

DATA STRUCTURES AND ALGORITHMS

Asymptotic Notations

The Process of Algorithm Development

- Design
 - divide&conquer, greedy, dynamic programming
- Validation
 - check whether it is correct
- Analysis
 - determine the properties of algorithm
- **Implementation**
- Testing
 - check whether it works for all possible cases

Analysis of Algorithm

- Analysis investigates
 - What are the properties of the algorithm?
 - in terms of time and space
 - How good is the algorithm ?
 - according to its properties
 - How it compares with others?
 - not always exact
 - Is it the best that can be done?
 - difficult!

Assume the running times of two algorithms are calculated:

For input size N Running time of Algorithm $A = T_A(N) = 1000 \text{ N}$ Running time of Algorithm $B = T_B(N) = N^2$

Which one is faster?

If the unit of running time of algorithms A and B is µsec

N	T _A	T _B
10	10 ⁻² sec	10 ⁻⁴ sec
100	10 ⁻¹ sec	10 ⁻² sec
1000	1 sec	1 sec
10000	10 sec	100 sec
100000	100 sec	10000 sec

So which algorithm is faster?

Compare their relative growth?

Is it always possible to have definite results?

NO!

The running times of algorithms can change because of the platform, the properties of the computer, etc.

We use asymptotic notations (O, Ω , θ , o)

- compare relative growth
 - No constants
 - No lower order terms
- compare only algorithms

Big Oh Notation (O)

Provides an "upper bound" for the function f

Definition :

T(N) = O(f(N)) if there are positive constants c and n_0 such that

$$T(N) \le cf(N)$$
 when $N \ge n_0$

- T(N) grows no faster than f(N)
- growth rate of T(N) is less than or equal to growth rate of f(N) for large N
- f(N) is an upper bound on T(N)
 - not fully correct!

Big Oh Notation (O)

Analysis of Algorithm A

$$T_A(N) = 1000 N = O(N)$$

1000 N
$$\leq$$
 cN $\forall N \geq n_0$

if c= 2000 and
$$n_0 = 1$$
 for all N

$$T_A(N) = 1000 N = O(N)$$
 is right

Examples

- 7n+5 = O(n)for c=8 and $n_0 = 5$ $7n+5 \le 8n$ $n>5 = n_0$
- $7n+5 = O(n^2)$ for c=7 and $n_0=2$ $7n+5 \le 7n^2$ $n \ge n_0$
- $-7n^2+3n = O(n)$?

Advantages of O Notation

- It is possible to compare of two algorithms with running times
- Constants can be ignored.
 - Units are not important

$$O(7n^2) = O(n^2)$$

- Lower order terms are ignored
 - Compare relative growth only

$$O(n^3+7n^2+3) = O(n^3)$$

Big Oh Notation (O)

Running Times of Algorithm A and B

$$T_A(N) = 1000 N = O(N)$$

 $T_B(N) = N^2 = O(N^2)$

A is asymptotically faster than B!

Omega Notation (Ω)

Definition :

 $T(N) = \Omega$ (f(N)) if there are positive constants c and n_0 such that $T(N) \ge c$ f(N) when $N \ge n_0$

- T(N) grows no slower than f(N)
- growth rate of T(N) is greater than or equal to growth rate of f(N) for large N
- f(N) is a lower bound on T(N)
 - not fully correct!

Omega Notation

Example:

•
$$n^{1/2} = \Omega (\lg n)$$
.
for $c = 1$ and $n_0 = 16$
Let $n > 16$
 $c^*(\lg n) \le n^{1/2}$

Omega Notation

Theorem:

$$f(N) = O(g(n)) <=> g(n) = \Omega(f(N))$$

Proof:

$$f(N) \le c_1 g(n) \le c_2 f(N)$$

divide the left side with c_1

$$1/c_1 f(N) \le g(n) \le g(n) \ge c_2 f(N)$$

if we choose c_2 as $1/c_1$ then theorem is right.

Omega Notation

$$-7n^2 + 3n + 5 = O(n^4)$$

$$-7n^2 + 3n + 5 = O(n^3)$$

$$-7n^2 + 3n + 5 = O(n^2)$$

•
$$7n^2 + 3n + 5 = \Omega(n^2)$$

•
$$7n^2 + 3n + 5 = \Omega(n)$$

•
$$7n^2 + 3n + 5 = \Omega(1)$$

 n^2 and $7n^2 + 3n + 5$ grows at the same rate

$$7n^2 + 3n + 5 = O(n^2) = \Omega(n^2) = \theta(n^2)$$

Theta Notation (θ)

Definition :

$$T(N) = \theta (h(N))$$
 if and only if $T(N) = O(h(N))$ and $T(N) = \Omega(h(N))$

- T(N) grows as fast as h(N)
- growth rate of T(N) and h(N) are equal for large N
- h(N) is a tight bound on T(N)
 - not fully correct!

Theta Notation (θ)

Example :

$$T(N) = 3N^2$$

$$T(N) = O(N^4)$$

 $T(N) = O(N^3)$
 $T(N) = \theta(N^2) \rightarrow best$

Little O Notation (o)

Definition :

$$T(N) = o(p(N))$$
 if
 $T(N) = O(p(N))$ and $T(N) \neq \theta(p(N))$

- p(N) grows strictly faster than T(N)
- growth rate of T(N) is less than the growth rate of p(N) for large N
- -p(N) is an upperbound on T(N) (but not tight)
 - not fully correct!

Little O Notation (o)

Example :

$$T(N) = 3N^2$$

$$T(N) = o(N^4)$$

$$\mathsf{T}(\mathsf{N}) = \mathsf{o}(\mathsf{N}^3)$$

$$T(N) = \theta(N^2)$$

RULES

RULE 1:

if
$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$ then
a) $T_1(N) + T_2(N) = \max (O(f(N)), O(g(N)))$
b) $T_1(N) * T_2(N) = O(f(N) * g(N))$

You can prove these ? Is it true for θ notation? What about Ω notation?

RULES

RULE 2:

if T(N) is a polynomial of degree k

$$T(N) = a_k N^k + a_{k-1} N^{k-1} + ... + a_1 N + a_0$$

then

RULES

RULE 3:

 $log^k N = o(N)$ for any constant k

logarithm grows very slowly!

Some Common Functions

$$c=O(log N)$$
 but $c\neq\Omega(log N)$

- $\log N = o(\log^2 N)$
- $\log^2 N = o(N)$
- $N = o(N \log N)$
- $N = o(N^2)$
- $N^2 = o(N^3)$
- $N^3 = o(2^N)$

Example

•
$$T(N) = 4N^2$$

- T(N) = O(2N²)
 correct but bad style
 T(N) = O(N²)
 drop the constants
- T(N) = O(N²+N)
 correct but bad style
 T(N) = O(N²)
 ignore low order terms

Another Way to Compute Growth Rates

$$\lim_{N \to \infty} \frac{f(N)}{g(N)} = 0 \qquad \Rightarrow f(N) = o(g(N))$$

$$= c \neq 0 \qquad \Rightarrow f(N) = \theta(g(N))$$

$$= \infty \qquad \Rightarrow g(N) = o(f(N))$$

$$= \text{oscilate} \Rightarrow \text{there is no relation}$$

Example

•
$$f(N) = 7N^2$$
 $g(N) = N^2 + N$

Example

•
$$f(N) = N \log N$$

$$g(N) = N^{1.5}$$

compare logN with N^{0.5} compare log²N with N compare log²N with o(N)

$$N \log N = o(N^{1.5})$$

RULE 1 : For Loops

The running time of a for loop is at most the running time of the statements in the for loop times the number of iterations

Example:

```
int i, a = 0;
for (i=0; i<n; i++)
{
   print i;
   a=a+i;
}
return i;</pre>
```

$$T(n) = \theta(n)$$

RULE 2 : Nested Loops

Analyze nested loops inside out

Example:

$$T(n) = \theta(r^*q)$$

RULE 3 : Consequtive Statements

Add the running times

RULE 4 : If / Else

Running time is never more than the running time of the test plus larger of the running times of S1 and S2

(may overestimate but never underestimates)

$$T(n) \le T_3(n) + max (T_1(n), T_2(n))$$

Types of complexition

$$T_{worst}(N) = \max_{|I|=N} \{T(I)\}$$
 \rightarrow usually used

$$T_{av}(N) = \sum_{|I|=N} T(I).\Pr(I)$$

$$T_{best}(N) = \min_{|I|=N} \{T(I)\}$$

$$T_{worst}(N) \ge T_{av}(N) \ge T_{best}(N)$$

$$T(n) = O(T_{worst}(n)) = \Omega(T_{best}(n))$$

RULE 4 : If / Else

$$T_{w}(n) = T_{3}(n) + \max(T_{1}(n), T_{2}(n))$$
 $T_{b}(n) = T_{3}(n) + \min(T_{1}(n), T_{2}(n))$
 $T_{av}(n) = p(T)T_{1}(n) + p(F)T_{2}(n) + T_{3}(n)$
 $p(T) \rightarrow p \text{ (condition = True)}$
 $p(F) \rightarrow p \text{ (condition = False)}$

T(n)

Example :

if (condition)
$$S1;$$
 else
$$S2;$$

$$T_{1}(n) = \theta(n)$$

$$T_{1}(n) = \theta(n^{2})$$

$$T_{2}(n) = \theta(n)$$

$$T_{2}(n) = \theta(n)$$

$$T_{3}(n) + \max(T_{1}(n), T_{2}(n)) = \theta(n^{2})$$

$$T_{5}(n) = T_{3}(n) + \min(T_{1}(n), T_{2}(n)) = \theta(n)$$
 if
$$p(T) = p(F) = \frac{1}{2}$$

$$T_{6}(n) = p(T)T_{1}(n) + p(F)T_{2}(n) + T_{3}(n) = \theta(n^{2})$$

$$T(n) = O(n^{2})$$

$$= O(n)$$

RECURSIVE CALLS

Example:

Algorithm for computing factorial

```
int factorial (int n)
{
   if (n<=1)
     return 1;
   else
     return n*factorial(n-1);
}</pre>
```

1 for multiplication + 1 for substraction + cost of evaluation of factorial(n-1)

```
T(n) = cost of evaluation of factorial of n
T(n) = 2 + T(n-1)
T(1) = 1
```

RECURSIVE CALLS

$$T(n) = 2 + T(n-1)$$

 $T(n) = 2 + 2 + T(n-2)$
 $T(n) = 2 + 2 + 2 + T(n-3)$
 \vdots
 $T(n) = k^2 + T(n-k)$ $k = n-1 => T(n) = (n-1)^2 + T(n-(n-1))$
 $T(n) = (n-1)^2 + T(1)$
 $T(n) = (n-1)^2 + 1$
 $T(n) = \theta(n)$

