

PATENT ATTORNEY'S DOCKET NUMBER P50937

TRANSMITTAL LETTER TO THE U.S. DESIGNATED OFFICE (DO/US) - ENTRY INTO NATIONAL STAGE UNDER 35 USC 371

PCT/US00/15659

INTERNATIONAL APP. NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED

07 June 2000

07 June 1999

TITLE OF INVENTION

Novel FabH Enzyme Composition Capable of Binding to Said Enzyme and Methods of Use Thereof

APPLICANT(S) FOR DO/US

Cheryl Ann JANSON, and Xiayang Qiu

Box PCT

U.S. Patent and Trademark Office

P.O. Box 2327

Arlington, VA 22202

ATTENTION: DO/US

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that this Transmittal Letter, Form PTO 1390 and the papers indicated as being transmitted therewith, and Post Card are being deposited with the United States Postal Service on this date 05 December 2001 in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number EL 737 870 260 US addressed to the:

Assistant Commissioner for Patents, Washington, D.C. 20231.

(Typed or printed name of person mailing paper)

(Signature of person mailing paper)

20462

PATENT TRADEMARK OFFICE

NOVEL FABH ENZYME, COMPOSITIONS CAPABLE OF BINDING TO SAID ENZYME AND METHODS OF USE THEREOF

Technical Field of the Invention

WO 00/75169

5

10

15

20

25

30

The invention relates to the identification of a novel enzyme active site and methods enabling the design and selection of inhibitors of that active site.

Background of the Invention

The pathway for the biosynthesis of saturated fatty acids is very similar in prokaryotes and eukaryotes. However, the organization of the biosynthetic apparatus is very different. Vertebrates possess a type I fatty acid synthase (FAS) in which all of the enzymatic activities are encoded on one multifunctional polypeptide, the mature protein being a homodimer. The acyl carrier protein (ACP) is an integral part of the complex. In contrast, in most bacterial and plant FASs (type II) each of the reactions are catalyzed by distinct monofunctional enzymes and the ACP is a discrete protein. Mycobacteria are unique in that they possess both type I and II FASs. There therefore appears to be considerable potential for selective inhibition of the bacterial systems by broad-spectrum antibacterial agents (Rock, C. & Cronan, J. 1996. Biochimica et Biophysica Acta 1302, 1-16; Jackowski, S. 1992. In Emerging Targets in Antibacterial and Antifungal Chemotherapy. Ed. J. Sutcliffe & N. Georgopapadakou. Chapman & Hall, New York; Jackowski, S. et al. (1989). J. Biol. Chem. 264, 7624-7629.)

The first step in the biosynthetic cycle is the condensation of malonyl-ACP with acetyl-CoA by FabH. Prior to this, malonyl-ACP is synthesized from ACP and malonyl-CoA by FabD, malonyl CoA:ACP transacylase. In subsequent rounds malonyl-ACP is condensed with the growing-chain acyl-ACP (FabB and FabF, synthases I and II respectively). The second step in the elongation cycle is ketoester reduction by NADPH-dependent β-ketoacyl-ACP reductase (FabG). Subsequent dehydration by β-hydroxyacyl-ACP dehydrase (either FabA or FabZ) leads to trans-2-enoyl-ACP which is in turn converted to acyl-ACP by enoyl-ACP reductase (FabI). Further rounds of this cycle, adding two carbon atoms per cycle, eventually lead to palmitoyl-ACP whereupon the cycle is stopped largely due to feedback inhibition of FabH and I by palmitoyl-ACP (Heath, et al, (1996), J.Biol.Chem. 271, 1833-1836).

Cerulenin and thiolactomycin are potent and selective inhibitors of bacterial fatty acid biosynthesis. Extensive work with these inhibitors has proved that this biosynthetic pathway is essential for bacterial viability. No marketed antibiotics are targeted against fatty acid biosynthesis, therefore it is unlikely that novel antibiotics would be rendered

10

15

20

25

30

inactive by known antibiotic resistance mechanisms. There is an unmet need for developing new classes of antibiotic compounds, such as those that target FabH.

FabH enzymes are of interest as potential targets for antibacterial agents.

There is a need in the art for novel FabH enzyme active sites and catalytic sequences to enable identification and structure-based design of inhibitors, which are useful in the treatment or prophylaxis of diseases, particularly diseases caused by bacteria which may share catalytic domains with those of the invention.

Summary of the Invention

In one aspect, the present invention provides a novel FabH enzyme active site crystalline form.

In another aspect, the present invention provides a novel FabH composition characterized by the catalytic residues Cys112, His244 and Asn274.

In still another aspect, the present invention provides a novel FabH composition characterized by the active site of 33 amino acid residues (including the catalytic residues).

In yet another aspect, the invention provides a method for identifying inhibitors of the compositions described above which methods involve the steps of: providing the coordinates of the structure of the invention to a computerized modeling system; identifying compounds which will bind to the structure; and screening the compounds identified for FabH inhibitory bioactivity.

In a further aspect, the present invention provides an inhibitor of the catalytic activity of any composition bearing the catalytic domain described above.

Another aspect of this invention includes machine readable media encoded with data representing the coordinates of the three-dimensional structure of the FabH crystal.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

Brief Description of the Drawings

- Fig. 1 provides the atomic coordinates of the E. coli FabH dimer.
- Fig. 2 provides the atomic coordinates of the *E. coli* FabH monomer in complex with acetyl-CoA.
- Fig. 3 provides a projection of the ribbon diagram of the *E. coli* FabH dimer. The two monomers are drawn with a light or dark gray shading. The catalytic Cys112 is shown in dark ball-and-stick model.
- Fig. 4 provides the ribbon diagram of the *E. coli* FabH monomer with the catalytic residue Cys112 is shown in dark ball-and-stick model. The N- and C-termini are labeled.

Fig. 5 provides the stereoview of the α-carbon superposition between the structures of FabH and FabF. FabH is drawn in a thin black line and FabF in a thick gray line.

Fig. 6 provides the ribbon diagram of the E. coli FabH monomer with acetylated Cys112 and the CoA molecule in black ball-and-stick model. The orientation of the view is the same as that of Fig. 4.

Fig. 7 provides the superposition of the E. coli FabH catalytic residues in comparison to those of FabF. FabH is drawn in thick gray lines and FabF in thin black lines. FabH residues are label Cys112, His244 and Asn274, which corresponds to Cys163, His303 and His340, respectively.

10 Detailed Description of the Invention

The present invention provides a novel E. coli FabH crystalline structure, a novel FabH active site, and methods of use of the crystalline form and active site to identify FabH inhibitor compounds (peptide, peptidomimetic or synthetic compositions) characterized by the ability to competitively inhibit binding to the active site of a FabH enzyme. Also provided herein is a novel FabH crystalline structure in complex with the substrate acetyl-CoA, and the identification of acetyl-CoA interacting residues in FabH.

· I. The Novel FabH Crystalline Three-Dimensional Structure

The present invention provides a novel FabH crystalline structure based on the E. coli FabH. The amino acid sequences of the FabH are provided in Table 1 as SEQ ID NO:1.

TABLE 1

46

Met Tyr Thr Lys Ile Ile Gly Thr Gly Ser Tyr Leu Pro Glu Gln 1 5 10 15

25

15

20

Val Arg Thr Asn Ala Asp Leu Glu Lys Met Val Asp Thr Ser Asp 16 20 25 30

Glu Trp Ile Val Thr Arg Thr Gly Ile Arg Glu Arg His Ile Ala

31 35 -45

Ala Pro Asn Glu Thr Val Ser Thr Met Gly Phe Glu Ala Ala Thr 30

50

60 Arg Ala Ile Glu Met Ala Gly Ile Glu Lys Asp Gln Ile Gly Leu

65 70 75 Ile Val Val Ala Thr Thr Ser Ala Thr His Ala Phe Pro Ser Ala

55

WO 00/75169 PCT/US00/15659

	76	80	85	90
	Ala Cys (Gln Ile Gln Ser Me	et Leu Gly Ile Lys Gly	Cys Pro Ala
	91	95	100	105
	Phe Asp	Val Ala Ala Ala C	ys Ala Gly Phe Thr T	yr Ala Leu Ser
5	106	110	115	120
	Val Ala A	Asp Gln Tyr Val L	ys Ser Gly Ala Val Ly	ys Tyr Ala Leu
	121	125	130	135
	Val Val (Gly Ser Asp Val L	eu Ala Arg Thr Cys A	sp Pro Thr Asp
	136	140	145	150
10	Arg Gly	Thr Ile Ile Ile Phe	Gly Asp Gly Ala Gly	Ala Ala Val
	151	155	160	165
	Leu Ala	Ala Ser Glu Glu P	ro Gly Ile Ile Ser Thr	His Leu His
	166	170	175	180
	Ala Asp	Gly Ser Tyr Gly G	llu Leu Leu Thr Leu P	ro Asn Ala Asp
15	181	185	190 .	195
	Arg Val	Asn Pro Glu Asn S	Ser Ile His Leu Thr Me	et Ala Gly Asn
	196	200	205	210
	Glu Val l	Phe Lys Val Ala V	al Thr Glu Leu Ala H	is Ile Val Asp
	211	215	220	225
20	Glu Thr l	Leu Ala Ala Asn A	Asn Leu Asp Arg Ser	Gln Leu Asp Trp
	226	230	235	240
	Leu Val	Pro His Gln Ala A	sn Leu Arg Ile Ile Ser	Ala Thr Ala
	241	245	250	255
	Lys Lys	Leu Gly Met Ser I	Met Asp Asn Val Val	Val Thr Leu Asp
25	256	260	265	270
	Arg His	Gly Asn Thr Ser A	Ala Ala Ser Val Pro Cy	ys Ala Leu Asp .
	271	275	280	285
	Glu Ala	Val Arg Asp Gly	Arg Ile Lys Pro Gly G	In Leu Val Leu
	286	290	295	300
30	Leu Glu	Ala Phe Gly Gly	Gly Phe Thr Trp Gly S	Ser Ala Leu Val Arg Phe
	301	305	310	317

As illustrated herein, the crystal structure is a tightly associated FabH dimer. Each monomer has two structural domains: the N-terminal domain (residues 1-170 of SEQ ID

10

15

20

25

30

NO:1) and the C-terminal domain (residues 171-317 of SEQ ID NO:1). The two domains are similar in their overall fold: each contains a 5-stranded β -sheet sandwiched between α -helices and covered by other β -strands, α -helices and loops. The structural similarity between the two halves of the protein indicates that FabH is probably evolved from two genes of similar origin. The active site of FabH is at the center of the FabH monomer, formed at the junction of the N- and C-terminal domains. While the core architecture of the *E. coli* FabH bears some similarity to that of the FabF (Huang, et al, (1998), *EMBO J. 17*, 1183-1191), large differences exit in the atomic positions of the core β -strands, and the structures outside of the core β -strand are completely different. With amino acid sequence identity between FabH and FabF being below 20%, the large differences are well expected. Therefore, the crystalline structure of *E. coli* FabH is novel.

As described above, the *E. coli* FabH is a dimer, each monomer contains an active site. The dimer formation is essential for the FabH activity because the active site of a monomer is comprised of at least Phe87 of the other monomer in the dimer. The present invention provides both a crystalline monomer and dimer structure of *E. coli* FabH. Inhibitors that perturb or interact with this dimer interface are another target for the design and selection of anti-bacterial agents.

According to the present invention, the crystal structure of *E. coli* FabH has been resolved at 2.0 Å (crystal form 1), and its selenomethionine mutant protein in complex with acetyl-CoA has been determined at 1.9 Å (crystal form 2). The structure was determined using the methods of MAD phasing and molecular replacement, and refined to R-factors of 18.9% and 27%, respectively.

Further refinement of the atomic coordinates will change the numbers in Figure 1-2 and Tables I - III, refinement of the crystal structure from another crystal form will result in a new set of coordinates. However, distances and angles in Tables II will remain the same within experimental errors, and relative conformation of residues in the active site will remain the same within experimental error. For example, the two independently determined monomers in our crystal form 1 and the monomer in crystal form 2 do not have identical numerical coordinates, but the structures of these three monomers have very similar structures, and the spatial relationship between amino acid residues are considered the same within experimental error. In fact, we would consider any structure that can be superimposed onto that of FabH with an rms error of less than 1.5 Å on α-carbon atoms being a close structural homologue and the same rms error but over all protein atoms being an identical structure. Figure 1 provides the atomic coordinates of the *E. coli* FabH dimer,

10

15

20

25

which contains 634 amino acids. Figure 2 provides the atomic coordinates of the E. coli FabH monomer in complex with acetyl-CoA, which contains 317 amino acids. The FabH enzyme is characterized by an active site which preferably contains a binding site for the first substrate acetyl-CoA and the second substrate malonyl-ACP. The catalytic residues in FabH are Cys112, His244 and Asn274, compared to Cys163, His303 and His340 in FabF. The difference in catalytic residues is not only limited to their amino acid identity (His340 to Asn274 change), but also their relative spatial arrangement. While FabH Cys112 and Asn274 can be well superimposed onto FabF Cys163 and His340, His244 of FabH occupies a very different position from that of His303 of FabF. This indicated the catalytic mechanisms of the two enzymes are very different. The crystal structure described herein was solved in the presence and absence of acetyl-CoA. We identified that the catalytic Cys112 has been covalently aceytlated, and the product CoA is still bound to the active site. The bound CoA enabled us to identify the active site cavity, which is long and narrow and shaped nicely to bind the β-mercaptoethylamine-patotheinate arm of CoA. The structure of the acetyl-CoA complex also revealed all the key residues that are interacting with CoA and lining the active site, which is identified as a set of 33 amino acid residues listed in Table I. For example, the adenine part of CoA is sandwiched between the side chains of Arg151 and Trp32. Our structures are determined in the absence of malonyl-ACP. However, the same acetyl-CoA binding cavity should bind malonyl-ACP as well because their active site binding regions are very similar and there is no apparent additional entrance to the active site. Moreover, while the FabH molecular surface in general negatively charged, a region just outside of the active site cavity is positively charge. This surface is mainly comprised of three α -helices (30-37, 209-231 and 248-258) and contains a number of positively charged amino acids (Arg36, Arg40, Lys214, His222, Arg235 Arg249, Lys256, Lys257). Since the acyl-carrier protein (ACP) is known to be very acidic or negatively charged, it is

reasonable to assume this surface being the ACP binding surface.

Table I provides the atomic coordinates of the apo *E. coli* FabH structure in the active site (in crystal form 1). Solvent molecules are omitted here for clarity, but can be found in Fig. 1. Residue 487 is Phe87 from the other monomer.

TABLE I

	THE I							
5	ATO	MC	RES	IDUE	X	X	<u>Z</u>	Occ B
	1	N	THR	28	-24.151	18.846	61.990	1.00 36.45
	2	CA	THR	28	-23.735	19.054	60.610	1.00 36.69
	3	CB	THR	28	-22.196	19.086	60.565	1.00 32.66
	4	OG1	THR	28	-21.760	20.076	59.636	1.00 33.79
10	5	CG2	THR	28	-21.645	17.737	60.183	1.00 27.40
	6	C	THR	28	-24.238	17.990	59.627	1.00 38.85
	7	0	THR	28	-24.732	16.923	60.023	1.00 42.97
	8	N	TRP	32	-24.091	20.068	53.681	1.00 30.06
	9	CA	TRP	32	-23.725	21.413	54.092	1.00 28.93
15	10	CB	TRP	32	-24.277	21.708	55.486	1.00 29.27
	11	CG	TRP	32	-24.036	23.126	55.939	1.00 31.13
	12	CD2	TRP	32	-22.895	23.622	56.644	1.00 32.44
	13	CE2	TRP	32	-23.118	25.005	56.890	1.00 35.25
	14	CE3	TRP	32	-21.707	23.038	57.096	1.00 32.45
20	15	CD1	TRP	32	-24.880	24.197	55.779	1.00 33.86
	16	NE1	TRP	32	-24.333	25.331	56.351	1.00 35.49
	17	CZ2	TRP	32	-22.200	25.800	57.565	1.00 35.24
	18	CZ3	TRP	32	-20.793	23.832	57.765	1.00 34.43
	19	CH2	TRP	32	-21.046	25.197	57.994	1.00 36.72
25	20	С	TRP	32	-22.203	21.582	54.091	1.00 27.24
	21	0	TRP	32	-21.675	22.617	53.674	1.00 26.75
	22	N	ILE	33	-21.503	20.566	54.581	1.00 26.32
	23	CA	ILE	33	-20.042	20.617	54.642	1.00 25.89
	24	СВ	ILE	33	-19.459	19.370	55.333	1.00 25.18
30	25	CG2	ILE	33	-17.925	19.444	55.366	1.00 26.64
	26	CG1	ILE	33	-20.024	19.253	56.744	1.00 18.01
	27	CD1	ILE	33	-19.621	18.008	57.421	1.00 19.10
	28	С	ILE	33	-19.432	20.755	53.258	1.00 24.76
	29	0	ILE	33	-18.630	21.650	53.022	1.00 23.20
35	30	N	ARG	36	-20.198	24.159	51.621	1.00 26.35
	31	CA	ARG	36	-19.545	25.296	52.237	1.00 27.73
	32	CB	ARG	36	-20.083	25.473	53.649	1.00 34.96
	33	CG	ARG	36	-19.562	26.715	54.326	1.00 47.48
	34	CD	ARG	36	-20.581	27.250	55.290	1.00 56.04
40	35	NE	ARG	36	-21.775	27.729	54.600	1.00 63.48
	36	CZ	ARG	36	-22.490	28.780	54.996	1.00 67.12
	37	NH1	ARG	36	-23.564	29.153	54.303	1.00 67.75
	38	NH2	ARG	36	-22.127	29.465	56.082	1.00 68.27

	1111111111111								
	ATO	M	RES	IDUE	x	<u>x</u>	<u>z</u>	<u>Occ</u>	<u>B</u>
	39	С	ARG	36	-18.014	25.292	52.233	1.00	23.26
	40	0	ARG	36	-17.386	26.346	52.208	1.00	21.26
5	41	N	THR	37	-17.423	24.103	52.214	1.00	20.79
	42	CA	THR	37	-15.973	23.969	52.258	1.00	19.72
	43	св	THR	37	-15.549	23.164	53.509	1.00	20.01
	44	OG1	THR	37	-16.014	21.812	53.384	1.00	17.59
	45	CG2	THR	37	-16.157	23.752	54.765	1.00	18.21
10	46	C	THR	37	-15.363	23.272	51.047	1.00	20.77
	47	0	THR	37	-14.234	23.571	50.657	1.00	20.98
	48	N	CYS	112	-0.698	28.695	58.467	1.00	12.58
	49	CA	CYS	112	-0.984	28.096	57.174	1.00	11.86
	50	СВ	CYS	112	-2.457	28.264	56.808	1.00	10.86
15	51	SG	CYS	112	-3.580	27.460	57.935	1.00	22.06
	52	С	CYS	112	-0.126	28.620	56.037	1.00	10.86
	53	0	CYS	112	-0.003	27.939	55.025	1.00	13.89
	54	N	LEU	142	-3.033	20.066	62.705	1.00	16.58
	55	CA	LEU	142	-4.063	20.954	63.207	1.00	17.95
20	56	СВ	LEU	142	-4.281	22.159	62.287	1.00	15.72
	57	CG	LEU	142	-3.100	23.125	62.126	1.00	18.13
	58	CD1	LEU	142	-3.628	24.499	61.738	1.00	14.84
	59	CD2	LEU	142	-2.246	23.204	63.415	1.00	12.26
	60	С	LEU	142	-5.396	20.321	63.598	1.00	17.45
25	61	0	LEU	142	-6.111	20.883	64.417	1.00	17.68
	62	N	ARG	151	-17.927	23.092	65.249	1.00	22.20
	63	CA	ARG	151	-18.230	22.887	63.841	1.00	25.49
	64	СВ	ARG	151	-19.699	23.217	63.534	1.00	24.14
	65	CG	ARG	151	-20.051	22.998	62.052	1.00	33.87
30	66	CD	ARG	151	-21.530	23.158	61.748	1.00	37.44
	67	NE	ARG	151	-21.991	24.545	61.780	1.00	41.79
	68	CZ	ARG	151	-23.272	24.897	61.737	1.00	44.63
	69	NH1	ARG	151	-23.612	26.173	61.771	1.00	46.51
	70	NH2	ARG	151	-24.219	23.970	61.666	1.00	47.88
35	71	С	ARG	151	-17.304	23.634	62.868	1.00	26.00
	72	0	ARG	151	-16.686	23.018	61.992	1.00	26.64
	73	N	GLY	152	-17.164	24.940	63.077	1.00	24.63
	74	CA	GLY	152	-16.353	25.769	62.201	1.00	23.08
	75	С	GLY	152	-14.912	25.371	61.944	1.00	22.21
40	76	0	GLY	152	-14.366	25.679	60.880	1.00	21.32
	77	N	ILE	155	-14.484	20.649	60.878	1.00	18.82
	78	CA	ILE	155	-14.866	20.149	59.564	1.00	18.77
	79	СВ	ILE	155	-16.223	20.733	59.071	1.00	17.77
	80	CG2	ILE	155	-17.365	20.321	60.018	1.00	12.79

	ATO	M	RES	IDUE	<u>x</u>	<u>Y</u>	<u>z</u>	Occ B
	81	_ CG1	ILE	155	-16.127	22.249	- 58.924	1.00 15.46
	82	CD1	ILE	155	-17.339	22.892	58.331	1.00 20.95
5	83	С	ILE	155	-13.823	20.489	58.531	1.00 18.45
	84	0	ILE	155	-13.819	19.909	57.461	1.00 21.51
	85	N	ILE	156	-12.958	21.450	58.819	1.00 18.70
	86	CA	ILE	156	-11.985	21.825	57.812	1.00 19.10
	87	СВ	ILE	156	-11.999	23.375	57.499	1.00 24.79
10	88	CG2	ILE	156	-13.391	23.974	57.563	1.00 23.59
	89	CG1	ILE	156	-11.095	24.139	58.438	1.00 24.77
	90	CD1	ILE	156	-9.886	24.631	57.730	1.00 27.97
	91	С	ILE	156	-10.544	21.338	57.935	1.00 18.32
	92	0	ILE	156	-9.922	21.071	56.918	1.00 18.31
15	93	N	PHE	157	-10.005	21.200	59.142	1.00 16.26
	94	CA	PHE	157	-8.611	20.780	59.280	1.00 15.33
	95	CB	PHE	157	-7.984	21.371	60.551	1.00 15.71
	96	CG	PHE	157	-7.868	22.858	60.523	1.00 19.05
	97	CD1	PHE	157	-8.814	23.654	61.158	1.00 19.74
20	98	CD2	PHE	157	-6.844	23.476	59.814	1.00 15.77
	99	CE1	PHE	157	-8.737	25.057	61.076	1.00 21.28
	100	CE2	PHE	157	-6.761	24.855	59.727	1.00 11.63
	101	CZ	PHE	157	-7.701	25.650	60.351	1.00 17.65
	102	С	PHE	157	-8.278	19.286	59.190	1.00 16.07
25	103	0	PHE	157	-9.045	18.413	59.622	1.00 17.36
	104	N	LEU	189	-7.786	34.391	64.172	1.00 19.01
	105	CA	LEU	189	-7.338	33.021	63.922	1.00 19.46
	106	CB	LEU	189	-6.897	32.907	62.463	1.00 23.06
	107	CG	LEU	189	-6.422	31.587	61.872	1.00 23.21
30	108	CD1	LEU	189	-7.435	30.493	62.157	1.00 24.24
	109	CD2	LEU	189	-6.253	31.811	60.355	1.00 25.52
-	110	С	LEU	189	-6.164	32.746	64.850	1.00 18.26
	111	0	LEU	189	-5.082	33.338	64.688	1.00 15.62
	112	N	LEU	205	-7.765	25.549	68.834	1.00 19.58
35	113	CA	LEU	205	-7.699	26.448	67.677	1.00 19.69
	114	СВ	LEU	205	-7.475	25.601	66.398	1.00 19.66
	115	CG	LEU	205	-7.104	26.238	65.052	1.00 19.36
	116	CD1	LEU	205	-6.309	25.259	64.201	1.00 18.01
	117	CD2	LEU	205	-8.366	26.671	64.321	1.00 18.66
40	118	С	LEU	205	-8.996	27.273	67.597	1.00 17.98
	119	0	LEU	205	-10.088	26.731	67.804	1.00 20.78
	120	N	MET	207	-11.189	30.405	65.330	1.00 16.50
	121	CA	MET	207	-11.285	31.040	64.025	1.00 18.56
	122	СВ	MET	207	-11.105	30.003	62.931	1.00 20.76

164 CA LEU

220

	TABLE 1 - CORL								
	ATO	M	RESI	OUE	X	<u>Y</u>	<u>z</u>	Occ B	
	123	CG	MET	207	-11.293	30.550	61.542	1.00 23.66	
	124	SD	MET	207	-10.858	29.292	60.353	1.00 32.43	
5	125	CE	MET	207	-12.262	28.166	60.555	1.00 31.26	
	126	С	MET	207	-12.599	31.742	63.776	1.00 18.83	
	127	0	MET	207	-13.666	31.152	63.934	1.00 19.82	
	128	N	GLY	209	-14.190	32.425	61.134	1.00 20.42	
	129	CA	GLY	209	-14.305	32.056	59.737	1.00 23.52	
10	130	С	GLY	209	-14.623	33.114	58.701	1.00 24.44	
	131	0	GLY	209	-13.771	33.456	57.884	1.00 26.52	
	132	N	ASN	210	-15.839	33.640	58.738	1.00 23.37	
	133	CA	ASN	210	-16.291	34.615	57.758	1.00 25.94	
	134	CB	ASN	210	-17.724	35.006	58.035	1.00 24.49	
15	135	CG	ASN	210	-18.633	33.818	58.029	1.00 25.13	
	136	OD1	ASN	210	-18.680	33.068	57.061	1.00 25.86	
	137	ND2	ASN	210	-19.325	33.603	59.130	1.00 25.81	
	138	С	ASN	210	-15.426	35.831	57.639	1.00 26.62	
	139	0	ASN	210	-15.214	36.334	56.545	1.00 27.59	
20	140	N	VAL	212	-12.110	35.950	58.414	1.00 25.15	
	141	CA	VAL	212	-10.808	35.645	57.793	1.00 25.13	
	142	CB	VAL	212	-10.004	34.469	58.486	1.00 23.52	
	143	CG1	VAL	212	-10.492	34.190	59.896	1.00 20.23	
	144	CG2	VAL	212	-9.958	33.220	57.653	1.00 23.20	
25	145	С	VAL	212	-10.971	35.405	56.272	1.00 23.49	
	146	0	VAL	212	-10.095	35.769	55.493	1.00 20.62	
	147	N	PHE	213	-12.115	34.859	55.853	1.00 22.05	
	148	CA	PHE	213	-12.371	34.627	54.431	1.00 22.19	
	149	CB	PHE	213	-13.718	33.954	54.244	1.00 20.95	
30	150	CG	PHE	213	-14.116	33.771	52.794	1.00 23.47	
	151	CD1	PHE	213	-14.758	34.788	52.101	1.00 22.38	
	152		PHE	213	-13.833	32.587	52.132	1.00 21.51	
	153		PHE	213	-15.098	34.634	50.784	1.00 23.71	
	154		PHE	213	-14.173	32.423	50.813	1.00 26.06	
35	155	CZ	PHE	213	-14.805	33.446	50.133	1.00 25.34	
	156	С	PHE	213	-12.307	35.935	53.645	1.00 22.07	
	157	0	PHE	213	-11.618	36.045	52.629	1.00 22.83	
	158	N	ALA	216	-8.801	37.118	53.586	1.00 18.14	
	159	CA	ALA	216	-7.964	36.216	52.808	1.00 19.00	
40	160	СВ	ALA	216	-8.183	34.775	53.218	1,00 17.94	
	161	С	ALA	216	-8.146	36.371	51.303	1.00 17.97	
	162	0	ALA	216	-7.166	36.285	50.563	1.00 16.52	
	163	N	LEU	220	-4.879	37.537	49.135	1.00 15.55	
	7 ~ 4	~-		~ ~ ~	4 252	~ ~ ~ ~			

-4.379 36.571 48.174 1.00 17.76

TABLE 1 - CONG								
	ATON	1	RES1	DUE	<u>x</u>	<u>Y</u>	<u>z</u>	Occ B
	165	CB	LEU	220	-5.127	35.233	48.275	1.00 15.75
	166	CG	LEU	220	-4.703	34.362	49.466	1.00 13.65
5	167	CD1	LEU	220	-5.621	33.177	49.608	1.00 13.89
	168	CD2	LEU	220	-3.278	33.915	49.310	1.00 9.45
	169	С	LEU	220	-4.491	37.186	46.769	1.00 17.28
	170	0	LEU	220	-3.618	36.957	45.932	1.00 20.62
	171	N	HIS	244	-3.012	27.197	48.689	1.00 18.90
10	172	CA	HIS	244	-3.165	26.587	49.988	1.00 17.18
	173	СВ	HIS	244	-2.914	27.594	51.111	1.00 17.15
	174	CG	HIS	244	-3.178	27.035	52.465	1.00 17.42
	175	CD2	HIS	244	-2.579	26.015	53.138	1.00 14.15
	176	ND1	HIS	244	-4.285	27.385	53.212	1.00 16.36
15	177	CE1	HIS	244	-4.370	26.596	54.264	1.00 16.12
	178	NE2	HIS	244	-3.354	25.760	54.244	1.00 19.14
	179	C	HIS	244	-4.631	26.151	49.971	1.00 15.41
	180	0	HIS	244	-5.503	26.936	49.591	1.00 14.10
	181	N	ALA	246	-7.440	26.051	51.721	1.00 19.76
20	182	CA	ALA	246	-8.240	26.512	52.864	1.00 20.02
	183	CB	ALA	246	-8.166	28.017	52.975	1.00 22.28
	184	С	ALA	246	-9.687	26.075	52.772	1.00 23.08
	185	0	ALA	246	-10.281	25.620	53.759	1.00 23.37
	186	N	ASN	247	-10.280	26.349	51.615	1.00 21.20
25	187	CA	ASN	247	-11.645	25.983	51.311	1.00 22.48
	188	CB	ASN	247	-12.653	26.733	52.190	1.00 24.84
	189	CG	ASN	247	-12.700	28.195	51.888	1.00 26.54
	190	OD1	ASN	247	-13.343	28.618	50.942	1.00 32.63
	191	ND2	ASN	247	-12.016	28.987	52.686	1.00 31.62
30	192	С	ASN	247	-11.824	26.292	49.825	1.00 23.43
	193	0	ASN	247	-11.076	27.097	49.249	1.00 23.61
	194	N	ARG	249	-14.126	27.939	48.119	1.00 27.79
	195	CA	ARG	249	-14.566	29.305	47.811	1.00 28.98
	196	СВ	ARG	249	-15.376	29.912	48.966	1.00 34.43
35	197	CG	ARG	249	-16.577	29.118	49.433	1.00 45.16
	198	CD	ARG	249	-17.307	29.859	50.557	1.00 52.72
	199	NE	ARG	249	-18.235	30.862	50.037	1.00 60.09
	200	CZ	ARG	249	-18.607	31.976	50.675	1.00 62.73
	201		l ARG	249	-19.469	32.803	50.096	
40	202	NH	2 ARG	249	-18.112	32.290	51.867	
	203	С	ARG	249	-13.369	30.208	47.562	
	204	0	ARG	249	-13.358	31.007		
	205	N	ILE	250	-12.393	30.135		
	206	CA	ILE	250	-11.201	30.951	48.306	1.00 24.93

	IADLE	1-0	ont.					
	ATO	<u>4</u>	REST	DUE	x	$\overline{\mathbf{A}}$	<u>z</u>	Occ B
	207	СВ	ILE	250	-10.365	30.965	49.621	1.00 26.91
5	208	CG2	ILE	250	-8.880	31.128	49.350	1.00 22.69
	209	CG1	ILE	250	-10.902	32.091	50.506	1.00 32.57
	210	CD1	ILE	250	-10.216	32.245	51.828	1.00 38.42
	211	С	ILE	250	-10.391	30.533	47.076	1.00 23.12
	212	0	ILE	250	-10.024	31.380	46.265	1.00 20.24
10	213	N	ASN	274	-7.884	20.993	55.104	1.00 16.04
	214	CA	ASN	274	-6.887	22.042	55.213	1.00 16.17
	215	СВ	ASN	274	-7.524	23.307	55.790	1.00 16.71
	216	CG	ASN	274	-6.524	24.433	56.031	1.00 15.26
	217	OD1	ASN	274	-5.290	24.259	55.970	1.00 14.69
15	218	ND2	ASN	274	-7.058	25.607	56.319	1.00 17.12
	219	С	ASN	274	-5.800	21.538	56.144	1.00 18.93
	220	0	ASN	274	-6.016	21.456	57.366	1.00 18.02
	221	N	SER	276	-2.883	23.010	56.745	1.00 14.34
	222	CA	SER	276	-1.996	24.086	57.152	1.00 14.51
20	223	CB	SER	276	-1.772	23.993	58.686	1.00 16.80
	224	OG	SER	276	-1.051	25.104	59.218	1.00 17.07
	225	С	SER	276	-0.675	24.141	56.352	1.00 13.90
	226	0	SER	276	-0.719	24.199	55.132	1.00 15.64
	227	N	ALA	303	-0.360	31.072	49.683	1.00 15.48
25	228	CA	ALA	303	-0.934	30.617	50.937	1.00 13.31
	229	CB	ALA	303	0.045	29.692	51.624	1.00 11.10
	230	С	ALA	303	-1.261	31.801	51.853	1.00 12.59
	231	0	ALA	303	-0.614	32.842	51.789	1.00 11.22
	232	N	PHE	304	-2.299	31.642	52.666	1.00 14.82
30	233	CA	PHE	304	-2.726	32.650	53.626	1.00 15.34
	234	СВ	PHE	304	-4.075	33.248	53.207	1.00 17.57
	235	CG	PHE	304	-4.561	34.355	54.119	
	236	CD1	L PHE	304	-5.356	34.060	55.243	1.00 22.77
	237	CD2	2 PHE	304	-4.220	35.687	53.866	1.00 22.34
35	238	CE1	L PHE	304	-5.794	35.064	56.089	1.00 19.22
	239	CE	2 PHE	304	-4.657	36.705	54.712	1.00 24.60
	240	CZ	PHE	304	-5.447	36.389	55.826	1.00 19.92
	241	С	PHE	304	-2.831	31.946	54.982	1.00 15.89
	242	0	PHE	304	-3.176	30.768	55.041	1.00 14.69
40	243	N	GLY	305	-2.490	32.637	56.065	1.00 14.20
	244	CA	GLY	305	-2.583	32.002	57.363	1.00 13.74
	245	С	GLY	305	-2.765	32.889	58.578	
	246	0	GLY	305	-2.788	34.115	58.496	
	247	N	GLY	306	-2.856	32.235	59.727	1.00 17.80

TABLE I - Cont. RESIDUE $\underline{\mathbf{x}}$ <u>Y</u> $\underline{\mathbf{z}}$ <u>Occ</u> <u>B</u> **ATOM** 1.00 17.87 -3.033 32.929 60.990 306 248 CA GLY 1.00 19.45 33.892 61.357 249 С GLY 306 -1.928 1.00 19.00 60.965 -0.758 33.751 5 250 0 GLY 306 1.00 16.05 66.721 0.118 30.521 487 251 N PHE 1.00 15.49 487 -0.254 31.597 65.800 PHE 252 CA 31.168 64.330 1.00 10.60 487 -0.539 253 CB PHE 64.167 1.00 9.77 487 -1.559 30.100 254 CG PHE 1.00 11.44 28.788 63.944 10 255 CD1 PHE 487 -1.169 1.00 12.27 30.410 64.157 487 -2.916 256 CD2 PHE -2.109 27.796 63.715 1.00 10.46 487 CE1 PHE 257 63.925 1.00 11.90 -3.878 29.416 487 2.58 CE2 PHE 487 -3.477 28.111 63.705 1.00 9.96 CZPHE 259 66.460 1.00 13.45 15 260 C PHE 487 -1.381 32.376 31.776 67.132 1.00 15.58 -2.233 261 0 PHE 487

Table II provides the distances between (D) atoms of the active site residues that are within 5.0 angstroms of one another as defined by Table I.

20

TABLE II

		Distance			÷	
4	Atom 1 Atom 2	Between (D=)	<u>Atc</u>	m 1 Ato	<u>m 2</u>	Between (D=)
	28CA 151CD	4.796		32N	33CA	4.198
25	28CB 33CD1	4.204		32N	33C	4.728
	28CB 151CD	4.292		32N	33CB	4.967
	28CB 33CG1	4.398	45	32CA	33N	2.428
•	28CB 151CG	4.703		32CA	33CA	3.808
	280G1 33CG1	3.472		32CA	33C	4.422
30	280G1 33CD1	3.709		32CA	33CB	4.890
	280G1 151CD	3.743		32CB	3 3N	3.133
	280G1 32CE3	3.902	50	32CB	33CA	4.454
	280G1 151CG	4.159		32CG	33N	3.849
	280G1 32CZ3	4.306		32CG	33CA	4.892
35	280G1 155CG2	4.418		32CD2	33N	3.941
	280G1 32CD2	4.776		32CD2	36CB	4.506
	280G1 33CB	4.930	55	32CD2	36CD	4.511
	280G1 151NE	4.962		32CD2	33CA	4.602
	28CG2 33CD1	3.435		32CD2	36NE	4.722
40	28CG2 33CG1	4.093		32CE2	36CD	3.747
	32N 33N	2.785		32CE2	36NE	3.804

	32CE2	36CZ	4.270		32CZ3	33CG1	4.754
	32CE2	36CB	4.465		32CZ3	151CZ	4.802
	32CE2	36NH2	4.640	45	32CH2	36CD	3.427
	32CE2	36CG	4.706		32CH2	151NE	3.956
5	32CE2	151CZ	4.851		32CH2	36CG	4.238
	32CE2	36NH1	4.909		32CH2	36NE	4.297
	32CE3	33N	3.532		32CH2	151CD	4.299
	32CE3	33CA	3.828	50	32CH2	151CZ	4.365
	32CE3	33CG1	4.157		32CH2	155CD1	4.378
10	32CE3	36CB	4.522		32CH2	36CB	4.459
	32CE3	155CD1	4.542		32CH2	151NH1	4.669
	32CE3	33CB	4.649		32CH2	151CG	4.722
	32CE3	151CD	4.657	55	32CH2	36NH2	4.800
	32CE3	36CD	4.719		32CH2	36CZ	4.890
15	32CE3	151NE	4.929		32C	33CA	2.430
	32CD1	36NE	4.848		32C	33C	3.009
	32NE1	36NE	3.919		32C	330	3.730
	32NE1	36CZ	4.139	60	32C	33CB	3.737
	32NE1	36CD	4.346		32C	36N	4.094
20	32NE1	36NH1	4.404		32C	33CG1	4.149
	32NE1	36NH2	4.693		32C	36CB	4.453
	32CZ2	36CD	3.146		32C	36CA	4.929
	32CZ2	36NE	3.563	65	32C	33CG2	4.950
	32CZ2	36CZ	3.945		320	33N	2.249
25	32CZ2	36NH2	3.954		320	33CA	2.757
	32CZ2	36CG	4.276		320	33C	2.945
	32CZ2	151CZ	4.401		320	36 N	2.962
	32CZ2	151NE	4.403	70	320	330	3.261
	32CZ2	151NH1	4.452		320	36CB	3.270
30	32CZ2	36CB	4.464		320	36CA	3.712
		36NH1	4.873		320	33CB	4.267
	32CZ2	151NH2	4.924		320	36CG	4.657
	32CZ2	151CD	4.993	75	320	37N	4.735
	32CZ3	155CD1	3.624		320	36C	4.758
35	32CZ3	151CD	4.106		320	33CG1	4.844
	32CZ3	36CD	4.225		33N	36N	4.835
	32CZ3	151NE	4.250		33CA	370G1	4.386
	32CZ3	151CG	4.430	80	33CA	36N	4.658
	32CZ3	36CB	4.488		33CA	36CB	4.957
40	32CZ3	33CA	4.545		33CA	37N	4.991
	32CZ3	33N	4.616		33CA	37CG2	4.994
	32CZ3	36CG	4.653		33CB	370G1	4.651

	33CG2	370G1	3.631		3.505	25660	4 420
		155CB	4.276		36CB	37CG2	4.430
		155CD1	4.585	45	36CB	37CA	4.592
	33CG2			45	36CG	37N	3.982
5	33CG2		4.633		36CG	37CG2	4.535
3		37CG2	4.695		36CG	37CA	4.970
		155CG2	4.767		36C	37CA	2.432
	33CG2	37CB	4.789	50	36C	37CG2	3.497
		155CG1	4.874	50	36C	37CB	3.498
10		155CG2	4.351		36C	37C	3.538
10		155CB	4.696		36C	370G1	4.176
		155CD1	4.793		36C	370	4.442
		155CG2	4.145		36C	249CD	4.916
		155CB	4.658	55	36C	249CG	4.954
45	33C	370G1	3.580		360	37N	2.243
15	33C	36N	3.854		360	37CA	2.766
	33C	37N	4.042		360	37CG2	3.844
	33C	37CB	4.576		360	37C	3.859
	33C	36CA	4.656	60	360	249CD	3.882
00	33C	37CG2	4.688		360	37CB	3.898
20	33C	36CB	4.779		360	249CG	4.005
	33C	37CA	4.826		360	370	4.477
	33C	36C	4.863		360	247CB	4.749
	330	370G1	2.646	65	360	2470D1	4.807
	330	37N	2.851		360	370G1	4.881
25	330	36N	3.274		37CA	247CB	4.321
	330	37CB	3.467		37CA	247CA	4.867
	330	37CA	3.608		37CB	156CG2	4.663
	330	37CG2	3.684	70	37CB	247CB	4.782
	330	36C	3.777		37CG2	155CD1	3.854
30	330	36CA	3.840		37CG2	156CG2	3.941
	330	36CB	4.138		37CG2	155CG1	4.422
	330	37C	4.148		37CG2	156CB	4.991
	330	360	4.926	75	37C	247CB	4.542
	36N	37N	2.838		37C	247CA	4.609
35	36N	37CA	4.277		37C	247C	4.810
	36N	37C	4.949		370	247CA	3.598
	36CA	37N	2.434		370	247C	3.729
	36CA	37CA	3.811	80	370	247CB	3.853
	36CA	37CG2	4.500		370	247N	4.926
40	36CA	37CB	4.704		370	2470	4.938
	36CA	37C	4.796		112N	2760G	3.686
	36CB	37N	3.318		112N	305CA	3.963

***	00//5102						
	112N	306N	4.333		112SG	3040	4.414
	112N	305C	4.677	,	112SG	157CE2	4.485
	112N	3040	4.709	45	112SG	274CG	4.632
	112N	276CB	4.828		112SG	276N	4.659
5	112N	305N	4.952		112SG	305CA	4.685
	112N	276CA	4.966		112SG	276C	4.686
	112CA	2760G	3.624		112SG	244ND1	4.776
	112CA	276C	4.051	50	112SG	142CD1	4.820
	112CA	3040	4.061		112C	3040	3.861
10	112CA	276CA	4.136		112C	305CA	4.386
	112CA	305CA	4.225		112C	304C	4.415
	112CA	2760	4.408		112C	276C	4.524
	112CA	244NE2	4.434	55	112C	303CB	4.545
	112CA	276CB	4.443		112C	2760	4.551
15	112CA	244CE1	4.710		112C	244CD2	4.605
	112CA	304C	4.800		112C	305N	4.661
	112CA	244CD2	4.813		112C	244NE2	4.671
	112CA	305N	4.911	60	112C	2760G	4.831
	112CB	3040	3.148		112C	244CG	4.958
20	112CB	244CE1	3.594		1120	244CD2	3.728
	112CB	244NE2	3.694		1120	2760	3.809
	112CB	305CA	3.781		1120	303CB	3.827
	112CB	304C	4.127	65	1120	244NE2	4.073
	112CB	244ND1	4.129		1120	276C	4.079
25	112CB	2760G	4.216		1120	244CG	4.177
	112CB	276CA	4.217		1120	3040	4.251
	112CB	244CD2	4.306		1120		
	112CB	305N	4.436	70	1120	244ND1	4.683
	112CB	276C	4.515		1120	276CA	4.831
30	112CB	244CG			1120		4.890
	112CB	276CB	4.716		1120		4.905
	112CB	2760	4.728		1120		4.955
	112CB	306N	4.945	75			4.975
	112CB	305C	4.962		142CA		4.754
35	112CB	2740D1	4.977		142CA		4.956
	112SG	2760G	3.687		142CB		3.797
	112SG		3.809		142CB		4.058
	112SG	244CE1	3.853	80			4.165
	112SG	276CB	3.982		142CB		4.170
40	112SG	244NE2	4.070		142CB		4.469
	112SG	2740D1	4.127		142CB	276CB	4.757

PCT/US00/15659

112SG 274ND2 4.259

142CB 157CD1 4.905

wo	00/75169						PCT/US00/15659
	142CG 2	276CB	3.788		151C	155N	4.563
			4.071		151C	155CD1	4.597
		205CD1	4.377	45	151C	155CB	4.899
		L57CD2	4.414		1510	152N	2.258
5	142CG 1	L57CE2	4.706		1510	152CA	2.779
	142CD1 2	276CB	3.608		1510	152C	2.947
	142CD1 2	2760G	3.655		1510	155CG1	3.212
	142CD1 2	205CD1	3.719	50	1510	155CG2	3.411
	142CD1	157CE2	3.740		1510	155N	3.421
10	142CD1	157CD2	3.885		1510	1520	3.701
	142CD1	487CZ	4.116		1510	155CD1	3.721
	142CD1	487CE1	4.134		1510	155CB	3.737
	142CD1	157CZ	4.454	55	1510	155CA	4.176
	142CD1	157CG	4.706		152CA	155CG1	4.815
15	142CD1	276CA	4.885		152CA	155CD1	4.922
	142CD2	487CE1	4.604		152C	207CE	4.094
	142CD2	205CD1	4.620		152C	155CG1	4.510
	142CD2	2760G	4.759	60	152C	156CG2	4.843
	142CD2	276CB	4.818		152C	155N	4.860
20	142C	157CB	4.133		1520	207CE	3.274
	142C	157CG	4.691		1520	156CG2	3.855
	1420	157CB	4.323		1520	155CG1	4.323
	1420	205CD1	4.386	65	1520	156CG1	4.363
	1420	157CG	4.706		1520	156CB	4.727
25	151N	152N	2.952		1520	155CD1	4.807
	151N	152CA	4.351		1520	156N	4.911
	151CA	152N	2.436		155N	156N	2.685
	151CA	152CA	3.810	70	155N	156CA	4.127
	151CA	152C	4.558		155N	156CG2	4.821
30	151CA	155CG2	4.685		155N	157N	4.835
	151CB	152N	3.099		155N	156C	4.966
	151CB	152CA	4.414		155CA		2.427
	151CG	152N	3.627	75	155CA	156CA	3.765

	142002	2 / 00G	4.733				
	142CD2	276CB	4.818		152C	155N	4.860
20	142C	157CB	4.133		1520	207CE	3.274
	142C	157CG	4.691		1520	156CG2	3.855
	1420	157CB	4.323		1520	155CG1	4.323
	1420	205CD1	4.386	65	1520	156CG1	4.363
	1420	157CG	4.706		1520	156CB	4.727
25	151N	152N	2.952		1520	155CD1	4.807
	151N	152CA	4.351		1520	156N	4.911
	151CA	152N	2.436		155N	156N	2.685
	151CA	152CA	3.810	70	155N	156CA	4.127
	151CA	152C	4.558		155N	156CG2	4.821
30	151CA	155CG2	4.685		155N	157N	4.835
	151CB	152N	3.099		155N	156C	4.966
	151CB	152CA	4.414		155CA	156N	2.427
	151CG	152N	3.627	75	155CA	156CA	3.765
	151CG	155CG2	4.303		155CA	156CG2	4.562
35	151CG	155CD1	4.606		155CA	156C	4.769
	151CG	152CA	4.623		155CA	156CB	4.784
	151CD	152N	4.899		155CA	157N	4.991
	151C	152CA	2.431	80	155CB	156N	3.352
	151C	152C	3.097		155CB	156CA	4.554
40	151C	1520	4.095		155CB	156CG2	4.561
	151C	155CG1	4.343		155CG2	156N	4.705
	151C	155CG2	4.371		155CG1	. 156N	3.270
				17			

W	00//3109						1 C 17 U 3 U
	155CG1	156CG2	3.509		156CG1	157CE2	4.578
	155CG1	156CA	4.310		156CG1	157CB	4.670
	155CG1	156CB	4.510	45	156CG1	207CE	4.697
	155CD1	156CG2	4.165		156CG1	274ND2	4.790
5	155CD1	156N	4.638		156CG1	2460	4.975
	155C	156CA	2.383		156CD1	274ND2	3.308
	155C	156C	3.439		156CD1	274CB	3.331
	155C	156CB	3.567	50	156CD1	157CZ	3.561
	155C	156CG2	3.643		156CD1	157CE1	3.563
10	155C	157N	3.931		156CD1	157N	3.712
	155C	1560	4.261		156CD1	157CE2	3.715
	155C	156CG1	4.558		156CD1	157CD1	3.722
	1550	156N	2.227	55	156CD1	274CG	3.772
	1550	156CA	2.675		156CD1	157CD2	3.864
15	1550	156C	3.604		156CD1	157CG	3.875
	1550	156CB	3.915		156CD1	2460	4.111
•	1550	156CG2	4.089		156CD1	157CA	4.343
	1550	1560	4.103	60	156CD1	274CA	4.694
	1550	157N	4.363		156CD1	157CB	4.712
20	156N	157N	2.981		156CD1	274N	4.913
	156N	157CA	4.422		156CD1	2740D1	4.936
	156CA	157N	2.466		156C	157N	1.329
	156CA	157CA	3.825	65	156C	157CA	2.420
	156CA	157C	4.700		156C	157C	3.305
25	156CA	1570	4.854		156C	157CB	3.660
	156CA	157CB	4.870		156C	1570	3.694
	156CA	157CD1	4.959		156C	274N	3.900
	156CA	274N	4.980	70	156C	157CG	4.021
	156CB	157N	3.377		156C	274CB	4.195
30	156CB	157CA	4.624		156C	157CD1	4.329
	156CB	2460	4.688		156C	2740	4.565
	156CB	274CB	4.791		156C	274CA	4.613
	156CB	157CD1	4.859	75	156C	157CD2	4.668
	156CG2	157N	4.653		1560	157N	2.229
35	156CG1	157N	3.213	•	1560	157CA	2.717
	156CG1	157CD1	3.583		1560	274N	2.729
	156CG1	157CE1	3.655		1560	157C	3.324
	156CG1	157CG	4.050	80	1560	274CB	3.467
	156CG1	157CZ	4.179		1560	274CA	3.614
40	156CG1	157CA	4.262		1560	1570	3.892
•	156CG1	157CD2	4.517		1560	2740	3.950
	156CG1	274CB	4.523		1560	157CB	4.129

PCT/US00/15659

	1560	274C	4.220		157CZ	205CD1	4.113
	1560	157CG	4.518		157CZ	205CD2	4.153
	1560	274CG	4.862	45	157CZ	274CG	4.640
	1560	157CD2	4.863		157CZ	205CG	4.775
5	157N	2740	4.374		157CZ	207SD	4.820
	157N	274N	4.566		157C	2740	3.627
	157N	274CB	4.672		157C	274N	4.446
	157CA	2740	3.295	50	157C	274C	4.527
	157CA	274N	4.244		1570	2740	4.850
10	157CA	274C	4.279		189N	207CA	4.847
	157CA	274CB	4.444		189CA	207CA	4.417
	157CA	274CA	4.594		189CA	207N	4.864
	157CB	2740	3.745	55	189CA	207CB	4.928
	157CB	274C	4.921		189CA	487CE2	4.997
15	157CG	2740	3.919		189CB	306CA	4.135
	157CG	205CD1	4.661		189CB	212CG1	4.600
	157CG	274CB	4.767		189CB	487CE2	4.841
	157CG	274CG	4.946	60	189CB	306N	4.926
	157CD1	205CD1	4.256		189CB	487CD2	4.995
20	157CD1	205CD2	4.394		189CG	306CA	3.750
	157CD1	205CG	4.976		189CG	487CE2	3.924
	157CD2	2740	3.280		189CG	306N	4.212
	157CD2	274CG	3.915	65	189CG	487CD2	4.347
	157CD2	274CB	4.085		189CG	487CZ	4.911
25	157CD2	274ND2	4.099		189CG	207CG	4.991
	157CD2	2740D1	4.220		189CD1	207CB	3.783
	157CD2	274C	4.280		189CD1	207CG	3.907
	157CD2	205CD1	4.766	70	189CD1	207SD	4.051
	157CD2	274CA	4.819		189CD1	487CE2	4.116
30	157CE1	205CD2	3.643		189CD1	207CA	4.314
	157CE	205CD1	3.963		189CD1	205CD2	4.490
	157CE	L 205CG	4.458		189CD1	487CZ	4.872
	157CE	L 207CE	4.729	75	189CD1	L 207N	4.916
	157CE	L 207SD	4.791		189CD	L 487CD2	4.942
35	157CE2	2 274ND2	3.503		189CD2	2 306CA	3.467
	157CE2	2 274CG	3.728		189CD	2 306N	3.480
	157CE	2 274OD1	4.078		189CD	2 305C	4.060
	157CE	2 2740	4.205	80	189CD	2 3050	4.557
	157CE	2 274CB	4.299		189CD	2 305CA	4.739
40	157CE	2 205CD1	4.515		189CD	2 212CG2	4.797
	157CE	2 274C	4.976		189CD	2 212CG1	4.883
	157CZ	274ND2	4.083		189CD	2 306C	4.903

	189CD2	487CE2	4.911		209N	212N	4.914
	189CD2	212CB	4.963		209CA	210N	2.421
	189C	487CD2	4.060	45	209CA	210CA	3.796
	189C	487CE2	4.144		209CA	212CG1	4.372
5	189C	4870	4.648		209CA	210C	4.462
	189C	306CA	4.974		209CA	212N	4.662
	1890	487CD2	3.681		209CA	210CB	4.826
	1890	4870	4.066	50	209CA	212CG2	4.959
	1890	487CE2	4.173		209CA	210CG	4.975
10	1890	487C	4.215		209C	210CA	2.434
	1890	306CA	4.247		209C	210C	3.026
	1890	306C	4.621		209C	210CB	3.693
	1890	487CG	4.813	55	209C	212N	3.800
	205CG	487CZ	4.299		209C	2100	3.920
15	205CG	487CE2	4.667		209C	210CG	4.126
	205CD1	487CZ	4.050		209C	213N	4.177
	205CD1	487CE2	4.824		209C	2100D1	4.376
	205CD1	487CE1	4.931	60	209C	212CG1	4.433
	205CD2	207CB	4.532		209C	213CB	4.625
20	205CD2	207N	4.789		209C	212CA	4.667
	205C	207N	4.445		209C	210ND2	4.747
	2050	207N	4.564		209C	212CG2	4.782
	207CA	209N	4.326	65	209C	212CB	4.818
	207CB	209N	4.314		209C	212C	4.948
25	207CB	209CA	4.966		2090	210N	2.245
	207CG	209N	3.475		2090	210CA	2.777
	207CG	209CA	3.821		2090	210C	2.905
	207CG	212CG1	4.074	70	2090	213N	2.972
	207CG	212CG2	4.903		2090	212N	3.043
30	207SD	209CA	4.461		2090	2100	3.487
	207SD	209N	4.640		2090	213CB	3.674
	207SD	212CG2	4.851		2090	212CA	3.685
	207SD	212CG1	4.933	75	2090	212C	3.773
	207CE	209CA	4.469		2090	212CG2	3.827
35	207CE	209N	4.711		2090	213CA	3.906
	207C	209N	3.159		2090	212CG1	3.916
	207C	209CA	4.396		2090	212CB	3.947
	2070	209N	3.120	80	2090	210CB	4.249
	2070	209CA	4.341		2090	210CG	4.878
40	209N	210N	3.152		2090	2120	4.958
	209N	212CG1	4.281		2090	2100D1	4.993
	209N	210CA	4.540		210N	212N	4.398

	210N	213N	4.866		212C	216CA	4.658
	210N	213CB	4.979		212C	213CG	4.966
	210CA	213CB	4.405	45	2120	213N	2.245
	210CA	212N	4.438		2120	216N	2.670
5	210CA	213N	4.596		2120	213CA	2.759
	210C	213N	3.886		2120	213C	2.887
	210C	213CB	4.239		2120	216CB	3.134
	210C	213CA	4.591	50	2120	2130	3.255
	210C	212CA	4.624		2120	216CA	3.457
10	210C	212C	4.679		2120	213CB	4.240
	2100	213N	3.501		2120	304CE1	4.399
	2100	213CB	3.633		2120	216C	4.660
	2100	212N	3.644	55	2120	304CZ	4.701
	2100	213CA	3.933		213N	216N	4.607
15	2100	213C	4.126		213N	216CB	4.734
	2100	212C	4.352		213CA	250CD1	4.134
	2100	212CA	4.631		213CA	216CB	4.363
	2100	213CG	4.674	60	213CA	216N	4.434
	2100	213CD1	4.727		213CA	250CG1	4.898
20	212N	213N	2.784		213CA	216CA	4.958
	212N	213CA	4.205		213CB	250CD1	4.585
	212N	213C	4.773		213CG	250CG1	4.288
	212N	213CB	4.895	65	213CG	250CD1	4.298
	212CA	213N	2.468		213CG	249NH2	4.361
25	212CA	213CA	3.845		213CD1	249NH2	4.189
	212CA	213C	4.420		213CD1	250CG1	4.969
	212CA	216N	4.888		213CD1	249CZ	4.976
	212CA	213CB	4.891	70	213CD2	250CG1	3.388
	212CB	213N	3.397		213CD2	250CD1	3.646
30	212CB	213CA	4.698		213CD2	247ND2	4.070
	212CB	304CE1	4.881		213CD2	2470D1	4.172
	212CG1	213N	4.408		213CD2	249NH2	4.297
	212CG2		3.253	75	213CD2	249CB	4.423
			4.264			247CG	4.542
35		304CE1	4.815		213CD2	250CB	4.579
	212C	213N	1.335		213CD2	250N	4.650
	212C	213CA	2.440		213CD2	249CD	4.689
	212C	213C	2.994	80	213CD2	250CA	4.924
	212C	213CB	3.710		213CE1	249NH2	3.969
40	212C	2130	3.755		213CE1	249CZ	4.403
	212C	216N	3.855		213CE1	249NH1	4.789
	212C	216CB	4.183		213CE1	250CG1	4.914

****	00/75105						1 0 17 0 300
	213CE1	249NE	4.963		2130	213N	3:471
	213CE2	250CG1	3.302		2130	216CA	3.662
	213CE2	249CB	3.341	45	2130	216CB	3.709
	213CE2	250N	3.738		2130	216C	3.731
5	213CE2	213CB	3.785		2130	250CD1	4.129
	213CE2	2470D1	3.897		2130	250CG1	4.545
	213CE2	249C	4.015		2130	2160	4.914
	213CE2	249CD	4.057	50	216N	304CZ	4.099
	213CE2	249NH2	4.080		216N	304CE2	4.314
10	213CE2	250CD1	4.089		216N	304CE1	4.419
	213CE2	250CA	4.157		216N	304CD2	4.807
•	213CE2	250CB	4.248		216N	304CD1	4.895
	213CE2	249CG	4.314	55	216CA	304CE2	3.847
	213CE2	249CA	4.346		216CA	304CD2	3.926
15	213CE2	249NE	4.420		216CA	304CZ	3.934
	213CE2	249CZ	4.459		216CA	304CG	4.094
	213CE2	247ND2	4.468		216CA	304CE1	4.099
	213CE2	2490	4.492	60	216CA	304CD1	4.169
	213CE2	247CG	4.604		216CA	250CD1	4.669
20	213CZ	249CB	3.765		216CA	304CB	4.908
	213CZ	249NH2	3.909		216CA	220N	4.975
	213CZ	249CZ	4.112		216CA	220CD1	4.997
	213CZ	250CG1	4.148	65	216CB	250CD1	3.531
	213CZ	249NE	4.295		216CB	304CD1	3.550
25	213CZ	249C	4.377		216CB	304CE1	3.746
	213CZ	249CD	4.394		216CB	304CG	3.756
	213CZ	250N	4.428		216CB	304CZ	4.110
	213CZ	2490	4.508	70	216CB	304CD2	4.118
	213CZ	249NH1	4.708		216CB	304CE2	4.288
30	213CZ	249CG	4.729		216CB	304CB	4.383
	213CZ	250CA	4.749		216CB	250CG1	4.685
	213CZ	249CA	4.754	•	216CB	220CD1	4.706
	213C	216N	3.701	75	216C	220N	4.091
	213C	216CB	4.305		216C	220CG	4.389
35	213C	216CA	4.432		216C	220CD1	4.410
	213C	250CD1	4.614		216C	220CB	4.425
	213C	216C	4.795		216C	250CD1	4.646
	2130	216N	3.163	80	216C	304CD2	4.738
	2130	2120	3.255		216C	304CE2	4.889
40	2130	213CB	3.375		216C	220CA	4.901
	2130	213CG	3.382		216C	304CG	4.985
	2130	213CD1	3.423		2160	220N	2.973

	2160	220CB	3.240		244CG	303CB	4.261
	2160	220CG	3.312		244CG	246N	4.437
	2160	220CD1	3.600	45	244CG	303CA	4.495
	2160	220CA	3.682		244CG	3040	4.536
5	2160	304CD2	4.466		244CG	2760	4.605
	2160	220CD2	4.723		244CG	304N	4.694
	2160	220C	4.729		244CG	2740D1	4.945
	2160	304CG	4.812	50	244CD2	2760	3.276
	2160	304CE2	4.867		244CD2	276C	4.179
10	220CG	304CB	3.954		244CD2	2740D1	4.296
	220CG	304CD2	4.620		244CD2	276CA	4.491
	220CG	304CG	4.655		244CD2	276N	4.705
	220CG	304N	4.839	55	244CD2	303CB	4.764
	220CG	303C	4.910		244ND1	246N	3.736
15	220CG	304CA	4.914		244ND1	246CB	3.939
	220CG	3030	4.942		244ND1	3040	4.002
	220CD1	250CG2	3.858		244ND1	246CA	4.065
	220CD1	304CB	3.918	60	244ND1	2740D1	4.288
	220CD1	304N	4.769		244ND1	274ND2	4.528
20	220CD1	304CG	4.781		244ND1	274CG	4.656
	220CD1	304CA	4.980		244ND1	304N	4.729
	220CD2	3030	3.794		244CE1	2740D1	3.036
	220CD2	303C	3.874	65	244CE1	274ND2	3.525
	220CD2	304CB	4.033		244CE1	274CG	3.527
25	220CD2	303N	4.091		244CE1	246N	4.024
	220CD2	304N	4.170		244CE1	246CA	4.116
		303CA	4.361			246CB	4.253
	220CD2		4.531	70			4.409
		304CD2				2760	4.453
30		304CG				276CA	4.503
	244N					276N	4.607
			4.800			274CB	4.806
		303CB		75			4.903
			4.644				2.997
35	244CA					2760	3.189
	244CA		4.756			276CA	3.620
		303CA				276N	3.747
	244CB			80		276C	3.774
	244CB		4.380			274CG	3.873
40	244CB						4.248
			4.581				4.811
	244CB	246N	4.821		244C	246N	3.311

		0.4.6.03	4 (20		246C	274CG	4.829
	244C	246CA	4.639		2460	2/40G 247N	2.265
	2440	246N	3.012	45	2460	246CA	2.400
	2440	246CA	4.288	45	2460	247CA	2.826
	2440	246CB	4.440			247CB	3.054
5	246N	247N	2.858		2460 2460	247CB 247ND2	3.937
	246N	247CA	4.225			247ND2 247CG	3.998
	246N	2470	4.519	EΩ	2460	274ND2	4.116
	246N _.	274ND2		50	2460	274ND2 274CB	4.132
	246N	274CG	4.694		2460	247C	4.279
10	246N	247C	4.783		2460		4.548
	246N	274CB	4.908		2460	274CG	4.812
	246CA	247N	2.398		2460	2470	4.491
		274ND2	3.762	55	247CA	249N	
	246CA	247CA	3.780		247CB	249N	4.494
15	246CA	274CG	4.159		247CG	250N	3.957
	246CA	274CB	4.398		247CG	249N	4.038 4.274
	246CA	247CB	4.470	00	247CG	250CB	
	246CA	247ND2	4.518	60	247CG	249CB	4.318 4.508
	246CA	2470	4.632		247CG	250CG1	
20	246CA	247C	4.704		247CG	249CA	4.619
	246CA	2740D1	4.840		247CG	249CG	4.681 4.751
	246CA	247CG	4.866	^	247CG		4.762
	246CB	247N	3.017	65	247CG		4.782
	246CB	247ND2	3.981		247CG	249C	3.007
25	246CB	274ND2	4.268		2470D1		3.066
	246CB	247CA	4.360		2470D1	. 249CB	3.116
	246CB	247CG	4.666	70		. 249CB . 249CA	3.431
	246CB		4.733	70		. 249CA . 249CG	3.604
	246CB	2470	4.816				3.735
30	246CB		4.830			L 249C L 250CB	4.015
	246CB		4.837			250CB	4.121
	246CB		4.978	75		230CR	4.172
•	246CB		4.988	75		1 250CG1	
	246C	247CA	2.445			250CD1	
35	246C	247CB	3.093			1 2490	4.930
	246C	247C	3.647			2 250CD1	
	246C	247ND2	3.730	80		2 250CB1	3.953
	246C	247CG	3.789	80	_	2 250CG1 2 250CB	
	246C	2470	3.922			2 250CB 2 250N	4.402
40	246C	274ND2	4.440			2 250N 2 250CA	4.869
	246C	274CB	4.631		247ND 247C		3.305
	246C	2470D1	4.815		24 /C	7 # 2 IN	٠.٠٠

	247C	250N	4.120		2740	276CA	4.809
	247C	249CA	4.545		303N	304CA	4.862
	247C	249C	4.779	45	303CA	304N	2.430
	247C	250CB	4.900		303CA	304CA	3.818
5	247C	250CA	4.940		303CA	304C	4.661
	2470	249N	3.360		303CA	3040	4.679
	2470	250N	3.406		303CA	304CB	4.684
	2470	250CB	3.950	50	303CB	304N	3.222
	2470	250CA	3.970		303CB	304CA	4.521
10	2470	250C	4.123		303CB	3040	4.818
	2470	249C	4.217		303CB	304C	4.963
	2470	249CA	4.373		303C	304CA	2.452
	2470	250CG2	4.591	55	303C	304CB	3.442
	249N	250N	2.817		303C	304C	3.504
15	249N	250CA	4.203		303C	3040	3.860
	249N	250C	4.666		303C	305N	4.467
	249CA	250N	2.413		303C	304CG	4.748
	249CA	250CA	3.779	60	3030	304N	2.247
	249CA	250C	4.413		3030	304CA	2.806
20	249CA	250CB	4.866		3030	304CB	3.762
	249CB	250N	3.035		3030	304C	3.989
	249CB	250CA	4.353		3030	3040	4.630
	249CG	250N	4.416	65	3030	305N	4.674
	249C	250CA	2.410		3030	304CG	4.827
25	249C	250C	3.035		304N	305N	3.547
	249C	250CB	3.720		304N	305CA	4.719
	249C	2500	3.774		304CA	305N	2.450
	249C	250CG1	4.278	70	304CA	305CA	3.795
	249C	250CG2	4.919		304CA	305C	4.958
30	2490	250N	2.240		304CB	305N	3.325
	2490	250CA	2.733		304CG		3.321
	2490	250C	3.038		304CG		4.469
	2490	2500	3.374	75	304CG		4.729
	2490	250CB	4.232			1 305N	3.304
35	2490	250CG1	4.716			1 305CA	4.052
	2740D1	276CB	4.452			1 3050	4.145
	2740D1	276C	4.632		304CD	1 305C	4.383
	2740D1	2760	4.648	80		2 305N	4.139
	274ND2	276N	4.935			1 3050	3.966
40	274C	276N	3.322			1 305N	4.100
	274C	276CA	4.688			1 305C	4.483
	2740	276N	3.552		304CE	1 305CA	4.616

	304CE2	305N	4.804
·	304CE2	3050	4.952
	304CZ	3050	4.401
	304CZ	305N	4.783
5	304C	305N	1.329
	304C	305CA	2.395
	304C	305C	3.718
	304C	3050	4.130
	304C	306N	4.754
10	3040	305N	2.239
	3040	305CA	2.696
	3040	305C	4.145
	3040	3050	4.826
	3040	306N	4.921
15	305N	306N	3.702
	305N	306CA	4.963
	305CA	306N	2.391
	305CA	306CA	3.771
	305CA	3060	4.400
20	305CA	30éG	4.467
	305C	306CA	2.427
	305C	306C	3.071
	305C	3060	3.236
	3050	306N	2.248
25	3050	306CA	2.772
	3050	306C	2.996
	3050	3060	3.217
	306N	487CD2	4.792
	306CA	487CD2	4.048
30	306CA	487CG	4.502
	306CA	487CB	4.525
	306CA	487CE2	4.655
	306C	487CB	4.265
	306C	487CD2	4.576
35	306C	487CG	4.734
	3060	487CB	4.248
	3060	487CG	4.922

Table III provides the the atomic coordinates of the acetyl-CoA complex structure in the active site. Solvent molecules are omitted here for clarity, but can be found in Fig. 2. Residue 487 is Phe87 from the other monomer. Residue CAC is acetylated cysteine, and COA is the bound CoA molecule.

5					<u>T</u>	ABLE III			
	АТ	OM	RESIDU	JΕ	X	<u>Y</u>	<u>z</u>	Occ B	
	1	N	THR	28	32.909	0.319	26.935	1.00 14.64	
	2	CA	THR	28	31.524	0.759	27.053	1.00 16.73	
	3	CB	THR	28	31.399	2.311	26.861	1.00 18.66	
10	4	OG1	THR	28	30.140	2.771	27.368	1.00 21.07	
	5	CG2	THR	28	31.523	2.702	25.394	1.00 14.87	
	6	С	THR	28	30.671	-0.021	26.041	1.00 15.95	
	7	0	THR	28	31.196	-0.755	25.190	1.00 14.39	
	8	N	TRP	32	24.685	1.112	27.156	1.00 18.61	
15	9	CA	TRP	32	24.896	1.996	28.316	1.00 17.67	
	10	CB	TRP	32	26.253	1.657	28.999	1.00 18.46	
	11	CG	TRP	32	26.543	2.508	30.252	1.00 14.22	
	12	CD2	TRP	32	26.947	3.865	30.325	1.00 16.45	
	13	CE2	TRP	32	27.044	4.089	31.715	1.00 13.95	
20	14	CE3	TRP	32	27.232	4.916	29.444	1.00 14.91	
	15	CD1	TRP	32	26.405	1.970	31.509	1.00 19.11	
	16	NE1	TRP	32	26.722	2.948	32.369	1.00 17.55	
	17	CZ2	TRP	32	27.417	5.348	32.222	1.00 16.49	
	18	CZ3	TRP	32	27.602	6.164	29.953	1.00 8.45	
25	19	CH2	TRP	32	27.698	6.373	31.321	1.00 11.56	
	20	С	TRP	32	24.917	3.414	27.781	1.00 16.08	,
	21	0	TRP	32	24.363	4.325	28.378	1.00 17.69	,
	22	N	ILE	33	25.536	3.534	26.593	1.00 16.72	
	23	CA	ILE	33	25.591	4.911	26.052	1.00 17.89	!
30	24	CB	ILE	33	26.670	5.169	24.944	1.00 20.24	:
	25	CG2	ILE	33	26.790	6.671	24.704	1.00 18.87	1
	26	CG1	ILE	33	28.038	4.571	25.295	1.00 16.21	
	27	CD1	ILE	33	28.930	4.480	24.013	1.00 24.09	1
	28	С	ILE	33	24.196	5.403	25.732	1.00 18.98	•
35	29	0	ILE	33	23.877	6.540	26.194	1.00 18.61	
	30	N	ARG	36	22.046	6.096	28.836	1.00 20.61	-
	31	CA	ARG	36	22.587	7.077	29.780	1.00 20.93	1
	32	СВ	ARG	36	23.940	6.602	30.339	1.00 19.27	1
	33	CG	ARG	36	23.882	5.328	31.146	1.00 20.40)
40	34	CD	ARG	36	23.627	5.619	32.605	1.00 22.27	1
	35	NE	ARG	36	23.511	4.396	33.393	1.00 27.02	
	36	CZ	ARG	36	23.867	4.298	34.670	1.00 25.93	
	37	NH1	ARG	36	23.734	3.152	35.315	1.00 26.63	,

	Table	e II	I Cont	<u>.</u>					
	ATOM	1	RESIDU	E	<u>x</u> .	<u>Y</u>	<u>z</u>	0cc	B
	38	NH2	ARG	36	24.330	5.355	35.318	1.00	23.35
	39	С	ARG	36	22.702	8.517	29.247	1.00	18.28
5	40	0	ARG	36	22.703	9.462	30.029	1.00	17.41
	41	N	THR	37	22.798	8.697	27.936	1.00	18.97
	42	CA	THR	37	22.932	10.050	27.405	1.00	21.02
	43	СВ	THR	37	24.388	10.371	26.949	1.00	18.78
	44	OG1	THR	37	24.793	9.461	25.925	1.00	17.72
10	45	CG2	THR	37	25.347	10.293	28.084	1.00	21.35
	46	C	THR	37	22.048	10.362	26.222	1.00	20.16
	47	0	THR	37	21.914	11.534	25.839	1.00	25.43
	48	N	CAC	112	30.456	25.709	28.104	1.00	10.38
	49	CA	CAC	112	29.270	25.229	27.412	1.00	14.44
15	50	CB	CAC	112	28.799	23.888	27.980	1.00	17.69
	51	SG	CAC	112	29.712	22.439	27.254	1.00	17.65
	52	CD	CAC	112	32.183	21.508	28.594	1.00	24.17
	53	CE	CAC	112	30.937	22.403	28.616	1.00	21.28
	54	OE	CAC	112	30.752	23.125	29.602	1.00	25.29
20	55	С	CAC	112	28.167	26.294	27.295	1.00	11.81
	56	0	CAC	112	27.369	26.232	26.368	1.00	10.19
	57	N	LEU	142	35.611	19.985	21.261	1.00	10.22
	58	CA	LEU	142	35.860	19.347	22.539	1.00	13.06
	59	СВ	LEU	142	34.735	19.597	23.555		12.36
25	60	CG	LEU	142	34.583	20.999	24.171	1.00	11.62
	61		LEU	142	33.937	20.919	25.543	1.00	5.06
	62		LEU	142	35.940	21.651	24.300		10.88
	63	С	LEU	142	36.175	17.851	22.433		13.55
	64	0	LEU	142	36.786	17.299	23.322		19.07
30	65	N	ARG	151	36.295	6.724	29.164		23.03
	66	CA	ARG	151	34.919	6.417	28.730		23.11
	67	CB	ARG	151	34.470	5.004	29.175		16.86
	68	CG	ARG	151	34.348	4.774	30.666		15.32
05	69	CD	ARG	151	33.926	3.335	30.928	1.00	7.13
35	70	NE	ARG	151	33.779	3.086	32.349		10.71
	71	CZ	ARG	151	33.378	1.927	32.869	1.00	
	72 73		ARG	151	33.268	1.783	34.179	1.00	4.61
	73		ARG	151	33.078	0.930	32.071		10.10
40	7 4	C	ARG	151	33.873	7.478	29.120		17.49
40	75 76	0	ARG	151	33.012	7.828	28.317		17.71
	76	N Ca	GLY	152	34.016	8.044	30.309		17.52
	77 70	CA	GLY	152	33.070	9.045	30.776		16.37
	78 70	C	GLY	152	33.062	10.401	30.082		15.84
	79	0	GLY	152	32.246	11.248	30.439	1.00	21.56

Table III Cont.

	ATOM	[RESIDU	E	x	<u>Y</u>	<u>z</u>	0cc	<u>B</u>
	80	N	ILE	155	32.443	9.844	25.187	1.00	- 7.71
	81	CA	ILE	155	31.083	9.426	24.707	1.00	12.55
5	82	CB	ILE	155	30.385	8.425	25.708	1.00	11.77
	83	CG2	ILE	155	31.197	7.148	25.866	1.00	11.90
	84	CG1	ILE	155	30.158	9.085	27.088	1.00	12.15
	85	CD1	ILE	155	29.158	8.276	27.966	1.00	11.79
	86	С	ILE	155	30.193	10.622	24.373	1.00	10.55
10	87	0	ILE	155	29.530	10.593	23.314	1.00	14.21
	88	N	ILE	156	30.115	11.601	25.228	1.00	15.15
	89	CA	ILE	156	29.284	12.781	24.971	1.00	13.87
	90	СВ	ILE	156	28.912	13.460	26.383	1.00	18.45
	91	CG2	ILE	156	27.632	12.860	26.931	1.00	23.09
15	92	CG1	ILE	156	30.082	13.252	27.370	1.00	15.34
	93	CD1	ILE	156	29.617	12.611	28.714	1.00	19.30
	94	С	ILE	156	29.845	13.826	24.026	1.00	13.98
	95	0	ILE	156	29.049	14.365	23.211	1.00	9.76
	96	N	PHE	157	31.114	14.104	24.000	1.00	10.77
20	97	CA	PHE	157	31.656	15.152	23.157	1.00	7.33
	98	СВ	PHE	157	32.859	15.790	23.759	1.00	4.54
	99	CG	PHE	157	32.560	16.451	25.090	1.00	7.66
	100	CD1	PHE	157	32.946	15.788	26.255	1.00	3.98
	101	CD2	PHE	157	31.915	17.650	25.184	1.00	5.65
25	102	CE1	PHE	157	32.660	16.349	27.491	1.00	9.88
	103	CE2	PHE	157	31.630	18.205	26.422	1.00	4.05
	104	CZ	PHE	157	32.018	17.536	27.588	1.00	6.80
	105	С	PHE	157	31.810	14.851	21.690	1.00	10.70
	106	0	PHE	157	32.380	13.859	21.257	1.00	13.03
30	107	N	LEU	189	34.231	20.663	36.441	1.00	15.69
	108	CA	LEU	189	34.309	20.542	34.989	1.00	15.11
	109	CB	LEU	189	32.983	20.982	34.350	1.00	10.07
	110		LEU	189	32.807	20.922	32.844	1.00	7.51
	111	CD1		189	33.311	19.593	32.263	1.00	10.35
35	112	CD2		189	31.343	21.142	32.523	1.00	7.61
	113	С	LEU	189	35.464	21.418	34.538	1.00	15.40
	114	0	LEU	189	35.452	22.612	34.812	1.00	16.51
	115	N	LEU	205	40.306	17.390	29.143	1.00	13.16
	116		LEU	205	39.050	17.802	29.770	1.00	15.27
40	117	CB	LEU	205	37.963	17.874	28.694	1.00	12.62
	118	CG	LEU	205	36.505	18.215	29.034		14.99
	119	CD1		205	35.817	18.527	27.706	1.00	15.12
		CD2		205	35.773	17.085	29.762	1.00	11.51
	121	С	LEU	205	38.658	16.793	30.846	1.00	15.81

	Table	e II:	Cont.	<u>.</u>					
	ATOM]	RESIDUE	<u> </u>	<u>x</u>	<u>Y</u>	<u>z</u>	0cc	<u>B</u>
	122	0	LEU	205	38.675	15.588	30.594	1.00	20.20
	123	N	MET	207	35.792	15.888	34.121	1.00	18.42
5	124	CA	MET	207	34.419	16.232	34.463	1.00	16.18
	125	СВ	MET	207	33.555	16.227	33.174	1.00	17.87
	126	CG	MET	207	32.024	16.237	33.467	1.00	17.17
	127	SD	MET	207	30.990	16.464	32.044	2.00	17.60
	128	CE	MET	207	31.340	14.797	31.582	1.00	22.99
10	129	C	MET	207	33.790	15.238	35.466	1.00	16.62
	130	0	MET	207	33.726	14.046	35.222	1.00	18.22
	131	N	GLY	209	30.811	14.103	36.169	1.00	12.42
	132	CA	GLY	209	29.492	14.040	35.588	1.00	16.72
	133	С	GLY	209	28.358	14.011	36.516	1.00	19.06
15	134	0	GLY	209	27.487	14.883	36.423	1.00	20.59
	135	N	ASN	210	28.284	13.037	37.418	1.00	21.24
	136	CA	ASN	210	27.150	13.010	38.362	1.00	24.44
	137	CB	ASN	210	27.198	11.753	39.171	1.00	25.49
	138	CG	ASN	210	27.160	11.958	40.631	1.00	33.50
20	139	OD1	ASN	210	26.177	11.619	41.309	1.00	34.80
	140	ND2	ASN	210	28.217	12.429	41.247	1.00	32.41
	141	С	ASN	210	26.970	14.201	39.196	1.00	25.55
	142	0	ASN	210	25.858	14.799	39.270	1.00	27.11
	143	N	VAL	212	27.967	17.255	38.323	1.00	18.86
25	144	CA	VAL	212	27.657	18.365	37.397	1.00	19.45
	145	СВ	VAL	212	28.483	18.363	36.115	1.00	13.66
	146		VAL	212	28.142	19.417	35.091	1.00	10.49
	147	CG2	VAL	212	29.921	18.642	36.480		11.31
	148	С	VAL	212	26.176	18.359	36.977	1.00	25.20
30	149	0	VAL	212	25.455	19.359	36.929	1.00	27.15
	150	N	PHE	213	25.738	17.114	36.763	1.00	24.63
	151	CA	PHE	213	24.361	16.813	36.336	1.00	25.87
	152	CB	PHE	213	24.203	15.287	36.398		23.74
	153	CG	PHE	213	22.788	14.958	36.099		23.97
35	154		PHE	213	22.533	14.398	34.810		27.08
	155		PHE	213	21.752	14.909	36.974		22.61
	156		PHE	213	21.275	13.964	34.464	1.00	23.26
	157		PHE	213	20.480	14.482	36.625	1.00	23.27
	158	CZ	PHE	213	20.223	13.976	35.335	1.00	21.74
40	159	С	PHE	213	23.356	17.458	37.319	1.00	26.46
	160	0	PHE	213	22.395	18.091	36.945		28.12
	161	N	ALA	216	23.435	21.215	37.390		21.80
	162	CA	ALA	216	22.949	21.675	36.100	1.00	19.74
	163	CB	ALA	216	23.464	20.861	34.933	1.00	18.25

Table III Cont. Y В ATOM RESIDUE X <u>z</u> Occ 1.00 20.86 164 C ALA 216 21.440 21.811 36.028 20.936 22.882 35.612 1.00 14.72 ALA 216 165 0 1.00 14.90 5 21.005 23.509 25.764 166 N HIS 244 1.00 17.43 22.348 23.098 25.390 167 HIS 244 CA 23.328 23.551 26.478 1.00 17.97 CB HIS 244 168 169 . CG HIS 244 24.644 22.836 26.459 1.00 18.58 1.00 18.43 25.582 22.714 25.488 170 CD2 HIS 244 25.123 22.136 27.546 1.00 18.75 10 ND1 HIS 244 171 21.608 27.243 1.00 21.88 26.295 172 CE1 HIS 244 21.944 26.000 1.00 17.34 26.597 173 NE2 HIS 244 22.190 21.563 25.366 1.00 17.94 174 C HIS 244 20.979 26.286 1.00 18.08 HIS 244 21.579 175 0 18.461 26.118 1.00 19.92 15 246 23.569 176 N ALA 26.886 1.00 22.75 24.594 17.753 ALA 246 177 CA 18.474 28.207 1.00 20.40 24.851 178 CB ALA 246 24.197 16.301 27.174 1.00 25.65 179 C ALA 246 26.869 1.00 27.18 ALA 246 24.941 15.364 180 0 1.00 26.14 20 ASN 247 23.035 16.122 27.793 181 N 14.795 28.146 1.00 26.38 247 22.545 ASN 182 ÇA 29.587 1.00 28.11 22.964 14.464 183 CB ASN 247 22.574 13.044 30.019 1.00 32.46 184 CG ASN 247 1.00 30.09 21.552 12.486 29.583 185 OD1 ASN 247 1.00 31.19 25 186 ND2 ASN 247 23.371 12.470 30.912 14.827 28.020 1.00 26.38 C ASN 21.021 187 247 20.381 15.783 28.497 1.00 24.78 247 188 0 ASN 18.806 13.418 29.619 1.00 26.17 189 N ARG 249 1.00 30.19 13.368 30.918 190 CA ARG 249 18.082 1.00 35.11 30 191 CB ARG 249 18.684 12.450 31.892 12.514 32.084 1.00 40.00 249 20.149 192 CG **ARG** 11.377 33.040 1.00 40.00 20.737 193 CD ARG 249 1.00 40.00 19.770 10.270 32.981 194 NE ARG 249 8.991 32.720 1.00 40.00 CZARG 249 20.131 195 1.00 40.00 8.005 32.728 35 196 NH1 ARG 249 19.206 32.469 1.00 40.00 21.400 8.728 NH2 ARG 249 197 31.505 1.00 30.27 17.883 14.720 198 C ARG 249 16.848 15.128 31.999 1.00 29.21 ARG 249 199 0 1.00 31.13 19.022 15.485 31.317 200 Ν ILE 250 1.00 30.26 40 201 CA ILE 250 18.989 16.891 31.777 1.00 31.49 20.417 17.557 31.646 202 CB ILE 250 1.00 27.57 20.269 19.060 31.848 203 CG2 ILE 250 16.967 32.703 1.00 27.31 21.391 204 CG1 ILE 250 17.587 32.626 1.00 29.25 205 CD1 ILE 22.804 250

Table III Cont.

	Table III Cont.									
	ATOM	<u>F</u>	RESIDUI	<u> </u>	x	<u>Y</u>	<u>z</u>	Occ B		
	206	С	ILE	250	17.878	17.652	31.051	1.00 29.32		
	207	0	ILE	250	17.014	18.274	31.667	1.00 30.29		
5	208	N	ASN	274	2 7 .325	16.399	22.555	1.00 13.47		
	209	CA	ASN	274	27.474	17.720	23.155	1.00 13.39		
	210	СВ	ASN	274	27.818	17.530	24.622	1.00 15.56		
	211	CG	ASN	274	27.960	18.816	25.366	1.00 17.87		
	212	OD1	ASN	274	28.135	19.881	24.780	1.00 24.67		
10	213	ND2	ASN	274	27.890	18.729	26.689	1.00 19.64		
	214	C	ASN	274	28.638	18.414	22.458	1.00 14.33		
	215	0	ASN	274	29.770	17.971	22.613	1.00 12.94		
	216	N	SER	276	29.549	21.633	22.863	1.00 7.51		
	217	CA	SER	276	29.823	22.861	23.613	1.00 13.37		
15	218	СВ	SER	276	31.354	23.045	23.758	1.00 16.08		
	219	OG	SER	276	31.709	24.178	24.552	1.00 13.44		
	220	С	SER	276	29.132	24.114	23.029	1.00 13.89		
	221	0	SER	276	27.945	24.062	22.700	1.00 11.72		
	222	N	PHE	304	24.334	25.567	30.088	1.00 14.66		
20	223	CA	PHE	304	25.107	25.471	31.332	1.00 17.36		
	224	CB	PHE	304	24.396	24.476	32.274	1.00 14.19		
	225	CG	PHE	304	25.035	24.321	33.630	1.00 14.80	ı	
	226	CD1	PHE	304	26.179	23.562	33.795	1.00 13.55	,	
	227	CD2	PHE	304	24.464	24.909	34.748	1.00 18.11		
25	228	CE1	PHE	304	26.751	23.388	35.053	1.00 13.17	1	
	229	CE2	PHE	304	25.024	24.744	36.014	1.00 19.56	,	
	230	CZ	PHE	304	26.175	23.977	36.166	1.00 18.61		
	231	С	PHE	304	26.495	24.936	30.934	1.00 18.48	;	
	232	0	PHE	304	26.597	24.072	30.048	1.00 19.82	:	
30	233	N	GLY	305	27.546	25.411	31.603	1.00 20.16	,	
	234	CA	GLY	305	28.889	24.966	31.272	1.00 18.15	,	
	235	С	GLY	305	29.950	25.008	32.367	1.00 15.06		
	236	0	GLY	305	29.701	25.407	33.507	1.00 11.78	}	
	237	N	GLY	306	31.145	24.556	31.988	1.00 16.84	L	
35	238	CA	GLY	306	32.290	24.514	32.875	1.00 16.87	1	
	239	C	GLY	306	32.529	25.856	33.525	1.00 19.36	5	
	240	0	GLY	306	32.236	26.899	32.934	1.00 17.63	ţ	
	241	N .	PHE	487	38.425	26.469	30.807	1.00 13.64	ı	
	242	CA	PHE	487	37.277	26.474	31.704	1.00 12.94	1	
40	243	СВ	PHE	487	35.953	26.064	31.031	1.00 16.12	3	
	244	CG	PHE	487	35.967	24.728	30.332	1.00 10.50)	
	245	CD1	PHE	487	36.055	24.668	28.952	1.00 11.96	5	
	246	CD2	PHE	487	35.776	23.548	31.043	1.00 14.59	€	
	247	CE1	PHE	487	35.943	23.450	28.275	1.00 11.67	7	

Table III Cont. MOTA RESIDUE X Y <u>z</u> 0cc В 248 CE2 PHE 487 35.665 22.321 30.373 1.00 10.83 35.748 22.283 28.989 1.00 9.41 249 CZ PHE 487 5 C PHE 487 37.606 25.574 32.861 1.00 13.75 250 PHE 38.217 24.529 32.661 1.00 18.53 251 0 487 350 25.886 9.541 33.559 1.00 40.00 252 AO6 COA 253 AP2 COA 350 25.938 8.466 34.779 1.00 40.00 25.984 7.033 34.193 1.00 40.00 254 AO4 COA 350 8.689 35.674 1.00 40.00 10 255 AO5 COA 350 24.688 1.00 40.00 256 AO3 COA 350 27.383 8.800 35.491 7.998 36.780 1.00 40.00 AP1 COA 27.959 257 350 AO1 COA 7.993 37.879 1.00 40.00 258 350 26.887 37.296 1.00 40.00 259 AO2 COA 350 29.237 8.653 15 260 AO5* COA 1.00 40.00 350 28.201 6.460 36.164 261 AC5* COA 27.718 5.279 36.817 1.00 39.18 350 1.00 37.65 262 AC4* COA 28.472 4.019 36.378 350 263 AO4* COA 28.702 4.012 34.931 1.00 35.45 350 3.856 36.965 1.00 37.54 264 AC3* COA 350 29.898 1.00 40.00 20 265 AO3* COA 350 30.205 2.474 37.178 2.029 38.160 1.00 40.00 266 AP3* COA 350 31.518 2.220 37.337 1.00 40.00 267 AO7 COA 32.888 350 AO8 COA 350 31.503 3.018 39.420 1.00 40.00 268 AO9 COA 0.500 38.522 1.00 40.00 269 350 31.296 25 270 AC2* COA 350 30.688 4.469 35.850 1.00 32.65 271 AO2* COA 1.00 24.96 350 32.112 4.433 35.932 272 AC1* COA 3.815 34.584 1.00 27.72 350 30.098 273 AN9 COA 350 30.429 4.564 33.382 1.00 20.99 5.878 33.186 1.00 21.31 274 AC8 COA 350 30.840 30 275 AN7 COA 350 30.992 6.002 31.788 1.00 18.53 4.873 1.00 12.67 276 AC5 COA 350 30.700 31.234 4.501 29.898 1.00 12.21 277 AC6 COA 350 30.698 278 AN6 COA 350 31.039 5.381 28.963 1.00 15.81 29.672 1.00 17.72 279 AN1 COA 350 30.338 3.249 35 1.00 11.38 280 AC2 COA 350 30.014 2.442 30.654 2.743 281 AN3 COA 350 29.997 31.973 1.00 15.08 1.00 15.56 282 AC4 COA 350 30.341 3.964 32.268 20.647 30.314 1.00 40.00 283 PS1 COA 350 27.926 284 PC2 COA 350 26.439 19.897 31.045 1.00 40.00 40 285 PC3 COA 350 26.760 18.654 31.835 1.00 40.00 PN4 COA 26.965 17.518 30.873 1.00 40.00 286 350 287 PC5 COA 350 27.350 16.338 31.273 1.00 40.00 1.00 40.00 288 PO5 COA 27.542 15.370 30.476 350 289 PC6 COA 350 27.580 16.199 32.745 1.00 40.00

20

25

30

35

26.933

Mutants and Derivatives

350

299 PC12 COA

The invention further provides homologues, co-complexes and mutants of the *E. coli* FabH crystal structure of the invention.

9.588

32.579

1.00 40.00

The term "homologue" means a protein having at least 30% amino acid sequence identity with E. coli FabH or any of its functional domains.

The term "co-complex" means FabH or a mutant or homologue of FabH in covalent or non-covalent association with a chemical entity or compound.

The term "mutant" refers to a FabH polypeptide, i.e., a polypeptide displaying the biological activity of wild-type FabH activity, characterized by the replacement of at least one amino acid from the wild-type FabH sequence. Such a mutant may be prepared, for example, by expression of *E. coli* FabH cDNA previously altered in its coding sequence by oligonucleotide-directed mutagenesis.

E. coli FabH mutants may also be generated by site-specific incorporation of unnatural amino acids into the FabH proteins using the general biosynthetic method of C. J. Noren et al, Science, 244:182-188 (1989). In this method, the codon encoding the amino acid of interest in wild-type FabH enzyme is replaced by a "blank" nonsense codon, TAG, using oligonucleotide-directed mutagenesis. A suppressor tRNA directed against this codon is then chemically aminoacylated in vitro with the desired unnatural amino acid. The aminoacylated tRNA is then added to an in vitro translation system to yield a mutant FabH enzyme with the site-specific incorporated unnatural amino acid.

Selenomethionine may be incorporated into wild-type or mutant FabH by expression of *E. coli* FabH -encoding cDNAs in auxotrophic or non- auxotrophic *E. coli* strains [W. A. Hendrickson et al, <u>EMBO J.</u>, <u>9</u>(5):1665-1672 (1990)]. In this method, the wild-type or mutagenized FabH cDNA may be expressed in a host organism on a growth

10

15

20

25

30

medium depleted of either natural methionine but enriched in selenomethionine. The location(s) of the Se atom(s) can be determined by X-ray diffraction analysis at three or four different wavelengths. This information, in turn, is used to generate the phase information used to construct three-dimensional structure of the enzyme.

II. Methods of Identifying Inhibitors of the Novel FabH Crystalline Structure

Another aspect of this invention involves a method for identifying inhibitors of a FabH enzyme characterized by the crystal structure and novel active site described herein, and the inhibitors themselves. The novel *E. coli* FabH crystalline structure of the invention, or the structure of *E. coli* FabH homologue, permits the identification of inhibitors of FabH activity. Such inhibitors may be competitive, binding to all or a portion of the active site of FabH; or non-competitive and bind to and inhibit FabH whether or not it is bound to another chemical entity.

One design approach is to probe the FabH crystal of the invention with molecules composed of a variety of different chemical entities to determine optimal sites for interaction between candidate inhibitors and the enzyme. For example, high resolution X-ray diffraction data collected from crystals saturated with solvent allows the determination of where each type of solvent molecule sticks. Small molecules that bind tightly to those sites can then be designed and synthesized and tested for their FabH inhibitor activity [J. Travis, Science, 262:1374 (1993)].

This invention also enables the development of compounds that can isomerize to short-lived reaction intermediates in the chemical reaction of a substrate or other compound that binds to or with FabH. Thus, the time-dependent analysis of structural changes in FabH during its interaction with other molecules is permitted. The reaction intermediates of FabH can also be deduced from the reaction product in co-complex with FabH. Such information is useful to design improved analogues of known FabH inhibitors or to design novel classes of inhibitors based on the reaction intermediates of the enzyme and enzyme-inhibitor co-complex. This provides a novel route for designing FabH inhibitors with both high specificity and stability.

Another approach made possible by this invention, is to screen computationally small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to the FabH enzyme. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy [E. C. Meng et al, J. Comp. Chem., 13:505-524 (1992)].

10

15

20

25

30

Because FabH may crystallize in more than one crystal form, the structure coordinates of FabH, or portions thereof, as provided by this invention are particularly useful to solve the structure of those other crystal forms of FabH. They may also be used to solve the structure of FabH mutant co-complexes, or of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of FabH.

One method that may be employed for this purpose is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of FabH, a FabH mutant, a FabH co-complex, a FabH from a different bacterial species, or the crystal of some other protein with significant amino acid sequence homology to any domain of FabH, may be determined using the FabH structure coordinates of this invention as provided in Figure 1 and Tables I - III. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

Thus, the FabH structure provided herein permits the screening of known molecules and/or the designing of new molecules which bind to the structure, particularly at the active site or substrate binding site, via the use of computerized evaluation systems. For example, computer modeling systems are available in which the sequence of the FabH, and the FabH structure (i.e., the atomic coordinates, bond distances between atoms in the active site region, etc. as provided by Figures 1-2 and Tables I - III herein) may be input. Thus, a machine readable medium may be encoded with data representing the coordinates of Figures 1-2 and Tables I - III. The computer then generates structural details of the site into which a test compound should bind, thereby enabling the determination of the complementary structural details of said test compound.

More particularly, the design of compounds that bind to or inhibit FabH according to this invention generally involves consideration of two factors. First, the compound must be capable of physically and structurally associating with FabH. Non-covalent molecular interactions important in the association of FabH with its substrate include hydrogen bonding, van der Waals and hydrophobic interactions.

Second, the compound must be able to assume a conformation that allows it to associate with FabH. Although certain portions of the compound will not directly participate in this association with FabH, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of the binding

10

15

20

25

30

site, e.g., active site or substrate binding sites of FabH, or the spacing between functional groups of a compound comprising several chemical entities that directly interact with FabH.

The potential inhibitory or binding effect of a chemical compound on FabH may be analyzed prior to its actual synthesis and testing by the use of computer modelling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association between it and FabH, synthesis and testing of the compound is obviated. However, if computer modelling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to FabH and inhibit using a suitable assay. In this manner, synthesis of inoperative compounds may be avoided.

An inhibitory or other binding compound of FabH may be computationally evaluated and designed by means of a series of steps in which chemical entities or fragments are screened and selected for their ability to associate with the individual binding pockets or other areas of FabH.

One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with FabH and more particularly with the individual binding pockets of the FabH active site or accessory binding sites. This process may begin by visual inspection of, for example, the active site on the computer screen based on the FabH coordinates in Figures 1-2 and Tables I - III. Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within a binding pocket of FabH. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.

Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:

- 1. GRID [P. J. Goodford, "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", <u>J. Med. Chem.</u>, 28:849-857 (1985)]. GRID is available from Oxford University, Oxford, UK.
- 2. MCSS [A. Miranker and M. Karplus, "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method", <u>Proteins: Structure, Function and Genetics</u>, 11:29-34 (1991)]. MCSS is available from Molecular Simulations, Burlington, MA.
- 3. AUTODOCK [D. S. Goodsell and A. J. Olsen, "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and

10

15

20

25

30

Genetics, 8:195-202 (1990)]. AUTODOCK is available from Scripps Research Institute, La Jolla, CA.

4. DOCK [I. D. Kuntz et al, "A Geometric Approach to Macromolecule-Ligand Interactions", <u>J. Mol. Biol.</u>, <u>161</u>:269-288 (1982)]. DOCK is available from University of California, San Francisco, CA.

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or inhibitor. Assembly may be proceed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of FabH. This would be followed by manual model building using software such as Quanta or Sybyl.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

- 1. CAVEAT [P. A. Bartlett et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", in Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc. 78, pp. 182-196 (1989)]. CAVEAT is available from the University of California, Berkeley, CA.
- 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, CA). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35:2145-2154 (1992).
 - 3. HOOK (available from Molecular Simulations, Burlington, MA).

Instead of proceeding to build a FabH inhibitor in a step-wise fashion one fragment or chemical entity at a time as described above, inhibitory or other FabH binding compounds may be designed as a whole or "de novo" using either an empty active site or optionally including some portion(s) of a known inhibitor(s). These methods include:

- 1. LUDI [H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", <u>J. Comp. Aid. Molec. Design</u>, <u>6</u>:61-78 (1992)]. LUDI is available from Biosym Technologies, San Diego, CA.
 - LEGEND [Y. Nishibata and A. Itai, <u>Tetrahedron</u>, <u>47</u>:8985 (1991)].
 LEGEND is available from Molecular Simulations, Burlington, MA.
 - 3. LeapFrog (available from Tripos Associates, St. Louis, MO).

Other molecular modelling techniques may also be employed in accordance with this invention. See, e.g., N. C. Cohen et al, "Molecular Modeling Software and Methods for Medicinal Chemistry", <u>J. Med. Chem.</u>, <u>33</u>:883-894 (1990). See also, M. A. Navia and M. A. Murcko, "The Use of Structural Information in Drug Design", <u>Current Opinions in</u>

10

15

20

25

30

Structural Biology, 2:202-210 (1992). For example, where the structures of test compounds are known, a model of the test compound may be superimposed over the model of the structure of the invention. Numerous methods and techniques are known in the art for performing this step, any of which may be used. See, e.g., P.S. Farmer, Drug Design, Ariens, E.J., ed., Vol. 10, pp 119-143 (Academic Press, New York, 1980); U.S. Patent No. 5,331,573; U.S. Patent No. 5,500,807; C. Verlinde, Curr. Biol., 2:577-587 (1994); and I. D. Kuntz, Science, 257:1078-1082 (1992). The model building techniques and computer evaluation systems described herein are not a limitation on the present invention.

Thus, using these computer evaluation systems, a large number of compounds may be quickly and easily examined and expensive and lengthy testing avoided. Moreover, the need for actual synthesis of many compounds is effectively eliminated.

Once identified by the modelling techniques, the FabH inhibitor may be tested for bioactivity using standard techniques. For example, structure of the invention may be used in binding assays using conventional formats to screen inhibitors. One particularly suitable assay format includes the enzyme-linked immunosorbent assay (ELISA). Other assay formats may be used; these assay formats are not a limitation on the present invention.

In another aspect, the FabH structure of the invention permit the design and identification of synthetic compounds and/or other molecules which are characterized by the conformation of FabH of the invention. Using known computer systems, the coordinates of the FabH structure of the invention may be provided in machine readable form, the test compounds designed and/or screened and their conformations superimposed on the structure of the FabH of the invention. Subsequently, suitable candidates identified as above may be screened for the desired FabH inhibitory bioactivity, stability, and the like.

Once identified and screened for biological activity, these inhibitors may be used therapeutically or prophylactically to block FabH activity, and thus, bacterial replication.

The following examples illustrate various aspects of this invention. These examples do not limit the scope of this invention which is defined by the appended claims.

Example 1 - The Expression of FabH from Escherichia coli in Escherichia coli.

The strategy for the expression of the FabH from Escherichia coli, using Escherichia coli as a host was based on the PCR amplification of the fabH gene and the introduction of suitable restriction sites that allowed the cloning of the fabH-containing DNA fragment in the pET29 expression vector. After the PCR amplification the insert of the resultant recombinant plasmid, (pET29c hereafter), was sequenced to verify the absence

10

20

25

30

of artifacts introduced by the *Taq* polymerase reaction. Expression was monitored by SDS-polyacrylamide gel analysis.

A. Bacterial strains, Plasmids and Medium

The Escherichia coli strains used were: MAXEfficiency DH10B Competent Cells Genotype: F^- mcrA $\Delta(mrr-hsdRMS-mcrBC)$ $\phi 80dlacZ\Delta M15$ $\Delta lacX74$ deoR recA1 araD139 $\Delta(ara, leu)7697$ galU galK λ^- rpsL nupG. E. coli cells were grown at 37°C in Luria Bertani broth (LB). These strains may all be obtained from commercial sources. BL21(DE3) competent cells for protein expression purchased by Novagen. The protocol used to make them electroporation-competent was the one provided by Invitrogen.

The plasmid used was pET29 [Novagen]. A detailed description of pET29 is provided in Figure 2. Briefly, pET29 is an expression vector of *E.coli* which is based on the T7 promoter-driven system and allows the selection of the recombinant clones by kanamycin resistance.

15 LB Medium. Per liter:

Bacto-tryptone	10 g
Bacto-yeast extract	5 g
NaCl	5 g

For plasmid propagation 0.1mg/ml of kanamycin was added to the medium.

B. DNA manipulations

Plasmid DNA was prepared by the rapid alkaline method (Sambrook et al, 1989). Transformations of *E. coli* cells were carried out according to the protocol provided with the DH10B or the electroporation method. The plasmids for sequencing were purified using QIAGEN mini-prep kit [QIAGEN]. DNA sequencing was carried out on supercoiled plasmid DNA by the dideoxy chain-termination method using the Thermo Sequenase cycle sequencing kit [ABI, BigDye, Applied BioSystems, USA]. Synthetic oligonucleotides [ordered in-house] were used as primers. Restriction enzymes and T4 DNA ligase were obtained from Gibco BRL (Life Technologies) and the experiments were carried out following the instructions provided by the suppliers.

The fabH gene from E.coli cloned in the pET29 vector was amplified by PCR using the primers:

 $(5\text{'-TATACATATGTATACGAAGATTATTGGT-3'}; SEQ \ ID \ NO:2) \ and:$

10

15

20

25

30

(5'-ATATGGATCCCTAGAAACGAACCAGCGCGG-3'; SEQ ID NO:3).

Ndel and BamHI restriction sites were incorporated at the 5' and 3' ends respectively of each primer to facilitate ligation of the amplified DNA into vectors. Plasmid DNA (480 ng) was amplified in 100 ul of PCR mixture containing 200 uM deoxynucleotide triphosphates (dNTPs), 0.20 mM oligonucleotide primers, the manufacturer's buffer and 2.5 U of pfu (Stratagene). The following cycling parameters were used:

94°C 4 min

94°C 1 min, 55°C 40 sec, 72°C 1 min (30 cycles)

72°C 2 min

4°C

Polymerase chain reaction (PCR) was performed using the GeneAmp, PCR System 2400 [Perkin Elmer Cetus Co]. PCR-amplified DNA fragments were purified using Qiaquick PCR Purification kit for Rapid Purification of DNA Fragments [Qiagen].

C. Cloning of the fabH gene of E. coli in the expression vector pET29 of E. coli.

The cloning strategy is shown in Figure 2. PCR amplification of the fabH gene from E. coli using the primers AKK2 and AKK3 resulted in a DNA fragment of about 960 bp. This fragment was purified with Qiaquick PCR purification kit protocol (Qiagen) digested with Ndel and BamHI, purified, ligated overnight to the Ndel and BamHI sites of already digested vector pET29 to obtain the recombinant plasmid pET29c. The ligation mix was used to transform E. coli DH10B competent cells. The construction of pET29c was initially confirmed by restriction analysis of the plasmid purified from the transformants. The amplification with Taq DNA polymerase made the sequencing of the fabH of pET29c an obligatory step to confirm that no changes were introduced due to the low fidelity of this enzyme. Sequence analysis was accomplished by using T7 promoter and terminator primers. The sequencing of both strands showed that no artifacts had been introduced during the amplification process.

D. Small-scale production of FabH from E. coli in E. coli

The plasmid pET29c and the negative control pET29 (vector without insert) were used to transform the *E. coli* BL21(DE3) host strain. Single clones of BL21(DE3): pET29c cells were grown overnight at 37°C in 2 ml of LB medium in the presence of 0.1 mg/ml kanamycin. The cells were then diluted 100-fold in 10 ml LB with kanamycin. When the cultures reached a value of 0.5 at OD₆₀₀ the *fabH* expression was induced by addition of isopropyl-thio-galactoside (IPTG) at 0.5 mM of final concentration.

10

15

20

25

30

After this induction 2 ml samples were taken at different times (1 and 2 hours). The cells were harvested in a microfuge for 3 min, the pellets were washed with 20 mM Tris-HCl pH 8, 1mM PMSF and resuspended in 100 ul of SDS-PAGE gel-loading buffer. The cells were broken by sonication (15 seconds). The samples were then boiled for 10 minutes and after one spin, 10 ml fractions were analyzed by SDS-PAGE according to the methods of Laemmli [U. K. Laemmli, Nature 227, 680-685 (1970)]. The 4-12% polyacrylamide gels [NOVEX] were stained with Coomassie blue. As shown in Figure 3 good expression levels were detected from the early stages after induction with IPTG. The evidence was the presence of a prominent band (lanes 2, 4 and 6 in Figure 3) that was in good agreement with the M_r predicted from the primary sequence. The FabH protein has a theoretical molecular weight of about 33,514 Da.

Example 2 - Large Scale Growth and Purification of FabH

A. Large Scale Growth

A 4 liter fermentation of *E.coli* BL21(DE3): pET29c was carried out in Luria Bertani medium (LB), containing 100 ug/ml kanamycin. The 8x500 ml flasks were inoculated at 1% (v/v) from an overnight secondary seed culture in single strength LB medium, containing 100 mg/ml kanamycin. The flasks were incubated at 37°C, agitated at 250 rpm in a benchtop shaker. The OD at 600 nm was monitored, and at 0.5 absorbance units, FabH expression was induced with the addition of isopropyl-thiogalactosidase to 0.5 mM and the cells harvested by centrifugation in a Sorval CSA rotor, 2 hours post induction. A total of 20 grams of cell paste was recovered.

LB Medium, per liter, contains the following components. The medium was supplied by the in-house laboratory.

Single strength

Bacto Tryptone 10 g

. .

Bacto Yeast Extract

5 g

Sodium Chloride

de 5 g

B. Purification

1) Lysis

12.5 g of cells of *E. coli* overexpressing *E. coli* FabH obtained as described above, were resuspended in 140 ml of 20 mM Tris pH 7.9, 50 mM NaCl, 1mM EDTA, 1mM DTT, 10% glycerol, 1 mM PMSF (buffer A). Lysozyme (Sigma Chemicals: hen egg) was added to a final concentration of 1 mg/ml. Cells were incubated at 37°C for 20min. The cells were then lysed by sonication in an ice water bath (4x30sec). DNAse

10

15

20

25

30

(Sigma; bovine pancreas type 1) was added along with MgCl₂ and held at 37°C for 5 minutes. The solution was centrifuged in a Beckman JA-HS centrifuge at 14,000 g for 60 minutes using a Beckman JA-14 rotor.

2) Anion exchange

All chromatography was performed on a Pharmacia chromatography system, fitted with a UV detector (Pharmacia, Monitor UV-1). UV (at 280 nm) was monitored during all operations. All operations were performed at 4°C.

The supernatant from 1) was loaded onto a Q-Sepharose high performance (Pharmacia) column of 50 ml packed into a Pharmacia XK-26 column. The column was equilibrated with buffer A prior to loading. The column was then washed with buffer A (250 ml) at 4 ml/min, and eluted with a linear gradient of buffer A to 1M NaCl in buffer A over 80 minutes at 4 ml/min. The eluate was fractionated into 8 ml fractions using a Pharmacia FRAC 200.

The eluted fractions were assayed for FabH activity by measurement of incorporation of [14C]Acetyl-CoA to Malonyl-ACP and, and for protein by the Bradford method. Active fractions were analyzed by reducing SDS-PAGE (NOVEX, NuPAGE Bis-Tris 4-12 % gradient gel). Active fractions pooled together and dialyzed against Buffer A.

3) Anion Exchange chromatography

The dialyzed material was loaded onto a MonoQ column equilibrated with buffer A (Pharmacia, 5/5). The column was washed with 20 ml of the equilibration buffer until 280 nm absorbance returned to base line and then eluted with a linear gradient of equilibration buffer to buffer A over 90 minutes at 0.5 ml/min. Fractions were pooled together, collected, assayed for FabH activity.

4) Hydroxyapatite/ buffer exchange

Eluted fractions are collected (1 ml fraction) and assayed for FabH activity and protein. Active fractions are pooled and the volume was doubled with Buffer B [20 mM Tris-HCl pH 7.4, 50 mM NaCl, 1 mM DTT and 10% glycerol] to reduce the salt concentration in half. The active eluate was loaded in a hydroxyapatite column and eluted with 0.5 M Potassium Phosphate pH 7.4. The active enzyme was buffer exchanged with 20 mM Tris pH 7.4, 50 mM NaCl 2 mM DTT. This product was greater than 97% purity by SDS PAGE and the activity showed an overall process yield of 60 % from 1). N-terminal amino acid analysis confirmed identity.

10

15

25

30

Example 3 - Fermentation, Purification and Characterization of seleno-methionine derivative of Escherichia coli FabH

A. Fermentation

To obtain soluble selmet-FabH for purification and crystallization studies, E. coli strain BL21 (DE3) was transformed with pET29c FabH. 50 ul of the seed culture expressing FabH gene product was inoculated into 100 ml of Luria broth, containing kanamycin (50 ug/ml) and glucose (0.6%). On reaching target density of 2 OD, the cells from the seed culture were isolated by centrifugation, resuspended in 100 ml of M9 minimal medium containing 1 mM CaCl₂, 1 mM MgSO₄, kanamycin (50 ug/ml) and glucose (0.6% w/v). The resuspended pellets were then added to 900 ml of the same medium and the cells were grown at 37 C to mid-log phase, A₆₀₀ of 1.5, at which point lysine, phenylalanine, threonine at 100 mg/l each, and selenomethionine, isoleucine, leucine, and valine at 50 mg/l were added. The culture was shaken for 15 minutes, and then induced with 0.5mM isopropyl b-D-thiogalactopyranoside (IPTG). The culture was grown for 13 hours, and harvested by centrifugation (speed). 5 ml aliquots were taken prior to and during induction to monitor the expression of selenomethionine FabH. 12g of cell paste (wet wt) was recovered from 5L. In addition, to compare the expression of selenomethionine derivative to that of wt FabH, a one l culture was prepared under identical conditions except that the

20 B. Purification

cells were grown in LB media.

All lysis and purification steps were carried out using degassed buffers in a cold room or on ice. 4.5 g of E. coli cells over expressing Fab H were resuspended in 50 ml of 20 mM Tris, 50 mM sodium chloride, 10% glycerol, 0.2 mM PMSF, 2 mM DTT, pH 7.9 (buffer A). Cells were lysed twice at 10,000 psi using Microfluidizer (Microfluidics Corporation, MA). Cell debris was removed by centrifugation (Sorvall RC-5B) at 35,000 g for 30 min. The supernatant was applied to a 2.6 x 4 cm Source Q column (Pharmacia) equilibrated in buffer A. The column was washed with 10 column volumes of buffer A, and eluted with a 10 column volume gradient of 0 to 1.0 M NaCl in buffer A. Eluted fractions were analyzed by 10% SDS-PAGE under reducing conditions. Fab H eluted at 0.2 - 0.25 M NaCl. Fab H containing fractions were pooled and applied to a 2.6 x 6 cm Hydroxyapatite column (Bio-Rad, Type I, 40u) equilibrated in buffer A. The column was eluted with a 30 column volume linear gradient of buffer A to 400 mM potassium phosphate, 10% glycerol, 2 mM DTT. Fab H, which eluted at 80-180 mM potassium phosphate, was diluted 1:2 with 50 mM Tris, 200 mM NaCl, 10% glycerol, 2 mM DTT, pH 7.5 (buffer B) and applied to a 1.6 X 7.5

10

15

20

25

30

cm Blue Sepharose column (Pharmacia) equilibrated in buffer B. The column was eluted with buffer B containing 1 M NaCl. Blue Sepharose eluted Fab H fractions were next applied to a 2.6 x 60 cm Superdex 200 size exclusion column (Pharmacia) equilibrated in 20 mM Tris, 50 mM NaCl, 2 mM DTT, pH 7.4. A total of 23 mg of Fab H was recovered which was concentrated to 13 mg/ml using Amicon 3 filtration device.

C. Characterization

i). Mass Spectoscopy

Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) data were obtained on a PerSeptive Biosystems Voyager RP laser desorption time-of-flight mass spectrometer. Protein samples were prepared for analysis by diluting analyte 1:5 with 3,5-Dimethoxy-4-hydroxy-cinnamic acid (10mg/ml in 2:1 0.1% trifluoroacetic acid/acetonitrile) for a final concentration of 1-10 pmol/ul. Bovine Beta lactoglobulin A (Sigma) was included as an internal calibrant (MH+ 18364 Da). Desorption/ionization was accomplished using photon irradiation from a 337-nm pulsed nitrogen laser and 30-keV accelerating energy. Spectra were averaged over ca. 100 laser scans.

The predicted molecular mass for native FabH is 33516 Da. MALDI-MS analysis of the selenomethionyl incoporated FabH protein construct provided a mass of 33,889 Da. This is in close agreement with the predicted +375Da shift in mass expected for the sulfur to selenium side-chain substitution of eight methionine residues within the protein (33,891 Da theoretical).

ii). N-terminal sequence analysis

Sequence analysis was performed on a Hewlett-Packard G1000A N-terminal Protein Sequencer with on-line PTH identification using an HP1100 HPLC. Samples were applied directly to biphasic sequencing cartridges and standard 3.1 sequencing method cycles were used.

N-terminal sequencing results showed negligible native methionine in the first residue. Instead, a unique PTH (phenylthiohydantoin) derivative was observed which eluted 1.6 minutes later than PTH-methionine, and did not coelute with any natural PTH-amino acid derivatives. The increase in hydrophobicity is consistent with the direct detection of the PTH-selenomethionyl amino acid derivative.

D. Measurement of \(\mathcal{B}\)-ketoacyl-ACP synthase III activity.

The enzyme catalyses the condensation of acetyl-CoA with malonyl-ACP to form acetoacetyl-ACP. The reaction can be described by three distinct steps: (a) the acyl group

10

15

of acetyl-CoA is transferred to the active site cysteine resulting in a acyl-enzyme thioester; (b) carbanion formation by the decarboxylation of malonyl-ACP; and (c) carbon-carbon bond formation by nucleophillic attack of the carbanion onto the carbonyl carbon atom of the acyl-enzyme thioester to yield the acetoacetyl-ACP product.

This reaction can be assayed in order to characterize the enzyme or identify specific inhibitors of its activity in two ways:

- Radiolabeled acetoacetyl-ACP formation can be specifically determined using [3H]-acetyl-CoA and malonyl-ACP. The [3H]-acetyl-CoA substrate is soluble in 10%TCA while the resulting [3H]-acetoacetyl-ACP is not. A reaction mixture containing 100mM sodium phosphate buffer pH7.0, 1mM DTT, 34uM acetyl-CoA, 0.15uM [3H]-acetyl-CoA (specific activity 25Ci/mmol), and 7uM malonyl-ACP is prepared and transfered to a microtiter plate with or without inhibitors already added. The enzyme is added last to start the reaction and the plate is incubated at 37 degrees C. Ten percent TCA is added to stop the reaction, and then 50ug of BSA as a carrier. Stopped reactions are filtered and washed 2 times with 10% TCA on Wallac GF/A filtermats using a TomTec harvester. The filtermats are dried at 60 degrees C and the radioactivity quantified using Wallac Betaplate scintillation cocktail and a Wallac Microbeta 1450 liquid scintillation counter. IC50s are generated using Grafit 4.0 software and solved using the equation v = Vmax/(1 + I/IC50).
- 20 (2) <u>FabG coupling</u> can also be used to measure FabH production of acetoacetyl-ACP by following NADPH consumption at 340nm. FabG (β-ketoacyl-ACP reductase) will specifically reduce the C3 carbonyl of acetoacetyl-ACP to form β-hydroxybutyryl-ACP. This reduction requires the conversion of NADPH to form NADP+ which can be monitored by following the optical density at wavelength 340nm.
- 25 (3) FabD coupling is an available assay option in the absence of purified malonyl-ACP. FabD (Malonyl-CoA:ACP transacylase) is responsible for malonic acid transfer from malonyl-CoA to ACP to form malonyl-ACP. This activity can be exploited by applying the techniques described in (1) above together with *de novo* malonyl-ACP from the FabD reaction.

30

E. Ligand binding to FabH.

10

15

20

25

30

It is also possible to define ligand interactions with FabH in experiments that are not dependent upon enzyme catalyzed turnover of substrates. This type of experiment can be done in a number of ways:

- of tryptophan). Binding of either natural ligands or inhibitors may result in enzyme conformational changes which alter enzyme fluorescence. Using stopped-flow fluorescence equipment, this can be used to define the microscopic rate constants that describe binding. Alternatively, steady-state fluorescence titration methods can yield the overall dissociation constant for binding in the same way that these are accessed through enzyme inhibition experiments.
- (2) Spectral effects of ligands. Where the ligands themselves are either fluorescent or possess chromophores that overlap with enzyme tryptophan fluorescence, binding can be detected either via changes in the ligand fluorescence properties (e.g. intensity, lifetime or polarization) or fluorescence resonance energy transfer with enzyme tryptophans. The ligands could either be inhibitors or variants of the natural ligands.
- (3) <u>Thermal analysis of the enzyme:ligand complex</u>. Using calorimetric techniques (e.g. Isothermal Calorimetry, Differential Scanning Calorimetry) it is possible to detect thermal changes, or shifts in the stability of FabH which reports and therefore allows the characterization of ligand binding.

Example 3 - Crystallization of E. coli wild-type and selenomethionine mutant of FabH

A. Crystallization

All crystals were grown at room temperature using the sitting-drop vapor diffusion method. The drop solution was always a 1:1 mixture of the protein sample and the well solutions. For the crystal form 1 of the wild-type protein, the well solution contained 0.1 M HEPES buffer at pH 7.5 and 20% PEG8000. For the crystal form 2 of the selenomethionine mutant protein in complex with acetyl-CoA, the well solution contained 0.05 M Bis-Tris propane buffer at pH 7.0, 0.1 M MgCl₂ and 14% PEG6000. Crystals grew overnight and are approximately 0.1 to 0.2 mm in sizes.

B. X-ray Diffraction Characterization

All crystals were frozen in liquid nitrogen streams before their characterization using synchrotron X-ray radiation. Diffraction data for the apo form 1 crystal was collected to 2.0 Å resolution. The data is 97.1 % complete and 6 fold redundant with a merging R-

10

15

20

25

30

factor of 7.7 %. The crystal belongs to the orthorhombic spacegroup $P2_12_12_1$, with cell dimensions a = 63.1, b = 65.1 and c = 166.5 Å. For the Se-Met protein in complex with acetyl-CoA, data were collected at three different wavelengths: 0.9789, 0.9785 and 0.9414 Å. The three data set were of nearly identical quality, with about 80% completion, 6-fold redundancy, 8.5 %

merging R-factor, and 1.9 Å resolution. The form 2 crystal belongs to the tetragonal spacegroup $P4_12_12$, with a = b = 72. 4 and c = 102.8 Å.

C. Structure Solution

The crystal structure of the Se-Met *E. coli* FabH mutant in complex with acetyl-CoA was solved to 1.9 Å resolution using the MAD phasing technique with the data sets collected at three different wavelengths and the program SOLVE (Terwilliger & Berendzen, 1999, *Acta Cryst.* D55, 849-861). All eight Se-Met were located by SOLVE. The overall MAD phasing figure of merit was 0.6 to 1.9 Å resolution, and the overall Z score was as high as 148. The resulting electron density map was of very high quality. The structure of the apo enzyme (crystal form 1) was solved with the molecular replacement method using the acetyl-CoA complex structure as the search model. This crystal form had a FabH dimer in the asymmetric unit, and the R-factor of the solution was only 33%. Two-fold averaged map was then calculated and used for model building.

D. Model Building and Refinement

The electron density for the acetyl-CoA complex was very clear and a structure model for the whole FabH protein, the bound acetyl group and CoA, as well as 98 solvent molecules were built in the first round. Standard structural refinement protocols and manual model building led to the current model, which has an R-factor of 27 % to 1.9 Å resolution. The model for the apo FabH structure was also built readily, and refined to an R-factor of 18.9 % (R_{free} of 24.4%) to 2.0 Å resolution. Both models have excellent geometry and do not have any outliers in the Ramanchandran plot, indicating high quality of the atomic coordinates, which contain an estimated error of less than 0.3 Å.

This invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. The disclosures of the patents, patent applications and publications cited herein are incorporated by reference in their entireties.