Statistiques mathématiques : cours 2

Guillaume Lecué

7 septembre 2017

Références

1. Cours:

- ▶ V. Rivoirard et G. Stoltz, "Statistiques en action"
- ▶ P.J. Bickel et K. Doksum, "Mathematical statistics"
- ► A. Montfort, "Cours de statistique mathématique"

2. Exercices:

- J.J. Daudin, S. Robin et C. Vuillet, "Statistique inférentielle. Idées, démarches, exemples"
- D. Fourdrinier, "Statistiques inférentielle: cours et exercices corrigés"
- ▶ B. Cadre et C. Vial, "Statistique Mathématique Cours et Exercices Corrigés"

Cours précédent (rappel)

- Expérience statistique, modéle statistique, échantillonnage
- ► Fonction de répartition empirique :

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x), \ x \in \mathbb{R}$$

et quelques propriétés asymptotiques :

$$\widehat{F}_n(x) \xrightarrow{p.s.} F(x), \quad \|\widehat{F}_n - F\|_{\infty} \xrightarrow{p.s.} 0$$

leurs vitesses de convergence :

$$\sqrt{n}(\widehat{F}_n(x) - F(x)) \xrightarrow{d} \mathcal{N}(0, F(x)(1 - F(x))),$$

$$\sqrt{n} \|\widehat{F}_n(x) - F(x)\|_{\infty} \xrightarrow{d} K$$

propriétés non-asymptotique grâce à Tchebychev.

Aujourd'hui

Estimateur "plug-in" et la méthode delta

Quantiles empiriques et applications

Un algorithme "on-line" : Robbins-Monro

Estimation de fonctionnelles dans le modèle d'échantillonnage

▶ Objectif: estimation d'une caractéristique scalaire T(F) d'une loi inconnue de fonction de répartition F à partir d'un n-échantillon $X_1, \ldots, X_n \overset{i.i.d.}{\sim} X \sim F$ de cette loi

données :
$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} F \leadsto \text{ problème} : \text{estimer } T(F)$$

- Exemples
 - ▶ Déjà vu : valeur en un point $T(F) = F(x) = \mathbb{E} I(X \le x)$
 - Fonctionnelle régulière :

$$T(F) = h\left(\int_{\mathbb{R}} g(x)dF(x)\right) = h(\mathbb{E}g(X))$$

où $g, h : \mathbb{R} \to \mathbb{R}$ sont régulières et $X \sim F$

Exemples de fonctionelles régulières

- ► Moyenne : $T(F) = m(F) = \int_{\mathbb{R}} x dF(x) = \mathbb{E} X$.
- ▶ Variance :

$$T(F) = \sigma^{2}(F) = \int_{\mathbb{R}} (x - m(F))^{2} dF(x) = \mathbb{E} (X - \mathbb{E} X)^{2}$$

Asymétrie (skewness) :

$$T(F) = \alpha(F) = \frac{\int_{\mathbb{R}} (x - m(F))^3 dF(x)}{\sigma^3(F)} = \frac{\mathbb{E}(X - \mathbb{E}X)^3}{\sigma^3(F)}$$

► Aplatissement (*kurtosis*) :

$$T(F) = \kappa(F) = \frac{\int_{\mathbb{R}} (x - m(F))^4 dF(x)}{\sigma^4(F)} = \frac{\mathbb{E} (X - \mathbb{E} X)^4}{\sigma^4(F)}$$

Exemples de fonctionnelles non regulières

Définition

Soit X une v.a.r. (de cdf F) et 0 . On appelle quantile d'ordre <math>p de X (resp. F) :

$$q_p(F) = \inf\{x \in \mathbb{R} : F(x) \ge p\}$$

quand F est continue et strictement croissante le quantile d'ordre p de la loi F est l'unique solution de

$$F(q_p) = p$$
 (càd $q_p = F^{-1}(p)$).

- ▶ la **médiane** = $\operatorname{med}(F) = q_{1/2}(F)$
- ▶ les quartiles = $\{q_{1/4}(F), \text{med}(F), q_{3/4}(F)\}$

Estimateur "plug-in"

Définition

On appelle estimateur "plug-in" (càd "par substitution") de T(F) l'estimateur $T(\widehat{F}_n)$.

lacktriangle quand $T(F) = h(\mathbb{E}g(X))$ alors l'estimateur plug-in de T(F) est :

$$T(\widehat{F}_n) = h\left(\frac{1}{n}\sum_{i=1}^n g(X_i)\right)$$

▶ quand $T(F) = q_p(F) = \inf\{x \in \mathbb{R} : F(x) \ge p\}$, l'estimateur *plug-in* est le quantile empirique :

$$T(\widehat{F}_n) = \inf\{x \in \mathbb{R} : \widehat{F}_n(x) \ge p\}$$

Convergence (consistance) : si $g,h:\mathbb{R}\to\mathbb{R}$, h continue et $\mathbb{E}|g(X)|<\infty$, alors $T(\widehat{F}_n)\overset{\mathrm{p.s.}}{\to}T(F)$ (LFGN + continuous map theorem).

Vitesse de convergence (normalité asymptotique) :

1. TCL:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^n g(X_i) - \mathbb{E}\,g(X)\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,\operatorname{Var}\big[g(X)\big])$$

où
$$\mathsf{Var} ig[g(X) ig] = \mathbb{E} ig[(g(X) - \mathbb{E} \, g(X))^2 ig]$$

2. On a un résultat du type $\sqrt{n}(Z_n-c_1)\stackrel{d}{\longrightarrow} \mathcal{N}(0,c_2)$. Comment transférer ce résultat à $\sqrt{n}(h(Z_n)-h(c_1))\stackrel{d}{\longrightarrow}$?

Vitesse de convergence de $T(\widehat{F}_n)$ vers $T(F) = h(\mathbb{E} g(X))$

Théorème (Méthode « delta »)

Soit (Z_n) une suite de v.a.r. et V une v.a.r. telles que

$$a_n(Z_n-c_0)\stackrel{d}{\longrightarrow} V$$

où (a_n) est une suite de réels positifs tendant vers $+\infty$ et c_0 est une constante. Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction continue et dérivable en c_0 . Alors

$$a_n(h(Z_n)-h(c_0)) \stackrel{d}{\longrightarrow} h'(c_0)V$$

Méthode Delta

1. si $\sqrt{n}(Z_n-c_1)\stackrel{d}{\to} \mathcal{N}(0,c_2)$ et h dérivable en c_1 alors

$$\boxed{\sqrt{n}\big(h(Z_n)-h(c_1)\big)\stackrel{d}{\to} \mathcal{N}\big(0,c_2[h'(c_1)]^2\big)}$$

- 2. si $V \sim \mathcal{N}(\mu, v)$ et $a \in \mathbb{R}$ alors $aV \sim \mathcal{N}(a\mu, a^2v)$.
- 3. l'idée centrale de la preuve de la méthode Delta est un développement limité de h en c_0 : quand $n \to \infty$

$$a_n(h(Z_n)-h(c_0))\approx h'(c_0)\big[a_n(Z_n-c_0)\big]\approx h'(c_0)V$$

Proposition

 $Si \mathbb{E}[g(X)^2] < +\infty$ et h est une fonction continue et dérivable en $\mathbb{E}[g(X)]$, alors

$$\sqrt{n}(T(\widehat{F}_n)-T(F))\stackrel{d}{\to} \mathcal{N}(0,v(F)),$$

$$o\grave{u}\ v(F) = h'\big(\mathbb{E}\big[g(X)\big]\big)^2 \mathrm{Var}\big[g(X)\big].$$

Pour construire un intervalle de confiance, on aimerait remplacer v(F) par $v(\widehat{F}_n)$: quand h est C^1 , on montre que $v(\widehat{F}_n) \stackrel{\mathbb{P}}{\to} v(F)$ et, via le lemme de Slutsky,

$$\sqrt{n} \frac{T(\widehat{F}_n) - T(F)}{v(\widehat{F}_n)^{1/2}} \stackrel{d}{\to} \mathcal{N}(0,1)$$

Autre application de la méthode Delta : stabilisation de la variance

Soit X_1, \ldots, X_n un n-échantillon de loi Exponentielle de paramétre $\theta \in [0, 1]$.

- ▶ densité $f(\theta, x) = \theta \exp(-\theta x)I(x > 0)$, moyenne $\mathbb{E}_{\theta} X = 1/\theta$, variance $\operatorname{Var}_{\theta} X = 1/\theta^2$
- ► TCL : $\sqrt{n}(\bar{X}_n 1/\theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, 1/\theta^2)$
- **Pb.** : La variance asymptotique dépend du paramètre inconnu θ
- ▶ Méthode Delta : si g est C^1 alors :

$$\sqrt{n}(g(\bar{X}_n) - g(1/\theta)) \stackrel{d}{\to} \mathcal{N}(0, (g'(1/\theta))^2/\theta^2)$$

• en particulier pour $g(\theta) = \log(\theta)$, on a

$$\sqrt{n}(g(\bar{X}_n)-g(\theta)) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

Application : stabilisation de la variance (Bernoulli)

Soit X_1, \ldots, X_n un *n*-échantillon dans le modèle de Bernoulli de paramétre $\theta \in [0, 1]$.

- ► TCL : $\sqrt{n}(\bar{X}_n \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \theta(1 \theta))$
- ightharpoonup La variance asymptotique dépend du paramétre inconnu heta
- ▶ Méthode Delta : si g est C^1 alors :

$$\sqrt{n}(g(\bar{X}_n) - g(\theta)) \stackrel{d}{\rightarrow} \mathcal{N}(0, (g'(\theta))^2 \theta(1 - \theta))$$

• en particulier pour $g(\theta) = 2 \arcsin(\sqrt{\theta})$, on a

$$\sqrt{n}(g(\bar{X}_n)-g(\theta)) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

En dimension k > 1

Il s'agit de fonctionnelles de la forme

$$T(F) = h(\mathbb{E} g_1(X), \dots, \mathbb{E} g_k(X))$$

où $h: \mathbb{R}^k \to \mathbb{R}$ est \mathcal{C}^1 .

► Exemple : le coefficient d'asymétrie

$$T(F) = \frac{\mathbb{E}(X - \mathbb{E}X)^3}{\sigma^3} = h(\mathbb{E}X, \mathbb{E}X^2, \mathbb{E}X^3)$$

où σ est l'écart-type de X.

- Outil : Versions multidimensionnelles
 - 1. du TCL
 - 2. de la ≪ méthode delta ≫.

TCL et méthode « delta » multidimensionnelle

► TCL multidimensionnel : $(\mathbf{X}_n)_{n\geq 1}$ vecteurs aléatoires dans \mathbb{R}^k , i.i.d., de moyenne $\mu = \mathbb{E}[\mathbf{X}_1]$ et de matrice de variance-covariance $\Sigma = \mathbb{E}\left[(\mathbf{X}_1 - \mu)(\mathbf{X}_1 - \mu)^\top\right]$. Alors $\bar{\mathbf{X}}_n = \frac{1}{n}\sum_{i=1}^n \mathbf{X}_i$ vérifie :

$$\sqrt{n} (\overline{\mathbf{X}}_n - \boldsymbol{\mu}) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma)$$

▶ Méthode « delta » multidimensionnelle : Si, de plus, $h : \mathbb{R}^k \to \mathbb{R}^d$ continûment différentiable, alors

$$\sqrt{n} \big(h(\overline{\mathbf{X}}_n) - h(\boldsymbol{\mu}) \big) \stackrel{d}{\to} \mathcal{N} \Big(0, \nabla h(\boldsymbol{\mu})^{\top} \Sigma \nabla h(\boldsymbol{\mu}) \Big).$$

 $\underline{\mathsf{rem.}} : \mathsf{si} \ A \in \mathbb{R}^{k \times d} \ \mathsf{et} \ G \sim \mathcal{N}_k(\mu, \Sigma) \ \mathsf{alors} \ A^\top G \sim \mathcal{N}_d(A^\top \mu, A^\top \Sigma A)$

Notations : gradient (1/2)

$$h: \left\{ egin{array}{ccc} \mathbb{R}^k &
ightarrow & \mathbb{R}^d \ & & \left(egin{array}{ccc} h_1(x) \ dots \ h_d(x) \end{array}
ight) \end{array}
ight.$$

alors
$$\nabla h(x) = \begin{pmatrix} \nabla h_1(x) & \nabla h_2(x) & \cdots & \nabla h_d(x) \end{pmatrix} \in \mathbb{R}^{k \times d}$$

où
$$\nabla h_j(x) = \begin{pmatrix} \partial_{x_1} h_j(x) \\ \vdots \\ \partial_{x_k} h_j(x) \end{pmatrix}$$
 $j = 1, \ldots, d$

tel que $h_1(x+v) \approx h_1(x) + \left\langle \nabla h_1(x), v \right\rangle = h_1(x) + \nabla h_1(x)^\top v$ et de même

$$h(x + v) \approx h(x) + \langle \nabla h(x), v \rangle = h(x) + \nabla h(x)^{\top} v$$

Notations : gradient (2/2)

Par exemple :

1. pour h(x) = Ax où $A \in \mathbb{R}^{d \times k}$, on a :

$$\nabla h(x) = A^{\top}$$

2. pour $h(x) = ||Ax||_2^2$, on a :

$$\nabla h(x) = 2A^{\top}Ax$$

3. pour $h(x) = ||y - Ax||_2^2$, on a :

$$\nabla h(x) = -2A^{\top}(y - Ax)$$

Application : coefficient d'asymétrie

► Coefficient d'asymétrie : on a

$$T(F) = h\Big(\mathbb{E}X, \mathbb{E}X^2, \mathbb{E}X^3\Big)$$

avec

$$h(\alpha,\beta,\gamma) = \frac{\gamma - 3\alpha\beta + 2\alpha^3}{(\beta - \alpha^2)^{3/2}}.$$

l'estimateur plug-in est

$$T(\widehat{F}_n) = h\left(\frac{1}{n}\sum_{i=1}^n X_i, \frac{1}{n}\sum_{i=1}^n X_i^2, \frac{1}{n}\sum_{i=1}^n X_i^3\right).$$

▶ On applique le TCL multidimensionnel avec $\mathbf{X}_i = (X_i, X_i^2, X_i^3)^{\top}$ et $\boldsymbol{\mu} = (\mathbb{E}\,X, \mathbb{E}\,X^2, \mathbb{E}\,X^3)^{\top}$, puis la méthode « delta » avec h.

◆□ > ◆□ > ◆ E > ◆ E > り Q ○

Quantiles théoriques et empiriques

Quantile "théorique" d'ordre p :

$$T(F) = q_p(F) = \inf\{x \in \mathbb{R} : F(x) \ge p\}$$

Quantile empirique d'ordre p :

$$T(\widehat{F}_n) = \widehat{q}_{n,p} = \inf\{x \in \mathbb{R} : \widehat{F}_n(x) \ge q\}$$

Question : Quelles sont les propriétés statistiques d'estimation de $q_p(F)$ par $\widehat{q}_{n,p}$? (Pb. : on n'est plus dans le cas régulier)

Quantiles empiriques : expression explicite par les statistiques d'ordre

Définition

Soit X_1, \ldots, X_n un n-échantillon de v.a.r.. On appelle statistiques d'ordre les n statistiques $X_{(1)}, \ldots, X_{(n)}$ construites telles que

$$X_{(1)} \leq \cdots \leq X_{(n)}$$

1. pour le quantile d'ordre 0 :

$$\widehat{q}_{n,p} = X_{(k)} = X_{(\lceil np \rceil)}$$
 quand $\frac{k-1}{n}$

2. en particulier, la médiane empirique vérifie :

$$\boxed{\widehat{q}_{n,1/2} = \operatorname{med}(\widehat{F}_n) = X_{(\lceil n/2 \rceil)}} ext{ où } \lceil t \rceil = \min(n \in \mathbb{N} : n \geq t)$$

Le boxplot : représentation synthétique de la dispersion de données réelles

fin de la "moustache" (whiskers) :

$$X_* = \min\{X_i : |X_i - \hat{q}_{n,1/4}| \leq 1, 5\mathcal{I}_n\},$$

$$X^* = \max\{X_i : |X_i - \hat{q}_{n,3/4}| \le 1,5\mathcal{I}_n\}.$$

Intervalle interquartile:

$$\mathcal{I}_n = \hat{q}_{n,3/4} - \hat{q}_{n,1/4}.$$

Les données au-delà des whiskers sont considérées comme *outliers*. (Il existe d'autres variantes)

Exemple d'application du boxplot

http://localhost:8888/notebooks/box_qqplots.ipynb Box-plot

Le qq-plot : test d'adéquation à une loi

Etant donné un n-échantillon X_1, \ldots, X_n et une cdf F_{ref} , on veut tester si l'hypothèse suivante est acceptable :

$$(H_0)$$
 "Les X_i sont distribués selon F_{ref} "

Pour "accepter ou refuser visuellement" cette hypothèse, on peut tracer le qq-plot : c'est le nuage de points

$$\boxed{\left(q_{i/n}(F_{ref}),\widehat{q}_{n,i/n}\right)_{i=1}^{n} = \left(q_{i/n}(F_{ref}),X_{(i)}\right)_{i=1}^{n}}$$

- 1. si le nuage de points est "approximativement" aligné avec la droite y=x alors l'hypothèse est acceptée (on trace aussi la droite y=x sur un qq-plot)
- 2. si les points sont "approximativement" alignés avec une droite affine alors l'hypothèse est vraie à une transformation de centrage et scaling prés (généralement, on normalise les données)

convergence des quantiles empiriques

Théorème

Soit X une v.a.r. (on note par F sa cdf) admettant une densité f_X par rapport à la mesure de Lebesgue. On suppose que f_X est strictement positive p.s. sur un intervalle $I \subset \mathbb{R}$ et nulle en dehors. Soit 0 . On a

$$\widehat{q}_{n,p} \stackrel{
ho.s.}{\longrightarrow} q_p(F) = q_p$$

Si de plus la densité f_X de X admet une version continue en q_p alors $\widehat{q}_{n,p}$ est asymptotiquement Gaussien :

$$\left| \sqrt{n} (\widehat{q}_{n,p} - q_p) \xrightarrow{d} \mathcal{N} \left(0, \frac{p(1-p)}{f_X(q_p)^2} \right) \right|$$

Convergence des quantiles empiriques

La variance asymptotique de $\widehat{q}_{n,p}$ est

$$\frac{p(1-p)}{f_X(q_p)^2}$$

La quantité $f_X(q_p)$ est inconnue.

▶ Comme $\widehat{q}_{n,p}$ est fortement consistant et f_X est continue en q_p ,

$$f_X(\widehat{q}_{n,p}) \xrightarrow{p.s.} f_X(q_p)$$

On peut donc "remplacer" q_p par $\widehat{q}_{n,p}$ grâce à Slustky :

$$\frac{\sqrt{n}f_X(\widehat{\mathbf{q}}_{n,p})}{\sqrt{p(1-p)}}(\widehat{q}_{n,p}-q_p)\stackrel{d}{\longrightarrow}\mathcal{N}(0,1)$$

▶ Mais $f_X(\widehat{q}_{n,p})$ est aussi inconnue! (problème d'estimation de densité)

Limites de l'approche "plug-in"

L'estimation de T(F) par $T(\widehat{F}_n)$ n'est pas toujours possible :

► Exemple : si F admet une densité f continue par rapport à le mesure de Lebesgue qu'on souhaite estimer en un x₀ donné :

$$T(F)=f(x_0)=F'(x_0),$$

on ne peut pas prendre comme estimateur $\widehat{F}'_n(x_0)$ car \widehat{F}_n est constante par morceaux.

L'estimation de T(F) par $T(\widehat{F}_n)$ n'est pas toujours souhaitable :

Souvent on dispose d'information a priori supplémentaire : F appartient à une sous-classe particulière de distributions (le modéle) et il y a des choix plus judicieux que l'estimateur par plug-in (cf. cours suivants).

Un algorithme "on-line": Robbins-Monro

"Batch" vs "on-line"

Il existe principalement deux manières de générer/recevoir des données :

- "batch" : les données sont toutes obtenues en une seule fois (ex. : jeux de données)
- "on-line": les données sont obtenues les unes à la suite des autres (ex. : données en temps réel)

Remarque :

- 1. \widehat{F}_n et $\widehat{q}_{n,\alpha}$ sont des estimateurs "batch"
- 2. on peut regarder les données "batch" commme des données "on-line" (cf. vowpal wabbit)

Estimation "on-line" des quantiles

<u>Question</u> : ebay souhaite connaître le 95-ième pourcentile des montants de transaction sur son site.

Deux stratégies :

- 1. "batch" : on reprend tous les achats passés sur eBay depuis sa création et on calcul $\widehat{q}_{n,95/100}$. Problème : n est très grand!
- 2. "on-line": à chaque nouvel achat, on actualise un estimateur (en temps réel).

Rem.: De nombreux estimateurs on-line sont adaptés d'algorithmes d'optimisation convexe itératifs comme la **descente de gradient**.

Descente de gradient / méthode de Newton

 $\underline{\mathsf{Problème}}$: trouver un zéro d'une fonction f croissante et \mathcal{C}^1 : trouver x tel que

$$f(x) = 0$$

La méthode de Newton est une méthode itérative :

Init : $x_0 \in \mathbb{R}$ while stopping criteria **do**

1. on fait une DL de f en x_k :

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

2. on résoud $f(x_k) + f'(x_k)(x - x_k) = 0$ (au lieu de f(x) = 0) :

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

end

Descente de gradient / méthode de Newton

1. Critère d'arrêt (pour ϵ donné) :

$$|f(x_k)| \le \epsilon \text{ ou } |x_{k+1} - x_k| \le \epsilon$$

- 2. Quand la fonction n'est pas dérivable ou que la dérivée est difficile à calculer, on remplace $f'(x_k)$ par η_k^{-1} (step size)
- 3. chercher le minimum d'une fonction convexe h c'est chercher un zéro d'une fonction croissante h': méthode de Newton = descente de gradient

$$x_{k+1} = x_k - \frac{h'(x_k)}{h''(x_k)}$$

(et si h'' n'existe pas ou difficile à calculer : $h''(x_k) \leftrightarrow \eta_k^{-1}$)

Estimation "on-line" des quantiles par Robbins-Monro (1/2)

Soit X une v.a.r. admettant une densité f strictement positive sur une intervalle $I \subset \mathbb{R}$ et nulle en dehors de cet intervalle. On note par F la cdf de X.

- 1. F est dérivable sur \mathbb{R} : F' = f p.p.
- 2. F est strictement croissante sur I
- 3. soit $p \in (0,1)$, le quantile d'ordre p de X est l'unique solution de

$$F(x)-p=0$$

On est donc amené à trouver le zéro d'une fonction dérivable strictement croissante : on peut utiliser la méthode de Newton

Estimation "on-line" des quantiles par Robbins-Monro (2/2)

L'algorithme de Newton est

$$x_{k+1} = x_k - \frac{F(x_k) - p}{f(x_k)}$$

Problèmes:

- 1. f est inconnu : $f(x_k) \leftrightarrow \eta_k^{-1}$ (step size)
- 2. F est inconnue : on écrit $F(x_k) = \mathbb{E} I(X \le x_k)$ et on "estime" $F(x_k)$ par $I(X_{k+1} \le x_k)$ grâce à la nouvelle donnée X_{k+1}

On obtient l'algorithme de Robbins-Monro (1954) :

$$x_{k+1} = x_k - \eta_k (I(X_{k+1} \le x_k) - p)$$

Robbins-Monro / descente de gradient stochastique

L'algorithme de Robbins-Monro (RM) pour l'estimation du quantile d'ordre $p \in (0,1)$ est le suivant :

- 1. écriture en pseudo-code
- 2. algorithme itératif
- 3. $(\eta_k)_k$ est appelé le step size. Par exemple :

$$\eta_k = k^{-a}$$
, où $a \in (1/2, 1]$ (ou "line search")

4. x_0 starting point (cf. "warm start")

Convergence de l'algorithme de RM pour l'estimation de quantile

Théorème

Soit $p \in (0,1)$ et X une v.a.r. dont la cdf F vérifie :

- 1. F est continue
- 2. il existe un unique $q_p \in \mathbb{R}$ tel que pour tout $x \neq q_p$,

$$(x-q_p)\big(F(x)-p\big)>0$$

Soit $(X_k)_k \overset{i.i.d.}{\sim} X$. Alors, la suite itérative de RM $(x_k)_k$ où $x_0 \in \mathbb{R}$ et $x_{k+1} = x_k - \eta_k (I(X_{k+1} \le x_k) - p)$ converge presque surement vers q_p quand le step size $(\eta_k)_k$ vérifie :

$$\sum_k \eta_k = +\infty$$
 et $\sum_k \eta_k^2 < +\infty$

Vitesse de convergence de RM

Théorème

Si de plus F est \mathcal{C}^2 alors pour f=F' (densité de X) et $\sigma^2=p(1-p)$, quand $n\to\infty$:

1. $si\ f(q_p) > 1/2\ alors$

$$\sqrt{n}(x_n-q_p) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{\sigma^2}{2f(q_p)-1}\right)$$

2. $si\ f(q_p) = 1/2\ alors$

$$\sqrt{\frac{n}{\log n}} (x_n - q_p) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$$

3. si $0 < f(q_p) < 1/2$ alors $n^{f(q_p)}(x_n - q_p) \stackrel{d}{\longrightarrow} Z$ où Z est une variable aléatoire bornée p.s..

Comparaison d'estimateurs (1/2)

<u>Problème</u>: Dans le cadre "batch", on a construit deux estimateurs du quantile $q_p(F)$: $\widehat{q}_{n,p}$ et x_n (RM) lequel choisir?

- 1) critères théoriques (asymptotique) :
 - les deux estimateurs sont fortement consistants
 - ▶ la vitesse de convergence de $\widehat{q}_{n,p}$ est toujours en $1/\sqrt{n}$ alors que celle de x_n se dégrade quand $f(q_p) \le 1/2 \Rightarrow$

$$\widehat{q}_{n,p}$$
 est préférable à x_n quand $f(q_p) \leq 1/2$

• quand $1/2 < f(q_p)$, $\widehat{q}_{n,p}$ et x_n sont tous les deux asymptotiquement normaux de vitesse de convergence en $1/\sqrt{n}$ mais leurs variances asymtotiques sont

```
* pour \widehat{q}_{n,p}: \sigma^2/f(q_p)^2

* pour x_n: \sigma^2/(2f(q_p)-1)

or \sigma^2/f(q_p)^2 \le \sigma^2/(2f(q_p)-1) donc

\widehat{q}_{n,p} est préférable à x_n quand 1/2 < f(q_p)
```

D'un point de vue théorique, $\widehat{q}_{n,p}$ est préférable à x_n

Comparaison d'estimateurs (2/2)

2) critères empiriques :

▶ coût de calcul : la construction de $\widehat{q}_{n,p}$ nécessite le tri des données X_1, \ldots, X_n (qui peuvent être distribuée quand n est grand) contrairement à x_n qui est on-line \Rightarrow

 x_n est préférable à $\widehat{q}_{n,p}$ quand n est grand

Etude de la convergence sur des données simulées : l'intérêt des données simulées est qu'on connaît la valeur de l'objet à estimer.

> http://localhost:8888/notebooks/rm_quantile.ipynb Robbins-Monro

 Etude des estimateurs sur des données réelles : cohérence des résultats; échantillon test.

