חלוקה הוגנת של חפצים בדידים Fair Indivisible Item Allocation

אראל סגל-הלוי

חלוקה הוגנת בקירוב

מקרה פשוט:

- m חפצים זהים.
- n שחקנים עם זכויות שוות.

מה הן החלוקות שאפשר לקרוא להן "הוגנות בקירוב"?

- מעוגל למטה או למעלה. m/n כל אחד מקבל
 - בכל חלוקה אחרת, יש חוסר-הגינות
 שאי-אפשר להצדיק בכך שהחפצים בדידים.

חלוקה הוגנת בקירוב - הכללות

א. חפצים זהים – זכויות שונות.

ב. חפצים שונים – זכויות שוות.

ג. חפצים שונים – זכויות שונות.

חפצים זהים – זכויות שונות

:(apportionment) בעיית חלוקת המושבים

איך לחלק את 120 המושבים בכנסת בין
 המפלגות, באופן יחסי למספר קולותיהן?

בעיית חלוקת המושבים - דוגמה

- שתי מפלגות.
- מפלגה א: 68.7/120 מכלל הקולות;
- מפלגה ב: 51.3/120 מכלל הקולות.
- מהי חלוקה הוגנת של 120 המושבים?
 - 51:69 •
 - מעגלים לשלם הקרוב ביותר. •

בעיית חלוקת המושבים - הכללה

- שלוש מפלגות.
- 20.25 :ג, 30.35 :ב ,69.4 : א: 4.90.
- מהי חלוקה הוגנת של 120 המושבים?
- עיגול לשלם הקרוב ביותר יוצא רק 119!
- איך נכליל את העקרון "עיגול לשלם הקרוב
 ביותר" למספר כלשהו של מפלגות?

Hamilton - אלגוריתם המילטון

- נותנים לכל מפלגה את מספר-המושבים המדוייק שלה מעוגל כלפי מטה.
- מחלקים את המושבים
 העודפים לפי סדר יורד של
 השארית.

20.25 :ג, 30.35 :ב ,69.4

20 :א 30 :ב, 69 :א

20 :א 30, ג: 20 א:

Hamilton - אלגוריתם המילטון

- היה בשימוש בארה"ב בין 1852 ל 1900.
 - היה בשימוש בישראל מהבחירות השניות עד הבחירות השביעיות.
- עדיין בשימוש ברוסיה, אוקראינה, ליטא, תוניס, נמיביה, טייוואן, הונג-קונג.
 - ?מה הבעיה איתו

אלגוריתם המילטון - חוסר-עקביות

למפלגה א מגיע 0 למפלגה ב מגיע 2!

- 5 מושבים, 500 בוחרים
- 325 : ג: 135, ג: 325. המילטון:
 - א: 1, ב: 1, ג: 3
 מפלגות א, ב קיבלו ביחד
 175 קולות ו-2 מושבים.
 מהי חלוקה הוגנת של 2
 המושבים ביניהן?
 - 0.457 = 40/175*2 : *\Displaystyle \text{...}
 - 1.543 = 135/175*2 :ב•

אלגוריתם המילטון - אסטרטגיה

- 5 מושבים, 500 בוחרים
- 335 : ג ,140 :ב ,25 : א
 - :המילטון
 - א: 0, ב: 2, ג: 3אם מפלגה א פורשת,ותומכיה נשארים בבית -
- \bullet 140*5/475 = 1.47
- -335*5/475 = 3.53

•א: 0, ב: 1, ג: 4 מפלגה א **בלי מושבים** השפיעה על חלוקת המושבים!

עקביות

הגדרה. אלגוריתם לחלוקת-מושבים נקרא עקבי אם עבור כל תת-קבוצה X של מפלגות, שקיבלו ביחד n מושבים בחלוקה הכללית – n אם נשתמש באותו אלגוריתם כדי לחלק את המושבים בין המפלגות בקבוצה X בלבד, נקבל אותה חלוקה בדיוק כמו בחלוקה הכללית

אלגוריתם המילטון אינו עקבי. האם קיים אלגוריתם חלוקת-מושבים עקבי?

Jefferson - אלגוריתם ג'פרסון

- •אתחול: כל מפלגה מקבלת 0
 - :כל עוד יש מושבים•
 - •מחשבים, לכל מפלגה: (מספר קולות)

(מספר מושבים נוכחי + 1)

•נותנים את המושב הבא למפלגה שהמנה שלה גדולה ביותר.

אלגוריתם ג'פרסון - דוגמה

.325 מושבים, 500 בוחרים. א: 40, ב: 135, ג: 325.

•חלוקה: 0 0 0 •מנות: 40, 135, 325 •חלוקה: 0 0

•מנות: 40, 135, 135, 162.5

•חלוקה: 0 0

•מנות: 40, 135, 138.33

•חלוקה: 0 1 2

•מנות: 40, 67.5, 108.33

•חלוקה: 0 1

•מנות: 40, 67.5, 80.25

•חלוקה: 0 1

אלגוריתם ג'פרסון = חוק בדר-עופר

- בשימוש בישראל החל מהכנסת השמינית
 חוק בדר-עופר
 ועד היום
 - בשימוש בעוד עשרות מדינות בעולם.

אלגוריתם ג'פרסון - עקביות

גגאבגבבאאגבאא

אב בבאא באא

• **משפט**. אלגוריתם ג'פרסון עקבי. • הוכחה. נסתכל על סדרת המפלגות המקבלות מושבים. נניח שמוחקים מהסדרה חלק מהמפלגות, עם המושבים שקיבלו. סדר חלוקת המושבים למפלגות הנותרות נשאר זהה – עדיין, המפלגה המקבלת את המושב הבא היא המפלגה שהמנה (מספר קולות) / (מספר מושבים נוכחי + 1) שלה היא הגדולה ביותר. ***

אלגוריתם ג'פרסון - הוגנות

.340 בוחרים. א: 160, ב: 500

• חלוקה: 0 0 • מנות: 160, 340

1 0 :חלוקה: 0

•מנות: 160, 170

•חלוקה: 0

•מנות: 160, 113

• חלוקה: 1

•מנות: 80, 113

3 1 יחלוקה: 1

•מנות: 80, 85

•חלוקה: 1

3.4 1.6 המספר המדוייק:

• עיגלנו *הפוך* מהכיוון הנכון!

נראה לא הוגן.

עקביות והוגנות

האם קיים אלגוריתם שהוא גם **עקבי,** וגם **הוגן** (= מעגל לכיוון הנכון) עבור לכל זוג של מפלגות?

divisor methods – שיטות מחלק נכליל את שיטת ג'פרסון באופן הבא:

נבחר פונקציה כלשהי f, המייחסת לכל מספר שלם s, מספר ממשי כלשהו בתחום .[s, s+1]

- אתחול: כל מפלגה מקבלת 0כל עוד יש מושבים:
 - •מחשבים, לכל מפלגה: (מספר קולות)

f(מספר מושבים נוכחי)

•נותנים את המושב הבא למפלגה שהמנה שלה גדולה ביותר.

.f(s)=s+1 שיטת ג'פרסון = שיטת-מחלק עם

שיטות מחלק - עקביות

• משפט. לכל פונקציה f, שיטת-המחלק עם פונקציה f היא עקבית.

• הוכחה (בדיוק כמו שיטת ג'פרסון). נסתכל על סדרת המפלגות המקבלות מושבים. נניח שמוחקים מהסדרה חלק מהמפלגות, עם המושבים שקיבלו. סדר חלוקת המושבים למפלגות הנותרות נשאר זהה. ***

שיטות-מחלק - דוגמאות

- שיטת אדאמס f(s)=s שיטת דין • שיטת דין – f(s)=sqrt(s*(s+1)) – • שיטת הנטינגטון-היל • שיטת וובסטר – f(s)=s+0.5 • שיטת ג'פרסון - f(s)=s+1
 - •במה לבחור?!
- לצורך הדיון נתמקד בשיטות הפשוטות יותר: אדאמס, וובסטר, ג'פרסון. -->

```
3 מושבים, 300 בוחרים. א: 210, ב: 50, ג: 40
```

- שיטת אדאמס: 1 1 **1** •
- שיטת וובסטר: 2 1 0
 - שיטת ג'פרסון: 3 0 0

<-->זה לא במקרה

משפט. לכל y, בשיטת-מחלק עם פונקציה f(s)=s+y, כשמחלקים a+b+1 מושבים לשתי מפלגות, אם מספר המושבים המדויק המגיע + b שארית, ולמפלגה ב הוא + a למפלגה א הוא שארית, אז מפלגה א תקבל את המושב הנוסף (ה-:a+1 אם ורק אם השארית של מפלגה א גדולה מ 0.5 - (a-b)*(y-0.5)/(a+b+2y)

- •אם y<0.5, הסף < 0.5 עבור המפלגה *הקטנה*.
- אם y>0.5, הסף y>0.5 עבור המפלגה *הגדולה*.
- •אם y=0.5, הסף הוא תמיד 0.5 תמיד מעגלים לשלם הקרוב ביותר!

הוכחת המשפט. נסמן:

- מפלגה א במדויק: a+x מושבים (a שלם, x שבר).
 - מפלגה ב במדויק: b+1-x מושבים.

כיוון א: נניח ש:

- •אם y<0.5, יש הטיה לטובת המפלגה *הקטנה*.
- •אם y>0.5, יש הטיה לטובת המפלגה *הגדולה*.
 - אט y=0.5, אין הטיה לאף צד. y−•

מכאן קל להבין מדוע ברוב המדינות משתמשים בשיטת ג'פרסון..

מסקנה. בשיטת וובסטר (= שיטת המחלק עם s+0.5), בחלוקת-המושבים בין *כל* שתי מפלגות, כל מפלגה מקבלת את החלק היחסי שלה מעוגל לשלם הקרוב ביותר – ללא כל הטיה לטובת מפלגות גדולות או קטנות.

- משפט. שיטת וובסטר היא השיטה *היחידה* לחלוקת מושבים, שהיא גם עקבית וגם הוגנת (= מעגלת לכיוון הנכון) עבור כל זוג מפלגות.
- הוכחה. נניח בשלילה שקיימת שיטת חלוקת-מושבים כלשהי, שהיא עקבית והוגנת, אבל שונה משיטת וובסטר.
- נניח שההבדל בין השיטות מתגלה עבור מספר מושבים מסויים h ווקטור-הצבעות כלשהו y, כאשר שיטת וובסטר מחזירה וקטור חלוקת-מושבים כלשהו x, והשיטה האחרת מחזירה וקטור אחר כלשהו z.
- סכום רכיבי שני הוקטורים שווה h, לכן הוקטורים נבדלים בשני מקומות לפחות; יש לפחות שתי מפלגות i, k, שעבורן בשני מקומות לפחות; יש לפחות שתי מפלגות x_i > z_k
 x_i < z_k
 למפלגה k והשיטה האחרת נותנת יותר למפלגה i).

הוכחה [המשך].

כיוון ששיטת וובסטר היא עקבית והוגנת, מתקיים • (כאשר "round" מציין עיגול לשלם הקרוב ביותר): $x_i = round((x_i + x_k) * v_i / (v_i + v_k))$ $x_{k} = round((x_{i}+x_{k})*v_{k}/(v_{i}+v_{k}))$ הדבר נכון, לפי הנחתנו, גם לשיטה האחרת, ולכן: $z_i = round((z_i+z_k)*v_i/(v_i+v_k))$ $z_{k} = round((z_{i}+z_{k})*v_{k}/(v_{i}+v_{k}))$ ריא round כיוון ש- $x_{\scriptscriptstyle i} < z_{\scriptscriptstyle i}$, ופונקציית העיגול $z_i + z_k > x_i + x_k$ מונוטונית, בהכרח

7+7 < X+X בהררח X > 7 - 1111 ווו ער

• שיטת וובסטר בשימוש כיום ב: שוודיה, נורווגיה, ניו-זילנד, בוסניה והרצגובינה, קוסובו, לטביה, עיראק.

• בקרוב אצלנו?