ЭДС индукции в контуре

Замкнутый контур пронизывает магнитное поле \vec{B} . По этому контуру с постоянной скоростью \vec{v} ездит планка. На каждый электрон в ней действует сила Лоренца:

$$\vec{F} = -|e|[\vec{v}; \vec{B}]; \tag{1}$$

На самом деле, эта сила является результатом действия однородного электрического поля \vec{E} :

$$\vec{F} = -|e|\vec{E} \tag{2}$$

Таким образом, напряженность этого поля равна

$$\vec{E} = [\vec{v}; \vec{B}]; \tag{3}$$

Это электрическое поле не является электростатическим, т.к. порождено явлением электромагнитной индукции. Поэтому работа по перемещению заряда (ЭДС) этого поля равна циркуляции напряженности по контуру:

$$\varepsilon_i = \oint \vec{E} d\vec{l} = \oint [\vec{v}; \vec{B}] d\vec{l} = ([\vec{v}; \vec{B}]; \vec{l}) \tag{4}$$

Векторное произведение $[\vec{v}; \vec{B}]$ не равно нулю только на планке, а \vec{l} – вектор, по модулю равный длине планки и направленный по правилу правого винта относительно выбранной нормали к контуру \vec{n} . По свойству смешанного произведения:

$$\varepsilon_i = (\vec{B}; [\vec{l}; \vec{v}]) \tag{5}$$

Величину ε_i можно сделать зависимой от времени умножив и разделив ее на dt:

$$\varepsilon_i = \frac{(\vec{B}; [\vec{l}; \vec{v}dt])}{dt} \tag{6}$$

Легко видеть, что $[\vec{l}; \vec{v}dt]$ по модулю дает площадь $\vec{d}S$, заметаемую движущейся планкой за элементарное время, а направлен этот вектор против нормали. Таким образом:

$$\varepsilon_i = -\frac{(\vec{B}; d\vec{S})}{dt} \tag{7}$$

Скалярное произведение \vec{B} на $d\vec{S}$ дает приращение магнитного потока $d\Phi$. Отсюда получаем формулу:

$$\varepsilon_i = -\frac{d\Phi}{dt} \tag{8}$$