

Improving Classical Shadows with Grouping Strategies

Marçal Herraiz Bayó

Universitat de Barcelona, Facultat de Física — Barcelona Supercomputing Center Advisors: Berta Casas, Sergi Masot, Dr. Bruno Juliá

June 25, 2025

Motivation

Motivation

Quantum computing faces three key bottlenecks:

Motivation

Quantum computing faces three key bottlenecks:

Grouping via Qubit-wise Commutativity

Grouping via Qubit-wise Commutativity

Two tensor-product observables

$$A = A_1 \otimes \cdots \otimes A_n$$
 and $B = B_1 \otimes \cdots \otimes B_n$

qubit-wise commute (QWC) if $[A_i, B_i] = 0$ for all i = 1, ..., n.

Grouping via Qubit-wise Commutativity

Two tensor-product observables

$$A = A_1 \otimes \cdots \otimes A_n$$
 and $B = B_1 \otimes \cdots \otimes B_n$

qubit-wise commute (QWC) if $[A_i, B_i] = 0$ for all i = 1, ..., n.

 $\mathsf{QWC} \implies \mathsf{commutativity} \implies \boxed{\mathsf{common\ eigenbasis}}$

Grouping QWC terms allows simultaneous measurement [1].

Grouping via Qubit-wise Commutativity

Two tensor-product observables

$$A = A_1 \otimes \cdots \otimes A_n$$
 and $B = B_1 \otimes \cdots \otimes B_n$

qubit-wise commute (QWC) if $[A_i, B_i] = 0$ for all i = 1, ..., n.

 $\mathsf{QWC} \implies \mathsf{commutativity} \implies \boxed{\mathsf{common \, eigenbasis}}$

Grouping QWC terms allows simultaneous measurement [1].

Formulated as a Minimum Clique Cover (MCC) problem on a *graph*:

- Nodes: observables
- Edges: QWC relation
- Find minimal number of complete subgraphs (NP-hard [1])

Classical Shadows

Classical Shadows — Basics

Given a quantum state ρ :

- Learn the expectation value of multiple observables $\{O_i\}_{i=1}^M$ from a small number of randomized measurements [2].
- Avoid full state reconstruction.

Classical Shadows — Basics

Given a quantum state ρ :

- Learn the expectation value of multiple observables $\{O_i\}_{i=1}^M$ from a small number of randomized measurements [2].
- Avoid full state reconstruction.

Procedure

Given a state ρ , choose an ensemble \mathcal{U} of unitaries. Then:

- 1. Randomly choose $U \in \mathcal{U}$ and evolve ρ by U. $\parallel \rho \longmapsto U \rho U^{\dagger}$
- 2. **Measure** rotated state in the comp. basis. $||b\rangle = |0110\dots 101\rangle$
- 3. **Undo** rotation and **store** result. **snapshot**

$$|b\rangle = |0110 - 101\rangle$$

$$U^{\dagger}|b\rangle\langle b|U$$

Classical Shadows — Basics

Given a quantum state ρ :

- Learn the expectation value of multiple observables $\{O_i\}_{i=1}^M$ from a small number of randomized measurements [2].
- Avoid full state reconstruction.

Procedure

Given a state ρ , choose an ensemble \mathcal{U} of unitaries. Then:

- 1. Randomly choose $U\in\mathcal{U}$ and evolve ρ by U. \parallel $\rho\longmapsto U\rho U^\dagger$
- 2. **Measure** rotated state in the comp. basis. $||b\rangle = |0110...101\rangle$
- 3. **Undo** rotation and **store** result. **snapshot** $||U^{\dagger}|b\rangle\langle b|U$

$$|b\rangle = |0110\dots101\rangle$$

$$U^{\dagger}|b\rangle\langle b|U$$

If $\mathcal{U} = \{\text{single-qubit Clifford gates}\}\$, then step 2 is equivalent to measuring in a Pauli basis P_{U} .

Suppose we want to estimate a Pauli word $O = P_1 \otimes \cdots \otimes P_n$.

Suppose we want to estimate a Pauli word $O = P_1 \otimes \cdots \otimes P_n$. Classical shadows then give us

$$\langle {\it O} \rangle = {\rm Tr}({\it O}\rho) = \prod_{j: \mathbb{I} \neq P_j = P_{\it U_j}} 3(1-2b_j).$$

Suppose we want to estimate a Pauli word $O = P_1 \otimes \cdots \otimes P_n$. Classical shadows then give us

$$\langle O \rangle = \operatorname{Tr}(O\rho) = \prod_{j: \mathbb{I} \neq P_j = P_{U_j}} 3(1 - 2b_j).$$

Calculating $\langle O \rangle$ reduces to:

- Count the matches between Pauli components of O and random Pauli bases in the shadow.
- Multiplying by the appropriate sign of the outcome.

Suppose we want to estimate a Pauli word $O = P_1 \otimes \cdots \otimes P_n$. Classical shadows then give us

$$\langle O \rangle = \operatorname{Tr}(O\rho) = \prod_{j: \mathbb{I} \neq P_j = P_{U_j}} 3(1 - 2b_j).$$

Calculating $\langle O \rangle$ reduces to:

- Count the matches between Pauli components of O and random Pauli bases in the shadow.
- Multiplying by the appropriate sign of the outcome.

Problem:

no matches \implies measurements are discarded! [3]

Shadow–Grouping: Combining Both Ideas

Shadow-Grouping: Combining Both Ideas

Suppose we want to estimate the energy $\langle H \rangle$ of a state ρ , where

$$H = \sum_{i=1}^{M} h_i O^{(i)}, \quad h_i \in \mathbb{R}, \text{ and } O^{(i)} \text{ are Pauli words.}$$

Shadow-Grouping: Combining Both Ideas

Suppose we want to estimate the energy $\langle H \rangle$ of a state ρ , where

$$H = \sum_{i=1}^{M} h_i O^{(i)}, \quad h_i \in \mathbb{R}, \text{ and } O^{(i)} \text{ are Pauli words.}$$

Adaptively choose measurement bases that QWC with multiple Hamiltonian terms [4, 5].

Shadow-Grouping: Combining Both Ideas

Suppose we want to estimate the energy $\langle H \rangle$ of a state ρ , where

$$H = \sum_{i=1}^{M} h_i O^{(i)}, \quad h_i \in \mathbb{R}, \text{ and } O^{(i)} \text{ are Pauli words.}$$

Adaptively choose measurement bases that QWC with multiple Hamiltonian terms [4, 5].

Prioritize terms in *H* by weights:

weight
$$(O^{(i)})$$
 $\begin{cases} \uparrow \text{ with } |h_i|, \\ \downarrow \text{ with the number of times } O^{(i)} \end{cases}$ has been measured

Algorithm Sketch and Numerical

Demonstrations

Algorithm Sketch

Inputs: Hamiltonian decomposition $H = \sum_{i=1}^{M} h_i O^{(i)}$, measurement budget N.

Algorithm Sketch

Inputs: Hamiltonian decomposition $H = \sum_{i=1}^{M} h_i O^{(i)}$, measurement budget N.

For each shot $k \in \{1, \dots, N\}$:

- 1. Compute weights based on $|h_i|$ and previous measurements.
- 2. Sort terms by decreasing weight.
- 3. Construct a measurement setting that QWC with as many terms as possible.
- 4. Measure and estimate.

Numerical Demonstrations

- **Tools:** PennyLane's Python library [6].
- Test cases: ground state energy estimation of H₂ and LiH molecules [7].

Numerical Demonstrations

- **Tools:** PennyLane's Python library [6].
- Test cases: ground state energy estimation of H₂ and LiH molecules [7].

Results

- Up to 18x improvement in accuracy for a fixed measurement budget.
- Reached chemical precision with orders of magnitude fewer measurements.

• **Programmed** a *classical shadows* algorithm to **reconstruct** quantum states and **predict** their properties.

- Programmed a classical shadows algorithm to reconstruct quantum states and predict their properties.
- Implemented a Shadow-Grouping algorithm that combines classical shadows with grouping.

- Programmed a classical shadows algorithm to reconstruct quantum states and predict their properties.
- Implemented a Shadow-Grouping algorithm that combines classical shadows with grouping.
- Calculated the ground state energy of ${\rm H_2}$ and ${\rm LiH}$ molecules to chemical accuracy.

- **Programmed** a *classical shadows* algorithm to **reconstruct** quantum states and **predict** their properties.
- Implemented a Shadow-Grouping algorithm that combines classical shadows with grouping.
- Calculated the ground state energy of ${\rm H_2}$ and ${\rm LiH}$ molecules to chemical accuracy.
- Demonstrated the significant gains of Shadow–Grouping in measurement efficiency when compared to standard classical shadows.

- **Programmed** a *classical shadows* algorithm to **reconstruct** quantum states and **predict** their properties.
- Implemented a Shadow-Grouping algorithm that combines classical shadows with grouping.
- Calculated the ground state energy of ${\rm H_2}$ and ${\rm LiH}$ molecules to chemical accuracy.
- Demonstrated the significant gains of Shadow–Grouping in measurement efficiency when compared to standard classical shadows.

All code and data are publicly available in a GitHub repository [8].

Acknowledgements

Acknowledgements

- Berta Casas, Sergi Masot, Dr. Bruno Juliá.
- Family, friends.

References

References i

References

- [1] Vladyslav Verteletskyi, Tzu-Ching Yen, and Artur F. Izmaylov. "Measurement Optimization in the Variational Quantum Eigensolver Using a Minimum Clique Cover". In: *The Journal of Chemical Physics* 152.12 (Mar. 2020), p. 124114.
- [2] Hsin-Yuan Huang, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements". In: *Nature Physics* 16.10 (2020), pp. 1050–1057.
- [3] Hsin-Yuan Huang, Richard Kueng, and John Preskill. "Efficient Estimation of Pauli Observables by Derandomization". In: *Phys. Rev. Lett.* 127 (3 2021), p. 030503.
- [4] A. Gresch and M. Kliesch. "Guaranteed Efficient Energy Estimation of Quantum Many-Body Hamiltonians Using ShadowGrouping". In: *Nature Communications* 16 (2025), p. 689.

References ii

- [5] Min Li, Mao Lin, and Matthew J. S. Beach. "Resource-Optimized Grouping Shadow for Efficient Energy Estimation". In: *Quantum* 9 (2025), p. 1694. arXiv: 2406.17252 [quant-ph].
- [6] Ville Bergholm et al. "PennyLane: Automatic differentiation of hybrid quantum-classical computations". In: *arXiv preprint arXiv:1811.04968* (2018).
- [7] Utkarsh Azad and Stepan Fomichev. PennyLane Quantum Chemistry Datasets. https://pennylane.ai/datasets/collection/qchem. 2023.
- [8] Marçal Herraiz Bayó. Shadow-Grouping, Git repository. https://github.com/MHBayo/Physics_Thesis.git. 2025.

Backup Slides

Problem: more settings Q that QWC with $O^{(i)} \Longrightarrow$ better estimation of $\langle O^{(i)} \rangle$. But what about other terms?

Possible solution: prioritize QWC-settings .

Assign a weight to each term and update it after every shot.

Recall: $H = \sum_{i=1}^{M} h_i O^{(i)}$, with $O^{(i)} \in \mathcal{P}$.

Desirable properties of weight $(O^{(i)})$:

- 1. Should be **proportional** to $|h_i|$.
- 2. Should decrease if we have estimated $\langle O^{(i)} \rangle$ many times. In [4], authors propose:

weight
$$(O^{(i)}) := |h_i| \frac{\sqrt{N_i + 1} - \sqrt{N_i}}{\sqrt{N_i(N_i + 1)}},$$

where $N_i \equiv \#$ times we have estimated $\langle O^{(i)} \rangle$ before.

How do we construct a measurement setting Q?

Recall: Q is a Pauli word and has to QWC with as many terms of H as possible.

How do we construct a measurement setting Q?

Recall: Q is a Pauli word and has to QWC with as many terms of H as possible.

Algorithm ([4]): 4-qubit system. At a certain shot $k \in \{1, ..., N\}$:

		Terms				eas.	set		
					I	\mathbb{I}	I	I	← Initialize
w_1	X	${\mathbb I}$	Y	\mathbb{I}					
w_2	Y	$egin{array}{c} Z \ Z \ Y \ \mathbb{I} \end{array}$	${\mathbb I}$	\mathbb{I}					
w_3	X	Z	${\mathbb I}$	\mathbb{I}					
w_4	Z	Y	${\mathbb I}$	X					
w_5	X	${\mathbb I}$	${\mathbb I}$	Y					

How do we construct a measurement setting Q?

Recall: $Q \in \mathcal{P}$ and has to QWC with as many terms of H as possible. Algorithm ([4]): 4-qubit system. At a certain shot $k \in \{1, ..., N\}$:

		Terms				S. S	etting	Q_k	
w_1 w_2 w_3 w_4 w_5	$\begin{array}{c} X \\ Y \\ X \\ Z \\ Y \end{array}$	$egin{array}{c} \mathbb{I} & & & & & & & & & & & & & & & & & & &$	$\begin{bmatrix} Y \\ \mathbb{I} \\ \mathbb{I} \\ \mathbb{I} \end{bmatrix}$	$\begin{bmatrix} \mathbb{I} & \mathbb{I} $	X	I	Y	\mathbb{I}	← Initialize ← Change matches
ω5	21		ш	1					

How do we construct a measurement setting Q?

Recall: Q is a Pauli word and has to QWC with as many terms of H as possible.

Algorithm ([4]): 4-qubit system. At a certain shot $k \in \{1, ..., N\}$:

		Terms				s. sett	ing	Q_k	
						\mathbb{I}	\mathbb{I}	$\overline{\mathbb{I}}$	← Initialize
w_1	X	\mathbb{I}	Y	\mathbb{I}	X	I	Y	\mathbb{I}	← Change matches
w_2	Y	Z	${\mathbb I}$	\mathbb{I}	X	$\overline{\mathbb{I}}$	Y	${\mathbb I}$	← No changes
w_3	X	\overline{Z}	${\mathbb I}$	\mathbb{I}					
w_4	Z	Y	${\mathbb I}$	X					
w_5	X	${\mathbb I}$	${\mathbb I}$	Y					

How do we construct a measurement setting Q?

Recall: Q is a Pauli word and has to QWC with as many terms of H as possible.

Algorithm ([4]): 4-qubit system. At a certain shot $k \in \{1, ..., N\}$:

$$\Longrightarrow \boxed{Q_k = X_1 \otimes Z_2 \otimes Y_3 \otimes Y_4.}$$

Now update weights of terms that QWC with Q_k and compute setting for shot k+1.

We programmed this algorithm:

$$H = h_1 X_1 Z_2 + h_2 Y_1 Z_3 + h_3 Z_2 Z_3 + h_4 X_1 Y_2 Z_3, \quad 0 < h_1 < h_2 < h_3 < h_4.$$

