Titulo del Proyecto

Integrantes: Autor1 y Autor2 Entrega 1: Modelo Matemático Teórico Modelado, Simulación y Optimización

Departamento de Ingeniería de Sistemas y Computación Universidad de Los Andes Bogotá, Colombia

1 Contexto

- *Explicar el contexto del problema que se quiere solucionar (Mínimo 2 párrafos).
- *Describir en palabras las limitaciones del problema y qué es lo que se desea maximizar o minimizar.

Fig. 1. Ejemplo de figura en Latex.

2 Conjuntos, Parámetros y Variables

*Describir por medio de tablas los conjuntos, parámetros y variables de decisión que se requieren para plantear el modelo matemático.

Table 1. Conjuntos, Parámetros y Variables de decisión.

Sets and Parameters	Description
N	Nodes set.
S	States set.
O	Source node.
d	Destination node.
st	State at which we want to obtain the minimum
	cost path from the Source to the Destination.
C_{it}^{jul}	Link cost from the node i at the state t to the
	node j at the state u at the network state l .

Table 2. Variables de decisión

Variables	Description
$\overline{X_{it}^{jul}}$	Determines if the link at the state l from the node i at
	the state t to the node j at the state u is selected
	for building the path towards the <i>Destination</i> (Binary variable).
$Y_{i,l}$	Determines if the node i at the state l is selected as a
	forwarding node for building the path towards
	the Destination (Binary variable).

3 Función Objetivo y Restricciones

*Expresar matemáticamente la función objetivo (F.O) y las restricciones que delimiten el problema.

*Explicar en palabras la F.O y cada una de las restricciones teniendo en cuenta las delimitaciones del problema. En otras palabras, explicar el significado de cada restricción en el sentido de cómo ayuda a solucionar o delimitar el problema.

*Tener en cuenta la mayor cantidad de limitaciones que pueda tener el problema.

$$min(\sum_{i \in N} \sum_{j \in N} C_{ij} X_{ij}) \tag{1}$$

$$\sum_{j \in N} X_{ij} = 2 \qquad \forall i \in N \mid i = 1$$
 (2)

$$X_{ij} = 0 \qquad \forall i \in N \forall i \in N \mid i = j$$
 (3)

La F.O indica que debemos tener en cuenta la...

La restricción 2 representa el hecho de...

La restricción 3 indica que debemos considerar la...

Nota: si su proyecto requiere plantear varias F.O, describalas matemáticamente así:

$$F.O1: min(\sum_{i \in N} \sum_{j \in N} C_{ij} X_{ij})$$

$$F.O2: max(\sum_{i \in N} \sum_{j \in N} X_{ij})$$
(4)