University of Tokyo: Text-as-Data Day 1, Part I

Arthur Spirling

June 3, 2017

()

Boring but important sanity check

Boring but important sanity check

 $\verb|https://github.com/ArthurSpirling/UTokyo-TextAsData|\\$

()

race stand responsibility

Text as the new frontier of...

Text as the new frontier of...

data:

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods:

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

social science:

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

social science: politicians give speeches,

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

social science: politicians give speeches, thinkers write articles,

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

social science: politicians give speeches, thinkers write articles, nations sign treaties,

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

social science: politicians give speeches, thinkers write articles, nations sign treaties, users connect on Facebook etc.

Text as the new frontier of...

data: lots of it (literally petabytes) on the web...not to mention archives.

methods: unstructured data needs to be harvested and modeled.

social science: politicians give speeches, thinkers write articles, nations sign treaties, users connect on Facebook etc.

Introduction to quantitative 'text-as-data' approaches as strategies to learn more about social scientific phenomena of interest.

June 2, 2017

race ត stand responsibility parents t law together

• Descriptive inference:

()

Descriptive inference: how to characterize text,

 Descriptive inference: how to characterize text, vector space model,

 Descriptive inference: how to characterize text, vector space model, collocations,

 Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words,

 Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures,

 Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity,

 Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity,

 Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style,

 Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques:

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries,

()

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment,

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment, events,

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment, events, scaling.

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment, events, scaling.
- Basic unsupervised techniques:

()

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment, events, scaling.
- Basic unsupervised techniques: clusters,

-()

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment, events, scaling.
- Basic unsupervised techniques: clusters, scaling

-()

Overview

- Descriptive inference: how to characterize text, vector space model, collocations, bag-of-words, (dis)similarity measures, diversity, complexity, style, bursts.
- Basic supervised techniques: dictionaries, sentiment, events, scaling.
- Basic unsupervised techniques: clusters, scaling, topics.

• For most of its history text analysis was qualitative.

- For most of its history text analysis was qualitative.
- Partly still is:

- For most of its history text analysis was qualitative.
- Partly still is: need to make qualitative judgements about what the text reveals,

- For most of its history text analysis was qualitative.
- Partly still is: need to make qualitative judgements about what the text reveals, and validation requires substantive knowledge

- For most of its history text analysis was qualitative.
- Partly still is: need to make qualitative judgements about what the text reveals, and validation requires substantive knowledge
- 'Distant reading' instead of 'close reading'

- For most of its history text analysis was qualitative.
- Partly still is: need to make qualitative judgements about what the text reveals, and validation requires substantive knowledge
- 'Distant reading' instead of 'close reading'—not focussed on interpretation in light of norms or belief systems.

June 2, 2017

- For most of its history text analysis was qualitative.
- Partly still is: need to make qualitative judgements about what the text reveals, and validation requires substantive knowledge
- 'Distant reading' instead of 'close reading'—not focussed on interpretation in light of norms or belief systems.
- Important: quantitative work is reliable and replicable (easily)

- For most of its history text analysis was qualitative.
- Partly still is: need to make qualitative judgements about what the text reveals, and validation requires substantive knowledge
- 'Distant reading' instead of 'close reading'—not focussed on interpretation in light of norms or belief systems.
- Important: quantitative work is reliable and replicable (easily) and can cope with large volume of material.

June 2, 2017

-(,

June 2, 2017

Data acquisition:

• Data acquisition: many source of text,

 Data acquisition: many source of text, but web-scraping better taught elsewhere.

 Data acquisition: many source of text, but web-scraping better taught elsewhere.

e.g. http://www.crummy.com/software/BeautifulSoup/

- Data acquisition: many source of text, but web-scraping better taught elsewhere.
- e.g. http://www.crummy.com/software/BeautifulSoup/
 - Regular expressions and basic text manipulation:

- Data acquisition: many source of text, but web-scraping better taught elsewhere.
- e.g. http://www.crummy.com/software/BeautifulSoup/
 - Regular expressions and basic text manipulation: won't generally be required,

- Data acquisition: many source of text, but web-scraping better taught elsewhere.
- e.g. http://www.crummy.com/software/BeautifulSoup/
 - Regular expressions and basic text manipulation: won't generally be required, though helpful if known.

- Data acquisition: many source of text, but web-scraping better taught elsewhere.
- e.g. http://www.crummy.com/software/BeautifulSoup/
 - Regular expressions and basic text manipulation: won't generally be required, though helpful if known.
 - CS 'stuff' like machine translation, OCR, algorithm design etc.

-()

- Data acquisition: many source of text, but web-scraping better taught elsewhere.
- e.g. http://www.crummy.com/software/BeautifulSoup/
 - Regular expressions and basic text manipulation: won't generally be required, though helpful if known.
 - CS 'stuff' like machine translation, OCR, algorithm design etc.
 - → excellent options elsewhere.

https://www.r-project.org/

https://www.r-project.org/

Contrary to (un)popular opinion,

https://www.r-project.org/

Contrary to (un)popular opinion, R has excellent text handling/modeling capabilities.

https://www.r-project.org/

Contrary to (un)popular opinion, R has excellent text handling/modeling capabilities.

Free, and massive online community writing packages and extending modeling abilities.

https://www.r-project.org/

Contrary to (un)popular opinion, R has excellent text handling/modeling capabilities.

Free, and massive online community writing packages and extending modeling abilities.

We will use quanteda and other packages.

June 2, 2017

Writing R: RStudio

(

Writing R: RStudio

https://www.rstudio.com/

Writing R: RStudio

https://www.rstudio.com/

-0

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe.

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe. Examples include ideology, ambition, narcissism, propensity to vote etc.

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe. Examples include ideology, ambition, narcissism, propensity to vote etc.

In traditional social science research, we might observe roll call votes,

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe. Examples include ideology, ambition, narcissism, propensity to vote etc.

In traditional social science research, we might observe roll call votes, donation decisions,

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe. Examples include ideology, ambition, narcissism, propensity to vote etc.

In traditional social science research, we might observe roll call votes, donation decisions, responses to survey questions, etc.

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe. Examples include ideology, ambition, narcissism, propensity to vote etc.

In traditional social science research, we might observe roll call votes, donation decisions, responses to survey questions, etc.

Here, the thing we can observe are the words spoken, the passages written, the issues debated or whatever.

In many (most?) social science applications of text as data, we are trying to make an inference about a *latent variable*.

→ something which we cannot observe directly but which we can make inferences about from things we can observe. Examples include ideology, ambition, narcissism, propensity to vote etc.

In traditional social science research, we might observe roll call votes, donation decisions, responses to survey questions, etc.

Here, the thing we can observe are the words spoken, the passages written, the issues debated or whatever.

• the latent variable of interest may pertain to the...

• the latent variable of interest may pertain to the...

author 'what does this Senator prioritize?',

• the latent variable of interest may pertain to the...

author 'what does this Senator prioritize?', 'where is this party in ideological space?'

• the latent variable of interest may pertain to the...

author 'what does this Senator prioritize?', 'where is this party in ideological space?'

doc 'does this treaty represent a fair deal for American Indians?',

• the latent variable of interest may pertain to the...

author 'what does this Senator prioritize?', 'where is this party in ideological space?'

doc 'does this treaty represent a fair deal for American Indians?', 'how did the discussion of lasers change over time?'

• the latent variable of interest may pertain to the...

author 'what does this Senator prioritize?', 'where is this party in ideological space?'

doc 'does this treaty represent a fair deal for American Indians?', 'how did the discussion of lasers change over time?'

both 'how does the way Japanese politicians talk about national defence change in response to electoral system shift?'

(

• the appropriate population and sample

- the appropriate population and sample
- → document selection, stochastic view of text

- the appropriate population and sample
- → document selection, stochastic view of text
 - what we actually care about in the observed data, how to get at it, how to characterize it.

- the appropriate population and sample
- → document selection, stochastic view of text
 - what we actually care about in the observed data, how to get at it, how to characterize it.
- \rightarrow feature selection, feature representation, description

- the appropriate population and sample
- → document selection, stochastic view of text
 - what we actually care about in the observed data, how to get at it, how to characterize it.
- \rightarrow feature selection, feature representation, description
 - exactly how to aggregate/mine/model the observed data—the texts with their relevant features measured/coded—that we have.

- the appropriate population and sample
- → document selection, stochastic view of text
 - what we actually care about in the observed data, how to get at it, how to characterize it.
- \rightarrow feature selection, feature representation, description
 - exactly how to aggregate/mine/model the observed data—the texts with their relevant features measured/coded—that we have.
- \rightarrow statistical choices

- the appropriate population and sample
- → document selection, stochastic view of text
 - what we actually care about in the observed data, how to get at it, how to characterize it.
- \rightarrow feature selection, feature representation, description
 - exactly how to aggregate/mine/model the observed data—the texts with their relevant features measured/coded—that we have.
- \rightarrow statistical choices
 - what we can infer about the latent variables.

- the appropriate population and sample
- → document selection, stochastic view of text
 - what we actually care about in the observed data, how to get at it, how to characterize it.
- \rightarrow feature selection, feature representation, description
 - exactly how to aggregate/mine/model the observed data—the texts with their relevant features measured/coded—that we have.
- \rightarrow statistical choices
 - what we can infer about the latent variables.
- → comparing, testing, validating.

-()

Get Texts

Get Texts

An expert hospital consultant has written to my hon. Friend...

Order. The Minister must be allowed to reply without interruption.

I am grateful to my hon. Friend for her question. I pay tribute to her work with the International Myeloma Foundation...

My constituent, Brian Jago, was fortunate enough to receive a course of Velcade, as a result of which he does not have to...

Get Texts

An expert hospital consultant has written to my hon. Friend...

Order. The Minister must be allowed to reply without interruption.

I am grateful to my hon. Friend for her question. I pay tribute to her work with the International Myeloma Foundation...

My constituent, Brian Jago, was fortunate enough to receive a course of Velcade, as a result of which he does not have to...

$\begin{array}{c} \rightarrow \ \mathsf{Document} \ \mathsf{Term} \\ \mathsf{Matrix} \end{array}$

Get Texts

An expert hospital consultant has written to my hon. Friend...

Order. The Minister must be allowed to reply without interruption.

I am grateful to my hon. Friend for her question. I pay tribute to her work with the International Myeloma Foundation...

My constituent, Brian Jago, was fortunate enough to receive a course of Velcade, as a result of which he does not have to...

$\begin{array}{c} \rightarrow \ \mathsf{Document} \ \mathsf{Term} \\ \mathsf{Matrix} \end{array}$

Get Texts

An expert hospital consultant has written to my hon. Friend...

Order. The Minister must be allowed to reply without interruption.

I am grateful to my hon. Friend for her question. I pay tribute to her work with the International Myeloma Foundation...

My constituent, Brian Jago, was fortunate enough to receive a course of Velcade, as a result of which he does not have to... $\begin{array}{ccc} \rightarrow \ \mathsf{Document} \ \mathsf{Term} & \rightarrow \ \mathsf{Operate} \\ & \mathsf{Matrix} \end{array}$

Get Texts

An expert hospital consultant has written to my hon. Friend...

Order. The Minister must be allowed to reply without interruption.

I am grateful to my hon. Friend for her question. I pay tribute to her work with the International Myeloma Foundation...

My constituent, Brian Jago, was fortunate enough to receive a course of Velcade, as a result of which he does not have to... ightarrow Document Term
Matrix

 \rightarrow Operate

- (dis)similarity
- diversity
- readability
- scale
- classify
- topic model
- burstiness
- sentiment

. . .

Get Texts

An expert hospital consultant has written to my hon. Friend...

Order The Minister must be allowed to reply without interruption.

I am grateful to my hon. Friend for her question. I pay tribute to her work with the International Myeloma Foundation

My constituent, Brian Jago, was fortunate enough to receive a course of Velcade, as a result of which he does not have to

→ Document Term Matrix

a an ... ze MP_{001} MP_{002} MP_i MP_{654} MP_{655}

 \rightarrow Operate

- diversity readability scale classify - topic model
- burstiness sentiment

defn (typically) large set of texts or documents which we wish to analyze.

defn (typically) large set of texts or documents which we wish to analyze.

ightarrow how large? if small enough to read in reasonable time, you should probably just do that.

-()

defn (typically) large set of texts or documents which we wish to analyze.

ightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

defn (typically) large set of texts or documents which we wish to analyze.

ightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

defn (typically) large set of texts or documents which we wish to analyze.

ightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available.

defn (typically) large set of texts or documents which we wish to analyze.

ightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available. Examples include markup, authorship and date information, linguistic tagging (more below)

defn (typically) large set of texts or documents which we wish to analyze.

ightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available. Examples include markup, authorship and date information, linguistic tagging (more below)

defn (typically) large set of texts or documents which we wish to analyze.

→ how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available. Examples include markup, authorship and date information, linguistic tagging (more below)

e.g. court transcripts,

defn (typically) large set of texts or documents which we wish to analyze.

 \rightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available. Examples include markup, authorship and date information, linguistic tagging (more below)

e.g. court transcripts, legislative records,

defn (typically) large set of texts or documents which we wish to analyze.

 \rightarrow how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available. Examples include markup, authorship and date information, linguistic tagging (more below)

e.g. court transcripts, legislative records, Twitter feeds,

defn (typically) large set of texts or documents which we wish to analyze.

→ how large? if small enough to read in reasonable time, you should probably just do that.

'structured', in the sense that you know what the documents are, where they begin and end, who authored them etc.

'unstructured data' in sense that what is wanted (e.g. ideological position) may not be directly observable.

may be annotated in sense that metadata —data that is not part of the document itself—is available. Examples include markup, authorship and date information, linguistic tagging (more below)

e.g. court transcripts, legislative records, Twitter feeds, Brown Corpus etc.

The corpus is made up of the documents within it,

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

e.g. Twitter gives you $\sim 1\%$ of all their tweets,

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.

Often,

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.

Often, authors claim to have the universe of cases in their corpus: *all* press releases,

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.

Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties,

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

e.g. Twitter gives you $\sim 1\%$ of all their tweets, but it would presumably be prohibitively expensive to store 100%.

Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties, *all* debate speeches.

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

- e.g. Twitter gives you $\sim 1\%$ of all their tweets, but it would presumably be prohibitively expensive to store 100%.
 - Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties, *all* debate speeches.
 - → depending on your philosophical position,

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

- e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.
 - Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties, *all* debate speeches.
 - ightarrow depending on your philosophical position, you still need to think about sampling error.

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

- e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.
 - Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties, *all* debate speeches.
 - → depending on your philosophical position, you still need to think about sampling error. This is because there exists a superpopulation of populations from which the universe you observed came from.

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

- e.g. Twitter gives you $\sim 1\%$ of all their tweets, but it would presumably be prohibitively expensive to store 100%.
 - Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties, *all* debate speeches.
 - → depending on your philosophical position, you still need to think about sampling error. This is because there exists a superpopulation of populations from which the universe you observed came from.

Random error may not be the only concern:

The corpus is made up of the documents within it, but these may be a sample of the total population of documents available.

We sample for reasons of time, resources or (legal) necessity.

- e.g. Twitter gives you \sim 1% of all their tweets, but it would presumably be prohibitively expensive to store 100%.
 - Often, authors claim to have the universe of cases in their corpus: *all* press releases, *all* treaties, *all* debate speeches.
 - → depending on your philosophical position, you still need to think about sampling error. This is because there exists a superpopulation of populations from which the universe you observed came from.
 - Random error may not be the only concern: corpus should be representative in some well defined sense for inferences to be meaningful.

() June 2, 2017

C

-0

 You are consulting for a company who want to know what the world thinks of their product, a shampoo that slows balding in men.

)

 You are consulting for a company who want to know what the world thinks of their product, a shampoo that slows balding in men. They tell you to scrape Facebook data (timelines) as your corpus, and to analyze who is using it, and what they think of it.

- You are consulting for a company who want to know what the world thinks of their product, a shampoo that slows balding in men. They tell you to scrape Facebook data (timelines) as your corpus, and to analyze who is using it, and what they think of it.
- Excluding any technical issues with the scraping,

- You are consulting for a company who want to know what the world thinks of their product, a shampoo that slows balding in men. They tell you to scrape Facebook data (timelines) as your corpus, and to analyze who is using it, and what they think of it.
- Excluding any technical issues with the scraping, give three concerns about the validity of inferences from such a project.

• language is extraordinarily complex,

• language is extraordinarily complex, and involves great subtlety and nuanced interpretation.

 language is extraordinarily complex, and involves great subtlety and nuanced interpretation.

but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.

 language is extraordinarily complex, and involves great subtlety and nuanced interpretation.

but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.

→ makes the modeling problem much more tractable.

- language is extraordinarily complex, and involves great subtlety and nuanced interpretation.
- but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.
 - → makes the modeling problem much more tractable.
 - by 'do very well', we mean that much more complicated representations add (almost) nothing to the quality of our inferences,

- language is extraordinarily complex, and involves great subtlety and nuanced interpretation.
- but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.
 - \rightarrow makes the modeling problem much more tractable.
 - by 'do very well', we mean that much more complicated representations add (almost) nothing to the quality of our inferences, our ability to predict outcomes,

- language is extraordinarily complex, and involves great subtlety and nuanced interpretation.
- but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.
 - → makes the modeling problem much more tractable.
 - by 'do very well', we mean that much more complicated representations add (almost) nothing to the quality of our inferences, our ability to predict outcomes, and the fit of our models.

- language is extraordinarily complex, and involves great subtlety and nuanced interpretation.
- but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.
 - → makes the modeling problem much more tractable.
 - by 'do very well', we mean that much more complicated representations add (almost) nothing to the quality of our inferences, our ability to predict outcomes, and the fit of our models.
- NB inevitably, the degree to which one simplifies is dependent on the particular task at hand.

II. Reducing Complexity

- language is extraordinarily complex, and involves great subtlety and nuanced interpretation.
- but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.
 - → makes the modeling problem much more tractable.
 - by 'do very well', we mean that much more complicated representations add (almost) nothing to the quality of our inferences, our ability to predict outcomes, and the fit of our models.
- NB inevitably, the degree to which one simplifies is dependent on the particular task at hand.
 - \rightarrow there is no 'one best way' to go from texts to numeric data.

II. Reducing Complexity

- language is extraordinarily complex, and involves great subtlety and nuanced interpretation.
- but remarkably, we can do very well by simplifying, and representing documents as straightforward mathematical objects.
 - → makes the modeling problem much more tractable.
 - by 'do very well', we mean that much more complicated representations add (almost) nothing to the quality of our inferences, our ability to predict outcomes, and the fit of our models.
- NB inevitably, the degree to which one simplifies is dependent on the particular task at hand.
 - ightarrow there is no 'one best way' to go from texts to numeric data. Good idea to check sensitivity.

• collect raw text in machine readable/electronic form. Decide what constitutes a document.

- collect raw text in machine readable/electronic form. Decide what constitutes a document.
- strip away 'superfluous' material: HTML tags, capitalization, punctuation, stop words etc.

- collect raw text in machine readable/electronic form. Decide what constitutes a document.
- Strip away 'superfluous' material: HTML tags, capitalization, punctuation, stop words etc.
- **3** cut document up into useful elementary pieces: tokenization.

- collect raw text in machine readable/electronic form. Decide what constitutes a document.
- Strip away 'superfluous' material: HTML tags, capitalization, punctuation, stop words etc.
- out document up into useful elementary pieces: tokenization.
- add descriptive annotations that preserve context: tagging.

- collect raw text in machine readable/electronic form. Decide what constitutes a document.
- 2 strip away 'superfluous' material: HTML tags, capitalization, punctuation, stop words etc.
- 3 cut document up into useful elementary pieces: tokenization.
- add descriptive annotations that preserve context: tagging.
- map tokens back to common form: lemmatization, stemming.

- collect raw text in machine readable/electronic form. Decide what constitutes a document.
- Strip away 'superfluous' material: HTML tags, capitalization, punctuation, stop words etc.
- 3 cut document up into useful elementary pieces: tokenization.
- add descriptive annotations that preserve context: tagging.
- map tokens back to common form: lemmatization, stemming.
- operate/model.

• collect raw text in machine readable/electronic form. Decide what constitutes a document.

"PREPROCESSING"

operate/model.

 generally think control characters—non-printing, but cause the document to look different—like \n,

 generally think control characters—non-printing, but cause the document to look different—like \n, do not connote much that is of substantive importance.

- generally think control characters—non-printing, but cause the document to look different—like \n, do not connote much that is of substantive importance.
- \rightarrow remove them.

- generally think control characters—non-printing, but cause the document to look different—like \n, do not connote much that is of substantive importance.
- \rightarrow remove them. Same for underlining or **emboldening**.

- generally think control characters—non-printing, but cause the document to look different—like \n, do not connote much that is of substantive importance.
- → remove them. Same for underlining or **emboldening**.
 - punctuation may also be unhelpful

- generally think control characters—non-printing, but cause the document to look different—like \n, do not connote much that is of substantive importance.
- → remove them. Same for underlining or **emboldening**.
 - punctuation may also be unhelpful are wash, wash, wash, wash) really different words?

- generally think control characters—non-printing, but cause the document to look different—like \n, do not connote much that is of substantive importance.
- → remove them. Same for underlining or **emboldening**.
 - punctuation may also be unhelpful are wash, wash., wash, wash) really different words?
- → convert everything to whitespace (?)

what to do depends on what language features you are most interested in.

what to do depends on what language features you are most interested in.

if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.

what to do depends on what language features you are most interested in.

if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.

e.g. social media:

what to do depends on what language features you are most interested in.

if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.

e.g. social media: does use of! differ by age group?

what to do depends on what language features you are most interested in.

if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.

e.g. social media: does use of ! differ by age group?

but mostly just interested in coarse features (such as word frequencies); converting most punctuation to whitespace is quick and better than keeping it.

what to do depends on what language features you are most interested in.

if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.

e.g. social media: does use of ! differ by age group?

but mostly just interested in coarse features (such as word frequencies); converting most punctuation to whitespace is quick and better than keeping it.

NB 'dictionaries' can be used to map contractions back to their component parts

)

- what to do depends on what language features you are most interested in.
- if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.
- e.g. social media: does use of! differ by age group?
- but mostly just interested in coarse features (such as word frequencies); converting most punctuation to whitespace is quick and better than keeping it.
- NB 'dictionaries' can be used to map contractions back to their component parts
- e.g. tell us that won't could be will not

- what to do depends on what language features you are most interested in.
- if the grammatical structure of sentences matters, makes sense to keep most, if not all, punctuation.
- e.g. social media: does use of! differ by age group?
- but mostly just interested in coarse features (such as word frequencies); converting most punctuation to whitespace is quick and better than keeping it.
- NB 'dictionaries' can be used to map contractions back to their component parts
- e.g. tell us that won't could be will not
- but may not be as important as you think.

4 □ > 4 □ > 4 亘 > 4 亘 > 4 亘 > 5 □

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

is the one use of 'The' the same word as the seven uses of 'the'?

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

- is the one use of 'The' the same word as the seven uses of 'the'?
- is 'UNION' the same word as 'union' and 'Union' as used elsewhere in this essay?

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

- is the one use of 'The' the same word as the seven uses of 'the'?
- is 'UNION' the same word as 'union' and 'Union' as used elsewhere in this essay?
- yes → lowercase (uppercase) everything

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

- is the one use of 'The' the same word as the seven uses of 'the'?
- is 'UNION' the same word as 'union' and 'Union' as used elsewhere in this essay?
- yes → lowercase (uppercase) everything
 - or keep lists (dictionary) of proper nouns, lowercase everything else

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

- is the one use of 'The' the same word as the seven uses of 'the'?
- is 'UNION' the same word as 'union' and 'Union' as used elsewhere in this essay?
- yes → lowercase (uppercase) everything
 - or keep lists (dictionary) of proper nouns, lowercase everything else
 - or lowercase words at the beginning of a sentence (how do we know where a sentence begins?) leave everything else as is

Federalist 1

The subject speaks its own importance; comprehending in its consequences nothing less than the existence of the UNION, the safety and welfare of the parts of which it is composed, the fate of an empire in many respects the most interesting in the world.

- is the one use of 'The' the same word as the seven uses of 'the'?
- is 'UNION' the same word as 'union' and 'Union' as used elsewhere in this essay?
- yes → lowercase (uppercase) everything
 - or keep lists (dictionary) of proper nouns, lowercase everything else
 - or lowercase words at the beginning of a sentence (how do we know where a sentence begins?) leave everything else as is

Quick Note on Terminology

-0

a type is a unique sequence of characters that are grouped together in some meaningful way.

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us),

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation,

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

e.g. 'France', 'American Revolution', '1981'

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

e.g. 'France', 'American Revolution', '1981'

a token is a particular instance of type.

e.g. "Dog eat dog world",

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

e.g. 'France', 'American Revolution', '1981'

a token is a particular *instance* of type.

e.g. "Dog eat dog world", contains three types,

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

e.g. 'France', 'American Revolution', '1981'

a token is a particular instance of type.

e.g. "Dog eat dog world", contains three types, but four tokens (for most purposes).

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

e.g. 'France', 'American Revolution', '1981'

a token is a particular instance of type.

e.g. "Dog eat dog world", contains three types, but four tokens (for most purposes).

a term is a type that is part of the system's 'dictionary' (i.e. what the quantitative analysis technique recognizes as a type to be recorded etc). Could be different from the tokens, but often closely related.

June 2, 2017

a type is a unique sequence of characters that are grouped together in some meaningful way. Mostly a word (for us), but might also be a word plus punctuation, or a number etc.

e.g. 'France', 'American Revolution', '1981'

a token is a particular instance of type.

- e.g. "Dog eat dog world", contains three types, but four tokens (for most purposes).
 - a term is a type that is part of the system's 'dictionary' (i.e. what the quantitative analysis technique recognizes as a type to be recorded etc). Could be different from the tokens, but often closely related.
- e.g. stemmed word like 'treasuri', which doesn't appear in the document itself.

The text is now 'clean',

The text is now 'clean', and we want to pull out the meaningful subunits

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens.

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens. We will use a tokenizer.

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens. We will use a tokenizer.

 \rightarrow usually the tokens are words,

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens. We will use a tokenizer.

ightarrow usually the tokens are words, but might include numbers or punctuation too.

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens. We will use a tokenizer.

→ usually the tokens are words, but might include numbers or punctuation too.

Common rule for a tokenizer is to use whitespace as the marker.

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens. We will use a tokenizer.

→ usually the tokens are words, but might include numbers or punctuation too.

Common rule for a tokenizer is to use whitespace as the marker. but given application might require something more subtle

The text is now 'clean', and we want to pull out the meaningful subunits—the tokens. We will use a tokenizer.

→ usually the tokens are words, but might include numbers or punctuation too.

Common rule for a tokenizer is to use whitespace as the marker.

but given application might require something more subtle

e.g. "Brown vs Board of Education" may not be usefully tokenized as 'Brown', 'vs', 'Board', 'of', 'Education'

-()

In some languages,

In some languages, tokenizing is a non-trivial problem because whitespace may not be used:

In some languages, tokenizing is a non-trivial problem because whitespace may not be used:

问世间情是何物,直教生死相许。 天南地北双飞客,老翅几回寒暑。

In some languages, tokenizing is a non-trivial problem because whitespace may not be used:

问世间情是何物,直教生死相许。 天南地北双飞客,老翅几回寒暑。

We may want to deal directly with multiword expressions in some contexts.

In some languages, tokenizing is a non-trivial problem because whitespace may not be used:

问世间情是何物,直教生死相许。 天南地北双飞客,老翅几回寒暑。

We may want to deal directly with multiword expressions in some contexts. There are rules which help us identify them relatively quickly and accurately.

In some languages, tokenizing is a non-trivial problem because whitespace may not be used:

问世间情是何物,直教生死相许。 天南地北双飞客,老翅几回寒暑。

We may want to deal directly with multiword expressions in some contexts. There are rules which help us identify them relatively quickly and accurately.

e.g. 'White House', 'traffic light'

In some languages, tokenizing is a non-trivial problem because whitespace may not be used:

问世间情是何物,直教生死相许。 天南地北双飞客,老翅几回寒暑。

We may want to deal directly with multiword expressions in some contexts. There are rules which help us identify them relatively quickly and accurately.

e.g. 'White House', 'traffic light'

NB these words mean something 'special' (and slightly opaque) when combined. Related to idea of collocations: words that appear together more often than we'd predict based on random sampling.

There are certain words that serve as linguistic connectors ('function words') which we can remove.

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'.

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are many lists available,

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are many lists available, and we may add to them in an application specific way.

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are many lists available, and we may add to them in an application specific way.

e.g. working with Congressional speech data, 'representative' might be a stop word; in *Hansard* data, 'honourable' might be.

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are many lists available, and we may add to them in an application specific way.

e.g. working with Congressional speech data, 'representative' might be a stop word; in *Hansard* data, 'honourable' might be.

NB in some specific applications,

Removing Stop Words

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are many lists available, and we may add to them in an application specific way.

e.g. working with Congressional speech data, 'representative' might be a stop word; in *Hansard* data, 'honourable' might be.

NB in some specific applications, function word usage is important

Removing Stop Words

There are certain words that serve as linguistic connectors ('function words') which we can remove.

→ this simplifies our document considerably, with little loss of substantive 'content'. Indeed, search engines often ignore them.

There are many lists available, and we may add to them in an application specific way.

e.g. working with Congressional speech data, 'representative' might be a stop word; in *Hansard* data, 'honourable' might be.

NB in some specific applications, function word usage **is** important—we'll discuss this when we deal with authorship attribution.

Some stop words

Some stop words

a	about	above	after	again	against	all
am	an	and	any	are	aren't	as
at	be	because	been	before	being	below
between	both	but	by	can't	cannot	could
couldn't	did	didn't	do	does	doesn't	doing
don't	down	during	each	few	for	from
further	had	hadn't	has	hasn't	have	haven't
having	he	he'd	he'll	he's	her	here
here's	hers	herself	him	himself	his	how
how's	i	i'd	i'll	i'm	i've	if
in	into	is	isn't	it	it's	its
itself	let's	me	more	most	mustn't	my
myself	no	nor	not	of	off	on
once	only	or	other	ought	our	ours
ourselves	out	over	own	same	shan't	she
she'd	she'll	she's	should	shouldn't	so	some
such	than	that	that's	the	their	theirs
them	themselves	then	there	there's	these	they
they'd	they'll	they're	they've	this	those	through
to	too	under	until	up	very	was
wasn't	we	we'd	we'll	we're	we've	were
weren't	what	what's	when	when's	where	where's
which	while	who	who's	whom	why	why's
with	won't	would	wouldn't	you	you'd	you'll
you're	you've	your	yours	yourself	yourselves	

so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.

- so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.
 - and for many applications, this information doesn't help very much (e.g. for classification).

- so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.
 - and for many applications, this information doesn't help very much (e.g. for classification).

but in other applications we may really want to know information about the part-of-speech this word represents

- so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.
 - and for many applications, this information doesn't help very much (e.g. for classification).

but in other applications we may really want to know information about the part-of-speech this word represents. We want to disambiguate in what sense a term is being used.

- so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.
 - and for many applications, this information doesn't help very much (e.g. for classification).
 - but in other applications we may really want to know information about the part-of-speech this word represents. We want to disambiguate in what sense a term is being used.
 - e.g. in 'events' studies,

- so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.
 - and for many applications, this information doesn't help very much (e.g. for classification).
 - but in other applications we may really want to know information about the part-of-speech this word represents. We want to disambiguate in what sense a term is being used.
 - e.g. in 'events' studies, when we are recording who did what to whom: 'the UK bombing will force ISIS to surrender'. Here force is a verb, not a noun.

- so far tokens are on even footing—no distinctions drawn between nouns, verbs, nouns acting as subjects, nouns acting as objects, etc.
 - and for many applications, this information doesn't help very much (e.g. for classification).
 - but in other applications we may really want to know information about the part-of-speech this word represents. We want to disambiguate in what sense a term is being used.
 - e.g. in 'events' studies, when we are recording who did what to whom: 'the UK bombing will force ISIS to surrender'. Here force is a verb, not a noun.
 - → annotating in this way is called parts-of-speech tagging.

Penn POS Tagger

Penn POS Tagger

Number	Tag	Description	18.	PRP	Personal pronoun
1.	CC	Coordinating conjunction	19.	PRP\$	Possessive pronoun
2.	CD	Cardinal number	20.	RB	Adverb
3.	DT	Determiner	21.	RBR	Adverb, comparative
4.	EX	Existential there	22.	RBS	Adverb, superlative
5.	FW	Foreign word	23.	RP	Particle
6.	IN	Preposition or subordinating conjunction	24.	SYM	Symbol
7.	IJ	Adjective	25.	TO	to
8.	JJR	Adjective, comparative	26.	UH	Interjection
9.	JJS	Adjective, superlative	27.	VB	Verb, base form
10.	LS	List item marker	28.	VBD	Verb, past tense
11.	MD	Modal	29.	VBG	Verb, gerund or present participle
12.	NN	Noun, singular or mass	30.	VBN	Verb, past participle
13.	NNS	Noun, plural	31.	VBP	Verb, non-3rd person singular present
			32.	VBZ	Verb, 3rd person singular present
14.	NNP	1	33.	WDT	Wh-determiner
15.	NNPS	Proper noun, plural	34.	WP	Wh-pronoun
16.	PDT	Predeterminer	35.	WP\$	Possessive wh-pronoun
17.	POS	Possessive ending	36.	WRB	Wh-adverb

- 0

-0

Documents may use different forms of words

Documents may use different forms of words ('jumped', 'jumping', 'jump'),

Documents may use different forms of words ('jumped', 'jumping', 'jump'), or words which are similar in concept ('bureaucratic', 'bureaucrati', 'bureaucratization') as if they are different tokens.

Documents may use different forms of words ('jumped', 'jumping', 'jump'), or words which are similar in concept ('bureaucratic', 'bureaucratiz', 'bureaucratization') as if they are different tokens.

 \rightarrow we can simplify considerably by mapping these variants (back) to the same word.

Documents may use different forms of words ('jumped', 'jumping', 'jump'), or words which are similar in concept ('bureaucratic', 'bureaucrati, 'bureaucratization') as if they are different tokens.

- \rightarrow we can simplify considerably by mapping these variants (back) to the same word.
 - Stemming does this using a crude (heuristic) which just 'chops off' the affixes. It returns a stem which might not be a dictionary word.

- Documents may use different forms of words ('jumped', 'jumping', 'jump'), or words which are similar in concept ('bureaucratic', 'bureaucratization') as if they are different tokens.
- ightarrow we can simplify considerably by mapping these variants (back) to the same word.
 - Stemming does this using a crude (heuristic) which just 'chops off' the affixes. It returns a stem which might not be a dictionary word.
 - Lemmatization does this using a vocabulary, parts of speech context and mapping rules. It returns a word in the dictionary: a lemma (which is a canonical form of a 'lexeme').

- Documents may use different forms of words ('jumped', 'jumping', 'jump'), or words which are similar in concept ('bureaucratic', 'bureaucratization') as if they are different tokens.
- ightarrow we can simplify considerably by mapping these variants (back) to the same word.
 - Stemming does this using a crude (heuristic) which just 'chops off' the affixes. It returns a stem which might not be a dictionary word.
 - Lemmatization does this using a vocabulary, parts of speech context and mapping rules. It returns a word in the dictionary: a lemma (which is a canonical form of a 'lexeme').
- e.g. depending on context, lemmatization would return 'see' or 'saw' if it came across 'saw'.

- Documents may use different forms of words ('jumped', 'jumping', 'jump'), or words which are similar in concept ('bureaucratic', 'bureaucratization') as if they are different tokens.
- ightarrow we can simplify considerably by mapping these variants (back) to the same word.
 - Stemming does this using a crude (heuristic) which just 'chops off' the affixes. It returns a stem which might not be a dictionary word.
 - Lemmatization does this using a vocabulary, parts of speech context and mapping rules. It returns a word in the dictionary: a lemma (which is a canonical form of a 'lexeme').
- e.g. depending on context, lemmatization would return 'see' or 'saw' if it came across 'saw'.

(

Though technically incorrect,

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples,

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples, one can use a 'look up' table:

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples, one can use a 'look up' table: table listing what a given realization of a word should be mapped to.

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples, one can use a 'look up' table: table listing what a given realization of a word should be mapped to.

btw we sometimes use 'equivalency classes'

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples, one can use a 'look up' table: table listing what a given realization of a word should be mapped to.

btw we sometimes use 'equivalency classes' meaning that an internal thesaurus maps different words back to the same type of word:

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples, one can use a 'look up' table: table listing what a given realization of a word should be mapped to.

btw we sometimes use 'equivalency classes' meaning that an internal thesaurus maps different words back to the same type of word: e.g. 'rightwing' and 'republican' to 'conservative'.

Though technically incorrect, 'stemming' and 'lemmatization' often used interchangeably.

For small examples, one can use a 'look up' table: table listing what a given realization of a word should be mapped to.

btw we sometimes use 'equivalency classes' meaning that an internal thesaurus maps different words back to the same type of word: e.g. 'rightwing' and 'republican' to 'conservative'.

In practice, need something faster (and cruder), so software implements the Porter Stemmer using algorithms like Snowball.

Snowball examples

- (

Snowball examples

Original Word		Stemmed Word
abolish	\mapsto	abolish
abolished	\mapsto	abolish
abolishing	\mapsto	abolish
abolition	\mapsto	abolit

Snowball examples

Original Word		Stemmed Word
abolish	\mapsto	abolish
abolished	\mapsto	abolish
abolishing	\mapsto	abolish
abolition	\mapsto	abolit
abortion	\mapsto	abort
abortions	\mapsto	abort
abortive	\mapsto	abort

Snowball examples

		C: 1.34/ 1
Original Word		Stemmed Word
abolish	\mapsto	abolish
abolished	\mapsto	abolish
abolishing	\mapsto	abolish
abolition	\mapsto	abolit
abortion	\mapsto	abort
abortions	\mapsto	abort
abortive	\mapsto	abort
treasure	\mapsto	treasure
treasured	\mapsto	treasure
treasures	\mapsto	treasure
treasuring	\mapsto	treasure
treasury	\mapsto	treasuri

Emergency measures adopted for Beijing's first 'red alert" over air pollution left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factories across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

Emergency measures adopted for Beijing's first "red alert" over air pollution left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factories across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

marked up

Emergency measures adopted for Beij ing s first red alert over air pollut ion left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factor ies across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

June 2, 2017

Emergency measures adopted for Beijing's first "red alert" over air pollution left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factories across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

marked up

Emergency measures adopted for Beij ing s first red alert over air pollut ion left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factor ies across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

June 2, 2017

Emergency measures adopted for Beijings first red alert over air pollution left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factories across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

Stemmed

Emergenc measur adopt for Beij s first red alert over air pollut left million of schoolchildren coop up at home forc motorist off the road and shut down factori across the region on Tuesdai but thei fail to dispel the toxic air that shroud the Chines capit in a soupi metal haze.

Emergency measures adopted for Beijings first red alert over air pollution left millions of schoolchildren cooped up at home, forced motorists off the roads and shut down factories across the region on Tuesday, but they failed to dispel the toxic air that shrouded the Chinese capital in a soupy, metallic haze.

Stemmed

Emergenc measur adopt for Beij s first red alert over air pollut left million of schoolchildren coop up at home forc motorist off the road and shut down factori across the region on Tuesdai but thei fail to dispel the toxic air that shroud the Chines capit in a soupi metal haze.

- (

Consider these elements of a document. Suppose we change all punctuation to whitespace, de-capitalize, remove stop words, and stem what remains.

Consider these elements of a document. Suppose we change all punctuation to whitespace, de-capitalize, remove stop words, and stem what remains. What do we get?

Consider these elements of a document. Suppose we change all punctuation to whitespace, de-capitalize, remove stop words, and stem what remains. What do we get? Is the original meaning intact?

Consider these elements of a document. Suppose we change all punctuation to whitespace, de-capitalize, remove stop words, and stem what remains. What do we get? Is the original meaning intact?

- 1 The mountains are beautiful in Ore. and Wash.
- 2 http://www.wsj.com/articles/son-of-saul-not-about-the-survivors-1449590175
- 3 I can't go with him to Beijing.

We have now pre-processed our texts.

We have now pre-processed our texts. Generally,

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document.

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things.

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a bag-of-words (BOW).

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a bag-of-words (BOW).

btw, we keep multiplicity—i.e. multiple uses of same token

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a bag-of-words (BOW).

btw, we keep multiplicity—i.e. multiple uses of same token

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a bag-of-words (BOW).

btw, we keep multiplicity—i.e. multiple uses of same token

e.g. "The leading Republican presidential candidate has said Muslims should be banned from entering the US."

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a bag-of-words (BOW).

btw, we keep multiplicity—i.e. multiple uses of same token

- e.g. "The leading Republican presidential candidate has said Muslims should be banned from entering the US."
 - ightarrow "lead republican presidenti candid said muslim ban enter us"

We have now pre-processed our texts.

Generally, we are willing to ignore the order of the words in a document. This considerably simplifies things. And we do (almost) as well without that information as when we retain it.

NB we are treating a document as a bag-of-words (BOW).

btw, we keep multiplicity—i.e. multiple uses of same token

- e.g. "The leading Republican presidential candidate has said Muslims should be banned from entering the US."
 - ightarrow "lead republican presidenti candid said muslim ban enter us"
 - "us lead said candid presidenti ban muslim republican enter"

June 2, 2017

for some applications,

for some applications, we might retaining word order is very important.

for some applications, we might retaining word order is very important.

e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost:

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost: negation perhaps—

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost: negation perhaps—"I want coffee, not tea"

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost: negation perhaps—"I want coffee, not tea" might be interpreted very differently without word order.

June 2, 2017

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost: negation perhaps—"I want coffee, not tea" might be interpreted very differently without word order.
 - \rightarrow can use *n*-grams, which are (sometimes contiguous) sequences of two (bigrams) or three (trigrams) tokens.

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost: negation perhaps—"I want coffee, not tea" might be interpreted very differently without word order.
 - → can use n-grams, which are (sometimes contiguous) sequences of two (bigrams) or three (trigrams) tokens. This makes computations considerably more complex.

- for some applications, we might retaining word order is very important.
- e.g. we have a large number of multiword expressions or named entities like 'Bill Gates'
- e.g. we think some important subtlety of expression is lost: negation perhaps—"I want coffee, not tea" might be interpreted very differently without word order.
 - → can use *n*-grams, which are (sometimes contiguous) sequences of two (bigrams) or three (trigrams) tokens. This makes computations considerably more complex.

also can use *substrings* which are groups of n contiguous characters.

- peace not war between
- 2 brothers not warfare now
 - be war not friendship

documents are similar in word use terms...

- peace not war between
- ② brothers not warfare now
 - be war not friendship

- peace not war between
- 2 brothers not warfare now
 - be war not friendship

not w,

- peace not war between
- 2 brothers not warfare now
 - be war not friendship

not w,

- 1 peace | not w | ar between
- 2 brothers | not w | arfare now
 - 3 be war not friendship

not w,

- peace n ot wa r between
- 2 brothers n|ot wa|rfare now
 - 3 be war not friendship

ot wa,

- 1 peace no t war between
- 2 brothers no t war fare now
 - 3 be war not friendship

t war

original/some pre-processing

a military patrol boat rescued three of the kayakers on general carrera lake and a helicopter lifted out the other three the chilean army said

June 2, 2017

original/some pre-processing

a military patrol boat rescued three of the kayakers on general carrera lake and a helicopter lifted out the other three the chilean army said

bigrams

"a military" "military patrol" "patrol boat" "boat rescued" "rescued three" "three of" "of the" "the kayakers" "kayakers on" "on general" "general carrera" "carrera lake" "lake and" "and a" "a helicopter" "helicopter lifted" "lifted out" "out the" "the other" "other three" "three the" "the chilean" "chilean army" "army said"

original/some pre-processing

a military patrol boat rescued three of the kayakers on general carrera lake and a helicopter lifted out the other three the chilean army said

bigrams

"a military" "military patrol" "patrol boat" "boat rescued" "rescued three" "three of" "of the" "the kayakers" "kayakers on" "on general" "general carrera" "carrera lake" "lake and" "and a" "a helicopter" "helicopter lifted" "lifted out" "out the" "the other" "other three" "three the" "the chilean" "chilean army" "army said"

trigrams

"a military patrol" "military patrol boat" "patrol boat rescued" "boat rescued three" "rescued three of" "three of the" "of the kayakers" "the kayakers on" "kayakers on general" "on general carrera" "general carrera lake" "carrera lake and" "lake and a" "and a helicopter" "a helicopter lifted" "helicopter lifted out" "lifted out the" "out the other" "the other three" "other three the" "three the chilean" "the chilean army" "chilean army said"

Very similar documents may not share short *n*-grams

-()

Very similar documents may not share short *n*-grams

June 2, 2017

Very similar documents may not share short *n*-grams

June 2, 2017

Political scientists often use text-as-data in an exploratory or unsupervised way.

Political scientists often use text-as-data in an exploratory or unsupervised way. In that world, the metric isn't really 'prediction'.

Political scientists often use text-as-data in an exploratory or unsupervised way. In that world, the metric isn't really 'prediction'. Yet most advice about pre-processing comes from the supervised literature.

Political scientists often use text-as-data in an exploratory or unsupervised way. In that world, the metric isn't really 'prediction'. Yet most advice about pre-processing comes from the supervised literature.

so generally hope that our inferences are pretty much the same substantively, regardless of the (common) pre-processing steps we take.

Political scientists often use text-as-data in an exploratory or unsupervised way. In that world, the metric isn't really 'prediction'. Yet most advice about pre-processing comes from the supervised literature.

so generally hope that our inferences are pretty much the same substantively, regardless of the (common) pre-processing steps we take.

Well is that true?

Political scientists often use text-as-data in an exploratory or unsupervised way. In that world, the metric isn't really 'prediction'. Yet most advice about pre-processing comes from the supervised literature.

so generally hope that our inferences are pretty much the same substantively, regardless of the (common) pre-processing steps we take.

Well is that true? Rarely (never) checked ... and maybe not.

Political scientists often use text-as-data in an exploratory or unsupervised way. In that world, the metric isn't really 'prediction'. Yet most advice about pre-processing comes from the supervised literature.

so generally hope that our inferences are pretty much the same substantively, regardless of the (common) pre-processing steps we take.

Well is that true? Rarely (never) checked ... and maybe not.

Denny & Spirling look at (Wordfish) scaling of four sets of UK election manifestos (1983, 1987, 1992, 1997).

Hmm...

June 2, 2017

Hmm...

If preprocessing makes no difference to 'results', it shouldn't matter which we do—punctuation, numbers, lowercase, stem, stops, infrequent terms, *n*-grams—in terms of manifesto estimated to be most left (or right).

Hmm...

If preprocessing makes no difference to 'results', it shouldn't matter which we do—punctuation, numbers, lowercase, stem, stops, infrequent terms, *n*-grams—in terms of manifesto estimated to be most left (or right).

P N L M S I G Most Left Most Right

Hmm. . .

If preprocessing makes no difference to 'results', it shouldn't matter which we do—punctuation, numbers, lowercase, stem, stops, infrequent terms, *n*-grams—in terms of manifesto estimated to be most left (or right).

Ρ	Ν	L	М	S	- 1	G	Most Left	Most Right
Т	Т	Т	Т	Т	Т	Т	Lab 1983	Con 1997
Т	Т	F	F	Т	T	T	Lab 1983	Con 1983
F	Т	F	F	F	T	T	Lab 1992	Con 1992

Hmm. . .

If preprocessing makes no difference to 'results', it shouldn't matter which we do—punctuation, numbers, lowercase, stem, stops, infrequent terms, *n*-grams—in terms of manifesto estimated to be most left (or right).

Ρ	Ν	L	М	S	- 1	G	Most Left	Most Right
Т	Т	Т	Т	Т	Т	Т	Lab 1983	Con 1997
Т	Т	F	F	Т	Т	Т	Lab 1983	Con 1983
F	Т	F	F	F	Т	Т	Lab 1992	Con 1992
F	F	Т	Т	Т	F	Т	Lab 1997	Con 1987

Hmm. . .

If preprocessing makes no difference to 'results', it shouldn't matter which we do—punctuation, numbers, lowercase, stem, stops, infrequent terms, *n*-grams—in terms of manifesto estimated to be most left (or right).

Р	Ν	L	М	S	- 1	G	Most Left	Most Right
Т	Т	Т	Т	Т	Т	Т	Lab 1983	Con 1997
Т	Т	F	F	Т	Т	Т	Lab 1983	Con 1983
F	Т	F	F	F	Т	Т	Lab 1992	Con 1992
F	F	Т	Т	Т	F	Т	Lab 1997	Con 1987

 \rightarrow more variance than we would like!

We can think about a document as being a collection of \boldsymbol{W} features (tokens, words etc)

We can think about a document as being a collection of \boldsymbol{W} features (tokens, words etc)

if each feature can be placed on the real line,

We can think about a document as being a collection of \boldsymbol{W} features (tokens, words etc)

if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .

We can think about a document as being a collection of W features (tokens, words etc)

if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .

e.g. "Bob goes home" can be thought of a vector in 3 dimensions:

- We can think about a document as being a collection of W features (tokens, words etc)
- if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .
- e.g. "Bob goes home" can be thought of a vector in 3 dimensions: one corresponds to how 'Bob'-ish it is, one corresponds to how 'goes'-ish it is, one corresponds to how 'home'-ish it is.

- We can think about a document as being a collection of W features (tokens, words etc)
- if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .
- e.g. "Bob goes home" can be thought of a vector in 3 dimensions: one corresponds to how 'Bob'-ish it is, one corresponds to how 'goes'-ish it is, one corresponds to how 'home'-ish it is.

Features will typically be the n-gram (mostly unigram) frequencies of the tokens in the document,

June 2, 2017

- We can think about a document as being a collection of W features (tokens, words etc)
- if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .
- e.g. "Bob goes home" can be thought of a vector in 3 dimensions: one corresponds to how 'Bob'-ish it is, one corresponds to how 'goes'-ish it is, one corresponds to how 'home'-ish it is.

Features will typically be the n-gram (mostly unigram) frequencies of the tokens in the document, or some function of those frequencies.

June 2, 2017

III. Vector Space Model

- We can think about a document as being a collection of \boldsymbol{W} features (tokens, words etc)
- if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .
- e.g. "Bob goes home" can be thought of a vector in 3 dimensions: one corresponds to how 'Bob'-ish it is, one corresponds to how 'goes'-ish it is, one corresponds to how 'home'-ish it is.
 - Features will typically be the n-gram (mostly unigram) frequencies of the tokens in the document, or some function of those frequencies.
- e.g. 'the cat sat on the mat' becomes (2,1,1,1,1)

III. Vector Space Model

- We can think about a document as being a collection of W features (tokens, words etc)
- if each feature can be placed on the real line, then the document can be thought of as a point \mathbb{R}^W .
- e.g. "Bob goes home" can be thought of a vector in 3 dimensions: one corresponds to how 'Bob'-ish it is, one corresponds to how 'goes'-ish it is, one corresponds to how 'home'-ish it is.
 - Features will typically be the n-gram (mostly unigram) frequencies of the tokens in the document, or some function of those frequencies.
- e.g. 'the cat sat on the mat' becomes (2,1,1,1,1) if we define the dimensions as (the, cat, sat, on, mat) and use simple counts.

 $d = 1, \dots, D$ indexes documents in the corpus

 $d=1,\ldots,D$ indexes documents in the corpus $w=1,\ldots,W$ indexes features found in documents

 $d=1,\ldots,D$ indexes documents in the corpus $w=1,\ldots,W$ indexes features found in documents $\mathbf{y}_d \in \mathbb{R}^W$ is a representation of document d in a particular feature space

 $d=1,\ldots,D$ indexes documents in the corpus $w=1,\ldots,W$ indexes features found in documents $\mathbf{y}_d \in \mathbb{R}^W$ is a representation of document d in a particular feature space

so each document is now a vector,

 $d=1,\ldots,D$ indexes documents in the corpus $w=1,\ldots,W$ indexes features found in documents $\mathbf{y}_d \in \mathbb{R}^W$ is a representation of document d in a particular feature space

so each document is now a vector, with each entry representing the frequency of a particular token or feature. . .

 $d=1,\ldots,D$ indexes documents in the corpus $w=1,\ldots,W$ indexes features found in documents $\mathbf{y}_d \in \mathbb{R}^W$ is a representation of document d in a particular feature space

- so each document is now a vector, with each entry representing the frequency of a particular token or feature. . .
- \rightarrow stacking those vectors on top of each other gives the document term matrix (DTM) or the document feature matrix (DFM).

June 2, 2017

```
d=1,\ldots,D indexes documents in the corpus w=1,\ldots,W indexes features found in documents \mathbf{y}_d \in \mathbb{R}^W is a representation of document d in a particular feature space
```

- so each document is now a vector, with each entry representing the frequency of a particular token or feature. . .
- \rightarrow stacking those vectors on top of each other gives the document term matrix (DTM) or the document feature matrix (DFM).
- \rightarrow taking the transpose of the DTM gives the term document matrix (TDM) or feature document matrix (FDM).

```
d=1,\ldots,D indexes documents in the corpus w=1,\ldots,W indexes features found in documents \mathbf{y}_d \in \mathbb{R}^W is a representation of document d in a particular feature space
```

- so each document is now a vector, with each entry representing the frequency of a particular token or feature. . .
- \rightarrow stacking those vectors on top of each other gives the document term matrix (DTM) or the document feature matrix (DFM).
- \rightarrow taking the transpose of the DTM gives the term document matrix (TDM) or feature document matrix (FDM).

partial DTM from Roosevelt's Inaugural Addresses

partial DTM from Roosevelt's Inaugural Addresses

fea	tures				
docs	american	expect	induct	presid	will
1933-Roosevelt	2	1	1	1	12
1937-Roosevelt	4	0	0	2	16
1941-Roosevelt	4	0	0	1	4
1945-Roosevelt	1	0	0	1	7

June 2, 2017

partial TDM from Roosevelt's Inaugural Addresses

partial TDM from Roosevelt's Inaugural Addresses

1 (docs			
features	1933-Roosevelt	1937-Roosevelt	1941-Roosevelt	1945-Roosevelt
american	2	4	4	1
expect	1	0	0	0
induct	1	0	0	0
presid	1	2	1	1
will	12	16	4	7
i				

June 2, 2017

To this point,

To this point, we have been constructing the document vectors as counts.

To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.

To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.

but this implies that all words are of 'equal importance'.

To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.

but this implies that all words are of 'equal importance'. This is a problem in some domains

To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.

but this implies that all words are of 'equal importance'. This is a problem in some domains

e.g. almost every article in political science will mention 'politics',

To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.

- but this implies that all words are of 'equal importance'. This is a problem in some domains
- e.g. almost every article in political science will mention 'politics', but that suggests they are all more similar than they really are (and makes it hard to find 'different' ones).

June 2, 2017

To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.

- but this implies that all words are of 'equal importance'. This is a problem in some domains
- e.g. almost every article in political science will mention 'politics', but that suggests they are all more similar than they really are (and makes it hard to find 'different' ones).
 - so we may want to do something that throws certain feature relationships into starker relief.

- To this point, we have been constructing the document vectors as counts. More formally, this is term frequency, since it simply records the number of occurrences of a given term.
- but this implies that all words are of 'equal importance'. This is a problem in some domains
- e.g. almost every article in political science will mention 'politics', but that suggests they are all more similar than they really are (and makes it hard to find 'different' ones).
 - so we may want to do something that throws certain feature relationships into starker relief.
 - along with term frequency, we may want to consider document frequency: the number of documents in which this word appears.

June 2, 2017

- 0

• tf_{dw} , term frequency: number of times word w appears in document d

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w
- $\ln \frac{|D|}{df_w}$, inverse document frequency: (natural) log of the total size of the corpus |D| divided by the number of documents in the collection of documents that contain word w.

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w
- $\ln \frac{|D|}{df_w}$, inverse document frequency: (natural) log of the total size of the corpus |D| divided by the number of documents in the collection of documents that contain word w. When the word is common in the corpus,

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w
- $\ln \frac{|D|}{df_w}$, inverse document frequency: (natural) log of the total size of the corpus |D| divided by the number of documents in the collection of documents that contain word w. When the word is common in the corpus, this will be a small number. When the word is rare,

June 2, 2017

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w
- $\ln \frac{|D|}{df_w}$, inverse document frequency: (natural) log of the total size of the corpus |D| divided by the number of documents in the collection of documents that contain word w. When the word is common in the corpus, this will be a small number. When the word is rare, this will be a large number.

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w
- In $\frac{|D|}{df_w}$, inverse document frequency: (natural) log of the total size of the corpus |D| divided by the number of documents in the collection of documents that contain word w. When the word is common in the corpus, this will be a small number. When the word is rare, this will be a large number.

 $tf_{dw} \cdot \ln \frac{|D|}{df_{uv}}$, term frequency-inverse document frequency: tf-idf.

- tf_{dw} , term frequency: number of times word w appears in document d
- df_w, document frequency: number of documents in the collection of documents that contain word w
- In $\frac{|D|}{df_w}$, inverse document frequency: (natural) log of the total size of the corpus |D| divided by the number of documents in the collection of documents that contain word w. When the word is common in the corpus, this will be a small number. When the word is rare, this will be a large number.

 $tf_{dw} \cdot \ln \frac{|D|}{df_{uv}}$, term frequency-inverse document frequency: tf-idf.

tf-idf

 $tf_{dw} \cdot \ln \frac{|D|}{df_w}$, term frequency-inverse document frequency: tf-idf.

 $tf_{dw} \cdot \ln \frac{|D|}{df_w}$, term frequency-inverse document frequency: tf-idf.

 \rightarrow when a word is common in a given document, but rare in the corpus as whole,

 $tf_{dw} \cdot \ln \frac{|D|}{df_w}$, term frequency-inverse document frequency: tf-idf.

→ when a word is common in a given document, but rare in the corpus as whole, this means tf is high and idf is high. So presence of that word is indicative of difference, and it is weighted up.

 $tf_{dw} \cdot \ln \frac{|D|}{df_w}$, term frequency-inverse document frequency: tf-idf.

→ when a word is common in a given document, but rare in the corpus as whole, this means tf is high and idf is high. So presence of that word is indicative of difference, and it is weighted up.

but if word is common in a given document, and common in the corpus, tf is high, but idf are low. So term is weighted down, and filtered out.

<ロト < 個ト < 重ト < 重ト < 重 とり < で

June 2, 2017

 $tf_{dw} \cdot \ln \frac{|D|}{df_w}$, term frequency-inverse document frequency: tf-idf.

→ when a word is common in a given document, but rare in the corpus as whole, this means tf is high and idf is high. So presence of that word is indicative of difference, and it is weighted up.

but if word is common in a given document, and common in the corpus, tf is high, but idf are low. So term is weighted down, and filtered out.

and very low for words occurring in every document:

June 2, 2017

 $tf_{dw} \cdot \ln \frac{|D|}{df_w}$, term frequency-inverse document frequency: tf-idf.

→ when a word is common in a given document, but rare in the corpus as whole, this means tf is high and idf is high. So presence of that word is indicative of difference, and it is weighted up.

but if word is common in a given document, and common in the corpus, tf is high, but idf are low. So term is weighted down, and filtered out.

and very low for words occurring in every document: least discriminative words.

() June 2, 2017

- 0

FDR used 'will' 12 times in his 1933 speech.

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

FDR used 'will' 12 times in his 1933 speech. So, tf=12. and in his 4 speeches (our corpus),

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4

so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right)$

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4

so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

- and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4
 - so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$
 - \rightarrow tf-idf=0 for 'will' in 1933.

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

- and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4
 - so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$
 - \rightarrow tf-idf=0 for 'will' in 1933.

but he used 'expect' once in 1933, and he didn't use it any other speech.

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

- and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4
 - so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$
 - \rightarrow tf-idf=0 for 'will' in 1933.

but he used 'expect' once in 1933, and he didn't use it any other speech.

so
$$idf$$
 is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{1}\right)$

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

- and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4
 - so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$
 - \rightarrow tf-idf=0 for 'will' in 1933.

but he used 'expect' once in 1933, and he didn't use it any other speech.

so
$$idf$$
 is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{1}\right) = 1.38$

June 2, 2017

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

- and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4
 - so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$
 - \rightarrow tf-idf=0 for 'will' in 1933.

but he used 'expect' once in 1933, and he didn't use it any other speech.

- so idf is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{1}\right) = 1.38$
- \rightarrow tf-idf=1.38 for 'expect' in 1933.

FDR used 'will' 12 times in his 1933 speech. So, tf=12.

- and in his 4 speeches (our corpus), he used it (at least once) in *every* speech. So, |D|=4 and df=4
 - so the *idf* is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{4}\right) = 0$
 - \rightarrow tf-idf=0 for 'will' in 1933.

but he used 'expect' once in 1933, and he didn't use it any other speech.

- so idf is $\ln \frac{|D|}{df} = \ln \left(\frac{4}{1}\right) = 1.38$
- \rightarrow tf-idf=1.38 for 'expect' in 1933.
- \rightarrow 'expect' helps us discriminate better than 'will'.

Animals at the Zoo

Animals at the Zoo

Term frequency		Document frequency	
n (natural)	$tf_{t,d}$	n (no)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$
a (augmented)	$0.5 + rac{0.5 imes ext{tf}_{t,d}}{\max_t(ext{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$		
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$		

June 2, 2017

(

the way we construct the DTM—

the way we construct the DTM—including order/nature of pre-processing

the way we construct the DTM—including order/nature of pre-processing—is application specific.

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself:

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

 partly a consequence of language itself: people say things in idiosyncratic ways.

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself: people say things in idiosyncratic ways.
- partly a consequence of reweighting:

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself: people say things in idiosyncratic ways.
- partly a consequence of reweighting: taking log(1).

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself: people say things in idiosyncratic ways.
- partly a consequence of reweighting: taking log(1).

in some applications,

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself: people say things in idiosyncratic ways.
- partly a consequence of reweighting: taking log(1).

in some applications, we might remove sparse terms

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself: people say things in idiosyncratic ways.
- partly a consequence of reweighting: taking log(1).

in some applications, we might remove sparse terms—tokens that occur in very few docs.

the way we construct the DTM—including order/nature of pre-processing—is application specific.

 \rightarrow in some cases, we won't need a DTM at all.

NB DTM tends to be sparse: contains lots of (mostly) zeros.

- partly a consequence of language itself: people say things in idiosyncratic ways.
- partly a consequence of reweighting: taking log(1).

in some applications, we might remove sparse terms—tokens that occur in very few docs.

NB there are efficient ways to store and manipulate sparse matrices.

-0

• Why do we log the idf part in tf-idf?

• Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)

• Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)

Does the base of the logarithm matter?

- Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)
- Does the base of the logarithm matter?
- Consider comparing two novels from Tolstoy in terms of the common (weighted) terms they contain. Now consider comparing two tweets.

- Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)
- Does the base of the logarithm matter?
- Consider comparing two novels from Tolstoy in terms of the common (weighted) terms they contain. Now consider comparing two tweets.
 Which set of documents will, on average, have more elements in common?

- Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)
- Does the base of the logarithm matter?
- Consider comparing two novels from Tolstoy in terms of the common (weighted) terms they contain. Now consider comparing two tweets.
 Which set of documents will, on average, have more elements in common? Why?

June 2, 2017

- Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)
- Does the base of the logarithm matter?
- Consider comparing two novels from Tolstoy in terms of the common (weighted) terms they contain. Now consider comparing two tweets.
 Which set of documents will, on average, have more elements in common? Why? What should we do about this?

- Why do we log the idf part in tf-idf? (hint: think about how we'd like idf to react to very rare vs fairly rare words)
- Does the base of the logarithm matter?
- Consider comparing two novels from Tolstoy in terms of the common (weighted) terms they contain. Now consider comparing two tweets.
 Which set of documents will, on average, have more elements in common? Why? What should we do about this?