Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import warnings
warnings.simplefilter('ignore')
```

Data Collection

In [2]: # Loading the dataset to a Pandas DataFrame
 wine_data = pd.read_csv(r'C:\Users\ADMIN\Desktop\Projects\Data sets\winequality-red.csv')

In [5]: wine_data

Out[5]:

:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
	1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
	1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
	1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
	1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
	1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

In [3]: wine data.shape

Out[3]: (1599, 12)

In [4]: wine data he

wine_data.head()

Out[4]:

:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Checking missing Values

```
In [6]:
wine_data.isnull().sum()
```

Out[6]: fixed acidity volatile acidity

```
citric acid
residual sugar
                        0
chlorides
                        0
free sulfur dioxide
                        0
total sulfur dioxide
                        0
                        0
density
рΗ
sulphates
                        0
alcohol
                        0
quality
dtype: int64
```

Statistical measures

In [7]: wine_data.describe()

Out[7]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	
	count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	159
	mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	1
	std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	
	25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	
	50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	1
	75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	1
	max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	1

```
In [8]:
sns.catplot(x='quality',data = wine_data, kind = 'count')
```

Out[8]: <seaborn.axisgrid.FacetGrid at 0x219e25c3af0>


```
In [9]:
    # volatile acidity vs quality
    plot = plt.figure(figsize=(5,5))
    sns.barplot(x='quality',y='volatile acidity',data=wine_data)
```

Out[9]: <AxesSubplot:xlabel='quality', ylabel='volatile acidity'>


```
0.2 - 0.0 - 3 - 4 - 5 - 6 - 7 - 8 - quality
```

```
In [10]: # citric acid vs quality
   plot = plt.figure(figsize=(5,5))
   sns.barplot(x='quality',y='citric acid',data=wine_data)
```

Out[10]: <AxesSubplot:xlabel='quality', ylabel='citric acid'>

Correlation

- 1. Positive Correlation
- 2. Negative Correlation

```
In [12]: correlation = wine_data.corr()

In [13]: # constructing a heatmap to understand the correlation between the columns
    plt.figure(figsize=(10,10))
    sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot=True, annot_kws={'size':8}, cmap='Blues')
```

Out[13]: <AxesSubplot:>

Data PreProcessing

```
In [14]:
          X = wine_data.drop('quality',axis=1)
In [16]:
          print(X)
                fixed acidity
                               volatile acidity
                                                  citric acid
                                                                residual sugar
                                                                                 chlorides
         0
                          7.4
                                           0.700
                                                          0.00
                                                                            1.9
                                                                                     0.076
                          7.8
                                                                            2.6
                                           0.880
                                                          0.00
                                                                                     0.098
         1
         2
                          7.8
                                           0.760
                                                          0.04
                                                                            2.3
                                                                                     0.092
                         11.2
                                           0.280
                                                          0.56
                                                                            1.9
                                                                                     0.075
         4
                          7.4
                                           0.700
                                                          0.00
                                                                            1.9
                                                                                     0.076
          1594
                          6.2
                                           0.600
                                                          0.08
                                                                            2.0
                                                                                     0.090
          1595
                          5.9
                                           0.550
                                                          0.10
                                                                            2.2
                                                                                     0.062
          1596
                                           0.510
                                                                                     0.076
                          6.3
                                                          0.13
                                                                            2.3
          1597
                          5.9
                                           0.645
                                                          0.12
                                                                            2.0
                                                                                     0.075
         1598
                          6.0
                                           0.310
                                                          0.47
                                                                            3.6
                                                                                     0.067
                free sulfur dioxide total sulfur dioxide
                                                             density
                                                                         pH sulphates \
         0
                                11.0
                                                             0.99780
                                                                      3.51
                                                                                  0.56
         1
                                25.0
                                                       67.0
                                                             0.99680
                                                                      3.20
                                                                                  0.68
                               15.0
                                                       54.0
         2
                                                            0.99700
                                                                      3.26
                                                                                  0.65
         3
                               17.0
                                                       60.0 0.99800
                                                                      3.16
                                                                                  0.58
         4
                                                       34.0 0.99780
                                11.0
                                                                      3.51
                                                                                  0.56
                                                       44.0 0.99490
                                                                      3.45
                                32.0
                                                                                  0.58
          1594
          1595
                                39.0
                                                       51.0
                                                             0.99512
                                                                      3.52
                                                                                  0.76
                                                       40.0 0.99574
                                                                                  0.75
         1596
                                29.0
                                                                      3.42
                                                       44.0 0.99547
         1597
                                32.0
                                                                      3.57
                                                                                  0.71
         1598
                                18.0
                                                       42.0 0.99549
                                                                      3.39
                                                                                  0.66
                alcohol
         0
                    9.4
         1
                    9.8
         2
                    9.8
                    9.8
         3
          4
                    9.4
                   10.5
          1594
          1595
                   11.2
          1596
                   11.0
          1597
                   10.2
          1598
                   11.0
         [1599 rows x 11 columns]
```

Label Binarization

```
In [17]:
          Y = wine_data['quality'].apply(lambda y_value: 1 if y_value >= 7 else 0)
In [18]:
          print (Y)
          0
                  0
                  0
          1
                  0
          2
          3
                  0
                  0
                  0
          1594
          1595
                  0
          1596
                  0
          1597
                  0
```

```
1598 0
Name: quality, Length: 1599, dtype: int64
```

Train and Test Split

Model Training:

Random Forest Classifier

```
In [21]: model = RandomForestClassifier()
In [22]: model.fit(X_train, Y_train)
Out[22]: RandomForestClassifier()
```

Model Evaluation

Accuracy score

```
In [23]: # Accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

In [24]: print('Accuracy:', test_data_accuracy)
Accuracy: 0.928125
```

Building a Predictive System

```
input_data1 = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)
# Changing the input data in to a numpy array
input_data_as_numpy_array = np.asarray(input_data1)

# Reshape the data as we are predicting the label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if prediction[0]==1:
    print('Good Quality Wine')
else:
    print('Bad Quality Wine')
```

Bad Quality Wine

```
input_data = (7.3,0.65,0.0,1.2,0.065,15.0,21.0,0.9946,3.39,0.47,10.0)
```

```
# Changing the input data in to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# Reshape the data as we are predicting the label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if prediction[0]==1:
    print('Good Quality Wine')
else:
    print('Bad Quality Wine')
```

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Good Quality Wine