Chapters 4: Feature and Constraints DIT410/TIN172 Artificial Intelligence

Peter Ljunglöf modifed from slides by Poole & Mackworth with some help from slides by Russel & Norvig

(Licensed under Creative Commons BY-NC-SA v4.0)

31 March, 2015

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

States and features

States can often be described in terms of features:

- States can be defined in terms of features: a state corresponds to an assignment of a value to each feature.
- Features can be defined in terms of states: a feature is a function of the states. The function returns the value of the feature on that state.
- Features are described by variables.
- Not all assignments of values to variables are possible.

Examples: 8-queens, crossword puzzle, course timetable.

More difficult: 8-puzzle, driving directions.

States and features

Just a few features can describe many states:

```
binary features can describe
                                            states
 n.
                                       2^{10} = 1,024
 10
      binary features can describe
                                      2^{20} = 1,048,576
 20
      binary features can describe
                                      2^{30} = 1,073,741,824
 30
      binary features can describe
                                      2^{100} = 1,267,650,600,228,229,
100
      binary features can describe
                                                    401,496,703,205,376
```


Constraint satisfaction problem

Standard search problem:

• the state is a "black box" – any old data structure that supports goal test, cost evaluation, successor

CSP is a more specific search problem:

- the state is defined by variables V_i , taking values from domain \mathbf{D}_i
- the goal test is a set of *constraints* specifying allowable combinations of values for subsets of variables

Since CSP is more specific, it allows useful algorithms with more power than standard search algorithms

Hard and soft constraints

Given a set of variables, assign a value to each variable that either

- satisfies some set of constraints:
 - ▶ satisfiability problems "hard constraints"
- minimizes some cost function, where each assignment of values to variables has some cost:
 - optimization problems "soft constraints"

Many problems are a mix of hard and soft constraints (called constrained optimization problems)

Relationship to search

Differences to general search problems:

- The path to a goal isn't important, only the solution is.
- There are no predefined starting nodes.
- Often these problems are huge, with thousands of variables, so systematically searching the space is infeasible.
- For optimization problems, there are no well-defined goal nodes.

Posing a CSP

A CSP is characterized by

- A set of variables V_1, V_2, \ldots, V_n .
- Each variable V_i has an associated domain \mathbf{D}_{V_i} of possible values.
- There are hard constraints on various subsets of the variables which specify legal combinations of values for these variables.
- A solution to the CSP is an assignment of a value to each variable that satisfies all the constraints.

Example: Scheduling activities

Variables: A, B, C, D, E that represent the starting times of various activities.

Domains: $D_A = D_B = D_C = D_D = D_E = \{1, 2, 3, 4\}$

Constraints:

$$(B \neq 3) \land (C \neq 2) \land (A \neq B) \land (B \neq C) \land$$
$$(C < D) \land (A = D) \land (E < A) \land (E < B) \land$$
$$(E < C) \land (E < D) \land (B \neq D)$$

Example: Crossword puzzle

Words:

ant, big, bus, car, has book, buys, hold, lane, year beast, ginger, search, symbol, syntax

Dual representations

Many problems can be represented in different ways as a CSP, e.g., the crossword puzzle:

- First representation:
 - ▶ nodes represent word positions: 1-down...6-across
 - domains are the words
 - constraints specify that the letters on the intersections must be the same
- Dual representation:
 - nodes represent the individual squares
 - domains are the letters
 - constraints specify that the words must fit

Example: Map colouring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: $D_i = \{red, green, blue\}$

Constraints: adjacent regions must have different colors,

e.g., $WA \neq NT$, $WA \neq SA$, $NT \neq SA$, $NT \neq Q$, ...

13 / 55

Example: Map colouring

Solutions are assignments satisfying all constraints, e.g., $\{\mathit{WA} = \mathit{red}, \mathit{NT} = \mathit{green}, \mathit{Q} = \mathit{red}, \mathit{NSW} = \mathit{green}, \\ \mathit{V} = \mathit{red}, \mathit{SA} = \mathit{blue}, \mathit{T} = \mathit{green}\}$

14 / 55

Constraint graph

Binary CSP: each constraint relates at most two variables (note: this does not say anything about the domains)

Constraint graph: nodes are variables, arcs show constraints

CSP algorithms can use the graph structure to speed up search, e.g., Tasmania is an independent subproblem.

4 □ **→** 15 / 55

Example: Cryptarithmetic puzzle

Variables: $F, T, U, W, R, O, X_1, X_2, X_3$

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 ${\it Constraints: all diff}(F,\,T,\,U,\,W,\,R,\,O)$

 $O + O = R + 10 \cdot X_1$, etc.

Note: This is not a binary CSP.

◆ □ →

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

$Generate-and-test\ algorithm$

- Generate the assignment space $\mathbf{D} = \mathbf{D}_{V_1} \times \mathbf{D}_{V_2} \times \ldots \times \mathbf{D}_{V_n}$. Test each assignment with the constraints.
- Example:

$$\mathbf{D} = \mathbf{D}_A \times \mathbf{D}_B \times \mathbf{D}_C \times \mathbf{D}_D \times \mathbf{D}_E$$

$$= \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$$

$$\times \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$$

$$= \{\langle 1, 1, 1, 1, 1 \rangle, \langle 1, 1, 1, 1, 2 \rangle, ..., \langle 4, 4, 4, 4, 4 \rangle\}.$$

• How many assignments need to be tested for n variables each with domain size d?

4 □ ▶

Backtracking algorithms

- Explore D by instantiating the variables one at a time
- Evaluate each constraint as soon as all its variables are bound
- Any partial assignment that doesn't satisfy the constraint can be pruned

Example Assignment $A = 1 \land B = 1$ is inconsistent with constraint $A \neq B$ regardless of the value of the other variables.

Simple backtracking example

Variables: A, B, C. Domains: $D_A = D_B = D_C = \{1, 2, 3, 4\}.$

Constraints: $(A < B) \land (B < C)$.

CSP as graph searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $[X_1 = v_1, \dots, X_k = v_k]$.
 - \triangleright Select a variable Y that isn't assigned in N.
 - ▶ For each value $y_i \in dom(Y)$, $[X_1 = v_1, ..., X_k = v_k, Y = y_i]$ is a neighbour if it is consistent with the constraints.
- The start node is the empty assignment.
- A goal node is a total assignment that satisfies the constraints.

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Consistency algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?

Consistency algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?

- $\mathbf{D}_B = \{1, 2, 3, 4\}$ is *not* domain consistent, since B = 3 violates the constraint $B \neq 3$.
- $\mathbf{D}_C = \{1, 2, 3, 4\}$ is *not* domain consistent, since C = 2 violates the constraint $C \neq 2$.

Constraint network

A constraint network is a graph, which has:

- an oval-shaped node for each variable,
- a rectangular node for each constraint,
- a domain of values associated with each variable node, and
- an arc from variable X to each constraint that involves X.

Example: Constraint network

Domain consistency vs. arc consistency

- Domain consistency only considers unary constraints
 - these are usually not shown in a constraint network
 - because domain consistency is so very easy to check and maintain
- Arc consistency considers binary (and more) constraints
 - ▶ i.e., the nodes and arcs in the constraint network

31 March, 2015

Arc consistency

- An arc $\langle X, r(X, Y_1 \dots Y_n) \rangle$ is arc consistent if:
 - for each value $x \in dom(X)$, there is some assignment $y_1 \dots y_n \in dom(Y_1 \dots Y_n)$ such that $r(x, y_1 \dots y_n)$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- What if arc $\langle X, r(X, Y_1 \dots Y_n) \rangle$ is *not* arc consistent?
 - ▶ all values of X in dom(X) for which there is no corresponding assignment in $dom(Y_1 ... Y_n)$ can be deleted from dom(X) to make the arc $\langle X, r(X, Y_1 ... Y_n) \rangle$ consistent.

Arc consistency algorithm

- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?
 - An arc \(\lambda \), \(r(X, Y_1 \ldots Y_n \rangle \) needs to be revisited if the domain of one of the Y's is reduced.
- Three possible outcomes when all arcs are made arc consistent: (Is there a solution?)
 - ▶ One domain is empty ⇒
 - ► Each domain has a single value ⇒
 - ▶ Some domains have more than one value ⇒

Arc consistency algorithm

- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?
 - An arc \(\lambda \), \(r(X, Y_1 \ldots Y_n \rangle \) needs to be revisited if the domain of one of the Y's is reduced.
- Three possible outcomes when all arcs are made arc consistent: (Is there a solution?)
 - ▶ One domain is empty ⇒ no solution
 - ▶ Each domain has a single value ⇒ unique solution
 - ► Some domains have more than one value ⇒ there may or may not be a solution

Quiz: Arc consistency

The variables and constraints are in the constraint graph:

Assume the initial domains are $D_A = D_B = D_C = \{1, 2, 3, 4\}.$

How will the domains look like after making the graph arc consistent?

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Finding solutions when AC finishes

What if some domains have more than one element after AC?

- We can always resort to searching
- Split one of the domains, then recursively solve each half
 - ▶ i.e., perform AC on the resulting graph, then split a domain, perform AC, split a domain, perform AC, split, etc.
- It is often best to split a domain in half
 - i.e., if $\mathbf{D}_X = \{1, \dots, 1000\}$, we can split into $\{1, \dots, 500\}$ and $\{501, \dots, 1000\}$
- Do we need to restart from scratch?
 - ▶ no, only some arcs risk losing their arc consistency after the split

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Variable elimination

Complementary simplification methods:

- Arc consistency (AC) simplifies the network by removing values of variables.
- Variable elimination (VE) simplifies the network by removing variables.

Variable elimination algorithm

Variable elimination algorithm:

- Select a variable X to eliminate.
 - Remove X by constructing a new constraint on all variables that occur in some X constraint.
 - ▶ This new constraint replaces all constraints that involve X, forming a reduced network that does not involve X.
- The variables are eliminated according to some elimination ordering:
 - Different elimination orderings can result in different intermediate constraints

31 March, 2015

$Example\ network$

Example: Arc-consistent network

Constraints: $E \neq C$ and D < C.

Domains: $D_C = \{3,4\}, D_D = \{2,3\}, D_E = \{2,3,4\}.$

Constraints: $E \neq C$ and D < C.

Domains:
$$\mathbf{D}_C = \{3,4\}, \ \mathbf{D}_D = \{2,3\}, \ \mathbf{D}_E = \{2,3,4\}.$$

$r_1:E eq C$	C	E
	3	2
	3	4
	4	2
	4	3

Constraints: $E \neq C$ and D < C.

Domains: $D_C = \{3,4\}, D_D = \{2,3\}, D_E = \{2,3,4\}.$

$r_1:E eq C$	C	E	$r_2: D < C$	C	D
	3	2		3	2
	3	4		4	2
	4	2		4	3
	4	3			

38 / 55

Constraints: $E \neq C$ and D < C.

Domains: $D_C = \{3, 4\}, D_D = \{2, 3\}, D_E = \{2, 3, 4\}.$

$r_1:E eq C$	C	E	$r_2: D < C$	$\mid C \mid$	D
	3	2		3	2
	3	4		4	2
	4	2		4	3
	4	3		ļ.	

$r_3:r_1\bowtie r_2$	C	D	E
(join r_1, r_2)	3	2	2
	3	2	4
	4	2	2
	4	2	3
	4	3	2
	4	3	3

Constraints: $E \neq C$ and D < C.

Domains:
$$\mathbf{D}_C = \{3,4\}, \, \mathbf{D}_D = \{2,3\}, \, \mathbf{D}_E = \{2,3,4\}.$$

$r_1:E eq C$	C	E	1	$r_2:D <$	< C	C	D	
	3	2				3	2	
	3	4				4	2	
	4	2				4	3	
	4	3				1		

$r_3:r_1\bowtie r_2$	C	D	E	r_4 : $\pi_{\{D,E\}}r_3$	D	E
$(\text{join } r_1, r_2)$	3	2	2	(project r_3	2	2
	3	2	4	onto D, E)	2	3
	4	2	2		2	4
	4	2	3		3	2
	4	3	2		3	3
	4	3	3		'	

→ new constraint

Resulting network after eliminating C

Outline

- 1 Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Local search for CSPs

Given an assignment of a value to each variable:

- A conflict is an unsatisfied constraint.
- The goal is an assignment with zero conflicts.

Local search / Greedy descent algorithm:

- Repeat until a satisfying assignment is found:
 - Select a variable to change
 - ▶ Select a new value for that variable
- Heuristic function to be minimized: the number of conflicts.

Variants of greedy descent

To choose a variable to change and a new value for it:

- Find a variable-value pair that minimizes the number of conflicts
- Select a variable that participates in the most conflicts.
 Select a value that minimizes the number of conflicts.
- Select a variable that appears in any conflict.
 Select a value that minimizes the number of conflicts.
- Select a variable at random.
 Select a value that minimizes the number of conflicts.
- Select a variable and value at random;
 accept this change if it doesn't increase the number of conflicts.

Problems with greedy descent

- a local minimum that is not a global minimum
- a plateau where the heuristic values are uninformative
- a ridge is a local minimum where n-step look-ahead might help

Outline

- Teatures and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Randomized algorithms

- Consider two methods to find a minimum value:
 - Greedy descent, starting from some position, keep moving down, and report minimum value found
 - ▶ Pick values at random, and report minimum value found
- Which do you expect to work better to find a global minimum?
- Can a mix work better?

Randomized greedy descent

As well as downward steps we can allow for:

- Random steps: move to a random neighbor.
- Random restart: reassign random values to all variables.

1-dimensional illustrative example

Two 1-dimensional search spaces; step right or left:

- Which method would most easily find the global minimum?
 - ▶ random steps or random restarts?
- What happens in hundreds or thousands of dimensions?
 - e.g., different dimensions have different structure?

← □ **→**

Stochastic local search

Stochastic local search is a mix of:

- Greedy descent: move to a lowest neighbor
- Random walk: taking some random steps
- Random restart: reassigning values to all variables

Outline

- 1 Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Comparing stochastic algorithms

- How can you compare three algorithms when
 - ▶ one solves the problem 30% of the time very quickly but doesn't halt for the other 70% of the cases
 - one solves 60% of the cases reasonably quickly but doesn't solve the rest
 - ▶ one solves the problem in 100% of the cases, but slowly?
- Summary statistics, such as mean run time, median run time, and mode run time don't make much sense.

Runtime distribution

 Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.

Outline

- Features and constraints
 - States, features and constraints (4.1-4.2)
 - Soving CSPs using search (4.3-4.4)
 - Consistency algorithms (4.5)
 - Domain splitting (4.6)
 - Variable elimination (4.7)
- 2 Local search (4.8-4.9)
 - Iterative best improvement (4.8.1)
 - Randomized algorithms (4.8.2)
 - Evaluating randomized algorithms (4.8.3)
 - Population-based methods (4.9)

Beam search

Idea: maintain a population of k assignments in parallel, instead of one:

- At every stage, choose the k best out of all of the neighbors.
- When k = 1, it is greedy descent.
- When $k = \infty$, it is breadth-first search.
- The value of k lets us limit space and parallelism.

Stochastic beam search

Like beam search, but it probabilistically chooses the k individuals at the next generation:

- The probability that a neighbor is chosen is proportional to its heuristic value.
- This maintains diversity amongst the individuals.
- The heuristic value reflects the fitness of the individual.
- Like asexual reproduction: each individual mutates and the fittest ones survive.

Genetic algorithms

Like stochastic beam search, but pairs of individuals are combined to create the offspring:

- For each generation:
 - Randomly choose pairs of individuals where the fittest individuals are more likely to be chosen.
 - ► For each pair, perform a cross-over: form two offspring each taking different parts of their parents:
 - Mutate some values.
- Stop when a solution is found.

