MA139 Analysis 2, Assignment 4

Dyson Dyson

Question 1

Let $F: \mathbb{R} \to \mathbb{R}$ be defined as

$$F(x) = \left(1 - \frac{1}{2}x + \frac{1}{12}x^2\right)e^x$$

Q1 (a)

To apply Taylor's theorem with remainder to F, we need the first few derivatives of F.

$$F'(x) = \left(1 - \frac{1}{2}x + \frac{1}{12}x^2\right) e^x + \left(-\frac{1}{2} + \frac{1}{6}x\right) e^x$$

$$= F(x) + \left(-\frac{1}{2} + \frac{1}{6}x\right) e^x$$

$$F''(x) = F'(x) + \left(-\frac{1}{2} + \frac{1}{6}x\right) e^x + \frac{1}{6}e^x$$

$$= F'(x) + \left(-\frac{1}{3} + \frac{1}{6}x\right) e^x$$

$$F^{(3)}(x) = F''(x) + \left(-\frac{1}{3} + \frac{1}{6}x\right) e^x + \frac{1}{6}e^x$$

$$= F''(x) + \left(-\frac{1}{6} + \frac{1}{6}x\right) e^x$$

$$F^{(4)}(x) = F^{(3)}(x) + \left(-\frac{1}{6} + \frac{1}{6}x\right) e^x + \frac{1}{6}e^x$$

$$= F^{(3)}(x) + \frac{1}{6}xe^x$$

$$F^{(5)} = F^{(4)}(x) + \frac{1}{6}xe^x + \frac{1}{6}e^x$$
$$= F^{(4)}(x) + \left(\frac{1}{6} + \frac{1}{6}x\right)e^x$$
$$F^{(n)}(x) = F^{(n-1)}(x) + \frac{n-4+x}{6}e^x$$

We want to prove that $F^{(4)}(x) \geq 0$ for all $x \geq 0$. We have

$$F^{(4)}(x) = F^{(3)} + \frac{1}{6}xe^{x}$$

$$= F''(x) + \left(-\frac{1}{6} + \frac{1}{6}x\right)e^{x} + \frac{1}{6}xe^{x}$$

$$= F''(x) + \left(-\frac{1}{6} + \frac{1}{3}x\right)e^{x}$$

$$= F'(x) + \left(-\frac{1}{3} + \frac{1}{6}x - \frac{1}{6} + \frac{1}{3}x\right)e^{x}$$

$$= F'(x) + \left(-\frac{1}{2} + \frac{1}{2}x\right)e^{x}$$

$$= F(x) + \left(-\frac{1}{2} + \frac{1}{6}x - \frac{1}{2} + \frac{1}{2}x\right)e^{x}$$

$$= F(x) + \left(-1 + \frac{2}{3}x\right)e^{x}$$

$$= \left(1 - \frac{1}{2}x + \frac{1}{12}x^{2} - 1 + \frac{2}{3}x\right)e^{x}$$

$$= \frac{1}{12}e^{x}\left(2x^{2} + x\right)$$

Clearly $\frac{1}{12}e^x > 0$ for all x and $2x^2 + x \ge 0$ for all $x \ge 0$, therefore $F^{(4)}(x) \ge 0$ for all $x \ge 0$.

Now applying Taylor's theorem with Lagrange remainder around 0, we get

$$F(x) = F(0) + F'(0)x + \frac{F''(0)x^2}{2} + \frac{F^{(3)}(0)x^3}{6} + \frac{F^{(4)}(t)x^4}{24}$$
$$= 1 + \frac{1}{2}x + \frac{1}{6}\frac{x^2}{2} + 0x^3 + \frac{F^{(4)}(t)x^4}{24}$$
$$= 1 + \frac{1}{2}x + \frac{1}{12}x^2 + \frac{1}{24}x^4F^{(4)}(t)$$

for some t between 0 and x. Assuming $x \ge 0$, then $0 \le t \le x$.

Since $F^{(4)}(t) \ge 0$ for all $t \ge 0$, we get $F(x) \ge 1 + \frac{1}{2}x + \frac{1}{12}x^2$ for all $x \ge 0$, as required.

Q1 (b)

We shall treat $\frac{1}{12}x^2 - \frac{1}{2}x + 1$ as a quadratic equation in x. Then we can see its discriminant ' $b^2 - 4ac$ ' to be $\frac{1}{4} - \frac{4}{12} = -\frac{1}{12} < 0$. The discriminant is negative, which means the quadratic has no real roots.

Since the quadratic equation has no real roots, and the x^2 coefficient is positive, we can conclude that $1 - \frac{1}{2}x + \frac{1}{12}x^2 > 0 \ \forall \ x \in \mathbb{R}$.

Q1 (c)

In part (a), we showed that for all $x \ge 0$,

$$e^x \left(1 - \frac{1}{2}x + \frac{1}{12}x^2\right) \ge 1 + \frac{1}{2}x + \frac{1}{12}x^2$$

The quadratic in brackets on the LHS has discriminant $\frac{1}{4} - \frac{1}{3} < 0$, and positive coefficient of x^2 , so that term in brackets is always strictly positive, so we can divide by it.

Therefore, for $x \geq 0$,

$$e^x \ge \frac{1 + \frac{1}{2}x + \frac{1}{12}x^2}{1 - \frac{1}{2}x + \frac{1}{12}x^2}$$

Plugging in x = 1 gives

$$e \ge \frac{1 + \frac{1}{2} + \frac{1}{12}}{1 - \frac{1}{2} + \frac{1}{12}}$$
$$= \frac{\frac{18}{12} + \frac{1}{12}}{\frac{6}{12} + \frac{1}{12}}$$
$$= \frac{19}{7}$$

Therefore $e \ge \frac{19}{7}$ as required.

Question 2

Let $f, g : [a, b] \to \mathbb{R}$ be Riemann integrable functions which agree except at finitely many points in the interval, so $f(x) = g(x) \ \forall \ x \in [a, b] \setminus \{c_1, \ldots, c_n\}$.

Since f and g are integrable, there exist partitions P and Q of [a, b] such that for any $\varepsilon > 0$,

$$U(f,P) - L(f,P) < \varepsilon$$
$$U(g,Q) - L(g,Q) < \varepsilon$$

Since f and g only disagree at finitely many points c_1, \ldots, c_n , for each c_i , either f or g (or both) must be discontinuous at c_i . Therefore either P or Q must "cut out the bad bit" at c_i . Therefore we can take a common refinement R of P and Q, which will "cut out the bad bits" at all c_1, \ldots, c_n .

Say for each c_i we choose δ_i such that $[c_i - \delta_i, c_i + \delta_i]$ is one of the intervals in R, evidently the one containing c_i . Then for any ε , we can choose all δ_i small enough such that the rectangles in the upper and lower sums will have arbitrarily small area.

Let's say the sum of all the rectangles containing each c_i for the upper sum of f is Γ_f and the sum of all the rectangles containing each c_i for the lower sum of f is γ_f . Let's also define Γ_g and γ_g similarly for g.

Let S be the partition R but excluding each of the intervals containing c_1, \ldots, c_n . Then

$$\begin{split} U(f,R) &= U(f,S) + \Gamma_f \\ U(g,R) &= U(g,S) + \Gamma_g \\ L(f,R) &= L(f,S) + \gamma_f \\ L(g,R) &= L(g,S) + \gamma_g \end{split}$$

Since f and g agree at all points in S, U(f, S) = U(g, S).

We can choose all the δ_i accordingly to make $\Gamma_f = \Gamma_g = \Gamma$ and $\gamma_f = \gamma_g = \gamma$ and make both arbitrarily small, so

$$U(f,R) = U(f,S) + \Gamma = U(g,R)$$

$$L(f,R) = L(f,S) + \gamma = L(g,R)$$

Since the upper sums and lower sums for f and g both agree on the partition S, we can conclude that $\int_a^b f = \int_a^b g$.

Question 3

We want to find
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n \log\left(1 + \frac{k}{n}\right)$$
.

This can be viewed as $\lim_{n\to\infty} U(f,P_n)$ where $f(x)=\log(1+x)$ and P_n is the partition of [0,1] into n equal intervals, since the area of each rectangle is the width $\frac{1}{n}$ times the height $f(x_i)$, and since f is increasing and the sum always takes $f(x_i)$ on the right hand side of the interval, we get the upper sum.

Note that f is continuous and so by Homework 8 Question 4, this upper sum converges to the integral

$$\int_0^1 \log(1+x) \, dx = \left[(1+x)\log(1+x) - x \right]_0^1$$
$$= 2\log 2 - 1 - \log 1 - 0$$
$$= 2\log 2 - 1$$