Calcul matriciel

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , m, n, p, q, r sont des entiers naturels.

On note
$$\delta_{i,j} = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$$
 (symbole de Kronecker)

I. Opérations sur les matrices

1°) Matrice

 $\begin{array}{ll} \textit{D\'ef}: & \text{On appelle matrice de type } (n,p) \text{ (pour } n \text{ lignes et } p \text{ colonnes) \`a coefficients dans } \mathbb{K} \text{ tout famille} \\ & A = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p} \text{ d'\'el\'ements de } \mathbb{K} \text{ .} \end{array}$

Une telle matrice est généralement représentée sous la forme d'un tableau à $\,n\,$ lignes et $\,p\,$ colonnes :

$$A = (a_{i,j})_{1 \le i \le n, 1 \le j \le p} = egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \ a_{2,1} & a_{2,2} & \dots & a_{2,p} \ dots & dots & dots \ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix}.$$

 $a_{i,j}$ est appelé coefficient d'indice (i,j) de la matrice A, il est positionné à la $i^{\,\mathrm{ème}}$ ligne et $j^{\,\mathrm{ème}}$ colonne de A. On note $M_{n,p}(\mathbb{K})$ l'ensemble des matrices de type (n,p) à coefficients dans \mathbb{K} .

Convention:

Le 1^{er} indice est l'indice de ligne (souvent noté i).

Le 2^{nd} indice est l'indice de colonne (souvent noté j).

Cas particuliers:

Pour n=p=1 : les matrices de $M_{1,1}(\mathbb{K})$ sont appelées matrices (uni-) coefficient.

Elles sont de la forme (x).

Il est usuel d'identifier ces matrices avec l'élément x de \mathbb{K} qui leur correspond.

Pour n quelconque et p=1: les matrices de $M_{n,1}(\mathbb{K})$ sont appelées matrices (uni-) colonnes.

Elles sont de la forme :
$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
.

Il est usuel d'identifier cette matrice colonne avec le n uplet (a_1, \ldots, a_n) .

Pour n=1 et p quelconque : les matrices de $M_{1,p}(\mathbb{K})$ sont appelées matrices (uni-) lignes.

Elles sont de la forme : $(a_1 \cdots a_n)$.

 $D\acute{e}f$: Soit $A = (a_{i,j}) \in M_{n,p}(\mathbb{K})$ (présentation de l'abus de notation correspondant).

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix}.$$

Pour $1 \leq j \leq p$, la matrice $C_j = \begin{pmatrix} a_{\mathbf{l},j} \\ \vdots \\ a_{n,j} \end{pmatrix}$ est appelée j ^{ème} colonne de A .

Pour $1 \leq i \leq n$, la matrice $L_i = \begin{pmatrix} a_{i,1} & \dots & a_{i,p} \end{pmatrix}$ est appelée i ème ligne de A .

2°) Matrice carrée

 $D\acute{e}f$: Les matrices de type (n,n) sont appelées matrices carrées d'ordre n.

On note $M_n(\mathbb{K})$, au lieu de $M_{n,n}(\mathbb{K})$, l'ensemble de ces matrices.

 $D\acute{e}f$: Soit $A=(a_{i,j})\in M_n(\mathbb{K})$. Les coefficients d'indice (i,i) de A sont appelées coefficients diagonaux de A. La famille $(a_{1,1},a_{2,2},\ldots,a_{n,n})=(a_{i,i})_{1\leq i\leq n}$ est appelée diagonale de la matrice A.

 $D\acute{e}f$: Une matrice $A \in M_n(\mathbb{K})$ est dite diagonale ssi tous ses coefficients hors de la diagonale sont nuls. On note $D_n(\mathbb{K})$ l'ensemble de ces matrices.

$$\textit{D\'ef}: \ \ \text{On note } \ \text{diag}(\lambda_1,...,\lambda_n) \ \ \text{la matrice diagonale dont la diagonale est} \ \ (\lambda_1,...,\lambda_n) \ \ \text{i.e.} \ \ \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

 $D\acute{e}f$: Une matrice $A \in M_n(\mathbb{K})$ est dite triangulaire supérieure (resp. inférieure) ssi tous les coefficients en dessous (resp. au dessus) de la diagonale sont nuls.

On note $T_n^+(\mathbb{K})$ (resp. $T_n^-(\mathbb{K})$) l'ensemble de ces matrices.

 $Prop: D_n(\mathbb{K}) = T_n^+(\mathbb{K}) \cap T_n^-(\mathbb{K}).$

3°) Espace vectoriel $(M_{n,n}(\mathbb{K}),+,.)$.

$$D\acute{e}f$$
: Soit $A=(a_{i,j})\in M_{n,p}(\mathbb{K})$ et $B=(b_{i,j})\in M_{n,p}(\mathbb{K})$.

On définit la matrice $A+B\in M_{n,p}(\mathbb{K})$ par $A+B=(a_{i,j}+b_{i,j})_{1\leq i\leq n,1\leq j\leq p}$.

$$\text{Ainsi} \begin{pmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,p} \end{pmatrix} + \begin{pmatrix} b_{1,1} & \dots & b_{1,p} \\ \vdots & & \vdots \\ b_{n,1} & \dots & b_{n,p} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & \dots & a_{1,p} + b_{1,p} \\ \vdots & & \vdots \\ a_{n,1} + b_{n,1} & \dots & a_{n,p} + b_{n,p} \end{pmatrix}.$$

$$D\acute{e}f$$
: Soit $A = (a_{i,j}) \in M_{n,n}(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

On définit la matrice $\lambda.A \in M_{n,p}(\mathbb{K})$ par $\lambda.A = (\lambda a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$.

Ainsi
$$\lambda . \begin{pmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,p} \end{pmatrix} = \begin{pmatrix} \lambda a_{1,1} & \dots & \lambda a_{1,p} \\ \vdots & & \vdots \\ \lambda a_{n,1} & \dots & \lambda a_{n,p} \end{pmatrix}.$$

 $\textit{Th\'eor\`eme}: \ (M_{\scriptscriptstyle n,p}(\mathbb{K}),+,.) \ \ \text{est un} \ \ \mathbb{K} \ \text{-espace vectoriel d'\'el\'ement nul} \ \ O=O_{\scriptscriptstyle n,p} \ .$

 $\begin{array}{ll} \textit{D\'ef}: & \text{Soit } 1 \leq k \leq n \ \text{ et } 1 \leq \ell \leq p \text{ . On appelle matrice \'el\'ementaire d'indice } (k,\ell) \ \text{de } M_{n,p}(\mathbb{K}) \ \text{la matrice } E_{k,\ell} \\ & \text{dont tous les coefficients sont nuls sauf celui d'indice } (k,\ell) \ \text{qui est \'egal \`a 1. Ainsi} \end{array}$

$$E_{k,\ell} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \in M_{n,p}(\mathbb{K}).$$

Théorème :

La famille $\mathcal{B}=(E_{k,\ell})_{1\leq k\leq n, 1\leq \ell\leq p}$ forme une base de $M_{n,p}(\mathbb{K})$ appelée base canonique.

$$\begin{array}{ll} Cor: & \dim M_{n,p}(\mathbb{K})=np \ \ \text{et en particulier} \\ & \dim M_n(\mathbb{K})=n^2 \ , \ \dim M_{n,1}(\mathbb{K})=n \ \ \text{et } \dim M_{1,p}(\mathbb{K})=p \ . \end{array}$$

 $Prop: D_n(\mathbb{K})$ est un sous-espace vectoriel de $M_n(\mathbb{K})$ de dimension n.

 $Prop: T_n^+(\mathbb{K}) \ \text{et} \ T_n^-(\mathbb{K}) \ \text{sont des sous-espaces vectoriels de} \ M_n(\mathbb{K}) \ \text{de dimension} \ \frac{n(n+1)}{2}$.

4°) Produit matriciel

$$\begin{split} \textit{D\'ef}: & \text{ Soit } A = (a_{i,j}) \in M_{n,p}(\mathbb{K}) \text{ et } B = (b_{j,k}) \in M_{p,q}(\mathbb{K}) \text{ . On d\'efinit la matrice } C = A \times B = (c_{i,k}) \in M_{n,q}(\mathbb{K}) \\ & \text{par}: \ \forall 1 \leq i \leq n, \forall 1 \leq k \leq q \text{ , } c_{i,k} = \sum_{i=1}^p a_{i,j} b_{j,k} \text{ .} \end{split}$$

5°) Propriétés du produit matriciel

$$Prop: \mbox{Soit } A\in M_{n,p}(\mathbb{K}), B\in M_{p,q}(\mathbb{K}), C\in M_{q,r}(\mathbb{K}) \ .$$
 On a $(AB)C=A(BC)$.

$$Prop: \forall A \in M_{n,p}(\mathbb{K}), AI_p = A \text{ et } I_nA = A$$

$$\begin{split} \textit{Prop}: \ \forall A, B \in M_{n,p}(\mathbb{K}) \ , \ \forall C \in M_{p,q}(\mathbb{K}) \ \ (A+B)C = A\,C + B\,C \ . \\ \forall A \in M_{n,p}(\mathbb{K}) \ , \ \forall B, C \in M_{p,q}(\mathbb{K}) \ , \ A(B+C) = A\,B + A\,C \ . \end{split}$$

Prop:
$$\forall A \in M_{n,n}(\mathbb{K})$$
, $\forall B \in M_{n,n}(\mathbb{K})$, $\forall \lambda \in \mathbb{K}$, $(\lambda.A)B = \lambda.AB = A(\lambda.B)$.

6°) L'anneau $(M_n(\mathbb{K}),+,\times)$.

a) présentation

Théorème :

 $(M_n(\mathbb{K}),+,\times)$ est un anneau, généralement non commutatif, d'élément nul $O=O_n$ et d'élément unité $I=I_n$. De plus, $\forall \lambda \in \mathbb{K}, \forall A,B \in M_n(\mathbb{K}): (\lambda.A)B=\lambda.(AB)=A(\lambda.B)$.

 $D\acute{e}f$: On dit que deux matrices A et B de $M_n(\mathbb{K})$ commutent ssi AB = BA.

$$D\acute{e}f$$
: Soit $A \in M_n(\mathbb{K})$. On note $A^0 = I_n$, $A^1 = A$, $A^2 = A \times A$,..., $A^m = A \times A \times ... \times A$ (m termes)

Théorème :

Si A et B commutent alors pour tout $m \in \mathbb{N}$:

$$(AB)^m = A^m B^m$$
, $(A+B)^m = \sum_{k=0}^m {m \choose k} A^k B^{m-k}$ et $A^m - B^m = (A-B) \sum_{k=0}^{m-1} A^k B^{m-1-k}$.

Déf: Soit $A \in M_n(\mathbb{K})$.

On dit que A est idempotente ssi $A^2 = A$.

On dit que A est une matrice nilpotente ssi $\exists m \in \mathbb{N}, A^m = 0$.

b) matrices inversibles

 $D\acute{e}f$: Une matrice $A \in M_n(\mathbb{K})$ est dite inversible ssi $\exists B \in M_n(\mathbb{K}), AB = BA = I_n$. On note alors $B = A^{-1}$.

Prop: Soit $A, B \in M_n(\mathbb{K})$

Si A et B sont inversibles alors AB l'est aussi et $(AB)^{-1} = B^{-1}A^{-1}$.

Si A est inversible alors A^{-1} l'est aussi et $(A^{-1})^{-1} = A$.

 $D\acute{e}f$: On note $GL_n(\mathbb{K})$ l'ensemble des matrices inversibles de $M_n(\mathbb{K})$.

 $Prop: (GL_n(\mathbb{K}), \times)$ est un groupe appelé groupe linéaire d'ordre n.

Théorème d'inversibilité :

Soit $A \in M_n(\mathbb{K})$. On a équivalence entre

- (i) A est inversible
- (ii) A est inversible à droite i.e. $\exists B \in M_n(\mathbb{K}), AB = I_n$
- (iii) A est inversible à gauche i.e. $\exists C \in M_n(\mathbb{K}), CA = I_n$.

De plus si tel est le cas $A^{-1} = B = C$.

c) matrices diagonales

 $Prop: D_n(\mathbb{K})$ est un sous-anneau commutatif de $M_n(\mathbb{K})$.

$$Prop:$$
 Soit $A=egin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} \in D_n(\mathbb{K})$. On a équivalence entre :

(i) A est inversible

(ii) $\forall 1 \leq i \leq n, a_i \neq 0$.

De plus si tel est le cas : $A^{-1} = \begin{pmatrix} 1/a_1 & & \\ & \ddots & \\ & & 1/a_n \end{pmatrix}$.

d) matrices triangulaires

 $\operatorname{Prop}: T_{\scriptscriptstyle n}^+(\mathbb{K}) \ \operatorname{est} \ \operatorname{un} \ \operatorname{sous-anneau} \ \operatorname{de} \ M_{\scriptscriptstyle n}(\mathbb{K}) \, .$

Prop: Soit $A \in T_n^+(\mathbb{K})$. On a équivalence entre :

(i) A est inversible

(ii) Les coefficients diagonaux de A sont tous non nuls.

De plus, si tel est le cas, $A^{-1} \in T_n^+(\mathbb{K})$.

7°) Transposition

a) définition

 $\begin{array}{ll} \textit{D\'ef}: & \text{Soit } A = (a_{i,j}) \in M_{n,p}(\mathbb{K}) \text{ . On appelle matrice transpos\'ee de } A \text{ la matrice } {}^tA = (a'_{j,i}) \in M_{p,n}(\mathbb{K}) \text{ d\'efinie} \\ & \text{par } \forall 1 \leq i \leq n, \forall 1 \leq j \leq p, a'_{i,i} = a_{i,j} \text{ .} \end{array}$

Ainsi le coefficient d'indice (j,i) de ${}^{t}A$ est égal au coefficient d'indice (i,j) de A.

 $\text{Concrètement : Pour } A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix}, \ ^tA = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & & \vdots \\ a_{1p} & \dots & a_{np} \end{pmatrix}.$

 $Prop: \forall A \in M_{n,p}(\mathbb{K}), {}^{t}({}^{t}A) = A.$

 $\forall A, B \in M_{n,p}(\mathbb{K}), \forall \lambda, \mu \in \mathbb{K}, {}^{t}(\lambda A + \mu B) = \lambda^{t} A + \mu^{t} B.$

 $Prop: \forall A \in M_{n,p}(\mathbb{K}), \forall B \in M_{p,q}(\mathbb{K}), {}^{t}(AB) = {}^{t}B{}^{t}A.$

Prop: Soit $A \in M_n(\mathbb{K})$.

Si A est inversible alors ${}^{t}A$ l'est aussi et ${}^{t}(A^{-1}) = ({}^{t}A)^{-1}$.

b) matrices symétriques et antisymétriques

Déf: On dit que $A \in M_n(\mathbb{K})$ est symétrique (resp. antisymétrique) ssi ${}^tA = A$ (resp. ${}^tA = -A$). On note $S_n(\mathbb{K})$ (resp. $A_n(\mathbb{K})$) l'ensemble de ces matrices.

 $Prop: \text{Les matrices de } S_n(\mathbb{K}) \text{ sont de la forme}: A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ a_{1n} & \dots & a_{n-1,n} & a_{n,n} \end{pmatrix}.$

Par suite $S_n(\mathbb{K})$ est un sous-espace vectoriel de dimension $\frac{n(n+1)}{2}$ de $M_n(\mathbb{K})$.

 $Prop: \text{Les matrices de } A_n(\mathbb{K}) \text{ sont de la forme}: A = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ -a_{12} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ -a_{1n} & \dots & -a_{n-1,n} & 0 \end{bmatrix}.$

Théorème :

 $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont deux sous-espaces vectoriels supplémentaires de $M_n(\mathbb{K})$.

Prop : Soit $A \in M_n(\mathbb{K})$ inversible.

Si $A \in S_n(\mathbb{K})$ alors $A^{-1} \in S_n(\mathbb{K})$.

Si $A \in A_n(\mathbb{K})$ alors $A^{-1} \in A_n(\mathbb{K})$.