## Probabilità e Processi Stocastici (455AA)

Lezione 2

Dario Trevisan – <a href="https://web.dm.unipi.it/trevisan">https://web.dm.unipi.it/trevisan</a>

24/09/2025



$$ightharpoonup 0 \le P(A|I) \le 1$$

- $ightharpoonup 0 \le P(A|I) \le 1$
- ▶ **Somma** P(A oppure B) = P(A) + P(B) purché A, B *incompatibili*,

$$P(A \in B) = 0.$$



- $ightharpoonup 0 \le P(A|I) \le 1$
- ▶ **Somma** P(A oppure B) = P(A) + P(B) purché A, B incompatibili,

$$P(A \in B) = 0.$$

▶ Negazione P( non A) = 1 - P(A)

- $ightharpoonup 0 \le P(A|I) \le 1$
- ▶ **Somma** P(A oppure B) = P(A) + P(B) purché A, B incompatibili,

$$P(A \in B) = 0.$$

- Negazione P( non A) = 1 P(A)
- ▶ **Prodotto**  $P(A \in B) = P(A)P(B|A)$ .

- ▶  $0 \le P(A|I) \le 1$
- ▶ **Somma** P(A oppure B) = P(A) + P(B) purché A, B incompatibili,

$$P(A \in B) = 0.$$

- Negazione P( non A) = 1 P(A)
- **Prodotto**  $P(A \in B) = P(A)P(B|A)$ .
- Sistema di alternative  $(A_i)_{i=1}^n$  se esattamente una delle  $A_i$  si realizza (ma non si sa quale)



- $ightharpoonup 0 \le P(A|I) \le 1$
- ▶ **Somma** P(A oppure B) = P(A) + P(B) purché A, B incompatibili,

$$P(A \in B) = 0.$$

- ▶ Negazione P( non A) = 1 P(A)
- ▶ **Prodotto**  $P(A \in B) = P(A)P(B|A)$ .
- Sistema di alternative  $(A_i)_{i=1}^n$  se esattamente una delle  $A_i$  si realizza (ma non si sa quale)
- ▶ Densità discreta associata a un sistema  $(A_i)_{i=1}^n$  e all'informazione I:

$$i \mapsto P(A_i|I)$$

- $ightharpoonup 0 \le P(A|I) \le 1$
- ▶ **Somma** P(A oppure B) = P(A) + P(B) purché A, B incompatibili,

$$P(A \in B) = 0.$$

- Negazione P( non A) = 1 P(A)
- ▶ **Prodotto**  $P(A \in B) = P(A)P(B|A)$ .
- Sistema di alternative  $(A_i)_{i=1}^n$  se esattamente una delle  $A_i$  si realizza (ma non si sa quale)
- Densità discreta associata a un sistema  $(A_i)_{i=1}^n$  e all'informazione I:

$$i \mapsto P(A_i|I)$$

Densità Bernoulli, densità uniforme

#### Diagrammi ad albero: generalità

Le regole di somma e prodotto (e le conseguenti formule di disintegrazione) forniscono stumenti utili per analizzare problemi di probabilità elementare, riducendoli a sotto-problemi più semplici tramite l'introduzione (anche ripetuta) di sistemi di alternative.

#### Diagrammi ad albero: generalità

- ▶ Le regole di somma e prodotto (e le conseguenti formule di disintegrazione) forniscono stumenti utili per analizzare problemi di probabilità elementare, riducendoli a sotto-problemi più semplici tramite l'introduzione (anche ripetuta) di sistemi di alternative.
- ▶ È utile rappresentare l'analisi tramite diagrammi ad albero costruiti con il seguente algoritmo.

Si introduce un nodo **radice** (informazione iniziale, ad esempio indicata con  $\Omega$ ). Si iterano poi i seguenti passi:



- Si introduce un nodo **radice** (informazione iniziale, ad esempio indicata con  $\Omega$ ). Si iterano poi i seguenti passi:
- 1. si considera un nodo del grafo che sia una "foglia", ossia senza archi uscenti, etichettato da una affermazione *B*,



- Si introduce un nodo **radice** (informazione iniziale, ad esempio indicata con  $\Omega$ ). Si iterano poi i seguenti passi:
- 1. si considera un nodo del grafo che sia una "foglia", ossia senza archi uscenti, etichettato da una affermazione B,
- 2. si sceglie un sistema di alternative  $(A_i)_{i=1}^n$ , e si introducono tanti nodi quante le alternative, etichettate appunto da esse,



- Si introduce un nodo **radice** (informazione iniziale, ad esempio indicata con  $\Omega$ ). Si iterano poi i seguenti passi:
- 1. si considera un nodo del grafo che sia una "foglia", ossia senza archi uscenti, etichettato da una affermazione B,
- 2. si sceglie un sistema di alternative  $(A_i)_{i=1}^n$ , e si introducono tanti nodi quante le alternative, etichettate appunto da esse,
- 3. si introducono archi uscenti dalla foglia (B) verso il nodo corrispondente a ciascuna alternativa  $(A_i)$ ,

- Si introduce un nodo **radice** (informazione iniziale, ad esempio indicata con  $\Omega$ ). Si iterano poi i seguenti passi:
- 1. si considera un nodo del grafo che sia una "foglia", ossia senza archi uscenti, etichettato da una affermazione B,
- 2. si sceglie un sistema di alternative  $(A_i)_{i=1}^n$ , e si introducono tanti nodi quante le alternative, etichettate appunto da esse,
- 3. si introducono archi uscenti dalla foglia (B) verso il nodo corrispondente a ciascuna alternativa  $(A_i)$ ,
- 4. si pesa ciascun arco introdotto sopra con la probabilità

$$P(A_i|B,I)$$

dove I consiste della congiunzione di tutte le affermazioni nell'unico cammino (orientato) che collega l'informazione iniziale  $\Omega$  a B.

Supponendo di aver costruito un albero, come calcolare  $P(A|\Omega)$ ?

Si effettuano ancora una volta i passaggi 1-4 aggiungendo ad ogni foglia l'alternativa semplice (A) (ed eventualmente la sua negazione) e la probabilità condizionata Note:

Supponendo di aver costruito un albero, come calcolare  $P(A|\Omega)$ ?

- Si effettuano ancora una volta i passaggi 1-4 aggiungendo ad ogni foglia l'alternativa semplice (A) (ed eventualmente la sua negazione) e la probabilità condizionata
- Si calcola il peso di ciascun cammino che porta da una foglia (A) verso la radice, moltiplicando le probabilità sugli archi (è una applicazione della regola del prodotto)

Note:

Supponendo di aver costruito un albero, come calcolare  $P(A|\Omega)$ ?

- Si effettuano ancora una volta i passaggi 1-4 aggiungendo ad ogni foglia l'alternativa semplice (A) (ed eventualmente la sua negazione) e la probabilità condizionata
- Si calcola il peso di ciascun cammino che porta da una foglia
   (A) verso la radice, moltiplicando le probabilità sugli archi (è una applicazione della regola del prodotto)
- Si sommano i pesi di tutti i cammini così ottenuti (è una applicazione della regola della somma)

Note:

Supponendo di aver costruito un albero, come calcolare  $P(A|\Omega)$ ?

- ➤ Si effettuano ancora una volta i passaggi 1-4 aggiungendo ad ogni foglia l'alternativa semplice (A) (ed eventualmente la sua negazione) e la probabilità condizionata
- Si calcola il peso di ciascun cammino che porta da una foglia
   (A) verso la radice, moltiplicando le probabilità sugli archi (è una applicazione della regola del prodotto)
- Si sommano i pesi di tutti i cammini così ottenuti (è una applicazione della regola della somma)

#### Note:

1. se un arco ha probabilità 0 allora i pesi dei cammini che lo percorrono sono 0, non serve contarli.

Supponendo di aver costruito un albero, come calcolare  $P(A|\Omega)$ ?

- ➤ Si effettuano ancora una volta i passaggi 1-4 aggiungendo ad ogni foglia l'alternativa semplice (A) (ed eventualmente la sua negazione) e la probabilità condizionata
- Si calcola il peso di ciascun cammino che porta da una foglia (A) verso la radice, moltiplicando le probabilità sugli archi (è una applicazione della regola del prodotto)
- Si sommano i pesi di tutti i cammini così ottenuti (è una applicazione della regola della somma)

#### Note:

- 1. se un arco ha probabilità 0 allora i pesi dei cammini che lo percorrono sono 0, non serve contarli.
- 2. se è richiesta la probabilità P(A|I) è l'informazione (cumulata) I è un nodo dell'albero, basta considerare solo l'albero con radice I

$$P(R1|\mathcal{R}) = \frac{R}{N}$$

$$P(B1|\mathcal{R}) = \frac{B}{N} = 1 - \frac{R}{N}$$

(oss<sub>2</sub> "

**/**//≥2

R2 = "seconda pallitud

Probabilità di estrarre una precisa sequenza ordinata di n ≤ N palline colorate, di cui r ≤ R sono rosse e le rimanenti b < B sono blu: (fallor); La falloro.

$$\frac{R(R-1)\cdot\ldots\cdot(R-r+1)\cdot\mathcal{B}(B-1)\cdot\ldots\cdot(B-b+1)}{N(N-1)\cdot\ldots\cdot(N-n+1)}$$

$$\mathbb{I}$$

$$\mathbb{P}\left(R_{1},R_{2},R_{3},\ldots,R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R_{r},R$$

$$P(R_2|\Omega) = \frac{R}{N}$$

Probabilità di estrarre una precisa sequenza ordinata di n < N palline colorate, di cui r ≤ R sono rosse e le rimanent</p>

$$n \leq N$$
 palline colorate, di cui  $r \leq R$  sono rosse e le rimanenti  $b \leq B$  sono blu:

 $\frac{R(R-1)\cdot\ldots\cdot(R-r+1)\cdot B(B-1)\cdot\ldots\cdot(B-b+1)}{N(N-1)\cdot\ldots(N-n+1)}$ 

## Densità ipergeometrica

Probabilità di estrarre una qualsiasi sequenza ordinata di n ≤ N palline colorate, di cui r ≤ R sono rosse e le rimanenti b < B sono blu:</p>

$$\frac{\binom{R}{r}\binom{B}{b}}{\binom{N}{n}}.$$

$$\binom{h}{K} = \frac{h(h-i): --- (n-K+i)}{K(k-i): --- 1}$$
 (seff. biusunisle

$$\frac{(R)(B)}{(N_{n})} = P(A(SZ)) = 0,1,2,...,n$$



# Formula di Bayes e applicazioni

Formula di Bayes A, B effemetinui

$$P(A \in B) = P(A)P(B|A)$$

$$P(B \in A) = P(B)P(A|B)$$

$$P(A13) = \frac{P(A) \cdot P(B1A)}{P(B)}$$

(purché P(B|I) > 0).

"
$$P(A|B,I) = P(A|I) \frac{P(B|A,I)}{P(B|I)}$$







## **Verosimiglianza** (*Likelihood*) di A rispetto a B,

$$L(A;B) = P(B|A).$$

$$P(A \mid B) = P(B|A).$$

$$P(A \mid B) = P(A) - L(A \mid B)$$

$$P(B)$$

#### Statistica bayesiana

Dato un sistema di alternative  $(A_i)_{i=1}^n$  e una qualsiasi affermazione  $B_i$ , otteniamo

$$P(A_i|B) = P(A_i)P(B|A_i) \cdot \underbrace{1}_{P(B)} \frac{\text{density}}{\text{disorety}} (1)$$
Leus its disorety

Notazione compatta (più facile da ricordare)

$$P(A_i|B) \propto P(A_i)P(B|A_i) = P(A_i)L(A_i;B). \tag{2}$$

$$P(B) = \sum_{i=1}^{N} P(A_i) \cdot P(B|A_i) \leftarrow f_{s(integ)(27)}$$

(Ai): = (Ao, AL) B

B = "ombiello" Ao = pirre

A1 = un pirre

P(Ao | B) 
$$\stackrel{?}{<}$$
 P(AL | B)

P(Ao) P(B|Ao)

P(B)  $\stackrel{(I)}{>}$  P(B)

mode inex & argmax & P(Ai(B))

#### Massimo a posteriori stima

$$\textit{i}_{\mathsf{MAP}} \in \mathsf{arg\,max}\{\textit{P}(\textit{A}_i)\textit{L}(\textit{A}_i;\textit{B})\,:\, i \in \{1,\dots,n\}\},$$

#### Stima di massima verosimiglianza

$$i_{\mathsf{MLE}} \in \arg\max_{i=1,...,n} L(A_i;B)$$
,  $\frac{1}{\mathsf{k}}$ 

#### Esempio: estrazioni da un'urna non nota

Il soggetto *non* è informato sul numero di palline rosse R, ma solamente sul totale N=3. Dopo un'estrazione, si osserva una pallina rossa è stata estratta. Cosa può dedurre circa il contenuto dell'urna?

Introduciamo un sistema di alternative relativo al contenuto dell'urna:

$$A_i = l'$$
urna contiene  $R = i$  palline rosse,

per 
$$i \in \{0, 1, 2, 3\}$$
.

Probabilità a priori uniforme

$$P(A_i|\Omega)=\frac{1}{4}.$$

L
$$(A_i;R^1)=P(R^1|A_i)=rac{i}{3},$$

e formula di Bayes:  $P(Ai(R^4)) \propto \frac{1}{4} \cdot \frac{i}{3} \propto (i)$ 

$$R^{-}|A_{i}\rangle = \frac{1}{3}$$

#### Possiamo confrontare le densità discrete:



#### Decisioni e test statistici

**Obiettivo**: scartare (rifiutare) alcune alternative  $A_i$  sulla base dell'osservazione di B. **Intuizione**: eliminare quelle con probabilità a posteriori nulla (ovvio) o bassa.

Nella pratica ci si appoggia alla verosimiglianza invece delle probabilità a posteriori (simile se a priori sono uniformi).

Ipotesi nulla  $\mathcal{H}_0$  (da rifiutare)) e alternativa  $\mathcal{H}_1$ . Valore p (p-value) di Fisher:

$$p = \max_{A_i \in \mathcal{H}_0} P(B|A_i) = \max_{A_i \in \mathcal{H}_0} L(A_i; B).$$

Più piccolo è il valore p, minore è la probabilità che B sia vero rispetto a l'ipotesi  $\mathcal{H}_0$ , e quindi, invocando Bayes, anche che  $A_i$  sia vero sapendo B. Quindi possiamo rifiutare  $\mathcal{H}_0$  con maggiore sicurezza.

#### Torniamo all'esempio dell'urna: seconda estrazione

Cosa deduce il soggetto se viene informato che alla seconda estrazione (senza rimpiazzo) la pallina estratta è blu  $(B^2)$ ?

Non serve tornare alla densità iniziale (uniforme), ma basta usare come nuova densità a priori la densità discreta rispetto all'informazione  $R^1$ . Bayes:

$$P(A_i|R^1,B^2) = P(A_i|R^1)P(B^2|R^1,A_i) \cdot \frac{1}{P(B^2|R^1)}.$$

Otteniamo

$$P(B^2|R^1,A_i)=\frac{3-i}{2}.$$

е

$$P(A_i|R^1,B^2) \propto i(3-i)$$

.



# Cenni agli assiomi di Kolmogorov

## Problemi dell'approccio elmentare

**1.** Come attribuire le **probabilità iniziali** (quelle che abbiamo chiamato *a priori*)?

## Problemi dell'approccio elmentare

- **1.** Come attribuire le **probabilità iniziali** (quelle che abbiamo chiamato *a priori*)?
- **2.** Come garantire la **consistenza** del calcolo, ossia che P(A|I) sia ben definita?

## Problemi dell'approccio elmentare

- **1.** Come attribuire le **probabilità iniziali** (quelle che abbiamo chiamato *a priori*)?
- 2. Come garantire la **consistenza** del calcolo, ossia che P(A|I) sia ben definita?
- **3.** Come trattare i **passaggi al limite**, in particolare, nel caso di infinite affermazioni?

Alcune risposte sono fornite dalla **descrizione assiomatica** della probabilità proposta da Kolmogorov.

L'idea: formalizzare i diagrammi di Eulero-Venn, identificando

le affermazioni (eventi) A, I ecc. con sottoinsiemi di un insieme "universo"  $\Omega$  (l'informazione iniziale)

Alcune risposte sono fornite dalla **descrizione assiomatica** della probabilità proposta da Kolmogorov.

L'idea: formalizzare i diagrammi di Eulero-Venn, identificando

- le affermazioni (eventi) A, I ecc. con sottoinsiemi di un insieme "universo"  $\Omega$  (l'informazione iniziale)
- la probabilità P(A|I) con una nozione astratta di *area* (relativa), definendo prima la probabilità rispetto all'informazione inizale Ω.

## a) insieme $\Omega$

Si fissa un insieme "universo"  $\Omega$  che rappresenta tutte le possibili situazioni (scenari) che si potrebbero presentare nel problema che si sta considerando.

Ad esempio, nel caso di un lancio di dado,

$$\Omega = \{1,2,3,4,5,6\},$$

che corrisponde ai possibili esiti (ovviamente altre scelte sono ragionevoli).

# b) Eventi

Si identificano quali affermazioni  $A\subseteq\Omega$  sono d'interesse per il problema che si vuole affrontare.

Insieme  $\mathcal A$  i cui elementi  $A\in\mathcal A$  sono sottoinsiemi di  $\Omega$ , detto la  $\sigma$ -algebra degli eventi:

$$ightharpoonup \Omega \in \mathcal{A}$$
,

# b) Eventi

Si identificano quali affermazioni  $A\subseteq\Omega$  sono d'interesse per il problema che si vuole affrontare.

Insieme  $\mathcal A$  i cui elementi  $A\in\mathcal A$  sono sottoinsiemi di  $\Omega$ , detto la  $\sigma$ -algebra degli eventi:

- $ightharpoonup \Omega \in \mathcal{A}$ ,
- ▶ se A,  $B \in \mathcal{A}$ , anche  $A^c$  ("non A"),  $A \cap B$  (" $A \in B$ ") e  $A \cup B$  ("A oppure B") sono eventi in A.

# b) Eventi

Si identificano quali affermazioni  $A\subseteq\Omega$  sono d'interesse per il problema che si vuole affrontare.

Insieme  $\mathcal A$  i cui elementi  $A\in\mathcal A$  sono sottoinsiemi di  $\Omega$ , detto la  $\sigma$ -algebra degli eventi:

- $ightharpoonup \Omega \in \mathcal{A}$ ,
- ▶ se A,  $B \in \mathcal{A}$ , anche  $A^c$  ("non A"),  $A \cap B$  (" $A \in B$ ") e  $A \cup B$  ("A oppure B") sono eventi in A.
- ▶ Inoltre, per permettere di passare al limite, si richede che valga lo stesso per l'unione infinita di eventi: dati  $A_n \in \mathcal{A}$ , pure  $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$ .

# c) funzione di probabilità (iniziale)

Si introduce una  $P:\mathcal{A}\to [0,1]$  tale che  $P(\Omega)=1$  e, per ogni A,  $B\in\mathcal{A}$  con  $A\cap B=\emptyset$  valga

$$P(A \cup B) = P(A) + P(B).$$

▶ P(A) corrisponde alla probabilità  $P(A|\Omega)$  rispetto all'informazione iniziale, di cui si richiede valga la regola della somma (per eventi incompatibili).

# c) funzione di probabilità (iniziale)

Si introduce una  $P:\mathcal{A}\to [0,1]$  tale che  $P(\Omega)=1$  e, per ogni A,  $B\in\mathcal{A}$  con  $A\cap B=\emptyset$  valga

$$P(A \cup B) = P(A) + P(B).$$

- ▶ P(A) corrisponde alla probabilità  $P(A|\Omega)$  rispetto all'informazione iniziale, di cui si richiede valga la regola della somma (per eventi incompatibili).
- ▶ Per passare al limite, si richiede in più che la regola della somma si estenda ad infiniti  $A_n \in \mathcal{A}$  tali che  $A_n \cap A_m = \emptyset$  per  $n \neq m$ :

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P(A_{n}).$$

# d) Probabilità condizionata ad /

Per ogni  $A, I \in \mathcal{A}$  tale che P(I) > 0, si pone

$$P(A|I) = \frac{P(A \cap I)}{P(I)}.$$

 $(\Omega, \mathcal{A}, P)$  è uno **spazio di probabilità** secondo Kolmogorov.