ELTE IK - Programtervező Informatikus BSc

Záróvizsga tételek

5. Valószínűségszámítási és statisztikai alapok

Valószínűségszámítási és statisztikai alapok

Diszkrét és folytonos valószínűségi változók, nagy számok törvénye, centrális határeloszlás tétel. Statisztikai becslések, klasszikus statisztikai próbák.

1 Kolmogorov-féle valószínűségi mező

 (Ω, \mathcal{A}, P) hármas, ahol:

 Ω nem üres halmaz, eseménytér, ω elemi esemény.

 ${\mathcal A}~\Omega$ részhalmazainak egy rendszere, ${\mathcal A}\subset 2^\Omega, A\in {\mathcal A}$ események, ${\mathcal A}~\sigma$ -algebra. σ -algebra:

- 1. $\Omega \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow \overline{A} = \Omega \backslash A \in \mathcal{A}$
- 3. $A_1, A_2 \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

 $P: \mathcal{A} \to [0,1]$ halmazfüggvény, valószínűség, amelyre $P(\Omega) = 1, P(A) \geq 0, \forall A \in \mathcal{A}$ -ra, páronként kizáró $(A_i \cdot A_j = \emptyset, i \neq j) \ A_1, A_2 \dots \in \mathcal{A}$ eseményekre $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

2 Diszkrét és folytonos valószínűségi változók

- Valószínűségi változó: $\xi: \Omega \to \mathbb{R}$ mérhető függvény, azaz amire $\{\omega: \xi(\omega) < x\} \in \mathcal{A}, \forall x \in \mathbb{R}$, ahol \mathcal{A} az eseménytér (Ω) részhalmazainak egy rendszere. $(\omega \in \Omega$ elemi esemény).
- Valószínűségi változó eloszlás
a/eloszlásfüggvénye: $F_{\xi}(x) = P(\xi < x), \forall x \in \mathbb{R}.$ Tulajdonságai:
 - 1. $0 \le F_{\xi}(x) \le 1$
 - 2. monoton növő
 - 3. balról folytonos
 - 4. $\lim_{x \to -\infty} F_{\xi}(x) = 0$, $\lim_{x \to \infty} F_{\xi}(x) = 1$

2.1 Diszkrét valószínűségi változók

Értékkészlete legfeljebb megszámlálhatóan végtelen, azaz $\{x_1...x_n...\}$ elemekből áll. Ekkor eloszlása: $p_k := P(\xi = x_k)$.

Név	Értelmezés	Eloszlás	EX	D^2X
indikátor	Egy p valószínűségű	P(X=1) = p	p	p(1 - p)
Ind(p)	esemény bekövetkezik-e	P(X=0) = 1 - p		
	vagy sem.			
geometriai (Pas-	Hányadikra következik	$P(X = k) = p(1 - p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
cal)	be először egy p	k = 1, 2	_	•
Geo(p)	valószínűségű esemény.			
hipergeometriai	Visszatevés nélküli	$P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{k}}$	$n\frac{M}{N}$	$n\frac{M}{N}(1-\frac{M}{N})(1-\frac{n-1}{N-1})$
Hipgeo(N, M, n)	mintavétel.	k = 0, 1,, n		
binomiális	Visszatevéses mintavétel.	$P(X = k) = \binom{n}{k} p^k (1 - k)$	np	np(1-p)
Bin(n,p)		$(p)^{n-k}$		
		k = 0, 1,, n		
negatív bi-	Hányadikra következik	$P(X = k) = \binom{k-1}{n-1} p^n (1 - k)$	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$
nomiális	be n . alkalommal egy p	$(p)^{k-n}$	_	•
Negbin(n,p)	valószínűségű esemény.	$k=n,n+1,\dots$		
Poisson	Ritka esemény.	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$	λ	λ
$Poi(\lambda)$				

2.2 Folytonos valószínűségi változók

Egy ξ valószínűségi változó abszolút folytonos, ha létezik olyan f(x) függvény, amelyre $F(x) = \int_{-\infty}^{x} f(t)dt$. Ilyenkor f(x) sűrűségfüggvény. (F(x) pedig az eloszlásfüggvény.)

Másik megfogalmazás: $\forall a < b$ -re $P(a < \xi < b) = \int_a^b f(t)dt$, $F_{\xi}(x) = P(\xi < x) = \lim_{a \to -\infty} P(a < \xi \ b) = \int_{-\infty}^x f(t)dt$. Sűrűségfüggvény tulajdonságai:

1.
$$f(x) = F'(x)$$

2.
$$f(x) \ge 0$$

3.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Név	Eloszlásfüggvény	Sűrűségfüggvény	EX	D^2X
egyenletes $E(a,b)$	$ \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x \le b \\ 1 & b < x \end{cases} $	$\begin{cases} \frac{1}{b-a} & a < x \le b \\ 0 & otherwise \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
exponenciális $Exp(\lambda)$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$	$\begin{cases} \lambda \cdot e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
normális $N(m, \sigma^2)$		$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}} \ x \in \mathbb{R}$	m	σ^2
standard normális $N(0,1^2)$	$\Phi(x) = \dots$	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \ x \in \mathbb{R}$	0	1
gamma $\Gamma(\alpha,\lambda)$		$\begin{cases} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$	$\frac{\alpha}{\lambda}$	$\frac{lpha}{\lambda^2}$

2.3 Fogalmak

- Konvolúció: X, Y független valószínűségi változók, konvolúciójuk az X+Y v. v.
- Függetlenség: $P(\xi_1 < x_1, ..., \xi_n < x_n) = \prod_{i=1}^n P(\xi_i < x_i)$ vagy diszkrét esetben: $P(\xi_1)x_1, ..., \xi_n = x_n) = \prod_{i=1}^n P(\xi_i = x_i)$

- Várható érték: (Ω, \mathcal{A}, P) valószínűségi mező, $X: \Omega \to \mathbb{R}$ valószínűségi változó, $EX = \int_{\Omega} X dP$, ha ez létezik. Diszkrét esetben $EX = \sum_k x_k \cdot p_k$, ha abszolút konvergens. Abszolút folytonos esetben $EX = \int_{-\infty}^{\infty} x \cdot f(x) dx$, ha abszolút folytonos.
- Szórásnégyzet: $D^2X = E((X EX)^2) = EX^2 E^2X$
- l. momentum: $EX^l = \int_{\Omega} x^l dP$, ha létezik.
- $Sz\acute{o}r\acute{a}s$: $DX = \sqrt{D^2X}$
- Kovariancia: $cov(X,Y) = E((X-EX)(Y-EY) = E(XY) EX \cdot EY)$. Ha cov(X,Y) = 0, akkor X és Y korrelálatlan. (Megjegyzés: ha két v.v. független, akkor cov(X,Y) = 0, vagyis korrelálatlanok; illetve $cov(X,X) = D^2X$.)
- Korreláció: $R(X,Y) = \frac{cov(X,Y)}{DX \cdot DY}$, két v.v. lineáris kapcsolatát méri. $R > 0 \rightarrow$ pozitív, $R < 0 \rightarrow$ negatív; $R^2 \sim 1 \rightarrow$ erős, $R^2 \sim 0.5 \rightarrow$ közepes, $R^2 \sim 0 \rightarrow$ gyenge.

3 Nagy számok törvénye

3.1 Gyenge törvény

 X_1,X_2,\dots függetlenek, azonos eloszlásúak, $EX_i=m<\infty,\ D^2X_i=\sigma^2<\infty.$ $P(\frac{X_1+\dots+X_n}{n}-m\geq\varepsilon)\to 0\ (n\to\infty)\ \forall \varepsilon>0$ -ra (sztochasztikus konvergencia).

3.2 Erős törvény

 X_1,X_2,\dots függetlenek, azonos eloszlásúak, $EX_1=m<\infty,\,D^2X_1=\sigma^2<\infty.\frac{X_1+\dots+X_n}{n}\to m\ (n\to\infty)$ 1 valószínűséggel. Megjegyzés: Csebisev-egyenlőtlenséggel bizonyítjuk. $(\frac{\sigma^2}{n\varepsilon^2}\to 0\ (n\to\infty))$

3.2.1 Csebisev-egyenlőtlenség

EX véges.

Ekkor $P(|X - EX| \ge \lambda) \le \frac{D^2 X}{\lambda^2}$

Megjegyzés: Bizonyítás Markov-egyenlőtlenséggel.

3.2.2 Markov-egyenlőtlenség

 $X \ge 0, c > 0.$ Ekkor $P(X \ge c) \le \frac{EX}{c}$

3.3 Konvergenciafajták

 $\xi_n \to \xi$, vagyis ξ konvergens.

- sztochasztikusan: ha $\forall \varepsilon > 0$ -ra $P(|\xi_n \xi| \ge \varepsilon) \to 0 \ (n \to \infty)$.
- 1 valószínűséggel (majdnem mindenütt): ha $P(\omega : \xi_n(\omega) \to \xi(\omega)) = 1$.
- L^p -ben: ha $E(|\xi_n \xi|^p) \to 0 \ (n \to \infty) \ (p > 0 \text{ r\"{o}gz\'{i}tett}).$
- eloszlásban: ha $F_{\xi_n}(x) \to F_{\xi}(x) \ (n \to \infty)$ az utóbbi minden folytonossági pontjában.

Kapcsolataik: 1 valószínűségű és L^p -beli a legerősebb, ezekből következik a sztochasztikus, ebből pedig az eloszlásbeli.

4 Centrális határeloszlás tétel

$$X_1,X_2,\dots$$
 függetlenek, azonos eloszlásúak, $EX_1=m<\infty,~D^2X_1=\sigma^2<\infty.$ Ekkor $\frac{X_1+\dots+X_n-nm}{\sqrt{n}\sigma}\to N(0,1)~(n\to\infty)$ eloszlásban, azaz $P(\frac{X_1+\dots+X_n-nm}{\sqrt{n}\sigma}< x)\to \Phi(x)~(n\to\infty).$

Statisztikai mező 5

 $(\Omega, \mathcal{A}, \mathcal{P})$ hármas, ha $\mathcal{P} = \{P_{\vartheta}\}_{\vartheta \in \Theta}$ és $(\Omega, \mathcal{A}, P_{\vartheta})$ Kolmogorov-féle valószínűségi mező $\forall \vartheta \in \Theta$ -ra.

5.1 **Fogalmak**

- Minta: $\xi = (\xi_1, ..., \xi_n) : \Omega \to \Xi \in \mathbb{R}^n$. $(\xi_i \text{ valószínűségi változó})$
- Mintatér: Ξ , minta lehetséges értékeinek halmaza, gyakran $\mathbb{R}^n, \mathbb{Z}^n$.
- Minta [realizációja]: $\underline{x} = (x_1, ..., x_n)$, konkrét megfigyelés.
- $Statisztika: T: \Xi \to \mathbb{R}^k$.
- Statisztika alaptétele: (Glivenko–Cantelli-tétel) ξ_1, ξ_2, \dots független, azonos eloszlású F eloszlásfüggvénnyel. Ekkor az F_n tapasztalati eloszlásfüggvényre teljesül, hogy $\sup_{-\infty < x < \infty} |F_n(x) - F(x)| \to 0 \ (n \to \infty)$ 1 valószínűséggel.

6 Statisztikai becslések

 $(\Omega, \mathcal{A}, \mathcal{P})$ statisztikai mező, $\vartheta \in \Theta$, $P_{\vartheta}(\xi_1 < x_1, ..., \xi_n < x_n) = F_{\vartheta}(\underline{x})$

 $T(\xi)$ a ϑ becslése, ha $T: \mathbb{R}^n \to \Theta$.

 $T(\xi)$ a $h(\vartheta)$ becslése, ha $T: \mathbb{R}^n \to h(\Theta)$.

Torzítatlanság: $T(\xi)$ torzítatlan becslése $h(\vartheta)$ -nak, ha $E_{\vartheta}T(\xi) = h(\vartheta) \ \forall \vartheta \in \Theta$.

Aszimptotikusan torzítatlan: $T(\xi)$ aszimptotikusan torzítatlan a $h(\vartheta)$ -ra, ha $E_{\vartheta}T(\xi) \to h(\vartheta) \ (n \to \infty) \ \forall \vartheta \in \Theta$.

A T_1 torzítatlan becslés $hat ásos abb \ T_2$ torzítatlan becslésnél, ha $D_{\vartheta}^2 T_1 \leq D_{\vartheta}^2 T_2 \ \forall \vartheta \in \Theta$.

Hatásos, ha minden más torzítatlan becslésnél hatásosabb. Ha van hatásos becslés, akkor az egyértelmű.

- Maximum-likelihood becslés: Likelihood függvény: $L(\vartheta,\underline{x}) = \begin{cases} P_{\vartheta}(\underline{\xi} = \underline{x}) & diszkr. \\ f_{\vartheta,\underline{\xi}}(\underline{x}) & absz.folyt. \end{cases}$ Független esetben: $L(\vartheta,\underline{x}) = \begin{cases} \prod_{i=1}^n P_{\vartheta}(\xi_i = x_i) & diszkr. \\ \prod_{i=1}^n f_{\vartheta,\xi_i}(x_i) & absz.folyt. \end{cases}$
 - $\hat{\vartheta}$ a ϑ ismeretlen paraméter maximum-likelihood becslése, ha $L(\hat{\vartheta}, \xi) = \max_{\vartheta \in \Theta} L(\vartheta, \xi)$.
- Momentum-módszer becslés: $\vartheta=(\vartheta_1,...,\vartheta_k),\,\xi_1,...,\xi_n,\,l.$ momentum: $M_l(\underline{\vartheta})=E_{\underline{\vartheta}}\xi_i^l,$ tapasztalati l. momentum-módszer becslés: tum: $\hat{M}_l = \frac{\sum_{i=1}^n \xi_i^l}{n}$.
 - $\underline{\hat{\vartheta}}$ a $\underline{\vartheta}$ momentum módszer szerinti becslése, ha megoldása az $M_l(\underline{\vartheta}) = \hat{M}_l, l = 1..k$ egyenletrendszernek.

7 Hipotézisvizsgálat

Felteszünk egy hipotézist, és vizsgáljuk, hogy igaz-e. Elfogadjuk vagy elutasítjuk. Lehet paraméteres vagy nem paraméteres, vizsgálhatjuk várható értékek, szórások egyezőségét, értékét, teljes eseményrendszerek függetlenségét. Illeszkedésvizsgálattal megállapíthatjuk, hogy a valószínűségi változók adott eloszlásfüggvényűek-e, homogenitásvizsgálattal pedig azt, hogy ugyanolyan eloszlású-e két minta.

 H_0 : nullhipotézis, $\vartheta \in \Theta_0$; H_1 : ellenhipotézis, $\vartheta \in \Theta_1$; $\Theta = \Theta_0 \bigcup \Theta_1$.

Egy- és kétoldali vizsgálat: Kétoldali ellenhipotézisnél a nem egyezőséget tesszük fel, egyoldalinál valamilyen relációt. Kétoldalinál a próba értékének abszolút értékét vizsgáljuk, hogy az elfogadási tartományon belül van-e, ekkor például az u-próbánál az adott hibaszázalékot meg kell felezni a számításhoz, hiszen a Φ függvény szimmetrikus az y tengelyre.

- Statisztikai próba: $\Xi = \Xi_e \bigcup \Xi_k$ (diszjunkt halmazok) elfogadási és kritikus tartomány. Ez a felbontás a statisztikai próba. Ha a megfigyelés eleme a kritikus tartománynak, akkor elutasítjuk a nullhipotézist, ha nem eleme, akkor elfogadjuk. $T(\underline{x}) = \begin{cases} 1 & x \in \Xi_k \\ 0 & otherwise \end{cases}$
- Elsőfajú hiba: H_0 igaz, de elutasítjuk. Valószínűsége: $P_{\vartheta}(\xi \in \Xi_k), \ \vartheta \in \Theta_0$.
- *Másodfajú hiba*: H_0 hamis, de elfogadjuk. Valószínűsége: $P_{\vartheta}(\underline{\xi} \notin \Xi_k)$, $\vartheta \in \Theta_1$. Az a cél, hogy ezek a hibák minél kisebbek legyenek. Egymás kárára javítható a két valószínűség, ha a megfigyelések száma rögzített.
- Próba terjedelme: α a próba terjedelme, ha $P_{\vartheta}(\underline{\xi} \in \Xi_k) \leq \alpha$, $\vartheta \in \Theta_0$. α a próba pontos terjedelme, ha $\sup_{\vartheta \in \Theta_0} P_{\vartheta}(\underline{\xi} \in \Xi_k) = \alpha$.

8 Klasszikus statisztikai próbák

- u-próba: Feltételezzük, hogy a minta normális eloszlású $(\xi_i \sim N(m, \sigma^2)), i = 1..n$, és hogy a szórás ismert.
 - Egymintás: A nullhipotézis az, hogy a várható érték megegyezik-e egy konkrét értékkel (m_0) , másképpen fogalmazva azt vizsgáljuk, hogy a mintabeli átlag nem tér-e el szignifikánsan m_0 -tól. Tehát $H_0: m = m_0$, és kétoldali esetben $H_1: m \neq m_0$, egyoldaliban pedig például $H_1: m \geq m_0$ vagy $H_1: m < m_0$. Az u-próba értéke: $u = \sqrt{n} \frac{\bar{\xi} m_0}{\sigma}$. Ha igaz a nullhipotézis, akkor ez közel standard normális eloszlású. ε hibavalószínűséggel vizsgáljuk a hipotézist, ehhez szükségünk van a $\Phi(u_{1-\varepsilon}) = 1 \varepsilon$ értékre. Kétoldali esetben H_0 -t elutasítjuk, ha $|u| > u_{1-\frac{\varepsilon}{2}}$, és elfogadjuk, ha $|u| \leq u_{1-\frac{\varepsilon}{2}}$. Egyoldali esetben $u > u_{1-\varepsilon}$ (jobb) és $u < u_{1-\varepsilon}$ (bal) esetét vizsgáljuk, ezen esetekben utasítjuk el H_0 -t.
 - Kétmintás: Itt a feltételek a következők: $\xi_i \sim N(m_1, \sigma_1^2), \ i=1..n$ és $\eta_j \sim N(m_2, \sigma_2^2), \ j=1..m$. A szórások szintén ismertek. $H_0: m_1=m_2$, és $u=\frac{\overline{\xi}-\overline{\eta}}{\sqrt{\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{m}}}$. $H_1: m_1>m_2$, ez a felső (jobb?) oldali, $H_1: m_1< m_2$ pedig az alsó (bal?) ellenhipotézis.
- t-próba: Ennél a próbánál nem ismert a szórás, viszont ugyanúgy normális eloszlást feltételezünk, mint az u-próbánál. $\xi_i \sim N(m, \sigma^2)$, i = 1..n.
 - Egymintás: $H_0: m=m_0$. Ellenhipotézis az u-próbához hasonlóan. $t=\sqrt{n}\frac{\overline{\xi}-m_0}{\sqrt{\sigma_*^2}}$, ahol σ_*^2 a korrigált tapasztalati szórásnégyzet, amit a mintából számíthatunk ki. (Megjegyzés: n helyett n-1-gyel osztunk a képletben.) Ez az érték t-eloszlású H_0 esetén, ami n-1 szabadságfokú. Más néven szokás ezt a próbát Student-próbának is nevezni.
 - *Kétmintás*: $\xi_i \sim N(m_1, \sigma_1^2)$, i=1..n és $\eta_j \sim N(m_2, \sigma_2^2)$, j=1..m. Ez esetben sem ismert a szórás, viszont feltételezzük, hogy a két minta szórása megegyezik. Ekkor $t_{n+m-2} = \sqrt{\frac{nm(n+m-2)}{n+m}} \frac{\overline{\xi} \overline{\eta}}{\sqrt{\sum (\xi_i \overline{\xi})^2 + \sum (\eta_j \overline{\eta})^2}}$. n+m-2 a próba szabadságfoka.
- f-próba: Két minta esetén használható. Ez a próba szórások egyezőségének vizsgálatára alkalmas, tehát itt $H_0: \sigma_1 = \sigma_2$. Ha a két minta szórásnégyzete megegyezik, akkor a hányadosuk 1-hez tart. $f_{n-1,m-1} = max(\frac{\sigma_1^2}{\sigma_2^2},\frac{\sigma_2^2}{\sigma_1^2})$. A két szabadsági fok közül az első az f számlálójához tartozó minta elemszáma -1, a második a nevezőjéhez.
- Welch-próba: Más néven d-próba. Hasonló, mint a kétmintás t-próba, de itt a szórások egyezőségét nem kell
 feltenni. Szabadsági foka bonyolult képlettel számítható.
- szekvenciális próbák: $V_n = \frac{\prod f_1(x_i)}{\prod f_0(x_i)} = \frac{L_1(x)}{L_0(x)}$. f_0 a nullhipotézis szerinti sűrűségfüggvény, f_1 az ellenhipotézis szerinti. Adott egy A és egy B érték, A < B. Ha $V_n \ge B$, akkor elutasítjuk H_0 -t, ha $V_n \le A$, akkor

elfogadjuk, és ha $A < V_n < B$, akkor új mintaelemet veszünk. Stein tétele szerint N 1 valószínűséggel véges. $N = min\{n : V_n \le A \lor V_n \ge B\}$.

- Minőség-ellenőrzés: n_1 elemet nézünk, $c_1 < c_2$ és c_3 határértékek. Ha $X_1 \le c_1$, akkor elfogadjuk H_0 -t, ha $X_1 \ge c_2$, akkor elutasítjuk. Ha $c_1 < X_1 < c_2$, akkor megnézünk n_2 elemet, és ha $X_1 + X_2 \le c_3$, akkor szintén elfogadjuk H_0 -t. A várható mintaelemszám méri a hatékonyságát.
- χ^2 -próba: $H_0: A_1,...,A_n$ teljes eseményrendszer. $P(A_i)=p_i, i=1..n, \nu_i$ a gyakoriság. Ha teljesül a nullhipotézis, akkor $\frac{\nu_i}{n} \sim p_i$. $\chi^2 = \sum \frac{(\nu_i np_i)^2}{np_i}$. Ez χ^2 eloszlású, aminek r-1 szabadságfoka van. r az összeadott csoportok száma. (Megjegyzés: ha túl kicsi lenne 1-1 csoportban a gyakoriság, akkor azokat összevonjuk.) χ^2 -próbát használhatunk illeszkedés-, homogenitás- és függetlenségvizsgálatra is. (Megjegyzés: más képlet van mindhez.)

• Egyéb próbák:

- Kolmogorov-Szmirnov-próba: 2 tapasztalati eloszlásfüggvény megegyezik-e (homogenitásvizsgálat), vagy 1 minta esetén megegyezik-e valamilyen eloszlásfüggvénnyel. $D_{m,n} = \max_x |F_n(x) G_m(x)|$. X_i F eloszlásfüggvénnyel, Y_j G-vel. $H_0: F \equiv G$.
- Előjel-próba: Hányszor teljesül, hogy valami pozitív.
- Wilcoxon-próba: (rangstatisztika), $P(X > Y) = \frac{1}{2}$ tesztelésére összeszámoljuk, hogy hány párra teljesül, hogy $X_i > Y_i$.