Indice

		Pagi	ina
1	Noz	ioni di Base	2
	1.1	Relazioni Binarie	2
	1.2	Grafi	3
	1.3	Cenni di teoria degli insiemi	5
	1.4	Rappresentazione di insiemi tramite grafi	5
	1.5	Bisimulazione	6
		1.5.1 Bisimulazione massima	9
		1.5.2 Interpretazione insiemistica della bisimulazione . . .	10
Bibliografia			13

1 Nozioni di Base

1.1 Relazioni Binarie

Riportiamo la definizione di *relazione binaria* su uno o due insiemi, che sarà utile per definire formalmente il concetto di *grafo*, fondamentale all'interno di questo elaborato.

Definizione 1.1. Chiameremo relazione binaria su A, B qualsiasi sottoinsieme del prodotto cartesiano $A \times B$.

Chiameremo relazione binaria su A qualsiasi sottoinsieme del prodotto cartesiano $A \times A$.

Diremo che u, v sono in relazione rispetto a R se $(u, v) \in R$. In questo caso potremo usare la notazione uRv.

Alcune relazioni binarie mostrano proprietà fondamentali, che presentiamo nella definizione seguente:

Definizione 1.2. Sia R una relazione binaria su A. Diremo che R è

- riflessiva se $\forall x \in A, xRx$;
- $simmetrica \text{ se } xRy \implies yRx \ (x,y \in A)$
- transitiva se $(xRy \land yRz) \implies xRz \ (x,y,z \in A)$

Esempio 1.1. La relazione \leq sui naturali è riflessiva e transitiva, ma non simmetrica.

La relazione = $(a = b \iff "a, b \text{ sono lo stesso numero"})$ sui naturali è simmetrica, riflessiva e transitiva.

Definizione 1.3. Una relazione binaria riflessiva, simmetrica e transitiva si dice *relazione di equivalenza*.

Una relazione di equivalenza divide un insieme in *classi di equivalenza* all'interno delle quali tutti gli elementi sono in relazione.

A partire da una relazione binaria R possiamo costruire relazioni binarie che contengono R, e che mostrano una o più delle proprietà presentate sopra, le cosiddette *chiusure*. Ogni chiusura è costituita dall'unione della relazione iniziale e di un insieme di coppie costruito con un criterio differente a seconda del tipo di chiusura, che fornisce la proprietà desiderata.

Definizione 1.4. Sia R una relazione binaria su A. Diamo le seguenti definizioni

- Chiusura riflessiva: $R_r = R \cup \{(x, x) \ \forall x \in A\}$
- Chiusura simmetrica: $R_s = R \cup \{(y, x) \ \forall x, y : (x, y) \in R\}$
- Chiusura transitiva: $R_t = R \cup \{(x, z) \ \forall x, z : \exists y : (x, y) \in R \land (y, z) \in R\}$

Esempio 1.2. La chiusura riflessiva della relazione < (minore stretto) è la relazione \le .

La chiusura transitiva della relazione $aRb \iff$ "a è più piccolo di b" è la relazione <.

1.2 Grafi

Con queste premesse possiamo definire un grafo come segue:

Definizione 1.5. Sia V un insieme finito non vuoto. Sia \to una relazione binaria su V.

Chiameremo grafo diretto o grafo orientato la coppia $G=(V,\to)$. In questo caso

- V è l'insieme dei nodi o vertici;
- \rightarrow è la relazione di raggiungibilità: $a \rightarrow b \ (a, b \in V)$ significa "nel grafo G esiste un arco dal nodo a al nodo b".

Esempio 1.3. Il grafo di Figura 1 è descritto dalla coppia

- $N = \{a, b, c, d, e\}$
- $\bullet \rightarrow = \{(a,b), (a,d), (b,c), (d,c), (c,e), (d,e)\}$

Nel seguito utilizzeremo ampiamente la seguente terminologia:

Definizione 1.6. Sia $G = (V, \to)$ un grafo. Diremo che un nodo $u \in V$ è una foglia se $\nexists v \in V : u \to v$. Diremo che u è parente di v e che v è figlio di u se $u \to v$.

Figura 1: Rappresentazione grafica di un grafo

Un grafo è quindi un insieme di elementi (i nodi) accoppiato con un insieme di relazioni tra questi elementi (gli archi o rami).

È naturale associare questo concetto all'idea di percorso: ogni grafo è definito da un insieme di nodi ed un insieme di *cammini* che consentono di spostarsi da un nodo ad un altro.

La seguente definizione sorge in modo spontaneo da questo punto di vista:

Definizione 1.7. Sia $G=(V,\to)$ un grafo. Siano $u,v\in V$. Diremo che v è raggiungibile da u, o in alternativa esiste un cammino da u a v, o ancora $u\to_t v$ (la t in pedice sta per "transitivo"), se $\exists x_n\subset V$ (una sequenza finita di nodi) di lunghezza $K:x_K=v,x_0=u,x_n\to x_{n+1}$.

L'esistenza di un cammino tra nodi fornisce un criterio immediato per partizionare un grafo in gruppi di nodi. Diamo innanzitutto la seguente definizione:

Definizione 1.8. Diremo che un grafo (V, \rightarrow) è fortemente connesso se $\forall v_1, v_2 \in V, v_1 \rightarrow_t v_2$.

Le componenti fortemente connesse (CFC) di un grafo (V, \rightarrow) sono le classi di equivalenza della relazione \rightarrow_t [2, Appendice B]. In altre parole, i nodi contenuti in una stessa componente fortemente connessa sono mutuamente raggiungibili.

Esempio 1.4. Nel grafo di Figura 2 le CFC sono state evidenziate con colori diversi: $\{a, b, c, d\}, \{e\}.$

Il partizionamento in CFC è definito come segue:

Definizione 1.9. Sia $G=(V,\to)$ un grafo. Chiameremo grafo delle componenti fortemente connesse (CFC) di G il grafo $G^{CFC}=(V^{CFC},\to^{CFC})$ con

• $V^{CFC} = \{C : "C \ \text{\'e} \ \text{una classe di equivalenza per} \rightarrow_t \text{su } V" \}$

Figura 2: CFC di un grafo

Figura 3: Un grafo ed il corrispondente grafo delle CFC

•
$$\rightarrow^{CFC} = \{(A, B) \in V^{CFC} \times V^{CFC} : A \neq B, \exists m \in A, n \in B : m \rightarrow n\}$$

Riportiamo la seguente proprietà immediata:

Proposizione 1.1. Sia G^{CFC} il grafo delle CFC di un grafo G generico. Allora G^{CFC} è aciclico.

Dimostrazione. Suppongo per assurdo che in G^{CFC} esista un ciclo. Allora tutti i nodi di V^{CFC} facenti parte del ciclo sono mutuamente raggiungibili (percorrendo il ciclo). Quindi tutti i nodi fanno parte della stessa CFC, ma questo è assurdo.

Esempio 1.5. La Figura 3.a rappresenta un grafo generico, la Figura 3.b rappresenta il suo grafo delle componenti fortemente connesse associato.

1.3 Cenni di teoria degli insiemi

In generale ammettiamo che un insieme possa contenere altri insiemi. Questa concessione diventa problematica nel caso in cui tra i membri di un insieme A risulti lo stesso insieme A, o un insieme contenente l'insieme A. Diamo quindi la seguente definizione:

Definizione 1.10. Diremo che un insieme A è ben-fondato se $\forall B \in A$: "B è un insieme" si ha $A \not\subset B$. Altrimenti diremo che A è non-ben-fondato.

Esempio 1.6. L'insieme $\Omega=\{\Omega\}$ è non-ben-fondato. L'insieme $A=\{1,2,3\}$ è ben-fondato.

1.4 Rappresentazione di insiemi tramite grafi

In alcuni casi risulta conveniente fornire un'interpretazione insiemistica della nozione di grafo vista sopra. Introduciamo innanzitutto una nozione fondamentale:

Definizione 1.11. Sia $G = (V, \to)$ un grafo orientato. Sia $u \in V : \forall v \in V, u \to_t v$, cioè ogni nodo di G è raggiungibile da u. Allora la terna (V, \to, u) si dice accessible pointed graph, o APG.

Per pervenire allo scopo di rappresentare un insieme tramite un grafo è necessario definire un processo denominato decorazione:

Definizione 1.12. Chiameremo decorazione di un APG l'assegnazione di un insieme ad ogni suo nodo.

Associando la relazione di raggiungibilità \rightarrow alla relazione di appartenenza \in abbiamo tutto il necessario per la rappresentazione di insiemi:

Definizione 1.13. Chiameremo *immagine* (o *picture* in [1]) di un insieme A la coppia di un APG (G, v) con una decorazione in cui a v è associato A.

Ad un APG aciclico è possibile associare un'unica decorazione. Questo risultato tuttavia non può essere dimostrato nel caso di un APG contenente almeno un ciclo. Per questo motivo in [1] viene dato il seguente assioma:

Assioma 1.1 (AFA, Anti-Foundation-Axiom). Ogni APG possiede un'unica decorazione.

L'assioma AFA ha un'ovvia conseguenza:

Corollario 1.1. Ogni APG è immagine di un unico insieme.

Esempio 1.7. In Figura 4 sono rappresentati alcuni insiemi sotto forma di APG.

1.5 Bisimulazione

Definizione 1.14. Siano $G_1 = (V_1, \to_1), G_2 = (V_2, \to_2)$ due grafi. Diremo che una relazione binaria $R: V_1 \times V_2$ è una bisimulazione su G_1, G_2 se $\forall a \in V_1, b \in V_2$ valgono congiuntamente le seguenti proprietà:

Figura 4: Rappresentazione di insiemi tramite grafi

- $aRb, a \rightarrow_1 a' \implies \exists b' \in V_2 : (a'Rb' \land b \rightarrow_2 b')$
- $aRb, b \rightarrow_2 b' \implies \exists a' \in V_1 : (a'Rb' \land a \rightarrow_1 a')$

Possiamo definire in modo analogo una bisimulazione su un unico grafo G, ponendo $G_1 = G_2 = G$.

Definiamo un'importante caratteristica di una coppia qualsiasi di grafi, che verrà sfruttata ampiamente nel seguito

Definizione 1.15. Siano $G_1 = (V_1, \to_1), G_2 = (V_2, \to_2)$ due grafi. Diremo che sono bisimili se $\exists R : V_1 \times V_2 : R$ è una bisimulazione su G_1, G_2 . Diremo che due APG $(G_1, v_1), (G_2, v_2)$ sono bisimili se G_1, G_2 sono bisimili e vale $v_1 R v_2$ per almeno una bisimulazione su G_1, G_2 .

Osservazione 1.1. Una bisimulazione può non essere riflessiva, simmetrica, nè transitiva.

Esempio 1.8. La relazione $aRb \iff "a, b \text{ sono lo stesso nodo" su un grafo qualsiasi è una bisimulazione riflessiva, simmetrica e transitiva.$

Dalla definizione di bisimulazione possiamo dedurre una proprietà interessante di una qualsiasi sua chiusura:

Teorema 1.1. Sia b una bisimulazione sul grafo G. La sua chiusura riflessiva, simmetrica o transitiva è ancora una bisimulazione su G.

Dimostrazione. Consideriamo separatamente le tre relazioni b_r, b_s, b_t , rispettivamente la chiusura riflessiva, simmetrica e transitiva:

- b_r Per definizione $b \subset b_r$, quindi è sufficiente dimostrare che b_r è una bisimulazione quando gli argomenti $u,v \in N$ non sono distinti. Sia $u \in N$. Chiaramente per definizione di b_r si ha ub_ru . Se $\exists u' \in N$: $u \to u'$ allora (sempre per definizione di b_r) si ha $u'b_ru'$.
- b_s Per definizione $b \subset b_s$, quindi è sufficiente dimostrare che b_s è una bisimulazione quando per gli argomenti $u, v \in N$ si ha ubv ma non vbu.

Sia
$$(u, v) \in N \times N$$
. Allora

$$ub_s v \implies ubv \vee vbu$$

Suppongo ad esempio che vbu.

$$\implies \forall v' \in N : (v \to v') \ \exists u' \in N : (u \to u' \land v'bu')$$
$$\implies u'b_*v'$$

e

$$\implies \forall u' \in N : (u \to u') \ \exists v' \in N : (v \to v' \land v'bu')$$
$$\implies u'b_sv'$$

cioè sono dimostrate le due condizioni caratteristiche della bisimulazione.

La dimostrazione è analoga se ubv.

 b_t Per definizione $b \subset b_t$, quindi è sufficiente dimostrare che b_t è una bisimulazione quando per gli argomenti $u, v, z \in N$ si ha ubv, vbz ma non ubz.

Sia $(u, v, z) \in N \times N \times N$ con questa proprietà. Allora $\forall u' \in N : u \rightarrow u' \implies \exists v' \in N : v \rightarrow v' \land u'bv'$. Inoltre $\exists z' : z \rightarrow z' \land v'bz'$.

Riordinando si ha u'bv', v'bz'. Allora per definizione di $b_t, u'b_tz'$.

In modo speculare si ottiene la seconda condizione caratteristica della bisimulazione.

Da questa proposizione si deduce il seguente corollario, che risulta dall'applicazione iterativa delle tre chiusure viste in precedenza:

Corollario 1.2. Ad ogni bisimulazione b è possibile associare una bisimulazione $\tilde{b}: b \subset \tilde{b} \wedge \tilde{b}$ è una relazione di equivalenza.

Concludiamo la sezione relativa ai risultati generali sulla bisimulazione con la seguente proposizione, che sarà utile nel seguito:

Proposizione 1.2. Siano b_1, b_2 due bisimulazioni su G_1, G_2 . Allora $b = b_1 \cup b_2$ è ancora una bisimulazione.

Dimostrazione. Siano u, v: ubv. Sia $u': u \to u'$. Allora deve essere $ub_1v \lor ub_2v$. Ma quindi $\exists v': (v \to v' \land u'b_{1|2}v')$.

1.5.1 Bisimulazione massima

Definiamo ora il concetto di *bisimulazione massima*, che gioca un ruolo chiave nella risoluzione dei problemi considerati in questo elaborato.

Definizione 1.16. Diremo che una bisimulazione b_M su G_1, G_2 è massima se $\forall b$: "b è una bisimulazione su G_1, G_2 " si ha $ubv \implies ub_M v \ \forall a \in N_1, b \in N_2$.

Naturalmente la bisimulazione massima dipende dai due grafi presi in esame. Possiamo dedurre alcune caratteristiche in modo molto semplice:

Proposizione 1.3. Valgono le seguenti proprietà:

- 1. La bisimulazione massima su due grafi G_1, G_2 è unica
- 2. La bisimulazione massima è una relazione di equivalenza

Dimostrazione. Le proprietà seguono banalmente dal Corollario 1.2 e dall'Osservazione 1.2.

- 1. Suppongo per assurdo che esistano due bisimulazioni massime b_{M_1}, b_{M_2} . La loro unione è ancora una bisimulazione, che è "più massima" delle supposte bisimulazioni massime.
- 2. Se per assurdo la bisimulazione massima non fosse una relazione di equivalenza, potremmo considerare la sua chiusura riflessiva, simmetrica e transitiva, che sarebbe "più massima" ed anche una relazione di equivalenza.

Naturalmente il concetto di bisimulazione massima può essere definito anche su unico grafo G. Questo caso si rivelerà di grande interesse nel seguito. Per ora dimostriamo il seguente risultato:

Teorema 1.2. Sia G un grafo (finito). Allora $\exists b_M$ la bisimulazione massima su G.

Dimostrazione. Può esistere solamente un numero finito di relazioni binarie su G, e questo numero fornisce un limite superiore al numero massimo di bisimulazioni su G. Allora possiamo considerare l'unione di questo numero finito di bisimulazioni, che sarà chiaramente la bisimulazione massima. \square

1.5.2 Interpretazione insiemistica della bisimulazione

Il seguente teorema è la prova che la bisimulazione può essere utilizzata per verificare l'uguaglianza tra insiemi rappresentati da due APG differenti:

Teorema 1.3. Due APG sono bisimili \iff rappresentano lo stesso insieme.

Dimostrazione. Da dimostrare...

Tenendo conto di quanto affermato nella sezione 1.4, il Teorema 1.3 dimostra che la bisimulazione può sostituire la relazione di uguaglianza tra insiemi quando questi sono rappresentati da degli APG [3].

Dopo questa considerazone, risulta naturale definire il seguente concetto:

Definizione 1.17. Sia b una bisimulazione su G che sia anche una relazione di equivalenza. Definiamo un nuovo grafo $G_b = (N_b, \rightarrow_b)$ come in [4], che chiameremo contrazione rispetto alla bisimulazione b di G:

- $N_b = \{A = \{m \in N : \forall n \in A, mbn\}\}\$
- $[m]_b \to_b [n]_b \iff \exists c \in [n]_b : m \to c$

Risulta conveniente definire la classe del nodo a rispetto alla bisimulazione b, con la notazione $[a]_b$ come il nodo di N_b a cui appartiene il nodo a.

La Definizione 1.17 è di fondamentale importanza per la seguente osservazione:

Proposizione 1.4. Sia G un grafo, e sia G_b come nella Definizione 1.17, per una bisimulazione b qualsiasi. Allora G, G_b sono bisimili.

Dimostrazione. Sia $\equiv \subset N \times N_b$ la relazione binaria definita come segue:

$$m \equiv M \iff M = [m]_b$$

Vogliamo dimostrare che tale relazione è una bisimulazione su i grafi G, G_b . Supponiamo che $x \equiv X$, e che $x \to y$ per qualche $y \in N$. Chiamiamo $Y := [y]_b$. Allora, per la Definizione 1.17, si ha $X \to Y$. Inoltre vale banalmente $y \equiv Y$.

Per dimostrare la seconda condizione caratteristica della bisimulazione, supponiamo che $x \equiv X$, e che $X \to Y$ per qualche $Y \in N_b$. Sempre per la Definizione 1.17 deve esistere un $y \in Y : (y \equiv Y \land x \to y)$.

La Proposizione 1.4 ha una conseguenza ovvia, che risulta evidente per il Teorema 1.3:

Corollario 1.3. Sia b una bisimulazione che sia anche una relazione di equivalenza. Allora l'APG (G, v) e l'APG $(G_b, [v]_b)$ rappresentano lo stesso insieme.

Quindi risulta naturale sfruttare le proprietà della bisimulazione per minimizzare la rappresentazione di insiemi, considerando che è sufficiente una bisimulazione sulla rappresentazione iniziale per ottenere una rappresentazione equivalente. Definiamo una relazione d'ordine sulle rappresentazioni:

Definizione 1.18. Diremo che la rappresentazione (G_a, v_a) di un insieme è minore della rappresentazione equivalente (G_b, v_b) se $\#N_a < \#N_b$. Diremo che una rappresentazione è minima se non esiste un'altra rappresentazione minore.

Osservazione 1.2. La contrazione per bisimulazione di un grafo ha sempre un numero di nodi minore o uguale di quello del grafo iniziale.

Concludiamo la sezione con il seguente risultato, che stabilisce in modo univoco la bisimulazione prescelta per minimizzare la rappresentazione di un dato insieme:

Teorema 1.4. Sia (G, v) un APG rappresentante un insieme. Sia b_M la bisimulazione massima su (G, v). Allora la contrazione per bisimulazione indotta da b_M su (G, v) fornisce la rappresentazione minima dell'insieme.

Dimostrazione. Suppongo per assurdo che esista una bisimulazione b_N su (G,v) che fornisce una contrazione avente un numero di nodi strettamente inferiore alla contrazione indotta da b_M . Ma questo implica che esistono almeno due nodi di G che sono in relazione secondo b_N e non secondo b_M . Chiaramente questa deduzione è in contrasto con il fatto che b_M è la bisimulazione massima.

Suppongo per assurdo che, dopo la contrazione indotta da b_M , sia possibile trovare una nuova bisimulazione b_O su $(G_{b_M},[v]_{b_M})$ che induca una contrazione avente un numero di nodi strettamente inferiore a quello di $(G_{b_M},[v]_{b_M})$. Chiaramente $b_O\subset N_{b_M}\times N_{b_M}$.

Definisco una nuova bisimulazione $b_{\widetilde{M}} \subset N \times N$ tale che

$$xb_{\widetilde{M}}y \iff (xb_My \vee [x]_{b_M}b_O[y]_{b_M})$$

Per definizione di bisimulazione massima bisogna avere $b_{\widetilde{M}} \subset b_M$, quindi non è possibile che la contrazione indotta da b_O sia una rappresentazione minore di quella indotta da b_M .

Bibliografia

- [1] Peter Aczel. Non-well-founded sets, volume 14 of CSLI lecture notes series. CSLI, 1988.
- [2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, 3rd Edition*. MIT Press, 2009.
- [3] Agostino Dovier, Carla Piazza, and Alberto Policriti. A fast bisimulation algorithm. In *International Conference on Computer Aided Verification*, pages 79–90. Springer, 2001.
- [4] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. From bisimulation to simulation: Coarsest partition problems. *Journal of Automated Reasoning*, 31(1):73–103, 2003.