## Clasa a IX-a

# Soluții

#### Problema 1

Avem  $(|a|+|b|+|c|)^2 \le 3(a^2+b^2+c^2) = 9$ , de unde  $|a|+|b|+|c| \le 3$ . (\*) Pe de altă parte,  $a^2+b^2+c^2 \ge 3\sqrt[3]{(abc)^2}$ , de unde  $(abc)^2 \le 1$ , deci  $abc \in [-1,1]$  (\*\*). Atunci  $-abc \le 1$  și concluzia rezultă.

Puctaj recomandat: (\*) 3 puncte; (\*\*) 3 puncte; finalizare 1 punct.

### Problema 2

Avem  $\overrightarrow{AH} = 2\overrightarrow{OD}$ , de unde rezultă A(-9, -2) şi raza cercului circumscris  $AO = \sqrt{50}$ . Dreapta BC este perpendiculară pe OD şi are ecuația x = 7 - 2y. Din condiția  $BO = CO = \sqrt{50}$  se obțin B(3, 2) şi C(-1, 4) (sau viceversa).

Puctaj recomandat: determinarea coordonatelor lui A: 2 puncte, finalizare 5 puncte.

#### Problema 3

- a) Căutăm soluții  $x=\frac{n}{10}$ , cu  $n\in \mathbb{N}$ . Se arată că  $x=\frac{13}{10}$  verifică egalitatea și apoi deducem că  $x=10k+\frac{13}{10}$  satisface relația.
- b) Presupunem prin absurd că există un x > 0 rațional și fie n = [x]; rezultă n < x < n + 1 și  $n^2 < x^2 < n^2 + 2n + 1$ . Fie  $[x^2] = n^2 + k$ , unde  $0 \le k \le 2n$ . Atunci egaliatea devine

$$x^2 + x - n^2 - n - k - 1 = 0.$$

Discriminantul  $\Delta = 4n^2 + 4n + 4k + 5$  trebuie să fie un pătrat perfect impar. Egalitatea  $\Delta = (2m+1)^2$  conduce la  $n^2 + n + k + 1 = m^2 + m$ , dar  $m \ge n+1$ , deci  $m^2 + m \ge n^2 + 3n + 2$ . Rezultă  $k \ge 2n+1$ , contradicție.

Punctaj recomandat: a) Determinarea unei soluții 1 punct, finalizare 3 puncte; b) 3 puncte.

#### Problema 4

Vom demonstra că A poate fi doar centrul dreptunghiului sau mijlocul uneia dintre laturile mici.

Pentru aceste cazuri putem forma, de exemplu, perechile



În cazul unui alt punct A, putem considera că  $\mathcal{M}$  este mulțimea  $\{0, 1, 2, 3, 4\} \times \{0, 1, 2\}$ . Presupunem că există o astfel de împărțire în perechi și fie  $A_p(x_p, y_p)$  și  $B_p(z_p, t_p)$ , pentru  $p = 1, 2, \ldots, 7$ . Atunci

$$\sum_{p=1}^{7} \overrightarrow{A_p B_p} = \sum_{p=1}^{7} (z_p - x_p) \vec{i} + \sum_{p=1}^{7} (t_p - y_p) \vec{j}.$$

Pentru ca suma să fie  $\vec{0}$  este necesar ca numerele  $\sum_{p=1}^{7}(x_p-z_p)=\sum_{p=1}^{7}(x_p+z_p)-2\sum_{p=1}^{7}z_p$  și  $\sum_{p=1}^{7}(y_p-t_p)=\sum_{p=1}^{7}(y_p+t_p)-2\sum_{p=1}^{7}y_p$  să fie pare. Aceasta se întâmplă doar dacă prin eliminarea lui A rămâne un număr par de puncte cu abscisa impară și un număr par de puncte cu ordonata impară; fals.

Punctaj recomandat: câte două puncte pentru determinarea fiecăreia din cele 2 tipuri de configurații; finalizare 3 puncte.