Size and Guesstimation: Computational

EGMOTC 2023 - Rohan

December 13, 2023

Problems

Problem 1. (Newton Iteration)

- Find $\sqrt{2023}$ upto 20 decimal places (without using the $\sqrt{\cdot}$ operation). You are free to write code for this or use a calculator.¹
- Find the first 10 digits of π .

Problem 2. (Big-O) Order the function by their sizes as $n \mapsto \infty$?

- $f(x) = 2023 \log(n)^{2023}$, $g(x) = \log(\log(F_n^{F_n^2} + 3^{3^n}))^3$, $h(x) = 1.001^n$
- $f(n) = 3f(\lfloor n/2 \rfloor) + 2023n$ with f(1) = 1, g(n) = 1.01g(n-1) g(n-2) with g(0) = 0 and g(1) = 1
- $f(n) = 2023^{2023^{2023^{2023^{n}}}}$, $g(n) = 2^{2^{2^{2^{n}}}}$, and $h(n) = 1.01^{1.01^{1.01^{1.01^{1.01^{1.01^{n}}}}}$

Problem 3. (Some contest problems)

- Compute $\left[\sum_{k=2023}^{\infty} \frac{2024! 2023!}{k!} \right]$
- For any natural number n, expressed in base 10 , let s(n) denote the sum of all its digits. Find all natural numbers m and n such that m < n and

$$(s(n))^2 = m \text{ and } (s(m))^2 = n$$

¹4 iterations of Newton's algorithm are definitely sufficient, 3 iterations might be enough too. Can you argue that 4 iterations are sufficient?

 $^{^2}sin\pi = 0$ and you can use Newton Iteration

 $^{{}^3}F_n$ is the *n*th Fibonacci term