ENM531: Data-driven modeling and probabilistic scientific computing

Lecture #15: Sampling Methods

Monte Carlo approximation

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i),$$

where x_i are drawn iid from p(x)

Rejection sampling

Sampling underneath a $\tilde{P}(x)\!\propto\!P(x)$ curve is also valid

Bayesian linear regression

$$y_i \sim \mathcal{N}(eta_0 + eta_1 x_i, 1/ au)$$

or equivalently

$$y_i = \beta_0 + \beta_1 x_i + \epsilon, \ \ \epsilon \sim \mathcal{N}(0, 1/\tau)$$

The likelihood for this model may be written as the product over N iid observations

$$L(y_1,\ldots,y_N,x_1,\ldots,x_N|eta_0,eta_1, au)=\prod_{i=1}^N\mathcal{N}(eta_0+eta_1x_i,1/ au)$$

Priors on the model parameters:

$$eta_0 \sim \mathcal{N}(\mu_0, 1/ au_0)$$

$$eta_1 \sim \mathcal{N}(\mu_1, 1/ au_1)$$

$$au \sim \operatorname{Gamma}(\alpha, \beta)$$

Gibbs sampling

Gibbs sampling works as follows: suppose we have two parameters θ_1 and θ_2 and some data x.

Our goal is to find the posterior distribution of $p(\theta_1, \theta_2 || x)$.

Gibbs sampling algorithm:

- 1. Pick some initial $\theta_2^{(i)}$.
- 2. Sample $heta_1^{(i+1)}\sim p(heta_1\| heta_2^{(i)},x)$ 3. Sample $heta_2^{(i+1)}\sim p(heta_2\| heta_1^{(i+1)},x)$

Then increment i and repeat K times to draw K samples.

This is equivalent to sampling new values for a given variable while holding all others constant.

The general approach to deriving an update for a variable is

- 1. Write down the posterior conditional density in log-form
- 2. Throw away all terms that don't depend on the current sampling variable
- 3. Pretend this is the density for your variable of interest and all other variables are fixed. What distribution does the log-density remind you of?
- 4. That's your conditional sampling density!

Pros: No parameters need to be tuned (e.g. vs MCMC that needs a proposal distribution)

Cons: It might be hard to analytically derive the conditional distributions.