Solutions to selected problems on Introduction to Topological Manifolds -John M. Lee.

Franco Zacco

Chapter 3 - New Spaces from Old

Problems

Proof. **3-1** Let M be an n-dimensional manifold with boundary, we want to show that ∂M is an (n-1)-manifold (without boundary) when endowed with the subspace topology.

We know that M is a second countable and a Hausdorff space and since ∂M is endowed with the subspace topology then it's a subspace of M hence by Proposition 3.11 (d) and (f) we know that ∂M is also second countable and Hausdorff subspace.

On the other hand, let $p \in \partial M$ then since M is a manifold with boundary there is a neighborhood $U \subseteq M$ of p which is homeomorphic to an open set $V \subseteq \mathbb{H}^n$ i.e. there is a homeomorphism $\varphi: U \to V$. Since $p \in \partial M$ then $\varphi(p) \in V \cap \partial \mathbb{H}^n$ i.e. $\varphi(p) = (x_1, ..., x_n)$ with $x_n = 0$. So let us define $\varphi|_{U \cap \partial M}: U \cap \partial M \to V \cap \partial \mathbb{H}^n$ as the restriction of φ to $U \cap \partial M$ we want to show it is a homeomorphism too. We know $\varphi|_{U \cap \partial M}$ bijective since φ is bijective and since φ is continuous then the restriction $\varphi|_{U \cap \partial M}$ is also continuous. Finally, since φ^{-1} is continuous (given that φ is a homeomorphism) then the restriction $\varphi^{-1}|_{U \cap \partial M}$ is also continuous hence $\varphi|_{U \cap \partial M}$ is a homeomorphism from $U \cap \partial M$ to $V \cap \partial \mathbb{H}^n$.

This implies that every point of ∂M has a neighborhood $U \cap \partial M$ homeomorphic to an open set $V \cap \partial \mathbb{H}^n$ in \mathbb{R}^{n-1} .

Therefore ∂M is an (n-1)-manifold without boundary.

Proof. 3-3 Let $X = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ and $Y = \mathbb{R}$, and let $\{A_i\} = \{0\} \cup \{\{1/n\} : n \in \mathbb{N}\}$ be an infinite closed cover of X. Also, let us define $f_i : A_i \to \mathbb{R}$ as $f_0(0) = 1$ and and $f_i(1/i) = 0$. We want to prove that each f_i is continuous. Let us take U = (-1, 1) for any f_i such that $i \geq 1$ we see that U is open in \mathbb{R} and $f_i^{-1}(U)$ is open in A_i . Also, if we take U = (0, 2) for f_0 we see that U is open in \mathbb{R} and $f_0^{-1}(U)$ is open in A_0 . Therefore each f_i is continuous.

Now, let us take $f: X \to \mathbb{R}$ such that $f|_{A_i} = f_i$, we want to prove f is not continuous. Let $U = (0, 2) \subset \mathbb{R}$ which is open in \mathbb{R} then $f^{-1}(U) = \{0\}$ but $\{0\}$ is not open in X.

Therefore f is not continuous and the Gluing Lemma does not need to hold when we consider an infinite closed cover.

Proof. **3-6** Let X be a topological space and let $\Delta = \{(x,x) : x \in X\} \subseteq X \times X$ be the diagonal of $X \times X$. We want to prove that X is Hausdorff if and only if Δ is closed.

- (⇒) Let $(x,y) \in X \times X \setminus \Delta$ and let X be Hausdorff then there are open sets $U_x, U_y \subseteq X$ such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \emptyset$. Then we can build an open rectangle $U_x \times U_y$ such that no point of Δ is in $U_x \times U_y$ therefore for every point of $X \times X \setminus \Delta$ there is a neighborhood which is contained in $X \times X \setminus \Delta$ which implies that Δ is closed.
- (\Leftarrow) Let Δ be a closed set then $X \times X \setminus \Delta$ is open then every point of $X \times X \setminus \Delta$ has a neighborhood contained in $X \times X \setminus \Delta$. Let $(x,y) \in X \times X \setminus \Delta$ then there is an open rectangle $U_x \times U_y \subset X \times X \setminus \Delta$ where $U_x, U_y \subset X$ are open sets such that no point of Δ is in $U_x \times U_y$ so we have two neighborhoods $x \in U_x$ and $y \in U_y$ which are disjoint i.e. $U_x \cap U_y = \emptyset$. Therefore this implies that X is Hausdorff.

 (\Rightarrow) Let $f: \coprod_{\alpha \in A} X_{\alpha} \to Y$ be continuous, we want to prove that $f|_{X_{\alpha}}$ for each $\alpha \in A$ is continuous too.

Let U be an open set of Y we know that $f^{-1}(U)$ is open in $\coprod_{\alpha \in A} X_{\alpha}$ then by the definition of disjoint union topology $f^{-1}(U) \cap X_{\alpha}$ is open in X_{α} for $\alpha \in A$. Also, we know that

$$f|_{X_{\alpha}}^{-1}(U) = \{x \in X_{\alpha} : f|_{X_{\alpha}}(x) \in Y\} = \{x \in X_{\alpha} : f(x) \in Y\}$$

and that

$$f^{-1}(U) = \{ x \in \coprod_{\alpha \in A} X_{\alpha} : f(x) \in Y \}$$

Therefore we see that $f|_{X_{\alpha}}^{-1}(U) = f^{-1}(U) \cap X_{\alpha}$ and thus $f|_{X_{\alpha}}^{-1}(U)$ is open in X_{α} which implies that $f|_{X_{\alpha}}$ is continuous.

 (\Leftarrow) Let $f|_{X_{\alpha}}: X_{\alpha} \to Y$ be continuous for each $\alpha \in A$, we want to prove that $f: \coprod_{\alpha \in A} X_{\alpha} \to Y$ is continuous too.

Let U be an open set of Y we know that $f|_{X_{\alpha}}^{-1}(U)$ is open in X_{α} for every $\alpha \in A$. Also, we know that $f|_{X_{\alpha}}^{-1}(U) = f^{-1}(U) \cap X_{\alpha}$ then by the definition of disjoint union topology, we see that $f^{-1}(U)$ must be open in $\coprod_{\alpha \in A} X_{\alpha}$ and therefore f is continuous.

Suppose now we define \mathcal{T} to be the disjoint union topology and \mathcal{T}' to be another topology with the Characteristic Property.

Invoking the Characteristic Property of \mathcal{T}' with $Y = \coprod_{\alpha \in A} X_{\alpha}$ in the disjoint union topology \mathcal{T} shows that the identity map

$$i: (\coprod_{\alpha \in A} X_{\alpha})_{\mathcal{T}'} \to (\coprod_{\alpha \in A} X_{\alpha})_{\mathcal{T}}$$

is continuous and the same happens if we take $Y = \coprod_{\alpha \in A} X_{\alpha}$ in \mathcal{T}' and we apply the Characteristic Property of \mathcal{T} so the inverse is also continuous. Therefore the two toplogies are equal.

(a) Let us define \mathcal{T}_X to be the topology on X, let $\mathcal{T}_S = \{U \cap S : U \in \mathcal{T}_X\}$ be the subspace topology on S and let \mathcal{T} be the coarsest topology on S for which $\iota_S : S \to X$ is continuous then by definition \mathcal{T} is given by $\mathcal{T} = \{\iota_S^{-1}(U) : U \in \mathcal{T}_X\}.$

We want to show that $\mathcal{T} = \mathcal{T}_S$ and this will happen if $\iota_S^{-1}(U) = U \cap S$ for all $U \in \mathcal{T}_X$.

Let $U \in \mathcal{T}_X$ then by definition $\iota_S^{-1}(U) = \{x \in S : \iota_S(x) \in U\}$ hence we have that

$$\iota_S^{-1}(U) = \{ x \in S : \iota_S(x) \in U \} = \{ x \in S : x \in U \} = U \cap S$$

Therefore $\mathcal{T} = \mathcal{T}_S$ and hence the subspace topology on S is the coarsest topology such that $\iota_S : S \to X$ is continuous.

(b) Let A be finite so we will write $\prod_{i=1}^{n} X_i$ instead of $\prod_{\alpha \in A} X_{\alpha}$. Let \mathcal{T} be a topology on $\prod_{i=1}^{n} X_i$ for which the canonical projection π_i : $\prod_{i=1}^{n} X_i \to X_i$ is continuous. Also, let \mathcal{T}_p be the product topology on $\prod_{i=1}^{n} X_i$, we want to show that $\mathcal{T}_p \subseteq \mathcal{T}$ which implies that \mathcal{T}_p is the coarsest topology where each π_i is continuous.

By definition \mathcal{T} is given by $\mathcal{T} = \bigcup_{i=1}^n \{\pi_i^{-1}(U_i) : U_i \text{ is open in } X_i\}$ so we see that

$$\pi_i^{-1}(U_i) = \{ x \in \prod_{i=1}^n X_i : \pi_i(x) \in U_i \}$$

$$= \{ x \in \prod_{i=1}^n X_i : x_i \in U_i \}$$

$$= X_1 \times ... \times U_i \times ... \times X_n$$

Also, we see that there is a collection of open set $U_i \in X_i$ such that

$$U_1 \times ... \times U_i \times ... \times U_n \subseteq X_1 \times ... \times U_i \times ... \times X_n$$

This implies that $\mathcal{T}_p \subseteq \mathcal{T}$ and therefore that \mathcal{T}_p is the coarsest topology on $\prod_{i=1}^n X_i$ where each $\pi_i : \prod_{i=1}^n X_i \to X_i$ is continuous.

(c) Let \mathcal{T} be a topology on $\coprod_{\alpha} X_{\alpha}$ for which every canonical projection $\iota_{\alpha}: X_{\alpha} \to \coprod_{\alpha} X_{\alpha}$ is continuous. Also, let \mathcal{T}_d be the disjoint union topology on $\coprod_{\alpha} X_{\alpha}$, we want to show that $\mathcal{T} \subseteq \mathcal{T}_d$ which implies that \mathcal{T}_d is the finest topology where each ι_{α} is continuous.

Let U be an open set of \mathcal{T} then by definition each $\iota_{\alpha}^{-1}(U)$ is open in X_{α} but we see that

$$\iota_{\alpha}^{-1}(U) = \{ x \in X_{\alpha} : \iota_{\alpha}(x) \in U \} = X_{\alpha} \cap U$$

Then by definition of disjoint union topology, we have that $U \subseteq \mathcal{T}_d$ which implies that $\mathcal{T} \subseteq \mathcal{T}_d$ and therefore \mathcal{T}_d is the finest topology on $\coprod_{\alpha} X_{\alpha}$ where each ι_{α} is continuous.

(d) Let $q: X \to Y$ be a surjective map and let \mathcal{T} be a topology on Y for which q is continuous. Also, let \mathcal{T}_q be the quotient topology on Y, we want to show that $\mathcal{T} \subseteq \mathcal{T}_q$ which implies that \mathcal{T}_q is the finest topology for which q is continuous.

Let U be an open set of \mathcal{T} then by definition since q is continuous in this topology $q^{-1}(U)$ is open in X. In the oposite way if $q^{-1}(U)$ is open in X then U must be open in Y since q is continuous.

But by definition of quotient topology this implies that $U \in \mathcal{T}_q$ which implies that $\mathcal{T} \subseteq \mathcal{T}_q$ and therefore \mathcal{T}_q is the finest topology on Y where q is continuous.

(b) Let f be a map that admits a continuous right inverse g. We want to show that f is a quotient map.

Let U be an open set of Y then g(U) is open in X since f is continuous. On the other hand, let $V = g(U) \subseteq X$ be an open set for some set U in Y. Then we see that f(V) = f(g(U)) = U since f admits a right inverse g which is continuous.

Therefore f is a quotient map.

(c) Let us consider $f:[0,1) \to [0,1]$ such that f(x) = x, we see that f is a topological embedding since it's injective, continuous and is a homeomorphism onto its image. Let $g:[0,1] \to [0,1)$ be the left inverse of f we want to arrive at a contradiction. We know that [0,1] is compact so if g is continuous then g([0,1]) must be compact but g([0,1]) = [0,1) is not compact, a contradiction. Therefore f has no continuous left inverse.

Let us consider now $q:[0,1]\to\mathbb{S}^1$ such that $q(s)=e^{2\pi is}$. In Example 3.66 we showed that q is a quotient map. We want to show that there is no continuous map $r:\mathbb{S}^1\to[0,1]$ such that q(r(z))=z for every $z\in\mathbb{S}^1$. From the definition of q we see that both points $0,1\in[0,1]$ are sent to $(1,0)\in\mathbb{S}^1$ but r((1,0)) cannot be both $0,1\in[0,1]$ so if we set r((1,0))=0 then we have a discontinuity at $1\in[0,1]$ and the opposite happens if we set r((1,0))=1. Therefore q doesn't have a continuous right inverse.

Proof. **3-16** Let X be the subset $(\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\}) \subseteq \mathbb{R}^2$ and let us define an equivalence relation on X by declaring $(x,0) \sim (x,1)$ if $x \neq 0$. We want to show that the quotient space $X \setminus \infty$ is locally Euclidean and second countable, but not Hausdorff.

• Let us also define two maps $f : \mathbb{R} \to \mathbb{R} \times \{0\}$ such that f(x) = (x, 0) and $g : \mathbb{R} \to \mathbb{R} \times \{1\}$ such that g(x) = (x, 1).

Then if we take a point $[(x,0)] \in X \setminus \sim$ and a neighborhood $U \subseteq X \setminus \sim$ of [(x,0)] then by definition $q^{-1}(U)$ is open and $f^{-1}(q^{-1}(U))$ is open since f is a homeomorphism hence $g \circ f$ is continuous.

On the other hand if we let $x \in \mathbb{R}$ and $U \subseteq \mathbb{R}$ a neighborhood of x then f(U) is open since f is a homeomorphism, also, q(f(U)) is also open hence $(q \circ f)^{-1}$ is continuous.

In the same way, if we take a point $[(x,1)] \in X \setminus \sim$ and a neighborhood $U \subseteq X \setminus \sim$ of [(x,1)] then by definition $q^{-1}(U)$ is open and $g^{-1}(q^{-1}(U))$ is open since g is a homeomorphism hence $g \circ g$ is continuous.

And if we let $x \in \mathbb{R}$ and $U \subseteq \mathbb{R}$ a neighborhood of x then g(U) is open since g is a homeomorphism, also, q(g(U)) is also open hence $(q \circ g)^{-1}$ is continuous as well.

Also, we see that both the map $q \circ f$ and $q \circ g$ are bijective from $\mathbb R$ to $X \setminus \sim$.

Therefore for every neighborhood in $X \setminus \sim$ there is a homeomorphism $q \circ f$ or $q \circ g$ to \mathbb{R} and hence $X \setminus \sim$ is locally Euclidean.

• Given that $X = (\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\})$ then X is second countable since it is composed of two copies of \mathbb{R} and \mathbb{R} is second countable. In particular the countable basis \mathcal{B} for X has to be the union of the countable basis of $\mathbb{R} \times \{0\}$ and the countable basis of $\mathbb{R} \times \{1\}$ which we can assume are the same.

Let us suppose we take a ball B from the countable basis of $\mathbb{R} \times \{0\}$ then $q^{-1}(q(B))$ will contain the two balls from $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \{1\}$ and hence it's open which implies that q(B) is open in $X \setminus \infty$ so we can take the set of $\mathcal{B}' = \{q(B) : B \in \mathcal{B}\}$ as a countable basis for $X \setminus \infty$ and therefore $X \setminus \infty$ is second countable.

• Let us take $[(0,0)],[(0,1)] \in X \setminus \sim$ and let us suppose there is some neighborhoods U_0 and U_1 of [(0,0)] and [(0,1)] respectively such that $U_0 \cap U_1 = \emptyset$, we want to arrive at a contradiction.

By definition $q^{-1}(U_0)$ and $q^{-1}(U_1)$ are open in X but since part of $q^{-1}(U_0)$ is in $\mathbb{R} \times \{0\}$ and part of it is in $\mathbb{R} \times \{1\}$ because of the equivalence relation between them and the same thing happens for $q^{-1}(U_1)$ we have that $q^{-1}(U_0) \cap q^{-1}(U_1) \neq \emptyset$ then there must be a point that $(x,0) \in q^{-1}(U_0)$ and $(x,0) \in q^{-1}(U_1)$ such that $q(x,0) \in U_0$ and $q(x,0) \in U_1$ and hence $U_0 \cap U_1 \neq \emptyset$, a contradiction.

Therefore $X \setminus \sim$ is not Hausdorff.