Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis

Stefanos Angelidis and Mirella Lapata

Institute for Language, Cognition, and Computation School of Informatics, University of Edinburgh

In Transactions of the Association for Computational Linguistics (TACL), 2018.

http://stangelid.github.io

s.angelidis@ed.ac.uk

Online User Reviews

Heavily influence customer decisions:

- Travel booking (Ye et al., 2009)
- Box Office success (Duan et al., 2008)
- Shopping (TurnTo.com report, 2018)

Incredibly rich data source:

- 6.3 million Yelp reviews written in 2010
- 27.3 million in 2017

Document-level Sentiment Analysis

Rating: ★★

I had a very mixed experience at The Stand. The burger and fries were good. The chocolate shake was divine! The drive-thru was horrible. It took us at least 30 minutes to order. We complained about the wait and got no apology. I would go back because the food is good, but my only hesitation is the wait.

Document-level Sentiment Analysis

Rating: ★★

I had a very mixed experience at The Stand. The burger and fries were good. The chocolate shake was divine! The drive-thru was horrible. It took us at least 30 minutes to order. We complained about the wait and got no apology. I would go back because the food is good, but my only hesitation is the wait.

[insert favourite neural net here]

Predicted rating: ★★

Document-level Sentiment Analysis

Rating: ★★

I had a very mixed experience at The Stand. The burger and fries were good. The chocolate shake was divine! The drive-thru was horrible. It took us at least 30 minutes to order. We complained about the wait and got no apology. I would go back because the food is good, but my only hesitation is the wait.

[Johnson and Zhang (2015); Yang et al. (2016); Liu and Lapata (2018)]

Predicted rating: ★★

Fine-grained Sentiment Analysis

Rating: ★★

I had a very mixed experience at The Stand. The burger and fries were good. The chocolate shake was divine! The drive-thru was horrible. It took us at least 30 minutes to order. We complained about the wait and got no apology. I would go back because the food is good, but my only hesitation is the wait.

Positive:

- · The burger and fries were good.
- · The chocolate shake was divine!
- I would go back because the food is good.

Negative:

- · The drive-thru was horrible.
- · It took us at least 30 minutes to order.
- We complained about the wait and got no apology.
- · My only hesitation is the wait.

Our Work

Large collections of rated reviews (Diao et al. 2014; Tang et al. 2015)

Detect and summarize fine-grained sentiment

- with Multiple Instance Learning and neural machinery
- w/o expert knowledge
- w/o expensive annotations

Unsupervised: Lexicon-based Methods

The starters were quite bland.

Unsupervised: Lexicon-based Methods

Adjective:		Intensifier:	
disgusting	-5	slightly	0.50
terrible	-4	somewhat	0.70
bland	-2	pretty	0.90
so-so	-1	quite	1.10
okay	1	really	1.15
great	2	very	1.25
amazing	4	extraordinarily	1.50
divine	5	(the) most	2.00

SO-CAL: Semantic Orientation CALculator (Taboada et al., 2011)

Fully Supervised: Segment-level CNNs

The starters were quite bland.

I didn't enjoy most of them,
but the burger was brilliant! → very negative

→ negative

→ very positive

Fully Supervised: Segment-level CNNs

The starters were quite bland.

I didn't enjoy most of them,
but the burger was brilliant! → very negative

→ negative

→ very positive

Segment CNN (Kim, 2014)

- multiple conv. filters of varying length
- max-over-time pooling

Successful for sentence classification ©

Segment encoder in larger networks ©

Requires expensive annotations ©

Our Approach

Multiple Instance Learning (MIL; Keeler and Rumelhart, 1992) *

- Training examples → bags of instances
- Bag labels → supervision
- Instance labels → latent
- Bag-instance relationship?

bag label

Rating: **

I had a very mixed experience at The Stand The burger and fries were good.

The chocolate shake was divined The drive-thru was horrible. It took us at least 30 minutes to order. We complained about the wait and got no apology.

I would go back because the food is good, but my only hesitation is the wait.

Model Assumptions

Sentiment aggregation:

- Segment s_i conveys sentiment polarity: $pol_i \in [-1, +1]$
- Segments have varying degrees of importance: $a_i \in [0,1]$, $\sum_i a_i = 1$
- Overall polarity of review: average of polarities, weighted by importance

Review segmentation:

- · words, phrases
- sentences
- clauses*

Multiple Instance Learning Network (MILNET)

Inputs:

Word Matrices X_i

Segment encoding:

$$\mathbf{v}_i = \mathrm{CNN}(\mathbf{X}_i)$$

Segment classification:

$$\mathbf{p}_i = \operatorname{softmax}(\mathbf{W}_c \mathbf{v}_i + \mathbf{b}_c)$$

Document classification:

$$p_R^{(c)} = \sum_i a_i p_i^{(c)}, c \in \{1, C\}$$

Objective:

NLL of document predictions

Polarity Scoring via Gating

Polarity Scoring via Gating

Polarity of segment:

$$pol_i = \sum_c p_i^{(c)} w^{(c)}$$
, $\mathbf{w} = \langle -1, -0.5, 0, +0.5, +1 \rangle$

 $\textbf{Gated polarity} \rightarrow \textbf{accounts for segment importance:}$

$$gpol_i = a_i \cdot pol_i$$

Polarity-based Opinion Extraction

Rating: ★★

I had a very mixed experience at The Stand. The burger and fries were good. The chocolate shake was divine! The drive-thru was horrible. It took us at least 30 minutes to order. We complained about the wait and got no apology. I would go back because the food is good, but my only hesitation is the wait.

.Xe	[+1.00]	The chocolate shake was divine
Very positive	[+0.86]	I would go back because the food is good
Урс	[+0.50]	The burger and fries were good
	[-0.05]	I had a very mixed experience at The Stand.
\$	[-0.10]	but my only hesitation is the wait
tive	[-0.10]	and got no apology
ega	[-0.25]	We complained about the wait
Very negative	[-0.43]	It took us at least 30 minutes to order
Vel	[-0.89]	The drive-thru was horrible

Experimental Setup: Datasets

Document-level	Yelp'13	IMDB
Documents	335K	348K
Avg # Sentences	8.90	14.02
Avg # EDUs	19.11	37.38
Avg # Words	152	325
Vocabulary Size	129K	97K
Classes	1–5	1–10

Segment-level	Yelp'13	IMDB
Documents	100	100
Sentences	1,065	1,029
EDUs	2,110	2,398
Classes	{-,0,+}	

Review collections:

- Yelp'13 and IMDB rated reviews
- Used for training MILNET

Sentiment Polarity (SPOT) dataset:

- Sampled from test splits
- · Sentence- and EDU-level
- 3 annotations per segment (Majority Vote; $kappa \approx 0.8$)

Experimental Setup

Segment-level Classification:

- Gated polarities → Positive/Neutral/Negative
- For Sentences & EDUs

Comparison Systems:

- Unsupervised: SO-CAL (Taboada et al. 2011)
- Fully-Supervised: SEG-CNN (Kim, 2014)
- Document-level: Hierarchical Attention Network (HIERNET; Yang et al. 2016)

Experimental Setup

Segment-level Classification:

- Gated polarities → Positive/Neutral/Negative
- For Sentences & EDUs

Comparison Systems:

- Unsupervised: SO-CAL (Taboada et al. 2011)
- Fully-Supervised: SEG-CNN (Kim, 2014)
- Document-level: Hierarchical Attention Network (HIERNET; Yang et al. 2016)

Results: Segment-level Sentiment

Human Evaluation of Opinion Summaries

Compare the quality of opinion summaries

- On Yelp & IMDB reviews from SpoT
- Produce extractive summaries from competing models
- Show original review + summaries to 3 human judges

Participants asked to select best summary according to:

- Informativeness (Best captures the salient points of the review?)
- Polarity (Best highlights positive and negative comments?)
- 'Not sure' option available

Is MILNET better than HIERNET?

^{*} significant difference (sign-test; p < 0.01)

Are EDUs better than Sentences?

^{*} significant difference (sign-test; p < 0.01)

How does MILNET compare to Summarization Baselines?

^{*} significant difference (sign-test; p < 0.01)

Conclusions

- · A MIL neural model for fine-grained sentiment analysis
- Attention-based polarity scoring method facilitates opinion extraction
- Experiments on new test dataset (SpoT)
- Ongoing work: Extends to opinion extraction from multiple-reviews

Thank you

Code + Data:
stangelid.github.io

...and some MILNET summaries!

Very tasty and fresh, I really enjoyed it. Our server was a bit aloof! Very sweet girl though. Haha! The good things are the acting.
Mostly brilliant, and believable.
On the negative side is, well everything else.
I bet even the catering was bad on this film.

I would give zero stars. it was ice cold. This was torture! The staff is clueless. Horrible service!

Multiple Instance Learning

MIL for object recognition:

- $\bullet \ \mathsf{Bags} \to \mathsf{images}$
- Instances ightarrow image patches
- Bag is positive if at least 1 instance is positive
- · OR-style label aggregation

[5] Carbonneau et al. (2016)

Document-level Classification with Hierarchical Networks

Hierarchical Network (HIERNET)

- Based on Yang et al. (2016)
- · Attention models segment importance
- Produces fixed-size document-vector
- No natural way to predict segment sentiment

Multiple Instance Learning Network

Attention Mechanism:

$$\mathbf{h}_{i} = \overrightarrow{GRU}(\mathbf{v}_{i})$$

$$\mathbf{h}'_{i} = tanh(W_{a}\mathbf{h}_{i} + b_{a})$$

$$a_{i} = \frac{exp(\mathbf{h}_{i}^{\prime\mathsf{T}}\mathbf{h}_{a})}{\sum_{i} exp(\mathbf{h}_{i}^{\prime\mathsf{T}}\mathbf{h}_{a})}$$

Intuition:

- GRU encodes segment interrelations
- Vector h_a is a trained key
- learns to recognize sentiment-heavy segments

SPOT: Segment-level Polarity Annotations

SPOT: Segment-level Polarity Annotations

Segment Classification – Effect of Gating

Segment Classification – Effect of Gating (Neutral Class)

Segment Classification - Distribution of Polarities

Segment Classification – Effect of Training Size

Human Evaluation of Opinion Summaries

Original customer review:

This is one of those places that gives you massive portions to allot for their somewhat higher pricing. However, overall i felt it was worth it. We dined on the patio outside, along the golf course, in the evening when it was cooler out. I had a sallad, which i mistakenly did not order the half size! I was brought a regular full size which could definitely feed a small family. Haha. Very tasty and fresh, i really enjoyed it. Our server was a bit aloof. She just did n't seem to be there and maybe was a little stressed out or overwhelmed. Very sweet girl though.

Summary 1:

- + However, overall i felt it was worth it.
- + Very tasty and fresh, i really enjoyed it.
- + Very sweet girl though.
- Haha.
- Our server was a bit aloof.

Summary 2:

- + Very tasty and fresh, i really enjoyed it.
- + Very sweet girl though.
- to allot for their somewhat higher pricing.
- when it was cooler out.
- Haha.
- Our server was a bit aloof.

Informativeness: Polarity: Coherence: Summary 1 Not sure Summary 2 Summary 2 Summary 2 Summary 1 Not sure Summary 2

Is MILNET better than HIERNET?

Is MILNET better than HIERNET?

Are EDUs better than Sentences?

How does MILNET compare to Summarization Baselines

