```
In [1]: import pandas as pd
# Load the Titanic dataset
df = pd.read_csv(r"C:\Users\DANIEL\Downloads\train.csv")
df.head()
```

Out[1]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
-										

```
In [13]: # Check for missing values
print(df.isnull().sum())

# Fill missing values or drop rows/columns with missing values
df['Age'].fillna(df['Age'].median(), inplace=True)
df.dropna(subset=['Embarked'], inplace=True)

# Correct data types if necessary
df['Survived'] = df['Survived'].astype('category')
```

```
PassengerId
Survived
                 0
Pclass
                 0
Name
Sex
                 0
Age
              177
SibSp
                 0
Parch
                 0
Ticket
Fare
Cabin
               687
Embarked
dtype: int64
```

In [2]: df.describe(include='all')

Out[2]:

Paı	SibSp	Age	Sex	Name	Pclass	Survived	Passengerld	
891.0000	891.000000	714.000000	891	891	891.000000	891.000000	891.000000	count
N	NaN	NaN	2	891	NaN	NaN	NaN	unique
N	NaN	NaN	male	Braund, Mr. Owen Harris	NaN	NaN	NaN	top
N	NaN	NaN	577	1	NaN	NaN	NaN	freq
0.381	0.523008	29.699118	NaN	NaN	2.308642	0.383838	446.000000	mean
0.8060	1.102743	14.526497	NaN	NaN	0.836071	0.486592	257.353842	std
0.0000	0.000000	0.420000	NaN	NaN	1.000000	0.000000	1.000000	min
0.0000	0.000000	20.125000	NaN	NaN	2.000000	0.000000	223.500000	25%
0.0000	0.000000	28.000000	NaN	NaN	3.000000	0.000000	446.000000	50%
0.0000	1.000000	38.000000	NaN	NaN	3.000000	1.000000	668.500000	75%
6.0000	8.000000	80.000000	NaN	NaN	3.000000	1.000000	891.000000	max
>								

```
In [5]:
        import seaborn as sns
        import matplotlib.pyplot as plt
        # Statistical summary
        print(df.describe())
        # Relationship between survival and passenger class
        sns.countplot(x='Pclass', hue='Survived', data=df)
        plt.show()
        # Age distribution of passengers
        sns.histplot(df['Age'], bins=30, kde=True)
        plt.title('Age Distribution')
        plt.show()
        # Survival rate by gender
        sns.barplot(x='Sex', y='Survived', data=df)
        plt.title('Survival Rate by Sex')
        plt.show()
```

	PassengerId	Survived	Pclass	Age	SibSp	\
count	891.000000	891.000000	891.000000	714.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	
std	257.353842	0.486592	0.836071	14.526497	1.102743	
min	1.000000	0.000000	1.000000	0.420000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	
	Parch	Fare				
count	891.000000	891.000000				
mean	0.381594	32.204208				
std	0.806057	49.693429				
min	0.000000	0.000000				
25%	0.000000	7.910400				
50%	0.000000	14.454200				
75%	0.000000	31.000000				
max	6.000000	512.329200				


```
In [12]: # Survival rate by class
sns.barplot(x='Pclass', y='Survived', data=df)
plt.title('Survival Rate by Class')
plt.show()
# Age distribution by survival
sns.boxplot(x='Survived', y='Age', data=df)
plt.title('Age Distribution by Survival')
plt.show()
```



```
In [9]: sns.catplot(x='Pclass', hue='Sex', col='Survived', data=df, kind='count', he
    plt.tight_layout()
    plt.show()
```


In [8]: # Pairplot of numerical features colored by survival
sns.pairplot(df, hue='Survived', vars=['Age', 'Fare', 'Pclass'])
plt.show()

In []: