TRCCONFIGR, Trace Configuration Register

The TRCCONFIGR characteristics are:

Purpose

Controls the tracing options.

Configuration

AArch64 System register TRCCONFIGR bits [31:0] are architecturally mapped to External register TRCCONFIGR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_SR is implemented. Otherwise, direct accesses to TRCCONFIGR are undefined.

Attributes

TRCCONFIGR is a 64-bit register.

Field descriptions

63626160595857565554535251	50 49	48	47	4645	44 43	424140	39	38	37	36	35	34 33	32
			RI	ES0									
RES0	ITO RE	ESO\	VMIDOPT	QE	RS TS	RES0	VMID	CID	RES0	CCI	BB	RES0	RES1
31302928272625242322212010	18 17	116	15	1413	12 11	10 9 8	7	-6	5	4	3	2 1	0

Bits [63:19]

Reserved, res0.

ITO, bit [18] When TRCIDRO.ITE == 1:

Instrumentation Trace Override.

ITO	Meaning
0b0	Instrumentation Trace Override disabled.
0b1	Instrumentation Trace Override enabled.

This field is ignored when SelfHostedTraceEnabled() returns TRUE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [17:16]

Reserved, res0.

VMIDOPT, bit [15] When TRCIDR2.VMIDOPT == 0b01:

Virtual context identifier selection control.

VMIDOPT	Meaning
0b0	VTTBR_EL2.VMID is used
	as the Virtual context
	identifier.
0b1	CONTEXTIDR EL2.PROCID
	is used as the $\overline{ m V}$ irtual
	context identifier.

When TRCIDR2.VMIDOPT == 0b00:

Reserved, res0.

Virtual context identifier selection control.

VTTBR EL2.VMID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b10:

Reserved, res1.

Virtual context identifier selection control.

CONTEXTIDR EL2.PROCID is used as the Virtual context identifier.

Otherwise:

Reserved, res0.

QE, bits [14:13] When TRCIDRO.QSUPP == 0b01:

Q element generation control.

QE	Meaning
0b00	Q elements are disabled.
0b01	Q elements with instruction counts are enabled. Q elements without instruction counts are disabled.

All other values are reserved.

When TRCIDRO.QSUPP == 0b10:

Q element generation control.

QE	Meaning
0b00	Q elements are disabled.
0b11	Q elements with instruction
	counts are enabled.
	Q elements without instruction
	counts are enabled.

All other values are reserved.

When TRCIDRO.QSUPP == 0b11:

Q element generation control.

QE	Meaning
0b00	Q elements are disabled.
0b01	Q elements with instruction counts are enabled.
	Q elements without instruction counts are disabled.
0b11	Q elements with instruction counts are enabled.
	Q elements without instruction
	counts are enabled.

All other values are reserved.

Otherwise:

Reserved, res0.

RS, bit [12] When TRCIDRO.RETSTACK == 1:

Return stack control.

RS	Meaning
0b0	Return stack is disabled.
0b1	Return stack is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TS, bit [11] When TRCIDR0.TSSIZE != 0b00000:

Global timestamp tracing control.

TS	Meaning
0b0	Global timestamp tracing is disabled.
0b1	Global timestamp tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [10:8]

Reserved, res0.

VMID, bit [7] When TRCIDR2.VMIDSIZE != 0b00000:

Virtual context identifier tracing control.

VMID	Meaning	

0d0	Virtual context identifier tracing
	is disabled.
0b1	Virtual context identifier tracing
	is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

CID, bit [6] When TRCIDR2.CIDSIZE != 0b00000:

Context identifier tracing control.

CID	Meaning
0b0	Context identifier tracing is disabled.
0b1	Context identifier tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [5]

Reserved, res0.

CCI, bit [4] When TRCIDR0.TRCCCI == 1:

Cycle counting instruction tracing control.

CCI	Meaning
0d0	Cycle counting instruction tracing is disabled.
0b1	Cycle counting instruction tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

BB, bit [3] When TRCIDR0.TRCBB == 1:

Branch broadcasting control.

BB	Meaning
0b0	Branch broadcasting is disabled.
0b1	Branch broadcasting is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [2:1]

Reserved, res0.

Bit [0]

Reserved, res1.

Accessing TRCCONFIGR

Must always be programmed.

TRCCONFIGR.QE must be set to 0b00 if TRCCONFIGR.BB is not 0.

Writes are constrained unpredictable if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCONFIGR

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0100	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCCONFIGR;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TRCCONFIGR;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCCONFIGR;
```

MSR TRCCONFIGR, <Xt>

0b10 | 0b001 | 0b0000 | 0b0100 | 0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCONFIGR = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCONFIGR = X[t, 64];
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCONFIGR = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers