CS第2 テーマ1

演習ガイド

本日の予定

- 1. レポート課題1の復習
 - 森林火災モデル
 - 基本実験
- 2. スクリプト入門(ごく入口)

1. レポート課題の復習

提出物と採点基準(満点 20)

- 1. 森林火災モデルの説明 (5)
- 2. 実験の内容と実験方法 (5, 工夫加点 +5 まで)
- 3. 実験結果の解析 (5, 考察加点 +5 まで)

以下はオプショナル(加点 ≦ 5)

4. 自分なりの実験

読み手は何も 知らないという 想定で書くこと

復習:森林火災の超簡略モデル

青字がパラメータ

火災のモデル化

・森の形

- (2*n*+1)x(2*n*+1) の格子状
- 各格子点に木が1本

・燃え方

- 森の中心の木 1 本が燃え始める
- 毎時, 隣に確率 p で類焼
- 隣=周囲8箇所
- 木は発火から **b** 時間で燃え尽きる

•プログラム用(プログラムの都合)

- シミュレーション打ち切り時間 t
- 乱数の種 *seed*

復習:基本実験

臨界全焼率 p0 と燃焼時間 b との関係

臨界類焼率 p0 = 森が全焼する可能性が急速に高くなる類焼率 50 本以下では?(木の総数の 5%)

- (1) 各種パラメータを適宜定める: n = 50 t = 150
- (2) いろいろな b に対して、類焼率 p を変えて実験し、p0 を求める

類焼率 p %	10	11	12	13	14	
試行 1	204	133	85	68	36	$-p\theta$
試行 2	231	153	89	39	27	
試行 3	205	131	73	56	29	
試行 4	235	128	83	73	32	
試行 5	232	118	97	63	38	1111
試行 6	216		ええ、こ	かわる	ろのもし	
試行 7	261	J		-10 (0.0	00783.	< \ \ \
試行 8	253	155	92	59	38	a Co
1						
試行 9	223	130	82	49	40	\ \ \ \ /
試行 9 試行 10	223 225	130 177	82 79	49 43	40 29	

2. スクリプト入門 スクリプト = 台本 Ruby はスクリプト言語と言われています

実験そのものをプログラムにしよう!

実験のスクリプトの概要

```
#実験の設定:固定パラメータ
n = 50, nt = (2*n+1)**2, limit = nt * 0.005 # 全焼の基準(0.5%)
#実験用パラメータ
ex = 30, b = 5, p = 10, time = 150, seed = 1
#実験
 bcount = 0
 以下を ex 回繰り返す
```

fire をパラメータ n p b time seed で実行し答えを得る t ← 時間, nb ← 燃焼木の本数, nu ← 生存木の本数 if nu <= limit bcount = bcount + 1end 画面に今回の結果を表示 seed = seed + 1

R = bcount / ex #割合を求める 画面に p と全焼率 R を表示

では、実際に使ってみよう

- 1. ログインする.
- 2. Terminal を動かす(TSUBAME と直接対話する窓口).
 - 2.1. cd cs2kadai1
 - 2.2. Is ← directory simex があることを確認
 - 2.3. cd simex ← simex の部屋に行く(ここで実験しよう)
 - Is ← ファイルを確認しよう
 fire.exe ex.rb ← これらを使う
 fire0.exe ← これは燃える様子を出す方
 fire.c, fire0.c, mt.h ← C 言語のプログラム

実は速い実行ができるように C言語で書いたプログラムをコンパイル したものを使っている

覚えてます?! 教科書2章を

ex.rb

```
#実験の設定:固定パラメータ
n = 50; nt = (2*n+1)**2; limit = nt * 0.005 # 全焼の基準 (0.5%)
#実験用パラメータ
ex = 30; b = 5; p = 10; time = 150; seed = 1
#実験
  bcount = 0
  for i in (1..ex)
    result = \ ./fire.exe #{n} #{p} #{b} #{time} #{seed}\
    r1, r2, r3 = result.chomp.split(/\frac{1}{2}s*,\frac{1}{2}s*)
    t = r1.to i
    nb = r2.to i
    nu = r3.to i
    if nu <= limit
      bcount = bcount + 1
    end
    print(t, ", ", nu, ": ", bcount, "\u00e4n")
    seed = seed + 1; i = i + 1
  end
  R = bcount.to_f / ex.to_f
  print(p, ", ", R, "\u00e4n")
```

まとめ Terminal 上のコマンド

命令	使用例	意味		
mkdir	mkdir kadai2	kadai2 というフォルダ(部屋)を作る		
cd	cd kadai2	kadai2 というお部屋に入る		
	cd	上の(大きな)部屋に戻る		
	cd /. .	上の上の部屋に戻る		
ls	Is	その部屋にあるファイルを表示する		
rm	rm foo.rb	foo.rb を消す(戻らないので注意)		
cat	cat foo.txt	foo.txt の中身を画面に表示すうr		
機械語実行	./OO.exe	機械語プログラムを実行する		