

 $\underset{\scriptscriptstyle{2024\text{-}25}}{\operatorname{CapECL2}}$

C.BOURNE

Devoir surveillé 7 - 25/02/25

Dans tout le sujet on admettra le théorème de Bolzano-Weierstrass : Si E est un espace vectoriel de dimension finie, toute suite bornée de E admet une sous-suite convergente.

Exercice 1 : Soit E un \mathbb{R} - espace vectoriel et $N:E\to\mathbb{R}^+$ vérifiant :

- $\forall x \in E, N(x) = 0 \Leftrightarrow x = 0_E$
- $\forall x \in E, \forall \lambda \in \mathbb{R}, N(\lambda \cdot x) = |\lambda| \cdot N(x)$

On note $B = \{x \in E, N(x) \le 1\}$

- 1. Montrer que si N est une norme alors B est convexe. \mathcal{O}
- 2. On suppose que B est convexe.
 - (a) Montrer que pour tous $x, y \in E \setminus \{0_E\}$, $\frac{N(x)}{N(x) + N(y)} \frac{x}{N(x)} + \frac{N(y)}{N(x) + N(y)} \frac{y}{N(y)} \in B$.
 - (b) En déduire que N est une norme.

Exercice 2 : Soient p_1 et p_2 les applications coordonnées de \mathbb{R}^2 , c'est-à-dire $p_i \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_i$ pour $i \in \{1,2\}$

- 1. Soit O un ouvert de \mathbb{R}^2 , montrer que $p_1(O)$ et $p_2(O)$ sont des ouverts de \mathbb{R} .
- 2. Soit $H = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, xy = 1 \right\}$. Montrer que H est un fermé de \mathbb{R}^2 et que $p_1(H)$ et $p_2(H)$ ne sont pas des fermés de \mathbb{R}
- 3. Montrer que si F est un fermé de \mathbb{R}^2 et que $p_2(F)$ est une partie bornée alors $p_1(F)$ est fermée.

Exercice 3 : Soit A un sous-ensemble de \mathbb{R} . Pour tout $P \in \mathbb{R}[X]$, on note $||P||_A = \sup_{x \in A} |P(x)|$

Partie 1/

- 1. Montrer que si A est infini et borné alors $\|.\|_A$ est bien définie et est une norme sur $\mathbb{R}[X]$.
- 2. Montrer que si A n'est pas infini ou n'est pas borné alors $\|.\|_A$ n'est pas une norme sur $\mathbb{R}[X]$. On supposera dans le reste de l'exercice que A est infini et borné.
- 3. Démontrer que pour tout $\epsilon \in \mathbb{R}_+^*$ et $a \in \overline{A}, |P(a)| \leq \epsilon + ||P||_A$.
- 4. Montrer que pour tout $P \in \mathbb{R}[X], ||P||_A = ||P||_{\overline{A}}$.
- 5. Démontrer que \overline{A} est aussi borné.
- 6. En déduire que pour tout $P \in \mathbb{R}[X], \|P\|_A = \max_{x \in \overline{A}} |P(x)|$.

Partie 2

Dans cette partie, on munit $\mathbb{R}[X]$ de la norme $\|.\|_A$ et pour tout $x \in \mathbb{R}$, on pose $\delta_x : \mathbb{R}[X] \to \mathbb{R}, P \mapsto P(x)$

- 1. Montrer que si $x \in \overline{A}$ alors δ_x est continue sur $\mathbb{R}[X]$.
- 2. Dans cette question, on suppose que $x \notin \overline{A}$
 - (a) Démontrer qu'il existe $r, M \in \mathbb{R}_+^*$ tels que pour tout $a \in A, r \leq |x-a| < M$
 - (b) On pose pour tout $n \in \mathbb{N}, z \in \mathbb{R}, P_n(z) = (1 (\frac{z-x}{r})^2)^n$. Montrer que (P_n) converge vers 0 pour $\|.\|_A$.
 - (c) En déduire que δ_x n'est pas continue.