

ریزپردازنده

دانشکده کامپیوتر دانشگاه یزد نیمسال دوم تحصیلی ۹۷–۹۶ ارائهدهنده: پریسا استواری

مجموعه دستورات 8051

انواع دستورات

- دستورات محاسباتی (Arithmetic)
 - دستورات منطقی (Logic)
- دستورات انتقال اطلاعات (Data Transfer)
- دستورات بر روی بیت یا متغیرهای بولین (Boolean Variables)
 - دستورات کنترل یا انشعاب برنامه (Program Branching)

• برای حافظه داده داخلی (RAM)

• نکته :

• ثباتهای کاربرد خاص (SFR)، با آدرس مستقیم یا نام سمبولیک آنها قابل دسترسیاند.

MOV A, direct	MOV A, 55H
MOV A, @Ri	MOV A, @R0
MOV A, Rn	MOV A, R7
MOV A, #data	MOV A, #35H
MOV direct, A	MOV 50H, A
MOV @Ri, A	MOV @R1, A
MOV Rn, A	MOV R4, A
MOV Rn, direct	MOV R2, 07H
MOV Rn, #data	MOV R0, #57H
MOV @Ri, direct	MOV @R0, P2
MOV @Ri, #data	MOV @R1, #0
MOV direct, Rn	MOV 30H, R5
MOV direct, @Ri	MOV 45H, @R0
MOV direct, #data	MOV P1, #FFH
MOV direct, direct	MOV P2. P1

دستور	ترجمه دستور	تعداد بایت	تعداد سیکل ماشین
MOV A, direct	11100101 aaaaaaaa	2	1
MOV A, @Ri	1110011i	1	1
MOV A, Rn	11101rrr	1	1
MOV A, #data	01110100 ddddddd	2	1
MOV direct, A	11110101 aaaaaaaa	2	1
MOV @Ri, A	1111011i	1	1
MOV Rn, A	11111rrr	1	1
MOV Rn, direct	10101rrr aaaaaaaa	2	2
MOV Rn, #data	01111rrr dddddddd	2	1
MOV @Ri, direct	1010011i aaaaaaaa	2	2
MOV @Ri, #data	0111011i ddddddd	2	1
MOV direct, Rn	10001rrr aaaaaaaa	2	2
MOV direct, @Ri	1000011i aaaaaaaa	2	2
MOV direct, #data	01110101 aaaaaaaa dddddddd	3	2
MOV direct, direct	10000101 aaaaaaaa aaaaaaaa	3	3

دستور ۱۶ بیتی MOV

MOV DPTR, #data16

- برای مقدار اولیه دادن به اشاره گر داده.
- ثبات اشاره گر داده برای دسترسی به حافظه داده خارجی (RAM) یا جداول حافظه (ROM) استفاده می شود.
 - دستور ۳ بایتی است و در ۲ سیکل ماشین اجرا میشود.
 - ترجمه دستور:
 - 10010000 dddddddd ddddddd
 - مثال :
 - MOV DPTR, #150AH •

- Move External •
- میکروکنترلر 8051 دارای 128 بایت حافظه داده (RAM) است.
- مى توان حافظهى خارجى داده تا حداكثر 64K بايت به 8051 متصل كرد.
 - این حافظه تنها با دستور MOVX قابل دسترسی است.
 - حتما یکی از عمولندها A است.
 - MOVX dest_byte, source_byte •
- دستور MOVX یک بایت داده را بین حافظه خارجی داده و A انتقال می دهد.

- از این دستور به دو صورت استفاده میشود.
 - با استفاده از آدرس غیرمستقیم ۸ بیتی
- از R0 و R1 برای مشخص کردن آدرس ۸ بیتی استفاده میشود.
- برای آدرسهای یک حافظه RAM کوچک (نهایتا 256 بایت) از طریق پورت PO
 - با استفاده از آدرس غیرمستقیم ۱۶ بیتی
 - از DPTR برای مشخص کردن آدرس ۱۶ بیتی استفاده میشود.
 - برای اتصال به حافظههای بزرگ خارجی نهایتا تا 64K بایت.
- ۸ بیت پر ارزش تر آدرس توسط ثبات DPH در پورت P2 قرار می گیرد و ۸ بیت کم ارزش تر آدرس توسط ثبات DPL در پورت P0 قرار می گیرد.
- البته در پورت P0 آدرس و داده با یکدیگر مالتی پلکس میشوند. یعنی ابتدا آدرس و سپس داده از طریق همان پورت منتقل میشود.

MOVX A, @Ri MOVX A, @R1

MOVX @RO, A

MOVX A, @DPTR

MOVX @Ri, A

MOVX @DPTR, A

اگر مقدار R1 برابر با 60H باشد، مقدار خانه 60H حافظه RAM خارجی به A منتقل می شود.

اگر مقدار RO برابر با FFH باشد، محتوای A در آخرین خانه حافظه RAM خارجی ذخیره می شود.

اگر مقدار DPTR برابر با 1200H باشد، مقدار خانه 1200H حافظه RAM خارجی در A قرار می گیرد.

اگر مقدار DPTR برابر با FFFFH باشد، محتوای A در آخرین خانه حافظه RAM خارجی قرار می گیرد.

	دستور	ترجمه دستور	تعداد بایت	تعداد سیکل ماشین
MOVX A, @Ri		1110001i	1	2
MOVX @Ri, A		1111001i	1	2
MOVX A, @DPTR		11100000	1	2
MOVX @DPTR, A		11110000	1	2

- Move Code •
- برای خواندن از حافظه کد است.
- دقت شود در حافظه کد (ROM) تنها می توان اطلاعات را خواند و نمی توان نوشت.
 - این دستور برای جستجو در جداول استفاده میشود.
 - از این دستور به دو صورت استفاده میشود.
 - دستور MOVC با اشاره گر داده (DPTR)

MOVC A, @A+DPTR

• دستور MOVC با کنتور برنامه (PC)

MOVC A, @A+PC

MOVC A, @A+DPTR

• مثال : برنامهای بنویسید که یک رشته string که داخل حافظه ROM در آدرس 100H قرار دارد را به پورت P1 بفرستد.

```
MOV DPTR, #100H

LOOP1: CLR A

MOVC A, @A+DPTR

MOV P1, A

JZ EXIT Jump If Zero

INC DPTR

SJMP LOOP1

EXIT:

ORG 100H

DB "TEHRAN" 0 Define Byte
```

MOVC A, @A+PC

- در این دستور PC به عنوان ثبات پایه استفاده می شود و A به عنوان آفست.
- آدرس ابتدای جدول با PC مشخص می شود و A شماره عنصر جدول است.
- برای دسترسی به عناصر جدول معمولا از subroutine استفاده میشود. و سابروتین با دستور CALL فراخوانی میشود.

MOV A, #ENTRY_NUMBER CALL LOOK UP

.....

LOOK UP: INCA

MOVC A, @A+PC←

یک بایت دستور **RET**

TABLE: DB data0, data1, data2,....

اگر بین دستور MOVC و ابتدای جدول، چندین بایت فاصله باشد، باید قبل از دستور MOVC تعداد بایتها به A اضافه گردد.

هنگامی که این دستور اجرا می شود، PC آدرس دستور RET را دارد و چون به A یک واحد افزوده شده می توان به خانه های جدول دسترسی پیدا کرد.

دستور	ترجمه دستور	تعداد بایت	تعداد سیکل ماشین
MOVC A, @A+DPTR	10010011	1	2
MOVC A, @A+PC	10000011	1	2

مثال

P2 برنامه ای بنویسید که مقدار x را از پورت P1 بگیرد و مقدار x^2 را در پورت بنویسد.

- الف) با استفاده از سابروتین و جدول.
- ب) با استفاده از سابروتین بدون جدول.

الف

MOV A, #0FFH

MOV P1, A

BACK: MOV A, P1

CALL SQUARE

MOV P2, A

SJMP BACK

ORG 300H

SQUARE: INC A

MOVC A, @A+PC

RET

TABLE: DB 0,1,4,9,16,25,36,49,64,81

MOV A, #0FFH

MOV P1, A

BACK: MOV A, P1

CALL SQUARE

MOV P2, A

SJMP BACK

ORG 300H

SQUARE: PUSH 0F0/A

MOV 0FOH, A

MUL AB

POP OFOH

RET

بهتر است موقع استفاده از سابروتین، در ابتدای سابروتین مقدار ثباتها را در پشته ذخیره و در انتهای سابروتین محتوای آنها بازیابی شود تا محتوای ثبات ها در حین اجرای سابروتین تغییر نکند.

دستور XCH

XCH A, source

- Exchange •
- این دستور محتوای A را با محتوای source جابجا می کند.

دستور	مثال	ترجمه دستور	تعداد بایت	تعداد سیکل ماشین
XCH A, Rn	XCH A, R4	11001rrr	1	1
XCH A, direct	XCH A, 40H	11000101 aaaaaaaa	2	1
XCH A, @Ri	XCH A, @R1	1100011i	1	1

دستور XCHD

XCHD A, @Ri

- Exchange •
- این دستور ۴ بیت کم ارزشتر خانه حافظهای که Ri به آن اشاره میکند را با ۴ بیت کم ارزشتر A جابجا میکند.

دستور	مثال	ترجمه دستور	تعداد بایت	تعداد سیکل ماشین
XCHD A, @Ri	XCH A, @RO	1101011i	1	1

• مثال : محتوای ثباتهای A و B بعد از اجرای این دستورات چیست؟

MOV 0F0H, #12H

MOV RO, #0F0H

MOV A, #34H

XCH A, 0F0H A = 14H B = 32H

XCHD A, @RO

دستور PUSH و POP

PUSH direct •

- در این دستور ابتدا اشاره گر پشته (SP) یک واحد افزایش مییابد. سپس محتوای خانهی حافظهای که آدرس آن را SP مشخص کرده است ریخته میشود.
 - این دستور بر بیتهای پرچم اثری ندارد.

POP direct •

- در این دستور ابتدا محتوای خانهای که آدرس آن را SP مشخص کرده است خوانده شده و در خانه-ی حافظهای که آدرس آن در direct است ریخته می شود. سپس از اشاره گر پشته یک واحد کم می شود.
 - این دستور بر بیتهای پرچم اثری ندارد.

دستور	ترجمه دستور	تعداد بایت	تعداد سیکل ماشین
PUSH direct	11000000 aaaaaaaa	2	2
POP direct	11010000 aaaaaaaa	2	2

مرجع سريع دستورات انتقال اطلاعات

MOV	A, source
MOV	A, #data
MOV	dest, A
MOV	dest, source
MOV	dest, #data
MOV	DPTR, #data16
MOVC	A, @A+DPTR
MOVC	A, @A+PC

MOVX	A, @Ri
MOVX	A, @DPTR
MOVX	@Ri, A
MOVX	@DPTR, A
PUSH	direct
POP	direct
XCH	A, source
XCHD	A, @Ri

راهنما

Rn	آدرس دهی ثبات R0 تا R7
direct	آدرس ۸ بیتی حافظه داده (RAM) داخلی (ROH-FFH)
@Ri	آدرس دهی غیر مستقیم با استفاده از ثباتهای R0 یا R1
source	بایت منبع که هر یک از ثباتهای Rn، آدرس مستقیم (direct)، یا آدرس غیرمستقیم Ri@ میتواند باشد.
dest	بایت مقصد که هر یک از ثباتهای Rn، آدرس مستقیم (direct)، یا آدرس غیرمستقیم Ri@ میتواند باشد.
#data	عدد ۸ بیتی در دستور
#data16	عدد ۱۶ بیتی در دستور
bit	آدرس ۸ بیتی یک بیت اطلاعات
rel	آدرس نسبی یا آفست ۸ بیتی علامتدار
addr11	آدرس ۱۱ بیتی برای صفحه 2k بایتی حافظه
addr16	