Machine Learning Regression

Algorithm Validation:

1. SVM (Support Vector Machine)

Support Vector Machine					
Serial	Hyper	Linear	RBF(Non Linear)	Poly	Sigmoid
number	parameter	(r2 value)	r2 value	(r2 value)	(r2 value)
1	C1.0	0.8950	-0.0574	-0.0571	-0.0572
2	C10	-2.4370	-0.0568	-0.0537	-0.0547
3	C100	-357.0790	-0.0507	-0.0198	-0.030453
4	C1000	-36014.0206	0.0068	0.2662	0.1851
5	C1500	not checked	0.0378	0.3875	0.2949
6	C3000	not checked	0.1232	0.6370	0.59136
7	C6000	not checked	0.2452	0.8226	0.79725
8	C8000	not checked	0.3150	0.8286	0.83652

The Kernel type Linear R² value is 0.8950. This model looks good (1st choice)

The Kernel type Sigmoid R² value is 0.836(2nd choice)

2. Decision Tree

Decision Tree					
Sno	Criterion	Splitter	Max	R Value	
			Features		
1	squared_error	best	log2	0.662	
2	squared_error	best	sqrt	0.424	
3	friedman_mse	best	log2	-0.443	
4	friedman_mse	best	sqrt	0.202	
5	friedman_mse	random	sqrt	0.823	
6	friedman_mse	random	log2	0.673	
7	absolute_error	best	log2	0.702	
8	absolute_error	random	log2	0.246	
9	absolute_error	best	sqrt	0.414	
10	absolute_error	random	sqrt	0.210	
11	poisson	best	sqrt	0.773	
12	poisson	best	log2	0.893	
13	poisson	random	log2	0.676	
14	poisson	random	sqrt	0.793	
15	squared_error	random	log2	0.709	
16	squared_error	random	sqrt	0.483	

The Decision tree algorithm gives a better R² value (0.893) when using Criterion =poisson, splitter=best and max_features=log2

3. Random Forest Algorithm

Random Forest						
Sno	Criterion	n_estimators	random_state	R2 value		
1	Squared_error	10	0	0.9253		
2	Squared_error	50	0	0.9446		
3	Squared_error	100	0	0.9460		
4	Squared_error	100	5	0.9322		
5	Squared_error	200	0	0.9439		
6	friedman_mse	10	0	0.9207		
7	friedman_mse	50	0	0.9389		
8	friedman_mse	100	0	0.9413		
9	friedman_mse	150	0	0.9429		
10	friedman_mse	200	0	0.9442		
11	friedman_mse	200	0	0.9417		
12	poisson	10	0	0.9305		
13	poisson	50	0	0.9464		
14	poisson	100	0	0.9414		
15	poisson	60	0	0.9457		
16	poisson	75	0	0.9403		
17	poisson	70	0	0.9433		

Random Forest Algorithm gives a better R² value (0.9460) while using the following

Criterion: Squared_error, n_estimators=100 and random_state=0

Criterion: poisson, n_estimators=50 and random_state=0

4. Adaboost algorithm

Adaboost					
Sno	loss	n_estimators	random_state	R2 value	
1	linear	50	0	0.9260	
2	linear	100	0	0.9269	
3	linear	150	0	0.9299	
4	linear	200	0	0.9300	
5	linear	500	0	0.9361	
6	square	50	0	0.9176	
7	square	100	0	0.9198	
8	square	1000	0	0.9189	
9	exponential	50	0	0.9205	
10	exponential	100	0	0.9287	
11	exponential	150	0	0.9330	
12	exponential	200	0	0.9344	
13	exponential	500	0	0.9378	
14	exponential	600	0	0.9351	

5. Gradient Boost Algorithm

Gradient Boost						
Sno	loss	Criterion	n_estimators	random_state	R2 value	
1	squared_error	friedman_mse	50	0	0.9277376	
2	squared_error	friedman_mse	100	0	0.922624257	
3	squared_error	friedman_mse	200	0	0.922009	
4	squared_error	squared_error	50	0	0.92773769	
5	squared_error	squared_error	100	0	0.92262	
6	squared_error	squared_error	200	0	0.922009	
7	absolute_error	friedman_mse	50	0	0.842872	
8	absolute_error	friedman_mse	100	0	0.8500	
9	absolute_error	squared_error	50	0	0.84287249	
10	absolute_error	squared_error	100	0	0.84995457	
11	huber	squared_error	50	0	0.9221035	
12	huber	squared_error	100	0	0.91884	
13	huber	friedman_mse	50	0	0.9252189	
14	huber	friedman_mse	100	0	0.922004	
15	quantile	friedman_mse	100	0	0.8238	
16	quantile	friedman_mse	50	0	0.548121	
17	quantile	squared error	100	0	0.82387429	