

Camada de Enlace de Rede

Redes

Características	LAN	WAN				
Abrangência	Pequena (Prédio, Campus)	Grande (Longas distâncias)				
Velocidade acesso	"Alta"	"Baixa"				
Conectividade	Local	Distante – Op. de Telecom.				
Administração	Privada	Centralizada (Regulamentada)				

Dispositivos de LAN:

Hub

Bridge

Switch Ethernet

Router IP

Switch L3

Dispositivos de WAN:

CSU/DSU

X.25 or Frame Relay Switch

Router IP

Camada Interface de Rede

Aplicação	HTTP(80) SSH(22) FTP(21/20) TELNET(23) SMTP(25) POP3(110) IMAP(143) DNS(53) DHCP(67/68) TFTP(69) SNMP(161/162 RIP (520) BGP(179)							
Transporte	TCP(6)	UDP(17)						
Internet/Rede	· ·	x800)						
Int. Rede/Enlace		ARP/RARP(0x806/0x835) VAN: PPP HDLC X.25 FR						
Físico	RS232 V35 V	/21 ETH ISDN						

Padrões Físicos e de Enlace

OSI

Data Link (frames)

Physical (bits, signals, clocking)

LAN

WAN

Subcamadas de Enlace

- Funções:
 - Dividir os dados em QUADROS (FRAMES);
 - Prover o transporte dos QUADROS ao longo do meio físico (met./óptico) ou rádio;
 - Permitir/controlar o acesso a um meio compartilhado (Ethernet halfduplex);
 - Transformar o meio físico de comunicação numa linha livre de erros;
 - Verificar QUADRO com erro e descartá-lo ou corrigi-lo;
 - Pode oferecer:
 - Controle de fluxo;
 - Links orientados ou não-orientados a conexão;

LANs Topologias

QUADROS são passados entre dispositivos diretamente conectados

LANs Formato dos QUADROS

SNAP (Protocolo de Sub-rede de Acesso)

AA	AA	03	OUI 3	protocolo 2	dados
802.2 LLC					
DSAP 1	SSAP 1	CTRL 1	Dados da can	nada superior >0	
			•		

IEEE 802.6 / FDDI

preâmbulo 16	SD 2	FC 2	DA 12	SA 12	802.2 LLC	FCS 8	ED ₂	FS 2	

IEEE 802.5 / Token Ring

		SD ₁	AC 1	FC ₁	DA 6	SA 6	802.2 LLC	FCS 4		FS ₁
--	--	-----------------	------	-----------------	------	------	-----------	-------	--	-----------------

IEEE 802.3

preâmbulo 8	DA 6	SA 6	tamanho 2	802.2 LLC	FCS 4
----------------	------	------	-----------	-----------	-------

Ethernet II

preâmbulo 8	DA 6	SA 6	tipo 2	dados	FCS ₄
----------------	------	------	--------	-------	------------------

WANs Formato dos QUADROS

WAN Topologias

Topologia: Ponto a ponto

Meios: Metálico / Óptico / Rádio

Protocolos: DOCSIS / Metro Ethernet / PPP / HDLC / Frame Relay / X.25

WAN

Protocolos de Enlace

HDLC -- High-level Data Link Control

Protocolo de enlace para links WAN confiáveis

LAPB -- Link Access Protocol, Balanced

Enlace DTE-to-DCE para X.25 (Redes de Telecom. com baixa qualidade)

Frame Relay -- Simplified version of HDLC

Opera em mais altas velocidades, uso de redes públicas de telefonia

PPP -- Point-to-Point Protocol

Padrão de *facto* para *links* WAN de baixa velocidade sobre rede telefônica (xDSL

- Digital Subscriber Line ou Linha Digital de Assinante).

DOCSIS -- Data Over Cable Service Interface Specification

Padrão para links em Redes HFC - Hybrid Fiber Coax.

METRO ETHERNET

Padrão para Redes Metropolitanas (MANs) operando sobre Redes Óticas.

Camada Física Funções

- Responsável pela transmissão dos bits através do canal de comunicação;
- Especifica:
 - A representação dos bits (níveis de voltagens, duração dos bits, codificação transições zeros/uns);
 - Forma e nível dos pulsos ópticos;
 - Mecânica dos conectores;
 - Função de cada circuito do conector;
 - O meio físico:
 - Par trançado UTP Cat5e, Cat6, Cat6A. Cat7;
 - Fibras ópticias Multimodo ou Monomodo;
 - Cabo coaxial;
 - Wireless (microondas);
 - A codificação dos bits melhora a confiabilidade do meio, a recuperação do sincronismo (clock) e está relacionado a velocidade de transmissão:
 - NRZ Non Return to Zero;
 - HDB3
 - AMI Alternated Mark Inversion;
 - Manchester Usado na Ethernet.

Camada Física Interfaces

<u>DTE</u> Data Terminal Equipment Lado do dispositivo do usuário em um link WAN

DCE Data Circuit-terminating Equipment Lado do dispositivo da TELECOM em um link WAN (clock)

Outros:

V.24: Comunicação PC e modem telefônico;

G.703: conexão E1/T1;

EIA/TIA-449

LAN Tecnologias Ethernet / IEEE 802.3 Visão Geral

- O padrão Ethernet surgiu em 1972 nos laboratórios da Xerox (PARC - Palo Alto Research Center) com Robert Metcalfe
- Tratava-se de uma rede onde todas as estações compartilhavam o mesmo meio de transmissão. Um cabo coaxial
- A configuração utilizada para esta conexão foi a de barramento e utilizava uma taxa de transmissão de 2,94 Mbps

Robert Metcalfe optou pela palavra "ether" de maneira a descrever uma característica imprescindível do sistema: o meio físico era preenchido totalmente pelos bits para levar o sinal a

todas as estações

- A falta de padronização dificultava o progresso das pesquisas e a venda de equipamentos
- Com o intuito de resolver este problema foi homologado ao IEEE - *Institute of Electrical and Electronic Engineers*, em 1980, a responsabilidade de criar e administrar a padronização da Ethernet
- Desde a sua regulamentação pelo IEEE suas especificações foram totalmente disponibilizadas

- Esta padronização combinada com a facilidade na utilização e com sua robustez, resultou no largo emprego desta tecnologia em Redes de Computadores:
 - Alta penetração no mercado
 - Alto grau de interoperabilidade
- Evoluiu ao longo de quatro gerações:
 - Ethernet-padrão / IEEE 802.3 (10 Mbps)
 - Fast Ethernet / IEEE 802.3u (100 Mbps)
 - **Gigabit Ethernet / IEEE 802.3ab** (1 Gbps)
 - 10 Gigabit Ethernet / IEEE 802.3ae (10 Gbps)

- A tecnologia, basicamente, consiste de três elementos:
 - O meio físico
 - As regras de controle de acesso ao meio
 - O Quadro (Frame) Ethernet

- Os modos de transmissão são características importantes, podendo ser:
 - Half-duplex: cada estação transmite ou recebe informações, não acontecendo transmissão simultânea
 - Full-duplex: cada estação transmite e/ou recebe, podendo ocorrer transmissões simultâneas

- Em sua implementação original, o algoritmo de acesso CSMA/CD (Carrier Sense Multiple Access with Collision Detect) controla o acesso a um meio compartilhado utilizando cabo coaxial, operando no modo half-duplex
- É um padrão que define a operação da LAN nas camadas física e de enlace do modelo OSI

Ethernet / IEEE 802.3 Padrões Físicos e de Enlace

OSI

Data Link (frames)

Physical (bits, signals, clocking)

LAN

E					L	LC							
t h		IEEE 802.2											
е													
r n	8	8	8	8	8	8	8	8		M			
e	0	0	0	0	0	0	0	0		A			
t	2	2	2	2	2	2	2	2		C			
Ш	3	5	6	7	8	11	15	16					

LLC - Logical Link Control MAC - Media Access Control

- Em sua implementação original, o algoritmo de acesso CSMA/CD (Carrier Sense Multiple Access with Collision Detect) controla o acesso a um meio compartilhado utilizando cabo coaxial, operando no modo half-duplex
- É um padrão que define a operação da LAN nas camadas física e de enlace do modelo OSI

preâmbulo

SFD

DA

SA

Ethernet / IEEE 802 Formato de QUADROS

SNAP (Protocolo de Sub-rede de Acesso)

		A	AA	A	A		03		OUI 3	pr	rotocolo 2	da	dos
		802.	2 LLC	1	•				•				
		DSA	P 1	SSAP	1	CTR	L 1	Da	dos da cam	ada su	perior >0		
IEEE 802.6 / F	DDI												
preâmbulo Sl		2	FC	2 DA		12	SA	12	802.2 LLC		FCS	8 ED	\mathbf{P}_{2} FS \mathbf{P}_{2}
IEEE 802.5 /	IEEE 802.5 / Token Ring												
SD 1	AC	1	FC	1	DA	6	SA	6	802.2 LI	LC	FCS 2	₄ ED	1 FS 1
IEEE 802.3													
preâmbulo 7	SFD 1	D	OA 6	SA	6	ta	manho	2	802.2 L	LC	FCS .	4	
Ethernet II					·								

tipo

dados

FCS

24

LANs IEEE 802.3 Media Access Control (MAC)

- A IEEE 802 definiu métodos de acesso específicos para cada tipo de LAN
 - CSMA/CD para LANs Ethernet;
 - token-passing para LANs Token Ring e Token Bus.
- A camada física tem implementação específica para cada tipo de meio físico (cabo coaxial, par trançado e fibra óptica), variando também conforme as diversas tecnologias de LAN que se utilizam desses meios de transmissão.
 - Exemplos: 10Base2, 10Base5, 10BaseT, 10BaseF, 100BaseTX, 100BaseFX, 1000BaseT, 1000Base-SX, 1000Base-LX, 1000Base-CX, 10GBase-S, 10GBase-L, 10GBase-E

Ethernet / IEEE 802.3 Endereçamento MAC

O MAC address é gravado na ROM da placa de rede NIC (Network Interface Card).

Composto por 6 bytes = 48 bits = 12 dígitos hexadecimais separados por : ou -

Ethernet / IEEE802.3 Operação padrão

Acesso Múltiplo com Percepção de Portadora e Detecção de Colisão - CSMA/CD

Ethernet / IEEE802.3 Operação padrão

Ethernet / IEEE802.3 Operação padrão

Broadcast ou Multicast:

Broadcast: FFFF.FFFF.

Multicast: 0100.5EFF.FFFF ou 0300.0000.0000

LAN Tecnologias Ethernet / IEEE 802.3 CSMA/CD

CSMA/CD: Acesso Múltiplo com Percepção de Portadora e Detecção de Colisão

Protocolo utilizado em Redes Ethernet / IEEE 80233

- Um host que deseja transmitir escuta o meio;
 - Se estiver livre, transmite e continua escutando o meio para verificar se não houve colisão durante certo tempo (τ: time slot);
 - Se houver colisão, a transmissão para após certo tempo (jam = 32 bits = 1tp);
 - Tempo de obstrução/congestionamento mínimo que a transmissão deve completar para que se tenha a certeza de que todos as estações saibam que houve uma colisão
 - A seguir é determinado através de um algoritmo de recuo (back-off) um tempo de espera para fazer uma nova tentativa de transmissão.

- Existe um tempo mínimo para que possa ser detectada uma colisão por todos os terminais de um segmento de rede (também chamado de domínio de colisão);
- Este tempo está relacionado com o tempo máximo de propagação de um sinal pela rede mais os retardos de processamento nos hubs (tp - tempo de propagação máxima).

- No pior caso, para que todos os terminais possam detectar uma colisão este tempo corresponde a duas vezes ao tempo de propagação (2tp);
- Este tempo também é chamado de time slot da rede;
- E o retardo determinado pelo algoritmo de back-off é calculado em unidades de time slot, ou seja, um time slot (τ) é igual a 2tp

 O algoritmo de back-off determina o número (r) de janelas de transmissão - time-slots (τ) que às estação terão, após uma colisão, para fazer uma nova tentativa de transmissão

Para tanto, tem-se: time slot → T = 2tp, onde "tp" é o tempo de propagação máximo no meio físico

- No caso de haver uma colisão, todas as estações que percebem a colisão param de transmitir e determinam o instante de uma nova tentativa de transmissão;
- Isso ocorre através de um algoritmo de retardo, que no caso da Ethernet é do tipo binário exponencial, definido por:
 - A estação só retransmite ou uma nova estação só transmite no *slot time* r, escolhido arbitrariamente no intervalo dado por $0 \le r \le (2^i 1)$, onde;
 - i, indica o número de colisões consecutivas;
 - (2ⁱ 1), representa o limite superior de time-slots de espera

- Na primeira tentativa (i = 1). Após a colisão, as estações escolhem aleatoriamente um valor na escala {0, 1}. A probabilidade de duas estações escolherem o mesmo valor na escala é ½;
- Na segunda tentativa (i = 2). Após a 2ª colisão, as estações escolhem aleatoriamente um valor na escala {0, 1, 2, 3}. A probabilidade de duas estações escolherem o mesmo valor na escala é ¼;
- Na terceira tentativa (i = 3). Após a 3ª colisão, as estações escolhem aleatoriamente um valor na escala {0, 1, 2, 3, 5, 6, 7}. A probabilidade de duas estações escolherem o mesmo valor na escala é 1/8.
- A IEEE 802.3, define que i <= 10, ou seja, o valor máximo de r é fixado em 1024 janelas de transmissão (0 a 1023).
- Só depois de um **tempo T** , após iniciar a transmissão o terminal tem certeza de que adquiriu o meio.

LAN Tecnologias Ethernet / IEEE 802.3 Evolução da Camada Física

Ethernet / IEEE 802.3 Camada Física

- 10Base5 (Thick Ethernet ou Ethernet de cabo grosso)
 - **Transceptor** fornece caminhos distintos para a transmissão e recepção entre a estação e o barramento. Detecta a colisão no barramento coaxial (máx. 500m).
 - Admite a interligação de até 5 barramentos de 500m através de repetidores.

Ethernet / IEEE 802.3 Camada Física

- 10Base2 (Thin Ethernet, Ethernet de cabo fino ou Cheapernet)
 - **Transceptor** faz parte do NIC. Detecta a colisão no barramento coaxial fino (máx. 185m).
 - Instalação mais simples e de menor custo (conector T e cabo fino).

Ethernet / IEEE 802.3 Camada Física

- 10Base-T (Twisted-Pair Ethernet)
 - HUB permite uma topologia física em estrela.
 - Cada estação está interligada ao HUB por dois pares de fios trançados (máx. 100m).
 - Colisões acontecem. HUB não define domínios de colisões.
 - Maior facilidade para instalação, manutenção e teste

Ethernet / IEEE 802.3 Evolução

- Ethernet com Switch
 - Bridge multiporta
 - Se um host por porta, LB total para o host.

Ethernet / IEEE 802.3 Evolução

Operação Full-Duplex

- Implementado a partir da 10Base-T
- Aumento da vazão para 20Mbps
- Protocolo CSMA/CD desabilitado

 Nos Switches, foi necessário a inserção da subcamada MAC control, entre as subcamadas LLC e MAC, para oferecer controle de fluxo e

controle de erros.

Referências

- Comer, Douglas E., Interligação de Redes com TCP/IP
- Forouzan, Behrouz A, Comunicação de Dados e Redes de Computadores, 4. ed, Porto Alegre: AMGH, 2010.
- James F. Kurose, Redes de Computadores e a Internet