Midterm 2A

MATH 18, LECTURE C00, WINTER 2019

NAME:

Key

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & -2 & -2 \\ 2 & 1 & 1 & 4 & 5 \\ 1 & 0 & 0 & 3 & 3 \end{bmatrix}$$
 and its reduced row echelon form RREF(A) =
$$\begin{bmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 Give bases and dimensions for the following three bases:

pivots.

- a) (3 points) Col(A)
- b) (3 points) Nul(A)
- c) (3 points) Row(A)

Ver B
$$a) \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$

a) Since the pirst, second, and pith columns of rep(A) are pivotr.

a)
$$\{\begin{bmatrix} 1\\0\\1\end{bmatrix}, \begin{bmatrix} 1\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\2\\3\end{bmatrix}\}$$
 form a basis for $(Col(A))$.

Since
$$x_3$$
 and x_4 are pree variables,

$$x_2 = -x_3 + 2x_4$$

$$\begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$

vector in Nul(A) is of the farm
$$\begin{bmatrix} x_1 \\ \end{bmatrix} \begin{bmatrix} -3x_4 \\ \end{bmatrix} \begin{bmatrix} 6 \\ \end{bmatrix}$$

$$\begin{cases} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} = \lambda & \text{dim Cel}(A) = 3. \\ \begin{cases}$$

c)
$$[100^{-1}0] = [0] =$$

$$\dim Row(A) = 3$$

Problem 2.(10 points.) Let A and B be 3×3 matrices such that $\det(A) = 2$ and $\det(B) = 3$. For each of the following, give its value if you have enough information. If you do not have enough information, say "not enough information".

- a) (2.5 points) $det(A^{-1}) = \frac{1}{2} det A = \frac{1}{2}$.
- since A is invertible (or full rank). b) $(2.5 \text{ points}) \operatorname{rank}(A) = 3$
- c) (2.5 points) $\det(A+B)$ not enough information. d) (2.5 points) $\det(A^TB) = \det(A^T) \det(B) = \det(A) \cdot 3 = 2.3 = 6$.

- a) $det(B^{1}) = \frac{1}{3}$ b) rank(B) = 3. c) not enough information. d) $det(AB^{T}) = 6$.

Problem 3.(10 points.) A linear transformation from
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \end{bmatrix}$.

- a) (2.5 points) What is the kernel of T (i.e., the space of all vector $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = \vec{0}$).
- b) (2.5 points) Find a set of vectors that span the range of T. (They need not be a basis.)
- c) (2.5 points) Find a standard matrix A of T.
- d) (2.5 points) What is the dimension of the range of T?

a)
$$T(\overline{\chi}') = 0$$
 (a) $\chi_1 + \chi_2 = 0$ $\chi_2 + \chi_3 = 0$ (b) $\chi_2 + \chi_3 = 0$ $\chi_2 = -\chi_1$

-)
$$ker(T) = span \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

b)
$$T(z) = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
.

=) range(T) = span
$$\left\{\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}\right\}$$

c) We need to find
$$T(\vec{e_1})$$
, $T(\vec{e_2})$, $T(\vec{e_3})$.
$$T(\vec{e_1}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $T(\vec{e_2}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $T(\vec{e_3}) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

$$\Rightarrow A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}.$$

d)
$$\dim \operatorname{rang}(T) = 3 - \dim \ker(T)$$

= 42 .

Ver B: a)
$$|cerT = span\{\begin{bmatrix} \frac{1}{4} \end{bmatrix}\}$$
. b) $range(T) = span\{\begin{bmatrix} \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4}$

c)
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

d)
$$\dim \operatorname{range}(T) = 2$$
.

Problem 4. (10 points.) Let \mathbb{P}_2 be the space of all polynomials of degree at most 2, and \mathbb{P}_3 the space of all polynomials of degree at most 3.

- a) (3 points) Given a basis $\mathcal{B} = \{1 x^2, x x^2, 2 x + x^2\}$ for \mathbb{P}_2 , find the coordinate vector of the element $3-x^2$ in \mathbb{P}_2 , relative to \mathcal{B} . That is, find $[3-x^2]_{\mathcal{B}}$.
- b) (4 points) In the space \mathbb{P}_3 , are the vectors $\{1+x^3,1+x-x^2,-x+2x^2-x^3\}$ linearly independent? Explain your answer.
- c) (3 points) Do the vectors in Part b) form a basis for \mathbb{P}_3 ? Explain your answer.

a) Since
$$3-x^2=(1-x^2)+(x-x^2)+(2(-x+x^2))$$

$$[3-x^2]_B = \begin{bmatrix} 1\\1 \end{bmatrix}.$$

b) Consider a b standard basis
$$B = \{4, x, x^2, x^3\}$$
 of \mathbb{P}_3 .

$$\begin{bmatrix} 1+x^3 \end{bmatrix}_B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1+x-x^2 \end{bmatrix}_B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -x+2x^2-x^3 \end{bmatrix}_B = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Ver B: a)
$$[3-2x+x^{2}]_{B} = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$$
.
b) $\begin{bmatrix} 0 & 1 & 0\\ 0 & -1\\ 0 & 0 & -1\\ 1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1\\ 0 & 0 & -1\\ 0 & -1 & 2\\ 1 & 0 & -1 \end{bmatrix}$

Midterm 2B

MATH 18, LECTURE C00, WINTER 2019

NAME:

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

NAME:
Problem 1.(9 points.) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 & -2 \\ 2 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 3 \end{bmatrix}$$
 and its reduced row echelon form RREF(A) =
$$\begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 Give bases and dimensions for the following three bases:

- a) (3 points) Col(A)
- b) (3 points) Nul(A)
- c) (3 points) Row(A)

Problem 2.(10 points.) Let A and B be 3×3 matrices such that $\det(A) = 2$ and $\det(B) = 3$. For each of the following, give its value if you have enough information. If you do not have enough information, say "not enough information".

- a) (2.5 points) $det(B^{-1})$
- b) (2.5 points) rank(B)
- c) (2.5 points) det(A + B)
- d) (2.5 points) $det(AB^T)$

Problem 3.(10 points.) A linear transformation from $\mathbb{R}^3 \to \mathbb{R}^3$ is given by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 \\ x_2 + x_3 \\ x_1 + x_3 \end{bmatrix}$.

- a) (2.5 points) What is the kernel of T (i.e., the space of all vector $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = \vec{0}$).
- b) (2.5 points) Find a set of vectors that span the range of T. (They need not be a basis.)
- c) (2.5 points) Find a standard matrix A of T.
- d) (2.5 points) What is the dimension of the range of T?

Problem 4.(10 points.) Let \mathbb{P}_2 be the space of all polynomials of degree at most 2, and \mathbb{P}_3 the space of all polynomials of degree at most 3.

- a) (3 points) Given a basis $\mathcal{B} = \{1 x^2, x x^2, 2 x + x^2\}$ for \mathbb{P}_2 , find the coordinate vector of the element $3 2x + x^2$ in \mathbb{P}_2 , relative to \mathcal{B} . That is, find $[3 2x + x^2]_{\mathcal{B}}$.
- b) (4 points) In the space \mathbb{P}_3 , are the vectors $\{x^3, 1-x^2, -x+2x^2-x^3\}$ linearly independent? Explain your answer.
- c) (3 points) Do the vectors in Part b) form a basis for \mathbb{P}_3 ? Explain your answer.