EE101 Tutorial 1

Topics: Semiconductors and Diodes

Q1. The intrinsic carrier concentration of germanium (GE) is expressed as

ni = 1:66 _ 1015T3=2 exp
$$\Box$$
 Eg 2kT
Ni=1.666 ×10¹⁵ T^{3/2} exp $\frac{-Eg}{2KT}$ cm⁻³ where Eg=0.66 eV

- (a) Calculate ni at 300 K and 600 K and compare the results with those obtained in Example 2.1 for Si.
- (b) Determine the electron and hole concentrations if Ge is doped with P at a density of 5×10^{16} cm⁻³
- $\mbox{\bf Q2.}$ A junction employs $N_D=5\times 10^{17}~\mbox{cm}^{-3}$ and $N_A=4\times 10^{16}~\mbox{cm}^{-3}$.
- (a) Determine the majority and minority carrier concentrations on both sides.
- (b) Calculate the built-in potential at 250 K, 300 K, and 350 K. Explain the trend.
- ${f Q3}$. An oscillator application requires a variable capacitance with the characteristic shown in Fig. 1. Determine the required N_D if $N_A = 10^{17}$ /cm⁻²

Q4. We have received the circuit shown in Fig. 2 and wish to determine R_1 and I_S . We note that $V_X = 1$ V $I_X = 0.2$ mA and $V_X = 2$ with $I_X = 0.5$ mA. Calculate R_1 and $I_S = 1$ V

Q5. Plot I_X as a function of V_X for the circuit shown in Fig. 3 for two cases: $V_B = -1$ V and $V_B = +1$ V.

Fig. 3

Q6. Plot the input/output characteristics of the circuits depicted in Fig. 4 using an ideal model for the diodes. Assume $V_B = 2 \text{ V}$.

 $\mathbf{Q7}$. Assuming a constant-voltage diode model, plot V_{out} as a function of I_{in} for the circuits shown in Fig. 5.

Q8. Plot the input/output characteristics of the circuits illustrated in Fig. 6. Assuming a constant-voltage diode model and $V_B=2$ V.

Q9. We wish to design a circuit that exhibits the input/output characteristic shown in Fig. 7. Using 1-k ohm resistors, ideal diodes, and other components, construct the circuit.

