Intermediary Constraints and the Shape of the Yield Curve

Your Name

August 15, 2025

Executive summary

- In a frictionless rational-expectations world, the curve slope equals the market's path of short rates. In practice, **intermediary frictions** distort that mapping. The frictions are proxied through the following channels:
- Foreign channel (CIP basis). In levels, GBPUSD 3M basis is the strongest of the three bases; the three are largely redundant. In differences, basis does not move daily $\Delta 10Y$ premia: ΔGBP basis ≈ -0.044 (p = 0.84), ΔEUR basis $\approx +0.158$ (p = 0.34).
- Domestic channel (funding). An ECM with GCF_survey delivers a large long-run loading on the 10Y premium of ~ 15.75 bp/1 bp, with slow mean reversion: half-life ≈38.4 trading days. An alternative spec gives 14.76 bp/1 bp, half-life ≈44.4 trading days.
- Calendar frictions. End-of-month (eom) effects are more robust and frequently significant; quarter-end (eoq) is mixed and often subsumed once eom is included.

1 Motivation

What determines the shape of the term structure? Rational expectations says: the slope reflects expected short rates—if the market expects short rates to fall for two years, the curve slopes down to year two. That holds only in a frictionless world. In reality, balance-sheet and funding constraints for intermediaries are the norm; almost every trade passes through them. If intermediaries are unwilling or unable to warehouse long duration—say, due to liquidity or balance-sheet pressure—prices move away from frictionless values. Supply shocks can become localized and persistent (a preferred-habitat effect) rather than instantly arbitraged across maturities.

This study asks whether observable proxies for intermediary constraints load on U.S. Treasury term premia; if so, through which channel (foreign vs. domestic) and horizon (short-run flows vs. long-run levels).

2 Data, variables, and controls

Daily data. Dependent: 10Y term premium / ACM-style measure (ACMY10 in the notebook). Foreign constraints: GBPUSD_3M, EURUSD_3M, JPYUSD_3M cross-currency bases (CIP deviations). Domestic constraints: IORB{SOFR and GCF_survey. Controls in all regressions: MOVE (rate vol), curve slopes (10Y-2Y; 2Y-1M), and eom/eoq dummies. Stationarity is checked via ADF; non-stationary series are differenced. Inference uses HAC (Newey-West).

3 Empirical strategy

We begin with static level regressions to gauge unconditional linkages and collinearity across the three bases. We then run (i) difference regressions for flow effects and (ii) a single-X error-correction model (ECM) for the domestic channel to separate long-run level effects from short-run flows:

$$\Delta Y_t = \alpha \left(Y_{t-1} - \theta X_{t-1} \right) + \sum_{i=0}^p \beta_i \Delta X_{t-i} + \mathbf{c}' \mathbf{Z}_t + \varepsilon_t,$$

with $X = GCF_survey$ and \mathbf{Z}_t controls. Half-life (daily frequency) is $HL = \ln(0.5)/\ln(1+\alpha)$.

4 Results

Foreign channel (CIP basis)

Levels. GBPUSD_3M carries the strongest signal among the three bases across level specs; the three bases are collinear, so one can either use only GBP or reduce dimension with PCA. (Static level fits show high R^2 but serial correlation—addressed below.)

Differences. Basis changes do not explain daily changes in the 10Y premium once controls are in:

$$\Delta BPBS_3MO: -0.044 \ (p=0.84), \qquad \Delta EUBS_3MO: +0.158 \ (p=0.34).$$

Interpretation: persistent levels of foreign funding stress co-move with the level of term premia; month/day-to-day flows do not move ΔY .

Domestic channel (funding spreads)

ECM with GCF_survey. The error-correction coefficient is negative (mean reversion). The implied **long-run effect** of domestic funding stress on the 10Y term premium is about

$$\theta \approx 15.75 \, \mathrm{bp}/1 \, \mathrm{bp}$$
, half-life $\approx 38.4 \, \mathrm{trading \ days}$.

An alternative spec yields $14.76 \,\mathrm{bp/1}$ bp with half-life ≈ 44.4 trading days; a slower case ($\alpha \approx -0.0072$) implies 96.0 trading days. Short-run sums of $\Delta \mathrm{GCF}$ lags are small and not statistically meaningful—consistent with a *level* channel dominating.

IORB-SOFR. Weaker and less robust than GCF_survey; GCF_survey dominates the domestic proxy set.

Controls & calendar effects

MOVE and slope controls absorb broad risk/curve effects (significance varies by specification; treated as controls, not targets). **End-of-month (eom)** effects are reliably significant across many specifications; **quarter-end (eoq)** is mixed and typically loses significance once **eom** is included. HAC errors are used; differenced and ECM forms mitigate serial correlation seen in level regressions.

5 Trading strategies (research prototypes)

These rules reflect the findings above; they are specified at **daily** frequency to match the estimation. Research only; not investment advice. Use realistic costs/slippage and tight risk controls.

5.1 ECM mispricing in UST 10Y

Signal. Error-correction term $ec_{t-1} = Y_{t-1} - \theta X_{t-1}$, with $\theta \approx 15.75$ bp/bp. From the ECM, $\Delta Y_t = \alpha \, ec_{t-1} + \cdots$ with $\alpha < 0$ (half-life ~ 38.4 trading days).

Rule. Daily position $s_t = -ec_{t-1}/\widehat{\sigma}(ec)$. Long duration if ec > 0 (yield too high vs. GCF), short if ec < 0.

Sizing. Target DV01 per \$NAV scaled by MOVE: $DV01_t = \kappa |s_t| / \max(MOVE_t, floor)$. Cap DV01 (e.g., 5–10 bp per 1% NAV). Instruments: TY futures / 10Y cash.

Exit. Close when $|ec_t|$ halves (roughly one half-life) or on a 2–3 σ stop.

5.2 End-of-month calendar (balance-sheet/flow seasonality)

Rule. Go long 10Y duration in the last k business days of each month and exit over the first m business days of the next month. Start with k = 3-5, m = 2-3. Suppress trades that coincide with major events (FOMC, CPI, NFP) to reduce event risk.

Sizing. Small fixed DV01 (e.g., 1–2 bp per 1% NAV) or a MOVE-scaled DV01 as in the ECM strategy.

Rationale. eom dummies are more robust than eoq in the regressions; month-end balance-sheet and index/flow effects (extensions, rebalancing) are consistent with this pattern.

5.3 Cross-market RV tilt by GBP basis (levels)

Rule. Compute an expanding-window z-score of GBPUSD_3M basis (levels). When in top quartile, overweight USD duration vs. FX-hedged Gilts/Bunds by ω (e.g., $\pm 20\%$ of duration budget); bottom quartile underweight; otherwise neutral. Keep total DV01 constant; rebalance weekly to limit turnover.

Rationale. Basis *levels* co-move with U.S. term premia; changes do not—so use a slow allocation tilt, not a high-frequency predictor.

5.4 Carry/roll harvest gated by MOVE

Rule. Run standard roll-down/carry ladders (e.g., 5s/10s/30s DV01-neutral) only when MOVE is below its rolling median; otherwise cut exposures by 50–100%. Combine direction with the ECM signal.

Rationale. MOVE is a robust state variable across your specs; gating improves carry robustness.

Risk & backtest hygiene

- Use expanding-window z-scores; timestamp inputs properly (today's positions use prior-day X_{t-1}).
- Futures rolls, transaction costs (TY: $\sim 0.2-0.5$ bp yield per round-trip baseline), and event filters.
- Daily VaR/ES on P&L; DV01 caps; stress sets (2013 taper, 2020 COVID, 2022 hikes).
- Re-estimate θ , α at a regular cadence; down-weight ECM if $|\alpha|$ decays materially.

Strategy summary (at a glance)

Strategy	Signal	Horizon	Core risk control
ECM mispricing	$-ec_{t-1}$ with $\theta \approx 15.75$ bp/bp	weeks-months	DV01 scaled by MOVE
End-of-month calendar	last k biz days, exit first m	days-weeks	small DV01, event filters
Cross-mkt RV tilt	GBPUSD_3M basis (level z-score)	months-quarters	DV01-neutral tilt
Carry/roll gated	$\operatorname{roll-down}$ ladder, gated by MOVE	weeks-months	MOVE thresholding

6 Conclusions

- 1. Foreign frictions load in levels, not flows. Strong co-movement in levels (GBP basis strongest), no predictive power in Δ basis for daily $\Delta 10Y$ premia.
- 2. Domestic frictions load in the long run. GCF_survey shows a large long-run association ($\sim 15.75 \text{ bp}/1 \text{ bp}$) with slow, but tradable, mean reversion (38.4 trading days).
- 3. Calendar frictions persist. Quarter-end effects are economically and statistically relevant.

Reproducibility note

All figures/tables originate from the companion notebook; regression summaries and printed ECM diagnostics were exported to plain text for auditability. Half-lives are reported in **trading days** (daily frequency).