Learning Objectives

By the end of this worksheet, you will:

- Analyse the average-case running time of an algorithm.
- 1. **Average-case analysis.** Consider the following algorithm that we studied a few weeks ago. The input is an array A of length n, containing a list of n integers.

```
def has_even(lst: list[int]) -> int:
    n = len(lst)
    for i in range(n):
        if lst[i] % 2 == 0:
            return i

return -1
```

We proved that the worst-case running time of this algorithm is $\Theta(n)$. In this problem we will analyse its average-case running time.

For this analysis, we will consider the sets of binary lists lst of length n, for each $n \in \mathbb{Z}^+$. That is, lst is a list of n integers, where each integer is either 0 or 1.

(a) For each $n \in \mathbb{Z}^+$, let \mathcal{I}_n be the set of all binary lists of length n. Find an expression (in terms of n) for $|\mathcal{I}_n|$, the size of \mathcal{I}_n .

Solution

The number of binary lists of length n is 2^n , thus $|\mathcal{I}_n| = 2^n$.

- (b) For each $n \in \mathbb{Z}^+$ and each $i \in \{0, 1, ..., n-1\}$, let $S_{n,i}$ denote the set of all binary lists lst of length n where the first 0 occurs in position i. More precisely, every list lst in $S_{n,i}$ satisfies the following two properties:
 - (i) lst[i] = 0.
 - (ii) for all $j \in \mathbb{N}$, if j < i then lst[j] = 1.

For each $i, 0 \le i \le n$, find an expression for $|S_{n,i}|$.

Solution

$$|S_{n,i}| = 2^{n-1-i}.$$

(c) Also, for each $n \in \mathbb{Z}^+$, let $S_{n,n}$ denote the set of binary lists of length n that do not contain a 0 at all. Find an expression for $|S_{n,n}|$.

Solution

 $|S_{n,n}|=1$ (only one binary list of length n has no 0's: the list containing all 1's).

(d) Give a brief argument (informal proof) that for every $n \in \mathbb{Z}^+$, each binary list of length n is in exactly one set $S_{n,i}$ (for some $i \in \{0,1,\ldots,n\}$). That is, you're arguing that $S_{n,0}, S_{n,1}, \ldots, S_{n,n}$ form a partition of \mathcal{I}_n .

Solution

For each input, either it contains a 0 or it doesn't. If it doesn't then it is (the single input) in $S_{n,n}$. If it does, then we partition these inputs according to the smallest location $i \leq n-1$ where lst[i] = 0: if an input has its first 0 in lst[i], then it is in the set $S_{n,i}$.

(e) Assume that we calculate the running time of has_even by counting just the costs of Lines 4 and 7. Find an exact expression for the average runtime of this algorithm for this input set \mathcal{I}_n , in terms of n. You should get a summation; do not simplify the summation in this part.

Solution

For $i \in \{0, 1, ..., n-1\}$, every input in $S_{n,i}$ causes the loop to iterate exactly i+1 times, so Line 4 executes i+1 times, and then the early return occurs. So in this case, a total of i+1 steps occur.

Every input in $S_{n,n}$ causes the loop to iterate exactly n times, so Line 4 executes n times, and then Line 7 executes, for a total of n+1 steps.

So the overall average runtime is:

$$\frac{\sum_{i=0}^{n} |S_{n,i}| \times (i+1)}{2^{n}} = \frac{\left(\sum_{i=0}^{n-1} |S_{n,i}| \times (i+1)\right) + |S_{n,n}| \times (n+1)}{2^{n}}$$

$$= \frac{\left(\sum_{i=0}^{n-1} 2^{n-1-i} \times (i+1)\right) + 1 \times (n+1)}{2^{n}}$$

$$= \frac{\left(\sum_{i'=1}^{n} 2^{n-i'} \times i'\right) + n + 1}{2^{n}} \qquad \text{(change of variable } i' = i+1)$$

$$= \left(\sum_{i'=1}^{n} \left(\frac{1}{2}\right)^{i'} \times i'\right) + \frac{n+1}{2^{n}}$$

(f) Show that the average running time expression that you calculated is in $\mathcal{O}(1)$. You may use the fact that for all $x \in \mathbb{R}$, if |x| < 1, then $\sum_{i=1}^{\infty} ix^i = \frac{x}{(1-x)^2}$.

Solution

The average running time is $\left(\sum_{i'=1}^{n} i'(1/2)^{i'}\right) + (n+1)/2^{n}$. The second part is eventually less than 1, and by the formula given above, the first part is at most 2. Thus the expected runtime is $\mathcal{O}(1)$.