Obesity Prediction

A Data Science Approach to Health Analytics

Analyzing factors influencing obesity levels using machine learning techniques

Dataset: Obesity or CVD risk dataset - 20,758 entries

Business Understanding: Dataset Variables

Variable	Туре	Description			
Gender	CATEGORICAL	Biological sex of the individual (male or female)			
Age	NUMERICAL	Age of the individual in years			
Height	NUMERICAL	Height of the individual in meters			
Weight	NUMERICAL	Weight of the individual in kilograms			
Family history of overweight	CATEGORICAL	Indicates if the individual has a family member who is overweight or obese (yes or no)			
FAVC	CATEGORICAL	Indicates if the individual often eats high-calorie food (yes or no)			
FCVC	ORDINAL	Indicates how often the individual eats vegetables (1 = never, 2 = sometimes, 3 = always)			
NCP	ORDINAL	Number of main meals the individual has daily (1 = between 1 and 2, 2 = three, 3 = more than three)			
CAEC	ORDINAL	Consumption of food between meals (1 = no, 2 = sometimes, 3 = frequently, 4 = always)			

¹ Total dataset size: 20,758 entries with no missing values

Data Exploration & Understanding

Dataset Preview (First 5 Records)

id	Gender	Age	Height	Weight	Family History	FAVC	FCVC
0	Male	24.44	1.70	81.67	yes	yes	2.00
1	Female	18.00	1.56	57.00	yes	yes	2.00
2	Female	18.00	1.71	50.17	yes	yes	1.88
3	Female	20.95	1.71	131.27	yes	yes	3.00
4	Male	31.64	1.91	93.80	yes	yes	2.68

Initial Observations

- **Gender distribution:** Nearly balanced (50.2% Female, 49.8% Male)
- **Age distribution:** Right-skewed (mean > median), requires transformation
- Weight-Height correlation: Moderate positive correlation (0.42)
- Family history: All cases have family history of overweight
- Obesity levels: 7 categories from insufficient type III

★ Made with Genspark

• Data quality: Complete dataset with no missing values

Data Preprocessing

E Preprocessing Pipeline

Step 1 Convert & Round

Step 2Ordinal Mapping

Step 3Feature
Engineering

Step 4
Data
Transformation

Rounding Numerical Values

```
columns = ['FCVC', 'NCP', 'CH20', 'FAF', 'TUE']
for column in columns:
    df[column]=df[column].round()
```

Ordinal Variable Mapping

```
# Mapping for ordinal columns
fcvc_mapping = {1: 'never', 2: 'sometimes', 3: 'always'}
ncp_mapping = {1: 'between_1_and_2', 2: 'three', 3: 'more_than_three',
4: 'no_answer'}
ch2o_mapping = {1: 'less_than_a_liter', 2: 'between_1_and_2_L', 3:
'more_than_2_L'}
```

BMI Calculation & Features

```
# Calculate BMI
data['BMI'] = data[weight_col] / (data[height_col] ** 2)

# BMI thresholds
underweight_threshold = 18.5
overweight_threshold = 25.0

# Create Weight Status feature
data['Weight_Status'] = pd.cut(data['BMI'], bins=[0,
underweight_threshold, overweight_threshold, float('inf')], labels=
['Underweight', 'Normal Weight', 'Overweight'])
```

Data Transformations

Log Normal Transformation provided best results for skewed variable

Inverse Mapping & Feature Types

```
# Create inverse mappings
inverse_fcvc_mapping = {v: k for k, v in fcvc_mapping.item
inverse_ncp_mapping = {v: k for k, v in ncp_mapping.items(

# Apply inverse mapping
columns_to_revert = ['FCVC', 'NCP', 'CH2O', 'FAF', 'TUE']
for column in columns_to_revert:
    df[column]=df[column].map(eval(f"inverse_{column.lower})
```

After Preprocessing:

- 23 total columns (including engineered features)
- Categorical features: 9
- Numerical features: 7
- Integer features: 7
- Total memory usage: 3.4+ MB
- All 20,758 entries preserved

X Feature Engineering

BMI Calculation & Weight Status

• Key Feature

def calculate bmi and weight status(data, weight col='Weight', height col='Height'): # calculate BMI data['BMI'] = data[weight col] / (data[height col] ** 2) # BMI thresholds underweight threshold = 18.5 overweight threshold = 25.0 # New Feature data['Weight Status'] = pd.cut(data['BMI'], bins=[0, underweight threshold, overweight threshold, float('inf')], labels=['Underweight', 'Normal Weight', 'Overweight']) return data

WHO Definitions:

- BMI < 18.5: Underweight
- BMI 18.5-24.9: Normal weight
- BMI 25.0-29.9: Overweight
- BMI ≥ 30.0: Obesity

Formula:

```
BMI = weight(kg) / height^2(m)
```

BMI is a strong predictor for obesity classification and related health risks

Age-Based Features

Age Groups: Group ages into categories def create age features(data, age col='Age'): # Age group bins age bins = [0, 18, 35,50, float('inf')] age labels = ['0-18', '19-35', '36-50', '50+'l # Create 'Age Group'

 ✓ Predictive Power

Age Distribution and Skewness

Age Groups

Why Age Features Matter:

- Different age groups have distinct obesity patterns
- Age_Squared captures non-linear relationship with obesity
- Skewness value: 1.59 (right-skewed distribution)
- Transformation helps normalize for better model performance

Combined Health Features

High Calorie Food Score calculation (commented out but showcased) def calculate hcfs(favc, fcvc, ncp, caec, calc): score = 0 if favc == 'yes': score += 1 if fcvc == 3: score += 1 if ncp == 4: score += 1 if caec in [3, 4]: score += 1 if calc in [3, 4]: score += 1 return score # Add High-Calorie Food Score

High-Calorie Food From FAVC Variable

Physical Activity From FAF Variable

★ Feature Interactions

Technology Use From TUE Variable

Other Engineered Features:

BMI to Obesity Level Mapping Converting BMI to numerical obesity levels

Meal Frequency Score Combines NCP and CAEC variables

Transportation Activity Score

Derived from MTRANS variable (walking vs automobile)

Risk Factor Count

Sum of binary risk indicators from multiple variables

🛨 Made with Genspark

Model Creation & Evaluation

Model Implementation

from sklearn.linear model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from xgboost import XGBClassifier from lightgbm import LGBMClassifier from sklearn.model selection import cross val score, train test split

Grid of Algorithms Tested:

- Logistic Regression
- Decision Trees

Random Forest

XGBoost

LightGBM

Neural Networks

```
# LightGBM Implementation lgbm model =
LGBMClassifier( n estimators=1400, max depth=50,
learning rate=0.01, num leaves=31, random state=42
) # Neural Network Implementation model =
Sequential() model.add(Dense(256,
input shape=input shape, activation='relu'))
model.add(Dropout(0.5)) model.add(Dense(64,
activation='relu')) model.add(Dense(7.
```

Cross-Validation Strategy:

- 80% training, 20% testing split
- 5-fold cross-validation for hyperparameter tuning
- Random state fixed at 42 for reproducibility
- 16,606 data points in train set, 4,152 in test set

■ Model Performance Comparison

Top Performer

XGBoost

90% Accuracy

Excellent performance on classifying all obesity types with balanced precision and recall

Runner Up

Neural Network

87% Accuracy

Deep learning model with 5 hidden layers achieved strong results after 200 epochs

Also Strong

LightGBM

85% Accuracy

Fast training time with good performance using gradient boosting framework

Key Features by Importance:

Weight

BMI

Age

Height

Dataset Shape:

X_train: (16606, 18)

X_test: (4152, 18)

y_train: (16606,) y_test: (4152,)

Target classes: 7 obesity levels [0-6]

Key Insights & Observations

Q Gender-based Obesity Patterns

Gender-specific Findings:

Male Patterns

Overweight Level I, II: Higher prevalence

Obesity Type I, II: More common

Normal Weight: Lower rates than females

Female Patterns

Insufficient Weight: More prevalent

Obesity Type III: Higher rates

Normal Weight: Slightly more common

T Key Variable Correlations

Weight & Obesity: Moderate correlation (0.34) Height & Weight: Moderate correlation (0.42) Height & Obesity: Weak correlation (0.08)

Overall Distribution & Key Findings

Obesity Distribution

- Obesity Type III: 19%
- Obesity Type II: 16%
- Normal Weight: 15%

Other categories: ~12% each

Obesity Type I: 14%

Most Important Factors

- BMI (calculated from Height & Weight)
- 2 Frequency of high-calorie food (FAVC)
- 3 Physical activity frequency (FAF)
- Age (log-transformed for better distribution)

★ Key Observation

According to WHO definitions: **overweight** is BMI \geq 25; **obesity** is BMI \geq 30. Models showed gender-based patterns require different intervention strategies.

★ Made with Genspark

Conclusion & Future Directions

Project Summary

Dataset: 20,758 records with comprehensive health and lifestyle features

Objective: Predict obesity levels based on demographic and lifestyle factors

Approach: Data preprocessing → Feature engineering → Model development → Evaluation

Target Variable: 7 obesity levels from Insufficient Weight to Obesity Type III

Key Findings & Insights

Gender-specific patterns: Males show higher rates of Obesity Types I & II, while females show higher rates of Insufficient Weight and Obesity Type III

Distribution: Obesity Type III (19%) and Obesity Type II (16%) are most prevalent categories

Data skew: Age data shows positive skew (1.59), Log transformation provided better distribution

Weight correlation: Weight correlates moderately with obesity (0.34), while height shows minimal correlation (0.08)

Feature importance: BMI, high-calorie food consumption (FAVC), and physical activity frequency (FAF) were top predictors

Demographics: Gender distribution nearly equal (Male: 49.8%, Female: 50.2%)

Recommendations & Future Work

Recommendations

- Gender-Specific Interventions: Develop targeted strategies for different obesity patterns in males vs females
- 2 Focus on Key Risk Factors: Address high-calorie food consumption and physical activity as primary intervention targets
- 3 Implement Logistic Regression Model: Best balance of accuracy (90%) and interpretability for clinical settings

♥ Future Work

- Feature Expansion: Incorporate additional lifestyle factors, economic indicators, and regional data
- 2 Model Explainability: Develop tools to better interpret neural network results for healthcare professionals
- 3 Longitudinal Study: Track individuals over time to analyze progression between obesity levels
- 4 Ensemble Methods: Explore stacking multiple high-performing models for improved predictions

Project Impact

This predictive model enables personalized health recommendations, targeted interventions, and enhanced risk assessment for obesity-related conditions. With 90% accuracy across multiple algorithms, the approach demonstrates robust performance for clinical applications.