>>> IF013 - Fundamentos Teóricos de Informática
>>> Licenciatura de Sistemas - UNPSJB - Sede Trelew

Name: Celia Cintas[†], Pablo Navarro[‡], Samuel Almonacid[§] Date: July 31, 2017

[-]\$ _

[†]cintas@cenpat-conicet.gob.ar, cintas.celia@gmail.com, @RTFMCelia

 $^{^{\}ddagger}$ pnavarro@cenpat-conicet.gob.ar, pablo1n7@gmail.com

[§]almonacid@cenpat-conicet.gob.ar, almonacid.samuel.tw@gmail.com

- 1. Repaso de teoría de Conjuntos.
- 2. Introducción a Lenguajes Formales.

[1. Unidad 0]\$ _ [2/19]

>>> Conjuntos

Definición

Un conjunto es una colección de elementos. Si A es un conjunto y a es un elemento de A ($a \in A$).

Definición

La cardinalidad de un conjunto es el número de elementos de ese conjunto. Si $A=\{a_0,a_1,a_2,\cdots,a_n\}$, entonces |A|=n.

Notación

Si A contiene exactamente los elementos a_0,a_1,a_2,\cdots,a_n . Se puede denotar cómo: $A=\{a_0,a_1,a_2,\cdots,a_n\}$

>>> personajes_old = set(["Leia", "Luke", "Darth Vader"])

Definición

Un conjunto sólo se caracteriza por sus elementos y no por el orden de los mismos.

Definición

El conjunto vacío (\emptyset) o nulo, no tiene elementos. Este conjunto es un subconjunto de todos los conjuntos. [2. Conjuntos]§ _

```
>>> Conjuntos (cont.)
```

Notación

Sea P(x) una proposición sobre x. La notación es $\{x|P(x)\}$. Esto se interpreta como: el conjunto de todas las x tal que P(x).

```
>>> sot([name for name in personajes_new if name[0] == 'L'])
```

Definición

Los conjuntos A y B son iguales si contienen los mismos elementos. Por lo tanto si $A=\{x_0,x_1\}$ y $B=\{x_0,x_1\}$. Se puede decir que A=B.

```
>>> start_with_L = so(['Luke', 'Leia'])
>>> brothers_set = so(['Luke', 'Leia'])
>>> sasses (start with L == brothers set)
```

[2. Conjuntos] \$ _ [4/19]

>>> Operaciones con Conjuntos (cont.)

Definición

La unión de conjuntos A y B $(A \cup B)$ es un conjunto formado por los elementos pertenecientes a A, B o en ambos. $A \cup B = \{x | x \in A \text{ o } x \in B\}$

Definición

La intersección de conjuntos A y B $(A \cap B)$ es un conjunto formado por los elementos que aparecen simultáneamente en A y B. $A \cap B = \{x | x \in A \ y \ x \in B\}$

[2. Conjuntos]\$ _

>>> Operaciones con Conjuntos (cont.)

Definición

Complemento relativo o diferencia entre A y B (A-B) es un conjunto formado por todos los elementos de A que no esten en B. $A-B=\{x|x\in A\ y\ x\notin B\}$

Definición

El conjunto potencia de A, es el conjunto formado por todos los subconjuntos de A. Sea $A=\{x_0,x_1,x_2\}$, entonces $P(A)=\{\lambda,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{c,b\},\{a,b,c\}\}$.

Definición

El producto cartesiano entre A y B ($A \times B$), es el conjunto de todos los pares ordenados de los que el primer elemento proviene de A y el segundo de B. $A \times B = \{(x,y) | x \in A \ y \ y \notin B\}$

Definición

Si A y B son conjuntos y todos los elementos de A son también elementos de B, se denota $A\subset B$ y se dice que A es subconjunto de B.

[7/19] [2. Conjuntos] \$_

>>> Relaciones

Definición

Una relación R entre dos conjuntos A y B, es un subconjunto de $A\times B$. Si $(a,b)\in R$, se denota aRb.

Definición

Algunas propiedades que puede tener una relación R:

- * Reflexividad: $\forall a \in A, aRa$
- * Simetría: $\forall a, b \in A, aRb \Rightarrow bRa$
- * Transitividad: $\forall a, b, c \in A, aRb \land bRc \Rightarrow aRc$

[2. Conjuntos]\$ _ [8/19]

Sea la relación $R = \{(a,b),(a,d),(b,c)\}$

>>> Relaciones (Cont.)

а а d d а а d d

>>> Alfabeto

Definición

Llamaremos alfabeto a cualquier conjunto finito no vacío. Usualmente lo denotaremos como Σ . Los elementos de Σ se llamarán símbolos o caracteres.

Definición

La cadena vacía, la cual se denota por el símbolo λ , es una palabra sobre cualquier alfabeto.

>>> Cadena

Definición

Llamaremos cadena a una secuencia finita de símbolos de un alfabeto Σ , es decir, a un elemento de $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$ donde $\Sigma^1 = \Sigma$ y $\Sigma^k = \Sigma.\Sigma^{k-1}$

 Σ^* denota, entonces el conjunto de todas las secuencias finitas de símboos de Σ . El conjunto Σ^0 es especial, tiene un sólo elemento llamado λ , que corresponde a la cadena vacía.

Definición

La cadena vacía, conocida como λ , es la cadena que consiste de cero símbolos. Por lo tanto, tiene longitud $|\lambda|=0$.

Definición

Si w es una cadena sobre cualquier alfabeto, su longitud se denota como |w|. La longitud de w es el número de símbolos que tiene la cadena.

>>> Operaciones con Cadenas

Definición

La concatenación de dos cadenas es la cadena que se forma al escribir la primera seguida de la segunda, sin que haya espacio entre ellas.

```
>>> w = "bb8"
>>> z = "rocks"
>>> w + z
```

Notación

La concatenación de dos cadenas w y z se denomina wz o w.z. La longitud se calcula como: |wz| = |w| + |z|

Definición

La cadena vacía o λ es la identidad para el operador de concatenación. $\lambda w = w \lambda = w$

```
>>> Operaciones con Cadenas (cont.)
```

Notación

La noción de potencia de una cadena sobre un alfabeto es dada por la notación w^k , lo cual indica la concatenación de k copias de la cadena w.

```
Sea w=abc sobre el alfabeto \Sigma=\{a,b,c\} : w^0=\lambda w^1=abc w^2=abcabc
```

```
>>> w = 'bb8'
>>> w*0
'''
>>> w*1
'bb8'
>>> w*2
'bb8bb8'
```

```
>>> Operaciones con Cadenas (cont.)
```

Definición

Si w y z son cadenas se dice que w es igual a z, si tienen la misma longitud y los mismos símbolos en la misma posición. w=z

```
>>> w = 'bb8'
>>> z = 'bb7'
>>> asser! (w == z)
```

AssertionErro

Definición

Una cadena w es una subcadena de otra cadena z, si existen las cadenas x e y para las cuales: z=xwy

```
>>> w = 'Help me, Obi-Wan Kenobi'
>>> w.find('Wan')
13
>>> 'Wan' in w
```

```
>>> Operaciones con Cadenas (cont.)
```

Definición

La reversa de una cadena w, denominada w^R , es la cadena reflejada. Por ejemplo, si w = Leia, $w^R = aieL$

```
>>> w = 'Leia'
>>> w[::-1]
>>> ''.join(reversed(w))
```

>>> Lenguajes Formales

Definición

Un lenguaje sobre un alfabeto Σ es cualquier subconjunto de Σ^* . Un lenguaje formal es un conjunto de cadenas de símbolos tomados de algún alfabeto (conjunto finito de símbolos).

Definición

El conjunto vacío (\emptyset) y el conjunto formado por la cadena $\{\lambda\}$ son lenguajes.

Definición

Sea un conjunto de cadenas sobre un alfabeto fijo Σ . Este Lenguaje se lo puede llamar cómo Σ^* (Clausura de Kleene). Las cadenas pertenecientes a Σ^* se forman con 0 o más concatenaciones de los elementos del alfabeto, mientras que la Σ^+ se forma de una en adelante.

Si $\Sigma = \{a\}$: $\Sigma^* = \{\lambda, a, aa, aaa, \dots\}$ y $\Sigma^+ = \{a, aa, aaa, \dots\}$ >>> set(['a'*i for i in range(5)])
['', 'a', 'aa', 'aaa', 'aaaa']

>>> Lenguajes Formales (Cont.)

Definición

Si un lenguaje L es finito, se puede especificar por extensión, como $L_1 = \{aba, bbbb, aa\}$. Si es infinito, se puede especificar mediante predicados, por ejemplo $L_2 = a^p, p \ es \ primo$. Este mecanismo es poderoso, pero no permite tener una idea de la complejidad del lenguaje, en el sentido de cuán difícil es determinar si una cadena pertenece o no a L, o de enumerar las cadenas de L.

>>> Operaciones sobre Lenguajes

Sean L y M lenguajes:

- * Unión $L \cup M = \{x | x \in L \ o \ x \in M\}$
- * Concatenación $L.M = \{xy | x \in L \ y \ y \in M\}$
- * Clausura de Kleene $L^* = \bigcup_{i=0}^{\infty} L^i$
- st Clausura Positiva $L^+ = igcup_{i=1}^\infty L^i$
- * Exponenciación $L^n=L.L.L...$
- * Complemento $L^c = \Sigma^* L$

>>> Gracias!

[5. The End]\$ _