Definitions

sets are denoted with $\{ \dots \}$

 \mathbb{Z} set of all integers {..., -2, -1, 0, 1, 2, ...}

 \mathbb{N} set of all natural numbers $\{0, 1, 2, ...\}$

 $\{x\}$ means x is not in the set ie. $\{1, 2, ...\}$ can be denoted as $\mathbb{N}\setminus\{0\}$

 \in - element in set

 \exists - there exists

 \forall - for all

For $p \in \mathbb{N}$ if p is not prime then it is composite. 0 and 1 are neither prime nor composite

We denote gcd(x,y) simply as (x,y). Note that (x,0) = x.

We denote lcm(x,y) as [x,y]

Recurrence Relations

Given a kth order recurrence of the form $a_n = x_1 a_{n-1} + x_2 a_{n-2} + \dots + x_k a_{n-k}$, the closed form is $a_n = C_1 r_1^n + C_2 r_2^n + \dots + C_k r_k^n$ where r_1, r_2, \dots, r_k are solutions to $r^k - x_1 r^{k-1} - x_2 r^{k-2} - \dots - x_k = 0$.

For example fibonacci numbers, $F_n = F_{n-1} + F_{n-2}$, have the characteristic polynomial equation, $r^2 - r - 1 = 0$, and the solutions to the equation are $r = \frac{1+\sqrt{5}}{2}$ and $r = \frac{1-\sqrt{5}}{2}$.

Theorems

Addition, multiplication and subtraction are closed $\forall x; x \in \mathbb{Z}$.

The Division Algorithm:

For $\frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$, there is some quotient $q \in \mathbb{N}$ and remainder $0 \le r < b$ such that,

$$a = bq + r$$
.

i b is said to divide a if r=0. We denote this as b|a. If b does not divide a we say $b\nmid a$.

ii When (a, b)=1, a and b are relatively prime

Integer Combination "I.C. Theorem"

If d|a and d|b then d|(ax + by) for $x, y \in \mathbb{Z}$.

Bezout's Theorem:

For $a, b \in \mathbb{Z}$, (a,b) is the smallest positive integer of the form ax + by where $x, y \in \mathbb{Z}$.

Corollary to Bezout's Theorem:

If (a,b)=1 then there exist some $x, y \in \mathbb{Z}$ such that ax + by = 1

Euclid's Theorem:

For any integers, a, b, x : (a, b) = (b, a - bx)

The Euclidean Algorithm:

$$(a, b) = (b, a \mod b)$$
 where $b < a$

"Important" Theorem:

If
$$d|ab$$
 and $(d, a) = 1$ then $d|b$

Prime Importance:

If P is prime and P|ab then P|a or P|b.

Corollary to Prime Importance:

If P is prime and $P|a_1a_2...a_n$ then $P|a_k$ for some integer $1 \le k \le n$

Fundamental Theorem of Arithmetic:

Every integer a has a unique factorization into primes which can be expressed as $a = \prod P_i^{\alpha_i}$

i a has $\prod (1 + \alpha_i)$ divisors

ii
$$(a,b) = \prod P_i^{\min(\alpha_i,\beta_i)}$$

iii
$$[a, b] = \prod P_i^{\max(\alpha_i, \beta_i)}$$

Modular Arithmetic

Congruence: a is congruent to b mod m, denoted $a \equiv_m b$, if m|a-b.

Congruence satisfies equivalence relations so it has the following properties:

Reflexive: $a \equiv_m b$

Symmetric: if $a \equiv_m b$ then $b \equiv_m a$

Transitive: if $a \equiv_m b$ and $b \equiv_m c$ then $a \equiv_m c$

(Modular arithmetic) If $a \equiv_m b$ then,

$$a+c \equiv_m b+c$$

$$ac \equiv_m bc$$

$$a^n \equiv_m b^n \text{ for } n \in \mathbb{N}$$

Cancellation Theorem:

Let
$$(a, m) = 1$$
. If $ax \equiv_m ay$ then $x \equiv_m y$.

Theorem:

Let
$$(a, m) = d$$
. If $ax \equiv_m ay$ then $x \equiv_{\frac{m}{d}} y$.

Inverse:

If (a, m) = 1 then a has an inverse mod m such that $ax \equiv_m 1$. Additionally x is unique mod m since $ax \equiv_m 1$ and $ay \equiv_m 1$ implies $x \equiv_m y$ by the cancellation theorem.

Corollary:

Given a prime number p and an integer n such that n < p then n has an inverse mod p.

Wilson's Theorem:

Given a prime number
$$p$$
 then $(p-1)! \equiv_p p-1 \equiv_p -1$

Fermat's Theorem:

Given a prime number
$$p$$
 then $a^{p-1} \equiv_p 1$ or $a^p \equiv_p a$

Euler's Totient Function:

$$\phi(n)$$
 is the number of integers in $\{1, 2, ..., n\}$ that are relatively prime to n . $\phi(n) = n(1 - 1/P_1)(1 - 1/P_2)...(1 - 1/P_k)$ where $P_1, P_2, ..., P_k$ are prime factors of n . Additionally, if n is prime then $\phi(n) = n - 1$

Euler's Theorem:

If
$$(a, m) = 1$$
 then $a^{\phi(n)} \equiv_m 1$