0.1 矩阵的运算

命题 0.1 (标准单位向量和基础矩阵)

1. 标准单位向量

n 维标准单位列向量是指下列 n 个 n 维列向量:

$$\boldsymbol{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \boldsymbol{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \cdots, \quad \boldsymbol{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

向量组 e'_1, e'_2, \dots, e'_n 则被称为 n 维标准单位行向量, 容易验证标准单位向量有下列基本性质:

- 1. 若 $i \neq j$, 则 $e'_i e_i = 0$, 而 $e'_i e_i = 1$;
- 2. 若 $A = (a_{ii})$ 是 $m \times n$ 矩阵, 则 Ae_i 是 A 的第 i 个列向量; $e_i'A$ 是 A 的第 i 个行向量;
- 3. 若 $A = (a_{ii})$ 是 $m \times n$ 矩阵, 则 $e'_i A e_i = a_{ii}$;
- 4. **判定准则:** 设 A, B 都是 $m \times n$ 矩阵, 则 A = B 当且仅当 $Ae_i = Be_i (1 \le i \le n)$ 成立, 也 当且仅当 $e'_i A = e'_i B(1 \le i \le m)$ 成立.

2. 基础矩阵

n 阶基础矩阵 (又称初级矩阵) 是指 n^2 个 n 阶矩阵 $\{E_{ij}, 1 \leq i, j \leq n\}$. 这里 E_{ij} 是一个 n 阶矩阵, 它的第 (i,j) 元素等于 1, 其他元素全为 0. 基础矩阵也可以看成是标准单位向量的积: $E_{ij} = e_i e_j^T$. 由此不难证明基础矩阵的下列性质:

- 1. 若 $j \neq k$, 则 $E_{ii}E_{kl} = 0$;
- 2. 若 j = k, 则 $E_{ij}E_{kl} = E_{il}$;
- 3. 若 A 是 n 阶矩阵且 $A = (a_{ij})$, 则 $A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E_{ij}$;
- 4. 若 $A \neq n$ 阶矩阵且 $A = (a_{ij})$,则 $E_{ij}A$ 的第 i 行是 A 的第 j 行, $E_{ij}A$ 的其他行全为零;
- 5. 若 $A \neq n$ 阶矩阵且 $A = (a_{ij})$, 则 AE_{ij} 的第 j 列是 A 的第 i 列, AE_{ij} 的其他列全为零;
- 6. 若 $A \neq n$ 阶矩阵且 $A = (a_{ij})$, 则 $E_{ij}AE_{kl} = a_{ik}E_{il}$.

笔记 标准单位向量和基础矩阵虽然很简单, 但如能灵活应用就可以得到意外的结果. 我们在今后将经常应用它们, 因此请读者熟记这些结论.

一些常见的想法:

- 1. 可以将一般的矩阵写成标准单位列向量或基础矩阵的形式 (这个形式可以是和式的形式, 也可以是分块的形式).
 - 2. 如果要证明两个矩阵相等, 那么我们就可以考虑判定法则.
- 3. 如果某种等价关系蕴含了一种递减的规律 (项数减少, 阶数降低等), 那么我们就可以考虑数学归纳法, 去尝试根据这个规律得到一些结论.

定义 0.1 (循环矩阵)

1. 下列形状的 n 阶矩阵称为 n 阶基础循环矩阵:

$$\boldsymbol{J} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} O & I_{n-1} \\ 1 & O \end{pmatrix}.$$

2. 下列形状的矩阵称为循环矩阵:

$$\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}.$$

 $\stackrel{ ext{$\widehat{\Sigma}$}}{ ext{$\widehat{\Sigma}$}}$ 笔记 记 $C_n(\mathbb{K})$ 为 \mathbb{K} 上所有 n 阶循环矩阵构成的集合.

命题 0.2 (循环矩阵的性质)

1. 若 J 为 n 阶基础循环矩阵, 则

$$\boldsymbol{J}^k = \begin{pmatrix} O & I_{n-k} \\ I_k & O \end{pmatrix}, 1 \le k \le n.$$

2. 若 A 是循环矩阵, 即

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix},$$

则循环矩阵 A 可以表示为基础循环矩阵 J 的多项式:

$$A = a_1 I_n + a_2 J + a_3 J^2 + \dots + a_n J^{n-1}.$$

反之, 若一个矩阵能表示为基础循环矩阵 J 的多项式, 则它必是循环矩阵.

- 3. 同阶循环矩阵之积仍是循环矩阵.
- 4. 基础循环矩阵 $J = \begin{pmatrix} O & I_{n-k} \\ I_k & O \end{pmatrix}$ $(1 \le k \le n)$ 的逆仍是循环矩阵, 并且

$$\boldsymbol{J}^{-1} = \begin{pmatrix} O & I_k \\ I_{n-k} & O \end{pmatrix}, 1 \le k \le n.$$

🕏 笔记 循环矩阵的性质及应用详见谢启鸿博客.

证明

1. 将 J 写作 $(e_n, e_1, \dots, e_{n-1})$, 其中 e_i 是标准单位列向量 $(i = 1, 2, \dots, n)$. 由分块矩阵乘法并注意到 Je_i 就是 J 的第 i 列, 可得

$$J^2 = J(e_{n,e_1}, \dots, e_{n-1}) = (Je_{n,J}e_1, \dots, Je_{n-1}) = (e_{n-1}, e_n, \dots, e_{n-2}).$$

不断这样做下去就可以得到结论.

2. 由循环矩阵和基础循环矩阵的定义和循环矩阵的性质 1容易得到证明.

- 3. 由循环矩阵的性质 2可知两个循环矩阵之积可写为基础循环矩阵 J 的两个多项式之积. 又由循环矩阵的性质 1,可知 $J^n = I_n$. 因此两个循环矩阵之积可以表示为基础循环矩阵 J 的多项式, 故由循环矩阵的性质 1即得结论.
- 4. 利用矩阵初等行变换可得

$$\begin{pmatrix} O & \mathbf{I}_{n-k} & \mathbf{I}_{n-k} & O \\ \mathbf{I}_k & O & O & \mathbf{I}_k \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{I}_k & O & O & \mathbf{I}_k \\ O & \mathbf{I}_{n-k} & \mathbf{I}_{n-k} & O \end{pmatrix}, 1 \leq k \leq n.$$

$$\text{$\not M$ $\overrightarrow{\mathbf{n}}$ \mathbf{J}^{-1} = $\begin{pmatrix} O & \mathbf{I}_k \\ \mathbf{I}_{n-k} & O \end{pmatrix}, 1 \leq k \leq n. }$$

命题 0.3 (循环行列式关于 n 次方根的计算公式)

已知下列循环矩阵 A:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}.$$

则 A 的行列式的值为:

$$|A|| = f(\varepsilon_1)f(\varepsilon_2)\cdots f(\varepsilon_n).$$

其中 $f(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}, \varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是 1 的所有 n 次方根.

Ŷ 笔记 关键是要注意到

$$AV = \begin{pmatrix} f(\varepsilon_{1}) & f(\varepsilon_{2}) & f(\varepsilon_{3}) & \cdots & f(\varepsilon_{n}) \\ \varepsilon_{1}f(\varepsilon_{1}) & \varepsilon_{2}f(\varepsilon_{2}) & \varepsilon_{3}f(\varepsilon_{3}) & \cdots & \varepsilon_{n}f(\varepsilon_{n}) \\ \varepsilon_{1}^{2}f(\varepsilon_{1}) & \varepsilon_{2}^{2}f(\varepsilon_{2}) & \varepsilon_{3}^{2}f(\varepsilon_{3}) & \cdots & \varepsilon_{n}^{2}f(\varepsilon_{n}) \\ \vdots & \vdots & \vdots & & \vdots \\ \varepsilon_{1}^{n-1}f(\varepsilon_{1}) & \varepsilon_{2}^{n-1}f(\varepsilon_{2}) & \varepsilon_{3}^{n-1}f(\varepsilon_{3}) & \cdots & \varepsilon_{n}^{n-1}f(\varepsilon_{n}) \end{pmatrix}.$$

然后再利用命题??就能得到分解 $AV = V\Lambda$.

证明 作多项式 $f(x) = a_1 + a_2 x + a_3 x^2 + \cdots + a_n x^{n-1}$, 令 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是 1 的所有 n 次方根. 又令

$$V = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \cdots & \varepsilon_n \\ \varepsilon_1^2 & \varepsilon_2^2 & \varepsilon_3^2 & \cdots & \varepsilon_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ \varepsilon_1^{n-1} & \varepsilon_2^{n-1} & \varepsilon_3^{n-1} & \cdots & \varepsilon_n^{n-1} \end{pmatrix}, \Lambda = \begin{pmatrix} f(\varepsilon_1) & 0 & 0 & \cdots & 0 \\ 0 & f(\varepsilon_2) & 0 & \cdots & 0 \\ 0 & 0 & f(\varepsilon_3) & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & f(\varepsilon_n) \end{pmatrix}$$

则

$$AV = \begin{pmatrix} f(\varepsilon_1) & f(\varepsilon_2) & f(\varepsilon_3) & \cdots & f(\varepsilon_n) \\ \varepsilon_1 f(\varepsilon_1) & \varepsilon_2 f(\varepsilon_2) & \varepsilon_3 f(\varepsilon_3) & \cdots & \varepsilon_n f(\varepsilon_n) \\ \varepsilon_1^2 f(\varepsilon_1) & \varepsilon_2^2 f(\varepsilon_2) & \varepsilon_3^2 f(\varepsilon_3) & \cdots & \varepsilon_n^2 f(\varepsilon_n) \\ \vdots & \vdots & \vdots & & \vdots \\ \varepsilon_1^{n-1} f(\varepsilon_1) & \varepsilon_2^{n-1} f(\varepsilon_2) & \varepsilon_3^{n-1} f(\varepsilon_3) & \cdots & \varepsilon_n^{n-1} f(\varepsilon_n) \end{pmatrix} = V\Lambda$$

从而 $V^{-1}AV = \Lambda$, 又因为 ε_i 互不相同, 所以 $|V| \neq 0$, 故

$$|A| = |V^{-1}AV| = |\Lambda| = f(\varepsilon_1) f(\varepsilon_2) \cdots f(\varepsilon_n).$$

命题 0.4 (b-循环矩阵)

设 b 为非零常数, 下列形状的矩阵称为 b -循环矩阵:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ ba_n & a_1 & a_2 & \cdots & a_{n-1} \\ ba_{n-1} & ba_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ ba_2 & ba_3 & ba_4 & \cdots & a_1 \end{pmatrix}$$

- (1) 证明: 同阶 b -循环矩阵的乘积仍然是 b-循环矩阵;
- (2) 求上述 b-循环矩阵 A 的行列式的值.

证明

- (1) (证明类似于循环矩阵的性质3.) 设 $J_b = \begin{pmatrix} O & I_{n-1} \\ b & O \end{pmatrix}$, 则 $J_b^k = \begin{pmatrix} O & I_{n-k} \\ bI_k & O \end{pmatrix}$, $0 \le k \le n-1$. 从而 $J_b^n = bI_n$ 且 $A = a_1I_n + a_2J_b + a_3J_b^2 + \dots + a_nJ_b^{n-1}$. 因此同阶 b— 循环阵的乘积仍然可以写成 J_b 的 n-1 次多项式, 故同 阶 b— 循环阵的乘积仍然是 b— 循环矩阵.
- (2) (证明完全类似循环行列式计算公式的证明) 作多项式 $f(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}$, 令 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是 b 的所有 n 次方根. 又令

$$V = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \cdots & \varepsilon_n \\ \varepsilon_1^2 & \varepsilon_2^2 & \varepsilon_3^2 & \cdots & \varepsilon_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ \varepsilon_1^{n-1} & \varepsilon_2^{n-1} & \varepsilon_3^{n-1} & \cdots & \varepsilon_n^{n-1} \end{pmatrix}, \Lambda = \begin{pmatrix} f(\varepsilon_1) & 0 & 0 & \cdots & 0 \\ 0 & f(\varepsilon_2) & 0 & \cdots & 0 \\ 0 & 0 & f(\varepsilon_3) & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & f(\varepsilon_n) \end{pmatrix}$$

则

$$AV = \begin{pmatrix} f(\varepsilon_1) & f(\varepsilon_2) & f(\varepsilon_3) & \cdots & f(\varepsilon_n) \\ \varepsilon_1 f(\varepsilon_1) & \varepsilon_2 f(\varepsilon_2) & \varepsilon_3 f(\varepsilon_3) & \cdots & \varepsilon_n f(\varepsilon_n) \\ \varepsilon_1^2 f(\varepsilon_1) & \varepsilon_2^2 f(\varepsilon_2) & \varepsilon_3^2 f(\varepsilon_3) & \cdots & \varepsilon_n^2 f(\varepsilon_n) \\ \vdots & \vdots & \vdots & & \vdots \\ \varepsilon_1^{n-1} f(\varepsilon_1) & \varepsilon_2^{n-1} f(\varepsilon_2) & \varepsilon_3^{n-1} f(\varepsilon_3) & \cdots & \varepsilon_n^{n-1} f(\varepsilon_n) \end{pmatrix} = V\Lambda$$

从而 $V^{-1}AV = \Lambda$, 又因为 ε_i 互不相同, 所以 $|V| \neq 0$, 故

$$|A| = |V^{-1}AV| = |\Lambda| = f(\varepsilon_1)f(\varepsilon_2)\cdots f(\varepsilon_n).$$

命题 0.5 (幂零 Jordan 块)

设n阶幂零 Jordan 块

$$\mathbf{A} = \left(\begin{array}{cccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{array} \right)$$

则

$$A^{k} = \begin{pmatrix} O & I_{n-k} \\ O & O \end{pmatrix}, 1 \le k \le n.$$

证明 将 A 写为 $A = (0, \mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_{n-1})$, 其中 \mathbf{e}_i 是标准单位列向量. 由分块矩阵乘法并注意 $A\mathbf{e}_i$ 就是 A 的第 i 列,因此

$$A^2 = (0, A\mathbf{e}_1, A\mathbf{e}_2, \cdots, A\mathbf{e}_{n-1}) = (0, 0, \mathbf{e}_1, \cdots, \mathbf{e}_{n-2})$$

不断这样做下去就可得到结论.

例题 0.1 设 $A \in n$ 阶矩阵, A 适合 $A^n = O$ 时, $I_n - A$ 必是可逆矩阵.

证明 注意到

$$I_n = I_n - A^n = (I_n - A) \left(I_n + A + A^2 + \dots + A^{n-1} \right).$$

故此时 $I_n - A$ 必是可逆矩阵.

例题 0.2 设 $A \in n$ 阶矩阵, A 适合 $AB = B(I_n - A)$ 对任意 n 阶矩阵 B 成立, 那么 B = O.

全 笔记 若已知矩阵乘法的相关等式,可以尝试得到一些递推等式.

证明 假设 $A^k = O$, 其中 k 为某个正整数. 由条件可得 $AB = B(I_n - A)$, 于是 $O = A^k B = B(I_n - A)^k$. 由上一题知 $I_n - A$ 是可逆矩阵, 从而 B = O.

命题 0.6 (多项式的友矩和 Frobenius 块)

设首一多项式 $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n, f(x)$ 的友阵

$$C(f(x)) = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & -a_n \\ 1 & 0 & \cdots & 0 & 0 & -a_{n-1} \\ 0 & 1 & \cdots & 0 & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & -a_2 \\ 0 & 0 & \cdots & 0 & 1 & -a_1 \end{pmatrix},$$

则 $|xI_n - C(f(x))| = f(x)$.

C(f(x)) 的转置 F(f(x)) 称为 f(x) 的 Frobenius 块. 即

$$C^{T}(f(x)) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{2} & -a_{1} \end{pmatrix}.$$

并且容易验证 C(f(x)) 具有以下性质, 其中 e_i 是标准单位列向量 $(i = 1, 2, \dots, n)$:

$$C(f(x))e_i = e_{i+1} \ (1 \le i \le n-1), \ C(f(x))e_n = -\sum_{i=1}^n a_{n-i+1}e_i.$$

证明 $|xI_n - C(f(x))| = f(x)$ 的证明见友矩阵的特征多项式/行列式. 例题 **0.3** 求下列矩阵的逆矩阵 $(a_n \neq 0)$:

$$F = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & \cdots & 0 & -a_{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix}.$$

解 用初等变换法不难求得

$$F^{-1} = \begin{pmatrix} -\frac{a_{n-1}}{a_n} & 1 & 0 & \cdots & 0 \\ -\frac{a_{n-2}}{a_n} & 0 & 1 & \cdots & 0 \\ -\frac{a_{n-3}}{a_n} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -\frac{1}{a_n} & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

命题 0.7

和所有 n 阶对角矩阵乘法可交换的矩阵必是对角矩阵.

证明 由矩阵乘法易得.

命题 0.8 (纯量矩阵的刻画)

- (1) 和所有 n 阶奇异阵乘法可交换的矩阵必是纯量阵 kIn.
- (2) 和所有n 阶非奇异阵乘法可交换的矩阵必是纯量阵 kI_n .
- (3) 和所有n 阶正交阵乘法可交换的矩阵必是纯量阵 kI_n .
- (4) 和所有n 阶矩阵乘法可交换的矩阵必是纯量阵 kI_n .

证明 首先设 $A = (a_{ij})_{n \times n}$.

1. 设 $E_{ij}(1 \le i \ne j \le n)$ 为基础矩阵,因为基础矩阵都是奇异阵,所以由条件可知 $E_{ij}A = AE_{ij}$. 注意到 $E_{ij}A$ 是将 A 的第 i 行变为第 i 行而其他行都是零的 n 阶矩阵, AE_{ij} 是将 A 的第 i 列变为第 i 列而其他列都是零的 n 阶矩阵,于是我们有

从而比较上述等式两边矩阵的每个元素可得 $a_{ij} = 0 (i \neq j), a_{ii} = a_{ji} (1 \leq i \neq j \leq n)$, 因此 A 是纯量阵.

2. 设 $D = \text{diag}\{1, 2, \dots, n\}$ 为对角阵, 因为 D 为非奇异阵, 所以由条件可知 AD = DA. 进而

$$AD = DA$$

$$\Leftrightarrow A (e_1, 2e_2, \cdots, ne_n) = (e_1, 2e_2, \cdots, ne_n) A$$

$$\Leftrightarrow (Ae_1, 2Ae_2, \cdots, nAe_n) = (e_1A, 2e_2A, \cdots, ne_nA)$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & 2a_{12} & \cdots & na_{1n} \\ a_{21} & 2a_{22} & \cdots & na_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 2a_{n2} & \cdots & na_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 2a_{21} & 2a_{22} & \cdots & 2a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ na_{n1} & na_{n2} & \cdots & na_{nn} \end{pmatrix}.$$

比较上述等式两边矩阵的每个元素可得 $ja_{ij}=ia_{ij}\ (i\neq j)$, 从而 $(i-j)\,a_{ij}=0\ (i\neq j)$, 于是 $a_{ij}=0\ (i\neq j)$. 故 $A={\rm diag}\{a_{11},a_{22},\cdots,a_{nn}\}$ 也为对角阵.

设 $P_{ij}(1 \le i \ne j \le n)$ 为第一类初等阵,因为第一类初等阵均为非奇异阵,所以由条件可知 $AP_{ij} = P_{ij}A$. 进而可得

从而比较上述等式两边矩阵的每个元素可得 $a_{ii} = a_{ji} (1 \le i \ne j \le n)$, 于是 A 为纯量阵.

3. 设第二类初等阵 $P_i(-1)(1 \le i \le n)$, 因为 $P_i(-1)(1 \le i \le n)$ 都是正交阵, 所以由条件可知 $P_i(-1)A = AP_i(-1)$. 进而可得

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ -a_{i1} & -a_{i2} & \cdots & -a_{ii} & \cdots & -a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & -a_{1i} & \cdots & a_{1n} \\ a_{21} & \cdots & -a_{2i} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & -a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & -a_{ni} & \cdots & a_{nn} \end{pmatrix}$$

比较上述等式两边矩阵的每个元素可得 $a_{ij} = -a_{ij}$ $(i \neq j)$, 从而 $a_{ij} = 0$ $(i \neq j)$. 于是 $A = \text{diag}\{a_{11}, a_{22}, \cdots, a_{nn}\}$ 为对角阵.

设 $P_{ij}(1 \le i \ne j \le n)$ 为第一类初等阵, 因为第一类初等阵均为正交阵, 所以由条件可知 $AP_{ij} = P_{ij}A$. 进而可得

从而比较上述等式两边矩阵的每个元素可得 $a_{ii} = a_{ij} (1 \le i \ne j \le n)$, 于是 A 为纯量阵.

4. 可以由上面 (1)(2)(3) 中任意一个证明得到. 注意如果此时用 (3) 的证明方法, 那么我们可以先考虑 A 与第一

类初等矩阵 $P_i(c)(c \neq 1, 1 \leq i \leq n)$ 的乘法交换性. 而不是像 (3) 中只能考虑 $P_i(-1)(1 \leq i \leq n)$.

命题 0.9 (零矩阵的充要条件)

- 1. $m \times n$ 实矩阵 A = O 的充要条件是适合条件 AA' = O 或 $tr(AA') \ge 0$, 等号成立;
- 2. $m \times n$ 复矩阵 A = O 的充要条件是适合条件 $A\overline{A}' = O$ 或 $tr(A\overline{A}') \ge 0$, 等号成立.

证明

1. (1) 设 $A = (a_{ij})_{m \times n}$, 则 AA' 的第 (i,i) 元素等于零, 即

$$a_{i1}^2 + a_{i2}^2 + \dots + a_{in}^2 = 0, i = 1, 2, \dots, m.$$

又因为 a_{ij} 都是实数, 所以必有 $a_{ij}=0, i=1,2,\cdots,m, j=1,2,\cdots,n$. 故 A=O.

(2) 设 $A = (a_{ij})$ 为 $m \times n$ 实矩阵, 则通过计算可得

$$tr(AA') = \sum_{i=1}^{m} \sum_{i=1}^{n} a_{ij}^{2} \ge 0,$$

等号成立当且仅当 $a_{ij}=0$ ($1 \le i \le m, 1 \le j \le n$), 即 A=O.

2. (1) 设 $A = (a_{ij})_{m \times n}$, 则 $A\overline{A'}$ 的第 (i,i) 元素等于零, 即

$$|a_{i1}|^2 + |a_{i2}|^2 + \dots + |a_{in}|^2 = 0, i = 1, 2, \dots, m.$$

又因为 a_{ij} 都是复数, 所以可设 $a_{ij} = b_{ij} + \mathrm{i} c_{ij}$, 其中 $b_{ij}, c_{ij} \in \mathbb{R}, i = 1, 2, \cdots, m, j = 1, 2, \cdots, n$. 于是

$$b_{i1}^2 + c_{i1}^2 + b_{i2}^2 + c_{i2}^2 + \dots + b_{in}^2 + c_{in}^2 = 0, i = 1, 2, \dots, m.$$

再结合 $b_{ij}, c_{ij} \in \mathbb{R}$, 可知 $b_{ij} = c_{ij} = 0$. 即 $a_{ij} = 0, i = 1, 2, \dots, m, j = 1, 2, \dots, n$. 故 A = O.

(2) 设 $A = (a_{ij})$ 为 $m \times n$ 复矩阵, 则通过计算可得

$$\operatorname{tr}(A\overline{A}') = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \ge 0,$$

等号成立当且仅当 $a_{ij} = 0 (1 \le i \le m, 1 \le j \le n)$, 即 A = O.

命题 0.10 (对称阵是零矩阵的充要条件)

设 A 为 n 阶对称阵. 则 A 是零矩阵的充要条件是对任意的 n 维列向量 α . 有

$$\alpha' A \alpha = 0.$$

证明 只要证明充分性. 设 $\mathbf{A} = (a_{ij})$, 令 $\alpha = \mathbf{e}_i$, 是第 i 个标准单位列向量. 因为 $\mathbf{e}_i' \mathbf{A} \mathbf{e}_i$ 是 \mathbf{A} 的第 (i,i) 元素, 故 $a_{ii} = 0$. 又令 $\alpha = \mathbf{e}_i + \mathbf{e}_i (i \neq j)$, 则

$$0 = (e_i + e_j)' A(e_i + e_j) = a_{ii} + a_{jj} + a_{ij} + a_{ji}.$$

由于 A 是对称阵, 故 $a_{ij}=a_{ji}$, 又上面已经证明 $a_{ii}=a_{jj}=0$, 从而 $a_{ij}=0$, 这就证明了 A=0.

命题 0.11 (反对称阵的刻画)

设A为n阶方阵,则A是反称阵的充要条件是对任意的n维列向量 α ,有

$$\alpha' A \alpha = 0.$$

证明 必要性 (\Rightarrow): 若 A 是反称阵,则对任意的 n 维列向量 α ,有 ($\alpha'A\alpha$)' = $-\alpha'A\alpha$. 而 $\alpha'A\alpha$ 是数,因此 ($\alpha'A\alpha$)' = $\alpha'A\alpha$. 比较上面两个式子便有 $\alpha'A\alpha=0$.

充分性 (\Leftarrow): 若上式对任意的 n 维列向量 α 成立, 则由 $\alpha'A\alpha$ 是数, 可知 $\alpha'A\alpha = (\alpha'A\alpha)' = \alpha'A'\alpha = 0$, 故 $\alpha'(A+A')\alpha = 0$. 因为矩阵 A+A' 是对称阵, 故由对称阵是零矩阵的充要条件可得 A+A' = 0, 即 A' = -A, $A \in \mathbb{R}$ 反称阵.

命题 0.12

任一n 阶方阵均可表示为一个对称阵与一个反对称阵之和

<mark>笔记</mark> 构造思路: 设 A = B + C, 且 B 为对称矩阵,C 为反称矩阵. 则两边取转置可得

$$\begin{cases} A = B + C \\ A' = (B + C)' = B - C \end{cases}$$

解得: $B = \frac{1}{2}(A + A'), C = \frac{1}{2}(A - A').$ 证明 设 $A \neq n$ 阶方阵,则 A + A' 是对称阵,A - A' 是反对称阵,并且

$$A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A').$$

注上例中的 $\frac{1}{2}(A+A')$ 称为 A 的对称化, $\frac{1}{2}(A-A')$ 称为 A 的反对称化.

命题 0.13 (上三角阵性质)

- (1) 设 A 是 n 阶上三角阵且主对角线上元素全为零,则 $A^n = O$.
- (2) 设 $A \in n(n \ge 2)$ 阶上三角阵, 若 i < j, 则 $A_{ij} = M_{ij} = 0$.
- (3)上(下)三角阵的加减、数乘、乘积(幂)、多项式、伴随和求逆仍然是上(下)三角阵,并且所得上(下) 三角阵的主对角元是原上(下)三角阵对应主对角元的加减、数乘、乘积(幂)、多项式、伴随和求逆.

证明 (1) 证法一 (抽屉原理): 设 $A = (a_{ij})$, 当 $i \ge j$ 时, $a_{ij} = 0$. 将 A 表示为基础矩阵 E_{ij} 之和:

$$A = \sum_{i>j} a_{ij} E_{ij}$$

因为当 $j \neq k$ 时, $E_{ij}E_{kl} = \mathbf{O}$, 故在 A^n 的乘法展开式中,可能非零的项只能是具有形式 $E_{i_1j_1}E_{i_2j_2}\cdots E_{i_{n-1}j_{n-1}}$, 但足 标必须满足条件 $1 \le i_1 < j_1 < i_2 < j_2 < \cdots < j_{n-1} \le n$. 根据可知, 这样的项也不存在, 因此 $A^n = 0$.

证法二 (数学归纳法): 由假设 $Ae_i = a_{i1}e_1 + \cdots + a_{i,i-1}e_{i-1} (1 \le i \le n)$, 我们只要用归纳法证明: $A^k e_k = 0$ 对 任意的 $1 \le k \le n$ 都成立,则 $A^n e_i = A^{n-i} \cdot A^i e_i = A^{n-i} \cdot 0 = 0$ 对任意的 $1 \le i \le n$ 都成立,从而由判定法则可知 $A^n = O$ 成立. 显然, $Ae_1 = 0$ 成立. 假设 $A^k e_k = 0$ 对任意的 1 < k < n 都成立, 则

$$A^{k}e_{k} = A^{k-1}(Ae_{k}) = A^{k-1}(a_{k1}e_{1} + \dots + a_{k,k-1}e_{k-1})$$
$$= a_{k1}A^{k-1}e_{1} + \dots + a_{k,k-1}A^{k-1}e_{k-1} = 0.$$

$$(2) 根据条件可设 |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}, 则当 i < j 时, 有$$

$$M_{ij} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1i} & a_{1,i+1} & \cdots & a_{1j} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2i} & a_{2,i+1} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{ii} & a_{i,i+1} & \cdots & a_{ij} & \cdots & a_{in} \\ 0 & 0 & \cdots & 0 & a_{i+1,i+1} & \cdots & a_{i+1,j} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1i} & a_{1,i+1} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2i} & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & a_{i+1,i+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = 0.$$

故 $A_{ij}=M_{ij}=0$.

(3) 只证上三角阵的情形, 下三角阵的情形完全类似. 上三角阵的加减、数乘、乘积(幂) 以及多项式结论的证 明是显然的. 下面我们来证明伴随和求逆的结论. 设 $A=(a_{ij})$ 为 n 阶上三角阵, 即满足 $a_{ij}=0$, $(\forall i>j)$. 由(2)可 知 A 的代数余子式 $A_{ij} = 0, \forall i < j$. 于是

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ 0 & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{pmatrix}.$$

故 A^* 也是上三角阵. 而对 $\forall i \in [1, n] \cap N$, 有

我们又将 $A_{ii} = a_{11} \cdots \widehat{a_{ii}} \cdots a_{nn}$ 这个数称为 a_{ii} 的伴随. 这就完成了 A^* 结论的证明.

$$A_{ii} = a_{11} \cdots \widehat{a_{ii}} \cdots a_{nn}$$
 这个数称为 a_{ii} 的伴随. 这就完成了 A^* 结论的证明.
$$A_{ii} = (-1)^{2i} M_{ii} = M_{ii} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,i-1} & a_{1i} & a_{1,i+1} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,i-1} & a_{2i} & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{i-1,i-1} & a_{i-1,i} & a_{i-1,i+1} & \cdots & a_{i-1,n} \\ 0 & 0 & \cdots & 0 & a_{ni} & a_{i,i+1} & \cdots & a_{in} \\ 0 & 0 & \cdots & 0 & 0 & a_{i+1,i+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,i-1} & a_{1,i+1} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,i-1} & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{i-1,i-1} & a_{i-1,i+1} & \cdots & a_{i-1,n} \\ 0 & 0 & \cdots & 0 & a_{i+1,i+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdots \widehat{a_{ii}} \cdots a_{nn}.$$

由于当 $|A| \neq 0$ 时,我们有 $A^{-1} = \frac{1}{|A|}A^*$,故由上三角阵的数乘结论可知, A^{-1} 也是上三角阵,其主对角元为 $\frac{1}{|A|}A_{ii} = a_{ii}^{-1}$. 结论得证.

命题 0.14

若 A,B 都是由非负实数组成的矩阵且 AB 有一行等于零,则或者 A 有一行为零,或者 B 有一行为零.

П

证明 设 $A = (a_{ij})_{n \times m}$, $B = (b_{ij})_{m \times s}$. 假设 C = AB, $C = (c_{ij})_{n \times s}$ 的第 i 行全为零. 则对 $\forall j \in [1, s] \cap N$, 都有 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{im}b_{nj} = 0$.

已知对 $\forall i \in [1, n] \cap N, j \in [1, m] \cap N,$ 有 $a_{ij} \geq 0$; 对 $\forall i \in [1, m] \cap N, j \in [1, s] \cap N$, 有 $b_{ij} \geq 0$. 从而

$$a_{i1}b_{1j} = a_{i2}b_{2j} = \cdots = a_{im}b_{nj} = 0, \forall j \in [1, s] \cap N.$$

 \overline{A} 的第 i 行不全为零,不妨设 $a_{ik} \neq 0, k \in [1, m] \cap N$,则由 $a_{ik}b_{kj} = 0, \forall j \in [1, s] \cap N$ 可得 $b_{kj} = 0$, 对 $\forall j \in [1, s] \cap N$ 都成立,即 B 的第 k 行全为零. □

命题 0.15 (矩阵行和和列和的一种刻画)

(1) n 阶矩阵 A 第 i 行元素之和为 a_i ($i = 1, 2, \dots, n$) 当且仅当

$$A \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.$$

特别地,n 阶矩阵 A 的每一行元素之和等于 c 当且仅当 $A\alpha = c \cdot \alpha$, 其中 $\alpha = (1, 1, \dots, 1)'$.

(2) n 阶矩阵 A 第 i 列元素之和为 $a_i(i = 1, 2, \dots, n)$ 当且仅当

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix} A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}.$$

特别地,n 阶矩阵 A 的每一列元素之和等于 c 当且仅当 $\alpha A = c \cdot \alpha$, 其中 $\alpha = (1, 1, \dots, 1)$.

证明 由矩阵乘法容易得到证明.

例题 0.4 设 n 阶方阵 A 的每一行元素之和等于常数 c, 求证:

- (1) 对任意的正整数 k,A^k 的每一行元素之和等于 c^k ;
- (2) 若 *A* 为可逆阵, 则 $c \neq 0$ 并且 A^{-1} 的每一行元素之和等于 c^{-1} .

🖤 笔记 核心想法是利用命题 0.15.

证明 设 $\alpha = (1, 1, \dots, 1)'$, 则由矩阵乘法可知, A 的每一行元素之和等于 c 当且仅当 $A\alpha = c \cdot \alpha$ 成立.

- (1) 由 $\mathbf{A}\alpha = c \cdot \alpha$ 不断递推可得 $\mathbf{A}^k \alpha = c^k \cdot \alpha$, 故结论成立.
- (2) 若 c=0, 则由 A 可逆以及 $A\alpha=0$ 可得 $\alpha=0$, 矛盾. 在 $A\alpha=c\cdot\alpha$ 的两边同时左乘 $c^{-1}A^{-1}$, 可得 $A^{-1}\alpha=c^{-1}\cdot\alpha$, 由此即得结论.

命题 0.16 (矩阵可逆的等价命题)

- (1)n 阶方阵 A 可逆.
- (2) 存在矩阵 B, 使得 $AB = BA = I_n$ (这个等式同时也说明 B 可逆).
- (3)A 的行列式 |A| ≠ 0.
- (4)A 等价(相抵)于n 阶单位矩阵.
- (5)A 可以表示为有限个初等矩阵的积.
- (6)A的n个行向量(列向量)线性无关.

命题 0.17

- (1) 若已知 $\lambda_1 A^2 + \lambda_2 A + \lambda_3 I_n = 0$, 其中 $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_1 \neq 0$, 并且 $\lambda_1 x^2 + \lambda_2 x + \lambda_3 = 0$ 无实根 (即原等式左 边不可因式分解成 $(a_1 I_n + a_2 A)$ $(b_1 I_n + b_2 A)$), 则对任何 $c, d \in \mathbb{R}$, 都有 $cA + dI_n$ 可逆.
- (2) 若已知 $\lambda_1 A^2 + \lambda_2 A + \lambda_3 I_n = (a_1 A + b_1 I_n)(a_2 A + b_2 I_n) = \mathbf{0}$, 其中 $a_1, a_2, b_1, b_2 \in \mathbb{R}$, 且 $\lambda_1 = a_1 a_2, \lambda_2 = a_1 b_2 + a_2 b_1, \lambda_3 = b_1 b_2, a_1 \neq 0, a_2 \neq 0$. 则对任何实数对 $(c, d) \neq (a_1, b_1), (a_2, b_2)$, 都有 $cA + dI_n$ 可逆.

 $\stackrel{ o}{\mathbf{x}}$ 笔记 构造逆矩阵的方法: 不妨设 $k(cA+dI_n)^{-1}=(pA+qI_n)$, 其中 k,p,q 为待定系数. 则

$$(c\mathbf{A} + d\mathbf{I}_n) \cdot k(c\mathbf{A} + d\mathbf{I}_n)^{-1} = (c\mathbf{A} + d\mathbf{I}_n)(p\mathbf{A} + q\mathbf{I}_n) = pc\mathbf{A}^2 + (cq + dp)\mathbf{A} + dq\mathbf{I}_n = k\mathbf{I}_n.$$

令 $pc = \lambda_1, cq + dp = \lambda_2$, 则 $p = \frac{\lambda_1}{c}, q = \frac{\lambda_2}{c} - \frac{\lambda_1 d}{c^2}$. 于是由已知条件可得

$$(c\boldsymbol{A}+d\boldsymbol{I}_n)(p\boldsymbol{A}+q\boldsymbol{I}_n) = (c\boldsymbol{A}+d\boldsymbol{I}_n)\left(\frac{\lambda_1}{c}\boldsymbol{A} + \left(\frac{\lambda_2}{c} - \frac{\lambda_1 d}{c^2}\right)\boldsymbol{I}_n\right) = \lambda_1\boldsymbol{A}^2 + \lambda_2\boldsymbol{A} + d\left(\frac{\lambda_2}{c} - \frac{\lambda_1 d}{c^2}\right)\boldsymbol{I}_n = \left(\frac{\lambda_2 d}{c} - \frac{\lambda_1 d^2}{c^2} - \lambda_3\right)\boldsymbol{I}_n.$$

从而
$$k = \frac{\lambda_2 d}{c} - \frac{\lambda_1 d^2}{c^2} - \lambda_3$$
. 因此 $(c\mathbf{A} + d\mathbf{I}_n)^{-1} = \frac{1}{k}(p\mathbf{A} + q\mathbf{I}_n) = \frac{1}{\frac{\lambda_2 d}{c} - \frac{\lambda_1 d^2}{c^2} - \lambda_3} \left(\frac{\lambda_1}{c}\mathbf{A} + \left(\frac{\lambda_2}{c} - \frac{\lambda_1 d}{c^2}\right)\mathbf{I}_n\right)$.

实际做题中只需要先设 $k(cA+dI_n)^{-1}=(pA+qI_n)$,其中k,p,q为待定系数.则有 $(cA+dI_n)(pA+qI_n)=kI_n$.

然后通过比较二次项和一次项的系数得到方程组 $\begin{cases} pc = \lambda_1 \\ cq + dp = \lambda_2 \end{cases}$ (即要凑出合适的 p,q, 使得 $(cA + dI_n)(pA + qI_n)$

与 $\lambda_1 A^2 + \lambda_2 A + \lambda_3 I_n$ 的二次项和一次项的系数相等), 解出 p,q 的值. 最后将已知条件 $\lambda_1 A^2 + \lambda_2 A + \lambda_3 I_n = \mathbf{0}$ 代入 $(cA + dI_n)(pA + qI_n) = kI_n$ 即可得到 k 的值.

熟悉这种方式之后就能快速构造出我们需要的逆矩阵.

证明 (1) 和 (2) 的证明相同. 如下 (这里我们是利用了上述构造逆矩阵的方法直接构造出逆矩阵, 再根据逆矩阵的 定义直接得到证明):

当 c = 0 时, $cA + dI_n = dI_n$ 显然可逆.

当
$$c \neq 0$$
 时, 注意到 $(cA + dI_n) \left(\frac{\lambda_1}{c}A + \left(\frac{\lambda_2}{c} - \frac{\lambda_1 d}{c^2}\right)I_n\right) = \left(\frac{\lambda_2 d}{c} - \frac{\lambda_1 d^2}{c^2} - \lambda_3\right)I_n$, 故 $cA + dI_n$ 可逆.

例题 0.5 设 n 阶方阵 A 适合等式 $A^2 - 3A + 2I_n = 0$, 求证:A 和 $A + I_n$ 都是可逆阵, 而若 $A \neq I_n$, 则 $A - 2I_n$ 必不是可逆阵.

掌記 这里构造逆矩阵利用了命题 0.17.

证明 由已知得 $A(A-3I_n)=-2I_n$, 因此 A 是可逆阵. 又 $A^2-3A-4I_n=-6I_n$, 于是 $(A+I_n)(A-4I_n)=-6I_n$, 故 $A+I_n$ 也是可逆阵.

另一方面, 由已知等式可得 $(A - I_n)(A - 2I_n) = O$, 如果 $A - 2I_n$ 可逆, 则 $A - I_n = O$, $A = I_n$ 和假设不合, 因此 $A - 2I_n$ 不是可逆阵.

命题 0.18

- (1) 若已知 $\lambda_1 A B + \lambda_2 A + \lambda_3 B + \lambda_4 I_n = O$, 其中 $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}, \lambda_1 \neq 0$, 并且 $\lambda_1 x^2 + (\lambda_2 + \lambda_3) x + \lambda_4 = 0$ 无实根 (即原等式左边不可因式分解成 $(a_1 I_n + a_2 A)$ $(b_1 I_n + b_2 B)$), 则对任何 $c, d \in \mathbb{R}$, 都有 $a I_n + b A$, $c I_n + d B$ 可逆.
- (2) 若已知 $\lambda_1 A B + \lambda_2 A + \lambda_3 B + \lambda_4 I_n = (a_1 I_n + b_1 A) (a_2 I_n + b_2 B) = 0$, 其中 $a_1, a_2, b_1, b_2 \in \mathbb{R}$, 且 $\lambda_1 = b_1 b_2, \lambda_2 = a_2 b_1, \lambda_3 = a_1 b_2, \lambda_4 = a_1 a_2, b_1 \neq 0, b_2 \neq 0$. 则对任何实数对 $(a, b), (c, d) \neq (a_1, b_1), (a_2, b_2)$, 都有 $a I_n + b A, c I_n + d B$ 可逆.

证明 证明方法与命题 0.17类似,构造逆矩阵的方法也与其类似. 这里不再赘述.

例题 0.6

- 1. 求证: 不存在 n 阶奇异矩阵 A. 适合条件 $A^2 + A + I_n = O$.
- 2. 设 $A \in n$ 阶矩阵, 且 $A^2 = A$, 求证: $I_n 2A$ 是可逆矩阵.
- 3. 若 A 是 n 阶矩阵, 且 $2A(A I_n) = A^3$, 求证: $I_n A$ 可逆.
- 章 笔记 这类问题构造逆矩阵的方法 (以3.为例): 已知条件等价于 $A^3 2A^2 + 2A = O$, 设 $(I_n A)^{-1} = aA^2 + bA + cI_n$, 其中 a,b,c 为待定系数, 使得

$$(I_n - A) \left(aA^2 + bA + cI_n \right) = A^3 - 2A^2 + 2A + kI_n = kI_n, k$$
 待定常数.

比较等式两边系数可得

$$\begin{cases}
-a = 1 \\
a - b = -2 \\
b - c = 2
\end{cases} \Rightarrow \begin{cases}
a = -1 \\
b = 1 \\
k = c = -1
\end{cases}$$

于是 $(I_n - A) \left(-A^2 + A - I_n \right) = -I_n$. 从而 $(I_n - A)^{-1} = A^2 - A + I_n$.

证明 因为

- 1. 由已知 $A^2 + A + I_n = O$, 则 $(A I_n)(A^2 + A + I_n) = A^3 I_n = O$, 即 $A^3 = I_n$, 于是 A 是可逆矩阵.
- 2. 因为 $(I_n 2A)^2 = I_n 4A + 4A^2 = I_n$, 故 $I_n 2A$ 是可逆矩阵.
- 3. 由已知 $A^3 2A^2 + 2A I_n = -I_n$, 即 $(A I_n)(A^2 A + I_n) = -I_n$, 于是 $(I_n A)^{-1} = A^2 A + I_n$.

例题 0.7 设 n 阶方阵 A 和 B 满足 A+B=AB, 求证: I_n-A 是可逆阵且 AB=BA.

$$(I_n - A)(I_n - B) = I_n - A - B + AB = I_n,$$

所以 $I_n - A$ 是可逆阵. 另一方面, 由上式可得 $(I_n - A)^{-1} = (I_n - B)$, 故

$$I_n = (I_n - B)(I_n - A) = I_n - B - A + BA,$$

从而 BA = A + B = AB.

命题 0.19 (矩阵转置的性质)

设矩阵 A, B, 则有

- 1. (A')' = A;
- 2. (A + B)' = A' + B';
- 3. (kA)' = kA';
- 4. (AB)' = B'A'.

证明 由矩阵的性质易证.

命题 0.20 (矩阵的逆运算)

设矩阵 A, B, C 可逆, 则有

常规逆运算:

- 1. $(AB)^{-1} = B^{-1}A^{-1}$.
- 2. $(AC + BC)^{-1} = C^{-1} (A + B)^{-1}$. 3. $(A + B)^{-1} C = (C^{-1}A + C^{-1}B)^{-1}$.
- 4. $C(A + B)^{-1} = (AC^{-1} + BC^{-1})^{-1}$.

凑因子:

- 1. $A = (AB^{-1})B = (AB)B^{-1} = B(B^{-1}A) = B^{-1}(BA)$. 2. $A + B = (AC^{-1} + BC^{-1})C = (AC + BC)C^{-1} = C(C^{-1}A + C^{-1}B) = C^{-1}(CA + CB)$.

Ŷ 笔记 无需额外记忆这些公式, 只需要知道凑因子的想法, 即在矩阵可逆的条件下, 我们可以利用矩阵 $I_n = AA^{-1} =$ $A^{-1}A$ 的性质, 将原本矩阵没有的因子凑出来, 然后提取我们需要的矩阵因子到矩阵逆的外面或将其乘入矩阵逆 的内部,从而达到化简原矩阵的目的.

证明 由矩阵的运算性质不难证明.

注 凑因子想法的应用:例题 0.10,例题 0.11,例题 0.12.

例题 0.8 设 A, B, A - B 都是 n 阶可逆阵, 证明:

$$B^{-1} - A^{-1} = (B + B(A - B)^{-1}B)^{-1}.$$

🕏 笔记 直接运用逆矩阵的定义验证即可.

证明

$$(B^{-1} - A^{-1}) (B + B (A - B)^{-1} B)$$

$$= I_n + (A - B)^{-1} B - A^{-1} B - A^{-1} B (A - B) - 1 B$$

$$= I_n + (A - B)^{-1} B - A^{-1} B (I_n + (A - B) - 1 B)$$

$$= (I_n - A^{-1} B) (I_n + (A - B)^{-1} B)$$

$$= A^{-1} (A - B) [(A - B)^{-1} (A - + B)]$$

$$= A^{-1} (A - B) (A - B)^{-1} A = I_n.$$

例题 0.9 Sherman-Morrison 公式 设 $A \in n$ 阶可逆阵, $\alpha, \beta \in n$ 维列向量, 且 $1 + \beta' A^{-1} \alpha \neq 0$. 求证:

$$(A + \alpha \beta')^{-1} = A^{-1} - \frac{1}{1 + \beta' A^{-1} \alpha} A^{-1} \alpha \beta' A^{-1}.$$

笔记 直接运用逆矩阵的定义验证即可, 注意 $\beta'A^{-1}\alpha$ 是一个数可以提出来. 证明

$$(A + \alpha \beta') \left(A^{-1} - \frac{1}{1 + \beta' A^{-1} \alpha} A^{-1} \alpha \beta' A^{-1} \right)$$

$$= I_n - \frac{1}{1 + \beta' A^{-1} \alpha} \alpha \beta' A^{-1} + \alpha \beta' A^{-1} - \frac{1}{1 + \beta' A^{-1} \alpha} \alpha \left(\beta' A^{-1} \alpha \right) \beta' A^{-1}$$

$$= I_n + \alpha \beta' A^{-1} - \frac{1}{1 + \beta' A^{-1} \alpha} \alpha \beta' A^{-1} - \frac{\beta' A^{-1} \alpha}{1 + \beta' A^{-1} \alpha} \alpha \beta' A^{-1}$$

$$= I_n + \alpha \beta' A^{-1} - \frac{1 + \beta' A^{-1} \alpha}{1 + \beta' A^{-1} \alpha} \alpha \beta' A^{-1} = I_n.$$

命题 0.21 (一些矩阵等式)

- 1. 设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵, 则有 $A(I_n + BA) = (I_m + AB) A$.
- 2. 设 A, B 均为 n 阶可逆矩阵, 则有 $A + B = A(A^{-1} + B^{-1})B$.
- 3. 若 n 阶矩阵 A, B 满足 $A^2 = B^2$, 则 $A(A+B) = A^2 + AB = B^2 + AB = (A+B)B$.

Ŷ 笔记 这是一些常见的矩阵等式. 可以通过反复凑因子得到.

证明 由矩阵的运算性质不难证明.

例题 0.10 设 A, B, $AB - I_n$ 都是 n 阶可逆阵, 证明: $A - B^{-1}$ 与 $(A - B^{-1})^{-1} - A^{-1}$ 均可逆, 并求它们的逆矩阵.

室记 核心想法是利用命题 0.20和命题 0.21.

证明 注意到 $A - B^{-1} = (AB - I_n)B^{-1}$, 故 $A - B^{-1}$ 是可逆矩阵, 并且 $(A - B^{-1})^{-1} = B(AB - I_n)^{-1}$. 注意到如下变形:

$$(A - B^{-1})^{-1} - A^{-1}$$

$$= B(AB - I_n)^{-1} - A^{-1} = A^{-1}(AB(AB - I_n)^{-1} - I_n)$$

$$= A^{-1}(AB - (AB - I_n))(AB - I_n)^{-1} = A^{-1}(AB - I_n)^{-1}.$$

故 $(A - B^{-1})^{-1} - A^{-1}$ 可逆, 并且 $((A - B^{-1})^{-1} - A^{-1})^{-1} = (AB - I_n)A$.

命题 0.22

设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵, 使得 $I_m + AB$ 可逆, 则 $I_n + BA$ 也可逆, 并且 $(I_n + BA)^{-1} = I_n - B(I_m + AB)^{-1}A$.

 $\stackrel{\bigodot}{\mathbf{v}}$ 笔记 命题 0.22的应用: 一般对于求只含有两项的矩阵和式的逆矩阵, 我们可以利用矩阵的逆运算 (凑因子)的方法将原矩阵和式转化为 $C(I_n + AB)$ 或 $(I_n + AB)$ C 的形式, 再利用这个命题求得原矩阵的逆.

注 证法一只能得到 I_n+BA 可逆, 并不能得到具体的逆矩阵. 而证法二可以求出 $(I_n+BA)^{-1}=I_n-B(I_m+AB)^{-1}A$. 证明 证法一 (打洞原理):根据分块矩阵的初等变换可得

$$\begin{vmatrix} I_{m} & -A \\ B & I_{n} \end{vmatrix} = \begin{vmatrix} I_{m} & O \\ -B & I_{n} \end{vmatrix} \begin{vmatrix} I_{m} & -A \\ B & I_{n} \end{vmatrix} = \begin{vmatrix} I_{m} & O \\ -B & I_{n} \end{vmatrix} \begin{pmatrix} I_{m} & -A \\ B & I_{n} \end{vmatrix} = \begin{vmatrix} I_{m} & -A \\ O & I_{n} + BA \end{vmatrix} = |I_{n} + BA|.$$

$$\begin{vmatrix} I_{m} & -A \\ B & I_{n} \end{vmatrix} = \begin{vmatrix} I_{m} & A \\ O & I_{n} \end{vmatrix} \begin{vmatrix} I_{m} & -A \\ B & I_{n} \end{vmatrix} = \begin{vmatrix} I_{m} & A \\ O & I_{n} \end{vmatrix} \begin{pmatrix} I_{m} & -A \\ B & I_{n} \end{vmatrix} = \begin{vmatrix} I_{m} + AB & O \\ B & I_{n} \end{vmatrix} = |I_{m} + AB|.$$

故 $\begin{vmatrix} I_m & -A \\ B & I_n \end{vmatrix} = |I_m + AB| = |I_n + BA|$. 又因为 $I_m + AB$ 可逆, 所以 $|I_n + BA| = |I_m + AB| \neq 0$. 因此 $I_n + BA$ 也可逆.

证法二 (矩阵的逆运算): 注意到 $A(I_n+BA)=(I_m+AB)A$, 故 $(I_m+AB)^{-1}A(I_n+BA)=A$, 于是 $B(I_m+AB)^{-1}A(I_n+BA)=BA$, 从而

$$I_n = I_n + BA - BA = (I_n + BA) - B(I_m + AB)^{-1}A(I_n + BA)$$

= $(I_n - B(I_m + AB)^{-1}A)(I_n + BA)$.

于是 $(I_n + BA)^{-1} = I_n - B(I_m + AB)^{-1}A$.

例题 0.11 设 A, B 均为 n 阶可逆阵, 使得 $A^{-1} + B^{-1}$ 可逆, 证明:A + B 也可逆, 并且

$$(\boldsymbol{A} + \boldsymbol{B})^{-1} = \boldsymbol{A}^{-1} - \boldsymbol{A}^{-1} (\boldsymbol{A}^{-1} + \boldsymbol{B}^{-1})^{-1} \boldsymbol{A}^{-1}.$$

证明 注意到 $A + B = A(A^{-1} + B^{-1})B$, 故 A + B 可逆. 由命题 0.22可得

$$(I_n + A^{-1}B)^{-1} = I_n - A^{-1}(I_n + BA^{-1})^{-1}B = I_n - A^{-1}(A^{-1} + B^{-1})^{-1},$$

于是

$$(A + B)^{-1} = (A(I_n + A^{-1}B))^{-1} = (I_n + A^{-1}B)^{-1}A^{-1}$$

= $A^{-1} - A^{-1}(A^{-1} + B^{-1})^{-1}A^{-1}$.

例题 0.12 Sherman-Morrison-Woodbury 公式

设A为n阶可逆阵,C为m阶可逆阵,B为 $n \times m$ 矩阵,D为 $m \times n$ 矩阵,使得 $C^{-1} + DA^{-1}B$ 可逆.求证:A + BCD也可逆,并且

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}.$$

注 若已知矩阵逆的表达式,也可以采取利用矩阵逆的定义直接验证的方法进行证明.

证明 注意到 $A + BCD = A(I_n + A^{-1}BCD)$, 将 $A^{-1}B$ 和 CD 分别看成整体, 此时 $I_m + (CD)(A^{-1}B) = C(C^{-1} + DA^{-1}B)$ 可逆, 故由命题 0.22的结论可知 $I_n + (A^{-1}B)(CD)$ 也可逆, 并且

$$(I_n + A^{-1}BCD)^{-1} = I_n - A^{-1}B(I_m + CDA^{-1}B)^{-1}CD$$

= $I_n - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}D$.

于是 $A + BCD = A(I_n + A^{-1}BCD)$ 也可逆, 并且

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}.$$

0.1.1 练习

$$(1) A = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}; \quad (2) A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \end{pmatrix}.$$

笔记 第(2)问核心想法是利用命题??

 $\mathbf{K} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则 $A = aI_3 + J$. 注意到 aI_3 和 J 乘法可交换,J 是幂零阵并且 $J^3 = O$,因此我们可用二项

式定理来求 A 的 k 次幂:

$$A^{k} = (aI_{3} + J)^{k} = (aI_{3})^{k} + C_{k}^{1}(aI_{3})^{k-1}J + C_{k}^{2}(aI_{3})^{k-2}J^{2}$$

$$= a^{k}I_{3} + C_{k}^{1}a^{k-1}J + C_{k}^{2}a^{k-2}J^{2} = \begin{pmatrix} a^{k} & C_{k}^{1}a^{k-1} & C_{k}^{2}a^{k-2} \\ 0 & a^{k} & C_{k}^{1}a^{k-1} \\ 0 & 0 & a^{k} \end{pmatrix}$$

(2) 注意到 A 的列向量成比例, 故可设 $\alpha = (1,2,3), \beta = (1,2,4), 则 <math>A = \alpha \beta'$. 由矩阵乘法的结合律并注意到 $\beta\alpha'=17$, 可得

$$A^{k} = (\alpha \beta')(\alpha \beta') \cdots (\alpha \beta') = \alpha (\beta' \alpha)(\beta' \alpha) \cdots (\beta' \alpha)\beta'$$

$$= (\beta' \alpha)^{k-1} \alpha \beta' = 17^{k-1} A = \begin{pmatrix} 17^{k-1} & 2 \cdot 17^{k-1} & 4 \cdot 17^{k-1} \\ 2 \cdot 17^{k-1} & 4 \cdot 17^{k-1} & 8 \cdot 17^{k-1} \\ 3 \cdot 17^{k-1} & 6 \cdot 17^{k-1} & 12 \cdot 17^{k-1} \end{pmatrix}$$

练习 0.2 设
$$k$$
 是正整数, 计算 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^k$.

解 已知 $k = 1$ 时, 有 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. 假设 $k = n$ 时, 有 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^n = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}$. 则当 $k = n + 1$ 时, 有 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^{n+1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^n \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin n\theta & \cos \theta \end{pmatrix}$

$$= \begin{pmatrix} \cos n\theta \cos \theta - \sin n\theta \sin \theta & \cos n\theta \sin \theta + \sin n\theta \cos \theta \\ -(\cos n\theta \sin \theta + \sin n\theta \cos \theta) & \cos n\theta \cos \theta - \sin n\theta \sin \theta \end{pmatrix} = \begin{pmatrix} \cos (n+1)\theta & \sin (n+1)\theta \\ -\sin (n+1)\theta & \cos (n+1)\theta \end{pmatrix}$$
.

从而由数学归纳法可知,对任意正整数 k,有 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^k = \begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix}$.

▲ 练习 0.3 求矩阵 A 的逆阵:

$$A = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 2 & 3 & 4 & \cdots & n & 1 \end{pmatrix}.$$

解 对 $(A I_n)$ 用初等变换法,将所有行加到第一行上,再将第一行乘以 s^{-1} ,其中 $s = \frac{1}{2}n(n+1)$,得到

从第二行起依次减去下一行,得到

消去第一列除第一行外的所有元素后,得到

从第二行到第n-1 行分别乘以 $-\frac{1}{n}$,得到

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & \frac{1}{s} & \frac{1}{s} & \frac{1}{s} & \cdots & \frac{1}{s} & \frac{1}{s} \\ 0 & 1 & 0 & \cdots & 0 & 0 & \frac{1}{ns} & \frac{1-s}{ns} & \frac{s+1}{ns} & \cdots & \frac{1}{ns} & \frac{1}{ns} \\ 0 & 0 & 1 & \cdots & 0 & 0 & \frac{1}{ns} & \frac{1}{ns} & \frac{1-s}{ns} & \cdots & \frac{1}{ns} & \frac{1}{ns} \\ \vdots & \vdots \\ 0 & 1 & 2 & \cdots & n-2 & -1 & -\frac{2}{s} & -\frac{2}{s} & -\frac{2}{s} & \cdots & -\frac{2}{s} & \frac{s-2}{s} \end{pmatrix}$$

将第一行依次减去第二行,第三行,···,第
$$n-1$$
 行,得到
$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 1 & \frac{2}{ns} & \frac{s+2}{ns} & \frac{2}{ns} & \cdots & \frac{2}{ns} & \frac{2-s}{ns} \\ 0 & 1 & 0 & \cdots & 0 & 0 & \frac{1}{ns} & \frac{1-s}{ns} & \frac{s+1}{ns} & \cdots & \frac{1}{ns} & \frac{1}{ns} \\ 0 & 0 & 1 & \cdots & 0 & 0 & \frac{1}{ns} & \frac{1}{ns} & \frac{1-s}{ns} & \cdots & \frac{1}{ns} & \frac{1}{ns} \\ \vdots & \vdots \\ 0 & 1 & 2 & \cdots & n-2 & -1 & -\frac{2}{s} & -\frac{2}{s} & -\frac{2}{s} & \cdots & -\frac{2}{s} & \frac{s-2}{s} \end{pmatrix}.$$

将最后一行加到第一行,再将最后一行乘以-1,得到

因此

$$A^{-1} = \frac{1}{ns} \begin{pmatrix} 1-s & 1+s & 1 & \cdots & 1 & 1\\ 1 & 1-s & 1+s & \cdots & 1 & 1\\ 1 & 1 & 1-s & \cdots & 1 & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 1+s & 1 & 1 & \cdots & 1 & 1-s \end{pmatrix}.$$

▲ 练习 0.4 求下列 n 阶矩阵的逆阵, 其中 $a_i \neq 0 (1 \leq i \leq n)$

$$A = \begin{pmatrix} 1+a_1 & 1 & 1 & \cdots & 1\\ 1 & 1+a_2 & 1 & \cdots & 1\\ 1 & 1 & 1+a_3 & \cdots & 1\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & 1 & 1 & \cdots & 1+a_n \end{pmatrix}.$$

解 对 $\left(A \quad I_n\right)$ 用初等变换法,将第 i 行乘以 $a_i^{-1}(1 \le i \le n)$,有

$$\begin{pmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1+a_2 & 1 & \cdots & 1 & 0 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 1+a_3 & \cdots & 1 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1+a_n & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1+\frac{1}{a_1} & \frac{1}{a_1} & \frac{1}{a_1} & \cdots & \frac{1}{a_1} & \frac{1}{a_1} & 0 & 0 & \cdots & 0 \\ \frac{1}{a_2} & 1+\frac{1}{a_2} & \frac{1}{a_2} & \cdots & \frac{1}{a_2} & 0 & \frac{1}{a_2} & 0 & \cdots & 0 \\ \frac{1}{a_3} & \frac{1}{a_3} & 1+\frac{1}{a_3} & \cdots & \frac{1}{a_3} & 0 & 0 & \frac{1}{a_3} & \cdots & 0 \\ \vdots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1+\frac{1}{a_n} & 0 & 0 & 0 & \cdots & \frac{1}{a_n} \end{pmatrix}$$

将下面的行都加到第一行上,并令 $s = 1 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,则上面的矩阵变为

$$\begin{pmatrix} s & s & s & \cdots & s & \frac{1}{a_1} & \frac{1}{a_2} & \frac{1}{a_3} & \cdots & \frac{1}{a_n} \\ \frac{1}{a_2} & 1 + \frac{1}{a_2} & \frac{1}{a_2} & \cdots & \frac{1}{a_2} & 0 & \frac{1}{a_2} & 0 & \cdots & 0 \\ \frac{1}{a_3} & \frac{1}{a_3} & 1 + \frac{1}{a_3} & \cdots & \frac{1}{a_3} & 0 & 0 & \frac{1}{a_3} & \cdots & 0 \\ \vdots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n} & 0 & 0 & 0 & \cdots & \frac{1}{a_n} \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & \frac{1}{sa_1} & \frac{1}{sa_2} & \frac{1}{sa_3} & \cdots & \frac{1}{sa_n} \\ \frac{1}{a_2} & 1 + \frac{1}{a_2} & \frac{1}{a_2} & \cdots & \frac{1}{a_2} & 0 & \frac{1}{a_2} & 0 & \cdots & 0 \\ \frac{1}{a_3} & \frac{1}{a_3} & 1 + \frac{1}{a_3} & \cdots & \frac{1}{a_3} & 0 & 0 & \frac{1}{a_3} & \cdots & 0 \\ \vdots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n} & 0 & 0 & 0 & \cdots & \frac{1}{a_n} \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & \frac{1}{sa_1} & \frac{1}{sa_2} & \frac{1}{sa_3} & \cdots & \frac{1}{sa_n} \\ 0 & 1 & 0 & \cdots & 0 & -\frac{1}{sa_1a_2} & \frac{sa_2-1}{sa_2} & -\frac{1}{sa_3a_2} & \cdots & -\frac{1}{sa_na_2} \\ 0 & 0 & 1 & \cdots & 0 & -\frac{1}{sa_1a_3} & -\frac{1}{sa_2a_3} & \frac{sa_3-1}{sa_3^2} & \cdots & -\frac{1}{sa_na_3} \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -\frac{1}{sa_1a_n} & -\frac{1}{sa_2a_n} & -\frac{1}{sa_3a_n} & \cdots & \frac{sa_n-1}{sa_n^2} \end{pmatrix}$$

再消去第一行的后 n-1 个 1 就得到

$$A^{-1} = -\frac{1}{s} \begin{pmatrix} \frac{1}{a_1} & \frac{1}{a_2} & \frac{1}{a_3} & \cdots & \frac{1}{a_n} \\ -\frac{1}{a_1 a_2} & \frac{s a_2 - 1}{a_2^2} & -\frac{1}{a_3 a_2} & \cdots & -\frac{1}{a_n a_2} \\ -\frac{1}{a_1 a_3} & -\frac{1}{a_2 a_3} & \frac{s a_3 - 1}{a_3^2} & \cdots & -\frac{1}{a_n a_3} \\ \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{a_1 a_n} & -\frac{1}{a_2 a_n} & -\frac{1}{a_3 a_n} & \cdots & \frac{s a_n - 1}{a_n^2} \end{pmatrix}.$$

△ 练习 0.5 求下列 n 阶矩阵的逆矩阵:

$$A = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{pmatrix}$$

笔记 解法一和解法二的核心想法是: 先假设(猜测) 矩阵 A 的逆矩阵与其具有相似的结构, 再结合逆矩阵的定义, 使用待定系数法求出矩阵 A 的逆矩阵.

$$A^{-1} = (-I_n + \alpha \alpha')^{-1} = (-I_n)^{-1} - \frac{1}{1 + \alpha' (-I_n)^{-1} \alpha} (-I_n)^{-1} \alpha \alpha' (-I_n)^{-1} = -I_n + \frac{1}{n-1} \alpha \alpha'.$$

解法三(循环矩阵): 设 J 为基础循环矩阵, 则 $A = J + J^2 + \cdots + J^{n-1}$. 设 $B = cI_n + J + J^2 + \cdots + J^{n-1}$ (因为循环 矩阵的逆仍是循环矩阵), 其中c为待定系数. 则

$$AB = (n-1)I_n + (c+n-2)(J+J^2 + \dots + J^{n-1})$$

只要令 c=2-n,则 $AB=(n-1)I_n$. 于是 $A^{-1}=\frac{1}{n-1}B=\frac{2-n}{n-1}I_n+J+J^2+\cdots+J^{n-1}$. 解法四 (初等变换):本题是练习 0.4的特例,都利用相同的初等变换方法求逆矩阵.

练习 0.6 设 A 是非零实矩阵且 $A^* = A'$. 求证:A 是可逆阵.

证明 设 $A = (a_{ij}), a_{ij}$ 的代数余子式记为 A_{ij} , 由已知, $a_{ij} = A_{ij}$. 由于 A 是非零实矩阵, 故必有某个 $a_{rs} \neq 0$, 将 |A|

按第r行展开,可得

$$|A| = a_{r1}A_{r1} + \dots + a_{rs}A_{rs} + \dots + a_{rn}A_{rn} = a_{r1}^2 + \dots + a_{rs}^2 + \dots + a_{rn}^2 > 0.$$

特别地, $|A| \neq 0$, 即 A 是可逆阵.

△ 练习 0.7 设 A 是奇数阶矩阵, 满足 $AA' = I_n \perp |A| > 0$, 证明: $I_n - A$ 是奇异阵.

证明 由 $1=|I_n|=|AA'|=|A||A'|=|A|^2$ 以及 |A|>0 可得 |A|=1. 因为

$$|I_n - A| = |AA' - A| = |A||A' - I_n| = |(A - I_n)'| = |A - I_n| = (-1)^n |I_n - A|.$$

又 n 是奇数, 故 $|I_n - A| = -|I_n - A|$, 从而 $|I_n - A| = 0$, 即 $I_n - A$ 是奇异阵.

△ 练习 0.8 设 A, B 为 n 阶可逆阵, 满足 $A^2 = B^2$ 且 |A| + |B| = 0, 求证:A + B 是奇异阵.

证明 由已知 A, B 都是可逆阵且 |B| = -|A|, 因此

$$|A||A + B| = |A^2 + AB| = |B^2 + AB| = |B + A||B| = -|A||A + B|.$$

于是 |A||A+B|=0. 因为 $|A|\neq 0$, 故 |A+B|=0, 即 A+B 是奇异阵.