EXEMPLES D'ÉTUDE DE LA CONVERGENCE DE SÉRIES NUMÉRIQUES

Exercice 1

Soient α et β deux réels.

Le but de cet exercice est l'étude des séries $\sum_{n>2} u_n$ où $u_n = \frac{1}{n^{\alpha} (\ln n)^{\beta}}$. (Séries de Bertrand)

1) Étude du cas $\alpha > 1$. On pose $\gamma = \frac{1+\alpha}{2}$.

Démontrer:

$$u_n = O\left(\frac{1}{n^{\gamma}}\right)$$

En déduire la nature de la série de Bertrand dans ce cas.

2) Étude du cas α < 1.

Démontrer:

$$\exists B \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \ge \frac{B}{n})$$

En déduire la nature de la série de Bertrand dans ce cas.

- 3) Étude du cas $\alpha = 1$.
 - a) On considère l'application $f_{\beta}: t \mapsto \frac{1}{t(\ln t)^{\beta}}$ sur]1; $+\infty$ [.

Démontrer:

$$\exists n_0 \in \mathbb{N}, f_{\beta}$$
 décroissante sur $[n_0, +\infty[$

- b) On suppose $\beta = 1$. En comparant avec une intégrale, démontrer que la série de Bertrand diverge.
- c) On suppose $\beta > 1$. En comparant avec une intégrale, démontrer que la série de Bertrand converge.
- d) Étudier le cas β < 1.

Commentaire:

Cet exercice classique traite des séries de Bertrand. Il a l'avantage, d'utiliser diverses méthodes pour étudier une série (comparaison, avec une série de Riemann, comparaison avec une intégrale)

Exercice 2

Soient $\alpha \in \mathbb{R}_+^*$ et u la suite définie sur \mathbb{N} par : $u_n = \frac{(-1)^n}{\alpha v + 1}$.

1. Montrer que la série de terme général u_n est convergente et que :

$$\sum_{n=0}^{\infty} u_n = \int_0^1 \frac{\mathrm{d}t}{1+t^{\alpha}}$$
 (Utilisation du TSCSA et des séries géométriques)

2. En déduire:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = \ln 2$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = \ln 2$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3n+1} = \frac{1}{3} \left(\ln 2 + \frac{\pi}{\sqrt{3}} \right)$$

Commentaire : cet exercice a pour but l'étude d'une série alternée. Grâce à une expression de sa somme, on retrouve quelques résultats classiques.

Exercice 3

Soit $\theta \in]0, 2\pi[$.

- 1. Montrer que la série $\sum_{n\geq 1} \frac{e^{in\theta}}{n}$ est convergente. (Séries à termes complexes Utilisation de la règle d'Abel)
- 2. Étudier de deux manières différentes la limite de la suite $(I_n(\theta))_{n \in \mathbb{N}^*}$ définie par :

$$I_n(\theta) = \int_{\pi}^{\theta} \sum_{k=1}^{n} \mathbf{e}^{\mathbf{i}kt} dt$$
 (Utilisation du lemme de Lebesgue)

3. En déduire les valeurs de $\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}$, $\sum_{n=1}^{\infty} \frac{\cos(n\theta)}{n}$ et $\sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n}$.

Commentaire : cet exercice a pour but l'étude d'une série à termes complexes. On utilise la règle d'Abel.

Exercice 4

Démontrer les équivalents suivants :

$$\sum_{k=1}^{n} \frac{1}{k} \underset{+\infty}{\sim} \ln n$$

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \underset{+\infty}{\sim} \frac{n^{1-\alpha}}{1-\alpha} \quad \text{pour } 0 \le \alpha < 1$$

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{+\infty}{\sim} \frac{1}{(\alpha - 1)n^{\alpha - 1}} \quad \text{pour } \alpha > 1$$

<u>Commentaire</u>: deux méthodes possibles, soit comparer à une intégrale, soit utiliser des séries télescopiques.

Exercice 5

Démontrer la règle de Raabe-Duhamel :

Soit $(u_n)_{n \in \mathbb{N}}$ une suite de nombres réels **strictement positifs** telle que :

$$\exists (\alpha, \beta) \in \mathbb{R}_+^* \times]1 ; +\infty[\text{ tels que} : \frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^{\beta}}\right)$$

- 1. Si $\alpha \le 1$ alors la série $\sum u_n$ diverge.
- 2. Si $\alpha > 1$ alors la série $\sum u_n$ converge.

Application : étude de la convergence de la série de terme général : $u_n = \frac{2 \times 4 \times ... \times (2n)}{3 \times 5 \times ... \times (2n+1)}$

Exercice 6 Formule de Stirling

- 1) Pour tout entier naturel n, on pose $I_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$. (Intégrales de Wallis)
 - a) Calculer explicitement I_{2p} et I_{2p+1} .
 - b) Démontrer que la suite $(I_n)_{n \in \mathbb{N}}$ est décroissante. En déduire : $\forall n \in \mathbb{N}, 1 \leq \frac{I_{n+1}}{I_{n+2}} \leq \frac{I_n}{I_{n+2}}$.
 - c) Démontrer que : $I_n \sim I_{n+1}$.
 - d) Démontrer que la suite $((n+1)I_nI_{n+1})_{n\in\mathbb{N}}$ est constante. En déduire : $I_n \sim \sqrt{\frac{\pi}{2n}}$.
- 2) On considère la suite (u_n) définie par : $u_n = \frac{n!}{\sqrt{n}} \left(\frac{\mathbf{e}}{n}\right)^n$ pour $n \in \mathbb{N}^*$.
 - a) On pose $v_n = \ln(u_n)$, pour $n \in \mathbb{N}^*$. En étudiant $v_{n+1} v_n$, démontrer que la série de terme général v_n converge. En déduire que la suite (u_n) converge vers une certaine limite ℓ .
 - b) À l'aide de la question 1)d), démontrer que : $\ell = \sqrt{2\pi}$.
 - c) En déduire la formule de Stirling : $n ! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$

EXEMPLES D'ÉTUDE DE SÉRIES NUMÉRIQUES: SOLUTIONS

Exercice 1

1) On a, pour tout
$$n \ge 2$$
:
$$n^{\gamma} u_n = n^{\frac{1-\alpha}{2}} (\ln n)^{-\beta}$$

Or,
$$\lim_{n \to +\infty} n^{\frac{1-\alpha}{2}} (\ln n)^{-\beta} = 0$$
 puisque $\frac{1-\alpha}{2} < 0$. C'est à dire :

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow n^{\gamma} u_n \le \varepsilon)$$

En particulier pour $\varepsilon = 1$:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \le \frac{1}{n^{\gamma}})$$

Comme $\gamma > 1$, la série de terme général $\frac{1}{n^{\gamma}}$ converge.

Du test de comparaison des séries à termes positifs, on déduit la convergence de la série de terme général u_n .

<u>Remarque</u>: dans le cas où β est positif, du fait de la décroissance de l'application $t \mapsto \frac{1}{t^{\beta}}$ sur \mathbb{R}_{+}^{*} , on peut

faire le raisonnement plus rapide suivant :

On a, pour tout
$$n \ge 2$$
:
$$n^{\alpha} u_n = \frac{1}{(\ln n)^{\beta}} \le \frac{1}{(\ln 2)^{\beta}}$$

En posant
$$M = \frac{1}{(\ln 2)^{\beta}}$$
: $u_n \leq \frac{M}{n^{\alpha}}$

Or, la série de Riemann de terme général $\frac{1}{n^{\alpha}}$ converge (car $\alpha > 1$).

Du test de comparaison des séries à termes positifs, on déduit la convergence de la série de terme général u_n .

Conclusion: la série de Bertrand converge.

2) On a, pour tout
$$n \ge 2$$
:
$$n u_n = \frac{n^{1-\alpha}}{(\ln n)^{\beta}}$$

Or,
$$1 - \alpha > 0$$
, donc:
$$\lim_{n \to +\infty} \frac{n^{1-\alpha}}{(\ln n)^{\beta}} = +\infty$$

Par conséquent, il existe $M \in \mathbb{R}_+^*$ et $N \in \mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, \qquad \qquad n \ge N \implies n \, u_n \ge M$$

C'est-à-dire:
$$n \ge N \Rightarrow u_n \ge \frac{M}{n}$$

Or, la série de Riemann de terme général $\frac{1}{n}$ diverge (série harmonique).

Du test de comparaison des séries à termes positifs, on déduit la divergence de la série de terme général u_n .

<u>Conclusion</u>: la série de Bertrand diverge.

3) a) Étudions le sens de variation de l'application $f_{\beta}: t \mapsto \frac{1}{t(\ln t)^{\beta}}$ sur]1, + ∞ [:

$$f_{\beta}$$
 est dérivable et
$$f_{\beta}'(t) = -\frac{(\ln t)^{\beta} + \beta(\ln t)^{\beta-1}}{t^2(\ln t)^{2\beta}} = -\frac{\ln t + \beta}{t^2(\ln t)^{\beta+1}}$$

On a:
$$f'_{\beta}(t) \le 0 \iff \ln t + \beta \ge 0 \iff t \ge e^{-\beta}$$

Par conséquent, f_{β} est décroissante sur $]\mathbf{e}^{-\beta}$, $+\infty[$.

Posons $n_0 = \max(3, E(e^{-\beta}) + 2)$.

Ainsi, f_{β} est décroissante sur $[n_0 - 1, +\infty[$.

Et pour tout $n \ge n_0$:

$$\int_{n}^{n+1} \frac{1}{t(\ln t)^{\beta}} dt \le \frac{1}{n(\ln n)^{\beta}} \le \int_{n-1}^{n} \frac{1}{t(\ln t)^{\beta}} dt$$

D'où, par sommation, pour n allant de n_0 à N:

$$\int_{n_0}^{N+1} \frac{1}{t(\ln t)^{\beta}} dt \le \sum_{n=n_0}^{N} \frac{1}{n(\ln n)^{\beta}} \le \int_{n_0-1}^{N} \frac{1}{t(\ln t)^{\beta}} dt$$

Par changement de variable $u = \ln t$ (et donc $t = \mathbf{e}^u$, $dt = \mathbf{e}^u du$) dans les intégrales :

$$\int_{\ln(n_0)}^{\ln(N+1)} \frac{1}{u^{\beta}} du \le \sum_{n=n_0}^{N} \frac{1}{n(\ln n)^{\beta}} \le \int_{\ln(n_0-1)}^{\ln(N)} \frac{1}{u^{\beta}} du \quad (*)$$

Nous pouvons maintenant répondre aux questions b), c) et d):

b) $\beta = 1$. Dans ce cas, on obtient :

$$\ln(\ln(N+1)) - \ln(\ln(n_0)) \le \sum_{n=n_0}^{N} \frac{1}{n(\ln n)^{\beta}} \le \ln(\ln(N)) - \ln(\ln(n_0-1))$$

Or, la suite (v_n) définie par $v_n = \ln(\ln(n+1)) - \ln(\ln(n_0))$ diverge.

Il en va donc de même de la série de Bertrand.

c) $\beta > 1$. Dans ce cas, on obtient :

$$\sum_{n=n_0}^{N} \frac{1}{n(\ln n)^{\beta}} \le \left[\frac{1}{(1-\beta)u^{\beta-1}} \right]_{\ln(n_0-1)}^{\ln(N)}$$

$$\sum_{n=n_0}^{N} \frac{1}{n(\ln n)^{\beta}} \le \frac{1}{\beta-1} \left(\frac{1}{(\ln(n_0-1))^{\beta-1}} - \frac{1}{(\ln(N))^{\beta-1}} \right)$$

Or, comme $\beta > 1$, $\frac{1}{(\ln(N))^{\beta-1}}$ tend vers 0 lorsque N tend vers l'infini.

Les sommes partielles sont donc majorées donc la série de Bertrand converge.

d) β < 1. Dans ce cas, on peut procéder comme ci-dessus en utilisant l'autre inégalité de (*) pour prouver que les sommes partielles divergent. Mais il y a plus simple !

$$\frac{1}{n(\ln n)^{\beta}} \geqslant \frac{1}{n \ln n}$$

Et d'après le cas $\beta = 1$, la série de Bertrand diverge.

RÉSUMÉ

La série de Bertrand $\sum_{n\geq 2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$

- converge si et seulement si $(\alpha > 1)$ ou $(\alpha = 1)$ et $(\alpha > 1)$
- diverge si et seulement si $(\alpha < 1)$ ou $(\alpha = 1)$ et $\beta \le 1$

Exercice 2

- 1. On a:
 - $\forall n \in \mathbb{N}, |u_n| = (-1)^n u_n$
 - la suite $(|u_n|)_{n \in \mathbb{N}}$ est décroissante
 - la suite $(u_n)_{n \in \mathbb{N}}$ tend vers 0

D'après le théorème sur les séries alternées, on en déduit la convergence de la série de terme général u_n .

Calculons, pour $N \in \mathbb{N}$:

$$\sum_{n=0}^{N} \frac{(-1)^n}{\alpha n + 1} = \sum_{n=0}^{N} (-1)^n \int_0^1 t^{\alpha n} dt = \int_0^1 \sum_{n=0}^{N} (-t^{\alpha})^n dt = \int_0^1 \frac{1 - (-t^{\alpha})^{N+1}}{1 + t^{\alpha}} dt = \int_0^1 \frac{dt}{1 + t^{\alpha}} - (-1)^{N+1} \int_0^1 \frac{t^{\alpha(N+1)}}{1 + t^{\alpha}} dt$$

On a donc:

$$\left| \sum_{n=0}^{N} \frac{(-1)^n}{\alpha n + 1} - \int_0^1 \frac{\mathrm{d}t}{1 + t^{\alpha}} \right| \le \int_0^1 \frac{t^{\alpha(N+1)}}{1 + t^{\alpha}} \, \mathrm{d}t \le \int_0^1 t^{\alpha(N+1)} \, \mathrm{d}t \le \frac{1}{\alpha(N+1) + 1}$$

D'où, par passage à la limite lorsque N tend vers $+\infty$:

$$\sum_{n=0}^{\infty} u_n = \int_0^1 \frac{\mathrm{d}t}{1+t^{\alpha}}$$

2. Pour
$$\alpha = 1$$
:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = \int_0^1 \frac{dt}{1+t} = \ln 2$$

Pour
$$\alpha = 2$$
:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \operatorname{Arctan} 1 - \operatorname{Arctan} 0 = \frac{\pi}{4}$$

Pour $\alpha = 3$:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^3}$$

Considérons la fraction rationnelle :

$$F(t) = \frac{1}{1 + t^3}$$

On décompose F en éléments simples :

$$F(t) = \frac{1}{1+t^3} = \frac{A}{1+t} + \frac{Bt+C}{1-t+t^2}$$

En multipliant par (1 + t) et en spécialisant t = -1, on obtient A:

$$A = F(t)(1+t) \mid (t=-1) = \frac{1}{3}$$

De plus :
$$\lim_{t \to \infty} tF(t) = A + B = 0 \text{ donc } B = -\frac{1}{3}$$

$$F(0) = A + C = 1$$
 donc $C = \frac{2}{3}$

D'où:
$$\frac{1}{1+t^3} = \frac{1}{3} \left(\frac{1}{1+t} - \frac{t-2}{1-t+t^2} \right) = \frac{1}{3} \left(\frac{1}{1+t} - \frac{t-\frac{1}{2}}{1-t+t^2} + \frac{3}{2} \frac{1}{\left(t-\frac{1}{2}\right)^2 + \frac{3}{4}\right)$$

En posant $u = t - \frac{1}{2}$ dans le troisième terme, on obtient :

$$\int_0^1 \frac{\mathrm{d}t}{1+t^3} = \frac{1}{3} \ln 2 - \frac{1}{2} \left[\ln \left| t^2 - t + 1 \right| \right]_0^1 + \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\mathrm{d}u}{u^2 + \frac{3}{4}}$$

$$\int_0^1 \frac{dt}{1+t^3} = \frac{1}{3} \ln 2 - 0 + \frac{1}{2} \times \frac{2}{\sqrt{3}} \left[Arc \tan \left(\frac{2u}{\sqrt{3}} \right) \right]_{-\frac{1}{2}}^{\frac{1}{2}}$$

$$\int_0^1 \frac{\mathrm{d}t}{1+t^3} = \frac{1}{3} \ln 2 + \frac{1}{\sqrt{3}} \frac{\pi}{3}$$

D'où: $\int_{0}^{1} \frac{dt}{1+t^{3}} = \frac{1}{3} \left(\ln 2 + \frac{\pi}{\sqrt{3}} \right)$

Les amateurs pourront encore étudier le cas $\alpha = 4$.

Exercice 3

Rappelons la règle d'Abel pour les séries :

Soit (ε_n) une suite de réels positifs, décroissante et convergeant vers 0.

Soit (a_n) une suite de complexes telle que :

$$\exists M \in \mathbb{R}, \, \forall n \in \mathbb{N}, \, \left| \sum_{p=0}^{n} a_{p} \right| \leq M$$

(Majoration des sommes partielles)

Alors la série de terme général $\varepsilon_n a_n$ est convergente.

Démonstration de la règle d'Abel:

Posons:
$$A_n = \sum_{p=0}^{n} a_p$$

Ainsi:
$$A_0 = a_0$$
 et $\forall p \in \mathbb{N}^*, \ a_p = A_p - A_{p-1}$

Posons également :
$$S_n = \sum_{p=0}^n \varepsilon_p a_p$$

Nous allons montrer que la suite (S_n) converge :

Cette règle existe aussi pour les intégrales.

$$S_n = \varepsilon_0 a_0 + \sum_{p=1}^n \varepsilon_p (A_p - A_{p-1})$$

$$S_n = \varepsilon_0 a_0 + \sum_{p=1}^n \varepsilon_p A_p - \sum_{p=0}^{n-1} \varepsilon_{p+1} A_p$$

$$S_n = \varepsilon_n A_n + \sum_{p=0}^{n-1} (\varepsilon_p - \varepsilon_{p+1}) A_p$$

Cette dernière écriture est souvent appelée "transformation d'Abel". On notera l'analogie avec une intégration par parties.

• La suite (A_n) est bornée et la suite (ε_n) converge vers 0 donc la suite $(\varepsilon_n A_n)$ converge aussi vers 0.

• De plus :
$$\sum_{p=0}^{n-1} |\varepsilon_p - \varepsilon_{p+1}| |A_p| \le M(\varepsilon_0 - \varepsilon_n) \le M\varepsilon_0$$

La série de terme général $(\varepsilon_p - \varepsilon_{p+1})A_p$ est donc absolument convergente, donc convergente (car \mathbb{C} est complet) On en déduit la convergence de la suite (S_n) , c'est-à-dire la convergence de la série de terme général $\varepsilon_n a_n$.

1. On pose, pour
$$n \in \mathbb{N}^*$$
: $a_n = \mathbf{e}^{\mathbf{i}n\theta}$ et $\varepsilon_n = \frac{1}{n}$

Il est clair que la suite (ε_n) est strictement positive, décroissante et tendant vers 0.

Montrons que les sommes $\left| \sum_{p=1}^{n} a_p \right|$ sont majorées :

$$\sum_{p=1}^{n} \mathbf{e}^{\mathbf{i}p\theta} = \sum_{p=1}^{n} \left(\mathbf{e}^{\mathbf{i}\theta} \right)^{p} \stackrel{\mathbf{e}^{\mathbf{i}\theta} \neq 1}{=} \frac{\mathbf{e}^{\mathbf{i}\theta} (\mathbf{e}^{\mathbf{i}n\theta} - 1)}{\mathbf{e}^{\mathbf{i}\theta} - 1} = \frac{\mathbf{e}^{\mathbf{i}\theta} \mathbf{e}^{\frac{\mathbf{i}n\theta}{2}} \left(\mathbf{e}^{\frac{\mathbf{i}n\theta}{2}} - \mathbf{e}^{\frac{\mathbf{i}n\theta}{2}} \right)}{\mathbf{e}^{\frac{\mathbf{i}\theta}{2}} \left(\mathbf{e}^{\frac{\mathbf{i}\theta}{2}} - \mathbf{e}^{\frac{\mathbf{i}\theta}{2}} \right)} = \frac{\mathbf{e}^{\frac{\mathbf{i}(n+1)\theta}{2}} \sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

D'où:
$$\left| \sum_{p=1}^{n} \mathbf{e}^{\mathbf{i}p\theta} \right| \leq \frac{1}{\left| \sin\left(\frac{\theta}{2}\right) \right|}$$

D'après la règle d'Abel, on déduit la convergence de la série de terme général $\frac{\mathbf{e}^{\mathbf{i} n \theta}}{n}$.

2. Rappelons le lemme de Lebesgue pour une fonction f de classe C^1 .

Soit f une fonction de classe C^1 sur un intervalle [a, b] à valeurs dans \mathbb{C} . Soit λ un réel.

Alors
$$\lim_{\lambda \to +\infty} \int_a^b \mathbf{e}^{\mathbf{i}\lambda t} f(t) \, \mathrm{d}t = 0$$

Démonstration du lemme de Lebesgue :

Les applications f et $t \mapsto e^{it}$ étant de classe C^1 sur [a, b], on a, par une intégration par parties :

$$\int_{a}^{b} \mathbf{e}^{\mathbf{i}\lambda t} f(t) dt = \left[f(t) \frac{\mathbf{e}^{\mathbf{i}\lambda t}}{\mathbf{i}\lambda} \right]^{b} - \int_{a}^{b} \frac{\mathbf{e}^{\mathbf{i}\lambda t}}{\mathbf{i}\lambda} f'(t) dt = \frac{1}{\mathbf{i}\lambda} \left[f(b) \mathbf{e}^{\mathbf{i}\lambda b} - f(a) \mathbf{e}^{\mathbf{i}\lambda a} - \int_{a}^{b} \mathbf{e}^{\mathbf{i}\lambda t} f'(t) dt \right]$$

D'où:

$$\left| \int_{a}^{b} \mathbf{e}^{\mathbf{i}\lambda t} f(t) \, \mathrm{d}t \right| \leq \frac{1}{|\lambda|} \left[|f(b)| + |f(a)| + \int_{a}^{b} |f'(t)| \, \mathrm{d}t \right]$$

Notons $M = \sup_{t \in [a,b]} |f'(t)|$ (existe car, par hypothèse, f' est continue sur le compact [a,b])

Ainsi:

$$0 \le \left| \int_a^b \mathbf{e}^{\mathbf{i}\lambda t} f(t) \, \mathrm{d}t \right| \le \frac{1}{|\lambda|} \left[\left| f(b) \right| + \left| f(a) \right| + (b - a) M \right]$$

D'où:

$$\lim_{\lambda \to +\infty} \int_a^b \mathbf{e}^{\mathbf{i}\lambda t} f(t) \, \mathrm{d}t = 0.$$

Fin de la démonstration du lemme de Lebesgue.

Appliquons maintenant ce lemme. On a vu que :

$$\sum_{k=1}^{n} \mathbf{e}^{\mathbf{i}kt} = \frac{\mathbf{e}^{\mathbf{i}t} (\mathbf{e}^{\mathbf{i}nt} - 1)}{\mathbf{e}^{\mathbf{i}t} - 1} = \frac{\mathbf{e}^{\mathbf{i}(n+1)t}}{\mathbf{e}^{\mathbf{i}t} - 1} - \frac{\mathbf{e}^{\mathbf{i}t}}{\mathbf{e}^{\mathbf{i}t} - 1}$$

Or, l'application $t \mapsto \frac{\mathbf{e}^{\mathbf{i}t}}{\mathbf{e}^{\mathbf{i}t}-1}$ est de classe C^1 sur $[\pi, \theta]$ (ou $[\theta, \pi]$) puisque $\theta \in]0, 2\pi[$.

Donc, d'après le lemme de Lebesgue :

$$\lim_{n \to +\infty} \int_{\pi}^{\theta} \frac{\mathbf{e}^{\mathbf{i}(n+1)t}}{\mathbf{e}^{\mathbf{i}t} - 1} dt = 0$$

Donc: $\lim_{n \to +\infty} I_n(\theta) = \int_{\theta}^{\pi} \frac{e^{it}}{e^{it} - 1} dt$

Et comme :
$$\frac{\mathbf{e}^{\mathbf{i}t}}{\mathbf{e}^{\mathbf{i}t} - 1} = \frac{\mathbf{e}^{\mathbf{i}\frac{t}{2}}}{2\mathbf{i}\sin\left(\frac{t}{2}\right)} = \frac{1}{2\mathbf{i}}\cot\left(\frac{t}{2}\right) + \frac{1}{2}$$

On obtient:
$$\lim_{n \to +\infty} I_n(\theta) = \frac{1}{\mathbf{i}} \left[\ln \left(\sin \left(\frac{t}{2} \right) \right) \right]_{\theta}^{\pi} + \frac{\pi - \theta}{2} = \mathbf{i} \ln \left(\sin \left(\frac{\theta}{2} \right) \right) + \frac{\pi - \theta}{2}$$
 (1)

D'autre part,

$$I_n(\theta) = \sum_{k=1}^n \int_{\pi}^{\theta} \mathbf{e}^{\mathbf{i}kt} \, \mathrm{d}t = \sum_{k=1}^n \left[\frac{\mathbf{e}^{\mathbf{i}kt}}{\mathbf{i}k} \right]_{\pi}^{\theta} = \frac{1}{\mathbf{i}} \sum_{k=1}^n \frac{\mathbf{e}^{\mathbf{i}k\theta}}{k} - \frac{1}{\mathbf{i}} \sum_{k=1}^n \frac{(-1)^k}{k}$$

Par passage à la limite :

$$\lim_{n \to +\infty} I_n(\theta) = \frac{1}{\mathbf{i}} \sum_{k=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i}k\theta}}{k} + \frac{1}{\mathbf{i}} \ln 2$$
 (2)

3. De (1) et (2), on déduit :
$$\sum_{k=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i}k\theta}}{k} = -\ln\left(\sin\left(\frac{\theta}{2}\right)\right) + \mathbf{i}\frac{\pi - \theta}{2} - \ln 2$$

$$\sum_{i=1}^{\infty} \frac{e^{in\theta}}{n} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) + i\frac{\pi - \theta}{2}$$

En séparant parties réelles et parties imaginaires :

$$\sum_{n=1}^{\infty} \frac{\cos(n\theta)}{n} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right)$$

$$\sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n} = \frac{\pi - \theta}{2}$$

Exercice 4

① Équivalent de la somme partielle de la série harmonique.

Comme $f:]0; +\infty[\rightarrow \mathbb{R}$ définie par $f(t) = \frac{1}{t}$ est décroissante, on peut écrire :

$$\forall k \in \left[\!\left[2, +\infty\right[\!\right], \forall t \in \left[k, k+1\right]\!\right],$$

$$\frac{1}{t} \le \frac{1}{k} \le \frac{1}{t-1}$$

En intégrant pour t allant de k à k + 1:

$$\int_{k}^{k+1} \frac{1}{t} \, \mathrm{d}t \le \frac{1}{k} \le \int_{k-1}^{k} \frac{1}{t} \, \mathrm{d}t$$

En sommant pour k allant de 2 à n:

$$\int_{2}^{n+1} \frac{1}{t} dt \le \sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{1}{t} dt$$

$$\ln(n+1) - \ln 2 \le \sum_{k=2}^{n} \frac{1}{k} \le \ln n$$

D'où:

$$\ln(n+1) + 1 - \ln 2 \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n$$

Or, $\ln n \le \ln(n+1)$ et $0 \le 1 - \ln 2$, d'où :

$$\ln n \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n$$

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$$

Remarque : on peut retrouver ce résultat grâce à la série télescopique de terme général $u_n = \ln (n+1) - \ln n$.

En effet, on a:

$$u_n = \ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} + o\left(\frac{1}{n^2}\right)$$

Donc :

$$u_k \sim \frac{1}{k}$$

Or, la série de terme général $\frac{1}{k}$ est divergente.

Du théorème de sommation partielle des équivalents pour les séries divergentes, on déduit :

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \frac{1}{k}$$

Et comme,

$$\sum_{k=1}^{n} u_k = \ln(n+1)$$

On a bien:

$$\sum_{k=1}^{n} \frac{1}{k} \underset{+\infty}{\sim} \ln(n+1) \underset{+\infty}{\sim} \ln(n)$$

② Équivalent de la somme partielle de la série de Riemann dans le cas $0 \le \alpha < 1$.

Avec $f:]0; +\infty[\rightarrow \mathbb{R}$ définie par $f(t) = \frac{1}{t^{\alpha}}$, on obtient, comme ci-dessus (f étant décroissante car $0 \le \alpha$):

$$\int_{2}^{n+1} \frac{1}{t^{\alpha}} dt \le \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \le \int_{1}^{n} \frac{1}{t^{\alpha}} dt$$

$$\frac{2^{1-\alpha}}{\alpha-1} - \frac{(n+1)^{1-\alpha}}{\alpha-1} \le \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \le \frac{1}{\alpha-1} - \frac{n^{1-\alpha}}{\alpha-1}$$

En divisant par
$$\frac{n^{1-\alpha}}{\alpha - 1}$$
: $\left(\frac{2}{n}\right)^{1-\alpha} - \left(1 + \frac{1}{n}\right)^{1-\alpha} \le \frac{\sum_{k=2}^{n} \frac{1}{k^{\alpha}}}{\frac{n^{1-\alpha}}{n}} \le \left(\frac{1}{n}\right)^{1-\alpha} - 1$

Comme
$$1 - \alpha > 0$$
, $\lim_{n \to +\infty} \left(\frac{2}{n}\right)^{1-\alpha} = \lim_{n \to +\infty} \left(\frac{1}{n}\right)^{1-\alpha} = 0$ et $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{1-\alpha} = 1$

Du théorème des gendarmes, on obtient :
$$\lim_{n \to +\infty} \frac{\displaystyle \sum_{k=2}^{n} \frac{1}{k^{\alpha}}}{\displaystyle \frac{n^{1-\alpha}}{\alpha - 1}} = -1$$

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \underset{+\infty}{\sim} \frac{n^{1-\alpha}}{1-\alpha}$$

$$(0 \le \alpha < 1)$$

<u>Remarque</u>: on peut retrouver ce résultat grâce à la série télescopique de terme général $u_n = n^{1-\alpha} - (n-1)^{1-\alpha}$.

En effet, on a:
$$u_n = n^{1-\alpha} \left(1 - \left(1 - \frac{1}{n} \right)^{1-\alpha} \right) = n^{1-\alpha} \left(\frac{1-\alpha}{n} + o\left(\frac{1}{n^2} \right) \right)$$

Donc:
$$u_k \sim \frac{1-\alpha}{k^{\alpha}}$$

Or, la série de terme général $\frac{1-\alpha}{k^{\alpha}}$ est divergente.

Du théorème de sommation partielle des équivalents pour les séries divergentes, on déduit :

$$\sum_{k=1}^{n} u_k = (1 - \alpha) \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$$

Et comme,
$$\sum_{k=1}^{n} u_k = n^{1-\alpha}$$

On a bien:
$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha}$$

③ Équivalent du reste d'ordre n de la série de Riemann dans le cas $\alpha > 1$.

Dans ce cas, on sait que la série $\sum_{i=1}^{\infty} \frac{1}{n^{\alpha}}$ converge.

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$$

Toujours par décroissance de $f:]0; +\infty[\to \mathbb{R}$ définie par $f(t) = \frac{1}{t^{\alpha}}$, on obtient :

$$\forall k \in [2, +\infty[, \forall t \in [k, k+1], \frac{1}{t^{\alpha}}] \leq \frac{1}{t^{\alpha}} \leq \frac{1}{t^{\alpha}}$$

$$\frac{1}{t^{\alpha}} \le \frac{1}{k^{\alpha}} \le \frac{1}{(t-1)^{\alpha}}$$

En intégrant pour t allant de k à k + 1:

$$\int_{k}^{k+1} \frac{1}{t^{\alpha}} dt \le \frac{1}{k^{\alpha}} \le \int_{k-1}^{k} \frac{1}{t^{\alpha}} dt$$

En sommant pour k allant de n + 1 à N:

$$\int_{n+1}^{N+1} \frac{1}{t^{\alpha}} dt \le \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \le \int_{n}^{N} \frac{1}{t^{\alpha}} dt$$

En faisant tendre N vers l'infini (toutes les sommes étant convergentes) :

$$\int_{n+1}^{+\infty} \frac{1}{t^{\alpha}} dt \le R_n \le \int_n^{+\infty} \frac{1}{t^{\alpha}} dt$$

D'où:

$$\frac{1}{(\alpha-1)(n+1)^{\alpha-1}} \le R_n \le \frac{1}{(\alpha-1)n^{\alpha-1}}$$

Et comme $\lim_{n \to +\infty} \left(\frac{n+1}{n} \right)^{\alpha-1} = 1$, on a :

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{(\alpha-1)n^{\alpha-1}}$$

$$(\alpha > 1, n \ge 1)$$

Remarque: on peut retrouver ce résultat grâce à la série télescopique de terme général $u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n-1)^{\alpha-1}}$.

En effet, on a:

$$u_n = \frac{1}{n^{\alpha - 1}} \left(1 - \left(1 - \frac{1}{n} \right)^{1 - \alpha} \right) = \frac{1}{n^{\alpha - 1}} \left(\frac{1 - \alpha}{n} + o\left(\frac{1}{n^2} \right) \right)$$

Donc:

$$u_k \sim \frac{1-\alpha}{k^{\alpha}}$$

Or, la série de terme général $\frac{1-\alpha}{\iota^{\alpha}}$ est convergente.

Du théorème de sommation des équivalents (pour les restes de séries convergentes), on déduit :

$$\sum_{k=n+1}^{\infty} u_k = (1-\alpha) \sum_{k=n+1}^{\infty} \frac{1}{k^{\alpha}}$$

Et comme,

$$\sum_{k=n+1}^{\infty} u_k = -\frac{1}{n^{\alpha-1}}$$

On a bien: $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{(\alpha-1)n^{\alpha-1}}$

Interprétation : prenons $\alpha = 1$ et n = 100

Lorsqu'on calcule la somme $\sum_{k=1}^{100} \frac{1}{k^2} \simeq 1,63498$ pour approximer la somme $\sum_{k=1}^{+\infty} \frac{1}{k^2} (=\frac{\pi^2}{6})$, l'erreur commise

sera voisine de $\frac{1}{100}$. (Et même inférieure d'après un encadrement vu plus haut)

Exercice 5

Posons, pour $n \in \mathbb{N}^*$: $v_n = n^{\alpha} u_n$

Pour tout $n \in \mathbb{N}^*$, on a: $\frac{v_{n+1}}{v_n} = \left(1 + \frac{1}{n}\right)^{\alpha} \left(1 - \frac{\alpha}{n} + O\left(\frac{1}{n^{\beta}}\right)\right)$

$$\frac{v_{n+1}}{v_n} = \left(1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)\right) \left(1 - \frac{\alpha}{n} + O\left(\frac{1}{n^\beta}\right)\right)$$

$$\frac{v_{n+1}}{v_n} = 1 + O\left(\frac{1}{n^{\gamma}}\right) \text{ où } \gamma = \min(2, \beta)$$

Par conséquent, pour tout $n \in \mathbb{N}^*$, on a : $\ln\left(\frac{v_{n+1}}{v_n}\right) = O\left(\frac{1}{n^{\gamma}}\right)$

C'est-à-dire : $\exists C \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow \left| \ln \left(\frac{v_{n+1}}{v_n} \right) \right| \le \frac{C}{n^{\gamma}})$

Or, $\gamma \in]1$; $+\infty[$, donc la série de terme général $\ln\left(\frac{v_{n+1}}{v_n}\right)$ converge absolument donc converge.

Mais, par télescopage : $\sum_{p=1}^{n} \ln \left(\frac{v_{p+1}}{v_p} \right) = \ln(v_{n+1}) - \ln(v_1)$

Donc la suite $(\ln(v_n))_{n\in\mathbb{N}}$ converge. Notons ℓ sa limite. La suite $(v_n)_{n\in\mathbb{N}}$ converge donc vers \mathbf{e}^ℓ .

Par conséquent : $u_n \sim \frac{K}{n^{\alpha}}$ (où $K = e^{\ell}$)

D'où le résultat cherché. (En utilisant le critère de l'équivalent avec une série de Riemann)

<u>Remarque</u>: si $\alpha \le 0$ alors, $\frac{u_{n+1}}{u_n} \ge 1$, donc (u_n) croissante et à valeurs dans \mathbb{R}_+^* . Donc la suite (u_n) ne tend pas

vers 0 et la série diverge grossièrement.

Application

On a: $\frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+3} \to 1$

Le critère de D'Alembert ne permet pas de conclure.

Mais:
$$\frac{u_{n+1}}{u_n} = \frac{1 + \frac{1}{n}}{1 + \frac{3}{2n}} = \left(1 + \frac{1}{n}\right) \left(1 - \frac{3}{2n} + O\left(\frac{1}{n}\right)\right) = 1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

D'après le critère de Raabe-Duhamel avec $\alpha = \frac{1}{2}$, on déduit que la série diverge.

Exercice 6 Formule de Stirling

1. a) On a immédiatement :
$$I_0 = \frac{\pi}{2}$$
 et $I_1 = \int_0^{\frac{\pi}{2}} \cos t \, dt = 1$.

Pour tout $n \ge 0$, on a par IPP: $(u(t) = (\cos t)^{n+1} \text{ et } v'(t) = \cos t)$

$$I_{n+2} = \int_0^{\frac{\pi}{2}} (\cos t)^{n+1} \cos t \, dt = \left[(\cos t)^{n+1} \sin t \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} (\cos t)^n (\sin t)^2 \, dt$$

$$I_{n+2} = (n+1)(I_n - I_{n+2})$$

$$I_{n+2} = \frac{n+1}{n+2} I_n$$

(Variante :
$$I_n = \frac{n-1}{n} I_{n-2}$$
 pour tout $n \ge 2$)

On en déduit immédiatement :
$$I_2 = \frac{1}{2}I_0 = \frac{\pi}{4}$$
 ; $I_3 = \frac{2}{3}I_1 = \frac{2}{3}$; $I_4 = \frac{3}{4}I_2 = \frac{3\pi}{16}$

Formule générale :

Si *n* pair
$$(n = 2p)$$
 $I_{2p} = \frac{2p-1}{2p} \times \frac{2p-3}{2p-2} \times ... \times \frac{1}{2}I_0$

$$I_{2p} = \frac{(2p)!\pi}{2^{2p+1}(p!)^2} = \frac{C_{2p}^p \pi}{2^{2p+1}}$$

Si *n* impair
$$(n = 2p + 1)$$
 $I_{2p+1} = \frac{2p}{2p+1} \times \frac{2p-2}{2p-1} \times ... \times \frac{2}{3}I_1$

$$I_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$$

b) On a, pour tout
$$n \in \mathbb{N}$$
 et tout $t \in [0, \frac{\pi}{2}]$: $0 \le \cos^{n+1} t \le \cos^n t$

En intégrant pour
$$t$$
 allant de 0 à $\frac{\pi}{2}$: $0 \le I_{n+1} \le I_n$

En conséquence, la suite (I_n) est décroissante.

On a donc :
$$0 \le I_{n+2} \le I_{n+1} \le I_n$$

Et comme
$$I_{n+2} > 0$$
: $1 \le \frac{I_{n+1}}{I_{n+2}} \le \frac{I_n}{I_{n+2}}$

c) On a vu que :
$$\frac{I_n}{I_{n+2}} = \frac{n+2}{n+1}$$
 (1)

D'où:
$$1 \leq \frac{I_{n+1}}{I_{n+2}} \leq \frac{n+2}{n+1}$$

Par encadrement, on en déduit que $\frac{I_{n+1}}{I_{n+2}}$ admet une limite égale à 1 en $+\infty$.

Autrement dit: $I_n \sim I_{n+1}$ (2)

d) Montrons enfin que la suite (u_n) définie par $u_n = (n+1)I_n I_{n+1}$ est constante :

$$u_{n+1} = (n+2) I_{n+1} I_{n+2} = (n+1) I_n I_{n+1} = u_n.$$

La suite (u_n) est donc bien constante. Et comme $u_0 = I_0 I_1 = \frac{\pi}{2}$, on a : $\forall n \in \mathbb{N}$, $u_n = \frac{\pi}{2}$.

En multipliant l'équivalent (2) par $(n + 1)I_n$:

$$(n+1) I_n^2 \sim u_n \sim \frac{\pi}{2}$$

D'où:

$$I_n \sim \sqrt{\frac{\pi}{2(n+1)}} \sim \sqrt{\frac{\pi}{2n}}$$

On retiendra ce résultat très utile :

$$\int_0^{\frac{\pi}{2}} (\cos t)^n dt \sim \sqrt{\frac{\pi}{2n}}$$

2. a) Il est clair que:

$$\forall n \in \mathbb{N}^*, u_n > 0$$

$$v_{n+1} - v_n = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(\frac{(n+1)!}{n!} \times \sqrt{\frac{n}{n+1}} \times \mathbf{e} \times \frac{n^n}{(n+1)^{n+1}}\right) = \ln\left(\mathbf{e} \times \left(\frac{n}{n+1}\right)^{n+\frac{1}{2}}\right) = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$$

Or, on sait que:

$$\ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)$$

D'où:

$$v_{n+1} - v_n = 1 - \left(n + \frac{1}{2}\right) \left(\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right) = 1 - 1 + \frac{1}{2n} - \frac{1}{2n} + \frac{1}{4n^2} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right)$$

Or, la série de terme général $\frac{1}{n^2}$ converge. Donc la série de terme général $v_{n+1} - v_n$ également.

Il en va donc donc de même de la suite (v_n) et donc de la suite (u_n) .

Et comme $u_n = \mathbf{e}^{v_n}$, la suite (u_n) converge vers un certain réel $\ell > 0$. (Puisque (v_n) converge)

b) On a donc: $u_n \sim u_n$

C'est-à-dire: $n! \sim_{+\infty} \ell \left(\frac{n}{\mathbf{e}}\right)^n \sqrt{n}$

On détermine ℓ à l'aide d'un équivalent connu dans lequel intervient des factorielles, comme par exemple l'équivalent des intégrales de Stirling :

$$I_n = \int_0^{\frac{\pi}{2}} \cos^n t \, \mathrm{d}t$$

On a vu les deux résultats suivants :

$$I_n \sim \sqrt{\frac{\pi}{2n}}$$

$$I_{2n} = \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2}$$

En conséquence :
$$\sqrt{\frac{\pi}{4n}} \sim \frac{\ell (2n)^{2n} \mathbf{e}^{-2n} \sqrt{2n}}{2^{2n} (\ell n^n \mathbf{e}^{-n} \sqrt{n})^2} \frac{\pi}{2}$$

D'où
$$\ell \underset{_{+\infty}}{\sim} \sqrt{2\pi}$$

Et par passage à la limite lorsque n tend vers l'infini :

$$\ell = \sqrt{2\pi}$$

Conclusion:
$$n! \sim \left(\frac{n}{\mathbf{e}}\right)^n \sqrt{2\pi n}$$