Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Garcke, Penn-Karras, Tröltzsch SoSe 09 20. Juli 2009

Juli – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	:		• • • • • •	
Neben einem handbeschriebenen A4 zugelassen.	Blatt 1	nit No	tizen s	ind ke	ine Hil	fsmitte
Die Lösungen sind in Reinschrift auschriebene Klausuren können nicht g			0	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	ein. Gel	_
Die Bearbeitungszeit beträgt eine St	unde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens				*	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 5 Punkte

Welche der folgenden Aussagen sind wahr, welche sind falsch? Notieren Sie Ihre Lösungen **ohne** Begründung auf einem separaten Blatt. Für eine richtige Antwort bekommen Sie einen Punkt, für eine falsche verlieren Sie einen Punkt. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- (i) Es gibt keine Teilmenge des \mathbb{R}^2 die offen und abgeschlossen ist.
- (ii) Stetige Funktionen auf einer Kreisscheibe (mit Rand) in \mathbb{R}^2 nehmen sowohl Maximum als auch Minimum an.
- (iii) Für jede stetig differenzierbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ zeigt der Gradient in die Richtung des stärksten Anstiegs.
- (iv) Das Kurvenintegral eines wirbelfreien differenzierbaren Vektorfeldes über eine geschlossene Kurve ist immer gleich 0.
- (v) Für jede Kurve gibt es unendlich viele Parametrisierungen.

2. Aufgabe 9 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2 + y^2$.

- (i) Bestimmen Sie $\frac{\partial f}{\partial \vec{v}}(1,1)$, wobei $\vec{v} = \frac{1}{\sqrt{5}}(2,1)^T$ ist.
- (ii) In welchen Richtungen hat die Funktion f im Punkt $(1,1)^T$ die Steigung 2?

3. Aufgabe 10 Punkte

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x,y,z) = x^2 + 2y$. Sei weiter $\vec{\gamma}: [0,2\pi] \to \mathbb{R}^3$ eine Kurve mit

$$\vec{\gamma}(t) = \begin{pmatrix} \sin t \\ t^2 \\ \cos t \end{pmatrix}.$$

Bestimmen Sie für $\vec{v} := -\text{grad} f$ den Wert des Integrals

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}.$$

Parametrisieren Sie eine weitere Kurve zwischen dem Anfangs- und dem Endpunkt von γ und berechnen Sie das Kurvenintegral entlang dieser Kurve.

4. Aufgabe 11 Punkte

Gegeben sei eine Fläche im \mathbb{R}^3 durch die Parametrisierung

$$\Psi(\phi, t) = \begin{pmatrix} t \cos \phi \\ t \sin \phi \\ t^2 \end{pmatrix}, \quad \phi \in [0, 2\pi], \ t \in [0, 15] \ .$$

- (i) Skizzieren Sie die Fläche.
- (ii) Argumentieren Sie, dass die Funktion g(x, y, z) = z auf der Fläche genau eine Minimalstelle und unendlich viele Maximalstellen besitzt. Welchen Wert nimmt g an den Maximalstellen an?
- (iii) Weisen Sie nach, dass die Fläche auf dem 0-Niveau der Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad f(x, y, z) = z - x^2 - y^2,$$

liegt.

5. Aufgabe 5 Punkte

Geben Sie jeweils ein Beispiel ohne Begründung für die folgenden Objekte an:

- (i) eine Teilmenge von \mathbb{R}^2 die weder offen noch abgeschlossen ist,
- (ii) eine Abbildung deren Ableitungsmatrix durch

$$\left(\begin{array}{cc} 2x\sin(y) & x^2\cos(y) \\ 0 & y^2 \end{array}\right)$$

gegeben ist,

- (iii) ein Skalarfeld $f: \mathbb{R}^2 \to \mathbb{R}$, das kein Extremum auf der Geraden y=0 annimmt,
- (iv) ein divergenzfreies Vektorfeld auf \mathbb{R}^2 ,
- (v) eine Fläche im \mathbb{R}^3 (inklusive einer Parametrisierung), deren Randkurve ein Kreis in der xy-Ebene ist.