

UNIVERSIDAD BANCARIA DE MÉXICO

"Constancia Unidad y trabajo"

INGENIERÍA EN SISTEMAS COMPUTACIONALES

RECONOCIMIENTO DE VALIDEZ OFICIAL DE ESTUDIOS DE LA SECRETARÍA DE EDUCACIÓN PÚBLICA No. 2022241 DE FECHA 13 DE SEPTIEMBRE DE 2002.

NOMBRE DE LA MATERIA:

Métodos numéricos

NOMBRE DEL PROFESOR (A):

Mauricio Gómez Gallegos

CUATRIMESTRE:

6to Cuatrimestre

TÍTULO DEL TRABAJO O INVESTIGACIÓN:

Documentación Programa #4

NOMBRE DE ALUMNO(S):

Francisco de Jesus Pincle Puente

FECHA DE ENTREGA:

02 de junio 2025

CALCULADORA DE RAÍCES NO LINEALES

1. INTRODUCCIÓN

El presente documento describe detalladamente el funcionamiento y la estructura de un programa desarrollado en HTML, CSS y JavaScript que permite calcular las raíces de ecuaciones no lineales utilizando los métodos numéricos de Bisección y Newton-Raphson. Además, se incluye una gráfica de la función para visualización del comportamiento de la misma.

2. OBJETIVO DEL PROGRAMA

El objetivo principal del programa es facilitar el cálculo de las raíces de funciones no lineales introducidas por el usuario. A través de una interfaz intuitiva y un diseño visual atractivo, el usuario puede seleccionar el método de resolución, definir los parámetros necesarios y obtener los resultados de manera inmediata junto con una representación visual.

3. TECNOLOGÍAS UTILIZADAS

- **HTML5**: Para la estructura de la página web.
- CSS3: Para el diseño y estilo visual con un fondo animado tipo "neón gamer".
- **JavaScript**: Para la lógica de los métodos numéricos.
- **Math.js**: Librería para evaluar funciones matemáticas y derivadas.
- Chart.js: Librería para graficar funciones.

4. INTERFAZ DE USUARIO

La interfaz permite ingresar:

- La función f(x) que se desea analizar.
- El método a utilizar (Bisección o Newton-Raphson).
- Los parámetros necesarios según el método:
 - o Para Bisección: extremos del intervalo aa y bb.
 - o Para Newton-Raphson: valor inicial x0x_0.
- El margen de error tolerado.

Se proporciona un botón "Calcular" que desencadena el proceso de cálculo y graficación.

5. FUNCIONALIDAD DEL PROGRAMA

5.1 Método de Bisección

Este método parte de un intervalo [a,b][a, b] donde se cumple que $f(a) \cdot f(b) < 0$ (a) \ f(b) < 0. Se aplica la fórmula:

$$c=rac{a+b}{2}$$

Se evalúa f(c)f(c) y se determina si la raíz está entre [a,c][a, c] o [c,b][c, b]. Este proceso se repite hasta que el error sea menor al margen definido.

5.2 Método de Newton-Raphson

Este método parte de una aproximación inicial x0x_0 y aplica la fórmula iterativa:

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)}$$

Donde f'(x)f'(x) es la derivada de la función f(x), obtenida mediante la librería Math.js.

6. VISUALIZACIÓN GRÁFICA

La gráfica de la función se genera utilizando la librería Chart.js. Se muestra:

- La curva de f(x)f(x) dentro de un intervalo adecuado.
- Un punto resaltado indicando la raíz encontrada.

7. VALIDACIONES

El programa valida:

• Que $f(a) \cdot f(b) < 0$ para usar Bisección.

- Que la derivada $f'(x) \neq 0$ para Newton-Raphson.
- Que los campos numéricos sean válidos.

8. ESTILO Y DISEÑO

El estilo está diseñado con una temática futurista tipo gamer:

- Fondo animado con gradientes oscuros y colores neón.
- Tipografía tipo consola.
- Botones con efectos hover llamativos.

9. INSTRUCCIONES DE USO

- 1. Ingresar la función deseada (por ejemplo: $exp(x^2)-2$).
- 2. Elegir el método de resolución.
- 3. Definir los parámetros del método.
- 4. Presionar "Calcular".
- 5. Ver el resultado numérico y la gráfica correspondiente.

10. CONCLUSIÓN

Este programa constituye una herramienta interactiva y educativa para el aprendizaje y aplicación de los métodos numéricos más utilizados en el cálculo de raíces de funciones no lineales. Su diseño moderno y su funcionalidad didáctica lo hacen ideal para estudiantes y docentes de matemáticas, ingeniería y ciencias computacionales.