SEL-EESC-USP

JFET Exercícios

1. Amplificador Fonte-Comum com Fonte Dupla

Calcular o ponto de polarização do circuito da Figura I e, posteriormente, calcular as grandezas elétricas AC, para pequenos sinais, do amplificador: A_v , R_i , R_o , f_{CA} e f_{CB} . Avaliar, também, a máxima excursão de sinal na entrada e na saída do amplificador.

Dados do JFET @ 27 °C:

$$\beta = 906.3 \ \mu\text{A/V}^2$$
; $V_{To} = -2.0 \ V$; $\lambda = 0.03179 \ V^1$; $C_{GS} = C_{GD} = 21.86 \ pF$; $P_B = 1.147 \ V e \ m = 0.5$.

Figura 1 – Amplificador CS Usado no Exercício 1.

2. Amplificador Fonte-Comum com Autopolarização

Calcular o ponto de polarização do circuito da Figura 2 e, posteriormente, calcular as grandezas elétricas AC, para pequenos sinais, do amplificador: A_v , R_i , R_o , f_{CA} e f_{CB} , com $C_S = 0$ e com $C_S = 10 \ \mu F$.

Dados do *JFET* @ 27 °*C*: $\beta = 906.3 \, \mu \text{A/V}^2$; $V_{To} = -2.0 \, \text{V}$; $\lambda = 0.03179 \, \text{V}^1$; $C_{GS} = C_{GD} = 21.86 \, pF$; $P_B = 1.147 \, \text{V}$ e m = 0.5.

P. R. Veronese 1 rev6 - 26/8/2014

Figura 2 - Amplificador CS Usado no Exercício 2.

Figura 3.I - Curvas Referentes ao JFET Usado no Exercício 3a.

3. Modelagem

As curvas das Figuras 3.1 e 3.11 representam as características $I_D \times V_{DS} \times V_{GS}$ de um JFET canal **n** de silício.

3.a – Determinar os parâmetros: β , V_{To} e λ desse componente.

3.b – Determinar o valor da tensão da bateria V_{GG} do circuito da Figura 3.III para que o amplificador fique polarizado no centro da reta de carga.

3.c – Calcular os valores de A_v , R_i e R_o do amplificador do item **b**.

P. R. Veronese 2 rev6 - 26/8/2014

Figura 3.II - Curva Referente ao JFET Usado no Exercício 3a.

Figura 3.III – Circuito Referente ao Exercício 3.

Figura 4 - Amplificador CS Analisado no Exercício 4.

4. Amplificador Fonte-Comum (CS) com Autopolarização

Deduzir a equação de $I_D = f(V_{DD}; V_{To}; \beta; \lambda; R_D e R_S)$ do circuito com autopolarização do *JFET* canal **n**. Posteriormente, calcular para o circuito da Figura 4:

4.a – O ponto de polarização.

4.b – As grandezas elétricas do amplificador, para pequenos sinais e baixas frequências $(A_v, R_i \in R_o)$, com $C_S = 0$ e com $C_S = 470 \,\mu F$.

4.c – As frequências de corte nas baixas e nas altas, f_{CB} e f_{CA} , com C_S = 470 μF .

Dados: $\beta = 1,616 \text{ mA/V}^2$; $V_{To} = -2,285 \text{ V}$; $\lambda = 0,0031 \text{ V}^1$; $C_{gs} = 3,20 \text{ pF}$ e $C_{gd} = 1,20 \text{ pF}$ @ $25 \,^{\circ}C$ ($C_{GS} = C_{GD} = 4,84682128515 \text{pF}$, $P_B = 0,398 \text{ e } m = 0,5$).

P. R. Veronese 4 rev6 - 26/8/2014

Figura 5 – Amplificador CG Analisado no Exercício 5.

5. Amplificador Porta-Comum

Considerando inicialmente $\lambda = 0$, polarizar o circuito da Figura 5 para que o amplificador possua $R_i = 300 \ \Omega \pm 5\%$. Posteriormente calcular:

5.a – O ponto de polarização.

5.b – As grandezas elétricas do amplificador, para pequenos sinais e baixas frequências $(A_v, R_i \in R_o)$.

5.c – As frequências de corte nas baixas e nas altas, f_{CB} e f_{CA} .

Dados: $\beta = 625 \,\mu\text{A/V}^2$; $V_{To} = -4 \, V$; $\lambda = 1/30 \, V^I$; $C_{gs} = 3.15 \, pF$ e $C_{gd} = 1.68 \, pF$ @ 25 °C.

6. Amplificador Dreno-Comum com Divisor de Fonte

Para o circuito da Figura 6, calcular:

6.a – O ponto de polarização.

6.b – As grandezas elétricas do amplificador, para pequenos sinais e baixas frequências $(A_v, R_i \in R_o)$, com $C_D = 0$ e com $C_D = 470 \ \mu F$.

6.c – As frequências de corte nas baixas e nas altas, f_{CB} e f_{CA} com C_D =0 e com C_D =470 μF .

Dados: $\beta = 625 \,\mu\text{A/V}^2$; $V_{To} = -4 \,V$; $\lambda = 1/30 \,V^I$; $C_{gs} = 1,68 \,pF$ e $C_{gd} = 0,53 \,pF$ @ 25 °C.

P. R. Veronese 5 rev6 - 26/8/2014

Figura 6 - Amplificador Dreno-Comum Analisado no Exercício 6.

7. Amplificadores em Cascata

Para o circuito da Figura 7.1, calcular:

7.a – O ponto de polarização.

7.b – As grandezas elétricas do amplificador, para pequenos sinais e baixas frequências $(A_v, R_i \in R_o)$.

7.c – As frequências de corte nas baixas e nas altas, f_{CB} e f_{CA} .

Dados: $J_1 = J_2 = \beta = 625 \ \mu A/V^2$; $V_{To} = -4 \ V$; $\lambda = 2.5 \times 10^{-3} \ V^1$; $C_{GS} = C_{GD} = 5.0 \ pF$; $P_B = 1 \ e \ m = 0.5 \ @ \ 27 \ C$.

P. R. Veronese 6 rev6 - 26/8/2014

Figura 7.I - Amplificador em Cascata Analisado no Exercício 7.

Figura 7.II – Circuito Equivalente AC ao Amplificador Dreno-Comum da Figura 7.I.

8. Amplificadores Diferenciais

Para os circuitos da Figura 8.1, calcular:

8.a – Os pontos de polarização dos três circuitos.

8.b – As grandezas elétricas dos amplificadores, para pequenos sinais e baixas frequências $(A_v, R_i \in R_o)$.

Dados: $J_1 \equiv J_2 \equiv J_3 \equiv \beta = 576,91420132 \,\mu\text{A/V}^2$; $V_{To} = -4 \, V \, \text{e} \, \lambda = 0,01667 \, V^1 \, @ \, 27^{\circ} C$.

P. R. Veronese 7 rev6 - 26/8/2014

Figura 8.I – Amplificadores Diferenciais. *a.*) Com Fonte de Corrente de Lastro Ideal. *b.*) Com Fonte de Corrente de Lastro Real. *c.*) Com Resistor de Lastro.

Figura 8.II – Circuito Equivalente DC ao Circuito da Figura 8.Ic.

P. R. Veronese 8 rev6 - 26/8/2014

Figura 8.III – Circuitos Equivalentes AC aos Amplificadores da Figura 8.I. a.) Saídas Referentes à Entrada v_{l} . b.) Saídas Referente à Entrada v_{l} 2.

Figura 8.IV – Amplificadores Diferenciais. a.) Em Modo-Diferencial. b.) Em Modo-Comum.

Figura 8.V – Circuito Equivalente ao Amplificador Diferencial da Figura 8.IVb, Usado no Cálculo de A_{w} .

P. R. Veronese 9 rev6 - 26/8/2014

Figura 9.I – Circuito Analisado no Exercício 9.

9. Amplificador BiFet em Cascata com Bootstrap

Para o circuito da Figura 9.1, calcular:

9.a – O ponto de polarização.

9.b – As grandezas elétricas do amplificador em vazio (R_L → ∞), para pequenos sinais e baixas frequências (A_v , R_i e R_o), com $C_5 = 0$.

9.c – As grandezas elétricas do amplificador em vazio $(R_L \rightarrow \infty)$, para pequenos sinais e baixas frequências $(A_v, R_i e R_o)$, com $C_5 = 22 \mu F$.

Dados: $\mathbf{J_1} \equiv \beta = 1{,}304 \text{ mA/V}^2$; $V_{To} = -3 \text{ V e } \lambda = 0{,}002175 \text{ V}^1$. $\mathbf{Q_1} \equiv \beta = 629{,}1$; $\beta_{AC} = 620{,}37$; $V_{BE} = 0{,}698 \text{ V}$; $V_{AF} = 23{,}905 \text{ V e } N_F = 1{,}02988 \text{ @}$ 27°C

Figura 9.II – Equivalente AC ao Circuito da Figura 9.I, Após a Aplicação do Teorema de Miller.

10. Amplificador CS com Carga Ativa

Analisando o circuito da Figura 10:

- a.) Calcular o ponto quiescente.
- **b.**) Desenhar o circuito equivalente AC, para pequenos sinais e baixas frequências.
- **c.**) Calcular o ganho de tensão $A_v = v_{out} / v_{in}$, a resistência de entrada R_i e a resistência de saída R_o , para pequenos sinais e baixas frequências.
- **d.**) Avaliar os valores da f_{CB} e da f_{CA} , com $R_{ger} = 10 k\Omega$.

```
Dados: NJF1: \beta = 411,522633581 \ \mu A/V^2; V_{To} = -2,5 \ V \ e \ \lambda = 0,010 \ V^1.

NJF2: \beta = 1,52439024391 \ mA/V^2; V_{To} = -1,8 \ V \ e \ \lambda = 0,025 \ V^1.

NJF3: \beta = 932,835820897 \ \mu A/V^2; V_{To} = -2,0 \ V; \lambda = 0,010 \ V^1; C_{GS} = C_{GD} = 5,35 \ pF; P_B = 1 \ V \ e \ m = 0,4069.

@ 27 °C.
```

P. R. Veronese 11 rev6 - 26/8/2014

Figura 10 – Circuito Analisado na 2^a Questão.

Figura 10b - a.) Circuito DC Usado Para Calcular o Ponto Quiescente. b.) Circuito Equivalente AC.

Obs.: Se não forem fornecidos, os valores de default para \mathbf{m} e $\mathbf{P}_{\mathbf{B}}$ são, respectivamente, 0,5 e 1.

- Referências

- 1. P. R. Veronese, JFET Resumo da Teoria, SEL314, Rev. 14, 2013.
- **2.** P. R. Veronese, JFET Fontes de Corrente Constante, SEL314, Rev. 6, 2013.
- **3.** P. R. Veronese, Eletrônica Básica, Amplificadores Analógicos, Exercícios, Rev. 4, 2013.

P. R. Veronese 13 rev6 - 26/8/2014