Econ 7330, Problem Set 1

August 28, 2019

This is due on Friday, 8/30. Please hand it in no later than the beginning of section (9AM). Feel free to work in groups, but write your solutions individually.

- 1. Let A and B be arbitrary subsets of the set X, and define the complement of a set $A^c = \{x \in X | x \notin A\}$. Prove deMorgan's law: $(A \cup B)^c = (A^c \cap B^c)$
- 2. A set $X \subset Y \subset \mathbb{R}$ is said to be *dense* in Y if for any two points $y_1, y_2 \in Y$, $y_1 < y_2$, there exists a point $x \in X$ such that $y_1 < x < y_2$. Informally, this means that there is at least one point of X in between every two points of Y. Let \mathbb{Q} be the set of rational numbers (i.e., numbers that can be written as m/n where m and n are integers with no common factors besides 1). You will now prove that \mathbb{Q} is dense in \mathbb{R} . I will step you through the proof.
 - a) First, prove that if $y_1 > 0$ then there exists a positive integer n such that $ny_1 > y_2$. This is known as the Archimedean Property of \mathbb{R} , named after the famous Greek mathematician. (Hint: Prove this by contradiction.)
 - b) Show that there exists an n such that $n(y_2 y_1) > 1$.
 - c) Show that there exist positive numbers m_1 and m_2 such that $-m_2 \leq ny_1 < m_1$.
 - d) Show that there exists an integer $m \in [-m_2, m_1]$ such that $m-1 \le ny_1 < m$.
 - e) Show that $ny_1 < m \le 1 + ny_1 < ny_2$ and complete the proof.
- 3. In class, we proved that the sum of the first k integers is equal to $t_k = \frac{k(k+1)}{2}$. The numbers t_k are called triangular numbers because the first k integers can be stacked into a triangle. Similarly, we could stack the first k triangular numbers into a three dimensional tetrahedron. Define $h_k = \sum_{i=1}^k t_i$ as the kth tetrahedral number. Prove that $h_k = \frac{k(k+1)(k+2)}{6}$.

- 4. Are the following valid examples of metrics? If yes, prove it. If no, provide a counterexample.
 - a) For points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, d((x_1, y_1), (x_2, y_2)) = \max\{(x_1 x_2)^2, (y_1 y_2)^2\}$
 - b) For points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, d((x_1, y_1), (x_2, y_2)) = \min\{(x_1 x_2)^2, (y_1 y_2)^2\}$
 - c) d(x, y) = 1 if $x \neq y$, d(x, y) = 0 if x = y
- 5. Consider an infinite set X with the metric defined in problem 4(c).
 - a) Which subsets of the resulting metric space are open? (Hint: For any subset of $A \subset X$, what is the neighborhood of radius 1/2 around any point in A?)
 - b) Which subsets are closed? (Hint: Using the hint above, what are the limit points of $A \subset X$?)
- 6. In class, we proved that the set $[0,1] \subset \mathbb{R}$ was compact. Now I want you to prove that the set $(0,1) \subset \mathbb{R}$ is not compact.
 - a) Consider the collection of open sets $\{F_n\}_{n=1}^{\infty}$ where $F_n = (1/n+1, 1/n)$. Show that this is not an open cover of (0,1).
 - b) Modify the collection in part (a) in such a way that it is an open cover.
 - c) Prove that the open cover you made in part (b) does not contain a finite subcover.
- 7. Convergence.
 - a) Prove that if the sequence $\{x_n\}$ converges, then the sequence $\{|x_n|\}$ also converges.
 - b) Is the converse true? If yes, prove it. If no, provide a counterexample
- 8. Let (X, d) be a complete metric space, and let $T: X \to X$ be a function whose n^{th} iteration is a contraction. Prove that T has a unique fixed point.