Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method (LBM)

MASTER OF TECHNOLOGY

by

Devendra Chaudhari

(Roll No. 234103306)

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI- 781039, INDIA

Results of Lid driven cavity problem by Bounce back Approach:

Reynolds Number: 100

Mach No: 0.05

Fig.: Ux velocity variation

Fig: Uy velocity variation

Fig.: Stream function Variation

Fig.: vorticity Variation

Fig.: Density variation

Fig: ux velocity vs grid points

Fig: grid point vs uy velocity

Reynolds Number: 400

Mach no: 0.5

Fig.: Ux velocity variation

Fig: Uy velocity variation

Fig.: Stream function Variation

Fig.: vorticity Variation

Fig.: Density variation

Fig: ux velocity vs grid points

Fig: grid point vs uy velocity

Reynolds Number: 1000

Mach no: 0.6

Fig.: Ux velocity variation

Fig: Uy velocity variation

Fig.: Stream function Variation

Fig.: vorticity Variation

Fig.: Density variation

Fig: ux velocity vs grid points

Fig: grid point vs uy velocity

Fig: ux velocity comparison for Re 100, Re 400, Re 1000.

Fig: ux velocity comparison for Re 100, Re 400, Re 1000.

Results using NEBB Methd:

Reynold's Number: 100

Mach Number: 0.05

Fig.: Ux velocity variation

Fig.: Stream function Variation

Fig.: vorticity Variation

Fig: Uy velocity variation

Fig. density variation

Fig. Pressure variation

Fig: ux velocity vs grid points

Fig: grid point vs uy velocity

Reynold's Number: 400

Mach Number: 0.5

Fig.: Ux velocity variation

Fig: Uy velocity variation

Fig.: Stream function Variation

Fig.: vorticity Variation

Fig. density variation

Fig. Pressure variation

Fig: ux velocity vs grid points

Fig: grid point vs uy velocity

Fig: ux velocity comparison for Re 100, Re 400

Fig: uy velocity comparison for Re 100, Re 400,