Optimization

Chi Jin

Princeton University.

Optimization

ML Examples

Regression: given training dataset $\{(x_i, y_i)\}_{i=1}^n$ s.t.

$$y_i = (w_1^*)^T \sigma((W_2^*)^T x_i) + \epsilon_i$$

Learning unknown weights by

$$\min_{w=(w_1,W_2)} f(w) := \sum_{i=1}^n (y_i - w_1^T \sigma(W_2^T x_i))^2.$$

Gradient Descent (GD)

$$x_0 = initialization$$

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

η : learning rate

Smooth Functions

$\ell\text{-smoothness}$

$$\|\nabla^2 f(x)\| \le \ell$$

$$f(x) \leq \underbrace{f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{\ell}{2} \|x - x_t\|^2}_{}$$

2nd order Taylor expansion as an upper bound

GD Interpretation

GD as optimizing the smooth upper bound:

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{\ell}{2} \|x - x_t\|^2}_{\text{2nd order Taylor expansion as an upper bound}}$$

equivalent to

$$x_{t+1} = x_t - \frac{1}{\ell} \nabla f(x_t)$$

Natural choice of learning rate $\eta = 1/\ell$.

Descent Lemma

Lemma

If f is ℓ -smooth, then GD with learning rate $\eta \leq 1/\ell$ satisfies

$$f(x_{t+1}) \leq f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2.$$

GD monotonically decreases function value!

Descent Lemma II

Lemma

If f is ℓ -smooth, then GD with learning rate $\eta \leq 1/\ell$ satisfies

$$f(x_{t+1}) \leq f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2.$$

Proof. By smoothness

$$f(x_{t+1}) \leq f(x_t) + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{\ell}{2} \|x_{t+1} - x_t\|^2$$

$$\leq f(x_t) + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{1}{2\eta} \|x_{t+1} - x_t\|^2$$

$$\stackrel{(b)}{=} f(x_t) - \eta \|\nabla f(x_t)\|^2 + \frac{\eta}{2} \|\nabla f(x_t)\|^2 = f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2.$$
(a) by $\eta \leq 1/\ell$; (b) by GD update.

Optimization Questions

- When can GD find the minimizer?
- How fast can GD find the minimizer?
- Faster algorithms?
- Gradient has noise?
- ...

Overview

- Introduction to Optimization
 - Gradient descent
 - Smooth function and descent lemma
- Convex Optimization
 - Convexity and GD guarantees
 - Acceleration
 - Stochastic gradient descent
- Nonconvex Optimization
 - Finding stationary points
 - Escaping saddle points

Convex Optimization

Convex sets and functions

• A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if

$$\forall (x, y, \gamma) \in \mathcal{X} \times \mathcal{X} \times [0, 1] : (1 - \gamma)x + \gamma y \in \mathcal{X}.$$

• A function $f: \mathcal{X} \to \mathbb{R}$ is convex if

$$\forall (x,y,\gamma) \in \mathcal{X} \times \mathcal{X} \times [0,1]: \ f((1-\gamma)x+\gamma y) \leq (1-\gamma)f(x)+\gamma f(y).$$

Convex Optimization

$$\min_{x \in \mathcal{X}} f(x)$$

 \mathcal{X} is convex set, f is convex function

Properties of Convex Optimization

Proposition

A local min of a convex function is also a global min!

This enables local search (GD) as global optimizers.

Proof. Suppose x is a local min of f, for any $y \in \mathcal{X}$, there exists $\gamma \in (0,1]$ s.t.

$$f(x) \le f((1-\gamma)x + \gamma y) \le (1-\gamma)f(x) + \gamma f(y).$$

This implies $f(x) \le f(y)$, i.e., x is also a global min of f.

GD Convergence Guarantees

Theorem

If f is $\ell\text{-smooth}$ and convex, then GD with learning rate $\eta=1/\ell$ satisfies

$$f(x_t) - f(x^*) \le \frac{2\ell ||x_0 - x^*||^2}{t}.$$

To achieve ϵ -optimality, i.e., $f(x_t) - f(x^*) \le \epsilon$, GD needs no more than $\mathcal{O}(\ell \|x_0 - x^*\|^2 / \epsilon)$ iterations, independent of dimension!

Acceleration

Can we find ϵ -optimal points faster than GD?

Accelerated Gradient Descent (AGD):

$$y_t \leftarrow x_t + \gamma(x_t - x_{t-1}),$$

$$x_{t+1} \leftarrow y_t - \eta \nabla f(y_t).$$

 γ : momentum parameter

AGD Guarantees

Theorem

If f is ℓ -smooth and convex, then AGD with proper parameters satisfies

$$f(x_t) - f(x^*) \leq \mathcal{O}\left(\frac{\ell||x_0 - x^*||^2}{t^2}\right).$$

- faster than GD rate $\mathcal{O}(\ell ||x_0 x^*||^2/t)$.
- information-theoretically optimal!

Stochastic Optimization

What if we only have access to noisy version of gradient $g(\cdot)$:

•
$$\mathbb{E}g(x) = \nabla f(x)$$

•
$$Var(g(x)) := \mathbb{E}||g(x) - \mathbb{E}g(x)||^2 \le \sigma^2$$

In ML, $\min_{x} F(x) := \sum_{i=1}^{n} f_i(x)$, then

 $\nabla f_i(x)$ with uniformly random $i \in [n]$ is a stochastic gradient for F.

Stochastic Gradient Descent (SGD)

$$x_{t+1} = x_t - \eta g(x_t).$$

Despite noise, SGD makes gradient update on average with small $\eta.$

Stochastic Gradient Descent

Gradient Descent

SGD Guarantees

Theorem

If f is ℓ -smooth and convex, let $R = \|x^* - x_1\|^2$, then SGD with $\eta = \min\{\frac{1}{\ell}, \frac{R}{\sigma\sqrt{2t}}\}$ gives

$$\mathbb{E} f(\underbrace{\bar{x}_{t}}_{\text{average iterate}}) - f(x^{*}) \leq \underbrace{\frac{\ell R^{2}}{2t}}_{\text{rate for GD}} + \underbrace{R\sigma\sqrt{\frac{2}{t}}}_{\text{extra error due to SG}}$$

SGD is still capable of finding global min efficiently.

Larger noise σ leads to smaller learning rate and slower convergence.

Nonconvex Optimization

Nonconvex Optimization

Hardness of nonconvex optimization

Convex vs nonconvex functions.

Proposition for nonconvex functions

(1) local min is not necessarily a global min; (2) Finding global min requires an exponential number of gradient queries in the worst case!

Solution: find local surrogates.

Stationary Points

- x is a stationary point if $\|\nabla f(x)\| = 0$.
- x is an ϵ -stationary point if $\|\nabla f(x)\| \le \epsilon$.

Guarantees for Stationary Points

Theorem (Nesterov 1998)

If f is $\ell\text{-smooth}$, then after running GD with $\eta=1/\ell$ for

$$\frac{2\ell(f(x_0)-f(x^*))}{\epsilon^2}$$

iterations, at least one of the iterates will be an ϵ -stationary point.

Not a last iterate guarantee.

Guarantees for Stationary Points

Theorem (Nesterov 1998)

If f is $\ell\text{-smooth}$, then after running GD with $\eta=1/\ell$ for

$$\frac{2\ell(f(x_0)-f(x^*))}{\epsilon^2}$$

iterations, at least one of the iterates will be an ϵ -stationary point.

Proof. Assume the contrary, all iterates are non- ϵ -stationary, by descent lemma

$$f(x_{t+1}) - f(x_t) \le -\frac{\eta}{2} \|\nabla f(x_t)\|^2 \le -\frac{\epsilon^2}{2\ell}$$

Note function value can not decrease by more than $f(x_0) - f(x^*)$.

Drawbacks of Stationary Points

Stationary points can be local min, local max or even saddle points.

Second-order Stationary Points

Want to only find "approximate local min".

• x is a second-order stationary point if

$$\|\nabla f(x)\| = 0$$
, and $\nabla^2 f(x) \succeq 0$.

• x is an ϵ -second-order stationary point if

$$\|\nabla f(x)\| \le \epsilon$$
, and $\nabla^2 f(x) \succeq -\sqrt{\rho\epsilon}$.

where ρ is the second-order smooth parameter s.t. $\|\nabla^3 f(x)\| \le \rho$.

Escaping Saddle Points

GD will stuck if initialized at local max or saddle points.

Solution: add perturbations!

Perturbed Gradient Descent (PGD)

$$x_{t+1} = x_t - \eta(\nabla f(x_t) + \zeta_t),$$

where $\zeta_t \sim \mathcal{N}(0, (r^2/d) \cdot I)$ and $r = \tilde{\Theta}(\epsilon)$.

Guarantees for Second-order Stationary Points

Theorem (Jin et al. 2015)

If f is ℓ -smooth and ρ -second-order smooth, then after running PGD with $\eta=1/\ell$ and $r=\tilde{\Theta}(\epsilon)$ for

$$\tilde{\mathcal{O}}\left(\frac{\ell(f(x_0)-f(x^*))}{\epsilon^2}\right)$$

iterations, one of the iterates will be an ϵ -second-order stationary point.

Strengthen the original stationary point guarantee to approximate local min by paying only logarithmic factors in iteration complexity!

Summary

- Introduction to Optimization
 - Gradient descent
 - Smooth function and descent lemma
- Convex Optimization
 - Convexity and GD guarantees
 - Acceleration
 - Stochastic gradient descent
- Nonconvex Optimization
 - Finding stationary points
 - Escaping saddle points

Advanced Topics in Optimization

- High-order algorithms.
- Nonsmooth optimization.
- Adaptive / parameter-free algorithms.
- Distributed optimization.
- Minimax optimization.
- ..