

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Unit 2

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Properties of Regular Language	4.1	Q1-Q26
Decidable Properties of Regular Languages	4.2	Q1-Q15

Extra Questions

- 1. Give algorithms to determine whether for a given pair of finite automata:
 - a) they both accept the same language
 - b) the intersection of their languages is empty
 - c) the intersection of their languages is finite
 - d) the union of their languages is finite
 - e) the intersection of their languages is infinite
 - f) the union of their languages is infinite
 - g) the intersection of their languages is Σ^*
 - h) the difference of their languages is finite.
- 2. Give a construction of a product automaton for proving that union of two regular languages are regular.
- 3. What happens to the acceptance of languages when we interchange the final and nonfinal states of an NFA?
- 4. Show that there is no DFA that accepts all (and only) palindromes over {a, b}
- 5. Let D be the transition diagram of a DFA M. Prove the following:
 - (a) If L(M) is infinite, then D must have at least one cycle for which there is a path from the initial vertex to some vertex in the cycle, and a path from some vertex in the cycle to some final vertex.
 - (b) If L(M) is finite, then there exists no such cycle in D.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- 6. Let $B = \{a^k | \text{ where } k \text{ is a multiple of } n\}$. Show that for each $n \ge 1$, the language B is regular.
- 7. Let $C = \{x | x \text{ is a binary number that is a multiple of n} \}$. Show that for each n>1, the language C is regular.
- 8. Let $A/B = \{w | wx \in A \text{ for some } x \in B\}$. Show that if A is regular and B is any language then A/B is regular.
- 9. Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class of regular languages under union, intersection and complement.
 - a) $\{0^n 1^m 0^n \mid m, n \ge 0\}$
 - b) $\{wtw \mid w,t \in \{0,1\}^*\}$
- 10. Let $\Sigma = \{0,1,+,=\}$ and ADD = $\{x=y+z \mid x,y,z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z\}$. Show that ADD is not regular.
- 11. Prove that if L is regular then Prefix(L) is regular. Prefix(L) is the set of all strings which are a proper prefix of a string in L.
- 12. Prove that Regular Sets are closed under MIN. MIN(R), where R is a regular set, is the set of all strings w in R where every proper prefix of w is in not in R. (Note that this is not simply the complement of PREFIX).
- 13. Prove that Regular Sets are NOT closed under infinite union. (A counterexample suffices)
- 14. Prove that Regular Sets are NOT closed under infinite intersection.
- 15. Are the following statements true or false? Explain your answer in each case. (In each case, a fixed alphabet is assumed.)
 - a. Let L'= L1 \cap L2. If L is regular and L2 is regular, L1 must be regular.
 - b. Every subset of a regular language is regular.
 - c. If L is regular, then so is L' = $\{xy : x \in L \text{ and } y \notin L\}$
 - d. If L is a regular language, then so is L= $\{w : w \in L \text{ and } w^R \in L\}$.

e.

16. We know that the concatenation of two regular languages is a regular language. Consider the language $L=0^{\rm n}1^{\rm n}$ over $\{0,\ 1\}$; L is not regular. Now consider, the language $L_1=\{0^n\}=0^*$ and $L_2=\{1^n\}=1^*$. L_1 and L_2 are obviously regular. Explain why although L_1 and L_2 are regular, L which could be seen as a concatenation of L_1 and L_2 is not regular.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- 17. What happens if we apply the Pumping Lemma to show that a formal language such as $((a + b) (a + b))^*$ that actually regular is not regular? Explain.
- 18. Using closure properties of regular languages, construct a finite automaton (NFA or DFA) for:
 - a. Binary strings which when interpreted as positive integers are not divisible by 3.
 - b. Strings over $\{a,b\}$ that do not contain two consecutive a s.
- 19. Using closure properties of regular languages, show that the following languages are regular:
 - a. Binary strings that do not contain the substring 101.
 - b. Binary strings are made up of two parts; the first part begins with a 1 and ends with a 0; the second part begins and ends with a 1.
 - c. Binary strings which when reversed represent positive integers that are divisible by 3.
 - d. Strings over $\{a,b,c\}$ whose length is neither an even number nor divisible by 3 or 5.
- 20. What is the reversal of the given language L be defined by regular expression 01^*+10^* .
- 21. Is the class of languages recognized by NFAs closed under complement? Explain your answer
- 22. True or False: Regular expressions that do not contain the star operator can represent only finite languages.