Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization

Measuring Data Similarity and Dissimilarity

Summary

Similarity, Dissimilarity, and Proximity

- Similarity measure or similarity function Tarth Millian When wall with the state of the state of
 - A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - ☐ Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure לאונאלוו
 - In Numerical measure of how different two data objects are Think the whole which will be so that the state of the
 - In some sense, the inverse of similarity: The lower, the more alike
 - ☐ Minimum dissimilarity is often 0 (i.e., completely similar) [0,0]; ☐ ☐ ☐
 - □ Range [0, 1] or $[0, \infty)$, depending on the definition $[0, \infty]$, with
- Proximity usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
 - A data matrix of n data points with I dimensions

- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j) (typically metric)

Weights can be associated with different variables based on applications and data semantics

$$\begin{pmatrix}
0 \\
d(2,1) & 0 \\
\vdots & \vdots & \ddots \\
d(n,1) & d(n,2) & \dots & 0
\end{pmatrix}$$

stud confination subsummen pata

Standardizing Numeric Data

Z-score:

- $z = \frac{x \mu}{\sigma}$
- X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

 $m_f = \frac{1}{n}(x_{1f} + x_{2f} + \ldots + x_{nf}).$ standardized measure (*z-score*): $z_{if} = \frac{x_{if} - m_f}{s_f}$ sing mean absolute deviation is more relevant. Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x2</i>	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
 - \Box d(i, j) = d(j, i) (Symmetry)
 - \Box d(i, j) \leq d(i, k) + d(k, j) (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- \square p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + \cdots + |x_{il} x_{jl}|$
- \square p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $ightharpoonup p
 ightharpoonup \infty$: (L_{max} norm, L_{\infty} norm) "supremum" distance
 - ☐ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

LANGE DISTRIBUTION DONAGE

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{xx})

L_{∞}	x 1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x 4	3	1	5	0

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x 4	4	5

$$12 \text{ norm} = 18 = \sqrt{3^2 + 3^2}$$

$$L \propto = 3 = 3$$

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

$$12 \text{ norm } = \sqrt{29} = \sqrt{5^2 + 2^2}$$

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

य: भाग भी भी भी भी कि

1: am my Tigo UNIAU C MAO