Chapter 2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.1 Sets

Question 6

For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.

- a) the set of people who speak English, the set of people who speak English with an Australian accent
- b) the set of fruits, the set of citrus fruits
- c) the set of students studying discrete mathematics, the set of students studying data structures

- a) $a \nsubseteq b$
- b) $a \nsubseteq b$
- c) $a \nsubseteq b$

Determine whether these statements are true or False.

- a) $\emptyset \in \{\emptyset\}$
- b) $\varnothing \in \{\varnothing, \{\varnothing\}\}$
- c) $\{\varnothing\} \in \{\varnothing\}$
- d) $\{\varnothing\} \in \{\{\varnothing\}\}$
- e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
- $f)\ \{\{\varnothing\}\}\subset\{\varnothing,\{\varnothing\}\}$
- $g) \ \{\{\varnothing\}\} \subset \{\{\varnothing\}, \{\varnothing\}\}$

Solution

- a) True
- b) True
- c) False
- d) True
- e) True
- f) True
- g) False

Question 20

Find two sets A and B such that $A \in B$ and $A \subseteq B$.

Solution

 $A = \emptyset$ and $B = \{\emptyset\}$

What is the cardinality of each of these sets?

- a) Ø
- b) {Ø}
- c) $\{\emptyset, \{\emptyset\}\}$
- d) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

- a) 0
- b) 1
- c) 2
- d) 3

Determine whether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

- a) Yes
- b) Yes
- c) No
- d) Yes

Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$

Solution

For $A \times B$, supposse a pair (a,b) where $a \in A$ and $b \in B$, since A is a subset of C and B is a subset of D, so $a \in C$ and $b \in D$, Therefore $(a,b) \in C \times D$, and $A \times B \subseteq C \times D$.

Question 32

Suppose that $A \times B = \emptyset$, where A and B are sets. What can you conclude?

Solution

 $A = \emptyset$ or $b = \emptyset$

Question 38

How many different elements does $A \times B \times C$ have if A has m elements, B has n elements, and C has p elements?

Solution

 $A \times B \times C$ has mnp elements.

2.2 Set Operations

Question 4

Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find

- a) $A \cup B$.
- b) $A \cap B$.
- c) A B.
- d) B A.

Solution

- a) $\{a, b, c, d, e, f, g, h\}$
- b) $\{a, b, c, d, e\}$
- c) Ø
- d) $\{f, g, h\}$

Question 12

Prove the first absorption law from Table 1 by showing that if A and B are sets, then $A \cup (A \cap B) = A$.

Solution

Suppose $x \in A$, then $x \in A \cup (A \cap B)$ since $A \cup (A \cap B)$ is a union of A and another set, so $A \cup (A \cap B) \subseteq A$. Suppose $x \in A \cup (A \cap B)$, then $x \in A$ or $x \in (A \cap B)$ by the defintion of union, if $x \in (A \cap B)$ then $x \in A$ by the defintion of intersection. Therefore, $A \cup (A \cap B) = A$.

Let A and B be sets. Show that

- a) $(A \cap B) \subseteq A$.
- b) $A \subseteq (A \cup B)$.
- c) $A B \subseteq A$.
- d) $A \cap (B A) = \emptyset$.
- e) $A \cup (B A) = A \cup B$.

Solution

- a) If x is in $A \cap B$, then perforce it is in A (by definition of intersection).
- b) If x is in A, then perforce it is in $A \cup B$ (by definition of union).
- c) If x is in A B, then perforce it is in A (by definition of difference).
- d) If $x \in A$ then $x \in B-A$. Therefore there can be no elements in $A \cap (B-A)$, so $A \cap (B-A) = \emptyset$.
- e) $A \cup (B-A) = A \cup B$. means $x \in A$ or $x \in B$ AND $x \notin A$, which means $x \in A$ OR $x \in B$. Therefore $A \cup (B-A) = A \cup B$.

Question 26

Let A, B, and C be sets. Show that (A - B) - C = (A - C) - (B - C).

Solution

Suppose x is in the left side, then x must be in A but in neither B nor C . Thus $x \in A - C$, but $x \notin B - C$, so x is in the right-hand side.

Suppose x is in the right side, then x must be in A-C but not in B-C. Thus $x \in A-C$, but $x \notin B$, so x is in the left-hand side.

Can you conclude that A = B if A, B, and C are sets such that

- a) $A \cup C = B \cup C$?
- b) $A \cap C = B \cap C$?
- c) $A \cup C = B \cup CandA \cap C = B \cap C$?

- a) No
- b) No
- c) Yes,By symmetry, it suffices to prove that $A\subseteq B$. Suppose that $x\in A$. There are two cases. If $x\in C$, then $x\in A\cap C=B\cap C$, whichforces $\in B$. On the other hand, if $x\notin C$, then because $x\in A\cup C=B\cup C$, we must have $x\in B$.

Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i,

- a) $A_i = i, i + 1, i + 2, \dots$
- b) $A_i = 0, i$.
- c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
- d) $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.

- a) $\bigcup_{i=1}^{\infty}A_i=\{1,2,3,4,...\}$ and $\bigcap_{i=1}^{\infty}A_i=\emptyset$ since Every positive integer is excluded from at least one of the sets
- b) $\bigcup_{i=1}^{\infty} A_i = \{0, 1, 2, 3, 4, ...\}$ and $\bigcap_{i=1}^{\infty} A_i = \{0\}$
- c) $\bigcup_{i=1}^{\infty} A_i = \mathbb{R}^+$ and $\bigcap_{i=1}^{\infty} A_i = A_1$
- d) $\bigcup_{i=1}^{\infty} A_i = A_1$ and $\bigcap_{i=1}^{\infty} A_i = \emptyset$

Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express each of these sets with bitstrings where the ith bit in the string is 1 if i is in theset and 0 otherwise.

- a) $\{3,4,5\}$
- b) {1, 3, 6, 10}
- c) $\{2, 3, 4, 7, 8, 9\}$

- a) 0011100000
- b) 1010010001
- c) 0111001110

2.1 Functions

Question 2

Determine whether f is a function from $\mathbb Z$ to $\mathbb R$ if

- a) $f(n) = \pm n$.
- b) $f(n) = \sqrt{n^2 + 1}$.
- c) $f(n) = 1/(n^2 4)$.

- a) No. Because f(n) is not an assignment of exactly one element of $\mathbb R$ to each element of $\mathbb Z$.
- b) Yes.
- c) No. Because f(2) and f(-2) are not defined.

Find the domain and range of these functions. Note that in each case, to find the domain, determine the set of elements assigned values by the function.

- a) the function that assigns to each nonnegative integer its last digit
- b) the function that assigns the next largest integer to a positive integer
- c) the function that assigns to a bit string the number of one bits in the string
- d) the function that assigns to a bit string the number of bits in the string

- a) The domain is the set of nonnegative integers, and the range is the set of digits (0 through 9).
- b) The domain is the set of positive integers, and the range is the set of positive integers greater than 1.
- c) The domain is the set of strings, and the range is the set of nonnegative integers.
- d) The domain is the set of strings, and the range is the set of nonnegative integers.

Find these values.

- a) [1.1]
- b) [1.1]
- c) [-0.1]
- d) 「−0.1]
- e) [2.99]
- f) [-2.99]
- g) $\lfloor \frac{1}{2} + \lceil \frac{1}{2} \rceil \rfloor$
- h) $\lceil \lfloor \frac{1}{2} \rfloor + \lceil \frac{1}{2} \rceil + \frac{1}{2} \rceil$

- a) 1
- b) 2
- c) -1
- d) 0
- e) 3
- f) -2
- g) 1
- h) 2

Consider these functions from the set of students in a discrete mathematics class. Under what conditions is the function one-to-one if it assigns to a student his or her

- a) mobile phone number.
- b) student identification number.
- c) final grade in the class.
- d) home town.

- a) This is normally the one-to-one function.
- b) This is one-to-one function.
- c) This is normally not the one-to-one function since it is likely that two students have final grade in the class.
- d) This is normally not the one-to-one function since it is likely that two students came from same home towm.

Let $S=\{-1,0,2,4,7\}$. Find f(S) if

- a) f(x) = 1.
- b) f(x) = 2x + 1.
- c) $f(x) = \lceil x/5 \rceil$.
- d) $f(x) = \lfloor (x^2 + 1)/3 \rfloor$.

- a) $f(S) = \{1\}.$
- b) $f(x) = \{-1, 1, 5, 9, 15\}.$
- c) $f(x) = \{0, 1, 2\}.$
- d) $f(x) = \{0, 1, 5, 16\}.$

Let f be the function from $\mathbb R$ to $\mathbb R$ defined by $f(x)=x^2.$ Find

- a) $f^{-1}(1)$.
- b) $f^{-1}(x|0 < x < 1)$.
- c) $f^{-1}(x|x > 4)$.

Solution

- a) $f^{-1}(1) = \{1, -1\}.$
- b) $f^{-1}(x|0 < x < 1) = \{x|0 < x < 1 \lor -1 < x < 0\}.$
- c) $f^{-1}(x|x>4) = \{x|x>2 \lor x<-2\}.$

Question 66

Draw the graph of the function $f(x) = \lfloor x/2 \rfloor$ from \mathbb{R} to \mathbb{R} .

Let x be a real number. Show that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$.

Solution

Suppose $p \le x , then <math>|x| = p$.

- If $p \le x , then <math>\lfloor 3x \rfloor = 3p$, $\lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor = p + p + p = 3p$
- If $p+\frac{1}{3} \le x < p+\frac{2}{3}$, then $\lfloor 3x \rfloor = 3p+1$, $\lfloor x \rfloor + \lfloor x+\frac{1}{3} \rfloor + \lfloor x+\frac{2}{3} \rfloor = p+p+(p+1) = 3p+1$
- If $p + \frac{2}{3} \le x , then <math>\lfloor 3x \rfloor = 3p + 2$, $\lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor = p + (p + 1) + (p + 1) = 3p + 2$

Therefore, $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$.

2.4 Sequences and Summations

Question 4

What are the terms a_0, a_1, a_2 , and a_3 of the sequence $\{a_n\}$, where an equals

- a) $(-2)^n$?
- b) 3?
- c) $7 + 4^n$?
- d) $2^n + (-2)^n$?

a)
$$a_0 = 1, a_1 = -2, a_2 = 4, a_3 = -8$$

b)
$$a_0 = 3, a_1 = 3, a_2 = 3, a_3 = 3$$

c)
$$a_0 = 8, a_1 = 11, a_2 = 23, a_3 = 71$$

d)
$$a_0 = 2, a_1 = 0, a_2 = 8, a_3 = 0$$

Find the first six terms of the sequence defined by each of these recurrence relations and initial conditions.

a)
$$a_n = -2a_{n-1}, a_0 = -1$$

b)
$$a_n = a_{n-1} - a_{n-2}, a_0 = 2, a_1 = -1$$

c)
$$a_n = 3a_{n-1}^2, a_0 = 1$$

d)
$$a_n = na_{n-1} + a_{n-2}^2, a_0 = -1, a_1 = 0$$

e)
$$a_n = a_{n-1} - a_{n-2} + a_{n-3}, a_0 = 1, a_1 = 1, a_2 = 2$$

a)
$$a_0 = -1, a_1 = 2, a_2 = -4, a_3 = 8, a_4 = -16, a_5 = 32$$

b)
$$a_0 = 2, a_1 = -1, a_2 = -3, a_3 = -2, a_4 = 1, a_5 = 3$$

c)
$$a_0 = 1, a_1 = 3, a_2 = 27, a_3 = 2187, a_4 = 14348907, a_5 = 617673396283947$$

d)
$$a_0 = 1, a_1 = 1, a_2 = 2, a_3 = 2, a_4 = 1, a_5 = 1$$

Assume that the population of the world in 2017 was 7.6 billion and is growing at the rate of 1.12% a year.

- a) Set up a recurrence relation for the population of the world n years after 2017.
- b) Find an explicit formula for the population of the world n years after 2017.
- c) What will the population of the world be in 2050?

Solution

Suppose the population of the world n years after 2017 is a_n (billions).

a)
$$a_n = (100 + 1.12)\% \cdot a_{n-1}, a_0 = 7.6$$

b)
$$a_n = 7.6 \cdot [(100 + 1.12)\%]^n$$

c)
$$a_{33} \approx 10.98$$

- a) Find a recurrence relation for the balance B(k) owed at the end of k months on a loan at a rate of r if a payment P is made on the loan each month. [Hint: Express B(k) in terms of B(k-1) and note that the monthly interest rate is r/12.]
- b) Determine what the monthly payment P should be so that the loan is paid off after T months.

Solution

- a) B(k) = (1 + r/12)B(k-1) P
- b) From recurrence relation we can know the explicit formula is $B(k)-12P/r=(1+r/12)^k(B(0)-12P/r)$

Then we can solve that $T = \log_{1+r/12}(\frac{-12p}{B(0)r-12p})$

Find the value of each of these sums.

a)
$$\Sigma_{j=0}^8 = (-1 + (-1)^j)$$

b)
$$\Sigma_{j=0}^8 = (3^j - 2^j)$$

c)
$$\Sigma_{j=0}^8 = (2 \cdot 3^j + 3 \cdot 2^j)$$

d)
$$\Sigma_{j=0}^8 = (2^{j+1} - 2^j)$$

a)
$$\Sigma_{j=0}^8 = (-1 + (-1)^j) = 0$$

b)
$$\Sigma_{j=0}^8 = (3^j - 2^j) = 9330$$

c)
$$\Sigma_{j=0}^8 = (2 \cdot 3^j + 3 \cdot 2^j) = 21215$$

d)
$$\Sigma_{j=0}^8 = (2^{j+1} - 2^j) = 511$$