Sprawozdanie – laboratorium nr 12

Zastosowanie ekstrapolacji Richardsona do całkowania przy użyciu wzorów Simpsona i Milne.

Kinga Pyrek, 01.06.2020

1. Wstęp teoretyczny

Ekstrapolacja to prognozowanie wartości lub funkcji poza zakresem, dla którego posiadamy dane. Polega na dopasowaniu do istniejących danych funkcji i wyliczenie jej wartości w szukanym punkcie.

Ekstrapolacja Richardsona

Rozwijamy funkcję f(x) w szereg Taylora w otoczeniu punktów $x \pm h$:

$$f(x+h) = \sum_{k=0}^{\infty} \frac{1}{k!} h^k f^{(k)}(x)$$
 (1)

$$f(x-h) = \sum_{k=0}^{\infty} \frac{1}{k!} (-1)^k h^k f^{(k)}(x)$$
 (2)

$$f(x+k) = f(x) + hf^{(1)}(x) + \frac{h^2}{2}f^{(2)}(x) + \frac{h^3}{6}f^{(3)}(x) + \cdots$$
 (3)

$$f(x-k) = f(x) - hf^{(1)}(x) + \frac{h^2}{2}f^{(2)}(x) - \frac{h^3}{6}f^{(3)}(x) + \dots$$
 (4)

Następnie odejmujemy od siebie dwa wyrażenia

$$f(x+h) - f(x-h) = 2hf^{(1)}(x) + \frac{2}{3!}h^3f^{(3)}(x) + \frac{2}{5!}h^5f^{(5)}(x) + \cdots$$
 (5)

Aby obliczyć pierwszą pochodną przegrupowujemy wyrazy

$$f^{(1)}(x) = \frac{f(x+h) - f(x-h)}{2h} - \left[\frac{1}{3!} h^2 f^{(3)}(x) + \frac{1}{5!} h^4 f^{(5)}(x) + \frac{1}{7!} h^6 f^{(7)}(x) + O(h^8) \right], \tag{6}$$

co ogólnie możemy zapisać

$$L_{h,1} = \emptyset(h) + a_2 h^2 + a_4 h^4 + a_6 h^6 + \cdots$$
 (7)

co możemy zinterpretować jako przybliżenie $f^{(1)}(x)$. Podstawmy za h - h/2:

$$L_{h/2,1} = \emptyset\left(\frac{h}{2}\right) + a_2 \frac{h^2}{4} + a_4 \frac{h^4}{16} + a_6 \frac{h^6}{64} + \cdots$$
 (8)

oraz obliczmy różnicę

$$L_2 = \left(4^1 L_{\frac{h}{2},1} - L_{h,1}\right) / \left(4^1 - 1\right)$$

$$= \frac{4}{3} \emptyset \left(\frac{h}{2}\right) - \frac{1}{3} \emptyset (h) - a_4 \frac{h^4}{4} - 5a_6 \frac{h^6}{16} - \dots$$
(9)

 L_1 przybliża $f^{(1)}(x)$ z dokładnością $O(h^4)$. W L_2 stosujemy podstawienie:

$$\psi(h) = \frac{4}{3}\phi\left(\frac{h}{2}\right) - \frac{1}{3}\phi(h) \tag{10}$$

$$L_{h,2} = \psi(h) + b_4 h^4 + b_6 h^6 + \cdots \tag{11}$$

$$L_{\frac{h}{2},2} = \psi\left(\frac{h}{2}\right) + b_4 \frac{h^4}{16} + b_6 \frac{h^6}{64} \tag{12}$$

$$L_3 = (4^2 L_{\frac{h}{2},2} - L_{h,2})/(4^2 - 1)$$

$$= \frac{16}{15}\psi\left(\frac{h}{2}\right) - \frac{1}{15}\psi(h) - b_6\frac{h^6}{20}\psi(h) - \cdots$$
 (13)

Podstawiamy do L_2 :

$$\varphi(h) = \frac{16}{15}\psi\left(\frac{h}{2}\right) - \frac{1}{15}\psi(h) \tag{14}$$

I otrzymujemy

$$L_{h,3} = \varphi(h) + c_6 h^6 + c_8 h^8 + \cdots \tag{15}$$

Powyższy proces powtarzamy M razy i otrzymujemy coraz lepsze przybliżenie pierwszej pochodnej (dokładność jej przybliżenia jest na poziomie $O(h^{2M})$, gdzie h<<1).

Algorytm ekstrapolacji Richardsona

1) Wybieramy h i obliczamy

$$D_{n,0} = \phi\left(\frac{h}{2^n}\right), \qquad n = 0,1,...,M$$
 (16)

2) Wyliczamy

$$D_{n,k} = \frac{4^k}{4^{k-1}} D_{n,k-1} - \frac{1}{4^{k-1}} D_{n-1,k-1}$$

$$k = 1,2, ..., M$$

$$n = k, k+1, ..., M$$
(17)

Rekurencyjnie obliczając wyrazy według wzorów (17) otrzymujemy przybliżenia

$$D_{n,0} = L + O(h^{2})$$

$$D_{n,1} = L + O(h^{4})$$

$$D_{n,2} = L + O(h^{6})$$

$$D_{n,3} = L + O(h^{8})$$
...
$$D_{n,k-1} = L + O(h^{2k}), h \to 0$$
(18)

Proces ten polega na rekurencyjnym wyznaczaniu pewnej wielkości (całka, pochodna), co definiuje wzór:

$$D_{n,k-1} = L + \sum_{j=k}^{\infty} A_{j,k} (\frac{h}{2^n})^{2j}.$$
 (19)

Z połączeniem podpunktu drugiego algorytmu otrzymamy $D_{m,m}$. Kolejne kroki algorytmu zapisujemy w tablicy:

Wyznaczane są po kolei pierwsza kolumna, druga,..., M-ta. Wyraz $D_{M,M}$ to teoretycznie najdokładniejsze przybliżenie pochodnej lub całki.

2. Zadanie do wykonania

2.1. Opis problemu

Mamy daną funkcję $f(x) = \ln(x^3 + 3x^2 + x + 0.1)sin(18x)$. Obliczymy wartość całki

$$I = \int_{0}^{1} f(x)$$

Stosując ekstrapolację Richardsona. Całki obliczymy dwoma metodami:

Metoda Simpsona polega na przybliżeniu funkcji funkcją kwadratową, a następnie obliczeniu pola powierzchni pod nią i zsumowaniu wszystkich takich pól. W każdym kroku korzystamy z dwóch podprzedziałów.

$$S = \sum_{i=0}^{\frac{N}{2}-1} \frac{h_w}{3} (f_{2i} + 4f_{2i+1} + f_{2i+2})$$
 (20)

$$h_w = \frac{b - a}{2^{w+1}}$$

Metoda Milne polega na tym samym co metoda Simpsona, z tym że funkcję przybliżamy wielomianem czwartego stopnia, w każdym kroku korzystamy z 4 podprzedziałów.

$$S = \sum_{i=0}^{\frac{N}{4}-1} \frac{4h}{90} \left(7f_{4i} + 32f_{2i+1} + 12f_{2i+2} 32f_{2i+3} + 7f_{2i+4} \right)$$

$$h_w = \frac{b-a}{2^{w+1}}$$
(21)

Przyjmujemy oznaczenia h_w - szerokość podprzedziałów, N+1-ilośc węzłów kwadratury, b i a są granicami całkowania.

2.2. Wyniki

Napisany program pozwolił nam na otrzymanie macierzy D o M=9 wierszach.

Dla metody Simpsona macierz przedstawia się następująco:

```
-0,97141
0,408385
           0,576894
-0.220968 \quad -0.430753 \quad -0.497929
          -0,177019 -0,160104 -0,154741
-0,188006
-0,186575
          -0.186097 -0.186703
                                 -0,187125
                                           -0,187252
-0,186492
          -0,186465 \quad -0,186489
                                 -0,186486
                                           -0,186483 \quad -0,186483
                                 -0,186487
-0,186487
           -0.186486 -0.186487
                                            -0,186487
                                                       -0,186487
                                                                  -0,186487
                                                                  -0,186487
                                                                             -0,186487
-0,186487
          -0,186487
                     -0,186487
                                -0,186487
                                           -0,186487 -0,186487
-0,186487
          -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487
```

Natomiast dla metody Milne:

```
0,442087
-0,262925
           -0,497929
-0,185809
           -0,160104
                      -0,137582
-0,186479
           -0,186703
                      -0,188476 -0,189284
                      -0,186475
-0,1864887
           -0,186489
                                 -0,186443
                                            -0,186432
                                 -0,186487
                                            -0,186487
-0,1864887
           -0,186487
                      -0,186487
                                                        -0,186487
           -0,186487
-0,186487
                      -0,186487
                                 -0,186487
                                            -0,186487
                                                        -0,186487
                                                                  -0,186487
           -0,186487
                                                        -0,186487
-0.186487
                      -0.186487
                                 -0.186487
                                            -0,186487
                                                                  -0.186487
                                                                              -0.186487
-0,186487
           -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487 -0.186487
```

Pierwsza kolumna jest wynikiem metody Simpsona (lub Milne'a), wraz z wierszami liczba podprzedziałów zwiększa się dwukrotnie. Kolejne kolumny są obliczane na bazie poprzednich stosując ekstrapolację.

W obu metodach otrzymaliśmy w przybliżeniu wynik poprawny z teorią **–0.186486896**. Widzimy, że dla metody Milne wcześniej otrzymaliśmy najbardziej dokładny wynik – w wierszu 6, natomiast w metodzie Simpsona w wierszu 7. Ostatnie wyrazy w wierszu stanowią najlepsze przybliżenie w danym kroku. W każdym wierszu widzimy coraz lepsze przybliżenie, a ostatnie są wypełnione tymi samymi wartościami, więc została uzyskana zbieżność i -0,186487 to najlepsze przybliżenie, jakie uzyskaliśmy.

3. Wnioski

Dzięki napisanemu programowi udało nam się poprawnie obliczyć wartość całki dwoma metoda przy użyciu ekstrapolacji Richardsona. Metodą Milne szybciej dostaliśmy najlepsze przybliżenie. Ponieważ wraz z wierszami ilość przedziałów zwiększa się dwukrotnie liczba podprzedziałów, a co za tym idzie zmniejszamy krok całkowania i otrzymujemy dokładniejsze wyniki, co widać w trójkątnych macierzach.

Źródła

1.Wstęp teoretyczny był wzorowany na wykładzie autorstwa dr hab. inż. Tomasza Chwieja pt. "Całkowanie przy użyciu kwadratur Newtona-Cotesa i kwadratur Gaussa".