Q & A: Linear Classification

Lecture Series "Machine Learning"

Niels Landwehr

Research Group "Data Science" Institute of Computer Science University of Hildesheim

• Assume we have learned a binary logistic regression model $f: \mathbb{R}^2 \to [0,1]$ of the form

$$f_{\theta}(\mathbf{x}) = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

by maximizing the conditional log-likelihood on a data set

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$$

as explained in the lecture. Assume the learned parameter vector is given by

$$\theta^* = (0.5, -1)$$

• Question 1: For the data point $\mathbf{x}_0 = (1,1)$, what is $p(y=1 | \mathbf{x}_0, \mathbf{\theta}^*)$?

• Assume we have learned a binary logistic regression model $f: \mathbb{R}^2 \to [0,1]$ of the form

$$f_{\theta}(\mathbf{x}) = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

by maximizing the conditional log-likelihood on a data set

$$\mathcal{D} = \{(\mathbf{x}_{1}, y_{1}), ..., (\mathbf{x}_{N}, y_{N})\}$$

as explained in the lecture. Assume the learned parameter vector is given by

$$\mathbf{\theta}^* = (0.5, -1)$$

- Question 1: For the data point $\mathbf{x}_0 = (1,1)$, what is $p(y=1 \mid \mathbf{x}_0, \boldsymbol{\theta}^*)$?
- Solution:

$$p(y=1 | \mathbf{x}_0, \mathbf{\theta}^*) = \sigma(\mathbf{\theta}^{*T} \mathbf{x}_0)$$
$$= \sigma(-0.5)$$
$$= \frac{\exp(-0.5)}{1 + \exp(-0.5)}$$
$$\approx 0.378$$

• Assume we have learned a binary logistic regression model $f: \mathbb{R}^2 \to [0,1]$ of the form

$$f_{\theta}(\mathbf{x}) = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

by maximizing the conditional log-likelihood on a data set

$$\mathcal{D} = \{(\mathbf{x}_{1}, y_{1}), ..., (\mathbf{x}_{N}, y_{N})\}\$$

as explained in the lecture. Assume the learned parameter vector is given by

$$\theta^* = (0.5, -1)$$

- Question 2: What can we say about the conditional likelihood of θ^* and the model $\theta^+ = 2\theta^* = (1, -2)$?
 - It holds that $p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N,\mathbf{\theta}^*) < p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N,\mathbf{\theta}^*)$
 - It holds that $p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N,\mathbf{\theta}^*) > p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N,\mathbf{\theta}^*)$
 - It holds that $p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N, \mathbf{\theta}^*) = p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N, \mathbf{\theta}^*)$
 - We cannot draw any conclusions based on the information we have

• Assume we have learned a binary logistic regression model $f: \mathbb{R}^2 \to [0,1]$ of the form

$$f_{\theta}(\mathbf{x}) = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

by maximizing the conditional log-likelihood on a data set

$$\mathcal{D} = \{(\mathbf{x}_{1}, y_{1}), ..., (\mathbf{x}_{N}, y_{N})\}\$$

as explained in the lecture. Assume the learned parameter vector is given by

$$\boldsymbol{\theta}^* = (0.5, -1)$$

• **Solution**: It holds that $p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N,\mathbf{\theta}^*) > p(y_1,...y_N | \mathbf{x}_1,...,\mathbf{x}_N,\mathbf{\theta}^*)$ because the model parameter vector $\mathbf{\theta}^*$ has been trained to maximize the conditional likelihood

• Assume we have learned a binary logistic regression model $f: \mathbb{R}^2 \to [0,1]$ of the form

$$f_{\theta}(\mathbf{x}) = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

by maximizing the conditional log-likelihood on a data set

$$\mathcal{D} = \{(\mathbf{x}_{1}, y_{1}), ..., (\mathbf{x}_{N}, y_{N})\}$$

as explained in the lecture. Assume the learned parameter vector is given by

$$\mathbf{\theta}^* = (0.5, -1)$$

- Question 3: What can we say about the classification accuracy of the model θ^* and the model $\theta^+ = 2\theta^* = (1, -2)$ on the training data?
 - Model θ^+ is more accurate than model θ^*
 - Model θ^+ is less accurate than model θ^*
 - The models θ^+ and θ^* have exactly the same accuracy
 - We cannot draw any conclusions based on the information we have

• Assume we have learned a binary logistic regression model $f: \mathbb{R}^2 \to [0,1]$ of the form

$$f_{\theta}(\mathbf{x}) = \sigma(\theta_1 x_1 + \theta_2 x_2)$$

by maximizing the conditional log-likelihood on a data set

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$$

as explained in the lecture. Assume the learned parameter vector is given by

$$\boldsymbol{\theta}^* = (0.5, -1)$$

- Question 3: What can we say about the classification accuracy of the model θ^* and the model $\theta^+ = 2\theta^* = (1, -2)$ on the training data?
- Solution:

Both models have exactly the same classification accuracy. The reason is that both models make the same predictions, just with different confidence:

- A logistic regression model predicts the positive class if $p(y=1|\mathbf{x},\mathbf{\theta}^*) \ge 0.5$, which is equivalent to $\mathbf{x}^T\mathbf{\theta} \ge 0$
- Of course, $\mathbf{x}^{\mathrm{T}} 2\mathbf{\theta} \ge 0 \Leftrightarrow \mathbf{x}^{\mathrm{T}} \mathbf{\theta} \ge 0$

Quiz: Visualizing Linear Model

- Assume two dimensional data, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$
- Which decision boundary matches the following binary logistic regression model:

$$f_{\theta}(\mathbf{x}) = \sigma(-x_1 + x_2 + 1)$$

Solution: Visualizing Linear Model

- Solution:
- The points on the decision boundary are given by the condition

$$f_{\theta}(\mathbf{x}) = \sigma(-x_1 + x_2 + 1) = 0.5$$

which implies

$$-x_1 + x_2 + 1 = 0.$$

• From this condition, we can derive the condition

$$x_2 = x_1 - 1$$
.

This is clearly the line in Figure A.

Solution: Visualizing Linear Model

- Alternative Solution:
- For the point $\mathbf{x} = \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ the model predicts class 1:

$$f_{\theta}(\mathbf{x}) = \sigma(-(-3) + (-3) + 1) = \sigma(1) = \frac{e}{1+e} > 0.5$$

Therefore, it has to be Figure A.