Decision Trees Pruning

Nipun Batra and teaching staff

IIT Gandhinagar

September 3, 2025

Table of Contents

1. Pruning and Overfitting

Pruning and Overfitting

• Unpruned trees: Can grow very deep and complex

- **Unpruned trees**: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves
 - Rules that are too specific to training data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves
 - Rules that are too specific to training data
- Solution: Pruning to control model complexity

Stop growing tree before it becomes too complex:

Maximum depth: Limit tree depth (e.g., max_depth = 5)

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has ≥ M samples

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has ≥ M samples
- Maximum features: Consider only subset of features at each split

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has ≥ M samples
- Maximum features: Consider only subset of features at each split
- Minimum impurity decrease: Only split if improvement > threshold

Advantages: Simple, computationally efficient

Grow full tree, then remove unnecessary branches:

Algorithm:

- · Algorithm:
 - 1. Grow complete tree on training data

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain

- · Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$

- · Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes

- · Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes
- Disadvantages: More computationally expensive

Systematic approach to find optimal tree size:

• Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - |T|: Number of leaves

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - ∘ | T|: Number of leaves
 - \circ α : Complexity penalty parameter

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - | T |: Number of leaves
 - α : Complexity penalty parameter
- Weakest Link: At each pruning step, compute:

$$g(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

Systematic approach to find optimal tree size:

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - ∘ | T |: Number of leaves
 - α : Complexity penalty parameter
- Weakest Link: At each pruning step, compute:

$$g(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

g(t): The lpha value at which subtree rooted at node t should be pruned

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - ∘ | T|: Number of leaves
 - α : Complexity penalty parameter
- Weakest Link: At each pruning step, compute:

$$g(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

- \circ g(t): The lpha value at which subtree rooted at node t should be pruned
- R(t): Impurity of node t, treating it as leaf node

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - ∘ | T|: Number of leaves
 - α : Complexity penalty parameter
- Weakest Link: At each pruning step, compute:

$$g(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

- g(t): The α value at which subtree rooted at node t should be pruned
- R(t): Impurity of node t, treating it as leaf node
- $R(T_t)$: Total impurity of subtree rooted at node t

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Total impurity (training error)
 - |T|: Number of leaves
 - α : Complexity penalty parameter
- Weakest Link: At each pruning step, compute:

$$g(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

- g(t): The α value at which subtree rooted at node t should be pruned
- R(t): Impurity of node t, treating it as leaf node
- $R(T_t)$: Total impurity of subtree rooted at node t
- $|T_t|$: Number of leaves in subtree rooted at node t

Iterative pruning process:

Process:

Iterative pruning process:

- Process:
 - 1. Start with full tree ($\alpha = 0$)

Iterative pruning process:

- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Compute g(t) for all internal nodes

Cost Complexity Pruning: Algorithm Steps

Iterative pruning process:

- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Compute g(t) for all internal nodes
 - 3. Prune node with smallest g(t) (weakest link)

Cost Complexity Pruning: Algorithm Steps

Iterative pruning process:

- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Compute g(t) for all internal nodes
 - 3. Prune node with smallest g(t) (weakest link)
 - 4. Repeat until only root remains

Cost Complexity Pruning: Algorithm Steps

Iterative pruning process:

- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Compute g(t) for all internal nodes
 - 3. Prune node with smallest g(t) (weakest link)
 - 4. Repeat until only root remains
 - 5. Use cross-validation to select optimal lpha

• Unpruned trees:

- Unpruned trees:
 - Low bias (can fit complex patterns)

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:
 - High bias (may miss important patterns)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)
- Risk of underfitting

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:
 - High bias (may miss important patterns)
 - Low variance (more stable predictions)
 - Risk of underfitting
- Optimal pruning: Balances bias and variance

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:
 - High bias (may miss important patterns)
 - Low variance (more stable predictions)
 - Risk of underfitting
- Optimal pruning: Balances bias and variance
- Cross-validation: Essential for finding this balance

• Start simple: Begin with restrictive pre-pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - o max_depth: Start with 3-10

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - o min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - o min_samples_leaf: Try 5-50
 - ccp_alpha: Use for cost complexity pruning

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - o min_samples_leaf: Try 5-50
 - ccp_alpha: Use for cost complexity pruning
- Domain knowledge: Consider interpretability requirements