

Exercices ______ MATH-250 — Analyse numérique

Exercices Matlab - Analyse Numérique - 2017 Section MA

Prof. A. Quarteroni Séance 1 - Introduction à Matlab

Exercice 1

On considère les matrices

$$A = \begin{bmatrix} 5 & 3 & 0 \\ 1 & 1 & -4 \\ 3 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 3 & 2 \\ 0 & 1 & 0 \\ 5 & 0 & 1/2 \end{bmatrix}$$

Créer un répertoire de travail et écrire un fichier ".m" dans lequel placer les instructions pour calculer (sans utiliser de boucles), la matrice C = AB (produit matriciel) et la matrice D qui a comme éléments $D_{ij} = A_{ij}B_{ij}$ (produit composante par composante).

Solution 1

Dans le script ex1.m, nous avons :

```
clc
clear all
close all

A= [5 3 0; 1 1 -4; 3 0 0];
B= [4 3 2; 0 1 0; 5 0 1/2];

C = A*B
D = A.*B
```

On obtient

```
>> ex1
C =
    20
            18
                  10
   -16
    12
D =
    20
             9
                    0
     0
             1
                    0
    15
             0
                    0
```

Exercice 2

Définir (sans utiliser de boucles) la matrice diagonale de taille n=5 dont la diagonale est un vecteur de points équirépartis entre 3 et 6 (i.e. [3, 3.75, 4.5, 5.25, 6]).

Solution 2

```
>> M = diag(linspace(3,6,5))
M =
    3.0000
                   0
                              0
                                        0
         0
              3.7500
                              0
         0
                   0
                        4.5000
                                        0
                                                  0
         0
                   0
                              0
                                   5.2500
                                                  0
         0
                   0
                              0
                                       0
                                              6.0000
```

Exercice 3

Écrire une fonction pour calculer :

- a) le produit, composante par composante, entre deux vecteurs x et y;
- b) le produit scalaire entre les mêmes vecteurs x et y;
- c) un vecteur dont les éléments sont définis par : $v_1=x_1y_n,\quad v_2=x_2y_{n-1},\quad \ldots,\quad v_{n-1}=x_{n-1}y_2,\quad v_n=x_ny_1.$

Utiliser et compléter la définition suivante :

Tester la fonction avec MATLAB.

Solution 3

```
size_x = size(x);
size_y = size(y);
if (size_x(1) \neq size_y(1) \mid | size_x(2) \neq size_y(2))
   disp('!!! ERROR: vectors size is different !!!')
    return
end
if (min(size_x) > 1)
   disp('!!! ERROR: X and Y are matrices !!!')
    return
end
ElByElProd = x.*y;
if (size_x(2) \ge size_x(1))
   ScalProd = x*y';
    ScalProd = x' * y;
end
n = length(x);
v = x.*y(end:-1:1);
%% On peut aussi utiliser une boucle for:
% v = [ ];
% for i = 1:n
v = [v \times (i) * y (n-i+1)];
% end
return
```

```
>> x = [1 4 7 2 1 2];

>> y = [0 9 1 4 3 0];

>> [ElByElProd, ScalProd, v] = operations(x,y)

ElByElProd =

0 36 7 8 3 0

ScalProd =

54

v =

0 12 28 2 9 0
```

Exercice 4

En utilisant la commande diag, définir en MATLABla matrice $A \in \mathbb{R}^{n \times n}$ avec n = 10

$$\begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & & -1 & 2 \end{bmatrix}$$

Ensuite, calculer les quantités suivantes :

- a) le déterminant de A;
- b) les normes $||A||_1$, $||A||_2$, $||A||_{\infty}$ (tapez help norm pour voir les options);
- c) le rayon spectral de A, noté $\rho(A)$. On rappelle que $\rho(A) = \max_{j=1,\dots,n} |\lambda_j(A)|$, ou $\lambda_j(A)$ sont les valeurs propres de A. Vérifier que, puisque A est symétrique et définie positive, on a $\rho(A) = ||A||_2$;

Visualiser les vecteurs propres $\mathbf{v}_j, j \in \{1, \dots, 10\}$ en utilisant les commandes [v, lambda]=eig(A) et plot(v).

En utilisant MATLAB, vérifier que la matrice V (dont les colonnes sont égales aux vecteurs propres de A) permet de diagonaliser la matrice A. En particulier, vérifier que

$$V^{-1}AV = D = \operatorname{diag} \{\lambda_1, \dots, \lambda_n\}.$$

Visualiser finalement la structure des matrices A, V, D (avec la commande spy).

Solution 4

nrminf = 4

On peut définir la matrice A avec la commande suivante

```
n=10;

A=2*diag(ones(1,n))-diag(ones(1,n-1),1)-diag(ones(1,n-1),-1);

A Près, on calcule son déterminant par \det(A)

ans = 11 \det les normes ||A||_1, ||A||_2, ||A||_\infty par \det(A,1) \det(A,1) \det(A,2) \det(A,
```

Pour évaluer le rayon spectral de A, il faut calculer ses valeurs propres et en prendre le maximum, en valeur absolue :

```
rho=max(abs(eig(A)))
rho = 3.9190
```

On peut directement vérifier que, A étant symétrique et définie positive, on a $\rho(1) = ||A||_2$. Pour calculer et visualiser les vecteurs propres $\mathbf{v}_j, j \in \{1, \dots, 10\}$, il faut utiliser les commandes

```
[V, D]=eig(A);
figure
plot(V)
```

ou, si on veut visualiser chaque vecteur propre individuellement, la boucle suivante :

```
figure
for i=1:10
    plot(V(:,i))
    pause
end
```

Avec la première option, on a le graphe de la Figure 1.

Figure 1 – Composantes des vecteurs propres de la matrice A.

Pour vérifier que la matrice V (dont les colonnes sont égales aux vecteurs propres de A) permet de diagonaliser la matrice A, c'est-à-dire $V^{-1}AV = D = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$, il faut utiliser les commandes suivantes :

```
[V,D]=eig(A)
inv(V)*A*V % ou mieux (V\A)*V
D
dif = norm(D-inv(V)*A*V); % ou mieux dif = norm(D-(V\A)*V);
on obtient
dif = 3.5003e-15
```

Enfin, pour visualiser la structure des matrices A, V, D, il faut taper

spy(A)
spy(D)
spy(V)

On peut observer à la Figure 2 que la matrice A est tri-diagonale, la matrice D est diagonale alors que la matrice V des vecteurs propres est pleine : tous ses éléments sont différentes de zéro.

FIGURE 2 – Structure des matrices A, D et V de gauche à droite.

Exercice 5

a) Soit

$$f(x) = \frac{x^2}{2}\sin(x), \quad x \in [1, 20]$$

une fonction qu'on veut représenter graphiquement en choisissant 10 points, 20 points et 100 points dans l'intervalle de définition. Écrire un fichier ".m" pour réaliser les trois graphiques sur la même figure et avec trois couleurs différentes. Quelle est la meilleure représentation?

b) Faire la même chose pour les fonctions :

$$g(x) = \frac{x^3}{6}\cos(\sin(x))\exp{-x} + \left(\frac{1}{1+x}\right)^2, \quad x \in [1, 20]$$
$$h(x) = x(1-x) + \frac{\sin(x)\cos(x)}{x^3}, \quad x \in [1, 20]$$

Solution 5

a) Le script ex5.m est

```
f=@ (x) x.^2/2.*sin(x);
x1 = linspace(1,20,10);
x2 = linspace(1,20,20);
x3 = linspace(1,20,100);

figure
plot(x1,f(x1),'r')
hold on
plot(x2,f(x2),'g')
plot(x3,f(x3),'m')
legend('10 points','20 points','100 points')
```

```
xlabel('x')
ylabel('f(x)')
saveas(gcf,'f5','epsc')
```


FIGURE 3 – Graphe de la fonction f.

b) On remplace la fonction f par les fonctions g et h:

```
g=0(x) x.^3/6.*\cos(\sin(x)).*\exp(-x)+(1./(1+x)).^2;

h=0(x) x.*(1-x)+\sin(x).*\cos(x)./(x.^3);
```

Exercices Théoriques - Analyse Numérique - 2017 Section MA

Prof. A. Quarteroni

Séance 2 - Normes matricielles et conditionnement des systèmes linéaires

Exercice 1

Soit $\|\cdot\|$ une norme vectorielle. Prouver que la fonction

$$||A|| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{\mathbf{x}} \tag{1}$$

est une norme matricielle, en remarquant que la relation (1) est équivalente $^{\rm 1}$ à

$$||A|| = \sup_{\|\mathbf{x}\|=1} ||A\mathbf{x}||.$$

Solution 1

En utilisant l'astuce, on montre directement que cette définition forme une norme matricielle.

a) Si $||A\mathbf{x}|| \ge 0$, alors $||A|| = \sup_{\|\mathbf{x}\|=1} ||A\mathbf{x}|| \ge 0$. De plus

$$||A|| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{\mathbf{x}} = 0 \Leftrightarrow ||A\mathbf{x}|| = 0 \ \forall \ \mathbf{x} \neq \mathbf{0},$$

ou encore

$$A\mathbf{x} = 0 \ \forall \ \mathbf{x} \neq \mathbf{0} \Leftrightarrow A = \mathbf{0}.$$

Donc, $||A|| = 0 \Leftrightarrow A = \mathbf{0}$.

b) Soit un scalaire α , on a

$$\|\alpha A\| = \sup \|\mathbf{x}\| = 1 \|\alpha A\mathbf{x}\| = |\alpha| \sup \|\mathbf{x}\| = 1 \|A\mathbf{x}\| = |\alpha| \|A\|.$$

c) Vérifions enfin l'inégalité triangulaire. Par définition du supremum, si $\mathbf{x} \neq \mathbf{0}$ alors

$$\frac{\|A\mathbf{x}\|}{\mathbf{x}} \le \|A\| \Rightarrow \|A\mathbf{x}\| \le \|A\| \|\mathbf{x}\|,$$

ainsi, en prenant \mathbf{x} de norme 1, on obtient

$$||(A+B)\mathbf{x}|| \le ||A\mathbf{x}|| + ||B\mathbf{x}|| \le ||A|| + ||B||,$$

d'où on déduit $||A+B|| = \sup_{\|\mathbf{x}\|=1} ||(A+B)\mathbf{x}|| \le ||A|| + ||B||$.

1. En effet, on peut définir pour tout $\mathbf{x} \neq 0$ un vecteur unitaire $\mathbf{u} \equiv \mathbf{x}/\|\mathbf{x}\|$ de sorte que (1) s'écrive

$$||A|| = \sup_{\|\mathbf{u}\|=1} ||A\mathbf{u}|| = ||A\mathbf{w}||$$
 avec $||\mathbf{w}|| = 1$.

Exercice 2

Soit $|||\cdot|||$ une norme matricielle subordonnée à une norme vectorielle $||\cdot||$. Prouver que

- a) $||A\mathbf{x}|| \le |||A||| ||\mathbf{x}||$, i.e. $|||\cdot|||$ est une norme compatible (ou consistante) avec $||\cdot||$;
- b) |||I||| = 1;
- c) $|||AB||| \le |||A||| |||B|||$, i.e. $|||\cdot|||$ est sous-multiplicative.

Solution 2

a) Par définition du supremum, si $\mathbf{x} \neq \mathbf{0}$ alors

$$|||A||| = \sup_{\mathbf{y} \neq \mathbf{0}} \frac{||A\mathbf{y}||}{||\mathbf{y}||} \ge \frac{||A\mathbf{x}||}{||\mathbf{x}||} \Rightarrow ||A\mathbf{x}|| \le |||A||| ||\mathbf{x}||.$$

b) Par la définition de la norme matricielle subordonnée à une norme vectorielle

$$|||I||| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||I\mathbf{x}||}{||\mathbf{x}||} = 1.$$

c) Par la compatibilité de la norme, on déduit

$$|||AB||| = \sup_{\|\mathbf{x}\|=1} \|AB\mathbf{x}\| \leq \sup_{\|\mathbf{x}\|=1} |||A||| \, \|B\mathbf{x}\| = |||A||| \, \sup_{\|\mathbf{x}\|=1} \|B\mathbf{x}\| = |||A||| \, |||B|||.$$

Exercice 3

Montrer que, si $\|\cdot\|$ est une norme matricielle consistante avec une norme vectorielle $\|\cdot\|$, alors $\rho(A) \leq \|A\| \ \forall \ A \in \mathbb{C}^{n \times n}$.

Solution 3

Si λ est une valeur propre de A, alors il existe $\mathbf{v} \neq \mathbf{0}$, vecteur propre de A, tel que $A\mathbf{v} = \lambda \mathbf{v}$. Ainsi, puisque $\|\cdot\|$ est consistante,

$$|\lambda| \|\mathbf{v}\| = \|\lambda\mathbf{v}\| = \|A\mathbf{v}\| \le \|A\| \|\mathbf{v}\|$$

et donc $|\lambda| \leq ||A||$. Cette inégalité étant vraie pour toute valeur propre de A, elle l'est en particulier quand $|\lambda|$ est égale au rayon spectral.

Exercice 4

Étant donnée la matrice $A \in \mathbb{R}^{2\times 2}$, $a_{11} = a_{22} = 1$, $a_{12} = \gamma$, $a_{21} = 0$, vérifier que pour $\gamma \geq 0$, $K_{\infty}(A) = K_1(A) = (1+\gamma)^2$. Soit $A\mathbf{x} = \mathbf{b}$ le système linéaire où \mathbf{b} est tel que $\mathbf{x} = (1-\gamma, 1)^{\top}$ soit la solution. Trouver une majoration du type

$$\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \le C \frac{\|\delta \mathbf{b}\|_{\infty}}{\|\mathbf{b}\|_{\infty}}$$

avec C > 0 une constante qui ne dépend que de $||A^{-1}||_{\infty}$, $||\mathbf{b}||_{\infty}$ et $||\mathbf{x}||_{\infty}$. Le vecteur $(\mathbf{x} + \delta \mathbf{x})$ est la solution du système perturbé $A(\mathbf{x} + \delta \mathbf{x}) = (\mathbf{b} + \delta \mathbf{b})$ avec $\delta \mathbf{b}$ une perturbation du vecteur \mathbf{b} . Le problème est-il bien conditionné par rapport à $\gamma \to +\infty$?

Solution 4

On a

$$A = \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 1 & -\gamma \\ 0 & 1 \end{bmatrix}.$$

Ainsi, puisque $\gamma \geq 0$,

$$\begin{split} \|A\|_1 &= \max_{j=1,2} \sum_{i=1}^2 |a_{ij}| = \max \left\{ 1, 1 + \gamma \right\} = 1 + \gamma, \\ \|A\|_\infty &= \max_{j=1,2} \sum_{i=1}^2 |a_{ij}| = \max \left\{ 1 + \gamma, 1 \right\} = 1 + \gamma, \\ \left\|A^{-1}\right\|_1 &= \max \left\{ 1, 1 + \gamma \right\} = 1 + \gamma, \\ \left\|A^{-1}\right\|_\infty &= \max \left\{ 1, 1 + \gamma \right\} = 1 + \gamma. \end{split}$$

Par conséquent,

$$K_1(A) = \|A\|_1 \|A^{-1}\|_1 = K_\infty(A) = \|A\|_\infty \|A^{-1}\|_\infty = (1+\gamma)^2.$$

On a

$$\mathbf{b} = A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

en particulier $\|\mathbf{b}\|_{\infty} = 1$. En perturbant le second membre du système $A\mathbf{x} = \mathbf{b}$ (on ne perturbe pas la matrice), on obtient un système perturbé de la forme

$$A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b},$$

donc

$$\delta \mathbf{x} = A^{-1} \delta \mathbf{b}.$$

On en tire que

$$\|\delta \mathbf{x}\|_{\infty} \le \|A^{-1}\|_{\infty} \|\delta \mathbf{b}\|_{\infty}.$$

En divisant par $\|\mathbf{x}\|_{\infty}$, on trouve

$$\frac{\left\|\delta\mathbf{x}\right\|_{\infty}}{\left\|\mathbf{x}\right\|_{\infty}} \leq \frac{\left\|A^{-1}\right\|_{\infty}}{\left\|\mathbf{x}\right\|_{\infty}} \left\|\delta\mathbf{b}\right\|_{\infty}.$$

En plus, puisque $\|\mathbf{x}\|_{\infty} = 1$, on peut écrire

$$\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \le \underbrace{\frac{\|A^{-1}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}}_{C} \frac{\|\delta \mathbf{b}\|_{\infty}}{\|\mathbf{b}\|_{\infty}}$$

avec $C = \frac{\|A^{-1}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$ la constante cherchée. On a donc que

$$C = \frac{1+\gamma}{\max\{1, |1-\gamma|\}}.$$

On voit bien que $C \to 1$ quand $\gamma \to \infty$. Ainsi, pour le cas particulier de $\mathbf{b} = (1,1)^{\top}$, le problème est bien conditionné. Remarquons que, dans le cas général (\mathbf{b} arbitraire), le problème est mal conditionné pour γ grand. En effet, $K_{\infty}(A) \to \infty$ quand $\gamma \to \infty$. Cet exercice met en évidence que le fait d'avoir une matrice avec un grand conditionnement n'empêche pas nécessairement le système global d'être bien conditionné pour des choix particuliers du second membre \mathbf{b} .

Exercice 5

Supposons que $\|\delta A\| \le \gamma \|A\|$, $\|\delta \mathbf{b}\| \le \gamma \|\mathbf{b}\|$ avec $\gamma \in \mathbb{R}^+$ et $\delta A \in \mathbb{R}^{n \times n}$, $\delta \mathbf{b} \in \mathbb{R}^n$. On veut montrer que, si $\gamma K(A) < 1$, on a les inégalités suivantes :

$$\frac{\|\mathbf{x} + \delta\mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{1 + \gamma K(A)}{1 - \gamma K(A)},\tag{2}$$

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{2\gamma}{1 - \gamma K(A)} K(A). \tag{3}$$

a) Si C est une matrice carrée telle que $\rho(C)<1$, on sait (voir le Théorème 1.5 du livre) que I-C est inversible. Montrer que dans ce cas on a

$$\frac{1}{1+\|C\|} \le \left\| (I-C)^{-1} \right\| \le \frac{1}{1-\|C\|}. \tag{4}$$

où $\|\cdot\|$ est est une norme matricielle subordonnée à une norme vectorielle telle que $\|C\| \le 1$.

- b) Montrer l'inégalité (2) en utilisant le résultat du point 1 et le fait que $(A + \delta A)$ $(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$.
- c) Montrer l'inégalité (3). Suggestion : utiliser l'inégalité triangulaire $\|\mathbf{x} + \delta \mathbf{x}\| \le \|\mathbf{x}\| + \|\delta \mathbf{x}\|$.

Solution 5

a) Puisque $^2 ||I|| = 1$, on a (Exercice 2, Série 2)

$$1 = ||I|| \le ||I - C|| ||(I - C)^{-1}|| \le (1 + ||C||) ||(I - C)^{-1}||,$$

ce qui donne la première égalité de (4). Pour la seconde, en remarquant que I = I - C + C et en multipliant à droite les deux membres par $(I - C)^{-1}$, on $(I - C)^{-1} = I + C (I - C)^{-1}$. En prenant les normes, on obtient

$$||(I-C)^{-1}|| \le 1 + ||C|| ||(I-C)^{-1}||,$$

d'où on déduit la seconde inégalité, puisque ||C|| < 1.

b) Soit

$$(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}.$$

Alors, on a

$$(I + A^{-1}\delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{x} + A^{-1}\delta \mathbf{b}.$$

^{2.} On suppose (toujours) que $\|\cdot\|$ est une norme matricielle subordonnée à une norme vectorielle.

De plus, puisque $\gamma K(A) < 1$ et $\|\delta A\| \le \gamma \|A\|$ on a

$$\left\|A^{-1}\delta A\right\| \leq \left\|A^{-1}\right\| \left\|\delta A\right\| \leq \gamma \left\|A^{-1}\right\| \left\|A\right\| = \gamma K\left(A\right) < 1.$$

Alors, $\rho(A^{-1}\delta A) < 1$ et $I + A^{-1}\delta A$ est inversible. En prenant l'inverse de cette matrice et en passant aux normes, on obtient

$$\|\mathbf{x} + \delta \mathbf{x}\| \le \left\| \left(I + A^{-1} \delta A \right)^{-1} \right\| \left(\|\mathbf{x}\| + \gamma \left\| A^{-1} \right\| \|\mathbf{b}\| \right).$$

Alors, l'inégalité du point 1 donne

$$\|\mathbf{x} + \delta \mathbf{x}\| \le \frac{1}{1 - \|A^{-1}\delta A\|} \left(\|\mathbf{x}\| + \gamma \|A^{-1}\| \|\mathbf{b}\| \right),$$

ce qui implique

$$\frac{\left\|\mathbf{x} + \delta\mathbf{x}\right\|}{\left\|\mathbf{x}\right\|} \le \frac{1 + \gamma K\left(A\right)}{1 - \gamma K\left(A\right)},$$

puisque $||A^{-1}\delta A|| \le \gamma K(A)$ et $||\mathbf{b}|| \le ||A|| \, ||\mathbf{x}||$.

c) Montrons à présent que l'inéquation (3) est correcte. En retranchant $A\mathbf{x} = \mathbf{b}$ de (2), on a

$$A\delta \mathbf{x} = -\delta A \left(\mathbf{x} + \delta \mathbf{x} \right) + \delta \mathbf{b}.$$

En prenant l'inverse de A et en passant aux normes, on obtient l'inégalité suivante

$$\|\delta\mathbf{x}\| \le \|A^{-1}\delta A\| \|\mathbf{x} + \delta\mathbf{x}\| + \|A^{-1}\| \|\delta\mathbf{b}\|$$
$$\le \gamma K(A) \|\mathbf{x} + \delta\mathbf{x}\| + \gamma \|A^{-1}\| \|\mathbf{b}\|$$

En divisant les deux membres par $\|\mathbf{x}\|$ et en utilisant l'inégalité triangulaire $\|\mathbf{x} + \delta \mathbf{x}\| \le \|\mathbf{x}\| + \|\delta \mathbf{x}\|$, on obtient finalement (3).

Exercice 6

a) Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique définie positive et soient λ_i et \mathbf{v}_i , $i = 1, \ldots, n$, les valeurs propres et les vecteurs propres de A. Montrer que si \mathbf{x} est la solution du système linéaire $A\mathbf{x} = \mathbf{b}$, alors

$$\mathbf{x} = \sum_{i=1}^{n} \left(c_i / \lambda_i \right) \mathbf{v}_i,$$

où c_i est la i-ème composante de ${\bf b}$ dans la base des vecteurs propres de A.

b) On se donne maintenant le système linéaire $A\mathbf{x} = \mathbf{b}$ suivant

$$\begin{bmatrix} 1001 & 1000 \\ 1000 & 1001 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \quad ,$$

où A est mal-conditionnée avec les valeurs propres $\lambda_1 = 1, \lambda_2 = 2001$. En décomposant le second membre sur la base des vecteurs propres de la matrice A, expliquer pourquoi,

lorsque $\mathbf{b} = (2001, 2001)^{\top}$, une petite perturbation $\delta \mathbf{b} = (1, 0)^{\top}$ produit de grandes variations dans la solution, et réciproquement, si $\mathbf{b} = (1, -1)^{\top}$, une petite variation $\delta \mathbf{x} = (0.001, 0)^{\top}$ dans la solution induit de grandes variations dans \mathbf{b} .

Solution 6

a) Puisque A est une matrice symétrique, il existe une matrice V orthogonale et une matrice D diagonale dont tous les coefficients sont réels, telles que

$$V^{-1}AV = D = \operatorname{diag} \{\lambda_1, \dots, \lambda_n\}$$

ou, de façon équivalente, $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ pour i = 1, ..., n, de sorte que les vecteurs colonnes de V soient les vecteurs propres de A. De plus, les vecteurs propres sont deux à deux orthogonaux (et peuvent être normalisés : donc, on a que $\mathbf{v}_j^{\mathsf{T}} \mathbf{v}_l = \delta_{jl}$, où δ_{jl} est le symbole de Kronecker) et on déduit que les vecteurs propres d'une matrice symétrique sont orthogonaux et engendrent l'espace \mathbb{R}^n tout entier.

Donc, soient $\mathbf{b} = \sum_{i=1}^{n} c_i \mathbf{v}_i$ le membre de droite du système linéaire $A\mathbf{x} = \mathbf{b}$ et \mathbf{x} sa solution; en écrivant aussi \mathbf{x} dans la base des vecteurs propres de A, on a :

$$A\mathbf{x} = A\sum_{i=1}^{n} x_i \mathbf{v}_i = A\sum_{i=1}^{n} c_i \mathbf{v}_i.$$

Et, puisque $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$, on trouve

$$\sum_{i=1}^{n} x_i \lambda_i \mathbf{v}_i = \sum_{i=1}^{n} c_i \mathbf{v}_i.$$

Donc on trouve

$$\sum_{i=1}^{n} (\lambda_i x_i - c_i) \mathbf{v}_i = 0,$$

c'est-à-dire $\lambda_i x_i = c_i$ et

$$\mathbf{x} = \sum_{i=1}^{n} \left(c_i / \lambda_i \right) \mathbf{v}_i.$$

b) Les vecteurs propres de la matrice A sont $\mathbf{v}_1 = (1, -1)^{\top}$ (qui correspond à $\lambda_1 = 1$) et $\mathbf{v}_2 = (1, 1)^{\top}$ (qui correspond à $\lambda_2 = 2001$). Soit $\mathbf{b} = (2001, 2001)^{\top}$ et $\delta \mathbf{b} = (1, 0)^{\top}$. Alors,

$$\mathbf{b} + \delta + \mathbf{b} = \begin{bmatrix} 2001 \\ 2001 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2001\mathbf{v}_2 + \frac{1}{2}\left(\mathbf{v}_1 + \mathbf{v}_2\right) = \frac{1}{2}\mathbf{v}_1 + \frac{4003}{2}\mathbf{v}_2.$$

Si on écrit la solution \mathbf{x} comme combinaison linéaire des vecteurs propres, on trouve

$$\mathbf{x} = \frac{\frac{1}{2}}{1}\mathbf{v}_1 + \frac{\frac{4003}{2}}{2001}\mathbf{v}_2 = \frac{1}{2}\mathbf{v}_1 + \frac{4003}{4002}\mathbf{v}_2 \approx \begin{bmatrix} 1.5\\0.5 \end{bmatrix}.$$

Ainsi on voit que l'erreur $\delta \mathbf{x}$ par rapport à la solution exacte $\mathbf{x} = (1,1)^{\top}$ est $\delta \mathbf{x} \approx (0.5, -0.5)^{\top}$.

Réciproquement, soit $\mathbf{b} = (1, -1)^{\mathsf{T}}$. La solution exacte du système est $\mathbf{x} = (1, 1)^{\mathsf{T}}$. On exprime la solution perturbée par rapport aux vecteurs propres :

$$\mathbf{x} + \delta + \mathbf{x} = \begin{bmatrix} 1.001 \\ -1 \end{bmatrix} = \frac{2.001}{2} \mathbf{v}_1 + \frac{0.001}{2} \mathbf{v}_2,$$

d'où $c_1 = 2.001/2$ et $c_2 = 0.001/2$. Donc

$$\mathbf{b} + \delta + \mathbf{b} = \begin{bmatrix} 2.001 \\ 0 \end{bmatrix}$$

et $\delta \mathbf{b} = (1.001, 1)^{\top}$.

Remarque. Le système linéaire de cet exercice pourrait être obtenu de l'analyse d'une barre rigide attachée dans sa partie central à un ressort de raideur 4000 et connectée aux extremités à deux ressorts de raideur 1 (voir Figure 1 ci-dessous). On applique des forces b_1 et b_2 aux extremités de la barre et on observe ses déplacements verticaux x_1 et x_2 . Si les forces b_1 et b_2 sont équilibrées (par exemple $b_1 = 2001$, $b_2 = 2001$), alors de petits changements $\delta \mathbf{b}$ engendrent des mouvements significatifs de la barre (grand $\delta \mathbf{x}$). A l'inverse, si les forces ne sont pas équilibrées (par exemple $b_1 = 1$, $b_2 = -1$), alors on peut obtenir de petits déplacements $\delta \mathbf{x}$ même si on impose de forts changements $\delta \mathbf{b}$ sur les forces exercées.

Figure 1 – Ressort

Exercices Théoriques - Analyse Numérique - 2017 Section MA

Prof. A. Quarteroni

Séance 3 - Systèmes linéaires : méthodes directes

Exercice 1

Considérons le cas particulier d'un système linéaire dont la matrice est tri-diagonale et inversible :

$$A = \begin{bmatrix} a_1 & c_1 & & 0 \\ b_2 & a_2 & \ddots & \\ & \ddots & \ddots & c_{n-1} \\ 0 & & b_n & a_n \end{bmatrix}$$

a) Montrer qu'il existe deux matrices bi-diagonales L et U de la forme

$$L = \begin{bmatrix} 1 & & & & 0 \\ \beta_2 & 1 & & & \\ & \ddots & \ddots & \\ 0 & & \beta_n & 1 \end{bmatrix}, \quad U = \begin{bmatrix} \alpha_1 & \gamma_1 & & & 0 \\ & \alpha_2 & \ddots & & \\ & & \ddots & \gamma_{n-1} \\ 0 & & & \alpha_n \end{bmatrix},$$

telles que A = LU, et donner les expressions des coefficients α_i , β_i et γ_i en fonction des coefficients de A. Ces formules sont connues sous l'appellation d'Algorithme de Thomas.

- b) Obtenir les formules résultantes de l'extension de l'algorithme de Thomas à la résolution du système $A\mathbf{x} = \mathbf{f}$, avec $\mathbf{f} = (f_i)_{i=1}^n \in \mathbb{R}^n$, donnée par
 - (a) trouver \mathbf{y} tel que $L\mathbf{y} = \mathbf{f}$;
 - (b) trouver \mathbf{x} tel que $U\mathbf{x} = \mathbf{y}$.
- c) Combien d'opérations virgule flottante requiert l'algorithme précédent ?

Solution 1

a) On appelle L_i la *i*-ième ligne de L et U_j la *j*-ième colonne de U. Il faut vérifier que

$$L_i U_j = [A]_{ij} .$$

Pour la matrice A, on a des éléments pas nuls seulement pour i=j ou $i=j\pm 1$. On obtient les équations suivantes :

15

— si
$$i = j$$
, on a $\beta_i \gamma_{i-1} + \alpha_i = a_i$;

— si
$$i = j - 1$$
, on a $\gamma_i = c_i$;

— si
$$i = j + 1$$
, on a $\beta_i \alpha_j = b_i$.

Donc, α_i , β_i et γ_i s'obtiennent facilement avec les relations suivantes :

$$\alpha_1 = a_1, \quad \beta_i = \frac{b_i}{\alpha_{i-1}}, \quad \alpha_i = a_i - \beta_i c_{i-1}, \quad \gamma_i = c_i.$$
 (1)

b) La résolution du système $A\mathbf{x} = \mathbf{f}$ revient à résoudre deux systèmes bidiagonaux, $L\mathbf{y} = \mathbf{f}$ et $U\mathbf{x} = \mathbf{y}$, pour lesquels on a les formules suivantes :

$$(L\mathbf{y} = \mathbf{f}): \quad y_1 = f_1, \quad y_i = f_i - \beta_i y_{i-1}, \quad i = 2, \dots, n,$$

 $(U\mathbf{x} = \mathbf{y}): \quad x_n = \frac{y_n}{\alpha_n}, \quad x_i = \frac{y_i - \gamma_i x_{i+1}}{\alpha_i}, \quad i = n - 1, \dots, 1.$ (2)

c) L'algorithme requiert 8n-7 flops : 3(n-1) flops pour la factorisation (1) et 5n-4 flops pour la substitution (2).

Exercice 2

On considère un câble élastique qui occupe au repos le segment [0,1], fixé aux extrémités, sur lequel on applique une force d'intensité f(x). Son déplacement au point x, u(x), est la solution de l'équation différentielle suivante :

$$-u''(x) = f(x), \quad x \in (0,1), u(0) = 0, \quad u(1) = 0.$$
 (3)

Soit $N \in \mathbb{N}$, h = 1/N et $x_i = ih$ pour i = 0, ..., N; pour approcher la solution u(x), on considère la discrétisation de l'intervalle (0,1) en N sous-intervalles (x_i, x_{i+1}) , et on construit une approximation u_i de $u(x_i)$ par la méthode des différences finies. Cette méthode requiert de résoudre numériquement le système linéaire tridiagonal $A\mathbf{u} = \mathbf{b}$ qui suit :

$$\frac{1}{h^{2}} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{N_{2}} \\ u_{N_{1}} \end{bmatrix} = \begin{bmatrix} f(x_{1}) \\ f(x_{2}) \\ \vdots \\ f(x_{N-2}) \\ f(x_{N-1}) \end{bmatrix}$$
(4)

où $\mathbf{u} = [u_1, u_2, \dots, u_{N-1}]^{\top}$ et $\mathbf{b} = [f(x_1), f(x_2), \dots, f(x_{N-1})]^{\top}$. Plus N est grand, plus l'approximation sera précise et plus la taille du système linéaire à résoudre sera élevée.

a) On suppose que la force appliquée soit f(x) = x(1-x) et on prend N = 20 intervalles. Construire la matrice A et le vecteur \mathbf{b} correspondants, à l'aide des commandes suivantes :

```
f = 0(x) x.*(1-x);
N = 20; h = 1/N;
x = linspace(h, 1-h, N-1)'; % on transpose pour avoir un vecteur colonne
<math>b = f(x);
A = (N-2)*(diag(2*ones(N-1, 1),0) - diag(ones(N-2,1) - diag(ones(N-2,1),-1));
```

Calculer la factorisation LU de A avec la commande MATLABlu. Vérifier que la matrice de permutation P est l'identité (on sait de la théorie qu'aucune permutation de lignes n'est effectuée dès que la matrice est symétrique définie positive, ce qui est le cas de A). Calculer également la factorisation de Cholesky de A (commande chol) et remarquer qu'elle diffère de la précédente.

b) Mettre en oeuvre l'algorithme de *substitution directe* pour la résolution d'un système triangulaire inférieure et l'algorithme de *substitution rétrograde* pour la résolution d'un système triangulaire supérieure. Utiliser et compléter les fonctions suivantes :

```
function [x] = subs_directe(L, b)
%
% [X] = SUBS_DIRECTE(L, B) resout le systeme triangulaire inferieur L*X = B
%
...
return
```

```
function [x] = subs_retrograde(U, b)
%
% [X] = SUBS_RETROGRADE(L, B) resout le systeme triangulaire superieur ...
    U*X = B
%
...
return
```

Calculer la solution du système linéaire $A\mathbf{u} = \mathbf{b}$ à partir de la factorisation A = LU, en utilisant les fonctions subs_direct et subs_retrograde pour résoudre les deux systèmes triangulaires.

- c) A l'aide de la commande plot, représenter le déplacement \mathbf{u} du câble aux noeuds x_i définis au point 1.
- d) Etudier le comportement du conditionnement de la matrice A, K(A), lorsque N augmente, en traçant le graphe des valeurs de K(A) pour $N=10,20,\ldots,120$. Tracer le graphe bilogarithmique des mêmes valeurs avec la commande loglog. Quel type de courbe obtient-on? Si on suppose une relation linéaire $log_{10} K(A) = m log_{10} N + c$ pour le graphe bilogarithmique, alors on a $K(A) = CN^m$ (avec $C = 10^c$): calculer les constantes m et C. De combien K(A) croît-il lorsque on double le nombre N des sous-intervalles?

Solution 2

a) On définit la matrice A et le vecteur \mathbf{b} avec les commandes suggérées dans l'énoncé :

```
 f = @(x)  x.*(1-x); 
 N = 20;  h = 1/N; 
 x = linspace(h, 1-h, N-1)'; 
 b = f(x); 
 A = (N-2)*(diag(2*ones(N-1, 1),0) - diag(ones(N-2,1),1) - diag(ones(N-2,1),-1));
```

Ensuite, on calcule la factorisation LU de A. En général, MATLAB peut décider d'effectuer des permutations de lignes pendant le processus de factorisation, ce qui mène à une factorisation PA = LU. Ainsi, la syntaxe de la commande \mathtt{lu} à utiliser est la suivante :

```
[L,U,P] = lu(A);
```

De cette façon, on a stocké dans la variable P la matrice de permutation P. Dans notre cas, on peut vérifier que P est la matrice identité : par exemple, on peut calculer l'écart maximal entre les éléments de P et de I, et on obtient :

```
max(max(abs(P - eye(N-1))))
ans =
   0
```

Donc, MATLAB calcule la factorisation LU sans permutation. Les facteurs ont été stockés dans les variables L et U. Ces facteurs diffèrent du facteur H de la factorisation de Cholesky $A = HH^{\top}$, que l'on calcule avec la commande

b) On trouve

```
function [x] = subs_directe(L,b)
% [X] = SUBS\_DIRECTE(L,B) resout le systeme triangulaire inferieure L*X = B
x = zeros(size(b,1), 1);
[m,n]=size(L);
if m \neq n
   disp('Error: the matrix is not square!');
   x = [];
    return
end
if m \neq length(b)
   disp(['Error: the dimension of the matrix and of the vector' ...
        ' are not consistent!']);
    x = [];
    return
end
l = min(diag(abs(L)));
if 1 == 0
   disp('Error: the matrix is singular');
    x = [];
    return
end
for j=1:n
    x(j) = (b(j) - L(j,1:j-1)*x(1:j-1))/L(j,j);
end
return
```

```
x = zeros(size(b,1), 1);
[m,n]=size(U);
if m \neq n
   disp('Error: the matrix is not square!');
    x = [];
    return
if m \neq length(b)
    disp(['Error: the dimension of the matrix and of the vector' ...
        ' are not consistent!']);
    x = [];
    return
end
l = min(diag(abs(U)));
if 1 == 0
    disp('Error: the matrix is singular');
    return
end
for j=n:-1:1
    x(j) = (b(j) - U(j, j+1:n) *x(j+1:n))/U(j, j);
return
end
```

D'après le cours, on exploite la factorisation LU de la façon suivante :

```
y = subs_directe(L,b);
u = subs_retrograde(U,y);
```

c) La Figure 1 montre les déplacements u_i aux noeuds x_i (cercles rouges). Si f(x) est un polynôme, il est facile de trouver la solution exacte du problème différentiel : dans notre cas ³, on a $u(x) = x^4/12 - x^3/6 + x/12$. On a ajouté le graphe de u(x) afin de montrer qu'avec N = 20 sous-intervalles, on obtient déjà une solution approchée assez précise. La Figure 1 a été obtenue par le script ex2exact.m suivant.

```
clc; clear all; close all
u_exact = @(x) x.^4 / 12 - x.^3 / 6 + x / 12;
fplot(u_exact, [0,1]);
hold on;
```

$$u(0) = 0 \Longrightarrow b = 0,$$
 $u(1) = 0 \Longrightarrow a = 1/12.$

^{3.} Comme $u''(x) = -x + x^2$, on intègre deux fois et on trouve $u(x) = x^4/12 - x^3/6 + ax + b$, où a et b sont deux constantes que l'on trouve en imposant les conditions aux bords :

FIGURE 1 – Solution exacte u(x) et déplacements approchés u_i

Il faut remarquer que la taille du vecteur \mathbf{u} est N-1; en effet seules les valeurs des déplacements aux noeuds x_i pour $i=1,\ldots,N-1$ sont inconnues, car $u_0=u_N=0$ (conditions aux bords).

d) Pour chaque valeur de N, on a une matrice A différente. Donc, il faut coder une boucle qui, pour $N=10,20,30,\ldots,120$, construit cette matrice et calcule son conditionnement. Cette valeur sera ensuite mémorisée dans un vecteur k. La boucle peut se coder comme suit :

```
for N = 10:10:120
  h = 1/N;
  A=(N-2)*(diag(2*ones(N-1,1),0)-diag(ones(N-2,1),1)-diag(ones(N-2,1),-1));
  k(N/10) = cond(A);
  disp(sprintf('N = %i: K(A) = %e',N,k(N/10)));
  % ceci pour afficher les valeurs calculees
end
et on obtient
N = 10: K(A) = 3.986346e+01
N = 20: K(A) = 1.614476e+02
(...)
```

```
N = 110: K(A) = 4.903279e+03

N = 120: K(A) = 5.835434e+03
```

Le graphe de K(A) en fonction de N (commande plot([10:10:120], k)) et le graphe bi-logarithmique (commande loglog([10:10:120],k); grid on) sont affichés en Figure 2. On peut trouver cette figure avec le script ex2bilog.m.

```
for N = 10:10:120
     h = 1/N;
     A = (N-2) * (diag(2*ones(N-1,1),0) - diag(ones(N-2,1),1) - diag(ones(N-2,1),-1));
     k(N/10) = cond(A);
     disp(sprintf('N = %i: K(A) = %e', N, k(N/10)));
     % ceci pour afficher les valeurs calculees
end
figure()
plot([10:10:120], k)
xlabel('N') % x-axis label
ylabel('k(A)') % y-axis label
saveas(gcf,'ex2_lin','epsc')
figure()
loglog([10:10:120],k);
xlabel('log(N)') % x-axis label
ylabel('log(k(A))') % y-axis label
grid on
saveas(gcf,'ex2_log','epsc')
```

On voit que le graphe bi-logarithmique est bien celui d'une droite, donc du type

$$\log_{10} K = m \log_{10} N + c.$$

On calcule m et c directement sur le graphe, en mesurant la pente entre les abscisses 1 (N = 10) et 2 (N = 100), ou bien en utilisant MATLAB :

La pente est presque égale à 2, donc la formule à proposer sera bien

$$K(A) = CN^2$$

avec $C \simeq 0.3926$. Donc, K(A) croît quadratiquement avec N, ce qui signifie que la solution du système linéaire par la méthode de factorisation LU devient de plus en plus sensible aux perturbations sur les données et aux erreurs d'arrondi.

FIGURE 2 – Nombre de conditionnement K(A) en fonction de N, graphes linéaire (à gauche) et bi-logarithmique (à droite)

Exercice 3

Etudier l'existence et l'unicité de la factorisation LU des matrices suivantes :

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}.$$

Solution 3

On rappelle que si $M \in \mathbb{R}^{n \times n}$, la factorisation LU de M avec $l_{ii} = 1$ pour $i = 1, \ldots, n$ existe et est unique si et seulement si les sous-matrices principales M_i de M d'ordre $i = 1, \ldots, n-1$ sont inversibles (voir Théorème 3.4 à la page 77 du livre). Dans ce cas :

$$M = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} \end{bmatrix}.$$

La matrice singulière A, dont la sous-matrice principale $A_1=1$ est inversible, admet une unique factorisation LU. La matrice inversible B dont la sous-matrice B_1 est singulière n'admet pas de factorisation, tandis que la matrice (singulière) C, dont la sous-matrice C_1 est singulière, admet une infinité de factorisations de la forme $C=L_\beta U_\beta$, avec $l_{11}^\beta=1$, $l_{21}^\beta=\beta$, $l_{22}^\beta=1$, et $u_{11}^\beta=0$, $u_{12}^\beta=1$, $u_{22}^\beta=2-\beta$, $\forall \beta \in \mathbb{R}$.

Exercice 4

Soit A la matrice donnée par

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{bmatrix},$$

avec $\det(A) > 0$. Effectuer la factorisation de Cholesky de la matrice A, après avoir remarqué qu'une telle factorisation existe.

Solution 4

La matrice est symétrique et définie positive. En effet, la matrice est symétrique et tous les mineurs principaux dominants de A sont positifs (critère de Sylvester). On a vu au cours que les coefficients h_{ij} de H^{\top} (triangulaire inférieure), avec $A = H^{\top}H$, peuvent être calculés comme suit : $h_{11} = \sqrt{a_{11}}$ et, pour i = 2, ..., n, on a

$$h_{ij} = \frac{1}{h_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} h_{ik} h_{jk} \right), \quad j = 1, \dots, i-1;$$

$$h_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} h_{ik}^2 \right)^{1/2}.$$
(5)

On obtient ainsi

$$H^{ op} = egin{bmatrix} 1 & 0 & 0 & 0 \ 2 & 1 & 0 & 0 \ 3 & -5 & 1 & 0 \ 4 & 2 & 3 & 4 \end{bmatrix}.$$