Praktikum z ekonometrie - Týden 7 Mixed effect models

VŠE Praha

Tomáš Formánek

Content

- Introduction
- 2 LME model example
- 3 LME model formal definition
- 4 More complex LME models

Introduction

Linear mixed model (LME) is a generalization of linear model

• Standard linear model looks like:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \varepsilon_i$$

where $1 \leq i \leq n$,

 ε_i are *iid* normally distributed and uncorrelated with regressors. β -coefficients are considered fixed unknowns that must be estimated together with σ^2 (the variance of ε).

• In a mixed model, there are multiple groups (or panels or individuals) of observations.

One or more β -coefficient can vary across groups (panels, individuals).

Introduction

- Mixed models are called "mixed", because the β -coefficients are a mix of fixed parameters and random variables
 - The terms "fixed" and "random" are being used in the statistics-biostatistics sense.
 - A fixed coefficient is an unknown constant to be estimated.
 - A random coefficient is one which varies from sample of groups to sample of groups.
- LME models can have some added complexity:
 - Correlations between different random coefficients.
 - Multiple levels of nesting withing the groups
- Random coefficients are not estimated, but they can be predicted.

LME model example

- Data:
 - London Education Authority Junior School Project dataset, 48 different schools (i) and 887 different students (j). We predict 5th-year math scores.
- We may start by simply ignoring the school grouping (*single-mean* model):

$$y_{ij} = \beta_0 + \varepsilon_{ij}, \qquad i = 1, \dots, M, \qquad j = 1, \dots, n_i, \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

where y_{ij} is the observed math5_{ij} score of j-th student at school i, β_0 is the mean math score across our population (being sampled). ε_{ij} is the individual deviation from overall mean.

In our sample, M=48 and n_i may differ among schools.

Population mean math score & the variance of ε are estimated by taking their sample counterparts.

• The school effect (differences among schools) may be incorporated in the model by allowing the mean of each school to be represented by a separate parameter (fixed effect)

$$y_{ij} = \beta_{0i} + \varepsilon_{ij}, \quad i = 1, \dots, M, \quad j = 1, \dots, n_i, \quad \varepsilon \sim N(0, \sigma^2),$$

where β_{0i} is the school-specific mean math score. ε_{ij} is the individual deviation from the school-specific mean.

- R syntax: lm(math5 ~ School-1, data=...)
- M = 48 school-specific intercepts are estimated,
- Estimated intercepts only model the specific sample of schools, while -usually- the main interest is in the population from which the sample was drawn.
- Regression does not provide an estimate of the between-school variability, which is also of central interest.

- Random effects model can solve the above problems by treating the school effects as random variations around a population mean.
- Fixed effects model can be reparametrized as:

$$y_{ij} = \beta_{0i} + \varepsilon_{ij}$$

$$y_{ij} = \frac{\beta_0}{\beta_0} + (\beta_{0i} - \frac{\beta_0}{\beta_0}) + \varepsilon_{ij}$$

• Now, the random effect u_i can replace the the fixed effect β_{0i} :

$$\beta_{0i} = \beta_0 + u_i \quad \Rightarrow \quad u_i = \beta_{0i} - \beta_0.$$

 u_i is the school-specific deviation from overall mean β_0 .

 u_i is a random variable, specific for the *i*-th school, with zero mean and unknown variance σ_u^2 .

 u_i is a random effect, because it is associated with the particular sample units (schools are selected at random from the population).

• The random effects model is given as:

$$y_{ij} = \beta_0 + u_i + \varepsilon_{ij}, \qquad u_i \sim N(0, \sigma_u^2), \qquad \varepsilon_{ij} \sim N(0, \sigma^2),$$

and we assume u_i are *iid* and independent from ε_{ij} .

- Observations in the same school share the same random effect u_i , hence they are (positively) correlated with $corr = \sigma_u^2/(\sigma_u^2 + \sigma^2)$.
- This random effects model has three parameters: β_0 , σ_u^2 and σ^2 . (regardless of M, the number of schools).
- Note that the random effect u_i "looks like" a parameter, but we are interested in estimating σ_u^2 .
- However, upon observed data (and estimated model), we do make predictions for \hat{u}_i .

• Random effects model with random intercept:

Exogenous regressors are also used in LMEs (like in LRMs). For example, math5 grades depend on math3 ($3^{\rm rd}$ year grades).

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + u_i + \varepsilon_{ij},$$
 i.e.

$$\mathtt{math5}_{ij} = \beta_0 + \beta_1 \mathtt{math3}_{ij} + u_i + \varepsilon_{ij},$$

- Intercept is random.
- Slope of the regression line for each school is fixed at β₁.
 ...math3 has a fixed effect.

• Random effects model with random intercept and slope:

If teaching is different from school to school, it would make sense to have different slopes for each of the schools.

Instead of fixed effects (using interaction terms math3:School), we use random slopes: $u_{1i} = \beta_{1i} - \beta_1$.

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + u_{0i} + u_{1i} x_{ij} + \varepsilon_{ij},$$

i.e.

$$\mathtt{math5}_{ij} = \underbrace{\beta_0 + \beta_1 \mathtt{math3}_{ij}}_{fixed} + \underbrace{u_{0i} + u_{1i} \, \mathtt{math3}_{ij}}_{random} + \varepsilon_{ij},$$

- We can test whether this extra complexity is justified.
- u_{0i} and u_{1i} are often correlated, their independence can be tested.
- Fitted values of math 5_{ij} can be produced, along with \hat{u}_{0i} and \hat{u}_{1i} .

LME model formal definition

• Linear models

$$y = X\beta + \varepsilon$$
 $\varepsilon \sim N(0, \sigma^2 I),$

• can be generalized into LME models

$$y = X\beta + Zu + \varepsilon$$
 $u \sim N(0, G)$ $\varepsilon \sim N(0, R)$,

where

X is a $(n \times k)$ matrix, k is the number of fixed effects,

Z is a $(n \times p)$ matrix, p is the number of random effects,

 ${m G}$ is a $(p \times p)$ variance-covariance matrix of the $random\ effects,$

 \boldsymbol{R} is a $(n \times n)$ variance-covariance matrix of errors.

Independence between \boldsymbol{u} and $\boldsymbol{\varepsilon}$ is assumed,

Often, $\mathbf{R} = \sigma^2 \mathbf{I}$, can be generalized for group-wise correlations, \mathbf{G} is diagonal if $random\ effects$ are mutually independent.

More complex LME models - brief outline

Different types of LME models exist:

- LME models with (multilevel) nested effects,
- LME models with crossed effects,
- Complex behavior of the error term in LME models can be addressed.
- LME models with non-Gaussian (Binary, Poisson, etc.).

LME models with (multilevel) nested effects

Multi-level model example:

- GDP_{ijt} represents individual GDP per capita measurements for: i-th regions (i = 1, ..., 9), j-th state nested within region i $(j = 1, ..., M_i)$, t-th yearly measurement at state level (t = 1990, ..., 2006). ... say, we follow a total of 48 individual states across 17 years.
- We fit GDP as a function of productivity P and unemployment U. We treat states as nested within regions, so we have 2 levels of random intercepts: one due to the regions, and another due to the state within region (random slopes can be added as well).
- $GDP_{ijt} = \beta_0 + \beta_1 P_{ijt} + \beta_2 U_{ijt} + u_i + v_{j(i)} + \varepsilon_{ijt}$.

LME models with crossed random effects

Crossed random effects example:

- Grunfeld (1958) analyzed data on 10 large U.S. corporations, collected annually from 1935 to 1954 to investigate how investment I depends on market value M and capital stock C.
- Here, we want *random effects* for a given firm and year. However, we want the year effect to be the same across all firms, i.e. not nested within firms.
- $\mathbf{I}_{it} = \beta_0 + \beta_1 \mathbf{M}_{it} + \beta_2 \mathbf{C}_{it} + u_i + v_t + \varepsilon_{it}$. where $i = 1, \dots, 10$ firms are followed over $t = 1, \dots, 20$ years.