UNIT 4: ORGANIC CHEMISTRY I

Recommended Prior Knowledge: Unit 1 (Theoretical Chemistry) should have been studied before this unit. Although most of Unit 2 is not immediately relevant to this Unit, some prior discussion of bond energies, acids and bases, and kinetics of reactions, would be beneficial.

Context: This Unit should be studied before Unit 5, but can either precede or follow Units 2 and 3 (but see comment above).

Outline: This Unit is the first of two dealing with Organic Chemistry. It covers the formulae, names and shapes of organic compounds; isomerism; alkanes; alkenes; addition polymerisation; and halogenoalkanes.

section	Learning Outcomes	Suggested Teaching Activities	Lesson	Other references
			allocation	
			(approx.%)	
10.1(a)	interpret, and use the nomenclature, general formulae	General rules of nomenclature could be given at the start, i.e.		site 1c (Organic
	and displayed formulae of the following classes of	finding the longest chain; numbering of substituents from the		Conventions menu)
	compound:	end that gives the lowest numbers; the general shape of a		
	(i) alkanes and alkenes	name: prefix-stem-suffix. More specific examples could be		site 2 (AS/Functional
	(ii) halogenoalkanes	covered when functional groups are dealt with in detail.		Groups)
	(iii) alcohols (primary, secondary and tertiary)	Practice translating name into structural formula and vice		
	(iv) aldehydes and ketones	versa.		site 8 (Nomenclature)
	(v) carboxylic acids and esters	Distinguish between the molecular formula (e.g. C ₃ H ₇ Cl),		
	(vi) amines (primary only) and nitriles	the structural formula (e.g. (CH ₃) ₂ CHCl or CH ₃ CH ₂ CH ₂ Cl)		site 10 (Organic
	[Candidates will be expected to recognize the shape	and the displayed formula, which shows all bonds as lines		chemistry)
	of the benzene ring when it is present in organic	(but also includes all atoms, incl. H atoms). For ring		
	compounds. Knowledge of benzene or its compounds	compounds (incl. benzene) the "skeletal" formula, showing		site 11 (Organic
	is not required for AS.]	bonds but not C or H atoms, is acceptable as a structural or		Chemistry)
10.1(1)		displayed formula.		
10.1(b)	interpret, and use the following terminology	These terms should be introduced when the reactions of the		site 11(Naming Rules)
	associated with organic reactions:	relevant functional group are being studied.		
	(i) functional group			CIEX 37
	(ii) homolytic and heterolytic fission			
	(iii) free radical, initiation, propagation, termination (iv) nucleophile, electrophile			
	(v) addition, substitution, elimination, hydrolysis			
	(vi) oxidation and reduction.			
	in equations for organic redox reactions, the symbols			
	[O] and [H] are acceptable]			
	[O] and [11] are acceptable]			

10.1(c)	(i) describe the shapes of the ethane and ethene	Tetrahedral and 3-dimensional, and trigonal planar and	site 1c (Bonding in
	molecules	2-dimensional respectively.	Organic Compounds)
	(ii) predict the shapes of other related molecules	The tetrahedral arrangement of bonds around a 4-	
		coordinated sp ³ carbon atom, and the trigonal arrangement of	
		bonds around a 3-coordinated sp ² carbon atom.	site 1c (Bonding in
10.1(d)	explain the shapes of the ethane and ethene molecules	The π bond being due to the sideways overlap of two 2p	Organic Compounds)
	in terms of σ and π carbon-carbon bonds	orbitals, creating electron density above and below the plane	
		of the molecule.	
10.1(e)	describe structural isomerism	Relate to nomenclature. Include both chain isomerism	site 1c (Isomerism)
		(butane, 2-methylpropane) and positional isomerism	
		(propan-2-ol and propan-1-ol).	site 2 (AS/
10.1(f)	describe cis-trans isomerism in alkenes, and explain	Emphasise that the groups at both ends of the double bond	Stereochemistry))
	its origin in terms of restricted rotation due to the	must be different from each other. Give practice with	
	presence of π bonds	various structures (e.g. the three dichloroethenes; alkenes up	site 3 (Organic/Chirality)
		to C_6).	
10.1(g)	explain what is meant by a chiral centre and that such	Stereochemical formulae should include wedge and dashed	site 10 (Organic
	a centre gives rise to optical isomerism	bonds. Use 2-chlorobutane as the simplest example, but also	chemistry/
		include 2-hydroxypropanoic acid. Large ball-and-stick	Stereoisomerism)
		models and a large mirror are useful to demonstrate this.	
10.1(h)	deduce the possible isomers for an organic molecule	Suitable examples are C ₅ H ₁₂ , C ₅ H ₁₀ (incl. rings), C ₄ H ₁₀ O	
	of known molecular formula	(mention ethers in passing), $C_4H_8O_2$ (acids and esters).	
10.1(i)	identify chiral centres and/or cis-trans isomerism in a	Practice reading the various ways that structural formula can	
	molecule of given structural formula	be written.	
10.2(f)	explain the use of crude oil as a source of both	Brief outline of fractional distillation - separation according	site 3 (Applied Org.
	aliphatic and aromatic hydrocarbons	to boiling point. Fractions are mixtures. not all same chain	Chemistry/Petrol &
		length or C-atom no. due to branched chains having lower	Diesel)
		b.pts. than straight chains.	
10.2(g)	suggest how 'cracking' can be used to obtain more	Makes more use of those hydrocarbons that are commonest	
	useful alkanes and alkenes of lower Mr from larger	in crude oil, but are not particularly useful in themselves by	
	hydrocarbon molecules	breaking up longer chain alkanes into shorter ones, plus	
		alkenes or hydrogen, using zeolites (catalytic cracking) or	
10.0()		heat (thermal cracking).	
10.2(a)	be aware of the general unreactivity of alkanes,	Due to lack of polarity in, and strength of, the C-H and C-C	site 2 (Alkanes)
	including towards polar reagents	bonds. High activation energy.	-:4- 5- (A11
			site 5c (Alkanes)
			sita 8 Organia /izanzan - C
			site 8 Organic /isomer of the alkanes)
			the arkanes)

			75
10.2(b)	describe the chemistry of alkanes as exemplified by the following reactions of ethane: (i) combustion	Balanced equations for CH ₄ , C ₂ H ₆ , C ₈ H ₁₈	site 3 (Organic Reactions catalogue/Alkanes)
10.2(h) 10.2(i)	describe and explain how the combustion reactions of alkanes lead to their use as fuels in industry, in the home and in transport recognise the environmental consequences of carbon monoxide, oxides of nitrogen and unburned hydrocarbons arising from the internal combustion engine and of their catalytic removal	Practical work could include an estimate of the ΔH_c° of various alkanes by burning known masses underneath a copper calorimeter or similar. The poisonous nature of CO (\rightarrow carboxyhaemoglobin); NO _x causing smog, acid rain (on their own, and as a catalyst for H_2SO_4 production from SO_2); unburnt $h/c \rightarrow$ smog. Use of Pt-Rh catalyst in exhaust. Main reactions are CO + NO; CO + O_2 ; $C_nH_m + O_2$.	site 6 (Fuels and energy)
10.2(b)	(ii) substitution of hydrogen in ethane by chlorine and by bromine	In the presence of UV light, giving poly as well as monosubstituted halogenoethanes. Balanced equations. Best demonstrated with $C_6H_{14} + Br_2$.	site 1d (Free Radical Reactions)
10.2(c)	describe the mechanism of free-radical substitution at methyl groups with particular reference to the initiation, propagation and termination reactions	Only one initiation reaction, but 3 possible termination reactions. The sum of the two propagation equations equals the overall stoichiometric equation. Mention the 4-carbon byproducts obtained from ethane.	site 3 (Organic/Reaction mechanisms) site 1c (Main Menu / Org.Mechanisms menu)
10.2(d)	describe the chemistry of alkenes as exemplified, where relevant, by the following reactions of ethene: (i) addition of hydrogen, steam, hydrogen halides and halogens (ii) oxidation by cold, dilute manganate(VII) ions to form the diol (iii) oxidation by hot, concentrated manganate(VII) ions leading to the rupture of the carbon-to-carbon double bond in order to determine the position of alkene linkages in larger molecules	 (i) addition of hydrogen to ethene (Ni catalyst) never carried out commercially, but mention unsaturated oils → margarine Other three reagents undergo electrophilic addition. Steam (with H₃PO₄ catalyst) is a useful manufacture of ethanol Br₂ + alkenes (emphasise light not needed) is a good test for C=C. (ii) This is also a good test for an alkene. (iii) Give lots of practice with various alkenes, both predicting products according to the following table or vice versa. CH₂= → CO₂ CHR= → RCO₂H CR₂= → R₂CO 	site 2 (AS/Alkenes) site 5c (Alkenes) site 3 (Organic Reactions catalogue/Alkanes & Alkenes) CIEX 37
10.2(e)	describe the mechanism of electrophilic addition in alkenes, using bromine/ethene as an example	Polarisation of Br_2 into Br^{δ^+} — Br^{δ^-} by the C=C double bond, following by electrophilic addition giving a carbocation + Br -, which then react together.	site 1d (Organic Mechanisms Menu/ Electrophilic Addition) site 3 (Organic / Reaction mechanisms) site 1c (Main Menu/ Org.Mechanisms menu)

			7.5
10.2(d) 10.8(a)	(iv) polymerisation of alkenes describe the characteristics of addition polymerisation as exemplified by poly(ethene) and pvc recognise the difficulty of the disposal of poly(alkene)s, i.e. non-biodegradability and harmful combustion products	Describe the free-radical conditions using O ₂ + pressure. Definition of addition polymerisation. Practice drawing repeat units of polymers from various monomers (incl. the "spare" bonds at each end, with brackets () _n around the repeat unit), and vice versa. Branched chain polyalkenes are exp. difficult to biodegrade. phosgene (COCl ₂) and dioxins can be formed if the incineration temperature for pvc is not high enough. Newer disposal techniques include cracking, to regenerate the monomer, and v.high temperature combustion, giving useful heat for power generation.	site 5d (Addition Polymerisation)
10.3(a)	(a) recall the chemistry of halogenoalkanes as exemplified by (i) the following nucleophilic substitution reactions of bromoethane: hydrolysis; formation of nitriles; formation of primary amines by reaction with ammonia (ii) the elimination of hydrogen bromide from 2-bromopropane	Balanced equations for all reactions. Include essential conditions (e.g. solvent, temperature, sealed tube under pressure for NH ₃) Note especially the change of solvent for NaOH from water to ethanol.	site 2 (AS/ Halogenoalkanes) site 3 (Organic Reactions catalogue/Haloalkanes) site 5c(Halo_compounds) site 10 (Organic chemistry/Haloalkanes) site 1c (Main Menu/Org.Mechanisms menu)
10.3(b) 10.3(c) 10.3(d)	describe the mechanism of nucleophilic substitution in halogenoalkanes interpret the different reactivities of halogenoalkanes with particular reference to hydrolysis and to the relative strengths of the C-Hal bonds e.g. CFCs; anaesthetics; flame retardants; plastics explain the uses of fluoroalkanes and fluorohalogenoalkanes in terms of their relative chemical inertness	Either the S_N1 or the S_N2 mechanism can be described. The essential features are the $\delta+$ carbon atom, and curly arrows showing the C-Br bond breaking, and the formation of the bond to carbon from the lone pair on the nucleophile. C-I>C-Br>C-Cl. Relative rates can be shown by warming R-X with aqueous-alcoholic AgNO ₃ . The inertness of the C-Cl, and esp. the C-F bonds make them useful for the purposes specified.	site 1d (Organic Mechanisms Menu/ Nucleophilic Substn) site 3 (Organic /Reaction mechanisms) site 1c (Main Menu/ Org.Mechanisms menu)
10.3(e)	recognise the concern about the effect of chlorofluoroalkanes on the ozone layer	Inertness now becomes a problem – long lifetime in the troposphere allowing migration to the stratosphere, where the C-Cl bond undergoes light-induced homolysis to give Cl atoms which initiate a chain reaction destroying ozone.	