Crime Analysis of Chicago in 2015

Team member

Lan Chang

Jiwei Wei

Zhizhou Chen

Overview

262893 obs. of 22 variables

ID, Case.Number, Date, Block, IUCR, Primary.Type, Description, Location.Description, Arrest, Domestic, Beat, District, Ward, Community.Area, FBI.Code, X.Coordinate, Y.Coordinate, Year, Updated.On, Latitude, Longitude, Location

259807 obs. of 22 variables

01/18/2015 04:00:00 PM

date_month date_day date_year time_hour time_minute time_second 1 18 2015 16 0 0

As citizens or tourists, what should they care for?

- Which kind of crime has the most frequency to happen?
- Theft or Robbery...?
- Which area of Chicago has the most crime rate?
- Downtown or countryside?
- What time has the most crime rate?
- Day or night?

Crime Type

Crime

Point Map

Raster Map

Robbery

Theft

Point Map

Raster Map

Theft

1870

We want to pay more attention on theft

Theft Point on Google Map

More:

Downtown Area

Less:

Highway,

Park,

River,

Lake,

Airport

Theft: Pocket-Picking & Purse-Snatching

Theft: Pocket-Picking & Purse-Snatching

@ Downtown Area

Theft: Pocket-Picking & Purse-Snatching @ Downtown Area

As police department, what should they care for?

- Which kind of crime has the most frequency to happen at night?
- Battery...?
- Has gun?
- Yes or no?
- How should they patrol?
- Which area and what is the center point?

Crime Type @ Night (10pm-6am)

Battery w/ Gun @ Night

Use k-means to find the center points with Latitude and Longitude (k=15).

Information for police from this data

Can we predict the crimes type?

- If we can predict the crime type before the police get to the scene of crime, the officer can be prepared which can reduce the danger.
- We have Latitude, Longitude and date, looks like we can use k-Nearest Neighbor Algorithm to predict the crimes types.

Use k-nearest neighbor to predict the crime type with Latitude and Longitude (k=50).

						Actual							
Predict	ARSON	ASSAULT	BATTERY	CRIM SEXUAL ASSAULT	HOMICIDE	INTERFERENCE WITH PUBLIC OFFICER	KIDNAPPING	OBSCENITY	OFFENSE INVOLVING CHIL	DREN PROSTITUTIO	PUBLIC INDECENCY	THEFT	WEAPONS VIOLATION
ARSON	(0 0	0		0	0	(0		0	0	0	0 0
ASSAULT	(5	14		0	1	(0		0	0	0 1	4
BATTERY	54	4 2226	6569	14:	71	198	28	3 2		286	ô9	2 382	0 507
CRIM SEXUAL ASSAULT	(0 0	0		0	0	(0		0	0	0	0 (
HOMICIDE	(0 0	0		0	0	(0		0	0	0	0 0
INTERFERENCE WITH PUBLIC OFFICER	(0 0	0		0	0	(0		0	0	0	0 0
KIDNAPPING	(0 0	0		0	0	(0		0	0	0	0 (
OBSCENITY	(0 0	0		0	0	(0		0	0	0	0 0
OFFENSE INVOLVING CHILDREN	(0 0	0		0	0	(0		0	0	0	0 0
PROSTITUTION		1 12	46		2 0	2	2	2 0		2 1	59	0 3	10 2
PUBLIC INDECENCY	(0 0	0		0	0	(0		0	0	0	0 0
THEFT	2:	1 1150	3042	9.	7 23	84	14	4 3		133	43	1 755	4 156
WEAPONS VIOLATION	(0 0	0		0	0	() 0		0	0	0	0 (

Because the amount of **Battery** and **Theft** type are much more than other crime types, no matter where the crimes happen, it will be highly likely predicted as **Battery** or **Theft**.

Use k-nearest neighbor to predict the crime type with Latitude, Longitude and date (k=50).

						Actual						
Predict	ARSON	ASSAULT	BATTERY C	RIM SEXUAL ASSAULT	HOMICIDE	INTERFERENCE WITH PUBLIC OFFICER	KIDNAPPING	OBSCENITY	OFFENSE INVOLVING CHILDREN	PROSTITUTION	PUBLIC INDECENCY THE	FT WEAPONS VIOLATION
ARSON		0	0	0	0	C	0	0)	0	0	0 0
ASSAULT		10	14	1	0	C	0	0) (1	0	12 0
BATTERY	65	2029	6173	154	68	216	29	1	. 241	162	1 3	792 513
CRIM SEXUAL ASSAULT		0	0	0	0	C	0	0)	0	0	0 0
HOMICIDE	- 0	0	0	0	0	C	0	0)	0	0	0 0
INTERFERENCE WITH PUBLIC OFFICER	(0	0	0	0	C	0	0) (0	0	0 0
KIDNAPPING		0	0	0	0	C	0	0)	0	0	0 0
OBSCENITY		0	0	0	0	C	0	0)	0	0	0 0
OFFENSE INVOLVING CHILDREN	- 0	0	0	0	0	C	0	0)	0	0	0 0
PROSTITUTION	(10	23	1	2	3	0	0) (66	0	22 3
PUBLIC INDECENCY	(0	0	0	0	C	0	0)	0	0	0 0
THEFT	11	1344	3461	84	24	66	15	4	180	42	2 7	592 150
WEAPONS VIOLATION		0	0	0	0	C	0	0)	0	0	0 0

This time I use normalized Latitude, Longitude and date to predict the crime type. But the **Battery** and **Theft** type still dominate the prediction, no matter where and when the crimes happen, it still will be highly likely predicted as **Battery** or **Theft**.

Use weighted k-nearest neighbor to predict the crime type with Latitude, Longitude and date (k=50).

						Actual							
Predict	ARSON	ASSAULT	BATTERY	CRIM SEXUAL ASS	AULT HOMICIDE	INTERFERENCE WITH PUBLIC OFFICER	KIDNAPPING	OBSCENITY	OFFENSE INVOLVING CHILDREN	PROSTITUTION	PUBLIC INDECENCY	THEFT	WEAPONS VIOLATION
ARSON	(0	57		0 0		0 () () () (0	19	
ASSAULT	(90	1932		0 0		0 () (0	15	i 0	1355	i
BATTERY	(193	6004		0 0		0 () () (40	0	3430	
CRIM SEXUAL ASSAULT	(7	159		0 0		0 () ()) 1	. 0	73	
HOMICIDE	() 2	65		0 0		0 () (0) (0	27	,
INTERFERENCE WITH PUBLIC OFFICER	(7	202		0 0		0 () () () 3	0	72	
KIDNAPPING	(0	26		0 0		0 () (0) (0	18	
OBSCENITY	(1	1		0 0		0 () ()) (0	3	
OFFENSE INVOLVING CHILDREN	(9	244		0 0		0 () (7 (0	161	
PROSTITUTION	(3	98		0 0		0 () ()	131	. 0	39	
PUBLIC INDECENCY	(0	1		0 0		0 () () () (0	2	
THEFT	(159	3672		0 0		0 () (0	31	. 0	7549	
WEAPONS VIOLATION	(17	476		0 0		0 () () () 3	3 0	169	

The weighted k-nearest neighbor Algorithm still can't make any improvement. The **Battery** and **Theft** type still dominate the prediction.

eft

What if we remove Battery and Theft type.

- Since Battery and theft are not serious crimes, what if we remove these two type and choose some serious crimes with close amount?
- I chose ASSAULT, BURGLARY, DECEPTIVE PRACTICE, MOTOR VEHICLE THEFT, OTHER OFFENSE and ROBBERY. These six types have similar amount.

Use weighted k-nearest neighbor to predict the crime type among six different types (remove Battery and Theft) with Latitude, Longitude and date(k=50).

			Actual						
Predict	ASSAULT	BURGLARY	DECEPTIVE PRACTICE	MOTOR	VEHICLE	THEFT	OTHER	OFFENSE	ROBBERY
ASSAULT	1112	317	5	36		186		954	173
BURGLARY	675	536	5	21		197		590	125
DECEPTIVE PRACTICE	485	238	14	38		130		544	88
MOTOR VEHICLE THEFT	515	236	3	09		290		462	151
OTHER OFFENSE	978	343	7	57		194		1122	168
ROBBERY	568	226	2	ô4		166		437	282

This one is much better than the former results.

Measure the performance and decide K value

Use average correct rate to measure the performance.

Correct rate =
$$\frac{n_{correct \ prediction \ in \ one \ type}}{n_{all \ prediction \ in \ one \ type}}$$

				Actual								
Predict	ASSAULT	BURGLARY	DECEPTIVE	PRACTICE	MOTOR V	EHICLE	THEFT	OTHER	OFFENSE	ROBBERY		
ASSAULT	1112	317		586			186		954	173		
BURGLARY	675	536		521			197	1	590	125		All predictions in
DECEPTIVE PRACTICE	485	238		1438			130		544	88	I <	Deceptive Parctic
MOTOR VEHICLE THEFT	515	236		309			290	ı	462	151		type
OTHER OFFENSE	978	343		757			194		1122	168		
ROBBERY	568	226		264			166		437	282		
		-	edictions in									

Average correct rate=average(correct rate)

Measure the performance and decide K value

Decide the *K* value based on the performance.

Calculate the correct rate when *K* vary from 10 to 350.

Good model or bad model

The max correct rate is around 27.5%. Which means this model only has about one fourth chance to get a correct prediction.

Unfortunately, this model is not a good model and may be K-nn is not useful on this dataset.

If a new case is reported, can police catch the suspect?

 The data contains primary type and location of the crimes, when a new case is reported, the police can use this model to know the arrested rate of the specified crime type. If the chance of catching the suspect is high, the police can use more force to catch the suspect in the short time.

101010101010101010101

01010101010101010101

Filtered Data

118,626 records

> table(dataset\$FBI.Code)

04A 04B 08A 08B 10 11 12 13 14 15 16 18 26 3 5 6 2867 4669 6073 23962 414 3054 4 24 16757 2104 1161 17250 2151 6649 4855 26632 > table(dataset\$Primary.Type)

DECERTIVE BRACTICE	COTMINAL TREEDACE	CRIMINAL DAMACE	BURGLARY	PATTERV	ACCALLT
DECEPTIVE PRACTICE	CKIMINAL IKESPASS	CRIMINAL DAMAGE	BURGLARY	BATTERY	ASSAULT
3496	1816	16757	4855	28631	8940
		20.5.			02.0
	WEAPONS VIOLATION	THEFT	ROBBERY	PROSTITUTION	NARCOTICS
	2104	26632	6649	1161	17585

> table(dataset\$Location.Description)

APARTMENT	PARKING LOT/GARAGE(NON.RESID.)	RESTAURANT
30482	6476	4755
SIDEWALK	STREET	VEHICLE NON-COMMERCIAL
25298	47606	4009

ALL CRIME	UNIFORM CRIME REPORTING (UCR) CODE AND DESCRIPTION INCLUDES ALL CRIME CATEGORIES
NDEX CRIME	HOLUDES THE FOLLOWING CRIME CATEGORIES (SEE BELOW) HOMICIDE 1ST & 2ND DEGREE (01A) (INDEX)
DEFINITION: MORE SERIOUS OFFENSES.	CRIMINAL SEXUAL ASSAULT (02) (INDEX)
SET INTO N. INONE SERIOSO OF PERSES.	Robbery (03) (Index)
	AGGRAVATED ASSAULT (04A) (INDEX)
	AGGRAVATED BATTERY (04B) (INDEX)
	Burglary (05) (Index)
	LARCENY (06) (INDEX)
	MOTOR VEHICLE THEFT (07) (INDEX)
	Arson (09) (INDEX)
Non-Index Crime	INCLUDES THE FOLLOWING CRIME CATEGORIES (SEE BELOW)
DEFINITION: LESS SERIOUS OFFENSES.	INVOLUNTARY MANSLAUGHTER (01B)
DEFINITION. LESS SERIOUS OFFENSES.	SIMPLE ASSAULT (08A) SIMPLE BATTERY (08B)
	Forgery & Counterfeiting (10)
	FRAUD (11)
	EMBEZZLEMENT (12)
	STOLEN PROPERTY (13)
	VANDALISM (14)
	WEAPONS VIOLATION (15)
	Prostitution (16)
	CRIMINAL SEXUAL ABUSE (17)
	Drug Abuse (18)
	GAMBLING (19) OFFENSES AGAINST FAMILY (20)
	Liquor License (22)
	DISORDERLY CONDUCT (24)
	Misc Non-Index Offense (26)
VIOLENT CRIME	INCLUDES THE FOLLOWING CRIME CATEGORIES (SEE BELOW)
	HOMICIDE 1ST & 2ND DEGREE (01A) (INDEX)
DEFINITION: CRIME RELATED TO VIOLENCE	CRIMINAL SEXUAL ASSAULT (02) (INDEX)
	ROBBERY (03) (INDEX)
	AGGRAVATED ASSAULT (04A) (INDEX)
	AGGRAVATED BATTERY (04B) (INDEX)
PROPERTY CRIME	INCLUDES THE FOLLOWING CRIME CATEGORIES (SEE BELOW)
DEFINITION: CRIME RELATED TO PROPERTY	Burglary (05) (INDEX)
DEFINITION. ORIME RELATED TO PROPERTY	LARCENY (06) (INDEX) MOTOR VEHICLE THEFT (07) (INDEX)
	ARSON (09) (INDEX)

Rpart without using parameter

mytree <- rpart(Arrest~Location.Description+FBI.Code, data = dataset, method = "class")

mytree <- rpart(Arrest~Location.Description+FBI.Code, data = dataset, method = "class", control = rpart.control(minbucket = 9, cp=0.00001))

- minbucket: the minimum number of observations in any terminal <leaf> node.
- cp : complexity parameter.

Statistical Results

- Arrest rate is low, only 19% are caught in most common type.
- Only 2% of Theft & Embezzlement are caught.
- The crimes happened in restaurant mostly can't catch the criminal suspect.
- Nearly all suspects of the Narcotics & Prostitution are caught.

Thank you!

