WHAT IS CLAIMED IS:

1.	An optical communications system for communicating an information signal comprising
	a receiver for recovering an information signal from an optical signal containing the
	information signal, the receiver comprising:
	a heterodyne detector for mixing an optical local oscillator signal with an optical
	signal including at least one tone and a first sideband of the information
	signal, to produce an electrical signal which is a frequency down-shifted
	version of the optical signal; and
	a signal extractor coupled to the heterodyne detector for mixing the first sideband
	of the electrical signal with one of the tones of the electrical signal to
	produce a first component containing the information signal.
2.	The optical communications system of claim 1 wherein the heterodyne detector
comp	prises:
	an optical combiner for combining the optical local oscillator signal and the optical
	signal; and
	a square law detector disposed to receive the combined optical local oscillator signal and
	optical signal.
3	The optical communications system of claim 2 wherein the heterodyne detector further
Comp	
	a polarization controller coupled to the optical combiner for matching a polarization of
	the optical local oscillator signal with a polarization of the optical signal.
4.	The optical communications system of claim 1 wherein the signal extractor comprises:
	a first frequency filter for selecting the first sideband and one of the tones from the
	electrical signal;
	2. comp

- a first frequency filter for selecting the relevant sideband and tone from the electrical signal;
- a square law receiver coupled to the first frequency filter for squaring the frequency
 selected sideband and tone to produce the component; and
 a second frequency filter coupled to the square law receiver for selecting the component.
- 9. The optical communications system of claim 6 wherein each of the first and second extraction paths comprises:
 - a first frequency filter for selecting the relevant sideband from the electrical signal;
 a second frequency filter for selecting the relevant tone from the electrical signal;
 a multiplier coupled to the first and second frequency filters for multiplying the selected sideband with the selected tone to produce a component; and
 a third frequency filter coupled to the multiplier for selecting the component.
 - 10. The optical communications system of claim 6 wherein the combiner comprises:

 a phase shifter coupled to the first extraction path for phase-shifting the first component to be in-phase with the second component; and

 an adder for adding the phase-shifted first component and the second component.
 - 11. The optical communications system of claim 1 wherein the tone includes a carrier for the optical signal.
- 3 12. The optical communications system of claim 1 wherein the tone includes a pilot tone
- 4 located at a frequency separated from a carrier frequency for the optical signal.
- 5 13. The optical communications system of claim 1 wherein the first component includes a
- 6 difference component.
- 1 14. The optical communications system of claim 1 further comprising:
- 2 a transmitter for generating the optical signal.

1	15.	The optical communications system of claim 14 wherein the transmitter comprises:
2		a 1:3 splitting section, for splitting a received optical carrier into three sub-signals;
3		a first and a second transmission leg, each leg coupled to receive one of the three sub-
4		signals from the 1:3 splitting section, for modulating the received optical carrier
5		with a received information signal;
6		a third transmission leg, coupled to receive one of the three sub-signals from the 1:3
7		splitting section, for producing an unmodulated version of the received optical
8		carrier; and
9		a 3:1 combining section coupled to the first, second and third transmission legs, for
10		combining the modulated optical carrier with the unmodulated optical carrier.
######################################	16.	A transmitter comprising:
± <u>1</u> 2		a 1:3 splitting section, for splitting a received optical carrier into three sub-signals;
<i>□</i> 3		a first and a second transmission leg, each leg coupled to receive one of the three sub-
3 4		signals from the 1:3 splitting section, for modulating the received optical carrier
<u> </u> -≞5		with a received information signal;
6		a third transmission leg, coupled to receive one of the three sub-signals from the 1:3
1 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		splitting section, for producing an unmodulated version of the received optical
** ³ 8		carrier; and
9		a 3:1 combining section coupled to the first, second and third transmission legs, for
10		combining the modulated optical carrier with the unmodulated optical carrier.
1	17.	The transmitter of claim 16 wherein the third transmission leg includes a control section
2	for co	ontrolling an amplitude of the unmodulated optical carrier.
1	18.	The transmitter of claim 16 wherein the third transmission leg includes a control section
2	for co	ontrolling a phase of the unmodulated optical carrier.

A transmitter comprising:

19.

- 3 frequency filtering the first sideband and the tone from the electrical signal; squaring the first sideband and tone to produce the first component; and 4 5 frequency filtering the first component. 25. The method of claim 21 wherein the step of mixing the first sideband of the electrical 1 2 signal with one of the tones of the electrical signal comprises: frequency filtering the first sideband from the electrical signal; 3 frequency filtering the tone from the electrical signal; 4 multiplying the first sideband with the tone to produce the first component; and 5 frequency filtering the first component. 6 26. The method of claim 21 wherein: the optical signal further includes a second sideband of the information signal; and the method further comprises: mixing the second sideband of the electrical signal with one of the tones of the electrical signal to produce a second component containing the information signal; and constructively combining the first and second components to produce a resultant component containing the information signal.
 - 27. The method of claim 26 wherein:
- the step of mixing the first sideband of the electrical signal with one of the tones of the 2
- electrical signal comprises: 3
- frequency filtering the first sideband and the tone from the electrical signal; 4
- squaring the first sideband and tone to produce the first component; and 5
- 6 frequency filtering the first component; and
- the step of mixing the second sideband of the electrical signal with one of the tones of the 7
- electrical signal comprises: 8
- 9 frequency filtering the second sideband and the tone from the electrical signal;

10		squaring the second sideband and tone to produce the second component; and
11		frequency filtering the second component.
1	28.	The method of claim 26 wherein:
2		the step of mixing the first sideband of the electrical signal with one of the tones of the
3		electrical signal comprises:
4		frequency filtering the first sideband from the electrical signal;
5		frequency filtering the tone from the electrical signal;
6		multiplying the first sideband with the tone to produce the first component; and
7		frequency filtering the first component; and
8		the step of mixing the second sideband of the electrical signal with one of the tones of the
<u>.</u> <u>1</u> 9		electrical signal comprises:
8		frequency filtering the second sideband from the electrical signal;
		frequency filtering the tone from the electrical signal;
2		multiplying the second sideband with the tone to produce the second component;
13		and
4		frequency filtering the second component.
13 13	29.	The method of claim 26 wherein the step of constructively combining the first and second
2	comp	onents comprises:
3		phase-shifting the first component to be in-phase with the second component; and
4		adding the phase-shifted first component and the second component.
1	30.	The method of claim 21 wherein the tone includes a carrier for the optical signal.
1	31.	The method of claim 30 further comprising:
2		modulating an optical carrier with the information signal using a raised cosine
3		modulation biased at a V_{π} point; and

- combining the modulated optical carrier with an unmodulated optical carrier to produce the optical signal.
- 1 32. The method of claim 30 further comprising:
- modulating an optical carrier with the information signal using a raised cosine modulation biased at a point slightly offset from a V_{π} point to produce the optical signal.
- 1 33. The method of claim 21 wherein the tone includes a pilot tone located at a frequency separated from a carrier frequency for the optical signal.
 - 34. The method of claim 33 further comprising: combining the information signal with a pilot tone; and modulating an optical carrier with the combined information signal and pilot tone using a raised cosine modulation biased at a V_{π} point.