Méthodes avancées pour les systèmes non linéaires

Recueil d'exercices pour les Travaux Dirigés du cours SMATM227

Par

MARVYN GULINA

Faculté des Sciences – Département de Mathématique
Année académique 2022 – 2023

Méthodes avancées pour les systèmes non linéaires Recueil d'exercices

Marvyn Gulina

13 mars 2023

Contenu

Co	onten	nu	iii
Lis	stes		V
Α١	⁄ant-∣	propos	1
1	Opé	érateurs de Perron – Frobenius et de Koopman	3
	1.1	Rappels	3
		1.1.1 Définitions préliminaires	3
		1.1.2 Opérateur de Perron – Frobenius (ou de transfert)	4
		1.1.3 Matrice de propagation et méthode d'Ulam	5
		1.1.4 Opérateur de Koopman (ou de composition)	7
		1.1.5 Mesure invariante	8
		1.1.6 Ergodicité	8
		1.1.7 Passage en temps continu	10
	1.2	Exercices	11
2	Isoc	chrones et moyennes de Fourier	15
	2.1	Rappels	15
		2.1.1 Isochrones	15
		2.1.2 Moyennes de Fourier	16
		2.1.3 Propriétés	16
	2.2	Exercices	17
3	Арр	proximations finies de l'opérateur de Koopman	19
	3.1	Rappels	19
		3.1.1 Matrice de Koopman	19
		3.1.2 Méthode d'Arnoldi	19
		3.1.3 Décomposition en mode dynamique (DMD)	20
	3.2	Exercices	21
4	Pro	jection du générateur infinitésimal	23
	4.1	Rappels	23
		4.1.1 Générateur infinitésimal	23
		4.1.2 Représentation dans une base	23
	4.2	Exercices	24

Listes

F	ig		r	۵	c
	פי	u		C	3

·	résentation graphique de la définition de l'opérateur de Perron – Frobenius	
1.2 Repr	résentation graphique de la définition de l'opérateur de Koopman	7
Définitions	5	
Définitio	n 1.1 — $\sigma-$ algèbre et espace mesurable	3
Définition	n 1.2 — Mesure et espace mesuré	3
Définition	n 1.3 — Densité	4
Définition	n 1.4 — Opérateur de transfert de Perron – Frobenius	4
Définition	n 1.5 — Opérateur de composition de Koopman	7
Définition	n 1.6 — Modes de Koopman	7
Définition	n 1.7 — Mesure invariante	8
Définition	n $oldsymbol{1.8}$ — Ensemble $T-$ invariant	8
Définition	n 1.9 — Application ergodique	9
Définition	n 2.1 — Bassin d'attraction	15
Définition	n 2.2 — Isochrone	15
Définition	n 3.1 — Matrice de Koopman	19
Définition	n 4.1 — Générateur infinitésimal du semi-groupe d'opérateurs de Koopman $^{\prime\prime}$	23
Théorème	S	
Théorèm	e 1.1 — Densité stationnaire	8
Théorèm	e 1.2 — \mathcal{K} est une isométrie	8
Théorèm	e 1.3 — Théorème de Birkhoff	9

Avant - propos

Remerciements

Ce recueil d'exercices a été conçu à partir de ceux proposés par Christian MUGHISHO ZAGABE.

Objectifs pédagogiques visés lors des Travaux Dirigés

Ces séances de Travaux Dirigés ont deux objectifs :

- > Illustrer certains concepts vus au cours théoriques.
- > Fournir aux étudiants une base d'outils pour la préparation de leur projet.

Il est important de savoir où l'on va afin de choisir le bon chemin, bon travail!

Coordonnées de l'assistant

Cette année Marvyn GULINA est en charge des TD et joignable via l'adresse e-mail suivante :

marvyn.gulina@unamur.be

Si vous souhaitez le voir directement dans son bureau, il se situe au 3ème étage de la Faculté des Sciences, numéro 342. Bien entendu, il est préférable de prendre un rendez-vous par mail ou en TD avant de se présenter à la porte.

Opérateurs de Perron – Frobenius et de Koopman

1.1 Rappels

1.1.1 Définitions préliminaires

Commençons par rappeler la notion d'espace mesurable à l'aide de la définition suivante :

Définition 1.1 (σ -algèbre et espace mesurable)

Soit $\mathcal X$ un ensemble. Une $\sigma-$ algèbre est une classe $\mathcal A$ de sous-ensembles de $\mathcal X$ telle que :

- $\triangleright \varnothing \in \mathcal{A}$
- $ightharpoonup \mathcal{A}$ est stable par passage au complémentaire : $A \in \mathcal{A} \Longrightarrow A^c \in \mathcal{A}$
- $ightharpoonup \mathcal{A}$ est stable par unions dénombrables : $(A_k)_{k\in\mathbb{N}_0}\subset\mathcal{A}\Longrightarrow\bigcup_{k\in\mathbb{N}_0}A_k\in\mathcal{A}$

Le couple $(\mathcal{X}, \mathcal{A})$ est appelé **espace mesurable**.

Enfin, si on considère une mesure, on aura un espace mesuré :

Définition 1.2 (Mesure et espace mesuré)

Soit $(\mathcal{X}, \mathcal{A})$, un espace mesurable. On appelle **mesure** une fonction $\mu : \mathcal{A} \to \overline{\mathbb{R}}$ qui vérifie les propriétés suivantes :

- $\triangleright \mu(\varnothing) = 0$
- $\triangleright \mu$ est positive : $\forall A \in \mathcal{A} : \mu(A) \geq 0$
- $ightharpoonup \mu$ est σ -additive : $\forall (A_k)_{k \in \mathbb{N}_0} \subset \mathcal{A}$ telle que $\forall i \neq j : A_i \cap A_j = \emptyset$:

$$\mu\left(\bigcup_{k\in\mathbb{N}_{0}}A_{k}\right)=\sum_{k\in\mathbb{N}_{0}}\mu\left(A_{k}\right)$$

Le triplet $(\mathcal{X}, \mathcal{A}, \mu)$ est appelé **espace mesuré**.

Pour terminer, la définition 1.3 nous rappelle les propriétés d'une densité.

Définition 1.3 (Densité)

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré et $\rho : \mathcal{X} \to \mathbb{R}$ ou \mathbb{C} . On dit que ρ est une densité sur \mathcal{X} si et seulement si :

ho est normalisée : $\|\rho\|_{\mathbb{L}_1} = \int_X \rho(x) \, \mu(dx) = 1$

 $\triangleright \rho$ est positive : $\forall x \in \mathcal{X} : \rho(x) \geq 0$

L'ensemble des densités sur $(\mathcal{X}, \mathcal{A}, \mu)$ est noté $D(\mathcal{X})$.

Notons que, pour une densité $\rho \in D(\mathcal{X})$, on peut définir une nouvelle mesure :

$$\mu_{\rho}(A) = \int_{A} \rho(x) \,\mu(dx) \tag{1.1}$$

Lorsque ce sera nécessaire, on pourra donc remplacer la mesure quelconque μ par la mesure de Lebesgue moyennant l'introduction de la densité associée.

1.1.2 Opérateur de Perron – Frobenius (ou de transfert)

L'idée de cette définition est de considérer une densité de conditions initiales et d'observer son évolution sous T.

Définition 1.4 (Opérateur de Perron – Frobenius)

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré, $T : \mathcal{X} \to \mathcal{X}$ régulière et $\rho \in D(\mathcal{X})$.

On définit \mathcal{P} , l'**opérateur de Perron** – Frobenius, via la relation suivante :

$$\forall A \in \mathcal{A} : \int_{T^{-1}(A)} \rho(x) \,\mu(dx) = \int_{A} \mathcal{P}\rho(x) \,\mu(dx), \tag{1.2}$$

 $\text{avec } T^{-1}(A) = \{x \in \mathcal{X} \,|\, T(x) \in A\}.$

On doit considérer T^{-1} plutôt que T pour pouvoir tenir compte des situations où T n'est pas inversible (dans ce cas, l'ensemble $T^{-1}(A)$ n'est pas connexe).

Notons également que \mathcal{P} est un opérateur linéaire. De plus, en utilisant (1.1), on peut encore écrire (1.2) comme :

$$\forall A \in \mathcal{A} : \mu_{\rho}[T^{-1}(A)] = \mu_{\mathcal{P}\rho}(A) \tag{1.3}$$

La figure 1.1 illustre la définition 1.4.

FIGURE 1.1 – Représentation graphique de la définition de l'opérateur de Perron – Frobenius. L'aire hachurée sous les courbes définies par ρ et $\mathcal{P}\rho$ sont égales.

Notons que la propriété suivante découle du fait que T soit régulière :

$$\forall A \in \mathcal{A} : \mu(A) = 0 \Longrightarrow \mu\left(T^{-1}(A)\right) = 0$$

Géométriquement, ceci traduit le fait que le graphe de T ne possède pas de "plateaux".

1.1.3 Matrice de propagation et méthode d'Ulam

Nous proposons ici une méthode numérique permettant de simuler l'action de l'opérateur de Perron – Frobenius sur une densité.

Soit $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré. L'espace \mathcal{X} est l'espace d'état sur lequel sont définies les densités que nous considérons. Soient les ensembles $\{A_i\}_{i=1}^n$ définissant une partition de l'espace d'état \mathcal{X} , c'est-à-dire que ces ensembles vérifient les propriétés suivantes :

(1)
$$A_i \cap A_i = \emptyset$$
, $\forall i \neq j$

$$(2) \bigcup_{i=1}^{n} A_i = \mathcal{X}$$

Soit $\rho: \mathcal{X} \to \mathbb{R}$ une densité définie sur l'espace d'état \mathcal{X} . Nous notons ρ_i l'aire sous ρ sur A_i :

$$\rho_i = \int_{A_i} \rho(x) \,\mu(dx) \tag{1.4}$$

Nous pouvons à présent estimer notre fonction de densité par la valeur moyenne sur chaque A_i :

$$\rho(x) \approx \sum_{i=1}^{n} \frac{\rho_i}{\mu(A_i)} \chi_{A_i}(x)$$
 (1.5)

On remarque que cette approximation conserve l'aire totale. On a en effet :

$$\int_{\mathcal{X}} \sum_{i=1}^{n} \frac{\rho_i}{\mu(A_i)} \chi_{A_i}(x) \, \mu(dx) = 1.$$

Nous pouvons à présent passer à l'expression de l'action de l'opérateur de Perron – Frobenius sur la densité (approchée dans ce cas-ci). On trouve :

$$(\mathcal{P}\rho)_i = \int_{A_i} \mathcal{P}\rho(x) \,\mu(dx) = \sum_{j=1}^n \frac{\mu(T^{-1}(A_i) \cap A_j)}{\mu(A_j)} \rho_j \triangleq \sum_{j=1}^n P_{ij}\rho_j$$

où les P_{ij} constituent les éléments de la **matrice de propagation**. Ces derniers peuvent être approximés numériquement par la méthode d'Ulam dans laquelle on prend μ comme étant la mesure de comptage.

Algorithme 1 Méthode d'Ulam

- 1: pour $j=1,\ldots,n$ faire
- 2: $\left| \begin{array}{c} \text{Calculer } A_j = \left[\frac{j-1}{n}, \frac{j}{n} \right] \end{array} \right|$ de cardinal m
- 3: Calculer $T(A_i)$
- 4: pour $i = 1, \ldots, n$ faire
- 5: pour $j = 1, \ldots, n$ faire
- 6: Calculer P_{ij} comme la fraction de points de $T(A_i)$ qui tombent dans A_i

La matrice de propagation dispose des propriétés suivantes :

(1)
$$\sum_{i=1}^{n} K_{ij} = 1$$
.

(2) Elle possède toujours une valeur propre égale à 1. Le vecteur propre associé à cette valeur propre est tel que toutes ces composantes sont positives. En appelant \vec{v} ce vecteur et en posant $\vec{v} = \vec{\rho}^*$, on a :

$$\rho^* \approx \sum_{i=1}^n \frac{v_i}{\mu(A_i)} \chi_{A_i}$$

En restant prudent et sous réserve de certaines conditions, on peut affirmer que

$$\left\| \rho^* - \lim_{n \to +\infty} \sum_{i=1}^n \frac{v_i}{\mu(A_i)} \chi_{A_i} \right\|_{\mathbb{L}_1} = 0.$$

1.1.4 Opérateur de Koopman (ou de composition)

Définition 1.5 (Opérateur de Koopman (ou de composition))

Soit $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré, $T : \mathcal{X} \to \mathcal{X}$ régulière et $f \in \mathbb{L}_{\infty} : \mathcal{X} \to \mathbb{R}$ ou \mathbb{C} . On définit \mathcal{K} , l'**opérateur de Koopman** via la relation suivante :

$$\forall x \in \mathcal{X} : (\mathcal{K}f)(x) = (f \circ T)(x) \tag{1.6}$$

La fonction f considérée est appelée une **observable**.

L'opérateur de Koopman décrit l'évolution de l'observable sur laquelle il agit le long d'une trajectoire. On remarque que $\mathcal P$ effectue une propagation de la densité vers l'avant via T alors que $\mathcal K$ correspond à une propagation de l'observable vers l'arrière avec T^{-1} . De plus, comme $\mathcal P$, l'opérateur de Koopman est linéaire.

FIGURE 1.2 – Représentation graphique de la définition de l'opérateur de Koopman

La décomposition d'une observable sur les fonctions propres de l'opérateur de Koopman amène les modes de Koopman :

Définition 1.6 (Modes de Koopman)

Soit f(x) une observable, alors on a la décomposition spectrale :

$$f(x) = \sum_{k=1}^{\infty} v_k \phi_k(x)$$
 (1.7)

où v_k est le $k^{\text{ème}}$ mode de Koopman dépendant de f et $\phi_k(x)$ est la $k^{\text{ème}}$ fonction propre de $\mathcal K$ associée à la valeur propre e^{λ_k} .

1.1.5 Mesure invariante

Les mesures invariantes apportent des propriétés supplémentaires.

Définition 1.7 (Mesure invariante)

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré et $T : \mathcal{X} \to \mathcal{X}$ une application régulière.

T est μ -invariante si et seulement si : $\forall A \in \mathcal{A} : \mu(T^{-1}(A)) = \mu(A)$

Théorème 1.1 (Densité stationnaire)

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré, $T: \mathcal{X} \to \mathcal{X}$ une application régulière et \mathcal{P} l'opérateur de Perron – Frobenius. Alors on a l'équivalence suivante :

$$\forall A \in \mathcal{A} : T \text{ est } \mu_{\rho} - \text{invariante } \Leftrightarrow \mathcal{P}\rho = \rho$$
 (1.8)

avec la mesure μ_{ρ} donnée par l'équation (1.1) : $\mu_{\rho}(A) = \int_{A} \rho(x) \, \mu(dx)$.

Théorème 1.2 (\mathcal{K} est une isométrie)

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré, $T: \mathcal{X} \to \mathcal{X}$ une application régulière, $f: \mathcal{X} \to \mathbb{R}$ un observable et \mathcal{K} l'opérateur de Koopman. Alors :

$$T \text{ est } \mu_{\rho} - \text{invariante } \iff \|\mathcal{K}f\|_{\mathbb{L}_{2}(\mathcal{X},\mu_{\rho})} = \|f\|_{\mathbb{L}_{2}(\mathcal{X},\mu_{\rho})}$$
 (1.9)

avec la mesure μ_{ρ} donnée par l'équation (1.1).

Ce théorème permet notamment de montrer que les opérateurs \mathcal{K} et \mathcal{P} sont unitaires dans le contexte d'une mesure invariante.

1.1.6 Ergodicité

Nous introduisons d'abord la définition d'ensemble T-invariant. Nous nous concentrons ensuite sur la définition de l'ergodicité.

Définition 1.8 (Ensemble T-invariant)

Soit $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré, $T : \mathcal{X} \to \mathcal{X}$ régulière.

 $A \in \mathcal{A}$ est T-invariant si et seulement si : $T^{-1}(A) = A$.

Notons que
$$T^{-1}(A) = A$$
 est équivalent à :
$$\begin{cases} \forall x \in A : T(x) \in A, \\ \forall x \not \in A : T(x) \not \in A. \end{cases}$$

Nous abordons à présent la définition d'application ergodique.

Définition 1.9 (Application ergodique)

Soient $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré et $T : \mathcal{X} \to \mathcal{X}$ une application régulière. T est **ergodique** si et seulement si :

$$\forall A \in \mathcal{A} : A \text{ est } T\text{-invariant} \Longrightarrow \mu(A) = 0 \text{ ou } \mu(\mathcal{X} \setminus A) = 0$$

Il est important de remarquer que la propriété d'ergodicité dépend de la mesure μ considérée. La définition 1.9 peut se paraphraser comme « tout ensemble invariant est trivial ». On peut également montrer que cette définition est équivalente à :

$$\forall A \in \mathcal{A} \text{ tel que } \mu(A) \neq 0, \ \forall x_0 \in \mathcal{X} : \exists n \in \mathbb{N} \text{ tel que } T^{\circ n}(x_0) \in A,$$

où l'on voit finalement que les orbites de T « voyagent partout ».

Ci-après, quelques résultats montrant l'impact de l'ergodicité de T sur les opérateurs \mathcal{P} et \mathcal{K} :

- \triangleright Si T est ergodique, il existe au plus une densité $\rho \in D(\mathcal{X})$ telle que $\mathcal{P}\rho = \rho$
- \triangleright Si il existe une densité stationnaire unique, alors l'application T est ergodique.
- ightharpoonup T est ergodique $\Leftrightarrow [\mathcal{K}f = f \Longrightarrow f \text{ est constante, avec } f: \mathcal{X} \to \mathbb{R}].$

Enfin, on remarque que les équations $\begin{cases} \mathcal{K}f=f,\\ \mathcal{P}\rho=\rho, \end{cases}$ sont des équations aux valeurs propres.

On cherchera donc les **fonctions propres** de \mathcal{K} et \mathcal{P} . Le théorème de Birkhoff montrer en particulier comment étudier les observables à partir de la densité stationnaire :

Théorème 1.3 (Théorème de Birkhoff)

Soit $(\mathcal{X}, \mathcal{A}, \mu)$ un espace mesuré, soit $T : \mathcal{X} \to \mathcal{X}$ une application régulière, soit $\rho \in D(\mathcal{X})$ et soit \mathcal{K} l'opérateur de Koopman.

(1) Si T est $\mu_{\rho}-$ invariante, alors $\forall f\in\mathbb{L}_1:\exists f^*\in\mathbb{L}_1$ telle que

$$\mathcal{K}f^*(x) = f^*(x) \text{ avec } f^*(x) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^k(x)\right) \text{ p.p.}$$

(2) De plus, si T est ergodique, on a $f^* \equiv \int_X f(x) \, \mu_{\rho}(dx)$.

En choisissant $f(x) = \chi_A(x)$, on a :

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_A \left(T^k(x) \right) = \int_A \rho(x) \, \mu(dx)$$

Le membre de gauche de l'équation ci-dessus nous indique une fraction du « temps de passage » dans l'ensemble A tandis que le membre de droite se rapporte à une moyenne spatiale (cf. hypothèse ergodique en physique).

1.1.7 Passage en temps continu

En temps continu on a $\dot{x}=F(x)$ dont la solution est donnée par le flot $x(t)=\varphi^t(x_0)$ où x_0 est la condition initiale. On comprend que l'on doit remplacer T par φ^t . De la sorte, on obtient un semi-groupe d'opérateurs et la définition de \mathcal{P} devient :

$$\forall A \in \mathcal{A} : \int_{\varphi^{-t}(A)} \rho(x)\mu(dx) = \int_{A} \mathcal{P}^{t}\rho(x)\mu(dx). \tag{1.10}$$

Celle de K, quant à elle, devient :

$$\forall x \in \mathcal{X} : (\mathcal{K}^t f)(x) = (f \circ \varphi^t)(x). \tag{1.11}$$

Dans ce cas, les fonctions propres de l'opérateur de Koopman peuvent être caractérisées par

$$\dot{\phi} = \lambda \phi, \tag{1.12}$$

où λ est la valeur propre associée.

1.2 Exercices

Dans ce qui suit, sauf indication contraire, μ est la mesure de Lebesgue sur \mathbb{R} .

$1.1 - \mathcal{P}$ en dimension 1

Supposer que $\mathcal{X} = [a, b] \subset \mathbb{R}$ et A = [a, x] et montrer que

$$\mathcal{P}\rho(x) = \frac{d}{dx} \int_{T^{-1}([a,x])} \rho(s) \,\mu(ds).$$

1.2 – Application logistique

Soient $\mathcal{X} = [0,1]$ et T(x) = rx(1-x) avec r > 0.

- (1) Déterminer l'expression de $\mathcal{P}\rho(x)$.
- (2) Montrer que l'application T n'est pas μ -invariante.
- (3) Pour r=4, soit $\rho^*(x)=\dfrac{1}{\pi\sqrt{x(1-x)}}$ la densité limite.
 - (a) Montrer que $\mathcal{P}\rho^* = \rho^*$.
 - (b) En déduire que l'application T est μ_{ρ^*} -invariante.

1.3 – Transformation *n*-adique

Soient $\mathcal{X} = [0, 1]$ et $T(x) = nx \mod 1$ où n est un naturel strictement supérieur à 1.

- (1) Déterminer l'expression de $\mathcal{P}\rho(x)$.
- (2) Montrer que l'application T est μ -invariante.

1.4 – Rotation discrète

Soient $\mathcal{X} = [0,1]$ et $\alpha \in]0,1[$ définissant l'application

$$T: \mathcal{X} \to \mathcal{X}$$

 $x \mapsto T(x) = x + \alpha \mod 1.$ (1.13)

- (1) Déterminer l'expression de $\mathcal{P}\rho(x)$.
- (2) Montrer que l'application T est μ -invariante.

1.5 - L'application de Gauss

Soit l'application $T:[0,1] \rightarrow [0,1]$ définie par

$$T(x) = \begin{cases} \frac{1}{x} \mod 1 & \operatorname{si} x \neq 0, \\ 0 & \operatorname{si} x = 0. \end{cases}$$

- (1) Déterminer l'expression de $\mathcal{P}\rho(x)$.
- (2) Montrer que T n'est pas μ -invariante .
- (3) Montrer que $\mathcal{P}\rho^*=\rho^*$ avec $\rho^*(x)=\frac{1}{(1+x)\ln 2}$ et en déduire que l'application T est μ_{ρ^*} -invariante avec μ_{ρ^*} définie par

$$\mu_{\rho^*}(A) = \frac{1}{\ln 2} \int_A \frac{1}{1+x} dx.$$

1.6.

Montrer que si $f(x) = \chi_A(x)$, alors f^* est donnée par

$$\lim_{n \to +\infty} \frac{1}{n} \operatorname{card} \left\{ k \in \{0, ..., n-1\} : T^k(x) \in A \right\} = \mu_{\rho}(A),$$

et illustrer numériquement ce résultat avec les applications ergodiques suivantes :

- (1) logistique avec r = 4;
- (2) n-adique avec n=2;
- (3) Rotation discrète (1.13) avec α irrationnel;
- (4) de Gauss.

Pour cela, considérer A = [0.2, 0.8], $x_0 = \sqrt{2}/2$ et limiter la somme à 1000 termes.

1.7 – Densité limite par la méthode d'Ulam

Appliquer l'algorithme d'Ulam pour en déduire la densité limite ρ^* pour les applications suivantes :

- (1) logistique avec r=4;
- (2) l'application de Gauss.

Pour cela, commencer par considérer n=100 subdivisions de $\mathcal X$ contenant chacune m=1000 éléments. Ensuite, itérer N=20 fois la matrice de propagation obtenue sur la densité initiale constante.

1.8 - Système stable à 1 dimension

Soit le système $\dot{x} = -\lambda x$ avec $\lambda > 0$.

- (1) Déterminer $x(t) = \varphi^t(x_0)$ le flot du système.
- (2) Soient f(x) = x et $g(x) = x^n, n \in \mathbb{N}$.
 - (a) Montrer que f est une fonction propre du semi-groupe d'opérateurs de Koopman et donner la valeur propre associée.
 - (b) En déduire que g est aussi une fonction propre de $(\mathcal{K}^t)_{t\geq 0}$ et donner la valeur propre associée.
- (3) Soit h(x) une observable. Montrer que son évolution est donnée par :

$$h(x(t)) = \sum_{k=0}^{+\infty} h_k e^{-k\lambda t} x^k, \text{ avec } h_k = \frac{1}{k!} \frac{d^k h}{dx^k}(0).$$

et identifier les modes de Koopman.

1.9 - Oscillateur harmonique

Considérer l'oscillateur harmonique : $\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\omega^2 x_1. \end{cases}$

- (1) Donner la matrice Jacobienne A du système ainsi que sa structure propre, c'est-à-dire ses valeurs propres λ_k et ses vecteurs propres à droite v_k et à gauche w_k .
- (2) Montrer que la solution du système s'écrit comme une combinaison linéaire des vecteurs propres à droite de A de la forme

$$(x_1, x_2)^T = \phi_1(x_0)e^{i\omega t}v_1 + \phi_2(x_0)e^{-i\omega t}v_2,$$

pour une condition initiale générale $x_0 = (x_{01}, x_{02})$ et où $\phi_k(x_0) = \langle x_0, w_k \rangle$.

- (3) (a) Montrer les fonctions $\phi_k(x_0)$ sont des fonctions propres du semi-groupe d'opérateurs de Koopman et donner la valeur propre associée.
 - (b) Montrer que les fonctions $\phi_k(x_0)$ peuvent s'écrire $r_0e^{\pm i\theta_0}$ où r_0 et θ_0 sont à déterminer.
- (4) Enfin, identifier les modes de Koopman dans la solution.

 Chapitre 1. Operateurs de Perro	on – Frobenius et de Roopman	

Isochrones et moyennes de Fourier

2.1 Rappels

2.1.1 Isochrones

Ce paragraphe est dédié à l'étude asymptotique des systèmes possédant un cycle limite stable. Celle-ci peut se faire en considérant des différences de phases entre les trajectoires, nous amenant ainsi à considérer un système à une seule dimension plutôt que n. Le prix à payer est la recherche d'**isochrones** qui sont des ensembles de points qui partitionnent le bassin d'attraction d'un cycle limite en fonction de son comportement asymptotique. Plus formellement, on a les définitions suivantes :

Définition 2.1 (Bassin d'attraction)

Le **bassin d'attraction** du cycle limite Γ associé au système $\dot{x}=F(x)$, dont le flot est donné par φ est défini par :

$$\mathcal{B}(\Gamma) = \left\{ x_0 \in \mathbb{R}^n | \varphi(t, x_0) \in \mathbb{R}^n, \forall t \ge 0 : \lim_{t \to +\infty} \varphi(t, x_0) \in \Gamma \right\}$$

Avant de définir rigoureusement la notion d'isochrone, nous avons besoin d'introduire le concept de **phase**. Soit $x^{\gamma} \in \Gamma$. Ce point possède une phase $\theta = 2\pi \frac{t}{T_0}$, où $t < T_0$ la période du cycle limite, si et seulement si :

$$\varphi(t, x_0^\gamma) = x^\gamma$$

avec $x_0^{\gamma} \in \Gamma$ un point de référence du cycle limite auquel on associe une phase nulle. Cette définition permet d'associer à la dynamique sur le cycle limite, une dynamique circulaire

$$\dot{\theta} = \omega_0,$$

où $\omega_0=rac{2\pi}{T_0}.$ Enfin, une courbe isochrone est définie de la manière suivante.

Définition 2.2 (Isochrone)

Un **isochrone** associé à la phase θ du cycle limite Γ , noté \mathcal{I}_{θ} est défini comme l'ensemble suivant :

$$\mathcal{I}_{\theta} = \left\{ x \in \mathcal{B}(\Gamma) \Big| \lim_{t \to +\infty} \left\| \varphi(t, x) - \varphi\left(t + \frac{\theta}{2\pi} T_0, x_0^{\gamma}\right) \right\| = 0 \right\}$$

2.1.2 Moyennes de Fourier

Les moyennes de Fourier constitueront un outils pour déterminer les isochrones.

Définition 2.3 (Moyennes de Fourier)

Les moyennes de Fourier de f sont données par

$$f_{\omega}^{*}(x) = \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} f\left(\varphi^{t}(x)\right) e^{-i\omega t} dt.$$
 (2.1)

Pour un x fixé, cette relation représente la transformée de Fourier de l'observable évaluée le long de la trajectoire.

2.1.3 Propriétés

Enfin, on peut montrer que l'on a les propriétés suivantes :

- ightharpoonup Pour un système dynamique admettant un cycle limite de fréquence ω_0 , les moyennes de Fourier f_ω^* sont non nulles pour les fréquences $\omega=k\omega_0, k\in\mathbb{Z}$.
- ightharpoonup Les isochrones sont les courbes de niveau de $f^*_{k\omega_0}.$
- hirpoonup Les $f^*_{k\omega_0}$ sont des fonctions propres du semi-groupe de Koopman \mathcal{K}^t :

$$\mathcal{K}^t f_{k\omega_0}^*(x) = e^{ik\omega_0 t} f_{k\omega_0}^*(x).$$

2.2 Exercices

2.1 – Isochrones

Soit le système à 2 dimensions défini sur $R^+ \times S^1$ suivant :

$$\begin{cases} \dot{r} = r(1 - r^2), \\ \dot{\theta} = \omega. \end{cases}$$

- (1) Discuter qualitativement le comportement du système.
- (2) Pour $\theta_0 \in S^1$ fixé, en déduire que toutes les conditions initiales de la forme (r, θ_0) conduisent à des trajectoires de même phase.
- (3) Montrer que $f(r,\theta)=e^{i\theta}$ est une fonction propre du semi-groupe d'opérateurs de Koopman et donner la valeur propre associée.
- (4) Quel lien y a-t-il entre les courbes de niveaux de f et la propriété énoncée au point (2)?

2.2 - Oscillateur de Van der Pol

Considérer le système de Van der Pol :

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = \mu(1 - x_1^2)x_2 - x_1, \end{cases}$$

avec $\mu = 1$ et $\omega_0 = 0.942958$ la fréquence du cycle limite en radian par unité de temps.

Déterminer numériquement $f_{\omega_0}^*(x_0)$ pour l'observable $f(x_1,x_2)=x_1$ et en déduire la forme des isochrones. Pour cela, considérer 400 conditions initiales uniformément réparties dans $[-3,3]\times[-3,3]$ et la discrétisation de l'intervalle de temps [0,15] par un pas $\Delta t=10^{-2}$.

Indications : Utiliser la fonction trapz de MATLAB pour calculer les intégrales. Utiliser la fonction angle pour récupérer l'argument dans $[-\pi, \pi]$ d'une variable complexe.

Chapitre 2. Is	sochrones et moyen	nes de Fourier	

Approximations finies de l'opérateur de Koopman

3.1 Rappels

3.1.1 Matrice de Koopman

L'opérateur de Koopman est de dimension infinie, il est donc naturel et souvent nécessaire d'en calculer une approximation de dimension finie.

Définition 3.1 (Matrice de Koopman)

Soit $\Pi_{|\mathcal{F}_{\Psi}}: \mathbb{L}_{\infty} \to \mathcal{F}_{\Psi}$, l'opérateur projetant les observables sur un sous-espace \mathcal{F}_{Ψ} engendré par l'ensemble des fonctions de base $\Psi = \{\psi_k \in \mathbb{L}_{\infty} \mid k = 1, \dots, N\}$.

La matrice de Koopman $K \in \mathbb{R}^{N \times N}$ est définie par

$$\mathcal{K}\Psi(x) \approx \Pi_{|\mathcal{F}_{\Psi}} \mathcal{K}\Psi(x) = K\Psi(x),$$

où
$$\mathcal{K}\Psi(x)=(\mathcal{K}\psi_1(x),\ldots,\mathcal{K}\psi_N(x)).$$

Les valeurs propres, les fonctions propres et les modes de Koopman sont alors approximés par les valeurs propres, les vecteurs propres à droites et les vecteurs propres à gauche de la matrice de Koopman, respectivement. Dans la suite de ce chapitre, nous prendrons les notations d'un système en temps discret T représentant la discrétisation d'un système en temps continu de dimension n.

3.1.2 Méthode d'Arnoldi

Considérons un échantillon de données du système T constitué de m+1 points successifs et séparés de Δt le long de N < m+1 trajectoires observées à travers f:

$$Z = [f(x_0), f(x_1) = \mathcal{K}f(x_0), \dots, f(x_m) = \mathcal{K}^m f(x_0)] \in \mathbb{R}^{N \times (m+1)}$$

La méthode d'Arnoldi fourni une approximation des valeurs propres et des modes de Koopman, voir l'algorithme 2.

Algorithme 2 Méthode d'Arnoldi

- 1: Construire X contenant les m premières colonnes de Z.
- 2: Construire Y contenant la dernière colonne de Z.
- 3: Calculer le vecteur $c = X^+Y$ où X^+ est la pseudo-inverse de X.
- 4: Construire la matrice compagnon ${\cal C}$ telle que :

$$C = \begin{pmatrix} 0 & 0 & \cdots & 0 & c_0 \\ 1 & 0 & \cdots & 0 & c_1 \\ 0 & 1 & \cdots & 0 & c_2 \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & c_m \end{pmatrix}$$

- 5: Calculer les valeurs propres μ_k de C.
- 6: Construire la matrice de Vandermonde :

$$T = \begin{pmatrix} 1 & \mu_1 & \mu_1^2 & \cdots & \mu_1^{m-1} \\ 1 & \mu_2 & \mu_2^2 & \cdots & \mu_2^{m-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \mu_m & \mu_m^2 & \cdots & \mu_m^{m-1} \end{pmatrix}$$

- 7: Calculer $V=XT^{-1}$ dont les colonnes approximent les modes de Koopman v_k .
- 8: Calculer $\lambda_k = \frac{1}{\Delta t} \ln(\mu_k)$ qui approximent les valeurs propres de \mathcal{K} .

3.1.3 Décomposition en mode dynamique (DMD)

Contrairement à l'algorithme d'Arnoldi, qui demande d'échantillonner le long d'une trajectoire, l'algorithme 3 permet d'obtenir les modes de Koopman à partir de m paires de données de la forme $(x_k(t),y_k(t)=x_k(t+\Delta t)), k\in\{0,\ldots,m-1\}$ pouvant être issues de trajectoires différentes.

Algorithme 3 Décomposition en modes dynamiques (DMD)

- 1: Construire X dont les colonnes sont les x_k .
- 2: Construire Y dont les colonnes sont les y_k de sorte que $\forall k \in \{0, \dots, m-1\} : y_k = T(x_k)$.
- 3: Calculer la matrice de Koopman $K_{DMD} = YX^+$.
- 4: Calculer les vecteurs propres à droite de K_{DMD} pour approximer les modes de Koopman v_k .
- 5: Calculer $\lambda_k = \frac{1}{\Delta t} \ln(\mu_k)$ avec μ_k les valeurs propres de K_{DMD} .

3.2 Exercices

3.1 – Oscillateur de Van der Pol

Considérer le système de Van der Pol :

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = \mu(1 - x_1^2)x_2 - x_1, \end{cases}$$

avec $\mu = 1$.

> Production de données

- (1) Générer 100 conditions initiales uniformément réparties dans $[-1,1] \times [-1,1]$.
- (2) Utiliser ODE45 pour intégrer le système sur l'intervalle de temps [0,10] avec $\Delta t = 10^{-2}$ comme pas de discrétisation.
- (3) Mesurer les deux observables $f(x) = x_1$ et $g(x) = x_2$.

- (1) Utiliser la méthode d'Arnoldi sur ces données pour approximer le spectre et les modes de l'opérateur de Koopman.
- (2) Utiliser les approximations ainsi obtenues pour reconstruire $x_1(t)$, $x_2(t)$ ainsi que le cycle limite à partir des conditions initiales.

- (1) Utiliser la méthode DMD sur ces données pour approximer le spectre et les modes de l'opérateur de Koopman.
- (2) Utiliser les approximations ainsi obtenues pour reconstruire $x_1(t)$, $x_2(t)$ ainsi que le cycle limite à partir des conditions initiales.

 Chapitre 3. Approximations finies de l'opérateur de Koopman				

Projection du générateur infinitésimal

4.1 Rappels

4.1.1 Générateur infinitésimal

En temps continu, l'opérateur de Koopman est devenu un semi-groupe d'opérateurs dont les propriétés sont liées à celles de son générateur infinitésimal.

Définition 4.1 (Générateur infinitésimal du semi-groupe d'opérateurs de Koopman)

Soit le système $\dot{x}=F(x)$. L'action du **générateur infinitésimal du semi-groupe d'opérateurs de Koopman** sur une observable f est

$$L_{\mathcal{K}}f = \lim_{t \to 0} \frac{\mathcal{K}^t f - f}{t}.$$

À l'aide du théorème de la valeur moyenne, on peut montrer que la définition ${\bf 4.1}$ exploite F(x) pour s'écrire :

$$L_{\mathcal{K}}f = F \cdot \nabla f. \tag{4.1}$$

4.1.2 Représentation dans une base

Si on considère $B=\{\psi_k\}_{k\in\mathbb{N}}$ une base ¹ de \mathcal{F} , alors la matrice représentative de $L_{\mathcal{K}}$ dans la base B s'écrit :

$$[L_{\mathcal{K}}]_B^B = \begin{pmatrix} | & | & \cdots & | & \cdots \\ [L_{\mathcal{K}}\psi_1]^B & [L_{\mathcal{K}}\psi_2]^B & \cdots & [L_{\mathcal{K}}\psi_k]^B & \cdots \\ | & | & \cdots & | & \cdots \end{pmatrix}.$$

Par ailleurs, les coordonnées c_k de f dans la base B sont données par

$$[f]^B = \begin{pmatrix} c_1 \\ \vdots \\ c_k \\ \vdots \end{pmatrix}.$$

^{1.} Par exemple, la base hilbertienne lorsque ${\mathcal F}$ est un espace de Hilbert séparable.

Ainsi, dans la base B, l'image de f par l'opérateur $L_{\mathcal{K}}$ donnée par l'équation (4.1) s'écrit

$$[L_{\mathcal{K}}f]^B = [L_{\mathcal{K}}]_B^B [f]^B.$$

Finalement, la **projection du générateur infinitésimal** consiste à considérer la représentation matricielle ci-dessus sur un sous-espace $\mathcal{F}_{|\Psi} \subset \mathcal{F}$ de dimension finie N dont on donne une base $\Psi = \{\psi_k\}_{k=1}^N$.

4.2 Exercices

4.1 – Illustration à 1 dimension

Soit le système $\dot{x}=-x-x^2$ dont le flot s'écrit $\varphi^t(x_0)=-\frac{x_0e^{-t}}{1+x_0-x_0e^{-t}}$ pour $x_0\in]-1,1[$.

(1) Considérer $\Psi = \{\psi_k\}_{k \in \mathbb{N}}$ la base de monômes et montrer que

$$(L_{\mathcal{K}}\psi_k)(x) = -kx^k - x^{k+1}$$

- (2) En déduire que $f(x)=\frac{x}{1+x}$ est une fonction propre de $L_{\mathcal{K}}$ et donner la valeur propre associée.
- (3) Écrire la matrice représentative de $L_{\mathcal{K}}$ dans la base Ψ de monômes.
- (4) Déterminer numériquement $L_{\mathcal{K}}f$ en utilisant la projection du générateur infinitésimal $L_{\mathcal{K}}$ sur un sous-espace engendré par les monômes de degré au plus 25.