

TRAVAUX DIRIGÉS Nº2 DE SIGNAUX PHYSIQUES

Exercice 1: Etude d'un circuit RC avec deux sources

On considère le circuit électrique de la figure ci-dessous. A l'instant t=0 on ferme l'interrupteur K.

1) Sans résoudre d'équation différentielle, déterminer les comportements asymptotiques suivant :

$$\begin{array}{lll} i(0^-) \;,\; i_1(0^-) \;,\; i_2(0^-) \; \mbox{et} \;\; u_c(0^-) \; \mbox{à l'instant} \; t = 0^- \\ i(0^+) \;,\; i_1(0^+) \;,\; i_2(0^+) \; \mbox{et} \;\; u_c(0^+) \; \mbox{à l'instant} \; t = 0^+ \\ i(\infty) \;,\; i_1(\infty) \;,\; i_2(\infty) \;\; \mbox{et} \;\; u_c(\infty) \; \mbox{à l'instant} \; t \to \infty \end{array}$$

- 2) Etablir l'équation différentielle vérifiée par $u_c(t)$, en déduire $u_c(t)$
- 3) Sans calcul, donner les expressions de $i_1(t)$, $i_2(t)$ et i(t).

Exercice 2

Les grandeurs i (intensité) et u (tension) sont-elles continues en cas d'existence de discontinuité dans un circuit (par exemple : ouverture ou fermeture d'un interrupteur). Justifier. Pour le circuit résistif suivant où l'on ferme l'interrupteur en t=0 alors que les condensateurs sont déchargés.

- Déterminer les six grandeurs (intensités et tensions sur la figure) en $t = 0^+$. Justifier
- Déterminer les six grandeurs (intensités et tensions sur la figure) en $t = \infty$. Justifier
- Donner l'expression de $(du/dt)_{t=0}$ + et $(di_L/dt)_{t=0}$ +. Ces dérivées sont nécessaires pour la recherche des conditions initiales.

Exercice 3 : Circuit LC série

On considère un circuit LC série avec un interrupteur ouvert. Le condensateur est initialement chargée $u_C(t < t)$

- 0) = U_0 et on ferme le circuit à l'instant t = 0.
- 1. Faire un schéma du circuit et positionner les grandeurs pertinentes.
- 2. Établir l'équation différentielle vérifiée par $u_{\mathcal{C}}$ et la résoudre étant données les conditions initiales.
- 3. Que vaut alors le courant i(t) dans le circuit ? La tension $u_L(t)$ aux bornes de la bobine ?
- 4. Effectuer un bilan de puissance. Comment évoluent les différents signes lors d'une période ?
- 5. Tracer le portrait de phase de u_c .

Exercice 4: Recherche de régime permanent

Déterminer la tension aux bornes de chaque condensateur ou le courant circulant dans chaque bobine lorsque le régime permanent est atteint.

Exercice 5: Résistance de fuite d'un condensateur

On modélise un condensateur réel par l'association en parallèle d'une capacité idéale C avec une résistance de fuite R_f . À l'aide d'un voltmètre électronique parfait (de résistance interne infinie), on mesure la tension aux bornes du condensateur, ce dernier ayant été préalablement chargé sous une tension E à l'aide d'une source idéale de tension. Au bout d'un temps T, on constate que la tension E' indiquée par le voltmètre est inférieure à la tension initiale.

- 1. Comment expliquer ces observations? Proposer un circuit électrique modèle.
- 2. Donner l'expression de R_f en fonction de C, E, E' et T.

Exercice 6 : Bilan d'énergie : échange entre deux condensateurs

A l'origine des dates (t = 0), le condensateur de capacité de capacité C_1 porte la charge Q_1 , celui de capacité C_2 porte la charge Q_2 . On ferme alors l'interrupteur.

- 1. La charge totale étant conservée, trouver une relation liant $q_1(t)$ (charge portée par C_1 à l'instant t), $q_2(t)$ (portée par C_2 au même instant t), Q_1 et Q_2 (charges initiales).
- 2. Établir les relations littérales de $q_1(t)$ et $q_2(t)$. Un choix pour l'orientation du courant sera fait, on portera ainsi attention au sens des tensions définies.
- 3. Établir la relation littérale de l'intensité *i* traversant le résistor R.
- 4. Calculer de manière directe l'énergie dissipée par effet Joule dans le résistor.
- 5. Retrouver ce résultat par un bilan des énergies emmagasinées par les condensateurs.

Exercice 7: Couplage capacitif entre deux oscillateurs

Deux circuits LC identiques sont branchés en parallèle sur un condensateur de capacité C'. Le condensateur de gauche (1) est initialement chargé alors que celui de droite (2) est vide : $u_{C,1}(t < 0) = U_0$ et $u_{C,2}(t < 0) = 0$. À l'instant initial, on relie ces deux circuits et le condensateur (1) se décharge.

- 1. Établir les équations différentielles couplées vérifiées par $i_1(t)$ et $i_2(t)$.
- 2. Les découpler en introduisant $\sigma = i_1 + i_2$ et $\delta = i_1 i_2$.

On cherche des solutions de la forme sinusoïdale du type $i_k = I_k \cos(\omega t + \varphi_k)$.

- 3. Déterminer les deux pulsations possibles, notées ω_1 et ω_2 .
- 4. Comparer les courants i_1 et i_2 lorsque $\omega = \omega_1$ ou $\omega = \omega_2$.

Exercice 8 : Régime transitoire d'un circuit RLC parallèle

Soit un circuit constitué de l'association en série d'une source idéale de tension E, d'une résistance R, d'interrupteur K et de l'association en parallèle d'une résistance r, d'une inductance L et d'une capacité C. Initialement l'interrupteur est ouvert, la capacité est déchargée et tous les courants sont nuls. On ferme l'interrupteur K à l'instant t=0. On notera i l'intensité du courant dans R, i_1 dans L, i_2 dans C et i_3 dans r ainsi que u la tension aux bornes de r (ou de C ou de L).

- 1. Déterminer en les justifiant, les valeurs de u, i_1 , i_2 et i_3 juste après la fermeture de l'interrupteur K.
- 2. Même question lorsque le régime permanent est complètement établi.

On s'intéresse à la réponse à un échelon de tension.

- 3. Etablir l'équation différentielle vérifiée par i_3 pour tout t > 0.
- 4. L'écrire sous la forme :

$$\frac{d^2 i_3}{dt^2} + 2\lambda \omega_0 \frac{di_3}{dt} + \omega_0^2 i_3 = 0$$

On donnera les expressions de ω_0 et λ en fonction de r, R, L et C.

- 5. Quelle relation vérifient r, R, L et C pour que l'on observe un régime pseudo-périodique ? Que caractérise λ ?
- 6. Définir la pseudo-pulsation ω et la pseudo-période T et en donner les expressions en fonction de r, R, L et C.
- 7. Déterminer l'expression de i_3 en fonction du temps. On justifiera la détermination des constantes.
- 8. Déterminer le temps nécessaire pour que le régime permanent soit établi dans le circuit avec une précision d'un millième (temps de réponse à 99,9%).

Exercice 9 : Étude d'un portrait de phase

On considère un circuit constitué d'une bobine idéale d'inductance L et d'un condensateur réel de capacité \mathcal{C} et de résistance de fuite R_f . A l'instant t=0, le condensateur possède une charge q_0 et on ferme l'interrupteur K. Données : C=5 nF

- 1. Établir l'équation différentielle dont u_c est solution et déterminer les expressions de la pulsation propre et du facteur de qualité en fonction de R_f , L et C.
- 2. Déterminer l'expression de u_c (0) et \dot{u}_c (0) en fonction de q_0, R_f et C.

En enregistrant la tension aux bornes du condensateur, on construit le portrait de phase de l'oscillateur.

1. Déterminer le régime de l'oscillateur.

- 2. Déterminer par lecture graphique :
- (a) la tension initiale aux bornes du condensateur et l'intensité du courant traversant le condensateur en t_0 .
- (b) la tension finale aux bornes du condensateur et l'intensité finale du courant dans le circuit. Commenter.
- (c) le décrément logarithmique δ .
- 3. Déduire de toutes ces mesures les valeurs des composants R_f , L ainsi que la charge initiale q_0 du condensateur.

Exercice 10: Circuits et courbes inconnus

Vous disposez des quatre montages et des deux courbes expérimentales ci-dessous. Toutes les expériences ont été réalisées avec une résistance R = 1, $0 \text{ k}\Omega$.

Tous les interrupteurs s'ouvrent ou se ferment à t = 0.

- 1. Identifier les montages correspondant, ainsi que les valeurs de E, L ou C utilisées.
- 2. Tracer l'allure de u(t) pour les autres montages.

Circuit a

Circuit b

Circuit c

Circuit d

Courbe 1

Courbe 2