PCT/EP200 4 / 0 1 0 6 4 8

BUNDESREPUBLIK DEUTSCHLAND

22 09 2004

EP04/10648

REC'D 1 6 NOV 2004

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 49 148.1

Anmeldetag:

17. Oktober 2003

Anmelder/Inhaber:

Merck Patent GmbH,

64293 Darmstadt/DE

Bezeichnung:

Flüssigkristallines Medium

IPC:

C 09 K, G 02 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 09. September 2004

Deutsches Patent- und Markenamt

Der Präsident

In Auftrag

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Faust

A 9161 08/00 EDV-1

Flüssigkristallines Medium

Die Erfindung betrifft ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit negativer dielektrischer Anisotropie, welches mindestens eine Verbindung der Formel I,

10
$$R^{11}-(A^1-Z^1)_m \longrightarrow O$$

 $F F F F (Z^2-A^2)_n-R^{12}$

worin

- 15

20

30

35

R¹¹ und R¹²

A¹ und A² jeweils unabhängig voneinander

- einen 1,4-Cyclohexenylen- oder 1,4-Cyclohexylenrest,
 worin eine oder zwei nicht benachbarte CH₂-Gruppen
 durch -O- oder -S- ersetzt sein können,
- einen 1,4-Phenylenrest, worin eine oder zwei CH-Gruppen durch N ersetzt sein können,
- c) einen Rest aus der Gruppe Piperidin-1,4-diyl-, 1,4-Bicyclo[2,2,2]-octylen-, einen Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, Phenanthren-2,7-diyl, Fluoren-2,7-diyl,

wobei die Reste a), b) und c) ein oder mehrfach durch Halogenatome substituiert sein können,

 $5 Z^1 und Z^2$

jeweils unabhängig voneinander -CO-O-, -O-CO-, -CF₂O-,

-OCF₂-, -CH₂O-, -OCH₂-, -CH₂CH₂-, -(CH₂)₄-, -C₂F₄-,

-CH₂CF₂-, -CF₂CH₂-, -CF=CF-, -CH=CF-, -CF=CH-,

-CH=CF-, -CF=CH-, -CH=CH-, -C≡C- oder eine Einfach-

bindung, und

10

m und n

jeweils unabhängig voneinander 0, 1 oder 2, wobei m + n

≥ 1

bedeuten,

enthält.

Derartige Medien sind insbesondere für elektrooptische Anzeigen mit einer Aktivmatrix-Addressierung basierend auf dem ECB-Effekt sowie für IPS-Anzeigen (In plane switching) zu verwenden.

20

Das Prinzip der elektrisch kontrollierten Doppelbrechung, der ECB-Effekt (electrically controlled birefringence) oder auch DAP-Effekt (Deformation aufgerichteter Phasen) wurde erstmals 1971 beschrieben (M.F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912). Es folgten Arbeiten von J.F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) und G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869).

Die Arbeiten von J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30), J. Duchene (Displays 7 (1986), 3) und H. Schad (SID 82 Digest Techn. Papers (1982), 244) haben gezeigt, dass flüssigkristalline Phasen hohe Werte für das Verhältnis der elastischen Konstanten K₃/K₁, hohe Werte für die optische Anisotropie Δn und Werte für die dielektrische Anisotropie Δε von -0,5 bis -5 aufweisen müssen, um für hochinformative Anzeigeelemente basierend auf dem ECB-Effekt eingesetzt werden zu

10

- 15

20

30

35

können. Auf dem ECB-Effekt basierende elektrooptische Anzeigeelemente weisen eine homöotrope Randorientierung auf. Auch bei Anzeigen, die den sogenannten IPS-Effekt verwenden, können dielektrisch negative Flüsigkristallmedien zum Einsatz kommen.

Für die technische Anwendung dieses Effektes in elektrooptischen Anzeigeelementen werden FK-Phasen benötigt, die einer Vielzahl von Anforderungen genügen müssen. Besonders wichtig sind hier die chemische Beständigkeit gegenüber Feuchtigkeit, Luft und physikalischen Einflüssen wie Wärme, Strahlung im infraroten, sichtbaren und ultravioletten Bereich und elektrische Gleich- und Wechselfelder.

Ferner wird von technisch verwendbaren FK-Phasen eine flüssigkristalline Mesophase in einem geeigneten Temperaturbereich und eine niedrige Viskosität gefordert.

In keiner der bisher bekannten Reihen von Verbindungen mit flüssigkristalliner Mesophase gibt es eine Einzelverbindung, die allen diesen Erfordernissen entspricht. Es werden daher in der Regel Mischungen von zwei bis 25, vorzugsweise drei bis 18, Verbindungen hergestellt, um als FK-Phasen verwendbare Substanzen zu erhalten. Optimale Phasen konnten jedoch auf diese Weise nicht leicht hergestellt werden, da bisher keine Flüssigkristallmaterialien mit deutlich negativer dielektrischer Anisotropie und ausreichender Langzeitstabilität zur Verfügung standen.

Matrix-Flüssigkristallanzeigen (MFK-Anzeigen) sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d.h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:

- MOS (Metal Oxide Semiconductor)-Transistoren auf Silizium-Wafer als Substrat.
- 2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.

Bei Typ 1 wird als elektrooptischer Effekt üblicherweise die dynamische Streuung oder der Guest-Host-Effekt verwendet. Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.

Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet.

10

5

Man unterscheidet zwei Technologien: TFT's aus Verbindungshalbleitern wie z.B. CdSe oder TFT's auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet.

⁻ 15

20

Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.

 \sim

Die bisher bekannten TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polaristoren in Transmission und sind von hinten beleuchtet.

30

Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d.h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).

35

Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z.B. Taschenfernseher) oder für hochinformative Displays in Automobiloder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen

10

⁻ 15

Schwierigkeiten bedingt durch einen nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E.,

WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der

kristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig für Anzeigen die akzeptable Widerstandswerte über eine lange Betriebsdauer aufweisen müssen.

Der Nachteil der bisher bekannten MFK-TN-Anzeigen beruht in ihrem vergleichsweise niedrigen Kontrast, der relativ hohen Blickwinkelabhängigkeit und der Schwierigkeit in diesen Anzeigen Graustufen zu erzeugen.

- Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten und niedriger Schwellenspannung, mit deren Hilfe verschiedene Graustufen erzeugt werden können.
- Der Erfindung liegt die Aufgabe zugrunde, MFK-Anzeigen welche auf dem ECB- oder auf dem IPS-Effekt beruhen, bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße und gleichzeitig sehr hohe spezifische Widerstände aufweisen.
 - Es wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn man in diesen Anzeigeelementen nematische Flüssigkristallmischungen verwendet, die mindestens eine Verbindung der Formel I enthalten.
 - Gegenstand der Erfindung ist somit ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit negativer dielektrischer Anisotropie, welches mindestens eine Verbindung der Formel I enthält.

10

- 15

20

Verbindungen der Formel I sind z.B. aus der EP 0 637 585 A1 bekannt. Die im Stand der Technik beschriebenen flüssigkristallinen Mischungen sind ausschließlich für ferroelektrische Anwendungen gedacht. Die Verwendung von fluorierten Indanen für ECB- oder IPS-Anzeigen ist nicht bekannt.

Die erfindungsgemäßen Mischungen zeigen sehr günstige Werte für die kapazitive Schwelle, relativ hohe Werte für die Holding Ratio und gleichzeitig eine sehr gute Tieftemperaturstabilität sowie sehr geringe Rotationsviskositäten.

Einige bevorzugte Ausführungsformen werden im folgenden genannt:

 a) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Verbindungen der Formeln IIA und/oder IIB enthält,

worin

30 R² die Bedeutung von R¹¹ hat,

p 1 oder 2, und

v 1 bis 6

35 bedeutet.

b) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Verbindungen der Formel III enthält,

5

$$R^{31}$$
 \longrightarrow A \longrightarrow H \longrightarrow R^{32}

worin

10

R³¹ und R³² jeweils unabhängig voneinander einen geradkettigen Alkyl-, Alkylalkoxy- oder Alkoxyrest mit bis zu 12 C-Atomen, und

⁻ 15

bedeuten.

- c) Flüssigkristallines Medium, welches ein, zwei, drei, vier oder mehr, vorzugsweise ein oder zwei Verbindungen der Formel I enthält.
 - d) Flüssigkristallines Medium, worin R¹ in Formel I vorzugsweise folgende Bedeutungen hat: geradkettiges Alkyl, Vinyl, 1E-Alkenyl oder 3-Alkenyl.

25

Falls R¹ Alkenyl bedeutet, so ist es vorzugsweise CH₂=CH, CH₃-CH=CH, C₃H₇-CH=CH, CH₂=CH-C₂H₅ oder CH₃-CH=CH-C₂H₅.

30

- R⁰ bedeutet vorzugsweise H oder geradkettiges Alkyl mit 1 bis 6 C-Atomen, insbesondere Methyl, Ethyl oder Propyl.
- e) Flüssigkristallines Medium, wobei der Anteil an Verbindungen der Formel I im Gesamtgemisch mindestens 5 Gew.%, vorzugsweise mindestens 10 Gew.%, beträgt.

20

25

30

- f) Flüssigkristallines Medium, wobei der Anteil an Verbindungen der Formeln IIA und/oder IIB im Gesamtgemisch mindestens 20 Gew.-% beträgt.
- g) Flüssigkristallines Medium, wobei der Anteil den Verbindungen der Formel III im Gesamtgemisch mindestens 5 Gew.-% beträgt.
- h) Flüssigkristallines Medium, welches mindestens eine Verbindung ausgewählt aus den Teilformeln I1 bis I36 enthält:

$$R^{11}$$
 O E E E

$$R^{11}$$
 O F F F F

· I12

35 '

10

⁻ 15

20

$$R^{11}$$
 F F F F F

$$R^{11} \longrightarrow 0$$

$$F F F$$
120

$$R^{11} \longrightarrow O \longrightarrow Alkyl$$
10 | I21

$$R^{11} \longrightarrow O \longrightarrow O$$

$$F = F$$

$$122$$

$$R^{1} \longrightarrow O \longrightarrow O$$

$$F \qquad F \qquad F \qquad F$$

$$R^{11} \longrightarrow 0$$

$$F F F F$$

$$128$$

$$R^{11} \longrightarrow 0$$

$$F F F F$$

$$I30$$

$$R^{11} \longrightarrow Alkyl$$
 133

⁻ 15

20

$$R^{11} \longrightarrow 0 \longrightarrow 0$$

$$F F F F$$

$$134$$

$$R^{11}$$

Besonders bevorzugte Medien enthalten eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln

35

10

i) Flüssigkristallines Medium, welches zusätzlich eine Verbindung ausgewählt aus den Formeln IIIa bis IIIf enthält:

worin

35 Alkyl und

Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1-6 C-Atomen, und

Alkenyl und

Alkenyl* jeweils unabhängig voneinander einen geradkettigen

Alkenylrest mit 2-6 C-Atomen

5

bedeuten.

Vorzugsweise enthält das erfindungsgemäße Medium mindestens eine Verbindung der Formel IIIa, Formel IIIb und/oder Formel IIIe.

10

Besonders bevorzugte Verbindungen der Formeln IIIe und IIIf werden nachfolgend genannt:

15

20

Alkyl— H

25

30

j) Flüssigkristallines Medium, welches im wesentlichen aus:

20-70 Gew.-% einer oder mehrerer Verbindungen der Formeln IIA und/oder IIB

Gew.-% einer oder mehrerer Verbindungen der Formel I und

⁻ 15

besteht.

5-30

20

k) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Vierkernverbindungen der Formeln,

25

$$R^7$$
 H O O H C_wH_{2w+} C_wH_{2w+} C_wH_{2w+1}

30

worin

R⁷ und R⁸ jeweils unabhängig voneinander eine der in Anspruch 1 für R¹ angegebenen Bedeutung haben, und

35

w und x jeweils unabhängig voneinander 1 bis 6

bedeuten,

enthält.

5

I) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Verbindungen der Formeln

10

$$R^{13}$$
 H H O $CH_2)_z$ -O- C_mH_{2m+1}

⁻ 15

20

$$R^{16}$$
 H O OCH_2

30

$$R^{17}$$
 H CF_2O O O O C_mH_{2m+1}

$$R^{18} - H - OCF_{2} - O - (O) \cdot C_{m}H_{2m+1}$$

$$R^{19} - H - O - CF_{2}O - O - (O) \cdot C_{m}H_{2m+1}$$

$$R^{20} - H - O - OCF_{2} - O - (O) \cdot C_{m}H_{2m+1}$$

$$R^{21} - H - H - CF_{2}O - O - (O) \cdot C_{m}H_{2m+1}$$

$$R^{22} - H - CH - CH - O - O - (O) \cdot C_{m}H_{2m+1}$$

$$R^{23} - H - CH - CH - O - O - (O) \cdot C_{m}H_{2m+1}$$

$$R^{24} - H - C_{2}H_{4} - O - O - C - CH_{2}$$

$$R^{25} - H - C_{2}H_{4} - O - O - C - C - CH_{2}$$

$$R^{26} - H - O - O - O - C - C - CH_{2}$$

10

20

30

35

$$R^{27}$$
 \longrightarrow O \longrightarrow

$$\begin{array}{c|c} F & F \\ \hline \\ O & O \\ \hline \end{array} \begin{array}{c} F & F \\ \hline \\ O & O \\ \end{array} \begin{array}{c} F & F \\ \hline \end{array} \begin{array}{c} F &$$

15 enthält,

worin R¹³-R²⁸ jeweils unabhängig voneinander, die für R¹¹ angegebenen Bedeutungen haben, und z und m jeweils unabhängig voneinander 1-6 bedeuten. R^E bedeutet H, CH₃, C₂H₅ oder n-C₃H₇.

m) Flüssigkristallines Medium enthaltend zusätzlich ein oder mehrere Verbindungen der Formeln,

$$R \longrightarrow O \longrightarrow O \longrightarrow F$$

worin R Alkyl, Alkenyl, Alkoxy, Alkylalkoxy, Alkenyloxy mit 1 bzw. 2 bis 6 C-Atomen bedeutet und Alkenyl die oben angegebene Bedeutung hat.

10

- 15

Ein weiterer Gegenstand der Erfindung ist eine elektrooptische Anzeige mit einer Aktivmatrix-Adressierung basierend auf dem ECB-Effekt, dadurch gekennzeichnet, dass sie als Dielektrikum ein flüssigkristallines Medium nach einem der Ansprüche 1 bis 9 enthält.

Vorzugsweise weist die Flüssigkristallmischung einen nematischen Phasenbereich von mindestens 60 K und eine Fließviskosität v_{20} von maximal 30 mm² · s⁻¹ bei 20 °C auf.

Die erfindungsgemäße Flüssigkristallmischung weist ein $\Delta\epsilon$ von etwa -0,5 bis -8,0, insbesondere von etwa -3,0 bis -6,0 auf, wobei $\Delta\epsilon$ die dielektrische Anisotropie bedeutet. Die Rotationsviskosität γ_1 ist vorzugsweise < 150 mPa·s, insbesondere < 140 mPa·s.

Die Doppelbrechung Δn in der Flüssigkristallmischung liegt, in der Regel, zwischen 0,07 und 0,16, vorzugsweise zwischen 0,08 und 0,11.

Die erfindungsgemäßen Mischungen sind für alle VA-TFT-Anwendungen geeignet, wie z.B. MVA, PVA, ASV. Weiterhin sind sie für IPS- und PALC-Anwendungen mit negativem Δε geeignet.

Die Verbindungen der Formel I können beispielsweise wie folgt hergestellt werden:

30

35

Schema 1

5
$$R^{12}-(A^{2}-Z^{2})_{n} \xrightarrow{F} H \xrightarrow{R^{11}} H \xrightarrow{Br} H \xrightarrow{R^{12}} H \xrightarrow{R^{11}} H \xrightarrow{$$

Die nematischen Flüssigkristallmischungen in den erfindungsgemäßen Anzeigen enthalten in der Regel zwei Komponenten A und B, die ihrerseits aus einer oder mehreren Einzelverbindungen bestehen.

Die Komponente A weist eine deutlich negative dielektrische Anisotropie auf und verleiht der nematischen Phase eine dielektrische Anisotropie von ≤ -0,3. Sie enthält bevorzugt Verbindungen der Formeln I, IIA und/oder IIB.

Der Anteil der Komponente A liegt vorzugsweise zwischen 45 und 100 %, insbesondere zwischen 60 und 100 %.

Für Komponente A wird vorzugsweise eine (oder mehrere) Einzelverbindung(en) gewählt, die einen Wert von $\Delta \varepsilon \le -0.8$ haben. Dieser Wert muss umso negativer sein, je kleiner der Anteil A an der Gesamtmischung ist.

5

Die Komponente B weist eine ausgeprägte Nematogenität und eine Fließviskosität von nicht mehr als 30 mm² s⁻¹, vorzugsweise nicht mehr als 25 mm² s⁻¹, bei 20 °C auf.

10

Besonders bevorzugte Einzelverbindungen der Komponente B sind extrem niedrig viskose nematische Flüssigkristalle mit einer Fließviskosität von nicht mehr als 18, vorzugsweise nicht mehr als 12 mm²·s⁻¹, bei 20 °C.

15

Komponente B ist monotrop oder enantiotrop nematisch, weist keine smektischen Phasen auf und kann in Flüssigkristallmischungen das Auftreten von smektischen Phasen bis zu sehr tiefen Temperaturen verhindern. Versetzt man beispielsweise eine smektische Flüssigkristallmischung mit jeweils verschiedenen Materialien mit hoher Nematogenität, so kann durch den erzielten Grad der Unterdrückung smektischer Phasen die Nematogenität dieser Materialien verglichen werden.

20

Dem Fachmann sind aus der Literatur eine Vielzahl geeigneter Materialien bekannt. Besonders bevorzugt sind Verbindungen der Formel III.

Daneben können diese Flüssigkristallphasen auch mehr als 18 Komponenten, vorzugsweise 18 bis 25 Komponenten, enthalten.

Vorzugsweise enthalten die Phasen 4 bis 15, insbesondere 5 bis 12, Verbindungen der Formeln I, IIA und/oder IIB und optional III.

30

Neben Verbindungen der Formeln I, IIA und/oder IIB und III können auch noch andere Bestandteile zugegen sein, z. B. in einer Menge von bis zu 45 % der Gesamtmischung, vorzugsweise jedoch bis zu 35 %, insbesondere bis zu 10 %.

Die anderen Bestandteile werden vorzugsweise ausgewählt aus den nematischen oder nematogenen Substanzen, insbesondere den bekannten
Substanzen, aus den Klassen der Azoxybenzole, Benzylidenaniline, Biphenyle, Terphenyle, Phenyl oder Cyclohexylbenzoate, Cyclohexan-carbonsäurephenyl- oder -cyclohexylester, Phenylcyclohexane, Cyclohexylbiphenyle, Cyclohexylcyclohexane, Cyclohexylnaphthaline, 1,4-Bis-cyclohexylbiphenyle oder Cylohexylpyrimidine, Phenyl- oder Cyclohexyldioxane,
gegebenenfalls halogenierten Stilbene, Benzylphenylether, Tolane und
substituierten Zimtsäuren.

15

Die wichtigsten als Bestandteile derartiger Flüssigkristallphasen in Frage kommenden Verbindungen lassen sich durch die Formel IV charakterisieren,

15

20

35

5

10

IV

worin L und E je ein carbo- oder heterocyclisches Ringsystem aus der aus 1,4-disubstituierten Benzol- und Cyclohexanringen, 4,4'-disubstituierten Biphenyl-, Phenylcyclohexan- und Cyclohexylcyclohexansystemen, 2,5-disubstituierten Pyrimidin- und 1,3-Dioxanringen, 2,6-disubstituierten Naphthalin, Di- und Tetrahydronaphthalin, Chinazolin und Tetrahydrochinazolin gebildeten Gruppe,

O.E.			
	G	-CH=CH-	-N(O)=N-
		-CH-CQ-	-CH=N(O)-
30	•	-C≡C-	-CH ₂ -CH ₂ -
		-CO-O-	-CH ₂ -O-
		-CO-S-	-CH ₂ -S-
		-CH=N-	-COO-Phe-COO-
		-CF ₂ O-	-CF=CF-
		-OCF ₂ -	-OCH ₂ -
		-(CH ₂) ₄ -	-(CH ₂) ₃ O-

oder eine C-C-Einfachbindung, Q Halogen, vorzugsweise Chlor, oder -CN, und R⁹ und R¹⁰ jeweils Alkyl, Alkenyl, Alkoxy, Alkanoyloxy oder Alkoxycarbonyloxy mit bis zu 18, vorzugsweise bis zu 8 Kohlenstoffatomen, oder einer dieser Reste auch CN, NC, NO₂, NCS, CF₃, OCF₃, F, Cl oder Br bedeuten.

Bei den meisten dieser Verbindungen sind R⁹ und R¹⁰ voneinander verschieden, wobei einer dieser Reste meist eine Alkyl- oder Alkoxygruppe ist. Auch andere Varianten der vorgesehenen Substituenten sind gebräuchlich. Viele solcher Substanzen oder auch Gemische davon sind im Handel erhältlich. Alle diese Substanzen sind nach literaturbekannten Methoden herstellbar.

- Es versteht sich für den Fachmann von selbst, dass die erfindungsgemäße VA-, IPS- oder PALC-Mischung auch Verbindungen enthalten kann, worin beispielsweise H, N, O, CI, F durch die entsprechenden Isotope ersetzt sind.
- Der Aufbau der erfindungsgemäßen Flüssigkristallanzeigen entspricht der üblichen Geometrie, wie sie z.B. in EP-OS 0 240 379, beschrieben wird.

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent; alle Temperaturen sind in Grad Celsius angegeben.

Vorzugsweise enthalten die erfindungsgemäßen Mischungen neben den Verbindungen der Formeln I eine oder mehrere Verbindungen der nachfolgend genannten Verbindungen.

Folgende Abkürzungen werden verwendet:

(n, m = 1-6; z = 1-6)

5 CY-n-Om

$$C_nH_{\overline{2n+1}}$$
 H O OC_mH_{2m+1}

CCY-n-Om

$$C_nH_{2n+1}$$
 H O OC_mH_{2m+1}

CCY-n-m

$$C_nH_{\overline{2n+1}}$$
 H O C_mH_{2m+1}

D-nOmFF

$$C_nH_{2n+1}$$
 — COO — OC_mH_{2m+1}

20

⁻ 15

CBC-nmF
$$C_nH_{2n+1}$$
 H O H C_mH_{2m+1}

55

CBC-nm

$$C_nH_{2n+1}$$
 H O O H C_mH_{2m+1}

30

CCP-V-m

CCP-Vn-m

$$(CH_2)_n$$
 H O C_mH_{2m+1}

CCQY-n-(O)m
$$C_nH_{2n+1}$$
 H CF_2O O $(O)-C_mH_{2m+1}$

CCQIY-n-(O)m
$$C_nH_{2n+1}$$
 H OCF_2 O $O)-C_mH_{2m+1}$

$$PYP-n-(O)m \qquad C_nH_{2n+1} \qquad O \qquad O \qquad O \qquad O \qquad O)-C_mH_{2m+1}$$

CPQY-n-(O)m
$$C_nH_{2n+1}$$
 H O CF_2O O CF_2O (O)- C_mH_{2m+1}

CPQIY-n-(O)m
$$C_nH_{2n+1}$$
 H O OCF_2 F OCF_2 (O)- OCF_2 H OCF_2 CPQIY-n-(O)- OCF_2 CPQIY-N-(OCF_2 CPQIY-N-(OCF_2)- OCF_2 CPQIY-N-(OCF_2)- OCF_2 CPQIY-N-(OCF_2)- OCF_2 CPQIY-

30 CCY-V-(O)m
$$H \longrightarrow O \longrightarrow (O) \longrightarrow C_m H_{2m+1}$$

⁻ 15

Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z.B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.

10

5

Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze, wie z. B. UV-Absorber, Antioxidantien, Radikalfänger, enthalten. Beispielsweise können 0-15 % pleochroitische Farbstoffe, Stabilisatoren oder chirale Dotierstoffe zugesetzt werden.

15

20

Beispielsweise können 0-15 % pleochroitische Farbstoffe zugesetzt werden, ferner Leitsalze, vorzugsweise Ethyldimethyldodecylammonium-4-hexoxybenzoat, Tetrabutylammoniumtetraphenylboranat oder Komplexsalze von Kronenethern (vgl. z.B. Haller et al., Mol. Cryst. Liq. Cryst. Band 24, Seiten 249- 258 (1973)) zur Verbesserung der Leitfähigkeit oder Substanzen zur Veränderung der dielektrischen Anisotropie, der Viskosität und/oder der Orientierung der nematischen Phasen. Derartige Substanzen sind z. B. in den DE-OS 22 09 127, 22 40 864, 23 21 632, 23 38 281, 24 50 088, 26 37 430 und 28 53 728 beschrieben.

35

In der Tabelle A werden mögliche Dotierstoffe angegeben, die den erfindungsgemäßen Mischungen zugesetzt werden können. Sofern die Mischungen einen Dotierstoff enthalten, wird er in Mengen von 0,01-4 Gew.%, vorzugsweise 0,1-1,0 Gew.%, eingesetzt.

Tabelle A

C 15

CB 15

CM 21

⁻ 15

20

R/S-811

25

30

CM 44

CM 45

CM 47

CN

R/S-1011

⁻ 15

$$C_3H_7$$
 H
 O
 C_8H_{13}
 C_8H_{13}

R/S-2011

20

R/S-3011

3.5

30

35

R/S-5011

Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen zugesetzt werden können, werden nachfolgend in Tabelle B genannt.

5 <u>Tabelle B</u>

(n = 1-12)

15

20

30

$$C_{n}H_{2n+1} - H - O - CN$$

30

OH N=

10

N N HO

20

⁻ 15

N HO HO

30

10

⁻ 15

20

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten

30

35

V_o Schwellenspannung, kapazitiv [V] bei 20 °C
 Δn die optische Anisotropie gemessen bei 20 °C und 589 nm
 Δε die dielektrische Anisotropie bei 20 °C und 1 kHz
 cp. Klärpunkt [°C]

_{/1} Rotation	sviskosität gemessen	bei	20	°C	[mPa	·s]
------------------------	----------------------	-----	----	----	------	-----

LTS Low temperature stability, bestimmt in Testzellen

Die zur Messung der Schwellenspannung verwendete Anzeige weist zwei planparallele Trägerplatten im Abstand von 20 µm und Elektrodenschichten mit darüberliegenden Orientierungsschichten aus SE-1211 (Nissan Chemicals) auf den Innenseiten der Trägerplatten auf, welche eine homöotrope Orientierung der Flüssigkristalle bewirken.

Mischungsbeispiele

Vergi	eichs	beisp	iel 1

5				
	CY-3-O2	19,0 %	Klärpunkt [°C]:	74,5
	CY-5-O2	12,0 %	Δn [589 nm, 20 °C]:	+0,0815
	CCY-3-O3	7,0 %	ε _{li} [1 kHz, 20 °C]:	3,6
	CCY-4-O2	7,0 %	Δε [1 kHz, 20 °C]:	-3,6
10	CPY-2-O2	7,0 %	γ ₁ [mPa·s, 20 °C]:	102
	CC-5-V	20,0 %	V ₀ [V]	2,12
	CC-3-V1	12,0 %	LTS bei -30 °C:	nematisch
	CCP-V-1	5,0 %		> 1000 h
15	CCH-35	5,0 %		
		6,0 %		
	f'F F		•	

Beispiel M1

CCP-V-1

CCH-35

20

30

35

25	CY-3-02 CY-5-02 CCY-3-02 CCY-4-02 CPY-2-02 CC-5-V	10,00 % 11,00 % 8,00 % 7,00 % 19,00 %	Klärpunkt [°C]: Δε [589 nm, 20 °C]: γ₁ [mPa⋅s, 20 °C]: V₀ [V]	74,0 -3,6 98 2,11
•	CC-3-V1	12,00 %		

6,00 %

6,00 %

	Beispiel M2			
10	CY-3-02 CY-5-02 CCY-3-02 CCY-4-02 CPY-2-02 CC-5-V CC-3-V1 CCH-35 C ₃ H ₇ H O CH ₃	11,00 % 12,00 % 8,00 % 12,00 % 3,00 % 20,00 % 12,00 % 4,00 % 6,00 %	Klärpunkt [°C]: Δn [589 nm, 20 °C]: ε _{ιι} [1 kHz, 20 °C]: Δε [1 kHz, 20 °C]: γ ₁ [mPa·s, 20 °C]: V ₀ [V]	+84,5 +0,0817 3,5 -3,9 129 2,17
20	Beispiel M3 CY-3-04 CY-5-02 CY-5-04 CCY-3-02 CCY-4-02 CPY-2-02 CPY-3-02 CC-5-V CC-3-V1 BCH-32	12,00 % 12,00 % 12,00 % 12,00 % 8,00 % 5,00 % 6,00 % 10,00 % 6,00 %	Klärpunkt [°C]: Δn [589 nm, 20 °C]: Δε [1 kHz, 20 °C]: γ₁ [mPa⋅s, 20 °C]: V₀ [V]	75,0 0,0948 -4,8 178 1,84
30	C ₃ H ₇ —(H)—(O) FFF	9,00 %		

<u>Beis</u>	pie	M4

		•		
5	CY-3-04 CY-5-02 CY-5-04 C ₃ H ₇ —H—O F F F	16,00 % 6,00 % 10,00 % 8,00 %	Klärpunkt [°C]: Δn [589 nm, 20 °C]: Δε [1 kHz, 20 °C]: γ ₁ [mPa·s, 20 °C]: V ₀ [V]	74,0 0,0960 -4,8 171 1,85
10	C_3H_7 H O	8,00 %		
15	CCY-3-02 CPY-3-02 CCY-2-1 CCY-3-1 CC-3-V1 BCH-32	9,00 % 7,00 % 8,00 % 7,00 % 13,00 % 8,00 %		

Patentansprüche

1. Flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit negativer dielektrischer Anisotropie, dadurch gekennzeichnet, dass es mindestens eine Verbindung der Formel I,

10 $R^{11}-(A^1-Z^1)_m \longrightarrow 0$ $(Z^2-A^2)_n-R^{12}$

worin

R¹¹ und R¹²

jeweils unabhängig voneinander H, einen unsubstituierten, einen einfach durch CN oder CF₃ oder mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit bis zu 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen durch -O-, -S-,

, -C≡C-, -OC-O-, oder -O-CO- so

ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,

A¹ und A²

jeweils unabhängig voneinander

- a) einen 1,4-Cyclohexenylen- oder 1,4-Cyclohexylenrest, worin eine oder zwei nicht benachbarte CH₂-Gruppen durch -O- oder -S- ersetzt sein können,
- b) einen 1,4-Phenylenrest, worin eine oder zwei CH-Gruppen durch N ersetzt sein können,

30

⁻ 15

20

c) einen Rest aus der Gruppe Piperidin-1,4-diyl-, 1,4-Bicyclo[2,2,2]-octylen-, einen Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, Phenanthren-2,7-diyl, Fluoren-2,7-diyl,

10

wobei die Reste a), b) und c) ein oder mehrfach durch Halogenatome substituiert sein können,

 Z^1 und Z^2

jeweils unabhängig voneinander -CO-O-, -O-CO-, -CF₂O-, -OCF₂-, -CH₂O-, -OCH₂-, -CH₂CH₂-, -(CH₂)₄-, -C₂F₄-, -CH₂CF₂-, -CF₂CH₂-, -CF=CF-, -CH=CF-, -CF=CH-, -CH=CH-, -C≡C- oder eine Einfachbindung, und

⁻ 15

m und n

jeweils unabhängig voneinander 0, 1 oder 2, wobei $m + n \ge 1$ ist,

20

bedeuten,

enthält.

35

 Flüssigkristallines Medium nach Anspruch 1, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen der Formeln IIA und/oder IIB:

30

$$R^2$$
 H O O (O) C_vH_{2v+1} IIB

worin

 R^2

einen unsubstituierten, einen einfach durch CN oder CF₃ oder einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit bis zu 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch −O-, -S-, , -C≡C-,

10

5

-CO-, -CO-O-, -O-CO- oder --O-CO-O- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,

111

⁻ 15

p

1 oder 2, und

v

1 bis 6

bedeutet,

20

enthält.

3. Flüssigkristallines Medium nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen der Formel III,

25

$$R^{31}$$
 A H R^{32}

30

worin

R³¹ und R³² jeweils unabhängig voneinander einen geradkettigen Alkyl-, Alkenyl-, Alkylalkoxy- oder Alkoxyrest mit bis zu 12 C-Atomen bedeuten, und

bedeuten,

enthält.

5

15

- 4. Flüssigkristallines Medium nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es ein, zwei, drei, vier oder mehr Verbindungen der Formel I enthält.
- Flüssigkristallines Medium nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Anteil an Verbindungen der Formel I im Gesamtgemisch mindestens 5 Gew.-% beträgt.
 - 6. Flüssigkristallines Medium nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Anteil an Verbindungen der Formeln IIA und/oder IIB im Gesamtgemisch mindestens 20 Gew.-% beträgt.
- 7. Flüssigkristallines Medium nach einem der Ansprüche 1 bis 6, 20 dadurch gekennzeichnet, dass der Anteil an Verbindungen der Formel III im Gesamtgemisch mindestens 5 Gew.-% beträgt.
 - 8. Flüssigkristallines Medium nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es mindestens eine Verbindung ausgewählt aus den Formeln I1 bis I36,

,

30

$$R^{11}$$
 O $I2$

$$R^{11} \longrightarrow R^{11} \longrightarrow R$$

Alkyl

19

20

30 .

$$R^{11} \longrightarrow 0$$

$$F F F$$

$$I10$$

$$R^{11} \longrightarrow 0$$

$$F F F F$$

$$I12$$

$$R^{11} \longrightarrow 0$$

$$F F F F$$
I16

$$R^{11} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{Alkyl} \qquad I17$$

$$R^{11} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \qquad I18$$

$$R^{11} \longrightarrow 0$$

$$F F = 130$$

5
$$R^{11} \xrightarrow{O} \xrightarrow{Alkyl} \qquad |31$$

$$10$$

$$R^{11} \xrightarrow{O} \xrightarrow{F} \xrightarrow{F} \qquad |32$$

$$R^{11} \xrightarrow{O} \xrightarrow{Alkyl} \qquad |33$$

$$R^{11} \xrightarrow{O} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \qquad |34$$

$$R^{11} \longrightarrow O \longrightarrow Alkyl$$

$$F F F F$$

$$R^{11} \longrightarrow O \longrightarrow Alkyl$$

$$R^{12} \longrightarrow O \longrightarrow Alkyl$$

$$R^{13} \longrightarrow O \longrightarrow Alkyl$$

$$R^{11}$$
 O F F F F 136

worin

30

R¹¹ die in Anspruch 1 angegebenen Bedeutungen hat, und Alkyl einen geradkettigen Alkylrest mit 1-6 C-Atomen bedeutet, enthält.

9.	Flüssigkristallines Medium nach einem der Ansprüche 1 bis 8, da-
	durch gekennzeichnet, dass es im wesentlichen aus

5 5-30 Gew.-% einer oder mehrerer Verbindungen der Formel I.

und

20-70 Gew.-% einer oder mehrerer Verbindungen der Formeln IIA und/oder IIB

besteht.

 Elektrooptische Anzeige mit einer Aktivmatrix-Addressierung basierend auf dem ECB-, PALC- oder dem IPS-Effekt, dadurch gekennzeichnet, dass sie als Dielektrikum ein flüssigkristallines Medium nach einem der Ansprüche 1 bis 9 enthält.

20

- 15

10

 \sim 25

30 -

Zusammenfassung

Die Erfindung betrifft ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit negativer dielektrischer Anisotropie, welches mindestens eine Verbindung der Formel I,

$$R^{11}-(A^1-Z^1)_m$$
 O $(Z^2-A^2)_n-R^{12}$

worin

15

 R^{11} , R^{12} , A^1 , A^2 , Z^1 , Z^2 , m und n in Anspruch 1 angegebene Bedeutungen haben,

enthält,

20

sowie seine Verwendung für eine Aktivmatrix-Anzeige basierend auf dem ECB-, PALC- oder IPS-Effekt.

30