Chapter 2: Probability Fundamentals

Introduction

- Probability is the mathematical framework for expressing uncertainty.
- Forms the foundation for understanding data distributions, model generalization, and decisionmaking in machine learning.

Basic Probability Concepts

Sample Space

• The set of all possible outcomes of a random experiment.

Events

A subset of the sample space.

Probability Measure

A function that assigns probabilities to events.

Conditional Probability

- Probability of an event A given that another event B has occurred.
- Formula: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Independence

ullet Events A and B are independent if $P(A\cap B)=P(A) imes P(B)$

Bayes' Theorem

· Relates the conditional and marginal probabilities of events.

ullet Formula: $P(A|B) = rac{P(B|A) imes P(A)}{P(B)}$

Random Variables

A variable that can take different values randomly.

Distributions

Uniform Distribution

· All outcomes are equally likely.

Bernoulli Distribution

A binary distribution with probability p for success.

Binomial Distribution

The number of successes in n Bernoulli trials.

Poisson Distribution

• Models the number of events in a fixed interval of time or space.

Gaussian (Normal) Distribution

• A continuous distribution, defined by the mean μ and variance σ^2 .

Exponential Distribution

Models the time between events in a Poisson process.

Multivariate Gaussian Distribution

Generalization of the Gaussian distribution to multiple dimensions.

Summary

- Understanding probability is crucial for machine learning.
- Different distributions model different kinds of data and uncertainty.