Intelligent Agents Review

Ahmed Ibrahim

What is an Agent?

- An agent can be anything that perceives its environment through sensors and acts upon that environment through actuators.
- An Agent runs in the cycle of perceiving, thinking, and acting.
- An agent can be:
 - Human-Agent: A human agent has eyes, ears, and other organs which work for sensors and hand, legs, and others work for actuators.
 - Robotic Agent: A robotic agent can have cameras, infrared range finder, for sensors and various motors for actuators.
 - **Software Agent:** Software agent can have **keystrokes**, file contents as sensory input and act on those inputs and display output on the screen.

In Gaming!

- Sensors for players are inputs like their eyes (screen visuals), ears (game audio), and touch (keyboard, mouse, or controller).
- Actuators are their outputs, such as hand movements (aiming, shooting), button presses (building, switching weapons), and voice communication (team strategies).
- The game's sensors detect player actions, while actuators provide feedback like visuals, sounds, and vibrations.

Agent Function

- Agent Function: maps a percept to an action. $[f: P* \rightarrow A]$
- An agent function for a Fortnite player maps their percept history (sensory input from the game) to actions (responses).
- The agent function continuously processes inputs (visual, auditory, and tactile) and determines appropriate actions to maximize survival and performance in the game.

Example:

Percept History:

- Enemy spotted on screen.
- Footsteps were heard nearby.
- Health bar low.

Action:

- Build a defensive structure.
- Switch to a weapon.
- Heal using a health kit.

What is Intelligent Agents?

- An intelligent agent is an autonomous entity which acts upon an environment using sensors and actuators to achieve goals.
- An intelligent agent may <u>learn from the environment to achieve their goals</u>.
- Following are the main four rules for an AI agent:
 - Rule 1: An AI agent must be able to perceive the environment.
 - Rule 2: The observation must be used to make decisions.
 - Rule 3: A decision should result in an action.
 - Rule 4: The action taken by an AI agent must be rational.

Structure of an Al Agent

• The structure of an intelligent agent is a combination of architecture and agent program. It can be viewed as:

Agent = Architecture + Agent program

- There are three main structures of an Al agent:
 - i. Architecture: machinery that an AI agent executes.
 - ii. Agent Function: maps a percept to an action. $[f: P* \rightarrow A]$

iRobot Roomba series

- iii. Agent program: is an implementation of agent function.
- \checkmark An agent program executes on the physical architecture to produce a function f.

Rational Agents

- A rational agent should strive to "do the right thing" based on what it can perceive and the
 actions it can perform.
- The right action is the one that will cause the agent to be most successful.
- Performance measure: An objective criterion for the success of an agent's behaviour.
- E.g., the performance measure of a vacuum-cleaner agent could be:
 - Amount of dirt cleaned up,
 - Amount of time taken,
 - Amount of electricity consumed,
 - Amount of noise generated, etc.

Rationality

- Rationality can be judged on the basis of following four points:
 - The performance measure that defines the criterion of success.
 - The agent's prior knowledge of the environment.
 - The actions that the agent can perform.
 - The agent's percept sequence to date.

PEAS Description

- PEAS-is a type of model on which an AI agent works upon.
- When we define an AI agent or rational agent, then we can group its properties under PEAS representation model.
- PEAS stands for:
 - Performance measure: A measure of how good the behaviour of agents operating
 in the environment is.
 - Environment: What things are considered to be a part of the environment, and what things are excluded?
 - Actuators: How can an agent perform actions in the environment?
 - Sensors: How can the agent perceive the environment?

Autonomous Vehicles

- **Performance:** *Safety, time, legal drive, comfort,* maximize profits
- Environment: Roads, other cars, pedestrians (walkers), customers
- Actuators: Steering wheel, accelerator, brake, signal, indicators, horn(alert or alarm)
- **Sensors:** Camera, sonar, GPS, Speedometer, odometer, accelerometer, engine sensors, keyboard.

Agent Environment in Al

- An **environment** is everything in the world which surrounds the agent, but it is not a part of the agent itself.
- The environment is where the agent lives, operates and provides the agent with something to sense and act upon.
- There are major types of environments:
 - Fully Observable & Partially Observable, Episodic & Sequential, Static & Dynamic,
 Discrete & Continuous, Deterministic & Stochastic

Single-agent vs. multi-agent and Known vs. Unknown

Example: Fortnite Environment!

Based on the following: Fully Observable & Partially Observable, Episodic & Sequential, Static & Dynamic, Discrete & Continuous, Deterministic & Stochastic, Single agent vs. multi-agent and Known vs. Unknown

- Partially Observable: Players cannot see the entire map or know the exact location of other players and items; they rely on sensory inputs like visuals and sounds
- Sequential: Each action (e.g., moving, shooting, or building) affects future states, and gameplay requires planning based on past decisions
- Dynamic: The game environment changes in real time due to other player 's actions, the shrinking storm circle, and loot spawns
- Continuous: Players can move and aim freely within the game world, making it a continuous environment
- Stochastic: Outcomes involve randomness (e.g., loot availability, weapon damage variability) and depend on other players' unpredictable actions.
- Multi-Agent: Players compete or cooperate with other human players, making interactions critical to the gameplay.
- Known: The game rules, mechanics, and map are pre-defined and known to players, though the precise state (e.g., enemy locations) can remain unknown during gameplay.

Agent Types

- Simple Reflex: Based on condition-action rules.
- Model-based: Uses internal state.
- Goal-based: Plans actions to achieve goals.
- Utility-based: Maximizes utility.
- Learning: Adapts and improves over time.

Simple Reflex Agents

SimpleReflexAgent.java

Modelbased Reflex Agents

ModelBasedReflexAgent.java

Goalbased Agents

Utilitybased Agents

Learning Agents

- A **learning agent in AI** is the type of agent which can learn from its past experiences or has learning capabilities.
- It starts to act with essential knowledge and then is able to act and adapt automatically through learning.
- A learning agent has mainly four conceptual components, which are:
 - Learning element: It is responsible for making improvements by learning from the environment
 - Critic: The learning element takes feedback from the critic, which describes how well the
 agent is doing with respect to a fixed performance standard.
 - Performance Element: It is responsible for selecting external action
 - Problem Generator: This component is responsible for suggesting actions that will lead to new and informative experiences

Conclusion

- Agents interact with environments to achieve objectives.
- Design depends on the environment's properties.
- Focus: Rationality, performance, and adaptability.