L02_ExploratoryVis

Anya Chaliotis 5/18/2019

Exploratory Visualizations

Used to:

- a. Vizualize shape and spread
- b. Find patterns in your data
- c. Locate outliers
- d. summarize the main characteristics

library(datasets) head(faithful)

```
eruptions waiting
##
         3.600
## 1
## 2
         1.800
                     54
## 3
         3.333
                     74
## 4
         2.283
                     62
                     85
         4.533
         2.883
                     55
## 6
```

plot(faithful, main='Old Faithful Eruptions', xlab='Eruptions length (min)', ylab='Wait time (min)', pc

Old Faithful Eruptions

Histograms

Show the underlying shape of continuous data. Allows to inspect data for outliers and overall spread.

hist(faithful\$waiting)

Histogram of faithful\$waiting


```
# Breaks (aka bins)
hist(faithful$waiting, plot=FALSE)$breaks

## [1] 40 45 50 55 60 65 70 75 80 85 90 95 100

# how many counts in each bin
hist(faithful$waiting, plot=FALSE)$counts

## [1] 4 22 33 24 14 10 27 54 55 23 5 1

#change size of bins
hist(faithful$waiting, main='Histogram', breaks = seq(from=40,to=100,by=1))
```


Quantile-Quantile Plots

Quantiles of the sample are plotted against quantiles of a proposed theoretical distribution. If the points fall on a straight line, this indicates that the quantiles of the sample data are consistent with the theoretical distribution quantiles.

```
x <- rnorm(300)
qqnorm(x, pch=16, cex=.5, col='blue', main='Q-Q Plot of Normal')
qqline(x)</pre>
```

Q-Q Plot of Normal

Q-Q Plot of Faithful

Faithful dataset doesn't appear to be normally distributed. It falls pretty far away from the normal distribution line.

```
qqnorm(faithful$waiting, pch=16, cex=.5,col='blue', main='Q-Q Plot for Waiting Time')
qqline(faithful$waiting)
```

Q-Q Plot for Waiting Time

Variability in Q-Q Plots

Smaller sample size of data that we know is normally distributed. Still some variability in the data, eventhough we're simulating it from a normal distribution.

```
x = rnorm(30); qqnorm(x); qqline(x)
```

Normal Q-Q Plot

As sample size increases, get closer to a true line but still not exact.

x = rnorm(100); qqnorm(x); qqline(x)

Normal Q-Q Plot

Barplots

```
library(MASS)
data("painters")
head(painters)
```

##		Composition	Drawing	Colour	Expression	School
##	Da Udine	10	8	16	3	Α
##	Da Vinci	15	16	4	14	Α
##	Del Piombo	8	13	16	7	Α
##	Del Sarto	12	16	9	8	Α
##	Fr. Penni	0	15	8	0	Α
##	Guilio Romano	15	16	4	14	A

Use the table function to create barplots

barplot(table(painters\$Composition), main='Composition Score')

Composition Score

School Score

