CODE

shall not exceed the value calculated in accordance with 22.9.4.4.

22.9.4.2 If shear-friction reinforcement is perpendicular to the shear plane, nominal shear strength across the assumed shear plane shall be calculated by:

$$V_n = \mu A_{vf} f_v \tag{22.9.4.2}$$

where A_{vf} is the area of reinforcement crossing the assumed shear plane to resist shear, and μ is the coefficient of friction in accordance with Table 22.9.4.2.

Table 22.9.4.2—Coefficients of friction

Contact surface condition	Coefficient of friction $\mu^{[1]}$	
Concrete placed monolithically	1.4λ	(a)
Concrete placed against hardened concrete that is clean, free of laitance, and intentionally roughened to a full amplitude of approximately 6 mm	1.0λ	(b)
Concrete placed against hardened concrete that is clean, free of laitance, and not intentionally roughened	0.6λ	(c)
Concrete placed against as-rolled structural steel that is clean, free of paint, and with shear transferred across the contact surface by headed studs or by welded deformed bars or wires.	0.7λ	(d)

 $^{[1]}\lambda$ = 1.0 for normalweight concrete. For lightweight concrete, λ is calculated as given in 19.2.4, but shall not exceed 0.85.

22.9.4.3 If shear-friction reinforcement is inclined to the shear plane and the shear force induces tension in the shear-friction reinforcement, nominal shear strength across the assumed shear plane shall be calculated by:

$$V_n = A_{vf} f_y(\mu \sin\alpha + \cos\alpha)$$
 (22.9.4.3)

where α is the angle between shear-friction reinforcement and assumed shear plane, and μ is the coefficient of friction in accordance with Table 22.9.4.2.

COMMENTARY

R22.9.4.2 The required area of shear-friction reinforcement, $A_{\nu f}$, is calculated using:

$$A_{vf} = \frac{V_u}{\Phi f_v \mu} \tag{R22.9.4.2}$$

The upper limit on shear strength that can be achieved using Eq. (22.9.4.2) is given in 22.9.4.4.

In the shear-friction method of calculation, it is assumed that all the shear resistance is due to the friction between the crack faces. It is therefore necessary to use artificially high values of the coefficient of friction in the shear-friction equations so that the calculated shear strength will be in reasonable agreement with test results.

For concrete cast against hardened concrete not roughened in accordance with 22.9.4.2, shear resistance is primarily due to dowel action of the reinforcement. Test results (Mattock 1977) indicate that the reduced value of $\mu = 0.6\lambda$ specified for this case is appropriate.

For concrete placed against as-rolled structural steel, the shear-transfer reinforcement may be either reinforcing bars or headed studs. The design of shear connectors for composite action of concrete slabs and steel beams is not covered by these provisions. AISC 360 contains design provisions for these systems.

R22.9.4.3 Inclined shear-friction reinforcement is illustrated in Fig. R22.9.4.3a (Mattock 1974), where α is the acute angle between the bar and the shear plane. Equation (22.9.4.3) applies only when the shear force component parallel to the reinforcement produces tension in the reinforcement and the force component parallel to the shear plane resists part of the shear, as shown in Fig. R22.9.4.3a.

If the shear-friction reinforcement is inclined such that the shear force component parallel to the reinforcement produces compression in the reinforcement, as shown in Fig. R22.9.4.3b, then shear friction does not apply $(V_n = 0)$.

