1 根系分泌物调控土壤微生物群落结构和功能的研究方法 2 Effects of Root Exudates on Mediating Composition And Function of Soil 3 Microbiome 4 杨天杰 1, 王震 1, 谷益安 2, 韦中 1* 5 6 7 1 江苏省固体有机废弃物资源化高新技术研究重点实验室/江苏省有机固体废弃物资源化协同创新中心/资 源节约型肥料教育部工程研究中心/国家有机类肥料工程技术研究中心,资源与环境科学学院,南京农业 8 9 大学,南京,江苏;2江苏省环洪泽湖生态农业生物技术重点实验室,生命科学学院,淮阴师范学院,淮 安, 江苏 10 *通讯作者邮箱: weizhong@njau.edu.cn 11 12 摘要:根系分泌物是植物根向生长基质中释放有机物总称,已有研究表明,根系分泌物 13 对根际微生物生长以及功能的发挥具有至关重要的作用。但对于根系分泌物中某一类型 14 物质对根际土著微生物群落结构的影响尚不得知。为此,本方法选取 48 种来自于番茄 15 根系分泌物或组织的资源,包括糖类、有机酸、酚酸、氨基酸。利用这 48 种资源进行 16 不同多样性的组合,模拟不同组分的根系分泌物。将各根系分泌物组合外源添加到土壤 17 中,模拟根系分泌物对微生物的调控,探究根系分泌物对土壤土著微生物群落组成及其 18 功能 (如抑制病原菌入侵) 的影响。该方法可为室内或微宇宙条件下定量研究根系分泌 19 物的调控作用提供技术支撑。 20 关键词: 根系分泌物, 土壤微生物群落, 土传青枯菌, 资源调控 21 22 材料与试剂 23 一、供试菌株 24 野生型茄科劳尔氏菌 Ralstonia solanacearum QL-Rs1115 (GenBank accession 25 GU390462,以下简称青枯菌)为本实验室于南京市麒麟后村发病番茄植株中分离 26 而得, 具有强的致病性 (Wei et al., 2011)。 27 28 二、耗材 29

1. 一次性培养皿 (江苏康健医疗用品,90 mm)

bio-101

- 31 2. 八连管 (Life Technologies Corporation, catalog number: 4316567)
- 32 3. 量筒 (南京梅林学海生物科技有限公司, catalog number: 1601)
- 33 4. 移液枪枪头 (国产-耗材, catalog number: JWD-MTB1250-5)
- 34 5. 离心管 (康健医疗, catalog number: KJ307)
- 35 6. PowerSoil DNA 提取试剂盒 (Mo Bio, Carlsbad, CA, USA)
- 36 7. SYBR Premix Ex TagTM 试剂盒 (宝生物工程有限公司, 大连)
- 37 8. 玻璃棒 (上海阿拉丁生化科技股份有限公司, catalog number: g6034-05-40ea)
- 38 9. 育苗盘 (54 cm × 28 cm × 4 cm, 济阳县帝悦明商贸有限公司)
- 39 10. 盆钵 (35 cm × 25 cm × 10 cm, 济阳县帝悦明商贸有限公司)

41 三、化学试剂

- 42 1. D-半乳糖 (上海百灵威化学技术有限公司, catalog number: 2202002)
- 43 2. 蜜二糖 (上海百灵威化学技术有限公司, catalog number: dre-c14862000)
- 44 3. 蔗糖 (南京鼎思生物技术有限公司, catalog number: t3032)
- 45 4. 鼠李糖 (南京瑞翼特生物科技有限公司, catalog number: l130874-500g)
- 46 5. D-甘露醇 (南京瑞翼特生物科技有限公司, catalog number: c14752000)
- 47 6. D-核糖 (南京瑞翼特生物科技有限公司, catalog number: c16813700)
- 48 7. D-木糖 (南京晶格化学科技有限公司, catalog number: e1004245000)
- 49 8. D-甘露糖 (南京晶格化学科技有限公司, catalog number: e080274-25g)
- 50 9. 果糖 (上海百灵威化学技术有限公司, catalog number: f792500)
- 51 10. 麦芽糖 (上海百灵威化学技术有限公司, catalog number: 098526)
- 52 **11.** L-阿拉伯糖 (南京晶格化学科技有限公司, catalog number: e080054-500g)
- 53 12. 葡萄糖 (南京瑞翼特生物科技有限公司, catalog number: g116302-10kg)
- 54 13. 酒石酸 (北京偶合科技有限公司, catalog number: 526-83-0)
- 55 14. 琥珀酸 (南京瑞翼特生物科技有限公司, catalog number: 110-15-6)
- 56 15. 戊二酸 (南京晶格化学科技有限公司, catalog number: e080054-500g)
- 57 16. 乙酸 (上海百灵威化学技术有限公司, catalog number: 044721)
- 58 17. 丙酮酸 (上海百灵威化学技术有限公司, catalog number: 965275)
- 59 18. 反乌头酸 (上海百灵威化学技术有限公司, catalog number: a189885)

bio-101

- 60 19. 苹果酸 (南京晶格化学科技有限公司, catalog number: a0107541000)
- 61 20. 顺丁烯二酸 (北京华威锐科化工有限公司, catalog number: sm14058-2)
- 62 **21**. 草酸 (南京捷茂生物科技有限公司, catalog number: o16291-20mg)
- 63 22. 乳酸 (南京瑞翼特生物科技有限公司, catalog number: l108839-10kg)
- 64 23. 半乳糖醛酸 (南京鼎思生物技术有限公司, catalog number: t3043)
- 65 24. 柠檬酸 (上海百灵威化学技术有限公司, catalog number: c521000)
- 66 25. 瓜氨酸 (南京晶格化学科技有限公司, catalog number: a070059-100g)
- 67 **26**. 谷氨酰胺 (南京晶格化学科技有限公司, catalog number: b020017-100g)
- 68 27. L-亮氨酸 (无锡必康生物工程有限公司, catalog number: 61-90-5)
- 69 28. L-丝氨酸 (上海百灵威化学技术有限公司, catalog number: s270980)
- 70 29. β-丙氨酸 (上海百灵威化学技术有限公司, catalog number: 044720)
- 71 30. L-甲硫氨酸 (南京捷茂生物科技有限公司, catalog number: l52980-500g)
- 72 **31**. L-脯氨酸 (上海百灵威化学技术有限公司, catalog number: p755995)
- 73 32. L-丙氨酸 (上海百灵威化学技术有限公司, catalog number: a481400)
- 74 33. L-缬氨酸 (南京金益柏生物科技有限公司, catalog number: r008858-500g)
- 75 34. L-组氨酸 (南京金益柏生物科技有限公司, catalog number: r011864-25g)
- 76 **35**. L-色氨酸 (上海百灵威化学技术有限公司, catalog number: b673350)
- 77 36. L-苯丙氨酸 (上海百灵威化学技术有限公司, catalog number: 075335)
- 78 37. 阿魏酸 (上海百灵威化学技术有限公司, catalog number: f308900)
- 79 38. 水杨酸 (上海百灵威化学技术有限公司, catalog number: s088125)
- 80 39. 没食子酸 (南京晶格化学科技有限公司, catalog number: e1000010250)
- 81 40. 邻苯二甲酸 (上海百灵威化学技术有限公司, catalog number: frs-067n)
- 82 41. 苯甲酸 (南京金益柏生物科技有限公司, catalog number: r011542-10ml)
- 83 42. 丁香酸 (上海百灵威化学技术有限公司, catalog number: s920025)
- 84 43. 香草酸 (南京晶格化学科技有限公司, catalog number: a0100155000)
- 85 44. 肉桂酸 (南京晶格化学科技有限公司, catalog number: a0100280250)
- 86 45. 绿原酸 (上海百灵威化学技术有限公司, catalog number: c366540)
- 87 46. 香豆酸 (南京杰汶达生物科技有限公司, catalog number: rq1324)
- 88 47. 羟基苯甲酸 (南京晶格化学科技有限公司, catalog number: a0100540250)

- 89 48. 咖啡酸 (南京晶格化学科技有限公司, catalog number: a0106610050)
- 90 49. 葡萄糖 (南京瑞翼特生物科技有限公司, catalog number: g116302-10kg)
- 91 50. 蛋白胨 (南京巨优科学器材有限公司, catalog number: 79662B)
- 92 **51**. 酵母粉 (南京沃华生物科技有限公司, catalog number: cm0019)
- 93 **52**. 牛肉膏 (北京华威锐科化工有限公司, catalog number: hwg56062)
- 94 53. 次氯酸钠 (南京晚晴化玻仪器有限公司, catalog number: s817439-500ml)
- 95 54. 氢氧化钠 (南京晚晴化玻仪器有限公司, catalog number: s111498-500g)
- 96 55. 甲醇 (南京晚晴化玻仪器有限公司, catalog number: m116118-4l)
- 98 四、培养基与缓冲液 (见溶液配方)
- 99 1. NB 培养基 (Nutrient Broth)
- 100 2. M-SMSA 培养基 (Modified Selective Medium South Africa)
- 102 五、植物与育苗基质
- 103 1. 番茄种子 (品种: 合作 903)
- 104 2. 育苗基质 (淮安农业技术发展有限公司,淮安,江苏)

106 仪器设备

97

101

105

114

- 107 1. 恒温摇床 (MIN QUAN, MQD-BIR)
- 108 2. 酶标仪 (SpectraMax M5, Sunnyvale, CA, USA)
- 109 3. -80 °C 冰箱 (海尔,立式超低温保存箱, DW-86L626)
- 110 4. 移液枪 (Eppendorf Research plus)
- 111 5. 涡旋仪 (SCIENTIFIC INDUSTRIES, USA)
- 6. 7500 Fast Real-Time PCR 系统 (Applied Biosystems, CA, USA)
- 7. NanoDrop (ThermoScientific, Wilmington, DE, USA)

115 软件和数据库

- 116 1. RStudio (version3.1.2)
- 117 2. IBM SPSS Statistics (version26)
- 118 3. Mothur (versionv.1.35.1)

119 4. QIIME (version2.0)

120

121

实验步骤

- 122 一、供试土壤的准备
- 123 1. 供试土壤采自 0~20 cm 土层,将采集到的土壤自然风干后过筛 (< 4 mm) 并混匀。
- 124 2. 将混匀的土壤转移到盆钵 (35 cm x 25 cm x 10 cm) 中,每个盆钵装填 600 g (干
- 125 重) 土壤。

126

128

129

130

131

132

- 127 二、模拟根系分泌物的制备与添加
 - 1. 48 种单一资源 (表 1) 溶液制备:保证各处理含碳量相同的情况下,称取相应的资源溶解于 20%甲醇溶液中,制成母液。为避免模拟根系分泌物直接影响番茄生长和青枯病发病率,将模拟根系分泌外源添加到未种植植物的混匀土壤中,并检测无植物体系下,模拟根系分泌物添加后对土壤微生物组成、细菌总量以及青枯菌总量的影响。

表 1.48 种资源物质

		•			
类别	编号	中英文名称	类别	编号	中英文名称
糖	1	D-半乳糖 D-Galactose	氨基酸	25	瓜氨酸 Citrulline
	2	蜜二糖 Melibiose		26	谷氨酰胺 L-Glutamine
	3	蔗糖 Sucrose		27	L-亮氨酸 L-Leucine
	4	鼠李糖 L-Rhamnose		28	L-丝氨酸 L-Serine
	5	D-甘露醇 D-Mannitol		29	β-丙氨酸 β-Alanine
	6	D-核糖 D-Ribose		30	L-甲硫氨酸 L-Methionine
	7	D-木糖 D-Xylose		31	L-脯氨酸 L-Proline
	8	D-甘露糖 D-Mannose		32	L-丙氨酸 L-Alanine
	9	果糖 Fructose		33	L-缬氨酸 L-Valine
	10	麦芽糖 Maltose		34	L-组氨酸 L-Histidine
	11	L-阿拉伯糖 L-Arabinose		35	L-色氨酸 L-Tryptophan
	12	葡萄糖 Glucose		36	L-苯丙氨酸 L-Phenyalanine
有机酸	13	酒石酸 Tartaric acid	酚酸	37	阿魏酸 Ferulic acid
	14	琥珀酸 Succinic acid		38	水杨酸 Salicylic acid
	15	戊二酸 Glutaric acid		39	没食子酸 Gallic acid
	16	乙酸 Acetic acid		40	邻苯二甲酸 Phthalic acid
	17	丙酮酸 Pyruvic acid		41	苯甲酸 Benzoic acid
	18	反乌头酸 T-aconitic		42	丁香酸 Syringic acid

19	苹果酸 Malic acid	43	香草酸 Vanillic acid
20	顺丁烯二酸 Maleic acid	44	肉桂酸 Cinnamic acid
21	草酸 Oxalic acid	45	绿原酸 Chlorogenic acid
22	乳酸 Lactic acid	46	香豆酸 Coumalic acid
23	半乳糖醛酸 Galacturonic acid	47	羟基苯甲酸 p-Hydroxybenzoic
24	柠檬酸 Citric acid	48	咖啡酸 Caffeic acid

134

- 2. 资源丰富度为 16 (物质种类为 16)的资源组合制备:将上述配置好的有机酸、酚酸、 135
- 氨基酸、糖类各 4 种资源混合,混合后的各处理含碳量为 1.3125 g C·L-1。 136
- 3. 资源丰富度为 48(物质种类为 48)的资源组合制备:将上述配置好的 48 种单一资源 137 全部混合,混合后的含碳量为 1.3125 g C·L⁻¹。 138
- 4. 将上述制备好的资源添加到供试土壤中,每周添加 2 次 (每盆每次 120 ml),持续 139 添加6周,终浓度为6周后保存各处理土壤样品。 140

141

144

- 142 三、土壤 DNA 提取以及青枯菌定量 PCR
- 1. 将上述已添加资源的土壤样品取 0.5 g 并采用 PowerSoil DNA 提取试剂盒按操作说 143 明提取土壤 DNA,将提取的土壤 DNA 用 NanoDrop 检测纯度 (A260/A280) 和浓
- 度。 145
- 2. 土壤中 16S rRNA 基因总量以及青枯菌总量采用 qPCR (quantitative PCR) 方法进 146
- 行定量, 16S rRNA 基因定量使用引物 Eub338/Eub518 (Fierer et al., 2005), 青 147
- 枯菌定量采用引物 Rsol_fliC (Schonfeld et al., 2003) 进行检测。qPCR 分析采用 148
- SYBR Premix Ex TagTM 试剂盒 (Takara, Dalian, China) 按照步骤将样品混匀, 149
- 使用 7500 Fast Real-Time PCR 系统 (Applied Biosystems, CA, USA) 进行扩增。 150
- 每个 DNA 样品在 8 连管上重复 3 次。用于制作质粒标线的克隆基因来自于青枯菌 151
- QL-Rs1115 (Wei et al., 2011), 所用质粒为 pMD 19-T vector (Takara, Dalian, 152
- China)。青枯菌数量通过 *fliC* 基因的数量来表征, 计算方法见以往报道 (Whelan 153
- et al., 2003) 。 154

- 四、16S rRNA 基因扩增及测序 156
- 采用引物 563F (5'-AYTGGGYDTAAAGVG-3') 和 802R (5'-TACNVGGGTATCTA 157
- ATCC-3') (Cardenas et al., 2010) 对细菌 16S rRNA 基因 V4 高变区进行 PCR 扩 158

增, PCR 体系 (20 µl) 为 4 µl 5X FastPfu buffer, 2 µl 2.5 mM dNTPs, 0.4 µl 159 引物 (5 μM), 0.5 μl DNA 模板和 0.4 μl FastPfu DNA 聚合酶 (TransGen Biot 160 ech, Beijing, China)。PCR 包含 30 个循环条件为: 95°C 30 s 预变性, 55°C 161 退火 30 s, 72 °C 延伸 30 s。扩增产物先用 AxyPrep PCR Clean-up Kit (Axyq 162 en Biosciences, Union City, CA, USA) 纯化, 然后进行琼脂糖凝胶电泳。纯化后 163 的扩增产物用 QuantiFluorTM-ST (Promega, WI, USA) 定量后,送至上海美吉生 164 物公司进行双向 250 bp Miseq 测序。 165

166

五、序列处理 167

扩增子测序结果降噪采用 UPARSE 标准处理流程,首先将同一样品的正反向序列 168 对进行拼接、去除低质量核苷酸 (最大错误率 0.25) 以及长度低于 200 bp 的序列, 169 并删除单序列 (singleton),然后将序列按 97%相似性进行操作分类单元 170 (Operational taxonomic unit, OTU) 分配并去除嵌合体。利用 Mothur 软件 (Schloss 171 et al., 2009) 对 UPARSE 处理获得的代表序列和 OTU 表进行后续分析。测序深度 172 统一至序列数最少的样品的测序量,OTU 的分类地位经 RDP 16S rRNA classifier 173 比对获得,置信度阈值设为80%。

175

- 六、温室盆栽试验 176
- 1. 番茄种子利用 3 % (v/v)次氯酸钠溶液表面消毒 5 min,之后用无菌水清洗 4 次 (每 177 次 1 min),在湿润的滤纸上催芽两天,然后播种到装有育苗基质的育苗盘 (54 cm 178 ×28 cm × 4 cm) 中。土壤为模拟根系分泌物添加后的土壤。 179
- 2. 育苗 10-15 d 后,待番茄幼苗出现 3 片真叶后,挑选长势一致的番茄植株轻轻拔起, 180 洗去基质,移栽到上述添加6周资源的土壤中。 181
- 3. 将上述处理土壤分别稀释涂布于 M-SMSA 培养基平板,从而确定各处理的青枯菌 182 数量,以计算 1 周后添加青枯菌的数量 (确保各处理青枯菌数量一致)。移栽 1 周 183 后添加青枯菌,将所有处理的青枯菌终浓度统一为 107CFU·g-1 土。 184
- 4. 番茄植株出现发病情况后,通过肉眼观察,记录发病率和病情指数,发病率和病情 185 指数计算公式 (Chen et al., 2013) 如下: 186
- 4.1 病情指数具体分级依据如下 187

bio-101

1) 1-25%叶面积枯萎 188 2) 26-50%叶面积枯萎 189 190 3) 51-75%叶面积枯萎 4) 76-100%叶面积枯萎 191 **4.2** 病情指数= [∑ (各级病株数×相应病情指数) / (调查总株数×最高病情指数)] 192 ×100% 193 5. 将盆栽试验发病率、病情指数与微生物指标(多样性、结构等指标)进行相关性分 194 析,并比较各处理间的差异。 195 196 溶液配方 197 1. NB 培养基 198 葡萄糖 10 g·L-1 199 蛋白胨 5 g·L-1 200 酵母粉 0.5 g·L⁻¹ 201 牛肉膏 3 g·L-1 202 115°C 高压蒸汽灭菌 30 min 203 2. M-SMSA 培养基 204 葡萄糖 10 g-L-1 205 蛋白胨 5 g·L-1 206 酵母浸膏 3 g-L-1 207 酵母粉 0.5 g·L-1 208 2-3%琼脂 g·L-1 209 115°C 高压蒸汽灭菌 30 min, 冷却后加入: 210 1%氯霉素 0.5 ml·L⁻¹ 211 1%青霉素 0.5 ml·L⁻¹ 212 1%结晶紫 0.5 ml·L⁻¹ 213 1%多粘菌素 B 硫酸盐 2.5 ml·L-1 214 1%杆菌肽 2.5 ml·L⁻¹ 215 1%放线菌酮 2.5 ml·L⁻¹ 216

217 **1%**氯化三苯基四氮唑 (TTC) 5 ml·L⁻¹

218

219 致谢

- 220 本研究由国家重点研发计划 (2018YFD1000800) 、国家自然科学基金 (41471213,
- 221 31801952, 41922053)、江苏省自然科学基金 (BK20181068, BK20170085)资助。本
- 222 实验流程基于已发表的论文 (Gu et al, 2020) 撰写。

223

224

参考文献

- 225 1. 谷益安 (2017). <u>土壤细菌群落和根系分泌物影响番茄青枯病发生的生物学机制</u>, 南 226 京农业大学.
- 227 2. Cardenas, E., Wu, W. M., Leigh, M. B., Carley, J., Carroll, S., Gentry, T., Luo, J.,
- Watson, D., Gu, B. H., Ginder-Vogel, M. et al. (2010). Significant Association
- between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial
- 230 Communities as Revealed by a Combined Massively Parallel Sequencing-
- 231 <u>Indicator Species Approach.</u> Applied and Environmental Microbiology 76(20):
- 232 **6778-6786**.
- 233 3. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R. and Guo, J. H. (2013).
- Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural
- 235 environments depends on conserved genes mediating biofilm formation. *Environ*
- 236 *Microbiol* 15(3): 848-864.
- 4. Fierer, N., Jackson, J. A., Vilgalys, R. and Jackson, R. B. (2005). Assessment of
- soil microbial community structure by use of taxon-specific quantitative PCR
- assays. Applied and Environmental Microbiology 71(7): 4117-4120.
- 240 5. Gu, Y. A., Wang, X. F., Yang, T. J., Friman, V. P., Geisen, S., Wei, Z., Xu, Y. C.,
- Jousset, A. and Shen, Q. R. (2020). Chemical structure predicts the effect of plant-
- 242 <u>derived low-molecular weight compounds on soil microbiome structure and</u>
- 243 <u>pathogen suppression.</u> Functional Ecology.
- 6. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E.
- B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J. et al. (2009).
- 246 Introducing mothur: open-source, platform-independent, community-supported
- software for describing and comparing microbial communities. Appl Environ
- 248 *Microbiol* 75(23): 7537-7541.

- 7. Schonfeld, J., Heuer, H., van Elsas, J. D. and Smalla, K. (2003). Specific and
- 250 <u>sensitive detection of Ralstonia solanacearum in soil on the basis of PCR</u>
- 251 <u>amplification of fliC fragments.</u> Applied and Environmental Microbiology 69(12):
- **7248-7256**.
- 8. Vu, H. L., Troubetzkoy, S., Nguyen, H. H., Russell, M. W. and Mestecky, J. (2000).
- A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and
- a new mathematical model for data analysis. Nucleic Acids Res 28(7): E18.
- 9. Wei, Z., Yang, X. M., Yin, S. X., Shen, Q. R., Ran, W. and Xu, Y. C. (2011). Efficacy
- of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field.
- 258 Applied Soil Ecology 48(2): 152-159.