MATH 307

CHAPTER 1

SECTION 1.1: SYSTEMS OF LINEAR EQUATIONS

CONTENTS

Why do we care about Systems of Linear Equations?	2
Terminology	3
Linear Equation	3
Systems of Linear Equations	3
Solution of a System of Linear Equations	3
How do we solve systems of linear equations?	4
Systems of two linear equations with two variables	4
Gauss-Jordan Elimination	4
Augmented Matrix	
Elementary operations revisited	
More Terminology	9
Reduced row-echelon form	9
Consistent Systems vs Inconsistent Systems	9
Homogeneous System	9
Gaussian Elimination	10

Ohm's Law

• Voltage drop at a resistor is given by V = IR.

Kirchhorff's Laws

- Junction: Current flowing into a junction must flow out of it.
- Path: Sum of IR terms in any direction around a closed path is equal to the total voltage in the path in that direction.

Linear Equation

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where

- a_1, a_2, \ldots, a_n are constants.
- n is the number of variables.
- x_1, x_2, \ldots, x_n are the variables (unknowns).
- b is the right-hand side constant term.

Systems of Linear Equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where

- *m* is the number of linear equations.
- n is the number of variables.
- a_{11}, \ldots, a_{mn} are constants.
- b_1, b_2, \ldots, b_m are the right-hand side constant terms.
- x_1, \ldots, x_n are the variables (unknowns).

Solution of a System of Linear Equations

A list $(x_1^*, x_2^*, \dots, x_n^*)$ is a solution to a system of linear equations if it satisfies each equation of the system.

Going back to our previous example

HOW DO WE SOLVE SYSTEMS OF LINEAR EQUATIONS?

Systems of two linear equations with two variables

$$x_1 + x_2 = 0$$
$$2x_1 + x_2 = 1.$$

Method 1 (Isolate)

Method 2 (Operations)

Gauss-Jordan Elimination

Based on three *elementary operations* on the equations:

- Interchange two equations in the system.
- Replace an equation by a multiple of itself.
- Replace an equation by itself plus a multiple of another equation.

Main GOAL: transform our system into

$$x + 0y + 0z = \tilde{b}_1$$
$$0x + y + 0z = \tilde{b}_2$$
$$0x + 0y + z = \tilde{b}_3.$$

EXAMPLE 1. Find the solution(s) to the following system of linear equations:

$$x - y + z = 0$$

 $2x - 3y + 4z = -2$
 $-2x - y + z = 7$.

Augmented Matrix

More efficient way: transform the system in an augmented matrix.

$$\begin{array}{c}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{array}$$

$$\begin{vmatrix}
a_{11} & a_{12} & \dots & a_{1n} & b_1 \\
a_{21} & a_{22} & \dots & a_{2n} & b_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m1} & a_{m2} & \dots & a_{mn} & b_m
\end{vmatrix}$$

EXAMPLE 2. Find the augmented matrix of the system of Example 1.

Elementary operations revisited

Elementary operations on linear equations become elementary operations on the rows of the augmented matrix:

- Interchange two rows.
- Replace a row by a multiple of itself.
- Replace a row by itself plus a multiple of another row.

EXAMPLE 3. Solve the system:

$$2x + 3y - z = 3$$
$$-x - y + 3z = 0$$
$$x + 2y + 2z = 3$$
$$y + 5z = 3.$$

EXAMPLE 4. Solve the system:

$$4x_1 - 8x_2 - x_3 + x_4 + 3x_5 = 0$$

$$5x_1 - 10x_2 - x_3 + 2x_4 + 3x_5 = 0$$

$$3x_1 - 6x_2 - x_3 + x_4 + 2x_5 = 0.$$

Reduced row-echelon form

Transformed augmented matrix after row operations:

- Any rows of zero (called zero rows) appear at the bottom.
- The first nonzero entry of a nonzero row is 1 (called a leading 1).
- The leading 1 of a nonzero row appears to the right of the leading 1 of any preceding row.
- All the other entries of a column containing a leading 1 are zero.

Consistent Systems vs Inconsistent Systems

- <u>Consistent</u>: means the system of equations has at least one solution.
 - How to recognize that a system is consistent?(1) (2)
- <u>Inconsistent</u>: means the system of equations has no solution.
 - How to recognize that a system is inconsistent?(1)

Homogeneous System

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

• Trivial solution: $x_1 = x_2 = \cdots = x_n = 0$.

THEOREM 5. A homogeneous system of m linear equations in n variables has

- infinitely many nontrivial solutions if m < n;
- exactly one (trivial solution) if m = n;
- no solution if m > n.

GAUSSIAN ELIMINATION

<u>Goal</u>. Transform the augmented matrix into an new augmented matrix with the following properties:

- any zero rows appear at the bottom.
- The first nonzero entry of a nonzero row is 1.
- The leading 1 of a nonzero row appears to the right of the leading 1 of any preceding row.

EXAMPLE 6. Determine the values of a, b, and c so that the system

$$x - y + 2z = a$$
$$2x + y - z = b$$
$$x + 2y - 3z = c$$

has solutions.