

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Winter-Semester 2020/2021

Lineare Algebra I

Übungsblatt 13 15.02.21

Dieses Übungsblatt geht nicht mehr in die Bewertung ein.

Aufgabe 1

Es sei $\mathbb K$ ein Körper. Wir betrachten die lineare Abbildung

$$\partial_X \colon \mathbb{K}[X] \to \mathbb{K}[X]$$

$$\sum_{i=0}^n a_i X^i \mapsto \sum_{i=1}^n a_i i X^{i-1} = \sum_{i=0}^{n-1} a_{i+1} (i+1) X^i$$

- a) Es sei $U_n \subseteq \mathbb{K}[X]$ derjenige Untervektorraum, der aus den Polynomen bis zum Grad n besteht. Beweisen Sie, dass $\partial_x(U_n) \subseteq U_n$ für alle $n \in \mathbb{N}$ gilt.
- b) Bestimmen Sie eine geordnete Basis B von U_n und die Darstellungsmatrix von $\partial_x|_{U_n}^{U_n}$ bezüglich B, für alle $n \in \mathbb{N}$.
- c) Falls $\mathbb{K} = \mathbb{R}$, bestimmen Sie alle Eigenwerte und Eigenvektoren von $\partial_x|_{U_n}^{U_n}$ für alle $n \in \mathbb{N}$.
- d) Falls $\mathbb{K} = \mathbb{R}$, bestimmen Sie alle Eigenwerte und Eigenvektoren von ∂_x .
- e) Gelten Ihre Ergebnisse in Aufgabenteil c),d) auch für andere Körper?

Aufgabe 2 (Diagonalisieren einer Matrix)

Es sei die Matrix

$$A = \begin{pmatrix} -2 & 2 & -8 & -6 \\ 0 & 0 & -8 & -6 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & -6 & -5 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

gegeben.

- a) Bestimmen Sie Basen aller Eigenräume von A.
- b) Bestimmen Sie eine geordnete Basis $B = (b_1, \dots, b_4)$ von \mathbb{R}^4 aus Eigenvektoren von A und bestimmen Sie die Basiswechselmatrix $S = M_{E,B}(\mathrm{id}_{\mathbb{R}^4})$.
- c) Rechnen Sie nach, dass AS = SD gilt, wobei D die Diagonalmatrix mit Diagonaleinträgen $\lambda_1, \ldots \lambda_n$ ist. Dabei sei λ_i jeweils der Eigenwert zum Eigenvektor b_i für $i = 1, \ldots, 4$.

Aufgabe 3 (Simultane Diagonalisierbarkeit)

Es seien $\Phi, \Psi \colon V \to V$ zwei Endomorphismen eines endlich-dimensionalen K-Vektorraums V.

a) Beweisen Sie: Falls es eine Basis B von V gibt, so dass die Abbildungsmatrizen von Φ und Ψ zugleich Diagonalgestalt haben, dann gilt $\Phi\Psi = \Psi\Phi$.

Ab jetzt gelte $\Phi\Psi=\Psi\Phi$. Beweisen Sie die folgenden Aussagen:

- b) Es gilt $\Psi(E_{\lambda}(\Phi)) \subseteq E_{\lambda}(\Phi)$ für jeden Eigenwert λ von Φ .
- c) Wenn $U \subseteq V$ ein Untervektorraum mit $\Psi(U) \subseteq U$ ist, und es Eigenvektoren $v_1, \ldots, v_k \in V$ von Ψ zu den paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_k$ gibt, die $v_1 + \cdots + v_k \in U$ erfüllen, dann gilt auch $v_1, \ldots, v_k \in U$.

Hinweis: Betrachten Sie das Polynom $p = \prod_{i=1}^{k-1} (X - \lambda_i)$, wenden Sie die Abbildung $p(\Psi)$ auf $v_1 + \cdots + v_k$ an, und errinnern Sie sich an Aufgabe 1 von Blatt 12.

d) Ist Ψ diagonalisierbar, so ist für jeden Eigenwert λ von Φ auch die Einschränkung

$$\Psi|_{E_{\lambda}(\Phi)}^{E_{\lambda}(\Phi)} \colon E_{\lambda}(\Phi) \to E_{\lambda}(\Phi)$$

diagonalisierbar.

e) Sind Φ und Ψ beide diagonalisierbar, so gibt es eine Basis B von V bezüglich derer die Abbildungsmatrizen von Φ und Ψ zugleich Diagonalgestalt haben.

Aufgabe 4 $(K\ddot{a}stchensatz)$

Es sei K ein Körper

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{K}^{(p+q)\times(p+q)}$$

eine Blockmatrix, die aus den quadratischen Matrizen $A \in \mathbb{K}^{p \times p}$, und $D \in \mathbb{K}^{q \times q}$ und den rechteckigen Matrizen $B \in \mathbb{K}^{p \times q}$ und $C \in \mathbb{K}^{q \times p}$ durch Nebeneinanderschreiben der Einträge zusammengesetzt ist.

- a) Beweisen Sie: Falls B = 0 oder C = 0 ist, gilt det(M) = det(A) det(D).
- b) Finden Sie ein Beispiel für p = q, in dem $\det(M) \neq \det(A) \det(D) \det(B) \det(C)$ gilt.

Dieses Blatt geht nicht mehr in die Bewertung für den Übungsschein ein, aber Sie können es trotzdem abgeben, um Feedback zu erhalten.

Abgabe bis Montag, den 22.02.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.