

Regression modelling using I-priors

NUS Department of Statistics & Data Science Seminar

Haziq Jamil

Mathematical Sciences, Faculty of Science, UBD

https://haziqj.ml

Wednesday, 16 November 2022

For i = 1, ..., n, consider the regression model

$$y_i = f(x_i) + \epsilon_i$$

$$(\epsilon_1, \dots, \epsilon_n)^{\top} \sim \mathsf{N}_n(0, \Psi^{-1})$$
(1)

where each $y_i \in \mathbb{R}$, $x_i \in \mathcal{X}$ (some set of covariates), and f is a regression function. This forms the basis for a multitude of statistical models:

- 1. Ordinary linear regression when f is parameterised linearly.
- 2. Varying intercepts/slopes model when $\mathcal X$ is grouped.
- 3. Smoothing models when f is a smooth function.
- 4. Functional regression when \mathcal{X} is functional.

Goal

To estimate the regression function f given the observations $\{(y_i, x_i)\}_{i=1}^n$.

Suppose $f(x_i) = x_i^{\top} \beta$ for i = 1, ..., n, where $x_i, \beta \in \mathbb{R}^p$.

Introduction

0.0000000000

Varying intercepts/slopes model

Suppose each unit $i=1,\ldots,n$ relates to the kth observation in group $j\in\{1,\ldots,m\}$. Model the function f additively:

$$f(x_{kj},j) = f_1(x_{kj}) + f_2(j) + f_{12}(x_{kj},j).$$

Varying intercepts/slopes model

Suppose each unit $i=1,\ldots,n$ relates to the kth observation in group $j\in\{1,\ldots,m\}$. Model the function f additively:

$$f(x_{kj},j) = \underbrace{x_{kj}^{\top}\beta_1}_{f_2} + \underbrace{\beta_{0j}}_{f_2} + \underbrace{x_{kj}^{\top}\beta_{1j}}_{f_{1j}}$$

Smoothing models

Suppose $f \in \mathcal{F}$ where \mathcal{F} is a space of "smoothing functions" (models like LOESS, kernel regression, smoothing splines, etc.).

000000000000

Suppose the input set \mathcal{X} is functional. The (linear) regression aims to estimate a coefficient function $\beta:\mathcal{T}\to\mathbb{R}$

$$y_i = \underbrace{\int_{\mathcal{T}} x_i(t)\beta(t) dt}_{f(x_i)} + \epsilon_i$$

For the regression model stated in (1), we assume that f lies in some RKHS of functions \mathcal{F} , with reproducing kernel h over \mathcal{X} .

Definition 1 (I-prior)

The entropy maximising prior distribution for f, subject to constraints, is

$$f(x) = \sum_{i=1}^{n} h(x, x_i) w_i$$

$$(w_1, \dots, w_n)^{\top} \sim N_n(0, \Psi)$$
(2)

Therefore, the covariance kernel of $\mathbf{f} = (f(x_1), \dots, f(x_n))^{\top}$ is determined by the function

$$k(x, x') = \sum_{i=1}^{n} \sum_{j=1}^{n} \Psi_{i,j} h(x, x_i) h(x', x_j),$$

which happens to be **Fisher information** between two linear forms of f.

The I-prior (cont.)

Interpretation:

Introduction

0000000000000

The more information about f, the larger its prior variance, and hence the smaller the influence of the prior mean (and vice versa).

The I-prior (cont.)

Interpretation:

The more information about f, the larger its prior variance, and hence the smaller the influence of the prior mean (and vice versa).

Of interest then are

1. Posterior distribution for the regression function,

$$p(\mathbf{f} | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{f})p(\mathbf{f})}{\int p(\mathbf{y} | \mathbf{f})p(\mathbf{f}) d\mathbf{f}}.$$

2. Posterior predictive distribution (given a new data point x_{new})

$$p(y_{new} \mid \mathbf{y}) = \int p(y_{new} \mid f_{new}) p(f_{new} \mid \mathbf{y}) \, \mathrm{d}f_{new},$$

where $f_{new} = f(x_{new})$.

000000000000

Observations $\{(y_i, x_i) \mid y_i, x_i \in \mathbb{R} \ \forall i = 1, \dots, n\}.$

Introduction (cont.)

Introduction

Choose $h(x,x')=e^{-\frac{\|x-x'\|^2}{2l^2}}$ (Gaussian kernel). Sample paths from I-prior:

Examples

Introduction (cont.)

Sample paths from the posterior of f:

Introduction (cont.)

Introduction

Posterior mean estimate for y = f(x) and its 95% credibility interval.

Estimation

Why I-priors?

Advantages

Introduction

000000000000

- Provides a unifying methodology for regression.
- Simple and parsimonious model specification and estimation.
- Often yield comparable (or better) predictions than competing ML algorithms.

method inference independent multicollinarity distributions advantage approximation advantage approximation covariates. Suppose the propose of the propose o

Competitors:

Tikhonov regulariser (e.g. cubic spline smoother)

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

Gaussian process regression

Regression using I-priors
Reproducing kernel Hilbert spaces
The Fisher information

Estimation

Examples

Reproducing kernel Hilbert spaces

Assumption: Let $f \in \mathcal{F}$ be an RKHS with kernel h over a set \mathcal{X} .

Definition 2 (Hilbert spaces)

A *Hilbert space* \mathcal{F} is a vector space equipped with a positive semidefinite inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$.

Definition 3 (Reproducing kernels)

A symmetric, bivariate function $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel*, and it is a *reproducing kernel* of \mathcal{F} if h satisfies $\forall x \in \mathcal{X}$,

- i. $h(\cdot, x) \in \mathcal{F}$; and
- ii. $\langle f, h(\cdot, x) \rangle_{\mathcal{F}} = f(x), \forall f \in \mathcal{F}.$

In particular, $\forall x, x' \in \mathcal{F}$, $h(x, x') = \langle h(\cdot, x), h(\cdot, x') \rangle_{\mathcal{F}}$.

Reproducing kernel Hilbert spaces (cont.)

• In ML literature, Mercer's Theorem states

$$h(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{V}} \Leftrightarrow h \text{ is semi p.d.}$$

where $\phi: \mathcal{X} \to \mathcal{V}$ is a mapping from \mathcal{X} to the *feature space* \mathcal{V} .

• In many ML models, need not specify ϕ explicitly; computation is made simpler by the use of kernels.

Introduction

Reproducing kernel Hilbert spaces (cont.)

Theorem 4

There is a bijection between

- i. the set of positive semidefinite functions; and
- ii. the set of RKHSs.

Corollary 5

Any $f \in \mathcal{F}$ can be approximated arbitrarily well by functions of the form

$$\tilde{f}(x) = \sum_{i=1}^{n} h(x, x_i) w_i$$

for some constants $w_1, \ldots, w_n \in \mathbb{R}$, because \mathcal{F} is the completion of the vector space $\tilde{\mathcal{F}} = \operatorname{span}\{h(\cdot, x) \mid x \in \mathcal{X}\}$ equipped with the squared norm $\|\tilde{f}\|^2 = \sum_{i,j=1}^n w_i w_j h(x_i, x_j)$.

Examples of RKHSs

Introduction

The Fisher information

The log-likelihood of f is given by

$$I(f|y) = \text{const.} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \psi_{ij} (y_i - \langle f, h(\cdot, x_i) \rangle_{\mathcal{F}}) (y_j - \langle f, h(\cdot, x_j) \rangle_{\mathcal{F}})$$

Lemma 6 (Fisher information for regression function)

The Fisher information for f is given by

$$\mathcal{I}_f = \sum_{i=1}^n \sum_{j=1}^n \psi_{ij} h(\cdot, x_i) \otimes h(\cdot, x_j)$$

where \otimes is...

Introduction

The Fisher information (cont.)

It's helpful to think of \mathcal{I}_f as a bilinear form $\mathcal{I}_f: \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ defined by

$$\mathcal{I}_f = -\operatorname{\mathsf{E}}
abla^2 L(f|y),$$

so the Fisher information between two point evaluation functionals of is

$$\mathcal{I}(f(x), f(x')) = \mathcal{I}_f(h(\cdot, x), h(\cdot, x')) = \sum_{i=1}^n \sum_{i=1}^n \psi_{ij} h(x, x_i) h(x', x_j).$$

Example 7

Let

Suppose further that $f \in \mathcal{F}$ where \mathcal{F} is a reproducing kernel Hilbert space (RKHS) with reproducing kernel $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Then (1) can be expressed as

$$y_{i} = \langle f, h(\cdot, x_{i}) \rangle_{\mathcal{F}} + \epsilon_{i}$$

$$(\epsilon_{1}, \dots, \epsilon_{n})^{\top} \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi}^{-1})$$
(3)

The Fisher information for f is given by

$$\mathcal{I}_f = \sum_{i=1}^n \sum_{j=1}^n \psi_{ij} h(\cdot, x_i) \otimes h(\cdot, x_j)$$

Estimation

$$f(x_i) = f_0(x_i) + \sum_{k=1}^n h(x_i, x_k) w_k$$

$$(w_1, \dots, w_n)^\top \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$$
(4)

where f_0 is some prior mean for the regression function.

Regression using I-priors

Estimation

Examples

Regression using I-priors

Estimation

Examples

Regression using I-priors

Estimation

Examples

Further research

Hello

