SPIN GEOMETRY CONFERENCE COURSE

JEFFREY JIANG

WEEK 1

Exercise 1.1. Prove $SL_n(\mathbb{R})$ and O(n) are manifolds

Exercise 1.2. What is the "shape" of $SL_2(\mathbb{R})$?

Exercise 1.3. Prove that

$$O(2) = \left\{ \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta \cos \theta \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} \cos \theta \sin \theta \\ \sin \theta - \cos \theta \end{pmatrix} \right\}$$

The first set consists of rotations and the second set consists of reflections. Which rotations commute? Which reflections commute? Do reflections commute with reflections?

Exercise 1.4. Investigate O(3). What is it's "shape?"

WEEK 2

Exercise 2.1. What is the derivative of det?

Exercise 2.2. Explore the exponetial map $\mathfrak{sl}_2(\mathbb{R}) \to SL_2(\mathbb{R})$

Exercise 2.3. Prove that every element of O(n) can be written as the composition of at most n reflections about hyperplanes in \mathbb{R}^n .

Proof. We do this by induction. For n=1, this is obvious, since $O(1)\cong \pm 1$. The assuming that this holds for dimension n-1, Let $A\in O(n)$, and let $v\in \mathbb{R}$. We want to construct a hyperplane reflection R such that RAv=v, which is obtained by taking R to be the hyperplane reflection about the bisector of v and Av. More explicitly, take R to be the hyperplane reflection about the vector

$$\frac{Av - v}{\|Av - v\|}$$

which is given by the equation

$$Rw = w - 2 \frac{\langle Av - v, v \rangle}{\langle Av - v, Av - v \rangle} (Av - v)$$

Computing its action on v, we get

$$Rv = v - 2 \frac{\langle Av - v, v \rangle}{\langle Av - v, Av - v \rangle} (Av - v)$$

$$= v - \frac{2\langle Av, v \rangle - 2\langle v, v \rangle}{2\langle v, v \rangle - 2\langle Av, v \rangle} (Av - v)$$

$$= v + Av - v$$

$$= Av$$

Then since R is its own inverse (being a reflection), we have that RAv = v, so RAv fixes v and its orthogonal complement.

TODO insert motivation of A_n^{\pm}

Definition 2.4. Define A_n^{\pm} to be the unital algebra generated by \mathbb{R}^n such that $\xi^2 = \pm 1$. and $\xi \eta = \eta \xi$. Determine the sign of $\eta \xi$. Explore these algebras. Find $A \pm_1, A_2^{\pm} \dots$ What are they isomorphic to? Can you identify O(n) as a subgroup?

1

2 JEFFREY JIANG

WEEK 3

Exercise 3.1. Classify the algebras A_n^+ (we messed these up week 2).

Exercise 3.2. Prove that

$$\{e_{i_1}e_{i_2}\dots e_{i+k} \mid 1 \le i_1 < i_2 < \dots < i_k \le n\}$$

is a basis for A_n^{\pm} .

Exercise 3.3. Modify the isomorphisms found for A_n^- by choosing $\mathbb{Z}/2\mathbb{Z}$ gradings for the domains and codomains such that the isomorphisms are now isomorphisms as superalgebras.

Exercise 3.4. Construct a tensor product for super vector spaces and superalgebras.

Exercise 3.5. Explore the "shape" of the group

$$G = \langle v \mid ||v|| = 1 \rangle \subset (A_n^-)^{\times}$$

and the nature of the surjection $G \rightarrow O(n)$. What is the kernel of this map?

Exercise 4.1. Define $\varphi: A_n^\pm \to A_n^\pm$ by $\varphi(v) = -v$ and $\varphi(vw) = (wv)$, and extending linearly to sums. Does $\varphi(x) \cdot x$ define a norm on A_n^\pm ?

Exercise 4.2. Let (A, |||) be a normed \mathbb{R} -algebra such that $||ab|| \le ||a|| ||b||$ for all $a, b \in A$. Show that the multiplicative units form an open subset.

Exercise 4.3. An algebra A is called a *matrix algebra* if there exists an isomorphism $A \cong \operatorname{End}(V)$ for some vector space V. Which A_n^{\pm} are matrix algebras?

Exercise 4.4. Given a unital associative algebra *A* and *A*-modules *M* and *N*, how would you form the direct sun. Can you tensor them?

Exercise 4.5. Let V be a vector space and $b: V \times V \to V$ a bilinear form. We want to construct the Clifford algebra Cliff(V, b) as the "best" associative unital \mathbb{R} -algebra generated by V subject to the relation $v_1v_2 + v_2v_1 = 2b(v_1, b_2)1_A$, where 1_A denotes the multiplicative unit in A.