The graph of f(x) consists of line segments and quarter circles as shown in the graph below.

What are the values of:

what are the values of:	
1. $\int_{-3}^{-1} f(x) dx = -\frac{1}{4} \Big[\pi \cdot 2^2 \Big]$	$\int_{-1}^{4} f(x) dx$ $= \frac{1}{2} (1)(1) + 1 + 1 + \frac{1}{2} \left(\frac{1}{2}\right) (1) - \frac{1}{2} \left(\frac{1}{2}\right) (1) - \frac{1}{4} \left[\pi \cdot 1^{2}\right]$
$2. \int_{-1}^{4} f(x) dx$	$\int_{-1}^{4} f(x) dx = 2.75 - 0.25 - \frac{1}{4} \pi (1)^{2}$
3. $\int_{-1}^{0} f(x) dx = -\frac{1}{2}(1)(1)$	$\int_{-3}^{4} f(x)dx$ $= \int_{-3}^{-1} f(x)dx + \int_{-1}^{4} f(x)dx$ $1 = \int_{-3}^{3} f(x)dx + \int_{-1}^{4} f(x)dx$
4. $\int_{-3}^{4} f(x) dx$	$= -\frac{1}{4} \left[\pi \cdot 2^2 \right] + \frac{1}{2} (1)(1) + 1 + 1 + \frac{1}{2} \left(\frac{1}{2} \right) (1) - \frac{1}{2} \left(\frac{1}{2} \right) (1) - \frac{1}{4} \left[\pi \cdot 1^2 \right]$ $\int_{-3}^{4} f(x) dx = -\frac{1}{4} \pi (2)^2 + 2.75 - 0.25 - \frac{1}{4} \pi (1)^2$
$5. \int_{2}^{3} f(x) dx = 0$	$\int_{-1}^{-3} f(x) dx$ $= -\int_{-3}^{-1} f(x) dx$ $= \frac{1}{4} \left[\pi \cdot 2^2 \right]$
6. $\int_{-1}^{-3} f(x) dx$	$\int_{-1}^{-3} f(x) dx = \frac{1}{4} \pi (2)^2$

7. $\int_{-1}^{3} 2f(x) dx$	$\int_{-1}^{3} 2f(x) dx = 2 \int_{-1}^{3} f(x) dx = 2[2.5]$
	$\int_{2}^{3} -2f(x) + 5dx = \int_{2}^{3} -2f(x)dx + \int_{2}^{3} 5dx$
8. $\int_{2}^{3} -2f(x) + 5dx$	$=(-2)\cdot\int_{2}^{3}f(x)dx+\int_{2}^{3}5dx$
	= -2(0) + (1)(5) = 5
$9. \int\limits_{2}^{-1} f(x) dx$	$\int_{2}^{-1} f(x) dx = -\int_{-1}^{2} f(x) dx = -[2.5]$
$10. \int_{2}^{2} f(x) dx$	$\int_{2}^{2} f(x) dx = 0$
$11. \int_{4}^{-3} f(x) dx$	$\left[\int_{4}^{-3} f(x) dx = -\left[\int_{-3}^{4} f(x) dx \right] = -\left[-\frac{1}{4} \pi (2)^{2} + 2.75 - 0.25 - \frac{1}{4} \pi (1)^{2} \right] \right]$
$12. \int_{4}^{-1} f(x) dx$	$\int_{4}^{-1} f(x) dx = -\left[\int_{-1}^{4} f(x) dx\right] = -\left[2.75 - 0.25 - \frac{1}{4}\pi(1)^{2}\right]$
13. $\int_{30}^{50} g(x) dx =$	$\int_{30}^{50} g(x) dx = \int_{30}^{100} g(x) dx - \int_{50}^{100} g(x) dx$
	$= A - B$ $\int_{3}^{-2} h(x) dx = - \left[\int_{-2}^{3} h(x) dx \right]$
$14. \int_{3}^{-2} h(x) dx =$	$= -\left[\int_{-2}^{4} h(x) dx - \int_{3}^{4} h(x) dx\right]$
	= -[A - B] $= B - A$