

Women in Computing

Team-Boehm

Authors: Anuj Panchmia, Lei Xian, Mohammadreza Iman

Approach #1 - NMF

Figure 3.1: From Wikipedia's NMF page. In this example, V is the data matrix, and W and H are the basis vectors and factors, respectively.

- We use the NMF Model using the package provided by freeman-lab.
- With the help of Thunder package we get the regions of the neurons.
- We also perform parameter tweaking for improving the results.

Results #1 - NMF

The following are results of parameter tweaking:

- We change the chunk size based on the number of samples in a dataset.
- We also change the iterations based on the number of samples in each dataset.

NMF

	K	Percentile	Iteration	Chunk	Accuracy
00.00.test	10	95	60	50	3.1
00.01.test	5	95	60	40	3.0
01.00.test	10	95	60	50	3.3
01.01.test	5	99	50	50	3.0
02.00.test	5	99	50	50	3.1
02.01.test	10	95	60	50	3.1
03.00.test	10	95	60	40	3.1
04.00.test	5	99	50	50	3.3
04.01.test	5	95	60	40	3.2

Approach - 2# DBSCAN + NMF

- We use DBSCAN Density Based Spatial Clustering of Applications with Noise.
- We use this technique for getting rid of the outlier points.
- For eg. Point N in the above example is a outlier.
- It is unsupervised technique and uses two main parameters i.e
 - 1. **Epsilon**: The maximum distance between two samples for them to be considered as in the same neighborhood.
 - 2. **Min Samples**: The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself.

Results: DBSCAN

Original Image

After DBSCAN

 Then we apply NMF on these images which resulted in 3.11 accuracy was for nuerofinder01.00.test.

Results: DBSCAN + NMF

Test Image

Output Image

What went wrong ??

- We were not able to identify the darker neurons.
- Also, the DBSCAN algorithm is computationally expensive as it has a time complexity of O(N³).

Attempts made towards improving.

- We used a couple of feature extraction image processing algorithms like SURF and FAST.
- 1. SURF : Speeded Up Robust Features

2. FAST :Features from Accelerated Segment Test.

FAST

What could have been done Instead?

 Design or implement an Algorithm that Identifies and Highlights the Darker neurons which has a ring structure.

Acknowledgements

- https://en.wikipedia.org.
- 2. https://github.com/codeneuro/neurofinder.
- 3. https://scikit-learn.org/stable/modules/clustering.html#clustering

```
If(Questions != Null )
System.out.Println("Please Ask ??")
Else
System.out.Println("Thank You.")
```