

EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016

FORMUŁA DO 2014 ("STARA MATURA")

MATEMATYKA POZIOM PODSTAWOWY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

Ogólne zasady oceniania

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-1)

Wymagania ogólne	Wymagania szczegółowe	_	awna (1 p.)
II. Wykorzystanie i interpretowanie	1. Liczby rzeczywiste. Zdający oblicza potęgi o wykładnikach wymiernych oraz stosuje	Wersja I	Wersja II
reprezentacji.	prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych (1.g).	A	D

Zadanie 2. (0-1)

II. Wykorzystanie	Liczby rzeczywiste. Zdający zna definicję logarytmu i stosuje w obliczeniach wzory na	Wersja I	Wersja II
i interpretowanie reprezentacji.	logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (1.h).	D	A

Zadanie 3. (0-1)

III. Modelowanie matematyczne.	1. Liczby rzeczywiste. Zdający stosuje pojęcie procentu i punktu procentowego w obliczeniach (1.d).	Wersja I	Wersja II
		A	В

Zadanie 4. (0-1)

II. Wykorzystanie i interpretowanie	2. Wyrażenia algebraiczne. Zdający posługuje się wzorami skróconego mnożenia: $(a \pm b)^2$	Wersja I	Wersja II
reprezentacji.	(2.a).	A	D

Zadanie 5. (0-1)

I. Wykorzystanie i tworzenie informacji.	2. Wyrażenia algebraiczne. Zdający oblicza wartość liczbową wyrażenia wymiernego dla	Wersja I	Wersja II
	danej wartości zmiennej (2.e).	C	D

Zadanie 6. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający interpretuje geometrycznie układ	I	II
reprezentacji.	dwóch równań liniowych z dwiema niewiadomymi (8.d).	C	A

Zadanie 7. (0-1)

IV. Użycie i tworzenie	7. Planimetria. Zdający korzysta ze związków między kątem środkowym, kątem wpisanym	Wersja I	Wersja II
strategii.	i kątem między styczną a cięciwą okręgu (7.a).	D	В

Zadanie 8. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wykorzystuje interpretację współczynników we wzorze	Wersja I	Wersja II
reprezentacji.	funkcji liniowej (4.g).	D	A

Zadanie 9. (0-1)

II. Wykorzystanie	3. Równania i nierówności. Zdający rozwiązuje proste równania wymierne,	Wersja I	Wersja II
i interpretowanie reprezentacji.	prowadzące do równań liniowych lub kwadratowych, np. $\frac{x+1}{x+3} = 2$, $\frac{x+1}{x} = 2x$ (3.e).	A	C

Zadanie 10. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający odczytuje z wykresu	Wersja I	Wersja II
reprezentacji. funkcji zbiór wartości (4.b).	D	В	

Zadanie 11. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wyznacza wartość najmniejszą i wartość największą funkcji	Wersja I	Wersja II
reprezentacji.	kwadratowej w przedziale domkniętym (4.k).	В	A

Zadanie 12. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający oblicza ze wzoru wartość funkcji dla danego argumentu (4.2).	Wersja I	Wersja II
reprezentacji.	Tunkeji dia danego argumentu (4.2).	В	D

Zadanie 13. (0-1)

IV. Użycie i tworzenie strategii.	7. Planimetria. Zdający znajduje związki miarowe w figurach płaskich, także	Wersja I	Wersja II
	z zastosowaniem trygonometrii (7.c).	A	C

Zadanie 14. (0-1)

III. Modelowanie	5. Ciągi liczbowe. Zdający stosuje wzór na	Wersja	Wersja
	n-ty wyraz i na sumę n początkowych	I	II
matematyczne.	wyrazów ciągu arytmetycznego (5.c).	A	В

Zadanie 15. (0-1)

I. Wykorzystanie	5. Ciągi liczbowe. Zdający bada, czy dany ciąg jest arytmetyczny lub geometryczny	Wersja I	Wersja II	
i tworzenie informacji.	(5.b).	D	C	

Zadanie 16. (0-1)

I. Wykorzystanie	7. Planimetria. Zdający wykorzystuje	Wersja I	Wersja II
i tworzenie informacji.	własności figur podobnych w zadaniach (7.b).	В	C

Zadanie 17. (0-1)

T.	6. Trygonometria. Zdający, znając wartość jednej z funkcji trygonometrycznych,	Wersja I	Wersja II
strategii.	wyznacza wartości pozostałych funkcji tego samego kąta ostrego (6.d).	C	В

Zadanie 18. (0-1)

II. Wykorzystanie i interpretowanie	7. Planimetria. Zdający znajduje związki	Wersja I	Wersja II
reprezentacji.	miarowe w figurach płaskich (7.c).	D	A

Zadanie 19. (0-1)

1	7. Planimetria. Zdający znajduje związki	Wersja I	Wersja II
strategii.	miarowe w figurach płaskich (7.c).	В	C

Zadanie 20. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający bada równoległość i prostopadłość	I	II
reprezentacji.	prostych na podstawie ich równań kierunkowych (8.c).	C	D

Zadanie 21. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający wyznacza współrzędne środka	I	II
reprezentacji.	odcinka (8.f).	В	C

Zadanie 22. (0-1)

II. Wykorzystanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający wykorzystuje własności	Wersja I	Wersja II
i interpretowanie reprezentacji.	prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (10.d).	C	В

Zadanie 23. (0-1)

I. Wykorzystanie i tworzenie informacji.	9. Stereometria. Zdający wyznacza związki miarowe w bryłach obrotowych	Wersja I	Wersja II
	z zastosowaniem trygonometrii (9.b).	D	В

Zadanie 24. (0-1)

I. Wykorzystanie i tworzenie informacji.	9. Stereometria. Zdający wyznacza związki miarowe w wielościanach z zastosowaniem	Wersja I	Wersja II
	trygonometrii (9.b).	В	A

Zadanie 25. (0-1)

II. Wykorzystanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający oblicza średnią arytmetyczną, średnią	Wersja I	Wersja II
i interpretowanie reprezentacji.	ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych (10.a).	С	D

Zadanie 26. (0-2)

i interpretowanie	3. Równania i nierówności. Zdający rozwiązuje równania i nierówności kwadratowe; zapisuje rozwiązanie w postaci sumy
reprezentacji.	przedziałów (3.a).

Przykładowe rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania:

Znajdujemy pierwiastki trójmianu kwadratowego $2x^2 + 5x - 3$.

• Obliczamy wyróżnik tego trójmianu:

$$\Delta = 5^2 - 4 \cdot (-3) \cdot 2 = 49$$
 i stąd $x_1 = \frac{-5 - 7}{4} = -3$ oraz $x_2 = \frac{-5 + 7}{4} = \frac{1}{2}$,

albo

• stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = -\frac{3}{2}$$
 oraz $x_1 + x_2 = -\frac{5}{2}$, stąd $x_1 = -3$ oraz $x_2 = \frac{1}{2}$,

albo

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub zaznaczając je na wykresie $x_1 = -3$, $x_2 = \frac{1}{2}$.

Drugi etap rozwiązania:

Szkicujemy parabolę, której ramiona skierowane są ku górze i zaznaczamy na osi *Ox* miejsca zerowe trójmianu.

Podajemy zbiór rozwiązań nierówności: $(-\infty, -3) \cup \left(\frac{1}{2}, \infty\right)$ lub $x \in (-\infty, -3) \cup \left(\frac{1}{2}, \infty\right)$, lub (x < -3) lub (x

Schemat punktowania

Zdający otrzymuje1 p. gdy:

• poprawnie obliczy lub poda pierwiastki trójmianu kwadratowego $2x^2 + 5x - 3$: $x_1 = -3$, $x_2 = \frac{1}{2}$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności

albo

 popełni błędy przy obliczaniu pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionych błędów rozwiąże nierówność.

Zdający otrzymuje2 p. gdy:

• poda zbiór rozwiązań nierówności: $(-\infty, -3) \cup (\frac{1}{2}, +\infty)$ lub $x \in (-\infty, -3) \cup (\frac{1}{2}, +\infty)$ lub (x < -3) lub (x < -3

• sporządzi ilustrację graficzną (oś liczbowa, parabola) i zapisze zbiór rozwiązań nierówności w postaci: x < -3, $x > \frac{1}{2}$,

albo

• poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Uwaga:

Jeśli pierwiastki trójmianu są wyznaczone przy zastosowaniu błędnej metody, to za całe rozwiązanie zdający otrzymuje **0 punktów**.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Akceptujemy zapis przedziałów nieuwzględniający porządku liczb na osi liczbowej lub błędów w przepisaniu, np.: $\left(-\infty,\frac{1}{2}\right)\cup\left(-3,+\infty\right)$ lub $\left(-\infty,\frac{1}{2}\right)\cup\left(3,+\infty\right)$, lub $\left(-\infty,3\right)\cup\left(\frac{1}{2},+\infty\right)$.

Zadanie 27. (0-2)

II. Wykorzystanie
i interpretowanie
reprezentacji.

3. Równania i nierówności. Zdający rozwiązuje równania wielomianowe metodą rozkładu na czynniki (3.d).

Przykładowe rozwiązania

I sposób

Przedstawiamy lewą stronę równania w postaci iloczynowej, stosując metodę grupowania wyrazów $x^2(x+3)+2(x+3)=0$ lub $x(x^2+2)+3(x^2+2)=0$, stąd $(x+3)(x^2+2)=0$. Ponieważ wyrażenie x^2+2 jest dodatnie, więc x=-3.

II sposób

Stwierdzamy, że liczba -3 jest pierwiastkiem wielomianu $x^3 + 3x^2 + 2x + 6$. Dzielimy ten wielomian przez dwumian (x+3) i otrzymujemy iloraz (x^2+2) . Mamy więc równanie postaci $(x+3)(x^2+2)=0$, a stąd otrzymujemy x=-3.

Schemat punktowania

Zdający otrzymuje1 p.

- gdy zapisze lewą stronę równania w postaci iloczynowej, np.: $(x+3)(x^2+2)=0$ albo
 - gdy podzieli wielomian $x^3 + 3x^2 + 2x + 6$ przez dwumian (x+3), otrzyma iloraz (x^2+2)

i na tym poprzestanie lub dalej popełnia błędy.

Zadanie 28. (0-2)

I. Wykorzystanie 3. Trygonometria. Zdający stosuje proste związki między funkcjami trygonometrycznymi kąta ostrego (6.c).

Przykładowe rozwiązania

I sposób

Przekształcamy wyrażenie $(\sin \alpha + \cos \alpha)^2$, stosując wzór skróconego mnożenia na kwadrat sumy i otrzymujemy $\sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha$.

Korzystając z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$, otrzymujemy $1 + 2\sin \alpha \cos \alpha = \frac{3}{2}$, a stąd $2\sin \alpha \cos \alpha = \frac{1}{2}$, a zatem $\sin \alpha \cos \alpha = \frac{1}{4}$.

II sposób

Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych a i b oraz zaznaczamy kąt ostry α taki, że $\sin \alpha = \frac{a}{c}$ lub $\cos \alpha = \frac{b}{c}$.

Korzystając z twierdzenia Pitagorasa, wyznaczamy długość przeciwprostokątnej:

$$c^2 = a^2 + b^2$$

Ponieważ $(\sin \alpha + \cos \alpha)^2 = \frac{3}{2}$, więc $\left(\frac{a}{c} + \frac{b}{c}\right)^2 = \frac{3}{2}$, czyli $\frac{a^2 + 2ab + b^2}{c^2} = \frac{3}{2}$.

Stad $\frac{c^2 + 2ab}{c^2} = 1 + \frac{2ab}{c^2} = \frac{3}{2}$, zatem $\frac{ab}{c^2} = \frac{1}{4}$.

Ponieważ $\sin \alpha = \frac{a}{c}$ i $\cos \alpha = \frac{b}{c}$, to $\frac{ab}{c^2} = \frac{1}{4}$. Zatem $\sin \alpha \cos \alpha = \frac{1}{4}$.

Schemat punktowania

Zdający otrzymuje......1 p.

• gdy przekształci wyrażenie $(\sin \alpha + \cos \alpha)^2$ do postaci $\sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha$

• gdy narysuje trójkąt prostokątny o przyprostokątnych długości a i b, zaznaczy w tym trójkącie kąt α i zapisze $\sin \alpha = \frac{a}{c}$, $\cos \alpha = \frac{b}{c}$ oraz $\frac{a^2 + 2ab + b^2}{c^2} = \frac{3}{2}$

i na tym poprzestanie lub dalej popełnia błędy.

Zdający otrzymuje......2 p.

gdy obliczy, że $\sin \alpha \cos \alpha = \frac{1}{4}$.

Uwaga:

Jeżeli zdający błędnie wyznaczy funkcje trygonometryczne do kąta wskazanego na rysunku i z tego korzysta, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 29. (0-2)

i argumentacja. w zadaniach (7.b).		7. Planimetria. Zdający wykorzystuje własności figur podobnych w zadaniach (7.b).
------------------------------------	--	---

Przykładowe rozwiązania

I sposób

Niech $| \angle ACB | = \alpha$.

Ponieważ $| \angle CAB | = 90^{\circ}$, więc $| \angle ABC | = 90^{\circ} - \alpha$.

W $\triangle CDE$: $| \angle DEC | = 90^{\circ}$, wife $| \angle CDE | = 90^{\circ} - \alpha$.

Trójkąt *CDE* jest prostokątny oraz $| < DEC | = 90^{\circ}$, więc $| < CDE | = 90^{\circ} - \alpha$.

Podobnie trójkąt *BFG* jest prostokątny i $| < FGB | = 90^{\circ}$, więc $| < BFG | = \alpha$.

Ponieważ trójkąty *CDE* i *BFG* mają równe kąty, więc na podstawie cechy podobieństwa *kkk* są podobne.

II sposób

Niech $| \angle ACB | = | \angle DCE | = \alpha \text{ i } | \angle ABC | = | \angle FBG | = \beta$.

Trójkąt *CED* jest podobny do trójkąta *ABC* (cecha *kkk*), bo $| \angle ACB | = | \angle DCE | = \alpha$ oraz $| \angle CAB | = | \angle DEC | = 90^{\circ}$.

Podobnie trójkąt GBF jest podobny do trójkąta ABC, (cecha kkk), bo $| \not \prec ABC | = | \not \prec FBG | = \beta$ oraz $| \not \prec CAB | = | \not \prec FGB | = 90^\circ$.

Stąd trójkąt *CED* jest podobny do trójkąta *FBG* (z przechodniości relacji podobieństwa).

Schemat punktowania

Zdający otrzymuje 1 p. gdy

• wskaże w dwóch trójkątach spośród trójkątów CBA, CDE i FBG jedną parę równych kątów ostrych i na tym zakończy lub dalej popełni błędy, przy czym kąt przy wierzchołku B musi być wskazany dwukrotnie, jako kąt w obu trójkątach CBA i FBG, np. zdający zapisze $| \ll FBG | = | \ll CBA |$ lub stwierdzi, że jest to wspólny kąt trójkątów CBA i FBG (analogicznie z kątem przy wierzchołku C w trójkątach CBA i CDE)

albo

• zapisze, że trójkąt *CBA* jest podobny do trójkąta *FBG* i do trójkąta *CDE* i stąd wywnioskuje, że trójkąt *CDE* jest podobny do trójkąta *FBG*, ale nie wskaże żadnej pary równych kątów ostrych w tych trójkątach

i na tym zakończy lub dalej popełnia błędy.

Uwagi:

- 1. Jeżeli zdający przyjmie konkretne miary kątów, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający przyjmie błędne zależności między katami, to otrzymuje **0 punktów**.

Zadanie 30. (0-2)

	2. Wyrażenia algebraiczne. Zdający posługuje się wzorami skróconego mnożenia: $(a \pm b)^2$ (2.a).	
i aiguillelliacja.	Skiloconego ililiozenia. $(a \pm b)$ (2.a).	

Przykładowe rozwiazanie

Rozważmy wyraz $a_n = 2n^2 + 2n$.

Wyraz a_{n+1} można zapisać, jako

$$a_{n+1} = 2(n+1)^2 + 2(n+1) = 2n^2 + 6n + 4$$
.

Wtedy

$$a_n + a_{n+1} = 2n^2 + 2n + 2n^2 + 6n + 4 = 4n^2 + 8n + 4$$
.

Zatem

$$a_n + a_{n+1} = (2n+2)^2$$
.

Liczba 2n+2 jest naturalna. To kończy dowód.

Schemat punktowania

$$a_n + a_{n+1} = 2n^2 + 2n + 2(n+1)^2 + 2(n+1)$$

i na tym zakończy lub dalej popełnia błędy.

Zdający otrzymuje2 p. gdy przeprowadzi pełne rozumowanie.

Uwaga:

Jeżeli zdający sprawdzi prawdziwość tezy tylko dla konkretnych wartości n, to otrzymuje **0 punktów**.

Zadanie 31. (0-2)

III. Modelowanie	5. Ciągi liczbowe. Zdający stosuje wzory na <i>n</i> -ty wyraz i sumę <i>n</i> początkowych wyrazów ciągu arytmetycznego i ciągu
matematyczne.	geometrycznego (5.c).

Przykładowe rozwiązanie

Wykorzystujemy wzór na sumę n początkowych wyrazów ciągu arytmetycznego i zapisujemy równanie z niewiadomą n: $S_n = \frac{7+89}{2} \cdot n = 2016$.

Obliczamy liczbę wyrazów ciągu arytmetycznego n: n = 42.

Schemat punktowania

Zdający otrzymuje......1 p. gdy zapisze

• równanie z niewiadomą $n: \frac{7+89}{2} \cdot n = 2016$

albo

• układ równań z niewiadomymi n i r: $\begin{cases} 7 + (n-1)r = 89 \\ 2016 = \frac{2 \cdot 7 + (n-1)r}{2} \cdot n \end{cases}$

i na tym zakończy lub dalej popełnia błędy.

Zdający otrzymuje......2 p. gdy obliczy liczbę wyrazów ciągu arytmetycznego: 42.

Zadanie 32. (0-4)

IV. Użycie i tworzenie	7. Planimetria. Zdający znajduje związki miarowe w figurach
	płaskich (7.c).

Przykładowe rozwiązania

I sposób

Niech α oznacza najmniejszy kąt trójkąta. Zatem pozostałe dwa kąty tego trójkąta równe są $\alpha + 50^{\circ}$ oraz 3α . Suma kątów trójkąta jest równa 180° , więc

$$\alpha + 3\alpha + \alpha + 50^{\circ} = 180^{\circ},$$

$$5\alpha = 130^{\circ},$$

$$\alpha = 26^{\circ}.$$

Stad $\alpha + 50^{\circ} = 76^{\circ}$ oraz $3\alpha = 78^{\circ}$.

II sposób

Niech α oznacza największy kąt trójkąta. Zatem pozostałe dwa kąty tego trójkąta równe są $\frac{\alpha}{3} + 50^{\circ}$ oraz $\frac{\alpha}{3}$.

Suma katów trójkata jest równa 180°, więc

$$\frac{\alpha}{3} + \frac{\alpha}{3} + 50^{\circ} + \alpha = 180^{\circ},$$

$$5\alpha = 390^{\circ},$$

$$\alpha = 78^{\circ}.$$

Stad
$$\frac{\alpha}{3} = 26^{\circ}$$
 oraz $\frac{\alpha}{3} + 50^{\circ} = 76^{\circ}$.

III sposób

Niech α oznacza ten kąt trójkąta, który nie jest ani największy, ani najmniejszy. Zatem pozostałe dwa kąty tego trójkąta równe są $\alpha-50^\circ$ oraz $3(\alpha-50^\circ)$. Suma kątów trójkąta jest równa 180° , więc

$$\alpha - 50^{\circ} + \alpha + 3(\alpha - 50^{\circ}) = 180^{\circ},$$

 $5\alpha = 380^{\circ},$
 $\alpha = 76^{\circ}.$

Stąd $\alpha - 50^{\circ} = 26^{\circ}$ oraz $3(\alpha - 50^{\circ}) = 78^{\circ}$.

Schemat punktowania

• katy trójkata w zależności od jednego kata, np.:

$$\alpha$$
, $\alpha + 50^{\circ}$, 3α lub $\frac{\alpha}{3}$, $\frac{\alpha}{3} + 50^{\circ}$, α , lub $\alpha - 50^{\circ}$, α , $3(\alpha - 50^{\circ})$

• układ dwóch równań, np.

$$\begin{cases} \alpha + \alpha + 50^{\circ} + \beta = 180^{\circ} \\ \beta = 3\alpha, \end{cases}$$

albo

• układ trzech równań, np.

$$\begin{cases} \alpha + \beta + \gamma = 180^{\circ} \\ \gamma = 3\alpha \\ \beta = \alpha + 50^{\circ} \end{cases}$$

i na tym zakończy lub dalej popełnia błędy.

$$\alpha + 3\alpha + \alpha + 50^{\circ} = 180^{\circ}$$
 lub $\frac{\alpha}{3} + \frac{\alpha}{3} + 50^{\circ} + \alpha = 180^{\circ}$, lub $\alpha - 50^{\circ} + \alpha + 3(\alpha - 50^{\circ}) = 180^{\circ}$

i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie pełne4 p. Zdający obliczy wszystkie kąty trójkąta.

Uwagi:

- 1. Jeżeli zdający tylko poda kąty (26°, 76°, 78°), to otrzymuje **1 punkt**.
- 2. Jeżeli zdający tylko poda kąty i sprawdzi wszystkie warunki zadania, to otrzymuje **2 punkty**.

Zadanie 33. (0-5)

IV. Uzycie i tworzenie	3. Równania i nierówności. Zdający rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do równań
strategii.	i nierówności kwadratowych (3.b).

Przykładowe rozwiązanie

Przyjmujemy oznaczenia:

x – początkowa liczba osób planujących wyjazd, gdzie x jest liczbą naturalną dodatnią;

y – początkowy koszt wynajęcia busa przypadający na jednego uczestnika biwaku, y > 16.

Zapisujemy zależność między ostateczną liczbą osób uczestniczących w wyjeździe, a ostatecznym jednostkowym kosztem wynajęcia busa, np.: $(x+2) \cdot (y-16) = 960$.

Zapisujemy układ równań, np. $\begin{cases} x \cdot y = 960 \\ (x+2) \cdot (y-16) = 960 \end{cases}$

Z pierwszego równania wyznaczamy

$$y = \frac{960}{x}, \qquad x = \frac{960}{y},$$

podstawiamy do drugiego równania i rozwiązujemy

$$(x+2)\cdot\left(\frac{960}{x}-16\right) = 960$$
.

Przekształcamy to równanie do równania kwadratowego, np.: $x^2 + 2x - 120 = 0$.

Obliczamy $\Delta = 4 + 480 = 22^2$,

$$x_1 = \frac{-2 - 22}{2} = -12$$
, co jest sprzeczne

z założeniem x > 0,

$$x_2 = \frac{-2 + 22}{2} = 10$$
.

Obliczamy liczbę osób, które wyjechały na biwak x + 2 = 12.

$$\left(\frac{960}{y} + 2\right) \cdot (y - 16) = 960$$
.

Przekształcamy to równanie do równania kwadratowego, np.: $y^2 - 16y - 7680 = 0$.

Obliczamy $\Delta = 256 + 30720 = 176^2$,

$$y_1 = \frac{16 - 176}{2} = -80$$
, co jest sprzeczne

z założeniem y > 16,

$$y_2 = \frac{16 + 176}{2} = 96$$
.

Obliczamy początkową liczbę osób planujących wyjazd

$$x = \frac{960}{96} = 10$$
 oraz

obliczamy liczbę osób, które wyjechały na biwak x+2=12.

Odpowiedź: Ostatecznie na biwak wyjechało 12 osób.

Schemat punktowania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania
Zapisanie zależności między ostateczną liczbą osób uczestniczących w wyjeździe, a jednostkowym kosztem wynajęcia busa, np.: $(x+2)\cdot(y-16)=960$, gdzie x oznacza początkową liczbę osób planujących wyjazd, a y – jednostkowy początkowy koszt wynajęcia busa.
Rozwiązanie, w którym jest istotny postęp
Zdający zapisze układ równań z niewiadomymi x i y – odpowiednio z początkową liczbę osób planujących wyjazd i jednostkowym początkowym kosztem wynajęcia busa: $\begin{cases} x \cdot y = 960 \\ (x+2) \cdot (y-16) = 960. \end{cases}$
Pokonanie zasadniczych trudności zadania
Zdający sprowadzi układ równań do równania z jedną niewiadomą, np.: $ (x+2) \cdot \left(\frac{960}{x} - 16\right) = 960 \text{ lub } \left(\frac{960}{y} + 2\right) \cdot (y-16) = 960, \text{ lub } x^2 + 2x - 120 = 0, $
lub $y^2 - 16y - 7680 = 0$.
Uwaga:
Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą.
Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)
Zdający
 rozwiąże równanie z niewiadomą x z błędem rachunkowym i konsekwentne obliczy liczbę osób uczestniczących w biwaku albo
 rozwiąże równanie z niewiadomą x i nie obliczy liczby osób uczestniczących w biwaku,
albo
 rozwiąże równanie z niewiadomą y i nie obliczy liczby osób uczestniczących w biwaku,
albo • obliczy <i>y</i> z błędem rachunkowym i konsekwentne obliczy liczbę osób uczestniczących w biwaku.
Rozwiązanie pełne 5 p.
Zdający obliczy liczbę osób uczestniczących w biwaku: 12.
Uwagi.

- 1. Jeżeli zdający tylko poda rozwiązanie, to może otrzymać maksymalnie 1 punkt.
- 2. Jeżeli zdający założy, że koszt jest liczbą całkowitą, rozpatrzy rozkłady liczby 960 na iloczyn dwóch czynników, wśród których są rozkłady:

$$10.96 = 960$$

 $12.80 = 960$

i poda poprawną odpowiedź, to może otrzymać maksymalnie 2 punkty.

3. Jeżeli zdający przyjmie x jako liczbę osób, które ostatecznie pojechały na biwak i poda x+2=14, to może otrzymać maksymalnie **4 punkty**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Jeżeli zdający popełni błąd (np.: $x_2 = \frac{2+22}{2} = 12$ lub rachunkowy) w wyznaczaniu pierwiastków równania kwadratowego, przy czym otrzyma przynajmniej jedno rozwiązanie naturalne i konsekwentnie rozwiąże zadanie do końca, to może otrzymać 5 punktów.
- 2. Jeżeli zdający otrzyma poprawne równanie wymierne, a następnie przekształci je z błędem do równania kwadratowego i konsekwentnie rozwiąże zadanie do końca, to może otrzymać 5 punktów, o ile otrzymane równanie ma przynajmniej jedno rozwiązanie naturalne.

Zadanie 34. (0-4)

III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych; stosuje zasadę mnożenia, wykorzystuje własności prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (10.b,d).
--------------------------------	--

Przykładowe rozwiązania

I sposób

Zdarzeniem elementarnym jest uporządkowana para (x,y) dwóch różnych liczb ze zbioru $\{10,11,12,...,99\}$, który zawiera 90 liczb. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 90.89$. Wszystkie zdarzenia elementarne są równo prawdopodobne. Mamy więc do czynienia z modelem klasycznym.

Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest 30. Zatem zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(10,20)$$
, $(11,19)$, $(12,18)$, $(13,17)$, $(14,16)$, $(16,14)$, $(17,13)$, $(18,12)$, $(19,11)$, $(20,10)$. Ich liczba jest równa $|A| = 10$.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{10}{90.89} = \frac{1}{9.89} = \frac{1}{801}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy dwie różne liczby dwucyfrowe, których suma jest równa 30 jest równe $\frac{1}{801}$.

II sposób

Zdarzeniem elementarnym jest zbiór dwuelementowy $\{x,y\}$ dwóch różnych liczb ze zbioru $\{10,11,12,...,99\}$, który zawiera 90 liczb. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = {90 \choose 2} = \frac{90!}{88! \cdot 2!} = \frac{90 \cdot 89}{2} = 4005$. Wszystkie zdarzenia elementarne są równo

prawdopodobne. Mamy więc do czynienia z modelem klasycznym.

Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest 30. Zatem zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$\left\{10,20\right\},\,\left\{11,19\right\},\,\left\{12,18\right\},\,\left\{13,17\right\},\,\left\{14,16\right\}.$$

Ich liczba jest równa |A| = 5.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{5}{45 \cdot 89} = \frac{1}{9 \cdot 89} = \frac{1}{801}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy dwie różne liczby dwucyfrowe, których suma jest równa 30 jest równe $\frac{1}{801}$.

III sposób

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyjających zdarzeniu A (polegającemu na tym, że suma wylosowanych liczb będzie równa 30).

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = 10 \cdot \frac{1}{90} \cdot \frac{1}{89} = \frac{1}{9 \cdot 89} = \frac{1}{801}$$
.

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy dwie różne liczby dwucyfrowe, których suma jest równa 30 jest równe $\frac{1}{801}$.

Schemat punktowania

- zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90 albo
 - wypisze zdarzenia elementarne sprzyjające zdarzeniu A: (10,20), (11,19), (12,18), (13,17), (14,16), (16,14), (17,13), (18,12), (19,11), (20,10)
 lub {10,20}, {11,19}, {12,18}, {13,17}, {14,16},

albo

• zapisze, że |A| = 10 lub |A| = 5,

• narysuje drzewo ilustrujące przebieg doświadczenia (na rysunku muszą wystąpić wszystkie istotne gałęzie)

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie, w którym jest istotny postęp2 p. Zdający

• zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90 oraz wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu *A*:

$$(10,20)$$
, $(11,19)$, $(12,18)$, $(13,17)$, $(14,16)$, $(16,14)$, $(17,13)$, $(18,12)$, $(19,11)$, $(20,10)$

albo

• zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90 oraz zapisze, że |A| = 10 lub |A| = 5,

albo

• obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 90.89$ lub $|\Omega| = {90 \choose 2}$, lub $|\Omega| = {90.89 \choose 2}$, lub $|\Omega| = 4005$,

albo

 narysuje drzewo ze wszystkimi istotnymi gałęziami i zapisze prawdopodobieństwa na wszystkich istotnych odcinkach jednego z etapów lub na jednej z istotnych gałęzi i na tym zakończy lub dalej popełni błędy.

• obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 90.89$ oraz zapisze, że |A| = 10

albo

• obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = \binom{90}{2}$ lub $|\Omega| = \frac{90 \cdot 89}{2}$, lub $|\Omega| = 4005$ oraz zapisze, że |A| = 5,

albo

• obliczy prawdopodobieństwo wzdłuż jednej istotnej gałęzi narysowanego drzewa: $\frac{1}{90} \cdot \frac{1}{89}$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie pełne4 p.

Zdający obliczy prawdopodobieństwo zdarzenia *A*: $P(A) = \frac{|A|}{|\Omega|} = \frac{1}{801}$.

Uwagi:

1. Jeżeli zdający poprawnie wyznaczy moc zbioru wszystkich zdarzeń elementarnych, ale przy wyznaczaniu liczby zdarzeń sprzyjających zdarzeniu *A* pominie jedno zdarzenie elementarne lub popełni błąd przy zliczaniu poprawnie wypisanych zdarzeń elementarnych

- sprzyjających zdarzeniu A i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający błędnie zapisze, że wszystkich liczb dwucyfrowych jest 89 i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty**.
- 3. Jeżeli w rozwiązaniu występuje sprzeczność modeli probabilistycznych, to zdający może otrzymać, co najwyżej **2 punkty**.
- 4. Akceptujemy sytuacje, gdy zdający zamiast wypisywania zdarzeń elementarnych sprzyjających zdarzeniu *A* zapisze następujące sumy 10+20, 11+19, 12+18, 13+17, 14+16, 16+14, 17+13, 18+12, 19+11, 20+10 (lub tylko 10+20, 11+19, 12+18, 13+17, 14+16).
- 5. Jeżeli zdający zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90, ale przy wypisywaniu zdarzeń elementarnych sprzyjających zdarzeniu *A*, zapisuje sumę 15+15 i na tym zakończy to otrzymuje **1 punkt**.
- 6. Jeżeli zdający bez żadnych obliczeń poda tylko wynik, np. $\frac{1}{801}$, to otrzymuje za całe rozwiązanie **1 punkt**.