Hex Level Shifter for TTL to CMOS or CMOS to CMOS

The MC14504B is a hex non–inverting level shifter using CMOS technology. The level shifter will shift a TTL signal to CMOS logic levels for any CMOS supply voltage between 5 and 15 volts. A control input also allows interface from CMOS to CMOS at one logic level to another logic level: Either up or down level translating is accomplished by selection of power supply levels $V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize CC}}$. The $V_{\mbox{\scriptsize CC}}$ level sets the input signal levels while $V_{\mbox{\scriptsize DD}}$ selects the output voltage levels.

- UP Translates from a Low to a High Voltage or DOWN Translates from a High to a Low Voltage
- · Input Threshold Can Be Shifted for TTL Compatibility
- No Sequencing Required on Power Supplies or Inputs for Power Up or Power Down
- 3 to 18 Vdc Operation for VDD and VCC
- Diode Protected Inputs to VSS
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range

LOGIC DIAGRAM

Mode Select	Input Logic Levels	Output Logic Levels
1 (V _{CC})	TTL	CMOS
0 (V _{SS})	CMOS	CMOS

1/6 of package shown.

MC14504B

L SUFFIX CERAMIC CASE 620

P SUFFIX PLASTIC CASE 648

D SUFFIX SOIC CASE 751B

ORDERING INFORMATION

MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBD SOIC

 $T_A = -55^{\circ}$ to 125°C for all packages.

PIN ASSIGNMENT VCC 16 🛮 ער 15 | F_{out} A_{out} 14 | F_{in} Ain [13 MODE Bout [Bin [12 | E_{OUt} Cout [11 ☐ Ein 10 Dout Cin [9 Din V_{SS} [] 8

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the VSS pin, only. Extra precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, the ranges VSS \leq Vin \leq 18 V and VSS \leq Vout \leq VDD are recommended.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage	- 0.5 to 18.0	V
V _{DD}	DC Supply Voltage	- 0.5 to + 18.0	V
V _{in}	Input Voltage (DC or Transient)	- 0.5 to + 18.0	V
V _{out}	Output Voltage (DC or Transient)	– 0.5 to V _{DD} + 0.5	V
l _{in} , l _{out}	Input or output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package*	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

		VCC	V _{DD}	- 5	− 55°C 25°C			125°C			
Characteristic	Symbol	Vdc	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Leve		_ _ _	5.0 10 1 5	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
"1" Leve	VOH	_ _ _	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage "0" Leve (VOL = 1.0 Vdc) TTL-CMOS (VOL = 1.5 Vdc) TTL-CMOS (VOL = 1.0 Vdc) CMOS-CMOS (VOL = 1.5 Vdc) CMOS-CMOS (VOL = 1.5 Vdc) CMOS-CMOS (VOL = 1.5 Vdc) CMOS-CMOS	VIL	5.0 5.0 5.0 5.0 10	10 15 10 15 15	_ _ _ _	0.8 0.8 1.5 1.5 3.0	_ _ _ _	1.3 1.3 2.25 2.25 4.5	0.8 0.8 1.5 1.5 3.0		0.8 0.8 1.4 1.5 2.9	Vdc
Input Voltage "1" Leve (VOH = 9.0 Vdc) TTL-CMOS (VOH = 13.5 Vdc) TTL-CMOS (VOH = 9.0 Vdc) CMOS-CMOS (VOH = 13.5 Vdc) CMOS-CMOS (VOH = 13.5 Vdc) CMOS-CMOS	VIH	5.0 5.0 5.0 5.0 10	10 15 10 15 15	2.0 2.0 3.6 3.6 7.1	_ _ _ _ _	2.0 2.0 3.5 3.5 7.0	1.5 1.5 2.75 2.75 5.5	_ _ _ _	2.0 2.0 3.5 3.5 7.0		Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) Source (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	ГОН	_ _ _ _	5.0 5.0 10 15	- 3.0 -0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 -0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 -0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ Sink $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	lOL	_ _ _	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current	l _{in}	_	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)	C _{in}	_	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package) CMOS-CMOS Mode	I _{DD} or	_ _ _	5.0 10 15		0.05 0.10 0.20	_ _ _	0.0005 0.0010 0.0015	0.05 0.10 0.20		1.5 3.0 6.0	μAdc
Quiescent Current (Per Package) TTL-CMOS Mode	I _{DD}	5.0 5.0 5.0	5.0 10 15	_ _ _	0.5 1.0 2.0	_ _ _	0.0005 0.0010 0.0015	0.5 1.0 2.0	_ _ _	3.8 7.5 15	μAdc
Quiescent Current (Per Package) TTL-CMOS Mode	ICC	5.0 5.0 5.0	5.0 10 15	_ _ _	5.0 5.0 5.0	_ _ _	2.5 2.5 2.5	5.0 5.0 5.0	_ 	6.0 6.0 6.0	mAdc

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

			VCC	۷ _{DD}	Limits			
Characteristic	Symbol	Shifting Mode	Vdc	Vdc	Min	Тур#	Max	Unit
Propagation Delay, High to Low	tPHL	TTL - CMOS	5.0	10	_	140	280	ns
		VDD > VCC	5.0	15	_	140	280	
		CMOS - CMOS	5.0	10	_	120	240	
		ADD > ACC	5.0	15	_	120	240	
			10	15	_	70	140	
		CMOS - CMOS	10	5.0	_	185	370	
		ACC > ADD	15	5.0	_	185	370	
			15	10		175	350	
Propagation Delay, Low to High	tPLH	TTL - CMOS	5.0	10	_	170	340	ns
		VDD > VCC	5.0	15		160	320	
		CMOS - CMOS	5.0	10		170	340	
		$V_{DD} > V_{CC}$	5.0	15	_	170	340	
			10	15		100	200	
		CMOS - CMOS	10	5.0		275	550	
		VCC > VDD	15	5.0	_	275	550	
			15	10	_	145	290	
Output Rise and Fall Time	tTLH, tTHL	ALL	_	5.0	_	100	200	ns
			_	10	—	50	100	
			_	15	_	40	80	

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Input Switchpoint CMOS to CMOS Mode

Figure 3. Operating Boundary CMOS to CMOS Mode

Figure 2. Input Switchpoint TTL to CMOS Mode

Figure 4. Operating Boundary TTL to CMOS Mode

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54	BSC	
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62	BSC	
М	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

P SUFFIX

PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

OUTLINE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI
- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	1.27 BSC 0.050		BSC	
J	0.19	0.25	0.008	0.009	
Κ	0.10	0.25	0.004	0.009	
М	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.