Estratégias de Detecção de Alterações no Comportamento do Campo Magnético Externo de Geradores Síncronos

Marjorie Hoegen

Defesa de Dissertação de Mestrado Programa de Pós-Graduação de Engenharia Elétrica Orientador: Prof. Nelson Jhoe Batistela, Dr. Coorientador: Prof. Patrick Kuo-Peng, Dr.

Agenda

- 1. Introdução
- Dados utilizados
- 3. Técnicas de detecção de alterações e resultados
- Comparação entre as técnicas
- 5. Conclusões

Introdução

Geradores Síncronos (GSs) são máquinas essenciais para o sistema de energia elétrica.

Sistemas de monitoramento de condição:

- Detectar faltas em seu estágio inicial;
- Evitar danos severos ao GS;
- Evitar paradas de máquina não programadas.

Introdução

Monitoramento de GSs através do espectro harmônico do campo magnético externo (RIGONI, 2014; SANTOS, 2016).

- Sensores de campo magnético por indução adquirem sinais do campo externo da máquina e, após uma etapa de condicionamento do sinal, são extraídas suas harmônicas através de FFTs (*Fast Fourier Transform*);
- A primeira componente possui uma frequência que corresponde à fundamental mecânica (RIGONI, 2014; SANTOS, 2016);

$$f_{mec} = \frac{f_{el}}{p_{pol}}$$

- Amplitudes de cada harmônica são armazenadas, obtendo-se um banco de dados dos históricos;
- Alteração observada na amplitude de algumas harmônicas com a ocorrência de faltas na máquina.

Introdução

Análises do espectro harmônico de trabalhos anteriores foram em sua maioria apenas análises visuais ou baseadas em alterações pontuais.

Objetivo geral:

 Avaliar a aplicação de diferentes técnicas para detecção automática de alterações em GSs por faltas incipientes através do histórico de amplitude de componentes harmônicas.

Trabalho desenvolvido no âmbito do projeto de P&D da ANEEL de código PD 0403-0048/2019 - "Equipamento não Invasivo para Detecção de Falhas em Geradores Síncronos através do Campo Magnético Externo".

Dados utilizados

Dados sintéticos

Simulação de um modelo analítico do GS proposto em Santos (2016), sendo aprimorado em trabalhos em desenvolvimento no GRUCAD.

A máquina é vista como um sistema gerador de sinais característicos que interagem ou não entre si.

Modulação entre dois sinais: a força magnetomotriz do rotor e a variação da densidade de permeância das ranhuras do estator.

$$B = \mathcal{F} \cdot (1 + \mathcal{P})$$

Dados sintéticos

Etapas de geração dos dados:

- Definição dos parâmetros da máquina;
- Geração das formas de onda da força magnetomotriz e da permeância a partir das quais é calculada a indução;
- 3) Obtenção da FFT da indução para geração do espectro de frequência.

 Repetição do processo para diversos conjuntos de pontos para geração de um histórico de componentes harmônicos.

Dados sintéticos

- 3000 aquisições em um GS de 8 polos, 72 ranhuras no estator;
- Frequência de operação: 60 Hz, fundamental mecânica 15 Hz;
- 134 harmônicas da fundamental mecânica: 15 Hz a 2025 Hz;
- Dois tipos de falta com três intensidades diferentes e dois tipos de ruído.

28 arquivos de dados => 405000 pontos/arquivo = > aprox. 11 milhões de pontos no total

Equipamento protótipo para monitoramento de GS através de seu campo magnético externo desenvolvido por Rigoni (2014) e Santos (2016).

GS de 56 polos e 295 MVA, operando a 60
Hz, da usina hidrelétrica de Itá.

Armazenamento

das amplitudes

- Seleção de um período de análise de aproximadamente 6 semanas de aquisições (6000 pontos);
- Falta incipiente ligada à parte rotativa mecânica do GS (FREITAS et al., 2019).

- Análise das médias móveis mensais (4000 pontos).
- 467 harmônicas, de 2,14 Hz a 1000,71 Hz.
 - aprox. 3 milhões de pontos no total

- Análise das médias móveis mensais (4000 pontos).
- 467 harmônicas, de 2,14 Hz a 1000,71 Hz.
 - o aprox. 3 milhões de pontos no total

Técnicas de detecção de alterações: teoria e resultados

Técnicas de detecção de alterações

Técnicas aplicadas:

- PDF (Probability Density Function);
- KLD (Kullback-Leibler Divergence);
- PCA (Principal Component Analysis);
- SSA (Singular Spectrum Analysis);
- EMD (Empirical Mode Decomposition) e análise de energia; e
- Autoencoder.

Implementação em Python.

16/65

Técnica PDF

Função de densidade de probabilidade (PDF - *Probability Density Function*):

 Probabilidade relativa de uma variável aleatória apresentar um dado valor.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Técnica PDF

- Número de detecções:
 - Falta de rotor: 50 harmônicas;
 - Falta de estator: 1 harmônica;
 - Sem falta: nenhuma harmônica.

Limite de detecção: 0

- Número de detecções:
 - Falta de rotor: 108 harmônicas;
 - Falta de estator: 42 harmônicas;
 - Sem falta: nenhuma harmônica.

Limite de detecção: 1E-10

19/65

Alterações leves na amplitude das harmônicas resultaram em detecções.

25 harmônicas detectadas nos dados experimentais.

Realizando um teste com um limite de 1E-10, 437 harmônicas foram detectadas como alteradas.

Esse resultado indica que pequenas variações na amplitude, não relacionadas às faltas, provocam alterações significativas na densidade de probabilidade.

Análise dos falsos positivos

• Utilização da correlação de cada harmônica com a harmônica de 302,14 Hz

$$corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

23/65

Análise dos falsos positivos

Utilização da correlação de cada harmônica com a harmônica de 302,14 Hz

Técnica	Parâmetro de detecção	Limite do parâmetro de detecção	Número de harmônicas detectadas	Número de falsos positivos	Proporção de falsos positivos
PDF	Densidade de probabilidade	0	25	5	20,00%
PDF	Densidade de probabilidade	1E-10	437	360	82,38%

Técnica PDF: conclusões

- Técnica de implementação simples e com baixo tempo de processamento (na ordem de segundos);
- Alta sensibilidade, aumentando a possibilidade de falsos positivos;
- Não apresentou bons resultados com dados experimentais devido à variação natural nas amplitudes das harmônicas.

Técnica KLD

A divergência de Kullback-Leibler, também chamada de entropia relativa, é uma medida da diferença entre duas funções de densidade de probabilidade.

$$KLD(P||Q) = \sum_{x \in X} P(x) log \frac{P(x)}{Q(x)}$$

Técnica KLD

- Valores de diferente magnitude entre cada harmônica, dificultando a definição de um limite de detecção;
- Utilização do valor máximo da KLD das primeiras iterações.

- Número de detecções:
 - Falta de rotor: 110 harmônicas;
 - Falta de estator: 15 harmônicas;
 - Sem falta: nenhuma harmônica.

28/65

Os valores de divergência não mostraram sensibilidade à alterações nos valores de amplitude das harmônicas dos dados experimentais.

29/65

Técnica KLD: conclusões

- Técnica um pouco mais complexa que a anterior, porém envolvendo também apenas operações simples.
- Devido à utilização de janelas de cálculo, o tempo de processamento é maior do que o da primeira técnica apresentada, na ordem de minutos;
- Os valores de KLD foram sensíveis às alterações nas harmônicas dos dados sintéticos, porém apresentaram alta sensibilidade ao ruído;
- O parâmetro de detecção não apresentou sensibilidade às alterações graduais observadas em algumas harmônicas de dados experimentais.

Técnica PCA

PCA (Principal Component Analysis):

 Técnica utilizada para redução de dimensionalidade, compressão de dados, extração de características e visualização de dados.

Técnica PCA

Para detecção de alterações:

- Construção do modelo de PCA com dados de referência;
- A partir desse modelo, novos dados são projetados nesse subespaço de componentes principais e monitoram-se os valores de dois parâmetros: SPE e T².

$$SPE = (X' - X_{inv})^2$$

$$T^2 = \sum_{a=1}^{a=n_{pcs}} \frac{(X_{proj\,a})^2}{\lambda_a}$$

$$c_m^{SPE} = (X_m' - X_{inv_m})^2$$

$$c_m^{T_2} = \sum_{a=1}^{n_{pcs}} \frac{X_{proja}}{\lambda_a} p_{am} X_m'$$

- Sensibilidade dos parâmetros SPE e T² às faltas;
- Menor sensibilidade de T².

33/65

Contribuição à SPE

- Número de detecções:
 - Falta de rotor: 135 harmônicas;
 - Falta de estator: 1 harmônica;
 - Sem falta: nenhuma harmônica.

Contribuição à T²

- Número de detecções:
 - Falta de rotor: 63 harmônicas;
 - Falta de estator: 1 harmônica;
 - Sem falta: nenhuma harmônica.

Parâmetros SPE e T^2 dos dados experimentais.

35/65

Contribuição à SPE

14 harmônicas detectadas

Contribuição à T²

11 harmônicas detectadas

Análise de falsos positivos

Técnica	Parâmetro de detecção	Limite do parâmetro de detecção	Número de harmônicas detectadas	Número de falsos positivos	Proporção de falsos positivos	
PCA	Contribuição à SPE	1000	34	13	38,24%	
PCA	Contribuição à T ²	5	43	43 21		
PCA	Contribuição à SPE	2000	14	4	28,57%	
PCA Contribuição à T^2		10	11	3	27,27%	

Técnica PCA: conclusões

- Os parâmetros SPE e T², se mostraram sensíveis à alterações nas harmônicas, sendo SPE mais sensível em comparação com T²;
- Por meio das contribuições das harmônicas aos dois parâmetros de detecção foi possível identificar as harmônicas alteradas;
- Apesar de ser uma técnica com um número maior de operações matemáticas envolvidas, PCA apresentou um tempo de processamento baixo (na ordem de segundos).

Técnica SSA

SSA (Singular-Spectrum Analysis):

 Decomposição de séries temporais que incorpora elementos de análise clássica de séries temporais, análise estatística e processamento de sinais.

Técnica SSA

SSA (Singular-Spectrum Analysis):

 Decomposição de séries temporais que incorpora elementos de análise clássica de séries temporais, análise estatística e processamento de sinais.

Técnica SSA

- Aplicação de SSA usando pontos de referência;
- Cálculo dos parâmetros de detecção: D_1 e D_2 .

$$D_1 = \frac{\sum_{j=p+1}^{p+Q} (X_{teste_j}^{(n)})^T X_{teste_j}^{(n)} - (X_{teste_j}^{(n)})^T U U^T X_{teste_j}^{(n)}}{LQ}$$

$$D_2 = \sqrt{\sum_{i=1}^{N_L} (y_{teste}^{(i)} - y_{base}^{(i)})^2}$$

• Sensibilidade dos parâmetros D_1 e D_2 às alterações nos dados sintéticos.

$$dif_{D_1}[i] = \frac{D_1[i] - \bar{D_1}}{\bar{D_1}}$$

$$dif_{D_2}[i] = \frac{D_2[i] - \bar{D_2}}{\bar{D_2}}$$

42/65 UFSC UNIVERSIDADE FEDER DE SANTA CATARINA

Parâmetro D₁

- Número de detecções:
 - Falta de rotor: 110 harmônicas;
 - Falta de estator: 17 harmônicas;
 - Sem falta: nenhuma harmônica.

Parâmetro D₂

- Número de detecções:
 - Falta de rotor: 105 harmônicas;
 - Falta de estator: 45 harmônicas;
 - Sem falta: nenhuma harmônica.

Parâmetro D₁

• 27 harmônicas detectadas

Parâmetro D₂

21 harmônicas detectadas

Análise de falsos positivos

Técnica	Parâmetro de detecção	Limite do parâmetro de detecção	Número de harmônicas detectadas	Número de falsos positivos	Proporção de falsos positivos	
SSA	Diferença relativa à D ₁ 0,04		27	13	48,15%	
SSA Diferença relativa à D_2		30	21	11	52,38%	

Técnica SSA: conclusões

- Os parâmetros de detecção dessa técnica apresentaram sensibilidade às variações nas amplitudes das harmônicas;
- Nos dados experimentais, esses parâmetros também apresentaram sensibilidade a alterações devido a variações no ponto de operação do GS;
- Tempo relativamente alto de processamento por envolver muitos cálculos com matrizes (na ordem de minutos).

Técnica EMD e análise de energia

EMD (*Empirical Mode Decomposition*):

Decomposição de séries temporais. Sua ideia principal é extrair um número finito de funções de modo intrínseco (IMFs - Intrinsic Mode Functions).

$$x(t) = \sum_{i=1}^{n} c_i + r_n$$

Técnica EMD e análise de energia: resultados

• Não houve indicação de alteração nas harmônicas à partir da análise dos parâmetros relacionados à técnica EMD.

Técnica de análise de energia: resultados

A energia das harmônicas apresentou sensibilidade às alterações.

49/65

$$dif_{E}[i] = \frac{E[i] - \bar{E}}{\bar{E}}$$

Técnica de análise de energia: resultados

- Número de detecções:
 - Falta de rotor: 109 harmônicas;
 - Falta de estator: 18 harmônicas;
 - Sem falta: nenhuma harmônica.

50/65

Técnica de análise de energia: resultados

Técnica	Parâmetro de detecção	Limite do parâmetro de detecção	Número de harmônicas detectadas	Número de falsos positivos	Proporção de falsos positivos	
Análise de energia	Diferença relativa	0,05	12	5	41,67%	

51/65 UFSC UNIVERSIDADE F

Técnica EMD e análise de energia: conclusões

- A partir da análise das IMFs e parâmetros relacionados a técnica EMD não foi identificada sensibilidade às alterações nas harmônicas;
- A análise de energia possibilitou a detecção de alterações;
- Tempo de processamento relativamente baixo (na ordem de segundos).

Técnica autoencoder

- Rede neural treinada para reconstruir os dados de entrada.
- Composta por:
 - Codificador (encoder); e
 - Decodificador (decoder).
- O erro de reconstrução MAE (*Mean Absolute Error*) pode ser utilizado como um parâmetro de monitoramento para detecção de alterações.

$$MAE = \frac{\sum_{i=1}^{n} |\tilde{x}_i - x_i|}{n}$$

Técnica autoencoder: resultados

Alta sensibilidade do parâmetro de detecção.

54/65

Técnica autoencoder: resultados

- Número de detecções:
 - Falta de rotor: 123 harmônicas;
 - Falta de estator: 66 harmônicas;
 - Sem falta: nenhuma harmônica.

55/65

Técnica autoencoder: resultados

Técnica	Parâmetro de detecção	Limite do parâmetro de detecção	Número de harmônicas detectadas	Número de falsos positivos	Proporção de falsos positivos
Autoencoder	Erro de reconstrução	20	17	3	17,65%

56/65 UFSC UNIVERSIDADE FEDER

Técnica autoencoder: conclusões

- Com a utilização do erro de reconstrução foi possível detectar harmônicas com alteração na sua amplitude;
- Alta sensibilidade às alterações;
- Considerando a alta complexidade dessa técnica, seu tempo de processamento foi relativamente baixo (na ordem de alguns segundos);
- Há a vantagem de os valores de erro de reconstrução apresentarem uma escala semelhante entre as diferentes harmônicas, não sendo necessário utilizar diferenças relativas.

Comparação entre as técnicas

Comparação entre as técnicas

Técnica	Parâmetro	Complexidade	Tempo de	Sensibilidade	Possibilidade de falsos positivos		
	de		processamento	ao ruído	Dados	Dados	
	detecção			uo ruido	sintéticos	experimentais	
PDF	Densidade de probabilidade	Baixa	Segundos	Alta	Alta	Alta	
KLD	KLD	Baixa	Minutos	Alta	Média	0	
PCA	SPE, T ² e contribuições	Média	Segundos	Média	Baixa	Média	
SSA	D_1 e D_2	Alta	Minutos	Baixa	Baixa	Alta	
Análise de energia	Energia	Baixa	Segundos	Média	Baixa	Alta	
Autoencoder	Erro de reconstrução	Alta	Segundos	Baixa	Média	Baixa	

Comparação entre as técnicas

	Parâmetro de detecção	Complexidade	Tempo de processamento	Sensibilidade ao ruído	Possibilidade de falsos positivos		
Técnica					Dados sintéticos	Dados experimentais	Avaliação
PDF	Densidade de probabilidade	3	2	1	1	1	8
KLD	KLD	3	1	1	2	0	7
PCA	SPE, T ² e contribuições	2	2	2	3	2	11
SSA	<i>D</i> ₁ e <i>D</i> ₂	1	1	3	3	1	9
Análise de energia	Energia	3	2	2	3	1	11
Autoencoder	Erro de reconstrução	1	2	3	1	3	10

Conclusões

Conclusões

- A aplicação em dados sintéticos teve resultados considerados satisfatórios para a maioria das técnicas, com os parâmetros de monitoramento relacionados apresentando sensibilidade às alterações no nível médio das harmônicas devido à imposição de faltas graduais. A aplicação das técnicas nos dados experimentais não apresentou tão bons resultados em alguns casos.
- As variações naturais nas amplitudes de algumas harmônicas do campo magnético externo relacionadas com a variação do ponto de operação do GS representam um grande desafio no monitoramento de condição, pois é necessário evitar falsos positivos.
- Um dos problemas enfrentados na aplicação de grande parte das técnicas foi na definição de um limite de detecção adequado.

Conclusões

- Uma das contribuições deste trabalho foi a implementação de técnicas de detecção de alterações que ocorrem de forma gradual, com um comportamento semelhante às alterações devido à faltas incipientes que possam ocorrer em máquinas do sistema elétrico.
- As técnicas neste trabalho também podem ser utilizadas para monitoramento de outros tipos de dados relacionados a diferentes áreas, além da engenharia elétrica.
- Sugestões para trabalhos futuros:
 - Análise mais profunda de parâmetros e limites de detecção;
 - Estudo da influência do ponto de operação do GS nas amplitudes das harmônicas;
 - Implementação de outras técnicas além das utilizadas neste trabalho, como técnicas mais voltadas à inteligência artificial.

Referências

RIGONI, M. Desenvolvimento de um sistema de detecção e avaliação de faltas em geradores síncronos por meio do campo magnético externo. 2014. Tese (Doutorado) – Universidade Federal de Santa Catarina.

SANTOS, H. F. Desenvolvimento de um equipamento para monitoração de geradores síncronos através do campo magnético externo. 2016. Diss. (Mestrado) – Universidade Federal de Santa Catarina.

FREITAS, L. M.; GOMES, L. K. C. R.; BATISTELA, N. J.; SOUZA, R. S.; SADOWSKI, N.; SANTOS, H. F.; NASCIMENTO, R. J.; MUNARETTI, A. H. Emprego de Nova Técnica na Detecção de Falta Incipiente em Gerador Síncrono através do Campo Magnético Externado. In: XXV SNPTEE - Seminário Nacional de Produção e Transmissão de Energia Elétrica. [S.l.: s.n.], nov. 2019. P. 1–11.

Obrigada!

Contato:

marjoriehoegen@gmail.com

