Lesson 7: Economic Growth

Contents

	0.1	What is Economic Growth?	1
1	Cha	apter Six: Solow Growth Model	1
	1.1	Notation	1
	1.2	Big Finding of Solow Model	1
	1.3	Steady-State of Investment	2
	1.4	Per-Worker Production Function	2
	1.5	Steady-State of Consumption	3
	1.6	Reacing the Steady-State	5

What is Economic Growth? 0.1

Economic growth is an increase in living standards, which has traditionally been measured using Real GDP per capita.

Chapter Six: Solow Growth Model 1

1.1 Notation

- L_t Number of workers
- n growth rate of work force
 - population growth rate
- K_t capital stock
- δ depreciation rate
- Y_t output (GDP)
- \bullet C_t consumption
- I_t gross investment

$$-C_t = Y_t - I_t$$

- $y_t = \frac{Y_t}{L_t}$ ouput per worker $c_t = \frac{C_t}{L_t}$ consumption per worker
- $k_t = \frac{\ddot{K_t}}{L_t}$ capital per worker (capital-labor ratio)
- $i_t = \frac{I_t}{L_t}$ investment per worker

Big Finding of Solow Model

In the solow model, if the is no productivity growth (an increase in TFP A), then the economy reaches a steady state. At a steady state yt, kt, and ct are all constant while Y, K, and C will grow at the rate n (population growth rate).

1.3 Steady-State of Investment

I_t (Investment) serves two main purposes:

- 1. Expand the size of capital stock (K_t)
- 2. Replace depreciated capital (δK_t)

Since in steady state we know that capital stock K_t will grow at the rate n, we can conclude that $I_t = nK_t + \delta K_t$, which brings per worker steady state of investment to:

$$i = (n + \delta)k$$

1.4 Per-Worker Production Function

Recall that we stated Y = AF(K, L). We can add the time aspect in to get $Y_t = AF(K_t, L_t)$. Now let's find the per-worker equation:

$$\frac{Y_t}{L_t} = \frac{AF(K_t, L_t)}{L_t}$$

$$\frac{Y_t}{L_t} = A \frac{1}{L_t} F(K_t, L_t)$$

From here, if the function $F(K_t, L_t)$ has constant return to scales we can conclude:

$$\frac{Y_t}{L_t} = AF(\frac{K_t}{L_t}, \frac{L_t}{L_t})$$

Which in our notation is

$$y_t = Af(k_t)$$

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Per worker Production function

1.5 Steady-State of Consumption

We know two things:

$$1. C_t = Y_t - I_t$$

2.
$$I_t = (n + \delta)K_t$$
 at steady state

So we can conclude that $C_t = Y_t - (n + \delta)K_t$ and per worker we get:

$$c = y - (n + \delta)k$$

$$c = Af(k) - (n+\delta)k$$

If capital increases what happens to production?

- If k increases, then f(k) increases, but at a decreasing rate, so c (consmumption increases)
- If k increases, then $(n + \delta)k$ increases, but at a rate of $(n + \delta)$, so c (consumption decreases)

What happens if we try to maximize consumption? (not related to steady state)

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Steady State investment vs production


```
data$c <- data$y_t - data$i

data %>%
    ggplot(aes(x = k_t, y = c)) +
    geom_smooth() +
    xlab("Capital-Labor ratio") +
    ylab("Consumption per worker") +
    ggtitle("Consumption per worker (Diff of production and steady invest)") +
    scale_x_continuous(limits = c(0, 125))
```

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Warning: Removed 150 rows containing non-finite values (stat_smooth).

The maximum of consumption happens at the value of k with the biggest difference of y and $(n + \delta)k$. Consumption comes back down to zero where production is equal to $(n + \delta)k$.

1.6 Reacing the Steady-State