EE359 – Lecture 16 Outline

- Announcements
 - HW 7 due Friday 5pm
 - Bonus lecture 11/30, 5:15 with pizza (send topics)
- MIMO Beamforming (Diversity)
- MIMO Diversity/Multiplexing Tradeoffs
- Introduction to ISI Countermeasures
- Multicarrier Modulation
- Overlapping Substreams
- Fading Across Subcarriers

Review of Last Lecture

MIMO Systems

- With perfect channel estimates at TX and RX, decomposes into r independent channels
- r-fold capacity increase over SISO system
- Demodulation complexity reduction
- Can also use antennas for diversity (beamforming)
- Leads to capacity versus diversity tradeoff in MIMO

Beamforming

Scalar codes with transmit precoding

- Transforms system into a SISO system with diversity.
 - Array and diversity gain
 - Greatly simplifies encoding and decoding.
 - Channel indicates the best direction to beamform
 - Need "sufficient" knowledge for optimality of beamforming
- Precoding transmits more than 1 and less than R_H streams
 - Transmits along some number of dominant singular values

Optimality of Beamforming

Mean Information

Covariance Information

Diversity vs. Multiplexing

Use antennas for multiplexing or diversity

Diversity/Multiplexing tradeoffs (Zheng/Tse)

$$\lim_{SNR\to\infty} \frac{\log \mathbf{P}_{e}(SNR)}{\log \mathbf{SNR}} = -\mathbf{d}$$

$$\lim_{SNR\to\infty} \frac{R(SNR)}{\log SNR} = r$$

$$\mathbf{d}^*(\mathbf{r}) = (\mathbf{M}_{t} - \mathbf{r})(\mathbf{M}_{r} - \mathbf{r})$$

How should antennas be used?

Use antennas for multiplexing:

Use antennas for diversity

Depends on end-to-end metric: Solve by optimizing app. metric

MIMO System Design Issues

- Low Complexity Receivers
 - ML receivers exponentially complex # of streams and constellation size
 - Sphere decoding, only considers possibilities within a sphere of received symbol.

- Space-time coding:
 - Map symbols to both space and time via space-time block and convolutional codes.
 - For OFDM systems, codes are also mapped over frequency tones.
- Adaptive techniques:
 - MIMO systems adapt the use of transmit/receive antennas in addition to adapting modulation and coding.
 - Limited feedback: With limited capacity on the feedback path, techniques rely on partial CSI

ISI Countermeasures

Equalization

- Signal processing at receiver to eliminate ISI, must balance ISI removal with noise enhancement
- Can be very complex at high data rates, and performs poorly in fast-changing channels
- Not that common in state-of-the-art wireless systems

Multicarrier Modulation

 Break data stream into lower-rate substreams modulated onto narrowband flat-fading subchannels

Spread spectrum

• Superimpose a fast (wideband) spreading sequence on top of data sequence, allows resolution for combining or attenuation of multipath components.

Multicarrier Modulation

- Breaks data into N substreams
- Substream modulated onto separate carriers
 - Substream bandwidth is B/N for B total bandwidth
 - B/N<B_c implies flat fading on each subcarrier (no ISI)

Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.
- OFDM overlaps substreams
 - Substreams (symbol time T_N) separated in RX
 - Minimum substream separation is $B_N/(1+\beta)$.
 - Total required bandwidth is B/2 (for $T_N=1/B_N$)

Fading Across Subcarriers

- Leads to different BERS
- Compensation techniques
 - Frequency equalization (noise enhancement)
 - Precoding
 - Coding across subcarriers
 - Adaptive loading (power and rate)

Main Points

- Multiple antennas can also be used for diversity via beamforming – this can be optimal
- MIMO introduces diversity/multiplexing tradeoff
- Many practical MIMO system design issues
- ISI can be mitigated through equalization, multicarrier modulation (MCM) or spread spectrum
 - Today, equalizers often too complex or can't track channel.
- MCM splits channel into NB flat fading subchannels
 - Fading across subcarriers degrades performance.
 - Compensate through coding or adaptation