Offshore Wind Results and Analysis

Morgan Browning
06 August, 2019

Contents

1	Purpose	1
2	Setup	1
3	Scenarios	1
4	LCOE	2
5	Offshore Wind	2
	5.1 Capacity Buildout	2
	5.2 Total Capacity	
	5.3 Output	
	5.4 Regions	
6	Grid Mix	12
	6.1 Baseline Production	12
	6.2 All Scenarios	
	6.3 Emissions Cap	
	6.4 Cost Reductions	
	6.5 Heatmaps	
	6.6 TEST	26

1 Purpose

This document functions as an all-inclusive working directory for synthesis and graphical analysis of the results from the offshore wind research of Morgan Browning, an ORISE Fellow at the U.S. Environmental Protection Agency's Office of Research and Development.

This documents and its contents are not finalized nor are intended for publication. It is annotated primarily for ease of reproducability. Graphs are provided with many variations to meet criteria of different publication and presentation platforms.

2 Setup

Sets global knit options and loads the setup and data import scripts for the project.

Three scripts are loaded into this markdown document to allow for analysis of the data. The setup script loads the library, creates generalized functions, and creates global variables for color scales and factors. The data script loads the excel spreadsheet with all of the results data and performs the majority of data munging. The results script creates charts, graphs, and tables. This report functions as the annotated synthesis of the data and results.

```
source("osw_Scripts/osw_setup.R")
source("osw_Scripts/osw_data.R")
source("osw_Scripts/osw_results.R")

color <- 1
bw <- 0
gray <- 0</pre>
```

3 Scenarios

The nested parametric sensitivity analysis was built on combinations of two sets of scenarios:

- 1. Electric sector CO_2 emissions caps, as a linear decrease to a given % decrease from 2010 emissions by 2050
- 2. Cost reductions of offshore wind, as a linear decrease to a given % decrease from 2010 costs by 2035, then level costs to 2050

```
if(color > 0) cost_col
if(color > 0) emissions_col
      Cost Reduction Scenarios
                                                                                       Emissions Reduction Scenarios
      Percentage decrease from 2010 offshore wind CAPEX costs
                                                                                       Scenarios as overall % reduction of 2010 electric sector CO2 emissions
                                                                         20 %
                                                                         30 %
                                                                                                                                                         30 %
                                                                                CO<sub>2</sub> Emissions (Mt)
Cost Reduction (%)
                                                                                   1500
                                                                         40 %
                                                                                                                                                         40 %
                                                                         50 %
                                                                                                                                                         50 %
                                                                         60 %
                                                                                                                                                         60 %
                                                                         70 %
                                                                                                                                                         70 %
                                                                         80 %
                                        Year
if(bw > 0) cost_bw
if(bw > 0) emissions_bw
```

4 LCOE

EIA's AEO 2019 provides the following values for the estimated levelized cost of electricity (capacity-weighted average) for new generation resources entering service in 2023 (2018 \$/MWh). Offshore wind has the highest total LCOE by a large margin. The second most expensive technology is biomass.

lcoe_table

5 Offshore Wind

5.1 Capacity Buildout

Cumulative and new addition offshore wind capacity across all nine census regions, by cost and emissions reduction scenario.

Table 1: Estimated LCOE capacity-weighted average for new generation resources entering service in 2023 (2018 \$/MWh)

Plant Type	Capacity Factor (%)	Levelized capital cost	Levelized fixed O&M	Levelized variable O&M	Levelized transmission cost	Total system LCOE	Levelized tax credit	Total LCOE including tax credit
Dispatchable technologies								
Conventional CC	87	8.1	1.5	32.3	0.9	42.8	NA	42.8
Advanced CC	87	7.1	1.4	30.7	1.0	40.2	NA	40.2
Advanced CT	30	17.2	2.7	54.6	3.0	77.5	NA	77.5
Geothermal	90	24.6	13.3	0.0	1.4	39.4	-2.5	36.9
Biomass	83	37.3	15.7	37.5	1.5	92.1	NA	92.1
Non-dispatchable technologies								
Wind, onshore	44	27.8	12.6	0.0	2.4	42.8	-6.1	36.6
Wind, offshore	45	95.5	20.4	0.0	2.1	117.9	-11.5	106.5
Solar PV	29	37.1	8.8	0.0	2.9	48.8	-11.5	37.6
Hydroelectric	75	29.9	6.2	1.4	1.6	39.1	NA	39.1

Note:

U.S. EIA Annual Energy Outlook 2019

5.2 Total Capacity

Total offshore wind capacity across all nine census regions in 2050, by cost and emissions reduction scenario.

```
if(color > 0) cap_col_heat
```

2050 Offshore Wind Capacity

if(bw > 0) cap_bw_heat
cap_2050_table

Table 2: Offshore Wind Total Installed Capacity (GW): 2050

Emissions Reduction (%)	Cost Reduction $(\%)$				
	40	50	60	70	80
BAU	2.5	248.1	635.3	706.4	738.6
30	2.5	247.9	635.2	706.4	738.6
40	2.1	268.0	635.2	706.4	738.6
50	4.4	310.9	636.7	706.4	738.6
60	13.2	367.3	638.0	706.4	738.6
70	14.9	421.4	641.3	709.6	738.7
80	24.9	435.4	656.5	723.1	746.0

5.3 Output

Total offshore wind electricity output across all nine census regions, by cost and emissions reduction scenario.

Offshore Wind Output


```
if(bw > 0) output_bw_side
if(gray > 0) output_gray_side
output_2050_table
```

Table 3: Offshore Wind Total Output (PJ): 2050

Emissions Reduction (%)	Cost Reduction (%)				
	40	50	60	70	80
BAU	42.3	3845.4	8962.0	9848.8	10204.0
30	43.4	3841.7	8960.8	9848.5	10204.0
40	36.0	4139.4	8960.8	9848.5	10204.0
50	75.3	4758.1	8977.9	9848.5	10204.0
60	221.0	5562.3	8992.0	9848.5	10204.0
70	250.4	6315.4	9034.2	9880.0	10205.3
80	409.6	6502.2	9235.0	10008.3	10287.1

5.4 Regions

Cumulative and new addition offshore wind capacity by region.

```
if(color > 0) cap_reg1_col
if(color > 0) newcap_reg1_col
if(color > 0) cap_reg2_col
if(color > 0) newcap_reg2_col
if(color > 0) cap_reg3_col
if(color > 0) newcap_reg3_col
if(color > 0) cap_reg4_col
if(color > 0) newcap_reg4_col
if(color > 0) cap_reg5_col
if(color > 0) newcap_reg5_col
if(color > 0) cap_reg6_col
if(color > 0) newcap_reg6_col
if(color > 0) cap_reg7_col
if(color > 0) newcap_reg7_col
if(color > 0) cap_reg9_col
if(color > 0) newcap_reg9_col
   Offshore Wind Total Capacity
                                                           Offshore Wind New Capacity
                                                        New Capacity (GW)
Capacity (GW)
                                                           BAU — 40 — 60 — 80
                                                                                   - BAU - 40 - 60 - 80
           Emissions Reduction (%) — 30
                                                                  Emissions Reduction (%)
    Offshore Wind Total Capacity
                                                           Offshore Wind New Capacity
                                                       New Capacity (GW)
Capacity (GW)
           Emissions Reduction (%) — BAU — 40 — 60 — 80 
— 30 — 50 — 70
                                                                  Emissions Reduction (%) — BAO - 50 — 70
```


Cumulative and new addition offshore wind capacity by region, emissions reduction, and cost reduction.

if(color > 0) cap_allreg_col
if(color > 0) newcap_allreg_col
if(color > 0) cap_allreg_col_free
if(color > 0) newcap_allreg_col_free

cap_region_table

Table 4: Average Installed Capacity (GW)

Region	2050 Total
R4	0.67000
R6	9.56000
R1	29.88514
R2	73.21452
R9	93.38871
R7	96.97286
R3	110.37893
R5	169.72857

output_region_table

Table 5: Average Electricity Output (PJ)

Region	2050 Total
R4	5.85375
R6	68.65600
R1	96.99500
R2	224.66953
R9	284.79601
R3	326.76062
R7	485.47903
R5	526.62200

6 Grid Mix

6.1 Baseline Production

Grid mix without any offshore wind cost reduction or emissions cap.

```
if(color > 0) baseprod_line_col
if(color > 0) baseprod_fill_col
```


6.2 All Scenarios

Complete Set

if(color > 0) gridmix_all_col

Electricity Production by Process

if(bw > 0) gridmix_all_bw

Parsed Set

if(color > 0) gridmix_col

Electricity Production by Process

if(bw > 0) gridmix_bw

6.3 Emissions Cap

BAU emissions

if(color > 0) bau_facetcost_line_col
if(color > 0) bau_facetcost_fill_col


```
if(bw > 0) bau_facetcost_fill_bw
30% emissions reduction
if(color > 0) em30_facetcost_line_col
if(color > 0) em30_facetcost_fill_col
       Electricity Production by Process
                                                                          Electricity Production by Process
       30% Emissions Reductions
                                                                          30% Emissions Reductions
  10000
                                                                    Electricity Production (PJ)
Electricity Production (PJ)
   7500
                                                                      5000

    Offshore Wind — Coal

if(bw > 0) em30_facetcost_line_bw
if(bw > 0) em30_facetcost_fill_bw
40\% emissions reduction
if(color > 0) em40_facetcost_line_col
if(color > 0) em40_facetcost_fill_col
       Electricity Production by Process
                                                                          Electricity Production by Process
       40% Emissions Reductions
                                                                          40% Emissions Reductions
  10000
                                                                   Electricity Production (PJ)
Electricity Production (PJ)
                                                                      10000
                                                                                                                 Nuclear Natural Gas
                                                   - Natural Gas
                     Terrestrial Wind - Solar
                                           Nuclear
                                                                                        Terrestrial Wind
                                                                                                     Solar
                  - Hydro

    Offshore Wind
    Coal

if(bw > 0) em40_facetcost_line_bw
if(bw > 0) em40_facetcost_fill_bw
50\% emissions reduction
if(color > 0) em50_facetcost_line_col
if(color > 0) em50_facetcost_fill_col
```

if(bw > 0) bau_facetcost_line_bw

60% emissions reduction

```
if(color > 0) em60_facetcost_line_col
if(color > 0) em60_facetcost_fill_col
```



```
if(bw > 0) em60_facetcost_line_bw
if(bw > 0) em60_facetcost_fill_bw
```

70% emissions reduction

```
if(color > 0) em70_facetcost_line_col
if(color > 0) em70_facetcost_fill_col
```


80% emissions reduction

```
if(color > 0) em80_facetcost_line_col
if(color > 0) em80_facetcost_fill_col
```



```
if(bw > 0) em80_facetcost_line_bw
if(bw > 0) em80_facetcost_fill_bw
```

6.4 Cost Reductions

40% cost reduction

```
if(color > 0) cost40_facetcost_line_col
if(color > 0) cost40_facetcost_fill_col
```


if(bw > 0) cost40_facetcost_fill_bw

50% cost reduction

```
if(color > 0) cost50_facetcost_line_col
if(color > 0) cost50_facetcost_fill_col
```


if(bw > 0) cost50_facetcost_line_bw
if(bw > 0) cost50_facetcost_fill_bw

60% cost reduction

if(color > 0) cost60_facetcost_line_col
if(color > 0) cost60_facetcost_fill_col

70% cost reduction

```
if(color > 0) cost70_facetcost_line_col
if(color > 0) cost70_facetcost_fill_col
```



```
if(bw > 0) cost70_facetcost_line_bw
if(bw > 0) cost70_facetcost_fill_bw
```

80% cost reduction

```
if(color > 0) cost80_facetcost_line_col
if(color > 0) cost80_facetcost_fill_col
```


6.5 Heatmaps

if(color > 0) osw_grid_heatmap

Electricity Produced by Process: 2050

if(color > 0) wnd_grid_heatmap

if(color > 0) sol_grid_heatmap

if(color > 0) coal_grid_heatmap

if(color > 0) nga_grid_heatmap

if(color > 0) nuk_grid_heatmap

if(color > 0) hyd_grid_heatmap


```
if(bw > 0) osw_grid_heatmap_bw
if(bw > 0) wnd_grid_heatmap_bw
if(bw > 0) sol_grid_heatmap_bw
if(bw > 0) coal_grid_heatmap_bw
if(bw > 0) nga_grid_heatmap_bw
if(bw > 0) nuk_grid_heatmap_bw
if(bw > 0) hyd_grid_heatmap_bw
```

6.6 TEST

```
grid.arrange(cost_col, cost_bw, emissions_col, emissions_bw, layout_matrix = rbind(c(1,1,1),c(2,3,4)))
```

Cost Reduction Scenarios

grid.arrange(cost_col, cost_bw, emissions_col, emissions_bw, ncol = 2)

