(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年11 月22 日 (22.11.2001)

PCT

(10) 国際公開番号 WO 01/88144 A1

(51) 国際特許分類⁷: C12N 15/52, C12Q 1/19, C12P 7/62

(21) 国際出願番号:

PCT/JP01/04158

(22) 国際出願日:

4

2001年5月18日(18.05.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-148726 2000年5月19日(19.05.2000) JP 特願2000-396955

2000年12月27日 (27.12.2000) JP

特願2001-16929 2001年1月25日(25.01.2001) JP

(71) 出願人 (米国を除く全ての指定国について): 鐘淵化学 工業株式会社 (KANEKA CORPORATION) [JP/JP]; 〒 530-8288 大阪府大阪市北区中之島3丁目2番4号 Osaka (JP). (YOKOMIZO, Satoru) [JP/JP]; 〒655-0872 兵庫県神戸市垂水区塩屋町6丁目31-17 三青荘 Hyogo (JP). 福地 健 (FUKUCHI, Takeshi) [JP/JP]; 〒673-0866 兵庫県明石市朝霧町3-123 セゾン朝霧304 Hyogo (JP). 小坂田史雄 (OSAKADA, Fumio) [JP/JP]; 〒700-0063 岡山県岡山市大安寺東町17-7 Okayama (JP). 松本圭司 (MATSUMOTO, Keiji) [JP/JP]; 〒663-8023 兵庫県西宮市大森町11-33 Hyogo (JP). 高木正道 (TAKAGI, Masamichi) [JP/JP]; 〒183-0051 東京都府中市栄町1丁目31-10 Tokyo (JP). 太田明徳 (OHTA, Akinori) [JP/JP]; 〒331-0063 埼玉県さいたま市プラザ57-2 Saitama (JP).

- (74) 代理人: 安富康男、外(YASUTOMI, Yasuo et al.); 〒 532-0011 大阪府大阪市淀川区西中島5丁目4番20号 中央ビル Osaka (JP).
- (81) 指定国 (国内): CA, CN, ID, JP, KR, SG, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 横溝 聡

添付公開書類:

国際調査報告書

[続葉有]

- (54) Title: TRANSFORMANT AND PROCESS FOR PRODUCING POLYESTER BY USING THE SAME
- (54) 発明の名称: 形質転換体およびそれを用いたポリエステルの製造方法

(57) Abstract: A gene encoding copolymerized polyester synthase; a microorganism synthesizing polyester via fermentation with the use of the above gene; and a process for producing polyester by using the above microorganism. More particularly speaking, a gene acting in a host wherein a plastic-like polymer which is degradable by microorganisms in natural environment (soil, river, ocean) can be enzymatically synthesized; a transformant having an improved ability to synthesize a plastic-like polymer by fermentation which is obtained by transforming the above gene; and a process for producing copolymerized polyester by using the above transformant.

(57) 要約:

本発明は、共重合ポリエステル合成酵素をコードする遺伝子、同遺伝子を利用してポリエステルを発酵合成する微生物、及び、その微生物を用いたポリエステルの製造方法に関する。詳しくは、自然環境(土中、河川、海中)の下で、微生物の作用を受けて分解するプラスチック様高分子の酵素合成が可能な宿主内で機能する遺伝子、及び、同遺伝子を形質転換して得られるプラスチック様高分子を発酵合成する能力が改善された形質転換体、並びに、その形質転換体を利用した共重合ポリエステルの製造方法に関するものである。

VO 01/88144 A1

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

4

明細書

形質転換体およびそれを用いたポリエステルの製造方法

技術分野

4

5 本発明は、共重合ポリエステル合成酵素をコードする遺伝子、同遺伝子を利用してポリエステルを発酵合成する微生物、及び、その微生物を用いたポリエステルの製造方法に関する。詳しくは、宿主内で機能し、自然環境(土中、河川、海中)の下で、微生物の作用を受けて分解するプラスチック様高分子を酵素合成する遺伝子、及び、同遺伝子を形質転換して得られるプラスチック様高分子を発酵合成する能力が改善された形質転換体、並びに、その形質転換体を利用した共重合ポリエステルの製造方法に関するものである。

背景技術

現在までに数多くの微生物において、エネルギー貯蔵物質としてポリエステルを菌体内に蓄積することが知られている。その代表例としては3ーヒドロキシ酪酸(以下3HBと略す)のホモポリマーであるポリー3ーヒドロキシ酪酸(以下、P(3HB)と略す)であり、1925年にバシラス・メガテリウム(Bacillus megaterium)で最初に発見された。P(3HB)は熱可塑性高分子であり、自然環境中で生物的に分解されることから、環境にやさしいグリーンプラスチックとして注目されてきた。しかし、P(3HB)は結晶性が高いため、硬くて脆い性質を持っていることから実用的には応用範囲が限られる。この為、この性質の改良を目的とした研究がなされてきた。

その中で、特開昭57-150393号公報および特開昭59-220192 号公報などに3-ヒドロキシ酪酸 (3HB) と3-ヒドロキシ吉草酸 (3HV) とからなる共重合体 (以下P (3HB-co-3HV) と略す) の製造方法が開 示されている。このP (3HB-co-3HV) はP (3HB) に比べると柔軟 性に富むため、幅広い用途に応用できると考えられた。しかしながら、実際のと ころP (3HB-co-3HV) は3HVモル分率を増加させても、それに伴う 物性の変化が乏しく、特にフィルムなどに使用するのに要求される柔軟性が向上

4

しないため、シャンプーボトルや使い捨て剃刀の取っ手など硬質成型体の分野に しか利用されなかった。

近年、3HBと3-ヒドロキシヘキサン酸(以下、3HHと略す)との2成分. 共重合ポリエステル(以下P(3HB-co-3HH)と略す)およびその製造 方法について研究がなされた。たとえば、特開平5-93049号公報および特 開平7-265065号公報にそれぞれ記載されている。これらの公報のP(3 HB-co-3HH)の製造方法は、土壌より単離されたアエロモナス・キャビ エ(Aeromonas caviae)を用いてオレイン酸等の脂肪酸やオリ ーブオイル等の油脂から発酵生産するものであった。また、P(3HB-co-3HH)の性質に関する研究もなされている(Y. Doi, S. Kitam ura, H. Abe, Macromolecules 28, 4822-4 823 (1995))。この報告では炭素数が12個以上の脂肪酸を唯一の炭素 源としてアエロモナス・キャビエを培養し、3HHが11~19mo1%のP(・ 3HB-co-3HH)を発酵生産している。このP(3HB-co-3HH) は3HHモル分率の増加にしたがって、P (3HB)の硬くて脆い性質から次第 に柔軟な性質を示すようになり、P (3HB-co-3HV)を上回る柔軟性を 示すことが明らかにされた。しかしながら、本製造方法では菌体生産量4g/レー 、ポリマー含量30%でありポリマー生産性が低いことから、実用化に向け更に 高い生産性が得られる方法が探索された。

20 P (3HB-co-3HH) を生産するアエロモナス・キャビエよりPHA (ポリヒドロキシアルカン酸) 合成酵素遺伝子がクローニングされた (T. Fukui, Y. Doi, J. Bacteriol, vol. 179, No. 15, 4821-4830 (1997)、特開平10-108682)。本遺伝子をラルストニア・ユートロファ (Ralstonia eutropha) (旧アルカリゲネス・ユートロファス (Alcaligenes eutrophus))に導入した形質転換株を用いてP (3HB-co-3HH) を生産を行った結果、菌体生産性は4g/L、ポリマー含量は30%であった。更に本形質転換株を炭素源として植物油脂を用いて培養した結果、菌体含量4g/L、ポリマー含量80%が達成された (T. Fukui等 Appl. Microbiol. Bi

otecnol. 49,333 (1998))。また、大腸菌等の細菌や植物を宿主としたP(3HB-co-3HH)の製造方法も開示されている(WO 00/43525)。しかし、本製造法による生産性は記載されていない。

本ポリマーP (3 HB-co-3 HH) は3 HHモル分率を変えることで、硬質ポリマーから軟質ポリマーまで幅広い物性を持つため、テレビの筐体などのように硬さを要求されるものから糸やフィルムなどのような柔軟性を要求されるものまで、幅広い分野への応用が期待できる。しかしながら、これらの製造方法では本ポリマーの生産性が依然として低く、本ポリマーの実用化に向けた生産方法としては未だ不十分といわざるを得ない。

10 最近になって、3HBの前駆物質であるアセチルCoAを効率よく生産すると 考えられる酵母を生産菌とした生分解性ポリエステルの生産研究がLeafらに よって行われた(Microbiology, vol. 142, pp116 9-1180(1996)). 酵母の一種であるサッカロマイセス・セルビシエ (Saccharomyces cerevisiae)にラルストニア・ユー トロファのポリエステル合成酵素遺伝子を導入して形質転換体を作製し、グルコースを炭素源として培養することによってP(3HB)の蓄積(ポリマー含量0.5%)を確認している。しかし、本研究で生産されるポリマーは硬くて脆い性質を有するP(3HB)であった。

酵母は増殖が早く菌体生産性が高いことで知られている。酵母菌体は過去Single Сell Proteinとして注目され、ノルマルパラフィンを炭素源とした飼料用菌体生産が研究されたり、調味料としてその核酸成分が利用されてきた。また、ポリマーの前駆物質であるacetyl-СoAを効率よく生産すると考えられることから高いポリマー生産性が期待される。さらに、細菌と比べて菌体と培養液との分離が容易であることから、ポリマーの抽出精製工程をより簡単にすることも可能である。そこで、優れた物性を有する P(3HBーco-3HH)を酵母を用いて生産する方法が求められていた。

発明の開示

本発明は、上記現状に鑑み、酵母で機能的かつ効率よく発現できるポリエステ

ル合成に関与する遺伝子、同遺伝子から成る遺伝子発現力セットを酵母に形質転換した形質転換体、及び、得られた形質転換株を培養することにより、生分解性かつ優れた物性を有するP(3HB-co-3HH)等のポリエステルを製造する方法を提供するものである。

本発明者らは様々な検討を行った結果、下記一般式(1)に示す3ーヒドロキシアルカン酸を共重合してなるポリエステルの合成に関与する酵素遺伝子であって、酵母で実質的に遺伝子発現可能な酵素遺伝子の一種以上のそれぞれに、酵母で実質的に機能するプロモーター、ターミネーターを連結することにより遺伝子発現カセットを作製し、さらに本遺伝子発現カセットを酵母に導入して形質転換の株を作成し、本形質転換株を培養することにより、その培養物から下記一般式(1)に示す3ーヒドロキシアルカン酸を共重合してなるポリエステルを製造することに成功した。

$$\begin{array}{c|c}
R \\
HO-CH-C-C-OH \\
H_2 O
\end{array}$$
(1)

15 式中、Rは、アルキル基を表す。

すなわち本発明は、酵母に、ポリエステルの合成に関与する酵素遺伝子からなる遺伝子発現カセットが一種類以上導入されてなることを特徴とする形質転換体である。

本発明はまた、上記形質転換体を用いるポリエステルの製造方法であって、上 ② 記形質転換体を培養して得られる培養物から、ポリエステルを採取するポリエス テルの製造方法である。

ここで、「実質的」とはポリエステル合成に関与する遺伝子並びに遺伝子発現 カセットの構築に必要なプロモーター、ターミネーター等の遺伝子配列は、遺伝 子の機能並びに遺伝子発現に必要な機能を有する限り、当該遺伝子の塩基配列に 欠失、置換、挿入等の変異が生じていてもよいものとする。

さらに本発明は、遺伝暗号CTGの少なくとも1つが、TTA、TTG、CT T、CTC、又はCTAに変換されていることを特徴とするポリエステルの合成 に関与する酵素遺伝子にも関する。

以下に、本発明の詳細を説明する。

図面の簡単な説明

5 図1は、実施例2(a)においてベクターとして使用したプラスミドpSUT 5を示す模式図である。

図2は、実施例2(b)においてベクターとして使用したプラスミドpUTA1を示す模式図である。

図3は、実施例2(a)において構築したプラスミドpSUT-phaJを示io す模式図である。

図4は、実施例2(a)において構築したプラスミドpSUT-PHA1を示す模式図である。

図5は、実施例2(a)において構築したプラスミドpSUT-PHA2を示す模式図である。

15 図 6 は、実施例 2 (b) において構築したプラスミド p U A L 1 を示す模式図である。

図7は、実施例2(b)において構築したプラスミドpUAL-ORF2を示す 模式図である。

図 8 は、実施例 2 (b) において構築したプラスミド p U A L — O R F 3 を示す 20 模式図である。

図9は、実施例2(b)において構築したプラスミドpUTA-ORF23を示す模式図である。

図10は、実施例2(a)のプラスミドの構築方法を示したプラスミド構築図である。

25 図11は、実施例2(b)プラスミドの構築方法を示したプラスミド構築図である。

図12は、実施例3において製造されたポリエステルをキャピラリーガスクロマトグラフィーにより分析した結果である。

図13は、実施例3において製造されたポリエステルのNMR分析のチャート

である。

図14は、実施例3において製造されたポリエステルのIR分析のチャートである。

図15は、実施例4において製造されたポリエステルのNMR分析チャートであ 5 る。

発明を実施するための最良の形態

(1) 宿主

使用する酵母には特に制限はなく、菌株の寄託機関(例えばIFO、ATCC 等)に寄託されているアシクロコニディウム属(Aciculoconidiu m属)、アンプロシオザイマ属(Ambrosiozyma属),アルスロアス カス属(Arthroascus属),アルキシオザイマ属(Arxiozym a属), アシュビア属 (Ashbya属), バブジェビア属 (Babjevia 属)、ベンシングトニア属(Bensingtonia属)、ボトリオアスカス 属(Botryoascus属),ボトリオザイマ属(Botryozyma属),ブレッタノマイセス属(Brettanomyces属),ビュレラ属(B ullera属), ビュレロマイセス属 (Bulleromyces属), キャン ンディダ属(Candida属)、シテロマイセス属(Citeromyces クラビスポラ属 (Clavispora属), クリプトコッカス属 (C ryptococcus属),シストフィロバシディウム属(Cystofil obasidium属), デバリオマイセス属 (Debaryomyces属),デッカラ属(Dekkara属),ディポダスコプシス属(Dipodas copsis属), ディポダスカス属 (Dipodascus属), エニエラ 属(Eeniella属),エンドマイコプセラ属(Endomycopsel la属),エレマスカス属(Eremascus属),エレモセシウム属(Er emothecium属), エリスロバシディウム属(Erythrobasi dium属), フェロマイセス属 (Fellomyces属), フィロバシディ ウム属(Filobasidium属)、ガラクトマイセス属(Galacto myces属), ゲオトリクム属 (Geotrichum属), ガイラーモンデ

ラ属(Guilliermondella属),ハンセニアスポラ属(Hans eniaspora属), ハンセヌラ属 (Hansenula属), ハセガワエ ア属(Hasegawaea属)、ホルターマンニア属(Holtermann i a属), ホルモアスカス属 (Hormoascus属), ハイフォピキア属 (Hyphopichia属)、イサットヘンキア属(Issatchenkia 属)、クロエケラ属(Kloeckera属)、クロエケラスポラ属(Kloe ckeraspora属), クルイベロマイセス属 (Kluyveromyce s属),コンドア属(Kondoa属),クライシア属(Kuraishia属),クルツマノマイセス属(Kurtzmanomyces属),ロイコスポリ ディウム属(Leucosporidium属), リポマイセス属(Lipom yces属),ロデロマイセス属(Lodderomyces属),マラセジア 属(Malassezia属),メトシュニコウィア属(Metschniko wia属), ムラキア属 (Mrakia属), マイクソザイマ属 (Myxozy ma属), ナドソニア属 (Nadsonia属), ナカザワエア属 (Nakaz awaea属), ネマトスポラ属 (Nematospora属), オガタエア 属(Ogataea属),オースポリディウム属(Oosporidium属) , パチソレン属 (Pachysolen属), ファチコスポラ属 (Phachy tichospora属),ファフィア属(Phaffia属),ピキア属(P ichia属),ロドスポリディウム属(Rhodosporidium属), ロドトルラ属 (Rhodotorula属), サッカロマイセス属 (Sacch 20 aromyces属), サッカロマイコーデス属 (Saccharomycod es属), サッカロマイコプシス属 (Saccharomycopsis属) , サイトエラ属 (Saitoella属), サカグチア属 (Sakaguchi a属),サターノスポラ属(Saturnospora属),シゾブラストスポ リオン属(Schizoblastosporion属),シゾサッカロマイセ 25 ス属(Schizosaccharomyces属)、シュワニオマイセス属(Schwanniomyces属),スポリディオボラス属(Sporidio bolus属)、スポロボロマイセス属(Sporobolomyces属)、 スポロパキデミア属(Sporopachydermia属), ステファノアス

カス属(Stephanoascus属),ステリグマトマイセス属(Ster igmatomyces属), ステリグマトスポリディウム属 (Sterigm a tosporidium属), シンビオタフリナ属 (Symbiotaphr ina属),シンポディオマイセス属(Sympodiomyces属),シン ポディオマイコプシス属(Sympodiomycopsis属)、トルラスポ ラ属(Torulaspora属), トリコスポリエラ属(Trichospo riella属), トリコスポロン属 (Trichosporon属), トリゴ ノプシス属 (Trigonopsis属), ツチヤエア属 (Tsuchiyae a属), ウデニオマイセス属(Udeniomyces属), ワルトマイセス属 (Waltomyces属), ウィカーハミア属 (Wickerhamia属) 10 , ウィカーハミエラ属 (Wickerhamiella属), ウィリオプシス属 (Williopsis属), ヤマダザイマ属 (Yamadazyma属), ヤロウィア属 (Yarrowia属), ザイゴアスカス属 (Zygoascus 属)、ザイゴサッカロマイセス属(Zygosaccharomyces属)、 ザイゴウィリオプシス属(Zygowilliopsis属)又はザイゴザイマ 属(Zygozyma属などの酵母を使用することができる。

また、本発明の形質転換体において用いられる酵母として、キャンディダ・マルトーサ (Candida malosa)、ヤロウィア・リポリティカ (Yarowia lipolytica) が好ましいが、特にキャンディダ・マルトーサが好ましい。

(2) ポリエステル合成に関与する酵素遺伝子

ポリエステル合成に関与する酵素遺伝子としては特に限定されないが、細菌由来の酵素をコードする遺伝子が好ましい。具体的には、上記一般式(1)で示される3-ヒドロキシアルカン酸を共重合してなるポリエステルの合成に関与する酵素遺伝子が好ましく、下記式(2)で示される3-ヒドロキシ酪酸と下記式(3)で示される3-ヒドロキシヘキサン酸とを共重合してなる共重合ポリエステルP(3HB-co-3HH)の合成に関与する酵素遺伝子であることがより好ましい。

9

$$CH_3$$

 $HO-CH-C-C-OH$ (2)
 H_2 O

$$C_3H_7$$

HO-CH-C-C-OH (3)

上記一般式(1)で示される3ーヒドロキシアルカン酸を共重合してなるポリエステルの合成に関与する酵素遺伝子としては特に限定されず、例えば特開平10-108682号公報に記載されているポリエステル合成酵素遺伝子を用いることができる。上記ポリエステル合成酵素遺伝子としては、例えば、PHA合成酵素遺伝子があげられる。また、本ポリエステル合成酵素遺伝子と共にポリエステル合成に関与する酵素遺伝子を用いても良い。これらの酵素遺伝子としては、たとえば、β酸化経路の中間体のエノイルCoAをモノマーである(R)-3ーヒドロキシアシルCoAに変換する(R)体特異的エノイルCoAヒドラターゼ遺伝子(T. Fukui, et al FEMS Microbiology Letters, vol. 170, 69-75 (1999))や、アセチルCoAを二量化してモノマーである3ーヒドロキシブチリルCoAを合成するβケトチオラーゼ遺伝子、NADPH依存性アセトアセチルCoA還元酵素遺伝子(Peoples QP, et al J. Biol. Chem. 264 (26) 15298-15303 (1989))などが挙げられる。

上記宿主酵母の中には遺伝暗号読みとりに異常を示す場合がある。例えばキャンディダ・シリンドラセア(Candida cylindracea)(Y. Kawaguchi et al, Nature 341 164-166(120 989))やキャンディダ・マルトーサ(H. Sugiyama et al, Yeast 11 43-52(1995))では遺伝暗号CTGが、ロイシンではなくセリンに翻訳される特殊な酵母である。このような酵母では、ポリエステル合成に関与する酵素遺伝子を発現させる場合、遺伝暗号の読みとり異常が生じることから、当該酵素のアミノ酸配列の異なった酵素が生産されることがある。その結果、当該酵素の機能が十分発揮できない。

15

20

25

このような現象は、予め遺伝子内に含まれる遺伝暗号CTGをロイシンに対応する他の遺伝暗号(TTA, TTG, CTT, CTC, CTA)に改変した遺伝子を使用することによって避けることができる。

また、酵母を含む生物の遺伝暗号解析の結果、遺伝暗号の使用頻度は生物によって大きく異なることが明らかになっている。すなわち、複数ある同一アミノ酸を指定する遺伝暗号のうち使用される遺伝暗号は生物によって偏りが認められ、使用頻度の高い遺伝暗号から成る遺伝子の翻訳効率が高いことが指摘されている。例えばアエロモナス・キャビエのPHA合成酵素遺伝子や(R)体特異的エノイルCoAヒドラターゼ遺伝子のGC含量はそれぞれ67.16%、65.77%であるが、キャンディダ・マルトーサで現在までに報告されている酵素、例えばホスホグリセリン酸キナーゼでは39.55%またALK2ーAでは35.67%である。したがって、例えばポリエステル合成に関与する遺伝子をキャンディダ・マルトーサにおいて効率よく発現させるためには、前記の遺伝暗号CTGを他のロイシン対応遺伝暗号に改変することに加えて、キャンディダ・マルトーサにおいて使用頻度の高い遺伝暗号に改変した当該遺伝子を使用することが好ましい。

本ポリエステル合成に関与する酵素遺伝子は、遺伝暗号に読みとり異常を示さない酵母では、前記酵素遺伝子をそのまま利用しても良いし、アミノ酸配列を変更することなく当該酵母において使用頻度の高い遺伝暗号に改変した遺伝子を利用しても良い。また、遺伝暗号に読みとり異常を示す酵母では、前記酵素遺伝子のCTGコドンをTTA, TTG, CTT, CTCまたはCTAに改変した遺伝子を利用しても良い。さらに、アミノ酸配列を変更することなく当該酵母において使用頻度の高い遺伝暗号に改変した遺伝子を利用しても良い。例えば、キャンディダ・マルトーサを宿主とした場合、本ポリエステル合成に関与する遺伝子として配列番号3、配列番号4に示される遺伝子を利用することができる。上記遺伝子の塩基配列は、本ポリエステルの合成に関与する酵素を生産するものであれば、当該遺伝子の塩基配列に欠失、置換、挿入等の変異が生じていてもよい。

また、上記PHA合成酵素によって合成されるポリエステルは、上記一般式(1)で示される3-ヒドロキシアルカン酸を共重合してなるものであり、下記一

般式(4)に示される。より好ましい態様においては、上記式(2)で示される 3ーヒドロキシ酪酸と上記式(3)で示される3ーヒドロキシへキサン酸とを共 重合してなる共重合ポリエステルP(3HB-co-3HH)であり、下記一般 式(5)に示される。

5

10

$$H = \begin{bmatrix} CH_3 & C_3H_7 & C_2H_2 & C_2H_2$$

m、nは1以上の整数

(3) 遺伝子発現カセットの構築

酵母における遺伝子発現のためには、当該遺伝子の5′上流にプロモーター、UAS等のDNA配列の連結、当該遺伝子の3′下流にポリA付加シグナル、ターミネーター等のDNA配列の連結が必要である。これらのDNA配列は酵母で機能する配列であればどのような配列でも利用できる。プロモーターには構成的に発現を行うものや誘導的に発現を行うものがあるが、いずれのプロモーターも用いてもよい。

また、本発明の形質転換体においては、上記プロモーター、ターミネーターは 15 、ポリエステルの生産に使用する生物において機能するものであるものが好まし い。

以下、本発明の形質転換体に用いられる遺伝子発現カセット構築の例として、(a) 宿主としてヤロウィア・リポリティカを使用する場合、(b) 宿主としてキャンディダ・マルトーサを使用する場合について具体的に説明する。

20

(a) 宿主としてヤロウィア・リポリティカを使用する場合

宿主としてヤロウィア・リポリティカを使用する場合は、使用するプロモーター、ターミネーターは、ヤロウィア・リポリティカ由来であることが好ましい。より好ましくは、ヤロウィア・リポリティカALK3由来のプロモーター、ヤロウィア・リポリティカXRP2由来のターミネーターであることが好ましい。なお、上記プロモーター及び/又はターミネーターのDNA配列は、ヤロウィア・リポリティカで機能する配列であれば、1つ若しくは複個の塩基が欠失、置換及び/又は、付加されたDNA配列であってもよい。

構築に用いられるベクターは、大腸菌において自立増殖するプラスミドであればどのようなベクターでもよく、更に酵母において自立増殖可能な領域を合わせ持っていてもよい。酵母において自立増殖できるベクターでは、菌体内に保持される。また、遺伝子発現カセットを染色体上に組み込むこともできる。ヤロウィア・リポリティカにおいては、自立増殖可能なpSAT4やpSUT5を用いることができる(1997年度 東京大学大学院、博士論文「酵母Yarrowia lipolyticaのnーアルカン誘導型チトクロームP450遺伝子群に関する研究」飯田敏也)。

上記酵母においては、ポリエステルの合成に関与する酵素遺伝子がアエロモナス・キャビエ(Aeromonas caviae)由来の遺伝子であることが好ましく、例えば、A. caviae由来のPHA合成酵素遺伝子(以下phaCと略す)(配列番号1)、または、phaCおよびβ酸化経路の中間20 体のエノイルCoAをモノマーである(R)-3-ヒドロキシアシルCoAに変換する(R)体特異的エノイルCoAヒドラターゼ遺伝子(以下phaJと略す)(T. Fukui, et al FEMS Microbiology Letters, vol. 170, 69-75(1999))(配列番号2)が好適に用いられる。

25 これらの構造遺伝子のそれぞれ5'上流にヤロウィア・リポリティカAlk 3遺伝子のプロモーターALK3p(配列番号5)(GenBank ABO 10390)を連結することができる。

プロモーターと構造遺伝子とを連結するための制限酵素部位を作製するためには、PCR法が利用できる。PCRに用いたプライマー配列を配列番号8から

20

配列番号14に示す。PCRの条件は目的遺伝子断片が増幅できればどのよう な条件を用いてもよい。

プロモーター部分は配列番号5を鋳型にして配列番号8と配列番号9、配列 番号9と配列番号10を用いて、それぞれ5°末端がXbaI、3°末端がN deIのALK3Xと5'末端がSacII、3'末端がNdeIのALK3 へ Sを作製することができる。phaCは配列番号1を鋳型にして配列番号11 と配列番号12とを用いて、5°末端がNdeI、3°末端がPstIである 約100bpの断片を作製することができる。これに残りのPstI-Bam. HI約1700bpを結合して、5°末端がNdeI、3°末端がBamHI である完全長のphaCを作製することができる。phaJは配列番号2を鋳 型にして配列番号13と配列番号14とを用いて、5、末端がNdeⅠ、3、 末端がKpnIであるphaJを作製することができる。ベクターにはプラス ミドpSUT5(図1、配列番号19)とpSUT5のNdeIサイトを配列 番号20のリンカーDNAを用いて、XbaIサイトに変更したベクターpS 15 UT6とを使用することができる。pSUT6のマルチクローニングサイトの SaclI、KpnIサイトにALK3SとphaJとを結合し、プラスミド pSUT-phaJ(図3)を構築することができる。次にpSUT5のマル チクローニングサイトのXbaI、BamHIサイトにALK3XとphaC とを結合し、プラスミドpSUT-PHA1、(図4)を構築することができる。 さらにプラスミドpSUT-phaJからSacIIとXbaIとを用いて、 ALK3SとphaJと下流にあるターミネーターとを一緒に切り出し、プラ スミドpSUT-PHA1のSacII、XbaIサイトに結合したプラスミ ドpSUTーPHA2 (図5) の二種類の組換え用プラスミドを構築すること ができる。

以上の方法により、酵母ヤロウィア・リポリティカにおいて上記一般式(1 25)で示される3ーヒドロキシアルカン酸を重合してなるポリエステルを製造す るための遺伝子発現力セットを構築することができる。

(b) 宿主としてキャンディダ・マルトーサを使用する場合

20

宿主としてキャンディダ・マルトーサを使用する場合は、使用するプロモーター、ターミネーターがキャンディダ・マルトーサで機能するものであることが好ましく、キャンディダ・マルトーサ由来であることがより好ましい。さらに好ましくは、キャンディダ・マルトーサALK1由来のプロモーター及びターミネーターを利用する。なお、上記プロモーター及び/又はターミネーターのDNA配列は、キャンディダ・マルトーサで機能する配列であれば、1つ若しくは複個の塩基が欠失、置換及び/又は、付加されたDNA配列であってもよい。

構築に用いられるベクターとして、上記(a)で言及したものと同様のものが 挙げられる。キャンディダ・マルトーサにおいては、自立増殖可能なpUTU1 を用いることができる(M. Ohkuma, et al J. Biol. Che m., vol. 273, 3948-3953 (1998))。

宿主としてキャンディダ・マルトーサを使用する場合は、ポリエステルの合成に関与する酵素遺伝子がアエロモナス・キャビエ由来の酵素と同じアミノ酸配列をコードする遺伝子であることが好ましく、例えば、アエロモナス・キャビエの由来のPHA合成酵素アミノ酸配列と同じアミノ酸配列をキャンディダ・マルトーサにおいてコードする遺伝子(以下ORF2と略す、配列番号3)、または、ORF2及びβ酸化経路の中間体のエノイルCoAをモノマーである(R)-3ーヒドロキシアシルCoAに変換する(R)体特異的エノイルCoAヒドラターゼと同じアミノ酸配列をキャンディダ・マルトーサにおいてコードする遺伝子(以下ORF3と略す、配列番号4)が好適に用いられる。(T.Fukui,et al FEMS Microbiology Letters, vol. 170,69-75 (1999))

これらの構造遺伝子のそれぞれ5'上流にキャンディダ・マルトーサのAlk 1遺伝子のプロモーターALKlp(配列番号6)、3'下流にターミネーター 25 ALKlt(配列番号7)(GenBank D00481)(M. Takag i, et al Agric. Biol. Chem., vol. 5, 2217 -2226(1989))を連結することができる。

プロモーターおよびターミネーターと構造遺伝子を連結するための制限酵素部位を作成するためには、PCR法が利用できる。PCRに用いるプライマー配列

ができる。

- 25

は配列番号15から配列番号18に示す。PCRの条件は(a)で上述した条件を用いることができる。

プロモーター部分は配列番号6を鋳型にして配列番号15と配列番号16を用 いて、5′末端がSalI、3′末端がNdeIのALK1pを作製することが できる。ターミネーター部分は配列番号7を鋳型にして配列番号17と配列番号 18を用いて、5°末端がHindIII、3°末端がEcoRVのALK1t. を作製することができる。ベクターにはpUTU1とキャンディダ・マルトーサ のAdel遺伝子(配列番号21、GenBank D00855) (S. Ka wai, et al, Agric. Biol. Chem., vol. 55, 59-65 (1991)) を用いて、マーカー遺伝子をUra3からAde1に 10 変更したベクターpUTA1(図2)を使用することができる。pUCNT(W O94/03613に記載)のPvuII、NdeIサイトにALK1pを結合 し、またpUCNTのHindIII、SspIサイトにALK1tを結合して pUAL1 (図6)を構築することができる。次にpUAL1のNdeI、Ps t I サイトにORF 2 を結合し、プラスミドp UAL-ORF 2 (図7) を構築 15 することができる。また、pUAL1を構築する途中に構築するpUCNT-A LK1tのNdeI、HindIIIサイトにORF3を結合し、さらにALK 1pを結合することで、pUAL-ORF3(図8)を構築することができる。 つぎに、プラスミドpUAL-ORF2からEcoT22Iを用いて、ORF 2とともに上流にあるプロモーター、下流にあるターミネーターを一緒に切り出 20 し、pUTA1のPstIサイトに結合し、pUTA-ORF2を構築すること

さらに、pUAL-ORF3からSalIを用いてORF3とともに上流にあるプロモーター、下流にあるターミネーターを一緒に切り出し、pUTA-ORF2のSalIサイトに結合したプラスミドpUTA-ORF23(図9)を構築することができる。

以上の方法により、酵母キャンディダ・マルトーサにおいて上記一般式(1)で示されるアルカン酸を共重合してなるポリエステルを製造するための遺伝子発現カセットを構築することができる。

(4) 形質転換体の作製

酵母にポリマー合成に関与する遺伝子発現カセット組換えベクターを導入するためには、公知の方法により行うことができる。例えば、カルシウム法(Lederberg. E. M. etal., J. Bacteriol. 119. 1072 (1974)) やエレクトロポレーション法(Current Protocols in Morecular Biology、1巻、 1.8.4 頁、1994年)等を用いることができる。また、Fast Track TM-Y east Transformation Kit_{sm} (Geno Technology) のような市販の形質転換キットを利用することもできる。

例えば、宿主として、ヤロウィア・リポリティカCXAU1株(T. Iida, et al Yeast, 14, 1387-1397(1998))を用いることができる。本菌株に上記の形質転換法を用いてポリマー合成に関与する遺伝子発現カセットを形質転換し、pSUT-PHA1を有するヤロウィア・リポリティカPHA1株と、pSUT-PHA2を有するヤロウィア・リポリティカPHA2株を作製することができる。

また宿主として、キャンディダ・マルトーサCHA1株(S. Kawai, et al, Agric. Biol. Chem., vol. 55, 59-65 (1991)」)を用いることもできる。本菌株に上記の形質転換法を用いてポリマー合成に関与する遺伝子発現力セットを形質転換し、pUTA-ORF23を有するキャンディダ・マルトーサCHA1株を作製することができる。

(5) ポリエステルの製造・

本発明のポリエステルの製造方法では、本発明の形質転換体を培養して得られ 25 る培養物から、ポリエステルを採取する。

本発明の形質転換体を培養することによるポリエステルの製造は、次のようにして行うことができる。培養に用いる炭素源としては、酵母が資化できるものであればどのようなものでもよい。また、プロモーターの発現が誘導型である場合には、適時誘導物質を添加すればよい。誘導物質が主要炭素源である場合もある

。炭素源以外の栄養源としては窒素源、無機塩類、その他の有機栄養源を含む培地が使用できる。培養温度はその菌の生育可能な温度であればよいが、20℃から40℃が好ましい。培養時間には特に制限はないが、1~7日程度で良い。その後、得られた該培養菌体又は培養物からポリエステルを回収すればよい。

炭素源としてはグルコース、グリセリン、シュークロース等の炭水化物や油脂類や脂肪酸類さらにはnーパラフィン等を用いることができる。油脂としては、例えばナタネ油、ヤシ油、パーム油、パーム核油などが挙げられる。脂肪酸としてはヘキサン酸、オクタン酸、デカン酸、ラウリン酸、オレイン酸、パルミチン酸、リノール酸、リノレン酸、ミリスチン酸などの飽和・不飽和脂肪酸、あるいはこれら脂肪酸のエステルや塩など脂肪酸誘導体が挙げられる。例えば、キャンディダ・マルトーサの培養及びヤロウィア・リポリティカの培養において、炭素源として油脂を用いて培養することもできる。また、油脂を資化ができないかまたは効率よく資化できない酵母では、培地中にリパーゼを添加することによって改善することもできる。さらに、リパーゼ遺伝子を形質転換することにより、油脂資化能を付与することもできる。

また、炭素源として奇数の炭素鎖を有する脂肪酸やn-パラフィン等を用いた場合、上記一般式(1)で示される3-ヒドロキシアルカン酸を共重合してなるポリエステルの炭素鎖に奇数成分の割合を高めることができる。

窒素源としては、例えばアンモニア、塩化アンモニウム、硫酸アンモニウム、 リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス などが挙げられる。無機塩類としては、例えばリン酸第一カリウム、リン酸第二 カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウムなどが挙げ られる。

その他の有機栄養源としてはアミノ酸類、例えばグリシン、アラニン、セリン 、スレオニン、プロリンなどや、ビタミン類、例えばビタミンB1、ビタミンB 12、ビオチン、ニコチン酸アミド、パントテン酸、ビタミンC等が挙げられる。

本発明において、ポリエステルの菌体からの回収は例えば、次のような方法が 使用できる。培養終了後、培養液を遠心分離器などで菌体を分離し、その菌体を 蒸留水およびメタノール等により洗浄した後、乾燥させる。この乾燥菌体をクロ ロホルム等の有機溶剤を用いてポリエステルを抽出する。このポリエステルを含んだ有機溶剤溶液を濾過等によって菌体成分を除去し、そのろ液にメタノールやヘキサン等の貧溶媒を加えてポリエステルを沈殿させる。沈殿したポリエステルを濾過や遠心分離によって上澄み液を除去し、乾燥させてポリエステルを回収することができる。得られたポリエステルの分析は、例えば、ガスクロマトグラス法や核磁気共鳴法などにより行う。

本発明のポリエステルの製造方法は、上述のような構成からなるので、上記一般式(1)で示される3ーヒドロキシアルカン酸を共重合してなるポリエステルを生産性良く製造することができる。

10 また、上述したプラスミドpSUT-PHA1、pSUT-PHA2を有するヤロウィア・リポリティカ組み換え株、プラスミドpUTA-ORF23を有するキャンディダ・マルトーサ組み換え株等を作製し、培養する方法により、上記一般式(2)で示される3-ヒドロキシ酪酸と上記一般式(3)で示される3-ヒドロキシヘキサン酸とを共重合してなる共重合ポリエステルP(3HB-co-3HH)を製造することができる。

実施例

25

以下、実施例により本発明をさらに具体的に説明する。ただし、本発明は、これら実施例にその技術範囲を限定するものではない。

- 20 (実施例1)ポリエステル合成に関与する遺伝子
 - (a) 宿主としてヤロウィア・リポリティカを使用した場合

ポリエステル合成に関与する酵素遺伝子として、アエロモナス・キャビエの由来のPHA合成酵素遺伝子(phaC;配列番号1)と、β酸化経路の中間体のエノイルCoAをモノマーである (R) -3-ヒドロキシアシルCoAに変換する (R) 体特異的エノイルCoAとドラターゼ遺伝子(phaJ;配列番号2)(T.Fukui, et alFEMSMicrobiologyLetters, <math>vol.170, 69-75 (1999))を使用した。

(b) キャンディダ・マルトーサを宿主として使用した場合 ポリエステル合成に関与する酵素遺伝子として、アエロモナス・キャビエの由

来のPHA合成酵素と、β酸化経路の中間体のエノイルCοAをモノマーである (R)-3-ヒドロキシアシルCoAに変換する(R)体特異的エノイルCoA ヒドラターゼ (T. Fukui, et al FEMS Microbiolo gy Letters, vol. 170, 69-75 (1999)) 075ノ酸配列をもとに、当該酵素遺伝子を合成した。

キャンディダ・マルトーサはCTGコドンをロイシンではなくセリンに翻訳す る酵母である。このため、キャンディダ・マルトーサにおいて使用するにあたり 、ロイシンコドンにはCTGを割り当てなかった。各アミノ酸に対応するコドン は キャンディダ・マルトーサにおいて使用頻度の高いコドンを優先的に選択し 10 た。コドンの使用頻度はKlaus Wolf著のNonconvention al Yeast in Biotechnology (Springer出版)を参考にした。具体的には、メチオニン、トリプトファンは、それぞれをAT G、TGGを割り当てた。フェニルアラニンでは、TTTとTTCを交互に割り 当てた。ロイシンでは、アエロモナス・キャビエDNA配列におけるCTCをT TA、CTGをTTGにそれぞれ変換し、TTAとTTGはそのまま用いた。イ ソロイシンでは、アエロモナス・キャビエDNA配列におけるATCをATT、 ATAをATCにそれぞれ変換し、ATTはそのまま用いた。バリンでは、アエ ロモナス・キャビエDNA配列におけるGTGをGTT、GTAをGTTにそれ ぞれ変換し、GTCとGTTはそのまま用いた。セリンでは、アエロモナス・キ ャビエDNA配列におけるAGCをTCT、TCAをTCT、TCGをTCTに それぞれ変換し、TCCとTCTはそのまま用いた。プロリンでは、対応するコ ドンを全てCCAに変換した。スレオニンでは、アエロモナス・キャビエDNA 配列におけるACCをACT、ACGをACC、ACAをACCにそれぞれ変換 し、ATCはそのまま用いた。アラニンでは、アエロモナス・キャビエDNA配 列におけるGCCをGCT、GCGをGCC、GCAをGCTにそれぞれ変換し 、GCTはそのまま用いた。チロシンでは、アエロモナス・キャビエDNA配列 におけるチロシンコドンに対して、TAT、TACを交互に割り当てた。終始コ ドンは、TAAを用いた。ヒスチジンでは、アエロモナス・キャビエDNA配列 におけるヒスチジンコドンに対して、CAT、CACを交互に割り当てた。グル

タミンでは、対応するコドンを全てCAAに変換した。アスパラギンでは、対応するコドンに対してAATとAACを交互に割り当てた。リジンでは、対応するコドンを全てAAAに変換した。アスパラギン酸では、対応するコドンをすべてGATに変換した。グルタミン酸では、対応するコドンを全てGAAに変換した。システインでは、対応するコドンを全てTGTに変換した。アルギニンでは、対応するコドンを全てAGAに変換した。グリシンでは、対応するコドンを全てGGTに変換した。さらにアエロモナス・キャビエの由来のPHA合成酵素DNA配列において、2箇所のKpnI部位を作成するために、969番目のTをC、1449番目のTをCに変換した。これらの置換によって当該遺伝子のアミノ酸配列構造は変更されない。

このようにしてPHA合成酵素遺伝子(ORF2;配列番号3)と(R)体特 異的エノイルCoAヒドラターゼ遺伝子(ORF3;配列番号4)を設計し、これらの配列を元にORF2とORF3を全合成した。

- 15 (実施例2)組換えプラスミドおよび組換え株の構築
 - (a)宿主としてヤロウィア・リポリティカを使用した場合

上記遺伝子がヤロウィア・リポリティカで発現するように、それぞれの5° 上流にヤロウィア・リポリティカのA1k3遺伝子のプロモーターALK3p (配列番号5) (GenBank AB010390) を連結することにした。 プロモーターと構造遺伝子とを連結するための制限酵素部位を作製するために は、PCR法を利用した。PCRに用いたプライマー配列を配列番号8から配 列番号14に示す。PCRの条件は94℃ 1分、55℃ 2分、72℃ 3 分を1サイクルとし、これを25回繰り返して、目的遺伝子断片を増幅した。 ポリメラーゼは宝酒造(株)のExTaqを使用した。プロモーター部分は配 列番号5を鋳型にして配列番号8と配列番号9、配列番号9と配列番号10を 用いて、それぞれ5°末端がXbaI、3°末端がNdeIのALK3Xと5 *末端がSacII、3°末端がNdeIのALK3Sとを作製した。

phaCは配列番号1を鋳型にして配列番号11と配列番号12とを用いて、

5[°] 末端がNdeI、3[°] 末端がPstIである約100bpの断片を作製し

15

20

25

た。これに残りのPstI-BamHI断片約1700bpを結合して、5°末端がNdeI、3°末端がBamHIである完全長のphaCを作製した。phaJは配列番号2を鋳型にして配列番号13と配列番号14とを用いて、5°末端がNdeI、3°末端がKpnIであるphaJを作製した。

ベクターにはプラスミドpSUT5 (図1、配列番号19)とpSUT5のいれ e I サイトを配列番号20のリンカーDNAを用いて、XbaIサイトに変更したベクターpSUT6とを使用した。pSUT6のマルチクローニングサイトのSacII、KpnIサイトにALK3SとphaJjとを結合し、プラスミドpSUT-phaJ(図3)を構築した。次にpSUT5のマルチクローニングサイトのXbaI、BamHIサイトにALK3XとphaCとを結合し、プラスミドpSUT-PHA1 (図4)を構築することができる。

さらにプラスミドpSUT-phaJからSacIIとXbaIとを用いて、ALK3SとphaJと下流にあるターミネーターとを一緒に切り出し、同DNAをプラスミドpSUT-PHA1のSacII、XbaIサイトに挿入することによりプラスミドpSUT-PHA2(図5)を構築した。すなわち、このようにして二種類の組換え用プラスミドpSUT-PHA1とpSUT-PHA2を構築した。以上の方法により、酵母ヤロウィア・リポリティカにおいて上記一般式(1)で示される3ーヒドロキシアルカン酸を共重合してなるポリエステルを製造するための遺伝子発現カセットを構築した。全体の構築図を図10に示した。

宿主にはヤロウィア・リポリティカCXAU1株(T. Iida, et al Yeast, 14, 1387-1397(1998))を使用した。宿主に構築したプラスミドを導入するために、Fast Track^{TMI}-Yeast Transformation Kit_{SM}(Geno Technology)を使用した。プロトコルにしたがって操作し、選択プレート(0.67w/v%Yeast Nitrogen base without amino acid、2w/v%グルコース、24mg/Lアデニン塩酸塩、2w/v%寒天)を使用して組換え株を取得した。

(b) キャンディダ・マルトーサを宿主として使用した場合

上記ORF2、ORF3がキャンディダ・マルトーサで発現するように、そ れぞれの5′上流にキャンディダ・マルトーサのA1k1遺伝子のプロモーター ALK1p (配列番号6、GenBank D00481)を、3'下流にキャ 5 ンディダ・マルトーサのAlkl遺伝子のターミネーターALKlt (配列番号 7) を連結することにした。プロモーターおよびターミネーターと構造遺伝子を . 連結するための制限酵素部位を作成するためには、PCR法を利用した。PCR に用いたプライマー配列を配列番号15から配列番号18に示す。PCRの条件 は94℃ 1分、55℃ 2分、72℃ 3分を1サイクルとし、これを25回繰 り返して、目的遺伝子断片を増幅した。ポリメラーゼは宝酒造(株)のExTa 10 qを使用した。プロモーター部分は配列番号6を鋳型にして配列番号15と配列 番号16を用いて、5°末端がSalI、3°末端がNdeIのALK1pを作 製した。ターミネーター部分は配列番号7を鋳型にして配列番号17と配列番号 18を用いて、5°末端がHindIII、3°末端がEcoRVのALK1t を作製した。最終的にORF2とORF3を連結するベクターにはpUC19に 15 キャンディダ・マルトーサの自己複製領域(ARS)(Gen Bank D2 9758) およびURA3遺伝子 (Gen Bank D12720) を連結し tpUTU (M. Ohkuma, et al, J. Biol. Chem., vo 1. 273, 3948-3953 (1998)) とキャンディダ・マルトーサ のADE1遺伝子(配列番号21、Genebank D00855)を用いて 、マーカー遺伝子をUra3からAde1に変更したベクターであるpUTA1 (図2)を使用した。pUTA1は、pUTU1からXhoIを用いてURA3 遺伝子を除去し、これにSalIを用いて切り出したADE1遺伝子断片を接続 し構築した。

pUCNT (WO94/03613に記載)のPvuII、NdeIサイトにALALK1pを結合し、またpUCNTのHindIII、SspIサイトにALK1tを結合してpUAL1 (図6)を構築した。次にpUAL1のNdeI、PstIサイトにORF2を結合し、プラスミドpUAL-ORF2 (図7)を構築した。また、pUAL1を構築する途中に構築するpUCNT-ALK1t

のNdeI、HindIIIサイトにORF3を結合し、さらにALK1pを結合することで、pUAL-ORF3 (図8)を構築した。

つぎに、プラスミドpUAL-ORF2からEcoT22Iを用いて、ORF 2とともに上流にあるプロモーター、下流にあるターミネーターを一緒に切り出し、pUTA1のPstIサイトに結合し、pUTA-ORF2を構築した。さらに、pUAL-ORF3からSalIを用いてORF3とともに上流にあるプロモーター、下流にあるターミネーターを一緒に切り出し、pUTA-ORF2のSalIサイトに結合したプラスミドpUTA-ORF23(図9)を構築した。以上の方法により、酵母キャンディダ・マルトーサにおいて上記一般式(1)で示される3ーヒドロキシアルカン酸を共重合してなるポリエステルを製造するための遺伝子発現カセットを構築した。全体の構築図を図11に示した。

宿主にはキャンディダ・マルトーサCHA1株(S. Kawai, et al, Agric. Biol. Chem., vol. 55, 59-65 (1991))を使用した。宿主に構築したプラスミドを導入するために、Fast TrackTM-Yeast Transformation Kit_{SM} (Geno Technology)を使用した。プロトコルにしたがって操作し、選択プレート(0.67w/v%Yeast Nitrogen base without amino acid、2w/v%グルコース、24mg/L ヒスチジン、2w/v%寒天)を使用して組換え株を取得した。

20

15

(実施例3) ヤロウィア・リポリティカ組換え株を用いたP (3 H B - c o - 3 H H) の生産

プラスミドpSUT5、pSUT-PHA1、pSUT-PHA2を有するヤロウィア・リポリティカ組換え株を次のように培養した。前培地はYPD培25 地 (1 w/v % Yeast-extract、2 w/v % Bacto-Pepton、2 w/v % グルコース)を使用した。ポリエステル生産培地には1/4 YP培地(0.25 w/v % Yeast-extract、0.5 w/v % Bacto-Pepton)とミネラル培地(0.7 w/v % KH2PO4、1.3 w/v % (NH4)2HPO4、0.5 w/v % プロエキスAP-1

25

2(播州調味料)、0.04w/v%アデニン、1ppmチアミン塩酸塩、1v/v%微量金属塩溶液(0.1N塩酸に8w/v%MgSO₄・7H₂O、0.6w/v%ZnSO₄・7H₂O、0.9w/v%FeSO₄・7H₂O、0.05w/v%CuSO₄・5H₂O、0.1w/v%MnSO₄・6-7H₂O、1w/v%NaC1))にパーム油を2w/v%を添加したものを使、用した。

各組換え株のグリセロールストック100μ1を100m1の前培地が入った500m1坂口フラスコに接種して20時間培養し、500mLの生産培地を入れた2L坂口フラスコに1 v / v %接種した。これを培養温度30℃、振, 2 速度120 r pm、培養時間は、Y P D 培地で24時間、ミネラル培地で72時間という条件で培養した。培養液をオートクレーブ後、遠心分離によって菌体を回収し、メタノールで洗浄した後、凍結乾燥して乾燥菌体重量を測定した。

得られた乾燥菌体を粉砕し、クロロホルムを100m1添加し一晩攪拌して抽出した。濾過して菌体を除去し、ろ液をエバポレーターで1-2m1にまで 濃縮し、濃縮液に10m1のヘキサンを添加して、ヘキサン不溶物を析出させ た。

得られたヘキサン不溶物約 $2 \, \mathrm{mg} \, \mathrm{cc} \, 5 \, 0 \, 0 \, \mu \, 1$ の硫酸ーメタノール混液($1 \, 5 : 8 \, 5$)と $5 \, 0 \, 0 \, \mu \, 1$ のクロロホルムとを添加して密栓し、 $1 \, 0 \, 0 \, \mathrm{CC} \, 1 \, 4$ の分間加熱することでポリエステル分解物のメチルエステルを得た。冷却後、これに $0 : 3 \, \mathrm{g} \, \mathrm{o}$ 炭酸水素ナトリウムを添加し、中和した。これに $1 \, \mathrm{m} \, 1 \, \mathrm{o}$ ジイソプロピルエーテルを添加して攪拌機を用いて撹拌した。遠心分離して有機溶媒層を取り出し、その組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所 $G \, \mathrm{C} \, -1 \, 7 \, \mathrm{A}$ 、キャピラリーカラムは $G \, \mathrm{L} \, \mathrm{t} \, \mathrm{d} \, \mathrm{t} \, \mathrm{d} \, \mathrm{d} \, \mathrm{e} \, \mathrm{d} \, \mathrm{e} \, \mathrm{f} \, \mathrm{f} \, \mathrm{f} \, \mathrm{e} \,$

R-800) も行った。その一例としてサンプル (6) の結果を図13、図14に示す。

表1 培養および分析結果

サンブル	培地	菌株	菌体量 (g/L)	ポリマー蓄積量 (wt%)	3HH分率 (mol%)
(1)	1/4YP培地コントロール		3. 56	8.9×10^{-2}	
(2)	•	PHA1株	3. 65	1.9×10^{-1}	
(3)		PHA2株	3. 43	2.6×10^{-1}	15(GC測定)
(4)	ミネラル培地	コントロール	0. 15	6. 7×10^{-2}	
(5)		PHA1株	0. 19	1. 4×10^{-1}	t .
(6)		PHA2株	0. 17	1. 8	27(NMR測定)

この結果から、酵母ヤロウィア・リポリティカを用いて共重合ポリエステルP(3HB-co-3HH)が生産できることがわかった。

また、酵母にもごく僅かながらポリマーが存在することがわかった。

(実施例4)キャンディダ・マルトーサ組換え株を用いたP (3 H B - c o - 3 H H) の生産

プラスミドpUTA1, pUTA-ORF23を有するキャンディダ・マルトーサ組換え株を次のように培養した。前培地はYNB培地(0.67w/v%Yeast Nitrogen base without amino acid)に1w/v%カザミノ酸、2w/v%パーム油添加した培地を使用した。ポリエステル生産培地はYNB培地に1w/v%カザミノ酸を添加し、炭素源として①2w/v%パーム油、②2w/v%ヤシ油、③2w/v%テトラデカン、④2w/v%ヘキサデカンを添加した培地を使用した。

各組換え株のグリセロールストック100μ1を50m1の前培地が入った5 00m1坂口フラスコに接種して20時間培養し、500mLの生産培地を入れ た2L坂口フラスコに10 v / v %接種した。これを培養温度30℃、振盪速度 20 120г p m、培養時間は72時間という条件で培養した。培養液をオートクレ ーブ後、遠心分離によって菌体を回収し、メタノールで洗浄した後、凍結乾燥し て乾燥菌体重量を測定した。

得られた乾燥菌体を粉砕し、クロロホルムを100m1添加し一晩攪拌して抽

出した。濾過して菌体を除去し、ろ液をエバポレーターで1-2mlにまで濃縮し、濃縮液に10mlのヘキサンを添加して、ヘキサン不溶物を析出させた。

その結果、プラスミドpUTA-ORF23を導入した組換え株をヤシ油、 テトラデカン、ヘキサデカンで培養したものに白色沈殿が見られた(表2)。ヤ シ油で培養したときに得られたヘキサン不溶物のNMR分析(JEOL、JNM -EX400)の結果を表2、図15に示す。

表2 組換之株培養結果

人	菌体量(g/L)	ポリマーの蓄積	
パーム油	12.5		
ヤシ油	10.3	++	
テトラデカン	4.4	+	
ヘキサデカン	3.6	+	

この結果から、酵母キャンディダ・マルトーサを用いて共重合ポリエステルP 10 (3HB-co-3HH)が生産できることがわかった。

産業上の利用可能性

本発明により、生分解性かつ優れた物性を有する上記一般式 (1) で示される 3 ーヒドロキシアルカン酸を共重合してなる共重合ポリエステルを、酵母を用い 7 15 て生産することが可能となった。

請求の範囲

1. 酵母に、ポリエステルの合成に関与する酵素遺伝子からなる遺伝子発現カセットが一種類以上導入されてなることを特徴とする形質転換体。

5

2. ポリエステルは、下記一般式(1)で示される3-ヒドロキシアルカン酸を共重合してなる共重合体である請求項1記載の形質転換体。

10 式中、Rは、アルキル基を表す。

3. ポリエステルは、下記式(2)で示される3-ヒドロキシ酪酸と下記式(

3) で示される3ーヒドロキシヘキサン酸とを共重合してなる共重合ポリエステルP(3HB-co-3HH)である請求項1または2記載の形質転換体。

15

$$CH_3$$

 $HO-CH-C-C-OH$ (2)
 H_2 O

$$\begin{array}{c} C_3H_7 \\ HO-CH-C-C-OH \\ H_2 O \end{array}$$
 (3)

4. 酵母がアシクロコニディウム属、アンブロシオザイマ属、アルスロアスカス属、アルキシオザイマ属、アシュビア属、バブジェビア属、ベンシングトニア 20 属、ボトリオアスカス属、ボトリオザイマ属、ブレッタノマイセス属、ビュレラ属、ビュレロマイセス属、キャンディダ属、シテロマイセス属、 クラビスポラ属、 クリプトコッカス属、シストフィロバシディウム属、 デバリオマイセス 属、デッカラ属、ディポダスコプシス属、ディポダスカス属、エニエラ属、エン

ドマイコプセラ属、エレマスカス属、エレモセシウム属、エリスロバシディウム 属、フェロマイセス属、フィロバシディウム属、ガラクトマイセス属、ゲオトリ クム属、ガイラーモンデラ属、ハンセニアスポラ属、ハンセヌラ属、ハセガワエ ア属、ホルターマンニア属、ホルモアスカス属、ハイフォピキア属、イサット ヘンキア属,クロエケラ属,クロエケラスポラ属、クルイベロマイセス属、コン ドア属、クライシア属、クルツマノマイセス属、ロイコスポリディウム属、リポ マイセス属、ロデロマイセス属、マラセジア属、メトシュニコウィア属、ムラキ ア属、マイクソザイマ属、ナドソニア属、ナカザワエア属、ネマトスポラ属、オ ガタエア属、オースポリディウム属、パチソレン属、ファチコスポラ属、ファフ ィア属、ピキア属、ロドスポリディウム属、ロドトルラ属、サッカロマイセス属、 10 サッカロマイコーデス属。 サッカロマイコプシス属、サイトエラ属、サカグチ ア属, サターノスポラ属, シゾブラストスポリオン属, シゾサッカロマイセス属, シュワニオマイセス属、スポリディオボラス属、スポロボロマイセス属、スポー ロパキデミア属、 ステファノアスカス属、ステリグマトマイセス属、ステリグ マトスポリディウム属、シンビオタフリナ属、シンポディオマイセス属、シンポ ディオマイコプシス属、トルラスポラ属、トリコスポリエラ属、トリコスポロン 属、トリゴノプシス属、ツチヤエア属、ウデニオマイセス属、ワルトマイセス属、 ウィカーハミア属, ウィカーハミエラ属, ウィリオプシス属, ヤマダザイマ属, ヤロウィア属、ザイゴアスカス属、ザイゴサッカロマイセス属、ザイゴウィリオ プシス属又はザイゴザイマ属である請求項1~3のいずれか1項に記載の形質転 20 換体。

- 5. 酵母がヤロウィア・リポリティカである請求項1~4のいずれか1項に記載の形質転換体。
- 6. 酵母がキャンディダ・マルトーサである請求項1~4記載のいずれか1項に記載の形質転換体。
- 7. ポリエステルの合成に関与する酵素遺伝子発現カセットが、酵母で機能す

PCT/JP01/04158

るプロモーター、ターミネーターからなる請求項1~6のいずれか1項に記載の 形質転換体。

- 8. プロモーター、ターミネーターがヤロウィア・リポリティカ由来である請求項7項に記載の形質転換体。
 - 9. プロモーターがヤロウィア・リポリティカのALK3由来である請求項7 又は8に記載の形質転換体。
- 10 10. ターミネーターがヤロウィア・リポリティカのXPR2由来である請求 項7又は8に記載の形質転換体。
 - 11. プロモーター、ターミネーターがキャンディダ・マルトーサ由来である 請求項7項に記載の形質転換体。

15

- 12. プロモーターがキャンディダ・マルトーサのALK1由来である請求項7又は11に記載の形質転換体。
- 13. ターミネーターがキャンディダ・マルトーサのALK1由来である請求 20 項7又は11に記載の形質転換体。
 - 14. ポリエステルの合成に関与する酵素遺伝子が、アエロモナス・キャビエ(Aeromonas caviae)由来の遺伝子である請求項1~13のいずれか1項に記載の形質転換体。

25

15. ポリエステルの合成に関与する酵素遺伝子がアエロモナス・キャビエ由来のPHA合成酵素遺伝子、または、PHA合成酵素遺伝子および(R)体特異的エノイルCoAヒドラターゼ遺伝子である請求項1~13に記載の形質転換体。

- 16. 前記PHA合成酵素遺伝子は配列番号3に示す塩基配列からなり、(R) 体特異的エノイルCoAヒドラターゼ遺伝子は配列番号4に示す塩基配列からなる請求項15に記載の形質転換体。
- 5 17. 請求項1~16記載のいずれか1項に記載の形質転換体を用いるポリエステルの製造方法であって、前記形質転換体を培養して得られる培養物から、ポリエステルを採取することを特徴とするポリエステルの製造方法。
- 18. 遺伝暗号CTGの少なくとも1つが、TTA、TTG、CTT、CTC、 IO 又はCTAに変換されていることを特徴とするポリエステルの合成に関与する酵素遺伝子。
 - 19. 細菌由来の酵素をコードする請求項18記載のポリエステルの合成に関与する酵素遺伝子。

- 20. 前記細菌がアエロモナス・キャビエ(Aeromonas cavia e)である請求項19記載のポリエステルの合成に関与する酵素遺伝子。
- 21. アエロモナス・キャビエ由来の酵素遺伝子がPHA合成酵素遺伝子又は (R)体特異的エノイルCoAヒドラターゼ遺伝子である請求項20に記載のポリエステルの合成に関与する酵素遺伝子。
 - 22. 前記PHA合成酵素遺伝子が配列番号3に示す塩基配列からなる請求項21に記載のポリエステルの合成に関与する酵素遺伝子。

25

23. 前記(R)体特異的エノイルCoAヒドラターゼ遺伝子が配列番号4に示す塩基配列からなる請求項21に記載のポリエステルの合成に関与する酵素遺伝子。

1/11

図1

図 2

pUTA1

2/11

3/11

図 5

図 6

pUAL1

4/11

図 7

1.

pUAL-ORF2

図 8

図 9

図10

WO 01/88144

図11

図 1 2

図13

図14

1/18

<110> 鐘淵化学工業株式会社 KANAKA CORPORATION

<120> 形質転換体及びそれを用いたポリエステルの製造方法

<130> T-618

<160> 21

<210> 1

<211> 1785

<212> DNA

<213> Aeromonas caviae

<220>

<221> CDS

<222> 1..1785

<400> 1

atg agc caa cca tct tat ggc ccg ctg ttc gag gcc ctg gcc cac tac 96 aat gac aag ctg ctg gcc atg gcc aag gcc cag aca gag cgc acc gcc cag gcg ctg ctg cag acc aat ctg gac gat ctg ggc cag gtg ctg gag 144 192 cag ggc agc cag caa ccc tgg cag ctg atc cag gcc cag atg aac tgg tgg cag gat cag ctc aag ctg atg cag cac acc ctg ctc aaa agc gca 240 ggc cag ccg agc gag ccg gtg atc acc ccg gag cgc agc gat cgc cgc 288 ttc aag gcc gag gcc tgg agc gaa caa ccc atc tat gac tac ctc aag 336 cag tcc tac ctg ctc acc gcc agg cac ctg ctg gcc tcg gtg gat gcc 384 432 ctg gag ggc gtc ccc cag aag agc cgg gag cgg ctg cgt ttc ttc acc 480 cgc cag tac gtc aac gcc atg gcc ccc agc aac ttc ctg gcc acc aac 528 ccc gag ctg ctc aag ctg acc ctg gag tcc gac ggc cag aac ctg gtg

cgc gga ctg gcc ctc ttg gcc gag gat ctg gag cgc agc gcc gat cag 576 ctc aac atc cgc ctg acc gac gaa tcc gcc ttc gag ctc ggg cgg gat ctg gcc ctg acc ccg ggc cgg gtg gtg cag cgc acc gag ctc tat gag ctc att cag tac agc ccg act acc gag acg gtg ggc aag aca cct gtg 720 ctg ata gtg ccg ccc ttc atc aac aag tac tac atc atg gac atg cgg 768 ccc cag aac tcc ctg gtc gcc tgg ctg gtc gcc cag ggc cag acg gta 816 . ttc atg atc tcc tgg cgc aac ccg ggc gtg gcc cag gcc caa atc gat ctc gac gac tac gtg gtg gat ggc gtc atc gcc gcc ctg gac ggc gtg 912 gag gcg gcc acc ggc gag cgg gag gtg cac ggc atc ggc tac tgc atc 960 ggc ggc acc gcc ctg tcg ctc gcc atg ggc tgg ctg gcg gcg cgg cgc 1008 cag aag cag cgg gtg cgc acc gcc acc ctg ttc act acc ctg ctg gac ttc tcc cag ccc ggg gag ctt ggc atc ttc atc cac gag ccc atc ata 1104 gcg gcg ctc gag gcg caa aat gag gcc aag ggc atc atg gac ggg cgc 1152 cag ctg gcg gtc tcc ttc agc ctg ctg cgg gag aac agc ctc tac tgg 1200 aac tac tac atc gac agc tac ctc aag ggt cag agc ccg gtg gcc ttc 1248 gat ctg ctg cac tgg aac agc gac agc acc aat gtg gcg ggc aag acc cac aac agc ctg ctg cgc cgt ctc tac ctg gag aac cag ctg gtg aag ggg gag ctc aag atc cgc aac acc cgc atc gat ctc ggc aag gtg aag 1392 acc cct gtg ctg gtg tcg gcg gtg gac gat cac atc gcc ctc tgg 1440 cag ggc acc tgg cag ggc atg aag ctg ttt ggc ggg gag cag cgc ttc 1448 ctc ctg gcg gag tcc ggc cac atc gcc ggc atc atc aac ccg ccg gcc gcc aac aag tac ggc ttc tgg cac aac ggg gcc gag gcc gag agc ccg 1584 gag agc tgg ctg gca ggg gcg acg cac cag ggc ggc tcc tgg tgg ccc 1632 gag atg atg ggc ttt atc cag aac cgt gac gaa ggg tca gag ccc gtc 1680 ccc gcg cgg gtc ccg gag gaa ggg ctg gcc ccc gcc ccc ggc cac tat 1728 gtc aag gtg cgg ctc aac ccc gtg ttt gcc tgc cca aca gag gag gac gcc gca tga 1785

<21:0> 2

<211> 405

<212> DNA

<213> Aeromonas caviae

<220>

<221> CDS

<222> 1..402

<400> 2

<210>3

<211>1785

<212>DNA

<213>Artificial Sequence

⟨220⟩

<221>CDS

<222>1..1785

WO 01/88144

PCT/JP01/04158

4/18

<400>3

atg tct caa cca tct tat ggt cca ttg ttc gaa gct ttg gct cat tac 48 aat gat aaa ttg ttg gct atg gct aaa gct caa acc gaa aga act gct 96 caa gcc ttg ttg caa act aac ttg gat gat ttg ggt caa gtt ttg gaa 144 caa ggt tct caa caa cca tgg caa ttg att caa gct caa atg aat tgg 192 tgg caa gat caa tta aaa ttg atg caa cac act ttg tta aaa tct gct 240 ggt caa cca tct gaa cca gtt att act cca gaa aga tct gat aga aga 288 ttt aaa get gaa get tgg tet gaa caa eea att tat gat tae tta aaa 336 caa tcc tat ttg tta act gct aga cat ttg ttg gct tct gtt gat gct 384 ttg gaa ggt gtc cca caa aaa tct aga gaa aga ttg aga ttc ttt act 432 aga caa tac gtc aac gct atg gct cca tct aat ttc ttg gct act aac 480 cca gaa ttg tta aaa ttg act ttg gaa tcc gat ggt caa aat ttg gtt 528 aga ggt ttg gct tta ttg gct gaa gat ttg gaa aga tct gct gat caa 576 tta aac att aga ttg act gat gaa tcc gct ttt gaa tta ggt aga gat 624 ttg gct ttg act cca ggt aga gtt gtt caa aga act gaa tta tat gaa 672 tta att caa tac tct cca act act gaa acc gtt ggt aaa acc cca gtt 720 ttg atc gtt cca cca ttc att aat aaa tat tac att atg gat atg aga 768. cca caa aac tcc ttg gtc gct tgg ttg gtc gct caa ggt caa acc gtt 816 ttc atg att tcc tgg aga aac cca ggt gtt gct caa gct caa att gat 864 tta gat gat tat gtt gtt gat ggt gtc att gct gct ttg gat ggt gtt 912 gaa gcc gct act ggt gaa aga gaa gtt cac ggt att ggt tac tgt att 960 ggt ggt acc gct ttg tct tta gct atg ggt tgg ttg gcc gcc aga aga 1008 caa aaa caa aga gtt aga act gct act ttg ttt act act ttg ttg gat 1056 ttc tcc caa cca ggt gaa ttg ggt att ttt att cat gaa cca att atc 1104 gcc gcc tta gaa gcc caa aat gaa gct aaa ggt att atg gat ggt aga 1152 caa ttg gcc gtc tcc ttc tct ttg ttg aga gaa aac tct tta tat tgg 1200 aat tac tat att gat tct tac tta aaa ggt caa tct cca gtt gct ttt 1248 gat ttg ttg cac tgg aac tct gat tct act aat gtt gcc ggt aaa act 1296 cat aac tct ttg ttg aga aga tta tat ttg gaa aat caa ttg gtt aaa 1344

5/18

ggt gaa tta aaa att aga aac act aga att gat tta ggt aaa gtt aaa 1392
act cca gtt ttg ttg gtt tct gcc gtt gat gat cac att gct tta tgg 1440
caa ggt acc tgg caa ggt atg aaa ttg ttc ggt ggt gaa caa aga ttt 1488
tta ttg gcc gaa tcc ggt cat att gct ggt att att aat cca cca gct 1536
gct aac aaa tac ggt ttc tgg cac aat ggt gct gaa gct gaa tct cca 1584
gaa tct tgg ttg gct ggt gcc acc cat caa ggt ggt tcc tgg tgg cca 1632
gaa atg atg ggt ttt att caa aac aga gat gaa ggt tct gaa cca gtc 1680
cca gcc aga gtc cca gaa gaa ggt ttg gct cca gct cca ggt cac tat 1728
gtc aaa gtt aga tta aac cca gtt ttc gct tgt cca acc gaa gaa gat 1776
gct gct taa

1785

<210>4

<211>405

<212>DNA

<213>Artificial Sequence

<220>

<221>CDS

<222>1..405

⟨400⟩ 4

atg tct gct caa tcc ttg gaa gtt ggt caa aaa gct aga tta tct aaa 48 aga ttc ggt gcc gcc gaa gtt gct gct ttt gct gcc tta tct gaa gat 96 ttc aac cca ttg cac ttg gat cca gct ttt gct gct act acc gcc ttc 144 gaa aga cca atc gtc cat ggt atg ttg tta gct tct tta ttt tcc ggt 192 ttg ttg ggt caa caa ttg cca ggt aaa ggt tct att tat ttg ggt caa 240 tct tta tct ttc aaa ttg cca gtc ttt gtc ggt gat gaa gtt acc gct 288 gaa gtt gaa gtt act gct ttg aga gaa gat aaa cca att gct act ttg 336 act act aga att ttc act caa ggt ggt ggt gct tta gct gtt acc ggt gaa 384

gct gtt gtc aaa ttg cca taa

405

<210> 5

<211> 1036

<212> DNA

<213> Yarrowia lipolytica

<220>

<223> promoter ALK3p

<400> 5

ctgcagcggc gagaccggtt ctgggccgac tacgacgtgc ctggagggac gctccgggag 120 aatctctttg gacgggccaa gatcttcccc gaccaccctg ccggacagta caagtgggaa 180 gaggggagt ttcccttgac caagagtgac aagagtgaga acggcaatgg agtcaatgga 240 gatgagcccg ctactaagaa acaaaaaatc tgaacaagag ccggttttag tacgatacaa gagccggtac gtggacatgc agctgctttt cgaacatgaa gggagcacga ccccacgtat 300 360 cagtattatg caagggacca gaagtggcct cggcaaaaga ttggcctcgg tcaacaaaag 420 gtcatcatat ccgtctccgc atccgtctgt acgtgaatta tgttacttgt atctttactg 480 tactggtttg gagctacgtc gccaactaat gccaaccagt cctgtggtgt gtctataggt 540 atgtaataca agtacgagta aatgtattgt actggtgcag cacagtagat gacggagacg atgaatcggt caccacccac aaacattgcc tccaaacacc gttatattgt cttactgtcg 600 660 tggctgagac agactcctcg gggccttgta agagggggaa tgtgtgagac agatgcccac aagtgaccat gcattttgtg gggcaggaga aaaaccaatg tttgtgggga tagaacccat 720 780 caaatgaatc taaatgaact ctcccaaaat gaaccactct cttcctccaa tcaaagccct 840 gcgaaatgtc ctccgtctgt ttctcggacc cttagccgta cgacgccata ttacgatagc 900 ccgccacctt aatgcgttta acttgcatgc atgcgtctgc atacagctgc atctgtcata 960 tatgcaccat ttccccacac aactgaagtt tatatatata tactgtaagg actcctgaag tggcacgaac acacctgatc acagcaacat tacagtacac tactctgctc gtattttaca 1020 1036 atactggacg aaaatg

PCT/JP01/04158

WO 01/88144

7/18

<210>6

<211>1017

<212>DNA

<213>Candida maltosa

⟨220⟩

<223>promoter ALK1p

<400>6

atgcatgaac aggatttaat cccaagaaaa aagtctattt tctattttca caaggaaact 60 ggaaaaacct ttttgtgttt tgaagtagct ccgtaataac ctgtaaaaaa ataaattttg 120 aagatttgac ttgctgatga aaatgctatc agtgtagctc tagacttgat actagactat 180 gatggcaaca catggtggtc aacgtgcaag acatcaccca atgagaagac tgctaaccag 240 aaaaaaaagg ggacaaaaga aaaactcgag agaaaaagtc aaattggtgt aaaattggct 300 atttttggta ctttcctaat ggggaaatta attgtttaaa attccagttt ttccagagtt 360 aagatttcga ccaattattt ttaatccata tgatcttcat cattatcaac ttgtgaaaaa 420 taataatcga ggtacgttta atacgagata ttagtctacg gctatgaatg ttggatatac 480 ttcattgacg atcagaagct tgattggtta ttcaggtgca tgtgtggata taaacccaac 540 aaattatcta gcaactgtgc cttccccaca ttggtcaaag aaaccctaaa gcaaattaaa 600 atctggataa ataaatcatt catttcacat tttccggtta gtataaggtt ttttaaattt 660 ttttttacag tttagccctt tcaattacca aatacggtaa caatgtgctt tgtaacatgc 720 aggggatttt ctccgttgct gttttctcca catgctttta atgtgtaata aattaaaaaa 780 attacaaaga aaaaccggca tataagcatc ggagtttaca ttgttaacta actgcaaaat 840 ggcgatgttt caaatcaaca aaatttaaaa aaaccccaaa aaaaaagtat catataaatt 900 . aaactcaaaa teettttgat tgeataaaat ttttaaatet ettettttt ttettttta 960 1017 ctttcttatc tattctattc tttttttata tatctaattc atttataaca tctggtc

<210>7

8/18

<211>218

<212>DNA

<213>Candida maltosa

⟨220⟩

<223>terminater ALK1t

<400>7

atagatggat ttttcttttt tatgtgtatt tccggttaat aaatgtttaa atttttttt 60
taataaaaat atttgtagtt atttatatgc aaaaaaaaa aatattcaaa gcaatcttcc 120
tttctttctt tatctttccc ccatgctaag gtctaaaaca ccacaactta aaacccaact 180
taaccgtata atactaagat caatctccaa agatgcat 218

<210> 8

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 8

gctctagact gcagcggcga gaccggttct gg

32

<210> 9

<211> 35

<212> DNA

<213> Artificial Sequence

WO 01/88144		PC1/JP01/0
	9/18	
<220>	•	
<223> primer		
•	•	•
<400> 9		
ggacacatat gcgtccagta ttgtaaaata cgagc	•	35
<210> 10		
<211> 33		,
<212> DNA		•
<213> Artificial Sequence		
•		
<220>	•	
<223> primer		
	•	
<400> 10	•	
tccccgcggc tgcagcggcg agaccggttc tgg		33
<210> 11		
<211> 31		
<212> DNA	ı	
<213> Artificial Sequence	·	
<220>		
<223> primer		

ggacacatat gagccaacca tcttatggcc c 31

<210> 12

<400> 11

10/18

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 12

cccagatcgt ccagattggt ctgcag

26

<210> 13

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 13

ggacacatat gagcgcacaa tccctggaag t

31

<210> 14

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

11/18

<400> 14

ggggtacctt aaggcagctt gaccacggc

29

<210>15

<211>46

<212>DNA

<213>Artificial Sequence

⟨220⟩

<223>primer

<400>15

tttttcagct ggagctcgtc gacatgcatg aacaggattt aatccc

46

<210>16

⟨211⟩39

<212>DNA

<213>Artificial Sequence

<220>

<223>primer

<400>16

ccggaattcc atatgcagat gttataaatg aattagata

39

<210>17

<211>32

<212>DNA

<213>Artificial Sequence

12/18

<220> '

<223>primer

<400>17

cggaagctta tagatggatt tttcttttt at

32

<210>18

<211>45

<212>DNA

<213>Artificial Sequence

⟨220⟩

<223>primer

<400>18

tttttgatatc gagctcgtcg acatgcatct ttggagatig atctt

45

ι,

<210> 19

<211> 5804

<212> DNA

<213> E.coli, Yarrowia lipolytica

<220>

<223> plasmid pSUT5

<400> 19

aggicattet egitactgee aaaacaccae ggtaategge cagacaccat ggacgagtat

ctgtctgact cgtcattgcc gcctttggag tacgactcca actatgagtg tgcttggatc	120
actttgacga tacattcttc gttggaggct gtgggtctga cagctgcgtt ttcggcgcgg	180
ttggccgaca acaatatcag ctgcaacgtc attgctggct ttcatcatga tcacattttt	240
gtcggcaaag gcgacgccca gagagccatt gacgttcttt ctaatttgga ccgatagccg	300
tatagtccag tctatctata agttcaacta actcgtaact attaccataa catatacttc	360
actgccccag ataaggttcc gataaaaagt tctgcagact aaatttattt cagtctcctc	420
ttcaccacca aaatgccctc ctacgaagct cgagctaacg tccacaagtc cgcctttgcc	480
gctcgagtgc tcaagctcgt ggcagccaag aaaaccaacc tgtgtgcttc tctggatgtt	540`
accaccacca aggageteat tgagettgee gataaggteg gacettatgt gtgeatgate	600
aagacccata tcgacatcat tgacgacttc acctacgccg gcactgtgct ccccctcaag	660
gaacttgctc ttaagcacgg tttcttcctg ttcgaggaca gaaagttcgc agatattggc	720
aacactgtca agcaccagta caagaacggt gtctaccgaa tcgccgagtg gtccgatatc	780
accaacgccc acggtgtacc cggaaccgga atcattgctg gcctgcgagc tggtgccgag	g 840
gaaactgtct ctgaacagaa gaaggaggac gtctctgact acgagaactc ccagtacaag	900
gagttcctgg tcccctctcc caacgagaag ctggccagag gtctgctcat gctggccgag	960
ctgtcttgca agggctctct ggccactggc gagtactcca agcagaccat tgagcttgcc	1020
cgatccgacc ccgagtttgt ggttggcttc attgcccaga accgacctaa gggcgactct	1080
gaggactggc ttattctgac ccccggggtg ggtcttgacg acaagggaga cgctctcgga	1140
cagcagtacc gaactgttga ggatgtcatg tctaccggaa cggatatcat aattgtcggc	1200
cgaggtctgt acggccagaa ccgagatcct attgaggagg ccaagcgata ccagaaggc	t 1260
ggctgggagg cttaccagaa gattaactgt tagaggttag actatggata tgtcatttaa	1320
ctgtgtatat agagagcgtg caagtatgga gcgcttgttc agcttgtatg atggtcagac	1380
gacctgtctg atcgagtatg tatgatactg cacaacctgt gtatccgcat gatctgtcca	1440
atggggcatg ttgttgtgtt tctcgatacg gagatgctgg gtacaagtag ctaatacgat	1500
tgaactactt atacttatat gaggettgaa gaaagetgae ttgtgtatga ettattetea	1560
actacatece cagteacaat accaceactg cactaceact acaceaaaac catgateaaa	1620
ccacccatgg acttcctgga ggcagaagaa cttgttatgg aaaagctcaa gagagagaag	1680
ccaagatact atcaagacat gtgtcgcaac ttcaaggagg accaagctct gtacaccgag	1740
aaacaggcta gctcgtcgtg ttcaggaact gttcgatggt tcggagagag tcgccgccca	1800

1860 gaacatacgo gcaccgatgt cagcagacag ccttattaca agtatattca agcaagtata 1920 tccgtagggt gcgggtgatt tggatctaag gttcgtactc aacactcacg agcagcttgc. 1980 ctatgttaca tccttttatc agacataaca taattggagt ttacttacac acggggtgta 2040 cctgtatgag caccacctac aattgtagca ctggtacttg tacaaagaat ttattcgtac gaatcacagg gacggccgcc ctcaccgaac cagcgaatac ctcagcggtc ccctgcagtg 2100 2160 actcaacaaa gcgatatgaa catcttgcga tggtatcctg ctgatagttt ttactgtaca 2220 aacacctgtg tagctccttc tagcattttt aagttattca cacctcaagg ggagggataa 2280 attaaataaa ttccaaaagc gaagatcgag aaactaaatt aaaattccaa aaacgaagtt ggaacacaac cccccgaaaa aaaacaacaa acaaaaaacc caacaaaata aacaaaaaca 2340 2400 aaataaatat ataactacca gtatctgact aaaagttcaa atactcgtac ttacaacaaa 2460 tagaaatgag ccggccaaaa ttctgcagaa aaaaatttca aacaagtact ggtataatta 2520. 2580 aacaacaaga tgggctcaaa actttcaact tatacgatac ataccaaata acaatttagt 2640 atttatctaa gtgcttttcg tagataatgg aatacaaatg gatatccaga gtatacacat 2700 ggatagtata cactgacacg acaattctgt atctctttat gttaactact gtgaggcatt 2760 aaatagagct tgatatataa aatgttacat ttcacagtct gaacttttgc agattaccta 2820 atttggtaag atattaatta tgaactgaaa gttgatggca tccctaaatt tgatgaaaga 2880 tgaaattgta aatgaggtgg taaaagagct acagtcgttt tgttttgaga taccatcatc 2940 tctaacgaaa tatctattaa aaatctcagt gtgatcatga gtcattgcca tcctggaaaa 3000 tgtcatcatg gctgatattt ctaactgttt acttgagata aatatatatt tacaagaact 3060 tcccttgaaa ttaatttaga tataaaatgt ttgcgggcaa gttactacga ggaataaatt 3120 atatotgttg actagaagtt atgaacattc agtatatatg cacatataat aaccaacttc 3180 ggccctttcg tctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 3240 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 3300 cgtcagcggg tgttggcggg tgtcggggct ggcttaacta tgcggcatca gagcagattg 3360 tactgagagt gcaccatacg cgcgctatag ggcgaattgg agctccaccg cggtggcggc 3420 egetetagaa etagtggate eeeeggetg eaggaatteg atateaaget tategatace gtcgacctcg aggggggcc cggtacccag cttttgtccc tgcgcgctat gcggtgtgaa 3480 ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctgcattaa tgaatcggcc 3540

aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc ctaggcaatt aacagatagt 3600 3660 ttgccggtga taattctctt aacctcccac actcctttga cataacgatt tatgtaacga 3720 aactgaaatt tgaccagata ttgttgtaaa tagaaaatct ggcttgtagg tggcaaaatc 3780 ccgtctttgt tcatcaattc cctctgtgac tactcgtcat ccctttatgt tcgactgtcg 3840 tatticttat titccataca tatgcaagtg agatgcccgt gtcctcctcg ctcactgact 3900 cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa 3960 aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgccccctg 4020 acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa 4080 4140 gataccagge gtttecect ggaageteec tegtgegete teetgtteeg accetgeege 4200 ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct caatgctcac 4260 gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac 4320 ccccettca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag tccaacccgg 4380 taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt 4440 atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac actagaagga 4500 cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct 4560 cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga 4620 ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg 4680 ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca aaaaggatct 4740 tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt 4800 aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 4860 tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg atacgggagg gettaccate tggccccagt getgcaatga taccgcgaga cccacgetca ccggctccag 4920 atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt cctgcaactt 4980 5040 tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaagt agttcgccag 5100 ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt 5160 ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca 5220 tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat 5280

16/18

cogtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta 5340

tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg ccacatagca 5400
gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct 5460
taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat 5520
cttttacttt caccagcgtt tctgggtgag caaaaaacagg aaggcaaaat gccgcaaaaa 5580
agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt 5640
gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa 5700
ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac gtctaagaaa 5760
ccattattat catgacatta acctataaaa ataggcgtat cacg 5804

<210> 20

<211> 10

<212> DNA

<213> Artificial Sequence

<220>

<223> linker DNA

<400> 20

tactctagag 10

⟨210⟩21

<211>1820

<212>DNA

<213>Candida maltosa

<220>

<221>CDS

⟨222⟩538..1413

17/18

<223>Ade1

<400>21

gatcccettc ttcaaacctt taaatgacat tgtttcgttt ctctatgttt ggtatcggtt 60 cttcttcttc ttcaaaaaaa aggggggcac tattcaaaaa aaaatattat aacagtatga 120 tttttttccc tctcccgtcg attgaggttt tttttttctc tttcgtcttg gtcttttgct 180 tttcactcca aaaatggaaa cacgcgcggc tcaactcgaa atccgtgatc aaaaaaataa 240 tcaagaatcg cattagggag acgaatatgc gttattcaaa taaaaagaca attcttttag 360 ggtagcattt cccttcaagt tcatcccaca tgtacattaa tgtcaatgat gtcgcagaag 420 ttaaattage agaagaaaaa aaaaatgtga attacteega gteaactett etteette 480 ttctttttct tctttatcac cataatcacc accaccacca ccaccaccag ctcccagatg 540 acttcaacta acttagaagg aactttccca ttgattgcca aaggtaaagt cagagatatt 600 taccaagttg acgacaacac tcttttattc gttgctactg atagaatttc cgcatacgat 660 gtgattatgt ctaatggtat cccaaataaa ggtaaaatct taaccaaatt gtctgaattc 720 tggtttgatt tcttgccaat tgaaaaccat ttaatcaaag gagacatttt ccaaaaatat 780 cctcaactag aaccatatag aaaccaattg gaaggcagat ccttacttgt tagaaaattg 840 aaattgatcc ctcttgaagt tattgttaga ggttacatca ccggttccgg ctggaaagaa 900 taccaaaaat ctaaaaccgt ccacggtatt cctattggtg atgtggttga atcacaacaa 960 atcactccta tetteacece atceactaaa geagaacaag gtgaacatga tgaaaatate 1020 accaaagaac aagctgacaa gattgttgga aaagaattat gtgatagaat tgaaaaaatt 1080 gctattgatt tgtacaccaa agccagagat tacgctgcca ctaaaggaat tattatcgct 1140 gatactaaat ttgaatttgg tttagatggt gacaacatcg ttcttgttga cgaagtttta 1200 actecagatt ettecagatt etggaatget getaaataeg aagttggtaa ateteaagae 1260 tettaegata aacaattttt gagagattgg ttaaetteta atggtgttge tggtaaagat 1320 ggtgttgcta tgcctgaaga cattgtcact gaaaccaaga gcaaatacgt tgaagcttac 1380 gaaaatttaa ctggtgacaa atggcaagaa taaattaagg atatctatta ttaaagcttt 1440 ctatttatcc caaactttcg tagtattttc tgacatgttc agatgttttt actttatctt 1500 tectgaaatt tttgatttet aaccgaetet tgeatgtage tettgataat geaacatatg 1560

18/18

cttgaccatt agcaaaactt ctacctaaat ctattttgac tctgtccaaa gtttgacctt 1620 gagctttgtg gatcgacatc gcccacgaca agatcatttg gtttgtttt atggtgggtt 1680 attggcactt ggtgcaactg atggtttaac tttggaagag gctaagaaat tgaagacttg 1740 gaatgaagaa cgtgcatctg atttcaaatt gggtgaagaa ttgacttata cttgttataa 1800 aatgtatcat gatgttgatc

1820

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/04158

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ Cl2N 15/52, Cl2Q 1/19, Cl2P 7/62			
According to	International Patent Classification (IPC) or to both nat	ional classification and IPC	
B. FIELDS	SEARCHED		
Int.	ocumentation searched (classification system followed b C1 ⁷ C12N 15/52, C12N 1/19, C12N	P 7/62	t
	ion searched other than minimum documentation to the		·
	ata base consulted during the international search (name oS/BIOSIS/CA (STN)	e of data base and, where practicable, sear	ch tenns used)
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
X	JP 10-108682 A (Rikagaku Kenkyu 28 April, 1998 (28.04.98), & EP 824148 A2 & US 598125		1-23
X Y	Timothy A. Leaf et al., "Sarccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate", Microbiology, (1996), Vol.142, No.5, pages 1169 to 1180		1 2-23
X	Toshiaki Fukui et al., "Co-exprolyhydroxyalkanoate synthase a hydratase genes of Aeromonas ca copolyester biosynthesis pathwa FEMS Microbiology Letters, (199 pages 69 to 75	1 2-23	
Furthe	or documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			ne application but cited to erlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be p when the document is a documents, such a skilled in the art family
Date of the actual completion of the international search 08 August, 2001 (08.08.01) Date of mailing of the international search report 21 August, 2001 (21.08.01)			~
Name and mailing address of the ISA/ Japanese Patent Office Author		Authorized officer	•
Facsimile No.		Telephone No.	,

	国際調査報告	国際出願番号 PCT/JP01	/04158
A. 発明の原	A. 発明の属する分野の分類(国際特許分類(IPC))		
Int. Cl' C 1	2N 15/52, C12Q 1/19, C12	P 7/62	
	「った分野」 (京歌性歌(A D C))		
·	及小限資料(国際特許分類(IPC))		·
Int. Cl' C 1	2N 15/52, C12N 1/19, C12	P 7/62	
最小限資料以外	トの資料で調査を行った分野に含まれるもの	· · ·	
		·	
国際調査で使用	目した電子データベース(データベースの名称、	調査に使用した用語)	
WP1I	OS/BIOSIS/CA (STN)		
C. 関連する	ると認められる文献		sid Sets. 3. ee
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 10-108682 A (理化学研究所) 28.4 & EP 824148 A2 & US 5981257 A	4月.1998 (28.04.98)	$1 - 2 \ 3$
X Y	Timothy A. Leaf et. al, Sarccharomyo bacterial polyhydroxybutyrate syn hydroxybutyrate. Microbiology, 199180	nthase produces poly-3-	1 2-23
区欄の続	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表された文献であって、発明の原理又は理のといるとれたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献		発明の原理又は理論 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに	
国際調査を完	国際調査を完了した日 08.08.01 国際調査報告の発送日 21.08.01		08.01
日本	の名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 深草 亜子 電話番号 03-3581-1101	

国際出願番号 PCT/JP01/04158

C (続き).	関連すると認められる文献	power series
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	Toshiaki Fukui et.al, Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escehrichia coli. FEMS Microbiolgy Letters, 1999, Vol. 170, No. 1, p. 69-75	1 2-23