MATH H113: Honors Introduction to Abstract Algebra

2016-01-27

- $\mathbb{Z}/n\mathbb{Z}$
- Groups

$\mathbb{Z}/n\mathbb{Z}$

Let n be a fixed positive integer.

Define a relation " $\equiv \pmod{n}$ " on \mathbb{Z} by $a \equiv b \pmod{n}$ if $n \mid (b-a)$.

So $a \equiv b \pmod{n}$ iff qn = b - a for some $q \in \mathbb{Z}$.

b = qn + a for some $q \in \mathbb{Z}$

This relation is:

i. reflexive (take q=0) ii. symmetric (check it yourself, or see book) iii. transitive:

 $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$

 $\implies b = qn + a \text{ and } c = rn + b \text{ for some } q, r \in \mathbb{Z}$

 $\implies c = (q+r)n + a \text{ for some } q, r \in \mathbb{Z}$

 $\implies a \equiv c \pmod{n}$.

Therefore " $\equiv \pmod{n}$ " is an equivalence relation. Define $\mathbb{Z}/n\mathbb{Z}$ to be the set of equivalence classes for " $\equiv \pmod{n}$ ".

By the division algorithm, for all $b \in \mathbb{Z}$ there are $q, r \in \mathbb{Z}$ such that b = qn + r and $0 \le r < n$, $b \equiv 0$ one of $0, 1, 2, \ldots, n-1 \pmod{n}$. Also all of these are different if $0 \le i, j < n$ and $i \ne j$ then $i \ne j \pmod{n}$ because j = qn + i would contradict uniqueness in the division algorithm, since also $j = 0 \times n + j$.

Example:

 $\mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}$ where $\bar{0} = \text{set of event integers and } \bar{1} = \text{set of odd integers.}$ $\mathbb{Z}/10\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \dots, \bar{9}\}$ $\bar{3} = \{\text{positive integers whose last digit is } 3\} \cup \{\text{negative integers } n \text{ for which } -n \text{ has last digit } 7\}.$

Definition:

We can define addition, multiplication and unary minus on $\mathbb{Z}/n\mathbb{Z}$ by $\bar{a}+\bar{b}=a+b, \bar{a}\times \bar{b}=a\bar{b}$, and $-\bar{a}=-\bar{a}$, respectively. These are well defined. For example, if $\bar{a}_1=\bar{a}_2$ and $\bar{b}_1=\bar{b}_2$, then $a_1\equiv a_2\pmod{n}$ and $b_1\equiv b_2\pmod{n}$ so $a_2=qn+a_1$ and $b_2=rn+b_1$ for wome $q,r\in\mathbb{Z}$. $\therefore a_2b_2=(qrn+a_1r+b_1q)n+a_1b_1\implies a_2b_2=a_1b_1$.

One other thing (useful on homeworks):

if $a \equiv b \pmod{n}$ then $\gcd(a,n) = \gcd(b,n)$ because b = qn + a for some $q \in \mathbb{Z}$, and we showned that $\gcd(qn + a, n) = \gcd(a, n)$

Definition:

 $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} : \text{there exists a } \bar{c} \in \mathbb{Z}/n\mathbb{Z} \text{ such that } \bar{a}\bar{c} = \bar{1}\}.$

Example:

 $(\mathbb{Z}/6\mathbb{Z})^{\times} = \{\bar{1}, \bar{5}\}(\bar{1} \times \bar{1} = \bar{1}, \bar{5} \times \bar{5} = \bar{1})$

Proposition:

 $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} : a \in \mathbb{Z} \text{ and } \gcd(a, n) = 1\}.$

Proved in your homework.

One other thing: Integers a and b are relatively prime if gcd(a, b) = 1. (This is equivalent to: a and b have no prime factor in common).

Groups

Definition:

A binary operation on a set G is a function $\star: G \times G \to G$, usually written $(a,b) \mapsto a \star b$ or (often) (a,b) = ab.

Such a binary operation is: - associative (if $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$). - commutative if $a \star b = b \star a$.

Examples:

 $+, -, \times$ are binary operations on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

 \div is not a binary operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, (can't divide by 0).

But \div is a binary operation on $\mathbb{Q}^* = \{r \in \mathbb{Z} : r \neq 0\}$, similarly for \mathbb{R}^* and \mathbb{C}^* . (need to check: if $a, b \neq 0$ then $a \div b \neq 0$ in each case). + and \times are binary operations on $\mathbb{Z}/n\mathbb{Z}$.

All of these so far are commutative and associative (except division and subtraction).

Subtraction (on \mathbb{Z}) is neither commutative nor associative.

 $a \star b = z(a+b)$ on \mathbb{Z} is commutative but not associative.

Let G be the set of function from \mathbb{R} to \mathbb{R} . Then composition of functions $(f \circ g = (x \mapsto f(g(x))))$ is associative $(f \circ g) \circ h = f \circ (g \circ h) = x \mapsto f(g(h(x)))$ but not commutative $f(x) = |x|, g(x) = \cos x, |\cos x| \neq \cos |x|$ when $x = \pi$.

Definition:

A group is an ordered pair (G, \star) , where G is a set and \star is a binary operation on G, such that

- i. ★ is associative
- ii. there is an element $e \in G$, called the *identity element*, such that $a \star e = e \star a = a$ for all $a \in G$.
- iii. for each $a \in G$, there is "an inverse element" a^{-1} that satisfies $a \star a^{-1} = a^{-1} \star a = e$.

Often we'll say "G is a group under \star " instead of " (G,\star) is a group", or just "G is a group" if \star is understood.

Note:

A group G has only one element e that satisfies condition (ii), because if e' also

satisfies (ii), then $e=e\star e'=e'$ (since both satisfy (ii)). Therefore (iii) is well defined.

Examples:

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups under addition
- \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* are groups under multiplication
- $\mathbb{Z}/n\mathbb{Z}$ is a group under addition
- $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication (since $\bar{0}$ does not have an inverse).
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are not groups under multiplication (since 0 does not have an inverse).
- $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group under multiplication

Need to check that if $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ then $\bar{a}\bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ $((\mathbb{Z}/n\mathbb{Z})^{\times})$ is closed under multiplication). This is true because there are $\bar{c}, \bar{d} \in \mathbb{Z}/n\mathbb{Z}$ such that $\bar{a}\bar{c} = \bar{b}\bar{d} = \bar{1}$. Then $(\bar{a}\bar{b})(\bar{c}\bar{d}) = a\bar{b}cd = (\bar{a}\bar{c})(\bar{b}\bar{d}) = \bar{1} \times \bar{1} = \bar{1}$ so $\bar{a}\bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(We only require $\bar{c}, \bar{d} \in \mathbb{Z}/n\mathbb{Z}$, but in fact they're in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ because $\bar{a}\bar{c} = \bar{1}$ and $\bar{d}\bar{b} = \bar{1}$.)

In fact, $\bar{1}$ satisfies condition (ii), multiplication is associative (easy to check) and for all $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, \bar{c} (as in the def.) satisfies condition (iii). for \bar{a}^{-1} . $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group under multiplication.

{bijective functions from $\mathbb R$ to $\mathbb R$ } is a group under composition, but composition is *not* commutative.

 $(x \mapsto x+1) \circ (x \mapsto 2x) \neq (x \mapsto 2x) \circ (x \mapsto x+1).$