Конспект лекций по математическому анализу

Храбров Александр Игоревич

Первый курс, первый семестр 2020

Оглавление

1	Вве	едение															2													
	1	Множества																												4
		Отношения																												

Глава 1

Введение

1 Множества

Определение 1. Множество - набор уникальных элементов

Множества - большие буквы A, B, \dots

Элементы множеств - маленькие буквы a, b, \dots

 $x \in A - x$ пренадлежит A

 $x \notin A - x$ не пренадлежит A

 $\mathbb{N} = \{1, 2, 3, \dots\}$

 $\mathbb{Z}, \mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \}$

 \mathbb{R} - вещественные числа

 \mathbb{R} - комплексные числа

Теорема 2. Правила Де Моргана

$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$A \setminus (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.
$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Longleftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \notin B_{\alpha} \end{cases} \text{ при всех } \alpha \end{cases}$$

$$\alpha \in I \Longleftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Теорема 3. Операции над множествами

• $A \cup B = \{x : x \in A$ или $x \in B\}$

 $\bullet \ A \cap B = \{x : x \in A, x \in B\}$

• $A \setminus B = \{x : x \in A, x \notin B\}$

• $A \triangle B = (A \setminus B) \cup (B \setminus A)$

Замечание: \triangle, \cup, \cap - комммутативны, ассоциативны

Определение 4. Декартово произведение множеств $A \times B = \{ \langle a, b \rangle : a \in A; b \in B \}$

Теорема 5.

$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

$$A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \cup B_{\alpha})$$

Доказательство.
$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Longleftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Longleftrightarrow \begin{cases} x \in A \\ x \in B_{\alpha} \text{ для некоторых } \alpha \in I \end{cases} \Leftrightarrow x \in A \cap B_{\alpha}$$
 для некоторых $\alpha \in A \cap B_{\alpha}$.

Определение 6. Упорядоченная пара $\langle a,b \rangle$ - пара "пронумерованных" элементов

$$\langle a, b \rangle = \langle c, d \rangle$$

$$((a == c) && (b == d))$$

2 Отношения

Определение 7. Область определения: $\delta_R = \{x \in A : \exists y \in B, m.ч.\langle x,y \rangle \in \mathbb{Z}\}$

Определение 8. Область значений: $\rho_R = \{y \in B : \exists x \in A, m.ч. \langle x, y \rangle \in \mathbb{Z}\}$

$$\delta_{R-1} = \rho_R$$
$$\rho R - 1 = \delta_R$$

Определение 9. Композиция отношений

$$R_1 \subset A \times B$$
, $R_2 \subset B \times C$, $R_1 \circ R_2 \subset A \times C$

Определение 10. Бинарным отношением R называется подмножество элементов декартова произведения двух множеств $R \subset A \times B$

Элементы $x \in A, y \in B$ находятся в отношении, если $\langle x, y \rangle \in R$ (то же, что xRy)

Обратное отношение $R^{-1} \subset B \times A$