Energy Informatics

https://proglang.informatik.uni-freiburg.de/teaching/energy-informatics/2018ws/

Exercise Sheet 11 - TCP

2019-01-07

3. Exercise

Consider two senders A and B using TCP AIMD. For simplicity, let $x_A(t)$ be the data rate of A and $x_B(t)$ be the data round of B.

If the sum of the data rates $x_A(t) + x_B(t)$ in a round is larger than 10, then

Otherwise we have

$$x_A(t+1) = \frac{1}{2}x_A(t)$$

 $x_B(t+1) = \frac{1}{2}x_B(t)$

$$x_A(t+1) = x_A(t) + 1$$

 $x_B(t+1) = x_B(t) + 1$

- 1. Add the fairness and efficiency lines to the diagrams.
- 2. Assume A starts in round 0 with $x_A(0) = 0$ and B at round 5, i.e. x(B)(t) = 0 for all $t \le 5$. Compute the first 15 values of A and B and add the behavior to the diagram above.
- 3. Now A leaves in round 15, such that x(A)(t) = 0 for $t \ge 15$. Compute the next 10 rounds.
- 4. In a different scenario assume that A uses AIMD, but B hast constant data rate 8, i.e. $x_B(t) = 8$. What happens?

5. In the last scenario assume that A changes its behavior to AIAD (additive increase/additive 2 P decrease), i.e. replacing $x_A(t+1) = \frac{1}{2}x_A(t)$ by $x_A(t+1) = x_A(t) - 1$. Simulate 15 rounds where A and B start at the same time with bandwidth 0.

