Jonathan Williams

North Carolina State University

Centre for Advanced Study, Norwegian Academy of Science and Letters

https://jonathanpw.github.io

3 May 2023

Goals for the talk

- \rightarrow Introduce the idea of the conformal prediction (CP) algorithm
- → Describe why this idea is so important
- ightarrow Explain how the CP framework lacks versatility
- \rightarrow Propose a resolution relying on:
 - → Generalized fiducial (GF) inference
 - → Imprecise probability calculus

CP is a relatively general-purpose approach to uncertainty quantification for prediction problems in machine intelligence

Desirable properties:

- \rightarrow Finite sample control of type 1 error rates for predictions
- ightarrow Can be built on top of virtually any machine learning algorithm
- ightarrow Requires only weak assumptions on data generating mechanisms

```
Input: Nonconformity measure \Psi : \mathcal{T} \mathbb{R}^n \cap \times \mathbb{R} \to \mathbb{R}, measurable;
             Exchangeable examples y_1, \ldots, y_n, and an arbitrary y;
             Significance level \alpha \in (0,1)
   Output: Logical value;
               1 indicates that y_1, \ldots, y_n, y are exchangeable;
               0 else
1 Denote y_{n+1} := y;
2 for i \in \{1, ..., n+1\} do
3 Compute t_i(y_i) = \Psi(y_{-i}^{n+1}, y_i);
4 end
5 Set p_{n+1} := \frac{1}{n+1} \sum_{i=1}^{n+1} 1\{t_i(y_i) \ge t_{n+1}(y_{n+1})\};
6 return 1\{p_{n+1} > \alpha\};
```

Finite sample control of type 1 errors:

Let $\{\Gamma_n^{\alpha}: \alpha \in (0,1)\}$ be a family of CP sets for Y_{n+1} constructed from observed data Y_1, \ldots, Y_n

The set Γ_n^{α} is comprised of the values y_{n+1} such that $p_{n+1} > \alpha$

Theorem

If $Y_1, \ldots, Y_n, Y_{n+1} \sim P$ are exchangeable, then the CP sets are valid in the sense that for all (α, n, P) ,

$$P(\Gamma_n^{\alpha} \ni Y_{n+1}) \ge 1 - \alpha$$

Remark: It suffices to assume only that $t_1(Y_1), \ldots, t_n(Y_n), t_{n+1}(Y_{n+1})$ are exchangeable

Why does validity matter?

Validity matters because accountability and reliability in uncertainty quantification matters — in the same way that:

- ightarrow Financial reporting standards exist to facilitate security valuation of insurance companies
- ightarrow Building codes and standards exist to ensure the integrity of engineering and construction practices
- ★ There is no generally accepted standard of accountability of stated uncertainties in all of data science

Why does validity matter?

At the American Society of Clinical Oncology conference in Chicago last June:

A new liquid biopsy can help identify the need for adjuvant therapy in stage II colon cancer

- → thereby avoiding post-operative chemotherapy,
- \rightarrow which for bowel cancer can cause peripheral neuropathy

Why does validity matter?

Suppose the results of this biopsy is 95% confidence reported . . .

How is this confidence defined?

- \rightarrow Is it defined as the reported error on a test set?
- \rightarrow Is it a Bayesian posterior probability?
- \rightarrow Is it some sort of averaging over a collection of predictions?
- ★ All are widely accepted notions of *confidence*
- ★ Varying (if any) guarantees for how the algorithm might perform on future data

The CP algorithm provides valid, general purpose uncertainty quantification, but lacks versatility:

 \rightarrow Does not prescribe how to quantify the degree to which a data set provides evidence in support of (or against) an arbitrary event from a general class of events.

e.g., within the Bayesian paradigm, the degree to which a data set provides evidence in support of (or against) an event is quantified by the posterior probability of the event, for any *measurable* event.

Approach:

- → Construct CP sets from the GF statistical framework
 - ightarrow Motivated by a rank-based data generating association
- → Apply imprecise probability tools
 - ightarrow e.g., belief/plausibility functions or lower/upper probabilities
- → Approximate imprecise GF distribution by a precise distribution

Generalized fiducial inference

Assume a data generating model for some Y:

$$Y = G(U, \theta),$$

where

- \rightarrow G is a deterministic function
- ightarrow heta is an unknown population parameter(s) of interest
- ightarrow U has a completely known and fully specified distribution

Generalized fiducial inference

Definition (Hannig et al., 2016)

Given an observed data set y_1, \ldots, y_n generated independently from $Y = G(U, \theta)$, a GF distribution on a parameter space Θ is defined as the weak limit,

$$\lim_{\epsilon \to 0} \left\{ \underset{\vartheta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} \|y_i - G(U_i, \vartheta)\|^2 \mid \min_{\vartheta \in \Theta} \sum_{i=1}^{n} \|y_i - G(U_i, \vartheta)\|^2 \le \epsilon \right\}$$

For discrete-valued data:

- ightarrow The limit $\epsilon
 ightarrow 0$ reduces to setting $\epsilon = 0$
- \rightarrow Leads to an imprecise probability distribution over Θ

Generalized fiducial inference

e.g., for $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$,

$$Y_i = \underbrace{1\{U_i < \theta\}}_{=G(U_i,\theta)},$$

where $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} \operatorname{uniform}(0,1)$

Leads to the (imprecise) GF distribution for θ :

$$\big\{(U^\star_{(\sum_1^n y_i)}, U^\star_{(1+\sum_1^n y_i)}] \ : \ \text{where} \ U^\star_1, \dots, U^\star_n \overset{\text{iid}}{\sim} \text{uniform}(0,1)\big\} \subseteq \Theta,$$

 $\rightarrow U_{(k)}^{\star}$ denotes the k-th order statistic

Suppose Y_1, \ldots, Y_{n+1} are exchangeable and continuous

A model-free data generating association for Y_{n+1} :

$$\mathsf{rank}(t_{n+1}(Y_{n+1})) = V \sim \mathsf{uniform}\{1, \dots, n+1\},\$$

where

- $\rightarrow t_i(Y_i) := \Psi(Y_{-i}^{n+1}, Y_i)$ is a nonconformity score
- \rightarrow rank $(t_{n+1}(Y_{n+1}))$ denotes position in ascending order

Using the rank-based data association,

The (imprecise) GF distribution of the to-be-predicted value y_{n+1} is a distribution over the random sets:

$$A_n(V^\star) := \underset{y}{\operatorname{argmin}} \left\{ |\operatorname{rank}(t_{n+1}(y)) - V^\star| \right\}$$

$$= \left\{ y : \operatorname{rank}(t_{n+1}(y)) = V^\star \right\}$$

where $V^{\star} \sim \mathsf{uniform}\{1,\ldots,n+1\}$

Illustration of the imprecise GF distribution of y_{n+1}

Figure: Hypothetical observed univariate data with $y_1 = 4$, $y_2 = 5$, and n = 2. With nonconformity measure $\Psi(y_{-i}^{n+1}, y_i) := |\text{mean}(y_{-i}^{n+1}) - y_i|$

- $\rightarrow A_n(1) = \text{black region}$
- $\rightarrow A_n(2) = \text{grey region}$
- $\rightarrow A_n(3) = \text{white region}$

With respect to the discrete uniform measure μ ,

$$\mu\big(A_n(V^\star)\ni y_{n+1}\big)=\mu\bigg(V^\star=\mathsf{rank}(t_{n+1}(y_{n+1}))\bigg)=\frac{1}{n+1}$$

i.e., $A_n(1), \ldots, A_n(n+1)$ are all equally likely to contain y_{n+1}

How to construct a prediction set with at least $1-\alpha$ level confidence?

 \rightarrow Accumulate k of the prediction sets such that

$$\frac{k}{n+1} \ge 1 - \alpha$$

Accordingly, for $k \in \{1, \dots, n+1\}$,

$$\Omega_n(k) := \bigcup_{1 \le v \le k} A_n(v) = \left\{ y : \operatorname{rank}(t_{n+1}(y)) \le k \right\}$$

is a $\frac{k}{n+1}$ level prediction set

$$\to f_n(y) := \mu(\Omega_n(V^\star) \ni y)$$
 is a conformal transducer

Figure: $f_n(y) = \mu(\Omega_n(V^*) \ni y)$; the left and right plots are based on simulated samples of n = 100 realizations from the standard Gaussian and standard Cauchy distribution, respectively

 $\Upsilon_n^{\alpha} := \{ y : f_n(y) > \alpha \}$ is a CP set, i.e., valid in the sense that

$$P(\Upsilon_n^{\alpha} \not\ni Y_{n+1}) = P(f_n(Y_{n+1}) \le \alpha) \le \alpha$$

To summarize:

- \rightarrow The sets $A_n(1), \dots, A_n(n+1)$ are the atoms of the random set GF predictive distribution
- \rightarrow Each set has $\frac{1}{n+1}$ GF probability
- ightarrow These sets can be arranged to construct any CP set
- \rightarrow Further, for any assertion B not necessarily a CP set:

(lower probability)
$$\underline{\Pi}_n(B) := \mu\{A_n(V^*) \subseteq B \mid A_n(V^*) \neq \emptyset\}$$
 (upper probability)
$$\overline{\Pi}_n(B) := 1 - \underline{\Pi}_n(B^c)$$

What if the lower and upper probabilities are difficult to compute?

- ightarrow Construct a precise approximation for model-free GF inference
- ightarrow Uniform sampling over $A_n(1),\ldots,A_n(n+1)$ seems to be the sensible thing to do
- \rightarrow Leads to the precise model-free GF (MFGF) distribution with density:

$$\pi_{y}(y_{n+1}) = \sum_{v^{\star}=1}^{n+1} \pi_{y,v}(y_{n+1}, v^{\star})$$

$$= \sum_{v^{\star}=1}^{n+1} \frac{1}{\mu \{A_{n}(v^{\star})\}} \cdot \frac{1}{n+1} \cdot 1\{y_{n+1} \in A_{n}(v^{\star})\},$$

Algorithm 1: Computing the MFGF predictive distribution.

```
Input: Prediction regions A_n(1), \ldots, A_n(n+1) and a desired sample size N.
```

Output: A sample from the MFGF distribution of Y_{n+1} .

```
1 Initialize an N-dimensional vector \widetilde{y};

2 for j \in \{1, ..., N\} do

3 | Sample v^* \sim \text{uniform}\{1, ..., n+1\};

4 | Sample y_{n+1} \sim \text{uniform}(A_n(v^*));

5 | Set \widetilde{y}_j := y_{n+1};
```

6 end

7 return \widetilde{y} ;

Theorem

If $Y_1, \ldots, Y_n, Y_{n+1} \stackrel{iid}{\sim} P$ is a collection of continuous random variables, then for any $\epsilon > 0$, $\alpha \in (0,1)$, and $v \in \{1,\ldots,n\}$,

$$P\Big(n^{\alpha}\big|\pi_{y}\{A_{n}(v)\}-P\{A_{n}(v)\}\big|>\epsilon\Big)\leq e^{-n^{1-\alpha}\epsilon}.$$

 \rightarrow MFGF distribution converges to the true distribution of Y_{n+1} .

Figure: The middle and right panels display histograms of samples of size 100,000 drawn from the MFGF distribution and CP-induced distribution, respectively, based on n=1,000 data points drawn from a Gaussian distribution

Figure: The middle and right panels display histograms of samples of size 10,000 drawn from the MFGF distribution and CP-induced distribution, respectively, based on n=100 data points drawn from the standard Gaussian distribution

Figure: The middle and right panels display histograms of samples of size 10,000 drawn from the MFGF distribution and CP-induced distribution, respectively, based on n=100 data points drawn from the standard Cauchy distribution

Figure: The middle and right panels display histograms of samples of size 10,000 drawn from the MFGF distribution and CP-induced distribution, respectively, based on n=100 data points drawn from a mixture of two Gaussian distributions

Link to preprint:

Coming soon

My personal academic website:

https://jonathanpw.github.io

The end