EHB 211E Basics of Electrical Circuits

Asst. Prof. Onur Kurt

First-Order Circuits

Introduction

- Study two types of simple circuits:
 - □ Circuit: a resistor and capacitor → RC circuit
 - □ Circuit: a resistor and inductor → RL circuit
- Analysis of RC and RL circuits by applying Kirchhoff's law (KCL & KVL)
- Applying Kirchhoff's law to pure resistive circuits: Algebraic equations
- Applying Kirchhoff's law to RC & RL circuits: Differential equations
- Differential equations from RC & RL circuits are of the first-order circuit. Hence, the circuits are known as first-order circuits.
- First-order circuit is characterized by a first-order differential equation.
- Two ways to excite these circuits:
 - □ Initial conditions of the storage elements (source-free circuit). No independent element and energy initially stored in the capacitive and inductive element. They may have dependent sources.
 - □ Exciting first-order circuits by independent sources.

- Source-free RC circuit: dc source is suddenly disconnected.
- Energy already stored in the capacitor and released to the resistors.
- Objective: determine the circuit response
- Voltage across capacitor v(t)
- Capacitor is initially charged. Assume t=0, the initial voltage is $v(0)=V_0$
- Energy stored in the capacitor:

$$w(0) = \frac{1}{2}C(V_0)^2 \ at \ t = 0 \longrightarrow \text{Initial energy stored}$$

- Apply KCL to the top node: $i_C + i_R = 0$
- By definition: $i_C = C \frac{dv}{dt}$ and $i_R = \frac{v}{R}$ $C \frac{dv}{dt} + \frac{v}{R} = 0 \Rightarrow \frac{dv}{dt} + \frac{v}{RC} = 0 \longrightarrow \begin{array}{c} \text{First-order} \\ \text{differential equation} \end{array}$

A source-free RC circuit

$$\frac{dv}{dt} + \frac{v}{RC} = 0 \qquad \qquad \frac{dv}{dt} = -\frac{v}{RC} \Rightarrow \frac{dv}{v} = -\frac{1}{RC} dt \qquad \qquad \text{Integrate both sides of the equation}$$

$$\int \frac{dv}{v} = -\frac{1}{RC} \int dt \qquad \longrightarrow \qquad lnv = -\frac{t}{RC} + A \qquad \text{A is the constant of the integral part}$$

$$log_e v = -\frac{t}{RC} + A \qquad v(t) = e^{-\frac{t}{RC} + A} \qquad v(t) = e^{-\frac{t}{RC}} e^{A}$$

• Let's call $e^A=V_0$ because at t=0, $v(0)=e^0e^A=V_0$

$$v(t) = V_0 e^{-\frac{t}{RC}}$$

$$v(t) = V_0 e^{-\frac{t}{RC}}$$
 Voltage response of RC circuit is exponential decay of the initial voltage

- When t = 0, $v(t) = V_0$ (voltage across capacitor is initial voltage).
- When $t=\infty$, $e^{-\frac{\infty}{RC}}$ approaches zero and v(t)=0 (discharging over a certain period of time).
- The response is due to initial voltage not due to some external voltage or current source. Hence, it is called natural response of the circuit.
- Natural response of a circuit refers to the behavior of the circuit itself, with no external sources of excitation.

- Rapid decrease of voltage can be expressed in terms of the time constant τ , unit is second.
- Time constant τ of a circuit is the time required for the response to decay to a factor of 1/e or 36.8 percent of its initial value.

At
$$t = \tau$$
, $v(t) = V_0 e^{-\frac{\tau}{RC}}$ $V_0 e^{-\frac{\tau}{RC}} = V_0 e^{-1} \Rightarrow \frac{\tau}{RC} = 1 \Rightarrow \tau = RC$

$$\tau = RC$$
 Time constant of capacitor

$$v(t) = V_0 e^{-\frac{t}{\tau}}$$
 Voltage response of the RC circuit

- Table shows how the value of $v(t)/V_0$ changes when time t increases
- After 5τ , v(t) is less than 1% of V_0 . It takes approximately 5τ for the circuit reach its final state or steady state (Capacitor is fully discharged after 5τ).
- Smaller the time constant (τ) , more rapidly voltage decreases, i.e., faster response.

TABLE 7.1

Values of $v(t)/V_0 = e^{-t/\tau}$.

<u>t</u>	$v(t)/V_0$
τ	0.36788
2τ	0.13534
3τ	0.04979
4τ	0.01832
5τ	0.00674

• Using Ohm's law, the current $i_R(t)$ is expressed as:

$$i_R(t) = \frac{v(t)}{R} = \frac{V_0}{R}e^{-\frac{t}{\tau}}$$

Power dissipated in the resistor:

$$p(t) = vi_R \implies p(t) = \left(V_0 e^{-\frac{t}{\tau}}\right) \left(\frac{V_0}{R} e^{-\frac{t}{\tau}}\right) \implies p(t) = \frac{(V_0)^2}{R} e^{-\frac{2t}{\tau}}$$

Energy absorbed by the resistor:

$$p = \frac{w}{t} \Rightarrow w = pt$$
 Take derivative of both sides $dw = pdt$ Integrate both sides

$$\int dw = \int pdt \implies w_R(t) = \int_0^t p(t)dt \Rightarrow w_R(t) = \int_0^t \frac{(V_0)^2}{R} e^{-\frac{2t}{\tau}} dt = -\frac{\tau(V_0)^2}{2R} e^{-\frac{2t}{\tau}} \Big|_0^t, \quad \tau = RC$$

$$= -\frac{RC(V_0)^2}{2R} e^{-\frac{2t}{\tau}} \Big|_0^t = \frac{1}{2} C(V_0)^2 \left(1 - e^{-\frac{2t}{\tau}}\right)$$

• When $t = \infty$, $e^{-\frac{2t}{\tau}}$ approaches 0 $w_C = \frac{1}{2}C(V_0)^2$

Example 1

For the circuit shown below, let $v_C(0) = 15 V$. Find v_C , v_x , and i_x for t > 0.

Solution

$$R_{\rm eq} = \frac{20 \times 5}{20 + 5} = 4 \,\Omega$$

$$\tau = R_{\rm eq}C = 4(0.1) = 0.4 \,\mathrm{s}$$

$$v = v(0)e^{-t/\tau} = 15e^{-t/0.4} \text{ V}, \qquad v_C = v = 15e^{-2.5t} \text{ V}$$

$$v_x = \frac{12}{12 + 8}v = 0.6(15e^{-2.5t}) = 9e^{-2.5t} V$$

$$i_x = \frac{v_x}{12} = 0.75e^{-2.5t} A$$

Example 2

The switch in the circuit shown below has been closed for a long time, and it is opened at t=0. Find v(t) for t>0. Calculate the initial energy stored in the capacitor.

Solution

For t < 0 the switch is closed; the capacitor is an open circuit to dc

$$v_C(t) = \frac{9}{9+3}(20) = 15 \text{ V}, \qquad t < 0$$

Since the voltage across a capacitor cannot change instantaneously, the voltage across the capacitor at $t=0^-$ is the same at t=0 or

$$v_c(0) = V_0 = 15$$

For t>0 the switch is opened: $R_{\rm eq}=1+9=10~\Omega$

$$\tau = R_{eq}C = 10 \times 20 \times 10^{-3} = 0.2 \text{ s} \qquad v(t) = v_C(0)e^{-t/\tau} = 15e^{-t/0.2} \text{ V}$$
$$v(t) = 15e^{-5t} \text{ V} \qquad w_C(0) = \frac{1}{2}Cv_C^2(0) = \frac{1}{2} \times 20 \times 10^{-3} \times 15^2 = 2.25 \text{ J}$$

- Goal: determine circuit response in RL circuit.
- When t = 0, there must be initial current in RL circuit (current excites the circuit)

$$i(0) = I_0$$
 When $t = 0$, inductor current equal to initial current.

• Initial energy in the inductor:

$$w(0) = \frac{1}{2}L(I_0)^2$$

• Apply KVL to the circuit: $v_L + v_R = 0$, $v_L = L \frac{di}{dt}$

$$L\frac{di}{dt} + iR = 0 \implies \frac{di}{dt} + \frac{R}{L}i = 0 \implies \frac{di}{dt} = -\frac{R}{L}i \implies \frac{di}{i} = -\frac{R}{L}dt \implies \text{Integrate both sides}$$

$$\int_{I_0}^{i(t)} \frac{di}{i} = -\int_0^t \frac{R}{L} dt \implies \ln \left| \int_{I_0}^{i(t)} \frac{R}{L} t \right|_0^t$$

$$lni - lnI_0 = -\frac{R}{L}t + 0 \implies \ln(\frac{i}{I_0}) = -\frac{Rt}{L}$$

$$log_e\left(\frac{i}{I_0}\right) = -\frac{Rt}{L} \Rightarrow \frac{i}{I_0} = e^{-\frac{Rt}{L}} \implies i(t) = I_0 e^{-\frac{Rt}{L}} \longrightarrow$$

$$L = \begin{bmatrix} - \\ v_L \\ + \end{bmatrix} + \begin{bmatrix} + \\ v_R \\ - \end{bmatrix}$$

Natural response of RL circuit is exponential decay of the initial current

$$\tau = \frac{L}{D}$$
 Time constant of inductor

$$i(t) = I_0 e^{-\frac{t}{\tau}}$$

- When t < 0, inductor is charged.
- When t=0, inductor excites the circuit by releasing the stored energy.
- Inductor has an exponential decay due to $e^{-\frac{\omega}{\tau}}$ term.
- Similar to capacitor, at time $t=\tau$, current through the circuit is 36.8% smaller than initial value.

$$i(t) = I_0 e^{-\frac{t}{\tau}} \Rightarrow i(\tau) = I_0 e^{-\frac{\tau}{\tau}} = \frac{I_0}{e^1} = 0.368I_0$$

$$v_R(t) = iR \Rightarrow v_R(t) = I_0 Re^{-\frac{t}{\tau}}$$

• Power dissipated in the resistor:

$$p = v_R i \Rightarrow p = (I_0)^2 R e^{-\frac{2t}{\tau}}$$

Energy absorbed by the resistor:

$$p = \frac{w}{t} \Rightarrow w = pt$$
 Take derivate of both sides of this equation $dw = pdt$ Integrate both sides

$$\int dw = \int pdt \implies w_R(t) = \int_0^t p(t)dt \Rightarrow w_R(t) = \int_0^t (I_0)^2 Re^{-\frac{2t}{\tau}} dt = -\frac{\tau}{2} (I_0)^2 Re^{-\frac{2t}{\tau}} \quad , \quad \tau = \frac{L}{R}$$

$$w_R(t) = -\frac{1}{2} \frac{L}{R} (I_0)^2 R \left(e^{-\frac{2t}{\tau}} \right) \Big|_0^t \implies w_R(t) = \frac{1}{2} L(I_0)^2 \left(1 - e^{-\frac{2t}{\tau}} \right)$$

- Energy initially stored in the inductor is eventually dissipated by the resistor.
- When $t \to \infty$, $e^{-\frac{2t}{\tau}} \to 0$ $w_R(t) = \frac{1}{2}L(I_0)^2$ Same as $w_L(0)$ which is the initial energy stored in the inductor.

Example 3

Assuming that i(0) = 10 A, calculate i(t) and $i_{\chi}(t)$ in the circuit shown below.

Solution

- Method 1: Find equivalent resistance.
- Since the circuit has only dependent source, insert a test voltage source of 1 V at the inductor terminals a-b and find R_{Th} .
- Keep it in mind that we cannot turn off dependent circuit when applying Thevenin theorem.
- To find R_{Th} , we need to find i_0 as $R_{Th} = \frac{v_0}{i} = \frac{1}{i}$
- Apply KVL both loops:

$$2(i_1 - i_2) + 1 = 0 \implies i_1 - i_2 = -\frac{1}{2}$$

$$6i_2 - 2i_1 - 3i_1 = 0 \implies i_2 = \frac{5}{6}i_1$$

$$i_1 = -3 \text{ A}, \qquad i_o = -i_1 = 3 \text{ A}$$

$$R_{\rm eq} = R_{\rm Th} = \frac{v_o}{i_o} = \frac{1}{3} \Omega$$

$$i_1 = -3 \text{ A}, \quad i_o = -i_1 = 3 \text{ A}$$
 $R_{\text{eq}} = R_{\text{Th}} = \frac{v_o}{i_o} = \frac{1}{3} \Omega$ $\tau = \frac{L}{R_{\text{eq}}} = \frac{\frac{1}{2}}{\frac{1}{3}} = \frac{3}{2} \text{ s}$

$$i(t) = i(0)e^{-t/\tau} = 10e^{-(2/3)t} A, t > 0$$

Solution

Method 2: apply KVL

$$\frac{1}{2}\frac{di_1}{dt} + 2(i_1 - i_2) = 0 \quad \text{or} \quad \frac{di_1}{dt} + 4i_1 - 4i_2 = 0$$

For loop 2,

$$6i_2 - 2i_1 - 3i_1 = 0$$
 \Rightarrow $i_2 = \frac{5}{6}i_1$ $\frac{di_1}{dt} + \frac{2}{3}i_1 = 0$ $\frac{di_1}{i_1} = -\frac{2}{3}dt$

Since $i_1 = i$, we may replace i_1 with i and integrate: $\ln i \Big|_{i(0)}^{i(t)} = -\frac{2}{3}t \Big|_{0}^{t}$ or $\ln \frac{i(t)}{i(0)} = -\frac{2}{3}t$

$$i(t) = i(0)e^{-(2/3)t} = 10e^{-(2/3)t} A, t > 0$$

$$v = L\frac{di}{dt} = 0.5(10)\left(-\frac{2}{3}\right)e^{-(2/3)t} = -\frac{10}{3}e^{-(2/3)t} V$$

$$i_x(t) = \frac{v}{2} = -1.6667e^{-(2/3)t} \text{ A}, \qquad t > 0$$

Example 4

NICATION TO BUT TO BUT

The switch in the circuit shown below has been closed for a long time. At t=0, the switch is opened. Calculate i(t) for t>0.

Solution

For t < 0, the switch is closed. This means that inductor is short circuit to dc condition.

$$\frac{4 \times 12}{4 + 12} = 3 \Omega \qquad i_1 = \frac{40}{2 + 3} = 8 A$$

using current division.

$$i(t) = \frac{12}{12 + 4}i_1 = 6 \text{ A}, \qquad t < 0$$

Since the current through an inductor cannot change instantaneously,

$$i(0) = i(0^{-}) = 6 \text{ A}$$

Solution

For t > 0, the switch is opened and voltage source is disconnected. This means we have a source-free RL circuit as shown below.

To find i(t), we need to use following equation:

$$i(t) = i(0)e^{-\frac{t}{\tau}}$$

To find i(t), determine time constant τ

$$R_{\rm eq} = (12 + 4) \parallel 16 = 8 \,\Omega$$

$$\tau = \frac{L}{R_{\rm eq}} = \frac{2}{8} = \frac{1}{4} \, \text{s}$$

$$i(t) = i(0)e^{-t/\tau} = 6e^{-4t} A$$

Example 5

NICAH UNIVERSITY

In the circuit shown below, find i_0 , v_0 and i for all time, assuming that the switch was open for a long time.

Solution:

For t < 0, the switch is opened. Since inductor is short circuit to dc, 6 Ω resistor is short circuited. $i_0 = 0$

$$i(t) = \frac{10}{2+3} = 2 \text{ A}, \qquad t < 0$$

$$v_o(t) = 3i(t) = 6 \text{ V}, \quad t < 0$$

$$i(0) = 2 A$$
 for $t < 0 \& t = 0$, $i(0) = i(0^{-}) = 2 A$

Solution

For t > 0, the switch is closed. The voltage is short circuited.

$$R_{\text{Th}} = 3 \parallel 6 = 2 \Omega$$
 $\tau = \frac{L}{R_{\text{Th}}} = 1 \text{ s}$
 $i(t) = i(0)e^{-t/\tau} = 2e^{-t} \text{ A}, \quad t > 0$
 $v_o(t) = -v_L = -L\frac{di}{dt} = -2(-2e^{-t}) = 4e^{-t} \text{ V}, \quad t > 0$
 $i_o(t) = \frac{v_L}{6} = -\frac{2}{3}e^{-t} \text{ A}, \quad t > 0$

Thus, for all time,

$$i_o(t) = \begin{cases} 0 \text{ A}, & t < 0 \\ -\frac{2}{3}e^{-t} \text{ A}, & t > 0 \end{cases}, \quad v_o(t) = \begin{cases} 6 \text{ V}, & t < 0 \\ 4e^{-t} \text{ V}, & t > 0 \end{cases}$$
$$i(t) = \begin{cases} 2 \text{ A}, & t < 0 \\ 2e^{-t} \text{ A}, & t \ge 0 \end{cases}$$

From the Graph and expression: the inductor current is continuous at t=0 (current through inductor cannot change instantly), while resistor current through 6 Ω resistor drop from 0 to -2/3 at t=0, and voltage across 3 Ω resistor drop from 6 V to 4 V at t=0.

Singularity (Switching) Function

- Singularity (aka switching functions): useful for circuit analysis.
- Good approximations to the switching signals that arises in circuit with switching operation.
- Helpful in the neat, compact description of the step response of RC or RL circuit.
- Singularity function: either discontinuous or have discontinuous derivatives.
- Three most widely used singularity functions:
 - Unit step function
 - Unit impulse function
 - Unit ramp function

Unit Step Function

- Unit step function u(t) is 0 for negative value of t and 1 for positive value of t.
- In mathematically,

• Unit step function is undefined at t=0 where it changes abruptly from 0 to 1.

Unit Step Function

• Assume that abrupt (sudden) change occurs at $t=t_0$ (where $t_0>0$) instead of t=0.

u(t) is delayed by t_0 sec

• Assume that abrupt (sudden) change occurs at $t=-t_0$

$$u(t+t_0) = \begin{cases} 0 & t < -t_0 \\ 1 & t > -t_0 \end{cases}$$

u(t) is advanced by t_0 sec

Unit Step Function

• An abrupt change in voltage and current can be represented by step function.

$$v(t) = \begin{cases} 0 & t < t_0 \\ & & \\ 1 & t > t_0 \end{cases}$$

$$v(t) = V_0 u(t - t_0)$$

• If $t_0 = 0$, v(t) is simply the step voltage $V_0 u(t)$

Unit Impulse Function

• Derivative of the unit step function u(t) is the unit impulse function (aka delta function) which is represented by $\delta(t)$

$$\delta(t) = \frac{d}{dt}u(t) = \begin{cases} 0 & t < 0 \\ \text{undefined} & t = 0 \\ 0 & t > 0 \end{cases}$$

- The unit impulse function $\delta(t)$ is zero everywhere except at t=0, where it is undefined.
- The unit impulse may be regarded as an applied or resulting shock. It may be visualized as a very short duration pulse of unit area.
- It can be expressed mathematically as:

$$\int_{0^{-}}^{0^{+}} \delta(t)dt = 1$$

The strength of the impulse function.

Unit Ramp Function

• Integral of the unit step function u(t) is the unit ramp function $\mathbf{r}(t)$:

$$\mathbf{r}(t) = \int_{-\infty}^{t} u(t)dt = u(t).t$$

$$r(t) = \begin{cases} 0 & t \le 0 \\ t & t \ge 0 \end{cases}$$

Unit Ramp Function

Delayed unit ramp function

$$r(t - t_0) = \begin{cases} 0 & t \le t_0 \\ t - t_0 & t \ge t_0 \end{cases}$$

Advanced unit ramp function

$$r(t+t_0) = \begin{cases} 0 & t \le -t_0 \\ t+t_0 & t \ge -t_0 \end{cases}$$

• Three singularity functions are related by differentiation or integration:

$$\delta(t) = \frac{du(t)}{dt}$$
 $u(t) = \frac{dr(t)}{dt}$

$$u(t) = \int_{-\infty}^{t} \delta(t) \, dt \qquad r(t) = \int_{-\infty}^{t} u(t) \, dt$$

- When the dc source of an RC circuit is suddenly applied, the voltage or current source can be modeled as a step function, and the response is known as a step response.
- The step response is the response of the circuit due to a sudden application of a dc voltage or current source.
- Once the switch is closed, there is a sudden application of dc source. Thus, the circuit can be replaced by the following circuit (on the right)

- Assume V_0 is the initial voltage on the capacitor.
- Voltage of a capacitor cannot change instantaneously,

$$v(0^-) = v(0^+) = V_0$$
 0⁻: just before switching 0⁺: just after switching

• Apply KCL:
$$C \frac{dv}{dt} + \frac{v - V_S u(t)}{R} = 0 \implies C \frac{dv}{dt} + \frac{v}{R} - \frac{V_S u(t)}{R} = 0$$

$$C\frac{dv}{dt} + \frac{v}{R} = \frac{V_S u(t)}{R} \implies \frac{dv}{dt} + \frac{v}{RC} = \frac{V_S}{RC} u(t)$$
 For $t > 0$, unit step function is 1

$$\frac{dv}{dt} + \frac{v}{RC} = \frac{V_S}{RC} \implies \frac{dv}{dt} = -\frac{v - V_S}{RC} \implies \frac{dv}{v - V_S} = -\frac{\mathrm{dt}}{RC} \implies \text{Integrate}$$

$$\int_{v(0)}^{v(t)} \frac{dv}{v - V_s} = -\int_0^t \frac{1}{RC} dt \implies \ln(v - V_s) \Big|_{V_0}^{v(t)} = -\frac{t}{RC} \Big|_0^t$$

$$\ln(v(t) - V_S) - \ln(V_0 - V_S) = -\frac{t}{RC} + 0 \quad \Longrightarrow \quad \ln\left(\frac{v(t) - V_S}{V_0 - V_S}\right) = -\frac{t}{RC}$$

$$\frac{v(t) - V_S}{V_0 - V_S} = e^{-\frac{t}{RC}} \longrightarrow v(t) - V_S = (V_0 - V_S)e^{-\frac{t}{RC}} \qquad \tau = RC$$

$$v(t) = V_S + (V_0 - V_S)e^{-\frac{t}{\tau}}$$
 $t > 0$

Complete response (or total response) of the RC circuit to a sudden application of dc voltage source

$$v(t) = egin{cases} V_0 & t < 0 \ V_S + (V_0 - V_S)e^{-rac{t}{ au}} & t > 0 \end{cases}$$
 Assuming capacitor is initially charged

Assume $V_{\rm s} > V_{\rm 0}$

$$v(t) = \begin{cases} V_0 & t < 0 \\ V_s + (V_0 - V_s)e^{-\frac{t}{\tau}} & t > 0 \end{cases}$$

If capacitor is initially uncharged, $V_0 = 0$

$$v(t) = \begin{cases} 0 & t < 0 \\ V_S(1 - e^{-\frac{t}{\tau}}) & t > 0 \end{cases}$$

When
$$t < 0$$
, $u(t) = 0$
When $t > 0$, $u(t) = 1$ $v(t) = V_S (1 - e^{-\frac{t}{\tau}})u(t)$

$$v(t) = V_S \left(1 - e^{-\frac{t}{\tau}}\right) u(t)$$

• Current through the capacitor (capacitor initially uncharged):

$$i(t) = C\frac{dv}{dt} = C\frac{d}{dt}\left(V_s(1 - e^{-\frac{t}{\tau}})\right) \implies i(t) = C\frac{1}{\tau}V_se^{-\frac{t}{\tau}} \qquad \tau = RC \qquad t > 0$$

$$i(t) = C \frac{1}{RC} V_S e^{-\frac{t}{\tau}} \implies i(t) = \frac{V_S}{R} e^{-\frac{t}{\tau}} u(t)$$

Capacitor voltage v(t)

Capacitor current i(t)

Another way of finding step response of an RC & RL circuits.

$$v(t) = V_S + (V_0 - V_S)e^{-\frac{t}{\tau}} \implies v(t) = V_S + V_0e^{-\frac{t}{\tau}} - V_Se^{-\frac{t}{\tau}}$$

$$v(t) = V_0e^{-\frac{t}{\tau}} + V_S(1 - e^{-\frac{t}{\tau}}) \implies v(t)$$
: two components

- Two ways of decomposing into two components:
 - □ Natural response and forced response
 - □ Transient response and steady-state response

- 1st: Natural response and forced response:
 - Total response or complete response can be written as:

$$v=v_n+v_f$$
 v_n :natural response $v_n=V_0e^{-\frac{t}{\tau}}$ Storage energy $v_f:$ forced response $v_f=V_s(1-e^{-\frac{t}{\tau}})$ Independent source

- v_n is the natural response that is produced by capacitor.
- v_f is the forced response that is produced by the circuit when external force (a voltage source) is applied.
- Natural response dies out and leaving only the steady-state component of forced response since as time increases, energy stored in the capacitor is reduced.

- 2nd: Transient response and steady-state response:
 - Total response or complete response can be written as:

Complete response=transient response + steady-state response (Temporary part) (Permanent part)

$$v=v_t+v_{ss}$$
 v_t :transient response $v_t=(V_0-V_S)e^{-\frac{t}{\tau}}$ Temporary part v_{ss} :steady-state response $v_{ss}=V_s$ Permanent part

- Transient response v_t is temporary response and decay to zero as time approaches infinity.
- The steady-state response v_{ss} remains after the transient response has die out.

• The complete response of the general equation may be written as:

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-\frac{t}{\tau}}$$

- v(0): initial voltage
- $v(\infty)$: final or steady-state value.
- Step response of an RC circuit requires three parameters:
 - \Box The initial capacitor voltage v(0)
 - \Box The final capacitor voltage $v(\infty)$
 - \Box The time constant τ
- If the switch changes position at time $t=t_0$ instead of t=0, there is a time delay in the response and the equation becomes:

$$v(t) = v(\infty) + [v(t_0) - v(\infty)]e^{-\frac{t-t_0}{\tau}}$$
 $v(t_0)$: initial voltage value at $t = t_0$

INICAL UNIVERSITY

The switch in the circuit shown below has been in position A for a long time. At t=0, the switch moves to B. Determine v(t) for t>0 and calculate its value at t=1 s and t=4 s.

Solution:

For t < 0, the switch is at position A. The capacitor acts like an open circuit to dc

$$v(0^{-}) = \frac{5}{5+3}(24) = 15 \text{ V}$$

Capacitor voltage cannot change instantaneously

$$v(0) = v(0^{-}) = v(0^{+}) = 15 \text{ V}$$

For t > 0, the switch is at position B. Thevenin resistance (equivalent resistance): $R_{Th} = 4 k\Omega$

$$\tau = R_{\rm Th}C = 4 \times 10^3 \times 0.5 \times 10^{-3} = 2 \text{ s}$$

Capacitor acts like an open circuit to dc at steady-state, $v(\infty) = 30 V$

Complete response:

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$$

= 30 + (15 - 30)e^{-t/2} = (30 - 15e^{-0.5t}) V

At
$$t = 1$$
, $v(1) = 30 - 15e^{-0.5} = 20.9 \text{ V}$

At
$$t = 4$$
, $v(4) = 30 - 15e^{-2} = 27.97 \text{ V}$

In the circuit shown below, the switch has been closed for a long time and is opened at t = 0. Find i and v for all time.

Solution:

$$30u(t) = \begin{cases} 0 & t < 0 & v = 10 \text{ V} \\ 30 & t > 0 & i = -\frac{v}{10} = -1 \text{ A} \end{cases}$$

$$v(0) = v(0^{-}) = 10 \text{ V}$$

 $v(\infty) = \frac{20}{20 + 10} (30) = 20 \text{ V}$ $R_{\text{Th}} = 10 \parallel 20 = \frac{10 \times 20}{30} = \frac{20}{3} \Omega$

$$\tau = R_{\text{Th}}C = \frac{20}{3} \cdot \frac{1}{4} = \frac{5}{3} \text{ s} \qquad v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$$
$$= 20 + (10 - 20)e^{-(3/5)t} = (20 - 10e^{-0.6t}) \text{ V}$$

Apply KCL:

$$i = \frac{v}{20} + C\frac{dv}{dt} = 1 - 0.5e^{-0.6t} + 0.25(-0.6)(-10)e^{-0.6t} = (1 + e^{-0.6t}) A$$

- When the switch is closed, there is a sudden of voltage source is applied and the circuit is replaced by the following circuit (on the right)
- The voltage source (or current source) can be modeled as a step function (aka step response).
- Let the current response is sum of transient and steady-state response

$$i = i_t + i_{ss}$$
 $i_t = Ae^{-\frac{t}{\tau}}$ $\tau = \frac{L}{R}$ $i_{ss} = \frac{V_s}{R}$ $i = Ae^{-\frac{t}{\tau}} + \frac{V_s}{R}$

• Current through inductor cannot change instantaneously: $i(0^+) = i(0^-) = I_0$

At
$$t = 0$$
, $I_0 = A + \frac{V_S}{R}$ $A = I_0 - \frac{V_S}{R}$ $i(t) = \frac{V_S}{R} + (I_0 - \frac{V_S}{R})e^{-\frac{t}{\tau}}$

- To find the complete response, RL circuit requires three parameters:
 - \Box The initial inductor current i(0)
 - \Box The final inductor current $i(\infty)$
 - \Box The time constant τ

$$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-\frac{t}{\tau}}$$

Complete response

If
$$I_0 = 0$$
, $i(t) = \begin{cases} 0 & t < 0 \\ \frac{V_s}{R} (1 - e^{-\frac{t}{\tau}}) & t > 0 \end{cases}$

When
$$t < 0$$
, $u(t) = 0$
When $t > 0$, $u(t) = 1$ $i(t) = \frac{V_s}{R} (1 - e^{-\frac{t}{\tau}}) u(t)$

$$v(t) = L \frac{di}{dt} \Rightarrow v(t) = V_S e^{-\frac{t}{\tau}}$$

Find i(t) in the circuit of shown below for t > 0. Assume that the switch has been closed for a long time.

Solution:

When t < 0, 3 Ω resistor is short-circuited and inductor acts like short circuit (dc condition)

$$i(0^{-}) = \frac{10}{2} = 5 \text{ A}$$
 $i(0) = i(0^{+}) = i(0^{-}) = 5 \text{ A}$

When
$$t > 0$$
, $i(\infty) = \frac{10}{2+3} = 2 \text{ A}$

$$R_{\text{Th}} = 2 + 3 = 5 \Omega$$
 $\tau = \frac{L}{R_{\text{Th}}} = \frac{\frac{1}{3}}{5} = \frac{1}{15} \text{ s}$

$$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$$

$$= 2 + (5-2)e^{-15t} = 2 + 3e^{-15t} A,$$
 $t > 0$

At t=0, switch 1 in the circuit below is closed, and switch 2 is closed 4 s later. Find i(t) for t>0. Calculate i for t=2 s and t=5 s.

Solution:

For t < 0, switches S_1 and S_2 are open so that i = 0.

$$i(0^{-}) = i(0) = i(0^{+}) = 0$$

For
$$0 \le t \le 4$$
, S_1 is closed $i(\infty) = \frac{40}{4+6} = 4$ A,

$$R_{\text{Th}} = 4 + 6 = 10 \,\Omega$$
 $\tau = \frac{L}{R_{\text{Th}}} = \frac{5}{10} = \frac{1}{2} \,\text{s}$

$$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau} = 4 + (0 - 4)e^{-2t} = 4(1 - e^{-2t}) A, \quad 0 \le t \le 4$$

For
$$t \ge 4$$
, S_2 is closed $i(4) = i(4^-) = 4(1 - e^{-8}) \approx 4$ A

Using KCL,
$$\frac{40-v}{4} + \frac{10-v}{2} = \frac{v}{6} \implies v = \frac{180}{11} \text{ V}$$
 $i(\infty) = \frac{v}{6} = \frac{30}{11} = 2.727 \text{ A}$

Solution

$$R_{\text{Th}} = 4 \parallel 2 + 6 = \frac{4 \times 2}{6} + 6 = \frac{22}{3} \Omega$$
 $\tau = \frac{L}{R_{\text{Th}}} = \frac{5}{\frac{22}{2}} = \frac{15}{22} \text{ s}$

$$\tau = \frac{L}{R_{\rm Th}} = \frac{5}{\frac{22}{3}} = \frac{15}{22} \,\mathrm{s}$$

$$i(t) = i(\infty) + [i(4) - i(\infty)]e^{-(t-4)/\tau}, \qquad t \ge 4$$

$$t \ge 4$$

$$i(t) = 2.727 + (4 - 2.727)e^{-(t-4)/\tau}, \quad \tau = \frac{15}{22}$$

$$= 2.727 + 1.273e^{-1.4667(t-4)}, \qquad t \ge 4$$

$$i(t) = \begin{cases} 0, & t \le 0 \\ 4(1 - e^{-2t}), & 0 \le t \le 4 \\ 2.727 + 1.273e^{-1.4667(t-4)}, & t \ge 4 \end{cases}$$

At
$$t = 2$$
, $i(2) = 4(1 - e^{-4}) = 3.93 \text{ A}$

At
$$t = 5$$
, $i(5) = 2.727 + 1.273e^{-1.4667} = 3.02 \text{ A}$

First-Order Op Amp Circuit: Example 10

For the op amp circuit shown below, find v_0 for t>0, given that v(0)=3 V. Let $R_f=80$ $k\Omega$, $R_1=20$ $k\Omega$, and C=5 μF .

Solution:

Method 1: KCL at node 1:
$$\frac{0 - v_1}{R_1} = C \frac{dv}{dt}$$

$$v_1 = v$$
 $\frac{dv}{dt} + \frac{v}{CR_1} = 0$ Same equation as source free RC

$$v(t) = V_0 e^{-t/\tau}, \quad \tau = R_1 C \quad v(0) = 3 = V_0$$

$$\tau = 20 \times 10^3 \times 5 \times 10^{-6} = 0.1$$
 $v(t) = 3e^{-10t}$

Applying KCL at node 2 gives
$$C \frac{dv}{dt} = \frac{0 - v_o}{R_f}$$
 $v_o = -R_f C \frac{dv}{dt}$

$$v_o = -80 \times 10^3 \times 5 \times 10^{-6} (-30e^{-10t}) = 12e^{-10t} \text{ V}, \qquad t > 0$$

Solution

Method 2: $v(0^+) = v(0^-) = 3 \text{ V}$,

apply KCL at node 2
$$\frac{3}{20,000} + \frac{0 - v_o(0^+)}{80,000} = 0$$
 $v_o(0^+) = 12 \text{ V}.$

Since the circuit is source free, $v(\infty) = 0$ V.

To find τ , we need to find R_{eq} . Remove capacitor and place 1 A current source (source free circuit). Apply KVL to the input loop:

$$20,000(1) - v = 0 \implies v = 20 \text{ kV}$$

$$R_{\rm eq} = \frac{v}{1} = 20 \text{ k}\Omega$$
 $\tau = R_{\rm eq}C = 0.1.$

$$v_o(t) = v_o(\infty) + [v_o(0) - v_o(\infty)]e^{-t/\tau}$$

= 0 + (12 - 0)e^{-10t} = 12e^{-10t} V, t > 0

Determine v(t) and $v_0(t)$ in the circuit shown below.

Solution:

Since we will find step response, we can write the following equation:

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}, \qquad t > 0$$

$$\tau = RC = 50 \times 10^3 \times 10^{-6} = 0.05$$

t < 0, the switch is open and no voltage across capacitor

$$v(0) = 0.$$

$$t > 0$$
, $v_1 = \frac{20}{20 + 10} 3 = 2 \text{ V}$

$$t > 0$$
, $v_1 = \frac{20}{20 + 10} 3 = 2 \text{ V}$ $v_o(\infty) = \left(1 + \frac{50}{20}\right) v_1 = 3.5 \times 2 = 7 \text{ V}$

$$v_1 - v_0 = v$$
 $v(\infty) = 2 - 7 = -5 \text{ V}$

$$v(t) = -5 + [0 - (-5)]e^{-20t} = 5(e^{-20t} - 1) \text{ V}, \qquad t > 0$$

$$v_o(t) = v_1(t) - v(t) = 7 - 5e^{-20t} V, \quad t > 0$$

Capacitor acts like an open circuit to dc and op amp circuit behaves like an noninverting op amp.

Noninverting op amp:

$$v_0 = (1 + \frac{R_f}{R_1})v_1$$

Find the step response $v_0(t)$ for t>0 in the op amp circuit shown below. Let $v_i=2u(t)$ V, $R_1=20$ $k\Omega$, $R_f=50$ $k\Omega$, $R_2=R_3=10$ $k\Omega$, and C=2 μF .

Solution:

Using Thevenin theorem, we may simplify the circuit. Remove the capacitor and find the Thevenin equivalent

$$V_{ab} = -\frac{R_f}{R_1} v_i$$
 $V_{Th} = \frac{R_3}{R_2 + R_3} V_{ab} = -\frac{R_3}{R_2 + R_3} \frac{R_f}{R_1} v_i$

$$V_{\text{Th}} = -\frac{R_3}{R_2 + R_3} \frac{R_f}{R_1} v_i = -\frac{10}{20} \frac{50}{20} 2u(t) = -2.5u(t)$$

$$R_{\rm Th} = \frac{R_2 R_3}{R_2 + R_3} = 5 \ {\rm k}\Omega$$
 \longrightarrow R_{Th} can be found by turning off the input voltage v_i . Doing so, v_{ab} will be zero

