Hypothesis Testing

Class Objectives

Population Mean: Sigma Known –Example

One-Tailed Tests About a Population Mean: Known

- Example: The mean response times for a random sample of 30 Pizza Deliveries is 32 minutes
- The population standard deviation is believed to be 10 minutes.
- The pizza delivery services director wants to perform a hypothesis test, with α =0.05 level of significance, to determine whether the service goal of 30 minutes or less is being achieved.

Given Values

- Sample
- Sample mean = 32 Min
- Sample size = 30

- **Population**
- α =0.05
- Population mean = 30 Min

p -Value Approach

One-Tailed Tests About a Population Mean: σ Known

- 1. Develop the hypotheses.
- 2. Specify the level of significance.
- 3. Compute the value of the test statistic.

$$H_0: \mu \le 30$$

 $H_a: \mu > 30$
 $\alpha = .05$

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{32 - 30}{10 / \sqrt{30}} = 1.09$$

In [8]: 1-stats.norm.cdf(1.09)

Out[8]: 0.1378565720320355

One-Tailed Tests About a Population Mean: σ Known

p -Value Approach

4. Compute the p –value.

For
$$z = 1.09$$
, p –value = = 0.137

- 5. Determine whether to reject H0.
- Because p-value = 0.137 > α = .05 , we do not reject H₀.
- There are not sufficient statistical evidence to infer that Pizza delivery services is not meeting the response goal of 30 minutes.

One-Tailed Tests About a Population Mean: σ Known

p –Value Approach

Critical Value Approach

One-Tailed Tests About a Population Mean: σ Known

Critical Value Approach

- 4. Determine the critical value and rejection rule.
 - For α = .05, $z_{.05}$ = 1.645
 - Reject H_0 if $z \ge 1.645$
- 5. Determine whether to reject H_0 .
 - Because $1.645 \ge 1.05$, we do not reject H_0 .

p-Value Approach to Two-Tailed Hypothesis Testing

Compute the p-value using the following three steps:

- Compute the value of the test statistic z.
- If z is in the upper tail (z > 0), find the area under the standard normal curve to the right of z.
- If z is in the lower tail (z < 0), find the area under the standard normal curve to the left of z.
- 4. Double the tail area obtained in step 2 to obtain the p –value.

The rejection rule:

Reject H_0 if the p-value $\leq \alpha$.

Critical Value Approach to Two-Tailed Hypothesis Testing

- The critical values will occur in both the lower and upper tails of the standard normal curve.
- Use the standard normal probability distribution table to find $z_{\alpha/2}$ (the z-value with an area of $\alpha/2$ in the upper tail of the distribution).
- The rejection rule is:

Reject H_0 if $z \leq -z_{\alpha/2}$ or $z \geq z_{\alpha/2}$.

Two-Tailed Tests About a Population Mean: σ Known

- Example: Milk Carton
- Assume that a sample of 30 milk carton provides a sample mean of 505 ml.
- The population standard deviation is believed to be 10 ml.
- Perform a hypothesis test, at the 0.03 level of significance, population mean 500 ml and to help determine whether the filling process should continue operating or be stopped and corrected.

Given Values

- Sample
- Sample size = 30
- Sample mean = 505 ml

- **Population**
- Population mean = 500 ml
- Standard deviation = 10 ml
- Significance level 0.03

p –Value approach

Two-Tailed Tests About a Population Mean: σ Known

- 1. Determine the hypotheses.
- 2. Specify the level of significance.
- 3. Compute the value of the test statistic.

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{505 - 500}{10 / \sqrt{30}} = 2.74$$

$$H_0$$
: $\mu = 500$
 H_a : $\mu \neq 500$
 $\alpha = .03$


```
In [9]: 1-stats.norm.cdf(2.74)
Out[9]: 0.003071959218650444
```

```
In [10]: (1-stats.norm.cdf(2.74))*2
```

Out[10]: 0.006143918437300888

Two-Tailed Tests About a Population Mean: σ Known

p -Value Approach

- 4. Compute the p –value.
 - For z = 2.74, p-value = 2(1 .9969) = .0061
- 5. Determine whether to reject HO.
 - Because p-value = .0062 < α = .03, we reject H₀.

There is no sufficient statistical evidence to infer that the null hypothesis is true (i.e. the mean filling quantity is not 500 ml)

Two-Tailed Tests About a Population Mean: σ Known

p-Value Approach

Critical Value Approach

Two-Tailed Tests About a Population Mean : Known

Critical Value Approach

4. Determine the critical value and rejection rule, for $\alpha/2 = .03/2 = .015$, z.015 = 2.17

Reject
$$H_0$$
 if $z < -2.17$ or $z > 2.17$

Determine whether to reject H_0 .

Because 2.74 > 2.17, we reject H0.

There is sufficient statistical evidence to infer that the null hypothesis is not true

In [12]: stats.norm.ppf(0.015)

Out[12]: -2.1700903775845606

Two-Tailed Tests About a Population Mean : σ Known

Confidence Interval Approach

Confidence Interval Approach to Two-Tailed Tests About a Population Mean

- Select a simple random sample from the population and use the value of the sample mean to develop the confidence interval for the population mean μ .
- If the confidence interval contains the hypothesized value 500, do not reject H_0 .
- Otherwise, reject H_0 .
- Actually, H_0 should be rejected if μ_0 happens to be equal to one of the end points of the confidence interval.

Confidence Interval Approach to Two-Tailed Tests About a Population Mean

The 97% confidence interval for 500 is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 505 \pm 2.17 \frac{10}{\sqrt{30}} = 505 \pm 3.9619$$
$$= 501.03814,508.96186$$

Because the hypothesized value for the population mean, $\mu_0 = 500 \mathrm{ml}$, is not in this interval, the hypothesis-testing conclusion is that the null hypothesis, H_0 : μ = 500, is rejected.

Thanks

