1 第二章线性算子

1 第二章线性算子

1.1 §1 线性映射的矩阵

定义 设 V,W 是 F 上的线性空间,Hom(V,W) 是从 V 到 W 的线性映射的集合, 它是 F 上的线性空间.

1.1.1 §1.1 矩阵表示

设 $\vec{e}_1, ..., \vec{e}_n$ 是 V 的基, $\vec{\varepsilon}_1, ..., \vec{\varepsilon}_m$ 是 W 的基. $\phi \in Hom(V, W) \forall j \in 1, ..., n$.

1.2 §5 特征子空间的应用

1.2.1 §5.1 线性算子和矩阵的对角化

定义 设 $A \in \mathcal{L}(V)$, A 在 F 中互不相同的特征根的集合称为 A 在 F 上的谱(spectrum)

定义 设 $A \in \mathcal{L}(V)$, 如果 A 在 V 的某组基下的矩阵是对角的,则称 A 是可对角化的。设 $A \in M_n(F)$, 如果 A 相似于某个对角矩阵,则称 A 在 F 上是可对角化的。

定理 5.1 设 $A \in \mathcal{L}(V)$,则下列断言等价:

- (i) A 可对角化
- (ii)A 有 n 个线性无关的特征向量, 其中 n=dim(V)
- (iii)V= $\bigoplus_{\lambda \in spec(A)}$

推论 5.1 设 $A \in \mathcal{L}(V)$,dimV=n, 如果 A 在 F 中有 n 个互不相同的特征根,则 A 可对角化.

定理 5.2 设 $A \in \mathcal{L}(V)$, 则 A 可对角化 \Leftrightarrow (i) \mathcal{X}_A 在 F 中可以分解为一次多项式之积 (ii)A 在 每个特征根的代数重数与几何重数相同.

1.2.2 §5.2 复数方阵的三角化

引理 5.2 设 V 是 C 上的 n 维线性空间,n>0, $A \in \mathcal{L}(V)$,则 A 有 n-1 维不变子空间.

定理 5.3 设 $A \in \mathcal{L}(V)$, 其中 $V \in \mathbb{C}$ 上 n 维线性空间, 则存在 V 中一组基, 使得 A 在该基下的矩阵是上三角型的.

1 第二章线性算子

推论 5.2 设 $A \in M_n(\mathbb{C})$, 则 A 相似于一个上三角型矩阵.

引理 5.3 设 $A \in \mathcal{L}(V)$,U 是 A-子空间, 定义:

 $\overline{\mathcal{A}}: V/U \to V/U$ $\vec{a} + U \mapsto \mathcal{A}(\vec{a}) + U$ 则 $\overline{\mathcal{A}} \in \mathcal{L}(V/U)$

定义 设 $A \in \mathcal{L}(V)$,U 是 A-子空间,则

 $\overline{\mathcal{A}}: V/U \to V/U$ $\vec{v} + U \mapsto \mathcal{A}(\vec{v}) + U$ 称为 \mathcal{A} 关于 U 的商算子.

命题 5.1 设 $A \in \mathcal{L}(V)$,U 是 A-子空间

 $\Pi: V \to V/U$ 自然投射

则 (i) $\Pi \circ A = \overline{A} \circ \Pi$, 其中 \overline{A} 是 A 关于 U 的商映射.

(ii) 设 $\varphi: V/U \to V/U$ 满足 $\pi \circ A = \varphi \circ \pi$, 则 $\varphi = \overline{A}$

定理 5.3 设 V 是 n 维线性空间,n>1, 设 $A \in \mathcal{L}(V)$,U 是 A-子空间,d=dimU>0, 设 $\vec{e}_1,...,\vec{e}_d$ 是 U 的基, $\vec{e}_1,...,\vec{e}_d$, $\vec{e}_{d+1},...,\vec{e}_n$ 是 V 的基. 记 $A|_U$ 为 A_U ,A 关于 U 的商算子为 \overline{A} . 令 A_U 为 A_U 在 $\vec{e}_1,...,\vec{e}_d$ 下的矩阵. \overline{A} 为 \overline{A} 在 $\vec{e}_{d+1},...,\vec{e}_n$ 下的矩阵,则 A 在 $\vec{e}_1,...,\vec{e}_d$, $\vec{e}_{d+1},...,\vec{e}_n$ 下的矩阵

$$A = \begin{bmatrix} A_U & B \\ 0 & \overline{A} \end{bmatrix} \tag{1}$$

,其中 B $\in F^{d\times(n-d)}$

推论 5.2 沿用定理 5.3 中记号, $\mathcal{X}_{\mathcal{A}}(t) = \mathcal{X}_{\overline{\mathcal{A}}}(t)\mathcal{X}_{\mathcal{A}_{\mathcal{A}}}$

命题 5.2 设 $A \in \mathcal{L}(V)$.U 是 A-不变子空间, $P \in F[t]$ 则

- (i) U 是 $\mathcal{P}(\mathcal{A})$ -子空间
- (ii) 设 \overline{A} 和 $\overline{\mathcal{P}(A)}$ 是A和 $\mathcal{P}(A)$ 关于U的商算子,则 $\mathcal{P}(\overline{A})=P(\overline{A})$