APAUR REPORT

Credit Card Approval Dataset

GROUP - 3

Akash Kumar Singh - BA005-21

Gourab Dash - BA012-21

Shreyansh Mohanty - BA033-21

Amrita Singh - M009-21

Aakaash Vasu - M150-21

CONTENTS

Торіс	Page Number
Introduction	3
Data Description	3
EDA on Application Dataset	4
EDA on Credit Dataset	6
Feature Engineering	7
Correlation Analysis	10
Dummies Creation	11
Logistic Regression : Model 1	12
Logistic Regression : Model 2	15
Oversampling : Smote	16
Model Accuracy training data: Logistic Regression	17
Model Accuracy test data: Logistic Regression	18
Model Accuracy training data: Decision tree	19
Model Accuracy training data: Decision tree	20
Conclusion : Summary Table	22

Introduction

Credit score cards are a common risk control method in the financial industry. It uses personal information and data submitted by credit card applicants to predict the probability of future defaults and credit card borrowings. The bank is able to decide whether to issue a credit card to the applicant. Credit scores can objectively quantify the magnitude of risk. Generally speaking, credit score cards are based on historical data. Once encountering large economic fluctuations, past models may lose their original predictive power. Logistic model is a common method for credit scoring.

Data Description

Dataset - 1: Application dataset

Feature name	Explanation	Remarks
ID	Client number	
CODE_GENDER	Gender	
FLAG_OWN_CAR	Is there a car	
FLAG_OWN_REALTY	Is there a property	
CNT_CHILDREN	Number of children	
AMT_INCOME_TOTAL	Annual income	
NAME_INCOME_TYPE	Income category	
NAME_EDUCATION_TYPE	Education level	
NAME_FAMILY_STATUS	Marital status	
NAME_HOUSING_TYPE	Way of living	
DAYS_BIRTH	Birthday	Count backwards from current day (0), -1 means yesterday
DAYS_EMPLOYED	Start date of employment	Count backwards from current day(0). If positive, it means the person currently unemployed.
FLAG_MOBIL	Is there a mobile phone	
FLAG_WORK_PHONE	Is there a work phone	
FLAG_PHONE	Is there a phone	
FLAG_EMAIL	Is there an email	
OCCUPATION_TYPE	Occupation	
CNT_FAM_MEMBERS	Family size	

Dataset - 2: Credit Dataset

Feature name	Explanation	Remarks
ID	Client number	
MONTHS_BALANCE	Record month	The month of the extracted data is the starting point, backwards, 0 is the current month, -1 is the previous month, and so on
STATUS	Status	0: 1-29 days past due 1: 30-59 days past due 2: 60-89 days overdue 3: 90-119 days overdue 4: 120-149 days overdue 5: Overdue or bad debts, write-offs for more than 150 days C: paid off that month X: No loan for the month

Exploratory Data Analysis

On Application Dataset

a. Number of applications per income type

b. Number of applications per marital type

c. Number of applications per housing type

d. Applications by people who own a car by their income type

e. Age-wise distribution of applicants

```
sns.set(rc={'figure.figsize': (10, 3)})
application['Age'] = -(application['DAYS_BIRTH'])//365
print(application['Age'].value_counts(bins=10, normalize=True, sort=False))
application['Age'].plot(kind='hist', bins=20, density=True)
plt.show()
```


f. Applications by people owning a car by their occupation type

On Credit Dataset

Overall past-due ratio analysis: Calculating overall past-due rate. This analysis could help us to define who are bad customers.

```
def calculate_rate(pivot_tb, command):
    '''calculate bad customer rate
   credit0['status'] = None
   exec(command) # excuate input code
   sumagg = credit0.groupby('ID')['status'].agg(sum)
   pivot_tb = pd.merge(pivot_tb, sumagg, on='ID', how='left')
pivot_tb.loc[pivot_tb['status'] > 1, 'status'] = 1
   rate = pivot_tb['status'].sum() / len(pivot_tb)
   return round(rate, 5)
command = "credit0.loc[(credit0['STATUS'] == '0') | (credit0['STATUS'] == '1') | (credit0['STATUS'] == '2') | (credit0['STATUS']
morethan1 = calculate_rate(pivot_tb, command)
command = "credit0.loc[(credit0['STATUS'] == '1') | (credit0['STATUS'] == '2') | (credit0['STATUS'] == '3' )| (credit0['STATUS']
morethan30 = calculate_rate(pivot_tb, command)
command = "credit0.loc[(credit0['STATUS'] == '2') | (credit0['STATUS'] == '3' )| (credit0['STATUS'] == '4' )| (credit0['STATUS']
morethan60 = calculate_rate(pivot_tb, command)
command = "credit0.loc[(credit0['STATUS'] == '3' )| (credit0['STATUS'] == '4' )| (credit0['STATUS'] == '5'), 'status'] = 1"
morethan90 = calculate_rate(pivot_tb, command)
morethan120 = calculate_rate(pivot_tb, command)
command = "credit0.loc[(credit0['STATUS'] == '5'), 'status'] = 1"
morethan150 = calculate_rate(pivot_tb, command)
summary_dt = pd.DataFrame({'situation': ['past due more than 1 day', 'past due more than 30 days', 'past due more than 60 days',
summary_dt
```

	situation	bad customer ratio
0	past due more than 1 day	0.87054
1	past due more than 30 days	0.11634
2	past due more than 60 days	0.01450
3	past due more than 90 days	0.00720
4	past due more than 120 days	0.00528
5	past due more than 150 days	0.00424

Findings: We could see that almost 87% of users have past due more than 1 day, which is too common, thus it's inappropriate to be a standard. Hence, we have considered users who're due for more than 30 days as the "bad customers" for our model.

Feature Engineering

Transforming the features available to identify "bad customers" for our model:

Based on our EDA of the credit dataset, we have taken 30+ days as the indicator for a customer to be at risk.

Now we have to assign statuses to the credit data set per ID based on the below mapping -

- 1 : Not at risk (repayment within 30 days or no dues/loans)
- 0 : At risk (repayment done post 30 days)

Steps:

a. Grouping credit dataset by ID and figuring out the count of repayment statuses per month

```
# Grouping credit dataset by ID & figuring out the count of repayment statuses per month...

df = pd.DataFrame(credit.groupby(["ID", "STATUS"])["STATUS"].count()).rename(columns={'STATUS': 'Freq'}).reset_index()
               ID STATUS Freq
     0 5001711
                          0
      1 5001711
     2 5001712
                          0
                             10
      3 5001712
                                 9
     4 5001713
                                22
 94138 5150483
 94139 5150484
                                12
 94140 5150484
 94141 5150485
 94142 5150487
94143 rows × 3 columns
```

b. Mapping 0 & 1 based on our assignment of good and bad customers

```
# Based on our definition of Good/Bad customers, assigning 1 & 0 mapping...
df["STATUS"] = df["STATUS"].map({"X": 1, "C": 1, "0": 1, "1": 0, "2": 0, "3": 0, "4": 0, "5": 0})
df
           ID STATUS Freq
    0 5001711
                          3
    1 5001711
                          1
    2 5001712
                         10
    3 5001712
                          9
    4 5001713
                         22
94138 5150483
                         18
94139 5150484
                         12
 94140 5150484
 94141 5150485
                          2
 94142 5150487
                         30
94143 rows × 3 columns
```

c. Grouping similar statuses (1&0) together and finding aggregate frequency

```
# Grouping similar statuses (1 & 0) together per ID & finding aggregate frequency...
df2 = pd.DataFrame(df.groupby(["ID", "STATUS"])["Freq"].sum()).reset_index()
df2.head(20)
         ID STATUS Freq
 0 5001711
 1 5001712
                      19
                  1
 2 5001713
                      22
 3 5001714
                      15
                  1
 4 5001715
                      60
 5 5001717
                  1
                      22
 6 5001718
                       2
 7 5001718
                  1
                      37
 8 5001719
                      43
 9 5001720
                  0
                       7
 10 5001720
                  1
                      29
```

d. For IDs with multiple statuses we are taking the status which occurs most frequently & dropping the other statuses. To achieve this, first we order the dataset in descending order of their frequencies per ID and drop the duplicates.

```
# For IDs with multiple statuses, we are taking the status which occurs most frequently & dropping the other status...
# To achieve this, first we order the dataset in descending order of frequencies per ID & drop the duplicates...
df3 = df2.sort_values(by=["ID", "Freq"], ascending=False)
df3.tail(20)
        ID STATUS Freq
19 5001732
                     36
18 5001731
                     11
17 5001730
                     61
16 5001729
15 5001728
14 5001726
13 5001725
12 5001724
11 5001723
10 5001720
 9 5001720
   5001719
                     43
```

e. Once the new variables are created, we then merge this with the application dataset

```
df4["STATUS"].value_counts()
     45800
      185
Name: STATUS, dtype: int64
# Creating a copy of the dataframe to be joined to the application dataframe, dropping the frequency
df5 = df4.drop("Freq",axis=1)
# inner join on ID...
final_df = pd.merge(left=application, right=df5, how="inner", on="ID")
final_df
E DAYS_BIRTH DAYS_EMPLOYED FLAG_MOBIL FLAG_WORK_PHONE FLAG_PHONE FLAG_EMAIL OCCUPATION_TYPE CNT_FAM_MEMBERS Age STATUS
       -12005
                       -4542
                                                                                                                   2.0 32
       -21474
                       -1134
                                                                                          Security staff
                                                                                                                   2.0 58
       -19110
                        -3051
                                                                                                                   1.0 52
                                                                                           Sales staff
```

Correlation Analysis

Correlation analysis on the feautres... (numerical features) final_df.corr()

	ID	CNT_CHILDREN	AMT_INCOME_TOTAL	DAYS_BIRTH	DAYS_EMPLOYED	FLAG_MOBIL	FLAG_WORK_PHONE	FLAG_PHONE
ID	1.000000	0.028878	-0.017667	0.056016	-0.038043	NaN	0.079215	0.009879
CNT_CHILDREN	0.028878	1.000000	0.033691	0.339357	-0.229379	NaN	0.048091	-0.016291
AMT_INCOME_TOTAL	-0.017667	0.033691	1.000000	0.067908	-0.168611	NaN	-0.037746	0.017245
DAYS_BIRTH	0.056016	0.339357	0.067908	1.000000	-0.616213	NaN	0.179054	-0.028659
DAYS_EMPLOYED	-0.038043	-0.229379	-0.168611	-0.616213	1.000000	NaN	-0.242869	-0.007233
FLAG_MOBIL	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
FLAG_WORK_PHONE	0.079215	0.048091	-0.037746	0.179054	-0.242869	NaN	1.000000	0.311644
FLAG_PHONE	0.009879	-0.016291	0.017245	-0.028659	-0.007233	NaN	0.311644	1.000000
FLAG_EMAIL	-0.046979	0.015960	0.086681	0.105625	-0.085648	NaN	-0.034838	0.010455
CNT_FAM_MEMBERS	0.026624	0.889114	0.023750	0.304020	-0.221241	NaN	0.064527	-0.004221
Age	-0.056036	-0.339240	-0.067715	-0.999691	0.616077	NaN	-0.179464	0.028494
STATUS	-0.004003	0.008133	-0.004382	-0.008715	0.004165	NaN	0.000644	0.001990

Heatmap of the correlation analysis...

ig, ax = plt.subplots(figsize=(12,12))

sns.heatmap(final_df.corr(),annot=True)

Dummies Creation

```
Column
                                                       Non-Null Count Dtype
                                                       25134 non-null
0
   ID
                                                                       int64
   CNT_CHILDREN
1
                                                       25134 non-null
                                                                       int64
    AMT_INCOME_TOTAL
                                                       25134 non-null
                                                                       float64
   DAYS_BIRTH
                                                       25134 non-null
                                                                       int64
4
   DAYS_EMPLOYED
                                                       25134 non-null
                                                                       int64
   FLAG_MOBIL
                                                       25134 non-null
                                                                       int64
6
   FLAG_WORK_PHONE
                                                       25134 non-null
                                                                       int64
   FLAG_PHONE
                                                       25134 non-null
                                                                      int64
8
   FLAG_EMAIL
                                                       25134 non-null
                                                                       int64
9
   CNT_FAM_MEMBERS
                                                       25134 non-null
                                                                       float64
10
   Age
                                                       25134 non-null
                                                                       int64
11
   STATUS
                                                       25134 non-null
                                                                       int64
12 CODE_GENDER_M
                                                       25134 non-null uint8
13 FLAG_OWN_CAR_Y
                                                       25134 non-null
                                                                       uint8
14 FLAG_OWN_REALTY_Y
                                                       25134 non-null
                                                                      uint8
15 NAME_INCOME_TYPE_Pensioner
16 NAME_INCOME_TYPE_State servant
                                                       25134 non-null uint8
                                                       25134 non-null uint8
17 NAME_INCOME_TYPE_Student
                                                       25134 non-null uint8
18
   NAME_INCOME_TYPE_Working
                                                       25134 non-null
19 NAME_EDUCATION_TYPE_Higher education
                                                       25134 non-null
   NAME_EDUCATION_TYPE_Incomplete higher
20
                                                       25134 non-null
                                                                       uint8
21 NAME_EDUCATION_TYPE_Lower secondary
                                                       25134 non-null
                                                                       uint8
22 NAME_EDUCATION_TYPE_Secondary / secondary special 25134 non-null
                                                                       uint8
   NAME_FAMILY_STATUS_Married
                                                       25134 non-null
                                                                       uint8
```

```
24 NAME_FAMILY_STATUS_Separated 25134 non-null uint8
25 NAME_FAMILY_STATUS_Single / not married 25134 non-null uint8
26 NAME_FAMILY_STATUS_Widow 25134 non-null uint8
                                                                25134 non-null uint8
25134 non-null uint8
25134 non-null uint8
27 NAME_HOUSING_TYPE_House / apartment
28 NAME_HOUSING_TYPE_Municipal apartment
29 NAME_HOUSING_TYPE_Office apartment
30 NAME_HOUSING_TYPE_Rented apartment
30 NAME_HOUSING_TYPE_Rented apartment
31 NAME_HOUSING_TYPE_With parents
32 OCCUPATION_TYPE_Cleaning staff
33 OCCUPATION_TYPE_Cooking staff
34 OCCUPATION_TYPE_Core staff
                                                                 25134 non-null uint8
25134 non-null uint8
                                                                  25134 non-null uint8
                                                                  25134 non-null uint8
                                                                  25134 non-null uint8
                                                                  25134 non-null uint8
35 OCCUPATION_TYPE_Drivers
36 OCCUPATION_TYPE_HR staff
                                                                  25134 non-null uint8
                                                                 25134 non-null uint8
37 OCCUPATION_TYPE_High skill tech staff
38 OCCUPATION_TYPE_IT staff
                                                                  25134 non-null uint8
                                                                  25134 non-null uint8
39 OCCUPATION_TYPE_Laborers
40 OCCUPATION_TYPE_Low-skill Laborers
                                                                 25134 non-null uint8
41 OCCUPATION_TYPE_Managers
42 OCCUPATION_TYPE_Medicine staff
43 OCCUPATION_TYPE_Private service staff
                                                                  25134 non-null uint8
                                                               25134 non-null uint8
25134 non-null uint8
25134 non-null uint8
44 OCCUPATION_TYPE_Realty agents
45 OCCUPATION_TYPE_Sales staff
                                                                  25134 non-null uint8
25134 non-null uint8
                                                                  25134 non-null uint8
48 OCCUPATION_TYPE_Waiters/barmen staff 25134 non-null uint8
```

Model Creation & Selection

We have applied Logistic Regression and Decision Tree on this dataset.

First, we used Logistic Regression to figure out the significant features. After we got the significant features after looking at the p-values, we then tried to use the significant features only and build a regression model to check the accuracy of the same.

After that we used the same significant features to build a decision tree.

Finally, we compare the accuracy of both the results obtained to imply which one to use for our prediction model.

Logistic Regression - Model 1

```
# Logistic Regression Model-1...
import statsmodels.api as sm

X = sm.add_constant(X)

model = sm.Logit(y, X)
result = model.fit(method='newton')

# Evaluate Model...
display(result.summary())
```

Logit Regression Results						
Dep. Variable:	STATUS	No. Observations:	25134			
Model:	Logit	Df Residuals:	25087			
Method:	MLE	Df Model:	46			
Date:	Tue, 20 Dec 2022	Pseudo R-squ.:	0.1001			
Time:	16:59:22	Log-Likelihood:	-689.67			
converged:	False	LL-Null:	-766.39			
Covariance Type:	nonrobust	LLR p-value:	1.755e-13			

	coef	std err	z	P> z	[0.025	0.975]
CNT_CHILDREN	4.9942	0.627	7.960	0.000	3.764	6.224
AMT_INCOME_TOTAL	8.486e - 08	9.59e - 07	0.088	0.930	-1.8e-06	1.97e-06
DAYS_BIRTH	-0.0005	0.001	-0.571	0.568	-0.002	0.001
DAYS_EMPLOYED	-0.0002	5.72e-05	-2.662	0.008	-0.000	-4.01e-05
FLAG_MOBIL	24.3168	523.774	0.046	0.963	-1002.261	1050.895
FLAG_WORK_PHONE	0.0794	0.239	0.333	0.739	-0.389	0.548
FLAG_PHONE	0.1530	0.226	0.677	0.499	-0.290	0.596
FLAG_EMAIL	-0.2100	0.278	-0.755	0.450	-0.755	0.335
CNT_FAM_MEMBERS	-4.6871	0.595	-7.883	0.000	-5.852	-3.522
Age	-0.1726	0.326	-0.530	0.596	-0.811	0.466
CODE_GENDER_M	-0.6342	0.244	-2.598	0.009	-1.113	-0.156
FLAG_OWN_CAR_Y	0.1283	0.210	0.610	0.542	-0.284	0.541
FLAG_OWN_REALTY_Y	0.0706	0.206	0.342	0.732	-0.334	0.475

NAME_INCOME_TYPE_Pensioner	-4.1999	0.714	- 5.882	0.000	-5.599	-2.800
NAME_INCOME_TYPE_State servant	1.0405	0.458	2.270	0.023	0.142	1.939
NAME_INCOME_TYPE_Student	24.6789	1.03e+06	2.4e-05	1.000	-2.02e+06	2.02e+06
NAME_INCOME_TYPE_Working	0.3317	0.203	1.637	0.102	-0.065	0.729
NAME_EDUCATION_TYPE_Higher education	-9.8698	523.771	-0.019	0.985	-1036.442	1016.702
NAME_EDUCATION_TYPE_Incomplete higher	-9.9928	523.771	-0.019	0.985	-1036.565	1016.580
NAME_EDUCATION_TYPE_Lower secondary	-10.5966	523.771	-0.020	0.984	-1037.170	1015.977
NAME_EDUCATION_TYPE_Secondary / secondary special	-9.8364	523.771	-0.019	0.985	-1036.409	1016.736
NAME_FAMILY_STATUS_Married	-0.5398	0.408	-1.322	0.186	-1.340	0.260
NAME_FAMILY_STATUS_Separated	- 5.0276	0.850	-5.916	0.000	-6.693	-3.362
NAME_FAMILY_STATUS_Single / not married	-5.1837	0.662	- 7.825	0.000	- 6.482	-3.885
NAME_FAMILY_STATUS_Widow	-5.8979	0.898	-6.571	0.000	- 7.657	-4.139

NAME_HOUSING_TYPE_House / apartment	0.1752	1.021	0.172	0.864	-1.826	2.176
NAME_HOUSING_TYPE_Municipal apartment	-0.3416	1.099	-0.311	0.756	-2.495	1.812
NAME_HOUSING_TYPE_Office apartment	-1.6687	1.118	-1.493	0.136	-3.860	0.523
NAME_HOUSING_TYPE_Rented apartment	1.1943	1.447	0.825	0.409	-1.642	4.030
NAME_HOUSING_TYPE_With parents	0.6522	1.102	0.592	0.554	-1.508	2.812
OCCUPATION_TYPE_Cleaning staff	-0.6513	0.862	-0.756	0.450	-2.341	1.038
OCCUPATION_TYPE_Cooking staff	-0.9305	0.793	-1.174	0.240	-2.484	0.623
OCCUPATION_TYPE_Core staff	-0.7698	0.643	-1.197	0.231	-2.031	0.491
OCCUPATION_TYPE_Drivers	-0.1777	0.713	-0.249	0.803	-1.575	1.219
OCCUPATION_TYPE_HR staff	13.8238	2048.478	0.007	0.995	-4001.120	4028.767
OCCUPATION_TYPE_High skill tech staff	-0.3159	0.784	-0.403	0.687	-1.852	1.220
OCCUPATION_TYPE_IT staff	-3.2600	0.779	- 4.186	0.000	-4.786	-1.734
OCCUPATION_TYPE_Laborers	-0.0192	0.663	-0.029	0.977	-1.318	1.280
OCCUPATION_TYPE_Managers	-0.6016	0.658	-0.914	0.361	-1.892	0.689
OCCUPATION_TYPE_Medicine staff	-1.4977	0.705	-2.123	0.034	- 2.880	-0.115
OCCUPATION_TYPE_Private service staff	-0.3606	1.169	-0.308	0.758	- 2.652	1.931
OCCUPATION_TYPE_Realty agents	16.4092	8867.568	0.002	0.999	-1.74e+04	1.74e+04
OCCUPATION_TYPE_Sales staff	-0.5228	0.652	-0.801	0.423	-1.801	0.756
OCCUPATION_TYPE_Secretaries	-1.3049	1.172	-1.114	0.265	-3.602	0.992
OCCUPATION_TYPE_Security staff	-1.4095	0.722	-1.952	0.051	-2.825	0.006
OCCUPATION_TYPE_Waiters/barmen staff	-0.7706	1.178	-0.654	0.513	-3.079	1.538

Hypothesis to be considered:

H0: The coefficient of the parameter is not significant in the LR model

HA: The coefficient of the parameter is significant in the LR model

Hypothesis testing:

If p-value < alpha (0.05) => Reject Null Hypothesis

Conclusions based on Model-1 p-value analysis:

- 1. Education type => Insignificant (along w/dummies)
- 2. Housing type => Insignificant (along w/dummies)
- 3. Occupation type => Insignificant (most of them; hence removing the entire feature)
- 4. Keeping Amount_Income => Since it seems to be a feature which realistically should be contributing to the model

Logistic Regression - Model 2

```
# Logistic Regression Model-2...
X2 = sm.add_constant(X2)

model = sm.Logit(y, X2)
result = model.fit(method='newton')
# Evaluate Model...
display(result.summary())
```

Logit Regression Results						
Dep. Variable:	STATUS	No. Observations:	25134			
Model:	Logit	Df Residuals:	25120			
Method:	MLE	Df Model:	13			
Date:	Tue, 20 Dec 2022	Pseudo R-squ.:	0.06148			
Time:	19:43:32	Log-Likelihood:	-719.27			
converged:	False	LL-Null:	-766.39			
Covariance Type:	nonrobust	LLR p-value:	2.146e - 14			

	coef	std err	z	P> z	[0.025	0.975]
const	13.8897	1.240	11.204	0.000	11.460	16.320
CNT_CHILDREN	4.5861	0.603	7.604	0.000	3.404	5.768
AMT_INCOME_TOTAL	1.355e-07	9.21e - 07	0.147	0.883	-1.67e-06	1.94e-06
DAYS_EMPLOYED	-0.0002	5.53e - 05	- 3.049	0.002	-0.000	-6.03e-05
CNT_FAM_MEMBERS	-4.3277	0.577	- 7.497	0.000	-5.459	-3.196
CODE_GENDER_M	-0.5089	0.194	-2.627	0.009	-0.889	-0.129
NAME_INCOME_TYPE_Pensioner	-4.1312	0.688	-6.006	0.000	-5.479	-2.783
NAME_INCOME_TYPE_State servant	0.7472	0.443	1.688	0.091	-0.120	1.615
NAME_INCOME_TYPE_Student	15.9774	1.48e+04	0.001	0.999	- 2.9e+04	2.9e+04
NAME_INCOME_TYPE_Working	0.3726	0.200	1.864	0.062	-0.019	0.764
NAME_FAMILY_STATUS_Married	-0.4135	0.399	-1.037	0.300	-1.195	0.368
NAME_FAMILY_STATUS_Separated	-4.5355	0.825	- 5.495	0.000	-6.153	-2.918
NAME_FAMILY_STATUS_Single / not married	-4.7405	0.650	- 7.289	0.000	-6.015	-3.466
NAME_FAMILY_STATUS_Widow	-5.3978	0.860	-6.278	0.000	-7.083	-3.712

Model Accuracy: Logistic Regression

```
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.model selection import cross val score
from sklearn.metrics import confusion matrix
# Test train split of data...
x = pd.DataFrame(df6[["CNT_CHILDREN",
                       "AMT_INCOME_TOTAL",
                       "DAYS_EMPLOYED",
                       "CNT_FAM_MEMBERS",
                       "CODE_GENDER_M",
                       "NAME INCOME TYPE Pensioner",
                       "NAME_INCOME_TYPE_State servant",
                       "NAME_INCOME_TYPE_Student",
                       "NAME_INCOME_TYPE_Working",
                       "NAME_FAMILY_STATUS_Married"
                       "NAME_FAMILY_STATUS_Separated",
                       "NAME_FAMILY_STATUS_Single / not married",
                       "NAME_FAMILY_STATUS_Widow"]])
y = pd.DataFrame(df6[['STATUS']])
trainX, testX, trainY, testY = train_test_split(x, y, test_size=0.2)
```

```
# Binomial Logistic Regression Model Defination...
log_reg = LogisticRegression(solver='newton-cg')
log_reg.fit(trainX, trainY)
y_pred = log_reg.predict(testX)

print('Accuracy: {:.2f}'.format(accuracy_score(testY, y_pred)))
print('Error rate: {:.2f}'.format(1 - accuracy_score(testY, y_pred)))
```

```
Accuracy: 1.00
Error rate: 0.00 | 1 | 25013 | 0 | 121
```

We observed that due to the unbalanced nature of the dataset, we are getting a over-fitted model. To overcome this issue, we have applied SMOTE oversampling technique on the minority class.

Oversampling: SMOTE

One approach to addressing imbalanced datasets is to oversample the minority class. The simplest approach involves duplicating examples in the minority class, although these examples don't add any new information to the model. Instead, new examples can be synthesized from the existing examples. This is a type of data augmentation for the minority class and is referred to as the Synthetic Minority Oversampling Technique, or SMOTE for short.

Model Accuracy on training data: Logistic regression

```
# Applying LR model again using balanced datasets...
# Binomial Logistic Regression Model Defination...
log_reg = LogisticRegression(solver='newton-cg')
log_reg.fit(X_balance, Y_balance)
y_pred_test = log_reg.predict(testX)
y_pred_train = log_reg.predict(X_balance)
print('Accuracy: {:.2f}'.format(accuracy_score(testY, y_pred_test)))
print('Error rate: {:.2f}'.format(1 - accuracy_score(testY, y_pred_test)))
# Plotting confusion matrix for training dataset from Logistic Regression Model..
plot_confusion_matrix(log_reg, X_balance, Y_balance)
print(classification_report(Y_balance, y_pred_train))
             precision recall f1-score support
           0
                  0.79
                             0.76
                                       0.78
                                                20007
                  0.77
                             0.80
                                       0.79
                                                20007
                                       0.78
                                                40014
   accuracy
                                                40014
   macro avg
                  0.78
                             0.78
                                       0.78
                                                40014
weighted avg
                  0.78
                             0.78
                                       0.78
                              - 16000
                              - 14000
        15246
                              - 12000
label
                               10000
True I
                               8000
                  16032
                               6000
          Predicted label
```


Model Accuracy on test data: Logistic regression

```
# Applying LR model again using balanced datasets...
# Binomial Logistic Regression Model Defination...
log_reg = LogisticRegression(solver='newton-cg')
log_reg.fit(X_balance, Y_balance)
y_pred_test = log_reg.predict(testX)
y_pred_train = log_reg.predict(X_balance)
print('Accuracy: {:.2f}'.format(accuracy_score(testY, y_pred_test)))
print('Error rate: {:.2f}'.format(1 - accuracy_score(testY, y_pred_test)))
# Plotting confusion matrix for test dataset from Logistic Regression Model...
plot_confusion_matrix(log_reg, testX, testY)
print(classification_report(testY, y_pred_test))
              precision
                           recall f1-score
                                               support
           0
                   0.01
                             0.38
                                       0.02
                                                    21
           1
                   1.00
                             0.80
                                       0.89
                                                  5006
                                       0.80
                                                  5027
    accuracy
                   0.50
                             0.59
                                       0.45
                                                  5027
  macro avg
                   0.99
                             0.80
                                       0.89
                                                  5027
weighted avg
                               - 4000
  0
                              - 3000
True label
                               2000
                   4020
  1
                               1000
          Predicted label
```


Model Accuracy on Training Data: Decision Tree

Model Accuracy on test data: Decision Tree

```
dtclf = DecisionTreeClassifier (max_depth = 4, random_state = 12)
dtclf = dtclf.fit(X_balance, Y_balance)

# Applying the model on the Test dataset...
y_pred_dt_test = dtclf.predict(testX)
print (classification_report(testY, y_pred_dt_test))
fpr_t, tpr_t, thresholds_t = metrics.roc_curve(testY,y_pred_dt_test,drop_intermediate=False)
roc_auc = metrics.auc(fpr_t, tpr_t)
disp = metrics.RocCurveDisplay(fpr=fpr_t, tpr=tpr_t, roc_auc=roc_auc,
estimator_name='Decision Tree Classifier')
disp.plot() # doctest: +SKIP
plt.plot([0, 1], [0, 1], 'r--')
plt.show()
cm_global = confusion_matrix(testY, y_pred_dt_test)
cm_display_global = ConfusionMatrixDisplay(cm_global,display_labels=[0,1]).plot()
Python
```

	precision	recall	f1-score	support
0	0.01	0.19	0.01	21
1	1.00	0.85	0.91	5006
accuracy			0.84	5027
macro avg	0.50	0.52	0.46	5027
weighted avg	0.99	0.84	0.91	5027


```
classifiers = {"LogisticRegression" : LogisticRegression(solver="newton-cg"),
"DecisionTree" : DecisionTreeClassifier(max_depth= 4, random_state = 12)}
result_table = pd.DataFrame(columns=['classifiers','accuracy','presicion','recall','auc'])
for key, classifier in classifiers.items():
    classifier.fit(X_balance, Y_balance)
    y_predict = classifier.predict(testX)
    yproba = classifier.predict_proba(testX)[::,1]
    fpr, tpr, _ = roc_curve(testY, y_predict)
    auc = roc_auc_score(testY, y_predict)
    result_table = result_table.append({'classifiers': key,
                                         'accuracy': accuracy_score(testY, y_predict),
                                        'presicion': precision_score(testY, y_predict,
                                        average='weighted'),
                                        'recall': recall_score(testY, y_predict,
                                        average='weighted'),
                                        'auc': auc}, ignore_index=True)
result_table.set_index('classifiers', inplace=True)
                                                                                         Python
```


- We observe that the accuracy of both Logistic Regression & Decision Tree models are comparable (around 80%)
- But going by the ROC curves, area under curve for Logistic Regression model is better (0.59) compared to Decision Tree model (0.51)
- Hence we conclude that Logistic Regression model would be more appropriate