

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

CIRCUITOS TRIFÁSICOS EQUILIBRADOS - MEDIDA DE POTÊNCIA COM 2 WATTÍMETROS

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Novembro / 2019

Sumário

1	Obj	jetivos	2							
2	Inti	rodução teórica	2							
	2.1	Carga em conexão em estrela	3							
	2.2	Carga em conexão em delta ou triângulo	4							
	2.3	Medição de potência pelo método dos 2 wattímetros	4							
3	\mathbf{Pre}	paração	5							
	3.1	Materiais e ferramentas	5							
	3.2	Montagem	6							
		3.2.1 Carga em estrela	6							
		3.2.2 Carga em triângulo	7							
4	Ana	álise sobre segurança	8							
5	Ana	álise teórica do circuito	9							
	5.1	Carga em estrela	9							
	5.2	Carga em delta	11							
6	Cál	culos, análise dos resultados e questões	13							
7	Simulação computacional									
	7.1	Carga em conexão estrela	17							
	7.2	Carga em conexão delta	19							
8	Cor	nclusões	21							

1 Objetivos

Verificar experimentalmente os conceitos teóricos sobre os métodos utilizados para medir a potência ativa trifásica das cargas. Além disso, comparar os resultados com os valores obtidos utilizando uma análise teórica.

2 Introdução teórica

As primeiras linhas de transmissão de energia elétrica, que surgiram no final do século XIX, destinavam-se exclusivamente ao suprimento do sistema de iluminação, pequenos motores e sistema de tração (railway) e operavam em corrente contínua a baixa magnitude de tensão. A geração e transmissão usando os mesmos níveis de tensão das diferentes cargas restringiu a distância entre a planta de geração e os consumidores e a tensão da geração em corrente contínua não podia ser facilmente aumentada para a transmissão a grandes distâncias [1].

Para realizar uma transmissão de energia elétrica a grandes distâncias era necessário um nível elevado de magnitude de tensão, e essa tecnologia de conversão para corrente contínua não era viável naquela época. Por isso, foi necessária a mudança da transmissão de corrente continua para corrente alternada, devido principalmente aos seguintes motivos:

- O desenvolvimento e uso dos transformadores, permitindo a transmissão a grandes distâncias usando altos níveis de tensão, reduzindo as perdas elétricas dos sistemas e a queda de tensão.
- A elevação/redução da magnitude de tensão é realizado com uma alta eficiência e a baixo custo através dos transformadores.
- Surgimento de geradores e motores em corrente alternada, construtivamente mais simples, eficientes e baratos que as máquinas em corrente contínua

Assim, a corrente alternada seria a melhor alternativa para a transmissão de energia elétrica à grandes distâncias. Além disso, introduz-se o conceito de gerador trifásico, ilustrado pela Figura 1, no qual três bobinas defasadas em 120° elétricos no espaço geram um conjunto de três tensões de mesmo valor máximo, defasadas de 120 graus elétricos no tempo.

Um gerador trifásico aproveita melhor o espaço físico, resultando em um gerador de tamanho reduzido e mais barato, comparado com os geradores monofásicos de igual potência, ademais são superiores aos motores monofásicos em rendimento, tamanho, fator de potência e capacidade de sobrecarga. Um sistema monofásico

precisa de dois condutores; e um sistema trifásico (perfeitamente balanceado) precisa de três condutores, porém conduz três vezes mais potência. Na prática, devido a pequenos desequilíbrios inevitáveis, os sistemas trifásicos contam com um quarto condutor, o neutro.

É possivel conectar as bobinas de gerador trifásicos em configuração estrela ou delta, assim como a carga em *Conexão em estrela* (2.1) ou *Conexão em delta/triângulo* (2.2).

Figura 1: Geração de tensão alternada trifásica.

2.1 Carga em conexão em estrela

A carga em configuração estrela é caracterizada por uma tensão fase-neutro entre seus terminais e corrente de linha igual à corrente de fase $(I_L = I_F)$. Ademais, determina-se a tensão fase-fase ou de linha pela relação descrita na Figura 2 [2].

Figura 2: Relação entre tensão de linha e fase numa carga em estrela.

2.2 Carga em conexão em delta ou triângulo

Já para a carga na configuração delta, ou triângulo, em seus terminais há uma tensão de linha igual a tensão de fase [2]. Nesse caso, a relação entre linha e fase ocorre para a corrente, conforme descrito na Figura 3.

Figura 3: Relação entre corrente de linha e fase numa carga em delta.

2.3 Medição de potência pelo método dos 2 wattímetros

A medição de potência por meio de dois wattímetros analógicos possui o esquema de ligação mostrado na Figura 4. A facilidade deste método advém da possibilidade de obter potências ativas e reativas a partir de um recurso menos sofisticado quando comparado com o medidor *Kron*.

Figura 4: Esquema de ligação para medição de potência com 2 wattímetros.

Tem-se que para uma fase ABC, $W_A = W_2$ e $W_B = W_1$, uma vez que é usada a convenção das Equações (5) e (6).

$$W_1 = V_L \times I_L \times \cos(\theta - 30^\circ) \tag{1}$$

$$W_2 = V_L \times I_L \times \cos(\theta + 30^\circ) \tag{2}$$

Assim, obtém-se as potências totais reativa e ativa, a partir da medição dos wattímetros, como observa-se em (3) e (4). Consequentemente é possível calcular outros parâmetros como defasagem tensão-corrente ou fator de potência, do que se percebe a facilidade desse método na prática.

$$P_{3\phi} = W_1 + W_2 \tag{3}$$

$$Q_{3\phi} = \sqrt{3}(W_1 - W_2) \tag{4}$$

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 Amperímetro analógico AC: Instrumento utilizado para acompanhar visualmente o aumento da corrente.
- 6 **Reatores de 160 mH:** Foram utilizados 3, para compor a carga do circuito trifásico. Sendo L = 160mH e $R_L = 3,8\Omega$. Pode haver pequena variação na indutância conforme a disponibilidade do dispositivo.
- 7 **Resistores de** 50Ω : Foram utilizados 3, para compor a carga do circuito trifásico.

8 - Capacitores de 45,9 μF : Foram utilizados 3, para compor a carga do circuito trifásico. Sendo $C=45,9\mu F$.

3.2 Montagem

3.2.1 Carga em estrela

Efetue a montagem indicada na Figura 1 abaixo, alimentando os pontos **a b c** n através de uma fonte alternada trifásica em seqüência de fases **abc** (ou **direta**), aplicando uma tensão entre linhas V_L igual a 100V, em frequência de 60 Hz. Os parâmetros da carga são: $R = 50\Omega$; $R_L = 3.8\Omega$; L = 160mH. Na Figura 5, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_L representa um amperímetro conectado para medir a corrente de linha (igual a de fase); W_i representa um wattímetro analógico conectado para medir a potência ativa da carga. Os valores dos instrumentos devem ser anotados na Tabela 1.

Utilize os medidores digitais Kron para medida de corrente e tensão ($TL = 0048 - 3\phi$ sem Neutro). Além disso, compare os valores das potências entre Kron e os wattímetros analógicos. Atente-se a escala do wattímetro (corrente e tensão).

Figura 5: Ligação em estrela em sequência de fases abc.

Observa-se pelo desenho que não é possível obter a tensão e corrente de todas as fases de forma simultânea, sendo necessária a mudança dos medidores V_L e V_F para a obtenção dos demais valores. Para isso, utilizaremos o medidor trifásico eletrônico $Kron\ Mult$ -K (wattímetro), usando as entradas V_A , V_B , V_C , V_N para as medidas de tensão e I_A , I_B e I_C para as medidas de corrente, assim sendo, realizando as ligações apropriadas. Como o Kron não mede a corrente de neutro, então é necessário um amperímetro analógico A_C entre n e n'.

Tabela 1: Ligação em triângulo em sequência de fases abc.

$V_L(V)$	$I_L(A)$	$W_A(W)$	$W_B(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência
99,46	0,501			16,15		25,01		29,60		0,543
100,60	0,514	5,00	50,00	18,09	51,44	24,52	75,43	30,32	90,96	0,596
100,50	0,532			17,20		25,90		31,04		0,556

Agora, troque duas fases na saída do *varivolt* para obter a **sequência cba** da conexão acima. Anote os valores na Tabela 2.

Tabela 2: Ligação em triângulo em sequência de fases abc.

$V_L(V)$	$I_L(A)$	$W_A(W)$	$W_B(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência
100,70	0,499			15,92		24,30		29,13		0,550
100,50	0,540	50,00	5,00	17,17	51,42	26,50	75,30	31,68	91,42	0,544
100,90	0,523			18,33		24,50		30,61		0,599

3.2.2 Carga em triângulo

Efetue a montagem indicada na Figura 6 abaixo, alimentando os pontos **a b c** através de uma fonte alternada trifásica em sequência de fases **abc** (ou direta), aplicando uma tensão entre linhas $V_L = 80V$ (para que a corrente de linha não ultrapasse os 2A), em frequência de 60 Hz. Os parâmetros da carga são: $R = 50\Omega$; $C = 45, 9\mu F$. Na Figura 6, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_F representa um amperímetro conectado para medir a corrente de fase; A_L representa o amperímetro conectado para medir a corrente de linha; W_i representa um wattímetro analógico conectado para medir a potência ativa trifásica da carga. Os valores dos instrumentos devem ser anotados na Tabela 3.

Utilize os medidores digitais Kron para medida de corrente e tensão ($TL = 0048 - 3\phi$ sem Neutro). Além disso, compare os valores das potências entre Kron e os wattímetros analógicos. Atente-se a escala do wattímetro (corrente e tensão).

Figura 6: Ligação em estrela em sequência de fases abc.

Tabela 3: Ligação em triângulo em seqüência de fases abc.

$V_L(V)$	$I_L(A)$	$I_{A_F}(A)$	$W_A(W)$	$W_B(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência
79,53	1,782			25,00	55,44	164,68	61,57	185,39	81,65		0,673
80,36	1,777	0,5	132,50		54,24		62,50		81,76	245,23	0,660
80,59	1,787				55,00		61,32		81,82		0,667

Agora, troque duas fases na saída do *varivolt* para obter a **sequência cba** da conexão acima. Anote os valores na Tabela 4.

Tabela 4: Ligação em triângulo em seqüência de fases cba.

$V_L(V)$	$I_L(A)$	$I_{A_F}(A)$	$W_A(W)$	$W_B(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência
80,18	1,789				55,28		62,28		82,93		0,665
80,45	1,776	0,5	30,00	120,00	55,12	165,96	61,55	185,52	82,91	248,51	0,667
80,60	1,791				55,56		61,69		82,67		0,667

4 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [4].

É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziu-se riscos de curtos-circuitos ou sobrecarga na rede.

5 Análise teórica do circuito

5.1 Carga em estrela

Correspondente à primeira montagem mostratada na Figura 5 tem o circuito da Figura 7, o qual também será utilizado na simulação.

Figura 7: Circuito referente à montagem em estrela.

Do circuito esquemático Figura 7, considera-se primeiro sequência de fases positiva (abc), com V_{AB} na referência tem-se os resultados mostrados a seguir.

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = 100V \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$V_L = V_F \sqrt{3} \ \angle 30^\circ$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = 57,74V \ \angle -30^\circ \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$Z_Y = 53, 8 + j \cdot 1,04 = 82,53 \angle 49,31^{\circ}$$

$$I_{AN} = \frac{V_{AN}}{Z_Y} = 0,7A \angle -79,31^{\circ}$$

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = 0,7A \angle -79,31^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{split} \theta_Z &= 49, 31^\circ \\ fp &= \cos \theta_Z = \cos \left(49, 31^\circ\right) = 0,652 \\ W_B &= W_1 = 100 \cdot 0, 7 \cdot \cos \left(49, 31^\circ - 30^\circ\right) = 66,06W \\ W_A &= W_2 = 100 \cdot 0, 7 \cdot \cos \left(49, 31^\circ + 30^\circ\right) = 12,98W \\ P_T &= W_1 + W_2 = 66,06 + 12,98 = 79,04W \\ Q_T &= \sqrt{3} \; (W_1 - W_2) = \sqrt{3} \; (66,06 - 12,98) = 91,94 \; [VAr] \\ S_T &= P_T + j \; Q_T = 79,04 + j \; 91,94 = 121,2 \; \angle 49,31 \; [VA] \end{split}$$

Para inversão de fase o cálculo é semelhante, havendo somente a permuta na medição de W_A e W_B . Ademais, ccomo no experimento foi trocado somente a alimentação nas fases A e B, o wattímetro A continuou medindo W_2 de acordo com a convenção adotada, pois estará sobre a tensão V_{CB} . Abaixo, nas Tabelas 5, 6 e 7, é visto um comparativo das informações obtidas.

Tabela 5: Comparação das correntes na configuração estrela ABC.

Fases	I_L (A) experimental	I_L (A) teórico	Erro (%)
A	0,501		-28,43
В	0,504	0,7	-26,57
С	0,532		-24,00

Tabela 6: Comparativo de potências experimentais (Kron) e teórico, na configuração estrela ABC.

	P_T (W)	Q_T (VAr)	S_T (VA)	FP
Experimento	51,44	75,93	90,96	0,565
Teórico	79,04	91,94	121,20	0,652
Erro (%)	-34,92	-17,41	-24,95	-13,34

Tabela 7: Comparativo entre potências experimentais a partir medições nos wattímetros e experimental no *Kron* e teórico, na configuração estrela ABC.

	P_T (W)	Q_T (VAr)
Experimento	55,00	77,94
$com W_1 e W_2$	00,00	11,54
Erro (%)	-30,41	-15,23
Teórico	-30,41	-10,20
Erro (%)	6,92	2,65
Kron	0,92	2,00

Observe da Tabela 5 que o erro é elevado entre o valor teórico encontrado e o obtido experimentalmente, o que pode ter sido ocasionado por variação no valor da impedância nos componentes. Desconsidera-se um sistema desequilibrado por perda de contato em um dos conectores, uma vez que a corrente foi relativamente regular em cada fase. Entretanto, o incidente não demostrou muitas mudanças a nível de entendimento do experimento com dois wattímetros, dado que as potências obtidas a partir da medição nos wattímetros pode ser comparada com as lidas no medidor *Kron*.

Como mostra a Tabela 7 é pequeno o erro das medições com o wattímetro analógico, quando comparadas às obtidas no medidor *Kron*, o que demonstra a confiabilidade nos valores obtidos, mesmo em condições diferentes das ideais. Esse erro deve-se principalmente ao fato do instrumento analógico aumentar a chance de o erro humano durante observação da grandeza.

5.2 Carga em delta

Correspondente à primeira montagem mostrada na Figura 6 tem o circuito da Figura 8, o qual também será utilizado na simulação.

Figura 8: Circuito referente à montagem em delta.

Do circuito esquemático Figura 8, considera-se primeiro sequência de fases positiva (abc), com V_{AB} na referência tem-se os resultados mostrados a seguir.

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = 80V \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$V_L = V_F \sqrt{3} \ \angle 30^\circ$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = 46,18V \ \angle -30^\circ \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$Z_\Delta = 50 - j \cdot 57,79 = 76,42 \ \angle -49,13^\circ \ [\Omega]$$

$$I_{AB} = \frac{V_{AB}}{Z_\Delta} = 1,046A \ \angle 49,13^\circ$$

$$I_{AN} = \sqrt{3} \cdot I_{AB} \ \angle -30^\circ$$

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = 1,812A \ \angle 19,13^\circ \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\theta_Z = -49,13^\circ$$

$$fp = \cos \theta_Z = \cos (-49,13^\circ) = 0,654$$

$$W_A = W_2 = 80 \cdot 1,812 \cdot \cos (-49,13^\circ + 30^\circ) = 136,95W$$

$$W_B = W_1 = 80 \cdot 1,812 \cdot \cos (-49,31^\circ - 30^\circ) = 27,33W$$

$$P_T = W_1 + W_2 = 27,33 + 136,95 = 164,28W$$

$$Q_T = \sqrt{3} \ (W_1 - W_2) = \sqrt{3} \ (27,33 - 136,95) = -189,87 \ [VAr]$$

$$S_T = P_T + j \ Q_T = 164,28 - j \ 189,87 = 251,07 \ \angle -49,13 \ [VA]$$

Abaixo, as Tabelas 8, 9 e 10 mostram um comparativo entre os resultados obtidos experimentalmente, no medidor Kron e nos waatímetros analógicos, e na teoria, também com o cálculo de W_1 e W_2 , mas desprezando incertezas na obtenção das medidas ou condições dos componentes e equipamentos utilizados. Percebese que o erro entre as 3 possibilidades de cálculo das potências ativas e reativas é pequeno, o que indica que o experimento foi realizado com sucesso e foi somente interferido, provavelmente, por erro humano na leitura do dispositivo analógico.

A mesma análise ocorre para a sequência de fases CBA, havendo somente permuta na medição dos wattímetros W_A e W_B . Devido à proximidade dos valores obtidos, conclui-se também que o erro foi mínimo.

Tabela 8: Comparação das correntes na configuração delta ABC.

Fases	I_L (A) experimental	I_L (A) teórico	Erro (%)
A	1,782		-1,65
В	1,777	1,812	-1,93
С	1,787		-1,38

Tabela 9: Comparativo de potências experimentais (Kron) e teórico, na configuração delta ABC.

	P_T (W)	Q_T (VAr)	S_T (VA)	FP
Experimento	164,68	-185,39	245,23	0,666
Teórico	164,28	-189,87	251,07	0,654
Erro (%)	0,24	-2,36	-2,32	1,83

Tabela 10: Comparativo entre potências experimentais a partir das medições nos wattímetros, e experimental no *Kron* e teórico

	P_T (W)	Q_T (VAr)
Experimento	157,50	-186,19
$com W_1 e W_2$,	,
Erro (%)	-4,13	-1,94
Teórico	1,10	1,01
Erro (%)	-4,36	0,43
Kron	-4,50	0,40

6 Cálculos, análise dos resultados e questões

1) Para os sistemas das Figuras 1 e 2, ao ser ligado, o que aconteceu com os wattímetros W_A e W_B quando a sequência de fases foi invertida? Algum deles marcou valor negativo? Explique. Encontre as potências usando as leituras.

Resposta. Quando a sequência de fases foi invertida, houve uma permuta entre as leituras dos wattímetros W_A e W_B , uma vez que o sistema é equilibrado, e, no caso deste experimento em especial, não foi marcado nenhum valor negativo. Daria negativo no caso em que o fator de potência $cos\theta < 0, 5$, conforme mostrado na Figura 9.

Figura 9: Curva das Relações de Potência no Método dos Dois Wattímetros [1].

Para o cálculo das potências utilizando-se as leituras dos wattímetros tem-se a teoria descrita na seção 2.3. Assim, para a sequência , $P_{3\phi} = W_1 + W_2 = 5,00 + 50,00 = 55W$ e $Q_{3\phi} = \sqrt{3} \; (W_1 - W_2) = \sqrt{3} \; (50 - 5) = 77,94VAr$ e como a potência aparente é dada por S = P + Qj, tem-se $S = 55 + 77,94 \cdot j \Rightarrow S_{3\phi} = 95,392\angle 54,79$ [VA]. O resultado visual teórico e experimental é visto na Figura 10. Note que o triângulo de potências é o mesmo para ambas as sequências, uma vez que a permuta das leitura nos wattímetros também permuta os valores a serem considerados como W_1 e W_2 (que agora será o wattímetro conectado a tensão V_{CB}).

Figura 10: Comparação das potências obtidas no caso estrela (a) teórico usando W_1 e W_2 do experimento, (b) **abc** experimental, (c) **cba** experimental.

2) Encontre o valor das leituras dos wattímetros usando as expressões analíticas.

Resposta. A leitura de W_1 e W_2 analiticamente são descritas pelas Equações (5) e (6), conforme na Seção 2.3.

$$W_1 = V_L \times I_L \times \cos(\theta - 30^\circ) \tag{5}$$

$$W_2 = V_L \times I_L \times \cos(\theta + 30^\circ) \tag{6}$$

Assim, analiticamente tem-se os resultados da Tabela 11 e na Tabela 12, um comparativo dos resultados obtidos. Recorda-se que para a sequência de fases ABC, W_A lê W_2 e W_B lê W_1 , e para CBA, W_A lê W_1 e W_2 lê W_2 .

Tabela 11: Cálculo de W_1 e W_2 analiticamente.

		$V_L(V)$	$I_L(A)$	$cos\theta$	θ (°)	$cos(\theta - 30^{\circ})$	$cos(\theta + 30^{\circ})$	$W_1(W)$	$W_2(W)$
Estrela	ABC (V_{AB})	99,46	0,501	0,543	57,11	0,890	0,050	44,35	2,51
Estreia	CBA (V_{CB})	100,70	0,499	0,550	56,63	0,894	0,059	44,92	2,95
Delta	ABC	79,53	1,782	0,673	47,70	0,953	0,213	135,06	30,19
Denta	CBA	80,18	1,789	0,665	48.32	0,949	0,202	136,13	28,98

Tabela 12: Comparação dos medições obtidas analiticamente nos wattímetros com às lidas e sujeitas à erro do olho humano.

		Experimento	Experimento	Erro (%)
		analítico	prático	E110 (70)
ABC	W_1 (W)	44,35	50	12,74
	W_2 (W)	2,51	5	99,20
СВА	W_1 (W)	44,92	50	11,3
	W_2 (W)	2,95	5	65,49

3) Mostre através de um diagrama fasorial que de acordo com as polaridades das bobinas de corrente e de potencial a leitura do wattímetro analógico é positiva para um ângulo $|\theta_Z| < 60^\circ$. Mostre que a leitura será negativa se $|\theta_Z| > 60^\circ$.

Resposta. Para uma carga em configuração estrela tem-se os diagramas fasoriais da Figura 11, no qual percebe-se que para uma defasagem de $|\theta_Z| < 60^{\circ}$, por exemplo, em (b), o vetor resultante dessa multiplicação terá componente sobre o eixo de I_A no mesmo sentido de I_A , o que indica uma leitura positiva no wattímetro. No entanto, fazendo a mesma análise para uma defasagem entre V_{AN} e I_A maior que 60°, perbece-se que haverá que a projeção de V_AB sobre I_A resulta em uma componente no sentido contrário de I_A , o que resulta numa leitura negativa.

Figura 11: Diagrama fasorial com polaridades das bobinas de corrente e de potencial lida pelo wattímetro conectado à (a) W_1 e (b) W_2 .

4) Mostre através de um diagrama fasorial que se a polaridade de uma das bobinas não for seguida a leitura terá um sinal oposto ao correto.

Resposta. No caso de conexão incorreta, a defasagem entre tensão V_{AN} e I_A se vê afetada em 180°. Portanto considere uma nova defasagem $\theta_{errado} = 180^{\circ} - \theta$, o que resulta em uma defasagem entre I_A e V_{AB} de $\theta_{errado} - 30^{\circ} = 180^{\circ} - \theta - 30^{\circ}$. Logo, como a projeção em V_{AB} se dá a partir do cosseno do ângulo entre eles e a função cosseno é periódica de período 360° o resultado lido no wattímetro se verá afetado somente em sinal. O mesmo ocorre para V_AB defasado em +180°.

Figura 12: Diagrama fasorial com polaridades invertida na (a) corrente e (b) tensão.

7 Simulação computacional

7.1 Carga em conexão estrela

Figura 13: Circuito da carga em conexão estrela.

A partir da esquema da Figura 13, no *Multsim*, foi possível confirmar os dados na teoria e gerar as formas de onda das tensões e correntes no circuito.

Figura 14: Formas de onda das tensões (a) de linha e (b) de fase; e (c) das correntes.

7.2 Carga em conexão delta

Figura 15: Circuito da carga em conexão delta.

Figura 16: Formas de onda das tensões (a) de fase; das correntes (c) de linha e de (b) fase.

8 Conclusões

Neste experimento investiga-se as acerca da medição de potências ativas e reativas a partir dois wattímetros analógicos. O método dos dois wattímetros facilita o cálculo quando não se dispõe de equipamentos mais sofisticados, além de ser uma otimização do método com 3 wattímetros, no qual é exigido mais em recursos. Para isso, é proposta a análise de dois circuitos equilibrados com configurações na carga distintas.

A principal contribuição deste experimento está no entendimento de como se dá a obtenção do valor lido no wattímetro. Para isso, foi de interesse recordar de experimentos anteriores que a corrente de linha ou de fase I_A , na configuração estrela, possui desafagem θ_Z com relação à V_{AN} , a qual ainda é defasada de -30° de V_{AB} . Essa análise foi ainda importante para verificar a mudança de sinal no caso de conexão incorreta, ou seja polaridade das bobinas invertidas.

Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Equilibrados", 2018.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson, 4^a Ed., 2000.
- [3] R. L. Boylestad, "Introdução À Análise de Circuitos", Pearson, 10^a Ed., 2004.
- [4] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.