From Cellular Automata to the Lattice Boltzmann Method

BGCE Honours Project

Theresa Pollinger, Marcial Gaißert Ferienakademie Sarntal 2017 September 5, 2017 Outline

The Lattice Boltzmann Method

Stream Step

Discrete particle distribution function

$$f_i = c_i \cdot w_i$$

Stream Step

Discrete particle distribution function

$$f_i = \mathbf{c_i} \cdot \mathbf{w_i}$$

One streaming step for a D2Q9-stencil

Stream Step

Discrete particle distribution function

$$f_i = \mathbf{c_i} \cdot \mathbf{w_i}$$

One streaming step for a D2Q9-stencil

The Lattice Boltzmann Equation

Applied as the collide step:

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

Moments - the Interesting Outputs in LBM

Density and velocity are given locally

$$\rho(\mathbf{x},t) = \sum_{i} f_i(\mathbf{x},t)$$

$$\rho \mathbf{u}(\mathbf{x},t) = \sum_{i} \mathbf{c}_{i} f_{i}(\mathbf{x},t)$$

Source: kruger.2016

Earth Mantle Convection II

Creeping flow, according to weismueller.2015

$$\left. \begin{array}{ll} \mu & \approx 10^{21}\,\mathrm{Pa}\cdot\mathrm{s} \\ u & \approx 3\,\mathrm{cm/a} \\ h & = 2867\,\mathrm{km} \\ \rho & \approx 4000\,\mathrm{kg/m}^3 \end{array} \right\} Re = \frac{\rho\cdot u\cdot h}{\mu} \approx 10^{-20} \ll 1$$

$$\mu \Delta \mathbf{u} - \nabla p + \mathbf{f} = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

Earth Mantle Convection II

Creeping flow, according to weismueller.2015

$$\left. \begin{array}{ll} \mu & \approx 10^{21} \, \mathrm{Pa \cdot s} \\ u & \approx 3 \, \mathrm{cm/a} \\ h & = 2867 \, \mathrm{km} \\ \rho & \approx 4000 \, \mathrm{kg/m}^3 \end{array} \right\} Re = \frac{\rho \cdot u \cdot h}{\mu} \approx 10^{-20} \ll 1$$

- Dominant viscous forces, negligible inertial forces
- Navier-Stokes equations simplify to Stokes equations

$$\mu \Delta \mathbf{u} - \nabla p + \mathbf{f} = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

Construct a divergence-free velocity field

$$\begin{bmatrix} u \\ v \end{bmatrix} = \nabla^{\perp} \Phi = \begin{bmatrix} \sin(2\pi x)\cos(\pi y) \\ -2\cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} f_{X} \\ f_{Y} \end{bmatrix} = \begin{bmatrix} -\Delta u \\ -\Delta v \end{bmatrix} + \nabla \rho = \begin{bmatrix} 0 \\ ? \end{bmatrix}$$

$$\Rightarrow p = \frac{5}{2}\pi\cos(2\pi x)\cos(\pi y)$$

$$\mathbf{F} = \begin{bmatrix} f_X \\ f_y \end{bmatrix} = \begin{bmatrix} 0 \\ -12.5\pi^2 \cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct a divergence-free velocity field

$$\begin{bmatrix} u \\ v \end{bmatrix} = \nabla^{\perp} \Phi = \begin{bmatrix} \sin(2\pi x)\cos(\pi y) \\ -2\cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct the pressure field according to the *Stokes* equations with $\mu = 1$

$$\mathbf{F} = \begin{bmatrix} f_{x} \\ f_{y} \end{bmatrix} = \begin{bmatrix} -\Delta u \\ -\Delta v \end{bmatrix} + \nabla \rho = \begin{bmatrix} 0 \\ ? \end{bmatrix}$$

$$\Rightarrow p = \frac{5}{2}\pi\cos(2\pi x)\cos(\pi y)$$

$$\mathbf{F} = \begin{bmatrix} f_{x} \\ f_{y} \end{bmatrix} = \begin{bmatrix} 0 \\ -12.5\pi^{2}\cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct a divergence-free velocity field

$$\begin{bmatrix} u \\ v \end{bmatrix} = \nabla^{\perp} \Phi = \begin{bmatrix} \sin(2\pi x)\cos(\pi y) \\ -2\cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct the pressure field according to the *Stokes* equations with $\mu = 1$

$$m{F} = egin{bmatrix} f_x \ f_y \end{bmatrix} = egin{bmatrix} -\Delta u \ -\Delta v \end{bmatrix} +
abla p = egin{bmatrix} 0 \ ? \end{bmatrix}$$

$$\Rightarrow p = rac{5}{2}\pi\cos(2\pi x)\cos(\pi y)$$

$$\mathbf{F} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 0 \\ -12.5\pi^2 \cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct a divergence-free velocity field

$$\begin{bmatrix} u \\ v \end{bmatrix} = \nabla^{\perp} \Phi = \begin{bmatrix} \sin(2\pi x)\cos(\pi y) \\ -2\cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct the pressure field according to the *Stokes* equations with $\mu = 1$

$$m{F} = egin{bmatrix} f_x \ f_y \end{bmatrix} = egin{bmatrix} -\Delta u \ -\Delta v \end{bmatrix} +
abla p = egin{bmatrix} 0 \ ? \end{bmatrix}$$

$$\Rightarrow p = rac{5}{2}\pi\cos(2\pi x)\cos(\pi y)$$

Calculate the force field

$$\mathbf{F} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 0 \\ -12.5\pi^2 \cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct a divergence-free velocity field

$$\begin{bmatrix} u \\ v \end{bmatrix} = \nabla^{\perp} \Phi = \begin{bmatrix} \sin(2\pi x)\cos(\pi y) \\ -2\cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Construct the pressure field according to the *Stokes* equations with $\mu = 1$

$$m{F} = egin{bmatrix} f_X \ f_y \end{bmatrix} = egin{bmatrix} -\Delta u \ -\Delta v \end{bmatrix} +
abla
ho = egin{bmatrix} 0 \ ? \end{bmatrix}$$

$$\Rightarrow
ho = rac{5}{2}\pi\cos(2\pi x)\cos(\pi y)$$

Calculate the force field

$$\mathbf{F} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 0 \\ -12.5\pi^2 \cos(2\pi x)\sin(\pi y) \end{bmatrix}$$

Preparations

- Use CLOCK_MONOTONIC from the system environment for runtime measurement
- Implement "random-noise" initialization
- Implement an approximated L2 norm to ensure comparability with LBM ⇒ Verification by taking the norm of the analytical velocity field
- Calculate the accuracy based on the approximated L2 norm

$$\frac{\| \textbf{\textit{u}} - \textbf{\textit{u}}_{\text{exact}} \|}{\| \textbf{\textit{u}}_{\text{exact}} \|}$$

Use the tolerance 10⁻¹² between two iterations to identify the steady state

LBM - very short overview

Collide step: application of the lattice Boltzmann equation

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

$$\rho(\mathbf{x},t) = \sum_{i} f_i(\mathbf{x},t)$$

$$\rho \mathbf{u}(\mathbf{x},t) = \sum_{i} \mathbf{c}_{i} f_{i}(\mathbf{x},t)$$

Source: kruger.2016

LBM - very short overview

Collide step: application of the lattice Boltzmann equation

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

Density and velocity are given locally

$$\rho(\boldsymbol{x},t) = \sum_{i} f_{i}(\boldsymbol{x},t)$$

$$\rho \mathbf{u}(\mathbf{x},t) = \sum_{i} \mathbf{c}_{i} f_{i}(\mathbf{x},t)$$

Source: kruger.2016

Boundary Conditions: Expectations

- Free-slip boundary conditions (Neumann Boundary Conditions)
- No-slip / UBB boundary conditions (Dirichlet boundary conditions)

Boundary Conditions: Expectations

- Free-slip boundary conditions (Neumann Boundary Conditions)
- No-slip / UBB boundary conditions (Dirichlet boundary conditions)

Both are expected to converge with order 2 in Δx

Thermal LBM: Principle

Thanks for listening.

Any questions?

References