SCORE Search Results Details for Application 10821669 and Search Result us-10-821-669-1_copy_673_691.szlm30.rapbn.

Score Home Page

Retrieve Application

List

SCORE System Overview

SCORE FAO

Comments / Suggestions

This page gives you Search Results detail for the Application 10821669 and Search Result us-10-8. 669-1_copy_673_691.szlm30.rapbn.

start

Go Back to previous

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on:

November 1, 2006, 13:47:00; Search time 10.5556 Seconds

(without alignments)

150.742 Million cell updates/sec

Title:

US-10-821-669-1 COPY 673 691

Perfect score:

91 Sequence:

1 IPVLGTFALVSYIANKVLT 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched:

320231 segs, 83745634 residues

Total number of hits satisfying chosen parameters:

64061

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database :

Published Applications AA New:*

1: /EMC_Celerra SIDS3/ptodata/2/pubpaa/US09 NEW PUB.pep:*

2: /EMC_Celerra_SIDS3/ptodata/2/pubpaa/US06_NEW_PUB.pep:*

3: /EMC_Celerra_SIDS3/ptodata/2/pubpaa/US07_NEW_PUB.pep:*

4: /EMC Celerra SIDS3/ptodata/2/pubpaa/US08 NEW PUB.pep:*

5: /EMC Celerra SIDS3/ptodata/2/pubpaa/PCT NEW PUB.pep:*

6: /EMC_Celerra_SIDS3/ptodata/2/pubpaa/US10_NEW_PUB.pep:*

/EMC_Celerra_SIDS3/ptodata/2/pubpaa/US11_NEW_PUB.pep:*

/EMC Celerra SIDS3/ptodata/2/pubpaa/US60 NEW PUB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result

Query

```
RESULT 3
US-11-134-871-3348
; Sequence 3348, Application US/11134871
; Publication No. US20060141528A1
; GENERAL INFORMATION:
; APPLICANT: Aebersold, Rudolf H.
 APPLICANT: Zhang, Hui
                                                              673-691
 TITLE OF INVENTION: Compositions and Methods for
 TITLE OF INVENTION: Quatification of Serum Glycoproteins
  FILE REFERENCE: 66661-116
  CURRENT APPLICATION NUMBER: US/11/134,871
  CURRENT FILING DATE: 2005-05-20
  PRIOR APPLICATION NUMBER: 60/573,593
 PRIOR FILING DATE: 2004-05-21
 NUMBER OF SEQ ID NOS: 3602
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 3348
   LENGTH: 19
   TYPE: PRT
   ORGANISM: Homo sapiens
US-11-134-871-3348
 Query Match
                         33.0%; Score 30; DB 7; Length 19;
 Best Local Similarity 85.7%; Pred. No. 1.3e+02;
          6; Conservative 1; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           7 FALVSYI 13
             1111:11
Db
           9 FALVNYI 15
```

```
RESULT 8
US-11-254-500-25
; Sequence 25, Application US/11254500
; Publication No. US20060147442A1
; GENERAL INFORMATION:
                                                     673-691
; APPLICANT: Homan, Jane
; APPLICANT: Imboden, Michael D.
; APPLICANT: Riggs, Michael D.
 APPLICANT: Carryn, Stephane D.
 TITLE OF INVENTION: Biocides
; FILE REFERENCE: IOGEN-10173
 CURRENT APPLICATION NUMBER: US/11/254,500
 CURRENT FILING DATE: 2005-10-20
 NUMBER OF SEQ ID NOS: 104
; SOFTWARE: PatentIn version 3.3
; SEQ ID NO 25
  LENGTH: 27
   TYPE: PRT
   ORGANISM: Apis mellifera
US-11-254-500-25
 Query Match
                        30.8%; Score 28; DB 7; Length 27;
 Best Local Similarity 50.0%; Pred. No. 4.2e+02;
 Matches
         6; Conservative
                              3; Mismatches 3; Indels
           5 GTFALVSYIANK 16
Qу
            1 11:1:1:
Db
          12 GLPALISWISRK 23
```

i

```
▶ RESULT 4
 Q57012 STAAU
                 PRELIMINARY;
                                       19 AA.
 ID
     Q57012 STAAU
                                PRT;
     Q57012;
AC
 DT
     01-NOV-1996, integrated into UniProtKB/TrEMBL.
 DT
     01-NOV-1996, sequence version 1.
DT
     07-FEB-2006, entry version 17.
DE
     Peptide L.
OS
     Staphylococcus aureus.
     Bacteria; Firmicutes; Bacillales; Staphylococcus.
OC
     NCBI TaxID=1280;
OX
RN
     [1]
RP
     NUCLEOTIDE SEQUENCE.
RX
     MEDLINE=86135972; PubMed=3004956;
RA
     Murphy E., Huwyler L., Do Carno de Freire Bastos M.;
RT
     "Transposon Tn554: complete nucleotide sequence and isolation of
RT
     transposition-defective and antibiotic-sensitive mutants.";
RL
     EMBO J. 4:3357-3365(1985).
     ______
CC
CC
     Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
     Distributed under the Creative Commons Attribution-NoDerivs License
CC
CC
     _______
     EMBL; X03216; CAA26965.1; -; Genomic DNA.
DR
DR
     InterPro; IPR013204; Leader Erm.
     SEQUENCE 19 AA; 2257 MW; 19F81AD99E4F2F9B CRC64;
  Query Match
                        34.1%; Score 31; DB 2; Length 19;
  Best Local Similarity 42.9%; Pred. No. 1.3e+03;
  Matches
         6; Conservative 5; Mismatches 1; Indels
                                                           2; Gaps
Qу
           4 LGTFALVSYIANKV 17
             : | | | :: :: | | | |
```

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:48:32; Search time 92.5641 Seconds Run on:

(without alignments)

93.850 Million cell updates/sec

Title: US-10-821-669-1 COPY 715 733

Perfect score: 98

1 TNWLAKVNTQIDLIRKKMK 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		% Query				
No.	Score	Match	Length	DB	ID	Description
1	98	100.0	19	9	ADW11060	Adw11060 Clostridi
2	98	100.0	27	9	ADW11113	Adw11113 Clostridi
3	52	53.1	12	9	ADY20753	Ady20753 Botulinum
4	43	43.9	9	9	ADZ69803	Adz69803 Botulinum
5	38.5	39.3	22	2	AAY18841	Aay18841 Lecithin:
6	38.5	39.3	22	2	AAY19095	Aay19095 Lecithin:
7	38.5	39.3	22	2	AAY19349	Aay19349 Lecithin:
8	38.5	39.3	22	2	AAY18578	Aay18578 Lecithin:
9	38.5	39.3	22	8	ADG21058	Adg21058 Apolipopr
10	38.5	39.3	22	8	ADJ33000	Adj33000 Apo lipop
11	38	38.8	22	2	AAY18741	Aay18741 Lecithin:
12	38	38.8	22	2	AAY18995	Aay18995 Lecithin:

13	38	38.8	22	2	AAY19249	Nav19249 Togithin.
				2		Aay19249 Lecithin:
14	38	38.8	22	2	AAY18478	Aay18478 Lecithin:
15	38	38.8	22	8	ADG20958	Adg20958 Apolipopr
16	38	38.8	22	8	ADJ32900	Adj32900 Apo lipop
17	36	36.7	22	2		
					AAR48545	Aar48545 Sequence
18	36	36.7	22	9	AEB28559	Aeb28559 Human apo
19	36	36.7	22	9	AEB11518	Aeb11518 Apolipopr
20	35	35.7	9	9	ADZ69802	Adz69802 Botulinum
21	35	35.7	14	9	ADY81602	Ady81602 HIV-1 ant
22	35	35.7	15	9	ADY81603	Ady81603 HIV-1 ant
23	35	35.7	16	9	ADY81604	Ady81604 HIV-1 ant
24	35	35.7	17	9	ADY81605	Ady81605 HIV-1 ant
25	35	35.7	27	6	ABP99874	Abp99874 Breast sp
26	35	35.7	27	8		
					ADF85937	Adf85937 Human bre
27	35	35.7	29	4	AAM33894	Aam33894 Peptide #
28	35	35.7	29	4	AAM73708	Aam73708 Human bon
29	35	35.7	29	4	AAM61013	Aam61013 Human bra
30	35	35.7	29	4	ABG55445	Abg55445 Human liv
31	35	35.7	29	5	ABG43583	Abg43583 Human pep
32	35	35.7	30	5	AAU79980	Aau79980 Human mal
33	34.5	35.2	27	5	AAE17354	Aae17354 Bovine vi
34	34.5	35.2	27	5	AAE17325	Aae17325 Recombina
35				5		
	34.5	35.2	27		AAE17327	Aae17327 Recombina
36	34.5	35.2	27	5	AAE17356	Aae17356 Border di
37	34.5	35.2	27	5	AAE17355	Aae17355 Bovine vi
38	34.5	35.2	27	5	AAE17326	Aae17326 Recombina
39	34	34.7	29	3	AAB23779	Aab23779 Entry vec
40	33.5	34.2	22	2	AAY18850	Aay18850 Lecithin:
41	33.5	34.2	22	2	AAY19104	Aay19104 Lecithin:
42	33.5	34.2	22	2	AAY19358	Aay19358 Lecithin:
43	33.5	34.2	22	2	AAY18587	Aay18587 Lecithin:
44	33.5	34.2	22	8	ADG21067	
						Adg21067 Apolipopr
45	33.5	34.2	22	8	ADJ33009	Adj33009 Apo lipop
46	33	33.7	9	8	ADK10588	Adk10588 Human pap
47	33	33.7	12	6	ABP68020	Abp68020 Bacillus
48	33	33.7	12	6	ABP68019	Abp68019 Bacillus
49	33	33.7	20	7		
					ADD36371	Add36371 Human THA
50	33	33.7	20	8	ADQ08994	Adq08994 Human THA
51	33	33.7	20	9	ADW46173	Adw46173 Human THA
52	33	33.7	22	2	AAY18785	Aay18785 Lecithin:
53	33	33.7	22	2	AAY18799	
						Aay18799 Lecithin:
54	33	33.7	22	2	AAY18754	Aay18754 Lecithin:
55	33	33.7	22	2	AAY19008	Aay19008 Lecithin:
56	33	33.7	22	2	AAY19053	Aay19053 Lecithin:
57	33	33.7	22	2	AAY19039	Aay19039 Lecithin:
58	33	33.7	22	2	AAY19262	Aay19262 Lecithin:
						<u>-</u>
59	33	33.7	22	2	AAY19293	Aay19293 Lecithin:
60	33	33.7	22	2	AAY19307	Aay19307 Lecithin:
61	33	33.7	22	2	AAY18536	Aay18536 Lecithin:
62	33	33.7	22	2	AAY18522	Aay18522 Lecithin:
63	33	33.7	22	2		
					AAY18491	Aay18491 Lecithin:
64	33	33.7	22	8	ADG20971	Adg20971 Apolipopr
65	33	33.7	22	8	ADG21016	Adg21016 Apolipopr
66	33	33.7	22	8	ADG21002	Adg21002 Apolipopr
67	33	33.7	22	8	ADJ32913	Adj32913 Apo lipop
	33					
68		33.7	22	8	ADJ32944	Adj32944 Apo lipop
69	33	33.7	22	8	ADJ32958	Adj32958 Apo lipop
70	33	33.7	26	5	ABG66813	Abg66813 Human pro
71	32	32.7	11	6	ABP57646	Abp57646 Human CNI
72	. 32	32.7	14	2	AAR49341	
						Aar49341 P. falcip
73	32	32.7	14	2	AAW54723	Aaw54723 Peptide f

7.4	20	20.7		_	* P*** 2 7 6 0	- 1 22762	
74	32	32.7	14	7	ADW33762		HLA bindi
75	32	32.7	14	7	ADW34995		HLA bindi
76	32	32.7	16	8	ADQ09109		THAP anti
77	32	32.7	21	5	AAU89228	Aau89228	Insulin/i
78	32	32.7	21	6	ADA04050		Insulin r
79	32	32.7	21	7	ADH95263		Insulin r
80	32	32.7	21	8	ADL67954		IGF-1R/IR
81	32	32.7	21	8	ADM37799		Anti-IR f
82	32	32.7	22	2	AAY18788	Aay18788	Lecithin:
83	32	32.7	22	2	AAY18801	Aay18801	Lecithin:
84	32	32.7	22	2	AAY18844	Aay18844	Lecithin:
85	32	32.7	22	2	AAY18743		Lecithin:
86	32	32.7	22	2	AAY19042	=	Lecithin:
87	32	32.7	22	2	AAY18997		Lecithin:
88	32						
		32.7	22	2	AAY19055		Lecithin:
89	32	32.7	22	2	AAY19098		Lecithin:
90	32	32.7	22	2	AAY19309	. Aay19309	Lecithin:
91	32	32.7	22	2	AAY19251	Aay19251	Lecithin:
92	32	32.7	22	2	AAY19352		Lecithin:
93	32	32.7	22	2	AAY19296		Lecithin:
94	32	32.7	22	2	AAY18480		Lecithin:
95	32	32.7	22				
				2	AAY18538		Lecithin:
96	. 32	32.7	22	2	. AAY18525		Lecithin:
97	32	32.7	22	2	AAY18581	Aay18581	Lecithin:
98	32	32.7	22	8	ADG21005	Adg21005	Apolipopr
99	32	32.7	22	8	ADG21061		Apolipopr
100	32	32.7	22	8	ADG21018		Apolipopr
101	32	32.7	22	8	ADG20960		Apolipopr
102	32	32.7	22	8	ADJ32902		
102							Apo lipop
	32	32.7	22	8	ADJ32947		Apo lipop
104	32	32.7	22	8	ADJ33003		Apo lipop
105	32	32.7	22	8	ADJ32960	Adj32960	Apo lipop
106	32	32.7	22	9	AEB09648	Aeb09648	Human apo
107	32	32.7	28	2	AAR73659	Aar73659	Ac-PDGF(2
108	32	32.7	28	2	AAR73658		PDGF(25-3
109	31.5	32.1	30	5	ABP29138		Streptoco
110	31	31.6	8	9	AEC13995		Enterococ
111	31	31.6	15	2			
					AAW73756		M. tuberc
112	31	31.6	15	2	AAW73866		M. tuberc
113	31	31.6	15	4	AAU08222		Mycobacte
114	31	31.6	15	4	AAB97804	Aab97804	gp100 der
115	31	31.6	15	4	AAB98194		Interfero
`116	31	31.6	21	6	ABB82880	Abb82880	
117	31	31.6	21	6	ABP58824		Melanoma-
118	31	31.6	22	2	AAW39966		Peptide e
119	31	31.6	22	2			
					AAY18720	-	Lecithin:
120	31	31.6	22	2	AAY18810		Lecithin:
121	31	31.6	22	2	AAY18852	Aay18852	Lecithin:
122	31	31.6	22	2	AAY19106	Aay19106	Lecithin:
123	31	31.6	22	2	AAY19064	Aay19064	Lecithin:
124	31	31.6	22	2	AAY18974		Lecithin:
125	31	31.6	22	2	AAY19318		Lecithin:
126	. 31	31.6	22	2	AAY19228		
127	31	31.6	22	2			Lecithin:
					AAY19360		Lecithin:
128	31	31.6	22	2	AAY18457	-	Lecithin:
129	31	31.6	22	2	AAY18547	Aay18547	Lecithin:
130	31	31.6	22	2	AAY18589	Aay18589	Lecithin:
131	31	31.6	22	8	ADG20937		Apolipopr
132	31	31.6	22	8	ADG21027		Apolipopr
133	31	31.6	22	8	ADG21069		Apolipopr
134	31	31.6	22	8	ADJ33011		Apolipopi Apo lipop
•				~	-12000011	Au]55011	who iihob

135	31	31.6	22	8	ADJ32969		Adj32969 Apo lipop
136	31	31.6	22	8	ADJ32879		Adj32879 Apo lipop
137	31	31.6	23	8	ADM12473		Adm12473 Ii-key/gp
138	31	31.6	23	8	AD038696		Ado38696 Melanocyt
139	. 31	31.6	24	10			Aef01181 Ii-key/ g
140	31	31.6	25	8	ABO54473		Abo54473 Human gen
141	31	31.6	30	5	AAU84859		Aau84859 Human gpl
142	31	31.6	30	7			
143	30	30.6		5	ADG14992		Adg14992 Human SEC
			10		AAU82796		Aau82796 Human Cal
144	30	30.6	10	9	ADW86252		Adw86252 Human cal
145	30	30.6	10	9	ADZ88977		Adz88977 Human cal
146	30 30	30.6 30.6	14	2	AAR81298		Aar81298 Anti-fung
147 148	30	30.6	14	2	AAR78128		Aar78128 Bacterial
149	30	30.6	14	2	AAR82368		Aar82368 BPI.264,
150	30	30.6	14 14	2	AAR87868		Aar87868 BPI.264 f
151	30	30.6	14	2	AAR76447		Aar76447 Bacterial
152	30				AAW06063		Aaw06063 Recombina
		30.6	14	2	AAW04138		Aaw04138 Antifunga
153 154	30 30	30.6	14	2	AAW44503		Aaw44503 Anti-fung
		30.6	14	2	AAW43689	•	Aaw43689 Bacterici
155	30	30.6	14	2	AAW63514		Aaw63514 Human BPI
156	30	30.6	14	2	AAY00480		Aay00480 Antifunga
157	30	30.6	14	3	AAB16254		Aab16254 Bacterici
158	30	30.6	14	4	AAB65404		Aab65404 Anti-fung
159	30	30.6	14	4	AAB52424		Aab52424 Peptide B
160	30	30.6	14	8	ADI66714		Adi66714 Rat bacte
161	30	30.6	14	8	ADM91446		Adm91446 Bacterici
162	30	30.6	15	2	AAW73755		Aaw73755 M. tuberc
163	30	30.6	15	2	AAW73865		Aaw73865 M. tuberc
164	30	30.6	15	4	AAU08221		Aau08221 Mycobacte
165	30	30.6	15	4	AAB86572		Aab86572 Human cyt
166	30	30.6	15	4	AAB19894		Aab19894 Neisseria
167	30	30.6	15	8	AD077268		Ado77268 Human 213
168	30	30.6	15	9	ADW76239		Adw76239 Human cyt
169	30	30.6	15	9	AEC14055		Aec14055 Pseudomon
170	30	30.6	17	9	ADY38566		Ady38566 Antigenic
171	30	30.6	17	9	AED44638		Aed44638 Hs.516830
172	30	30.6	18	2	AAW18519		Aaw18519 RAC-PK pl
173	30	30.6	18	4	AAB77837		Aab77837 Core poly
174	30	30.6	18	10			Aef02100 Ii-key/ H
175	30	30.6	19	2	AAY18769		Aay18769 Lecithin:
176	30	30.6	19	2	AAY19023		Aay19023 Lecithin:
177	30	30.6	19	2	AAY19277		Aay19277 Lecithin:
178	30	30.6	19	2	AAY18506		Aay18506 Lecithin:
179	30	30.6	19	7	ADF14735		Adf14735 Diabetes
180	30	30.6	19	7	ADF14736		Adf14736 Diabetes
181	30	30.6	19	8	ADG20986		Adg20986 Apolipopr
182	30	30.6	19	8	ADJ32928		Adj32928 Apo lipop
183	30	30.6	19	9	ADW11059		Adw11059 Clostridi
184	30	30.6	20	2	AAY18761		Aay18761 Lecithin:
185	30	30.6		2	AAY19015		Aay19015 Lecithin:
186	30	30.6		2	AAY19269		Aay19269 Lecithin:
187	30	30.6		2	AAY18498		Aay18498 Lecithin:
188	30	30.6	20	3	AAY89436	·	Aay89436 Core poly
189	30	30.6		3	AAY96725		Aay96725 MADr3 C-t
190	30	30.6		4	ABB02319		Abb02319 Viral cor
191	30	30.6		4	ABB00844		Abb00844 Viral DP1
192	30	30.6	20	4	AAU13390		Aau13390 DP178-lik
193	30	30.6		5	ADE02339		Ade02339 Hybrid po
194	30	30.6	20	8	ADG20978		Adg20978 Apolipopr
195	30	30.6	20	8	ADJ32920		Adj32920 Apo lipop

196	30	30.6	21	2	AAY18744	Aay18744 Lecithin:
197	30	30.6	21	2	AAY18998	Aay18998 Lecithin:
198	30	30.6	21	2	AAY19252	Aay19252 Lecithin:
199	30	30.6	21	2	AAY18481	Aay18481 Lecithin:
200	30	30.6	21	8	ADG20961	Adg20961 Apolipopr
201	30	30.6	21	8	ADJ32903	Adj32903 Apo lipop
202	30	30.6	22	2	AAY18742	Aay18742 Lecithin:
203	30	30.6	22	2	AAY18731	Aay18731 Lecithin:
204	30	30.6	22	2	AAY18796	Aay18796 Lecithin:
205	30	30.6	22	2		——————————————————————————————————————
206	30		22	2	AAY18773 AAY18757	Aay18773 Lecithin:
207		30.6				Aay18757 Lecithin:
	30	30.6	22	2	AAY18795	Aay18795 Lecithin:
208	30	30.6	22	2	AAY18723	Aay18723 Lecithin:
209	30	30.6	22	2	AAY18724	Aay18724 Lecithin:
210	30	30.6	22	2	AAY18725	Aay18725 Lecithin:
211	30	30.6	22	2	AAY18753	Aay18753 Lecithin:
212	30	30.6	22	2	AAY18798	Aay18798 Lecithin:
213	30	30.6	22	2	AAY18794	Aay18794 Lecithin:
214	30	30.6	22	2	AAY18740	Aay18740 Lecithin:
215	30	30.6	22	2	AAY18792	Aay18792 Lecithin:
216	30	30.6	22	2	AAY18748	Aay18748 Lecithin:
217	30	30.6	22	2	AAY18752	Aay18752 Lecithin:
218	30	30.6	22	2	AAY18756	Aay18756 Lecithin:
219	30	30.6	22	2	AAY19052	Aay19052 Lecithin:
220	30	30.6	22	2	AAY18977	Aay18977 Lecithin:
221	30	30.6	22	2	AAY19027	Aay19027 Lecithin:
222	30	30.6	22	2	AAY18978	Aay18978 Lecithin:
223	30	30.6	22	2	AAY19007	Aay19007 Lecithin:
224	30	30.6	22	2	AAY19049	Aay19049 Lecithin:
225	30	30.6	22	2	AAY18996	Aay18996 Lecithin:
226	30	30.6	22	2	AAY19006	Aay19006 Lecithin:
227	30	30.6	22	2	AAY19011	Aay19011 Lecithin:
228	30	30.6	22	2	AAY19002	Aay19002 Lecithin:
229	30	30.6	22	2	AAY19050	Aay19050 Lecithin:
230	30	30.6	22	2	AAY18985	Aay18985 Lecithin:
231	30	30.6	22	2	AAY19010	Aay19010 Lecithin:
232	30	30.6	22	2	AAY19046	Aay19046 Lecithin:
233	30	30.6	22	2	AAY18979	Aay18979 Lecithin:
234	30	30.6	22	2	AAY18994	Aay18994 Lecithin:
235	30	30.6	22	2	AAY19048	Aay19048 Lecithin:
236	30	30.6	22		AAY19256	Aay19256 Lecithin:
237	30	30.6	22	2	AAY19302	Aay19302 Lecithin:
238	30	30.6	22	2	AAY19260	Aay19260 Lecithin:
239	30	30.6	22	2	AAY19281	Aay19281 Lecithin:
240	30	30.6	22	2	AAY19233	Aay19233 Lecithin:
241	30	30.6	22	2	AAY19304	Aay19304 Lecithin:
242	30	30.6	22	2	AAY19232	Aay19232 Lecithin:
243	30	30.6	22	2	AAY19261	Aay19261 Lecithin:
244	30	30.6	22	2	AAY19265	Aay19265 Lecithin:
245	30	30.6	22	2	AAY19300	Aay19300 Lecithin:
246	30	30.6	22	2	AAY19264	Aay19366 Lecithin:
247	30	30.6	22	2	AAY19231	
				2		Aay19231 Lecithin:
248 249	30 30	30.6	22 22		AAY19306	Aay19306 Lecithin:
249	30 30	30.6 30.6	22	2 2	AAY19239	Aay19239 Lecithin:
250 251	30	30.6	22	2	AAY19248	Aay19248 Lecithin:
251					AAY19250	Aay19250 Lecithin:
	30	30.6	22	2	AAY19303	Aay19303 Lecithin:
253	30	30.6	22	2	AAY18533	Aay18533 Lecithin:
254	30	30.6	22	2	AAY18529	Aay18529 Lecithin:
255	30	30.6	22	2	AAY18494	Aay18494 Lecithin:
256	30	30.6	22	2	AAY18489	Aay18489 Lecithin:

257	30	30.6	22	2	AAY18479	Aay18479 Lecithin:
258	30	30.6	22	2	AAY18490	Aay18490 Lecithin:
259	30	30.6	22	2	AAY18535	Aay18535 Lecithin:
260	30	30.6	22	2	AAY18493	Aay18493 Lecithin:
		30.6		2		
261	30		22		AAY18510	Aay18510 Lecithin:
262	30	30.6	22	2	AAY18460	Aay18460 Lecithin:
263	30	30.6	22	2	AAY18461	Aay18461 Lecithin:
264	30	30.6	22	2	AAY18531	Aay18531 Lecithin:
265	30	30.6	22	2	AAY18532	Aay18532 Lecithin:
266	30	30.6	22	2	AAY18485	Aay18485 Lecithin:
267	30	30.6	22	2	AAY18462	Aay18462 Lecithin:
268	30	30.6	22	2	AAY18468	Aay18468 Lecithin:
269	30	30.6	22	2	AAY18477	Aay18477 Lecithin:
270	30	30.6	22	8	ADG20948	Adg20948 Apolipopr
271	30	30.6	22	8	ADG20965	Adg20965 Apolipopr
272	30	30.6	22	8	ADG20969	Adg20969 Apolipopr
273	30	30.6	22	8	ADG20942	Adg20942 Apolipopr
274	30	30.6	22	8	ADG20973	Adg20973 Apolipopr
275	30	30.6	22	8	ADG21009	
275			22			Adg21009 Apolipopr
	30	30.6		8	ADG20941	Adg20941 Apolipopr
277	30	30.6	22	8	ADG20974	Adg20974 Apolipopr
278	30	30.6	22	8	ADG21012	Adg21012 Apolipopr
279	30	30.6	22	8	ADG21015	Adg21015 Apolipopr
280	30	30.6	22	8	ADG20959	Adg20959 Apolipopr
281	30	30.6	22	8	ADG21011	Adg21011 Apolipopr
282	30	30.6	22	8	ADG20970	Adg20970 Apolipopr
283	30	30.6	22	8	ADG20940	Adg20940 Apolipopr
284	30	30.6	. 22	8	ADG20957	Adg20957 Apolipopr
285	30	30.6	22	8	ADG20990	Adg20990 Apolipopr
286	30	30.6	22	8	ADG21013	Adg21013 Apolipopr
287	30	30.6	22	8	ADJ32955	Adj32955 Apo lipop
288	30	30.6	22	8	ADJ32884	Adj32884 Apo lipop
289	30	30.6	22	8	ADJ32953	Adj32953 Apo lipop
290	30	30.6	22	8	ADJ32899	Adj32899 Apo lipop
291	30	30.6	22	8	ADJ32890	
292		30.6				Adj32890 Apo lipop
	30		22	8	ADJ32882	Adj32882 Apo lipop
293	30	30.6	22	8	ADJ32907	Adj32907 Apo lipop
294	30	30.6	22	8	ADJ32883	Adj32883 Apo lipop
295	30	30.6	22	8	ADJ32951	Adj32951 Apo lipop
296	30		22	8	ADJ32911	Adj32911 Apo lipop
297	30		22	8	ADJ32901	Adj32901 Apo lipop
298	30	30.6	22	8	ADJ32916	Adj32916 Apo lipop
299	30	30.6	22	8	ADJ32912	Adj32912 Apo lipop
300	30	30.6	22	8	ADJ32954	Adj32954 Apo lipop
301	30	30.6	22	8	ADJ32915	Adj32915 Apo lipop
302	30	30.6	22	8	ADJ32932	Adj32932 Apo lipop
303	30	30.6	22	8	ADJ32957	Adj32957 Apo lipop
304	30	30.6	24	10		Aee38455 Human ser
305	30	30.6	25	2	AAR36467	Aar36467 DFI-22.2(
306	30	30.6	25	2	AAR51815	Aar51815 Der f I d
307	30	30.6	25	2	AAR77119	
308						Aar77119 Dermatoph
	30	30.6	25	2	AAW71898	Aaw71898 Dermatoph
309	30	30.6	25	2	AAY50444	Aay50444 Dermatoph
310	30	30.6	25	4	AAU19047	Aau19047 T-cell ep
311	30	30.6	25 ·	6	ABP97152	Abp97152 Smad3C fr
312	30	30.6	25	6	ABP97153	Abp97153 Smad3C fr
313	30	30.6	27	3	AAB29253	Aab29253 Mouse cyc
314	30	30.6	27	3	AAY43808	Aay43808 Cyclin de
315	30	30.6	27	4	AAB62207	Aab62207 Mouse cyc
316	30	30.6	27	4	AAB67682	Aab67682 Cyclin de
317	30	30.6	27	4	AAM52559	Aam52559 Murine cy
						•

318	30	30.6	27	1	77774400	Ash74400 Muning au
				4	AAB74488	Aab74488 Murine cy
319	30	30.6	27	4	AAB82393	Aab82393 Mouse cyc
320	30	30.6	27	4	AAB74462	Aab74462 Murine cy
321	30	30.6	27	4	AAG62584	Aag62584 Murine cy
322	30	30.6	27	4	AAB84850	Aab84850 Murine cy
323	30	30.6	27	4	AAE09727	Aae09727 Destructi
324	30	30.6	27	6	ABR39541	Abr39541 Mouse cyc
325	30	30.6	27	6	ABG73727	Abg73727 Murine cy
326	30	30.6	27	6	ADA07077	Ada07077 Mouse cyc
327	30	30.6	27	7	ADF90359	Adf90359 Mouse Cyc
328	30	30.6	27	7	ADH69411	Adh69411 Mouse cyc
329						-
	30	30.6	27	8	ADO26208	Ado26208 Mouse cyc
330	30	30.6	27	9	ADY97775	Ady97775 Mouse cyc
331	30	30.6	29	2	AAR36466	Aar36466 DFI-22.1(
332	30	30.6	29	2	AAR36468	Aar36468 DFI-22.4(
333	30	30.6	29	2	AAR51814	Aar51814 Der f I d
334	30	30.6	29	2	AAR51816	Aar51816 Der f I d
335						
	30	30.6	29	2	AAW71990	Aaw71990 Dermatoph
336	30	30.6	29	2	AAW71989	Aaw71989 Dermatoph
337	30	30.6	29	2	AAY50445	Aay50445 Dermatoph
338	30	30.6	29	2	AAY50443	Aay50443 Dermatoph
339	30	30.6	29	4	AAU19048	Aau19048 T-cell ep
340	30	30.6	29	4	AAU19046	=
						Aau19046 T-cell ep
341	30	30.6	29	4	AAE05049	Aae05049 Human ZCY
342	30	30.6	29	7	ABR83686	Abr83686 Human IL-
343	30	30.6	29	7	ADH69550	Adh69550 Human ZCY
344	30	30.6	29	10	AEE36210	Aee36210 Human ser
345	29	29.6	8	5	ABP53199	Abp53199 Zinc fing
346	29	29.6	8	6	ABU60745	Abu60745 Phage dis
347	29	29.6	8	7	ADJ98398	
						Adj98398 Zinc fing
348	29	29.6	13	6	ABR62229	Abr62229 Apolipopr
349	29	29.6	14	2	AAR81162	Aar81162 Anti-fung
350	29	29.6	14	2	AAR77991	Aar77991 BPI prote
351	29	29.6	14	2	AAR86531	Aar86531 BPI.83 fo
352	29	29.6	14	2	AAR76318	Aar76318 Bacterial
353	29	29.6	14	2	AAW05928	Aaw05928 Recombina
354	29	29.6	14	2	AAW63379	Aaw63379 Human BPI
355						
	29	29.6	14	3	AAB16117	Aab16117 Bacterici
356	29	29.6	14	4	AAB52287	Aab52287 Peptide B
357	29	29.6	14	8	ADH68260	Adh68260 GPCR rela
358	29	29.6	14	8	ADI66579	Adi66579 Rat bacte
359	29	29.6	15	5	ABP56527	Abp56527 Human P24
360	29	29.6	15	6	ABR57623	Abr57623 Human end
361	29	29.6	15	6	ABB98946	
						Abb98946 Translati
362	29	29.6	16	2	AAW47956	Aaw47956 AE110 ext
363 -	29	29.6	19	4	ABB43395	Abb43395 Peptide #
364	29	29.6	19	4	AAM37276	Aam37276 Peptide #
365	29	29.6	19	4	AAM77147	Aam77147 Human bon
366	29	29.6	19	4	AAM64319	Aam64319 Human bra
367	29	29.6	19	4	ABG58772	Abg58772 Human liv
						-
368	29	29.6	19	5	ABG46158	Abg46158 Human pep
369	29	29.6	22	2	AAY18712	Aay18712 Lecithin:
370	29	29.6	22	2	AAY18787	Aay18787 Lecithin:
371	29	29.6	22	2	AAY18855	Aay18855 Lecithin:
372	29	29.6	22	2	AAY18806	Aay18806 Lecithin:
373	29	29.6	22	2	AAY18705	Aay18705 Lecithin:
374	29	29.6	22	2	AAY18793	_
375						Aay18793 Lecithin:
	29	29.6	22	2	AAY18760	Aay18760 Lecithin:
376		29.6	22	2	AAY18763	Aquilones Indithina
^ - -	29					Aay18763 Lecithin:
377	29	29.6	22	2	AAY19014	Aay19014 Lecithin:
377 378						

379	29	29.6	22	2	AAY19041	Aay19041 Lecithin:
380	29	29.6	22	2	AAY18966	Aay18966 Lecithin:
381	29	29.6	22	2	AAY18959	Aay18959 Lecithin:
382	29	29.6	22	2	AAY19047	Aay19047 Lecithin:
383	29	29.6	22	2	AAY19017	Aay19017 Lecithin:
384	29	29.6	22	2	AAY19060	Aay19060 Lecithin:
385	29	29.6	22	2	AAY19213	Aay19213 Lecithin:
386	29	29.6	22	2	AAY19268	Aay19268 Lecithin:
387	29	29.6	22	2	AAY19271	Aay19271 Lecithin:
388	29	29.6	22	2	AAY19314	Aay19314 Lecithin:
389	29	29.6	22	2	AAY19363	Aay19363 Lecithin:
390	29	29.6	22	2	AAY19220	Aay19220 Lecithin:
391	29	29.6	22	2	AAY19295	Aay19295 Lecithin:
392	29	29.6	22	2	AAY19301	Aay19301 Lecithin:
393	29	29.6	22	2	AAY18524	Aay18524 Lecithin:
394	29	29.6	22	2	AAY18500	Aay18500 Lecithin:
395	29	29.6	22	2	AAY18449	Aay18449 Lecithin:
396	29	29.6	22	2	AAY18530	Aay18530 Lecithin:
397	29	29.6	22	2	AAY18543	Aay18543 Lecithin:
398	29	29.6	22	2	AAY18592	Aay18592 Lecithin:
399	29	29.6	22	2	AAY18442	Aay18442 Lecithin:
400	29	29.6	22	2	AAY18497	_
401	29	29.6	22	8		Aay18497 Lecithin:
401	29	29.6	22	8	ADG21072 ADG20929	Adg21072 Apolipopr
402	29	29.6	22	8		Adg20929 Apolipopr
403	29	29.6	22	8	ADG21023	Adg21023 Apolipopr
404	29	29.6	22	8	ADG21004	Adg21004 Apolipopr
					ADG20977	Adg20977 Apolipopr
406	29	29.6	22	8	ADG20922	Adg20922 Apolipopr
407	29	29.6	22	8	ADG21010	Adg21010 Apolipopr
408 409	29 29	29.6 29.6	22	8	ADG20980	Adg20980 Apolipopr
410	29		22	8	ADJ32946	Adj32946 Apo lipop
		29.6 29.6	22	8	ADJ32919	Adj32919 Apo lipop
411	29		22	8	ADJ32965	Adj32965 Apo lipop
412	29	29.6	22	8	ADJ32871	Adj32871 Apo lipop
413	29	29.6	22	8	ADJ32864	Adj32864 Apo lipop
414	29	29.6	22	8	ADJ32922	Adj32922 Apo lipop
415	29	29.6	22	8	ADJ32952	Adj32952 Apo lipop
416	29	29.6	22	8	ADJ33014	Adj33014 Apo lipop
417	29	29.6	22	8	ADT39374	Adt39374 hSARS vir
418	29	29.6	22	8	ADS78794	Ads78794 SARS viru
419	29	29.6	22	8	ADT36904	Adt36904 hSARS vir
420	29	29.6	23	7	ADL33660	Adl33660 Mutated z
421	29	29.6	23	7	ADL33631	Adl33631 Mutated z
422	29	29.6	24	2	AAY21285	Aay21285 Human sem
423	29	29.6	24	4	AAB81887	Aab81887 Nerve cel
424	29	29.6	24	9	ADV99788	Adv99788 Glucanase
425	29	29.6	25	10	AEE37290	Aee37290 Human ser
426	29	29.6	26	4	ABB37713	Abb37713 Peptide #
427	29	29.6	28	4	AAM21751	Aam21751 Peptide #
428	29	29.6	28	4	ABB44120	Abb44120 Peptide #
429	29	29.6	28	4	AAM38067	Aam38067 Peptide #
430	29	29.6	28	4	ABB27007	Abb27007 Protein #
431	29	29.6	28	4	AAM77847	Aam77847 Human bon
432	29	29.6	28	4	AAM65142	Aam65142 Human bra
433	29	29.6	28	4	ABG59502	Abg59502 Human liv
434	29	29.6	28	8	ADG71882	Adg71882 Human NOV
435	29	29.6	28	8	ADJ87219	Adj87219 Human G p
436	29	29.6	28	10	AEE28018	Aee28018 S. pneumo
437	29	29.6	28	10	AEE28072	Aee28072 H, influe
438	29	29.6	28	10	AEF10501	Aef10501 Human NOV
439	29	29.6	29	7	ABW00978	Abw00978 Mutant Ja

440	29	29.6	29	7	ADE86421		7da86121	Mutant JA
441	29	29.6	30					
				5	AAU84858			Human gp1
442	28.5	29.1	22	2	AAY18848		_	Lecithin:
443	28.5	29.1	22	2	AAY18845			Lecithin:
444	28.5	29.1	22	2	AAY18862		-	Lecithin:
445	28.5	29.1	22	2	AAY19099		Aay19099	Lecithin:
446	28.5	29.1	22	2	AAY19102		Aay19102	Lecithin:
447	28.5	29.1	22	2	AAY19116		Aay19116	Lecithin:
448	28.5	29.1	22	2	AAY19353			Lecithin:
449	28.5	29.1	22	2	AAY19370	•		Lecithin:
450	28.5	29.1	22	2	AAY19356			Lecithin:
451	28.5	29.1	22	2	AAY18599			Lecithin:
452	28.5	29.1	22	2	AAY18585			Lecithin:
453	28.5							
		29.1	22	2	AAY18582			Lecithin:
454	28.5	29.1	22	8	ADG21079			Apolipopr
455	28.5	29.1	22	8	ADG21065			Apolipopr
456	28.5	29.1	22	8	ADG21062			Apolipopr
457	28.5	29.1	22	8	ADJ33004			Apo lipop
458	28.5	29.1	22	8	ADJ33007		Adj33007	Apo lipop
459	28.5	29.1	. 22	8	ADJ33021		Adj33021	Apo lipop
460	28.5	29.1	25	2	AAR73663		Aar73663	Ac-PDGF(2
461	28	28.6	7	4	ABB56099		Abb56099	Vascular
462	28	28.6	· 7	4	AAU28516			DPI trypt
463	28	28.6	7	4	AAU24833			Schizophr
464	28	28.6	7	4	AAU26162			Depressio
465	28	28.6	7	4	AAU15177			Schizophr
466	28	28.6	7	4				-
	28	28.6	7		ABB52072			Human API
467				5	ABG78630		_	Multiple
468	28	28.6	7	6	ABR58923			Alzheimer
469	28	28.6	7	8	ADN32135			Human Alz
470	28	28.6	7	8	ADO78444			Schizophr
471	28	28.6	8	8	ADK10579			Human pap
472	28	28.6	10	4	AAG87262			Saccharom
473	28	28.6	10	8	ADK10596		Adk10596	Human pap
474	28	28.6	12	9	ADY81626		Ady81626	HIV-1 ant
475	28	28.6	12	9	ADY81627		Ady81627	HIV-1 ant
476	28	28.6	13	3	AAY88906		Aay88906	Core poly
477	28	28.6	13	4	AAB77261			Core poly
478	28	28.6	13	4	ABB00265			Viral DP1
479	28	28.6	13	4	ABB01739			Viral cor
480	28	28.6	13					DP178-lik
481	28	28.6	13	5	ADE01759			Hybrid po
482	28	28.6	13	6	ABO10308			HPIV3 F1
483	28	28.6	13	6				
					ABP68027			Bacillus
484	28	28.6	13	9	ADY81628			HIV-1 ant
485	28	28.6	13	9	AEA24073			Human pro
486	28	28.6	14	2	AAW22990			Human ser
487	28	28.6	14	9	ADY81646			HIV-1 ant
488	28	28.6	14	9	ADY81598		Ady81598	HIV-1 ant
489	28	28.6	14	9	ADY81629		Ady81629	HIV-1 ant
490	28	28.6	15	4	ABR52288		Abr52288	IgE-react
491	28	28.6	15	4	ABR51487		Abr51487	Pen a 1 I
492	28	28.6	15	4	ABR51339			Shrimp Pe
493	28	28.6	15	8	AD077295			Human 213
494	28	28.6	15	8	AD077183			Human 213
495	28	28.6	15	8	AD077189			Human 213
496	28	28.6	15	8	AD077269			Human 213
497	28	28.6	15	8	ADP26474			Plasmodiu
498	28	28.6	15	9				
498				9	ADV21748			SIV pol p
	28	28.6	15 15		ADY81631			HIV-1 ant
500	28	28.6	15	9	ADY81599		40A812AA	HIV-1 ant

501	28	28.6	15	9	ADY81647	Adv81647	HIV-1 ant
502	28	28.6	15	9	ADY81630		HIV-1 ant
503	28	28.6	15	9	ADY81648	_	HIV-1 ant
504	28	28.6	16	2	AAW70134		Peptide p
505	28	28.6	16	4	AAE05591		N-termina
506	28	28.6					
			16	6	ABO43454		M. tuberc
507	28	28.6	16	9	ADY81600	_	HIV-1 ant
508	28	28.6	16	9	ADY81649		HIV-1 ant
509	28	28.6	16	9	ADY81632		HIV-1 ant
510	28	28.6	17	9	ADY81601		HIV-1 ant
511	28	28.6	18	3	AAB00146	Aab00146	Human pro
512	28	28.6	18	5	ABG31672		Vitamin K
513	28	28.6	18	8	ADI28365	Adi28365	Human TIE
514	28	28.6	18	9	ADV67399	Adv67399	Amino aci
515	28	28.6	19	7	ADC98804	Adc98804	Streptoco
516	28	28.6	19	7	ADF14672		Rheumatoi
517	28	28.6	19	9	AED27832		Guanylate
518	28	28.6	20	2	AAW33933		D2 dopami
519	28	28.6	20	4	ABB36881		Peptide #
520	28	28.6	20	4	AAM70031		Human bon
521	28	28.6	20	4	AAM57628		Human bra
. 522	28	28.6	20	4	AAM05511		Peptide #
523	28	28.6	20	5	ABG39662		
524							Human pep
	28	28.6	20	6	ABP55288		Human adr
525	28	28.6	20	6	ABP55287		Human dop
526	28	28.6	20	8	ABO58184		Human gen
527	28	28.6	20	9	ADW52426	Adw52426	
528	28	28.6	21	2	AAR36449		DFI-4(40-
529	28	28.6	21	2	AAR51797		Der f I d
530	28	28.6	21	2	AAW71972	Aaw71972	Dermatoph
531	28	28.6	21	2	AAY50426		Dermatoph
532	28	28.6	21	4	AAU19029		T-cell ep
533	28	28.6	21	5	ABG60820	Abg60820	Cellular
534	28	28.6	21	6	ABB82879	Abb82879	Dopamine
535	28	28.6	21	8	ADT39739		hSARS vir
536	28	28.6	21	8	ADS79158	Ads79158	SARS viru
537	28	28.6	21	8	ADT37269		hSARS vir
538	28	28.6	21	8	ABY03652	Abv03652	SARS coro
539	28	28.6	21	9	ADY62294	_	Human RHA
540	28	28.6	21	9	ADY96582		RHAMM rel
541	28	28.6	21		ADZ11922		Human RHA
542	28	28.6	22	2	AAY18782		Lecithin:
543	28	28.6	22	2	AAY18777	_	Lecithin:
544	28	28.6	22	2	AAY18800	-	Lecithin:
545	28	28.6	22	2	AAY18797		Lecithin:
546	28	28.6	22	2			
					AAY19031		Lecithin:
547	28	28.6	22	2	AAY19054	_	Lecithin:
548	28	28.6	22	2	AAY19051		Lecithin:
549	28	28.6	22	2	AAY19036	_	Lecithin:
550	28	28.6	22	2	AAY19290		Lecithin:
551	28	28.6	22	2	AAY19285		Lecithin:
552	28	28.6	22	2	AAY19308	Aay19308	Lecithin:
553	28	28.6	22	2	AAY19305	_	Lecithin:
554	28	28.6	22	2	AAY18514		Lecithin:
555	28	28.6	22	2	AAY18519	Aay18519	Lecithin:
556	28	28.6	22	2	AAY18537	Aay18537	Lecithin:
557	28	28.6	22	2	AAY18534		Lecithin:
558	28	28.6	22	8	ADG20994		Apolipopr
559	28	28.6	22	8	ADG21014		Apolipopr
560	28	28.6	22	8	ADG20999		Apolipopr
561	28	28.6	22	8	ADG21017		Apolipopr
						-	

562	28	28.6	22	B ADJ32956	Adj32956 Apo lipop
563	28	28.6			
				3 ADJ32936	Adj32936 Apo lipop
564	28	28.6		3 ADJ32959	Adj32959 Apo lipop
565	28	28.6		3 ADJ32941	Adj32941 Apo lipop
566	28	28.6		LO AEE91990	Aee91990 Polynucle
567	28	28.6	23	2 AAR50814	Aar50814 G-protein
568	28	28.6	23	2 AAR89195	Aar89195 GPR adren
569	28	28.6	23	2 AAW02746	Aaw02746 G-protein
570	28	28.6	24	AAW33926	Aaw33926 D2 dopami
571	28	28.6	24	AAW39994	Aaw39994 Peptide e
572	28	28.6	25		Aaw40243 H. pylori
573	28	28.6		2 AAY27802	Aay27802 Human sec
574	28	28.6		ABB82545	Abb82545 Transport
575	28	28.6		AB014294	Abb02343 Transport Abo14294 Novel hum
576	28	28.6	25		
577	28	28.6	25 8		Adg78702 Human sec
					Adn60992 Human sec
578	28	28.6		AAO04818	Aao04818 Human pol
579	28	28.6		.0 AEE28038	Aee28038 S.aureus
580	28	28.6	29 3		Aay89018 Core poly
581	28	28.6	29		Aab08357 Amino aci
582	28	28.6	29	AAB77373	Aab77373 Core poly
583	28	28.6	29	ABB01851	Abb01851 Viral cor
584	28	28.6	29	ABB00377	Abb00377 Viral DP1
585	28	28.6	29	AAU12926	Aau12926 DP178-lik
586	28	28.6	29 5	ADE01871	Ade01871 Hybrid po
587	28	28.6	29		Abo10310 HPIV3 F1
588	28	28.6	30		Aay99896 Peptide e
589	28	28.6	30 5		Aam49591 Human bet
590	27.5	28.1	20 8		
591	27.5	28.1	26		Adu20811 Random st
592	27.5	28.1	26		Aam77099 Human bon
593	27.5				Abg58743 Human liv
594		28.1	30 2		Aar60067 Antimicro
	27	27.6	9 2		Aar73669 Labelled
595	27	27.6	9 2		Aar73652 Ac-PDGF(7
596	27	27.6	9 2		Aar73.651 PDGF(73-8
597	27	27.6	9 4		Aab75780 HLA class
598	27	27.6	10 2		Aar73653 PDGF(73-8
599	27	27.6	10 2		Aar73670 Labelled
600	27	27.6	10 2		Aar73654 Ac-PDGF(7
601	27	27.6	10 2	AAW76008	Aaw76008 LM609 gra
602	27	27.6	10 4	AAB75788	Aab75788 HLA class
603	27	27.6	10 4		Aab61366 LM609 VH
604	27	27.6	10 6	ABO19804	Abo19804 LM609 hea
605	27	27.6	10 7		Adg71810 Modified
606	27	27.6	10 8		Adj57991 Murine LM
607	27	27.6	10 8		Aby01363 SARS coro
608	27	27.6	10 8		Aby01202 SARS coro
609	27	27.6	11 4		
610	27	27.6			Aau28745 DPI trypt
611	27				Aau26393 Depressio
		27.6	11 4		Abb52317 Human API
612	27	27.6	11 4		Abb52301 Human API
613	27	27.6	11 4		Abb52371 Human API
614	27	27.6	11 4		Abb52409 Human API
615	27	27.6	11 6		Abp57132 Breast ca
616	27	27.6	11 6		Abr58785 Alzheimer
617	27	27.6	11 8		Adn32058 Human Alz
618	27	27.6	11 9	AEA45350	Aea45350 Apolipopr
619	27	27.6	11 1	0 AEF40671	Aef40671 Pregnancy
620	27	27.6	12 8	ADO06896	Ado06896 Porcine r
621	27	27.6	13 4	AAU04993	Aau04993 N-termina
622	27	27.6	13 5		Aau86053 Human glu

622	27	. 22 (1 2	_	3 D D C O O O C	7h=60026	D
623	27	27.6	13	6	ABP68026	_	Bacillus
624	_ 27	27.6	13	6	ABP68023		Bacillus
625	27	27.6	13	6	ABP68021	Abp68021	Bacillus
626	27	27.6	13	6	ABP68022		Bacillus
627	27	27.6	13	6	ADA43078		HLA-DR be
628		27.6					
	27		13	10	AEF02148		8 Ii-key hy
629	27	27.6	14	2	AAR63742		BPI deriv
630	27	27.6	14	2	AAR61414	Aar61414	PDGF-B re
631	27	27.6	14	2	AAR81303	Aar81303	Anti-fung
632	27	27.6	14	2	AAR81302		Anti-fung
633	27	27.6	14	2	AAR81119		Anti-fung
634	27	27.6	14	2	AAR78132		Bacterial
635	27	27.6	14	2	AAR78133		Bacterial
636	27	27.6	14	2	AAR75995	Aar75995	BPI prote
637	27	27.6	14	2	AAR82373		BPI.269,
638	27	27.6	14	2	AAR82372		BPI.268,
639	27	27.6	14	2	AAR87872		BPI.268 f
640	27	27.6	14	2	AAR86489		BPI.32 fo
641	27	27.6	14	2	AAR87873	Aar87873	BPI.269 f
642	27	27.6	14	2	AAR76277	Aar76277	Bacterial
643	27	27.6	14	2	AAR76452	Aar76452	Bacterial
644	27	27.6	14	2	AAW06067		Recombina
645	27	27.6	14	2	AAW06068		
							Recombina
646	27	27.6	14	2	AAW05886		Recombina
647	27	27.6	14	2	AAW04069	Aaw04069	Antifunga
648	27	27.6	14	2	AAW04143	Aaw04143	Antifunga
649	27	27.6	14	2	AAW04142	Aaw04142	Antifunga
650	27	27.6	14	2	AAW44406		Anti-fung
651	27	27.6	14	2	AAW44508		Anti-fung
							•
652	27	27.6	14	2	AAW44507		Anti-fung
653	27	27.6	14	2	AAW43694		Bacterici
654	27	27.6	14	2	AAW43589	Aaw43589	Bacterici
655	27	27.6	14	2	AAW43693	Aaw43693	Bacterici
656	27	27.6	14	2	AAW58654	Aaw58654	Platelet
657	27	27.6	14	2	AAW63518		Human BPI
658	27	27.6	14	2	AAW63519		Human BPI
659	27	27.6	14	2	AAW63337		Human BPI
660	27	27.6	14	2	AAY01187		Polypepti
661	27	27.6	14	2	AAY00485	Aay00485	Antifunga
662	27	27.6	14	2	AAY00383	Aay00383	Antifunga
663	27	27.6	14	2	AAY00484		Antifunga
664	27	27.6	14	3	AAB16258	-	Bacterici
665	27	27.6					
			14	3	AAB16259		Bacterici
666	27	27.6	14	3	AAB16074		Bacterici
667	27	27.6	14	4	AAM97026	Aam97026	Human pep
668	27	27.6	14	4	AAB65408	Aab65408	Anti-fung
669	27	27.6	14	4	AAB65409		Anti-fung
670	27	27.6	14	4	AAB65307		Anti-fung
671	27						-
		27.6	14	4	AAB68706		Peptide-b
672	27	27.6	14	4	AAB52428		Peptide B
673	27	27.6	14	4	AAB52429	Aab52429	Peptide B
674	27	27.6	14	4	AAB52244	Aab52244	Peptide B
675	27	27.6	14	8	ADI66718		Rat bacte
676	27	27.6	14	8	ADI66719		Rat bacte
677	27	27.6	14	8	ADI66537		
							Rat bacte
678	27	27.6	14	8	ADM91451		Bacterici
679	27	27.6	14	8	ADM91450		Bacterici
680	27	27.6	14	8	ADM91349	Adm91349	Bacterici
681	27	27.6	15	1	AAP70354		Sequence
682	27	27.6	15	4	AAG64381		Human act
683	27	27.6	15	6	ABR32250	_	Human can
300	- '	2		•		11013220	naman can

684	27	27.6	15	6	ABR31879	Abr31879 Human can
685	. 27	27.6	15	6		Abr32222 Human can
					ABR32222	
686	27	27.6	15	8	ADV32024	Adv32024 Human 109
687	27	27.6	15	8	ADV31996	Adv31996 Human 109
688	27	27.6	15	9	AEB12248	Aeb12248 Cyclin A
689	. 27	27.6	15	9	AEB12244	Aeb12244 Cyclin A
690	27	27.6	15	9	AEB12247	Aeb12247 Cyclin A
691	27	27.6	15	9	AEC70708	Aec70708 Human 109
692	27	27.6	15	9		
					AEC71051	Aec71051 Human 109
693	27	27.6	15	9	AEC71079	Aec71079 Human 109
694	27	27.6	16	2	AAR64603	Aar64603 RF-1 pept
695	27	27.6	16	2	AAW59266	Aaw59266 Myc-tag p
696	27	27.6	16	4	AAB55206	Aab55206 Anti-RSV
697	27	27.6	16	5	AAE18707	Aae18707 Major his
698	27	27.6	16	8	ADI41392	Adi41392 Human HGP
699	27	27.6	17	2	AAW14812	Aaw14812 sis oncog
700	27	27.6	17	2	AAW14830	Aaw14830 PDGF-2 on
701	27	27.6	17	2	AAR73655	Aar73655 PDGF(73-8
702	27	27.6	17	2	AAR73665	Aar73665 Cyclic PD
703	27	27.6	17	2	AAR64604	Aar64604 RF-1 pept
704	27	27.6	17	3	AAY52611	Aay52611 v-sis enc
705	27	27.6	17	4	AAB55207	Aab55207 Anti-RSV
706	27	27.6	17	5	AAU82600	
700						Aau82600 Llama CDR
	27	27.6	17	8	ADO42136	Ado42136 Marburg i
708	27	27.6	18	2	AAR22589	Aar22589 Nonlinear
709	27	27.6	18	2	AAR73656	Aar73656 PDGF(73-8
710	27	27.6	18	2	AAR73657	Aar73657 Ac-PDGF(7
711	27	27.6	18	2	AAR64605	Aar64605 RF-1 pept
712	27	27.6	18	2	AAR85995	Aar85995 Pro-endot
713	27	.27.6	18	4	AAB55208	Aab55208 Anti-RSV
714	27	27.6	18	6		
	27	27.6		9	ABU03297 AED68532	Abu03297 Human exp
					ARIINXAXZ	
715			18			Aed68532 Antimicro
716	27	27.6	18	10	AEF01917	Aef01917 Ii-key/ H
716 717	27 27	27.6 27.6			AEF01917	
716	27	27.6	18	10	AEF01917 AEF01959	Aef01917 Ii-key/ H
716 717	27 27	27.6 27.6	18 18	10 10	AEF01917 AEF01959	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H
716 717 718 719	27 27 27 27	27.6 27.6 27.6 27.6	18 18 18 19	10 10 10 2	AEF01917 AEF01959 AEF01944 AAR64606	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept
716 717 718 719 720	27 27 27 27 27	27.6 27.6 27.6 27.6 27.6	18 18 18 19	10 10 10 2 3	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca
716 717 718 719 720 721	27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6	18 18 18 19 19	10 10 10 2 3 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV
716 717 718 719 720 721 722	27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 18 19 19 19	10 10 10 2 3 4 6	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen
716 717 718 719 720 721 722 723	27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 19	10 10 10 2 3 4 6 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept
716 717 718 719 720 721 722 723 724	27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 18 19 19 19 20 20	10 10 2 3 4 6 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen
716 717 718 719 720 721 722 723 724 725	27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20	10 10 10 2 3 4 6 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept
716 717 718 719 720 721 722 723 724	27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 18 19 19 19 20 20	10 10 2 3 4 6 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran
716 717 718 719 720 721 722 723 724 725	27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20	10 10 2 3 4 6 2 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o
716 717 718 719 720 721 722 723 724 725 726 727	27 27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 19 20 20 20 20	10 10 2 3 4 6 2 2 2 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV
716 717 718 719 720 721 722 723 724 725 726 727 728	27 27 27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20	10 10 10 2 3 4 6 2 2 2 2 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC
716 717 718 719 720 721 722 723 724 725 726 727 728 729	27 27 27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20	10 10 10 2 3 4 6 2 2 2 4 4 6	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730	27 27 27 27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 20 20	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide #
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731	27 27 27 27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 20 20 20 20	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 20 20 21	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide #
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731	27 27 27 27 27 27 27 27 27 27 27 27 27	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 20 20 20 20	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 20 20 21	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8 2	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8 8 2 3 3	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89225	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8 8 2 3 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17221 ADS17222 AAR64608 AAY89352 AAY89225 AAB55211	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 4 4 6 8 8 8 2 3 3 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17221 ADS17222 AAR64608 AAY89352 AAY89225 AAB55211 AAB77578	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17221 ADS17222 AAR64608 AAY89352 AAY89255 AAB55211 AAB77578 AAB77753	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89255 AAB55211 AAB77578 AAB77753 ABB02059	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Abb77753 Core poly Abb02059 Viral cor
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89352 AAY89255 AAB55211 AAB77578 AAB77753 ABB02059 ABB02236	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly Abb02059 Viral cor Abb02236 Viral cor
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89225 AAB55211 AAB77578 AAB77753 ABB02059 ABB02236 ABB00583	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly Abb02059 Viral cor Abb02236 Viral cor Abb02236 Viral cor
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89352 AAY89255 AAB55211 AAB77578 AAB77753 ABB02059 ABB02236	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly Abb02059 Viral cor Abb02236 Viral cor
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89225 AAB55211 AAB77578 AAB77753 ABB02059 ABB02236 ABB00583	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly Abb02059 Viral cor Abb02236 Viral cor Abb02236 Viral cor
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89255 AAB55211 AAB77578 AAB77753 ABB02059 ABB02236 ABB00583 ABB00760	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly Abb02059 Viral cor Abb02236 Viral cor Abb00583 RSV F1 pr Abb00760 Viral DP1
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742	27 27 27 27 27 27 27 27 27 27 27 27 27 2	27.6 27.6	18 18 19 19 19 20 20 20 20 20 20 21 21 21 21 21 21 21 21	10 10 10 2 3 4 6 2 2 2 2 2 4 4 6 8 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AEF01917 AEF01959 AEF01944 AAR64606 AAY65729 AAB55209 ABP58053 AAR64607 AAW12307 AAW30098 AAW62866 AAB55210 AAE12829 ABP55284 ADS17221 ADS17222 AAR64608 AAY89352 AAY89225 AAY89225 AAB55211 AAB77578 AAB77753 ABB02059 ABB02236 ABB00583 ABB00760 AAU13131	Aef01917 Ii-key/ H Aef01959 Ii-key/ H Aef01944 Ii-key/ H Aef01944 Ii-key/ H Aar64606 RF-1 pept Aay65729 Breast ca Aab55209 Anti-RSV Abp58053 Collagen Aar64607 RF-1 pept Aaw12307 Immunogen Aaw30098 Neurotran Aaw62866 Epitope o Aab55210 Anti-RSV Aae12829 Human MHC Abp55284 Human mus Ads17221 Peptide # Ads17222 MHC Class Aar64608 RF-1 pept Aay89352 Core poly Aay89225 Core poly Aay89225 Core poly Aab55211 Anti-RSV Aab77578 Core poly Aab77753 Core poly Abb02059 Viral cor Abb02236 Viral cor Abb00583 RSV F1 pr Abb00760 Viral DP1 Aau13131 DP178-lik

745	27	27.6	21	5	ADE02256	1de02256	Hybrid po
746	27	27.6	21	7	ADC17642		Type IV c
747	27	27.6	21	7	ADF30617		Rat angio
748	27	27.6	21	8	ADR19164	Adr19164	Type IV c
749	27	27.6	22	2	AAR48546	Aar48546	Sequence
750	27	27.6	22	2	AAR64609		RF-1 pept
751	27	27.6	22	2	AAW47933		Antigenic
752 .	27		22	2			•
		27.6			AAY18824		Lecithin:
753	27	27.6	22	2	AAY18853		Lecithin:
754	27	27.6	22	2	AAY18846	Aay18846	Lecithin:
755	27	27.6	22	2	AAY18856	Aay18856	Lecithin:
756	27	27.6	22	2	AAY18789	Aav18789	Lecithin:
757	27	27.6	22	2	AAY18867		Lecithin:
758	27	27.6	22	2	AAY18825		Lecithin:
759	27	27.6	22	2			
					AAY18836		Lecithin:
760	27	27.6	. 22	2	AAY18830	_	Lecithin:
761	27	27.6	22	2	AAY18828		Lecithin:
762	27	27.6	22	2	AAY18858	Aay18858	Lecithin:
763	27	27.6	22	2	AAY18865		Lecithin:
764	27	27.6	22	2	AAY18854		Lecithin:
765	27	27.6	22	2	AAY18860		Lecithin:
766	27	27.6	22	2			
					AAY18710	=	Lecithin:
767	27	27.6	22	2	AAY18759		Lecithin:
768	27	27.6	22	2	AAY18832	Aay18832	Lecithin:
769	27	27.6	22	2	AAY18834	Aay18834	Lecithin:
770	27	27.6	22	2	AAY18829	Aay18829	Lecithin:
771	27	27.6	22	2	AAY18835		Lecithin:
772	27	27.6	22	2	AAY18838		Lecithin:
773	27	27.6	22	2	AAY18823		
774	27						Lecithin:
		27.6	22	2	AAY18833		Lecithin:
775	27	27.6	22	2	AAY18847		Lecithin:
776	27	27.6	22	2	AAY18868		Lecithin:
777	27	27.6	22	2	AAY18831	Aay18831	Lecithin:
778	27	27.6	22	2	AAY18703		Lecithin:
779	27	27.6	22	2	AAY18772	_	Lecithin:
780	27	27.6	22	2	AAY19085		Lecithin:
781	27	27.6	22	2	AAY19108		
782	27			2			Lecithin:
		27.6	22		AAY19121		Lecithin:
783	27	27.6	22	2	AAY19087		Lecithin:
784	27	27.6	22	2	AAY19092		Lecithin:
785	27	27.6	22	2	AAY19101	Aay19101	Lecithin:
786	27	27.6	22	2	AAY19078		Lecithin:
787	27	27.6	22	2	AAY19112		Lecithin:
788	27	27.6	22	2	AAY19119		Lecithin:
789	27	27.6	22	2	AAY18964		Lecithin:
790							
	27	27.6	22	2	AAY19084		Lecithin:
791	27	27.6	22	2	AAY19107		Lecithin:
792	27	27.6	22	2	AAY19026	Aay19026	Lecithin:
.793	·27	27.6	22	2	AAY19090	Aay19090	Lecithin:
794	27	27.6	22	2	AAY18957	Aav18957	Lecithin:
795	27	27.6 .	22	2	AAY19079		Lecithin:
796	27	27.6	22	2	AAY19086		Lecithin:
797	27	27.6	22	2		_	
					AAY19110	-	Lecithin:
798	27	27.6	22	2	AAY19122	_	Lecithin:
799	27	27.6	22	2	AAY19043		Lecithin:
800	27	27.6	22	2	AAY19077	Aay19077	Lecithin:
801	27	27.6	22	2	AAY19083	Aay19083	Lecithin:
802	27	27.6	22	2	AAY19114	_	Lecithin:
803	27	27.6	22	2	AAY19089		Lecithin:
804	27	27.6	22	2	AAY19013		Lecithin:
805	27	27.6	22	2	AAY19082		
505	٠,	27.0	22	2	AA113002	. May19002	Lecithin:

806	27	27.6	22	2	AAY19088		Aay19088	Lecithin
807	27	27.6	22	2			Aay19100	
					AAY19100			
808	27	27.6	22	2	AAY19376		Aay19376	
809	27	27.6	22	2	AAY19211		Aay19211	
810	27	27.6	22	2	AAY19267		Aay19267	Lecithin:
811	27	27.6	22	2	AAY19355		Aay19355	Lecithin:
812	27	27.6	22	2	AAY19361		Aay19361	Lecithin:
813	27	27.6	22	2	AAY19373		Aay19373	Lecithin:
814	27	27.6	22	2	AAY19338		Aay19338	
815	27	27.6	22	2	AAY19332	•	Aay19332	
816	27		22	2			_	
		27.6			AAY19346	•	Aay19346	
817	27	27.6	22	2	AAY19364		Aay19364	
818	27	27.6	22	2	AAY19331		Aay19331	
819	27	27.6	22	2	AAY19339		Aay19339	
820	27	27.6	22	2	AAY19354		Aay19354	Lecithin:
821	27	27.6	22	2	AAY19218		Aay19218	Lecithin:
822	27	27.6	22	2	AAY19337		Aay19337	
823	27	27.6	22	2	AAY19342		Aay19342	
824	27	27.6	22	2	AAY19297		Aay19297	
825	27	27.6	22	2	AAY19362		Aay19362	
826	27	27.6					-	
			22	2	AAY19340		Aay19340	
827	27	27.6	22	2	AAY19366	•	Aay19366	
828	27	27.6	22	2	AAY19343		Aay19343	Lecithin:
829	27	27.6	22	2	AAY19344		Aay19344	Lecithin:
830	27	27.6	22	2	AAY19375		Aay19375	Lecithin:
831	27	27.6	22	2	AAY19333		Aay19333	Lecithin:
832	27	27.6	22	2	AAY19280		Aay19280	Lecithin:
833	27	27.6	22	2	AAY19336		Aay19336	
834	27	27.6	22	2	AAY19341		Aay19341	
835	27	27.6	22	2	AAY19368		Aay19368	
836	27	27.6	22	2	AAY18565		Aay18565	
837	27	27.6	22	,2	AAY18569		Aay18569	
838	27	27.6	22	2	AAY18597		Aay18597	
839	27	27.6	22	2	AAY18496		Aay18496	
840	27	27.6	22	2	AAY18567		Aay18567	
841	27	27.6	22	2	AAY18583		_	
842	27	27.6	22	2			Aay18583	
					AAY18561		Aay18561	
843	27	27.6	22	2	AAY18571		Aay18571	
844	27	27.6	22	2	AAY18590		Aay18590	
845	27	27.6	22	2	AAY18568		Aay18568	
846	27	27.6	22	2	AAY18509		Aay18509	
847	27	27.6	22	2	AAY18572		Aay18572	Lecithin:
848	27	27.6	22	2	AAY18560		Aay18560	Lecithin:
849	27	27.6	22	2	AAY18526		Aay18526 1	Lecithin:
850	27	27.6	22	2	AAY18575		Aay18575 ·	
851	27	27.6	22	2	AAY18604		Aay18604	
852	27	27.6	22	2	AAY18591		Aay18591	
853	27	27.6	22	2	AAY18605		Aay18605	
854	27	27.6	22	2	AAY18562		Aay18562 1	
855	27	27.6	22	2			_	
					AAY18570		Aay18570 1	
856	27	27.6	22	2	AAY18573		Aay18573 1	
857	27	27.6	22	2	AAY18440		Aay18440	
858	27	27.6	22	2	AAY18566		Aay18566 1	
859	27	27.6	22	2	AAY18593		Aay18593 1	
860	27	27.6	22	2	AAY18595		Aay18595	
861	27	27.6	22	2	AAY18602		Aay18602	
862	27	27.6	22	2	AAY18447		Aay18447	
863	27	27.6	22	2	AAY18584		Aay18584	Lecithin:
864	27	27.6	22	4	AAB55212		Aab55212 A	
865	27	27.6	22	7	ADD88522		Add88522	
866	27	27.6	22	7	ADG18287		Adg18287	
							-	

867	27	27.6	22	8	ADG21051	Ada	21051 Apoli	nonr
868	27	27.6	22	8	ADG21031		21071 Apoli	
869	27	27.6	22	8	ADG21041		21041 Apoli	
870	27	27.6	22	8	ADG21042		21042 Apoli	
871	27	27.6	22	8	ADG21064		21064 Apoli	
872	27	27.6	22	8	ADG21006	Adg2	21006 Apoli	popr
873	27	27.6	22	8	ADG21040	Adg2	21040 Apoli	popr
874	27	27.6	22	8	ADG21050	Adg2	21050 Apoli	popr
875	27	27.6	22	8	ADG21045		21045 Apoli	
876	27	27.6	22	8	ADG21053		21053 Apoli	
877	27	27.6	22	8	ADG20927		20927 Apoli	
878	27	27.6	22	8	ADG21052			
							21052 Apoli	
879	27	27.6	22	8	ADG20920		20920 Apoli	
880	27	27.6	22	8	ADG20989		20989 Apoli	
881	27	27.6	22	8	ADG21055		21055 Apoli	
882	27	27.6	22	8	ADG21063	Adg2	21063 Apoli	popr
883	27	27.6	22	8	ADG21073	Adg2	21073 Apoli	popr
884	27	27.6	22	8	ADG21075	Adg2	21075 Apoli	popr
885	27	27.6	22	8	ADG21046		21046 Apoli	
886	27	27.6	22	8	ADG21049		21049 Apoli	
887	27	27.6	22	8	ADG21084	-	21084 Apoli	
888	27	27.6	22	8	ADG21048		21048 Apoli	
889	27	27.6	22	8	ADG21077		21077 Apoli	
890	27	27.6	22	8	ADG21047		21085 Apoli	
891	27	27.6	22	8	ADG21005 ADG20976			
892	27						20976 Apoli	
		27.6	22	8	ADG21047		21047 Apoli	
893	27	27.6	22	8	ADG21070		21070 Apoli	
894	27	27.6	22	8	ADG21082		21082 Apoli	
895	27	27.6	22	8	ADJ33027		33027 Apo 1	
896	27	27.6	22	8 .	ADJ32990		32990 Apo 1	
897	27	27.6	22	8	ADJ33017	Adj3	33017 Apo 1	ipop
898	27	27.6	22	8	ADJ32918	Adj3	32918 Apo 1	ipop
899	27	27.6	22	8	ADJ32869	Adj3	32869 Apo 1	ipop
900	27	27.6	22	8	ADJ32982	Adj3	32982 Apo 1	ipop
901	27	27.6	22	8	ADJ32862		32862 Apo 1	
902	27	27.6	22	8	ADJ32931		32931 Apo 1	
903	27	27.6	22	8	ADJ33015		33015 Apo 1	
904	27	27.6	22	8	ADJ32983		32983 Apo 1	
905	27	27.6	22	8	ADJ33013		33013 Apo 1	
906	27	27.6	22	8	ADJ33026		33026 Apo 1	
907	27	27.6	22	8		AU).	3020 Apo 1	Thob
					ADJ32948		32948 Apo 1	
908	27	27.6	22	8	ADJ32984		32984 Apo 1	
909	27	27.6	22	8	ADJ32989		32989 Apo 1	
910	27	27.6	22	8	ADJ32993		32993 Apo 1	
911	27	27.6	22	8	ADJ32992		32992 Apo 1	
912	27	27.6	22	8	ADJ32995		32995 Apo 1	
913	27	27.6	22	8	ADJ32988	Adj3	32988 Apo 1	ipop
914	27	27.6	22	8	ADJ32994	Adj3	32994 Apo 1	ipop
915	27	27.6	22	8	ADJ33019	Adj3	33019 Apo 1	ipop
916	27	27.6	22	8	ADJ33006		33006 Apo 1	
917	27	27.6	22	8	ADJ32991		32991 Apo 1	
918	27	27.6	22	8	ADJ33024		33024 Apo 1	
919	27	27.6	22	8	ADJ32987		32987 Apo 1	
920	27	27.6	22	8	ADJ32997		32997 Apo 1	
921	27	27.6	22	8	ADJ33005		33005 Apo 1	
922	27	27.6	22	8	ADJ33012		33012 Apo 1	
923	27	27.6	22	9	ADW92449		32449 H1N1	
924	27	27.6	23	2	AAR64610			
924	27						54610 RF-1 p	
		27.6	23	2	AAY07215		7215 Pepti	
926	27	27.6	23	3	AAY89232		39232 Core p	
927	27	27.6	23	3	AAY89499	Aay8	39499 Core p	ьотл

000						- 155010 P Port
928	27	27.6	23	4	AAB55213	Aab55213 Anti-RSV
929	27	27.6	23	4	AAB77585	Aab77585 Core poly
930	27	27.6	23	4	AAB77900	Aab77900 Core poly
931	27	27.6	23	4	AAB77901	Aab77901 Core poly
932	27	27.6	23	4	ABB00908	Abb00908 Viral DP1
933	27					
		27.6	23	4	ABB02374	Abb02374 Viral cor
934	27	27.6	23	4	ABB02375	Abb02375 Viral cor
935	27	27.6	23	4	ABB00907	Abb00907 Viral DP1
936	27	27.6	23	4	ABB00590	Abb00590 RSV F1 pr
937	27	27.6	23	4	ABB02066	Abb02066 Viral cor
938	27	27.6	23	4	AAU13138	Aau13138 DP178-lik
939	27	27.6	23	4	AAU13453	Aau13453 DP178-lik
940	27	27.6	23	5	ADE02394	Ade02394 Hybrid po
941	27	27.6	23	5	ADE02086	Ade02086 Hybrid po
942	27	27.6	23	5	ADE02395	Ade02395 Hybrid po
943	27	27.6	23	10	AEF20484	Aef20484 Human ost
944	27	27.6	24	2	AAR64611	Aar64611 RF-1 pept
945	27	27.6	24	2	AAW33941	Aaw33941 Betal-adr
946	27	27.6	24	3	AAY89500	Aay89500 Core poly
947	27	27.6	24	4	AAB55214	Aab55214 Anti-RSV
948	27	27.6	24	4	AAM86218	Aam86218 Human imm
949	27	27.6	24	4	AAB70120	Aab70120 Penicilli
950	27	27.6	24	4	AAU13454	Aau13454 DP178-lik
951	27	27.6	25	2	AAR64612	Aar64612 RF-1 pept
952	27	27.6	25	2	AAW30494	Aaw30494 Flea sali
953	27	27.6	25	3	AAY89231	Aay89231 Core poly
954						
	27	27.6	25	3	AAY89237	Aay89237 Core poly
955	27	27.6	25	4	AAB55215	Aab55215 Anti-RSV
956	27	27.6	25	4	ABB40984	Abb40984 Peptide #
957	27	27.6	25	4	ABB43082	Abb43082 Peptide #
958	27	27.6	25	4	AAM34759	Aam34759 Peptide #
959	27	27.6	25	4	AAM36907	Aam36907 Peptide #
960	27	27.6	25	4	AAB77590	Aab77590 Core poly
961	27	27.6	25	4	AAB77584	
						Aab77584 Core poly
962	27	27.6	25	4	AAM76801	Aam76801 Human bon
963	27	27.6	25	4	AAM63981	Aam63981 Human bra
964	27	27.6	25	4	AAM61844	Aam61844 Human bra
965	27	27.6	25	4	ABG58482	Abg58482 Human liv
966	27	27.6	25	4	ABB00595	Abb00595 RSV F1 pr
967	27	27.6	25	4	ABB02071	Abb02071 Viral cor
968	27	27.6	25		ABB02065	Abb02065 Viral cor
969						
	27	27.6	25	4	ABB00589	Abb00589 RSV F1 pr
970	27	27.6	25	4	AAU13143	Aau13143 DP178-lik
971	27	27.6	25	4	AAU13137	Aau13137 DP178-lik
972	27	27.6	25	5	ADE02085	Ade02085 Hybrid po
973	27	27.6	25	5	ADE02091	Ade02091 Hybrid po
974	27	27.6	25	7	ADC26852	Adc26852 B. burgdo
975	27	27.6	25	9	ADV57496	Adv57496 G protein
976	27	27.6		9		-
			25		ADV55203	Adv55203 G protein
977	27	27.6	25	9	ADV56698	Adv56698 G protein
978	27	27.6	25	9	ADV55545	Adv55545 G protein
979	27	27.6	25	9	ADZ38618	Adz38618 Group A S
980	27	27.6	26	2	AAR64613	Aar64613 RF-1 pept
981	27	27.6	26	4	AAB55216	Aab55216 Anti-RSV
982	27	27.6	26	10	AEE38856	Aee38856 Human ser
983	27	27.6	27	2	AAR50607	
	27					Aar50607 G-protein
984		27.6	27	2	AAR64614	Aar64614 RF-1 pept
985	27	27.6	27	2	AAW02799	Aaw02799 G-protein
986	27	27.6	27	2	AAW82353	Aaw82353 Flea sali
987	27	27.6	27	3	AAY89236	Aay89236 Core poly
988	27	27.6	27	3	AAY89230	Aay89230 Core poly

- 15

```
RESULT 4
ADZ69803
     ADZ69803 standard; peptide; 9 AA.
ID
XX
AC
     ADZ69803;
XX
DT
     28-JUL-2005
                 (first entry)
XX
DE
     Botulinum toxin type A peptide SEQ ID NO:78.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
                                                              715/23
KW
     cervical dystonia; migraine.
XX
OS
     Clostridium botulinum.
XX
     US2005106182-A1.
PN
XX
PD
     19-MAY-2005.
XX
PF
     17-NOV-2003; 2003US-00715810.
XX
     17-NOV-2003; 2003US-00715810.
PR
XX
PA
     (LISS/) LI S.
PA
     (AOKI/) AOKI K R.
XX
PΙ
     Li S, Aoki KR;
XX
DR
     WPI; 2005-365766/37.
XX
     Treating botulinum toxin intoxication in a mammal, comprises
PT
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
     Disclosure; SEQ ID NO 78; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
     intoxication in a mammal. (M1) comprises administering at least one
CC
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
     being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
CC
    making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
     in a cell free system; (3) a modified nontoxic nonhemagglutinin
CC
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
     non-Clostridium botulinum cell (III) comprising a vector operatively
CC
CC
     harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
    nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
     also useful for the treatment of neuromuscular disorders, cervical
CC
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
     botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SQ
     Sequence 9 AA;
  Query Match
                          43.9%; Score 43; DB 9; Length 9;
  Best Local Similarity
                         100.0%; Pred. No. 2.1e+06;
  Matches
            9; Conservative 0; Mismatches 0;
                                                      Indels
                                                                     Gaps
```

Db

```
فسيج
RESULT 3
ADY20753
ΙD
     ADY20753 standard; peptide; 12 AA.
XX
AC
     ADY20753;
                                                                715,733
XX
DT
     05-MAY-2005 (first entry)
XX
DE
     Botulinum peptide fragment #1.
XX
KW
     Delivery mechanism; toxin; endocytosis; bacterial infection;
KW
     viral infection; antibacterial; virucide.
XX
OS
     Unidentified.
XX
PN
     WO2005014798-A2.
XX
PD
     17-FEB-2005.
XX
     31-MAR-2004; 2004WO-US009829.
PF
XX
PR
     31-MAR-2003; 2003US-0459185P.
XX
PA
     (BOST-) BOSTON MEDICAL CENT CORP.
XX
ΡĮ
     Murphy JR, Ratts R, Pearson DA;
XX
DR
     WPI; 2005-173098/18.
XX
PT
    New compound, useful in the manufacture of a medicament for inhibiting
PT
     cell death or the translocation of a viral or bacterial toxin or viral
PT
     transcription factor for treating or preventing bacterial or viral
PT
     infections.
XX
PS
     Disclosure; Fig 9; 100pp; English.
XX
CC
     The invention relates to a new peptide compound and a nucleic acid
CC
     sequence encoding the peptide. The invention also relates to a method of
CC
     identifying a compound that inhibits cell death in a mammal and a method
CC
     of identifying a compound that promotes cell death in a mammal. The
CC
     compound is useful in the manufacture of a medicament for inhibiting cell
CC
    death in a mammal. The compound inhibits the translocation of a viral or
CC
    bacterial toxin from the lumen of an endosome to the cytosol of the cell
CC
```

or the translocation of a viral or retroviral transcription factor. The compound is further reacted with a monoclonal antibody, or its fragment to form a covalent bond between a sulfur atom of the antibody and the maleimide group of the compound. Identifying a compound that inhibits cell death in a mammal comprises isolating endosomes from the cell, placing the endosomes in a cytosolic buffer, contacting the endosomes with a fusion protein-toxin, where the protein comprises a binding moiety for a component of the cell membrane of the cell and the toxin comprises a fragment of Diphtheria toxin, contacting the endosomes with a cytosolic translocation factor complex, contacting the endosomes with the compound and measuring translocation of the toxin, where a decreased level of the translocation relative to that observed in the absence of the compound indicates that the compound inhibits the cell death. Identifying a compound that promotes cell death in a mammal comprises isolating endosomes from the cell, placing the endosomes in a cytosolic buffer, contacting the endosomes with a fusion protein-toxin, where the protein comprises a binding moiety for a component of the cell membrane of the cell and the toxin comprises a fragment of Diphtheria toxin, contacting

CC CC

CC CC

CC

CC

CC CC

CC

CC

CC

CC CC

CC

CC

CC

CC

```
1
ÇĆ
     the endosomes with a cytosolic translocation factor complex, contacting
     the endosomes with the compound and measuring translocation of the toxin,
    where an increased level of the translocation relative to that observed
CC
    in the absence of the compound indicates that the compound promotes the
CC
    cell death. The compound is useful in the manufacture of a medicament for
CC
    inhibiting cell death in a mammal or for inhibiting the translocation of
CC
    a viral or bacterial toxin, e.g., Diphtheria toxin, a Botulinum toxin,
CC
    Anthrax toxin LF or Anthrax toxin EF from the lumen of an endosome to the
CC
    cytosol of the cell or the translocation of a viral or retroviral
    transcription factor, e.g., human immunodeficiency virus reverse
CC
    transcriptase or Tat for treating or preventing bacterial or viral
CC
CC
     infections. This sequence represents a botulinum peptide fragment used in
CC
     the scope of the invention.
XX
SO
    Sequence 12 AA;
  Query Match
                         53.1%; Score 52; DB 9; Length 12;
 Best Local Similarity 100.0%; Pred. No. 0.13;
           11; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                            0;
           5 AKVNTQIDLIR 15
Qу
             Db
           1 AKVNTQIDLIR 11
```

```
· 🔞
RESULT 47
ABP68020
ΙD
     ABP68020 standard; peptide; 12 AA.
XX
AC
     ABP68020;
XX
     08-JAN-2003 (first entry)
DΤ
XX
     Bacillus thuringiensis toxin Cry related peptide #13.
DΕ
XX
KW
     Bacillus thuringiensis; insecticide; toxin; Cry; pepsin cleavage site;
KW
     pepsin; PCS.
XX
os
     Bacillus thuringiensis.
OS
     Synthetic.
                                                                    115,753
XX
PN
     FR2822157-A1.
XX
PD
     20-SEP-2002.
XX
PF
     19-MAR-2001; 2001FR-00003691.
XX
PR
     19-MAR-2001; 2001FR-00003691.
XX
     (AVET ) AVENTIS CROPSCIENCE SA.
PΑ
XX
PΙ
     Freyssinet G, Rang C, Frutos R;
XX
DR
     WPI; 2003-002439/01.
XX
PT
     New modified Cry protein, useful as insecticide, comprises at least one
PT
     additional pepsin cleavage site to reduce persistence in mammalian gut.
XX
PS
     Example 2; Page 21; 134pp; French.
XX
CC
     The present invention describes a modified Cry protein (I) that is
CC
     sensitive to pepsin and comprises at least one additional pepsin cleavage
CC
     site (PCS). Also described: (a) increasing pepsin sensitivity of Cry
     proteins by incorporating at least one extra PCS; (b) polynucleotides
CC
CC
     (II) that encode (I); (c) chimeric genes (CG) that contain a promoter,
CC
     (II) and terminator; (d) expression or transformation vector (III) that
CC
     contains CG; (e) host organism (IV) transformed with (III), also, where
CC
     the organism is a plant, its parts and seeds; (f) production of (I) by
CC
     growing (IV); and (g) mono- or polyclonal antibodies (Ab) directed
CC
     against (I). (I) has insecticide activity. (I) can be used as
CC
     insecticides, particularly where expressed in transgenic plants. (I) are
CC
     sensitive to enzymes in the digestive tract of mammals, so do not persist
CC
     in the tract (lack of persistence is required by regulatory authorities
CC
     for use, in foods, of seeds containing Cry proteins). Extra PCS do not
     increase degradation in the digestive tract of insects, so have no effect
CC
CC
     on insecticidal activity. ABV93450 to ABV93909 and ABP67997 to ABP68308
CC
     represent sequences used in the exemplification of the present invention
XX
SQ
     Sequence 12 AA;
                                  Score 33; DB 6; Length 12;
  Query Match
                          33.7%;
  Best Local Similarity
                          71.4%; Pred. No. 1.8e+02;
  Matches
            5; Conservative
                                2; Mismatches 0; Indels
                                                                0; Gaps
Qу
            2 NWLAKVN 8
              1111::1
```

b 2 NWLAELN 8

```
(73-69)
RESULT 48
US-10-506-877-32
; Sequence 32, Application US/10506877
; Publication No. US20060148093A1
; GENERAL INFORMATION:
 APPLICANT: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
 TITLE OF INVENTION: DETECTION AND QUANTIFICATION OF MODIFIED PROTEINS
 FILE REFERENCE: 56954 PCT (70207)
 CURRENT APPLICATION NUMBER: US/10/506,877
; CURRENT FILING DATE: 2004-09-03
 PRIOR APPLICATION NUMBER: 60/363,179
 PRIOR FILING DATE: 2002-03-11
  NUMBER OF SEQ ID NOS: 57
  SOFTWARE: PatentIn Ver. 2.1
; SEO ID NO 32
  LENGTH: 19
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Synthetic
   OTHER INFORMATION: phosphopeptide sequence
US-10-506-877-32
 Query Match
                         27.5%; Score 25; DB 6; Length 19;
 Best Local Similarity
                         66.7%; Pred. No. 9.2e+02;
           4; Conservative
                               2; Mismatches
                                              0; Indels
                                                               0; Gaps
                                                                           0;
          10 VSYIAN 15
Qу
            : | | : | |
Db
           7 LSYVAN 12
```

SCORE Search Results Details for Application 10821669 and Search Result us-10-821-669-1_copy_715_733.szlm30.rag.

Score Home <u>Page</u>

Retrieve Application

<u>List</u>

SCORE System Overview

SCORE · FAQ

Comments / Suggestions

This page gives you Search Results detail for the Application 10821669 and Search Result us-10-821-669-1_copy_715_733.szlm30.rag. start

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on:

November 1, 2006, 12:48:32; Search time 92.5641 Seconds

(without alignments)

93.850 Million cell updates/sec

Title:

US-10-821-669-1 COPY 715 733

Perfect score:

98

Sequence: 1 TNWLAKVNTOIDLIRKKMK 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched:

2589679 segs, 457216429 residues

Total number of hits satisfying chosen parameters:

1079608

Minimum DB seg length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database :

A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseap2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: genesegp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	98	100.0	19	9	ADW11060	Adw11060 Clostridi
2	98	100.0	27	9	ADW11113	Adwl1113 Clostridi
3	52	53.1	12	9	ADY20753	Ady20753 Botulinum
4	43	43.9	9	9	ADZ69803	Adz69803 Botulinum
5	38.5	39.3	22	2	AAY18841	Aay18841 Lecithin:
6	38.5	39.3	22	2	AAY19095	Aay19095 Lecithin:
7	38.5	39.3	22	2	AAY19349	Aay19349 Lecithin:
8	38.5	39.3	22	2	AAY18578	Aay18578 Lecithin:
9	38.5	39.3	22	8	ADG21058	Adg21058 Apolipopr
10	38.5	39.3	22	8	ADJ33000	Adj33000 Apo lipop
11	38	38.8	22	2	AAY18741	Aay18741 Lecithin:
12	38	38.8	22	2	AAY18995	Aay18995 Lecithin:
13	38	38.8	22	2	AAY19249	Aay19249 Lecithin:
14	38	38.8	22	2	AAY18478	Aay18478 Lecithin:
15	38	38.8	22	8	ADG20958	Adg20958 Apolipopr
16	38	38.8	22	8	ADJ32900	Adj32900 Apo lipop
17	36	36.7	22	2	AAR48545	Aar48545 Sequence
18	36	36.7	22	9	AEB28559	Aeb28559 Human apo
19	36	36.7	22	9	AEB11518	Aeb11518 Apolipopr
20	35	35.7	9	9	ADZ69802	Adz69802 Botulinum

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 13:29:52; Search time 19 Seconds Run on:

(without alignments)

87.531 Million cell updates/sec

US-10-821-669-1 COPY 715 733 Title:

Perfect score: 98

1 TNWLAKVNTQIDLIRKKMK 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

650591 seqs, 87530628 residues Searched:

Total number of hits satisfying chosen parameters: 331034

Minimum DB seg length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : Issued Patents AA:*

1: /EMC Celerra SIDS3/ptodata/2/iaa/5 COMB.pep:*

2: /EMC Celerra SIDS3/ptodata/2/iaa/6 COMB.pep:*

3: /EMC Celerra SIDS3/ptodata/2/iaa/7 COMB.pep:*

4: /EMC_Celerra SIDS3/ptodata/2/iaa/H COMB.pep:*

5: /EMC_Celerra_SIDS3/ptodata/2/iaa/PCTUS_COMB.pep:*

6: /EMC_Celerra_SIDS3/ptodata/2/iaa/RE_COMB.pep:*

7: /EMC_Celerra_SIDS3/ptodata/2/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ક્ષ

Searchtotes

```
718-733
RESULT 1
US-10-715-810-78
; Sequence 78, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
 APPLICANT: Kei, Aoki R.
 TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
 FILE REFERENCE: ALLEO004-100
  CURRENT APPLICATION NUMBER: US/10/715,810
  CURRENT FILING DATE: 2003-11-17
  NUMBER OF SEQ ID NOS: 105
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 78
  LENGTH: 9
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Peptide fragment (residues 721-729)
US-10-715-810-78
                     43.9%; Score 43; DB 5; Length 9;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.9e+06;
                                                             0; Gaps
 Matches 9; Conservative 0; Mismatches 0; Indels
           7 VNTQIDLIR 15
Qу
             Db
           1 VNTQIDLIR 9
```

```
715-733
RESULT 25
US-10-946-371-30
; Sequence 30, Application US/10946371
; Publication No. US20050208587A1
; GENERAL INFORMATION:
 APPLICANT: CARDOSO, ROSA
 APPLICANT: WILSON, IAN
  APPLICANT: BURTON, DENNIS
  APPLICANT: DAWSON, PHILIP
  TITLE OF INVENTION: PEPTIDES THAT BIND TO BROADLY NEUTRALIZING ANTI-HIV
  TITLE OF INVENTION: ANTIBODY-STRUCTURE OF 4E10 FAB FRAGMENT COMPLEX, USES
  TITLE OF INVENTION: THEREOF, COMPOSITIONS THEREFROM
  FILE REFERENCE: 678501-2001.1
  CURRENT APPLICATION NUMBER: US/10/946,371
  CURRENT FILING DATE: 2004-09-20
  PRIOR APPLICATION NUMBER: 60/504,123
  PRIOR FILING DATE: 2003-09-19
 PRIOR APPLICATION NUMBER: PCT/EP02/10070
 PRIOR FILING DATE: 2002-09-09
 NUMBER OF SEQ ID NOS: 59
  SOFTWARE: PatentIn Ver. 3.3
; SEQ ID NO 30
   LENGTH: 14
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Synthetic
   OTHER INFORMATION: peptide
US-10-946-371-30
                         35.7%; Score 35; DB 5; Length 14;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 2.3e+02;
           6; Conservative 0; Mismatches 0;
                                                    Indels
                                                               0; Gaps
Qу
           1 TNWLAK 6
             11111
Db
           6 TNWLAK 11
```

```
RESULT 24
US-10-715-810-77
; Sequence 77, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
; APPLICANT: Kei, Aoki R.
; TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
; FILE REFERENCE: ALLEO004-100
; CURRENT APPLICATION NUMBER: US/10/715,810
; CURRENT FILING DATE: 2003-11-17
 NUMBER OF SEQ ID NOS: 105
; SOFTWARE: PatentIn version 3.2
; SEQ ID NO 77
  LENGTH: 9
   TYPE: PRT
  ORGANISM: Artificial Sequence
   OTHER INFORMATION: Peptide fragment (residues 712-720)
US-10-715-810-77
                         35.7%; Score 35; DB 5; Length 9;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.9e+06;
 Matches 6; Conservative 0; Mismatches 0; Indels
           1 TNWLAK 6
Qу
            4 TNWLAK 9
Db
```

```
RESULT 22
ADY81603
    ADY81603 standard; peptide; 15 AA.
ID
XX
AC
    ADY81603;
XX
DT
     16-JUN-2005 (first entry)
XX
    HIV-1 antibody 4E10 binding peptide #21.
DΕ
XX
KW
     diagnosis; pharmaceutical; immunogenicity; immunostimulant; anti-HIV;
KW
     vaccine.
XX
OS
     Human immunodeficiency virus 1.
XX
    WO2005028499-A2.
PN
XX
PD
    31-MAR-2005.
XX
    20-SEP-2004; 2004WO-US030747.
PF
XX
    19-SEP-2003; 2003US-0504123P.
PR
XX
PΑ
     (SCRI ) SCRIPPS RES INST.
XX
PΙ
    Cardoso R, Wilson I, Burton D, Dawson P;
XX
    WPI; 2005-254114/26.
DR
XX
PT
    New Fab 4E10:KGND complex having an X-ray diffraction pattern, useful for
PT
     eliciting antibodies or in a diagnostic, pharmaceutical immunogenic,
PT
     immunological or vaccine composition.
XX
PS
    Claim 46; Page 115; 190pp; English.
XX
CC
    The invention relates to a Fab 4E10:KGND complex having an X-ray
CC
    diffraction pattern corresponding to or resulting from any or all of
CC
    those given in the specification and having the structure defined by the
CC
    coordinates listed in the specification. The complex is useful for
CC
    eliciting antibodies or in a diagnostic, pharmaceutical immunogenic,
CC
     immunological or vaccine composition. The present sequence represents the
CÇ
    HIV-1 antibody 4E10 binding peptide.
XX
SO
    Sequence 15 AA;
  Query Match
                          35.7%; Score 35; DB 9; Length 15;
                          100.0%; Pred. No. 1.1e+02;
  Best Local Similarity
            6; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           1 TNWLAK 6
Qу
              H \cap H
Db
           7 TNWLAK 12
```

```
RESULT 20
US-11-416-262-10
; Sequence 10, Application US/11416262
; Publication No. US20060191547A1
; GENERAL INFORMATION:
; APPLICANT: Conkling, Mark
  TITLE OF INVENTION: MODIFYING NICOTINE AND NITROSAMINE
  TITLE OF INVENTION: LEVELS IN TOBACCO
  FILE REFERENCE: VTOB.033C2C
  CURRENT APPLICATION NUMBER: US/11/416,262
  CURRENT FILING DATE: 2006-05-01
  PRIOR APPLICATION NUMBER: 11/077,752
  PRIOR FILING DATE: 2005-03-10
  PRIOR APPLICATION NUMBER: 10/729,121
  PRIOR FILING DATE: 2003-12-05
  PRIOR APPLICATION NUMBER: 60/297,154
  PRIOR FILING DATE: 2001-06-08
; PRIOR APPLICATION NUMBER: PCTUS02/18040
 PRIOR FILING DATE: 2002-06-06
 NUMBER OF SEQ ID NOS: 58
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 10
   LENGTH: 26
   TYPE: PRT
   ORGANISM: Saccharomyces cerevisiae
US-11-416-262-10
  Query Match
                         28.6%; Score 28; DB 7; Length 26;
  Best Local Similarity 66.7%; Pred. No. 4.7e+02;
           4; Conservative 2; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           1 TNWLAK 6
              1111::
Db
          18 TNWLSE 23
```

```
RESULT 23
US-11-439-071-36
; Sequence 36, Application US/11439071
; Publication No. US20060204492A1
  GENERAL INFORMATION:
    APPLICANT: Huse, William D.
    APPLICANT: Glaser, Scott M.
    TITLE OF INVENTION: Anti-Alpha V Beta 3 Recombinant Human
    TITLE OF INVENTION: Antibodies, Nucleic Acids Encoding Same and Methods of Use
    NUMBER OF SEQUENCES: 100
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Campbell & Flores LLP
      STREET: 4370 La Jolla Village Drive, Suite 700
;
      CITY: San Diego
;
      STATE: California
      COUNTRY: United States
      ZIP: 92122
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/11/439,071
      FILING DATE: 22-MAY-2006
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: US 09/016,061
     FILING DATE: 30-JAN-1998
     APPLICATION NUMBER: US 08/791,391
     FILING DATE: 30-JAN-1997
    ATTORNEY/AGENT INFORMATION:
     NAME: Campbell, Cathryn A.
      REGISTRATION NUMBER: 31,815
      REFERENCE/DOCKET NUMBER: P-IX 2965
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (619) 535-9001
      TELEFAX: (619) 535-8949
  INFORMATION FOR SEQ ID NO: 36:
  SEQUENCE CHARACTERISTICS:
      LENGTH: 10 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-11-439-071-36
  Query Match
                         27.6%; Score 27; DB 7; Length 10;
 Best Local Similarity 57.1%; Pred. No. 2.3e+02;
           4; Conservative 3; Mismatches 0; Indels 0; Gaps
                                                                          0;
           3 WLAKVNT 9
Qу
             1:111::
Db
           1 WVAKVSS 7
```

```
RESULT 29
US-11-434-137-8322
; Sequence 8322, Application US/11434137
; Publication No. US20060210579A1
; GENERAL INFORMATION:
; APPLICANT: Telford, John
 APPLICANT: Masignani, Vega
  APPLICANT: Ros, Immaculada Margarit Y
  APPLICANT: Fraser, Claire
  APPLICANT: Tettelin, Herve
  TITLE OF INVENTION: NUCLEIC ACIDS AND PROTEINS FROM STREPTOCOCCUS GROUPS A & B
  FILE REFERENCE:
  CURRENT APPLICATION NUMBER: US/11/434,137
  CURRENT FILING DATE: 2006-05-16
  PRIOR APPLICATION NUMBER: US 10/415,182
 PRIOR FILING DATE: 2003-04-28
  PRIOR APPLICATION NUMBER: PCT/GB01/04789
 PRIOR FILING DATE: 2001-10-29
  PRIOR APPLICATION NUMBER: GB-0026333.5
 PRIOR FILING DATE: 2000-10-27
  PRIOR APPLICATION NUMBER: GB-0028727.6
  PRIOR FILING DATE: 2000-11-24
  PRIOR APPLICATION NUMBER: GB-0105640.7
  PRIOR FILING DATE: 2001-03-07
 NUMBER OF SEQ ID NOS: 12025
  SOFTWARE: SeqWin99, version 1.02
; SEQ ID NO 8322
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Streptococcus pyogenes
US-11-434-137-8322
                         27.6%; Score 27; DB 7; Length 30;
  Query Match
 Best Local Similarity 66.7%; Pred. No. 8e+02;
 Matches
           4; Conservative 2; Mismatches
                                                  0; Indels
Qу
           1 TNWLAK 6
             1:11:1
Db
           7 TSWLSK 12
```

```
RESULT 21
S42364
aromatic-amino-acid transaminase (EC 2.6.1.57) II [validated] - Thermococcus litoralis
C; Species: Thermococcus litoralis
C;Date: 19-Mar-1997 #sequence revision 06-Jun-1997 #text change 09-Jul-2004
C; Accession: S42364
R; Andreotti, G.; Cubellis, M.V.; Nitti, G.; Sannia, G.; Mai, X.; Marino, G.; Adams, M.
Eur. J. Biochem. 220, 543-549, 1994
A; Title: Characterization of aromatic aminotransferases from the hyperthermophilic arc
A; Reference number: S42354; MUID: 94170805; PMID: 8125113
A; Accession: S42364
A; Molecule type: protein
A; Residues: 1-30
A; Cross-references: UNIPROT: Q9UWK8; UNIPARC: UPI00000629CB
C; Superfamily: aspartate transaminase
C; Keywords: aminotransferase
  Query Match
                          24.5%; Score 24; DB 2; Length 30;
 Best Local Similarity
                          50.0%; Pred. No. 2.6e+03;
                                3; Mismatches
           3; Conservative
                                                 0; Indels
                                                                 0; Gaps
                                                                              0;
Qу
           2 NWLAKV 7
              :1:11:
Db
           12 SWIAKL 17
```

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:48:32; Search time 92.5641 Seconds

(without alignments)

93.850 Million cell updates/sec

Title: US-10-821-669-1_COPY_743 761

Perfect score: 102

Sequence: 1 TKAIINYQYNQYTEEEKNN 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

> 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:* 7: geneseqp2003bs:* 8: geneseqp2004s:* 9: geneseqp2005s:* 10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1 2	102 102	100.0		-	ADW11062 ADW11114	Adw11062 Clostridi Adw11114 Clostridi
3	80	78.4	15	9	ADZ69805	Adz69805 Botulinum

```
RESULT 30
AEF23970
ID
     AEF23970 standard; peptide; 10 AA.
XX
AC
     AEF23970;
XX
DT
     09-MAR-2006 (first entry)
XX
DE
     Factor 8 inhibitor blocking peptide S2/74.
XX
     Factor 8 inhibitor; vaccine; hemophilia A; Hemostatic.
KW
XX
     Synthetic.
OS
XX
PN
     WO2006003183-A1.
XX
PD
     12-JAN-2006.
XX
PF
     01-JUL-2005; 2005WO-EP053139.
XX
PR
     02-JUL-2004; 2004EP-00015586.
XX
PΑ
     (JUNG/) JUNGBAUER A.
XX
PΙ
     Jungbauer A;
XX
DR
    WPI; 2006-109510/11.
XX
PT
    New peptides that block the effects of factor 8 inhibitors, useful in the
PT
     treatment of hemophilia A.
XX
PS
    Claim 7; Page 24; 51pp; German.
XX
    This invention describes novel peptides that block the effects of Factor
CC
CC
     8 inhibitors. The peptides contain at least two Tyr; at least one aa
CC
    that, under physiological conditions, carries a positive or negative
CC
    overall charge; at least one as with a hydrophobic aromatic residue; at
CC
    the N-terminus one of Pro, Arg, Tyr or Phe; at the C-terminus one of Asp,
CC
    Arg, Lys, His or Phe; but no Cys and/or Val-Val. The peptides may be
CC
    conjugated to a compound that extends its half-life in vivo, e.g.
CC
    poly(ethylene glycol), dextran or agarose, and may include aa with the D-
CC
    configuration. The peptides block the autoantibodies/alloantibodies
CC
    directed against Factor 8, where these Ab inactivate Factor 8 so that
CC
    exogenously administered Factor 8 is no longer effective. When used as
    vaccines they generate anti-idiotype antibodies that ensure long-term
CC
CC
    protection. Since the peptides are relatively small, they block only the
CC
    binding site of Factor 8 inhibitors; they can interfere with inhibitory
    antibodies having different epitope recognition patterns; generate an
CC
CC
    immune response only against the epitope of interest; are easily prepared
CC
    ; are unlikely to induce an immune response or have significant side
CC
    effects, and only affected subjects need to be treated. The novel
CC
    peptides are useful for the treatment of hemophilia A.
XX
SQ
    Sequence 10 AA;
 Query Match
                          33.3%; Score 34; DB 10; Length 10;
 Best Local Similarity
                          71.4%; Pred. No. 2e+02;
            5; Conservative
                                2; Mismatches
                                                  0; Indels 0; Gaps
Qу
            6 NYQYNQY 12
              : | | | | | :
```

Db 2 HYQYNQF 8

```
RESULT 50
AEF23919
ΙD
     AEF23919 standard; peptide; 10 AA.
XX
AC
     AEF23919;
XX
DT
     09-MAR-2006 (first entry)
XX
DE
     Factor 8 inhibitor blocking peptide S2/23.
XX
KW
     Factor 8 inhibitor; vaccine; hemophilia A; Hemostatic.
XX
     Synthetic.
OS
XX
PN
     WO2006003183-A1.
XX
PD
     12-JAN-2006.
XX
ΡF
     01-JUL-2005; 2005WO-EP053139.
XX
PR
     02-JUL-2004; 2004EP-00015586.
XX
PΑ
     (JUNG/) JUNGBAUER A.
XX
PΙ
     Jungbauer A;
XX
     WPI; 2006-109510/11.
DR
XX
PT
     New peptides that block the effects of factor 8 inhibitors, useful in the
PT
     treatment of hemophilia A.
XX
PS
     Claim 7; Page 24; 51pp; German.
XX
CC
     This invention describes novel peptides that block the effects of Factor
CC
     8 inhibitors. The peptides contain at least two Tyr; at least one aa
CC
     that, under physiological conditions, carries a positive or negative
     overall charge; at least one as with a hydrophobic aromatic residue; at
CC
CC
     the N-terminus one of Pro, Arg, Tyr or Phe; at the C-terminus one of Asp,
CC
     Arg, Lys, His or Phe; but no Cys and/or Val-Val. The peptides may be
CC
     conjugated to a compound that extends its half-life in vivo, e.g.
CC
     poly(ethylene glycol), dextran or agarose, and may include aa with the D-
CC
     configuration. The peptides block the autoantibodies/alloantibodies
CC
     directed against Factor 8, where these Ab inactivate Factor 8 so that
CC
     exogenously administered Factor 8 is no longer effective. When used as
CC
     vaccines they generate anti-idiotype antibodies that ensure long-term
CC
     protection. Since the peptides are relatively small, they block only the
CC
     binding site of Factor 8 inhibitors; they can interfere with inhibitory
CC
     antibodies having different epitope recognition patterns; generate an
CC
     immune response only against the epitope of interest; are easily prepared
CC
     ; are unlikely to induce an immune response or have significant side
CC
     effects, and only affected subjects need to be treated. The novel
CC
     peptides are useful for the treatment of hemophilia A.
XX
SQ
     Sequence 10 AA;
                          32.4%; Score 33; DB 10; Length 10;
  Query Match
  Best Local Similarity
                          83.3%; Pred. No. 2.8e+02;
 Matches
            5; Conservative
                                1; Mismatches
                                                  0; Indels 0; Gaps
Qу
            7 YQYNQY 12
              11111:
```

3 YQYNQF 8 Db

Search completed: November 1, 2006, 13:11:52

Job time : 112.564 secs

SCORE 1.3 BuildDate: 12/06/2005

```
RESULT 43
US-09-879-792-25
; Sequence 25, Application US/09879792
; Patent No. 6734006
; GENERAL INFORMATION:
; APPLICANT: Xiao, Yonghong
; APPLICANT: Gedrich, Richard
 TITLE OF INVENTION: Regulation of Human Transmembrane Serine
  TITLE OF INVENTION: Protease
 FILE REFERENCE: 02973.00035
 CURRENT APPLICATION NUMBER: US/09/879,792
  CURRENT FILING DATE: 2001-06-13
  PRIOR APPLICATION NUMBER: US 60/211,224
  PRIOR FILING DATE: 2000-06-13
  PRIOR APPLICATION NUMBER: US 60/283,353
 PRIOR FILING DATE: 2001-04-13
 PRIOR APPLICATION NUMBER: US 60/283,648
 PRIOR FILING DATE: 2001-04-16
                                _____ (Docket No. 6734006 LIO-81-WO)
; PRIOR APPLICATION NUMBER: PCT
 PRIOR FILING DATE: 2001-06-12
 NUMBER OF SEQ ID NOS: 36
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 25
  LENGTH: 17
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: BLOCKS BL00495L
US-09-879-792-25
 Query Match
                        30.4%; Score 31; DB 2; Length 17;
 Best Local Similarity 71.4%; Pred. No. 2.8e+02;
 Matches 5; Conservative 2; Mismatches 0; Indels 0; Gaps
Qу
           4 IINYQYN 10
             1111:1:
Db
           6 IINYEYD 12
```

```
RESULT 44
US-08-485-588-11
; Sequence 11, Application US/08485588
; Patent No. 5688938
; GENERAL INFORMATION:
     APPLICANT: Edward M. Brown
     APPLICANT: Steven C. Hebert
     APPLICANT: Forrest H. Fuller
     APPLICANT: James E. Garrett, Jr.
     TITLE OF INVENTION: CALCIUM RECEPTOR-ACTIVE
     TITLE OF INVENTION: MOLECULES
     NUMBER OF SEQUENCES: 20
     CORRESPONDENCE ADDRESS:
        ADDRESSEE: Lyon & Lyon
;
        STREET: First Interstate World Center STREET: Suite 4700
        STREET: 633 West Fifth Street
        CITY: Los Angeles
        STATE: California
        COUNTRY: USA
       ZIP: 90071
     COMPUTER READABLE FORM:
        MEDIUM TYPE: 3.5" Diskette, 1.44 Mb storage
        COMPUTER: IBM PC compatible
        OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: FASTSEQ
     CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/485,588
      FILING DATE: 7 June, 1995
      CLASSIFICATION: 435
     PRIOR APPLICATION DATA:
     PRIOR APPLICATION DATA: including application
   PRIOR APPLICATION DATA: described below: 9
     APPLICATION NUMBER: 08/353,784
      FILING DATE: 9 December, 1994
     APPLICATION NUMBER: PCT/US/94/12117
       FILING DATE: 21 October, 1994
     APPLICATION NUMBER: U.S. 08/292,827
    APPLICATION NUMBER: U.S. 08/292,827
FILING DATE: 23 August, 1994
APPLICATION NUMBER: U.S. 08/141,248
FILING DATE: 22 October, 1993
APPLICATION NUMBER: U.S. 08/009,389
FILING DATE: 23 February, 1993
APPLICATION NUMBER: U.S. 08/017,127
FILING DATE: 12 February, 1993
APPLICATION NUMBER: U.S. 07/934,161
FILING DATE: 21 August, 1992
APPLICATION NUMBER: U.S. 07/834,044
FILING DATE: 11 February, 1992
APPLICATION NUMBER: U.S. 07/749,451
      APPLICATION NUMBER: U.S. 07/749,451
     FILING DATE: 23 August, 1991
     ATTORNEY/AGENT INFORMATION:
    NAME: Heber, Sheldon O.
      REGISTRATION NUMBER: 38,179
      REFERENCE/DOCKET NUMBER: 213/005
     TELECOMMUNICATION INFORMATION:
      TELEPHONE: (213) 489-1600
        TELEFAX: (213) 955-0440
        TELEX: 67-3510
  INFORMATION FOR SEQ ID NO: 11:
     SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 19 amino acids
      TYPE: amino acids
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-485-588-11
 Query Match
                        30.4%; Score 31; DB 1; Length 19;
 Best Local Similarity 62.5%; Pred. No. 3.2e+02;
 Matches 5; Conservative 3; Mismatches 0; Indels
                                                            0; Gaps
                                                                       0;
Qу
          10 NQYTEEEK 17
            :11::111
           9 SQYSDEEK 16
```

```
RESULT 1
US-10-715-810-80
; Sequence 80, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
; APPLICANT: Kei, Aoki R.
  TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
 FILE REFERENCE: ALLE0004-100
 CURRENT APPLICATION NUMBER: US/10/715,810
; CURRENT FILING DATE: 2003-11-17
 NUMBER OF SEQ ID NOS: 105
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 80
   LENGTH: 15
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Peptide fragment (residues 745-759)
US-10-715-810-80
 Query Match
                        78.4%; Score 80; DB 5; Length 15;
 Best Local Similarity
                        100.0%; Pred. No. 0.00024;
 Matches 15; Conservative 0; Mismatches 0; Indels
Qу
           3 AIINYQYNQYTEEEK 17
            Db
           1 AIINYQYNQYTEEEK 15
```

```
RESULT 31
US-10-526-062-15
; Sequence 15, Application US/10526062
; Publication No. US20060141563A1
; GENERAL INFORMATION:
; APPLICANT: Biemans, Ralph
  APPLICANT: Denoel, Philippe
  APPLICANT: Feron, Christiane
  APPLICANT: Goraj, Karine
  APPLICANT: Kortekaas, Jeroen
  APPLICANT: Poolman, Jan
  APPLICANT: Tommassen, Jan
  APPLICANT: Weynants, Vincent
  TITLE OF INVENTION: Mutant Protein and Refolding Method
  FILE REFERENCE: VB60394
  CURRENT APPLICATION NUMBER: US/10/526,062
; CURRENT FILING DATE: 2005-02-28
  PRIOR APPLICATION NUMBER: PCT/EP03/009634
; PRIOR FILING DATE: 2003-08-28
; PRIOR APPLICATION NUMBER: GB 0220199.4
; PRIOR FILING DATE: 2002-08-30
 NUMBER OF SEQ ID NOS: 31
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 15
   LENGTH: 16
   TYPE: PRT
    ORGANISM: Neisseria meningitidis
US-10-526-062-15
  Query Match
                         27.5%; Score 28; DB 6; Length 16;
  Best Local Similarity
                         83.3%; Pred. No. 4e+02;
  Matches
           5; Conservative 1; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
          13 TEEEKN 18
             1:111
Db
           1 TDEEKN 6
```

```
RESULT 25
JC2059
homeobox 4 protein - common tobacco (fragment)
C; Species: Nicotiana tabacum (common tobacco)
C;Date: 30-Sep-1993 #sequence revision 20-Aug-1994 #text change 09-Jul-2004
C; Accession: JC2059
R; Feng, X.H.; Kung, S.D.
Biochem. Biophys. Res. Commun. 198, 1012-1019, 1994
A; Title: Identification of differentially expressed members of tobacco homeobox famili
A; Reference number: JC2057; MUID: 94161708; PMID: 7509595
A; Accession: JC2059
A; Molecule type: DNA
A; Residues: 1-19
A; Cross-references: UNIPROT: Q9SXV1; UNIPARC: UPI000017B0A8
A; Experimental source: leaf
C; Genetics:
A; Gene: Hot4
C; Keywords: homeobox
                          25.5%; Score 26; DB 2; Length 19;
  Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e+03;
          5; Conservative 0; Mismatches 0; Indels
 Matches
                                                                0; Gaps
                                                                           0;
          14 EEEKN 18
Qy
              Db
           1 EEEKN 5
```

```
RESULT 1
US-10-142-238A-70
; Sequence 70, Application US/10142238A
; Publication No. US20030087819A1
; GENERAL INFORMATION:
; APPLICANT: Bielicki, John K.
  TITLE OF INVENTION: CYSTEINE-CONTAINING PEPTIDES HAVING OXIDANT PROPERTIES
 FILE REFERENCE: IB-1705
  CURRENT APPLICATION NUMBER: US/10/142,238A
  CURRENT FILING DATE: 2002-08-19
  PRIOR APPLICATION NUMBER: US 60/289,944
  PRIOR FILING DATE: 2001-05-09
  NUMBER OF SEQ ID NOS: 84
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 70
  LENGTH: 22
  TYPE: PRT
  ORGANISM: ARTIFICIAL SEQUENCE
   FEATURE:
   NAME/KEY: PEPTIDE
   LOCATION: (1)..(22)
   OTHER INFORMATION: HUMAN GENETIC ORIGIN
US-10-142-238A-70
 Query Match
                        43.0%; Score 40; DB 4; Length 22;
 Best Local Similarity 43.8%; Pred. No. 31;
 Matches 7; Conservative 5; Mismatches
                                                              0; Gaps
                                                 4; Indels
                                                                          0;
           3 LNESINKAMININKFL 18
Qу
             Db
           3 LKDSLEQCLNNMNKFL 18
```

```
Sequence 387, Application US/11199853
; Publication No. US20060216309A1
 GENERAL INFORMATION:
    APPLICANT: David William Holden
    TITLE OF INVENTION: Identification of Genes
    NUMBER OF SEQUENCES: 501
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Patrea L. Pabst
      STREET: 2800 One Atlantic Center
      STREET: 1201 West Peachtree Street
      CITY: Atlanta
      STATE: Georgia
      COUNTRY: USA
      ZIP: 30309-3450
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/11/199,853
      FILING DATE: 09-AUG-2005
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US/08/871,355
      FILING DATE: 09-JUN-1997
      APPLICATION NUMBER: PCT/GB95/02875
      FILING DATE: 11-DEC-1995
      CLASSIFICATION:
    ATTORNEY/AGENT INFORMATION:
      NAME: Pabst, Patrea L.
      REGISTRATION NUMBER: 31,284
      REFERENCE/DOCKET NUMBER: RPMS 101 CON
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (404) 873-8794
      TELEFAX: (404) 873-8795
  INFORMATION FOR SEQ ID NO: 387:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 21 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
     TOPOLOGY: linear
    MOLECULE TYPE: protein
    HYPOTHETICAL: NO
US-11-199-853-387
  Query Match
                         32.3%; Score 30; DB 7; Length 21;
 Best Local Similarity 83.3%; Pred. No. 1.6e+02;
           5; Conservative 1; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
      · 12 ININKF 17
Qу
             11:11
Db
          10 INVNKF 15
```

```
RESULT 37
S12171
H+-transporting two-sector ATPase (EC 3.6.3.14) lipid-binding protein - fission yeast
C; Species: mitochondrion Schizosaccharomyces pombe
C;Date: 18-Feb-1994 #sequence revision 10-Nov-1995 #text change 09-Jul-2004
C; Accession: S12171
R; Massardo, D.R.
Nucleic Acids Res. 18, 6429, 1990
A; Title: Nucleotide sequence of the genes encoding tRNA(his), tRNA(pro) and tRNA(gln)
A; Reference number: S12171; MUID: 91057135; PMID: 2243789
A; Accession: S12171
A; Status: preliminary; translation not shown
A; Molecule type: DNA
A; Residues: 1-14
A; Cross-references: UNIPROT: P21535; UNIPARC: UPI000016D64B; EMBL: X54552; NID: g13659; PI
C; Genetics:
A; Genome: mitochondrion
A; Genetic code: SGC2
C; Keywords: hydrolase; mitochondrion
 Query Match
                          23.7%; Score 22; DB 2; Length 14;
  Best Local Similarity 50.0%; Pred. No. 3.5e+03;
          3; Conservative 3; Mismatches 0; Indels
                                                                  0; Gaps
            3 LNESIN 8
Qу
              : | : | : |
Db
            7 INDSLN 12
```

```
RESULT 32
P91713 DUGTI
     P91713 DUGTI
ID
                   PRELIMINARY;
                                 PRT:
                                         27 AA.
     P91713;
AC
DT
     01-MAY-1997, integrated into UniProtKB/TrEMBL.
     01-MAY-1997, sequence version 1.
DT
     07-FEB-2006, entry version 23.
DT
DΕ
     Homeodomain protein (Fragment).
     Name=DthoxB;
GN
os
     Dugesia tigrina (Planarian).
OC
    Eukaryota; Metazoa; Platyhelminthes; Turbellaria; Seriata; Tricladida;
     Paludicola; Dugesiidae; Girardia.
OC
OX
     NCBI TaxID=6162;
RN
     [1]
RP
    NUCLEOTIDE SEQUENCE.
RX
    MEDLINE=97158715; PubMed=9006075;
RA
    Bayascas J.R., Castillo E., Munoz-Marmol A.M., Salo E.B.;
    "Planarian Hox genes: novel patterns of expression during
RT
RT
    regeneration.";
    Development 124:141-148(1997).
RL
RN
RP
    NUCLEOTIDE SEQUENCE.
RX
    MEDLINE=99016215; PubMed=9799427; DOI=10.1007/s004270050204;
RA
    Bayascas J.R., Castillo E., Salo E.B.;
    "Platyhelminthes have a hox code differentially activated during
RT
RT
    regeneration, with genes closely related to those of spiralian
RT
    protostomes.";
RL
    Dev. Genes Evol. 208:467-473(1998).
    -!- SUBCELLULAR LOCATION: Nuclear (By similarity).
CC
    ______
CC
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    EMBL; X95415; CAA64695.1; -; Genomic_DNA.
DR
    GO; GO:0005634; C:nucleus; IEA.
DR
    GO; GO:0003700; F:transcription factor activity; IEA.
DR
DR
    GO; GO:0006355; P:regulation of transcription, DNA-dependent; IEA.
DR
    InterPro; IPR001356; Homeobox.
DR
    Pfam; PF00046; Homeobox; 1.
DR
    PRINTS; PR00024; HOMEOBOX.
KW
    DNA-binding; Homeobox; Nuclear protein.
    NON TER
FT
                 1
                    1
                 27
FT
    NON TER
                       27
SQ
    SEQUENCE 27 AA; 3339 MW; 9B4F2D5E657EB7F8 CRC64;
                        30.1%; Score 28; DB 2; Length 27;
 Query Match
 Best Local Similarity 83.3%; Pred. No. 7.7e+03;
           5; Conservative 1; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
          13 NINKFL 18
Qу
             1111:1
Db
           1 NINKYL 6
```

```
RESULT 34
Q4YZJ6 PLABE
     Q4YZJ6 PLABE
ΙD
                    PRELIMINARY;
                                   PRT;
                                           30 AA.
AC
     Q4YZJ6;
     05-JUL-2005, integrated into UniProtKB/TrEMBL.
DT
DT
     05-JUL-2005, sequence version 1.
     07-FEB-2006, entry version 4.
DT
DE
     Hypothetical protein (Fragment).
GN
    ORFNames=PB103726.00.0;
OS
     Plasmodium berghei.
OC
     Eukaryota; Alveolata; Apicomplexa; Haemosporida; Plasmodium.
OX
    NCBI TaxID=5821;
RN
     [1]
RP
    NUCLEOTIDE SEQUENCE.
     PubMed=15637271; DOI=10.1126/science.1103717;
RX
RA
     Hall N., Karras M., Raine J.D., Carlton J.M., Kooij T.W.A.,
     Berriman M., Florens L., Janssen C.S., Pain A., Christophides G.K.,
RA
RA
     James K., Rutherford K., Harris B., Harris D., Churcher C.M.,
RA
     Quail M.A., Ormond D., Doggett J., Trueman H.E., Mendoza J.,
RA
    Bidwell S.L., Rajandream M.A., Carucci D.J., Yates J.R. III,
RA
    Kafatos F.C., Janse C.J., Barrell B.G., Turner C.M.R., Waters A.P.,
RA
RT
     "A comprehensive survey of the Plasmodium life cycle by genomic,
RT
    transcriptomic, and proteomic analyses.";
RL
    Science 307:82-86(2005).
CC
    -!- CAUTION: The sequence shown here is derived from an
CC
        EMBL/GenBank/DDBJ whole genome shotqun (WGS) entry which is
CC
        preliminary data.
CC
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
DR
    EMBL; CAAI01001503; CAH96546.1; -; Genomic DNA.
    Hypothetical protein.
KW
FT
    NON TER
                 1
                          1
SQ
    SEQUENCE
                30 AA; 3732 MW; EFDC5780BC5A42A9 CRC64;
 Query Match
                          30.1%; Score 28; DB 2; Length 30;
 Best Local Similarity 83.3%; Pred. No. 8.5e+03;
           5; Conservative
                                1; Mismatches
                                                 0; Indels
                                                               0; Gaps
                                                                             0;
          13 NINKFL 18
Qу
              1111:1
Db
           8 NINKYL 13
```

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:48:32; Search time 92.5641 Seconds

(without alignments)

93.850 Million cell updates/sec

US-10-821-669-1 COPY, 771 789 Title:

Perfect score: 93

1 SKLNESINKAMININKFLN 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

2589679 seqs, 457216429 residues Searched:

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

욯

1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:* 7: geneseqp2003bs:* 8: geneseqp2004s:*

9: geneseqp2005s:* 10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Descripti	on
1	93	100.0	19	9.	ADW11064	Adw11064	Clostridi
2	93	100.0	27	9	ADW11115	Adw11115	
3	46	49.5	27	9	ADW11116	Adw11116	Clostridi
4	40	43.0	22	7	ADC29695	Adc29695	Antioxida
5	40	43.0	23	3	AAY89467	Aay89467	Core poly
6	. 40	43.0	23	3	AAY89409	Aay89409	Core poly

```
RESULT 25
ADZ15100
ID
     ADZ15100 standard; peptide; 22 AA.
XX
AC
     ADZ15100;
XX
DT
     16-JUN-2005 (first entry)
XX
DE
     Picornavirus 2A-like NPG/P peptide #45.
                                                      785-803
XX
KW
     cancer; Cytostatic; neoplasm.
XX
os
     Picornaviridae.
XX
PN
     WO2005030139-A2.
XX
     07-APR-2005.
PD
XX
PF
     23-SEP-2004; 2004WO-US031504.
XX
     26-SEP-2003; 2003US-0506182P.
PR
XX
     (NOVS ) NOVARTIS AG.
PΑ
XX
PΙ
    Hallenbeck PL, Hay CM,
                             Ganesh S, Police SR, Xu L, Yang J;
    Cheng C;
PΙ
XX
DR
    WPI; 2005-262902/27.
XX
     New Seneca Valley virus nucleic acid or polypeptide, useful in preparing
PT
PT
     a composition for treating cancer or inhibiting cancer progression.
XX
PS
    Disclosure; Fig 70; 198pp; English.
XX
CC
    The invention relates to a new isolated Seneca Valley virus (SVV) nucleic
CC
     acid. The nucleic acid is useful in preparing a composition for treating
CC
     cancer or inhibiting cancer progression. The present sequence represents
CC
     the amino acid sequence of a picornavirus 2A-like NPG/P peptide.
XX
SQ
    Sequence 22 AA;
 Query Match
                          34.3%; Score 35; DB 9; Length 22;
                         100.0%; Pred. No. 1.8e+02;
 Best Local Similarity
           6; Conservative 0; Mismatches
                                                 0; Indels
                                                                             0;
                                                                0; Gaps
           2 KFLNQC 7
Qу
              111111
Db
           8 KFLNQC 13
```

```
RESULT 1
US-11-335-891-92
; Sequence 92, Application US/11335891
; Publication No. US20060159659A1
; GENERAL INFORMATION:
 APPLICANT: HALLENBECK, PAUL
  TITLE OF INVENTION: SENECA VALLEY VIRUS BASED COMPOSITIONS AND METHODS FOR
  TITLE OF INVENTION: TREATING DISEASE
  FILE REFERENCE: 287037.127US2
  CURRENT APPLICATION NUMBER: US/11/335,891
  CURRENT FILING DATE: 2006-01-19
  PRIOR APPLICATION NUMBER: 60/506,182
  PRIOR FILING DATE: 2003-09-26
  PRIOR APPLICATION NUMBER: PCT/US2004/031504
  PRIOR FILING DATE: 2004-09-23
  PRIOR APPLICATION NUMBER: 60/664,442
  PRIOR FILING DATE: 2005-03-23
  PRIOR APPLICATION NUMBER: 60/726,313
 PRIOR FILING DATE: 2005-10-13
  NUMBER OF SEQ ID NOS: 227
  SOFTWARE: PatentIn Ver. 3.2
; SEQ ID NO 92
   LENGTH: 22
   TYPE: PRT
   ORGANISM: Ljungan virus
US-11-335-891-92
 Query Match
                         34.3%; Score 35; DB 7; Length 22;
 Best Local Similarity 100.0%; Pred. No. 27;
          6; Conservative 0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           2 KFLNOC 7
             Db
           8 KFLNQC 13
```

```
RESULT 28
ADZ15102
ΙD
    ADZ15102 standard; peptide; 22 AA.
XX
AC
    ADZ15102;
XX
DT
     16-JUN-2005 (first entry)
XX
DE
     Picornavirus 2A-like NPG/P peptide #47.
XX
KW
     cancer; Cytostatic; neoplasm.
XX
OS
     Picornaviridae.
XX
PN
     WO2005030139-A2.
XX
PD
     07-APR-2005.
XX
    23-SEP-2004; 2004WO-US031504.
PF
XX
     26-SEP-2003; 2003US-0506182P.
PR
XX
     (NOVS ) NOVARTIS AG.
PA
XX
    Hallenbeck PL, Hay CM, Ganesh S, Police SR, Xu L, Yang J;
PΙ
PΙ
     Cheng C;
XX
    WPI; 2005-262902/27.
DR
XX
PT
    New Seneca Valley virus nucleic acid or polypeptide, useful in preparing
PT
     a composition for treating cancer or inhibiting cancer progression.
XX
PS
    Disclosure; Fig 70; 198pp; English.
XX
CC
    The invention relates to a new isolated Seneca Valley virus (SVV) nucleic
CC
     acid. The nucleic acid is useful in preparing a composition for treating
CC
     cancer or inhibiting cancer progression. The present sequence represents
CC
     the amino acid sequence of a picornavirus 2A-like NPG/P peptide.
XX
SQ
    Sequence 22 AA;
 Query Match
                          34.3%; Score 35; DB 9; Length 22;
 Best Local Similarity 100.0%; Pred. No. 1.8e+02;
            6; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
           2 KFLNQC 7
Qу
              1111
Db
           8 KFLNQC 13
```

```
RESULT 45
ADW30996
ID
     ADW30996 standard; peptide; 9 AA.
XX
AC
     ADW30996;
XX
     10-MAR-2005 (first entry)
DT
XX
DΕ
     HLA binding epitope #1746.
XX
KW
     Virucide; cytostatic; gene therapy; vaccine; epitope; cytotoxic T cell;
KW
     MHC class I; CTL; HTL; A2-restricted cytotoxic lymphocyte; HLA;
KW
     viral disease; cancer.
XX
OS
     Unidentified.
XX
PN
     WO2003040165-A2.
XX
     15-MAY-2003.
PD
XX
     18-OCT-2001; 2001WO-US051650.
PF
XX
PR
     19-OCT-2000; 2000US-0242350P.
PR
     20-APR-2001; 2001US-0285624P.
XX
PΑ
     (EPIM-) EPIMMUNE INC.
XX
PΙ
     Sette A, Sidney J, Southwood S;
XX
DR
     WPI; 2003-441519/41.
XX
PT
     New composition comprising at least one peptide having allele-specific
PT
     binding motifs for HLA, useful for preventing, treating or diagnosing
PT
     viral diseases and cancer.
XX
PS
     Claim 1; Page 52-379; 382pp; English.
XX
CC
     The invention relates to a composition comprising at least one peptide
CC
     having an isolated, prepared epitope selected from any of the sequences
CC
     from 30 lists given in the specification. Also disclosed is a method for
CC
     inducing a cytotoxic T cell response against a pre-selected antigen in a
CC
     patient expressing a specific MHC class I allele by contacting cytotoxic
CC
     T cells from the patient with the composition cited above. The
CC
     composition comprises an epitope that is joined by an amino acid linker.
CC
     The epitope is admixed or joined to a CTL or HTL epitope. The epitope is
CC
    bound to an HLA molecule on the antigen-presenting cell, where when an A2
CC
     -restricted cytotoxic lymphocyte (CTL) is present, a receptor of the CTL
CC
    binds to a complex of the HLA molecule and the epitope. Specifically
CC
    claimed are peptides having allele-specific binding motifs for HLA. The
CC
     compositions and methods are useful for preventing, treating or
CC
     diagnosing viral diseases and cancer. The peptide epitopes are useful as
     diagnostic agents for evaluating immune responses, for making antibodies
CC
CC
     and for evaluating efficacy of a vaccine. Sequences given in ADW29251-
CC
    ADW37745 represent epitopes of the invention as given in Tables 2-31.
XX
SQ
    Sequence 9 AA;
  Query Match
                          30.4%; Score 31; DB 7; Length 9;
  Best Local Similarity
                         57.1%; Pred. No. 2.1e+06;
            4; Conservative
                                 3; Mismatches
                                                  0;
                                                      Indels 0; Gaps
```

13 MNSMIPY 19 Qу :11::11 Db 2 LNSLVPY 8

```
RESULT 1
US-10-715-810-13
; Sequence 13, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
 APPLICANT: Li, Shengwen
 APPLICANT: Kei, Aoki R.
  TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
  FILE REFERENCE: ALLE0004-100
 CURRENT APPLICATION NUMBER: US/10/715,810
  CURRENT FILING DATE: 2003-11-17
  NUMBER OF SEQ ID NOS: 105
  SOFTWARE: PatentIn version 3.2
; SEO ID NO 13
   LENGTH: 20
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 7.87-806)
US-10-715-810-13
 Query Match
                         89.2%; Score 91; DB 5; Length 20;
                         100.0%; Pred. No. 1.1e-07;
  Best Local Similarity
 Matches 17; Conservative 0; Mismatches 0;
                                                    Indels
           3 FLNQCSVSYLMNSMIPY 19
Qу
             Db
           1 FLNQCSVSYLMNSMIPY 17
```

```
RESULT 2
US-10-715-810-28
; Sequence 28, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
; APPLICANT: Kei, Aoki R.
 TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
 FILE REFERENCE: ALLE0004-100
 CURRENT APPLICATION NUMBER: US/10/715,810
 CURRENT FILING DATE: 2003-11-17
; NUMBER OF SEQ ID NOS: 105
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 28
  LENGTH: 20
   TYPE: PRT
  ORGANISM: Artificial Sequence
   OTHER INFORMATION: Peptide fragment (residues 350-369)
US-10-715-810-28
 Query Match
                        89.2%; Score 91; DB 5; Length 20;
                        100.0%; Pred. No. 1.1e-07;
 Best Local Similarity
 Matches 17; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
           3 FLNQCSVSYLMNSMIPY 19
Qу
            Db
           1 FLNQCSVSYLMNSMIPY 17
```

```
RESULT 3
US-10-715-810-83
; Sequence 83, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
 APPLICANT: Li, Shengwen
 APPLICANT: Kei, Aoki R.
 TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
  FILE REFERENCE: ALLE0004-100
  CURRENT APPLICATION NUMBER: US/10/715,810
 CURRENT FILING DATE: 2003-11-17
 NUMBER OF SEQ ID NOS: 105
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 83
   LENGTH: 20
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 787-806)
US-10-715-810-83
 Query Match
                         89.2%; Score 91; DB 5; Length 20;
 Best Local Similarity
                         100.0%; Pred. No. 1.1e-07;
         17; Conservative 0; Mismatches 0;
                                                    Indels
Qу
           3 FLNQCSVSYLMNSMIPY 19
             11111111111111
Db
           1 FLNQCSVSYLMNSMIPY 17
```

```
RESULT 40
US-10-378-173-114
; Sequence 114, Application US/10378173
; Publication No. US20030232014A1
; GENERAL INFORMATION:
; APPLICANT: Burke et al.
 TITLE OF INVENTION: PHOSPHORYLATED PROTEINS AND USES RELATED THERETO
 FILE REFERENCE: MDSP-P01-023
; CURRENT APPLICATION NUMBER: US/10/378,173
; CURRENT FILING DATE: 2003-03-03
; PRIOR APPLICATION NUMBER: 60/360787
 PRIOR FILING DATE: 2002-03-01
 NUMBER OF SEQ ID NOS: 231
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 114
  LENGTH: 11
   TYPE: PRT
;
  ORGANISM: Artificial Sequence
  FEATURE:
  OTHER INFORMATION: phosphorylated peptide
   NAME/KEY: MISC_FEATURE
;
  LOCATION: (6)..(6)
   OTHER INFORMATION: phosphorylation
   FEATURE:
   NAME/KEY: MISC FEATURE
   LOCATION: (8)..(8)
   OTHER INFORMATION: phosphorylation
US-10-378-173-114
 Query Match
                        29.4%; Score 30; DB 4; Length 11;
 Best Local Similarity 55.6%; Pred. No. 5.5e+02;
         5; Conservative 2; Mismatches 2; Indels
                                                               0; Gaps
                                                                           0;
Qу
          10 SYLMNSMIP 18
             :1:111 1
Db
           2 AYMMNSQSP 10
```

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:29:25; Search time 84.8 Seconds

(without alignments)

102.442 Million cell updates/sec

Title: US-10-821-669-1 COPY 785 803

Perfect score: 102

Sequence: 1 NKFLNQCSVSYLMNSMIPY 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 segs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

A Geneseq 8:* Database :

> 1: genesegp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:* 7: geneseqp2003bs:*
> 8: geneseqp2004s:*

9: geneseqp2005s:* 10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	102	100.0	19	9	ADW11065	Adw11065 Clostridi
2	102	100.0	27	9	ADW11116	Adw11116 Clostridi
3	91	89.2	20	9	ADZ69738	Adz69738 Botulinum
4	91	89.2	20	9	ADZ69808	Adz69808 Botulinum
5	91	89.2	20	9	ADZ69753	Adz69753 Botulinum
6	49	48.0	27	9	ADW11115	Adwll115 Clostridi
7	41	40.2	16	6	ABP83366	Abp83366 G protein
8	38	37.3	26	8	ABO53994	Abo53994 Human

SCORE Search Results Details for Application 10821669 and Search Result us-10-821-669-1_copy_813_831.szlm30.rup.

Score Home Page

Retrieve Application List

SCORE System **Overview**

SCORE FAQ

Comments / Suggestions

This page gives you Search Results detail for the Application 10821669 and Search Result us-10-821-669-1_copy_813_831.szlm30.rup. start

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on:

November 1, 2006, 13:04:05; Search time 111.239 Seconds

(without alignments)

157.995 Million cell updates/sec

Title:

US-10-821-669-1_COPY_813_831

Perfect score: 94

1 ASLKDALLKYIYDNRGTLI 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched:

Sequence:

2849598 seqs, 925015592 residues

Total number of hits satisfying chosen parameters:

37017

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database :

UniProt 7.2:*

1: uniprot sprot:*

2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID		Description
1	42	44.7	22	2	Q4YAS5 PLABE		Q4yas5 plasmodium
2	41	43.6	26		Q4Y322 PLACH		Q4y322 plasmodium
3	35	37.2	28	2	P89161 SIVCZ		P89161 chimpanzee
4	34	36.2	20	2	Q9R4D2_HAEPA	•	Q9r4d2 haemophilus

5	32	34.0	28	2	Q4X2V6_PLACH	Q4x2v6	plasmodium
6	31	33.0	21	2	O25621 HELPY	025621	helicobacte
7	31	33.0	23	2	Q4Z2T5 PLABE	04z2t5	plasmodium
8	31	33.0	25	2	Q4YGW4_PLABE		plasmodium
9							
	31	33.0	27	2	Q4X7E7_PLACH		plasmodium
10	31	33.0	27	2	Q4XIW2_PLACH	Q4xiw2	plasmodium
11	31	33.0	29	2	Q57I38 SALCH	Q57i38	salmonella
12	31	33.0	29	2	Q8ZL14 SALTY		salmonella
13	31	33.0	30	2			
					Q4YJP6_PLABE		plasmodium
14	30	31.9	21	1	OMP1_HAEPR		haemophilus
15	30	31.9	26	2	Q4RDE7_TETNG	Q4rde7	tetraodon n
16	30	31.9	29	2	062784 ISOMA	062784	isoodon mac
17	29	30.9	17	2	Q9QV51 9MURI		mus sp. 60
18	29	30.9	20	1	OMPH_HAEGA		haemophilus
19	28	29.8	10	2	Q9PRU1_CYNPY	Q9pru1	cynops pyrr
20	28	29.8	13	2	Q6TKR2_HUMAN	Q6tkr2	homo sapien
21	28	29.8	22	2	Q96Q57 HUMAN		homo sapien
22	28	29.8	23	2	Q7RLB8 PLAYO		plasmodium
23	28	29.8	24	2	Q4XDJ9_PLACH		plasmodium
24	28	29.8	24	2	Q9R5S1_ENTHR	Q9r5s1	enterococcu
25	28	29.8	25	2	Q56CB0 9HIV1	056cb0	human immun
26	28	29.8	26	2	Q6EML2 MELGA		meleagris g
27	28	29.8	26	2	Q6EML3_CHICK		gallus gall
28	28	29.8	27	2	Q6U210_HUMAN	Q6u210	homo sapien
29	28	29.8	27	2	Q4X644 PLACH	Q4x644	plasmodium
30	28	29.8	30	2	Q4YER7 PLABE		plasmodium
31	27.5	29.3	30	2	Q4Y299 PLACH		plasmodium
					—		
32	27	28.7	19	2	Q53502_LACPA		lactobacill
33	27	28.7	20	1	PEPT_FUSNP	P81207	fusobacteri
34	27	28.7	20	2	Q4XVG2 PLACH	Q4xvq2	plasmodium
35	27	28.7	20	2	Q4YMR5 PLABE		plasmodium
36	27	28.7	20	2	Q9PS63_CHICK		gallus gall
37	27	28.7	22	1	OMPH_PASGA		pasteurella
38	27	28.7	22	1	OMPH_PASVO	P80452	pasteurella
39	27	28.7	23	2	Q8MFJ9_9FILI	Q8mfj9	hymenophyll
40	27	28.7	23	2	Q8MFK5_9FILI		hymenophyll
41	27	28.7	24	2	Q4X3E2_PLACH		plasmodium
42	27			2			
		28.7	24		Q4Y887_PLACH	_	plasmodium
43	27	28.7	26	1	PSAE_SYNVU		synechococc
44	27	28.7	26	2	Q4XR84_PLACH	Q4xr84	plasmodium
45	27	28.7	28	2	Q4YGQ5_PLABE	Q4yqq5	plasmodium
46	27	28.7	28	2	Q7R7G7 PLAYO		plasmodium
47	27	28.7	29	2	Q4X4G9 PLACH		
							plasmodium
48	27	28.7	29	2	Q4Y032_PLACH	_	plasmodium
49	27	28.7	29	2	Q4YBJ7_PLABE	Q4ybj7	plasmodium
50	27	28.7	30	2	Q4XEF3 PLACH	O4xef3	plasmodium
51	27	28.7	30	2	Q7RGP6 PLAYO		plasmodium
52	27	28.7	30	2	Q65TQ7 MANSM		
							mannheimia
53	26.5	28.2	20	2	Q63667_RAT		rattus norv
54	26.5	28.2	23	2	Q5H797_9NEOP	Q5h797	hodotermops
55	26	27.7	15	2	Q70Y59 ROSOF	070v59	rosmarinus
56	26	27.7	15	2	Q9R4K9 SPIME	-	spiroplasma
57	26	27.7	19	2	Q9BVX6 HUMAN		
							homo sapien
58	26	27.7	19	2	Q4XUW5_PLACH		plasmodium
59	26	27.7	19	2	Q4XZW1_PLACH		plasmodium
60	26	27.7	19	2	Q70Y73 9LAMI	Q70y73	pycnostachy
61	26	27.7	20	2	Q9TRM7 BOVIN		bos taurus
62	26	27.7	20	2	Q9R5E3 AERHY		aeromonas h
					—		
63	26	27.7	21	1	OMP1_ACTEU		actinobacil
64	26	27.7	21	1	OMP1_ACTPL		actinobacil
65	26	27.7	21	1	OMP1 ACTSU	P80442	actinobacil
					-		

66	26	27.7	22	2	Q4YG47 PLABE		Q4yg47	plasmodium
67	26	27.7	22	2	Q9TC82 CENEN			centropomus
68	26							
		27.7	22	2	Q9TC84_9PERO			centropomus
69	26	27.7	23	2	Q4XH19_PLACH		Q4xh19	plasmodium
70	26	27.7	23	2	Q4Y4S8 PLACH		Q4y4s8	plasmodium
71	26	27.7	24	. 2	Q4XS89 PLACH			plasmodium
72	26	27.7	25	2	Q4YSL4_PLABE			plasmodium
73	26	27.7	26	2	Q684V1 9SCOR		Q684v1	mesobuthus
74	26	27.7	27	2	Q06699 YEAST			saccharomyc
75	26	27.7	27	2				
					Q4YHV3_PLABE			plasmodium
76	26	27.7	28	2	Q4XCSO_PLACH		Q4xcs0	plasmodium
77	26	27.7	28	2	Q4XFN5 PLACH		Q4xfn5	plasmodium
78	26	27.7	28	2	Q4XR83 PLACH			plasmodium
79	26							=
		27.7	28	2	Q4YBP0_PLABE			plasmodium
80	26	27.7	28	2	Q4YEZ4_PLABE		Q4yez4	plasmodium
81	26	27.7	28	2	Q5G7D5 9HIV1		05a7d5	human immun
82	26	27.7	29	1	ATPA BRYMA			bryopsis ma
83	26	27.7	29	2	Q46303_CLOPE			clostridium
84	26	27.7	29	2	Q8CJ37_MOUSE		Q8cj37	mus musculu
85	26.	27.7	30	2	Q7RT29 PLAYO			plasmodium
86	26	27.7	30	2	Q7M313 PIG			sus scrofa
. 87	26	27.7	30	2	Q3D251_STRAG			streptococc
88	26	27.7	30	2	Q3DNJ4 STRAG		Q3dnj4	streptococc
89	26	27.7	30	2	Q4MN89 BACCE			bacillus ce
90	26	27.7	30	2	Q2NCJ0 9SPHN			erythrobact
								_
91	26	27.7	. 30	2	Q57CL6_BRUAB			brucella ab
92	26	27.7	30	2	Q2YRG2_BRUA2		Q2yrg2	brucella ab
93	25.5	27.1	22	2	Q4Y4T1 PLACH		04v4t1	plasmodium
94	25.5	27.1	30	1	Y357 BORBU	•		borrelia bu
95	25	26.6	16	2	Q90XT4_PHORB			
								phoenicopte
96	25	26.6	18	2	Q53BU2_SCYSP			scytalopus
97	25	26.6	18	2	Q53BU3_9PASS		Q53bu3	pteroptocho
98	25	26.6	18	2	Q53BU4 9PASS			chamaeza me
99	25	26.6	18	2	Q53BU5 9DEND			xiphorhynch
100	25	26.6	18	2	Q53BU6 9DEND			
								xiphocolapt
101	25	26.6	18	2	Q53BU7_9DEND			sittasomus
102	25	26.6	18	2	Q53BU8 9FURN		Q53bu8	nasica long
103	25	26.6	18	2	Q53BU9 9DEND			xiphorhynch
104	25	26.6	18	2	Q53BV0_9FURN			glyphorynch
105	25	26.6		2				
			18		Q53BV1_9DEND			drymornis b
106	25	26.6	18	2			Q53bv2	dendrocincl
107	25	26.6	18	2	Q53BV4 9DEND		053bv4	campylorham
108	25	26.6	18	2	Q53BV5 9FURN			pygarrhicha
109	25	26.6	18	2	- .			
					Q53BV6_9FURN	8		xenops ruti
110	25	26.6	18	2	Q53BV7_9FURN			xenops minu
111	25	26.6	18	2	Q53BV8 9FURN		Q53bv8	lochmias ne
112	25	26.6	18	2	Q53BV9 9FURN			sclerurus s
113	25	26.6	18	2	Q53BW0 9FURN			sclerurus m
114	25	26.6	18	2	Q53BW1_9FURN			automolus l
115	25	26.6	18	2	Q53BW2_9FURN		Q53bw2	thripadecte
116	25	26.6	18	2	Q53BW3 9FURN		053bw3	philydor at
117	25	26.6	18	2	Q53BW4 9FURN			berlepschia
118	25	26.6	18	2	Q53BW5 9FURN			margarornis
					_			
119	25	26.6	18	2	Q53BW6_9FURN			coryphister
120	25	26.6	18	2	Q53BW7_9FURN		Q53bw7	anumbius an
121	25	26.6	18	2	Q53BW8 9FURN			phacellodom
122	25	26.6	18	2	Q53BW9 9FURN			asthenes ca
123	25	26.6	18	2	Q53BX0_9FURN	•		
								cranioleuca
124	25	26.6	18	2	Q53BX2_9FURN			leptasthenu
125	25	26.6	18	2	Q53BX3_9FURN		Q53bx3	furnarius c
126	25	26.6	18	2	Q53BX4 9FURN			cinclodes f
					_			

127	25	26.6	18	2	Q53BX5 9FURN	053bx5	upucerthia
128	25	26.6	18	2	Q53BX7 9FURN		geositta ru
129	25	26.6	18	2	Q5XMF3 9AVES		oxyura macc
130	25	26.6	18	2	Q5XMF3_9AVES Q5XMF4 9AVES		oxyura aust
131	25	26.6	18	2	Q5XMF5 OXYJA		oxyura jama
132	25	26.6	18	2	Q5XMF5_OX10A Q5XMF6 OXYVI		oxyura vitt
132	25			2	_		
		26.6	18		Q5XMF7_9AVES		nomonyx dom
134	25	26.6	18	2	Q68LC1_9PASS		phaenostict
135	25	26.6	18	2	Q68LC2_9PASS		rhegmatorhi
136	25	26.6	18	2	Q68LC3_9PASS		gymnopithys
137	25	26.6	18	2	Q68LC4_9PASS		pithys albi
138	25	26.6	18	2	Q68LC5_9PASS		myrmornis t
139	25	26.6	18	2	Q68LC6_9PASS		gymnocichla
140	25	26.6	18	2	Q68LC8_9PASS		myrmeciza f
141	25	26.6	18	2	Q68LC9_9PASS		myrmeciza l
142	25	26.6	18	2	Q68LD0_9PASS		myrmeciza h
143	25	26.6	18	2	Q68LD1_9PASS	Q681d1	myrmeciza g
144	25	26.6	18	2	Q68LD2_9PASS	Q681d2	schistocich
145	25	26.6	18	2	Q68LD3_9PASS		sclateria n
146	25	26.6	18	2	Q68LD4_9PASS		hypocnemoid
147	25	26.6	18	2	Q68LD5_9PASS	Q681d5	myrmochanes
148	25	26.6	18	2	Q68LD6_9PASS	Q681d6	hypocnemis
149	25	26.6	18	2	Q68LD7_9PASS	Q681d7	dichrozona
150	25	26.6	18	2	Q68LD8 9PASS	Q681d8	myrmoborus
151	25	26.6	18	2	Q68LD9 9PASS	Q681d9	neoctantes
152	25	26.6	18	2	Q68LE1 9PASS	Q681e1	cercomacra
153	25	26.6	18	2	Q68LE2_9PASS	Q681e2	myrmorchilu
154	25	26.6	18	2	Q68LE3 9PASS		formicivora
155	25	26.6	18	2	Q68LE4 9PASS	Q681e4	drymophila
156	25	26.6	18	2	Q68LE5 9PASS		terenura hu
157	25	26.6	18	2	Q68LE6 9PASS		myrmotherul
158	25	26.6	18	2	Q68LE7 9PASS		myrmotherul
159	25	26.6	18	2	Q68LE8 MYRAX		myrmotherul
160	25	26.6	18	2	Q68LF0 MYRLE		myrmotherul
161	25	26.6	18	2	Q68LF2 9PASS		microrhopia
162	25	26.6	18	2	Q68LF3 9PASS		herpsilochm
163	25	26.6	18	2	Q68LF4 9PASS		dysithamnus
164	25	26.6	18	2	Q68LF5 9PASS		thamnomanes
165	25	26.6	18	2	Q68LF6 9PASS		thamnistes
166	25	26.6	18	2	Q68LF7 9PASS		pygiptila s
167	25	26.6	18				megastictus
168	25	26.6	18	2	Q68LF9 9PASS		thamnophilu
169	25	26.6	18	2	Q68LG0 9PASS		thamnophilu
170	25	26.6	18	2	Q68LG1 9PASS		thamnophilu
171	25	26.6	18	2	Q68LG2 9PASS		thamnophilu
172	25	26.6	18	2	Q68LG4 9PASS	-	taraba majo
173	25	26.6	18	2	Q68LG5 9PASS		batara cine
174	25	26.6	18	2	Q68LG6 9PASS	-	hypoedaleus
175	25	26.6	18	2	Q68LG7 9PASS		mackenziaen
176	25	26.6	18	2	Q68LG8_9PASS		fredericken
177	25	26.6	18	2	Q6UQQ7 9PASE	_	anomalospiz
178	25	26.6	18	2	Q6UQQ8 9PASS		vidua orien
179	25	26.6	18	2	Q6UQQ9 9PASS		
180	25	26.6	18	2	Q6UQRO 9PASS		vidua obtus vidua hypoc
181	25 25	26.6	18	2	Q6UQR0_9PASS Q6UQR2_9PASS		vidua nypoc vidua macro
182	25	26.6	18	2	Q6UQR2_9PASS Q6UQR3_9PASS	_	
183	25 25	26.6	18	2	Q6UQR3_9PASS Q6UQR4_9PASS	_	vidua wilso
184	25	26.6	18	2	Q6UQR5 9PASS		vidua camer vidua raric
185	25	26.6	18	2	Q6UQR5_9PASS Q6UQR6_9PASS		vidua raric vidua regia
186	25	26.6	18	2	Q6UQR7 9PASS		vidua fegia vidua fisch
187	25	26.6	18	2	Q00QX7_9FASS Q90XS9 ANAPL		anas platyr
. .		_0.0		-	*	STONGT	and pracyr

188	25	26.6	18	2	Q90XT1 9CHAR	090xt1	charadrius
189	25	26.6	18	2	Q90XT3 9AVES	_	aechmophoru
190	25	26.6	18	2	Q90XT6 GAVST		gavia stell
191	25	26.6	18	2	Q90XT7 PYGAD		pygoscelis
192	25 25						
		26.6	18	2	Q90XT8_CICNG		ciconia nig
193	25	26.6	18	2	Q90XT9_NYCNY		nycticorax
194	25	26.6	18	2	Q90XU5_9AVES		sula neboux
195	25	26.6	18	2	Q90XU6_9AVES		phaethon ae
196	25	26.6	18	2	Q68LC7_MYRBR		myrmeciza b
197	25	26.6	19	2	Q6Y078_9PSIT	Q6y078	amazona ama
198	25	26.6	19	2	Q6Y080_9PSIT	Q6y080	amazona och
199	25	26.6	19	2	Q6Y081 9PSIT	Q6y081	amazona och
200	25	26.6	19	2	Q6Y082 9PSIT		amazona och
201	25	26.6	20	2	Q6LDX5 HUMAN		homo sapien
202	25	26.6	20	2	Q7LZU6 9INFA		influenza a
203	25	26.6	21	2	Q87575 SIVCZ		chimpanzee
204	25	26.6	21	2	Q87585 SIVCZ		chimpanzee
205	25	26.6	22	2	Q4XC36 PLACH		plasmodium
206	25	26.6	22	2	Q4Z392 PLABE		plasmodium
207	25	26.6	22	2			
207					Q4Z5M8_PLABE		plasmodium
	25	26.6	22	2	Q9QWB6_9MURI		mus sp. sgp
209	25	26.6	23	2	Q4Y4S6_PLACH		plasmodium
210	25	26.6	24	2	Q4Z0G6_PLABE		plasmodium
211	25	26.6	25	2	Q4XD90_PLACH		plasmodium
212	25	26.6	25	2	Q4YG46_PLABE	Q4yg46	plasmodium
213	25	26.6	25	2	Q6YJ06_9RHOD	Q6yj06	porphyra ra
214	25	26.6	25	2	O26056_HELPY	026056	helicobacte
215	25	26.6	25	2	Q3S9W7 9HIV1	Q3s9w7	human immun
216	25	26.6	26	1	ACHD ELEEL		electrophor
217	25	26.6	26	2	Q91U56 9INFA		influenza a
218	25	26.6	27	2	Q4X3J6 PLACH		plasmodium
219	25	26.6	27	2	Q4X3K5 PLACH		plasmodium
220	25	26.6	27	2	Q4XAJ2 PLACH		plasmodium
221	25	26.6	27	2	Q4XHN8 PLACH		plasmodium
222	25	26.6	27	2	Q4XI91 PLACH		plasmodium
223	25	26.6	27	2	Q4X131_FLACH		
224	25	26.6		2	<u> </u>		plasmodium
225	25		27		Q6V7V8_CHICK		gallus gall
225		26.6	28	2	Q4X7K6_PLACH		plasmodium
	25	26.6	28	2	Q4YMK5_PLABE		plasmodium
227	25	26.6	29	1	PLMS_SCYCA		scyliorhinu
228	25	26.6	29	2			plasmodium
229	25	26.6	29	2	Q4XSZ6_PLACH		plasmodium
230	25	26.6	29	2	Q6JDN0_CANFA	Q6jdn0	canis famil
231	25	26.6	29	2	Q3CYH8_STRAG	Q3cyh8	streptococc
232	25	26.6	29	2	Q4TF38_TETNG	Q4tf38	tetraodon n
233	25	26.6	30	2	Q35904_SCHPO	Q35904	schizosacch
234	25	26.6	30	2	Q7RJB8 PLAYO	Q7rjb8	plasmodium
235	25	26.6	30	2	Q84JV1 CRYJA		cryptomeria
236	25	26.6	30	2	Q4SAM1 TETNG		tetraodon n
237	24.5	26.1	21	2	Q9F7Y5 NEIGO		neisseria g
238	24.5	26.1	29	2	003120 9EMBR	-	megaceros v
239	24.5	26.1	29	2	Q7A5V9 STAÁN		staphylococ
240	24.5	26.1	29	2	Q8NWX8 STAAW		staphylococ
241	24.5	26.1	29	2	Q99UH5 STAAM		staphylococ
242	24.5	26.1	30	2	Q6MKG8 BDEBA		
242					_		bdellovibri
	24	25.5	14	2	Q4JHP1_9CARY		suaeda liao
244	24	25.5	14	2	Q70Y61_9LAMI		ocimum sell
245	24	25.5	14	2	Q6R7V0_9SAUR		carlia viva
246	24	25.5	15	2	Q9S8P1_RAPSA		raphanus sa
247	24	25.5	16	2	Q6Y079_AMAAE		amazona aes
248	24	25.5	17	2	Q7XB06_MAIZE	Q7xb06	zea mays (m

240	2.4	25 5	17	2	OAUT71 OCNUD	04 71	
249	24	25.5	17	2	Q4VI71_9SAUR		actinemys m
250	24	25.5	17	2	Q6R7U8_9SAUR		lampropholi
251	24	25.5	17	2	Q6R7U9 9SAUR	Q6r7u9	saproscincu
252	24	25.5	17	2	Q6R7V1 9SAUR		carlia rost
253	24	25.5	17	2	Q6R7V2 9SAUR		carlia rufi
254	24	25.5	17	2	Q6R7V3_9SAUR		carlia fusc
255	24	25.5	17	2	Q6R7V5_9SAUR	Q6r7v5	carlia rhom
256	24	25.5	17	2	Q6R7V6 9SAUR	Q6r7v6	carlia rubr
257	24	25.5	18	2	Q7Y4F7 9CAUD		lactococcus
258	24	25.5	18	2	Q7Y4G1 9CAUD		lactococcus
					_		
259	24	25.5	18	2	Q7XB07_MAIZE		zea mays (m
260	24	25.5	18	2	Q2PDK6_CLODI	Q2pdk6	clostridium
261	24	25.5	18	2	Q9PXB6 ADE05	Q9pxb6	human adeno
262	24	25.5	18	2	Q53BV3 9FURN		deconychura
263	24	25.5	18	2	Q53BX6 9FURN		geositta te
264	24	25.5	19	2	Q8IVH1_HUMAN		homo sapien
265	24	25.5	19	2	Q70Y92_9LAMI	Q70y92	platostoma .
266	24	25.5	20	2	Q4XCZ2 PLACH	O4xcz2	plasmodium
267	24	25.5	20	2	Q4A2D6 9PHYC		emiliania h
268	24	25.5	21	2	_		
					Q4Y8T8_PLACH	_	plasmodium
269	24	25.5	21	2	Q4YDB9_PLABE	Q4ydb9	plasmodium
270	24	25.5	21	2	Q4YTM1 PLABE	Q4ytm1	plasmodium
271	24	25.5	21	2	Q9RQ26 CLODI		clostridium
272	24	25.5	22	2	Q6BGN9 DEBHA		debaryomyce
					_		
273	24	25.5	22	2	Q4X8D6_PLACH		plasmodium
274	24	25.5	22	2	Q4YMD8_PLABE		plasmodium
275	24	25.5	22	2	Q9MX47 ORYLA	Q9mx47	oryzias lat
276	24	25.5	23	2	Q9UCE3 HUMAN		homo sapien
277	24	25.5	23	2	Q4YG20 PLABE		plasmodium
278	24	25.5	23	2	Q5XYL3_BORGA	_	borrelia ga
279	24	25.5	23	2	Q6UK03_VIBCH	Q6uk03	vibrio chol
280	24	25.5	24	2	Q4X4X8 PLACH	Q4x4x8	plasmodium
281	24	25.5	24	2	Q4XCF4 PLACH	O4xcf4	plasmodium
282	24	25.5	24	2	Q4XY90 PLACH		plasmodium
283		25.5		2			
	24		24		Q7RDJ7_PLAYO	_	plasmodium
284	24	25.5	24	2	Q46081_CLOHU	Q46081	clostridium
285	24	25.5	25	1	TFDC1 COMAC	P83115	comamonas a
286	24	25.5	25	2	Q4XMQ2 PLACH	O4xmg2	plasmodium
287	24	25.5	25	2	Q4Y1J7 PLACH	_	plasmodium
288	24	25.5	25	2			
					Q4YT11_PLABE		plasmodium
289	24	25.5	25	2			bos taurus
290	24	25.5	25	2	O49748_ARATH	049748	arabidopsis
291	24	25.5	25	2	Q56C92 9HIV1	056c92	human immun
292	24	25.5	25	2	Q56CA1 9HIV1		human immun
293	24	25.5	25	2			
					Q56CA7_9HIV1		human immun
294	24	25.5	25	2	Q56CA8_9HIV1	. Q56ca8	human immun
295	24	25.5	25	2	Q56CB5 9HIV1	Q56cb5	human immun
296	24	25.5	25	2	Q56CB7 9HIV1	056cb7	human immun
297	24	25.5	25	2	Q56CB8 9HIV1		human immun
298	24	25.5	25	2			
					Q56CB9_9HIV1		human immun
299	24	25.5	25	2	Q56CC0_9HIV1	Q56cc0	human immun
300	24	25.5	25	2	Q56CC1 9HIV1	Q56cc1	human immun
301	24	25.5	25	2	Q56CC2 9HIV1	Q56cc2	human immun
302	24	25.5	25	2	Q56CC3 9HIV1		human immun
303	24	25.5	25	2	Q56CC4 9HIV1		human immun
					_		
304	24	25.5	25	2	Q56CC5_9HIV1		human immun
305	24	25.5	25	2	Q56CC6_9HIV1	Q56cc6	human immun
306	24	25.5	25	2	Q56CC7 9HIV1	Q56cc7	human immun
307	24	25.5	25	2	Q56CC8 9HIV1		human immun
308	24	25.5	25	2	Q56CC9 9HIV1		human immun
309	24	25.5	25	2	Q56CD1_9HIV1	Q56cd1	human immun

310	24	25.5	25	2	Q56CD2 9HIV1	056cd2	human immur	_
311	24	25.5	25	2	Q56CD3 9HIV1		human immur	
312	24	25.5	25	2	Q56CD4 9HIV1		human immur	
313	24	25.5	25	2	Q56CD5_9HIV1			
314	24	25.5	25	2	Q56CD5_9HIV1 Q56CD6 9HIV1		human immur	
					_		human immur	
315	24	25.5	25	2	Q56CD7_9HIV1		human immur	
316	24	25.5	25	2	Q56CD8_9HIV1		human immur	
317	24	25.5	25	2	Q56CD9_9HIV1		human immur	
318	24	25.5	25	2	Q56CE0_9HIV1		human immur	
319	24	25.5	25	2	Q56CE1_9HIV1		human immur	
320	24	25.5	25	2	Q56CE2_9HIV1	Q56ce2	human immur	n.
321	24	25.5	25	2	Q56CE3_9HIV1	Q56ce3	human immur	ו
322	24	25.5	25	2	Q56CE4 9HIV1	Q56ce4	human immur	า
323	24	25.5	25	2	Q56CE5 9HIV1	Q56ce5	human immur	n
324	24	25.5	25	2	Q56CE6 9HIV1	Q56ce6	human immur	n
325	24	25.5	25	2	Q56CE7 9HIV1		human immur	
326	24	25.5	25	2	Q56CE8 9HIV1		human immur	
327	24	25.5	25	2	Q56CE9 9HIV1		human immur	
328	24	25.5	25	2	Q56CF0 9HIV1		human immur	
329	24	25.5	25	2	Q56CF1 9HIV1		human immur	
330	24	25.5	25	2				
					Q56CF2_9HIV1		human immur	
331	24	25.5	25	2	Q56CF3_9HIV1		human immur	
332	24	25.5	25	2	Q56CF4_9HIV1		human immur	
333	24	25.5	25	2	Q58Q98_9HIV1		human immur	
334	24	25.5	25	2	Q58QA5_9HIV1		human immur	
335	24	25.5	25	2	Q71969_9HIV1	Q71969	human immur	1
336	24	25.5	25	2	Q71988_9HIV1	Q71988	human immur	1
337	24	25.5	25	2	Q71994_9HIV1	Q71994	human immur	1
338	24	25.5	25	2	Q72010 9HIV1	Q72010	human immur	1
339	24	25.5	25	2	Q72016 9HIV1	072016	human immur	ı.
340	24	25.5	25	2	Q72020 9HIV1		human immur	
341	24	25.5	25	2	Q80273 9HIV1		human immur	
342	24	25.5	25	2	Q8QDX7 9HIV1		human immur	
343	24	25.5	25	2	Q8QDY1 9HIV1		human immur	
344	24	25.5	25	2	Q9IQP7 9HIV1		human immur	
345	24	25.5		2	Q9IQQ7 9HIV1		human immur	
346	24	25.5	25	2	Q9IQQ8 9HIV1			
347	24	25.5	25	2	Q91QQ0_9HIV1		human immur human immur	
348	24	25.5	25	2				
	24			2	Q9IQRO_9HIV1	-	human immun	
349		25.5	25		Q9IQR1_9HIV1		human immur	
350	24		26				plasmodium	
351	24	25.5	26	2	Q4YQR4_PLABE		plasmodium	
352	24	25.5	26	2	Q7R9B5_PLAYO		plasmodium	
353	24	25.5	26	2	Q7X642_MAIZE		zea mays (m	
354	24	25.5	26	2	O86138_CLOBU		clostridium	
355	24	25.5	26	2	Q7B304_CLOBU	Q7b304	clostridium	a
356	24	25.5	26	2	Q4RA30_TETNG	Q4ra30	tetraodon n	1
357	24	25.5	26	2	Q4PU49 9HIV1	Q4pu49	human immur	1
358	24	25.5	26	2	Q4PU54 9HIV1	Q4pu54	human immun	1
359	- 24	25.5	26	2	Q4PU59 9HIV1		human immun	
360	24	25.5	27	1	HCY5 HOMAM	_	homarus ame	
361	24	25.5	27	1	KT395 PICKL		pichia kluy	
362 .	24	25.5	27	2	Q6YJ05 9RHOD		porphyra ra	•
363	24	25.5	27	2	Q7X644 MAIZE		zea mays (m	
364	24	25.5	27	2	Q6V7G9 VIBCH		vibrio chol	
365	24	25.5	28	2	Q4X2X3_PLACH		plasmodium	
366	24	25.5	28	2				
367					Q4X4G5_PLACH		plasmodium	
	24	25.5	28	2	Q4YRV9_PLABE		plasmodium	
368	24	25.5	28	2	Q4G226_COLGU		colobus gue	
369	24	25.5	28	2	Q7XB04_MAIZE		zea mays (m	
370	. 24	25.5	28	2	Q9R4Z2_LACAC	Q9r4z2	lactobacill	-

371	24	25.5	29	2	044023_PARTE		044023	paramecium
372	24	25.5	29	2	Q5BYX3 SCHJA		Q5byx3	schistosoma
373	24	25.5	29	2	Q56XC2 ARATH			arabidopsis
374	24	25.5	29	2	Q7X643 MAIZE			zea mays (m
					_			_
375	24	25.5	30	2	Q25627_ONCVO			onchocerca
376	24	25.5	30	2	Q4XG67_PLACH			plasmodium
377	24	25.5	30	2	Q4XT96_PLACH		Q4xt96	plasmodium
378	24	25.5	30	2	Q4Y4P6 PLACH		Q4y4p6	plasmodium
379	24	25.5	30	2	Q4Z577 PLABE			plasmodium
380	24	25.5	30	2	Q3ACN1 CARHZ			carboxydoth
381	24	25.5	30	2	Q3DPB2_STRAG		-	streptococc
382	24	25.5	30	2	Q44EF2_CHRSL			chromohalob
383	24	25.5	30	2	Q4MSY5_BACCE		Q4msy5	bacillus ce
384	24	25.5	30	2	Q314V3 DESDG		Q314v3	desulfovibr
385	24	25.5	30	2	Q7MVC5 PORGI		O7mvc5	porphyromon
386	24	25.5	30	2	Q8EH33 SHEON			shewanella
387	23.5	25.0	20	2				
					Q9S8X5_SOYBN			glycine max
388	23.5	25.0	22	2	Q9URC2_PHACH			phanerochae
389	23.5	25.0	22	2	Q9URC3_PHACH		Q9urc3	phanerochae
390	23.5	25.0	23	2	Q4XPSO PLACH		Q4xps0	plasmodium
391	23.5	25.0	26	2	Q4YLV0 PLABE			plasmodium
392	23.5	25.0	26	2	Q9IDW1 9HIV2		_	human immun
				2				
393	23.5	25.0	27		Q4XG60_PLACH			plasmodium
394	23.5	25.0	28	2	Q4YEQ5_PLABE			plasmodium
395	23.5	25.0	28	2	Q9XGE6_VICFA			vicia faba
396	23	24.5	8	2	Q6EX61 9LAMI		Q6ex61	isodon hisp
397	23	24.5	10	1	SC46 TITCA			tityus camb
398	23	24.5	10	2	Q947R7 SOLTU			solanum tub
399	23	24.5	12	2	Q70Y67 9LAMI			prostanther
400	23	24.5	12	2	Q8GSB9_LOLPR			lolium pere
401	23	24.5	14	2	Q70Y96_9LAMI			ocimum amer
402	23	24.5	14	2	Q9ZRS3_ARATH		Q9zrs3	arabidopsis
403	23	24.5	15	2	Q88954 9POXV		Q88954	vaccinia vi
404	23	24.5	16	1	UVSX BPT6			bacteriopha
405	23	24.5	16	2	Q51950 9ZZZZ			plasmid pns
406	23	24.5	16	2	Q9R5E9 HAESO			haemophilus
407	23	24.5	16	2	Q5DUA1_STALE			staphylococ
408	23	24.5	17	1	BOL4_MEGPE			megabombus
409	23	24.5	17	2	Q4YDE5_PLABE		Q4yde5	plasmodium
410	23	24.5	17	2	Q70Y62 MENSU		Q70y62	mentha suav
411	23	24.5	17	2	Q9T2H6_SPIOL		09t2h6	spinacia ol
412	23	24.5	17	2	Q712C7 RHIME			rhizobium m
413	23	24.5	18	2	Q7SCI4 NEUCR			neurospora
								
414	23	24.5	18	2	Q4XSK3_PLACH			plasmodium
415	23	24.5	18	2	Q6ZYV2_9CARY			silene oste
416	23	24.5	19	2	Q45SP2_CLODI		Q45sp2	clostridium
417	23	24.5	20	1	JHBP BOMMO		P81627	bombyx mori
418	23	24.5	20	1	NF03 NAEFO			naegleria f
419	23	24.5	20	2	Q7SAL6 NEUCR			neurospora
420	23	24.5	21	2	Q4XF50 PLACH	•		plasmodium
								-
421	23	24.5	21	2	Q4Y571_PLACH			plasmodium
422	23	24.5	21	2	Q7RBF8_PLAYO			plasmodium
423	23	24.5	21	2	Q9ESX0_MOUSE		Q9esx0	mus musculu
424	23	24.5	21	2	O11791 9HIV1		011791	human immun
425	23	24.5	21	2	O11803 9HIV1			human immun
426	23	24.5	21	2	O11804 9HIV1			human immun
427	23	24.5	21	2	O11806 9HIV1			human immun
					_			
428	23	24.5	21	2	O11807_9HIV1			human immun
429	23	24.5	21	2	O11812_9HIV1			human immun
430	23	24.5	21	2	O11825_9HIV1			human immun
431	23	24.5	21	2	O11826_9HIV1		011826	human immun
					-			

432	23	24.5	21	2	O11827 9HIV1	011827	human immun
433	23	24.5	21	2	O11831 9HIV1		human immun
434	23	24.5	21	2	O11838 9HIV1		human immun
435	23	24.5	22	1	UVSX BPT2		bacteriopha
436	23	24.5	22	2	Q9UEY3_HUMAN		homo sapien
437	23	24.5	22	2	Q4XUD0 PLACH		plasmodium
438	23	24.5	23	2	Q4XTG0 PLACH		plasmodium
439	23	24.5	23	2	Q4Z0X5 PLABE		plasmodium
440	23	24.5	23	2	Q9XZW1 9CAEN		
441	23	24.5	23	2	Q9XZW1_9CAEN Q9XZW4 LITLI		littorina a
442	23		23	2			littorina l
		24.5			Q9XZZ7_9CAEN		littorina s
443	23	24.5	23	2	Q9Y003_9CAEN		melarhaphe
444	23	24.5	23	2	Q68983_9ALPH		suid herpes
445	23	24.5	23	2	Q98YK6_9HIV1		human immun
446	23	24.5	24	2	Q4XJG7_PLACH		plasmodium
447	23	24.5	24	2	Q4XV06_PLACH	Q4xv06	plasmodium
448	23	24.5	24	2	Q4YMW5_PLABE	Q4ymw5	plasmodium
449	23	24.5	24	2	Q4Z471 PLABE	Q4z471	plasmodium
450	23	24.5	24	2	Q29403 SHEEP	Q29403	ovis aries
451	23	24.5	24	2	Q6ZZ53 9CARY		silene coel
452	23	24.5	24	2	Q9K8M1 BACHD		bacillus ha
453	23	24.5	25	2	Q4YA76 PLABE		plasmodium
454	23	24.5	25	2	Q4YTS4 PLABE		plasmodium
455	23	24.5	25	2	077602 PAPAN		papio anubi
456	23	24.5	25	2	077603 THEGE		theropithec
457	23	24.5	25	2	077604_MACMU		
458	23		25	2			macaca mula
459		24.5			077605_MANLE		mandrillus
	23	24.5	25	2	077606_MANSP		mandrillus
460	23	24.5	25	2	077607_LOPAT		lophocebus
461	23	24.5	25	2	077827_LOPAA		lophocebus
462	23	24.5	25	2	077828_CERTO		cercocebus
463	23	24.5	25	2	077829_CERGC		cercocebus
464	23	24.5	25	2	077831_CERMI		cercopithec
465	23	24.5	25	2	077832_CERAE	077832	cercopithec
466	23	24.5	25	2	Q7M156_BACTU	Q7m156	bacillus th
467	23	24.5	25	2	Q53174_RAT	Q53i74	rattus norv
468	23	24.5	25	2	Q6SWG7 HCMV		human cytom
469	23	24.5	25	2	Q56CD0 9HIV1		human immun
470	23	24.5	25	2	Q56CF6 9HIV1		human immun
471	23	24.5	25	2	Q56CF7 9HIV1		human immun
472	23	24.5	25	2	Q9DU23 9HIV1		human immun
473	23	24.5	26	1	RL16 BACST		bacillus st
474	23	24.5	26	2	Q5ZQW9 9CAUD		bacteriopha
475	23	24.5	26	2	Q9QV79 9MURI		rattus sp.
476	23	24.5	26	2	Q85461 9RETR		avian myelo
477	23	24.5	27	2	Q7Z2G0 HUMAN		
478	23	24.5	27	2	Q4Y431_PLACH	_	homo sapien
479	23	24.5	27	2			plasmodium
480	23	24.5			Q4YFL7_PLABE		plasmodium
			27	2	Q4YZ78_PLABE		plasmodium
481	23	24.5	27	2	Q9TM43_CYACA		cyanidium c
482	23	24.5	28	2	Q7SAK0_NEUCR		neurospora
483	23	24.5	28	2	Q4YFV6_PLABE		plasmodium
484	23	24.5	28	2	Q45QJ8_RAT		rattus norv
485	23	24.5	29	2	035358_RAT		rattus norv
486	23	24.5	29	2	P97599_RAT		rattus norv
487	23	24.5	29	2	Q9WVC4_MOUSE		mus musculu
488	23	24.5	29	2	Q90817_CHICK	Q90817	gallus gall
489	23	24.5	30	2	Q4XZM1_PLACH		plasmodium
490	23	24.5	30	2	Q4YDJ7_PLABE		plasmodium
491	23	24.5	30	2	Q7RHK1 PLAYO		plasmodium
492	23	24.5	30	2	Q7RHQ9_PLAYO		plasmodium
					- <u>-</u>	2:92	

493	23	24.5	30	2	Q03618_STRHY	Q03618	streptomyce
494	23	24.5	30	2	Q47Z49 COLP3	Q47z49	colwellia p
495	23	24.5	30	2	Q4MGH8 BACCE		bacillus ce
496	23	24.5	30	2	Q9R5A3 9PSED		pseudomonas
497	23	24.5	30	2			
					Q57BN2_BRUAB		brucella ab
498	23	24.5	30	2	Q72B97_DESVH		desulfovibr
499	23	24.5	30	2	Q7VKB9_HAEDU	Q7vkb9	haemophilus
500	23	24.5	30	2	Q8FZ53 BRUSU	Q8fz53	brucella su
501	23	24.5	30	2	Q2YRK9 BRUA2		brucella ab
502	23	24.5	30	2	Q4T6V6 TETNG	_	tetraodon n
503	23			2			
		24.5	30		Q9W7N3_MORSA		morone saxa
504	22.5	23.9	23	2	Q4XJB4_PLACH		plasmodium
505	22.5	23.9	25	2	Q4RAH1_TETNG	Q4rah1	tetraodon n
506	22.5	23.9	26	2	Q4YXA8 PLABE	Q4yxa8	plasmodium
507	22.5	23.9	30	2	Q9TWM4 MANSE	O9twm4	manduca sex
508	22.5	23.9	30	2	Q8SMQ5 9AQUA		ilex repand
509	22	23.4	9	2	Q67AQ7 HUMAN		
				2			homo sapien
510	22	23.4	9		Q7EXP6_HORVD		hordeum vul
511	22	23.4	9	2	Q9FECO_HORVU	Q9fec0	hordeum vul
512	22	23.4	10	2	Q8GZC8_HORVU	Q8gzc8	hordeum vul
513	22	23.4	13	1	SODM ARTDA	P83289	arthrobotry
514	22	23.4	14	1	PLYB1 POLPI		polybia pau
515	22	23.4	14	2	Q7M0Q6 9THEM		
						-	thermotoga
516	22	23.4	15	2	Q56IZ1_9FLAV		tick-borne
517	22	23.4	15	2	Q5R3U5_XENLA	Q5r3u5	xenopus lae
518	22	23.4	16	2	Q6JQ71_HBV	Q6jq71	hepatitis b
519	22	23.4	17	1	PATS ANASP	052748	anabaena sp
520	22	23.4	17	2	Q7RQU2 PLAYO		plasmodium
521	22	23.4	17	2	Q3V3P2 MOUSE		mus musculu
522	22	23.4	17	2			
					Q811C1_MOUSE		mus musculu
523	22	23.4	17	2	Q5R3U2_XENLA		xenopus lae
524	22	23.4	17	2	Q7T080_9AVES		anser anser
525	22	23.4	17	2	Q7T081 ANAPL	Q7t081	anas platyr
526	22	23.4	18	2	Q8RU82 MAIZE		zea mays (m
527	22	23.4	19	2	Q4Z5V1 PLABE		plasmodium
528	22	23.4	19	2	Q9BGH0 PIG		sus scrofa
529	22	23.4		2			
			19		Q38371_BPMS2		bacteriopha
530	22	23.4	20	1	GUAA_LACSN		lactobacill
531	22	23.4	20	2	Q9TWN5_THESE	Q9twn5	theileria s
532	22	23.4	20	2	Q9S8K2_SOLTU	Q9s8k2	solanum tub
533	22	23.4	20	2	Q7M195_THEAQ	O7m195	thermus aqu
534	22	23.4	20	2	Q9QUZ1 9MURI		rattus sp.
535	22	23.4	21	1	OMP44 PASHA		pasteurella
536	22	23.4	21	1	-		
					THAN_PODMA		podisus mac
537	22	23.4	21	2	Q4XNE6_PLACH		plasmodium
538	22	23.4	21	2	Q4XX24_PLACH	Q4xx24	plasmodium
539	22	23.4	21	2	Q4Y631 PLACH	Q4y631	plasmodium
540	22	23.4	21	2	Q4Y8P3 PLACH		plasmodium
541	22	23.4	21	2	Q4Y9Z3 PLABE		plasmodium
542	22	23.4	21	2	Q9ZYB7 9HYME		spinaria sp
543	22						
		23.4	21	2	Q93CI4_ECOLI		escherichia
544	22	23.4	22	2	Q4XAK9_PLACH		plasmodium
545	22	23.4	22	2	Q9IAV6_9PASS		acanthiza n
546	22	23.4	22	2	Q9IAV7_9PASS	Q9iav7	acanthiza l
547	22	23.4	22	2	Q9IAV8 9PASS		acanthiza r
548	22	23.4	22	2	Q9IAV9 9PASS		acanthiza u
549	22	23.4	22	2	Q9IAWO 9PASS		acanthiza r
550	22	23.4	22	2	_		
					Q9IAW1_9PASS		acanthiza i
551	22	23.4	22	2	Q9IAW2_9PASS		acanthiza i
552	22	23.4	22	2	Q9IAW3_9PASS		acanthiza p
553	22	23.4	22	2	Q9IAW4_ACAKA	Q9iaw4	acanthiza k

554	22	23.4	22	2	Q9IAW5 9PASS	O9iaw5	acanthiza e
555	22	23.4	22	2	Q9IAW6 9PASS		acanthiza c
556	22	23.4	22	2	Q9IAW7 9PASS		acanthiza a
557	22	23.4	22	2	Q9IAW8 9PASS		smicrornis
558	22	23.4	22	2	Q9IAW0_9PASS		gerygone fu
559	22	23.4	22	2	Q9IAXO 9PASS		aphelocepha
560	22	23.4	22	2	Q9IAX1 9PASS		sericornis
561	22	23.4	22	2	Q8AEW5_9HIV1		human immun
562	22	23.4	22	2	Q8AEW9_9HIV1		human immun
563	22	23.4	23	2	Q4XXR5_PLACH		plasmodium
564	22	23.4	23	2	Q4YRL7_PLABE		plasmodium
565	22	23.4	23	2	Q7RSU3_PLAYO		plasmodium
566	22	23.4	23	2	O18841_PIG		sus scrofa
567	22	23.4	23	2	Q4JQP8_PIG		sus scrofa
568	22	23.4	23	2	Q9T354_MACSY		macaca sylv
569	22	23.4	23	2	Q3KU33_STRCR		streptococc
570	22	23.4	23	2	Q47WG5_COLP3		colwellia p
571	22	23.4	23	2	Q57162_ENTFA		enterococcu
572	22	23.4	23	2	Q5PFC9_SALPA		salmonella
573	22	23.4	23	2	Q8E018_STRA5		streptococc
574	22	23.4	23	2	Q8Z974_SALTI		salmonella
575	22	23.4	24	2	Q4XYM2_PLACH	-	plasmodium
576	22	23.4	24	2	Q4YB25_PLABE	-	plasmodium
577	22	23.4	24	2	Q4Z5NO_PLABE		plasmodium
578	22	23.4	24	2	Q94370_CAEEL		caenorhabdi
579	22	23.4	24	2	Q9TRE8_BOVIN		bos taurus
580	22	23.4	25	1	CPI2_SOLTU		solanum tub
581	22	23.4	25	1	HCY3_MAISQ		maia squina
582	22	23.4	25	1	RL29_BREVE		brevundimon
583	22	23.4	25	1	TFDC2_COMAC		comamonas a
584	22	23.4	25	2	Q4X3H5_PLACH		plasmodium
585	22	23.4	25	2	Q4XCD1_PLACH		plasmodium
586	22	23.4	25	2	Q4Y5T2_PLACH		plasmodium
587	22	23.4	25	2	Q4Y9R3_PLABE		plasmodium
588	22	23.4	25	2	Q7R8K6_PLAYO		plasmodium
589	22	23.4	25	2	Q7RAC5_PLAYO		plasmodium
590	22	23.4	25	2	Q7RJPO_PLAYO		plasmodium
591	22	23.4	25	2	Q9BM55_9BIVA		chione canc
592	22	23.4	25	2	Q6JDJ8_CANFA		canis famil
593	22	23.4	25	2	Q40972_PINRA		pinus radia
594	22		25				pinus radia
595	22	23.4	25	2	Q56C54_9HIV1		human immun
596	22	23.4	25	2	Q56C55_9HIV1		human immun
597	22	23.4	25	2	Q56C56_9HIV1		human immun
598	22	23.4	25	2	Q56C57_9HIV1		human immun
599	22	23.4	25	2	Q56C58_9HIV1		human immun
600	22	23.4	25	2	Q56C59_9HIV1		human immun
601	22	23.4	25	2	Q56C60_9HIV1		human immun
602	22	23.4	25	2	Q56C61_9HIV1		human immun
603	22	23.4	25	2	Q56C62_9HIV1		human immun
604	22	23.4	25	2	Q56C63_9HIV1		human immun
605	22	23.4	25	2	Q56C65_9HIV1		human immun
606	22	23.4	25	2	Q56C66_9HIV1		human immun
607	22	23.4	25	2	Q56C67_9HIV1		human immun
608	. 22	23.4	25	2	Q56C69_9HIV1		human immun
609	22	23.4	25	2	Q56C70_9HIV1		human immun
610	22	23.4	25	2	Q56C71_9HIV1		human immun
611	22	23.4	25	2	Q56C72_9HIV1		human immun
612	22	23.4	25	2	Q56C73_9HIV1		human immun
613	22	23.4	25	2	Q56C74_9HIV1		human immun
614	22	23.4	25	2	Q56C75_9HIV1	Q56c75	human immun

```
10/15/810
 RESULT 3
 ADZ69738
≠ ID
      ADZ69738 standard; peptide; 20 AA.
 XX
 AC
      ADZ69738;
 XX
 DT
      28-JUL-2005 (first entry)
 XX
 DE
      Botulinum toxin type A peptide SEQ ID NO:13.
 XX
 KW
      toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
 KW.
      autonomic nervous system disease; pain; neuromuscular disease;
 KW
      cervical dystonia; migraine.
 XX
 os
      Clostridium botulinum.
 XX
 PN
      US2005106182-A1.
 XX
 PD
      19-MAY-2005.
                                                        aa 185-803
 XX
 ΡF
      17-NOV-2003; 2003US-00715810.
 XX
 PR
      17-NOV-2003; 2003US-00715810.
 XX
 PΑ
      (LISS/) LI S.
 PΑ
      (AOKI/) AOKI K R.
 XX
 PΙ
      Li S, Aoki KR;
 XX
 DR
      WPI; 2005-365766/37.
XX
 PT
      Treating botulinum toxin intoxication in a mammal, comprises
 PΤ
      administering a rescue agent comprising an inactive botulinum toxin and a
 PT
      modified nontoxic nonhemagglutinin to a mammal.
XX
 PS
     Example 1; SEQ ID NO 13; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
      intoxication in a mammal. (M1) comprises administering at least one
CC
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
     being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
     making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
     in a cell free system; (3) a modified nontoxic nonhemagglutinin
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
     non-Clostridium botulinum cell (III) comprising a vector operatively
CC
CC
     harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
     nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
CC
     also useful for the treatment of neuromuscular disorders, cervical
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
     botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SQ Sequence 20 AA;
                          89.2%; Score 91; DB 9; Length 20;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 7e-08;
  Matches 17; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                              0;
```

```
RESULT 4
ADZ65808
ID
     ADZ69808 standard; peptide; 20 AA.
XX
AC
     ADZ69808;
XX
DT
     28-JUL-2005 (first entry)
XX
DΕ
     Botulinum toxin type A peptide SEQ ID NO:83.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
KW
     cervical dystonia; migraine.
XX
os
     Clostridium botulinum.
XX
PN
     US2005106182-A1.
                                                          185-803
XX
PD
     19-MAY-2005.
XX
     17-NOV-2003; 2003US-00715810.
PF
XX
PR
     17-NOV-2003; 2003US-00715810.
XX
PA
     (LISS/) LI S.
PΑ
     (AOKI/) AOKI K R.
XX
PΙ
     Li S, Aoki KR;
XX
DR
     WPI; 2005-365766/37.
XX
PT
     Treating botulinum toxin intoxication in a mammal, comprises
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
     Disclosure; SEQ ID NO 83; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
     intoxication in a mammal. (M1) comprises administering at least one
CC
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
     being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
    making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
     in a cell free system; (3) a modified nontoxic nonhemagglutinin
CC
CC
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
     non-Clostridium botulinum cell (III) comprising a vector operatively
CC
     harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
    nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
CC
     also useful for the treatment of neuromuscular disorders, cervical
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
    botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SQ
     Sequence 20 AA;
  Query Match
                          89.2%; Score 91; DB 9;
 Best Local Similarity
                         100.0%; Pred. No. 7e-08;
          17; Conservative 0; Mismatches
                                                                 0; Gaps
                                                                             0;
                                                  0;
                                                      Indels
```

3 FLNQCSVSYLMNSMIPY 19 1111111111111111 لريم Db 1 FLNQCSVSYLMNSMIPY 17

```
RESULT 5
ADZ69753
     ADZ69753 standard; peptide; 20 AA.
ID
XX
AC
     ADZ69753;
XX
DT
     28-JUL-2005 (first entry)
XX
DΕ
     Botulinum toxin type A peptide SEQ ID NO:28.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
KW
     cervical dystonia; migraine.
XX
OS
     Clostridium botulinum.
XX
PN
    US2005106182-A1.
                                                               aa 7887,803
XX
PD
     19-MAY-2005.
XX
PF
     17-NOV-2003; 2003US-00715810.
XX
     17-NOV-2003; 2003US-00715810.
PR
XX
PΑ
     (LISS/) LI S.
PΑ
     (AOKI/) AOKI K R.
XX
PΙ
    Li S, Aoki KR;
XX
DR
    WPI; 2005-365766/37.
XX
PT
     Treating botulinum toxin intoxication in a mammal, comprises
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
    Example 1; SEQ ID NO 28; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
     intoxication in a mammal. (M1) comprises administering at least one
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
CC
    being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
    making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
    in a cell free system; (3) a modified nontoxic nonhemagglutinin
CC
    comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
    non-Clostridium botulinum cell (III) comprising a vector operatively
CC
    harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
    and a vector operatively harboring nucleotide sequence encoding a
CC
    nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
    condition, an autonomic nervous system disorder and/or pain, which
CC
    involves administering (II) to the mammal in need of the toxins. (II) is
    also useful for the treatment of neuromuscular disorders, cervical
CC
CC
    dystonia and migraine. The present sequence represents a Clostridium
CC
    botulinum toxin type A peptide sequence, which is used in the
CC
    exemplification of the present invention.
XX
SQ
    Sequence 20 AA;
                          89.2%; Score 91; DB 9; Length 20;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 7e-08;
          17; Conservative 0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
```

Qу 3 FLNQCSVSYLMNSMIPY 19 11111111111111111 Db 1 FLNQCSVSYLMNSMIPY 17

```
ADJ82841
                                                                        93,96
TD
     ADJ82841 standard; peptide; 14 AA.
XX
AC
     ADJ82841;
XX
     06-MAY-2004 (first entry)
DT
XX
· DE
     Tetanus Tet(639) V epitope for fusion peptide vaccine.
XX
KW
     immunostimulant; vaccine; cytomegalovirus; fusion peptide;
KW
     T helper epitope; CTL epitope; PADRE; tetanus epitope; DNA adjuvant;
KW
     immune system.
XX
OS
     Clostridium tetani.
OS
     Unidentified.
XX
PN
     WO2004000873-A2.
XX
PD
     31-DEC-2003.
XX
ΡF
     25-JUN-2003; 2003WO-US019848.
XX
PR
     25-JUN-2002; 2002US-0391088P.
XX(
                                 PGNLZOCY0101534
PA 
     -(CITY ) CITY OF HOPE.
XX
PΙ
     Diamond DJ;
XX
DR
     WPI; 2004-082471/08.
XX
PT
     New cytomegalovirus (CMV) vaccine comprising a fusion peptide composed of
PT
     a T helper epitope fused to a CMV CTL epitope peptide, useful in
PT
     manufacturing a medicament for modifying the immune system of a mammal
PT
     against CMV.
XX
PS
     Disclosure; SEQ ID NO 4; 52pp; English.
XX
CC
     The invention relates to a cytomegalovirus vaccine comprising a fusion
     peptide composed of a T helper epitope fused to a CMV CTL epitope
CC
     peptide. The T helper epitope is PADRE or a tetanus epitope selected from
CC
CC
     tetanus heavy chain (590-603), tetanus heavy chain (615-629), tetanus
     heavy chain (639-652), tetanus heavy chain (830-843), and tetanus heavy
CC
     chain (947-967). The CMV pp65 CTL epitope peptide is selected from
CC
CC
     pp65(13-24), pp65(186-196), pp65(188-195), pp65(265-275), pp65(363-373),
CC
     pp65(369-379), pp65(367-379), pp65(495-503), and pp65(417-426),
CC
     preferably pp65(495-503). The vaccine may further comprise a DNA
CC
     adjuvant. The vaccine is useful in the manufacture of a medicament for
     modifying the immune system of a mammal against CMV. This sequence
CC
CC
     corresponds to the tetanus epitope Tet(639)V used in the vaccine of the
CC .
     invention.
XX
SO
     Sequence 14 AA;
  Query Match
                          56.6%;
                                  Score 56; DB 8;
                                                    Length 14;
  Best Local Similarity
                          90.9%; Pred. No. 0.048;
            10; Conservative
                                 1; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                              0;
             633.35
            3 IIPYIGPALNÍ 13
Qу
              1:11111111
Db
            4 IVPYIGPALNI 14
            639
```

```
ADJ82841
ID
     ADJ82841 standard; peptide; 14 AA.
XX
AC
     ADJ82841;
XX
     06-MAY-2004
DT
                 (first entry)
XX
     Tetanus Tet (639) V epitope for fusion peptide vaccine.
DE
XX
KW
     immunostimulant; vaccine; cytomegalovirus; fusion peptide;
     T helper epitope; CTL epitope; PADRE; tetanus epitope; DNA adjuvant;
KW
KW
     immune system.
XX
OS
     Clostridium tetani.
OS
     Unidentified.
XX
PN
     WO2004000873-A2.
XX
PD
     31-DEC-2003.
XX
PF
     25-JUN-2003; 2003WO-US019848.
XX
     25-JUN-2002; 2002US-0391088P.
PR
XX
                                PGht 20040701834
     (CITY ) CITY OF HOPE.
PA
XX
PΙ
     Diamond DJ;
XX
     WPI; 2004-082471/08.
DR
XX
PT
     New cytomegalovirus (CMV) vaccine comprising a fusion peptide composed of
PT
     a T helper epitope fused to a CMV CTL epitope peptide, useful in
PT
     manufacturing a medicament for modifying the immune system of a mammal
PT
     against CMV.
XX
PS
     Disclosure; SEQ ID NO 4; 52pp; English.
XX
CC
     The invention relates to a cytomegalovirus vaccine comprising a fusion
CC
     peptide composed of a T helper epitope fused to a CMV CTL epitope
CC
     peptide. The T helper epitope is PADRE or a tetanus epitope selected from
CC
     tetanus heavy chain (590-603), tetanus heavy chain (615-629), tetanus
CC
    heavy chain (639-652), tetanus heavy chain (830-843), and tetanus heavy
     chain (947-967). The CMV pp65 CTL epitope peptide is selected from
CC
CC
    pp65(13-24), pp65(186-196), pp65(188-195), pp65(265-275), pp65(363-373),
CC
    pp65(369-379), pp65(367-379), pp65(495-503), and pp65(417-426),
CC
    preferably pp65(495-503). The vaccine may further comprise a DNA
CC
     adjuvant. The vaccine is useful in the manufacture of a medicament for
CC
    modifying the immune system of a mammal against CMV. This sequence
CC
     corresponds to the tetanus epitope Tet(639)V used in the vaccine of the
CC .
    invention.
XX
SO
    Sequence 14 AA;
  Query Match
                          56.6%; Score 56; DB 8;
                                                    Length (14)
                          90.9%; Pred. No. 0.048;
  Best Local Similarity
 Matches
            10; Conservative
                                 1; Mismatches
                                                   0; Indels
                                                                 0; Gaps
             653 55
            3 IIPYIGPALNI 13
Qу
              1:11111111
Db
            4 IVPYIGPALNI 14
```

```
RESULT 5
AD369794
ΙD
     ADZ69794 standard; peptide; 8 AA.
XX
AC
     ADZ69794;
XX
DT
     28-JUL-2005 (first entry)
XX
DE
     Botulinum toxin type A peptide SEQ ID NO:69.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
KW
     cervical dystonia; migraine.
                                                                 547/565
XX
OS
     Clostridium botulinum.
XX
PN
     <del>US2</del>005106182-A1.
XX
     19-MAY-2005.
PD
XX
     17-NOV-2003; 2003US-00715810.
PF
XX
PR
     17-NOV-2003; 2003US-00715810.
XX
PΑ
     (LISS/) LI S.
PA
     (AOKI/) AOKI K R.
XX
PΙ
     Li S, Aoki KR;
XX
DR
     WPI; 2005-365766/37.
XX
     Treating botulinum toxin intoxication in a mammal, comprises
PT
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
     Disclosure; SEQ ID NO 69; 61pp; English.
XX
     The invention relates to a method (M1) for treating botulinum toxin
CC
CC
     intoxication in a mammal. (M1) comprises administering at least one
CC
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
     being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
    making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
    in a cell free system; (3) a modified nontoxic nonhemagglutinin
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
CC
     non-Clostridium botulinum cell (III) comprising a vector operatively
CC
    harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
    nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
    condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
CC
    also useful for the treatment of neuromuscular disorders, cervical
CC
    dystonia and migraine. The present sequence represents a Clostridium
CC
    botulinum toxin type A peptide sequence, which is used in the
CC
    exemplification of the present invention.
XX
SQ.
    Sequence 8 AA;
 Query Match
                          44.8%; Score 47; DB 9; Length 8;
 Best Local Similarity
                         100.0%; Pred. No. 2.1e+06;
 Matches
          8; Conservative 0; Mismatches 0;
                                                      Indels
```

```
ADZ69798
ID
     ADZ69798 standard; peptide; 30 AA.
XX
AC
     ADZ69798;
XX
DT
     28-JUL-2005 (first entry)
XX
DΕ
     Botulinum toxin type A peptide SEQ ID NO:73.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
KW
     cervical dystonia; migraine.
                                                              2559-607
XX
OS
     Clostridium botulinum.
XX
PN
     US2005106182-A1.
XX
PD
     19-MAY-2005.
XX
PF
     17-NOV-2003; 2003US-00715810.
XX
PR
     17-NOV-2003; 2003US-00715810.
XX
PΑ
     (LISS/) LI S.
PΑ
     (AOKI/) AOKI K R.
XX
PΙ
     Li S, Aoki KR;
XX
DR
    WPI; 2005-365766/37.
XX
PT
     Treating botulinum toxin intoxication in a mammal, comprises
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
     Disclosure ( SEQ ID NO 73; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
     intoxication in a mammal. (M1) comprises administering at least one
CC
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
    being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
    making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
    in a cell free system; (3) a modified nontoxic nonhemagglutinin
CC
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
    non-Clostridium botulinum cell (III) comprising a vector operatively
CC
    harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
    nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
CC
     also useful for the treatment of neuromuscular disorders, cervical
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
    botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SO
     Sequence 30 AA;
  Query Match
                          58.0%; Score 58; DB 9;
                                                    Length 30;
 Best Local Similarity
                          100.0%; Pred. No. 0.06;
          11; Conservative
                                 0; Mismatches
                                                   0;
                                                      Indels
Qy
            9 ATEAAMFLGWV 19
```

/Db 1 ATEAAMFLGWV 11

```
Sequence 74, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
; APPLICANT: Kei, Aoki R.
; TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
; FILE REFERENCE: ALLE0004-100
  CURRENT APPLICATION NUMBER: US/10/715,810
  CURRENT FILING DATE: 2003-11-17
  NUMBER OF SEQ ID NOS: 105
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 74
   LENGTH: 23
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 627-649)
US-10-715-810-74
 Query Match
                        100.0%; Score 99; DB 5; Length 23;
 Best Local Similarity
                        100.0%;
                                 Pred. No. 9.8e-09;
         19; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
Qу
           1 TIIIPYIGPALNIGNMLYK 19
```

5 TIIIPYIGPALNIGNMLYK 23

Db

```
🥕 RESULT 4
  ADZ69803
  ID
       ADZ69803 standard; peptide; 9 AA.
  XX
  AC
       ADZ69803;
  XX
  DT
       28-JUL-2005 (first entry)
  XX
  DE
       Botulinum toxin type A peptide SEQ ID NO:78.
  XX
  KW
       toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
  KW
       autonomic nervous system disease; pain; neuromuscular disease;
  KW
       cervical dystonia; migraine.
  XX
  OS
       Clostridium botulinum.
  XX
  PN
       US2005106182-A1.
  XX
  PD
       19-MAY-2005.
  XX
  PF
       17-NOV-2003; 2003US-00715810.
  XX
  PR
       17-NOV-2003; 2003US-00715810.
  XX
  PΑ
       (LISS/) LI S.
  PA
       (AOKI/) AOKI K R.
  XX
  PΙ
       Li S, Aoki KR;
  XX
  DR
       WPI; 2005-365766/37.
  XX
  PT
       Treating botulinum toxin intoxication in a mammal, comprises
  PT
       administering a rescue agent comprising an inactive botulinum toxin and a
  PT
       modified nontoxic nonhemagglutinin to a mammal.
  XX
  PS
       Disclosure; SEQ ID NO 78; 61pp; English.
  XX
  CC
       The invention relates to a method (M1) for treating botulinum toxin
  CC
       intoxication in a mammal. (M1) comprises administering at least one
       rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
  CC
  CC
       being glycosylated, having reduced antigenicity, and being inactive; (2)
  CC
       making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
  CC
       in a cell free system; (3) a modified nontoxic nonhemagglutinin
       comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
  CC
  CC
       non-Clostridium botulinum cell (III) comprising a vector operatively
  CC
       harboring a nucleotide sequence encoding a single chain botulinum toxin
  CC
       and a vector operatively harboring nucleotide sequence encoding a
  CC
       nontoxic nonhemagglutinin. (II) is useful for treating a muscular
  CC
       condition, an autonomic nervous system disorder and/or pain, which
  CC
       involves administering (II) to the mammal in need of the toxins. (II) is
  CC
       also useful for the treatment of neuromuscular disorders, cervical
  CC
       dystonia and migraine. The present sequence represents a Clostridium
  CC
       botulinum toxin type A peptide sequence, which is used in the
  CC
       exemplification of the present invention.
  XX
  SQ
       Sequence 9 AA;
    Query Match
                            43.9%; Score 43; DB 9; Length 9;
    Best Local Similarity
                            100.0%; Pred. No. 2.1e+06;
    Matches
              9; Conservative 0; Mismatches 0; Indels
                                                                    0; Gaps
```

Qy 7 VNTQIDLIR 15

```
RESULT 20
ADZ69802
     ADZ69802 standard; peptide; 9 AA.
ΙD
XX
     ADZ69802;
AC
XX
     28-JUL-2005 (first entry)
DT
XX
                                                                        715,733
DĖ
     Botulinum toxin type A peptide SEQ ID NO:77.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
KW
     cervical dystonia; migraine.
XX
OS
     Clostridium botulinum.
XX
     US2005106182-A1.
PN
XX
PD
     19-MAY-2005.
XX
PF
     17-NOV-2003; 2003US-00715810.
XX
PR
     17-NOV-2003; 2003US-00715810.
XX
PΑ
     (LISS/) LI S.
PA
     (AOKI/) AOKI K R.
XX
    Li S, Aoki KR;
PΙ
XX
     WPI; 2005-365766/37.
DR
XX
     Treating botulinum toxin intoxication in a mammal, comprises
PT
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
     modified nontoxic nonhemagglutinin to a mammal.
PT
XX
PS
     Disclosure; SEQ ID NO 77; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
     intoxication in a mammal. (M1) comprises administering at least one
CC
CC
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
     being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
     making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
     in a cell free system; (3) a modified nontoxic nonhemagglutinin
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
CC
     non-Clostridium botulinum cell (III) comprising a vector operatively
CC
     harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
     nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
CC
     also useful for the treatment of neuromuscular disorders, cervical
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
     botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SQ
     Sequence 9 AA;
                          35.7%; Score 35; DB 9; Length 9;
  Query Match
                        100.0%; Pred. No. 2.1e+06;
  Best Local Similarity
           6; Conservative 0; Mismatches 0; Indels 0; Gaps
 Matches
```



```
7
RESULT 3
ADZ69805
      ADZ69805 standard; peptide; 15 AA.
ID
XX
AC
     ADZ69805;
XX
 DΤ
     28-JUL-2005 (first entry)
XX
     Botulinum toxin type A peptide SEQ ID NO:80.
DE
XX
KW
      toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
      autonomic nervous system disease; pain; neuromuscular disease;
KW
      cervical dystonia; migraine.
XX
OS
     Clostridium botulinum.
XX
     US2005106182-A1.
PN
XX
PD
     19-MAY-2005.
XX
PF
     17-NOV-2003; 2003US-00715810.
XX
     17-NOV-2003; 2003US-00715810.
PR
XX
PA
      (LISS/) LI S.
      (AOKI/) AOKI K R.
PΑ
XX
PΙ
     Li S, Aoki KR;
XX
     WPI; 2005-365766/37.
DR
XX
PT
     Treating botulinum toxin intoxication in a mammal, comprises
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
     Disclosure; SEQ ID NO 80; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
      intoxication in a mammal. (M1) comprises administering at least one
CC
      rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CÇ
     being glycosylated, having reduced antigenicity, and being inactive; (2)
CC
     making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
     in a cell free system; (3) a modified nontoxic nonhemagglutinin
CC
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
     non-Clostridium botulinum cell (III) comprising a vector operatively
CC
CC
     harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
     and a vector operatively harboring nucleotide sequence encoding a
CC
     nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
      involves administering (II) to the mammal in need of the toxins. (II) is
CC
     also useful for the treatment of neuromuscular disorders, cervical
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
     botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SQ
     Sequence 15 AA;
   Query Match
                           78.4%; Score 80; DB 9; Length 15;
                          100.0%; Pred. No. 3.2e-05;
  Best Local Similarity
           15; Conservative 0; Mismatches
                                                       Indels
                                                                  0; Gaps
                                                   0;
```

```
RESULT 2
ADZ69820
ID
     ADZ69820 standard; peptide; 19 AA.
XX
     ADZ69820;
AC
XX
DT
     28-JUL-2005 (first entry)
XX
DE
     Botulinum toxin type A peptide SEQ ID NO:95.
XX
KW
     toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
KW
     autonomic nervous system disease; pain; neuromuscular disease;
     cervical dystonia; migraine.
KW
XX
                                                                ga 981-999
OS
     Clostridium botulinum.
XX
PN
     US2005106182-A1.
XX
PD
     19-MAY-2005.
XX
PF
     17-NOV-2003; 2003US-00715810.
XX
     17-NOV-2003; 2003US-00715810.
PR
XX
PΑ
     (LISS/) LI S.
     (AOKI/) AOKI K R.
PA
XX
     Li S, Aoki KR;
ΡI
XX
DR
     WPI; 2005-365766/37.
XX
PT
     Treating botulinum toxin intoxication in a mammal, comprises
PT
     administering a rescue agent comprising an inactive botulinum toxin and a
PT
     modified nontoxic nonhemagglutinin to a mammal.
XX
PS
     Disclosure; SEQ ID NO 95; 61pp; English.
XX
CC
     The invention relates to a method (M1) for treating botulinum toxin
CC
     intoxication in a mammal. (M1) comprises administering at least one
     rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
CC
CC
     being glycosylated, having reduced antigenicity, and being inactive; (2)
     making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
CC
CC
     in a cell free system; (3) a modified nontoxic nonhemagglutinin
CC
     comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
CC
     non-Clostridium botulinum cell (III) comprising a vector operatively
     harboring a nucleotide sequence encoding a single chain botulinum toxin
CC
CC
     and a vector operatively harboring nucleotide sequence encoding a
CÇ
     nontoxic nonhemagglutinin. (II) is useful for treating a muscular
CC
     condition, an autonomic nervous system disorder and/or pain, which
CC
     involves administering (II) to the mammal in need of the toxins. (II) is
     also useful for the treatment of neuromuscular disorders, cervical
CC
CC
     dystonia and migraine. The present sequence represents a Clostridium
CC
     botulinum toxin type A peptide sequence, which is used in the
CC
     exemplification of the present invention.
XX
SQ
     Sequence 19 AA;
  Query Match
                          75.5%; Score 74; DB 9; Length 19;
  Best Local Similarity
                         100.0%; Pred. No. 0.00012;
          14; Conservative 0; Mismatches 0;
                                                      Indels 0; Gaps
```

Qy 1 GEIIWTLQDTQEIK 14 |||||||||||| Db 6 GEIIWTLQDTQEIK 19

```
RESULT 41
US-10-715-810-99
; Sequence 99, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
; APPLICANT: Kei, Aoki R.
; TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
 FILE REFERENCE: ALLE0004-100
 CURRENT APPLICATION NUMBER: US/10/715,810
; CURRENT FILING DATE: 2003-11-17
 NUMBER OF SEQ ID NOS: 105
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 99
   LENGTH: 22
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 1035-1056)
US-10-715-810-99
  Query Match
                         28.6%; Score 32; DB 5; Length 22;
  Best Local Similarity 100.0%; Pred. No. 7.2e+02;
          6; Conservative 0; Mismatches 0; Indels
           1 NNIMFK 6
Qу
             11111
Db
          17 NNIMFK 22
```

aa 1051-1069

~>

```
✓ RESULT 2
  ADZ69830
  ID
      ADZ69830 standard; peptide; 20 AA.
 XX
 AC
      ADZ69830;
 XX
 DT
      28-JUL-2005 (first entry)
 XX
 DE
      Botulinum toxin type A peptide SEQ ID NO:105.
 XX
 KW
       toxin; muscular-gen.; analgesic; antimigraine; cns-gen.;
 KW
       autonomic nervous system disease; pain; neuromuscular disease;
 KW
       cervical dystonia; migraine.
 XX
                                                        aa 1275-1296
 OS
      Clostridium botulinum.
 XX
 PN
      US2005106182-A1.
 XX
 PD
      19-MAY-2005.
 XX
 PF
      17-NOV-2003; 2003US-00715810.
 XX
 PR
      17-NOV-2003; 2003US-00715810.
 XX
 PA
       (LISS/) LI S.
 PΑ
       (AOKI/) AOKI K R.
 XX
 PΙ
      Li S, Aoki KR;
 XX
 DR
      WPI; 2005-365766/37.
 XX
      Treating botulinum toxin intoxication in a mammal, comprises
 PT
 PT
      administering a rescue agent comprising an inactive botulinum toxin and a
 PT
      modified nontoxic nonhemagglutinin to a mammal.
 XX
 PS
      Disclosure; SEQ ID NO 105; 61pp; English.
 XX
 CC
      The invention relates to a method (M1) for treating botulinum toxin
 CC
      intoxication in a mammal. (M1) comprises administering at least one
 CC
      rescue agent (I) to a mammal. Also described: (1) a botulinum toxin (II)
 CC
      being glycosylated, having reduced antigenicity, and being inactive; (2)
 CC
      making (M2) a di-chain botulinum in a non-Clostridium botulinum cell or
 CC
      in a cell free system; (3) a modified nontoxic nonhemagglutinin
      comprising a nontoxic nonhemagglutinin and a targeting group; and (4) a
 CC
 CC
      non-Clostridium botulinum cell (III) comprising a vector operatively
 CC
      harboring a nucleotide sequence encoding a single chain botulinum toxin
 CC
      and a vector operatively harboring nucleotide sequence encoding a
 CC
      nontoxic nonhemagglutinin. (II) is useful for treating a muscular
 CC
      condition, an autonomic nervous system disorder and/or pain, which
 CC
      involves administering (II) to the mammal in need of the toxins. (II) is
 CC
      also useful for the treatment of neuromuscular disorders, cervical
 CC
      dystonia and migraine. The present sequence represents a Clostridium
 CC
      botulinum toxin type A peptide sequence, which is used in the
 CC
      exemplification of the present invention.
 XX
 SQ
      Sequence 20 AA;
   Query Match
                           93.1%; Score 121; DB 9; Length 20;
   Best Local Similarity
                           100.0%; Pred. No. 1.5e-10;
           20; Conservative 0; Mismatches
                                                   0; Indels 0; Gaps
```

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 13:45:45; Search time 57.1624 Seconds

(without alignments)

153.966 Million cell updates/sec

Title: US-10-821-669-1 COPY 673 691

Perfect score: 91

1 IPVLGTFALVSYIANKVLT 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

2097797 segs, 463214858 residues Searched:

Total number of hits satisfying chosen parameters: 526792

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : Published Applications AA Main:*

1: /EMC Celerra SIDS3/ptodata/2/pubpaa/US07 PUBCOMB.pep:*

2: /EMC Celerra SIDS3/ptodata/2/pubpaa/US08 PUBCOMB.pep:*

3: /EMC Celerra SIDS3/ptodata/2/pubpaa/US09 PUBCOMB.pep:*

4: /EMC_Celerra_SIDS3/ptodata/2/pubpaa/US10A PUBCOMB.pep:*

5: /EMC_Celerra_SIDS3/ptodata/2/pubpaa/US10B_PUBCOMB.pep:*

6: /EMC Celerra SIDS3/ptodata/2/pubpaa/US11_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description	
1	34	37.4	28	4		Sequence 28518, A	- А.

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:30:50; Search time 99.3 Seconds

(without alignments)

176.992 Million cell updates/sec

Title: US-10-821-669-1 COPY 589 607

Perfect score: 100

Sequence: 1 DYVKKVNKATEAAMFLGWV 19

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 2849598 seqs, 925015592 residues

Total number of hits satisfying chosen parameters: 37017

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : UniProt_7.2:*

1: uniprot_sprot:*
2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	33 33	33.0 33.0			Q9ZY85_BOMTE Q73RF8 TREDE	Q9zy85 bombus terr Q73rf8 treponema d

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:29:25; Search time 84.8 Seconds Run on:

(without alignments)

102.442 Million cell updates/sec

US-10-821-669-1 COPY 491 509 Title:

Perfect score: 99

Sequence: 1 EENISLDLIQQYYLTFNFD 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 segs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

A Geneseq 8:* Database :

> 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:* 7: geneseqp2003bs:*
> 8: geneseqp2004s:*

9: geneseqp2005s:* 10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1 2	99 99	100.0	19 27	-	ADW11044 ADW11103	Adwll044 Clostridi Adwll103 Clostridi
3	37	37.4	_ ,	-	ADV55232	Adv55232 G protein

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:48:32; Search time 107.179 Seconds

(without alignments)

_93_850 Million cell updates/sec

Title: US-10-821-669-1 CORY 1275 1296

Perfect score: 130

Sequence: 1 SRTLGCSWEFIPVDDGWGERPL 22

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 seqs, 457216429 residues.

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database: A Geneseq 8:*

Q.

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

R	esult No.	Score	Query Match	Length	DB	ID .	Description	
	1	130	100.0	22	9	ADW11100	Adw11100 Clost	ridi
	2	121	93.1	20	9	ADZ69830	Adz69830 Botul	inum
	3	70	53.8	20	2	AAR47809	Aar47809 Seque	nce
	4	70	53.8	21	2	AAR04088	Aar04088 The c	arbo
	5	70	53.8	21	2	AAR47810	Aar47810 Seque	nce
	6	45	34.6	19	5	AAU85629	Aau85629 Lung	tumo

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:29:25; Search time 84.8 Seconds Run on:

(without alignments)

102.442 Million cell updates/sec

US-10-821-669-1 COPY 1121 1139

Perfect score: 104

Sequence:

1 KYVDVNNVGIRGYMYLKGP 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 segs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*
9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용 Result Query Score Match Length DB ID No. Description 104 100.0 19 9 ADW11089 Adwl1089 Clostridi

```
AAW11973
     AAW11973 standard; peptide; 8 AA.
XX
AC
     AAW11973;
XX
DT
     02-APR-1997 (first entry)
XX
DE
     T-cell epitope #4 from tetanus toxoid.
XX
     T-cell epitope; antigen; T-cell determinant; receptor; MHC protein; bird;
KW
     HIV sf2; herpes simplex virus; antigen gD2; tetanus toxoid; vaccine; HSV;
KW
     mammal; gp120; immune response; B-cell antigen.
KW
XX
os
     Synthetic.
XX
                                                                  59631-649
PN
     WO9518148-A1.
XX
PD
     06-JUL-1995.
XX
PF
     28-DEC-1993;
                    93WO-US011703.
XX
PR
     28-DEC-1993;
                    93WO-US011703.
XX
PΑ
     (CHIR-) CHIRON MIMOTOPES PTY LTD.
XX
PΙ
     Geysen HM,
                Rodda SJ;
XX
DR
     WPI; 1995-246333/32.
XX
PT
     T cell epitope peptide(s) - useful for detecting exposure of a subject to
     an antigen or pathogen, and in vaccines for birds and mammals.
PT
XX
PS
     Claim 1; Page 45; 57pp; English.
XX
CC
     AAW11953-W11976 represent T-cell epitope peptides. T-cell epitopes (also
CC
     known as T-cell determinants) are peptides (or regions of a protein)
CC
     which bind to T-cell antigen receptors in conjugation with MHC proteins.
CC
     These sequences were the most antigenic peptides obtained from pools of
CC
     peptides created from the HIV sf2 gp120 (AAW11953-W11960), herpes simplex
CC
     virus antigen gD2 (AAW11961-W11969), and tetanus toxoid (AAW11970-
CC
     W11976). These sequences can be used in methods for detecting exposure of
CC .
     a mammal or bird to an antigen, and for increasing the number of T-cells
CC
     specific for an antigen. The peptides can also be used in a method for
CC
     determining T-cell epitopes specific for an antigen. These methods allow
CC
     for the identification of T-cell determinants. The T-cell epitope
CC
     peptides can be used in a vaccine for inducing an immune response in a
CC
     bird or mammal. The vaccine also contains a B-cell antigen, preferably
CC
     herpes simplex virus gD2 or HIV sf2 gp120 (see AAW11977), and a carrier
XX
     Sequence 8 AA;
SQ
 Query Match
                          42.4%;
                                  Score 42; DB 2; Length 8;
  Best Local Similarity
                          87.5%; Pred. No. 2.1e+06;
            7; Conservative
                                 1; Mismatches
                                                   0; Indels
            3 IIPYIGPA 10
Qу
              1: | | | | |
Db
            1 IVPYIGPA 8
```

```
AAW05608 standard; peptide; 16 AA.
ID
XX^*
AC
     AAW05608;
XX
DT
     10-DEC-1996 (first entry)
XX
DE
     Tetanus toxin helper T cell epitope #5.
XX
     Immunoglobulin; IgE; membrane protein; human; epsilon chain; hepatitis B;
ΚW
KW
     membrane anchoring domain; helper T cell; surface antigen; core antigen;
     pertussis toxin; tetanus toxin; measles virus F protein; immunotherapy;
KW
KW
     Chlamydia trachomatis major outer membrane protein; immunogen; vaccine;
KW
     diphtheria toxin; plasmodium falciparum; circumsporozoite; E. coli TraT;
KW
     schistosoma mansoni; triose phosphate isomerase; allergenic reaction;
KW
     allergic rhinitis; food allergy; anaphylaxis; virally-induced asthma;
KW
     antihistamine; decongestant; beta-2 agonist; immunosuppression;
KW
     corticosteroid.
XX
OS
     Synthetic.
XX
PN
     WO9612740-A1.
XX
                                                         631-649
PD
     02-MAY-1996.
XX
PF
     25-OCT-1995;
                    95WO-US013841.
XX
PR
     25-OCT-1994;
                    94US-00328519.
XX
PA
     (UNBI-) UNITED BIOMEDICAL INC.
XX
PΙ
     Wang CY, Walfield AM;
XX
     WPI; 1996-230555/23.
DR
XX
PT
     Peptide immunogen useful in treatment of allergy - comprises membrane-
PT
     bound IgE epsilon-chain peptide synthesised linearly in tandem with T
PT
     helper epitope peptide.
XX
PS
     Claim 2; Page 19; 53pp; English.
XX
CC
    AAW05957-W05616 represent helper T cell epitopes used in the peptide
CC
     immunogens of the invention. This sequence represents the tetanus toxin
CC
     helper T cell antigen. The peptides of the invention contain one of these
CC
     sequences, and a membrane-bound immunoglobulin E (IgE) fragment (see
CC
     AAW05595 and AAW05596). The peptide immunogens of the invention can be
CC
     used in vaccines for the immunotherapeutic treatment of allergenic
CC
     reactions, including allergic rhinitis, food allergies, anaphylaxis, or
CC
     virally-induced asthma. The immunogens overcome the short effective
CC
     period of antihistamines, decongestants, and beta-2 agonists, while
CC
     preventing the broad immunosuppression of corticosteroids. The peptides
CC
     do not have the potential side effects of restlessness or sedation
CC
     (associated with antihistamines), associated increased morbidity in
CC
     asthmatics (as seen with beta-2 agonists) and adverse hormonal activities
CC
     (observed in corticosteroid users)
XX
SQ
     Sequence 16 AA;
 Query Match
                          56.6%;
                                  Score 56; DB 2;
                                                   Length 16;
  Best Local Similarity
                          90.9%; Pred. No. 0.055;
 Matches
          10; Conservative
                                 1; Mismatches
                                                      Indels
                                                                 0; Gaps
```

```
AAY96457
     AAY96457 standard; peptide; 20 AA.
XX
AC
     AAY96457;
XX
DT
     12-SEP-2000 (first entry)
XX
DE
     Tetanus toxin (TTD)-specific peptide residues 632-651.
XX
KW
     Tetanus toxin; DTX; universal epitope; CD4-positive; immunodominant;
KW
     antigen; infection; vaccine; immunostimulatory.
XX
OS
     Synthetic.
XX
ΡN
     WO200032626-A1.
XX
PD
     08-JUN-2000.
XX
PF
     24-NOV-1999;
                    99WO-US028039.
XX
     25-NOV-1998;
PR
                   98US-00199748.
XX
PΑ
     (MINU ) UNIV MINNESOTA.
PA
     (CONT/) CONTI-FINE B M.
XX
ΡI
     Conti-Fine BM;
XX
DR
     WPI; 2000-412286/35.
XX
PT
     Isolated and purified peptide for immunization of mammal against
PT
     infectious agent comprises amino acid sequence similar or identical to
PT
     portion of amino acid sequence of antigen from infectious agent.
XX
PS
     Example 4; Page 66; 108pp; English.
XX
CC
     Peptides AAY96457-56 are tetanus toxoid (TTD) specific peptides capable
CC
     of acting as universal epitopes. The peptides seem to be recognized by
CC
     CD4 positive cells in humans, irrespective of their human leukocyte
CC
     antigen (HLA) class II haplotype. These peptides and diphtheria toxin
CC
     specific peptides (e.g. AAY96450-55) are useful as universal epitopes. A
CC
     common structural feature of the peptides that may give them an advantage
CC
     during processing is that they all include, or are flanked by, both at
CC
     the N- and C-terminal ends, sequence regions forming relatively
CC
     unstructured loops fully exposed to the solvent. Flanking exposed loops
CC
     may be important for IRS formation as the loops would make easy targets
CC
     for processing enzymes, resulting in the fast release of sequence
CC
     segments embedded in the hydrophobic core of the antigenic molecule. The
CC
     universal peptide epitopes can be used in vaccines against infectious
CC
     agents (e.g. viruses, bacteria and fungi). The invention also provides
CC
    methods of identifying immunogenic epitopes and IRS
XX
SQ
     Sequence 20 AA;
  Query Match
                          56.6%;
                                  Score 56; DB 3; Length 20;
  Best Local Similarity
                          90.9%; Pred. No. 0.071;
  Matches
          10; Conservative
                                 1; Mismatches
                                                  0; Indels
                                                                              0;
Qу
            3 IIPYIGPALNI 13
              1:11111111
Db
           10 IVPYIGPALNI 20
```

```
AAR82582
     AAR82582 standard; peptide; 16 AA.
XX
AC
     AAR82582;
XX
DT
     13-JUN-1996 (first entry)
XX
DΕ
     Tetanus toxin helper T cell epitope, TT5.
XX
KW
     IgE; CH4; immunoglobulin; epsilon; immunogen; helper T cell; epitope;
KW
     vaccine; allergy; antibody; constant heavy chain.
XX
os
     Clostridium tetani.
XX
PN
     WO9526365-A1.
XX
     05-OCT-1995.
PD
XX
PF
     24-MAR-1995; 95WO-US003741.
XX
PR
     28-MAR-1994;
                    94US-00218461.
     25-OCT-1994;
                  94US-00328912.
PR
XX
PΑ
     (UNBI-) UNITED BIOMEDICAL INC.
XX
PΙ
    Wang CY;
XX
DR
    WPI; 1995-351297/45.
XX
PΤ
     Synthetic peptide-based immunogen contq. IqE CH4 peptide and helper T
PT
     cell epitope - useful for eliciting antibody prodn. for allergy
PT
     treatment.
XX
PS
    Claim 3; Page 23; 87pp; English.
XX
CC
    AAR82571-91 are helper T cell epitopes which can be used in the
CC
    preparation of a peptide immunogen that is useful in vaccines for
CC
    treating allergic reactions. In the immunogen an IqE CH4 peptide is
CC
     attached C-terminally to a series of amino acids including a helper T
CC
     cell epitope. The immunogen may also opt. contain a fatty acid or fatty
CC
     acid derivative, an invasin domain or alpha-NH2. The immunogen produces
CC
    high titres of antibodies to the effector site in human IqE heavy chain
CC
     (the CH4 domain peptide) which inhibit mast cell activation and reduce
CC
     allergen-induced IgE prodn. The immunogens may be used in either a
CC
    radially branching multimeric form or a linearly arranged monomeric form
XX
SO
    Sequence 16 AA;
  Query Match
                          52.5%; Score 52; DB 2; Length 16;
  Best Local Similarity
                          90.0%; Pred. No. 0.25;
            9; Conservative
                                 1; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                              0;
Qу
            3 IIPYIGPALN 12
              1:111111
Db
            5 IVPYIGPALN 14
```

```
AAR86583
     AAR86583 standard; protein; 7 AA.
XX
AC
     AAR86583;
XX
DT
     28-JUN-1996 (first entry)
XX
DE
     Autotaxin peptide fragment ATX-209.
XX
KW
     Autotaxin; ATX; cytokine; autocrine motility stimulating protein; AMF;
KW
     melanoma cell; tumour; antibody; cancer diagnosis; therapy.
XX
os
     Homo sapiens.
                                                         519-537
XX
PN
     WO9532221-A2.
XX
     30-NOV-1995.
PD
XX
PF
     24-MAY-1995;
                  95WO-US006613.
XX
PR
     25-MAY-1994;
                   94US-00249182.
PR
     28-NOV-1994;
                  94US-00346455.
XX
PΑ
     (USSH ) US DEPT HEALTH & HUMAN SERVICES.
XX
ΡI
     Stracke M, Liotta L, Schiffmann E, Krutzch J, Murata J;
XX
DR
    WPI; 1996-020533/02.
XX
PT
     Autotaxin motility stimulating protein, and DNA encoding it - used in
PT
     cancer diagnosis and therapy.
XX
PS
    Claim 4; Page 12; 112pp; English.
XX
CC
    AAR86559-R86596 represent autotaxin (ATX) and fragments of it. ATX is an
CC
     autocrine motility stimulating protein which is present in cancer cells.
CC
    ATX stimulates both random and directed migration of melanoma cells. The
     tumourous form of ATX is a secreted protein, while the transmembrane
CC
CC
    bound form is not present in tumour cells. The cDNA encoding this
CC
    sequence can be used in a vector, to transform cells. The recombinant
CC
    cells can then be used to produce the peptide sequences. Antibodies
CC
    specific for these sequences can be produced, and can be used in cancer
    diagnosis and therapy. Different sites of localisation of the protein are
CC
CC
    utilised for diagnosis and prognosis of the stages of tumour progression.
CC
    The sequences can be used in treatment methods to advantageously block
CC
    the activity of the secreted form of AXT, while having little effect on
CC
    the membrane form of AXT
XX
SO
    Sequence 7 AA;
  Query Match
                         31.9%; Score 30; DB 2; Length 7;
 Best Local Similarity
                         71.4%; Pred. No. 2.1e+06;
           5; Conservative 2; Mismatches 0; Indels
Qу
          12 LMPNIER 18
             : ! ! ! ! ! :
           1 VMPNIEK 7
Db
```

```
5204326-117
; Patent No. 5204326
    APPLICANT: FUJII, SETSURO; YAMAMOTO, YOSHIHITO; SHIMIZU, FUMIO
; INAI, MASATOSHI; KINOSHITA, NAOSUMI; NAKAMURA, SHIZUO; HIROHASHI,
;MITSURU; SAKAMOTO, TAKASHI;TSUTSUMI, KAZUHIKO;SHIRASAKA, TETSUHIKO
                                                                     519-537
    TITLE OF INVENTION: POLYPEPTIDE DERIVATIVES AND CALCIUM
; METABOLISM IMPROVING AGENT
    NUMBER OF SEQUENCES: 147
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/493,359
     FILING DATE: 14-MAR-1990
;SEQ ID NO:117:
      LENGTH: 9
5204326-117
 Query Match
                         34.0%; Score 32; DB 7; Length 9;
 Best Local Similarity 62.5%; Pred. No. 5e+05;
 Matches 5; Conservative 3; Mismatches 0; Indels
                                                               0; Gaps
Qу
           1 NLSSDIIG 8
             111:1::1
Db
           2 NLSTDVLG 9
```

```
Sequence 29, Application US/08447411
; Patent No. 5773243
  GENERAL INFORMATION:
    APPLICANT: FRITZINGER, DAVID C.
    APPLICANT: BREDEHORST, REINHARD
    APPLICANT: VOGEL, CARL-WILHELM
    TITLE OF INVENTION: DNA ENCODING COBRA C3, CVF1, AND CVF2
    NUMBER OF SEQUENCES: 81
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT,
     ADDRESSEE: P.C.
     STREET: 1755 S. Jefferson Davis Highway, Suite 400
      CITY: Arlington
                                                              633-551
      STATE: Virginia
      COUNTRY: U.S.A.
      ZIP: 22202
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/447,411
      FILING DATE:
      CLASSIFICATION: 435
;
    PRIOR APPLICATION DATA:
    APPLICATION NUMBER: US 08/043,747
     FILING DATE: 07-APR-1993
    ATTORNEY/AGENT INFORMATION:
    NAME: Oblon, No. 5773243man F.
      REGISTRATION NUMBER: 24,618
     REFERENCE/DOCKET NUMBER: 1126-101-0
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 413-3000
      TELEFAX: (703) 413-2220
      TELEX: 248855 OPAT UR
  INFORMATION FOR SEQ ID NO: 29:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 30 amino acids
;
      TYPE: amino acid
;
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    ORIGINAL SOURCE:
      ORGANISM: Homo sapiens
US-08-447-411-29
 Query Match
                        30.5%; Score 32; DB 1; Length 30;
                        100.0%; Pred. No. 3.1e+02;
 Best Local Similarity
 Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps
          10 KYELDK 15
Qу
            111111
Db
          7 KYELDK 12
```

```
Sequence 198, Application US/10658180
; Patent No. 6943002
; GENERAL INFORMATION:
; APPLICANT: ALIBHAI, MURTAZA F.
 APPLICANT: ASTWOOD, JAMES D.
; APPLICANT: SAMPSON, HUGH A.
; APPLICANT: McWHERTER, CHARLES A.
; TITLE OF INVENTION: PREPARATION OF DEALLERGENIZED PROTEINS AND PERMUTEINS
 FILE REFERENCE: 11899.0217.DVUS02
; CURRENT APPLICATION NUMBER: US/10/658,180
; CURRENT FILING DATE: 2003-09-09
 PRIOR APPLICATION NUMBER: US 09/755,630
  PRIOR FILING DATE: 2001-01-05
; PRIOR APPLICATION NUMBER: US 60/174,669
; PRIOR FILING DATE: 2000-01-06
                                                       547 565
; NUMBER OF SEQ ID NOS: 295
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 198
  LENGTH: 10
  TYPE: PRT
   ORGANISM: Artificial
   FEATURE:
   OTHER INFORMATION: Synthetic polypeptide
US-10-658-180-198
 Query Match
                        28.6%; Score 30; DB 2; Length 10;
 Best Local Similarity 100.0%; Pred. No. 59;
 Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          7 YLRAQE 12
            Db
           1 YLRAQE 6
```

```
RESULT 13
Q9R3Y4 CLOPE
    Q9R3Y4 CLOPE
                 PRELIMINARY; PRT;
                                        23 AA.
                                                                    clm93
589-607
AC
    Q9R3Y4;
    01-MAY-2000, integrated into UniProtKB/TrEMBL.
    01-MAY-2000, sequence version 1.
    07-FEB-2006, entry version 14.
DT
DE .
    Iota toxin component A (Fragment).
GN
    Name=iap;
os
    Clostridium perfringens.
OC
    Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
    Clostridium.
OC
OX
    NCBI TaxID=1502;
RN
    [1]
    NUCLEOTIDE SEQUENCE.
RP
RC
    STRAIN=853, NCIB 10748, and 294;
    MEDLINE=98380411; PubMed=9712814;
    Billington S.J., Wieckowski E.U., Sarker M.R., Bueschel D.,
RA
RA
    Songer J.G., McClane B.A.;
    "Clostridium perfringens type E animal enteritis isolates with highly
RT
RT
    conserved, silent enterotoxin gene sequences.";
RL
    Infect. Immun. 66:4531-4536(1998).
    _____
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
DR
    EMBL; AF037330; AAC34979.1; -; Genomic DNA.
    EMBL; AF037328; AAC34977.1; -; Genomic DNA.
DR
    EMBL; AF037329; AAC34978.1; -; Genomic DNA.
    NON TER
FT
               23
                       23
    SEQUENCE
              23 AA; 2642 MW; 2DC67575E10BEC73 CRC64;
 Query Match
                        30.0%; Score 30; DB 2; Length 23;
 Best Local Similarity 42.9%; Pred. No. 3e+03;
          6; Conservative 3; Mismatches 5; Indels
                                                             0; Gaps
Qу
           3 VKKVNKATEAAMFL 16
             : | | | | | : |
Db
           1 MKKVNKSISVFLIL 14
```

```
Sequence 41, Application US/08346455B
; Patent No. 5731167
  GENERAL INFORMATION:
     APPLICANT: UNITED STATES OF AMERICA; DEPT.
     APPLICANT: OF HEALTH AND HUMAN SERVICES
     TITLE OF INVENTION: MOTILITY STIMULATING
     TITLE OF INVENTION: PROTEIN USEFUL IN CANCER DIAGNOSIS AND
    TITLE OF INVENTION: THERAPY
    NUMBER OF SEQUENCES: 69
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: MORGAN & FINNEGAN
      STREET: 345 PARK AVENUE
      CITY: NEW YORK
     . STATE: NEW YORK
      COUNTRY: U.S.A.
       ZIP: 10154
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy Disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: WordPerfect 5.1
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/346,455B
      FILING DATE: 28-NOV-1994
      CLASSIFICATION: 530
     PRIOR APPLICATION DATA:
     APPLICATION NUMBER: PCT/US95/06613
      FILING DATE: 24-MAY-1995
     PRIOR APPLICATION DATA:
    APPLICATION NUMBER: 08/249,182
      FILING DATE: 25-MAY-1994
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 07/822,043
      FILING DATE: 17-JAN-1992
    ATTORNEY/AGENT INFORMATION:
     NAME: DOROTHY R. AUTH
      REGISTRATION NUMBER: 36,434
      REFERENCE/DOCKET NUMBER: 2026-4149PCT
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (212) 758-4800
      TELEFAX: (212) 751-6849
  INFORMATION FOR SEQ ID NO: 41:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 7
      TYPE: amino acids
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE:
    DESCRIPTION: Peptide
    HYPOTHETICAL: No
    FEATURE:
     NAME/KEY: ATX-209
      LOCATION:
      IDENTIFICATION METHOD:
      OTHER INFORMATION:
US-08-346-455B-41
  Query Match
                         31.9%; Score 30; DB 1; Length 7;
  Best Local Similarity 71.4%; Pred. No. 5e+05;
  Matches 5; Conservative 2; Mismatches 0; Indels 0; Gaps
```

⊋ Qy~ 12 LMPNIER 18 :||||: Db 1 VMPNIEK 7

```
RESULT 1
US-11-347-179-294
; Sequence 294, Application US/11347179
; Publication No. US20060178503A1
; GENERAL INFORMATION:
; APPLICANT: LUNDGREN-AKERLUND, EVY
; TITLE OF INVENTION: INTEGRIN HETERODIMER AND A SUBUNIT THEREOF
; FILE REFERENCE: 034341-001
 CURRENT APPLICATION NUMBER: US/11/347,179
 CURRENT FILING DATE: 2006-02-06
 PRIOR APPLICATION NUMBER: US/09/647,544
                                                        as 771-789
 PRIOR FILING DATE: 2000-10-26
  PRIOR APPLICATION NUMBER: PCT/SE99/00544
  PRIOR FILING DATE: 1999-03-31
  PRIOR APPLICATION NUMBER: SE 9900319.6
 PRIOR FILING DATE: 1999-01-28
 PRIOR APPLICATION NUMBER: SE 9801164-6
 PRIOR FILING DATE: 1998-04-02
; NUMBER OF SEQ ID NOS: 299
 SOFTWARE: PatentIn Ver. 3.3
; SEQ ID NO 294
  LENGTH: 14
   TYPE: PRT
   ORGANISM: Homo sapiens
US-11-347-179-294
 Query Match
                        36.6%; Score 34; DB 7; Length 14;
 Best Local Similarity 100.0%; Pred. No. 23;
 Matches 7; Conservative 0; Mismatches
                                                 0; Indels
                                                              0; Gaps
                                                                          0;
           3 LNESINK 9
Qу
            Db
           8 LNESINK 14
```

```
RESULT 47
C85939
hypothetical protein Z4183 [imported] - Escherichia coli (strain O157:H7, substrain ED
C; Species: Escherichia coli
C; Date: 16-Feb-2001 #sequence revision 16-Feb-2001 #text change 09-Jul-2004
C; Accession: C85939
R; Perna, N.T.; Plunkett III, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayh
Nature 409, 529-533, 2001
A; Title: Genome sequence of enterohemorrhagic Escherichia coli 0157:H7.
A; Reference number: A85480; MUID: 21074935; PMID: 11206551
A; Accession: C85939
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-27
A; Cross-references: UNIPROT: Q8X3L8; UNIPARC: UPI00000D0EF5; GB: AE005174; NID: g12517358;
A; Experimental source: strain O157:H7, substrain EDL933
C; Genetics:
A; Gene: Z4183
  Query Match
                          21.6%; Score 22; DB 2; Length 27;
  Best Local Similarity 66.7%; Pred. No. 5.7e+03;
 Matches 4; Conservative 2; Mismatches 0; Indels 0; Gaps
                                                                             0;
            1 NKFLNQ 6
Qу
              :111:1
Db
            8 DKFLSQ 13
```

aa 785-803

```
RESULT 28
Q6EKS5 YERPE
ΙD
    Q6EKS5 YERPE
                  PRELIMINARY;
                                PRT;
                                       30 AA.
AC
    Q6EKS5;
DT
    16-AUG-2004, integrated into UniProtKB/TrEMBL.
    16-AUG-2004, sequence version 1.
DT
    07-FEB-2006, entry version 7.
DΕ
    Hypothetical protein (Fragment).
os
    Yersinia pestis.
OC
    Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
    Enterobacteriaceae; Yersinia.
OX
    NCBI TaxID=632;
RN
    [1]
RΡ
    NUCLEOTIDE SEQUENCE.
RC
    STRAIN=CIP 519/B2, CIP 548/B2, CIP 552/B3, CIP 557/B3, CIP 611/B4, CIP
    616/B4, CIP 685/B5, CIP CO92, and CIP 304;
RC
RA
    Roux V., Drancourt M., Raoult D.;
RL
    Submitted (JUN-2003) to the EMBL/GenBank/DDBJ databases.
CC
    ______
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    DR
    EMBL; AY312300; AAQ94789.1; -; Genomic_DNA.
    EMBL; AY312301; AAQ94790.1; -; Genomic_DNA.
DR
DR
    EMBL; AY312302; AAQ94792.1; -; Genomic DNA.
DR
    EMBL; AY312303; AAQ94795.1; -; Genomic DNA.
    EMBL; AY312304; AAQ94796.1; -; Genomic_DNA.
DR
DR
    EMBL; AY312305; AAQ94799.1; -; Genomic DNA.
DR
    EMBL; AY312306; AAQ94800.1; -; Genomic DNA.
DR
    EMBL; AY312307; AAQ94802.1; -; Genomic DNA.
    EMBL; AY312299; AAQ94786.1; -; Genomic_DNA.
DR
DR
    InterPro; IPR007473; DUF519.
DR
    Pfam; PF04378; DUF519; 1.
KW
    Hypothetical protein.
    NON TER
FT
                 1
    SEQUENCE
SO
              30 AA; 3417 MW; F46332581AF6AC90 CRC64;
 Query Match
                       27.5%; Score 28; DB 2; Length 30;
 Best Local Similarity
                       57.1%; Pred. No. 7.1e+03;
           4; Conservative
                              3; Mismatches
                                              0; Indels
Qу
         13 MNSMIPY 19
            111::1:
Db
          3 MNSLLPW 9
                                                     784-803
```

```
RESULT 28
US-10-946-371-33
; Sequence 33, Application US/10946371
; Publication No. US20050208587A1
; GENERAL INFORMATION:
 APPLICANT: CARDOSO, ROSA
 APPLICANT: WILSON, IAN
  APPLICANT: BURTON, DENNIS
  APPLICANT: DAWSON, PHILIP
  TITLE OF INVENTION: PEPTIDES THAT BIND TO BROADLY NEUTRALIZING ANTI-HIV
  TITLE OF INVENTION: ANTIBODY-STRUCTURE OF 4E10 FAB FRAGMENT COMPLEX, USES
  TITLE OF INVENTION: THEREOF, COMPOSITIONS THEREFROM
  FILE REFERENCE: 678501-2001.1
  CURRENT APPLICATION NUMBER: US/10/946,371
  CURRENT FILING DATE: 2004-09-20
 PRIOR APPLICATION NUMBER: 60/504,123
 PRIOR FILING DATE: 2003-09-19
                                                                  715-733
 PRIOR APPLICATION NUMBER: PCT/EP02/10070
; PRIOR FILING DATE: 2002-09-09
; NUMBER OF SEO ID NOS: 59
 SOFTWARE: PatentIn Ver. 3.3
; SEQ ID NO 33
  LENGTH: 17
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Synthetic
   OTHER INFORMATION: peptide
US-10-946-371-33
 Query Match
                         35.7%; Score 35; DB 5; Length 17;
 Best Local Similarity 100.0%; Pred. No. 2.7e+02;
           6; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 TNWLAK 6
             Db
           9 TNWLAK 14
```

```
d s
Set
        Items
                Description
                S E2-E4
S1
         6814
S2
           71
                S E2-E17
S3
          916
                S E41-E46
                'BOTULINUM TOXIN BTX': 'BOTULINUM TOXIN C 2' OR E44-E48 FROM 155, 5, 34,
S4
          175
35, 45, 65, 71, 73, 91, 94, 98, 135, 144, 149, 156, 159, 162, 164, 172, 266, 369, 370,
399, 434, 444, 467
         7196
S5
                S S1 OR S2 OR S3 OR S4
S6
       221938
                'EPITOPE' FROM 155, 5, 34, 35, 45, 65, 71, 73, 91, 94, 98, 135, 144, 149,
156, 159, 162, 164, 172, 266, 369, 370, 399, 434, 444, 467
                'MAPPING //EPITOPE' (EPITOPE MAPPING) FROM 155, 5, 34, 35, 45, 65, 71,
         4234
73, 91, 94, 98, 135, 144, 149, 156, 159, 162, 164, 172, 266, 369, 370, 399, 434, 444, 467
S8
                S S5 AND (S6 OR S7)
S9
                   (unique items)
```

? t s9/9/9 10 11 12 13-20

9/9/9 (Item 7 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 11955596 **EMBASE No:** 2003066469

Overview of the needs and realities for developing new and improved vaccines in the 21st century

Hilleman M.R.

Dr. M.R. Hilleman, Merck Institute for Vaccinology, Merck and Co., Inc. (WP53C-350), 770 Sumneytown Pike,

West Point, PA 19486 United States

Author Email: maurice hilleman@merck.com

Intervirology (INTERVIROLOGY) (Switzerland) 2002, 45/4-6 (199-211)

CODEN: IVRYA ISSN: 0300-5526

Document Type: Journal; Conference Paper

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 90

The science of present day vaccinology is based on the pioneering discoveries of the late 18th and late 19th centuries and the technologic breakthroughs of the past 60 years. The driving force for the development of new vaccines resides in technologic feasibility, public need and economic incentive for translating the basic knowledge into a product. Past efforts by government to define which particular vaccines to develop were mostly irrelevant to the realistic choices which were made. There is a vast array of viral, bacterial, parasitic and fungal disease agents against which preventative vaccines may be developed, and to this may be added cancer and certain amyloidoses such as Alzheimer's and 'mad cow' diseases. The proven past for vaccines has relied on live, killed, protein and polysaccharide antigens plus the single example of recombinant-expressed hepatitis B vaccine. The validity of redirection of vaccinology to exploration of simplified vaccines such as recombinant vectored and DNA preparations and reductionist vaccines based on peptides of contrived epitope composition remains to be proved. Reductionism imposes vastly increased complexity and difficulty on vaccine development and might not be capable of achievement. The challenge in the 21st century will involve new and uncertain pathways toward worthwhile accomplishments. Copyright (c) 2003 S. Karger AG, Basel.

DRUG DESCRIPTORS:

* bacterial vaccine--drug development--dv; *virus vaccine--drug development --dv hepatitis B vaccine; polysaccharide; antigen; DNA vaccine; diphtheria vaccine; tetanus toxoid; pertussis v

botulinum toxin A; Lyme disease vaccine; Pneumococcus vaccine; Meningococcus vaccine; influenza vaccine; BCG vaccine; typhoid vaccine; cholera vaccine; anthrax vaccine; poliomyelitis vaccine; measles vaccine; mumps vaccine; rubella vaccine; chickenpox vaccine; yellow fever vaccine; hepatitis A vaccine; rabies vaccine; Rotavirus vaccine; respiratory syncytial virus vaccine; parainfluenza vaccine; unindexed drug

MEDICAL DESCRIPTORS:

* vaccination; *bacterial infection--etiology--et; *bacterial infection --prevention--pc; *virus infection--etiology--et;

*virus infection --prevention--pc

immune response; drug targeting; cancer immunization; amyloidosis; responsibility; government; Alzheimer disease; bovine spongiform encephalopathy; human; nonhuman; conference paper; priority journal

CAS Registry Number: 57425-69-1, 93384-51-1 (tetanus toxoid); 93384-43-1 (botulinum toxin A) **Section Headings:**

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

008 Neurology and Neurosurgery

016 Cancer

026 Immunology, Serology and Transplantation

9/9/10 (Item 8 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 11542312 **EMBASE No:** 2002114797

Characterisation of monoclonal antibodies against haemagglutinin associated with Clostridium botulinum type C neurotoxin

Mahmut N.; Inoue K.; Fujinaga Y.; Hughes L.; Arimitsu H.; Sakaguchi Y.; Ohtsuka A.; Murakami T.; Yokota K.; Oguma K.

Dr. K. Oguma, Department of Bacteriology, Okayama Univ. Grad. Sch. Med./Dent., 2-5-1 Shikata-cho, Okayama 700-8558 Japan

Author Email: kuma@md.okayama-u.ac.jp

Journal of Medical Microbiology (J. MED. MICROBIOL.) (United Kingdom) 2002, 51/4 (286-294)

CODEN: JMMIA ISSN: 0022-2615 Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 12

Of 11 monoclonal antibodies (MAbs) prepared against the non-toxic component of type C Clostridium botulinum 16S toxin to clarify the function of the non-toxic component, seven recognised HA1, three recognised HA3b and one recognised HA2. Results of **epitope** mapping indicated that three of the seven anti-HA1 MAbs recognised the region between amino acid residues 121 and 140 and four recognised the three-dimensional structure of HA1. Three anti-HA3b MAbs recognised different regions between (approximately) amino acids 405-430, 180-270 and 275-297. The ability of these MAbs to interfere with binding of 16S toxin or non-toxic component, HA1 or HA3b to erythrocytes and to intestine tissue sections of guinea-pig was observed. MAbs against HA3b and HA2 did not inhibit 16S toxin binding to either erythrocytes or epithelial cells, whereas some MAbs against HA1 did inhibit binding. The seven anti-HA1 MAbs can be classified into four groups based on their binding inhibition activities. The anti-HA1 MAbs that inhibited the binding of 16S toxin to the epithelial cells also neutralised or reduced the oral toxicity in mice, indicating that HA may play an important role in the absorption of the 16S toxin from the small intestine.

DRUG DESCRIPTORS:

- * monoclonal antibody; *hemagglutinin--endogenous compound--ec; *neurotoxin --drug toxicity--to;
- *neurotoxin--endogenous compound--ec; *botulinum toxin --drug toxicity--to; *botulinum toxin--endogenous compound--ec

amino acid--endogenous compound--ec; neutralizing antibody; unclassified drug

MEDICAL DESCRIPTORS:

* Clostridium botulinum; *protein function

epitope mapping; antibody structure; antigen binding; inhibition kinetics; binding site; molecular recognition; erythrocyte; epithelium cell; intestine epithelium; guinea pig; toxin analysis; intestine absorption; nonhuman; female; mouse; animal experiment; animal tissue; animal cell; article; priority journal

Drug Terms (Uncontrolled): botulinum toxin c--drug toxicity--to; botulinum toxin c --endogenous compound--ec

CAS Registry Number: 37333-12-3 (hemagglutinin); 39386-17-9 (neurotoxin); 65072-01-7 (amino acid) Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

026 Immunology, Serology and Transplantation

9/9/11 (Item 9 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 11505346 **EMBASE No:** 2002076810

Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries

Amersdorfer P.; Wong C.; Smith T.; Chen S.; Deshpande S.; Sheridan R.; Marks J.D.

P. Amersdorfer, Department of Biology, Corvas International, 3030 Science Park Road, San Diego, CA 92121

United States

Author Email: peter amersdorfer@corvas.com

Vaccine (VACCINE) (United Kingdom) 22 FEB 2002, 20/11-12 (1640-1648)

CODEN: VACCD ISSN: 0264-410X

Publisher Item Identifier: S0264410X01004820

Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 44

Understanding the antibody response in botulinum intoxication is important for vaccine design and passive prophylaxis. To investigate this activity, we have studied the immune response to BoNT/A (botulinum neurotoxin serotype A) binding domain (HSUBC) at the molecular level using phage display. The scFv antibodies were isolated from V-gene repertoires prepared from (a) human volunteer immunized with pentavalent botulinum toxoid and (b) non-immune human peripheral blood lymphocytes and spleenocytes. A large panel of serotype specific phage expressing botulinum binding scFv could be selected from both libraries. **Epitope** mapping of immune scFv binders towards BoNT/A HSUBC revealed surprisingly a limited number of scFv recognizing conformational epitopes that corresponded to two distinct groups, clusters I and II. Only scFv from cluster I exhibited neutralizing activity in the mouse hemidiaphragm assay. Anti- BoNT/A HSUBC clones derived from a non-immune library could be conveniently grouped into clusters III-XI and appeared to share no overlapping epitopes with cluster I or II. In addition they showed no neutralization of toxin at biologically significant concentrations. We therefore suggest that a vaccine based on the pentavalent botulinum toxoid directs the humoral immune response to a limited number of immunodominant epitopes exposed on the binding domain HSUBC. (c) 2002 Elsevier Science Ltd. All rights reserved.

DRUG DESCRIPTORS:

* botulinum toxin A--pharmacology--pd; *epitope--pharmacology --pd; *single chain fragment variable antibody--drug comparison--cm; * single chain fragment variable antibody--pharmacology--pd; *neutralizing antibody--drug comparison--cm; *neutralizing antibody--pharmacology--pd; * vaccine--drug comparison--cm;

*vaccine--pharmacology--pd

botulinum toxin--pharmacology--pd; unclassified drug

MEDICAL DESCRIPTORS:

* botulism--etiology--et; *antibody library

phage display; immune response; antibody isolation; immunization; binding site; lymphocyte; spleen cell; serotype; bacteriophage; protein expression; **epitope** mapping; antigen binding; antigen recognition; antibody combining site; drug activity; hemidiaphragm; vaccine production; humoral immunity; nonhuman; male; mouse; animal model; controlled study; animal tissue; article; priority journal

Drug Terms (Uncontrolled): botulinum toxin a antibody--drug comparison--cm; botulinum toxin a antibody --pharmacology--pd

CAS Registry Number: 93384-43-1 (botulinum toxin A); 334577-34-3, 334577-38-7 (single chain fragment

variable antibody)
Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

026 Immunology, Serology and Transplantation

9/9/12 (Item 10 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 11319442 **EMBASE No:** 2001333655

Epitope mapping of neutralizing botulinum neurotoxin A antibodies by phage display

Mullaney B.P.; Pallavicini M.G.; Marks J.D.

B.P. Mullaney, UCSF Cancer Center, Box 0808, UCSF, San Francisco, CA 94143-0808 United States

Author Email: mullaney@cc.ucsf.edu

Infection and Immunity (INFECT. IMMUN.) (United States) 2001, 69/10 (6511-6514)

CODEN: INFIB ISSN: 0019-9567 Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 27

Single-chain antibodies neutralize activity and bind nonoverlapping epitopes of botulinum A neurotoxin. Two phage display **epitope** libraries were constructed from the 1.3 kb of binding domain cDNA. The minimal epitopes selected against the single-chain Fv-Fc antibodies correspond to conformational epitopes with amino acid residues 1115 to 1223 (S25), 1131 to 1264 (3D12), and 889 to 1294 (C25).

Molecular Sequence Number: ; GENBANK, U22962

DRUG DESCRIPTORS:

* epitope; *botulinum toxin A; *neutralizing antibody; *Fc receptor

MEDICAL DESCRIPTORS:

* gene mapping; *Clostridium botulinum; *nucleotide sequence

bacteriophage; antigen binding; DNA library; protein domain; amino acid sequence; protein conformation; drug receptor binding; gel electrophoresis; DNA sequence; molecular model; crystal structure; article; priority journal

CAS Registry Number: 93384-43-1 (botulinum toxin A)

Section Headings:

026 Immunology, Serology and Transplantation 029 Clinical and Experimental Biochemistry

9/9/13 (Item 11 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. , 10973449 **EMBASE No:** 2001017400

Light chain of botulinum a neurotoxin expressed as an inclusion body from a synthetic gene is catalytically and functionally active

Ahmed S.A.; Smith L.A.

L.A. Smith, Dept. of Immunol. and Molec. Biology, Toxinology Division, U.S. Army Medical Research Institute,

1425 Porter Street, Fort Detrick, MD 21702 United States

Author Email: leonard.smith@amedd.army.mil

Journal of Protein Chemistry (J. PROTEIN CHEM.) (United States) 2000, 19/6 (475-487)

CODEN: JPCHD ISSN: 0277-8033 Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 46

Botulinum neurotoxins, the most potent of all toxins, induce lethal neuromuscular paralysis by inhibiting exocytosis at the neuromuscular junction. The light chains (LC) of these dichain neurotoxins are a new class of zinc-endopeptidases that specifically cleave the synaptosomal proteins, SNAP-25, VAMP, or syntaxin at discrete sites. To facilitate the structural and functional characterization of these unique endopeptidases, we constructed a synthetic gene for the LC of the botulinum neurotoxin serotype A (BoNT/A), overexpressed it in Escherichia coli, and purified the gene product from inclusion bodies. Our procedure can provide 1.1 g of the LC from 1 L of culture. The LC product was stable in solution at 4degreesC for at least 6 months. This rBoNT/A LC was proteolytically active, specifically cleaving the Glu-Arg bond in a 17-residue synthetic peptide of SNAP-25, the reported cleavage site of BoNT/A. Its calculated catalytic efficiency kSUBcat/KSUBm was higher than that reported for the native BoNT/A dichain. Treating the rBoNT/A LC with mercuric compounds completely abolished its activity, most probably by modifying the cysteine-164 residue located in the vicinity of the active site. About 70% activity of the LC was restored by adding ZnSUP2+ to a ZnSUP2+ - free, apo-LC preparation. The LC was nontoxic to mice and failed to elicit neutralizing epitope(s) when the animals were vaccinated with this protein. In addition, injecting rBoNT/A LC into sea urchin eggs inhibited exocytosis-dependent plasma membrane resealing. For the first time, results of our study make available a large amount of the biologically active toxin fragment in a soluble and stable form.

DRUG DESCRIPTORS:

* botulinum toxin A--drug toxicity--to neurotoxin--drug toxicity--to

MEDICAL DESCRIPTORS:

* neurotoxicity--etiology--et; *cell inclusion; *neuromuscular synapse paralysis--etiology--et; toxin analysis; exocytosis; peptide analysis; Escherichia coli; gene expression; vaccination; nonhuman; male; mouse; animal experiment; article

CAS Registry Number: 93384-43-1 (botulinum toxin A); 39386-17-9 (neurotoxin)

Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

008 Neurology and Neurosurgery

026 Immunology, Serology and Transplantation

052 Toxicology

9/9/14 (Item 12 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 10971923 **EMBASE No:** 2001015519

High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A

Pless D.D.; Torres E.R.; Reinke E.K.; Bavari S.

S. Bavari, Dept. of Cell Biology/Biochemistry, U.S. Army Med. Res. Inst. Inf. Dis., 1425 Porter St., Frederick, MD

21702-5011 United States

Author Email: Sina.Bavari@AMEDD.Army.Mil

Infection and Immunity (INFECT. IMMUN.) (United States) 2001, 69/1 (570-574)

CODEN: INFIB ISSN: 0019-9567 Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 19

Monocionai antibodies (MAbs) were prepared against the putative binding domain of botulinum neurotoxin A (BoNT/A), a nontoxic 50-kDa fragment. Initially, all fusion products were screened against the holotoxin BoNT/A and against the binding fragment, BoNT/A HSUBC. Eleven neutralizing hybridomas were cloned, and their specific binding to BoNT/A HSUBC was demonstrated by surface plasmon resonance, with dissociation constants ranging from 0.9 to <0.06 nM. **Epitope** mapping by real-time surface plasmon resonance showed that the antibodies bound to at least two distinct regions of the BoNT/A HSUBC fragment. These MAbs will be useful tools for studying BoNT/A interactions with its receptor, and they have potential diagnostic and therapeutic applications.

DRUG DESCRIPTORS:

* botulinum toxin A; *monoclonal antibody--intraperitoneal drug administration--ip MEDICAL DESCRIPTORS:

* antibody production; *antigen binding

binding site; hybridoma; **epitope** mapping; dissociation constant; molecular interaction; kinetics; nonhuman; mouse; animal experiment; controlled study; animal cell; article; priority journal

CAS Registry Number: 93384-43-1 (botulinum toxin A)

Section Headings:

026 Immunology, Serology and Transplantation

9/9/15 (Item 13 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 10894888 EMBASE No: 2000379437

Anomalous enhancement of botulinum toxin type A neurotoxicity in the presence of antitoxin

Sheridan R.E.; Deshpande S.S.; Amersdorfer P.; Marks J.D.; Smith T.

R.E. Sheridan, Neurotoxicology Branch, Pharmacology Division, US Army Medical Research Institute, 3100

Ricketts Point Road, Aberdeen Proving Ground, MD 21010 United States

Author Email: robert.sheridan@amedd.army.mil

Toxicon (TOXICON) (United Kingdom) 2001, 39/5 (651-657)

CODEN: TOXIA **ISSN:** 0041-0101

Publisher Item Identifier: S0041010100001896

Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 13

The neutralization of botulinum toxin serotype A with polyclonal equine antitoxin was studied in isolated mouse hemidiaphragms and compared to the same action in live mice. The biological activity of the toxin in the isolated muscle could be markedly reduced with excess antitoxin, estimated as 3:1 molar ratios of IgG Ab:toxin or better. Toxin neutralization in vivo required higher ratios of Ab:toxin, ranging from 30:1 at high toxin doses and increasing to 100:1 at 10xLD50 toxin. At equimolar Ab to toxin ratios in the isolated muscle, the biological activity of the toxin underwent a statistically significant increase. This paradoxical effect of the polyclonal antisera was serotype selective and independent of the presence or absence of hemagglutinin in the toxin. The enhancement of toxin activity was subsequently localized to occupancy of one of four epitopes on the toxin using monoclonal antibodies to mimic the effect of the antitoxin. The enhancement of toxin activity suggests that botulinum toxin may undergo a conformational change upon binding antibodies to certain domains. This phenomenon could contribute to the observed concentration dependent changes in neutralization efficacy with antitoxin in vivo. Copyright (C) 2000.

DRUG DESCRIPTORS:

* botulinum toxin A--drug toxicity--to; *antitoxin--pharmacology--pd; *neurotoxin--drug toxicity--to epitope; hemagglutinin--endogenous compound--ec; cell surface receptor--endogenous compound--ec; monoclonal antibody--pharmacology--pd

MEDICAL DESCRIPTORS:

* neurotoxicity--etiology--et; *botulism--etiology--et; *toxicity testing drug activity; nonhuman; male; mouse; animal experiment; animal model; controlled study; animal tissue; article; priority journal

CAS Registry Number: 93384-43-1 (botulinum toxin A); 39386-17-9 (neurotoxin); 37333-12-3 (hemagglutinin)

Section Headings:

037 Drug Literature Index

052 Toxicology

008 Neurology and Neurosurgery

infection--epidemiology--ep; human; nonhuman; conference paper; priority journal CAS Registry Number: 93384-43-1 (botulinum toxin A); 39386-17-9 (neurotoxin) Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

008 Neurology and Neurosurgery

037 Drug Literature Index

052 Toxicology

9/9/17 (Item 15 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 07757198 **EMBASE No:** 1999241087

Structure, activity, and immune (T and B cell) recognition of botulinum neurotoxins

Atassi M.Z.; Oshima M.

M.Z. Atassi, Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

United States

Critical Reviews in Immunology (CRIT. REV. IMMUNOL.) (United States) 1999, 19/3 (219-260)

CODEN: CCRID ISSN: 1040-8401 Document Type: Journal; Review

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 271

Botulism, which was first reported over a century ago, is caused by botulinum neurotoxins produced by Clostridium botulinum in seven immunological serotypes (A through G). The primary structures of a number of these BoNTs have been determined and are reviewed here, together with their gene structure and synthesis. The biological actions of BoNTs, which result in their ability to block neurotransmitter release have been the subject of intensive study, and in this review we discuss the binding of BoNTs to the cell surface as well as the mechanism of their intercellular action. The ability of BoNTs to block neurotransmitter release has been exploited in therapeutic applications to reduce muscle hyperactivity for the treatment of a variety of clinical conditions associated with involuntary muscle spasm and contractions. The advantages, limitations, and risks of these applications are discussed. Certain compounds provide some limited protection against BoNT. However, more effective protection has been obtained immunologically either by passive immunity (i.e., by administration of anti-BoNT Abs) or by immunization with inactivated toxin. More recently, excellent protection has been obtained by immunization with the receptor-binding region comprising the C-terminal (residues 860 to 1296) fragment (H(C)) of the heavy chain of BoNT/A. Here we review the mapping of the epitopes on the Hc region of BoNT/A that are recognized by anti-BoNT/A Abs raised in horse, human, and mouse. The epitopes on the H(C) that are recognized by anti-H(C) Abs and by H(C)-primed T lymphocytes were mapped in two mouse strains [BALB/c (H-2(d)) and SJL (H-2(s))]. The peptides, which contain Ab or T cell epitopes (or both) on the H(C), were used as immunogens in BALB/c and SJL mice and we identified those peptides whose Ab and/or T-cell responses cross-react with H(C). Identification of these peptides is an important first step in the intricate requirements for the design of a synthetic vaccine.

DRUG DESCRIPTORS:

* botulinum toxin a; *neurotransmitter--endogenous compound--ec; * inactivated vaccine--drug therapy--dt;

*epitope--endogenous compound --ec

MEDICAL DESCRIPTORS:

* antigen recognition; *t lymphocyte; *b lymphocyte

botulism--drug therapy--dt; botulism--prevention--pc; gene structure; neurotransmitter release; passive immunization; carboxy terminal sequence; cross reaction; human; nonhuman; mouse; review; priority journal

CAS Registry Number: 93384-43-1 (botulinum toxin a)

Section Headings:

026 Immunology, Serology and Transplantation

9/9/18 (Item 16 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 07203386 **EMBASE No:** 1998096328

Antibodies and T cells against synthetic peptides of the C-terminal domain (H(c)) of botulinum neurotoxin type A and their cross-reaction with H(c)

Oshima M.; Middlebrook J.L.; Atassi M.Z.

M.Z. Atassi, Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

United States

Author Email: matassi@bcm.tmc.edu

Immunology Letters (IMMUNOL. LETT.) (Netherlands) 1998, 60/1 (7-12)

CODEN: IMLED ISSN: 0165-2478

Publisher Item Identifier: S0165247897001247

Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 21

Seventeen peptides containing T cell and/or antibody (Ab) epitopes previously localized on H(c) of botulinum neurotoxin type A were used in SJL and BALB/c mice as immunogens either individually or as an equimolar mixture of groups that contained epitopes of T cells, Abs or both, to determine their abilities to generate T cells and/or Abs that recognize intact H(c). In SJL, peptide 897-915 which included both T cell and Ab epitopes, elicited Abs that cross-reacted very strongly with H(c). In BALB/c, peptides 869-887, 883-901, 981-999 and 1275-1296 which contained Ab epitopes generated Abs that cross-reacted strongly with H(c). A mixture of peptides that contained T cell and Ab epitopes was effective in both strains in eliciting T cells and Abs that cross-reacted with H(c). This mixture form gave a quicker rise (after two injections) in cross-reactive (with H(c)) Ab titer as compared to other peptide mixtures or the individual peptides, and sustained in BALB/c a high Ab titer upon further booster injections. Some of the regions that elicited crossreactive immunity to H(c) have sequence similarity to other clostridial toxins, suggesting that one or more of these synthetic peptides might provide cross-protection against those toxins.

DRUG DESCRIPTORS:

* botulinum toxin a; *synthetic peptide--drug development--dv; * bacterial vaccine--drug development--dv neurotoxin; epitope; cross reacting antibody

MEDICAL DESCRIPTORS:

* botulism--etiology--et; *botulism--prevention--pc; *t lymphocyte; * immunization neurotoxicity--etiology--et; neurotoxicity--prevention--pc; lymph node cell; lymphocyte proliferation; peptide synthesis; cross reaction; antibody titer; clostridium botulinum; nonhuman; mouse; animal model; animal cell; subcutaneous drug administration; article; priority journal

CAS Registry Number: 93384-43-1 (botulinum toxin a); 39386-17-9 (neurotoxin)

Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

026 Immunology, Serology and Transplantation

9/9/19 (Item 17 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 07000286 **EMBASE No:** 1997286617

Molecular characterization of murine humoral immune response to botulinum neurotoxin type A binding domain as assessed by using phage antibody libraries

Amersdorfer P.; Wong C.; Chen S.; Smith T.; Deshpande S.; Sheridan R.; Finnern R.; Marks J.D.

J.D. Marks, University of California, San Francisco General Hospital, 1001 Potrero Ave., San Francisco, CA 94110

United States

Infection and Immunity (INFECT. IMMUN.) (United States) 1997, 65/9 (3743-3752)

CODEN: INFIB ISSN: 0019-9567 **Document Type:** Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 51

To produce antibodies capable of neutralizing botulinum neurotoxin type A (BoNT/A), the murine humoral immune response to BoNT/A binding domain (H(C)) was characterized at the molecular level by using phage antibody libraries. Mice were immunized with BoNT/A H(C), the spleens were harvested, and single-chain Fv (scFv) phage antibody libraries were constructed from the immunoglobulin heavy and light chain variable region genes. Phage expressing BoNT/A binding scFv were isolated by selection on immobilized BoNT/A and BoNT/A H(C). Twenty-eight unique BoNT/A H(C) binding scFv were identified by enzyme-linked immunosorbent assay and DNA sequencing. Epitope mapping using surface plasmon resonance in a BIAcore revealed that the 28 scFv bound to only 4 nonoverlapping epitopes with equilibrium constants (K(d)) ranging from 7.3 x 10sup - sup 8 to 1.1 x 10sup -sup 9 M. In a mouse hemidiaphragm assay, scFv binding epitopes 1 and 2 significantly prolonged the time to neuroparalysis, 1.5- and 2.7-fold, respectively, compared to toxin control. scFv binding to epitopes 3 and 4 showed no protection against neuroparalysis. A combination of scFv binding epitopes 1 and 2 had an additive effect on time to neuroparalysis, which increased to 3.9-fold compared to the control. The results suggest that there are two 'productive' receptor binding sites on H(C) which lead to toxin internalization and toxicity. Blockade of these two epitopes with monoclonal antibodies may provide effective immunoprophylaxis or therapy against BoNT/A intoxication.

DRUG DESCRIPTORS:

* botulinum toxin a

MEDICAL DESCRIPTORS:

* binding site; *humoral immunity

antibody production; article; bacteriophage; dna library; immunization; immunoprophylaxis; internalization; molecular genetics; nonhuman; phage display; priority journal

CAS Registry Number: 93384-43-1 (botulinum toxin a)

Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

9/9/20 (Item 18 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 06853948 **EMBASE No:** 1997136549

Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms

Chen F.; Kuziemko G.M.; Amersdorfer P.; Wong C.; Marks J.D.; Stevens R.C.

J.D. Marks, Anesthesia/Pharmaceut. Chem. Dept., University of California, SFGH, 1001 Potrero, San Francisco, CA

94110 United States

Infection and Immunity (INFECT. IMMUN.) (United States) 1997, 65/5 (1626-1630)

CODEN: INFIB ISSN: 0019-9567 Document Type: Journal; Article

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 28

The domain organization of the botulinum neurotoxin serotype A was studied by using antibody mapping of 44 monoclonal single-chain variable fragments. The analysis was carried out on (i) the individual domains of botulinum neurotoxin holotoxin (binding, translocation, and catalytic), (ii) botulinum neurotoxin holotoxin, (iii) the botulinum neurotoxin holotoxin in complex with the nontoxic portion, and (iv) botulinum neurotoxin holotoxin and nontoxic portion of the complex recombined in vitro. All 44 antibodies mapped to individual domains of botulinum neurotoxin. Forty of the 44 single-chain variable fragments bound the botulinum neurotoxin holotoxin relative to the isolated domains, suggesting that 4 epitopes are covered when the individual domains are in the holotoxin form. Only 20 of the antibodies showed a positive reaction to the toxin while in complex with the nontoxic portion. All of the covered epitopes were mapped to the binding domain of botulinum neurotoxin, which suggested that the binding domain is in direct contact with the nontoxic portion in the complex. Based on the antibody mapping to the different domains of the botulinum neurotoxin holotoxin and the entire complex, a model of the botulinum neurotoxin complex is proposed.

DRUG DESCRIPTORS:

* botulinum toxin a--endogenous compound--ec epitope

MEDICAL DESCRIPTORS:

* botulism--etiology--et; *clostridium botulinum

antigen antibody complex; antigen recognition; article; nonhuman; priority journal; serotype; toxin analysis

CAS Registry Number: 93384-43-1 (botulinum toxin a)

Section Headings:

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

026 Immunology, Serology and Transplantation

9/9/16 (Item 14 from file: 73) Links

EMBASE

(c) 2006 Elsevier B.V. All rights reserved. 10594483 **EMBASE No:** 2000060235

Botulism: Laboratory methods and epidemiology

Fernandez R.A.; Ciccarelli A.S.

R.A. Fernandez, Catedra de Microbiologia, Facultad de Ciencias Medicas, Universidad Nacional de Cuyo, Casilla

de Correo 33, (5500) Mendoza Argentina Author Email: rfernand@fmed2.uncu.edu.ar

Anaerobe (ANAEROBE) (United Kingdom) 1999, 5/3-4 (165-168)

CODEN: ANAEF **ISSN:** 1075-9964

Document Type: Journal; Conference Paper

Language: ENGLISH Summary Language: ENGLISH

Number Of References: 27

Although food botulism (FB) in Argentina was described by 1911, the first documented outbreak was recorded in 1922. In 1957, an outbreak of type A FB caused by red bell peppers was the first laboratory confirmation of botulism in Argentina. From 1922 to 1997, 70 FB outbreaks affecting 242 persons with 111 deaths (case fatality rate, 46%) were reported in Argentina. Infant botulism (IB) was recognized in 1976 and has been mostly diagnosed in the U.S.A. More than 146 IB cases have been reported in Argentina since 1982. Additional cases may go undiagnosed due to physician inexperience and limited access to diagnostic services. A single laboratory-confirmed case of wound botulism (WB) occurred in Argentina in 1995. The botulinal neurotoxins (BoNTs) identified in Argentina have been types A, B, E, F and Af in FB, and exclusively type A in IB and WB. For the laboratory diagnosis of botulism, serum, gastrointestinal sample, food, and wounds should be tested for BoNT. Gastrointestinal, wound and food sample must also be cultured for toxigenic organisms. When higher volumes of serum were tested, BoNT was found in 61% of IB patients in Mendoza compared with 13% in a previous series from the U.S.A. Reliable typing can only be achieved when the BoNT belongs to a known serotype and the toxin titer is above 4000 LDinf 5inf 0/mL. When these criteria are not met, as in most clinical samples, bacterial isolation, purification and adequate toxin production in culture are required. Neutralization testing must be performed at not less than three 10-fold doses of toxin because of (1) the existence of subtypes, where a second, minor serotype is present, (2) the sharing of epitopes between certain serotypes, and (3) the occurrence of serological variants. Three basic properties of working antitoxins, specificity, protency and avidity, must be known for BoNT typing. The efficiency index (EI), which expresses the avidity of antitoxins, is an important instrument for recognizing BoNT subtypes. (C) 1999 Academic Press.

DRUG DESCRIPTORS:

antibiotic agent--drug therapy--dt; antitoxin--drug therapy--dt; botulinum toxin A--endogenous compound--ec; botulinum toxin B --endogenous compound--ec; epitope--endogenous compound--ec; neurotoxin--endogenous compound--ec

MEDICAL DESCRIPTORS:

* botulism--complication--co; *botulism--diagnosis--di; *botulism--drug therapy--dt; *botulism--epidemiology--ep Argentina; Clostridium botulinum; LD 50; United States; bacterium isolation; food analysis; food poisoning--diagnosis--di; food poisoning--drug therapy--dt; food poisoning--epidemiology--ep; gastrointestinal tract; infant disease--diagnosis--di; infant disease--drug therapy--dt; infant disease--epidemiology--ep; laboratory diagnosis; mortality; pepper; purification; sampling; serotype; titrimetry; toxin synthesis; wound infection--complication--co; wound infection--diagnosis--di; wound infection--drug therapy--dt; wound

615	22	23.4	25	2	Q56C76_9HIV1	Q56c76 human immur	n
616	22	23.4	25	2	Q56C77_9HIV1	Q56c77 human immur	n
617	22	23.4	25	2	Q56C78 9HIV1	Q56c78 human immur	n
618	22	23.4	25	2	Q56C79_9HIV1	Q56c79 human immur	n
619	22	23.4	25	2	Q71940_9HIV1	Q71940 human immur	n
620	22	23.4	25	2	Q71946_9HIV1	Q71946 human immur	n
621	22	23.4	25	2	Q8QE38 9HIV1	Q8qe38 human immur	n
622	22	23.4	25	2	Q9IQQ5_9HIV1	Q9iqq5 human immur	n
623	22	23.4	26	1	MEL_APIFL	P01504 apis florea	a
624	22	23.4	26	1	MGN_CHICK	P50594 gallus gall	1
625	22	23.4	26	1	RBL_VICFA	P05699 vicia faba	
626	22	23.4	26	2	Q4XDG9_PLACH	Q4xdg9 plasmodium	
627	22	23.4	26	2	Q4XIEO_PLACH	Q4xie0 plasmodium	
628	22	23.4	26	2	Q4XM72_PLACH	Q4xm72 plasmodium	
629	22	23.4	26	2	Q4XMQ5_PLACH	Q4xmq5 plasmodium	
630	22	23.4	26	2	Q4XRY4_PLACH	Q4xry4 plasmodium	
631	22	23.4	26	2	Q4YT83_PLABE	Q4yt83 plasmodium	
632	22	23.4	26	2	Q4Z6G9_PLABE	Q4z6g9 plasmodium	
633	22	23.4	26	2	Q9T0Q6_LAMBD	Q9t0q6 bacteriopha	а
634	22	2					

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:48:32; Search time 92.5641 Seconds

(without alignments)

93.850 Million cell updates/sec

Title: US-10-821-669-1 COPY 813 831

Perfect score: 94

1 ASLKDALLKYIYDNRGTLI 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

2589679 seqs, 457216429 residues Searched:

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

> 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:*

4: geneseqp2001s:* 5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*
9: geneseqp2005s:* 10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.		% Query Match	Length	DB	ID	Descripti	on
1	94	100.0	19	9	ADW11067	Adw11067	Clostridi
2	94	100.0	27	9	ADW11117	Adw11117	Clostridi
3	47	50.0	27	9	ADW11118	Adw11118	Clostridi
4	38	40.4	30	9	AEC96081	Aec96081	TccC3 fra
5	38	40.4	30	9	AEC96090	Aec96090	TccC3 fra
6	38	40.4	30	9	AEC96094	Aec96094	TccC3 fra
7	38	40.4	30	9	AEC96087	Aec96087	TccC3 fra
8	38	40.4	30	9	AEC96084	Aec96084	TccC3 fra
9	36	38.3	17	7	ADE01171	Ade01171	

```
RESULT 43
US-08-213-124-9
; Sequence 9, Application US/08213124
; Patent No. 5693325
; GENERAL INFORMATION:
    APPLICANT: Kahn, Michael
    TITLE OF INVENTION: PEPTIDE VACCINES AND METHODS RELATING
    TITLE OF INVENTION: THERETO
  NUMBER OF SEQUENCES: 27
  CORRESPONDENCE ADDRESS:
    ADDRESSEE: SEED and BERRY
STREET: 6300 Columbia Center, 701 Fifth Avenue
     CITY: Seattle
     STATE: Washington
    COUNTRY: USA
ZIP: 98104-7092
  COMPUTER READABLE FORM:
   MEDIUM TYPE: Floppy disk
    COMPUTER: IBM PC compatible
    OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.30
  CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/08/213,124
    FILING DATE: 15-MAR-1994 CLASSIFICATION: 424
   ATTORNEY/AGENT INFORMATION:
    NAME: Hermanns, Karl R.
    REGISTRATION NUMBER: 33,507
     REFERENCE/DOCKET NUMBER: 670063.411
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: (206) 622-4900
      TELEFAX: (206) 682-6031
      TELEX: 3723836 SEEDANDBERRY
  INFORMATION FOR SEQ ID NO: 9:
  SEQUENCE CHARACTERISTICS:
    LENGTH: 17 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
US-08-213-124-9
 Query Match
                         30.9%; Score 29; DB 1; Length 17;
 Best Local Similarity 71.4%; Pred. No. 3.6e+02;
         5; Conservative 2; Mismatches 0; Indels 0; Gaps
                                                                           0;
Qу
         13 DNRGTLI 19
             1:111:1
Db
           7 DHRGTII 13
```

```
RESULT 1
H64640
hypothetical protein HP0968 - Helicobacter pylori (strain 26695)
C; Species: Helicobacter pylori
C;Date: 09-Aug-1997 #sequence revision 09-Aug-1997 #text change 09-Jul-2004
C; Accession: H64640
R; Tomb, J.F.; White, O.; Kerlavage, A.R.; Clayton, R.A.; Sutton, G.G.; Fleischmann, R.
Nature 388, 539-547, 1997
A; Authors: Wallin, E.; Hayes, W.S.; Borodovsky, M.; Karpk, P.D.; Smith, H.O.; Fraser,
A; Title: The complete genome sequence of the gastric pathogen Helicobacter pylori.
A; Reference number: A64520; MUID: 97394467; PMID: 9252185
A; Accession: H64640
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-21
A;Cross-references: UNIPROT:025621; UNIPARC:UPI00000C07B7; GB:AE000605; GB:AE000511; N
                          33.0%; Score 31; DB 2; Length 21;
  Best Local Similarity
                          75.0%; Pred. No. 1.9e+02;
           6; Conservative
                                1; Mismatches
                                                 1; Indels
                                                                 0; Gaps
                                                                              0;
            3 LKDALLKY 10
Qу
              11111: 1
           12 LKDALIDY 19
Db
```

```
RESULT 12
Q8ZL14 SALTY
    Q8ZL14 SALTY
                 PRELIMINARY; PRT;
AC
    Q8ZL14;
DT
    01-MAR-2002, integrated into UniProtKB/TrEMBL.
    01-MAR-2002, sequence version 1.
DT
DT
    07-FEB-2006, entry version 12.
    Conserved protein in the LexA regulon.
DΕ
GN
    Name=ysdB; OrderedLocusNames=STM3797.2; ORFNames=STM3796B;
OS
    Salmonella typhimurium.
OC
    Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
    Enterobacteriaceae; Salmonella.
OX
    NCBI TaxID=602;
RN
    [1]
    NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RP
RC
    STRAIN=LT2 / SGSC1412 / ATCC 700720;
RX
    MEDLINE=21534948; PubMed=11677609; DOI=10.1038/35101614;
RA
    McClelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P.,
    Courtney L., Porwollik S., Ali J., Dante M., Du F., Hou S., Layman D.,
RA
    Leonard S., Nguyen C., Scott K., Holmes A., Grewal N., Mulvaney E.,
RA
RA
    Ryan E., Sun H., Florea L., Miller W., Stoneking T., Nhan M.,
R:A
    Waterston R., Wilson R.K.;
RT
    "Complete genome sequence of Salmonella enterica serovar Typhimurium
RT
    LT2.";
RL
    Nature 413:852-856(2001).
CC
    ______
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
DR
    EMBL; AE008877; AAL22656.1; -; Genomic DNA.
    BioCyc; STYP99287:STM3796B-MONOMER; -.
DR
KW
    Complete proteome.
SQ
    SEQUENCE 29 AA; 3211 MW; 9A3B645EB233E781 CRC64;
 Query Match
                        33.0%; Score 31; DB 2; Length 29;
 Best Local Similarity 66.7%; Pred. No. 2.6e+03;
          6; Conservative 2; Mismatches 1; Indels
 Matches
                                                            0; Gaps
           3 LKDALLKYI 11
Qу
             1 11:111:
Db
          20 LLDAVLKYL 28
```

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:29:25; Search time 84.8 Seconds

(without alignments)

102.442 Million cell updates/sec

Title: US-10-821-669-1_COPY_981_999

Perfect score: 98

1 GEIIWTLQDTQEIKQRVVF 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

A_Geneseq_8:* Database :

> 1: geneseqp1980s:* 2: geneseqp1990s:*

> 3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:* 7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

R	esult		% Query							
11	No.	Score		Length	DB	ID	Descripti	Lon		
	1	98	100.0	19	9	ADW11079	Adw11079	Clostridi		
	2	74	75.5	19	9	ADZ69820	Adz69820	Botulinum		
	3	40	40.8	19	7	ADF14824	Adf14824	SLE/sjogr		
	4	38	38.8	15	6	ABR38942	Abr38942	HPV-16 E2		
	5	37.5	38.3	14	4	ABB56643	Abb56643	Human SNP		
	6	36	36.7	12	2	AAR91293	Aar91293	Anti-idio		
	7	36	36.7	15	6	ABR38932	Abr38932	HPV-11 E2		
	8	36	36.7	15	9	AEC98599	Aec98599	HLA-DR bi		
	9	36	36.7	15	9	AEC98632	Aec98632	HLA-DR bi		

```
RESULT 4
ABR38942
     ABR38942 standard; protein; 15 AA.
ID
XX
AC
     ABR38942;
XX
DT
     10-MAY-2003 (first entry)
XX
     HPV-16 E2 transactivation domain peptide fragment # SEQ ID 22.
DΕ
XX
KW
     Transactivation domain; HPV-11; E2 protein; TAD-inhibitor complex;
KW
     binding.
XX
OS
     Human papillomavirus.
XX
PN
     WO2003006495-A2.
XX
PD
     23-JAN-2003.
XX
PF
     12-JUL-2002; 2002WO-CA001058.
XX
PR
     12-JUL-2001; 2001US-0304412P.
XX
PA
     (BOEH ) BOEHRINGER INGELHEIM INT GMBH.
PΑ
     (WANG/) WANG Y.
XX
PΙ
     Cameron DR, Archambault J, Yoakim C, White P;
XX
     WPI; 2003-239235/23.
DR
XX
PT
     Crystallizable composition comprising papilloma virus E2 transactivation
     domain-like polypeptide, complexed with an inhibitor, useful for
PT
PT
     providing information about inhibitor-binding pocket of transactivation
PT
     domain.
XX
PS
     Disclosure; Fig 10; 83pp; English.
XX
CC
     The invention relates to a crystallizable composition, comprising a
CC
     papilloma virus (PV) E2 transactivation domain (TAD)-like polypeptide
CC
     complexed with an inhibitor. Compositions of the invention are useful for
     providing useful information on the inhibitor-binding pocket of the
CC
CC
     transactivation domain of the HPV-E2 protein. The HPV E2 TAD-inhibitor
·CC
     crystal structure can be used to identify the residues which are members
CC
     of the HPV inhibitor binding pocket and which differ in the CRPV protein.
CC
     The current sequence represents the HPV-16 E2 transactivation domain
CC
     inhibitor-binding pocket peptide
XX
SQ
     Sequence 15 AA;
                          38.8%; Score 38; DB 6; Length 15;
  Query Match
  Best Local Similarity
                          87.5%; Pred. No. 53;
           7; Conservative 0; Mismatches
  Matches
                                                   1; Indels
            5 WTLQDTQE 12
Qу
              Db
            3 WTLQDTCE 10
```

```
RESULT 7
ABR38932
     ABR38932 standard; protein; 15 AA.
ID
XX
AC
     ABR38932;
XX
     10-MAY-2003 (first entry)
DT
XX
     HPV-11 E2 transactivation domain peptide fragment # SEQ ID 12.
DΕ
XX
ΚW
     Transactivation domain; HPV-11; E2 protein; TAD-inhibitor complex;
KW
     binding.
XX
os
     Human papillomavirus.
XX
PN
     WO2003006495-A2.
XX
PD
     23-JAN-2003.
XX
PF
     12-JUL-2002; 2002WO-CA001058.
XX
PR
     12-JUL-2001; 2001US-0304412P.
XX
     (BOEH ) BOEHRINGER INGELHEIM INT GMBH.
PΑ
PΑ
     (WANG/) WANG Y.
XX
PΙ
     Cameron DR, Archambault J, Yoakim C, White P;
XX
DR
     WPI; 2003-239235/23.
XX
PT
     Crystallizable composition comprising papilloma virus E2 transactivation
PT
     domain-like polypeptide, complexed with an inhibitor, useful for
PT
     providing information about inhibitor-binding pocket of transactivation
PT
     domain.
XX
PS
     Disclosure; Fig 10; 83pp; English.
XX
CC
     The invention relates to a crystallizable composition, comprising a
CC
     papilloma virus (PV) E2 transactivation domain (TAD)-like polypeptide
CC
     complexed with an inhibitor. Compositions of the invention are useful for
CC
    providing useful information on the inhibitor-binding pocket of the
CC
    transactivation domain of the HPV-E2 protein. The HPV E2 TAD-inhibitor
CC
    crystal structure can be used to identify the residues which are members
CC
     of the HPV inhibitor binding pocket and which differ in the CRPV protein.
CC
     The current sequence represents the HPV-11 E2 transactivation domain
CC
     inhibitor-binding pocket peptide
XX
SQ
     Sequence 15 AA;
  Query Match
                         -36.7%; Score 36; DB 6; Length 15;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+02;
 Matches
           6; Conservative 0; Mismatches 0; Indels
            5 WTLQDT 10
Qу
              11111
Db
            3 WTLQDT 8
```

```
RESULT 24
ADT50360
ΙD
     ADT50360 standard; peptide; 12 AA.
XX
AC
     ADT50360;
XX
DT
     13-JAN-2005 (first entry)
XX
DE
     Human non-muscular type myosin heavy-chain type A peptide Seq 14.
XX
KW
     antigen; tumour; cancer; cytoskeletal; myosin;
KW
     non-muscular type myosin heavy-chain type A; cytostatic; nmMHC.
XX
OS
     Homo sapiens.
XX
PN
     WO2004089984-A1.
XX
     21-OCT-2004.
PD
XX
PF
     03-OCT-2003; 2003WO-JP012732.
XX
PR
     04-OCT-2002; 2002JP-00291953.
XX
PA
     (MITS-) MITSUBISHI PHARMA CORP.
XX
PΙ
     Hirakawa Y, Niki H, Oike S, Tagawa T, Hosokawa S, Yoshiyama Y;
XX
DR
     WPI; 2004-757952/74.
XX
PT
     New non-muscular type myosin heavy chain type A antigen expressed on cell
PT
     surface of tumor mass, useful as target in treatment of cancer such as
PT
     stomach cancer.
XX
PS
     Example 1; SEQ ID NO 14; 60pp; Japanese.
XX
CC
     This invention relates to a novel antigen expressed on the surface of a
     cell during formation of a tumour mass. Specifically, it refers to a
CC
CC
     labelled ligand that is capable of recognising this antigen and a
CC
     pharmaceutical composition derived thereof useful for treating a cancer
CC
    patient. The present invention describes the antigen as a cytoskeletal
CC
     protein such as myosin or its variant and preferably it is a non-muscular
CC
     type myosin heavy-chain type A protein. Accordingly, the pharmaceutical
CC
     compositions developed thereof exhibit cytostatic activity and are useful
CC
     as anticancer agents in patients expressing this antigen and where the
CC
    cancer is chosen from stomach, breast, colon or oesophageal cancer.
CC
    Furthermore, the ligand is a monoclonal antibody, preferably a humanised
CC
    monoclonal antibody that has cancer reactive properties and as such can
CC
     specifically target the cancerous tissue or cell. This peptide sequence
     is derived from the human non-muscular type myosin heavy-chain (nmMHC)
CC
CC
     type A protein (the antigen), given in an exemplification of the
CC
    invention.
XX
SQ
    Sequence 12 AA;
                          32.7%; Score 32; DB 8; Length 12;
  Query Match
  Best Local Similarity 85.7%; Pred. No. 3.8e+02;
            6; Conservative
                                 1; Mismatches
                                                 0; Indels
                                                                 0; Gaps
Qу
           7 LQDTQEI 13
              111111:
Db
            6 LQDTQEL 12
```

```
RESULT 2
US-09-641-528B-48934
; Sequence 48934, Application US/09641528B
; Patent No. 7026443
; GENERAL INFORMATION:
; APPLICANT: Sette, Alessandro
 APPLICANT: Sidney, John
; APPLICANT: Southwood, Scott
; APPLICANT: Chesnut, Robert
 APPLICANT: Celis, Esteban
 APPLICANT: Grey, Howard
  TITLE OF INVENTION: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS
  TITLE OF INVENTION: USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS
  FILE REFERENCE: 2060.0100001
  CURRENT APPLICATION NUMBER: US/09/641,528B
  CURRENT FILING DATE: 2000-08-15
 PRIOR APPLICATION NUMBER: US 60/172,705
 PRIOR FILING DATE: 1999-12-10
 NUMBER OF SEQ ID NOS: 51505
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEO ID NO 48934
  LENGTH: 9
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide Derived from Human Papillomavirus
US-09-641-528B-48934
 Query Match
                        38.8%; Score 38; DB 3; Length 9;
 Best Local Similarity 87.5%; Pred. No. 5e+05;
 Matches 7; Conservative 0; Mismatches 1; Indels
Qу
           5 WTLODTOE 12
             Db
           1 WTLQDTCE 8
```

```
RESULT 3
US-09-641-528B-50061
; Sequence 50061, Application US/09641528B
; Patent No. 7026443
; GENERAL INFORMATION:
; APPLICANT: Sette, Alessandro
; APPLICANT: Sidney, John
; APPLICANT: Southwood, Scott
 APPLICANT: Chesnut, Robert
 APPLICANT: Celis, Esteban
 APPLICANT: Grey, Howard
  TITLE OF INVENTION: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS
  TITLE OF INVENTION: USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS
  FILE REFERENCE: 2060.0100001
 CURRENT APPLICATION NUMBER: US/09/641,528B
; CURRENT FILING DATE: 2000-08-15
 PRIOR APPLICATION NUMBER: US 60/172,705
 PRIOR FILING DATE: 1999-12-10
; NUMBER OF SEQ ID NOS: 51505
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 50061
  LENGTH: 9
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide Derived from Human Papillomavirus
US-09-641-528B-50061
 Query Match
                        38.8%; Score 38; DB 3; Length 9;
 Best Local Similarity 87.5%; Pred. No. 5e+05;
 Matches 7; Conservative 0; Mismatches 1; Indels
                                                             0; Gaps
                                                                          0;
Qу
           5 WTLODTOE 12
             Db
           1 WTLQDTCE 8
```

```
RESULT 4
US-09-641-528B-3817
; Sequence 3817, Application US/09641528B
; Patent No. 7026443
; GENERAL INFORMATION:
; APPLICANT: Sette, Alessandro
 APPLICANT: Sidney, John
 APPLICANT: Southwood, Scott
 APPLICANT: Chesnut, Robert
  APPLICANT: Celis, Esteban
  APPLICANT: Grey, Howard
  TITLE OF INVENTION: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS
  TITLE OF INVENTION: USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS
; FILE REFERENCE: 2060.0100001
; CURRENT APPLICATION NUMBER: US/09/641,528B
 CURRENT FILING DATE: 2000-08-15
; PRIOR APPLICATION NUMBER: US 60/172,705
; PRIOR FILING DATE: 1999-12-10
; NUMBER OF SEQ ID NOS: 51505
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 3817
  LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide Derived from Human Papillomavirus
US-09-641-528B-3817
  Query Match
                         38.8%; Score 38; DB 3; Length 10;
 Best Local Similarity 87.5%; Pred. No. 7.4;
           7; Conservative 0; Mismatches 1; Indels
                                                                   Gaps
                                                                           0;
Qу
           5 WTLQDTQE 12
             111111 .
Db
           1 WTLQDTCE 8
```

```
RESULT 5
US-09-641-528B-7824
; Sequence 7824, Application US/09641528B
; Patent No. 7026443
; GENERAL INFORMATION:
; APPLICANT: Sette, Alessandro
; APPLICANT: Sidney, John
 APPLICANT: Southwood, Scott
 APPLICANT: Chesnut, Robert
  APPLICANT: Celis, Esteban
  APPLICANT: Grey, Howard
  TITLE OF INVENTION: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS
  TITLE OF INVENTION: USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS
  FILE REFERENCE: 2060.0100001
  CURRENT APPLICATION NUMBER: US/09/641,528B
  CURRENT FILING DATE: 2000-08-15
 PRIOR APPLICATION NUMBER: US 60/172,705
 PRIOR FILING DATE: 1999-12-10
```

```
RESULT 22
US-09-641-528B-3714
; Sequence 3714, Application US/09641528B
; Patent No. 7026443
; GENERAL INFORMATION:
; APPLICANT: Sette, Alessandro
; APPLICANT: Sidney, John
; APPLICANT: Southwood, Scott
; APPLICANT: Chesnut, Robert
; APPLICANT: Celis, Esteban
; APPLICANT: Grey, Howard
; TITLE OF INVENTION: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS
; TITLE OF INVENTION: USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS
; FILE REFERENCE: 2060.0100001
  CURRENT APPLICATION NUMBER: US/09/641,528B
  CURRENT FILING DATE: 2000-08-15
; PRIOR APPLICATION NUMBER: US 60/172,705
; PRIOR FILING DATE: 1999-12-10
; NUMBER OF SEQ ID NOS: 51505
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 3714
  LENGTH: 10
  TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide Derived from Human Papillomavirus
US-09-641-528B-3714
 Query Match
                         36.7%; Score 36; DB 3; Length 10;
 Best Local Similarity 100.0%; Pred. No. 16;
 Matches 6; Conservative 0; Mismatches
                                                 0; Indels
           5 WTLQDT 10
Qу
             11111
Db
           5 WTLQDT 10
```

```
RESULT 25
US-09-641-528B-50612
; Sequence 50612, Application US/09641528B
; Patent No. 7026443
; GENERAL INFORMATION:
; APPLICANT: Sette, Alessandro
; APPLICANT: Sidney, John
; APPLICANT: Southwood, Scott
  APPLICANT: Chesnut, Robert
  APPLICANT: Celis, Esteban
  APPLICANT: Grey, Howard
; TITLE OF INVENTION: INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS
; TITLE OF INVENTION: USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS
; FILE REFERENCE: 2060.0100001
; CURRENT APPLICATION NUMBER: US/09/641,528B
; CURRENT FILING DATE: 2000-08-15
; PRIOR APPLICATION NUMBER: US 60/172,705
; PRIOR FILING DATE: 1999-12-10
; NUMBER OF SEQ ID NOS: 51505
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 50612
  LENGTH: 15
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide Derived from Human Papillomavirus
US-09-641-528B-50612
                         36.7%; Score 36; DB 3; Length 15;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 24;
          6; Conservative 0; Mismatches
                                                 0; Indels
                                                               0; Gaps
Qу
           5 WTLQDT 10
             Db
           9 WTLQDT 14
```

```
RESULT 1
US-10-715-810-95
; Sequence 95, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
 APPLICANT: Li, Shengwen
 APPLICANT: Kei, Aoki R.
  TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
  FILE REFERENCE: ALLE0004-100
  CURRENT APPLICATION NUMBER: US/10/715,810
  CURRENT FILING DATE: 2003-11-17
  NUMBER OF SEQ ID NOS: 105
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 95
   LENGTH: 19
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Peptide fragment (residues 976-994)
US-10-715-810-95
  Query Match
                         75.5%; Score 74; DB 5; Length 19;
  Best Local Similarity 100.0%; Pred. No. 6.8e-05;
  Matches 14; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
           1 GEIIWTLQDTQEIK 14
             6 GEIIWTLQDTQEIK 19
```

```
RESULT 3
US-10-193-460A-22
; Sequence 22, Application US/10193460A
; Publication No. US20030082769A1
; GENERAL INFORMATION:
; APPLICANT: BOEHRINGER INGELHEIM (CANADA) LTD.
; TITLE OF INVENTION: HUMAN PAPILLOMAVIRUS E2 TRANSACTIVATION
; TITLE OF INVENTION: DOMAIN/INHIBITOR CO-CRYSTAL AND X-RAY COORDINATES DEFINING
; TITLE OF INVENTION: THE INHIBITOR-BINDING POCKET
; FILE REFERENCE: 13/100
; CURRENT APPLICATION NUMBER: US/10/193,460A
; CURRENT FILING DATE: 2002-07-11
  PRIOR APPLICATION NUMBER: 60/304,412
  PRIOR FILING DATE: 2001-07-12
 NUMBER OF SEQ ID NOS: 22
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 22
  LENGTH: 15
   TYPE: PRT
   ORGANISM: HPV18
US-10-193-460A-22
 Query Match 38.8%; Score 38; DB 4; Length 15; Best Local Similarity 87.5%; Pred. No. 39;
 Matches 7; Conservative 0; Mismatches
                                                                  0; Gaps
                                                                              0;
                                                   1; Indels
           5 WTLQDTQE 12
Qу
             111111111
Db
            3 WTLQDTCE 10
```

```
RESULT 5
US-10-193-460A-12
; Sequence 12, Application US/10193460A
; Publication No. US20030082769A1
; GENERAL INFORMATION:
; APPLICANT: BOEHRINGER INGELHEIM (CANADA) LTD.
  TITLE OF INVENTION: HUMAN PAPILLOMAVIRUS E2 TRANSACTIVATION
  TITLE OF INVENTION: DOMAIN/INHIBITOR CO-CRYSTAL AND X-RAY COORDINATES DEFINING
  TITLE OF INVENTION: THE INHIBITOR-BINDING POCKET
 FILE REFERENCE: 13/100
  CURRENT APPLICATION NUMBER: US/10/193,460A
  CURRENT FILING DATE: 2002-07-11
  PRIOR APPLICATION NUMBER: 60/304,412
  PRIOR FILING DATE: 2001-07-12
  NUMBER OF SEQ ID NOS: 22
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 12
   LENGTH: 15
   TYPE: PRT
   ORGANISM: HPV11
US-10-193-460A-12
 Query Match
                         36.7%; Score 36; DB 4; Length 15;
 Best Local Similarity 100.0%; Pred. No. 83;
 Matches 6; Conservative 0; Mismatches
                                                  0; Indels
                                                               0; Gaps
                                                                           0;
           5 WTLQDT 10
Qу
             3 WTLQDT 8
Db
```

```
RESULT 19
US-10-530-171-14
; Sequence 14, Application US/10530171
; Publication No. US20060057147A1
; GENERAL INFORMATION:
; APPLICANT: HIRAKAWA, Youko
  APPLICANT: NIKI, Hisae
  APPLICANT: OIKE, Shinsuke
; APPLICANT: TAGAWA, Toshiaki
 APPLICANT: HOSOKAWA, Saiko
  APPLICANT: YOSHIYAMA, Yoshiko
  TITLE OF INVENTION: Antibody recognizing antigen
  FILE REFERENCE: 235054
  CURRENT APPLICATION NUMBER: US/10/530,171
  CURRENT FILING DATE: 2005-04-04
  PRIOR APPLICATION NUMBER: PCT/JP2003/012732
  PRIOR FILING DATE: 2003-10-03
 PRIOR APPLICATION NUMBER: JP 2002-291953
  PRIOR FILING DATE: 2002-10-04
; NUMBER OF SEQ ID NOS: 22
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 14
   LENGTH: 12
    TYPE: PRT
    ORGANISM: Homo Sapiens
US-10-530-171-14
  Query Match
                         32.7%; Score 32; DB 5; Length 12;
  Best Local Similarity 85.7%; Pred. No. 2.9e+02;
  Matches
          6; Conservative 1; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
           7 LQDTQEI 13
Qу
              111111:
Db
            6 LQDTQEL 12
```

```
DT
     16-OCT-2003
                  (revised)
DT
     25-MAR-2003
                  (revised)
DT
     13-OCT-1994
                  (first entry)
XX
DE
     Rat HCNP precursor internal fragment #9.
XX
KW
     Rat hippocampal cholinergic neurotrophic peptide; rat HCNP;
     nerve degeneration; acetylcholine synthesis; neurostimulation.
ΚW
XX
OS
     Rattus norvegicus; (Wistar).
XX
     WO9405788-A1.
PN
XX
PD
     17-MAR-1994.
XX
ΡF
     27-AUG-1993;
                    93WO-JP001214.
XX
PR
     28-AUG-1992;
                    92JP-00254170.
PR
     29-AUG-1992;
                    92JP-00253734.
XX
PA
     (SUMU ) SUMITOMO PHARM CO LTD.
     (YAMA/) YAMAMOTO M.
PΑ
XX
     Ojika K, Tohdoh N, Tojo S, Kojima S, Fukushima N,
PΙ
                                                             Irie T, Ono K;
PΙ
     Agui H, Ueki Y, Nishihara T, Kamikawa Y, Taiji M;
XX
DR
     WPI; 1994-101193/12.
XX
PT
     Neurotrophic peptide(s), precursors and genes - used to treat nervous
PT
     degeneration, increases acetylcholine synthesis.
XX
PS
     Example 9; Page 161; 200pp; Japanese.
XX
CC
     The rat hippocampal cholinergic neurotrophic peptide precursor was
CC
     digested by lysyl endopeptidase and the resultant peptide fragments were
CC
     sequenced. Peptide AAR49954 is an internal fragment. (Updated on 25-MAR-
CC
     2003 to correct PN field.) (Updated on 16-OCT-2003 to standardise OS
CC
     field)
XX
SO
     Sequence 28 AA;
  Query Match
                          32.1%;
                                  Score 36; DB 2;
                                                    Length 28;
  Best Local Similarity
                          66.7%; Pred. No. 2e+02;
                                 2; Mismatches
             4; Conservative
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           14 HRYIWI 19
              111:1:
Db
            5 HRYVWL 10
```

```
RESULT 6
US-08-403-378B-10
; Sequence 10, Application US/08403378B
; Patent No. 5759991
  GENERAL INFORMATION:
    APPLICANT: TOHDOH, NAOKI
    APPLICANT: TOJO, SHIN-ICHIRO
    APPLICANT: KOJIMA, SHIN-ICHI
    APPLICANT: UEKI, YASUYUKI
    APPLICANT: NISHIHARA, TOSHIO
    APPLICANT: FUKUSHIMA, NOBUYUKI
    APPLICANT: IRIE, TSUNEMASA
APPLICANT: ONO, KEIICHI
APPLICANT: AGUI, HIDEO
APPLICANT: OJIKA, KOSEI
    TITLE OF INVENTION: NEUROTROPHIC PEPTIDE DERIVATIVES
    NUMBER OF SEQUENCES: 25
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: SUGHRUE, MION, ZINN, MACPEAK & SEAS
      STREET: 2100 PENNSYLVANIA AVENUE, NW
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 20037-3202
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/403,378B
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 3-124688
      FILING DATE: 27-APR-1991
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: JP 1-080398
      FILING DATE: 30-MAR-1989
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 1-280590
      FILING DATE: 27-OCT-1989
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: JP 1-333241
      FILING DATE: 21-DEC-1989
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 2-243003
      FILING DATE: 12-SEP-1990
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: US 07/758,043
      FILING DATE: 12-SEP-1991
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/873,764
      FILING DATE: 27-APR-1992
    PRIOR APPLICATION DATA:
    APPLICATION NUMBER: PCT/JP93/01214
      FILING DATE: 27-AUG-1993
    ATTORNEY/AGENT INFORMATION:
      NAME: BIGGART, WADDELL A
      REGISTRATION NUMBER: 24,861
      REFERENCE/DOCKET NUMBER:
```

```
TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202)293-7060
      TELEFAX: (202)293-7860
;
      TELEX: 6491103
  INFORMATION FOR SEQ ID NO: 10:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 28 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: internal
    ORIGINAL SOURCE:
      ORGANISM: rattus norvegicus
      STRAIN: Wistar
      TISSUE TYPE: hippocampal tissue of brain
    FEATURE:
      NAME/KEY: Peptide
      LOCATION: 1..28
US-08-403-378B-10
 Query Match
                         32.1%; Score 36; DB 1; Length 28;
 Best Local Similarity 66.7%; Pred. No. 46;
         4; Conservative 2; Mismatches
                                                 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
         14 HRYIWI 19
             111:1:
Db
           5 HRYVWL 10
```

```
RESULT 28
US-10-776-521B-280
; Sequence 280, Application US/10776521B
; Publication No. US20050202033A1
; GENERAL INFORMATION:
; APPLICANT: Fletchner, Jessica
 APPLICANT: Prince-Cohane, Kenya
 APPLICANT: Mehta, Sunil
 APPLICANT: Slusarewicz, Paul
  APPLICANT: Andjelic, Sofija
  APPLICANT: Barber, Brian
  TITLE OF INVENTION: IMPROVED HEAT SHOCK PROTEIN-BASED VACCINES AND
  TITLE OF INVENTION: IMMUNOTHERAPIES
; FILE REFERENCE: 8449-405-999
; CURRENT APPLICATION NUMBER: US/10/776,521B
  CURRENT FILING DATE: 2004-02-12
; PRIOR APPLICATION NUMBER: 60/503,417
 PRIOR FILING DATE: 2003-09-16
  PRIOR APPLICATION NUMBER: 60/463,746
 PRIOR FILING DATE: 2003-04-18
  PRIOR APPLICATION NUMBER: 60/462,469
  PRIOR FILING DATE: 2003-04-11
  PRIOR APPLICATION NUMBER: 60/447,142
  PRIOR FILING DATE: 2003-02-13
 NUMBER OF SEQ ID NOS: 419
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 280
  LENGTH: 8
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Heat shock protein binding domain with a terminal
   OTHER INFORMATION: Trp residue
US-10-776-521B-280
                                 Score 33; DB 5; Length 8;
  Query Match
                         29.5%;
  Best Local Similarity 66.7%; Pred. No. 1.9e+06;
            4; Conservative
                                2; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
          13 THRYIW 18
Qу
             111::1
Db
           3 THRWLW 8
```

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:29:25; Search time 84.8 Seconds

(without alignments)

102.442 Million cell updates/sec

Title: US-10-821-669-1 COPY 1051_1069

Perfect score: 112

1 NNIMFKLDGCRDTHRYIWI 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 segs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

> 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:*
> 7: geneseqp2003bs:* 8: geneseqp2004s:*

9: geneseqp2005s:* 10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	112	100.0	19	 9	ADW11084	Adw11084 Clostridi

```
RESULT 4
 A25310
 alpha-amylase/trypsin inhibitor CM1 - wheat (fragment)
 C; Species: Triticum aestivum (common wheat)
C;Date: 24-Jun-1987 #sequence revision 24-Jun-1987 #text change 31-Dec-2004
 C; Accession: A25310
 R; Barber, D.; Sanchez-Monge, R.; Garcia-Olmedo, F.; Salcedo, G.; Mendez, E.
 Biochim. Biophys. Acta 873, 147-151, 1986
 A; Title: Evolutionary implications of sequential homologies among members of the tryps
 A; Reference number: A90661
 A; Accession: A25310
 A; Molecule type: protein
 A; Residues: 1-28
 A; Cross-references: UNIPROT: P16850; UNIPARC: UPI00001763DE
 A; Experimental source: cv. Candeal
 C; Superfamily: alpha-amylase/trypsin inhibitor
 C; Keywords: alpha-amylase inhibitor
  Query Match
                           25.0%; Score 28; DB 2; Length 28;
                           66.7%; Pred. No. 7.2e+02;
   Best Local Similarity
  Matches
           4; Conservative
                                  2; Mismatches 0;
                                                        Indels
                                                                  0; Gaps
                                                                              0;
           .7 LDGCRD 12
 Qу
              1:111:
 Db
           16 LEGCRE 21
```

```
RESULT 49
Q57YV8 HUMAN
     Q57YV8 HUMAN
ΙD
                   PRELIMINARY; PRT;
AC
     Q57YV8;
DT
     10-MAY-2005, integrated into UniProtKB/TrEMBL.
     10-MAY-2005, sequence version 1.
DT
DT
     07-FEB-2006, entry version 2.
DE
     Hypothetical protein TPO (Fragment).
GN
     Name=TPO;
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae;
OC
OC
     Homo.
     NCBI TaxID=9606;
OX
RN
     [1]
RP
     NUCLEOTIDE SEQUENCE.
RA
     Waterston R.H.;
     Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RL
RN
     NUCLEOTIDE SEQUENCE.
RP
RA
     Wilson R.;
     Submitted (JUN-2003) to the EMBL/GenBank/DDBJ databases.
RL
RN
RP
     NUCLEOTIDE SEQUENCE.
RA
     Wilson R.K.;
RL
     Submitted (APR-2005) to the EMBL/GenBank/DDBJ databases.
CC
CC
     Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
     Distributed under the Creative Commons Attribution-NoDerivs License
CC
     EMBL; AC141930; AAX82037.1; -; Genomic_DNA.
DR
KW
     Hypothetical protein.
FT
     NON TER
              1
                         1
     SEQUENCE 17 AA; 1896 MW; 51C4B9D9295ACAB2 CRC64;
 Query Match 25.9%; Score 29; DB 2; Length 17; Best Local Similarity 100.0%; Pred. No. 1.7e+03;
 Matches 5; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
          11 RDTHR 15
Qy
             1111
Db
           8 RDTHR 12
```

```
RESULT 26
ADR46808
ID
     ADR46808 standard; peptide; 21 AA.
XX
AC
     ADR46808;
XX
     04-NOV-2004 (first entry)
DT
XX
     H. influenzae hap protein conserved peptide #33.
DΕ
XX
     immunostimulant; antibacterial; vaccine; adhesion; penetration;
KW
     immunogenic; Haemophilus infection; hap.
KW
XX
os
     Haemophilus influenzae.
XX
PN
     US2004157241-A1.
XX
PD
     12-AUG-2004.
XX
     15-OCT-2003; 2003US-00687046.
PF
XX
PR
     25-AUG-1994;
                    94US-00296791.
     20-APR-2001; 2001US-00839996.
PR
     22-FEB-2002; 2002US-00080505.
PR
XX
PA
     (SGEM/) ST GEME J W.
XX
PΙ
    St Geme JW;
XX
DR
    WPI; 2004-592770/57.
XX
PT
    New Haemophilus adhesion and penetration protein, useful for inducing an
PT
     immune response against Haemophilus infection and for treating and
PT
    preventing Haemophilus infection.
XX
PS
     Disclosure; SEQ ID NO 50; 144pp; English.
XX
CC
    The invention relates to a recombinant Haemophilus adhesion and
CC
     penetration protein. The recombinant Haemophilus adhesion and penetration
CC
    protein, nucleic acid, methods, composition, antibodies and vaccines are
CC
    useful for inducing an immune response against Haemophilus infection and
CC
     for treating and preventing Haemophilus infection. The present sequence
CC
     represents the amino acid sequence of an H. influenzae hap protein
CC
     conserved peptide.
XX
SQ
    Sequence 21 AA;
  Query Match
                          30.8%; Score 32; DB 8; Length 21;
 Best Local Similarity
                          50.0%; Pred. No. 6.2e+02;
            5; Conservative
                                 3; Mismatches 2; Indels
                                                                  0; Gaps
                                                                              0;
            2 YVDVNNVGIR 11
Qу
              1111:1 ::
Db
            8 YVDVSNANVQ 17
```

```
RESULT 6
US-10-080-505-50
; Sequence 50, Application US/10080505
; Patent No. 6676948
; GENERAL INFORMATION:
; APPLICANT: St. Geme, Joseph W.
; TITLE OF INVENTION: HAEMOPHILUS ADHERENCE AND PENETRATION PROTIENS
; FILE REFERENCE: A-59941-1/RFT/DCF/DHR
  CURRENT APPLICATION NUMBER: US/10/080,505
  CURRENT FILING DATE: 2002-02-22
  PRIOR APPLICATION NUMBER: US 08/296,791
  PRIOR FILING DATE: 1994-10-25
  PRIOR APPLICATION NUMBER: US 09/839,996
  PRIOR FILING DATE: 2001-04-20
; NUMBER OF SEQ ID NOS: 58
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 50
   LENGTH: 21
   TYPE: PRT
   ORGANISM: Haemophilus influenzae
US-10-080-505-50
 Query Match
                         30.8%; Score 32; DB 2; Length 21;
 Best Local Similarity 50.0%; Pred. No. 1.3e+02;
 Matches 5; Conservative 3; Mismatches
                                                                           0;
                                                 2; Indels
                                                               0; Gaps
           2 YVDVNNVGIR 11
Qу
             |||||:|| ::
Db
           8 YVDVSNANVQ 17
```

```
RESULT 22
US-09-068-804-28
; Sequence 28, Application US/09068804
; Patent No. 6861247
 GENERAL INFORMATION:
    APPLICANT: Miller, Samuel I.
    TITLE OF INVENTION: SALMONELLA SECRETED PROTEINS
    TITLE OF INVENTION: AND USES THEREOF
    NUMBER OF SEQUENCES: 47
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Fish & Richardson, P.C.
     STREET: 225 Franklin Street
      CITY: Boston
      STATE: MA
      COUNTRY: US
      ZIP: 02110-2804
    COMPUTER READABLE FORM:
    MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
    OPERATING SYSTEM: Windows95
     SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/09/068,804
     FILING DATE: 14-MAY-1998
    PRIOR APPLICATION DATA:
    APPLICATION NUMBER: PCT/US96/18504
      FILING DATE: 14-NOV-1996
    APPLICATION NUMBER: 60/006,733
      FILING DATE: 14-NOV-1995
   ATTORNEY/AGENT INFORMATION:
    NAME: Fraser, Janis K.
    REGISTRATION NUMBER: 34,819
      REFERENCE/DOCKET NUMBER: 00786/292002
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-542-5070
      TELEFAX: 617-542-8906
  INFORMATION FOR SEQ ID NO: 28:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 15 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-09-068-804-28
 Query Match
                        28.8%; Score 30; DB 2; Length 15;
 Best Local Similarity 50.0%; Pred. No. 2e+02;
          6; Conservative 2; Mismatches 4; Indels 0; Gaps
Qу
           5 VNNVGIRGYMYL 16
             ::||||
Db
          3 ISNVGINPAAYL 14
```

```
RESULT 23
US-09-068-804-30
; Sequence 30, Application US/09068804
; Patent No. 6861247
 GENERAL INFORMATION:
    APPLICANT: Miller, Samuel I.
    TITLE OF INVENTION: SALMONELLA SECRETED PROTEINS
    TITLE OF INVENTION: AND USES THEREOF
    NUMBER OF SEQUENCES: 47
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Fish & Richardson, P.C.
     STREET: 225 Franklin Street
     CITY: Boston
      STATE: MA
      COUNTRY: US
      ZIP: 02110-2804
    COMPUTER READABLE FORM:
    MEDIUM TYPE: Diskette
     COMPUTER: IBM Compatible
    OPERATING SYSTEM: Windows95
     SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/068,804
      FILING DATE: 14-MAY-1998
  PRIOR APPLICATION DATA:
     APPLICATION NUMBER: PCT/US96/18504
      FILING DATE: 14-NOV-1996
      APPLICATION NUMBER: 60/006,733
      FILING DATE: 14-NOV-1995
    ATTORNEY/AGENT INFORMATION:
    NAME: Fraser, Janis K.
      REGISTRATION NUMBER: 34,819
      REFERENCE/DOCKET NUMBER: 00786/292002
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-542-5070
      TELEFAX: 617-542-8906
  INFORMATION FOR SEQ ID NO:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 15 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-09-068-804-30
 Query Match
                        28.8%; Score 30; DB 2; Length 15;
 Best Local Similarity 50.0%; Pred. No. 2e+02;
           6; Conservative 2; Mismatches 4; Indels 0; Gaps
Qу
           5 VNNVGIRGYMYL 16
             ::||||
Db
           3 ISNVGINPAAYL 14
```

```
Sequence 59, Application US/10320231A
; Publication No. US20030194405A1
; GENERAL INFORMATION:
; APPLICANT: Neben, Steven
 APPLICANT: Takeuchi, Toshihiko
; APPLICANT: Tomkinson, Adrian
  TITLE OF INVENTION: Antibody Inhibiting Stem Cell Factor Activity And Use For
  TITLE OF INVENTION: Treatment Of Asthma
  FILE REFERENCE: 7430*163
  CURRENT APPLICATION NUMBER: US/10/320,231A
  CURRENT FILING DATE: 2002-12-19
  PRIOR APPLICATION NUMBER: US 60/342,174
  PRIOR FILING DATE: 2001-12-17
 NUMBER OF SEQ ID NOS: 85
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 59
  LENGTH: 11
   TYPE: PRT
   ORGANISM: Artificial
   FEATURE:
   OTHER INFORMATION: synthetic sequence
US-10-320-231A-59
  Query Match
                         28.8%; Score 30; DB 4; Length 11;
 Best Local Similarity 83.3%; Pred. No. 5.8e+02;
 Matches 5; Conservative 1; Mismatches 0; Indels
                                                               0; Gaps
Qу
           9 GIRGYM 14
             11111:
Db
           5 GIRGYL 10
```

```
Sequence 506, Application US/11122986
; Publication No. US20060104989A1
; GENERAL INFORMATION:
 APPLICANT: EDWARDS, ALED
 APPLICANT: DHARAMSI, AKIL
  APPLICANT: VEDADI, MASOUD
  TITLE OF INVENTION: ESSENTIAL NOVEL BACTERIAL POLYPEPTIDES
  FILE REFERENCE: IPT-330.01
  CURRENT APPLICATION NUMBER: US/11/122,986
  CURRENT FILING DATE: 2005-05-05
  PRIOR APPLICATION NUMBER: 60/423,875
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,832
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,915
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,757
  PRIOR FILING DATE: 2002-11-05
 PRIOR APPLICATION NUMBER: 60/423,758
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/424,367
  PRIOR FILING DATE: 2002-11-06
  PRIOR APPLICATION NUMBER: 60/424,376
  PRIOR FILING DATE: 2002-11-06
  PRIOR APPLICATION NUMBER: 60/424,370
  PRIOR FILING DATE: 2002-11-06
  PRIOR APPLICATION NUMBER: 60/424,362
 PRIOR FILING DATE: 2002-11-06
 PRIOR APPLICATION NUMBER: 60/424,373
 PRIOR FILING DATE: 2002-11-06
; Remaining Prior Application data removed - See File Wrapper or PALM.
  NUMBER OF SEQ ID NOS: 844
  SOFTWARE: PatentIn Ver. 3.3
; SEQ ID NO 506
   LENGTH: 12
   TYPE: PRT
    ORGANISM: Enterococcus faecalis
US-11-122-986-506
  Query Match
                         26.0%; Score 27; DB 7; Length 12;
  Best Local Similarity 66.7%; Pred. No. 2.9e+02;
          4; Conservative
                                2; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
          14 MYLKGP 19
Qy
             : | | : | |
Db
           2 LYLQGP 7
```

```
Sequence 353, Application US/11313152
; Publication No. US20060153858A1
; GENERAL INFORMATION:
; APPLICANT: Kundig, Thomas M.
 APPLICANT: Simard, John J. L.
  TITLE OF INVENTION: METHOD OF INDUCING A CTL RESPONSE
  FILE REFERENCE: MANNK.001CP2C1
  CURRENT APPLICATION NUMBER: US/11/313,152
  CURRENT FILING DATE: 2005-12-19
  PRIOR APPLICATION NUMBER: 09/776,232
  PRIOR FILING DATE: 2001-02-02
  PRIOR APPLICATION NUMBER: 09/380,534
  PRIOR FILING DATE: 1999-09-01
  PRIOR APPLICATION NUMBER: PCT/US98/14289
  PRIOR FILING DATE: 1998-07-10
; PRIOR APPLICATION NUMBER: 08/988,320
; PRIOR FILING DATE: 1997-12-10
; PRIOR APPLICATION NUMBER: CA 2,209,815
; PRIOR FILING DATE: 1997-07-10
 NUMBER OF SEQ ID NOS: 569
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 353
   LENGTH: 8
    TYPE: PRT
    ORGANISM: Haemophilus influenzae
US-11-313-152-353
  Query Match
                         25.0%; Score 26; DB 7; Length 8;
  Best Local Similarity 80.0%; Pred. No. 3e+05;
          4; Conservative 1; Mismatches
                                                  0; Indels
                                                                    Gaps
                                                                            0;
Qу
          11 RGYMY 15
             111:1
Db
           1 RGYVY 5
```

```
RESULT 48
US-11-409-939-38
; Sequence 38, Application US/11409939
; Publication No. US20060240018A1
    GENERAL INFORMATION:
         APPLICANT: Koieda, Shohei
         TITLE OF INVENTION: ARTIFICIAL ANTIBODY POLYPEPTIDES
         NUMBER OF SEQUENCES: 118
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Schwegman, Lundberg, Woessner & Kluth P.A.
              STREET: 121 South Eighth Street, Ste. 1600
              CITY: Minneapolis
              STATE: MN
              COUNTRY: USA
              ZIP: 55402
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Diskette
              COMPUTER: IBM Compatible
              OPERATING SYSTEM: DOS
              SOFTWARE: FastSEQ Version 2.0b
       CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/11/409,939
              FILING DATE: 24-Apr-2006
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: US/09/096,749
              FILING DATE: June 12, 1998
              APPLICATION NUMBER:
              FILING DATE:
        ATTORNEY/AGENT INFORMATION:
              NAME: Ann S. Viksnins
              REGISTRATION NUMBER: 37,748
              REFERENCE/DOCKET NUMBER: 109.034US1
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: (612) 373-6900
              TELEFAX: (612) 339-3061
   INFORMATION FOR SEQ ID NO: 38:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 7 amino acids
             TYPE: amino acid
             STRANDEDNESS: single
             TOPOLOGY: linear
       MOLECULE TYPE: peptide
       HYPOTHETICAL: NO
       ANTI-SENSE: NO
       FRAGMENT TYPE: internal
        ORIGINAL SOURCE:
        SEQUENCE DESCRIPTION: SEQ ID NO: 38:
US-11-409-939-38
 Query Match
                         24.0%; Score 25; DB 7; Length 7;
 Best Local Similarity 66.7%; Pred. No. 3e+05;
 Matches 4; Conservative 2; Mismatches 0; Indels
Qу
          11 RGYMYL 16
             11:1:1
Db
           1 RGFMWL 6
```

```
RESULT 4
B85928
hypothetical protein Z4088 [imported] - Escherichia coli (strain O157:H7, substrain ED
C; Species: Escherichia coli
C;Date: 16-Feb-2001 #sequence_revision 16-Feb-2001 #text_change 09-Jul-2004
C; Accession: B85928
R; Perna, N.T.; Plunkett III, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayh
Nature 409, 529-533, 2001
A; Title: Genome sequence of enterohemorrhagic Escherichia coli O157:H7.
A; Reference number: A85480; MUID: 21074935; PMID: 11206551
A; Accession: B85928
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-25
A;Cross-references: UNIPROT:Q8X3V1; UNIPARC:UPI00000D0EA3; GB:AE005174; NID:g12517242;
A; Experimental source: strain O157:H7, substrain EDL933
C; Genetics:
A; Gene: Z4088
                          26.0%; Score 27; DB 2; Length 25;
  Query Match
                          66.7%; Pred. No. 6.8e+02;
 Best Local Similarity
                                                                 0; Gaps
 Matches
            4; Conservative 2; Mismatches 0; Indels
                                                                             0;
Qу
            9 GIRGYM 14
              1:111:
Db
           14 GLRGYV 19
```

```
RESULT 4
Q6R273 LACLC
    Q6R273 LACLC PRELIMINARY; PRT;
ID
                                     12 AA.
AC
    Q6R273;
DT
    05-JUL-2004, integrated into UniProtKB/TrEMBL.
DT
    05-JUL-2004, sequence version 1.
DT
    07-FEB-2006, entry version 7.
DE
    ArgC (Fragment).
GN
    Name=argC;
os
    Lactococcus lactis subsp. cremoris (Streptococcus cremoris).
OC
    Bacteria; Firmicutes; Lactobacillales; Streptococcaceae; Lactococcus.
OX
    NCBI TaxID=1359;
RN
    [1]
RP
    NUCLEOTIDE SEQUENCE.
RC
    STRAIN=MG1363;
    PubMed=14762010; DOI=10.1128/JB.186.4.1147-1157.2004;
RX
    Larsen R., Buist G., Kuipers O.P., Kok J.;
RA
RT
    "ArgR and AhrC are both required for regulation of arginine metabolism
RT
    in Lactococcus lactis.";
RL
    J. Bacteriol. 186:1147-1157(2004).
CC
    ______
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    ______
    EMBL; AY518514; AAR99645.1; -; Genomic_DNA.
DR
FT
    NON TER 12 12
    SEQUENCE 12 AA; 1335 MW; CC8E9BF86162C05D CRC64;
SQ
 Query Match
                     30.8%; Score 32; DB 2; Length 12;
 Best Local Similarity 100.0%; Pred. No. 5.5e+02;
 Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                   0;
          8 VGIRGY 13
Qу
            111111
Db
          7 VGIRGY 12
```

```
RESULT 6
Q9GLI9 PIG
                  PRELIMINARY; PRT;
ID
    Q9GLI9 PIG
                                      21 AA.
    Q9GLI9;
AC
    01-MAR-2001, integrated into UniProtKB/TrEMBL.
DT
    01-MAR-2001, sequence version 1.
DT
DT
    07-FEB-2006, entry version 11.
    Leucine aminopeptidase (Fragment).
DE
os
    Sus scrofa (Pig).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Laurasiatheria; Cetartiodactyla; Suina; Suidae;
OC
OC
    NCBI_TaxID=9823;
OX
RN
    [1]
RP
    NUCLEOTIDE SEQUENCE.
RA
    Smith T.P.L., Fahrenkrug S.C., Rohrer G.A., Simmen F.A.,
RA
    Rexroad C.E. III, Keele J.W.;
RL
    Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
CC
    _______
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    ______
DR
    EMBL; AF267719; AAG25934.1; -; Genomic DNA.
    HSSP; P00727; 1LAM.
DR
DR
    MEROPS; M17.005; -.
DR
    GO; GO:0004177; F:aminopeptidase activity; IEA.
KW
    Aminopeptidase.
FT
    NON TER
               1
                       1
FT
    NON TER
               21
                      21
SO
    SEQUENCE
              21 AA; 2198 MW; 7C2EF81999015E1F CRC64;
 Query Match
                       29.8%; Score 31; DB 2; Length 21;
 Best Local Similarity 83.3%; Pred. No. 1.4e+03;
          5; Conservative 1; Mismatches 0; Indels 0; Gaps
                                                                     0;
          4 DVNNVG 9
Qу
            1111:1
          7 DVNNIG 12
Db
```

```
RESULT 42
Q8X3V1 ECO57
     Q8X3V1 ECO57
                   PRELIMINARY;
                                  PRT;
                                         25 AA.
ID
АC
     Q8X3V1;
DT
     01-MAR-2002, integrated into UniProtKB/TrEMBL.
DΤ
     01-MAR-2002, sequence version 1.
ĎΤ
     07-FEB-2006, entry version 13.
DΕ
     No significant matches.
GN
     OrderedLocusNames=z4088;
OS
    Escherichia coli O157:H7.
    Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
OC
     Enterobacteriaceae; Escherichia.
    NCBI_TaxID=83334;
OX
RN
     [1]
RΡ
    NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC
     STRAIN=0157:H7 / EDL933 / ATCC 700927 / EHEC;
    MEDLINE=21074935; PubMed=11206551; DOI=10.1038/35054089;
RX
RA
     Perna N.T., Plunkett G. III, Burland V., Mau B., Glasner J.D.,
RA
    Rose D.J., Mayhew G.F., Evans P.S., Gregor J., Kirkpatrick H.A.,
RA
    Posfai G., Hackett J., Klink S., Boutin A., Shao Y., Miller L.,
RA
    Grotbeck E.J., Davis N.W., Lim A., Dimalanta E.T., Potamousis K.,
RA
    Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C.,
RA
    Welch R.A., Blattner F.R.;
RT
    "Genome sequence of enterohaemorrhagic Escherichia coli 0157:H7.";
    Nature 409:529-533(2001).
RL
CC
CÇ
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    ______
DR
    EMBL; AE005174; AAG57886.1; -; Genomic DNA.
DR.
    PIR; B85928; B85928.
KW
    Complete proteome.
    SEQUENCE 25 AA; 3152 MW; 0C2F84A4E0257B77 CRC64;
SQ
 Query Match
                         26.0%; Score 27; DB 2; Length 25;
 Best Local Similarity
                         66.7%; Pred. No. 7.9e+03;
           4; Conservative 2; Mismatches 0; Indels
                                                              0; Gaps
Qу
           9 GIRGYM 14
             1:111:
Db
          14 GLRGYV 19
```

```
RESULT 23
ABO12635
ID
     ABO12635 standard; peptide; 25 AA.
XX
AC
     ABO12635;
XX
DΤ
     25-AUG-2003 (first entry)
XX
DE
     Human zinc finger DNA binding domain #934.
XX
KW
     Composite binding polypeptide; zinc finger nucleic acid binding domain;
KW
     autoimmune disorder; immunosuppressive; zinc finger DNA binding domain;
KW
     human.
XX
os
     Homo sapiens.
XX
PN
     WO200299084-A2.
XX
PD
     12-DEC-2002.
XX
PF
     04-APR-2002; 2002WO-US022272.
XX
PR
     04-APR-2001; 2001GB-00008491.
XX
PΑ
     (SANG-) SANGAMO BIOSCIENCES INC.
XX
ΡI
     Moore M, Sepp A, Isalan M,
                                   Choo Y;
XX
DR
     WPI; 2003-278214/27.
XX
PT
    New composite binding zinc finger polypeptide, useful for designing
PT.
     sequence-specific binding proteins regulating gene expression in the
PT
     fields of molecular biology, and for the diagnosis and treatment of
PT
     autoimmune disorders.
XX
PS
    Example 2; Page 91; 157pp; English.
XX
CC
    The invention relates to a composite binding polypeptide comprising a
CC
    first natural binding domain derived from a first natural binding
CC
    polypeptide and a second natural binding domain derived from a second
CC
    natural binding polypeptide, where the first and second natural binding
CÇ
    polypeptides may be the same or different and where the polypeptide binds
CC
    to a target differing from the natural target of both the first and
CC
    second binding polypeptides. The invention also relates to a chimeric
CC
    polypeptide comprising a binding polypeptide cited above and a biological
CC
    effector domain, a library of natural binding domains, a library of
CC
    natural zinc finger nucleic acid binding domains comprising a linker
CC
    attached to it, a method for selecting a binding polypeptide capable of
CC
    binding to a target site and a method for designing a composite binding
CC
    polypeptide. The methods and compositions of the present invention are
CC
    useful for designing sequence-specific binding proteins for regulation of
CC
    gene expression in the fields of molecular biology. They can also be used
CC
    for the diagnosis and treatment of autoimmune disorders, and as research
CC
    tools and in transgenic animals. This sequence represents a human zinc
CC
    finger DNA binding domain used in the scope of the invention
XX
SQ
    Sequence 25 AA;
 Query Match
                          30.8%;
                                  Score 40; DB 6; Length 25;
 Best Local Similarity
                          54.5%; Pred. No. 1.6e+02;
            6; Conservative
                                 2; Mismatches
                                                   3; Indels
                                                                  0; Gaps
                                                                              0;
```

Qу 5 GCSWEFIPVDD 15 Db 7 GCSWKFARSDE 17

```
RESULT 1
US- THE TOTAL STATE OF THE SECOND
                                                          1275-1296
; Sequence 105, Application US
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
 APPLICANT: Kei, Aoki R.
; TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
; FILE REFERENCE: ALLEO004-100
; CURRENT APPLICATION NUMBER: US
; CURRENT FILING DATE: 2003-11-17
 NUMBER OF SEQ ID NOS: 105
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 105
  LENGTH: 20
   TYPE: PRT
  ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 1277-1296)
US-10-715-810-105
 Query Match
                        93.1%; Score 121; DB 5; Length 20;
 Best Local Similarity 100.0%; Pred. No. 4e-10;
 Matches 20; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
           3 TLGCSWEFIPVDDGWGERPL 22
```

1 TLGCSWEFIPVDDGWGERPL 20

Db

```
RESULT 37
US-10-732-620-9
; Sequence 9, Application US/10732620
; Publication No. US20050032186A1
; GENERAL INFORMATION:
; APPLICANT: Kim, Jin-Soo
 APPLICANT: Shin, Hyun-Chul
; APPLICANT: Kwon, Heung-Sun
  TITLE OF INVENTION: REGULATORY ZINC FINGER PROTEINS
 FILE REFERENCE: 12279-009001
 CURRENT APPLICATION NUMBER: US/10/732,620
  CURRENT FILING DATE: 2003-12-09
  PRIOR APPLICATION NUMBER: US 60/431,892
  PRIOR FILING DATE: 2002-12-09
  NUMBER OF SEQ ID NOS: 129
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 9
   LENGTH: 25
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-732-620-9
 Query Match
                         28.5%; Score 37; DB 5; Length 25;
 Best Local Similarity 45.5%; Pred. No. 5.2e+02;
 Matches 5; Conservative
                               3; Mismatches 3; Indels
                                                               0; Gaps
                                                                           0;
           5 GCSWEFIPVDD 15
Qу
             11:1:1
                     1:
Db
           7 GCTWKFARSDE 17
```

RESULT 38

```
Sequence 92, Application US/09791378
; Patent No. US20020142303A1
; GENERAL INFORMATION:
; APPLICANT: Parekh, Rajesh
; TITLE OF INVENTION: PROTEINS, GENES AND THEIR USE FOR DIAGNOSIS AND TREATMENT OF
; TITLE OF INVENTION: SCHIZOPHRENIA
; FILE REFERENCE: 9195-061-999
; CURRENT APPLICATION NUMBER: US/09/791,378
; CURRENT FILING DATE: 2001-02-23
 PRIOR APPLICATION NUMBER: 09/750,395
; PRIOR FILING DATE: 2000-12-28
 NUMBER OF SEQ ID NOS: 677
  SOFTWARE: PatentIn version 3.0
; SEQ ID NO 92
   LENGTH: 14
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-791-378-92
 Query Match
                         27.7%; Score 36; DB 3; Length 14;
 Best Local Similarity
                         66.7%; Pred. No. 4.1e+02;
 Matches 6; Conservative
                                2; Mismatches 1; Indels
                                                               0; Gaps
Qу
          11 IPVDDGWGE 19
             11::11 11
Db
           1 IPIEDGSGE 9
```

```
ADV55232
ΙD
     ADV55232 standard; peptide; 14 AA.
XX
AC
     ADV55232;
XX
DT
     10-MAR-2005 (first entry)
XX
DΕ
     G protein coupled receptor peptide SEQ ID NO 2729.
XX
     diagnosis; cancer; obesity; diabetes; asthma; inflammation; depression;
KW
KW
     food; feedstuff; cosmetics; agriculture; animal breeding; GPCR.
XX
os
     Unidentified.
XX
PN
     WO2004111636-A2.
XX
PD
     23-DEC-2004.
XX
PF
     17-JUN-2004; 2004WO-EP051158.
XX
PR
     17-JUN-2003; 2003EP-00101775.
PR
     17-JUN-2003; 2003US-0479061P.
XX
PΑ
     (VIBV-) VIB VZW.
     (UYGE-) UNIV GENT.
PΑ
XX
PΙ
     Kas K, Vandekerckhove J, Krols L;
XX
DR
     WPI; 2005-057893/06.
XX
PT
     Identifying a peptide combo which corresponds with a family of proteins,
PT
     useful for diagnosing a variety of diseases, drug development or in
PT
     agriculture, comprises generating peptides by applying a digest on the
PT
     family of protein.
XX
PS
     Example; SEQ ID NO 2729; 265pp; English.
XX
CC
     The invention relates to a method of identifying a peptide combo which
CC
     corresponds with a family of proteins where each of the members of the
CC
     peptide combo is derived from a unique protein from the family. The
CC
     peptide combo is useful for quantifying specific known splice variants of
CC
     one or more particular proteins in a sample, for diagnosing complex
CC
     genetic diseases such as cancer, obesity, diabetes, asthma and
CC
     inflammation, neuropsychiatric disorders such as depression, for
CC
     quantifying one to several hundreds of protein disease markers
CC
     simultaneously leading to a more accurate diagnostic sub-classification,
CC
     for determining the extent of protein modification in a particular sample
CC
     of proteins, for tissue-typing analysis, for prenatal testing to detect
CC
     the presence of a congenital disease or for quantitating protein levels
CC
     diagnostic of a chromosomal abnormality, for diagnosing immune diseases
CC
     or neurological diseases, as biomarkers preclinical drug development,
CC
     development of improved animal models, biomarkers related with
     toxicology, clinical drug development, guidance marketed drugs,
CC
CC
     prognostic or diagnostic disease markers, drug target validation and
     selection, monitoring protein splicing, drug lead profiling, pathway
CC
CC
     analysis, answering basic disease biology questions, and in the fields of
CC
     food and feed, cosmetics, agriculture and animal breeding. The present
CC
     sequence represents a peptide from a G-protein coupled receptor peptide
CC
     combo.
XX
SQ
     Sequence 14 AA;
```

```
Query Match 37.4%; Score 37; DB 9; Length 14;
Best Local Similarity 66.7%; Pred. No. 68;
Matches 6; Conservative 3; Mismatches 0; Indels 0; Gaps 0;

Qy 1 EENISLDLI 9
| | | | | | | | |
Db 4 EENVTLDLV 12
```

```
RESULT 19
PH0924
T-cell receptor beta chain V-D-J region (isolate 10) - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C; Date: 09-Oct-1992 #sequence revision 09-Oct-1992 #text change 30-May-1997
C; Accession: PH0924
R; Gold, D.P.; Offner, H.; Sun, D.; Wiley, S.; Vandenbark, A.A.; Wilson, D.B.
J. Exp. Med. 174, 1467-1476, 1991
A; Title: Analysis of T cell receptor beta chains in Lewis rats with experimental aller
A; Reference number: PH0891; MUID: 92078857; PMID: 1836012
A; Accession: PH0924
A; Molecule type: mRNA
A; Residues: 1-11
A; Cross-references: UNIPARC: UPI000017C9F3
A; Experimental source: concanavalin A-activated lymphoblast
C; Keywords: T-cell receptor
  Query Match
                          24.2%; Score 24; DB 2; Length 11;
  Best Local Similarity
                          57.1%; Pred. No. 8.1e+02;
                                                   0; Indels
                                                                  0; Gaps
  Matches
           4; Conservative
                                 3; Mismatches
                                                                              0;
Qу
            5 SLDLIQQ 11
              1:11::1
            5 SMDLMEQ 11
Db
```

```
RESULT 20
S41601
interferon alpha receptor 1 - human (fragments)
C; Species: Homo sapiens (man)
C;Date: 25-Dec-1994 #sequence revision 01-Dec-1995 #text change 30-May-1997
C; Accession: S41601
R; Abramovich, C.; Ratovitski, E.; Lundgren, E.; Revel, M.
FEBS Lett. 338, 295-300, 1994
A; Title: Identification of mRNAs encoding two different soluble forms of the human int
A; Reference number: S41601; MUID: 94139943; PMID: 8307198
A; Accession: S41601
A; Molecule type: mRNA
A; Residues: 1-14
A; Cross-references: UNIPARC: UPI000017C27A
C; Keywords: cytokine receptor
  Query Match
                          24.2%; Score 24; DB 2; Length 14;
  Best Local Similarity
                          83.3%; Pred. No. 1.1e+03;
             5; Conservative
                                 1; Mismatches
                                                    0;
                                                       Indels
                                                                  0; Gaps
                                                                               0;
Qу
            2 ENISLD 7
              11111:
Db
            7 ENISLN 12
```

```
RESULT 43
S38527
rRNA N-glycosidase (EC 3.2.2.22) saporin S6 - common soapwort (fragment)
C; Species: Saponaria officinalis (common soapwort)
C;Date: 12-Feb-1998 #sequence revision 13-Mar-1998 #text change 02-Jul-1998
C; Accession: S38527
R; Ferreras, J.M.; Barbieri, L.; Girbes, T.; Battelli, M.G.; Rojo, M.A.; Arias, F.J.; R
Biochim. Biophys. Acta 1216, 31-42, 1993
A; Title: Distribution and properties of major ribosome-inactivating proteins (28 S rRN
A; Reference number: S38521; MUID: 94032486; PMID: 8218413
A; Accession: S38527
A; Molecule type: protein
A; Residues: 1-30
A; Cross-references: UNIPARC: UPI0000174670
C; Superfamily: rRNA N-glycosidase; rRNA N-glycosidase homology
·C; Keywords: glycosidase; hydrolase
  Query Match
                           23.2%; Score 23; DB 2; Length 30;
  Best Local Similarity
                          57.1%; Pred. No. 3.5e+03;
  Matches
            4; Conservative
                                 3; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                               0;
            3 NISLDLI 9
Qу
              :1:111:
Db
            3 SITLDLV 9
```

```
B61497
seed protein ws-17 - winged bean (fragment)
C: Species: Psophocarpus tetragonolobus (winged bean)
C; Date: 07-Oct-1994 #sequence revision 07-Oct-1994 #text change 09-Jul-2004
C; Accession: B61497
R; Hirano, H.
J. Protein Chem. 8, 115-130, 1989
A; Title: Microsequence analysis of winged bean seed proteins electroblotted from two-d
A; Reference number: A61491; MUID: 89351606; PMID: 2765119
A; Accession: B61497
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-12
A; Cross-references: UNIPROT: Q7M1H9; UNIPARC: UPI000017B06B
C; Keywords: seed
  Query Match
                         22.2%; Score 22; DB 2; Length 12;
  Best Local Similarity 50.0%; Pred. No. 1.9e+03;
 Matches 3; Conservative 3; Mismatches 0; Indels 0; Gaps
                                                                             0;
Qу
         14 LTFNFD 19
             ::|||:
Db
           3 ISFNFN 8
```

```
PA0007
lectin B1 - Psophocarpus scandens (fragment)
C; Species: Psophocarpus scandens
C;Date: 30-Jun-1992 #sequence_revision 30-Jun-1992 #text_change 09-Jul-2004
C; Accession: PA0007
R; Kortt, A.A.
Phytochemistry 27, 2847-2855, 1988
A; Title: Isolation and characterization of the lectins from the seeds of Psophocarpus
A; Reference number: PA0005
A; Accession: PA0007
A; Molecule type: protein
A; Residues: 1-14
A;Cross-references: UNIPROT:P22584; UNIPARC:UPI000012E3DA
A; Experimental source: seed
C; Comment: The seeds of Psophocarpus contain two distinct groups of lectins which can
C; Keywords: lectin
  Query Match
                          22.2%; Score 22; DB 2; Length 14;
  Best Local Similarity
                          50.0%; Pred. No. 2.2e+03;
                                                0; Indels 0; Gaps
 Matches
           3; Conservative
                               3; Mismatches
                                                                             0;
          14 LTFNFD 19
Qу
              ::||:
Db
           3 ISFNFN 8
```

```
Sequence 225, Application US/10666480
; Publication No. US20040121959A1
; GENERAL INFORMATION:
 APPLICANT: Boone, Thomas C
 APPLICANT: Wild, Kenneth D
 APPLICANT: Sitney, Karen C
 APPLICANT: Min, Hosung
 APPLICANT: Kimmel, Bruce
  TITLE OF INVENTION: Peptides and Related Molecules That Modulate Nerve Growth Facto
  FILE REFERENCE: A-827US
  CURRENT APPLICATION NUMBER: US/10/666,480
  CURRENT FILING DATE: 2003-09-18
  PRIOR APPLICATION NUMBER: 60/412,524
 PRIOR FILING DATE: 2002-09-19
 NUMBER OF SEQ ID NOS: 286
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 225
   LENGTH: 26
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Therapeutically active peptide of randomly generated, non-natu
   OTHER INFORMATION: lly occurring sequence
US-10-666-480-225
 Query Match
                         31.3%; Score 31; DB 4; Length 26;
 Best Local Similarity 55.6%; Pred. No. 1.6e+03;
         5; Conservative 3; Mismatches 1; Indels
Qу
           5 SLDLIQQYY 13
             11 1::11:
           9 SLPLVEQYF 17
```

```
Sequence 178, Application US/10948707
; Publication No. US20050187147A1
; GENERAL INFORMATION:
; APPLICANT: Ballatore, Carlo
; APPLICANT: Castellino, Angelo
; APPLICANT: Desharnais, Joel
; APPLICANT: Guo, Zijian
  APPLICANT: Li, Qing
  APPLICANT: Newman, Michael James
 APPLICANT: Sun, Chengzao
  TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR INCREASING
  TITLE OF INVENTION: DRUG EFFICIENCY
  FILE REFERENCE: 17967-003001
  CURRENT APPLICATION NUMBER: US/10/948,707
  CURRENT FILING DATE: 2004-09-22
 PRIOR APPLICATION NUMBER: 60/505,325
  PRIOR FILING DATE: 2003-09-22
  PRIOR APPLICATION NUMBER: 60/568,340
; PRIOR FILING DATE: 2004-05-04
 PRIOR APPLICATION NUMBER: 60/581,835
 PRIOR FILING DATE: 2004-06-22
 NUMBER OF SEQ ID NOS: 1422
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 178
   LENGTH: 9
   TYPE: PRT
   ORGANISM: Homo Sapiens
US-10-948-707-178
  Query Match
                         30.3%; Score 30; DB 5; Length 9;
 Best Local Similarity 71.4%; Pred. No. 1.9e+06;
           5; Conservative 2; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           1 EENISLD 7
             111:1:1
Db
           1 EENVSVD 7
```

```
Sequence 225, Application US/10666480
; Patent No. 6919426
; GENERAL INFORMATION:
; APPLICANT: Boone, Thomas C
; APPLICANT: Wild, Kenneth D
; APPLICANT: Sitney, Karen C
; APPLICANT: Min, Hosung
; APPLICANT: Kimmel, Bruce
; TITLE OF INVENTION: Peptides and Related Molecules That Modulate Nerve Growth Facto
; FILE REFERENCE: A-827US
; CURRENT APPLICATION NUMBER: US/10/666,480
  CURRENT FILING DATE: 2003-09-18
  PRIOR APPLICATION NUMBER: 60/412,524
; PRIOR FILING DATE: 2002-09-19
; NUMBER OF SEQ ID NOS: 286
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 225
  LENGTH: 26
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Therapeutically active peptide of randomly generated, non-natu
   OTHER INFORMATION: lly occurring sequence
US-10-666-480-225
  Query Match
                         31.3%; Score 31; DB 2; Length 26;
  Best Local Similarity 55.6%; Pred. No. 2.1e+02;
 Matches 5; Conservative 3; Mismatches 1; Indels
                                                                0; Gaps
           5 SLDLIQQYY 13
Qу
             | | | | | | | | | | | |
Db
           9 SLPLVEQYF 17
```

```
Sequence 57, Application US/08188583
; Patent No. 5851813
  GENERAL INFORMATION:
    APPLICANT: Desrosiers, Ronald C.
    TITLE OF INVENTION: PRIMATE LENTIVIRUS VACCINES
    NUMBER OF SEQUENCES: 57
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Fish & Richardson
      STREET: 225 Franklin Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: U.S.A.
      ZIP: 02110-2804
    COMPUTER READABLE FORM:
    MEDIUM TYPE: 3.5" Diskette, 1.44 Mb
      COMPUTER: IBM PS/2 Model 50Z or 55SX
     OPERATING SYSTEM: IBM P.C. DOS (Version 3.30)
     SOFTWARE: WordPerfect (Version 5.0)
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/188,583
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 07/727,494
      FILING DATE: July 9, 1991
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 07/551,945
      FILING DATE: July 12, 1990
    ATTORNEY/AGENT INFORMATION:
    NAME: Freeman, John W.
      REGISTRATION NUMBER: Reg. No. 5851813 29,066
     REFERENCE/DOCKET NUMBER: 00246/079002
   TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617) 542-5070
      TELEFAX: (617) 542-8906
      TELEX: 200154
  INFORMATION FOR SEQ ID NO: 57:
  SEQUENCE CHARACTERISTICS:
      LENGTH: 13
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
US-08-188-583-57
 Query Match
                         28.3%; Score 28; DB 1; Length 13;
 Best Local Similarity 57.1%; Pred. No. 2.9e+02;
           4; Conservative 3; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
          10 QQYYLTF 16
             :::||||
Db
           3 EEHYLTF 9
```

SCORE Search Results Details for Application 10821669 and Search Result us-10-821-669-1_copy_519_537.szlm30.rag.

Score Home Page

Retrieve Application

List

SCORE System Overview

SCORE FAO

Comments / Suggestions

This page gives you Search Results detail for the Application 10821669 and Search Result us-10-821-669-1_copy_519_537.szlm30.rag.

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on:

start

November 1, 2006, 12:29:25; Search time 84.8 Seconds

(without alignments)

102.442 Million cell updates/sec

Title:

US-10-821-669-1 COPY 519 537

Perfect score: 94 Sequence:

1 NLSSDIIGQLELMPNIERF 19

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched:

2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seg length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database :

A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*
5: geneseqp2002s:*
6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: genesegp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Da 1 #		8				
Result No.	Score		Length	DB	ID	Description
1	 94	100.0	19	9	ADW11046	Adw11046 Clostridi
2	94	100.0	27	9	ADW11104	Adw11104 Clostridi
3	47	50.0	27	9	ADW11105	Adw11105 Clostridi
4	38	40.4	24	2	AAR84289	Aar84289 Aq. elcat
5	37	39.4	30	2	AAR07952	Aar07952 Synthetic
6	34.5	36.7	30	6	ABP80164	Abp80164 N. gonorr
7	34	36.2	15	9	AEC39638	Aec39638 Bovine a-
8	33	35.1	16	3	AAB19666	Aab19666 Alkaloid
9	33	35.1	28	2	AAW54070	Aaw54070 IVI-4 pro
10	32	34.0	18	9	AEC79872	Aec79872 Human cDN
11	32	34.0	22	3	AAB21083	Aab21083 GDF-8 inh
12	32	34.0	25	5	ABG62351	Abg62351 Eubacteri
13	. 32	34.0	29	10	AEE37974	Aee37974 Human ser
14	31	33.0	10	8	ADQ26479	Adq26479 Post-tran
15	31	33.0	12	4	ABP17479	Abp17479 HIV B27 s
16	31	33.0	12	9	AEA47509	Aea47509 Amino aci
17	31	33.0	14	8	ADQ26478	Adq26478 Post-tran
18	31	33.0	14	9	AEA47508	Aea47508 Amino aci
. 19	31	33.0	14	9	AEA47503	Aea47503 Amino aci
20	31	33.0	14	9	AEA47511	Aea47511 Amino aci
21	31	33.0	14	9	AEA47510	Aea47510 Amino aci
22	31	33.0	14	9	AEA33936	Aea33936 Mass spec
23	31	33.0	14	9	AEC01306	Aec01306 Alpha-cas
24	31	33.0	14	9	AEC39624	Aec39624 Bovine a-
25	31	33.0	14	9	AEF22727	Aef22727 Alpha-cas
26 27	31	33.0	14	10	AEE60013	Aee60013 Alpha-S1-
28	31 31	33.0 33.0	16 16	9 9	AEC39625 AEF22728	Aec39625 Bovine a-
29	31	33.0	16	10	AEE60014	Aef22728 Alpha-cas Aee60014 Alpha-S1-
30	31	33.0	16	10	AEE60011	Aee60011 Alpha-S1-
31	31	33.0	17	9	AEC39626	Aec39626 Bovine a-
32	31	33.0	17	9	AEF22729	Aef22729 Alpha-cas
33	31	33.0	19	5	AAE23255	Aae23255 Database
34	31	33.0	20	2	AAW11227	Aaw11227 Modified
35	31	33.0	20	9	AED19922	Aed19922 Canine pa
36	31	33.0	20	9	AEE34594	Aee34594 Wheat gli
37	31	33.0	21	5	AAU89641	Aau89641 Insulin/i
38	31	33.0	22	8	ADQ81655	Adq81655 E faecali
39	31	33.0	23	2	AAW09056	Aaw09056 Epstein-B
40	31	33.0	23	4	AAB91905	Aab91905 Bombesin
41	31	33.0	30	4	ABB50580	Abb50580 Human sec
42	31	33.0	30	6	ABO44837	Abo44837 Novel hum
43	31	33.0	30	7	ABO26317	Abo26317 Protein a
44	30	31.9	7	2	AAR86583	Aar86583 Autotaxin
45	30	31.9	11	8	ADQ81646	Adq81646 E_faecali
46	30	31.9	12	2	AAR66882	Aar66882 Agonist p
47	30	31.9	12	2	AAW01915	Aaw01915 C140 rece
48	30	31.9	13	2	AAR66881	Aar66881 Agonist p
49 50	30	31.9	13	2	AAW01914	Aaw01914 C140 rece
50 51	30	31.9	14	2	AAW88297	Aaw88297 Human gua
51 52	30 ⁻	31.9	15	8	ADN65558	Adn65558 HLA bindi
52 53	30 30	31.9 31.9	20	9 a	AEE34405	Aee34405 Wheat gli
53 54	30	31.9	20	9 4	AEE34587	Aee34587 Wheat gli
55	30	31.9	23	4	ABB43858 AAM37771	Abb43858 Peptide # Aam37771 Peptide #
56	30	31.9	23	4	AAM64837	Aam64837 Human bra
57	30	31.9	23	4	ABG59233	Abg59233 Human liv
			_3	-		

						•	
58	30	31.9	23	5	ABG46617	Abq46617	Human pep
59	30	31.9	24	2	AAR85557		Aqueous e
			24	4			
60	30	31.9			AAG99617		ERA bindi
61	30	31.9	25	2	AAR85556	Aar85556	Aqueous e
62	30	31.9	. 25	2	AAY33336	Aay33336	U. pugila
63	30	31.9	25	3	AAB22958		Fiddler c
64	30	31.9	25	3	AAY93927		
							N-termina
65	30	31.9	25	4	AAE07933		N-termina
66	30	31.9	25	5	ABG62547	Abg62547	Eubacteri
67	30	31.9	25	5	ABG62353		Eubacteri
68	30	31.9	25	5	AA021350		Uca pugil
69	30	31.9	25	9	ADY81714		Krill-der
70	30	31.9	27	3	AAB44738	Aab44738	Human sec
71	30	31.9	27	4.	AAM87727	Aam87727	Human imm
72	30	31.9	28	2	AAR10074		Generic s
73	30	31.9	29	2	AAR10077		Example o
74	30	31.9	29	4	AAM18509		Peptide #
75	30	31.9	29	4	ABB37553	Abb37553	Peptide #
76	30	31.9	29	4	AAM30976	Aam30976	Peptide #
77	30	31.9	29 -	4	ABB32290		Peptide #
78	30	31.9	29	4			
					ABB22848		Protein #
79	30	31.9	29	4	AAM70664	Aam70664	Human bon
80	30	31.9	29	4	AAM58206	Aam58206	Human bra
81	30	31.9	29	4	ABG52366	Abg52366	Human liv
82	30	31.9	29	4	AAM06090		Peptide #
83							
	30	31.9	29	5	ABG40354		Human pep
84	30	31.9	30	1	AAP82826		Eel calci
85	30	31.9	30	2	AAR10075	Aar10075	Example o
86	30	31.9	30	2	AAR10076		Example o
87	30	31.9	30	2	AAR10078		Example o
88	30	31.9	30	2	AAR10079		Example o
89	30	31.9	30	2	AAR11695	Aar11695	Calcitoni
90	30	31.9	30	2	AAR11696	Aar11696	Calcitoni
91	30	31.9	30	2	AAR11694		Calcitoni
92	30	31.9		2			
			30		AAR11697		Calcitoni
93	30	31.9	30	2	AAR11693		Calcitoni
94	. 30	31.9	30	2	AAR11700	Aar11700	Calcitoni
95	30	31.9	30	2	AAR11699	Aar11699	Calcitoni
96	30	31.9	. 30	2	AAR11698		Calcitoni
97	30	31.9	30	2	AAR11701		
							Calcitoni
98	30	31.9	30	2	AAR11702	Aar11702	Calcitoni
99	29.5	31.4	15	6	ABU78506	Abu78506	Novel pro
100	29.5	31.4	15	6	ABU78371	Abu78371	Novel pro
101	29.5	31.4	15	6	ABU78412		Novel pro
		31.4					
102	29.5		20	6	ABJ38217		Human cyt
103	29.5	31.4	24	2	AAW09791	Aaw09791	Peptide e
104	29	30.9	10	6	ABU75168	Abu75168	Novel pro
105	29	30.9	10	6	ABU77837		Novel pro
106	29	30.9	10	6	ABU77789		_
							Novel pro
107	29	30.9	10	6	ABU73020		Novel pro
108	29	30.9	10	6	ABU75708	Abu75708	Novel pro
109	29	30.9	10	6	ABU77673	Abu77673	Novel pro
110	29	30.9	10	6	ABU73625		Novel pro
111	29						
		30.9	10	6	ABU76292		Novel pro
112	29	30.9	10	9	ADY51462		HLA-A0201
113	29	30.9	12	2	AAW40636	Aaw40636	Peptide w
114	29	30.9	13	7	ADM75736		Potential
115	29	30.9	13	7	ADM75471		Potential
116	29	30.9	15	6	ABU78370		Novel pro
117	29	30.9	15	6	ABU78338	Abu78338	Novel pro
118	29	30.9	. 15	6	ABU78436	Abu78436	Novel pro
							-

						•
119	29	30.9	15	6	ABU78524	Abu78524 Novel pro
120	29	30.9	15	6	ABU78491	Abu78491 Novel pro
121	29		15	6		Ada19559 Measles F
		30.9			ADA19559	
122	29	30.9	15	9	AED14758	Aed14758 Peptide f
123	29	30.9	19	9	ADW11044	Adw11044 Clostridi
124	29	30.9	21	5	ABG66380	Abg66380 IgE Fceps
125	29	30.9		5		
			21		ABG66372	Abg66372 IgE Fceps
126	- 29	30.9	21	9	ADV41961	Adv41961 Human pep
127	29	30.9	23	8	ADH34983	Adh34983 N-linked
128	29	30.9	23	10	AEE39364	Aee39364 Human pro
129	29	30.9	23	10		Aee38232 Human ser
130	29	30.9	24	10	AEE39300	Aee39300 Human pro
131	29	30.9	24	10	AEE37898	Aee37898 Human ser
132	29	30.9	25	5	ABG62546	Abg62546 Eubacteri
133						
	29	30.9	25	5	ABG62664	Abg62664 Eubacteri
134	29	30.9	27	9	ADW11103	Adw11103 Clostridi
135	29	30.9	28	2	AAR11476	Aar11476 Salmon ca
136	29	30.9	29	2	AAW09787	Aaw09787 N-termina
137	29	30.9	29	9		
					AEB17653	Aeb17653 Drosophil
138	29	30.9	30	2	AAR11475	Aar11475 Eel calci
139	28.5	30.3	15	6	ABU78331	Abu78331 Novel pro
140	28.5	30.3	15	6	ABU78525	Abu78525 Novel pro
141	28.5	30.3				
			15	6	ABU7,8559	Abu78559 Novel pro
142	28.5	30.3	15	6	ABP59921	Abp59921 Human neu
143	28.5	30.3	15	7	ADL96067	Adl96067 Human neu
144	28.5	30.3	15	9	ADX02682	Adx02682 Neural th
145	28.5	30.3		5		
			18		ABJ04211	Abj04211 Kinase-as
146	28.5	30.3	18	6	ABU54258	Abu54258 Eph-B4 pr
147	28.5	30.3	30	10	AEE35960	Aee35960 Human ser
148	28	29.8	9	2	AAY40125	Aay40125 Amino aci
149	28	29.8	9	2	AAY53303	Aay53303 Bcr-Abl e
150	28	29.8	9	2	AAY26641	Aay26641 BCR-ABL-d
151	28	29.8	9	6	ABU76789	Abu76789 Novel pro
152	28	29.8	. 9	6	ABU76841	Abu76841 Novel pro
153	28	29.8	9	6	ABU73335	Abu73335 Novel pro
154	28	29.8	9	6	ABU75465	
						· Abu75465 Novel pro
155	28	29.8	9	6	ABU76958	Abu76958 Novel pro
156	28	29.8	9	6	ABU76704	Abu76704 Novel pro
157	28	29.8	9	6	ABU76528	Abu76528 Novel pro
158	28	29.8	9	6	ABU76938	Abu76938 Novel pro
159	28		9	7	ADE68489	Ade68489 Human 161
160	28	29.8	9	7	ADE66008	Ade66008 Human 161
161	28	29.8	9	7	ADE66987	Ade66987 Human 161
162	28	29.8	9	7	ADE68229	Ade68229 Human 161
163	28	29.8				
			9	7	ADE68118	Ade68118 Human 161
164	28	29.8	9	7	ADE68697	Ade68697 Human 161
165	28	29.8	9	7	ADE68847	Ade68847 Human 161
166	28	29.8	9	7	ADE68916	Ade68916 Human 161
167	28	29.8	9	7	ADE66509	
						Ade66509 Human 161
168	28	29.8	9	7	ADE66524	Ade66524 Human 161
169	28	29.8	9	7	ADE67224	Ade67224 Human 161
170	28	29.8	9	7	ADE67780	Ade67780 Human 161
171	28	29.8	9	7	ADE68102	Ade68102 Human 161
172	28	29.8		7		
			9		ADE68311	Ade68311 Human 161
173	28	29.8	9	7	ADE66731	Ade66731 Human 161
174	28	29.8	9	7	ADE66746	Ade66746 Human 161
175	28	29.8	9	7	ADE66240	Ade66240 Human 161
176	28	29.8	9	7		•
					ADE66487	Ade66487 Human 161
177	28	29.8	9	7	ADE68369	Ade68369 Human 161
178	28	29.8	9	7	ADE68490	Ade68490 Human 161
179	28	29.8	10	2	AAR66884	Aar66884 Agonist p
			=			

				_		- 0101	
180	28	29.8	10	2	AAW01917		C140 rece
181	28	29.8	10	4	AAG95140	Aag95140	Human com
182	28	29.8	10	7	ADE66138	Ade66138	Human 161
183	28	29.8	10	7	ADE69482		Human 161
184	28	29.8	10	7	ADE66600		Human 161
185	28	29.8	10	7	ADE66856		Human 161
186	28	29.8	10	7	ADE69292		Human 161
187	28	29.8	10	7	ADE69249	Ade 69249	Human 161
188	28	29.8	10	7	ADE67367	Ade 67367	Human 161
189	28	29.8	10	7	ADE69899	Ade 69899	Human 161
190	28	29.8	10	7	ADE66892		Human 161
191	28	29.8	10	7	ADE66384		Human 161
192	28	29.8	10	7	ADE66679		Human 161
193	28	29.8	10	7	ADE67108	Ade 67108	Human 161
194	28	29.8	10	7	ADE69652	Ade 69652	Human 161
195	28	29.8	11	2	AAR66883	Aar66883	Agonist p
196	28	29.8	11	2	AAW01916		C140 rece
197	28	29.8	11	7	ADD23033		Breast ca
198	28	29.8	12	3	AAY84189	-	Amino aci
199	28	29.8	12	8	ADO24729	Ado24729	Mouse lep
200	28	29.8	13	5	ABP63630	Abp63630	Human MHC
201	28	29.8	13	5	AAE27221	_	Human obe
202	28	29.8	15	3	AAY54775		Human sub
203	28	29.8	15	3			
					AAY67138	-	Human pro
204	28	29.8	15	4	AAU38677		Human sub
205	28	29.8	15	5	AAO17727	Aao17727	Human air
206	28	29.8	15	5	ABG91253	Abg91253	Peptide a
207	28	29.8	15	7	ADE70767		Human 161
208	28	29.8	15	7	ADE70471		Human 161
209	. 28	29.8	15	7	ADE70354		Human 161
210				7			
	. 28	29.8	15		ADE70728		Human 161
211	28	29.8	15	7	ADE70110		Human 161
212	28	29.8	15	7	ADE70355	Ade70355	Human 161
213	28	29.8	15	7	ADE70470	Ade70470	Human 161
214	28	29.8	15	7	ADE70504	Ade70504	Human 161
215	28	29.8	15	7	ADE70503		Human 161
216	28	29.8	15	7	ADE70820		Human 161
217	28	29.8	15	8	ADN65557		HLA bindi
218	28	29.8	15	8	ADT07772		Salmon ca
219	28	29.8	17	4	AAM52595	Aam52595	Peptide #
220	28	29.8	17	8	ADV86497	Adv86497	Parathyro
221	28	29.8	18	2	AAR27585		TNF bindi
222	28	29.8	18	2	AAW04312		Modified
223	28	29.8	18	2	AAW45586		
							Peptide f
224	28	29.8	18	3	AAB19656		Streptoco
225	28	29.8	18	6	ABG71717	Abg71717	Antigenic
226	28	29.8	18	8	ADK49420	Adk49420	Human car
227	28	29.8	18	8	ADV86510	Adv86510	Parathyro
228	28	29.8	19	2	AAR26823		Cell adhe
229	28	29.8	20	2	AAR30900		
							Cell adhe
230	28	29.8	20	2	AAR92724		Immunogen
231	28	29.8	20	3	AAB28456		Murine OB
232	28	29.8	20	3	AAY87734	Aay87734	Murine OB
233	28	29.8	20	3	AAB28475	Aab28475	Murine OB
234	28	29.8	20	5	ABG66603		IgE Fceps
235	28	29.8	20	5	ABB84124		Murine Ob
236			. 20				
	28	29.8		6	ABP83487	-	G protein
237	28	29.8	20	6	ABU64569		Human obe
238	28	29.8	20	8	ADH15364	Adh15364	Gliadin r
239	28	29.8	20	8	ADH16095	Adh16095	Gliadin r
240	28	29.8	20	8	ADH16094		Gliadin r
		•					

241	28	29.8	20	8	ADH15365	Adh15365	Gliadin r
242	28	29.8	20	8	ADT93154		Murine ob
243	28	29.8	20	9	AED19923		Canine pa
244	28	29.8	20	9	AEE34588		Wheat gli
245	28	29.8	20	9	AEE34596		Wheat gli
246	28	29.8	20	9	AEE34589		Wheat gli
247	28	29.8	20	9	AEE34597		Wheat gli
248	28	29.8	20	9	AEE34591		Wheat gli
249	28	29.8	20	9	AEE34595		Wheat gli
250	28	29.8	20	9	AEE34592		Wheat gli
251	28	29.8	21	4	ABB42885		Peptide #
252	28	29.8	21	4	AAM36703		Peptide #
253	28	29.8	21	4	AAM76594		Human bon
254	28	29.8	21	4	AAM63781		Human bra
255	28	29.8	21	4	ABG58294		Human liv
256	28	29.8	21	5	ABG45836		Human pep
257	28	29.8	21	5	AAB71448		Human C3
258	28	29.8	22	2	AAR99403		Drosophil
259	28	29.8	22	2	AAW65059		E. tenell
260	28	29.8	22	5	AAB71462		Human C3
261	28	29.8	24	1	AAP20305		24 residu
262	28	29.8	24	7	ADE03435		BGS-2 leu
263	28	29.8	24	9	ADV55692		G protein
264	28	29.8		9			
265	28	29.8	24	9	ADV54697		G protein
266	28	29.8	24 24	9	ADV55693 ADV54696		G protein
267	28						G protein
268	28	29.8 29.8	25	1 2	AAP60857		Sequence
269			25		AAW09790		Peptide e
	28	29.8	25	5	ABG62201		Eubacteri
270 _. 271	28 28	29.8 29.8	26	6	ABP97145		C-Myc fra
272	28	29.8	26	6 8	ABP97144	_	C-Myc fra
272	28	29.8	26	2	ADR84079		S. pyogen
274	28	29.8	27 27	8	AAW00861		Anti-obes
274	28				ADK49421		Human car
276		29.8	27	9	ADV44820		Murine al
277	28 28	29.8	28	1	AAP82100	_	Synthetic
278		29.8	28	1	AAP82099		Synthetic
	28	29.8	29	1	AAP80525		Sequence
279 280	28	29.8	29	1	AAP82107		Synthetic
	28	29.8	29	1	AAP82108		Synthetic
281	28	29.8	29				L-Proline
282	28	29.8	29	2	AAR88115		L-proline
283	28	29.8	29	8	ABO57855		Human gen
284	28	29.8	30	1	AAP40569	Aap40569	-
285	28	29.8	30	1	AAP40567	Aap40567	-
286	28	29.8	30	1	AAP40568	Aap40568	
287	28	29.8	30	1	AAP82825	_	Salmon ca
288	28	29.8	30	1	AAP82741		Des-19-le
289	28	29.8	30	1	AAP82740		Des-19-le
290	28	29.8	30	2	AAR07951		Synthetic
291	28	29.8	30	2	AAR07769		Calcium m
292	27	28.7	8	8	ADS97525		Human MEP
293	27	28.7	9	5	ABJ01798		158P1D7 r
294	27	28.7	9	5	ABJ01511	_	158P1D7 r
295	27	28.7	9	5	ABJ01313	_	158P1D7 r
296	27	28.7	9	5	ABJ01886		158P1D7 r
297	27	28.7	9	6	ABU76577		Novel pro
298	27	28.7	10	4	AAG95264	_	Human com
299	27	28.7	10	5	ABJ01936		158P1D7 r
300	27	28.7	10	5	ABJ01461		158P1D7 r
301	27	28.7	10	5	ABJ01361	Abj01361	158P1D7 r

302	. 27	28.7	10 6	ABU77717		Abu77717	Novel pro
303	27	28.7	10 6	ABU77793		Abu77793	Novel pro
304	27	28.7	10 6	ABU75147		Abu75147	Novel pro
305	27	28.7	10 6	ABU75732		Abu75732	Novel pro
306	27	28.7	10 6	ABU77848		Abu77848	Novel pro
307	27	28.7	10 6	ABR01568		Abr01568	Human ant
308	27	28.7	10 8	ADK03047		Adk03047	Hepatitis
309	27	28.7	10 8	ADK03072			Hepatitis
310	27	28.7	13 4	AAU28716		Aau28716	DPI trypt
311	27	28.7	13 4	AAU28698		Aau28698	DPI trypt
312	27	28.7	13 4	•			Schizophr
313	27	28.7	13 4	AAB87228			Breast-ca
314	27	28.7	13 4	AAU26346		Aau26346	Depressio
315	27	28.7	13 4				Depressio
316	27	28.7	13 4	AAU15567			Schizophr
317	27	28.7	13 4				Human API
318	27	28.7	13 6				Alzheimer
319	27	28.7	13 8				Human Alz
320	27	28.7	13 8				Schizophr
321	27	28.7	14 1				Part of t
322	27	28.7	14 8		•	_	hSARS vir
323	27	28.7	14 8		•		SARS viru
324	27	28.7	14 8				hSARS vir
325	27	28.7	14 8				SARS coro
326	27	28.7	15				184P1E2-r
327	27	28.7	15 6			-	184P1E2-r
328	27	28.7	15 6				184P1E2-r
329	27	28.7	15	·			184P1E2-r
330	27	28.7	15 6			-	184P1E2-r
331	27	28.7	15				184P1E2-r
332	27	28.7	15				184P1E2-r
333	27	28.7	15			_	184P1E2-r
334	27	28.7				-	184P1E2-r
335	27	28.7	15			-	184P1E2-r
336	27	28.7	15		•	•	184P1E2-r
337	27	28.7	15			_	184P1E2-r
338	27	28.7	15 6				184P1E2-r
339	27	28.7	15		*	-	184P1E2-r
340	27	28.7	15 8				Plasmodiu
341	27	28.7	17 4				Human Gra
342	27	28.7	17 4				Human Gra
343	27	28.7	17	•			Human pho
344	27	28.7	18 8				Cottontai
345	27	28.7	18 8				Plant vir
346	27	28.7	18 9				Cottontai
347	27	28.7	19				hTid liga
348	27	28.7	19 8				Cottontai
349	27	28.7	19 8			-	Plant vir
350	27	28.7	19			_	Papilloma
351	27	28.7	19				Human imm
352	27	28.7	20 4				Human min
353	27	28.7	20 4				Hepatitis
354	27	28.7	20 4				Human imm
355	27	28.7	20 8				Human pep
356	27	28.7	21 8				Human pro
357	27	28.7	22 2				G-protein
358	27	28.7	22 2				G-protein
359	27	28.7	22 2				E. coli b
360	27	28.7	22 4				Peptide #
361	27	28.7	22				Peptide #
362	27	28.7	22 4				Human bon
	- '					3.2	

363	27	28.7	22	4	AAM02939		Aam02939	Peptide #
364	27	28.7	22	5	AAM49327			HIV-1 gp1
365	27	28.7	23	5	AAU86417			Androgen
366	27	28.7	24	8	ADY81099			Rice leaf
367	27	28.7		9			_	
			24	2	ADV25923			SARS coro
368	27	28.7	25		AAY33334			P. monodo
369	27	-28.7	25	3	AAB22956			Tiger pra
370	27	28.7	25	3	AAY93925		_	N-termina
371	27	28.7	25	4	AAE07931			N-termina
372	27	28.7	25	5	AAO21348		Aao21348	Panaeus m
373	27	28.7	25	6	ABP99568		Abp99568	Human sec
374	27	28.7	25	9	ADY81712		Ady81712	Krill-der
375	27	28.7	25	10	AEE39235		Aee39235	5 Human ser
376	27	28.7	26	2	AAW01183		Aaw01183	Serine pr
377	27	28.7	26	3	AAB39185			Human sec
378	27	28.7	26	4	AAB50579			Flea seri
379	27	28.7	27	2	AAR25352			Calcitoni
380	27	28.7	27	4	ABB36341			Peptide #
381	27	28.7	27	4	ABB31146			Peptide #
382	27	28.7	27	5	ABG39127			-
383	27							Human pep
		28.7	27	7	ADK14963			Urinary s
384	27	28.7	27	7	ADL66715			Shg prote
385	27	28.7	27	8	ABO60614	i		Human gen
386	27	28.7	28	3	AAB22001			Human V g
387	27	28.7	28	5	AAE23914		Aae23914	Human TCR
388	27	28.7	28	10	AEE28088		Aee28088	N. mening
389	27	28.7	29	2	AAR30298		Aar30298	[Nva O,Le
390	27	28.7	29	2	AAR30286		Aar30286	[Val 0,Le
391	27	28.7	29	2	AAR30333			[Ala 0, L
392	27	28.7	29	2	AAR30292			[Thr 0, Le
393	27	28.7	29	2	AAR30325		Aar30325	
394	27	28.7	29	2	AAR30329			[Thr 0, L
395	. 27	28.7	29	2	AAR30335			[Nva 0, L
396	27	28.7	29	2	AAR30296			[Ala 0, Le
397	27	28.7	29	2	AAR30323			[Val 0, L
398	27	28.7	29	2	AAR30337		Aar30337	
399	27	28.7	29	2	AAR30331			
400	27	28.7	29	2			Aar30331	
400				2	AAR30290		Aar30290	
	27	28.7	29		AAR30284		Aar30284	
402	27	28.7	29	2	AAR30294			[Ser 0,Le
403	27	28.7		2	AAR30321			[Leu 0,8,
404	27	28.7		2	AAR30327			[Met 0, L
405	27	28.7		2	AAR30288		Aar30288	[Ile O,Le
406	27	28.7	29	2	AAR30300		Aar30300	[Nle 0,Le
407	27	28.7	29	4	AAU27336		Aau27336	Novel bon
408	27	28.7	29	5	AAE13588		Aae13588	Glutathio
409	27	28.7	29	8	ADT41179		Adt41179	hSARS vir
410	27	28.7	29	8	ADS80594			SARS viru
411	27	28.7		8	ADT38709			hSARS vir
412	27	28.7		8	ADU99091			Human 109
413	27	28.7		8	ADU99088			Human 109
414	27	28.7		9	AEB27671			pGEX-KG v
415		28.7		9	AEC65508			Human 109
416	27	28.7		9				
417	27				AEC65505			Human 109
	27 27	28.7		8	ADX95629			Plant ful
418		28.7		9	AEE68223			Cottontai
419	26.5	28.2		5	ABG37670			Human pep
420	26.5	28.2		9	AEE22843			Human IL-
421	26.5	28.2		10	AEE37361			. Human ser
422	26.5	28.2		9	AEE22851			Human IL-
423	26	27.7	7	7	ADE78015		Ade78015	Synthetic

424	26	27.7	9	4	AAE09516	Aae09516 Human muc
425	26	27.7	9	4	AAE09517	Aae09517 Human muc
426	26	27.7	9	4	AAU00554	Aau00554 Human MUC
427	26	27.7	9	6	ABR19018	Abr19018 Human can
428	26	27.7	9	7	ADE69119	Ade69119 Human 161
429	26	27.7	9	7	ADE78017	Ade78017 Synthetic
430	26	27.7	9	10	AEE60582	Aee60582 Human MUC
431	26	27.7	10	6		Abr19119 Human can
432	26	27.7	10	6	ABR19695	Abr19695 Human can
433	26	27.7	10	6	ABR19958	Abr19958 Human can
434	26	27.7	10	6	ABR19296	Abr19296 Human can
435	26	27.7	10	6	ABR18879	Abr18879 Human can
436	26	27.7	10	6	ABJ67340	Abj67340 184P1E2-r
437	26	27.7	10	6	ABJ66616	Abj66616 184P1E2-r
438	26	27.7	10	6	ABJ65906	Abj65906 184P1E2-r
439	26	27.7	10	6	ABJ69262	Abj69262 184P1E2-r
440	26	27.7	10	6	ABJ68663	Abj68663 184P1E2-r
441	26	27.7	10	6	ABJ67896	Abj67896 184P1E2-r
442	26	27.7	10	6	AAE38125	Aae38125 Human cyt
443	26	27.7	10	7	ADE69291	Ade69291 Human 161
444	26	27.7	10	7	ADE66672	Ade66672 Human 161
445	26	27.7	10	7	ADE66920	Ade66920 Human 161
446	26	27.7	10	7	ADE66364	Ade66364 Human 161
447	26	27.7	10	7	ADW33062	Adw33062 HLA bindi
448	26	27.7	11	2	AAR32183	Aar32183 Ranakinin
449	26	27.7	11	5	ABG67301	Abg67301 Human ADP
450	26	27.7	11	6	ABP74753	Abp74753 Proteome
451	26	27.7	11	6	ABR75650	Abr75650 Liver res
452	26	27.7	11	6	ADA23401	Ada23401 Alzheimer
453	26	27.7	11	7	ADN07371	Adn07371 Liver res
454	26	27.7	13	2	AAW37160	Aaw37160 Human TcA
455	26	27.7	13	7	ADD43994	Add43994 CPG2 pept
456	26	27.7	13	10	AEE30765	Aee30765 Represent
457	26	27.7	13	10	AEF52381	Aef52381 Interfaci
458	26	27.7	14	1	AAP91703	Aap91703 Human tum
459	26	27.7	14	2	AAR57740	Aar57740 Human tum
460	26	27.7	14	5	AAB71445	Aab71445 Human C3
461	26	27.7	14	6	ABP59644	Abp59644 R ruber a
	26					•

```
AC
     AAW54070;
XX
DT
     10-AUG-1998 (first entry)
XX
     IVI-4 protein fragment of E. faecalis.
DΕ
XX
KW
     IVI-2 locus; ivi-3 protein; ivi-4 protein; transcriptional regulator;
     antibiotic testing; infection; endocarditis; therapy.
KW
XX
     Enterococcus faecalis.
os
XX
     WO9812205-A1.
PN
XX
PD
     26-MAR-1998.
XX
PF
     18-SEP-1997;
                  97WO-US016589.
XX
     18-SEP-1996;
PR
                  96US-0025899P.
XX
     (VIRU-) VIRUS RES INST INC.
PΑ
XX
ΡI
     Beattie DT;
XX
DR
     WPI; 1998-217198/19.
DR
     N-PSDB; AAV24034.
XX
PT
     Enterococcus faecalis transcriptional regulators ivi-2 and ivi-3, and ivi
     -4 - useful to test antibiotics, to identify pharmaceuticals for treating
PT
PT
     or controlling E. faecalis infections, particularly endocarditis.
XX
PS
     Claim 1; Fig 1; 36pp; English.
XX
CC
     This sequence is a ivi-4 fragment from Enterococcus faecalis. It is
CC
     encoded by the DNA sequence of the invention, which encodes the mature
CC
     ivi-2, and ivi-3 proteins, and also contains a partial ivi-4 protein
CC
     coding sequence. Ivi-2 and ivi-3 are Enterococcus faecalis
CC
     transcriptional regulator ivi-2 or ivi-3. Ivi-2 and ivi-3 can be used as
     reagents for testing antibiotics for their activity in deactivating or
CC
CC
     controlling their activity as part of a screening process to identify
CC
     pharmaceuticals for treating or controlling E. faecalis infections,
CC
     particularly endocarditis. The DNA sequence can be used in the generation
CC
     of antisense oligonucleotides or probes for the treatment and
CC
     identification of E. faecalis infection. The products are also useful as
CC
     in vitro agents for producing monoclonal antibodies, useful in diagnostic
CC
     and screening procedures for identifying or treating E. faecalis
CC
     infections
XX
SO
     Sequence 28 AA;
  Query Match
                          35.1%; Score 33; DB 2; Length 28;
 Best Local Similarity
                          62.5%; Pred. No. 2.8e+02;
            5; Conservative 3; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
          10 LELMPNIE 17
              11:111::
Db
          12 LEIMPNVK 19
```

```
Q8L2T5 NEIME
    Q8L2T5 NEIME
                 PRELIMINARY;
                                      18 AA.
                               PRT:
AC
    Q8L2T5;
DT
    01-OCT-2002, integrated into UniProtKB/TrEMBL.
DT
    01-OCT-2002, sequence version 1.
DT
    07-FEB-2006, entry version 6.
    Tryptophan transporter (Fragment).
DΕ
    Neisseria meningitidis.
OS
OC
    Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales;
OC
    Neisseriaceae; Neisseria.
OX
    NCBI TaxID=487;
RN
    [1]
RP
    NUCLEOTIDE SEQUENCE.
RC
    STRAIN=126E;
RX
    MEDLINE=22051050; PubMed=12055303;
RA
    Zhu P., Klutch M.J., Bash M.C., Tsang R.S.W., Ng L.K., Tsai C.M.;
RT
    "Genetic diversity of three lgt loci for biosynthesis of
    lipooligosaccharide (LOS) in Neisseria species.";
RT
RL
    Microbiology 148:1833-1844(2002).
CC
    ______
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    ______
    EMBL; AF470685; AAM33537.1; -; Genomic_DNA.
DR
    NON TER
FT
             1
                       1
    SEQUENCE
             18 AA; 1944 MW; 08DE06F3E9B8C27E CRC64;
SO
 Query Match
                       41.5%; Score 39; DB 2; Length 18;
 Best Local Similarity
                       35.7%; Pred. No. 82;
 Matches 5; Conservative
                            7; Mismatches
                                             2; Indels
                                                          0; Gaps
                                                                     0;
          1 NLSSDIIGQLELMP 14
Qу
            1::: :: |:||:|
Db
          1 NIAAQVLSQMELVP 14
```

```
Sequence 530, Application US/11122986
; Publication No. US20060104989A1
; GENERAL INFORMATION:
  APPLICANT: EDWARDS, ALED
  APPLICANT: DHARAMSI, AKIL
  APPLICANT: VEDADI, MASOUD
  TITLE OF INVENTION: ESSENTIAL NOVEL BACTERIAL POLYPEPTIDES
  FILE REFERENCE: IPT-330.01
  CURRENT APPLICATION NUMBER: US/11/122,986
; CURRENT FILING DATE: 2005-05-05
  PRIOR APPLICATION NUMBER: 60/423,875
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,832
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,915
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,757
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/423,758
  PRIOR FILING DATE: 2002-11-05
  PRIOR APPLICATION NUMBER: 60/424,367
  PRIOR FILING DATE: 2002-11-06
  PRIOR APPLICATION NUMBER: 60/424,376
  PRIOR FILING DATE: 2002-11-06
  PRIOR APPLICATION NUMBER: 60/424,370
  PRIOR FILING DATE: 2002-11-06
  PRIOR APPLICATION NUMBER: 60/424,362
 PRIOR FILING DATE: 2002-11-06
 PRIOR APPLICATION NUMBER: 60/424,373
; PRIOR FILING DATE: 2002-11-06
; Remaining Prior Application data removed - See File Wrapper or PALM.
; NUMBER OF SEQ ID NOS: 844
  SOFTWARE: PatentIn Ver. 3.3
; SEO ID NO 530
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Enterococcus faecalis
US-11-122-986-530
 Query Match
                         27.7%; Score 26; DB 7; Length 10;
 Best Local Similarity 100.0%; Pred. No. 2.2e+02;
          5; Conservative
                              0; Mismatches 0; Indels
                                                                0; Gaps
Qу
          15 NIERF 19
             11111
           1 NIERF 5
```

```
Sequence 41, Application US/10147140
; Publication No. US20030153730A1
; GENERAL INFORMATION:
; APPLICANT: STRACKE, MARY
 APPLICANT: LIOTTA, LANCE
; APPLICANT: SCHIFFMANN, ELLIOTT
 APPLICANT: KRUTZCH, HENRY
 APPLICANT: MURATA, JUN
  TITLE OF INVENTION: AUTOTAXIN: MOTILITY STIMULATING PROTEIN USEFUL IN
  TITLE OF INVENTION: CANCER DIAGNOSIS AND THERAPY
  FILE REFERENCE: 2026-4149US4
  CURRENT APPLICATION NUMBER: US/10/147,140
  CURRENT FILING DATE: 2002-05-15
  PRIOR APPLICATION NUMBER: 07/822,043
  PRIOR FILING DATE: 1992-01-17
  PRIOR APPLICATION NUMBER: 08/249,182
  PRIOR FILING DATE: 1994-05-25
; PRIOR APPLICATION NUMBER: 08/346,455
  PRIOR FILING DATE: 1994-11-28
 PRIOR APPLICATION NUMBER: 08/977,221
 PRIOR FILING DATE: 1997-11-24
 NUMBER OF SEQ ID NOS: 70
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 41
   LENGTH: 7
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Synthetic
   OTHER INFORMATION: Peptide
US-10-147-140-41
 Query Match
                         31.9%; Score 30; DB 4; Length 7;
 Best Local Similarity 71.4%; Pred. No. 1.9e+06;
 Matches 5; Conservative 2; Mismatches 0; Indels
                                                               0; Gaps
          12 LMPNIER 18
Qу
             : | | | | | :
Db
           1 VMPNIEK 7
```

```
Sequence 40, Application US/10161097
; Publication No. US20030096404A1
; GENERAL INFORMATION:
  APPLICANT: ROSENZWEIG, Michael
  APPLICANT: PYKETT, Mark J.
  APPLICANT: SCADDEN, David T.
  APPLICANT: POZNANSKY, Mark C.
  TITLE OF INVENTION: LYMPHOID TISSUE-SPECIFIC CELL PRODUCTION
  TITLE OF INVENTION: FROM HEMATOPOIETIC PROGENITOR CELLS IN THREE-DIMENSIONAL
  TITLE OF INVENTION: DEVICES
  FILE REFERENCE: C1005/7012/KA/ERG
  CURRENT APPLICATION NUMBER: US/10/161,097
  CURRENT FILING DATE: 2002-05-31
  PRIOR APPLICATION NUMBER: US/09/574,749
  PRIOR FILING DATE: 2002-05-31
  PRIOR APPLICATION NUMBER: US 60/107,972
  PRIOR FILING DATE: 1998-11-12
  PRIOR APPLICATION NUMBER: PCT/US99/26795
 PRIOR FILING DATE: 1999-11-12
  PRIOR APPLICATION NUMBER: US 09/524,749
  PRIOR FILING DATE: 2000-05-18
  NUMBER OF SEQ ID NOS: 58
  SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 40
   LENGTH: 15
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Measles source
US-10-161-097-40
  Query Match
                         30.9%; Score 29; DB 4; Length 15;
  Best Local Similarity 71.4%; Pred. No. 9e+02;
           5; Conservative
                                2; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
          10 LELMPNI 16
              :: | | | | |
Db
           6 IKLMPNI 12
```

```
Sequence 7, Application US/09147857
; Patent No. 6376235
; GENERAL INFORMATION:
; APPLICANT: Beattie, David T.
; TITLE OF INVENTION: IVI-2, IVI-3 and IVI-4 Loci of Enterococcus Faecalis
  TITLE OF INVENTION: Polynucleotide, Polypeptides and Method of Use Therefor
  FILE REFERENCE: 732250-215
  CURRENT APPLICATION NUMBER: US/09/147,857
  CURRENT FILING DATE: 1999-03-16
  PRIOR APPLICATION NUMBER: U.S. 60/025,899
  PRIOR FILING DATE: 1996-09-18
  PRIOR APPLICATION NUMBER: PCT/US97/16589
  PRIOR FILING DATE: 1997-09-18
  NUMBER OF SEQ ID NOS: 13
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 7
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Deduced amino
   OTHER INFORMATION: acid sequence of a portion of IVI-4 polypeptide
US-09-147-857-7
 Query Match
                         35.1%; Score 33; DB 2; Length 28;
 Best Local Similarity
                         62.5%; Pred. No. 82;
          5; Conservative
                                3; Mismatches
                                                                0; Gaps
                                                  0; Indels
                                                                            0;
          10 LELMPNIE 17
Qу
             11:111::
          12 LEIMPNVK 19
```

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:29:25; Search time 84.8 Seconds Run on:

(without alignments)

102.442 Million cell updates/sec

Title: US-10-821-669-1 COPY 519 537

Perfect score: 94

Sequence: 1 NLSSDIIGQLELMPNIERF 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

2589679 segs, 457216429 residues Searched:

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:* 5: geneseqp2002s:*

6: geneseqp2003as:* 7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: genesegp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	94	100.0	19	9	ADW11046	Adwl1046 Clostridi
2	94	100.0	27	9	ADW11104	Adwl1104 Clostridi
3	47	50.0	27	9	ADW11105	Adwl1105 Clostridi
4	38	40.4	24	2	AAR84289	Aar84289 Aq. elcat
5	37	39.4	30	2	AAR07952	Aar07952 Synthetic

```
Sequence 40, Application US/09574749B
; Patent No. 6548299
; GENERAL INFORMATION:
 APPLICANT: ROSENZWEIG, Michael
 APPLICANT: PYKETT, Mark J.
  APPLICANT: SCADDEN, David T.
  APPLICANT: POZNANSKY, Mark C.
  TITLE OF INVENTION: LYMPHOID TISSUE-SPECIFIC CELL PRODUCTION
  TITLE OF INVENTION: FROM HEMATOPOIETIC PROGENITOR CELLS IN THREE-DIMENSIONAL
  TITLE OF INVENTION: DEVICES
  FILE REFERENCE: C1005/7012/KA/ERG
  CURRENT APPLICATION NUMBER: US/09/574,749B
  CURRENT FILING DATE: 2002-05-31
; PRIOR APPLICATION NUMBER: US 60/107,972
  PRIOR FILING DATE: 1998-11-12
  PRIOR APPLICATION NUMBER: PCT/US99/26795
  PRIOR FILING DATE: 1999-11-12
  PRIOR APPLICATION NUMBER: US 09/524,749
 PRIOR FILING DATE: 2000-05-18
  NUMBER OF SEQ ID NOS: 58
  SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 40
   LENGTH: 15
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Measles source
US-09-574-749B-40
  Query Match
                         30.9%; Score 29; DB 2; Length 15;
  Best Local Similarity 71.4%; Pred. No. 1.9e+02;
           5; Conservative 2; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
          10 LELMPNI 16
             :: | | | | |
Db
           6 IKLMPNI 12
```

```
Sequence 44, Application US/08433522A
; Patent No. 6013514
 GENERAL INFORMATION:
    APPLICANT: CHONG, Pele
    APPLICANT: THOMAS, Wayne
    APPLICANT: YANG, Yan Ping
    APPLICANT: LOOSMORE, Sheena
    APPLICANT: SIA, Dwo Yuan Charles
    APPLICANT: KLEIN, Michel
    TITLE OF INVENTION: HAEMOPHILUS OUTER MEMBRANE PROTEIN
   NUMBER OF SEQUENCES: 55
   CORRESPONDENCE ADDRESS:
   ADDRESSEE: Sim & McBurney
    STREET: 6TH Floor, 330 University Avenue
    CITY: Toronto
    STATE: Ontario
    COUNTRY: Canada
     ZIP: M5G 1R7
   COMPUTER READABLE FORM:
    MEDIUM TYPE: Floppy disk
     COMPUTER: IBM PC compatible
    OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.25
   CURRENT APPLICATION DATA:
;
    APPLICATION NUMBER: US/08/433,522A
    FILING DATE: 12-SEP-1995
;
     CLASSIFICATION: 435
   ATTORNEY/AGENT INFORMATION:
    NAME: STEWART, Michael I
     REGISTRATION NUMBER: 24,973
     REFERENCE/DOCKET NUMBER: 1038-434 MIS:jb
   TELECOMMUNICATION INFORMATION:
     TELEPHONE: (416) 595-1155
     TELEFAX: (416) 595-1163
  INFORMATION FOR SEQ ID NO: 44:
  SEQUENCE CHARACTERISTICS:
     LENGTH: 27 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
US-08-433-522A-44
 Query Match
                        30.9%; Score 29; DB 2; Length 27;
 Best Local Similarity 71.4%; Pred. No. 3.9e+02;
           5; Conservative 2; Mismatches 0; Indels 0; Gaps
          2 LSSDIIG 8
Qу
             : | | | : | |
Db
          21 ISSDVIG 27
```

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:30:50; Search time 99.3 Seconds Run on:

(without alignments)

176.992 Million cell updates/sec

US-10-821-669-1 COPY 533 551

Perfect score: 105

1 NIERFPNGKKYELDKYTMF 19 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2849598 segs, 925015592 residues

Total number of hits satisfying chosen parameters: 37017

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : UniProt 7.2:*

> 1: uniprot sprot:* 2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1 2	36 34.5	34.3 32.9			Q4Z5V1_PLABE Q4YE51 PLABE	Q4z5v1 plasmodium . Q4ye51 plasmodium
3	33	31.4	23	2	O4XN62 PLACH	O4xn62 plasmodium

```
RESULT 19
US-10-334-726-299
; Sequence 299, Application US/10334726
; Publication No. US20030211521A1
; GENERAL INFORMATION:
 APPLICANT: TAYLOR-PAPADIMITROU, JOYCE
  TITLE OF INVENTION: BREAST CANCER ANTIGEN
  FILE REFERENCE: 1090-36
  CURRENT APPLICATION NUMBER: US/10/334,726
  CURRENT FILING DATE: 2003-01-02
  PRIOR APPLICATION NUMBER: US/09/645,446
  PRIOR FILING DATE: 2000-08-25
  PRIOR APPLICATION NUMBER: PCT/GB99/00866
  PRIOR FILING DATE: 1999-03-19
  PRIOR APPLICATION NUMBER: GB 9805877.9
 PRIOR FILING DATE: 1998-09-20
 NUMBER OF SEQ ID NOS: 324
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 299
   LENGTH: 9
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: predicted
   OTHER INFORMATION: peptide
US-10-334-726-299
  Query Match
                         30.5%; Score 32; DB 4; Length 9;
  Best Local Similarity 75.0%; Pred. No. 1.9e+06;
                                                                0; Gaps
           6; Conservative
                                0; Mismatches
                                                2; Indels
                                                                            0;
Qу
           3 ERFPNGKK 10
             1 11111
Db
           1 EPLPNGKK 8
```

```
Sequence 8, Application US/09925442
; Patent No. US20020103346A1
    GENERAL INFORMATION:
        APPLICANT: VOGEL, CARL-WILHELM
                   BREDEHORST, REINHORST
                   KOCK, MICHAEL
                   FRITZINGER, DAVID
        TITLE OF INVENTION: RECOMBINANT PROCVF
        NUMBER OF SEQUENCES: 39
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT,
             STREET: 1755 S. JEFFERSON DAVIS HIGHWAY
             CITY: ARLINGTON
             STATE: VA
             COUNTRY: USA
             ZIP: 22202
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/09/925,442
             FILING DATE: 10-Aug-2001
                                                            533-551
             CLASSIFICATION:
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 09/017,947
             FILING DATE:
        ATTORNEY/AGENT INFORMATION:
             NAME: OBLON, NORMAN F.
             REGISTRATION NUMBER: 24,618
             REFERENCE/DOCKET NUMBER: 1126-0107-0X
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 703-413-3000
             TELEFAX: 703-413-2220
   INFORMATION FOR SEQ ID NO: 8:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 30 amino acids
             TYPE: amino acid
             STRANDEDNESS: single
             TOPOLOGY: linear
        MOLECULE TYPE: peptide
        SEQUENCE DESCRIPTION: SEQ ID NO: 8:
US-09-925-442-8
 Query Match
                         30.5%; Score 32; DB 3; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.2e+03;
 Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          10 KYELDK 15
             +11111
Db
           7 KYELDK 12
```

```
Sequence 51, Application US/08447411
; Patent No. 5773243
 GENERAL INFORMATION:
    APPLICANT: FRITZINGER, DAVID C.
    APPLICANT: BREDEHORST, REINHARD
    APPLICANT: VOGEL, CARL-WILHELM
    TITLE OF INVENTION: DNA ENCODING COBRA C3, CVF1, AND CVF2
    NUMBER OF SEQUENCES: 81
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT,
     ADDRESSEE: P.C.
     STREET: 1755 S. Jefferson Davis Highway, Suite 400
;
      CITY: Arlington
;
      STATE: Virginia
;
      COUNTRY: U.S.A.
;
      ZIP: 22202
    COMPUTER READABLE FORM:
    MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.25
;
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/447,411
      FILING DATE:
;
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
    APPLICATION NUMBER: US 08/043,747
;
      FILING DATE: 07-APR-1993
    ATTORNEY/AGENT INFORMATION:
    NAME: Oblon, No. 5773243man F.
      REGISTRATION NUMBER: 24,618
     REFERENCE/DOCKET NUMBER: 1126-101-0
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 413-3000
      TELEFAX: (703) 413-2220
      TELEX: 248855 OPAT UR
  INFORMATION FOR SEQ ID NO: 51:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 30 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    ORIGINAL SOURCE:
      ORGANISM: Homo sapiens
US-08-447-411-51
                         30.5%; Score 32; DB 1; Length 30;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 3.1e+02;
 Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          10 KYELDK 15
            Db
           7 KYELDK 12
```

```
Sequence 8, Application US/08662227
; Patent No. 5922320
  GENERAL INFORMATION:
    APPLICANT: VOGEL, CARL-WILHELM APPLICANT: BREDEHORST, REINHORST
    APPLICANT: KOCK, MICHAEL
    APPLICANT: FRITZINGER, DAVID
    TITLE OF INVENTION: RECOMBINANT PROCVF
   NUMBER OF SEQUENCES: 39
   CORRESPONDENCE ADDRESS:
    ADDRESSEE: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT, ADDRESSEE: P.C. STREET: 1755 S. JEFFERSON DAVIS HIGHWAY
      CITY: ARLINGTON
      STATE: VA
      COUNTRY: USA
     ZIP: 22202
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
   SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/662,227
      FILING DATE: 14-JUN-1996
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
    NAME: OBLON, NORMAN F.
     REGISTRATION NUMBER: 24,618
     REFERENCE/DOCKET NUMBER: 1126-0107-0X
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-413-3000
      TELEFAX: 703-413-2220
  INFORMATION FOR SEQ ID NO: 8:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 30 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-662-227-8
                         30.5%; Score 32; DB 1; Length 30;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 3.1e+02;
 Matches 6; Conservative 0; Mismatches 0; Indels 0; Gaps
          10 KYELDK 15
Qу
             Db
           7 KYELDK 12
```

```
os
     Hepatitis C virus.
os
     Synthetic.
XX
PN
     WO2004069864-A1.
XX
PD
     19-AUG-2004.
XX
     29-DEC-2003; 2003WO-FR003922.
ΡF
XX
     07-JAN-2003; 2003FR-00000094.
PR
XX
PΑ
     (INMR ) BIOMERIEUX SA.
PΑ
     (CNRS ) CENT NAT RECH SCI.
PΑ
     (UYLY-) UNIV LYON 1 BERNARD CLAUDE.
XX
PΙ
     Bain C, Inchauspe G, Lavergne J, Parroche P, Penin F;
XX
DR
     WPI; 2004-625448/60.
XX
PT
     New immunogenic polypeptide form hepatitis C virus, useful for treatment,
PT
     prevention and diagnosis of infection, also related epitopes, nucleic
PT
     acids and antibodies.
XX
PS
     Claim 12; SEQ ID NO 298; 231pp; French.
XX
CC
     The present invention describes polypeptide F' (I) that induces an immune
     response against the hepatitis C virus (HCV) and comprises the 99 amino
CC
CC
     acids (aa) present between positions 43 and 141 of the HCV polyprotein.
CC
     Also described: (1) nucleic acid sequences (II) that encode (I); (2) an
CC
     epitope (E) that induces a response against HCV and comprises the 9 aa
CC
     between positions 40 and 48, 43 and 51, 50 and 58 or 73 and 81 of the HCV
CC
     polyprotein; (3) nucleic acid sequences (IIa) that encode (E); (4) an
CC
     expression vector that contains (II) or (IIa), or two (IIa), and
CC
     necessary expression elements; (5) microorganisms or host cells
CC
     transformed by at least one vector of (4); (6) antibodies (Ab) directed
CC
     against (I) or (E); and (7) a method for the detection and/or
CC
     quantification of HCV using Ab. (I) has virucide, hepatotropic and
CC
     antiinflammatory activities, and can be used in vaccines. (I) induces a
CC
     cell-mediated response in subjects seropositive for HCV and particularly
CC
     secretion of interleukin-10, optionally also of interferon-gamma. They
CC
     are effective in patients infected with viral genotypes 1b and 3,
CC
     whatever their HLA type. (I) and their epitopes can be used to inhibit,
CC
     prevent or treat hepatitis C virus infection in animals, especially
CC
     humans, particularly as vaccines, and including where nucleic acid
CC
     sequences (II), or vectors containing them, are used to express (I) or
CC
     (E). The method can particularly be used in subjects who do not respond
CC
     well to treatment with interferon and ribavirine. (I), (II) and
CC
     antibodies directed against (I) or (E), can be used for diagnostic
CC
     determination and/or quantification of HCV, in vitro. The present
CC
     sequence represents an anti-HCV immunogenic protein F' epitope peptide,
CC
     which is used in the exemplification of the present invention.
XX
SQ
     Sequence 9 AA;
 Query Match
                          30.5%; Score 32; DB 8; Length 9;
 Best Local Similarity
                          71.4%; Pred. No. 2.1e+06;
            5; Conservative
                                 2; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            4 RFPNGKK 10
              111:1:1
           1 RFPSGRK 7
```

```
RESULT 46
ADZ75857
ΙD
     ADZ75857 standard; peptide; 21 AA.
XX
AC
     ADZ75857;
XX
\mathsf{DT}
     14-JUL-2005 (first entry)
XX
DΕ
     Human non-selenium glutathione peroxidase (NSGP) antigenic peptide SEQ: 2.
XX
KW
     Diagnosis; oxidative stress; neurodegenerative disease;
KW
     neurological disease; Alzheimers disease; Parkinsons disease; dementia;
KW
     non-selenium glutathione peroxidase; Ca2+-independent phospholipase A2;
KW
XX
os
     Homo sapiens.
XX
PN
     US2005100979-A1.
XX
PD
     12-MAY-2005.
XX
PF
     29-AUG-2003; 2003US-00651056.
XX
PR
     30-SEP-2002; 2002AU-00951775.
XX
PA
     (POWE/) POWER J H T.
XX
PΙ
     Power JHT;
XX
DR
     WPI; 2005-365635/37.
XX
PT
     Diagnosing a disease state associated with oxidative stress, for
PT
     detecting or treating neurodegenerative disease, comprises measuring the
     level of non-selenium glutathione peroxidase protein in a biological
PT
PT
     fluid or tissue.
XX
PS
     Claim 14; SEQ ID NO 2; 17pp; English.
XX
CC
     The invention relates to a method of diagnosing a disease state
CC
     associated with oxidative stress by measuring the level of non-selenium
CC
     glutathione peroxidase (NSGP, also known as lysosomal type Ca2+-
CC
     independent phospholipase A2) protein in a biological fluid or tissue
CC
     obtained from a patient. The level of NSGP protein may be compared to a
CC
     control, or may be measured in samples taken from the patient over a
CC
     period of time, and is preferably determined using an NSGP-specific
     antibody. An increase in the level of NSGP protein measured is indicative
CC
CC
     of neuronal oxidative stress, which has been implicated as a cause of
CC
     neurodegenerative diseases such as Alzheimer's disease, Parkinson's
CC
     disease and dementia. The invention also relates to NSGP-specific
CC
     antibodies raised against one of two specific NSGP peptide fragments
CC
     (ADZ75856-ADZ75857, and a method of detecting oxidative stress in an
CC
     individual using NSGP-specific antibodies. The invention further
CC
     discloses methods for producing NSGP-specific antibodies, an immunogenic
CC
     composition comprising the NSGP peptide fragments ADZ75856-ADZ75857, and
CC
     a method for inhibiting or alleviating one or more symptoms of a
CC
    neurodegenerative disease using a substance that upregulates NSGP
CC
     expression or mimics its activity. The methods of the invention are
CC
     useful for the diagnosis of oxidative stress or a disease related to
CC
     oxidative stress, especially Alzheimer's disease, Parkinson's disease and
CC
     dementia. The present sequence represents a specifically claimed C-
```

```
terminal antigenic peptide fragment of human NSGP (corresponding to
CC
     residues 199-219 of NSGP, ADZ75858) that is recognized by antibodies of
CC
CC
     the invention.
XX
SQ
    Sequence 21 AA;
                         30.5%; Score 32; DB 9; Length 21;
  Query Match
  Best Local Similarity 55.6%; Pred. No. 7.1e+02;
                                2; Mismatches
  Matches
            5; Conservative
                                               2; Indels
                                                               0; Gaps
                                                                           0;
           3 ERFPNGKKY 11
Qу
             : |:|||
Db
          11 KELPSGKKY 19
```

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:29:25; Search time 84.8 Seconds

(without alignments)

102.442 Million cell updates/sec

US-10-821-669-1 COPY 547 565 Title:

Perfect score: 105

Sequence: 1 KYTMFHYLRAQEFEHGKSR 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

2589679 segs, 457216429 residues Searched:

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

> 1: geneseqp1980s:* 2: geneseqp1990s:*

> 3: geneseqp2000s:* 4: geneseqp2001s:*

> 5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*
8: geneseqp2004s:*
9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	105	100.0	19	9	ADW11048	Adw11048 Clostridi
2	105	100.0	27	9	ADW11106	Adw11106 Clostridi
3	52	49.5	27	9	ADW11105	Adw11105 Clostridi
4	49	46.7	27	9	ADW11107	Adw11107 Clostridi
5	47	44.8	8	9	ADZ69794	Adz69794 Botulinum
6	43	41.0	13	5	ABG97927	Abg97927 Human INF

```
ADH78637
     ADH78637 standard; peptide; 15 AA.
ΙD
XX
AC
     ADH78637;
XX
DT
     15-APR-2004 (first entry)
XX
     Human fibroblast interferon-beta protein based peptide, SEQ ID No 45.
DΕ
XX
KW
     T-cell epitope; cytokine; receptor; CD4+; CD8+; immunogenicity;
KW
     interferon-beta; tumour necrosis factor receptor-1; erythropoietin;
KW
     thrombopoietin; inflammation; cancer; anaemia;
     human fibroblast interferon-beta.
KW
XX
OS
     Homo sapiens.
XX
ΡN
     WO2003104263-A2.
XX
     18-DEC-2003.
PD
XX
ΡF
     26-FEB-2003; 2003WO-US005917.
XX
PR
     01-MAY-2002; 2002US-0376743P.
XX
PA
     (GEMV ) GENENCOR INT INC.
XX
PΙ
     Harding FA,
                  Power SD;
XX
DR
     WPI; 2004-062306/06.
XX
PT
     Determining T-cell epitope of a protein (e.g. cytokine or cytokine
     receptor), useful for reducing protein allergenicity, comprises combining
PT
PT
     differentiated dendritic cells and naive T-cells with a peptide having
PT
     the T-cell epitope.
XX
     Example 2; SEQ ID NO 45; 51pp; English.
PS
XX
CC
     The invention relates to a novel method for determining a T-cell epitope
CC
     of a protein, where the protein is selected from cytokines and cytokine
CC
     receptors. The method comprises combining a solution of differentiated
CC
     dendritic cells and naive CD4+ and/or CD8+ T-cells with a pepset of
CC
     peptides comprising the T-cell epitope. The composition and methods are
CC
     useful in reducing the immunogenicity of cytokines and cytokine receptors
CC
     such as interferon-beta, soluble tumour necrosis factor receptor-1,
CC
     erythropoietin or thrombopoietin. These modified cytokines and cytokine
CC
     receptors may be used for treating various conditions such as
CC
     inflammation, cancer or anaemia. This sequence represents a peptide based
CC
     on the human fibroblast interferon-beta protein sequence of the
CC
     invention.
XX
SQ
     Sequence 15 AA;
  Query Match
                          32.4%; Score 34; DB 8; Length 15;
 Best Local Similarity
                          62.5%; Pred. No. 97;
             5; Conservative
                                 3; Mismatches
                                                                  0; Gaps
                                                                              0;
                                                   0; Indels
Qу
            6 HYLRAQEF 13
              111:1:1:
Db
            2 HYLKAKEY 9
```

```
Q08578 HUMAN
    Q08578 HUMAN
                  PRELIMINARY;
                               PRT;
                                      27 AA.
AC
    008578;
DT
    01-NOV-1996, integrated into UniProtKB/TrEMBL.
DT
    01-NOV-1996, sequence version 1.
    07-FEB-2006, entry version 19.
DT
DE
    Complement receptor (Fragment).
    Name=CR2;
GN
OS
    Homo sapiens (Human).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
    Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae;
OC
ΟX
    NCBI TaxID=9606;
RN
    [1]
RP
    NUCLEOTIDE SEOUENCE.
    MEDLINE=93018869; PubMed=1383386; DOI=10.1084/jem.176.5.1405;
RX
    Birkenbach M., Tong X., Brandbury L.E., Tedder T.F., Kieff E.;
RA
RT
    "Characterization of a epstein-bar virus receptor on human epithelial
RT
    cells.";
RL
    J. Exp. Med. 176:1405-1414(1992).
CC
    ______
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
    ______
    EMBL; X68990; CAA48779.1; -; mRNA.
DR
DR
    PIR; I37261; I37261.
    GO; GO:0004872; F:receptor activity; IEA.
DR
KW
    Receptor.
FT
    NON TER
                1
                      1
    NON TER
FT
                27
                      27
    SEQUENCE
SQ
              27 AA; 2912 MW; 8A12201A98A6DA60 CRC64;
 Ouerv Match
                       27.6%; Score 29; DB 2; Length 27;
 Best Local Similarity 83.3%; Pred. No. 2.5e+03;
 Matches
          5; Conservative 1; Mismatches 0; Indels
                                                          0; Gaps
                                                                     0;
          6 HYLRAQ 11
Qу
            11111:
Db
          9 HYLRAR 14
```

```
Sequence 5, Application US/09029052A
; Patent No. 6140043
; GENERAL INFORMATION:
; APPLICANT: Dierich, Manfred P
 APPLICANT: Chen, Ying Hua
 TITLE OF INVENTION: Pharmaceutical compositions for competitively
 TITLE OF INVENTION: inhibiting the binding of a retrovirus to the
  TITLE OF INVENTION: IFN-receptor and means for diagnosis of an HIV
  TITLE OF INVENTION: infection.
 FILE REFERENCE: 147-169P
 CURRENT APPLICATION NUMBER: US/09/029,052A
  CURRENT FILING DATE: 1998-04-20
 EARLIER APPLICATION NUMBER: PCT/EP96/03648
  EARLIER FILING DATE: 1995-08-18
  NUMBER OF SEQ ID NOS: 7
 SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 5
  LENGTH: 18
  TYPE: PRT
  ORGANISM: Artificial Sequence
   OTHER INFORMATION: Source of Artificial Sequence: synthesized from
   OTHER INFORMATION: the human IFN-beta receptor binding region 2
   OTHER INFORMATION: (aa123-140)
US-09-029-052-5
 Query Match
                         41.0%; Score 43; DB 2; Length 18;
 Best Local Similarity 50.0%; Pred. No. 0.55;
 Matches 6; Conservative 4; Mismatches
                                                               0; Gaps
                                                 2; Indels
Qу
           4 MFHYLRAQEFEH 15
            : |||:|:|: |
Db
           5 ILHYLKAKEYSH 16
```

```
Sequence 103, Application US/10038612
; Patent No. 6723830
; GENERAL INFORMATION:
; APPLICANT: Ben-Sasson, Shmuel A.
; TITLE OF INVENTION: Short Peptides Which Selectively
; TITLE OF INVENTION: Modulate the Activity of Protein Kinases
; FILE REFERENCE: 1242.1029-000 (CMCC-679)
  CURRENT APPLICATION NUMBER: US/10/038,612
  CURRENT FILING DATE: 2002-01-08
 PRIOR APPLICATION NUMBER: US 09/161,094
; PRIOR FILING DATE: 1998-09-25
  NUMBER OF SEQ ID NOS: 172
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 103
   LENGTH: 21
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   NAME/KEY: MYRISTATE
   LOCATION: (1)...(0)
   NAME/KEY: AMIDATION
   LOCATION: (0)...(21)
   OTHER INFORMATION: c-Sea
US-10-038-612-103
  Query Match
                         30.5%; Score 32; DB 2; Length 21;
  Best Local Similarity
                         71.4%; Pred. No. 61;
           5; Conservative
                                2; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           6 HYLRAQE 12
             1::1111
Db
          12 HFIRAQE 18
```

```
Sequence 113, Application US/08764640
; Patent No. 5869451
; Patent No. 5869451 5837683
; GENERAL INFORMATION:
     APPLICANT: Dower, William J.
     APPLICANT: Barrett, Ronald W.
     APPLICANT: Cwirla, Steven E.
    APPLICANT: Gates, Christian
     APPLICANT: Schatz, Peter J.
    APPLICANT: Schatz, Peter J.

APPLICANT: Balasubramanian, Palaniappan
APPLICANT: Wagstrom, Christopher R.

APPLICANT: Hendren, Richard W.

APPLICANT: Deprince, Randolph B.
    APPLICANT: Podduturi, Surekha
    APPLICANT: Yin, Qun
    TITLE OF INVENTION: PEPTIDES AND COMPOUNDS THAT BIND TO A
    TITLE OF INVENTION: RECEPTOR
   NUMBER OF SEQUENCES: 244
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Glaxo Wellcome
      STREET: Five Moore Drive, P.O. Box 13398
      CITY: Research Triangle Park
       STATE: NC
       COUNTRY: USA
;
       ZIP: 27709
    COMPUTER READABLE FORM:
    MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/08/764,640 FILING DATE: 11-DEC-1996
     CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
    NAME: Hrubiec, Robert T.
      REGISTRATION NUMBER: 36,392
      REFERENCE/DOCKET NUMBER: PK3281
    TELECOMMUNICATION INFORMATION:
       TELEPHONE: 919-248-1000
  INFORMATION FOR SEQ ID NO: 113:
    SEQUENCE CHARACTERISTICS:
       LENGTH: 10 amino acids
       TYPE: amino acid
       STRANDEDNESS:
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
US-08-764-640-113
  Query Match
                           29.5%; Score 31; DB 1; Length 10;
  Best Local Similarity 83.3%; Pred. No. 39;
          5; Conservative 1; Mismatches
                                                      0; Indels
           11 QEFEHG 16
Qу
              111:11
Db
            4 QEFKHG 9
```

```
Sequence 113, Application US/09244298A
; Patent No. 6121238
  GENERAL INFORMATION:
    APPLICANT: Dower, William J.
    APPLICANT: Barrett, Ronald W.
    APPLICANT: Cwirla, Steven E.
    APPLICANT: Gates, Christian
    APPLICANT: Schatz, Peter J.
    APPLICANT: Balasubramanian, Palaniappan
    APPLICANT: Wagstrom, Christopher R.
    APPLICANT: Hendren, Richard W.
    APPLICANT: Deprince, Randolph B.
    APPLICANT: Podduturi, Surekha
APPLICANT: Yin, Qun
    TITLE OF INVENTION: PEPTIDES AND COMPOUNDS THAT BIND TO A
    TITLE OF INVENTION: RECEPTOR
    NUMBER OF SEQUENCES: 244
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: Glaxo Wellcome
     STREET: Five Moore Drive, P.O. Box 13398
      CITY: Research Triangle Park
;
      STATE: NC
      COUNTRY: USA
    ZIP: 27709
    COMPUTER READABLE FORM:
;
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
;
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/244,298A
      FILING DATE: 11-DEC-1996
     CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
    NAME: Hrubiec, Robert T.
      REGISTRATION NUMBER: 36,392
      REFERENCE/DOCKET NUMBER: PK3281
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 919-248-1000
  INFORMATION FOR SEQ ID NO: 113:
    SEQUENCE CHARACTERISTICS:
    LENGTH: 10 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-09-244-298A-113
 Query Match
                         29.5%; Score 31; DB 2; Length 10;
 Best Local Similarity 83.3%; Pred. No. 39;
          5; Conservative
                               1; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
          11 QEFEHG 16
Qу
             111:11
Db
           4 QEFKHG 9
```

```
Sequence 69, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
; APPLICANT: Kei, Aoki R.
; TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
; FILE REFERENCE: ALLEO004-100
; CURRENT APPLICATION NUMBER: US/10/715,810
; CURRENT FILING DATE: 2003-11-17
; NUMBER OF SEQ ID NOS: 105
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 69
   LENGTH: 8
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 548-555)
US-10-715-810-69
 Query Match
                        44.8%; Score 47; DB 5; Length 8;
 Best Local Similarity 100.0%; Pred. No. 1.9e+06;
 Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
           2 YTMFHYLR 9
             Db
           1 YTMFHYLR 8
```

```
Sequence 76, Application US/10471894B
; Publication No. US20050054052A1
; GENERAL INFORMATION:
; APPLICANT: Carr, Francis J.
; APPLICANT: Carter, Graham
; APPLICANT: Jones, Tim
; APPLICANT: Watkins, John
; APPLICANT: Baker, Matthew
; TITLE OF INVENTION: MODIFIED INTERFERON BETA WITH REDUCED
; TITLE OF INVENTION: IMMUNOGENICITY
; FILE REFERENCE: MER-124
; CURRENT APPLICATION NUMBER: US/10/471,894B
; CURRENT FILING DATE: 2003-09-12
; PRIOR APPLICATION NUMBER: PCT/EP02/02925
; PRIOR FILING DATE: 2002-03-15
; PRIOR APPLICATION NUMBER: EP 01106539.8
; PRIOR FILING DATE: 2001-03-15
; NUMBER OF SEQ ID NOS: 141
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 76
  LENGTH: 13
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: MHC class II binding epitope
US-10-471-894B-76
                        40.0%; Score 42; DB 5; Length 13;
 Query Match
 Best Local Similarity 60.0%; Pred. No. 8.6;
 Matches 6; Conservative 3; Mismatches 1; Indels 0; Gaps
                                                                           0;
Qу
           6 HYLRAQEFEH 15
             111:1:1: 1
           1 HYLKAKEYSH 10
```

```
Sequence 141, Application US/10820467
; Publication No. US20050054053A1
; GENERAL INFORMATION:
; APPLICANT: Aguinaldo, Anna Marie
; APPLICANT: Beyna, Amelia Joy
; APPLICANT: Cho, Ho Sung
; APPLICANT: Desjarlais, John Rudolph
; APPLICANT: Marshall, Shannon Alicia
; APPLICANT: Muchhal, Umesh
; APPLICANT: Villegas, Michael Francis Aquino
; APPLICANT: Zhukovsky, Eugene
 APPLICANT: Quesenberry, Michael Stephen
  TITLE OF INVENTION: INTERFERON VARIANTS WITH IMIPROVED PROPERTIES
  FILE REFERENCE: A-71431-4
  CURRENT APPLICATION NUMBER: US/10/820,467
  CURRENT FILING DATE: 2004-03-30
; PRIOR APPLICATION NUMBER: US 60/477,246
 PRIOR FILING DATE: 2003-06-10
 PRIOR APPLICATION NUMBER: US 60/415,541
; PRIOR FILING DATE: 2002-10-01
 PRIOR APPLICATION NUMBER: US 60/489,725
 PRIOR FILING DATE: 2003-07-24
 PRIOR APPLICATION NUMBER: US 10/676,705
 PRIOR FILING DATE: 2003-09-30
 NUMBER OF SEQ ID NOS: 274
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 141
  LENGTH: 9
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-820-467-141
                         32.4%; Score 34; DB 5; Length 9;
  Query Match
  Best Local Similarity 62.5%; Pred. No. 1.9e+06;
          5; Conservative 3; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
           6 HYLRAQEF 13
Qу
             111:1:1:
Db
           2 HYLKAKEY 9
```

RESULT 21

```
Sequence 61, Application US/10038612
; Publication No. US20020160478A1
; GENERAL INFORMATION:
; APPLICANT: Ben-Sasson, Shmuel A.
; TITLE OF INVENTION: Short Peptides Which Selectively
; TITLE OF INVENTION: Modulate the Activity of Protein Kinases
; FILE REFERENCE: 1242.1029-000 (CMCC-679)
; CURRENT APPLICATION NUMBER: US/10/038,612
; CURRENT FILING DATE: 2002-01-08
; PRIOR APPLICATION NUMBER: US 09/161,094
; PRIOR FILING DATE: 1998-09-25
  NUMBER OF SEQ ID NOS: 172
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 61
  LENGTH: 20
   TYPE: PRT
  ORGANISM: unknown
   FEATURE:
  OTHER INFORMATION: c-Sea
US-10-038-612-61
                         30.5%; Score 32; DB 4; Length 20;
 Query Match
 Best Local Similarity 71.4%; Pred. No. 5.5e+02;
 Matches 5; Conservative 2; Mismatches 0; Indels 0; Gaps
Qу
          6 HYLRAQE 12
             1::|||
Db
          11 HFIRAQE 17
```

```
Sequence 198, Application US/09755630A
; Publication No. US20030194399A1
; GENERAL INFORMATION:
  APPLICANT: ALIBHAI, MURTAZA F.
 APPLICANT: ASTWOOD, JAMES D.
 APPLICANT: SAMPSON, HUGH A.
 APPLICANT: McWHERTER, CHARLES A.
  TITLE OF INVENTION: PREPARATION OF DEALLERGENIZED PROTEINS AND PERMUTEINS
  FILE REFERENCE: 11899.0217.NPUS00 (MOBT217)
  CURRENT APPLICATION NUMBER: US/09/755,630A
  CURRENT FILING DATE: 2001-01-05
  PRIOR APPLICATION NUMBER: US 60/174,669
  PRIOR FILING DATE: 2000-01-06
  NUMBER OF SEQ ID NOS: 293
  SOFTWARE: PatentIn version 3.0
; SEQ ID NO 198
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
    FEATURE:
   OTHER INFORMATION: Synthetic polypeptide
US-09-755-630A-198
  Query Match
                         28.6%; Score 30; DB 3; Length 10;
                         100.0%; Pred. No. 5.6e+02;
  Best Local Similarity
 Matches 6; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                            0;
Qу
           7 YLRAQE 12
             +111111
Db
           1 YLRAQE 6
```

```
Sequence 198, Application US/10658180
; Publication No. US20040216187A1
; GENERAL INFORMATION:
; APPLICANT: ALIBHAI, MURTAZA F.
 APPLICANT: ASTWOOD, JAMES D.
 APPLICANT: SAMPSON, HUGH A.
 APPLICANT: McWHERTER, CHARLES A.
  TITLE OF INVENTION: PREPARATION OF DEALLERGENIZED PROTEINS AND PERMUTEINS
 FILE REFERENCE: 11899.0217.DVUS02
  CURRENT APPLICATION NUMBER: US/10/658,180
  CURRENT FILING DATE: 2003-09-09
  PRIOR APPLICATION NUMBER: US 09/755,630
  PRIOR FILING DATE: 2001-01-05
  PRIOR APPLICATION NUMBER: US 60/174,669
 PRIOR FILING DATE: 2000-01-06
 NUMBER OF SEQ ID NOS: 295
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 198
  LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial
    FEATURE:
   OTHER INFORMATION: Synthetic polypeptide
US-10-658-180-198
  Query Match
                         28.6%; Score 30; DB 4; Length 10;
  Best Local Similarity 100.0%; Pred. No. 5.6e+02;
         6; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           7 YLRAQE 12
             111111
Db
           1 YLRAQE 6
```

```
Sequence 198, Application US/11220856
; Publication No. US20060206962A1
; GENERAL INFORMATION:
; APPLICANT: ALIBHAI, MURTAZA F.
 APPLICANT: ASTWOOD, JAMES D.
 APPLICANT: SAMPSON, HUGH A.
  APPLICANT: McWHERTER, CHARLES A.
  TITLE OF INVENTION: PREPARATION OF DEALLERGENIZED PROTEINS AND PERMUTEINS
  FILE REFERENCE: 11899.0217.DVUS02
  CURRENT APPLICATION NUMBER: US/11/220,856
  CURRENT FILING DATE: 2005-09-07
 PRIOR APPLICATION NUMBER: US/10/658,180
 PRIOR FILING DATE: 2003-09-09
 PRIOR APPLICATION NUMBER: US 09/755,630
 PRIOR FILING DATE: 2001-01-05
 PRIOR APPLICATION NUMBER: US 60/174,669
  PRIOR FILING DATE: 2000-01-06
; NUMBER OF SEQ ID NOS: 295
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 198
  LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial
   FEATURE:
   OTHER INFORMATION: Synthetic polypeptide
US-11-220-856-198
 Query Match
                         28.6%; Score 30; DB 7; Length 10;
 Best Local Similarity 100.0%; Pred. No. 75;
           6; Conservative
                               0; Mismatches
                                                  0; Indels
           7 YLRAQE 12
Qу
             11111
Db
           1 YLRAQE 6
```

```
I37261
complement receptor - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 12-Aug-1996 #sequence revision 12-Aug-1996 #text change 09-Jul-2004
C; Accession: I37261
R; Birkenbach, M.; Tong, X.; Bradbury, L.E.; Tedder, T.F.; Kieff, E.
J. Exp. Med. 176, 1405-1414, 1992
A; Title: Characterization of an Epstein-Barr virus receptor on human epithelial cells.
A; Reference number: 137261; MUID: 93018869; PMID: 1383386
A; Accession: I37261
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-27
A;Cross-references: UNIPROT:Q08578; UNIPARC:UPI0000072008; EMBL:X68990; NID:g3928195;
C; Genetics:
A; Gene: GDB:CR2
A; Cross-references: GDB:119802; OMIM:120650
A; Map position: 1q32-1q32
  Query Match
                          27.6%; Score 29; DB 2; Length 27;
                          83.3%; Pred. No. 3.2e+02;
 Best Local Similarity
                                1; Mismatches 0; Indels
                                                                 0; Gaps
 Matches
           5; Conservative
Qу
           6 HYLRAQ 11
             11111:
Db
           9 HYLRAR 14
```

```
Q4XXIO PLACH
     Q4XXIO PLACH
                    PRELIMINARY;
                                   PRT;
                                           25 AA.
AC
     Q4XXIO;
DT
     05-JUL-2005, integrated into UniProtKB/TrEMBL.
DT
     05-JUL-2005, sequence version 1.
     07-FEB-2006, entry version 4.
DT
DE
     Hypothetical protein (Fragment).
     ORFNames=PC104825.00.0;
GN
OS
     Plasmodium chabaudi.
     Eukaryota; Alveolata; Apicomplexa; Haemosporida; Plasmodium.
OC:
     NCBI TaxID=5825;
OX
RN
     NUCLEOTIDE SEQUENCE.
RP
     PubMed=15637271; DOI=10.1126/science.1103717;
RX
RA
     Hall N., Karras M., Raine J.D., Carlton J.M., Kooij T.W.A.,
RA
     Berriman M., Florens L., Janssen C.S., Pain A., Christophides G.K.,
RA
     James K., Rutherford K., Harris B., Harris D., Churcher C.M.,
RA
     Quail M.A., Ormond D., Doggett J., Trueman H.E., Mendoza J.,
RA
     Bidwell S.L., Rajandream M.A., Carucci D.J., Yates J.R. III,
     Kafatos F.C., Janse C.J., Barrell B.G., Turner C.M.R., Waters A.P.,
RA
     Sinden R.S.;
RA
     "A comprehensive survey of the Plasmodium life cycle by genomic,
RT
     transcriptomic, and proteomic analyses.";
RT
RL
     Science 307:82-86(2005).
CC
     -!- CAUTION: The sequence shown here is derived from an
CC
         EMBL/GenBank/DDBJ whole genome shotgun (WGS) entry which is
CC
         preliminary data.
CC
CC
     Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC
     Distributed under the Creative Commons Attribution-NoDerivs License
CC
DR
     EMBL; CAAJ01002442; CAH78381.1; -; Genomic DNA.
KW
     Hypothetical protein.
     NON TER
FT
                   1
                          1
     SEQUENCE
SQ
                25 AA; 2984 MW; DD02DF108892E750 CRC64;
  Query Match
                          28.0%; Score 28; DB 2; Length 25;
  Best Local Similarity 83.3%; Pred. No. 6.9e+03;
  Matches
          5; Conservative 1; Mismatches
                                                 0; Indels
                                                                              0;
                                                                  0; Gaps
            2 YVKKVN 7
Qу
              111:11
Db
           13 YVKRVN 18
```

```
Q9UCK6 HUMAN
    Q9UCK6 HUMAN
ΙD
                PRELIMINARY;
                                PRT;
                                        19 AA.
    O9UCK6;
AC
DT
    01-MAY-2000, integrated into UniProtKB/TrEMBL.
DT
    01-MAY-2000, sequence version 1.
    07-FEB-2006, entry version 8.
DΤ
    Aspartylglucosaminidase beta 1 subunit (Fragment).
DE
OS
    Homo sapiens (Human).
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
    Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae;
OC
OC
    NCBI TaxID=9606;
OX
RN
    [1]
RP
    PROTEIN SEQUENCE.
RX
    MEDLINE=93111925; PubMed=1281977;
RA
    Rip J.W., Coulter-Mackie M.B., Rupar C.A., Gordon B.A.;
RT
    "Purification and structure of human liver aspartylglucosaminidase.";
RL
    Biochem. J. 288:1005-1010(1992).
CC
    ______
CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
CC
    HSSP; P20933; 1APY.
DR
    SEQUENCE 19 AA; 2127 MW; BC2F148525610300 CRC64;
SO
                        27.0%; Score 27; DB 2; Length 19;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 7.7e+03;
         6; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                       0;
          8 KATEAA 13
Qу
            11111
Db
         13 KATEAA 18
```

```
Sequence 11, Application US/11136344
; Publication No. US20060178297A1
; GENERAL INFORMATION:
; APPLICANT: Columbia University
; APPLICANT: Troy, Carol M.
; APPLICANT: Greene, Lloyd A.
; TITLE OF INVENTION: SYSTEMS AND METHODS FOR SILENCING
; TITLE OF INVENTION: EXPRESSION OF A GENE IN A CELL AND USES THEREOF
 FILE REFERENCE: 070050.2880
 CURRENT APPLICATION NUMBER: US/11/136,344
 CURRENT FILING DATE: 2005-05-23
 PRIOR APPLICATION NUMBER: US 10/353,902
  PRIOR FILING DATE: 2003-01-28
  NUMBER OF SEQ ID NOS: 18
 SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 11
  LENGTH: 27
   TYPE: PRT
   ORGANISM: Artificial Sequence
  FEATURE:
   OTHER INFORMATION: MPS peptide is a chimera of the hydrophobic
   OTHER INFORMATION: terminal domain of the viral gp41 protein and the
   OTHER INFORMATION: nuclear localization signal from simian virus 40
   OTHER INFORMATION: large antigen.
US-11-136-344-11
  Query Match
                         34.0%; Score 34; DB 7; Length 27;
 Best Local Similarity 71.4%; Pred. No. 52;
 Matches 5; Conservative 2; Mismatches
                                                 0; Indels
Qу
          13 AMFLGWV 19
             1:1111:
Db
           2 ALFLGWL 8
```

```
Sequence 62, Application US/11474283
; Publication No. US20060234308A1
; GENERAL INFORMATION:
 APPLICANT: Schneider-Mergener, Jens
 APPLICANT: Schutkowski, Mike
 APPLICANT: Reimer, Ulf
 APPLICANT: Dong, Liying
  APPLICANT: Panse, Soren
 APPLICANT: Scharn, Dirk
 APPLICANT: Osterkamp, Frank
  APPLICANT: Hummel, Gerd
  APPLICANT: Jobron, Laurence
  TITLE OF INVENTION: Method for Determining the Substrate Specificity of an Enzymati
  TITLE OF INVENTION: Activity and a Device Therefor
 FILE REFERENCE: 2918-0102
 CURRENT APPLICATION NUMBER: US/11/474,283
 CURRENT FILING DATE: 2006-06-26
; PRIOR APPLICATION NUMBER: US/10/475,104
; PRIOR FILING DATE: 2003-10-17
 PRIOR APPLICATION NUMBER: PCT/EP02/04265
 PRIOR FILING DATE: 2002-04-17
 NUMBER OF SEQ ID NOS: 144
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 62
   LENGTH: 12
   TYPE: PRT
;
   ORGANISM: Unknown
   FEATURE:
   OTHER INFORMATION: synthesized peptide sequence
   NAME/KEY: MISC FEATURE
   LOCATION: (2)..(2)
   OTHER INFORMATION: Xaa = beta-alanine
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (12)..(12)
   OTHER INFORMATION: amino group
US-11-474-283-62
  Query Match
                         25.0%; Score 25; DB 7; Length 12;
 Best Local Similarity
                         50.0%; Pred. No. 6.8e+02;
           5; Conservative
                                2; Mismatches
                                                 3; Indels
                                                               0; Gaps
           4 KKVNKATEAA 13
Qу
             11:1:1
Db
           3 KKLNRALAVA 12
```

```
Sequence 9, Application US/10144549
; Publication No. US20030211590A1
; GENERAL INFORMATION:
; APPLICANT: GeneShuttle Biopharm, Inc.
; APPLICANT: Hwu , Paul L.
; TITLE OF INVENTION: A NEW FUSION PROTEIN FOR USE AS VECTOR
; FILE REFERENCE: MBHB 02-340
; CURRENT APPLICATION NUMBER: US/10/144,549
; CURRENT FILING DATE: 2002-05-13
; NUMBER OF SEQ ID NOS: 31
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 9
   LENGTH: 17
   TYPE: PRT
   ORGANISM: Human immunodeficiency virus
   FEATURE:
   NAME/KEY: MISC FEATURE
   OTHER INFORMATION: The fusion sequence of Gp41.
US-10-144-549-9
 Query Match
                         34.0%; Score 34; DB 4; Length 17;
 Best Local Similarity 71.4%; Pred. No. 2.5e+02;
 Matches 5; Conservative
                               2; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
         13 AMFLGWV 19
             1:111:
Db
           2 ALFLGWL 8
```

```
Sequence 288, Application US/10226956
; Publication No. US20030060399A1
; GENERAL INFORMATION:
; APPLICANT: Brophy, Colleen
; APPLICANT: Komalavilas, Padmini
; APPLICANT: Panitch, Alyssa
; APPLICANT: Joshi, Lokesh
; APPLICANT: Seal, Brandon L.
; TITLE OF INVENTION: REAGENTS AND METHODS FOR SMOOTH MUSCLE THERAPIES
; FILE REFERENCE: ASU-1061-US
; CURRENT APPLICATION NUMBER: US/10/226,956
; CURRENT FILING DATE: 2002-08-23
  PRIOR APPLICATION NUMBER: 60/314,535
  PRIOR FILING DATE: 2001-08-23
; NUMBER OF SEQ ID NOS: 320
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 288
  LENGTH: 21
   TYPE: PRT
   ORGANISM: Artificial sequence
   FEATURE:
   OTHER INFORMATION: Synthetic peptide
US-10-226-956-288
 Query Match
                        34.0%; Score 34; DB 4; Length 21;
 Best Local Similarity 71.4%; Pred. No. 3.1e+02;
 Matches 5; Conservative 2; Mismatches 0; Indels 0; Gaps
                                                                          0;
Qу
          13 AMFLGWV 19
            1:111:
Db
           2 ALFLGWL 8
```

```
Sequence 306, Application US/10211088
; Publication No. US20030104479A1
; GENERAL INFORMATION:
; APPLICANT: Bright, Gary R.
; APPLICANT: Premkumar, D. David
; APPLICANT: Chen, Yih-Tai
; TITLE OF INVENTION: No. US20030104479Alel Fusion Proteins And Assays For Molecular
; FILE REFERENCE: 01-1022-US
; CURRENT APPLICATION NUMBER: US/10/211,088
; CURRENT FILING DATE: 2002-10-15
  PRIOR APPLICATION NUMBER: 60/309,395
  PRIOR FILING DATE: 2001-08-01
  PRIOR APPLICATION NUMBER: 60/341,589
; PRIOR FILING DATE: 2001-12-13
; NUMBER OF SEQ ID NOS: 366
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 306
  LENGTH: 21
   TYPE: PRT
   ORGANISM: Artificial sequence
  FEATURE:
  OTHER INFORMATION: Protein-derived transport peptide
US-10-211-088-306
 Query Match
                         34.0%; Score 34; DB 4; Length 21;
 Best Local Similarity 71.4%; Pred. No. 3.1e+02;
 Matches 5; Conservative 2; Mismatches 0; Indels
                                                               0; Gaps
Qу
          13 AMFLGWV 19
             1:1111:
           2 ALFLGWL 8
```

```
Sequence 8, Application US/09785802A
; Patent No. US20020151004A1
; GENERAL INFORMATION:
.; APPLICANT: Craig, Roger
; TITLE OF INVENTION: DELIVERY VEHICLES AND METHODS FOR USING THE SAME
; FILE REFERENCE: 11067/2035
; CURRENT APPLICATION NUMBER: US/09/785,802A
; CURRENT FILING DATE: 2001-02-16
; PRIOR APPLICATION NUMBER: US 09/748,06
; PRIOR FILING DATE: 2000-12-22
; PRIOR APPLICATION NUMBER: US 09/748,789
; PRIOR FILING DATE: 2000-12-22
 NUMBER OF SEQ ID NOS: 16
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 8
   LENGTH: 27
   TYPE: PRT
    ORGANISM: Human immunodeficiency virus
US-09-785-802A-8
  Query Match
                                 Score 34; DB 3; Length 27;
                         34.0%;
  Best Local Similarity
                         71.4%; Pred. No. 4.1e+02;
          5; Conservative
                                2; Mismatches 0; Indels
                                                               0; Gaps
                                                                            0;
Qу
          13 AMFLGWV 19.
             1:1111:
Db
           2 ALFLGWL 8
```

```
Sequence 9, Application US/10144549
; Patent No. 6835810
; GENERAL INFORMATION:
; APPLICANT: GeneShuttle Biopharm, Inc.
; APPLICANT: Hwu , Paul L.
; TITLE OF INVENTION: A NEW FUSION PROTEIN FOR USE AS VECTOR
; FILE REFERENCE: MBHB 02-340
; CURRENT APPLICATION NUMBER: US/10/144,549
  CURRENT FILING DATE:
                        2002-05-13
 NUMBER OF SEQ ID NOS: 31
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 9
  LENGTH: 17
   TYPE: PRT
   ORGANISM: Human immunodeficiency virus
   FEATURE:
   NAME/KEY: MISC FEATURE
   OTHER INFORMATION: The fusion sequence of Gp41.
US-10-144-549-9
 Query Match
                         34.0%;
                                 Score 34; DB 2; Length 17;
                         71.4%; Pred. No. 51;
 Best Local Similarity
 Matches 5; Conservative
                                2; Mismatches
                                                                           0;
                                                  0; Indels
                                                                0; Gaps
          13 AMFLGWV 19
Qу
             1:1111:
Db
           2 ALFLGWL 8
```

```
Sequence 73, Application US/10715810
; Publication No. US20050106182A1
; GENERAL INFORMATION:
; APPLICANT: Li, Shengwen
 APPLICANT: Kei, Aoki R.
; TITLE OF INVENTION: Rescue Agents for Treating a Botulinum Toxin Intoxication
 FILE REFERENCE: ALLE0004-100
; CURRENT APPLICATION NUMBER: US/10/715,810
; CURRENT FILING DATE: 2003-11-17
 NUMBER OF SEQ ID NOS: 105
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 73
  LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Peptide fragment (residues 597-626)
US-10-715-810-73
                        58.0%; Score 58; DB 5; Length 30;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0.057;
 Matches 11; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           9 ATEAAMFLGWV 19
Qу
             Db
           1 ATEAAMFLGWV 11
```

```
ADG28008
ΙD
     ADG28008 standard; peptide; 17 AA.
XX
AC
     ADG28008;
XX
     26-FEB-2004 (first entry)
DT
XX
DΕ
     HIV1 gp41 membrane fusion sequence seq id 9.
XX
KW
     fusion protein; cold shock domain; membrane translocation sequence; CspA;
KW
     CspB; CspC; CspD; rp1 S1 binding domain; eukaryotic Y-box protein;
KW
     DNA binding protein B; DBPB; DBPA; EFE-1; mRNP3; mRNP4; FRG Y1;
KW
     nuclease-sensitive element binding protein 1; NSEP 1;
KW
     DNA condensation domain; DNA binding domain; SPKR;
KW
     nuclear localisation sequence; NLS; protein purification tagged sequence;
KW
     gene delivery; HIV1; gp41; membrane fusion sequence.
XX
OS
     Human immunodeficiency virus 1.
XX
PN
     US2003211590-A1.
XX
PD
     13-NOV-2003.
XX
PF
     13-MAY-2002; 2002US-00144549.
XX
     13-MAY-2002; 2002US-00144549.
PR
XX
PΑ
     (HWUP/) HWU P L.
XX
PΙ
     Hwu PL;
XX
DR
     WPI; 2003-901590/82.
XX
PT
     New fusion protein comprising a cold shock domain, and a membrane
PT
     translocation sequence, useful for delivering DNAs and RNAs to in vivo
PT
     cells for gene delivery.
XX
PS
     Claim 9; SEQ ID NO 9; 24pp; English.
XX
CC
     The invention describes a fusion protein for delivery of a desired
     molecule into cells or nuclei, comprising a cold shock domain, its
CC
CC
     homologue and functional derivative, and a membrane translocation
CC
     sequence or its functional equivalent peptides and/or derivatives. The
CC
     fusion protein comprises a cold shock domain that is selected from CspA,
CC
     CspB, CspC, CspD, rpl S1 binding domain, eukaryotic Y-box proteins, DNA
CC
     binding protein B (DBPB), DBPA, EFE-1, mRNP3, mRNP4, FRG Y1 and nuclease-
CC
     sensitive element binding protein 1 (NSEP 1). The functional equivalent
     derivative of cold shock protein is modified by inserting into the cold
CC
CC
     shock domain with a DNA condensation domain or a DNA binding domain. The
CC
     DNA condensation or binding domain is selected from DNA condensation
CC
     domain (SPKR) 3-4 and the positive charge nuclear localisation sequences
CC
     (NLS+). The membrane transduction sequence is protein transduction domain
CC
     (PTD) or membrane fusion sequence. The fusion protein further comprises a
CC
     protein purification tagged sequence selected from HA, GST, and His6 tag.
CÇ
     The fusion protein is useful for delivering DNAs and RNAs to in vivo
CC
     cells for gene delivery, or for delivering nucleic acids to an embryo or
CC
     to a living animal for the production of transgenic animal. This is the
CC
     amino acid sequence of HIV1 gp41 membrane fusion sequence.
XX
SQ
     Sequence 17 AA;
```

```
Query Match 34.0%; Score 34; DB 7; Length 17;
Best Local Similarity 71.4%; Pred. No. 2.4e+02;
Matches 5; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

Qy 13 AMFLGWV 19
|:||||:
Db 2 ALFLGWL 8
```

```
ABB77687
ID
     ABB77687 standard; peptide; 27 AA.
XX
AC
     ABB77687;
XX
DT
     01-JUL-2002 (first entry)
XX
DE
     New peptide vector#3.
XX
KW
     Intracellular delivery; transfection agent; cancer; infectious disease;
KW
     peptide vector.
XX
os
     Synthetic.
XX
FH
                     Location/Qualifiers
FT
     Misc-difference 7
FT
                     /note= "residue may be substituted with Phe"
FT
    Misc-difference 23
FT
                     /note= "residue may be substituted with Ser"
XX
PN
     WO200210201-A2.
XX
PD
     07-FEB-2002.
XX
PF
     26-JUL-2001; 2001WO-US023406.
XX
PR
     31-JUL-2000; 2000US-0221932P.
XX
PA
     (ACTI-) ACTIVE MOTIF.
PA
     (CNRS ) CENT NAT RECH SCI.
XX
PΙ
     Divida G, Morris M, Mery J, Heitz F, Fernandez J, Archdeacon J;
ΡI
     Horndorp K;
XX
DR
    WPI; 2002-329441/36.
XX
PT
     Transfection agent that comprises a peptide comprising hydrophobic and
PT
     hydrophilic domain and having amino acid residues of specified length is
PT
     useful for a non-covalent association with and transport of a
PT
     heterologous compound into a cell.
XX
PS
    Example 2; Page 61; 156pp; English.
XX
CC
     The invention relates to a transfection agent comprises a peptide of
CC
     about 16 - 30 amino acids in length. Peptides of the invention comprise a
CC
     hydrophobic domain, a hydrophilic domain, optionally a spacer sequence
CC
    between the domains and a functional group conjugated to at least one
CC
     terminal of the peptide. Peptides of the invention are useful for a non-
CC
    covalent association with and transport of a heterologous compound into a
CC
     cell. They are also useful for promoting the cellular internalisation of
CC
     at least one member e.g. peptide, proteins, antibodies, their derivatives
CC
    and/or conjugates. They may form part of a pharmaceutical composition to
CC
    deliver the compound selected from a diagnostic or therapeutic compound,
CC
    to treat at least one condition such as cancer or an infectious disease,
CC
    or which targets a cancerous cell or pathogen-infected cell and to
CC
    deliver a peptide or inhibitor that disrupts the activity of the enzyme.
CC
    The agent of the invention has a transfection efficiency of at least 5%
    for at least two of the members of the group of the compounds. The agent
CC
CC
    has a good delivery efficiency for a broad spectrum of compounds and cell
CC
     types, has a low toxicity, are easy to handle and easy to formulate in
CC
    conjunction with the many different compound types that it can deliver.
```

```
The peptides are serum sensitive, thus they bode particularly well for systemic and/or localised in patients. The current sequence represents a
CC
CC
CC
      new amphipathic peptide vector of the invention that contains a cationic
CC
      nuclear localisation sequence
XX
SQ
      Sequence 27 AA;
  Query Match
                              34.0%;
                                       Score 34; DB 5; Length 27;
                              71.4%; Pred. No. 4.1e+02;
  Best Local Similarity
               5; Conservative
                                      2; Mismatches
                                                         0; Indels
                                                                            0; Gaps
                                                                                          0;
            13 AMFLGWV 19
Qу
                1:1111:
Db
              2 ALFLGWL 8
```

```
Q9S937 BETVU
    Q9S937 BETVU
                  PRELIMINARY;
                                PRT;
                                       24 AA.
    095937:
AC
DT
    01-MAY-2000, integrated into UniProtKB/TrEMBL.
    01-MAY-2000, sequence version 1.
DT
    07-FEB-2006, entry version 15.
DT
DE
    H(+)-translocating (Pyrophosphate-ENERGIZED) inorganic pyrophosphatase
    beta-1 polypeptide (EC 3.6.1.1) (Fragment).
DE
OS
    Beta vulgaris (Sugar beet).
    Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
OC
    Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;
OC
    Caryophyllales; Amaranthaceae; Beta.
OX
    NCBI TaxID=161934;
RN
RP
    PROTEIN SEOUENCE.
RX
    MEDLINE=92179265; PubMed=1311852;
RA
    Sarafian V., Kim Y., Poole R.J., Rea P.A.;
RT
    "Molecular cloning and sequence of cDNA encoding the pyrophosphate-
RT
    energized vacuolar membrane proton pump of Arabidopsis thaliana.";
    Proc. Natl. Acad. Sci. U.S.A. 89:1775-1779(1992).
RL
CC
    CC
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
    Distributed under the Creative Commons Attribution-NoDerivs License
CC
CC
    DR
    PIR; C38230; C38230.
DR
    GO; GO:0016020; C:membrane; IEA.
    GO; GO:0009678; F:hydrogen-translocating pyrophosphatase acti. . .; IEA.
DR
DR
    GO; GO:0004427; F:inorganic diphosphatase activity; IEA.
DR
    GO; GO:0015992; P:proton transport; IEA.
DR
    InterPro; IPRO04131; H PPase.
    Pfam; PF03030; H PPase; 1.
DR
SO
    SEOUENCE
             24 AA; 2396 MW; CE19F75ADBEFD43B CRC64;
 Query Match
                       28.3%; Score 28; DB 2; Length 24;
 Best Local Similarity 83.3%; Pred. No. 7.7e+03;
          5; Conservative
                             1; Mismatches 0; Indels 0; Gaps
                                                                      0;
          8 GPALNI 13
Qу
            11:11
Db
         17 GPSLNI 22
```

```
Sequence 4, Application US/11249692
; Publication No. US20060148009A1
; GENERAL INFORMATION:
; APPLICANT: Barbosa, Maria D.F.S.
; APPLICANT: Chirino, Arthur J.
  TITLE OF INVENTION: PREDICTION AND ASSESSMENT OF IMMUNOGENICITY
  FILE REFERENCE: 185826/US/3 463077-396
  CURRENT APPLICATION NUMBER: US/11/249,692
  CURRENT FILING DATE: 2005-10-12
  PRIOR APPLICATION NUMBER: US 60/659,586
  PRIOR FILING DATE: 2005-03-08
  PRIOR APPLICATION NUMBER: US 60/618,154
  PRIOR FILING DATE: 2004-10-12
  NUMBER OF SEQ ID NOS: 50
 SOFTWARE: PatentIn version 3.3
; SEQ ID NO 4
   LENGTH: 20
   TYPE: PRT
   ORGANISM: Artificial
   FEATURE:
   OTHER INFORMATION: Synthetic
US-11-249-692-4
  Query Match
                         56.6%; Score 56; DB 7; Length 20;
 Best Local Similarity 90.9%; Pred. No. 0.0087;
          10; Conservative
                               1; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
           3 IIPYIGPALNI 13
Qy .
             1:1111111
Db
          10 IVPYIGPALNI 20
```

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

November 1, 2006, 12:29:25; Search time 84.8 Seconds Run on:

(without alignments)

102.442 Million cell updates/sec

Title: US-10-821-669-1_COPY_631_649

Perfect score: 99

Sequence: 1 TIIIPYIGPALNIGNMLYK 19

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Score	% Query Match	Length	DB	ID	Description
99	100.0	19	9	ADW11054	Adw11054 Clostridi
99	100.0	23	9	ADZ69799	Adz69799 Botulinum
56	56.6	14	8	ADJ82841	Adj82841 Tetanus T
56	56.6	16	2	AAW05608	Aaw05608 Tetanus t
56	56.6	20	3	AAY96457	Aay96457 Tetanus t
56	56.6	26	5	AAU10838	Aau10838 Human cyt
56	56.6	26	8	ADJ82844	Adj82844 Fusion ep
56	56.6	27	5	ABB79188	Abb79188 Human cyt
56	56.6	28	5	ABB79185	Abb79185 Human cyt
56	56.6	28	5	ABB79186	Abb79186 Human cyt
56	56.6	28	5	ABB79187	Abb79187 Human cyt
56	56.6	30	2	AAR62711	Aar62711 LHRH-cont
	99 99 56 56 56 56 56 56	99 100.0 99 100.0 56 56.6 56 56.6 56 56.6 56 56.6 56 56.6 56 56.6 56 56.6	Score Match Length 99 100.0 19 99 100.0 23 56 56.6 14 56 56.6 20 56 56.6 26 56 56.6 26 56 56.6 27 56 56.6 28 56 56.6 28 56 56.6 28 56 56.6 28 56 56.6 28	Score Match Length DB 99 100.0 19 9 99 100.0 23 9 56 56.6 14 8 56 56.6 20 3 56 56.6 26 5 56 56.6 26 8 56 56.6 27 5 56 56.6 28 5 56 56.6 28 5 56 56.6 28 5 56 56.6 28 5 56 56.6 28 5	Score Match Length DB ID 99 100.0 19 9 ADW11054 99 100.0 23 9 ADZ69799 56 56.6 14 8 ADJ82841 56 56.6 16 2 AAW05608 56 56.6 20 3 AAY96457 56 56.6 26 5 AAU10838 56 56.6 26 8 ADJ82844 56 56.6 27 5 ABB79188 56 56.6 28 5 ABB79185 56 56.6 28 5 ABB79186 56 56.6 28 5 ABB79187

13	52	52.5	16	2	AAR82582	Aar82582 Tetanus t
14	52	52.5	16	4	AAB84443	Aab84443 Amino aci
15	52	52.5	16	5	ABG68172	Abg68172 Pathogen-
16	52	52.5	16	6	AAE35617	Aae35617 Clostridi
17	52	52.5	16	7	ADM80632	Adm80632 Human hel
18	52	52.5	26	7	ADM80654	Adm80654 Human Abe
19	52	52.5	28	2		
					AAR83566	Aar83566 IgE CH4 r
20	42	42.4	8	2	AAW11973	Aaw11973 T-cell ep
21	42	42.4	19	5	ABJ04182	. Abj04182 Kinase-as
					· ·	
22	42	42.4	19	6	ABU54229	Abu54229 PDGFR-a p
23	41	41.4	16	2	AAR65371	Aar65371 Helper T
24	41	41.4	19	5	ABJ04183	Abj04183 Kinase-as
25	41	41.4	19	6	ABU54230	Abu54230 PDGFR-b p
26	37	37.4	13	2		
					AAY31037	Aay31037 Non-cross
27	37	37.4	25	10	AEE37962	Aee37962 Human ser
28	36	36.4	22	8	ADH35030	Adh35030 Glycopept
29	36	36.4	27	9	ADW16184	Adw16184 EBOfusion
30	36	36.4	27	9	ADW16179	Adw16179 EBO fusio
31	35	35.4	15	9	ADY62780	Ady62780 Ebola gly
32	35	35.4	16	5	ABB74241	Abb74241 Ebola vir
33	35	35.4	16	6		
					`ABR40170	Abr40170 Ebola vir
34	35	35.4	16	9	ADW16188	Adw16188 EBO, pept
35	35	35.4	16	10	AEE91977	Aee91977 Ebola vir
36	35	35.4	17	8	ADH94538	Adh94538 Ebola vir
37	35	35.4	17	10	AEG13444	Aeg13444 Antiangio
38	35	35.4	19	5	ABJ04184	Abj04184 Kinase-as
39	35	35.4	19	6.	ABU54231	Abu54231 Flt1 prot
40	35	35.4	20	8	ADO42102	
						Ado42102 Filovirus
41	35	35.4	30	8	ABO57642	Abo57642 Human gen
42	34	34.3	12	5	ABJ04243	Abj04243 Kinase-as
43	34	34.3	12	6	ABU54290	Abu54290 PDGFR-a (
44	34	34.3	18	8	ADK50727	Adk50727 Human car
45	34	34.3	27	4		
					AAG99549	Aag99549 HLA-A*020
46	34	34.3	27	8	ADK50728	Adk50728 Human car
47	34	34.3	30	5	AAU85081	Aau85081 Human PRA
48	34	34.3	30	5	AAU85082	Aau85082 Human PRA
49	33	33.3	10	5	AAU92356	Aau92356 PHOR1-F5D
50	33					
		33.3	10	5	AAU92634	Aau92634 PHOR1-F5D
51	33	33.3	12	5	ABJ04242	Abj04242 Kinase-as
52	33	33.3	12	6	ABU54289	
						Abu54289 PDGFR-b (
53	33	33.3	15	3	AAB29719	Aab29719 Gangliosi
54	33	33.3	19	5	ABJ04186	Abj04186 Kinase-as
55	33	33.3	19	5	ABJ04185	Abj04185 Kinase-as
56	33	33.3	19	6	ABU54232	Abu54232 Flt4 prot
57	33	33.3				
			19	6	ABU54233	Abu54233 Flk1 prot
58	33	33.3	27	4	ABB42093	Abb42093 Peptide #
59	33	33.3	27	4	AAM35896	Aam35896 Peptide #
60	33	33.3	27	4	AAM75786	Aam75786 Human bon
61	33	33.3	27	4	AAM62973	Aam62973 Human bra
62						
	33	33.3	27	4	ABG57524	Abg57524 Human liv
63	32	32.3	10	9	AEC91.470	Aec91470 Cell prot
64	32	32.3	14	2		-
					AAW23532	Aaw23532 Purified
65	32	32.3	14	2	AAW57811	Aaw57811 Fatty aci
66	32	32.3	16	8	ADQ90450	Adq90450 RANTES re
67	32	32.3	20	6	ABJ19218	Abj19218 T helper
68	32	32.3	20	7	ADD18054	Add18054 Human G-p
69	32	32.3				
			21	8	ADL98131	Adl98131 Candida k
70	32	32.3	24	8	ADK50711	Adk50711 Human car
71	32	32.3	28	2	AAR89149	Aar89149 Human cel
72	32	32.3	28	10	AEE37031	Aee37031 Human ser
73	32	32.3	29	4	AAM18509	Aam18509 Peptide #

74	2.0	20.2				
	32	32.3	29	4	ABB37553	Abb37553 Peptide #
75	32	32.3	29	4	AAM30976	Aam30976 Peptide #
76	32	32.3	29	4	ABB32290	Abb32290 Peptide #
77	32	32.3	29	4	ABB22848	Abb22848 Protein #
78	32	32.3	29	4	AAM70664	Aam70664 Human bon
79						
	32	32.3	29	4	AAM58206	Aam58206 Human bra
80	32	32.3	29	4	ABG52366	Abg52366 Human liv
81	32	32.3	29	4	AAM06090	Aam06090 Peptide #
82	32	32.3	29	5	ABG40354	Abg40354 Human pep
83	32	32.3	30	4	ABB40657	Abb40657 Peptide #
				_		
84	32	32.3	30	4	AAM34418	Aam34418 Peptide #
85	32	32.3	30	4	AAM74306	Aam74306 Human bon
86	32	32.3	30	4	AAM61517	Aam61517 Human bra
.87	32	32.3	30	4	ABG56105	Abg56105 Human liv
88	32	32.3	30	5	ABG44233	Abg44233 Human pep
89	31.5	31.8	23	2		
					AAR04501	Aar04501 Cpd. elic
90	31.5	31.8	28	2	AAW57181	Aaw57181 Measles v
91	31	31.3	7	8	ADO42121	Ado42121 Filovirus
92	31	31.3	9	8	ADM12893	Adm12893 MHC class
93	31	31.3	9	8	ADO39139	Ado39139 Myelin-ol
94	31	31.3	9	10		_
95	31					Aef01627 Myelin-ol
		31.3	10	2	AAR53622	Aar53622 Opioid pe
96	31	31.3	13	2	AAW43973	Aaw43973 Human mye
97	31	31.3	13	8	ADM12906	Adm12906 Ii key/hu
98	31	31.3	13	8	ADO39152	Ado39152 Myelin-ol
99	31	31.3	13	10		Aef01640 Ii-key/MO
100	31	31.3	14	4	AAM00692	
101				_		Aam00692 Human pro
	31	31.3	14	8	ADJ78290	Adj78290 Peptide S
102	31	31.3	15	2	AAW37539	Aaw37539 Human mye
103	31	31.3	16	5	ABG96237	Abg96237 Cysteine-
104	31	31.3	17	10	AEE30473	Aee30473 Represent
105	31	31.3	17	10	AEF52089	Aef52089 Interfaci
106	31	31.3	19	7	ADE36977	Ade36977 Polyglyco
107	31		20	2	AAW37541	
					MAW3/J4I	
1 / 0		31.3			33401403	Aaw37541 Human mye
108	31	31.3	22	4	AAM21487	Aam21487 Peptide #
109	31 31	31.3 31.3			AAM21487 ABB43828	
	31	31.3	22	4		Aam21487 Peptide # Abb43828 Peptide #
109	31 31	31.3 31.3 31.3	22 22 22	4 4	ABB43828 AAM37738	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide #
109 110 111	31 31 31 31	31.3 31.3 31.3 31.3	22 22 22 22	4 4 4 4	ABB43828 AAM37738 ABB26760	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein #
109 110 111 112	31 31 31 31 31	31.3 31.3 31.3 31.3	22 22 22 22 22	4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon
109 110 111 112 113	31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22	4 4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra
109 110 111 112 113 114	31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22	4 4 4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv
109 110 111 112 113 114 115	31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 22	4 4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra
109 110 111 112 113 114	31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22	4 4 4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep
109 110 111 112 113 114 115	31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 22 22 25	4 4 4 4 4 5 2	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye
109 110 111 112 113 114 115 116 117	31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 22 25 25	4 4 4 4 4 5 2	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye
109 110 111 112 113 114 115 116 117	31 31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26	4 4 4 4 4 5 2 3	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec
109 110 111 112 113 114 115 116 117 118	31 31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27	4 4 4 4 4 5 2 2 3 2	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp
109 110 111 112 113 114 115 116 117 118 119 120	31 31 31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28	4 4 4 4 4 5 2 2 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car
109 110 111 112 113 114 115 116 117 118 119 120 121	31 31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27	4 4 4 4 4 5 2 2 3 2	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp
109 110 111 112 113 114 115 116 117 118 119 120	31 31 31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28	4 4 4 4 4 5 2 2 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis
109 110 111 112 113 114 115 116 117 118 119 120 121 122	31 31 31 31 31 31 31 31 31 31 31 31 31	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10	4 4 4 4 4 4 5 2 2 8 8 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	31 31 31 31 31 31 31 31 31 31 31 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 10	4 4 4 4 4 4 5 2 2 3 8 8 8 8 2	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	31 31 31 31 31 31 31 31 31 31 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 10 12	4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 2	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aaw47542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	31 31 31 31 31 31 31 31 31 31 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28 10 10 12 12	4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12	4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14	4 4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 8 2 4 9 9 9	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12	4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14 16 18	4 4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 8 2 4 9 9 9	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14 16 18 19	4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303 ADG71695	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Ady08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car Adg71695 Human HGP
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14 16 18 19 21	4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303 ADG71695 ADU04385	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Ady08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car Adg71695 Human HGP Adu04385 HTLV-I Po
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14 16 18 19 21 23	4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303 ADG71695 ADU04385 ABB41413	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car Adg71695 Human HGP Adu04385 HTLV-I Po Abb41413 Peptide #
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14 16 18 19 21 23 23	4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303 ADG71695 ADU04385 ABB41413 AAM35205	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car Adg71695 Human HGP Adu04385 HTLV-I Po Abb41413 Peptide # Aam35205 Peptide #
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 12 12 12 14 16 18 19 21 23 23 23	4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303 ADG71695 ADU04385 ABB41413 AAM35205 AAM75087	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car Adg71695 Human HGP Adu04385 HTLV-I Po Abb41413 Peptide #
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30	31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3	22 22 22 22 22 22 25 25 26 27 28 10 10 12 12 12 14 16 18 19 21 23 23	4 4 4 4 4 4 4 5 2 2 3 2 8 8 8 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ABB43828 AAM37738 ABB26760 AAM77554 AAM64798 ABG59196 ABG46581 AAW37520 AAW37542 AAB45058 AAW40110 ADK49312 ADK02284 ADK02272 AAY08852 AAY08765 ABP21702 AAM98806 ADV53969 ADK49303 ADG71695 ADU04385 ABB41413 AAM35205	Aam21487 Peptide # Abb43828 Peptide # Aam37738 Peptide # Abb26760 Protein # Aam77554 Human bon Aam64798 Human bra Abg59196 Human liv Abg46581 Human pep Aaw37520 Human mye Aaw37542 Human mye Aab45058 Human sec Aaw40110 Human alp Adk49312 Human car Adk02284 Hepatitis Adk02272 Hepatitis Aay08852 Expressio Aay08765 Expressio Abp21702 HIV A03 m Aam98806 Human pep Adv53969 G protein Adk49303 Human car Adg71695 Human HGP Adu04385 HTLV-I Po Abb41413 Peptide # Aam35205 Peptide #

105	2.0	20.0			22056051		31 56051	
135	30	30.3	23	4	ABG56851			Human liv
136	30	30.3	24	3	AAB09332		Aab09332	Hepatitis
137	30	30.3	25	1	AAP91296		Aap91296	Amino aci
138	30	30.3	25	2	AAW22187		Aaw22187	Endogenou
139	30	30.3	25	5	AAU77904			Human PHE
140	30	30.3	26	2	AAR28098			Ionophore
								-
141	30	30.3	26	2	AAR27911			Amphiphil
142	30	30.3	26	2	AAW66340			Amphiphil
143	30	30.3	27	4	AAG99551		Aag99551	HLA-A*020
144	30	30.3	27	8	ADK49304		Adk49304	Human car
145	30	30.3	28	3	AAY91583			Human sec
146	30	30.3	28	8	ADL71658		-	Novel hum
147	30	30.3	29	8	ADK50702			Human car
148	30	30.3	30	9	ABM91158			M. xanthu
149	29.5	29.8	15	6	ABP58681			Human mac
150	29.5	29.8	20	2	AAY26944		Aay26944	IS3/RP, a
151	29.5	29.8	20	4	AAB73926			D35E cons
152	29	29.3	9	2	AAR53617			Opioid pe
153	29	29.3	9	5	AAU92494			PHOR1-F5D
154	29	29.3	9	5	AAU92303			PHOR1-F5D
155	29	29.3	9	5	AAU92486			PHOR1-F5D
156	29	29.3	9	5	AAU92571		Aau92571	PHOR1-F5D
157	29	29.3	9	5	AAU92894		Aau92894	PHOR1-F5D
158	29	29.3	9	5	AAU92276			PHOR1-F5D
159	29	29.3	10	4	AAB47576			Ag85 comp
160	29	29.3	10	5	AAU92324			PHOR1-F5D
161	. 29	29.3	10	5	AAU92544			PHOR1-F5D
162	29	29.3	10	5	AAU92936	,	Aau92936	PHOR1-F5D
163	29	29.3	13	2	AAR62613		Aar62613	P. falcip
164	29	29.3	13	2	AAY01703		Aav01703	Peptide d
165	29	29.3	13	6	ABR75654			Liver res
166	29	29.3	13	7	ADN07471			Liver res
167	29	29.3	13	9	ADZ59245			
								Bidentate
168	29	29.3	14	9	ADZ81136			Beta rece
169	29	29.3	14	9	ADZ59204			Bidentate
170	29	29.3	15	2	AAR62574	i i	Aar62574	Human hep
171	29	29.3	15	2	AAW75680		Aaw75680	M. tuberc
172	29	29.3	15	4	AAG78631			Plasmolem
173	29	29.3	15	4	AAE03700			Python re
174	29	29.3	15	5	ABB83998			Hydrogen
175	29	29.3	15					GW182 pep
176	29	29.3	15	8	ADU64295			32 KD pro
177	29	29.3	16	2	AAW66359	i	Aaw66359	Peptide M
178	29	29.3	16	7	AAE39002		Aae39002	Human RAT
179	29	29.3	18	4	AAE12240	;	Aae12240	Mycobacte
180	29	29.3	19	4	AAE12251			Mycobacte
181	29	29.3	19	8				
					ADK50695			Human car
182	29	29.3	20	2	AAR56988			Bacillus
183	29	29.3	20	4	AAM20951	7	Aam20951	Peptide #
184	29	29.3	20	4	ABB42883		Abb42883	Peptide #
185	29	29.3	20	4	AAM36700		Aam36700	Peptide #
186	29	29.3	20	4	ABB26152			Protein #
187	29	29.3	20	4	AAM76591			Human bon
188	29	29.3	20	4	AAM63778			Human bra
189	29	29.3	20	4	ABG58291		_	Human liv
190	29	29.3	20	5	ABG45834	i	Abg45834	Human pep
191	29	29.3	20	5	AAO17440	i	Aao17440	M tubercu
192	29	29.3	20	8	ADO42125			Marburg g
193	29	29.3	20	8	ABO57484			Human gen
194	29	29.3	20	8	ADR05551			Novel ssD
195	29	29.3	20	9	AEE35140			
100	4.3	د . ر ع	20)	HEDUUTIU	4	nee3314U	Barley ho

196	29	29.3	21	7	ADF71083	Adf71083 Saccharom
197	29	29.3	23		AAY05903	Aay05903 Vicia sat
				2		
198	29	29.3	23	2	AAY05904	Aay05904 Vicia sat
199	29	29.3	23	9	ADZ59267	Adz59267 Bidentate
200	29	29.3	23	9	ADZ59268	Adz59268 Bidentate
201	29	29.3	23	9	ADZ59266	Adz59266 Bidentate
202	29	29.3	23	9	ADZ59269	Adz59269 Bidentate
203	29	29.3	27	7	ABW02103	Abw02103 Human alp
204	29	29.3	27	7	ADK41528	Adk41528 Anti-cell
205	29	29.3	27	8	ADK50736	Adk50736 Human car
206	29	29.3	28	10	AEE38996	Aee38996 Human ser
207	. 29	29.3	29	8		
					ADK50696	Adk50696 Human car
208	29	29.3	30	2	AAY12057	Aay12057 Human 5'
209	29	29.3	30	4	AAB85337	Aab85337 Human oaf
210	29	29.3	30	8	ADI36992	Adi36992 Putative
211	28.5	28.8	17	2	AAR95159	Aar95159 bcl-x(L)/
212	28.5	28.8	17	5	AAE20720	Aae20720 Human Mls
213	28.5	28.8	17	5	AAE21021	Aae21021 Human Icr
214	28.5	28.8	22	8	ADQ16714	Adq16714 Immunoglo
215	28.5	28.8	22	9	ADV44450	Adv44450 Anti-teta
216	28.5	28.8	22	9	AEB12921	Aeb12921 TPO mimet
217	28.5	28.8	23	8	ADT91704	Adt91704 Human rho
218	28.5	28.8	24	3	AAB18706	Aab18706 Synthetic
219	28.5	28.8	29	5	AAU91196	Aau91196 Human El-
220	28.5	28.8	29.	8		
221					ADI79967	Adi79967 E1-E2 ATP
	28	28.3	9	4	AAB98583	Aab98583 Human TAD
222	28	28.3	9	4	AAB76244	Aab76244 Influenza
223	28	28.3	9	8	ADR22327	Adr22327 Anti-Hepa
224	28	28.3	9	8	ADT73407	Adt73407 Human RSV
225	28	28.3	10	2	AAR12386	Aar12386 Claimed o
226	28	28.3	10	4	AAG87277	Aag87277 Saccharom
227	28	28.3	11	10	AEE71200	Aee71200 Human RCC
228	28	28.3	12	2	AAW10292	Aaw10292 Antiphosp
228 229	28 28			2 2		Aaw10292 Antiphosp
		28.3	12		AAW10292	Aaw10292 Antiphosp Aaw51834 Rana temp
229	28 28	28.3 28.3 28.3	12 13 13	2 2	AAW10292 AAW51834 AAY50212	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi
229 230 231	28 28 28	28.3 28.3 28.3 28.3	12 13 13 13	2 2 3	AAW10292 AAW51834 AAY50212 AAB18743	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci
229 230 231 232	28 28 28 28	28.3 28.3 28.3 28.3 28.3	12 13 13 13	2 2 3 2	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp
229 230 231 232 233	28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 13 14 15	2 2 3 2 5	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin
229 230 231 232 233 234	28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 13 14 15	2 2 3 2 5 8	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela
229 230 231 232 233 234 235	28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 13 14 15 15	2 2 3 2 5 8 9	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic
229 230 231 232 233 234 235 236	28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15	2 2 3 2 5 8 9	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps
229 230 231 232 233 234 235 236 237	28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 15	2 2 3 2 5 8 9 9	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class
229 230 231 232 233 234 235 236 237 238	28 28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16	2 2 3 2 5 8 9 9 3 5	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col
229 230 231 232 233 234 235 236 237 238 239	28 28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16	2 2 3 2 5 8 9 9 3 5 7	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi
229 230 231 232 233 234 235 236 237 238 239 240	28 28 28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16	2 3 2 5 8 9 3 5 7	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw36347 HLA bindi
229 230 231 232 233 234 235 236 237 238 239 240 241	28 28 28 28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16	2 3 2 5 8 9 3 5 7 7	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34884 HLA bindi
229 230 231 232 233 234 235 236 237 238 239 240 241 242	28 28 28 28 28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16	2 3 2 5 8 9 3 5 7	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw36347 HLA bindi
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16	2 3 2 5 8 9 3 5 7 7	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34884 HLA bindi
229 230 231 232 233 234 235 236 237 238 239 240 241 242	28 28 28 28 28 28 28 28 28 28 28 28 28	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16	2 3 2 5 8 9 9 3 5 7 7 7	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34884 HLA bindi Aef71020 Human int
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18	2 3 2 5 8 9 3 5 7 7 7 10 2	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw36347 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19	2 2 3 2 5 8 9 9 3 5 7 7 7 7 10 2 8	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw36347 HLA bindi Adw36347 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col
229 230 231 232 233 234 235 236 237 238 240 241 242 243 244 245	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 19 19	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw36347 HLA bindi Adw36347 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30120	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34884 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30120 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30119	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34844 HLA bindi Adw34844 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30119 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30119 AAP30118	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34844 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30119 Sequence Aap30118 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1 1 1 1 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30119 AAP30118 AAP30321	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34844 HLA bindi Adw34844 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30119 Sequence Aap30118 Sequence Aap30321 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1 1 1 1 1 1 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30120 AAP30119 AAP30118 AAP30321 AAP30121	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30119 Sequence Aap30118 Sequence Aap30321 Sequence Aap30321 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30119 AAP30119 AAP30118 AAP30321 AAP30320	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw3484 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30119 Sequence Aap30118 Sequence Aap30321 Sequence Aap30321 Sequence Aap30320 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 10 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30119 AAP30119 AAP30118 AAP30321 AAP30320 AAP30010	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw3484 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30110 Sequence Aap30118 Sequence Aap30111 Sequence Aap30121 Sequence Aap30320 Sequence Aap30320 Sequence Aap303010 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 7 10 2 8 8 1 1 1 1 1 1 1 1 1 1 2	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30119 AAP30119 AAP30118 AAP30321 AAP30321 AAP30320 AAP30010 AAW82502	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw3484 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30110 Sequence Aap30111 Sequence
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20 20 20 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 7 10 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30120 AAP30119 AAP30119 AAP30118 AAP30321 AAP30321 AAP30320 AAP30010 AAW82502 ABG75518	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw34844 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30119 Sequence Aap30119 Sequence Aap30118 Sequence Aap30321 Sequence Aap30121 Sequence Aap30320 Sequence Aap30320 Sequence Aap30100 Sequence Aap30110 Sequence Aaw82502 Rabbit OG Abg75518 HIV-1 p24
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28.3 28.3	12 13 13 14 15 15 15 16 16 16 16 18 19 19 20 20 20 20 20 20 20 20	2 2 3 2 5 8 9 9 3 5 7 7 7 7 10 2 8 8 1 1 1 1 1 1 1 1 1 1 2	AAW10292 AAW51834 AAY50212 AAB18743 AAR33240 ABB04322 ADI95176 ADZ82135 AEB52265 AAY99011 ABG32207 ADW33651 ADW36347 ADW34884 AEF71020 AAW98887 ADK50723 ADS74417 AAP30113 AAP30113 AAP30119 AAP30119 AAP30118 AAP30321 AAP30321 AAP30320 AAP30010 AAW82502	Aaw10292 Antiphosp Aaw51834 Rana temp Aay50212 Neutrophi Aab18743 Amino aci Aar33240 HIV-MC gp Abb04322 Human zin Adi95176 OSPF-rela Adz82135 Synthetic Aeb52265 Mucorpeps Aay99011 HLA class Abg32207 Sheep col Adw33651 HLA bindi Adw3484 HLA bindi Adw34884 HLA bindi Aef71020 Human int Aaw98887 Peptide S Adk50723 Human car Ads74417 Ovine col Aap30113 Sequence Aap30110 Sequence Aap30111 Sequence

257	28	28.3	20	7	ADC99578		Adc 99578	Cancer-re
258	28	28.3	20	7				
					ADH37199			Human lun
259	28	28.3	20	8	ABM79596			M smegmat
260	28	28.3	20	8	ADN37727			Human imm
261	28	28.3	20	8	ADI95349			OSPF-rela
262	28	28.3	20	8	ADI95350		Adi95350	OSPF-rela
263	28	28.3	20	8	ADI95351		Adi95351	OSPF-rela
264	28	28.3	20	9	ADU98694		Adu98694	Lung tumo
265	28	28.3	20	9	ADW98643			HIV-1 str
266	28	28.3	20	9	ADW95664			HIV-1 gro
267	28	28.3	20	9	ADY59301			HIV-1 p24
268	28	28.3	20	9	ADY59913			HIV-1 p24
269	28	28.3	20	9	ADY59913			HIV-1 gro
270	28	28.3		9				
			20		ADY71474			HIV-1 gro
271	28	28.3	20	9	AEB10502			Cancer re
272	28	28.3	20	9	AEE06356			Human lun
273	28	28.3	23	4	AAU04333			ATP-bindi
274	28	28.3	24	2	AAW02299			HIV-gag p
275	28	28.3	24	8	ADK49287			Human car
276	28	28.3	24	8	AEE66985	•	Aee66985	Cancer tr
277	28	28.3	25	2	AAW82527		Aaw82527	HIV-1 p24
278	28	28.3	26	8	ADK52109		Adk52109	Human ato
279	28	28.3	27	4	AAM86432			Human imm
280	28	28.3	29	4	AAM84828			Human imm
281	28	28.3	29	8	ADK50724			Human car
282	27.5	27.8	18	4	AAB68103			Peptide d
283	27.5	27.8	21	8	ADM11870			Random pe
284	27.5	27.8	26	2	AAR14988			Part of e
285	27.5	27.8	28	5				
					AAU91198			Human El-
286	27.5	27.8	28	8	ADI79969			E1-E2 ATP
287	27.5	27.8	30	2	AAR37008			8-37 pept
288	27.5	27.8	30	4	AAB91150			Pancreati
289	27.5	27.8	30	4	AAB91161			Pancreati
290	27.5	27.8	30	4	AAB91137			Pancreati
291	27.5	27.8	30	4	AAB91148			Pancreati
292	27.5	27.8	30	7	ADE51620		Ade51620	Amylin pe
293	27	27.3	7	8	ADH56413		Adh56413	Escherich
294	27	27.3	7	8	ADO42120		Ado42120	Filovirus
295	27	27.3	8	8	ADH56416		Adh56416	Escherich
296	27	27.3	8	8	ADH56418			Escherich
297	27	27.3	9	4	AAB47575			Ag85 comp
298	27	27.3	9	8	ADP73819			Loop inse
299	27	27.3	9	8	ADP25454		_	Plasmodiu
300	27	27.3	9	8	ADT74321			Human RSV
301	27	27.3	9	8	ADT73406			Human RSV
302	27	27.3	9	8				Human RSV
					ADT73404			
303	27	27.3	10	2	AAY47092			Immunogen
304	27	27.3	10	3	ABP41014			Human HER
305	27	27.3	10	3	ABP41032		-	Human HER
306	27	27.3	10	5	ABG98942			F protein
307	27	27.3	10	5	ABG98943		_	F protein
308	27	27.3	10	5	ABG98941		Abg98941	F protein
309	27	27.3	10	5	AAU82839		Aau82839	Human Cal
310	27	27.3	10	9	ADW86248		Adw86248	Human cal
311	27	27.3	10	9	ADZ88973		Adz88973	Human cal
312	27	27.3	11	2	AAR63427			Peptide f
313	27	27.3	11	2	AAW27100			Angiotens
314	27	27.3	11	4	ABP23576			HIV All m
315	27	27.3	12	2	AAW31289		-	Bovine be
316	27	27.3	12	2	AAW31290			Bovine be
317	27	27.3	12	6	AAO26477			Debaryomy
		_ / • •		-		•		= +

318	27	27 2	1.2	7	3 DE 41 00 7	7 do 41007 Human 7no
		27.3	12	7	ADE41087	Ade41087 Human Apo
319	27	27.3	13	2	AAR46640	Aar46640 65 kD end
320	27	27.3	13	5	AAE27409	Aae27409 Human gra
321	27	27.3	13	5	ADG66715	Adg66715 Human CLC
322	27	27.3	13	5	ADG66717	Adg66717 Human CLC
323	27	27.3	13	5	ADG66716	Adg66716 Human CLC
324	27	27.3	13	5	ADG65764	Adg65764 Human G-C
325	27	27.3	13	6	AAE30632	Aae30632 Human gra
326	27	27.3	13	7		-
		27.3			ADJ62461	Adj62461 Tryptic's
327	27		13	9	AEC11539	Aec11539 Enterococ
328	27	27.3	14	2	AAR60917	Aar60917 TSST-1 am
329	27	27.3	15	2	AAW75679	Aaw75679 M. tuberc
330	27	27.3	15	4	AAB99900	Aab99900 Human fib
331	27	27.3	15	4	ABP24934	Abp24934 HIV DR 3a
332	27	27.3	15	4	ABP24672	Abp24672 HIV DR su
333	27	27.3	15	8	ADU64294	Adu64294 32 KD pro
334	27	27.3	15	9	ADV22459	Adv22459 HIV-1 Pol
335	27	27.3	15	9	ADV23616	
						Adv23616 HBV immun
336	27	27.3	15	9	ADV23617	Adv23617 HBV immun
337	27	27.3	15	9	ADV22458	Adv22458 HIV-1 Pol
338	27	27.3	15	9	ADZ07230	Adz07230 Hepatitis
339	27	27.3	15	9	AEC13981	Aec13981 E. faecal
340	27	27.3	16	7	ADF92403	Adf92403 Human ubi
341	27	27.3	16	9	ADW98372	Adw98372 Alpha2 53
342	27	27.3	16	9	ADW98447	Adw98447 Alpha2 53
343	27	27.3	17	3	AAB44353	Aab44353 Human sec
344	27	27.3	17	10		
					AEG01060	Aeg01060 Kallikrei
345	27	27.3	17	10	AEG02788	Aeg02788 Anti-ghre
346	27	27.3	18	9	ADW97883	Adw97883 Hepatitis
347	27	27.3	18	9	AEB77708	Aeb77708 Casomorph
348	27	27.3	19	2	AAR11247	Aar11247 Ala(-2)-G
349	27	27.3	19	5	AAU99837	Aau99837 Human cat
350	27	27.3	19	8	ADR05591	Adr05591 Novel ssD
351	27	27.3	19	8	ADK49226	Adk49226 Human car
352	27	27.3	19	8	ADK50650	Adk50650 Human car
353	27	27.3	19	9	ADW11055	Adw11055 Clostridi
354	27	27.3	19	9	AEC91525	
355						Aec91525 IFN-gamma
	27	27.3	20	2	AAR74662	Aar74662 Pseudomon
356	27	27.3	20	5	AAE25787	Aae25787 Aspergill
357	27.	27.3	20	5	ABB04309	Abb04309 Human PGI
358 .	27	27.3	20	9	ADW52403	Adw52403 Human PL
359	27	27.3	21	7	ADM56162	Adm56162 C. tracho
360	27	27.3	21	8	ADQ76682	Adq76682 Aprotinin
361	27	27.3	22	3	AAB53228	Aab53228 Protein c
362	27	27.3	22	4	AAM18517	Aam18517 Peptide #
363	27	27.3	22	4	ABB32293	Abb32293 Peptide #
364	27	27.3	22	8	ADH76534	
						Adh76534 Human neu
365	27	27.3	22	8	ADS33810	Ads33810 cMET-HGF
366	27	27.3	22	8	AEE67082	Aee67082 Cancer tr
367	27	27.3	23	4	AAB50161	Aab50161 Human bra
368	27	27.3	23	4	AAB48158	Aab48158 Human MCH
369	27	27.3	24	2	AAR36998	Aar36998 Amylin an
370	27	27.3	24	2	AAR36999	Aar36999 Ac-24Ser,
371	27	27.3	24	2	AAR37000	Aar37000 Adamantyl
372	27	27.3	24	2	AAY49524	Aay49524 HIV resis
373	27	27.3	24	3	AAB01926	Aab01926 Drosophil
374	27	27.3	24	6		-
375					ABG74323	Abg74323 Fruitfly
	27	27.3	24	9	AEB95963	Aeb95963 Human MCH
376	27	27.3	25	2	AAR36997	Aar36997 Amylin an
377	27	27.3	25	2	AAR68758	Aar68758 Cytotoxic
378	27	27.3	25	2	AAW32895	Aaw32895 HIV pol p

379	27	27.3	25	3	AAB13242		Aab13242 Ascoris s
380	27	27.3	25	4	AAM21747		Aam21747 Peptide #
381	27	27.3	25	4	ABB44116		Abb44116 Peptide #
	27		25	4			Abb44110 Peptide # Aam38063 Peptide #
382		27.3		4	AAM38063		Abb27003 Protein #
383	27	27.3	25		ABB27003		Abb27003 FloteIn # Aam77843 Human bon
384	27.	27.3	25	4	AAM77843		
385	27	27.3	25	4	AAM65136		Aam65136 Human bra
386	27	27.3	25	4	ABG59498		Abg59498 Human liv
387	27	27.3	25	4	ABG24168		Abg24168 Novel hum
388	27	27.3	25	5	ABG46871		Abg46871 Human pep
389	27	27.3	25	5	ABG62245		Abg62245 Eubacteri
390	27	27.3	25	5	ABG68684		Abg68684 HIV-1 P21
391	27	27.3	25	7	ADB47951		Adb47951 Novel hum
392	27	27.3	25	7	ADC99605		Adc99605 Cancer-re
393	27	27.3	25	8	ADJ55506		Adj55506 Novel hum
394	27	27.3	25	9	AED67489		Aed67489 Human pep
395	27	27.3	25	10			Aee38542 Human ser
396	27	27.3	25	10	AEF64293		Aef64293 Salmon lo
397	27	27.3	26	2	AAY36392		Aay36392 Fragment
398	27	27.3	26	3	AAY87534		Aay87534 Mature co
399	27	27.3	26	5	AAU81826		Aau81826 Phosphino
400	27	27.3	26	6	ADA11851		Adal1851 Human nov
401	27	27.3	26	8	ADP86220		Adp86220 P2Y2 or P
402	27	27.3	27	2	AAR58337		Aar58337 Hypotensi
403	27	27.3	27	8	ADG37022		Adg37022 Bovine ca
404	27	27.3	28	1	AAP91574		Aap91574 Sequence
405	27	27.3	28	2	AAW57151		Aaw57151 Measles v
406	. 27	27.3	28	2	AAW57166		Aaw57166 Measles v
407	27	27.3	29	2	AAW78272		Aaw78272 Fragment
408	27	27.3	29	3	AAY91260		Aay91260 Modified
409	27	27.3	29	4	AAM19736		Aam19736 Peptide #
410	27	27.3	29	4	ABB39481		Abb39481 Peptide #
411	27	27.3	29	4	AAM33018	•	Aam33018 Peptide #
412	27 .	27.3	29	4	ABB24240		Abb24240 Protein #
413	27	27.3	29	4	AAM72788		Aam72788 Human bon
414	27	27.3	29	4	AAM60171		Aam60171 Human bra
415	27	27.3	29	4	ABG54489	•	Abg54489 Human liv
416	27	27.3	29	5	ABG42613		Abg42613 Human pep
417	27	27.3	29	8	ADL97675	•	Adl97675 Protein e
418	27	27.3	29	8	ADK49227		Adk49227 Human car
419	27	27.3	29	8	ADK50651		Adk50651 Human car
420	27	27.3	30	2	AAY39507		Aay39507 HCV E2 pr
421	27	27.3	30	2	AAY14184		Aay14184 HCV envel
422	27	27.3	30	5	ABJ10342		Abj10342 Human lun
423	27	27.3	30	5	AAU84454		Aau84454 HIV POL s
424	27	27.3	30	5	AAU84453		Aau84453 HIV POL s
425	27	27.3	30	8	ADT39600		Adt39600 hSARS vir
426	27	27.3	30	8 .	ADS79019		Ads79019 SARS viru
427	27	27.3	30	8	ADT37130		Adt37130 hSARS vir
428	27	27.3	30	9	AEA22177	•	Aea22177 Campyloba
429	26.5	26.8	10	2	AAR53621		Aar53621 Opioid pe
430	26.5	26.8	10	2	AAR89234		Aar89234 SC clone
431	26.5	26.8	18	8	ADK50707		Adk50707 Human car
432	26.5	26.8	20	6	ABP72139		Abp72139 Bombina m
433	26.5	26.8	22	2	AAW96827		Aaw96827 Nucleic a
434	26.5	26.8	24	3	AAB18711		Aab18711 Synthetic
435	26.5	26.8	24	3	AAB18697		Aab18697 Synthetic
436	26.5	26.8	24	8	ADR84154		Adr84154 S. pyogen
437	26.5	26.8	26	2	AAR14987		Aar14987 Part of e
438	26.5	26.8	27	8	ADK50708		Adk50708 Human car
439	26.5	26.8	27	10	AEE38928		Aee38928 Human ser

				_		- 44064 6
440	26.5	26.8	28	2	AAR14961	Aarl4961 Part of e
441	26.5	26.8	28	2	AAR14974	Aar14974 Part of e
442	26.5	26.8	29	5	AAU91200	Aau91200 Human E1-
443	26.5	26.8	29	5	AAU91199	Aau91199 Human E1-
444	26.5	26.8	29	8	ADI79971	Adi79971 E1-E2 ATP
445	26.5	26.8	29	8	ADI79970	Adi79970 E1-E2 ATP
446	26	26.3	5	6	ABU12136	Abu12136 Bovine BP
447	26	26.3	7	4	AAB49618	Aab49618 HIV-1 int
448	26	26.3	7	9	AEC17603	Aec17603 Casein pe
449	26	26.3	7	9	AEC17851	Aec17851 Casein pe
450	26	26.3	8	2	AAR25090	Aar25090 bGRF prod
451	26	26.3	8	2	AAR25088	Aar25088 bGRF prod
452	26	26.3	8	4	AAB82743	Aab82743 Peptide c
453	26	26.3	8	8	ADK38411	Adk38411 Hepatitis
454	26	26.3	8	9	ADZ05801	Adz05801 Hepatitis
455	26	26.3	8	9	AEC17623	Aec17623 Casein pe
456	26	26.3	. 8	9	AEC17622	Aec17622 Casein pe
457	26	26.3	8	9	AEC17863	Aec17863 Casein pe
458	26	26.3	8	9	AEC17864	Aec17864 Casein pe
459	26	26.3	9	2	AAR59233	Aar59233 Peptide f
460	26	26.3	9	2	AAR53607	Aar53607 Opioid pe
461	26	26.3	9	2	AAR70067	Aar70067 Control p
462	26	26.3	9	2	AAW54515	Aaw54515 Synthetic
463	26	26.3	9	4	AAE11834	Aae11834 Mycobacte
464	26	26.3	9	5	ABJ07523	Abj07523 Hepatitis
465	26	26.3	9	5	ABJ08794	Abj08794 Hepatitis
466	26	26.3	9	5	ABJ06013	Abj06013 Hepatitis
467	26	26.3	9	5	ABJ09086	Abj09086 Hepatitis
468	26	26.3	9	6	ADA51191.	
469	26	26.3	9	7	ABW00526	Abw00526 Human cyt
470	26	26.3	9	8	ADE98275	Ade98275 Immunogen
471	26	26.3	9	8	ADE97695	Ade97695 Immunogen
472	26	26.3	9	8		
					ADK38662	Adk38662 Hepatitis
473	26	26.3	9	8	ADK38403	Adk38403 Hepatitis
474	26	26.3	9	8	ADK37320	Adk37320 Hepatitis
475	26	26.3	9	8	ADO01394	Ado01394 Human cyt
476	26	26.3	9	8	ADR22340	
						Adr22340 Anti-Hepa
477	26	26.3	9	8	ADR22326	Adr22326 Anti-Hepa
478	26	26.3	9	8	ADR22332	Adr22332 Anti-Hepa
479	26	26.3	9	8	ADR11427	Adr11427 Hepatitis
480	26	26.3	9	8	ADT73405	Adt73405 Human RSV
481	26	26.3	9	8	ADT73183	Adt73183 Human RSV
482	26	26.3	9	8	ADT73184	Adt73184 Human RSV
483	26	26.3	9	8	ADT72243	Adt72243 Human RSV
484	26	26.3	9	8	ADT73234	Adt73234 Human RSV
	26	26.3				
485			9	9	ADZ05793	Adz05793 Hepatitis
486	26	26.3	9	9	ADZ06052	Adz06052 Hepatitis
487	26	26.3	9	9	ADZ04710	Adz04710 Hepatitis
488	26	26.3	9	9	ADZ57115	Adz57115 Cytotoxic
489	26	26.3	9	9	AEC17642	Aec17642 Casein pe
490	26	26.3	9	9	AEC17876	Aec17876 Casein pe
491	26	26.3	. 9	9	AEC17640	Aec17640 Casein pe
492	26	26.3	9	9	AEC17874	Aec17874 Casein pe
493	26	26.3	9	9	AEC17875	Aec17875 Casein pe
494	26	26.3	9	9	AEC17641	Aec17641 Casein pe
495	26	26.3	10	2	AAR25103	Aar25103 bGRF prod
496	26	26.3	10	2	AAR25091	Aar25091 bGRF prod
497	26	26.3	10	2	AAR57928	Aar57928 Randomly
						_
498	26	26.3	10	2	AAR63343	Aar63343 Peptide f
499	26	26.3	10	2	AAR57875	Aar57875 Viral hea
500	26	26.3	10	2	AAR53608	Aar53608 Opioid pe
						•

501	26	26.3	10	2	AAR53618	Aar53618 Opioid pe
502	26	26.3	10	2	AAR96501	Aar96501 Hepatitis
503	26	26.3	10	2	AAW32216	Aaw32216 Alpha-S2
504	26	26.3	10	3	AAY94204	Aay94204 Human cyt
505	26	26.3	10	4	AAB72516	Aab72516 Colostrin
506	26	26.3	10	4	AAB59326	Aab59326 Ewe colos
507	26	26.3	10	4	AAB72263	Aab72263 Colostrin
508	26	26.3	10	4	AAB72548	Aab72548 Colostrin
509	26	26.3	10	4	AAG78080	Aag78080 PB(III) m
510	26	26.3	10	4	AAB66835	Aab66835 Metal ion
511	26	26.3	10	4	AAE11846	Aaell846 M. tuberc

```
Sequence 4, Application US/10603094
; Publication No. US20040101534A1
; GENERAL INFORMATION:
; APPLICANT: Diamond, Don
; TITLE OF INVENTION: ADJUVANT-FREE PEPTIDE VACCINE
; FILE REFERENCE: 1954-410
; CURRENT APPLICATION NUMBER: US/10/603,094
; CURRENT FILING DATE: 2003-06-25
; PRIOR APPLICATION NUMBER: US 60/391088
; PRIOR FILING DATE: 2002-06-25
 NUMBER OF SEQ ID NOS: 14
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 4
   LENGTH: 14
   TYPE: PRT
   ORGANISM: Tetanus
US-10-603-094-4
 Query Match
                         56.6%; Score 56; DB 4; Length 14;
 Best Local Similarity
                         90.9%; Pred. No. 0.05;
          10; Conservative
                              1; Mismatches
                                                  0; Indels
                                                               0; Gaps
                                                                           0;
           3 IIPYIGPALNI 13
Qу
             1:11111111
Db
           4 IVPYIGPALNI 14
```

```
Sequence 19, Application US/09984365
; Publication No. US20030224980A1
; GENERAL INFORMATION:
; APPLICANT: Diamond, Don J
; TITLE OF INVENTION: IMMUNO-REACTIVE PEPTIDE CTL EPITOPES OF HUMAN CYTOMEGALOVIRUS
; FILE REFERENCE: 1954-384
; CURRENT APPLICATION NUMBER: US/09/984,365
; CURRENT FILING DATE: 2002-03-13
; PRIOR APPLICATION NUMBER: US 09/692170
; PRIOR FILING DATE: 2000-10-20
; PRIOR APPLICATION NUMBER: US 09/534639
  PRIOR FILING DATE: 2000-03-27
  PRIOR APPLICATION NUMBER: US 09/075257
  PRIOR FILING DATE: 1998-05-11
 PRIOR APPLICATION NUMBER: US 09/021298
; PRIOR FILING DATE: 1998-02-10
 PRIOR APPLICATION NUMBER: US 08/950064
 PRIOR FILING DATE: 1997-10-14
; PRIOR APPLICATION NUMBER: US 08/747488
; PRIOR FILING DATE: 1996-11-12
; NUMBER OF SEQ ID NOS: 44
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 19
  LENGTH: 26
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: HCMV vaccine peptide
US-09-984-365-19
 Query Match
                         56.6%; Score 56; DB 3; Length 26;
 Best Local Similarity 90.9%; Pred. No. 0.097;
 Matches 10; Conservative 1; Mismatches 0; Indels
                                                              0; Gaps
                                                                           0;
Qу
           3 IIPYIGPALNI 13
             1:11111111
Db
           4 IVPYIGPALNI 14
```

```
Sequence 7, Application US/10603094
; Publication No. US20040101534A1
; GENERAL INFORMATION:
; APPLICANT: Diamond, Don
 TITLE OF INVENTION: ADJUVANT-FREE PEPTIDE VACCINE
; FILE REFERENCE: 1954-410
  CURRENT APPLICATION NUMBER: US/10/603,094
  CURRENT FILING DATE: 2003-06-25
 PRIOR APPLICATION NUMBER: US 60/391088
 PRIOR FILING DATE: 2002-06-25
  NUMBER OF SEQ ID NOS: 14
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 7
   LENGTH: 26
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: KTet639V fusion peptide
US-10-603-094-7
 Query Match
                         56.6%; Score 56; DB 4; Length 26;
                         90.9%; Pred. No. 0.097;
 Best Local Similarity
 Matches 10; Conservative 1; Mismatches
                                                               0; Gaps
                                                  0; Indels
           3 IIPYIGPALNI 13
Qу
             1:11111111
Db
           4 IVPYIGPALNI 14
```

```
Sequence 44, Application US/08446692
; Patent No. 5759551
 GENERAL INFORMATION:
    APPLICANT: Ladd, Anna
    APPLICANT: Wang, Chang Yi
    APPLICANT: Zamb, Timothy
    TITLE OF INVENTION: Immunogenic LHRH peptide constructs
    TITLE OF INVENTION: and synthetic universal immune stimulators for vaccines
   NUMBER OF SEQUENCES: 114
   CORRESPONDENCE ADDRESS:
    ADDRESSEE: Maria C.H. Lin
STREET: 345 Park Avenue
     CITY: New York
     STATE: NY
    COUNTRY: US
      ZIP: 10154-0053
   COMPUTER READABLE FORM:
    MEDIUM TYPE: Floppy disk
     COMPUTER: IBM PC compatible
    OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.25
   CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/08/446,692
     FILING DATE: 7-JUN-1995
;
      CLASSIFICATION: 424
    ATTORNEY/AGENT INFORMATION:
    NAME: Maria C.H. Lin
     REGISTRATION NUMBER: 29,323
      REFERENCE/DOCKET NUMBER: 1151-4146 US2
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (212)415-8745
      TELEFAX: (516)751-6849
  INFORMATION FOR SEQ ID NO: 44:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 16 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-446-692-44
                        56.6%; Score 56; DB 1; Length 16;
 Query Match
 Best Local Similarity 90.9%; Pred. No. 0.081;
 Matches 10; Conservative
                              1; Mismatches 0; Indels
                                                              0; Gaps
Qу
           3 IIPYIGPALNI 13
            Db
           5 IVPYIGPALNI 15
```

```
Sequence 73, Application PC/TUS9311703
; GENERAL INFORMATION:
    APPLICANT: Chiron Mimotopes Pty. Ltd.
    TITLE OF INVENTION: T-Cell Epitopes
    NUMBER OF SEQUENCES: 75
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Grant D. Green
      STREET: 4560 Horton St.
      CITY: Emeryville
      STATE: CA
      COUNTRY: USA
     ZIP: 94608
    COMPUTER READABLE FORM:
    MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
    OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.30B
   CURRENT APPLICATION DATA:
    APPLICATION NUMBER: PCT/US93/11703
    FILING DATE: 28-DEC-1993
     CLASSIFICATION:
   PRIOR APPLICATION DATA:
    APPLICATION NUMBER: US 07/984,852
     FILING DATE: 02-DEC-1992
    ATTORNEY/AGENT INFORMATION:
;
    NAME: Green, Grant D.
;
      REGISTRATION NUMBER: 31,259
;
      REFERENCE/DOCKET NUMBER: 0222.101
;
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 510-601-2706
      TELEFAX: 510-655-3542
  INFORMATION FOR SEQ ID NO: 73:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 8 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
PCT-US93-11703-73
 Query Match
                        42.4%; Score 42; DB 5; Length 8;
 Best Local Similarity 87.5%; Pred. No. 5e+05;
 Matches
         7; Conservative 1; Mismatches 0; Indels 0; Gaps
                                                                         0;
Qу
           3 IIPYIGPA 10
            1:11111
Db
          1 IVPYIGPA 8
```

```
Sequence 10357, Application US/09902540
; Patent No. 6833447
; GENERAL INFORMATION:
; APPLICANT: Goldman, Barry S.
; APPLICANT: Hinkle, Gregory J.
; APPLICANT: Slater, Steven C.
 APPLICANT: Wiegand, Roger C.
; TITLE OF INVENTION: Myxococcus xanthus Genome Sequences and Uses Thereof
; FILE REFERENCE: 38-10(15849)B
  CURRENT APPLICATION NUMBER: US/09/902,540
  CURRENT FILING DATE: 2001-07-10
  PRIOR APPLICATION NUMBER: 60/217,883
; PRIOR FILING DATE: 2000-07-10
 NUMBER OF SEQ ID NOS: 16825
; SEQ ID NO 10357
 LENGTH: 30
   TYPE: PRT
   ORGANISM: Myxococcus xanthus
US-09-902-540-10357
  Query Match
                         30.3%; Score 30; DB 2; Length 30;
  Best Local Similarity 66.7%; Pred. No. 1e+03;
  Matches 4; Conservative 2; Mismatches 0; Indels
                                                               0; Gaps
           4 IPYIGP 9
Qу
             :1:11
Db
          13 VPFIGP 18
```

```
Sequence 19, Application US/09984365
; Patent No. 6733973 .
; GENERAL INFORMATION:
; APPLICANT: Diamond, Don J
; TITLE OF INVENTION: IMMUNO-REACTIVE PEPTIDE CTL EPITOPES OF HUMAN CYTOMEGALOVIRUS
; FILE REFERENCE: 1954-384
; CURRENT APPLICATION NUMBER: US/09/984,365
; CURRENT FILING DATE: 2002-03-13
; PRIOR APPLICATION NUMBER: US 09/692170
; PRIOR FILING DATE: 2000-10-20
; PRIOR APPLICATION NUMBER: US 09/534639
; PRIOR FILING DATE: 2000-03-27
  PRIOR APPLICATION NUMBER: US 09/075257
  PRIOR FILING DATE: 1998-05-11
  PRIOR APPLICATION NUMBER: US 09/021298
  PRIOR FILING DATE: 1998-02-10
  PRIOR APPLICATION NUMBER: US 08/950064
; PRIOR FILING DATE: 1997-10-14
; PRIOR APPLICATION NUMBER: US 08/747488
; PRIOR FILING DATE: 1996-11-12
; NUMBER OF SEO ID NOS: 44
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 19
  LENGTH: 26
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: HCMV vaccine peptide
US-09-984-365-19
 Query Match
                        56.6%; Score 56; DB 2; Length 26;
 Best Local Similarity 90.9%; Pred. No. 0.13;
 Matches 10; Conservative 1; Mismatches
                                                0; Indels
           3 IIPYIGPALNI 13
            1:11111111
           4 IVPYIGPALNI 14
```

```
Sequence 19, Application US/09731899
; Publication No. US20060088548A1
; GENERAL INFORMATION:
; APPLICANT: Chain, Benjamin
 TITLE OF INVENTION: CHIMERIC PEPTIDES AS IMMUNOGENS, ANTIBODIES THERETO, AND METHOD
 TITLE OF INVENTION: FOR IMMUNIZATION USING CHIMERIC PEPTIDES OR ANTIBODIES
 FILE REFERENCE: 20555/1203433-US1
 CURRENT APPLICATION NUMBER: US/09/731,899
  CURRENT FILING DATE: 2000-12-08
 PRIOR APPLICATION NUMBER: 60/169,687
 PRIOR FILING DATE: 1999-12-08
 NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn version 3.3
                                                                 631-649
; SEQ ID NO 19
   LENGTH: 16
   TYPE: PRT
    ORGANISM: Tetanus toxin bacteria
US-09-731-899-19
  Query Match
                         52.5%; Score 52; DB 1; Length 16;
  Best Local Similarity
                         90.0%; Pred. No. 0.031;
 Matches 9; Conservative
                               1; Mismatches
                                                               0; Gaps
                                                 0; Indels
           3 IIPYIGPALN 12
Qу
             1:1111111
Db
           5 IVPYIGPALN 14
```

GenCore version 5.1.9

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:30:50; Search time 99.3 Seconds

(without alignments)

176.992 Million cell updates/sec

US-10-821-669-1 COPY 631 649 Title:

Perfect score: 99

Sequence: 1 TIIIPYIGPALNIGNMLYK 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2849598 segs, 925015592 residues

Total number of hits satisfying chosen parameters: 37017

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : UniProt 7.2:*

> 1: uniprot sprot:* 2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID		Description
1	37	37.4	13	1	CRBL	ICASP	P17237 icaria sp.

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: November 1, 2006, 12:48:32; Search time 92.5641 Seconds

(without alignments)

93.850 Million cell updates/sec

Title: US-10-821-669-1_COPY_673_691

Perfect score:

Sequence: 1 IPVLGTFALVSYIANKVLT 19

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 1079608

Minimum DB seq length: 0 Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : A Geneseq 8:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	₹				
0	Query	.	22	~~	
Score	Match	Lengtn		10	Description
91	100.0	19	9	ADW11057	Adw11057 Clostridi
91	100.0	27	9	ADW11111	Adw11111 Clostridi
44	48.4	27	9	ADW11110	Adw11110 Clostridi
43	47.3	27	9	ADW11112	Adw11112 Clostridi
34	37.4	16	9	AEB21004	Aeb21004 Aspartate
34	37.4	16	9	AEB21006	Aeb21006 Aspartate
34	37.4	21	9	AEB21007	Aeb21007 Aspartate
34	37.4	21	9	AEB21005	Aeb21005 Aspartate
34	37.4	28	8	ABO54884	Abo54884 Human gen
33	36.3	21	2	AAY17917	Aay17917 Vesicle t
32	35.2	15	2	AAR13976	Aar13976 [Phe14]Me
32	35.2	15	2	AAR61467	Aar61467 [Phe- or
	91 44 43 34 34 34 34 33 33 32	Query Score Match	Query Score Match Length	Query Score Match Length DB 91 100.0 19 9 91 100.0 27 9 44 48.4 27 9 43 47.3 27 9 34 37.4 16 9 34 37.4 16 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9 34 37.4 21 9	Query Score Match Length DB ID 91 100.0 19 9 ADW11057 91 100.0 27 9 ADW11111 44 48.4 27 9 ADW11110 43 47.3 27 9 ADW11112 34 37.4 16 9 AEB21004 34 37.4 16 9 AEB21006 34 37.4 21 9 AEB21007 34 37.4 21 9 AEB21007 34 37.4 21 9 AEB21005 34 37.4 28 8 AB054884 33 36.3 21 2 AAY17917 32 35.2 15 2 AAR13976

13	32	35.2	20	9	ADZ98557	Adz985	57	Human	ami
14	32	35.2	20	9	ADZ98558	Adz 985			
15	32	35.2	27	5		Abb890			
16	32			7	ABB89007				
		35.2	27		ADE06135	Ade0613			
17	32	35.2	30	10	AEE38707	Aee38			
18	31	34.1	10	6	ABR05207	Abr0520			
19	31	34.1	15	6	ABR31075	Abr310			
20	31	34.1	15	6	ABR30903	Abr3090			
21	31	34.1	15	6	ABR30578	Abr305			
22	31	34.1	15	6	ABR31050	Abr310	50	Human	can
23	31	34.1	15	6	ABR31300	Abr3130	00	Human	can
24	31	34.1	15	6	ABR30718	Abr307	18	Human	can
25	31	34.1	15	6	ABR31535	Abr3153	35	Human	can
26	31	34.1	15	6	ABR30976	Abr309			
27	31	34.1	15	6	ABR31454	Abr3145			
28	31	34.1	15	6	ABR31586	Abr3158			
29	31	34.1	15	6	ABR31076	Abr310			
30	31	34.1	15	7	ADE00896	Ade0089			
31				7					
	31	34.1	15 15		ADE00705	Ade0070			
32	31	34.1	15	7	ADE01050	Ade0105			
33	31	34.1	15	8	ADP53847	Adp5384			
34	31	34.1	15	8	ADP53502	Adp5350			
35	31	34.1	15	8	ADP53693	Adp5369	33	Human	193
36	31	34.1	15	9	AEB87609	Aeb8760) 9	Brain	iso
37	31	34.1	16	7	ABM74151	Abm7415	51	DNA cl	one
38	31	34.1	19	2	AAY42677	Aay426	77	HHV-6	var
39	31	34.1	21	9	AEB21013	Aeb2101			
40	31	34.1	26	2	AAR27267	Aar2726			
41	31	34.1	28	10		Aee369			
42	30	33.0	10	8	ADK08573	Adk085			
43	30	33.0	10	8	ADK08574	Adk085			
44	30	33.0	13	9					
45				2	ADX17310	Adx1731			
	30	33.0	15		AAR13129	Aar1312			
46	30	33.0	15	2	AAY55128	Aay5512			
47	30	33.0	15	3	AAY86874	Aay8687			
48	30	33.0	15	9	AEB25836	Aeb2583			
49	30	33.0	17	2	AAR90401	Aar9040			
50	30	33.0	17	8	ADS13418	Ads1341			
51	30	33.0	19	10		Aee392	244	Human	ser
52	30	33.0	20	6	ABP83127	Abp8312	27 (G prot	ein
53	30	33.0	23	9	ADV57398	Adv5739			
54	30	33.0	23	9	ADV56511	Adv5651	1 (G prot	ein
55	30	33.0	25	2	AAY12585	Aay1258			
56	30	33.0	25	4	AAB65845	Aab6584			
57	30	33.0	26	2	AAR38829	Aar3882			
58	30	33.0	27	4	AAE01286	Aae0128			
59	30	33.0	27	5					
60	30	33.0	27		AAU80425	Aau8042			
				5	ABG63719	Abg6371			
61	30	33.0	27	8	ADL76984	Ad17698			
62	30	33.0	28	9	ADV91110	Adv9111			
63	30	33.0	28	9	ADX69229	Adx6922		_	_
64	30	33.0	30	9	AEB95955	Aeb9595	5 1	Human	mel
65	29.5	32.4	19	6	ABU13492	Abu1349	2 :	Zona p	ell
66	29	31.9	10	4	AAG87763	Aag8776			
67	29	31.9	10	4	AAG87762	Aag8776	2 :	Saccha	rom
68	29	31.9	11	9	ADV50819	Adv5081			
69	29	31.9	13	5	AAE27595	Aae2759			
70	29	31.9	13	5	AAE27594	Aae2759			
71	29	31.9	13	5	ADG65892	Adg6589			
72	29	31.9	13	5	ADG65891	Adg 6589			
73	29	31.9	14	4	AAB61493	Aab6149			
				-			- 1	. 02010	

7.4	2.0	21 0	1.5	10		» 200 <i>65 "</i>
74	29	31.9	15	10	AEE39065	Aee39065 Human ser
75	29	31.9	19	5	ABG79262	Abg79262 Human K+a
76	29	31.9	20	4	AAE06796	Aae06796 Human NGM
77	29	31.9	20	8	ADI41254	Adi41254 Human HGP
78	29	31.9	20	8	ADI41294	Adi41294 Human HGP
79	29	31.9	20	9	ADW81161	Adw81161 AMPK modu
80	29	31.9	20	9	ADW81192	Adw81192 AMPK modu
81	29	31.9	20	10	AEF14752	Aef14752 Human cho
82	29	31.9	22	5	ABG79256	Abg79256 Human K+a
83	29	31.9	23	8	ADF69697	Adf69697 Human SLC
84	29	31.9	25	2	AAR49445	Aar49445 Immunomod
85	29	31.9	25	2	AAR49587	Aar49587 Sequence
86	29	31.9	25	2	AAW31864	Aaw31864 MHC class
87	29	31.9	25	2		
					AAY09341	Aay09341 Human pap
88	29	31.9	25	3	AAY70694	Aay70694 Endoplasm
89	29	31.9	25	3	AAB30292	Aab30292 CD4+ T-ce
90	29	31.9	25	4	AAG67288	Aag67288 Amino aci
91	29	31.9	25	4	AAB95956	Aab95956 HLA-DRalp
92	29	31.9	25	4	AAG64714	Aag64714 HPV immun
93	29	31.9	25	4	AAB20205	Aab20205 HLA-DR-al
94	29	31.9	25	4		
					AAU03561	Aau03561 Hydrophob
95	29	31.9	25	5	AA017006	Aao17006 HLA-Dralp
96	29	31.9	25	5	ABG68880	Abg68880 Endoplasm
97	29	31.9	25	5	AAE19014	Aae19014 Hydrophob
98	29	31.9	25	5	ABB09908	Abb09908 Radiolabe
99	29	31.9	25	5	ABB75927	Abb75927 Endoplasm
100	29	31.9	25	5	ABB08107	Abb08107 MHC class
101	29	31.9	25	6	ABU08975	
102						Abu08975 Human exp
	29	31.9	25	6	AAE35568	Aae35568 Hydrophob
103	29	31.9	25	6	AAO23269	Aao23269 Hydrophob
104	29	31.9	25	6	ABU63379	Abu63379 Human tPA
105	29	31.9	25	7	ABU10009	Abu10009 Human leu
106	29	31.9	25	7	ADF57571	Adf57571 Human sig
107	29	31.9	25	8	ADM13766	Adm13766 MHC class
108	29	31.9	25	8	ADN59204	Adn59204 HLA-DRalp
109	29	31.9	25	8	ADU47822	-
						Adu47822 HPV strai
110	29	31.9	25	9	ADV99799	Adv99799 Glucanase
111	29	31.9	25	10	AEE64440	Aee64440 Human HLA
112	29	31.9	25	10	AEF53024	Aef53024 Signal pe
113	29	31.9	25	10	AEF24307	Aef24307 Endoplasm
114	. 29	31.9	26	4	AAB50207	Aab50207 Membrane
115	29	31.9	29	5	ABG79237	Abg79237 Human K+a
116	29	31.9	29	5	ABG68893	Abg68893 Secretion
117	29	31.9	30	2		
					AAY29969	Aay29969 C. elegan
118	29	31.9	30	2	AAY29968	Aay29968 C. elegan
119	28.5	31.3	18	10	AEF71020	Aef71020 Human int
120	28.5	31.3	27	8	ADM97975	Adm97975 Sesquiter
121	28	30.8	9	6	ABR05322	Abr05322 Human can
122	28	30.8	10	6	ABJ38163	Abj38163 Human cyt
123	28	30.8	15	6	ABR31587	Abr31587 Human can
124	28	30.8	15	7	ADE00690	
						Ade00690 Human 193
125	28	30.8	15	7	ADE00750	Ade00750 Human 193
126	28	30.8	15	7	ADE00938	Ade00938 Human 193
127	28	30.8	15	7	ADE00976	Ade00976 Human 193
128	28	30.8	15	8	ADP53773	Adp53773 Human 193
129	28	30.8	15 ⁻	8	ADP53735	Adp53735 Human 193
130	28	30.8	15	8	ADP53487	Adp53487 Human 193
131	28	30.8		8	ADP53547	
132	28	30.8	17	9		Adp53547 Human 193
					AEB45051	Aeb45051 B. bovis
133	28	30.8	19	4	ABB43798	Abb43798 Peptide #
134	28	30.8	19	4	AAM77527	Aam77527 Human bon

					•			
135	28	30.8	19	4	AAM64763	Aam64	763	Human bra
136	28	30.8	19	4	ABG59171			Human liv
						-		
137	28	30.8	20	2	AAR39832	Aar39	332	El peptid
138	28	30.8	23	2	AAR39881	Aar39	381	Lipopepti
139	28	30.8	23	9	AEE02004			TM6 domai
140	28	30.8	23	10	AEF20557	Aef2	D551	7 Human ost
141	28	30.8	25	8	ABO57373	Abo 5.7	272	Human gen
								_
142	28	30.8	26	4	AAB50221	Aab502	221	Membrane
143	28	30.8	26	4	AAB50202	Δ = b 5.0 °	202	Membrane
144	28	30.8	26	4	AAB50204	Aab50	204	Membrane
145	28	30.8	26	4	AAB50219	Aab50	219	Membrane
146	28	30.8	26	4	AAB50201	Aabsu	201	Membrane
147	28	30.8	26	4	AAB50210	Aab50	210.	Membrane
148 .	28	30.8	26	4	AAB50217			Membrane
149	28	30.8	26	4	AAB50228	Aab502	228	Membrane
150	28	30.8	26	4	AAB50229	Aah50	229	Membrane
151	28	30.8	26	8	ADH51590	Adn51	90	Bee venom
152	28	30.8	26	8	ADP87497	Adp87	197	Antimicro
						-		
153	28	30.8	26	8	ADR69294			Apis flor
154	28	30.8	27	4	AAM18092	Aam180	92	Peptide #
155	28	30.8	27	4	AAB50213			Membrane
156	28	30.8	27	4	AAB50216	Aab502	216	Membrane
157	28	30.8	27	4	AAB50227	Aah501	227	Membrane
158	28	30.8	27	4	AAB50223	Aab502	223	Membrane
159	28	30.8	27	4	AAB50214	Aab502	214	Membrane
160	28	30.8	27	4				
					AAB50225			Membrane
161	28	30.8	27	4	ABB37128	Abb37	128	Peptide #
162	28	30.8	27 .	1	ABB31889			Peptide #
								-
163	28	30.8	27	4	ABB22439	Abb22	139	Protein #
164	28	30.8	27	4	AAM70265	Aam702	265	Human bon
165	28	30.8	27	4				
					AAM57847			Human bra
166	28	30.8	27	4	ABG51963	Abq519	963	Human liv
167	28	30.8	27	4	AAM05727			Peptide #
								=
168	28	30.8	27	5	ABG39908	Abg399	908	Human pep
169	28	30.8	27	5	AAU90989	Aau 90	989	Transplan
170	28	30.8	27	9	ADX08367			Melittin
171	28	30.8	28	2	AAR89928	Aar899	928	A. cellul
172	28	30.8	28	4	AAB50218			Membrane
173	28	30.8	28	4	AAB50230	Aab502	230	Membrane
174	28	30.8	28	8	ADH76878	Adh768	378	HGG-M2A p
175	28	30.8	28		ADV91068			Human sod
176	28	30.8	28	9	ADV91067	Adv910	067	Human sod
177	28	30.8	28	9	ADV91069			Human sod
178	28	30.8	28	9	ADX69186	Adx691	L86	Voltage-g
179	28	30.8	28	9	ADX69187	. Adved.	187	Voltage-g
180 .	28	30.8	28	9	ADX69188	Adx69	188	Voltage-g
181	28	3.0.8	29	3	AAB44873	Aab448	373	Human sec
182	28	30.8	29	9	AEB54587			
								Mouse pre
183	28	30.8	30	1	AAP98449	Aap984	149	Sequence
184	28	30.8	30	2	AAR74252	Dar741	552	Chlamydia
185	28	30.8	30	2	AAR91524	Aar915	24	Chlamydia
186	28	30.8	30	5	ABG68798	Aba68	798	C. tracho
187	27.5	30.2	23	4				
					AAM21121			Peptide #
188	27.5	30.2	23	4	ABB43437	Abb434	137	Peptide #
189	27.5	30.2	23	4	AAM37325			Peptide #
190	27.5	30.2	23	4	ABB26407	Abb264	107	Protein #
191	27.5	30.2	23	4	AAM64366			Human bra
192		30.2						
	27.5		23	4	ABG58814			Human liv
193	27	29.7	10	6	ABR05417	Abr054	117	Human can
194	27	29.7	10	8	ADS87097			Human gen
								-
195	27	29.7	12	8	ADP87492	Adp874	192	Antimicro

100	2.7	20.7	10	_	22244120		7 - 1- 4 4 1 2 0	D
196	27	29.7	12	8	AEB44138			Biomedica
197	27	29.7	14	2	AAW53471			P2 predom
198	27	29.7	14	8	ADG71721		Adg71721	Human HGP
199	27	29.7	15	2	AAR89150		Aar89150	CAEV env
200	27	29.7	15	5	AAU10987		Aau10987	Human cel
201	27	29.7	15	5	ABG73581		Abg73581	Human zin
202	27	29.7	15	6	ABR32470			Human can
203	27	29.7	15	6	ABR32545			Human can
204	27	29.7	15	6	ABR32424			
						•		Human can
205	27	29.7	15	6	ABR31624			Human can
206	27	29.7	- 15	6	ABR30390			Human can
207	27	29.7	15	6	ABR30904			Human can
208	27	29.7	15	6	ABR31077		Abr31077	Human can
209	27	29.7	15	6	ABR32330		Abr32330	Human can
210	27	29.7	15	7	ADE01056		Ade01056	Human 193
211	27	29.7	15	7	ADE00824		Ade00824	Human 193
212	27	29.7	15	7	ADE00975		Ade00975	Human 193
213	27	29.7	15	7	ADE00937		Ade00937	Human 193
214	27	29.7	15	7	ADE00728			Human 193
215	27	29.7	15	7	ADJ05378			238P1B2 g
216	27	29.7	15	7	ADJ06118			238P1B2 g
217	27	29.7	15	7	ADJ05727			238P1B2 g
218	27	29.7						
			15	7	ADJ05820		•	238P1B2 g
219	27	29.7	. 15	7	ADJ05460			238P1B2 g
220	27	29.7	15	7	ADJ05775			238P1B2 g
221	27	29.7	15	7	ADJ06061			238P1B2 g
222	27	29.7	15	7	ADJ05908			238P1B2 g
223 •	27	29.7	15	7 ·	ADJ05404		Adj05404	238P1B2 g
224	27	29.7	15	7	ADJ05620		Adj05620	238P1B2 g
225	27	29.7	15	7	ADJ05867		Adj05867	238P1B2 g
226	27	29.7	15	7	ADJ05377		Adj05377	238P1B2 g
227	27	29.7	15	7	ADJ05621			238P1B2 g
228	27	29.7	15	7	ADJ06215			238P1B2 g
229	. 27	29.7	15	7	ADJ05967		_	238P1B2 g
230	27	29.7	15	7	ADJ06183			238P1B2 g
231	27	29.7	15	8	ADN58212		_	238P1B2 H
232	27	29.7	15	8	ADN58309			238P1B2 H
233	27	29.7	15	8	ADN58061			238P1B2 H
234	27							
234		29.7	15	8	ADN57554			238P1B2 H
	27	29.7	15	8	ADN57914			238P1B2 H
236	27	29.7	15	8	ADN57821			238P1B2 H
237	27	29.7	15	8	ADN58277			238P1B2 H
238	27	29.7	15	8	ADN57714			238P1B2 H
239	27	29.7	15	8	ADN57961		Adn57961	238P1B2 H
240	27	29.7	15	8	ADN57715		Adn57715	238P1B2 H
241	27	29.7	15	8	ADN58002		Adn58002	238P1B2 H
242	27	29.7	15	8	ADN57472			238P1B2 H
243	27	29.7	15	8	ADN57498			238P1B2 H
244	27	29.7	15	8	ADN57869			238P1B2 H
245	27	29.7	15	8	ADN58155			238P1B2 H
246	27	29.7	15	8	ADN57471			238P1B2 H
247	27	29.7	15	8	ADP53621			
247	27	29.7	15	8			•	Human 193
249	27	29.7			ADP53772			Human 193
			15	8	ADP53853			Human 193
250	27	29.7	15	8	ADP53525		_	Human 193
251	27	29.7	15	8	ADP53734			Human 193
252	27	29.7	15	9	AEB87611			Brain iso
253	27	29.7	16	8	ADO36463			Intracell
254	27	29.7	17	4	ABB38962		Abb38962	Peptide #
255	27	29.7	17	4	AAM32446		Aam32446	Peptide #
256	27	29.7	17	4	AAM72186		Aam72186	Human bon

257	27	29.7	17	4	AAM59613	7 5	0613	Human bra
258	27	29.7	17	4	ABG53872			Human liv
259	27	29.7	17	5	ABG42000			Human pep
260	27	29.7	17	8	ADT39045	Adt3	9045	hSARS vir
261	27	29.7	17	8	ADS78465			SARS viru
262	27	29.7	17	8	ADT36575			hSARS vir
263	27	29.7	17	8	ABY00078	-		SARS coro
264	27	29.7	18	2	AAW09486			Thrombopo
265	27	29.7	18	2	AAW36637	Aaw3	6637	Thrombopo
266	27	29.7	18	4	AAU25856			Human thr
267	27	29.7	18	9	ADV22869			HCV H77 i
				_				
268	27	29.7	19	7	ADF14607			Rheumatoi
269	27	29.7	19	8	ADT39130			hSARS vir
270	27	29.7	19	8	ADS78550	Ads7	8550	SARS viru
271	27	29.7	19	8	ADT36660	Adt3	6660	hSARS vir
272	27	29.7	19	8	ABY00163			SARS coro
273	27	29.7	19	8	ABY03338			SARS coro
						_		
274	27	29.7	19	9	AEC95996			F. hetero
275	27	29.7	20	2	AAR55359			Conformat
276	27	29.7	20	2	AAY01468	Aay0	1468	Polypepti
277	27	29.7	20	7	ABO23439	` Abo2	3439	Amino aci
278	27	29.7	20	8	ADR20827			Human sec
279	27	29.7	21	2				Glutamic
					AAR72296			
280	27	29.7	21	2	AAW34051			Human MDR
281	27	29.7	21	3	AAY59588	Aay5	9588	GAD65 fra
282	27	29.7	21	8	ADY81194	Ady8	1194	Rice gene
283	27	29.7	22	6	ABP99586	Abp9	9586	Human sec
284	27	29.7	22	6	ABR01068			Human gen
285	27	29.7	23	4	AAM88237			Human imm
286	27	29.7	23	4	AAB64425			Human sec
287	27	29.7	24	2	AAW23485			Antibacte
288	27	29.7	24	4	AAU04309	Aau0	4309	ATP-bindi
289	27	29.7	25	2	AAW03632	Aaw0	3632	G-protein
290	27	29.7	25	2	AAY39442	Aav3	9442	Human Bur
291	27	29.7	25	2	AAW90171			Triabin/t
292	27	29.7	25	2	AAW90170			Triabin/t
293	27	29.7						
			25	5	ABB82365			M11L prot
294	27	29.7	25	5	AAO21800			Lung-spec
295	27	29.7	25	5	AAU78042	Aau7	8042	Human Bur
296	27	29.7	25	6	ABJ19229	Abj1	9229	T helper
297	27	29.7	25	9	ADV26014			Myxoma vi
298	27	29.7	26	2	AAR38837			Melittin
299	27	29.7	26	2				
					AAR38838			Melittin
300	27	29.7	26	2	AAY30916			Human sec
301	27	29.7	26	8	ADG71689			Human HGP
302	27	29.7	26	10	AEE37498	Aee	37498	Human ser
303	27	29.7	27	8	ADK50716			Human car
304	27	29.7	28	3	AAB28711			Human sec
305	27	29.7	28	5	ABG78096			
								ITALY, LO
306	27	29.7	28	8	ADR45672			Rat G pro
307	27	29.7	28	9	ADV91050	Adv9	1050	Rat sodiu
308	27	29.7	28	9	ADV91043	Adv9	1043	Human sod
309	27	29.7	28	9	ADV91049	Adv9	1049	Rat sodiu
310	27	29.7	28	9	ADV91044			Human sod
311	27	29.7	28	9	ADV91047			Rat sodiu
312	27	29.7	28	9	ADX69166			Voltage-g
313	27	29.7	28	9	ADX69168			Voltage-g
314	27	29.7	28	9	ADX69169	Adx6	9169	Voltage-g
315	27	29.7	28	9	ADX69162	Adx6	9162	Voltage-g
316	27	29.7	28	9	ADX69163			Voltage-g
317	27	29.7	29	4	AAB60729			Human sec
	٠,			-			- · - ·	

318	27	29.7	29	5	AAU98712	A 211 98 7 1 2	Human cyc
319	27	29.7	29	8			_
					ADP87495		Antimicro
320	27	29.7	29	8	ADP87494		Antimicro
321	27	29.7	29	8	AEB44140		Biomedica
322	27	29.7	29	8	AEB44141		Biomedica
323	27	29.7	30	1	AAP80653	Aap80653	Peptide e
324	27	29.7	30	2	AAR05809	Aar05809	Signal pe
325	27	29.7	30	2	AAY41529	Aay41529	Fragment
326	27	29.7	30	5	AAU84648		HCV HepC1
327	26.5	29.1	16	9	AEA27278		Stress to
328	26.5	29.1	19	5	AAU99839		Human cat
329	26.5	29.1	25	2			
					AAR39772	Aar39772	
330	26.5	29.1	25	2	AAR39770	Aar39770	
331	26.5	29.1	28	2	AAW40014		Peptide e
332	26.5	29.1	30	5	ABP29172		Streptoco
333	26	28.6	9	2	AAR51596	Aar51596	Mimotope
334	26·	28.6	9	2	AAR69971	Aar69971	Nonameric
335	26	28.6	9	2	AAR98719	Aar98719	Peptide 2
336	26	28.6	9	2	AAY46520		Immunogen
337	26	28.6	9	7	ADW32181	-	HLA bindi
338	26	28.6	9	7	ADW31315		HLA bindi
339	26	28.6	10	9	ADZ04488		Alpha1-an
340	26	28.6	12	6	ABR42901		Bovine hi
341	26	28.6	12	9	AEB94175		Serum CD2
342	26	28.6	13	6	ABR59542		
343	26			9			S. aureus
		28.6	13		AEB94174		Serum CD2
344	26	28.6	13	9	AED27713		Tyrosyl-t
345	26	28.6	14	2	AAW40030		Cytoplasm
346	26	28.6	14	4	AAG99376	-	Proteasom
347	26	28.6	14	4	AAE05991	Aae05991	Peptide #
348	26	28.6	14	7	ADH89139	Adh89139	E. avium
349	26	28.6	15	2	AAR13975	Aar13975	[Leu14]Me
350	26	28.6	15	2	AAR61466	Aar61466	[Leu-14]
351	26	28.6	15	7	ADD24084	Add24084	Breast ca
352	26	28.6	15	7	ADD23632	Add23632	Breast ca
353	. 26	28.6	15	8	ADL70918		PTP1B pho
354	26	28.6	15	8	ADL70822		PTP1B pho
355	26	28.6	15	8	ADL70917		PTP1B pho
356	26	28.6	15	8	ADP26537		Plasmodiu
357	26	28.6	16	7	ADM47482		Bioactive
358	26	28.6	16	8	ADI41077		
359	26					· · · · · · · · · · · · · · · · · · ·	Human HGP
		28.6	16	8	ADI41155		Human HGP
360	26	28.6	16	8	ADI41115		Human HGP
361	26	28.6	17	7	ADJ00164		238P1B2 g
362	26	28.6	17	8	ADN52266		238P1B2 H
363	26	28.6	18	3	AAB51856		Human sec
364	26	28.6	18	4	AAG99373	Aag99373	Proteasom
365	26	28.6	18	7	ADG73501	Adg73501	Enterococ
366	· 26	28.6	18	9	AEC11101	Aec11101	Enterococ
367	26	28.6	18	10	AEE36861		Human ser
368	26	28.6	19	2	AAY16640	Aav16640	WO9914235
369	26	28.6	19	3	AAB28825		Geminivir
370	26	28.6	19	7.	ADJ00165		238P1B2 g
371	26	28.6	19	8	ADH89725		Cell pene
372	26	28.6	19	8	ADN52267		238P1B2 H
373	26	28.6	19	9	ADX56727		
374	26	28.6	19	9	ADX38727 ADY38118		Cardiovas
375							Human CPP
	26 26	28.6	19	9	ADZ80725		Amino aci
376	26	28.6	19	9	ADZ80726		Amino aci
377	26	28.6	19	9	AED43095		Persephin
378	26	28.6	19	9	AED68502	Aed68502	Membrane-

379	26	28.6	19	9	AED89965	Aed89965 Membrane
380	26	28.6	19	10		Aee25291 Transport
381	26	28.6	19	10		Aef51810 Transport
382	26	28.6	20	2	AAR42715	Aar42715 Guinea pi
383	26	28.6	20	2	AAR42714	Aar42713 Guinea pi
384	26	28.6	20	2	AAY40856	Aay40856 Amino aci
385	26	28.6	20	7	ADF28112	Adf28112 Complemen
386	26	28.6	20	7	ADF28102	Adf28102 Complemen
387	26	28.6	20	8	ADH37342	Adizatoz Complemen Adh37342 Epstein B
388	26			8		
389		28.6	20		ADH37343	Adh37343 Epstein B
390	26 26	28.6	20	8 9	ADU17214	Adul7214 M. tuberc
391		28.6	20	9	ADW52238 ADZ98147	Adw52238 Human PL
391	26	28.6 28.6	20			Adz 98147 Human ami
393	26 26		20	9	AEE34822	Aee34822 Wheat gli
	26	28.6	20	9	AEE34823	Aee34823 Wheat gli
394	26	28.6	20	10		Aef09682 Monkeypox
395	26	28.6	21	2	AAW34062	Aaw34062 GPCR anta
396	26	28.6	21	2	AAW26292	Aaw26292 Peptide 6
397	26	28.6	21	2	AAW40031	Aaw40031 Peptide d
398	26	28.6	21	7	ADJ93115	Adj93115 Human G-c
399	26	28.6	21	9	ADY63840	Ady63840 Human apo
400	26	.28.6	22	2	AAR70673	Aar70673 Transmemb
401	26	28.6	22	7	ADJ93201	Adj93201 Human G-c
402	26	28.6	22	9	AED68501	Aed68501 Membrane-
403	26	28.6	22	9	AED89964	Aed89964 Membrane
404	26	28.6	22	10		Aee25290 Transport
405	26	28.6	22	10	AEF51809	Aef51809 Transport
406	26	28.6	24	2	AAR66208	Aar66208 N-termina
407	26	28.6	24	2	AAW26284	Aaw26284 Peptide A
408	26	28.6	24	2	AAW26285	Aaw26285 Peptide A
409	26	28.6	25	2	AAR39760	Aar39760 Melittin
410	26	28.6	25	2	AAR39765	Aar39765 Melittin
411	26	28.6	25	2	AAR39763	Aar39763 Melittin
412	26	28.6	25	2	AAR39761	Aar39761 Melittin
413	26	28.6	25	2	AAR39766	Aar39766 Melittin
414	26	28.6	25	2	AAR39768	Aar39768 Melittin
415	26	28.6	25	2	AAR39762	Aar39762 Melittin
416	26	28.6	25	2	AAR39769	Aar39769 Melittin
417	26	28.6	25	2	AAR39783	Aar39783 Melittin
418	26	28.6	25	2	AAR39764	Aar39764 Melittin
419	26	28.6	25	2	AAR39782	Aar39782 Melittin
420	26	28.6	25	2	AAR39767	Aar39767 Melittin
421	26	28.6	25	2	AAM48358	Aam48358 Antifunga
422	26	28.6	25	3	AAY71483	Aay71483 Ehrlichia
423	26	28.6	25	5	AAU96113	Aau96113 Ehrlichia
424	26	28.6	25	7	ADM80761	Adm80761 Melittin
425	26	28.6	25	8	ADH89721	Adh89721 Cell pene
426	26	28.6	25	9	AED68499	Aed68499 Membrane-
427	26	28.6	25	9	AED89962	Aed89962 Membrane
428	26	28.6	25	10	AEE25288	Aee25288 Transport
429	26	28.6	25	10	AEF51807	Aef51807 Transport
430	26	28.6	26	1	AAP91340	Aap91340 Amino aci
431	26	28.6	26	2	AAR13908	Aar13908 Guanidina
432	26	28.6	26	2	AAR22990	Aar22990 Melittin
433	26	28.6	26	2	AAR39788	Aar39788 Melittin
434	26	28.6	26	2	AAR38828	Aar38828 Melittin
435	26	28.6	26	2	AAR39789	Aar39789 Melittin
436	26	28.6	26	2	AAR39759	Aar39759 Melittin
437	26	28.6	26	2	AAR38839	Aar38839 Melittin
438	26	28.6	26	2	AAR38834	Aar38834 Melittin
439	26	28.6	26	2	AAR39784	Aar39784 Melittin

440	26	28.6	26	2	AAR39785	72230705	Melittin
441	26	28.6	26	2	AAR38827		Melittin
442	26	28.6	26	2	AAR39790		Melittin
443	26	28.6	26	2	AAR35383	Aar35383	Melittin
444	26	28.6	26	2	AAR45114	Aar45114	Melittin
445	26	28.6	26	2	AAR50565	Aar50565	Amphiphil
446	26	28.6	26	2	AAR55989	Aar55989	Ion chann
447	26	28.6	26	2	AAR59067		Melittin,
448	26	28.6	26	2	AAR56950		Peptide w
449	26	28.6	26	2	AAR50430		
							Amphiphil
450	26	28.6	26	2	AAR85516		Melittin.
451	26	28.6	26	2	AAR72973		Calmoduli
452	26	28.6	26	2	AAR90136	Aar90136	Melittin
453	26	28.6	26	2	AAW08667	Aaw08667	Honeybee
454	26	28.6	26	2	AAW09134	Aaw09134	Melittin
455	26	28.6	26	2	AAW23502	Aaw23502	Antibacte
456	26	28.6	26	2	AAW16374		Honeybee
457	26	28.6	26	2	AAW35146		Melittin-
458	26	28.6	26	2	AAW35145		Melittin-
459	26	28.6	26	2			
460	26				AAW77385		Lytic pep
		28.6	26	2	AAW66453		Cationic
461	26	28.6	26	2	AAW43128		Melittin,
462	26	28.6	26	2	AAW71674		Melittin-
463	26	28.6	26	2	AAW82879		Antipatho
464	26	28.6	26	2	AAW82880	Aaw82880	Antipatho
465	26	28.6	26	2	AAY22019	Aay22019	Melittin.
466	26	28.6	26	2	AAW87611	Aaw87611	Antimicro
467	26	28.6	26	2	AAW95333	Aaw95333	Synthetic
468	26	28.6	26	2	AAY10732		Peptide u
469	26	28.6	26	3	AAB12439		Plasmid c
470	26	28.6	26	3	AAY44325		Antimicro
471	26	28.6	26	3	AAY91752	_	Cationic
472	26	28.6	26	3	AAB17408		Antipatho
473	26	28.6	26	3	AAB17407		Antipatho
474	26	28.6	26	3	AAB17409		Antipatho
475	26	28.6	26	3	AAB11034		Apis mell
476	26	28.6	26	4	AAM20092		-
477	26	28.6		4			Peptide #
478 ·			26		AAB50205		Membrane
		28.6	26	4	AAB50209	Aab50209	
479	26	28.6	26	4	AAB50199	Aab50199	
480	26	28.6	26		AAB50200		Membrane
481	26	28.6	26	4	AAB92169		Signal tr
482	26	28.6	26	4	ABB40276	Abb40276	Peptide #
483	26	28.6	26	4	ABB39475	Abb39475	Peptide #
484	26	28.6	26	4	ABB42416	Abb42416	Peptide #
485	26	28.6	26	4	AAM33959		Peptide #
486	26	28.6	26	4	AAM36226		Peptide #
487	26	28.6	26	4	AAM33012		Peptide #
488	26	28.6	26	4	AAG99362		Proteasom
489	26	28.6	26	4	AAB50842		Bee prote
490	26	28.6	26	4	ABB25868		
491	26	28.6	26	4	ABB24689		Protein #
492							Protein #
	26	28.6	26	4	AAM73772		Human bon
493	26	28.6	26	4	AAM72782 .		Human bon
494	26	28.6	26	4	AAM76117		Human bon
495	26	28.6	26	4	AAM63301		Human bra
496	26	28.6	26	4	AAM61069	Aam61069	Human bra
497	26	28.6	26	4	AAM60166	Aam60166	Human bra
498	26	28.6	26	4	ABG57838	Abg57838	Human liv
499	26	28.6	26	4	ABG55518		Human liv
500	26	28.6	26	4	ABG54483		Human liv

501	26	28.6	26	4	AAY72458	Aay72458 Mellitin
502	26	28.6	26	5		
					AAM49738	Aam49738 Peptide f
503	26	28.6	26	5	ABG43657	Abg43657 Human pep
504	26	28.6	26	5	ABG45484	Abg45484 Human pep
505	26	28.6	26	5	ABG42607 .	Abg42607 Human pep
506	26	28.6	26	5	ABB73012	Abb73012 Antipatho
507	26	28.6	26	5	ABB73010	Abb73010 Antipatho
508	26	28.6	26	5	ABB73011	Abb73011 Antipatho
509	26	28.6	26	5	ABB81941	Abb81941 Peptide f
510	26	28.6	26	5	AAE18196	Aae18196 Apis mell
511	26	28.6	26	5	AAE18198	Aae18198 Procytoto
512	26	28.6	26	5	AAE22445	Aae22445 Biologica
513	26	28.6	26	5	ABB81263	
						Abb81263 [D]-Melit
514	26	28.6	26	5	ABB81262	Abb81262 Melittin
515	26	28.6	26	5	AA021742	Aao21742 Melittin
516	26	28.6	26	5	AAO21734	Aao21734 Melittin
517	26	28.6	26	5	AAO21740	Aao21740 Procytoto
518	26	28.6	26	6	ABU07618	Abu07618 Crystal a
519	26	28.6	26	6	ABU59630	Abu59630 Cationic
520	26	28.6	26	6	ABR00830	Abr00830 Bioactive
521	26	28.6	26	7	ADF18363	Adf18363 Antibacte
522	26	28.6	26	7	ADG88568	Adg88568 Crystal a
523	26	28.6	26	7	ADJ73166	Adj73166 Antipatho
524	26	28.6	26	7	ADJ73165	Adj73165 Antipatho
525	26	28.6	26	7	ADJ73164	Adj73164 Antipatho
526	26	28.6	26	8	ADJ52801	Adj52801 CH1 delet
527	26	28.6	26	8	ADJ52800	
528	26	28.6	26	8	•	Adj52800 CH1 delet
529	26				ADJ52799	Adj52799 CH1 delet
		28.6	26	8	ADJ51762	Adj51762 CH1 delet
530	26	28.6	26	8	ADJ51760	Adj51760 CH1 delet
531	26	28.6	26	8	ADJ51761	Adj51761 CH1 delet
532	26	28.6	26	8	ADJ78628	Adj78628 Purificat
533	2.6	28.6	26	8	ADO59380	Ado59380 Melittin
534	26	28.6	26	8	ADP74183	Adp74183 Melittin
535	26	28.6	26	8	ADR12685	Adr12685 Bee melit
536	26	28.6	26	8	ADU69235	Adu69235 Honey bee
537	26	28.6	26	9	ADW73980	Adw73980 Honey bee
538	26	28.6	26	9	ADY67501	Ady67501 Tumor cel
539	26	28.6	26	9	ADZ60124	Adz60124 Melittin
540	26	28.6	26	9	AEA47560	Aea47560 Amino aci
541	26	28.6	26	9	AEC60349	Aec60349 Biodegrad
542	26	28.6	26	9	AEC60348	Aec60348 Biodegrad
543	26	28.6	26	10	AEE36724	Aee36724 Human ser
544	26	28.6	26	10	AEE99045	Aee99045 Tumor tis
545	26	28.6	26	10	AEF61738	Aef61738 Modified
546	26	28.6	26	10	AEF61737	
547		28.6				Aef61737 Modified
	26		26	10	AEF61736	Aef61736 Modified
548	26	28.6	26	10	AEF69156	Aef69156 ES-HER2/n
549	26	28.6	26	10	AEG07876	Aeg07876 Peptide 2
550	26	28.6	27	2	AAW66392	Aaw66392 Bee venom
551	26	28.6	27	5	ABB81271	Abb81271 Antibacte
552	26	28.6	27	5	ABB81236	Abb81236 Antibacte
553	26	28.6	27	8	ABO56899	Abo56899 Human gen
554	26	28.6	27	8	ADK49194	Adk49194 Human car
555	26	28.6	27	9	ADV60176	Adv60176 COX pepti
556	26	28.6	27	9	AEC32680	Aec32680 Keratinoc
557	26	28.6	28	1	AAP60883	Aap60883 Synthetic
558	26	28.6	28	2	AAY02954	Aay02954 Fragment
559	26	28.6	28	4	AAM13591	Aam13591 Peptide #
560	26	28.6	28	4	ABB32521	Abb32521 Peptide #
561	26	28.6	28	4	AAM25989	Aam25989 Peptide #

	562	26	28.6	28	4	AAB85397	Aab85397 Stem cell
	563	26	28.6	28	4	ABB27373	Abb27373 Human pep
	564	26	28.6	28	4	ABB18026	Abb18026 Protein #
	565	26	28.6	28	4	AAM65732	Aam65732 Human bon
	566	26	28.6	28	4	AAM53353	Aam53353 Human bra
	567	26	28.6	28	4	ABG47373	Abg47373 Human liv
	568	26	28.6	28	4	AAM01341	Aam01341 Peptide #
	569	26	28.6	28	5	ABG35361	Abg35361 Human pep
	570	26	28.6	28	6	ABO01431	Abo01431 Human ste
	571	26	28.6	28	6	ABR63692	Abr63692 Human bre
	572	26	28.6	28	7	ADA07789	Ada07789 Human sec
	573	26	28.6	28	8	ADN41475	Adn41475 Novel hum
	574	26	28.6	28	9	ADV91039	Adv91039 Human sod
	575	26	28.6	28	9	ADV91041	Adv91041 Human sod
	576	26	28.6	28	9	ADV91042	Adv91042 Human sod
	577	26	28.6	28	9	ADV91040	Adv91040 Human sod
	578	26	28.6	28	9	ADV91045	Adv91045 Human sod
	579	26	28.6	28	9	ADV91046	Adv91046 Rat sodiu
	580	26	28.6	28	9	ADX69165.	Adx69165 Voltage-g
	581	26	28.6	28	9	ADX69158	Adx69158 Voltage-g
•	582	26	28.6	28	9	ADX69160	Adx69160 Voltage-g
	583	26	28.6	28	9	ADX69159	Adx69159 Voltage-g
	584	26	28.6	28	9	ADX69164	Adx69164 Voltage-g
	585	26	28.6	28	9	ADX69161	Adx69161 Voltage-g
	586	26	28.6	29	2	AAR09355	Aar09355 Sequence
	587	26	28.6	29	3	AAY65201	Aay65201 Human 5'
	588	26	28.6	29	7	ADJ00166	Adj00166 238P1B2 g
	589	26	28.6	29	8	ADN52268	Adn52268 238P1B2 H
	590	26	28.6	29	8	ADU72765	Adu72765 Signal pe
	591	26	28.6	29	9	ADZ73756	Adz73756 Human inc
	592	26	28.6	30	2	AAR98027	Aar98027 Fusogenic
	593	26	28.6	30	3	AAY64891	Aay64891 Human 5'
	594	26	28.6	30	4	AAU30169	Aau30169 Novel hum
	595	26	28.6	30	5	AAU84956	Aau84956 Human Trp

.

.

1

```
Sequence 209, Application US/10801990
; Publication No. US20050048574A1
; GENERAL INFORMATION:
; APPLICANT: Kantor, Aaron B.
; APPLICANT: Schulman, Howard
; APPLICANT: Becker, Christopher
; TITLE OF INVENTION: BIOMARKERS FOR RHEUMATOID ARTHRITIS
; FILE REFERENCE: SURR.121
; CURRENT APPLICATION NUMBER: US/10/801,990
; CURRENT FILING DATE: 2004-03-15
; PRIOR APPLICATION NUMBER: US 60/455,037
; PRIOR FILING DATE: 2003-03-14
 NUMBER OF SEQ ID NOS: 395
 SOFTWARE: PatentIn version 3.2
; SEQ ID NO 209
   LENGTH: 17
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-801-990-209
  Query Match
                         33.0%; Score 30; DB 5; Length 17;
  Best Local Similarity 85.7%; Pred. No. 6.5e+02;
  Matches 6; Conservative 1; Mismatches 0; Indels
                                                            0; Gaps
Qу
           7 FALVSYI 13
             1111:11
Db
           8 FALVNYI 14
```

```
Sequence 10, Application US/09178093B
; Patent No. 6660846
; GENERAL INFORMATION:
; APPLICANT: Robert H. Edwards
; APPLICANT: Richard J. Reimer
; APPLICANT: Steve L. McIntire
 APPLICANT: Erik M. Jorgenson
; APPLICANT: Kim Schuske
  TITLE OF INVENTION: Vesicular Amino Acid Transported
 TITLE OF INVENTION: Composition and Method
 FILE REFERENCE: 2002-0005.30
  CURRENT APPLICATION NUMBER: US/09/178,093B
  CURRENT FILING DATE: 2001-08-20
  PRIOR APPLICATION NUMBER: 60/063,012
  PRIOR FILING DATE: 1997-10-23
 NUMBER OF SEQ ID NOS: 50
 SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 10
  LENGTH: 21
   TYPE: PRT
   ORGANISM: Rattus norvegicus
US-09-178-093B-10
                         36.3%; Score 33; DB 2; Length 21;
 Query Match
 Best Local Similarity 66.7%; Pred. No. 39;
 Matches 6; Conservative 2; Mismatches 1; Indels
                                                              0; Gaps
Qу
           5 GTFALVSYI 13
             | ||||:|:
Db
          11 GLFALVAYL 19
```

```
Sequence 33, Application US/07643343A
; Patent No. 5235038
 GENERAL INFORMATION:
    APPLICANT: Blondelle, Sylvie E.
    APPLICANT: Houghten, Richard A.
    TITLE OF INVENTION: Deletion and Substitution
    TITLE OF INVENTION: Analogues of Melittin Peptide
   NUMBER OF SEQUENCES: 45
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: Carella, Byrne, Bain, Gilfillan,
     ADDRESSEE: Cecchi & Stewart
     STREET: 6 Becker Farm Road
      CITY: Roseland
      STATE: New Jersey
      COUNTRY: USA
      ZIP: 07068
    COMPUTER READABLE FORM:
    MEDIUM TYPE: 3.5 inch diskette
      COMPUTER: IBM PS/2
     OPERATING SYSTEM: PC-DOS
      SOFTWARE: DW4.V2
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/643,343A
      FILING DATE: 19910122
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER:
     FILING DATE:
    ATTORNEY/AGENT INFORMATION:
     NAME: Olstein, Elliot M.
      REGISTRATION NUMBER: 24,025
     REFERENCE/DOCKET NUMBER: 421250-139
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 201-994-1700
      TELEFAX: 201-994-1744
  INFORMATION FOR SEQ ID NO: 33:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 26 amino acids
      TYPE: AMINO ACID
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: substitution analogue of melittin
      NAME/KEY: peptide
US-07-643-343A-33
 Query Match
                        33.0%; Score 30; DB 1; Length 26;
 Best Local Similarity 53.8%; Pred. No. 1.8e+02;
 Matches 7; Conservative 2; Mismatches 4; Indels
                                                              0; Gaps
Qу
           4 LGTFALVSYIANK 16
            Db
          11 LGLPALISWIKRK 23
```

```
Sequence 42, Application US/08764640
; Patent No. 5869451
; Patent No. 5869451 5837683
; GENERAL INFORMATION:
     APPLICANT: Dower, William J.
     APPLICANT: Barrett, Ronald W.
    APPLICANT: Cwirla, Steven E.
    APPLICANT: Gates, Christian
    APPLICANT: Schatz, Peter J.
    APPLICANT: Balasubramanian, Palaniappan
    APPLICANT: Wagstrom, Christopher R.
    APPLICANT: Waystrom, Christopher APPLICANT: Hendren, Richard W. APPLICANT: Deprince, Randolph B. APPLICANT: Podduturi, Surekha APPLICANT: Yin, Qun
   TITLE OF INVENTION: PEPTIDES AND COMPOUNDS THAT BIND TO A TITLE OF INVENTION: RECEPTOR
  NUMBER OF SEQUENCES: 244
  CORRESPONDENCE ADDRESS:
    ADDRESSEE: Glaxo Wellcome
      STREET: Five Moore Drive, P.O. Box 13398
     CITY: Research Triangle Park
      STATE: NC
      COUNTRY: USA
      ZIP: 27709
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
   CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/764,640
      FILING DATE: 11-DEC-1996
     CLASSIFICATION: 514
   ATTORNEY/AGENT INFORMATION:
    NAME: Hrubiec, Robert T. REGISTRATION NUMBER: 36,392
     REFERENCE/DOCKET NUMBER: PK3281
     TELECOMMUNICATION INFORMATION:
    TELEPHONE: 919-248-1000
 INFORMATION FOR SEQ ID NO: 42:
  SEQUENCE CHARACTERISTICS:
     LENGTH: 18 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-764-640-42
  Query Match 29.7%; Score 27; DB 1; Length 18; Best Local Similarity 62.5%; Pred. No. 3.9e+02;
  Matches 5; Conservative 3; Mismatches 0; Indels 0; Gaps
            4 LGTFALVS 11
Qу
              11:1:1:1
           11 LGSFSLLS 18
Db
```

```
Sequence 42, Application US/09516704
; Patent No. 6251864
    GENERAL INFORMATION:
        APPLICANT: Dower, William J.
                    Barrett, Ronald W.
;
                    Cwirla, Steven E.
                    Gates, Christian
                    Schatz, Peter J.
                    Balasubramanian, Palaniappan
                    Wagstrom, Christopher R.
                    Hendren, Richard W.
                    Deprince, Randolph B.
                    Podduturi, Surekha
        TITLE OF INVENTION: PEPTIDES AND COMPOUNDS THAT BIND TO A
                             RECEPTOR
        NUMBER OF SEQUENCES: 244
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Glaxo Wellcome
             STREET: Five Moore Drive, P.O. Box 13398
             CITY: Research Triangle Park
             STATE: NC
             COUNTRY: USA
             ZIP: 27709
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/09/516,704
             FILING DATE: 01-Mar-2000
             CLASSIFICATION:
        ATTORNEY/AGENT INFORMATION:
             NAME: Hrubiec, Robert T.
             REGISTRATION NUMBER: 36,392
             REFERENCE/DOCKET NUMBER: PK3281
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 919-248-1000
   INFORMATION FOR SEQ ID NO: 42:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 18 amino acids
             TYPE: amino acid
             STRANDEDNESS:
             TOPOLOGY: linear
        MOLECULE TYPE: peptide
        SEQUENCE DESCRIPTION: SEQ ID NO: 42:
US-09-516-704-42
                         29.7%; Score 27; DB 2; Length 18;
 Query Match
 Best Local Similarity 62.5%; Pred. No. 3.9e+02;
 Matches 5; Conservative
                               3; Mismatches 0; Indels 0; Gaps
                                                                             0;
Qу
           4 LGTFALVS 11
             11:1:1:1
Db
          11 LGSFSLLS 18
```

```
AAY17917
ID
     AAY17917 standard; peptide; 21 AA.
XX
AC
     AAY17917;
XX
DT
     02-AUG-1999 (first entry)
XX
DE
     Vesicle transporter protein, RUNC-47 transmembrane domain 6.
XX
KW
     Vesicle transporter protein; synaptic vesicle; UNC-47; RUNC-47; GABA;
KW
     central nervous system disorder; peripheral nervous system disorder;
KW
     neuropsychiatric; neuronal deficiency; gamma-aminobutyric acid; sedative;
KW
     anxiolytic; transmembrane domain.
XX
OS
     Rattus sp.
XX
PN
    WO9920645-A1.
XX
     29-APR-1999.
PD
XX
ΡF
    23-OCT-1998;
                   98WO-US022587.
XX
PR
    23-OCT-1997;
                   97US-0063012P.
XX
PA
     (REGC ) UNIV CALIFORNIA.
XX
PΙ
    Edwards RH, Reimer RJ, Mcintire SL,
                                            Jorgenson EM,
XX
    WPI; 1999-302716/25.
DR
XX
    Vesicular transporter protein useful for treating disorders of the
PT
PT
    central and/or peripheral nervous system.
XX
PS
    Claim 3; Fig 1A-B; 52pp; English.
XX
CC
    The invention relates to an amino acid synaptic vesicle transporter
CC
    protein, UNC-47 and its rat homolog, RUNC-47. The vesicle transporter
CC
    proteins can be used to identify candidate compounds that modulate amino
    acid transport into synaptic vesicles, these may be useful for treating
CC
CC
    disorders of the central and/or peripheral nervous system. RUNC-47 can be
CC
    used to treat a subject having a neuropsychiatric condition characterised
CC
    by neuronal deficiency of GABA (gamma-aminobutyric acid). Modulators of
    the proteins may also be useful for enhancing GABA uptake, which may
CC
CC
    produce sedative or anxiolytic effects. Sequences AAY17912-921 represent
    the transmembrane domains of the rat vesicular GABA transporter, RUNC-47
CC
XX
SQ
    Sequence 21 AA;
 Query Match
                          36.3%;
                                  Score 33; DB 2; Length 21;
 Best Local Similarity
                          66.7%; Pred. No. 1.3e+02;
             6; Conservative
                                 2; Mismatches
                                                  1; Indels
                                                                  0;
                                                                      Gaps
                                                                              0;.
Qу
            5 GTFALVSYI 13
              1 1111:1:
Db
           11 GLFALVAYL 19
```

```
AAR61467
     AAR61467 standard; peptide; 15 AA.
ID
XX
AC
     AAR61467;
XX
     16-SEP-1995 (first entry)
DT
XX
     [Phe- or D-Phe-14] melittin-(7-21) analogue.
DE
XX
     Peptide solid phase synthesis; polystyrene-grafted substrate; melittin.
ΚW
XX
os
     Synthetic.
XX
FH
     Kev
                     Location/Qualifiers
FT
     Misc-difference 8
                     /note= "Phe or D-Phe"
FT
XX
ΡN
     US5373053-A.
XX
PD
    13-DEC-1994.
XX
PF
    14-DEC-1992;
                   92US-00990584.
XX
PR
     01-SEP-1988;
                   88US-00239525.
                    89US-00398846.
PR
     25-AUG-1989;
PR
    12-MAY-1992;
                  92US-00882059.
XX
PΑ
     (RISO-) RISO NAT LAB.
XX
PΙ
     Berg RH, Holm A, Tam JP, Pedersen WB, Merrifield RB, Almdal K;
XX
DR
    WPI; 1995-030351/04.
XX
PT
     substrate grafted with polystyrene - used in peptide synthesis giving
PT
    high yields.
XX
PS
    Example 9; Fig 3; 20pp; English.
XX
CC
    The invention relates to a solid phase peptide synthesis method using a
CC
     support consisting of a functionalised polystyrene-grafted polymer
CC
    substrate. The peptides are prepared in high yield and purity. The
CC
    process may be used for compartmentalised synthesis of a number of
CC
    different peptides in parallel. The present sequence is one of 13
CC
    melittin-(7-21) analogues prepared in parallel by the process (AAR61460-
CC
    R61470)
XX
SQ
    Sequence 15 AA;
  Query Match
                          35.2%; Score 32; DB 2; Length 15;
 Best Local Similarity 66.7%; Pred. No. 1.3e+02;
           6; Conservative 2; Mismatches 1; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            5 GTFALVSYI 13
              1 | | | | : | : |
Db
            6 GLFALISWI 14
```

```
AAR13129
     AAR13129 standard; protein; 15 AA.
XX
AC
     AAR13129;
XX
DT
     25-MAR-2003 (revised)
DT
     01-OCT-1991 (first entry)
XX
     GPIb alpha peptide fragment.
DE
XX
     Von Willebrand factor; vWF; platelet membrane glycoprotein Ib;
KW
KW
     glycoalicin; thrombosis.
XX
OS
     Synthetic.
XX
PN
     WO9109614-A.
XX
PD
    11-JUL-1991.
XX
PF
    04-JAN-1990;
                  90US-00460674.
XX
                    90US-00460674.
     04-JAN-1990;
PR
     14-NOV-1990;
                  90US-00613083.
PR
XX
     (SCRI ) SCRIPPS CLINIC & RES FOUND.
PA
XX
                 Zimmerman TS, Houghten RA, Vicente V, Mohri H;
PΙ
     Ruggeri ZM,
PΙ
    Ware JL;
XX
DR
    WPI; 1991-222654/30.
XX
PT
     GPIb alpha peptide fragment - inhibits binding of von Willebrand factor
PT
     to platelet membrane glyco-protein Ib, useful in treating thrombosis.
XX
PS
    Claim 1; Page 56; 76pp; English.
XX
     The peptide corresponds to residues 71-85 of the N-terminus of
CC
CC
     glycoalicin, a water sol. proteolytic fragment of GPIb alpha. It may be
     linked to a second peptide from the 45 kD N-terminal tryptic fragment of
CC
CC
     GPIb alpha. The peptide inhibits binding of vWF to GPIb. It can be used
CC
     to inhibit activation, aggregation and/or adhesion of platelets, esp. for
CC
     inhibition of thrombosis. See also AAR13128-R13138. (Updated on 25-MAR-
CC
     2003 to correct PA field.)
XX
SO
    Sequence 15 AA;
                          33.0%; Score 30; DB 2; Length 15;
  Query Match
                         66.7%; Pred. No. 3.1e+02;
  Best Local Similarity
  Matches 6; Conservative
                                1; Mismatches 2; Indels 0; Gaps
Qу
           1 IPVLGTFAL 9
              : | | | | | |
Db
            6 LPVLGTLDL 14
```

```
ADS13418
     ADS13418 standard; peptide; 17 AA.
XX
AC
     ADS13418;
XX
     16-DEC-2004 (first entry)
DT
XX
DE
     Human rheumatoid arthritis marker peptide - SEQ ID 209.
XX
KW
     rheumatoid arthritis; marker; antiinflammtory; antiarthritic.
XX
os
     Homo sapiens.
XX
PN
     WO2004082617-A2.
XX
PD
     30-SEP-2004.
XX
     15-MAR-2004; 2004WO-US007880.
PF
XX
PR
     14-MAR-2003; 2003US-0455037P.
XX
PΑ
     (SURR-) SURROMED INC.
XX
     Kantor AB, Becker CH, Schulman H;
PΙ
XX
    WPI; 2004-690929/67.
DR
XX
PT
     New isolated marker for rheumatoid arthritis, useful in preparing a
PT
     composition for diagnosing or treating rheumatoid arthritis.
XX
PS
     Claim 1; SEQ ID NO 209; 184pp; English.
XX
CC
     The invention relates to a novel isolated marker for rheumatoid arthritis
CC
     selected from one of many (around 400) markers defined in the
CC
     specification. Rheumatoid arthritis is a chronic inflammatory disorder of
CC
     the small joints which is estimated to affect 2.1 million people in the
CC
     United States alone. Current approaches to treat the disease include the
CC
    use of non-steroidal antiinflammtory drugs (NSAIDS), which may reduce
CC
     pain, swelling and inflammation, and disease-modifying anti-rheumatic
CC
     drugs (DMARDS), which act to slow the progression of the disease and
CC
    avoid further joint injury. These drugs are associated with a number of
CC
    serious side effects and the search for improved therapeutics is a
CC
     subject of active research. The marker of the invention demonstrates
CC
     antiarthritic activity and may be useful in preparing a composition for
CC
    diagnosing or treating rheumatoid arthritis. The current sequence is that
CC
     of a human rheumatoid arthritis marker peptide of the invention.
XX
SQ
    Sequence 17 AA;
  Query Match
                          33.0%; Score 30; DB 8; Length 17;
  Best Local Similarity
                          85.7%; Pred. No. 3.6e+02;
             6; Conservative
                                 1; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            7 FALVSYI 13
Qу
              1111:11
Db
            8 FALVNYI 14
```