数学分析 期中试卷

2016/2017 学年第一学期 考试形式 闭卷 课程名称 数学分析

班级 ______ 学号 _____ 姓名 _____

题	号	_	1]	111	四	五	六	总分
得分								

一. $(10 \times 4 = 40 \text{分})$ 求极限.

1).
$$\lim_{n \to \infty} \frac{100^n}{n!}$$
; 2). $\lim_{n \to \infty} \left(1 - \frac{1}{\sqrt{n}}\right)^n$; 3). $\lim_{x \to 2} \frac{2^x - 2^2}{x - 2}$; 4) $\lim_{\theta \uparrow \frac{\pi}{2}} \left(\frac{\pi}{2} - \theta\right) \tan \theta$.

二. (10分) 设 $\sigma: \mathbb{N} \to \mathbb{N}$ 为双射. $a_n := \sum_{k=1}^n \frac{\sigma(k)}{k^2}$. 证明: $\lim_{n \to \infty} a_n = \infty$.

三. (10分) $\lim_{n\to\infty}\sin(n+\ln n)$ 是否存在?

四. (24分) 设f 在(0,1) 内连续, $f(0^+)$ 及 $f(1^-)$ 存在. 证明: 1). f 有界; 2). f 一致连续; 3). 若还有 $f(0^+)f(1^-)<0$, 则 $\exists \zeta$ s.t. $f(\zeta)=0$.

五. (10分) 设f 是 $(0,+\infty)$ 内的有界函数. $\psi(x):=\sup_{0< t< x} f(t), \forall x>0.$ 证明: ψ 为左连续函数.

六. (6分) 设 $a_n=\langle\sqrt{n}\rangle$ (这里, $\langle\sqrt{n}\rangle$ 表示 \sqrt{n} 的小数部分). 证明: 任给 $L\in[0,1],\,\exists n_k \text{ s.t. } a_{n_k}\to L.$

七.选做题(选且只能选一题)

- (1). (5分) 举例: $\psi \in C[0,1]$ 但非Hölder 连续函数.
- (2). (20分) 设f 是定义于 $[0,+\infty)$ 上的Lipschitz 连续函数, 且 $f(2x)=2f(x), \forall x$.

问: f 是否必为线性函数? 如是,给出证明;如不是,给出反例.

阁下选做第 ()题.