FEUILLE 8 : CALCUL D'INTÉGRALES PAR RÉSIDUS

Exercice 1. 1. Déterminer les pôles et les résidus en chaque pôle de la fonction méromorphe $\frac{z^2}{1+z^4}$.

2. Calculer par résidus l'intégrale $\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx$.

Exercice 2. Soient a, b des réels strictement positifs.

- 1. Déterminer les pôles dans le demi-plan supérieur et les résidus en ces pôles de la fonction méromorphe sur $\mathbb{C}: z \to \frac{ze^{ibz}}{z^4+a^4}$.
- 2. Calculer l'intégrale $\int_{-\infty}^{+\infty} \frac{xe^{ibx}}{x^4 + a^4} dx$.
- 3. En déduire la valeur de $\int_0^{+\infty} \frac{x \sin bx}{x^4 + a^4} dx$.

Exercice 3. Calculer $\int_0^{+\infty} \frac{\cos x}{(1+x^2)^2} dx$. (On remarquera que l'intégrale précédente est égale à la partie réelle de $\frac{1}{2} \int_{-\infty}^{+\infty} \frac{e^{ix}}{(1+x^2)^2} dx$).

Exercice 4. 1. Monter qu'il existe une constante c > 0 telle que pour tout $\theta \in [0, \pi/2]$, on ait $\sin \theta \ge c\theta$. En déduire que $R \int_0^{\pi/4} e^{-R^2 \sin(2\theta)} d\theta$ tend vers zéro si R tend vers $+\infty$.

2. Intégrer e^{-z^2} sur le contour suivant, orienté positivement (où R est un réel strictement positif) :

3. En faisant tendre R vers l'infini, et en utilisant que $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$, calculer les intégrales $\int_0^{+\infty} \cos(x^2) dx$ et $\int_0^{+\infty} \sin(x^2) dx$.

Exercice 5. 1. Montrer que l'intégrale $I = \int_0^{+\infty} \frac{(\log x)^2}{1+x^2} dx$ converge.

2. Soit f(z) la fonction holomorphe définie sur $\mathbb{C}-]-\infty,0]i$ par $f(z)=\frac{(\log z)^2}{1+z^2}$, où log désigne la détermination principale du logarithme sur l'ouvert précédent qui coı̈ncide avec le logarithme usuel sur $]0,+\infty[$. Calculer $\int_{\Gamma_{a,R}} f(z)\,dz$, où pour 0< a< 1< R donnés, $\Gamma_{a,R}$ est le contour ci-dessous, dans lequel le grand demi-cercle γ_R est parcouru dans le sens positif et le petit γ_a dans le sens négatif :

1

- 3. Prouver que $\int_{\gamma_a} f(z) dz$ tend vers zéro si a tend vers zéro, et que $\int_{\gamma_R} f(z) dz$ tend vers zéro si R tend vers l'infini.
- 4. Calculer Re $\int_{-\infty}^{+\infty} \frac{(\log z)^2}{1+z^2} dz$ en fonction de I.
- 5. Calculer explicitement $\int_0^{+\infty} \frac{(\log x)^2}{1+x^2} dx$.

Exercice 6. Soit θ_0 un angle dans $]-\pi,\pi]$. Soit f une fonction méromorphe n'ayant pas de pôle en zéro ni sur le cercle de centre 0 de rayon R>0 donné, ni sur la demi-droite d'angle polaire θ_0 . Soit $\epsilon>0$ assez petit pour que f n'ait pas de pôle dans le disque fermé de centre zéro, de rayon ϵ . On note \log_{θ_0} la détermination du logarithme dans $\mathbb{C}-[0,+\infty[e^{i\theta_0}]$ donnée par $\log_{\theta_0}(z)=r+i\theta$, si on a écrit $z=re^{i\theta}$ avec l'argument θ choisi dans l'intervalle $]-2\pi+\theta_0,\theta_0[$. Soit $\alpha>0$ petit. On note $\Gamma_{\alpha,\epsilon,R}$ le contour formé par les deux segments $e^{i(\theta_0\pm\alpha)}[\epsilon,R]$, et les arcs de cercle de rayon R et ϵ , d'angle polaire hors de l'intervalle $]\theta_0-\alpha,\theta_0+\alpha[$ (cf. dessin ci-dessous).

On oriente le contour de telle manière que le grand arc de cercle soit parcouru dans le sens trigonométrique, et le petit en sens inverse du sens trigonométrique. Soit $p \in \mathbb{N}^*$.

- 1. On pose $I(\alpha, \epsilon, R) = \int_{\Gamma_{\alpha, \epsilon, R}} f(z) (\log_{\theta_0} z)^p dz$. Montrer que la limite de $I(\alpha, \epsilon, R)$ lorsque $\alpha \to 0+$ existe et vaut $I(0, \epsilon, R)$ (On vérifiera que cette dernière intégrale est bien convergente).
- 2. Soient γ_R le cercle de centre 0 de rayon R orienté positivement. Montrer que si A est l'ensemble des pôles de f à l'intérieur du cercle de centre 0 de rayon R > 0, on a

$$2i\pi \sum_{a \in A} \text{R\'es} (f(z)(\log_{\theta_0} z)^p, a) = \int_{\gamma_R} f(z)(\log_{\theta_0} z)^p dz + \int_0^R f(re^{i\theta_0})(\log r + i(-2\pi + \theta_0))^p e^{i\theta_0} dr - \int_0^R f(re^{i\theta_0})(\log r + i\theta_0)^p e^{i\theta_0} dr.$$

Exercice 7. Calculer $\int_0^{+\infty} \frac{dx}{1+x^3}$, en appliquant le résultat de l'exercice ?? avec $\theta_0=0, p=1, f(z)=(1+z^3)^{-1}$.