

Swiss Institute of Bioinformatics

INTRODUCTION TO SEQUENCING DATA ANALYSIS

Read alignment

Deepak Tanwar Frédéric Burdet

April 23-25, 2025 Adapted from previous year courses

Learning Objectives

Understand the concept and purpose of sequence alignment

Distinguish between global and local alignment strategies and their algorithms

Describe how short and long sequencing reads are aligned to reference genomes

Understand indexing strategies (e.g., BWT, suffix arrays) used in fast read alignment tools

In bioinformatics, **alignment** refers to the process of arranging sequences of DNA, RNA, or proteins to identify regions of similarity.

Alignment types

Pairwise alignment

- A. Global Alignment Needleman-Wunsch Algorithm
 - DNA, RNA, or protein sequences of similar length
- B. Local Alignment Smith-Waterman Algorithm
 - Protein or RNA/DNA domains

Multiple Sequence Alignment (MSA)

Aligns three or more sequences to detect conserved regions.

Read Alignment (e.g. BWA, Bowtie2, minimap2)

Mapping short reads (DNA/RNA) to a reference genome

Pairwise alignment

Global Alignment

- Aligns entire sequences from end to end
- Introduces gaps to optimize alignment length and score

Local Alignment

- Aligns the best-matching subsequences
- Useful for finding domains or conserved motifs

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

Alignment scoring

Match: +1

Mismatch: -1

Gap penalty: -1 (for each gap)

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

Alignment scoring

Match: +1

Mismatch: -1

Gap penalty: -1 (for each gap)

Sı	S ₂	Score
Α	-	-1
Т	-	-1
Α	Α	+1
C	Α	-1
C	C	+1
G	G	+1
G	G	+1
Α	Α	+1
Т	C	-1
Α	C	-1
Т	С	-1
Т	Т	+1
Tota	al	0

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

Alignment scoring

Match: +1

Mismatch: -1

Gap penalty: -1 (for each gap)

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

Sequence1: ATACCGGATATT

Sequence2: AACGGACCCT

match

Sı	S ₂	Score
Α	1	0
H	1	0
Α	А	+1
A C	Α	-1
U	C	+1
G	G	+1
G	G	+1
Α	А	+1
Η	1	0
A	1	0
Η	-	0
Τ	-	0
Tot	al	4

For phylogeny, function prediction, or motif discovery.

For phylogeny, function prediction, or motif discovery.

Α	Т	С	G
Α	Т	G	G
Α	С	G	

For phylogeny, function prediction, or motif discovery.

Α	Т	С	G
Α	Т	G	G
A	С	G	

Sı	S 2	Score
Α	Α	+1
Α	Α	+1
Α	Α	+1
Tota	al	3

For phylogeny, function prediction, or motif discovery.

For phylogeny, function prediction, or motif discovery.

For phylogeny, function prediction, or motif discovery.

For phylogeny, function prediction, or motif discovery.

Tool: Clustal Omega, MAFFT Command-line example with Clustal Omega

MSA score: 3 - 1 - 1 - 1 = 0

Read Alignment

Mapping millions of short reads to a reference genome.

Read Aligners: BWA, Bowtie2, STAR, etc.

Aim: find **substrings** in **large string**

Aim: generate a 'phonebook' for fast searches

Aim: generate a 'phonebook' for fast searches

Reference: TAATA\$

Aim: generate a 'phonebook' for fast searches

Reference: TAATA\$

0	Т	Α	Α	Т	Α	\$
1	Α	A	Τ	Α	\$	
2	Α	Τ	Α	\$		
3	Т	Α	\$			
4	Α	\$				
0 1 2 3 4 5	\$					

Aim: generate a 'phonebook' for fast searches

suffix array

0	Т	Α	Α	Т	Α	\$	5	\$					
1	Α	Α	Т	Α	\$		4	Α	\$				
2	Α	Т	Α	\$			1	Α	Α	Т	Α	\$	
3	Т	Α	\$			sort	2	Α	Т	Α	\$		
4	Α	\$					3	Т	Α	\$			
5	\$						0	T	Α	Α	Т	Α	\$

Aim: generate a 'phonebook' for fast searches

suffix array

0	Т	Α	Α	Т	Α	\$	5	\$					
1	Α	Α	Т	Α	\$		4	Α	\$				
2	Α	Т	Α	\$			1	Α	Α	Т	Α	\$	
3	Т	Α	\$			sort	2	Α	Т	Α	\$		
4	Α	\$					3	Т	Α	\$			
5	\$						0	T	Α	Α	Т	Α	\$

Querying

Reference: TAATA\$

Query: ATA

Indexing and querying

Suffix array: large, same sequence stored multiple times

BWT: only first and last columns are stored -> still enables fast querying

suffix array

5	\$					
4	Α	\$				
1	Α	A	Τ	Α	\$	
2	Α	Τ	Α	\$		
3] T	Α	\$			
0	T	Α	Α	Т	Α	\$

Indexing and querying

Suffix array: large, same sequence stored multiple times

BWT: only first and last columns are stored -> still enables fast querying

suffix array

5	\$					
4	Α	\$				
1	Α	Α	Τ	Α	\$	
2	Α	Т	Α	\$		
2 3	T	Α	\$			
0	T	Α	Α	Τ	Α	\$

Burrows-**W**heeler **T**ransformation

\$	T	Α	Α	Т	Α
Α	\$	Т	Α	Α	T
Α	Α	Т	Α	\$	T
Α	Т	Α	\$	Т	Α
T	Α	\$	T	Α	Α
T	Α	Α	Т	Α	\$

Global vs local

Global (end-to-end)

Read: GACTGGGCGATCTCGACTTCG

Reference: GACTG--CGATCTCGACATCG

Local (allows for 'clipping')

Read: ACGGTTGCGTTAA-TCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Software

```
Basic alignment:
>>> bowtie2 (BWT; default = global)
>>> bwa-mem (BWT; default = local )
Splice-aware (RNA-seq):
hisat2
>> STAR
Long reads + short reads + splice-aware:
minimap2
                     mRNA
```

DNA

Mapping quality

Mapping quality

 $\begin{array}{l} \mathit{MAPQ} \\ = -10log_{10} \Pr\{mapping\ position\ is\ wrong\} \end{array}$

$$-10log_{10}(0.01) = 20$$

 $-10log_{10}(0.5) = 3$

Summary

Global alignment aligns full sequences end-to-end

Local alignment is suited for partial matches like conserved domains

MSA aligns multiple sequences to reveal evolutionary or functional patterns

Read alignment maps millions of sequencing reads to a reference genome

Suffix arrays and BWT are used to enable fast searching within large genome indexes

Tools like **BWA**, **Bowtie2**, **STAR**, and **minimap2** support various alignment types, with specific strengths for short reads, long reads, or spliced transcripts

Thank you

DATA SCIENTISTS FOR LIFE sib.swiss

