GEORGETOWN UNIVERSITY

Predictive Modeling and Analysis of Adverse Events Post-Shingles Vaccination

: Serious Adverse Event Prediction Model Development & Data Analysis Using VAERS Dataset

Youngmin Choi (Health Informatics & Data Science, Georgetown University)

Industry Sponsor/Mentor: Dr. Azade Tabaie (Data Scientist, MedStar Health)

Faculty Academic Mentor: Dr. Peter McGarvey (Director, ICBI Georgetown University)

Letters to the editor Submit a guest opinion Today's Opinions newsletter

Opinion | Vaccine hesitancy is growing. Doctors will have to fight back.

A nurse prepares a coronavirus vaccine dose at the Ward 4 D.C. Covid Center on March 31. (Eric Lee for The Washington Post)

PROJECT INTRODUCTION

Problem

- Concerns of potential adverse events may lead to hesitancy among potential recipients.
- Shingles vaccines are not mandatory, so individual decision-making is important.

Scope

- Develop SAE (after AE onset) prediction model using VAERS data.
- Conduct statistical analysis of subgroups.

Goal

- Target AUPRC improvement of 20% (vs baseline model).
- Identify groups with higher risks.

Benefits

- Early intervention can lead to better patient care outcomes and potentially reduce healthcare costs.
- Patients and healthcare professionals can make more confident and informed decisions.

Timeline

May 2024 – August 2024

Method

- Python
- R
- NIF
- Machine Learning
- Statistical Analysis

Sponsor

Industry Mentor

Dr. Azade Tabie, Data Scientist, MedStar Health

Academic Mentor

Dr. Peter McGarvey, Director, ICBI, Georgetown University

TABLE OF CONTENTS

+ 01

INTRODUCTION

+ 02

METHOD: PREDICTIVE MODELLING

+ 03

RESULT: PREDICTIVE MODELLING

+ 04

SUBGROUP ANALYSIS

+ 05

CONCLUSION & DISCUSSION

01 INTRODUCTION

SHINGLES & VACCINATION

What is Shingles?

- Caused by reactivation of dormant Varicella-Zoster Virus.
- 1/3 people in US will have shingles in their lifetime.
- Postherpetic neuralgia (PHN).

Shingles Vaccine

- Recombinant Shingles Vaccine approved by FDA in 2017 (Shingrix).
- Adults aged 50 years and older (2 injections)

VAERS DATA & SAE

- Vaccine Adverse Event Reporting System (VAERS) is a database of adverse event reports submitted by healthcare professionals, patients, caregivers, etc.
- No. reports submitted in 2023: 106,125 (48,438 in 2019)
- Data comprises information about vaccine administered, adverse events (symptom, outcome, etc.), and patient information.
- Serious Adverse Event (SAE) is an event with serious patient outcomes including death, ER visit, hospitalization and/or prolonged hospitalization, disability or permanent damage.

02 PREDICTIVE MODELLING - METHOD

Question:

When a patient starts to show signs of adverse events following vaccination, can we predict whether this will progress into serious adverse events?

PROCESS OVERVIEW

DATA EXPLORATION & CLEANING

- From year 2018 to 2023
- Significant increase following covid vaccine
- 2018-2020 approx.
- 49,000 reports/year

- Vaccine : Shingrix
- Age: 50 years +
- Symptom NA removed
- Gender 'U' removed
- Symptom 'none stated' removed

- ✓ This study focused on data collected between 2018 and 2023 regarding Shingrix vaccine, which was approved by the FDA in 2017.
- The data included reports from patients aged 50 and older who received the vaccine.
- ✓ To ensure data quality, rows with no symptom information and cases with unknown gender were removed from the analysis.
- ✓ From total final data of 49,669 reports, 45,084 were classified as SAE and 4,585 as non-SAE, representing approximately 10%.

TEXT PREPROCESSING

FEATURE ENGINEERING

Train/Test Split

- 80:20 ratio
- Stratified split

- TFIDF (Term Frequency-Inverse Document Frequency)
- BERT (Bidirectional Encoder Representations from Transformers)
- BlueBERT

Gender
One-hot
encoding

Random Undersampling

Random sampling from non-SAE group for 7:3 ratio.

MODEL TRAINING & FEATURE IMPORTANCE

03 PREDICTIVE MODELLING - RESULTS

DATA PROCESSING RESULT

Data Preprocessing and Model Training Worklow

MODEL PERFORMANCE

AUPRC Comparison

Feature extraction	TF-IDF	F-IDF					BERT-base					BlueBERT						
Model	LR		XGBoo	st	EN		LR		XGBoo	st	EN		LR		XGBoo	st	EN	
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
AUROC	0.714	0.701	0.863	0.707	0.639	0.646	0.784	0.736	0.890	0.688	0.753	0.73	0.785	0.750	0.885	0.724	0.757	0.742
Sensitivity	0.507	0.494	0.751	0.514	0.319	0.337	0.64	0.571	0.793	0.449	0.575	0.539	0.634	0.582	0.781	0.515	0.571	0.549
Specificity	0.92	0.908	0.975	0.901	0.959	0.955	0.927	0.901	0.986	0.927	0.932	0.921	0.936	0.917	0.990	0.933	0.944	0.936
PPV	0.731	0.353	0.929	0.344	0.769	0.434	0.791	0.371	0.960	0.384	0.783	0.408	0.810	0.418	0.971	0.440	0.813	0.464
NPV	0.813	0.946	0.901	0.948	0.767	0.934	0.858	0.954	0.918	0.943	0.837	0.952	0.856	0.956	0.913	0.950	0.837	0.953
F-1 score	0.599	0.411	0.83	0.412	0.451	0.379	0.708	0.45	0.869	0.414	0.663	0.465	0.711	0.486	0.866	0.474	0.671	0.503
AUPRC	0.693	0.447	0.877	0.451	0.646	0.416	0.77	0.491	0.908	0.442	0.743	0.495	0.777	0.519	0.909	0.500	0.756	0.527
Accuracy	0.796	0.87	0.908	0.865	0.767	0.898	0.841	0.871	0.928	0.883	0.825	0.885	0.846	0.886	0.927	0.895	0.832	0.900

- Across various text feature extraction and model combinations, BlueBERT outperformed TF-IDF and BERT-base, demonstrating superior capability in the biomedical domain.
- BlueBERT processed feature with elastic net model (C=0.1, ratio=0.3) acheived the highest metrics, indicating enhanced performance in identifying positive cases.
- Compared to baseline (TF-IDF/LR model) the performance improved by 18%.

FEATURE IMPORTANCE

Adverse Event Data from SHINGRIX Clinical Trial

Adverse	Aged 50-	59 Years	Aged 60-	69 Years	Aged ≥70 Years		
Reactions	SHINGRIX	Placeboc	SHINGRIX	Placeboc	SHINGRIX	Placeboc	
Local Adverse	n = 1,315	n = 1,312	n = 1,311	n = 1,305	n = 2,258	n = 2,263	
Reactions	%	%	%	%	%	%	
Pain	88	14	83	11	69	9	
Pain, Grade 3 ^d	10	1	7	1	4	0.2	
Redness	39	1	38	2	38	1	
Redness, >100 mm	3	0	3	0	3	0	
Swelling	31	1	27	1	23	1	
Swelling, >100 mm	1	0	1	0	1	0	
General Adverse	n = 1,315	n = 1,312	n = 1,309	n = 1,305	n =2,252	n = 2,264	
Reactions	%	%	%	%	%	%	
Myalgia	57	15	49	11	35	10	
Myalgia, Grade 3 ^e	9	1	5	1	3	0.4	
Fatigue	57	20	46	17	37	14	
Fatigue, Grade 3e	9	2	5	1	4	1	
Headache	51	22	40	16	29	12	
Headache, Grade 3°	6	2	4	0.2	2	0.4	
Shivering	36	7	30	6	20	5	
Shivering, Grade 3e	7	0.2	5	0.3	2	0.3	
Fever	28	3	24	3	14	3	
Fever, Grade 3f	0.4	0.2	1	0.2	0.1	0.1	
GIg	24	11	17	9	14	8	
GI, Grade 3 ^e	2	1	1	1	1	0.4	

- Source: Shingrix prescribing information (FDA)
 Based on 2 studies (NCT01165177 & NCT01165229)

04 SUBGROUP ANALYSIS

PROCESS OVERVIEW

DATA DISTRIBUTION

	Code	Description (Condition Categories)	Count
	A00-B99	Certain infectious and parasitic diseases	1,343
	C00-D49	Neoplasms	1,250
	D50-D89	Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism	400
	E00-E89	Endocrine, nutritional and metabolic diseases	6,538
	F01-F99	Mental, behavioral and neurodevelopmental disorders	1,937
	G00-G99	Diseases of the nervous system	2,288
tic	H00-H59	Diseases of the eye and adnexa	599
nq	H60-H95	Diseases of the ear and mastoid process	212
tri	100-199	Diseases of the circulatory system	4,324
) iS	J00-J99	Diseases of the respiratory system	2,455
Conditions Distribution	K00-K95	Diseases of the digestive system	1,417
0	L00-L99	Diseases of the skin and subcutaneous tissue	690
	M00-M99	Diseases of the musculoskeletal system and connective tissue	4,664
2	N00-N99	Diseases of the genitourinary system	754
8	000-09A	Pregnancy, childbirth and the puerperium	1
	P00-P96	Certain conditions originating in the perinatal period	0
	Q00-Q99	Congenital malformations, deformations and chromosomal abnormalities	77
	R00-R99	Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified	2,387
	S00-T88	Injury, poisoning and certain other consequences of external causes	854
	U00-U85	Codes for special purposes	10
	V00-Y99	External causes of morbidity	7
	Z00-Z99	Factors influencing health status and contact with health services	331

SUBGROUP ANALYSIS RESULTS (VS 'no condition')

- Individuals with ICD-10 codes R00-R99, K00-K95, I00-I99, C00-D49, E00-E89, F01-F98, and G00-G99 exhibit significantly increased likelihood of SAE compared to those without conditions.
- ICD code groups with lower odds did not show statistically significant results.

R00-R99	Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified	Cough, rash, fever		
K00-K95	Diseases of the digestive system	Acid reflux, ulcer		
100-199	Diseases of the circulatory system	Hypertension		
C00-D49	Neoplasms	Cancer		
E00-E89	Endocrine, nutritional and metabolic diseases	Diabetes		
F01-F98	Mental, Behavioral and Neurodevelopmental disorders	Depression, anxiety		
G00-G99	Diseases of the nervous system	Migraine		

SUBGROUP ANALYSIS RESULTS (VS 50-54, VS male)

- Age groups 70 and older indicated significantly increased odds of SAE occurrence compared to 50-54 age group.
- Female group showed lower odds compared to male group.

05 CONCLUSION & DISCUSSION

DISCUSSION

- BlueBERT + Elastic Net model was superior compared to other models to predict SAE following the onset of AEs using the VAERS dataset with symptom, condition, age, and gender as input features.
- SHAP analysis highlighted the importance of terms such as 'pain', 'fever', 'rash', and 'headache' in predicting SAE, which aligns with clinical trial data.
- Certain ICD code groups (hypertension, diabetes, etc.) and older age groups were linked with higher odds of SAE.

LIMITATIONS

- VAERS data variable quality in reports, symptom description accuracy, and potential bias from post-SAE reporting.
 - → Subgroup analysis (R group with AE symptoms identified as highest odds ratio)
 - → Possible SAE information leakage in symptom text

CONCLUSION & FUTURE WORK

- This study enables the prediction of SAE progression at the onset of AEs, allowing for proactive patient care and intervention.
- Statistical analysis identified specific medical conditions, age groups, and gender as risk factors for SAE development, facilitating personalized care decisions.
- Further model refinement (parameters, different models) may improve prediction performance.
- Including additional features (co-administered vaccines, concomitant medications etc.) may provide a more comprehensive understanding.

THANK YOU!

REFERENCES

- 1. The Washington Post. (2023, May 17). Vaccine hesitancy. https://www.washingtonpost.com/opinions/2023/05/17/poll-vaccine-hesitancy-doctors/
- 2. Pharmacy Times. (n.d.). Survey identifies factors in herpes zoster vaccine hesitancy among older adults. https://www.pharmacytimes.com/view/survey-identifies-factors-in-herpes-zoster-vaccine-hesitancy-among-older-adults
- 3. Centers for Disease Control and Prevention. Shingles (Herpes Zoster). https://www.cdc.gov/shingles/about/index.html
- 4. ID Care. Shingles: All You Need to Know. https://idcare.com/blog/shingles-all-you-need-to-know/
- 5. Centers for Disease Control and Prevention. Vaccine Information Statement (VIS): Shingles (Recombinant) VIS. https://www.cdc.gov/vaccines/hcp/vis/vis-statements/shingles-recombinant.html
- 6. Szabo, A., & McMeekin, S. (2023). Herpes zoster and postherpetic neuralgia. Drugs & Aging, 39(11), 989–1001.
- 7. Wang, Q., et al., Willingness to Vaccinate Against Herpes Zoster and Its Associated Factors Across WHO Regions: Global Systematic Review and Meta-Analysis. JMIR Public Health Surveill, 2023.9: p. e43893.
- 8. Gavi, t.V.A. Vaccine hesitancy is one of the greatest threats to global health and the pandemic has made it worse. n.d. July 24, 2024]; Available from: https://www.gavi.org/vaccineswork/vaccine-hesitancy-one-greatest-threats-global-health-andpandemic-has-made-it-worse.
- 9. (FDA), F.a.D.A. Reporting Serious Problems to FDA. n.d. June 24, 2024]; Available from: https://www.fda.gov/safety/reporting-serious-problems-fda/what-serious-adverse-event.
- 10. (WHO), W.H.O., The conceptual framework for the international classification for patient safety. 2009.
- 11. Turing. Guide on Word Embeddings in NLP. July 24, 2024]; Available from: https://www.turing.com/kb/guide-on-word-embeddings-in-nlp.
- 12. Ramos, J.E. Using TF-IDF to Determine Word Relevance in Document Queries. 2003.
- 13. Devlin, J., Chang, M., Lee, K., & Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. in North American Chapter of the Association for Computational Linguistics (NAACL). 2019.
- 14. Peng, Y., S. Yan, and Z. Lu, Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets, in Conference on Empirical Methods in Natural Language Processing (EMNLP) 2019. 2019, Association for Computational Linguistics.
- 15. Tabaie, A., et al., Integrating structured and unstructured data for timely prediction of bloodstream infection among children. Pediatr Res, 2023. 93(4): p. 969-975.
- 16. scikit-learn. StandardScaler. July 24, 2024]; Available from: https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html.
- 17. Sperandei, S., *Understanding logistic regression analysis*. Biochemia Medica, 2014. 24(1): p. 12-18.
- 18. Moore, A.B., M., XGBoost, A Novel Explainable AI Technique, in the Prediction of Myocardial Infarction: A UK Biobank Cohort Study. Clinical Medicine Insights: Cardiology, 2022. 16.
- 19. Zou, H., Hastie, T., Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005. 67(2): p. 301-320.
- 20. Lundberg, S.M., & Lee, S. I. . SHAP (SHapley Additive exPlanations). 2017; Available from: https://github.com/shap/shap.
- 21. Murty, S., et al., Hierarchical Losses and New Resources for Fine-Grained Entity Typing and Linking, in Proceedings of the 2018 Annual Meeting of the Association for Computational Linguistics (ACL). p. 104-114.
- 22. Neumann, M., et al., SciSpacy: Fast and Robust Models for Biomedical Natural Language Processing, in Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019). 2019, Association for Computational Linguistics (ACL). p. 45-53.
- 23. ICD10Data.com, ICD-10-CM Codes.
- 24. (FDA), F.a.D.A. Shingrix Prescribing Information. 2023 [cited July 25, 2024; Available from: https://www.fda.gov/media/108597/download.