal/kg/d Enteral * * * > > Birth > > > Randomization Study Formula Circumference Enfamil w/iron **EVENT** Visual Acuity Assessment Human Milk Assessment **Blood Draw** Illnesses Length Weight Interim Head Final Test

Medical problems related to or affecting formula consumption will be recorded when they occur. Recorded daily and weekly during hospitalization.
At hospital discharge or 28 days of study formula intake (after reaching 90 kcal/kg/d), whichever is later.

- 18 -

CRITERIA FOR RESPONSE

Criteria for response will depend upon the following:

- Visual Acuity better than the control formula.
- Visual Acuity comparable to breastfed term infant.
 - Red Blood Cell phosphatidyl ethanolamine DHA and ARA weight % greater than formula control group.
 - Growth as measured by weight achieved at 48 and 57 weeks postconceptual age comparable to formula control group.

6. STATISTICS

6.1 RANDOMIZATION

If the subject meets the inclusion and exclusion criteria, randomization to one of three formula groups will take place. The randomization schedule will be provided by Mead Johnson Research Center. A separate randomization schedule will be provided for males and females.

6.2 SAMPLE SIZE

The primary parameter of interest is visual acuity as measured by the Forced Choice Preferential Looking (FPL). The minimal clinically relevant difference was determined to be 0.5 octave. A consultant in the field of visual acuity estimated the standard deviation to be 0.5 octave. This value was increased to .7 octave in case more variability was experienced in this study. Thirty-two subjects per group are needed to attain 80% power when testing at an alpha level of 0.05.

A sample size estimate of 50 per group was determined to achieve $\alpha + 0.05$, $\beta + 0.20$, for weight of infants receiving study oil being greater than 400 gm below control at 48 weeks postconceptual age or 500 g below control at 57 weeks postconceptual age with a standard deviation of 800 g. It was therefore determined that 50 subjects per group will be used in the study.

6.3 ANALYTICAL PLAN

Visual acuity data will be recorded in cycles per cm. These values will be converted to cycles per degree using the following formula:

 $cycles/degree = 38 \times cycles/cm$

55

A log transformation will be applied to the data prior to analysis. Analysis of variance techniques will be used to assess feeding regimen group differences in visual acuity. If the overall F test for feeding regimen is significant at al alpha level of 0.05, pairwise comparisons will be made at an alpha level of 0.05. If no significant differences are detected, then a post-study power analysis will be performed to demonstrate that the study had adequate power to detect the minimal clinically relevant difference.

Analysis of variance will be used to assess feeding regimen differences in phosphatidyl choline DHA and ARA levels and in phosphatidyl ethanolamine DHA and ARA levels at each time point. If the overall F test is significant at al alpha level of 0.05, then pairwise comparisons will be made at an alpha level of 0.05.

Analysis of variance will be used to assess feeding regiment differences in weight at 48 and 57 weeks postconceptual age. The statistical model will include terms for feeding regimen, study center, sex and all two-way interactions. Non-significant interactions will be removed from the final statistical model. Two one-sided tests will be performed comparing each experimental formula (EC) with the control formula (CF). The hypothesis to be tested is as follows:

 $H_0 = \text{Weight (CF)} \leq \text{Weight (EF)}.$

The alternative hypothesis is as follows:

 $H_1 = Weight (CF) > Weight (EF).$

If H_0 if rejected and the mean weight of the control formula exceeds that of the experimental formula by more than 400 mg at 48 weeks postconceptual age or by 500 g at 57 weeks postconceptual age then the conclusion is that the experimental formula does not exceed that of the experimental formula by more than 400 g at 48 weeks postconceptual age

- 20 -

or by 500 mg at 57 weeks postconceptual age then the conclusion is that the experimental formula does provide adequate growth. If H_{\circ} is not rejected then a post-study power analysis will be performed to demonstrate that eh study had adequate power to detect the above mentioned clinically relevant differences. If adequate power is achieved then the conclusion is that the experimental formula does provide adequate growth.

Fisher's exact test will be used to compare the proportion of subjects in each group with illness/symptoms of concern during the study. The analysis will be performed for each type of illness/symptom reported, with classification of investigator terms into similar terminology made as necessary.

- 21 -

APPENDIX A NUTRIENT COMPOSITION OF FORMULAS

All study formulas are 24 kcal/fl oz and are identical in composition to marketed Enfamil Premature Formula except for the study oils employed. These oils are described in the protocol.

NUTRIENT	STUDY FORMULAS AMOUNT/100 kml	ENFAMIL WITH Fe
Protein, g	3.	2.2
Fat, g	5.1	5.6
Carbohydrate, g	11.1	10.3
Vitamin A IU	1250	310
Vitamin D IU	270	63
Vitamin E IU	6.3	2
Vitamin K mcg	8	8
Thiamine, mcg	200	78
Riboflavin, mcg	300	150
Vitamin B _a , mcg	150	63
Vitamin B ₁₂ , meg	0.25	0.23
Niacin, mcg	4000	1250
Folic Acid, mcg	35	15.6
Pantothenate, mcg	1200	470
Biotin, mcg	4	2.3
Vitamin C, mg	20	8.1
Choline, mg	12	15.6
Inositol, mg	17	4.7
Calcium, mg	165	78
Phosphorus, mg	83	53
Magnesium, mg	6.3	7.8
Iron, mg	1.8	0.5
Zinc, mg	1.5	0.78
Manganese, mcg	6.3	15.6
Copper, mcg	125	. 94
Iodine, mcg	25	6
Sodium mg (mEq)	39 (1.7)	27(1.17)
Potassium mg (Meq)	103 (2.6)	108 (2.8)
Chloride mg (Meq)	85 (2.4)	63 (1.77)

- 22 -

П

FINAL STUDY REPORT

Study Design: This double-blind, parallel-group study (project 3338) was carried out in 16 neonatal centers (study numbers 9698-9709, 9712, 9723, 9743, and 9746) in North America. Three premature infant feedings were compared. Each had the same composition except for the incorporation of fungal and/or micro algal oils up to about 3% of the fat blend to provide the experimental levels of docosahexaenoic acid (DHA) and arachidonic acid (ARA). The control formula (C, Enfamil® Premature Formula) contained no DHA or ARA, the DHA formula (D) contained about 0.15% of energy as DHA (0.34% of fat), and the DHA+ARA formula (DA) contained about 0.14% of energy as DHA (0.33% of fat) and 0.27% of energy as ARA (0.60% of fat). The formulas were fed to 284 randomized infants weighing 846 to 1560 grams at birth for at least 28 days. Upon completion of study formula intake, they were given routine infant formula and followed through 4 months gestationally corrected age. A group of 90 exclusively human milk fed term infants were enrolled and followed to 4 months of age as a reference group (H).

Study Objective and Statistical Analysis: The primary objective of this study was to establish the safety of feeding D or DA to preterm infants during their initial hospitalization as measured 1) by growth, acceptance and tolerance while consuming the formula for at least 1 month and 2) by close monitoring and observation for a 4 to 5 month follow-up period (4-5 times the treatment period) while consuming unsupplemented routine term infant formula. The primary growth parameter selected was weight with evaluation of the proposition that weight on test formula was greater than or equal to weight on control formula. The one sided statistical test for an adverse effect on growth maximized the power to detect a difference should one be present. A two-sided test was used for all other parameters. A p-value of less than 0.05 was used to establish significance.

Secondary objectives of the study were 1) to evaluate the impact of fatty acid levels in erythrocyte phospholipids at the end of study feeding and 2) to determine if any effect on mean visual acuity greater than half an octave could be demonstrated at 2 and 4 months corrected age.

Results: Six infants were just outside the weight parameters and five infants just older than the less than 24 days chronological age parameter for enrollment in the study. In each case, judgement by the clinical or medical monitor was made to include them in the study prior to enrollment based on their homogeneity with other study infants in all other particulars, e.g., state of health, type of medical complications, and weight for gestational age. All these infants were included in the analysis of the study results.

The formula groups were comparable at enrollment (See table 1). Post-conceptual age, weight, length, and head circumference at enrollment did not differ among the groups.

All groups experienced comparable final study status (See table 2). Drop outs did not differ among the formula fed groups during hospitalization. There also were no differences in drop outs among the four groups at study completion.

Both formulas D and DA provide adequate growth when compared to formula C (See table 3, figure 1, and Appendix 1). Weight gain during hospitalization was no less on D or DA than on C, 33.3, 34.7, and 30.7 g/day, respectively. Furthermore, no less weight was achieved on D or DA than on C at 40, 48, and 57 weeks post-conceptual age (See table 4, figure 2, and Appendix 1); statistical power was greater than 0.89 to detect a clinically relevant decrease.

Post-hoc analysis reveals that infants on DA grew faster than infants receiving C and D (See table 5 and figure 1). This enhanced growth provided faster "premature infant catch-up" compared to C and D. Weight achieved by the DA group (3198 g) was higher than C (3075 g) and D (3051 g) at 40 weeks post-conceptual age but had not fully caught up to the term birth weight (3438 g) of group H (See table 4 and figure2). This catch up trend continued through 48 to 57 weeks by which time the mean weight of group DA did not differ from group H while groups C and D remained significantly lower.

Length was not different among the formula groups either during hospitalization or the follow-up period, although the ordered sequence of mean lengths was the same as for the weights (See table 7 and figure 3). This is likely at least partially due to length being a less sensitive parameter of growth than weight. For the same reason, the mean lengths of group H infants were higher than that of all the premature infant groups at 40, 48 and 57 weeks post-conceptual age indicating slower catch up in this parameter.

Head circumference is the least sensitive parameter of growth and was not different among any of the four groups at any time measured except at 40 weeks postconceptual age (See table 8 and figure 4). At this time, as expected, the birth head circumference of group H was smaller than the formula fed premature infants possibly due to molding of labor and to insufficient time for adjustment to the extrauterine environment.

Visual acuity has reportedly been enhanced in studies where DHA supplemented formulas were fed to premature infants both in the hospital and continuing after discharge. In this study, visual acuity was measured about 3 months and then about 5 months after stopping study formula to determine whether a residual beneficial effect of at least half an octave might be observed. Although no difference in visual acuity was found among the formula groups at these times (See table 8 and figure 5), the acuity card method used, the length of study formula feeding, and/or the length of time not on study formula at the time of measurement may have precluded its detection. However, at 57 weeks post-conceptual age, the breast fed term infant group did have statistically higher visual acuity scores than the test formula groups. But even these differences were at most only 0.33 octave and were clinically insignificant (See figure 6). It is important to note that the breast fed infants continued to receive DHA and ARA during the 3-5 month follow-up period while the formula fed groups did not. Thus, this minor difference in performance was not unexpected based on previous study findings and on developmental differences between term and preterm infants even at the same gestational age.

Individual fatty acid levels were determined in the phosphatidylcholine and phosphatidylethanolamine fractions of red blood cells before formula feeding, at the conclusion of test formula feeding, and at 48 weeks post-conceptual age (See tables 9 and 10). The premature infant groups were comparable at the beginning of test formula feeding. At the conclusion of test

WO 98/44917

-24-

formula feeding, individual fatty acid levels varied among the groups. DHA and ARA were statistically significantly higher in the respectively supplemented groups. Other fatty acid levels reflected the impact of the supplementation. No clinically significant alterations in fatty acid levels or metabolism were identified. After discontinuing study formula and consuming a diet without DHA or ARA for about 3 months, no differences in fatty acid levels among formula fed groups were detectable, except for phosphatidylethanolmine levels of 18:2 (range 8.9-9.3%) and DHA (range 3.2-4.1%) which differences were not identified as being clinically significant. However, the breast fed group shows statistically significant differences in 13 fatty acid levels compared to the formula fed infants. These differences are undoubtedly due to the differences in fatty acid composition of human milk and the term formulas including the lack of DHA and ARA in the latter.

Preterm infant complications were similar in all groups (See table 11). Over 80% of all infants were ophthamologically examined and over 90% had ultrasound evaluation of their heads. Specifically, the incidence and severity of retinopathy of prematurity (ROP or retrolental fibroplasia/RLF) and the incidence of intraventricular hemorrhage or its complications did not differ among formula groups. No feeding group related complications were identified.

Serious adverse experiences did not differ (p=0.93) among the formula groups and were in the range of those expected in a premature infant population while on study formula: 6% in group C, 5% in group D, and 6% in group DA (See table 12). After the experimental formula phase, serious adverse experiences still did not differ among the preterm groups (See table 13): 13% in group C, 15% in group D, and 15% in group DA. However, the term infant breast fed group had significantly fewer serious adverse experiences (1%, p=0.002) as expected. Two infants reportedly suffered sudden infant death syndrome (SIDS), one in group C and one in group D; there was no significant difference in this complication among all four groups.

Conclusions: We conclude that feeding 0.13% of calories as DHA from micro algal oil and feeding 0.13 % of calories as DHA from micro algal oil plus 0.26% of calories as ARA from fungal oil in the matrix of premature infant formula to premature infants during the period of their initial hospitalization prior to 40 weeks post conceptual age is safe. These micro algal and fungal oil supplements do not result in any adverse effect on growth, clinical complications, or untoward events. Furthermore, this study reveals that growth benefits accrue to premature infants fed Enfamil Premature Formula supplemented with DHA and ARA from these sources compared to unsupplemented formula or formula supplemented with only DHA. No measurable benefit on visual acuity was identified when infants were tested at about 3 and 5 months after the supplemented formula was discontinued (2 and 4 months corrected age). However, providing human milk levels of intake of long chain polyunsaturated acids are warranted because they are critical to brain development and foster enhanced catch-up growth during this early development period.

Table I
Birth Statistics of Premature Subjects

	n	Mean (std)	Range	p-value
Post-Conceptual Age (Weeks) Control DHA DHA+ARA	62 66 66	29.5 (1.7) 30.0 (1.4) 29.7 (1.7)	25 - 33 26 - 32 26 - 34	0.076
Birth Weight (g) Control DHA DHA+ARA	62 66 66	1233.1 (176.6) 1272.8 (168.1) 1278.9 (177.6)	846 - 1560 900 - 1545 910 - 1535	0.25
Birth Length (cm) Control DHA DHA+ARA	60 66 66	38.4 (2.3) 38.6 (2.2) 38.7 (2.3)	34 - 43.75 33 - 43.5 33 - 44	0.62
Birth Head Circumference (cm) Control DHA DHA+ARA	61 64 65	26.9 (1.5) 27.3 (2.1) 27.2 (1.6)	23.5 - 30.5 22 - 37 23.5 - 30	0.53

Table 2 Summary of Final Study Status

		Reg	imen		p-value
	Control	DHA	DHA+ARA	HM	
Immediate dropout, study formula never consumed		2	2		
Study Formula Phase * Completed Discontinued	52 (84%) 10 (16%)	59 (89%) 7 (11%)	62 (94%) 4 (6%)		0.20
Reason discontinued					
>96 cumulative hours NPO <28 days of intake >= 90 kcal/kg/day	3 3	3 .			
Complications unrelated to study formula NEC or other GI disease	1	1	1		
Formula intolerance Parents request Not off oxygen prior to discharge	2	2	1 1		
Protocol violation	1				
Term Formula Phase **					
Completed	45 (87%)	47 (80%)	53 (85%)	77 (86%)	0.74
Discontinued	7 (13%)	12 (20%)	9 (15%)	13 (14%)	

^{*}The CRFs for 9709-003 (DHA) and 9743-304 (DHA) were marked discontinued because the subjects met the study formula intake criteria for only 27 days. These subjects are counted completed here because subjects at other sites with similar intakes were marked completed.

^{**}Based on subjects who completed the Study Formula phase. During the Term Formula phase, subjects were fed marketed formula.

Switching to a different marketed formula did not result in termination from the Term Formula phase.

Gender-by-Regimen p-value

0.87

Table 3

Weight Growth Rate During Study Formula Phase

Regimen	c	Least Square Mean	Standard Error	Comparison	Comparison p∙value*	Study p-value	Gender p-value
Control DHA	9 5 5	30.7		Control vs DHA Control vs DHA+ARA	0.967 0.998	0.00	0.17

* One-sided test of the null hypothesis: Test Nean >= Control Mean

Table 4 Weight at 40, 48, and 57 Weeks Post-Conceptual Age

Weeks Conceptual Age	Regimen	c	Least Square Mean	Standard Error	Comparíson	Comparison p-value*	Study p-value	Gender p-value	Gender-by-Regimen p-value
0	Control DNA DKA+ARA NM	8 2 2 2 2	3075.3 3051.4 3198.2 3437.7	67.9 66.8 62.9 60.6	Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA HM vs Control	0.388 0.931 0.000 0.001 0.000	0.59	0.45	1.00
8 7	Control DHA DHA+ARA HM	53 54 81	4711.0 4653.8 5039.1 5181.5	94.6 97.3 93.0 85.9	Control vs DHA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA HM vs Control	0.360 0.995 0.000 0.114	0.58	0.13	0.29
25	Control DHA DHA+ARA HM	45 45 78 78	6045.4 5987.2 6312.9 6405.0	139.5 137.6 127.9 126.7	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA HM vs Control	0.371 0.940 0.005 0.278 0.014	0.58	0.29	0.33

* One-sided test of the null hypothesis: Test Nean >= Control Nean

-29-

Table 5
Post-hoc Analysis of Weight

Time	Comparison	Two-sided p-value
Weight Gain During Study Formula Phase	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA	0.067 0.004 0.30
Weight at 40 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.78 0.14 0.074 <0.001 0.002 <0.001
Weight at 48 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.72 0.011 0.004 <0.001 0.23 <0.001
Weight at 57 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.74 0.12 0.057 0.010 0.56 0.028

Length at 40, 48, and 57 Weeks Post-Conceptual Age

Gender-by-Regimen p-value	0.63	0.52	0.84
Gender p-value	0.88	0.14	0.05
Study p-value	0.03	0.00	0.00
Pairwise p-value	0.242 0.233 0.000 0.000 0.000	0.824 0.079 0.000 0.000 0.000 0.000	0.615 0.236 0.000 0.006 0.000
Palrwise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DHA IM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA+ARA Control vs DHA+ARA IIM vs DHA HH vs DHA+ARA Control vs HM DHA vs DHA+ARA
Regimen p•value	0.000	0.000	0.000
Standard Error	0000 4444	0.3 0.3 0.3 0.3	0.4 0.4 0.3 0.3
Least Square Nean	48.4 47.8 50.6 50.6	54.7 54.6 55.5 57.4	60.7 60.5 61.3 62.4
c	88 82 22	52 22 28	47 54 76
Regimen	Control DHA DHA+ARA HH	Control DHA DHA+ARA HN	Control DHA DHA+ARA HM
Weeks Post-Conceptual Age	07	48	. 25

Table 7

	Gender-by-Regimen p-value	0.38	1.00	0.85
	Gender p-value	0.00	0.00	0.00
	Study p-value	16.0	0.81	99.0
eptual Age	Pairwise p-value	0.931 0.900 0.000 0.000 0.000 0.829		
Head Circumference at 40, 48, and 57 Weeks Post-Conceptual Age	Pairwise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA		
at 40, 48,	Regimen p·value	0.00	0.983	0.689
cumference	Standard Error	0.2 0.2 0.2 0.2	0.2 0.2 0.1	0.2
Head Cir	Least Square Mean	35.4 35.5 35.5 34.5	39.1 39.0 39.0 39.0	41.9 41.6 41.7 41.7
	c	51 58 85	52 54 81	43 23 28
	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	Control DHA DHA+ARA IIN
	Weeks Post-Conceptual	07	87	52

Table 8

Visual Acuity at 48 and 57 Weeks Post-Conceptual Age

Study p-value		0.000
Pairwise p-value		0.697 0.071 0.042 0.000 0.113
Pairwise Comparison		Control vs DHA Control vs DHA+ARA HW vs DHA HW vs DHM+ARA Control vs HW DHA vs DHA+ARA
Regimen p-value	0.950	0.004
Standard Errof (octaves)	0.10 0.10 0.09	0.08 0.08 0.07 0.07
Least Square Hean (log base2 cycles/deg)	0.78 0.85 0.78 0.81	1.79 1.75 1.61 1.94
Geometric mean (cycles/deg)	1.72 1.80 1.72 1.75	3.47 3.37 3.06 3.85
c	50 57 81	46 47 77
	Control DilA DilA+ARA IIM	Control DHA DHA+ARA HH
Veeks Post-Conceptual Age	87	52

0
e
ಕ
ᇢ
_

	Pairwise p-value									0.196 8A 0.010 0.176
	Pairwise Comparison									Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
_	Regimen p-value	0.762	0.559	0.165	0.884	0.441	0.243	0.679	0.830	0.034
Fatty Acids	Median	0.036 0.030 0.031	0.599 0.686 0.656	0.021 0.016 0.018	36.594 35.578 35.987	0.845 0.976 0.931	11.468 11.201 11.174	17.308 16.935 16.988	18.952 19.603 18.824	0.116 0.130 0.134
idylchol ine	Standard Error	0.019 0.013 0.009	0.036 0.031 0.031	0.009 0.005 0.006	0.540 0.462 0.445	0.049	0.243 0.238 0.192	0.298 0.391 0.271	0.525 0.505 0.466	0.008 0.008 0.009
Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Nean	0.081 0.066 0.057	0.623 0.663 0.661	0.045 0.026 0.035	36.706 36.363 36.877	0.940 0.981 1.094	11.660 11.402 11.016	17.053 17.219 17.256	18.614 18.631 18.573	0.120 0.136 0.150
Blood	د	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	58 61
Red	Regimen	Control DHA DHA+ARA	Control DKA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
	Fatty Acid	12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:3n6
	Time	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation

0
ų
즃
Ξ

	se Pairwise son p-value									
	Pairwise Comparison									
Red Blood Cell Phosphatidylcholine Fatty Acids	Regimen p-value	0.647	0.234	0.723	0.290	0.673	0.507	0.819	0.155	0.911
	Median	0.224 0.236 0.188	0.246 0.246 0.216	0.262 0.281 0.269	0.000 0.017 0.008	0.632 0.640 0.614	2.096 2.296 2.135	8.124 7.876 8.207	0.105 0.130 0.139	0.298 0.302 0.329
	Standard Error	0.050 0.035 0.037	0.033 0.014 0.010	0.020 0.015 0.011	0.003	0.025 0.025 0.021	0.098 0.080 0.074	0.262 0.347 0.310	0.010 0.010 0.010	0.057 0.015 0.015
	Arithmetic Mean	0.399 0.337 0.310	0.315 0.257 0.233	0.287 0.287 0.268	0.017 0.025 0.017	0.632 0.628 0.602	2.144 2.208 2.218	7.657 8.164 8.090	0.106 0.127 0.126	0.351 0.322 0.321
	c	52 58 61								
	Regimen	Control DHA DHA+ARA								
	Fatty Acid	20:0	18:3ດ3	20:1	18:4	20:2n6	20:3n6	20:4 n6	22:1	20:5n3
	Time	Study Form Initiation								

Table 9

	Pairwise p-value						
	Pairwise Comparison						
ø	Regimen p-value	0.331	0.665	0.923	0.199	0.885	0.858
fatty Acid	Median	0.423 0.481 0.425	0.075 0.084 0.096	0.232 0.239 0.256	0.000	0.203 0.195 0.193	1.000 1.034 0.970
idytchot ine	Standard Error	0.144 0.030 0.021	0.054 0.019 0.056	0.020 0.017 0.018	0.000 0.001 0.001	0.019 0.013 0.010	0.051 0.053 0.050
Red Blood Cell Phosphatidylcholine fatty Acids	Arithmetic Mean	0.578 0.493 0.443	0.208 0.115 0.180	0.266 0.259 0.265	0.000	0.213 0.215 0.203	0.984 1.075 1.006
Blood	c	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61
Red	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
	Fatty Acid	22:4n6	24:1	22:5n6	22:4n3	22:5n 3	22:6n 3
	T ime	Study Form Initiation	Study Form Instintion				

O
9
虿
7
-

	Pairwise p-value					0.118 0.003 0.152			0.600 0.005 0.001	
	Pairwise Comparison					Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA			Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	
	Regimen p-value	0.843	0.834	0.155	0.767	0.013	0.886	0.686	0.001	0.527
atty Acids	Median	0.035 0.031 0.032	0.806 0.783 0.758	0.033 0.015 0.018	34.798 34.841 33.890	0.526 0.475 0.472	14.197 13.867 14.108	14.291 13.998 14.218	21.506 22.517 20.662	0.074 0.076 0.066
dylcholine F	Standard Error	0.026 0.042 0.012	0.039 0.035 0.036	0.008 0.009 0.007	0.512 0.595 0.584	0.026 0.042 0.029	0.261 0.237 0.253	0.277 0.272 0.380	0.340 0.457 0.337	0.006 0.009 0.013
Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.100 0.111 0.064	0.808 0.781 0.755	0.047 0.036 0.036	35.837 35.560 35.069	0.566 0.594 0.526	13.972 14.065 14.341	14.456 14.116 14.344	21.673 22.045 19.899	0.080 0.088 0.087
Blood C	c	55 53	55 59 59	56 53	53 56 59	25 52	55 53	55 53	53 56 59	53 56 59
Red	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DBA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
	Fatty Acid	12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:3n6
	r iae	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study form Termination	Study Form Termination	Study Form Termination	Study Form Termination

Table 9

Red Blood Cell Phosphatidylcholine Fatty Acids

Pairwise p-value		0.503 0.068 0.011					0.097 0.000 0.000		0.004 0.108 0.000
Pairwise Comparison		Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA					Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
Regimen p-value	0.424	0.031	0.149	0.672	0.051	0.208	0.000	0.946	0.00
Median	0.392 0.281 0.251	0.283 0.285 0.256	0.302 0.283 0.283	0.015 0.018 0.008	0.910 0.873 0.821	2.091 2.043 1.904	6.029 5.892 8.891	0.125 0.114 0.104	0.189 0.233 0.169
Standard Error	0.050 0.053 0.049	0.020 0.030 0.009	0.014 0.013 0.013	0.004 0.003 0.002	0.026 0.023 0.022	0.073	0.240 0.220 0.255	0.010 0.009 0.011	0.022 0.012 0.014
Arithmetic Mean	0.504 0.472 0.430	0.321 0.335 0.273	0.318 0.300 0.307	0.022 0.022 0.014	0.893 0.880 0.824	2.032 2.017 1.908	6.046 5.774 8.465	0.117 0.110 0.115	0.214 0.246 0.186
c	28.83	5,6	53 59	53 56 59	55 53	28 23	56 53	56 59 59	58 83
Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
Fatty Acid	20:0	18:3n3	20:1	18:4	20:2n6	20:3n6	20:4n6	22:1	20:5n3
Time	Study Form Termination	Study form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination

-38-

Table 9 Red Blood Cell Phosphatidylcholine Fatty Acids

				-	•				•
Time	Fatty Acid	Regimen	c	Arithmetic Kean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study Form Termination	22:4n6	Control DHA DHA+ARA	53	0.484 0.489 0.496	0.048 0.061 0.027	0.390 0.426 0.487	0.093		
Study Form Termination	24:1	Control DHA DHA+ARA	28 83	0.127 0.143 0.177	0.039 0.036 0.040	0.062 0.086 0.089	0.303		
Study Form Termination	22:5n6	Control DHA DHA+ARA	25 53	0.181 0.145 0.172	0.013 0.011 0.009	0.163 0.133 0.165	0.006	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.005 0.895 0.006
Study Form Termination	22:4n3	Control DHA DHA+ARA	55 53	0.001 0.001 0.003	0.001	0.000	0.359		
Study Form Termination	22:5n3	Control DHA DHA+ARA	53 56 59	0.306 0.293 0.265	0.019 0.026 0.013	0.289 0.260 0.255	0.221		
Study Form Termination	22:6n3	Control DHA DHA+ARA	55 53	0.895 1.380 1.244	0.072 0.063 0.049	0.812 1.352 1.259	0.000	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.000 0.000 0.141

Pairwise p-value

		Pairwise Comparison				Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA
	Acids	Regimen p-value	0.729	0.943	0.448	. 000 0	0.000
	line Fatty	Median	0.026 0.016 0.021 0.020	0.331 0.324 0.328 0.335	0.013 0.011 0.015 0.020	34.319 34.473 34.165 32.228	0.338 0.352 0.368 0.473
Table 9	sphat i dyl chol	Standard Error	0.005 0.006 0.004 0.016	0.039 0.032 0.024 0.026	0.006 0.007 0.006 0.008	0.577 0.689 0.506 0.506	0.043 0.023 0.024 0.020
	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Nean	0.032 0.028 0.026 0.059	0.402 0.353 0.353 0.381	0.025 0.026 0.026 0.026	34.627 35.272 34.802 33.037	0.435 0.380 0.395 0.507
	Red B	c	32 38 38 39	37 38 38 56	32 33 34 35 34	32 38 56	37 32 38 56
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		fatty Acid	12:0	14:0	14:1	16:0	16:1
		Time	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA

Φ.	
٠	
ğ	
Ĕ	

	Pairwise p-value	0.760 0.889 0.000 0.000 0.000 0.661		0.840 0.527 0.000 0.000 0.000	0.950 0.774 0.004 0.001 0.003	
	Pairwise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM		Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA-ARA Control vs DHA-ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	
Acids	Regimen p-value	00000	0.256	0.000	0.002	0.785
line Fatty	Median	12.759 12.786 12.793 14.729	18.636 18.492 18.227 18.727	23.552 23.717 23.839 18.482	0.061 0.067 0.062 0.039	0.197 0.206 0.172 0.215
sphatidylchol	Standard	0.313 0.249 0.235 0.287	0.453 0.429 0.289 0.305	0.518 0.516 · 0.422 0.344	0.008 0.005 0.006 0.004	0.075 0.061 0.061 0.044
Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Kean	13.016 12.944 12.804 14.583	17.894 17.766 17.850 18.662	23.469 23.538 23.738 18.650	0.071 0.069 0.069 0.042	0.348 0.339 0.304 0.409
Red Bl	5	37 38 56	28833	37 32 38 56	32 32 56	37 38 38 56
	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HK
	Fatty Acid	18:0	18:1	18:2	18:3n6	20:02
	Time	48 Veeks PCA	48 Weeks PCA	48 Weeks PCA	48 Veeks PCA	48 Veeks PCA

	Pairwise p-value	0.812 0.918 0.001 0.002 0.001	0.579 0.588 0.001 0.000 0.974	0.822 0.161 0.039 0.001 0.262		0.610 0.735 0.000 0.000 0.405
	Pairuise Conparison	Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DHA IHM vs DHA+ARA Control vs HM DHA vs DHA+ARA	•	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA
Acids	Regimen p-value	0.001	0.000	0.010	0.629	0.000
ine Fatty	Median	0.182 0.182 0.190 0.120	0.420 0.435 0.375 0.309	0.000 0.000 0.000 0.015	0.537 0.543 0.550 0.531	1.741 1.684 1.717 2.166
Table 9 chatidylchol	Standard Error	0.019 0.015 0.010 0.022	0.019 0.025 0.016 0.014	0.005 0.004 0.002 0.004	0.023 0.032 0.053 0.014	0.086 0.073 0.090 0.086
Table 9	Arithmetic Mean	0.222 0.211 0.203 0.182	0.418 0.406 0.382 0.311	0.018 0.016 0.007 0.024	0.543 0.557 0.636 0.560	1.709 1.702 1.844 2.265
200	_	37 38 38 56	37 38 56	37 38 38 56	37 38 38 56	37 38 38 56
	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HN	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
	Fatty	18:3n3	20:1	18:4	20:2n6	20:3n6
	Time	48 Neeks PCA	48 Weeks PCA	48 Weeks PCA	48 Veeks PCA	48 Weeks PCA

lable 9

0
0
7
70
_

					19016				
			Red B	Red Blood Cell Phosphatidylcholine Fatty Acids	sphatidylcho	line fatty	Acids		
Time	Fatty Acid	Regimen	c	Arithmetic Mean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
18 Weeks PCA	20:4n6	Control DHA DHA+ARA HM	37 38 56	4.738 4.475 4.550 7.408	0.255 0.196 0.185 0.250	4.736 4.499 4.746 7.666	0.000	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.508 0.805 0.000 0.000 0.000
48 Weeks PCA	22:1	Control DHA DHA+ARA HM	37 38 38 56	0.166 0.116 0.131 0.160	0.036 0.014 0.024 0.030	0.131 0.118 0.105 0.104	0.664		
48 Weeks PCA	20:5ກ3	Control DHA DHA+ARA HM	37 32 38 56	0.102 0.084 0.099 0.138	0.015 0.006 0.009 0.009	0.077 0.083 0.078 0.123	0000	Control vs DHA Control vs DHA+ARA HN vs DHA NN vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.633 0.086 0.000 0.000 0.239
48 Weeks PCA	22:4n6	Control DHA DHA+ARA HM	32 38 56	0.426 0.382 0.440 0.406	0.059 0.029 0.054 0.022	0.373 0.417 0.384 0.377	0.244		
48 Weeks PCA	24:1	Control DHA DHA+ARA HM	37 38 38 56	0.247 0.210 0.179 0.115	0.070 0.062 0.055 0.020	0.112 0.116 0.108 0.079	0.000	Control vs DHA Control vs DHA+ARA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.337 0.247 0.000 0.000 0.000 0.878

		Pairuise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA+ARA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM
	Acids	Regimen p-value	0.000	1.000	0.000	000.0
	line Fatty	Nedian	0.212 0.186 0.198 0.265	0.000 0.000 0.000	0.260 0.251 0.256 0.314	0.569 0.676 0.663 1.333
Table 9	Red Blood Cell Phosphatidylcholine Fatty Acids	Standard Error	0.016 0.012 0.022 0.016	0.000	0.029 0.017 0.026 0.018	0.047 0.048 0.043 0.081
	lood Cell Pho	Arithmetic Nean	0.210 0.189 0.231 0.264	0.000	0.286 0.253 0.268 0.339	0.595 0.685 0.662 1.475
	Red B	c	37 32 38 56	37 32 38 56	37 38 56	32 33 34 35 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA KN	Control DHA DHA+ARA HM
		Fatty	22:5n6	22:4n3	22:5n3	22:6n3
		T inc	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA

0
_
ø
፰
8
_

		Pairwise p-value									0.373 0.013 0.101
		Pairwise Comparison									Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
	lds	Regimen p-value	0.546	0.792	0.181	0.967	0.337	0.142	0.412	0.773	0.040
	ne Fatty Ac	Median	0.022 0.033 0.039	0.220 0.206 0.246	0.032 0.028 0.050	17.945 19.295 19.035	0.698 0.746 0.837	8.469 8.308 7.904	16.698 16.308 16.001	6.682 6.346 5.682	0.145 0.152 0.169
 Lethanolamin	lethanolamir	Standard Error	0.015 0.013 0.010	0.038 0.025 0.021	0.015 0.012 0.009	0.736 0.622 0.451	0.035 0.034 0.035	0.329 0.227 0.215	0.301 0.326 0.375	0.253 0.280 0.294	0.018 0.019 0.016
	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Nean	0.069 0.075 0.063	0.307 0.278 0.277	0.080 0.061 0.062	20.021 19.847 19.796	0.731 0.769 0.836	8.857 8.434 8.201	16.450 16.208 16.415	6.615 6.336 6.175	0.165 0.190 0.192
	ood Cel	c	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61
	Red Bl	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DKA DHA+ARA	Control DHA DHA+ARA
		Fatty Acid	12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:306
		Time	Study Form Initiation	Study form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study Form Initiation	Study form Initiation	Study Form Initiation	Study Form Initiation

0	
-	
ø	
_	
ی	
4	
-	

	Pairwise p-value									
	Pairwise Comparison									
ids	Regimen p-value	0.151	0.641	0.395	0.371	0.706	660.0	0.353	0.572	0.997
ne Fatty Ac	Median	0.291 0.244 0.186	0.261 0.249 0.225	0.517 0.555 0.544	0.000 0.025 0.021	0.480 0.437 0.427	1.829 1.820 1.911	26.820 27.376 27.708	0.138 0.151 0.141	0.357 0.370 0.335
/Lethanolami	Standard Error	0.043 0.030 0.024	0.023 0.018 0.016	0.036 0.034 0.027	0.005 0.004 0.007	0.023 0.024 0.028	0.072 0.077 0.064	0.618 0.611 0.645	0.017 0.015 0.017	0.024
Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	0.372 0.314 0.259	0.305 0.269 0.257	0.573 0.615 0.571	0.025 0.031 0.030	0.479	1.843 1.965 1.973	25.817 26.475 26.747	0.150 0.167 0.168	0.378 0.384 0.366
leo cel	c	52 57 61	52 57 61	52 57 61						
Red Bl	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA						
	Fatty Acid	20:0	18:3n3	20:1	18:4	20:2n6	20:3n6	20:4nb	22:1	20:5n3
	Time	Study Form Initiation	Study Form Initiation	Study form Initiation						

Table	•	2
đ		
뎔		=
Ë	•	a
		Ë

Pairwise Pairwise Comparison p-value						·
gimen value	0.875	0.068	0.555	0.257	0.195	0.375
Median	7.402 7.638 7.270	0.041 0.031 0.047	1.782 1.857 1.775	0.000	1.308 0.988 1.041	6.381 6.468 6.579
Standard	0.182 0.186 0.167	0.028 0.009 0.010	0.083 0.070 0.075	0.001	0.109 0.109 0.097	0.200 0.185 0.220
Arithmetic Standard Rei men n Hean Error Median p-	7.290 7.431 7.456	0.100 0.059 0.072	1.757 1.809 1.851	0.001 0.001 0.005	1.496 1.375 1.380	6.119 6.444 6.407
c	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61	52 57 61
Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
Fatty Acid	22:4n6	24:1	22:5n6	22:413	22:5n3	22:6n3
Tine	Study Form Initiation					

Table 10

Red Blood Cell Phosphatidylethanolamine Fatty Acids

Pairwise p-value						0.130 0.006 0.219		0.000	
Paírwise Comparison						Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	
Regimen p-value	0.630	0.782	0.592	0.560	0.604	0.024	0.333	0.000	0.160
Median	0.033 0.036 0.035	0.279 0.265 0.256	0.041 0.000 0.043	17.617 17.556 17.568	0.476 0.509 0.555	9.406 8.818 8.697	14.695 14.927 14.499	9.359 9.188 7.586	0.163 0.157 0.161
Standard Error	0.018 0.019 0.012	0.031 0.039 0.030	0.020 0.013 0.011	0.673 0.614 0.467	0.034 0.045 0.049	0.266 0.208 0.242	0.437 0.299 0.330	0.192 0.207 0.141	0.012 0.017 0.018
Arithmetic Mean	0.093 0.093 0.067	0.360 0.380 0.348	0.086 0.066 0.066	19.326 19.062 18.357	0.511 0.579 0.618	9.614 9.173 8.961	14.763 15.177 14.814	9.405 9.180 7.756	0.169 0.187 0.198
c	53 58	58 58	55 55 55 56 55 55	53 58	53 55 58	55	53 58	53 55 58	53 58
Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
Fatty Acid	12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:3n6
Time	Study Form Termination	Study form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study form Termination	Study Form Termination	Study Form Termination

0
~
a
⊼
ī

					2				
		Red B	lood Ce	Red Blood Cell Phosphatidylethanolamine Fatty Acids	ylethanolami	ne fatty Ac	;ids		
Time	Fatty Acid	Regimen	ذ	Arithmetic Nean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study Form Termination	50:0	Control DHA DHA+ARA	53 58	0.404 0.336 0.288	0.044 0.037 0.029	0.278 0.208 0.208	0.146		
Study Form Termination	18:3n3	Control DNA DNA+ARA	53 58 58	0.382 0.368 0.329	0.017 0.016 0.015	0.364 0.354 0.305	0.134		
Study Form Termination	20:1	Control DHA DHA+ARA	53 58	0.553 0.579 0.507	0.029 0.028 0.025	0.526 0.537 0.483	0.164		
Study Form Termination	18:4	Control DHA DHA+ARA	52 53	0.042 0.026 0.022	0.010 0.005 0.004	0.018	0.108		
Study Form Termination	20:2n6	Control DHA DHA+ARA	55 58	0.754 0.774 0.654	0.029 0.030 0.026	0.765 0.750 0.663	0.068		
Study Form Termination	20:3 n6	Control DHA DHA+ARA	53 58 58	2.253 2.295 2.066	0.111 0.094 0.073	2.206 1.992	0.203		
Study Form Termination	20:4n6	Control DHA DHA+ARA	ន្តន	24.279 23.464 26.760	0.527 0.520 0.437	25.132 24.038 27.372	0.000	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.119
Study Form Termination	22:1	Control DHA DHA+ARA	53 58	0.149 0.176 0.146	0.019 0.016 0.012	0.122 0.169 0.130	0.229		
Study Form Termination	20:5n3	Control DHA DHA+ARA	53 58 58	0.519 0.563 0.411	0.020 0.025 0.015	0.493 0.575 0.415	0.000	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.286

Table 10

	Pairwise n p-value	A 0.025 A+ARA 0.461 A 0.002		A 0.003 A+ARA 0.255 A 0.050		IA 0.004 IA+ARA 0.002 RA 0.943	1A 0.000 HA+ARA 0.000 RA 0.027
	Pairwise Comparison	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
cids	Regimen p-value	0.007	0.294	0.010	0.137	0.003	0.000
ne fatty A	Median	7.656 6.885 7.635	0.038 0.042 0.041	1,423	0.000	2.839 2.400 2.269	4.815 7.043 6.498
dylethanolami	Standard Error	0.208 0.154 0.155	0.023 0.009 0.008	0.064	0.000	0.110 0.091 0.069	0.151 0.183 0.150
Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	7.309 7.135 7.592	0.092 0.056 0.062	1.444	0.000	2.694 2.334 2.237	4.798 6.762 6.389
opool	c	25 25 25 25 25 35	55 58 58	53 55 58	53 58	53 58	58 53
Red B	Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
	Fatty Acid	22:4n6	24:1	22:5n6	22:4n3	22:5n3	22:6n3
	7 ime	Study form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination
		Study For	Study Fol	Study Fol	Study Fo	Study Fo	Study Fo

9	
<u>.</u>	
즇	
_	

	Pairwise p-value			١		0.601 0.524 0.000 0.000 0.001
	Pairwise Comparison		·			Control vs DilA Control vs DilA+ARA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA
ty Acids	Regimen p-value	0.587	0.598	0.092	0.177	0.000
Red Blood Cell Phosphatidylethanolamine Fatty Acids	Median	0.024 0.019 0.018 0.023	0.169 0.162 0.188 0.210	0.037 0.000 0.044 0.021	16.314 15.692 16.997 17.607	0.349 0.336 0.376 0.562
	Standard Error	0.019 0.016 0.014 0.011	0.030 0.041 0.025 0.016	0.017 0.017 0.019 0.011	0.595 0.729 0.538 0.395	0.050 0.035 0.022 0.027
	Arithmetic Mean	0.053 0.054 0.047 0.045	0.243 0.251 0.235 0.230	0.080 0.055 0.078 0.053	17.319 17.101 17.225 18.138	0.440 0.390 0.390 0.596
	c	32 32 38 56	37 32 38 56	37 38 56	37 38 56	33 38 28 28
	Regimen	Control DHA DHA+ARA KM	Control DHA DHA+ARA HM	Control DHA DHA+ARA NM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
	Fatty	12:0	14:0	14:1	16:0	16:1
	T ime	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Veeks PCA	48 Weeks PCA

Table 10

Red Blood Cell Phosphatidylethanolamine fatty Acids

Pairwise p-value	0.347 0.483 0.020 0.000 0.001 0.108	0.401 0.234 0.067 0.118 0.005	0.024 0.187 0.000 0.000 0.000	0.879 0.590 0.029 0.061 0.014	
Pairwise Comparison	Control vs DHA Control vs DHA+ARA HH vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HN vs DHA HH vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM	
Regimen p-value	0.000	0.038	0.000	0.050	0.728
Hedian	7.174 7.552 7.173 8.409	19.410 19.534 19.433 18.141	9.267 8.696 8.840 6.027	0.182 0.171 0.158 0.112	0.146 0.145 0.125 0.240
Standard Error	0.327 0.293 0.270 0.230	0.368 0.421 0.332 0.278	0.261 0.210 0.216 0.193	0.020 0.031 0.021 0.012	0.058 0.042 0.037 0.031
Arithmetic Mean	7.935 7.962 7.443 8.754	19.438 19.066 19.302 18.469	9.328 8.867 9.257 6.291	0.198 0.219 0.188 0.129	0.263 0.262 0.212 0.295
c	37 38 56	37 32 38 56	37 38 56	37 38 38 56	37 38 56
Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
fatty Acid	18:0	18:1	18:2	18:3n6	20:0
Time	48 Veeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA

0
~
ø
_
욯
_

	Pairwise p-value	0.559 0.848 0.008 0.002 0.001	0.339 0.512 0.000 0.000 0.000		0.543 0.532 0.000 0.000 0.995	0.896 0.935 0.015 0.006 0.007
	Pairwise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA-ARA HM vs DHA HM vs DHA+ARA Control vs HM		Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HN vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA
ty Acids	Regimen p-value	0.001	0.000	0.057	0.000	0.012
olamine Fat	Median	0.225 0.262 0.245 0.169	0.648 0.782 0.738 0.492	0.003 0.000 0.000 0.019	0.698 0.684 0.689 0.412	1.999 2.045 2.132 1.637
natidylethano	Standard Error	0.025 0.017 0.015 0.020	0.031 0.032 0.188 0.024	0.005 0.005 0.006 0.004	0.035 0.026 0.032 0.016	0.099 0.100 0.114 0.053
Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	0.291 0.270 0.265 0.226	0.715 0.772 0.936 0.533	0.017 0.017 0.023 0.027	0.672 0.668 0.715 0.444	2.138 2.165 2.172 1.715
ed Bloo	c	32 38 56	37 38 56	32 38 38 56	22 38 38 29	37 38 56
•	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HN	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
	Fatty Acid	18:3n3	20:1	18:4	20:2n6	20:3n6
	Time	48 Veeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Veeks PCA

0	
F	
ø	
Ճ	
2	
•	

		Pairwise p-value				0.612 0.416 0.000 0.013 0.001	
		Pairwise Comparison				Control vs DHA+ARA Control vs DHA+ARA IIM vs DHA IIM vs DHA+ARA Control vs IIM DHA vs DHA+ARA	
	ty Acids	Regimen p-value	0.950	0.121	267.0	0.001	0.943
	lamine Fat	Median	24.774 25.206 25.122 25.189	0.172 0.188 0.133 0.134	0.368 0.377 0.347 0.360	8.761 9.132 8.472 7.618	0.035 0.034 0.036 0.027
Table 10	hatidylethano	Standard Error	0.536 0.491 0.429 0.384	0.016 0.022 0.022 0.013	0.026 0.015 0.011 0.016	0.267 0.250 0.188 0.203	0.016 0.009 0.008 0.016
	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	24.508 24.428 24.788 24.625	0.168 0.189 0.154 0.148	0.382 0.369 0.384 0.384	8.580 8.791 8.576 7.727	0.067 0.049 0.046 0.062
	Red Bloc	c	32 38 58	37 38 38 56	37 32 38 56	37 38 56	37 38 38 56
	_	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		fatty Acid	20:4n6	22:1	20:5n3	22:4n6	24:1
		Time	48 Weeks PCA	48 Veeks PCA	48 Weeks PCA	48 Weeks PCA	48 Weeks PCA

Table 10

	Pairwise p-value	0.977 0.997 0.000 0.000 0.000		0.884 0.148 0.000 0.000 0.213	0.000 0.000 0.000 0.000 0.281
	Pairuise Comparison	Control vs DHA Control vs DHA+ARA HW vs DHA HW vs DHA+ARA Control vs HW DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DIIA HM vs DIIA+ARA Control vs HN DHA vs DHA+ARA
tty Acids	Regimen p-value	000.0	1.000	0.000	0.000
olamine Fat	Median	1.411 1.414 1.359 1.889	0.000	2.681 2.630 2.443 1.978	3.013 4.079 3.721 7.341
hatidylethan	Standard Error	0.066 0.057 0.054 0.056	0.000 0.000 0.000 0.001	0.092 0.086 0.066 0.065	0.159 0.177 0.134 0.201
Red Blood Cell Phosphatidylethenolamine Fatty Acids	Arithmetic Mean	1.401 1.353 1.364 1.883	0.000 0.000 0.000 0.001	2.567 2.561 2.436 1.942	3.196 4.143 3.801 7.283
ed Bloc	c	38 32 36 38	32 33 32 34 35 34 35 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35	37 32 38 56	32 38 56
_	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
	Fatty Acid	22:5n6	22:4n3	22:5n3	22:6n3
	Time	48 Weeks PCA	48 Weeks PCA	48 Veeks PCA	48 Weeks PCA

WO 98/44917

Table 11 Preterm Infant Complications

		Regimen		p-value*
	Control	DHA	DHA+ARA	
Retinopathy of Prematurity Test Results Absent I II TI Present, but not graded	34 (76%) 8 (18%) 2 (4%) 1 (2%)	44 (76%) 11 (19%) 2 (3%) 1 (2%)	41 (79%) 6 (12%) 4 (8%) 1 (2%)	0.91
Ultrasound Examination for Intraventricular Hemorrhage None Stage 1 Stage 2 Stage 3 Stage 4 Questionable	47 (81%) 6 (10%) 3 (5%) 1 (2%) 1 (2%)	52 (84%) 9 (15%) 1 (2%)	49 (80%) 7 (11%) 2 (3%) 1 (2%) 2 (3%)	0.78
Posthemorrhagic Hydrocephalus developed? No Yes	61 (98%) 1 (2%)	65 (98%) 1 (2%)	64 (97%) 2 (3%)	1.00

^{*}The statistical test was based on a dichotomous response: present or absent.

Table 12
Serious Adverse Events Reported During Study Formula Phase

		Regimen		
Event	Control	DHA	DHA+ARA	p-value
Any Event	4 (6%)	3 (5%)	4 (6%)	0.93
Other Respiratory Conditions of Fetus and Newborn	2 (3%)	0	0	0.10
Other Infection Specific to the Perinatal Period	1 (2%)	0	0	0.32
Intraventricular Hemorrhage	0	. 0	1 (2%)	1.00
Other Specified Perinatal Disorders of Digestive System	0	1 (2%)	0 .	1.00
Convulsions in Newborn	1 (2%)	0	0	0.32
Feeding Problems in Newborn	0	1 (2%)	1 (2%)	1.00
Hernia	0	0	1 (2%)	1.00
Other	0	1 (2%)	1 (2%)	1.00

Table 13

Serious Adverse Events Reported During the Term Formula Phase

		Reg	rimen		
Event	Control	DHA	DHA + ARA	HM	p-value
Any Event	7 (13%)	9 (15%)	9 (15 %)	1 (1%)	0.002 C vs D 0.79 C vs D+A 0.79 D vs D+A 1.00 C vs HM 0.006 D vs HM 0.001 D+A vs HM 0.001
Infectious Colitis, Enteritis, and Gastroenteritis	0	0	1 (2%)	0	0.67
Croup	0	0	1 (2%)	0	0.67
Bronchopneumonia, Organism Unspecified	2 (4%)	3 (5%)	6 (10%)	0	0.013 C vs D 1.00 C vs D+A 0.27 D vs D+A 0.49 C vs HM 0.15 D vs HM 0.064 D+A vs HM 0.004
Asthma, Unspecified	1 (2%)	0	0	o	0.21
Esophageal Reflux	0	1 (2%)	2 (3%)	0	0.23
Dyspepsia and Other Stomach Function Disorder	0	0	0	1 (1%)	1.0
Other Respiratory Conditions of Fetus and Newborn	1 (2%)	1 (2%)	3 (5%)	0	0.11
Convulsions	1 (2%)	0	0	0	0.21
Sudden Infant Death Syndrome	1 (2%)	1 (2%)	0	0	0.34
Hernia	2 (4%)	2 (3%)	0	0	0.11
Other	o	3 (5%)	2 (3%)	0	0.063

Appendix 1

5030 7135 6110 58.4 4965 Vgt_57 4010 4840 48.6 **5850** 5240 3700 3895 5445 Ngt 48 5080 5504 Wgt_40 3590 3620 3170 3070 3070 3688 3745 39.9 3575 3731 28.9 54.4 34.2 33.8 41.7 34.1 31.5 Growth Rate g/day 36.2 27.7 23.9 56.9 43.3 36.1 Wgt9 Wgt8 2045 Listing of Weights Included in the Statistical Analyses Wgt7 1760 37.3 2570 3120 Vgt6 2425 2318 35.9 2340 2955 37.4 2012 36.3 2595 1933 1659 34.7 1665 2685 1647 1378 2375 1920 34.0 1445 2045 1494 1851 33.7 2075 1437 2752 38.3 1940 1251 1205 2040 1775 1855 32.6 1298 33.4 1261 32.0 1840 1108 975.0 32.3 1140 1475 1480 1785 33.3 1412 1810 32.1 1181 1600 1185 31.0 958.0 30.7 1450 32.6 Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Veight (g) Age (weeks pca) Age (weeks pca) Veight (g) Age (weeks pca) pca) Weight (g) Age (weeks F Weight (g) Age (weeks | Weight (g) Variable 9704-0303 9703-0308 9703-0302 9702-0302 9703-0304 9699-0308 9701-0303 9701-0304 9700-0301 9020-6696 9699-0302 9698-0301 9698-0304 Subject Control Regimen Control Control Hale Hale Male Gender Hale Male Male Male Hale Hale Male Male Male Hale

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

				The state of the s												
													Growth Rate		•	;
i e por e s	Regimen	Subject	Variable	Vgt1	Wgt 2	Wgt3	Hgt4	Wgt5	Wgt6	Wgt7	Wgt8	Ngt9	g/day	Ngt_40	Vgt_48	Wgt_5/
Male	Control	9704-0305	Veight (g) Age (Weeks pca)	1315	1475	1640 33.0	1860 34.1						23.7			
Male	Control	9705-0302		1280	1389	1588 35.0	1786 36.0	2240 37.4					30.9	2540 39.6	4636	5646 56.4
Male	Control	9202-0206		1270	1280 32.3	1570 33.3	1810 34.6						25.3	3291 39.7	5816 47.7	7490
Male	Control	9706-0302	Veight (g) Age (weeks pca)	1645	1865 36.6	2130 37.7	2435 38.7						37.1	2800	48.7	56.7
Male	Control	9706-0303	Weight (g) Age (weeks pca)	1875	1984	2135 35.6	2185 36.4	2465 37.3					22.2	3050 41.0	48.6	56.9 56.9
Male	Control	9706-0308		1655 32.9	1734 33.1	2005 34.0	2495 35.4						6.94	3835	5155 48.0	6090 56.3
Hale	Control	9707-0302		1544	1820 32.9	2215	2450 35.4	2460					32.8	2930 40.1	3795	5185 56.6
Hale	Control	9707-0303		1415	1600 34.1	1850 35.1	2195 36.6	2310 37.1					32.7	2530 39.7	4235	6530 57.1
Kale	Control	9707-0309		1046 30.9	1442 32.7	1644	1910 34.9						30.7	2965 39.9	4465	
Male	Control	9708-0303	Veight (g) Age (weeks pca)	1730 32.7	1960	2205	2520 35.7						37.4	3680	5470 48.1	7330 57.0
Male	Control	9709-0302		1090	1440	1660 32.7	1910	2040					30.8	3845 39.9	5700 48.0	6775 56.7
Male	Control	9712-0301*		1245	1221	1245	1291 32.0	1294	1330 32.3	1369 32.4	1402 32.6	1433	26.1		, , ,	6
Hale	Control	9712-0302	Weight (g) Age (weeks pca)		1345	1456 35.1	1670 36.1	1835 37.1	1985 38.1				21.0	2160 40.1	3300	57.3

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

												•	Growth Rate		:	
Gender	Regimen	Subject	Variable	Vgt1	Wgt2	Wgt3	Wgt4	Vgt5	Wgt6	Wgt7	Vgt8	Wgt9	g/day	Hgt_40	N9t_48	76_78W
Male	Control	9743-0301	Veight (g)	1520	1570 35.0	1670 36.0	1720 37.1						10.0	2260	4535 50.0	
Male	Control	9746-0301		2065	2465	2760	3085	3085					48.9	3085	4795	6695 57.6
Mate	DHA	9698-0302	Weight (9) Age (weeks pca)	1640	1860 36.1	3170 39.9							47.5	3170 39.9	5206 47.9	7036 57.1
Male	DHA	9050-8696	Weight (g) Age (weeks pca)	1620 35.1	1830 36.3	2090 37.3	2575 40.0						28.3	2575 40.0	4334	6022 57.0
Male	DHA	9699-0301	Weight (g) Age (weeks pca)	1018	1207 32.3	1360 33.3	1617 34.3						27.9	3121	5192 48.0	67.2 57.9
Mate	DHA	\$050-6696	Veight (g) Age (weeks pca)	1258	1435	1631	1882 35.4	2724 36.4			•		48.3	2724	4341	5674 57.0
Male	DIIA	2050-6696		1182	1358 35.7	1484 36.7	1666 37.7						22.5	1986 40.0	3206 48.0	4511 57.0
Male	DHA	9700-0303		1830	1980 34.4	2450	3045						42.4	3585 39.6	5420 47.4	7035 56.7
Mate	DHA	9701-0301	Weight (g) Age (weeks pca)	1098 29.6	1234 30.6	1365	1689	1902 34.6	2019 35.6	2104 36.4	2276 37.4	2288 38.6	20.4	2805	3405	0.75
Male	DIIA	9701-0305		1621	1829 33.1	1880 33.7	2253	2582 35.7					34.7	39.7		;
Male	рна	9703-0303		1775	2030 34.1	2285 35.1	2595 36.0	2780 37.1					38.2	3080	3940	5260 56.9
Male	DIIA	9703-0306		1725 33.4	1870 34.0	2180 35.0							41.7		:	
Male	DIIA	9703-0307	Weight (9) Age (weeks pca)	1525 32.7	1725 33.7	2020 34.9	2390						37.6	3120 40.7	44.10	26.9

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

-61-

Listing of Weights Included in the Statistical Analyses

Appendix 1

			_	FISCING OF MCTBILLS TIME	HOLE I	-	:									
							•						Growth Rate	:	:	:
		i di di	Variable	Wgt1	Wgt2	Wgt3	Ngt4	Wgt5	Vgt6	Hgt7	Wgt8	Ngt9	g/day	Ngt_40	M91 -48	/c_16#
Gender	Gender Regimen Hale DHA	9704-0304	Weight (9)	1380	1570	1730	1960	2140					29.3	2880	3900	4300
		90£0-7020	Age (weeks pca) Weight (g)	1320	1370	1550	1760	2020	2170				55.6		3750 48.0	4800 57.0
Mare	<u> </u>		Age (weeks pca)	30.7	31.7	32.1	33.7	7.					30.8	2370	4170	5787
Male	DIIA	9705-0303	Weight (g) Age (weeks pca)	1380 33.0	1446 34.0	1616 35.0	1843 36.0	2330 37.4						39.6	47.7	56.4
Hale	DHA	9705-0305	Veight (g) Age (weeks pca)	1490	1770 32.1	1980	2240 34.0						36.7	39.6	. 2763	600
Hale C	DHA	9000-9026	Weight (9) Age (weeks pca)	1490	1655	1915 34.7	2260 36.0						80.8	40.0	48.1	57.3
Hale	DIIA	9706-0306	Veight (g) Age (weeks pca)	1604 34.4	1908 35.4	2160							42.8	3310	4205	56.9
Male	DHA	9707-0001	Weight (g) Age (weeks pca)	1305	1429 32.0								17.7		•	
Male	DHA	9707-0304		1555	1740	1990	2400	2570 36.0					36.9	3280 39.9	5115 48.0	57.6 57.6
Male	DHA	9707-0306	Age (weeks peu) Weight (g) Age (weeks pca)	1728	2040	2260 38.1	3050	3050					43.2	3050 40.6	5100 48.6	7150 57.6
Male	DIIA	\$707-0307*	Weight (g) Age (weeks	1649 32.4	1675 32.6	1699 32.7	1732 32.9	1778 33.0	1811 33.1	1858 33.3	1882 33.4	1938 33.6	39.6	Č	96.7	7007
Male	DHA	9707-1308	Weight (g) Age (weeks pca)	1780 34.4	2045	39.3	39.3						36.7	39.3	47.3	57.7
Male	DHA	9707-2308	Weight (g) Age (weeks pca)	1651 34.4	1923	2850 39.3	2850 39.3						55.8 20.2	39.3	47.3	57.7
Male	DHA	9708-0302	Weight (g) Age (weeks pca)	1485	1740 34.3	2500 37.0							33.50	42.9		57.3

* Four subjects had more the 9 waights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1 Listing of Weights Included in the Statistical Analyses

Vgt_57	, ;	6/30 56.4		7300	5860 57.6			9799 20.0	7937 57.3	4993	5050 57.6	7380 56.7	6600 56.7	
Wgt 48	• ;	5080 47.4		5200 48.1	4680	5500 48.6	5840 50.6	5525 47.6	47.6	3404	4256	5540 47.7	5055	5200 48.4
Vgt 40	1	3150 39.4		3160	3040	3100 40.6	3628	2440 37.4	3553	2355	2610 40.6	3255 39.7	3240	3960
Growth Rate a/day		4.4.	7.1	30.5	33.9	31.1	32.2	20.9	32.0	29.8	17.2	40.7	6.87	41.4
Vat9	;													
8 Jou	9	•					٠							
Vat 7	7													3228 37.7
Y	O FE													3072 37.3
¥ 61	Cliff	2800 36.7		2550 37.6			2440 36.4					2735 37.9		2756 36.3
7	\$16 x	2400 35.4		2160 36.0	1945	2300	2375 36.0		2120	2355	1490	2570 36.9	2835	2460
N d i	Wgt3	2000 34.4		1985 35.0	1695 33.5	2100	2160 35.0	1550 33.6	1870	1950 38.1	1290 34.0	2235 35.9	2045 35.6	2245 34.4
•	Ng t.2	1740 33.4	1520	1800	1435 32.5	1810 33.9	1880 34.0	1340 32.6	1690 32.4	1689 37.1	1134	1880	1686 34.6	2037
:	Wgt1	1490 32.4	1470	1545	1240 31.5	1700 32.9	1530	1120	1410	1499	1056 32.0	1635 33.9	1442	1587 32.3
	Variable	Veight (g) Age (weeks pca)							Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)				Veight (g) Age (weeks pca)
	Subject	9709-0301	9709-0304	9712-0304	9712-0306	9743-0303	9743-0304	9050-8696	9080-8696	9099-0304	9699-0305	DHA+ARA . 9700-0302	9701-0302	9701-0306
	Regimen	DHA	риа	DHA	DIIA	DHA	DHA	DHA+ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DHA+ARA
	Gender	Mate	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

-63-

Appendix 1

Listing of Weights included in the Statistical Analyses

													Growth Rate			
Gender	Regimen	Subject	Variable	Wgt1	Hgr2	Ngt3	Ngt4	Ugt 5	Wgt6	.Wgt7	Vgt8	Ngr9	g/day	Wgt_40	Wgt_48	Vgt_57
Male	DHA+ARA	9701-0307	Weight (g) Age (weeks pca)	1397	1710 34.3	1919 35.1	2932 38.4						42.5	3445 40.6	5930 48.6	7475 57.4
Male	DHA+ARA	9702-0301	Weight (g) Age (weeks pca)	1670 32.0	1865 33.0	2160 34.0	2660 36.0						36.0	3780 40.6	5250 47.6	
Mate	DHA+ARA	9702-0303		1650 32.9	1905 33.9	2660 36.4							40.7	3500	5160 48.0	6520 56.4
Male	DHA+ARA	9703-0301	Weight (g) Age (weeks pca)	1255 29.4	1460 30.4	1745	2055 32.3	2415 33.4					42.3	4.05 40.4	6020 47.4	6720 56.6
Male	DHA+ARA	9703-0305	Veight (g) Age (weeks pca)	1440 32.0	1635 33.0	1830 34.0	2115 35.0	2390	2590 36.9				34.1	3170 40.0	4330 47.9	5630 56.7
Male	DHA+ARA	9704-0301	Veight (g) Age (weeks pca)	1110	1270 31.6	1490 32.4	1740 33.4	2050 34.4					35.1	3220 39.9	2.72 47.7	7050 56.7
Hale	DHA+ARA	9704-0302	Weight (g) Age (weeks pca)	1080 32.0	1230 33.0	1370 34.0	1520 34.9	1680 36.0	1840 36.9				22.2	2570 40.0	6540 48.1	8050 57.4
Male	DHA+ARA	9705-0301		1300 32.7	1440	1620 34.7	1870 35.7						27.0	2979 40.1	4400	5873
Hale	DHA+ARA	9705-0306		1320	1490 32.4	1700 33.4	2020 34.4	2300					32.7	3631 39.9	6.77	6809 56.9
Male	DIIA+ARA	9705-0307		1480	1650 35.4	1810 36.1	2240 37.4						36.4	39.9	5589	6596 56.7
Male	DIIA+ARA	9706-0305	Veight (g) Age (Weeks pca)	1330 33.9	1455 34.4	1660 35.4	1930 36.6						31.4	39.9	4820	6225 58.1
Male	DHA+ARA	9706-0307		1355 31.9	1585 33.0	1825	2270 35.1						40.0	3585	5955 49.1	6925 57.6
Male	DHA+ARA	9706-0309		1620 34.1	1910 35.3	2150 36.0							40.3	3460	5255 48.7	5775 57.4

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

				Listing of Weights Included in the Statistical Analyses	of Weigh	ts Inclu	ded in t	he Stati	stical A	nalyses						
												•	Growth Rate			1
Gender	Regimen	Subject	Variable	Vgt1	V9t2	Vgt3	Vgt4	WgtS	Wgt6	Wgt7	Vgt8	Hgt9	g/day	Ngt 40	Vgt_48	Vgt_57
Male	DKA+ARA	9707-0301	Veight (g) Age (weeks pca)	1553 32.6	1980 34.3	2280 35.3	2720 36.6						41.5	3395	6.72 67.9	6285 56.9
Haie	DHA+ARA	9707-0305	Veight (g) Age (weeks pca)	1755 33.9	1990	2245 35.7	2505	2770 37.7					37.4			
Male	DHA+ARA	9707-0310	Weight (g) Age (weeks pca)	1620 32.7	1828 33.7	2140 34.7	3195						8.77	3585 39.7	5170 47.9	6725 56.3
Male	DHA+ARA	9708-0301	Veight (g) Age (weeks pca)	1640 32.7	1880	2200 34.7	2420 35.7						38.0	3730	4835	6185 57.0
Male	DHA+ARA	9708-0304	Weight (g) Age (weeks pca)	1680 34.6	2180 35.9								55.6			
Male	DIIA+ARA	6709-0303	Weight (g) Age (weeks pca)	1470	1810 33.6								48.6			
Male	DHA+ARA	9709-0305	Weight (g) Age (weeks pca)	1410	1655 35.4	1900 36.4	2160 37.4						35.6	2630 39.7	4570	5520 57.1
Male	DHA+ARA	9712-0303	Weight (g) Age (weeks pca)	1180	1210 32.3	1450 33.4	1590				•		50.9	2520	3500	5010 56.4
Male	DHA+ARA	9712-0305	Velght (g) Age (weeks pca)	1325	1505 32.5	1785 33.5	2010	2300 35.6					34.1	3030	4350	5510 57.6
Male	DHA+ARA	9723-0301	Veight (g) Age (weeks pca)	1630 33.9	1728 34.9	1961 35.9	2214 36.9						28.4	3104		5986 58.9
Male	Ŧ	9698-0601												3518	5497	6582 56.9
Hale	Ŧ	9698-0602							٠					3177 40.0	5220 48.1	6355 57.0
Male	Ŧ	9698-0603												3858 40.0	5447	6454 57.0

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Veights Included in the Statistical Analyses

													Growth		;	į
Gender	Regimen	Subject	Variable	Wgt1	Wgt2	Wgt3	H9t4	Wgt5	Ngté	Wgt7	Ngt8	Vgt9	g/day	Vgt_40	Vgt_48	Vgt_57
Nate		9698-0604												4355 40.0	5092 48.0	6383 57.0
Male	₹	\$090-8696												3433	4979	6426 57.1
Male	£	1050-6696												3915 40.0	6639 48.3	27.72 57.4
Male	¥	9699-0502												3802 40.0	5787 48.4	7178 57.4
Hale	¥	9701-0601												3317	5555 47.9	7070 56.4
Hale	Ŧ	9701-0602									-			3487	5833	8070 58.3
Hale	¥	9701-0603												3232	7.25	5855 56.4
Male	폴	9701-0604												3600	5215 47.9	6285 56.9
Hale	Ŧ	9701-0605												3402	5575 47.6	7210 57.6
Mate	¥	9701-0606												3090	4485	5445
Male .	¥	9702-0601												3480	5780 48.6	6530 56.6
Mate	¥	9702-0602												3165	5060	6660
Male	¥	9703-0502												2670	5420 48.3	7220 57.1

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

6752 56.4 56.4 57.1 6560 56.6 6725 56.9 56.9

47.4 6000 48.1 5220 48.1 5200 48.7 6227 48.0 5105 47.9 47.9 4225 48.0

55.5 57.0 7315 57.7 6970 56.7 55.2 57.1 7660 56.4 56.4

6220 48.1

Appendix 1

Gender

Male

Male

Male

			Listing	of Weigh	its Inclu	uded in	Listing of Weights Included in the Statistical Analyses	stical	Analyses					
•		4000	, raci	Vat2	Vet3	Wate	Ngt5	Wgt6	Vgt7	Wgtß	Ngt9	Growth Rate g/day	Vgt_40	_
Regimen HN	9703-0503		;	•	•								4100	
¥	9703-0504												3435 40.0	
Ŧ	9704-0502												3285	
¥	9704-0503												3400	
¥	9705-0601												3200	
¥	9705-0602							•					3860 40.0	
Ŧ	9706-0601									-			3152 40.0	
¥	9706-0602								٠				3557 40.0	
¥	9706-0603												3192 40.0	
Ē	9090-9026												3461 40.0	
Ŧ	9706-0605				•								3870	
ž	9090-9026												4315	
至	9707-0601												3263 40.0	

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Mate

Male

Male

Male

Hale

Hale

Male

Male

-67-

6870 56.9 6370 57.0 6595 56.4 6327 57.1 6130 56.7 5220 47.6 6930 48.0 5460 48.0 5410 47.9 5135 48.0 \$825 48.4 3348 3348 40.0 3064 40.0 4085 40.0 3319 40.0 3603 3569 40.0 3291 40.0 3796 40.0 3419 40.0 3433 40.0 Growth Rate g/day Wgt9 Hgt8 Listing of Weights Included in the Statistical Analyses Vgt7 N9t6 Wgt5 Appendix 1 Mg C4 Ng t 3 Wgt2 Wgt1 Variable 9708-0605 9707-0605 9708-0603 9707-0604 9708-0602 9708-0604 9707-0602 9090-2026 7090-7076 9707-0608 9707-0609 9708-0601 9707-0603 Subject Regimen 퐆 포 퐆 ₹ ₹ . 至 퐆 ₹ ≣ ₹ ₹ ₹ 王 Gender Hale Male . Male . Hale Hale Male Male Male Male Hale Male Male Male

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

-68-

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

-69-

Appendix 1 Listing of Weights Included in the Statistical Analyses

Vat 57	, n		5540 55.0	6410 56.1	5646 55.0		5305 57.3	7225 53.4	6535 56.7		5297 56.6	4995	7250 57.3	6920 57.3
Uot 48		47.20	4330 46.0	47.7	46.6 46.6		4165	5495 47.6	5390	3800	4535	4125	5385	5490 48.9
04 TO		3210 39.6	2610 37.3	3360	2722 39.7		2740	3640	3655	2680 40.1	3320 40.7	3110	3430	3330
Growth Rate	for /A	56.4	29.5	48.3	28.3	37.9	31.7	31.6	56.0	31.1	32.6	30.2	41.2	39.9
940														
4	0.58													
11017	5													
7461	0164	2130 34.3										2765 38.3		
4	CIEN	1825 33.4	2220 35.3	2685 36.6								2325 36.4		
1	*16H	1570 32.4	1900	2445 36.0	1660 34.0	2330 38.3	2150 36.0			1810 34.6		2010 35.3		
1	K962	31.3	1765 33.3	2095 35.0	1490	1965 37.1	1805	1960 34.3		1585 33.6	1935	1655 33.6	3430	3330
2	Wgtz	1250 30.4	1590	1715 34.0	1290	1673 36.3	1610 33.7	1620 32.9	2185 35.0	1270 32.4	1765 33.1	1505 32.6	3430	3330
3	Wgtl	1170 29.1	1420	1495	1120	1515 35.1	1485 33.0	1525 32.3	1905	1185 31.6	1510 32.0	1465 32.0	1866 34.6	1815 34.6
:	Variable	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)		
:	Subject	9703-0002	9703-0005	9703-0008	9000-5026	9706-0003	9706-0005	6000-9026	9706-0010	9706-0013	9706-0016	8000-2026	9707-0006	9707-1006
	Regimen	Control	Control	Control										
	Gender	Female	Female	Female	Female	Fenale	Female	Female	Female	Female	Female	Female	Female	Female

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

						Ā.	Appendix i		•							
				Listing	Listing of Veights Included in the Statistical Analyses	ts Inclu	ded in th	ie Statis	tical A	nalyses						
													Growth Rate	•		5
Gender	Regimen	Subject	Variable	Ngt1	Vgt 2	Vgt3	43E4	WgtS	Wgt6	Vgt7	Hgt8	Vgt9	g/day	Wgt_40	M9t 48	76 ⁻ 36M
Female	Control	9708-0001	Weight (g) Age (weeks pca)	1410	1600 34.4	1850 35.4	2050 36.9						27.2	2910 40.6	4734 48.4	
Female	Control	9708-0003		940.0 30.0	970.0 31.0								4.3		;	
femate	Control	9708-0008	Weight (g) Age (weeks pca)	1380 32.9	1605 33.7	1860 34.9	2180 36.3						33.1	2582 39.3	4110 47.4	57.1
Female	Control	9709-0005	Weight (g) Age (weeks pca)	1980 32.7	2225 33.7	2400							30.0	,		Š
Fernale	Control	\$000-6026	Veight (g) Age (weeks pca)	31.9	1425	1665 34.6	1945 35.6	2200 36.3					32.3	2975	4700	56.7
female	Control	9712-0005	Weight (g) Age (weeks pca)	972.0 29.1	1145	1290	1490 32.1	1695 33.1					25.6	2930	44.50	57.1
Female	Control	9712-0006		1203	1358 32.9	1585 33.9	1790						28.4	3030	48.0 48.0	6230 57.0
Female	Control	9743-0003	Weight (g) Age (weeks pca)	1300 31.6	1520	1740	1890 35.1						24.0		48.4	57.4
Female	Control	9746-0001		1420	1740 33.6	2075 34.6	2320 35.6	2625 36.6					42.7	3170 39.7	4145	5192 56.6
Female	DIIA	7000-8696		1410 30.1	1650 31.1	1890 32.1	2140 33.1						34.7	3787	4795	6291 57.0
Female	DHA	9000-8696	Weight (g) Age (weeks pca)	1110	1240 31.7	1420 32.7	1720 33.7						28.7			
Female	DHA	6000-8696	Weight (g) Age (weeks pca)	1205	1310	1520 32.4	1630	2020 34.9					25.9	2891	3979	57.0 57.0
Female	DHA	9698-0307	Veight (g) Age (weeks pca)	1790	2110	2450 37.6							7.62	39.4	7.74	56.4

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1 Listing of Weights included in the Statistical Analyses

;	t_57	260	6.7	300	: ;	5625 57.0	040	7.9		5140	56.9	57.0	0209	56.4		7820	5010	56.1	57.1	5570	58.0
	_															.20	o 5	48.0	5 5	98	3.4
	NBr 48	5787	47.7	5110	48.1	4325	587	.83		760	7.77	6,	77	8,		65	77				
	Mgt_40	3177	39.7	3210	40.1	2910 39.6	2020	39.7	2685 39.6	2970	39.9	3850 40.0	2650	39.6		3240	39.6		2870 39.4		
Growth Rate	g/day	0 92		34.5		34.2	7 00		30.1	47.2	37.75	35.8	27.3		29.6	51.3	ì	34.8	33.9	34.6	
	Vgt9																				
	Wgt8										٠										
	Wgt7																				
	Vgt6								2685 39.6												
	Wgt5	1	2380 36.9	2500	36.3	2125	9.00	1897 34.7	2685 39.6						2035			2150 38.1	2225	:	37.9
	Jot6	<u>;</u>	1929 35.9	9000	35.3	1924	20.0	1671 33.7	2311	<u>.</u>	2455 37.9	3000		2650 39.6	1965		39.6	1845 37.1	1795	?	2395
	Jot3		6991		2050 34.3						1858 35.9									7.	2095 35.1
	_		1477		1820						1631 34.9						1930 35.1			55.3	1830 34.3
	-		1313		1580						1422						1605	1255	1170	32.6	1570 33.3
	•	2	á														pca)	nca)		pca)	pca)
		ple	Weight (g)	Age (Weeks pa	it (g)	(6)	(weeks p	Veight (g)	Weight (g)	(weeks p	Veight (g) Age (weeks pca)	sht (9)	(Meeks	Weight (g) Age (weeks	Weight (9)	(Medks	Weight (9) Age (weeks	Weight (g)	Weight (g)	Age (weeks	Veight (g) Age (weeks
	•	Variable	Weigh	y Be	Weigh	מינים ביים	Age (Veigh	Weig	Age	Weig Age	Weig	Age	Veig Age	Wei	Age					
		Subject	2000-6696		1000-0026	10001-020	1000	9701-0004	9701-0012		9701-0014	9702-0001		9702-0006	9702-0007		9702-0008	9703-0003	7000-1020	<u>.</u>	9703-0009
					970	020	2	970	026		126	126		16	16		6	6	o	•	σ,
		Regimen	DHA		DHA	į	VIIG	DHA	V H		DIIA	DHA		DHA	DISA		DIIA	DHA		5	ОНА
		Gender			Female		Female	Female	9 6000		female	Female		Female	Female		Fcmale	female	•	remare	Femble
		G	•		-		_	_													

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1 Listing of Weights Included in the Statistical Analyses

				Listing of Weights included in the star	of Weign	בי ושכנת	5 55									
					1								Growth Rate		9	53
	•	4 0	e de juev	Wat1	Ngt2	Wgt3	Wgt4	Wgt5	Vgt6	Ngt7	Ngt8	Vgt9	g/day	Ngt_40	76A	AG J GM
Gender	Regimen	9704-0004	Veight (g)	1440	1670	1740							30.5	3100 40.0	5830 48.0	8630 57.0
	į		Age (weeks pca)	33.6	0.4.0	0.60		;					30.0	3360	4860	6100
Female	DHA	9704-0005	Weight (g)	1050	1310 30.9	1490 31.7	1700 32.7	1890 33.7					9	39.6	48.0	57.0
			200 and 200	1220	1370	1590	1880	2098					31.9	3092	4795	5986 57.1
Female	DIIA	9705-0001	Weight (9) Age (weeks pca)	32.7	33.6	34.7	35.7	36.7					7 7 7	2705	4145	5320
Female	DHA	9000-9026	Height (g) Age (weeks pca)	1270 33.0	1405	1630	1930 36.0						- :	40.0	48.1	57.3
Female	DKA	9706-0008	Weight (g)	-	1188	1345	1485 36.4						23.0	39.9		
Female	DHA	9706-0012	Weight (g)		1830	2130	2280 34.6						32.5	3530 40.1	4790	
9	4 # 0	9706-0014		1080	1170	1395	1560	1804					26.2	3295 40.6	5,69 49.4	7675 58.0
			Age (weeks pca)	31.3	32.0	F 6	;						38.1	3045	4595	5765
Female	DHA	9207-0004	Weight (g) Age (weeks pca)	1635 34.0	1771 35.0	38.7							Ç	40.0	0.87	6360
Female	DHA	9707-0308	Weight (g) Age (weeks pca)	2005	3440	3440							7.74	39.3	47.3	57.7
Female	DHA	9000-8026	Weight (g) Age (weeks pca)	1460 32.6	1665 33.6	1955 34.6	2280 35.6	2485 36.6					38.3	,	00,	0237
Female	DIIA	9000-8026		1485	1775 34.7	2110 35.7	2380 37.0						39.5	3010	48.1	57.0
Female	в ОКА	9709-0001	Weight (g) Age (weeks pca)		1490 31.0	1755 32.0	1970 33.0	2250 34.0	2520 35.0				5. CE	40.1	0807	2420
Female	е ОНА	9709-0003	Weight (g) Age (weeks pca)	1540 34.4	1725 35.4	2015	2155							40.3	47.7	57.1

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1 Listing of Weights Included in the Statistical Analyses

					ı								Growth			
			•	•	3	7	74011		Not 6	Uat7	VotB	Vat9	Rate g/day	Ngt 40	Wgt_48	Ngt_57
Gender	Regimen	Subject	Variable	V9t1	Wgt 2	KB C3	\$16A							1 6	000	200
female	DHA	9712-0001	Weight (g) Age (weeks pca)	987.0 30.0	1120 31.0	1270 32.0	1470 33.0	1685 34.0					6.4.5	40.1	48.1	57.1
Female	DIIA	9712-0002		1060	1230	1430							26.4			
Female	DHA	9712-0007		1082 32.7	1230 33.7	1440	1650 35.7						27.3	2425 39.7	4250 47.9	5340
Female	DHA	9743-0001		1000 32.1	1170 33.1	1470 34.4	1800	1930 36.1					33.5		4140	5400
Female	DIIA	9743-0002		1380	1570	1845 34.1	1975 35.1						29.7		48.4 48.4	5160 57.4
Female	DIIA+ARA	9698-0001	Weight (g) Age (weeks pca)		1690 32.6	33.6	2380				·		37.1	3530	5348	6582 56.7
Female	DHA+ARA	2000-8696	Weight (g) Age (weeks pca)		1870 33.7	2130 34.6	2260 35.7						31.8	3241 40.7		
female	DHA+ARA	7000-6696	Weight (9) Age (weeks pca)		1122	1283 33.0	1536 34.0	1788 35.0					28.9	3177	5107 48.3	6979 57.3
female	DIIA+ARA	5000-6696	Weight (g) Age (weeks pca)		1542 32.9	1688 33.9	2000	2330					35.1	4059	6752 48.0	8341 57.0
Fenate	DHA+ARA	9700-0002	Weight (g) Age (weeks pca)		1525	1885 32.3	2035	2220 34.1	2480 35.6				31.9	3340	4930	6420 57.1
Female	DHA+ARA	9701-0002	Weight (g) Age (weeks pca)		1609	1887 35.4	2210 36.4	2420					37.8	2930 39.4	\$115 48.4	6525 56.4
Female	DIIA+ARA	9701-0006	Weight (g) Age (weeks pca)	1720 32.3	1859	2113	2456 35.3	2728 36.1					38.3	3600	5045	6270
Female	DHA+ARA	9701-0007	Weight (g) Age (weeks pca)		1427	1590	1982	2227 37.7					29.8	2680 39.9	47.9	6955 56.9

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1 Listing of Weights Included in the Statistical Analyses

Wgt_57		5550 57.4	7500	5340	6410 57.6	5420 57.3	6650 56.7	5850 56.7	6800 57.3	6640 57.0	6894 56.9	5050 57.0	7655 56.7
Wgt_48	5545 48.4	4545	6220 48.4	43.00	4680	4250 48.1	5400	4190	5150 48.0	5400	5107 48.4	4000	48.6
Wgt_40	3500		4190	3025	2905 39.9	3030	3600	2850 40.0	3110 40.0	40.00	3376 39.9	2600	4100
Growth Rate 9/day	34.6	35.6	39.9	59.9	6.02	28.9	49.1	27.4	26.7	30.0	49.8	22.1	34.5
Wgt9												1380 33.4	
Ngt8												1350 33.3	
Vgt7									2070 34.9			1265 33.0	
Wgt6	2759							2240 36.6	1780 33.9			1310 32.7	
Wat5	2433 36.1		2400 34.1	2710 38.0	2655 37.3	1955 35.3		2030 35.7	1570 32.9			1310 32.4	
Vot	2234 35.3		2155	2525 37.0	2595 37.0	1680 34.3	2880 37.0	1880 35.0	1370		2920 37.7	1280 32.1	2060
Uat3	1978		1820 32.1	2300 36.0	2230 36.0	1450	2560	1620 34.0	1200		2500 36.6	1185	1685 33.7
Uat?	1703	2019	1488	2060 35.0	2000 35.0	1255 32.1	2200 35.0	1495	1090 30.0	1840 33.4	2260 35.7	1120 31.4	1515 32.9
Uot 1	1488	1841 33.0	1293	1895 34.0	1725 34.0	1145	1865 34.0	1390 32.0	960.0	1690 32.7	1760	1075	1290
4 H	Valiable Weight (g)	-				Weight (g) Age (weeks pca)		Veight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Veight (g) Age (weeks pca)			Veight (g) Age (weeks pca)
	9701-0010	9701-0013	9702-0003	9702-0005	9702-0009	9703-0001	9000-5026	9703-0007	9704-0002	9704-0003	9705-0003	*5000-5026	9706-0001
	Kegimen DHA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	DKA+ARA	DIIA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA
-	Gender Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

4gt 57	1 6	57.3	4935 58.0		6140 56.7	5810 57.6			6315 55.4	7875 57.4		6685 56.7	57.5 57.5	6600 57.1
V9 48 V		48.9			5175 48.4				4645 47.6	7.4		8.4	4130 48.2	920 8.1
_														
Nat 40		2845 40.3	2645	2505	3430	3005			2724 38.1	39.4		3295 39.7	2580	3220 40.3
Growth Rate o/day		34.8	36.1	34.3	41.0	41.6	33.4	33.2	32.5	7.07	36.6	37.0	27.1	29.7
0100	5													
8100														
7101	2													
4	200													
y	Sign											2475 36.3	2010 36.0	2530 37.6
1	*16A	2275 35.4		1930 36.4			2170 35.3	2610 37.9	2200	1980 35.4	1975 34.3	2250 35.6	1850 35.0	2080 35.6
,	H97.5	1884 33.9	2050 38.7	1820 35.7		2210 36.4	1895	2385 36.9	1980 35.0	1610 34.4	1680 33.3	1885 34.6	1590 34.0	1890 34.6
9	Wgtz	1710 33.0	1705 37.6	1490 34.6	2105	1975 35.6	1700 33.4	2240 36.0	1700 34.0	1345 33.4	1440	1560 33.3	1410 33.0	1780 34.0
•	Wgtı	1395 31.9	1550 36.7	1235	1900	1670 34.6	1465	1775	1535 33.0	1125	1200	1350	1283 32.0	1575 33.0
	Variable	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)		Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)			Veight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)		
	Subject	9706-0002	9000-9026	2000-9026	9706-0011	9706-0015	9706-0017	9707-0002	9708-0002	9708-0005	9708-0007	5000-6026	9712-0003	9712-0004
	Regimen	DHA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DHA+ARA	DHA+ARA	DHA+ARA	DHA+ARA	DHA+ARA
	Gender	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female	Female

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

Regimen	Subject	Variable	Wgt1	Wgt2	Wgt3	Hgt4	Wgt5	Vgt6	Ngt7	Hgt8	Hat9	Growth Rate g/day	Vgr_40	Mgt_48	VBt_57 5760
7.26	9746-0002		34.0	1429	35.8 1597	37.4	2110					30.1	2680	4010 4010 46.9	5362
596	9698-0501	Age (weeks pca)	32.7	7.55	<u>;</u>		-						3546	4880	
8	9698-0502												3518	5972 47.9	
ŏ	9698-0503												3390	4213	5319
٥	7050-8696												3383	5234 48.7	6667 57.9
•	9698-0505												3646 40.0	4638	5653 57.0
-	1090-6696												2582 40.0	4766	5731 57.0
_	2090-6696												4284	4823	5986 57.0
	5090-6696												3716	4482	5674 56.7
	7090-6696												3660	4738	6355 57.0
	5090-6696												3433	5617 48.4	7603 57.6
	9701-0501												3884	5630 47.7	6450 57.7

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights included in the Statistical Analyses

3	6700 57.6											6360 57.1	
Wgt_48	5420 48.6	4565	5020 48.1	5540	5310 47.4	3430	5390 48.0	4210 47.9	6040 48.9	4050	4240	5260 48.1	5760 48.3
V9t_40	3858	3430	3317 40.0	3302	2658	2895	3401	3141	3762 40.0	2718	2927	4085	3390
Growth Rate g/day													
Vgt9													
WgtB													
Wgt7													
Vgt6													
WgtS													
Nace													
Hgt3													
Ng t 2													
Hgt1													
Variable													
Subject	9701-0502	9701-0503	9701-0504	9702-0501	9702-0502	9702-0503	9702-0504	9702-0505	9702-0506	9702-0507	9702-0508	9703-0501	9703-0505
Regimen	¥	Ŧ	Ŧ	¥	돌	至	Ŧ	¥	M	¥	¥	Ŧ	¥
Gender	Female	Female	Female	Female	Female	female	f emale	Female	Female	Female	Female	Female	Female

Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

													Growth			
Gender	Regimen	Subject	Variable	Wgt1	VgtZ	Vgt3	Ngt4	WgtS	Vgt6	Vgt7	Wgt8	Ngt9	g/day	Ngt 40	Vgt_48	Wgt_57
Female	¥	9703-0206												3405 40.0	6170 47.9	7490 56.9
Female	¥	9703-0507												3085	5090 48.0	6550 56.3
Female	¥	9704-0501	·											3194 40.0	4700	5880 57.4
Female	Ŧ	9705-0501												3120 40.0	4500	\$702 \$7.1
Female	Ŧ	9705-0502												40.0 40.0	6327 48.3	7348 57.3
Female	¥	9706-0501												3396 40.0	5000	6645 58.1
Female	¥	9706-0502												3041 40.0	4315	5525 57.6
Female	¥	9707-0501												4653	5515 47.9	6770 56.6
Female	₹	9707-0502												3419 40.0	5500 48.0	7080 57.1
Female	¥	9707-0503												3773 40.0	5785 47.9	7675 56.9
Female	Æ	9707-0505												3716 40.0		
Female	¥	9708-0501												3688 40.0	5440 48.1	6890 57.6
Female	至	9708-0502												3454	5192 48.1	5950 57.4

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

									•				Growth Rate			
Gender	Regimen	Subject	Variable	Wgt1	Wgt2	Wgt3	Wgt4	WgtS	Wgt6	Vgt7	Wgt8	Ngt9	g/day	05 ⁻ 36H	Vgt_48	Ngt_57
Female	¥	9708-0503												2977	5165 48.1	7040 57.4
Female	¥	9708-0504												3864	5660 48.4	6705 57.4
Female	H	9708-0505												3831	5800 47.7	7435 57.6
Female	¥	9709-0501												3550		
Female	¥	9709-0502												3715 40.0	5205 48.0	6100 56.9
Female	壬	9709-0503												3195		
female	Ŧ	9709-0504												3190 40.0	4590	
Female	H	9209-6026												3505	48.0	5910 57.1

-79-

* Four subjects had more the 9 waights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights included in the Statistical Analyses

£	_	_	5 0	v a	_
Growth Rate 9/day		26.1	39.6	5.6	22.1
Wat 18					1670 34.9
Jet 17	•				1680 34.7
uario varii vari2 vari3 vari4 vari5 Wati6 Vati7 Watl8					1640 34.6
Vat 15					1585 34.4
Jat 14					1565 34.3
Joe 13 1					1515
Var12	i P		2075 34.0		1510 34.0
1110		1465 33.0	2030 33.9		1450 33.9
Uar 10	2	1448 32.9	1994		1440 33.7
Uato		1433 32.7	1938 33.6		1380 33.4
8+01	2	1402 32.6	1882 33.4	1070 32.1	1350 33.3
Cat 7) P	1369 32.4	1858 33.3	1080 32.0	1265 33.0
4101		1330 32.3	1811 33.1	1060 31.9	1310 32.7
- -		1294 32.1	1778 33.0	1080 31.7	1310 32.4
2	\$ 16M	1291 32.0	1732 32.9	1080 31.6	1280 32.1
7	C	1245 31.9	1699 32.7	1070 31.4	1185 31.7
5	716A	1221	1675 32.6	1050 31.3	
3	Macı	1245	1649 32.4	1020	1075 31.1
:	Gender Regimen SUBJECT Variable	Male Control 9712-0301 Weight (g) Age (weeks pca)	9707-0307 Weight (g) Age (weeks pca)	Femala Control 9698-0003 Weight (g) Age (weeks pca)	female DIIA+ARA 9705-0005 Weight (g) 1075 Age (weeks pca) 31.1
:	es SU	ot 971	026	1696 10	RA 970.
	Regim	Contri	DHA	Contri	DIA+A
	Gender	Male	Male DHA	Female	Female

WO 98/44917 PCT/US98/10566

What is claimed is:

- 1. A method for enhancing the growth of preterm infants comprising administering to said infants a growth enhancing amount of DHA and ARA.
- 2. The method of Claim 1 wherein DHA and ARA are supplemented into infant formula.
- 3. The method of Claim 1 wherein the ratio of ARA:DHA is 1:2 to 5:1.
- 4. The method of Claim 1 wherein the ratio of ARA:DHA is 1.1 to 3:1.
- 5. The method of Claim 1 wherein the ratio of ARA:DHA is about 2:1.
- 6. The method of Claim 2 wherein the infant formula comprises DHA in an amount of about 2 mg/100 kcal to about 50 mg/100 kcal and ARA in an amount of about 4 mg/100 kcal to about 100 mg/100 kcal.
- 7. The method of Claim 2 wherein the infant formula comprises DHA in an amount of about 5 mg/100 kcal to about 33 mg/100 kcal and ARA in an amount of about 10 mg/100 kcal to about 67 mg/100 kcal.

WO 98/44917 PCT/US98/10566

- 8. The method of Claim 2 wherein the infant formula comprises DHA in an amount of about 15 mg/100 kcal to about 20 mg/100 kcal and ARA in an amount of about 30 mg/100 kcal to about 40 mg/100 kcal.
- 9. The method of Claim 1 wherein the amount of time to achieve growth equivalent to normal terms breast fed infants is less than 9 months corrected age.
- 10. The method of Claim 1 wherein the amount of time to achieve growth equivalent to normal terms breast fed infants is less than 6 months corrected age.
- 11. The method of Claim 1 wherein the amount of time to achieve growth equivalent to normal terms breast fed infants is less than 4 months corrected age.
- 12. The method of Claim 1 wherein the amount of time to achieve growth equivalent to normal terms breast fed infants is less than 2 months corrected age.
- 13. The method of Claim 1 wherein the amount of time to achieve growth equivalent to normal terms breast fed infants is no greater than term corrected age.

INTERNATIONAL SEARCH REPORT

tr ational Application No PCT/US 98/10566

	INTERNATIONAL SEARCH REF		PCT/US 98/10566
A. CLASSI IPC 6	IFICATION OF SUBJECT MATTER A61K31/20		
According to	o International Patent Classification(IPC) or to both national classi	lication and IPC	
	SEARCHED		***
Minimum do IPC 6	ocumentation searched (classification system followed by classifica A61K	ation symbols)	
Documenta	tion searched other than minimum documentation to the extent that	t such documents are inclu	in the fields searched
Electronic d	tata base consulted during the international search (name of data	base and, where practical	search terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	INNIS S.M.: "Essential fatty a		1-13
	requirements in human nutrition CAN.J.PHYSIOL.PHARMACOL., vol. 71, no. 9, September 1993, pages 699-706, XP002073826 see abstract see page 705, right-hand column paragraph	CANADA,	
X	CROZIER G.L. ET AL.: "Metaboli chain polyunsaturated fatt acid infant nutrition" MONATSCHRIFT FÜR KINDERHEILKUND vol. 143, no. 7(SUPPL.2), 1995, pages 95-98, XP002073827 see abstract	s and E,	1-13
		-/	
χ Furti	her documents are listed in the continuation of box C.	X Patent family	members are listed in annex.
'A" docume consid 'E" earlier of filling d 'L" docume which citation	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another- n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	or priority date an cited to understar invention "X" document of partic cannot be conside involve an inventi "Y" document of partic cannot be conside document is comit document is comit document is comit and the consideration of the conside	olished after the international filing date d not in conflict with the application but the the principle or theory underlying the ultar relevance; the claimed invention ared novel or cannot be considered to we step when the document is taken alone ultar relevance; the claimed invention ared to involve an inventive step when the chief with one or more other such docuplination being obvious to a person skilled
"P" docume	ant published prior to the international filling date but nan the priority date claimed	in the art.	of the same patent family
	actual completion of their memational search		the international search report
	August 1998	01/09/1	998
n das emsvi	nalling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 851 epo nl, Fax: (+31-70) 340-3018	Authorized officer Economo	ou, D

1

INTERNATIONAL SEARCH REPORT

In Itional Application No PCT/US 98/10566

		FC1/03 98/10508
Category °	etion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Э ,Х	CLANDININ M.T. ET AL.: "Assessment of the Efficacious Dose of Arachidonic Acids in Preterm Infant Formulas: Fatty Acid Composition of Erythrocyte Membrane Lipids" PEDIATRIC RESEARCH, vol. 42, no. 6, December 1997, USA, pages 819-825, XP002073828 see abstract see table 2 see table 3 see page 821, right-hand column, paragraph 3 - page 822, left-hand column, paragraph	1-13
x	KOLETZKO B. ET AL.: "Fette in der Ernährung von Neugeborenen mit niedrigem Geburtsgewicht" MONATSSCHRIFT FÜR KINDERHEILKUNDE, vol. 143, no. 7(suppl.2), 1995, GERMANY, pages 99-104, XP002073829 see abstract see page 103, middle column, line 31 - right-hand column, line 11	1-13
A	EP 0 231 904 A (MILUPA AG.) 12 August 1987 see the whole document	1-13

1

INTERNATIONAL SEARCH REPORT

information on patent family members

Int dional Application No PCT/US 98/10566

Patent document Publication cited in search report date		atent family member(s)	Publication date
12-08-1987	DE	3603000 A	06-08-1987
	date	12-08-1987 DE	12-08-1987 DE 3603000 A

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.