COORDINATION IN SOCIAL NETWORKS

Chun-Ting Chen

December 31, 2014

MOTIVATION

An exogenous social network models restricted information

[Chwe] models incomplete information

[Wolitzky] models network-monitoring

MOTIVATION

 An exogenous social network models restricted information in repeated collective action

incomplete information network-monitoring

Will people solve the uncertainty and act collectively in networks eventually?

MOTIVATION

 An exogenous social network models restricted information in repeated collective action

incomplete information network-monitoring

- Will people solve the uncertainty and act collectively in networks eventually?
- This paper provides a partial folk theorem with incomplete information and network-monitoring.

Model: repeated game of private provision of public good

Players are allocated in a fixed and exogenous network.

Model: repeated game of private provision of public good

- Players are allocated in a fixed and exogenous network.
- Time line
 - Nature choose a type distribution
 - Types are then fixed over time
 - Players play a "public good provision game" infinitely repeatedly with common discount factor.

DECEMBER 31, 2014

Stage game: Features

Players of two types: Strategic type/Behavior type

Strategic type provide/not to provide

Behavior type **not to provide**

Stage game: Features

Players of two types: Strategic type/Behavior type

Strategic type **provide/not to provide**

Behavior type **not to provide**

• Strategic type's stage pay-off *u*:

u(own action, 1(sufficient provision of public good))

Network-information-structure:

own/neighbors' types is perfectly observable
own/neighbors' actions is perfectly observable

Goal: looking for an equilibrium, in which the global type distribution becomes commonly known in finite time.

Result: such equilibrium can be constructed under some assumptions.

DECEMBER 31 2014

- A fixed and finite network
 - n players; $N = \{1, ..., n\}$ is the set of players.
 - G_i is i's neighborhood; G_i is a subset of N such that $i \in G_i$.
 - $G = \{G_i\}_i$ is the network.
- Players of two types
 - Player *i*'s type: $\theta_i \in \Theta_i = \{S, B\}$.
 - Type-contingent action set: $A_S = \{\mathbf{p}, \mathbf{np}\}; A_B = \{\mathbf{np}\}$
 - Type profile: $\theta \in \Theta = \times_{i \in N} \Theta_i$

Stage game: k-threshold game

• Stage game payoff for S-type $i: u_{S_i}(a_{S_i}, a_{-\theta_i})$

$$u_{S_i}(a_{S_i}, a_{-\theta_i}) = 1$$
 if $a_{S_i} = \mathbf{p}$ and $\#\{j : a_{\theta_j} = \mathbf{p}\} \ge k$
 $u_{S_i}(a_{S_i}, a_{-\theta_i}) = -1$ if $a_{S_i} = \mathbf{p}$ and $\#\{j : a_{\theta_j} = \mathbf{p}\} < k$
 $u_{S_i}(a_{S_i}, a_{-\theta_i}) = 0$ if $a_{S_i} = \mathbf{np}$

Stage game: k-threshold game

• Stage game payoff for S-type $i: u_{S_i}(a_{S_i}, a_{-\theta_i})$

$$u_{S_i}(a_{S_i}, a_{-\theta_i}) = 1$$
 if $a_{S_i} = \mathbf{p}$ and $\#\{j : a_{\theta_j} = \mathbf{p}\} \ge k$
 $u_{S_i}(a_{S_i}, a_{-\theta_i}) = -1$ if $a_{S_i} = \mathbf{p}$ and $\#\{j : a_{\theta_j} = \mathbf{p}\} < k$
 $u_{S_i}(a_{S_i}, a_{-\theta_i}) = 0$ if $a_{S_i} = \mathbf{np}$

Ex-post efficient outcome:

relevant information	ex-post efficient outcome
At least <i>k</i> S-types exist	All S-types play p
Otherwise	All S-types play np

Assumptions:

- Network G is commonly known, connected, and undirected.
- A common prior: $\pi \in \Delta\Theta$
- A common discount factor: $\delta \in (0, 1)$.
- Players perfectly observe their neighbors' types.
- Players perfectly observe their neighbors' actions.

GOAL

Look for

An equilibrium, the ex-post efficient outcome repeats after some finite time
 T in the path (APEX).

GOAL

Look for

An equilibrium, the ex-post efficient outcome repeats after some finite time
 T in the path (APEX).

• The relevant information must be commonly known after T in the path.

GOAL

Look for

An equilibrium, the ex-post efficient outcome repeats after some finite time
 T in the path (APEX).

 $\downarrow \uparrow$ (with some additional assumptions)

• The relevant information must be commonly known after T in the path.

NOTATIONS

Notations:

- $\theta_{G_i} \in \Theta_{G_i}$: *i*'s private information about the state.
- $h_{G_i}^m \in H_{G_i}^m$: the history of actions observed by i up to period m.
- $\Theta_{G_i} \times H_{G_i}^m$: *i*'s observation up to time *m*.

NOTATIONS

Notations:

- $\theta_{G_i} \in \Theta_{G_i}$: *i*'s private information about the state.
- $h_{G_i}^m \in H_{G_i}^m$: the history of actions observed by i up to period m.
- $\Theta_{G_i} \times H_{G_i}^m$: *i*'s observation up to time *m*.
- h^m : a sequence of players' actions up to period m.
- h: an infinite sequence of players' actions.

APEX STRATEGY PATH

Notations:

- $\tau_i:\Theta_{G_i}\times\bigcup_{m=0}^{\infty}H_{G_i}^m\to A_{\theta_i},\ \emph{i's}$ strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile.
- h_{θ}^{τ} : a history generated by τ given θ .
- τ -path: $\{h_{\theta}^{\tau}\}_{\theta\in\Theta}$

DEFINITION

The τ -path is approaching ex-post efficient (APEX) \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions after T^{θ} in h_{θ}^{τ} repeats the static ex-post efficient outcome.

EQUILIBRIUM CONCEPT

Notations:

- $\beta_i^{\pi,\tau}(\theta|h_{G_i}^m)$: *i*'s belief for a θ at period m given π,τ .
- $\phi_{G_i}: H^m \to H^m_{G_i}$: the projection mapping a h^m to $h^m_{G_i}$.

DEFINITION

 $h_{G_i}^m$ is **reached** by τ iff there is a pair (θ, h^m) such that h^m is on the τ -path, and $h_{G_i}^m = \phi_{G_i}(h^m)$.

DECEMBER 31, 2014

EQUILIBRIUM CONCEPT

DEFINITION (WEAK SEQUENTIAL EQUILIBRIUM)

The pair (τ^*, β^*) ,

- τ^* : a strategy
- $\beta^* = \{\beta^{*,m}\}_m$: the belief system

$$\bullet \ \beta_i^{*,m} \colon \Theta_{G_i} \times H^m_{G_i} \to \Delta(\Theta \times H^m)$$

, is a weak sequential equilibrium iff

- $\beta_i^{*,m}(\theta|h_{G_i}^m) = \beta_i^{\pi,\tau^*}(\theta|h_{G_i}^m)$ whenever $h_{G_i}^m$ is reached by τ^* for all i.
- τ^* is sequential rational given β^* .

EQUILIBRIUM CONCEPT

DEFINITION (SEQUENTIAL EQUILIBRIUM)

A sequential equilibrium (τ^*, β^*) is a weak sequential equilibrium and β^* is fully consistent with τ^* [Krep and Wilson].

• Fully consistent: the β^* is "very very similar with" that belief system induced by a "very very little perturbed" strategies around τ^* .

APEX EQUILIBRIUM

- Finally, let the "(weak) APEX equilibrium" be the (weak) sequential equilibrium in which the equilibrium path is APEX.
- Does an APEX equilibrium exist?

OUTLINE

Outline

- An example for APEX equilibrium
- Result 1: APEX equilibrium for k = n.
- Result 2: weak APEX equilibrium for k < n.
 - Idea in equilibrium construction: introducing a "mailing game"
 - Sketch of proof.
- Extension
- Further works

LEADING EXAMPLE

• Let *G* =

• Let k = n = 3.

An APEX equilibrium can be constructed by

- At period 1
 - S-type 2: **p** in $\theta = (S, S, S)$;
 - S-type 2: **np** in $\theta \neq (S, S, S)$, and then **np** forever
 - S-type 1 (or S-type 3): **np**.
- After period 1
 - If S-type 2 chooses ${\bf p}$ in the last period, then S-type 1 (or S-type 3) chooses ${\bf p}$ forever;
 - If S-type 2 chooses np in the last period, then S-type 1 (or S-type 3) chooses np forever
- Any deviation ⇒ Choosing np forever

LEADING EXAMPLE

• Let *G* =

• Let k = n = 3.

An APEX equilibrium can be constructed by

- At period 1
 - S-type 2: **p** in $\theta = (S, S, S)$;
 - S-type 2: **np** in $\theta \neq (S, S, S)$, and then **np** forever(the state is revealed)
 - S-type 1 (or S-type 3): np.
- After period 1
 - If S-type 2 chooses ${\bf p}$ in the last period, then S-type 1 (or S-type 3) chooses ${\bf p}$ forever;
 - If S-type 2 chooses np in the last period, then S-type 1 (or S-type 3) chooses np forever (undetectable deviation).
- Any deviation ⇒ Choosing np forever(detectable deviation).

LEADING EXAMPLE

Main features in equilibrium construction

- Actions (in first period) serve as "messages" to reveal the relevant information.
- The "timing" (second period) to coordinate to ex-post efficient outcome is part of equilibrium strategy.
- Playing **np** forever serves as a "grim trigger".

Theorem (k = n)

In any network, if the prior has full support, then for repeated k = n Threshold game, an APEX equilibrium exists whenever δ is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play np forever.
 - No B-type neighbor ⇒ play p until np is observed, and then play np forever.

Theorem (k = n)

In any network, if the prior has full support, then for repeated k = n Threshold game, an APEX equilibrium exists whenever δ is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play np forever.
 - No B-type neighbor ⇒ play p until np is observed, and then play np forever.
- The "timing" to coordinate.
 - Finite network \Rightarrow there is a finite time T^{θ} such that players coordinate to ex-post efficient outcome.

Theorem (k = n)

In any network, if the prior has full support, then for repeated k = n Threshold game, an APEX equilibrium exists whenever δ is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play np forever.
 - No B-type neighbor ⇒ play p until np is observed, and then play np forever.
- The "timing" to coordinate.
 - Finite network \Rightarrow there is a finite time T^{θ} such that players coordinate to ex-post efficient outcome.
- Solution ⇒ play np forever.

THEOREM (k = n)

In any network, if the prior has full support, then for repeated k = n Threshold game, an APEX equilibrium exists whenever δ is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play np forever.
 - No B-type neighbor ⇒ play p until np is observed, and then play np forever.
- The "timing" to coordinate.
 - Finite network \Rightarrow there is a finite time T^{θ} such that players coordinate to ex-post efficient outcome.
- Any deviation ⇒ play np forever.
- 4 A fully consistent belief system can be chosen.

Theorem (k < n)

In any acyclic network, if π has full support on strong connectedness, then for repeated k < n Threshold game, a weak APEX equilibrium exists whenever δ is sufficiently high.

Main difficulties

- Using sequence of binary actions to reveal how many S-types out there.
- These sequences has to be incentive compatible.
- Explicitly calculating the timing to coordination may be intractable.
- Due to network-monitoring, group punishment is hard to be made.

Main idea

Consider a simple version of equilibrium construction in a "mailing game".

ACYCLIC NETWORK

DEFINITION (PATH IN A NETWORK)

A **path** from node i to node j is a sequence of nodes

$$\{i, m_1, m_2, ..., m_n, j\}$$
 without repetition

such that $i \in G_{m_1}, m_1 \in G_{m_2}, ..., m_n \in G_j$.

DEFINITION (ACYCLIC NETWORK (TREE))

A network is **acyclic** \Leftrightarrow the path from node i to node j is unique for all nodes i, j.

STRONG CONNECTEDNESS

DEFINITION

 θ has **strong connectedness** \Leftrightarrow for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

STRONG CONNECTEDNESS

DEFINITION

 θ has **strong connectedness** \Leftrightarrow for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

- An B-type will not reveal information.
- Without full support on strong connectedness, in general, an Apex equilibrium does not exist when pay-off (as a signal) is hidden or noisy.
- Ex. k = 2. G and $\theta =$

T-PERIOD MAILING GAME

- A fixed and commonly known number *T*, where *T* is big enough.
- A fixed and finite network
 - n players; $N = \{1, ..., n\}$ is the set of players.
 - G_i is *i*'s neighborhood; G_i is a subset of N such that $i \in G_i$.
 - $G = \{G_i\}_i$ is the network.
- Players of two types
 - Player *i*'s type: $\theta_i \in \Theta_i = \{S, B\}$.
 - Type profile: $\theta \in \Theta = \times_{i \in N} \Theta_i$.
 - A common prior over Θ : π

T-PERIOD MAILING GAME

- A "letter-writing technology" for player i:
 - A set of sentences: $W = \{n, p\}^L$, where L is a big number.
 - $M_i^1 = \{f | f : \Theta_{G_i} \to W\}; M_i^{t+1} = \{f | f \text{ is a selection from } \prod_{j \in G_i} M_j^t\} \text{ for } T \ge t \ge 1.$
- Type-contingent action set for player i:
 - $A_{S_i}^t = \{ \mathbf{send}, \mathbf{hold} \} \times M_i^t; A_{B_i}^t = \{ \mathbf{hold} \}, \text{ for } t \geq 0.$
- A "letter-sending technology" for player i:
 - If (**send**, m_i^t) is chosen, a fixed cost of ϵ incurs, where ϵ is small enough.
 - If (**send**, m_i^t) is chosen, m_i^t is observable by G_i .
 - If (**hold**, m_i^t) is chosen, no cost incurs and m_i^t is not observable by G_i .

Time line

- Nature choose θ according to π .
- Types are then fixed over time.
- At the first *T* periods, players play *T*-period Mailing game.
- At T + 1 period, players play a one-shot k-Threshold game.
- Game ends.

Example of a weak equilibrium construction:

- Let k = 5, T = 2.
- Suppose G and θ =

- Equilibrium path
 - At t = 1,

Example of a weak equilibrium construction:

- Let k = 5, T = 2.
- Suppose G and θ =

- Equilibrium path
 - At t = 2,

- Equilibrium path (conti.)
 - At t = 3, all S-types play **p**
- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation ⇒ others play hold and then np.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate to p.
- Off-path belief
 - ullet Detectable deviation \Rightarrow believing that all players outside neighborhood are B-types.

- Equilibrium path (conti.)
 - At t = 3, all S-types play **p**
- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation ⇒ others play hold and then np.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate to p.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

So, when ϵ is small enough and T is large enough, an weak equilibrium can be constructed when ϵ is independent from messages.

DECEMBER 31 2014

FREE RIDER PROBLEM

However, if ϵ is not independent from messages, then a Free Rider Problem may occur.

- Suppose $\epsilon \downarrow$ when announce more S-types in the 1st period.
- Let k = 5, T = 2.
- Suppose G and θ =

- S-type 4 and S-type 5 will deviate from truthfully announce(Free Rider Problem).
- Why? They will report more S-types to save costs.

Theorem (k < n)

In any acyclic network, if π has full support on strong connectedness, then for repeated k < n Threshold game, a weak APEX equilibrium exists whenever δ is sufficiently high.

Sketch of proof for Result 2:

- The Free Rider Problem can be solved in acyclic networks.
- An Apex equilibrium path can be constructed.
- APEX outcome gives maximum ex-post continuation pay-off after some T.
- Oetectable deviation ⇒ playing np forever (by off-path belief).
- $\bullet \quad \text{Undetectable deviation} \Rightarrow \text{facing a possibility of coordination failure}.$
- Any deviation will let APEX fail with positive probability.
- **9** Sufficiently high δ will impede deviation.

DECEMBER 31 2014

PAY-OFF AS A SIGNAL

- payoff is perfectly observed
 - Play **p** in the first period, then the relevant information revealed.
- payoff is noisy
 - With full support assumption, the existing equilibrium is APEX.
 - Ex:
 - $u_{s_i}(a, y)$ is dependent on a random variable $y \in \{y_1, y_2\}$
 - full support:

$$p_{1,\geq k} = \Pr(y = y_1 | \#\mathbf{p} \geq k) > 0$$

$$p_{1, < k} = \Pr(y = y_1 | \#\mathbf{p} < k) > 0$$

$$p_{2,\geq k} = \Pr(y = y_2 | \#\mathbf{p} \geq k) > 0$$

$$p_{2, < k} = \Pr(y = y_2 | \# \mathbf{p} < k) > 0$$

• S-type: the expected payoff on $\#\mathbf{p} \ge k$ strictly larger than the expected payoff on $\#\mathbf{p} < k$

FURTHER WORKS

- Cyclic networks.
- **a** A general model in which players can communicate only by their actions to learn the relevant information in finite time when $\delta < 1$, while the communication protocol itself is an equilibrium.
- Equilibrium selection.