Question1

Heat loss through a composite wall

A 3-m high and 5-m wide wall consists of long 32cm-22cm cross section horizontal bricks(k=0.72 W/m·). There are also 3cm thick plaster layers(k=0.22 W/m·). There are also 2cm thick plaster layers in each side of the brick and a 3cm thick rigid foam(k=0.026 W/m·) on the inner side of the wall. The indoor and the outdoor temperatures are 20 and 10 , and the convection heat transfer coefficients on the inner and the outer sides are =10 W/· and =40 W/m²*°C, respectively. Assuming one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall.

$$R_{\rm i} = \frac{1}{h_{\rm i} \times A} = \frac{1}{10 \times 0.25} = 0.4^{\circ} \text{C/W}$$

$$R_{\rm f} = \frac{L_{\rm f}}{k_{\rm f} \times A} = \frac{0.03}{0.026 \times 0.25} = 4.615 ^{\circ} \text{C/W}$$

$$R_{\rm p1} = R_{\rm p2} = \frac{L_{\rm p1}}{k_{\rm p} \times A_{\rm p1}} = \frac{0.02}{0.22 \times 0.25} = 0.363^{\circ} \text{C/W}$$

$$R_0 = \frac{1}{h_0 \times A} = \frac{1}{40 \times 0.25} = 0.1^{\circ} C/W$$

$$R_{\text{pc1}} = R_{\text{pc2}} = \frac{L_{\text{pc1}}}{k_{\text{p}} \times A_{\text{pc}}} = \frac{0.32}{0.22 \times 0.015} = 96.97^{\circ}\text{C/W}$$

$$R_b = \frac{L_b}{k_b \times A_b} = \frac{0.32}{0.72 \times 0.22} = 2.02^{\circ} C/W$$

$$\frac{1}{R_{\text{tot},p}} = \frac{1}{R_b} + \frac{1}{R_{pc1}} + \frac{1}{R_{pc2}} = \frac{1}{2.02} + 2 \times \frac{1}{96.97} = 0.516^{\circ}\text{C/W}$$

$$R_{\text{tot.}p} = \frac{1}{0.516} = 1.94^{\circ}\text{C/W}$$

$$R_{total} = R_i + R_f + R_{p1} \times 2 + R_o + R_{tot.p} = 0.4 + 4.615 + 2 \times 0.363 + 0.1 + 1.94 = 7.781^{\circ}$$
C/W

$$\dot{Q} = \frac{T_1 - T_{\infty}}{R_{total}} = \frac{20 + 10}{7.781} = 3.856W$$

When the thickness of brick in this composite wall is 16mm: $R_{
m total} = 6.81^{\circ}{
m C}/W$

$$\dot{Q} = \frac{T_1 - T_{\infty}}{R_{total}} = \frac{20 + 10}{6.81} = 4.405W$$

Conclusion:

Increasing the thickness of the brick in the composite wall has little effect on improving the thermal resistance of the entire wall.

Question2

Gypsum Board

Inside Surface

Determine the overall unit thermal resistance(the R-value) and the overall heat transfer coefficient(the U-factor) of a wall frame wall that is built around 38-mm 90-mm wood studs with a center-to-center distance of 400mm. The 90-mm-wide cavity between the studs is filled with urethane rigif foam. The inside is filled with 13-mm gypsum wallboard and outside with 13-mm plywood and 13-mm 200-mm wood bevel lapped siding. The insulated cavity constitutes 75% heat transmission area while the studs, plates, and sills constitutes 21%. The headers constitutes 4% of the area, and they can be treated as studs. Find the two Runt values.

	Wood	Insulation
Outside Air	0.03	0.03
Wood Bevel I.	0.14	0.14
Plywood(13mm)	0.11	0.11
Urethane Rigid Foam	No	0.98*(90/25)=3.528
Wood Stud	0.63	No

0.079

0.12

0.079

0.12

$$R'_{with.wood} = 0.03 + 0.14 + 0.11 + 0.63 + 0.079 + 0.12 = 1.109m^2 * °C/W$$

$$R'_{with.insulation} = 0.03 + 0.14 + 0.11 + 3.528 + 0.079 + 0.12 = 4.007 m^2 * °C/W$$