DM545/DM871 Linear and Integer Programming

Lecture 13 Network Flows, Cntd

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Duality in Network Flow Problems

2. Network Simplex

		V		V		V		
	X _{e1}	X_{e_2}		x_{ij}	• • •	X_{e_m}		
	C _{e1}	C _{e2}	_ : : : _	Cij	:::_			
1	-1						=	b_1
2							=	b_2
:	:	100					=	:
i	1			-1			=	b_i
:	:	100					=	:
j				1			=	b_j
:	i :	100					=	:
n							=	b_n
e_1	1						· - <u></u> -	u_1
e_2	 	1					≤ ≤	u_2
:	:	100					\leq	:
(i,j)	i I			1			≤ ≤	u _{ij}
:	:	19.					< <	:
e_m	 					1	\leq	u_m

3

Outline

1. Duality in Network Flow Problems

2. Network Simple:

 (π_s)

 (π_i)

 (π_t)

$$z = \min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{i:ii\in A} x_{ji} - \sum_{i:ii\in A} x_{ij} = 1$$

$$\sum_{j:ji\in A} x_{ij} - \sum_{j:ij\in A} x_{ji} = 0$$

$$\sum_{i:ii\in A} x_{ji} - \sum_{i:ij\in A} x_{ij} = -1$$

$$x_{ij} \geq 0$$

for
$$i = s$$

$$\forall i \in V \setminus \{s, t\}$$

for
$$i = t$$

$$\forall ij \in A$$

$$g^{LP} = \max \pi_s - \pi_t$$
$$\pi_j - \pi_i \le c_{ij}$$

$$\forall ij \in A$$

Hence, the shortest path can be found by potential values π_i on nodes such that $\pi_s = z, \pi_t = 0$ and $\pi_i - \pi_i \le c_{ij}$ for $ij \in A$

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = 0$$
 $\forall i \in V$ (π_i) $x_{ij} \leq u_{ij}$ $\forall ij \in A$ (w_{ij}) $x_{ij} \geq 0$ $\forall ij \in A$

Dual problem:

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0 \qquad \forall ij \in A$$

		v		V	V		
	X _e 1	X _{e2}		Xij	 X_{e_m}		
	C _{e1}	C _{e2}	: :	c _{ij}	 		
1	-1					=	b_1
2	¦ .					=	b_2
:		100				=	:
i	1			-1		=	b_i
:	:	4.				=	:
j				1		=	b_j
:	:	$\gamma_{i,j}$				=	:
n						=	b_n
e_1	1					≤ ≤	u_1
e_2	 	1				\leq	u_2
:		100				\leq	:
(i,j)	 			1		≤ ≤	<i>u</i> _{ij}
:	 :	100				\leq	:
e_m	 				1	≤ ≤	u_m

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ii} \ge 0$$

$$\forall ij \in A$$

$$(2)$$

$$(3)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \leadsto (3) $\pi_s=0, \pi_t=1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_i \pi_i + w_{ii} \ge 0 \rightsquigarrow w_{ii} = 1$

$$w_{ij} = egin{cases} 1 & \textit{if ij} \in C \ 0 & \textit{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ii \in A} u_{ij} w_{ij}$

• Complementary slackness: $w_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max(st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

9

Max Flow Algorithms

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

Min Cost Flow - Dual LP

Duality Network Simplex

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = b_{i} \qquad \forall i \in V \qquad (\pi_{i})$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij}$$

$$-c_{ij} - \pi_i + \pi_j \le w_{ij}$$

$$w_{ii} \ge 0$$

$$\forall ij \in E$$

$$\forall ij \in A$$

$$(3)$$

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$, $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$

each dual variable \times the corresponding primal slack must be equal 0, ie, $w_e(x_e - u_e) = 0$;

•
$$w_e > 0$$
 then $x_e = u_e$
 $-\bar{c}_e > 0 \implies x_e = u_e$ or equivalently $\bar{c}_e < 0 \implies x_e = u_e$

Hence:

$$ar{c}_e > 0$$
 then $x_e = 0$
 $ar{c}_e < 0$ then $x_e = u_e \neq \infty$

Min Cost Flow Algorithms

Theorem (Optimality conditions)

Let x be feasible flow in N(V, A, I, u, b) then x is min cost flow in N iff N(x) contains no directed cycle of negative cost.

Note that a (directed) circuit with negative cost in N(x) corresponds to a negative cost cycle in N, if costs are added for forward edges and subtracted for backward edges.

- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 mM)$, $M = \max |b(v)|$

Outline

1. Duality in Network Flow Problems

2. Network Simplex

• A is not full-rank: adding all rows \rightarrow null vector, i.e., the rows of A are not linearly indep.

x > 0

- Since we assume that total supply equal total demand, i.e., $\sum_{i \in V} b_i = 0$ then $\operatorname{rank}[A] = \operatorname{rank}[A \mathbf{b}]$.
- Hence, one of the equations can be canceled.

- assume network N is connected
- cycle: here, a set of arcs forming a closed path (i.e., a path in which the first and the last node of the path coincide) when ignoring their orientation
- spanning tree: here, a tree that reaches everynode (it coincides with the classical notion of spanning tree if one disregards arc orientation).

Theorem (Spanning Trees)

For an undirected graph D' = (N, A'), the following are equivalent:

- (a) G' is a tree (acyclic and connected);
- (b) G' is acyclic and has n-1 arcs; and
- (c) G' is connected and has n-1 arcs.

Since we know that the matrix A is not full-rank, a basis of A consists of only n-1 linearly independent columns of A. These columns correspond to a collection of arcs of the flow network.

Theorem

Given a connected flow network, letting A be its incidence matrix, a submatrix B of size $(n-1)\times(n-1)$ is a basis of A if and only if the arcs associated with the columns of B form a spanning tree.

Proof:

if columns from A correspond to a spanning tree \implies they are lin. indep., A_B is upper triangular if a subset of columns of A are a basis \implies they are n-1 and acyclic

Hence, all basic feasible solutions explored by the simplex algorithm are spanning trees of the flow network.

As for any LP, also in min-cost flow problems there are feasible, infeasible and degenerate bases. (feasible if $\mathbf{x}_B = A_B^{-1} \mathbf{b} \ge \mathbf{0}$).

Example

Example

- $Bx_B = b$ value of variables to check feasibility
- $\mathbf{c}_N^T \boldsymbol{\pi}^T B = \mathbf{c}_B^T$ value of dual potential variables to derive reduced costs

both have very simplex structure, solved by substitution

$$\begin{array}{l} \pi_1-\pi_4=12\\ \pi_2-\pi_4=10\\ \pi_3-\pi_2=13\\ \pi_3-\pi_5=7\\ \pi_4-\pi_6=8\\ \pi_5-\pi_7=9\\ \pi_5-\pi_8=13\\ \pi_3=0\\ \end{array}$$

$$\begin{array}{l} \pi_3=0\\ \pi_3=0\\ \pi_5=7\\ \text{ and } \pi_5-\pi_8=13\\ \pi_3=0\\ \end{array}$$

$$\begin{array}{l} \pi_3=0\\ \pi_5=-7\\ \text{ and } \pi_5-\pi_8=13\\ \pi_5=-7\\ \text{ and } \pi_5-\pi_8=13\\ \pi_2=-7\\ \text{ and } \pi_5-\pi_8=13\\ \pi_2=-7\\ \text{ and } \pi_3=0\\ \end{array}$$

$$\begin{array}{l} \pi_3=0\\ \pi_5=7\\ \text{ and } \pi_5-\pi_8=13\\ \pi_2=-13\\ \text{ and } \pi_3-\pi_2=13\\ \pi_2=-13\\ \pi_2=-13\\ \text{ and } \pi_2-\pi_3=10\\ \pi_4=-23\\ \text{ and } \pi_4-\pi_6=8\\ \pi_6=-31\\ \pi_4=-23\\ \text{ and } \pi_1-\pi_4=12\\ \pi_1=-12\\ \pi_1=-12\\ \end{array}$$

$$\begin{array}{l} d_{12}=c_{12}-\pi_1+\pi_2=12-(-11)+(-13)=10\\ d_{25}=c_{25}-\pi_2+\pi_5=9-(-13)+(-7)=15\\ d_{45}=c_{45}-\pi_4+\pi_5=4-(-23)+(-7)=20\\ d_{45}=c_{45}-\pi_4+\pi_5=4-(-23)+(-16)=13\\ d_{67}=c_{67}-\pi_6+\pi_7=7-(-31)+(-16)=22\\ d_{87}=c_{67}-\pi_6+\pi_7=7-(-31)+(-16)=22\\ d_{87}=c_{67}-\pi_6+\pi_7=3-(-20)+(-16)=7\\ d_{1}=0-\pi_1=-(-11)=11\\ d_{2}=0-\pi_2=-(-13)=13\\ \end{array}$$

How much can we increase the flow θ through (54)? Until (32) reaches zero

- It can be proved that, because the basis corresponds to a tree, the equations can always be solved by simple substitution.
- The order of substitution can always be found by "walking around the tree".
- Efficient implementations further reduce the cost of determining π by updating it as they walk around the tree, rather than computing it anew at each iteration.
- When the network simplex steps are to be carried out by a computer, it is not so obvious how
- A few concise and clever data structures are used to represent the basis tree in a way that
 allows the walk around the tree and finding the circuit induced by the entering arc efficiently.
- The data structures can themselves be efficiently updated as the tree changes from iteration to iteration.