Комплекс:	$\mathbf{GCAD}\ (\mathrm{cpxSID} = \mathrm{gcd})\ \mathbf{Pac}$ пределенная вычис-	
	лительная система GCD	
Решение:	Processing (slnSID = cmp) Вычислительная	
	подсистема общего назначения	
Тип документа:	slr	
Тема:	Численное моделирование напряженно-	
	деформированного состояния газоразделительных	
	мембранных модулей и разработка программ-	
	ного обеспечения сопровождения процесса их	
	проектирования	
Документ обнов-	19 сентября 2015 г.	
лен:		
Текущая версия:		
Автор обновления:		
Выходные данные	Соколов А.П., Щетинин В.Н., Сапелкин	
по документу:	А.С. Численное моделирование напряженно-	
	деформированного состояния газоразделительных	
	мембранных модулей и разработка программ-	
	ного обеспечения сопровождения процесса их	
	проектирования // journal – 2015 – NNN –	
	C.XX-YY	
Источник финанси-	ООО Текон Мембранные Технологии, Работа	
рования:	проведена при финансовой поддержке ООО Те-	
	кон Мембранные Технологии в рамках договора	
ж.	№CNTR000005 от 2015-06-01	
Формат документа:	SLR	
Аннотация:	Численное моделирование напряженно-	
	деформированного состояния газоразделительных	
	мембранных модулей и разработка программ-	
	ного обеспечения сопровождения процесса их	
	проектирования	

Описание решателя.

Соколов А.П., Щетинин В.Н., Сапелкин А.С. 19 сентября 2015 г.

Отчет

Описание инструмента решения задачи (решателя) $PSO_ELST_NEU_$ - 3D.

•	•	
	Идентификатор	PSO_ELST_NEU_3D
	инструмента решения	
	задачи (решателя)	
	Описание решателя	Решение обратной задачи для решателя
		ELST_NEU_3D_HOM методом PSO
	Идентификатор связанной	PSO_MODEL
	сетевой модели (графа)	

1.1 Зависимые решатели от PSO_ELST_NEU_3D

Дочерний решатель	Описание дочернего решателя
1	2
ELST_N_3D_HOM_C	Вычислительная часть задачи
	ELST_NEU_3D_HOM
ELST_NEU_3D_CO	Вычислительная часть решателя
	ELST_NEU_3D
ELST_NEU_H_PRE	Препроцессор для метода гомо-
	генизации поиска эффективных
	упругих характеристик КМ.

1.2 Описания функций решателя PSO_ELST_NEU_- 3D

На рисунках 1, 2 представлены соответственно краткая и полная сетевые модели решателя **PSO_ELST_NEU_3D**. Описания каждой функции обработки данных и функций-предикатов представлены в таблице ниже.

Функции (обработчик или	Описание функции
предикат) решателя	2
BC_MAP_LOADER	Загрузка указанного в коде тар
COMMON_MDL_PREDICATE	Предикат общего назначения. Обеспечивает возврат истинного значения всегда, вне зависимо-
	сти от данных. Позволяет оставить возможность в перспективе
	создать обработку исключительных ситуаций, не затронув код функции-обработчика.
COMMON_MDL_PROCESSOR	Функция-обработчик общего вида. Фиктивный обработчик: необходим только для того, чтобы обеспечить формальный переход из одного состояния в другое.
CSIR_LAS_LOADER	Функция обеспечивает формирование объекта СЛАУ, основанного на формате CSlR (skyline). Функция возвращает указатель на объект ifcFEMEquationSystem внутри объекта класса cls AnyMap.
FE_LOADER	Загрузчик типа используемого конечного элемента. По-умолчанию применяется 4-х узловой тетраэдр.
FEM_POST_PROCESSOR	Построцессор МКЭ общего вида, может быть специфицирован для разных решателей по-разному.
FEM_POSTPROCESS PREPARE	Общая подготовка объектов для постпроцессинга МКЭ результатов.
FEMTASK_OBJECT_LOADER	Загрузка объекта, обеспечивающего определение постановки задачи, для последующего решения с помощью МКЭ.

1	2
HOM_FEM_results_init	Инициализация МКЭ данных
	для решения задачи мето-
	дом гомогенизации (МГ, МН -
	Multiscale Homogenization).
HOM_FEM_results_prepare	Дополнительная подготовка дан-
	ных после очередного расчета
	МКЭ в рамках метода гомогени-
	зации (МГ).
LAS_EQN_CG_CSIR	Функция решения СЛАУ ме-
SOLVER	тодом сопряженного градиента
	(CG - Conjugate Gradient) на ос-
	нове хранения СЛАУ в формате
I AC DDM COD ACCENTAGE	CSIR (skyline).
LAS_FEM_CSIR_ASSEMBLER	Функция формирования разре-
	шающей СЛАУ при использова-
	нии МКЭ и формата хранения CSlR.
MESH_ANEU_LOADER	Функция загрузки конечно-
	элементной сетки в формате
	aNEU (Advanced Neutral NetGen
NEWS OF DO MAD	format).
NEND_OF_BC_MAP	Функция-предикат, обеспечива-
	ющая проверку того, что вся се-
	рия задач Lpq со стандартны-
	ми краевыми условиями соглас-
	но принципам работы метода го-
	могенизации, была успешно цик- лически подана на вход МКЭ ре-
	лически подана на вход WK9 ре- шателю.
NEXT_BC_IN_MAP	Подставляет в память следую- щие ГУ
POSTPROC_HOM	Постпроцессор НОМ
PREPARE_COMPUTATION	Функция, обеспечивающая под-
DATA	готовку данных по текущему
	расчету: статист.
TSK_LOADER	Загрузчик постановок задач в
	формате TSK в формат cls
	AnyMap
TSL_SLD_ELST_LDR	Загрузчик упругих свойств мате-
	риалов на базе форматов TSL и
	SLD

1.3 Описания состояний данных решателя PSO_ELST_- NEU_3D

В таблице ниже представлены описания состояний данных решателя $PSO_ELST_NEU_3D$.

Состояние данных	Описание состояния данных
1	2
BC LOADED	Загружены граничные (краевые)
_	условия
COMPUTATION DATA -	Статистические данные по теку-
READY	щему расчету подготовлены.
EQS_CREATED	Сформирована разрешающая
	СЛАУ (линейная)
EQS_OBJ_LOADED	Загружен объект системы урав-
	нений
EQS_SOLVED	Решена разрешающая СЛАУ
	(линейная)
EQS_SOLVER_LOADED	Загружен метод решения СЛАУ
	(зависит только от мат.модели
	решаемой задачи)
FEM_CALCULATE_NET	Сетевая модель вычислительной
	процедуры МКЭ (без пре- и
	пост- процессинга).
FEM_RESULT_READY	Получен результат задачи МКЭ:
	данные доступны через ifc
	FEMMVResults
FE_TYPE_DEFINED	Определен и загружен тип ис-
	пользуемого конечного элемента
HOM_FEM_RES_INITED	Инициализация данных для за-
	дачи НОМ
HOM_FEM_RES_PREPARED	Данные очередной итерации
	FEM добавлены в память
HOM_POSTPROCESSED	Обработка данных НОМ
HOM_START_CO	Начало вычислительной части
Marie Louis Dep	HOM
MESH_LOADED	Загружена конечно-элементная
DOGEDDOG GOLDY PERS	сетка расчетной области
POSTPROC_COMPLETED	Завершена обработка результата
DOGEDDOG DDDD DDD	решения разрешающей СЛАУ
POSTPROC_PREPARED	Подготовка к постпроцессингу
DDEDDOG GOVER PERE	завершена.
PREPROC_COMPLETED	Загрузка данных завершена.

4	9
1	2
PSO_AGENT_INIT	Инициализация значений частиц
	метода роя частиц
PSO_AGENT	Значение агента применено
POSTPROCESSED	
PSO_COMPLETED	Рассчет PSO завершен
PSO_CRITERIA_CO	Вычисление критерия оптимальности
PSO_INIT	Инициализация объекта алго- ритма PSO
PSO_POSTPROCESSED	Сохранение данных метода PSO
PSO_SWARM_ANALIZE	Анализ роя частиц, выявление лучшей частицы
PSO_TASK_DATA_REINITED	Данные задачи, используемой в PSO реинициализированы
PSO TASK INIT NET	Инициализация для задачи поис-
	ка критерия оптимальности
PSO_VAR_PAR_SET_INITED	Инициализированно множество
	варьируемых параметров
TASK_OBJECT_LOADED	Создан объект Задача (для
	МКЭ: получен указатель на
	объект с интерфейсом ifc -
	FEMTaskSolver).
TSK_FILE_LOADED	Файл постановки задачи в формате TSK (постановки задачи)
	успешно загружен в оператив-
	ную память
TSK FILE READY TO -	Файл постановки задачи в фор-
BE PROCESSED	мате TSK готов для подачи на
	вход решателю.
TSL SLDs DATA LOADED	Загружены данные о свойствах
	материалов для данной поста-
	новки из форматов TSL и SLD.
	1 1

Рис. 1: Общая сетевая модель решателя PSO_ELST_NEU_3D верхнего уровня. Сетевая модель загружена из базы данных.

Рис. 2: Полная сетевая модель решателя PSO_ELST_NEU_3D. Сетевая модель получена автоматически, рекурсивным алгоритмом. Данные загружены из базы данных.