

Figure 13.7: The construction of h_2 and $r_2 = h_2 \circ h_1(v_2)$ in Proposition 13.3.

Theorem 13.4. For every real $n \times n$ matrix A, there is a sequence H_1, \ldots, H_n of matrices, where each H_i is either a Householder matrix or the identity, and an upper triangular matrix R such that

$$R = H_n \cdots H_2 H_1 A$$
.

As a corollary, there is a pair of matrices Q, R, where Q is orthogonal and R is upper triangular, such that A = QR (a QR-decomposition of A). Furthermore, R can be chosen so that its diagonal entries are nonnegative.

Proof. The jth column of A can be viewed as a vector v_j over the canonical basis (e_1, \ldots, e_n) of \mathbb{E}^n (where $(e_j)_i = 1$ if i = j, and 0 otherwise, $1 \le i, j \le n$). Applying Proposition 13.3 to (v_1, \ldots, v_n) , there is a sequence of n isometries h_1, \ldots, h_n such that h_i is a hyperplane reflection or the identity, and if (r_1, \ldots, r_n) are the vectors given by

$$r_j = h_n \circ \cdots \circ h_2 \circ h_1(v_j),$$

then every r_j is a linear combination of the vectors (e_1, \ldots, e_j) , $1 \leq j \leq n$. Letting R be the matrix whose columns are the vectors r_j , and H_i the matrix associated with h_i , it is clear that

$$R = H_n \cdots H_2 H_1 A,$$