Brian Ferrell ECON 641

Appendix

A. Loss function and using it for example 1

B. ADF Implementation

```
# CDW - Trend
adf1summary = ADF(df['CDW'], lags=2, trend='ct', method='t-stat').summary()
adf1summary

# XLK - Trend
adf2summary = ADF(df['XLK'], lags=4, trend='ct', method='t-stat').summary()
adf2summary

# SP500 - Trend
adf3summary = ADF(df['SP500'], lags=8, trend='ct', method='t-stat').summary()
adf3summary

# CDW - No trend
adf1 = ADF(df['CDW'].diff().dropna(), lags=0, trend='n',
method='t-stat').regression
adf1.summary()

# XLK - No trend
adf2 = ADF(df['XLK'].diff().dropna(), lags=0, trend='n',
method='t-stat').regression
adf2.summary()
```

```
# SP500 - No trend
adf3 = ADF(df['SP500'].diff().dropna(), lags=0, trend='n',
method='t-stat').regression
adf3.summary()
```

C. Augmented Dickey-Fuller Test Results for CDW (without transformation):

Test Statistic	-2.512
P-value	0.322
Lags	2

Critical Values: -4.01 (1%), -3.44 (5%), -3.14 (10%)

The 5% critical value is -3.44, p-value at .322, and the test statistic is -2.51, which means we are inside the critical value zone.

D. Augmented Dickey-Fuller Test Results for XLK (without transformation):

Test Statistic	-0.909
P-value	0.955
Lags	4

Critical Values: -4.01 (1%), -3.44 (5%), -3.14 (10%)

The 5% critical value is -3.44, p-value at .955, and the test statistic is -.909, which means we are inside the critical value zone.

E. Augmented Dickey-Fuller Test Results for SP500 (without transformation):

Test Statistic	-1.063
P-value	0.935
Lags	8

Critical Values: -4.01 (1%), -3.44 (5%), -3.14 (10%)

The 5% critical value is -3.44, p-value at .935, and the test statistic is -1.063, which means we are inside the critical value zone.

F. Augmented Dickey-Fuller Test Results for CDW (transformation):

Test Statistic	-13.647
P-value	9.327775150638277e-25
Lags	0

Critical Values: -2.58 (1%), -1.94 (5%), -1.62 (10%)

The 5% critical value is -1.94, p-value extremely small, and the test statistic is -13.647, which means we are outside the critical value zone.

G. Augmented Dickey-Fuller Test Results for XLK (transformation):

Test Statistic	-13.041
P-value	9.21331593333097e-24
Lags	0

Critical Values: -2.58 (1%), -1.94 (5%), -1.62 (10%)

The 5% critical value is -1.94, p-value extremely small, and the test statistic is -13.041, which means we are outside the critical value zone.

H. Augmented Dickey-Fuller Test Results for SP500 (transformation):

Test Statistic	-12.765
P-value	2.775214831077567e-23

Lags	0

Critical Values: -2.58 (1%), -1.94 (5%), -1.62 (10%)

The 5% critical value is -1.94, p-value extremely small, and the test statistic is -12.765, which means we are outside the critical value zone.

I. P-value matrix implementation and causality tests

```
from statsmodels.tsa.stattools import grangercausalitytests
maxlag=12
test = 'ssr chi2test'
def grangers causation matrix(data, variables, test='ssr chi2test', verbose=False):
  df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variables,
index=variables)
  for c in df.columns:
       for r in df.index:
           test_result = grangercausalitytests(data[[r, c]], maxlag=maxlag,
verbose=False)
          p_values = [round(test_result[i+1][0][test][1],4) for i in
range(maxlag)]
           if verbose: print(f'Y = {r}, X = {c}, P Values = {p_values}')
          min_p_value = np.min(p_values)
          df.loc[r, c] = min p value
  df.columns = [var + '_x' for var in variables]
  df.index = [var + ' y' for var in variables]
   return df
new df = df.drop(columns=['datetime'])
grangers causation matrix(new df.diff().dropna(), variables = new df.columns)
```

J. ARMA model implementation

K. DM Test

```
autoCov += ((Xi[i + k]) - Xs) * (Xi[i] - Xs)
return (1 / (T)) * autoCov

gamma = []
for lag in range(0, h):
    gamma.append(autocovariance(d_lst, len(d_lst), lag, mean_d)) # 0, 1, 2

V_d = (gamma[0] + 2 * sum(gamma[1:])) / T

DM_stat = V_d ** (-0.5) * mean_d
harvey_adj = ((T + 1 - 2 * h + h * (h - 1) / T) / T) ** (0.5)

DM_stat = harvey_adj * DM_stat

DM_stat = np.round(DM_stat, 2)
# Find p-value
p_value = 2 * t.cdf(-abs(DM_stat), df=T - 1)
p_value = np.round(p_value, 4)

dm_return = collections.namedtuple('dm_return', 'DM p_value')

rt = dm_return(DM=np.round(DM_stat, 2), p_value=p_value)
```

L. Q-Stat with p-value

```
qstat = []
pvalue = []
for i in range(len(resids)):
    qstat.append(sm.stats.acorr_ljungbox(resids[i].values[1:],
    return_df=False,lags=[10])[0])
    pvalue.append(sm.stats.acorr_ljungbox(resids[i].values[1:],
    return_df=False,lags=[10])[1])
```

M. VAR Model Implementation

```
'''VAR model'''
'''Select number of lags'''
# correlation
df.corr()
from statsmodels.tsa.api import VAR
for i in [0,1,2,3,4,5,6,7,8,9,10]:
    model = VAR(df[['CDW', 'SP500', 'XLK']].diff().dropna())
    var_result = model.fit(i)
    print('Order =', i)
# For sake of VAR I did 1 lag even though it is white noise model
var_result = model.fit(1)
var_result.summary()

lag_order = var_result.k_ar
print(lag_order)
```

```
# Input data for forecasting
forecast_input = df[['CDW', 'SP500', 'XLK']].diff().values[-lag_order:]
forecast_input

# Forecast
pred = var_result.forecast(y=forecast_input, steps=10)
pred = pd.DataFrame(pred, index=df.index[-10:], columns=df[['CDW', 'SP500', 'XLK']].columns + '_1d')
pred
```

N. Reverse transformation for VAR

```
def invert_transformation(df_train, df_forecast):
    df_fc = df_forecast.copy()
    columns = df_train.columns
    for col in columns:
        # Roll back 1st Diff
        df_fc[str(col)+'_forecast'] = df_train[col].iloc[-1] +
df_fc[str(col)+'_1d'].cumsum()
    return df_fc

df_results = invert_transformation(df[['CDW', 'SP500', 'XLK']], pred)
```

O. Plots (no transformation)

```
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

plt.rcParams.update({'figure.figsize':(12,12)})

# CDW
fig, axes = plt.subplots(3, 3)
axes[0, 0].plot(df['CDW']); axes[0, 0].set_title('CDW Closing Prices')
plot_acf(df['CDW'], ax=axes[0, 1])
plot_pacf(df['CDW'], ax=axes[0, 2])

# XLK
axes[1, 0].plot(df['XLK']); axes[1, 0].set_title('XLK Closing Prices')
plot_acf(df['XLK'], ax=axes[1, 1])
plot_pacf(df['XLK'], ax=axes[1, 2])

# SP500
axes[2, 0].plot(df['SP500']); axes[2, 0].set_title('SP500 Closing Prices')
plot_acf(df['SP500'], ax=axes[2, 1])
plot_pacf(df['SP500'], ax=axes[2, 2])
```

```
plt.savefig("Final_Station_Obser.png")
plt.show()
```

P. Plots (transformation)

```
plt.rcParams.update({'figure.figsize':(12,12)})
# CDW
fig, axes = plt.subplots(3, 3)
axes[0, 0].plot(df['CDW'].diff().dropna()); axes[0, 0].set_title('CDW Closing
Prices')
plot_acf(df['CDW'].diff().dropna(), ax=axes[0, 1])
plot_pacf(df['CDW'].diff().dropna(), ax=axes[0, 2])
# XLK closing
axes[1, 0].plot(df['XLK'].diff().dropna()); axes[1, 0].set_title('XLK Closing
Prices')
plot acf(df['XLK'].diff().dropna(), ax=axes[1, 1])
plot_pacf(df['XLK'].diff().dropna(), ax=axes[1, 2])
axes[2, 0].plot(df['SP500'].diff().dropna()); axes[2, 0].set_title('SP500 Closing
Prices')
plot_acf(df['SP500'].diff().dropna(), ax=axes[2, 1])
plot pacf(df['SP500'].diff().dropna(), ax=axes[2, 2])
```

Q. Residual plots

```
plt.rcParams.update({'figure.figsize':(12,9)})
plt.plot(resids[0][1:])
plt.title("Best ARIMA Residuals Plot")
plt.xlabel("t")
plt.ylabel("Residuals")
plt.savefig("best_arma_residual_values")
```

R. Summary of VAR

const	0.085304	0.210615	0.405	0.685	
L1.CDW	-0.078211	0.096288	-0.812	0.417	
L1.SP500	-0.004312	0.015062	-0.286	0.775	
L1.XLK	0.236676	0.276397	0.856	0.392	
========	==========	=============	==========	:======	
Results for	equation SP500				
========	==========	=======================================	==========	:======	
	coefficient	std. error	t-stat	prob	
const	0.663833	3.009120	0.221	0.825	
L1.CDW	-1.638100	1.375694	-1.191	0.234	
L1.SP500	0.026386	0.215189	0.123	0.902	
L1.XLK	1.778966	3.948966	0.450	0.652	
========	==========	=======================================	==========		
Results for	equation XLK				
========	==========	=======================================	==========	=======	
	coefficient	std. error	t-stat	prob	
const	0.076421	0.152427	0.501	0.616	
L1.CDW	-0.073840	0.069686	-1.060	0.289	
L1.SP500	0.002141	0.010900	0.196	0.844	
L1.XLK	0.031097	0.200035	0.155	0.876	
========	=========	=======================================	==========	=======	