Introduction to Computer Architecture: How Computers Add

Fair Use Building and Research http://fubarlabs.org

Introductions!

What is your name? What brings you here?

Logic Basics: And, Or, Not

It's raining AND it's cloudy

It's sunny OR it's cloudy

It's sunny, NOT cloudy

It's sunny, AND it's NOT raining

Boolean Algebra

http://en.wikipedia.org/wiki/Boolean_algebra

... Boolean algebra is the algebra of <u>truth</u> <u>values</u> 0 and 1...

0 and 1

Yes and No

True and False

+ and -

Red and Black (or Blue)

High and Low

Boolean Algebra Conventions

(one of many!)

A + B	A or B
A.B or just AB	A and B
A'	Not A
(A + B)'	Not (A or B)
(AB)'	Not (A and B)
A'B'	(Not A) and (Not B)
(Sunny).(Raining')	Sunny and Not Raining

Another boolean convention

From: http://en.wikipedia.org/wiki/De_Morgan's_laws

The rules can be expressed in formal language with two propositions P and Q as:

$$\neg(P \land Q) \iff (\neg P) \lor (\neg Q)$$

$$\neg(P \lor Q) \iff (\neg P) \land (\neg Q)$$

where:

- ¬ is the negation operator (NOT)
- \(\) is the conjunction operator (AND)
- V is the disjunction operator (OR)
- ⇔ is a metalogical symbol meaning "can be replaced in a logical proof with"

Truth Tables

AND:

INF	UT	OUTPUT
Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Truth Tables - (AB)' vs. (A'B')

A	В	A and B	Not (A and B)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

A	В	A'	B'	A' and B'
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Laws and Theorems of Boolean Algebra

from: http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/index.html

T1: Commutative Law

(a)
$$A + B = B + A$$

(b)
$$A B = B A$$

T2: Associate Law

(a)
$$(A + B) + C = A + (B + C)$$

(b)
$$(A \ B) \ C = A \ (B \ C)$$

T3: Distributive Law

(a)
$$A (B + C) = A B + A C$$

(b)
$$A + (B C) = (A + B) (A + C)$$

T4: Identity Law

(a)
$$A + A = A$$

(b)
$$AA = A$$

... More laws, etc.

from: http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/index.html

.

T5:

(a)
$$AB + A\overline{B} = A$$

(b)
$$(A+B)(A+\overline{B}) = A$$

T6: Redundance Law

$$(a) A + A B = A$$

(b)
$$A(A + B) = A$$

T7:

(a)
$$0 + A = A$$

(b)
$$0A = 0$$

T8:

(a)
$$1 + A = 1$$

(b)
$$1 A = A$$

T9:

(a)
$$\overline{A} + A = I$$

(b)
$$\overline{A} A = 0$$

T10:

(a)
$$A + \overline{A} B = A + B$$

(b)
$$A(\overline{A} + B) = AB$$

De Morgan's Law

$$(AB)' = A' + B'$$

 $(A + B)' = A'B'$

Proofs with Truth Tables

Prove T10(a):

$$A + A'B = A + B$$

Α	В	A'	A + B	A'B	A + A'B
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	1	0	1
1	1	0	1	0	1

Basic Logic Gates

from: http://en.wikipedia.org/wiki/Logic_gate

Туре	Distinctive shape	Rectangular shape	Boolean algebra between A & B	7	rutl	h table
				II		OUTPUT
	_			Α	В	A AND B
AND	$\dashv \mathcal{V}$	- & -	$A \cdot B$	0	0	0
		~Ш		0	1	0
				1	0	0
				1	1	1
			A + B	INF	PUT	OUTPUT
				Α	В	A OR B
OR	$\overline{}$	≥1		0	0	0
OK				0	1	1
				1	0	1
			1	1	1	
				INF	PUT	OUTPUT
	1		II	4	NOT A	
NOT	NOT —		\overline{A}		0	1
					1	0

NAND, etc.

MineCraft Logic Gates

NANDs are "universal gates"

So are NORs -- http://en.wikipedia.org/wiki/NAND_logic

AND from earlier:

INF	UT	OUTPUT
Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

NAND

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

More NAND Gates

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

$$\mathsf{F} = (\mathsf{F}')'$$

More NAND Gates

OR [edit]

If the truth table for a NAND gate is examined or by <u>applying</u> De Morgan's Laws, it can be seen that if any of the inputs are 0, <u>then the</u> output will be 1. To be an OR gate, however, the output must be 1 if any input is 1. Therefore, if the inputs are inverted, any high input will trigger a high output.

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

More NAND Gates

XOR [edit]

An XOR gate is constructed similarly to an OR gate, except with an additional NAND gate inserted such that if both inputs are high, the inputs to the final NAND gate will also be high, and the output will be low. This effectively represents the formula: "NAND(A NAND (A NAND B)) NAND (B NAND (A NAND B))".

 Input A
 Input B
 Output Q

 0
 0
 0

 0
 1
 1

 1
 0
 1

 1
 1
 0

XOR - Truth Table to Gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

WIKI Says:

This effectively represents the formula: NAND(A NAND (A NAND B)) NAND (B NAND (A NAND B))

OR: ((A.(AB)')'.(B.(A.B)')')

Karnaugh Maps

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

A\B	0	1
0		
1		

Karnaugh Maps - XOR

A\B	0	1
0	0	1
1	1	0

Sum of Products: SoP

-- Work with the ones, OR them together

Product of Sums: PoS

-- Work with the zeros, AND them together

Karnaugh Maps - XOR

A\B	0	1
0	0	1
1	1	0

Sum of Products: SoP (1s ORd)

$$F = (A'B) + (AB')$$

Product of Sums: PoS (0s ANDed)
 $F = (A' + B').(A + B)$

Drawing XOR with Gates

$$F = (A' + B').(A + B)$$

Drawing XOR with NANDs

$$F = (A' + B').(A + B)$$

First: De Morgan's Law!

$$(AB)' = A' + B' \dots F = (AB)' \cdot (A + B)$$

...then T3 : Distributive Law

(a)
$$A (B + C) = A B + A C$$

$$F = (AB)'.(A + B)$$

...then T3 : Distributive Law

(a)
$$X (Y + Z) = XY + XZ$$

$$F = (AB)'(A) + (AB)'(B)$$

$$F' = ((AB)'(A) + (AB)'(B))'$$

...then remember, F = (F')'

... and De Morgan's (other) Law (A + B)' = A'B'

$$F = (AB)'(A) + (AB)'(B)$$

...then remember, F = (F')'

... and De Morgan's (other) Law (A + B)' = A'B'

$$F'' = F = ((AB)'(A) + (AB)'(B))''$$

 $F = ((A(AB)')'.(B.(AB)')')'$

$$F'' = F = ((AB)'(A) + (AB)'(B))''$$

 $F = ((A(AB)')'.(B.(AB)')')'$

This effectively represents the formula: "NAND (A NAND (A NAND B)) NAND (B NAND (A NAND B))".

Simplifying XOR - Draw it

NAND Construction

Setting up the breadboard

Transistors

Transistor Gate - AND

Let's build an AND

Let's build an OR

Made with Fritzing.org

NANDs -- why they are common

Presenting: The 7400 Series

7400 - Quad, dual input NAND gate

Set up the breadboard

Made with Fritzing.org

Build a NOT from NAND

Build an AND from NAND

Binary vs. Decimal

from: http://cs.iupui.edu/~n241/readings/binconv.html

Number	7	4	0	8
Position Name	Thousands	Hundreds	Tens	Ones
Exponential Expression	10 ³ *7	10 ² *4	101*0	10 ⁰ *8
Calculated Exponent	1000*7	100*4	10*0	1*8

Table 1: Decimal Placeholders

Number	1	1	0	1
Position Name	Eights	Fours	Twos	Ones
Exponential Expression	2 ³ *1	2 ² *1	21*0	20*1
Calculated Exponent	8*1	4*1	2*0	1*1

Table 2: Binary Placeholders

Binary Numbers

0000 = 0	1000 = 8
0001 = 1	1001 = 9
0010 = 2	1010 = 10
0011 = 3	1011 = 11
0100 = 4	1100 = 12
0101 = 5	1101 = 13
0110 = 6	1110 = 14
0111 = 7	1111 = 15

Binary Addition

(+ is back to add, for now!)

```
\begin{array}{c}
0010 & (2) \\
+1011 & (11) \\
\hline
1101 & (13)
\end{array}
```

Binary Addition - just 1 bit

(+ is back to add, for now!)

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0 \dots ?$$

Binary Addition - just 1 bit - Truth Table

A	В	S (Sum, a + b)
0	0	0
0	1	1
1	0	1
1	1	0

Build the XOR!

NAND Construction

Binary Addition - just 1 bit - Truth Table

A	В	C (Carry)
0	0	0
0	1	0
1	0	0
1	1	1

C = AB (Carry equals A and B)

Build the Full Adder!

Build the Full Adder!

Now what?

http://hackaday.com

http://sparkfun.com

http://adafruit.com

http://arduino.cc

http://fubarlabs.org