

TETRA-PROJECT

- Tetra-project: TEchnologieTRAnsfer
- Doel: kennis/technologie transfereren naar
- Uitgevoerd door kennisinstellingen
 - Verkennen en verspreiden van kennis
- Gebruikersgroep van bedrijven
 - Advies en sturing tijdens project
 - Eerste toegang tot projectresultaat
- 92,5% gefinancierd door IWT
 - Rest (7,5%) via cofinanciering door bedrijven

TOBCAT

- "Industriële toepassingen van objectcategorisatie'
- Start: 1 sept 2012, looptijd: 2 jaar
- Projectpartners:
 - EAVISE, Lessius Mechelen Campus De Nayer: Steven Puttemans, Wim Abbeloos (3D), prof. Toon Goedemé (projectleider)
 - MOBILAB, Katholieke Hogeschool Kempen, Geel: Glen Debard (ouderenmonitoring), prof. Bart Vanrumste
 - IMOB, Universiteit Hasselt: Tim De Ceunynck (verkeersmonitoring), prof. Stijn Daniëls

VOORSTELLING GEBRUIKERSGROEP

- Eurosense
- Van Hoecke
- RoboVision
- Vansteelandt
- Vistalink
- Entelec
- Vision for vision
- Biobest
- Innogreen
- Aris
- Traficon
- Grontmij contracting

- Grontmij Monitoring&Testing
- Case New Holland
- DataVision
- Creative Computing
- DSPValley
- KdG
- · Marc Leysen

T**Φ**B*Cat* **EVOLUTIE VAN OBJECTHERKENNING**

OBJECTCATEGORISATIE?

OBJECTCATEGORISATIE?

• Als de objecten binnen een klasse variaties vertonen

– Auto's:

- Koeien:

OBJECTCATEGORISATIE?

• Moeilijker naarmate er meer variabiliteit is:

LEVELS OF OBJECT CATEGORIZATION TOBCat

- · Different levels of recognition
 - Which object class is in the image? \Rightarrow Obj/Img classification
 - Where is it in the image? $\Rightarrow {\sf Detection/Localization}$
 - Where exactly which pixels? ⇒ Figure/Ground segmentation

OVERALL APPROACH

- Trainingsstap: leer uit voorbeelden een algemene beschrijving van de objectklasse = model
- Detectiestap: zoek in nieuwe beelden naar object door met model te vergelijken

CHALLENGES: ROBUSTNESS

Clutter

Intra-class

CHALLENGES: ROBUSTNESS

- Moderne technieken kunnen al heel wat:
 - Learn object variability
 - · Changes in appearance, scale, and articulation
 - Compensate for clutter, overlap, and occlusion

DOEL PROJECT

- moderne technieken van objectclassificatie bekend maken bij de doelgroep
- toegankelijk en transparant maken van de beschikbare technologie voor de bedrijven van de doelgroep
- objectclassificatie effectief bij bedrijven uit de doelgroep introduceren zodat zij het kunnen toepassen voor effectieve industriële problemen

WERKPLAN

PLANNING

ALGORITMES - PRINCIPE

- 3 vaste stappen
 - 1. Selecteren features / kenmerken
 - 2. Opbouwen van een classifier
 - 3. Detector die gebruik maakt van classifier

ALGORITMES - OVERZICHT

- Single view object detection
 - 1. Viola&Jones : cascade of simple features
 - 2. Felzenswalb: deformable part models
- Multiview object class detection
 - Leibe&Schiele + Thomas : implicit shape model with scale adaptive mean shift search
 - 4. Gall&Lempitsky: class specific Hough Forests
- Halcon: Sample Based Identification

VIOLA&JONES

• Techniek 1

"P. Viola and M. Jones, Rapid Object Detection using a Boosted Cascade of Simple Features, IEEE Conference on Computer Vision and Pattern Recognition, 2001"

VIOLA & JONES

- 1. Features selecteren
 - Gebruik Haar wavelet achtige features
 - Niet pixel gebaseerd maar window gebaseerd (24 x 24)
 - RGB → Grijswaarden luminantie
 - Som pixel intensiteitswaarden grijs - som pixel intensiteitswaarden wit

VIOLA & JONES

- 1. Features selecteren
 - Sneller → Integraalbeeld
 - Dubbel integraalbeeld (horizontaal + verticaal)

- 2. Opbouwen classifier
 - AdaBoost algoritme
 - > 45396 features voor elke sub window mogelijk
 - > Slechts enkelen leiden tot een effectieve classifier
 - Komen tot een set van belangrijke features

VIOLA & JONES

1. Features selecteren

VIOLA & JONES

- Combineren van meerdere 'zwakke' classifiers
- Om error te reduceren (individueel hoog)
- Ontstaan van cascade structuur
- Speed up voor de finale detector

VIOLA & JONES

3. Gebruiken als detector

Opmerking: mogelijkheid Viola&Jones met andere features (Local Binary Patterns)

FELZENSZWALB

• Techniek 2

"P. Felzenszwalb, R. Girshick, D. McAllester, Cascade Object Detection with Deformable Part Models, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010"

FELZENSZWALB

- 1. Features selecteren
 - HoG features = histogram of oriented gradient
 - = filter met [-1,0,1] & [-1,0,1]' Image smoothing → belangrijke zaken uit beeld halen

FELZENSZWALB

- 1. Features selecteren
 - ullet Gradient richting ullet afhankelijk van smoothing

• Combineren in een HoG gradient richting plot via histogram vote op de orientaties

FELZENSZWALB

- 1. Features selecteren
 - In algemene model:
 - · Aanduiden van parts
 - Toekennen van probability binnen part model
 - Voordelen :
 - Parts individueel detecteren
 - · Positie van een part maat verandering

FELZENSZWALB

2. Opbouwen classifier

- HoG map root = geheel
- HoG map onderdelen
- Waarschijnlijkheid detecteren via SVM

Van part models → gehele model (cascade - sneller)

FELZENSZWALB

ALGORITMES - OVERZICHT

- Twee voorgaande algoritmes
 - Algoritmes die werken op een getrained object
 - Werkt goed in single view
 - Oplossing voor multi-view → combineren classifiers
- Overstappen op multi-view toepassingen
 - Reduceren rekenwerk
 - Opbouwen van single classifier
 - Betere detectie van object categorieën

LEIBE&SCHIELE

• Techniek 3

"B. Leibe and B. Schiele. Scale-Invariant Object Categorization using a Scale-Adaptive Mean-Shift Search, DAGM, pp. 145-153, 2004."

"A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, and L. Van Gool, "Towards Multi-View Object Class Detection", Proceedings Conference on Computer Vision and Pattern Recognition, vol. II, pp. 1589-1596, 2006."

LEIBE & SCHIELE + THOMAS

1. Features selecteren

- Op zoek naar interest points in beeld = keypoints
- SIFT algoritme
- Gebruikmakend van Difference of Gaussian approach

Wegwerpen: laag contrast / punten op edges

LEIBE & SCHIELE + THOMAS

2. Opbouwen classifier

- Gebruik implicit shape model
 - Automatisch leren van een groot aantal locale elementen die voorkomen in een object = appearance codebook
 - Leren van een ster topologie structuur model
 - Features zijn onafhankelijk
 - Zones rondom de keypoints selecteren en gebruiken als locale descriptor van keypoint
 - Clustering van zones

LEIBE & SCHIELE + THOMAS

2. Opbouwen classifier

- Match de codebook met trainingsbeelden
- Zoek de distributies van de verschillende elementen ten opzichte van het center van het object

Hough voting space → zoeken van maxima

LEIBE & SCHIELE + THOMAS

3. Gebruiken als detector

LEIBE & SCHIELE + THOMAS

3. Gebruiken als detector

LEIBE & SCHIELE + THOMAS

4. Multi-view uitbereiding

- Maakt gebruik van meerdere viewpoints over images heen
- Legt relaties tussen gemeenschappelijke keypoints "Activation links"
- Gebruiken om extra votes door te geven in Hough voting space

LEIBE & SCHIELE + THOMAS

4. Multi-view uitbereiding

GALL&LEMPITSKY

Techniek 4

"Gall J. and Lempitsky V., Class-Specific Hough Forests for Object Detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09), 2009"

GALL & LEMPITSKY

1. Features selecteren

- Detecteren van object parts
- Random samples (in bounding box) worden genomen van de positieve trainingsbeelden
- Elke sample wordt een label (class) en offset meegegeven t.o.v. bounding box center
- Negatief: geen offset / label 0

Algoritmes EAVISE Lessius

GALL & LEMPITSKY

2. Opbouwen classifier

- Op basis van geannoteerde beelden
- Opbouwen van binary decision trees
- Alle trees → samen *random hough forest*
- Aangezien tree getrained wordt met class specifieke beelden → class specific hough forest

GALL & LEMPITSKY

- 3. Gebruiken als detector
 - Patches van het beeld → classifier
 - Die geeft een klasse mee (been, voet, hoofd)

GALL & LEMPITSKY

- 3. Gebruiken als detector
 - Elke patch krijgt een vote in hough space
 - Zoeken naar maxima = locatie centroide
 - Detectie van persoon

GALL & LEMPITSKY

3. Gebruiken als detector

ALGORITMES - ALGEMENE PROBLEMEN

- 1. Gebruik van zeer algemene datasets
 - Zaken zoals auto's / paarden / schoenen
 - Geen industrieel draagvlak
 - Ook enkel onderzoek in academische context
 - Veel proof-of-concept's
- 2. Gebruik van eigen getrainde classifiers
 - Niet publiek beschikbaar
 - Vaak geen classifier beschikbaar voor een specifiek industrieel probleem
 - Software om classifiers te trainen niet steeds voorhanden

ALGORITMES - PRO / CONTRA

Algoritme	Pro	Contra
Viola & Jones Haar	 Goede resultaten Zelf trainen mogelijk Diverse toepassingen OpenCV implementatie 	Trainen duurt zeer lang (+-week) Single view
Viola & Jones LBP	Sneller trainen (+- dag)Sneller detecterenOpenCV implementatie	Minder nauwkeurig Single view
Felzenszwalb	 Goede persoonsdetectie Hoge detectiegraad OpenCV implementatie State-of-the-art 	Trage detectie
Leibe & Schiele + Thomas	Multi view	OmslachtigVoorbijgestreefd
Gall & Lempitsky	Multi viewSnelle detectieState-of-the-artGoed met grote datasets	Maturiteit Iets minder nauwkeurig dan Felzenszwalb
47 Algoritmes	EAVISE	Lessius

VOORZIENE SOFTWARE IMPLEMENTATIES

- Voorzien om een implementatie te voorzien in zowel OpenCV, als in Halcon
- OpenCV
 - Open Source Library geen licentie nodig
 - Alle broncode beschikbaar
 - ullet Niet gebruiksvriendelijk ullet wrapper nodig
- Halcon
 - Op vraag van bedrijfswereld
 - Veel gebruikte software
 - Broncode niet beschikbaar
 - Licentie nodig
 - Gebruiksvriendelijk

HALCON: ALGORITME?

• Sample Based Identification

• Laatste nieuwe techniek in Halcon

• Training: reeks van beelden (10/klasse)

Input: 1 voorbeeldOutput: classificatie

• Mogelijkheid tot detectie van een object?

• Noodzakelijke omstandigheden?

HALCON: ALGORITME?

HALCON: ALGORITME?

HALCON: NIET IDEALE OMSTANDIGHEDEN

- 1. Kleursegmentatie (histogram-analyse)
- 2. Textuurdetectie (fourier-analyse) gebruikt worden in deze techniek
- Eigen trainingsset + gelijke testset

HALCON: NIET IDEALE OMSTANDIGHEDEN

• Resultaat bij eigen set

Enkel kleursegmentatie
Enkel textuur
Beiden
Error rate: 2/16 - 12,5%
Error rate: 3/16 - 18,8%
Error rate: 1/16 - 6,3%

Echter

- Zeer selecte beelden (training ~= test)
- Weinig background informatie (dus veel eisen voor omgeving)
- Geen lokalisatie, enkel identificatie

HALCON: NIET IDEALE OMSTANDIGHEDEN

 Test met beelden waar een mok in voorkomt maar met veel background informatie

HALCON: NIET IDEALE OMSTANDIGHEDEN

• Test met beelden waar een mok in voorkomt maar met veel background informatie

Enkel kleursegmentatie
 Enkel textuur
 Beiden
 Error rate: 3/10 - 30%
 Error rate: 5/10 - 50%
 Error rate: 3/10 - 30%

UITEINDELIJKE DOEL

- Implementatie van de algoritmes
- Black box componenten
 - Gebruiksvriendelijk
 - Geen kennis inwendige algoritmes nodig
 - Inwendige structuur wel openbaar maken
- Betere oplossing voor industriële detectie problemen via objectcategorisatie

HERKENNEN 3D OBJECTEN

HERKENNEN 3D OBJECTEN

- Zoeken naar geschikte keypoints
- Matching tussen features model en meting

Ajmal Mian, M. Bennamoun and R. Owens, "On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes", International Journal of Computer Vision. 2009

HERKENNEN 3D OBJECTEN

• Zoeken naar geschikte features kan efficiënt vooraf gebeuren op gesimuleerde data

HERKENNEN 3D OBJECTEN

CASES

- Remote sensing
- Automatisatie
- Landbouw/bio

Vanuit projectpartners:

- Mobilab KHK
- Ouderenmonitoring - Verkeersmonitoring

> IMOB - UHasselt

CASE: OUDERENMONITORING

CASE: VERKEERSMONITORING

GEVALSTUDIE VERKEERSVEILIGHEIDSONDERZO

Op basis van objectieve meting van conflicternst (meestal o.b.v. snelheid en afstand)

GEVALSTUDIE VERKEERSVEILIGHEIDSONDERZOEK TOB

- Belang:
 - Ernstige beperkingen ongevalgegevens
 - Zeldzame evenementen
 - » Kleine dataset leidt zelden tot harde conclusies Vatbaar voor toeval

 - Onderrapportering
 Weinig informatie over relevante gedrags- en omgevingsfactoren
 - Reactief; trage evaluatie
 - Nood aan onderzoekstool om maatregelen of verkeerssituatie sneller te evalueren

 - Wetenschappelijk onderzoek
 TOEGEPAST ONDERZOEK: diagnose stellen
 - Mogelijkheid tot selecteren van bepaalde gedragingen voor nadere analyse op detailniveau (bv. fietsers in tegenrichting, foutieve oversteekbewegingen,...)

GEVALSTUDIE VERKEERSVEILIGHEIDSONDERZOEK TOB

VERKEERSVEILIGHEIDSONDERZOEK **GEVALSTUDIE**

13:06 2010/05/12

Lessius

- Tussenstappen:
 - Detecteren en traceren van verschillende types weggebruikers op camerabeelden
 - $\bullet \ \ {\sf Reeds\ toep assing smogelijkheden\ voor\ eindgebruikers:}$
 - » Geautomatiseerde verkeerstellingen
 - » Detectie specifieke gedragingen
 - Meten van snelheden, afstanden,... door geometrische informatie toe te voegen in algoritme
 - Implementatie conflictmaatstaven (bv. TTC, PET, Time Advantage,...)
 - Objectieve beoordeling van ernst van een interactie tussen weggebruikers

CASE: REMOTE SENSING

CASE: AUTOMATISATIE

CASE: LANDBOUW/BIO

PRAKTISCHE AFSPRAKEN

- Alle feedback altijd welkom via mail/tel/...
- Website: www.eavise.be/tobcat
- IWT e-tool "gebruikerspoll"
 - verzamelt via online bevraging feedback na elke vergadering
- Vergaderfrequentie?
- IP-rechten
- Regelement van Orde
- Cofinanciering

CONTACTGEGEVENS

- EAVISE:
 - Toon Goedemé
 - toon.goedeme@lessius.eu
 - 015/31 69 44
- MOBILAB: Bart Vanrumste
 - <u>bart.vanrumste@esat.kuleuven.be</u>
 014/56 23 10
- IMOB:
 - Stijn Daniëls
 - <u>stijn.daniels@uhasselt.be</u> 011/26 91 11

