

IN THE SPECIFICATION:

Page 22, third full paragraph, please amend as follows:

When depletion layer width and photoconductive current are plotted by their respective logarithms, a straight line with a slope of approximately 1 is obtained. This suggests that photoconductive current is brought about by the depletion layer region. The relationship between depletion layer width W_d and photoconductive current is represented by the expression (8) below.

Page 32, second full paragraph, please amend as follows:

Fig. 15 shows the results of a simulation of the V_g - I_d characteristics of a thin film transistor with the sheet resistance of the n-type region as the parameter. When the sheet resistance of the LDD regions is $20 \text{ k}\Omega/\square$ or less, the OFF current suddenly increases. Therefore, it is necessary that the sheet resistance of the LDD regions be at least $20 \text{ k}\Omega/\square$ or higher. On the other hand, when the sheet resistance of the LDD regions is $100 \text{ k}\Omega/\square$ or higher, the ON current of

Serial No.: 10/018,795

A2
the transistor diminishes and operation of the panel becomes unstable. Therefore, it is preferable that the sheet resistance of the LDD regions be within the range of $20 \text{ k}\Omega/\square$ to $100 \text{ k}\Omega/\square$.

Page 52, second full paragraph, please amend as follows:

A3
In addition, the relationship between the length ΔL of the LDD regions, the channel width length L of the channel region, and the channel width W of the channel region is represented by expression (4') below:
