HOMOGENEOUS FUNCTIONS

Homogeneous Functions:

A function u=f(x,y) is said to be homogeneous function of degree n, if $u=x^nf\left(\frac{y}{x}\right)$ where, n is real number

Note: Degree of a homogeneous function u = f(x, y) can be obtained by replacing x by xt and y by yt and if $f(xt, yt) = t^n f(x, y) = t^n u$ then u is a homogeneous function of degree n.

Same method can be extended for a function of more than two variables

A function f(x, y, z) is called a homogeneous function of degree n if by putting X = xt, Y = yt, Z = zt the function f(X, Y, Z) becomes $t^n f(x, y, z)$ i.e. $f(xt, yt, zt) = t^n f(x, y, z)$

e.g. $f(x, y, z) = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ is a homogeneous function of degree 2.

EULER'S THEOREM:

If u is a homogeneous function of two variables x and y of degree n then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$

Proof: Let u = f(x, y) be the given function.

Since it is a homogeneous function of degree n, on putting X = xt, Y = yt

$$f(X,Y) = t^n f(x,y)$$
(i)

Differentiating I. h. s. of (i) w. r. t. t

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial X}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial Y}{\partial t} = x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$$

If we put
$$t=1$$
, i. e. $X=x$, $Y=y$, we get, $\frac{\partial f}{\partial t}=x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}$ (ii)

Differentiating r. h. s. of (i) w. r. t. t,
$$\frac{\partial f}{\partial t} = nt^{n-1} f(x, y)$$

If we put t = 1, we get
$$\frac{\partial f}{\partial t} = nf(x, y)$$
(iii)

From (ii) and (iii) we get,
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf(x, y)$$

i.e.
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$

Alternate Proof:

u = f(x, y) is a homogeneous function of degree n then

Differentiate partially w.r.t.
$$x$$
 we get $\frac{\partial u}{\partial x} = nx^{n-1} \emptyset\left(\frac{y}{x}\right) + x^n \emptyset'\left(\frac{y}{x}\right) \left(-\frac{y}{x^2}\right)$

Differentiate (i) partially w.r.t.
$$y$$
 we get $\frac{\partial u}{\partial y} = x^n \emptyset' \left(\frac{y}{x}\right) \cdot \frac{1}{x} = x^{n-1} \emptyset' \left(\frac{y}{x}\right)$

1

$$\therefore y \frac{\partial u}{\partial y} = y x^{n-1} \emptyset' \left(\frac{y}{x} \right) \qquad \qquad \dots$$
 (iii)

Adding (ii) & (iii)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nx^n \emptyset \left(\frac{y}{x}\right) = nu$$

EULER'S THEOREM FOR A FUNCTION OF THREE VARIABLES:

Theorem: If u is a homogeneous function of three variables x, y, z of degree n then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = nu$

Note: In general, if u is a homogeneous function of x, y, z t of degree n then Euler's Theorem states that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} + \dots + t\frac{\partial u}{\partial t} = nu$$

Corollary 1 If z is a homogeneous function of two variables x and y of degree n then

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z$$

Proof: By Euler's Theorem we have $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$

Differentiating (i) partially w.r.t. x, we get $\left(x\frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x} \cdot 1\right) + y\frac{\partial^2 z}{\partial x\,\partial v} = n\frac{\partial z}{\partial x}$

$$\therefore x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y} = (n-1) \frac{\partial u}{\partial x} \qquad(ii)$$

Differentiating (i) partially w.r.t. y, we get $x \frac{\partial^2 z}{\partial y \partial x} + y \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial y} = n \frac{\partial z}{\partial y}$

$$\therefore x \frac{\partial^2 z}{\partial y \partial x} + y \frac{\partial^2 z}{\partial y^2} = (n-1) \frac{\partial z}{\partial y} \qquad(iii)$$

multiplying (ii) by x and (iii) by y and adding, we get,

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = (n-1) \left[x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} \right]$$
$$= n(n-1)z$$
 [by (i)]

Corollary 2: If z is homogeneous function of degree n in x and y, and z = f(u) then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)}$

Proof: By Euler's Theorem, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz = nf(u)$ (i)

Since
$$z = f(u)$$

$$\therefore \frac{\partial z}{\partial x} = f'(u) \frac{\partial u}{\partial x} \text{ and } \frac{\partial z}{\partial y} = f'(u) \frac{\partial u}{\partial y}$$

Putting these values in (i), we get, $xf'(u)\frac{\partial u}{\partial x} + yf'(u)\frac{\partial u}{\partial y} = nf(u)$

$$\therefore x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)}$$

Corollary 3 If z is homogeneous function of degree n in x and y, and z = f(u) then

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = g(u)[g'(u) - 1] \quad \text{where} \quad g(u) = n \frac{f(u)}{f'(u)}$$

Proof: By Corollary (2) we have $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)} = g(u)$ (i)

Differentiating (i) partially w.r.t. x, we get $\left(x\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} \cdot 1\right) + y\frac{\partial^2 u}{\partial x \, \partial y} = g'(u)\frac{\partial u}{\partial x}$

Differentiating (i) partially w.r.t. y, we get $x \frac{\partial^2 u}{\partial y \partial x} + y \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y} = g'(u) \frac{\partial u}{\partial y}$

$$\therefore x \frac{\partial^2 u}{\partial y \partial x} + y \frac{\partial^2 u}{\partial y^2} = (g'(u) - 1) \frac{\partial u}{\partial y} \qquad(iii)$$

multiplying (ii) by x and (iii) by y and adding, we get,

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (g'(u) - 1) \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right]$$
$$= g(u)[g'(u) - 1] \qquad [by (i)]$$