- 1. Consider the proof that every multitape Turing machine has an equivalent single-tape Turing machine.
 - (a) (__ /2 pts) How does the simulation machine first format its tape given the input string $w = w_1 w_2 \dots w_n$?

(b) (__/2 pts) Describe how the simulation machine handles the situation where there is no room on a simulated tape to write a new next symbol.

- 2. Consider the proof that every nondeterministic Turing machine has an equivalent deterministic Turing machine.
 - (a) (___ /2 pts) Briefly describe the purposes of the three tapes used in the simulation machine.

input type: stores and preserves input string. Never changes, simulation type: acts as the type used on a single branch of nondeterminism address type: describes which branch of nondeterminism is being simulated.

(b) (__ /2 pts) Describe what the simulation address of |1|3|2| means.

3. (__ /2 pts) Describe a reasonable encoding $\langle G \rangle$ for directed graphs G with labeled edges.

