

Оптимизация нейронных сетей

О чем поговорим

- Типы оптимизаций в TensorRT
- Использованием TF-TRT для оптимизации моделей tensorflow
- ONNX
- Как оптимизировать Pytorch

TensoRT

Что такое TensorRT? NVIDIA TensorRT это высокопроизводительный оптимизатор инференса моделей и среда выполнения, которые могут быть использованы для инференса с низкой точностью чисел (FP16, INT8) на GPU.

TensorRT сейчас интегрирован в Tensorflow и его использование заметно упрощается. Помимо отпитизации также удаляется все лишнее в модели, что не пригодится для инференса.

TensoRT оптимизация графа

- 1) TensoRT сканирует граф сети и определяет те места, которые он может оптимизировать
- 2) Преобразует те участки графа, которые ему известны (что не знает, оставляет на движке tensorflow)
- 3) Оптимизированные подграфы заменят собой сходные части графа модели

TensoRT оптимизация графа

TensoRT оптимизация графа

Оптимизация в TensorRT – это баланс между скоростью и расходами на создание подграфа и использованием движка TensorRT. Что нужно контролировать?

minimum_segment_size — минимальный размер подграфа для оптимизации. Рекомендуется брать стандартно значение равное 3. Меньше\больше не всегда приводит к улучшению результата, но можно попробовать.

is_dynamic_op — если все размеры входных параметров известны, то ставим False и оптимизация будет идти лучше. Если модель типа BERT, то тут ставим True.

max_batch_size — максимальный размер батча, под который также будет оптимизирована архитектура. Не рекомендуется брать большим.

max_workspace_size_bytes – операторам TF-TRT часто требуется временное рабочее пространство. Параметр ограничивает это пространство и если места будет слишком мало, то может быть не найдено хорошей оптимизации.

precision_mode – параметр устанавливает тип точности. О нем мы поговорим далее.

TensoRT precision mode

Базовый вариант это FP32, произойдет только оптимизация графа, описанная ранее.

Если вы счастливый обладатель видеокарт поколения Turing или Volta, то вам доступны также и точности FP16, INT8. На Pascal тоже будет работать, например, но в производительности ничего не поменяется.

FP16 позволяет снизить точность чисел и тем самым ускорить модель. Результат зависит от видеокарты.

TensoRT INT8

INT8 требует уже от нас калибровочного датасета, так как нам нужно откалиброваться на интервал [-127;127]. Основная идея в чем? Веса часто слабо отличаются друг от друга и их можно сгруппировать, используя квантизацию.

Но мы же можем потерять в точности?

Как показывают исследования, сильной потери в точности не будет, все кажется довольно приличным.

Table 1. Verified Models

	Native TensorFlow FP32	TF-TRT FP32	TF-TRT FP16	TF-TRT INT8	
	Volta and Turing	Volta and Turing	Volta and Turing	Volta	Turing
MobileNet v1	71.01	71.01	70.99	69.49	69.49
MobileNet v2	74.08	74.08	74.07	73.96	73.96
NASNet - Large	82.72	82.71	82.70	Work in progress	82.66
NASNet - Mobile	73.97	73.85	73.87	73.19	73.25
ResNet-50 v1.5 ¹	76.51	76.51	76.48	76.23	76.23
ResNet-50 v2	76.43	76.37	76.4	76.3	76.3
<u>VGG16</u>	70.89	70.89	70.91	70.84	70.78
<u>VGG19</u>	71.01	71.01	71.01	70.82	70.90
Inception v3	77.99	77.99	77.97	77.92	77.93
Inception v4	80.19	80.19	80.19	80.14	80.08

TF-TRT

Как мы уже ранее отмечали, TensorRT интегрирован в Tensorflow и его использование заметно упрощается.

- 1) Обучаем модель на tf или tf.keras
- 2) Сохраняем модель
- 3) Загружаем модель
- 4) Оптимизируем
- 5) Profit!

Оптимизация resnet50 для классификации imagenet (Tesla T4):

Base TF	TF-TRT FP32	TF-TRT FP16	TF-TRT INT8
202 img/sec	465 img/sec	467 img/sec	1939 img/sec

TF-TRT

Результаты в том числе сильно зависят от видеокарты, от ее производительность, типов ядер cuda, архитектуры.

Haпример, Tesla V100 16GB и оптимизация ResNet152V2:

Base TF	TF-TRT FP32	TF-TRT FP16	TF-TRT INT8
455 img/sec	565 img/sec	1693 img/sec	1746 img/sec

Tesla V100 16GB и оптимизация ResNet50

Base TF	TF-TRT FP32	TF-TRT FP16	TF-TRT INT8
973 img/sec	1389 img/sec	3874 img/sec	4031 img/sec

ONNX

• ONNX (Open Neural Network Exchange) — открытая библиотека для построения нейронных сетей. Но не только. С помощью ONNX можно обмениваться моделям из разных фреймворков.

Поддерживаемые фреймворки

- Caffe2
- Microsoft Cognitive Toolkit
- MXNet
- Tensorflow
- Pytorch
- XGBoost
- Catboost
- Etc..

ONNX Runtime

- У ONNX есть свой движок для быстрого обучения и инференса моделей.
- Много различных стратегий оптимизации в части CPU, CUDA и многих других, но лично у меня не вышло обогнать ванильный Pytorch даже.
- В целом можно попробовать ускорить обучение моделей, например моделей Pytorch.
- https://github.com/Microsoft/onnxruntime# api-documentation

Оптимизация Pytorch

На самом деле вариантов вроде много, но ONNX не зашел. Поэтому основной вариант следующий:

- Обучаем модель в Pytorch
- Конвертируем ее в ONNX
- Конвертируем из ONNX в Tensorflow
- Оптимизируем через TF-TRT

Конвертация Pytorch-ONNX

model – сам экземпляр класса модели dummy_input – пример данных для прогона модели для ONNX dynamic_axes – если не указать, то ONNX будет ожидать такой же по размеру батч, как и в dummy_input

Конвертация ONNX-Tensorflow

Для конвертации можно использовать библиотеку onnx_tf https://github.com/onnx/onnx-tensorflow

```
import onnx
from onnx_tf.backend import prepare

model_onnx = onnx.load('resnet_onnx/resnet.onnx')

tf_rep = prepare(model_onnx, device='CUDA', auto_cast=True)

tf_rep.export_graph('resnet_onnx/resnet.pb')
```