Congruencia Lineal

Implementar la congruencia lineal

```
In [4]: from tabulate import tabulate
        from prettytable import PrettyTable
        import pandas as pd
        import numpy as np
        import random
        import math
        xn=[]
        un=[]
        def congruencia(semilla,iteraciones,a,c,m,x):
            table = PrettyTable()
            table.field_names= ["# iteraccion","Xn","x","Un"]
            for i in range(1, iteraciones):
                xn = (a*x + c) % m; #FORMULA
                rn = xn/m
                x = xn
                table.add_row([i,xn,x,rn])
            #print(table)
            print(tabulate(table,tablefmt="fancy_grid"))
        v=congruencia(15678,12,4343243,11,43,34321)
```

+	Xn x Un 35 35 0.813953488372093
+	Xn x Un 2 2 0.046511627906976744
+	Xn x Un 24 24 0.5581395348837209
+	Xn x Un 38 38 0.8837209302325582
+	Xn x Un +++ 0 0 0.0
+	Xn x Un 11 11 0.2558139534883721
+	Xn x Un

7		-	0.4186046511627907
+		+	++
# iteraccion	Xn	x	++ Un +
8	42	42	0.9767441860465116
+	 	+	++
# iteraccion	Xn	x	
9	26	26	0.6046511627906976
# iteraccion	Xn	x	-
10	8		0.18604651162790697
			++
	Xn	-	Un
i '	20	20	0.46511627906976744

₩

```
In [9]: def congruencia(semilla,iteraciones,a,c,m,x):
    table = PrettyTable()
    table.field_names= ["# iteraccion","Xn","x0","Un"]
    for i in range(1, iteraciones):
        xn = (a*x + c) % m; #FORMULA
        rn = xn/m
        x = xn
        table.add_row([i,xn,x,rn])
    #print(table)
    print(table)tablefmt="fancy_grid"))
v=congruencia(3432234,8,5,3,9,1)
```

```
+----+
         Un
| # iteraccion | Xn | x0 |
+----+
    +----+
| # iteraccion | Xn | x0 | Un
    | 7 | 7 | 0.77777777777778 |
+----+
+----+
| # iteraccion | Xn | x0 |
+----+
 3 | 2 | 2 | 0.22222222222222 |
+----+
+----+
| # iteraccion | Xn | x0 | Un
    +----+
+----+
| # iteraccion | Xn | x0 |
+----+
    | 5 | 5 | 0.5555555555556 |
+----+
+----+
| # iteraccion | Xn | x0 | Un
    | 1 | 1 | 0.11111111111111 |
+----+
+----+
| # iteraccion | Xn | x0 | Un
+----+
   +----+
```

```
In [3]: | iteraciones = int(input("Ingrese iteraciones: "))
        print("Iter :", iteraciones)
        seed = int(input("Ingrese semilla: "))
        print("Xo:", seed)
        a=int(input("Ingrese valor de a: "))
        print("a:",a)
        c=int(input("Ingrese valor de c: "))
        print("c:",c)
        m=int(input("Ingrese valor de m: "))
        print("m:", m)
        xn=[]
        un=[]
        def formula_conLineal(xo, A, C, M):
            form=((xo*A)+C)%M
            xn.append(form)
            return form
        def dividido(n):
            d=n/m
            un.append(d)
            return d
        xn.append(seed)
        un.append(' ')
        for i in range(iteraciones):
            valor=seed
            semilla=formula_conLineal(valor, a, c, m)
            dividido(seed)
            #table.add_row([xn,un])
        #print(tabulate(table, tablefmt="fancy_grid"))
        df=pd.DataFrame({"Xn":xn, "Un":un})
        pd.set_option('display.max_columns', None)
        pd.set_option('display.max_rows', None)
        print(df)
        Ingrese iteraciones: 45
        Iter: 45
        Ingrese semilla: 23
        Xo: 23
        Ingrese valor de a: 53
        a: 53
        Ingrese valor de c: 235
        c: 235
        Ingrese valor de m: 65
        m: 65
            Xn
                      Un
            23
        0
        1
            24 0.353846
        2
            24 0.353846
        3
            24 0.353846
```

4

5 6

7

8

9

24 0.353846 24 0.353846

24 0.353846

24 0.353846

24 0.353846

24 0.353846 10 24 0.353846 11 24 0.353846 12 24 0.353846 13 24 0.353846 14 24 0.353846

CONCLUSIONES

Un generador lineal congruencial (GLC) es un algoritmo que permite obtener una secuencia de números pseudoaleatorios calculados con una función lineal definida a trozos discontinua.