Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.

Seoul National University

Spring 2020

Solid State Drives (SSDs)

Memory Types

FLASH

- High-density
- Low-cost
- High-speed
- Low-power
- High reliability

DRAM

- High-density
- Low-cost
- High-speed
- High-power

EPROM

- Non-volatile
- High-density
- Ultraviolet light for erasure

EEPROM

- Non-volatile
- Lower reliability
- Higher cost
- Lowest density
- Electrically byte-erasable

ROM

- High-density
- Reliable
- Low-cost
- Suitable for high production with stable code

Flash Memory Cell

- Transistor with floating gate
 - The floating gate is insulated all around with an oxide layer
 - Electrons trapped in the floating gate can remain for up to years

Flash Memory Characteristics

Erase-before-write

- Read
- Write or Program: $I \rightarrow 0$
- Erase: $0 \rightarrow 1$

Bulk erase

- Program unit:
 - NOR: byte or word
 - NAND: page
- Erase unit:

Logical View of NAND Flash

- A collection of blocks
- Each block has a number of pages
- The size of a block or a page depends on the technology (but, it's getting larger)

NAND Flash Types

SLC NAND

- Single Level Cell
- I bit/cell

MLC NAND

- Multi Level Cell (misnomer)
- 2 bits/cell

TLC NAND

- Triple Level Cell
- 3 bits/cell
- 3D NAND

NAND Applications

- Universal Flash Drives (UFDs)
- Flash cards
 - CompactFlash, MMC, SD, Memory stick, ...
- Smartphones
 - eMMC (Embedded MMC)
 - UFS (Universal Flash Storage)
- SSDs (Solid State Drives)
- Other embedded devices
 - MP3 players, Digital TVs, Set-top boxes, Car navigators, ...

Anatomy of an SSD

HDDs vs. SSDs

Feature	SSD (Samsung)	HDD (Seagate)
Model	MZ-75E2T0B (850 Evo)	ST2000LM003 (SpinPoint M9T)
Capacity	2TB (128Gb 32-Layer 3D V-NAND TLC x 16 die/channel x 8 channels)	2TB (3 Discs, 6 Heads, 5400 RPM)
Form factor	2.5", 66g	2.5", 130g
DRAM	2 GB	32 MB
Host interface	SATA-3 (6.0 Gbps)	SATA-3 (6.0 Gbps)
Power consumption (Active / Idle / Sleep)	3.7, 4.7 W / 0.5 W / 0.05 W	2.3 W / 0.7 W / 0.18 W
Performance 850 Evo¹: Sequential: 128KB/QD2 Random: 4KB/QD32 M9T²: Sequential: 2MB Random: 4KB	Sequential read: 544 MB/s Sequential write: 520 MB/s Random read: 97,687 IOPS Random write: 89,049 IOPS Random read: 11,335 IOPS (QD1) Random write: 38,433 IOPS (QD1)	Sequential read: 124 MB/s Sequential write: 124 MB/s Random read: 56 IOPS Random write: 98 IOPS Power-on to ready: 3.5 sec Average seek: 12/14 ms Average latency: 5.6 ms
Price ³	940,910 won (470won/GB)	175,900 won (88won/GB)

State-of-the-Art @ 2018

삼성전자, 세계 최초 '30.72TB SAS SSD' 양산

2018/02/20 공유하기 (🔊

- **2.5**
- ITBV-NAND x32
- 4GB DRAM x 10
- Sequential read: 2100MB/s
- Sequential write: I700MB/s

NAND Constraints

- No in-place update
 - Require sector remapping (or address translation)
- Bit errors
 - Require the use of error correction codes (ECCs)
- Bad blocks
 - Factory-marked and run-time bad blocks
 - Require bad block remapping
- Limited program/erase cycles
 - < 100K for SLCs, < 3K for MLCs, < 1K for TLCs
 - Require wear-leveling

Flash Translation Layer (FTL)

 A software layer to make NAND flash fully emulate traditional block devices (e.g., disks)

SSD Internals

Address Mapping

Required since flash pages cannot be overwritten

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4
- Current state
 - Written to page 0, 1, 2, 8, 4, 5
- Reading page 5

Logical page #5

000000101

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4
- Current state
 - Written to page 0, 1, 2, 8, 4, 5
- New requests (in order)
 - Write to page 9
 - Write to page 3
 - Write to page 5

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4
- Current state
 - Written to page 0, 1, 2, 8, 4, 5
- New requests (in order)
 - Write to page 9
 - Write to page 3
 - Write to page 5

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4
- Current state
 - Written to page 0, 1, 2, 8, 4, 5
- New requests (in order)
 - Write to page 9
 - Write to page 3
 - Write to page 5

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4
- Current state
 - Written to page 0, 1, 2, 8, 4, 5
- New requests (in order)
 - Write to page 9
 - Write to page 3
 - Write to page 5

Garbage Collection

- Garbage collection (GC)
 - Eventually, FTL will run out of blocks to write to
 - GC must be performed to reclaim free space
 - Actual GC procedure depends on the mapping scheme
- GC in page-mapping FTL
 - Select victim block(s)
 - Copy all valid pages of victim block(s) to free block
 - Erase victim block(s)
 - Note: At least one free block should be reserved for GC

Current state

- Written to page 0, 1, 2, 8, 4, 5
- Written to page 9, 3, 5

- Write to page 8
- Write to page 9
- Write to page 3
- Write to page I
- Write to page 4

Current state

- Written to page 0, 1, 2, 8, 4, 5
- Written to page 9, 3, 5

- Write to page 8
- Write to page 9
- Write to page 3
- Write to page I
- Write to page 4

Current state

- Written to page 0, 1, 2, 8, 4, 5
- Written to page 9, 3, 5

- Write to page 8
- Write to page 9
- Write to page 3
- Write to page I
- Write to page 4

Current state

- Written to page 0, 1, 2, 8, 4, 5
- Written to page 9, 3, 5

- Write to page 8
- Write to page 9
- Write to page 3
- Write to page I
- Write to page 4

Current state

- Written to page 0, 1, 2, 8, 4, 5
- Written to page 9, 3, 5

- Write to page 8
- Write to page 9
- Write to page 3
- Write to page I
- Write to page 4

Current state

- Written to page 0, 1, 2, 8, 4, 5
- Written to page 9, 3, 5

- Write to page 8
- Write to page 9
- Write to page 3
- Write to page I
- Write to page 4

NVMe SSD

- PCle-based (PCle Gen. 3: IGB/s per lane, up to 32 lanes)
- Deep queue: 64K commands per queue, up to 64K queues
- Streamlined command set: only 13 required commands
- One register write to issue a command ("doorbell")

OS Implications

- NAND flash has different characteristics compared to disks
 - No seek time
 - Asymmetric read/write access times
 - No in-place-update
 - Good sequential read/write and random read performance, but bad random write performance
 - Wear-leveling
 - •
 - Traditional operating systems have been optimized for disks. What should be changed?

SSD Support in OS

- Turn off "defragmentation" for SSDs
- New "TRIM" command
 - Remove-on-delete
- Simpler I/O scheduler
- Align file system partition with SSD layout
- Flash-aware file systems (e.g., F2FS in Linux)
- Larger block size (4KB)
- New "multi-stream" interface
- **-** ...

Beauty and the Beast

- NAND Flash memory is a beauty
 - Small, light-weight, robust, low-cost, low-power, non-volatile device
- NAND Flash memory is a beast
 - No in-place-update
 - Much slower program/erase operations
 - Erase unit > read/write unit
 - Bit errors
 - Limited lifetime etc.
- Software support is essential for performance and reliability!

