Groupes

QCOP GRP.1

Soient $(G_1, *_1)$, $(G_2, *_2)$ deux groupes. Soit f un morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$.

- \blacksquare Soit $H_2\subset G_2$. Définir « H_2 est un sous-groupe de G_2 ».
- Soit H_1 un sous-groupe de G_1 . Montrer que $f[H_1]$ est un sous-groupe de G_2 .
- lpha Montrer que $\left(\left\{-1,1\right\}, imes
 ight)$ est un groupe à l'aide de la question précédente.

QCOP GRP.2

Soient $(G_1, *_1)$, $(G_2, *_2)$ deux groupes. Soit f un morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$.

- \blacksquare Soit $H_1 \subset G_1$. Définir « H_1 est un sous-groupe de G_1 ».
- ${\mathscr F}$ Soit H_2 un sous-groupe de G_2 . Montrer que $f^{\langle -1 \rangle}[H_2]$ est un sous-groupe de G_1 .
- \ref{Soit} Soit B un sous-groupe de \mathbb{Z}^2 . Montrer, à l'aide du résultat précédemment établi, que

$$H := \left\{ x \in \mathbb{Z} \mid (x,0) \in B \right\}$$

est un sous-groupe de \mathbb{Z} .

QCOP GRP.3

Soient $(G_1, *_1)$, $(G_2, *_2)$ deux groupes. Soit f un morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$.

- \blacksquare Définir « f est un morphisme de groupes de $(G_1, *_1)$ dans $(G_2, *_2)$ ».
- ${\it psi}$ Énoncer et démontrer une condition nécessaire et suffisante d'injectivité de f.
- (a) Montrer que

f est un morphisme de $(\mathbb{Z},+)$ dans $(\mathbb{Z},+)$

$$\updownarrow$$

$$\forall n \in \mathbb{Z}, \quad f(n) = nf(1).$$

(b) Quels sont les morphismes de $(\mathbb{Z},+)$ dans $(\mathbb{Z},+)$ injectifs?