## Classify/My/Meds

## Predicting Prior Authorization Approval and Volume

Rachel Domagalski, Rachel Lee, Hannah Pieper, Rongqing Ye



**Team Ruby** 

https://github.com/domagal9/classifymymeds

#### The Scenario: An American Healthcare Debacle



## What Happens When Insurance Says No?



### What Happens When Insurance Says No?



Doctor submits a PA that tells insurance about the patient & their health concerns



- Diagnosis
- Other Drugs Tried
- Contraindication



Insurance decides whether to now approve the prescription



If approved, the patient is provided their drug.

## Then, a **Prior Authorization** is needed!

### Team Ruby to the Rescue!

We can **predict** whether a prior authorization will be classified as approved or denied, saving patients and doctors time, and improving quick access to healthcare. [Ye + Pieper + Domagalski]



We can **forecast** future prior authorization volume at the monthly and daily level, predicting revenue and helping healthcare technology companies budget. [Pieper + Lee]



**The Data:** CoverMyMeds provided a dataset of over 1 million pharmacy claims records, each indicating whether the pharmacy filled the prescription, whether a PA was needed, and if that PA was approved. Each entry also contains information about the insurance payer, drug, patient's medical details, and date.

#### **Prior Authorization Classification**

Classify whether a PA will be approved or denied based on drug, payer, and patient information.

#### What Makes a Good Model?

**True Positives** improve speed to therapy and reduce prescription abandonment.

**True Negatives** let providers know sooner to change therapies, improving access to care.

**ROC AUC** considers both, an average of true positive rate and true negative rate.



| Model                  | Accuracy | Precision | Recall   | F1       | ROC AUC  |
|------------------------|----------|-----------|----------|----------|----------|
| Fine-tuned<br>Logistic | 0.735462 | 0.930147  | 0.691770 | 0.793438 | 0.774038 |
| Decision Tree          | 0.784086 | 0.877707  | 0.820280 | 0.848023 | 0.752150 |
| Random Forest          | 0.784086 | 0.877707  | 0.820280 | 0.848023 | 0.752150 |
| AdaBoost               | 0.770033 | 0.778863  | 0.959188 | 0.859671 | 0.603134 |
| svc                    | 0.752271 | 0.767514  | 0.950615 | 0.849308 | 0.577263 |
| Baseline               | 0.734374 | 0.734374  | 1.000000 | 0.846846 | 0.500000 |



**Consider best** 

**ROC AUC** 

scores

#### **Prior Authorization Classification**

Classify whether a PA will be approved or denied based on drug, payer, and patient information.

#### **Are We Confident About These Estimates?**

| Model                  | Accuracy | Precision | Recall   | F1       | ROC AUC  |
|------------------------|----------|-----------|----------|----------|----------|
| Fine-tuned<br>Logistic | 0.735462 | 0.930147  | 0.691770 | 0.793438 | 0.774038 |
| Decision<br>Tree       | 0.784086 | 0.877707  | 0.820280 | 0.848023 | 0.752150 |
| Random<br>Forest       | 0.784086 | 0.877707  | 0.820280 | 0.848023 | 0.752150 |
| AdaBoost               | 0.770033 | 0.778863  | 0.959188 | 0.859671 | 0.603134 |
| svc                    | 0.752271 | 0.767514  | 0.950615 | 0.849308 | 0.577263 |
| Baseline               | 0.734374 | 0.734374  | 1.000000 | 0.846846 | 0.500000 |

With highest ROC AUC, drop feature and permutation importance score, a Random Forest model should be used to predict prior authorization classification.

#### **Prior Authorization Classification**

Classify whether a PA will be approved or denied based on drug, payer, and patient information.



## Check whether your PA will be approved on our app!

#### **Prior Authorization Checker - Result**



You need to file a prior authorization (code 70): Drug C is not covered by the plan and is not on the formulary.

Your prior authorization has 2.76% chance to be approved!

#### **Prior Authorization Checker**





https://pachecker.herokuapp.com/

#### **Prior Authorization Volume Forecast**

Forecasting future PA volume at the monthly level



**Methods Tested**: Holt's Method, ARIMA, Simple Exponential Smoothing, Exponential Smoothing



Additive Exponential Smoothing Provides the Most Accurate Forecast

**Parameters:** damped additive trend, additive seasonal period of length 12.

There is a 95.0% chance that our forecast will be within 5.26% of the true # of PAs filed monthly.

The Erdős Institute

#### **Prior Authorization Volume Prediction**

Forecasting future PA volume at the daily level





#### Method Tested:

Random Forest Regressor, RNN (LSTM Model)



|            | Random Forest                            | LSTM                          |  |
|------------|------------------------------------------|-------------------------------|--|
| Accuracy   | 94.75                                    | 91.43                         |  |
| RMSE       | 36.71                                    | 39.88                         |  |
| Parameters | N/A                                      | 40 epochs<br>0.0 dropout rate |  |
| Misc       | Requires a yearly volume for prediction. | Lower in accuracy.            |  |





Random Forest Model





This will help medical providers know *which* therapies are accessible to their patients, improve speed to treatment, and reduce prescription abandonment. Overall, this research will help improve access to care.



Forecasting
Prior Authorization
Monthly & Daily
Volume

Additive Exponential Smoothing

+

Random Forest Model

+

LSTM Model

These forecasts are accurate enough to help medical technology companies like CoverMyMeds predict their monthly and daily volume, which will assist in budgeting and resource allocation.

# ClassifyMyMeds



https://github.com/domagal9/classifymymeds

https://pachecker.herokuapp.com/



Rachel Domagalski domagal@msu.edu Michigan State University Rachel (Nakyung) Lee <a href="mailto:rnklee@terpmail.umd.edu">rnklee@terpmail.umd.edu</a>
University of Maryland,
College Park

Hannah Pieper
<a href="mailto:hpieper@bu.edu">hpieper@bu.edu</a>
Boston University

Rongqing Ye
thomasyrq@gmail.com
Purdue University



May 2021 Data Science Bootcamp