C S 725

L perceptron $(x, y; w) = max(0, -yw^Tx)$ 0-1 LOSS
Both the perceptron loss & the bogistic loss are surrogates
LOGISTIC LOSS Lperc (PERCEPTRON LOSS) of the ywz

Convergence of the Perceptron Learner

Consider a linearly separable dataset \mathcal{D} , i.e. there exists a \mathcal{U} weight vector s.t. $y = sign(ux) + x, y \in \mathcal{D}$.

Two assumptions (without loss of generality):

- (1) Assume u is a unit vector
- 2) Assume all the x's & D lie within a Enchidean ball of radius 1 i.e., ||x|| \le 1

Define a new quantity called "MARGIN OF SEPARATION", γ $\gamma = \min_{x \in \mathcal{B}} |u^{T}x| \left[\min_{\text{hyperplane } u^{T}x = 0} \right]$

Distance of a point of from a hyperplane Pick a point h on the hyperplane $\widehat{x} - h = k \omega \Rightarrow h = \widehat{x} - k \omega$ $\widehat{w'}(\widehat{x} - k \omega) = 0 \Rightarrow k = \underline{w'x}$ $||w||^2$ Distance of & from the hyperplane = | x-h | = 10 x

Theorem of convergence: If there exists a unit vector u such
that $yu^Tx \ge \gamma + x, y \in D$, then the total number of mistakes made
by a perceptron learner is bounded by _ when trained on D.
by a perceptron learner is bounded by $\frac{1}{72}$ When trained on D. D. (Assume w is initialized to 70.)
Proof: Let us monitor the progression of two quantities; (A) Wu and B w _2.
Why these quantities? We want wintobe large but not only
The to a large w Keep track of both quantities as we iteratively
estimate W.

A) Monitor W u

Let W; be the weight vector at iteration i. $W_{i+1}^{T} u - W_{i}^{T} u = (W_{i} + yx)^{T} u - W_{i}^{T} u$ \Rightarrow $W_{i+1}^{T}u = W_{i}^{T}u + yxu$ $\Rightarrow \omega_{i,t} = \omega_i + \gamma$ Hissing $W_0 = 0 \Rightarrow W_k u \geq k\gamma$ —

(B) Monitor 11 W1/2 $||w + yx||_{2}^{2} = ||w||^{2} + y^{2}||x||^{2} + 2yw^{T}x$ $= ||w||^{2} + ||x||^{2} + 2yw^{T}x$ $\leq ||w||^2 + ||x||^2 (: yw^T x < 0)$ After kHerotians, $\|\omega_k\|^2 \leq k$ $\|\omega\|^2 + 1$ $\|R\|_2 \leq 1$

$$\begin{array}{c} \mathcal{W}_{k}^{\mathsf{T}} \mathcal{U} \geq k\gamma \longrightarrow \mathcal{O} \\ \|\mathcal{W}_{k}\|^{2} \leq k \longrightarrow \mathcal{O} \\ \|\mathcal{W}_{k}\|^{2} \leq k \longrightarrow \mathcal{O} \\ \text{Putting } \mathbb{O} \text{ and } \mathbb{O} \text{ together} \\ \mathbb{J}_{k} \geq \|\mathcal{W}_{k}\| \geq \mathcal{W}_{k}^{\mathsf{T}} \mathcal{U} \geq k\gamma \\ \Rightarrow \mathbb{J}_{k} \geq k\gamma \\ \Rightarrow \mathbb{J}_{k} \leq \mathbb{J} \\ \gamma \geq \mathbb{J}_{k} \end{array}$$

- C) is the natural pick
- => results in faster Convergence i of larger y
- results in better

Motivates SVMs (Support Vector Machines) generalization

Find the predictor that yields the largest margin [SVMs are called maxmargin classifiers]