On considère le montage en demi-pont de la figure 29.1 où R_1 et R_2 représentent les deux résistances variables d'un potentiomètre rotatif de résistance totale $2R_0$ et de course angulaire totale Ω (voir figure 29.2). Les résistances R de l'autre branche potentiométrique sont fixes.

Figure 29.1- Conditionnement en pont

Figure 29.2 - Potentiomètre rotatif

- **29.1** Donner l'expression de la tension de mesure V_{mes} en fonction de R_1 , R_2 et V_g .
- **29.2** Le pont est équilibré pour une valeur α_0 de la position angulaire. A priori quelle valeur doit-on choisir pour α_0 ? En déduire les valeurs $R_1(\alpha_0)$ et $R_2(\alpha_0)$.
- **29.3** Le mesurande évolue de $\Delta \alpha$ à partir de α_0 . Donner les expressions de $R_1(\alpha_0 + \Delta \alpha)$ et $R_2(\alpha_0 + \Delta \alpha)$ puis les expressions de ΔR_1 et de ΔR_2 en fonction de $\Delta \alpha$, Ω et R_0 .
- **29.4** Donner l'expression de la variation ΔV_{mes} de la tension de mesure associée à l'angle $\alpha_0 + \Delta \alpha$.

29.5 Calculer la sensibilité de la mesure. On donne $\Omega = 250^{\circ}$ et $V_g = 1$ V.

Les mesures précédentes ont été réalisées à la température de référence $T_0 = 0$ °C. La température varie maintenant et fait varier la résistivité de la piste du potentiomètre selon $\rho(T) = \rho_0$ (1 + $\alpha_\rho T$) où est la résistivité du métal à 0 °C et la température est exprimée en °C. La température constitue donc *a priori* une grandeur d'influence de la mesure.

- **29.6** A priori, pourquoi se limite-t-on à une alimentation $V_g = 1$ V aussi faible qui limite ainsi la sensibilité de la mesure ?
- **29.7** Donner à une température $T \neq T_0$, les expressions de $R_1(\alpha_0, T)$ et $R_2(\alpha_0, T)$ en fonction de R_0 , α_ρ , $\Delta T = T T_0$, R_0 , α_ρ .
- **29.8** Donner les expressions de $R_1(\alpha_0 + \Delta \alpha, T)$ et $R_2(\alpha_0 + \Delta \alpha, T)$ pour une évolution de l'angle à une température $T \neq T_0$.
- **29.9** En déduire la nouvelle expression de la variation ΔV_{mes} et conclure.