Resum Xarxes

1. Conceptes bàsics de xarxes

Les xarxes són sistemes que permeten la comunicació entre dispositius per compartir informació, recursos i serveis.

Elements clau:

- Nodes: Dispositius connectats a la xarxa (ordinadors, impressores, servidors, telèfons mòbils, etc.).
- Connexions: Els mitjans que interconnecten els nodes:
 - o Físics: Cables Ethernet, fibra òptica.
 - o Sense fil: Wi-Fi, Bluetooth, infrarojos.
- Dades: Informació que es transmet en forma de bits (0 i 1).

Avantatges de les xarxes:

- Compartició de recursos: Impressores, fitxers, programari.
- Comunicació: Correu electrònic, missatgeria instantània.
- Col·laboració: Accés simultani a bases de dades o documents.

Exemples de xarxes quotidianes:

- Una xarxa domèstica per compartir internet.
- Xarxes d'empreses per gestionar dades i serveis.

2. Tipus de xarxes i classificació

Les xarxes es classifiquen segons diversos criteris:

Segons l'abast geogràfic:

- LAN (Local Area Network): Xarxes petites, com les d'una casa o oficina. Ex.: Compartició d'impressores.
- MAN (Metropolitan Area Network): Xarxes més grans, com les d'una ciutat. Ex.: Xarxes de campus universitaris.
- WAN (Wide Area Network): Xarxes globals. Ex.: Internet.

Segons la funció:

- **Client-Servidor:** Hi ha un dispositiu (servidor) que proporciona serveis, i altres (clients) que els consumeixen.
- Peer-to-Peer (P2P): Tots els dispositius són iguals i comparteixen recursos entre ells.

Segons la connexió:

• Físiques: Cables, fibra òptica.

• Sense fil: Wi-Fi, Bluetooth, satèl·lits.

Altres classificacions:

Xarxes privades (VPN) vs. públiques.

• Xarxes convergents (multiservei) vs. tradicionals.

3. Components essencials d'una xarxa

Les xarxes necessiten diversos components per funcionar:

1. Hosts:

- Els dispositius que participen en la xarxa, com ordinadors, telèfons mòbils i servidors.
- Exemple: Un ordinador que accedeix a una pàgina web.

2. Dispositius de xarxa:

- **Hub:** Dispositiu simple que envia les dades a tots els dispositius connectats.
- Switch: Dispositiu intel·ligent que envia les dades només al destinatari correcte.
- Router: Connecta xarxes diferents i gestiona el tràfic entre elles.
- Access point: Permet connexions sense fils.

3. Medis de transmissió:

- Físics: Cables Ethernet, fibra òptica.
- Sense fil: Ones de ràdio (Wi-Fi), infrarojos, Bluetooth.

4. Protocols:

- Conjunts de regles que defineixen com es comuniquen els dispositius.
- Exemple: HTTP per pàgines web, FTP per transferència de fitxers.

4. Protocols de comunicació

Els protocols són les regles que permeten que els dispositius es comuniquin. Són imprescindibles per garantir la compatibilitat i la coherència.

Protocols comuns:

- TCP/IP: És la base d'Internet. Defineix com es transfereixen dades de punt a punt.
- HTTP/HTTPS: Protocol per accedir a pàgines web.
- FTP (File Transfer Protocol): Per transferir fitxers entre dispositius.
- SMTP/IMAP/POP3: Per enviar i rebre correus electrònics.
- ARP (Address Resolution Protocol): Traducció entre adreces IP i adreces MAC.

• **DNS (Domain Name System):** Traducció entre noms de domini (<u>www.exemple.com</u>) i adreces IP.

Exemple pràctic:

Quan accedeixes a una pàgina web, el protocol HTTP s'encarrega de sol·licitar la pàgina al servidor i transferir-la al teu navegador.

5. Arquitectures de xarxa

Les arquitectures defineixen com s'organitzen i funcionen les xarxes. Les més comunes són:

1. Client-Servidor:

- Hi ha un dispositiu (servidor) que ofereix serveis i altres (clients) que els consumeixen.
- Exemples de serveis: Emmagatzematge (servidor de fitxers), pàgines web (servidor web).

2. Peer-to-Peer (P2P):

- Tots els dispositius són iguals i poden compartir recursos entre ells.
- Exemple: Compartir arxius entre ordinadors a casa sense un servidor central.

3. Xarxes híbrides:

- Combinació de models client-servidor i P2P.
- Exemple: Una empresa que té servidors centrals però permet connexions directes entre dispositius.

Característiques clau a considerar:

- Escalabilitat: Capacitat d'afegir més dispositius sense problemes.
- Seguretat: Protecció contra accessos no autoritzats.
- **Complexitat:** Es necessita personal especialitzat per a xarxes grans.

6. Funcionament del model OSI i TCP/IP

Els models OSI i TCP/IP són referències essencials per entendre com funciona la comunicació en xarxa.

Model OSI (7 capes):

Aquest model conceptual divideix la comunicació en capes per simplificar el disseny i el funcionament:

- Capa 1 (Física): Bits convertits en senyals.
- Capa 2 (Enllaç de dades): Adreçament físic (MAC).
- Capa 3 (Xarxa): Adrecament lògic (IP).
- Capa 4 (Transport): Segmentació i control de flux (TCP).

- Capa 5 (Sessió): Gestió de connexions entre aplicacions.
- Capa 6 (Presentació): Codificació i xifrat de dades.
- Capa 7 (Aplicació): Interacció amb l'usuari final (HTTP, DNS).

Model TCP/IP (4 capes):

És més senzill i pràctic. És la base d'Internet:

- Capa 1 (Accés a xarxa): Combina el físic i l'enllaç de dades.
- Capa 2 (Internet): Gestió de les adreces IP i encaminament.
- Capa 3 (Transport): Fiabilitat de la connexió (TCP/UDP).
- Capa 4 (Aplicació): Protocols d'usuari final (HTTP, FTP).

Cas pràctic: Accés a una pàgina web

Suposem que estem utilitzant un ordinador per accedir a la pàgina web www.exemple.com. Analitzem com es processen les dades des del navegador fins al servidor web i com tornen a l'ordinador, passant per totes les capes del model OSI.

1. Capa d'aplicació

- Funció: Aquesta capa permet la interacció amb l'usuari final i utilitza protocols específics per cada servei.
- Procés en aquest cas:
 - El navegador (Chrome, Firefox, etc.) fa una sol·licitud HTTP per obtenir la pàgina www.exemple.com.
 - Es genera un missatge que diu: "Envia'm el contingut de www.exemple.com".

2. Capa de presentació

- **Funció:** S'encarrega de traduir, comprimir i xifrar les dades per assegurar compatibilitat i seguretat.
- Procés en aquest cas:
 - Si la connexió és segura (per exemple, HTTPS), la informació es xifra mitjançant un protocol com TLS.
 - Es defineix com es representaran les dades: format text, imatges, vídeos, etc.

3. Capa de sessió

- **Funció:** Aquesta capa gestiona la sessió entre el teu ordinador i el servidor web (<u>www.exemple.com</u>). Obre, manté i tanca la connexió quan sigui necessari.
- Procés en aquest cas:
 - Es crea una sessió (un canal lògic) entre el teu navegador i el servidor web.

 Si ja hi havia una sessió oberta (per exemple, pel fet d'haver accedit abans al mateix servidor), aquesta capa pot reutilitzar-la.

4. Capa de transport

- **Funció:** Aquesta capa garanteix que les dades es lliuren correctament i en ordre al destinatari. Utilitza protocols com TCP (fiable) o UDP (més ràpid però sense garanties).
- Procés en aquest cas:
 - Es divideix la sol·licitud HTTP en segments.
 - Es col·loca una capçalera en cada segment que conté informació com:
 - El número de port (80 per HTTP o 443 per HTTPS).
 - El número d'ordre del segment per assegurar que es puguin reordenar si cal.

5. Capa de xarxa

- Funció: Aquesta capa determina la ruta que seguiran les dades i utilitza adreces IP per identificar l'origen i el destí.
- Procés en aquest cas:
 - Es consulta un servidor DNS per traduir www.exemple.com a una adreça IP (per exemple, 192.168.1.100).
 - S'afegeix una capçalera IP als segments, que inclou:
 - L'adreça IP del teu dispositiu com a **origen**.
 - L'adreça IP del servidor web com a destinació.

6. Capa d'enllaç de dades

- **Funció:** Aquesta capa gestiona l'enviament físic de dades entre nodes directament connectats. Fa servir adreces MAC (adreces físiques dels dispositius).
- Procés en aquest cas:
 - Es consulta la taula ARP (Address Resolution Protocol) per obtenir l'adreça MAC del router que connectarà el teu ordinador amb internet.
 - Es col·loca una capçalera d'enllaç amb:
 - L'adreça MAC de l'origen (el teu ordinador).
 - L'adreça MAC de la destinació (el router o commutador més proper).
 - També es genera un checksum per assegurar que les dades no s'han corromput.

7. Capa física

- **Funció:** Aquesta capa converteix les dades en senyals físics (elèctrics, òptics o de ràdio) que es poden transmetre pel medi físic.
- Procés en aquest cas:
 - Els bits de la sol·licitud (0s i 1s) es converteixen en senyals elèctrics (si uses un cable Ethernet) o en ones de ràdio (si uses Wi-Fi).

 Els senyals es transmeten físicament a través del cable o l'aire fins al router o commutador.

El camí de retorn (resposta del servidor web)

Quan el servidor web rep la sol·licitud, el procés s'inverteix:

- 1. **Capa física:** El servidor envia els bits de resposta cap al teu ordinador.
- 2. **Capa d'enllaç:** Les dades passen d'un node a l'altre, utilitzant adreces MAC fins arribar al teu ordinador.
- 3. Capa de xarxa: Les capçaleres IP indiquen l'origen (servidor web) i el destí (tu).
- 4. Capa de transport: Els segments es reordenen i es verifica que no falti cap dada.
- 5. **Capa de sessió:** La connexió entre tu i el servidor es manté fins que s'envia tota la resposta.
- 6. **Capa de presentació:** Es desxifren les dades (si són HTTPS) i es converteixen en un format comprensible.
- 7. **Capa d'aplicació:** El teu navegador rep la resposta HTTP i mostra la pàgina web al teu monitor.

Diagrama del flux:

- 1. Tu escrius www.exemple.com al navegador.
- 2. Les dades passen per les capes d'aplicació fins a la capa física.
- 3. Les dades viatgen pel cable o Wi-Fi cap al servidor.
- 4. El servidor processa la sol·licitud i envia la resposta seguint el mateix camí invers.
- 5. El navegador processa la resposta i mostra la pàgina.