ISC 4241 - Activity 1, Part 1

Problem 1.1

```
In [5]:
         import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          import statistics
         covid = pd.read_csv('COVID_08312020.csv')
In [6]:
In [7]:
         covid.head(10)
               Country Total Cases Total Deaths TOTCases_1M TOTDeath_!M
Out[7]:
                                                                              TotalTested
            Afghanistan
                              38162
                                            1402
                                                           977
                                                                           36
                                                                                   102598
         1
                Albania
                               9380
                                             280
                                                          3260
                                                                           97
                                                                                    57618
         2
                                             107
                                                            79
                                                                           3
                                                                                    64747
                Angola
                               2624
         3
              Argentina
                             408426
                                            8457
                                                          9023
                                                                          187
                                                                                  1242269
                                                                          296
                                                                                   205450
         4
                              43750
                                             877
                                                         14760
                Armenia
         5
               Australia
                              25670
                                             611
                                                          1005
                                                                           24
                                                                                  6167592
         6
                 Austria
                              27166
                                             733
                                                          3013
                                                                                  1172092
                                                                           81
         7
              Azerbaijan
                              36309
                                             531
                                                          3576
                                                                                   917027
                                                                           52
         8
                Bahrain
                              51574
                                             189
                                                         30150
                                                                          110
                                                                                  1100729
             Bangladesh
                                            4248
                                                          1884
                             310822
                                                                           26
                                                                                  1537749
```

```
In [8]: plt.scatter(covid['Total Cases'], covid['Total Deaths'])
    plt.show()
    sns.lmplot(x='Total Cases', y='Total Deaths', data=covid)
```


Out[8]: <seaborn.axisgrid.FacetGrid at 0x7f60eb8de410>


```
In [9]: plt.scatter(covid['TOTCases_1M'], covid['TOTDeath_!M'])
  plt.show()
  sns.lmplot(x='TOTCases_1M', y='TOTDeath_!M', data=covid)
```


Out[9]: <seaborn.axisgrid.FacetGrid at 0x7f60eb86add0>


```
In [37]: from numpy import minimum
    mean = [covid['Total Cases'].mean(), covid['Total Deaths'].mean(), covid['TOTCases_1M']
    mean = [round(item,3) for item in mean]

median = [covid['Total Cases'].median(), covid['Total Deaths'].median(), covid['TOTCases_1M']
    max1 = [max(covid['Total Cases']), max(covid['Total Deaths']), max(covid['TOTCases_1M'])
    std = [statistics.stdev(covid['Total Cases']), statistics.stdev(covid['Total Deaths'])
    std = [round(item,3) for item in std]

var = [statistics.variance(covid['Total Cases']), statistics.variance(covid['Total Deaths'])
    var = [round(item,3) for item in var]
```

```
skew = [covid['Total Cases'].skew(skipna=True), covid['Total Deaths'].skew(skipna=True
skew = [round(item,3) for item in skew]

In [38]: data = [mean, median, min1, max1, std, var, skew]
data
    df = pd.DataFrame({
        'mean': mean,
        'median': median,
        'minimum': min1,
        'maximum': max1,
        'variance': var,
        'standard deviation': std,
        'skewness': skew

}, index= ['Total Cases', 'Total Deaths', 'TOTCases_1M', 'TOTDeath_!M', 'TotalTested']

df
```

Out[38]:

	mean	median	minimum	maximum	variance	standard deviation	skewness
Total Cases	181486.137	24367.0	355	6173236	4.767454e+11	6.904675e+05	6.836
Total Deaths	6091.115	411.0	1	187224	4.393447e+08	2.096055e+04	6.343
TOTCases_1M	4177.388	1789.0	11	42230	3.814673e+07	6.176304e+03	3.066
TOTDeath_!M	115.187	34.0	0	871	3.215569e+04	1.793200e+02	2.229
TotalTested	3141261.633	404944.0	120	90410000	1.280726e+14	1.131691e+07	6.328

Note for Output: Variance and Standard Deviation are rounded to 3 decimal places but the whole number is too large to fit in table output.

```
In [14]:
    print('\nPearson Correlation Coefficient on Columns')
    print(covid.iloc[: , 1:].corr(method='pearson'))
    print('\nSpearman Correlation Coefficient on Columns')
    print(covid.iloc[: , 1:].corr(method='spearman'))
```

Pearson Correlation Coefficient or	n columns
------------------------------------	-----------

	Total Cases	Total Deaths	TOTCases_1M	TOTDeath_!M	TotalTested
Total Cases	1.000000	0.940320	0.306869	0.361500	0.659495
Total Deaths	0.940320	1.000000	0.310425	0.525759	0.620081
TOTCases_1M	0.306869	0.310425	1.000000	0.524348	0.129914
TOTDeath_!M	0.361500	0.525759	0.524348	1.000000	0.190367
TotalTested	0.659495	0.620081	0.129914	0.190367	1.000000

Spearman Correlation Coefficient on Columns

	Total Cases	Total Deaths	TOTCases_1M	TOTDeath_!M	TotalTested
Total Cases	1.000000	0.919164	0.735747	0.719670	0.736226
Total Deaths	0.919164	1.000000	0.643341	0.794517	0.668932
TOTCases_1M	0.735747	0.643341	1.000000	0.889098	0.456534
TOTDeath_!M	0.719670	0.794517	0.889098	1.000000	0.448563
TotalTested	0.736226	0.668932	0.456534	0.448563	1.000000