Določanje Boltzmanove konstate

Ву

Matic Tonin

ID No. (28181098)

Mentor

(Rok Dolenec)

Pod okvirom:

FAKULTETE ZA FIZIKO IN MATEMATIKO, LJUBLJANA

1. 4. 2020

1 Naloga

- 1. Umerite kotno skalo spektroskopa s spektralnimi crtami Hg in H_2 .
- 2. Izmerite valovne dolžine spektralnih crt v spektru varcne žarnice. Primerjajte spekter s tistim, izmerjenim v Hg pod tocko 1.
- 3. Izmerite centralno valovno dolžino in ocenite spektralno širino rdece, rumene, zelene in modre svetlece diode (LED).
- 4. Opazujte zvezni spekter volframove žarnice in oceni valovno dolžino najsvetlejšega (rumenega) dela in zapišite intervale, ki jih pokrivajo posamezne barve.
- 5. Opazujte absorpcijski spekter NO_2 tako, da cevko s plinom presevate z belo svetlobo.
- 6. Izmerite valovne dolžine crt v spektru He in Ne.

2 Potek dela

Najprej postavimo postavitev, kot nam jo prikazuje slika v navodilih:

Slika 1: Prikaz postavitve meritve

Za vsako meritev bomo merili kot čim bolj natančno, torej vsaj do minute natančno, zato bomo uporabljali Vernierovo skalo. Princip je podoben kot kljunasto merilom. Najprej pa moramo kotomer umeriti, zato opazujemo spektre z že poznanimi valovnimi dolžinami. Pri meritvah moramo vedno opazovati tisti rob reže, ki je fiksen. Emisijske spektre plinov opazujemo lahko le, ko je plin ioniziran. Zato ga priklopimo na izvor napetosti in pri tem pazimo, da je preden damo vanj kapsulo s plinom, ugasnjen. Ampule na nosilcu se med meritvijo ne dotikamo. Izmerimo šže znane črte za Hg in H_2 , za katere bomo nato s fitano funkcijo vedeli kakšne so kalibracijske konstante za ostale svetlobe. Po opravljeni kalibraciji si ogledamo še emisijske spektre svedlobe iz LED diod, varčne žarnice in volframove žarnice. Za NO_2 pa pred volframovo žarnico postavimo ampulo in si zabeležimo vidne črte.

3 Meritve

3.1 Kalibracija kotomera

3.1.1 Emisijski spektri Hg

Iz teorije vemo, da plini sevajo črtaste spektre določenih valovnih dolžin. Te so določeni z energijo elektronskih prehodov v atomih plina in za Hg so značilne naslednje črte. Če zraven, zaradi zbranosti podatkov navedemo še izmerjene kote, dobimo tabelo:

Barva	$\lambda \text{ [nm]}$	Izmerjen kot [°]
Rumena	577	174°20'
Rumena	597	174°15'
Zelena	546	173°35'
Modrovijolična	436	169°25'

Tabela 1: Podatki o znanih valovnih dolžinah spektralnih črt Hg

Na žalost nismo uspeli videti tudi vijolične črte, ki bi jo našli pri 405 nm. Razlog za to je, da je oko manj občutljivo za vijolični spekter in je zato od posameznika odvisno, ali vidi ta del spektra ali ne.

Če narišemo umeritveno krivuljo za Hg spekter, da vemo kolikšne so konstante za naš kotometer in prizmo. Fit naše funkcije se glasi:

$$kot = c_1 + c_2\lambda + c_3\sqrt{\lambda}$$

Če si sedaj narišemo to funkcijo za Hg, dobimo:

Slika 2: Prikaz meritev za Hg celico

Za katero je funkcija kar enaka legendi grafa.

3.1.2 Emisijski spekter H_2

Če prav tako za ${\cal H}_2$ naredimo tabelo znanih vrednosti dobimo:

Barva	$\lambda \text{ [nm]}$	Izmerjen kot [°]
Rdeča	656	175°50'
Svetlomodra	486	171°45'
Modrovijolična	434	169°25'
Vijolična	410	//

Tabela 2: Podatki o znanih valovnih dolžinah spektralnih črt ${\cal H}_2$

Če tudi za ta del vaje narišemo graf, dobimo:

Slika 3: Prikaz meritev za ${\cal H}_2$ celico

3.1.3 Skupni spekter

Zaradi določanja konstant na funkciji:

$$kot = c_1 + c_2\lambda + c_3\sqrt{\lambda}$$

narišemo oba spektra hkrati in skozi potegnemo graf. S tem bomo določili konstante c_1, c_2, c_3 , ki so konstante naše priprave. S tem bomo kasneje lahko določali valovne dolžine naših svetil. Graf se glasi:

Slika 4: Prikaz skupnih meritev za določanje konstant

Tako vemo da je naša funkcija za določanje valovnih dolžin enaka:

$$kot = 69.5616 - 0.135 \cdot \lambda + 7.6056 \cdot \sqrt{\lambda}$$

3.2 Merjenje valovnih dolžin svetil

3.2.1 Varčna žarnica

Da bi izmerili črtasti spekter varčne žarnice, moramo najprej zapisati formulo za izračun valovne dolžine. To dobimo z obračanjem enačbe, ki smo jo določili pri prejšnjem poglavju. Dobimo, da je:

$$\lambda = \left(\frac{-7.61 \pm \sqrt{7.61^2 + 4 \cdot 0.14(69.52 - \phi)}}{-2 \cdot 0.14}\right)^2$$

kjer je kot podan v stopinjah.

Če podamo tabelo, kjer bomo računali vrednosti za vsak kot posebej, dobimo:

Barva	$\lambda \text{ [nm]}$	Izmerjen kot [°]
Vijolična	434	169°25'
Modrozelena	485	171°35'
Zelena	549.5	173°40'
Rumena	575.88	174°20'
Rumena	579.46	174°25'
Rdeča	625.4	175°20'

Tabela 3: Podatki o varčni žarnici

3.2.2 Volfram žarnica

Spet uporabimo formulo:

$$\lambda = \left(\frac{-7.61 \pm \sqrt{7.61^2 + 4 \cdot 0.14(69.52 - \phi)}}{-2 \cdot 0.14}\right)^2$$

kjer je kot podan v stopinjah.

Če podamo tabelo, kjer bomo računali vrednosti za vsak kot posebej, dobimo:

Barva	$\lambda_1 [\mathrm{nm}]$	$\lambda_2 [\mathrm{nm}]$	Izmerjen kot 1 [°]	Izmerjen kot 2 [°]
Vijolična	396.9	454	167°30'	170°20'
Modra	454.2	487.2	170°20'	171°40'
Zelena	487.22	537.7	171°40'	173°20'
Rumena	537.6	583.14	173°20'	174°30'
Oranžna	583.1	630.3	174°30'	175°25'
Rdeča	630.4	687.14	175°25'	176°10'

Tabela 4: Podatki o volfram žarnici

3.2.3 Helij

Spet uporabimo formulo:

$$\lambda = \left(\frac{-7.61 \pm \sqrt{7.61^2 + 4 \cdot 0.14(69.52 - \phi)}}{-2 \cdot 0.14}\right)^2$$

kjer je kot podan v stopinjah.

Če podamo tabelo, kjer bomo računali vrednosti za vsak kot posebej, dobimo:

Barva	λ Tabllična	$\lambda \text{ [nm]}$	Izmerjen kot [°]
Rumena	587.6	583.14	174°30'
Rdeča	667.8	664.99	175°55"
Zelena	501.6	501.10	172°10'
Zelena	492.2	491.76	171°50'
Modra	471.3	470.07	171°
Vijolična	447.1	444.77	169°55'

Tabela 5: Podatki o heliju

3.2.4 NO_2

Spet uporabimo formulo:

$$\lambda = \left(\frac{-7.61 \pm \sqrt{7.61^2 + 4 \cdot 0.14(69.52 - \phi)}}{-2 \cdot 0.14}\right)^2$$

kjer je kot podan v stopinjah.

Če podamo tabelo, kjer bomo računali vrednosti za vsak kot posebej, dobimo:

Barva	$\lambda \text{ [nm]}$	Izmerjen kot [°]
//	505.9410 nm	172.33
//	501.1060 nm	172.17
//	489.4915 nm	171.75
//	480.6418 nm	171.42
//	474.2379 nm	171.17
//	463.9702 nm	170.75
//	461.9736 nm	170.67

Tabela 6: Podatki o NO_2

3.2.5 Neon

Spet uporabimo formulo:

$$\lambda = \left(\frac{-7.61 \pm \sqrt{7.61^2 + 4 \cdot 0.14(69.52 - \phi)}}{-2 \cdot 0.14}\right)^2$$

kjer je kot podan v stopinjah.

Če podamo tabelo, kjer bomo računali vrednosti za vsak kot posebej, dobimo:

Barva	$\lambda \text{ [nm]}$	Tablična λ [nm]	Izmerjen kot [°]
Rdeča	615.9472 nm	618.3	175.17
Rdeča	635.5237 nm	640.2	175.50
Oranžna	598.6889 nm	594.3	174.83
Rumena	583.1423 nm	585.2	174.50
Zelena	537.6948 nm	540	173.33

Tabela 7: Podatki o Neon

3.2.6 LED dioda

Spet uporabimo formulo:

$$\lambda = \left(\frac{-7.61 \pm \sqrt{7.61^2 + 4 \cdot 0.14(69.52 - \phi)}}{-2 \cdot 0.14}\right)^2$$

kjer je kot podan v stopinjah.

Če podamo tabelo, kjer bomo računali vrednosti za vsak kot posebej, dobimo:

Barva	λ_1	λ_2	λ_3	ϕ_1	ϕ_2	ϕ_3
Modra	407.5526 nm	611.4444 nm	472.1451 nm	168.08	175.08	171.08
Rumena	529.2617 nm	640.8896 nm	565.5486 nm	173.08	175.58	174.08

Tabela 8: Podatki o LED diodi

4 Napaka meritev

Za to meritev sem dodal tudi poglavje napake meritve, kjer bom pokomentiral svoje rezultate. Vidimo, da so vse valovne dolžine, ki jih merimo odvisne od našega fita funkcije. Torej od

začetnih meritev Hg in H_2 . Kakor smo videli, se naš graf zelo dobro prilega meritvam, ampak še vseeno je nekaj malega napake. To lahko dobro demonstiriramo, če vzamemo za primer sevanje neonske sijalke.

4.1 Spreminjanje parametra c_1

Naš parameter c_1 bomo sprememnili za vrednost za 0.1, da vidimo, kako se zgodi sprememba. Torej bo enačba fita enaka:

$$kot = 69.7 - 0.135 \cdot \lambda + 7.6056 \cdot \sqrt{\lambda}$$

Barva	Tablična λ	Računana λ	Napaka λ
Rdeča	618.30 nm	615.95 nm	608.54 nm
Rdeča	640.20 nm	635.52 nm	627.06 nm
Oranžna	594.30 nm	598.69 nm	592.05 nm
Rumena	585.20 nm	583.14 nm	577.10 nm
Zelena	540.00 nm	537.69 nm	532.98 nm

Tabela 9: Podatki o spremembi parametra c_1 za 0.1

4.2 Spreminjanje parametra c_2

Naš parameter c_2 bomo sprememnili za vrednost za 0.001, da vidimo, kako se zgodi sprememba. Torej bo enačba fita enaka:

$$kot = 69.5616 - 0.136 \cdot \lambda + 7.6056 \cdot \sqrt{\lambda}$$

Barva	Tablična λ	λ	Napaka λ
Rdeča	618.30 nm	615.95 nm	657.83 nm
Rdeča	640.20 nm	635.52 nm	689.50 nm
Oranžna	594.30 nm	598.69 nm	633.44 nm
Rumena	585.20 nm	583.14 nm	613.03 nm
Zelena	540.00 nm	537.69 nm	558.00 nm

Tabela 10: Podatki o spremembi parametra c_2 za 0.01

4.3 Spreminjanje parametra c_3

Če sedaj spremenimo še parameter c_3 , da vidimo, kolikšno napako ustvari, spremenili pa ga bomo za vrednost 0.01. Torej bo enačba fita enaka:

$$kot = 69.5616 - 0.135 \cdot \lambda + 7.6156 \cdot \sqrt{\lambda}$$

Barva	Tablična λ	λ	Napaka λ
Rdeča	618.30 nm	615.95 nm	603.05 nm
Rdeča	640.20 nm	635.52 nm	620.64 nm
Oranžna	594.30 nm	598.69 nm	587.24 nm
Rumena	585.20 nm	583.14 nm	572.82 nm
Zelena	540.00 nm	537.69 nm	529.92 nm

Tabela 11: Podatki o spremembi parametra c_3 za 0.01

4.4 Skupna sprememba

Če vse parametre spremenimo za dane vrednosti torej, da spremenimo c_1 za 0.1, c_2 za 0.01 in c_3 za 0.01, dobimo enačbo:

$$kot = 69.7 - 0.136 \cdot \lambda + 7.6156 \cdot \sqrt{\lambda}$$

In rezultati so zanimivi:

Barva	Tablična λ	λ	Napaka λ
//	618.30 nm	615.95 nm	629.79 nm
//	640.20 nm	635.52 nm	653.00 nm
//	594.30 nm	598.69 nm	610.10 nm
//	585.20 nm	583.14 nm	592.80 nm
//	540.00 nm	537.69 nm	543.73 nm

Tabela 12: Podatki o spremembi vseh treh paramterov

Vidimo, da se napake zelo dobro med seboj odštejejo, ampak so vseeno kar velike in sicer:

Barva	Tablična λ	λ	Napaka λ	$\Delta \lambda$
//	618.30 nm	615.95 nm	629.79 nm	13.84 nm
//	640.20 nm	635.52 nm	653.00 nm	17.48 nm
//	594.30 nm	598.69 nm	610.10 nm	11.41 nm
//	585.20 nm	583.14 nm	592.80 nm	9.66 nm
//	540.00 nm	537.69 nm	543.73 nm	6.03 nm

Tabela 13: Podatki o spremembi vseh treh paramterov

Glavni razlog se verjetno skriva v tem, da smo spremenili parameter c_2 za -0.01 in tako so se med seboj napake odštele.