Erdfeld-NMR Remote

Physikalisches Fortgeschrittenenpraktikum an der Universität Konstanz

Autoren: Philipp Gebauer, Simon Keegan und Marc Neumann Tutors: Narinder Narinder and Matthias Falk

Versuch durchgeführt am 9. Juli 2020 und ???

Abstract

TEXT

Alle Autoren haben zu jedem Abschnitt wesentliche Beiträge geleistet. Die Autoren bestätigen, dass sie die Ausarbeitung selbstständig verfasst haben und alle genutzten Quellen angegeben wurden.

Contents

1 Einleitung 1

- 1 Einleitung
- 2 Aufbau und Durchführung des Versuchs

3 Noisemeasurement 2

3 Noisemeasurement

Figure 3.1: ask: which range should we plot -> y:12; why is there an maximum at around 1850 Hz-> resonance frequency -> 50 Hz is electric noise; why 1550 stronger than 1500 (harmnoic): instrument sensitivity because lamorefrequency is nearby and here its most sensitive sharp peaks come from electric noise. how exactly? Johnson-Noise or shot noise? ->50 Hz is electric noise

in comparison to $14.2\,\mathrm{nF}$ capacity the magnitude doesn't change. Is this important?

Noise level of 14.2 nF is 7.6 μ V and of 13.8 nF it is 7.5 μ V. Is that the reason? What is noise level?

3 Noisemeasurement 3

Figure 3.2: average cero, root square -> flip it positive

4 Coil Analysis 4

4 Coil Analysis

Figure 4.1: ask: is it ok to plot examplarly one signal and explain how it works and later on there will just be the spectra

Figure 4.2: ask: who do we calculate lamorfrequency (1834) -> show excel. Vertical compnent? -> yes why is calculated curve different to measured curve? maybe L is wrong or something else. -> L probably changes with C -> discuss it; try corrections (increase current -> heating effects; L changes)

5 Optimization and Characterisation of FID in water sample

insert previous values

ask: is it ok to explain what autoshim does and don't plot any graphs at all? We don't have data for an example plot -> yes

Figure 5.1: ask: periodicity due to duration of B_1 , $0^{\circ} -> 90^{\circ} -> 180^{\circ} -> 270^{\circ}$? -> yes

Figure 5.2

Figure 5.3: ask: what is the peak corresponding? hydrogen signal? -> yes

Figure 5.4: ask: gauss or voigt. this is gauss -> both longer acquisition 25 ms -> only hydrogen siganal? is the peak the same than in the previous diagramm? -> yes integral under curve with our measured fit? -> try to find soemthing, try shorter range and more points signal to noise ratio: what to do? -> magnitude, which unit is the amplitude, tutor will send us an email, try back fouriertransform (only keep real values) calculate: amplitude; crossbar for datapoints sometimes 1/e sometimes 1/2 -> definition

Figure 5.5: ask: gauss or voigt. this is voigt

real and imaginary signal \rightarrow explain it

6 Longitudinal relaxation measurements T1

Figure 6.1: Anleitung von T Messung [?]

Figure 6.2: explain what happens; $S_0 * exp(-x/T_1)$ mit $T_1 = 2753.05$ ms

Figure 6.3: explain what happens. wieso 0.2 überall unterschied -> longer x-Axes, more datapoints; $S_0 * [1 - exp(-x/T_1)]$ with $T_1 = 2912\,88ms$

7 Hahn echo 12

7 Hahn echo

Figure 7.1: ask: wie safed no data for different τ , is it ok just to explain it that the amplitude will decrease and the maximum will be shifted to a different time? -> yes

this is an example for a hahn echo with shimming value $4.95\,\mathrm{x}$.

Figure 7.2: ask: why are there different peaks a different shimming values?-> more frequency is sean (random) depends on position which formula should we use to fit it? -> area under normalized spectrum should be the same; just discuss it -> narinder will send email

for us: wieso signal schwächer-> mehr abweichung beim shimming (ursprünglich 10.11)-> abschwächung. integrale bei unterschiedlichen shimming; echo time 300ms bei beiden.

We can measure T_2 when we don't change the shimming values, because T_2^* is dependent on a field inhomogeneousity. -> CPMG, Spin Hahn echo

8 Multiple echo sequences

explain timedomain -> short discussion: fucntion (sine-bell-squared function? Section 5.5.3.2) to smoothen (because it doesnt change physics)

Figure 8.1: ask: what does pulse phase degree between 90° and 180° (or also between 180° and 180°) mean (Anleitung 9.)? -> minimize term of inhomogeniuos magnetic field; it is not the time between the pulses; phases difference between alternating and constant 180° pulse phase-> alternating phase: computer does change phase degree; constant: manual change of phase degree-> look up manual for alternating; explain it we only have data for 180 pulse phase degrees in 270° and 90°, but those two are the same and this is good, but we don't hae values for 180° example. -> ask pther group for measurements at about 180 degree we didn't make measurements about 90 pulse phase degree

9 Transversal relaxation measurements

Figure 9.1: ask: why are two peaks visible in the magnitude spectrum? normal FID-> T_2 $M(x) = M_0 \cdot exp(-x/T_2)$ with $T_2 = 2691\,06ms$

Figure 9.2: This is an CPMG with changeed values in the shimming; shimming value $0.45\,\mathrm{x} -> T_2^*.$

Good to see that the T_2^* is here shorter than in the previous picture, due to inhomogeniousity of the magnetic field.

$$M(x) = M_0 \cdot exp(-x/T_2)$$
 with $T_2 = 2317.76 \,\mathrm{ms}$

10 Fehlerdiskussion und Fazit

List of Figures 18

List of Figures

List of Tables

Anhang