BDav-MI Bases de données avancées

Cristina Sirangelo IRIF, Université Paris Diderot cristina@liafa.univ-paris-diderot.fr

Infos pratiques

Cours: Cristina Sirangelo < cristina@liafa.univ-paris-diderot.fr>

 lundi 12h30 - 14h30, 6C

• TD/TP:

- Isabelle Fagnot <<u>fagnot@univ-mlv.fr</u>> vendredi 8h30-10h30, 2001&1008
- Sophie Laplante < laplante@liafa.univ-paris-diderot.fr > jeudi 10h30-12h30, 2001&1009
- Calendrier du cours
 - Cours du 18 janvier au 8 avril
 - ▶ TD/TP du 25 janvier au 15 avril
 - Exceptions (connues à ce jour)
 - lundi 28 mars : pas de cours (férié)
 - lundi 14 mars : pas de cours
 - lundi 7 mars : 2 séances de cours (12h30-14h30 et 17h-19h, amphi 6C)

Infos pratiques - suite

- Contrôle des connaissances (plan prévisionnel):
 - un projet en binôme
 - pré-soutenances dans le créneau du TP, soutenances en mai
 - examen final
- Mode de calcul de la note finale:
 - session I : 35% projet + 65% examen
 - session 2 : 35% projet + 65% examen
- Page du cours sur Didel : s'inscrire!
 - http://didel.script.univ-paris-diderot.fr/claroline/course/index.php?cid=BDAV
 - slides du cours, sujets des TP/projet, soumission des projets

Plus de détails en cours de route...

Pre-requis

- Connaissances requises
 - modèle relationnel des données
 - algèbre relationnelle
 - SQL
 - DDL (création et modification de tables)
 - syntaxe de base des requêtes
 - requêtes imbriquées
 - requêtes de mise à jour
 - agrégats
- Une expérience minimale avec un SGBD (Oracle ou PostgreSQL, ou MySQL, ou autre)
 - TP de ces cours sur PostgreSQL

Plan du cours

- Introduction
- Conception de systèmes d'information
 - Modélisation
 - conceptuelle (modèle E/R) rappel
 - logique (modèle relationnel) rappel
 - Théorie de la normalisation
 - SQL avancé et extensions de SQL
 - Triggers et fonctions stockées, Vues, Assertions
- Implémentation de systèmes de gestion de bases de données :
 - Organisation physique des données et indexation
 - Evaluation et optimisation de requêtes
 - Gestion des transactions et concurrence

• • • •

Textes conseillés pour ce cours et bibliographie

Database Systems Concepts
 par Silberschatz, Korth and Sudarshan, 6eme edition, McGraw-Hill.

 Database Systems: the Complete Book par H. Garcia-Molina, J.Ullman and J.Widom, Prentice Hall.

Database Management Systems
 par Raghu Ramakrishnan and Johannes Gehrke. McGraw-Hill.

Pour aller plus loin en théorie des bases de données :
 Foundations of Databases
 par S.Abiteboul, R.Hull and V.Vianu, Addison-Wesley, 1995.

Introduction

Sources (quelques slides empruntés et réadaptés) :

- cours pour les classes prépa B. Nguyen, U. d'Orléans
- cours database systems principles V. Vianu, UCSD

De la difficulté d'interroger les grandes masses de données ...

- Soit un ensemble de données représentant des élèves, les modules qu'ils suivent, et leurs notes.
- On souhaite interroger ces données pour retrouver les notes d'un élève, calculer des moyennes, etc.
 - Il faut modéliser ces données (existe-t-il une méthode générique simple applicable ?)
 - Il faut définir pour chaque opération d'interrogation, un programme qui réalise cette opération. On pourra définir des sous-programmes pour des tâches à réaliser fréquemment.
- On souhaite rendre les données pérennes :
 - Il faut les sauvegarder sur un média durable
 - Il faut gérer les pannes à tout moment
- On souhaite modifier les données
- On souhaite sécuriser l'accès aux données

Exemple : des élèves et leurs notes

 Définir une structure élève complexe qu'on va mettre dans un tableau. En soi c'est déjà compliqué.

Calculer la moyenne des notes d'un élève = écrire une fonction

```
float moyenne (eleve e) {
  float somme = 0;
  for(int i=0; i<e.notes.length; i++)
      somme+=e.notes[i];
  return somme/e.notes.length;
}</pre>
```

Exemple : des élèves et leurs notes - suite

- Stocker les données = définir un format de fichier et les procédures permettant de lire ou écrire des données.
- Modifier les données = écrire un programme
- Sécuriser les donnée = écrire (plusieurs) programmes
- Etc.

DEJA SUR CET EXEMPLE CE N'EST PAS SIMPLE !!

Les problèmes des systèmes à base de fichiers

- Format de fichiers non standards (chacun crée le sien)
- Redondance de données (incohérences possibles ou difficiles à gérer)
- Écriture d'un programme spécifique pour chaque interrogation : coûts de développement élevés, coûts de maintenance élevés
- Gestion des pannes à programmer soi même (l'OS ne suffit pas)
- Partage de données difficile
- Sécurisation des données difficile

BREF, TOUT EST À FAIRE SOI-MEME!

La réponse « SGBD » = un « package » comprenant :

Indépendance physique

- les applications interagissent avec un modele abstrait des données (modèle logique) indépendant de son implementation physique dans des structures de stockage
- Possibilité de modifier les structures de stockage sans modifier les applications
- Ecriture des applications par des non-spécialistes des fichiers

Indépendance logique

- Vues multiples (virtuelles) des données
- Possibilité d'ignorer une partie de données (les données d'autres applications)
- Possibilité de protéger (rendre confidentielles) certaines données

Manipulation aisée

Par le biais d'un langage déclaratif (SQL) équivalent à la logique du 1er ordre

•

La réponse « SGBD » = un « package » comprenant :

- Exécution et optimisation
 - Les requêtes sont traduites en un langage procédural (algèbre relationnelle) qui peut être optimisé automatiquement. (des années de recherche en BD...)
- Intégrité logique (contraintes d'intégrité)
 - Contrôle sur les données élémentaires et les relations (assertions)
 - Détection de mises à jour erronées (triggers)
- Intégrité physique (tolérance aux pannes)
 - gestion des transactions
- Partage de données (gestion de la concurrence)
 - tout le monde peut agir en même temps, chacun a l'air d'être seul
- Confidentialité
- Standardisation

•

SGBD en resumé

Un système générique, qui fournit une couche pour le stockage, organisation physique, et accès (interrogation manipulation) de données représentées dans un modèle logique

SGBD relationnel/ objets/ XML/...:
SGBD fondé sur un modele logique relationnel/ objets/ XML/...

Representation des données

- la conception d'un modele logique des données d'intérêt à partir du réel est à la charge de l'ingénieur (phase de modélisation)
- Le lien entre le modele logique et le modele physique de représentation des données est à la charge du SGBD (séparation des niveaux)

- Une base de données consiste en plusieurs tables (relations)
- Chaque table a un nom
- Dans une table chaque colonne a un nom
- les noms des colonnes d'une table sont appelés attributs
- Chaque attribut a un domaine associé (i.e. l'ensemble des valeurs possibles pour cet attribut)
- Les données dans chaque table sont un ensemble de lignes (tuples)
 - une ligne fournit à chaque attribut une valeur de son domaine

- Schéma de relation
 - le nom de la relation
 - l'ensemble des attributs
 - le domaine de chaque attribut
 - des contraintes d'intégrité qui doivent être respectées

Dans l'exemple, le schéma de la relation est :

STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)
Strings Strings 10-digits Strings 10-digits integers reals

Contrainte : deux étudiants différents ne peuvent pas avoir le même SSN (clef)

• Instance de relation. Le contenu actuel de la relation : un ensemble de lignes (tuples) sur les attributs, dont les valeurs sont prises dans les domaines des attributs, et qui respectent les contraintes d'intégrité

Schéma relationnel : un ensemble de schémas de relations + contraintes

```
STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)
Strings Strings 10-digits Strings 10-digits integers reals
```

```
COURSE (Id, Title)
integers Strings
```

EXAM (Student-ssn, Course-Id)

Strings integers

Contraintes:

- deux étudiants différents ne peuvent pas avoir le même SSN (clef)
- deux cours différents ne peuvent pas avoir le même ld (clef)
- Les valeurs de Student-SSN dans EXAM apparaissent aussi dans la relation STUDENT (clef étrangère)
- Les valeurs de Course-Id dans EXAM apparaissent aussi dans la relation COURSE (clef étrangère)

 Instance de base de données relationnelle : un ensemble composé d'une instance de chaque relation du schéma, qui satisfait toutes les contraintes

STUDENT

Name	SSN	Phone	Adress	OfficePhone	Age	GPA
Bayer	347294	333	Albyn Pl.	367	18	3.24
Ashly	5784673	466	Queen St.	390	20	3.53
Davidson	4357387	589	Princes St.	678	25	3.25

COURSE

Course-Id	Title	
12	CS	
34	DB	

EXAM

Student-SSN	Course-Id		
347294	12		
5784673	12		
4357387	34		
347294	34		

Modélisation : conception du modèle logique

 Comment choisir le modèle relationnel le plus approprié pour representer les données d'intérêt?

- Approche "brute force":
 - identifier les attributs qu'on veut représenter
 - (décomposition) les répartir dans plusieurs relations pour garantir des "bonnes propriétés" du schéma (voir plus tard pour "bonnes propriétés")

Modélisation : conception du modèle logique

- Comment choisir le modèle relationnel plus approprié pour representer les données d'intérêt ?
 - Approche "haut-niveau" (dite conceptuel)
 - (modélisation conceptuelle) utiliser un modèle de données plus abstrait que le modèle relationnel
 - E/R, UML, ODL...: notions abstraites d'entités, relations, classes, etc. pour représenter les données d'intérêt
 - traduire le résultat de la modélisation conceptuelle dans le modèle relationnel (traduction entre modèles, souvent automatisable)
 - Si on a bien fait la modélisation conceptuelle, le schéma relationnel produit a souvent des "bonnes propriétés", mais cela n'est pas garanti
 - Si ce n'est pas le cas, raffiner le modèle relationnel obtenu (ultérieure décomposition) ou bien revenir sur la modélisation conceptuelle

Modélisation à plusieurs niveaux

