11 General-purpose I/Os (GPIO)

11.1 Introduction

Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection registers (GPIOx_AFRH and GPIOx_AFRL).

11.2 GPIO main features

- Output states: push-pull or open drain + pull-up/down
- Output data from output data register (GPIOx_ODR) or peripheral (alternate function output)
- Speed selection for each I/O
- Input states: floating, pull-up/down, analog
- Input data to input data register (GPIOx IDR) or peripheral (alternate function input)
- Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR
- Locking mechanism (GPIOx_LCKR) provided to freeze the port A, B, C, D, E, F, G, H on STM32F303xD/E and STM32F398xE, A, B and D I/O configuration in STM32F303xB/C and STM32F358xC devices and port A, B, C, D and F in STM32F303x6/8 and STM32F328x8 devices.
- Analog function
- Alternate function selection registers
- Fast toggle capable of changing every two clock cycles
- Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several peripheral functions

11.3 GPIO functional description

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes:

- Input floating
- Input pull-up
- Input-pull-down
- Analog
- Output open-drain with pull-up or pull-down capability
- Output push-pull with pull-up or pull-down capability
- Alternate function push-pull with pull-up or pull-down capability
- Alternate function open-drain with pull-up or pull-down capability

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx BSRR and

228/1141 DocID022558 Rev 8

GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIOx_ODR registers. In this way, there is no risk of an IRQ occurring between the read and the modify access.

Figure 40 and Figure 41 show the basic structures of a standard and a 5 V tolerant I/O port bit, respectively. Table 72 gives the possible port bit configurations.

Figure 40. Basic structure of an I/O port bit

1. V_{DD_FT} is a potential specific to five-volt tolerant I/Os and different from V_{DD} .

Table 72. Port bit configuration table⁽¹⁾

MODER(i) [1:0]	OTYPER(i)	OSPE	EEDR(i) 1:0]	PUP	DR(i) :0]	I/O cor	figuration
	0			0	0	GP output	PP
	0			0	1	GP output	PP + PU
	0			1	0	GP output	PP + PD
01	0	SP	PEED	1	1	Reserved	
01	1	[′	1:0]	0	0	GP output	OD
	1			0	1	GP output	OD + PU
	1			1	0	GP output	OD + PD
	1			1	1	Reserved (GP of	output OD)
	0			0	0	AF	PP
	0			0	1	AF	PP + PU
	0			1	0	AF	PP + PD
10	0	SP	PEED	1	1	Reserved	
10	1	[′	1:0]	0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1			1	1	Reserved	
	Х	х	Х	0	0	Input	Floating
00	Х	х	х	0	1	Input	PU
00	Х	х	Х	1	0	Input	PD
	х	х	Х	1	1	Reserved (input	floating)
	Х	х	х	0	0	Input/output	Analog
11	Х	х	х	0	1		
	Х	х	Х	1	0	Reserved	
	Х	х	х	1	1		

GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function.

11.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and most of the I/O ports are configured in input floating mode.

The debug pins are in AF pull-up/pull-down after reset:

- PA15: JTDI in pull-up
- PA14: JTCK/SWCLK in pull-down
- PA13: JTMS/SWDIO in pull-up
- PB4: NJTRST in pull-up
- PB3: JTDO/TRACESWO

When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the low level is driven, high level is HI-Z).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx PUPDR register.

11.3.2 I/O pin alternate function multiplexer and mapping

The device I/O pins are connected to on-board peripherals/modules through a multiplexer that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In this way, there can be no conflict between peripherals available on the same I/O pin.

Each I/O pin has a multiplexer with up to sixteen alternate function inputs (AF0 to AF15) that can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15) registers:

- After reset the multiplexer selection is alternate function 0 (AF0). The I/Os are configured in alternate function mode through GPIOx MODER register.
- The specific alternate function assignments for each pin are detailed in the device datasheet.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages.

To use an I/O in a given configuration, the user has to proceed as follows:

- **Debug function:** after each device reset these pins are assigned as alternate function pins immediately usable by the debugger host
- **GPIO:** configure the desired I/O as output, input or analog in the GPIOx_MODER register.
- Peripheral alternate function:
 - Connect the I/O to the desired AFx in one of the GPIOx_AFRL or GPIOx_AFRH register.
 - Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively.
 - Configure the desired I/O as an alternate function in the GPIOx_MODER register.
- Additional functions:

- For the ADC, DAC, OPAMP, and COMP, configure the desired I/O in analog mode in the GPIOx_MODER register and configure the required function in the ADC, DAC, OPAMP, and COMP registers.
- For the additional functions like RTC, WKUPx and oscillators, configure the required function in the related RTC, PWR and RCC registers. These functions have priority over the configuration in the standard GPIO registers.

Refer to the "Alternate function mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins.

11.3.3 I/O port control registers

Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The GPIOx_MODER register is used to select the I/O mode (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (pushpull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction.

11.3.4 I/O port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers (GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write accessible. The data input through the I/O are stored into the input data register (GPIOx_IDR), a read-only register.

See Section 11.4.5: GPIO port input data register ($GPIOx_IDR$) (x = A..H) and Section 11.4.6: GPIO port output data register ($GPIOx_ODR$) (x = A..H) for the register descriptions.

11.3.5 I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i). When written to 1, bit BS(i) **sets** the corresponding ODR(i) bit. When written to 1, bit BR(i) **resets** the ODR(i) corresponding bit.

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a "one-shot" effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always be accessed directly. The GPIOx_BSRR register provides a way of performing atomic bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify one or more bits in a single atomic AHB write access.

11.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must be the same). When the LOCK sequence has been applied to a port bit, the value of the port bit can no longer be modified until the next MCU reset or peripheral reset. Each GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

The LOCK sequence (refer to Section 11.4.8: GPIO port configuration lock register (GPIOx_LCKR)) can only be performed using a word (32-bit long) access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same time as the [15:0] bits.

For more details refer to LCKR register description in Section 11.4.8: GPIO port configuration lock register (GPIOx_LCKR).

11.3.7 I/O alternate function input/output

Two registers are provided to select one of the alternate function inputs/outputs available for each I/O. With these registers, the user can connect an alternate function to some other pin as required by the application.

This means that a number of possible peripheral functions are multiplexed on each GPIO using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can thus select any one of the possible functions for each I/O. The AF selection signal being common to the alternate function input and alternate function output, a single channel is selected for the alternate function input/output of a given I/O.

To know which functions are multiplexed on each GPIO pin, refer to the device datasheet.

11.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode. Section 14.2: Extended interrupts and events controller (EXTI) and to Section 14.2.3: Wakeup event management.

11.3.9 Input configuration

When the I/O port is programmed as input:

- The output buffer is disabled
- The Schmitt trigger input is activated
- The pull-up and pull-down resistors are activated depending on the value in the GPIOx PUPDR register
- The data present on the I/O pin are sampled into the input data register every AHB clock cycle
- A read access to the input data register provides the I/O state

Figure 42 shows the input configuration of the I/O port bit.

Figure 42. Input floating/pull up/pull down configurations

11.3.10 Output configuration

When the I/O port is programmed as output:

- The output buffer is enabled:
 - Open drain mode: A "0" in the Output register activates the N-MOS whereas a "1" in the Output register leaves the port in Hi-Z (the P-MOS is never activated)
 - Push-pull mode: A "0" in the Output register activates the N-MOS whereas a "1" in the Output register activates the P-MOS
- The Schmitt trigger input is activated
- The pull-up and pull-down resistors are activated depending on the value in the GPIOx_PUPDR register
- The data present on the I/O pin are sampled into the input data register every AHB clock cycle
- A read access to the input data register gets the I/O state
- A read access to the output data register gets the last written value

Figure 43 shows the output configuration of the I/O port bit.

Figure 43. Output configuration

11.3.11 Alternate function configuration

When the I/O port is programmed as alternate function:

- The output buffer can be configured in open-drain or push-pull mode
- The output buffer is driven by the signals coming from the peripheral (transmitter enable and data)
- The Schmitt trigger input is activated
- The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx PUPDR register
- The data present on the I/O pin are sampled into the input data register every AHB clock cycle
- A read access to the input data register gets the I/O state

Figure 44 shows the Alternate function configuration of the I/O port bit.

Figure 44. Alternate function configuration

11.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

- The output buffer is disabled
- The Schmitt trigger input is deactivated, providing zero consumption for every analog value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).
- The weak pull-up and pull-down resistors are disabled by hardware
- Read access to the input data register gets the value "0"

Figure 45 shows the high-impedance, analog-input configuration of the I/O port bit.

Figure 45. High impedance-analog configuration

11.3.13 Using the HSE or LSE oscillator pins as GPIOs

When the HSE or LSE oscillator is switched OFF (default state after reset), the related oscillator pins can be used as normal GPIOs.

When the HSE or LSE oscillator is switched ON (by setting the HSEON or LSEON bit in the RCC_CSR register) the oscillator takes control of its associated pins and the GPIO configuration of these pins has no effect.

When the oscillator is configured in a user external clock mode, only the pin is reserved for clock input and the OSC_OUT or OSC32_OUT pin can still be used as normal GPIO.

11.3.14 Using the GPIO pins in the RTC supply domain

The PC13/PC14/PC15 GPIO functionality is lost when the core supply domain is powered off (when the device enters Standby mode). In this case, if their GPIO configuration is not bypassed by the RTC configuration, these pins are set in an analog input mode.

For details about I/O control by the RTC, refer to Section 27.3: RTC functional description on page 775.

DocID022558 Rev 8

11.4 GPIO registers

This section gives a detailed description of the GPIO registers.

For a summary of register bits, register address offsets and reset values, refer to Table 73.

The peripheral registers can be written in word, half word or byte mode.

11.4.1 GPIO port mode register (GPIOx_MODER) (x =A..H)

Address offset:0x00

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODE	R12[1:0]	MODE	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y+1:2y **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O mode.

00: Input mode (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

Note: In STM32F303xB/xC and STM32F358x devices, bits 10 and 11 of GPIOF_MODER are reserved and must be kept at reset state.

11.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..H)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	OT8	OT7	ОТ6	OT5	OT4	ОТ3	OT2	OT1	ОТ0
rw															

577

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)

1: Output open-drain

11.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..H)

Address offset: 0x08

Reset value:

0x0C00 0000 for port A

0x0000 00C0 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]		EDR13 :0]		EDR12 :0]		EDR11 :0]		EDR10 :0]		EDR9 :0]		EDR8 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EDR7 :0]		EDR6 :0]	OSPE [1:	EDR5 :0]		EDR4 :0]		EDR3 :0]		EDR2 :0]		EDR1 :0]		EDR0 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y+1:2y **OSPEEDRy[1:0]**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

x0: Low speed 01: Medium speed

11: High speed

Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed.

11.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..H)

Address offset: 0x0C

Reset values:

0x6400 0000 for port A

• 0x0000 0100 for port B

• 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPD	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPD	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw										

Bits 2y+1:2y **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

11.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 IDR15	14 IDR14	13 IDR13	12 IDR12	11 IDR11	10 IDR10	9 IDR9	8 IDR8	7 IDR7	6 IDR6	5 IDR5	4 IDR4	3 IDR3	2 IDR2	1 IDR1	0 IDR0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy:** Port input data bit (y = 0..15)

These bits are read-only. They contain the input value of the corresponding I/O port.

11.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy:** Port output data bit (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to the $GPIOx_BSRR$ or $GPIOx_BRR$ registers (x = A..F).

57

11.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A...H)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	W	W	W	W	W	W	W	W	W	W	W	W	W	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	W	w	w	w

Bits 31:16 **BRy:** Port x reset bit y (y = 0..15)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y = 0..15)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

11.4.8 GPIO port configuration lock register (GPIOx_LCKR)

x=A, B and D in STM32F303xB/C and STM32F358xC devices, x=A, B, C, D and F in STM32F303x6/8 and STM32F328x8 devices and x=A, B, C, D, E, F, G, H in STM32F303xD/E devices.

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU reset or peripheral reset.

Note:

A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this locking sequence.

Each lock bit freezes a specific configuration register (control and alternate function registers).

Address offset: 0x1C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	LCKK
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU reset or peripheral reset.

LOCK key write sequence:

WR LCKR[16] = '1' + LCKR[15:0]

WR LCKR[16] = '0' + LCKR[15:0]

WR LCKR[16] = '1' + LCKR[15:0]

RD LCKR

RD LCKR[16] = '1' (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will return '1' until the next MCU reset or peripheral reset.

Bits 15:0 **LCKy:** Port x lock bit y (y= 0..15)

These bits are read/write but can only be written when the LCKK bit is '0.

0: Port configuration not locked

1: Port configuration locked

11.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..H)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFR	7[3:0]			AFR6	3[3:0]			AFR:	5[3:0]			AFR4	4[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFR	3[3:0]			AFR2	2[3:0]			AFR:	1[3:0]			AFR	0[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFRy[3:0]:** Alternate function selection for port x pin y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRy selection:	
0000: AF0	1000: AF8
	1001: AF9
0001: AF1	1010: AF10
0010: AF2	1011: AF11
0011: AF3	1100: AF12
0100: AF4	
0101: AF5	1101: AF13
	1110: AF14
0110: AF6	1111: AF15
0111: AF7	

11.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..H)

Address offset: 0x24

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						4[3:0]			AFR1	3[3:0]			AFR1	2[3:0]	
rw	rw	rw	rw												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFR1	1[3:0]			AFR1	0[3:0]			AFR	9[3:0]			AFR	8[3:0]	
rw	rw	rw	rw												

Bits 31:0 **AFRy[3:0]:** Alternate function selection for port x pin y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRy selection:

0000: AF0	1000: AF8
0001: AF1	1001: AF9
0010: AF2	1010: AF10
0011: AF3	1011: AF11
0100: AF4	1100: AF12
0101: AF5	1101: AF13
0110: AF6	1110: AF14
0111: AF7	1111: AF15

11.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A..H)

Address offset: 0x28 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BR15	14 BR14	13 BR13	12 BR12	11 BR11	10 BR10	9 BR9	8 BR8	7 BR7	6 BR6	5 BR5	4 BR4	3 BR3	2 BR2	1 BR1	0 BR0

Bits 31:16 Reserved

Bits 15:0 **BRy:** Port x Reset bit y (y= 0..15)

These bits are write-only. A read to these bits returns the value 0x0000

0: No action on the corresponding $\ensuremath{\mathsf{ODx}}$ bit

1: Reset the corresponding ODx bit

11.4.12 **GPIO register map**

The following table gives the GPIO register map and reset values.

Table 73. GPIO register map and reset values

						П		ΠĪ									
Offset	Register	31	29	27 26	25 24	23	21 20	18	17	15	13	11	တ ဆ	2	3 4	3	0
0x00	GPIOA_MODER	MODER15[1:0]	MODER14[1:0]	MODER13[1:0].	MODER12[1:0].	MODER11[1:0].	MODER10[1:0].	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	MODER4[1:0]	MODER3[1:0]	MODER2[1:0]	MODER1[1:0]	MODER0[1:0]
	Reset value				0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x00	GPIOB_MODER	MODER15[1:0]-	MODER14[1:0]-	MODER13[1:0]-	MODER12[1:0]-	MODER11[1:0]-	MODER10[1:0]	MODER9[1:0] -	MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	MODER4[1:0] -	MODER3[1:0]	MODER2[1:0]	MODER1[1:0]	MODER0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0 0	0 0
0x00	GPIOx_MODER (where x = CH)	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	MODER4[1:0]	MODER3[1:0]	MODER2[1:0]	MODER1[1:0]	MODER0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x04	GPIOx_OTYPER (where x = AH)	Res.	Res.	Res.	Res.	Res.	Res. Res.	Res.	Res.	OT15	OT13 OT12	OT11 OT10	OT9 OT8	OT7 OT6	OT5 OT4	OT3 OT2	OT1
	Reset value									0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x08	GPIOA_OSPEEDR	OSPEEDR15[1:0] OSPEEDR14[1:0]		OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]	OSPEEDR6[1:0]	OSPEEDR5[1:0]	OSPEEDR4[1:0]	OSPEEDR3[1:0]	OSPEEDR2[1:0]	OSPEEDR1[1:0]	OSPEEDR0[1:0]
	Reset value	0 0	0 0	1 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x08	GPIOB_OSPEEDR	OSPEEDR15[1:0]	OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]	OSPEEDR6[1:0]	OSPEEDR5[1:0]	OSPEEDR4[1:0]	OSPEEDR3[1:0]	OSPEEDR2[1:0]	OSPEEDR1[1:0]	OSPEEDR0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1	0 0	0 0	0 0
0x08	GPIOx_OSPEEDR (where x = CH)	OSPEEDR15[1:0] OSPEEDR14[1:0]		OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]	OSPEEDR6[1:0]	OSPEEDR5[1:0]	OSPEEDR4[1:0]	OSPEEDR3[1:0]	OSPEEDR2[1:0]	OSPEEDR1[1:0]	OSPEEDR0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x0C	GPIOA_PUPDR	PUPDR15[1:0]	PUPDR14[1:0]	PUPDR13[1:0].	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]	PUPDR6[1:0]	PUPDR5[1:0]	PUPDR4[1:0]	PUPDR3[1:0]	PUPDR2[1:0]	PUPDR1[1:0]	PUPDR0[1:0]
	Reset value	0 1	1 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0

Table 73. GPIO register map and reset values (continued)

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	_	0
0x0C			PUPDR15[1:0] PUPDR14[1:0]		0	D PI IPDR12[1:0]	0	O PUPDR11[1:0]		PUPDR10[1:0]			PUPDR9[1:0]		PUPDR8[1:0]		PUPDR7[1:0]		PUPDR6[1:0]			O PUPDR4[1:0]		0 1000214-01		0 10000110	O rurundi	0 PI IBDR171-01		PUPDR0f1:01			
0x10	Reset value GPIOx_IDR (where x = AH)	Res. 0	Res. 0	Res. 0	Res. 0	Res. 0	Res. o	Res. o	Res. o	Res. o	Res. o	Res. o	Res. 0	Res. o	Res.	Res.	-	IDR15 c	-	IDR13 o	IDR12 o	IDR11 o	IDR10 o	IDR9 c	<u> </u>	IDR7 o	IDR6 c	IDR5 o			L.	IDR1 o	IDR0 o
0x14	Reset value GPIOx_ODR (where x = AH)	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	ODR15 ×	ODR14 ×	ODR13 ×	ODR12 ×	ODR11 ×	ODR10 ×	ODR9 x	ODR8 x	ODR7 ×	ODR6 ×	ODR5 x	ODR4 ×	ODR3 x	ODR2 ×	ODR1 ×	ODR0 ×
	Reset value GPIOx BSRR	2	4	3	2	_	0	6	ω		9	2	4	8	2	_		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	(where x = AH) Reset value	o BR1	o BR14	o BR13	o BR12	o BR11	o BR10	o BR9	o BR8	o BR7	o BR6	o BR5	o BR4	o BR3	o BR2	o BR1	o BR0	o BS15	o BS14	o BS13	o BS12	o BS11	o BS10	o BS9	o BS8	o BS7	o BS6	o BS5	o BS4	o BS3	o BS2	o BS1	o BS0
0x1C	GPIOx_LCKR (where x = see ⁽¹⁾)	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	LCKK	LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	GPIOx_AFRL (where x = CH)	AFRLAFR 0]			7[3:	AFI	RLA C		6[3:	AFI	RLA C		5[3:	AFI	RLA 0		4[3:	AF	AFRLÆ		3[3	AF	RLA (2[3:	AF		AFR D]	.1[3	AF	RLA :0		8]0
	Reset value	0			0	0	0	0	0	0	0	0	0	0	0		0	0	0	-	0	0	0	0	0	0	0	-	0	0		0	0
0x24	GPIOx_AFRH (where x = AH)		3:	:0]			3:	0]	•		3:	0]			3:	0]	•		3:	0]	·	AF	AFRHAFR 3:0]				:(AFR9[3 0]			:0	:0]	
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x28	GPIOx_BRR (where x = AH)	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{1.} A, B and D in STM32F303xB/C and STM32F358xC, A, B, C, D and F in STM32F303x6/8 and STM32F328x8, and A, B, C, D, E, F, G, H in STM32F303xD/E.

Refer to Section 3.2.2 on page 51 for the register boundary addresses.

