EPL 231 Trie Data Structure Report.

ID: 1069731 Andreas Mourtouvanis

ID: 1069881 Antonios Kalattas

Trie Data Structure Visualisation

Random Word Generator

Our generator produces lengths that follow the **shifted Poisson** distribution.

Memory Usage

Trie Using RobinHood hashing

Instance of Element: 8 bytes (2x4 ints) + 12 byte header = 20 bytes. But because Java objects are aligned to an 8-byte boundary = **24 Bytes**

Instance of TrieNode: (5x4 int) + (2x4 byte references) + 12 byte header = 40 bytes

Total Memory Usage = N x [(Instance of Element + Instance of TrieNode) + (12 bytes + (arraySize x 4 bytes)] = N x [(40 bytes + 24 bytes) + (12 bytes + (size x 4 bytes))]

N: number of trie nodes.

Memory Usage Graphs

Dynamic Trie

Όπως φαίνεται οι μετρησεις με σταθερο μεγεθον τυχαιων λεξεον χρειαζονται παραπανω μνημη σε αντιθεση με αυτη που χρειαζονται οι τυχο μεγεθος λεξης. Συγκεκριμενα ο παραγομενος λογος λ ειναι λ= 1.00540279

Static Trie

Αντιστοιχα με το δυναμικο ακολουθι το ιδιο μοτιβο, δηλαδη το σταθερο μεγεθος χρειαζεται περισσοτερη μνημη. Ο παραγομενος λογος λ ειναι λ = 1.00502833

Κατι που παρατηρείτε εδω ειναι εντονη διαφορα μεταξυ των δυο ιδιαιτερα σε τεραστιο ογκο δεδομενον.

Static Vs Dynamic

Οπως φαινεται εδω πιο ξεκαθαρα οι στατικη εκδοση χρησιμοποιεί πολυ περισσοτερη μνημη σε αντιθεση με αυτη της δυναμικης. Αυτο συμβαινει λογο του αχρησιμοποιητου χορου που δεσμεύει ο στατικος. Δηλαδη για καθε κομβο που δημιουργειται ο στατικος δεσμευση 26 μεγεθος, ενω ο δυναμικος, λογο το hash - reHash εχει τη δυνατοτητα να δεσμεύει πολυ λιγοτερο χωρο και στην περιπτωση που τελικα το χρειαστη να εκτελεση reHashing.

Sources

Dictionary Source

University of Michigan's English Word List

https://websites.umich.edu/~jlawler/wordlist.html?utm_source =chatgpt.com

Distribution of random words

https://www.sciencedirect.com/science/article/pii/03783758869 01692?via%3Dihub

■ 1-s2.0-0378375886901692-main.pdf