	EXAMINATION QUESTIONS/SOLUTIONS 2012-2013	Course Comp245
Question		
1.		Marks & seen/unseen
Parts		unseen ↓
	(d).	seen ↓
(11)	(a) 3.463207. Expected frequencies under the null hypothesis of independence: Right handed Left handed Right footed 142.492 48.508 Left footed 45.508 15.492	
	(a). $(0.1 \times 0.1)/(0.1 \times 0.1 + 0.2 \times 0.25 + 0.7 \times 0.2) = 0.05$.	
	$\frac{(d)}{(b)} \cdot 1 - (5/6)^6 = 0.665102.$	
		Each 4 mark
	Setter's initials Checker's initials NH	Page number 1 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2012-2013	Course Comp245
Question		Marks &
2.		seen/unseer
Parts (i)	(a) Denoting the sample as x_1, \ldots, x_n with $n = 12$, respective unbiased estimates for the mean and variance are the sample mean and the bias-corrected sample variance:	seen ↓
	$\bar{x} = 2.509167;$	
	$s_{n-1}^2 = 202.48.$	
		5 marks
	(b) A 95% confidence interval is given by	
	$\left[\bar{x} - t_{n-1,0.975} \frac{s_{n-1}}{\sqrt{n}}, \bar{x} + t_{n-1,0.975} \frac{s_{n-1}}{\sqrt{n}}\right] = [-6.531857, 11.550190].$	
		5 marks
	(c) No, 0 is well within the confidence interval so there is no evidence to reject the hypothesis.	2 marks
(ii)	(a) $R = (z_{0.95}, \infty) \approx (1.644854, \infty)$.	4 marks
, ,	(b) If $X \sim N(1, 1)$, then $Z = (X - 1) \sim N(0, 1)$.	unseen ↓
	$P(X \in R) = P(X > z_{0.95}) = P(Z > z_{0.95} - 1) = \Phi(z_{0.95} - 1) \approx \Phi(0.644854)$ ≈ 0.740489 $\implies \beta \approx 1 - 0.740489 = 0.259511.$	
		4 marks
	Setter's initials Checker's initials	Dama noorl
	NH Checker's Initials	Page numb 2 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2012-2013	Course Comp245
Question		
3.		Marks & seen/unseer
Parts		seen ↓
(i)	$\sum_{x=0}^{\infty} p_X(x) = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} e^{\lambda} = 1.$	3 marks
(ii)	$\frac{p_X(x)}{p_X(x-1)} = \frac{\lambda}{x}.$	unseen ţ
	Hence $p_X(x)$ will be greater than or equal to $p_X(x-1)$ whilst $x \le \lambda$. Formally, for $x \in \{1, 2,, \lfloor \lambda \rfloor \}$.	4 marks
(iii)	Since $p_X(x)$ is non-decreasing in x until $x = \lfloor \lambda \rfloor$, and is decreasing thereafter, $\lfloor \lambda \rfloor$ will always provide a maximum of p_X .	3 marks
(iv)	The mode is unique when λ is not an integer.	2 marks
	When λ is an integer, then both λ and $(\lambda - 1)$ are maxima of p_X , since the ratio of their probability mass function values will be 1.	2 marks
	$P(Z=z) = \sum_{x=0}^{z} p_X(x) p_Y(z-x) = \sum_{x=0} \frac{\lambda^x e^{-\lambda}}{x!} \frac{\mu^{z-x} e^{-\mu}}{(z-x)!} = e^{-(\lambda+\mu)} \sum_{x=0} \frac{\lambda^x \mu^{z-x}}{x!(z-x)!}$ $= \frac{e^{-(\lambda+\mu)}}{z!} \sum_{x=0}^{z} \binom{z}{x} \lambda^x \mu^{z-x}$ $= \frac{e^{-(\lambda+\mu)}(\lambda+\mu)^z}{z!}$ by the binomial theorem. This is the probability mass function of a Poisson(\lambda+\mu) random variable.	6 marks
	Setter's initials NH	Page numb 3 of 4

		Comp245
Question 4.		Marks & seen/unseen
Parts		seen ↓
(i)	For f to be a density function,	
	1. $f(x) \ge 0, \forall x \in \mathbb{R};$	
	$II. \int_{x=-\infty}^{\infty} f(x)dx = 1.$	3 marks
(ii)		seen sim. ↓
	f(x)	
	$c_{\tau}\tau$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		3 marks
(iii)	From the second point, we have	
	$\begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix} \begin{pmatrix} & & \\ & & & \\ & & & \end{pmatrix} \begin{pmatrix} & & \\ & & & \\ & & & \end{pmatrix} \begin{pmatrix} & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$	
	$1 = \int_{x = -\infty}^{\infty} f(x)dx = c_{\tau} \left\{ \int_{x = 0}^{\tau} x dx + \tau \int_{x = \tau}^{1} dx \right\} = c_{\tau} \left\{ \frac{\tau^{2}}{2} + \tau(1 - \tau) \right\}$	
	$\implies c_{\tau} = \frac{2}{2\tau - \tau^2}.$	
		5 marks
(iv)	Let $g(\tau) = 2\tau - \tau^2$ be the denominator of c_τ . Then the derivative $g'(\tau) = 2(1 - \tau)$ is positive for $\tau \in (0, 1)$, implying that g is increasing and hence c_τ is decreasing in τ .	3 marks
	However, 2τ 2	
	$c_{\tau}\tau = \frac{2\tau}{2\tau - \tau^2} = \frac{2}{2 - \tau}$	
	is clearly increasing in $ au$.	3 marks
(v)	For $\tau \geq x$, we have seen that c_{τ} is decreasing in τ , so for τ within $(x,1)$, $f(x)$ is maximised by $\tau = x$. For $\tau \leq x$, we have seen $c_{\tau}\tau$ is increasing in τ and so is again	unseen ↓
	maximised by $\tau = x$. Hence $\hat{\tau} = x$ is a global maximum and hence the MLE for τ .	3 marks