

METHOD OF STABILIZING MACROLIDE COMPOUND

Publication number: WO2005073223 (A1)

Publication date: 2005-08-11

Inventor(s): ISHIHARA HIROSHI; TAKEDA SUSUMU; YAMADA TOMONARI; ASAHI YOSHIKAI +

Applicant(s): EISAI CO LTD; UPI; MERCIAN CORP; ISHIHARA HIROSHI; TAKEDA SUSUMU; YAMADA TOMONARI; ASAHI YOSHIKAI +

Classification:

- International: C07D31/300; C07D407/06; C12N1/20; C12P17/06;
 C12P17/16; C08B37/16; C07D313/00; C07D407/00;
 C12N1/26; C12P17/02; C12P17/16; C08B37/00, (IPC1-
 7); C08B37/15; C07D407/06; C07D313/00; C12P17/08

- European: C12N1/20; C07D313/00; C12P17/16B

Application number: WO2005JP01637 20050128
 Priority number(s): JP2004026894 20040129

Also published as:

EP1710244 (A1)

US2007155096 (A1)

US7655442 (B2)

KR20060127946 (A)

CN101497595 (A)

more >>

Cited documents:

WO20060890 (A1)

JP4352783 (A)

JP11509223 (A)

JP2002502810 (A)

JP99048737 (A)

Abstract of WO 2005073223 (A1)

A method of stabilizing a macrolide compound and a process for efficiently producing the compound. The method, which is for stabilizing a 12-membered cyclic macrolide compound, e.g., that represented by the formula (I), comprises causing the compound to coexist with a cyclodextrin. The process, which is for producing the macrolide compound, comprises causing a cyclodextrin to be present in a culture medium containing an acetylene having the ability to produce the macrolide compound. (II)

Data supplied from the *espacenet* database — Worldwide

(19)世界知的所有権機関
国際事務局(43)国際公開日
2005年8月11日 (11.08.2005)

PCT

(10)国際公開番号
WO 2005/073223 A1

- (51) 国際特許分類: C07D 407/06, 313/00, C12P 17/08 // C08B 37/16
- (81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PI, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (21) 国際出願番号: PCT/JP2005/001637
- (22) 国際出願日: 2005年1月28日 (28.01.2005)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2004-020804 2004年1月29日 (29.01.2004) JP
- (71) 出願人(米国を除く全ての指定国について): エーザイ株式会社 (EISAI CO., LTD.) [JP/JP]; 〒1128088 東京都文京区小石川4丁目6番10号 Tokyo (JP). メルシャン株式会社 (MERCIAN CORPORATION).
- (72) 発明者: および
- (75) 発明者/出願人(米国についてのみ): 石原 比呂之 (ISHIHARA, Hiroshi), 竹田 普 (TAKEDA, Susumu), 山田 智也 (YAMADA, Tomonari), 旭 義明 (ASAHI, Yoshiaki).
- (74) 代理人: 古谷 聰, 外 (FURUYA, Satoshi et al.); 〒1030007 東京都中央区日本橋浜町2-17-8 浜町花長ビル6階 Tokyo (JP).
- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SI, SZ, TZ, UG, ZM, ZW). ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). ヨーロッパ (AL, BE, BG, CH, CY, CZ, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: METHOD OF STABILIZING MACROLIDE COMPOUND

(54) 発明の名称: マクロライド系化合物の安定化方法

(57) Abstract: A method of stabilizing a macrolide compound and a process for efficiently producing the compound. The method, which is for stabilizing a 12-membered cyclic macrolide compound, e.g., that represented by the formula (I), comprises causing the compound to coexist with a cyclodextrin. The process, which is for producing the macrolide compound, comprises causing a cyclodextrin to be present in a culture medium containing an actinomycete having the ability to produce the macrolide compound. (I)

(57) 要約: 本発明は、マクロライド系化合物の安定化方法および該化合物の効率的な製造方法を提供する。詳しくは、式(I)で表される化合物等の12員環マクロライド系化合物とシクロデキストリン類とを共存させる、マクロライド系化合物の安定化方法及び該マクロライド系化合物を生産する能力を有する放線菌の培養液中にシクロデキストリン類を存在させるマクロライド系化合物の製造方法である。

WO 2005/073223 A1

明細書

マクロライド系化合物の安定化方法

技術分野

本発明は、抗腫瘍性を有する12員環マクロライド系化合物の安定化方法および該化合物の製造方法に関する。

背景技術

式(I)

で表される12員環マクロライド系化合物（以下マクロライド系化合物11107Bという）は、ストレプトミセス エスピー(*Streptomyces sp.*) Mer-11107株の培養物より見出された抗腫瘍性化合物であり、さらにこの化合物およびその類縁体を原料にした化学合成によりさらに優れた抗腫瘍活性を有するマクロライド系化合物が見出されている（WO 02/060890号参照）。しかしながら、これらのマクロライド系化合物は、特に水溶液中での安定性が十分でなく、安定性の改善方法とともに効率的な製造方法の確立が望まれていた。

一方、シクロデキストリン類は、グルコース分子が $\beta-1,4-$ 結合で環状に結合した非還元性の糖であり、グルコース残基がそれぞれ6個、7個、8個の $\alpha-$ 、 $\beta-$ 、 γ -シクロデキストリンが一般によく知られている。シクロデキストリン類は、その中央部にある空洞に他の化合物を包接する性質を有しており、包接された化合物の安定化、可溶化、酸化防止、不揮発化等に利用されている。またシクロデキス

トリン類は、抗生物質ランカシジンの発酵生産において、培地中に添加するとその生産性を高める効果をもつことが知られている（特開昭58-177949号公報および特開昭58-179496号公報参照）。しかしながらシクロデキストリン類は、どのような化合物も包接するわけではなく、また包接したとしても必ずしも安定化等に寄与するとは限らない。同様にどのような化合物の発酵生産においても生産性を高める効果があるわけではない。

発明の開示

本発明の課題は、マクロライド系化合物の安定化方法および該化合物の効率的な製造方法を提供することにある。

本発明は、式(1)で表されるマクロライド系化合物（以下マクロライド系化合物(1)という）をシクロデキストリン類と共に共存させることを特徴とする、マクロライド系化合物(1)の安定化方法に関する。

[式(1)中、

nは、0ないし4の整数を表す；

Wは、 --- またはを表す；

R²、R^{3a}、R^{3b}、R⁴、R^{5a}、R^{5b}、R^{6a}、R^{6b}、R^{7a}、R^{7b}、R⁸、R^{9a}、R^{9b}、R¹⁰、R^{16a}、R^{16b}、R^{17a}、R^{17b}、RⁿaおよびRⁿbは、同一または異なる、

(1) 水素原子、

(2) ヒドロキシ基、

(3) それぞれ置換基を有していても良い、

- a) C_{1-22} アルキル基、
- b) C_{1-22} アルコキシ基、
- c) A_rCH_2O- (式中、 A_r は、それぞれ置換基を有していても良い、 C_{6-14} アリール基または5員環ないし14員環ヘテロアリール基を表す)、
- d) ホルミルオキシ基、
- e) C_{2-22} アシロキシ基、
- f) 不飽和 C_{3-23} アシロキシ基、
- g) $R^{+0}COO-$ (式中、 R^{+0} は、それぞれ置換基を有していても良い、 C_{6-14} アリール基、5員環ないし14員環ヘテロアリール基、 C_{1-22} アルコキシ基、不飽和 C_{2-22} アルコキシ基、 C_{6-14} アリールオキシ基または5員環ないし14員環ヘテロアリールオキシ基を表す)、
- h) C_{1-22} アルキルスルホニルオキシ基、
- i) C_{6-14} アリールスルホニルオキシ基もしくは
- j) $R^{+1}R^{+2}R^{+3}SiO-$ (式中、 R^{+1} 、 R^{+2} および R^{+3} は、同一または異なって、 C_{1-6} アルキル基または C_{6-14} アリール基を表す)、

(4) ハロゲン原子または

(5) $R^{N1}R^{N2}N-R^M-$ (式中、 R^M は単結合または $-CO-O-$ を表し、 R^{N1} および R^{N2} は

1) 同一または異なって、

- a) 水素原子、
- b) それぞれ置換基を有していても良い、
 - (i) C_{1-22} アルキル基、
 - (ii) 不飽和 C_{2-22} アルキル基、
 - (iii) C_{2-22} アシリル基、
 - (iv) 不飽和 C_{3-23} アシリル基、
 - (v) C_{6-14} アリール基、
 - (vi) 5員環ないし14員環ヘテロアリール基、

(vii) C₇₋₁₅アラルキル基、

(viii) C₁₋₂₂アルキルスルホニル基もしくは

(ix) C₆₋₁₄アリールスルホニル基を表すか、または

2) R¹¹およびR¹²は結合する窒素原子と一緒にになって置換基を有していても良い3員環ないし14員環の含窒素非芳香族複素環を表す)を表す;

R¹²およびR¹⁴は、同一または異なって、水素原子または置換基を有していても良いC₁₋₆アルキル基を表す。

ただし、

1) R²は、R^{3a}およびR^{3b}のどちらか一方と一緒にになって部分構造

を形成しても良く、

2) R^{3a}およびR^{3b}は、結合する炭素原子と一緒にになって、ケトン構造 (=O)またはオキシム構造 (=NOR^{o*}) (式中、R^{o*}は、それぞれ置換基を有していても良い、C₁₋₂₂アルキル基、不飽和C₂₋₂₂アルキル基、C₆₋₁₄アリール基、5員環ないし14員環ヘテロアリール基またはC₇₋₁₅アラルキル基を表す) }を形成しても良く、

3) R^{3a}およびR^{3b}のいずれか一方とR^{6a}およびR^{6b}のいずれか一方は結合する炭素原子を介して酸素原子と結合して部分構造

を形成しても良く、

4) R⁴は、R^{5a}およびR^{5b}のどちらか一方と一緒にになって部分構造

または

を形成しても良く、

5) R^{5a}とR^{5b}は、結合する炭素原子と一緒にになって、ケトン構造 (=O) またはオキシム構造 {=NOR^{o*} (R^{o*}は前記の意味を表す)} を形成しても良く、

6) R^{6a}およびR^{6b}は、結合する炭素原子と一緒にになって、スピロオキシラン環またはエキソメチレン基を形成しても良く、

7) R^{6a}およびR^{6b}のどちらか一方とR^{7a}およびR^{7b}のどちらか一方は結合する炭素原子と共に一緒にになって1, 3-ジオキソラン環を形成しても良く、

8) R^{7a}およびR^{7b}は、結合する炭素原子と共に一緒にになって、ケトン構造 (=O) またはオキシム構造 {=NOR^{o*} (R^{o*}は前記の意味を表す)} を形成しても良く、

9) R⁸は、R^{9a}およびR^{9b}のどちらか一方と一緒にになって部分構造

または

を形成しても良く、

10) R^{9a}およびR^{9b}は、結合する炭素原子と一緒にになって、ケトン構造 (=O) またはオキシム構造 {=NOR^{o*} (R^{o*}は前記の意味を表す)} を形成しても良く、

11) R^{n a}およびR^{n b}は、結合する炭素原子と一緒にになって、ケトン構造 (=O) またはオキシム構造 {=NOR^{o*} (R^{o*}は前記の意味を表す)} を形成しても良い。]

また、本発明は、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-

アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 20, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 16, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 20, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-7-プロパノイロキシ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシドコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 5, 6, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-5, 7-ジアセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 7-ジアセトキ

シ-6, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-6-アセトキシメチル-3, 6, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 17, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 20-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E) -3, 6, 7, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-9-オキソ-18, 19-エポキシトリコサ-12, 14-ジエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 21-トリヒドロキシ-2, 6, 10, 12, 16, 20-ヘキサメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 5, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 12, 16; 20-テトラメチル

－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－6—アセトキシメチル－3, 6, 7, 21—テトラヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－3, 6, 7—トリヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－21—オキソ－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21—トリヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリドの3位異性体、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21—トリヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－6—アセトキシ－3, 7, 21—トリヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－3, 6, 7, 21—テトラヒドロキシ－2, 6, 10, 12, 16, 20—ヘキサメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21, 22—テトラヒドロキシ－6, 10, 12, 16, 20—ペンタメチルトリコサ－8, 12, 14, 18—テトラエン－11—オリド、(8E, 12E, 14E)－3, 7, 21—トリヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(4E, 8E, 12E, 14E)－7—アセトキシ－3, 6—ジヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－21—オキソ－18, 19—エポキシトリコサ－4, 8, 12, 14—テトラエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 21—ジヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシ－6, 6—(エポキシメタノ)トリコサ－8, 12, 14—トリエン－11—オリド、(4E, 8E, 12E, 14E)－7—アセトキシ－3, 21—ジヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシ－6, 6—(エポキシメ

タノ) トリコサー-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ) トリコサー-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 6, 21, 22-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 5, 6, 21, 22-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 1

9-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16, 18-ペントメチル-18, 19-エポキシヘンイコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペントメチル-5-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリドおよび(8E, 12E, 14E, 18E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペントメチルトリコサ-8, 12, 14, 18-テトラエン-11-オリドからなる群(以下マクロライド系化合物(2)群という)から選択されるマクロライド系化合物の製造方法であって、該マクロライド系化合物を生産する能力を有する放線菌の培養液中にシクロデキストリン類を存在させることを特徴とする方法に関する。

発明の詳細な説明

[マクロライド系化合物の安定化方法]

本発明の安定化方法においては、マクロライド系化合物(1)とシクロデキストリン類を共存させることが必要である。マクロライド系化合物(1)を含有する固相または溶液、特に溶液においては好ましくは含水溶液中に、シクロデキストリン類を共存させればよい。

マクロライド系化合物を含有する固相の代表例は通常の製剤担体が挙げられ、常法により製造することができる。すなわち、経口用固形製剤を調製する場合は、マクロライド化合物(1)に賦形剤、更に必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、蟠味蟠臭剤などを加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤などとすることはできる。これらの錠剤、顆粒剤には糖衣、ゼラチン衣、その他必要により適宜コーティングすることは勿論差し支えない。

本発明で、ストレプトミセス属の菌、その変異菌よりの発酵産物およびその誘導体から固形癌などにも有効な抗癌剤が見出された。

マクロライド系化合物(1)の溶液としては、水溶液の他、水と相溶性の有機溶媒

(例えばメタノール、エタノール、1-ブロバノール、2-ブロバノール、アセトン、アセトニトリル等)を50容量%以下含む含水溶液が挙げられ、水溶液が好ましい。溶液中のマクロライド系化合物(1)の濃度は特に限定されないが、0.001～5重量%が好ましく、0.005～0.5重量%が更に好ましい。

シクロデキストリン類を共存させる際のシクロデキストリン類の量は、マクロライド系化合物(1)に対して、モル比として0.1～1000倍量が好ましく、1～100倍量が更に好ましい。

本発明の安定化方法に用いられるマクロライド系化合物(1)としては、式(1-1)又は(1-2)で表されるマクロライド系化合物が挙げられる。

(1-1)

式(1-1)中、n、R²、R^{3a}、R^{3b}、R⁴、R^{5a}、R^{5b}、R^{6a}、R^{6b}、R^{7a}、R^{7b}、R⁸、R^{9a}、R^{9b}、R¹⁰、R¹²、R¹⁴、R^{16a}、R^{16b}、R^{17a}、R^{17b}、RⁿおよびR^{n b}は、式(1)の定義と同義である。

(1-2)

式(1-2)中、n、R²、R^{3a}、R^{3b}、R⁴、R^{5a}、R^{5b}、R^{6a}、R^{6b}、R^{7a}、R^{7b}、R⁸、R^{9a}、R^{9b}、R¹⁰、R¹²、R¹⁴、R^{16a}、R^{16b}、R^{17a}、R^{17b}、Rⁿ

R^n および $R^{n'b}$ は、式(1)の定義と同義である。

本願明細書において用いる「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子を意味する。

本願明細書において用いる「 C_{1-22} アルキル基」とは、炭素数1ないし22個の直鎖または分枝状アルキル基を示し、例えばメチル基、エチル基、 n -ブロピル基、 i so-ブロピル基、 n -ブチル基、 i so-ブチル基、sec-ブチル基、tert-ブチル基、 n -ペンチル基、1,1-ジメチルブロピル基、1,2-ジメチルブロピル基、2,2-ジメチルブロピル基、1-エチルブロピル基、 n -ヘキシル基、1-エチル-2-メチルブロピル基、1,1,2-トリメチルブロピル基、1-エチルブチル基、1-メチルブチル基、2-メチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、2-エチルブチル基、2-メチルペンチル基、3-メチルペンチル基、 n -ブチル基、 n -オクチル基、 n -ノニル基、 n -デシル基等があげられ、好ましくは炭素数1ないし6個の直鎖または分枝状アルキル基(C_{1-6} アルキル基)を示し、例えばメチル基、エチル基、 n -ブロピル基、 i so-ブロピル基、 n -ブチル基、 i so-ブチル基、sec-ブチル基、tert-ブチル基等である。

本願明細書において用いる「不飽和 C_{2-22} アルキル基」とは、炭素数2ないし22個の直鎖または分枝状アルケニル基、あるいは炭素数2ないし22個の直鎖または分枝状アルキニル基を示し、例えばビニル基、アリル基、1-ブロベニル基、イソブロベニル基、2-メチル-1-ブロベニル基、2-メチル-2-ブロベニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペニテニル基、1-ヘキセニル基、1,3-ヘキサンジエニル基、1,6-ヘキサンジエニル基、エチニル基、1-ブロピニル基、2-ブロピニル基、1-ブチニル基、2-ブチニル基、1-ブチニル基、1-エチニル-2-ブロピニル基、2-メチル-3-ブロピニル基、1-ペニチニル基、1-ヘキシニル基、1,3-ヘキサンジインイル基、1,6-ヘキサンジインイル基等があげられ、好ましくは炭素数2ないし10個の直鎖または分枝状アルケニル基、あるいは炭素数2ないし10個の直鎖または分枝状アルキ

ニル基を示し、例えばビニル基、アリル基、1-ブロペニル基、イソブロペニル基、エチニル基、1-ブロピニル基、2-ブロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基等である。

本願明細書において用いる「C₆₋₁₄アリール基」とは、6ないし14個の炭素原子で構成された芳香族炭化水素環式基を意味し、例えば単環式基、二環式基、三環式基等の縮合環も含まれる。例えばフェニル基、インデニル基、1-ナフチル基、2-ナフチル基、アズレニル基、ヘプタレン基、インダセニル基、アセナフチル基、フルオレニル基、フェナレニル基、フェナントレニル基、アントラセニル基等があげられ、好ましくはフェニル基、1-ナフチル基、2-ナフチル基等である。

本願明細書における「5員環ないし14員環ヘテロアリール基」とは、窒素原子、硫黄原子および酸素原子からなる群より選ばれる複素原子を1個以上含んでなる単環式、二環式または三環式の5ないし14員芳香族複素環式基等をいう。好適な例をあげると、含窒素芳香族複素環式基としては、例えばピロリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアゾリル基、テトラゾリル基、ベンゾトリアゾリル基、ピラゾリル基、イミダゾリル基、ベンツイミダゾリル基、インドリル基、イソインドリル基、インドリジニル基、ブリニル基、インダゾリル基、キノリル基、イソキノリル基、キノリジル基、フタラジル基、ナフチリジニル基、キノキサリル基、キナゾリニル基、シンノリニル基、ブテリジニル基、イミダゾトリアジニル基、ピラジノピリダジニル基、アクリジニル基、フェナントリジニル基、カルバゾリル基、カルバゾリニル基、ペリミジニル基、フェナントロリニル基、フェナシニル基、イミダゾピリジニル基、イミダゾピリミジニル基、ピラゾロピリジニル基、ピラゾロピリジニル基等；含硫黄芳香族複素環式基としては、例えばチエニル基、ベンゾチエニル基等；含酸素芳香族複素環式基としては、例えばフリル基、ピラニル基、シクロペンタピラニル基、ベンゾフリル基、イソベンゾフリル基等；2個以上の異種複素原子を含んでなる芳香族複素環式基としては、例えばチアゾリル基、イソチアゾリル基、ベンゾチアゾリル基、ベンズチアジアゾリル基、フェノチアジニル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、オキサゾリル基、イソキサゾイル基、ベンゾオキサゾリル基、オキサジアゾリ

ル基、ピラゾロオキサゾリル基、イミダゾチアゾリル基、チエノフラニル基、フロピロリル基、ピリドオキサジニル基等があげられ、好ましくはチエニル基、フリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基等である。

本願明細書において用いる「3員環ないし1~4員環の含窒素非芳香族複素環」とは、窒素原子を1個以上含む單環式、二環式または三環式の3ないし1~4員環非芳香族複素環をいう。好適な例をあげると、例えばアジリジニル基、アゼチジニル基、ピロリジニル基、ピロリル基、ビペリジニル基、ビペラジニル基、ホモビペリジニル基、ホモピペラジニル基、イミダゾリル基、ピラゾリジニル基、イミダゾリジニル基、モルホリニル基、イミダゾリニル基、オキサゾリニル基、キヌクリジニル基等があげられる。また、当該含窒素非芳香族複素環には、ピリドン環から誘導される基や、非芳香族性の縮合環（例えばフタルイミド環、スクシンイミド環等から誘導される基）も含まれる。

本願明細書において用いる「C₂₋₂₂アシル基」とは、前記定義の「C₁₋₂₂アルキル基」において、その末端がカルボニル基である基を意味し、例えばアセチル基、プロピオニル基、ブチリル基、iso-オーブチリル基、バレリル基、iso-バレリル基、ピバリル基、カブロイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイyl基、ステアロイル基、アラキドイル基等があげられ、好ましくは炭素数2ないし6個のアシル基であり、例えばアセチル基、プロピオニル基、ブチリル基、iso-オーブチリル基等である。

本願明細書において用いる「不飽和C₃₋₂₃アシル基」とは、前記定義の「不飽和C₂₋₂₂アルキル基」において、その末端にカルボニル基が結合した基を意味し、例えばアクリロイル基、プロピオロイル基、クロトニル基、iso-クロトニル基、オレイノル基、リノレノイル基等があげられ、好ましくは炭素数3ないし6個の不飽和アシル基であり、例えばアクリロイル基等である。

本願明細書において用いる「C₂₋₂₂アシロキシ基」とは、前記定義の「C₁₋₂₂アシル基」において、その末端に酸素原子が結合した基を意味し、好適な基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、iso-オーブチリルオキシ基、バレリルオキシ基、iso-バレリルオキシ基、ビバリルオキシ

基、カプロイルオキシ基、デカノイルオキシ基、ラウロイルオキシ基、ミリストイルオキシ基、バルミトイルオキシ基、ステアロイルオキシ基、アラキドイルオキシ基等があげられ、好ましくは炭素数2ないし6個のアシロキシ基であり、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、iso-ブチリルオキシ基等である。

本願明細書において用いる「不飽和C₃₋₂₃アシロキシ基」とは、前記定義の「不飽和C₃₋₂₃アシル基」において、その末端に酸素原子が結合した基を意味し、好適な基としては、例えばアクリロイルオキシ基、プロピオロイルオキシ基、クロトニルオキシ基、iso-クロトニルオキシ基、オレイノルオキシ基、リノレノイルオキシ基等があげられ、好ましくは炭素数3ないし6個の不飽和アシルオキシ基であり、例えばアクリロイルオキシ基等である。

本願明細書において用いる「C₇₋₁₅アラルキル基」とは、前記定義の「C₁₋₂₂アルキル基」において、置換可能な部分が前記定義の「C₆₋₁₄アリール基」で置換される7ないし15個の炭素原子で構成された基を意味し、具体的には例えばベンジル基、フェネチル基、3-フェニルプロピル基、4-フェニルブチル基、1-ナフチルメチル基、2-ナフチルメチル基等があげられ、好ましくは炭素数7ないし10個のアラルキル基であり、例えばベンジル基、フェネチル基等である。

本願明細書において用いる「C₁₋₂₂アルコキシ基」とは、前記定義の「C₁₋₂₂アルキル基」において、その末端に酸素原子が結合した基を意味し、好適な基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、iso-ペンチルオキシ基、sec-ペンチルオキシ基、n-ヘキソキシ基、iso-ヘキソキシ基、1,1-ジメチルプロポキシ基、1,2-ジメチルプロポキシ基、2,2-ジメチルプロポキシ基、2-エチルプロポキシ基、1-エチル-2-メチルプロポキシ基、1,1,2-トリメチルプロポキシ基、1,1,2-トリメチルプロポキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、2-エチルブトキシ基、2-エチル-2-メチルブトキシ基、1,1-ジメチルブチルオキシ基、1,3-ジメチルブチルオキシ基、2-エチルブトキシ基、1,3-ジ-

メチルブトキシ基、2-メチルペントキシ基、3-メチルペントキシ基、ヘキシルオキシ基等があげられる。

本願明細書において用いる「不飽和C₂₋₂₂アルコキシ基」とは、前記定義の「不飽和C₂₋₂₂アルキル基」において、その末端に酸素原子が結合した基を意味し、好適な基としては例えばビニロキシ基、アリロキシ基、1-ブロペニルオキシ基、イソブロペニルオキシ基、2-メチル-1-ブロペニルオキシ基、2-メチル-2-ブロペニルオキシ基、1-ブテニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、1-ヘキセニルオキシ基、1-ヘキセニルオキシ基、1, 3-ヘキサンジエニルオキシ基、1, 6-ヘキサンジエニルオキシ基、プロパルギルオキシ基、2-ブチニルオキシ基等があげられる。

本願明細書において用いる「C₆₋₁₄アリールオキシ基」とは、前記定義の「C₆₋₁₄アリール基」において、その末端に酸素原子が結合した基を意味し、具体的には例えばフェニルオキシ基、インデニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、アズレニルオキシ基、ヘプタレニルオキシ基、インダセニルオキシ基、アセナフチルオキシ基、フルオレニルオキシ基、フェナレニルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等があげられる。

本願明細書において用いる「5員環ないし14員環ヘテロアリールオキシ基」とは、前記定義の「5員環ないし14員環ヘテロアリール基」において、その末端に酸素原子が結合した基を意味し、具体的には例えばピロリルオキシ基、ピリジルオキシ基、ピリダジニルオキシ基、ピリミジニルオキシ基、ピラジニルオキシ基、トリアゾリルオキシ基、テトラゾリルオキシ基、ベンゾトリアゾリルオキシ基、ピラゾリルオキシ基、イミダゾリルオキシ基、ベンツイミダゾリルオキシ基、インドリルオキシ基、イソインドリルオキシ基、インドリジニルオキシ基、ブリニルオキシ基、インダゾリルオキシ基、キノリルオキシ基、イソキノリルオキシ基、キノリジルオキシ基、フタラジルオキシ基、ナフチリジニルオキシ基、キノキサリルオキシ基、キナゾリニルオキシ基、シンノリニルオキシ基、ブテリジニルオキシ基、イミダゾトリアジニルオキシ基、ピラジノピリダジニルオキシ基、アクリジニルオキシ基、フェナントリジニルオキシ基、カルバゾリルオキシ基、カルバゾリニルオキシ

基、ペリミジニルオキシ基、フェナントロニルオキシ基、フェナシニルオキシ基、イミダゾピリジニルオキシ基、イミダゾピリミジニルオキシ基、ピラゾロピリジニルオキシ基、ピラゾロピリジニルオキシ基、チエニルオキシ基、ベンゾチエニルオキシ基、フリルオキシ基、ピラニルオキシ基、シクロペンタピラニルオキシ基、ベンゾフリルオキシ基、イソベンゾフリルオキシ基、チアソリルオキシ基、イソチアソリルオキシ基、ベンゾチアソリルオキシ基、ベンズチアジアソリルオキシ基、フェノチアジニルオキシ基、イソキサソリルオキシ基、フラザニルオキシ基、フェノキサジニルオキシ基、オキサソリルオキシ基、イソキサソイルオキシ基、ベンゾオキサソリルオキシ基、オキサジアソリルオキシ基、ピラゾロオキサソリルオキシ基、イミダゾチアソリルオキシ基、チエノフラニルオキシ基、フロピロリルオキシ基、ピリドオキサジニルオキシ基等があげられ、好ましくはチエニルオキシ基、フリルオキシ基、ピリジルオキシ基、ピリダジニルオキシ基、ピリミジニルオキシ基、ピラジニルオキシ基である。

本願明細書において用いる「 C_{1-22} アルキルスルホニル基」とは、前記定義の「 C_{1-22} アルキル基」が結合したスルホニル基を意味し、具体的には例えばメチルスルホニル基、エチルスルホニル基、n-ブロピルスルホニル基、iso-ブロピルスルホニル基等があげられる。

本願明細書において用いる「 C_{6-14} アリールスルホニル基」とは、前記定義の「 C_{6-14} アリール基」が結合したスルホニル基を意味し、具体的には例えばベンゼンスルホニル基、1-ナフタレンスルホニル基、2-ナフタレンスルホニル基等があげられる。

本願明細書において用いる「 C_{1-22} アルキルスルホニルオキシ基」とは、前記定義の「 C_{1-22} アルキルスルホニル基」において、その末端に酸素原子が結合した基を意味し、例えば、メチルスルホニルオキシ基、エチルスルホニルオキシ基、n-ブロピルスルホニルオキシ基、iso-ブロピルスルホニルオキシ基等があげられる。

本願明細書において用いる「 C_{6-14} アリールスルホニルオキシ基」とは、前記定義の「 C_{6-14} アリールスルホニル基」において、その末端に酸素原子が結合した基

を意味し、例えば、ベンゼンスルホニルオキシ基、1-ナフタレンスルホニルオキシ基、2-ナフタレンスルホニルオキシ基等があげられる。

本願明細書において用いる「置換基を有していても良い」の置換基とは、

- (1) ハロゲン原子、
- (2) 水酸基、
- (3) チオール基、
- (4) ニトロ基、
- (5) ニトロソ基、
- (6) シアノ基、
- (7) カルボキシル基、
- (8) ヒドロキシスルホニル基、
- (9) アミノ基、
- (10) C₁₋₂₂アルキル基

(例えば、メチル基、エチル基、n-ブロピル基、iso-ブロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基等)、

- (11) 不飽和C₂₋₂₂アルキル基

(例えば、ビニル基、アリル基、1-ブロペニル基、イソブロペニル基、エチニル基、1-ブロピニル基、2-ブロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基等)、

- (12) C₆₋₁₄アリール基

(例えば、フェニル基、1-ナフチル基、2-ナフチル基等)、

- (13) 5員環ないし14員環ヘテロアリール基

(例えば、チエニル基、フリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基等)、

- (14) 3員環ないし14員環含窒素非芳香族複素環

(例えば、アジリジニル基、アゼチジニル基、ピロリジニル基、ピロリル基、ピペリジニル基、ピペラジニル基、イミダゾリル基、ピラゾリジニル基、イミダゾリジニル基、モルホリニル基、イミダゾリニル基、オキサゾリニル基、キヌクリジニル

基等)、

(15) C₁₋₂₂アルコキシ基

(例えば、メトキシ基、エトキシ基、n-プロポキシ基、i s o-プロポキシ基、s e c-プロポキシ基、n-ブトキシ基、i s o-ブトキシ基、s e c-ブトキシ基、t e r t-ブトキシ基等)、

(16) C₆₋₁₄アリールオキシ基

(例えば、フェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基等)、

(17) C₇₋₂₂アラルキルオキシ基

(例えば、ベンジルオキシ基、フェネチルオキシ基、3-フェニルプロポキシ基、4-フェニルブチルオキシ基、1-ナフチルメチルオキシ基、2-ナフチルメチルオキシ基等)、

(18) 5員環ないし14員環ヘテロアリールオキシ基

(例えば、チエニルオキシ基、フリルオキシ基、ピリジルオキシ基、ピリダジニルオキシ基、ピリミジニルオキシ基、ピラジニルオキシ基等)、

(19) C₂₋₂₃アシリル基

(例えば、アセチル基、プロピオニル基、ブチリル基、i s o-ブチリル基、バレリル基、i s o-バレリル基、ビバリル基、カブリル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイyl基、ステアロイル基、アラキドイル基等)、

(20) C₇₋₁₅アロイル基

(例えば、ベンゾイル基、1-ナフトイル基、2-ナフトイル基等)、

(21) C₃₋₂₃不飽和アシリル基

(例えば、アクリロイル基、プロピオロイル基、クロトニル基、i s o-クロトニル基、オレイノル基、リノレノイル基等)、

(22) C₂₋₂₃アシロキシ基

(例えば、アセトキシ基、プロピオニルオキシ基、ビバリルオキシ基等)、

(23) C₂₋₂₂アルコキシカルボニル基

(例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i s o-プロポキシカルボニル基、n-ブトキシカルボニル基、i s o-

ブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基等)、

(24) 不飽和C₃₋₂₂アルコキシカルボニル基

(ビニロキシカルボニル基、アリロキシカルボニル基、1-プロペニルオキシカルボニル基、イソプロペニルオキシカルボニル基、プロパルギルオキシカルボニル基、2-ブチニルオキシカルボニル基)、

(25) C₁₋₂₂アルキルスルホニル基

(例えば、メチルスルホニル基、エチルスルホニル基、n-ブロピルスルホニル基、iso-ブロピルスルホニル基等)、

(26) C₆₋₁₄アリールスルホニル基

(例えば、ベンゼンスルホニル基、1-ナフタレンスルホニル基、2-ナフタレンスルホニル基等)および

(27) C₁₋₂₂アルキルスルホニルオキシ基

(例えば、メチルスルホニルオキシ基、エチルスルホニルオキシ基、n-ブロピルスルホニルオキシ基、iso-ブロピルスルホニルオキシ基等)

からなる群から選ばれる基が挙げられる。

式(1-1)で表されるマクロライド系化合物の具体例としては、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 20, 21-テトラヒドロキシ-6, 10,

12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 16, 21-ペンタヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 20, 21-ペンタヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-3, 6, 21-トリヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-7-プロパノイロキシ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシドコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 5, 6, 21-テトラヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 7-ジアセトキシ-3, 6, 21-トリヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-5, 7-ジアセトキシ-3, 6, 21-トリヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 7-ジアセトキシ-6, 21-ジヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-6, 10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17, 21-テトラヒドロキシー-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 20-トリヒドロキシー-6, 10, 12, 16-

テトラメチル-1, 19-エポキシヘンイコサ-8, 12, 14-トリエン-1
1-オリド、(4E, 8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロ
キシー-6, 10, 12, 16, 20-ペンタメチル-1, 19-エポキシトリコ
サ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)
-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16-テト
ラメチル-1, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オ
リド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキ
シ-6, 10, 12, 20-テトラメチル-1, 19-エポキシトリコサ-8,
12, 14-トリエン-11-オリド、(12E, 14E)-3, 6, 21-トリ
ヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-9-オキソ-1, 1
9-エポキシトリコサ-12, 14-ジエン-11-オリド、(8E, 12E, 1
4E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 16, 20
-テトラメチル-1, 19-エポキシトリコサ-8, 12, 14-トリエン-1
1-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒ
ドロキシ-2, 6, 10, 12, 16, 20-ヘキサメチル-1, 19-エポキ
シトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)
-7-アセトキシ-3, 5, 21-トリヒドロキシ-6, 10, 12, 16, 20
-ペンタメチル-1, 19-エポキシトリコサ-8, 12, 14-トリエン-1
1-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 7, 21-トリヒ
ドロキシ-6, 12, 16, 20-テトラメチル-1, 19-エポキシトリコサ
-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-6-ア
セトキシメチル-3, 6, 7, 21-テトラヒドロキシ-10, 12, 16, 20
-テトラメチル-1, 19-エポキシトリコサ-8, 12, 14-トリエン-1
1-オリド、(8E, 12E, 14E)-3, 6, 7-トリヒドロキシ-6, 10,
12, 16, 20-ペンタメチル-21-オキソ-1, 19-エポキシトリコサ
-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-ア
セトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタ
メチル-1, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリ

ドの3位異性体、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-6-アセトキシ-3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-2, 6, 10, 12, 16, 20-ヘキサメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 6-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキゾ-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 21-ジヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ)トリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 21-ジヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ)トリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ)トリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキゾ-18, 19-エポキシトリコサ-8, 12,

14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21, 22-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 6, 17, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 5, 6, 21, 22-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシヘンイコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-5-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド等が挙げられる。

また、式(1-2)で表されるマクロライド系化合物の具体例としては、(8E, 12E, 14E, 18E)-7-アセトキシ-3, 6, 21, 22-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチルトリコサ-8, 12, 14, 18-テトラエン-11-オリド、(8E, 12E, 14E, 18E)-7-アセト

キシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチルトリコサ-8, 12, 14, 18-テトラエン-11-オリド等が挙げられる。

本発明の安定化方法に用いられるシグロデキストリン類としては、 α -シクロデキストリン、 β -シクロデキストリン、 γ -シクロデキストリン、ヘキサキス(2, 3, 6-トリ-O-アセチル)- α -シクロデキストリン、ヘプタキス(2, 3, 6-トリ-O-アセチル)- β -シクロデキストリン、オクタキス(2, 3, 6-トリ-O-アセチル)- γ -シクロデキストリン、アセチル化 α -シクロデキストリン、アセチル化 β -シクロデキストリン、アセチル化 γ -シクロデキストリン、ヘキサキス(2, 3, 6-トリ-O-メチル)- α -シクロデキストリン、ヘプタキス(2, 3, 6-トリ-O-メチル)- β -シクロデキストリン、オクタキス(2, 3, 6-ジ-O-メチル)- γ -シクロデキストリン、部分メチル化 α -シクロデキストリン、部分メチル化 β -シクロデキストリン、部分メチル化 γ -シクロデキストリン、ヘプタキス(2, 6-ジ-O-メチル)- β -シクロデキストリン、部分メチル化 α -シクロデキストリン、部分メチル化 β -シクロデキストリン、部分メチル化 γ -シクロデキストリン、(2-ハイドロキシ)プロビル- α -シクロデキストリン、2-O-(2-ハイドロキシ)プロビル- β -シクロデキストリン、2-O-(2-ハイドロキシ)プロビル- γ -シクロデキストリン、(2-ハイドロキシ)プロビル- α -シクロデキストリン、(2-ハイドロキシ)プロビル- β -シクロデキストリン、(2-ハイドロキシ)プロビル- γ -シクロデキストリン、カルボキシルメチル化 α -シクロデキストリン、カルボキシルメチル化 β -シクロデキストリン、カルボキシルメチル化 γ -シクロデキストリン、スクシニル化 α -シクロデキストリン、スクシニル化 β -シクロデキストリン、スクシニル化 γ -シクロデキストリン、ヘプタキス(3-O-アリル-2, 6-ジ-O-メチル)- β -シクロデキストリン、カルボキシルエチル化 α -シクロデキストリン、カルボキシルエチル化 β -シクロデキストリン、カルボキシルエチル化 γ -シクロデキストリン、ヘキサキス(2, 6-ジ-O-n-ペンチル)- α -シクロデキストリン、ヘプタキス(2, 6-ジ-O-n-ペンチル)- β -シクロデキストリン、オクタキス(2, 6-ジ-O-n-ペンチル)- γ -シクロデキストリン、ヘキサキス(3-O-n-ブチル-2, 6-ジ-O-n-ペ

ンチル) - α -シクロデキストリン、ヘプタキス (3-O-n-ブチル-2, 6-ジ-O-n-ベンチル) - β -シクロデキストリン、オクタキス (3-O-n-ブチル-2, 6-ジ-O-n-ベンチル) - γ -シクロデキストリン、ヘプタキス (2, 6-ジ-O-n-ブチル) - β -シクロデキストリン、n-ブチル化 α -シクロデキストリン、n-ブチル化 β -シクロデキストリン、n-ブチル化 γ -シクロデキストリン、ヘキサキス (2, 3, 6-トリー-O-ベンゾイル) - α -シクロデキストリン、ヘプタキス (2, 3, 6-トリー-O-ベンゾイル) - β -シクロデキストリン、オクタキス (2, 3, 6-トリー-O-ベンゾイル) - γ -シクロデキストリン、パルミチル化 β -シクロデキストリン、6-O-モノトシリ化 β -シクロデキストリン、エチル化 α -シクロデキストリン、エチル化 β -シクロデキストリン、エチル化 γ -シクロデキストリン、ヘキサキス (2, 3, 6-トリー-O-エチル) - β -シクロデキストリン、オクタキス (2, 3, 6-トリー-O-エチル) - γ -シクロデキストリン、6-モノデオキシ-6-モノアミノ- β -シクロデキストリン塩酸塩、ヘキサキス (3-O-Aセチル-2, 6-ジ-O-n-ベンチル) - α -シクロデキストリン、ヘプタキス (3-O-Aセチル-2, 6-ジ-O-n-ベンチル) - β -シクロデキストリン、オクタキス (3-O-Aセチル-2, 6-ジ-O-n-ベンチル) - γ -シクロデキストリン、ヘキサキス (2, 6-ジ-O-n-ベンチル-3-O-トリフルオロアセチル) - α -シクロデキストリン、ヘプタキス (2, 6-ジ-O-n-ベンチル-3-O-トリフルオロアセチル) - β -シクロデキストリン、オクタキス (2, 6-ジ-O-n-ベンチル-3-O-トリフルオロアセチル) - γ -シクロデキストリン、ヘキサキス (2, 6-ジ-O-n-メチル-3-O-n-ベンチル) - α -シクロデキストリン、ヘプタキス (2, 6-ジ-O-n-メチル-3-O-n-ベンチル) - β -シクロデキストリン、オクタキス (2, 6-ジ-O-n-メチル-3-O-n-ベンチル) - γ -シクロデキストリン、(2-ヒドロキシ) エチル化 α -シクロデキストリン、(2-ヒドロキシ) エチル化 β -シクロデキストリン、(2-ヒドロキシ) エチル化 γ -シクロデキストリン、ヘキサキス (2, 3,

6-トリー-O-n-オクチル) - α -シクロデキストリン、ヘプタキス (2, 3, 6-トリー-O-n-オクチル) - β -シクロデキストリン、オクタキス (2, 3, 6-トリー-O-n-オクチル) - γ -シクロデキストリン、ヘキサキス (2, 3-ジ-O-アセチル-6-O-tert-ブチルジメチルシリル) - α -シクロデキストリン、ヘプタキス (2, 3-ジ-O-アセチル-6-O-tert-ブチルジメチルシリル) - β -シクロデキストリン、オクタキス (2, 3-ジ-O-アセチル-6-O-tert-ブチルジメチルシリル) - γ -シクロデキストリン、スクニル化 (2-ヒドロキシ) プロピル α -シクロデキストリン、スクニル化 (2-ヒドロキシ) プロピル β -シクロデキストリン、スクニル化 (2-ヒドロキシ) プロピル γ -シクロデキストリン、ヘキサキス (6-O-tert-ブチルジメチルシリル) - α -シクロデキストリン、ヘプタキス (6-O-tert-ブチルジメチルシリル) - β -シクロデキストリン、オクタキス (6-O-tert-ブチルジメチルシリル) - γ -シクロデキストリン、ヘキサキス (6-O-tert-ブチルジメチルシリル-2, 3-ジ-O-メチル) - α -シクロデキストリン、ヘプタキス (6-O-tert-ブチルジメチルシリル-2, 3-ジ-O-メチル) - β -シクロデキストリン、オクタキス (6-O-tert-ブチルジメチルシリル-2, 3-ジ-O-メチル) - γ -シクロデキストリン、ヘキサキス (2, 6-ジ-O-tert-ブチルジメチルシリル) - α -シクロデキストリン、ヘプタキス (2, 6-ジ-O-tert-ブチルジメチルシリル) - β -シクロデキストリン、オクタキス (2, 6-ジ-O-tert-ブチルジメチルシリル) - γ -シクロデキストリン、オクタメシチレン- γ -シクロデキストリン、ヘキサキス (2, 3, 6-トリー-O-トリフルオロアセチル) - α -シクロデキストリン、ヘプタキス (2, 3, 6-トリー-O-トリフルオロアセチル) - β -シクロデキストリン、オクタキス (2, 3, 6-トリー-O-トリフルオロアセチル) - γ -シクロデキストリン、スルホプロピル化 α -シクロデキストリン、スルホプロピル化 β -シクロデキストリン、スルホプロピル化 γ -シクロデキストリン、6-O-モノマルトシル- β -シクロデキストリン、6-O-マルトシル- β -シクロデキストリン、(2-カルボメトキシ) プロポキシ- β -シクロデキストリン、ヘプタキス (3-O-Aセチル-2, 6-ジ-O-n-ブチル) - β -シ

クロデキストリン、(2-シアノ)エチル- α -シクロデキストリン、(2-シアノ)エチル- β -シクロデキストリン、(2-シアノ)エチル- γ -シクロデキストリン、6-モノデオキシ-6-モノアジド- β -シクロデキストリン、6-モノデオキシ-6-モノイオド- β -シクロデキストリン、6A, 6B-モノデオキシ-6A, 6B-ジイオド- β -シクロデキストリン、6-モノデオキシ-6-モノプロモ- β -シクロデキストリン、6A, 6B-モノデオキシ-6A, 6B-ジブロモ- β -シクロデキストリン等が挙げられる。

これらシクロデキストリン類の中では、 β -シクロデキストリン、 γ -シクロデキストリン、部分メチル化 β -シクロデキストリン、ジメチル- β -シクロデキストリン、グリコシル- β -シクロデキストリンおよびヒドロキシプロビル- β -シクロデキストリンからなる群から選択されるシクロデキストリンが好ましい。これらのシクロデキストリン類は、単独あるいは2種以上を併用して用いることができる。

[マクロライド系化合物の製造方法]

本発明のマクロライド系化合物の製造方法においては、上記マクロライド系化合物(2)群から選ばれるマクロライド系化合物を生産する能力を有する放線菌の培養液中にシクロデキストリン類を存在させればよい。

マクロライド系化合物(2)群から選ばれるマクロライド系化合物としては、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド(マクロライド系化合物11107B)が好ましい。

マクロライド系化合物を生産する能力を有する放線菌としては、マクロライド系化合物を生産する能力を有する放線菌であれば特に限定されないが、ストレプトミセス属に属する放線菌、特に、土壤から分離されたストレプトミセス エスピー(Streptomyces sp.) Mer-11107あるいはMer-11107の変異株であるStreptomyces sp. A-1532、Streptomyces sp. A-1533およびStreptomyces sp. A-1534等を挙げることができ、Mer-11107が好ましい。

尚、Streptomyces sp. Mer-11107は平成13年11月27日付でFERM BP-7812として、

Streptomyces sp. A-1532は平成14年1月18日付でFERM BP-7849として、*Streptomyces* sp. A-1533は平成14年1月18日付でFERM BP-7850として、*Streptomyces* sp. A-1534は平成14年1月18日付でFERM BP-7851として、日本国305-8566茨城県つくば市東1丁目1番地1 中央第6在の独立行政法人産業技術総合研究所、特許生物寄託センター（IPOD）にそれぞれ、国際寄託されている。

本発明に用いられるマクロライド系化合物の生産菌、特にMer-11107の性状、培養法、マクロライド系化合物の精製法について、以下詳細に説明する。

1. Mer-11107 株の菌学的性状

(1). 形態

基生菌糸より螺旋状（Spirales）の気中菌糸を伸長する。成熟した気中菌糸の先に10～20個程度の円筒形の胞子からなる胞子鎖を形成する。胞子の大きさは0.7×1.0μm位で、胞子の表面は平滑（smooth）を示し、胞子のう、菌核、鞭毛などの特殊な器官は認められない。

(2). 各種培地における生育状態

各種培地上で28℃、2週間培養後の培養性状を以下に示す。色調の記載はトレズナー（Tresener）のカラー・ホイルズ（Color wheels）に従い、色名と括弧内に示す符号で表示する。

1) イースト・麦芽寒天培地

生育は良好で、その表面に気中菌糸を着生し、灰色の胞子（Light gray; d）が見られる。培養裏面はLight melon yellow (3ea)である。溶解性色素は産生しない。

2) オートミール寒天培地

生育は中程度で、その表面に気中菌糸を僅かに着生し、灰色の胞子（Gray; g）が見られる。培養裏面はNude tan (4gc)またはPutty (1 1/2 ec)である。溶解性色素は産生しない。

3) スターチ・無機塩寒天培地

生育は良好で、その表面に気中菌糸を着生し、灰色の胞子（Gray; e）が見られる。培養裏面はFawn (4ig)またはGray (g)である。溶解性色素は産生しない。

4) グリセリン・アスパラギン寒天培地

生育は良好で、その表面に気中菌糸を着生し、白色の胞子(White; a)が見られる。培養裏面は Pearl pink (3ca)である。溶解性色素は産生しない。

5) ベプトン・イースト・鉄寒天培地

生育は悪く、その表面に気中菌糸を着生しない。培養裏面は Light melon yellow (3ea)である。溶解性色素は産生しない。

6) チロシン寒天培地

生育は良好で、その表面に気中菌糸を着生し、白色の胞子(White; a)が見られる。培養裏面は Pearl pink (3ca)である。溶解性色素は産生しない。

(3). 各種炭素源の同化性

ブリードハム・ゴトリープ寒天培地に各種の炭素源を加え、28°C、培養2週間後の生育状況を以下に示す。

- | | |
|-------------|---|
| 1) L-アラビノース | ± |
| 2) D-キシロース | ± |
| 3) D-グルコース | + |
| 4) D-フルクトース | + |
| 5) シュークロース | + |
| 6) イノシトール | + |
| 7) L-ラムノース | - |
| 8) D-マンニトール | + |
| 9) D-ラフィノース | + |

(+は同化する、±は多少同化する、-は殆ど同化しない。)

(4). 生理学的諸性質

本菌の生理学的諸性質は以下の通りである。

- | | |
|---------------------------------|-----------|
| (a) 生育温度範囲 (イースト・麦芽寒天培地、2週間培養) | 12°C~37°C |
| (b) 最適温度範囲 (イースト・麦芽寒天培地、2週間培養) | 21°C~33°C |
| (c) ゼラチンの液化 (グルコース・ベプトン・ゼラチン培地) | 陰性 |
| (d) ミルクの凝固 (スキムミルク培地) | 陰性 |
| (e) ミルクのペプトン化 (スキムミルク培地) | 陰性 |

(f) スターチの加水分解 (スターチ・無機塩寒天培地)	陽性
(g) メラニン様色素の産生 (ペプトン・イースト・鉄寒天培地) (チロシン培地)	陰性 陰性
(h) 硫化水素の産生 (ペプトン・イースト・鉄寒天培地)	陰性
(i) 硝酸塩の還元 (0.1%硝酸カリ含有プロス)	陰性
(j) 食塩の耐性 (イースト・麦芽寒天培地、2週間培養)	
	食塩含有量 4%以下で生育

(5). 菌体成分

本菌の細胞壁から LL-ジアミノピメリレン酸が検出された。

2. 生産菌の培養法

本発明において、マクロライド系化合物は、上記菌株を栄養源培地に接種し、好気的に培養することにより製造される。

上記微生物の培養方法は、シクロデキストリン類を存在させる以外は、原則的には一般微生物の培養方法に準ずるが、通常は液体培養による振とう培養、通気搅拌培養等の好気的条件下で実施するのが好ましい。培養に用いられる培地としては、ストレプトミセス属に属する微生物が利用できる栄養源を含有する培地であればよく、各種の合成、半合成培地、天然培地などいずれも利用可能である。培地組成としては炭素源としてのグルコース、ショウガース、フルクトース、グリセリン、デキストリン、澱粉、糖蜜、大豆油等を単独または組み合わせて用いることができる。窒素源としてはファルマメディア、ペプトン、肉エキス、大豆粉、カゼイン、アミノ酸、酵母エキス、尿素等の有機窒素源、硝酸ナトリウム、硫酸アンモニウムなどの無機窒素源を単独または組み合わせて用いる。その他例えば塩化ナトリウム、塩化カリウム、炭酸カルシウム、硫酸マグネシウム、リン酸ナトリウム、リン酸カリウム、塩化コバルト等の塩類、重金属類塩、ビタミンB及びビオチン等のビタミン類も必要に応じ添加使用することができる。

本発明においては、上記のような培養液中にシクロデキストリン類を存在させる。培養液中のシクロデキストリン類の濃度は、用いる微生物の発育を抑制しない範囲で適宜選択すれば良く、0.1～100mg/mLが好ましく、10～30mg/

mLが更に好ましい。

シクロデキストリン類の添加時期は特に限定されず、培地中にマクロライド系化合物の生産菌を接種する前又は後のいずれでも良いが、培地中に、マクロライド系化合物の生産菌が目的物質を生産する前に、シクロデキストリン類を添加するのが好ましい。

本発明の製造方法に用いられるシクロデキストリン類としては、上記マクロライド系化合物の安定化方法の欄に例示したものが挙げられ、 β -シクロデキストリン、 γ -シクロデキストリン、部分メチル化 β -シクロデキストリン、ジメチル- β -シクロデキストリン、グリコシル- β -シクロデキストリンおよびヒドロキシプロピル- β -シクロデキストリンからなる群から選択されるシクロデキストリンが好ましい。これらのシクロデキストリン類は、単独であるいは2種以上を併用して用いることができる。

なお、培養中発泡が著しい場合には、各種消泡剤を適宜培地中に添加することもできる。消泡剤の添加にあたっては、目的物質の生産に過大な悪影響を与えない濃度とする必要があり、例えば使用濃度としては0.3%以下が望ましい。

培養条件は、該菌株が良好に生育して上記物質を生産し得る範囲内で適宜選択し得る。例えば培地のpHは5~9程度、通常中性付近とするのが望ましい。培養温度は、通常20~40°C、好ましくは28~35°Cに保つのがよい。培養日数は2~8日程度で、通常3~6日程度である。上述した各種の培養条件は、使用微生物の種類や特性、外部条件等に応じて適宜変更でき、最適条件を選択できるのはいうまでもない。培養液中に蓄積されたマクロライド系化合物は、その性状を利用した通常の分離手段、例えば溶媒抽出法、吸着樹脂法などにより回収可能である。

3. マクロライド系化合物の精製法

培養終了後、培養液からマクロライド系化合物を採取するためには、一般に微生物代謝産物をその培養液から単離するために用いられる分離、精製の方法が利用できる。例えば、①メタノール、エタノール、ブタノール、酢酸エチル、酢酸ブチル、トルエン、クロロホルム等を用いた有機溶媒抽出、②ダイヤイオン、HP-20等の疎水性吸着樹脂を用いた吸脱着処理法、③各種のイオン交換クロマトグラフィー、

④セファデックス LH-20 等を用いたゲル濾過クロマトグラフィー、⑤活性炭、⑥シリカゲル等による吸着クロマトグラフィー、もしくは薄層クロマトグラフィーによる吸脱着処理、あるいは⑦逆相カラム等を用いた高速液体クロマトグラフィー等の公知のあらゆる方法がこれにあたる。また、ここに示した方法に特に限定されるものではない。

これらの方法を単独あるいは任意の順序に組み合わせ、また反復して用いることにより、マクロライド系化合物を単離・精製することができる。

本発明の安定化方法により、マクロライド系化合物を固相または溶液中で安定化させることができる。また、本発明の製造方法により、マクロライド系化合物を効率的に製造することができる。

図面の簡単な説明

図1は、実施例2で得られた、 β -シクロデキストリン濃度の逆数に対して $1/(k_0 - k_{obs})$ をプロットした結果を示す図である。

実施例

以下に実施例を示して本発明を具体的に説明するが本発明はこれらの実施例により何等限定されるものではない。また下記の説明中、特に記載がない限り表示濃度は容量%である。

実施例1：各種シクロデキストリン類によるマクロライド系化合物の安定化効果

マクロライド系化合物 11107B（以下、単に 11107B と略記するときがある）および各シクロデキストリン類をそれぞれ 0.1mg/mL および 10mg/mL になるように Dulbecco's PBS(−) に溶解した。11107B 溶液とシクロデキストリン溶液を等容量で混合し、直ちに 25℃ の恒温槽でインキュベーションを開始した。初期（0 時間）、24 時間および 48 時間経過後に溶液を採取し、下記分析条件（A）で高速液体クロマトグラフィー（HPLC）に付し、得られたクロマトグラムから下記の式に従って 11107B の純度を算出した。

結果を表1に示した。これらの結果から、検討したシクロデキストリン類では、

β -シクロデキストリンが最も安定化効果が高いことがわかる。

<シクロデキストリンの種類>

α -CD : α -シクロデキストリン

β -CD : β -シクロデキストリン

γ -CD : γ -シクロデキストリン

HP- α -CD : ヒドロキシプロピル- α -シクロデキストリン

HP- β -CD : ヒドロキシプロピル- β -シクロデキストリン

HP- γ -CD : ヒドロキシプロピル- γ -シクロデキストリン

<HPLC分析条件(A)>

カラム : L-column, 4.6 × 150 mm, (財) 化学物質評価研究機構

カラム温度 : 35°C

流速 : 1 mL/min

検出波長 : 241 nm

移動相A : 0.1% (v/v) ギ酸・10% (v/v) アセトニトリル

移動相B : 0.1% (v/v) ギ酸・90% (v/v) アセトニトリル

グラジェントプログラム : B = 10% (最初) → B = 40% (15分) → B = 10%

0% (20分) → B = 10% (20.01分) → B = 10% (23分、停止)

<計算式>

11107Bの純度 (%) = [11107Bのピーク面積値 / (11107Bのピーク面積値 + 不純物および分解物のピーク面積値の合計)] × 100

表1

経過時間 (h)	マクロライド系化合物11107Bの純度 (%)						
	CD無添加	α -CD	β -CD	γ -CD	HP- α -CD	HP- β -CD	HP- γ -CD
0	99	99	100	100	99	100	99
24	62	71	95	88	71	93	83
48	35	47	90	77	47	86	67

実施例 2：マクロライド系化合物 11107B と β -シクロデキストリン（以下、シクロデキストリンは CD と略記する）の安定化係数の算出

マクロライド系化合物 11107B を 0.1mg/mL になるように、 β -CD を 10、3、1 および 0.3mg/mL になるように、各々を Dulbecco's PBS(-) に溶解した。11107B 溶液と β -CD 溶液を等容量で混合し、直ちに 40°C の恒温槽でインキュベーションを開始した。初期（0 時間）、1 時間、2 時間、4 時間および 6 時間経過後に溶液を採取し、実施例 1 の分析条件（A）で HPLC 分析を行い、11107B の濃度を算出した。11107B 濃度の対数の経過時間に対するプロットはほぼ直線になることから、擬一次反応で分解が生じていると考え、その傾きから見かけの分解速度定数 k_{obs} を算出した。 β -CD が存在していない場合の k_{obs} を k_0 とした。Ma らの報告 (J. Pharm. Sci. (2000), 89(2) 275-287) に従って、 β -CD 濃度の逆数に対して $1/(k_0 - k_{obs})$ をプロットし、その切片から大過剰の β -CD が存在した場合の k_{obs} である k_c を、傾きから安定化係数 K_c を算出した。

結果を表 2 及び図 1 に示した。これらの結果から、 $k_0 = 0.152 \text{ hr}^{-1}$ 、 $k_c = 0.004 \text{ hr}^{-1}$ と見積もられ、包接された 11107B は包接されていない 11107B に比べて分解速度が 30 分の 1 以下になっていることが示された。また K_c が 1500 以上と見積もられるところから、11107B と β -CD が等モルで混合された溶液中では、ほとんどの 11107B が β -CD に包接されて存在していることが示された。

表 2

β -CD 濃度 (mg/mL)	0	5	1.5	0.5	0.15
k_{obs} (hr^{-1})	0.152	0.020	0.052	0.092	0.126
$k_0 - k_{obs}$	—	0.132	0.100	0.060	0.026
$1/(k_0 - k_{obs})$	—	7.590	9.971	16.736	39.057

実施例 3： β -CD とメチル化 β -CD によるマクロライド系化合物の安定化効果

マクロライド系化合物 11107B と、 β -CD 又はメチル化 β -CD をそれぞれ 0.1mg/mL および 10mg/mL になるように Dulbecco's PBS(-) に溶解した。11107B 溶液と

CD溶液を等容量で混合し、直ちに25℃の恒温槽でインキュベーションを開始した。初期(0時間)、24時間、48時間及び120時間経過後に溶液を採取し、下記の分析条件(B)でHPLC分析を行った。得られたクロマトグラムから、実施例1の式に従って11107Bの純度を算出した。

< H P L C 分析条件 (B) >

カラム: D e v e l o s i l O D S U G - 3 , 4 . 6 × 5 0 m m , 3 μ m (野村化学社製)

カラム温度: 40℃

流速: 1.2 mL/min

検出波長: 240 nm

溶出液: 水/メタノール グラジエント

A=水、B=メタノール

45-55% B (0~5分)、55% B (5~13分)

55-70% B (13~21分)、45% B (21~25分)

保持時間: 13分 (11107B)

結果を表3に示した。メチル化 β -CDは、 β -CDと同等以上の安定化効果があった。

表3

経過時間 (h)	マクロライド系化合物11107Bの純度 (%)		
	CD無添加	β -CD	メチル化 β -CD
0	98	98	98
24	59	95	95
48	34	90	92
120	3	74	80

実施例4: α -、 β -および γ -CDの培養液への添加効果

可溶性澱粉2%、大豆粉(エスサンミート、味の素(株)製)2%、酵母エキス

(オリエンタル酵母工業(株) 製) 0.3%、リン酸二カリウム 0.1%、硫酸マグネシウム 7 水和物 0.25% 及び炭酸カルシウム 0.3% からなる培地 60 mL を 500 mL 容の三角フラスコに分注後滅菌し、種母培地を調製した。これにストレプトミセス・エスピーア (Streptomyces sp.) Mer-11107 (FERM BP-7812) の凍結種母 0.6 mL を前記種母培地に接種し、220 rpm の回転振盪機上で 25 °C で 2 日間培養して種母培養液を得た。可溶性澱粉 5%、ファルマメディア 3% 及び炭酸カルシウム 0.1% からなる培地を調製し、水酸化ナトリウムで pH 7.5 に調整した。これを 30 mL ずつ 250 mL 容の三角フラスコに分注し、表 4 に示す濃度の α -、 β -、 γ -CD を添加後滅菌し、予め滅菌されたグルコースを 1% になるように加え、生産培地を調製した。これに前記種母培養液 0.3 mL を移植し、200 rpm の回転振盪機上で 25 °C、5 日間培養した。この培養液をメタノールで 6 倍希釈した後、実施例 3 の分析条件 (B) で HPLC に付し、11107B 物質を定量した。この結果を表 4 に示す。

表 4

添加物および添加濃度	11107B の量 (μ g/mL)
α -CD 1%	315
α -CD 2%	340
α -CD 3%	337
β -CD 1%	567
β -CD 2%	1039
β -CD 3%	1060
γ -CD 1%	568
γ -CD 2%	689
γ -CD 3%	727
CD無添加	272

実施例 5：各種 β -CD の培養液への添加効果

可溶性澱粉 2%、大豆粉 (エスサンミート、味の素(株) 製) 2%、酵母エキス

(オリエンタル酵母工業(株)製) 0.3%、リン酸二カリウム 0.1%、硫酸マグネシウム 7水和物 0.25%及び炭酸カルシウム 0.3%からなる培地 60mLを 500mL容の三角フラスコに分注後滅菌し、種母培地を調製した。これにストレプトミセス・エスピー (*Streptomyces sp.*) Mer-11107(FERM BP-7812)の凍結種母を 0.6mLを前記種母培地に接種し、220rpmの回転振盪機上で 25°Cで 2日間培養して種母培養液を得た。可溶性澱粉 5%、ファルマメディア 3%及び炭酸カルシウム 0.1%からなる培地を調製し、水酸化ナトリウムで pH 7.5に調整した。これを 30mLずつ 250mL容の三角フラスコに分注し、表 5に示す各種 β -CD誘導体 2%を添加後滅菌し、予め滅菌されたグルコースを 1%になるように加え、生産培地を調製した。これに前記種母培養液 0.3mLを移植し、200rpmの回転振盪機上で 25°C、5日間培養した。この培養液をメタノールで 6倍希釈した後、実施例 3の分析条件(B)で HPLC に付し、11107B 物質を定量した。この結果を表 5に記す。

表 5

添 加 物	11107Bの量 ($\mu\text{g/mL}$)
β -CD	823
メチル化 β -CD	848
ジメチル化 β -CD	920
トリメチル化 β -CD	387
グルコシル β -CD	737
ヒドロキシプロピル β -CD	703
イソエリートP*	402
CD無添加	254

*:シクロデキストリン混合物 (塩水港精糖社製:
全CD量 80%以上、マルトシリルCD50%以上含有)

実施例 6 : β -CDを添加した培養液からのマクロライド系化合物 11107B の精製
 可溶性澱粉 2%、大豆粉（エスサンミート、味の素（株）製）2%、酵母エキス（オリエンタル酵母工業（株）製）0.3%、リン酸二カリウム0.1%、硫酸マグネシウム7水和物0.25%及び炭酸カルシウム0.3%からなる培地60mLを500mL容の三角フラスコに分注後滅菌し、種母培地を調製した。これにストレプトミセス・エスピー（*Streptomyces* sp.）Mer-11107(FERM BP-7812)の凍結種母0.6mLを前記種母培地に接種し、220rpmの回転振盪機上で25°C、2日間培養して種母培養液を得た。可溶性澱粉5%、ファルマメディア3%及び炭酸カルシウム0.1%からなる培地を調製し、水酸化ナトリウムでpH7.5に調整した。この培地60mLを500mL容の三角フラスコに分注後、 β -CDが2%となるよう添加し滅菌した。さらに予め滅菌されたグルコースを1%になるように加え、生産培地を調製した。これに前記種母培養液0.6mLを移植し、220rpmの回転振盪機上で25°C、5日間振とう培養機上で培養した。

得られた培養液を遠心管に入れ、3500rpm、10分間遠心し、上澄み液と菌体とに分離した。上澄み液60mLをトルエン60mLにて抽出した。トルエン層を無水硫酸ナトリウムで乾燥した後、トルエンを減圧濃縮することによりオイル状の粗11107Bを0.1012g得た。粗11107BはTLC (Merck Art. 105717、トルエン：アセトン=2:1) にて精製することにより11107Bをオイル状物質として84.3mgを得た。

¹H-NMRスペクトル (CD_3OD , 500MHz) : δ ppm (積分、多重度、結合定数J(Hz))
 0.93(3H, d, J=7.0Hz), 0.94(3H, d, J=6.8Hz), 0.98(3H, t, J=8.0Hz),
 1.12(3H, d, J=6.8Hz), 1.23(3H, s), 1.25(1H, m), 1.42(2H, m), 1.53-1.70(6H, m),
 1.79(3H, d, J=1.0Hz), 2.10(3H, s), 2.52(1H, m), 2.56(2H, m), 2.60(1H, m),
 2.70(1H, dd, J=2.4, 8.3Hz), 2.76(1H, dt, J=2.4, 5.7Hz), 3.56(1H, dt, J=8.3, 4.4Hz),
 3.82(1H, m), 5.08(2H, d, J=9.8Hz), 5.60(1H, dd, J=9.8, 15.2Hz),
 5.70(1H, dd, J=8.3, 15.2Hz), 5.74(1H, dd, J=9.8, 15.2Hz), 6.13(1H, d, J=9.8Hz),
 6.36(1H, dd, J=9.8, 15.2Hz)

実施例 7 : HP- β -CDによる凍結乾燥剤中のマクロライド系化合物 11107B の安定

化効果

ラクトース 1 水和物を 10mg/mL ならびに HP- β -CD を 0、10 および 200mg/mL になるように精製水に溶解した。これら 3 種の溶液のそれぞれにマクロライド系化合物 11107B を 0.1mg/mL になるように溶解した。これらの溶液を 1mL ずつバイアルに充填し、凍結乾燥を行った。得られた凍結乾燥製剤を-20℃、40℃および 60℃に 1 ヶ月保存した後、各バイアルに 50%アセトニトリル水溶液 1mL を加えて製剤を溶解し、実施例 1 の分析条件 (A) で HPLC 分析を行い、実施例 1 の計算式に従って、11107B の純度を算出した。その結果を表 6 に示す。

表 6

保存温度 (°C)	マクロライド系化合物 11107B の純度 (%)		
	HP- β -CD無添加	HP- β -CD濃度 (10mg/mL)	HP- β -CD濃度 (200mg/mL)
-20	99.56±0.01	99.73±0.01	99.70±0.00
40	98.17±0.12	99.76±0.08	99.82±0.02
60	94.63±0.11	98.60±0.06	98.90±0.05

上記の結果より、マクロライド系化合物 11107B は、シクロデキストリンの添加により、凍結乾燥製剤中の固体状態においても、十分な安定性を得られることが明らかである。

請求の範囲

1. 式(1)で表されるマクロライド系化合物とシクロデキストリン類を共存させることを特徴とする、式(1)で表されるマクロライド系化合物の安定化方法。

[式(1)中、

nは、0ないし4の整数を表す；

Wは、＝またはを表す；

R²、R^{3a}、R^{3b}、R⁴、R^{5a}、R^{5b}、R^{6a}、R^{6b}、R^{7a}、R^{7b}、R⁸、R^{9a}、R^{9b}、R¹⁰、R^{16a}、R^{16b}、R^{17a}、R^{17b}、RⁿおよびR^{nb}は、同一または異なって、

- (1) 水素原子、
- (2) ヒドロキシ基、
- (3) それぞれ置換基を有していても良い、
 - a) C₁₋₂₂アルキル基、
 - b) C₁₋₂₂アルコキシ基、
 - c) ArCH₂O—(式中、Arは、それぞれ置換基を有していても良い、C₆₋₁₄アリール基または5員環ないし14員環ヘテロアリール基を表す)、
 - d) ホルミルオキシ基、
 - e) C₂₋₂₂アシロキシ基、
 - f) 不飽和C₃₋₂₃アシロキシ基、

g) $R^{c_0}COO-$ (式中、 R^{c_0} は、それぞれ置換基を有していても良い、 C_{6-14} アリール基、5員環ないし14員環ヘテロアリール基、 C_{1-22} アルコキシ基、不飽和 C_{2-22} アルコキシ基、 C_{6-14} アリールオキシ基または5員環ないし14員環ヘテロアリールオキシ基を表す)、

h) C_{1-22} アルキルスルホニルオキシ基、

i) C_{6-14} アリールスルホニルオキシ基もしくは

j) $R^{s_1}R^{s_2}R^{s_3}SiO-$ (式中、 R^{s_1} 、 R^{s_2} および R^{s_3} は、同一または異なるって、 C_{1-6} アルキル基または C_{6-14} アリール基を表す)、

(4) ハログン原子または

(5) $R^{N_1}R^{N_2}N-R^M-$ (式中、 R^M は単結合または $-CO-O-$ を表し、

R^{N_1} および R^{N_2} は

1) 同一または異なるって、

a) 水素原子、

b) それぞれ置換基を有していても良い、

(i) C_{1-22} アルキル基、

(ii) 不飽和 C_{2-22} アルキル基、

(iii) C_{2-22} アシリル基、

(iv) 不飽和 C_{3-23} アシリル基、

(v) C_{6-14} アリール基、

(vi) 5員環ないし14員環ヘテロアリール基、

(vii) C_{7-15} アラルキル基、

(viii) C_{1-22} アルキルスルホニル基もしくは

(ix) C_{6-14} アリールスルホニル基を表すか、または

2) R^{N_1} および R^{N_2} は結合する窒素原子と一緒にになって置換基を有していても良い3員環ないし14員環の含窒素非芳香族複素環を表す)を表す；

R^{12} および R^{14} は、同一または異なるって、水素原子または置換基を有していても良い C_{1-6} アルキル基を表す。

ただし、

1) R²は、R^{3a}およびR^{3b}のどちらか一方と一緒にになって部分構造

を形成しても良く、

- 2) R^{3a}およびR^{3b}は、結合する炭素原子と一緒にになって、ケトン構造 (=O) またはオキシム構造 {=NOR^{o*} (式中、R^{o*}は、それぞれ置換基を有していても良い、C₁₋₂₂アルキル基、不飽和C₂₋₂₂アルキル基、C₆₋₁₄アリール基、5員環ないし14員環ヘテロアリール基またはC₇₋₁₅アラルキル基を表す)} を形成しても良く、
- 3) R^{3a}およびR^{3b}のいずれか一方とR^{6a}およびR^{6b}のいずれか一方は結合する炭素原子を介して酸素原子と結合して部分構造

を形成しても良く、

- 4) R⁴は、R^{5a}およびR^{5b}のどちらか一方と一緒にになって部分構造

を形成しても良く、

- 5) R^{5a}とR^{5b}は、結合する炭素原子と一緒にになって、ケトン構造 (=O) またはオキシム構造 {=NOR^{o*} (R^{o*}は前記の意味を表す)} を形成しても良く、

6) R^{6a}およびR^{6b}は、結合する炭素原子と一緒にになって、スピロオキシラン環またはエキソメチレン基を形成しても良く、

7) R^{6a}およびR^{6b}のどちらか一方とR^{7a}およびR^{7b}のどちらか一方は結合する炭素原子と共に一緒にあって1, 3-ジオキソラン環を形成しても良く、

8) R^{7a}およびR^{7b}は、結合する炭素原子と共に一緒にあって、ケトン構造(=O)またはオキシム構造{=NOR^{o*}(R^{o*}は前記の意味を表す)}を形成しても良く、

9) R⁸は、R^{9a}およびR^{9b}のどちらか一方と一緒にになって部分構造

または

を形成しても良く、

10) R^{9a}およびR^{9b}は、結合する炭素原子と一緒にあって、ケトン構造(=O)またはオキシム構造{=NOR^{o*}(R^{o*}は前記の意味を表す)}を形成しても良く、

11) R^{na}およびR^{nb}は、結合する炭素原子と一緒にあって、ケトン構造(=O)またはオキシム構造{=NOR^{o*}(R^{o*}は前記の意味を表す)}を形成しても良い。】

2. 式(1)で表されるマクロライド系化合物が、式(1-1)で表されるマクロライド系化合物である請求項1記載のマクロライド系化合物の安定化方法。

(1-1)

式(1-1)中、n、R²、R^{3a}、R^{3b}、R⁴、R^{5a}、R^{5b}、R^{6a}、R^{6b}、R^{7a}、R

R^{7b} 、 R^8 、 R^{9a} 、 R^{9b} 、 R^{10} 、 R^{12} 、 R^{14} 、 R^{16a} 、 R^{16b} 、 R^{17a} 、 R^{17b} 、 R^{n_a} および R^{n_b} は、請求項1の式(1)の定義と同義である。

3. 式(1-1)で表されるマクロライド系化合物が、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-エポキシトリコサ-8, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 20, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 16, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 20, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-7-ブロパノイロキシ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)

－7—アセトキシ－3, 5, 6, 21—テトラヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－5, 7—ジアセトキシ－3, 6, 21—トリヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－3, 7—ジアセトキシ－6, 21—ジヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－6—アセトキシメチル－3, 6, 21—トリヒドロキシ－10, 12, 16, 20—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 17, 21—テトラヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 20—トリヒドロキシ－6, 10, 12, 16—テトラメチル－18, 19—エポキシヘンイコサ－8, 12, 14—トリエン－11—オリド、(4E, 8E, 12E, 14E)－3, 6, 7, 21—テトラヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－18, 19—エポキシトリコサ－4, 8, 12, 14—テトラエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21—トリヒドロキシ－6, 10, 12, 16—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21—トリヒドロキシ－6, 10, 12, 16—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(12E, 14E)－3, 6, 21—トリヒドロキシ－6, 10, 12, 16, 20—ペンタメチル－9—オキゾ－18, 19—エポキシトリコサ－12, 14—ジエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21—トリヒドロキシ－6, 10, 12, 16, 20—テトラメチル－18, 19—エポキシトリコサ－8, 12, 14—トリエン－11—オリド、(8E, 12E, 14E)－7—アセトキシ－3, 6, 21—トリヒドロキシ－2, 6,

10, 12, 16, 20-ヘキサメチル-18, 19-エポキシトリコサ-8, 1
2, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-
-3, 5, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-
18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8
E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 1
2, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14
-トリエン-11-オリド、(8E, 12E, 14E)-6-アセトキシメチル-
3, 6, 7, 21-テトラヒドロキシ-10, 12, 16, 20-テトラメチル-
18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8
E, 12E, 14E)-3, 6, 7-トリヒドロキシ-6, 10, 12, 16, 2
0-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-8, 12, 1
4-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3,
6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18,
19-エポキシトリコサ-8, 12, 14-トリエン-11-オリドの3位異性体、
(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-1
0, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12,
14-トリエン-11-オリド、(8E, 12E, 14E)-6-アセトキシ-3,
7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19
-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E,
14E)-3, 6, 7, 21-テトラヒドロキシ-2, 6, 10, 12, 16, 2
0-ヘキサメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-
11-オリド、(8E, 12E, 14E)-3, 7, 21-トリヒドロキシ-10,
12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 1
4-トリエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-
-3, 6-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オ
キソ-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-
オリド、(8E, 12E, 14E)-7-アセトキシ-3, 21-ジヒドロキシ-
10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポ

キシメタノ) トリコサー 8, 12, 14-トリアエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 21-ジヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ) トリコサー 4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ) トリコサー 8, 12, 14-トリアエン-11-オリド、(4E, 8E, 12E, 14E)-6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー 4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー 8, 12, 14-トリアエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサー 8, 12, 14-トリアエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21, 22-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー 8, 12, 14-トリアエン-11-オリド、(4E, 8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサー 8, 12, 14-トリアエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 5, 6, 21, 22-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー 8, 12, 14-トリアエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサー 8, 12, 14-トリアエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 16, 20-テトラ

メチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16, 18-ペンタメチル-18, 19-エポキシヘンイコサ-8, 12, 14-トリエン-11-オリドおよび(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-5-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリドからなる群から選択される化合物である請求項2記載のマクロライド系化合物の安定化方法。

4. 式(1)で表されるマクロライド系化合物が、式(1-2)で表されるマクロライド系化合物である請求項1記載のマクロライド系化合物の安定化方法。

(1-2)

式(1-2)中、n、R²、R^{3a}、R^{3b}、R⁴、R^{5a}、R^{5b}、R^{6a}、R^{6b}、R^{7a}、R^{7b}、R⁸、R^{9a}、R^{9b}、R¹⁰、R¹²、R¹⁴、R^{16a}、R^{16b}、R^{17a}、R^{17b}、R^{n^a}およびR^{n^b}は、請求項1の式(1)の定義と同義である。

5. 式(1-2)で表されるマクロライド系化合物が、(8E, 12E, 14E, 18E)-7-アセトキシ-3, 6, 21, 22-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチルトリコサ-8, 12, 14, 18-テトラエン-11-オリドまたは(8E, 12E, 14E, 18E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチルトリコサ-8,

12, 14, 18-テトラエン-11-オリドである請求項4記載のマクロライド系化合物の安定化方法。

6. シクロデキストリン類が、 β -シクロデキストリン、 γ -シクロデキストリン、部分メチル化 β -シクロデキストリン、ジメチル- β -シクロデキストリン、グリコシル- β -シクロデキストリンおよびヒドロキシプロビル- β -シクロデキストリンからなる群から選択されるシクロデキストリンである請求項1～5いずれかに記載のマクロライド系化合物の安定化方法。

7. (8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 16, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 20, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 20, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 20, 21-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E)-3, 6, 21-トリヒドロキシ-6, 10, 12, 1

6, 20—ペンタメチル—7—プロパノイロキシ—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—3, 6, 21—トリヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—18, 19—エポキシドコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—3, 5, 6, 21—テトラヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—5, 7—ジアセトキシ—3, 6, 21—トリヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—3, 7—ジアセトキシ—6, 21—ジヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—6—アセトキシメチル—3, 6, 21—トリヒドロキシ—10, 12, 16, 20—テトラメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—3, 6, 17, 21—テトラヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—3, 6, 20—トリヒドロキシ—6, 10, 12, 16—テトラメチル—18, 19—エポキシヘンイコサ—8, 12, 14—トリエン—11—オリド、(4E, 8E, 12E, 14E)—3, 6, 7, 21—テトラヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—18, 19—エポキシトリコサ—4, 8, 12, 14—テトラエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—3, 6, 21—トリヒドロキシ—6, 10, 12, 16—テトラメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(8E, 12E, 14E)—7—アセトキシ—3, 6, 21—トリヒドロキシ—6, 10, 12, 20—テトラメチル—18, 19—エポキシトリコサ—8, 12, 14—トリエン—11—オリド、(12E, 14E)—3, 6, 21—トリヒドロキシ—6, 10, 12, 16, 20—ペンタメチル—9—オキソ

—18, 19—エポキシトリコサ-12, 14-ジエン-11-オリド、(8E, 12E, 14E) —7—アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —7—アセトキシ-3, 6, 21-トリヒドロキシ-2, 6, 10, 12, 16, 20-ヘキサメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —7—アセトキシ-3, 5, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —7—アセトキシ-3, 6, 21-トリヒドロキシ-6, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —6—アセトキシメチル-3, 6, 7, 21-テトラヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —3, 6, 7—トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —7—アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリドの3位異性体、(8E, 12E, 14E) —7—アセトキシ-3, 6, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —6—アセトキシ-3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) —3, 6, 7, 21-テトラヒドロキシ-2, 6, 10, 12, 16, 20-ヘキサメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E, 18E) —7—アセトキシ-3, 6, 21, 22-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチルトリコサ-8, 12, 14, 18-テトラエン-11-オ

リド、(8E, 12E, 14E) -3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E) -7-アセトキシ-3, 6-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 21-ジヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ)トリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E) -7-アセトキシ-3, 21-ジヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ)トリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E) -3, 7, 21-トリヒドロキシ-10, 12, 16, 20-テトラメチル-18, 19-エポキシ-6, 6-(エポキシメタノ)トリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E) -6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E) -6, 7-ジアセトキシ-3, 21-ジヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 12, 14-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-21-オキソ-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 12, 14-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-8, 12, 14-トリエン-11-オリド、(4E, 8E, 12E, 14E) -7-アセトキシ-3, 6, 12, 14-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサ-4, 8, 12, 14-テトラエン-11-オリド、(8E, 12E, 14E) -7-アセトキシ-3, 6, 12, 14-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシ

シヘンイコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 5, 6, 21, 22-ペンタヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 16-トリヒドロキシ-6, 10, 12, 16-テトラメチル-18, 19-エポキシヘンイコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-3, 6, 7, 21-テトラヒドロキシ-6, 10, 16, 20-テトラメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17, 21-テトラヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 17-トリヒドロキシ-6, 10, 12, 16, 18-ペンタメチル-18, 19-エポキシヘンイコサー-8, 12, 14-トリエン-11-オリド、(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-5-オキゾ-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリドおよび(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチルトリコサー-8, 12, 14, 18-テトラエン-11-オリドからなる群から選択されるマクロライド系化合物の製造方法であって、該マクロライド系化合物を生産する能力を有する放線菌の培養液中にシクロデキストリン類を存在させることを特徴とする方法。

8. マクロライド系化合物が(8E, 12E, 14E)-7-アセトキシ-3, 6, 21-トリヒドロキシ-6, 10, 12, 16, 20-ペンタメチル-18, 19-エポキシトリコサー-8, 12, 14-トリエン-11-オリドである請求項7記載の方法。

9. シクロデキストリン類が、 β -シクロデキストリン、 γ -シクロデキストリン、部分メチル化 β -シクロデキストリン、ジメチル- β -シクロデキストリン、グリコシル- β -シクロデキストリンおよびヒドロキシプロビル- β -シクロデ

キストリンからなる群から選択されるシクロデキストリンである請求項7または8記載の方法。

図 1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/001637

A. CLASSIFICATION OF SUBJECT MATTER
Int .C1⁷ C07D407/06, 313/00, C12P17/08//C08B37/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int .C1⁷ C07D407/06, 313/00, C12P17/08//C08B37/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	WO 02/60890 A1 (Mercian Corp.), 08 August, 2002 (08.08.02), Claims 1 to 76 & EP 1380579 A1 & CA 2436667 A	1-6 7-9
Y A	JP 4-352783 A (Taisho Pharmaceutical Co., Ltd.), 07 December, 1992 (07.12.92), Claim 1 (Family: none)	1-2, 6 7-9
Y	JP 11-509223 A (Novartis AG.), 17 August, 1999 (17.08.99), Claims 1 to 2; page 4, lines 3 to 12 & WO 97/3654 A2 & EP 839028 A2	1-6

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "T" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
01 March, 2005 (01.03.05)

Date of mailing of the international search report
15 March, 2005 (15.03.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2005/001637
--

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-502810 A (Novartis AG.), 29 January, 2002 (29.01.02), Claims 10 to 11; Par. No. [0005] & EP 1052974 A2 & WO 99/39694 A2	1-6
Y	JP 9-48737 A (Sando Yakuhin Kabushiki Kaisha), 18 February, 1997 (18.02.97), Claims 4 to 5; Par. Nos. [0018], [0019] (Family: none)	1-6
A	JP 58-179496 A (Takeda Chemical Industries, Ltd.), 20 October, 1983 (20.10.83), Claim 1 & EP 91781 A1 & US 4480033 A	7-9

国際調査報告

国際出願番号 PCT/JP2005/001637

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int. C17 C07D407/06, 313/00, C12P17/08//C08B37/16

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int. C17 C07D407/06, 313/00, C12P17/08//C08B37/16

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO 02/60890 A1 (メルシャン株式会社)	1-6
A	2002.08.08, 請求項1-7 6 & EP 1380579 A1 & CA 2436667 A	7-9
Y	JP 4-352783 A (大正製薬株式会社)	1-2, 6
A	1992.12.07, 請求項1 (ファミリーなし)	7-9
Y	JP 11-509223 A (ノバルティス・アクチエングゼルシャフト) 1999.08.17, 請求項1-2, 第4頁第3~12行 & WO 97/3654 A2 & EP 839028 A2	1-6

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「B」国際出願目前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に該当する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願目前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当事者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 01.03.2005	国際調査報告の発送日 15.03.2005
国際調査機関の名称及びて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 渡辺 仁 電話番号 03-3581-1101 内線 3452

C(続き)、 引用文献の カテゴリー*	関連すると認められる文献	関連する 請求の範囲の番号
Y	JP 2002-502810 A (ノバルティス アクチエングゼルシャフト) 2002.01.29, 請求項10-11, 【0005】 & EP 1052974 A2 & WO 99/39694 A2	1-6
Y	JP 9-48737 A (サンド薬品株式会社) 1997.02.18, 請求項4-5, 【0018】, 【0019】 (ファミリーナシ)	1-6
A	JP 58-179496 A (武田薬品工業株式会社) 1983.10.20, 請求項1 & EP 91781 A1 & US 4480033 A	7-9