

HTU Course Title: Cryptography

Session 1 and 5: Practical Session on DES

Exam time: 120 minutes

Date: 1/04/2024

Student name: Student ID:

Lab Objectives:

- > Gain proficiency in bitwise operations and mathematical transformations used in product ciphers.
- > Implement simple encryption and decryption functions in the C programming language.
- > Validate the correctness and efficiency of the implemented algorithm through test cases and performance analysis.

Task:

The encryption algorithm under consideration is tailored for securing sensitive yet non-confidential data. Distinguished by its bit-oriented approach, unlike conventional ciphers, it integrates both transformation and substitution processes, earning it the moniker of a 'product cipher.' Each input and output block spans 8 bits, with a 10-bit key orchestrating the encryption process across two rounds. These rounds are fueled by distinct 8-bit keys, derived from the original key block through a series of operations including parity bit elimination, bit permutation, and subsequent extraction of 8 bits.

1-Based on the following schemes:

- o calculate the value of the block cipher mathematically.
 - Let's assume this is your key in binary, which has 10 bits.

Key: 0x282.

• Let's assume this is your plain text in binary, which has 8 bits.

Plain text: 0xF2.

• Assume the permutation tables is defined as the follow:

P10										
Input	1	2	3	4	5	6 7	8	9	10	
Output	3	5	2	7	4	10 1	9	8	6	
P8										
Input	1	2	3	4	5	6 7	8	9	10	
Output	6	3	7	4	8	5 10	9			
P4										
Input	1	2	3	4						
Output	2	4	3	1					•	

• Assume that the Initial and Final Permutations are defined as follows:

	Initial Permutation									
2	6	3	1	4	8	5	7			
Final Permutation										
4	1	3	5	7	2	8	6			

• Assume that there are only two s-boxes:

S_0			
01	00	11	10
11	10	01	00
00	10	01	11
11	01	11	10

S_1			
00	01	10	11
10	00	01	11
11	00	01	00
10	01	00	11

• Assume that the EP table is as follows:

	Expansion Permutation(E/P)									
4	1	2	3	2	3	4	1			

Encryption Scheme

- <u>Expected output:</u> Ciphertext:0xD1
- 2- Write C code corresponding to the proposed block cipher algorithm. Your program should simulate this block cipher and display the ciphertext along with the corresponding plaintext and key.
 - o Expected output:

```
aya@aya-VirtualBox:~$ ./cdes.o
Enter 10 bit key in binary (e.g. 1001001001)
1010000010
Enter 8 bit data or plain text in binary (e.g. 10101001)
01110010
K1: 10100100
K2: 01000011
Plain Text: 01110010
Cipher Text: 01110111
Decipher Text:01110010
aya@aya-VirtualBox:~$
```