Introducción a las variedades tóricas

- 1. (a) Considera el semigrupo $S \subset \mathbb{N}^2$ generado por los puntos $m_i = (i, 4 i) \in \mathbb{N}^2$, $0 \le i \le 4$. Calcula $\mathbb{C}[S]$. ¿Cuál es la variedad tórica X_S correspondiente? ¿Es normal?
 - (b) Ahora sean $d \in \mathbb{N}$ y $S_d \subset \mathbb{N}^2$ el semigrupo generado por los puntos $\{(i, d-i) \mid 0 \le i \le d\}$. ¿Quién es $X_d = \mathbb{C}[S_d]$?¿Es normal?
- 2. (a) Sea $P \subset \mathbb{R}^3$ el poliedro que es la envolvente convexa de los puntos $\{(\pm 1, \pm 1, \pm 1)\}$. Describe la variedad tórica proyectiva X_P asociada a este poliedro.
 - (b) Sea $P = \text{conv}((\pm d, \dots, \pm d))$ para $d \in \mathbb{Z}_{\geq 0}$. Describe X_P . Explica las diferencias entre esta variedad y la obtenida en el inciso anterior.
- 3. Un cuadrado mágico de tamaño n es un arreglo cuadrado M de números enteros positivos, con la propiedad de que las sumas de los renglones $\sum_{1 \leq j \leq n} M_{i_0,j}$, $1 \leq i_0 \leq n$, y las columnas $\sum_{1 \leq i \leq n} M_{i,j_0}$, $1 \leq i_0 \leq n$, son iguales a una constante s.
 - (a) Dado un entero s > 0, ¿cuántos cuadrados mágicos de tamaño 4 con suma s existen?
 - (b) ¿Cuántos hay si imponemos la restricción de que las entradas de M sean los números $\{1, \ldots, n^2\}$?
- 4. Considera la acción de $(\mathbb{C}^*)^2$ en $\mathbb{A}^4_{\mathbb{C}}$ dada por

$$(t_1, t_2) \cdot (x_1, \dots, x_n) = (t_1 x_1, t_1^{-1} t_2 x_2, t_1 x_3, t_2 x_4).$$

Para cada linearización $\chi \in \{(-1,1),(-1,2),(1,1),(2,0)\}$ describe la variedad tórica $X_{\chi} = \mathbb{A}^2/\!\!/_{\chi}(\mathbb{C}^*)^2$ que es el cociente GIT correspondiente a χ .