3.3. Ideales y anillos cocientes

Sea $(R, +, \cdot)$ un anillo y sea $I \subseteq R$ un subanillo de $(R, +, \cdot)$. Se dice que I es **ideal** si para todos $r \in R$ y $a \in I$ se verifica que

$$r \cdot a \in I$$
 y $a \cdot r \in I$

- $I_0 = \{0_R\}$ se dice que es el ideal **trivial** de $(R, +, \cdot)$.
- Un ideal $I \subseteq R$ de $(R, +, \cdot)$ se dice que es **propio** si $I \neq R$.
- El mínimo ideal que contiene a $a_1, \dots, a_n \in R$ se denomina ideal **generado por** $\{a_1, \dots, a_n\}$, se nota (a_1, \dots, a_n) y es la intersección de todos los ideales que contienen a $\{a_1, \dots, a_n\} \subseteq R$.
- Un ideal $I \subseteq R$ de $(R, +, \cdot)$ se dice que es **principal** si existe $a \in R$ tal que I = (a).

Caracterización de ideal

Sea $(R, +, \cdot)$ un anillo. Un subconjunto no vacío $\emptyset \neq I \subseteq R$ es ideal de $(R, +, \cdot)$ si y sólo si

- 1. Para todos $a, b \in I$ se verifica que $a b \in I$
- 2. Para todos $a \in I$, $r \in R$ se verifica que $ar \in I$ y $ra \in I$

Propiedades

- 1. Sea $(R, +, \cdot)$ anillo commutativo con identidad $\Rightarrow (a_1, \dots, a_n) = \{r_1 a_1 + \dots + r_n a_n : r_k \in R\}$
- 2. Sea $(R, +, \cdot)$ anillo con identidad e $I \subseteq R$ un ideal que contiene a $1_R \in R \Rightarrow I = R$
- 3. Un cuerpo no tiene ideales propios no triviales.

Todo ideal de $(\mathbb{Z},+,\cdot)$ es principal

En el anillo de los enteros $(\mathbb{Z}, +, \cdot)$, todo ideal es principal.

Anillo cociente

Sea $(R, +, \cdot)$ un anillo y $\mathbb{I} \subseteq R$ subanillo de R. Se considera la relación de equivalencia módulo \mathbb{I} : $a, b \in R$, $a \sim_{\mathbb{I}} b \Leftrightarrow -a + b \in \mathbb{I}$. En el conjunto cociente $R/\mathbb{I} = \{[r]_{\mathbb{I}} = r + \mathbb{I} : r \in R\}$ se definen las operaciones de suma y producto módulo \mathbb{I} : $[r]_{\mathbb{I}} +_{\mathbb{I}} [s]_{\mathbb{I}} = [r + s]_{\mathbb{I}}$ y $[r]_{\mathbb{I}} \cdot_{\mathbb{I}} [s]_{\mathbb{I}} = [r s]_{\mathbb{I}}$. $(R/\mathbb{I}, +_{\mathbb{I}}, \cdot_{\mathbb{I}})$ es un anillo, denominado **anillo cociente** \Leftrightarrow \mathbb{I} es un ideal de $(R, +, \cdot)$.

Ideales maximales

Un ideal propio $M \subset R$ de un anillo conmutativo $(R, +, \cdot)$ se dice que es un **ideal maximal** si para todo ideal I tal que $M \subseteq I \subseteq R$ se verifica que M = I o I = R

Caracterización de ideales maximales en $(\mathbb{Z}, +, \cdot)$

Sea $p \in \mathbb{Z}^+$. En $(\mathbb{Z}, +, \cdot)$ el ideal $(p) = p\mathbb{Z}$ es maximal $\Leftrightarrow p$ es primo

Ideales maximales y cuerpos

Sea $(R, +, \cdot)$ un anillo conmutativo con identidad y sea M un ideal de R, entonces M es maximal en R si y sólo si $(R/M, +_M, \cdot_M)$ es cuerpo.

3.3.17. Problemas

- 1. En el anillo $(\mathbb{Z}, +, \cdot)$ estudiar si los siguientes conjuntos son ideales y en caso afirmativo encontrar un sólo generador $a \in \mathbb{N}$ para cada uno de ellos. $\{2n + 3m : n, m \in \mathbb{Z}\}, \{3n + 6m : n, m \in \mathbb{Z}\}, \{3n + 6m : n, m \in \mathbb{Z}\}, \{5n + 10m + 15s : n, m, s \in \mathbb{Z}\}, \{3 \cdot 9m : m \in \mathbb{Z}\}$
- 2. Sea $(R, +, \cdot)$ un anillo conmutativo. Para cada $a \in R$ se define $N(a) = \{r \in R : r \cdot a = 0_R\}$. Demostrar que N(a) es un ideal de R.
- 3. Demostrar que $S = \{a + 2bi : a, b \in \mathbb{Z}, i^2 = -1\}$ es un subanillo de $\mathbb{Z}[i]$ pero no es ideal.
- 4. En el cuerpo de $(\mathbb{Q}, +, \cdot)$ determinar el menor subanillo que contiene a $\frac{1}{2}$ y el menor subanillo que contiene $\frac{2}{3}$. ¿Es alguno de ellos ideal?
- 5. Sabiendo que si $(R, +_1, \cdot_1)$ y $(S, +_2, \cdot_2)$ son anillos con identidad, entonces los ideales del anillo producto directo $(R \times S, +, \cdot)$ son de la forma $A \times B$ siendo A ideal de R y B ideal de S, hallar todos los ideales de $\mathbb{Z}_2 \times \mathbb{Z}_2$ y de $\mathbb{Z} \times \mathbb{Z}_4$.
- 6. Estudiar si el conjunto cociente $2\mathbb{Z}/8\mathbb{Z}$ tiene estructura de anillo. En caso afirmativo dar las tablas de las operaciones y determinar si es un anillo conmutativo, con identidad, de división y si es cuerpo.
- 7. Encontrar todos los ideales I de $(\mathbb{Z}_{12}, +_{12}, \cdot_{12})$ y estudiar para cada uno de ellos si el anillo cociente $(\mathbb{Z}_{12}/I, +_{12_I}, \cdot_{12_I})$ es cuerpo.
- 8. Determinar el número de elementos que hay en cada uno de los siguientes anillos cocientes. Obtener la característica:
 - $a) \mathbb{Z}[i]/(3+i)$
 - b) $\mathbb{Z}[i]/(2+i)$
 - c) $\mathbb{Z}[i]/(2+2i)$
- 9. Encontrar todos los ideales maximales de los siguientes anillos: $(\mathbb{Z}_8, +_8, \cdot_8)$, $(\mathbb{Z}_{10}, +_{10}, \cdot_{10})$, $(\mathbb{Z}_{12}, +_{12}, \cdot_{12})$, $(\mathbb{Z}_{36}, +_{36}, \cdot_{36})$, $(\mathbb{Z}_n, +_n, \cdot_n)$.
- 10. Se considera el anillo $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$
 - a) Encontrar un subanillo que no sea ideal.
 - b) Demostrar que $M = \{(3x, y) : x, y \in \mathbb{Z}\}$ es un ideal maximal
 - c) Demostrar que el ideal $I = \{(a,0) : a \in \mathbb{Z}\}$ no es maximal
- 11. Obtener todos los ideales maximales del anillo $\mathbb{Z}_8 \times \mathbb{Z}_{30}$ con las operaciones usuales componente a componente. Para cada ideal M calculado indicar el número de elementos del anillo cociente $(R/M, +_M, \cdot_M)$ ¿Se puede concluir que hay cuerpos con un número de elementos que no sea un número primo?