The following notations will be followed in this report. These are basic notations, same as those done in high school or above, by most of the people.

Sets

A set is a collection of objects. The following sets (among others) will be used in this report:

 \mathbb{R} : the set of real numbers.

 \mathbb{Z} : the set of integters (positive, negative, or zero).

 $\mathbb{Z}_n: \{0, 1, 2, \dots, n-1\}$

The symbols \emptyset , \in , \notin , \cup , \cap , \subseteq and \supseteq have their usual meanings. If S and T are sets and, $S \cap T = \emptyset$, then S and T are said to be *disjoint*.

If S is a set and P a property (or a combination of properties), we can define a new set with the notation

$$\{x \in S \mid P(x)\}$$

which denotes 'set of all elements of S which have property P'.

The order or cardinality of a finite set S is the number of elements in S and is denoted by |S|. For example, $|\mathbb{Z}_n| = n$.

The $Cartesian \ Prooduct$ of two sets S and T is given by

$$S \times T = \{(s,t) \mid s \in S, \ t \in T\}.$$

If S and T are finite sets, then $|S \times T| = |S| \cdot |T|$.

In general,

$$S_1 \times S_2 \times \cdots \times S_n = \{(s_1, s_2, \dots, s_n) \mid s_i \in S_i, i = 1, 2, \dots, n\},\$$

is the Cartesian Product (a set of ordered n-tuples) of n sets S_1, S_2, \ldots, S_n .

In this report, an ordered *n*-tuple (x_1, x_2, \ldots, x_n) will be denoted simply as $x_1 x_2 \cdots x_n$.

Combinatorics

Number of ways of choosing m distinct objects from n distinct objects

the coefficient of x^m in $(1+x)^n$

are both given by

$$\binom{n}{m} = \frac{n!}{m! \ (n-m)!}$$

where $p! = p(p-1) \cdots 3.2.1$ for m > 0 and 0! = 1.

This bracket notation will be used throughout the report.

A permutation of a set $S = \{x_1, x_2, \dots, x_n\}$ is a one-to-one mapping from set S to itself. It is denoted by

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ \downarrow & \downarrow & & \downarrow \\ f(x_1) & f(x_2) & \dots & f(x_n) \end{pmatrix}$$

Modular Arithmatic

Let m be a fixed positive integer. Two integers a and b are written as

$$a \equiv b \pmod{m}$$

if a - b is divisible by m.

It can be noted that if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$ then

- (i) $a + b \equiv a' + b' \pmod{m}$
- (ii) $ab \equiv a'b' \pmod{m}$

Fermat's Little Theorem: Let p be a prime, and a be any integer, then $a^p \equiv a \pmod{p}$