Machine Learning for Signal Processing Independent Component Analysis

Instructor: Bhiksha Raj

 You flip a coin. You must inform your friend in the next room about whether the outcome was heads or tails

How many bits will you have to send?

 You roll a four-side dice. You must inform your friend in the next room about the outcome

How many bits will you have to send?

 You roll an eight-sided octahedral dice. You must inform your friend in the next room about the outcome

How many bits will you have to send?

 You roll a six-sided dice. You must inform your friend in the next room about the outcome

How many bits will you have to send?

11755/18797

5

- Instead of sending individual rolls, you roll the dice twice
 - And send the *pair* to your friend
- How many bits do you send per roll?

Roll 1	Roll 2	2
1	1	
1	2	
1	3	
2	1	
2	2	
••	••	
6	6	

- Instead of sending individual rolls, you roll the dice twice
 - And send the pair to your friend
- How many bits do you send per roll?
- 36 combinations: 6 bits per pair of numbers
 - Still 3 bits per roll

1	1
1	2
1	3
2	1
2	2
6	6

- Instead of sending individual rolls, you roll the dice three times
 - And send the *triple* to your friend
- How many bits do you send per roll?
- 216 combinations: 8 bits per triple
 - Still 2.666 bits per roll
 - Now we're talking!

Roll 1	Roll 2	Roll 3
--------	--------	--------

1	1	1
1	1	2
••	••	••
1	6	3
2	1	1
2	1	2
••		••
6	6	6

- Batching four rolls
 - 1296 combinations

- 11 bits per outcome (4 rolls)
- 2.75 bit per roll
- Batching *five rolls*
 - 7776 combinations

- 13 bits per outcome (5 rolls)
- 2.6 bits per roll

No. of rolls batched together

• Where will it end?

No. of rolls batched together

- Where will it end?
- $\lim_{k \to \infty} \frac{[k \log 2(6)]}{k} = \log 2(6)$ bits per roll in the limit
 - This is the absolute minimum no simple batching will give you less than these many bits per outcome with this scheme

Poll 1

Can we do better?

- A four-sided die needs 2 bits per roll
- But then you find not all sides are equally likely

- P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125
- Can you do better than 2 bits per outcome

Can we do better?

You have

$$P(1) = 0.5$$
, $P(2) = 0.25$, $P(3) 0.125$, $P(4) = 0.125$

• You use:

1	0
2	10
3	110
4	111

- Note receiver is never in any doubt as to what they received
- What is the average number of bits per outcome

Can we do better?

You have

$$P(1) = 0.5$$
, $P(2) = 0.25$, $P(3) 0.125$, $P(4) = 0.125$

• You use:

- Note receiver is never in any doubt as to what they received
- How did we know to use three bits here for rows 3 and 4, 2 for row 2 and 1 for row 1?

- What fraction of these trials will be "4"?
 - -P(4) = 0.125

- What fraction of these trials will be "4"?
 - -P(4) = 0.125
- From how many alternatives (on average) do we choose the 4
 - From the local perspective of 4

- What fraction of these trials will be "4"?
 - -P(4) = 0.125
- From how many alternatives (on average) do we choose the 4
 - From the perspective of 4, you might as well have been rolling an eight-sided dice

- What fraction of these trials will be "4"?
 - -P(4) = 0.125
- From how many alternatives (on average) do we choose the 4
 - From the perspective of 4 you might as well have been rolling an eight-sided dice
- How many bits to code each instance of 4?
 - When 4 is the outcome of rolls of an 8-sided dice

- What fraction of these trials will be "4"?
 - P(4) = 0.125
- From how many alternatives (on average) do we choose the 4
 - From the perspective of 4 you might as well have been rolling an eightsided dice
- How many bits to code each instance of 4?
 - When 4 is the outcome of rolls of an 8-sided dice
- What is the average (expected) number of bits to transmit all instances of 4 in N rolls of the dice?

- What fraction of these trials will be "4"?
 - P(4) = 0.125
- From how many alternatives (on average) do we choose the 4
 - From the perspective of 4 you might as well have been rolling an eightsided dice
- How many bits to code each instance of 4?
 - When 4 is the outcome of rolls of an 8-sided dice
- What is the average (expected) number of bits to transmit all instances of 4 in N rolls of the dice?
 - Average per roll?

What fraction of these trials will be "1"?

$$-P(1)=0.5$$

- What fraction of these trials will be "1"?
 - -P(1)=0.5
- From how many alternatives (on average) do we choose the 1
 - From the local perspective of 1

- What fraction of these trials will be "1"?
 - -P(1) = 0.5
- From how many alternatives (on average) do we choose the 1
 - From the perspective of 1, you might as well have been flipping a coin

- What fraction of these trials will be "1"?
 - -P(1)=0.5
- From how many alternatives (on average) do we choose the 1
 - From the perspective of 1 you might as well have been flipping a coin
- How many bits to code each instance of 1?
 - When 1 is the outcome of a coin toss

- What fraction of these trials will be "1"?
 - P(1) = 0.5
- From how many alternatives (on average) do we choose the 1
 - From the perspective of 1 you might as well have been flipping a coin
- How many bits to code each instance of 1?
 - When 1 is the outcome of rolls of a coin toss
- What is the average (expected) number of bits to transmit all instances of 1 in N rolls of the dice?

- What fraction of these trials will be "1"?
 - P(1) = 0.5
- From how many alternatives (on average) do we choose the 1
 - From the perspective of 1 you might as well have been flipping a coin
- How many bits to code each instance of 1?
 - When 1 is the outcome of rolls of a coin toss
- What is the average (expected) number of bits to transmit all instances of 1 in N rolls of the dice?
 - Average per roll?

- An outcome x has probability P(x)
- From the perspective of x, how many-sided dice is it an outcome of?

$$\frac{1}{P(x)} \qquad \frac{1}{P(x)} \frac{1}{P(x)}$$

- An outcome x has probability P(x)
- From the perspective of x, how many-sided dice is it an outcome of?
- How many bits to code an instance of x?

- An outcome x has probability P(x)
- From the perspective of x, how many-sided dice is it an outcome of?
- How many bits to code an instance of x?
- What is the average (expected) number of bits to transmit instances of x in N rolls of the dice?

- An outcome x has probability P(x)
- From the perspective of x, how many-sided dice is it an outcome of?
- How many bits to code an instance of x?
- What is the average (expected) number of bits to transmit instances of x in N rolls of the dice?
- Expected number of bits per outcome for any outcome?

- An outcome x has probability P(x)
- From the perspective of x, how many-sided dice is it an outcome of?
- How many bits to code an instance of x?
- What is the average (expected) number of bits to transmit instances of x in N rolls of the dice?
- Expected number of bits per outcome for any outcome?
- Average per trial?

How we do better...

You have

$$P(1) = 0.5$$
, $P(2) = 0.25$, $P(3) 0.125$, $P(4) = 0.125$

You use:

1	0
2	10
3	110
4	111

- Note receiver is never in any doubt as to what they received
- An outcome with probability p is equivalent to obtaining one of 1/p equally likely choices
 - Requires $\log 2\left(\frac{1}{p}\right)$ bits on average

Entropy

 The average number of bits per symbol required to communicate a random variable over a digitial channel using an optimal code is

$$H(p) = \sum_{i} p_i \log \frac{1}{p_i} = -\sum_{i} p_i \log p_i$$

- You can't do better
 - Any other code will require more bits
- This is the *entropy of the random variable*

Poll 2

A brief review of basic info. theory

 Entropy: The minimum average number of bits to transmit to convey a symbol

• Joint entropy: The *minimum average* number of bits to convey sets (pairs here) of symbols

A brief review of basic info. theory

- Conditional Entropy: The minimum average number of bits to transmit to convey a symbol
 X, after symbol Y has already been conveyed
 - Averaged over all values of X and Y

The statistical concept of correlatedness

- Two variables X and Y are correlated if If knowing X gives you an expected value of Y
- X and Y are uncorrelated if knowing X tells you nothing about the expected value of Y
 - Although it could give you other information
 - How?

Correlation vs. Causation

 The consumption of burgers has gone up steadily in the past decade

• In the same period, the penguin population of Antarctica has gone down

Correlation, not Causation (unless McDonalds has a top-secret Antarctica division)

The concept of correlation

 Two variables are correlated if knowing the value of one gives you information about the expected value of the other

A brief review of basic probability

- *Uncorrelated:* Two random variables *X* and *Y* are uncorrelated iff:
 - The average value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of X and one instance of Y
 - I.e one instance of (X, Y)
- E[XY] = E[X]E[Y]
- The average value of Y is the same regardless of the value of X

Correlated Variables

- Expected value of Y given X:
 - Find average of Y values of all samples at (or close) to the given X
 - If this is a function of X, X and Y are correlated

11755/18797

43

Uncorrelatedness

- Knowing X does not tell you what the average value of Y is
 - And vice versa

Uncorrelated Variables

 The average value of Y is the same regardless of the value of X and vice versa

Uncorrelatedness in Random Variables

Which of the above represent uncorrelated RVs?

Benefits of uncorrelatedness...

- Uncorrelatedness of variables is generally considered desirable for modelling and analyses
 - For Euclidean error based regression models and probabilistic models, uncorrelated variables can be separately handled
 - Since the value of one doesn't affect the average value of others
 - Greatly reduces the number of model parameters
 - Otherwise their interactions must be considered
- We will frequently transform correlated variables to make them uncorrelated
 - "Decorrelating" variables

The notion of decorrelation

• So how does one transform the correlated variables (X, Y) to the uncorrelated (X', Y')

11755/18797

48

What does "uncorrelated" mean

- E[X'] = constant
- E[Y'] = constant
- E[Y'|X'] = constant
- E[X'Y'] = E[X']E[Y']
- All will be 0 for centered data

$$E\begin{bmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} (X' & Y') \end{bmatrix} = E\begin{pmatrix} X'^2 & X'Y' \\ X'Y' & Y'^2 \end{pmatrix} = \begin{pmatrix} E[X'^2] & 0 \\ 0 & E[Y'^2] \end{pmatrix} = diagonal \quad matrix$$

• If Y is a matrix of vectors, YY^T = diagonal

11755/18797

Decorrelation

- Let X be the matrix of correlated data vectors
 - Each component of X informs us of the mean trend of other components
- Need a transform \mathbf{M} such that if $\mathbf{Y} = \mathbf{M}\mathbf{X}$ such that the covariance of \mathbf{Y} is diagonal
 - $-\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$ is the covariance if \mathbf{Y} is zero mean
 - For uncorrelated components, $\mathbf{Y}\mathbf{Y}^{\mathrm{T}} = \mathbf{Diagonal}$
 - \Rightarrow **MXX**^T**M**^T = **Diagonal**
 - \Rightarrow **M.**Cov(**X**).**M**^T = **Diagonal**

Decorrelation

- Easy solution:
 - Eigen decomposition of Cov(X):

$$Cov(\mathbf{X}) = \mathbf{E}\Lambda\mathbf{E}^{\mathrm{T}}$$

- $-\mathbf{E}\mathbf{E}^{\mathrm{T}}=\mathbf{I}$
- Let $\mathbf{M} = \mathbf{E}^{\mathrm{T}}$
- $MCov(X)M^T = E^TE\Lambda E^TE = \Lambda = diagonal$
- PCA: $Y = E^TX$
 - Projects the data onto the Eigen vectors of the covariance matrix
 - Diagonalizes the covariance matrix
 - "Decorrelates" the data

PCA

- PCA: $Y = E^TX$
 - Projects the data onto the Eigen vectors of the covariance matrix
 - Changes the coordinate system to the Eigen vectors of the covariance matrix
 - Diagonalizes the covariance matrix
 - "Decorrelates" the data

Are there other decorrelating axes?

Are there other decorrelating axes?

Are there other decorrelating axes?

- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?

- Are there other decorrelating axes?
- What about if we don't require them to be orthogonal?
- What is special about these axes?

Poll 3

The statistical concept of Independence

 Two variables X and Y are dependent if If knowing X gives you any information about Y

 X and Y are independent if knowing X tells you nothing at all of Y

A brief review of basic probability

- *Independence:* Two random variables X and Y are independent iff:
 - Their joint probability equals the product of their individual probabilities
- P(X,Y) = P(X)P(Y)
- Independence implies uncorrelatedness
 - The average value of \boldsymbol{X} is the same regardless of the value of \boldsymbol{Y}
 - E[X|Y] = E[X]
 - But uncorrelatedness does not imply independence

A brief review of basic probability

- Independence: Two random variables X and Y are independent iff:
- The average value of any function of X is the same regardless of the value of Y
 - Or any function of Y
- E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()

Independence

- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?

A brief review of basic probability

- The expected value of an odd function of an RV is 0 if
 - The RV is 0 mean
 - The PDF is of the RV is symmetric around 0
- E[f(X)] = 0 if f(X) is odd symmetric

A brief review of basic info. theory

• Conditional entropy of X|Y = H(X) if X is independent of Y

$$H(X | Y) = \sum_{Y} P(Y) \sum_{X} P(X | Y) [-\log P(X | Y)] = \sum_{Y} P(Y) \sum_{X} P(X) [-\log P(X)] = H(X)$$

 Joint entropy of X and Y is the sum of the entropies of X and Y if they are independent

$$H(X,Y) = \sum_{X,Y} P(X,Y)[-\log P(X,Y)] = \sum_{X,Y} P(X,Y)[-\log P(X)P(Y)]$$

$$= -\sum_{X,Y} P(X,Y) \log P(X) - \sum_{X,Y} P(X,Y) \log P(Y) = H(X) + H(Y)$$

Onward...

Projection: multiple notes

- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = PM

We're actually computing a score

- M ~ WH
- H = pinv(W)M

How about the other way?

$$W =$$
 $\mathbf{?}$

When both parameters are unknown

- Must estimate both ${\bf H}$ and ${\bf W}$ to best approximate ${\bf M}$
- Ideally, must learn both the notes and their transcription!

A least squares solution

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2 + \Lambda (\overline{\mathbf{W}}^T \overline{\mathbf{W}} - \mathbf{I})$$

- Constraint: W is orthogonal
 - $-\mathbf{W}^{\mathrm{T}}\mathbf{W}=\mathbf{I}$
- The solution: W are the Eigen vectors of MM^T
 - PCA!!
- M ~ WH is an approximation
- Also, the rows of H are decorrelated
 - Trivial to prove that $\mathbf{H}\mathbf{H}^{\mathrm{T}}$ is diagonal

PCA

$$\begin{aligned} \mathbf{W}, \mathbf{H} &= arg \min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2 \\ \mathbf{M} &\approx \mathbf{W} \mathbf{H} \\ \mathbf{W} \mathbf{W}^T &= Diagonal \quad OR \quad \mathbf{H} \mathbf{H}^T = Diagonal \\ &\quad \text{The conditions are equivalent} \end{aligned}$$

- The columns of W are the bases we have learned
 - The linear "building blocks" that compose the music
- They represent "learned" notes
 - $-\mathbf{w}_i\mathbf{h}_i$ is the contribution of the ith note to the music
 - \mathbf{w}_i is the ith column of \mathbf{W}
 - \mathbf{h}_i is the ith row of \mathbf{H}

So how does that work?

 There are 12 notes in the segment, hence we try to estimate 12 notes..

So how does that work?

- There are 12 notes in the segment, hence we try to estimate 12 notes..
- Results are not good

PCA through decorrelation of notes

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} ||\mathbf{M} - \overline{\mathbf{H}}||_F^2 + \Lambda (\overline{\mathbf{H}}\overline{\mathbf{H}}^T - \mathbf{D})$$

Different constraint: Constraint H to be decorrelated

$$-\mathbf{H}\mathbf{H}^{\mathrm{T}}=\mathbf{D}$$

- This will result exactly in PCA too
- Decorrelation of H Interpretation: What does this mean?

Decorrelation

- Alternate view: Find a matrix B such that the rows of H=BM are uncorrelated
- Will find $\mathbf{B} = \mathbf{W}^{\mathrm{T}}$
- **B** is the *decorrelating matrix* of **M**

75

Poll 4

What else can we look for?

- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still...

What else can we look for?

- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Attempting to find statistically independent components of the mixed signal
 - Independent Component Analysis

Formulating it with Independence

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} || \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2 + \Lambda(rows \ of \ \mathbf{H} \ are \ independent)$$

 Impose statistical independence constraints on decomposition

Next Class

Independent Component Analysis

By Yinghao Ma