変分法は,

- 1. **試行関数** $|\psi\rangle$ をたくさん用意し,
- 2. それぞれのエネルギー $E(\psi)$ を計算し,
- 3. その中で最小の $E(\psi)$ を E_0 の近似解とする

近似法である.

図 1: 変分法

まず,変分法の基本原理を説明する.

変分法の基本原理 -

任意の状態ベクトル $|\psi\rangle$ に対して $|\psi\rangle$ でのエネルギー関数 $E(\psi)$ について,

$$E(\psi) = \frac{\left\langle \psi \middle| \hat{H} \middle| \psi \right\rangle}{\left\langle \psi \middle| \psi \right\rangle} \ge E_0 \tag{0.0.1}$$

なる不等式が成り立つ. ただし E_0 は \hat{H} の固有エネルギーの中で最低のものである.

Proof. 任意の状態ベクトル $|\psi\rangle$ を Hilbert 空間の基底 $|k\rangle$ を用いて,

$$|\psi\rangle = \sum_{k} c_k |k\rangle \tag{0.0.2}$$

と展開する. また,

$$\hat{H}|k\rangle = E_k|k\rangle \tag{0.0.3}$$

とする. 式 (0.0.2) を式 (0.0.1) に用いると,

$$E(\psi) = \frac{\left\langle \psi \middle| \hat{H} \middle| \psi \right\rangle}{\left\langle \psi \middle| \psi \right\rangle}$$

$$= \frac{\sum_{k,k'} \left\langle k \middle| c_k^* \hat{H} c_{k'} \middle| k' \right\rangle}{\sum_{k,k'} \left\langle k \middle| c_k^* c_{k'} \middle| k' \right\rangle}$$

$$(0.0.4)$$

$$= \frac{\sum_{k,k'} c_n^* c_{n'} E_{k'} \langle k|k' \rangle}{\sum_{k,k'} c_k^* c_{k'} \langle k|k' \rangle}$$

$$(0.0.6)$$

$$=E_k \ge E_0 \tag{0.0.7}$$

となる.つまり,あらゆる状態ベクトル $|\psi\rangle$ のエネルギーは基底エネルギー E_0 以上である.

例題 0.1

ポテンシャル $V(x) = \lambda x^4$ 中に粒子がある系を考える. この系のハミルトニアンは、

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \lambda x^4 \tag{0.0.8}$$

である. 予想される基底状態が満たすべき条件は,

- x = 0 で存在確率が最大
- $|x| \to \infty$ で存在確率が 0
- 節がない^a

である。この条件と変分法を用いて、基底エネルギーの近似値を求めよ、試行関数として、

$$\psi(x,\alpha) = \exp\left(-\frac{\alpha x^2}{2}\right) \tag{0.0.9}$$

なる $\psi(x,\alpha)$ を用いよ. ただし, $\alpha > 0$ である.

^a節があると微係数が大きい点が存在し、これは運動エネルギーを大きくしてしまう.

エネルギー関数を計算する. 見通しをよくするために、

$$I_0 := \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \tag{0.0.10}$$

$$I_1 := \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx \tag{0.0.11}$$

$$I_2 := \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx \tag{0.0.12}$$

とすると、

$$E(\alpha) = \frac{\int_{-\infty}^{\infty} \psi^* \hat{H} \psi \, dx}{\int_{-\infty}^{\infty} \psi^* \psi \, dx}$$
(0.0.13)

$$= \frac{\frac{\hbar^2}{2m}\alpha \int_{-\infty}^{\infty} e^{-\alpha x^2} dx - \frac{\hbar^2 \alpha^2}{2m} \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx + \lambda \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx}{\int_{-\infty}^{\infty} e^{-\alpha x^2} dx}$$
(0.0.14)

$$=\frac{\frac{\hbar^2}{2m}\alpha I_0 - \frac{\hbar^2 \alpha^2}{2m} I_1 + \lambda I_2}{I_0}$$
 (0.0.15)

である. I_1 は,

$$I_1 = \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx = \int_{-\infty}^{\infty} x \frac{d}{dx} \left(-\frac{e^{-\alpha x^2}}{2\alpha} \right) dx$$
 (0.0.16)

$$= -\frac{1}{2\alpha} \left(\left[x e^{-\alpha x^2} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \right)$$
 (0.0.17)

$$= \frac{1}{2\alpha} \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \tag{0.0.18}$$

$$=\frac{1}{2\alpha}I_0\tag{0.0.19}$$

と計算できる. I_2 は,

$$I_2 = \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx = \int_{-\infty}^{\infty} x^3 \frac{d}{dx} \left(-\frac{e^{-\alpha x^2}}{2\alpha} \right) dx$$
 (0.0.20)

$$= -\frac{1}{2\alpha} \left(\left[x^3 e^{-\alpha x^2} \right]_{-\infty}^{\infty} - 3 \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx \right)$$
 (0.0.21)

$$= \frac{3}{2\alpha} I_1 \tag{0.0.22}$$

$$= \frac{3}{4\alpha^2} I_0 \tag{0.0.23}$$

であるから,式(0.0.15)は,

$$E(\alpha) = \frac{\frac{\hbar^2}{2m} \alpha I_0 - \frac{\hbar^2 \alpha^2}{2m} \frac{1}{2\alpha} I_0 + \lambda \frac{3}{4\alpha} I_0}{I_0}$$
(0.0.24)

$$=\frac{\hbar^2\alpha}{4m} + \frac{3\lambda}{4\alpha^2} \tag{0.0.25}$$

となる.第1項は運動エネルギーを,第2項はポテンシャルエネルギーを,それぞれ表している^a.式 (0.0.15) の最小値が基底エネルギー E_0 の近似解である.よって, $\frac{\mathrm{d}}{\mathrm{d}\alpha}E(\alpha_0)=0$ となる α_0 を式 (0.0.15) に代入することで近似解,

$$E(\alpha_0) = \frac{3}{8} \left(\frac{6\hbar^4 \lambda}{m^2} \right)^{1/3} \tag{0.0.26}$$

を得る

 a ポテンシャルエネルギーの項は α が大きくなるほど小さくなる. これは,波動関数が狭まり x=0 での存在確率が大きくなるためである.一方,運動エネルギーの項は α が大きくなるほど大きくなる. これは,不確定性関係 $\Delta x \Delta p \geq \frac{\hbar}{2}$ より,運動量のばらつきが大きくなるためである.

