

Advanced Machine Learning Lecture Notes

January 1, 1980

Contents

1	Setting of the learning problem			
	1.1	Learning problem definition		
	1.2	Why is the relation between X and Y stochastic?		
	1.3	Loss function		
	1.4	Hypothesis space		
	1.5	classifier		
	1.6	Risk		
	1.7	Empirical error		
	1.8	Training error		
	1.9	Model error proposition		
	1.10	discriminative vs generative classifiers		
		1.10.1 Generative		
		1.10.2 Discriminative		
	1.11	Risk minimizers		
		1.11.1 Proposition		
	1.12	Regression under the square error / loss function		
		1.12.1 Standard setting of the regression problem		
2	Consistency			
3	A glimpse into Bayesian methods (for supervised ML) 3.1 Procedure			
		3.1.1 Fully worked example		

List	of	Figures
------	----	----------------

List of Tables

1 Setting of the learning problem

1.1 Learning problem definition

Can be defined as 3 components:

- A generator G of random data x from a probability distribution P(x) which is fixed and unknown to us.
- A <u>supervisor</u> S which returns an output value $y \in Y$ for each everyinput $x \in X$ according to a conditional probability distribution P(y|x), also fixed and unknown to us.
- A <u>learning machine (algorithm)</u> L which is capable of implementing (computing) any of a set of functions (models). f_{θ} where θ is a set of parameters belonging to the parameter space θ .

The selection of the best possible model according to L is done based on a learning data sample $D = (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ (where x_1 are vectors)

1.2 Why is the relation between X and Y stochastic?

In most of the cases, randomness is ignorance of the true effects.

- 1. Ignorance of the functional dependence on a not measured variable z.
- 2. Technical invisibility

1.3 Loss function

loss fn is a function $L: Y \times Y \longrightarrow \mathbb{R}+$ such that:

- 1. L(y, y') = L(y', y) (symmetry)
- 2. $L(y, y') = 0 \iff y = y'$

Examples of loss functions:

- L(y, y') := 1 if $y \neq y'$ (0-1 loss) (zero-one) L_{01}
- $L(y, y') := (y y')^2$ (squared error)

1.4 Hypothesis space

$$\mathcal{F} = \{ f_{\theta} : \mathcal{X} \to \mathcal{Y} \mid \theta \in \Theta \subseteq \mathbb{R} \}$$

1.5 classifier

Is a function $f: X \longrightarrow Y$

Y is a set of different symbols.

1.6 Risk

The risk of a function is its **expected loss**. Also known as true error or generalization error.

$$\mathbb{R}[f] := \mathbb{E}_{(x,y)} \,_{p}[L(f(x),y)]$$

A function that takes a function as an argument is called a functional. Risk is a functional.

1.7 Empirical error

The average error or loss function evaluated on a specific data sample D.

$$\hat{R}_{D^n}[f] = \frac{1}{n} \sum_{i=1}^n L(f(x_i), y_i)$$

This is also a functional.

1.8 Training error

The training error is the **empirical error** obtained in the data sample used fortraining.

1.9 Model error proposition

Proposition: for a fixed model f the expected value of the empirical error based on a data sample is equal to the true error.

$$\mathbb{E}_{D^{ijd}p^n}[\hat{R}_{D^n}[f]] = R[f]$$

Proof. • TODO

1.10 discriminative vs generative classifiers

1.10.1 Generative

Example: Gaussian Naive Bayes

1.10.2 Discriminative

Example: Logistic regression

1.11 Risk minimizers

1.11.1 Proposition

The function minimizing the risk on the zero-one loss is the Bayes classifier. Which is the one that given x, assigns the class with the highest posterior probability.

 $f^* = argmax_{P(w|x)}$

And the risk of f_{01}^* is the Bayes risk.

The upper bound of the Bayes risk is 0.5

1.12 Regression under the square error / loss function

1.12.1 Standard setting of the regression problem

Proposition We cannot compute this in practice since we do not know the distribution of the data.

Proposition The bias / variance decomposition of the mean squared error.

$$MSE[f] = Bias(f)^2 + Var(f)$$

There is a trade-off between bias and variance, known as the bias-variance dilemma.

Remainder Given a dataset $D = x^i, y^i$ of size $n(x^i, y^i)$ p We choose a loss function L and a hypothesis space F.

$$F := x \to f_{\theta}(x), \theta \in \Theta$$

Observations The set of functions we chose matters a lot. In some sense F should be large to minimize the chancesthat the choosen function is not in F.

- Chosing a Machine Learning Algorithm of F given a particular D_n obviousley depends on this $D_n.D_n! \rightsquigarrow f_\theta = f_n$
- The best possible solution $f_{sq.}^*$ may not belong to F.

In case $f_{sq.}^* \notin F$ then we should find: $\hat{f}_{sq.} = argmin_{||f-f_{sq.}^*||}$ We could use different norm functions.

The expression being integrated is:

$$\left(f_m(x) - f_{sq.}^*(x)\right)^2$$

Expected value of the model for all possible datasets in D_n :

 $Bias^2(f_n(x))$: how the average prediction over all possible D_n at point xdiffers from the best possible prediction.

$$Bias^{2}(f) = \int_{\mathbb{R}^{d}} \left(\overline{f_{n}}(x) - f_{sq.}^{*}(x) \right)^{2} p(x) dx Var(f) = \int_{\mathbb{R}^{d}} \mathbb{E}_{D_{n}} \left[\left(f_{n}(x) - \overline{f_{n}}(x) \right)^{2} \right] p(x) dx$$

$$MSE[f] = Bias(f)^2 + Var(f) + \sigma^2$$

where σ^2 is the variance of the noise.

Since σ cannot be reduced, it is called irreducible error. The rest is called reducible error.

Getting better data we reduce the irreducible error. (ignorance)

2 Consistency

We depart from a specific data sample D_n The training error of a model f is $\hat{R}_n^{[f]} := \frac{1}{n} \sum_{i=1}^n L(f(x^i), y^i)$

So when we learn a specific model f_n from D_n its **training error** is $\hat{R}_n(f_n)$ The true error of f_n is $R(f_n)$

The Empirical Risk Minimization (ERM) prescribes to minimize the training error.

Consistency The ERM is said to be consistent if:

- $\hat{R}_n(f_n) \to infimum_{f \in F} R(f)$ as $n \to \infty$
- $R(f_n) = \rightarrow infimum_{f \in F} R(f)$ as $n \to \infty$

These convergences are in probability.

Graphically:

Figure 1: Convergence of the training error and the true error

Theorem (Vapnik-Chervonenkis) P1 A necessary and sufficient condition for consistency is that the hypothesis space F is compact.

 $\forall \varepsilon >$

3 A glimpse into Bayesian methods (for supervised ML)

We have a data sample $D = \{x^i, y^i\} i = 1, ..., n$ where $x \in \mathcal{X} = \mathbb{R}^d, y^i \in \mathcal{Y}$ We consider a hypothesis space $\mathcal{F} := \{f_{\theta}(x), \theta \in \Theta \subset \mathbb{R}^d\}$.

The Bayesian idea is not to consider the optimal solution $\hat{\theta}$ as a point solution, but as a set of possible solutions, some of which are more likely (to be correct) than others.

The available data D serves to reduce the uncertainty of the distribution.

The Bayesian machinery makes use of the Bayes formula.

$$P(D|\theta) \qquad \qquad \text{(likelihood)}$$

$$P(\theta|D) \qquad \qquad \text{(posterior)}$$

$$P(\theta) \qquad \qquad \text{(prior)}$$

$$\int_{\Theta} P(D|\theta')P(\theta')d\theta' = P(D) \qquad \qquad \text{(EXPECTED \equivEVIDENCE)}$$

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{\int_{\Theta} P(D|\theta')P(\theta')d\theta'}$$

3.1 Procedure

Modelling is choosing

- 1. Collect the data D
 - (a) Decide the functional form of the models $f_{\theta}(x)$
 - (b) Choose the prior $P(\theta)$ about the parameters
- 2. Calculate the <u>likelihood function</u> $P(y|x,\theta)$ (The probability of getting the data D for a specific value of θ)
- 3. Calculate the posterior distribution of θ

$$P(\theta|D) = \frac{P(\theta) \prod_{i=1}^{n}}{P(y^{i}|x^{i},\theta) \int_{\Theta} d\theta' P(\theta') \prod_{i=1}^{n} P(y^{i}|x^{i},\theta')}$$

1. Decide a method for making predictions (when new data x^0 comes):

- (a) Eliminate the prior $P(\theta) \rightarrow P(\theta|D) \propto \mathcal{L}(\sigma; D) \cdot P(\theta)$
 - i. Then, the only thing that matters is the likelihood
 - ii. You then find a set of parameters θ that maximizes the likelihood function $\theta_{ML} argmax_{\theta \in \Theta} \mathcal{L}(\sigma; D)$
- (b) Half Bayesian $P(\theta|D) \propto \mathcal{L}(\sigma; D) \cdot P(\theta)$
 - i. $\theta_{MAP} argmax_{\theta \in \Theta} \mathcal{L}(\sigma; D) \cdot P(\theta)$ (Maximum a posteriori)
 - ii. Since we have a multiplication to minimize, we use logarithms.
 - iii. It is then: $\hat{\theta}_{MAP} argmax_{\theta \in \Theta} \log \mathcal{L}(\sigma; D) + \log P(\theta)$
- (c) Calculate the average of the posteriors $P(\theta|D)$ instead of the maximum. (average -> expected value)
 - i. $\hat{\theta_{avg}} = \int_{\Theta} \theta P(\theta|D) d\theta$
 - ii. In practice, this integral is intractable, we have to use numerical integration. Which is quite delicate.
- (d) Fully Bayesian: you have to work with the full posterior
 - i. You don't return any model. You return a distribution over models.
 - ii. Since we have a distribution, we can compute confidence integrals (bayesian confidence intervals) (not in the scope of the course)
 - iii. Suppose that a new data point comes, x^0 :

$$P(y^{0}|x^{0}, D) = \int_{\Theta} P(y^{0}|x^{0}, \theta) P(\theta|D) d\theta$$

In the first 2 cases, we obtain a single unique model. In all cases, the data is constant.

3.1.1 Fully worked example

We depart from a data sample and face a regression task.

So $x^i \in \mathbb{R}^d, y^i \in \mathbb{R}$ and we want to perform linear regression.

By convention $\omega := (\omega, \omega_0)$

- What loss function do we use?
- What king of regularizer (penalty on model complexity) should I use?

Procedure

1. For an arbitrary input $x \in \mathbb{R}^d$, we want to predict $y \in \mathbb{R}$

$$\begin{split} \epsilon &\sim \mathcal{N}(0,\sigma^2) \\ P(y|x,\underline{\omega}) &= \mathcal{N}(y|f_{\underline{\omega}}(x),\sigma^2) \\ \beta &= \frac{1}{\sigma^2} \text{ (precision)} \\ P(\underline{\omega}) &= \mathcal{N}(\underline{\omega};0,\Sigma) \\ \Sigma &:= \text{ covariance matrix (Not viable in practice, we use other)} \\ P(\underline{\omega}|\alpha) &= \mathcal{N}(\underline{\omega};0,\sigma^2_{\omega}I)) \\ \alpha &:= \frac{1}{\sigma^2} \end{split}$$

A parameter that controls other parameters is called a <u>hyperparameter</u>. In this case, σ_{ω} is an hyperparameter.

1. The likelihood function

$$\mathcal{L}(\underline{\omega}; \beta) = \prod_{i=1}^{n} P(y^{i} | x^{i}, \underline{\omega}) = \prod_{i=1}^{n} \mathcal{N}(y^{i} | f_{\underline{\omega}}(x^{i}), \sigma^{2})$$

1. The posterior distribution

$$P(\underline{\omega}|y, X, \alpha, \beta) = \frac{\mathcal{L}(\underline{\omega}; \beta) P(\underline{\omega}|\alpha)}{\int_{\mathbb{R}} \mathcal{L}(\underline{\omega}; \beta) P(\underline{\omega}|\alpha) d\underline{\omega}}$$

Recap

Model

$$P(y|X,\underline{\omega},\beta) = \mathcal{N}(y|f_{\underline{\omega}}(x),\beta) = \sqrt{\frac{\beta}{2\pi}} \exp\left(-\frac{\beta}{2}(y-f_{\underline{\omega}}(x))^2\right)$$

Prior

$$P(\underline{\omega}|\alpha) = \mathcal{N}(\underline{\omega}; 0, \sigma_{\omega}^{2} I)) = \sqrt{\frac{\alpha}{2\pi}} \exp\left(-\frac{\alpha}{2} \underline{\omega}^{T} \underline{\omega}\right)$$

Result The posterior distribution turns out to be:

$$P(\underline{\omega}|D) = \mathcal{N}(\underline{\omega}; \mu, \Sigma)\mu = \beta \Sigma X^T y \Sigma = (\alpha I + \beta X^T X)^{-1}$$

- 1. Maximum likelihood: $\underline{\hat{\omega}} = (X^TX)^{-1}X^Ty$
- 2. Maximum posteriori: $\underline{\hat{\omega}} = ????$ (Standard ridge regression)
- 3. Average posteriori: $\underline{\hat{\omega}} = ???$
- 4. Full Bayesian: $\underline{\hat{\omega}} = ???$

References

- [1] Aggarwal, Charu C. Neural networks and deep learning: a textbook. Cham, Switzerland: Springer, 2018. xxiii+497. ISBN: 978-3-319-94462-3.
- [2] Bishop, Christopher M. Pattern recognition and machine learning. Information science and statistics. New York: Springer, 2006. xx+738. ISBN: 978-0-387-31073-2.
- [3] Chollet, François. <u>Deep learning with Python</u>. Shelter Island, New York: Manning Publications Co., 2018. xxi+361. ISBN: 978-1-61729-443-3.
- [4] Goodfellow, Ian. <u>Deep learning</u>. In collab. with Bengio, Yoshua and Courville, Aaron. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2016. xxii+775. ISBN: 978-0-262-03561-3.
- [5] Shawe-Taylor, John. <u>Kernel methods for pattern analysis</u>. In collab. with Cristianini, Nello. Cambridge: University Press, 2004. xiv+462. ISBN: 978-0-521-81397-6.