# JF PY1T10 Special Relativity

Lecture 8
Transformation of Velocity

#### Transformation of Velocity

We will find that c is an upper limit to the velocity of any material object, and to the transmission of information.

Also, **P2**: *c* same for all observers

These ideas are contrary to our intuition

We are only familiar with behaviour for  $v \ll c$ , where "strange" effects are small, and LT reduces to GT.

Clearly results are not consistent with the Galilean transform, we need a new one!

Need to find the transformation to relate measurement of velocity in different inertial frames.

#### Transformation of Velocity – 2



Let us confine motion to the xy-plane.

Object with velocity components  $u_x'$ ,  $u_y'$ ,  $u_z'$  as measured in S':

$$u_{x}' = \frac{dx'}{dt'}, \qquad u_{y}' = \frac{dy'}{dt'}$$

What are  $u_x$  and  $u_y$ ?

#### Transformation of Velocity – 3

$$x = \gamma(x' + vt')$$

$$\Rightarrow \frac{dx}{dt'} = \gamma \left(\frac{dx'}{dt'} + v \frac{dt'}{dt'}\right)$$

$$\Rightarrow dx = \gamma(u_{x'} + v)dt'$$

$$\frac{dy}{dt'} = \frac{dy'}{dt'} = u_{y'}$$

$$\therefore dy = u_{y'}dt'$$

$$dt = \gamma \left(1 + \frac{vu_{x'}}{c^2}\right)dt'$$

$$\therefore u_x = \frac{dx}{dt} = \frac{u_{x'} + v}{1 + \frac{vu_{x'}}{c^2}}, \qquad \therefore u_y = \frac{dy}{dt} = \frac{\frac{u_{y'}}{\gamma}}{1 + \frac{vu_{x'}}{c^2}}$$

LT: 
$$x = \gamma(x' + vt')$$
  
 $y = y', \quad z = z'$   
 $t = \gamma\left(t' + \frac{vx'}{c^2}\right)$ 

# Transformation of Velocity – 4

Similarly,

$$u_{x}' = \frac{u_{x} - v}{1 - \frac{vu_{x}}{c^{2}}}$$

$$u_y' = \frac{u_y/\gamma}{1 - \frac{vu_x}{c^2}}$$

## Example 1: Addition of Velocities

Suppose a particle is moving at  $u_x' = 0.5c$  in S', and S' moves at v = 0.5c w.r.t. S.

What is the velocity of the particle as measured in S?

$$u_{x} = \frac{u_{x}' + v}{1 + \frac{vu_{x}'}{c^{2}}}$$

$$= \frac{0.5c + 0.5c}{1 + 0.5c^2}$$

$$= 0.8c$$

#### Example 2: Addition of Velocities

A photon (velocity = c) is measured in S'.

S' moves at v relative to S.

What is the photon's velocity in *S*?



# Example 2: Addition of Velocities

$$u_x = \frac{c + v}{1 + \frac{vc}{c^2}}$$

$$= \frac{c+v}{c+v}c$$

$$= c$$

Measured in S or S', the photon moves at c.

This is what we expect from LT, but still strange!

The velocity of light from moving source is always c.

Confirmed by experiment.

# Velocity of Light from Moving Source – Experiment

Volume 12, number 3

PHYSICS LETTERS

1 October 1964

TEST OF THE SECOND POSTULATE OF SPECIAL RELATIVITY IN THE GEV REGION

T. ALVÄGER \*, F. J. M. FARLEY, J. KJELLMAN and L WALLE! \*\*

CERN, Geneva

Received 20 August 1964

# Velocity of Light from Moving Source – Experiment

Measure the velocity of light emitted in the decay of neutral  $\pi^0$  mesons (pions) in flight

20 GeV protons 
$$\frac{\pi^0, 6 \text{ GeV}, v \geq 0.99975c}{\pi^0 \rightarrow \gamma_1 + \gamma_2}$$

Mean lifetime approx.  $2 \times 10^{-16}$  s – can only travel a very small distance before decaying.

Proton beam and  $\pi^0$  production pulsed, move  $\gamma$  detector to measure velocity of  $\gamma$ .

Result:  $2.9977 \times 10^8 \text{ ms}^{-1}$ 

Source velocity  $\approx c$  but photon velocity still c

# "Headlight effect"

Source of light is travelling at velocity v parallel to x relative to an observer in frame S.

Suppose that frame in which source is at rest is S'.

Suppose that it is a point source – radiating uniformly in all directions in S'. In what direction is this photon travelling as measured in S?



# "Headlight effect"

Use L.T.:

$$v_{x} = \frac{u_{x}' + v}{1 + v u_{x}' / c^{2}}$$

For the photon:

$$c \cos \theta = \frac{c \cos \theta' + v}{1 + \frac{vc \cos \theta'}{c^2}}$$
$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'}$$

# "Headlight effect"

Suppose 
$$\beta = 0.9$$

For 
$$\theta'=0$$
,  $\theta=0$   
For  $\theta'=180^\circ$ ,  $\theta=180^\circ$   
For  $\theta'=\frac{\pi}{2}$ ,  $\cos\theta=0.9$ ,  $\theta=25^\circ$ 

Radiation is concentrated in the forward direction.

Electron Synchrotron – get very intense x-ray pulses.

#### Concept Question

Santiago stands on the ground as Miriam flies directly toward him in her spaceship at 0.5c. She fires a small rocket directly toward Santiago that flies at a speed of 0.8c relative to her spaceship. According to Santiago, the speed of the rocket is

A. 1.3 *c* 

B. Faster than c but slower than 1.3 c

C. *c* 

D. Faster than 0.8 c but slower than c

E. 0.8 *c* 

#### **Concept Question**

Two spaceships, **A** and **B**, approach Earth at 0.5 *c* from opposite directions as measured by an observer on Earth. What is the speed of **B** as measured by an observer on **A**?

A. 1.0 *c* 

B. 0.6 *c* 

C. 0.8 c

D. 0.25 *c* 

## Problem Question (37.23)

An Imperial spaceship, moving at a high speed relative to the planet Arrakis, fires a rocket towards the planet with a speed of 0.92 *c* relative to the spaceship.

An observer on Arrakis measures that the rocket is approaching with a speed of 0.36 c.

Q1: What is the speed of the spaceship relative to Arrakis?

Q2: Is the spaceship moving towards or away from Arrakis?