Package 'OVL.CI'

November 13, 2023

Type Package

Title Inference on the Overlap Coefficient: The Binormal Approach and Alternatives

Version 0.1.0

Maintainer Alba M. Franco-Pereira <albfranc@ucm.es>

Description Provides functions to construct confidence intervals for the Overlap Coefficient (OVL). OVL measures the similarity between two distributions through the overlapping area of their distribution functions. Given its intuitive description and ease of visual representation by the straightforward depiction of the amount of overlap between the two corresponding histograms based on samples of measurements from each one of the two distributions, the development of accurate methods for confidence interval construction can be useful for applied researchers. Implements methods based on the work of Franco-

Pereira, A.M., Nakas, C.T., Reiser, B., and Pardo, M.C. (2021) < doi:10.1177/09622802211046386 >.

License GPL-2

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.2.3

Imports ks

Depends R (>= 2.10)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Alba M. Franco-Pereira [aut, cre, cph],

Christos T. Nakas [aut], Benjamin Reiser [aut], M.Carmen Pardo [aut]

Repository CRAN

Date/Publication 2023-11-13 17:43:18 UTC

2 kernel.e

R topics documented:

	kernel.e	2
	kernel.e.density	3
	kernel.g	3
	kernel.g.density	4
	likbox	4
	OVL.BCAN	5
	OVL.BCbias	6
	OVL.BCPB	6
	OVL.D	7
	OVL.DBC	8
	OVL.DBCL	8
	OVL.K	9
	OVL.KPB	10
	OVL.LogitBCAN	10
	OVL.LogitD	11
	OVL.LogitDBC	12
	OVL.LogitDBCL	12
	OVL.LogitK	13
	ssdd	14
	test_data	14
	U	15
Index		16
HIUCA		1

kernel.e

Epanechnikov kernel

Description

Evaluates the Epanechnikov kernel

Usage

```
kernel.e(u)
```

Arguments

u

vector of observations

Value

evaluation of the Epanechnikov kernel

```
x = rnorm(100,1,2)
kernel.e(x)
```

kernel.e.density 3

kernel.e.density

Epanechnikov kernel density estimation

Description

Estimates the density function using the Epanechnikov kernel

Usage

```
kernel.e.density(data, points, h)
```

Arguments

data vector of observations

points in which the function is evaluated

h bandwidth

Value

density estimation

Examples

```
x = rnorm(100,1,2)
gridd = seq(-5,5,length.out=1000)
h = (4/3)^(1/5)*sd(x)*length(x)^(-1/5)
kernel.e.density (x,gridd,h)
```

kernel.g

Gaussian kernel

Description

Evaluates the Gaussian kernel

Usage

```
kernel.g(u)
```

Arguments

u

vector of observations

Value

evaluation of the Gaussian kernel

4 likbox

Examples

```
x = rnorm(100,1,2)
kernel.g(x)
```

kernel.g.density

Gaussian kernel density estimation

Description

Estimates the density function using the Gaussian kernel

Usage

```
kernel.g.density(data, points, h)
```

Arguments

data vector of observations

points in which the function is evaluated

h bandwidth

Value

density estimation

Examples

```
x = rnorm(100,1,2)
gridd = seq(-5,5,length.out=1000)
h = (4/3)^(1/5)*sd(x)*length(x)^(-1/5)
kernel.g.density (x,gridd,h)
```

likbox

Likelihood function of the BoxCox transformation

Description

 $Computation\ of\ the\ likelihood\ function\ of\ the\ BoxCox\ transformation$

Usage

```
likbox(h, data, n)
```

OVL.BCAN 5

Arguments

h	parameter of the Box-Cox transformation
data	joint vector of controls (first) and cases
n	length of the vector of controls

Value

the likelihood function of the BoxCox transformation

Examples

```
h=-1.6
controls=rnorm(50,6,1)
cases=rnorm(100,6.5,0.5)
likbox(h,c(controls,cases),n=length(controls))
```

OVL.BCAN

OVL.BCAN

Description

Parametric approach using a bootstrap-based approach to estimate the variance

Usage

```
OVL.BCAN(x, y, alpha = 0.05, B = 100, h_ini = -0.6)
```

Arguments

x controls y cases

alpha confidence level B bootstrap size

h_ini initial value in the optimization problem

Value

confidence interval

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.BCAN (controls,cases)
```

6 OVL.BCPB

OVL.BCbias

OVL.BCbias

Description

Parametric approach using a bootstrap bias-corrected approach

Usage

```
OVL.BCbias(x, y, alpha = 0.05, B = 100, h_ini = -0.6)
```

Arguments

x controls y cases

alpha confidence level B bootstrap size

h_ini initial value in the optimization problem

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.BCAN (controls,cases)
```

OVL.BCPB

OVL.BCPB

Description

Parametric approach using a bootstrap percentil approach to estimate the variance

Usage

```
OVL.BCPB(x, y, alpha = 0.05, B = 100, h_ini = -0.6)
```

Arguments

Χ	controls
у	cases

alpha confidence level B bootstrap size

h_ini initial value in the optimization problem

OVL.D

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.BCPB (controls,cases)
```

OVL.D

OVL.D

Description

Parametric approach using the delta method

Usage

```
OVL.D(x, y, alpha = 0.05)
```

Arguments

x controls

y cases

alpha confidence level

Value

confidence interval

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.D (controls,cases)
```

8 OVL.DBCL

OVL.DBC OVL.DBC

Description

Parametric approach using the delta method after the Box-Cox transformation

Usage

```
OVL.DBC(x, y, alpha = 0.05, h_ini = -0.6)
```

Arguments

x controls y cases

alpha confidence level

h_ini initial value in the optimization problem

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.DBC (controls,cases)
```

OVL.DBCL

OVL.DBCL

Description

Parametric approach using the delta method after the Box-Cox transformation taking into account the variability of the estimated transformation parameter

Usage

```
OVL.DBCL(x, y, alpha = 0.05, h_ini = -0.6)
```

Arguments

x controls y cases

alpha confidence level

h_ini initial value in the optimization problem

OVL.K

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.DBCL (controls,cases)
```

OVL.K

OVL.K

Description

Kernel approach estimating the variance via bootstrap

Usage

```
OVL.K(x, y, alpha = 0.05, B = 100, k = 1, h = 1)
```

Arguments

X	controls
У	cases
alpha	confidence level
В	bootstrap size
k	kernel. When k=1 (default value) the kernel used in the estimation is the Gaussian kernel. Otherwise, the Epanechnikov kernel is used instead.
h	bandwidth. When h=1 (default value) the cross-validation bandwidth is chosen. Otherwise, the bandwidth considered by Schmid and Schmidt (2006) is used instead.

Value

confidence interval

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.K (controls,cases)
```

10 OVL.LogitBCAN

OVL.KPB	OVL.KPB
UVL.KPB	OVL.NPD

Description

Kernel approach using a bootstrap percentile approach

Usage

```
OVL.KPB(x, y, alpha = 0.05, B = 100, k = 1, h = 1)
```

Arguments

Х	controls
у	cases
alpha	confidence level
В	bootstrap size
k	kernel. When $k=1$ (default value) the kernel used in the estimation is the Gaussian kernel. Otherwise, the Epanechnikov kernel is used instead.
h	bandwidth. When h=1 (default value) the cross-validation bandwidth is chosen. Otherwise, the bandwidth considered by Schmid and Schmidt (2006) is used instead.

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.KPB (controls,cases)
```

OVL.LogitBCAN

OVL.LogitBCAN

Description

BCAN procedure carried out in the logit scale and back-transformed

Usage

```
OVL.LogitBCAN(x, y, alpha = 0.05, B = 100, h_i = -0.6)
```

OVL.LogitD 11

Arguments

Χ	controls
у	cases

alpha confidence level B bootstrap size

h_ini initial value in the optimization problem

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.LogitBCAN (controls,cases)
```

OVL.LogitD

OVL.LogitD

Description

Parametric approach using the delta method after switching to a logit scale and then transforming back

Usage

```
OVL.LogitD(x, y, alpha = 0.05)
```

Arguments

x controls y cases

alpha confidence level

Value

confidence interval

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.LogitD (controls,cases)
```

12 OVL.LogitDBCL

∩\/I	١٨	ait	DBC
UVL	LO	ZI (שםע.

OVL.LogitDBC

Description

Parametric approach using the delta method after the Box-Cox transformation after switching to a logit scale and then transforming back

Usage

```
OVL.LogitDBC(x, y, alpha = 0.05, h_ini = -0.6)
```

Arguments

Χ	controls
у	cases

alpha confidence level

h_ini initial value in the optimization problem

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.LogitDBC (controls,cases)
```

OVL.LogitDBCL

OVL.LogitDBCL

Description

Parametric approach using the delta method after the Box-Cox transformation in the logit scale and back-transformed considering the variability of the estimated transformation parameter

Usage

```
OVL.LogitDBCL(x, y, alpha = 0.05, h_ini = -0.6)
```

OVL.LogitK

Arguments

Χ	controls
у	cases

alpha confidence level

h_ini initial value in the optimization problem

Value

confidence interval

Examples

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.LogitDBCL (controls,cases)
```

OVL.LogitK

OVL.LogitK

Description

Kernel approach estimating the variance via bootstrap in the logit scale and back-transformed

Usage

```
OVL.LogitK(x, y, alpha = 0.05, B = 100, k = 1, h = 1)
```

Arguments

X	controls
У	cases

alpha confidence level B bootstrap size

k kernel. When k=1 (default value) the kernel used in the estimation is the Gaus-

sian kernel. Otherwise, the Epanechnikov kernel is used instead.

h bandwidth. When h=1 (default value) the cross-validation bandwidth is chosen.

Otherwise, the bandwidth considered by Schmid and Schmidt (2006) is used

instead.

Value

confidence interval

```
controls = rnorm(50,6,1)
cases = rnorm(100,6.5,0.5)
OVL.LogitK (controls,cases)
```

14 test_data

ssdd

Sample variance computation

Description

Computes the sample variance of a vector of observations

Usage

ssdd(x)

Arguments

Х

vector of observations

Value

the sample variance

Examples

```
x = rnorm(100,1,2)

ssdd(x)
```

test_data

Simulated data with normal distributions to showcase the CI'S Overlap Coefficient (OVL) calculation

Description

Contains controls and cases data from normal distributions

Usage

```
data(test_data)
```

Format

A data frame with 100 rows and 2 variables:

 $\begin{tabular}{ll} \textbf{controls} & Simulated data from a $N(10,1)$ distribution for the control group \\ \textbf{cases} & Simulated data from a $N(10.5,0.5)$ distribution for the case group \\ \end{tabular}$

References

This data set was artificially created for the OVL.CI package.

U 15

Examples

```
data(test_data)
```

U

Auxiliary function

Description

Evaluates an auxiliary function

Usage

```
U(mu1, mu2, sigma1, sigma2)
```

Arguments

mu1 sample mean of a vector x mu2 sample mean of a vector y

sigma1 sample standard deviation of a vector x sigma2 sample standard deviation of a vector y

Value

evaluation of an auxiliary function

```
U(1,2,1,1)
```

Index

```
\ast datasets
    test_data, 14
kernel.e, 2
kernel.e.density, 3
kernel.g, 3
kernel.g.density, 4
likbox, 4
OVL.BCAN, 5
OVL.BCbias, 6
OVL.BCPB, 6
OVL.D, 7
OVL.DBC, 8
OVL.DBCL, 8
OVL.K, 9
OVL.KPB, 10
OVL.LogitBCAN, 10
OVL.LogitD, 11
OVL.LogitDBC, 12
OVL.LogitDBCL, 12
OVL.LogitK, 13
ssdd, 14
test_data, 14
U, 15
```