Silicon NPN Planar RF Transistor

Applications

RF-amplifier up to GHz range specially for wide band antenna amplifier.

Features

- High power gain
- Low noise figure
- High transition frequency

BFR96T Marking Plastic case (~TO 50) 1= Collector; 2= Base; 3= Emitter

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Collector-base voltage	V_{CBO}	20	V
Collector-emitter voltage	V _{CEO}	15	V
Emitter-base voltage	V_{EBO}	2.5	V
Collector current, average	I_{C}	75	mA
Total power dissipation $T_{amb} \le 60^{\circ}C$	P _{tot}	500	mW
Junction temperature	Tj	175	°C
Storage temperature range	$T_{ m stg}$	-65 to +175	°C

Maximum Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient on glass fibre printed board			
(25 x 20 x 1.5) mm ³ plated with 35 μm Cu	R_{thJA}	230	K/W

BFR 96 T

Electrical DC Characteristics

 $T_j = 25$ °C, unless otherwise specified

Parameters / Test Conditions	Symbol	Min.	Тур.	Max.	Unit
	I _{CBO}			100	nA
Collector-base breakdown voltage $I_C = 10 \ \mu A$	V _{(BR)CBO}	20			V
Collector-emitter breakdown voltage $I_C = 5 \text{ mA}$	V _{(BR)CEO}	15			V
Emitter-base breakdown voltage $I_E = 10 \mu A$	V _{(BR)EBO}	2.5			V
DC forward current transfer ratio $V_{CE} = 10 \text{ V}, I_C = 50 \text{ mA}$ $V_{CE} = 10 \text{ V}, I_C = 75 \text{ mA}$	h _{FE} h _{FE}	25 25	75		

Electrical AC Characteristics

 $T_{amb} = 25^{\circ}C$

Parameters / Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Transition frequency $V_{CE} = 10 \text{ V}, I_C = 50 \text{ mA}, f = 500 \text{ MHz}$	f_{T}	4	5		GHz
Collector-emitter capacitance $V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}$	C _{CE}		0.3		pF
Collector-base capacitance $V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$	C_{CB}		0.85		pF
Emitter-base capacitance $V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$	C_{EB}		3.0		pF
Noise figure $V_{CE}=10~V,~I_{C}=50~mA,~R_{G}=50~\Omega, \\ f=500~MHz \\ f=800~MHz$	F F		3.3 3.8		dB dB
Power gain $V_{CE} = 10 \text{ V, } I_C = 50 \text{ mA, } R_L = R_{Lopt}, R_G = 50 \Omega, \\ f = 500 \text{ MHz}$	$G_{ m pe}$		16		dB
	$V_1 = V_2$		400		mV
Third order intercept point $V_{CE} = 10 \text{ V}, I_C = 50 \text{ mA}, f = 800 \text{ MHz}$	IP ₃		34		dBm

TEMIC

Common Source S-Parameters $Z_0 = 50$ Ohm

			S	11	S	21	S	12	S	22
V _{CE} /V	I _C /mA	f/MHz	LIN MAG	ANG	LIN MAG	ANG	LIN MAG	ANG	LIN MAG	ANG
				deg		deg		deg		deg
		100	0.730	-69.4	12.04	139.0	0.046	58.6	0.812	-29.26
		300	0.629	-136.2	6.26	102.7	0.073	41.3	0.506	-46.8
		500	0.605	-162.0	3.98	86.6	0.084	42.5	0.425	-52.8
		800	0.588	176.3	2.55	70.9	0.102	49.1	0.403	-62.6
	5	1000	0.572	166.4	2.05	62.8	0.117	53.4	0.411	-69.8
		1200	0.565	157.4	1.73	55.8	0.135	56.4	0.425	-77.2
		1500	0.548	145.6	1.39	46.7	0.167	59.2	0.454	-88.2
		1800	0.532	134.3	1.18	38.4	0.202	59.9	0.489	-98.7
		2000	0.512	128.1	1.07	33.9	0.222	59.6	0.510	-105.6
		100	0.592	-94.1	17.80	128.5	0.036	54.8	0.6778	-41.8
		300	0.554	-153.1	7.77	96.7	0.057	50.7	0.3613	-58.7
		500	0.544	-172.9	4.79	83.7	0.076	56.0	0.2965	-64.5
		800	0.541	170.1	3.04	70.3	0.107	60.8	0.2850	-74.3
	10	1000	0.529	161.3	2.44	63.4	0.129	62.1	0.2941	-81.4
		1200	0.520	153.8	2.06	57.1	0.153	62.3	0.3088	-88.3
		1500	0.505	143.3	1.66	48.6	0.190	61.2	0.3366	-98.0
		1800	0.493	133.1	1.41	40.8	0.226 0.244	59.3	0.3677	-107.2
		2000	0.475	127.1	1.28	36.1		57.9	0.3875	-112.9
		100	0.494	-121.1	22.50	119.1	0.027	56.4	0.538	-54.3
		300	0.510	-166.2	8.77	92.6	0.050	62.3	0.260	-71.9
		500	0.510	179.3	5.32	81.7	0.075	66.2	0.215	-79.1
		800	0.511	165.9	3.37	69.9	0.113	67.2	0.214	-89.7
5	20	1000	0.502	158.5	2.71	63.7	0.139	66.6	0.226	-96.4
		1200	0.496	151.3	2.28	57.6	0.166	65.1	0.242	-102.4
		1500	0.479	141.6	1.85	49.8	0.205	62.2	0.269	-110.8
		1800 2000	0.470 0.458	131.7 126.3	1.56 1.42	42.5 37.6	0.242 0.259	58.9	0.297 0.315	-118.2 -122.8
								56.8		
		100	0.466	-135.8	24.37	114.8	0.023	59.1	0.468	-61.1
		300	0.498	-171.8	9.13	91.0	0.049	67.3	0.222	-80.1
		500 800	0.499 0.497	176.3	5.55 3.48	80.8 69.7	0.075	70.3 69.5	0.186	-88.4 -99.1
	30	1000	0.497	164.1 157.0	2.81	63.7	0.116 0.144	68.1	0.191 0.205	-99.1 -105.3
	30	1200	0.494	150.3	2.36	57.8	0.144	65.9	0.203	-103.3 -110.7
		1500	0.473	140.9	1.92	50.0	0.170	62.6	0.221	-118.0
		1800	0.461	131.1	1.62	42.8	0.247	58.9	0.274	-124.3
		2000	0.447	126.0	1.47	38.2	0.266	56.5	0.291	-128.5
		100	0.456	-144.1	25.30	112.3	0.021	62.7	0.426	-65.4
		300	0.436	-144.1 -174.8	9.30	90.0	0.021	70.6	0.426	-65.4 -85.7
		500	0.495	174.8	5.62	80.2	0.048	70.0	0.201	-83.7 -94.8
		800	0.493	163.0	3.54	69.5	0.076	70.5	0.172	-105.1
	40	1000	0.491	156.3	2.84	63.5	0.116	68.7	0.195	-110.7
		1200	0.485	149.4	2.40	57.7	0.173	66.4	0.212	-115.8
		1500	0.469	140.9	1.94	50.0	0.213	62.5	0.238	-122.5
		1800	0.459	131.1	1.64	42.9	0.251	58.8	0.264	-128.1
		2000	0.448	126.1	1.49	38.1	0.269	56.4	0.281	-132.0

BFR 96 T

Common Source S-Parameters $Z_0 = 50 \text{ Ohm}$

			S	11	S	21	S	12	S ₂₂	
V _{CE} /V	I _C /mA	f/MHz	LIN MAG	ANG	LIN MAG	ANG	LIN MAG	ANG	LIN MAG	ANG
				deg		deg		deg		deg
		100	0.454	-150.0	25.82	110.6	0.021	63.6	0.398	-68.4
		300	0.491	-176.4	9.37	89.4	0.048	72.3	0.189	-89.5
		500	0.494	173.6	5.66	79.9	0.077	73.2	0.164	-99.0
		800	0.492	162.4	3.56	69.2	0.119	71.2	0.175	-108.9
	50	1000	0.488	155.6	2.86	63.4	0.147	69.1	0.190	-114.4
		1200	0.482	149.2	2.41	57.6	0.174	66.7	0.207	-119.0
		1500	0.471	140.7	1.96	50.0	0.215	62.7	0.233	-125.1
		1800	0.461	130.7	1.65	42.8	0.253	58.8	0.258	-130.5
5		2000	0.449	125.4	1.49	38.2	0.271	56.2	0.274	-134.2
		100	0.459	-156.8	26.13	108.5	0.019	66.9	0.360	-72.3
		300	0.492	-178.9	9.34	88.5	0.048	74.6	0.174	-94.5
		500	0.493	172.1	5.64	79.4	0.077	74.6	0.155	-104.3
		800	0.497	161.6	3.54	68.7	0.120	71.8	0.169	-113.5
	70	1000	0.494	155.2	2.85	62.8	0.149	69.5	0.185	-118.5
		1200	0.489	148.8	2.40	57.2	0.176	67.0	0.202	-122.6
		1500	0.472	140.1	1.94	49.7	0.217	62.8	0.228	-128.3
		1800	0.464	130.5	1.64	42.5	0.255	58.8	0.254	-133.3
		2000	0.451	125.6	1.48	38.0	0.273	56.3	0.270	-136.6
		100	0.743	-65.5	12.28	140.5	0.041	59.8	0.830	-26.3
		300	0.623	-132.2	6.55	104.2	0.068	42.7	0.540	-42.3
		500	0.592	-159.2	4.19	87.9	0.079	43.9	0.458	-47.4
		800	0.574	178.5	2.700	72.1	0.096	50.3	0.436	-56.4
	5	1000	0.561	167.5	2.17	64.1	0.111	54.8	0.440	-63.4
		1200	0.551	159.1	1.83	57.2	0.128	57.7	0.453	-70.4
		1500	0.533	147.2	1.47	48.0	0.158	60.7	0.480	-81.2
		1800	0.517	135.4	1.24	39.7	0.192	61.6	0.513	-91.6
		2000	0.502	128.9	1.13	35.1	0.211	61.5	0.534	-98.3
		100	0.603	-87.6	18.43	130.2	0.033	56.5	0.701	-37.5
		300	0.536	-149.1	8.23	97.9	0.054	51.6	0.392	-51.8
		500	0.524	-170.0	5.10	84.8	0.072	56.8	0.326	-56.3
10	10	800	0.517	172.3	3.24	71.5	0.101	61.5	0.312	-65.2
10	10	1000	0.506	163.4	2.60	64.5	0.123	63.0	0.319	-72.1
		1200	0.499	155.3	2.19	58.1 49.7	0.145	63.2	0.332 0.356	-78.9
		1500 1800	0.486 0.478	144.9 134.3	1.77 1.49	49.7	0.180 0.215	62.3 60.6	0.386	-88.9 -98.2
		2000	0.478	134.3	1.49	37.4	0.215	59.3	0.386	-98.2 -104.1
		100	0.492	-113.0	23.61	120.8	0.026	57.0	0.561	-48.5 61.5
		300	0.485	-162.2	9.35	93.7	0.048	62.0	0.284	-61.5
		500 800	0.482 0.481	-178.0	5.71	82.7 70.9	0.071	66.2	0.237 0.233	-66.6 -76.4
	20			168.0	3.60	64.7	0.108	67.5		
		1000 1200	0.475 0.470	160.0	2.89	58.8	0.133	67.1	0.242	-83.4
		1500	0.470	153.1 143.7	2.44 1.97	50.8	0.158	65.8 63.0	0.256 0.281	-89.8 -99.0
		1800	0.436	133.7	1.67	43.5	0.195 0.231	60.1	0.281	-99.0 -107.0
		2000	0.449	128.5	1.51	38.8	0.231	57.9	0.309	-107.0 -112.2

TEMIC

Common Source S-Parameters $Z_0 = 50$ Ohm

			S	11	S ₂₁		S	12	S ₂₂		
V _{CE} /V	I _C /mA	mA f/MHz	LIN MAG	ANG	LIN MAG	ANG	LIN MAG	ANG	LIN MAG	ANG	
				deg		deg		deg		deg	
10	30 40 50	100 300 500 800 1000 1200 1500 1800 2000 100 300 500 800 1000 1200 1500 1800 2000	0.454 0.468 0.466 0.469 0.463 0.458 0.444 0.438 0.423 0.438 0.460 0.459 0.463 0.455 0.453 0.439 0.435 0.423 0.431 0.454 0.456 0.456	-126.2 -167.9 179.0 166.4 159.0 152.0 143.0 133.0 127.9 -134.3 -171.0 177.1 165.5 158.0 152.0 142.9 133.3 127.6 -140.0 -172.7 176.4 164.9 158.2	25.82 9.78 5.94 3.74 3.01 2.53 2.05 1.73 1.57 26.90 9.97 6.04 3.80 3.05 2.57 2.08 1.76 1.59 27.51 10.04 6.08 3.81 3.06	116.2 91.8 81.7 70.6 64.5 58.8 51.1 43.6 39.3 113.5 90.8 81.1 70.3 64.4 58.9 51.0 43.8 39.1 111.5 90.0 80.7 70.0 64.2	0.023 0.047 0.072 0.111 0.136 0.162 0.201 0.238 0.255 0.021 0.046 0.073 0.113 0.139 0.165 0.204 0.240 0.258 0.020 0.046 0.073 0.114	59.1 67.0 70.0 69.6 68.4 66.5 63.2 59.8 57.5 61.3 70.0 71.7 70.4 68.9 66.9 63.3 59.7 57.3 62.5 71.5 72.7 71.0 69.2	0.486 0.239 0.201 0.203 0.214 0.229 0.254 0.281 0.298 0.441 0.214 0.183 0.188 0.201 0.216 0.241 0.268 0.285 0.410 0.198 0.171 0.179	-54.5 -67.1 -73.0 -83.3 -90.1 -96.4 -104.9 -112.3 -117.1 -57.8 -70.6 -77.0 -87.5 -94.3 -100.3 -108.3 -115.3 -119.7 -60.4 -72.8 -79.5 -90.1 -96.7	
		1200 1500 1800 2000	0.453 0.443 0.437 0.423	151.5 142.6 132.9 128.1	2.59 2.09 1.76 1.60	58.5 51.1 43.8 39.4	0.167 0.205 0.242 0.259	67.0 63.3 59.7 57.2	0.209 0.234 0.261 0.278	-102.5 -110.3 -116.9 -121.3	

BFR 96 T

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423