HIT3047 Real-Time Programming

25/04/2012

Topolog2 Notes

Supplement to comments in Topolog2.ads

(See also sim_topolog2.exe)

Sensor Event Generation

instance of Train_Position). (Trains always have two magnets.)

The same time diagram occurs if the train reverses (changes polarity) from the position shown, but the state model copes....

Graph model

Topolog2 features

Simplification: Block gaps in turnouts are assumed at sensors

Partial UML State Model for Topolog2 package

Topolog2 Data Structures - 1

- Constant array Data inside package body, defines the graph
- Features store fixed attributes of each node
- User variables Pos : Train_Position contain varying data

Topolog2 Data Structures - 2

 Features are polymorphic using a discriminated record type (ref Lecture 6)

- Advance_Pos
 - Call in response to a sensor event provided this Pos is expecting it
 - Topologically moves to next node
 - Two versions:
 - Advance_Pos(Pos: in out Train_Position;
 Stopping: in Boolean;
 Need_Setting: out Boolean;
 For_Turnout: out Turnout_Id);
 - Advance_Pos(Pos: in out Train_Position;
 Stopping: in Boolean;
 Setting: in Turnout_Pos);

- Check_Entering_...., ..._Leaving_....
 - Call when Pos is on a Sensor
 - Tells the significance of the sensor
 - Examples:
 - Check_Leaving_Crossing(Pos: in Train_Position; Leaving: out Boolean;
 Which: out Crossing_Id);
 - Check_Entering_Turnout (Pos: in Train_Position;
 Entering: out Boolean; Which: out Turnout_Id;
 Converging: out Boolean;
 Required_Setting: out Turnout_Pos;
 Chained: out Chain_Type);

- Can find what block to acquire, release
 - Use arrays in package spec
- Example:

```
Check_Entering_Turnout (My.Front_Pos, Entering,
  Which, Converging, Required_Setting, Chained );
if Entering then
 if Converging then
      Next_Block :=
        Turnout_Data(Which).Block_Num;
 else
      Want_Straight := ... -- calc using Straight_Is_Left
      if Want_Straight then
         Next_Block :=
           Turnout_Data(Which).Block_St;
```

- Turn_Around (Pos: in out Train_Position)
 - Call with front and rear Pos vars <u>after swapping</u>
 them
 - NB: physical train should be stationary (or both ends clear of sensors) else pending sensor events may be misinterpreted – beware!
- Resume (Pos: in out Train_Position;
 Setting: in Turnout_Pos))
 - Call after a train has skidded past a sensor and before train starts moving again
 - Ideally trains would stop dead on top of sensors, but ...

Skidding Scenario - 1

- Front magnet hits sensor 45 (ON event)
 - Expected by Front_Pos so call Advance_Pos on it
 - Front_Pos now (16,Normal_Pol,(s45),Norm,45)
 - Check_Entering_Turnout says entering turnout 16, diverging, but it isnt in correct position, so set DAC voltage to zero
- Front magnet sensor 45 OFF event
 - Turnout 16 still not ready so call Advance_Pos with Stopping=True
 - Front_Pos now (16,Normal_Pol,(s45),Just_After,45)

Skidding Scenario - 2

- Effectively the real 2nd Advance_Pos has been deferred
- All queries will behave as if the train had stopped on the sensor
 - ie they ignore substate value
- When turnout 16 is in correct position, call Resume
 - Front_Pos now (16,Normal_Pol,(T16),Norm,47)

Skidding Scenario - 3

- The substate Just_Before exists in case you turn around the train while stopped
 - Maybe several times!
 - Swap pos vars and call Turn_Around
 Rear_Pos now (16,Reverse_Pol,(s45),Just_Before,45)

Call Resume (Rear_Pos,)Rear_Pos now (16,Reverse_Pol,(T16),Norm,45)

Questions

- The guard sensors are far enough back that trains don't skid into danger.
 - Is that true?
- What time interval to stop?
- What distance to stop?
- At what speed do trains stop within 10mm?
- What time interval between sensor edges at full speed?
- Will our software meet that deadline?