Constellation Study

Advitiy IIT-B Student Satellite Project

Ву

Rajarshi Saha

Payload Subsystem

Contents

1	\mathbf{Intr}	oduction
	1.1	Constellation and Formation Flying: Description
	1.2	Why Multi-Satellite?
2	Res	earch Report
	2.1	Satellite Formation Flying Missions
	2.2	In-Depth Study of Various Satellites Mentioned
		2.2.1 AeroCube Series
		2.2.2 Prometheus
		2.2.3 Flock-1
		2.2.4 CanX-4, 5
	2.3	General CubeSat Formation Flying
	2.4	Distributed Optimization Algorithm for FF
	2.5	Staged Deployment of Constellations
	2.6	Cost and Risk Analysis
	2.7	Constellation Mission Design using Model-based Systems

Chapter 1

Introduction

On the Day of writing this Document, the Payload Team was finalizing the Payloads to be presented to ISRO for Deployment. I was tasked with Constellation and Researching its' applications.

1.1 Constellation and Formation Flying: Description

Before we begin with specifics, a Proper Distinction is to be made between the two terms.

Constellations and Formation Flying(FF) differ in the fact that in a FF Multi-Satellite Mission, the states of all satellites are governed by a common Control Law. For example, Global Positioning System(GPS), a very Popular Multi-Satellite Mission is in fact a Constellation since each satellite is Independent of the other, even though All satellites contribute to the same cause.

1.2 Why Multi-Satellite?

The main reason Multi-Satellite Missions are gaining Popularity among Student Satellites is because a Multitude of Small Satellites can accomplish what a Single large Satellite can. This is important because pf the following advantages a Multi-CubeSat arrangement has over a single Satellite arrangement:

- * Simpler Designs
- * Faster Build Times
- * Cheaper Replacements leading to Higher Redundancy
- * Ability to view targets from Multiple Angles at Multiple Times

Chapter 2

Research Report

- ⇒ Studied initially provided Document* written by Saptarishi which listed many examples of Formation Flying being used/demonstrated/proposed in Student Satellites. Studied up on all Satellites in brief
- ⇒ Researched more into DICE*, AeroCube-4 and its' Successors*, Prometheus*, Flock series* and CanX 4.5 as these might be more relevant to our case.
- ⇒ Studied a paper on How a General CubeSat FF Setup can be established, i.e. all things to consider before establishing a FF Setup, irrespective of objective.
- ⇒ Tried studying on the Controls' aspect of FF from this document*.
- ⇒ Downloaded Cost Models for setting up Multi-Satellite Systems*, if needed later.
- ⇒ Also Beginning to study the possibility of Staged Deployment of Constellations (Specifically, Communication Constellations).

2.1 Satellite Formation Flying Missions

Insert link of Saptarishi's Paper*

Above document briefly covers all Formation Flying Missions carried out by various institutes Worldwide. This document clearly categorizes all missions as Earth Science, Planetary Science, Astrophysics, Heliophysics or a Technical Demonstration. It also categorises according to Number of Satellites in FF and Funding Provided to project.

This is a good starting point for looking up various applications of FF which have been/might be used. Note that these only have a small description of the same, so going through it won't be a massive pain.

2.2 In-Depth Study of Various Satellites Mentioned

As mentioned in the points above, the following satellites have been properly studied and selected due to their relevance to our Project.

- * AeroCube-4 and its' Successors(6, 7, 8, 9)
- * Prometheus
- * Flock-I
- * CanX-4, 5

2.2.1 AeroCube Series

Insert Link here*

All AeroCube missions are Technical Demonstrations of FF. The above document has a brief overview of all the offerings of these CubeSats. Light Read only, won't take much time.

2.2.2 Prometheus

Insert Link Here*

This program is the Direct Successor of the Perseus Program*, which aimed to:

- * Demonstrate the ability to build and launch a useful satellite quickly and at very low cost.
- * Demonstrate a satellite system simple enough to be operated and maintained by non-space experts with little training.
- * Demonstrate a tactically relevant communications capability to a Cube-Sat with an extremely modest ground station footprint.
- * Validate the Agile Space management and development methodology.

Building on the Success of the Perseus Program, Prometheus had two Independent Stages: Block 1 and Block 2, with Block 1 having 8 nano-satellites in FF whereas Block 2 had 2 nanoSats. The major successes of Block 1 are listed:

- * Regular, Secure communications achieved between All 8 satellites and Maintained for many Months.
- * Autonomous system anomaly resolution.
- * Regular automated and easy to use code upload and reprogramming of all microprocessors and SDR (Software Defined Radio) FPGAs.
- * Automated file transfer from ground station to satellite and satellite to ground station.
- * Manually variable data rates.

* Fully encrypted communications.

Check link for more details regarding the same.

2.2.3 Flock-1

Insert Link Here*

Flock-1 consists of 28 nanoSats in a Constellation arrangement, all dedicated to Earth-Imaging. Payload-wise, this example may be quite useful as we are already considering using a Telescope as a Payload.

The recent launch of 88 Extra NanoSats by PSLV (on Feb 15th 2017, Extensively covered on Media) contributed to this pre-existing Constellation and allows for Daily Images of the Entire Earth! Above link has a more comprehensive coverage of this Constellation.

2.2.4 CanX-4, 5

Insert Link Here*

CanX-4, 5 is a Dual-NanoSat FF Demonstration mission. This demonstration aimed at showing that FF can be achieved with sub-meter tracking accuracy with low (delta)V values.

This Constellation setup can help us with the Controls aspect of our Payload if we wish to employ a Very Accurate Formation. The downside is that this system will require a dedicated Propulsion System which for the moment seems difficult to include in our Payload. Above link has more details about how this was implemented.

2.3 General CubeSat Formation Flying

Insert Link Here*

Above link contains a document which covers all the aspects one needs to think about before deciding on the components of a Formation Flying Set of CubeSats.

The above document also covers the Types of Formation Flying systems in brief and mentions a few options for Inter-satellite Communication

2.4 Distributed Optimization Algorithm for FF

Insert Link Here*

Seeing that the Major aspect of FF lies in Controls, I decided to search how is the Controls behind FF structured.

2.5 Staged Deployment of Constellations

Insert link Here*

A document Highly relevant to our Satellite and also implemented by many nanoSats mentioned earlier(eg. Flock-1).

2.6 Cost and Risk Analysis

Insert link Here*

As we are currently in Ideation stage, this document is Unnecessary. But, I believe this might come in handy for a System Engineer/Project Head while finalizing the Payload.

2.7 Constellation Mission Design using Model-based Systems

Insert link Here*

This document talks of the use of a tool to build a Constellation Design based on input parameters and cost metrics. Haven't studied in detail.