Řešené příklady k MAI III.

Jakub Melka 28. října 2007

Obsah

1	Met	etrické prostory														2							
	1.1	Teoreti	ické otáz	ky																			2
	1.2	Metrik	у																	 			4
	1.3	3 Analýza množin											4										
		1.3.1	Uzávěry																	 			4
		1.3.2	Zkoume	jte	ná	$sl\epsilon$	edı	ıjí	cí	m	no	ži	ny	7									6

1 Metrické prostory

1.1 Teoretické otázky

Ukažte, že nezápornost libovolné metriky plyne z trojúhelníkové nerovnosti a nulové vzdálenosti stejných bodů.

Dokážeme sporem, předpokládejme, že existují korektní metriky se zápornými vzdálenostmi. Vyberme si takovou metriku (M,δ) . Vybereme si body $a,b,c\in M$ tak, že a=b a $\delta(a,c)<0$. Napíšeme si trojúhelníkovou nerovnost a budeme pozorovat, co se stane.

$$\delta(a,b) \le \delta(b,c) + \delta(a,c)$$

Protože a = b, tak musí platit, že $\delta(a, b) = 0$.

$$0 \le \delta(b,c) + \delta(a,c)$$

Ale a = b, takže tento vzorec ještě upravíme,

$$0 \le 2\delta(a,c)$$

A máme SPOR, protože $\delta(a, c) < 0$.

Co se stane, když v definici metriky zapomeneme na symetrii? Plyne z ostatních axiomů?

Neplyne, uvedu protipříklad. $\delta(x,y)=|x-y^3|$. Pro tuto "pseudometriku" ostatní axiomy platí, akorát není symetrická.

Dokažte tyto neintuitivní vlastnosti ultrametrického prostoru: každý trojúhelník je rovnoramenný a v každé kouli je libovolný bod jejím středem.

Dokážeme sporem. Nechť tedy existuje libovolný nerovnoramenný trojúhelník tvořený body x,y,z. Mějme libovolnou ultrametriku (M,ρ) . Nechť délky stran jsou v tomto trojúhelníku uspořádány takto : $\rho(x,y)>\rho(y,z)>\rho(x,z)$. Dle definice ultrametriky musí platit pro $\forall x,y,z\in M$ tyto nerovnosti :

$$\begin{array}{lcl} \rho(x,y) & \leq & \max(\rho(x,z),\rho(y,z)) \\ \rho(x,z) & \leq & \max(\rho(x,y),\rho(y,z)) \\ \rho(y,z) & \leq & \max(\rho(x,y),\rho(x,z)) \end{array}$$

Vzorce výše si "spočteme", protože známe vzdálenosti bodů, viz. výše.

$$\begin{array}{lcl} \rho(x,y) & \leq & \rho(y,z) \\ \rho(x,z) & \leq & \rho(x,y) \\ \rho(y,z) & \leq & \rho(x,y) \end{array}$$

Tyto nerovnosti ale neplatí, což je spor a dokonce trojúhelník je rovnostranný - aby soustava nerovnic platila, musí být vzdálenosti stejné.

Nyní si dokážeme tu kouli. Nechť je na této ultrametrice koule $B(a,r) = \{x \in M : \rho(a,x) < r\}$. Jelikož jsou vzdálenosti v ultrametrice stejné, můžeme rovnou psát $\forall c \in B(a,r) : B(c,r) = B(a,r)$, neboť $\rho(a,c) = \rho(a,x) < r$.

Je konečná podmnožina metrického prostoru vždy uzavřená?

Odpověď je ano. Množina X je uzavřená, pokud je množina jejích limitních bodů prázdná, tj. množina se rovná svému uzávěru. Z definice limitního bodu víme, že pro každé okolí U je průnik $U\cap X$ nekonečný, což zde ale nemůže být, protože množina X je konečná.

Co lze říci o otevřených množinách metrického prostoru (M,d), jehož každý bod je izolovaný (jako bod množiny M)?

Lze o nich říci to, že neexistují. Dle definice platit

$$\forall x \in M \exists U : U \cap M = \{x\}$$

Čili v množině M se nevyskytují vůbec žádné limitní body - izolovaný bod je "negace" limitního bodu, tedy množina M se rovná svému uzávěru a je tedy uzavřená.

Ukažte, že bod množiny X v metrickém prostoru je limitním bodem X, práve když není izolovaným bodem X. A ukažte, že bod mimo množinu X je limitním bodem X, práve když je hraničním bodem X.

1. bod $a \in X$ je izolovaný, právě když není limitní. To je pravda, plyne rovnou z definice.

Definice izolovaného bodu $a:\exists$ okolí $U:U\cap X=\{a\}.$

Definice limitního bodu $a: \forall$ okolí $U: |U \cap X| = \infty$.

Pokud bod a není limitní, pak \exists okolí U takové, že průnik $|U \cap X|$ je konečný, navíc přímo obsahující bod a. Pak vybereme nejmenší U takové, že obsahuje pouze bod a (musí existovat, kdyby neexistovalo, bod by nutně byl limitní).

2. $a \notin X$, a je limitní bod $\Leftrightarrow a$ je hraniční bod.

"⇒": $a \notin X$ a a je limitní bod - dle definice musí platit \forall okolí U bodu $a: |U \cap X| = \infty$. Dále $a \notin X \Rightarrow a \in M \setminus X \Rightarrow \forall$ okolí U bodu $a: a \in U \cap M \setminus X$. Dle definice tedy obě množiny splňují podmínky pro hraniční bod a a je tedy hraniční bod.

"
—": Stačí sestrojit posloupnost bodů konvergující ka. Pro
 \forall okolí U bodu $a:U\cap X\neq\varnothing$ a $U\cap M\setminus X\neq\varnothing$. Nechť U=B(a,r) s nějakým počátečním poloměrem r>0. Zadefinujeme si posloupnost množin $U_n=B(a,\frac{r}{2^n})$. Dle definice hraničního bodu $\forall n \in \mathbb{N} : U_n \cap X \neq \emptyset$. Dokonce $a \in U_n \cap M \setminus X$. Sestrojíme posloupnost a_n tak, aby $\forall n \in \mathbb{N} : a_n \in U_n \cap X$. Pak platí $\lim_{n\to\infty}a_n=\bar{a},\,\text{neboť zjevně}\,\lim_{n\to\infty}\delta(a_n,a)=0.$

1.2 Metriky

Dokažte, že toto není metrika a upravte ji tak, aby metrikou byla:

$$(M, \delta), M = \mathcal{R}\langle a, b \rangle, \, \delta(f, g) = \int_{a}^{b} |f(x) - g(x)| dx$$

Ukážeme si protipříkladem, že existují 2 body (resp. funkce), které mají vzdálenost nula, ale přesto se nerovnají a tedy nesplňují jeden z axiomů metriky.

$$f(x) = \begin{cases} x & x \in [a,b] \setminus \{\frac{1}{n}:n \in \mathbb{N}\} \\ 1 & x \in \{\frac{1}{n}:n \in \mathbb{N}\} \end{cases}$$

$$g(x) = \begin{cases} x & x \in [a,b] \setminus \{\frac{1}{n}:n \in \mathbb{N}\} \\ 2 & x \in [\frac{1}{n}:n \in \mathbb{N}\} \end{cases}$$
 Zjevně $f(x) \neq g(x)$ pro $x \in [a,b]$. Podíváme se, jak jsou na tom integrály. Množina bodů nespojitosti $\{\frac{1}{n}:n \in \mathbb{N}\}$ má zjevně míru nula, tedy funkce bude

mít Riemannův integrál, protože jinde je spojitá. Dokonce platí, že $\int\limits_a^b f(x)dx=$

 $\int\limits_{a}^{b}g(x)dx,$ neboť funkce jsou skoro stejné. Pak ale $\delta(f,g)=\int\limits_{a}^{b}|f(x)-g(x)|dx=0.$ Funkce tedy musí být stejné, ale nejsou, což je spor.

Tuto pseudometriku lze upravit tak, aby byla regulérní metrikou splňující standardní axiomy. Pokud binární operátor = mezi funkcemi zadefinujeme tak, že funkce jsou si rovny, pokud množina jejích bodů nerovnosti má míru nula, pak bude tato metrika splňovat axiomy standardní metriky.

Analýza množin 1.3

1.3.1 Uzávěry

Zjistěte, čemu se rovná uzávěr následujících množin.

1. \mathbb{Q} v \mathbb{R} s obvyklou metrikou.

Uzávěr množiny \mathbb{Q} v \mathbb{R} je samotná množina \mathbb{R} , jak si teď dokážeme. Vezměme posloupnosti zlomků z Q, které konvergují k iracionálním číslům. Příkladem takové posloupnosti budiž posloupnost

$$a_n = \left(\frac{1}{1}, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \dots\right)$$

Limita posloupnosti a_n je konvergentní, tj. $\lim_{n\to\infty}a_n=\sqrt{2}$. Takových posloupností existuje nekonečně nespočetně mnoho, tedy uzávěr množiny $\mathbb Q$ je $\mathbb{Q} \cup \mathbb{R} \setminus \mathbb{Q}$, tedy celá reálná množina.

2. \mathbb{N} v \mathbb{R} s obvyklou metrikou.

Dokážeme si, že množina $\mathbb N$ je uzavřená, to znamená že množina limitních bodů je prázdná. K tomu potřebujeme vědět, proč. Limitní bod je takový bod a, že pro každé okolí bodu U je průnik $U\cap \mathbb N$ nekonečný. Jenže to není! Protože se jedná o přirozená čísla, dokážeme dokonce najít okolíčko bodů, který má jeden prvek. $U=\left(a-\frac{1}{2},a+\frac{1}{2}\right)$, pak ale $U\cap \mathbb N=\{a\}$. Dokázali jsme, že každé $a\in \mathbb N$ je izolovaný bod, a tedy množina je uzavřená.

3. $\{\frac{1}{n}: n \in \mathbb{N}\}$ s obvyklou metrikou.

Opět budeme zkoumat množinu limitních bodů. Důležitý je fakt, že $\lim_{n\to\infty}\frac{1}{n}=0$. Tedy už víme, že množina limitních bodů obsahuje nulu. Obsahuje i další prvky? Odpověď je nikoliv, jak si teď dokážeme sporem. Nechť je množina limitních bodů $\{a,0,\ldots\}$, kde $a\neq 0$. Pak musí existovat nějaká konvergentní podposloupnost z posloupnosti $a_n=\frac{1}{n}$, která má jako limitu prvek a. Avšak z vět o limitách víme, že posloupnost vybraná z konvergentní podposloupnosti má i stejnou limitu $\Rightarrow a=0$, což je SPOR.

Tedy uzávěr této množiny je množina $\{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$.

4. $\{f: f \in C([0,1]): f$ je po částech lineární $\}$ v C([0,1]) se supremovou metrikou.

Dokážeme si, že uzávěr této množiny je celá množina spojitých funkcí na kompaktním intervalu [0,1]. V tomto odstavci předpokládejme nezápornost funkcí f a g. Mějme nadefinovánu kouli funkcí B(f,r), kde poloměr r>0. Nechť funkce $g\in B(f,r)$ a navíc $g\neq f$. Dle definice koule d(f,g)< r, to znamená, že $\sup_{x\in[0,1]}|f(x)-g(x)|< r$. Křivka funkce g(x)

je od f(x) vzdálena nanejvýše ostře méně, než je poloměr r. Je důležité si uvědomit, že čím je poloměr r menší, tím jsou funkce čím dál tím více "skoro stejné".

Nyní k vlastnímu důkazu. Nechť f_n je konvergentní posloupnost částečně lineárních funkcí, která konverguje k nějaké funkci $f, f \in C([0,1])$. Můžeme tedy psát

$$\lim_{n \to \infty} f_n = f$$

$$\lim_{n \to \infty} d(f_n, f) = 0$$

$$\lim_{n \to \infty} \sup_{x \in [0, 1]} |f_n(x) - f(x)| = 0$$

Pak od nějakého $n>n_0$ je vzdálenost mezi křivkami menší, než ε . Funkce f ale nemusí být vůbec po částech lineární! Nekonečnou posloupností vhodných částečně lineárních funkcí lze libovolně blízko aproximovat spojitou funkci na C([0,1]). Například křivka $f(x)=x^2$ lze poměrně krásně aproximovat (je to na ní přímo vidět - pouze drobíme lineární funkci na stále menší částečky blíže křivce).

Uzávěr této množiny tedy je celá C([0,1]).

5. $\{f: f \in C([0,1]): \forall x,y \in [0,1]: |f(x)-f(y)| \leq |x-y| \}$ v C([0,1]) se supremovou metrikou.

Jelikož $x \in [0, 1]$, můžeme dokonce udělat horní odhad :

$$\forall x, y \in [0, 1] : |f(x) - f(y)| \le |x - y| \le 1$$

Znamená to, že funkční hodnoty se pohybují v rozmezí maximálně 1. Budeme zkoumat limitní body této množiny a ukážeme si, že všechny limitní body opět náleží do této množiny. Nechť funkce f je limitní bod konvergentní posloupnosti funkcí f_n . Pak musí platit, že $\lim_{n\to\infty} d(f_n, f) = 0$.

Rozepíšeme si tuto definici a dostaneme, že

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| = 0$$

Musíme dokázat, že f(x) pro každé $x, y \in [0, 1]$ platí

$$|f(x) - f(y)| \le |x - y|$$

Dle definice limity $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : \forall n > n_0 : d(f_n, f) < \varepsilon$. A navíc každá funkce z posloupnosti funkcí f_n splňuje nerovnost uvedenou výše. Protože $d(f_n, f) < \varepsilon$, tedy křivka se liší o nejvýše ε , pak platí nerovnost

$$|f(x) - f(y)| \le |x - y| + \varepsilon$$

Jenže protože v limitě $\varepsilon \to 0$, pak v limitě je nerovnost splněna, a tedy tato množina je uzavřená, protože funkce f do ní patří.

1.3.2 Zkoumejte následující množiny

1. Ukažte, že koule B(a, r) je otevřená množina.

Množina X je otevřená, pokud $\forall a \in X \exists r > 0: B(a,r) \subset X$. Budeme zkoumat, zda je otevřená koule otevřená množina.

$$B(b,r) = \{x \in X : \delta(b,x) < r\}$$

Musíme ukázat, že pro $\forall a \in B \exists q > 0 : B(a,q) \subset B(b,r)$.

$$a \in B(b,r) \Rightarrow \delta(b,a) < r$$

Díky ostré nerovnosti \exists bod c, že $\delta(b,a) < \delta(b,c) < r$. Pak poloměr q bude $\delta(a,c)$.

- 2. $\{[x,y] \in \mathbb{R}^2 : y > x^2, x^2 + y^2 < 2\}$
 - (a) Množina je omezená, je otevřená.
 - (b) Hraniční body : $\{[a,b] \in \mathbb{R}^2 : b = a^2, a \in [-1,1]\} \cup \{[a,b] \in \mathbb{R}^2 : b = \sqrt{2-a^2}, a \in [-1,1]\}$. $a \in [-1,1]$ proto, aby byly splněny nerovnosti konstanty jsem spočítal tak, že jsem si místo nerovností spočítal rovnosti.
 - (c) Uzávěr : $\{[x,y] \in \mathbb{R}^2 : y \ge x^2, x^2 + y^2 \le 2\}$
- 3. $\{[a,b] \in \mathbb{R}^2 : y \ge x^2\} \cup \{[0,-1]\}$
 - (a) Množina je neomezená nemá "horní mez".

- (b) Hraniční body : $\{[x,x^2]\in\mathbb{R}^2:x\in\mathbb{R}\}\cup\{[0,-1]\}.$ Bod[0,-1]je izolovaný.
- (c) Množina je uzavřená.
- 4. $\{[x,y] \in \mathbb{R}^2 : 1 \le x < 2, 1 \le y < 2\}$
 - (a) Množina je omezená x i y jsou "sevřeny" mezi jedničkou a dvojkou.
 - (b) Hraniční body : $\{[2,a] \in \mathbb{R}^2 : a \in [1,2]\} \cup \{[a,2] \in \mathbb{R}^2 : a \in [1,2]\} \cup \{[1,a] \in \mathbb{R}^2 : a \in [1,2]\} \cup \{[a,1] \in \mathbb{R}^2 : a \in [1,2]\}.$
 - (c) Množina není ani otevřená ani uzavřená (některé hraniční body u množiny i doplňku nemůžou obsahovat otevřené koule).