ロイド・シャープレー

Konrad Jacobs, Erlangen, Copyright is with MFO - Mathematisches Institut Oberwolfach (MFO),

https://opc.mfo.de/detail?photoID=3808, CC BY-SA 2.0 de,

https://commons.wikimedia.org/w/index.php?curid=4998292による

とりあげるトッピク

- ●安定結婚問題
- シャープレイ値
 - ■障害対策への応用
 - AIへの応用

安定結婚問題

- ●一郎: A子>B子>c子
- ●二郎: A子>C子>B子
- ●三郎: C子>A子>B子
- ●3組のペアを不満無く作りたい

- ●A子: 二郎>一郎>三郎
- ●B子: 一郎>二郎>三郎
- C子: 一郎>三郎>二郎

解とアルゴリズム

- ●安定解が必ず存在
- ゲール-シャープレイアルゴリズム

シャープレイ値

- 協力ゲーム
 - ■ゲーム理論の一分野
- ●協力して利益をあげたとき、どのように利益を公平に配分するか?
- ●シャープレイ値:公平に配分された利益

問題例:水道設備の設置

- A, B, Cの3市が協力して水道設備を設置*
- ●個別に設置した場合
 - A市:7000万円
 - B市:5500万円
 - C市:6500万円
- 2市が協力した場合
 - A, B: 1億1900万円
 - B, C: 1億1200万円
 - A, C: 隣接していないので協力できない
- 3市が協力した場合
 - 1億7000万円
- 3市が協力したとき,各市の負担は?

*武藤, ゲーム理論入門, 日本経済新聞社, 2001

特性関数によるゲームのモデル化

- 特性関数 v(S)提携S (互いに協力するプレイヤーの集合)が得る利得
- $v: 2^N \to \mathbb{R}$
 - *N*: プレイヤーの集合
 - 2^N: Nのべき集合
 - ℝ: 実数の集合

水道設備の設置の例に対する特性関数

- ●個別に設置した場合
 - A市:7000万円
 - B市:5500万円
 - C市:6500万円
- 2市が協力した場合
 - A, B: 1億1900万円
 - B, C: 1億1200万円
 - A, C: 隣接していないので協力 できない
- 3市が協力した場合
 - 1億7000万円

- \bullet $v(\emptyset) = 0$
- $v({A}) = 0$
- $v(\{B\}) = 0$
- $v(\{C\}) = 0$
- $v({A, B}) = 70+55-119 = 6$
- $v(\{B, C\}) =$ _____
- $v({A, C}) = 0$
- $v({A, B, C})$ = 70+55+65-170 = 20

シャープレイ値

- 1. 全員提携に全プレイヤーが加わる順番を表す順列を1つずつ考える
- 2. その順列で、各プレイヤーの貢献度を求める
- 3. すべての順列について貢献度の平均を求める
 - $v(\emptyset) = 0$
 - $v({A}) = 0$
 - $v(\{B\}) = 0$
 - $v(\{C\}) = 0$
 - $v({A, B}) = 6$
 - $v(\{B, C\}) = 8$
 - $v({A, C}) = 0$
 - $v({A, B, C}) = 20$

1st	2 nd	3 rd	Α	В	С
Α	В	C	0		
Α	C	В	0		
В	Α	C	6		
В	C	Α	12		
C	Α	В	0		
C	В	Α	12		

シャープレイ値 5

シャープレイ値

- ■配分:全員提携の利得ν(N) のプレイヤーへの割り当て
- シャープレイ値
 - ■以下の条件を満たす唯一の配分
 - ◆ナルプレイヤーに関する性質
 - □貢献度0のプレイヤーの利得は0
 - ◆対称性
 - □どの提携でも貢献度が同じプレイヤーは、利得も同じ
 - ◆加法性
 - □2つの別々のゲームにおける利得の和が、それらを統合した ゲームにおける利得と同じ

水道設備の設置の例 負担額

- 個別に設置した場合
 - A市:7000万円
 - B市: 5500万円
 - C市: 6500万円
- 2市が協力した場合
 - A, B: 1億1900万円
 - B, C: 1億1200万円
 - A, C: 隣接していないので協力できない
- 3市が協力した場合
 - 1億7000万円

- シャープレイ値
 - A: 5
 - B: 9
 - **C**: 6
- 全員提携の利得
 - (7000万円+5500万円+6500万円) -1億7000万円 = 2000万円
- 負担額
 - A: 7000万円-500万円 = 6500万円
 - **B**:
 - **C**:

協力ゲームに基づく相互依存ネットワークの 構成要素に対する脆弱性評価

背景

- 電力システム等のサイバーフィジカルシステム
 - ■構成要素が互いに依存するネットワーク
 - ■少数の構成要素の障害がシステム全体へ伝播する問題

◆例. イタリアの大停電(2003年)

相互依存ネットワーク (Interdependent network)

> J. Banerjee, K. Basu, A. Sen, On Hardening Problems in Critical Infrastructure Systems, International Journal of Critical Infrastructure Protection, 23, Dec.2018, Pages 49-67

故障伝播のモデル

- Implicative Interdependency Model (Sen et al. 2014)
 - ■ノードの稼働条件: 積和形のブール式で表現

ネットワークA	ネットワークB
a1←b2	b1←a1+a2
a2←b2	b2←a1a2
a3←b4	b3←a2+a1a3
	b4←a3

	ステップ数			
要素	0	1	2	3
a1	0	0	0	0
a2	0	0	0	0
a3	×	×	×	×
b1	0	0	0	0
b2	0	0	0	0
b3	0	0	0	0
b4	×	×	×	×

	ステップ数			
要素	0	1	2	3
a1	0	0	×	×
a2	×	×	×	×
a3	×	×	×	×
b1	0	0	0	×
b2	0	×	×	×
b3	0	×	×	×
b4	0	×	×	×

引用: A. Sen, A. Mazumder, J. Banerjee, A. Das, R. Compton, Identification of k most vulnerable nodes in multilayered network using a new model of interdependency, in: Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, IEEE, 2014, pp. 831–836.

研究の目的

- ●ノードの重要度の評価
 - どのノードがネットワークの脆弱点か?
 - ■どのノードを強化すればよいか?
- ●問題
 - ■ノードを個別に評価できない
 - ◆他のノードとのインタラクションに よって影響が変わる

	ステップ数			
要素	0	1	2	3
a1	0	0	0	0
a2	0	0	0	0
a3	×	×	×	×
b1	0	0	0	0
b2	0	0	0	0
b3	0	0	0	0
b4	×	×	×	×

	ステップ数			
要素	0	1	2	3
a1	0	0	×	×
a2	×	×	×	×
a3	×	×	×	×
b1	0	0	0	×
b2	0	×	×	×
b3	0	×	×	×
b4	0	×	×	×

協力ゲームとシャープレイ値

- 協力ゲーム
 - ■ゲーム理論の一分野
 - ■協力して利益をあげたとき、どのように利益を公平に配分するか?
- シャープレイ値
 - ■プレーヤーの貢献度
 - ◆利益を公平に配分
- ●貢献度が高い = 重要性(脆弱性)が高い
 - ■要素の重要性の評価に利用可能では?

例:水道を3市で共同設置

- 2市が協力した場合
 - A, B: 600万円得,
 - B, C: 800万円得
- 3市が協力した場合 2000万円得

- •特性関数
 - $\mathbf{v}(\mathbf{0}) = 0$
 - $v({A}) = 0$
 - $v(\{B\}) = 0$
 - $v(\{C\}) = 0$
 - $v({A, B}) = 6$
 - $v({B, C}) = 8$
 - $v({A, C}) = 0$
 - $v({A, B, C}) = 20$

- シャープレイ値
 - A: 5
 - ◆ 500万円
 - B: 9
 - ◆900万円
 - **C**: 6
 - ◆600万円

問題と提案手法

●強化問題

- 入力: 相互依存ネットワーク、整数 k、初期障害確率 r
- 仮定: 障害が発生しないようにノードを強化できる
- ■目的:未強化のノードに発生した初期障害による影響の最小化
- ■出力:影響を最小化するような k 個の強化ノード

●提案手法

- ■シャープレイ値を用いて初期障害の影響度を定量化
- ■影響度が大きいk個のノードを強化

提案する方法 相互依存ネットワークゲーム

- ●ノードが協力してネットワークにダメージを与えるゲーム
 - N: プレイヤーの集合 = 初期故障ノードの集合
 - ■特性関数 $\nu(S): 2^N \to \mathbb{R}$
 - ◆Sが初期故障のとき、故障伝播により最終的に故障したノード数

簡単な例:
$N=\{A,C\}$
が初期故障

•
$$v(\emptyset) = 0$$

•
$$v({A}) = 1$$

•
$$v(\{C\}) = 3$$

•
$$v({A, B, C}) = 3$$

1st	2 nd	A	C
Α	C	1	2
С	Α	0	3
シャープレイ値		1/2	5/2

A←BC
B←A+C
C←True

	ステップ数		
要素	0	1	2
a1	×	×	×
a2	0	0	0
a3	0	0	0

	ステップ数		
要素	0	1	2
Α	0	×	×
В	0	0	×
С	×	×	×

複数の故障パターン

A←BC

 $B \leftarrow A + C$

C←True

●各パターンごとにシャープレイ値を求め、確率をかけて平均

■例. 2ノードが故障: Aの値: 1/2*1/3 + 1/2 * 1/3 = 2/6

ABが協力するゲーム

$$\vee(\{\mathbf{A}\}) = \mathbf{1}$$

$$\vee(\{\mathbf{B}\})=\mathbf{2}$$

$$\vee(\{A, B\}) = 2$$

ACが協力するゲーム

$$\vee(\{\mathbf{A}\}) = \mathbf{1}$$

$$\vee(\{\mathbf{C}\})=3$$

$$\vee(\{A, C\}) = 3$$

BCが捻力	けるゲーム
ロしんいわカノ	19 あり 一ム

1 st	2 nd	A	В	
Α	В	1	1	
В	A	0	2	
シャープレイ値		1/2	3/2	

1 st	2 nd	A	C	
Α	C	1	2	
С	Α	0	3	
シャープレイ値		1/2	5/2	

実験

- ・いくつかの強化ノード選択手法を比較
 - shapley, k-shapley, r-shapley
 - ◆シャープレイ値が大きいノードから順に k 個のノードを選択する
 - r-Shapley
 - □初期故障ノード数の平均(r×全ノード数)と同数のノードが初期故障する場合のシャープレイ値を利用
 - K-Shapley
 - □k台が初期故障する場合のシャープレイ値を利用
 - Shapley
 - □ノードすべてが初期故障する場合のシャープレイ値を利用

実験

- ・いくつかの強化ノード選択手法を比較
 - shapley, k-shapley, r-shapley
 - ◆影響度が大きいノードから順に k 個のノードを選択する
 - greedy
 - ◆以下のアルゴリズムに基づき、k 個のノードを選択する

greedy を用いた 強化ノードの選択アルゴリズム

- 1. 各ノードに<u>単独で障害が発生した</u>場合の、定常状態における障害ノード数が最も多いノードを選択
- 2. 1. で選んだノードと同時に障害が発生した場合の、定常状態における障害ノード数が最も多いノードを選択
- 3. 1.2.で選んだノードと同時に障害が発生した場合の...
- 4. 以上を k 個のノードが選択されるまで繰り返す

実験

- ●各手法、各kに対して、
 - 1. k個の強化ノードを選択
 - 2. n-k 個の未強化ノードに確率 r で初期障害を発生
 - 3. 障害伝播数を計算

を10万回試行し、障害伝播数の平均値を求める

		強化ノード数 k			
		1	2		n
手法	greedy				
	shapley				
	k-shapley				
	r-shapley				

実験結果

- 全体的な障害伝播数の大きさ
 - r-shapley < k-shapley < shapley < greedy</p>
- 障害伝播数が0となる k の値
 - r-shapley が最も小さい

まとめ

- ●相互依存ネットワークでの故障伝播について議論
- ・ノードの重要度の評価
 - ■ネットワークの脆弱な点を知りたい
- ●協力ゲームで表現し、シャープレイ値で評価
 - ■相互依存ネットワークゲーム
- ●応用例:強化問題
 - ■シャープレイ値の高いノードを強化
 - ■グリーディー手法より良い結果
- ●今後の課題
 - ■シャープレイ値の計算の高速化, 精度保証
 - ■他の概念(コア, 仁)に関する検討

シャープレイ値の機械学習での応用

- シャープレイ値によって、個々の特徴量がモデル予測値に与える貢献度を評価可能
- 例. 気温Z1, 湿度Z2, 気圧Z3から熱中症患者数を予測

- 説明可能な AI(Explainable AI: XAI)の文脈で注目
 - SHAP (SHapley Additive exPlanations)
 - ただし、不適切という指摘もある
 - https://cacm.acm.org/research/explainability-is-not-a-game/