Linguagens de montagem Capítulo 13 - ARM - Entrada e Saída

Ricardo Anido Instituto de Computação Unicamp

Entrada e saída

- No processador ARM a entrada e saída é mapeada na memória, ou seja, o ARM não possui instruções específicas para acessar entrada e saída.
- Para comunicação do processador com os dispositivos são usadas as instruções normais de acesso à memória (LDR e STR).
- Algum intervalo (ou intervalos) de endereços de memória deve ser reservado para dispositivos de entrada e saída.
- ► Geralmente os endereços reservados para E/S no ARM são os do final do espaço de endereçamento (endereços de valores altos), mas isso depende da arquitetura de hardware do sistema.

Problema

Considerando o mostrador de sete segmentos e o teclado simples, escreva um programa em linguagem de montagem do ARM para atualizar continuamente o mostrador com o valor da tecla pressionada. Considere que o endereço da porta de dados do mostrador seja 0x90000, e os endereços das portas de estado e de dados do teclado sejam respectivamente 0x90010 e 0x90011.

Solução

- @ programa para atualizar constantemente o mostrador com o valor
- @ de uma tecla pressionada
- @ endereços dispositivos
 - .equ DISPLAY, 0x90000
 - .equ KBD_DATA, 0x90010
 - .equ KBD_STATUS, 0x90011
- @ constantes
 - .equ KBD_READY, 0x1
 - .equ KBD_OVRN, 0x2
 - .org 0x100

Solução

digitos:

```
le tecla:
       ldr
               r1,=KBD_STATUS
                              @ porta de estado do teclado
le tecla1:
       ldr
               r2.[r1]
                              @ lê estado do teclado
       tst
               r2,#KBD_READY
                               O verifica se tecla foi pressionada
       beq
               le tecla1
                               @ se não, continua no laço
       ldr
                               @ r1 tem porta de dados do teclado
               r1,=KBD_DATA
       ldr
               r3.[r1]
                               @ r3 tem valor da tecla pressionada
       ldr
               r2,=DISPLAY
                               @ r2 tem porta do mostrador
               r4,=digitos
       ldr
                               @ tabela com padrões de bits
       ldrb
               r0,[r4,r3]
                               O padrão de bits para valor da tecla
               r0.[r2]
                               @ seta valor no mostrador
       strb
               le tecla
       h
                               @ e continua para sempre
```

.byte 0x7e,0x30,0x6d,0x79,0x33,0x5b,0x5f,0x70,0x7f,0x7b,0x4f,0x4f

Exceções

- existe outro tipo de evento, interno ao processador, que também pode ser tratado com o mecanismo de interrupção: Exceção,
- Exceção ocorre devido a algum problema na execução de uma instrução.
- Exemplo: divisão por zero.
- Outro exemplo: instrução inválida, disparada quando o processador detecta que o código da instrução a ser executada não corresponde a uma instrução válida.

Exceções

- Alguns tipos de interrupção são pré-definidos como sendo reservados para exceções,
- ▶ O hardware, no caso de ocorrência de uma exceção, gera uma interrupção do tipo correspondente.

- Interrupções e exceções no ARM são associadas aos modos de operação do processador.
- ▶ O ARM possui duas interrupções externas: FIQ (interrupção rápida, do inglês Fast Interrupt Request) e IRQ (interrupção normal, do inglês Interrupt Request), e quatro tipos de exceções: Reset, Data abort, Pre-fetch abort e Undefined instruction.

- As diferentes interrupções e exceções têm prioridades, indicadas por números de 1 a 6 (quanto menor o número maior a prioridade).
- Se um tipo mais prioritário de interrupção ou exceção está sendo atendido, os eventos de outros tipos ficam pendentes.
- ▶ Para as interrupções externas FIQ e IRQ o registrador CPSR mantém dois bits de controle, respectivamente bits F e I, que indicam se a interrupção deve ser tratada. Se o bit de controle correspondente no registrador CPSR é igual a zero, a interrupção está habilitada e é atendida; caso o bit correspondente seja igual a um (interrupção desabilitada), a interrupção fica pendente.

- As diferentes interrupções e exceções têm prioridades, indicadas por números de 1 a 6 (quanto menor o número maior a prioridade).
- Se um tipo mais prioritário de interrupção ou exceção está sendo atendido, os eventos de outros tipos ficam pendentes.
- ▶ Para as interrupções externas FIQ e IRQ o registrador CPSR mantém dois bits de controle, respectivamente bits F e I, que indicam se a interrupção deve ser tratada. Se o bit de controle correspondente no registrador CPSR é igual a zero, a interrupção está habilitada e é atendida; caso o bit correspondente seja igual a um (interrupção desabilitada), a interrupção fica pendente.

Interrupção/Exceção	Prioridade	Número
Reset	1	0
Data Abort	2	4
FIQ	3	7
IRQ	4	6
Prefetch Abort	5	3
SVC	6	2
Undefined Instruction	6	1

Mecanismo de interrupção

- muda o modo de operação para o modo correspondente ao evento;
- copia o registrador CPSR no registrador SPSR do modo correspondente;
- armazena o endereço de retorno da interrupção no registrador lr (r14) do modo correspondente;
- desvia para o endereço número_da_interrupção × 4 (elemento do vetor de interrupção correspondente ao tipo da interrupção ou exceção, Figura ??).

Vetor de interrupções

Normalmente, cada entrada no vetor de interrupções contém uma instrução de desvio incondicional para a rotina de interrupção correspondente.

```
.org 0
vetor_int:
   b
      trata reset
                                 @ tipo 0, Reset
                                 @ tipo 1, Undefined Instruction
   ldr pc,=trata_undef
  h
                                 @ tipo 2, SVC
       trata svc
   ldr pc,=trata_prefetch
                                 @ tipo 3, Prefetch abort
   ldr pc,=trata_abort
                                 @ tipo 4, Data abort
   .skip 4
                                 @ tipo 5, reservado
   ldr
         pc,=trata_irq
                                 @ tipo 6, IRQ
                                 @ tipo 7, FIQ
trata_fiq:
                                 @ tratador FIQ pode ser colocado aqui
   . . .
```

Retorno de interrupção

Para retornar do tratamento de uma interrupção ou exceção deve ser utilizada a instrução especial MOVS:

que restaura o registrador de estado, copiando o registrador de estado SPSR para o registrador de estado CPSR do modo em que o processador estava quando a interrupção foi aceita, e desvia para o endereço de retorno armazenado no registrador 1r, voltando a executar o código interrompido.

Mudança de modo de execução

- O processador, ao iniciar, está no modo de execução Supervisor.
- ▶ Para permitir que o programador prepare cada modo de execução (Supervisor, IRQ, FIQ, etc) que pretende utilizar (preparar a pilha para o modo, por exemplo), o ARM inclui uma instrução que permite a mudança de um modo de execução para outro: MSR (move para registrador de estado).
- O modo de execução corrente é armazenado nos bits 4 a 0 do CPSR; assim, alterando o valor do CPSR é possível alterar o modo de execução corrente.
- Note ainda que a instrução MSR não pode ser executada no modo Usuário.

Mudança de modo de execução

Modos de operação definidos pelos bits de controle M[4:0] do CPSR

M[4:0]	Modo de Operação
10000	User
10001	FIQ
10010	IRQ
10011	Supervisor
10111	Abort
11011	${\it Undefined}$
11111	System