Inverse

- If f is a bijection, then f^{-1} can be defined, i.e. f is invertible If a function both one-to-one and onto, it is called bijection.
- $f: \mathbb{Z} \to \mathbb{Z}$, defined as f(x) = x + 1, f is invertible?

$$\forall x_1, x_2 \in \mathbb{Z}, \ f(x_1) = f(x_2) \to x_1 + 1 = x_2 + 1 \to x_1 = x_2 \text{ (one-to-one)}$$

$$\forall y \in \mathbb{Z}, f(x) = y \leftrightarrow x + 1 = y$$

 $\leftrightarrow x = y - 1 \in \mathbb{Z}$ (onto)

$$f^{-1}(x) = x - 1$$

Inverse

- If f is a bijection, then f^{-1} can be defined, i.e. f is invertible If a function both one-to-one and onto, it is called bijection.
- $f: \mathbb{Z} \to \mathbb{Z}$, defined as f(x) = 2x + 1, f is invertible?

$$\forall x_1, x_2 \in \mathbb{Z}, \ f(x_1) = f(x_2) \to 2x_1 + 1 = 2x_2 + 1$$

 $\to x_1 = x_2 \text{ (one-to-one)}$

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \ f(x) = y \leftrightarrow 2x + 1 = y$$

$$\leftrightarrow x = \frac{y-1}{z}$$

but for some $y \in \mathbb{Z}$, $x = \frac{y-1}{2} \notin \mathbb{Z}$ (not onto)

Inverse

- If f is a bijection, then f^{-1} can be defined, i.e. f is invertible If a function both one-to-one and onto, it is called bijection.
- $f: \mathbb{Z} \to \mathbb{N}$, defined as $f(x) = \begin{cases} 2x 1 & \text{if } x > 0 \\ -2x & \text{if } x \leq 0 \end{cases}$ f is invertible?

$$\forall x_1, x_2 \in \mathbb{Z}, \ f(x_1) = f(x_2) \to 2x_1 - 1 = 2x_2 - 1$$

 $\to x_1 = x_2$
 $\forall x_1, x_2 \in \mathbb{Z}, \ f(x_1) = f(x_2) \to -2x_1 = -2x_2$
 $\to x_1 = x_2$ (one-to-one)

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}, \text{ if } y = 2k, \exists k \in \mathbb{Z}, \text{ then } f(x) = y \leftrightarrow -2x = y \\ \leftrightarrow x = -\frac{y}{2} = -k \in \mathbb{Z}$$

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}, \text{ if } y = 2k+1, \exists k \in \mathbb{Z}, \\ \text{then } f(x) = y \leftrightarrow 2x-1 = y \\ \leftrightarrow x = \frac{y+1}{2} = k+1 \in \mathbb{Z}$$

(onto)

Composition

 $f,g:\mathbb{Z}\to\mathbb{Z}$,

$$f(x) = 3x + 1$$
 and $g(x) = 2x - 1$

$$g \circ f(x) = g(f(x)) = g(3x+1) = 2(3x+1) - 1 = 6x + 1$$

$$f \circ g(x) = f(g(x)) = f(2x - 1) = 3(2x - 1) + 1 = 6x - 2$$

• $f: A \rightarrow B$

$$f \circ f^{-1}(y) = f(f^{-1}(y)) = f(x) = y, \quad f \circ f^{-1} = I_B$$

 $f^{-1} \circ f(x) = f^{-1}(f(x)) = f^{-1}(y) = x, \quad f^{-1} \circ f = I_A$

If f and g are one-to-one, then $f \circ g$ is also one-to-one.

$$\forall x_1, x_2 \in A, f \circ g(x_1) = f \circ g(x_2) \to f(g(x_1)) = f(g(x_2))$$

 $\to g(x_1) = g(x_2)$ (f is one-to-one)
 $\to x_1 = x_2$ (g is one-to-one)

Floor and Ceiling Functions

floor function of a real number x : is the largest integer that is less than or equal to x, denoted by $\lfloor x \rfloor$.

$$[1/5] = 0$$
, $[-1/5] = -1$, $[3,56] = 3$, $[-3,56] = -4$

$$\lfloor x \rfloor = n$$
 if $n \le x < n+1$ or $\lfloor x \rfloor = n$ if $x-1 \le n < x$

ceiling function of a real number x: is the smallest integer that is greater than or equal to x, denoted by $\lceil x \rceil$.

$$[1/5] = 1$$
, $[-1/5] = 0$, $[3,56] = 4$, $[-3,56] = -3$

$$[x] = n$$
 if $n - 1 < x \le n$ or $[x] = n$ if $x \le n < x + 1$

Floor and Ceiling Functions

show that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$

assume
$$x = n + \varepsilon$$
 where n is integer and $0 \le \varepsilon < 1$

$$0 \le \varepsilon < \frac{1}{2}$$

$$|2n + 2\varepsilon| = |n + \varepsilon| + |n + \varepsilon + 1/2|$$

$$|2n + 2\varepsilon| = |n + \varepsilon| + |n + \varepsilon + 1/2|$$

$$|2n + n| + |n + n| + |n + n|$$

• determine whether [x+y] = [x] + [y] for all $x, y \in \mathbb{R}$.

assume
$$0 < x, y < \frac{1}{2}$$
, then $x + y < 1$.

$$[x + y] = [x] + [y]$$

 $1 \neq 1 + 1$

Sequences

denoted by $\{a_n\}$ where a_n is the general term of the sequence. Definition: A sequence is a function from \mathbb{N} (or \mathbb{Z}^+) to a set S,

1, 4, 7, 10, 13, . . .
$$\{3n+1\}$$

$$0, 1, 3, 7, 15, \ldots$$
 $\{2^n - 1\}$

$$a_n = \frac{1}{n}$$
 $a_1 = 1$, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, ...

$$a_n = \frac{1}{3^{n+2}}$$
 $a_0 = \frac{1}{2}$, $a_1 = \frac{1}{5}$, $a_2 = \frac{1}{11}$,...

Sequences

Geometric Sequence:

$$a_n = (-1)^n$$
 $a_n = 2.3^n$ $a_{n-1} = 2.3^n$ $a_{n-1} = 2.3^n$ $a_{n-1} = 2.3^n$ $a_{n-1} = 3.3^n$

$$a_n = 3. (1/2)^n$$

3, 3/2, 3/4, 3/8,...

Sequences

Arithmetic Sequence:

$$a_n = 1 + n$$
 $a_n = 2 - 4n$ $a_n = 1, 2, 3, 4, ...$ $a_n = 2, -2, -6, -10, ...$

$$a_n = -1 + 8n$$

-1, 7, 15, 23,...

Summations

• $\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_{n-1} + a_n$

$$\sum_{i=0}^{\infty} a_i = a_0 + a_1 + \dots + a_n + \dots$$

$$\sum_{i=2}^{5} (i^2 - 1) = 4 - 1 + 9 - 1 + 16 - 1 + 25 - 1 = 50$$

•
$$S = \{2, 3, 4\}, \quad \sum_{x \in S} x^3 = 2^3 + 3^3 + 4^3 = 99$$

•
$$\sum cf(x) = c \sum f(x)$$

$$\sum (f(x) + g(x)) = \sum f(x) + \sum g(x)$$

$$\sum_{i=m}^{n} f(i) = \sum_{i=m}^{k} f(i) + \sum_{i=k+1}^{n} f(i)$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + \frac{n}{2} + \left(\frac{n}{2} + 1\right) + \dots + (n-1) + n$$
$$= (n+1) + (n+1) + \dots + (n+1)$$
$$= \frac{n}{2}(n+1)$$

Summations

•
$$a, a + d, a + 2d, \ldots, a + n, d$$

$$\sum_{i=0}^{n} (a+id) = \sum_{i=0}^{n} a + \sum_{i=0}^{n} id$$

$$= \sum_{i=0}^{n} a + d \sum_{i=0}^{n} i$$

$$= (n+1)a + d \frac{n(n+1)}{2}$$

• $a, ar, ar^2, \ldots, ar^n$

$$S_n = \sum_{i=0}^n ar^i \to rS_n = r \sum_{i=0}^n ar^i = \sum_{i=0}^n ar^{i+1}$$

$$rS_n = \sum_{i=1}^{n+1} ar^i = \sum_{i=1}^n ar^i + ar^{n+1}$$

$$rS_n = \sum_{i=0}^n ar^i + ar^{n+1} - a$$

$$rS_n = \sum_{i=0}^n ar^i + ar^{n+1} - a$$

sometimes the elements of the sequence are defined recursively in terms of previous and the initial elements of the sequence

$$a_0 = 1$$
, $a_1 = 5$, $a_2 = 13$, $a_3 = 29$, $a_4 = ?$
 $a_1 = 2a_0 + 3 = 5$
 $a_2 = 2a_1 + 3 = 13$
 $a_3 = 2a_2 + 3 = 29$
 $a_4 = 2a_3 + 3 = 61$

Definition: an equation that express the general term of the solution of a recurrence relation if its terms satisfy the sequence in terms of previous terms. A sequence is called a recurrence relation.

• $a_{n+1} = 3a_n$, $a_0 = 5$

 $a_1 = 15 = 3.5$

 $a_2 = 75 = 3.(3.5)$ $a_3 = 225 = 3.(3.(3.5))$ $a_n=3^n 5$; the unique solution of the given recurrence relation

• $a_{n+1}=d$, a_n , $a_0=A$ where d is constant

the solution of the recurrence relation will be $a_n=A$. d^n

solve the recurrence relation $a_{n+1}=7.\,a_n$ where $n\geq 1$ and $a_2=98$

 $a_2 = A$, $7^2 \to 98 = A$, $49 \to A = 2$

the solution is $a_n = 2.7^n$

3 can be written as a sum of positive integers in 4 different ways:

In how many different ways can h be written as a sum of positive integers?

first order linear homogeneous recurrence relation create a new sequence $b_n =$ $a_4 = 2$, a_3 , $a_3 = 2$, a_2 , and $a_2 = 2$ $a_{n+1} = 2$, a_n , $a_1 = 1$

 $b_n=2b_{n-1}$, $b_0=1$; the solution will be $b_n=2^n$; thus $a_n=2^{n-1}$

- $a_{n+1}-d$, $a_n=0$, $a_0=A$ where d is constant.
- first order since a_{n+1} only depends on a_n (the previous term)
- linear since each variable appears in the first power and there is no product such as $a_{n+1}.a_n$
- homogeneous since the right hand side is 0
- The second order linear homogeneous recurrence relation:

$$C_0a_{n+1} + C_1a_n + C_2a_{n-1} = 0$$
, $a_0 = A$, $a_1 = B$, $n \ge 2$

The Fibonacci sequence:

$$F_{n+1} = F_n + F_{n-1}$$
, $F_0 = 1$, $F_2 = 1$, $n \ge 2$

The second order linear homogeneous recurrence relation:

$$C_0a_{n+1} + C_1a_n + C_2a_{n-1} = 0$$
, $a_0 = A$, $a_1 = B$, $n \ge 2$

 $a_{n+1}-d$, $a_n=0$, $a_0=A$. The solution was in the form of $a_n=A$, d^n

Similarly, we look for a solution in the form of $a_n=c.\,r^n$

If we place it in the equation:

$$C_0c.r^{n+1} + C_1c.r^n + C_2c.r^{n-1} = 0$$

$$C_0 r^2 + C_1 r + C_2 = 0$$
 (characteristic equation)

The solutions for the characteristic equation are called characteristic roots; r_1 and r_2

•
$$a_{n+1} + a_n - 6a_{n-1} = 0$$
, $a_0 = -1$, $a_1 = 8$, $n \ge 2$

$$r^2 + r - 6 = 0$$
 (characteristic equation)

$$r_1 = 2$$
, $r_2 = -3$ (characteristic roots)

the solution will be in the form of $a_n = c_1 2^n + c_2 (-3)^n$.

$$a_0 = c_1 2^0 + c_2 (-3)^0 \rightarrow -1 = c_1 + c_2$$

$$a_1 = c_1 2^1 + c_2 (-3)^1 \rightarrow 8 = 2c_1 - 3c_2$$

$$a_n = 2^n - 2 \cdot (-3)^n$$

$$c_1 = 1, c_2 = -2$$

 $c_1 + c_2 = -1$ $2c_1 - 3c_2 = 8$

using 2x1 and 1x2 dominoes. In how many different ways can Suppose we have a 2xn chessboard and we wish to cover it

- using 2x1 and 1x2 dominoes. In how many different ways can Suppose we have a 2xn chessboard and we wish to cover it we cover it?
- $b_n = b_{n-1} + b_{n-2}, n \ge 3, b_1 = 1 \text{ and } b_2 = 2$

$$r^2 - r - 1 = 0$$
 (characteristic equation)

$$r_1=rac{1+\sqrt{5}}{2},\,r_2=rac{1-\sqrt{5}}{2}$$
 (characteristic roots)

the solution will be in the form of $b_n=c_1(\frac{1+\sqrt{5}}{2})^n+c_2(\frac{1-\sqrt{5}}{2})^n$

$$b_0 = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^0 + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^0 \to 1 = c_1 + c_2$$

$$b_1 = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^1 \to 2 = \left(\frac{1+\sqrt{5}}{2}\right) c_1 + \left(\frac{1-\sqrt{5}}{2}\right) c_2$$

$$= 1/\sqrt{5}, c_2 = -1/\sqrt{5}$$
 $b_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - (\frac{1-\sqrt{5}}{2})^n \right)^n$

$$c_1 = 1/\sqrt{5}, c_2 = -1/\sqrt{5}$$
 $b_n = \frac{1}{\sqrt{5}} \left((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n \right)$

3 can be written as a sum of positive integers in 4 different ways:

they are read the same from left to right, right to left

How many different palindromes can be found for a given $n \in \mathbb{Z}^+$?

3 can be written as a sum of positive integers in 4 different ways:

palindrome they are read the same from left to right, right to left How many different palindromes can be found for a given $n \in \mathbb{Z}^+$?

$$b_n = 2b_{n-2}, n \ge 3, b_1 = 1$$
 and $b_2 = 2$

 $r_1 = \sqrt{2}$, $r_2 = -\sqrt{2}$ (characteristic roots)

 $r^2 - 2 = 0$ (characteristic equation)

the solution will be in the form of $b_n = c_1(\sqrt{2})^n + c_2(-\sqrt{2})^n$

$$b_0 = c_1(\sqrt{2})^0 + c_2(-\sqrt{2})^0 \to 1 = c_1 + c_2$$
$$b_1 = c_1(\sqrt{2})^1 + c_2(-\sqrt{2})^1 \to 2 = (\sqrt{2})c_1 + (-\sqrt{2})c_2$$

$$b_n = \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)(\sqrt{2})^n + \left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right)\left(-\sqrt{2}\right)^n$$