

Grundbegriffe der Informatik - Tutorium 21

Christian Jülg Wintersemester 2012/13 6. November 2012

http://gbi-tutor.blogspot.com

Übersicht

Guten Morgen...

Aufgabenblatt 2

Aufgabenblatt 3

Formale Sprachen

Mengenlehre

Abschluss

Übersicht

Guten Morgen...

Aufgabenblatt 2

Aufgabenblatt 3

Formale Spracher

Mengenlehre

Abschluss

Zum Warmwerden...

Die vollständige Induktion...

- 1. ... besteht aus Induktionsanfang und Induktionsschritt.
- 2. ... wird zum beweisen von Aussagen genutzt, die sich auf ein beliebiges Element (n) einer Rekursion, Formel, etc. beziehen.
- 3. ... beginnt immer mit dem Nachweis für n=0.

Für zwei Mengen M_1 und M_2 gilt...

- 1. ... sind gleich, wenn: $M_1 \subset M_2$ und $M_2 \subset M_1$
- 2. ... \exists bijektive Abbildung von M_1 nach M_2 , wenn $|M_1| = |M_2|$

Zum Warmwerden...

Die vollständige Induktion...

- 1. ... besteht aus Induktionsanfang und Induktionsschritt.
- 2. ... wird zum beweisen von Aussagen genutzt, die sich auf ein beliebiges Element (n) einer Rekursion, Formel, etc. beziehen.
- 3. ... beginnt immer mit dem Nachweis für n=0.

Für zwei Mengen M_1 und M_2 gilt...

- 1. ... sind gleich, wenn: $M_1 \subset M_2$ und $M_2 \subset M_1$
- 2. ... \exists bijektive Abbildung von M_1 nach M_2 , wenn $|M_1| = |M_2|$

Zum Warmwerden...

Die vollständige Induktion...

- 1. ... besteht aus Induktionsanfang und Induktionsschritt.
- 2. ... wird zum beweisen von Aussagen genutzt, die sich auf ein beliebiges Element (n) einer Rekursion, Formel, etc. beziehen.
- 3. ... beginnt immer mit dem Nachweis für n=0.

Für zwei Mengen M_1 und M_2 gilt...

- 1. ... sind gleich, wenn: $M_1 \subset M_2$ und $M_2 \subset M_1$
- 2. ... \exists bijektive Abbildung von M_1 nach M_2 , wenn $|M_1| = |M_2|$

Übersicht

Guten Morgen...

Aufgabenblatt 2

Aufgabenblatt 3

Formale Sprachen

Mengenlehre

Abschluss

Ein Blick zurück

etwas Statistik

- x von 19 Abgaben, prima!
- durchschnittliche Punktzahl: x/20 Punkten

häufige Fehler...

2.x: IV richtig formulieren!

Übersicht

Guten Morgen...

Aufgabenblatt 2

Aufgabenblatt 3

Formale Sprachen

Mengenlehre

Abschluss

Aufgabenblatt 3

Blatt 3

Abgabe: 9.11.2011 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

Formale Sprachen

Übersicht

Guten Morgen...

Aufgabenblatt 2

Aufgabenblatt 3

Formale Sprachen

Mengenlehre

Abschluss

Was ist das eigentlich?

Was ist das eigentlich?

■ Eine formale Sprache *L* ist eine Menge von Wörtern die aus einem beliebigen Alphabet *A* erzeugt werden können.

Was ist das eigentlich?

- Eine formale Sprache *L* ist eine Menge von Wörtern die aus einem beliebigen Alphabet *A* erzeugt werden können.
- L soll stets alle (in einem bestimmten Sinn) korrekten Gebilde enthalten und alle nicht korrekten nicht.

Was ist das eigentlich?

- Eine formale Sprache *L* ist eine Menge von Wörtern die aus einem beliebigen Alphabet *A* erzeugt werden können.
- L soll stets alle (in einem bestimmten Sinn) korrekten Gebilde enthalten und alle nicht korrekten nicht.

Ein Beispiel...

Die Sprache die alle Zustände einer Ampel beschreibt enthält Grün oder Rot-Gelb aber nicht die Phase Grün-Rot.

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\{a, bb\} \cdot \{aa, b\} =$
 - $L \cdot \{\epsilon\} =$

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\quad \blacksquare \ \{\textit{a,bb}\} \cdot \{\textit{aa,b}\} = \{\textit{aaa,ab,bbaa,bbb}\}$
 - $L \cdot \{\epsilon\} =$

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\quad \blacksquare \ \{\textit{a,bb}\} \cdot \{\textit{aa,b}\} = \{\textit{aaa,ab,bbaa,bbb}\}$
 - $L \cdot \{\epsilon\} = L$

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\qquad \{\textit{a},\textit{bb}\} \cdot \{\textit{aa},\textit{b}\} = \{\textit{aaa},\textit{ab},\textit{bbaa},\textit{bbb}\}$
 - $L \cdot \{\epsilon\} = L$
- lacksquare Potenzen: $L^0=\{\epsilon\}$ und $L^{i+1}=L^i\cdot L$
- Konkatenationsabschluss:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$
 und $L^* = \bigcup_{i=0}^{\infty} L^i$

Die Zahlen vom Typ int

Gebt eine formale Sprache L_I aller legalen Zahlen vom Typ int an.

Die Zahlen vom Typ int

Gebt eine formale Sprache L_I aller legalen Zahlen vom Typ int an.

$$A = \{0, \ldots, 9\}$$

$$L_I = A^*$$

Die Zahlen vom Typ int

Gebt eine formale Sprache L_I aller legalen Zahlen vom Typ int an.

$$A = \{0, \dots, 9\}$$

$$L_I = \{\epsilon, -\}A^+.$$

Seid ihr mit der Lösung einverstanden?

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

$$A = \{ -, a, \dots, z, A, \dots, Z \},$$

 $B = A \cup \{0, \dots, 9\}$
 $L_V = A \cdot B^*.$

Was fehlt?

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

$$A = \{-, a, \dots, z, A, \dots, Z\},\ B = A \cup \{0, \dots, 9\}\ L_V = A \cdot B^*.$$

Was fehlt?

- Umlaute
- Schlüsselwörter sind als Variablenamen verboten

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

```
Also besser:
```

$$\begin{split} A &= \big\{ _, a, \ldots, z, A, \ldots, Z, \ddot{\mathbf{a}}, \ddot{\mathbf{o}}, \ddot{\mathbf{u}} \big\}, \\ B &= A \cup \big\{ 0, \ldots, 9 \big\} \\ L_V &= \big(A \cdot B^* \big) \smallsetminus \big\{ \text{if, class}, \ldots \big\} \end{split}$$

noch einige Hinweise...

Wörter & Sprache

Wörter und Sprachen sind nicht das Gleiche! So ist abb ist etwas anderes als $\{abb\}$. Und $\{abb\}^*$ gibt es, aber abb^* kennen wir **nicht**.

 L_1L_2 $L_1=\{a^n\mid n\in\mathbb{N}_0\}$ und $L_2=\{b^n\mid n\in\mathbb{N}_0\}$ **Achtung:** $L_1L_2=\{a^kb^m\mid k\in\mathbb{N}_0\land m\in\mathbb{N}_0\}$ die Exponenten können verschieden sein!

Übersicht

Mengenlehre

Ergänzungen

Was ist eine Mengendifferenz?

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?
- *A* ohne *B*, d.h. $A \setminus B = \{1, 3\}$

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?
- *A* ohne *B*, d.h. $A \setminus B = \{1, 3\}$
- Was ist bei $A \cup B$ zu beachten?

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?
- $A \text{ ohne } B, \text{ d.h. } A \setminus B = \{1, 3\}$
- Was ist bei $A \cup B$ zu beachten?
- In einer Menge kommt ein Element nie mehrfach vor (und die Reihenfolge ist ohne Bedeutung).

Wie beweist man das nochmal?

Wie beweist man das nochmal? Indem man beweist, dass \subseteq und \supseteq gelten

Wie beweist man das nochmal? Indem man beweist, dass \subseteq und \supseteq gelten

Beweise $L^* \cdot L = L^+$

■ ⊆:

• ⊇

Wie beweist man das nochmal? Indem man beweist, dass \subseteq und \supseteq gelten

Beweise $L^* \cdot L = L^+$

• ⊇:

Wie beweist man das nochmal? Indem man beweist, dass \subseteq und \supseteq gelten

Beweise $L^* \cdot L = L^+$

- \supseteq : Wenn $w \in L^+$, dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$ ist i = j + 1 für ein $j \in \mathbb{N}_0$, also ist für ein $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$. also w = w'w'' mit $w' \in L^j$ und $w'' \in L$. Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

Übersicht

Abschluss

Was ihr nun wissen solltet!

Wie beweise ich Mengengleichheit?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?
- Wie kann ich meinen Tutor bei der Korrektur meines Übungsblattes positiv beeinflussen?

Was ihr nun wissen solltet!

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?
- Wie kann ich meinen Tutor bei der Korrektur meines Übungsblattes positiv beeinflussen?

Ihr wisst was nicht? Stellt **jetzt** Fragen!

Ende

