

Low Cost JFET Input Operational Amplifiers

ADTL082/ADTL084

FEATURES

TL082/TL084 compatible
Low input bias current: 10 pA maximum
Offset voltage
5.5 mV maximum (ADTI 0824/ADTI 084

5.5 mV maximum (ADTL082A/ADTL084A) 9 mV maximum (ADTL082J/ADTL084J)

±15 V operation Low noise: 16 nV/√Hz Wide bandwidth: 5 MHz Slew rate: 20 V/µs CMRR: 80 dB minimum

Total harmonic distortion: 0.001% Supply current: 1.2 mA typical

Unity-gain stable

APPLICATIONS

General-purpose amplification
Power control and monitoring
Active filters
Industrial/process control
Data acquisition
Sample and hold circuits
Integrators
Input buffering

PIN CONFIGURATIONS

Figure 1. 8-Lead SOIC N (R-8)

Figure 2. 8-Lead MSOP (RM-8)

Figure 3. 14-Lead SOIC_N (R-14)

Figure 4. 14-Lead TSSOP (RU-14)

GENERAL DESCRIPTION

The ADTL082 and ADTL084 are JFET input amplifiers that provide industry-leading performance over TL08x devices. The ADTL082A and ADTL084A are improved versions of TL08x A, I, and Q grades. The ADTL082J and ADTL084J are industry alternatives to the TL08x standard and C grades.

The ADTL08x family offers lower noise, offset voltage, offset drift over temperature, and bias current over the TL08x. In addition, the ADLT08x family has better common-mode rejection and slew rates.

These op amps are ideal for various applications, including process control, industrial and instrumentation equipment,

active filtering, data conversion, buffering, and power control and monitoring.

The A grade amplifiers are available in lead-free packaging. The standard grade amplifiers are available in both leaded and lead-free packaging.

The ADTL082A and ADTL084A are specified over the extended industrial (-40°C to +125°C) temperature range. The ADTL082J and ADTL084J are specified over the commercial (0°C to 70°C) temperature range.

TABLE OF CONTENTS

1/07—Revision 0: Initial Version

Features	1
Applications	1
Pin Configurations	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
REVISION HISTORY	
11/07—Rev. A to Rev. B Changes to Ordering Guide10	0
4/07—Rev. 0 to Rev. A Changes to Table 1	3

I nermai Resistance	
Power Sequencing	4
ESD Caution	4
Typical Performance Characteristics	5
Outline Dimensions	
Ordering Guide	10

SPECIFICATIONS

 V_{CC} = ± 15 V, V_{CM} = 0 V, T_{A} = 25°C, over all grades, unless otherwise noted.

Table 1.

			J Grade		A Grade				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Offset Voltage	Vos			2	9		1.5	5.5	mV
		$0^{\circ}C \leq T_A \leq +70^{\circ}C$			10			8	mV
		-40 °C \leq T _A \leq $+125$ °C						9	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$0^{\circ}C \leq T_A \leq +70^{\circ}C$		15					μV/°C
		-40 °C \leq T _A \leq $+125$ °C					10		μV/°C
Input Bias Current	I _B			2	100		2	100	рA
		$0^{\circ}C \leq T_A \leq +70^{\circ}C$			3			3	nA
		-40 °C \leq T _A \leq $+125$ °C						5	nA
Input Offset Current	los			2	100		2	100	рA
		$0^{\circ}C \leq T_A \leq 70^{\circ}C$			3			3	nA
		-40 °C \leq T _A \leq $+125$ °C						5	nA
Input Voltage Range	V _{CM}		-11		+15	-11		+15	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -11 \text{ V to } +15 \text{ V}$	80	86		80	86		dB
Input Impedance	R _{IN}			10 ¹²			10 ¹²		Ω
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega,$ $V_0 = -10 V to +10 V$	100	200		100	200		V/mV
		$0^{\circ}C \leq T_A \leq 70^{\circ}C$	90	200		90	200		V/mV
		-40 °C \leq T _A \leq $+125$ °C				50	200		V/mV
OUTPUT CHARACTERISTICS									
Maximum Output Voltage Swing	Vo	$R_L = 10 \text{ k}\Omega$	±12	±13.5		±13	±13.5		V
		$0^{\circ}C \leq T_A \leq +70^{\circ}C$	±12			±13			V
		-40 °C \leq T _A \leq $+125$ °C				±13			V
		$R_L = 2 k\Omega$				±12.5	±13.3		V
		$0^{\circ}C \leq T_A \leq +70^{\circ}C$	±10			±12			V
		-40 °C \leq T _A \leq $+125$ °C				±12			V
Short-Circuit Output Current	Isc			±27			±27		mA
POWER SUPPLY									
Power Supply Rejection Ratio	PSRR	$V_{DD} = 8 \text{ V to } 36 \text{ V}$	80	86		80	86		dB
Supply Current per Amplifier	I _{SY}			1.2	1.8		1.2	1.8	mA
		$0^{\circ}C \leq T_A \leq +70^{\circ}C$			1.9			1.9	mA
		-40°C ≤ T _A ≤ +125°C						2.0	mA
DYNAMIC PERFORMANCE									
Slew Rate	SR			20			20		V/µs
Gain Bandwidth Product	GBP			5			5		MHz
Phase Margin	Фм			63			63		Degrees
Total Harmonic Distortion	THD	$V_{IN} = 6 \text{ V rms}, f = 1 \text{ kHz},$ $A_V = +1, R_L = 2 \text{ k}\Omega$		0.001			0.001		%
Channel Separation	CS	f = 10 kHz		120			120		dB
NOISE PERFORMANCE									
Voltage Noise Density	e _n	f = 1 kHz		16			16		nV/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	±18 V or +36 V
Input Voltage	±V supply
Differential Input Voltage	±V supply
Output Short Circuit to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Temperature (Soldering 60 sec)	300°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 3. Thermal Resistance

Package Type	Ө ЈА	Ө лс	Unit
8-Lead SOIC_N (R-8)	158	43	°C/W
8-Lead MSOP (RM-8)	210	45	°C/W
14-Lead SOIC_N (R-14)	120	36	°C/W
14-Lead TSSOP (RU-14)	180	35	°C/W

POWER SEQUENCING

The op amp supplies must be established simultaneously with, or before, the application of any input signals.

If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Maximum Peak Output Voltage vs. Frequency

Figure 6. Maximum Peak Output Voltage vs. Frequency

Figure 7. Maximum Peak Output Voltage vs. Frequency

Figure 8. Maximum Peak Output Voltage vs. Free-Air Temperature

Figure 9. Maximum Peak Output Voltage vs. Load Resistance

Figure 10. Maximum Peak Output Voltage vs. Supply Voltage

Figure 11. Large Signal Differential Voltage Amplification vs. Free-Air Temperature

Figure 12. Supply Current Per Amplifier vs. Free-Air Temperature

Figure 13. Supply Current vs. Supply Voltage

Figure 14. Total Power Dissipation vs. Free-Air Temperature

Figure 15. Input Bias Current vs. Free-Air Temperature

Figure 16. Input Bias Current vs. Free-Air Temperature

Figure 17. Large Signal Response

Figure 18. Small Signal Response

Figure 19. Common-Mode Rejection Ratio vs. Free-Air Temperature

Figure 20. Voltage Noise Density vs. Frequency

Figure 21. Total Harmonic Distortion vs. Frequency

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 22. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 23. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 24. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

Figure 25. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADTL082JR	0°C to +70°C	8-Lead SOIC_N	R-8	
ADTL082JR-REEL	0°C to +70°C	8-Lead SOIC_N	R-8	
ADTL082JR-REEL7	0°C to +70°C	8-Lead SOIC_N	R-8	
ADTL082JRZ ¹	0°C to +70°C	8-Lead SOIC_N	R-8	
ADTL082JRZ-REEL ¹	0°C to +70°C	8-Lead SOIC_N	R-8	
ADTL082JRZ-REEL71	0°C to +70°C	8-Lead SOIC_N	R-8	
ADTL082ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADTL082ARZ-REEL ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADTL082ARZ-REEL71	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADTL082ARMZ-R2 ¹	−40°C to +125°C	8-Lead MSOP	RM-8	A18
ADTL082ARMZ-REEL ¹	−40°C to +125°C	8-Lead MSOP	RM-8	A18
ADTL084JR	0°C to +70°C	14-Lead SOIC_N	R-14	
ADTL084JR-REEL	0°C to +70°C	14-Lead SOIC_N	R-14	
ADTL084JR-REEL7	0°C to +70°C	14-Lead SOIC_N	R-14	
ADTL084JRZ ¹	0°C to +70°C	14-Lead SOIC_N	R-14	
ADTL084JRZ-REEL ¹	0°C to +70°C	14-Lead SOIC_N	R-14	
ADTL084JRZ-REEL71	0°C to +70°C	14-Lead SOIC_N	R-14	
ADTL084ARZ ¹	-40°C to +125°C	14-Lead SOIC_N	R-14	
ADTL084ARZ-REEL ¹	-40°C to +125°C	14-Lead SOIC_N	R-14	
ADTL084ARZ-REEL71	−40°C to +125°C	14-Lead SOIC_N	R-14	
ADTL084ARUZ ¹	-40°C to +125°C	14-lead TSSOP	RU-14	
ADTL084ARUZ-REEL ¹	-40°C to +125°C	14-lead TSSOP	RU-14	

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

٨	DI	FI (NO	1	/ N	ŊΤ	'I ſ	10	1
н	וע	L	IJΟ	ZI	Ά	IJΙ	Ll	JO	4

NOTES

