

התאמה מכוונת בין קבוצות

B= { \odot , ♥, \P } -ו $A=\{\Box$, \triangle , \spadesuit } ו- $A=\{\Box$

g -וf התאמות מכוונות f ו-g (חצים מראים כיוון התאמה) מקבוצה f לקבוצה מקבוצה

<u>שאלה:</u> מה מהות ההבדל בין ההתאמות?

- . B הינה $\frac{1}{2}$ הינה $\frac{1}{2}$ הינה $\frac{1}{2}$ שרכית כל איבר של $\frac{1}{2}$ הינה $\frac{1}{2}$
- $:\!B$ איננה התאמה חד ערכית קיים איבר של A , לו g מתאימה שני איברים ב g
 - . ♥ מתיאמה לאיבר \square את האיברים @ וגם g

הגדרת מושג הפונקציה

. הגדרה: התאמה חד ערכית f מקבוצה A לקבוצה B נקראת פונקציה lacktriangle

$$f:A \to B$$
 :סימון

<u>לדוגמא</u>: ■

$$f: \triangle \longrightarrow \odot$$
 וגם $f: \square \longrightarrow \odot$: פאן: $f(\square) = \bigcirc$: נהוג לרשום: $f(\blacksquare) = \bigcirc$ $f(\triangle) = \bigcirc$

$f\colon A o B$ הגדרות הקשורות למושג הפונקציה

- A הוא הקבוצה f של
 - B טווח של פונקציה f הוא הקבוצה -
- f(a)=b -כך ש $a\in A$, $b\in B$ יהיו $a\in A$, $b\in B$ נקרא התמונה של האיבר $b\in B$. $b\in B$ נקרא מקור של $a\in A$ נקרא $a\in A$.

$$\operatorname{Im} f \subseteq B$$
 מסקנה: $\operatorname{Im} f = f(A) = \{b = f(a) | a \in A\}$

 $a\in A$ נקרא גם משתנה בלתי תלוי של $a\in A$ כל איבר $b\in \operatorname{Im} f$ נקרא גם $b\in \operatorname{Im} f$

ייצוגים של פונקציה

:מוגדרת בצורה $f:A \to B$ והפונקציה $B = \{1, 3, 7\}, A = \{\Box, \triangle, •\}$ מוגדרת בצורה.

В	Α
1	
1	Δ
7	•
3	
אי	טבז

ייצוג של פונקציה באמצעות גרף

-מערכת של שני צירים ממשיים X ו-Y כך ש

X זווית ביניהם ישירה, וכיוונו החיובי של ציר Y הוא ב-90 0 נגד כיוון השעון מציר R^2 נקראת מערכת צירים קרטזית על המישור הממשי R^2 .

<u>הגדרה:</u>

:לכל נקודה M במישור מתאים זוג מספרים

 M_y - Y ונקודת חיתוך ההיטל שלה על ציר X (ישר אנך) אנך) ונקודת חיתוך ההיטל שלה על ציר X נקרא M_y - M_y נקרא M_y נקרא M_y נקרא M_y במערכת צירים M_y במערכת צירים M_y זוג סדור של מספרים M_y נקרא M_y נקרא M_y נקרא M_y במערכת צירים M_y

ייצוג של פונקציה באמצעות גרף

<u>הגדרה:</u>

 $f\colon A o B$ יהיו $f\colon A\to B$ קבוצות של מספרים ממשיים והפונקציה מספרים $G(f)=\{(x,f(x))\colon x\in A\}$ נקראת הגרף של פונקציה קבוצת הנקודות במישור

דוגמאות

פונקציית הערך השלם

 $m \le x < m+1$ -כך שm כך שm קיים מספר ממשי m קיים מספר שלם

- m=[x] המספר m נקרא $\frac{\mathbf{n}}{\mathbf{n}}$ המספר m נקרא -
- x שמוגדרת בצורה f(x)=[x] נקראת f:R o R שמוגדרת בצורה •

$$[1] = 1;$$
 $[1.1] = 1;$ $[0.999] = 0;$ $[0.1] = 0;$ $[-0.1] = -1,$ $[-5.01] = -6$ דוגמאות:

דוגמאות

פונקציית הערך השיברי

:הגדרה

x נקראת $\frac{\mathbf{g}}{\mathbf{g}}$ שמוגדרת ע"י \mathbf{g} י" שמוגדרת ע"י \mathbf{g} ידית הערך השיברי של \mathbf{g}

 $f(x) = \{x\}$ סימון

$$f(x) = \{x\} = \begin{cases} x + 2, & -2 \le x < -1 \\ x + 1, & -1 \le x < 0 \\ x, & 0 \le x < 1 \\ x - 1, & 1 \le x < 2 \\ \dots & \dots \end{cases}$$

:נחשב , $\{2.3\} = 0.3$, $\{-1.2\} = 0.8$

$\mathbf{?}\;\mathbf{Im}\,f$ שאלה: מהי התמונה Im f = [0, 1)

דוגמאות

<u>סדרה</u>

<u>הגדרה:</u>

תהי A קבוצת מספרים ממשיים, הפונקציה $f\colon N \to A$ נקראת מספרים ממשיים. •

<u>מתקיים:</u>

$$\operatorname{Im} f = \{f(1), f(2), f(3), \dots\} \subseteq \{f(n)\}_{n=1}^{\infty}$$
 סימון

 $\{a_n\}_{n=1}^\infty$ ואז לרשום את הסידרה בצורה $a_n=f(n)$ נוהגים לסמן

Nשים לב!: תחום הגדרה של כל סידרה הינו

<u>דוגמא (1):</u>

סידרה הרמונית $h(n)=rac{1}{n}$,h(n): N o Q ניתן לרשום . $\left\{rac{1}{n}
ight\}_{n=1}^{\infty}$ כך ש- $a_n=rac{1}{n}$, או בקיצור , $a_n=rac{1}{n}$, כך ש- $\{a_n\}_{n=1}^{\infty}$

מיותדות

דר' פיאנה יעקובזון

סדרות מיוחדות

סידרה חשבונית: בהינתן שני מספרים ממשיים a_1 ו- a_2 סידרת המספרים ממשיים

$$a_n=a_1+d(n-1)$$
 כך ש- $\{a_n\}_{n=1}^\infty$

- . נקראת סידרה חשבונית, והמספר d נקרא ההפרש שלה
 - הנוסחה לסכום של n איברים של סידרה חשבונית הינה \bullet

$$S_n = a_1 + a_2 + \dots + a_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + d(n-1)}{2} \cdot n$$

דוגמא:

 $a_1=-3$, d=8 -שבונית, כך ש- $\{a_n\}_{n=1}^\infty=\{-3,5,13,21,...\}$ הסידרה חשבונים של סדרה זו:

$$S_n = a_1 + \dots + a_n = \frac{2 \cdot (-3) + 8(10 - 1)}{2} \cdot 10 = 5 \cdot (-6 + 72) = 330$$

סדרות מיוחדות

סידרה הנדסית: בהינתן שני מספרים ממשיים a_1 ו- q סידרת המספרים ממשיים

$$a_n=a_1\cdot q^{n-1}$$
 -כך ש- $\{a_n\}_{n=1}^\infty$

- . נקראת סידרה הנדסית, והמספר q נקרא המנה שלה.
- הנוסחה לסכום של n איברים של סידרה הנדסית הינה \bullet

$$S_n = a_1 + a_2 + \dots + a_n = a_1 \frac{1 - q^n}{1 - q}$$

<u>דוגמא:</u>

 $a_1=2, q=2$ - היא סידרה הנדסית, כך ש $\{a_n\}_{n=1}^{\infty}=\{2,4,8,16,\dots\}$ הסידרה איברים ראשונים של סדרה זו:

$$S_n = a_1 + \dots + a_n = 2 \cdot \frac{1 - 2^{10}}{1 - 2} = 2 \cdot (2^{10} - 1)$$

סיפור על סטודנטית למתמטיקה שעבדה בפאב

סיפור על סטודנטית למתמטיקה שעבדה בפאב

ב-1 באפריל הגיעו חברייה והזמינו בירה

סיפור על סטודנטית למתמטיקה שעבדה בפאב

בואו נחשב:

$$1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n}} = \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}}$$

$$=2\left(1-\frac{1}{2^{n+1}}\right)<2$$

לא משנה כמה חברים באו, לא יגמרו 2 ליטר

