(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS

2011

MATEMATIKA

2011 m. valstybinio brandos egzamino užduotis (pakartotinė sesija)

2011 m. birželio 23 d.

Egzamino trukmė – 3 val.

NURODYMAI

- 1. Pasitikrinkite, ar egzamino užduoties sąsiuvinyje nėra tuščių lapų ar kito aiškiai matomo spausdinimo broko. Pastebėje praneškite vykdytojui.
- 2. Egzamino metu leidžiama naudotis tamsiai mėlynai rašančiu rašikliu, pieštuku, trintuku, braižybos įrankiais ir skaičiuotuvu be tekstinės atminties, t. y. skaičiuotuvu, kurio klaviatūra neturi pilno lotyniškojo raidyno. Koregavimo priemonėmis naudotis negalima.
- 3. Bendrojo kurso uždaviniai pažymėti **B**→. Stenkitės išspręsti kuo daugiau uždavinių, neatsižvelgdami į tai, pagal kokio kurso (bendrojo ar išplėstinio) programą dalyko mokėtės mokykloje.
- 4. Pateikti 1–8 uždavinių atsakymų variantai. Jūsų nuomone, teisingą atsakymą pažymėkite apvesdami prieš jį esančią raidę. Šių uždavinių sprendimai nebus tikrinami. Pasirinktas teisingas uždavinio atsakymas vertinamas 1 tašku.
 - NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje (tamsiai mėlynai rašančiu rašikliu). Priešingu atveju už tuos uždavinius gausite po 0 taškų.
- 5. Jei savo pasirinktą atsakymą keičiate, perbraukite jį ir aiškiai pažymėkite naujai pasirinktą atsakymą. Nepamirškite pakeisti atsakymo ir lentelėje.
- 6. 9–22 uždavinių sprendimus užrašykite po sąlygos paliktoje vietoje tamsiai mėlynai rašančiu rašikliu tvarkingai ir įskaitomai. Atsakymas, pateiktas be sprendimo, bus vertinamas 0 taškų.
- 7. Galite naudotis 2–3 puslapiuose pateiktomis formulėmis.
- 8. Juodraščiams skirtos vietos nurodytos užrašu "Juodraštis". Juodraščių tekstai netikrinami ir nevertinami.
- 9. Rašykite tik jums skirtose vietose, nerašykite vertintojų įrašams skirtose vietose. Visame darbe neturi būti užrašų ar kitokių ženklų, kurie leistų identifikuoti darbo autorių.

Linkime sėkmės!

© Nacionalinis egzaminų centras, 2011

112MATU1

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Valstybinio brandos egzamino formulės

B Trikampis.
$$a^2 = b^2 + c^2 - 2bc \cos A$$
, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, $S = \frac{1}{2}ab \sin C = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R}$;

čia a, b, c – trikampio kraštinės, A, B, C – prieš jas esantys kampai,

p – pusperimetris, r ir R – įbrėžtinio ir apibrėžtinio apskritimų spinduliai, S – plotas.

B→Skritulio išpjova.
$$S = \frac{\pi R^2}{360^{\circ}} \cdot \alpha$$
, $l = \frac{2\pi R}{360^{\circ}} \cdot \alpha$;

čia α – centrinio kampo didumas laipsniais, S – išpjovos plotas,

l – išpjovos lanko ilgis, R – apskritimo spindulys.

B
$$\rightarrow$$
 Kūgis. $S_{\check{s}on.\;pav.} = \pi R l, \ V = \frac{1}{3} \pi R^2 H.$

B • Rutulys.
$$S = 4\pi R^2$$
, $V = \frac{4}{3}\pi R^3$.

Nupjautinis kūgis.
$$S_{\check{s}on.\;pav.} = \pi(R+r) \cdot l, \quad V = \frac{1}{3}\pi H(R^2 + Rr + r^2);$$

čia R ir r – kūgio pagrindų spinduliai, V – tūris, H – aukštinė, l – sudaromoji.

Nupjautinės piramidės tūris.
$$V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2);$$

čia S_1 , S_2 – pagrindų plotai, H – aukštinė.

Rutulio nuopjovos tūris.
$$V = \frac{1}{3}\pi H^2(3R - H);$$

čia R – spindulys, H – nuopjovos aukštinė.

Vektorių skaliarinė sandauga.
$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha$$
;

čia α – kampas tarp vektorių $\vec{a}\{x_1, y_1, z_1\}$ ir $\vec{b}\{x_2, y_2, z_2\}$.

Geometrinė progresija.
$$b_n = b_1 q^{n-1}$$
, $S_n = \frac{b_1 (1 - q^n)}{1 - q}$.

Begalinė nykstamoji geometrinė progresija. $S = \frac{b_1}{1-a}$.

Trigonometrinės funkcijos.

$$B \rightarrow 1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}, \ 1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha},$$

$$2\sin^2\alpha = 1 - \cos 2\alpha , \ 2\cos^2\alpha = 1 + \cos 2\alpha ,$$

 $\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta,\ \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta,$

$$\sin \alpha \pm \sin \beta = 2\sin \frac{\alpha \pm \beta}{2}\cos \frac{\alpha \mp \beta}{2}, \cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}, tg(\alpha\pm\beta) = \frac{tg\alpha\pm tg\beta}{1\mp tg\alpha\cdot tg\beta}$$

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B→ Trigonometrinių funkcijų reikšmių lentelė.

	0°		45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos α	1	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$		$\frac{1}{2}$	0
tg a	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

B→ Trigonometrinės lygtys.

$$\begin{bmatrix} \sin x = a, \\ x = (-1)^k \arcsin a + \pi k; & \text{``cia } k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix}$$

$$\begin{bmatrix} \cos x = a, \\ x = \pm \arccos a + 2\pi k; & \text{\'eia } k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix} \begin{bmatrix} \operatorname{tg} x = a, \\ x = \operatorname{arctg} a + \pi k; & \text{\'eia } k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix}$$

Išvestinių skaičiavimo taisyklės.

B
$$\rightarrow$$
 $(cu)' = cu'; (u \pm v)' = u' \pm v';$

$$(uv)' = u'v + uv';$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2};$$

čia u ir v – taške diferencijuojamos funkcijos, c – konstanta.

Funkcijų išvestinės.
$$(a^x)' = a^x \ln a$$
, $(\log_a x)' = \frac{1}{x \cdot \ln a}$;

Sudėtinės funkcijos h(x) = g(f(x)) išvestinė $h'(x) = g'(f(x)) \cdot f'(x)$.

Funkcijos grafiko liestinės taške $(x_0, f(x_0))$ lygtis. $y = f(x_0) + f'(x_0)(x - x_0)$.

Logaritmo pagrindo keitimo formulė. $\log_a b = \frac{\log_c b}{\log_c a}$.

Deriniai.
$$C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}$$
.

Tikimybių teorija. Atsitiktinio dydžio X matematinė viltis yra $\mathbf{E} X = x_1 p_1 + x_2 p_2 + ... + x_n p_n$, dispersija $\mathbf{D} X = (x_1 - \mathbf{E} X)^2 p_1 + (x_2 - \mathbf{E} X)^2 p_2 + ... + (x_n - \mathbf{E} X)^2 p_n$.

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Kiekvienas teisingas 1–8 uždavinio atsakymas vertinamas 1 tašku.

- 1. $|2 \sqrt{8}| + 2 =$
- **A** $\sqrt{2}-2$ **B** $2-\sqrt{2}$ **C** $4-2\sqrt{2}$
- **D** 2
- **E** $2\sqrt{2}$

- **2.** Kuris iš penkių užrašytų skaičių yra mažiausias¹?

- **A** $3 \cdot 10^{-6}$ **B** $3 \cdot 10^{-5}$ **C** $-3 \cdot 10^{-3}$ **D** $-3 \cdot 10^{-5}$ **E** $-3 \cdot 10^{-6}$

- **3.** Nelygybės^{II} $\frac{1}{2-3x} \ge 0$ sprendinių aibė^{III} yra:
 - $\mathbf{A} \left(\frac{2}{3}; +\infty\right) \qquad \mathbf{B} \left[\frac{2}{3}; +\infty\right) \qquad \mathbf{C} \left(-\infty; \frac{2}{3}\right) \qquad \mathbf{D} \left(-\frac{2}{3}; \frac{2}{3}\right) \qquad \mathbf{E} \left(-\infty; \frac{2}{3}\right)$

- **4.** Kiek sprendinių turi lygčių^{IV} sistema $\begin{cases} x + y = 2, \\ 2xy = 0? \end{cases}$
 - **A** Be galo daug **B** 4
- **C** 2
- **D** 1
- E Nė vieno

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sasiuvinio puslapyje.

lygtys - równania - уравнения

mažiausias – najmniejszy – наименьший

nelygybė – nerówność – неравенство

sprendinių aibė – zbiór rozwiązania – множество решений

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

5.
$$2^{17} - 2^{16} - 2^{15} - \dots - 2^2 - 2^1 - 2^0 =$$

A 32762 **B** 32761

C 2

D 1

 $\mathbf{E} 0$

6.
$$1 - (\sin x - \cos x)^2 =$$

A 0

B $2 \sin^2 x$ **C** $2 \cos^2 x$

 $\mathbf{D} \sin(2x)$

 $\mathsf{E} - \sin(2x)$

7. Jei
$$a + a^{-1} = 2$$
, tai $a^3 + a^{-3} =$

A 8

B 4

C 2

D 6

E 9

8. Kuri formulė **nėra** sekos^I 2, 4, 8, ..., a_n , ... bendrojo nario a_n formulė?

A
$$a_n = 2^n$$

B
$$a_n = 2 + 2(n-1)$$

C
$$a_n = n^2 - n + 2$$

D
$$a_n = \frac{1}{3}n^3 - n^2 + \frac{8}{3}n$$

E
$$a_n = 2 \cdot 3^{n-1} - \frac{1}{3} \cdot 2^{2n-1} + \frac{2}{3}$$

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

seka - ciąg - последовательность

bendrasis narys – wyraz ogólny – общий член

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

		~	
JII	ODR	AST	LIS

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

۵	9. Duotas reiškinys $2t^2 - 3t - 5$.							
Э.	Duotas .	Telskings $2i - 3i - 3$.	I	II	III			
B→	9.1.	Apskaičiuokite reiškinio skaitinę reikšmę ^{II} , kai $t = 3$.						
B →	9.2.	Išspręskite lygtį III $2t^2 - 2t = 5 + t$. (1 taškas)						
B →	9.3.	(2 taškai) Kokią mažiausią skaitinę reikšmę gali įgyti duotasis reiškinys?						
		Rokią maziausią skaitinę teiksinę gan įgyti duotasis teiskinys? (2 taškai)	_					
	9.4.	Duotąjį reiškinį galima pertvarkyti ^{IV} į $a(t-m)^2 + n$ pavidalo reiškinį. Apskaičiuokite a , m ir n .						
		(3 taškai)						
		Taškų suma						

reiškinys – wyrażenie – выражение

II skaitinė reikšmė – wartość liczbowa – числовое значение

iii išspręskite lygtį – rozwiążcie równanie – решите уравнение

v pertvarkyti – przekształcić – преобразовать

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

JUODRAŠTIS			
JUUDRASIIS			

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

→ 10. Paveiksle pavaizduota parabolė yra funkcijos $f(x) = (x - x_1)(x - x_2)$ grafikas.

10.1. Remdamiesi grafiko duomenimis^I, raskite x_1 ir x_2 .

(1 taškas)

10.2. Apskaičiuokite $f'(\frac{3}{4})$, kai $f(x) = x^2 - 1.5x - 1$.

(2 taškai)

10.3. Apskaičiuokite parabolės viršūnės A(x; y) koordinates.

(2 taškai)

10.4. Per parabolės viršūnę *A* lygiagrečiai ašiai Ox nubrėžta tiesė y = kx + b. Raskite koeficientų k ir b reikšmes.

(2 taškai)

Taškų suma

Čia rašo vertintojai

III tiesė – prosta – прямая

duomenys – dane – данные

Il lygiagrečiai ašiai – równoległe osi – параллельно оси

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

JUODRAŠTIS			

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

В →	11.	Televizorius iki išpardavimo kainavo 1089 Lt, o per išpardavimą – 892,98 Lt. Tadas tvirtina, kad televizoriaus kaina sumažėjo 18%. Ar jis teisus? Atsakymą argumentuokite. (2 taškai)				
------------	-----	--	--	--	--	--

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B →	12.	Atliakamas ha	ndvmac.	ctanda	rtini	c č <u>o</u> č	incia	nie le	očimo kaul	alic me	atamac .	du	Čia ra	šo vertii	ntojai
D- 7	12.	Atliekamas ba kartus, apskaid nubraižytos le bandymą į lent	čiuojama entelės at	iškritu itinkar	sių a ną l	akuči ange	ų sur lį. K	na ir okia	gautas sk tikimybė ^I	aičius į	rašomas	s į	I	II	III
					••		::								
			\odot												
			\odot												
											(2 taška	ui)			

I tikimybė – prawdopodobieństwo – вероятность

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B→	13.	Kvadratas, kurio plotas ^I 9 cm ² , perkirptas per įstrižainę ^{II} į dvi dalis (žr. 1 pav.). Šios dalys sudėtos ^{III} taip, kaip parodyta 2 paveiksle. Apskaičiuokite gautosios figūros perimetrą.	Ĉia ra	išo verti II	intojai III
		1 pav. 2 pav.			

¹ plotas – pole – площадь

II įstrižainė – przekątna – диагональ

sudėtos – złozone – составлены

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

P→ 14. Ritinio^I formos baseino skersmuo^{II} – a metrų, aukštis^{III} – b metrų. Vandentiekio čiaupo pajėgumas toks, kad šis baseinas prisipildo per 15 min. Per kiek laiko iš tokio čiaupo būtų pripildytas baseinas, kurio pagrindo skersmuo ir aukštis dvigubai^{IV} didesni?

Ciura	iso veru	mojai
I	II	III
:		

(2 taškai)

I ritinys – walec – цилиндр

II skersmuo – średnica – диаметр

III aukštis – wysokość – высота

IV dvigubai – dwukrotnie – дважды

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

15	15. Yra penki vienodai atrodantys kompaktiniai diskai. Dviejuose iš jų yra vaizdo						
13.	klipai, kituose – muzikos įrašai. Du draugai paeiliui ima po diską, jų negrąžindami atgal.	I	II	III			
B→	15.1. Apskaičiuokite $P(A)$, kai $A - ivykis^I$ "Pirmas II paimtas diskas yra su vaizdo klipais."						
	(1 taškas)						
	15.2. Apskaičiuokite $P(B)$, kai B – įvykis "Diskas su vaizdo klipais buvo paimtas ne vėliau kaip antruoju ^{III} ėmimu."						
	(2 taškai)						
	15.3. Keliais būdais du draugai galėtų pasidalyti penkis skirtingus diskus, jeigu kiekvienas jų pasiimtų ne mažiau ^{IV} kaip vieną diską?						
	(2 taškai)						
	Taškų suma		·				

^I įvykis – wydarzenie – событие

II pirmas – pierwszy – первый

III antrasis – drugi – второй

IV ne mažiau – nie mniej – не меньше

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Duota funkcija $f(r) - r \log r$	Čia ra	išo verti	ntojai
Duota funkcija $f(x) - x \operatorname{ig} x$.	I	II	III
16.1. Apskaičiuokite $f'(1)$.			
(2 taškai)			
16.2. Išspręskite lygtį $f(x) = 0$.			
(2 taškai)			
16.3. Išspręskite nelygybę $f(x) > 0$.			
(2 taškai)			
	16.2. Išspręskite lygtį $f(x) = 0$. (2 taškai) 16.3. Išspręskite nelygybę $f(x) > 0$.	16.1. Apskaičiuokite $f'(1)$. 16.2. Išspręskite lygtį $f(x) = 0$. 16.3. Išspręskite nelygybę $f(x) > 0$.	16.1. Apskaičiuokite $f'(1)$. 16.2. Išspręskite lygtį $f(x) = 0$. 16.3. Išspręskite nelygybę $f(x) > 0$.

Taškų suma

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Tiesės a ir c kertasi 35° kampu^I, o tiesės a ir b kertasi 85° kampu. Tiesėse bir c parinkti tokie vektoriai \vec{m} ir \vec{n} , kad $|\vec{m}| = |\vec{n}| = 1$ (žr. pav.). Apskaičiuokite vektorių \vec{m} ir \vec{n} skaliarinę sandaugą^{II}.

		$b \setminus$
	\overrightarrow{n}	
	×	$ \int \overrightarrow{m} $
a	35°	85°
$\overline{}$		
/c		

Tiesėse b	Čia ra	išo verti	ntojai
Tiesese <i>b</i> (žr. pav.).	I	II	III
(2 taškai)			

kampas – kat – угол

skaliarinė sandauga – iloczyn – скалярное произведение

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

18. Stačiakampio^I *ABCD* dviejų kraštinių ilgiai^{II} yra 8 ir 10. Atkarpa^{III} *DF* statmena^{IV} atkarpai *CE*, trikampiai^V *EBC* ir *CFD* yra lygūs^{VI}. Apskaičiuokite užbrūkšniuotos figūros *AEFD* plotą.

Čia rašo vertintojai

(3 taškai)

stačiakampis – prostokąt – прямоугольник

и kraštinių ilgiai – długość boków – длина сторон

III atkarpa – odcinek – отрезок

statmena – prostopadła – перпендикулярна

V trikampiai – trójkaty – треугольники

VI lygūs – równe – равны

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

		Čia rašo vertintojai		
19.	Duota $f'(x) = 2\cos x$ ir $f\left(\frac{\pi}{6}\right) = -1$. Raskite $f(x)$.	Ι	II	III
	(4 taškai)	!		

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

20.	. Žinoma, kad trikampio ABC dviejų kraštinių ilgių kvadratų suma yra mažesn										
	už trečiosios bukasis ^I .	kraštinės	ilgio	kvadratą.	Įrodykite,	kad	trikampis	ABC	yra		

Čia ra	Čia rašo vertintojai										
I	II	III									

(3 taškai)

JUODRAŠTIS

RIBOTO NAUDOJIMO

 $^{^{}m I}$ bukasis – rozwarty – тупоугольный

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

21.	2 m ilgio atkarpa taip padalyta į dvi dalis, kad atkarpos didesniosios ^I dalies
	ilgio a ir mažesniosios dalies ilgio b santykis II yra lygus visos atkarpos ilgio
	ir didesniosios jos dalies ilgio santykiui. Apskaičiuokite mažesniosios dalies
	ilgi 1 cm tikslumu ^{III} . ($\sqrt{5} = 2,236$)

-00			
15 t	aškai)		
(\mathcal{I})	uskui j	l	
(\mathfrak{I})	aškai)	l	

Čia rašo vertintojai

I didesnioji – największa – наибольшая

II santykis – stosunek – отношение

ш tikslumas – dokładność – точность

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

22.	Packita	vicoc	vicoc	vicoc	notūrolinin	akojčin	norac	(2: 11)	111	CII	lauriomic	lyatic	Čia rašo vertintojai I II III		
22.	$x^2 - y^2 =$	55 yra	teisinga skai	tinė lygy	bė ^{II} .	(λ,	у),	Su	Kullolliis	rygus	I	II	III		
	•	•		7 07					(5)	taškai)					

natūraliųjų skaičių poros – pary liczb naturalnych – пары натуральных чисел teisinga skaitinė lygybė – prawdziwa równość liczbowa – правильное числовое равенство

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

ČIA RAŠO KANDIDATAS

UŽDAVINIAI SU PASIRENKAMAISIAIS ATSAKYMAIS

Įrašykite pasirinktą atsakymą žyminčią raidę į to uždavinio numerį atitinkantį langelį

ČIA RAŠO VERTINTOJAI Maksimalus taškų I vertinimas III vertinimas skaičius II vertinimas I TAŠKU SUMA 8 (1-8 UŽDAVINIAI) II TAŠKŲ SUMA 57 (9–22 UŽDAVINIAI) TAŠKŲ SUMA 65 GALUTINĖ TAŠKŲ SUMA Vertintojų pastabos: