E. Vasily the Bear and Painting Square

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

Vasily the bear has two favorite integers n and k and a pencil. Besides, he's got k jars with different water color paints. All jars are numbered in some manner from 1 to k, inclusive. The jar number i contains the paint of the i-th color.

Initially the bear took a pencil and drew four segments on the coordinate plane. All of them end at point (0,0). They begin at: $(0,2^n)$, $(0,-2^n)$, $(2^n,0)$, $(-2^n,0)$. Then for each i=1,2,...,n, the bear drew two squares. The first square has the following vertex coordinates: $(2^i,0)$, $(-2^i,0)$, $(0,-2^i)$, $(0,2^i)$. The second square has the following vertex coordinates: $(-2^{i-1},-2^{i-1})$, $(-2^{i-1},2^{i-1})$, $(2^{i-1},-2^{i-1})$, $(2^{i-1},2^{i-1})$. After that, the bear drew another square: (1,0), (0,-1), (0,1). All points mentioned above form the set of points A.

The sample of the final picture at n = 0

The sample of the final picture at n = 2

The bear decided to paint the resulting picture in k moves. The i-th move consists of the following stages:

- 1. The bear chooses 3 distinct points in set A so that any pair of the chosen points has a segment on the picture between them. The chosen points and segments mark the area that mustn't contain any previously painted points.
- 2. The bear paints the area bounded by the chosen points and segments the i-th color.

Note that after the k-th move some parts of the picture can stay unpainted.

The bear asked you to calculate, how many distinct ways there are to paint his picture. A way to paint the picture is a sequence of three-element sets of points he chose on each step. Two sequences are considered distinct if there is such number i ($1 \le i \le k$), that the i-th members of these sequences do not coincide as sets. As the sought number can be rather large, you only need to calculate the remainder after dividing it by number 1000000007 ($10^9 + 7$).

Input

The first line contains two integers n and k, separated by a space $(0 \le n, k \le 200)$.

Output

Print exactly one integer — the answer to the problem modulo $100000007 (10^9 + 7)$.

Examples

input		
0 0		
output		
1		
input		

```
input
0 1
output
8
```

input	
0 2	
output	

input	
1 1	
output	
32	