Exam: Artificial Intelligence

Algorithms and Application

Module Exam

Winter 2024/2025 Date: 10.04.2025

Important Information

WIRTSCHAFTS

- Please check your exam copy for completeness. It covers **19 pages** (cover sheet included).
- Fill out the cover sheet immediately after receiving the exam.
- Use only the examination paper to solve the tasks. If you do not have enough space, you can receive additional paper during the examination. Additional papers must also be marked with your name and matriculation number.
- Please leave a correction margin of 3 cm.
- You have a total of **90 minutes** to complete the exam.
- Except for a non-programmable calculator, no other aids are allowed in the exam.

We wish you much success!

Please fill out clearly in bloc	k letters.	
First Name	Last Name	Seat No
Matr. No	Course of Study	☐ Master☐ Diplom
Repeater: ☐ yes ☐ no		

Section	Max. Points	Achieved Points
1	35	
2	25	
3	30	
Sum	90	

ŀ	Lxam	Kev	/iew	("Kla	iusurei	nsicht")
---	------	-----	------	-------	---------	---------	---

(do not fill out before the review)

I have reviewed the corrected exam:

- There are no complaints about the correction.
- Complaints about the correction exist (see additional sheet).

Date:

Signature:

First	t Name Matr. No Matr. No
1	Basic Concepts and Algorithms (35 Points)
1.1	Please provide the definition of artificial intelligence that has been defined during the
	Dartmouth conference. (1 P)
1.2	Please name the <i>three types</i> into which machine learning approaches can be categorized
	based on the problem type . (1.5 P)

First Name	Last Name	Matr. No

1.3 Please briefly **explain** the *k-fold cross-validation procedure* in the context of a **classification algorithm**. (6 P)

1.4 Is *feature scaling* in **general required** after a *normalization* has been applied?
Please **briefly explain** your **decision**. (2 P)

Firs	t Name Matr. No Matr. No
1.5	Please briefly explain : For which kind of problems can you use k-NN algorithms ? What does the k stand for ? (2 P)
1.6	Please name three other scientific domains of AI besides machine learning and knowledge
	reasoning. (1.5 P)
1.7	Please briefly explain the <i>significance of bias</i> in a perceptron model . Why is it useful ? (1 P)

Firs	t Name Matr. No Matr. No
1.8	A delivery drone needs to optimize its route in a crowded city . Please explain : What algorithm would best suit this task ? Justify your answer . (3 P)
1.9	Please briefly explain : What is the difference between " explainability " and " interpretability " in AI ? Please also provide an example for each of the two . (4 P)

First Name	Last Name	Matr. No

1.10 Please define the "no free lunch" theorem in the context of AI. Why is it important? (4 P)

1.11 What are ensemble techniques in machine learning?

Please provide a **definition** and an **example**. (2 P)

First Name Matr. No Matr. No	
------------------------------	--

1.12 Please briefly **explain**: **What** is *CRISP-DM*? Please also **name** its **distinct** *process phases*. (4P)

1.13 Please briefly explain: What is the difference between the Mc Culloch-Pitts Neuron and the perceptron? How do they differ related to learning? (3 P)

First Name	Last Name	Matr. No

2 Classification and Entropy (25 Points)

A **company** is **developing** an *AI-based email spam identifier*. The available **dataset** consists of **email examples labelled** as either **Spam** or **Not Spam**, based on different word occurrences.

Table 1 summarizes the **dataset distribution** for the **phrase** "Join me on Whatsapp" based on a **qualified sample** of the dataset.

Table 1		
Phrase: "Join me on Whatsapp"	Spam (count)	Not Spam (count)
TRUE	40	10
FALSE	20	30

2.1 Please name: What kind of *machine learning problem* is this? (1 P)

First Name	Last Name	Matr. No

2.2 Please calculate the *entropy* of the dataset <u>before</u> any classification based on the Spam and Not Spam labels (8 P).

Use the following formular for calculating entropy: - Σ (p * log_2 p)

Final Name	Last Name	Make Na
First Name	Last Name	Matr. No

2.3 Please calculate the weighted entropy after splitting the dataset based on the presence of the suspicious phrase "Join me on Whatsapp". To compute the weighted entropy, calculate the entropy for each dataset and weight it based on the number of elements in each subset. (6 P)

		_
First Name	Last Name	Matr. No

2.4 Please **compute** the *information gain* of **splitting** on the **phrase**. Use your values from the previous calculations. Please also **explain**: **Would** this be **a good split** for **classification**? **Why** or **why not**? (6 P)

First Name	Last Name	Matr. No

2.5 Please explain: Does entropy as a criterion to build your *decision tree* guarantee the optimal split in each scenario? Why or why not? (4 P)

Fii	rst Name	Last Name	Matr. No
3	Programming with Py	thon (30 Points)	

3.1 Please write a **Python function** named *load_data* that **accepts** a *filename*, **reads** a *CSV file* into a *Pandas DataFrame*, and **prints** the *first five rows*. (2 P)

First Name	Last Name	Matr. No

3.2 Please write a new function named *handle_missing_values* that does the same as *load_data* but **fills** in **missing values** with the **mean** of their **columns** in the **created DataFrame** before **printing** its *first five rows*. (2 P)

First Name	Last Name	Matr. No

3.3 Please write a new function named save_clean_data that does the same as handle_missing_values but also saves the cleaned DataFrame to a new CSV file and adds a print statement when the data is successfully saved. (2 P)

Final Name	Last Name	Make Na
First Name	Last Name	Matr. No

3.4 Please write a short documentation using Python documentation to explain the *purpose* and *parameters* of your function *save_clean_data*. (2 P)

First Name	Last Name	Matr. No

3.5 Please consider the following code snippet that is designed to predict fraud in a car insurance dataset using a simple logistic regression model. The code snippet contains 6 errors or logical mistakes that will result in a runtime error or incorrect results from your model. Please identify the 6 errors or logical mistakes and explain how to fix them. (12 P)

```
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
from sklearn.preprocessing import StandardScaler
# Load data
data = pd.read_csv('car_insurance.csv')
# Prepare data
features = data[['age string', 'total claims']]
labels = data['fraud]
# Split data
X train, X test, y train, y test = train test split(features,
                                                                      labels,
test size=0.99, random state=42)
# Scale features
scaler = StandardScaler()
X train scaled = X train
X test scaled = scaler.transform(X train)
# Initialize and train model
model = LogisticRegression()
model.fit(X train scaled, y train)
# Predict and evaluate
predictions = model.predict(X test scaled)
accuracy = accuracy score(y train, predictions)
print(f' accuracy ')
```

First Name	Last Name	Matr. No

First Name	Last Name	Matr. No

3.6 Please assume you have a Pandas dataframe that contains the following columns:

Car_Model, Car_Year, Failure_Type, Repair_Cost

Please provide **Python code** to **answer** the **following questions** about the dataframe. (10 P)

Question	Python Code
How can you extract all records where the Car_Model is 'Panamera' ?	
How would you calculate the average Repair_Cost for each Failure_Type?	
How can you sort the DataFrame by the Car_Year in descending order?	
How do you find all entries where the Car_Year is before 2015 and the Repair_Cost is greater than \$1000 ?	

First Name	 Last Name	Matr. No
How can you summarize the total Repair_Cost per car_model?		

