AMENDMENTS TO THE CLAIMS

Please amend claims 1, 14 and 26, as follows.

Listing of Claims

(CURRENTLY AMENDED) A precise linear fastener system comprising:

 a collet member having a base end, a top end, an inner engaging surface, and

an outer ribbed surface positioned about a central axis;

a compression ring member having a base end, a front end, an inner ribbed surface <u>having at least one radially inwardly extending rib</u>, and an outer surface positioned about a central axis;

said inner ribbed surface of said compression ring member being constructed and arranged for coaxial alignment and overlapping engagement with respect to said outer ribbed surface of said collet member, said compression ring member non-rotationally linearly traversable with respect to said outer ribbed surface of said collet member between a first release position and a second engaged position, wherein said engaged position results in said outer ribbed surface of said collet member and said inner ribbed surface of said compression ring compressing said eollet collet member and tensilely loading said compression ring member to engage a shank member having an outer gripping surface whereby said collet member is clamped to the shank member without rotating said collet member, and wherein said release position results in expansion of said collet member thereby releasing [[said]] the outer gripping surface of [[said]] the shank member.

- 2. (PREVIOUSLY PRESENTED) The precise linear fastener system of claim 1 wherein said shank member includes a first end and a second end.
- 3. (ORIGINAL) The precise linear fastener system of claim 1 wherein said ribbed outer surface of said collet member includes at least one outwardly and circumferentially extending rib, each said rib including a first ramp surface to facilitate coaxially aligned linear overlapping movement of said compression ring in relation to said collet member for engagement thereof, and a second ramp surface to facilitate linear removal of said compression ring from said collet member.
- 4. (ORIGINAL) The precise linear fastener system of claim 1 wherein said inner engaging surface of said collet member is constructed and arranged with a conjugate shape in relation to said outer gripping surface of said shank member.
- 5. (ORIGINAL) The precise linear fastener system of claim 1 wherein said inner engaging surface of said collet member is constructed and arranged with internal threads.
- 6. (WITHDRAWN) The precise linear fastener system of claim 1 wherein said inner engaging surface of said collet member is constructed and arranged with a knurled surface.

- 7. (WITHDRAWN) The precise linear fastener system of claim 1 wherein said inner engaging surface of said collet member is constructed and arranged with a generally smooth surface.
- 8. (WITHDRAWN) The precise linear fastener system of claim 1 wherein said inner engaging surface of said collet member is constructed and arranged with at least one inwardly depending lip;

wherein said inwardly depending lip is constructed and arranged with at least one tapered surface for cooperation with a conjugate tapered surface on said outer gripping surface of said shank member;

wherein linear traversal of said compression ring member with respect to said axially aligned collet member-compresses said collet member and tensilely loads said shank member.

9. (WITHDRAWN) The precise linear fastener system of claim 1 wherein said inner engaging surface of said collet member is constructed and arranged with at least one inwardly depending lip,

wherein said inwardly depending lip is constructed and arranged for cooperation with at least one snap ring groove in said outer gripping surface of said shank member;

wherein linear traversal of said compression ring member with respect to said axially aligned collet member compresses said collet member to engage said at least one snap ring groove.

- 10. (ORIGINAL) The precise linear fastener system of claim 1 wherein said first end of said shank member includes a tensioning means, said tensioning means being constructed and arranged to allow said shank member to be tensilely loaded prior to linear traversal of said compression ring member into said engagement position with respect to said collet member.
- 11. (WITHDRAWN) The precise linear fastener system of claim 10 wherein said shank member tensioning means includes at least two generally flat surfaces, wherein said at least two generally flat surfaces are constructed and arranged for gripping and placing a tensile load on said shank member prior to linear traversal of said compression ring member into said engagement position with respect to said collet member.
- 12. (WITHDRAWN) The precise linear fastener system of claim 10 wherein said shank member tensioning means includes at least one groove extending around the circumference of said first end of said shank member, wherein said at least one groove is constructed and arranged for gripping and placing a tensile load on said shank member prior to linear traversal of said compression ring member into said engagement position with respect to said collet member.

- 13. (ORIGINAL) The precise linear fastener system of claim 10 wherein said shank member tensioning means includes at least one internal bore extending inwardly from said first end of said shank member along the longitudinal centerline of said shank member, wherein said at least one internal bore is constructed and arranged for gripping and placing a tensile load on said shank member prior to linear traversal of said compression ring member into said engagement position with respect to said collet member.
- 14. (CURRENTLY AMENDED) The précis precise linear fastener system of claim 13 wherein said internal bore includes internal threads.
- 15. (WITHDRAWN) The precise linear fastener system of claim 13 wherein said internal bore includes at least one axially aligned groove extending around the circumference of aid internal bore.
- 16. (WITHDRAWN) The precise linear fastener system of claim 10 wherein said shank member tensioning meats includes a frangible stem, whereby said frangible stem is severed from said first end of said shank member when said first member reaches a predetermined tension prior to linear traversal of said compression ring member into said engagement position with respect to said collet member.

- 17. (ORIGINAL) The precise linear fastener system of claim 1 wherein said outer ribbed surface of said collet member and said inner ribbed surface of said compression ring member are constructed and arranged to maintain an axially aligned interfitting relationship in said release position.
- 18. (WITHDRAWN) The precise linear fastener system of claim wherein said outer surface of said compression ring member includes at least two wrench flats for increasing or decreasing the said tension applied to said shank member subsequent to linear traversal of said compression ring member into said engagement position with respect to said collet member.
- 19. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of plastic.
- 20. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of copper.
- 21. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of brass.
- 22. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of bronze.

- 23. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of aluminum.
- 24. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of steel.
- 25. (ORIGINAL) The precise linear fastener system of claim 1 wherein said collet member is constructed of rubber.
- 26. (CURRENTLY AMENDED) A linear fastener system, comprising:

a collet member including an outer ribbed surface defining peaks and valleys, and an inner surface adapted to grip a corresponding surface of a shank in a locked condition of said fastener system; and

a compression ring including an inner ribbed surface defining peaks and valleys corresponding to said peaks and valleys of said collet member;

the linear fastener system having a locked condition wherein said peaks of said collet member and said peaks of said compression ring are in confronting alignment, and an unlocked condition wherein said peaks of said collet member are disposed in said valleys of said compression ring, whereby said collet member may be clamped to the shank in said locked condition without rotating said collet member.