Communications Node

December, 15th 2016

Andrei Polzounov

Overview

The communication node program allows seeing other communication nodes running on the same local area network. It uses UDP multicast messages (https://tools.ietf.org/html/rfc1112) for one-to-many communication and TCP messages for one-to-one communication. The implementation is done in C++11 with boost::asio as the main networking library. The implementation is primarily Linux based, but has also been tested on Windows. It allows for an arbitrary number of CNs and multiple CNs can run on the same machine.

Program Design

Figure 1: Class diagram

The main design consists of six classes:

1. AsyncUdpMulticastSendingService – class that is responsible for sending the information about this communication node to others. The information is encoded as a JSON string in the following format:

```
{
    "SessionId": "e89a00ca-fa42-432c-8ce3-8149ea935b25",
    "TcpServerPort": "54829"
}
```

The session ID is a unique identifier attributed to each CN, the TCP server port is a port assigned by the OS to this CN.

- 2. AsyncUdpMulticastListenService other nodes are responsible for listening to incoming multicast, parsing the JSON and storing the session IDs and ports into a shared list.
- 3. CommNodeList this is a shared directory for different threads to be able to add new CNs, delete non-responding CNs and finally to present them to the user.
- 4. AsyncTcpListenServer this is a server with the TcpServerPort number referenced above. This asynchronous server responds to queries from other nodes.
- 5. SyncTcpNodeCommsClient this is the only synchronous communications class. It uses blocking calls to try to measure the round-trip-time for each query and response.
- 6. CommNodeUi this class presents the information to the user. In Linux this relies on neurses and in Windows uses a system("clr") to present a continuous table.

Figure 2: Windows implementation running several comm nodes

Figure 3: Linux implementation running several comm nodes

Build instructions

Linux

In a Linux environment – make sure that git, boost, cmake and ncurses are installed. In Ubuntu:

```
sudo apt-get install libboost-all-dev libncurses5-dev
```

From the main directory - move to the build directory and then run cmake in it. The CMakeLists.txt script will automatically git-clone and build googletest as part of the build process.

```
cd build
cmake ..
make
# run the program
./commsnode --help
```

Windows

Dependencies:

1) MinGW compiler suite with libboost: https://nuwen.net/mingw.html unzip it to C:\MinGW and ensure that "C:\MinGW\bin;C:\MinGW\git\bin" is part of Windows %PATH%

The build can be done from the main directory with a simple Makefile – an example is provided in Makefile.windows

```
copy Makefile.windows Makefile
make
cd build
# run the program
Commsnode.exe --help
```

Unit Tests

The unit tests will be built automatically on Linux. The cmake script will clone the latest <u>googletest</u> master from GitHub and build it in place. Following that the unit tests will be built and can be run with

```
./test_commsnode
```

The googletest cmake script is based on the following GitHub repository - https://github.com/snikulov/google-test-examples.

Networking Tools

In the tools directory two debugging tools are provided rx_udp and rx_tcp. They can be built using the Makefile.linux and Makefile.windows examples in the directory. These tools can be used to analyze the TCP and UDP messages being sent across the network.

Comm Node 8bd8c82f-e462, multicast: 239.255.0.1:30001					
34 communication nodes were detected on the network					
Session ID	TCP <ip>::<port></port></ip>	Time Alive (s)	Round Trip (ms)	To Node (ms)	From Node (ms)
00fbdb30-2175 069d479b-15ac 0c374fb3-b97d 0e3510c5-37e3 11055857-dbf0 167e4eb2-e838 16fcdb1d-b8bb 22519b1d-84e8 2382b008-5385 29ec652f-a265 2b5fd30b-dfb1 2de400b1-d105 39e8a325-9922 43a096f8-8811 4524b059-f1e0 5800c754-27a7 5d142a0d-1f5e 7026fb93-8da0 70fee5bc-2c04 774e2250-92e1 8bd8c82f-e462 8cef60c4-3cbb 900ad5b9-21cb 9306f128-b7c4 9aecfd7a-207d a1946990-37f0	10.217.132.174:54960 10.217.132.174:38080 10.217.132.174:37445 10.217.132.174:39222 10.217.132.174:41349 10.217.132.174:50347 10.217.132.174:50347 10.217.132.174:50347 10.217.132.174:34790 10.217.132.174:337964 10.217.132.174:49521 10.217.132.174:49521 10.217.132.174:49521 10.217.132.174:40795 10.217.132.174:40795 10.217.132.174:56935 10.217.132.174:51105 10.217.132.174:56935 10.217.132.174:54347 10.217.132.174:54347 10.217.132.174:40233 10.217.132.174:40233 10.217.132.174:40233 10.217.132.174:40233 10.217.132.174:40233 10.217.132.174:40233	197.7 199.5 186 147 203.3 205.3 191.8 140.2 179.9 209.3 152.9 190.1 172.8 193.9 150.7 168.9 188.1 207.3 182.5 154.9 231.4 156.7 201.5 158.6 171	0.278 0.278 0.215 0.18 0.192 0.206 0.186 0.2 0.165 0.146 0.198 0.174 0.195 0.186 0.203 0.271 0.188 0.214 0.157 0.156 0.203 0.209 0.202 0.203	0.153 0.154 0.112 0.129 0.138 0.122 0.134 0.103 0.093 0.111 0.137 0.111 0.137 0.194 0.115 0.144 0.104 0.102 0.134 0.139 0.134 0.133 0.134 0.133 0.134	0.125 0.061 0.068 0.063 0.068 0.066 0.062 0.053 0.068 0.065 0.075 0.065 0.077 0.073 0.073 0.071 0.053 0.068 0.069 0.068 0.069
a44ef506-72e6 c34c4ebe-d77f d4c5ed44-9e2d d7f7225e-fc00	10.217.132.174:33704 10.217.132.174:54351 10.217.132.174:36120	195.8 148.8 167.1	0.204 0.273 0.195	0.134 0.216 0.121	0.07 0.057 0.074
edd9d905-87a0 ee708fbb-33bc f138dfe7-6a0f fe06c608-6fef	10.217.132.174:46330 10.217.132.174:48117 10.217.132.174:58919	174.7 177.7 164.9	0.203 0.212	0.134 0.143 0.139	0.069 0.069 0.068

Figure 4: Many nodes running on Linux

Discussion

Boost::asio is a very nice library for network programming. It made it very easy to set up asynchronous listening services. Asynchronisity is important for avoiding deadlocks. In fact the only synchronous that is used in this implementation is the SyncTcpNodeCommsClient, because it needs to measure round-trip-

time between querying and receiving a response from the other nodes. This is the main weak point of the program – because if the Client hangs the UI will not be updated until TCP times out.

The other main drawback of using this library for a small project is that I did not have enough time to properly wrap or encapsulate the network I/O calls. Doing so would have allowed me to create mock classes (googlemock) and I could have written unit tests for all of the network facing services. As it is only the classes that are completely internal to this application have unit tests.

Another drawback, is that while the round-trip-time is somewhat accurate (minus some time spent in the application layer), the estimated to and from times are relying on another CNs clock. This is problematic because the other clock might not be synced. Ideally this requires something like the IEEE 1588-2002 (Precision Time Protocol) to synchronize all of the clocks on the network.

Overall, it is a good solution given the time given – it does not require any manual settings changes (even though settings can be provided from the command line). It uses UDP multicast to broadcast the TCP ports to allow for a TCP connection and it can recover from non-responsive nodes. If I had more time I would have come up with a way to asynchronize the round-trip timing information and with a metric for measuring node connectivity.