Eine Woche, ein Beispiel 8.27 ramified covering: RS case

global char o char p mixed char global
$$RS_{p} = P_{p} = P_{p$$

- route in this series

For having the best geometrical intuition, we design this route. People may prefer working with local objects first(and then global objects), since global objects are glued by local objects.

However, you don't have to sharpen your tools before playing the puzzles.

Today: We work on Riemann Surface (RS), the most intuitive case. The relationship with field extension is left to next time.

- I standard ramified covering
- 2. definition
- 3. examples
 'morphisms with explicit expressions
 RS defined by equations

 - · infinite pt case
 - · morphisms defined by quotients.

1. standard ramified covering

For practice, we only consider ramified covering with finite ramification index.

Observation. Consider $f: C \longrightarrow C \quad z \longmapsto z^e$ how to understand this fct?

• f is holomorphic; $f \in \mathbb{Z}[z]$ • $f^* : \mathcal{M}(C) \longrightarrow \mathcal{M}(C)$ field extension of deg e• f is "roughly a cover":

- $f'(z) = \begin{cases} e & pts \\ fo \end{cases}, \quad z = 0$ - $f[C_{fo}]: C - fo] \longrightarrow C - fo]$ is a cover

Once we divide C(=Im f) by several districts, with o lying in the boundary, we can divide domain by several districts, and see the movement of pts easily (as long as they don't pass o).

We will only draw the first two pictures later on, since the last one is too difficult to draw.

Fact (show in next document)

For a ramified covering $f: X \longrightarrow Y$ of deg e, $f^*: \mathcal{M}(Y) \longrightarrow \mathcal{M}(X)$ is a field extension of deg e.

Notice that we don't assume X, Y to be cpt.

https://mathoverflow.net/questions/25085/the-riemann-correspondence-for-riemann-surfaces-made-explicit-and-its-generalizahttps://math.uchicago.edu/~may/REU2022/REUPapers/Marks.pdf

Def. For
$$e \in IN_{>0}$$
, we call $f_e: \mathcal{D} \longrightarrow \mathcal{D} \qquad z \longmapsto z^e$ as the standard ramified covering of deg e .

Def (Ramified covering/Branched covering)

Let Y, X be oriented conn 2-dim topo mflds, $f: Y \to X$ be cont surj. We say that f is a ramified covering, if

 $\forall x_0 \in X$, $\exists \mathcal{U} \stackrel{\text{pen}}{=} X$ nbhd of $x_0 \quad \text{s.t.}$ $\emptyset \quad f^{-1}(\mathcal{U}) \cong \coprod_{i \in I} V_i \quad \text{as topo spaces} \qquad \bigvee_{i \in I} X$

 \mathfrak{D} fly, $V_i \xrightarrow{iel} \mathcal{U}$ is the standard ramified covering, i.e.,

$$\begin{array}{ccc} \bigvee_{i} & \xrightarrow{f|v_{i}} \mathcal{U} \\ \cong & & \downarrow \cong \\ \mathcal{D} & \xrightarrow{f_{e}} & \mathcal{D} \end{array}$$

 \overrightarrow{V} We don't consider $D \subset \mathbb{C}$ as a cover, since O does not work.

Ram(f)= $\{a,d\}$ deg f=3 Branch(f)= $\{A,B\}$ ea=2,ec=1

Rmk. For
$$f \in \mathcal{O}(X)$$
, $a \in X$,
 $f(a) \neq 0 \iff$
 $n \neq -\infty$, o deg $(f(x) - f(a)) = n \iff$

f is a local homeomorphism near a. f is a ramified covering near a, with ramification index n.

Cor. For f. X -> Y proper holo morphism of RSs, f is a ramified covering

conn surj, not proper not ramified covering

3. examples morphisms with explicit expressions

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$
 $f(z) = Z^3 - 3z$. draw the picture.

$$f(z) = Z^3 - 3z$$

Ex. For draw the picture.

$$f(z) = z + \frac{1}{z},$$

$$f: \mathbb{C} \longrightarrow \mathbb{C}^{\times}$$
 draw the picture.

$$f(z) = e^{z}$$

Ex. For

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$
 draw the picture.

$$f(z) = \cos z$$

Q. How is the ramified index related with the order of zeros?

RS defined by equations

Ex. For
$$X_i = \{(x,y) \in \mathbb{C}^2 | x^2 + y^2 = 1\}$$
 $\subseteq \mathbb{C}^2$

- 1) Shows that X is a RS
- 2) Shows that π , is a ramified cover, and determine
 - · degree
 - · ramified pt
 - ·ramification index
- 3) draw the picture of X
 https://mathoverflow.net/questions/22862 2/intuition-for-picard-lefschetz-formula

4) Compute $H_i(X;IR)$

5) By identifying X by \mathbb{C}^* , draw the cover: $\mathbb{C}^* \longrightarrow \mathbb{C}$

$$\begin{array}{ccc}
X & \xrightarrow{(\times y)} & \xrightarrow{x+iy} & \mathbb{C}^* \\
\pi_i & & & \downarrow & \downarrow & \downarrow & \downarrow \\
\mathbb{C} & \xrightarrow{\times_2} & \mathbb{C}
\end{array}$$

infinite pt case Ex. $f: C \longrightarrow CP' - fo$ $z \mapsto \frac{1}{z'} = [1:z^2]$ is a ramified covering $f: CP' \longrightarrow CP'$ $z \mapsto \frac{1}{z'}$ is a ramified covering C IP'

Ex. Work out the cases
$$f: CIP' \longrightarrow CIP'$$

$$CIP' \longrightarrow CIP'$$

Ex. Work out the cases
$$f: CP' \longrightarrow CP' \qquad z \mapsto z^3 - 3z$$

$$f: CP' \longrightarrow CP' \qquad z \mapsto z + \frac{1}{2}$$

$$Ex. For \qquad \widehat{X}: = \{[x:y:z] \in CP^2 \mid x^2 + y^2 = z^2\} \subseteq CP^2,$$

$$f: \widehat{X} \longrightarrow CP' \qquad [x:y:z] \mapsto [x:z]$$

_ draw the picture. Hint. Consider flq-(c) first.

$$\widetilde{\chi} \xrightarrow{[x:y:z] \mapsto [x+iy:z]} \mathbb{CP}'$$

$$\widetilde{f} \downarrow \qquad \qquad \downarrow z \mapsto z + \frac{1}{z}$$

$$\mathbb{CP}' \xrightarrow{\simeq} \mathbb{CP}'$$

 E_{x} . For $E_{z} = \{[x:y:z] \in CP^{2} | y^{2}z = x (x-z) (x+z)\} \subseteq CP^{2}$, $\pi_{z} \in CP' = [x:y:z] \mapsto [x:z]$, draw the picture.

Thm (Riemann - Hurwitz formula) Let $f: X \to Y$ be non-constant morphism between cpt RS, then $2g(X)-2=(2g(Y)-2)\deg f+\sum_{x\in Ram(f)}(e(x)-1)$

Hint: Use triangulation on Y, which induces a triangulation on X.

(may refine triangulation, if needed)

Ex. Verify RH formula for those above examples.

Ex. Compute the genus of Klein quartic: $\mathcal{L} = \{[x:y:z] \in \mathbb{C}(P' \mid x^3y + y^3z + z^3x = 0\}$

https://mathoverflow.net/questions/169159/rigorous-version-of-heuristic-argument-for-genus-degree-formula and the state of the state

morphism defined by quotients

See my bachelor thesis: https://github.com/ramified/personal_tex_collection/blob/main/bachelor_thesis/thesis/main.pdf

See more: search the keyword "Dedekind tessellation".

Try to draw
$$H \longrightarrow SL(z)H$$

 $\Gamma(N)H \longrightarrow SL(z)H$ finite cover

Rmk. In the next section we will see, all Galois coverings are of form $X \longrightarrow X/G$ where $G \subset Aut_{RS}(X)$ Autrs (CIP') = PCL2(C) e.g. X = CIP'X = CIP' Aut_{RS} (CIP') = PGL X = E non CM EC, then Aut_{EC} $(E) = \frac{2l}{2}$

 $\text{Aut}_{RS} (E) \cong E \rtimes \frac{1}{2} 2 \mathbb{Z}$ In page 10 the automorphism group of EC is listed: https://twma.files.wordpress.com/2016/10/slides2.pdf

X: RS with genus
$$g \ge 2$$
 # Autrs (X) $\le 84(g-1)$