奋斗版 STM32 开发板 V3.1 的硬件说明

1. 供电电路:

AMS1117-3.3 输入+5V,提供 3.3V 的固定电压输出,为了降低电磁干扰,C1-C5 为 CPU 提供 BANK 电源(VCC:P50、P75、P100、P28、P11 GND:P49、P74、P99、P27、P10)滤波。CPU 的模拟输入电源供电脚 VDDA(P22)通过 L1 22uH 的电感与+3.3V VDD 电压连接 CPU 的模拟地 VSSA(P19)及 VREF(P20)通过 R1 0 欧电阻与 GND 连接。VREF+(P21)采用 VDDA(P22)电源基准。

RT9166-2.5 输入+5V,提供 2.5V 的固定电压输出,为 MP3 电路 VS1003 提供所需的电压。 RT9166-2.8 输入+5V,提供 2.8V 的固定电压输出,为 MP3 电路 VS1003 提供所需的电压。 为 RTC 的备份电源采用 V1 3.3V 锂离子片状电池。

2. 启动方式设置:

Boot1—Boot0 (P37 , P94): x0: 内部程序存储区启动 01:系统存储区启动(为异步通信 ISP 编程方式) 在此将 BOOT1 始终设置为 0 , BOOT0 为可变的状态,在正常模式下将其置为 0 ,在 ISP 编程时将其置为 1。用 JP1 跳线块设置,开路为 ISP 模式,可以通过串口来下载代码,短路为正常运行模式。

3. 时钟源电路:

外部晶体/陶瓷谐振器(HSE) (P12、P13): B1:8MHz 晶体谐振器 , C8 , C9 谐振电容选择 10P。系统的时钟经过 PLL 模块将时钟提高到 72MHz。

低速外部时钟源(LSE) (P8、P9): B2: 32.768KHz 晶体谐振器。C10 , C11 谐振电容选择 6P。注意: 根据 ST 公司的推荐 , B2 要采用电容负载为 6P 的晶振,否则有可能会出现停振的现象。

4. SPI 存储电路:

D2 SST25VF016B (2M Bytes) CPU 采用 SPI1 端口 PA7-SPI1-MOSI (P32)、PA6-SPI1-MISO (P31)、PA5-SPI1-SCK (P30)、PC4-SPI1-CS2 (P33) 控制读写访问, SPI1 地址: 0x4000 3800 - 0x4000 3BFF

5. 显示及触摸接口模块:

显示器采用 2.4" TFT320X240LCD(控制器 ILI9325), 采用 CPU 的 FSMC 功能, LCD 片选 CS 采用 FSMC_NEI(P88) FSMC_A16(P58)作为LCD的RS选择 FSMC_nWE(P86)作为LCD的/WR, FSMC_nOE(P85)作为LCD的/RD, LCD的 RESET 脚用 CPU的 PE1(P98)(LCD-RST), FSMC_D0---FSMC_D15 和 LCD的 D1-D8 D10-D17 相互连接,触摸屏接口采用 SPI1 接口,片选为 PB7-SPI1-CS3,由于 LCD 背光采用恒流源芯片 PT4101 控制,采用了 PWM 控制信号控制背光的明暗, PWM 信号由 PD13-LIGHT-PWM 来控制。 触 摸电路的中断申请线由 PB6-7846-INT 接收。

LCD 寄存器地址为: 0x6000 0000, LCD 数据区地址: 0x6001 0000。

PE PD PD PD PE PE	GND PE1-LCD-RST PD4-nOE PD5-nWE PD7-LCD-CS PD11-A16-RS PE10-D7 PE9-D6 PD1-D3	1 3 5 7 9 11 13 15	2 4 6 8 10 112 114 116 118 118	PA5-SPI1-SCK PB7-SPI1-CS3 PA7-SPI1-MOSI PA6-SPI1-MISO PB6-7846-INT
PE PE 3V PD	8-D5 7-D4 0-D2 15-D1 14-D0 TD	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	20 — 22 — 24 — 26 — 30 — 32 — 34 — 36 — 38 —	PD6-D13 PE15-D12 GND PE14-D11 PE13-D10 PE12-D9 PD9-D14 PE11-D8 GND PD13-LIGHT-PWM PD10-D15

6. MICRO SD 卡接口:

MICRO SD 卡座接口为 8 脚,与 CPU 的 SD 卡接口连接 分别为

	SD 卡座	CPU	
1.	SDIO-D2	PC10-SDIO-D2 (P78)	
2.	SDIO-D3	PC11-SDIO-D3 (P79)	
3.	SDIO-CMD	PD2-SDIO-CMD (P83)	
4.	+3V	+3V	
5.	SDIO-CK	PC12-SDIO-CK (P80)	
6.	GND	GND	
7.	SDIO-D0	PC8-SDIO-D0 (P65)	
8.	SDIO-D1	PC9-SDIO-D1 (P66)	

SDIO 地址: 0x4001 8000 - 0x4001 83FF

7. USB 接口:

CPU 的 USB_DM(P70), USB_DP(P71)与 USB 接口连接, USB 插座的引脚排列问为 1-5V、2—D-、3—D+、4—GND、 5,6—SHELL。采用手动自举。JP2 短路的话。板子采用 USB 供电。

USB 地址: 0x4000 5C00 - 0x4000 5FFF

8. CAN 接口:

CPU 的 CAN_TX (P96) CAN_RX(P95)通过 TJA1050 与 CAN 插座连接, CAN 插座的引脚排列问为 1-CANH、2—CANL。2 脚之间根据情况装有 R12 120 欧的终端匹配电阻,如果连入在一个已经在两端具有终端匹配电阻的 CAN 网络中 , 该电阻可以不装。

USB 地址: 0x4000 6400 - 0x4000 67FF

9.10M 以太网接口:

CPU 的 PA7-SPI1-MOSI (P32)、 PA6-SPI1-MISO (P31)、 PA4-SPI1-NSS (P29)、 PA5-SPI1-SCK (P30) 通过 SPI 总线方式, 控制 D5 ENC28J60 来完成网络功能, ENC28J60 的 TPIN-、TPIN+、TPOUT+、TPOUT-、LEDB、LEDA 通过 HR911105A (内置网络变压器、收发 LED、RJ45) 与以太网连接。

SPI1 地址: 0x4000 3800 - 0x4000 3BFF

10. RS-232 接口、TTL 异步通信接口:

拥有二路 RS-232 接口, CPU 的 PA9-US1-TX(P68) PA10-US1-RX(P69) PA9-US2-TX(P25) PA10-US2-RX(P26) 通过 MAX3232 实现两路 RS-232 接口,分别连接在 XS5 和 XS17 接口上。 USART1 在系统存储区启动模式下,将通过该口通过 PC 对板上的 CPU 进行 ISP,该口也可作为普通串口功能使用,JP3,JP4 的短路冒拔去,将断开第二路的 RS232 通信,仅作为 TTL 通信通道。

USART1 地址: 0x4001 3800 - 0x4001 3BFF USART2 地址: 0x4000 4400 - 0x4000 47FF

11. GPIO 接口:

包含了可以作为普通 IO 的可具有 PWM ,ADC ,DAC 等功能以及其他类型的 IO \Box ,同时包含了电源 5V , 3.3V 接口

12. 数模转换 DAC:

当要使用 DAC 功能时,将会影响到板子的网络功能(网络芯片的 SPI 的片选被占用),两种功能不能同时使用,在 DAC 功能时,拥有一路 CPU 自带的 DAC 通道(PA4-DAC1),通过端子座 XS13 的 6 脚引出。该口也可作为普通 IO 端口(PA4)使用。

DAC地址: 0x4000 7400 - 0x4000 77FF

13. FM 接收机功能:

通过 CPU 上的 I2C2 接口 (PB11-I2C2-SDA , PB10-I2C2-SCL) 控制 FM 模块 TEA5767 , 可以接收兼容 美国 (87.5 to 108 MHz)和日本(76 to 91MHz)调频波段, 左右声道经由功放电路 TDA1308T 通过耳机接口输出。

I2C2地址: 0x4000 5800 - 0x4000 5BFF

14. MP3 功能:

通过 CPU 上的 SPI2 接口 PB15-SPI2-MOSI、PB14-SPI2-MISO、PB13-SPI2-SCK、PB12-SPI2-CS1 控制 MP3 电路 VS1003B ,可以将存储于 Micro SD 卡中的语音文件经由音放电路 TDA1308T 通过耳机接口播放 , 能解码 MPEG 1 和 MPEG2 音频 层 III(CBR+VBR+ABR); WMA 4.0/4.1/7/8/9 5-384kbps 所有流文件;WAV(PCM+IMA AD-PCM)。并也能对通过 MIC(XS7)接口输入或线路输入的音频信号进行 IMA ADPCM 编码,并保存在 micro SD 卡上。

SPI2地址: 0x4000 3800 - 0x4000 3BFF

15. 音频放大电路:

MP3 及 FM 收音机电路的线路输出信号经过 D8 TDA1308T 可以驱动头戴式耳机。

16. SPI 外接接口(可直接接 RNF24L01 模块):

将 CPU 上的 SPI2 接口 PB15-SPI2-MOSI、PB14-SPI2-MISO、PB13-SPI2-SCK、PB0-RF-SPI2-CS 引出到接口 XS12 上,这是一个 2X5 的排母插座,可以直接和 2.4G 数传模块 NRF24L01 相连。

SPI2 地址: 0x4000 3800 - 0x4000 3BFF

17. 键盘电路及复位按键

