PH126 Logic I · Lecture 7

Lecturer: s.butterfill@warwick.ac.uk

Proof example with \rightarrow

6. ¬P

How to determine the truth of sentences involving \forall

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ALL of the new sentences are true, so is the original.

Quantifiers

Everything is broken: ∀x Broken(x) Something is broken: ∃x Broken(x)

∀Elim	∃Intro
$\forall x S(x)$	S(a)
S(c)	∃x S(x)

First quantifier rule of proof: ∀Elim

Proof example: ∀Elim, ∃Intro

1.
$$\forall x (Puf(x) \rightarrow YelBk(x))$$

2. Puf(a)

3.
$$Puf(a) \rightarrow YelBk(a) \forall Elim:1$$

4. YelBk(a)
$$\rightarrow$$
Elim: 3,2

5.
$$\exists x \, YelBk(x)$$
 $\exists Intro: 4$

Proof example

Conjunction Introduction (∧ Intro)

Conjunction Elimination $(\land Elim)$

$$| P_1 \wedge \ldots \wedge P_i \wedge \ldots \wedge P_i \rangle$$

$$| P_i \rangle$$

$$\begin{vmatrix} P_1 \wedge \dots \wedge P_i \wedge \dots \wedge P_i \\ \vdots \\ P_i \end{vmatrix}$$

\perp Introduction $(\perp Intro)$

\perp Elimination

Identity Introduction (= Intro)

$$\triangleright$$
 $\mathbf{n} = \mathbf{n}$

Identity Elimination (= Elim)

$$\begin{array}{c} P(n) \\ \vdots \\ n=m \\ \vdots \\ P(m) \end{array}$$

Disjunction Introduction (∨ Intro)

$$P_i \\ \vdots \\ P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n$$

Disjunction Elimination (∨ Elim)

 $(\leftrightarrow Intro)$

 $(\rightarrow Intro)$

Conditional Introduction

Biconditional Introduction

Conditional Elimination $(\rightarrow Elim)$

Biconditional Elimination

 $P \leftrightarrow Q \ (\mathrm{or} \ Q \leftrightarrow P)$

 $(\leftrightarrow Elim)$

Universal Introduction (∀ Intro)

where c does not occur outside the subproof where it is introduced.

Negation Introduction (¬ Intro)

(¬ Elim)

Negation Elimination

(∃ Intro)

Existential Introduction

Existential Elimination (∃ Elim)

where c does not occur outside the subproof where it is introduced.