Università degli Studi Roma Tre Corso di Laurea in Matematica Tutorato di AL310 - Istituzioni di Algebra superiore A.A.2017/2018

Docente: Prof. F. Pappalardi Tutori: Chiara Camerini e Gianclaudio Pietrazzini

Tutorato del 3 Novembre 2017

Esercizio 1

Determinare l'inverso di $\frac{1}{\alpha^2+\alpha+1}$ e $\frac{1}{2+\alpha}$ in $\mathbb{Q}(\alpha)$ con $\alpha^3-5\alpha-1=0$.

Esercizio 2

Calcolare il polinomio minimo di $\alpha = \sqrt{2} + i$ ed il grado di $\mathbb{Q}(\alpha)$ su \mathbb{Q} .

Esercizio 3

Dopo aver verificato che è algebrico, calcolare il polinomio minimo su $\mathbb Q$ di cos $\frac{\pi}{18}$. (I esonero AA 2004/2005)

Esercizio 4

Sia $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.

- 1. Determinare il polinomio minimo di α su \mathbb{Q} e di α su $\mathbb{Q}(\sqrt{2})$.
- 2. Scrivere una \mathbb{Q} -base per $\mathbb{Q}(\alpha)$.
- 3. Dire se $\mathbb{Q}(\alpha)$ è estensione di Galois di \mathbb{Q} .
- 4. Descrivere gli elementi del gruppo $\operatorname{Gal}(\mathbb{Q}(\alpha):\mathbb{Q})$ e verificare che è ciclico.

Esercizio 5

Calcolare il grado $\left[E:F\right]$ nei seguenti casi:

a)
$$E = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$$
 $F = \mathbb{Q}$

b)
$$E = \mathbb{Q}(\sqrt{2}, \sqrt{2})$$
 $F = \mathbb{Q}$
b) $E = \mathbb{Q}(\sqrt{5}, \xi)$, $\cos \xi^3 + \xi - 1 = 0$ $F = \mathbb{Q}$
c) $E = \mathbb{F}_3[\sqrt{-1}]$ $F = \mathbb{F}_3$

c)
$$E = \mathbb{F}_3[\sqrt{-1}]$$
 $F = \mathbb{F}_3$

Esercizio 6

Descrivere gli F-omomorfismi di E in $\mathbb C$ in ciascuno dei seguenti casi:

a)
$$E = \mathbb{Q}(\sqrt{2}, \sqrt{10})$$
 $F = \mathbb{Q}(\sqrt{5})$

a)
$$E = \mathbb{Q}(\sqrt{2}, \sqrt{10})$$
 $F = \mathbb{Q}(\sqrt{5})$
b) $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $F = \mathbb{Q}(\sqrt{6})$

Esercizio 7

Calcolare il gruppo di automorfismo di $f(x) = x^4 - 2$.