Algebro-Geometric Classification

Let k be a commutative ring and let F be a finite free graded k-module such that $F_0 = k$, $F_i = 0$ for all i < 0, and $F_+ \neq 0$. In this note, we give an algebro-geometric classification of various structures we can attach to F. We begin by classifying all k-complex structures on F which fixed the identity element $1 \in k = F_0$.

Classifying k-Complex Structures on F

Let us state up front what we wish to prove:

Theorem 0.1. We have the following bijection of sets:

$$\left\{ \operatorname{GL}_n(\Bbbk) \text{-orbits of } h_{\operatorname{A}^{\operatorname{d}}_{\Bbbk}(F)}(\Bbbk) \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{isomorphism classes of } \Bbbk\text{-complex} \\ \text{structures on } F \text{ with fixed identity} \end{array} \right\}$$

where $A^d_{\mathbb{k}}(F)$ is a \mathbb{k} -algebra (to be constructed below) and where

$$h_{\mathbf{A}^{\mathsf{d}}_{\mathsf{k}}(F)}(\mathbb{k}) := \mathrm{Hom}_{\mathbb{k}\text{-}alg}(\mathbf{A}^{\mathsf{d}}_{\mathbb{k}}(F), \mathbb{k})$$

is the k-valued points of $A_k^d(F)$. Two k-complex structures (F,d) and (F,d') on F are said to be isomorphic with fixed identity if there exists a chain map $\varphi \colon F \to F$ such that $\varphi(1) = 1$.

The proof of this theorem mostly involves setting up our notation which will be used later on when we wish to classify other algebraic structures on *F*.

Proof. Let d be a k-linear differential on F, meaning d: $F \to F$ is a graded k-linear map of degree -1 which satisfies $d^2 = 0$. Choose an ordered homogeneous basis $e = (e_0, e_1, \ldots, e_n)$ of F where we set $e_0 = 1$ and let $d = (d_j^i)$ be the matrix representation of the differential d with respect to the ordered homogeneous basis e. Thus we have de = ed where $de = (0, de_1, \ldots, de_n)$ and ed is the product of the row vector e on the left with the matrix e on the right. Alternatively we could express this in terms of the matrix entries of e: for each e0 we have

$$de_j = \sum_{0 \le i \le n} d^i_j e_i.$$

Note that since d is graded of degree -1, we necessarily have $d_j^i = 0$ whenever $|e_i| \neq |e_j| - 1$. Also note that since $d^2 = 0$, we have $d^2 = 0$. Again we can express this in terms of matrix entries of d: for each $0 \leq i, j \leq n$ we have

$$\sum_{0 \le \iota \le n} d_j^{\iota} d_{\iota}^i = 0 \tag{1}$$

Now consider the following polynomial ring following polynomial ring

$$\mathbb{k}[\mathbf{D}] = \mathbb{k}[\{D_j^i \mid 0 \le i, j \le n\}]$$

where the D^i_j are coordinates which correspond to the matrix entries of d. Let $\mathbf{e}_d \colon \mathbb{k}[D] \twoheadrightarrow \mathbb{k}$ be the \mathbb{k} -algebra homomorphism given by $\mathbf{e}_d(D) = d$ and set $\mathfrak{q}_d = \langle D - d \rangle$ to be the kernel of this evaluation map: it is the $\mathbb{k}[D]$ -ideal generated by $D^i_j - d^i_j$ for all $0 \le i, j \le n$. Note that if \mathbb{k} is an integral domain, then \mathfrak{q}_d is a prime ideal since $\mathbb{k}[D]/\mathfrak{q}_d \cong \mathbb{k}$, and if \mathbb{k} is a field, then \mathfrak{q}_d is a maximal ideal of $\mathbb{k}[D]$ and $\mathbb{k} \to \mathbb{k}[D]/\mathfrak{q}_d$ is a finite extension of fields. For each $0 \le i, j \le n$ we define the quadratic polynomials $\Delta^i_j \in \mathbb{k}[D]$ by:

$$\Delta^i_j := \sum_{0 \le \iota \le n} D^i_j D^i_\iota.$$

Then we see that the evaluation map $e_d : \mathbb{k}[D] \twoheadrightarrow R$ factors through a unique \mathbb{k} -algebra homomorphism $\overline{e}_d : A^d_{\mathbb{k}}(F) \twoheadrightarrow \mathbb{k}$ where we set

$$A_{\Bbbk}^{d}(F) := \Bbbk[\mathbf{D}]/\langle \mathbf{\Delta} \rangle \cup \langle \{D_{i}^{i} \mid |e_{i}| \neq |e_{i}| - 1\} \rangle$$

where we set $\Delta = (\Delta_j^i)$. Conversely, suppose $\mathbf{e}_r \colon \mathbb{k}[D] \twoheadrightarrow \mathbb{k}$ is another \mathbb{k} -algebra homomorphism where $\mathbf{e}_r(D) = r$ where $\mathbf{r} = (r_j^i)$. Then we define a differential \mathbf{d}_r on F by $\mathbf{d}_r \mathbf{e} := \mathbf{e} \mathbf{r}$. Thus if we set $\mathrm{Diff}_{\mathbb{k}}(F)$ be the set of all \mathbb{k} -linear differentials on F, then we have a bijection of sets:

$$h_{\mathbf{A}^{\mathsf{d}}_{\Bbbk}(F)}(\Bbbk) := \mathrm{Hom}_{\Bbbk\text{-alg}}(\mathbf{A}^{\mathsf{d}}_{\Bbbk}(F), \Bbbk) \simeq \mathrm{Diff}_{\Bbbk}(F).$$

Now suppose that $e' = (1, e'_1, \dots, e'_n)$ is another ordered homogeneous basis of F. Thus there is a graded k-linear isomorphism $\varphi \colon F \to F$ such that $\varphi e = e'$. Let $\widetilde{\gamma}_{\varphi} = \begin{pmatrix} 1 & 0 \\ 0 & \gamma_{\varphi} \end{pmatrix}$ be the matrix representation of φ with respect to e where $\gamma_{\varphi} \in GL_n(\mathbb{k})$. Thus we have $\varphi e = e' = e\widetilde{\gamma}_{\varphi}$. Then the matrix representation of d in the e' coordinates is given by $d' = \widetilde{\gamma}_{\varphi}^{-1} d\widetilde{\gamma}_{\varphi}$ since

$$\mathrm{d}e' = \mathrm{d}e\widetilde{\gamma}_{\varphi} \ = ed\widetilde{\gamma}_{\varphi} \ = e'\widetilde{\gamma}_{\varphi}^{-1}d\widetilde{\gamma}_{\varphi} \ = e'd'.$$

Thus we see that $GL_n(\Bbbk)$ acts on $h_{A_R^d(F)}(\Bbbk)$ by conjugation $e_d \mapsto e_{\widetilde{\gamma}_q^{-1}d\widetilde{\gamma}_q}$. On the other hand, if we define $d' \colon F \to F$ by $d' = \varphi^{-1}d\varphi$, then we obtain d'e = ed', hence d' is the differential on F whose matrix representation with respect to our original ordered basis e is d'. In particular, e_d and $e_{d'}$ belong to the same $GL_n(\Bbbk)$ -orbit in $h_{A_R^d(F)}(\Bbbk)$ if and only if the corresponding differentials d and d' give isomorphic \Bbbk -complex structures on F with fixed identity.

Base Change

Suppose that R is a k-algebra. Then $G := F \otimes_k A$ is a finite free graded R-module with $G_0 \simeq R$, $G_i = 0$ for all i < 0, and $G_+ \neq 0$. We set

$$A_R^{\mathbf{d}}(G) := A_{\mathbb{k}}^{\mathbf{d}}(F) \otimes_{\mathbb{k}} R \simeq R[\mathbf{D}]/\langle \mathbf{\Delta} \rangle \cup \langle \{D_j^i \mid |e_i| \neq |e_j| - 1\} \rangle.$$

It is clear that we have an inclusion of sets $h_{A_k^d(F)}(R) \subseteq h_{A_R^d(G)}(R)$.

Proposition 0.1. Let $G = \operatorname{Aut}(R/\mathbb{k})$. Then G acts on $h_{\operatorname{A}^{\operatorname{d}}_{\mathbb{R}}(G)}(R)$ and the set of all fixed points is precisely $h_{\operatorname{A}^{\operatorname{d}}_{\mathbb{k}}(F)}(R)$.

Classifying Other Algebraic Structures on *F*

Let $\lambda \colon F \to F$ and $\mu \colon F \otimes_R F \to F$ be graded R-linear maps. With F equipped with λ and μ as above, we make the following definitions:

- 1. We say *F* is **unital** if $\lambda(1) = 1$ and $\mu(1 \otimes a) = a = \mu(a \otimes 1)$ for all $a \in F$.
- 2. We say *F* is **graded-commutative** (or μ is **graded-commutative**) if

$$ab = (-1)^{|a|b|}ba$$

for all homogeneous $a, b \in F$. We say it is **strictly graded-commutative** if it is graded-commutative and satisfies the additional property that

$$a^2 = 0$$

for all homogeneous $a \in F$ whenever |a| is odd.

3. We say *F* is **multiplicative** (or λ is μ -multiplicative) if it satisfies the **multiplicative law**:

$$\lambda(ab) = \lambda(a)\lambda(b)$$

for all $a, b \in F$

4. We say *F* is **hom-associative** (or μ is λ -associative) if it satisfies the **hom-associative law**:

$$(ab)\lambda(c) = \lambda(a)(bc)$$

for all $a, b, c \in F$.

5. We say *F* is **permutative** (or μ is λ -**permutative**) if it satisfies the **permutative law**:

$$(\lambda(a)\lambda(b))\lambda(cd) = \lambda(ab)(\lambda(c)\lambda(d))$$
(2)

for all $a, b, c, d \in F$.

Why are we interested in these definitions? Basically we view permutativity as a mixture between hom-associativity and multiplicativity.

Proposition o.2. *Let* $F = (F, d, \lambda, \mu)$ *be an MLDG algebra.*

- 1. If F is multiplicative, then F is permutative. The converse is true if F is unital.
- 2. If F is hom-associative, then F is permutative. In particular, if F is unital, then hom-associativity implies multiplicativity.

Proof. 1. It is clear that if F is multiplicative, then F is permutative. Now suppose that F is unital and permutative. Then setting c = 1 = d in (2) shows that F is multiplicative. In the general case where λ is not necessarily unital, we have $\lambda(1) = e$ where $e \in F_0$. In this case, the permutative law would imply that e associates with all of the other elements, and furthermore it would tell us that $e^2\lambda(ab) = e\lambda(a)\lambda(b)$ for all $a, b \in A$ (which is not quite the same as F being multiplicative).

2. Suppose *F* is hom-associative. Then for all $a, b, c, d \in F$, we have

$$\lambda(ab)(\lambda(c)\lambda(d)) = ((ab)\lambda(c))\lambda^{2}(d)$$

$$= (\lambda(a)(bc))\lambda^{2}(d)$$

$$= \lambda^{2}(a)((bc)\lambda(d))$$

$$= \lambda^{2}(a)(\lambda(b)(cd))$$

$$= (\lambda(a)\lambda(b))\lambda(cd).$$

There's a cute way to visualize this by tracing the edges of the permutohedron (the hexagon) below:

Note that the red edge "collapses" to the associahedra (the pentagon) if $\lambda = 1$.

Example 0.1. Let $\lambda \in R \setminus \{0\}$ and let A be an MLDG R-algebra with $\lambda_A = \mathsf{m}_\lambda$ being the multilpication by λ map given by $a \mapsto \lambda a$. Recall that A is an R-algebra, so in particular the element λ belongs to the nucleus of A. It follows that A is permutative since

$$\lambda(ab)(\lambda(c)\lambda(d)) = \lambda^{3}((ab)(cd)) = (\lambda(a)\lambda(b))\lambda(cd).$$

On the other hand, A is not necessarily hom-associative. Indeed, we have

$$\lambda(a)(bc) = (ab)\lambda(c) \iff \lambda[a,b,c] = 0$$

for all $a, b, c \in A$ and the righthand side need not be zero. In particular, A is hom-associative if and only if $\lambda \in \text{Ann}([A])$. Similarly, A is not necessarily multiplicative. Indeed, we have

$$\lambda(ab) = \lambda(a)\lambda(b) \iff \lambda(1-\lambda)ab = 0$$

for all $a, b \in A$. If we assume that R is local and that $\lambda \in \mathfrak{m}$, then $1 - \lambda$ is a unit. In this case, we see that A is multiplicative if and only if $\lambda \in \operatorname{Ann}(\operatorname{im} \mu)$.

Classifying MLDG k-Algebras on F

We now repeat the same procedure that we did when classifying k-complex structures on F. Let $\lambda = (\ell_j^i)$ and let $m = (m_{i,j}^k)$ be their matrix representations with respect to e respectively. Thus we have $\lambda e = e\lambda$ we have $\mu(e \otimes e) = e \otimes me$. In terms of the matrix entries, these are given by

$$\lambda(e_j) = \sum_i \ell_j^i e_i$$
 and $\mu(e_i \otimes e_j) = \sum_k m_{i,j}^k e_k$.

We express the algebraic laws introduced above in terms of coordinates in the table below:

Algebraic Law	Equation
Graded Law	$G_{i}^{k} = M_{i_{1},i_{2}}^{k} \text{ if } e_{i} + e_{j} \neq e_{k} \text{ (else } G_{i}^{k} = 0)$
Graded-Commutative Law	$\Gamma^k_{\pmb{i}} = M^k_{i_1,i_2} - (-1)^{ e_{i_1} e_{i_2} } M^k_{i_2,i_1}$
Leibniz Law	
Multiplicative Law	$\Theta^k_{\pmb{i}} = \sum_j M^j_{i_1,i_2} L^k_j - \sum_j L^{j_1}_{i_1} L^{j_2}_{i_2} M^k_{j_1,j_2}$
Hom-Associative Law	$H_{i}^{k} = \sum_{j} (M_{i_{1},i_{2}}^{j_{1}} L_{i_{3}}^{j_{2}} M_{j_{1},j_{2}}^{k} - M_{i_{2},i_{3}}^{j_{1}} L_{i_{1}}^{j_{2}} M_{j_{2},j_{1}}^{k})$
Permutative Law	$P_{i}^{k} = \sum_{j} (M_{i_{1},i_{2}}^{j_{1}} L_{i_{3}}^{j_{2}} L_{i_{4}}^{j_{3}} M_{j_{4},j_{5}}^{k} - M_{i_{3},i_{4}}^{j_{1}} L_{i_{1}}^{j_{2}} L_{i_{2}}^{j_{3}} M_{j_{5},j_{4}}^{k}) L_{j_{1}}^{j_{4}} M_{j_{2},j_{3}}^{j_{5}}$

In particular, note that P_i^k is a sum over $2n^5$ terms Let $R = \mathbb{Z}[M, L]$, let $I_P = \langle P \rangle$, and let $I_H = \langle H \rangle$. Here we write $P = \{P_i^k\}$ and $H = \{H_i^k\}$, so P consists of n^5 polynomials and H consists of n^4 polynomials. Note also that each polynomial in P is a sum over $2n^5$ terms and each polynomial in H is a sum of $2n^2$ terms.

The ideal I_P contains Note that Furthermore set $X_P = \text{Proj}(R/I)$ and set $X_H = \text{Proj}(R/J)$. Note that $X_P, X_H \subseteq \mathbb{P}^N$ where $N = n^2(n+3)/2$.

Thus *A* and *B* are graded rings and *B* is an *A*-algebra.

$$A_P = \mathbb{Z}[M, L]/\Pi$$

$$A_H = \mathbb{Z}[M, L]/\langle \{\Pi_i^k\}\rangle$$

$$A^{(n)} = A = \mathbb{Z}[M, L, D]/\langle G, \Gamma, \Lambda, \Theta, H, \Pi \rangle.$$

where $F_+ = \mathbb{Z}^n$.

Theorem 0.2. We have the following bijection of sets:

$$\left\{ \operatorname{GL}_n(\Bbbk) \text{-orbits of } h_{\operatorname{A}^{\operatorname{d}}_{\Bbbk}(F)}(\Bbbk) \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{isomorphism classes of } \Bbbk\text{-complex} \\ \text{structures on } F \text{ with fixed identity} \end{array} \right\}$$

where $A_k^d(F)$ is a k-algebra (to be constructed below) and where

$$h_{\mathbf{A}^{\mathsf{d}}_{\Bbbk}(F)}(\Bbbk) := \mathrm{Hom}_{\Bbbk\text{-}alg}(\mathbf{A}^{\mathsf{d}}_{\Bbbk}(F), \Bbbk)$$

is the k-valued points of $A_k^d(F)$. Two k-complex structures (F,d) and (F,d') on F are said to be isomorphic with fixed identity if there exists a chain map $\varphi \colon F \to F$ such that $\varphi(1) = 1$.

Classifying MDG k-Algebras on F

We now fix a differential d on F giving it the structure of a \mathbb{k} -complex and we are interested in giving an algebrogeometric classification all multiplications on F (up to isomorphism). Let $\mu \in \operatorname{Mult}(F)$ and let $\mathbf{m} = (m_{i_1,i_2}^k)$ be its matrix representation with respect to \mathbf{e} . Thus we have $\mu(\mathbf{e}^\top \otimes \mathbf{e}) = \mathbf{e}^\top \mathbf{m} \mathbf{e}$. In terms of the matrix entries, these are given by

$$\mu(e_{i_1}\otimes e_{i_2})=\sum_k m_{i_1,i_2}^k e_k.$$

for all $1 \le i_1, i_2 \le n$. Furthermore, let $\varepsilon \in \mathbb{N} \cup \{\infty\}$ and assume that μ is ε -associative meaning it is associative in homological degree i for all $i < \varepsilon$ (thus ∞ -associative means associative). In the table below, we translate the algebraic laws which μ satisfies into equations which m satisfies:

Algebraic Law	Equation
Graded	$G_{i}^{k} = M_{i_{1},i_{2}}^{k} \text{ if } e_{i} + e_{j} \neq e_{k} \text{ (else } G_{i}^{k} = 0)$
Graded-Commutative Law	$\Gamma^k_{m{i}} = M^k_{i_1,i_2} - (-1)^{ e_{i_1} e_{i_2} } M^k_{i_2,i_1}$
Leibniz Law	$\Lambda_{i}^{k} = \sum_{j} (M_{i_{1},i_{2}}^{j} d_{j}^{k} - d_{i_{1}}^{j} M_{j,i_{2}}^{k} - (-1)^{ e_{i_{1}} e_{i_{2}} } d_{i_{2}}^{j} M_{i_{1},j}^{k})$
ε-Associative Law	$H_{\varepsilon,i}^{k} = \sum_{j} (M_{i_{1},i_{2}}^{j} M_{j,i_{3}}^{k} - M_{i_{2},i_{3}}^{j} M_{i_{1},j}^{k}) \text{ if } e_{i_{1}} + e_{i_{2}} + e_{i_{3}} < \varepsilon \text{ (else } H_{\varepsilon,i}^{k} = 0)$

We set $A_{\varepsilon} = \mathbb{k}[M]/\langle G, \Gamma, \Lambda, H_{\varepsilon} \rangle$ and we set $X_{\varepsilon} = \operatorname{Spec} A_{\varepsilon}$.

Theorem 0.3. We have the following bijection of sets:

$$\left\{ \operatorname{GL}_n(\Bbbk) \text{-orbits of } \operatorname{Hom}_{\Bbbk\text{-alg}}(A_{\epsilon},R) \right\} \longleftrightarrow \left\{ \text{ isomorphism classes of ϵ-associative multiplications on } F \right\}.$$

Thus the $GL_n(\mathbb{k})$ -orbits of the \mathbb{k} -valued points of X_{ε} are in bijection $[\operatorname{Mult}_{\varepsilon}(F)] := \operatorname{Mult}_{\varepsilon}(F) / \sim$ where $\operatorname{Mult}_{\varepsilon}(F)$ denotes the set of all ε -associative multiplications on F and where \sim is the isomorphism equivalence relation.

Now suppose that R is a k-algebra. Then $G := R \otimes_k F$ is a finite free graded R-module with $G_0 \simeq R$, $G_i = 0$ for all i < 0, and $G_+ \neq 0$. We set

$$A_R^{\mathsf{d}}(G) := A_{\mathbb{k}}^{\mathsf{d}}(F) \otimes_{\mathbb{k}} R \simeq R[\mathbf{D}] / \langle \mathbf{\Delta} \rangle \cup \langle \{D_j^i \mid |e_i| \neq |e_j| - 1\} \rangle.$$

It is clear that we have an inclusion of sets $h_{\mathbf{A}^{\mathbf{d}}_{\mathbb{k}}(F)}(R) \subseteq h_{\mathbf{A}^{\mathbf{d}}_{\mathbb{k}}(G)}(R)$.

Proposition 0.3. Let $G = \operatorname{Aut}(R/\mathbb{k})$. Then G acts on $h_{\operatorname{A}^{\operatorname{d}}_{\mathbb{R}}(G)}(R)$ and the set of all fixed points is precisely $h_{\operatorname{A}^{\operatorname{d}}_{\mathbb{R}}(F)}(R)$.

We set

$$\mathbf{A}^{(n)} = \mathbf{A} = \mathbb{Z}[M, L, D] / \langle G, \Gamma, \Lambda, \Theta, H, \Pi \rangle$$

where $F_+ = \mathbb{Z}^n$. Then we have

$$A \otimes_{\mathbb{Z}} R = R[M, L, D]/\langle G, \Gamma, \Lambda, \Theta, H, \Pi \rangle$$

which classifies MLDG structures on $F \otimes_{\mathbb{Z}} R = R^n$. Similarly,

$$A \otimes_{\mathbb{Z}} \mathbb{Q} = A_{\mathbb{O}} = \mathbb{Q}[M, L, D]/\langle G, \Gamma, \Lambda, \Theta, H, \Pi \rangle$$

We are interested in

$$h_{\mathbb{Q}}(K) := \operatorname{\mathsf{Hom}}_{\mathbb{Q}\text{-}\operatorname{\mathsf{alg}}}(A_{\mathbb{Q}}, K)$$

where K/\mathbb{Q} is a finite extension of degree n. Then $h_{\mathbb{Q}}(K)$ classifies MLDG \mathbb{Q} -algebras. Consider

$$\mathbb{Z}_p[x,y,z]/\langle x^2,p^2,pz,xy,y^2z^2\rangle = (\mathbb{Z}/p^2)[x,y,z]/\langle x^2,pz,xy,y^2z^2\rangle$$

Consider

$$\mathbb{Z}_p[x,y,z]/\langle x^2,w^2,zw,px,p^2z^2\rangle$$