# $11a_{221} (K11a_{221})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle 2.58574 \times 10^{22} u^{40} + 1.94775 \times 10^{22} u^{39} + \dots + 4.92580 \times 10^{22} b + 1.64635 \times 10^{22}, \\ -8.09547 \times 10^{21} u^{40} + 5.99125 \times 10^{21} u^{39} + \dots + 1.97032 \times 10^{23} a + 1.41113 \times 10^{23}, \ u^{41} + u^{40} + \dots - u^2 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.0$$

 $I_1^v = \langle a, b - 1, v^2 + v - 1 \rangle$ 

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 43 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 2.59 \times 10^{22} u^{40} + 1.95 \times 10^{22} u^{39} + \dots + 4.93 \times 10^{22} b + 1.65 \times 10^{22}, \ -8.10 \times 10^{21} u^{40} + 5.99 \times 10^{21} u^{39} + \dots + 1.97 \times 10^{23} a + 1.41 \times 10^{23}, \ u^{41} + u^{40} + \dots - u^2 + 4 \rangle \end{matrix}$ 

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0410870u^{40} - 0.0304075u^{39} + \dots + 2.81027u - 0.716193 \\ -0.524938u^{40} - 0.395417u^{39} + \dots + 2.81027u - 0.334229 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0467248u^{40} - 0.157588u^{39} + \dots + 1.16973u - 0.888909 \\ -0.369945u^{40} - 0.267670u^{39} + \dots - 1.30888u - 0.201698 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.483851u^{40} - 0.425824u^{39} + \dots + 0.795719u - 1.05042 \\ -0.524938u^{40} - 0.395417u^{39} + \dots - 2.01455u - 0.334229 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.483851u^{40} - 0.425824u^{39} + \dots + 0.795719u - 1.05042 \\ 0.0665166u^{40} + 0.364543u^{39} + \dots + 0.795719u - 1.05042 \\ 0.0665166u^{40} + 0.364543u^{39} + \dots + 0.0791500u + 0.566335 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.526272u^{40} - 0.615949u^{39} + \dots - 0.847432u - 2.92163 \\ -0.400524u^{40} + 0.0414901u^{39} + \dots - 0.9004238u - 0.792124 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.405800u^{40} + 0.723766u^{39} + \dots - 0.573295u + 3.61744 \\ 0.260796u^{40} + 0.239160u^{39} + \dots + 0.874019u + 0.565373 \end{pmatrix}$$

$$\begin{pmatrix} 0.405800u^{40} + 0.723766u^{39} + \dots - 0.573295u + 3.61744 \\ 0.260796u^{40} + 0.239160u^{39} + \dots + 0.874019u + 0.565373 \end{pmatrix}$$

$$\begin{pmatrix} 0.405800u^{40} + 0.723766u^{39} + \dots - 0.573295u + 3.61744 \\ 0.260796u^{40} + 0.239160u^{39} + \dots + 0.874019u + 0.565373 \end{pmatrix}$$

(ii) Obstruction class = -1

#### (iv) u-Polynomials at the component

| Crossings                | u-Polynomials at each crossing          |
|--------------------------|-----------------------------------------|
| $c_1, c_6$               | $u^{41} + u^{40} + \dots - u^2 + 4$     |
| $c_2$                    | $u^{41} + 15u^{40} + \dots + 8u - 16$   |
| $c_3, c_4, c_9$ $c_{10}$ | $u^{41} - 2u^{40} + \dots - u - 1$      |
| $c_5, c_7, c_8$          | $u^{41} - 3u^{40} + \dots - 6u + 1$     |
| $c_{11}$                 | $u^{41} + 12u^{40} + \dots - 503u - 73$ |

#### (v) Riley Polynomials at the component

| Crossings                | Riley Polynomials at each crossing          |
|--------------------------|---------------------------------------------|
| $c_1, c_6$               | $y^{41} + 15y^{40} + \dots + 8y - 16$       |
| $c_2$                    | $y^{41} + 19y^{40} + \dots + 16416y - 256$  |
| $c_3, c_4, c_9$ $c_{10}$ | $y^{41} - 48y^{40} + \dots + 3y - 1$        |
| $c_5, c_7, c_8$          | $y^{41} - 35y^{40} + \dots + 62y - 1$       |
| $c_{11}$                 | $y^{41} - 12y^{40} + \dots + 23351y - 5329$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.122270 + 1.001390I |                                       |                     |
| a = -0.003929 - 0.811821I | 4.86048 - 2.17709I                    | 3.44971 + 3.79306I  |
| b = 0.562217 + 0.598084I  |                                       |                     |
| u = -0.122270 - 1.001390I |                                       |                     |
| a = -0.003929 + 0.811821I | 4.86048 + 2.17709I                    | 3.44971 - 3.79306I  |
| b = 0.562217 - 0.598084I  |                                       |                     |
| u = 0.551581 + 0.859891I  |                                       |                     |
| a = 0.449439 + 1.057630I  | 0.32453 + 2.20665I                    | 2.42130 - 3.15065I  |
| b = 0.181877 - 0.689383I  |                                       |                     |
| u = 0.551581 - 0.859891I  |                                       |                     |
| a = 0.449439 - 1.057630I  | 0.32453 - 2.20665I                    | 2.42130 + 3.15065I  |
| b = 0.181877 + 0.689383I  |                                       |                     |
| u = 1.02478               |                                       |                     |
| a = -0.908342             | 2.95183                               | 3.34750             |
| b = 1.33636               |                                       |                     |
| u = -0.679117 + 0.681890I |                                       |                     |
| a = 0.700414 - 1.106750I  | 2.92066 + 0.49867I                    | 9.33255 - 1.40381I  |
| b = 0.001662 + 0.650682I  |                                       |                     |
| u = -0.679117 - 0.681890I |                                       |                     |
| a = 0.700414 + 1.106750I  | 2.92066 - 0.49867I                    | 9.33255 + 1.40381I  |
| b = 0.001662 - 0.650682I  |                                       |                     |
| u = -0.545090 + 0.785733I |                                       |                     |
| a = -0.69091 + 2.59079I   | 7.70281 - 1.46253I                    | 4.97551 + 4.38414I  |
| b = -1.209880 - 0.257619I |                                       |                     |
| u = -0.545090 - 0.785733I |                                       |                     |
| a = -0.69091 - 2.59079I   | 7.70281 + 1.46253I                    | 4.97551 - 4.38414I  |
| b = -1.209880 + 0.257619I |                                       |                     |
| u = 0.815378 + 0.666881I  |                                       |                     |
| a = 0.75804 + 1.25639I    | 11.08220 - 2.09439I                   | 10.58118 + 0.49911I |
| b = -0.085807 - 0.724003I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.815378 - 0.666881I  |                                       |                     |
| a = 0.75804 - 1.25639I    | 11.08220 + 2.09439I                   | 10.58118 - 0.49911I |
| b = -0.085807 + 0.724003I |                                       |                     |
| u = 0.925345 + 0.534295I  |                                       |                     |
| a = -0.848621 - 0.304695I | -1.06929 - 3.78517I                   | 3.33312 + 5.32313I  |
| b = 1.281480 + 0.256105I  |                                       |                     |
| u = 0.925345 - 0.534295I  |                                       |                     |
| a = -0.848621 + 0.304695I | -1.06929 + 3.78517I                   | 3.33312 - 5.32313I  |
| b = 1.281480 - 0.256105I  |                                       |                     |
| u = 0.512185 + 0.958100I  |                                       |                     |
| a = -0.69987 - 1.88985I   | -1.14433 + 2.71303I                   | 3.06796 - 2.16565I  |
| b = -1.298390 + 0.245537I |                                       |                     |
| u = 0.512185 - 0.958100I  |                                       |                     |
| a = -0.69987 + 1.88985I   | -1.14433 - 2.71303I                   | 3.06796 + 2.16565I  |
| b = -1.298390 - 0.245537I |                                       |                     |
| u = 0.471678 + 0.778273I  |                                       |                     |
| a = -0.539722 - 0.459733I | -0.495471 + 1.323540I                 | 2.90171 - 5.22285I  |
| b = 1.018830 + 0.371555I  |                                       |                     |
| u = 0.471678 - 0.778273I  |                                       |                     |
| a = -0.539722 + 0.459733I | -0.495471 - 1.323540I                 | 2.90171 + 5.22285I  |
| b = 1.018830 - 0.371555I  |                                       |                     |
| u = -0.579330 + 0.928710I |                                       |                     |
| a = -0.625557 + 0.571406I | 7.20747 - 3.04463I                    | 5.27357 + 2.39823I  |
| b = 1.082590 - 0.468575I  |                                       |                     |
| u = -0.579330 - 0.928710I |                                       |                     |
| a = -0.625557 - 0.571406I | 7.20747 + 3.04463I                    | 5.27357 - 2.39823I  |
| b = 1.082590 + 0.468575I  |                                       |                     |
| u = -0.790308 + 0.341056I | 2.45000 . 0.000=25                    | 0.75000 . 4.000007  |
| a = -0.772495 + 0.188053I | -2.45808 + 0.68070I                   | -0.75996 + 1.22832I |
| b = 1.220600 - 0.156477I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.790308 - 0.341056I |                                       |                     |
| a = -0.772495 - 0.188053I | -2.45808 - 0.68070I                   | -0.75996 - 1.22832I |
| b = 1.220600 + 0.156477I  |                                       |                     |
| u = -0.637944 + 0.967189I |                                       |                     |
| a = 0.396872 - 1.193270I  | 2.06145 - 5.60392I                    | 6.28993 + 7.67426I  |
| b = 0.182840 + 0.800800I  |                                       |                     |
| u = -0.637944 - 0.967189I |                                       |                     |
| a = 0.396872 + 1.193270I  | 2.06145 + 5.60392I                    | 6.28993 - 7.67426I  |
| b = 0.182840 - 0.800800I  |                                       |                     |
| u = -1.003890 + 0.629446I |                                       |                     |
| a = -0.896695 + 0.361308I | 6.66704 + 5.82869I                    | 5.58070 - 3.39540I  |
| b = 1.320330 - 0.305527I  |                                       |                     |
| u = -1.003890 - 0.629446I |                                       |                     |
| a = -0.896695 - 0.361308I | 6.66704 - 5.82869I                    | 5.58070 + 3.39540I  |
| b = 1.320330 + 0.305527I  |                                       |                     |
| u = -0.070929 + 1.209930I |                                       |                     |
| a = -0.919362 + 0.220397I | -7.93550 - 1.94462I                   | -3.70499 + 3.68184I |
| b = -1.42404 - 0.03377I   |                                       |                     |
| u = -0.070929 - 1.209930I |                                       |                     |
| a = -0.919362 - 0.220397I | -7.93550 + 1.94462I                   | -3.70499 - 3.68184I |
| b = -1.42404 + 0.03377I   |                                       |                     |
| u = -0.028788 + 0.761611I |                                       |                     |
| a = -0.057057 + 0.439082I | -1.37623 + 1.10536I                   | -2.43864 - 5.69625I |
| b = 0.642973 - 0.323659I  |                                       |                     |
| u = -0.028788 - 0.761611I |                                       |                     |
| a = -0.057057 - 0.439082I | -1.37623 - 1.10536I                   | -2.43864 + 5.69625I |
| b = 0.642973 + 0.323659I  |                                       |                     |
| u = 0.703874 + 1.021500I  |                                       |                     |
| a = 0.382110 + 1.273810I  | 9.99184 + 7.80021I                    | 8.36490 - 5.64860I  |
| b = 0.170327 - 0.865341I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.703874 - 1.021500I  |                                       |                     |
| a = 0.382110 - 1.273810I  | 9.99184 - 7.80021I                    | 8.36490 + 5.64860I  |
| b = 0.170327 + 0.865341I  |                                       |                     |
| u = -0.601596 + 1.090350I |                                       |                     |
| a = -0.30873 + 1.63089I   | -4.56137 - 5.79983I                   | -1.81042 + 3.80578I |
| b = -1.364280 - 0.291615I |                                       |                     |
| u = -0.601596 - 1.090350I |                                       |                     |
| a = -0.30873 - 1.63089I   | -4.56137 + 5.79983I                   | -1.81042 - 3.80578I |
| b = -1.364280 + 0.291615I |                                       |                     |
| u = 0.241330 + 1.238970I  |                                       |                     |
| a = -0.698673 - 0.677867I | -1.67461 + 4.38863I                   | 0.33432 - 3.52334I  |
| b = -1.43772 + 0.11527I   |                                       |                     |
| u = 0.241330 - 1.238970I  |                                       |                     |
| a = -0.698673 + 0.677867I | -1.67461 - 4.38863I                   | 0.33432 + 3.52334I  |
| b = -1.43772 - 0.11527I   |                                       |                     |
| u = 0.689794 + 1.111280I  |                                       |                     |
| a = -0.10318 - 1.66094I   | -2.86444 + 9.70772I                   | 1.83000 - 8.47841I  |
| b = -1.37517 + 0.33619I   |                                       |                     |
| u = 0.689794 - 1.111280I  |                                       |                     |
| a = -0.10318 + 1.66094I   | -2.86444 - 9.70772I                   | 1.83000 + 8.47841I  |
| b = -1.37517 - 0.33619I   |                                       |                     |
| u = -0.758005 + 1.117850I |                                       |                     |
| a = 0.03150 + 1.68920I    | 5.09814 - 12.24280I                   | 4.42370 + 7.04565I  |
| b = -1.37919 - 0.37091I   |                                       |                     |
| u = -0.758005 - 1.117850I | _                                     |                     |
| a = 0.03150 - 1.68920I    | 5.09814 + 12.24280I                   | 4.42370 - 7.04565I  |
| b = -1.37919 + 0.37091I   |                                       |                     |
| u = -0.573323             |                                       |                     |
| a = 2.01606               | 8.19168                               | 12.7990             |
| b = -0.386383             |                                       |                     |

| Solutions to $I_1^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = 0.360746         |                                       |            |
| a = 1.28515          | 0.783707                              | 12.9610    |
| b = -0.132462        |                                       |            |

II. 
$$I_1^v = \langle a, b-1, v^2+v-1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -v+1\\1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ v \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -v+1\\ -v \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -v+1 \\ -v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3

#### (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing |
|--------------------|--------------------------------|
| $c_1, c_2, c_6$    | $u^2$                          |
| $c_3, c_4, c_{11}$ | $u^2 + u - 1$                  |
| <i>C</i> 5         | $(u-1)^2$                      |
| $c_{7}, c_{8}$     | $(u+1)^2$                      |
| $c_{9}, c_{10}$    | $u^2 - u - 1$                  |

## (v) Riley Polynomials at the component

| Crossings                         | Riley Polynomials at each crossing |
|-----------------------------------|------------------------------------|
| $c_1, c_2, c_6$                   | $y^2$                              |
| $c_3, c_4, c_9 \\ c_{10}, c_{11}$ | $y^2 - 3y + 1$                     |
| $c_5, c_7, c_8$                   | $(y-1)^2$                          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| v = 0.618034         |                                       |            |
| a = 0                | -0.657974                             | 3.00000    |
| b = 1.00000          |                                       |            |
| v = -1.61803         |                                       |            |
| a = 0                | 7.23771                               | 3.00000    |
| b = 1.00000          |                                       |            |

III. u-Polynomials

| Crossings             | u-Polynomials at each crossing                         |
|-----------------------|--------------------------------------------------------|
| $c_1, c_6$            | $u^2(u^{41} + u^{40} + \dots - u^2 + 4)$               |
| $c_2$                 | $u^2(u^{41} + 15u^{40} + \dots + 8u - 16)$             |
| $c_3, c_4$            | $(u^2 + u - 1)(u^{41} - 2u^{40} + \dots - u - 1)$      |
| <i>C</i> <sub>5</sub> | $((u-1)^2)(u^{41} - 3u^{40} + \dots - 6u + 1)$         |
| $c_7, c_8$            | $((u+1)^2)(u^{41}-3u^{40}+\cdots-6u+1)$                |
| $c_{9}, c_{10}$       | $(u^2 - u - 1)(u^{41} - 2u^{40} + \dots - u - 1)$      |
| $c_{11}$              | $(u^2 + u - 1)(u^{41} + 12u^{40} + \dots - 503u - 73)$ |

IV. Riley Polynomials

| Crossings                | Riley Polynomials at each crossing                          |
|--------------------------|-------------------------------------------------------------|
| $c_1, c_6$               | $y^2(y^{41} + 15y^{40} + \dots + 8y - 16)$                  |
| $c_2$                    | $y^2(y^{41} + 19y^{40} + \dots + 16416y - 256)$             |
| $c_3, c_4, c_9$ $c_{10}$ | $(y^2 - 3y + 1)(y^{41} - 48y^{40} + \dots + 3y - 1)$        |
| $c_5, c_7, c_8$          | $((y-1)^2)(y^{41} - 35y^{40} + \dots + 62y - 1)$            |
| $c_{11}$                 | $(y^2 - 3y + 1)(y^{41} - 12y^{40} + \dots + 23351y - 5329)$ |