

第14讲 正态分布

正态分布的定义:

若X的概率密度函数为 $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$

其中 $-\infty < \mu < \infty$, $\sigma > 0$, 就称X服从参数为 μ , σ 的正态分布(或高斯分布),

记为 $X \sim N(\mu, \sigma^2)$.

特征: 1° f(x)关于 $x = \mu$ 对称;

 2° 当 $x \leq \mu$ 时, f(x)是严格单调递增函数;

3°
$$f_{\text{max}} = f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$$
;

$$4^{\circ} \lim_{|x-\mu|\to\infty} f(x) = 0.$$

两个参数的含义:

- (1) 当固定 σ ,改变 μ 的大小时,f(x)图形的形状不变,只是沿着x轴作平移变换; μ 称为位置参数 (决定对称轴位置).
- (2) 当固定 μ , 改变 σ 的大小时, f(x) 图形的对称轴不变, 而形状在改变, σ 越小, 图形越高越瘦, σ 越大, 图形越矮越胖.

σ称为尺度参数 (决定曲线分散程度).

正态分布的用途:

- ■自然界和人类社会中很多现象可以看做正态分布如:人的生理尺寸(身高、体重); 医学检验指标(红细胞数、血小板); 测量误差;等等
- 多个随机变量的和可以用正态分布来近似如: 注册MOOC的某位同学完成所有作业的时间; 二项分布; 等等 (By 中心极限定理)

正态分布的概率计算

若
$$X \sim N(\mu, \sigma^2)$$
, 对实数 x ,
$$P(X \le x) = F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^2}{2\sigma^2}} dt = ?$$

- 正态分布分布函数值与标准正态分布上分位数见实验6;
- 正态分布密度函数与分布函数曲线图见实验7.

积分算不出来 ~~~~

方法一: 用EXCEL、MATLAB、R等软件来计算;

方法二: 用数值积分法;

方法三: 转化为标准正态, 然后利用标准正态分布表来求.

标准正态分布

若 $Z \sim N(0, 1)$, 称Z服从标准正态分布.

Z的概率密度函数:
$$\varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$
.

Z的分布函数: $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$.

标准正态分布函数表($\Phi(z)$ 值) (http://en.wikipedia.org/wiki/Standard_normal_table)

z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53980	0.54380	0.54776	0.55172	0.55567	0.55966	0.56360	0.56749	0.57142	0.57535
0.2	0.57930	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408

1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.9632
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.9706
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2. 1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.9857
2. 2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.9889
2. 3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.9915
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.9936
2. 5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.9964
2. 7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.9980
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.9986
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.9990

$$\Phi(1.23) = 0.89065$$

注意到 $\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$ 关于y轴的对称性,

则标准正态分布的分布函数有一个 重要性质:

$$\Phi(-z_0) = 1 - \Phi(z_0),$$

对于任意的实数20都成立.

性质: 当 $X \sim N(\mu, \sigma^2)$ 时, $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证明:对于任意实数2.

证明: 对于任意实数z,
$$P(\frac{X-\mu}{\sigma} \le z) = P(X \le \sigma z + \mu) = \int_{-\infty}^{\sigma z + \mu} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(t-\mu)^2}{2\sigma^2}} dt$$

$$\Leftrightarrow s = \frac{t-\mu}{\sigma} \longrightarrow = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{s^2}{2}} ds = \Phi(z).$$

$$\Rightarrow s = \frac{t - \mu}{\sigma}$$

$$\Rightarrow = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^{2}}{2}} ds = \Phi(z).$$

则
$$\frac{(t-\mu)^2}{2\sigma^2} = \frac{s^2}{2}$$
 由此可知,当 $X \sim N(\mu, \sigma^2)$ 时,对于任意实数 a ,有

$$ds = \frac{1}{\sigma} dt \qquad F_X(a) = P(X \le a) = P(\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}) = \Phi(\frac{a - \mu}{\sigma}).$$

例1: 一批钢材(线材)长度 $(cm)X \sim N(\mu, \sigma^2), \mu = 100, \sigma = 2,$

求:(1) 这批钢材长度小于97.8的概率;

(2) 这批钢材长度落在区间(97.8,103)的概率.

解: (1)
$$P(X < 97.8) = P(\frac{X - \mu}{\sigma} < \frac{97.8 - \mu}{\sigma}) = \Phi(\frac{97.8 - \mu}{\sigma})$$

 $= \Phi(\frac{97.8 - 100}{2}) = \Phi(-1.1) = 1 - \Phi(1.1) = 1 - 0.86433 = 0.13567.$
(2) $P(97.8 < X < 103) = P(\frac{97.8 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{103 - \mu}{\sigma})$
 $= \Phi(\frac{103 - 100}{2}) - \Phi(\frac{97.8 - 100}{2}) = \Phi(1.5) - \Phi(-1.1)$
 $\stackrel{\text{\text{de}}}{=} 0.93319 - 0.13576 = 0.79743.$

洲ジナ学 ZHEJIANG UNIVERSITY

例2: 用天平称一实际重量为µ的物体, 天平的读数记为随机变

量X, 若 $X \sim N(\mu, \sigma^2)$, 求读数与 μ 的偏差在 3σ 范围之内的概率.

解: 由题意知, 要求的是

$$P(|X - \mu| < 3\sigma) = P(-3\sigma < X - \mu < 3\sigma) = P(-\frac{3\sigma}{\sigma} < \frac{X - \mu}{\sigma} < \frac{3\sigma}{\sigma})$$

$$= P(-3 < \frac{X - \mu}{\sigma} < 3) = \Phi(3) - \Phi(-3) = \Phi(3) - \{1 - \Phi(3)\}$$

