Lab Topic 4

SNR of LR test

Joint pdf of noise:

$$p_{\bar{E}}(\bar{y}) = \frac{1}{(2\pi)^{N/2} |\mathbf{C}|^{1/2}} \exp\left(-\frac{1}{2} ||\bar{y}||^{2}\right)$$
$$||\bar{y}||^{2} = \bar{y} \mathbf{C}^{-1} \bar{y}^{T}$$

- $\blacktriangleright \quad \text{Let } \langle \bar{z}, \bar{y} \rangle = \bar{z} \mathbf{C}^{-1} \bar{y}^T$
- LR statistic: $\Lambda = \frac{1}{2} ||\bar{y}||^2 \frac{1}{2} ||\bar{y} \bar{s}||^2 = \langle \bar{y}, \bar{s} \rangle \frac{1}{2} \langle \bar{s}, \bar{s} \rangle \to \Lambda = \langle \bar{y}, \bar{s} \rangle$
- ► SNR: $\|\bar{s}\|$

Inner product for stationary noise

White Gaussian Noise

$$\langle \bar{x}, \bar{y} \rangle \to \sum_{k=0}^{N-1} x_k y_k$$

Stationary Gaussian noise with Power Spectral Density (PSD) $S_n(f)$

$$\langle \bar{x}, \bar{y} \rangle \to \frac{\Delta}{N} \tilde{x} (\tilde{y}^{\dagger} . / \bar{S}_{n}^{T}) = \frac{1}{T} \tilde{x} (\tilde{y}^{\dagger} . / \bar{S}_{n}^{T})$$

Where $\tilde{x} = F\bar{x}$ is the DFT

T is the length of the data
$$(\frac{\Delta}{N} = \frac{1}{N f_s} = \frac{1}{T})$$

 \bar{S}_n is $S_n(f)$ evaluated at the DFT frequencies

Normalization of signal amplitude: SNR

Objective:

- 1. Generate an *N* sample realization of colored gaussian noise with some specified Power Spectral Density (PSD)
- 2. Normalize a given signal vector of *N* samples such that the Likelihood Ratio test for noise with the above PSD has a specified Signal to Noise Ratio (SNR)

Codes

- Generating stationary Gaussian noise: NOISE/statgaussnoisegen.m
 - Script NOISE/colGaussNoiseDemo.m has been modified to use this function
 - ► The function supplies the right scale factor for the generated noise (earlier we only wanted to get the shape of the PSD right, not its overall scale)
- ► Taking an inner product: **DETEST/innerprodpsd.m**
- ▶ Demo for normalization of signal: **DETEST/SNRcalc.m**

Exercise #1

- Follow the script DETEST/SNRcalc.m and write a function that calculates the normalization factor for a given signal and noise PSD
 - ► Inputs:
 - Signal vector
 - Sampling frequency
 - ▶ PSD at positive DFT frequencies
 - ► SNR
 - Outputs:
 - Normalized signal vector
 - Normalization factor
- ► Code should do a sanity check: Number of PSD values should match the number of positive DFT frequencies based on the length of the signal vector

Exercise #2

- Generate a realization of initial LIGO noise using NOISE/statgaussnoisegen.m
- ▶ Add the signal your team was assigned with an SNR=10 to the noise realization
- ► Time domain: Plot the data (signal+noise) realization and the signal
- Frequency domain: Plot the periodogram of the noise and data together
- ► Time-frequency domain: Plot the spectrogram of the data
- Can you see the signal in any of the three domains? Namely, the time, or the Fourier, or the time-frequency domains

Exercise #3

- ► Follow DETEST/SNRcalc.m to write a function to calculate the Likelihood Ratio for a given data vector
 - ▶ What are the inputs needed?
- Run this function over M realizations of data under H_0 and M realizations of data under $H_1 \rightarrow$ Estimate the SNR of the LR test as shown in SNRcalc.m
- Does the estimated SNR come close to the one you had normalized the signal with? (It should!)