ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

НАУЧНО-ОБРАЗОВАТЕЛЬНОЕ СОРЕВНОВАНИЕ «ШАГ В БУДУЩЕЕ, МОСКВА»

регистрационный номер
Learner Learner and the

Информатика и системы управления Компьютерные системы и сети

«Система микширования видеопотоков для работы с видео высокого разрешения»

Автор:	Медведев Алексей Вячеславович				
	ГБОУ Лицей №1533, группа 11-3				
Научный руководитель:	Завриев Николай Константинович				
	ГБОУ Лицей №1533				
	Преподаватель				
	подпись научного руководителя				

Оглавление

1.	Введение и актуальность работы	2
2.	Постановка задачи	3
	Целевая аудитория	3
	Обзор предшествующих решений	3
	Система видеоконференций ViDiNG	
	Wirecast for Youtube	
	DVSwitch	
	Постановка задачи	5
3.	Решение	6
	Структура видеостудии	6
	Основные понятия, форматы данных и протоколы	6
	Телевидение высокой четкости	
	Сжатие потока	8
	Транспортный и прикладный протоколы и их особенности	9
	Программная реализация	10
	Архитектура и идеология программы	10
	Используемые протоколы	11
	Сторонние библиотеки	12
4.	Результат работы и анализ выбранной архитектуры	14
	Пакет Videostudio	14
	Программный продукт Videostudio	15
	Порядок работы программы	15
	Анализ выбранной архитектуры	17
	Описание эксперимента	18
5.	Выводы и возможности дальнейшего развития	20
6.	Список литературы	21
	FFmpeg	21
	Aforge.NET	21
	Naudio	21
	Информация общего характера	2.1

1. Введение и актуальность работы

Развитие компьютерных систем в последние десятилетия перевернули представления людей о том, какие сферы деятельности могут быть доступным только профессионалам, оснащенным специализированным оборудованием, а какие - широким массам. С распространением ПК обычным людям и небольшим организациям стали доступны такие области деятельности, как издательская, полиграфическая, включая обработку изображений, видеомонтаж. На рынке представлено огромное разнообразие оборудования для видеосъемки и цифровой видеозаписи. Однако процесс организации видеотрансляций с использованием нескольких камер до сих пор чаще всего требует наличия дорогостоящего специального оборудования, а существующие программные пакеты, работающие на ПК, либо отличаются высокой стоимостью, либо имеют серьезные ограничения.

В частности, используемая в видеостудии Лицея система онлайн трансляций и микширования видео работает с видео стандартного разрешения SD, хотя в настоящее время актуальным является стандарт видео высокого разрешения. Сегодня абсолютное большинство пользователей имеют новые мониторы с разрешением HD, большинство камер также поддерживают формат HD. Видео высокого разрешения стало привычным посетителям интернет-сайтов: на Youtube и других сервисах можно найти огромное количество роликов, снятых пользователями в формате HD. Единственным «узким горлышком», ограничивающим ведение трансляций в HD-видео, остается этап видеорежиссуры, или микширования, т.е. выбор источника видеопотока.

В связи с этим возникла необходимость создания применимого на ПК программного комплекса, который бы обеспечивал проведение видеотрансляции и записи ее результатов в актуальных на сегодняшний день форматах: HD и Full HD. Такой комплекс позволил бы перевести трансляции на более высокий уровень качества, привычный современному пользователю.

2. Постановка задачи

Целевая аудитория

Целью работы было создание программного комплекса, позволяющего организовать микширование видеопотоков от множества источников и трансляцию формируемой передачи в формате HD. Программный комплекс, работающий на ПК и не требующий дорогостоящего дополнительного оборудования, может быть полезен любым лицам или организациям, желающий проводить онлайн трансляцию через сеть интернет, например, при проведении каких-либо праздничных или обучающих мероприятий.

Данная работа представляет непосредственный интерес и для созданной в 2007 году видеостудии лицея. Ее задачей являются съемки и организация онлайн трансляций различных событий: торжественных мероприятий, защит дипломных работ, концертов и т.д. В настоящее время для этих целей используется программный пульт DVSwitch, который устраивает по архитектуре и набору функций, но устарел и поддерживает трансляцию с качеством не выше SD.

Новый программный комплекс должен обеспечивать следующие дополнительные возможности:

- Реализацию захвата и обработки видео в формате HD с имеющихся в видеостудии видеокамер.
- Повышение качества записи и вещания видео до формата HD
- Увеличение количества поддерживаемых программным комплексом устройств захвата видео.

Обзор предшествующих решений

Для организации прямого эфира профессиональные видеостудии и телеканалы используют дорогостоящие специализированные аппаратные системы. На рынке ПО ближайшими аналогами создаваемого программного комплекса являются:

- 1. Система видеоконференций ViDiNG
- 2. Wirecast for youtube
- 3. DVswitch

Система видеоконференций ViDiNG

ViDiNG (http://rdtel.ru)- профессиональная российская система групповой видеоконференцсвязи (ВКС) высокой четкости, поддерживающая технологию серверного микширования видеоизображений. Продукт ориентирован на государственные учреждения или крупные компанияи.

Главная особенность ViDiNG - микширование видеопотоков происходит на сервере, а не на оконечном оборудовании.

Продукт платный, стоимость конференции, в которой может участвовать до 6 пользователей - – 90 000 рублей. Для использования всех возможностей необходимы специально оснащенные конференц-комнаты. Т.е. продукт неприменим в бытовых условиях и в небольших организациях.

Wirecast for Youtube

Приложение Telestream Wirecast for Youtube ориентировано на проведение интернет-трансляций с нескольких камер, производитель позиционирует программу как "приложение для продвинутого вебкастинга".

Wirecast - одно из наиболее функциональных решений для платформы Windows. Также это единственное решение, поддерживающее Macintosh (есть версии как для Windows, так и для Macintosh).

Стоимость приложения составляет 499\$, поддержка HD video приобретается отдельно и стоит 199\$.

DVSwitch

Пакет DVSwitch создан для построения программной видеостудии, реализующей возможности микширования аудио- и видео потоков в реальном времени вещания видео в Интернет на вещающий сервер,

наложения титров. Пакет имеет модульную архитектуру, предназначен для работы под ОС Linux.

Пакет используется в видеостудии лицея, при эксплуатации выявились следующие недостатки: все компьютеры системы должны работать под ОС Linux. Для устойчивой работы необходимо иметь одинаковый формат картинки со всех камер, существуют ограничения на используемое оборудование, пакет не поддерживает HD Video.

Постановка задачи

Благодаря прогрессу и удешевлению абонентского оборудования сегодня большинству пользователей интернет доступны мониторы и компьютеры, способные обеспечивать воспроизведение видео в формате высокой четкости. В связи с этим возникла задача создания вещательного сервера, обеспечивающего проведение видеотрансляций в интернет с уровнем качества изображения, соответствующего стандарту HD на базе бытового оборудования.

При разработке такого комплекса были предъявлены требования:

- Способность работать с бытовым оборудованием (подключение камер по интерфейсу IEEE 1394, использование Ethernet для передачи DV-видео с камер в реальном времени, коммутация потоков с камер программным микшером, кодирование в форматы, пригодные для передачи на сервер, передача видео на сервер, раздача видео с сервера клиентам);
- Возможность подключения не менее 4-х источников видео;
- Возможность работы с потоками видео в формате HDV;
- Организация обработки и сжатия потоков видео для корректной работы в реальном времени.
- Добавление возможности работы с потоками видео в популярных форматах.

3. Решение

Структура видеостудии

Задача видеотрансляции заключается в получении изображения события с различных точек съемки, выборе приоритетных в конкретный момент времени планов, дополнении их различными материалами (видеороликами и т.п.), и передаче потребителю. В общем случае эта задача решается видеостудией, представляющей собой комплекс из четырех компонент:

- Источники сигнала, которыми могут быть видеокамеры различных типов, использующие различные форматы данных, протоколы и физические интерфейсы; визуальный образ рабочего стола компьютера; видеофайлы; видеопотоки, передаваемые по локальной сети или через интернет;
- Коммутатор (или видеомикшер), посредством которого осуществляется выбор источника сигнала для дальнейшей трансляции;
- Блок вещания (сервер вещания), отвечающий за дальнейшую трансляцию сигнала по эфирным и кабельным каналам связи;
- Блок записи, обеспечивающий сохранение итоговой трансляции или ряда исходных потоков в виде видеофайлов.

Каждый из перечисленных компонентов видеостудии может быть решен в виде аппаратного устройства или программы.

Основные понятия, форматы данных и протоколы

Телевидение высокой четкости

Большинство видеокамер, являющихся основным источником видеосигнала, работают в одном из двух форматов – SD или HD.

Стандарт SD (Standard Definition – Стандартное разрешение) относится к категории «традиционных» старых систем видеопросмотра, хранения и

передачи сигналов – таких как PAL, SECAM и NTSC, появившихся вместе с цветным телевидением в 1950-е годы. Когда появилось цифровое видео (DV - Digital Video), эти традиционные системы были представлены с помощью пиксельной решетки, преобразующей содержимое аналогово видео в цифровой сигнал. В связи со своей «традиционностью», данные системы ограничены частотой обновления кадров, характерной для PAL и NTSC (25 кадров/с и 29,97 кадров/с соответственно), низкой полосой частот (количество информации пропускаемое за единицу времени) в диапазоне 4 — 6 МГц, а также ограничены количеством строк развертки (625 и 525 соответственно для PAL и NTSC).

Позже появился стандарт телевидения высокой чёткости (HD или HDTV, сокр. от англ. high definition television) - система телевидения, позволяющая наблюдателю со средней остротой зрения смотреть картинку с расстояния трех высот изображения и не замечать строчную структуру.

Современное цифровое телевидение высокой чёткости основано на рекомендации ITU-R BT.709 Международного союза электросвязи и обеспечивает соотношение сторон экрана 16:9 с разрешением 1920×1080 пикселей. Такое телевизионное изображение, в зависимости от типа развертки, называется 1080і (чересстрочная) или 1080р (прогрессивная, т.е. последовательная). Российским национальным стандартом, определяющим основные параметры телевещания высокой четкости, является ГОСТ Р 53533-2009.

Сигнал HDTV несет в себе значительное количество информации, что требует как мощного оборудования для кодирования/ декодирования, так и каналов передачи данных с высокой пропускной способностью.

Даже при использовании сжатия MPEG2, HD-каналы требуют примерно вчетверо больше передающей мощности по сравнению с обычными каналами.

Таблица 1. Аппаратная нагрузка при работе с HD TV

	720p (HDV-1)	1080i (HDV-2)
Носитель данных	Кассета DV	Кассета DV
Разрешение/ частота кадров	720/25p, 720/50p, 720/30p, 720/60p	1080/50i и 1080/60i
Эффективное число пикселей	1280 x 720	1440 x 1080
Относительная ширина экрана	16:9	16 : 9
Сжатие	MPEG2@H-14	MPEG2@H-14
Частота дискретизации	75.25 MHz	55.6875 MHz
Схема цветовой дискретизации	4:2:0	4:2:0
Дискретизация	8 бит	8 бит
Скорость передачи данных	19 Мбит/с	25 Мбит/с

Источник: http://www.studio-videoton.ru/Theory/HDTV/HDTV_rukovodstvo.html

Таблица 2. Сравнение форматов HDTV

Форматы	Разрешение	Число	Число	Скорость	
		кадров/с	пикселей в	передачи для	
			секунду	MPEG4/H.264	
720/24р или		24/25	23 040 000	4-5 Мбит/с	
25p					
720/50p	1280 x 720	50	46 080 000	7-9 Мбит/с	
1080/50i	1920 x 1080	50	51 840 000	8-10 Мбит/с	
	(2 x 540)				
1080/24p	1920 x 1080	24/25	51 840 000	7-9 Мбит/с	
или 25р					
1080/50p	1920 x 1080	50	103 680 000	14-18 Мбит/с	

Источник: http://www.era-tv.ru/hdtv/slovar.asp

Сжатие потока

В связи с большим объемом информации передача видеосигнала высокой четкости на дальние расстояния осуществляется, как правило, в сжатом цифровом виде. Аналогично, для оптимизации дискового пространства видеоданные хранятся также в сжатом виде. Таким образом, важнейшими функциями сервера вещания и блока записи являются сжатие видео и (в случае сервера вещание) передача видеопотока в одном из

принятых стандартов в сеть интернет. Сжатие видео снижает требования к ширине канала передачи (с 1,485 Гбит/с до 8—25 Мбит/с), при этом качество изображения остаётся приемлемым, но загружает процессор. Для кодирования видеосигнала высокой четкости наиболее часто используются кодеки MPEG-2, MPEG-4.

Транспортный и прикладный протоколы и их особенности

Сжатый (закодированный) контент представляет собой поток данных определенного формата. Передача его между компьютерами определяется протоколами различных уровней. Так, протоколы транспортного уровня обеспечивают передачу данных от источника к получателю (tcp/ip, udp), а протоколы прикладного уровня — взаимодействие пользователя с сетью, позволяет приложениям иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты (http, ftp).

Среди транспортных протоколов выделяют надежные (гарантирующие доставку каждого пакета данных от отправителя получателю путем уведомления о получении и многократной отправки, хотя бы и ценой задержки) и ненадежные, в которых отправитель не контролирует и не гарантирует доставку пакета получателю. Чаще всего в качестве транспортных протоколов используются ТСР и UDP.

TCP (англ. Transmission Control Protocol, протокол управления передачей) — один из основных протоколов передачи данных интернета, предназначенный для управления передачей данных в сетях и подсетях TCP/IP.

UDP (англ. User Datagram Protocol — протокол пользовательских датаграмм) использует модель передачи без обеспечения надёжности, упорядочивания или целостности данных. Датаграммы могут прийти не по порядку, дублироваться или вовсе исчезнуть без следа.

TCP/IP обеспечивает надёжную доставку, а UDP - нет, поскольку TCP имеет встроенные механизмы контроля доставки и целостности данных. Однако TCP нельзя назвать лучшим решением для передачи мультимедиа, поскольку этот протокол добавляет в пакеты данных большое количество служебной информации.

На уровне прикладных программ для передачи видео используется группа протоколов RTP (англ. Real-time Transport Protocol). Протокол RTP переносит в своём заголовке данные, необходимые для восстановления аудиоданных или видеоизображения в приёмном узле, а также данные о типе кодирования информации (JPEG, MPEG и т. п.). В заголовке данного протокола передаются временная метка и номер пакета. Эти параметры позволяет определить порядок и момент декодирования каждого пакета, а также интерполировать потерянные пакеты.

Программная реализация

Архитектура и идеология программы

Архитектура и идеология работы программы Videostudio повторяет структуру типичной видеостудии. Она содержит возможности для получения видеопотока с USB-вебкамер, видеофайлов в форматах MP4, JPEG и MJPEG потоков, а также с любых плат захвата, которые определяются операционной системой, как "Звуковые, игровые и видеоустройства". Программа позволяет микшировать видеопотоки, создавать эффект картинка в картинке, транслировать изображение в сеть и записи видеопотока в файл.

С точки зрения внутренней структуры программа содержит 6 однотипных объектов, отвечающих за работу с источником видео; объект, отвечающий за преобразование формата видеопотока, выбор потока для трансляции, его отображение для целей мониторинга, конвертацию и отправку потока на сервер трансляции, и сервер трансляции, отвечающий за дальнейшую трансляцию видеопотока в интернет.

АРХИТЕКТУРА РАБОТЫ КОМПЛЕКСА

Используемые протоколы

Для передачи изображения в рамках одного компьютера между программой и FFmpeg был выбран протокол TCP/IP, так как по нему можно передавать несжатую картинку, а потери внутри локальной машины практически невозможны. TCP обеспечивает сохранение правильной последовательность и целостность видео ряда на этом этапе. Для передачи потока по локальной сети используется протокол UDP, который обеспечивает лучшие временных характеристики.

Обработка потокового видео является ресурсозатраной вычислительной задачей и предъявляет серьезные требования к оборудованию и программному обеспечению. Особенно критичным это становится при работе в режиме реального времени. Поэтому при создании видеомикшера стояла задача подбора оптимальных инструментов для разработки программы и анализа возможностей ПК при работе с различной нагрузкой (разное число камер, разрешений, и т.д.).

Сторонние библиотеки

При создании программного комплекса был произведен поиск и анализ библиотек, позволяющий организовать захват и запись видеопотоков. Основными направления поиска были библиотеки для работы с мультимедиа или библиотеки компьютерного зрения, так как они специализируются на работе с потоками видео и оптимизированы для этого. Основными требования к библиотекам была возможность захвата потока с различных источников, а также поддержка широкого набора кодеков и современных форматов. Задача осложнялась тем, что не все библиотеки совместимы с определенными ОС, языками и средами программирования. Результаты анализа представлены в таблице.

Таблица 3. Анализ библиотек для работы с видео

Название библиотеки	Назна- чение *	Целе- вой язык	Операцион- ная система	Чтение из файла	Захват с камеры	За-пись	Аппа- ратное уско- рение	Поддержив аемые типы файлов
AVICAP32.DLL	МБ	(Api)	Win 98,XP	Да	Да	Да	Нет	AVI
Video for Windows	МБ	(Api)	Win 98,XP	Н/Д	Да	Да	Н/Д	AVI
VIIIuows	МБ	(Api)	VVIII 90, AP	п/д	Да	да	п/д	AVI
DirectShow		(Api)	windows XP,Vista,7, 8	Н/Д	Да	Н/Д	Да	AVI
NVLC	МБ	C#	Windows 7,	Да	Да	Нет	Да	avi, mp4,mkv и другие
OpenCv	К3	C/C++	windows, linux, OX	Да	Да	Да	Да	AVI
Emgu CV	К3	C#	Windows 7,	Да	Да	Да	Нет	AVI
OpenCvDotNet	КЗ	C#	Windows 7,	Да	Да	Да	Нет	AVI
OpenCvSharp	КЗ	C#	Windows 7,	Да	Да	Да	Нет	AVI
Media Foundation	МБ	(Api)	Windows vista, 7, 8	Да	Да	Н/Д	Да	Н/Д
Aforge	КЗ	C#	Windows 7,	Да	Да	Да	Да	avi, mp4,mkv и другие
Ffmpeg	МБ	C/C++	windows, linux, OX	Да	Да	Да	Да	avi, mp4,mkv и другие

 $^{^*}$) - ${
m M}{
m B}$ - Мультимедийная библиотека, КЗ — библиотека компьютерного зрения

Для работы с видео большинство библиотек используют DirectShow, который не обладает возможность открытия некоторых современных видео форматов таких, как mkv,mp4, mov и другие, но есть исключения.

Библиотеки NVLC, Ffmpeg, Aforge.NET позволяют реализовать поддержку работы с большим количеством кодеков и различных контейнеров например mkv, mp4, недоступных при использовании DirectShow. На приведенной ниже схеме представлено взаимодействие библиотек в разработанной системе при использовании их для получения видео потока.

ИСПОЛЬЗУЕМЫЕ В ПРОГРАММЕ БИБЛИОТЕКИ И ВЗАИМОСВЯЗЬ МЕЖДУ НИМИ.

Наилучшим выбором оказалась библиотека Aforge.NET. Она позволяет использовать как DirectShow, так и дополнительный модуль Ffmpeg, который дает возможность не ограничивать пользователя в использовании только Avi видеофайла. Также библиотека позволяет нам достаточно гибко выбирать настройки для записи.

4. Результат работы и анализ выбранной архитектуры

Пакет Videostudio

В результате работы над проектом был создан программный продукт – Videostudio 1.0, который выполняет все поставленные задачи, а именно:

- Захватывать видео с любых устройств, распознаваемых ОС Windows как видеоустройства (встроенные камеры, подключенные по USB, FireWier, к платам видеозахвата, HDMI);
- Использовать в рамках одной трансляции источники видеопотока с различными характеристиками (например, камеры с различным разрешением, битрейтом и т.д.), обеспечивая при этом нормализацию выходного видеопотока по параметрам, указанными пользователем в окне настроек;
- Захватывать изображение с рабочего стола режиссера;
- В процессе трансляции отключать устройства-источники и подключать новые без прерывания трансляции;
- Реализовывать эффект «картинка в картинке»;
- Комбинировать несколько видеомикшеров между собой, подключая их на вход друг друга, создавая за счет этого необходимую конфигурацию оборудования;
- Обеспечивать трансляцию видео в сеть интернет по таким протоколам, как http, httpproxy, https, rtp, srtp, tcp, udp,rtmp. Для обеспечения доступа к трансляции большего числа пользователей возможно перенаправление потока на такие распространенные серверы видеовещания как Adobe Flash Media Server, Wowza Mediaserver Pro, Red5 и другие.
- Записывать видео в файл формата Avi.

Данная программа представляет собой работоспособное приложение и может использоваться для организации видеотрансляций с различным уровнем качества, достижимым с учетом характеристик используемого оборудования.

Программный продукт Videostudio

Videostudio 1.0 написан с использованием объектно-ориентированного подхода и представляет собой программный продукт, т.е. программу, которую независимо от ее разработчиков можно использовать в предусмотренных целях на разных компьютерах, удовлетворяющих указанным в описании системным требованиям.

В соответствии с требованиями к программному продукту, он имеет дистрибутив, сформированный на носителе USB-флеш и включающий пакет установки и документацию. Документация описывает порядок установки пакета на компьютер пользователя и порядок использования программы. Установочный пакет включает в себя собственно программу Videostudio и необходимый пакет FFmpeg (распространяется свободно).

Установочный пакет обеспечивает проверку наличия необходимого места на жестком диске; возможность установки пакета в любое место диска по желанию пользователя; распаковку и установку всех компонентов пакета.

Таким образом, любой человек, получивший в распоряжение дистрибутив программы, сможет самостоятельно установить и полноценно применять ее. Программа не требует от пользователя каких-либо специальных знаний для установки или работы с ней. Однако рекомендуется изучение возможностей пакета FFmpeg для использования различных режимов трансляции потока.

Порядок работы программы

После запуска программы открывается главное окно программы с 6 маленькими одинаковыми блоками, каждый из них настраивается через окно настроек источника. После настройки блока в нем начинает отображаться изображение с источника. Для переключения между источниками можно кликнуть по интересующему источнику, нажать цифру, соответствующую номеру источника на клавиатуре или нажать кнопку On air под превью данного источника.

Для создания эффекта «Картинка в картинке» можно нажать клавишу Ріс-іп-Ріс под превью нужного источника, или нажать одну из клавиш клавишу на клавиатуре (q,w,e,r,t,y соответствуют источникам 1,2,3,4,5,6). Повторный клик или нажатие «горячей клавиши» данного источника отключает функцию «Картинка в картинке» .

Демонстрация работы программы (захват с монитора+ проигрывание видеофайла, с применением эффекта картинка в картинке

Окно настроек выходного потока позволяет выбрать основные параметры, а также настроить трансляцию (перед изменением поля "Дополнительные параметры" рекомендуется ознакомиться со справкой для программы FFmpeg). Пользователь может задать любые параметры FFmpeg в специальном поле. При изменением настроек порта необходимо убедиться, что желаемый и следующий за ним порты доступны.

Окно настроек

Анализ выбранной архитектуры

Во время разработки программного комплекса была рассмотрена возможность создания распределенной системы, что дало бы пользователям возможности создания масштабируемого комплекса, работающего с практически неограниченным количеством источников. Но в ходе проведенных исследований было принято решение отказаться от этого. Одной из причин была необходимость обмена данными между компьютером, к которому была бы подключена камера, и компьютером-микшером. Пропускная способность большинства компьютерных сетей без использования дорогостоящего оборудования позволяет передавать данные на скорости примерно 940 Mbits/sec, что позволяет передавать около 5 потоков видео с разрешением 640х480, 30 кадров секунду, и частотой дискретизации 4:2:2. Эта же пропускная способность позволяет принять до двух потоков видео с разрешением 1280х720, 30 кадров секунду, и частотой дискретизации 4:2:2, для передачи одного такого потока требуется 442 Mbits/sec. Однако для передачи видео с разрешением 1920x1080 уже требуется порядка 990 Mbits/sec, что не позволяет его отправить без сжатия. В реальных условиях помимо данного комплекса сеть загружена передачей данных других пользователей с непредсказуемым объемом трафика. Опыт видеостудии лицея показал, что невозможно гарантировать передачу потока видео в реальном времени без задержек.

При применении различных кодеков и алгоритмов сжатия, которые позволяют уменьшить нагрузку на сеть, возникает высокая нагрузка на процессор и видеокарту принимающего компьютера.

Поскольку комплекс предназначался для использования частными лицами и небольшими организациями, в большинстве случаев количество камер и расстояние между ними оказывается ограниченным. Стандарты оборудования USB предполагают передачу сигнала до 25 метров, HDMI – до 20 метров, что достаточно в большинстве случаев.

В итоге тестирования программного комплекса было выявлено, что программа обеспечивает стабильную работу на ноутбуке среднестатистической конфигурации при использовании пяти источников видео с разрешением HD (720р) или трех с разрешением Full HD (1080р). Повышение числа источников или качества сигнала возможно при повышении характеристик оборудования — например, использования более мощного ПК.

Тестирование возможностей программы проводилось с помощью эксперимента.

Описание эксперимента

Цель: определение нагрузки на вычислительную систему при работе видеомикшера и предельных параметров используемого оборудования.

Методика: На тестовом компьютере был запущен программный комплекс, и по мере подключения различных источников с различными параметрами регистрировалась текущая нагрузка на ПК.

Для регистрации нагрузки использовалась программа AIDA64. Данная программа позволяет получить процент загрузки каждого ядра ПК. Полученные данные указаны в столбцах сри1- сри4, а также в столбце AIDA64 указана средняя нагрузка в текущий момент. Также для повышения точности исследования в столбец WTM указывались данные полученные из стандартного Windows Task Manager.

Описание оборудования:

- Hoyтбук Acer Aspire V7-582PG
- CPU: Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz
- Memory: 6GiB SODIMM DDR3 1600 MHz
- GPU: NVIDIA GeForce GT 750M
- OS: Windows 8.1 Pro
- камера №1: Встроенная НD камера (Макс.разрешение 1280x720)
- камера №2: Logitech HD Webcam C270 (Макс.разрешение 1280x720)

- камера №3: Web-camera Trust (Макс. разрешение 640х480) Тестовые видео:
- для разрешения 640: 720х404 H264 MPEG-4 AVC (part 10) (avc1)
- для разрешения 720: 1280x720 H264 MPEG-4 AVC (part 10) (avc1)
- для разрешения 1080: 1920х1080 H264 MPEG-4 AVC (part 10) (avc1)

Таблица 4. Результаты эксперимента по анализу загрузки

	resolution	cpu1	cpu2	cpu3	cpu4	AII/400	WTM	AIDA64	ram(MB)
file	480	29		18	36	118	38	29.5	n/d
cam3	480	1	55	1	50	107	31	26.75	n/d
cam1	480	13	40	4	50	107	35	26.75	n/d
cam2	480	10	43	9	42	104	33	26	n/d
cam1+cam3	480	9	50	4	48	111	34	27.75	n/d
cam1+cam2	480	20	45	22	30	117	35	29.25	n/d
cam1+file	480	26	35	32	42	135	38	33.75	n/d
cam3+file	480	15	43	15	44	117	39	29.25	n/d
cam3+cam2	480	6	42	21	40	109	34	27.25	n/d
cam2+file	480	34	39	9	50	132	39	33	n/d
cam1+cam2+file	480	23	42	20	51	136	40	34	n/d
cam1+cam2+cam3	480	17	40	4	54	115	36	28.75	n/d
cam1+cam3+file	480	35	34	23	32	124	41	31	n/d
cam2+cam3+file	480	45	36	26	31	138	40	34.5	n/d
cam1+cam2+cam3+file	480	25	37	38	43	143	43	35.75	n/d
cam1+cam2+cam3+file+file	480	37	39	32	51	159	47	39.75	n/d
cam1+cam2+cam3+file+file+file	480	45	58	40	48	191	54	47.75	70
cam2	720	21	4	14	35	74	29	18.5	111
cam1	720	15	18	9	42	84	25	21	134
file	720	29	28	20	46	123	47	30.75	165
cam1+cam2	720	21	26	9	41	97	33	24.25	98
cam2+file	720	32	37	25	45	139	41	34.75	160
logitch and file 1280	720	29	40	23	56	148	45	37	166
cam1+cam2+file	720	40	56	34	57	187	53	46.75	188
cam1+cam2+file+file	720	53	68	60	73	254	70	63.5	252
cam1+cam2+3*file	720	79	79	78	79	315	88	78.75	304
cam1+cam2+4*file	720	90	87	95	93	365	100	91.25	348
file	1080	37	51	43	59	190	52	47.5	178
file+file	1080	65	78	79	78	300	82	75	290
3*file	1080	90	87	90	87	354	100	88.5	370
4*file	1080	100	100	100	100	400	100	100	474

5. Выводы и возможности дальнейшего развития

В результате работы был разработан программный продукт - вещательный сервер, обеспечивающий проведение видеотрансляций в сети интернет с уровнем качества HD на базе бытового оборудования. Данный программный продукт обладает следующими важными свойствами:

- Функционирует под управлением ОС Windows, способен работать на любом современном персональном компьютере или ноутбуке;
- Работает на бытовом оборудовании (подключение камер по интерфейсу IEEE 1394, USB, HDMI, использует Ethernet для передачи HD видео с камер в реальном времени, коммутацию потоков с камер программным микшером, кодирование в форматы, пригодные для передачи на сервер);
- Позволяет выбирать формат данных для любого из источников видео независимо от других, позволяет отключать, переподключать и менять любой из источников в процессе трансляции;
- Способен работать с шестью источниками видео, включая камеры, захват видео с экрана компьютера, видеофайлы;
- Возможность работы с потоками видео в формате HDTV;
- Обрабатывает и сжимает потоки видео для работы в реальном времени;
- Сформирован в виде полноценного программного продукта, включающего документацию и установочный пакет со всеми необходимыми программными модулями.

Таким образом, пакет может быть использован для организации видеотрансляций, в том числе в видеостудии лицея любым пользователем без поддержки автора.

Естественным ограничением применимости программы является большой объем информации в HD-видеопотоке. Поэтому для эффективной работы программы требуется компьютер достаточной мощности.

6. Список литературы

FFmpeg

- 1. Encoding for Streaming Sites (track.FFmpeg.org)
- 2. H.264 (track.FFmpeg.org)
- 3. Streaming guide (track.FFmpeg.org)
- 4. FFmpeg documentation (FFmpeg.org)
- 5. Interact with FFmpeg from a .NET program (stackoverflow.com)
- 6. How to stream raw A/V data to FFmpeg (FFmpeg.gusari.org)

Aforge.NET

- 7. Recording using aforges videofilewriter (stackoverflow.com)
- 8. Aforge video samples (aforgenet.com)
- 9. Aforge documentation (aforgenet.com)
- 10. How to record video from laptop camera (aforgenet.com)
- 11. AForge. Video Namespace (aforgenet.com)

Naudio

12.NAudio (naudio.codeplex.com)

Информация общего характера

- 13. Захват, обработка и хранение видео с использованием ПК
- 14. Интернет трансляции (auditory.ru)
- 15. Цифровая видеостудия (auditory.ru)
- 16. Comparison of container formats (wikipedia.org)
- 17.C # UDP Socket client and server (stackoverflow.com)
- 18.C # Timer.Interval Pattern with 40ms? (stackoverflow.com)