Chapter 2 Getting Started

Chi-Yeh Chen 陳奇業 成功大學資訊工程學系

2.1 Insertion sort

Example: Sorting problem

- Input: A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$

- Output: A permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ of the input sequence

such that $a_1' \le a_2' \le \cdots \le a_n'$

 The number that we wish to sort are known as the keys.

Pseudocode

Insertion sort

```
Insertion-sort(A)
1. for j \leftarrow 2 to length[A]
2. do key \leftarrow A[/]
       *Insert A[j] into the sorted sequence A[1,...,j-1]
       i \leftarrow j-1
5. while i > 0 and A[i] > key
6.
           do A[i+1] \leftarrow A[i]
7. i \leftarrow i-1
   A[i+1] \leftarrow \text{key}
```


The operation of Insertion-Sort

Sorted in place:

– The numbers are rearranged within the array A, with at most a constant number of them sorted outside the array at any time.

Loop invariant:

– At the start of each iteration of the for loop of line 1-8, the subarray A[1,...,j-1] consists of the elements originally in A[1,...,j-1] but in sorted order.

2.2 Analyzing algorithms

- Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.
 - Resources: memory, communication, bandwidth, logic gate, time.
 - Assumption: one processor, RAM
 - constant-time instruction: arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling); data movement (load, store, copy); control (conditional and unconditional bramch, subroutine call and return)
 - Date type: integer and floating point
 - Limit on the size of each word of data

2.2 Analyzing algorithms

- The best notion for input size depends on the problem being studied.
- The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed. It is convenient to define the notion of step so that it is as machine-independent as possible.

Analysis of insertion sort

Insertion-sort(A)		cost	cost
1.	for $j \leftarrow 2$ to length[A]	c_1	n
2.	do key $\leftarrow A[j]$	$\boldsymbol{c_2}$	n-1
3.	*Insert $A[j]$ into the sorted		
	sequence <i>A</i> [1,, <i>j</i> – 1]	0	
4.	$i \leftarrow j-1$	c_4	n-1
5.	while $i > 0$ and $A[i] > \text{key}$	c_5	$\sum_{j=2}^{n} t_{j}$
6.	$do\ A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7.	$i \leftarrow i - 1$	<i>c</i> ₇	$\sum_{j=2}^{n} (t_j - 1)$
8.	$A[i+1] \leftarrow \text{key}$	c_8	n-1

• *t*; the number of times the while loop test in line 5 is executed for the value of *j*.

Analysis of insertion sort

The running time

$$7(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

• $t_j = 1$, for j = 2, 3, ..., n. Linear function on n

$$7(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

Analysis of insertion sort

• $t_i = j$, for j = 2, 3, ..., n. Quadratic function on n

$$\overline{I}(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)
+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)
= \left(\frac{c_5 + c_6 + c_7}{2}\right) n^2 - \left(c_1 + c_2 + c_4 + \left(\frac{c_5 - c_6 - c_7}{2}\right) + c_8\right) n
- \left(c_2 + c_4 + c_5 + c_8\right)$$

Worst-case and average-case analysis

- Usually, we concentrate on finding only on the worstcase running time.
- Reason:
 - It is an upper bound on the running time.
 - The worst case occurs fair often.
 - The average case is often as bad as the worst case. For example, the insertion sort. Again, quadratic function.

Order of growth

 In some particular cases, we shall be interested in average-case, or expect running time of an algorithm.

• It is the *rate of growth*, or *order of growth*, of the running time that really interests us.

2.3 Designing algorithms

- There are many ways to design algorithms:
 - Incremental approach: having sorted the subarray A[1...j-1], we inserted the single element A[j] into its proper place, yielding the sorted subarray A[1...j]. Ex. insertion sort
 - Divide-and-conquer: merge sort
 - recursive:
 - divide
 - conquer
 - combine

Pseudocode

Merge sort

```
Merge(A, p, q, r)
1. n_1 \leftarrow q - p + 1
2. n_2 \leftarrow r - q
3. create array L[1,..., n_1 + 1] and R[1,..., n_2 + 1]
4. for i \leftarrow 1 to n_1
5. do L[i] \leftarrow A[p+i-1]
6. for j \leftarrow 1 to n_2
7. do R[j] \leftarrow A[q+j]
8. L[n_1 + 1] \leftarrow \infty
9. R[n_2 + 1] \leftarrow \infty
```

Pseudocode

```
10. i \leftarrow 1
11. j \leftarrow 1
12. for k \leftarrow p to r
13. do if L[I] \leq R[I]
               then A[k] \leftarrow L[i]
14.
                      i \leftarrow i + 1
15.
16.
               else A[k] \leftarrow R[j]
                     j \leftarrow j + 1
17.
```


Pseudocode

```
MERGE-SORT(A, p, r)
```

- 1. if p < r
- 2. then $q \leftarrow \lfloor (p + r)/2 \rfloor$
- 3. MERGE-SORT(A, p, q)
- 4. MERGE-SORT(A, q + 1, r)
- 5. MERGE(A, p, q, r)

The operation of Merge sort

Analysis of Merge sort

Analyzing divide-and-conquer algorithms

$$- T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

- See Chapter 4.
- Analysis of merge sort

$$- T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$- 7(n) = \Theta(n \log n)$$

Analysis of Merge sort

•
$$T(n) = \begin{cases} c & \text{if } n=1\\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

where the constant *c* represents the time require to solve problem of size 1 as well as the time per array element of the divide and combine steps.

The construction of a recursion tree

• Outperforms insertion sort!

