7.4.2 Sequences of regular definitions

Suppose we are given a sequence of regular definitions.

$$A_1 = R_1$$

$$A_2 = R_2$$

$$\vdots$$

$$A_n = R_n$$

The generation of a scanner for this sequence involves the following steps:

- (1) Generation of NFAs $M_i = (Q_i, \Sigma, \Delta_i, q_{0,i}, F_i)$ for the regular expressions R'_i (obtained by replacement), where the Q_i are pairwise disjoint.
- (2) Construction of the NFA M = (Q, Σ, Δ, q₀, F) with Q = ∪_{i=1}ⁿ Q_i ∪ {q₀}, q₀ ∉ ∪_{i=1}ⁿ Q_i, F = ∪_{i=1}ⁿ F_i Δ = ∪_{i=1}ⁿ Δ_i ∪ {(q₀, ε, q_{0,i}) | 1 ≤ i ≤ n}. Thus, we obtain the NFA M for the sequence, by providing the new initial state q₀ with a ε transition to all initial states q_{0,i}.
- (3) Application of the algorithm NFA → DFA (see Figure 7.5) to M, result DFA M'.
- (4) Possible minimization of M'. We start with the MinDFA algorithm with a partition $\Pi = \{F'_1, F'_2, \dots, F'_n, Q' \bigcup_{i=1}^n F'_i\}$, where the F'_i are the final states of M' belonging to the symbol class A_i . More precisely: $F'_i = \{S \mid S \cap F_i \neq \emptyset \text{ and } S \cap F_j = \emptyset \ (1 \leq j < i)\}$ (this means that a symbol that takes the automaton M' into two former final states of the M_i is assigned to the class occurring earlier in the definition list).