Formulitas:)

1 Física

1.1 Movimiento rectilíneo uniformemente variado

$$a = \frac{V_f - V_i}{D}$$

- a = aceleración $(\frac{m}{s^2})$
- V_f = Velocidad final $(\frac{m}{s})$
- V_i = Velocidad inicial $(\frac{m}{s})$
- D = Distancia (m)

1.2 Tiro parabólico

$$H = \frac{Vo^2 \cdot Sen^2\theta}{2g}$$

- H: altura máxima (m)
- v0: velocidad inicial $(\frac{m}{s})$
- \bullet $\theta :$ ángulo de la dirección del lanzamiento
- \bullet g: aceleración de la gravedad $\left(\frac{m}{s^2}\right)$

1.3 Caída libre

$$y = V_0 \cdot t + \frac{1}{2}g \cdot t$$

- y = distancia (m)
- V_0 = Velocidad inicial $\frac{m}{s}$
- \bullet t =tiempo (s)
- g = gravedad $(9.81\frac{m}{s^2})$

1.4 Trabajo, energía y potencia

 $Ec = \frac{1}{2}m \cdot v^2$

- Ec: energía cinética (J)
- m: masa (kg)
- v: velocidad $\left(\frac{m}{s}\right)$

$$P = \frac{T}{\Delta t}$$

- P: potencia (w)
- T: trabajo (J)
- Δ t: intervalo de tiempo (s)

1.5 Gravitación universal

 $F_G = \frac{G \cdot M_1 \cdot M_2}{d^2}$

 $\# F_G$: fuerza gravitacional (N)

#G: constante de gravitación universal ($\frac{N.m^2}{kg^2}$

 $\#\ M_1$: masa del cuerpo 1 (kg)

 $\#\ M_2$: masa del cuerpo 2 (kg)

#d: distancia (m)

1.6 Termodinámica

 $\Delta A = A_0 \cdot \beta \cdot \Delta T$

ΔA : dilatación superficial (m^2)

 $\# A_0$: área inicial (m^2)

β : coeficiente de dilatación superficial $(C^{\circ}-1)$

Δ : variación de temperatura (C°)

1.7 Electromagnetismo

$$\epsilon = \frac{\Delta\phi}{\Delta t}$$

 $\# \epsilon$: fem inducida (V)

$\Delta \phi$: variación del flujo magnético (Wb)

 $\# \Delta$ t: intervalo de tiempo (s)

1.8 Ecuación De Broglie

$$\lambda = \frac{h}{p} \ \lambda = \frac{h}{m \cdot v}$$

 $\# \lambda = \text{longitud de onda}$

h= constante de plank

p= movimiento de la partícula

m= masa de del corpúsculo

v= velocidad del corpúsculo

1.9 2da Ley de Newton

 $F = m \cdot a$

F = fuerza necesaria para mover un cuerpo u objeto (N)

m = masa de un cuerpo (kg)

a = unidad de aceleración $\left(\frac{m}{s^2}\right)$

2 Matemáticas

2.1 Ecuación de segundo grado

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 \bigstar La fórmula cuadrática nos ayuda a resolver cualquier ecuación cuadrática. Primero ponemos la ecuación en la forma $ax^2 + bx + c = 0$, donde a, b y c son coeficientes.

2.2 Binomio al cuadrado

$$(a+b)^2 = a^2 + 2ab + b^2$$

★ Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo.

2.3 Binomios conjugados

$$(a+b)(a-b) = a^2 - b^2$$

★ El producto de binomios conjugados, es decir la suma de dos cantidades multiplicadas por su diferencia es igual al cuadrado de la primera cantidad menos el cuadrado de la segunda.

2.4 Teorema de pitágoras

$$c^2 = a^2 + b^2$$

★ El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la longitud de la hipotenusa es igual a la suma de los cuadrados de las respectivas longitudes de los catetos.

2.5 Ley de los senos

$$\frac{a}{sen\alpha} \ \frac{b}{sen\beta} \ \frac{c}{sen\gamma}$$

★ La ley de los senos es la relación entre los lados y ángulos de triángulos no rectángulos (oblicuos). Simplemente, establece que la relación de la longitud de un lado de un triángulo al seno del ángulo opuesto a ese lado es igual para todos los lados y ángulos en un triángulo dado.

2.6 Cálculo Integral

- \clubsuit Sean a,k, y C constantes (números reales) y consideremos a u = u(x) como función de x y a u' = u'(x) como la derivada de u, entonces se cumplen las siguientes igualdades de integración:

2.7 Definición de derivada

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$$

 \clubsuit m_{tan} : es la pendiente de la tangente a f(x) en un punto

2.8 Notación sigma (Sumatoria)

□ Al calcular las áreas de regiones con frecuencia necesitamos considerar las suma de los primeros n enteros positivos,así como las sumas de sus cuadrados, cubos, etc.

 \Diamond

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

 \Diamond

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

2.9 Áreas y Volúmenes

$$A = \pi \cdot R(R+g)$$

 ∞ A = Área del cono

 $\infty \pi = 3.1415$

 $\infty~{\bf R}={\bf Radio}$ de la base del cono

 ∞ g = generatriz

$$V = \frac{\pi \cdot R^2 \cdot}{3} h$$

 ∞ V = Volumen del cono

 $\infty \pi = 3.1415$

 ∞ R = Radio de la base

 ∞ h = Altura

$$A = \frac{(P + P^1)}{2} \cdot a + A_B + A_B^1$$

⋈ A= Área del tronco de pirámide

 \bowtie P y P^1 = Perímetros de las báses

 \bowtie a = Apotema

 \bowtie h = Altura

$$V = \frac{(A_B + A_B^1 +)\sqrt{A^1 \cdot A_B^1} \cdot h}{3}$$

 \bowtie V = Volumen del tronco de la pirámide

 $\bowtie A_B, A_B^1 =$ Áreas de las bases

 \bowtie h = Altura

2.10 Conversión entre coordenadas cilíndricas y cartesianas

 $x = rcos\theta \ y = rsen\theta \ z = z$

 \heartsuit Estas ecuaciones se uti
izan para convertir de coordenadas cilíndricas a coordenadas rectangulares.

$$r^2 = x^2 + z^2 \tan \theta = \frac{y}{x} z = z$$

♡ Estas ecuaciones se utiizan para convertir de coordenadas rectangulares a coordenadas cilíndricas.