COMP 2432 Operating Systems

Tutorial 9 Solution

1. Virtual Memory.

- (a) There are 24 bits for the address. It can address up to a space of 2^{24} , i.e. 16 MB.
- (b) Physical memory has a size of 32KB. It needs an address length of 15 bits, since $32K = 2^{15}$.
- (c) Page size (and frame size) is 2KB. It would imply an offset length n of 11 bits, since $2K = 2^{11}$.
- (d) Logical address length m = 24. Page offset length n = 11. Page number length is thus 24-11 = 13 bits.
- (e) Physical memory has a size of 32KB and each frame has a size of 2KB. Number of frames is 32K / 2K = 16.
- (f) There are 16 frames. Thus, 4 bits are needed for frame number, since $16 = 2^4$. Alternatively, physical address has a length of 15 bits. The offset length n = 11. Therefore frame number has 15-11 = 4 bits.

2. Virtual Memory.

- (a) 4 GB $[2^{32}]$
- (b) 16 bits $[64K = 2^{16}]$
- (c) 10 bits $[1K = 2^{10}]$
- (d) 22 bits [32-10]
- (e) **64** [64K / 1K = 64]
- (f) 6 bits [16-10]
- (g) 4 MB [6 bits for frame number, 2 additional bits \Rightarrow 1 byte / entry, 4G/1K pages \Rightarrow 4M entries]
- (h) 1 KB that can be fit into *one single page* [1M/1K \Rightarrow 1K page table entries \Rightarrow 1KB page table size]

3. Page Table in Virtual Memory.

Page Ref	1	3	0	2	3	5	1	5	0	4
Frame 1	1	1	1	1	1	5	5	5	5	5
Frame 2	-	3	3	3	3	3	1	1	1	1
Frame 3	-	-	0	0	0	0	0	0	0	4
Frame 4	-	-	-	2	2	2	2	2	2	2

4. Memory Access Time.

Effective memory access time = cache access time + $(2 - h) \times$ memory access time.

With
$$h = 0.95$$
, we have $20 + (2 - 0.95) \times 100 = 125$ ns.

With
$$h = 0.99$$
, we have $20 + (2 - 0.99) \times 100 = 121$ ns.

Effective virtual memory access time = $(1 - f) \times$ memory access time + $f \times$ page fault service time. Note that without TLB, memory access time is 200 ns = 0.2 μ s.

With
$$f = 0.01$$
, we have $(1-0.01) \times 0.2 + 0.01 \times 5000 = 50.198 \ \mu s$.

With
$$f = 0.001$$
, we have $(1-0.001) \times 0.2 + 0.001 \times 5000 = 5.1998$ µs.

Making use of the adjusted memory access time with TLB, when page fault rate is 1% and TLB hit rate of 95%, effective virtual memory access time = $(1-0.01) \times 0.125 + 0.01 \times 5000 = 50.1238 \,\mu s$.

When page fault rate is 0.1% and TLB hit rate of 99%, the effective virtual memory access times = $(1-0.001) \times 0.121 + 0.001 \times 5000 = 5.12088$ µs. It can be seen that the impact of TLB is much smaller with this amortized cost computation, since I/O dominates the cost. In real scenario, the page fault service time could largely be absorbed by the waiting time for CPU scheduling, in particular with round-robin scheduling.