An Adaptive Alternating-direction-method of MultipliersIncorporated Approach to Nonnegative Latent Factor Analysis: Supplementary File

This is the supplementary file for the paper entitled *An Adaptive Alternating-direction-method of Multipliers-incorporated Approach to Non-negative Latent Factor Analysis*. Detailed convergence proof of A²NLF, additional experimental results and several supplementary files are presented here.

I. CONVERGENCE OF A²NLF

A. Proof of Lemma 1

Note that A²NLF's learning objective is non-convex. Any of its limit points where the gradient becomes zero can be a local/global optimum, or saddle point. Hence, such a limit point can be treated as a solution. Supposing that the optimal solution to $a_{u,k(q)}$ by (4c) is $a'_{u,k(q)}$. Thus, it fulfills the following condition:

$$\lambda_{(q)}^{t} \left| \Lambda(u) \right| \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t} + \frac{h_{u,k(q)}^{t-1}}{\lambda_{(q)}^{t} \left| \Lambda(u) \right|} \right) = 0.$$
 (S1)

Following (4e) and (5c), by applying the update rule of $h_{u,k(q)}$ to (S1), we have:

$$h_{u,k(q)}^{t} = \left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} \left| \Lambda(u) \right| \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t}\right). \tag{S2}$$

Then (17) stands based on (S2). Following the same principle, we can derive the optimality condition of (5b) related to $x_{i,k(q)}$:

$$\lambda_{(q)}^{t} \left| \Lambda(i) \right| \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t} + \frac{w_{i,k(q)}^{t-1}}{\lambda_{(q)}^{t} \left| \Lambda(i) \right|} \right) = 0, \implies w_{i,k(q)}^{t} = \left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} \left| \Lambda(i) \right| \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t} \right). \tag{S3}$$

Then (18) holds based on (S3). Hence, *Lemma* 1 holds, and **Step 1** is implemented.□

B. Proof of Lemma 2

Considering the difference between $g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},s_{2(q)}^{t-1}\right)$ and $g\left(s_{l(q)}^{t-1},s_{2(q)}^{t-1}\right)$, we have:

$$g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, s_{2(q)}^{t-1}\right) - g\left(s_{1(q)}^{t-1}, s_{2(q)}^{t-1}\right)$$

$$= \left(\sum_{i \in \Lambda(u)} z_{i,k(q)}^{t-1} \left(y_{u,i} - \sum_{l_{i}=1}^{k-1} p_{u,l_{i}(q)}^{t} z_{i,l_{i}(q)}^{t} - p_{u,k(q)}^{t} z_{i,k(q)}^{t-1} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right) - \lambda_{(q)}^{t} \left|\Lambda(u)\right| \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t-1} + \frac{h_{u,k(q)}^{t-1}}{\lambda_{(q)}^{t}} \left|\Lambda(u)\right|\right) \left(p_{u,k(q)}^{t-1} - p_{u,k(q)}^{t}\right) + \left(\sum_{u \in \Lambda(i)} p_{u,k(q)}^{t-1} \left(y_{u,i} - \sum_{l_{i}=1}^{k-1} p_{u,l_{i}(q)}^{t} z_{i,l_{i}(q)}^{t} - p_{u,k(q)}^{t-1} z_{i,k(q)}^{t} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right) - \lambda_{(q)}^{t} \left|\Lambda(i)\right| \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1} + \frac{w_{i,k(q)}^{t-1}}{\lambda_{(q)}^{t}} \left|\Lambda(i)\right|\right) \left(z_{i,k(q)}^{t-1} - z_{i,k(q)}^{t}\right) - \frac{1}{2} \left(\sum_{u \in \Lambda(i)} \left(p_{u,k(q)}^{t-1} - z_{i,k(q)}^{t}\right) - \lambda_{(q)}^{t} \left|\Lambda(i)\right| \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(i)\right|\right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2}.$$

Considering (5a)'s optimality condition, (S4) is transformed as:

$$g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, s_{2(q)}^{t-1}\right) - g\left(s_{1(q)}^{t-1}, s_{2(q)}^{t-1}\right) = -\frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|\right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{1}{2} \left(\sum_{u \in \Lambda(i)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|\right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2}.$$
(S5)

Thus, the difference between $g\left(s_{1(q)}^{t}, s_{2(q)}^{t-1}\right)$ and $g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, s_{2(q)}^{t-1}\right)$ is:

$$g\left(s_{1(q)}^{t}, s_{2(q)}^{t-1}\right) - g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, s_{2(q)}^{t-1}\right) = -\left(\lambda_{(q)}^{t} \left|\Lambda(u)\right|/2\right)\left(a_{u,k(q)}^{t} - a_{u,k(q)}^{t-1}\right)^{2} - \left(\lambda_{(q)}^{t} \left|\Lambda(i)\right|/2\right)\left(x_{i,k(q)}^{t} - x_{i,k(q)}^{t-1}\right)^{2}. \tag{S6}$$

Moreover, $g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right)$ and $g\left(s_{1(q)}^{t}, s_{2(q)}^{t-1}\right)$ yields:

$$\begin{split} g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right) - g\left(s_{1(q)}^{t}, s_{2(q)}^{t-1}\right) \\ &= \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t}\right) \left(h_{u,k(q)}^{t} - h_{u,k(q)}^{t-1}\right) + \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t}\right) \left(w_{i,k(q)}^{t} - w_{i,k(q)}^{t-1}\right) \\ &= \frac{1}{\eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|} \left(h_{u,k(q)}^{t} - h_{u,k(q)}^{t-1}\right)^{2} + \frac{1}{\eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|} \left(w_{i,k(q)}^{t} - w_{i,k(q)}^{t-1}\right)^{2} \\ &\leq \frac{2\left|\Lambda\left(u\right)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} p_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} p_{u,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} a_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} a_{u,k(q)}^{t-1}\right)^{2} \right) \\ &+ \frac{2\left|\Lambda\left(i\right)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} x_{i,k(q)}^{t-1}\right)^{2} \right), \end{split}$$

where (I) is based on the update rules of $(h_{u,k(q)}, w_{i,k(q)})$ given in (4e), (4f) and (5c), and (II) is achieved with *Lemma* 1. With (S5)-(S7), we have the following deduction:

$$\begin{split} &g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right) - g\left(s_{1(q)}^{t-1}, s_{2(q)}^{t-1}\right) \\ &\leq -\frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(u)\right| \right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t}}{2} \left|\Lambda(u)\right| \left(a_{u,k(q)}^{t} - a_{u,k(q)}^{t-1}\right)^{2} \\ &- \frac{1}{2} \left(\sum_{u \in \Lambda(i)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(i)\right| \right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t}}{2} \left|\Lambda(i)\right| \left(x_{i,k(q)}^{t} - x_{i,k(q)}^{t-1}\right)^{2} \\ &+ \frac{2\left|\Lambda(u)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} p_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t-1} p_{u,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} a_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t-1} a_{u,k(q)}^{t-1}\right)^{2} \right) \\ &+ \frac{2\left|\Lambda(i)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t-1} x_{i,k(q)}^{t-1}\right)^{2} \right). \end{split}$$

Owing to (20a), (21a) stands, which indicates that the augmented Lagrangian function (3) related to the q-th particle is non-increasing as $a'_{u,k(q)} > 0$ and $x'_{i,k(q)} > 0$. Then after the t-th iteration, the partial objective from (3) related to the q-th particle is formulated as:

$$\begin{split} &g\left(s_{1(q)}^{t},s_{2(q)}^{t}\right) \\ &= \frac{1}{2}\sum_{y_{u,l}\in\Lambda} \left(y_{u,i} - \sum_{l_{1}=1}^{k} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right)^{2} \\ &+ \sum_{u} \left(\left(\sum_{l_{1}=1}^{k} h_{u,l_{1}(q)}^{t} \left(p_{u,l_{1}(q)}^{t} - a_{u,l_{1}(q)}^{t}\right)\right) + \left(\sum_{l_{2}=k+1}^{d} h_{u,l_{2}(q)}^{t-1} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)\right)\right) + \sum_{i} \left(\left(\sum_{l_{1}=1}^{k} w_{i,l_{1}(q)}^{t} \left(z_{i,l_{1}(q)}^{t} - x_{i,l_{1}(q)}^{t}\right)\right) + \left(\sum_{l_{2}=k+1}^{d} w_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)\right)\right) \\ &+ \sum_{u} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|}{2} \left(\sum_{l_{1}=1}^{k} \left(p_{u,l_{1}(q)}^{t} - a_{u,l_{1}(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2}\right) + \sum_{i} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|}{2} \left(\sum_{l_{1}=1}^{k} \left(z_{i,l_{1}(q)}^{t} - x_{i,l_{1}(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2}\right). \end{split}$$

By substituting (S2) and (S3) into (S9), we have:

$$\begin{split} &g\left(s_{l(q)}^{t},s_{2(q)}^{t}\right) \\ &= \frac{1}{2} \sum_{y_{u,i} \in \Lambda} \left(y_{u,i} - \sum_{l_{i}=1}^{k} p_{u,l_{i}(q)}^{t} z_{i,l_{i}(q)}^{t} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right)^{2} \\ &+ \sum_{u} \left|\Lambda\left(u\right)\right| \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} \sum_{l_{i}=1}^{k} \left(p_{u,l_{i}(q)}^{t} - a_{u,l_{i}(q)}^{t}\right)^{2} + \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2}\right) \\ &+ \sum_{i} \left|\Lambda\left(i\right)\right| \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} \sum_{l_{i}=1}^{k} \left(z_{i,l_{i}(q)}^{t} - x_{i,l_{i}(q)}^{t}\right)^{2} + \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} w_{i,l_{2}(q)}^{t} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2}\right) \\ &+ \sum_{u} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|}{2} \left(\sum_{l_{i}=1}^{k} \left(p_{u,l_{i}(q)}^{t} - a_{u,l_{i}(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2}\right) + \sum_{i} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|}{2} \left(\sum_{l_{i}=1}^{k} \left(z_{i,l_{i}(q)}^{t} - x_{i,l_{2}(q)}^{t-1}\right)^{2}\right). \end{split}$$

(S10) indicates that if (20b) is fulfilled, (21b) holds, thereby making (3) related to the q-th particle lower-bounded as $a_{u,k(q)}^t > 0$ and $x \stackrel{t}{\underset{i,k(q)}{\sim}} 0$. Based on the above inferences, *Lemma* 2 stands, and **Step 2** is implemented.

C. Proof of Theorem 1

Part a. Following Lemma 2, $g\left(s_{1(q)}^t, s_{2(q)}^t\right)$ converges as $t \to \infty$, indicating that:

$$\lim_{t \to \infty} g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right) - g\left(s_{1(q)}^{t-1}, s_{2(q)}^{t-1}\right) \to 0.$$
(S11)

With (20), when (S1) is fulfilled, the upper-bound of $g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right) - g\left(s_{1(q)}^{t-1}, s_{2(q)}^{t-1}\right)$ is zero as $t \to \infty$, thereby achieving (22). Following (S8) and (22), we have [1]:

$$\lim_{t \to \infty} \left(p_{u,k(q)}^t - p_{u,k(q)}^{t-1} \right) \to 0, \tag{S12a}$$

$$\lim_{t \to \infty} \left(z_{i,k(q)}^t - z_{i,k(q)}^{t-1} \right) \to 0, \tag{S12b}$$

$$\lim_{t \to \infty} \left(a_{u,k(q)}^t - a_{u,k(q)}^{t-1} \right) \to 0, \tag{S12c}$$

$$\lim_{t \to \infty} \left(x_{i,k(q)}^t - x_{i,k(q)}^{t-1} \right) \to 0, \tag{S12d}$$

$$\lim_{t \to \infty} \left(\left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} p_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} p_{u,k(q)}^{t-1} \right)^{2} + \left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} a_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} a_{u,k(q)}^{t-1} \right)^{2} \right) \to 0, \tag{S12e}$$

$$\lim_{t \to \infty} \left(\left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1} \right)^{2} + \left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} x_{i,k(q)}^{t-1} \right)^{2} \right) \to 0. \tag{S12f}$$

Based on (17), (18) and (S12), we have the following inferences:

$$\lim_{t \to \infty} \left(h_{u,k(q)}^t - h_{u,k(q)}^{t-1} \right) \to 0, \tag{S13a}$$

$$\lim_{t \to \infty} \left(w_{i,k(q)}^t - w_{i,k(q)}^{t-1} \right) \to 0. \tag{S13b}$$

Based on (4e), (4f) and (S13), we conclude that (23) is fulfilled.

Part b. Firstly, following (4a), (4b) and (5a), the update rules of $(p_{u,k(q)}, z_{i,k(q)})$ can be rearranged as:

$$\left(p_{u,k(q)}^{t-1} - p_{u,k(q)}^{t}\right) \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(u)\right|\right) \\
= \sum_{i \in \Lambda(u)} z_{i,k(q)}^{t-1} \left(\sum_{l_{1}=1}^{k} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} + \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1} - y_{u,i}\right) + \lambda_{(q)}^{t} \left|\Lambda(u)\right| \left(p_{u,k(q)}^{t-1} - a_{u,k(q)}^{t-1}\right) + h_{u,k(q)}^{t-1},$$
(S14a)

$$\left(z_{i,k(q)}^{t-1} - z_{i,k(q)}^{t} \right) \left(\sum_{u \in \Lambda(i)} \left(p_{i,k(q)}^{t-1} \right)^{2} + \lambda_{(q)}^{t} \left| \Lambda(i) \right| \right)$$

$$= \sum_{u \in \Lambda(i)} p_{u,k(q)}^{t-1} \left(\sum_{l_{1}=1}^{k} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} + \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1} - y_{u,i} \right) + \lambda_{(q)}^{t} \left| \Lambda(i) \right| \left(z_{i,k(q)}^{t-1} - x_{i,k(q)}^{t-1} \right) + w_{i,k(q)}^{t-1}.$$
(S14b)

Then by substituting (23) and (S12) into (S14), we have:

$$\sum_{i \in \Lambda(u)} z_{i,k(q)}^{t-1} \left(\sum_{l_1=1}^k p_{u,l_1(q)}^t z_{i,l_1(q)}^t + \sum_{l_2=k+1}^d p_{u,l_2(q)}^{t-1} z_{i,l_2(q)}^{t-1} - y_{u,i} \right) + h_{u,k(q)}^{t-1} \to 0,$$
(S15a)

$$\sum_{u \in \Lambda(i)} p_{u,k(q)}^{t-1} \left(\sum_{l_i=1}^k p_{u,l_1(q)}^t z_{i,l_1(q)}^t + \sum_{l_2=k+1}^d p_{u,l_2(q)}^{t-1} z_{i,l_2(q)}^{t-1} - y_{u,i} \right) + w_{i,k(q)}^{t-1} \to 0.$$
 (S15b)

Hence, considering a limit point $\left\{s_{1(q)}^*, s_{2(q)}^*\right\}$ of a sequence $\left\{s_{1(q)}^t, s_{2(q)}^t\right\}$ generated by the update rules of $\left\{s_{1(q)}, s_{2(q)}\right\}$ based on (4) and (5), the following KKT conditions are satisfied with (23) and (S15):

$$\sum_{i \in \Lambda(u)} z_{i,k(q)}^* \left(\sum_{k=1}^d p_{u,k(q)}^* z_{i,k(q)}^* - y_{u,i} \right) + h_{u,k(q)}^* \to 0, \tag{S16a}$$

$$\sum_{u \in \Lambda(i)} p_{u,k(q)}^* \left(\sum_{k=1}^d p_{u,k(q)}^* z_{i,k(q)}^* - y_{u,i} \right) + w_{i,k(q)}^* \to 0,$$
 (S16b)

$$p_{u,k}^* - a_{u,k}^* \to 0,$$
 (S16c)

$$z_{i,k}^* - x_{i,k}^* \to 0.$$
 (S16d)

Afterwards, considering the remaining KKT conditions regarding constraints $a_{u,k(q)}>0$ and $x_{i,k(q)}>0$, we extend the original augmented Lagrangian g:

$$g_{(q)}^{\#} = g_{(q)} - Tr\left(M_{(q)}\left(A_{(q)}\right)^{T}\right) - Tr\left(N_{(q)}\left(X_{(q)}\right)^{T}\right) = g_{(q)} - \sum_{(u,k)} m_{u,k(q)} a_{u,k(q)} - \sum_{(i,k)} n_{i,k(q)} x_{i,k(q)},$$
(S17)

where the operator $Tr(\cdot)$ computes the trace of an enclosed matrix, and the definition of $g_{(q)}$ is given by:

$$g_{(q)} = \frac{1}{2} \sum_{y_{u,i} \in \Lambda} \left(y_{u,i} - \sum_{k=1}^{d} p_{u,k(q)} z_{i,k(q)} \right)^{2} + \sum_{(u,k)} h_{u,k(q)} \left(p_{u,k(q)} - a_{u,k(q)} \right) + \sum_{(u,k)} \frac{\lambda_{(q)} \left| \Lambda(u) \right|}{2} \left(p_{u,k(q)} - a_{u,k(q)} \right)^{2} + \sum_{(i,k)} w_{i,k(q)} \left(z_{i,k(q)} - x_{i,k(q)} \right) + \sum_{(i,k)} \frac{\lambda_{(q)} \left| \Lambda(i) \right|}{2} \left(z_{i,k(q)} - x_{i,k(q)} \right)^{2}.$$
(S18)

For the partial derivatives of $g_{(q)}^{\#}$ with $a_{u,k(q)}$ and $x_{i,k(q)}$, we have:

$$\begin{cases} \frac{\partial g_{(q)}^{\#}}{\partial a_{u,k}} = -\lambda_{(q)} \left| \Lambda(u) \right| \left(p_{u,k(q)} - a_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|} \right) - m_{u,k(q)} = 0, \\ \frac{\partial g_{(q)}^{\#}}{\partial x_{i,k}} = -\lambda_{(q)} \left| \Lambda(i) \right| \left(z_{i,k(q)} - x_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|} \right) - n_{i,k(q)} = 0, \end{cases} \Rightarrow \begin{cases} m_{u,k} = -\lambda_{(q)} \left| \Lambda(u) \right| \left(p_{u,k(q)} - a_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|} \right), \\ n_{i,k} = -\lambda_{(q)} \left| \Lambda(i) \right| \left(z_{i,k(q)} - x_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|} \right). \end{cases}$$
(S19)

Then, with the KKT conditions of $\forall m_{u,k(q)}$, $a_{u,k(q)}$: $m_{u,k(q)}a_{u,k(q)}=0$ and $\forall n_{i,k(q)}$, $x_{i,k(q)}$: $n_{i,k(q)}x_{i,k(q)}=0$ for (S17), we achieve the following equations based on (S19) [1, 21]:

$$\begin{cases} a_{u,k(q)} \left(-\lambda_{(q)} \left| \Lambda(u) \right| \left(p_{u,k(q)} - a_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|} \right) \right) = 0, \\ x_{i,k(q)} \left(-\lambda_{(q)} \left| \Lambda(i) \right| \left(z_{i,k(q)} - x_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|} \right) \right) = 0, \end{cases} \begin{cases} a_{u,k(q)} = p_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|}, \\ x_{i,k(q)} = z_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|}. \end{cases}$$
(S20)

To satisfy the nonnegativity of output LFs $a_{u,k(q)}$ and $x_{i,k(q)}$, (S20) can be rewritten as:

$$\begin{cases} a_{u,k(q)} = \max\left(0, p_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} |\Lambda(u)|}\right), \\ x_{i,k(q)} = \max\left(0, z_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} |\Lambda(i)|}\right). \end{cases}$$
(S21)

Note that (S21) is consistent with the update rules of $a_{u,k(q)}$ and $x_{i,k(q)}$ based on (4c) and (4d). Therefore, (S17)-(S21) show that an A²NLF model's learning rules are closely connected with the KKT conditions of its learning objective.

Then considering the KKT conditions related to $a_{u,k(q)}$:

$$\frac{\partial g_{(q)}^{\#}}{\partial a_{u,k(q)}}\bigg|_{a_{u,k(q)}=a_{u,k(q)}^{*}} = -\lambda_{(q)}^{*} \left| \Lambda(u) \right| \left(p_{u,k(q)}^{*} - a_{u,k(q)}^{*} + \frac{h_{u,k(q)}^{*}}{\lambda_{(q)}^{*}} \left| \Lambda(u) \right| \right) - m_{u,k(q)}^{*} = 0, \tag{S22a}$$

$$m_{u,k(q)}^* a_{u,k(q)}^* = 0,$$
 (S22b)

$$a_{u,k(q)}^* \ge 0, \tag{S22c}$$

$$m_{u,k(q)}^* \ge 0, \tag{S22d}$$

where $a_{u,k(q)}^*$ is a KKT stationary point of $a_{u,k(q)}$, and $m_{u,k(q)}^*$ is a limit point of the sequence $\{m_{u,k(q)}^l\}$ generated by the update rules of $m_{u,k}$ based on (S19). According to (S17)-(S21) and $a_{u,k(q)}^l$ =0, conditions (S22a)-(S22c) are satisfied. Thus, we have:

$$m_{u,k(q)}^* = -\lambda_{(q)}^* \left| \Lambda(u) \right| \left(p_{u,k(q)}^* - a_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(q)}^* \left| \Lambda(u) \right|} \right). \tag{S23}$$

Thus, we focus on condition (S22d). Since $a'_{u,k(q)} > 0$ in this case, the update rule for $a_{u,k(q)}$ is given as:

$$a_{u,k(q)}^* \leftarrow p_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(\alpha)}^* |\Lambda(u)|}.$$
 (S24)

By substituting (S24) into (S23), we have $m_{u,k(q)}^*=0$. Hence, conditions (S22c) and (S22d) are fulfilled. Note that as $x_{i,k(q)}^i>0$ in this case, the proof regarding the KKT conditions of $x_{u,k(q)}$ can be achieved similarly. *Theorem* 1 stands, and **Step 3** is implemented. \Box

D. Proof of Lemma 3

The difference between $g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},s_{2(q)}^{t-1}\right)$ and $g\left(s_{1(q)}^{t},s_{2(q)}^{t-1}\right)$ in this case is also given by (S5). Considering the fact of $a_{u,k(q)}^{t}=0$ and, $x_{i,k(q)}^{t}>0$ the difference between $g\left(s_{1(q)}^{t},s_{2(q)}^{t-1}\right)$ and $g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},s_{2(q)}^{t-1}\right)$ is:

$$g\left(s_{1(q)}^{t}, s_{2(q)}^{t-1}\right) - g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, s_{2(q)}^{t-1}\right) = -\frac{\lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|}{2} \left(a_{u,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|}{2} \left(x_{i,k(q)}^{t} - x_{i,k(q)}^{t-1}\right)^{2}. \tag{S25}$$

Moreover, $g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right)$ and $g\left(s_{1(q)}^{t}, s_{2(q)}^{t-1}\right)$ yields:

$$\begin{split} g\left(s_{1(q)}^{t},s_{2(q)}^{t}\right) - g\left(s_{1(q)}^{t},s_{2(q)}^{t-1}\right) \\ &= \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t}\right) \left(h_{u,k(q)}^{t} - h_{u,k(q)}^{t-1}\right) + \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t}\right) \left(w_{i,k(q)}^{t} - w_{i,k(q)}^{t-1}\right) \\ &= \eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right| \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t}\right)^{2} + \frac{1}{\eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|} \left(w_{i,k(q)}^{t} - w_{i,k(q)}^{t-1}\right)^{2} \\ &\stackrel{\text{(II)}}{\leq} \eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right| \left(p_{u,k(q)}^{t}\right)^{2} + \frac{2\left|\Lambda\left(i\right)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t} x_{i,k(q)}^{t-1}\right)^{2} \right), \end{split}$$

where (I) is based on the update rules of $(h_{u,k(q)}, w_{i,k(q)})$ given in (4e), (4f) and (5c), and (II) is achieved with (18) and $a'_{u,k(q)}=0$. With (S5), (S25) and (S26), we have the following deduction:

$$g\left(s_{1(q)}^{t}, s_{2(q)}^{t}\right) - g\left(s_{1(q)}^{t-1}, s_{2(q)}^{t-1}\right)$$

$$\leq -\frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(u)\right| \right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t} \left|\Lambda(u)\right|}{2} \left(a_{u,k(q)}^{t-1}\right)^{2}$$

$$-\frac{1}{2} \left(\sum_{u \in \Lambda(i)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(i)\right| \right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t} \left|\Lambda(i)\right|}{2} \left(x_{i,k(q)}^{t} - x_{i,k(q)}^{t-1}\right)^{2}$$

$$+ \eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda(u)\right| \left(p_{u,k(q)}^{t}\right)^{2} + \frac{2\left|\Lambda(i)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t} x_{i,k(q)}^{t-1}\right)^{2} \right).$$
(S27)

Owing to (25), (21a) stands, which indicates that the augmented Lagrangian function (3) related to the q-th particle is non-increasing as $a'_{u,k(q)}=0$ and $x'_{i,k(q)}>0$ in this case. Then after the t-th iteration, we substitute $a'_{u,k(q)}=0$ into (S10):

$$\begin{split} g\left(s_{1(q)}^{t},s_{2(q)}^{t}\right) &= \frac{1}{2} \sum_{y_{u,i} \in \Lambda} \left(y_{u,i} - \sum_{l_{i}=1}^{k} p_{u,l_{i}(q)}^{t} z_{i,l_{i}(q)}^{t} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right)^{2} \\ &+ \sum_{u} \left|\Lambda\left(u\right)\right| \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} \left(\sum_{l_{i}=1}^{k-1} \left(p_{u,l_{i}(q)}^{t} - a_{u,l_{i}(q)}^{t}\right)^{2} + \left(p_{u,k(q)}^{t-1}\right)^{2}\right) + \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2}\right) \\ &+ \sum_{i} \left|\Lambda\left(i\right)\right| \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} \sum_{l_{i}=1}^{k} \left(z_{i,l_{i}(q)}^{t} - x_{i,l_{i}(q)}^{t}\right)^{2} + \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} w_{i,l_{2}(q)}^{t} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2}\right) \\ &+ \sum_{u} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|}{2} \left(\sum_{l_{i}=1}^{k-1} \left(p_{u,l_{i}(q)}^{t} - a_{u,l_{1}(q)}^{t}\right)^{2} + \left(p_{u,k(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2}\right) \\ &+ \sum_{i} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|}{2} \left(\sum_{l_{i}=1}^{k} \left(z_{i,l_{i}(q)}^{t} - x_{i,l_{i}(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2}\right). \end{split}$$

(S28) indicates that if (20b) is fulfilled, (21b) holds, thereby making (3) related to the q-th particle lower-bounded as $a'_{u,k(q)}=0$, and $x'_{i,k(q)}>0$ in this case. Based on the above inferences, *Lemma* 2 stands, and **Step 4** is implemented.

E. Proof of Theorem 2

Part a. Following Lemma 3, $g\left(s_{1(q)}^t, s_{2(q)}^t\right)$ converges as $t \to \infty$, indicating that (S11) is fulfilled. With (22), (25) and (S27), we have (S12a), (S12b), (S12d), (S12f) and the following inferences:

$$\lim_{t \to \infty} a_{u,k(q)}^{t-1} \to 0, \tag{S29a}$$

$$\lim_{t \to \infty} p'_{u,k(q)} \to 0. \tag{S29b}$$

Then according to (S12f), (S13b) is fulfilled. Hence, based on (S13b), (S29b) and $a'_{u,k(q)}=0$, (23) is fulfilled.

Part b. Firstly, considering a limit point $\left\{s_{1(q)}^*, s_{2(q)}^*\right\}$ of a sequence $\left\{s_{1(q)}^t, s_{2(q)}^t\right\}$ generated by the update rules of $\left\{s_{1(q)}, s_{2(q)}\right\}$ based on

(4) and (5), according to (23) and (S15), (S16) holds when $a'_{u,k(q)}=0$, and $x'_{i,k(q)}>0$ in this case. Then considering the KKT conditions related to $a_{u,k(q)}$, i.e., (S22).

According to (S17)-(S21) and with $a'_{u,k(q)}$ =0, conditions (S22a)-(S22c) are naturally satisfied. Thus, we focus on analyzing condition (S22d). Since we have $a'_{u,k(q)}$ =0 in this case, the following inequality holds:

$$p_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(q)}^* |\Lambda(u)|} \le 0.$$
 (S30)

Note that (S30) indicates that:

$$m_{u,k(q)}^* = -\lambda_{(q)}^* \left| \Lambda(u) \right| \left(p_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(q)}^* \left| \Lambda(u) \right|} \right) \ge 0.$$
 (S31)

Thus, condition (S22) are all fulfilled in this case. Note that as $x_{i,k(q)}^t > 0$ in this case, the proof regarding the KKT conditions of $x_{u,k(q)}$ can be achieved similarly. *Theorem* 2 stands, and **Step 5** is implemented.

II. SUPPLEMENTARY TABLES

TABLE S1. PSO Parameters Settings in (7).

w	w c_1 c_2		r_1, r_2
0.729	2	2	uniform random numbers∈[0,1].

TABLE S2 PSO PARAMETERS SETTINGS IN (13)

$\bar{\lambda}$	$\hat{\lambda}$	$ar{\eta}$	$\hat{\eta}$	\breve{v}_{λ}	$\widehat{\mathcal{V}}_{\lambda}$	\breve{v}_{η}	$\widehat{\mathcal{V}}_{\eta}$
0.2	2	1	2	$-\widehat{v}_{\lambda}$	$0.2 \times (\widehat{\lambda} - \widecheck{\lambda})$	$-\widehat{v}_{\eta}$	$0.2 imes (\hat{\eta} - \breve{\eta})$

TABLE S3. Grid-search Range of Hyper-parameters in M1-6 on D1-4.

No.	Hyper-parameters	Grid-searching Range
M1	Augmentation coefficient λ	2^{-6} , 2^{-4} , 2^{-2} , 1 , 2^{2} , 2^{4} , 2^{6} , 2^{8}
WII	Learning rate η	$8, 4, 2, 1, 2^{-1}, 2^{-2}, 2^{-3}$
M2	Penalty coefficient λ	2, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8
М3	Regularization coefficient μ	$8, 4, 2, 1, 2^{-1}, 2^{-2}, 2^{-3}$
MIS	L_p coefficient p	1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0
M4	Penalty coefficient α	$1, 10, 10^2, 10^3, 10^4, 10^5$
W14	Penalty coefficient β	$10, 10^2, 10^3, 10^4, 10^5, 10^6$
M5	Penalty coefficient ρ	2^{-3} , 2^{-5} , 2^{-7} , 2^{-9} , 2^{-11} , 2^{-13} , 2^{-15} , 2^{-17}
	Regularization coefficient λ	10^{-6} , 10^{-5} , 10^{-4} , 10^{-3} , 10^{-2} , 0.1 , 1
M6	Learning rate η	10^{-5} , 5×10^{-5} , 10^{-4} , 5×10^{-4} , 10^{-3} , 5×10^{-3} , 10^{-2}
	Batch size bs	32, 64, 128, 256, 512, 1024
	Regularization coefficient λ	10^{-6} , 10^{-5} , 10^{-4} , 10^{-3} , 10^{-2} , 0.1 , 1
M7	Learning rate η	10^{-5} , 5×10^{-5} , 10^{-4} , 5×10^{-4} , 10^{-3} , 5×10^{-3} , 10^{-2}
	Batch size bs	32, 64, 128, 256, 512, 1024

TABLE S4. Optimal Hyper-parameters during M1's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
D1	RMSE	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 2$			
DI	MAE	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$
D2	RMSE	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$
D2	MAE	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$
D2	RMSE	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$
D3	MAE	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-2}$	$\lambda=1, \eta=2$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-2}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$
D4	RMSE	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$			
D4	MAE	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$

TABLE S5. Optimal Hyper-parameters during M2's ten times' training process on D1-4

No.	Туре	1	2	3	4	5	6	7	8	9	10
D1	RMSE	$\lambda=1.6$	$\lambda=1.6$	λ=1.6	$\lambda=1.8$	$\lambda=1.6$	$\lambda=1.8$	$\lambda=1.6$	$\lambda=1.8$	$\lambda=1.6$	λ=1.6
DΙ	MAE	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.2$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.2$
D2	RMSE	$\lambda=1.8$									
DZ	MAE	$\lambda=1.8$									
D2	RMSE	$\lambda=1.8$									
D3	MAE	λ=1.8									
D4	RMSE	¹ Failure									
D4	MAE	¹ Failure									

¹Note that M2 fails to achieve the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table V.

TABLE S6. Optimal Hyper-parameters during M3's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
	RMSE	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,
D1	KWISE	p = 1.9	p=1.8	p = 1.7	p = 1.8	p=1.8	p = 1.7	p = 1.8	p=1.9	p = 1.8	p=1.8
DΙ	MAE	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,
	MAE	p = 1.8	p=1.9	p = 1.8	p = 1.7	p=1.8	p = 1.7	p = 1.8	p=1.8	p = 1.9	p=1.9
	RMSE		<i>μ</i> =2, <i>p</i> =1.9 <i>μ</i> =4, <i>p</i> =1.9	$\mu=4 p=1.9$	$\mu=2^{-1}$,	$\mu=2^{-1}$,	μ =2, p =1.9	$\mu=2^{-1}$,	μ =2, p =1.9	μ =2, p =1.8	μ =2, p =1.8
D2				F . F 1.5	p=1.8	p=1.9	pt 2, p 1.5	p=1.8	pt =, p 1.5	pt 2, p 1.0	pr 2, p 1.0
	MAE	μ =4, p =1.9	μ =2, p =1.9	μ =2, p =1.8	μ =4, p =1.9	μ =4, p =1.9	μ =2, p =1.9	μ =1, p =1.9	μ =2, p =1.8	μ =2, p =1.8	μ =2, p =1.9
D3	RMSE	μ =4, p =1.9	μ =4, p =1.9	μ =2, p =1.8	μ =2, p =1.8	μ =4, p =1.9	μ =4, p =1.9	μ =2, p =1.9			
	MAE	μ =2, p =1.9	μ =2, p =1.8	μ =2, p =1.9	μ =2, p =1.8	μ =4, p =1.9	μ =4, p =1.9	μ =4, p =1.9	μ =2, p =1.8	μ =2, p =1.9	μ =2, p =1.9
D4	RMSE	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure
<i>D</i> 4	MAE	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure

¹Note that M3 fails to achieve the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table V.

TABLE S7. Optimal Hyper-parameters during M4's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
	RMSE	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,			
D1	KWISE	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$
D1	MAE	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,					
	MAE	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^4$					
	RMSE	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,
D2	KWISE	$\beta = 10^4$	$\beta = 10^{2}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{2}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{2}$	$\beta = 10^{3}$
D2	MAE	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,							
	MAE	$\beta = 10^{4}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^{4}$	$\beta = 10^{3}$
	RMSE	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^4$,
D3	KWISE	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^4$	$\beta = 10^{3}$
DS	MAE	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,
	MAE	$\beta = 10^{4}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^4$	$\beta = 10^{4}$	$\beta = 10^{3}$	$\beta = 10^4$
D4	RMSE	¹ Failure									
D4	MAE	¹ Failure									

¹Note that M4 fails to achieve the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table V.

TABLE S8. Optimal Hyper-parameters during M5's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
D1	RMSE	$\rho = 2^{-5}$									
D1	MAE	$\rho = 2^{-7}$	$\rho = 2^{-5}$	$\rho = 2^{-7}$	$\rho = 2^{-5}$	$\rho = 2^{-5}$	$\rho = 2^{-7}$	$\rho = 2^{-5}$	$\rho = 2^{-5}$	$\rho = 2^{-7}$	$\rho = 2^{-5}$
D2	RMSE	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$
D2	MAE	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$
D2	RMSE	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$
D3	MAE	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$
D4	RMSE	¹ Failure									
D4	MAE	¹ Failure									

Note that M5 fails to achieve the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table V.

TABLE S9. Optimal Hyper-parameters during M6's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
		$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	λ=10 ⁻⁵ ,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,
D1		¹bs=512	bs=512								
DΊ		$\lambda = 10^{-5}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,			
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,
		bs=512									
		$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-4}$,
	RMSE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,
D2		bs=64									
Dž		$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,
	MAE	$\eta = 10^{-2}$,	$\eta = 10^{-3}$,	$\eta = 10^{-2}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,				
		bs=64									
		$\lambda = 10^{-4}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,				
	RMSE	$\eta = 5 \times 10^{-4}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 5 \times 10^{-4}$,				
D3		bs=128									
DS		$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,					
	MAE	$\eta = 10^{-3}$,									
		bs=128									
		$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 10^{-4}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,
D4		bs=512									
DŦ		$\lambda = 10^{-2}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,			
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,
		bs=512									

¹Note that bs denotes batch size adopted by M6 on an HDI matrix;

TABLE S10. Optimal Hyper-parameters during M7's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
·		$\lambda = 10^{-2}$,	λ=10 ⁻² ,								
	RMSE	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 10^{-4}$,
D1		bs=512									
DI		$\lambda = 10^{-2}$,									
	MAE	$\eta = 10^{-4}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 10^{-4}$,	$\eta = 10^{-4}$,	$\eta = 10^{-4}$,	$\eta = 10^{-4}$,
		bs=512									
		$\lambda = 10^{-3}$,									
	RMSE	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,
D2		bs=64									
DZ		$\lambda = 10^{-3}$,									
	MAE	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,			
		bs=64									
		$\lambda=0.1$,	λ =0.1,	$\lambda = 0.1$,	λ =0.1,	$\lambda = 0.1$,	λ =0.1,	λ =0.1,	$\lambda=0.1$,	$\lambda = 0.1$,	λ =0.1,
	RMSE	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,
D3		bs=128									
DS		$\lambda = 0.1$,	$\lambda = 0.1$,	$\lambda = 0.1$,	λ =0.1,	$\lambda=0.1$,	λ =0.1,	λ =0.1,	λ =0.1,	$\lambda = 0.1$,	λ =0.1,
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,
		bs=128									
		$\lambda = 0.1$,	λ =0.1,	$\lambda = 0.1$,							
	RMSE	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-4}$,	-	-	-	-	-	-	-
D4		bs=512	bs=512	bs=512							
DŦ		$\lambda = 0.1$,	$\lambda = 0.1$,	$\lambda = 0.1$,							
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	-	-	-	-	-	-	-
		bs=512	bs=512	bs=512							

TABLE S11. RMSE and Time Cost of M1 and M8 on D1-4.

Dataset	Model	Predi	iction Accuracy	¹ Tuning Time Cost (Secs)	² Testing Time Cost (Secs)	Total Time Cost (Secs)
	M1	RMSE	0.2373 ±2.2E-6	428±22.7	6±2.4	434±25
D1	IVII	MAE	0.1815±1.1E-6	439±25.4	6±2.8	445 <u>±</u> 28
DI	M8	RMSE	0.2339 ±2.7E-4	-	-	46±4
	Mo	MAE	0.1792 ±3.3E-4	-	-	60±5
	M1	RMSE	1.0187±1.1E-6	271 ±45.4	4±1.7	275 ±47
D2	IVII	MAE	0.8079±2.5E-6	305±38.3	3±0.9	308±39
DZ	M8	RMSE	1.0172 ±7.4E-4	-	-	25±5
		MAE	$0.7856 \pm 7.9E-4$	-	-	29±8
	M1	RMSE	$0.8665 \pm 7.8E-4$	739±72.3	21±14.7	759±87
D3	IVII	MAE	$0.6829\pm1.7E-6$	756±53.8	3±0.5	763±54
DЗ	M8	RMSE	0.8675 ±8.2E-4	-	-	26±6
	M8	MAE	$0.6787 \pm 7.3E-4$	-	-	30±9
	M1	RMSE	0.8096±2.9E-6	2,934±353.8	38±24.6	2,972±378
D.1	M1	MAE	$0.6221 \pm 7.9E-7$	9,203 ±828.9	$33\pm\!20.4$	9,236±849
D4	MO	RMSE	0.8089±9.4E-4	-	-	334±46
	M8	MAE	0.6193±5.1E-4	-	<u>-</u>	358±31

Time cost consumed by M1 for manually grid-searching optimal hyper-parameters; Time cost consumed by M1 with achieved hyper-parameters.

TABLE S12. Storage Complexity and Memory Requirements of M1-8 on D1-4.

No.	Stange Complexity	Memo	ry Requi	rements (C	5B)
NO.	Storage Complexity	D1	D2	D3	D4
M1	$\Theta((U + I)\times d+ \Lambda)$	0.7	0.6	0.5	1.7
M2	$\Theta(U \times I)$	17.6	1.8	9.3	>256
M3	$\Theta(U \times I)$	15.4	1.9	8.6	>256
M4	$\Theta(U \times I)$	21.9	3.5	11.5	>256
M5	$\Theta(U \times I)$	26.5	3.9	12.7	>256
M6	$\Theta({}^{1}\text{bs} \rtimes U + \Lambda)$	2.9	1.7	1.7	3.1
M7	$\Theta((U + I)\times d+bs\times^21^{st}LN+ \Lambda)$	2.1	1.2	1.8	6.5
M8	$\Theta((U + I)\times d+ \Lambda)$	0.7	0.6	0.5	1.7

¹bs denotes batch size adopted by M6 and M7 on an HDI matrix; ²1stLN denotes the number of neuron in the 1st layer and is set at 2×d according to [10].

TABLE S13. RMSE/MAE of M1-8 on D1-4, including Win/Loss counts and Friedman Rank, where ● indicates that M8 has higher RMSE/MAE than the rival models

No.	CASE	M1	M2	М3	M4	M5	M6	M7	M8
D1 -	RMSE	$0.2373_{\pm 2.2E-6}$	$0.3058_{\pm 5.0E-4}$	$0.3047_{\pm 4.3E-5}$	$0.2384_{\pm 1.0E-4}$	$0.4913_{\pm 1.0E-4}$	●0.2302 _{±2.6E-3}	$0.2354_{\pm 2.3E-3}$	0.2339 _{±2.7E-4}
	MAE	$0.1815_{\pm 1.1E-6}$	$0.2439_{\pm 4.4E-5}$	0.2422 _{±3.2E-5}	0.1832 _{±4.8E-5}	$0.4111_{\pm 1.6E-2}$	●0.1792 _{±7.9E-5}	0.1842 _{±2.2E-4}	0.1793 _{±3.3E-4}
D2	RMSE	$1.0187_{\pm 1.1E-6}$	1.1281 ±7.2E-3	$1.1257_{\pm 1.8E-4}$	1.0787 ±8.6E-7	1.8808 _{±2.8E-2}	1.1494 _{±4.1E-5}	1.0425 ±3.9E-4	1.0172 _{±7.4E-4}
	MAE	$0.8079_{\pm 2.5E-6}$	$0.9256_{\pm 1.5E3}$	$0.9229_{\pm 1.9E\text{-}4}$	0.8580 _{±6.2E-6}	1.5403 ±2.6E-2	$0.9257_{\pm 2.1E-4}$	$0.8014_{\pm 4.9E-2}$	$0.7856_{\pm 7.9E-4}$
D3	RMSE	●0.8665 _{±7.8E-4}	1.0336 _{±5.4E-4}	1.0848 _{±5.3E-5}	0.8713 _{±3.7E-4}	2.2963 ±9.8E-3	$0.8845_{\pm 1.1E-3}$	$0.8982_{\pm 4.4E-4}$	$0.8675_{\pm 8.2E-4}$
	MAE	$0.6829_{\pm 1.7E\text{-}6}$	$0.8832_{\pm 4.0E-4}$	$0.9021_{\pm 4.2E-5}$	$0.6802_{\pm 3.3E-4}$	1.9190 _{±9.6E-3}	$0.7021_{\pm 5.5E-3}$	$0.7067_{\pm 4.1E-4}$	$0.6787_{\pm 7.3E-4}$
D4	RMSE	0.8096 _{±2.9E-6}	¹ Failure	¹ Failure	¹ Failure	¹ Failure	$0.8436_{\pm 1.2E-3}$	$0.8657_{\pm 3.5E-4}$	0.8089 _{±9.4E-4}
	MAE	$0.6221_{\pm 7.9E-7}$	¹ Failure	¹ Failure	¹ Failure	¹ Failure	$0.6530_{\pm 4.9E-3}$	$0.6650_{\pm 2.9E-4}$	0.6193 _{±5.1E-4}
Win	Win/Loss		8/0	8/0	8/0	8/0	6/2	8/0	-
Friedm	Friedman Rank		6.38	6.13	4.38	7.63	3.75	3.88	1.38

¹Note that M2-M5 fails to achieve the final results on D4 on our experimental environment as shown in Table S12.

TABLE S14. Total time cost of M1-8 in RMSE/MAE on D1-4 (Secs), including Win/Loss counts and Friedman Rank

No.	CASE	M1	M2	М3	M4	M5	M6	M7	M8
D1 -	RMSE	434 _{±25}	$38,499_{\pm 2,332}$	$43,271_{\pm 2,962}$	$209,670_{\pm 36,625}$	$3,856_{\pm 578}$	$10,804_{\pm 832}$	87,425 ±9,048	46 _{±4}
	MAE	445 ±28	51,443 ±2,643	$189,090_{\pm 29,135}$	$210,745_{\pm 27,190}$	$3,912_{\pm 103}$	$13,432_{\pm 2,219}$	$78,395_{\pm 8,698}$	60±5
D2 -	RMSE	275 ±47	236±35	$128_{\pm 21}$	138 _{±39}	55±7	$2,109_{\pm 295}$	1,264±99	25 _{±5}
	MAE	308 _{±39}	32±3	128 _{±27}	$766_{\pm 64}$	56±6	$2,256_{\pm 633}$	$1,156_{\pm 286}$	29 _{±8}
D3 -	RMSE	$759_{\pm\!87}$	$42,578_{\pm 3,258}$	$71,927_{\pm 2,718}$	$45,849_{\pm 2,479}$	$717_{\pm 22}$	$8,359_{\pm 532}$	$9,921_{\pm 2,586}$	26 _{±6}
	MAE	763 _{±54}	$1,906_{\pm 291}$	$12,294_{\pm 2,478}$	$48,821_{\pm 2,363}$	$716_{\pm 53}$	$7,700_{\pm 219}$	$8,998_{\pm 1,446}$	30±9
D4 -	RMSE	$2,972_{\pm 378}$	¹ Failure	¹ Failure	¹ Failure	¹ Failure	$266,885_{\pm 12,775}$	a1,644,502±98,039	334 _{±46}
	MAE	$9,236_{\pm 849}$	¹ Failure	¹ Failure	¹ Failure	¹ Failure	$232,974_{\pm 13,157}$	a997,259 ±84,311	358 ±31
Win/Loss		8/0	8/0	8/0	8/0	8/0	8/0	8/0	8/0
Friedman Rank		3.13	5	6	6.75	3.5	4.88	5.75	1

¹Note that M2-M5 fails to achieve the final results on D4 on our experimental environment as shown in Table S12.

TABLE S15. Results of the Wilcoxon signed-ranks test on RMSE/MAE of Table S13.

Comparison	R +	R-	¹p-value
M8 vs M1	34	2	0.0117
M8 vs M2	36	0	0.0039
M8 vs M3	36	0	0.0039
M8 vs M4	36	0	0.0039
M8 vs M5	36	0	0.0039
M8 vs M6	33	3	0.0195
M8 vs M7	36	0	0.0039

With a significance level of 0.1, the accepted hypotheses are highlighted.

TABLE S16. Results of the Wilcoxon signed-ranks test on time cost of Table S14.

Comparison	R +	R-	¹p-value
M8 vs M1	36	0	0.0039
M8 vs M2	36	0	0.0039
M8 vs M3	36	0	0.0039
M8 vs M4	36	0	0.0039
M8 vs M5	36	0	0.0039
M8 vs M6	36	0	0.0039
M8 vs M7	36	0	0.0039

With a significance level of 0.1, the accepted hypotheses are highlighted.