# ଦ୍ୱିଘାତ ସମୀକରଣ (QUADRATIC EQUATIONS)

### 2.1. ଉପକ୍ରମ :

 $P(x)=ax^2+bx+c$  ଗୋଟିଏ ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ୍ ଯେଉଁଠାରେ  $a\neq 0$  । ଚଳ ରାଶି x ର ମାନ s ନେଲେ p(x)ର ମାନ p(s) ଅଟେ ଓ  $p(s)=as^2+bs^2+c$  ।

ଉଦାହରଣ ସ୍ୱରୂପ ଦ୍ୱିଘାତୀ ପଲିନୋମିଆଲ୍ଟି  $p(x)=3x^2-2x+5$  ହେଲେ x=2 ପାଇଁ p(x)ର ମାନ  $p(2)=3\times 2^2-2\times 2+5=12-4+5=13$ 

ଯଦି  $x=\alpha$  ପାଇଁ ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ  $ax^2+bx+c$  ର ମାନ ଶୂନ ହୁଏ ତେବେ  $\alpha$ କୁ ପଲିନୋମିଆଲ୍ର ଶୂନ (zero) କୁହାଯାଏ।

ଉଦାହରଣ ସ୍ୱରୂପ  $\mathbf{x}^2-5\mathbf{x}+6$  ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ୍ର  $\mathbf{x}=3$  ପାଇଁ ମାନ

$$3^2 - 5 \times 3 + 6 = 9 - 15 + 6 = 0$$
 ହେତୁ

3, ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ୍  $x^2 - 5x + 6$ ର ଗୋଟିଏ ଶୂନ ଅଟେ। ପ୍ରତ୍ୟେକ ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ୍ ଗୋଟିଏ ଦ୍ୱିଘାତ ସମୀକରଣ ସହ ସମ୍ପୃକ୍ତ ଅଟେ।  $ax^2 + bx + c$  ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ୍ଟି

$$ax^2 + bx + c = 0, a \neq 0$$
 (1)

ଦ୍ୱିଘାତ ସମୀକରଣ ସହ ସମ୍ପୃକ୍ତ  $ax^2 + bx + c$  ପଲିନୋମିଆଲ୍ର  $x = \alpha$  ଏକ ଶୂନ ହେଲେ ତାହା ସମ୍ପୃକ୍ତ ଦ୍ୱିଘାତ ସମୀକରଣ (1)ର ଏକ ମୂଳ ବା ବୀକ (root) ଅଟେ। ଏହି ଅଧ୍ୟାୟରେ ଆମେ ଦ୍ୱିଘାତ ସମୀକରଣର ମୂଳ କିପରି ନିର୍ତ୍ତୟ କରିବା ତାହା ଆଲୋଚନା କରାଯିବ।

ଏଠାରେ ଉଲ୍ଲେଖଯୋଗ୍ୟ ଯେ ଗୋଟିଏ ଏକଘାତୀ ସମୀକରଣ ax + b = 0, a ≠ 0ର ଗୋଟିଏ ମୂଳ ଅଛି। ଏକ ଦ୍ୱିଘାତୀ ସମୀକରଣର ଦୁଇଗୋଟି ମୂଳ ଅଛନ୍ତି।

(ଗୋଟିଏ n ଘାତୀ ସମୀକରଣ  $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ ,  $a_n \neq 0$  ର n ସଂଖ୍ୟକ ମୂଳ ଅଛନ୍ତି । ଏହି ଉପପାଦ୍ୟଟି ବୀକଗଣିତର ମୌଳିକ ଉପପାଦ୍ୟ (Fundamental theorem of Algebra) ଓ ଏହାର ପ୍ରମାଣ ଉଚ୍ଚତର ଗଣିତ ଅଧ୍ୟୟନ କଲେ କାଣିବ ।) ସୂତରାଂ ଦ୍ୱିଘାତୀ ସମୀକରଣର ସାଧାରଣ ରୂପ (1) ଅଟେ ଓ ଏହାର ଦୁଇଟି ମୂଳ  $\alpha$  ଓ  $\beta$  ଅଛନ୍ତି ।

ଦ୍ୱିଘାତ ସମୀକରଣ (1) ଦିଆଯାଇଥିଲେ ୍ୱହାକୁ ସମାଧାନ କରିବା ଅର୍ଥ ହେଲା ଏହାର ମୂଳ ଦ ଓ β ନିର୍ଷୟ କରିବା । 2.2. ପୂର୍ଷବର୍ଗରେ ପରିଶତ କରି ସମାଧାନ ପ୍ରଶାଳୀ (Solution by completing the squares) : ଦଶମ ଶତାବ୍ଦୀର ପ୍ରସିଦ୍ଧ ଭାରତୀୟ ଗଣିତଜ୍ଞ ଶ୍ରୀଧର ଆଚାର୍ଯ୍ୟ ଏହି ପ୍ରଣାଳୀର ଉଦ୍ଭାବକ ଅଟନ୍ତି । ମନେକର ଦ୍ୱିଘାତ ସମୀକରଣଟି-  $ax^2 + bx + c = 0$ ,  $a \neq 0$  c କୁ ପାର୍ଶ୍ୱ ପରିବର୍ତ୍ତନ କରି ଉଭୟ ପାର୍ଶ୍ୱରେ 4a ପୁଣନ କଲେ ପାଇବା

$$4a (ax^{2} + bx) = 4a(-c) \Rightarrow 4a^{2}x^{2} + 4abx = -4ac$$
  
 $\Rightarrow (2ax)^{2} + 2 \times (2ax) \times b = -4ac$ 

ଉଭୟ ପାର୍ଶ୍ୱରେ b² ଯୋଗ କଲେ

$$(2ax)^2 + 2(2ax) b + b^2 = b^2 - 4ac$$
  $\Rightarrow (2ax + b)^2 = b^2 - 4ac \Rightarrow (2ax - b)^2 = (\pm \sqrt{b^2 - 4ac})^2$  (ଉଭୟ ପାର୍ଶ୍ୱକୁ ପୂର୍ଷବର୍ଗରେ ପରିଶତ କରାଗଲା)

$$\Rightarrow 2ax + b = \pm \sqrt{b^2 - 4ac} \qquad \Rightarrow 2ax = -b \pm \sqrt{b^2 - 4ac}$$
$$\Rightarrow x = \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} \right\} \quad \widehat{\Re} \text{Re} \quad x = \frac{1}{2a} \left\{ -b - \sqrt{b^2 - 4ac} \right\}$$

ଅତଏବ ଦ୍ୱିଘାତ ସମୀକରଣର ମୂଳ α ଓ β ହେଲେ;

$$\alpha = \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} \right\}$$
$$\beta = \frac{1}{2a} \left\{ -b - \sqrt{b^2 - 4ac} \right\}$$

ଏବଂ ଏହା ଦ୍ୱିଘାତ ସୂତ୍ର (Quadratic formula) ନାମରେ ପରିଚିତ ।

ବିକଳ୍ପ ପ୍ରଣାଳୀ :

$$\begin{array}{l} ax^2 + bx + c = 0 \; (a \neq 0) \\ \Rightarrow x^2 + \frac{b}{a}x = -\frac{c}{a} \; (@ଗୟ \; ପାର୍ଶ୍ୱକୁ a ସ୍ୱାରା ଜାଗ କରାଗଲା) \\ \Rightarrow x^2 + 2 \cdot x \cdot \frac{b}{2a} = -\frac{c}{a} \\ \Rightarrow x^2 + 2 \cdot x \cdot \frac{b}{2a} + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \; (@ଗୟ \; ପାର୍ଶ୍ୱରେ \left(\frac{b}{2a}\right)^2 \; ରେଯାଗ କରାଗଲା) \\ \Rightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} = \frac{b^2 - 4ac}{4a^2} \\ \Rightarrow \left(x + \frac{b}{2a}\right)^2 = \left(\pm \frac{\sqrt{b^2 - 4ac}}{2a}\right)^2 \; (@ଗୟ \; ପାର୍ଶ୍ୱକୁ  ପୂର୍ଣ୍ଣବର୍ଗରେ  ପରିଶତ କରାଗଲା) \\ \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \; ଅଥବା \; \frac{1}{2a} \left\{ -b \pm \sqrt{b^2 - 4ac} \right\} \\ \text{GOS GI କୀଳକ୍ରୟ ହେଲେ } \alpha = \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} \right\}, \; \beta = \frac{1}{2a} \left\{ -b - \sqrt{b^2 - 4ac} \right\} \end{array}$$

### ଉଦାହରଣ - 1:

ଦ୍ୱିଘାତ ସୂତ୍ର ପ୍ରୟୋଗ କରି  $x^2-2x-3=0$  ସମାକରଣର ମୂଳ  $\alpha$  ଓ  $\beta$  ନିରୂପଣ କର । ସମାଧାନ :

ଏଠାରେ 
$$a=1,\ b=-2,\ c=-3$$
 ଅତଏବ 
$$\alpha=\frac{1}{2a}\Big\{-b+\sqrt{b^2-4ac}\Big\}=\frac{1}{2\times 1}\Big\{-(-2)+\sqrt{(-2)^2-4\times 1\times (-3)}\Big\}$$
 
$$=\frac{1}{2}\Big\{2+\sqrt{4+12}\Big\}=\frac{1}{2}\Big\{2+4\Big\}=\frac{6}{2}=3$$
 
$$\beta=\frac{1}{2a}\Big\{-b-\sqrt{b^2-4ac}\Big\}=\frac{1}{2\times 1}\Big\{-(-2)-\sqrt{(-2)^2-4\times 1\times (-3)}\Big\}$$
 
$$=\frac{1}{2}\Big\{2-\sqrt{4+12}\Big\}=\frac{1}{2}(2-4)=\frac{-2}{2}=-1$$
 ଅତଏବ ନିର୍ଦ୍ଦେଶ ଓ ମୂଳଦ୍ୱୟ ଓ ଓ  $-1$  । (ଉତ୍କର)

### ଦ୍ୟବ୍ୟ:

ସମୀକରଣର ବାମ ପାର୍ଶ୍ୱରେ ଥିବା ଦ୍ୱିଘାତ ପଲିନୋମିଆଲ୍ର ଉତ୍ପାଦକୀକରଣ କରି ଆମେ ମୂଳ ଜାଣିପାରିବା ।

ମାତ୍ର a(x²ର ସହଗ), b(xର ସହଗ) ଓ c(ଧୂବକ ରାଶି) ତ୍ରୟ ପୂର୍ତ୍ତ ସଂଖ୍ୟା ଓ ଅପେକ୍ଷାକୃତ କ୍ଷୁଦ୍ର ହୋଇଥିଲେ ଉତ୍ପାଦକୀକରଣ ପ୍ରଣାଳୀ ଗ୍ରହଣଯୋଗ୍ୟ। ମାତ୍ର a, b, c ଯେକୌଣସି ବାଞ୍ଚବସଂଖ୍ୟା କିୟା ଅତି ବୃହତ୍ ପୂର୍ତ୍ତସଂଖ୍ୟା ହୋଇଥିଲେ ଉତ୍ପାଦକୀକରଣ ପ୍ରକ୍ରିୟା ଅତ୍ୟନ୍ତ କଷ୍ଟସାଧ୍ୟ ହୋଇ ଯାଇଥାଏ। ସୂତରାଂ ପୂର୍ତ୍ତବର୍ଗରେ ପରିଣତ କରି ସମାଧାନ କରାଯିବା ଉଚିତ।

### ଉଦାହରଣ - 2 :

ପୂର୍ତ୍ତବର୍ଗରେ ପରିଣତ କରି  $2x^2 + 9x - 18 = 0$  ସମୀକରଣଟିର ସମାଧାନ କର । ସମାଧାନ :

ଏଠାରେ 
$$a=2$$
,  $b=9$  ଓ  $c=-18$ 
 $4a$  ଅର୍ଥାତ୍  $8$  ଦାରା  $2x^2+9x=18$ ର ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କଲେ  $8(2x^2+9x)=8\times 18 \implies 16x^2+72x=144$ 
 $\Rightarrow (4x)^2+2(4x)\ 9+(9)^2=9^2+144$ 
 $\Rightarrow (4x+9)^2=81+144=225=(\pm 15)^2$ 
 $\Rightarrow 4x+9=\pm 15 \Rightarrow 4x=-9\pm 15 \Rightarrow 4x=6$  କିୟା  $-24$ 
 $\Rightarrow x=\frac{3}{2}$  କିୟା  $-6$ 
 $\therefore$  ନିର୍ଣ୍ଡେୟ ମୂଳଦ୍ୟ  $\alpha=\frac{3}{2}$  ଓ  $\beta=-6$  । (ଉତ୍ତର)

ବିକଳ୍ପ ପ୍ରଣାଳୀ :

ଦର ସମୀକରଣତି 
$$2x^2+9x-18=0$$
 । 
$$\Rightarrow x^2+\frac{9}{2}x-9=0 \ (2 \ \text{Qlai} \ \text{Q mad} \ \text{Cliffeq} \ \text{mid} \ \text{ କରାଗଲା})$$
 
$$\Rightarrow x^2+\frac{9}{2}x=9 \Rightarrow x^2+2\times x\times \frac{9}{4}=9$$
 
$$\Rightarrow x^2+2\times x\times \frac{9}{4}+\left(\frac{9}{4}\right)^2=\left(\frac{9}{4}\right)^2+9 \ [\text{Quad} \ \text{Cliffed} \ \left(\frac{9}{4}\right)^2 \ \text{ମିଶାଗଲୋ}]$$
 
$$\Rightarrow \left(x+\frac{9}{4}\right)^2=\frac{81+144}{16}=\frac{225}{16} \ \Rightarrow \left(x+\frac{9}{4}\right)^2=\left(\pm\frac{15}{4}\right)^2$$
 
$$\Rightarrow x+\frac{9}{4}=\pm\frac{15}{4} \ \Rightarrow x=\pm\frac{15}{4}-\frac{9}{4}$$
 ଅଧିତ୍  $x=\frac{-9+15}{4}=\frac{3}{2} \ \text{Grai} \ x=\frac{-9-15}{4}=-6$  . Gerial ମୂଳବୃଣ  $\frac{3}{2}$  ଓ  $-6$  । (Quan)

କେତେଗୁଡ଼ିଏ ଜ୍ଞାତବ୍ୟ ବିଷୟ :

ଦ୍ୱିଘାତ ସମୀକରଣର  $ax^2+bx+c=0$ ,  $a\neq 0$  ମୂଳଦ୍ୟ  $\alpha$  ଓ  $\beta$  ହେଲେ  $\alpha = \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} \right\}, \quad \beta = \frac{1}{2a} \left\{ -b - \sqrt{b^2 - 4ac} \right\}$ 

ମୂଳବ୍ୟର ସମଷି ଓ ଗୁଣଫଳ : (I)

$$\alpha + \beta = \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} \right\} + \frac{1}{2a} \left\{ -b - \sqrt{b^2 - 4ac} \right\}$$

$$= \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} - b - \sqrt{b^2 - 4ac} \right\} = -\frac{2b}{2a} = -\frac{b}{a}$$

$$\therefore \alpha + \beta = -\frac{b}{a}$$

$$\alpha \beta = \frac{1}{2a} \left\{ -b + \sqrt{b^2 - 4ac} \right\} \times \frac{1}{2a} \left\{ -b - \sqrt{b^2 - 4ac} \right\}$$

$$= \frac{1}{4a^2} \left\{ (-b)^2 - \left( \sqrt{b^2 - 4ac} \right)^2 \right\} = \frac{1}{4a^2} \left( b^2 - b^2 + 4ac \right) = \frac{4ac}{4a^2} = \frac{c}{a}$$

$$\therefore \alpha \beta = \frac{c}{a}$$

$$\therefore \alpha \beta = \frac{c}{a}$$

 $\cdot$  : ଦ୍ୱିଘାତ ସମୀକରଣ  $ax^2 + bx + c = 0 (a \neq 0)$ ରେ

ମୂଳଦ୍ୟର ସମଷି = 
$$-\frac{b}{a}$$
 ଏବଂ ମୂଳଦ୍ୟର ଗୁଣଫଳ୍ =  $\frac{c}{a}$ 

ଯେଉଁଠାରେ  $a=x^2$ ର ସହଗ, b=xର ସହଗ ଏବଂ c=x ବିହାନ ପଦ।

### ଉଦାହରଣ - 3:

ଏକ ଦ୍ୱିଘାତ ସମୀକରଣର ମୂଳଦ୍ୱୟର ସମଷି 2 ଓ ଗୁଣଫଳ  $\frac{3}{4}$  ହେଲେ ସମୀକରଣଟି ନିରୂପଣ କର । ସମାଧାନ :

$$\alpha$$
 ଓ  $\beta$  ସମୀକରଣର ମୂଳ ହେଲେ, ସମୀକରଣଟି  $(x-\alpha)(x-\beta)=0$  ହେବ 
$$\Rightarrow x^2-\alpha x-x\beta+\alpha\beta=0 \Rightarrow x^2-(\alpha+\beta)x+\alpha\beta=0$$
 ଏଠାରେ  $\alpha+\beta=2$  ଓ  $\alpha\beta=\frac{3}{4}$  । ତେଣୁ ସମୀକରଣଟି  $x^2-2x+\frac{3}{4}=0$  ।  $\Rightarrow 4x^2-8x+3=0$  । (ଉଚ୍ଚର)

### ସୂଚନା :

ଅର୍ଥାତ୍ ଆବଶ୍ୟକ ଦିଘାତ ସମୀକରଣ x² – (ବୀଳଦ୍ୱୟର ସମଞ୍ଜି) x + ବୀଳଦ୍ୱୟର ଗୁଣଫଳ = 0 ବୀଳଦ୍ୱୟ କଣାଥିଲେ ସିଧାସଳଖ ଉପରୋକ୍ତ ସୂତ୍ରକୁ ବ୍ୟବହାର କରି ଦ୍ୱିଘାତ ସମୀକରଣ ଗଠନ କରାଯାଇପାରେ।

## (II) ପ୍ରଭେଦକ (Discriminant) :

 $b^2-4ac$ କୁ ଦ୍ୱିଘାତ ସମୀକରଣର ପ୍ରଭେଦକ କୂହାଯାଏ ଏହି ।  $b^2-4ac$  କୁ 'D' ଦ୍ୱାରା ପ୍ରକାଶ କରିପାରିବା । ଅର୍ଥାତ୍  $D=b^2-4ac$  ।

ସାଧାରଣତଃ ଆମେ ଯେଉଁ ଦ୍ୱିଘାତ ସମୀକରଣ ବିଚାର କରିବା ସେଥିରେ a,b ଓ c ରାଶିତ୍ରୟ ପୂର୍ତ୍ତି ସଂଖ୍ୟା ଓ  $a \neq 0$  । D ମାଧ୍ୟମରେ ସମୀକରଣର ମୂଳଦ୍ୟ ହେଲେ :

$$\alpha = \frac{1}{2a} \left( -b + \sqrt{D} \right), \quad \beta = \frac{1}{2a} \left( -b - \sqrt{D} \right)$$

# ବୀକଦୃୟର ସ୍ୱରୂପ :

- (i) ଯଦି ପ୍ରଭେଦକ D > 0, ତେବେ  $\alpha$  ଓ  $\beta$  ମୂଳଦ୍ୟ ବାଞ୍ଚବ ସଂଖ୍ୟା ଓ ପରସ୍ମର ଠାରୁ ପୃଥକ୍ ହେବେ ।
- (ii) ଯଦି D = 0 ତେବେ ମୂଳଦ୍ୱୟ ବାଞ୍ଚକ ସଂଖ୍ୟା ଏବଂ ଏକ ଓ ଅଭିନ୍ନ ହେବେ ।
- (iii) D < 0 ହେଲେ ମୂଳଦ୍ୱୟ ବାୟବ ହେବେ ନାହିଁ।

ଆମର ଆଲୋଚନାର ପରିସରଭୁକ୍ତ ସମ୍ମୟ ବିଘାତ ସମୀକରଶମାନଙ୍କ ପ୍ରଭେଦକ D ≥ ୦ ଅର୍ଥାଚ୍ ସେମାନଙ୍କ ମୂଳଦ୍ୱୟ ବାୟବ ସଂଖ୍ୟା ଯାହା ପରସ୍ପର ପୃଥକ୍ କିୟା ଅଭିନ୍ନ ହେବେ ।

### ଉଦାହରଣ - 4 :

 $2x^2-8x+5=0$  ସମୀକରଣର ମୂଳଦ୍ୱୟ ବାୟବ ଓ ଭିନ୍ନ ବୋଲି ଦର୍ଶାଅ ଓ  $\alpha-\beta$  ର ମାନ ନିରୂପଣ କର।

### ସମାଧାନ:

ଦର ଦ୍ୱିଘାତ ସମୀକରଣରେ  $a=2,\,b=-8$  ଓ c=5∴ ପୁରେହଳ D = b² - 4ac = (-8)² - 4 × 2 × 5 = 64 - 40 = 24 ଯେହେତୁ D > 0, ମୂଳଦ୍ୱୟ (α ଓ β) ପ୍ରତ୍ୟେକ ବାୟତ ସଂଖ୍ୟା ଓ ଭିନ୍ ଅଟନ୍ତି । ପୁନଣ ଏଠାରେ ମୂଳଦ୍ୟର ସମଷି ଓ ଗୁଣଫଳ ଯଥାକ୍ରମେ

$$\alpha+\beta=-rac{b}{a}=-\left(rac{-8}{2}
ight)=4$$
 ,  $\alpha\beta=rac{c}{a}=rac{5}{2}$  ।   
 ପୋହେତ୍ର  $(\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta=(4)^2-4 imesrac{5}{2}=16-10=6$  .:  $\alpha-\beta=\pm\sqrt{6}$ 

# ଅନୁଶୀଳନୀ - 2(a)

ପ୍ରତ୍ୟେକ ପ୍ରଶ୍ମପାଇଁ ଥିବା ସମ୍ଭାବ୍ୟ ଉତ୍ତରଗୁଡ଼ିକ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଲେଖ ।

କେଉଁଟି -2 ଓ 3 ମୂଳ ବିଶିଷ୍ଟ ଦ୍ୱିଘାତ ସମୀକରଣ ?

(a) 
$$(x-2)(x-3) = 0$$

(b) 
$$(x+2)(x+3) = 0$$

(c) 
$$(x-2)(x+3) = 0$$

(c) 
$$(x-2)(x+3) = 0$$
 (d)  $(x+2)(x-3) = 0$ 

(ii) କେଉଁ ସମୀକରଣର ମୂଳଦ୍ୱୟ ସମାନ ଓ ପ୍ରତ୍ୟେକ 1?

(a) 
$$x^2 - 2x + 1 = 0$$
 (b)  $x^2 + 2x + 1 = 0$ 

(b) 
$$x^2 + 2x + 1 = 0$$

(c) 
$$x^2 - x + 2 = 0$$

(d) 
$$x^2 + x - 2 = 0$$

(iii)  $3x^2+9x-2=0$  ସମୀକରଣର ମୂଳଦ୍ୟ α ଓ β ହେଲେ α+βର ମୂଲ୍ୟ କେତେ?

- (b) 2
- (c) -3 (d)  $\frac{-2}{3}$

 $(iv) -2x^2 + 5x + 1 = 0$  ସମୀକରଣର ମୂଳଦ୍ୟ  $\alpha$  ଓ  $\beta$  ହେଲେ  $\alpha \beta$ ର ମୂଲ୍ୟ କେତେ?

(a) 
$$-\frac{5}{2}$$
 (b)  $\frac{2}{5}$  (c)  $2$  (d)  $-\frac{1}{2}$ 

(b) 
$$\frac{2}{5}$$

(d) 
$$-\frac{1}{2}$$

| (v)   | ଗୋଟିଏ ଦ୍ୱିଘାତ ସମୀକରଣର୍ ମୂଳଦ୍ୱୟର ଯୋଗ                                                                             | ଫଳ ଓ ଗୁଣଫଳ ଯଥାକ୍ରମେ -5 ଓ 3 ହେଟେ                             |
|-------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|       | ସମୀକରଣଟି ନିମ୍ନଲିଖିତ ମଧ୍ୟରୁ କେଉଁଟି ?                                                                             |                                                             |
|       | (a) $x^2 + 5x + 3 = 0$ (b) $x^2 - 5$                                                                            | 5x + 3 = 0                                                  |
|       | (c) $x^2 + 5x - 3 = 0$ (d) $x^2 - 3$                                                                            | 5x - 3 = 0                                                  |
| (vi)  | (c) $x^2 + 5x - 3 = 0$ (d) $x^2 - 3$<br>$x^2 + 15x + 3 = 0$ ସମୀକରଣର ମୂଳଦ୍ୱୟ $\alpha$                            | ଓ β ହେଲେ $\frac{1}{\alpha} + \frac{1}{\beta}$ ର ମୂଲ୍ୟ କେତେ? |
|       | (a) $\frac{1}{5}$ (b) 3 (c) -5                                                                                  |                                                             |
|       | ନିମ୍ନଲିଁଖିତ ପ୍ରଶ୍ମମାନଙ୍କର ସଂକ୍ଷିପ୍ତ ଉତ୍ତର ଆବଶ୍ୟକ                                                                |                                                             |
| (i)   | $5x^2 + 2x + c = 0$ ସମୀକରଣର ଗୋଟିଏ ମୂଳ                                                                           | –2 ହେଲେ c ର ମାନ ନିରୂପଣ କର ।                                 |
| (ii)  | $x^2-px+2=0$ ସମୀକରଣର ଗୋଟିଏ ମୂଳ                                                                                  | 2 ହେଲେ p ର ମାନ ନିରୂପଣ କର ।                                  |
| (iii) | ଦ୍ୱିଘାତ ସୂତ୍ର ପ୍ରୟୋଗ କରି $x^2 - x - 6 = 0$ ସ                                                                    | ମୀକରଣର ମୂଳଦ୍ୟ ନିରୂପଣ କର ।                                   |
| (iv)  | $x^2 - 5x + 6 = 0$ ସମୀକରଣଟିକୁ ପୂର୍ଷବର୍ଗରେ ପ                                                                     | ରିଣତ କରି ସମାଧାନ କରିବା ପାଇଁ ଉ <b>ରୟ ପାର୍ଶ୍ୱ</b> େ            |
|       | କେତେ ଯୋଗ କରିବାକୁ ପଡ଼ିବ ସ୍ଥିର କର                                                                                 |                                                             |
| (v)   | $2x^2 - 6x = 0$ ସମୀକରଣର ମୂଳଦ୍ୱୟ ନିରୂପଣ                                                                          | କରା                                                         |
| (vi)  | $x^2+px+1=0$ ସମୀକରଣର ମୂଳଦ୍ୟ $\alpha$ ଓ $\beta$ ହେଲେ $\frac{\alpha\beta}{\alpha+\beta}$ ପରିପ୍ରକାଶ କୁ $p$ ମାଧ୍ୟମଣ |                                                             |
|       | ପ୍ରକାଶ କର ।                                                                                                     |                                                             |
|       | ନିମ୍ନଲିଖିତ ଦ୍ୱିଘାତ ସମୀକରଣମାନଙ୍କୁ ପୂର୍ଣ୍ଣବର୍ଗରେ                                                                  | ପରିଶତ କରି ସମାଧାନ କର ।                                       |
|       | (i) $x^2 + x - 6 = 0$ (iii                                                                                      | $2x^2 - 9x + 4 = 0$                                         |
|       | (iii) $x^2 - 2x - 2 = 0$ (i                                                                                     | $(x^2 + 2px - 3qx - 6pq = 0)$                               |
|       | (v) $14x^2 + x - 3 = 0$ (v)                                                                                     | vi) $x^2 - \frac{19x}{6} + \frac{5}{2} = 0$                 |
|       | (vii) $3x^2 - 32x + 12 = 0$ (viii)                                                                              | viii) $\sqrt{3}x^2 + 10x + 8\sqrt{3} = 0$                   |
|       | (ix) $5x^2 - 19x + 17 = 0$ (x)                                                                                  | $x)  \sqrt{7}x^2 - 6x - 13\sqrt{7} = 0$                     |
|       |                                                                                                                 | xii) $3a^2x^2 + 8abx + 4b^2 = 0 (a \neq 0)$                 |
|       | ନିମ୍ନ ଦ୍ୱିଘାତ ସମୀକରଣର ବିକଦ୍ୱୟ ପୂର୍ତ୍ତବର୍ଗରେ ପରିଣତ କରି ନିର୍ତ୍ତୟ କର ।                                             |                                                             |
|       | (i) $x^2 + ax + b = 0$ (iii)                                                                                    | $(i) x^2 + bx = a^2 - ab$                                   |
|       | ଦ୍ୱିଘାତ ସୂତ୍ର ପ୍ରୟୋଗ କରି ନିମ୍ନଲିଖିତ ସମୀକରଣମାନଙ୍କ ମୂଳ ନିରୂପଣ କର ।                                                |                                                             |
|       | (i) $(2x-1)(x-2) = 0$ (iii)                                                                                     | (i) $(6x + 5)(x - 2) = 0$                                   |
|       |                                                                                                                 | (v) $4x^2 - 25 = 0$                                         |
|       | (v) $6v^2 + 11v + 3 = 0$ (s                                                                                     | $v_1^2$ $v_2^2 - (1 + \sqrt{2}) v_1^2 + \sqrt{2} = 0$       |

(viii)  $15x^2 - x - 28 = 0$ 

(vii)  $a(x^2+1) - x(a^2+1) = 0$ 

- 6.  $x^2 5x + q = 0$  ସମୀକରଣର ଗୋଟିଏ ମୂଳ ଅପରଟି ଅପେକ୍ଷା 3 ଅଧିକ ହେଲେ q ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- 7. ସଦି  $ax^2 + bx + c = 0$  ସମୀକରଣର ଗୋଟିଏ ମୂଳ ଅପରଟିର 4ଗୁଣ ହେଲେ ତେବେ ପ୍ରମାଣ କର ଯେ  $4b^2 = 25ac$  ।
- 8. ଯଦି  $x^2 px + q = 0$  ସମୀକରଣର ଗୋଟିଏ ମୂଳ ଅପରିଟିର 2ଗୁଣ ହେଲେ ତେବେ ପ୍ରମାଣ କର ଯେ  $2p^2 = 9q$  ।
- 9.  $2x^2 (p+1)x + p 1 = 0$  ସମୀକରଣର ମୂଳଦ୍ୱୟର ଅନ୍ତର ଓ ଗୁଣଫଳ ସମାନ ହେଲେ p ର ମାନ ନିରୂପଣ କର ।
- 10. ଯଦି  $2x^2-6x+3=0$  ସମୀକରଣର ମୂଳଦ୍ୱୟ lpha ଓ eta ହୁଏ ତେବେ ପ୍ରମାଣ କର ଯେ  $-\frac{lpha}{eta}+\frac{eta}{lpha}+3igg(rac{1}{lpha}+rac{1}{eta}igg)+2lphaeta=13$

# 2.4. ବ୍ୱିଘାତ ସମୀକରଣ ରୂପରେ ରୂପାନ୍ତରଣ :

ଏପରି ଅନେକ ସମୀକରଣ ଅଛନ୍ତି ଯେଉଁମାନଙ୍କ ରୂପ ଦିଘାତ ସମୀକରଣର ରୂପ  $ax^2 + bx + c = 0$  ନୂହେଁ। ମାତ୍ର ଅଜ୍ଞାତ ରାଶିକୁ ଉପଯୁକ୍ତଭାବେ ପରିବର୍ତ୍ତନ କରି ଏମାନଙ୍କୁ ଦିଘାତ ସମୀକରଣ ରୂପକୁ ଆଣି ହେବ ଓ ସମାଧାନ କରିହେବ। ଏପରି କେତେଗୁଡ଼ିଏ ସମୀକରଣର ଉଦାହରଣ ନିମ୍ନରେ ଦିଆଯାଇଛି। ଉଦାହରଣ – 5 :

 $2x^4 - 7x^2 + 3 = 0$  ସମୀକରଣଟିର ମୂଳ ନିରୂପଣ କର । ସମାଧାନ :

 $2x^4-7x^2+3=0$  ସମୀକରଣଟିର ଘାତ 4 ଓ ଏହା ଦ୍ୱିଘାତ ନୁହେଁ । ମାତ୍ର  $x^2=t$  ଲେଖିଲେ ଏହାର ରୂପ  $2t^2-7t+3=0$  (i)

ଅଟେ। ସମୀକରଣ (i) ଅଜ୍ଞାତ ରାଶି t ରେ ଦ୍ୱିଘାତ ସମୀକରଣ ଅଟେ। ଦ୍ୱିଘାତ ସୂତ୍ର ପ୍ରୟୋଗ କରି ପ୍ରଥମେ ସମୀକରଣ (i)ର ମୂଳ ନିର୍ଷୟ କରାଯିବ।

ଉଦାହରଣ - 6 :

ସମାଧାନ କର : 
$$\left(x^2 + \frac{1}{x^2}\right) - 7\left(x + \frac{1}{x}\right) + 14 = 0$$

ସମାଧାନ :

ଦର ସମୀକରଣଟି 
$$x^2 + \frac{1}{x^2} - 7\left(x + \frac{1}{x}\right) + 14 = 0$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} + 2\right) - 7\left(x + \frac{1}{x}\right) + 12 = 0$$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 - 7\left(x + \frac{1}{x}\right) + 12 = 0$$
(i)

 $x+rac{1}{x}=t$  ଲେଖିଲେ ସମୀକରଣର ରୂପ  $t^2-7t+12=0$  ହେବ ।

ଯାହା t ରେ ଦ୍ୱିଘାତ ସମୀକରଣ ଅଟେ । ଏହାର ମୂଳଦ୍ୱୟ 3 ଓ 4 । (ନିଜେ ପରୀକ୍ଷା କରି ଦେଖ)

$$t = 3 \implies x^{2} - 3x + 1 = 0 \implies x = \frac{-(-3) \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2}$$

$$t = 4 \implies x^{2} - 4x + 1 = 0 \implies x = \frac{-(-4) \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}$$

ି ଦର ସମୀକରଣର ମୂଳଗୁଡ଼ିକ ହେଲେ 
$$3+\sqrt{5}$$
 ,  $3-\sqrt{5}$  ,  $2+\sqrt{3}$  ,  $2-\sqrt{3}$  ।  $2$  (କରଣ)

ଉଦାହରଣ - 7 :

ସମାଧାନ କର : 
$$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = 2\frac{1}{6}$$

ସମାଧାନ :

ମନେକର 
$$\sqrt{\frac{x}{1-x}}=t$$
, ତେବେ ଦର ସମୀକରଣଟି  $t+\frac{1}{t}=\frac{13}{6}$  ହେବ ।  $\Rightarrow 6t^2-13t+6=0 \Rightarrow (2t-3)(3t-2)=0 \Rightarrow t=\frac{3}{2}$  କିୟା  $t=\frac{2}{3}$   $t=\frac{3}{2}$   $\Rightarrow \sqrt{\frac{x}{1-x}}=\frac{3}{2}\Rightarrow \frac{x}{1-x}=\frac{9}{4}\Rightarrow x=\frac{9}{13}$   $t=\frac{2}{3}$   $\Rightarrow \sqrt{\frac{x}{1-x}}=\frac{2}{3}\Rightarrow \frac{x}{1-x}=\frac{4}{9}\Rightarrow x=\frac{4}{13}$   $\therefore$  ନିର୍ଦ୍ଧେୟ ସମାଧାନପ୍ୟ  $\frac{9}{13}$  ଓ  $\frac{4}{13}$  । (ଉଉର)

ଉଦାହରଣ - 8:

ସମାଧାନ କର, 
$$(x + 1)(x + 2)(x + 3)(x + 4) = 8$$

ସମାଧାନ :

ପ୍ରଦତ୍ତ ସମୀକରଣରୁ ପାଇବା 
$$\{(x+1)(x+4)\}$$
  $\{(x+2)(x+3)\}$  = 8   
  $\Rightarrow (x^2+5x+4)(x^2+5x+6)=8$    
  $x^2+5x=t$  ନେଲେ ଉକ୍ତ ସମୀକରଣଟି  $(t+4)(t+6)=8$  ହେବ  $t^2+10t+24=8 \Rightarrow t^2+10t+16=0$ 

ଯାହା t ରେ ଏକ ଦ୍ୱିଘାତ ସମୀକରଣ । ଦ୍ୱିଘାତ ସୂତ୍ର ପ୍ରୟୋଗ କଲେ

$$t = \frac{-10 \pm \sqrt{100 - 64}}{2} = \frac{-10 \pm 6}{2} = -2 \text{ fill } -8$$

$$t = -2 \Rightarrow x^2 + 5x + 2 = 0 \Rightarrow x = \frac{-5 \pm \sqrt{25 - 8}}{2}$$

$$\Rightarrow x = \frac{1}{2} \left( -5 + \sqrt{17} \right) \text{ fill, } x = \frac{1}{2} \left( -5 - \sqrt{17} \right)$$

$$QFQ, t = -8 \Rightarrow x^2 + 5x + 8 = 0 \Rightarrow x = \frac{-5 \pm \sqrt{25 - 32}}{2}$$

ଏଠାରେ D < 0 ହେତୁ 'x' ଏକ ବାଷବ ସଂଖ୍ୟା ନୂହେଁ, ତେଣୁ ଏହା ଗ୍ରହଣୀୟ ନୂହେଁ। ଦର ସମ୍ପାଳରଣଟିର ବାଞ୍ଚବ ସମାଧାନ ଦ୍ୟ  $\frac{1}{2}(\sqrt{17}-5)$  ଓ  $-\frac{1}{2}(\sqrt{17}+5)$  । (ଉତ୍ତର) ` ଉଦାହରଣ - 9 :

ସମାଧାନ କର :  $\sqrt{2x+5} + \sqrt{x+2} = 5$ 

ସମାଧାନ :

$$2x + 5 + x + 2 + 2\sqrt{(2x+5)(x+2)} = 25$$
 (ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗ ନେଲେ)  $\Rightarrow 2\sqrt{(2x+5)(x+2)} = 18 - 3x$   $\Rightarrow 4 (2x+5) (x+2) = 324 - 108x + 9x^2$  (ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗ ନେଲେ)  $\Rightarrow x^2 - 144x + 284 = 0 \Rightarrow (x-142) (x-2) = 0 \Rightarrow x = 142$  ବା  $2x = 2$  ଦ୍ୱାରା ଦଉ ସମୀକରଣଟି ସିଦ୍ଧ ହେଉଛି; ମାତ୍ର  $x = 142$  ହେଲେ,  $\sqrt{2x+5} + \sqrt{x+2} \neq 5$   $\therefore$  ଦଉ ସମୀକରଣର ସମାଧାନ ହେଲା  $x = 2$  । (ଉଉର)

(ଉଉର)

ପାଟୀ ଗଣିତର ପ୍ରଶୁମାନଙ୍କ ସମାଧାନ : 2.5.

ପାଟୀ ଗଣିତର ଅନେକ ପୁଶ୍ର ସମାଧାନ ବୀଜଗାଣିତିକ ପଦ୍ଧତିରେ କଲାବେଳେ ଦ୍ୱିଘାତ ସମୀକରଣ ଉପୁଳିଥାଏ ଓ ଏହି ସମୀକରଣର ସମାଧାନ କଲେ ମୂଳ ପ୍ରଶ୍ନଟିର ସମାଧାନ କରିହୁଏ। ଏ ଧରଣର କେତେଗୁଡ଼ିଏ ଉଦାହରଣକୁ ଦେଖ ।

#### ଭବାହରଣ - 10 :

ଦୁଇଗୋଟି କ୍ରମିକ ପୂର୍ଷସଂଖ୍ୟାର ଗୁଣଫଳ 306 ହେଲେ ସଂଖ୍ୟାଦ୍ୱୟ ନିର୍ଷୟ କର ।

ସମାଧାନ :

ମନେକର ପୂର୍ଣ୍ଣସଂଖ୍ୟାଦ୍ $\mathbf{a} \ \mathbf{k} \ \mathbf{g} \ \mathbf{k} + 1$  । ପ୍ରଶ୍ନାନୁଯାୟୀ

$$k(k + 1) = 306 \implies k^2 + k - 306 = 0$$

ଓ ଏହା kରେ ଏକ ଦ୍ୱିଘାତ ସମୀକରଣ । ଦ୍ୱିଘାତ ସୂତ୍ର ପ୍ରୟୋଗ କଲେ

$$k = \frac{-1 \pm \sqrt{1^2 - 4(-306)}}{2} = \frac{-1 \pm \sqrt{1225}}{2} = \frac{-1 \pm 35}{2}$$

ଅର୍ଥାତ୍ k = 17 କିୟା -18

### ଉଦାହରଣ - :11:

କୌଣସି ଏକ ଅରଣ୍ୟରେ ବାସ କରୁଥିବା ମର୍କିଟମାନଙ୍କ ମଧ୍ୟରୁ ସେମାନଙ୍କ ସଂଖ୍ୟାର ଏକ ଅଷ୍ଟମାଂଶ୍ଚର ବର୍ଗ କ୍ରୀଡ଼ାରତ ଏବଂ ଅବଶିଷ୍ଟ ବାରଟି ମର୍କିଟ ଏକ ଶ୍ଚଙ୍ଗ ଉପରେ ବସିଥିଲେ। ଅରଣ୍ୟରେ ସୟବତଃ କେତେ ମର୍କିଟ ଥିଲେ ?

[ପ୍ରଶ୍ମଟି ଦ୍ୱାଦଶ ଶତାବ୍ଦୀର ଭାରତୀୟ ଗଣିତଞ୍କ ଦ୍ୱିତୀୟ ଭାସ୍କରଙ୍କ ଦ୍ୱାରା ରଚିତ ପୁଷକ 'ସିଦ୍ଧାନ୍ତ ଶିରୋମଣି'ର 'ଲୀଳାବତୀ' ଅଧ୍ୟାୟରେ ପ୍ରଦତ୍ତ]

### ସମାଧାନ :

ମନେକର ଅରଣ୍ୟରେ ମର୍କିଟଙ୍କ ସଂଖ୍ୟା = 
$$n$$
 । କ୍ରୀଡ଼ାଉତ ମର୍କିଟଙ୍କ ସଂଖ୍ୟା =  $\left(\frac{n}{8}\right)^2$  ଅତଏବ ଅବଶିଷ୍ଟ ମର୍କିଟଙ୍କ ସଂଖ୍ୟା =  $n-\frac{n^2}{64}$  । ପ୍ରଶ୍ନାନୁଯାୟୀ,  $n-\frac{n^2}{64}=12 \Rightarrow n^2-64n+768=0$  
$$\Rightarrow n=\frac{-(-64)\pm\sqrt{(-64)^2-4\times1\times768}}{2\times1}=\frac{64\pm\sqrt{1024}}{2}=48$$
 କିୟା  $16$  :. ଅରଣ୍ୟରେ ଥିବା ସୟାବ୍ୟ ମର୍କିଟଙ୍କ ସଂଖ୍ୟା  $48$  କିୟା  $16$  । (ଉତ୍କର)

### ଉଦାହରଣ - 12 :

ଏକ ରେଳଗାଡ଼ି 300 କି.ମି. ଦୀର୍ଘ ଯାତ୍ରା ପଥରେ ସମାନ ବେଗରେ ଗତି କରୁଥିଲା। ଯଦି ଗାଡ଼ିର ବେଗ ଘଣ୍ଟାପ୍ରତି 5 କି.ମି. ଅଧିକ ହୋଇଥା'ନ୍ତା ତେବେ ଗାଡ଼ିଟି ନିର୍ଦ୍ଦିଷ୍ଟ ସମୟର ଦୁଇଘଣ୍ଟା ପୂର୍ବରୁ ଯଥା ପ୍ଥାନରେ ପହଞ୍ଚଥା'ନ୍ତା। ତେବେ ଗାଡ଼ିର ଘଣ୍ଟାପ୍ରତି ବେଗ ନିରୂପଣ କର। ସମାଧାନ :

ମନେକର ଗାଡ଼ିର ବେଗ ଘଣ୍ଟାପ୍ରତି x କି.ମି.। ଏହି ବେଗରେ ଗଲେ ଯାତ୍ରାପଥ ଅତିକ୍ରମ କରିବା ପାଇଁ ଗାଡ଼ିକୁ  $\frac{300}{x}$  ଘଣ୍ଟା ସମୟ ଲାଗିବ । ମାତ୍ର ଘଣ୍ଟାକୁ x+5 କି.ମି. ବେଗରେ ଗଲେ  $\frac{300}{x+5}$  ଘଣ୍ଟା ଲାଗିଥା 'ଡା ।

ପ୍ରଶାନୁଯାୟୀ 
$$\frac{300}{x} - \frac{300}{x+5} = 2 \Rightarrow 300 \left(\frac{1}{x} - \frac{1}{x+5}\right) = 2$$

$$\Rightarrow \frac{1}{x} - \frac{1}{x+5} = \frac{1}{150} \Rightarrow x^2 + 5x - 750 = 0$$

$$\Rightarrow x = \frac{-5 \pm \sqrt{25 + 3000}}{2} = \frac{-5 \pm 55}{2} = 25 \text{ କିୟା } -30 \text{ } |$$

 $\therefore x = -30$  ଗ୍ରହଣୀୟ ନୂହେଁ (କାରଣ ବେଗ ରଣାତ୍ମକ ହେବା ଅସୟବ)।

∴ ଗାଡ଼ିର ବେଗ ଘଣ୍ଟାକୁ 25 କି.ମି.।

(ଉଉର)

### ଉଦାହରଣ - 13:

ଏକ ଆୟତାକାର ପଡ଼ିଆର ଦୈର୍ଘ୍ୟ 25 ମିଟର, ପ୍ରସ୍ଥ 16 ମିଟର ଓ ପଡ଼ିଆର ଚତୁଃପାର୍ଣ୍ସରେ ସମାନ ଚୌଡ଼ାର ଏକ ରାଞା ଅଛି। ଯଦି ଚତୁଃପାର୍ଣ୍ସରେ ଥିବା ରାଞାର କ୍ଷେତ୍ରଫଳ 230 ବର୍ଗ ମିଟର ତେବେ ରାଞାର ଚଉଡ଼ା ନିର୍ଣ୍ଣୟ କର।

### ସମାଧାନ :

ମନେକର ରାଞାଟିର ଚୌଡ଼ା x ମିଟର। ସୁତରାଂ ରାଞାକୁ ବିଚାର କରି ଲବ୍ଧ ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ = (25 + 2x) ମିଟର ଓ ପ୍ରସ୍ଥ = (16 + 2x) ମିଟର। ପ୍ରଶ୍ନାନୁଯାୟୀ, (25 + 2x) (16 + 2x) – 25 × 16 = 230



$$\Rightarrow 400 + 82x + 4x^2 - 400 - 230 = 0$$
 $\Rightarrow 4x^2 + 82x - 230 = 0 \Rightarrow 2x^2 + 41x - 115 = 0$ 
 $\therefore x = \frac{-41 \pm \sqrt{41^2 - 4 \times 2(-115)}}{2 \times 2} = \frac{-41 \pm 51}{4}$ 
ଅର୍ଥାତ୍  $x = \frac{5}{2}$  ମିଟର (\*.\*  $x = \frac{-92}{4} = -23$  ଗ୍ରହଣୀୟ ନୁହେଁ)
ଅତଏବ ପଡ଼ିଆର ଚତୃଃପାର୍ଶ୍ୱପ୍ର ରାୟାର ଚଉଡ଼ା 2.5 ମିଟର । (ଉରର)

# ଅନୁଶୀଳନୀ - 2(b)

- 1. ନିମୁଲିଖିତ ପ୍ରଶ୍ମମାନଙ୍କର ଉତ୍ତର ଦିଆ।
  - (i)  $x-2\sqrt{x}-6=0$  ସମୀକରଣରେ xର କେଉଁ ପରିବର୍ତ୍ତନ ଘଟାଇଲେ ଏହା ଏକ ଦ୍ୱିଘାତ ସମୀକରଣ ରୂପେ ପ୍ରକାଶିତ ହୋଇପାରିବ ? ପରିବର୍ତ୍ତିତ ସମୀକରଣଟି ନିର୍ଣ୍ଣୟ କର ।
  - (ii) ଗୋଟିଏ ସଂଖ୍ୟା ଓ ଏହାର ବ୍ୟୁତ୍କ୍ରମର ସମଷି 2 । ସଂଖ୍ୟାଟିକୁ x ନେଇ ଏକ ଦ୍ୱିଘାତ ସମୀକରଣ ଗଠନ କର ।

- (iii)  $(x^2 + 3x + 2)^2 8(x^2 + 3x) 4 = 0$  ସମୀକରଣଟିକୁ  $at^2 + bt + c = 0$  ରୂପରେ ପ୍ରକାଶ କର ।
- (iv)  $\sqrt{x+9} + 3 = x$ କୁ ଏକ ଦ୍ୱିଘାତ ସମୀକରଣ ରୂପେ ପ୍ରକାଶ କର ।
- (v) "ଦୁଇ କ୍ରମିକ ପୂର୍ତ୍ତି ସଂଖ୍ୟାର ଗୁଣଫଳ 240"। ସଂଖ୍ୟାଦ୍ୱୟ ମଧ୍ୟରୁ ଗୋଟିକୁ n ନେଇ ଆବଶ୍ୟକୀୟ ଦିଘାତ ସମୀକରଣ ଗଠନ କର ।
- ଏକ ଆୟତ କ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ ପ୍ରସ୍ଥ ଅପେକ୍ଷା 5 ମିଟର ଅଧିକ ଓ ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ 150 ବର୍ଗ ମିଟର । ଦୈର୍ଘ୍ୟ ଓ ପ୍ରସ୍ଥର ନିରୂପଣ ପାଇଁ ଦୈର୍ଘ୍ୟକୁ x ମିଟର ନେଇ ଆବଶ୍ୟକୀୟ ଦ୍ୱିଘାତ ସମୀକରଣଟି ଗଠନ କରା
- (vii) ଦୁଇଟି ସଂଖ୍ୟାର ଯୋଗଫଳ 18 ଏବଂ ସେମାନଙ୍କର ଗୁଣଫଳ 56। ଗୋଟିଏ ସଂଖ୍ୟାକୁ 'x' ନେଇ ଏକ ଦିଘାତ ସମୀକରଣ ଗଠନ କର ।

#### ସମାଧାନ କର । 2.

(i) 
$$4x^4 - 21x^2 + 20 = 0$$
 (ii)  $2x^4 - 5x^2 + 3 = 0$ 

(ii) 
$$2x^4 - 5x^2 + 3 = 0$$

(iii) 
$$4x^4 - 33x^2 + 8 = 0$$

(iv) 
$$x^{-4} - 5x^{-2} + 4 = 0$$

(v) 
$$3x + \frac{5}{16x} - 2 = 0$$

(vi) 
$$(3x^2 - 8)^2 - 23(3x^2 - 8) + 76 = 0$$

(vii) 
$$(x^2+3x+2)^2 - 8(x^2+3x)-4 = 0$$

(vii) 
$$(x^2+3x+2)^2 - 8(x^2+3x) - 4 = 0$$
 (viii)  $\left(\frac{x+1}{x-1}\right)^2 - \left(\frac{x+1}{x-1}\right) - 3 = 0$ 

(ix) 
$$\left(\frac{2x+1}{x-1}\right)^4 - 10\left(\frac{2x+1}{x-1}\right)^2 + 9 = 0$$
 (x)  $\left(\frac{2x+1}{x+1}\right)^4 - 6\left(\frac{2x+1}{x+1}\right)^2 + 8 = 0$ 

(xi) 
$$16x(x+1)(x+2)(x+3) = 9$$

(xi) 
$$16x(x+1)(x+2)(x+3) = 9$$
 (xii)  $2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) - 1 = 0$ 

(xiii) 
$$\sqrt{2x+9} + x = 13$$

(xiv) 
$$\sqrt{2x + \sqrt{2x + 4}} = 4$$

- ନିମ୍ନଲିଖିତ ପ୍ରଶ୍ନମାନଙ୍କ ଉତ୍ତର ଦିଆ।
  - କୌଣସି ସଂଖ୍ୟା ଓ ତାହାର ବର୍ଗ ସମାନ ହେଲେ ସଂଖ୍ୟାଟି ନିର୍ଣ୍ଣୟ କର। (i)
  - ଦୁଇଟି କୁମିକ ପୂର୍ଷସଂଖ୍ୟାର ଗୁଣଫଳ 380 ହେଲେ ସଂଖ୍ୟାଦ୍ୱୟ ସ୍ଥିର କର । (ii)
  - ଦୁଇଟି କ୍ରମିକ ପୂର୍ଣ୍ଣସଂଖ୍ୟାର ବ୍ୟୁତ୍କ୍ରମ ଇଗ୍ନସଂଖ୍ୟା ଦ୍ୱୟର ଯୋଗଫଳ  $\frac{11}{30}$  ହେଲେ ପୂର୍ଣ୍ଣସଂଖ୍ୟାଦ୍ୱୟଙ୍କୁ ନିରୂପଣ କରିବା ପାଇଁ ସମୀକରଣଟି ଗଠନ କରି ସଂଖ୍ୟାଦ୍ୱୟ ନିରୂପଣ କର ।
  - ଗୋଟିଏ ସଂଖ୍ୟା ଏବଂ ତାହାର ଧନାତ୍ମକ ବର୍ଗମୂଳର ସମଷ୍ଟି  $\frac{6}{25}$ ହେଲେ, ସଂଖ୍ୟାଟି ସ୍ଥିର କର।
  - (v) ଗୋଟିଏ ସଂଖ୍ୟା ଏବଂ ତାହାର ବ୍ୟୁତ୍କ୍ରମର ସମଷ୍ଟି  $\frac{17}{4}$  ହେଲେ, ସଂଖ୍ୟାଟି ସ୍ଥିର କର ।

- କଣେ ସାଇକେଲ ଆରୋହୀ 40 କି.ମି. ଦୂର ଗୋଟିଏ ପ୍ଥାନକୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବେଗରେ ଗଲେ। ଯଦି ସେ ଘଣ୍ଟା ପ୍ରତି ବେଗ ଆଉ 2 କି.ମି. ବଢ଼ାଇଥା'ତେ ତେବେ ଲକ୍ଷ୍ୟ ସ୍ଥାନରେ ଏକ ଘଣ୍ଟା ଆଗରୁ ପହଞ୍ଚ ପାରିଥାତେ। ତେବେ ଘଣ୍ଟା ପ୍ରତି ତାଙ୍କର ବେଗ କେତେ ଥିଲା?
- 5. ଦୂଇଗୋଟି ସଂଖ୍ୟାର ସମଷି 15 ଓ ସେମାନଙ୍କ ବ୍ୟୁତକ୍ରମ ରାଶିଦ୍ୱୟର ସମଷି  $\frac{3}{10}$  ହେଲେ ସଂଖ୍ୟାଦ୍ୟ ନିରୂପଣ କର ।
- ବୁଇଗୋଟି ସଂଖ୍ୟା ମଧ୍ୟରୁ ଗୋଟିଏ ଅପରଟି ଅପେକ୍ଷା 3 ବୃହରର । ସଂଖ୍ୟାଦ୍ୱୟର ବର୍ଗର ସମଷ୍ଟି 117
   ହେଲେ ସଂଖ୍ୟାଦ୍ୱୟ ପ୍ରିର କର ।
- 7. ଏକ ସମକୋଣୀ △ର ସମକୋଣର ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟ 5x ଓ 3x-1 ଏକକ ଓ କ୍ଷେତ୍ରଫଳ 60 ବର୍ଗ ଏକକ। ତେବେ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର।
- 8. ଏକ ଦୁଇ ଅଙ୍କ ବିଶିଷ ସଂଖ୍ୟାର ଅଙ୍କଦ୍ୱୟର ଗୁଣଫଳ 14। ସଂଖ୍ୟାରେ 45 ଯୋଗକଲେ ସଂଖ୍ୟାର ଅଙ୍କଦ୍ୱୟର ସ୍ଥାନ ପରିବର୍ତ୍ତିତ ହୋଇଯାଏ। ସଂଖ୍ୟାଟି ନିରୂପଣ କର ।
- ୨. କଣେ ବ୍ୟକ୍ତି ତାଙ୍କ ଚାଲିବାର ବେଗକୁ ଯଦି ଘଣ୍ଟାପ୍ରତି 1 କି.ମି. ବୃଦ୍ଧି କରତେ ତେବେ 2 କି.ମି. ରାଞା ଅତିକ୍ରମ କରିବା ପାଇଁ 10 ମିନିଟ୍ କମ୍ ସମୟ ନେଇଥା'ନ୍ତେ। ତେବେ ବ୍ୟକ୍ତିଙ୍କର ଚାଲିବାର ଘଣ୍ଟାପ୍ରତି ବେଗ ନିରୂପଣ କର।

[ ସୂଚନା : ବେଗ = 
$$\frac{900}{100}$$
 , ତେଣୁ  $\frac{2}{x} - \frac{2}{x+1} = \frac{10}{60}$ ]

- ଏକ ସମକୋଣୀ ତ୍ରିଭୁଚ୍ଚର କ୍ଷେତ୍ରଫଳ 165 ବର୍ଗ ମିଟର। ଯଦି ଏହାର ଉଚ୍ଚତା ଭୂମି ଅପେକ୍ଷା 7 ମିଟର

   ଅଧିକ ହୁଏ, ତେବେ ଏହାର ଭୂମି ଓ ଉଚ୍ଚତା ନିରୂପଣ କର।
- 11. ଏକ ନୌକାର ବେଗ ସ୍ଥିର କଳରେ 11 କି.ମି. ପ୍ରତି ଘଣ୍ଟା । ଏହା ସ୍ରୋତର ପ୍ରତିକୂଳରେ 12 କି.ମି. ଗମନ କରି ପୁନଷ୍ଟ (ଅନୁକୂଳରେ) ଫେରି ଆସିବାକୁ 2ଘଣ୍ଟା 45 ମିନିଟ୍ ସମୟ ନେଲା । ତେବେ ସ୍ରୋତର ଘଣ୍ଡାପ୍ରତି ବେଗ ନିର୍ଦ୍ଧୟ କର ।
- 12. ଗୋଟିଏ ଶ୍ରେଣୀର ଏକ ନିର୍ଦ୍ଧିଷ୍ଟ ସଂଖ୍ୟକ ଛାତ୍ରଙ୍କ ମଧ୍ୟରେ 250 ଟଙ୍କାକୁ ସମାନ ଭାଗରେ ବଞ୍ଜାଗଲା । ଯଦି 25 କଣ ଛାତ୍ର ଅଧିକ ହୋଇଥା 'ଡେ, ତେବେ ପ୍ରତ୍ୟେକ 0.50 ଟଙ୍କା ଲେଖାଏଁ କମ୍ ପାଇଥା 'ଡେ । ତେବେ ଶ୍ରେଣୀର ଛାତ୍ର ସଂଖ୍ୟା ସ୍ଥିର କର ।
- 13. ଗୋଟିଏ ଗାଈଗୋଠର ଏକ ଚତୁର୍ଥାଂଶ ଦୃଷିଗୋଚର ହେଉଥିଲେ । ଗୋଠରେ ଥିବା ଗାଈ ସଂଖ୍ୟାର ବର୍ଗମୂଳର ଦୁଇଗୁଣ ସଂଖ୍ୟକ ଗାଈ ପାହାଡ଼ର ପାଦଦେଶରେ ବୁଲୁଥିଲେ ଏବଂ ଅବଶିଷ 15ଟି ଗାଈ ନଦୀକୂଳରେ ଥିଲେ । ତେବେ ଗୋଠରେ କେତୋଟି ଗାଈ ଥିଲେ ନିର୍ଶୟ କର ।
- 14. ଗୋଟିଏ ଆୟତାକାର ପଡ଼ିଆର ଦୈର୍ଘ୍ୟ 32 ମିଟର ଏବଂ ପ୍ରସ୍ଥ୍ 24 ମିଟର ଓ ଏହି ପଡ଼ିଆର ଭିତର ଧାରକୁ ଲାଗି ଏକ ସମାନ ଚଉଡ଼ାର ରାଞ୍ଜା ଅଛି। ଯଦି ରାଞ୍ଜାର କ୍ଷେତ୍ରଫଳ 208 ବ.ମି. ହୁଏ, ତେବେ ରାଞ୍ଜାର ଚଉଡ଼ା ସ୍ଥିର କର।