Ideatory MakeMyTrip Challenge

Submitted by

Name: Akansha Kumar

Ideatory username:akansha

Problem Definition

- Problem:- User clickstream data and information about a group of hotels is provided.
- Objective:- Segment users into a given set of classes. The classes are,
 - Backpackers
 - Family
 - Couple
- Supervised learning
 - Set of training features and target are provided
 - A test set with features data is provided
 - Objective:- Predict the target values for the test data

Standard Approach

Steps:-

- Data extraction:- From csv (transfer data from csv to pandas dataframe in python)
- 2. Data mining:- Perform joins to combine data from multiple dataframes into a single dataframe. (join method in pandas)
- 3. Data manipulation:- Convert discrete non-numeric data and boolean data to integers. Develop an initial set of features
- 4. Break data into test data and training data for test cross-validation
- 5. Perform PCA and FA to determine influential features. This step decides the model features.
- 6. Choose classifiers
 - 1. Try multiple classifiers and determine the F1 score for test cross validation
 - 2. For each classifier implement GridSearchCV and randomserachCV to obtain an optimum set of parameters
- 7. Implement the classifier on the supplied test data and generate the test target csv for submission.

Initial Features

- 1. Age
- 2. Gender (Male-1, Female-0)
- 3. Number of Rooms
- 4. Seen price
- 5. isClicked (True-1, False-0)
- 6. isBooked (True-1, False-0)
- 7. Star Rating
- 8. Trip Adviser Rating

***Correlation plot – top right corner

Feature Extraction

- Understand the influence of the features on the target
 - Correlation plot
 - Principal components (sklearn.decomposition.PCA)
 - Independent components bottom right corner (sklearn.decomposition.FastICA)
 - Factors (sklearn.decomposition.FactorAnalysis)
- Selected Features
 - Age
 - Star Rating
 - Seen price

Cross-validation for model validation

- Prediction accuracy
- Standard approach of breaking the training data into test (test_cv) and training data (cv_train) for cross-validation.
- Use train_cv to build the regression model, and test it against test_cv.
- The score ranges from 0-1.0 where 1.0 is the best fit.
- sklearn.cross_validation_train_test_split Split training data into random test and train data.
- Test size 40000 (1/3rd of the total data)
- Use this validation approach to all the classifier and keep track of the scores and choose the one that has the best score.

Classifier Methods

- I have tried the following methods (all these methods are available in sklearn package in python),
 - Decision Tree Classifier
 - Gaussian Naïve Bayes
 - Support vector Machines
 - Random Forest Classifier
 - Logistic Regression
 - SGD Regressor
 - K Nearest Neighbors Classifier
 - Bernoulli Naïve Bayes
 - Linear Discriminate Analysis
 - Quadratic Discriminate Analysis
 - Ada Booster Classifier

Parameter Optimization

- All the methods described in the previous slide have hyper parameters.
- Parameters have a strong influence on the regression model hence affect the predictions.
- Cross-validation is a standard method to determine an optimum value for the hyper parameters
- Each parameter set is implemented in the model and a score is determined. Score ranges from 0 to 1.0.
- Methods:-
 - Grid based (GridSearchCV in sklearn): Performs a grid based on all the permutations of the parameter space (inputted by the user) and performs a search
 - Random based (RandomizedSearchCV in sklearn) :- Randomly searches for the best parameter set

Implementation of a classifier

- Standard steps:-
 - 1. Create an instance of the classifier
 - 2. Fit the training data
 - 3. Predict the test results

Future Work

- Predictive methods are always not complete.
 There is a significant scope for future work,
 - Try several other methods
 - Implement a learning based hyper parameter optimization
 - There is still room for model search
 - Search for other features not given in the data
 - More visualization
 - Implement heuristic methods for optimization

Tools

- Jupyter ipython notebook
- mysql
- python:-
 - pandas
 - sklearn
 - scipy
 - numpy
 - matplotlib