

Organisation und Inhalt

Manfred Hauswirth | Open Distributed Systems | Einführung in die Programmierung, WS 23/24

Wer sind wir?

- Fachgebiet "Open Distributed Systems" (ODS)
 - Leitung: Prof. Manfred Hauswirth
- Veranstalter der Vorlesung "Einführung in die Programmierung"
- Sie begegnen uns vor allem als:
 - Prof. Manfred Hauswirth (Vorlesungen)
 - Wissenschaftliche Mitarbeiter (ISIS)
 - TutorInnen (Lehraufgaben)
- Wenn Sie Fragen oder Probleme haben:
 - Zur Immatrikulation? → Campus Center
 - Zum TUB-Account? → ZECM
 - Zum Kurs? \rightarrow ISIS

Prof. Manfred Hauswirth

Fachgebietsleiter "Open Distributed Systems" – https://www.tu-berlin.de/ods

Institutsleiter Fraunhofer - https://www.fokus.fraunhofer.de

- Skalierbare verteilte Informationssysteme
- Linked Data-Stromdatenverarbeitung
- Quantencomputing
- Semantische Sensor-Netzwerke
- Semantic Web
- Peer-to-Peer-Systeme

Melanie Lahrkamp

Fachgebietsassistenz

Kontakt: sekretariat@ods.tu-berlin.de

Damien Foucard

Technische Universität Berlin

Wiss. Mitarbeiter / Dissertant

- Hauptthema: Heavy Hitter Monitoring
 - "Viele Daten, wenig Zeit. Was ist wichtig?"
- Subthemen:
 - Trend Analysis on Texts
 - Network Monitoring
 - Recommendations on Graphs
- Stärken:
 - Statistik
 - Algorithmik

Aljoscha Meyer

Wiss. Mitarbeiter / Dissertant

- Peer-to-peer Systeme
- Datensynchronisation
- Kommuniationsprotokolle
- theoretische Informatik

Uwe A. Kuehn

Technische Universität Berlin

Wiss. Mitarbeiter / Dissertant

- Verteilte und hybride DBMS
- Datenreplikation, -partitionierung und -synchronisierung
- Applikationen auf begrenzten Ressourcen z.B. Raspberry Pi
- Blockchain, Smart Contracts
- Distributed Quantum Computing

Wo sind wir?

HFT, 4. Stock, Raum 411

Informationen und Kontakte

Infos über ISIS

Forum (ISIS)

• E-Mail: introprog@ods.tu-berlin.de

 Kontakt <u>nur über die obige E-Mail-Adresse, nicht</u> individuell (damit Sie <u>sicher</u> eine Antwort bekommen)

Studiengänge

- Informatik B.Sc.
- Technische Informatik B.Sc.
- Medieninformatik B.Sc.
- Medientechnik B.Sc.

• ...

Kenntnisse

- elementarer Datenstrukturen
- elementarer Such- und Sortierverfahren

Fähigkeiten

- Probleme und Strukturen (wieder) zu erkennen
- für ein gegebenes Anwendungsproblem die geeignete Datenstruktur zu wählen

- Verständnis des Paradigmas der imperativen Programmierung
- Fähigkeiten
 - einfache Programme schreiben
 - lesbare und verständliche Programme schreiben
 - den Aufwand (Komplexität) eines Algorithmus bzw. eines Programms abschätzen

- Einführung in eine Programmiersprache
 - Elementare Datentypen und Operatoren
 - Kontrollstrukturen: Verzweigungen, Schleifen
 - Funktionen
 - Dynamische Datenstrukturen

Datenstrukturen

- Listen
- Queue (Warteschlange), Stack (Stapel) und Heap (Haufen)
- Bäume

- Elementare Algorithmen
 - Suchen
 - Sortieren

- Algorithmen
 - Aufwandsabschätzung
 - Korrektheit

- 2 Schwerpunkte entsprechend der "Werkzeugklassen"
 - Erlernen einer Programmiersprache (hier die Sprache C)
 - Umgang mit Datenstrukturen und algorithmischen Aspekten
- Entsprechend 2 Vorlesungsteile
 - Programmierkurs (täglich in den ersten 2 Vorlesungswochen)
 - Einführung in die Programmierung (IntroProg) wöchentliche Vorlesung
- betreutes Arbeiten

- Beispiel-Programmiersprache C
 - weit verbreitet, etabliert Z.B. sind in C programmiert

Windows, Linux, MacOS, Android, iOS, Oracle, MySQL, MS SQL Server, Web Server, Embedded Systems, Internet of Things, etc., etc., etc.

- auf allen Plattformen verfügbar
- Grundlage f
 ür viele weitere Vorlesungen, u.a. Rechnerorganisation
- Hier:
 - Programmierung "im Kleinen"
 - Algorithmisches "Handwerkszeug"
- Programmbeispiele auf Deutsch und/oder Englisch

Ablauf

Ablauf im Detail

Diese Veranstaltung besteht aus 2 Teilen:

1. Programmierkurs

- Vorstellung der Konzepte
- Blockveranstaltung (täglich), 16.10. 27.10.2023, 12:15 13:45 Uhr
- Folgende Vorlesungen finden in diesen zwei Wochen nicht statt:
 - Rechnerorganisation
 - Informatik Propädeutikum

2. Einführung in die Programmierung (IntroProg)

- Grundlegende Datenstrukturen
- Algorithmen am Beispiel von Listen, Bäumen, und Sortieren
- Dauer: Rest des Semesters

Lehr- und Lernkonzept

Veranstaltungen

- Vorlesung
 - Vorstellung der Konzepte
 - Beispielprogramme
- Tutorien
 - (Vor-)Besprechung der Hausaufgaben
 - Codebeispiele
- Betreute Arbeitszeiten
 - Hilfestellung beim Programmieren inkl. Fehlersuche
- Großübung (freiwillig)
 - Q&A zu ausgewählten Themen (inverted class room)
 - Voraussetzung Vorlesungs-, und Tutoriumstoff sind durch die TN nachbereitet
 - Ggf. weitergehende Beispiele, Klausuraufgaben
 - Auswertung der Abgaben und Besprechung von Lösungsideen

Lehr- und Lernkonzept

Leistungen der Portfolioprüfung

- Hausaufgaben im Programmierkurs (Programmierung)
 - eigenständige Auseinandersetzung mit den Konzepten
 - 15% der Gesamtnote
- Hausaufgaben während des Semesters (Programmierung und Theorie)
 - eigenständige Auseinandersetzung mit den Konzepten
 - 35% der Gesamtnote
- Klausur am Semesterende (60min)
 - 50% der Gesamtnote

Vorlesungstermine

Wochentag	Datum	Uhrzeit	Raum
Montag	16.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Dienstag	17.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Mittwoch	18.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Donnerstag	19.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Freitag	20.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Montag	23.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Dienstag	24.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Mittwoch	25.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Donnerstag	26.10.2023	12:15-13:45	H 0105 (Audimax) & Zoom
Freitag	27.10.2023	12:15-13:45 (bei Bedarf)	H 0105 (Audimax) & Zoom

Zoom-URL für den Programmierkurs: https://s.fhg.de/2023-Programmierkurs-Introprog

Vorlesungstermine IntroProg

- Ab Do., 02.11.2023 regulärer Vorlesungsbetrieb
 - Vorlesung, Tutorien und Rechnerübungen (wöchentlich)
 - Einschreibung in die Tutorien in MOSES bis zum 18.10.2023 notwendig!
 - Weitere Informationen am 02.11.2023
 - Zoom-URL für die Vorlesung: https://s.fhg.de/2023-VL-Introprog
- Vorlesung: Do, jeweils 14:15 15:45 Uhr, H0105 (Audimax)
 - Zoom-URL für die Vorlesung: https://s.fhg.de/2023-VL-Introprog
- Diese Vorlesungen starten in der Woche vom 31.10.2023:
 - Rechnerorganisation
 - Informatik Propädeutikum

Einschreibung

- ISIS für Vorlesungsmaterial am besten sofort einschreiben!
 - Wenn TUB-Account vorhanden über "Selbsteinschreibung"
 - Wenn noch kein TUB-Account vorhanden über "Gastzugang", hier sind keine Abgaben möglich. Nach Erhalt eines TUB-Account bitte sofort einschreiben.

Anmeldefristen

- ISIS für Vorlesungsmaterial am besten sofort
- Modulanmeldefrist via QISPOS oder Prüfungsamt
- Für Portfolioprüfung
 - 16.10.2023 bis 05.11.2023
 - Abmeldung bis spätestens 09.11.2023
 - Empfehlung: Wählen Sie den ersten Termin am 04.03.2024
- Bereits zur Prüfung Zugelassene dürfen die Prüfung in der (alten) schriftlichen Form ablegen:
 - 90 min Klausur am 04.03.2024
 - 16.10.2023 bis 05.11.2023
 - Abmeldung bis spätestens 04.02.2024
- Beachten Sie die Ankündigungen in ISIS

Prüfungsmodalitäten

- Portfolioprüfung
 - Programmierkurs (15%)
 - + Programmieraufgaben (35%)
 - + Klausur (50%)
 - Test: 04.03.2024 08:00 10:30 Uhr
 - Wiederholungsmöglichkeit: 27.03.2024 08:00 10:30 Uhr

Programmierkurs – Organisation

Programmierkurs: Tagesablauf

- Vorlesung
 - Vorstellung der Konzepte
- Tutorien
 - (Vor-)Besprechung der Hausaufgaben
 - Codebeispiele
- Betreutes Arbeiten
 - Hilfestellung beim Programmieren inkl. Fehlersuche
- Abgaben
 - Selbstständig zu bearbeitende Programmieraufgaben
 - Einzelabgaben (keine Gruppenarbeit)
 - Die verbindliche Abgabe zur Bewertung findet im Semester statt

Programmierkurs: Tagesablauf

Zusätzlich:

- Betreutes Arbeiten, Großübungen
 - Bitte informieren Sie sich <u>unbedingt</u> über den genauen Ablauf in ISIS!
- Unterstützung per ISIS Forum
 - Hilfestellung bei (fast) allem
 - "Live"-Betreuung: während der Woche, ca. 10:00 20:00 Uhr
- Gegenseitige Hilfestellung im ISIS-Forum
 - Hilfestellung unter Studierenden ohne Lösungen zu tauschen
 - Wir beantworten Fragen immer wieder, wenn wir gerade freie Kapazität haben

Programmierkurs: Tutorien

- Hilfestellung bei Problemen
 - sehr hohe Zahl an Studierenden ⇒ Bitte um Verständnis
 - Dauer: 45 Minuten
- Thema: Aktuelle Vorlesung und Aufgabenblatt
 - pro Thema gibt es mehrere Zeitwahlmöglichkeiten
 - Teilnahme an jedem Thema ist sinnvoll, aber nicht verpflichtend
- Ziel: ca. 30 Teilnehmer pro Tutorium

Programmierkurs: Tutorien-Einteilung

Verteilung der Teilnehmenden auf die Tutorien:

- Verfahren:
 - Ausgabe der Tutorienplätze nach Zeit
 - Es gibt begrenzte Plätze und Zeitfenster!
 - Nur belegte Tutorien finden statt!
 - Überblick über die Angebote gibt es in ISIS
- Melden Sie sich bitte über ISIS an.

Bei Problemen:

- ISIS-Forum
- Nur bei persönlichen Problemen: introprog@ods.tu-berlin.de

Asking for help ...

Bei Problemen: <u>ISIS-Forum</u>, nur bei persönlichen Problemen: <u>introprog@ods.tu-berlin.de</u>

HOW TO WRITE AN E-MAIL TO YOUR INSTRUCTOR OR T.A.

Open
Distributed
Sytems
ODS

Bewertung der Abgaben

- Fristen für die Abgaben:
 - Unser dringender Rat:
 So früh als möglich beginnen.
- Programmierkursblock 10 Aufgaben
 - Ausgabe nach jeder Vorlesung (ISIS)
- Semester 4 Aufgabenblöcke
 - Jede Kategorie besteht aus:
 - Programmieraufgaben
 - Theorieaufgaben (ISIS-Aktivitäten)
 - Ausgabe themenabhängig nach jeder Vorlesung (ISIS)
 - weitere Details sind auf ISIS veröffentlicht

Block	Frist	Punkte
Programmierkurs	10.11.23	15
Abgabe 1	17.11.23	6
Abgabe 2	08.12.23	8
Abgabe 3	09.01.24	12
Abgabe 4	02.02.24	8

Abgaben – Wie?

- Alle Abgaben sind beliebig oft möglich.
- Eine Aufgabe ist bestanden, wenn alle Teilaufgaben bestanden sind (keine Teilpunkte).
- Es zählt ohne Ausnahme immer die letzte Abgabe, auch "versehentliche" oder "technisch problembehaftete" Abgaben.
- Erfolgreiche Provisionierung des TU-Accounts erforderlich.
- ISIS-Aktivitäten (Theorie)
 - werden nach der relevanten Vorlesung geöffnet
 - schließen und sind automatisch abgegeben mit Ablauf der Abgabefrist, Vorsicht beim Wiederöffnen von bereits abgegebenen ISIS-Aktivitäten.
- Programmieraufgaben
 - Werden nach der relevanten Vorlesung zip, pdf in ISIS bereitgestellt.
 - Lösung kann in gitlab erst nach erfolgreichem "Check-In" (s. Blatt 10) an das Testsystem übergeben werden.
 - je Aufgabe ein separater Abgabebranch (dazu mehr auf Blatt10 und in der Großübung KW44)

Einzelabgabe – wichtige Hinweise

Einzelabgabe

- Jede/r Studierende erarbeitet eine eigene Lösung und gibt diese ab!
- Diskussionen von Lösungswegen, Herangehensweisen, Hilfestellung sind erlaubt und sogar erwünscht!
- Aber Weitergabe von Lösungsteilen ist keine Hilfestellung, da das nicht dazu führt, ein eigenes Verständnis der Herangehensweise zu entwickeln!

Regeln

- Zwei identische Abgabeteile
 - ⇒ Eine Abgabe ist ein Plagiat!
 - ⇒ Das ist ein **Täuschungsversuch**
 - ⇒ Beide Abgaben gelten als nicht bearbeitet, da generell der/die Originalautor/in nicht ermittelbar ist.
- Wiederholungsfall ⇒ Nichtbestehen wegen Täuschung
- ChatGPT ⇒ Nichtbestehen wegen Täuschung

Identische Abgabeteile

- Abgaben werden als identisch betrachtet, wenn sie sich, u.a., nur in den
 - Variablennamen
 - Kommentaren
 - Einrückungen unterscheiden.

Hinweis: Wir benutzen Plagiatcheckertools! Zusammen mit manueller Überprüfung

Acknowledgements

- Vielen Dank an:
 - Tutor*innen des Programmierkurses aus den Fachgebieten MSC und ODS

Literaturempfehlung

- Modern C, J. Gustedt
 - <u>https://gustedt.gitlabpages.inria.fr/modern-c/</u>

- Beej's Guide to C Programming, Brian "Beej" Hall
 - http://beej.us/guide/bgc/

Weitere Literatur

- C
- Kernighan, Programmieren in C, 1990

Algorithmen und Datenstrukturen

- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C.: Introduction to Algorithms, 3. Aufl. MIT Press Cambridge, 2009
- Sedgewick, R.: Algorithms in C, Addison-Wesley, 2005
- Goodrich, M. Tamassia, R.: Data Structures and Algorithms in C++, John Wiley

Systemsoftware

 Randal E. Bryant, David R. O'Hallaron "Computer Systems: A Programmer's Perspective", Prentice Hall

Ausblick

- VL 0 "Organisation und Inhalt": Ablauf der Vorlesung, Termine
- VL 1 "Hello World": "Lebenswichtiges", Programablauf, Programmierablauf, Kompilierung und Ausführung von Programmen
- VL 2 "Die ersten Schritte": Erstes C-Programm, Elementare C-Strukturen, Datentypen, Operatoren, Schleifen
- VL 3 "Kontrollstrukturen & Funktionen": Syntax, Semantik, bedingte Anweisungen, Blöcke, Sichtbarkeit
- VL 4 "Rekursive Funktionen & Bibliotheken": rekursive Funktionsaufrufe, Modularisierung
- VL 5 "Typen": Einfache und strukturierte Datentypen, Wertebereiche, Typendefinition
- VL 6 "Speicher und Adressen": Speicher, Pointer, Funktionsaufrufe "call by value" vs. "call by reference"
- VL 7 "Speicher und Arrays": Speicher, Arrays, mehrdimensionale Arrays, Arrays und Pointer
- VL 8 "Dynamische Speicherverwaltung": Speicherallokation, Fehlerbehandlung, Rückgabewerte, Arrays/Pointer/Adressen
- VL 9 "Strings, Kanäle, Git": Strings und Arrays, Zeichensätze, Stringlänge, Ein- und Ausgabe, Arbeiten mit git

Good luck and have a lot of fun!

