Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -4200.000 -4400.000 Radiell fart m/s -4600.000 -4800.000 -5000.000 -5200.000 -5400.000 ò 500 1000 1500 2000 2500 3000 3500 4000

Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 9.10e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

 $\operatorname{STJERNE}$ A) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

STJERNE B) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE C) stjerna har en levetid på noen millioner år og fusjonerer hy-

drogen til helium i kjernen

STJERNE D) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE E) radiusen er 1000 ganger solas radius.

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 5.747e+06 kg/m $\hat{3}$ og temperatur 28 millioner K.

Kjernen i stjerne B har massetet
thet 6.135e+06 kg/m3 og temperatur 28 millioner K.

Kjernen i stjerne C har massetet
thet 1.608e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne D har massetet
thet 9.543e+06 kg/m3̂ og temperatur 38 millioner K.

Kjernen i stjerne E har massetet
thet 8.949e+06 kg/m3̂ og temperatur 18 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 3: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 4: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 18.61

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

Figur C tilsynelatende størrelseklasse 21.06

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.650e+05 kg/m3̂ og temperatur 35.39 millioner K.

Kjernen i stjerne B har massetet
thet $3.416\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 31.23 millioner K.

Kjernen i stjerne C har massetet
thet 2.680e+05 kg/m $\hat{3}$ og temperatur 29.27

millioner K.

Kjernen i stjerne D har massetet
thet 2.920e+05 kg/m3̂ og temperatur 33.32 millioner K.

Kjernen i stjerne E har massetet
thet $3.044\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 23.02 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 116.25 dager etter første observasjon.

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

0.00

5.66

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.30 buesekunder i løpet av et millisekund.

50.95

45.29

39.63

33.97

28.31

11.32

5.66

11.32 16.98 22.65 28.31 33.97 39.63

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.92490 km/t.

Filen 3E.txt

Tog1 veier 101600.00000 kg og tog2 veier 37900.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 514 km/s.

Filen 4E.txt

Massen til gassklumpene er 4400000.00 kg.

Hastigheten til G1 i x-retning er 3600.00 km/s.

Hastigheten til G2 i x-retning er 8280.00 km/s.

Filen 4G.txt

Massen til stjerna er 30.10 solmasser og radien er 1.92 solradier.