Want more content like this? Subscribe here
(https://docs.google.com/forms/d/e/1FAIpQLSeOryp8VzYIs4ZtE9HVkRcMJyDcJ2FieM82fUsFoCssHu9DA/viewform) to be notified of
new releases!

(https://stanford.edu/~shervine/teaching/cs-229/refresher-algebra-calculus#cs-229---machine-learning)CS 229 - Machine Learning (teaching/cs-229)

Probabilities	Algebra
---------------	---------

By Afshine Amidi (https://twitter.com/afshinea) and Shervine Amidi (https://twitter.com/shervinea)

[https://stanford.edu/~shervine/teaching/cs-229/refresheralgebra-calculus#notations) General notations

Definitions

 \square **Vector** — We note $x \in \mathbb{R}^n$ a vector with n entries, where $x_i \in \mathbb{R}$ is the i^{th} entry:

$$x=\left(egin{array}{c} x_1\ x_2\ dots\ x_n \end{array}
ight)\in\mathbb{R}^n$$

 \square **Matrix** — We note $A \in \mathbb{R}^{m \times n}$ a matrix with m rows and n columns, where $A_{i,j} \in \mathbb{R}$ is the entry located in the i^{th} row and j^{th} column:

$$A = \left(egin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \ dots & & dots \ A_{m,1} & \cdots & A_{m,n} \end{array}
ight) \in \mathbb{R}^{m imes n}$$

Remark: the vector x defined above can be viewed as a $n \times 1$ matrix and is more particularly called a column-vector.

Main matrices

 \Box **Identity matrix** — The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else:

$$I=\left(egin{array}{cccc} 1&0&\cdots&0\ 0&\ddots&\ddots&dots\ dots&\ddots&\ddots&dots\ dots&\ddots&\ddots&0\ 0&\cdots&0&1 \end{array}
ight)$$

Remark: for all matrices $A \in \mathbb{R}^{n \times n}$, we have $A \times I = I \times A = A$.

 \Box **Diagonal matrix** — A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else:

$$D=\left(egin{array}{cccc} d_1 & 0 & \cdots & 0 \ 0 & \ddots & \ddots & dots \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & d_n \end{array}
ight)$$

Remark: we also note D as $\operatorname{diag}(d_1,...,d_n)$.

(https://stanford.edu/~shervine/teaching/cs-229/refresher-algebra-calculus#operations)

Matrix operations

Multiplication

□ **Vector-vector** — There are two types of vector-vector products:

• inner product: for $x,y\in\mathbb{R}^n$, we have:

$$oxed{x^Ty = \sum_{i=1}^n x_i y_i \in \mathbb{R}}$$

• outer product: for $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, we have:

$$egin{bmatrix} xy^T = \left(egin{array}{ccc} x_1y_1 & \cdots & x_1y_n \ dots & & dots \ x_my_1 & \cdots & x_my_n \end{array}
ight) \in \mathbb{R}^{m imes n} \ \end{array}$$

 \Box Matrix-vector — The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a vector of size \mathbb{R}^m , such that:

$$egin{bmatrix} Ax = \left(egin{array}{c} a_{r,1}^Tx \ dots \ a_{r,m}^Tx \end{array}
ight) = \sum_{i=1}^n a_{c,i}x_i \in \mathbb{R}^m \ \end{array}$$

where $a_{r,i}^T$ are the vector rows and $a_{c,j}$ are the vector columns of A, and x_i are the entries of x .

 \Box Matrix-matrix — The product of matrices $A\in\mathbb{R}^{m\times n}$ and $B\in\mathbb{R}^{n\times p}$ is a matrix of size $\mathbb{R}^{m\times p}$, such that:

$$egin{aligned} AB = \left(egin{array}{ccc} a_{r,1}^Tb_{c,1} & \cdots & a_{r,1}^Tb_{c,p} \ dots & & dots \ a_{r,m}^Tb_{c,1} & \cdots & a_{r,m}^Tb_{c,p} \end{array}
ight) = \sum_{i=1}^n a_{c,i}b_{r,i}^T \in \mathbb{R}^{m imes p} \end{aligned}$$

where $a_{r,i}^T, b_{r,i}^T$ are the vector rows and $a_{c,j}, b_{c,j}$ are the vector columns of A and B respectively.

Other operations

 \Box **Transpose** — The transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^T , is such that its entries are flipped:

$$oxed{orange eta i,j, \qquad A_{i,j}^T = A_{j,i}}$$

Remark: for matrices A, B, we have $(AB)^T = B^T A^T$.

 \Box **Inverse** — The inverse of an invertible square matrix A is noted A^{-1} and is the only matrix such that:

$$\boxed{AA^{-1} = A^{-1}A = I}$$

Remark: not all square matrices are invertible. Also, for matrices A,B, we have $(AB)^{-1}=B^{-1}A^{-1}$

 \square **Trace** — The trace of a square matrix A, noted $\operatorname{tr}(A)$, is the sum of its diagonal entries:

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$$

Remark: for matrices A,B, we have $\mathrm{tr}(A^T)=\mathrm{tr}(A)$ and $\mathrm{tr}(AB)=\mathrm{tr}(BA)$

 \Box **Determinant** — The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$, noted |A| or $\det(A)$ is expressed recursively in terms of $A_{\backslash i,\backslash j}$, which is the matrix A without its i^{th} row and j^{th} column, as follows:

$$\left|\det(A)=|A|=\sum_{j=1}^n (-1)^{i+j}A_{i,j}|A_{ackslash i,ackslash j}|$$

Remark: A is invertible if and only if |A|
eq 0. Also, |AB| = |A||B| and $|A^T| = |A|$.

[https://stanford.edu/~shervine/teaching/cs-229/refresheralgebra-calculus#properties) Matrix properties

Definitions

 \square Symmetric decomposition — A given matrix A can be expressed in terms of its symmetric and antisymmetric parts as follows:

$$A = \underbrace{\frac{A + A^T}{2}}_{ ext{Symmetric}} + \underbrace{\frac{A - A^T}{2}}_{ ext{Antisymmetric}}$$

 \Box Norm — A norm is a function $N:V\longrightarrow [0,+\infty[$ where V is a vector space, and such that for all $x,y\in V$, we have:

- $N(x+y) \leqslant N(x) + N(y)$
- N(ax) = |a|N(x) for a scalar
- if N(x)=0, then x=0

For $x \in V$, the most commonly used norms are summed up in the table below:

Norm	Notation	Definition	Use case
Manhattan, L^1	$ x _1$	$\sum_{i=1}^n x_i $	LASSO regularization
Euclidean, L^2	$ x _2$	$\sqrt{\sum_{i=1}^n x_i^2}$	Ridge regularization
p -norm, L^p	$ x _p$	$\left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$	Hölder inequality
Infinity, L^∞	$ x _{\infty}$	$\max_i x_i $	Uniform convergence

☐ **Linearly dependence** — A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the others.

Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

 \square Matrix rank — The rank of a given matrix A is noted $\mathrm{rank}(A)$ and is the dimension of the vector space generated by its columns. This is equivalent to the maximum number of linearly independent columns of A.

 \Box **Positive semi-definite matrix** — A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) and is noted $A \succeq 0$ if we have:

$$oxed{A = A^T} \quad ext{and} \quad egin{bmatrix} orall x \in \mathbb{R}^n, & x^TAx \geqslant 0 \end{bmatrix}$$

Remark: similarly, a matrix A is said to be positive definite, and is noted $A \succ 0$, if it is a PSD matrix which satisfies for all non-zero vector x, $x^TAx > 0$.

 \square **Eigenvalue**, **eigenvector** — Given a matrix $A \in \mathbb{R}^{n \times n}$, λ is said to be an eigenvalue of A if there exists a vector $z \in \mathbb{R}^n \setminus \{0\}$, called eigenvector, such that we have:

$$Az=\lambda z$$

 \square Spectral theorem — Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda = \operatorname{diag}(\lambda_1,...,\lambda_n)$, we have:

$$oxed{\exists \Lambda ext{ diagonal}, \quad A = U \Lambda U^T}$$

 \square Singular-value decomposition — For a given matrix A of dimensions $m \times n$, the singular-value decomposition (SVD) is a factorization technique that guarantees the existence of U $m \times m$ unitary, $\sum m \times n$ diagonal and V $n \times n$ unitary matrices, such that:

$$oxed{A = U\Sigma V^T}$$

[https://stanford.edu/~shervine/teaching/cs-229/refresheralgebra-calculus#calculus] Matrix calculus

 \square **Gradient** — Let $f:\mathbb{R}^{m \times n} \to \mathbb{R}$ be a function and $A \in \mathbb{R}^{m \times n}$ be a matrix. The gradient of f with respect to A is a $m \times n$ matrix, noted $\nabla_A f(A)$, such that:

$$oxed{\left(
abla_A f(A)
ight)_{i,j} = rac{\partial f(A)}{\partial A_{i,j}}}$$

Remark: the gradient of f is only defined when f is a function that returns a scalar.

 \square **Hessian** — Let $f:\mathbb{R}^n o\mathbb{R}$ be a function and $x\in\mathbb{R}^n$ be a vector. The hessian of f with respect to x is a n imes n symmetric matrix, noted $abla_x^2 f(x)$, such that:

$$oxed{\left(
abla_x^2 f(x)
ight)_{i,j} = rac{\partial^2 f(x)}{\partial x_i \partial x_j}}$$

Remark: the hessian of f is only defined when f is a function that returns a scalar.

 \Box Gradient operations — For matrices A, B, C, the following gradient properties are worth having in mind:

$$oxed{
abla_{A} ext{tr}(AB)=B^T} oxed{
abla_{A^T}f(A)=\left(
abla_{A}f(A)
ight)^T}$$

$$egin{align} egin{align} oldsymbol{
abla}_A ext{tr}(AB) &= B^T \ egin{align} oldsymbol{
abla}_{A^T} f(A) &= \left(
abla_A f(A)
ight)^T \ egin{align} oldsymbol{
abla}_A ext{tr}(ABA^TC) &= CAB + C^TAB^T \ egin{align} oldsymbol{
abla}_A |A| &= |A|(A^{-1})^T \ egin{align} oldsymbol{
abla}_A ext{tr}(ABA^TC) &= CAB + C^TAB^T \ egin{align} oldsymbol{
abla}_A ext{tr}(ABA^TC) &= AB^T \ oldsymbol{
abla}_A ext{tr}(ABA^TC) &= AB^T \$$

(https://www.amazon.com/stores/author/B0B37XBSJL)