HATE SPECH DETECTION

ITAY ALUSH GAL EICHENBAUM BEN TOBIN

Hate speech is:

Any kind of communication that attacks or uses discriminatory language with reference to a person or a group based on their religion, ethnicity, nationality, race, colour, descent, gender or other identity factor.

Source: UN Strategy and Plan of Action on Hate Speech

#NoToHate

Montana | February 17, 2023 | Sexual Orientation

Montana Man Convicted for Attacks on Local LGBTQ Community

California | February 17, 2023 | Religion

California Man Charged for Allegedly Shooting Two Jewish Men in Los Angeles

New Jersey | February 1, 2023 | Religion

Passaic County Man Arrested for Attempt to Firebomb Synagogue

South Carolina | February 1, 2023 | Gender Identity

→ Two Men Charged with Hate Crimes and Obstruction in the Murder of Transgender Woman

Idaho, Oregon, Washington | January 30, 2023 | Race, Ethnicity

▶ Four Men Sentenced for Hate Crime and False Statement Charges After Racially-Motivated Assault

Louisiana | January 25, 2023 | Sexual Orientation

▶ Louisiana Man Sentenced to 45 Years for Kidnapping and Attempting to Murder a Gay Man

Florida | January 25, 2023 | Race

▶ Two Florida Men Sentenced for Hate Crime Following Racially-Motivated Assault

Idaho | January 12, 2023 | Sexual Orientation

▶ Idaho Man Indicted for Federal Hate Crime Against LGBTQ Residents of Boise

Washington | December 14, 2022 | Religion

▶ Washington Man Indicted for Arsons at Jehovah's Witness Kingdom Halls

Missouri | December 13, 2022 | Religion

▶ Missouri Man Pleads Guilty to Burning Down Islamic Center

Austria

An increased number of hate crimes took place this year. The NGO SoHo collected those between January — July 2021. For instance, a group of young people were <u>assaulted</u> in Vorarlberg, and the victims were hospitalised with serious injuries. Rainbow flags and other symbols were vandalised.

Denmark

"Live and Let Live" published 1,000 accounts of antiLGBTQI hate crimes and speech.

Cyprus

Pressured by homophobic bullies at a party to binge drink beyond his tolerance, a teen fainted and was left to choke to death in February. Three of the peers received 18 months of suspended sentence for involuntary manslaughter.

France

A gay man was <u>murdered</u> in April, a lesbian couple in <u>August</u>, and a trans migrant sex worker woman in <u>September</u>. At least six trans people are known to have committed suicide due to transphobic harassment.

55% of hate crimes in Sweden have racial motivations: Report

A fan of the British soccer team, Arsenal, has pleased guilty to shouting "Hitler should have finished the job" at an Arsenal match against rival, Tottenham. As a result, he has been banned from soccer games for three years and must pay 471 pounds in fines.... https://t.co/lXknKmx9Jy

July 12, 2023

Cameroon [edit]

In February 2019, deputy justice minister Jean de Dieu Momo advanced an antisemitic canard during prime time on Cameroon Radio Television, and suggested that Jewish people had brought the holocaust upon themselves.[3][4]

Overview of incidents reported by other sources

Violent attacks against people	Threats	Attacks against property	Total
997	246	741	1984

Table 1: 2013 official figures on reported racist crimes and complaints ¹⁵			
Austria	110		
Bulgaria	Not available		
Croatia	33		
Cyprus	8		
Czech Republic	186		
Denmark	Not available		
Estonia	Not available		
Finland	833		
France	1,376		
Germany	5,131		
Greece	43		
Hungary	3		
Iceland	0		
Italy	194		
Ireland	93		
Latvia	22		
Lithuania	84		
Luxembourg	31		
Malta	Not available		
Netherlands	Not available		
Poland	719		
Romania	Not available		
Slovakia	Not available		
Spain	384		
Sweden	1,733		
England & Wales	30,788		
Scotland	4,735		
Northern Ireland	704		
Source: OSCE/ODIH	IR and ENAR questionnaire response		

2015 - Charleston Church Massacre

2012 – Sikh Gurdwara shooting in Wisconsin

RESEARCH QUESTION

Can we Identify hate speech using M.L models?

BUSINESS APPLICATION

CAN WE HELP SOCIAL MEDIA COMPANIES REDUCE
THE AMOUNT OF HATE SPEECH ON THEIR
PLATFORMS?

OUR PROJECT STAGES

- DATA + EDA
- PREPROCESSING
- NLP ANALYSIS
- CLASSIFICATION

DATA

- Tweets collected by a group of researches and saved in a csv file.
- The tweets were shown to various people and asked to label 1 of three categories.
- Category with most votes decided final label.
- Total of 24,783 tweets

CLASS DISTRIBUTION

Highely skewed data therfore baseline model is at ~78% accuracy

AVERAGE TWEET LENGTH PER CLASS

WORDCLOUD BY LABEL

Hate Speech

youre want hope cant it is even with a nicca where think make looksmh black right was price on the second back right even warm of the second back right was price on the second back right was

Offensive

Clean

NLP ANLYSIS

TFIDF

* LDA

- ** WORD2VEC
- ** DOC2VEC

Dursley's useer, but the one hadrac seen the ither in a lang, while, tae tell the treth. Mrs Dursley pastendit she didnac had a sister, because her sister and you numpty of a hisband o here were as unDursleysh in it was possible to be. The Dursleys were feart toe think what the neebors wid say if the Potters ever showed up in their secent. The Dursleys had a wee son as week, but they hadrac ever som him. This laddle was another guid reason for keepin the Potters awas they didnec want Dudley linein onythin toe doe will be being like that yit.

When Mr and Mrs Dursley got oot o bed on the dreich gray Tuesday our story sterts, there wis markin about the drursler life possible tac let on that once and wend things wid soon be happeren aw over the country. Mr Dursley chante the birtsel as he waled not his maint dreich gray tie for war and Mrs Dursley gabbed awa blythely as she worsled a skir Dudley into high chair.

Name o them esternt sicht o a muckle jenny Issolet flicht past the windae.

At hoof past sicht, Mr Dursley liftit his briefcase, Mrs Dursley a wee kiss on the cheek, and raxed doon to Dudley a kiss but couldnue, because Dudley wis noo go dinger and plaisterin the stows wi cereal. Whit a wee lauched Mr Dursley as he left the boose. He got intagand bucked out o number fower's drive.

It wis on the corner of the street that he got the that somethin wisnes right — a browden's readin a a second. Mr Durdey didner talk in whit he'd some tooked his heid round and had arrither levels. Then

```
[0,0,0]
[48, 43, 84]
[ 138, 194, 95 ]
[ 150, 84, 75 ]
[ 148, 196, 219 ]
[ 145, 98, 157 ]
[91, 74, 147]
[ 238, 220, 91 ]
[ 252, 239, 210 ]
```

10

- Preprocessed the tweets corpus.
- Present each tweet with a 'feature vector' and create TF-IDF matrix using Sklearns TDIDF vectorizer.
- Converted the matrix into a dataframe.
- Added the tweets labels.

During classification ran into 'Memory Error' due to large input size.

- Researched methods to lower memory allocation.
- Decided on changing Max_Feature
 Paramter

FEATURES

Tweet	Word 1	 Word 1000
1		
24,783		

TWEETS

LDA

- LDA (Latent Dirichlet Allocation) is a powerful technique for topic modeling and text classification.
- Widely used in natural language processing tasks, including tweet classification.
- By uncovering latent topics in tweets, the LDA model predicts the topic or class of a tweet.

LDA - GRIDSEARCH

```
10 # Iterate over hyperparameter combinations
11 for min cf in min cf values:
          for rm top in rm top values:
              for latent topics in latent topics values:
v 13
                  for topics_per_label in topics_per_label_values:
v 14
                      # Create a PLDA model with current hyperparameters
                      lda model = tp.PLDAModel(
v 16
                          min cf=min cf,
  17
                          rm top=rm top,
  18
                          latent topics=latent topics,
  19
                          topics_per_label=topics_per_label,
  20
                          seed=42
  21
                      # Add documents to the model
                      for document in train corpus:
                          lda_model.add_doc(document)
   26
                      # Train the model
  28
                      lda model.train(100)
  29
  30
                      # Compute perplexity
  31
                      perplexity = lda model.perplexity
                      # Check if current model has lower perplexity
                      if perplexity < best perplexity:
  35
                          best perplexity = perplexity
  36
                          best lda model = lda model
  37
```

Here we tried to optimize our LDA model by its arguments.

For each argument we took a scale of possible values and trained a new model on each different combination of arguments.

At the end we saved the best LDA model with its optimized arguments.

BEST LDA MODEL PERFORMANCE

LDA Model Accuracy 0.74

Top 10 words for each class

	Topic 0_word	Topic 0_value	Topic 1_word	Topic 1_value	Topic 2_word	Topic 2_value
1	the	0.069760	а	0.052698	bitch	0.043976
2	rt	0.028435	you	0.033810	i	0.033137
3	of	0.026961	i	0.032209	rt	0.026512
4	in	0.026834	bitch	0.024146	you	0.021988
5	а	0.023570	rt	0.022090	а	0.020487
6	and	0.021484	to	0.019050	bitches	0.018386
7	is	0.021379	is	0.014761	my	0.018120
8	to	0.019820	the	0.013483	hoes	0.017352
9	for	0.013691	and	0.013277	to	0.016130
10	trash	0.013101	that	0.011882	me	0.014218

WORD2VEC

{'vector_size':, 'window':, 'min_count':, 'epochs':, 'sg':, 'min_alpha':}

(1)
Initialized and trained various
parameter combos

(2)
Compared the models using the wordsim535 file

MODEL	SPEARMAN	PEARSON
Default	0.01438	-0.02325
Large Vector	0.02458	-0.06847
Small Vector	0.0534	0.00854
Wide Window	0.04792	-0.02814

MODEL	SPEARMAN	PEARSON
High Min_Count	0.1	0.1984
Many Epochs	0.196	0.223
Skip Gram	0.0378	0.0232
High LR	0.0992	0.1285

WORD2VEC

(3)

Checked that model works

(4)

Created DF ready to feed to classification model

Similarity Check - 'Cheese'

mac 0.553615927696228 fries 0.5464779138565063 simpsons 0.5272508263587952 cookies 0.5202698707580566 fxx8217s 0.5170167088508606 httptcomy5ojyz8w9 0.51667541265 cornbread 0.5068199634552002 beans 0.5059381723403931

Features Matrix

DOC2VEC

{'vector_size': , 'window': , 'min_count': , 'epochs': , 'min_alpha': }

(1)
Initialized and trained various
parameter combos

(2)
Compared the models using the wordsim535 file

MODEL	SPEARMAN	PEARSON
Default	0.0635	0.06988
Large Vector	0.07228	0.044242
Small Vector	0.04477	0.0053
Wide Window	0.0219	-0.0049

MODEL	SPEARMAN	PEARSON
High Min_Count	0.1	0.2218
Many Epochs	0.2419	0.2814
Skip Gram	0.031	-0.042
High LR	0.08383	-0.000608

DOC2VEC

(3) Checked that model works

(4)
Created DF ready to feed to classification model

Vectorizer Check - 'did we win last night'

```
-7.80629367e-02 2.78813485e-02 1.70882288e-02 -8.09044614e-02
 2.19768852e-01 6.27341568e-02 -1.16145434e-02 -1.89851701e-01
-9.42868739e-02 -4.07065243e-01 -1.90426521e-02 -4.45404761e-02 -3.32417578e-01 -3.75866354e-01 -7.64090195e-02 -7.22804293e-02
1.05594993e-01 6.76372927e-03 -2.60740280e-01 -2.65800387e-01
6.38148412e-02 -1.96982965e-01 8.66274387e-02 -7.37726986e-02
2.31051922e-01 -4.10025328e-01 -2.40647763e-01 1.23361856e-01
-6.00629263e-02 -2.44405791e-01 -3.05665284e-01 3.37436825e-01
-3.84516865e-01 9.32723209e-02 -5.28409779e-02
 .72409609e-01 -2.24393874e-01 -1.13676779e-01
 3.05172563e-01 -1.11420201e-02 7.45483711e-02 -1.41186282e-01
3.17301273e-01 3.13091397e-01 1.47826657e-01 -4.48466912e-02
-1.84792697e-01 2.62305468e-01 -2.56339103e-01 -7.83389583e-02
 9.64028761e-02 1.56431705e-01 -3.37400347e-01 2.52183855e-01
2.54459113e-01 2.12153897e-01 5.83371446e-02 -1.68928489e-0
 1.44821033e-01 -1.63881510e-01 8.10753778e-02 -3.52491111e-01
1.83684066e-01 -7.99813028e-03 2.42106840e-01 1.31862268e-01
 8.58441144e-02 -3.29364866e-01 -1.92828953e-01
 2.21485525e-01 -9.50041041e-02 -1.16204932e-01 -1.49085253e-01
-2.31400505e-01 5.13406359e-02 -1.22458629e-01
                                                 7.20605627e-02
-9.94458050e-02 -1.57721117e-01 3.36928070e-01 2.13073775e-01
 1.20948203e-01 1.37993527e-04 1.24631830e-01 -5.00963442e-03
 1.90752879e-01 -4.85521704e-02 2.71933168e-01 -6.50784746e-02
-3.56853694e-01 2.69032687e-01 -1.49701104e-01 1.14643984e-01
 7.78503437e-03 5.82882129e-02 -7.89572224e-02 4.14703488e-02
-4.64011729e-02 -2.00024724e-01 1.14387579e-01 -1.38374045e-0
8.05586129e-02 -1.01908863e-01 -9.09568518e-02 -9.98684466e-02
-6.12260066e-02 9.75493789e-02 -1.25681624e-01 -3.40149850e-0
-1.81139320e-01 3.46054852e-01 -2.35486016e-01 -1.74212798e-01
-3.67778838e-01 2.98019852e-02 1.53608948e-01
2.75620759e-01 -4.98487763e-02 2.87676677e-02 2.84986407e-01
2.12473899e-01 -9.16114673e-02 1.04152672e-02 3.10073197e-02
-2.87891626e-02 -6.91682100e-02 -5.95165305e-02 -5.16365357e-02
 8.49698111e-02 -4.31333452e-01 8.29280019e-02
 7.02981427e-02 1.12247318e-01 6.94945529e-02 -3.03062908e-02
-1.73424054e-02 6.83447858e-03 -1.65004179e-01 -7.10849911e-02
1.07664391e-01 -3.13256122e-02 -1.70064405e-01 -2.09511086e-01
-1.67602807e-01 -9.39875245e-02 2.89091885e-01 -1.51906282e-01
-4.02439028e-01 -1.18518323e-01 -8.25839192e-02
                                                 5.35181463e-02
-1.28819495e-01 -3.16148341e-01 1.22427560e-01 3.43072087e-01
-1.01012737e-01 -3.22604813e-02 1.26285344e-01 -1.17871590e-01
2.09820732e-01 -5.31798378e-02 7.99030438e-02 -2.07645550e-01
 1.62360236e-01 2.23988995e-01 1.99184462e-01 2.18941748e-01
-2.24814057e-01 -3.42822187e-02 -7.06542060e-02 -1.97608232e-0
-1.67684436e-01 4.10564654e-02 2.67814964e-01 -1.87278762e-01
-9.85843837e-02 1.97201356e-01 1.35049447e-01 -2.95259863e-01
-2.86880583e-01 2.80770883e-02 1.74776599e-01 2.75648445e-01
5.10394454e-01 7.31143728e-02 3.05965990e-02 -1.42516881e-01
4.45020152e-03 9.70849395e-02 -2.35259250e-01 -1.79055426e-02
```

```
3,67778838e-01 2,98019852e-02 1,53608948e-01 -9,17350221e-03
2.75620759e-01 -4.98487763e-02 2.87676677e-02 2.84986407e-01
2.12473899e-01 -9.16114673e-02 1.04152672e-02 3.10073197e-02
2.87891626e-02 -6.91682100e-02 -5.95165305e-02 -5.16365357e-02
3.49698111e-02 -4.31333452e-01 8.29280019e-02 4.70479019e-02
7.02981427e-02 1.12247318e-01 6.94945529e-02 -3.03062908e-0
1.73424054e-02 6.83447858e-03 -1.65004179e-01 -7.10849911e-02
1.07664391e-01 -3.13256122e-02 -1.70064405e-01 -2.09511086e-0
1.67602807e-01 -9.39875245e-02 2.89091885e-01 -1.51906282e-01
4.02439028e-01 -1.18518323e-01 -8.25839192e-02 5.35181463e-02
1,28819495e-01 -3,16148341e-01 1,22427560e-01 3,43072087e-01
1,01012737e-01 -3,22604813e-02 1,26285344e-01 -1,17871590e-0
2.09820732e-01 -5.31798378e-02 7.99030438e-02 -2.07645550e-01
1,62360236e-01 2,23988995e-01 1,99184462e-01 2,18941748e-0
2.24814057e-01 -3.42822187e-02 -7.06542060e-02 -1.97608232e-01
1,67684436e-01 4,10564654e-02 2,67814964e-01 -1,87278762e-0
9.85843837e-02 1.97201356e-01 1.35049447e-01 -2.95259863e-0
2.86880583e-01 2.80770883e-02 1.74776599e-01 2.75648445e-01
5.10394454e-01 7.31143728e-02 3.05965990e-02 -1.42516881e-01
4.45020152e-03 9.70849395e-02 -2.35259250e-01 -1.79055426e-02
8.02400336e-02 5.90872914e-02 2.62400299e-01 6.04637749e-02
1.40632451e-01 -6.15822636e-02 4.21631373e-02 8.35529789e-02
3.48628983e-02 2.24301323e-01 -1.86099745e-02 4.25264925e-0
7.31043145e-03 -2.57901400e-01 -1.46450670e-02 -1.51160523e-01
1,98623464e-01 -5,11469543e-02 1,11722164e-01 -1,29868105e-0
1.12855650e-01 -3.82591963e-01 -2.85338461e-01 -7.76243433e-02
1.86985165e-01 -1.57905132e-01 -1.35168955e-01 1.18401192e-0
6.81886449e-02 -1.99350759e-01 -1.80066153e-01 -1.93537995e-01
2.32020542e-01 1.19854808e-01 1.00712538e-01 -1.68097526e-01
5.59359007e-02 -1.28843069e-01 -5.09458557e-02 1.28690209e-0
 .50067970e-03 -5.52085005e-02 -3.46150994e-02 5.55276684e-0
2.21074820e-01 -3.43885332e-01 -1.53688595e-01 3.45437914e-01
1.20999329e-01 -1.96970135e-01 4.96768951e-02 1.03273503e-01
3.21168862e-02 1.86989844e-01 -1.76572934e-01 1.42369837e-01
1.10005900e-01 -4.41701636e-02 -1.05714193e-02 -7.75635540e-02
2.09789276e-01 1.81059644e-01 -2.67466277e-01 -7.78876478e-03
2.35936403e-01 2.26122037e-01 -5.85799031e-02 -1.85731500e-01
1.18735559e-01 -3.08864206e-01 6.32860735e-02 1.17192619e-01
1.97841465e-01 -5.88222733e-03 -6.76722080e-02 -5.16662933e-02
7.04727471e-02 -9.24598351e-02 4.19788122e-01 2.83528715e-0
5.57829738e-02 -1.27148479e-02 9.80159640e-02 5.59232896e-03
 .29454115e-01 8.32784250e-02 4.13225144e-02 1.48005232e-01
4.74235602e-02 -2.26602200e-02 -1.94713309e-01 1.27988890e-01
 .44695625e-01 -1.14919443e-03 -2.11396161e-02 2.01256126e-01
8.79413169e-03 4.35675606e-02 8.87849629e-02 -2.11588308e-01
3.25385071e-02 3.47046852e-02 -3.27882590e-03 4.64742146e-02]
```

DOC2VEC

(3)

Checked that model works

(4)

Created DF ready to feed to classification model

Similar Docs - 'yo yo yo'

```
Similar Documents (Doc2Vec):
Document ID: 23201, Similarity: 0.8120245933532715
Document ID: 6386, Similarity: 0.7924211025238037
Document ID: 90, Similarity: 0.7896029353141785
Document ID: 605, Similarity: 0.7753785252571106
Document ID: 16750, Similarity: 0.7490344047546387
Document ID: 21253, Similarity: 0.7422741651535034
Document ID: 17678, Similarity: 0.7387194037437439
Document ID: 8783, Similarity: 0.7385451793670654
Document ID: 9410, Similarity: 0.7347460389137268
Document ID: 6183, Similarity: 0.7254233956336975
```

DATA FRAME SUMMARY

TF-IDF 36,301 columns 24,783 rows

Word2Vec 301 columns 24,783 rows

Doc2Vec 301 columns 24,783 rows

CLASSIFICATION MODELS

Logistic Regression

86%

Random Forrest

86%

XG_Boost

84%

LDA

74%

CLASSIFICATION RESULTS

PROJECT SUMMARY

THE COMBINATION OF LOGISTIC REGRESSION WITH WORD2VEC VECTORIZATION 88% ACCURACY

