

Expanding the Toolkit for Soil Scientists

The aqp R package

SSSA 2020 -- Big Data with Soil Survey, Capacity Building

Andrew G. Brown andrew.g.brown@usda.gov

Dylan E. Beaudette
dylan.beaudette@usda.gov

Natural Resources Conservation Service

The {aqp} R package

{aqp} provides functions that support data-driven tasks such as visualization, aggregation, and classification of soil profiles. The code is open-source and under active development by members of the National Cooperative Soil Survey.

Project Homepage:

http://ncss-tech.github.io/AQP/

{aqp} on CRAN (stable):

http://cran.r-project.org/web/packages/aqp/

{aqp} on GitHub (development):

http://github.com/ncss-tech/aqp/

Natural Resources Conservation Service

Soil Data Inputs

aspectccwise : smallint

aspectrep : smallint

You can load data from any source that R supports!

{soilDB} provides several handy ways to get soil data!

Natural Resources Conservation Service

Soil Data Inputs

elev h : real aspectccwise : smallint

aspectrep : smallint

You can load data from any source that **R** supports!

{s➡DB} provides several handy ways to get soil data!

- fetchSDA, fetchSDA_spatial, SDA_query & SDA_spatialQuery for SSURGO from Soil Data Access (SDA)
- fetchKSSL for querying a snapshot of the Kellogg Soil Survey Laboratory (KSSL) database
- fetchOSD for series type location profiles and narratives from Official Series Descriptions (OSDs)
- fetchNASIS for NASIS pedons / components from local atular database

Resources

Service

Conservation

{aqp} SoilProfileCollection : O O O O

```
library(aqp) # load aqp package

# load sample dataset CA Serpentine Soils
# (McGahan et al., 2009)
data(sp4, package = "aqp") # see ?sp4 for metadata
```



```
孠
```

```
library(aqp) # load aqp package

# load sample dataset CA Serpentine Soils
# (McGahan et al., 2009)
data(sp4, package = "aqp") # see ?sp4 for metadata
```

```
head(sp4, n = 9)
```

```
id name top bottom
                                   Mg Ca CEC_7 ex_Ca_to_Mg sand silt clay
###
  1 colusa
                           3 0.3 25.7 9.0
                                            23.0
               Α
                    0
                                                         0.35
                                                                46
                                                                     33
                                                                           21 0.12
  2 colusa
             ABt
                           8 0.2 23.7 5.6
                                            21.4
                                                         0.23
                                                                42
                                                                     31
                                                                           27 0.27
  3 colusa
                                            23.7
                                                         0.08
             Bt1
                    8
                          30 0.1 23.2 1.9
                                                                40
                                                                     28
                                                                           32 0.27
## 4 colusa
             Bt2
                   30
                          42 0.1 44.3 0.3
                                            43.0
                                                         0.01
                                                                27
                                                                     18
                                                                           55 0.16
##
  5 glenn
              Α
                   0
                           9 0.2 21.9 4.4
                                            18.8
                                                         0.20
                                                                54
                                                                     20
                                                                           25 0.55
## 6
      glenn
              Вt
                   9
                          34 0.3 18.9 4.5
                                            27.5
                                                         0.20
                                                                49
                                                                     18
                                                                           34 0.84
      kings
                                            23.7
## 7
              Α
                    0
                           4 0.2 12.1 1.4
                                                         0.58
                                                                43
                                                                     55
                                                                            3 0.50
## 8
      kings
                          13 0.6 12.1 7.0 18.0
                                                                36
                                                                     49
                                                                           15 0.75
             Bt1
                    4
                                                         0.51
      kings
                                                                           27 0.67
## 9
             Bt2
                   13
                          40 0.8 17.7 4.4
                                            20.0
                                                         0.25
                                                                27
                                                                     45
```


Resources Conservation Service

Optional: use data.table or tibble!

```
sp4 ← data.table::as.data.table(sp4)
head(sp4)
```

```
Mg Ca CEC_7 sand silt clay
##
         id name top bottom
                         3 0.3 25.7 9.0 23.0
## 1: colusa
              Α
                                               46
                                                   33
                                                        21 0.12
## 2: colusa
            ABt
                        8 0.2 23.7 5.6 21.4
                                               42
                                                   31
                                                        27 0.27
## 3: colusa
            Bt1
                        30 0.1 23.2 1.9 23.7
                                                   28
                                                        32 0.27
                                               40
## 4: colusa
            Bt2
                 30
                        42 0.1 44.3 0.3 43.0
                                               27
                                                   18
                                                        55 0.16
## 5: glenn
                        9 0.2 21.9 4.4 18.8
                                               54
                                                   20
                                                        25 0.55
            Α
      glenn
                        34 0.3 18.9 4.5 27.5
                                               49
                                                        34 0.84
## 6:
              Вt
                                                   18
```


Optional: use data.table or tibble!

```
sp4 ← data.table::as.data.table(sp4)
head(sp4)
                                  Mg Ca CEC_7 sand silt clay
###
         id name top bottom
                              K
                                          23.0
## 1: colusa
               Α
                          3 0.3 25.7 9.0
                                                 46
                                                      33
                                                          21 0.12
                         8 0.2 23.7 5.6 21.4
## 2: colusa
             ABt
                                                 42
                                                      31
                                                          27 0.27
## 3: colusa
             Bt1
                         30 0.1 23.2 1.9 23.7
                                                      28
                                                          32 0.27
                                                 40
## 4: colusa
             Bt2
                  30
                         42 0.1 44.3 0.3 43.0
                                                 27
                                                      18
                                                          55 0.16
## 5:
      glenn
                         9 0.2 21.9 4.4 18.8
                                                 54
                                                      20
                                                          25 0.55
             Α
      glenn
                         34 0.3 18.9 4.5 27.5
                                                 49
## 6:
              Вt
                                                      18
                                                          34 0.84
sp4 ← tibble::as tibble(sp4)
head(sp4)
```

```
## # A tibble: 6 x 12
##
     id
            name
                    top bottom
                                    Κ
                                         Mg
                                                Ca CEC 7 sand
                                                                 silt clay
     <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <int> <int> <int> <dbl>
###
  1 colusa A
                                  0.3
                                       25.7
                                               9
                                                    23
                                                                   33
                                                             46
                                                                         21
                                                                              0.12
                       0
## 2 colusa ABt
                              8
                                  0.2
                                       23.7
                                               5.6
                                                    21.4
                                                                   31
                                                                         27, 0.27
                                                             42
## 3 colusa Bt1
                      8
                                  0.1
                                       23.2
                             30
                                               1.9
                                                    23.7
                                                             40
                                                                   28
                                                                         32 Res 0 .. 27s
## 4 colusa Bt2
                      30
                             42
                                  0.1
                                       44.3
                                               0.3
                                                    43
                                                             27
                                                                   18
                                                                         55cor0er16tion
                                                             54
## 5 glenn
                       0
                                  0.2
                                       21.9
                                               4.4
                                                    18.8
                                                                   20
                                                                         25Ser0c=55
                                                                         34 0 84
nrcs.usda.gov/
## 6 glenn
                       9
                                  0.3
                                        18.9
                                               4.5
                                                             49
            Вt
                             34
                                                    27.5
                                                                   18
```


"Promote" data.frame-like horizon data to a SoilProfileCollection object.

class(sp4)

"tbl"

"data.frame"

Natural Resources Conservation Service

"Promote" data.frame-like horizon data to a SoilProfileCollection object.

"Promote" data.frame-like horizon data to a SoilProfileCollection object.

Natural

"Promote" data.frame-like horizon data to a SoilProfileCollection object.

```
class(sp4)
                                  "data.frame"
## [1] "tbl df"
                    "tbl"
depths(sp4) \leftarrow id \sim top + bottom # specify site ID, top and bottom depth
class(sp4) # sp4 promoted from tbl_df → SoilProfileCollection
## [1] "SoilProfileCollection"
## attr(,"package")
## [1] "aqp"
profile_id(sp4) # view profile IDs
                                                                          Natural
                                                             "mariposa"
    [1] "colusa"
                          "glenn"
                                  "kings"
                                                                          Resourtmendoc
                                                                          Conservation
                          "shasta-trinity" "tehama"
   [8] "shasta"
                                                                          Service
```


plot

```
plot(sp4, # plot % clay content
    color = 'clay',
    id.style = 'side',
    cex.names = 1)
```


Natural Resources Conservation Service

plot

```
plot(sp4, # plot % clay content
    color = 'clay',
    id.style = 'side',
    cex.names = 1)
```


site

```
## # A tibble: 10 x 1
## id
## <chr>
## 1 colusa
## 2 glenn
## 3 kings
## 4 mariposa
## 5 mendocino
## 6 napa
## 7 san benito
## 8 shasta
## 9 shasta-trinity
## 10 tehama
```


nrcs.usda.gov/

Natural

Resources

Conservation Service

horizons

```
horizons(sp4) # "horizon" data
```

```
## # A tibble: 30 x 13
      id
                                                                       silt clay
##
                name
                         top bottom
                                          Κ
                                               Mg
                                                      Ca CEC 7
                                                                 sand
                <chr> <int> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int> <dbl> <
###
      <chr>
    1 colusa
                                   3
                                       0.3
                                             25.7
                                                          23
                                                                          33
##
                           0
                                                                   46
###
    2 colusa
                ABt
                                       0.2
                                             23.7
                                                     5.6
                                                          21.4
                                                                   42
                                                                          31
                                       0.1
                                             23.2
                                                          23.7
###
    3 colusa
                Bt1
                                  30
                                                     1.9
                                                                   40
                                                                          28
###
    4 colusa
                Bt2
                          30
                                  42
                                       0.1
                                             44.3
                                                     0.3
                                                          43
                                                                   27
                                                                          18
    5 glenn
                                       0.2
                                                                          20
##
                Α
                           0
                                   9
                                             21.9
                                                     4.4
                                                          18.8
                                                                   54
    6 glenn
                Вt
                                       0.3
                                             18.9
                                                     4.5
                                                          27.5
                                                                   49
                                                                          18
##
                           9
                                  34
##
    7 kings
                Α
                                       0.2
                                             12.1
                                                    1.4
                                                          23.7
                                                                   43
                                                                          55
                           0
                                   4
    8 kings
                                       0.6
                                            12.1
                                                          18
                                                                   36
                                                                          49
##
                Bt1
                           4
                                  13
    9 kings
                Bt2
                                            17.7
##
                          13
                                  40
                                       0.8
                                                     4.4
                                                          20
                                                                   27
                                                                          45
   10 mariposa A
                                       0.6
                                             28.3
                                                     5.8
                                                          29.3
                                                                   42
                                                                          26
   # ... with 20 more rows
```


0.12 1

0.27 2

0.27 3

0.16 4

0.55 5

0.84 6

0.75 8

67 9

0.25 1

7

0.5

21

27

32

55

25

34

15

27

Resources Conservation Service

{aqp} S4 methods (extract)

[i,]

```
sp4[1:2,] # i-index: first two profiles
## SoilProfileCollection with 2 profiles and 6 horizons
## profile ID: id | horizon ID: hzID
## Depth range: 34 - 42 cm
###
## ---- Horizons (6 / 6 rows | 10 / 13 columns) ----
## # A tibble: 6 x 10
                                            Ca CEC 7
          hzID
                 top bottom name K
                                         Mg
    <chr> <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <int>
## 1 colusa 1
                                  0.3 25.7
                                                  23
                   0
                         3 A
                                                         46
## 2 colusa 2
                   3 8 ABt
                                 0.2 23.7 5.6 21.4
                                                         42
                  8 30 Bt1
                               0.1 23.2 1.9 23.7
## 3 colusa 3
                                                         40
                30 42 Bt2
                                0.1 44.3 0.3 43
## 4 colusa 4
                                                         27
                                 0.2 21.9 4.4 18.8
## 5 glenn 5
                        9 A
                                                         54
## 6 glenn 6
                                 0.3 18.9 4.5 27.5
                        34 Bt
                                                         49
##
## ---- Sites (2 / 2 rows | 1 / 1 columns) ----
## # A tibble: 2 x 1
    id
```

Natural Resources Conservation Service

rcs.usda.gov/

<chr>>

{aqp} S4 methods (extract)

[i,]

```
sp4[1:2,] # i-index: first two profiles
```

[,j]

```
sp4[,1:2] # j-index: first two horizons (of each profile!)
```

```
## SoilProfileCollection with 10 profiles and 20 horizons
## profile ID: id | horizon ID: hzID
## Depth range: 5 - 40 cm
##
## ---- Horizons (6 / 20 rows | 10 / 13 columns) ----
## # A tibble: 6 x 10
    id
           hzID
                   top bottom name
                                       Κ
                                            Mg
                                                Ca CEC 7
                                                            sand
    <chr> <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <int>
## 1 colusa 1
                            3 A
                                     0.3 25.7
                                                      23
                                                              46
  2 colusa 2
                                     0.2 23.7 5.6 21.4
                            8 ABt
                                                              42
                                          21.9
## 3 glenn
                            9 A
                                                      18.8
                                                              54
```


Natural Resources Conservation Service

{aqp} S4 methods (accessors)

\$

```
sp4$clay # get clay data
```

[1] 21 27 32 55 25 34 3 15 27 32 25 31 33 13 21 23 15 17 12 19 14 14 22 25 40

{aqp} S4 methods (accessors)

\$

```
sp4$clay  # get clay data
## [1] 21 27 32 55 25 34 3 15 27 32 25 31 33 13 21 23 15 17 12 19 14 14 22 25 40
```



```
sp4[["clay"]] # using expression for name, not symbol
```

[1] 21 27 32 55 25 34 3 15 27 32 25 31 33 13 21 23 15 17 12 19 14 14 22 25 40

Natural Resources Conservation Service

\$← and [[←

Calculate Ca:Mg ratio

```
sp4\$ex_Ca_to_Mg \leftarrow sp4\$Ca / sp4\$Mg
sp4[["ex_Ca_to_Mg"]] \leftarrow sp4\$Ca / sp4\$Mg
```


\$← and [[←

Calculate Ca:Mg ratio

Initialize a new column with a singleton

```
site(sp4)$new_var ← 2
horizons(sp4)$new_hz_var ← 3
```


\$← and [[←

Calculate Ca:Mg ratio

Initialize a new column with a singleton

```
site(sp4)$new_var ← 2
horizons(sp4)$new_hz_var ← 3
```

```
length(sp4$new_var) # 10 sites, 10 values
length(sp4$new_hz_var) # 30 horizons, 30 values
```


\$← and [[←

Calculate Ca:Mg ratio

```
sp4\$ex_Ca_to_Mg \leftarrow sp4\$Ca / sp4\$Mg
sp4[["ex_Ca_to_Mg"]] \leftarrow sp4\$Ca / sp4\$Mg
```

Initialize a new column with a singleton

```
site(sp4)$new_var ← 2
horizons(sp4)$new_hz_var ← 3
```

```
length(sp4$new_var) # 10 sites, 10 values
length(sp4$new_hz_var) # 30 horizons, 30 values
```

Resources Conservation

Service

Remove a column

sp4\$new_var ← NULL

subset is the {aqp} method for extracting profiles that meet certain logical criteria at the site or horizon level.

```
# site property filtering, using base
sub.sp4 ← subset(sp4, id %in% c("colusa","mariposa","shasta"))
```


subset is the {aqp} method for extracting profiles that meet certain logical criteria at the site or horizon level.

```
# site property filtering, using base
sub.sp4 ← subset(sp4, id %in% c("colusa", "mariposa", "shasta"))

# or dplyr-like syntax: filter
sub.sp4 ← filter(sp4, id %in% c("colusa", "mariposa", "shasta"))
```


subset is the {aqp} method for extracting profiles that meet certain logical criteria at the site or horizon level.

```
# site property filtering, using base
sub.sp4 ← subset(sp4, id %in% c("colusa", "mariposa", "shasta"))
# or dplyr-like syntax: filter
sub.sp4 ← filter(sp4, id %in% c("colusa", "mariposa", "shasta"))
sub.sp4
## SoilProfileCollection with 3 profiles and 10 horizons
## profile ID: id | horizon ID: hzID
## Depth range: 40 - 49 cm
##
## ---- Horizons (6 / 10 rows | 10 / 15 columns) ----
## # A tibble: 6 x 10
                                                                       Natural
    id
             hzID
                  top bottom name K
                                               Mg
                                                     Ca CEC 7
                                                                       Resources
                                                               sand
## <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
                                                                       Conservation
                   0 3 A 3 8 ABt
## 1 colusa 1
## 2 colusa 2
                                                                       Service
```

30 Bt1

20

0.3 25.7 9 23

0.1 23.2

0.2 23.7 5.6 21.4

1.9 23.7

3 colusa

46

42

40

```
# horizon properties (two simultaneous logical expressions)
sub.sp4 ← subset(sp4, clay > 30, ex_Ca_to_Mg < 0.05)
sub.sp4</pre>
```

```
## SoilProfileCollection with 2 profiles and 9 horizons
## profile ID: id | horizon ID: hzID
## Depth range: 40 - 42 cm
##
## ---- Horizons (6 / 9 rows | 10 / 15 columns) ----
## # A tibble: 6 x 10
                        top bottom name K
##
    id
                  hzID
                                                   Mg
                                                        Ca CEC 7 sand
                  <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <int><</pre>
##
    <chr>
## 1 colusa
                                            0.3 25.7
                                                            23
                                   3 A
                                                                    46
## 2 colusa
                                  8 ABt 0.2 23.7
                                                     5.6 21.4
                                                                    42
## 3 colusa
                                  30 Bt1
                                            0.1 23.2 1.9 23.7
                                                                    40
                           30 42 Bt2 0.1 44.3 0.3 43
## 4 colusa
                                                                    27
                                2 A1 0.2 18.8
## 5 shasta-trinity 23
                            0
                                                       6.6 23
                                                                    34
## 6 shasta-trinity 24
                                5 A2
                                            0.2 25.5
                                                       4.1 21.5
                                                                    33
## [ ... more horizons ... ]
                                                                    Natural
##
                                                                    Resources
## ---- Sites (2 / 2 rows | 1 / 1 columns) ----
                                                                    Conservation
## # A tibble: 2 x 1
                                                                    Service
    id
```

0

<chr>>

1 colusa


```
sub.sp4$soil_depth ← profileApply(sub.sp4, estimateSoilDepth)
sub.sp4$soil_depth
```

```
## colusa shasta-trinity
## 42 40
```

Natural Resources Conservation Service

{aqp} iteration

```
## # A tibble: 10 x 2
      id
                      soil depth
##
##
      <chr>
                           <int>
    1 colusa
##
                               42
   2 glenn
##
                               34
##
   3 kings
                              40
## 4 mariposa
                              49
   5 mendocino
                               30
                               20
##
   6 napa
   7 san benito
                               20
   8 shasta
                               40
    9 shasta-trinity
                               40
```

Natural Resources Conservation Service

{aqp} iteration

With recent internal optimizations, profileApply now scales to larger collections.

Time to *Apply n Profiles

Natural Resources Conservation Service

If you need to operate on other types of (more complex) grouping, splitting into list is a good option.

```
a.list \leftarrow split(sp4, f = idname(sp4))
```


If you need to operate on other types of (more complex) grouping, splitting into list is a good option.

```
a.list \leftarrow split(sp4, f = idname(sp4))
str(a.list, max.level = 1)
## List of 10
    $ colusa
                     :Formal class 'SoilProfileCollection'
##
                                                            [package "agp"] with 9 sl
    $ glenn
                     :Formal class 'SoilProfileCollection'
                                                             [package "aqp"] with 9 sl
##
    $ kings
                     :Formal class 'SoilProfileCollection'
                                                             [package "agp"] with 9 sl
##
    $ mariposa
                     :Formal class 'SoilProfileCollection'
                                                             [package "aqp"] with 9 sl
##
##
     mendocino
                     :Formal class 'SoilProfileCollection'
                                                             [package "aqp"] with 9 sl
    $ napa
                     :Formal class 'SoilProfileCollection'
                                                             [package "aqp"] with 9 sl
##
    $ san benito
                     :Formal class 'SoilProfileCollection'
                                                             [package "agp"] with 9 sl
##
    $ shasta
                     :Formal class 'SoilProfileCollection'
                                                             [package
                                                                      "aqp"] with 9 sl
##
    $ shasta-trinity:Formal class 'SoilProfileCollection'
                                                             [package
                                                                      "agp"] with 9 sl
##
    $ tehama
                     :Formal class 'SoilProfileCollection'
                                                            [package
                                                                      "agp" with 9 sl
```


Conservation Service

If you need to operate on other types of (more complex) grouping, splitting into list is a good option.

```
a.list ← split(sp4, f = idname(sp4))

str(a.list, max.level = 1)
```


If you need to operate on other types of (more complex) grouping, splitting into list is a good option.

```
a.list \leftarrow split(sp4, f = idname(sp4))
str(a.list, max.level = 1)
a.list[[1]]
## SoilProfileCollection with 1 profiles and 4 horizons
## profile ID: id | horizon ID: hzID
## Depth range: 42 - 42 cm
##
## ---- Horizons (4 / 4 rows | 10 / 15 columns) -----
## # A tibble: 4 x 10
                   top bottom name
##
    id
          hzID
                                        Κ
                                             Mg
                                                   Ca CEC 7
                                                             sand
    <chr> <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <int>
                                                                       Natural
## 1 colusa 1
                            3 A 0.3 25.7
                                                       23
                                                               46
                                                                       Resources
```

0.2 23.7 5.6 21.4 0.1 23.2 1.9 23.7

43

0.1 44.3 0.3

2 colusa 2

3 colusa 3

4 colusa 4

30

3 8 ABt

30 Bt1

42 Bt2

nrcs.usda.gov/

Conservation

Service

42

40

27

{aqp} combine (list -> SPC)

Re-combine list elements into "original" SoilProfileCollection with combine

```
sp4 ← combine(a.list)
```


{aqp} combine (list -> SPC)

Re-combine list elements into "original" SoilProfileCollection with combine

```
sp4 \leftarrow combine(a.list)
sp4
## SoilProfileCollection with 10 profiles and 30 horizons
## profile ID: id | horizon ID: hzID
## Depth range: 16 - 49 cm
##
## ---- Horizons (6 / 30 rows | 10 / 15 columns) ----
## # A tibble: 6 x 10
##
    id
          hzID top bottom name
                                     K
                                         Mg
                                            Ca CEC 7
    <chr> <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 colusa 1
                          3 A
                                   0.3 25.7
                                                  23
                                                          46
## 2 colusa 2
                                0.2 23.7 5.6 21.4
                   3 8 ABt
                                                          42
## 3 colusa 3
                         30 Bt1
                                0.1 23.2 1.9 23.7
                                                          40
## 4 colusa 4
                  30
                         42 Bt2
                                0.1 44.3 0.3 43
                                                          27
## 5 glenn 5
                        9 A
                                  0.2 21.9 4.4 18.8
                                                          54
## 6 glenn 6
                         34 Bt
                                   0.3 18.9
                                             4.5
                                                  27.5
                                                          49
## [ ... more horizons ... ]
```

Natural Resources Conservation Service

f(x, y) = x % % f(y)

Natural Resources Conservation Service

$$f(x, y) = x \% \% f(y)$$

Use {magrittr} "pipes" (%>% infix operator) to chain operations.

- 1. Truncate all profiles to 0-15cm interval
- 2. Calculate NH4OAc (pH 7) Ca (0-15cm depth-weighted average cmol/kg)
- 3. Plot horizon-level values, in order of increasing site-level average

Natural Resources Conservation Service


```
f(x, y) = x \% \% f(y)
```

Use {magrittr} "pipes" (%>% infix operator) to chain operations.

- 1. Truncate all profiles to 0-15cm interval
- 2. Calculate NH4OAc (pH 7) Ca (0-15cm depth-weighted average cmol/kg)
- 3. Plot horizon-level values, in order of increasing site-level average

Natural Resources Conservation Service


```
f(x, y) = x \% \% f(y)
```

Use {magrittr} "pipes" (%>% infix operator) to chain operations.

- 1. Truncate all profiles to 0-15cm interval
- 2. Calculate NH4OAc (pH 7) Ca (0-15cm depth-weighted average cmol/kg)
- 3. Plot horizon-level values, in order of increasing site-level average

{aqp} S4 methods (left joins)

site←

```
site(sp4) ← data.frame(id = c("mariposa", "mendocino"),
                        site grp = "ingroup")
head(site(sp4), 5)
## # A tibble: 5 x 2
        site_grp
##
    id
    <chr> <chr>
## 1 colusa <NA>
## 2 glenn <NA>
## 3 kings
          <NA>
## 4 mariposa ingroup
## 5 mendocino ingroup
                                                              孠
                                                                      Natural
table(site(sp4)$site_grp, useNA = "ifany")
                                                                         urces
```


ingroup

<NA>

ervation

Service

{aqp} S4 methods (left joins)

horizons←

```
horizons(sp4) ← data.frame(id = c("mariposa","mendocino"),
hz_grp = "group")
```

```
horizons(sp4)[,c(idname(sp4), "hz_grp")]
```

```
## # A tibble: 30 x 2
###
     id
              hz_grp
     <chr>
            <chr>
##
   1 colusa
            <NA>
   2 colusa
            <NA>
   3 colusa
            <NA>
##
   4 colusa
            <NA>
##
   5 glenn <NA>
##
            <NA>
##
   6 glenn
## 7 kings
            <NA>
## 8 kings
             <NA>
   9 kings
              <NA>
## 10 mariposa group
  # ... with 20 more rows
```

Natural Resources Conservation Service

{aqp} S4 methods (left joins)

horizons←

{aqp} Soil Color

{aqp} has methods for soil data in Munsell, sRGB and CIELAB color space.

aggregateColor colorContrast colorQuantiles contrastChart contrastClass getClosestMunsellChip hasDarkColors horizonColorIndices huePosition rgb2munsell munsell2rgb munsell2spc parseMunsell previewColors soilColorSignature

soilPalette

{aqp} Soil Color

{aqp} has methods for soil data in Munsell, sRGB and CIELAB color space.

aggregateColor colorContrast colorQuantiles contrastChart contrastClass getClosestMunsellCh hasDarkColors horizonColorIndices huePosition rgb2munsell munsell2rgb munsell2spc parseMunsell previewColors soilColorSignature

soilPalette

45

{aqp} Soil Color Opinions


```
colorContrastPlot(m1, m2,
                  labels = c('reference', 'opinions'),
                  d.cex = 0.8, col.cex = 0.8)
```


opinions

{aqp} Soil Taxonomy & Classfication

Employ heuristics about horizon designations, geometry and key diagnostic properties.

- estimateSoilDepth, estimatePSCS, getArgillicBounds, getCambicBounds, getMineralSoilSurfaceDepth, getPlowLayerDepth, getSoilDepthClass, getSurfaceHorizonDepth, hasDarkColors
- mollic.thickness.requirement, get.increase.matrix, get.ml.hz, brierScore, confusionIndex, shannonEntropy

Thank you for your attention!

Andrew G. Brown, Soil Scientist, MLRA Soil Survey Office, Sonora, CA

🗫 andrew.g.brown@usda.gov

brownag

@humus_rocks

Dr. Dylan E. Beaudette, Soil Scientist, National Soil Survey Center (duty station: Sonora, CA)

🗫 dylan.beaudette@usda.gov

dylanbeaudette

@dylanbeaudette

USDA is an equal opportunity provider and employer.

Natural Resources Conservation Service

