

- **58.** Out of the following which one is not true[Orissa JEE
 - (a) $\mathbf{a}.(\mathbf{b}\times\mathbf{c})$
- (b) $(\mathbf{b} \times \mathbf{c})$.a
- (c) $(\mathbf{a} \times \mathbf{b}).\mathbf{c}$
- (d) $(a.c) \times b$
- **59.** If **a** is perpendicular to **b** and **c**, $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$, $|\mathbf{c}| = 4$ and the angle between **b** and **c** is $\frac{2\pi}{3}$, then $[\mathbf{a} \mathbf{b} \mathbf{c}]$ is equal to **[Kerala (Engg.) 2005]**
 - (a) $4\sqrt{3}$
- (b) $6\sqrt{3}$
- (c) $12\sqrt{3}$
- (d) $18\sqrt{3}$
- (e) $8\sqrt{3}$
- **60.** If **a, b, c** are non-coplanar vectors and λ is a real number then $[\lambda(\mathbf{a} + \mathbf{b}) \ \lambda^2 \mathbf{b} \ \lambda \mathbf{c}] = [\mathbf{a} \ \mathbf{b} + \mathbf{c} \ \mathbf{b}]$ for [AIEEE]
 - (a) Exactly three values of λ
 - (b) Exactly two values of λ
 - (c) Exactly one value of λ
 - (d) No value of λ
- **61.** If the vectors $2\mathbf{i} + \mathbf{j} \mathbf{k}$, $-\mathbf{i} + 2\mathbf{j} + \lambda \mathbf{k}$ and $-5\mathbf{i} + 2\mathbf{j} \mathbf{k}$ are coplanar, then the value of λ is equal **[J & K 200**]
 - (a) 13
- (b) 13/9
- (c) 13/9
- (d) 9/13
- **62.** If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three non-zero, non-coplanar vectors and

$$\mathbf{b}_1 = \mathbf{b} - \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}, \mathbf{b}_2 = \mathbf{b} + \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}, \mathbf{c}_1 = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a} - \frac{\mathbf{c} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b},$$

$$\bm{c}_2 = \bm{c} - \frac{\bm{c}.\bm{a}}{\mid \bm{a} \mid^2} \bm{a} - \frac{\bm{c}.\bm{b_1}}{\mid \bm{b_1} \mid^2} \bm{b_1} \ , \quad \bm{c}_3 = \bm{c} - \frac{\bm{c}.\bm{a}}{\mid \bm{a} \mid^2} \bm{a} - \frac{\bm{c}.\bm{b_2}}{\mid \bm{b_2} \mid^2} \bm{b_2} \ ,$$

 $\mathbf{c}_4 = \mathbf{a} - \frac{\mathbf{c.a}}{|\mathbf{a}|^2} \mathbf{a}$. Then which of the following is a set

of mutually orthogonal vectors is

- (a) $\{a, b_1, c_1\}$
- (b) $\{a, b_1, c_2\}$
- (c) $\{a, b_2, c_3\}$
- (d) $\{a, b_2, c_4\}$
- **63.** If a vector lie in the plane and then which is correct

[Orissa JEE 2005]

- (a) $[\alpha \beta \gamma] = 0$
- (b) $[\alpha \beta \gamma] = 1$
- (c) $[\alpha \beta \gamma] = 3$
- (d) $[\beta \gamma \alpha] = 1$

Vector triple product

- **1.** $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is coplanar with
 - (a) **b** and **c**
- (b) c and a
- (c) a and b
- (d) \mathbf{a} , \mathbf{b} and \mathbf{c}
- 2. If $\mathbf{u} = \mathbf{i} \times (\mathbf{a} \times \mathbf{i}) + \mathbf{j} \times (\mathbf{a} \times \mathbf{j}) + \mathbf{k} \times (\mathbf{a} \times \mathbf{k})$, then

[RPET 1989, 97; MNR 1986, 93; MP PET 1987, 98, 99, 2004; UPSEAT 2000, 02; Kerala (Engg.) 2002]

- (a) u = 0
- (b) u = i + j + k
- (c) u = 2a
- (d) $\mathbf{u} = \mathbf{a}$
- 3. If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + 3\mathbf{j} \mathbf{k}$, then $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is equal to [RPET 1989]
 - (a) 20i 3j + 7k
- (b) 20i 3j 7k

- (c) 20i + 3i 7k
- (d) None of these
- 4. If $\alpha = 2i + 3j k$, $\beta = -i + 2j 4k$ and $\gamma = i + j + k$, then $(\alpha \times \beta) \cdot (\alpha \times \gamma)$ is equal to

[MNR 1984; UPSEAT 2000; Orissa JEE 2005]

- (a) 60
- (b) 64
- (c) 74
- (d) 74
- 5. If $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{0}$, then
- [RPET 1995]
- (a) $|\mathbf{a}| = |\mathbf{b}| \cdot |\mathbf{c}| = 1$
- (b) **b**|| **c**
- (c) **a**|| **b**
- (d) **b**⊥**c**
- **6.** $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is equal to

[RPET 1995; Kurukshetra CEE 1998; MP PET 2003]

- (a) (a.c)b-(a.a)b
- (b) (a.c)a (b.c)a
- (c) (a.c)b-(a.b)c
- (d) (a.b)c (a.c)b
- 7. If $\mathbf{a} \times \mathbf{b} = \mathbf{c}$, $\mathbf{b} \times \mathbf{c} = \mathbf{a}$ and a, b, c be moduli of the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} respectively, then
 - (a) a = 1, b = c
- (b) c = 1, a = 1
- (c) b = 2, c = 2a
- (d) b = 1, c = a
- 8. If $\mathbf{a} = 3\mathbf{i} \mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{c} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$, then $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ is equal to
 - (a) 24i + 7j 5k
- (b) 7i 24j + 5k
- (c) 12i + 3j 5k
- (d) i + j 7k
- 9. $\mathbf{i} \times (\mathbf{j} \times \mathbf{k}) =$ [RPET 1988; MP PET 1997]
 - (a) 1

- (b) 0
- (c) 1
- (d) None of these
- **10.** If three unit vectors **a**, **b**, **c** are such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{\mathbf{b}}{2}$, then the vector **a** makes with **b** and **c** respectively the angles

[MP PET 1998]

- (a) $40^{\circ}, 80^{\circ}$
- (b) 45° , 45°
- (c) 30° , 60°
- (d) 90° , 60°
- **11.** Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{j}$. If \mathbf{c} is a vector such that $\mathbf{a} \cdot \mathbf{c} = |\mathbf{c}|$, $|\mathbf{c} \mathbf{a}| = 2\sqrt{2}$ and the angle between $(\mathbf{a} \times \mathbf{b})$ and \mathbf{c} is 30° , then $|(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}| =$
 - (a) $\frac{2}{3}$
- (b) -
- (c) 2
- (d) 3
- 12. $i \times (j \times k) + j \times (k \times i) + k \times (i \times j)$ equals [RPET 1999]
 - (a) **i**
- (b) **j**
- (c) **k**
- (d) 0
- **13.** $[\mathbf{b} \times \mathbf{c} \times \mathbf{a} \times \mathbf{b}]$ is equal to
- (b) 2[abc]
 - (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$
- (D) Z[**ab**
- (c) $[abc]^2$
- (d) [abc]
- **14.** Given three unit vector \mathbf{a} , \mathbf{b} , \mathbf{c} such that $\mathbf{a} \perp \mathbf{b}$ and $\mathbf{a} \mid \mid \mathbf{c}$, then $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is **[AMU 1999]**
 - (a) **a**

(b) **b**

(c) **c**

- (d) **0**
- 15. If $\mathbf{a} = \mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{b} = \mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{c} = \mathbf{i} \mathbf{j} \mathbf{k}$, then $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

[MP PET 2000]

- (a) $\mathbf{i} \mathbf{j} + \mathbf{k}$
- (b) 2i 2i
- (c) 3i j + k
- (d) 2i + 2j k
- **16.** If $\vec{A} = \mathbf{i} 2\mathbf{j} 3\mathbf{k}$, $\vec{B} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$, $\vec{C} = \mathbf{i} + 3\mathbf{j} 2\mathbf{k}$, then
 - $(\vec{A} \times \vec{B}) \times \vec{C}$ is

[MP PET 2001]

- (a) 5(-i+3j+4k)
- (b) 4(-i+3j+4k)
- (c) 5(-i-3i-4k)
- (d) 4(i + 3j + 4k)
- 17. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) =$
- [RPET 2003]

(a) 0

- (b) 2[a b c]
- (c) $\mathbf{a} + \mathbf{b} + \mathbf{c}$
- (d) 3[a b c]
- **18.** Let a.b.c three vectors be from $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$, if

[Orissa JEE 2003]

- (a) $\mathbf{b} \times (\mathbf{a} \times \mathbf{c}) = 0$
- (b) $\mathbf{a}(\mathbf{b} \times \mathbf{c}) = 0$
- (c) $\mathbf{c} \times \mathbf{a} = \mathbf{a} \times \mathbf{b}$
- (d) $\mathbf{c} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$
- **19.** If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j}$, $\mathbf{c} = \mathbf{i}$ and $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, then $\lambda + \mu =$ **IEAMCET 20031**
 - (a) 0

(b) 1

(c) 2

- (d) 3
- **20.** If the vectors \mathbf{a} and \mathbf{b} are mutually perpendicular, then $\mathbf{a} \times \{\mathbf{a} \times \{\mathbf{a} \times (\mathbf{a} \times \mathbf{b})\}\}\$ is equal to
 - (a) $|{\bf a}|^2 {\bf b}$
- (b) $|{\bf a}|^3 {\bf b}$
- (c) $|a|^4$ b
- (d) None of these
- **21.** If **a**, **b**, **c**, **d** are coplanar vectors, then $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) =$

[MP PET 1998]

- (a) $|\mathbf{a} \times \mathbf{c}|^2$
- (b) $|\mathbf{a} \times \mathbf{d}|^2$
- (c) $|\mathbf{b} \times \mathbf{c}|^2$
- (d) **0**
- **22.** $\mathbf{a} \times [\mathbf{a} \times (\mathbf{a} \times \mathbf{b})]$ is equal to
- **IAMU 20011**

- (a) $(a \times a) \cdot (b \times a)$ (c) $[\mathbf{a}.(\mathbf{a} \times \mathbf{b})]\mathbf{a}$
- (b) $\mathbf{a}.(\mathbf{b}\times\mathbf{a})-\mathbf{b}.(\mathbf{a}\times\mathbf{b})$ (d) $(a.a)(b \times a)$
- 23. Given the following simultaneous equations for vectors \mathbf{x} and \mathbf{v}

$$x + y = a$$

$$\mathbf{x} \times \mathbf{v} = \mathbf{b}$$

....(ii)

$$\mathbf{x}.\mathbf{a} = 1$$

....(iii)

Then x =, y =

[Roorkee 1994]

- (a) \mathbf{a} , $\mathbf{a} \mathbf{x}$
- (b) $\mathbf{a} \mathbf{b}$, \mathbf{b}
- (c) b, a b
- (d) None of these
- $(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}) =$

[MP PET 1997]

- (a) [**b** c a] a
- (b) [c a b] b
- (c) [a b c] c
- (d) [a c b] b

Application of vectors in three dimensional geometry

- The locus of a point equidistant from two given 1. points a and b is given by
 - (a) $[\mathbf{r} \frac{1}{2}(\mathbf{a} + \mathbf{b})]$. $(\mathbf{a} \mathbf{b}) = 0$

- (b) $[\mathbf{r} \frac{1}{2}(\mathbf{a} \mathbf{b})]$. $(\mathbf{a} + \mathbf{b}) = 0$
- (c) $[\mathbf{r} \frac{1}{2}(\mathbf{a} + \mathbf{b})] \cdot (\mathbf{a} + \mathbf{b}) = 0$
- (d) $[\mathbf{r} \frac{1}{2}(\mathbf{a} \mathbf{b})]$. $(\mathbf{a} \mathbf{b}) = 0$
- 2. If the non-zero vectors \mathbf{a} and \mathbf{b} are perpendicular to each other, then the solution of the equation $\mathbf{r} \times \mathbf{a} = \mathbf{b}$ is given by

 - (a) $\mathbf{r} = x\mathbf{a} + \frac{1}{\mathbf{a} \cdot \mathbf{a}} (\mathbf{a} \times \mathbf{b})$ (b) $\mathbf{r} = x\mathbf{b} \frac{1}{\mathbf{b} \cdot \mathbf{b}} (\mathbf{a} \times \mathbf{b})$
- (d) $\mathbf{r} = x\mathbf{b} \times \mathbf{a}$
- 3. If \mathbf{r} be position vector of any point on a sphere and a, b are respectively position vectors of the extremities of a diameter, then
 - (a) $\mathbf{r}.(\mathbf{a} \mathbf{b}) = 0$
- (b) $\mathbf{r} \cdot (\mathbf{r} \mathbf{a}) = 0$
- (c) (r+a).(r+b)=0
- (d) (r-a).(r-b)=0
- 4. Angle between the line $\mathbf{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \lambda(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and the normal to the plane $\mathbf{r}.(2\mathbf{i}-\mathbf{j}+\mathbf{k})=4$ is [MP PET 19
- (b) $\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$
- (c) $tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ (d) $cot^{-1}\left(\frac{2\sqrt{2}}{3}\right)$
- 5. If the equation of a line through a point a and parallel to vector **b** is $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where t is a parameter, then its perpendicular distance from [MP PET 1998] the point \mathbf{c} is
 - (a) $| (c b) \times a | \div | a |$
- (b) $|(c-a)\times b| \div |b|$
- (c) $|(\mathbf{a} \mathbf{b}) \times \mathbf{c}| \div |\mathbf{c}|$
- (d) $|(\mathbf{a} \mathbf{b}) \times \mathbf{c}| \div |\mathbf{a} + \mathbf{c}|$
- If $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} \mathbf{k}$ are two vectors, then the point of intersection of two lines $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ is
 - (a) $\mathbf{i} + \mathbf{j} \mathbf{k}$
- [RPET 2000] (b) $\mathbf{i} - \mathbf{j} + \mathbf{k}$
- (c) 3i + j k
- (d) 3i j + k
- 7. If \mathbf{a} , \mathbf{b} , \mathbf{c} are three non-coplanar vectors, then the vector equation $\mathbf{r} = (1 - \mathbf{p} - \mathbf{q})\mathbf{a} + \rho \mathbf{b} + \rho \mathbf{c}$ represents

[EAMCET 2003]

- (a) Straight line
- (b) Plane
- (c) Plane passing through the origin
- (d) Sphere
- The vector equation of the line joining the points [MP PET 2003] $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $-2\mathbf{j} + 3\mathbf{k}$ is
 - (a) $\mathbf{r} = t(\mathbf{i} + \mathbf{j} + \mathbf{k})$
 - (b) $\mathbf{r} = t_1(\mathbf{i} 2\mathbf{j} + \mathbf{k}) + t_2(3\mathbf{k} 2\mathbf{j})$
 - (c) $\mathbf{r} = (\mathbf{i} 2\mathbf{j} + \mathbf{k}) + t(2\mathbf{k} \mathbf{i})$
 - (d) $\mathbf{r} = t(2\mathbf{k} \mathbf{i})$
- The $r^2 + 2u_1 \cdot r + 2d_1 = 0$ spheres and
 - $\mathbf{r}^2 + 2\mathbf{u}_2 \cdot \mathbf{r} + 2\mathbf{d}_2 = 0$ cut orthogonally, if
 - (a) $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$
 - (b) $\mathbf{u}_1 + \mathbf{u}_2 = 0$

- (c) $\mathbf{u}_1 \cdot \mathbf{u}_2 = d_1 + d_2$
- (d) $(\mathbf{u}_1 \mathbf{u}_2) \cdot (\mathbf{u}_1 + \mathbf{u}_2) = \sigma_1^2 + \sigma_2^2$
- 10. A tetrahedron has vertices at O(0,0,0) , A(1,2,1), B(2,1,3) and C(-1,1,2). Then the angle between the faces OAB and ABC will be [MNR 1994; UPSEAT 2000; AIEEE 2003]

- **11.** A vector **n** of magnitude 8 units is inclined to *x*axis at 45° , y-axis at 60° and an acute angle with z-axis. If a plane passes through a point $(\sqrt{2}, -1.1)$ and is normal to \mathbf{n} , then its equation in vector form is
 - (a) $\mathbf{r}.(\sqrt{2}\mathbf{i} + \mathbf{j} + \mathbf{k}) = 4$
- (b) $\mathbf{r}.(\sqrt{2}\mathbf{i} + \mathbf{j} + \mathbf{k}) = 2$
- (c) $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 4$
- (d) None of these
- 12. The vector equation of a plane, which is at a distance of 8 unit from the origin and which is normal to the vector $2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, is
 - (a) $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} + \mathbf{k}) = 24$
- (b) $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 24$
- (c) $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 24$
- (d) None of these
- **13.** The distance of the point 2i + j k from the plane r.(i - 2i + 4k) = 9 is

- The centre of the circle given by $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 15$ and $| \mathbf{r} - (\mathbf{j} + 2\mathbf{k}) | = 4$ is
 - (a) (0, 1, 2)
- (b) (1, 3, 4)
- (c) (-1, 3, 4)
- (d) None of these
- **15.** A vector \mathbf{r} is equally inclined with the co-ordinate axes. If the tip of \mathbf{r} is in the positive octant and $|\mathbf{r}|$ = 6, then \mathbf{r} is
 - (a) $2\sqrt{3}(i j + k)$
- (b) $2\sqrt{3}(-\mathbf{i} + \mathbf{j} + \mathbf{k})$
- (c) $2\sqrt{3}(i + j k)$
- (d) $2\sqrt{3}(i + j + k)$
- **16.** The position vectors of two points P and Q are and $\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$ 3i + j + 2krespectively. The plane eguation of the through and perpendicular to PQ is
 - (a) $\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) = 28$
- (b) $\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) = 32$
- (c) $\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) + 28 = 0$ (d) None of these
- The vector equation of the plane passing through the origin and the line of intersection of the plane $\mathbf{r.a} = \lambda$ and $\mathbf{r.b} = \mu$ is
 - (a) $\mathbf{r}.(\lambda \mathbf{a} \mu \mathbf{b}) = 0$
- (b) $\mathbf{r}.(\lambda \mathbf{b} \mu \mathbf{a}) = 0$
- (c) $\mathbf{r}.(\lambda \mathbf{a} + \mu \mathbf{b}) = 0$
- (d) $\mathbf{r}.(\lambda \mathbf{b} + \mu \mathbf{a}) = 0$
- **18.** The position vectors of points A and B are and 3i + 3j + 3krespectively. The equation of a plane is $\mathbf{r} \cdot (5\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) + 9 = 0$. The points A and B
 - (a) Lie on the plane

- (b) Are on the same side of the plane
- (c) Are on the opposite side of the plane
- (d) None of these
- **19.** The vector equation of the plane through the point 2i - j - 4kand parallel to the $\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) - 7 = 0$ is
 - (a) $\mathbf{r} \cdot (4\mathbf{i} 12\mathbf{j} 3\mathbf{k}) = 0$
- (b) $\mathbf{r} \cdot (4\mathbf{i} 12\mathbf{j} 3\mathbf{k}) = 32$
- (c) $\mathbf{r} \cdot (4\mathbf{i} 12\mathbf{j} 3\mathbf{k}) = 12$ (d) None of these
- 20. The vector equation of the plane through the point (2, 1, -1) and passing through the line of intersection of the plane $\mathbf{r} \cdot (\mathbf{i} + 3\mathbf{j} - \mathbf{k}) = 0$ r.(i + 2k) = 0 is
 - (a) $\mathbf{r} \cdot (\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}) = 0$
- (b) $\mathbf{r} \cdot (\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}) = 6$
- (c) $\mathbf{r} \cdot (\mathbf{i} 3\mathbf{j} 13\mathbf{k}) = 0$
- (d) None of these
- 21. The vector equation of the plane through the point i+2j-k and perpendicular to the line of intersection of the planes $\mathbf{r} \cdot (3\mathbf{i} - \mathbf{j} + \mathbf{k}) = 1$ i + 4i - 2k = 2 is
 - (a) $\mathbf{r} \cdot (2\mathbf{i} + 7\mathbf{j} 13\mathbf{k}) = 1$
- (b) $\mathbf{r} \cdot (2\mathbf{i} 7\mathbf{j} 13\mathbf{k}) = 1$
- (c) $\mathbf{r} \cdot (2\mathbf{i} + 7\mathbf{i} + 13\mathbf{k}) = 0$
- (d) None of these
- 22. The equation of the plane containing the lines $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{a}_2$ and $\mathbf{r} = \mathbf{a}_2 + \lambda \mathbf{a}_1$ is
 - (a) $[\mathbf{r} \ \mathbf{a}_1 \ \mathbf{a}_2] = 0$
- (b) $[\mathbf{r} \ \mathbf{a}_1 \ \mathbf{a}_2] = \mathbf{a}_1 . \mathbf{a}_2$
- (c) $[\mathbf{r} \ \mathbf{a}_2 \ \mathbf{a}_1] = \mathbf{a}_1 . \ \mathbf{a}_2$
- (d) None of these
- The vector equation of the plane containing the 23. $\mathbf{r} = (\mathbf{i} + \mathbf{j}) + \lambda(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ $r = (i + j) + \mu(-i + j - 2k)$ is
 - (a) $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$
 - (b) $\mathbf{r} \cdot (\mathbf{i} \mathbf{j} \mathbf{k}) = 0$
 - (c) $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 3$
- (d) None of these
- **24.** The cartesian equation of the plane $\mathbf{r} = (1 + \lambda - \mu)\mathbf{i} + (2 - \lambda)\mathbf{j} + (3 - 2\lambda + 2\mu)\mathbf{k}$ is
 - (a) 2x + y = 5
- (b) 2x y = 5
- (c) 2x+z=5
- (d) 2x z = 5
- The length of the perpendicular from the origin to the plane passing through three non-collinear points a, b, c is

(a)
$$\frac{[abc]}{|a \times b + c \times a + b \times c|}$$

- (b) $\frac{2[abc]}{|a \times b + b \times c + c \times a|}$
- (d) None of these
- The length of the perpendicular from the origin to the plane passing through the point a and containing the line $\mathbf{r} = \mathbf{b} + \lambda \mathbf{c}$ is

(a)
$$\frac{[abc]}{|a \times b + b \times c + c \times a|}$$

(b)
$$\frac{[abc]}{|a\times b+b\times c|}$$

(c)
$$\frac{[abc]}{|b \times c + c \times a|}$$

(d)
$$\frac{[abc]}{|c \times a + a \times b|}$$

- 27. The position vector of a point at a distance of $3\sqrt{11}$ units from $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ on a line passing through the points $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ is
 - (a) 10i + 2j 5k
- (b) -8i 4j k
- (c) 8i + 4i + k
- (d) -10i 2j 5k

- **28.** The line joining the points $6\mathbf{a} 4\mathbf{b} + 4\mathbf{c}$, $-4\mathbf{c}$ and the line joining the points $-\mathbf{a} - 2\mathbf{b} - 3\mathbf{c}, \mathbf{a} + 2\mathbf{b} - 5\mathbf{c}$ intersect at
 - (a) -4**a**
- (b) 4a b c
- (c) 4**c**
- (d) None of these
- **29.** Angle between the line $\mathbf{r} = (2\mathbf{i} \mathbf{j} + \mathbf{k}) + \lambda(-\mathbf{i} + \mathbf{j} + \mathbf{k})$ and the plane $\mathbf{r}.(3\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 4$ is
 - (a) $\cos^{-1}\left(\frac{2}{\sqrt{42}}\right)$ (b) $\cos^{-1}\left(\frac{-2}{\sqrt{42}}\right)$ (c) $\sin^{-1}\left(\frac{2}{\sqrt{42}}\right)$ (d) $\sin^{-1}\left(\frac{-2}{\sqrt{42}}\right)$
- 30. The line through i+3j+2k and perpendicular to the lines $\mathbf{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} + \mathbf{k})$ and $\mathbf{r} = (2\mathbf{i} + 6\mathbf{j} + \mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ is
 - (a) $\mathbf{r} = (\mathbf{i} + 2\mathbf{j} \mathbf{k}) + \lambda(-\mathbf{i} + 5\mathbf{j} 3\mathbf{k})$
 - (b) $r = i + 3j + 2k + \lambda(i 5j + 3k)$
 - (c) $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + 5\mathbf{j} + 3\mathbf{k})$
 - (d) $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k} + \lambda(-\mathbf{i} + 5\mathbf{j} 3\mathbf{k})$
- **31.** The distance from the point -i+2j+6k to the straight line through the point (2, 3, -4) and parallel to the vector $6\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ is
 - (a) 7

(c) 9

- (d) None of these
- The position vector of the point in which the line 32. joining the points $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $3\mathbf{k} - 2\mathbf{j}$ cuts the plane through the origin and the points 4j and $2\mathbf{i} + \mathbf{k}$, is
 - (a) 6i 10j + 3k
- (b) $\frac{1}{5}(6\mathbf{i} 10\mathbf{j} + 3\mathbf{k})$
- (c) -6i + 10j 3k
- (d) None of these
- 33. The distance between the planes given by $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) + 5 = 0$ and $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) - 8 = 0$ is
 - (a) 1 *unit*
- (b) $\frac{13}{3}$ *unit*
- (c) 13 *unit*
- (d) None of these
- 34. The equation of the plane containing the line $r = i + j + \lambda(2i + j + 4k)$ is
 - (a) $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} \mathbf{k}) = 3$
- (b) $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} \mathbf{k}) = 6$
- (c) $\mathbf{r} \cdot (-\mathbf{i} 2\mathbf{j} + \mathbf{k}) = 3$
- (d) None of these
- **35.** The equation $|\mathbf{r}|^2 \mathbf{r} \cdot (2\mathbf{i} + 4\mathbf{j} 2\mathbf{k}) 10 = 0$ represents
 - (a) Circle
- (b) Plane
- (c) Sphere of radius 4
- (d) Sphere of radius 3
- (e) None of these
- **36.** The centre of the sphere $\alpha \mathbf{r} 2\mathbf{u} \cdot \mathbf{r} = \beta$, $(\alpha \neq 0)$ is

[AMU 1999]

- (a) $-\mathbf{u}/\alpha$
- (b) \mathbf{u}/α
- (c) $\alpha \mathbf{u}/\beta$
- (d) $\frac{\alpha + \beta}{\alpha}$ **u**

- 37. shortest distance between the lines $\mathbf{r} = (3\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}) + \mathbf{i}t$ and $\mathbf{r} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mathbf{j}s$ (t and s [AMU 1999] being parameters) is
 - (a) $\sqrt{21}$
- (b) $\sqrt{102}$

(c) 4

- (d) 3
- The equation of the line passing through the points $a_1 i + a_2 j + a_3 k$ and $b_1 i + b_2 j + b_3 k$ is [RPET 2002]
 - (a) $(a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) + t(b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$
 - (b) $(a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) t(b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k})$
 - (c) $a_1(1-t)\mathbf{i} + a_2(1-t)\mathbf{j} + a_3(1-t)\mathbf{k} + (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k})t$
 - (d) None of these
- distance 39. The between the line $r = 2i - 2j + 3k + \lambda(i - j + 4k)$ and plane the r.(i + 5i + k) = 5 is [AIEEE 2005]

- **40.** The image of the point with position vector $\mathbf{i} + 3\mathbf{k}$ in the plane $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 1$ is
 - (a) i + 2j + k
- (b) i 2i + k
- (c) -i 2j + k
- (d) i + 2j k
- The equation of the plane passing through the points (-1,-2,0), (2,3,5) and parallel to the line

$$r = -3j + k + \lambda(2i + 5j - k)$$
 is

[I & K 2005]

[J & K 2005]

- (a) $\mathbf{r} \cdot (-30\mathbf{i} + 13\mathbf{j} + 5\mathbf{k}) = 4$ (b) $\mathbf{r} \cdot (30\mathbf{i} + 13\mathbf{j} + 5\mathbf{k}) = 4$
- (c) $\mathbf{r} \cdot (30\mathbf{i} + 13\mathbf{j} 5\mathbf{k}) = 4$
- (d) $\mathbf{r} \cdot (30\mathbf{i} 13\mathbf{j} 5\mathbf{k}) = 4$
- **42.** The shortest distance between the lines

$$\mathbf{r}_1 = 4\mathbf{i} - 3\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} - 4\mathbf{j} + 7\mathbf{k})$$

and $\mathbf{r}_2 = \mathbf{i} - \mathbf{j} - 10\mathbf{k} + \lambda(2\mathbf{i} - 3\mathbf{j} + 8\mathbf{k})$ is

- (a) 3
- (b) 1
- (c) 2
- (d) 0
- 43. The position vector of the point where the line $\mathbf{r} = \mathbf{i} - \mathbf{j} + \mathbf{k} + t(\mathbf{i} + \mathbf{j} + \mathbf{k})$ meets the plane r.(i + j + k) = 5 is

[Kerala (Engg.) 2005]

- (a) 5i + j k
- (b) 5i + 3j 3k
- (c) 2i + j + 2k
- (d) 5i + j + k
- (e) 4i + 2j 2k
- A Plane meets the co-ordinate axes at P, Q and Rsuch that the position vector of the centroid of $\triangle PQR$ is $2\mathbf{i} - 5\mathbf{j} + 8\mathbf{k}$. Then the equation of the plane is

[J & K 2005]

- (a) $\mathbf{r} \cdot (20\mathbf{i} 8\mathbf{j} + 5\mathbf{k}) = 120$ (b) $\mathbf{r} \cdot (20\mathbf{i} 8\mathbf{j} + 5\mathbf{k}) = 1$
- (c) $\mathbf{r} \cdot (20\mathbf{i} 8\mathbf{j} + 5\mathbf{k}) = 2$
- (d) $\mathbf{r} \cdot (20\mathbf{i} 8\mathbf{j} + 5\mathbf{k}) = 20$
- 45. The line of intersection of the $\mathbf{r}.(\mathbf{i}-3\mathbf{j}+\mathbf{k})=1$ and $\mathbf{r}.(2\mathbf{i}+5\mathbf{j}-3\mathbf{k})=2$ is parallel to the vector
 - (a) -4i + 5j + 11k
- (b) 4i + 5j + 11k
- (c) $4\mathbf{i} 5\mathbf{j} + 11\mathbf{k}$
- (d) 4i 5j 11k

The equation of plane passing through a point 46. A(2.-1.3) and parallel to the vectors $\mathbf{a} = (3.0.-1)$ and $\mathbf{b} = (-3, 2, 2)$ is

[Orissa IEE 2005]

- (a) 2x-3y+6z-25=0
- (b) 2x-3y+6z+25=0
- (c) 3x-2y+6z-25=0
- (d) 3x-2y+6z+25=0
- **47.** If the position vectors of two point P and Q are respectively 9i - j + 5k and i + 3j + 5k, and the line segment PO intersects the YOZ plane at a point R. the PR: RQ is equal to
 - (a) 9:1
- (b) 1:9
- (c) -1:9
- (d) 9:1

Critical Thinking

Objective Questions

- 1. Three forces of magnitudes 1, 2, 3 dynes meet in a point and act along diagonals of three adjacent faces of a cube. The resultant force is
 - (a) 114 dyne
- (b) 6 dyne
- (c) 5 dyne
- (d) None of these
- The vectors \mathbf{b} and \mathbf{c} are in the direction of north-2. east and north-west respectively and $|\mathbf{b}| = |\mathbf{c}| = 4$. The magnitude and direction of the vector $\mathbf{d} = \mathbf{c}$ **b**, are [Roorkee 2000]
 - (a) $4\sqrt{2}$, towards north (b) $4\sqrt{2}$, towards west
 - (c) 4, towards east
- (d) 4, towards south
- 3. If \mathbf{a} , \mathbf{b} and \mathbf{c} are unit vectors, then
 - $|{\bf a}-{\bf b}|^2 + |{\bf b}-{\bf c}|^2 + |{\bf c}-{\bf a}|^2$ does not exceed

[IIT Screening 2001]

(a) 4

(b) 9

- (c) 8
- (d) 6
- The vectors $\overrightarrow{AB} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{AC} = 5\mathbf{i} 5\mathbf{j} + 2\mathbf{k}$ 4 are the sides of a triangle ABC. The length of the median through A is [UPSEAT 2004]
 - (a) $\sqrt{13}$ unit
- (b) $2\sqrt{5}$ unit
- (c) 5 *unit*
- (d) 10 unit
- Let the value of $\mathbf{p} = (x+4y)\mathbf{a} + (2x+y+1)\mathbf{b}$ and 5. $\mathbf{q} = (y-2x+2)\mathbf{a} + (2x-3y-1)\mathbf{b}$, where **a** and **b** are non-collinear vectors. If 3p = 2q, then the value of [RPET 1984; MNR 1984] x and y will be
 - (a) -1, 2
- (b) 2. 1
- (c) 1, 2
- (d) 2, 1\
- The points D, E, F divide BC, CA and AB of the 6. triangle ABC in the ratio 1:4,3:2 and 3:7respectively and the point K divides AB in the ratio 1:3, then $(\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}) : \overrightarrow{CK}$ is equal to
- (b) 2:5
- (c) 5:2
- (d) None of these
- 7. If two vertices of a triangle are $\mathbf{i} - \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$, then the third vertex can be
 - (a) i + k
- (b) $\mathbf{i} 2\mathbf{j} \mathbf{k}$
- (c) $\mathbf{i} \mathbf{k}$
- (d) $2\mathbf{i} \mathbf{j}$

- (e) All the above
- 8. If a of magnitude 50 is collinear with the vector $\mathbf{b} = 6\mathbf{i} - 8\mathbf{j} - \frac{15\mathbf{k}}{2}$, and makes an acute angle with the positive direction of z-axis, then the vector a is equal to

[Pb. CET 2004]

- (a) 24i 32j + 30k
- (b) -24i + 32j + 30k
- (c) 16i 16j 15k
- (d) -12i+16j-30k
- 9. If three non-zero vectors are $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$. If \mathbf{c} is the unit vector perpendicular to the vectors a and b

and the angle between **a** and **b** is $\frac{\pi}{6}$, then $\begin{vmatrix} 1 & 1 & 1 \\ b_1 & b_2 & b_3 \end{vmatrix}$ [IIT 1986]

(a) 0

(b)
$$\frac{3(\Sigma a_1^2)(\Sigma b_1^2)(\Sigma c_1^2)}{4}$$

(c) 1

(d)
$$\frac{(\Sigma a_1^2)(\Sigma b_1^2)}{4}$$

- Let the unit vectors **a** and **b** be perpendicular and the unit vector \mathbf{c} be inclined at an angle to both **a** and **b**. If $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma (\mathbf{a} \times \mathbf{b})$, then
 - (a) $\alpha = \beta = \cos\theta$, $\gamma^2 = \cos 2\theta$
 - (b) $\alpha = \beta = \cos\theta$, $\gamma^2 = -\cos 2\theta$
 - (c) $\alpha = \cos\theta$, $\beta = \sin\theta$, $\gamma^2 = \cos 2\theta$
 - (d) None of these
- The vector $\mathbf{a} + \mathbf{b}$ bisects the angle between the vectors a and b, if
 - (a) | a | = | b |
 - (b) $|\mathbf{a}| = |\mathbf{b}|$ or angle between \mathbf{a} and \mathbf{b} is zero
 - (c) $| \mathbf{a} | = m | \mathbf{b} |$
 - (d) None of these
- **12.** The points O, A, B, C, D are such that $\overrightarrow{OA} = \mathbf{a}$. $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = 2\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{OD} = \mathbf{a} - 2\mathbf{b}$. If $|\mathbf{a}| = 3|\mathbf{b}|$, then the angle between \overrightarrow{BD} and \overrightarrow{AC} is

- (d) None of these
- **13.** If $\vec{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\vec{B} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\vec{C} = 3\mathbf{i} + \mathbf{j}$, then the value of t such that $\vec{A} + t\vec{B}$ is at right angle to vector \vec{C} , is

[RPET 2002]

- (a) 2
- (b) 4

- (c) 5
- (d) 6
- Let $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j}$ and \mathbf{c} be two vectors perpendicular to each other in the xy-plane. All vectors in the same plane having projections 1 and 2 along b and c respectively, are given by

[IIT 1987]

(a)
$$2\mathbf{i} - \mathbf{j}, \frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$$

(a)
$$2\mathbf{i} - \mathbf{j}$$
, $\frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$ (b) $2\mathbf{i} + \mathbf{j}$, $-\frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$

(c)
$$2\mathbf{i} + \mathbf{j}, -\frac{2}{5}\mathbf{i} - \frac{11}{5}$$

(c)
$$2\mathbf{i} + \mathbf{j}, -\frac{2}{5}\mathbf{i} - \frac{11}{5}\mathbf{j}$$
 (d) $2\mathbf{i} - \mathbf{j}, -\frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$

15. Let $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$ be three vectors. A vector in the plane of **b** and **c** whose projection on **a** is of magnitude $\sqrt{2/3}$ is

[IIT 1993; Pb. CET 2004]

(a)
$$2i + 3j - 3k$$

(b)
$$2i + 3j + 3k$$

(c)
$$-2i - j + 5k$$

(d)
$$2i + j + 5k$$

16. A vector **a** has components 2p and 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If a has components *p*+1 and 1 with respect to the new system, then

(a)
$$p = 0$$

(b)
$$p=1 \text{ or } -\frac{1}{3}$$

(c)
$$p = -1$$
 or $\frac{1}{3}$

(d)
$$p = 1$$
 or -1

17. If u = 2i + 2j - k and v = 6i - 3j + 2k, then a unit vector perpendicular to both \mathbf{u} and \mathbf{v} is

(b)
$$\frac{1}{\sqrt{17}} \left(\frac{1}{5} \mathbf{i} - 2\mathbf{j} - \frac{18}{5} \mathbf{k} \right)$$

(c)
$$\frac{1}{\sqrt{473}}$$
 (7**i** – 10**j** – 18**k**) (d) None of these

- **18.** If a = 2i + k, b = i + j + k and c = 4i 3j + 7k. $\mathbf{d} \times \mathbf{b} = \mathbf{c} \times \mathbf{b}$ and $\mathbf{d} \cdot \mathbf{a} = 0$, then \mathbf{d} will be **[IIT 1990]**

(a)
$$i + 8j + 2k$$

(b)
$$i - 8j + 2k$$

(c)
$$-i + 8i - k$$

(d)
$$-i - 8i + 2k$$

19. If $\mathbf{a} \times \mathbf{r} = \mathbf{b} + \lambda \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{r} = 3$, where $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{b} = -\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, then \mathbf{r} and are equal to

(a)
$$\mathbf{r} = \frac{7}{6}\mathbf{i} + \frac{2}{3}\mathbf{j}, \ \lambda = \frac{6}{5}$$

(a)
$$\mathbf{r} = \frac{7}{6}\mathbf{i} + \frac{2}{3}\mathbf{j}$$
, $\lambda = \frac{6}{5}$ (b) $\mathbf{r} = \frac{7}{6}\mathbf{i} + \frac{2}{3}\mathbf{j}$, $\lambda = \frac{5}{6}$

(c)
$$\mathbf{r} = \frac{6}{7}\mathbf{i} + \frac{2}{3}\mathbf{j}$$
, $\lambda = \frac{6}{5}$ (d) None of these

- **20.** Let the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} be such that $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0$. Let P_1 and P_2 be planes determined by pair of vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , \mathbf{d} respectively. Then the angle between P_1 and P_2 is [IIT Screening 2000; MP PET 2004]
 - (a) 0°

(c) $\frac{\pi}{2}$

- **21.** If a = i + j + k, $a \cdot b = 1$ and $a \times b = j k$, then b = j k

[IIT Screening 2004]

(b)
$$\mathbf{i} - \mathbf{j} + \mathbf{k}$$

The position vectors of the vertices of a 22. quadrilateral *ABCD* are **a,b,c** and **d** respectively.

Area of the quadrilateral formed by joining the middle points of its sides is

[Roorkee 2000]

(a)
$$\frac{1}{4}$$
 | $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}$ |

(b)
$$\frac{1}{4} |\mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{a}|$$

(c)
$$\frac{1}{4} |\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}|$$

(d)
$$\frac{1}{4} |\mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{b}|$$

- **23.** The moment about the point M(-2,4,-6) of the force represented in magnitude and position by \overrightarrow{AB} where the points A and B have the coordinates (1, 2, -3) and (3, -4, 2) respectively, is
 - (a) 8i 9j 14k

(b)
$$2i - 6j + 5k$$

(c)
$$-3i + 2j - 3k$$

(d)
$$-5i + 8j - 8k$$

24. If the vectors $a\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} + b\mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} + d\mathbf{k}$ $(a \neq b \neq c \neq 1)$ are coplanar, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ [BIT Ranchi 1988; RPET

IIT 1987; DCE 2001; MP PET 2004; Orissa JEE 2005]

(b)
$$-\frac{1}{2}$$

(c)
$$\frac{1}{2}$$

- **25.** If $\alpha(\mathbf{a} \times \mathbf{b}) + \beta(\mathbf{b} \times \mathbf{c}) + \gamma(\mathbf{c} \times \mathbf{a}) = \mathbf{0}$ and at least one of the numbers α , β and γ is non-zero, then the vectors a, b and c are
 - (a) Perpendicular
- (b) Parallel
- (c) Coplanar
- (d) None of these
- 26. The volume of the tetrahedron, whose vertices are given by the vectors -i+j+k, i-j+k and $\mathbf{i} + \mathbf{j} - \mathbf{k}$ with reference to the fourth vertex as origin, is

(a)
$$\frac{5}{3}$$
 cubic unit

(a)
$$\frac{5}{3}$$
 cubic unit (b) $\frac{2}{3}$ cubic unit

(c)
$$\frac{3}{5}$$
 cubic unit (d) None of these

- 27. Let $\mathbf{a} = \mathbf{i} \mathbf{j}$, $\mathbf{b} = \mathbf{j} \mathbf{k}$, $\mathbf{c} = \mathbf{k} \mathbf{i}$. If \mathbf{d} is a unit vector such that $\mathbf{a} \cdot \hat{\mathbf{d}} = 0 = [\mathbf{b} \cdot \hat{\mathbf{d}}]$, then $\hat{\mathbf{d}}$ is equal to [IIT 1995]

(a)
$$\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{2}}$$

(a)
$$\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{3}}$$
 (b) $\pm \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$

(c)
$$\pm \frac{i+j-2k}{\sqrt{6}}$$

28. The value of 'a' so that the volume of parallelopiped formed by $\mathbf{i} + a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ ai + k becomes minimum is

[IIT Screening 2003]

- (d) $\sqrt{3}$
- If \boldsymbol{b} and \boldsymbol{c} are any two non-collinear unit vectors $(\mathbf{a}.\mathbf{b})\mathbf{b} + (\mathbf{a}.\mathbf{c})\mathbf{c} + \frac{\mathbf{a}.(\mathbf{b} \times \mathbf{c})}{|\mathbf{b} \times \mathbf{c}|}(\mathbf{b} \times \mathbf{c}) =$

[IIT 1996]

(a) **a**

(b) **b**

(c) **c**

- (d) **0**
- **30.** If **a**, **b**, **c** are non-coplanar unit vectors such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{\mathbf{b} + \mathbf{c}}{\sqrt{2}}$, then the angle between \mathbf{a} and \mathbf{b} is

[IIT 1995]

- (a) $\frac{\pi}{4}$
- (b) $\frac{\pi}{2}$
- (c) $\frac{3\pi}{}$
- (d) π
- **31.** $[(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c})(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$
 - (a) $[a b c]^2$
- (b) $[a b c]^3$
- (c) $[a b c]^4$
- (d) None of these
- Unit vectors ${\boldsymbol a},\,{\boldsymbol b}$ and ${\boldsymbol c}$ are coplanar. A unit vector 32. to $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{1}{3} \mathbf{k}$ and the angle

between \mathbf{a} and \mathbf{b} is 30°, then \mathbf{c} is

[Roorkee Qualifying 1998]

- (a) $\frac{(i-2j+2k)}{3}$
- (c) $\frac{(-i+2j-2k)}{2}$
- (d) $\frac{(-\mathbf{i}+2\mathbf{j}+\mathbf{k})}{2}$
- **33.** The radius of the circular section of the sphere $|{\bf r}| = 5$ by the plane ${\bf r} \cdot ({\bf i} + {\bf j} + {\bf k}) = 3\sqrt{3}$ is
 - (a) 1

(b) 2

(c) 3

- (d) 4
- **34.** If \mathbf{x} is parallel to \mathbf{y} and \mathbf{z} where $\mathbf{x} = 2\mathbf{i} + \mathbf{j} + \alpha \mathbf{k}$, $\mathbf{y} = \alpha \mathbf{i} + \mathbf{k}$ and $\mathbf{z} = 5\mathbf{i} - \mathbf{j}$, then α is equal to [] & K 200
 - (a) $\pm \sqrt{5}$
- (b) $\pm \sqrt{6}$
- (c) $\pm \sqrt{7}$
- (d) None of these
- The vector **c** directed along the internal bisector of the angle between the vectors $\mathbf{a} = 7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}$ and **b** = -2i - j + 2k with $|c| = 5\sqrt{6}$, is
 - (a) $\frac{5}{3}(\mathbf{i} 7\mathbf{j} + 2\mathbf{k})$
 - (b) $\frac{5}{3}(5\mathbf{i} + 5\mathbf{j} + 2\mathbf{k})$
 - (c) $\frac{5}{3}$ (**i** + 7**j** + 2**k**)

(d)
$$\frac{5}{3}(-5\mathbf{i} + 5\mathbf{j} + 2\mathbf{k})$$

- **36.** The distance of the point $B(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ from the line which is passing through A(4i + 2j + 2k) and which is parallel to the vector $\vec{C} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ is
 - (a) 10
- (b) $\sqrt{10}$
- (c) 100
- (d) None of these
- 37. Let a, b, c are three non-coplanar vectors such

$$r_1 = a - b + c$$
, $r_2 = b + c - a$, $r_3 = c + a + b$,

$$r = 2a - 3b + 4c$$
. If

 $\mathbf{r} = \lambda_1 \mathbf{r}_1 + \lambda_2 \mathbf{r}_2 + \lambda_3 \mathbf{r}_3$, then

- (a) $\lambda_1 = 7$
- (b) $\lambda_1 + \lambda_3 = 3$
- (c) $\lambda_1 + \lambda_2 + \lambda_3 = 4$
 - (d) $\lambda_3 + \lambda_2 = 2$
- **38.** Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$ and a unit vector \mathbf{c} be coplanar. If \mathbf{c} is perpendicular to \mathbf{a} , then \mathbf{c} =

[IIT 1999; Pb. CET 2003; DCE 2005]

- (a) $\frac{1}{\sqrt{2}}(-j + k)$
- (b) $\frac{1}{\sqrt{3}}(-i-j-k)$
- (c) $\frac{1}{\sqrt{5}}(\mathbf{i} 2\mathbf{j})$ (d) $\frac{1}{\sqrt{3}}(\mathbf{i} \mathbf{j} \mathbf{k})$
- **39.** Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector \mathbf{x} satisfies $\mathbf{p} \times \{(\mathbf{x} - \mathbf{q}) \times \mathbf{p}\} + \mathbf{q} \times \{(\mathbf{x} - \mathbf{r}) \times \mathbf{q}\} + \mathbf{r} \times \{(\mathbf{x} - \mathbf{p}) \times \mathbf{r}\} = 0$ then \mathbf{x} is given by [IIT 1997 Cancelled]
 - (a) $\frac{1}{2}$ (**p**+**q**-2**r**)
 - (b) $\frac{1}{2}(\mathbf{p} + \mathbf{q} + \mathbf{r})$
 - (c) $\frac{1}{3}(\mathbf{p} + \mathbf{q} + \mathbf{r})$
 - (d) $\frac{1}{3}(2\mathbf{p}+\mathbf{q}-\mathbf{r})$
- **40.** The point of intersection of $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$, where $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{k}$ is
 - (a) 3i + j k
- (b) 3i k
- (c) 3i + 2j + k
- (d) None of these

swers

Modulus of vector, Algebra of vectors

1	a	2	d	3	d	4	a	5	c
6	c	7	b	8	d	9	c	10	c
11	a	12	b	13	b	14	a	15	d

817									
16	a	17	a	18	c	19	b	20	d
21	b	22	a	23	c	24	c	25	b
26	b	27	b	28	b	29	b	30	c
31	b	32	d	33	d	34	c	35	c
36	c	37	d	38	c	39	b	40	b
41	d	42	c	43	b	44	b	45	c
46	d	47	d	48	a	49	c	50	b
51	c	52	b	53	a	54	a	55	b
56	c	57	b	58	a	59	a	60	a
61	b	62	a	63	d	64	b	65	b
66	d	67	a	68	b	69	c	70	d
71	b	72	a	73	a	74	a	75	b
76	b	77	d	78	b	79	c	80	c
81	a	82	c	83	a	84	b	85	a
86	a	87	a	88	c	89	d	90	c
91	a	92	a	93	d	94	d	95	d
96	a	97	a	98	d	99	a	100	c
101	c	102	c	103	d	104	b	105	a
106	d	107	b	108	d	109	c	110	c
111	a	112	a	113	c	114	b	115	c
116	a	117	c	118	a	119	a		

Scalar or Dot product of two vectors and its applications

1	a	2	d	3	c	4	b	5	c
6	c	7	a	8	c	9	d	10	b
11	d	12	a	13	a	14	d	15	d
16	b	17	d	18	b	19	c	20	c
21	b	22	d	23	b	24	c	25	c
26	a	27	c	28	d	29	a	30	a
31	d	32	c	33	d	34	a	35	a
36	a	37	d	38	a	39	a	40	d
41	c	42	c	43	a	44	b	45	c
46	b	47	b	48	b	49	b	50	b
51	d	52	b	53	a	54	d	55	d
56	b	57	b	58	c	59	c	60	b
61	c	62	d	63	c	64	d	65	b
66	a	67	a	68	b	69	a	70	a
71	a	72	b	73	d	74	d	75	c
76	b	77	b	78	c	79	b	80	a
81	a	82	c	83	c	84	a,c,	85	d

							d		
86	d	87	d	88	a	89	c	90	c
91	d	92	a	93	b	94	b	95	b
96	b	97	b	98	c	99	a	100	b
101	a	102	a	103	a	104	a	105	c
106	d	107	c	108	b	109	c	110	a
111	b	112	c	113	b	114	d	115	d

Vector or Cross product of two vectors and its applications

1 d 2 c 3 b 4 a 5 c 6 c 7 b 8 c 9 b 10 d 11 a 12 c 13 b 14 a 15 c 16 a,c 17 b 18 a 19 c 20 d 21 a 22 c 23 c 24 c 25 a 26 d 27 b 28 a 29 c 30 d 31 b 32 c 33 a 34 b 35 b 36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53										
11 a 12 c 13 b 14 a 15 c 16 a,c 17 b 18 a 19 c 20 d 21 a 22 c 23 c 24 c 25 a 26 d 27 b 28 a 29 c 30 d 31 b 32 c 33 a 34 b 35 b 36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63<	1	d	2	c	3	b	4	a	5	c
16 a,c 17 b 18 a 19 c 20 d 21 a 22 c 23 c 24 c 25 a 26 d 27 b 28 a 29 c 30 d 31 b 32 c 33 a 34 b 35 b 36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68<	6	c	7	b	8	c	9	b	10	d
21 a 22 c 23 c 24 c 25 a 26 d 27 b 28 a 29 c 30 d 31 b 32 c 33 a 34 b 35 b 36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 <td>11</td> <td>a</td> <td>12</td> <td>c</td> <td>13</td> <td>b</td> <td>14</td> <td>a</td> <td>15</td> <td>c</td>	11	a	12	c	13	b	14	a	15	c
26 d 27 b 28 a 29 c 30 d 31 b 32 c 33 a 34 b 35 b 36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 <td>16</td> <td>a,c</td> <td>17</td> <td>b</td> <td>18</td> <td>a</td> <td>19</td> <td>c</td> <td>20</td> <td>d</td>	16	a,c	17	b	18	a	19	c	20	d
31 b 32 c 33 a 34 b 35 b 36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 <td>21</td> <td>a</td> <td>22</td> <td>c</td> <td>23</td> <td>c</td> <td>24</td> <td>c</td> <td>25</td> <td>a</td>	21	a	22	c	23	c	24	c	25	a
36 b 37 c 38 a 39 b 40 c 41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	26	d	27	b	28	a	29	c	30	d
41 b 42 d 43 a 44 a 45 c 46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	31	b	32	c	33	a	34	b	35	b
46 b 47 b 48 b 49 a 50 b 51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	36	b	37	c	38	a	39	b	40	c
51 c 52 c 53 a 54 c 55 b 56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	41	b	42	d	43	a	44	a	45	c
56 b 57 a 58 d 59 b 60 b 61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	46	b	47	b	48	b	49	a	50	b
61 b 62 b 63 c 64 c 65 b 66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	51	c	52	c	53	a	54	c	55	b
66 d 67 c 68 c 69 c 70 c 71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	56	b	57	a	58	d	59	b	60	b
71 c 72 b 73 b 74 c 75 d 76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	61	b	62	b	63	c	64	c	65	b
76 a 77 a 78 a 79 d 80 c 81 d 82 b 83 b 84 d 85 a	66	d	67	c	68	c	69	c	70	c
81 d 82 b 83 b 84 d 85 a	71	c	72	b	73	b	74	c	75	d
	76	a	77	a	78	a	79	d	80	c
86 c 87 c 88 d	81	d	82	b	83	b	84	d	85	a
	86	c	87	c	88	d				

Scalar triple product and their applications

1	a	2	b	3	c	4	c	5	a
6	d	7	d	8	a	9	a	10	c
11	b	12	c	13	a	14	b	15	d
16	c	17	a	18	a	19	b	20	d
21	b	22	d	23	a	24	c	25	d
26	b	27	c,d	28	c	29	c	30	d
31	c	32	a,c	33	b	34	b	35	c
36	b	37	a	38	b	39	a	40	d
41	d	42	c	43	b	44	b	45	c
46	a	47	d	48	d	49	b	50	d
51	c	52	b	53	c	54	c	55	d
56	c	57	c	58	d	59	c	60	d

61 c 62 b 63 a

Vector triple product

1	a	2	c	3	a	4	d	5	b
6	c	7	d	8	a	9	b	10	d
11	b	12	d	13	c	14	b	15	b
16	a	17	a	18	a	19	a	20	c
21	d	22	d	23	d	24	c		

Application of vectors in three dimensional geometry

1	a	2	a	3	d	4	a	5	b
6	c	7	b	8	c	9	c	10	a
11	b	12	b	13	a	14	b	15	d
16	c	17	b	18	c	19	b	20	a
21	b	22	a	23	b	24	c	25	a
26	c	27	b	28	d	29	d	30	d
31	a	32	b	33	b	34	a	35	c
36	d	37	c	38	c	39	d	40	c
41	a	42	d	43	b	44	a	45	b
46	a	47	d						

Critical Thinking Questions

1	c	2	b	3	b	4	c	5	b
6	b	7	e	8	b	9	d	10	b
11	b	12	d	13	c	14	d	15	a,c
16	b	17	b	18	d	19	b	20	a
21	a	22	c	23	a	24	d	25	c
26	b	27	c	28	c	29	a	30	c
31	c	32	a,c	33	d	34	c	35	a
36	b	37	b,c	38	a	39	b	40	a