Simplify the Usage of Lexicon in Chinese NER

Ruotian Ma^{1*}, Minlong Peng^{1*}, Qi Zhang^{1,3}, Zhongyu Wei^{2,3}, Xuanjing Huang¹

¹Shanghai Key Laboratory of Intelligent Information Processing,

School of Computer Science, Fudan University

²School of Data Science, Fudan University

³Research Institute of Intelligent and Complex Systems, Fudan University

{rtma19,mlpeng16,qz,zywei,xjhuang}@fudan.edu.cn

Introduction

- Chinese NER is more difficult since sentences in Chinese are not naturally segmented.
- ✓ First perform word segmentation(result in errors in the detection of entity boundary and the prediction of entity category in NER)
- ✓ Perform Chinese NER directly at the character level (word information is not fully exploited)
- ✓ Lattice-LSTM for incorporating word lexicons into the character-based NER model(complicated, slow its training and inference speeds.)

Lattice-LSTM

- subsequence $\{ci, \dots, cj\}$ $h_j, c_j = f(h_{j-1}, c_{j-1}, x_j^c, s_{<*,j>}, h_{<*,j>}, c_{<*,j>})$
- 优点: 所有词语的信息均被保留,而不是启发式选取某一个词语,可能导致的错误累积; 使用了预训练的word embeddings。
- 缺点:效率问题:每一个时间步的update需要额外传入 s<*,j>, h<*,j>,c<*,j> Lattice-LSTM设计得太复杂,模型不容易实现;导致无法平行处理多个样本(因 此在发布的模型中,batch_size设置为1。

Summary

- Propose a simple but effective method for incorporating word lexicons into the character representations for Chinese NER
- The proposed method is transferable to different sequencelabeling architectures and can be easily incorporated with pretrained models like BERT

Match in the lexicon

Character Representation Layer

$$s = \{c1, c2, \dots, cn\}$$
 Char + bichar: $x_i^c = [e^c(c_i); e^b(c_i, c_{i+1})],$

Incorporating Lexicon Information

Softword Feature: The Softword technique was originally used for incorporating word segmentation information into downstream tasks. {B, M, E, S, O}

Figure 2: The ExSoftword method.

Figure 3: The SoftLexicon method.

Categorizing the matched words.

$$\begin{split} &B(c_i) = \{w_{i,k}, \forall w_{i,k} \in L, i < k \leq n\}, \\ &M(c_i) = \{w_{j,k}, \forall w_{j,k} \in L, 1 \leq j < i < k \leq n\}, \\ &E(c_i) = \{w_{j,i}, \forall w_{j,i} \in L, 1 \leq j < i\}, \\ &S(c_i) = \{c_i, \exists c_i \in L\}. \end{split}$$

$$v^s(\mathcal{S}) = \frac{1}{|\mathcal{S}|} \sum_{w \in \mathcal{S}} e^w(w).$$

$$\mathbf{v}^{s}(S) = \frac{4}{Z} \sum_{w \in S} z(w) \mathbf{e}^{w}(w),$$

$$Z = \sum_{w \in \text{BUMUEUS}} z(w).$$

$$e^{s}(B, M, E, S) = [v^{s}(B); v^{s}(M); v^{s}(E); v^{s}(S)],$$

 $x^{c} \leftarrow [x^{c}; e^{s}(B, M, E, S)].$

Figure 3: The SoftLexicon method.

Sequence Modeling Layer: BiLSTM, CNN, Transformer

Label Inference Layer: CRF

Datasets	Type	Train	Dev	Test
OntoNotos	Sentence	15.7k	4.3k	4.3k
OntoNotes	Char	491.9k	200.5k	208.1k
MSRA	Sentence	46.4k	17.	4.4k
	Char	2169.9k	<u></u>	172.6k
Weibo	Sentence	1.4k	0.27k	0.27k
	Char	73.8k	14.5	14.8k
Resume	Sentence	3.8k	0.46	0.48k
	Char	124.1k	13.9k	15.1k

Table 1: Statistics of datasets.

Experiments

Models	OntoNotes	MSRA	Weibo	Resume
Lattice-LSTM	1×	1×	1×	1×
LR-CNN (Gui et al., 2019)	2.23×	1.57×	2.41×	1.44×
BERT-tagger	2.56×	2.55×	4.45×	3.12×
BERT + LSTM + CRF	2.77×	2.32×	2.84×	2.38×
SoftLexicon (LSTM)	6.15×	5.78×	6.10×	6.13×
SoftLexicon (LSTM) + bichar	6.08×	5.95×	5.91×	6.45×
SoftLexicon (LSTM) + BERT	2.74×	2.33×	2.85×	2.32×

Table 2: Inference speed (average sentences per second, the larger the better) of our method with LSTM layer compared with Lattice-LSTM, LR-CNN and BERT.

Input	Models	P	R	F1
	Yang et al., 2016	65.59	71.84	68.57
	Yang et al., 2016*†	72.98	80.15	76.40
Caldean	Che et al., 2013*	77.71	72.51	75.02
Gold seg	Wang et al., 2013*	76.43	72.32	74.32
	Word-based (LSTM)	76.66	63.60	69.52
	+ char + bichar	78.62	73.13	75.77
Autoro	Word-based (LSTM)	72.84	59.72	65.63
Auto seg	+ char + bichar	73.36	70.12	71.70
	Char-based (LSTM)	68.79	60.35	64.30
NT	+ bichar + softword	74.36	69.43	71.89
No seg	+ ExSoftword	69.90	66.46	68.13
	+ bichar + ExSoftword	73.80	71.05	72.40
	Lattice-LSTM	76.35	71.56	73.88
	LR-CNN (Gui et al., 2019)	76.40	72.60	74.45
	SoftLexicon (LSTM)	77.28	74.07	75.64
	SoftLexicon (LSTM) + bichar	77.13	75.22	76.16
	BERT-Tagger	76.01	79.96	77.93
	BERT + LSTM + CRF	81.99	81.65	81.82
	SoftLexicon (LSTM) + BERT	83.41	82.21	82.81

Table 3: Performance on OntoNotes. A model followed by (LSTM) (e.g., Proposed (LSTM)) indicates that its sequence modeling layer is LSTM-based.

Models	P	R	F1
Chen et al., 2006	91.22	81.71	86.20
Zhang et al. 2006*	92.20	90.18	91.18
Zhou et al. 2013	91.86	88.75	90.28
Lu et al. 2016	-	-	87.94
Dong et al. 2016	91.28	90.62	90.95
Char-based (LSTM)	90.74	86.96	88.81
+ bichar+softword	92.97	90.80	91.87
+ ExSoftword	90.77	87.23	88.97
+ bichar+ExSoftword	93.21	91.57	92.38
Lattice-LSTM	93.57	92.79	93.18
LR-CNN (Gui et al., 2019)	94.50	92.93	93.71
SoftLexicon (LSTM)	94.63	92.70	93.66
SoftLexicon (LSTM) + bichar	94.73	93.40	94.06
BERT-Tagger	93.40	94.12	93.76
BERT + LSTM + CRF	95.06	94.61	94.83
SoftLexicon (LSTM) + BERT	95.75	95.10	95.42

Table 4: Performance on MSRA.

Models	NE	NM	Overall
Peng and Dredze, 2015	51.96	61.05	56.05
Peng and Dredze, 2016*	55.28	62.97	58.99
He and Sun, 2017a	50.60	59.32	54.82
He and Sun, 2017b*	54.50	62.17	58.23
Char-based (LSTM)	46.11	55.29	52.77
+ bichar+softword	50.55	60.11	56.75
+ ExSoftword	44.65	55.19	52.42
+ bichar+ExSoftword	58.93	53.38	56.02
Lattice-LSTM	53.04	62.25	58.79
LR-CNN (Gui et al., 2019)	57.14	66.67	59.92
SoftLexicon (LSTM)	59.08	62.22	61.42
SoftLexicon (LSTM) + bichar	58.12	64.20	59.81
BERT-Tagger	65.77	62.05	63.80
BERT + LSTM + CRF	69.65	64.62	67.33
SoftLexicon (LSTM) + BERT	70.94	67.02	70.50

Table 5: Performance on Weibo. NE, NM and Overall denote F1 scores for named entities, nominal entities (excluding named entities) and both, respectively.

Models	P	R	F1
Word-based (LSTM)	93.72	93.44	93.58
+char+bichar	94.07	94.42	94.24
Char-based (LSTM)	93.66	93.31	93.48
+ bichar+softword	94.53	94.29	94.41
+ ExSoftword	95.29	94.42	94.85
+ bichar+ExSoftword	96.14	94.72	95.43
Lattice-LSTM	94.81	94.11	94.46
LR-CNN (Gui et al., 2019)	95.37	94.84	95.11
SoftLexicon (LSTM)	95.30	95.77	95.53
SoftLexicon (LSTM) + bichar	95.71	95.77	95.74
BERT-Tagger	94.87	96.50	95.68
BERT + LSTM + CRF	95.75	95.28	95.51
SoftLexicon (LSTM) + BERT	96.08	96.13	96.11

Table 6: Performance on Resume.

Models	OntoNotes	MSRA	Weibo	Resume
SoftLexicon (LSTM)	75.64	93.66	61.42	95.53
ExSoftword (CNN)	68.11	90.02	53.93	94.49
SoftLexicon (CNN)	74.08	92.19	59.65	95.02
ExSoftword (Transformer)	64.29	86.29	52.86	93.78
SoftLexicon (Transformer)	71.21	90.48	61.04	94.59

Table 7: F1 score with different implementations of the sequence modeling layer. ExSoftword is the shorthand of Char-based+bichar+ExSoftword.

Models	OntoNotes	MSRA	Weibo	Resume
SoftLexicon (LSTM)	75.64	93.66	61.42	95.53
- "M" group	75.06	93.09	58.13	94.72
- Distinction	70.29	92.08	54.85	94.30
- Weighted pooling	72.57	92.76	57.72	95.33
- Overall weighting	74.28	93.16	59.55	94.92

Table 8: An ablation study of the proposed model.