Gandaki University

Manju Subedi

Bachelor of Information Technology BSM 102

Exercise on Functions of Several Variables

1. Find the domain of each of the following functions:

(a)
$$f(x, y, z) = \frac{3x - 4y + 2z}{\sqrt{9 - x^2 - y^2 - z^2}}$$

(b) $g(x, y, t) = \frac{\sqrt{2t - 4}}{x^2 - y^2}$

(b)
$$g(x, y, t) = \frac{\sqrt{2t - 4}}{x^2 - y^2}$$

2. Find first order partial derivatives:

(a)
$$f(x, y) = 1/(x + y)$$

(b)
$$f(x, y) = e^{(x+y+1)}$$

(c)
$$f(x, y) = e^{-x} \sin(x + y)$$

(d)
$$f(x, y) = \ln(x + y)$$

(e)
$$f(x, y) = e^{xy} \ln y$$

(f)
$$f(x, y) = \sin^2(x - 3y)$$

(g)
$$f(x, y) = x^{y}$$

(h)
$$f(x, y) = y^x$$

(i)
$$f(x,y) = \frac{1}{(x+y)}$$

(j)
$$f(x,y) = \frac{x}{(x^2 + y^2)}$$

(k)
$$f(x,y) = \frac{x+y}{xy-1}$$

(1)
$$f(x, y, z) = \frac{2xyz}{x^2 + y^2 + z^2}$$

3. Verify the mixed derivative theorem (Euler's Theorem) for the following functions.

$$(a) w = \ln(2x + 3y)$$

(b)
$$w = e^x + x \ln y + y \ln x$$

(c)
$$w = xy^2 + x^2y^3 + x^3y^4$$

(d)
$$w = x \sin y + y \sin x + xy$$

4. Find f_x , f_y , f_z from the following functions:

(a)
$$f(x, y, z) = 1 + xy^2 - 2z^2$$

(b)
$$f(x, y, z) = xy + yz + xz$$

(c)
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$

(d)
$$f(x, y, z) = \frac{1}{\sqrt{(x^2 + y^2 + z^2)}}$$

(e)
$$f(x, y, z) = \ln(x + 2y + 3z)$$

(f)
$$f(x, y, z) = yz \ln(xy)$$

(g)
$$f(x, y, z) = e^{-(x^2+y^2+z^2)}$$

(h)
$$f(x, y, z) = e^{-xyz}$$

- 5. Given $f(x, y) = x^2 + x 3xy + y^3 5$, find all points at which $f_x(x, y) = f_y(x, y) = 0$ simultaneously.
- 6. Given $f(x, y) = 2x^2 + 2xy + y^2 + 2x 3$, find all points at which $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ simultaneously.
- 7. Given $f(x, y) = y^3 3yx^2 3y^2 3x^2 + 1$, find all points on f at which $f_x(x, y) = f_y(x, y) = 0$ simultaneously.
- 8. If $z = 4y \ln x + e^{xy}$, find z_{xy} and z_{yx} .
- 9. Find all the second order partial derivatives of the functions

(a)
$$f(x, y) = x + y + xy$$

(b)
$$f(x, y) = \sin xy$$

(c)
$$g(x, y) = x^2y + \cos y + y \sin x$$

(d)
$$h(x, y) = xe^y + y + 1$$

(e)
$$r(x, y) = \ln(x + y)$$