UNCLASSIFIED
AD NUMBER
AD813481
LIMITATION CHANGES
TO: Approved for public release; distribution is unlimited.
FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; DEC 1966. Other requests shall be referred to Air Force Technical Application Center, Washington, DC. This document contains export-controlled

technical data.

AUTHORITY

onr ltr, 28 jul 1977

LONG RANGE SEISMIC MEASUREMENTS

GREELEY

20 DECEMBER 1966

Prepared for

AIR FORCE TECHNICAL APPLICATIONS CENTER

Washington, D. C.

28 APRIL 1967

34

TELEDYNE INC.

Under

Project VELA UNIFORM

Sponsored By

ADVANCED RESEARCH PROJECTS AGENCY

Nuclear Test Detection Office ARPA Order No. 624

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

LONG RANGE SEISMIC MEASUREMENTS GREELEY

20 December 1966

SEISMIC DATA LABORATORY REPORT NO. 180

AFTAC Project No.:	VELA T/6702
Project Title:	Seismic Data Laboratory
ARPA Order No.:	624
ARPA Program Code No.:	5810

Name	of	Contractor:	TELEDYNE,	INC .
------	----	-------------	-----------	-------

Contract No ::	F 33657-67-C-1313
Date of Contract:	3 March 1967
Amount of Contract:	\$ 1,735,617
Contract Expiration Date:	2 March 1968
Project Manager	William C. Dean (703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign national may be made only with prior approval of Chief, AFTAC.

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract F 33657-67-C-1313.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

		Page	No.
EVENT DE	SCRIPTION	1	
INTRODUC	TION	2	
INSTRUME	NTATION AND PROCEDURE	3	
DATA AND	RESULTS	5	
TABLES			
1	Station Status Report - GREELEY		
2	Principal Phases - GREELEY		
FIGURES			
1	Recording Stations and Signals Received		
2	Unified Magnitudes		
3	Adjusted Unified Magnitudes		
4	Travel-Time Residuals, T-Δ/8.1; T-JB		
5	Maximum Amplitudes of Pn and P		
6	Maximum Amplitudes of Pg		
7	Maximum Amplitudes of Lg		
8	Maximum Amplitudes of LQ		
9	Maximum Amplitudes of LR		
LIST OF	APPENDICES		
I(A)	Recording Site Information		
I(B)	Unified Magnitudes from Pn or P Waves		
II(A)	Seismic Analysis Diagram		
II(B)	Instrument Response Curves - LRSM		
11(C)	Instrument Response Curves - Other Short Period		
TT(D)	Instrument Bespoush Curries - TASA		

GREELEY

EVENT DESCRIPTION

DATE:

20 December 1966

TIME OF ORIGIN:

15:30:00.12

YIELD:

MAGNITUDE:

6.29 + 0.45

LOCATION:

SITE:

Nevada Test Site, Area U20g

GEOGRAPHIC COORDINATES:

Lat: 37°18'07.0" N

Long: 116°24'30.0" W

ENVIRONMENT:

GEOLOGIC MEDIUM:

ZEOLITIZED TUFF

SURFACE ELEVATION:

6470 ft.

SHOT ELEVATION:

2430 ft.

SHOT DEPTH:

4040 ft.

COMPUTED EPICENTER:

ALL STATIONS

GEOGRAPHIC COORDINATES:

Lat: 37°14'56.4" N

Long: 116°31'44.4" W

TIME OF ORIGIN:

15:30:00.4

DEPTH CONSTRAINED TO: 0 km

EPICENTER SHIFT: 12.2 km, S 61° W

Recording Stations and Signals Recieved.

INTRODUCTION

130 100

A long range seismic measurements (LRSM) program and several larger seismographic observatories were established under VELA-UNIFORM to record seismological data resulting from natural seismic activity and a planned series of U. S. underground nuclear tests. The LRSM teams are mobile and occupy locations selected to provide optimum data from events of special interest: the observatories are permanent installations as follows:

Wichita Mountains Seismological Observatory (MMSO) Lawton, Oklahoma

Uinta Basin Seismological Observatory (USSO) Vernal, Utah

Cumberland Plateau Seismological Observatory (CPSO)
McMinnville, Tennessee

Tonto Forest Seismological Observatory (TFSO)
Payson, Arizona

Large Aperture Seismic Array (LASA) Billings, Montana

The purpose of this report is to provide an analysis of data resulting from the GREELEY event recorded by the LRSM teams and the VELA observatories and a preliminary summary of data reported by other permanent and temporary seismographic stations.

INSTRUMENTATION AND PROCEDURE

The instrumentation at each of the LRSM locations consists of three-component short-period and three-component long-period seismographs. In general, data are recorded on 35 millimeter film and on one-inch 14 channel magnetic tape, although recently more portable instrumentation has been incorporated which records only on magnetic tape. The stations are all equipped to record MAY continuously o provide accurate time control and calibration is accomplished once each day and just prior to each shot at the operational settings. Pertinent information useful for analysis of Laur data is available to qualified users of this data and is contained in Technical Report 65-43, "Interpretation and Usage of Seisric Data, LREM program." General information on LREM van and portable system equipment and operation is given in Technical Report 66-27, "The LRSM Mobile Seismological Laboratory," and 65-74, "A Portable Seismograph." Copies of these reports may be obtained from DDC. The AD control number of Technical Report 66-27 is 480343. All the observatories have both long-period and short-period, th'es-component instrumentation, in addition to their other specialized facilities.

Station information is presented in Appendix 1. This includes the station name and code; the geographic coordinates,

distances and azimuths involved; the station elevations; and the type of instruments in use at each location. Representative instrumental response curves are shown in Appendix II(B) and II(C).

The procedures used in measuring amplitudes reported herein are illustrated in Appendix II(A) and the unified magnitude is calculated as shown in Appendix I'B). The distance factors (B) beyond 16° are from Gutenberg and Richter*. For distances less than 16° values were read from a curve in the Gutenberg and Richter paper back to 10° and then extrapolated to 2°, using an inverse cube relationship. An additional magnitude for less than 16° was computed using a method described by Evernden**. (Figure 3).

A standard hypocenter location program for a digital computer is used to determine the location using data from all stations analyzed. Best-fit values of latitude, longitude, and time of origin are determined statistically by a least squares technique. This utilizes a Jeffreys-Bullen travel-time curve as modified by Merrin in 1961 on the basis of Pacific surface-focus recordings. Precision of the computation is limited primarily by the accuracy of arrival times, the validity of the standard travel-time curve, and by local velocity deviations. This method is based on P-wave

^{- 4 -}

^{*} Gutenberg, B. and Richter, C. F., Magnitude and Energy of Earthquakes, Ann. Geofis., 9 (1956), pp. 1-15

^{**} Evernden, J. F., Magnitude Determination at Regional and Near Regional Distances in the United States, AFTAC/VELA Seismological Center Technical Report VU-65-4A, (1965), pp.6, 13

DATA AND RESULTS (LRSM AND VELA OBSERVATORIES)

The parameters of the GREELEY event and a summary of the seismic evaluation is shown on the Event Description page. The operational status of the 26 LRSM stations and observatories is given in Table 1 and illustrated in Figure 1.

phases from the GREELEY event at the LRSM and VELA stations.

Included are the Pn and P arrival times, the maximum amplitudes

(A/T) of Pn or P motion and other phases as seen on the shortperiod vertical instruments. Long-period Love and Rayleigh wave
motion are also tabulated in (A/T) form. In addition, individual
station Rayleigh wave areas (mm²) is indicated as measured on
the LPZ only. Although reduced to 1K magnification, they have
not been normalized to any magnitude. Twenty-five stations recorded short-period signals. Long-period signals from this event
were recorded by 26 stations.

The unified magnitudes determined from the LRSM and VELA observatories is shown in Figure 2. The average magnitude is 6.29 \pm 0.45. The adjusted magnitude is 6.16 \pm 0.40 and is shown in

Figure 3.

The travel-time residuals from the Pn and P phases are shown in Figure 4. Figures 5 through 9 illustrate plots of the amplitudes of P, Pg, Lg, LQ, and LR.

Attached to the report are illustrative seismograms showing the signals recorded at 4 stations. The most distant station analyzed that recorded GREELEY was GG-GR at a distance of 9095 kilometers.

Principal Phases committy 20 December 1944 15:30:00:12

0.047 0.049 0.194 0.038 0.186 0.186			272
		1	
		0.174	_
			L.M.
	-	0.0316	
		0.338	
		0.130	6.110
		8490.0	
		3.0	379-40
		2.0	
_		10.7	
		1.40	1.40
		3,400	3,100
		0.120	
		0,138	2.07
		9	9
-		N 20 P	2.7.2
		2.43	2.13
		2.73	2,13
_		2.23	
			M10.0
		0.1464	

		***	973-10 0.4
		0.040	
		2 4	
		0.98*	
_		# #9	1 1
		29.0	67.67
			244
-		3.14	5
		7.8	
		0.0	976-6
		8 to 10	9.0
			200
			3
		0.0	976
		7.6	
		96'9	57.0 9.16
		13.0	13.4
		* 22	
		13.8	11.4
		33.4	11.4
	-	1.40	671
		3,14	3.14

Pa Web	3, 664. 93	01 W 97 T	10 cc), 626. p.
		•			90 90 9
	10 mm 1 m			(1984) (1	
1183			11111111111		
		* 0 0 °	î î î a a	**** ******	3 :
	* * * * * * *				
2333					1553
2323					
1 5 5 5	868888888	5 7 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	######################################	s Isset
	* ************************************	***	e cal	# # # # # # # # # # # # # # # # # # #	***
	() () () () () () () () () () () () () (Protection Colombia Chronica	Amma . Currot in Command	Seed Labor, Optioning Connection Connectica Connection	Cumberland Platers Chatrowthery, Tunnessee
	7	*	5	1 1	

Principal Phases - GREELEY

Page 1

Table 2

Principal Phases GREELEY 20 December 1966 15: 30:00.12

-				1								
Code	Station	Distance	Inst.	fication (k)	Phase	Trav	Travel Time	Period	Maximum		Magni- tude	Area (==2)
				Film x 10		(min)	(sec)	(sec)	AAT	ą	lite	6. 10 ¹
			1.92	0.25	3			14.0	1645			
			247	0.25	되			14.0	5863			4,560,00
AKSAL	Alexander City, Alabama	2796	245	12.5	ß,	ī	28.0	1.2	1045	6.51		
			245	12.5	•	5	30.2	(1.3)	(1521)			
			Zes	12.5		5	38.1	1.2	689			
			66 61	6.14	es.	6	5.5	16	236			
			LPT	3.04	S	6	55	17	152			
			SPR	12.8	2			2.0	444			
			Las	12.7	5			(2.4)	(974)			
			LPR	6.14	3			23	665			
			LPT	3.04	og G			21	1137			
			247	0.234	27			(16)	(2472)			5,491.45
WHZYK	Whitehorse. Yukon	2913	245	16.7	ρ	ιΩ	36.7	1.0	135	5.55		
	Territory, Canada		245	16.7	e e	ın	38.7	6.0	(126)			
			SPT	17.1	2			2.6	657			
			LPT	1.08	07			18	2348			6 6
			241	1.41	L'A			า	4 348			5,223.40
AE-NC	Albemarle, North	3249	ZdS	21.5	Δ	9	03.2	1.3	552	6.34		
	Carolina		SPR	21.0	e	9	19.3	1.3	253			
		_	245	21.5	eu	9	48.2	1.2	197			
			Spr	17.0	5			2.4	1651			
			LPT	1.32*	3			n i	1664			
			247	1.24*	M M			16	1974			1,951.61
13-38	Belleview, Florida	3318	248	23.1	Δ	9	(6.90)	1.3	651	6.41		
			248	23.1	Đ	9	16.2	1.0	162			
			248	23.1	0	9 '	26.3	1.2	223			
			SPZ	23.1	6 0 (0 1	42.4	1.6	303			
			SPZ	23.1	• (4)		03.5	1.2	2.38			
			245	23.1	(PCP)	n -	1.82	1.1	216			
			TA TA	1.0	n w	11	5 1	20	102			
			SPR	21.4	P.J			1.8	387			
			SPT	20.8	Lg			1.8	277			
			LPR	1.53	07			17	1088			
			LPT	1.0	3			(17)	241)	_		
			LPZ	1.83	LR			17	1961			4,642.08
LS-NH	Lisbon, New Bampshire	3788	248	25	Δ	9	46.2	1.0	535	6.43		
			245	25.0	e	9	48.2	1.0	530			
			SPR	28.5	u	9 1	56.2	1.0	167			
			245	25.0	e .	\	4. 60	4. 0	105			
			1. 2.	0.36	3 9			16	2225			
			LPZ	0.33	LR			10	6774			2,015.15
HN	Houlton, Maine	4082	ZdS	17.7	Δ.	_	08.9	1.1	770	6.45		
			245	17.7		7	15.9	1.2	486			
			ZdS	17.7	PC P	6	31.2	1.0	70.6	-0.44		
			Eds.	16.5	53			2.5	589			
			LPT	1.93	2			16.0	2064			

Marchest, Marchest 4022 6124				9			-			
17. 17.5 1	All Sur	28.5			56.2	1.0	167			
1.0 1.0		25.0	* .	-	09.4	1.4	357			
1,172		0.36	3 3			1.8	2225			
972 17.7 0 11.1 770 6.42 973 13.7 60.9 11.2 41.9 11.2 40.6 973 13.5 12.0 11.2 41.0 70.6 11.2 1072 1.6.3 12.0 11.2 41.0 70.6 11.2 1072 1.1.9 1.0 1.0 11.2 40.6 11.2 1072 1.1.6 1.0 1.0 20.6 11.2 40.6 1072 1.1.6 1.1 1.0 20.6 11.1 20.6 1073 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1074 1.1		0.33	Z,			10	6774			2,015.15
17.7 2.6 2.7 15.5 11.2 2.6 2.5 2	Zds	17.7	A	7	6.80	1.1	770	6.42		
SPEZ 11.7 NO.6 9 11.2 1.0.6 LPPT 11.63 12.4 7.0.6 10.0 LPPZ 11.93 12.9 11.2 7.0.6 LPPZ 12.19 12.9 11.2 2.0.6 SPZ 13.6 0 7 16.0 11.3 300 SPZ 13.6 0 7 16.2 11.3 301 (2.21) SPZ 13.6 0 7 16.3 11.3 301 (2.21) 11.4 301 11.6	Zas	17.7	•	7	15.9	1.2	486			
1.57		17.7	AG A	6	31.2	1.0	9.07			
SPZ 3.13 LB 14.0 3064 1.1 SPZ 13.5 P 7 16.1 (1.3) (5.21) SPZ 13.6 P 7 16.3 (1.1) (5.21) SPZ 13.6 P 7 16.3 (1.1) (5.21) SPZ 13.6 P 7 16.3 (1.3) (5.21) LPR 16.3 17.0 13.0 13.0 13.0 13.0 LPR 16.4 16.3 17.0 13.0 13.0 13.0 LPR 17.4 18.0 13.0 13.0 13.0 13.0 SPZ 75.6 10.0 13.0 13.0 13.0 13.0 SPZ 75.6 (787) 9 13.0 13.0 13.0 SPZ 13.0 13.0 13.0 13.0 13.0 13.0 SPZ 13.0 13.0 13.0 13.0 13.0 13.0 <t< td=""><td>A.</td><td>16.5</td><td>3 :</td><td></td><td></td><td>2.5</td><td>589</td><td></td><td></td><td></td></t<>	A.	16.5	3 :			2.5	589			
SPZ 13.6 P 7 16.3 (1.2) (6.2) 1. SPZ 13.6 P 7 16.3 (1.1) (300) (6.21) SPZ 13.6 P 7 16.3 1.1 301 (6.21) SPZ 15.4 15.4 1.2 307 (6.21) 307 LPR 16.4 1.2 1.2 307 (6.21) 307 LPR 1.6.5 1.6 1.2 307 1.6 307 LPR 1.0 1.0 1.0 1.0 307 1.0 307 SPZ 1.0 1.0 1.0 1.0 1.0 307 2.2 SPZ 1.0 1.0 1.0 1.0 1.0 30.0 30.0 SPZ 1.0 1.0 1.0 1.0 1.0 30.0 30.0 SPZ 1.0 1.0 1.0 1.0 30.0 30.0 SPZ 1.0 </td <td>147</td> <td>L.93</td> <td>3 ;</td> <td></td> <td></td> <td>16.0</td> <td>2064</td> <td></td> <td></td> <td></td>	147	L.93	3 ;			16.0	2064			
SPZ 13.6 P 7 16.3 (1.1) (500) (6.21) SPZ 13.6 P 7 18.4 1.1 (500) (6.21) SPR 15.5 15.9 8 4.1 1.10 218 SPR 16.5 15.9 1.2 1.1 218 LPR 7.45 1.0 1.0 1.16 1.0 LPR 7.74 1.0 1.1 1.16 2.2 LPR 4.75 1.0 1.1 1.16 2.2 SPZ 7.6 0 7 29.1 1.0 1.16 2.2 SPZ 7.6 0 7 29.1 1.0 1.16 2.2 SPZ 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 SPZ 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 SPZ 1.1 1.0 1.1		7.13	¥ T			14.0	898			1,178.08
9272 13.6 9 7 18.6 1.1 301 978 16.5 129 8 45.2 1.12 301 176 16.4 1.2 1.2 1.12 236 176 1.6 1.2 1.1 1.16 177 1.2 1.2 1.16 2.2 1872 1.3 1.2 1.16 2.2 1872 1.3 1.2 1.16 2.2 1872 1.36 0 7 2.3 1.16 1872 1.36 0 7 2.3 1.16 2.2 1872 1.26 0 7 2.3 1.1 2.2 1.16 2.2 1872 1.2 1.2 1.1	_	15.6	A ₁	7	16.3	(1.3)	(808)	(6.21)		
SFT 18.4 18.5 17.9 8 45.2 11.2 2397 LPR 15.4 LD 12.0 11.0 17.0 146 LPR 7.45 LD 12.0 11.0 146 LPR 7.45 LD 12.0 11.0 146 SPZ 7.66 e 7 29.1 1.0 146 SPZ 7.66 e 7 29.1 1.0 176 SPZ 7.66 e 7 29.1 1.0 9.26 SPZ 7.66 (PP) 9 137.0 1.1 9.26 SPZ 7.66 (PP) 9 139.7 1.0 9.26 SPZ 7.66 (PP) 9 139.7 1.0 9.26 LPZ 1.15 1.0 97.9 1.0 9.29 1.0 SPZ 1.15 1.0 9.2 1.0 1.0 1.0 SPZ 1.12	Zas	15.6	•	7	18.6	1.1	301			
1.8	N each	7 7	a .	60	45.2	1.2	397			
18.0 146	4 4 6	16.4	3 .			xo	218			
1.7.2 1.4.5 1.0.1 1.4.5 1.1.5 1.4.5 2.0.2 1.4.5 2.0.2 1.4.5 2.0.2 1.4.5 2.0.2 <th< td=""><td>130</td><td>10.4</td><td>3 2</td><td></td><td></td><td>80, 6</td><td>176</td><td></td><td></td><td></td></th<>	130	10.4	3 2			80, 6	176			
178 (18) 130 130 130 23 8FZ 76,66 e 7 429 1.0 1.16 1.16 8FZ 136 e 7 429 1.0 1.16 1.16 8FZ 76,66 (PP) 9 185.1 1.0 1.16 22.6 8FZ 76,66 (PP) 9 189.7 1.0 20.1 1.0 20.1 18FZ 76,66 (PP) 9 189.7 1.0 20.1 20.1 1.0 20.1 1.0 20.	1 13	4.7	3 5			14.0	145			
SPZ 76.64 P 7 29.1 SPZ 236 e 7 42.9 1.0 176 SPZ 76.64 (PPP) 9 135.1 1.3 92.6 SPZ 76.68 (PPP) 9 135.7 1.0 97.9 SPZ 76.68 (PPP) 9 135.7 1.0 97.9 LPZ 1.21* LD 1.0 2.6 79.3 LPZ 1.55 LD 1.0 97.9 SPZ 1.5 LD 1.2 1.2 LPZ 1.1 (PPP) 9 1.2 1.2 SPZ 1.1 (PPP) 9 55.2 1.3 SPZ 1.1 (PPP) 9 55.9 1.1 SPZ 1.1 (PPP) 9 55.9 1.1 SPZ 1.1 1.0 5.4 1.1 SPZ 58.5 0 0.9 <	LPZ	4.75	(LR)			13	838			2,936.84
SPZ 76.6* 8 7 23.1 1.0 1.0 SPZ 126 a 8 1.0 1.0 1.16 SPZ 126 (PPP) 9 19.1 1.0 97.6 SPZ 76.6* (PPP) 9 19.7 1.0 97.9 SPZ 121* LG 1.0 9.7 1.0 97.9 LPZ 1.21* LG 1.0 9 19.7 1.0 97.9 LPZ 1.55 LG 1.0 9 19.7 1.0 97.9 LPZ 1.55 LG 1.2 1.4 122 1.3 LPZ 1.1 P 8 12.6 1.4 132 5.79 SPZ 7.1 (PP) 9 55.2 0.8 24.0 1.1 SPZ 7.1 (PP) 9 55.9 1.4 1.2 1.2 SPZ 58.5 R 1.1 30.6 </td <td></td>										
spz 136 a 8 35.1 1.2 92.6 spz 75.6* (PP) 8 57.0 —— —— spz 75.6* (PP) 9 19.7 1.0 97.9 spz 76.6* (PP) 9 19.7 1.0 97.9 Lipz 0.36 IR 20 1.0 97.9 1.0 Lipz 1.155 IA 2.6 793 1.0 97.9 Lipz 1.155 IA 2.6 79.9 1.0 97.9 spz 71 P 8 12.6 1.4 12.0 1.0 spz 77 1.0 9.5 1.4 1.2 2.1 1.1 spz 67 1.0 9.5 1.1 2.0 2.6 1.1 spz 67 1.0 9.5 1.0 2.6 2.0 2.0 spz 68.5 6. 11 30.6 0.		76.6*			29.1	1 -	701			
SPZ 76.66 (PP) 8 57.0	I Rai	236		- 00	35 3	7.0	9/1			
SPZ 76.6* (PPP) 9 19.7 1.6 261 SPZ 76.6* (PPP) 9 19.7 1.0 97.9 SPZ 121* LG 39.7 1.0 97.9 9 LPT LG LG 79.0 1.0 97.9 1.0 97.9 LPT 1.55 LQ 1.8 1.2 1.3 780 1.2 LPT 1.55 LQ 1.2 2.2 1.3 780 1.1 SPZ 1.1 P B 1.2.6 1.4 1.2 2.79 SPZ 7.1 P B 1.2.6 1.4 1.2 2.79 SPZ 7.1 P B 1.2 2.2 2.2 1.3 2.79 SPZ 58.5 P 1.1 30.6 0.9 96.3 34.6 SPZ 58.5 P 1.1 37.9 1.6 37.9 SPZ 58	ZAS		(PP)	0 00	57.0	: 1	24.0		_	
SPZ 76.6° (PCP) 9 39.7 1.0 97.9 LPZ 1.21° LG 7.93 7.93 7.93 LPZ 0.86 LR 1.6 7.93 7.93 LPZ 1.55 LR 7.90 7.90 LPZ 1.55 LR 7.2 1.33 SPZ 7.1 (PCP) 8 12.6 1.4 24.0 SPZ 7.1 (PCP) 8 12.8 1.4 24.0 5.79 SPZ 7.1 (PCP) 9 55.2 0.8 24.0 5.79 SPZ 7.1 (PCP) 9 55.2 0.8 24.0 5.79 SPZ 58.5 PC LR 1.1 30.6 0.9 88.1 5.49 SPZ 58.5 PC 1.1 30.6 0.9 86.5 86.5 SPZ 58.5 PC 1.1 47.9 1.0 55.4	SPZ	76.6*	(PPP)	6	19.7	1.8	261			
SPT 121* LG 2.6 793 LPZ 0.86 LR LPZ 1.55 LQ LPZ 1.55 LQ LPZ 1.55 LQ LPZ 1.55 LQ RPZ 1.55 LQ RPZ 7.1 P R 1.2.8 1.4 152 SPZ 7.1 P R 1.2.8 1.4 152 5.79 SPZ 7.1 P R 1.2.8 1.4 1.5 5.79 SPZ 7.1 P R 1.2 2.2 0.8 5.79 1.7 SPZ 58.5 R 1.1 30.6 0.9 88.1 5.04 SPZ 58.5 R 1.1 37.9 1.6 92.3 1.4 57.9 1.6 1.2	SPZ	76.6*	(PCP)	6	39.7	1.0	97.9			
LPT LD	Ids	121*	Lg			2.6	793			
LPZ 0.86 LR 13 780 LPZ 1.55 LQ 22 138 LPZ 1.55 LQ 22 138 SPZ 71 PP 8 12.8 1.4 152 SPZ 71 (PP) 9 55.2 0.8 24.0 SPZ 77 146 LQ 1.7 123 1.7 123 LPZ 1.74 1.72 LR 11 30.6 0.9 86.3 1.4 SPZ 58.5 P 11 30.6 0.9 86.3 1.4 SPZ 58.5 P 11 30.6 0.9 86.3 1.4 SPZ 58.5 P 11 36.3 0.9 34.6 SPZ 58.5 P 11 47.9 1.0 55.6 LPZ 13.2 1.8 57.9 1.6 92.3 LPZ ** P 12	347		3			1				
PF	Zel	0.88	LR			13	780			
RPZ		1,55	3			22	138			
8PZ 71 P 8 12.46 1.4 152 5.79 SPZ 71 (PP) 9 55.2 0.8 24.0 SPZ 71 (PP) 9 55.2 0.8 24.0 LFZ 1.48 LQ 12.9 55.9 (1.7) (231) LFZ 1.72 LR 1 30.6 0.9 88.1 5.84 SPZ 58.5 a 11 30.6 0.9 86.3 1.4 SPZ 58.5 e 11 36.3 0.8 34.6 SPZ 58.5 e 11 36.3 1.0 55.6 SPZ 58.5 e 11 36.3 1.0 55.6 SPZ 13.2 LR 37.9 1.8 92.3 LPZ P 1 36.3 36.4 LPZ P 1 27.9 1 SPZ ** P 1	LPZ	1.55	3			21	212			1,246.39
SPZ 71 (PCP) 8 55.2 0.8 24.0 SPZ 71 (PP) 9 55.9 (1.7) (231) SPZ 67 Lq 1.49 LQ 1.72 Lq 24.0 LPZ 1.72 LR 1.72 LR 1.72 1.74 2.26 SPZ 58.5 a 11 30.6 0.9 88.1 5.84 SPZ 58.5 e 11 37.9 1.0 55.6 SPZ 58.5 e 11 47.9 1.0 55.6 SPZ 58.5 e 14 57.9 1.8 92.3 LPZ 13.2 LR 47.9 1.0 55.6 SPZ 13.2 LR 57.9 1.8 92.3 LPZ 1.8 92.3 55.4 LPZ 1.8 92.3 55.4 LPZ P 1.2 21.1 LPZ <t< td=""><td></td><td>7.1</td><td>P.</td><td>00</td><td>12.8</td><td>1.4</td><td>152</td><td>5.79</td><td></td><td></td></t<>		7.1	P.	00	12.8	1.4	152	5.79		
SPZ 71 (PP) 9 55.9 (1.7) (231) LPT 1.48 LQ 2.8 2.62 2.8 2.62 LPZ 1.72 LR 1 30.6 0.9 86.1 5.84 SPZ 58.5 a 11 32.1 0.9 86.3 5.84 SPZ 58.5 a 11 32.1 0.9 86.3 5.84 SPZ 58.5 a 11 32.1 0.9 86.3 5.84 SPZ 58.5 PCP 11 47.9 1.0 55.6 SPZ 13.2 LPZ 1.8 92.3 55.4 LPZ 13.2 LP 12 21.1 LPZ a** P 12 21.1		7.1	(PCP)	60	55.2	8.0	24.0			
SPT 67 Lg 2.8 262 LPZ 1.48 LQ 17 925 LPZ 1.72 LR 17 925 SPZ 58.5 a 11 30.6 0.9 88.1 5.84 SPZ 58.5 a 11 32.1 0.9 86.3 1.47 SPZ 58.5 a 11 47.9 1.0 55.6 SPZ 58.5 POP 11 47.9 1.0 55.6 SPZ 13.2 LPZ 1.8 92.3 1.8 92.3 LPZ 13.2 LR 57.9 1.8 92.3 1.2 LPZ ** P 12 21.1 1.2 1.2 1.2	248	71	(PP)	6	55.9	(1.7)	(231)			
LPR 1.48 LQ 17 925 SPZ 1.72 LR 13 747 1.3 SPZ 58.5 e 11 30.6 0.9 88.1 5.84 SPZ 58.5 e 11 32.1 0.9 86.3 1.64 SPZ 58.5 e 11 47.9 1.0 55.6 SPZ 58.5 e 14 57.9 1.8 92.3 LPZ 13.2 LR 7.9 1.8 92.3 SPZ e* LP 23 55.4 LPZ LR P 12 21.1 LPZ e* LR 22.1 19 12.9	SPT	67	L'g			2.8	262			
SPZ 1.72 LR 13 747 1.1 SPZ 58.5 P 11 30.6 0.9 88.1 5.94 SPZ 58.5 a 11 32.1 0.9 86.3 1.04 SPZ 58.5 e 11 47.9 1.0 55.6 SPZ 58.5 e 14 57.9 1.8 92.3 LPZ 13.2 LR 27.9 1.8 92.3 SPZ ** P 12 21.1 LPZ ** P 12 21.1	T-LP-	1.48	3			17	925			
SPZ 58.5 P 11 30.6 0.9 88.1 5.84 SPZ 58.5 a 11 32.1 0.9 86.3 5.84 SPZ 58.5 e 11 36.3 0.8 34.6 36.5 SPZ 58.5 e 11 47.9 1.0 55.6 LPZ 13.2 LR 57.9 1.8 92.3 LPZ 13.2 LR 12 23 55.4 LPZ e* LR 22.1 15	LPZ	1.72	LR			13	747			1,416.91
SPZ 58.5 a 11 32.1 0.9 86.3 SPZ 58.5 e 11 36.3 0.8 34.6 SPZ 58.5 e 11 47.9 1.0 55.6 LPZ 13.2 LR 1.0 57.9 1.8 92.3 SPZ ** P 12 23 55.4 LPZ ** P 12 21.1 LPZ ** LPZ LPZ		58.5	A	11	30.6	6.0	88.1	5.84		
SPZ 58.5 e 11 36.3 0.8 34.6 SPZ 58.5 PCP 11 47.9 1.0 55.6 LPZ 13.2 -apple 14 57.9 1.8 92.3 LPZ 13.2 LR 23 55.4 LPZ P 12 21.1 LPZ B 12 21.1	Zds	58.5	•	11	32.1	6.0	86.3		-	
SPZ 58.5 PCP 11 47.9 1.0 55.6 SPZ 58.5 e 14 57.9 1.8 92.3 LPZ 13.2 LR 23 55.4 SPZ e* P 12 21.1 LPZ LR P LZ 21.1	SPZ	58.5	•	11	36.3	8.0	34.6			
SPZ 58.5 6 14 57.9 1.8 92.3 LPZ 13.2 LPZ 23 55.4 LPZ 13.2 LR 19 12 21.1 LPZ 8.5 6 12 21.1	ZdS	58.5	PCP	п	47.9	1.0	55.6			
LPZ 13.2 Capito 23 55.4	248	58.5	0	14	57.9	1.8	92.3			
LPZ 13.2 LR 19 12.9 12.9 LPZ LPZ e** LPZ e** LR LPZ LR LPZ E** LR LPZ E** LR LPZ E** LR E** E*	ZAT	13.2	- SP - C			23	55.4			
SPZ ** P 12	ZAT	13.2	LR			19	129			461.36
LPZ ++			ě,	12	21.1					
m and Tape	ZdT	:	LR							
La and Tape										
Lin and Tape										
Um and Tape	Measurements Mada from Playouts									
	Maximum Amplitudes Clipped on Film and Tape									

Principal Phases - GREELEY Table 2 Page 2

Pigure 3

		Otetabon	Canadanashin	Camerachie	2100	Compare	Computed Asimsth	Installed Asimoth Large or	Astenth	Lange or	
9900	Kekton	(mg)	Latitude	Langitude	(100)	Sta.	Bta. Epi.	Ladial	Thing.	j:	. var.
**************************************	Mine, Mevade	130	36,26.10-11	110,00.83-v	1.52	3100	1290	204	0.00	ų	н
-10-10I	Kanab, Uteh	320	37°01.22"#	112,44, 39.4	1.74	*2	3270	.5.	199	ų	м
1780-260	Tente Perest Observatory, Arimone	572	N. 51-11-M	111,016.03-w	1.49	1340	3030	*2	•	Ą	н
MO-10*	Mountain Rome, Ideho	ī	43,04.19.B	116,15.36.4	2.	010	101	350	*	٠	ы
UB\$0-210	Ulnte Besin Observatory, Utah	3	40°19'18'H	109°34'07"	1.60	**	343	*2	%	Ę	н
PK-CO*	Pranktom, Colorado	1073	39°35'12'8	104,37.42.2	1.80	730	2000	200	169,		146
Z.	Subarray A0-10, Montane	1340	46°41'15'H	106,13.30-#	06.	, ×	3230			ě	34
M-30-26	Wichite Mountein Observatory, Oklahoma	162*	34°43'05'N	96°35'21'W	.51	**	385	8	%	7,	M
KC-HO	Kanses City, Missouri	1910	39021-31-8	W (1.07.75	.37	260	3700	1330	2330		н
No-16	Prince George, British Columbia, Canada	1915	830 59 'SG"H	123°31-237w	.41	, e x	163	:100	300		H
47-2£	Jene, Louislana	2314	31°47'05"H	45,00,26.	.05	*	3.630	2000	23.6	د	H
RK-Off*	Red Lake Onterio. Canada	2346	30°50'30"H	93 40:30 m	r.	430	3390	**		49	94
EUZAL	Eutow, Alabona	2639	32047-47"H	87°53'05"W	8	***	2890		1330	44	М
62-0543	Cumberland Pletsau Observatory, Tennasses	2759	35°35'41"H	85°34'13"W	.57	°S#	3830	9	•	Ę	н
AKZAL	Alexander City, Alabana	3796	32°46'38'E	#. 65.48.m	15.	91°	3810	1380	326	-5	86
GZZZK	Whitehorse, Yukon Territories, Canada	2913	H_17.17.05	134° 58'02"#		3390	1450	325°	988	ed.	н
Ag-ac-	Albemarle, Horth Ceroline	3349	35°26.01"#	80°03'52"v	91.		, 75°	104	1140	Contrach	24
37-12	Belleview. Ploride	3318	38°54'19"H	83,03.25.A	4.	**	2050	3400	3302	•	м
-201-57	Liabon.New Hampshire	3788	44°14'18"H	4.12.55.31.A	87	3	374	°z		Contract	м
-20-10	Boulton, Maine	4082	#4.03.43.M	a. 60, 65, 45	.21	003	3740	*20	103	•	М
ebens.	Schefferville. Ouebec.	41.05	\$4048.39°H	A_00.57,99	3.	**	2630	139°	3300	-	М
al-st-	Mould Say, Morthwest Territories, Canade	4344	16°15'00'3	110,32.10.0	*0.	3590	1760	356°	3	+	M
718-212-	Port Sherman, Panama	4189	2.43.45.40	71°57 30"W	10.	121	316			Cantach	м
TE-02.	Thule. Greenland	4956	76°29°50"H	48 38.30 M	.21	240	2370	97.0	347	Sectors	34
	Oelo, Horway	8120	61,05.23.8	10.53.42.8	.36	340	316	1380	2230	2	94
-MODO	Grafenberg, Germany	\$606	49"41.32"#	11013.55.E	.53	31.	320	140	2 %°	al	H

Selementers Orienteted Toward Hewada Test Site

Recording Site Information - Greeley

Appendix 1 (A)

Unified Magnitude: $m = log_{10} (A/T)$, + B

where

A = zero to peak ground motion in millimicrons = (mm) (1000)

T = signal period in seconds

B = distance factor (see Table below)

mm = record amplitude in millimeters zero to peak

K = magnification in thousands at signal
frequency

Table of Distance Factors (B) for Zero Depth

Dist		Dist			Dist		- Dist	
(deq) B	(deg)	В		(deg		(deg	
00	_	270	3.5		54°	3.8	80°	
1	_	28	3.6		54	3.8		3.7
2	2.2	29	3.6		55	3.8	81	3.8
3	2.7	29	3.0		56	3.8	82	3.9
4	3.1	30	3.6		57	3.8	83	4.0
		31	3.7		58	3.8	34	4.0
5	3.4	32	3.7		59	3.8	85	4.0
6	3.6	33	3.7		60	2.0	86	3.9
7	3.8	34	3.7			3.8	87	4.0
8	4.0	35	3.7		61	3.9	88	4.1
9	4.2	36			62	4.0	89	4.0
10	4.3		3.6		63	3.9		
11	4.2	37	3.5		64	4.0	90	4.0
12	4.2	38	3.5		65	4.0	91	4.1
13		39	3.4		66	4.0	92	4.1
14	4.0	40	3.4		67	4.0	93	4.2
14	3.6	41	3.5		68	4.0	94	4.1
15	3.3	42	3.5		69	4.0	95	4.2
16	2.9	43	3.5				96	4.3
17	2.9	44	3.5		70	3.9	97	4.4
18	2.9				71	3.9	98	4.5
19	3.0	45	3.7		72	3.9	99	4.5
0.0		46	3.3		73	3.9		
20	3.0	47	3.9		74	3.8	100	4.4
21	3.1	48	3.9		75	3.8	101	4.3
22	3.2	49	3.8		76	3.9	102	4.4
23	3.3	50	3.7		77	3.9	103	4.5
24	3.3	51	3.7	114	78	3.9	104	4.6
25	3.5	52	3.7		79	3.8	105	4.7
26	3.4	53	3.7		15	3.0	105	4./
	3.4	23	3.7					

Bottom of line

Detail Showing Allowance
For Line Width

Pick time of Pn at beginning of "a" half cycle.

Pick amplitude of Pn as maximum "d/2" within 2 or 3 cycles of "c".

Pick amplitudes of Pg and Lg at maximum of corresponding motion.

Seismic Analysis Diagram
APPENDIX II(A)

INSTRUMENT RESPONSE CURVES - LRSM

INSTRUMENT RESPONSE CURVES - OTHER SHORT PERIOD

INSTRUMENT RESPONSE CURVE - LASA

Unclassified

Secu	and San	100		M.Z	Billion	Alma
A 100 PM	MESSIE	0.0	-	œ:	TOTAL BE	

Un	Unclassified			
S - GREELEY				
	•			
70 10145 00 07 74689	76 46 07 8879			
SDL Report No. 180 PA STHER REPORT MO(3) (Any other numbers that may be seeigned to the report)				
				r foreign national
ADVANCED RESEARCH PROJECTS AGENCY NUCLEAR TEST DETECTION OFFICE WASHINGTON, D.C.				
	S - GREELEY 7. TOTAL WO OF PASSO 1. SPONSORING MILITARY A. ADVANCED RESE. NUCLEAR TEST 1			

An analysis of seismological data from an underground nuclear explosion as a continuing study to provide information to aid in distinguishing between earthquakes and explosion. A table of travel-times and amplitudes of P, Pg, Lg, and surface wares are included along with other unidentified phases.

DD .5084. 1473

Unclassified

Security Classification

Unclassified
Security Classification

NEV COROS		(L)	LANK A		LINK		LINEC	
	AEV COROS	nove	418	604.5	#1	BOLE	*1	
Sismic	: Magnitude							
Sejemi	ic Travel-Time							
Seismi	ic Amplitude							
VELA-U	INIFORG							
Nuclea	r Tests							

INSTRUCTIONS

- I. ORIGINATING ACTIVITY: Enter the name and address of the contractor, aubcontractor, granter, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the over all accurity c'ensification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive \$200.10 and Armed Porces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author-
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classificashow title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annuel, or final. Give the inclusive dates when a specific reporting period is
- 5. AUTHOR(S): Enter the name(s) of euthor(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the princi, al author is an absolute minimum requirement.
- REPONT DATE: Enter the data of the report as day, month, year, or month, year. If more than one date appea on the report, use date of publication.
- 7e. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES: Enter the total number of references cijed in the report.
- Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbera, task number, eic.
- ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must bs unique to this report.
- 96. OTHER REPORT NUMBER(\$): If the report has been sssigned any other report numbers (either by the originator or by the aponsor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification using standard atstements such sa:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain captes of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indi-cate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- i3. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear eisewhere in the body of the technical re-port. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the sistract shall end wi an indication of the military security classification of the informstion in the paragraph, represented as (TS). (S). (C). or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically mesningful terms or short phrases that characterize s report and may be used as index entries for cataloging the report. Key words must be selected so that no accurity classification is required. Identifiers, such as equipment modal designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical conjext. The sesignment of links, rules, and weights is optional.

GPO 866-551

Unclassified

Security Classification

GREELEY

MN-NV

MINA, NEVADA

20 DECEMBER 1966

 $\Delta = 198 \text{ km}$

immimmentally with the minumination of the second of the s

• . OP, The Adding

GREELEY

MO-ID

MOUNTAIN HOME, IDAHO

20 DECEMBER 1986

Δ = 641 km.

Winish William Willy Wind William with Milliam will with the will will will will be a second will will be a second will be whim in the first in the intermediate with the intermediate of the month in in in it is in minimum min

GREELEY

KC-MO

KANSAS CITY, MISSOURI

20 DECEMBER 1966

 $\Delta = 1910 \, \text{km}$.

UP ₹15:33:20.0Z SPZ-HI 7.54K 133 SPR-HI . 7.17 K 2230 SPT-HI . 7.37K UP LPZ-HI 0.410K 133° LPR-HI 0.389K 223° LPT-HI 0.390K

militarion de la company de la M. Minnerin Minnerin Minner Mi

with minument and in the minument with the same with the s in minimum min

GREELEY

SV3QB

SCHEFFERVILLE, QUEBEC

20 DECEMBER 1966

 Δ = 4195 km

my minimum min

