UNIVERSITY of HOUSTON

COLLEGE of TECHNOLOGY

Modular R.O.V for Sub-Sea Operations

OLUYEMI FARAYIBI

JUAN GOMEZ

GUSTAV GUIJT

DAVID MARTINEZ

VICTOR ORTIZ

PROJECT UPDATE 1 10/19/2015

Safety Moment

ROV Presentation Outline

- ▶ Project Objectives / Timeline
- **▶** 2016 MATE Competition
- **► MATE Competition Specs**
- Design Overview
- ► First Frame Design
- Second Frame Design
- Stress Analysis Frame 1
- ▶ Stress Analysis Frame 2

- **▶** Control System
- **▶** Propulsion System
- **▶** Thruster Positioning
- ► Arm Update
- ▶ Updated Project Budget

Team Objective

► Team HydroBurst's primary objective is to design, test, and construct an underwater remotely operated vehicle (ROV) to compete in the 2016 National and International MATE Competitions.

2016 MATE Competition COLLEGE of TECHNOLOGY

- Outer Space: Mission Europa
 - ▶ Measure thickness of ice
 - ▶ Measure total depth
 - ► Measure temp of thermal vents
 - ▶ Retrieve and connect ESP cable

72016 MATE Competition

MATE

- Inner Space: Mission-critical equipment recovery
 - ▶ Survey the seafloor
 - Collect equipment located on sea floor
- Inner Space: Forensic Fingerprinting
 - ► Collect oil sample
 - ► Analyze a gas chromatograph

IdroBurs

2016 MATE Competition

MATE

- Inner Space: Deepwater Coral Study
 - Photograph corals and compare with last years images
 - ► Collect coral samples for analysis
- ► Inner Space: Rigs to reefs
 - ► Attach a flange to top of wellhead
 - ► Secure flange with two bolts
 - ► Install cap on flange
 - Secure the cap with four bolts

MATE Competition Specs

- ► Size Constraints (released September 30th):
 - ► Maximum Diameter of 85cm
 - ▶ +5 Points for diameter between 64.1cm and 70cm
 - ▶ +10 points for diameter between 58.1cm and 64cm
 - ▶ +20 points for diameter less than 58cm
 - ▶ Mass
 - ▶ +5 Points for mass between 19.01kg and 22kg
 - ▶ +10 points for mass between 17.01kg and 19kg
 - ▶ +20 points for mass less than 17kg
- ▶ Our Design Goals based on Constraints:
 - ▶ Diameter less than 58cm (22.8346 inches).
 - ► Mass less than 17kg (37.4786 lbf)

Design Overview

- ► As covered during the last presentation:
 - we weighed the pros and cons of various standard ROV frame designs.
 - ► Decided upon the Octagonal model as the most effective model.

	Maneuvera bility	Hydro- dynamics	Internal Space Utilization	Modular Optimizatio n	Corrosion Resistance	Totals
Rectangular	1	1	2	3	5	12
Cylindrical	3	4	3	1	5	16
Octagonal	4	3	2	3	5	17
Flat	2	3	3	2	5	16

COLLEGE of TECHNOLOGY

10

First Frame Design

- ► Shape: Rhombicuboctahedron
 - ► To make it as spherical as possible using existing fittings.
- ▶ Material: CPVC
 - ► Light weight, designed for water usage, and can handle high pressures.
- ► Maximum diameter: 21 inches
 - ► Minimum of 1.00 inch clearance on all sides.
- ► Frame weight: 4.5 lbs.

Complete Frame Assembly

Second Frame Design

- ► Shape: Octagonal Prism.
 - ▶ Solid Frame.
- ► Material: Plastic or Acrylic.
 - ▶ Light weight and strong.
- ► Maximum diameter: 21 inches.
 - ► Minimum of 1.00 inch clearance on all sides.
- ► Clear Dome on the front for access and Camera.

Quarter Frame

Full Frame

Constraints

CPVC Material Definition

Structural	Thermal Misce	ellaneous App	pearance User Defi	ned
Symmetry	Isotropic			
Stress-Strai	n Response Line	ar		
	Poisson's Ratio	0.3		
	Young's Modulus	370000	psi	-
Coeff. of	Thermal Expansion	3.9e-05	/K	7
Me	chanisms Damping		sec/in	٦
Material	Limits			
1	Tensile Yield Stress	7600	psi	-
Ten	sile Ultimate Stress	12500	psi	-
Compress	sive Ultimate Stress		lbm/(in sec^2)	-

Structural	Thermal	Miscellaneous	Appearance	User Defined	
Symmetry	Isotropic				w
Propertie	25				
Specific I	Heat Capacit	y 775002	in^:	2/(sec^2 F)	~
Therma	l Conductivit	y 7.71521	in I	bm/(sec^3 F)	-

Pressure

CPVC Material Assignment

Pressure Load X
Name
Pressure_40ft
Member of Set
LoadSet1 ▼ New
References
Surfaces : Individual Boundary Intent
Surface : HALF-INCH-PIPE_3-65-INCH.PRT
Surface : HALF-INCH-PIPE_3-65-INCH.PRT
Surface : HALF-INCH-COUPLING-T.PRT
Surface : HALF-INCH-COUPLING-T.PRT
Surface Sets
Pressure
Advanced >>
Value
17.352 psi 🔻
Preview OK Cancel

Stress Analysis – Frame 1 40 ft. below water

Displacement (in)

Stress Analysis – Frame 1 40 ft. below water

Displacement (in)

Stress Analysis – Frame 1 100 ft. below water

Displacement (in)

UNIVERSITY of HOUSTON COLLEGE of TECHNOLOGY

Stress Analysis – Frame 1

Model	Max. Von	Mises Stress	Max. Disp	lacement
	40 ft. depth	100 ft. depth	40 ft. depth	100 ft. depth
Quarter Frame	3296 psi	9914 psi	0.029 inches	0.0734 inches
Full Frame	3053 psi	7633 psi	0.045 inches	0.112 inches

- ► CPVC Material Properties:
 - ► Tensile Strength (Yield Strength) 7,600 psi
 - ► Allowable Stress = $\frac{2}{3}$ σy 5066.67 psi

ROV Frame

Acrylic Material Definition

Density	0.68	3				g/cm [/]	^3			¥
Structu	ıral	Thermal	Misce	llaneous	Appea	rance	User De	fined		
Symme	etry	Isotropic							7	
Stress	-Stra	in Response	Line	ar					-	
		Poisson'	's Ratio	0.3						
		Young's M	lodulus	425000			psi		~	
Coef	ff. of	Thermal Exp	ansion	3.9e-05			/F		-	
	Ме	chanisms D	amping				sec/in		-	
Mat	erial	Limits —								_
		Tensile Yield	Stress	7500			psi		~	
	Ter	sile Ultimate	Stress	12100			psi		-	
Com	pres	sive Ultimate	Stress				lbm/(in sec^2)	v	
		_								
Struct	tura	Therm	nal M	iscellane	eous	Appea	arance	User Defined		

Structural	Thermal	Miscellaneous	Appearance	User Defined	
Symmetry	Isotropic				-
Propertie	25				
Specific I	Heat Capacity	y 1779.39	jou	le/(kg K)	w
Thermal Conductivity		v 0.202	W	(m K)	~

Displacement (in)

Control System

- ► Feedback Sensors:
 - ► Accelerometer.

► Gyroscope.

- ▶ 3-in-1 Sensor: 9 Degrees of Freedom IMU (\$24.95)
 - ▶ 3-axis accelerometer
 - ▶ 3-axis gyroscope
 - ► 3-acis magnetometer

Control System

- ► Communications:
 - **► UART.**
 - **▶ 12C**
 - **▶** USB Hub

UNIVERSITY of HOUSTON COLLEGE of TECHNOLOGY

Propulsion System

- ▶ Blue Robotics T100 Thruster
 - ▶ Price- \$134.00 ea.
 - ► Motor Type- High efficiency brushless
 - ▶ Weight in air- 0.93 lb.
 - ► Max Power- 130W
 - ► Operating Voltage- 12 volts
 - ► Max Thrust 5.2:4 Forward (5.2 lbf) Reverse (4 lbf)
 - ► Min Thrust (0.03 lbf)

Thruster Positioning

UNIVERSITY of HOUSTON COLLEGE of TECHNOLOGY

Arms Update

Servo Motors vs. Stepper Motors

Servo Motor

- ▶ Fast
- ▶ High Torque
- ► Accurate Rotation With Limited Angle (≈180°)
- More complicated setup with PWM turning

Stepper Motor

- **▶** Slow
- ▶ Precise Rotation
- Requires External Control Circuit or Microcontroller
- ► Easy Set-Up & Control

Arms Update

Updated Project Budget

- ► Current Cash Flow:
 - **Expenditures:**
 - ► CPVC components (\$86.35)
 - ▶ Income:
 - ► No Sponsors as of 10/19

► Planned Expenditures:

► Final Frame - \$100

► Propulsion System - \$800

► Control System - \$200

► Arm Module - \$700

► Tether System - \$200

► Total - \$2,000

Updated Gantt Chart

COLLEGE of TECHNOLOGY

Thank You for Listening!

Any Questions, Comments, or Concerns?

