A 1.29GHz 582fJ 6-bit Absolute-Value Detector

Shalin Shah
Jordan Combitsis
Jacqueline Lam

Design Summary

Circuit topology and Circuit Style

- <u>Circuit Topology</u> = Optimized Ripple-carry adder (using ANDs and XORs) assuming certain inputs values + Comparator
- ♦ <u>Circuit Style</u>=Static CMOS + (4) 2:1 MUX's using transmission gates

Area and Delay

- Moderate Area
- Fast in terms of meeting delay requirements, but at cost of larger energy. Regular design to enable ease of routing in layout

Delay	Layout size	Energy	Verfication
Sch. $t_p = [508]ps$	X= [51], Y= [38]	Sch. E = [490]fJ	Func: Y N
Lay. $t_p = [600]ps$	$A = [1990] \mu m^2$	Lay. E = [582]fJ	DRC:Y/N
Critical Input = X _[2]	AR = [1.33]	Lay. V _{DD} = [1]V	LVS:Y) N

Critical Path Analysis

Critical Path of Absolute Value Module

Critical Path Analysis

Critical Path of Comparator Module

Design Optimization

- ◆ Transmission gate logic → significantly less transistors than the standard cell CMOS 2:1 MUX
- Only A or B is selected, but not both
- Sizing is shown below, which is smaller than unit sized inverter for less parasitic capacitance
 - Tradeoff is resistance since W ~ 1/R

OUR 2:1 MUX

STANDARD CELL 2:1 MUX

Functionality Check

3 most critical input to output paths:
 X3_OUT, X2_OUT, X1_OUT

22	Delay_X5_OUT	450.092p
23	Delay_X4_OUT	492.596p
24	Delay_X3_OUT	600.072p
25	Delay_X2_OUT	599.351p
26	Delay_X1_OUT	583.53p
27	Delay_X0_OUT	395.985p
28	Energy	582.849f
-		

Absolute-Value Detector Layout

Absolute-Value Detector Layout: Adder

schematic

Absolute-Value Detector Layout: Comparator

Discussion

Important Features

- Optimized logic using custom ripple carry adder (in ABS detector). It overall reduced energy, gates, and area
- Minimize delay drastically through transmission gate MUX vs. CMOS MUX
- Highly regular layout design made easy to route adder and comparator.
 Could easily build hierarchically and create repeated modules.

Future Considerations

- Implement carry look ahead adder rather than optimized carry ripple adder to see if there are drastic delay differences
- Size transistors based on critical path instead of using mostly standard cells
- Make comparator design more compact and line VDD and GND better

UCLA 1