Data Science Project SHOWCASES

By Kyung Myung Lee

Master of Science in Informatics and Analytics

Master of Science in Computer Science and Engineering

Graduate Certificate in Business Analytics

Contents

Data Analysis

1. Statistical Analysis

- Comparison between cancer centers and genetic counselor utilization (Fisher's exact test and Logistic Regression in R)
 - **❖** Article of Journal of Genetic Counseling (Aug. 2021, co-author): https://onlinelibrary.wiley.com/doi/10.1002/jgc4.1495

2. Cluster Analysis

- Segmentation of customers' profile using Clustering technique (Segmentation in SAS Enterprise Miner)

3. Predictive model

- Pneumonia detection using chest x-ray images (Convolutional Neural Networks using Keras (Tensorflow) in Cloud platform (IBM Watson Studio and Amazon AWS)
 - Part shortage prediction (Python, Random Forest)

Data Visualization and others

1. Visualization

- Trend and prediction visualization of COVID-19
 (Bar/Regression in Python)
- Suffering of deep poverty due to the Great Recession and alleviation by SNAP visualization
- Air pollution and relevant factor trend visualization (R markdown and Shiny, Tableau, and Python)

2. Chatbot

- COVID_19 Screening Bot (Amazon using Node.js, S3, DynamoDB, Serverless service)

Statistical Analysis

Following NCCN guidelines within one hospital system in the United States:
Comparison between cancer centers and genetic counselor utilization

Following NCCN guidelines within one hospital system in the United States: Comparison between cancer centers and genetic counselor utilization

Journal of Genetic Counseling, co-author,

https://onlinelibrary.wiley.com/doi/10.1002/jgc4.1495

Received: 12 February 2021 Revised: 26 July 2021 Accepted: 28 July 2021

DOI: 10.1002/jgc4.1495

ORIGINAL ARTICLE

Following NCCN guidelines within one hospital system in the United States: Comparison between cancer centers and genetic counselor utilization

Jonathan Rakestraw² | Sat Gupta³ | Wenhao Shou³ | Kyung Lee⁴ | Karen Powell¹ Ofri Leitner⁵

¹Genetic Counseling Program, Cone Health Cancer Center, Greensboro, NC, USA

²Oncology Informatics System, Cone Health Cancer Center, Greensboro, NC, USA

³Department of Mathematics and Statistics, The University of North Carolina, Greensboro, NC, USA

⁴Informatics and Analytics Program, The University of North Carolina, Greensboro.

Correspondence

Karen Powell, Genetic Counseling Program Cone Health Cancer Center, Greensboro, NC, USA.

Email: Karen.powell@conehealth.com

Abstract

Genetic testing is an instrumental tool used to determine whether an individual has a predisposition to certain cancers. Knowing of a hereditary cancer predisposition may allow a patient and their family to consider high-risk screening or risk-reducing options. Genetic counselors work with physicians to identify patients at increased risk for genetic testing using available guidelines such as those provided by the National Comprehensive Cancer Network (NCCN). Information within one hospital system's cancer registry was used to identify individuals who qualify for genetic testing. This includes patients with a history of cancer of the breast (diagnosis ≤45, triple negative (TN) ≤60, and male), ovaries, colon (diagnosis ≤50), or uterus (diagnosis ≤50). Within this hospital system's registry, there are six cancer centers. Data were collected from cancer centers that utilized genetic counselors (GCs), and cancer centers that did not (non-GC) to determine whether there was a difference in genetic testing rates between GC and non-GC cancer centers. An analysis of 695 patients demonstrated a significantly higher proportion of eligible patients undergoing genetic testing at the GC cancer centers than at the non-GC cancer centers (91.6% versus 68.7%, p < .001). Further analysis of specific cancers showed a significantly higher uptake of genetic testing for eligible patients with colon cancer (90.8% versus 50%, p < .001), breast cancer ≤45 (99.5% versus 86%, p < .001), and ovarian cancer (91.3% versus 62.8%, p < .001) at the GC cancer centers than at the non-GC cancer centers. There was no significant difference in the proportion of testing of TN breast cancer ≤60 or uterine cancer ≤50 between cancer centers. These data suggest that having a GC working within a cancer center increases the ability to identify and offer testing to patients who meet NCCN genetic testing criteria based on their cancer type.

KEYWORDS

cancer, genetic counselor, genetic services, genetic testing, NCCN guidelines

⁵Skypax, Chapel Hill, NC, USA

Cluster Analysis:

Revealing Customer Profiles of Macy's Department Store

Cluster analysis

Problem

 Support a marketing campaign of Macy's Department store

Modeling

Segment customer profiles to target

Dataset

Customer dataset

Technique

Clustering technique

Tools and Env.

SAS Enterprise Miner

Outliers detected

Transform into categorical var.

Segmentation by multiple variables

Findings

The example of the segment by multiple variables represents a college-educated customer profile that consists of dominant females and minor males who are almost half and half (approximately 54%:46%) in marital status, bought leisure and outdoor items with a lower percentage, and has a higher average income when compared to the overall distributions.

L

Predictive Model:

Pneumonia Detection using Convolutional Neural Network

*X-ray images from Dataset: Kermany, Daniel; Zhang, Kang; Goldbaum, Michael (2018), "Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification", Mendeley Data,v2 http://dx.doi.org/10.17632/rscbjbr9sj.2 (License: CC BY 4.0)

Pneumonia Detection

Problem

 Children(age 1 ~ 5) are too young to express symptoms, especially before they get seriously ill.

Model Solution

• Binary image classification

∵ Earlier pneumonia detection matters.

Dataset

• 5,863 X-ray images (JPEG) and 2 classes (Pneumonia/Normal)

Technique

• CNN(Convolutional Neural Network)

Tools and Env.

 Pandas, numpy, keras(tensorflow) libraries on IBM Watson Studio

Pneumonia Detection

Exploratory Analysis /
Data Cleansing/Dimension Reduction

Imbalance labels (1,341 vs 3,875)

Train	Normal	datase	t:
		width	height
count	1341.0	999999	1341.000000
mean	1667.	734526	1381.431022
std	289.	210512	326.320734
min	912.0	999999	672.000000
25%	1466.	999999	1152.000000
50%	1640.	999999	1328.000000
75%	1824.	999999	1542.000000
max	2916.0	999999	2663.000000
Train	Pneumor	nia data	aset:
		width	height
count	3875.6	999999	3875.000000
mean	1200.4	183613	825.026839
std	291.3	805676	277.073758
min	384.6	999999	127.000000
25%	1000.0	999999	640.000000
50%	1168.6	999999	776.000000

Size reduction

2772.000000 2304.000000

Image Width/Height Distribution

Conversion to Gray channel

Image augmentation(Oversampling effect for training data)

Pneumonia Detection

Modeling and Performance Evaluation

Model	Accuracy (test set)	F1 Score	Training vs Test data ratio (80 : 20)
Model 1 (32 x 32)	83%	88%	7,750 vs 155
Model 2 (60 x 60)	76%	84%	7,750 vs 155

Convolutional Neural Network

Model implementation in Python: https://github.com/kmleeDS/portfolio/blob/main/Showcase_attache d_to_JobKorea_CNN_32x32_Images.ipynb

Accuracy and Loss

Confusion Matrix (Model 1)

accuracy of chest X-ray for pneumonia:0.83 Precison of chest X-ray for pneumonia:0.79 Recall of chest X-ray for pneumonia:0.99 f1 of chest X-ray for pneumonia:0.88

ROC with ACU curve (Model 1)

Predictive Model:

Part Shortage Prediction at truck production

Part Shortage Prediction

Problem

Missing of even one single part
 -> Truck production delay -> late delivery

Model Solution
/Expectation

- Prediction of missing with factors including time factor
- ∵ Proactive action-taking matters.

Dataset

 By-product data (+500,000)
 generated on the shop floor and vendor name data

Technique

 Autocorrelation, RF, and LSTM as a baseline

Tools and Env.

pandas, numpy, libraries in Python

Missing value map

Relationship between time factor and frequency of part-missing

Random Forest Classification

Data visualization showcases

Avg. Death of County Death per 100,000 (TN, US)

COVID-19 Infection trend per day linear and polynomial regression

Suffering of deep poverty due to Great Recession and the alleviation by SNAP

Air Pollution and relevant pollution factors in the U.S.

COVID-19 Symptomatic or Asymptomatic Screening ChatBot using AWS Service)

Chatbot Design

Problem

• Demand of COVID-19 screening service about symptomatic/asymptomatic/other symptoms

Solution

Chatbot for COVID-19 Screening and providing protocols to follow

Reference

• COVID-19 Screening Protocol

 https://github.com/CDCgov/covid19healthbot/blo b/master/screening_protocols/covid_19_screenin g_protocol_cdc_apple.pdf

Development Tools and Env.

• Lex, S3, and DynamoDB on AWS, Node.js

AWS Service components and communication design

* AWS images are used only for showcasing personal work.