

## November 2003

## GCE A AND AS LEVEL

## MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS
Mathematics and Higher Mathematics : Paper 3

| Page 1 | Mark Scheme                    | Syllabus  | Paper |
|--------|--------------------------------|-----------|-------|
|        | A AND AS LEVEL – NOVEMBER 2003 | 9709/8719 | 3     |

| 1 EITHER: State or imply non-modular inequality $-5 < 2^x - 8 < 5$ , or $(2^x - 8)^2 < 5^2$ or |     | ponding                                                          |            |
|------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------|------------|
|                                                                                                |     | pair of linear equations or quadratic equation                   | B1         |
|                                                                                                |     | Use correct method for solving an equation of the form $2^x = a$ | M1         |
|                                                                                                |     | Obtain critical values 1.58 and 3.70, or exact equivalents       | <b>A</b> 1 |
|                                                                                                |     | State correct answer $1.58 < x < 3.70$                           | A1         |
|                                                                                                | OR: | Use correct method for solving an equation of the form $2^x = a$ | M1         |
|                                                                                                |     | Obtain one critical value (probably 3.70), or exact equivalent   | A1         |
|                                                                                                |     | Obtain the other critical value, or exact equivalent             | A1         |
|                                                                                                |     | State correct answer $1.58 < x < 3.70$                           | <b>A</b> 1 |
|                                                                                                |     |                                                                  | [4]        |

[Allow 1.59 and 3.7. Condone  $\leq$  for  $\leq$ . Allow final answers given separately. Exact equivalents must be in terms of ln or logarithms to base 10.]

[SR: Solutions given as logarithms to base 2 can only earn M1 and B1 of the first scheme.]

2 EITHER: Obtain correct unsimplified version of the  $x^2$  or  $x^4$  term of the expansion of  $(1+\frac{1}{2}x^2)^{-2}$  or  $(2+x^2)^{-2}$ 

 $(1+\frac{1}{2}x^2)^{-2} \text{ or } (2+x^2)^{-2}$ State correct first term  $\frac{1}{4}$ B1

Obtain next two terms  $-\frac{1}{4}x^2 + \frac{3}{16}x^4$  A1+A1

[The M mark is not earned by versions with unexpanded binomial coefficients such as  $\begin{pmatrix} -2\\1 \end{pmatrix}$ .]

[SR: Answers given as  $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$  earn M1B1A1.]

[SR: Solutions involving  $k(1+\frac{1}{2}x^2)^{-2}$ , where k=2, 4 or  $\frac{1}{2}$  can earn M1 and A1 for a correct simplified term in  $x^2$  or  $x^4$ .]

OR: Differentiate expression and evaluate f(0) and f'(0), where  $f'(x) = kx(2+x^2)^{-3}$  M1 State correct first term  $\frac{1}{4}$  B1

Obtain next two terms  $-\frac{1}{4}x^2 + \frac{3}{16}x^4$  A1+A1

[Allow exact decimal equivalents as coefficients.]

[4]

Use correct  $\cos 2A$  formula, or equivalent pair of correct formulas, to obtain an equation in  $\cos \theta$  M1

Obtain 3-term quadratic  $6\cos^2\theta + \cos\theta - 5 = 0$ , or equivalent A1

Attempt to solve quadratic and reach  $\theta = \cos^{-1}(a)$  M1

Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians A1

Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians A1

Obtain answer 180° or  $\pi$  (or 3.14) radians and no others in range A1

[The answer  $\theta$ = 180° found by inspection can earn B1.] [Ignore answers outside the given range.]

[5]

| Page 2 | Mark Scheme                    | Syllabus  | Paper |
|--------|--------------------------------|-----------|-------|
|        | A AND AS LEVEL - NOVEMBER 2003 | 9709/8719 | 3     |

**4(i)** EITHER Obtain terms 
$$\frac{1}{2\sqrt{x}}$$
 and  $\frac{1}{2\sqrt{y}}\frac{dy}{dx}$ , or equivalent B1+B1

Obtain answer in any correct form, e.g. 
$$\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$$

OR: Using chain or product rule, differentiate 
$$(\sqrt{a} - \sqrt{x})^2$$

Express 
$$\frac{dy}{dx}$$
 in terms of x and y only in any correct form

A1

OR: Expand 
$$(\sqrt{a} - \sqrt{x})^2$$
, differentiate and obtain term  $-2 \cdot \frac{\sqrt{a}}{2\sqrt{x}}$ , or equivalent B1

Obtain term 1 by differentiating an expansion of the form 
$$a + x \pm 2\sqrt{a}\sqrt{x}$$
 B1

Express 
$$\frac{dy}{dx}$$
 in terms of x and y only in any correct form B1

(ii) State or imply coordinates of 
$$P$$
 are  $(\frac{1}{4}a, \frac{1}{4}a)$  B1

Form equation of the tangent at  $P$  M1

Obtain 3 term answer  $x + y = \frac{1}{2}a$  correctly, or equivalent

5 (i) Make recognizable sketch of 
$$y = \sec x$$
 or  $y = 3 - x^2$ , for  $0 < x < \frac{1}{2}\pi$  B1

Sketch the other graph correctly and justify the given statement B1

[Award B1 for a sketch with positive y-intercept and correct concavity. A correct sketch of  $y = \cos x$  can only earn B1 in the presence of  $1/(3-x^2)$ . Allow a correct single graph and its intersection with y=0to earn full marks.]

(ii) State or imply equation 
$$\alpha = \cos^{-1}(1/(3-\alpha^2))$$
 or  $\cos \alpha = 1/(3-\alpha^2)$  B1  
Rearrange this in the form given in part (i) i.e.  $\sec \alpha = 3-\alpha^2$ 

Rearrange this in the form given in part (i) i.e. 
$$\sec \alpha = 3 - \alpha^2$$

[Or work vice versa.]

(iii) Use the iterative formula with 
$$0 \le x_1 \le \sqrt{2}$$
 M1

Obtain final answer 1.03

Show sufficient iterations to justify its accuracy to 2d.p. or show there is a sign change in the interval  $(1.025, 1.035)$ 

[3]

[2]

[3]

[2]

| Use product or quotient rule to find derivative Obtain derivative in any correct form Equate derivative to zero and solve a linear equation in x                           | M1<br>A1<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obtain answer $3\frac{1}{2}$ only                                                                                                                                          | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                            | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| State first step of the form $\pm \frac{1}{2}(3-x)e^{-2x} \pm \frac{1}{2} \int e^{-2x} dx$ , with or without 3                                                             | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| State correct first step e.g. $-\frac{1}{2}(3-x)e^{-2x} - \frac{1}{2}\int e^{-2x}dx$ , or equivalent, with or                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| without 3  Complete the integration correctly obtaining $\frac{1}{2}(3-y)e^{-2x} + \frac{1}{2}e^{-2x}$ or equivalent                                                       | A1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Obtain answer $\frac{1}{4}(5 + e^{-6})$ , or exact equivalent (allow $e^0$ in place of 1)                                                                                  | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            | [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R: Attempt multiplication of numerator and denominator by 3 + 2i.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| or equivalent                                                                                                                                                              | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Obtain answer $u = 1 + 2i$                                                                                                                                                 | A1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Using correct processes, find the modulus and argument of $u$                                                                                                              | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Obtain modulus $\sqrt{5}$ (or 2.24) or argument tan <sup>-1</sup> 2 (or 63.4° or 1.11 radians)<br>Obtain answer $u = 1 + 2i$                                               | A1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                            | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Show the point $U$ on an Argand diagram in a relatively correct position Show a circle with centre $U$ Show a circle with radius consistent with 2                         | B1√<br>B1√<br>B1√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| lva of wl                                                                                                                                                                  | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ######################################                                                                                                                                     | Santagapana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| State or imply relevance of the appropriate tangent from $O$ to the circle Carry out a complete strategy for finding max arg $z$ Obtain final answer 126.9° (2.21 radians) | B1√<br>M1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                            | Obtain derivative in any correct form Equate derivative to zero and solve a linear equation in $x$ Obtain answer $3\frac{1}{2}$ only  State first step of the form $\pm \frac{1}{2}(3-x)e^{-2x} \pm \frac{1}{2}\int e^{-2x}dx$ , with or without 3  State correct first step e.g. $-\frac{1}{2}(3-x)e^{-2x} - \frac{1}{2}\int e^{-2x}dx$ , or equivalent, with or without 3  Complete the integration correctly obtaining $-\frac{1}{2}(3-x)e^{-2x} + \frac{1}{4}e^{-2x}$ , or equivalent Substitute limits $x = 0$ and $x = 3$ correctly in the complete integral Obtain answer $\frac{1}{4}(5+e^{-6})$ , or exact equivalent (allow $e^0$ in place of 1)  8: Attempt multiplication of numerator and denominator by $3 + 2i$ , or equivalent Simplify denominator to 13 or numerator to $13 + 26i$ Obtain answer $u = 1 + 2i$ Using correct processes, find the modulus and argument of $u$ Obtain modulus $\sqrt{5}$ (or 2.24) or argument $\tan^{-1}2$ (or 63.4° or 1.11 radians) Obtain answer $u = 1 + 2i$ Show the point $U$ on an Argand diagram in a relatively correct position Show a circle with centre $U$ Show a circle with radius consistent with 2  liue of $u$ .]  State or imply relevance of the appropriate tangent from $O$ to the circle Carry out a complete strategy for finding max arg $z$ |

Mark Scheme

A AND AS LEVEL - NOVEMBER 2003

**Syllabus** 

9709/8719

Paper

3

[3]

Page 3

[Drawing the appropriate tangent is sufficient for  $B1\sqrt{.}$ ] [A final answer obtained by measurement earns M1 only.]

| Page 4         | Mark Scheme                                                                                                                                                                                                                             | Syllabus         | Paper       |                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------------------------|
|                | A AND AS LEVEL - NOVEMBER 2003                                                                                                                                                                                                          | 9709/8719        | 3           |                        |
| 8 (i) EITHER:  | Divide by denominator and obtain a quadratic remainder Obtain $A = 1$<br>Use any relevant method to obtain $B$ , $C$ or $D$<br>Obtain one correct answer<br>Obtain $B = -1$ , $C = 2$ , $D = 0$                                         |                  |             | M1<br>A1<br>M1<br>A1   |
| OR:            | Reduce <i>RHS</i> to a single fraction and identify numerator we Obtain $A = 1$<br>Use any relevant method to obtain $B$ , $C$ or $D$<br>Obtain one correct answer<br>Obtain $B = -1$ , $C = 2$ , $D = 0$                               | ith that of f(x) |             | M1<br>A1<br>M1<br>A1   |
|                |                                                                                                                                                                                                                                         |                  |             | [5]                    |
| (ii)           | Integrate and obtain terms $x - \ln(x - 1)$ , or equivalent<br>Obtain third term $\ln(x^2 + 1)$ , or equivalent<br>Substitute correct limits correctly in the complete integral<br>Obtain given answer following full and exact working |                  |             | B1v<br>B1v<br>M1<br>A1 |
|                |                                                                                                                                                                                                                                         |                  |             | [4]                    |
|                | first B1 $$ is not available.] omitted in part (i), treat as if $A = 0$ . Thus only M1M1 and B                                                                                                                                          | 1√B1√M1 are      | available.] |                        |
| 9 (i)          | Separate variables and attempt to integrate $\frac{1}{\sqrt{(P-A)}}$                                                                                                                                                                    |                  |             | M1                     |
|                | Obtain term $2\sqrt{(P-A)}$                                                                                                                                                                                                             |                  |             | A1                     |
|                | Obtain term $-kt$                                                                                                                                                                                                                       |                  |             | A1                     |
|                |                                                                                                                                                                                                                                         |                  |             | [3]                    |
| (ii)           | Use limits $P = 5A$ , $t = 0$ and attempt to find constant $c$<br>Obtain $c = 4\sqrt{A}$ , or equivalent<br>Use limits $P = 2A$ , $t = 2$ and attempt to find $k$<br>Obtain given answer $k = \sqrt{A}$ correctly                       |                  |             | M1<br>A1<br>M1<br>A1   |
|                |                                                                                                                                                                                                                                         |                  |             | [4]                    |
| (iii)          | Substitute $P = A$ and attempt to calculate $t$<br>Obtain answer $t = 4$                                                                                                                                                                |                  |             | M1<br>A1               |
|                |                                                                                                                                                                                                                                         |                  |             | [2]                    |
| (iv)           | Using answers to part (ii), attempt to rearrange solution to $A$ and $t$<br>Obtain $P = \frac{1}{4}A(4+(4-t)^2)$ , or equivalent, having squared                                                                                        |                  | ms of       | M1<br>A1               |
| [For the M1, v | $\overline{(P-A)}$ must be treated correctly.]                                                                                                                                                                                          |                  |             | [2]                    |
|                |                                                                                                                                                                                                                                         |                  |             |                        |

| Page 5 | Mark Scheme                    | Syllabus  | Paper |
|--------|--------------------------------|-----------|-------|
|        | A AND AS LEVEL - NOVEMBER 2003 | 9709/8719 | 3     |

| 10 (i)       | Express general point of $l$ or $m$ in component form e.g. $(1+2s, s, -2+3s)$ or $(6+t, -5-2t, 4+t)$ Equate at least two corresponding pairs of components and attempt to solve for $s$ or $t$ Obtain $s=1$ or $t=-3$ Verify that all three component equations are satisfied Obtain position vector $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ of intersection point, or equivalent                                                                                | B1<br>M1<br>A1<br>A1<br>A1        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [5]                               |
| (ii) EITHER: | Use scalar product to obtain $2a + b + 3c = 0$ and $a - 2b + c = 0$<br>Solve and find one ratio e.g. $a:b$<br>State one correct ratio<br>Obtain answer $a:b:c=7:1:-5$ , or equivalent<br>Substitute coordinates of a relevant point and values of $a, b$ and $c$ in general equation of plane and calculate $d$<br>Obtain answer $7x + y - 5z = 17$ , or equivalent                                                                                              | B1<br>M1<br>A1<br>A1              |
| OR:          | Using two points on $l$ and one on $m$ (or <i>vice versa</i> ) state three simultaneous equations in $a$ , $b$ , $c$ and $d$ e.g. $3a + b + c = d$ , $a - 2c = d$ and $6a - 5b + 4c = d$ Solve and find one ratio e.g. $a:b$ State one correct ratio  Obtain a ratio of three unknowns e.g. $a:b:c=7:1:-5$ , or equivalent  Use coordinates of a relevant point and found ratio to find fourth unknown e.g. $d$ Obtain answer $7x + y - 5z = 17$ , or equivalent | B1√<br>M1<br>A1<br>A1<br>M1       |
| OR:          | Form a correct 2-parameter equation for the plane, e.g. $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + \mu(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$<br>State 3 equations in $x, y, z, \lambda$ and $\mu$<br>State 3 correct equations<br>Eliminate $\lambda$ and $\mu$<br>Obtain equation in any correct unsimplified form<br>Obtain $7x + y - 5z = 17$ , or equivalent                                               | B1√<br>M1<br>A1√<br>M1<br>A1      |
| OR:          | Attempt to calculate vector product of vectors parallel to $l$ and $m$ Obtain two correct components of the product Obtain correct product, e.g. $7\mathbf{i} + \mathbf{j} - 5\mathbf{z}$ State that the plane has equation of the form $7x + y - 5z = d$ Substitute coordinates of a relevant point and calculate $d$ Obtain answer $7x + y - 5z = 17$ , or equivalent                                                                                          | M1<br>A1<br>A1<br>A1√<br>M1<br>A1 |
| [T] . C. II  | and is an 25 ( 5 ( It out 1                                                                                                                                                                                                                                                                                                                                                                                                                                      | [6]                               |

[The follow through is on 3i + j + k only.]