

VC Dimension

STATS 303 Statistical Machine Learning

Spring 2022

Lecture 20

00PS

Order of Presentations:

Tu We Th

#2 #3 #1

#4 #5

Vapnic-Chernonenkis (VC) dimension

infinite-size classes may be learnable

• According to No-Free-Lunch theorem, if there is no restriction on the hypothesis class \mathcal{H} (\mathcal{H} contains all functions from \mathcal{X} to $\{0,1\}$), then for any learning algorithm, there exists a distribution on which it performs poorly.

• Is it because that $|\mathcal{H}| = \infty$? Let's look at the following example.

infinite-size classes may be learnable

- Let \mathcal{H} be the set of threshold functions over the real line:
 - $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ where $h_a(x) = \mathbf{1}_{\{x < a\}}(x)$.
 - Then $|\mathcal{H}| = \infty$ since a can be any real number.

• Claim: this \mathcal{H} is PAC-learnable

Claim: $H = \{h_a : a \in \mathbb{R}\}$ where $h_a(x) = \mathbb{1}_{\{x < a\}}(x)$ is PAC - learnable.

Pf: Let a^* be a threshold st. the hypothesis $h^*(x) := h_{a^*}(x) = 1_{\{x < a^*\}}(x) \quad \text{achieves}$ $L_{\mathfrak{P}}(h^*) = 0$

(This exists by the realizability assumption.)

Let ao < a* < a1 be such that

$$P_{\mathfrak{B}}(x \in (a_{\bullet}, a^{*})) = P_{\mathfrak{B}}(x \in (a^{*}, a_{1})) = \mathcal{E}$$
(we can also say $\mathfrak{D}(x \in (a_{\bullet}, a^{*})) = \mathfrak{D}(x \in (a^{*}, a_{1})) = \mathcal{E}$.)

If an does not exist, then take an = -00; if a does not exist, then take a = + ... Given a training set S. x x x x x Let $b_0 = \max \{ (x, 1) \in S \}$ "The maximal x in Sx whose label is 1." $b_1 = \min_{x \in \mathbb{R}} \{(x, 0) \in S \}$ "The minimal x in S/x whose label is 0." If no bo exists, take bo = -00; if no be exists, take be = ta. Let by minimize the training loss. That is, $Ls(h_{bs}) = 0$

For brevity, denote hs = hbs

bs is a correct threshold for all data in the traing set S.

Also, bo < bs < b1.

Therefore, a sufficient condition for

is that both bo $\geq a_0$ and $b_1 \leq a_1$

In other words,

$$\mathbb{P}_{\mathfrak{D}^m}\left(L_{\mathfrak{D}}(h_s) > \varepsilon\right) \leq \mathbb{P}_{\mathfrak{D}^m}\left(b_o < a_o \text{ or } b_1 > a_1\right)$$

Note that $b_0 < a_0$ if and only if all the data in S are not in (a_0, a^*) . Namely,

$$\mathbb{P}_{\mathfrak{D}^m}(b_0 < a_0) = \mathbb{P}_{\mathfrak{D}^m}(\text{ for any } x \in S|_x, x \notin (a_0, a^*))$$

$$\leq ([-\xi]^m)$$
 where $m = |S|$.

Similarly,
$$P_{gm}(b_1 > a_1) \leq (1-\epsilon)^m$$
.

Together.
$$P_{D}m(L_{D}(h_{S}) > \mathcal{E}) \leq 2(1-\mathcal{E})^{m} < 2e^{-\mathcal{E}m}$$

Since $1-\mathcal{E} < e^{\mathcal{E}}$ for $\mathcal{E} > 0$.

Setting
$$2e^{-\epsilon m} \leq \delta$$
 yields $m \geq \frac{1}{\epsilon} \log(\frac{2}{\delta})$.

If
$$m \ge \frac{1}{5} \log(\frac{2}{5})$$
, then $P_{D}m(L_{D}(h_{S}) > \varepsilon) < \delta$.

$$m_{H} \leq \left[\frac{1}{2}\log\left(\frac{2}{5}\right)\right]$$

restriction of hypothesis class

- In order to characterize learnability, we need the following definitions.
- In the proof of NFL, we used a set $\mathcal{C} \subset \mathcal{X}$

Definition (Restriction of \mathcal{H} **to** \mathcal{C} **)**

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let \mathcal{C} = $\{c_1,\cdots,c_m\}\subset\mathcal{X}$. The restriction of \mathcal{H} to \mathcal{C} is the set of functions from \mathcal{C} to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_C = \{(h(c_1), \cdots, h(c_m)) : h \in \mathcal{H}\}$$

shattering

Definition (Restriction of $\mathcal H$ to $\mathcal C$)

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let \mathcal{C} = $\{c_1, \cdots, c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to \mathcal{C} is the set of functions from \mathcal{C} to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_C = \{(h(c_1), \cdots, h(c_m)) : h \in \mathcal{H}\}$$

Definition (Shattering)

A hypothesis class \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if the restriction of \mathcal{H} to \mathcal{C} is the set of all functions from \mathcal{C} to $\{0,1\}$. That is, $|\mathcal{H}_{\mathcal{C}}| = 2^{|\mathcal{C}|}$.

example of shattering

- Let $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ where $h_a(x) = \mathbf{1}_{\{x < a\}}(x)$
- Let $C = \{c_1\}$. Does \mathcal{H} shatter C?

example of shattering

- Let $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ where $h_a(x) = \mathbf{1}_{\{x < a\}}(x)$
- Let $C = \{c_1\}$. Does \mathcal{H} shatter C?
- What about $C = \{c_1, c_2\}$? $(c_1 \angle c_2)$

	Cı	C_2
V	0	0
V	1	1
V	1	0
X	0	1

H does not shatter C.

shattering

- If $\mathcal H$ shatters some set $\mathcal C$ of size 2m, then we cannot learn $\mathcal H$ using m examples.
- A corollary of NFL: Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$. Let m be a training set size. Assume that there exists a set $\mathcal{C} \subset \mathcal{X}$ of size 2m that is shattered by \mathcal{H} . Then for any learning algorithm A, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ and a predictor $h \in \mathcal{H}$ such that $L_{\mathcal{D}}(h) = 0$ but with probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.

VC (Vapnik-Chervonenkis) dimension

• The VC-dimension of a hypothesis class \mathcal{H} , denoted by VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .

• If $\mathcal H$ can shatter sets of arbitrarily large size, we say $\mathcal H$ has infinite VC dimension.

VC (Vapnik-Chervonenkis) dimension

- The VC-dimension of a hypothesis class \mathcal{H} , denoted by $VCdim(\mathcal{H})$, is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .
- If $\mathcal H$ can shatter sets of arbitrarily large size, we say $\mathcal H$ has infinite VC dimension.
- If $VCdim(\mathcal{H}) = \infty$, then \mathcal{H} is not PAC learnable.

VC (Vapnik-Chervonenkis) dimension

- The VC-dimension of a hypothesis class \mathcal{H} , denoted by VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .
- To show $VCdim(\mathcal{H}) = d$ we need to show that
 - 1. There exists a set C of size d that is shattered by H
 - 2. Every set C of size d + 1 cannot be shattered by H

VC dim: example 1

- Let \mathcal{H} be the set of threshold functions
 - $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ where $h_a(x) = \mathbf{1}_{\{x < a\}}(x)$
- Take $C = \{c_1\}$ for some c_1
 - Take $a=c_1+1$,then $h_a(c_1)=1$ • Take $a=c_1-1$,then $h_a(c_1)=0$ \mathcal{H} shatters \mathcal{C}
- Consider $C' = \{c_1, c_2\}$ for any $c_1 \blacktriangleleft c_2$
 - No h_a can maps c_1 to 0 and c_2 to 1 \mathcal{H} does not shatter C'

Questions?

Reference

- VC dimension
 - [S-S] Ch 6.1-6.3

