

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07H 21/00		A1	(11) International Publication Number: WO 00/27861 (43) International Publication Date: 18 May 2000 (18.05.00)
(21) International Application Number: PCT/US99/26860 (22) International Filing Date: 12 November 1999 (12.11.99)		(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 60/108,255 12 November 1998 (12.11.98) US		Published <i>With international search report.</i>	
(71) Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY [US/US]; Suite 350, 900 Welch Road, Palo Alto, CA 94304 (US).			
(72) Inventors: CONTI, Marco; 24 Ryan Court, Stanford, CA 94305 (US). PAHLKE, Gudrun; Apartment #10, 806 Coleman Avenue, Menlo Park, CA 94025 (US).			
(74) Agent: FIELD, Bret, E.; Bozicevic, Field & Francis LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US).			
(54) Title: NOVEL PHOSPHODIESTERASE INTERACTING PROTEINS			
(57) Abstract			
Nucleic acid compositions encoding novel PDE interacting proteins, as well as the novel PDE interacting proteins themselves, are provided. Also provided are methods of producing the subject nucleic acid and protein compositions. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including research, diagnostic, and therapeutic agent screening applications, as well as in treatment therapies for disease conditions associated with PDE activity, particularly inflammatory diseases.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

NOVEL PHOSPHODIESTERASE INTERACTING PROTEINS

5

ACKNOWLEDGMENT OF GOVERNMENT SUPPORT

This invention was made with Government support under Grant No. HD20788 awarded by the National Institutes of Health. The Government has certain rights in this invention.

10

INTRODUCTION

Field of the Invention

The field of the invention is cyclic nucleotide phosphodiesterases, particularly cAMP phosphodiesterases.

Background of the Invention

15 Cyclic nucleotide phosphodiesterases are a class of enzymes that catalyze the hydrolysis of phosphodiester bonds in cyclic nucleotides, e.g. cAMP. Cyclic nucleotides are important second messengers that regulate and mediate a number of cellular responses to extracellular signals, such as hormones, light and neurotransmitters. Since cyclic nucleotide phosphodiesterases modulate the concentration of cyclic nucleotides, these enzymes play a
20 significant role in signal transduction. There are at least ten different classes of cyclic phosphodiesterases, seven of which are: (I) Ca(2+)/calmodulin-dependent PDEs; (II) cGMP-stimulated PDEs; (III) cGMP-inhibited PDEs; (IV) cAMP-specific PDEs; (V) cGMP-specific PDEs; (VI) photoreceptor PDEs; and (VII) high-affinity, cAMP-specific PDEs. Because of
25 their role in signal transduction, cyclic nucleotide phosphodiesterases have been pursued as therapeutic or pharmacologic targets in the modulation of a variety of distinct physiological processes.

cAMP phosphodiesterase inhibitors hold great promise as therapeutic agents for use in the treatment of inflammation. Specifically, data indicates that these types of inhibitors are as effective, or even more effective, than adrenal steroids in suppressing most functions of
30 inflammatory cells, including: migration, adhesion and secretion of cytokines. Specific cAMP phosphodiesterase inhibitors that have been studied include: rolipram, theophylline, and the like. In addition, research is ongoing to identify new cAMP phosphodiesterase inhibitors.

Despite their promise as anti-inflammatory therapeutic agents, cAMP-phosphodiesterase inhibitors identified to date have demonstrated significant toxic side effects that have limited to their generalized use in the treatment of inflammation.

As such, there is continued interest in the identification of new, more selective cAMP phosphodiesterase inhibitors for potential use as anti-inflammatory therapeutic agents. These efforts have employed recombinant phosphodiesterases for automated screening of candidate agents. Use of recombinant phosphodiesterases in screening applications has, however, been problematic as such recombinant enzymes have altered conformation as compared to their naturally occurring counterparts, which affects the interaction with potential inhibitors and thereby confounds the results that are obtained. As such, the screening results obtained by using such recombinant proteins are problematic.

Therefore, there is much interest in the further elucidation of the conformation of phosphodiesterases and other factors that may modulate the interaction of these enzymes with inhibitors.

15 **Relevant Literature**

The role of cAMP phosphodiesterases in inflammatory processes is reviewed in Torphy, Am. J. Respir. Crit. Care Med. (1998) 157:351-370. See also Houslay et al., Adv. Pharmacol (1998) 44: 225-342 and Spina et al., Adv. Pharmacol (1998) 44: 33-89, as well as U.S. Patent No. 5,798,373, the disclosure of which is herein incorporated by reference.

20

SUMMARY OF THE INVENTION

Nucleic acid compositions encoding phosphodiesterase interacting proteins, e.g. myomegalin, as well as the polypeptide compositions encoded thereby, are provided. Also provided are complexes of the subject phosphodiesterase interacting protein with a 25 phosphodiesterase enzyme. The subject polypeptide and nucleic acid compositions, as well as complexes thereof, find use in a variety of applications, including research, diagnostic, and therapeutic agent identification and screening applications, as well as in therapeutic applications.

30

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 provides the amino acid sequence of rat myomegalin.

Figure 2 provides the cDNA sequence of a clone having an open reading frame encoding the myomegalin protein having the amino acid sequence of Figure 1.

Figure 3 provides the nucleic acid sequence from the first met to the first stop codon in the sequence of Figure 2.

5 Figure 4 provides the nucleic acid sequence of human myomegalin.

Figure 5 provides the amino acid sequence of human myomegalin.

Figure 6 provides the amino acid sequence of rat M14 protein.

DETAILED DESCRIPTION OF THE INVENTION

10 Novel phosphodiesterase interacting proteins, particularly myomegalin, as well as nucleic acid compositions encoding the same, are provided. Also provided are complexes of the subject proteins and phosphodiesterases. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including research, diagnostic, and therapeutic agent identification and screening applications, as well as in therapeutic 15 applications.

Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the 20 appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.

In this specification and the appended claims, the singular forms "a," "an," and "the" 25 include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

NUCLEIC ACID COMPOSITIONS

30 Nucleic acid compositions encoding phosphodiesterase (PDE) interacting proteins, as well as fragments thereof, are provided. The subject nucleic acid compositions encode proteins that interact with a phosphodiesterase enzyme, modulate its conformation and direct

its location in a cell. In other words, the proteins encoded by the subject nucleic acid compositions are those that target a (PDE) to a particular subcellular compartment and alter the function and/or properties of the PDE. Of particular interest are nucleic acid compositions which encode proteins that bind to a PDE IV isoenzyme, including PDE4A, PDE4B, PDE4C, 5 PDE4D, and the like.

- By nucleic acid composition is meant a composition comprising a sequence of DNA having an open reading frame that encodes a PDE interacting polypeptide, i.e. a gene encoding a polypeptide that interacts with a PDE (e.g. binds to and targets a PDE), and is capable, under appropriate conditions, of being expressed as a PDE interacting polypeptide.
- 10 Also encompassed in this term are nucleic acids that are homologous, substantially similar or identical to the nucleic acids encoding PDE interacting polypeptides or proteins. Thus, the subject invention provides genes encoding mammalian PDE interacting proteins, such as genes encoding human PDE interacting polypeptides and homologs thereof, as well as non-human mammalian PDE interacting polypeptides and homologs thereof, e.g. rat and mouse 15 proteins.

Of particular interest is a nucleic acid composition encoding a myomegalin protein, particularly a mammalian myomegalin protein, described in greater detail *infra*, or a fragment or homolog thereof. Specific nucleic acid compositions of interest include: polynucleotides encoding a rat myomegalin protein, such as polynucleotides having a nucleotide sequence 20 found in SEQ ID NOs: 1 or 3, including polynucleotides in which the entire sequence is the same as the sequence of SEQ ID NOs. 1 or 3; and polynucleotides encoding human myomegalin protein, such as polynucleotides having a nucleotide sequence found in SEQ ID NO:04, including polynucleotides in which the entire sequence is the same as the sequence of SEQ ID NOs. 04, as well as those in which the entire sequence is the same as the sequence of 25 an ORF found in SEQ ID NO:04.

Also of interest are nucleic acid compositions encoding an M14 polypeptide, described in greater detail *infra*, or a fragment or homolog thereof. Specific nucleic acid compositions of interest include polynucleotides encoding a rat M14 polypeptide, such as polynucleotides encoding an M14 polypeptide having the amino acid sequence set forth in 30 SEQ ID NO:08. Polynucleotides encoding M14 homologs, and polynucleotides encoding PDE-interacting fragments of an M14 polypeptide, are also of interest.

Also of interest are nucleic acid compositions encoding a huntingtin-interacting protein, e.g., HIP1. Specific nucleic acid compositions of interest include a polynucleotide encoding a human HIP1 polypeptide, including, for example, a polynucleotide as disclosed in GenBank Accession No. U79734.

- 5 The source of homologous genes to those specifically listed above may be any mammalian species, e.g., primate species, particularly human; rodents, such as guinea pigs and mice, canines, felines, bovines, ovines, equines, yeast, nematodes, etc. Between mammalian species, e.g., human and mouse, homologs have substantial sequence similarity, e.g. at least 75% sequence identity, usually at least 90%, more usually at least 95% between
10 nucleotide sequences. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared.
Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul
15 *et al.* (1990), *J. Mol. Biol.* 215:403-10. Unless stated otherwise herein, all sequence identity figures provided in this application are determined using the BLAST program at default settings (e.g. $w=4$; $T=17$). The sequences provided herein are essential for recognizing genes encoding PDE interacting protein-related and homologous polynucleotides in database searches.
20 Nucleic acids encoding the subject PDE interacting proteins and polypeptides of the subject invention may be cDNAs or genomic DNAs, as well as fragments thereof. Also provided are genes comprising the subject nucleic acid compositions, where the term "gene" shall be intended to mean the open reading frame encoding specific PDE interacting proteins and polypeptides, and introns, as well as adjacent 5' and 3' non-coding nucleotide sequences
25 involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene may be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome.

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence
30 elements are exons and 3' and 5' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, being removed by nuclear RNA splicing, to create a continuous open reading frame encoding an PDE interacting protein.

- A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include the 3' and 5' untranslated regions found in the mature mRNA. It may further include specific
- 5 transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA may be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in
- 10 introns, contains sequences required for proper tissue and stage specific expression.

The nucleic acid compositions of the subject invention may encode all or a part of the subject PDE interacting proteins and polypeptides, described in greater detail *infra*. Double or single stranded fragments may be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme

15 digestion, by PCR amplification, etc. For the most part, DNA fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and may be at least about 50 nt.

The genes of the subject invention are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a sequence encoding a

20 PDE interacting protein or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant," i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

In addition to the plurality of uses described in greater detail in following sections, the subject nucleic acid compositions find use in the preparation of all or a portion of the PDE

25 interacting polypeptides, as described below.

POLYPEPTIDE COMPOSITIONS

Also provided by the subject invention are PDE interacting proteins and polypeptides, i.e. proteins and polypeptides that are capable of binding to and modulating PDEs, specifically

30 cAMP-PDEs, and more particularly cAMP-PDE4 isoforms, such as PDE4A, PDE4B, PDE4C, PDE4D, and the like.

- The term polypeptide composition as used herein refers to both the full length proteins as well as portions or fragments thereof. Also included in this term are variations of the naturally occurring proteins, where such variations are homologous or substantially similar to the naturally occurring protein, as described in greater detail below, be the naturally occurring 5 protein the human protein, rat protein, or protein from some other species which naturally expresses an PDE interacting protein, usually a mammalian species. In the following description of the subject invention, the term PDE interacting protein is used to refer not only to the human form of such proteins, but also to homologs thereof expressed in non-human species, e.g. murine, rat and other mammalian species.
- 10 The subject PDE proteins are, in their natural environment, capable of modulating the form/function of PDEs, as well as targeting PDEs to specific subcellular compartments within a cell. In many embodiments, the subject PDE interacting proteins serve as PDE anchoring proteins.
- 15 In many embodiments, the subject proteins are characterized by the presence of one or more coiled domains and leucine zippers. Furthermore, in certain embodiments, e.g. certain rat myomegalin proteins, the subject proteins have a region of high homology with *Drosophila* centrosomin, whereby high homology is meant at least about 30, usually at least about 40 % sequence identity.
- 20 In many embodiments, the proteins range in length from about 1500 to 3000, usually from about 1600 to 2800 and more usually from about 1650 to 2600 amino acid residues, and the projected molecular weight of the subject proteins based solely on the number of amino acid residues in the protein ranges from about 150 to 320, usually from about 160 to 300 kDa, where the actual molecular weight may vary depending on the amount of glycosylation, if any, of the protein and the apparent molecular weight may be considerably less (40 to 50 25 kDa) due to SDS binding on gels. On other embodiments, the length of the proteins may be much smaller, e.g. as in the case of splice variants or post translated products, where the length in these proteins may be as short as 40%, usually no shorter than about 50% of the above lengths.
- 30 Of particular interest in many embodiments are proteins that are non-naturally glycosylated. By non-naturally glycosylated is meant that the protein has a glycosylation pattern, if present, which is not the same as the glycosylation pattern found in the corresponding naturally occurring protein. For example, a human phosphodiesterase binding

protein of the subject invention and of this particular embodiment is characterized by having a glycosylation pattern, if it is glycosylated at all, that differs from that of naturally occurring human PDE binding protein. Thus, the non-naturally glycosylated PDE interacting or binding proteins of this embodiment include non-glycosylated PDE interacting proteins, i.e. proteins
5 having no covalently bound glycosyl groups.

A PDE interacting protein of the subject invention of particular interest is myomegalin, particularly mammalian myomegalin and more particularly, rat or human myomegalin. In many embodiments, mammalian myomegalin ranges in length from about 2000 to 3000, usually from about 2200 to 2800 and more usually from about 2300 to 2600 aa
10 residues. The projected molecular weight of these myomegalin proteins based solely on the number of amino acid residues in the protein ranges from about 220 to 320, usually from about 220 to 300 and more usually from about 240 to 300 kDa, where the actual molecular weight may vary depending on the amount of glycosylation, if any, of the protein and the apparent molecular weight may be considerably less (40 to 50 kDa) due to SDS binding on
15 gels. Also of interest are mammalian myomegalin proteins that are shorter than those described above, where these shorter proteins could be splice variants or the products of post-translational activity, and the like.

Of particular interest in certain embodiments is the rat myomegalin protein, where the rat myomegalin protein of the subject invention has an amino acid sequence that is
20 substantially the same as or identical to the sequence appearing as SEQ ID NO:02 *infra* and appearing in Figure 1. By substantially the same as is meant a protein having a sequence that has at least about 80%, usually at least about 90% and more usually at least about 98% sequence identity with the sequence of SED ID NO:02. Also of particular interest is an approximately 65 kDa rat myomegalin protein expressed in rat testis. Yet another protein of
25 particular interest is the human myomegalin protein of the subject invention which has an amino acid sequence that is substantially the same as or identical to the sequence appearing as SEQ ID NO:05 *infra* and appearing in Figure 5. By substantially the same as is meant a protein having a sequence that has at least about 80%, usually at least about 90% and more usually at least about 98% sequence identity with the sequence of SED ID NO:05.

30 Another PDE interacting protein of the subject invention of particular interest is M14, particularly mammalian M14, and more particularly, rat or human M14. In many embodiments, mammalian M14 ranges in length from about 1500 to about 2000, usually from

- about 1600 to about 1800, usually from about 1650 to about 1700, and more usually from about 1670 to about 1690 amino acid residues. The projected molecular weight of these M14 polypeptides, based solely on the number of amino acid residues in the protein, ranges from about 150 to about 200 kDa, usually from about 160 to about 180 kDa, usually from about 5 165 to about 170 kDa. Rat M14 protein has a mobility on SDS-PAGE of about 185 kDa. The actual molecular weight may vary depending on the amount of glycosylation or other post-translational modifications, if any, of the protein, and the apparent molecular weight may be considerably less (e.g. 40-50 kDa) due to SDS binding on gels. Also of interest are PDE-interacting fragments of the above-described M14 proteins.
- 10 Of particular interest in certain embodiments is a rat M14 protein, where the rat M14 protein of the subject invention has an amino acid sequence that is substantially the same or identical to the sequence set forth in SEQ ID NO:08 and appearing in Figure 6. By substantially the same as is meant a protein having a sequence that has at least about 80%, usually at least about 90% and more usually at least about 98% sequence identity with the 15 sequence of SEQ ID NO:08. Proteins homologous to rat M14 are also of interest, including, e.g., an Ese2L protein as described in Sengar et al. (1999) *EMBO J.* 18:1159-1171.
- Also of interest are huntingtin interacting proteins, and PDE-interacting fragments, variants and homologs thereof. In some embodiments, huntingtin interacting protein (HIP) is a human HIP1 protein having an amino acid sequence as disclosed in GenBank Accession No. 20 U79734, The human HIP1 protein is described in Kalchman et al. (1997) *Nature Genetics* 16:44-53.
- In addition to the specific PDE interacting proteins described above, homologs or 25 proteins (or fragments thereof) from other species, i.e. other animal or plant species, are also provided, where such homologs or proteins may be from a variety of different types of species, usually mammals, e.g. rodents, such as mice, rats; domestic animals, e.g. horse, cow, dog, cat; and humans. By homolog is meant a protein having at least about 35 %, usually at least about 40% and more usually at least about 60 % amino acid sequence identity with a specific PDE interacting protein as identified in: (a) SEQ ID NO: 02 and appearing in Figure 1; or (b) SEQ ID NO:05 and appearing in Figure 5; or (c) SEQ ID NO:08 and appearing in 30 Figure 6.
- The PDE interacting proteins of the subject invention (e.g. human myomegalin, rat myomegalin or homologs thereof) are present in a non-naturally occurring environment, e.g.

are separated from their naturally occurring environment. In certain embodiments, the subject protein is present in a composition that is enriched for the subject protein as compared to the protein in its naturally occurring environment. As such, purified PDE interacting protein is provided, where by purified is meant that PDE interacting protein is present in a composition 5 that is substantially free of non PDE interacting proteins, where by substantially free is meant that less than 90 %, usually less than 60 % and more usually less than 50 % of the composition is made up of non-PDE interacting proteins.

In certain embodiments of interest, the PDE interacting protein is present in a composition that is substantially free of the constituents that are present in its naturally 10 occurring environment. For example, a human PDE interacting protein comprising composition according to the subject invention in this embodiment will be substantially, if not completely, free of those other biological constituents, such as proteins, carbohydrates, lipids, etc., with which it is present in its natural environment. As such, protein compositions of these embodiments will necessarily differ from those that are prepared by purifying the protein 15 from a naturally occurring source, where at least trace amounts of the protein's constituents will still be present in the composition prepared from the naturally occurring source.

The PDE interacting protein of the subject invention may also be present as an isolate, by which is meant that the PDE interacting protein is substantially free of both non-PDE interacting proteins and other naturally occurring biologic molecules, such as 20 oligosaccharides, polynucleotides and fragments thereof, and the like, where substantially free in this instance means that less than 70 %, usually less than 60% and more usually less than 50 % of the composition containing the isolated PDE interacting protein is a non-PDE interacting protein naturally occurring biological molecule. In certain embodiments, the subject protein is present in substantially pure form, where by substantially pure form is meant 25 at least 95%, usually at least 97% and more usually at least 99% pure.

In addition to the naturally occurring proteins, polypeptides which vary from the naturally occurring proteins are also provided. By polypeptides is meant proteins having an amino acid sequence encoded by an open reading frame (ORF) of a gene according to the subject invention, described *supra*, including the full length protein and fragments thereof, 30 particularly biologically active fragments and/or fragments corresponding to functional domains; and including fusions of the subject polypeptides to other proteins or parts thereof. Fragments of interest will typically be at least about 10 aa in length, usually at least about 50

aa in length, and may be as long as 300 aa in length or longer, but will usually not exceed about 1000 aa in length, where the fragment will have a stretch of amino acids that is identical to the protein of SEQ ID NO:02, SEQ ID NO:05, or SEQ ID NO:08, or a homolog thereof, of at least about 10 aa, and usually at least about 15 aa, and in many embodiments at least 5 about 50 aa in length.

PREPARATION OF PDE INTERACTING POLYPEPTIDES

The subject PDE interacting proteins and polypeptides may be obtained from naturally occurring sources or synthetically produced. Where obtained from naturally occurring 10 sources, the source chosen will generally depend on the species from which the PDE interacting protein is to be derived, e.g. muscle tissue, heart tissue, brain tissue, testis tissue, and the like.

The subject PDE interacting polypeptide compositions may be synthetically derived by expressing a recombinant gene encoding the PDE interacting protein, such as the 15 polynucleotide compositions described above, in a suitable host. For expression, an expression cassette may be employed. The expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. These control regions may 20 be native to the gene encoding the particular PDE interacting protein, or may be derived from exogenous sources.

Expression vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences encoding heterologous proteins. A selectable marker operative in the expression host may be present. 25 Expression vectors may be used for the production of fusion proteins, where the exogenous fusion peptide provides additional functionality, i.e. increased protein synthesis, stability, reactivity with defined antisera, an enzyme marker, e.g. β -galactosidase, etc.

Expression cassettes may be prepared comprising a transcription initiation region, the gene or fragment thereof, and a transcriptional termination region. Of particular interest is the 30 use of sequences that allow for the expression of functional epitopes or domains, usually at least about 8 amino acids in length, more usually at least about 15 amino acids in length, to about 25 amino acids, and up to the complete open reading frame of the gene. After

introduction of the DNA, the cells containing the construct may be selected by means of a selectable marker, the cells expanded and then used for expression.

The subject proteins and polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli*, *B. subtilis*, *S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, e.g. COS 7 cells, may be used as the expression host cells. In some situations, it is desirable to express the subject proteins in eukaryotic cells, where the protein will benefit from native folding and post-translational modifications. Small peptides can also be synthesized in the laboratory. Polypeptides that are subsets of the complete protein sequence may be used to identify and investigate parts of the protein important for function.

Once the source of the protein is identified and/or prepared, e.g. a transfected host expressing the protein is prepared, the protein is then purified to produce the desired PDE interacting protein comprising composition. Any convenient protein purification procedures may be employed, where suitable protein purification methodologies are described in Guide to Protein Purification, (Deuthser ed.) (Academic Press, 1990). For example, a lysate may be prepared from the original source, e.g. naturally occurring cells or tissues that express a PDE interacting protein or the expression host expressing the PDE interacting protein, and purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, and the like.

USES OF THE SUBJECT POLYPEPTIDE AND NUCLEIC ACID COMPOSITIONS

The subject polypeptide and nucleic acid compositions find use in a variety of different applications, including diagnostic, and therapeutic agent screening/discovery/preparation applications, as well as the treatment of disease conditions associated with PDE interacting protein activity.

GENERAL APPLICATIONS

The subject nucleic acid compositions find use in a variety of applications, including:

- (a) the identification of PDE interacting protein gene homologs, e.g. myomegalin homologs;
- (b) as a source of novel promoter elements; (c) the identification of PDE interacting protein

expression regulatory factors; (d) as probes and primers in hybridization applications, e.g. PCR; (e) the identification of expression patterns in biological specimens; (f) the preparation of cell or animal models for PDE interacting protein function; (g) the preparation of *in vitro* models for PDE interacting protein function; etc.

5

Identification of homologs

Homologs of the PDE interacting protein gene, e.g. the myomegalin gene, or the M14 gene, are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against a cDNA library from the target organism of interest, where low stringency conditions are used. The probe may be a large fragment, or one or more short degenerate primers. Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 6×SSC (0.9 M sodium chloride/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1×SSC (0.15 M sodium chloride/0.015 M sodium citrate). Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and 0.1×SSC (15 mM sodium chloride/01.5 mM sodium citrate). Nucleic acids having a region of substantial identity to the provided sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes.

Identification of Novel Promoter Elements

The sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, that provide for regulation in tissues where the subject gene is expressed. The tissue specific expression is useful for determining the pattern of expression, and for providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter region are useful for determining natural variations in expression, particularly those that may be associated with disease.

30 Identification of Expression Regulatory Factors

Alternatively, mutations may be introduced into the promoter region to determine the effect of altering expression in experimentally defined systems. Methods for the identification

of specific DNA motifs involved in the binding of transcriptional factors are known in the art, e.g. sequence similarity to known binding motifs, gel retardation studies, etc. For examples, see Blackwell *et al.* (1995), *Mol. Med.* 1:194-205; Mortlock *et al.* (1996), *Genome Res.* 6:327-33; and Joulin and Richard-Foy (1995), *Eur. J. Biochem.* 232:620-626.

- 5 The regulatory sequences may be used to identify *cis* acting sequences required for transcriptional or translational regulation of expression of the subject gene, e.g. the myomegalin gene, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans*-acting factors that regulate or mediate expression of the subject gene. Such transcription or translational control regions may be operably linked to a gene of
10 the subject invention in order to promote expression of wild type or altered PDE interacting protein, e.g. myomegalin, or other proteins of interest in cultured cells, or in embryonic, fetal or adult tissues, and for gene therapy.

Probes and Primers

- 15 Small DNA fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, as described in the previous section. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject
20 sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.
25

Identification of Expression Patterns in Biological Specimens

- The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide sequences, as genomic DNA or RNA, is well established in the literature. Briefly, DNA or
30 mRNA is isolated from a cell sample. The mRNA may be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA

sample is separated by gel electrophoresis, transferred to a suitable support, *e.g.* nitrocellulose, nylon, *etc.*, and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, *in situ* hybridizations, and hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA 5 hybridizing to the subject sequence is indicative of gene expression in the sample.

The Preparation of PDE Interacting Protein Mutants

The sequence of a gene according to the subject invention, including flanking promoter regions and coding regions, may be mutated in various ways known in the art to generate targeted changes in promoter strength, sequence of the encoded protein, *etc.* The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, *i.e.* will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may be substitutions, insertions, deletions, or a combination thereof. Deletions may further include larger changes, such as deletions of a domain or exon. Other modifications of interest include epitope tagging, *e.g.* with the FLAG system, HA, *etc.* For studies of subcellular localization, fusion proteins with green fluorescent proteins (GFP) may be used.

Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin *et al.* (1993), *Biotechniques* 14:22; Barany (1985), *Gene* 37:111-23; Colicelli *et al.* (1985), *Mol. Gen. Genet.* 199:537-9; and Prentki *et al.* (1984), *Gene* 29:303-13. Methods for site specific mutagenesis can be found in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, CSH Press 1989, pp. 15.3-15.108; Weiner *et al.* (1993), *Gene* 126:35-41; Sayers *et al.* (1992), *Biotechniques* 13:592-6; Jones and Winistorfer (1992), *Biotechniques* 12:528-30; Barton *et al.* (1990), *Nucleic Acids Res* 18:7349-55; Marotti and Tomich (1989), *Gene Anal. Tech.* 6:67-70; and Zhu (1989), *Anal Biochem* 177:120-4. Such mutated genes may be used to study structure-function relationships of PDE interacting proteins, or to alter properties of the protein that affect its function or regulation.

Production of *In Vivo* Models of PDE Interacting Protein Function

The subject nucleic acids can be used to generate transgenic, non-human animals or site specific gene modifications in cell lines. Transgenic animals may be made through homologous recombination, where the normal PDE interacting protein gene locus is altered.

- 5 Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like.

The modified cells or animals are useful in the study of PDE interacting protein function and regulation. For example, a series of small deletions and/or substitutions may be made in the host's native PDE interacting protein gene to determine the role of different exons
10 in cholesterol metabolism, e.g. cholesterol ester synthesis, cholesterol absorption, etc. Specific constructs of interest include anti-sense constructs which will block PDE interacting protein expression, expression of dominant negative gene mutations, and over-expression of PDE interacting protein genes. Where a particular genetic sequence is introduced, the introduced sequence may be either a complete or partial sequence of an PDE interacting
15 protein gene native to the host, or may be a complete or partial sequence that is exogenous to the host animal, e.g., a human sequence. A detectable marker, such as *lac Z*, may be introduced into the locus, where upregulation of gene expression will result in an easily detected change in phenotype.

One may also provide for expression of the gene or variants thereof in cells or tissues
20 where it is not normally expressed, at levels not normally present in such cells or tissues, or at abnormal times of development.

DNA constructs for homologous recombination will comprise at least a portion of the gene native to the species of the host animal, wherein the gene has the desired genetic modification(s), and includes regions of homology to the target locus. DNA constructs for
25 random integration need not include regions of homology to mediate recombination. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown *et al.* (1990), *Meth. Enzymol.* 185:527-537.

- 30 For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor

(LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the 5 occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then 10 allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene 15 alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, *etc.*, *e.g.* to determine the effect of a candidate drug on PDE interacting binding protein activity and/or the 20 enzymatic activity of the PDE/PDE interacting protein complex.

Production of *In Vitro* Models of PDE Interacting Protein Function

One can also use the polypeptide compositions of the subject invention to produce *in vitro* models of PDE interacting protein function. In addition to the subject PDE interacting 25 protein, such models will generally include at least a PDE as well as a cyclic nucleotide, and a means to monitor the activity of the enzyme in the presence of the PDE interacting protein, *e.g.* a labeled isotope, etc.

DIAGNOSTIC APPLICATIONS

30 Also provided are methods of diagnosing disease states associated with PDE interacting protein activity, *e.g.* based on observed levels of PDE interacting protein or the expression level of the gene in a biological sample of interest. Samples, as used herein, include

biological fluids such as semen, blood, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid and the like; organ or tissue culture derived fluids; and fluids extracted from physiological tissues. Also included in the term are derivatives and fractions of such fluids. The cells may be dissociated, in the case of solid tissues, or tissue sections may be analyzed. Alternatively a lysate of the cells may be prepared.

A number of methods are available for determining the expression level of a gene or protein in a particular sample. Diagnosis may be performed by a number of methods to determine the absence or presence or altered amounts of normal or abnormal PDE interacting protein in a patient sample. For example, detection may utilize staining of cells or histological sections with labeled antibodies, performed in accordance with conventional methods. Cells are permeabilized to stain cytoplasmic molecules. The antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, a second stage antibody or reagent is used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Alternatively, the secondary antibody conjugated to a fluorescent compound, e.g. fluorescein, rhodamine, Texas red, etc. Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, etc.

Alternatively, one may focus on the expression of the gene. Biochemical studies may be performed to determine whether a sequence polymorphism in an coding region or control regions is associated with disease. Disease associated polymorphisms may include deletion or truncation of the gene, mutations that alter expression level, that affect the activity of the protein, etc.

Changes in the promoter or enhancer sequence that may affect expression levels of the gene can be compared to expression levels of the normal allele by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a

reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, etc. that provides for convenient quantitation; and the like.

- A number of methods are available for analyzing nucleic acids for the presence of a specific sequence, e.g. a disease associated polymorphism. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. Cells that express the subject gene may be used as a source of mRNA, which may be assayed directly or reverse transcribed into cDNA for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki, et al. (1985), *Science* 239:487, and a review of techniques may be found in Sambrook, et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp. 14.2B14.33. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990), *Nucl. Acids Res.* 18:2887-2890; and Delahunty et al. (1996), *Am. J. Hum. Genet.* 58:1239-1246.

- A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. ^{32}P , ^{35}S , ^3H ; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

- The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods, and the sequence of bases compared to a wild-type sequence. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in US 5,445,934, or in

WO 95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease, the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

Screening for mutations may be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that may affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in the subject PDE interacting proteins may be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded protein may be determined by comparison with the wild-type protein.

Diagnostic methods of the subject invention in which the level of expression is of interest will typically involve comparison of the PDE interacting protein nucleic acid abundance of a sample of interest with that of a control value to determine any relative differences, where the difference may be measured qualitatively and/or quantitatively, which differences are then related to the presence or absence of an abnormal gene expression pattern. A variety of different methods for determining the nucleic acid abundance in a sample are known to those of skill in the art, where particular methods of interest include those described in: Pietu et al., Genome Res. (June 1996) 6: 492-503; Zhao et al., Gene (April 24, 1995) 156: 207-213; Soares , Curr. Opin. Biotechnol. (October 1997) 8: 542-546; Raval, J. Pharmacol Toxicol Methods (November 1994) 32: 125-127; Chalifour et al., Anal. Biochem (February 1, 1994) 216: 299-304; Stoltz & Tuan, Mol. Biotechnol. (December 1996) 6: 225-230; Hong et al., Bioscience Reports (1982) 2: 907; and McGraw, Anal. Biochem. (1984) 143: 298. Also of interest are the methods disclosed in WO 97/27317, the disclosure of which is herein incorporated by reference.

SCREENING ASSAYS

The subject PDE interacting proteins and polypeptides find use in various screening assays designed to identify therapeutic agents. The screening assays may be designed to identify agents that modulate, e.g. inhibit or enhance, the activity of the PDE interacting

- 5 protein directly and thereby modulate the activity of the particular PDE that depends on the presence of the PDE interacting protein for its function. Alternatively, the assay may be designed to identify those agents that modify, e.g. enhance or inhibit, the activity of the PDE when present as a complex with the PDE interacting protein.

Of particular interest are screening methods that provide for qualitative/quantitative
10 measurements of a PDE enzyme activity in the presence of a particular candidate therapeutic agent and its PDE interacting protein, as such screening methods are capable of identifying highly selective PDE modulatory, e.g. inhibitory, agents. For example, the assay could be an assay which measures the activity of a PDE interacting protein/enzyme complex in the presence and absence of a candidate inhibitor agent. In this preferred screening assay
15 embodiment, the PDE interacting protein/PDE complex will generally be a naturally occurring complex, i.e. a complex between a cyclic nucleotide PDE and its naturally occurring PDE interacting protein partner. Of particular interest are complexes between a cAMP-PDEIV and a myomegalin protein.

The screening method may be an *in vitro* or *in vivo* format, where both formats are
20 readily developed by those of skill in the art. Depending on the particular method, one or more of, usually one of, the components of the screening assay may be labeled, where by labeled is meant that the components comprise a detectable moiety, e.g. a fluorescent or radioactive tag, or a member of a signal producing system, e.g. biotin for binding to an enzyme-streptavidin conjugate in which the enzyme is capable of converting a substrate to a
25 chromogenic product.

A variety of other reagents may be included in the screening assay. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. that are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions.
Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease
30 inhibitors, anti-microbial agents, etc. may be used. Specific PDE activity assays of interest include those described in U.S. Patent Nos. 5,798,373 and 5,580,888, the disclosures of which are herein incorporated by reference.

A variety of different candidate agents may be screened by the above methods. Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polycyclic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

PDE INTERACTING PROTEIN NUCLEIC ACID AND POLYPEPTIDE THERAPEUTIC COMPOSITIONS

The nucleic acid compositions of the subject invention also find use as therapeutic agents in situations where one wishes to enhance the PDE interacting protein activity in a host, e.g. in a mammalian host in which PDE interacting protein activity is sufficiently low such that a disease condition is present, etc. The PDE interacting protein genes, gene fragments, or the encoded proteins or protein fragments are useful in gene therapy to treat disorders associated with defects in the PDE interacting protein gene expression. Expression vectors may be used to introduce the gene into a cell. Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. Transcription cassettes may be prepared comprising a transcription initiation

region, the target gene or fragment thereof, and a transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about one day, more usually for a 5 period of at least about several days to several weeks.

The gene or protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), *Anal Biochem* 10 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang *et al.* (1992), *Nature* 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.

METHODS OF MODULATING PDE INTERACTING PROTEIN ACTIVITY IN A HOST

15 Also provided are methods of regulating, including enhancing and inhibiting, PDE interacting protein activity in a host. Where the PDE interacting protein activity occurs *in vivo* in a host, an effective amount of active agent that modulates the activity, e.g. reduces the activity, of the PDE interacting protein *in vivo* (e.g. the activity of the naturally occurring PDE/interacting protein complex), is administered to the host. The active agent may be a 20 25 variety of different compounds, including a naturally occurring or synthetic small molecule compound, an antibody, fragment or derivative thereof, an antisense composition, and the like.

Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, though typically they are organic molecules, preferably small 25 30 organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Also of interest as active agent are antibodies that modulate, e.g. reduce, if not inhibit, PDE interacting protein activity in the host. Suitable antibodies are obtained by immunizing a host animal with peptides comprising all or a portion of the subject proteins, such as found in the polypeptide compositions of the subject invention. Suitable host animals include mouse, 5 rat sheep, goat, hamster, rabbit, etc. The origin of the protein immunogen may be mouse, human, rat, monkey etc. The host animal will generally be a different species than the immunogen, e.g. human protein used to immunize mice, etc.

The immunogen may comprise the complete protein, or fragments and derivatives thereof. Preferred immunogens comprise all or a part of the PDE interacting protein, where 10 these residues contain the post-translation modifications, such as glycosylation, found on the native protein. Immunogens comprising the extracellular domain are produced in a variety of ways known in the art, e.g. expression of cloned genes using conventional recombinant methods, isolation from HEC, etc.

For preparation of polyclonal antibodies, the first step is immunization of the host 15 animal with the immunogen, where the immunogen will preferably be in substantially pure form, comprising less than about 1% contaminant. The immunogen may comprise complete PDE interacting protein, fragments or derivatives thereof. To increase the immune response of the host animal, the protein or peptide may be combined with an adjuvant, where suitable adjuvants include alum, dextran, sulfate, large polymeric anions, oil & water emulsions, e.g. 20 Freund's adjuvant, Freund's complete adjuvant, and the like. The immunogen may also be conjugated to synthetic carrier proteins or synthetic antigens. A variety of hosts may be immunized to produce the polyclonal antibodies. Such hosts include rabbits, guinea pigs, rodents, e.g. mice, rats, sheep, goats, and the like. The immunogen is administered to the host, usually intradermally, with an initial dosage followed by one or more, usually at least 25 two, additional booster dosages. Following immunization, the blood from the host will be collected, followed by separation of the serum from the blood cells. The Ig present in the resultant antiserum may be further fractionated using known methods, such as ammonium salt fractionation, DEAE chromatography, and the like.

Monoclonal antibodies are produced by conventional techniques. Generally, the 30 spleen and/or lymph nodes of an immunized host animal provide a source of plasma cells. The plasma cells are immortalized by fusion with myeloma cells to produce hybridoma cells. Culture supernatant from individual hybridomas is screened using standard techniques to

identify those producing antibodies with the desired specificity. Suitable animals for production of monoclonal antibodies to the human protein include mouse, rat, hamster, etc. To raise antibodies against the mouse protein, the animal will generally be a hamster, guinea pig, rabbit, etc. The antibody may be purified from the hybridoma cell supernatants or ascites fluid by conventional techniques, e.g. affinity chromatography using PDE-interacting protein bound to an insoluble support, protein A sepharose, etc.

5 The antibody may be produced as a single chain, instead of the normal multimeric structure. Single chain antibodies are described in Jost *et al.* (1994) J.B.C. 269:26267-73, and others. DNA sequences encoding the variable region of the heavy chain and the variable
10 region of the light chain are ligated to a spacer encoding at least about 4 amino acids of small neutral amino acids, including glycine and/or serine. The protein encoded by this fusion allows assembly of a functional variable region that retains the specificity and affinity of the original antibody.

15 For *in vivo* use, particularly for injection into humans, it is desirable to decrease the antigenicity of the antibody. An immune response of a recipient against the blocking agent will potentially decrease the period of time that the therapy is effective. Methods of
20 humanizing antibodies are known in the art. The humanized antibody may be the product of an animal having transgenic human immunoglobulin constant region genes (see for example International Patent Applications WO 90/10077 and WO 90/04036). Alternatively, the antibody of interest may be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding
25 human sequence (see WO 92/02190).

25 The use of Ig cDNA for construction of chimeric immunoglobulin genes is known in the art (Liu *et al.* (1987) P.N.A.S. 84:3439 and (1987) J. Immunol. 139:3521). mRNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA. The cDNA of interest may be amplified by the polymerase chain reaction using specific primers (U.S. Patent nos. 4,683,195 and 4,683,202). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region sequences. The sequences of human
30 constant regions genes may be found in Kabat *et al.* (1991) Sequences of Proteins of Immunological Interest, N.I.H. publication no. 91-3242. Human C region genes are readily available from known clones. The choice of isotype will be guided by the desired effector

functions, such as complement fixation, or activity in antibody-dependent cellular cytotoxicity. Preferred isotypes are IgG1, IgG3 and IgG4. Either of the human light chain constant regions, kappa or lambda, may be used. The chimeric, humanized antibody is then expressed by conventional methods.

- 5 Antibody fragments, such as Fv, F(ab)₂ and Fab may be prepared by cleavage of the intact protein, e.g. by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab)₂ fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon to yield the truncated molecule.
- 10 Consensus sequences of H and L J regions may be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in the human sequence.
- 15 Expression vectors include plasmids, retroviruses, YACs, EBV derived episomes, and the like. A convenient vector is one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding 20 the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody may be joined to any strong promoter, including retroviral LTRs, e.g. SV-40 early promoter, (Okayama *et al.* (1983) Mol. Cell. Bio. 3:280), Rous sarcoma virus LTR (Gorman *et al.* (1982) P.N.A.S. 79:6777), and moloney 25 murine leukemia virus LTR (Grosschedl *et al.* (1985) Cell 41:885); native Ig promoters, etc.
- In yet other embodiments of the invention, the active agent is an agent that modulates, and generally decreases or down regulates, the expression of the gene in the host. Antisense molecules can be used to down-regulate expression of the protein in cells. The anti-sense reagent may be antisense oligonucleotides (ODN), particularly synthetic ODN having 30 chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted gene, and inhibits expression of the targeted gene products. Antisense molecules

inhibit gene expression through various mechanisms, e.g. by reducing the amount of mRNA available for translation, through activation of RNase H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may comprise multiple different sequences.

- 5 Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner *et al.* (1996), *Nature Biotechnol.* 14:840-844).
- 10 A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an *in vitro* or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence
- 15 20 are selected for antisense complementation.

Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner *et al.* (1993), *supra*, and Milligan *et al.*, *supra*.) Preferred oligonucleotides are chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases.

Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O-phosphorothioate, 3'-CH₂-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamide. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to

enhance stability and affinity. The α -anomer of deoxyribose may be used, where the base is inverted with respect to the natural β -anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing.

- 5 Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5-propynyl-2'-deoxyuridine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g.

- 10 ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized *in vitro* and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman *et al.* (1995), *Nucl. Acids Res.* 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO
15 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin *et al.* (1995), *Appl. Biochem. Biotechnol.* 54:43-56.

As mentioned above, an effective amount of the active agent is administered to the host, where "effective amount" means a dosage sufficient to produce a desired result, where
20 the desired result is the desired modulation, e.g. enhancement, reduction, of PDE interacting protein activity, which in turn leads to a desired effect on the state of the disease condition being treated, e.g. a reduction in the level of inflammation, etc.

- In the subject methods, the active agent(s) may be administered to the host using any convenient means capable of resulting in the desired inhibition of PDE interacting protein
25 activity. Thus, the agent can be incorporated into a variety of formulations for therapeutic administration. More particularly, the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions,
30 suppositories, injections, inhalants and aerosols.

As such, administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.

- In pharmaceutical dosage forms, the agents may be administered in the form of their 5 pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds. The following methods and excipients are merely exemplary and are in no way limiting.

- For oral preparations, the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional 10 additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- 15 The agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.

- 20 The agents can be utilized in aerosol formulation to be administered via inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.

- Furthermore, the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present 25 invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.

- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, 30 tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors. Similarly, unit dosage forms for injection or intravenous

administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.

The term "unit dosage form," as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined

- 5 quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.

- 10 The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.

- 15 Where the agent is a polypeptide, polynucleotide, analog or mimetic thereof, e.g. antisense composition, it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), *Anal Biochem* 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example,
- 20 Tang *et al.* (1992), *Nature* 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.

- 25 Those of skill in the art will readily appreciate that dose levels can vary as a function of the specific compound, the severity of the symptoms and the susceptibility of the subject to side effects. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.

- The subject methods find use in the treatment of a variety of different disease conditions involving PDE interacting protein activity, particularly in those disease conditions in which the selective inhibition of PDE activity, more particularly PDEIV activity, results in treatment of the disease condition where targeting of the PDE interacting protein by the therapeutic agent results in modulated, e.g. reduced or enhanced, activity of its corresponding PDE.

Specific disease of interest as treatable by the subject methods include: asthma, including inflamed lung associate asthma, cystic fibrosis, inflammatory airway disease, chronic bronchitis, eosinophilic granuloma, psoriasis and other benign and malignant proliferative skin diseases, endotoxic shock, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury,
5 or the myocardium and brain, inflammatory arthritis, chronic gloerulonephritis, atopic dermatitis, urticaria, adult respiratory distress syndrome, diabetes insipidus, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, arterial restinosis and artherosclerosis, inflammatory diseases associated with irritation and pain, rheumatoid arthritis, ankylosing spondylitis, transplant rejection and graft versus host disease, disease conditions associated
10 with hypersecretion of gastric acid, disease conditions in which cytokines are mediators, e.g. sepsis, and septic shock, and the like.

By treatment is meant at least an amelioration of the symptoms associated with the pathological condition afflicting the host, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g. symptom, associated with the
15 pathological condition being treated, such as inflammation, etc. As such, treatment also includes situations where the pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g. prevented from happening, or stopped, e.g. terminated, such that the host no longer suffers from the pathological condition, or at least the symptoms that characterize the pathological condition.

20 A variety of hosts are treatable according to the subject methods. Generally such hosts are "mammals" or "mammalian," where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), and primates (e.g., humans, chimpanzees, and monkeys). In many embodiments, the hosts will be humans.

25 Kits with unit doses of the active agent, usually in oral or injectable doses, are provided. In such kits, in addition to the containers containing the unit doses will be an informational package insert describing the use and attendant benefits of the drugs in treating pathological condition of interest. Preferred compounds and unit doses are those described herein above.

30

The following examples are offered primarily for purposes of illustration. It will be readily apparent to those skilled in the art that the formulations, dosages, methods of

administration, and other parameters of this invention may be further modified or substituted in various ways without departing from the spirit and scope of the invention.

EXPERIMENTAL

5 I. Screening of the yeast two hybrid system cDNA brain library

To identify proteins that interact with a PDE4, cDNA coding for the amino terminus of PDE4D3 or for a region corresponding to a.a. 114-672 were inserted into pGBT9 vectors and used for screening of a Matchmaker rat brain library subcloned in pGAD10 vector (Clontech, Palo Alto, CA). The fragment encoding the autoinhibitory (UCR2), catalytic, and 10 carboxy terminal domains of rPDE4D3 (aa 114-672) was amplified by PCR with the full-length cDNA using the following forward and reverse primers with incorporated restriction sites and Stop codon. EcoRI: 5' CGG AAT TCG AGG AGG CCT ACC AGA AAC 3' (GUPA4) (SEQ ID NO:06) and SalI/TAG: 5' TGA GTC GAC TAC GTG TCA AGG CAA CAA TGG TC 3' (GUPA3) (SEQ ID NO:07). The PCR products were cloned into 15 EcoRI/SalI site of pGBT9 (Clontech) downstream of the Gal4 activation domain. The PCR was performed in presence of recombinant Pfu polymerase (Stratagene) at low cycle number (10 cycles) to ensure high fidelity reading. The insertions were entirely sequenced to confirm the correct reading frame and the sequence. Sequencing was performed by the Molecular Biology facility at Stanford University using the ABI PRISM Dye Terminator Cycle 20 Sequencing Ready Reaction Kit with AmpliTaq DNA Polymerase, FS (Perkin Elmer).

Of the positive clones isolated from the screening of the rat brain library, 187 gave strong positive signal while 81 gave only a weak signal. Of the strong positive clones, PBP46 was further characterized. This clone contained an insert of approximately 2.8 kb. The interaction of the clone with the PDE was confirmed by subcloning the cDNA fragment in 25 both pGBT9 and pGAD10 and by testing growth and β -galactosidase activity in the yeast two hybrid system. The clone continued to show strong interaction with the 1.6 fragment of PDE4D3.

II. Screening for the full length myomegalin clone

30 A homology search (BLAST) using the sequence of PBP46 clone showed no significant identity to sequences in any public domain database. This clone was then used to probe a blot with RNA from multiple tissues. A transcript of approximately 8.0-8.5 kb

hybridized to the probe in several tissues, the highest level of expression being observed in the rat skeletal muscle and heart. Lower levels of expression were detected in brain, liver and lung. In the testis a transcript of 2.0-2.4 kb was consistently observed. The expression in the testis was confirmed by PCR and by screening a rat testis library. Two clones containing the 5' 3' end sequence of myomegalin were retrieved from this library.

- To obtain the complete sequence of the 8.0-8.5 transcript, a rat skeletal muscle cDNA library was screened with the PBP46 cDNA. From this screening, 2 clones were retrieved. However, the clones did not yield a complete ORF. Screening was then repeated six more times with oligonucleotides corresponding to the 5' end of the longest clones. From this 10 multiple screening, 21 overlapping clones were obtained. Merging of the sequences from the different clones yielded a 9 kb sequence, a size in agreement with the size of the transcript derived from rat heart and skeletal muscles. See Fig. 2. Conceptual translation of the nucleotide sequence uncovered an open reading frame of a protein of 2324 amino acids corresponding to a calculated MW of 261 kDa. See Fig. 1.
- 15 To analyze tissue distribution of the rat myomegalin transcripts, Northern blot analysis was performed using radioactively labeled probes corresponding to the 3' end (probe 1; 1000 bp) and the 5' end (probe 2; 665 bp) of the myomegalin open reading frame. Transcripts of various sizes were found in various tissues using either probe 1 or probe 2 or both. The results indicated that there are at least four different transcripts of rat myomegalin: two 20 expressed in heart (7.5 and 5.9 kb); two in skeletal muscle (7.5 and 4.3 kb) and one in testis (2.5 kb). The 2.5 kb variant roughly corresponds to the PBP46 clone, and is expressed exclusively in rat testis.

III. Screening of the EST/database

- 25 To determine whether mouse or human sequences analogous to the rat myomegalin are present in public domain databases, the rat sequence was used for a BLAST search of GenBank and EST libraries. The following EST were retrieved. AA755885, AA110441, W23471, AA333456, AA489265. These sequences are more than 90% homologous to the rat sequence. Sequence AL021920 contains a genomic fragment from human chromosome 30 1p35.1-p36.21. Several exons overlap with the rat sequence from residue 1215 until residue 1444. Thus myomegalin must reside on human chromosome 1p35.1-p36. KIAA0454 (accession # AB007923), KIAA0477 (accesion # AB007946) are two clones containing

portion of the human myomegalin sequence since they are more than 90% homologous to the rat ORF. These human clones were merged to obtain a full length human sequence homologous to myomegalin. See Fig. 4. The human open reading frame coded for a protein of 2517 residues and a calculated molecular weight of 282.1 kDa. See Fig. 5.

5 Alignment of the human and rat sequence showed identity from aa 235 of rat myomegalin to the end. In the amino terminus region, the two sequences showed only weak homologies. The reason for this discrepancy is at present unclear. It is possible that it is due to species differences. The junction where the rat sequence diverges from the human was derived from four clones isolated from the rat skeletal muscle library, lessening the possibility
10 that cloning artifact is at the basis of this discrepancy. The presence of the junction was further confirmed by PCR analysis of rat heart mRNA (data not shown). However, further blast searches with the region encompassing the 5' end of myomegalin did not yield mouse EST fragments overlapping the junction. Conversely, several EST clones confirming the human junction were retrieved from human and mouse EST databases.

15

IV. Protein/protein interaction

Several attempts were made to confirm the interaction between myomegalin and PDE4D3. However, due to the insolubility of the full length or truncated myomegalin immunoprecipitation experiments could not be performed. In an alternative approach, PBP46
20 was cotransfected with PDE4D3 in COS 7 cells and the PDE activity was determined in the particulate fraction of the cell. If PDE4D3 interacts with PBP46, an increase in the particulate PDE activity would be expected. Two to three fold increase in the particulate PDE4D3 activity was detected when plasmids containing PBP46 and PDE4D3 were cotransfected in COS7 cells.

25

V. Subcellular localization of myomegalin

To investigate the subcellular localization of myomegalin the PBP46 clone was subcloned in frame to a flag tag and expressed in COS7 cells. The recombinant protein thus obtained was entirely recovered in the particulate fraction and could be extracted only with
30 buffer containing SDS. Expression in transfected cells was further assessed by immunofluorescence (IF) using the flag antibody. The flag tagged recombinant protein

encoded in PBP46 was entirely localized in the Golgi/centrosomal region of COS7 cells. No attempts were made to express the full-length myomegalin cDNA.

VI. Western blot analysis of muscle and testis extracts

5 Polyclonal antibodies were raised in rabbit against peptides corresponding to the carboxyl terminus region of myomegalin. These antibodies recognize in testis a protein of approximately 64 kDa. In heart and muscle, proteins of 280, 250 and 200 kDa were observed. It is at present unknown whether these are native proteins or products of proteolysis. When these antibodies were used for IF localization, a region corresponding to the
10 Golgi/centrosomal region is intensely labeled.

It is apparent from the above results and discussion that polynucleotides encoding novel mammalian PDE interacting proteins, such as myomegalin, as well as the novel polypeptides encoded thereby, are provided. The subject invention is important for both
15 research and therapeutic applications. For example, identification of the subject PDE interacting proteins provides for the ability to screen potential PDE inhibitors with PDE/PDE interacting protein complexes, where the results of such screening procedures should be more indicative of *in vivo* activity of a potential agent than screening procedures in which PDE is used by itself. Accordingly, the subject invention provides for a significant contribution to the
20 art.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an
25 admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to
30 those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

1. A polynucleotide present in other than its natural environment encoding a PDE interacting polypeptide.
5
2. The polynucleotide according to Claim 1, wherein said polynucleotide encodes a myomegalin protein.
3. A fragment of a polynucleotide according to Claim 1.
10
4. An PDE interacting polypeptide present in other than its naturally occurring environment.
15
5. The polypeptide according to Claim 4, wherein said polypeptide is a myomegalin protein.
15
6. A fragment of a polypeptide according to Claim 4.
20
7. Substantially pure PDE interacting protein.
20
8. Isolated PDE interacting protein.
25
9. An expression cassette comprising a transcriptional initiation region functional in an expression host, a polynucleotide having a nucleotide sequence found in the nucleic acid according to Claim 1 under the transcriptional regulation of said transcriptional initiation region, and a transcriptional termination region functional in said expression host.
25
10. A cell comprising an expression cassette according to Claim 9 as part of an extrachromosomal element or integrated into the genome of a host cell as a result of
30 introduction of said expression cassette into said host cell.
30
11. The cellular progeny of the cell according to Claim 10.

12. A method of producing an PDE interacting polypeptide, said method comprising:

growing a cell according to Claim 10, whereby said polypeptide is expressed; and isolating said polypeptide substantially free of other proteins.

5

13. A monoclonal antibody binding specifically to a PDE interacting protein.

14. The monoclonal antibody according to Claim 13, wherein said antibody inhibits the activity of at least one of PDE or a PDE interacting protein.

10

15. The monoclonal antibody according to Claim 13, wherein said antibody is a humanized antibody.

16. A method of determining whether an agent modulates the activity of a PDE, 15 said method comprising:

contacting a complex of said PDE and a PDE interacting protein with said agent; and determining the effect of said agent on the activity of said PDE.

20

17. The method according to Claim 16, wherein said agent is a small molecule.

18. The method according to Claim 16, wherein said agent is an antibody.

19. The method according to Claim 18, wherein said agent is a monoclonal antibody.

25

20. A method for modulating the activity of a PDE interacting protein, said method comprising:

contacting said PDE interacting protein with an agent that modulates the activity of said PDE interacting protein.

30

1/12

FIG. 1

>myomegalin protein
MSNGYRTLSQHLLNDLKKENFSLKRLIYFLEERMQQKYEVSRDVYKRNIELKVEVESLKRELQDRKQHL
HKTWADEEDLNSQNEAELRRQVEEPQQETEHVYELLDNNIQLLQEESRFAKDEATQMELTVEAEKGCNL
ELSERWKDATKNREDAPGDQVKLDQYSAAALAQRDRRIEELRQSLAAQEGLVEQLSREKOQLHLLEEPG
GMEVQPMPPKGLPTQQKPDLNETPTTQPSVSDSHLAELODKIQQTEVTNKLQEKLNDSCELRSAQESS
QKQDTTIQSLKEMLKSRESETEELYQVIEGQNDTMALKPEMLHQSQLGQLQSSEGIAPAQQQVALLDLQ
SALFCSQLIEQKLQRLLRQKERQLADGKRCMQFVEAAAQEREQQKEAAWKHNQELRKALQHLQGELHSK
SQQLHVLEAEKYNEIRTQGQNQIQLHLSHSLHKEQLIQLQELLQYRDTTDKTLDTNEVFLEKLRQRIQD
RAVALERVIDEKFSALEEKDELRLQLRLAVRDRDHDLERLRCVLSANEATMQSMESLLRARGLEVEQLI
ATCQNQLQWLKEELETKFQGHWQKEQESIIQQQLQTSLHDRNKEVEDLSATLLHKLGPQGQSEVAEELCORLQ
RKERVLQDLLSDRNQKAMEHEMMEVQGLLQSMGTRQERQAVAEMVQAFMERNSELQALRQYLGGKELM
AASQAFISNQPGAGATSVGPHGEQTDQGSTQMPSSRDDSTSLTAREEASIPIRSTLGDSDTVAGLEKELSN
AKEEELMAKKERESQIELSALSQSMMAVQEEELQVQAADLESLTRNIQIKEDLIKDLQMQLVDPEDMPA
MERLTQEVLREKVASVEPQGQEGSENRRQQLLMLLEGIVDERSRLNEALQAERQLYSSLVKFHQAQPE
ISERDRTLQVELEGAQVRLRSRLEEVLGRSLERLRLTAAIGGATAGDETEDTSTQFTDSIEEEAAHN
SHQQLIKVSLEKSLTTMETQNTCLQPPSPVGEDGNRHILQEEMLHLRAEIHQPLEEKRKAAEELKELKAQ
IEEAGFSSVSHIRNTMLSCLCLENAELKEQMGEAMSDGWEVEEDKEKGEVMVETVVAKGGSSEDLSLQA
EFRKVQGRLKSAVINIINLLKEQLVLRSENGNTKEMPEFLVRLAREVDRMNMGIPSSSEKHQHQEQENMTA
RPGPRPQSLKLGTLGTSVDGYQLENKSQAQDSGHQPEFSLPGSTKHLRSQLAQCRQRYQDLQEKLLISEA
TVFAQANQLEKYRAILSESLSVKQDSKQIQVDLQDGYETCGRSENAEREETTSPCEEEHGNLKPVVLV
EGLCSEQGYLDPPVLVSSPVKNPWRTSQEARRIQAGTSNDSSLRDIRNLKAQLPNAYKVLQNLRSRV
RSLSATSODYSSSLERPRKLIAVATLEGASPHSVTDEDEGLLSDGTGAFYPPGLQAKKNLENLIQRVSQL
EAQLPKTGLEGKLAELKSASWPGKYDSLIDQDQARKTVISASENTKREKDLFSSHPTFERYVKSfedLL
RNNDLTTYLQGSFREQLSSRRSVDRLTSKFSTKDHKSEKEEVGLEPLAFRFSRELQEKKEVIEVLQAK
VDTRFSPPSSHAASESHRCASSTSFLSDDIEACSDMDVASEYTHYEKKPSNSAASASQGLKEPR
SSSISLPTPQNPPKEASQAQPGFHFNSIPKPASLSQAPMHFTVPSFMFGPSGPPLLGCCTPVVSLAE
AQQELOQMLQKQLGRSVSIAPPSTSTLMSNTEASSPRYSNPAQPHSPARTIELGRILEPGYLGSGQW
DMMRPQKGSISGELSSGSSMYQLNSKPTGADLLEEHHLGEIRNLRQRLLEESICVNDRLREQLQHRLSSTA
RENGSTSHFYSQGLSMPQLYNENRALREENQSLQTRLSHASRGHSQEVDHLREALLSSSSQLQELEKE
LEQQKAERRRQLLEDLQEKQDEIVHFREERLSLQENNNSRLQHKLALLQQQCEEKQQLSLSLQSELQIYES
LYENPKKGLKAFSLDCYQVPGELSCIVAEIRALRVQLEQSIQVNRRRLQLEQMDHGAGKASLSSCP
VNQSFSAKELANQQPPFQGSAAASPVRDVGLNSPPVVLPSNSCSVPGSDSAIIISRTNNGSDESAATKT
PPKMEVDAADGPFAASGHGRHVIGHVDDYDALQQOIGEGKLLIQKILSLTRPARSVPALDAQGTEAPGK
SVHELRSSARALNHSLEESASLLTMFWRAALPNSHGSVSLVGEEGNLMEMEKLLDLRAQVSQQQQLQSTA
VRLKTANQRKKSMEQFIVSHLRTHDVLKKARTNLEMKSFRALMCTPAL (SEQ ID NO:01)

2/12

FIG. 2 >MYOMEGLIN complete DNA

CCGGTCCCCTTGGTAGTATCTAGAGCTGGCCCATAGTTCATAGTTCATGCTGGTTGTTCT
 TATGCTTCCCCAGAGCTCGAGACAGCCTTGAGTCACAGCTGAATATGCCCTTCTCTGAG
 TCCATTAAATACTGGACAAGTATTTATCTTGAAGCAGATCTAAAAGAAACTCCCACAGATAGG
 TTGTGTTCTTCTCTGGCTTCTTGAECTCTAAGTCAGGAGACCCATTGGAAACTGGTG
 ACTGCTGGGTCTTGGTTACGGCAACTTCTTCTTCTTGAATGGTCTGGCTGTCTGGTGAAAGTAT
 GGATAGCGAGGCATCCATTGGTCAGACTCTCTGTTGACACCTCACTACAGTCTCGTAATGACAT
 CTGGCCTCATCGCAGCATGGATAAAATCGGATTCTTGAATCTCAAGCAGGTAGGAGACTCCATATGAA
 GCAGGGCTTCAGCAGCTCAATGGCTTATCCGTACAGTGTGCATTACTGCTGTGAACGTGCTTCCA
 CGGGCCGGATGAGCAGATCCAGCTGGTCTGGTCCCTCATGCAGAGACGTCGCATGTTATCCCGG
 GGCTGGAACTGCTCTTCAATGACTTACACCCCTGAGCAGCGCCAGAGGGGAGAAGGCGGAACCCGC
 GGCGGAGACACACGCCGTGGCGCACACACTCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC
 TGCGCGTCTCCGACAGGAAGGGCGGCCGCCGCTGGCAACCGCATCTTCCGGCCGGCTGAGCAGCCCCAACACCT
 AACGGCAGGGGGCGGGCGGCCGGCTGGCAACCGCATCTTCCGGCCGCCAGACAGGAAGTCC
 CGGGGCCGGCAGGCCAGGGCCACGGACACCTGAGGTGGGAGCCCGCAGGCCGCCCTGGGAGC
 CGGGCCTGGCAGGAAAAGGCGCTTCACGTTCTGCGGAAGCGAAGTCTGCAAATGCTTCTCAGCAT
 GGTCTCTCTCTGGCTCAATGTCACCTCAGGTGATCCTAGGACTGGGCTCTTCCAGGTCCC
 CAGTTCTCAAGTGTGACTTCACTCCCTTGAATTCTACTCCATTGCTGGAAAGCTCCAGAACAG
 AGCCTCCGGCCAACACTGCTGATGCCATCGCTCTTCTGAGCAAGTTGAAACGCTGCGAATCA
 ATGTAATTACGGCTCAGATGATGGCAGGTTATCGGTTCTAGTGTCTAATTCAATAGTGTGGAGTAG
 ACATCCAGAAGTCCAGTCTTAAAGATGATTAACCAGAGGGTAGTTGACGGTTAAGTAGTCTAAGCA
 TCCTTCACTCCAGTCTTCAACTCCAAAGAGCTCAACTTAAACCCAGCAGCTCTGGAGCTACTGCTCTCC
 CTCCACGTGCCGTCTCCCTGGCCCTCCCTCAGGGCCGAGACCGCCGAGCCGCCAGCC
 CGTTGGCCCGGCCCTGGGAAGCCAGGGGCTCCCGGCCACGCCAGCCCTCCGCC
 ACAGGACGAGACAAACCGGGCTATGTCGCTTAGCCCTGGGGTCCACAGCTCAGCAGCAGC
 CCTGCCGCTCCATGCCACGGCAAGGCTGACCGTGTCCAGGGTGAGGGGGGAGATGGGAGCTGTC
 CTCCCATGGGTGCCACCATGTCATGTCATGGATATGCACTCTGTCAGCACCTCAATGACCTGAAGA
 AGGAGAACTTCAAGCTCAAGTGTGCACTACTTCTGGAGGAGGCGCATGCAACAGAAGTATGAAGTCA
 GCCGGAGGGAGCTTACAAGGGACATTGAGCTGAAGGTTGAAGTGTGGAGGAGCCTGAAACGAGAGCTCC
 AGGACAGGAAACAGCATCTACATAAAACATGGGGCATGGGGAGGATCTAACAGCAGCAGAATGAAGCAG
 AGCTCCGGCCAGGTGAAGAACCGCAGCAGGAGACAGAACACGTTATGAGCTCTAGACAACAACA
 TTCAGCTGCTGAGGAGGAATCCAGGTTGCAAAGGATGAAGGCCACAGCTGAGGAGACTCTGGGGAGG
 CAGAGAAGGGGTGAATCTGGAGCTCTAGAGAGGTGGAGGATGTCAGGAAACAGGAAGATGCAC
 CGGGAGACCAGGTGAAGGTTGACCAATTCTGCGGACTGGCTCAGAGGGACAGGAGAATTGAAGAGC
 TGAGGAGAGCTGGCTGCCAGGGGTTGTGGAAACAGCTGTCAGAGAGAAACACAACACTGTTAC
 ATCTGCTGGAGGAGGCTGGGGCATGGAAGTGTGCAAGCCCAGCTGCTAAAGGTTACCCACGCAACAAAGC
 CAGACCTAAATGAGACCCCTACAACCCAGCCATCTGTCAGTGTCTGATTCCACCTGGCAGAACTCCAGGACA
 AAATCCAGAACACAGGTACAACACACTTCAAGAGAACTGTCATGACATGAGCTGTGAGCTCA
 GATCTGCAACAGGAGTGTCTCAGAAGCAAGATACGACAATCCAAGGCTCAAGGAAATGCTAAAGAGCA
 GGGAAAGTGAAGACTGAGCTGTACGGTGATTGAAGGTCAGGAAATGACAATGGCAAAGCTCCGG
 AAATGTCACACCAGAGCCAGCTCGGACAGCTCCAGAGCTCAGGGGATTGCCCTGTCAGCAGCAAG
 TGGCCCTGCTGACCTTCAGAGTGTCTGTCAGCCAGCTTGAATTCAGAAGCTCAGGCTGT
 TACGGCAGAAAGAGCTGACGGTCAAGGGTCTGACGGCAAGCGGTGATGCAATTGAGGCTGAGCAGCAGG
 AGAGAGAGCAGCAGAAGGAAGCTGCTTGGAAACATAACCCAGGAATTACGAAAAGCTTGCAACACCTCC
 AAGGAGAACTGCACTAAGAGCAACAGCTCCACGTTCTGGAGGAGGAAATATGAAATTGCA
 CCCAGGGACAAAATTCACACACTAAGTCACAGTCTGAGTCACAAAGAGCAGCTAATTCAAGGAACTTC
 AGGAGCTCTACAGTATGGGATACACAGACAAAACCTAGACACAAATGAGGTTCTTGAGGAAAC
 TACGGCAACGAATACAAGACGGGAGCTGGCTAGAGCGGGTTATAGATGAAAAGTCTCTGCTCTAG
 AAGAAAAGGACAAGGAACCTGCGGAGCTCCGGCTTGCTGTGGAGGAGGAGGACATGACTTAGAGAGAC
 TGCGTTGTCTGCTGCAATGAAGCTACCATGCAAAGTATGGAGAGTCTCTGAGGGCCAGAGGCC
 TGGAGTGGAGCAGTTAATTGCCACCTGCCAAACCTCCAGTGGTGAAGGAAAGTGGAAACCAAGT
 TTGGCCACTGGCAGAAGGAACAGGAGAGCATCTCAGCAGTTACAGACATCTCTGCACTGACAGGAACA
 AAGAAGTAGAGGATCTCAGTGCACACTTGTCCACAAACACTGGACCCGCCAGAGTGAAGTAGCTGAGG
 AGCTGTGCCAGGCCCTGCAAGGGAAAGGGTCTGCAAGGACCTCTGAGTGTGCAACAAACAAG
 CCATGGAGCAGAGATGGAGGACTGGACTGCTCCAGTCAGTGCATGGCACCCGGAACAGGAAGACAGG
 CTGTTGCAGAAAAATGGTACAACGCTTCAAGGCTTCAAGGAAAGGAAACTCGGAATTACAGGCCCTGCGGAGTATC
 TAGGGGGAGGAATTATGGCAGCATCTCAGGCAATTCTCATCTAACCAACAGCTGAGGCGACTCTG
 TAGGCCCTCCACCATGGAGAGCAAACTGACCAAGGTTCTACGGCAGATGCCCTCTGAGACAGCACCT
 CGCTGACTGCCAGAGAGGAGGAGGCCAGCATACCCGGTCTACATTAGGAGACTCAGACACAGTTCAGGGC
 TGGAGAAAAGAAGTGAACATGCCAAGGAGGAGCTGAGTCATGGCAAAAGGAAAGAGAAGCCAGA
 TAGAATTGTCCTGCACTGAGTGGCTGTGCAAGAGGAAGAGCTGCAAGGTGCAAGGCTGTGACT
 TGGAGTCCCTGACCAAGGAAACATACAGATAAAAGAAGACCTCATAAAGGACCTGCAAATGCAACTGGTTG

3/12

FIG. 2 (CONT)

ACCCTGAAGATATGCCAGCCATGGAGCGCCTGACCCAAGAGGTCTTACTCTCGGGAAAAAGTTGCTT
 CAGTGGAAACCCCAGGGTCAGGAAGGGTCAGAGAACAGGAGAACACTTGCTGCTGATGTTAGAAGGAC
 TAGTGGATGAACGGAGTCGGCTAACGAGGGCCCTGCAAGCTGAGCCGAGCTCTACAGCAGCTGGTCA
 AGTTCATGCCAACAGAGATCTCTGAGAGAGACCGAACCTGAGGTGGAACGGAGGGCCAGG
 TGTTACGCAGTCAGTAGAAGAAGTTCTGAGAAGAAGCCTGGAGCCTTAAGCAGGCTGGAGACCCCTGG
 CCGCCATTGGAGGTCTACTGCAGGCGATGAGACTGAAGATAACAGCACACAGTTCACAGACAGCATTG
 AGGAGGAGGCTGCACACAACAGGCCACAGCAACTCATCAAGGTCTTGGAGAAAAGCCTGACCACCA
 TGGAGACCCAGAACACATGTCTCAGGCCCCCTTCCCCAGTAGGAGAGGATGGTAACAGGCATCTCAGG
 AAGAAATGCTCCACCTGAGGGCTGAAATCACCAGGCTTAAAGAGAAGGAGAAAAGCTGAGGCAGAAC
 TCAAGGAGCTAAAGGCTCAAATTGAGGAAGCAGGATTCTCTGTGCTCCACATCAGGAACACCATGC
 TGAGCCTTGCCTTGCTTGAAGATGCAGAGCTGAAAGAGCAGATGGGAGAAGCAATGCTGATGGAT
 GGGAGGTGGAGGAAGACAAGGAGAAGGGCGAGGTGATGGTGGAGACCGTGGTGGCAAAGGGGTCTGA
 GTGAGGACAGCCTCAGGCTGAGTTCAAGTCCAGGGAGACTCAAGAGTGCCTACAACATCATCA,
 ACCTCTCAAAGACAGCTGGTCTGAGAACAGCTGGAGGGAACACTAAGGAGATGCCAGAGTCTCTCG
 TGCGCCTGGCCAGGGAGGTGGAGAAGAACATGGGCTGCTTCTCGGAGAACATCAACACCAAG
 AACAGGAGAATATGACCCCTGGGCCCCAGGCCCCAGACTCTCAAGCTGGGAGACGCTCTCAG
 TAGACGGCTACCAACTGGAGAACAAAGTCCCAGGGCCAAAGACTCTGGACATCAGCCAGAATTAGCCTAC
 CAGGGTCCACCAACACCTCGCTCCAGCTGGCTCAGTAGAGAACCTGAGGCTACCAAGGATCTCCAGGAGA
 AGCTGCTCATCTCAGAACGCCACTGTGTTGCCAGGCAACCCAGCTAGAGAACAGGCTATTTAGCCTAC
 GTGAATCCCTGGTGAAGCAGGACAGCAAGCAGATCCAGGTGGACCTTCAGGACCTGGCTATGAGACTT
 GTGGCCGAAGTGAGAATGAAGCTGAACGTGAGGAGACCACCCAGGCTGAGTGTGAGGAGCACGGTAACC
 TGAAGCCTGTGGTGTGGAGGGCTTGTGCTCTGAGCAAGGGTACCTGGACCCCTGTCTGGTCAAG
 CACCTGTGAAGAACCTTGGAGAACAGCCAGGAAGGCCAGAACAGAACATCCAGGACAAGGAACCTCAGACA
 ACAGCTCTCTCTGGAGAACAGCACCTGGAAATCTGAAAGGCCAGCTACCGAATGCCCTACAAGGTCTTC
 AGAACCTGAGGAGCCGGTCCGGTCCCTGTCTGCCACAAGCAGTACTCATCGAGTCTGGAGAGACCC
 GCAAGCTGATAGCCGTGGCAACCCCTGGAGGGCCCTCACCCCAACAGTGTCACTGATGAAGACGAAGGCT
 TGGTGTAGATGGCACCGGCTTACCTCCAGGGCTCAGGGCTAACAGAACAGGATCTAGAGAACATCTCA
 TCCAGAGAGTATCCAGCTGGAGGCCAGCTCCAAAAGCTGGAGAGGAAAGCTGGCTGAAGAAC
 TGAAGTCCGCTCGGGCTGGAAAATACGATTCTTCTGATTAGGATCAGGCCAGGCTTACGCTCAT
 CTGCTCCGAAAATACXAAAAGGGAGAAGGATTGTTCTCTCACCCAAACATTGAAAGATACGTCA
 AAATCTTGAAGACCTCTGAGGAACAAACGACTTGACTACTTACCTGGCCAGAGCTCCGGGAAACAC
 TTAGTTCAAGGCGTCACTGACAGACAGGCTGACCAGAACATTGAGAACAGGATCATAAGAGTGAAA
 AAGAAGAAGTGGGCTTGGAGGCCACTGGCTTCAAGGTTACGGAGGGAAATTACAGGAGAACAGGAAAGTGA
 TTGAAGTCTGCAGGCCAGGTGGATACCCGGTTTCTCACCCCCCAGCAGCATGCTGCTGTGAGT
 CCCACCGTTGCCCCAGCACATCTTCTCTGGATGAGTACAGGCTTACCTGGGCTCTGACATGGACGTAG
 CCAGCGAGTACACACATATGAAGAGAACAGGCTCACCCAGTACTCAGGCCAGTGCATCTCAGG
 GGCTTAAGGGCGAGCCCAGAACAGCTCATGCTTCCAGGCTTACCTGGGCTCACCCAGAACCCCCCTAACGGAGGCCA
 GCCAGGGCCAGCCAGGCTTCACTTAACTCCATACCCAAAGCCGGCTAGCCTTCCAGGACCAATGC
 ACTTCACTGTACCCAGCTTCACTGGCTTCTGGGCTCCCTCTGGTGTGAGACAC
 CAGTGGTGTCTGGTCAAGGCTAACAAAGAGCTGAGATGCTGCAGAACAGCAGCTGGGAGCAAGTGTIA
 GCATTGCCCTCCACATCCACGTTCTAGCAACCACACAGAACAGCTAGCTCTCCCGCTACA
 GCAACCCCTGCTCAGGCCACTCCCCAGAACAGGGCACCATAAGAGCTGGCAGAACATCTGGAGCCTGGAT
 ACCTGGCAGGCCAGTGGGACATGATGAGGCTCAGAACAGGAGCATCTCTGGGAGCTGCTCTCAG
 GCTCTCGATGATGCTTAACCTCAAACCCACAGGGCCGACCTGTGGAGAACAGCTTGGTGA
 TCCGGAACCTGCCAGCGCTGGAGGACTTATGTCATGAGAACAGGCTACGGGAGCAGCTGCAGC
 ATAGGCTCAGCTCCACGGCCCGAGAAAATGGTCCACCTCTCACTTCTACAGTCAGGGCTGGAGTCCA
 TGCCCTCAGCTCTACAAATGAGAACAGAGCCCTCAGGGAGAAAACCAAAGGCTGCAGACACGGCTCAGTC
 ATGCTTCAAGGGACACTCCCAGGAAGTGGACCACTGAGGGAGGCTCTGCTTCTCAAGTCCCAGC
 TCCAGGAGCTGGAGAAGGAGCTGGAGCAGCAGAACAGGCTGAGCGGGCGAGCTTCTGGAAAGACTTGAGG
 AGAACAGGAGTGGAGATCTGCAATTCCGAGAGGAGGGCTGCCCTCAGGAAAACAACCTCAGGCTC
 AGCACAAGCTGGCCCTCTGCAACAAACAGTGTGAGGAGAACAGCAGCTCCCTGTCAGTCAG
 AGCTCCAGATCTACGAGTCTCTACGAAAATCTAACAGAGGGCTTGAAGAGCCTCAGCTAGATTCT
 GTTACCAAGTCCCAGGTGAGTTGAGCTGCTGGCAGAGATTGAGACTGAGAGTGCAGTTGGAGC
 AGAGCATTCAGTGAACAACCGTCTGGGCTGAGCTGGAGAACAGCAGATGGATCACGGTGTGGCAAAG
 CCAGTCTCAGTTCTGCCCTGTTAACAGAGCTCTCAGCCAAGGGAGCTGGCAAACCCAGCAGCCAC
 CCTTCCAAGGTTCAGTGCTTCCCTCCAGTCAGGAGCTGGCTGAATTCTCACCCGGTGGCTCTCC
 CCAGCAATTCTGCTCTGTTCTGGCTCAGACTCTGCCATCATCAGTAGGAGAACAAATGGTCTGGATG
 AGTCTGAGCAACGAAGACCCCTCCAAGATGGAGGTGAGTGTGCTGATGGCCATTGCCAGTGGAC
 AGGGAGAACACGTCAGGCCATGTGGATGACTACGAGCCCTACAGCAGCAGATTGGGAAGGGAGC
 TGCTGATCCAAAAGATACTGTCTCTCACGAGGCCAGCACAGCGTCCCTGCACTGGAGCGCAGGGCA

4/12

FIG.2 (CONT)

CAGAGGCACCAGGTACCAAAAGTGTCCATGAGCTTCGGAGCAGCGCCAGGGCTCTGAACCACAGCCTAG
AAGAGTCAGCTTCCCTCCTCACCATGTTGGAGAGCAGCTTGCCAAACTCTCATGGTTCTGTACTGG
TAGGCCAGAGGGAAACCTGATGGAGAAAGAACCTCTAGACCTGCGAGCCAAGTGTCCCACAGCAAC
AGCTCCTCAGAGCACTGCTGCGTCTGAAGACGCCAACAGAGGAAGAAAAGCATGGAGCAGTTCA
TCGTGAGCCATCTGACCAGGACCATGATGTCTGAAGAAAGCACGGACTAATTAGAGATGAAATCCT
TCAGGGCCCTGATGTGCACTCCAGCCTTGTGACCCCTGCCTCCAGGAGCCACATAAAAGGCGAACCA
GGAGTCCCTAAAACAGCAGGAAGGGTGGGCTGCCCCGCCCCTAGTACAGCTGCCGTCTGCTGAGGAAT
ACCTGCTCCGACTCTCCCTGCTGGACTCCAGGGAAAGGGCTCATATAATGTGTCACATGGACAGGC
AGGAAGGAAAGTGGCATCTGACAATGAATATGATTAGCCAAGGCCACTGGGCCATCACTAACGCAA
ACTCATGAGACTGTGAGAAGGCCCCCGCACTGCTTAGACAGCCTCAGCAGCACGGTGCCCCACC
TCGTTACAGTTCTCACCTCAAGATAGCCAACCTAGGGGAACCTAGGACCTTACCAACACACATTGAGTGGCAGCGTCCAGCC
GGACACTGTTGGAGACTACCAAACCCCTCACTGACCCAGCTTGGGCCAGGCCAGCTCTGTGGCCAAG
TCTGGTAGACTTTGGTCTCTACCACCAACACCAGAGAGAGTCTATATGCAAATGTGTAACTTGAGG
TGCCCTGACTTAGCCTAGCACCTCTGTTCTACGTGATCTCAAGTTGAACCAACTTCCTTAACCT
GCTGCCCCCTGAATCTAACCTCCCTCAGGGAAATTGGAGATTGGTGGCCACATCATGCCATTGAATG
TTAGTGAACAGCATATCGGTGCTCTTAATGGCATGGCAAGGCCCTGCTCTGTACTGAAGACTGTGTC
TTCACAGTGCTCATAGGACGTGGGTGTGTATAAATGTATAATATAGATTATATGTGCTATGGC
TATGTGTTGAAGGCCAGCATAAGTGCAGAGCGATGGGTGAGAAGACGCTAAGCAGTCTTCTATGGCT
ATTAAGCTAAGTGTAC (SEQ ID NO:02)

5/12

FIG. 3.

MYOMEGLIN firstMET until stop

ATGCTAATGGATATCGCACTCTGCCAGCACCTCAATGACCTGAAGAAGGAGAACCTCAGCCTCAAG
 CTGGCATCTACTTCCGGAGGCATGCAACAGAAGTATGAAGTCAGCCGGAGGACGTCTACAAG
 CGGAACATTGAGCTGAAGGTTAAGTGGAGAGCCTGAAACAGAGACGCTCCAGGACAGGAAACAGCATCTA
 CATAAAACATGGCCGATGAGGAGGATCTAACAGCAGAATGAAGCAGAGCTCCGGCGCCAGGTTGAA
 GAACCGCAGCAGGAGACAGAACACGTTAGCTGAGCTCTGGAGGAGGACAGAGAAGGGGTGTAATCTG
 TCCAGGTTGCAAAGGATGAAGGACACAGCTAGACAACACATTCAAGCTGCTGAGGAGGAA
 GAGCTCTAGAGAGGTGAGGAGGATCTACCAAGAACAGGAAAGATGCCACGGAGACCAGGTGAGGCTT
 GACCAATATTCTGCCACTGCTCAGAGGGACAGGAGATTGAGAGCTGAGGAGGCTTGCTGCC
 CAGGAGGGCTTGAAACAGCTGCTCAGAGGAAACAACACTGTTACATCTGCTGGAGGAGCCTGGG
 GGCATGGAAGTGCAGCCATGCCAAAGGGTACCCACGCAACAAAAGCCAGACCTAAATGAGACCCCT
 ACAACCCAGCCATCTGCTGATTCCCACCTGCCAGAACCTCAGGACAAAATCAGCAAACAGAGGTC
 ACCAACAAAGATTCTCAAGAGAAACTGAATGACATGAGCTGAGCTCAGATCTGCACAGGAGTC
 CAGAACAGCAAGATCACAAAGCCTCAAGGAATGCTAAAGAGCAGGGAAAGTGGAGACTGAAGAG
 CTGTACCCAGGTGTTGAAAGTCAAATGACAATGGCAAAGCTCCGGAAATGCTACACCAGAGCCAG
 CTCGGACAGCTCAGAGCTCAGAGGGCATTGCCCTGCTCAGCAGAACGTTGCCCTGCTGACCTTCAG
 AGTGTCTGTTCTGCAGCCAGCTGAAATCCAGAACAGCTCAGGAGCTTACGGCAGAAAGAGGCTCAG
 CTGGCTACGGCAAGCGGTGATGCAATTGAGGCTGAGCACAGGAGAGGAGCAGCAGAAGGAA
 GCTGCTGAAACATAACCAGGAATTACGAAAAGCTTGCACACCTCCAAGGAGAACTGCACTGAAAG
 AGCCAACAGCTCACGTTCTGGAGGAGAAAAATATAATGAAATTGAAACCCAGGAGACAAACATTCAA
 CACCTAAGTCACAGTCTGAGTCACAAAGAGCAGCTAATTCAAGAACCTCAGGAGCTCCTACAGTATCG
 GATACACAGACAAAATCTAGACACAAATGAGGTGTTCTTGAGAAACTACGGCAACGAATACAAGAC
 CGGGCAGTTGCTCTAGAGCGGGTTATAGATGAAAAGTCTCTGCTCTAGAAGAAAAGACAAGGAAC
 CGGGCAGCTCCGGCTGCTGAGGGACCCAGCATGACTTAGAGAGACTGCGTTGTCTGCTGCC
 AATGAAGTACCATGCAAAGTATGGAGACTCTCTGAGGGCCAGAGGCTGGAAAGTGGAGCAGTTAATT
 GCCACCTGCCAAACCTCCAGTGGTGAAGGAAGAATTGGAAACCTGGCCACTGGCAGAAGGAA
 CAGGAGAGCATATTCAAGCAGTACAGACATCTCTGATGACAGAACAAAAGTAGAGGATCTCAGT
 GCAACTTGTCCACAAACTTGGACCCGGCAGAGTGAAGTAGCTGAGGAGCTGTGCCAGCCTGCAG
 CGGAAGGAAAGGGTGCAGGACCTCTGAGTGATGGCACCCGGAACAGGAAAGACAGGCTTGCAGAAA
 GTGGAGGACTGCTCCAGTCAGTGGCACCCGGAACAGGAAAGACAGGCTTGCAGAAAATGGTA
 CAAGCCTCATGAAAGAACTCGGAAATTACAGGCCCTGCCAGTATCTAGGGGGAAAGGAATTATG
 GCAGCATCTCAGGCAATTCTAACCAACCAGCTGGAGCAGTCTGAGGCCCCACCATGGAGAG
 CAAACTGACCAAGGTTCTACGAGATGCCCTCTGAGGACAGCACCTCGTACTGCCAGAGGAGG
 GCCAGCATACCCGGCTCATATTAGGAGACTCAGACACAGTTGAGGGCTGGAGAAGAAACTGAGCAAT
 GCCAAGGAGGAGCTTGAGCTCATGCCAAAAAAAGAAGAACGGCAGATAGAATTGCTGCCCTGCAG
 TCCATGATGGCTTGCAAGAGGAAGAGCTGAGGCTGAGGCTGACTTGGAGTCCCTGACCAAGGAAC
 ATACAGATAAAAGAAGACCTCATAAAGGACCTGCAAATGCACTGGTTGACCCCTGAAGATATGCCAGCC
 ATGGAGCGCCTGACCCAAAGGGCTTACTTCTCGGGAAAAGTTGCTTCAGTGGAAACCCAGGGTCAG
 GAAGGGTCAAGAGAACAGGAGAACACAGTTGCTGCTGATGTTAGAGGACTAGTGGATGAACGGAGTC
 CTCAACGAGGCCCTGCAAGCTGAGCGCAGCTACAGCAGCCTGGTCAAGTCCATGCCAACAGAG
 ATCTCTGAGAGAACGGCAACTCTGAGGGAACCTGGAGGGCCACGGTGTACCCAGTCAGTAGAA
 GAAGTTCTTGGAGAACGGCTGGAGCCTTAAGCAGGAGCTGGAGACCCCTGGCCCATGGAGGTGCTACT
 GCAGGGATGAGACTGAAGATAACAGCACACAGTTGAGGAGGCTGACACAAAC
 AGCCACCCAGCAACTCATCAAGGTGTTGGAGAAAAGCTGAGGACCATGGAGACCCAGAACACATGT
 CTTCAGCCCCCTTCCCCAGTAGGGAGAGGATGTAACAGGCATCTCAGGAAGAAATGCTCCACCTGAG
 GCTGAAATCCACCAAGCCCTTAGAAGAGAACAGGAGCTGAGGAGAACACTCAAGGGCTAAAGGCTAA
 ATTGAGGAAGCAGGATTCTCCTCTGTTGCTCCACATCAGGAACACCATGCTGAGCCTTGCCTTGCCTT
 GAGAATGCAAGAGCTGAAGAGCAGATGGGAGAAGCAATGCTGATGGATGGAGGGGGAGGAAGACAAG
 GAGAAGGGCAGGGTGTGGAGACCTGGCCAAAGGGGTCTGAGTGAGGACAGCCTCAGGCT
 GAGTTCAAGGAAAGTCCAGGGAGACTCAAGAGATGCTACACATCATCACACCTCCTCAAAGAGCAGCTG
 GTCCCTGAGAAGCTCGGAAGGGAAACACTAAGGAGAGCTGAGGAGCTGGCTGGCCAGGGAGGTG
 GACAGAATGAACATGGGCTTGCCTCCGGAGAGCATCACACCAAGAACAGGAGAACATGACCGCA
 AGGCTGGCCCAGGGCCAGAGTCTCAAGCTGGGAGCAGCTGAGGAGCTAACGCGCTACCAACTGGAG
 AACAACTCCCAGGCCAACAGACTCTGGACATCAGCCAGAATTGCTTACCCAGGGTCCACCAACACCTG
 CGCTCCCAGCTGGCTCAGTGTAGACAACGGTACCAAGAGATCTCAGGAGAACGCTGCTCATCTCAGAAC
 ACTGTGTTGCCAGGCAAACACAGCTAGAGAACAGTACAGAGCCATATTAGTGAATCCCTGGTGAAGCAG
 GACAGCAAGCAGATCCAGGTGGACCTCAGGACCTGGCTATGAGACTTGTGGCCAGTGAAGGAA
 GCTGAACGTGAGGAGACCACAGCCTGAGTGTGAGGAGCACGGTAACCTGAAGCCTGTGCTGGT
 GAAGGTTGCTGAGCAAGGGTACCTGGACCTGCTGGTCACTGAGCCTACCTGAGAAGAACCTGG
 AGAACAAAGCCAGGAAGCCAGAAGAACATCCAGGACACAAGAACCTCAGACAAACAGCTCTCTGAGGAAG
 GACATCGAAATCTGAAAGGCCAGCTACCGAATGCCATCACAGGCTCCTCAGAACCTGAGGCCGGGT

6/12

FIG. 3 (cont)

CGGTCCCTGTCGCCACAAGCGATTACTCATCGAGTCTGGAGAGACCCCGCAAGCTGATAGCCGTGGCA
 ACCCTTGAGGGGGCCTCACCCACAGTGTCACTGATGAAGACGAAGGGCTTGTGAGATGCCACCGGG
 GCTTTTACCCCTCAGGGCTCAGGCCAAAAGAATCTAGAGAACTCATCCAGAGAGTATCCAGCTG
 GAGGCCAGCTCCCAAAAGTGGACTAGAAGGAGCTGGCTGAAGAACCTGAAGTCCGCCTGTGGCCT
 GGAAAATACGATTCTTGTAGGATCAGGCCAAAAGTGTCAATCTGCGTCCGAAAATACXAAA
 AGGGAGAAGGATTGTTCTCTCACCCAAACATTGAAAGATACTGCAAATCTTGAAGACCTCCTG
 AGGAACAACAGACTGACTTACCTGGGCAGAGCTTCCGGAAACAACCTAGTTCAAGGCAGTCAGTG
 ACAGACAGGCTGACCAGCAAATTCTGACACAAAGGATCATAAAGGTGAAAAGAAGAAGTGGGCTTGAG
 CCACTGGCCTCAGGTTCAAGGCCAACTCAGGAGAAAGAGAAGAAGTGTGAAGTCCGCAGGCCAG
 GTGGATACCCGTTCTCACCCCCCAGCAGCCATGCTGCGTCTGAGTCCCACCGTTGCCCCAGCAGC
 ACATTTCTGTGGATGACATAGAAGCTGCTGTGACATGGACGTAGCCAGGAGTACACACACTAT
 GAAGAGAAGAAGCCACCCAGTAACTCAGCAGCCAGTGATCTCAGGGCTTAAGGGCGAGGCCAGA
 AGCAGCTCCATCAGCTTGCACCCCCAGAACCCCCCTAAGGAGGCCAGGCCAGGCCAGGCTT
 CACTTAACCTACCCAAAGCCGCTAGCCTTCCCAGGCACCAATGCACTTCACTGTAACCAAGCTTC
 ATGCCCTTCCGGCCCTCTGGGCTCCCTCTGGTTGCTGTGAGACACCAAGTGGTGTCTGGCTGAG
 GCTCAACAAGAGCTGCAAGATGCTGAGCAGCTGGGAGCAAGTGTGATTGCTCTGGCCACCTCC
 ACATCCACGGTCTTAGCAACCCAGAACAGGATCTGCTCTCCCCGCTACAGCAACCTGCTCAGGCCAC
 TCCCCAGCAAGGGCACCATAAGAGCTGGCAGAATCTGGAGCTGGACCTGGGAGGGCCAGTGG
 GACATGATGAGGCTCAGAAAGGGAGCATCTCTGGGAGCTGCTCTGGAGCTCGATGTACAGCTT
 AACTCCAACCCACAGGGGCCACCTGTTGAGAGACGATTAGGTGAGATCCGGAACCTGCGCCAGC
 CTGGAGGAGTCCATATGTGTCATGACAGGCTACGGGAGCAGCTGCGACATAGGCTCAGCTCACGCC
 CGAGAAAATGGTCCACCTCTACAGTCAGGGCTGGAGTCCATGCTCAGCTCTACATGAG
 AACAGACCCCTCAGGGAAAGAACCAAAGCTGCAGACACGGCTCAGTCATGCTCCAGGGACACTCC
 CAGGAAGTGGACCACCTGAGGGAGGCTCTGCTTCTCAAGTCTCCAGCTCCAGGAGCTGGAGAAGGAG
 CTGGAGCAGCAGAAGGCTGAGGGCGGAGCTCTGGAAAGACTGAGGAGAAGCAGGATGAGATCGTG
 CATTCTGGAGGAGAGGGCTGCTCCAGGAAAACACTCCAGGCTGAGCAGCACAGCTGCCCTCCTG
 CAACAACAGTGTGAGGAGAAACAGCAGCTCTCCCTGCTCAGTCAGAGCTCCAGATCTACGAGTCC
 CTCTACGAAAATCTAAAGGGCTTGAAGCCTTCAGGCTAGATTCTGTTACCAAGTCCGGGTGAG
 TTGAGCTGCTGGGAGAGATTGAGCTGAGACTGAGGCTGGAGCAGAGCATTCAAGTGAACAC
 CGTCTGGCTGAGCTGGAACAGCAGATGGATCACGGTGTGGCAAAGCCAGTCTCAGTTCTGCCCT
 GTTAACCAGAGCTCTCAGCCAAGGGAGCTGGCAAACAGCAGCCACCCCTCAAGGTTCAAGTGT
 TCCCCCTCAGTCGGGAGCTGGCTGAATTCTCACCCCTGGCTCTCCCAGCAATTGTGCTCTGTT
 CCTGGCTCAGACTCTGCCATCATCAGTAGGACAAACATGGTCGGATGAGTCTGAGCAACGAAGACC
 CCTCCCAAGATGGGGTGTGCTGATGCCCATGGCACTGGCAGTGGACACGGCAGACACGTCATCGGC
 CATGGGATGACTACGACGCCCTACAGCAGCAGATGGGGAGGGAGCTGCTGATCCAAAGGATACTG
 TCTCTACGAGGCCAGCACGAGCTCCCTGACTGGAGCGCAGGGCACAGGGCACAGGGCACAGG
 AGTGTCCATGAGCTGGAGCAGCGCCAGGGCTCTGAACACAGCCTAGAAGAGTCAGCTCCCTCCTC
 ACCATGTTCTGGAGAGCAGCTTGCCAAACTCTCATGGTCTGTACTGGTAGGGAGAGGAAACCTG
 ATGGAGAAAGAACCTAGACCTGCGAGGCCAAGTGTCCAAACAGCAACAGCTCCTCAGAGCACTG
 GTGCGTCTGAAGACGGCAACCAAGAGGAAGAAAAGCATGGAGCAGTTACGTCAGGCCATCTGAC
 ACCCATGATGTTGAAGAAAGCACGGACTAATTAGAGATGAAATCTTCAGGGCCCTGATGTGCACT
 CCAGCCTTGTGA (SEQ ID NO:03)

7/12

FIG. 4
Human myomegalin cDNA

1 GGATCCTTGA GGGCACTGGT GCGACTTTCA GGTGAGGTCT TAGCAGATGA
 51 AAGCGGCTGG CTGTGGCCCG CGCCAGTAGT GCTTTCTGCT CCGCACTCGC
 101 CGTGAGCCAG GTGTCAACC GGATTTGGGG CGAGGGTCGC GCTGGCTACC
 151 TCGCATGCGC AGAGCCGGAA GCCCGCTGAC CGGACTACAG CTCCCAGAAG
 201 AGCCTTGTGG AGGCCGAGA CGCGAAGCCG CTGGCGCCAT CTTGAAATCT
 251 GATCCTCCAT CCCCCAGGGCT TTGCGTCTGC CGGGCCGGCC GCTGCTGCTC
 301 CGGGAGCCCA GTCTGCTAAA AGGGGAGGAC GTTGAGGACG CGGGCGCTGG
 351 CGGGAGAGAC AGCTGGGGAG AGACATGGCA GGGTGGAGC GCGGCCTGCG
 401 CCTCTGTCAC TCAGCATCCT CTTAGGCCTT TCCACGCCCG CCCCTGCCC
 451 GAGGGCCGGG GCTGACGGCT CTGGTACCCCG GAGTCGGCGC GCGGGGCAAG
 501 GGCAGCCCG CGCAGAGTGG GGACCCCCACT GGGCTGTGCC ATGCTGACCG
 551 GAGACCAACCG AGGCGGGAGA CAGAGCGCGG CGAAGAGCCA TTGAGTGGTC
 601 ACCCAGTAGC CGCCGCCGCC GCCGCCTCGG GAAGCTTGCC ACCCGCTAGG
 651 AGGGAAGATG AAGGAGATT GCAGGATCTG TGCCCGAGAG CTGTTGAA
 701 ACCAGCCGCG CTGGATCTTC CACACGGCT CCAAGCTCAA TCTCCAGGTT
 751 CTGCTTCGC ACCTGTTGGG CAAGGATGTC CCCCCGATG GCAAAGCCGA
 801 GTTCGCTTGC AGCAAGTGTG CTTTCATGCT TGATCGAATC TATCGATTG
 851 ACACAGTTAT TGCCCGGATT GAAGCGCTTT CTATTGAGCG CTTGCAAAG
 901 CTGCTACTGG AGAAGGATCG CCTCAAGTTC TGCAATTGCCA CTATGTATCG
 951 GAAGATAAAC GATGACTCTG CGCCGGAGAT CAAGGGGGGG AATGGGACGG
 1001 TTGACATGTC CGTCTTACCC GATGCGAGAT ACTCTGCACT GCTCCAGGAG
 1051 GACTTCGCT ATTCAAGGGTT TGAGTGTGCTT GTGGAGAATG AGGATCAGAT
 1101 CCAGGAGCCA CACAGCTGCC ATGGTTCAAGA AGGCCCTGGA AACCGACCCA
 1151 GGAGATGCCG TGGTTGTGCC GCTTGTGGG TTGCTGATTC TGACTATGAA
 1201 GCCATTGTA AGGTACCTG AAAGGTGGCC AGAAGTATCT CCTGCGGCC
 1251 TTCTAGCAGG TGGTCGACCA GCATTGAC CTAAGAACCA GCGTTGTCTG
 1301 AGGTTGGGCC ACCCGACTTA GCAAGCACAAG AGGTACCCCC AGATGGAGAA
 1351 AGCATGGAGG AAGAGACGCC TTGTTCTCT GTGGAATCTT TGGATGCAAG
 1401 CGTCAGGCT AGCCCTCCAC AACAGAAAAGA TGAGGAGACT GAGAGAAGTG
 1451 CAAAGGAACCT GGGAAAGTGT GACTGTTGTT CAGATGATCA GGCTCCGAG
 1501 CATGGGTGTA ATCACAAGCT GGAATTAGCT CTTAGCATGA TAAAGGTCT
 1551 TGATTATAAG CCCATCCAGA GCCCCCGAGG GAGCAGGCTT CCGATTCCAG
 1601 TGAAATCCAG CCTACCTGGA GCCAAGCCTG GCCCTAGCAT GACAGATGGA
 1651 GTTGTTCGG GTTTCTTAA CAGGTCTTTG AAACCCCTT ACAAGACACC
 1701 TGTGAGTTAT CCCCCTGGAGC TTTCAGACCT GCAAGGAGCTG TGGGATGATC
 1751 TCTGTGAAGA TTATTGCGC CTCCGGGTCC AGCCCATGAC TGAAGAGTTG
 1801 CTGAAACAAAC AAAAGCTGAA TTCACATGAG ACCACTATAA CTCAGCAGTC
 1851 TGTATCTGAT TCCCACCTGG CAGAACTCCA GAAAAAATC CAGCAAACAG
 1901 AGGCCACCAA CAAGATTCTT CAAGAGAAAC TTAATGAAAT GAGCTATGAA
 1951 CTAAAGTGTG CTCAGGAGTC GTCTCAAAG CAAGATGGTA CAATTCAAGAA
 2001 CCTCAAGGAA ACTCTGAAAA GCAGGGAAAG TGAGACTGAG GAGTTGTACC
 2051 AGGTAAATTGA AGGTCAAAAT GACACAATGG CAAAGCTTCG AGAAATGCTG
 2101 CACCAAAGCC AGCTTGGACA ACTTCACAGC TCAGAGGGTA CTTCTCCAGC
 2151 TCAGCAACAG GTAGCTCTGC TTGATCTTCA GAGTGTCTTA TTCTGCAAGCC
 2201 AACTTGAAAT ACAGAACGTC CAGAGGGTGG TACGACAGAA AGAGCCCAA
 2251 CTGGCTGATG CCAAACAAATG TGTGCAATTG GTAGAGGCTG CAGCACACGA
 2301 GAGTGAACAG CAGAAAGAGG CTTCTTGAA ACATAACCAAG GAATTGGAA
 2351 AAGCCTGCA GCAGCTACAA GAAGAATTGC AGATAAAGAG CCAACAGCTT
 2401 CGTGCCTGGG AGGCTGAAAAA ATACAATGAG ATTCAACCC AGGAACAAAA
 2451 CATCCAGCAC CTAAACCATA GTCTGAGTC CAAGGAGCAG TTGCTTCAGG
 2501 AATTTCGGGA GCTCCTACAG TATCGAGATA ACTCAGACAA AACCTTGAA
 2551 GCAAATGAAA TGTTGCTTGA GAAACTTCGC CAGCGAATAC ATGATAAAGC
 2601 TGTTGCTCTG GAGCGGGCTA TAGATGAAAA ATTCTCTGCT CTAGAAGAGA
 2651 AAGAAAAAGA ACTGCGCCAG CTTCGTCTTG CTGTGAGAGA GCGAGATCAT
 2701 GACTTAGAGA GACTGCGCGA TGTCTCTCC TCCAATGAAAG CTACTATGCA
 2751 AAGTATGGAG AGTCTCTGAA GGGCCAAAGG CCTGGAAGTG GAACAGTTAT
 2801 CTACTACCTG TCAAAACCTC CAGTGGCTGA AAGAAGAAAT GGAAACCAA
 2851 TTTAGCCGTT GGCAGAAGGA ACAAGAGAGT ATCATTGAGC AGTTACAGAC
 2901 GTCTCTTCAAT GATAGGAACA AAGAAGTGGG GGATCTTAGT GCAACACTGC

8/12

FIGURE 4 (CONT)

2951 TCTGCAAAC TGGACCAGGG CAGAGTGAGA TAGCAGAGGA GCTGTGCCAG
 3001 CGTCTACAGC GAAAGGAAAG GATGCTGCAG GACCTCTAA GTGATCGAAA
 3051 TAAACAAGTG CTGGAACATG AAATGGAGAT TCAAGGCCTG CTTCAGTCTG
 3101 TGAGCACCG GGAGCAGGAA AGCCAAGCTG CTGCAGAGAA GTTGGTCAA
 3151 GCCTTAATGG AAAGAAATTG AGAATTACAG GCCCTGCGCC AATATTTAGG
 3201 AGGGAGAGAC TCCCTGATGT CCCAACGACC CATCTCTAAC CAACAAGCTG
 3251 AAGTTACCCC CACTGGCCGT CTTGGAAAAC AGACTGATCA AGGTTCATG
 3301 CAGATACTT CCAGAGATGA TAGCACTTC TTGACTGCCA AAGAGGATGT
 3351 CAGCATACCC AGATCCACAT TAGGAGACTT GGACACAGTT GCAGGGCTGG
 3401 AAAAGAAACT GAGTAATGCC AAAGAGGAAC TTGAACTCAT GGCTAAAAAA
 3451 GAAAGAGAAA GTCAGATGGA ACTTTCTGCT CTACAGTCCA TGATGGCTGT
 3501 GCAGGAAGAA GAGCTGCAGG TGCAGGCTGC TGATATGGAG TCTCTGACCA
 3551 GGAACATACA GATTAAGAA GATCTCATAA AGGACCTGCA AATGCAACTG
 3601 GTTGATCTG AAGACATACC AGCTATGGAA CGCCCTGACCC AGGAAGTCTT
 3651 ACTTCTTCGG GAAAAGTTG CTTCAGTGA ATCCCGAGGT CAAGAAATT
 3701 CAGGAAACCG AAAGACAACAG TTGCTGCTGA TGCTAGAAGG ACTAGTAGAT
 3751 GAAACGGAGTC GGCTCAATGA GGCTTACAA GCAGAGAGAC AGCTCTATAG
 3801 CAGTCTGGTG AAGTCCATG CCCATCCAGA GAGCTCTGAG AGAGACCGAA
 3851 CTCTGCAGGT GGAACCTGAA GGGGCTCAGG TGTTACGAG TCGGCTAGAA
 3901 GAAGTTCTTG GAAGAAGCTT GGAGCGCTT AACAGGCTGG AGACCCCTGGC
 3951 CGCCATTGGA GGTGCAGCTG CAGGGGATGA CACCGAAGAT ACAAGCACTG
 4001 AGTTCACTGA CAGTATTGAG GAGGAGGCTG CACACCATA TAGCACCAGCAA
 4051 CTTGTCAAGG TGGCTTTGGA GAAAAGCTG GCAACTGTGG AGACCCAGAA
 4101 CCCATTTT TCCCCCTCCTT CTCCGATGGG AGGGGACAGT AACAGGTGTC
 4151 TTCAGGAAGA AATGCTCCAC CTGAGGGCTG AGTTCACCA GCACTTAGAA
 4201 GAGAAGAGGA AAGCTGAGGA GGAACCTGAA GAGCTAAAGG CTCAAATTGA
 4251 GGAAGCAGGA TTCTCCTCAG TGCTCCCACAT CAGGAACACC ATGCTGAGCC
 4301 TTTGCCTTGA GAATGCCGGAG CTGAAAGAGC AGATGGGAGA AGCAATGTCT
 4351 GATGGATGGG AGATCGAGGA AGACAAGGGAG AAGGGCGAGG TGATGGTTGA
 4401 GACTGTGGTA ACCAAAGAGG GTCTGAGTGA GAGTAGCCTT CAGGCTGAGT
 4451 TCAGAAAGCT CCAGGGAAAAA CTGAAGAATG CCCACAATAT CATCAACCTC
 4501 CTCAAAGAAC AACTTGTGCT GAGTAGCAAG GAGGGGAATA GTAAACTTAC
 4551 TCCAGAGCTC TTGTCGATC TGACCAGCAC CATTGAAAAGA ATAAACACAG
 4601 AACTGGTTGG TCCCCCTGGG AAGCACCAAC ACCAAGAGGA GGGGAATGTG
 4651 ACTGTGAGGC CTTTCCCCAG ACCCCAGAGC TTGACCTTG GGGCTACCTT
 4701 CACAGTGGAT GCCCACCAAT TGATAACCA GTCCCAGCT CGTGACCCCTG
 4751 GGCCTCAGTC AGCGTTTAGC CTACCAGGGT CCACCCAGCA CCTCGCTCC
 4801 CAGCTGTAC AATGCAAACA ACGCTATCAA GATCTCCAGG AGAAGCTGCT
 4851 GCTATCAGAA GCCACTGTCT TTGCTCAGGC TAACGAGCTG GAGAAATACA
 4901 GAGTTATGCT TACAGGTGAA TCCCTGGTGA AGCAGGACAG CAAGCAGATC
 4951 CAGGTGGACC TCCAGGACCT GGCTATGAG ACTTGTGGCC GAAAGCAGAA
 5001 TGAGGCTGAA CGGGAGGAAA CCACCGATCC TGAGTGTGAG GACCACAAACA
 5051 GCCTCAAGGA AATGGTCTCTG ATGGAGGGGC TGTGCTCTGA GCAGGGACGC
 5101 CGGGGCTCAA CACTGGCTAG TTCCCTCTGAG AGGAAGCCCT TGGAGAACCA
 5151 GCTAGGGAAAG CAGGAAGAGT TCCGGGTATA TGGAAAGTCA GAAAACATCT
 5201 TGGCTCTACG AAAGGACATC AAAGATCTGA AGGCCACCT GCAGAAATGCC
 5251 AACAAAGGTCA TTCAAAACCT CAAGAGCCGG GTCCGGTCCC TCTCAGTTAC
 5301 AAGTGATTAT TCGTCTAGTC TGGAAGGACC CCGGAAGCTG AGAGCTGTTG
 5351 GCACCTTGGGA GGGGCTCTCA CCTCATAGTG TCCCTGATGA GGATGAGGGG
 5401 TGGCTGTCTG ATGGCACTG GGCTTTCTAC TCTCCAGGGC TTCAAGGCCAA
 5451 AAAGGACCTG GAGAGTCTA TCCAGAGAGT ATCCCAAGCTG GAGGCCAGC
 5501 TCCCCAAAAA TGGACTAGAA GAGAACGCTGG CTGAGGAGCT GAGATCAGCC
 5551 TCGTGGCTG GGAAATATGA TTCCCTGATT CAGGATCAGG CCCGGGAACCT
 5601 GTCTTACCTA CGGCAAAAAA TACGAGAAGG GAGAGGTATT TGTTATCTTA
 5651 TCACCCGGCA TGCAAAAGAT ACAGTAAAT CTTTGAGGA TCTCCTAAGG
 5701 AGCAATGACA TTGACTACTA CCTGGGACAG AGCTTCCGGG AGCAACTCGC
 5751 CCAGGGAAAGC CAGCTGACAG AGAGGCTCAC CAGCAAACCTC AGCACCAAGG
 5801 ATCATAAAAG TGAGAAAGAT CAAGCTGGAC TTGAGGCCACT GGCCCTCAGG
 5851 CTCAGCAGGG AGCTGCAGGA GAAGGGAGAAA CTGATTGAAG TCCCTGCAGGC
 5901 CAAGCTGGAT GCTCGGTCCC TCACACCCCTC CAGCAGCCAT GCCTTGTCTG
 5951 ACTCCCACCG CTCTCCAGC AGCACCTCTT TCCCTGCTGA TGAACCTGGAA

9/12

FIGURE 4(CONT)

6001 GCCTGCTCTG ACATGGACAT AGTCAGCGAG TACACACACT ATGAAGAGAA
 6051 GAAAGCTTCT CCCAGTCACT CAGATTCCAT CCATCATTG AGTCATTCTG
 6101 CTGTGTGTC TTCTAAACCA TCATCAACCA GTGCATCTA GGGGGCTAAG
 6151 GCCGAATCCA ACAGCAACCC CATCAGCTTG CCAACTCCCC AGAATAACCCC
 6201 CAAGGAGGCC ACCAGGCC ATTCAAGGCTT TCATTTTCAC TCCATACCCA
 6251 AGCTGGCTAG CCTTCTCAG GCACCATTGC CCTCAGCTCC ATCCAGCTTC
 6301 CTGCCTTCA GCCCCACTGG CCCTCTCCCTC CTTGGCTGCT GTGAGACACC
 6351 AGTGGTCTCC TTGGCTGAGG CTCAGCAGGA GCTACAGATG CTGCAGAAC
 6401 AGTGGGAGA AAGTGGCAGC ACTGTTCTC CTGTTCCAC AGCTACATTG
 6451 CTGAGCAACG ACTTGGAAAGC CGACTTTCC TACTACCTCA ACTCTGCCA
 6501 GCCTCACTCT CCTCCAAGGG GCACCATAGA ACTGGGAAGA ATCCTAGAGC
 6551 CTGGGTACCT GGGCAGCAGT GCGAAGTGGG ATGTGATGAG GCCTCAGAAA
 6601 GGGAGTGTAT CTGGGGACCT ATCCTCAGGC TCCTCTGTGT ACCAGCTTAA
 6651 CTCCAAACCC ACAGGGGCTG ACCTGCTGGA AGAGCATTCTT GGTGAATCC
 6701 GGAACCTGCG CCAGCGCTG GAGGAGTCCA TCTGCATCAA TGACCCGCTA
 6751 CGGGACAC TGGAACACCG GCTGACCTCT ACTGCTCGTG GAAGGGGATC
 6801 CACTTCTAAC TTCTACAGTC AGGGCCTGGA GTCCATACCT CAGCTCTGCA
 6851 ATGAGAACAG AGTCTCTCAGG GAAGACAATC GAAGACTTCA GGCTCAACTG
 6901 AGTCATGTTT CCAGAGAGCA CTCCCAGGAA ACAGAAAAGCC TGAGGGAGGC
 6951 TCTGCTGTC TCTCGATCCC ACCTTCAAGA GCTGGAAAAG GAGCTGGAGC
 7001 ACCAGAAGGT GGAAAGGAG CAGCTTTTGG AAGACTTGAG GGAGAACGAG
 7051 CAAGAGGTCT TGCAATTTCAG GGAGGAACGT CTTTCCCTCC AGGAAAACGA
 7101 CTCCAGTGGG CCTTGCCCTC CCCTGGTCAG ACTGCAGCAC AAGCTGGTTC
 7151 TCTGCAAGCA ACAGTGTGAA GAGAAACAGC AGCTCTTGA GTCCCTCCAG
 7201 TCAGAGCTAC AAATCTACGA GGCACTTTAT GGCAATTCCA AGAAGGGGCT
 7251 GAAAGCTTAC AGCCTGGATG CCTGTCACCA AATCCCTTG AGCAGTGACC
 7301 TGAGCCACCT GGTGGCAGAG GTACGGAGCTC TGAGAGGGCA GCTGGAGCAG
 7351 AGCATTCAAGG GGAACAATTG TCTGCGACTG CAGCTGCAAC AGCAGCTGGA
 7401 GAGCGGTGCT GGCAAAAGCCA GCCTCAGGCC CTCTCCATT AACCAGAACT
 7451 TCCCAGCCAG CACTGACCCCT GGAAACAAAGC AGCTGCTCTT CCAAGATTCA
 7501 GCTGTGTCCTC CTCCAGTCGG GGATGTTGGT ATGAATTCCC CAGCTCTGGT
 7551 CTTCCCGAGC TCTGCTTCTC CTACTCCTGG CTCAGAAACG CCCATAATCA
 7601 ACAGAGCAAA TGGCTTGGGT TTGGATACTT CTCCAGTAAT GAAGACCCCT
 7651 CCCAAGCTAG AGGGTGTGTC TACTGATGGC TCCCTTGCCCA ATAAGCATGG
 7701 CGGCATGTC ATTGGCCACA TTGATGACTA CAGTGCCCTA AGACAGCAGA
 7751 TTGCGGAGGG CAAGCTGCTG GTCAAAAAGA TAGTGTCTCT TGTGAGATCA
 7801 GCGTGCAGCT TCCCTGGCT TGAAGCCCCA GGCACAGAGG TGCTAGGCAG
 7851 CAAAGGTATT CATGAGCTTC GGAGCAGCAC CAGTGCCCTG CACCATGCC
 7901 TAGAGGAGTC GGCTTCCCTC CTACCCATGT TCTGGAGAGC AGCCCTGCCA
 7951 AGCACCCACA TCCCTGTGCT GCCTGGAAA GTGGGAGAAT CAACAGAAAG
 8001 GGAACCTCTG GAACTGAGAA CCAAAGTATC CAAACAGGAG CGGCTCCTTC
 8051 AGAGCACAC TGAGCATCTG AAGAACGCCA ACCAGCAGAA GGAGAGCATG
 8101 GAGCACTTCA TCGTCAGCCA GCTAACCCAGA ACACATGATG TTTTAAAGAA
 8151 GGCAGAGGACT AACTTAGAGG TGAATCCCT AAGGGCTCTG CCATGTACTC
 8201 CAGCCTTGTG ACCCTTGCTC TCCAGGAACC ATGCAAGAAC CGCAGCCACC
 8251 AGAAGTCTCTT AAAACAGCAG GAAAGGTGGG CCTGTCCCCC TTTTGTGCAG
 8301 CTACCTATCT GCTGAGGAGC ATCTGGGCTC CATTCTCCA AGTCCACGGG
 8351 AGGGTCCAGA AGAGGGAGTC AGAGATGTAT CCTGGTGGAG CTGGGAGAAA
 8401 GGCAGAAAGC CTTCTGACA GCTATGGAAT ACGATTAGCC AAGGTCCACT
 8451 TGGCCAGCA CTAAGAAAAA GATGCGTAGT TTGCAAGAAA GGTTTGTGA
 8501 TCCCTGCCCT CAACAGCCCC AGCAGCTTGG GAAACTAGCAA GAGCACATT
 8551 CTTGCCTCAT CAGCTGTCTC GAGATGGAAA ACTCACTGG AATAGGACCC
 8601 TGATTCCGAT GAAAGGGCA CGTGGTCCCA ATGCTGGAGC TCCTCTGGCA
 8651 GGTCTAAA GCACACTACT GAGCAGCGGT GCCCTGCCGG AACTGCTGG
 8701 CGGGGGCTCA GTGAGGACTA CTACAGATC CACACCTGAC CCTGTTGGGT
 8751 CGAGTCAGGC TGGGCTTGG TCTGCACTGT AGCAGCTGTG TTCTTTGAGT
 8801 TCACATCATG AATGTGGTGA CTTCCAGAT ACCATCTCA GCTTAACCTA
 8851 GCACATCCTA TTTCTTTCT TCTATGATAT CCAAATTGGA CTGACCTCAC
 8901 TTCAAAGTGTG CTGCTCCATT TTGTCACCCCT ATCTTATCTC GGGGAAATTG
 8951 CAGACTGATG GCCAGACCAA CTCTGTTGAA ATTCTGCA AGAGCAAAC
 9001 TGTGCTCATT TTTAAGTGGC ATGGGAGAGG CCCCCAGCCT AGTAAAGCCT

10/12**FIGURE 4 (CONT)**

9051 AGTCTGTGTC TTACAGTGC TGGTAGAATG TGTTTGTGTG TATAAAATATA
9101 TGATATAGAT TTATATATGT TGCTAACGCC ATATATTGAA GGCCAACATA
9151 ACTGGTGGAC AGGGTGGGTG ACAGAAAATG AAAGCCTTTT TGGTGATTGT
9201 TAAAGCAAGA TGTGTATAAA GAAATAAATA GTTTTCTTT C (SEQ ID NO:04)

11/12

FIG. 5

>Human myomegalin protein

1 MKEICRICAR ELCGNQRRWI FHTASKLNQ VLLSHVLGKD VPRDGKAЕFA
 51 CSKCAFMLDR IYRFDTVIAR IEALSIERLQ KLLLEKDRLK FCIASMYRKN
 101 NDDSGAEIKA GNGTVDMSDL PDARYSALLQ EDFAYSGFEC WVENEDQIQE
 151 PHSGCHGSEGP GNRPRRCRG C AALRVADSDY EAICKVPRKV ARSISCGPSS
 201 RWSTSICTEE PALSEVGPPD LASTKVPPDG ESMEEETPGS SVESELASVQ
 251 ASPPQQKDEE TERSAKELGK CDCCSDDQAP QHGCNKHLEL ALSMIKGLDY
 301 KPIQSPRGSR LPIPVKSSL P GAKPGPSMTD GVSSGFLNRS LKPLYKTPVS
 351 YPLELSDLQE LWDDLCEDYL PLRVQPMTEE LLKQQKLN SH ETITTQQSVS
 401 DSHLAEQEK IQQTEATNK1 LQEKLNE MSY ELKCAQESSQ KQDGTIQNLK
 451 ETLKSRRERET EELYQVIEGQ NDTMAKLRM LHQLSQLQLH SSEGTSPAQQ
 501 QVALLDLQSA LFCSQLEI QK LQRVVRQKER QLADAKQC VQ FVEAAAH ESE
 551 QK EASW KHN QELRKALQQL QEELQNK SQQ LRAWEAEKYN EIRTQE QNIQ
 601 HLNHSLSHKE QLLQEFRELL QYRDNSDKTL EANEMILLEKL RORIHDKAVA
 651 LERAIDEKFS ALEEKEKELR QRLA VRE RD HDLERL RDVL SSNEATMQSM
 701 ESLLRAGLE VEQLSTTCQN LQWLKEEMET KFSRWQKEQE SIIQQLQTSL
 751 HDRNKEVEDL SATLLCKLGP GQSEIAEEEL QRLQRKERML QDLLSDRNKQ
 801 VLEHEMEI OG LLQSVSTREQ ESQAAA EKLV QALMERNSEL QALRQYLGGR
 851 DSLSMQAPIS NQQAEVTPTG RL GKQTDQGS MQIPSRD DST SITA KEDVSI
 901 PRSTLGDL DT VAGLEKELSN AKEEELMAK KERESOMELS ALQSMMAVQE
 951 EELQVQAADM ESLTRNIQIK EDLIKDLQM Q LVDPEDIPAM ERLTQEVL L
 1001 REKVASVESQ GQEISGNRRQ Q LLLMLEGLV DERSRLNEAL QAERQLYSSL
 1051 VKFH AHP ESS ERDRTLQVEL EGAQVLR SRL EEV LGRSLER LNRLET LAAI
 1101 GGAAAGDDTE DTSTEFTDSI EEEAAHHHSQ QLVKVALEKS LATVETQNPS
 1151 FSPPSPMGGD SNRCLQEEML HLRAEFHQHL E EKRKAEEEL KELKAQIEEA
 1201 GFSSVSHIRN TMLSCLENA ELKEQMG EAM SDGWEIEEDK EKGEVMVETV
 1251 VTKEGLSESS LQAEFRKLQG KLKNNAHNI IN LLKEQVLSS KEGNSKLTPE
 1301 LLVHLTSTIE RINTELVGSP GKHQHQEEGN VTVRPFPRPQ SLDLGATFTV
 1351 DAHQLDNQSQ PRDPGPQSAF SLPGSTQHLR SQLSQC KQRY QDLQEK LLLS
 1401 EATVFAQANE LEKYRVM LTG ESLVKQDSKQ IQVDLQDLGY ETCGRSENEA
 1451 EREETTSPEC EEHNSLKEMV LM EGLCSEQ Q RRGSTLASSS ERKP LENQLG
 1501 KQEEFRVY GK SENILVLRKD IKDLKAQ LQ ANKVIQNLK S RVRSL SVTSD
 1551 YSSSLERPRK LRAVGTLEGS SPH SVPD EDE GWLSDGTGAF YSPGLQAKKD
 1601 LESLIQRV SQ LEAQLPKNGL E EKLA EELRS ASWPGKYDSL IQDQARELSY
 1651 LRQKIREGRG ICYLIITRHAK DTVKSFD L RSNDIDYYLG QSFR EQLAQG
 1701 SQLTERLTSK LSTKDHKSEK DOAGLEPLAL RLSRE LQEKE KVIEVLQAKL
 1751 DARS LTPSS HALSDSHRSP SSTSFLSDEL EACSDMDIVS EYTHYEKK
 1801 SPHS HSDSIH SSSHSAVLSSK PSSTSASQGA KAESNSNPIS LPTPQNTPKE
 1851 ANQAHSGHF H S TPKL ASL P QAPLPSAPSS FLPFSPTGPL LLGCCETPV
 1901 SLAEAQQELQ MLQKOLGESA STVPPASTAT LLSNDLEADS SYYI NSAQPH
 1951 SPPRG TIELG RILEPGY LG SGKWDVMRPQ KG SVSGD LSS GSSVYQLNSK
 2001 PTGADLLEEH LGEIRNLRQR LEESICINDR LREQLEHRLT STARGR GSTS
 2051 NFYSQGLESI PQLCNENRVL REDNRRRLQAOQ LSHVSREHSQ ETE SRE ALL
 2101 SSRSHLQELE KELEHQKVER QQLLEDLREK QQEV LHFREE RLSI LQENDSS
 2151 GPCLSLVRLQ HKLVLLQQQC E EKQQLFESL QSELQIYEAL YGN SKKGLKA
 2201 YSLDACHQIP LSSDL SHLVA EVRALRGQLE QSIQGN NCLR LQLQQQLESG
 2251 AGKASLSPSS INQNFPA STD PGNKQ LLLQD SAVSPPVRDV GMNSPALVFP
 2301 SSASSTPGSE TPIINRANGL GLDTSPVMKT PPKLEG DATD GSFANKHGRH
 2351 VIGHIDDYSA LRQQIAEGKL LVKKIVSLVR SACSF PGLEA QGTEVLGSKG
 2401 IHELR SSTSA LHHALEESAS LLTMFWRAAL PSTHIPVLPG KVGESTEREL
 2451 LELRTKVSQ ERLLQSTTEH LKNANQQKES MEQFIVSQLT RTHDVLKKAR
 2501 TNLEVKS LRA LPCTPAL (SEQ ID NO:05)

12/12
FIGURE 6

M14 PROTEIN

MMAQFPTAMNGGPNMWAITSEERTKHDKQFDNLKPSSGGYITGDQARTFFLQSGLPAPVLA
AEIWAISDLNKDGKMDQQEFSIAMKLKLIKLQGQQLPVVLPPIMKQPPMFSPLISARFG
MGSMMPNLSIHQPLPPVAPITAPLSSATSGTSIPPLMPAPLPSVSTSSLPGNTASLIQ
PLSIPYSSSTLPHASSYSLMMGGGGASIQKAQSLIDLGSSSTSSTASLSGNSPKTGT
SEWAVPQPSRLKRYRQKFNSLDKSMMSGYLGFQARNALLQSNLSQLATIWTLADIDGD
GQLKAEEFILAMHLDMAKAGQPLPLTPPELVPPSFRRGGKQIDSINGTLPSYQKTQEE
EPQKKLPVTFEDKRKANYERGNMELEKRRQVLMEQQQREAERKAQKEKEEWERKQRELQ
EQEWKKQLELEKRLEKQRELERQREEERRKEIERREAQKQELERQRRLWERIRRQELL
NQKNREQEEIVRLNSKKSLHLELEAVNGKHQQISGRLQDVRIRKQTQKTELEVLDKQC
DLEIMEIKQLQQELQEYQNKLIIYLVPEKQLNERIKNMQLSNTPDGSIGSLHKKSEKE
ELCQRLKEQLDALEKETASKLSEMDSFNNQLKCGNMDDSVLQCLLSLLSCLNNLFLLK
ELRESYNTQQLALEQLHKIKRDKLKELERKRLEQIQKKKLEDEAARKAKQGKENLWES
IRKEEEEKQKRLQEEKSQDRTQEEERKTEAKQSETARALVNYRALYPFEARNHDEMSFN
SGDIIQVDEKTVGEPGWLYGSFQGKFGWFCNYVEKMLSSDKTPSPKKALLPPAVSLSA
TSAAPQPLCSNQPAPVTDYQNVFSFSNLNVNTTWQQKSAFTRTVSPGSVSPIHGQQAVE
NLKAQALCSWTAKKENHNFNFSKHDVITVLEQQENWWFGEVHGGRGWFPKSYVKIIIPGSE
VKRGEPEALYAAVNKKPTSTAYPVGEEYIALYSYSSVEPGDLTTTEGEELLVTQKDGEW
WTGSIGERTGIFPSNYVRPKDQENVGNASKSGASNKKPEIAQVTSAYAASGAEQLSLAP
GQLILIKKNSSGWWQGELQARGKKRQKGWFPAHVKLGPASAERTTPAFHAVCQVIAM
YDYIANNEDELNFSKGQLINVMNKDDPDWWQGEINGVTGLFPSNYVKMTTDSDPSQQWC
ADLQALDTMQPMERKRQGYIHELIETEERYMDDLQLVIEVFQKRMAESGFLTEAEMALI
FVNWKELIMSNTKLLKALRVRKKTGGEKMPVEMMGDIILAAELSHMQAYIRFCSCQLNGA
ALLQQKTDEDADFKEFLKKLASDPRCKGMPLOSSLLKPMQRITRYPILLIRSILENTPQN
HVDHSSLKLALERAEEELCSQVNEGVREREKENSDRLEWIQAHVQCEGLAEQLIFNSLTNCL
GPRKLLYSGKLYKTGSNKELHGFLFNDFLLTLYLVRQFAASSGFEKLFSSKSSAQFKMY
KTPIFLNEVLVLPDSSDEPVFHISHIDRVYTLRTDNINERTAWVQKIKAASEQYID
TEKKKREKAYQARSQKTSGIGRLMVHVIEATELKACKPNGKSNPYCEISMGSQSYTTRT
LQDTLNPKWNFNCQFFIKDLYQDVLCITMFDRDQFSPDDFLGRTEVPVAKIRTEQESKG
PTTRRLLLHEVPTGEVWWVRFDLQLFEQKTL (SEQ ID NO:08)

SEQUENCE LISTING

<110> Conti, Marco
Pahlke, Gudrun

<120> Novel Phosphodiesterase Interacting
Proteins

<130> SUN-101PCT

<140> 60/108,255
<141> 1998-11-12

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2326
<212> PRT
<213> rat

<400> 1

Met Ser Asn Gly Tyr Arg Thr Leu Ser Gln His Leu Asn Asp Leu Lys
1 5 10 15
Lys Glu Asn Phe Ser Leu Lys Leu Arg Ile Tyr Phe Leu Glu Glu Arg
20 25 30
Met Gln Gln Lys Tyr Glu Val Ser Arg Glu Asp Val Tyr Lys Arg Asn
35 40 45
Ile Glu Leu Lys Val Glu Val Glu Ser Leu Lys Arg Glu Leu Gln Asp
50 55 60
Arg Lys Gln His Leu His Lys Thr Trp Ala Asp Glu Glu Asp Leu Asn
65 70 75 80
Ser Gln Asn Glu Ala Glu Leu Arg Arg Gln Val Glu Glu Pro Gln Gln
85 90 95
Glu Thr Glu His Val Tyr Glu Leu Leu Asp Asn Asn Ile Gln Leu Leu
100 105 110
Gln Glu Glu Ser Arg Phe Ala Lys Asp Glu Ala Thr Gln Met Glu Thr
115 120 125
Leu Val Glu Ala Glu Lys Gly Cys Asn Leu Glu Leu Ser Glu Arg Trp
130 135 140
Lys Asp Ala Thr Lys Asn Arg Glu Asp Ala Pro Gly Asp Gln Val Lys
145 150 155 160
Leu Asp Gln Tyr Ser Ala Ala Leu Ala Gln Arg Asp Arg Arg Ile Glu
165 170 175
Glu Leu Arg Gln Ser Leu Ala Ala Gln Glu Gly Leu Val Glu Gln Leu
180 185 190
Ser Arg Glu Lys Gln Gln Leu Leu His Leu Leu Glu Glu Pro Gly Gly
195 200 205
Met Glu Val Gln Pro Met Pro Lys Gly Leu Pro Thr Gln Gln Lys Pro
210 215 220
Asp Leu Asn Glu Thr Pro Thr Thr Gln Pro Ser Val Ser Asp Ser His
225 230 235 240
Leu Ala Glu Leu Gln Asp Lys Ile Gln Gln Thr Glu Val Thr Asn Lys
245 250 255
Ile Leu Gln Glu Lys Leu Asn Asp Met Ser Cys Glu Leu Arg Ser Ala
260 265 270
Gln Glu Ser Ser Gln Lys Gln Asp Thr Thr Ile Gln Ser Leu Lys Glu
275 280 285
Met Leu Lys Ser Arg Glu Ser Glu Thr Glu Glu Leu Tyr Gln Val Ile
290 295 300
Glu Gly Gln Asn Asp Thr Met Ala Lys Leu Pro Glu Met Leu His Gln

305	310	315	320
Ser Gln Leu Gly Gln	Leu Gln Ser Ser	Glu Gly Ile Ala Pro Ala	Gln
325	330	335	
Gln Gln Val Ala	Leu Leu Asp Leu	Gln Ser Ala Leu Phe Cys	Ser Gln
340	345	350	
Leu Glu Ile Gln Lys	Leu Gln Arg Leu Leu Arg Gln	Lys Glu Arg Gln	
355	360	365	
Leu Ala Asp Gly Lys	Arg Cys Met Gln Phe Val	Glu Ala Ala Ala	Gln
370	375	380	
Glu Arg Glu Gln Gln	Lys Glu Ala Ala Trp	Lys His Asn Gln	Glu Leu
385	390	395	400
Arg Lys Ala Leu	Gln His Leu Gln Gly	Glu Leu His Ser Lys	Ser Gln
405	410	415	
Gln Leu His Val	Leu Glu Ala Glu Lys Tyr Asn	Glu Ile Arg Thr	Gln
420	425	430	
Gly Gln Asn Ile Gln His	Leu Ser His Ser	Leu Ser His Lys	Glu Gln
435	440	445	
Leu Ile Gln Glu	Leu Gln Glu Leu Gln Tyr Arg Asp	Thr Thr Asp	
450	455	460	
Lys Thr Leu Asp Thr	Asn Glu Val Phe Leu	Glu Lys Leu Arg	Gln Arg
465	470	475	480
Ile Gln Asp Arg Ala	Val Ala Leu Glu Arg Val	Ile Asp Glu	Lys Phe
485	490	495	
Ser Ala Leu Glu	Glu Lys Asp Lys Glu	Leu Arg Gln	Leu Ala
500	505	510	
Val Arg Asp Arg Asp	His Asp Leu Glu Arg	Leu Arg Cys	Val Leu Ser
515	520	525	
Ala Asn Glu Ala Thr	Met Gln Ser Met	Glu Ser Leu	Leu Arg Ala Arg
530	535	540	
Gly Leu Glu Val	Glu Gln Leu Ile Ala Thr	Cys Gln Asn	Leu Gln Trp
545	550	555	560
Leu Lys Glu	Leu Glu Thr Lys Phe	Gly His Trp	Gln Lys Glu Gln
565	570	575	
Glu Ser Ile Ile	Gln Leu Gln Thr Ser	Leu His Asp Arg	Asn Lys
580	585	590	
Glu Val Glu Asp	Leu Ser Ala Thr	Leu Leu His	Lys Leu Gly Pro Gly
595	600	605	
Gln Ser Glu Val	Ala Glu Glu Leu Cys	Gln Arg Leu	Gln Arg Lys Glu
610	615	620	
Arg Val Leu Gln Asp	Leu Leu Ser Asp	Arg Asn Lys	Gln Ala Met Glu
625	630	635	640
His Glu Met Glu	Val Gln Gly Leu	Leu Gln Ser	Met Gly Thr Arg Glu
645	650	655	
Gln Glu Arg Gln	Ala Val Ala Glu Lys	Met Val Gln	Ala Phe Met Glu
660	665	670	
Arg Asn Ser Glu	Leu Gln Ala Leu Arg	Gln Tyr Leu	Gly Gly Lys Glu
675	680	685	
Leu Met Ala Ala	Ser Gln Ala Phe Ile	Ser Asn Gln	Pro Ala Gly Ala
690	695	700	
Thr Ser Val	Gly Pro His His	Gly Glu Gln	Thr Asp Gln Gly Ser Thr
705	710	715	720
Gln Met Pro Ser	Arg Asp Asp Ser	Thr Ser Leu	Thr Ala Arg Glu
725	730	735	
Ala Ser Ile Pro	Arg Ser Thr	Leu Gly Asp	Ser Asp Thr Val Ala Gly
740	745	750	
Leu Glu Lys	Glu Leu Ser Asn	Ala Lys Glu	Glu Leu Glu Leu Met Ala
755	760	765	
Lys Lys Glu Arg	Glu Ser Gln Ile	Glu Leu Ser	Ala Leu Gln Ser Met
770	775	780	
Met Ala Val Gln	Glu Glu Leu Gln Val	Gln Ala Ala Asp	Leu Glu
785	790	795	800
Ser Leu Thr Arg	Asn Ile Gln Ile	Lys Glu Asp	Leu Ile Lys Asp Leu
805	810	815	

Gln Met Gln Leu Val Asp Pro Glu Asp Met Pro Ala Met Glu Arg Leu
 820 825 830
 Thr Gln Glu Val Leu Leu Leu Arg Glu Lys Val Ala Ser Val Glu Pro
 835 840 845
 Gln Gly Gln Glu Gly Ser Glu Asn Arg Arg Gln Gln Leu Leu Leu Met
 850 855 860
 Leu Glu Gly Leu Val Asp Glu Arg Ser Arg Leu Asn Glu Ala Leu Gln
 865 870 875 880
 Ala Glu Arg Gln Leu Tyr Ser Ser Leu Val Lys Phe His Ala Gln Pro
 885 890 895
 Glu Ile Ser Glu Arg Asp Arg Thr Leu Gln Val Glu Leu Glu Gly Ala
 900 905 910
 Gln Val Leu Arg Ser Arg Leu Glu Glu Val Leu Gly Arg Ser Leu Glu
 915 920 925
 Arg Leu Ser Arg Leu Glu Thr Leu Ala Ala Ile Gly Gly Ala Thr Ala
 930 935 940
 Gly Asp Glu Thr Glu Asp Thr Ser Thr Gln Phe Thr Asp Ser Ile Glu
 945 950 955 960
 Glu Glu Ala Ala His Asn Ser His Gln Gln Leu Ile Lys Val Ser Leu
 965 970 975
 Glu Lys Ser Leu Thr Thr Met Glu Thr Gln Asn Thr Cys Leu Gln Pro
 980 985 990
 Pro Ser Pro Val Gly Glu Asp Gly Asn Arg His Leu Gln Glu Glu Met
 995 1000 1005
 Leu His Leu Arg Ala Glu Ile His Gln Pro Leu Glu Glu Lys Arg Lys
 1010 1015 1020
 Ala Glu Ala Glu Leu Lys Glu Leu Lys Ala Gln Ile Glu Glu Ala Gly
 1025 1030 1035 1040
 Phe Ser Ser Val Ser His Ile Arg Asn Thr Met Leu Ser Leu Cys Leu
 1045 1050 1055
 Cys Leu Glu Asn Ala Glu Leu Lys Glu Gln Met Gly Glu Ala Met Ser
 1060 1065 1070
 Asp Gly Trp Glu Val Glu Glu Asp Lys Glu Lys Gly Glu Val Met Val
 1075 1080 1085
 Glu Thr Val Val Ala Lys Gly Gly Leu Ser Glu Asp Ser Leu Gln Ala
 1090 1095 1100
 Glu Phe Arg Lys Val Gln Gly Arg Leu Lys Ser Ala Tyr Asn Ile Ile
 1105 1110 1115 1120
 Asn Leu Leu Lys Glu Gln Leu Val Leu Arg Ser Ser Glu Gly Asn Thr
 1125 1130 1135
 Lys Glu Met Pro Glu Phe Leu Val Arg Leu Ala Arg Glu Val Asp Arg
 1140 1145 1150
 Met Asn Met Gly Leu Pro Ser Ser Glu Lys His Gln His Gln Glu Gln
 1155 1160 1165
 Glu Asn Met Thr Ala Arg Pro Gly Pro Arg Pro Gln Ser Leu Lys Leu
 1170 1175 1180
 Gly Thr Ala Leu Ser Val Asp Gly Tyr Gln Leu Glu Asn Lys Ser Gln
 1185 1190 1195 1200
 Ala Gln Asp Ser Gly His Gln Pro Glu Phe Ser Leu Pro Gly Ser Thr
 1205 1210 1215
 Lys His Leu Arg Ser Gln Leu Ala Gln Cys Arg Gln Arg Tyr Gln Asp
 1220 1225 1230
 Leu Gln Glu Lys Leu Leu Ile Ser Glu Ala Thr Val Phe Ala Gln Ala
 1235 1240 1245
 Asn Gln Leu Glu Lys Tyr Arg Ala Ile Leu Ser Glu Ser Leu Val Lys
 1250 1255 1260
 Gln Asp Ser Lys Gln Ile Gln Val Asp Leu Gln Asp Leu Gly Tyr Glu
 1265 1270 1275 1280
 Thr Cys Gly Arg Ser Glu Asn Glu Ala Glu Arg Glu Glu Thr Thr Ser
 1285 1290 1295
 Pro Glu Cys Glu Glu His Gly Asn Leu Lys Pro Val Val Leu Val Glu
 1300 1305 1310
 Gly Leu Cys Ser Glu Gln Gly Tyr Leu Asp Pro Val Leu Val Ser Ser

1315	1320	1325
Pro Val Lys Asn Pro Trp Arg Thr Ser Gln Glu Ala Arg Arg Ile Gln		
1330	1335	1340
Ala Gln Gly Thr Ser Asp Asn Ser Ser Leu Leu Arg Lys Asp Ile Arg		
1345	1350	1355
Asn Leu Lys Ala Gln Leu Pro Asn Ala Tyr Lys Val Leu Gln Asn Leu		1360
1365	1370	1375
Arg Ser Arg Val Arg Ser Leu Ser Ala Thr Ser Asp Tyr Ser Ser Ser		
1380	1385	1390
Leu Glu Arg Pro Arg Lys Leu Ile Ala Val Ala Thr Leu Glu Gly Ala		
1395	1400	1405
Ser Pro His Ser Val Thr Asp Glu Asp Glu Gly Leu Leu Ser Asp Gly		
1410	1415	1420
Thr Gly Ala Phe Tyr Pro Pro Gly Leu Gln Ala Lys Lys Asn Leu Glu		
1425	1430	1435
Asn Leu Ile Gln Arg Val Ser Gln Leu Glu Ala Gln Leu Pro Lys Thr		1440
1445	1450	1455
Gly Leu Glu Gly Lys Leu Ala Glu Glu Leu Lys Ser Ala Ser Trp Pro		
1460	1465	1470
Gly Lys Tyr Asp Ser Leu Ile Gln Asp Gln Ala Arg Lys Thr Val Ile		
1475	1480	1485
Ser Ala Ser Glu Asn Thr Lys Arg Glu Lys Asp Leu Phe Ser Ser His		
1490	1495	1500
Pro Thr Phe Glu Arg Tyr Val Lys Ser Phe Glu Asp Leu Leu Arg Asn		
1505	1510	1515
Asn Asp Leu Thr Thr Tyr Leu Gly Gln Ser Phe Arg Glu Gln Leu Ser		1520
1525	1530	1535
Ser Arg Arg Ser Val Thr Asp Arg Leu Thr Ser Lys Phe Ser Thr Lys		
1540	1545	1550
Asp His Lys Ser Glu Lys Glu Glu Val Gly Leu Glu Pro Leu Ala Phe		
1555	1560	1565
Arg Phe Ser Arg Glu Leu Gln Glu Lys Glu Lys Val Ile Glu Val Leu		
1570	1575	1580
Gln Ala Lys Val Asp Thr Arg Phe Phe Ser Pro Pro Ser Ser His Ala		
1585	1590	1595
Ala Ser Glu Ser His Arg Cys Ala Ser Ser Thr Ser Phe Leu Ser Asp		1600
1605	1610	1615
Asp Ile Glu Ala Cys Ser Asp Met Asp Val Ala Ser Glu Tyr Thr His		
1620	1625	1630
Tyr Glu Glu Lys Lys Pro Ser Pro Ser Asn Ser Ala Ala Ser Ala Ser		
1635	1640	1645
Gln Gly Leu Lys Gly Glu Pro Arg Ser Ser Ser Ile Ser Leu Pro Thr		
1650	1655	1660
Pro Gln Asn Pro Pro Lys Glu Ala Ser Gln Ala Gln Pro Gly Phe His		
1665	1670	1675
Phe Asn Ser Ile Pro Lys Pro Ala Ser Leu Ser Gln Ala Pro Met His		1680
1685	1690	1695
Phe Thr Val Pro Ser Phe Met Pro Phe Gly Pro Ser Gly Pro Pro Leu		
1700	1705	1710
Leu Gly Cys Cys Glu Thr Pro Val Val Ser Leu Ala Glu Ala Gln Gln		
1715	1720	1725
Glu Leu Gln Met Leu Gln Lys Gln Leu Gly Arg Ser Val Ser Ile Ala		
1730	1735	1740
Pro Pro Thr Ser Thr Ser Thr Leu Leu Ser Asn His Thr Glu Ala Ser		
1745	1750	1755
Ser Pro Arg Tyr Ser Asn Pro Ala Gln Pro His Ser Pro Ala Arg Gly		1760
1765	1770	1775
Thr Ile Glu Leu Gly Arg Ile Leu Glu Pro Gly Tyr Leu Gly Ser Gly		
1780	1785	1790
Gln Trp Asp Met Met Arg Pro Gln Lys Gly Ser Ile Ser Gly Glu Leu		
1795	1800	1805
Ser Ser Gly Ser Ser Met Tyr Gln Leu Asn Ser Lys Pro Thr Gly Ala		
1810	1815	1820

Asp Leu Leu Glu Glu His Leu Gly Glu Ile Arg Asn Leu Arg Gln Arg
 1825 1830 1835 1840
 Leu Glu Glu Ser Ile Cys Val Asn Asp Arg Leu Arg Glu Gln Leu Gln
 1845 1850 1855
 His Arg Leu Ser Ser Thr Ala Arg Glu Asn Gly Ser Thr Ser His Phe
 1860 1865 1870
 Tyr Ser Gln Gly Leu Glu Ser Met Pro Gln Leu Tyr Asn Glu Asn Arg
 1875 1880 1885
 Ala Leu Arg Glu Glu Asn Gln Ser Leu Gln Thr Arg Leu Ser His Ala
 1890 1895 1900
 Ser Arg Gly His Ser Gln Glu Val Asp His Leu Arg Glu Ala Leu Leu
 1905 1910 1915 1920
 Ser Ser Ser Gln Leu Gln Glu Leu Glu Lys Glu Leu Glu Gln Gln
 1925 1930 1935
 Lys Ala Glu Arg Arg Gln Leu Leu Glu Asp Leu Gln Glu Lys Gln Asp
 1940 1945 1950
 Glu Ile Val His Phe Arg Glu Glu Arg Leu Ser Leu Gln Glu Asn Asn
 1955 1960 1965
 Ser Arg Leu Gln His Lys Leu Ala Leu Gln Gln Cys Glu Glu
 1970 1975 1980
 Lys Gln Gln Leu Ser Leu Ser Gln Ser Glu Leu Gln Ile Tyr Glu
 1985 1990 1995 2000
 Ser Leu Tyr Glu Asn Pro Lys Lys Gly Leu Lys Ala Phe Ser Leu Asp
 2005 2010 2015
 Ser Cys Tyr Gln Val Pro Gly Glu Leu Ser Cys Leu Val Ala Glu Ile
 2020 2025 2030
 Arg Ala Leu Arg Val Gln Leu Glu Gln Ser Ile Gln Val Asn Asn Arg
 2035 2040 2045
 Leu Arg Leu Gln Leu Glu Gln Gln Met Asp His Gly Ala Gly Lys Ala
 2050 2055 2060
 Ser Leu Ser Ser Cys Pro Val Asn Gln Ser Phe Ser Ala Lys Ala Glu
 2065 2070 2075 2080
 Leu Ala Asn Gln Gln Pro Pro Phe Gln Gly Ser Ala Ala Ser Pro Pro
 2085 2090 2095
 Val Arg Asp Val Gly Leu Asn Ser Pro Pro Val Val Leu Pro Ser Asn
 2100 2105 2110
 Ser Cys Ser Val Pro Gly Ser Asp Ser Ala Ile Ile Ser Arg Thr Asn
 2115 2120 2125
 Asn Gly Ser Asp Glu Ser Ala Ala Thr Lys Thr Pro Pro Lys Met Glu
 2130 2135 2140
 Val Asp Ala Ala Asp Gly Pro Phe Ala Ser Gly His Gly Arg His Val
 2145 2150 2155 2160
 Ile Gly His Val Asp Asp Tyr Asp Ala Leu Gln Gln Ile Gly Glu
 2165 2170 2175
 Gly Lys Leu Leu Ile Gln Lys Ile Leu Ser Leu Thr Arg Pro Ala Arg
 2180 2185 2190
 Ser Val Pro Ala Leu Asp Ala Gln Gly Thr Glu Ala Pro Gly Thr Lys
 2195 2200 2205
 Ser Val His Glu Leu Arg Ser Ser Ala Arg Ala Leu Asn His Ser Leu
 2210 2215 2220
 Glu Glu Ser Ala Ser Leu Leu Thr Met Phe Trp Arg Ala Ala Leu Pro
 2225 2230 2235 2240
 Asn Ser His Gly Ser Val Leu Val Gly Glu Glu Gly Asn Leu Met Glu
 2245 2250 2255
 Lys Glu Leu Leu Asp Leu Arg Ala Gln Val Ser Gln Gln Gln Leu
 2260 2265 2270
 Leu Gln Ser Thr Ala Val Arg Leu Lys Thr Ala Asn Gln Arg Lys Lys
 2275 2280 2285
 Ser Met Glu Gln Phe Ile Val Ser His Leu Thr Arg Thr His Asp Val
 2290 2295 2300
 Leu Lys Lys Ala Arg Thr Asn Leu Glu Met Lys Ser Phe Arg Ala Leu
 2305 2310 2315 2320
 Met Cys Thr Pro Ala Leu

2325

<210> 2
 <211> 9679
 <212> DNA
 <213> rat

<220>
 <221> misc_feature
 <222> (1)...(9679)
 <223> n = A,T,C or G

<400> 2

```

ccggccccct ttggtagtag tatctcagag ctcgccccat agtttcatag ttcatgtctg      60
gtttgttctt atgtttccc cagagcttcg agacagccct tgagtccacc agcttgaata      120
tgcccttttc tctctgagtc catttaatat acctgggaca agtattttta tcttgaagca      180
gatctaaagg aaactccac agatagggtt tggttccctt tccttctctg gctttcttct      240
tgactcttaa ctcaggagac ccattggaaa ctggtgactg ctgggtcttt gggttacggc      300
caactttctt cttttattt gttctgtggc tgcgtggta agtatggata ggcgaggcat      360
ccatgggttc agactctctt gtgcacactt ccactacatg ctccgtaatg acatctggcc      420
tcatcgagc atggataaaa tcggattctt gaatctcaa gcaggtagga gactccat      480
gaagcagggc ttcaagagct tcaatggtct tatccgtaca gtgtgcatta ctgctgtgaa      540
ctgtatgttc cacggccccgg atgagcagat ccagctgggt cgtgggtccc tcatgcagag      600
acgtcgccat gtttatcccc gggctggaaac tgctgttca cattgactta caccctgagc      660
agcggcgcac ggggagaagg cggaaacccgc ggcggagac acacggcgtg cggcgggcac      720
acactcagc actcgcacac actccgacgc ccggatccctt gcgcgtcctc cgacagggaaag      780
cgccggccgg cccgcctccc gcccggggc tgagcagccc caccactaa cggcaggggc      840
ggcggcggcc cccgctggca acgcgatctt ccgcggccgc gcccagacag gaatggccgg      900
gcgcggcag ccagggccgc caccggacacc tgaggctgg cggccgcag gcccctctg      960
gggacgcggg cctcggcagg aaaaggcgcg cttcacgtc tgccgaagcg aagtctgcaa      1020
atgtccccctc agcatggtct tcctcctggc tcaatctgtc tcacccatg gtgatcttag      1080
gactggggct cttttccagg tccccagttt ctcaagtcta tcttctacat ccctcttgat      1140
tttctactcc attgtggaa agtcccgaaa cagagctccccc gccgc当地 cactgctgatg      1200
ccatcgctc tttctggc aagtttgcgaa aattcaatg tgatggatg gacatccaga      1260
tgattggcag gtttacggg ttcattttt aattcaatg tgatggatg gacatccaga      1320
agtccagtttcttccatccattttccagg tccccagttt ccgtcgat caatgttaatt acggctcaga      1380
cccttcaccc ttccacact cccaaagagct gaaactctaa ccagcagctc tctggagctc      1440
ctgtatgtcc tccacgtcgc cgtgtccctt gcccctccccc tcagggccgc agacggccgg      1500
ggccggccgc gccggccggc gttggccggg cgtccctggg gaagccgagg gggctccccc      1560
ggccacccgc gcgagccgct cccgaccaca ggacgagaca aaccgggct atgtcgctt      1620
ggccctcggy gttccacage ctcagcagcg tcctagccct cccgctccat gccacggcaa      1680
gtctcgaccg tggccagggtt gtaagggggg cgatcgccgc tgctccctccc catgggtcgc      1740
ccaccatgtc taatggatat cgactctgtt ccacgacccat caatgactt aagaaggaga      1800
cttcagccctt caagctcgc atctacttcc tggaggagcc ctgc当地 aagatggaga      1860
tcagccggaa ggacgtctac aagggaaaca ttgagctgaa ggttgaatg gaggcctga      1920
acagagagct ccaggacagg aaacagcatc tacataaaaac atggccgat gaggaggatc      1980
caacagcca gaatgaagca gagctccggc gccaggttga agaaccgcag caggagacag      2040
acacggttta tgagcttca gacaacaaca ttcagctgtc gcaggaggaa tccaggtttg      2100
aaaggatga agccacacag atggagactc tggtgaggagc agagaagggg tgtaatctgg      2160
gctctcaga gagggtgaag gatctacca agaaacaggga agatgcaccg ggagaccagg      2220
aaagcttga ccaatattct gccgactgg ctccaggaggc caggagaatt gaagactgtc      2280
gcagaggtt ggctgcccag gaggggcttg tggaaacagct gtctcgagag aaacaacac      2340
gttacatct gctggaggag cttgggggca tggaaatgtca gcccattcttccaa aggggttac      2400
cacgcaaca aaagccagac ctaaatgaga cccctacaaac ccagccatct gtgtcttgc      2460
ccacctggc agaactccag gacaaaatcc agcaaacaga ggtcaccac aagattcttc      2520
agagaaaatc gaatgcacatg agctgtgagc tcaagatctgc acaggagtcg tctcagaagc      2580
agatcagac aatccaaagc ctcaggaaa tgctaaagag cagggaaagt gagactgaag      2640
gctgttca ggtgattgaa ggtccaaatg acacaatggc aaagcttccg gaaatgctac      2700
ccagagcca gctccggacag tcctccagact cagagggtat tgccctgtc cagcagcaag      2760
ggccctgtc tgacccatc agtgcgttgt tctgc当地 gtttgaatc cagaagctcc      2820
gaggctgtt acgcccagaaa gagcgtcagc tggctgacggc agaaggaaatc atgcaatttg      2880
ggaggctgc agcacaggag agagagcagc agaaggaaatc tgcttggaaa cataaccagg      2940
attacgaaa agcttgcaa cacctccaag gagaactgca cagtaagagc caacagctcc      3000
  
```

acgttctgga ggcagaaaaa tataatgaaa ttcaaccca gggacaaaac attcaacacc 3060
 taagtacag tctgactcac aaagagcagc taattcagga acttcaggag ctcctacagt 3120
 atcgggatac cacagacaaa actctagaca caaatgaggt gtttctttagg aaactacggc 3180
 aacgaataca agaccggca gttgctctag agcgggttat agatgaaaag ttctctgctc 3240
 tagaagaaaa ggacaaggaa ctgcggcagc tccggcttc tttgaggagc cgagaccatg 3300
 acttagagag actgcgttgt gtctctgtctg ccaatgaagc taccatgcaa agtatggaga 3360
 gtctctttag ggcagggc ctggaagtgg agcagttaat tgccacctgc caaaaacctcc 3420
 agtgggttggaa ggaagaattt gaaaccaagt ttggccactg gcagaaggaa caggagagca 3480
 tcattcagca gttacagaca tctctgcattt acaggaacaa agaagtagag gatctcagt 3540
 caacttgcctt ccacaaactt ggacccggcc agagtgaagt agctgaggag ctgtgccagc 3600
 gcctgcagcg gaagggaaagg gtgtgtcagg accttcttag tgatcggaaac aaacaagcca 3660
 tggagcagca gatggaggc caggactgc tccagtgat gggcacccgg gaacaggaaa 3720
 gagcaggctgt tgccggaaaaa atgttacaag cttcatgg aagaacttcg gaattacagg 3780
 ccctgcggca gtatcttaggg ggaaggaaat taatggcagc atctcaggca ttcatctcta 3840
 accaaccagc tggagcgaact tctgttaggccc cccaccatgg agaccaaaact gaccaagggtt 3900
 ctacgcagat gcccctcga gacgacagca cttcgctgat tgccagagag gaggccagca 3960
 taccccggtt tacatttagga gactcagaca cagtttgcac gctggagaaa gaactgagca 4020
 atgccaagga ggagctttag ctcatggccca aaaaagaaaag agaaagccag atagaattgt 4080
 ctggccctgca gtccatgtat gctgtgcag aggaaagagct gcaggtgcag gctgctgact 4140
 tggagttccctt gaccaggaac atacagataa aagaagaccc cataaaggac ctgcaaatgc 4200
 aactgggttgc ccccttgcac atgcccggca tggagcgcct gacccaaaggg gctttacttc 4260
 ttccggggaaa agttgttca gtggaaacccc agggtcaggagg aacaggagac 4320
 aacagttgttgc gctgtatgtta gaaggacttag tggatgaaacgg gatgtggc aacaggagcccc 4380
 tgcaagctga gcggcagctc tacagcagcc tggtaaggat ccatggccaa ccagagatct 4440
 ctgagagaga ccgaactctg caggtggaaac tggaaaggggc ccaggtgttgc cgcagtcgac 4500
 tagaagaagaat tcttggaaag agcctggagc gcttaaggcag gctggagacc ctggccgcca 4560
 ttggagggtgc tactgcggc gatggactg aagataacaag cacacagtcc acagacagca 4620
 ttgaggagggaa ggctgcacac aacagccacc agcaactcat caaggtgttct ttggagaaaaa 4680
 gcctgaccac catggagacc cagaacacat gtcttcagcc ccctttccca gttagggagg 4740
 atggtaacac gcatcttcac gaaagaaatgc tccatcttagt ggcttggatcc caccagccct 4800
 tagaagagaaa gagaaaaagct gagggcagaac tcaaggagctt aaaggctcaa attgagaaag 4860
 caggattctc ctctgtgtcc cacatcagga acaccatgtc gggctttgc ctttgccttgc 4920
 agaatgcaga gctgaaagag cagatggggag aagcaatgtc tgatggatgg gaggtggagg 4980
 aagacaagga gaagggcgag gtgtatgttgg agaccgtgtt gggcaaaagg ggtctgatgt 5040
 aggacagcct tcaggctgat ttccaggaaat tccagggggag actcaagagt gcttacaaca 5100
 tcatcaaccc tccaaagag cagtcgttcc tgagaagctc ggaaggaaac actaaggaga 5160
 tgccaggtt ctcgtgcgc ctggccaggg aggtggacacat gatgaaacatg ggcttgcctt 5220
 cctcggagaa gcatcaacac caagaacagg agaatatgac cgcaaggccct ggccccaggc 5280
 cccagagttt caagcttggg acagctctc tcaatggacgg ctaccaactg gagaacaatg 5340
 cccaggccca agactcttgc catcagccag aatttagctt accagggtcc accaaacacc 5400
 tgccgtccca gctggctcag ttttagacaac ggttaccaaga tctccaggag aagctgtca 5460
 tctcagaage cactgtgttt gcccaggca accagctaga gaagtacaga gcatattaa 5520
 gtgaatccctt ggtgaagcag gacagcagc agatccagggtt ggaccttcag gacctggggct 5580
 atgagacttgc tggccggaaat gagaatggaaat ctgaaatgttgg gtagacgttgg 5640
 gtgaggagca cggtaacctg aaggctgttgg tttgtgttgg aggttggc tcttggatgg 5700
 ggttacctggc ccctgttgc gtcagctcac ctgttgcggaa accctggaga acaagccagg 5760
 aagccagaag aatccaggca caagggactt cagacaacacg ctctcttgc aggaaggaca 5820
 tccgaaatctt gaaagccagg ctaccgatgtt ctttgcggatgttgg gtagacgttgg 5880
 gggctccggcctt cttgttgc gcaacggattt actcatcgat ttttgcggatgttgg 5940
 tgatagccgtt ggcacccctt gggggggctt caccggccatg ttttgcggatgttgg 6000
 gtttgcggatgttggc agatggcacc gggggctttt acccttccagg gtttgcggatgttgg 6060
 tagagaatctt catccagaga gtatccctcgc tggggccca gtttgcggatgttgg 6120
 aagggaaatgttgg ggttgcggatgttggc ttttgcggatgttgg 6180
 ttttgcggatgttggc gggccggaaaacttgc ttttgcggatgttgg 6240
 attttgcggatgttggc ttttgcggatgttgg 6300
 ggaacaacacg ctttgcggatgttggc ttttgcggatgttgg 6360
 gtttgcggatgttggc agacaggctt gtttgcggatgttgg 6420
 aagaagttgg gtttgcggatgttggc ttttgcggatgttgg 6480
 aagtgttgg gtttgcggatgttggc ttttgcggatgttgg 6540
 atgtgttggc ttttgcggatgttggc ttttgcggatgttgg 6600
 aagcctgcctt ttttgcggatgttggc ttttgcggatgttgg 6660
 caccctggatgttggc ttttgcggatgttggc ttttgcggatgttgg 6720
 ccatcagttt gccaactcccc ctttgcggatgttggc ttttgcggatgttgg 6780

ttaactttaa	ctccataaccc	aagccggcta	gccttccca	ggcaccaatg	cacttcactg	6840
tacccagctt	catgccttgc	gccccctctg	ggcccccct	tcttggttgc	tgtgagacac	6900
cagtgggtgc	cttggtcag	gctcaacaag	agctgcagat	gctgcagaag	cagctggac	6960
gaagtgttag	cattggccct	cccacctcca	catccacgtt	gcttagcaac	cacacagaag	7020
ctagctctcc	ccgctacagec	aaccctgctc	agcccaactc	cccagcaagg	ggcaccatag	7080
agctggccag	aatcttggag	cctggatacc	tggcagccg	ccagtgggac	atgatgaggc	7140
ctcagaaagg	gagcatctct	ggggagctgt	cctcaggttc	ctcgatgtac	cagcttaact	7200
ccaaaccac	agggccgac	ctgttggaaag	agcatttag	tgagatccgg	aacctgcgccc	7260
agcgccttgg	ggagtcata	tgtgtcaatg	acaggctacg	ggagcagctg	cagcataggc	7320
tcaagctccac	gccccggagaa	aatggttcca	cctctcactt	ctacagtca	ggcctggagt	7380
ccatgcctca	gctctacaat	gagaacagag	ccctcaggg	agaaaaccaa	agccctgcaga	7440
cacggctcag	tcatgttcc	aggggacact	cccaggaaat	ggaccacatg	agggaggctc	7500
tgtttcttc	aagttccca	cttcaggagc	tggagaagga	gctggagcag	cagaaggctg	7560
agcggcgca	gcttctggaa	gacttgcagg	agaagcagga	tgagatctg	catttcccgag	7620
aggagaggt	gtcccccccg	gaaaacaact	ccaggctgc	gcacaagctg	gccctctgc	7680
aacaacagtg	tgaggagaaa	cagcagctct	ccctgtccct	gcagtcagag	cttcagatct	7740
a ^r gagtccct	ctacgaaaat	cctaagaagg	gcttgaaaagc	cttcagccct	gattectgtt	7800
accaagttcc	gggtgagtt	agctgcctgg	tggcagagat	tcgagctctg	agagtgcagt	7860
tggagcagag	cattcaagtg	aacaaccgtc	tgcggctgca	gctggaaacag	cagatggatc	7920
acgggtctgg	caaaggccat	ctcagttct	gcccgtttaa	ccagagcttc	tcagccaagg	7980
cgagactggc	aaaccacagc	ccacccttcc	aaggttcagc	tgcttccct	ccagtccggg	8040
acgttggctt	gaatttctca	ccctgtggcc	tcccccggaa	tgcgttct	gttccctggct	8100
cagacttctgc	catcatcagt	aggacaaaaca	atggttcgaa	tgagtcgtca	gcaacgaaga	8160
ccccctccaa	gatggagggtc	gatgtctgctg	atggcccatt	tgccagtgg	cacggcagac	8220
acgtcatacg	ccatgtggat	gactacgacg	ccctacagca	gcagattggg	gaagggaaagc	8280
tgtgtatcca	aaagatactc	tctctcagca	gcccagcacg	cagcgtccct	gcaactggacg	8340
cgcaggccac	agaggacca	ggtacaaaaa	gtgtccatga	gcttcggagc	agcggccagg	8400
ctctgaacca	cagccatgaa	gagtcaatc	cccttcctac	catgttctgg	agagcagctt	8460
tgccaaactc	tcatgttct	gtactggtag	gcaagaggg	aaacctgtat	gagaagaaac	8520
tcctagacct	gcgagcccaa	gtgtcccaac	agcaacagct	ccttcagagc	actgtctgtc	8580
gtctgaagac	ggccaaccag	aggaagaaaa	gcatggagca	gttcatctgt	agccatctga	8640
ccaggaccac	tgtatgtctt	aagaagcac	ggactaattt	agagatggaa	tccttcaggg	8700
ccctgtatgt	caactccagcc	tttgtgaccct	tgccttccag	gagccacata	aaaggcgaag	8760
ccaggagttc	ttaaaacacgc	aggaaagggt	ggcctgccc	cccttagtac	agctgcctgt	8820
ctgctgagaa	atacctggtc	cgacttcctcc	cctgtggag	ctccaggaa	gggtctcatat	8880
atgtgtccac	atgggacagg	cagaaggaa	agtggatcc	tgacatgaa	tatgattagc	8940
caaggccac	tggcccatc	actaagcaaa	actcatgtag	actgtgtag	aggcccccccg	9000
gcactgttc	tagacagcct	cagcagcacg	gtgcccaccc	cgttacat	ctcacctcaa	9060
gatagccaa	tcagggaaac	taggaccta	ccacccacaa	acaggatgtg	tggcccaat	9120
gccaacgtc	ctcagacacgt	tgtaaaagca	cacatcattt	agtggcagcg	tcacggccga	9180
cactgttgc	gactacaaa	cccccactg	acccagtctt	ggggccaggcc	agctctgtgg	9240
gccaagtctg	tgtactttt	ggtctctacc	accacacccag	agagatctt	tatagcaaat	9300
gtggtaactt	gttaggtcccc	tgcacttage	ctagcataat	taacttccct	caggggaaatt	9420
agttgaacca	acttcctttaa	ctctgtgtc	ccctgaatcc	ctgtttctt	cgttatctca	9360
ggagattgg	ggccacatca	tgccatttga	atgtttatgt	aacagatata	cggtccctt	9480
taatggcatg	ggcaaggcct	gctctgtact	gaagactgtg	tcttcacatgt	gctcatagga	9540
cgtgggtgt	tgtataatag	tataatata	gtcgctatgg	ctatgtttg	9600	
aaggccacg	taagtgcaga	gcatgggtg	agaagacgt	aagcagtc	tcttatggct	9660
attaaagcta	actgtgtac					9679

```

<210> 3
<211> 6981
<212> DNA
<213> rat

<220>
<221> misc_feature
<222> (1)...(6981)
<223> n = A,T,C or G

<400> 3

```

atgtctaataatg gatatacgac	tctgtccccag caccctaataatg acctgaagaa ggagaacttc	60
agccctaaggc tgccatcta	cttccctggag gagcgcataac aacagaagta tgaagtca	120
cgggaggacg tctacaaggc	gaacatttag gtaagggtt aagtggagag cctgaaa	180
gagctccagg acaggaaaca	gcatctacat aaaacatggg ccgatgagga ggtatca	240
agccagaatg aagcagagct	ccggcgccag gttagaagaaac cgacagcaggaa gacaa	300
gtttatgagc tcctagacaa	caacatttag ctgtcgagg aggaatccag gtttca	360
gatgaagcca cacagatgg	gactctggt gaggcagaga. aggggtgtaa tctggagc	420
tcagagagg tgaaggatgc	taccaagaac agggaaatgatc caccgggaga ccaggta	480
cttgaccat attctcgccg	actggctcag aggacaggaa gaattgaaga gctgaggc	540
agcttggctg cccaggaggg	gcttggaaac caactgtc gagagaaaca acaactgtt	600
catctgctgg aggagcctgg	gggcattggaa gtgcaggccca tgctaaagg gttacc	660
caacaaaagc cagacctaaa	tgagacccct acaacccagg catctgtc tgatccc	720
ctggcagaac tccaggacaa	aatccagcaa acagaggta ccaacaagat tcttca	780
aaactgaatg acatgagctg	tgagctcaga tctgcacagg agtctctca gaagcaag	840
acgacaatcc aaagctcaa	ggaaatgcta aagagcaggg aaagttagac tgaagagct	900
taccaggta ttgaaggctca	aatgacacaa atggcaagc ttccggaaat gctacacc	960
agccagctcg gacagctca	gagtgacag ggcattggcc ctgtcagca gcaagtggc	1020
ctgcttgacc ttcaagatgc	tctgttgcg agccagctt gatccaaatc gctccagagg	1080
ctgttacgccc agaaagagcg	tcaagctggc gacgcgaaac ggtcatca atttggag	1140
gctgcagcac aggagagaga	gcagcagaaag gaagctgtt gaaacataaa ccagaa	1200
cgaaaagctt tgcaacac	cttcaaggaaat ctgcacagta agagccaaac gtcacac	1260
ctggaggcag aaaatataa	tgaaattcga acccaggaaac aacacattca acacca	1320
cacagtctga gtcacaaaga	gcagctaatt caggaacttc aggactctt acagatc	1380
gataccacag aaaaaactct	agacacaaaat gaggttttca ttgaaaaact acggcaac	1440
atacaagacc gggcaggttc	tctagacgg gttatagatg aaaagtctc tgctctagaa	1500
gaaaaggaca aagaatgcg	gcagctccgg cttgtgtgaa gggaccgaga ccatgactt	1560
gagagactgc gttgtgtcct	gtctgcaat gaagcttacta tgcaaaatgtt gtagactct	1620
ctgagggcca gaggcctgga	gaggcacttgc ttaatttgcctt cctggaaact ctcctgt	1680
ttgaaggaag aattggaaac	caagtttgcctt cactggcaga aggaacagga gacatc	1740
cagcagtatc agacatctct	gcatgacagg aacaaagaag tagaggatct cagtc	1800
ttgctccaca aacttggacc	cgccagatgtt gaagtagctg aggactgtg ccagcgc	1860
cagcggaaagg aaagggtgt	cgaggacattt ctgagtgtc ggaacaaaca acccatgg	1920
cacgagatgg aggtccagg	actgtccatc tcgatggca cccggaaaca gaaaagac	1980
gctgttgccag aaaaatggt	acaagcttc atggaaagaa actcggaaat acaggcc	2040
cggcagtatc tagggggaa	ggaaattaatg gcagcatctc aggattcat ctctaa	2100
ccagctggag cgacttctgt	aggccccccat cttggagacg aaactgacca agtttgc	2160
cagatgcct ctcgagacga	cagcaccccg ctgactgcc gagaggaggc cagcatac	2220
cggtctacat taggagactc	agacacagttt gcagggctt agaaaagaact gagcaat	2280
aaggaggcgc tttagtctcat	ggccaaaaaa gaaagaaaa gccagataga attgtctg	2340
ctgcagtcc ttagtgcgtt	gcaagaggaa gagctgcagg tgcaggctgc tgacttgg	2400
tccctgacca ggaacataca	gataaaagaa gacccatataa aggaccttca aatgc	2460
gttgaccctg aagatatacg	ggccatggag cgcctgaccc aagaggctt acttctt	2520
aaaaaaagttt cttcagtgaa	acccccagggtt cagagaacag gagacaacag	2580
ttgtctgtgaa tgtagaagg	acttagtgat gaaacggatc ggctcaacaa ggccct	2640
gctgagccggc agctctac	agcgttccatg cccaaacccat gatctctgt	2700
agagacccgaa ctctgcagg	ggggcccaagg tgttacgcag tgactatggaa	2760
gaagttctt gaaagaaaggc	ggagcgttca aaggggttctt acttcttccgg	2820
gggtgtctact caggcgtatc	gactgttgcg acaagcacac agttcacaga cagcatt	2880
gaggaggctg cacacaaacag	ccatcataagg tgcattttggaa gaaaaggctg	2940
accacccatgg agacccagaa	accatgtctt cccccatggcgg agaggatgtt	3000
aacaggcatc ttcaaggaa	aatgtctccatc ctgagggtgtt aaatccacca gcctttag	3060
gagaagagaa aagctgaggc	agaactcaag gagctttaagg ctcaatttga gaaaggc	3120
ttctcccttg tgcattttgg	catgacccatc tttgccttgc ctttggaaat	3180
gcagagctga aagacccat	gggggggttctt atgtctgtt gatggaggtt ggagaa	3240
aaggagaagg gcgagggtat	gggggggttctt gtttggccaa aaggggggttctt g	3300
agcccttcagg ctgaggatc	gaaagttccatc gggagactca agagtccata caacat	3360
aacccctctt aagagcaggat	ggcttccatc agctcgaaag ggaacactaa ggagat	3420
gagttccctg tgcgccttgc	cagggtgtt gacacatgtt acatgggtt gccttcc	3480
gagaagcatc aacaccaaga	acaggatgtt atggccaa ggcggccccc caggcccc	3540
agtctcaagg ttgggacac	ttccatc gacggcttca aactggagaa caatggcc	3600
gcccccaagact ctggacatca	ggccatcaattt agccttccatc ggtccacccaa acac	3660
tccctgatgg ctcaatgtt	ttccatc aagatctcc aggagaagct gtcatctca	3720
gaagccactg tgtttgcctt	ggccaaaccag ctagagaat acagagccat attaagt	3780

tccctggta agcaggacag caagcagata caggtggacc ttcaggacct gggctatgag 3840
 acttgtggcc gaagtggaaa tgaagctgaa cgtgaggaga ccaccagccc tgagtgttag 3900
 gagcacgta acctgaagcc tgggtgtcg gtggaaaggct tggctctga gcaagggtac 3960
 ctggaccctg tcttggtag ctcacctgtg aagaaccctt ggagaacaag ccaggaagcc 4020
 agaagaatcc aggccacaagg aacttcagac aacagcttc tcctgaggaa ggacatccga 4080
 aatctgaag cccagctacc gaatgcctac aaggcttc agaaccttag gagccgggtc 4140
 cggtccccgt ctgcacaaag cgattactca tcgagtctgg agagaccccg caagctgata 4200
 gccgtggcaa cccttgaggg ggctcaccc cacagtgtca ctgatgaaaga cgaaggcttg 4260
 ttgtcagat gcacccgggg ttttacctt ccagggctcc aggccaaaaaa gaatctagag 4320
 aatctcatcc agagatc ccagctggag gcccagctcc cccaaactgg actagaaggg 4380
 aagctggctg aagaactgaa gtccgcctcg tgccctgaa aatacgatc ttgtattcag 4440
 gatcaggccc gaaaaactgt catatctgcg tccgaaaata cnaaaaggaa gaaggatgg 4500
 ttttcttc acccaacatt cgaaagatac gtcaaattt ttgaagacct ctgtggaaac 4560
 aacgacttga ctacttaccc gggccagagc ttccggaaac aacttagtt aaggcgttca 4620
 gtgacagaca ggctgaccag caaattcagc acaaaggatc ataagatgaa aaaagaagaa 4680
 gttgggcttg agccactgge cttcagggtt agcaggaaat tacaggagaa agagaaatgt 4740
 attgaagtcc tgcaggccaa ggtggatacc cgggttttct caccccc:ag cagccatgtc 4800
 gcgtctgagt cccacccgtt tggcagcagc acatctttcc tgcggatgaa catagaagcc 4860
 tgctctgaca tggacatgc cagcgatc acacactatg aagagaagaa gccctcaccc 4920
 agtaactcag cagccatgtc atctcagggg cttaaaggccg agccccaagc cagctccatc 4980
 agcttgccaa ctccccagaa ccccccataag gaggccagcc aggcccagcc agctttcac 5040
 ttaactcca taccctaaagcc ggttagcctt tccctggac caatgcactt cactgtaccc 5100
 agcttcatgc ctttcggccc ctctggccct ccccttctt gttgcgtgaa gacaccatgt 5160
 gtgtctttgg ctgaggctca acaagagctg cagatgcgtc agaagcagct gggacgaaatg 5220
 gtttagcatg cccctccac ctccacatcc acgttgccta gcaaccacac agaagcttagc 5280
 tctccccgtt acgaaacccc tgcgtggccc cactccccag caaggggcac catagagctg 5340
 ggcagaatcc tggagccctgg atactggc acggccatgt gggacatgat gaggccctag 5400
 aaaggagca tctctggga gctgtctca ggctctcgat ttaggtgaa tccggaaacct ggcggcgc 5460
 cccacagggg cgcacgtttt ggaagagcat ttaggtgaaat tccggaaacct ggcggcgc 5520
 ctggaggagt ccataatgtt caatgacagg ctacggggc agctgcagca taggtcagc 5580
 tccacggccc gaaaaatgg ttccacctt cacttctaca gtcaggccct ggagtccatg 5640
 ctcagctt acaatgaaag cagagccctc agggaaagaaa accaaacgcct gcaagacacgg 5700
 ctcagtcattt cttccagggg acactcccg gaagtggacc acctgaggaa ggctctgtt 5760
 cggcagcttc tggaaagactt gcaggagaag caggatgaaat tcgtgcattt ccgagaggag 5820
 aggctgtccc tccaggaaaaaa caactccagg ctgcagcaca agtggccct ectgcaacaa 5880
 cagtgtgagg agaaacagca gctctccctg tccctgcagt cagacgttca gatctacgag 5940
 tccctctacg aaaatctaa gaaggccctt aaaggcttca gccttagattt ctgttaccaa 6000
 gtcccccgggtt agttgagctg cctgggtggca gagattcggat ctctgagatg gcaatggag 6060
 cagagcattt aagtgaacaa ccgtctgggg ctgcagctgg aacagcagat ggatcacgg 6120
 gctggcaaaaggccatgttccatg ttctccctt gttaccaga gcttctcagc caaggccggag 6180
 ctggcaaaacc agcagccacc cttccaaggat tcaatgcgtt cccctccatg ccgggacgtt 6240
 ggcttgaattt cttccacccgtt ggtcctccccc agcaattcgat gctctgttcc tggctcagac 6300
 tctgcctatca tcagtaggat aaacaatggt tggatgagat ctgcagcaac gaagacccct 6360
 cccaaagatgg aggtcgatgc tgctgtggc ccatttgcctt gttggacacgg cagacacgtc 6420
 atcggccatg tggatgacta cgacgcccata cagcagcaga ttggggaggaa gaagctgtg 6480
 atccaaaaga tactgtctt cagcaggcca gcacgcagcg tccctgcact ggacgcgc 6540
 ggcacagagg caccaggatc caaaatgttc catgagcttc ggacgcgc cagggtctg 6600
 aaccacagcc tagaagatgc agctccctt ctcaccatgt tctggagatc agctttgc 6660
 aactctcatg gttctgtact ggtggcgaa gagggaaacc tgatggagaa agaacttctt 6720
 gacctgcgag cccaaatgttca ccaacagcaa cagctcccttcc agacgttgc tggctgtctg 6780
 aagacggcca accagaggaa gaaaatgttca gacgttgc tggatgacca tctgaccagg 6840
 aaccatgtat tcttggaaatggaa agcagggactt aatggatgaa tggaaatccctt caggccctg 6900
 atgtgcactc cagccttgc a 6960
 6981

<210> 4
 <211> 9241
 <212> DNA
 <213> human

<400> 4

ggatccttga	gggcactgg	g	cgactttca	ggtgagg	tct	tagcagat	ga	a	agcgg	ctgg		60		
ctgtggcc	cc	c	gcccagt	gt	ttctg	ctc	cc	g	c	tgag	ccag	gtgt	caacc	120
ggatttgg	cg	g	gggtc	g	ctgg	ctacc	tc	g	cat	gc	g	ccc	gtgac	180
cg	g	act	ac	ag	cc	at	gt	gg	ca	g	cc	g	ctg	240
ctt	gaa	at	ct	cc	cc	at	cc	gg	gg	ca	gg	cc	ccat	300
cg	gg	gg	cc	ca	gg	ct	tc	gg	gg	gg	cc	gg	ctgg	360
ag	ct	gg	gg	ag	ac	at	gg	gg	gg	gg	gg	gg	ggagagac	420
ctt	agg	cg	gt	ct	ta	aa	ag	gg	gg	gg	gg	gg	ggagagac	480
gag	tc	gg	cc	tc	cc	cc	cc	gg	gg	gg	gg	gg	ggatccc	540
at	g	ct	g	ac	cc	cc	cc	gg	gg	gg	gg	gg	ggctgt	600
ac	cc	ag	ta	g	cc	cc	cc	gg	gg	gg	gg	gg	gg	660
a	agg	g	at	tc	tg	cc	gg	gg	gg	gg	gg	gg	gg	720
ca	ca	cg	gt	ct	ca	aa	at	gg	gg	gg	gg	gg	gg	780
cc	cc	cg	at	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	840
tat	cg	at	tc	cc	cc	gg	tt	gg	gg	gg	gg	gg	gg	900
ct	g	ct	ac	tt	cc	gg	tt	gg	gg	gg	gg	gg	gg	960
gat	g	ac	tg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	1020
gat	g	cg	ag	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	1080
gt	gg	g	ag	at	cc	gg	gg	gg	gg	gg	gg	gg	gg	1140
a	acc	g	ac	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	1200
g	cc	at	tt	gt	cc	gg	gg	gg	gg	gg	gg	gg	gg	1260
t	gg	tc	ga	cc	ca	aa	gg	gg	gg	gg	gg	gg	gg	1320
g	ca	ag	cc	ca	gg	gg	gg	gg	gg	gg	gg	gg	gg	1380
gt	gg	aa	at	tt	cc	gg	gg	gg	gg	gg	gg	gg	gg	1440
g	ag	aa	gg	at	cc	gg	gg	gg	gg	gg	gg	gg	gg	1500
ca	tgg	gt	ta	at	ca	gg	gg	gg	gg	gg	gg	gg	gg	1560
cc	cat	cc	ca	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	1620
cc	ca	gg	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	1680
cc	ca	gg	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	1740
ct	gaa	aa	ac	cc	at	gg	gg	gg	gg	gg	gg	gg	gg	1800
tcc	ca	tt	gg	cc	at	gg	gg	gg	gg	gg	gg	gg	gg	1860
ca	aa	gg	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	1920
ca	ag	aa	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	1980
ca	ag	at	tt	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2040
g	at	tt	gg	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2100
ca	cc	aa	gg	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2160
gt	ag	cc	tt	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2220
ca	gg	gg	gt	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2280
gt	ag	gg	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2340
ga	tt	gg	ca	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2400
cg	tg	ct	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2460
ct	aa	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2520
tat	cg	at	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2580
ct	gaa	aa	ac	cc	at	gg	gg	gg	gg	gg	gg	gg	gg	2640
ct	gaa	aa	gg	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2700
gact	tag	aga	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2760
at	tc	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2820
ca	gg	aa	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2880
at	catt	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	2940
g	ca	ac	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3000
cg	t	ct	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3060
ct	gg	aa	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3120
ag	cc	aa	gg	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3180
cc	cc	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3240
ca	aca	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3300
c	ag	tt	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3360
ca	gata	cc	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3420
aa	ag	gg	aa	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3480
ct	ac	at	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3540
t	at	gg	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3600
t	tg	at	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3660
g	aa	ac	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3720
tt	g	ct	cc	cc	cc	gg	gg	gg	gg	gg	gg	gg	gg	3780

tctgcttcct	ctactcctgg	ctcagaaaacg	cccataatca	acagagcaaa	tggcttgggt	7620
ttggatactt	ctccagtaat	gaagaccctt	cccaagctag	agggtgatgc	tactgatggc	7680
tcctttgcca	ataagcatgg	ccgccccatgtc	attggccaca	ttgatgacta	cagtgcctta	7740
agacagcaga	ttgcggaggg	caagctgtcg	gtcaaaaaaga	tagtgtctct	tgtgagatca	7800
gcgtgcagct	tccttgcct	tgaagcccaa	ggcacagagg	tgcttaggcag	caaaggattt	7860
catgagctc	ggagcagcac	cagtgcctg	caccatgcc	tagaggagtc	ggcttccctc	7920
ctcaccatgt	tctggagagc	agccctgcca	agcacccaca	tccctgtct	gcctggcaaa	7980
gtggggagaat	caacagaaaag	ggaacttctg	gaactgagaa	ccaaagtata	caaacaggag	8040
cggcttcctt	agagcacaac	tgagcatctg	aagaacgc	accagcagaa	ggagagcatg	8100
gagcagttca	tcgtcagcca	gctaaccaga	acacatgtat	ttttaaagaa	ggcaaggact	8160
aacttagagg	tgaatccct	aagggtctg	ccatgtactt	cageccttgc	acccttgcct	8220
tcctaggaacc	atgcaagaag	cgccagccacc	agaatgcctt	aaaacagcg	gaaagggtgg	8280
cctgtcccc	ttttgtgcag	ctacatatct	gctgaggagc	atctggcc	cattcctcca	8340
agtccacggg	agggtccaga	agagggagtc	agagatgtat	cctggggag	ctgggagaaa	8400
ggcagaaaagc	ctttctgaca	gctatgaaat	acgattagcc	aagggtccact	tggcccaagca	8460
ctaagaaaaa	gatgcgtgt	ttgcacagaa	ggttttgtga	tcctgcctct	caacagcccc	8520
agcagcttgg	gaacttagcaa	gagcacattt	cttgcctcat	cagctgtct	gagatggaaaa	8580
actcagtgt	tataggaccc	tgatccatgt	gaaaggggca	cgtggccca	atgctggagc	8640
tcctctggca	ggttctaaaa	gcacactact	gaggcagcgt	gcccctccgg	acactgctgg	8700
cgggggctca	gtgagacta	ctcacagatc	cacacctgac	cctgtgggt	cgagtcaaggc	8760
tgggcttgg	tctgcactgt	agcacctgt	ttttttgtgt	tcacatcatg	aatgtgggtga	8820
cttcccagat	accatctcg	gcttaaccta	gcacatcc	tttctttct	tctatgatat	8880
ccaaattgga	ctgacctcac	ttcaaagt	ctgtcccatt	ttgtcaccct	atcttatctc	8940
ggggaaattt	cagactgtat	gccagaccaa	ctctgtt	attcttgc	agagcaaacc	9000
tgtgcttatt	tttaagtggc	atgggaggg	cccccagct	agtaaagcct	agtctgtgtc	9060
ttcacagtgc	tggtagaaat	tgttgtgt	tataaatata	tgtatata	tatatatgt	9120
tgctaacgcc	atataattgaa	ggccaacata	actggggac	agggtgggt	acagaaaatg	9180
aaaggctttt	tggtgattgt	taaagcaaga	tgtgtataaa	gaaataaaata	gtttttcttt	9240
c						9241

<210> 5
<211> 2517
<212> PRT
<213> human

<400> 5
Met Lys Glu Ile Cys Arg Ile Cys Ala Arg Glu Leu Cys Gly Asn Gln
1 5 10 15
Arg Arg Trp Ile Phe His Thr Ala Ser Lys Leu Asn Leu Gln Val Leu
20 25 30
Leu Ser His Val Leu Gly Lys Asp Val Pro Arg Asp Gly Lys Ala Glu
35 40 45
Phe Ala Cys Ser Lys Cys Ala Phe Met Leu Asp Arg Ile Tyr Arg Phe
50 55 60
Asp Thr Val Ile Ala Arg Ile Glu Ala Leu Ser Ile Glu Arg Leu Gln
65 70 75 80
Lys Leu Leu Leu Glu Lys Asp Arg Leu Lys Phe Cys Ile Ala Ser Met
85 90 95
Tyr Arg Lys Asn Asn Asp Asp Ser Gly Ala Glu Ile Lys Ala Gly Asn
100 105 110
Gly Thr Val Asp Met Ser Val Leu Pro Asp Ala Arg Tyr Ser Ala Leu
115 120 125
Leu Gln Glu Asp Phe Ala Tyr Ser Gly Phe Glu Cys Trp Val Glu Asn
130 135 140
Glu Asp Gln Ile Gln Glu Pro His Ser Cys His Gly Ser Glu Gly Pro
145 150 155 160
Gly Asn Arg Pro Arg Arg Cys Arg Gly Cys Ala Ala Leu Arg Val Ala
165 170 175
Asp Ser Asp Tyr Glu Ala Ile Cys Lys Val Pro Arg Lys Val Ala Arg
180 185 190
Ser Ile Ser Cys Gly Pro Ser Ser Arg Trp Ser Thr Ser Ile Cys Thr

195	200	205
Glu Glu Pro Ala Leu Ser Glu Val Gly Pro Pro Asp	Leu Ala Ser Thr	
210	215	220
Lys Val Pro Pro Asp Gly Glu Ser Met Glu Glu	Thr Pro Gly Ser	
225	230	235
Ser Val Glu Ser Leu Asp Ala Ser Val Gln Ala Ser	Pro Pro Gln Gln	240
245	250	255
Lys Asp Glu Glu Thr Glu Arg Ser Ala Lys Glu Leu	Gly Lys Cys Asp	
260	265	270
Cys Cys Ser Asp Asp Gln Ala Pro Gln His Gly	Cys Asn His Lys Leu	
275	280	285
Glu Leu Ala Leu Ser Met Ile Lys Gly Leu Asp Tyr	Lys Pro Ile Gln	
290	295	300
Ser Pro Arg Gly Ser Arg Leu Pro Ile Pro Val Lys	Ser Ser Leu Pro	
305	310	315
Gly Ala Lys Pro Gly Pro Ser Met Thr Asp Gly Val	Ser Ser Gly Phe	320
325	330	335
Leu Asn Arg Ser Leu Lys Pro Leu Tyr Lys Thr Pro	Val Ser Tyr Pro	
340	345	350
Leu Glu Leu Ser Asp Leu Gln Glu Leu Trp Asp Asp	Leu Cys Glu Asp	
355	360	365
Tyr Leu Pro Leu Arg Val Gln Pro Met Thr Glu Glu	Leu Leu Lys Gln	
370	375	380
Gln Lys Leu Asn Ser His Glu Thr Thr Ile Thr Gln	Gln Ser Val Ser	
385	390	395
Asp Ser His Leu Ala Glu Leu Gln Glu Lys Ile Gln	Gln Thr Glu Ala	400
405	410	415
Thr Asn Lys Ile Leu Gln Glu Lys Leu Asn Glu Met	Ser Tyr Glu Leu	
420	425	430
Lys Cys Ala Gln Glu Ser Ser Gln Lys Gln Asp Gly	Thr Ile Gln Asn	
435	440	445
Leu Lys Glu Thr Leu Lys Ser Arg Glu Arg Glu Thr	Glu Glu Leu Tyr	
450	455	460
Gln Val Ile Glu Gly Gln Asn Asp Thr Met Ala Lys	Leu Arg Glu Met	
465	470	475
Leu His Gln Ser Gln Leu Gly Gln Leu His Ser Ser	Glu Gly Thr Ser	480
485	490	495
Pro Ala Gln Gln Val Ala Leu Leu Asp Leu Gln Ser	Ala Leu Phe	
500	505	510
Cys Ser Gln Leu Glu Ile Gln Lys Leu Gln Arg Val	Val Arg Gln Lys	
515	520	525
Glu Arg Gln Leu Ala Asp Ala Lys Gln Cys Val Gln	Phe Val Glu Ala	
530	535	540
Ala Ala His Glu Ser Glu Gln Gln Lys Glu Ala Ser	Trp Lys His Asn	
545	550	555
Gln Glu Leu Arg Lys Ala Leu Gln Gln Leu Gln Glu	Leu Gln Asn	560
565	570	575
Lys Ser Gln Gln Leu Arg Ala Trp Glu Ala Glu Lys	Tyr Asn Glu Ile	
580	585	590
Arg Thr Gln Glu Gln Asn Ile Gln His Leu Asn His	Ser Leu Ser His	
595	600	605
Lys Glu Gln Leu Leu Gln Glu Phe Arg Glu Leu Leu	Gln Tyr Arg Asp	
610	615	620
Asn Ser Asp Lys Thr Leu Glu Ala Asn Glu Met Leu	Leu Glu Lys Leu	
625	630	635
Arg Gln Arg Ile His Asp Lys Ala Val Ala Leu Glu	Arg Ala Ile Asp	640
645	650	655
Glu Lys Phe Ser Ala Leu Glu Glu Lys Glu Lys Glu	Leu Arg Gln Leu	
660	665	670
Arg Leu Ala Val Arg Glu Arg Asp His Asp Leu Glu	Arg Leu Arg Asp	
675	680	685
Val Leu Ser Ser Asn Glu Ala Thr Met Gln Ser Met	Glu Ser Leu Leu	
690	695	700

Arg Ala Lys Gly Leu Glu Val Glu Gln Leu Ser Thr Thr Cys Gln Asn
 705 710 715 720
 Leu Gln Trp Leu Lys Glu Glu Met Glu Thr Lys Phe Ser Arg Trp Gln
 725 730 735
 Lys Glu Gln Glu Ser Ile Ile Gln Gln Leu Gln Thr Ser Leu His Asp
 740 745 750
 Arg Asn Lys Glu Val Glu Asp Leu Ser Ala Thr Leu Leu Cys Lys Leu
 755 760 765
 Gly Pro Gly Gln Ser Glu Ile Ala Glu Glu Leu Cys Gln Arg Leu Gln
 770 775 780
 Arg Lys Glu Arg Met Leu Gln Asp Leu Leu Ser Asp Arg Asn Lys Gln
 785 790 795 800
 Val Leu Glu His Glu Met Glu Ile Gln Gly Leu Leu Gln Ser Val Ser
 805 810 815
 Thr Arg Glu Gln Glu Ser Gln Ala Ala Ala Glu Lys Leu Val Gln Ala
 820 825 830
 Leu Met Glu Arg Asn Ser Glu Leu Gln Ala Leu Arg Gln Tyr Leu Gly
 835 840 845
 Gly Arg Asp Ser Leu Met Ser Gln Ala Pro Ile Ser Asn Gln Gln Ala
 850 855 860
 Glu Val Thr Pro Thr Gly Arg Leu Gly Lys Gln Thr Asp Gln Gly Ser
 865 870 875 880
 Met Gln Ile Pro Ser Arg Asp Asp Ser Thr Ser Leu Thr Ala Lys Glu
 885 890 895
 Asp Val Ser Ile Pro Arg Ser Thr Leu Gly Asp Leu Asp Thr Val Ala
 900 905 910
 Gly Leu Glu Lys Glu Leu Ser Asn Ala Lys Glu Glu Leu Glu Leu Met
 915 920 925
 Ala Lys Lys Glu Arg Glu Ser Gln Met Glu Leu Ser Ala Leu Gln Ser
 930 935 940
 Met Met Ala Val Gln Glu Glu Leu Gln Val Gln Ala Ala Asp Met
 945 950 955 960
 Glu Ser Leu Thr Arg Asn Ile Gln Ile Lys Glu Asp Leu Ile Lys Asp
 965 970 975
 Leu Gln Met Gln Leu Val Asp Pro Glu Asp Ile Pro Ala Met Glu Arg
 980 985 990
 Leu Thr Gln Glu Val Leu Leu Arg Glu Lys Val Ala Ser Val Glu
 995 1000 1005
 Ser Gln Gly Gln Glu Ile Ser Gly Asn Arg Arg Gln Gln Leu Leu
 1010 1015 1020
 Met Leu Glu Gly Leu Val Asp Glu Arg Ser Arg Leu Asn Glu Ala Leu
 1025 1030 1035 1040
 Gln Ala Glu Arg Gln Leu Tyr Ser Ser Leu Val Lys Phe His Ala His
 1045 1050 1055
 Pro Glu Ser Ser Glu Arg Asp Arg Thr Leu Gln Val Glu Leu Glu Gly
 1060 1065 1070
 Ala Gln Val Leu Arg Ser Arg Leu Glu Glu Val Leu Gly Arg Ser Leu
 1075 1080 1085
 Glu Arg Leu Asn Arg Leu Glu Thr Leu Ala Ala Ile Gly Gly Ala Ala
 1090 1095 1100
 Ala Gly Asp Asp Thr Glu Asp Thr Ser Thr Glu Phe Thr Asp Ser Ile
 1105 1110 1115 1120
 Glu Glu Glu Ala Ala His His Ser His Gln Gln Leu Val Lys Val Ala
 1125 1130 1135
 Leu Glu Lys Ser Leu Ala Thr Val Glu Thr Gln Asn Pro Ser Phe Ser
 1140 1145 1150
 Pro Pro Ser Pro Met Gly Gly Asp Ser Asn Arg Cys Leu Gln Glu Glu
 1155 1160 1165
 Met Leu His Leu Arg Ala Glu Phe His Gln His Leu Glu Glu Lys Arg
 1170 1175 1180
 Lys Ala Glu Glu Glu Leu Lys Glu Leu Lys Ala Gln Ile Glu Glu Ala
 1185 1190 1195 1200
 Gly Phe Ser Ser Val Ser His Ile Arg Asn Thr Met Leu Ser Leu Cys

1205	1210	1215
Leu Glu Asn Ala Glu Leu Lys Glu Gln Met Gly Glu Ala Met Ser Asp		
1220	1225	1230
Gly Trp Glu Ile Glu Glu Asp Lys Glu Lys Gly Glu Val Met Val Glu		
1235	1240	1245
Thr Val Val Thr Lys Glu Gly Leu Ser Glu Ser Ser Leu Gln Ala Glu		
1250	1255	1260
Phe Arg Lys Leu Gln Gly Lys Leu Lys Asn Ala His Asn Ile Ile Asn		
1265	1270	1275
Leu Leu Lys Glu Gln Leu Val Leu Ser Ser Lys Glu Gly Asn Ser Lys		1280
1285	1290	1295
Leu Thr Pro Glu Leu Leu Val His Leu Thr Ser Thr Ile Glu Arg Ile		
1300	1305	1310
Asn Thr Glu Leu Val Gly Ser Pro Gly Lys His Gln His Gln Glu Glu		
1315	1320	1325
Gly Asn Val Thr Val Arg Pro Phe Pro Arg Pro Gln Ser Leu Asp Leu		
1330	1335	1340
Gly Ala Thr Phe Thr Val Asp Ala His Gln Leu Asp Asn Gln Ser Gln		
1345	1350	1355
Pro Arg Asp Pro Gly Pro Gln Ser Ala Phe Ser Leu Pro Gly Ser Thr		1360
1365	1370	1375
Gln His Leu Arg Ser Gln Leu Ser Gln Cys Lys Gln Arg Tyr Gln Asp		
1380	1385	1390
Leu Gln Glu Lys Leu Leu Leu Ser Glu Ala Thr Val Phe Ala Gln Ala		
1395	1400	1405
Asn Glu Leu Glu Lys Tyr Arg Val Met Leu Thr Gly Glu Ser Leu Val		
1410	1415	1420
Lys Gln Asp Ser Lys Gln Ile Gln Val Asp Leu Gln Asp Leu Gly Tyr		
1425	1430	1435
Glu Thr Cys Gly Arg Ser Glu Asn Glu Ala Glu Arg Glu Glu Thr Thr		
1445	1450	1455
Ser Pro Glu Cys Glu Glu His Asn Ser Leu Lys Glu Met Val Leu Met		
1460	1465	1470
Glu Gly Leu Cys Ser Glu Gln Gly Arg Arg Gly Ser Thr Leu Ala Ser		
1475	1480	1485
Ser Ser Glu Arg Lys Pro Leu Glu Asn Gln Leu Gly Lys Gln Glu Glu		
1490	1495	1500
Phe Arg Val Tyr Gly Lys Ser Glu Asn Ile Leu Val Leu Arg Lys Asp		
1505	1510	1515
Ile Lys Asp Leu Lys Ala Gln Leu Gln Asn Ala Asn Lys Val Ile Gln		1520
1525	1530	1535
Asn Leu Lys Ser Arg Val Arg Ser Leu Ser Val Thr Ser Asp Tyr Ser		
1540	1545	1550
Ser Ser Leu Glu Arg Pro Arg Lys Leu Arg Ala Val Gly Thr Leu Glu		
1555	1560	1565
Gly Ser Ser Pro His Ser Val Pro Asp Glu Asp Glu Gly Trp Leu Ser		
1570	1575	1580
Asp Gly Thr Gly Ala Phe Tyr Ser Pro Gly Leu Gln Ala Lys Lys Asp		
1585	1590	1595
Leu Glu Ser Leu Ile Gln Arg Val Ser Gln Leu Glu Ala Gln Leu Pro		1600
1605	1610	1615
Lys Asn Gly Leu Glu Glu Lys Leu Ala Glu Glu Leu Arg Ser Ala Ser		
1620	1625	1630
Trp Pro Gly Lys Tyr Asp Ser Leu Ile Gln Asp Gln Ala Arg Glu Leu		
1635	1640	1645
Ser Tyr Leu Arg Gln Lys Ile Arg Glu Gly Arg Gly Ile Cys Tyr Leu		
1650	1655	1660
Ile Thr Arg His Ala Lys Asp Thr Val Lys Ser Phe Glu Asp Leu Leu		
1665	1670	1675
Arg Ser Asn Asp Ile Asp Tyr Tyr Leu Gly Gln Ser Phe Arg Glu Gln		1680
1685	1690	1695
Leu Ala Gln Gly Ser Gln Leu Thr Glu Arg Leu Thr Ser Lys Leu Ser		
1700	1705	1710

Thr Lys Asp His Lys Ser Glu Lys Asp Gln Ala Gly Leu Glu Pro Leu
 1715 1720 1725
 Ala Leu Arg Leu Ser Arg Glu Leu Gln Glu Lys Glu Lys Val Ile Glu
 1730 1735 1740
 Val Leu Gln Ala Lys Leu Asp Ala Arg Ser Leu Thr Pro Ser Ser Ser
 1745 1750 1755 1760
 His Ala Leu Ser Asp Ser His Arg Ser Pro Ser Ser Thr Ser Phe Leu
 1765 1770 1775
 Ser Asp Glu Leu Glu Ala Cys Ser Asp Met Asp Ile Val Ser Glu Tyr
 1780 1785 1790
 Thr His Tyr Glu Glu Lys Lys Ala Ser Pro Ser His Ser Asp Ser Ile
 1795 1800 1805
 His His Ser Ser His Ser Ala Val Leu Ser Ser Lys Pro Ser Ser Thr
 1810 1815 1820
 Ser Ala Ser Gln Gly Ala Lys Ala Glu Ser Asn Ser Asn Pro Ile Ser
 1825 1830 1835 1840
 Leu Pro Thr Pro Gln Asn Thr Pro Lys Glu Ala Asn Gln Ala His Ser
 1845 1850 1855
 Gly Phe His Phe His Ser Ile Pro Lys Leu Ala Ser Leu Pro Gln Ala
 1860 1865 1870
 Pro Leu Pro Ser Ala Pro Ser Ser Phe Leu Pro Phe Ser Pro Thr Gly
 1875 1880 1885
 Pro Leu Leu Leu Gly Cys Cys Glu Thr Pro Val Val Ser Leu Ala Glu
 1890 1895 1900
 Ala Gln Gln Glu Leu Gln Met Leu Gln Lys Gln Leu Gly Glu Ser Ala
 1905 1910 1915 1920
 Ser Thr Val Pro Pro Ala Ser Thr Ala Thr Leu Leu Ser Asn Asp Leu
 1925 1930 1935
 Glu Ala Asp Ser Ser Tyr Tyr Leu Asn Ser Ala Gln Pro His Ser Pro
 1940 1945 1950
 Pro Arg Gly Thr Ile Glu Leu Gly Arg Ile Leu Glu Pro Gly Tyr Leu
 1955 1960 1965
 Gly Ser Ser Gly Lys Trp Asp Val Met Arg Pro Gln Lys Gly Ser Val
 1970 1975 1980
 Ser Gly Asp Leu Ser Ser Gly Ser Ser Val Tyr Gln Leu Asn Ser Lys
 1985 1990 1995 2000
 Pro Thr Gly Ala Asp Leu Leu Glu His Leu Gly Glu Ile Arg Asn
 2005 2010 2015
 Leu Arg Gln Arg Leu Glu Glu Ser Ile Cys Ile Asn Asp Arg Leu Arg
 2020 2025 2030
 Glu Gln Leu Glu His Arg Leu Thr Ser Thr Ala Arg Gly Arg Gly Ser
 2035 2040 2045
 Thr Ser Asn Phe Tyr Ser Gln Gly Leu Glu Ser Ile Pro Gln Leu Cys
 2050 2055 2060
 Asn Glu Asn Arg Val Leu Arg Glu Asp Asn Arg Arg Leu Gln Ala Gln
 2065 2070 2075 2080
 Leu Ser His Val Ser Arg Glu His Ser Gln Glu Thr Glu Ser Leu Arg
 2085 2090 2095
 Glu Ala Leu Leu Ser Ser Arg Ser His Leu Gln Glu Leu Glu Lys Glu
 2100 2105 2110
 Leu Glu His Gln Lys Val Glu Arg Gln Gln Leu Leu Glu Asp Leu Arg
 2115 2120 2125
 Glu Lys Gln Gln Glu Val Leu His Phe Arg Glu Glu Arg Leu Ser Leu
 2130 2135 2140
 Gln Glu Asn Asp Ser Ser Gly Pro Cys Leu Ser Leu Val Arg Leu Gln
 2145 2150 2155 2160
 His Lys Leu Val Leu Leu Gln Gln Gln Cys Glu Glu Lys Gln Gln Leu
 2165 2170 2175
 Phe Glu Ser Leu Gln Ser Glu Leu Gln Ile Tyr Glu Ala Leu Tyr Gly
 2180 2185 2190
 Asn Ser Lys Lys Gly Leu Lys Ala Tyr Ser Leu Asp Ala Cys His Gln
 2195 2200 2205
 Ile Pro Leu Ser Ser Asp Leu Ser His Leu Val Ala Glu Val Arg Ala

2210	2215	2220
Leu Arg Gly Gln Leu Glu Gln Ser Ile Gln Gly Asn Asn Cys Leu Arg		
2225	2230	2235
Leu Gln Leu Gln Gln Leu Glu Ser Gly Ala Gly Lys Ala Ser Leu		2240
2245	2250	2255
Ser Pro Ser Ser Ile Asn Gln Asn Phe Pro Ala Ser Thr Asp Pro Gly		
2260	2265	2270
Asn Lys Gln Leu Leu Gln Asp Ser Ala Val Ser Pro Pro Val Arg		
2275	2280	2285
Asp Val Gly Met Asn Ser Pro Ala Leu Val Phe Pro Ser Ser Ala Ser		
2290	2295	2300
Ser Thr Pro Gly Ser Glu Thr Pro Ile Ile Asn Arg Ala Asn Gly Leu		
2305	2310	2315
Gly Leu Asp Thr Ser Pro Val Met Lys Thr Pro Pro Lys Leu Glu Gly		2320
2325	2330	2335
Asp Ala Thr Asp Gly Ser Phe Ala Asn Lys His Gly Arg His Val Ile		
2340	2345	2350
Gly His Ile Asp Asp Tyr Ser Ala Leu Arg Gln Gln Ile Ala Glu Gly		
2355	2360	2365
Lys Leu Leu Val Lys Lys Ile Val Ser Leu Val Arg Ser Ala Cys Ser		
2370	2375	2380
Phe Pro Gly Leu Glu Ala Gln Gly Thr Glu Val Leu Gly Ser Lys Gly		
2385	2390	2395
Ile His Glu Leu Arg Ser Ser Thr Ser Ala Leu His His Ala Leu Glu		2400
2405	2410	2415
Glu Ser Ala Ser Leu Leu Thr Met Phe Trp Arg Ala Ala Leu Pro Ser		
2420	2425	2430
Thr His Ile Pro Val Leu Pro Gly Lys Val Gly Glu Ser Thr Glu Arg		
2435	2440	2445
Glu Leu Leu Glu Leu Arg Thr Lys Val Ser Lys Gln Glu Arg Leu Leu		
2450	2455	2460
Gln Ser Thr Thr Glu His Leu Lys Asn Ala Asn Gln Gln Lys Glu Ser		
2465	2470	2475
Met Glu Gln Phe Ile Val Ser Gln Leu Thr Arg Thr His Asp Val Leu		2480
2485	2490	2495
Lys Lys Ala Arg Thr Asn Leu Glu Val Lys Ser Leu Arg Ala Leu Pro		
2500	2505	2510
Cys Thr Pro Ala Leu		
2515		

<210> 6

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primers

<400> 6

cggaattcga ggaggcctac cagaaac

27

<210> 7

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Primers

<400> 7

tgagtcgact acgtgtcaag gcaacaatgg tc

32

<210> 8

<211> 1683

<212> PRT

<213> rat

<400> 8

Met Met Ala Gln Phe Pro Thr Ala Met Asn Gly Gly Pro Asn Met Trp
 1 5 10 15
 Ala Ile Thr Ser Glu Glu Arg Thr Lys His Asp Lys Gln Phe Asp Asn
 20 25 30
 Leu Lys Pro Ser Gly Gly Tyr Ile Thr Gly Asp Gln Ala Arg Thr Phe
 35 40 45
 Phe Leu Gln Ser Gly Leu Pro Ala Pro Val Leu Ala Glu Ile Trp Ala
 50 55 60
 Leu Ser Asp Leu Asn Lys Asp Gly Lys Met Asp Gln Gln Glu Phe Ser
 65 70 75 80
 Ile Ala Met Lys Leu Ile Lys Leu Lys Leu Gln Gly Gln Gln Leu Pro
 95 90 95
 Val Val Leu Pro Pro Ile Met Lys Gln Pro Pro Met Phe Ser Pro Leu
 100 105 110
 Ile Ser Ala Arg Phe Gly Met Gly Ser Met Pro Asn Leu Ser Ile His
 115 120 125
 Gln Pro Leu Pro Pro Val Ala Pro Ile Thr Ala Pro Leu Ser Ser Ala
 130 135 140
 Thr Ser Gly Thr Ser Ile Pro Pro Leu Met Met Pro Ala Pro Leu Val
 145 150 155 160
 Pro Ser Val Ser Thr Ser Ser Leu Pro Asn Gly Thr Ala Ser Leu Ile
 165 170 175
 Gln Pro Leu Ser Ile Pro Tyr Ser Ser Thr Leu Pro His Ala Ser
 180 185 190
 Ser Tyr Ser Leu Met Met Gly Gly Phe Gly Gly Ala Ser Ile Gln Lys
 195 200 205
 Ala Gln Ser Leu Ile Asp Leu Gly Ser Ser Ser Ser Thr Ser Ser Thr
 210 215 220
 Ala Ser Leu Ser Gly Asn Ser Pro Lys Thr Gly Thr Ser Glu Trp Ala
 225 230 235 240
 Val Pro Gln Pro Ser Arg Leu Lys Tyr Arg Gln Lys Phe Asn Ser Leu
 245 250 255
 Asp Lys Ser Met Ser Gly Tyr Leu Ser Gly Phe Gln Ala Arg Asn Ala
 260 265 270
 Leu Leu Gln Ser Asn Leu Ser Gln Thr Gln Leu Ala Thr Ile Trp Thr
 275 280 285
 Leu Ala Asp Ile Asp Gly Asp Gly Gln Leu Lys Ala Glu Glu Phe Ile
 290 295 300
 Leu Ala Met His Leu Thr Asp Met Ala Lys Ala Gly Gln Pro Leu Pro
 305 310 315 320
 Leu Thr Leu Pro Pro Glu Leu Val Pro Pro Ser Phe Arg Gly Gly Lys
 325 330 335
 Gln Ile Asp Ser Ile Asn Gly Thr Leu Pro Ser Tyr Gln Lys Thr Gln
 340 345 350
 Glu Glu Glu Pro Gln Lys Lys Leu Pro Val Thr Phe Glu Asp Lys Arg
 355 360 365
 Lys Ala Asn Tyr Glu Arg Gly Asn Met Glu Leu Glu Lys Arg Arg Gln
 370 375 380
 Val Leu Met Glu Gln Gln Arg Glu Ala Glu Arg Lys Ala Gln Lys
 385 390 395 400
 Glu Lys Glu Glu Trp Glu Arg Lys Gln Arg Glu Leu Gln Glu Glu
 405 410 415
 Trp Lys Lys Gln Leu Glu Leu Glu Lys Arg Leu Glu Lys Gln Arg Glu
 420 425 430
 Leu Glu Arg Gln Arg Glu Glu Arg Arg Lys Glu Ile Glu Arg Arg
 435 440 445
 Glu Ala Ala Lys Gln Glu Leu Glu Arg Gln Arg Arg Leu Glu Trp Glu
 450 455 460

Arg Ile Arg Arg Gln Glu Leu Leu Asn Gln Lys Asn Arg Glu Gln Glu
 465 470 475 480
 Glu Ile Val Arg Leu Asn Ser Lys Lys Ser Leu His Leu Glu Leu
 485 490 495
 Glu Ala Val Asn Gly Lys His Gln Gln Ile Ser Gly Arg Leu Gln Asp
 500 505 510
 Val Arg Ile Arg Lys Gln Thr Gln Lys Thr Glu Leu Glu Val Leu Asp
 515 520 525
 Lys Gln Cys Asp Leu Glu Ile Met Glu Ile Lys Gln Leu Gln Gln Glu
 530 535 540
 Leu Gln Glu Tyr Gln Asn Lys Leu Ile Tyr Leu Val Pro Glu Lys Gln
 545 550 555 560
 Leu Leu Asn Glu Arg Ile Lys Asn Met Gln Leu Ser Asn Thr Pro Asp
 565 570 575
 Ser Gly Ile Ser Leu Leu His Lys Lys Ser Ser Glu Lys Glu Glu Leu
 580 585 590
 Cys Gln Arg Leu Lys Glu Gln Leu Asp Ala Leu Glu Lys Glu Thr Ala
 595 600 605
 Ser Lys Leu Ser Glu Met Asp Ser Phe Asn Asn Gln Leu Lys Cys Gly
 610 615 620
 Asn Met Asp Asp Ser Val Leu Gln Cys Leu Leu Ser Leu Leu Ser Cys
 625 630 635 640
 Leu Asn Asn Leu Phe Leu Leu Leu Lys Glu Leu Arg Glu Ser Tyr Asn
 645 650 655
 Thr Gln Gln Leu Ala Leu Glu Gln Leu His Lys Ile Lys Arg Asp Lys
 660 665 670
 Leu Lys Glu Leu Glu Arg Lys Arg Leu Glu Gln Ile Gln Lys Lys Lys
 675 680 685
 Leu Glu Asp Glu Ala Ala Arg Lys Ala Lys Gln Gly Lys Glu Asn Leu
 690 695 700
 Trp Lys Glu Ser Ile Arg Lys Glu Glu Glu Lys Gln Lys Arg Leu
 705 710 715 720
 Gln Glu Glu Lys Ser Gln Asp Arg Thr Gln Glu Glu Glu Arg Lys Thr
 725 730 735
 Glu Ala Lys Gln Ser Glu Thr Ala Arg Ala Leu Val Asn Tyr Arg Ala
 740 745 750
 Leu Tyr Pro Phe Glu Ala Arg Asn His Asp Glu Met Ser Phe Asn Ser
 755 760 765
 Gly Asp Ile Ile Gln Val Asp Glu Lys Thr Val Gly Glu Pro Gly Trp
 770 775 780
 Leu Tyr Gly Ser Phe Gln Gly Lys Phe Gly Trp Phe Pro Cys Asn Tyr
 785 790 795 800
 Val Glu Lys Met Leu Ser Ser Asp Lys Thr Pro Ser Pro Lys Lys Ala
 805 810 815
 Leu Leu Pro Pro Ala Val Ser Leu Ser Ala Thr Ser Ala Ala Pro Gln
 820 825 830
 Pro Leu Cys Ser Asn Gln Pro Ala Pro Val Thr Asp Tyr Gln Asn Val
 835 840 845
 Ser Phe Ser Asn Leu Asn Val Asn Thr Thr Trp Gln Gln Lys Ser Ala
 850 855 860
 Phe Thr Arg Thr Val Ser Pro Gly Ser Val Ser Pro Ile His Gly Gln
 865 870 875 880
 Gly Gln Ala Val Glu Asn Leu Lys Ala Gln Ala Leu Cys Ser Trp Thr
 885 890 895
 Ala Lys Lys Glu Asn His Leu Asn Phe Ser Lys His Asp Val Ile Thr
 900 905 910
 Val Leu Glu Gln Gln Glu Asn Trp Trp Phe Gly Glu Val His Gly Gly
 915 920 925
 Arg Gly Trp Phe Pro Lys Ser Tyr Val Lys Ile Ile Pro Gly Ser Glu
 930 935 940
 Val Lys Arg Gly Glu Pro Glu Ala Leu Tyr Ala Ala Val Asn Lys Lys
 945 950 955 960
 Pro Thr Ser Thr Ala Tyr Pro Val Gly Glu Tyr Ile Ala Leu Tyr

Ser	Tyr	Ser	Ser	Val	Glu	Pro	Gly	Asp	Leu	Thr	Phe	Thr	Glu	Gly	Glu
965				970					975						
980				985					990						
Glu	Leu	Leu	Val	Thr	Gln	Lys	Asp	Gly	Glu	Trp	Trp	Thr	Gly	Ser	Ile
995					1000					1005					
Gly	Glu	Arg	Thr	Gly	Ile	Phe	Pro	Ser	Asn	Tyr	Val	Arg	Pro	Lys	Asp
1010				1015					1020						
Gln	Glu	Asn	Val	Gly	Asn	Ala	Ser	Lys	Ser	Gly	Ala	Ser	Asn	Lys	Lys
1025				1030					1035					1040	
Pro	Glu	Ile	Ala	Gln	Val	Thr	Ser	Ala	Tyr	Ala	Ala	Ser	Gly	Ala	Glu
1045					1050				1055						
Gln	Leu	Ser	Leu	Ala	Pro	Gly	Gln	Leu	Ile	Leu	Ile	Leu	Lys	Lys	Asn
1060				1065					1070						
Ser	Ser	Gly	Trp	Trp	Gln	Gly	Glu	Leu	Gln	Ala	Arg	Gly	Lys	Lys	Arg
1075				1080					1085						
Gln	Lys	Gly	Trp	Phe	Pro	Ala	Ser	His	Val	Lys	Leu	Leu	Gly	Pro	Ser
1090				1095					1100						
Ala	Glu	Arg	Thr	Thr	Pro	Ala	Phe	His	Ala	Val	Cys	Gln	Val	Ile	Ala
1105				1110					1115					1120	
Met	Tyr	Asp	Tyr	Ile	Ala	Asn	Asn	Glu	Asp	Glu	Leu	Asn	Phe	Ser	Lys
1125				1130					1135						
Gly	Gln	Leu	Ile	Asn	Val	Met	Asn	Lys	Asp	Asp	Pro	Asp	Trp	Trp	Gln
1140				1145					1150						
Gly	Glu	Ile	Asn	Gly	Val	Thr	Gly	Leu	Phe	Pro	Ser	Asn	Tyr	Val	Lys
1155				1160					1165						
Met	Thr	Thr	Asp	Ser	Asp	Pro	Ser	Gln	Gln	Trp	Cys	Ala	Asp	Leu	Gln
1170				1175					1180						
Ala	Leu	Asp	Thr	Met	Gln	Pro	Met	Glu	Arg	Lys	Arg	Gln	Gly	Tyr	Ile
1185				1190					1195					1200	
His	Glu	Leu	Ile	Glu	Thr	Glu	Glu	Arg	Tyr	Met	Asp	Asp	Leu	Gln	Leu
1205				1210					1215						
Val	Ile	Glu	Val	Phe	Gln	Lys	Arg	Met	Ala	Glu	Ser	Gly	Phe	Leu	Thr
1220				1225					1230						
Glu	Ala	Glu	Met	Ala	Leu	Ile	Phe	Val	Asn	Trp	Lys	Glu	Leu	Ile	Met
1235				1240					1245						
Ser	Asn	Thr	Lys	Leu	Leu	Lys	Ala	Leu	Arg	Val	Arg	Lys	Lys	Thr	Gly
1250				1255					1260						
Gly	Glu	Lys	Met	Pro	Val	Glu	Met	Met	Gly	Asp	Ile	Leu	Ala	Ala	Glu
1265				1270					1275					1280	
Leu	Ser	His	Met	Gln	Ala	Tyr	Ile	Arg	Phe	Cys	Ser	Cys	Gln	Leu	Asn
1285				1290					1295						
Gly	Ala	Ala	Leu	Leu	Gln	Gln	Lys	Thr	Asp	Glu	Asp	Ala	Asp	Phe	Lys
1300				1305					1310						
Glu	Phe	Leu	Lys	Leu	Ala	Ser	Asp	Pro	Arg	Cys	Lys	Gly	Met	Pro	
1315				1320					1325						
Leu	Ser	Ser	Phe	Leu	Leu	Lys	Pro	Met	Gln	Arg	Ile	Thr	Arg	Tyr	Pro
1330				1335					1340						
Leu	Leu	Ile	Arg	Ser	Ile	Leu	Glu	Asn	Thr	Pro	Gln	Asn	His	Val	Asp
1345				1350					1355					1360	
His	Ser	Ser	Leu	Lys	Leu	Ala	Leu	Glu	Arg	Ala	Glu	Glu	Leu	Cys	Ser
1365				1370					1375						
Gln	Val	Asn	Glu	Gly	Val	Arg	Glu	Lys	Glu	Asn	Ser	Asp	Arg	Leu	Glu
1380				1385					1390						
Trp	Ile	Gln	Ala	His	Val	Gln	Cys	Glu	Gly	Leu	Ala	Glu	Gln	Leu	Ile
1395				1400					1405						
Phe	Asn	Ser	Leu	Thr	Asn	Cys	Leu	Gly	Pro	Arg	Lys	Leu	Leu	Tyr	Ser
1410				1415					1420						
Gly	Lys	Leu	Tyr	Lys	Thr	Lys	Ser	Asn	Lys	Glu	Leu	His	Gly	Phe	Leu
1425				1430					1435					1440	
Phe	Asn	Asp	Phe	Leu	Leu	Leu	Thr	Tyr	Leu	Val	Arg	Gln	Phe	Ala	Ala
1445				1450					1455						
Ser	Ser	Gly	Phe	Glu	Lys	Leu	Phe	Ser	Ser	Lys	Ser	Ser	Ala	Gln	Phe
1460				1465					1470						

Lys Met Tyr Lys Thr Pro Ile Phe Leu Asn Glu Val Leu Val Lys Leu
1475 1480 1485
Pro Thr Asp Pro Ser Ser Asp Glu Pro Val Phe His Ile Ser His Ile
1490 1495 1500
Asp Arg Val Tyr Thr Leu Arg Thr Asp Asn Ile Asn Glu Arg Thr Ala
1505 1510 1515 1520
Trp Val Gln Lys Ile Lys Ala Ala Ser Glu Gln Tyr Ile Asp Thr Glu
1525 1530 1535
Lys Lys Lys Arg Glu Lys Ala Tyr Gln Ala Arg Ser Gln Lys Thr Ser
1540 1545 1550
Gly Ile Gly Arg Leu Met Val His Val Ile Glu Ala Thr Glu Leu Lys
1555 1560 1565
Ala Cys Lys Pro Asn Gly Lys Ser Asn Pro Tyr Cys Glu Ile Ser Met
1570 1575 1580
Gly Ser Gln Ser Tyr Thr Thr Arg Thr Leu Gln Asp Thr Leu Asn Pro
1585 1590 1595 1600
Lys Trp Asn Phe Asn Cys Gln Phe Phe Ile Lys Asp Leu Tyr Gln Asp
1605 1610 1615
Val Leu Cys Leu Thr Met Phe Asp Arg Asp Gln Phe Ser Pro Asp Asp
1620 1625 1630
Phe Leu Gly Arg Thr Glu Val Pro Val Ala Lys Ile Arg Thr Glu Gln
1635 1640 1645
Glu Ser Lys Gly Pro Thr Thr Arg Arg Leu Leu Leu His Glu Val Pro
1650 1655 1660
Thr Gly Glu Val Trp Val Arg Phe Asp Leu Gln Leu Phe Glu Gln Lys
1665 1670 1675 1680
Thr Leu Leu

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/26860

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C07H 21/00
US CL : 536/23.2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

BIOSIS CA CAPLUS EMBASE MEDLINE GENBANK SEQUENCE SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KALCHMAN, M.A. HIP1, a human homologue of S.cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genetics. May 1997, Vol. 16, No. 1 pages 44-53, entire document.	1-3, 9-12.
X	Database GenBank Accession No. 075042. SEKI, N. et al. 'Characterization of cDNA clones in size-fractionated cDNA libraries from human brain'. 01 November 1998.	1-3
X	Database GenBank Accession No. 075065. SEKI, N. et al. 'Characterization of cDNA clones in size-fractionated cDNA libraries from human brain'. 01 November 1998.	1-3
X	Database GenBank Accession No. AA987244. NCI-CGAP 'National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gene Index'. 27, July 1998.	3

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"		document defining the general state of the art which is not considered to be of particular relevance
"B"	"X"	earlier document published on or after the international filing date
"L"		document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	"Y"	document referring to an oral disclosure, use, exhibition or other means
"P"	"Z"	document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search	Date of mailing of the international search report
19 JANUARY 2000	10 FEB 2000
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer MANJUNATH RAO Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/26860

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Database GenBank Accession No. AA664799. NCI-CGAP 'National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gen Index'. 13, February 1998.	3
X	Database GenBank Accession No. AB007923. OHARA, O. 'Homo sapiens mRNA for KIAAA0454 protein, partial cds.' 13, August 1998.	
X	GenBank Accession No. AB007946. O'HARA et al. 'Homo sapiens male brain cDNA to mRNA, clone lib:pBluescriptII SK plus clone:HH0492'. 13 August 1998.	3
X	Database GenBank Accession No. AA671390. MARRA et al. 'The WashU-HHMI Mouse EST Project'. 25 November 1997	3
X	Database GenBank Accession No. AA110441. MARRA, M. et al. 'The WashU-HHMI Mouse EST Project'. 03 February 1997.	3

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US99/26860**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos. 1-3 and 9-12

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/26860

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-3 and 9-12, drawn to polynucleotides encoding PDE-binding proteins.

Group II, claims 4-8, drawn to PDE-binding proteins.

Group III, claims 13-15, drawn to a monoclonal antibody.

Group IV, claims 16-19, drawn to a method of determining the agent that modulates PDE activity.

Group V, claim 20, drawn to a method of modulating PDE activity.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The polynucleotides encoding PDE-interacting proteins are known in the prior art and does not contribute over the prior art (Kalchman et al. Nature Genetics, May 1997, Vol. 16(1):44-53).

Group I is a product; this shares the special technical feature of DNA molecules which groups II-V do not share.

Group II is a product; this shares the special technical feature of a protein which groups I and III-V do not share.

Group III is a product; this shares the special technical feature of an antibody which groups I,II, IV-V do not share.

Groups IV and V are processes; this shares the special technical feature of uncharacterized chemical compounds which groups I-III do not share.