1-Modeling

1.5-Formal reasoning

1.5-Formal Reasoning

- 1. Logic(s)
- 2. Reasoning Problems
- 3. Choosing a logic

■ Types of logics

1.5.1-Logic(s)

Lecture index

- 1. Logic(s)
- Reasoning Problems
- 3. Choosing a logic

Logic, calculus and reasoning (notion)

Notion 1 (Logic) A **logic** L is a triple $\mathcal{L} = \langle L, I, \models \rangle$, where L is a formal language, $I: L \to D$ is an interpretation function, and \models is an entailment relation $\models_L \subseteq M \times T$, where $T \subseteq L$ is a theory and $M \subseteq D^L$ is a model of T, with D^L being generated starting from I)

Notion 2 (Logical calculus) A **logical calculus** $\mathcal{C}_{\mathcal{L}}$ is a pair $\mathcal{C}_{\mathcal{L}} = \langle \mathcal{L}, \mathcal{P} \rangle$, where \mathcal{L} is a logic and \mathcal{P} is a set of **(reasoning) problems** to be solved in \mathcal{L} , defined as $\mathcal{P} = \{\langle \mathcal{Q}, \mathcal{A}(\mathcal{Q}) \rangle\}$, where $\mathcal{Q} = \{Q_i\}$ is a set of questions Q_i and, for each Q_i , $\mathcal{A}(\mathcal{Q}) = \{A(Q_i)\}$ is a set of possible answers for Q_i .

Notion 3 (Logical reasoning) Given a logical calculus $C_{\mathcal{L}}$, by **(logical) reasoning**, also called **(logical) inference** we mean the process by which a problem is solved via the application of a possibly not terminating **decision algorithm**.

Notion 4 (Propositional logics) Propositional logics' characteristics:

A propositional language with only primitive propositions;

PL is useful any time the problem to be solved can be formalized in a way to be independent of the internal structure of atomic formulas.

Notion 4 (Propositional logics) Propositional logics' characteristics:

- A propositional language with only primitive propositions;
- Formulas are interpreted over a domain of judgements

PL is useful any time the problem to be solved can be formalized in a way to be independent of the internal structure of atomic formulas.

Notion 4 (Propositional logics) Propositional logics' characteristics:

- A propositional language with only primitive propositions;
- Formulas are interpreted over a domain of judgements
- Complex formulas are formed by using any number of propositional connectives (elements of the sentence alphabet)

PL is useful any time the problem to be solved can be formalized in a way to be independent of the internal structure of atomic formulas.

Notion 4 (Propositional logics) Propositional logics' characteristics:

- A propositional language with only primitive propositions;
- Formulas are interpreted over a domain of judgements
- Complex formulas are formed by using any number of propositional connectives (elements of the sentence alphabet)
- Examples of propositional connectives: ¬ (to be read "not", for negation), ∧ (to be read "and", for conjunction), ∨ (to be read "or", for disjunction), ⇒ (to be read "implies", for implication), ⇒ (to be read "if and only if", for equivalence), ↑ (to be read "nand", for negative conjunction), ↓ (to be read "nor", for negative disjunction).

PL is useful any time the problem to be solved can be formalized in a way to be independent of the internal structure of atomic formulas.

Notion 5 (First order logics) First order logics' characteristics:

Complex terms and complex formulas:

Notion 5 (First order logics) First order logics' characteristics:

- Complex terms and complex formulas:
- Primitive formulas are most often not part of the language

Notion 5 (First order logics) First order logics' characteristics:

- Complex terms and complex formulas:
- Primitive formulas are most often not part of the language
- Terms and atomic formulas are interpreted over a domain of entities and facts. Complex formulas are interpreted over a domain of judgements.

Notion 5 (First order logics) First order logics' characteristics:

- Complex terms and complex formulas:
- Primitive formulas are most often not part of the language
- Terms and atomic formulas are interpreted over a domain of entities and facts. Complex formulas are interpreted over a domain of judgements.
- Complex formulas are formed by using any number of propositional connectives plus any number of quantifiers

Notion 5 (First order logics) First order logics' characteristics:

- Complex terms and complex formulas;
- Primitive formulas are most often not part of the language
- Terms and atomic formulas are interpreted over a domain of entities and facts. Complex formulas are interpreted over a domain of judgements.
- Complex formulas are formed by using any number of propositional connectives plus any number of quantifiers
- Examples of quantifiers are: ∀ (to be read "for all", for universal quantification over a set of terms, ∃ (to be read "there exists", for existential quantification over a set of terms).

Notion 6 (Description logics DL (notion)) Description logics' characteristics:

 An FOL logic and language + a PL logic and language allowing only for atomic not primitive formulas;

DL models and allows to represent and reason about ER diagrams, UML diagrams, relational DBs, knowledge graphs.

Notion 6 (Description logics DL (notion)) Description logics' characteristics:

- An FOL logic and language + a PL logic and language allowing only for atomic not primitive formulas:
- Only 1-ary predicates (classes) and binary predicates (roles), only primitive terms:

DL models and allows to represent and reason about ER diagrams, UML diagrams, relational DBs, knowledge graphs.

Notion 6 (Description logics DL (notion)) Description logics' characteristics:

- An FOL logic and language + a PL logic and language allowing only for atomic not primitive formulas:
- Only 1-ary predicates (classes) and binary predicates (roles), only primitive terms:
- Terms and formulas are interpreted over a domain of entities and facts.

DL models and allows to represent and reason about ER diagrams, UML diagrams, relational DBs, knowledge graphs.

Notion 6 (Description logics DL (notion)) Description logics' characteristics:

- An FOL logic and language + a PL logic and language allowing only for atomic not primitive formulas:
- Only 1-ary predicates (classes) and binary predicates (roles), only primitive terms:
- Terms and formulas are interpreted over a domain of entities and facts.
- complex formulas are formed by using propositional connectives plus two modal operators

DL models and allows to represent and reason about ER diagrams, UML diagrams, relational DBs, knowledge graphs.

Notion 6 (Description logics DL (notion)) Description logics' characteristics:

- An FOL logic and language + a PL logic and language allowing only for atomic not primitive formulas;
- Only 1-ary predicates (classes) and binary predicates (roles), only primitive terms;
- Terms and formulas are interpreted over a domain of entities and facts.
- complex formulas are formed by using propositional connectives plus two modal operators
- The modal operator are: $\exists R$ (to be read "there exists an element of ... ", for existential quantification over the codomain of a role), $\forall R$ (to be read "for all elements of ", for universal quantification over the codomain of a role.

DL models and allows to represent and reason about ER diagrams, UML diagrams, relational DBs, knowledge graphs.

(Artificial Intelligence) Default logics: FOL logics + universal default quantifications;

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;
- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas;

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;
- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas;
- (Maths, Formal Methods) Higher order logics: quantification over formulas;

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;
- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas;
- (Maths, Formal Methods) Higher order logics: quantification over formulas;
- (Artificial Intelligence) Circumscription: HOL logics + non-monotonic reasoning;

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;
- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas;
- (Maths, Formal Methods) Higher order logics: quantification over formulas;
- (Artificial Intelligence) Circumscription: HOL logics + non-monotonic reasoning;
- (Analytic Phylosophy, Artificial Intelligence): PL + formula modal operators (e.g., Belief, knowledge, Obligation) leading to e.g., Autoepistemic logics, Deontic logics, Dynamic logics ...;

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;

Logic(s)

- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas:
- (Maths, Formal Methods) Higher order logics; quantification over formulas;
- (Artificial Intelligence) Circumscription: HOL logics + non-monotonic reasoning;
- (Analytic Phylosophy, Artificial Intelligence): PL + formula modal operators (e.g., Belief, knowledge, Obligation) leading to e.g., Autoepistemic logics, Deontic logics, Dynamic logics ...;
- (Artificial Intelligence, Formal Methods) Temporal logics: PL + formula modal operators:

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;
- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas;
- (Maths, Formal Methods) Higher order logics: quantification over formulas;
- (Artificial Intelligence) Circumscription: HOL logics + non-monotonic reasoning;
- (Analytic Phylosophy, Artificial Intelligence): PL + formula modal operators (e.g., Belief, knowledge, Obligation) leading to e.g., Autoepistemic logics, Deontic logics, Dynamic logics ...;
- (Artificial Intelligence, Formal Methods) Temporal logics: PL + formula modal operators;
- ... plus many more ...

- (Artificial Intelligence) Default logics: FOL logics + universal default quantifications;
- (Artificial Intelligence) Context logics: PL or FOL or DL logics plus localization;
- (Maths, Formal Methods) Metalogics: FOL logics + names for formulas;
- (Maths, Formal Methods) Higher order logics: quantification over formulas;
- (Artificial Intelligence) Circumscription: HOL logics + non-monotonic reasoning;
- (Analytic Phylosophy, Artificial Intelligence): PL + formula modal operators (e.g., Belief, knowledge, Obligation) leading to e.g., Autoepistemic logics, Deontic logics, Dynamic logics ...;
- (Artificial Intelligence, Formal Methods) Temporal logics: PL + formula modal operators;
- ... plus many more ...
- (Artificial Intelligence): EML (Entity Modeling language and Logic): Graph Logic + agent interaction - Agent based information exchange in the Web

1-Modeling

1.5-Formal reasoning

