14.1 Rod cutting 367

Figure 14.3 The recursion tree showing recursive calls resulting from a call CUT-ROD(p,n) for n=4. Each node label gives the size n of the corresponding subproblem, so that an edge from a parent with label s to a child with label t corresponds to cutting off an initial piece of size s-t and leaving a remaining subproblem of size t. A path from the root to a leaf corresponds to one of the 2^{n-1} ways of cutting up a rod of length n. In general, this recursion tree has 2^n nodes and 2^{n-1} leaves.

are there? A rod of length n has n-1 potential locations to cut. Each possible way to cut up the rod makes a cut at some subset of these n-1 locations, including the empty set, which makes for no cuts. Viewing each cut location as a distinct member of a set of n-1 elements, you can see that there are 2^{n-1} subsets. Each leaf in the recursion tree of Figure 14.3 corresponds to one possible way to cut up the rod. Hence, the recursion tree has 2^{n-1} leaves. The labels on the simple path from the root to a leaf give the sizes of each remaining right-hand piece before making each cut. That is, the labels give the corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting

Now, let's see how to use dynamic programming to convert CUT-ROD into an efficient algorithm.

The dynamic-programming method works as follows. Instead of solving the same subproblems repeatedly, as in the naive recursion solution, arrange for each subproblem to be solved *only once*. There's actually an obvious way to do so: the first time you solve a subproblem, *save its solution*. If you need to refer to this subproblem's solution again later, just look it up, rather than recomputing it.

Saving subproblem solutions comes with a cost: the additional memory needed to store solutions. Dynamic programming thus serves as an example of a *time-memory trade-off*. The savings may be dramatic. For example, we're about to use dynamic programming to go from the exponential-time algorithm for rod cutting