Sensitivity Analysis for Balancing Weights

dansoriano

2020 - 09 - 14

Amplification

Amplification of bias = imbalance in $U \times \beta_u$

β_u vs. imbalance for Λ = 1. 03

• bound:

- if estimated ATT is positive, bound = $\left(\sup_{h\in\mathcal{H}(\Lambda)}\hat{\mu}_0^{(h)}\right) \hat{\mu}_0$
- if estimated ATT is negative, bound = $\left(\inf_{h\in\mathcal{H}(\Lambda)}\hat{\mu}_0^{(h)}\right) \hat{\mu}_0$
- We consider $U \in [0,1],$ so we transform each observed covariate as follows:
 - Make min = 0: subtract min value of covariate

- Make max = 1: divide by max of shifted covariate
- $\max \beta$ obs: \max absolute value of coefficients of transformed covariates from OLS of Y on transformed covariates for control units.
- max imbal obs: max absolute value of difference in means of transformed covariates before weighting between treatment and control.
- top β obs: coefficient and imbalance for specified number of observed covariates sorted by descending coefficient value

covar	coeff	imbal
re75	11095.990	0.480
re74	10208.155	0.340
age	3723.355	0.190
education	3162.144	0.093
unemployed_75	1666.033	0.491
black	804.809	0.770
nodegree	373.719	0.412
hispanic	232.325	0.013
unemployed_74	204.942	0.588
married	159.745	0.523

Amplification of bias = imbalance in $U \times \rho_{Y(0),U|X} \times \operatorname{sd}(Y(0)^{\perp X})$

$\rho_{Y(0)U|X}$ vs. imbalance for Λ = 1. 03

• bound:

– if estimated ATT is positive, bound =
$$\frac{\left(\sup_{h\in\mathcal{H}(\Lambda)}\hat{\mu}_0^{(h)}\right)-\hat{\mu}_0}{\operatorname{sd}(Y(0)^{\perp X})}$$

– if estimated ATT is negative, bound =
$$\frac{\left(\inf_{h\in\mathcal{H}(\Lambda)}\hat{\mu}_0^{(h)}\right) - \hat{\mu}_0}{\operatorname{sd}(Y(0)^{\perp X})}$$

- We consider $U \perp X$ with sd(U) = 1, so we transform each observed covariate as follows:
 - Residualize: residualized covarites = residuals from OLS of a covariate on the other covariates
 - Standardize: divide the residualized covariate by the standard deviation of the residualize covariate
- max $\rho_{Y(0)U|X}$ obs: max absolute value of the partial correlations of Y(0) and a covariate given the other covariates for control units.
- max imbal obs: max absolute value of difference in means of transformed covariates before weighting between treatment and control.
- standardized $Y(0)^{\perp X}$: point for strongest possible confounder with partial correlation = 1.
- top $\rho_{Y(0)U|X}$ obs: partial correlation and imbalance for specified number of observed covariates sorted by descending partial correlation

covar	pcorr	imbal
re75	0.260	0.046
re74	0.178	0.290
age	0.125	0.328
unemployed_75	0.054	0.493
education	0.048	0.055
black	0.030	2.548
nodegree	0.017	0.368
married	0.009	0.521
hispanic	0.008	0.142
unemployed_74	0.007	0.892