# A Methodology to Define QoS and SLA Requirements in Service Choreographies

#### **Authors**

Victoriano Alfonso Phocco Diaz Daniel Macedo Batista

Departament of Computer Science University of Sao Paulo alfonso7@ime.usp.br, batista@ime.usp.br

September 18, 2012

# Agenda

- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- **5** Conclusions and Future Works

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

# SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

#### Key elements:

• Services (mainly Web services).

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA (Service Oriented Architecture)

#### SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA (Service Oriented Architecture)
- Service Composition:

#### SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA (Service Oriented Architecture)
- Service Composition:
  - **Service Orchestration**.

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA (Service Oriented Architecture)
- Service Composition:
  - Service Orchestration .
  - Service Choreography .

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA (Service Oriented Architecture)
- Service Composition:
  - Service Orchestration .
  - Service Choreography .
- **QoS** (Quality of Service).



#### Service Orchestration



Figure: Service Orchestration

# Service Choreography

- Allows service composition in a collaborative manner.
- Don't have a single point of control or coordination.
- Describes the P2P interactions of the externally observable behavior of its participants.



Figure: Service Choreography

# Service Choreography



Figure: Service Choreography

• A Choreography is also a process.

- A Choreography is also a process.
- BPMN (Bussiness Process Model and Notation) is a standard for modeling business process.
- BPMN supports choreographies modeling.

- A Choreography is also a process.
- BPMN (Bussiness Process Model and Notation) is a standard for modeling business process.
- BPMN supports choreographies modeling.
- Two modeling approaches:
  - Interconnection Model

- A Choreography is also a process.
- BPMN (Bussiness Process Model and Notation) is a standard for modeling business process.
- BPMN supports choreographies modeling.
- Two modeling approaches:
  - Interconnection Model
  - Interaction Model

#### Interaction Model

- Interactions globally captured.
- Basic building block: atomic interaction between two parties.
- Supported from BPMN 2.



# BPMN Choreography elements



Figure: BPMN elements for modeling choreographies (BPMN 2.0).

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

#### Problems to Solve

- The most approaches don't evaluate choreographies:
  - focusing on QoS or
  - ▶ in earlier stages of development.

#### Problems to Solve

- The most approaches don't evaluate choreographies:
  - focusing on QoS or
  - in earlier stages of development.
- Planning of resources before/during development of choreography.

#### Problems to Solve

- The most approaches don't evaluate choreographies:
  - focusing on QoS or
  - ▶ in earlier stages of development.
- Planning of resources before/during development of choreography.
- To guarantee QoS about communications (network) is important.

#### **Objectives**

- To assess the impact of QoS attributes in a choreography interaction model.
- To propose a novel methodology to establish requirements for QoS and SLA in early stages of development.
- To plan the capacity of the network elements in choreographies.

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- Conclusions and Future Works

## Description

• Mapping of a choreography to a Generalized Stochastic Petri Net (GSPN).

## Description

- Mapping of a choreography to a Generalized Stochastic Petri Net (GSPN).
- **2 Configurations** of the resulting GSPN.

## Description

- Mapping of a choreography to a Generalized Stochastic Petri Net (GSPN).
- Configurations of the resulting GSPN.
- Simulations of scenarios.

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
  - In service operation: time to complete the service.

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
  - In service operation: time to complete the service.
  - ▶ In network: delay and communication errors.

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
  - In service operation: time to complete the service.
  - ► In network : delay and communication errors.
  - ► In message : message format.

# Mapping BPMN to GSPN (I)



Figure: Mapping of events and gateways elements to modules of Petri nets

# Mapping BPMN to GSPN (II)



A) Interaction in BPMN 2

# Mapping BPMN to GSPN (II)





A) Interaction in BPMN 2

B) GSPN Mapping with QoS

# Mapping BPMN to GSPN (II)



A) Interaction in BPMN 2

B) GSPN Mapping with QoS







A) Interaction in BPMN 2

B) GSPN Mapping with QoS



### Mapping Algorithm

### Mapping of choreography in BPMN 2.0 to GSPN with QoS model

Input: Process Choreography  $PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F})$  in BPMN 2.0.

### Mapping Algorithm

### Mapping of choreography in BPMN 2.0 to GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

Output: Generalized Stochastic Petri Net  $GSPN_{QoS}$ .

### Mapping Algorithm

### Mapping of choreography in BPMN 2.0 to GSPN with QoS model

```
 \begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}
```

Output: Generalized Stochastic Petri Net  $GSPN_{QoS}$ .

 $CT_i \in \mathcal{T}$ ,  $G_i \in \mathcal{G}$  and  $E_k \in \mathcal{E}$ . where  $i, j, k \in \mathbb{N}$ .

Return GSPN<sub>OoS</sub>





#### 3) Replacing and composing



#### 3) Replacing and composing



#### 4) Reducing and adding final elements



- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- 5 Conclusions and Future Works



Figure: Choreography example using BPMN2 elements.



Figure: Choreography example using BPMN2 elements.

### Mapping



Figure: GSPN obtained from the choreography.









Table: Weights of Scenario 1 and Scenario 2

|                                                  | Weights    |            |
|--------------------------------------------------|------------|------------|
| Transition                                       | Scenario 1 | Scenario 2 |
| $T_{latency1}$ , $T_{latency2}$ , $T_{latency3}$ | 0.99       | 0.94       |
| $T_{cerr1}$ , $T_{cerr2}$ , $T_{cerr3}$          | 0.01       | 0.06       |
| $T_{receive}$ , $T_{receive2}$ , $T_{receive3}$  | 99         | 97         |
| $T_{merr1}$ , $T_{merr2}$ , $T_{merr3}$          | 1          | 3          |
| T <sub>arrival2</sub> , T <sub>arrival3</sub>    | 0.5        | 0.5        |

#### Simulation

• The Pipe2 tool was used to model and simulate the GSPN.

#### Simulation

- The Pipe2 tool was used to model and simulate the GSPN.
- 1 token = 1 choreography instance.
- 100 tokens are considered to each scenario at the place Start.
- 100 concurrent instances were executed (multiple-server semantic).

#### Simulation

- The Pipe2 tool was used to model and simulate the GSPN.
- 1 token = 1 choreography instance.
- 100 tokens are considered to each scenario at the place Start.
- 100 concurrent instances were executed (multiple-server semantic).
- 1500 fires and 10 replications.
- Confidence level of 95%.

Table: Simulation results

| Place             | Average nun<br>Scenario 1 | nber of tokens (%)<br>Scenario 2 |
|-------------------|---------------------------|----------------------------------|
| Start             | 35.28                     | 40.15                            |
| End               | 41.95                     | 38.78                            |
| M <sub>err1</sub> | 0.39                      | 0.91                             |
| M <sub>err2</sub> | 0.00                      | 0.93                             |
| M <sub>err3</sub> | 0.00                      | 0.66                             |
| C <sub>err1</sub> | 0.74                      | 2.94                             |
| C <sub>err2</sub> | 0.00                      | 0.00                             |
| C <sub>err3</sub> | 0.78                      | 0.16                             |
| C <sub>i1</sub>   | 8.32                      | 8.90                             |
| C <sub>i2</sub>   | 0.63                      | 0.69                             |
| C <sub>i3</sub>   | 0.75                      | 8.90                             |

Table: Simulation results

| •                        | A 1 C. 1 (0/)                                               |                      |                                 | •                           |
|--------------------------|-------------------------------------------------------------|----------------------|---------------------------------|-----------------------------|
|                          | Place                                                       | Scenario 1           | ber of tokens (%)<br>Scenario 2 | _                           |
|                          | Start<br>End                                                | 35.28<br>41.95       | 40.15<br>38.78                  |                             |
| Message<br>Format Errors | $M_{err1}$ $M_{err2}$ $M_{err3}$                            | 0.39<br>0.00<br>0.00 | 0.91<br>0.93<br>0.66            | Lost instances: 1.52% 3.10% |
| -                        | C <sub>err1</sub><br>C <sub>err2</sub><br>C <sub>err3</sub> | 0.74<br>0.00<br>0.78 | 2.94<br>0.00<br>0.16            |                             |
|                          | C <sub>i1</sub><br>C <sub>i2</sub><br>C <sub>i3</sub>       | 8.32<br>0.63<br>0.75 | 8.90<br>0.69<br>8.90            |                             |

Table: Simulation results

|                          | Place                                                       | Average number of tokens (%)<br>Scenario 1 Scenario 2 |                      |                |
|--------------------------|-------------------------------------------------------------|-------------------------------------------------------|----------------------|----------------|
| -                        | Start<br>End                                                | 35.28<br>41.95                                        | 40.15<br>38.78       | •              |
| Message<br>Format Errors | M <sub>err1</sub><br>M <sub>err2</sub><br>M <sub>err3</sub> | 0.39<br>0.00<br>0.00                                  | 0.91<br>0.93<br>0.66 |                |
| Communicatio<br>Errors   | $C_{err1}$ $C_{err2}$ $C_{err3}$                            | 0.74<br>0.00<br>0.78                                  | 2.94<br>0.00<br>0.16 | 0.39%<br>2.50% |
| -                        | C <sub>i1</sub><br>C <sub>i2</sub><br>C <sub>i3</sub>       | 8.32<br>0.63<br>0.75                                  | 8.90<br>0.69<br>8.90 |                |

Table: Simulation results

| _                        |                                                             |                                                   |                      |
|--------------------------|-------------------------------------------------------------|---------------------------------------------------|----------------------|
|                          | Place                                                       | Average number of tokens (% Scenario 1 Scenario 2 |                      |
| •                        | Start<br>End                                                | 35.28<br>41.95                                    | 40.15<br>38.78       |
| Message<br>Format Errors | M <sub>err1</sub><br>M <sub>err2</sub><br>M <sub>err3</sub> | 0.39<br>0.00<br>0.00                              | 0.91<br>0.93<br>0.66 |
| Communication<br>Errors  | $C_{err1}$ $C_{err2}$ $C_{err3}$                            | 0.74<br>0.00<br>0.78                              | 2.94<br>0.00<br>0.16 |
| Bottleneck               | C <sub>i1</sub><br>C <sub>i2</sub><br>C <sub>i3</sub>       | 8.32<br>0.63<br>0.75                              | 8.90<br>0.69<br>8.90 |

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

 We have proposed a novel methodology to define QoS and SLA requirements in service Choreography.

- We have proposed a novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).

- We have proposed a novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).
- The GSPN is good to model and analyze several aspects involved into service choreography.

- We have proposed a novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).
- The GSPN is good to model and analyze several aspects involved into service choreography.
- The simulation is useful for supporting analysis of complex processes (e.g. process choreography).

- We have proposed a novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).
- The GSPN is good to model and analyze several aspects involved into service choreography.
- The simulation is useful for supporting analysis of complex processes (e.g. process choreography).
- The simulation results can be used to establish early QoS requirements and initial SLAs.

#### Future Works

- To extend the mapping to support more choreography BPMN elements.
- To make more analysis and to use complex scenarios, where correlation problems could happen.
- To include more QoS attributes.

### Sponsors







# Thanks!