

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA

Título da Tese (ou Dissertação)

Nome do Estudante

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física do Instituto de Física da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências (Física).

Orientador: Paulo Américo Maia Neto

Coorientador: Nome do Coorientador

Rio de Janeiro

Março de 2013

P436(mudar) Fonseca, Arthur Luna da

Interação de Momento Angular de Spin e Orbital na Pinça Ótica. / Arthur Luna da Fonseca - Rio de Janeiro: UFRJ/IF, 2019.

xiv, 154f(mudar).

Orientador: Paulo Américo Maia Neto

Coorientador:

Dissertação (mestrado) - UFRJ / Instituto de Física / Programa de Pós-graduação em Física, 2019.

Referências Bibliográficas: f. 124-145.(mudar)

1. Pinça ótica. 2. Momento angular ótico. 3. Feixes não paraxiais. 4. Interação spin-órbita. 5. Astigmatismo. I. Wotzasek, Clóvis José. II. Guimarães, Marcelo Santos. III. Universidade Federal do Rio de Janeiro, Instituto de Física, Programa de Pós-graduação em Física. IV. Abordagem de Julia-Toulouse para condensação de correntes topológicas e aplicações.(mudar)

Resumo

Título da Tese

Nome do Estudante

Orientador: Nome do Orientador

Coorientador: Nome do Coorientador

Resumo da Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física do Instituto de Física da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências (Física).

Resumo da tese.

Palavras-chave: Insira as palavras-chave aqui.

Abstract

Title of the Thesis

Name of the Student

Orientador: Name of the Advisor

Coorientador: Name of the Coadvisor

Abstract da Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física do Instituto de Física da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências (Física).

Abstract in English.

Keywords: Insert the keywords here.

Agradecimentos

Listar agradecimentos aqui, inclusive à agência de fomento que concedeu a bolsa de pós-graduação.

Sumário

Sumário				
Lista de Figuras				
Li	sta d	le Tabelas	ix	
1	Intr	rodução	1	
	1.1	Introdução	1	
2	Teo	ria da Pinça Ótica	3	
	2.1	Introdução	3	
	2.2	Modelo Mie-Debye	3	
	2.3	Efeito do perfil gaussiano	8	
	2.4	Efeitos de polarização	9	
	2.5	Aberração esférica	10	
	2.6	Aberrações Óticas	11	
	2.7	Expressões para força	13	
	2.8	Interação Spin-Órbita	14	
3	Exp	perimento e Simulação	15	
	3.1	Método Experimental	15	
4	Títı	ulo do Quarto Capítulo	17	

		vii
5	Considerações Finais	18
\mathbf{A}	Título do Primeiro Apêndice	21
В	Título do Segundo Apêndice	22

Lista de Figuras

2.1	Operadores vetoriais no espaço de Fourier usados para encontrar as soluções	
	vetoriais	11

Lista de Tabelas

Capítulo 1

Introdução

1.1 Introdução

A presente dissertação é um resultado do trabalho do grupo de pinças óticas da UFRJ, que tem sido desenvolvido há quase duas décadas **rever com Paulo-¿reclamou dessa frase**. Os trabalhos de teoria do grupo têm como objetivo descrever o aparato de pinças óticas, descoberta por Arthur Ashkin em 1986[3] [2]. Suas contribuições para o ramo de armadilhamento ótico vêm desde 1970, com seu primeiro artigo publicado sobre o assunto[1]. Em 2018, seus trabalhos sobre a pinça ótica e toda a sua importancia para aplicação em biologia lhe renderam o prêmio Nobel de 2018.

A importância desse aparato exigiu uma descrição teórica satisfatória. Os primeiros modelos que tentam descrever as forças da pinça ótica fazem uso de diversas aproximações para descrever o feixe que sai da objetiva e a interação da esfera com o campo. O capítulo 2 introduzirá alguns destes modelos. De acordo com Ashkin ??, a teoria que descreve o feixe as interações da pinça ótica de forma exata se deve a Maia Neto e Nussenzveig. No artigo publicado em 2000 [13] é obtida a força axial (na direção z) na microesfera em cima do eixo para um feixe de polarização circular. Resultados seguintes estendem o anterior para uma posição arbitrária da microesfera em relação ao foco do feixe e derivam forças nas demais direções (em coordenadas cilíndricas: azimutal e radial) [12]. O caso da polarização linear é discutido em [8]. Posteriormente, eles também inserem correções

à aberração esférica [16] (para interface vidro-água no porta-amostra) e para aberrações do feixe antes da objetiva (como astigmatismo e coma) [9].

Na seção/ No capítulo **inserir seção**, discutirei brevemente o modelo desenvolvido pelo grupo (MDSA+, do inglês Mie-Debye Spherical Aberration, com correção de outras aberrações). Este foi usado para obter os resultados da presente dissertação. Ele leva em conta diversos efeitos, como efeitos de polarização da luz e acoplamentos de momento angular de spin e orbital, que são ignorados pelos demais, além de ser válido para um espectro maior de razões entre o comprimento de onda λ e o raio a (também chamado de parâmetro de tamanho, ou β). Esse tema já foi abordado em teses de doutorado de ex-alunos do grupo [11, 5], que tomaremos e recomendamos como referência para este texto.

Ajustes de dados experimentais com o modelo MDSA foram feitos e publicados pelo grupo [15, 6]. Uma vez demonstrada que a teoria tem boa concordância com o experimento, podemos tentar prever parâmetros experimentais a partir dela. Esse é um dos objetivos do presente trabalho, e assim, discutiremos no capítulo 3 um pouco sobre o a simulação com o modelo Mie-Debye e suas extensões, bem como o experimento simulado.

No capítulo 4 discutiremos os resultados das simulações. Nesse mesmo capítulo discutiremos também formas alternativas de se obter os parâmetros obtidos na simulação. Comparações e conclusões serão tratadas no capítulo ??.

Capítulo 2

Teoria da Pinça Ótica

2.1 Introdução

Essa seção será dedicada a apresentar teorias que descrevem o aparato de pinça ótica. A ênfase será no modelo Mie-Debye (MD), que foi usado para as simulações e obtenções dos resultados. Outros modelos importantes serão revisados, .

Alguns resultados que parecem contra-intuitivos pedem a introdução de alguns efeitos que os explicam. Portanto, a interação de momento angular de spin e orbital do feixe será discutida no contexto do modelo MD, onde a alta abertura numérica da objetiva é a responsável por efeitos de conversão entre os momentos angulares[4].

2.2 Modelo Mie-Debye

Discutiremos brevemente nesse capítulo o modelo MDSA+. Para entender a orígem das expressões para a força, vamos começar do problema mais simples. Trataremos nessa seção as bases do modelo Mie-Debye, para uma onda de polarização circular (direita ou esquerda). Os detalhes de tais cálculos podem ser encontrados em [11], e não estarão no presente trabalho para evitar repetição.

Começamos pela forma como se faz o cálculo da força em uma amostra na pinça ótica [10]:

$$\vec{F} = \oint_{\sigma} \hat{n} \cdot T d\sigma - \mu \epsilon \frac{d}{dt} \int_{\nu} \vec{S} d\nu, \tag{2.1}$$

onde σ é uma superfície que envolve a amostra na pinça ótica, ν é o interior dessa superfície, T é o tensor das tensões de Maxwell e μ e ϵ são a permeabilidade magnética e a permissividade elétrica do meio envolvendo a amostra, respectivamente.

O primeiro passo, portanto, é calcular o campo eletromagnético incidente e espalhado nessa amostra (centro espalhador). O campo incidente na amostra tem formato cônico sólido, gerado pela objetiva. Montaremos esse campo superpondo ondas planas. Para tanto, começamos tratando do caso de uma onda plana se propagando na direção z, com polarização circular. Essa é a polarização conveniente para expansão do campo em multipolo (ondas esféricas ou ondas parciais). Outros casos de polarização serão discutidos adiante. A base de multipolos é a ideal para problemas com simetria esférica, pois são compostas pelos harmônicos esféricos na parte radial, que são autofunções dos operadores de momento angular L^2 e L_z . Esse fato será importante para obter os campos vetoriais a partir dos potenciais de Debye, que serão definidos a seguir:

$$\Pi^{E} = \sum_{J} \Pi_{J}^{E} = \sum_{J} \frac{(\mathbf{r} \cdot \mathbf{E})_{J}}{J(J+1)} \qquad e \qquad \Pi^{M} = \sum_{J} \Pi_{J}^{M} = \sum_{J} \frac{(\mathbf{r} \cdot \mathbf{H})_{J}}{J(J+1)}. \tag{2.2}$$

com

$$\mathbf{E} = E_0(\hat{x} \pm i\hat{y})e^{ikz - i\omega t} \qquad e \qquad \mathbf{H} = \frac{n_1}{\mu c}(\mp i)\mathbf{E}. \tag{2.3}$$

onde n_1 é o índice de refração do meio ao redor da amostra. Tais potenciais serão úteis para resolver o problem do espalhamento Mie. Estes decompõem os campos em dois modos, um deles com o campo \mathbf{E} paralelo à superfície do objeto espalhador (Π^M , modo transversal elétrico) e outra perpendicular (Π^E , modo transversal magnético). Essa decomposição forma a base para se aplicar as condições de contorno e obter os coeficientes de Mie,

que podemos entender como as amplitudes de espalhamento de cada onda parcial. Os coeficientes de Mie para o espalhamento são:

$$a_{J} = \frac{\psi_{J}(\beta)\psi'_{J}(\alpha) - N\psi'_{J}(\beta)\psi_{J}(\alpha)}{\zeta_{J}^{(1)}(\beta)\psi'_{J}(\alpha) - N\zeta_{J}^{\prime(1)}(\beta)\psi_{J}(\alpha)} \qquad e \qquad b_{J} = \frac{\psi'_{J}(\beta)\psi_{J}(\alpha) - N\psi_{J}(\beta)\psi'_{J}(\alpha)}{\zeta_{J}^{\prime(1)}(\beta)\psi_{J}(\alpha) - N\zeta_{J}^{(1)}(\beta)\psi'_{J}(\alpha)},$$
(2.4)

onde $\beta = ka$, $\alpha = Nka$, a é o raio da esfera, $\psi_J = xj_J(x)$ e $\zeta_J^{(1)} = xh_J^{(1)}(x)$ são as funções de Bessel-Riccati e $j_J(x)$ e $h_J^{(1)}(x)$ são as funções esféricas de Bessel e Henkel, respectivamente. Os campos espalhados provenientes de Π^E e Π^M terão os termos a_J e b_J respectivamente multiplicando as expressões dentro dos somatórios em J.

Assim, uma vez encontradas as soluções escalares para os campos espalhados e incidentes, temos que reobter os campos vetoriais. Fazemos isso usando um conjunto de operadores vetoriais que comutam com ∇^2 e são perpendiculares entre si: $-i\mathbf{r} \times \nabla = \mathbf{L}, \nabla \times \mathbf{L}$ e ∇ . No espaço de Fourier, esses operadores são proporcionais a $\mathbf{k} \times \nabla_{\mathbf{k}}$, $\mathbf{k} \times (\mathbf{k} \times \nabla_{\mathbf{k}}) \propto \nabla_{\mathbf{k}}$ e \mathbf{k} , respectivamente. A figura 2.1 mostra os vetores em questão. O operador \mathbf{k} fornece a soluções com campos na direção de propagação, ou seja, campos com divergência não nula e que não são soluções do nosso problema. Obtemos, até então, os potenciais de

Figura 2.1: Operadores vetoriais no espaço de Fourier usados para encontrar as soluções vetoriais.

ondas planas incidentes e espalhadas na direção z em coordenadas esféricas. Queremos usa-las para montar um feixe cônico de alta abertura numérica. Faremos isso rotacionando e superpondo diversas ondas planas usando o operador \mathbf{J} , que é o gerador de rotações no espaço. Como a dependência angular dos potenciais de Debye estão contidas nos harmôncos esféricos, o procedimento se resume em fazer a rotação dos mesmos. Usando o operador $D(\alpha, \beta, \gamma) = e^{-i\alpha J_z} e^{-i\beta J_y} e^{-i\gamma J_z}$ e o fato de que os harmônicos esféricos são autofunções de J_z , obtemos:

$$Y_{JM}(\theta', \phi') = \sum_{M'=-J}^{J} Y_{JM'}(\theta, \phi) e^{-i(\alpha M' + \gamma M)} d_{M'M}^{J}(\beta), \qquad (2.5)$$

que representa um harmônico esférico em um eixo rodado com coordenadas θ' e ϕ' , onde $d_{M',M}^J(\beta) = e^{-i\beta J_y}$ é o elemento da matriz-d de Wigner e α , β , e γ são os ângulos de Euler. A rotação é feita de forma que o eixo z coincida com o eixo $\hat{\mathbf{k}}$ de propagação. Para isso, $\alpha = \phi_k$ e $\beta = \theta_k$. Usamos o último ângulo de Euler para determinar corretamente a direção de polarização do feixe fazendo $\gamma = -\phi_k$. Substituindo em 2.2, os potenciais de Debye rotacionados ficam:

$$\Pi^{E} = \pm \frac{E_{0}e^{-i\omega t}}{k} \sum_{J=1}^{\infty} (i)^{J+1} j_{J}(kr) \sqrt{\frac{4\pi(2J+1)}{J(J+1)}} \sum_{M'=-J}^{J} e^{i\phi_{k}(M'\mp1)} d_{M',\pm1}^{J}(\theta_{k}) Y_{JM'}(\theta,\phi),$$
(2.6)

е

$$\Pi^{M} = \frac{H_{0}e^{-i\omega t}}{k} \sum_{J=1}^{\infty} (i)^{J} j_{J}(kr) \sqrt{\frac{4\pi(2J+1)}{J(J+1)}} \sum_{M'=-J}^{J} e^{i\phi_{k}(M'\mp1)} d_{M',\pm1}^{J}(\theta_{k}) Y_{JM'}(\theta,\phi). \quad (2.7)$$

O próximo passo é integrar no ângulo solido do cone. Começando pela varável ϕ_k (ou seja, componente ϕ da direção do vetor de onda \mathbf{k} ; notação que será usada para θ_k também), obtemos:

$$\Pi_{\theta_k}^E = \pm \frac{E_0 e^{-i\omega t}}{k} \sqrt{\cos(\theta_k)} \sum_{J=1}^{\infty} (i)^{J+1} j_J(kr) \sqrt{\frac{4\pi(2J+1)}{J(J+1)}} \times \\
\times \sum_{M'=-J}^{J} d_{M',\pm 1}^J(\theta_k) Y_{JM'}(\theta,\phi) \int_0^{2\pi} d\phi_k e^{-i\phi_k(M'\mp 1)}, \tag{2.8}$$

onde o termo $\sqrt{\cos(\theta_k)}$ vem da condição do seno de Abbe. O cone sólido se obtem integrando em θ_k :

$$\Pi^{E} = \int_{0}^{\theta_{0}} d\theta_{k} \sin \theta_{k} \Pi_{\theta_{k}}^{E},$$

$$\Pi^{M} = \int_{0}^{\theta_{0}} d\theta_{k} \sin \theta_{k} \Pi_{\theta_{k}}^{M},$$
(2.9)

onde θ_0 é a meia abertura do feixe.

Para derivar a força na microesfera em função da sua posição relativa ao foco do feixe, temos que calcular os campos deslocados em relação ao centro do objeto espalhador, ou seja, a orígem. Fazemos isso usando o gerador de translações no espaço \mathbf{k} , com o operador $e^{-i\mathbf{k}\cdot\mathbf{R}}$, onde $\mathbf{R}=q_x\hat{x}+q_y\hat{y}+q_z\hat{z}$ é o vetor de deslocamento. Multiplicamos esse operador em cada coeficiente de multipolo, e dessa forma, o operador fica dentro da integral em ϕ_k , que leva ao seguinte resultado:

$$\int_{0}^{2\pi} d\phi_k e^{-i\mathbf{k}\cdot\mathbf{R}} e^{-i\phi_k(M'\mp 1)} = e^{-ikz\cos\theta_k} 2\pi (-i)^{M'\mp 1} J_{M'\mp 1} \left(k\sin\theta_k \sqrt{q_x^2 + q_y^2}\right) e^{-i(M'\mp 1)\phi}.$$
(2.10)

Uma vez determinados os potenciais de Debye incidentes e espalhados, podemos obter os campos aplicando os operadores $-i\nabla \times \mathbf{L}$ e $-i\mathbf{L}$:

$$\mathbf{E}_{T} = \mathbf{E}_{IN} + \mathbf{E}_{S} = -i\nabla \times \mathbf{L}(\Pi_{IN}^{E} + \Pi_{S}^{E}) + i\omega\mu(-i)\mathbf{L}(\Pi_{IN}^{M} + \Pi_{S}^{M}),$$

$$\mathbf{H}_{T} = \mathbf{H}_{IN} + \mathbf{H}_{S} = -i\nabla \times \mathbf{L}(\Pi_{IN}^{M} + \Pi_{S}^{M}) - i\omega\epsilon(-i)\mathbf{L}(\Pi_{IN}^{E} + \Pi_{S}^{E}).$$
(2.11)

Finalmente, calculando a integral 2.1, obtemos a força na microesfera de um campo cônico e com perfil de instensidade constante antes de entrar na objetiva. Essa integral pode ser resolvida tomando a superfície σ como uma esfera (com centro na orígem) com raio tendendo a infinito. Isso faz com que as componentes radiais do campo sejam desprezadas no cálculo, pois caem com $\frac{1}{r^2}$, comparado às componentes tangenciais que caem com $\frac{1}{r}$. Temos, então:

$$\mathbf{F} = \frac{-1}{2}r \left(\int d\Omega(\epsilon E_{tan}^2 \mathbf{r}) + \int d\Omega(\mu H_{tan}^2 \mathbf{r}) \right), \tag{2.12}$$

onde as duas integrais dentro do parentesis são iguais. Sendo assim, a força vai depender do quadrado dos campos (E^2 e H^2), e de termos proporcionais a $\mathbf{E}_{IN} \cdot \mathbf{E}_{IN}^*$ (incidente-incidente), $Real(\mathbf{E}_{IN} \cdot \mathbf{E}_{S}^*)$ (espalhado-incidente) e $\mathbf{E}_{S} \cdot \mathbf{E}_{S}^*$ (espalhado-espalhado). O primeiro desses termos (campo incidente-incidente) não contribui para a força, pois trata-se do caso onde não há centro espalhador. O produtos dos campos espalhado-incidente é chamado termo de extinção, e representa a taxa de perda de momento do campo incidente para o centro espalhador. Por fim, o termo de espalhamento (espalhado-espalhado) é menos a taxa de transferência de momento para o campo espalhado.

A expressão para a força será mostrada depois de introduzirmos o perfil do feixe e a polarização, uma vez que tanto os campos mudam, quanto as expressões da força ganham termos adicionais. Junto com a expressão para a força, serão mostrados os coeficientes de multipolo $\mathcal{G}_J M$, que carregam as informações de aberrações e do perfil de intensidade.

2.3 Efeito do perfil gaussiano

O efeitos do perfil gaussiano no feixe. Faremos isso analisando o campo paraxial na entrada da obejtiva. Trataremos também do efeito da aberração esférica causada pela objetiva quando a lente é imersa em um meio com índice de refração diferente do meio que envolve a microesfera.

Para introduzir o efeito que o perfil do feixe produz, basta saber como é o feixe paraxial antes de ser focalizado. Primeiramente, assumimos que tal feixe incidente esteja com a altura da cintura mínima coincidente com a entrada da objetiva. Isso nos permite tratarlo como um feixe cilíndrico (de raio de curvartura infinito). colocar discussão sobre feixe paraxial em algum apendice, e fazer a referencia aqui. O campo fica:

$$\mathbf{E}_{IN}^{antes}(\vec{r},t) = E_0 e^{ikz} e^{-\frac{f^2 \sin^2 \theta_k}{\omega_0^2}} (\hat{\mathbf{x}} \pm i\hat{\mathbf{y}}) e^{i\omega t}, \tag{2.13}$$

onde ω_0 é a cintura (waist) mínima, $f^2 \sin^2 \theta_k = \rho^2$ (pela condição do seno) é a distância ao eixo do feixe ao quadrado. Ao passar pela objetiva, o campo também ganha uma correção de efeitos de difração [14], o fator multiplicativo $-i\frac{f}{\lambda}$. O fator $e^{-\frac{f^2\sin^2\theta_k}{\omega_0^2}}$ deve ser inserido dentro da integral em θ_k . Assim, as expressões para os multipolos 2.9 são alteradas.

2.4 Efeitos de polarização

Entender o caso de polarização linear vai tornar possível a compreensão do caso de polarização elíptica. Começamos modelando o feixe como uma superposição de polarização circular a direita a e esquerda, com pesos iguais. O único procedimento que muda em relação ao caso de polarização circular é quando tomamos os quadrados dos campos **E** e **H**. Teremos campos espalhados e incidentes de ambas as polarizações, com as quais montamos os respectivos potenciais de Debye. Produtos de campos de mesma polarização serão chamados puros, e produtos de campos de polarização oposta serão chamados cruzados. Introduzimos, então, o fator de eficiência vetorial, também chamado de força normalizada, para o feixe de polarização linear:

$$\mathbf{Q} = \frac{\langle \mathbf{F} \rangle}{n_1 P/c} = \frac{1}{2} \mathbf{Q}^{(\sigma+)} + \frac{1}{2} \mathbf{Q}^{(\sigma-)} + \mathbf{Q}^{(cross)}$$
(2.14)

onde $\langle \mathbf{F} \rangle$ é a média temporal da força, c é a velocidade da luz no vácuo e P é a potência do feixe incidente na amostra. Os termos $\mathbf{Q}^{(\sigma\pm)}$ são os termos que encontraríamos para a polarização circular direita ou esquerda (tanto de espalhamento quanto de extinção). O termo $\mathbf{Q}^{(cross)}$ é o que chamamos de cruzado, pois contem produtos de campos com polarizações opostas: .

A força exercida por uma polarização elípitica pode ser obtida introduzindo a dependência com o ângulo da placa de quarto de onda (PQO, ou QWP) no feixe paraxial incidente na entrada da objetva:

$$\mathbf{E}^{ent}(\rho, \phi, z) = E_{centro} e^{ik_0 z} e^{\frac{-\rho^2}{w_0^2}} \sum_{\sigma = +1, -1} \frac{1 - ie^{-2i\sigma\theta}}{2} \hat{\epsilon}_{\sigma}.$$
 (2.15)

Dessa forma, os potenciais de Debye ganham um termo a mais devido ao ângulo da placa de quarto de onda. Podemos, então, identificar 4 tipos de termos nas forças de extinção e de espalhamento: diretos ou puros devidos as polarizações σ_{\pm} , e termos cruzados com os produtos $\sigma_{\pm}^* \cdot \sigma_{\mp}$.

2.5 Aberração esférica

Uma das formas que a aberração esférica pode aparecer é quando há algum tipo de feixe focalizado atravessando a interface de meios com índices de refração diferentes. Essa não é a única aberração ótica presente no aparato de pinça ótica. Antes mesmo do feixe ser focalizado, este pode conter aberração esférica, como veremos na próxima seção. Para o caso do feixe focalizado passando por uma interface, é fácil de mostrar como o efeito funciona em uma abordagem de ótica de raios e a lei de Snell. Componentes do feixe no meio com índice n que incidem na interface com ângulo θ , por refração, são transmitidos com um ângulo θ_1 no meio com índice de refração n_1 , de forma a respeitar a lei de Snell:

$$n\sin\theta = n_1\sin\theta_1. \tag{2.16}$$

Fica claro, então, que para um feixe focalizado incidindo perpendiculamente à interface, raios que incidem em direções com ângulo $\theta \neq 0$, ao mudarem de meio, não mais incidem no foco. Portanto, a região de maior intensidade não se localiza mais no ponto focal, e sim difundida e mais próxima à interface (**inserir figura**). Isso faz com que a posição de equilíbro da microesfera se desloque para mais perto da interface, o que pode ser entendido como um efeito de força de gradiente.

Para modelar a passagem de um meio para outro, levamos em conta a amplitude de transmissão de Fresnel de cada componente **k** do campo, dada por [16]:

$$T(\theta) = \frac{2\cos\theta}{\cos\theta + N\cos\theta_1},\tag{2.17}$$

onde, por 2.16, $\theta_1 = \arcsin(\frac{\sin \theta}{N})$, com $N = \frac{n_1}{n}$. Ao serem refratadas, as componetes de onda-plana ganham também uma fase $e^{i\Psi(z,\theta)}$, onde

$$\Psi(z,\theta) = k \left(-\frac{L}{N^2} \cos \theta + (L+z) \cos \theta_1 \right)$$
 (2.18)

é a função de aberração esférica. No experimento, essa aberração aparece depois que o feixe é focalizado pela objetiva de imersão em óleo (que tem o mesmo índice de refração do vidro) e passa pela interface vidro-água para dentro do porta-amostra.

2.6 Aberrações Óticas

As aberrações óticas são modificações nos feixes paraxiais induzidas por uma série de fatores, entre eles imperfeições nas lentes e desalinhamentos no sistema ótico. O estudo das aberrações é inspirado pelo fato de que a teoria MDSA subestima a força radial na pinça ótica quando o raio da microesfera aprisionada é menor ou da ordem do comprimento de onda λ do laser[9]. Raios maiores que λ recuperam tanto os resultados da teoria MDSA quanto os da ótica geométrica. Isso ocorre porque a esfera passa a sondar uma média do perfil do feixe, em contraste com o caso anterior, em que ela sonda diferenças de fase e

distribuição de intensidade do feixe focalizado.

O formalismo de Seidel é um dos possíveis métodos para se descrever as aberrações em um feixe paraxial. Entre as aberrações primárias, que aparecem como os primeiros termos de uma expansão nesse formalismo, são relevantes para o nosso modelo o astigmatismo, a coma e a aberração esférica [9]. Estamos tratando aqui de aberrações antes da objetiva, ou seja, a aberração esférica tratada aqui tem orígem diferente da descrita na sessão anterior, apesar de serem o mesmo fenômeno físico.

Podemos introduzir essas aberrações no modelo colocando a fase adicional $e^{i\Phi_{adicional}(\theta,\phi)}$ nos campos na entrada da objetiva (modificando a equação 2.15), com:

$$\Phi_{adicional}(\theta,\phi) = 2\pi \left[A'_{sa} \left(\frac{\sin \theta}{\sin \theta_0} \right)^4 + A'_c \left(\frac{\sin \theta}{\sin \theta_0} \right)^3 \cos(\phi - \varphi_c) + A'_a \left(\frac{\sin \theta}{\sin \theta_0} \right)^2 \cos^2(\phi - \varphi_a) \right].$$
(2.19)

Identificamos A'_{sa} , A'_c e A'_a como os parâmetros de aberração esférica (sa do inglês, sphe- $rical\ aberration$), coma e astigmatismo. Para entender os parâmetros φ_c e φ_a , temos que
entender o que são essas aberrações. A primeira característica delas é a quebra de simetria no plano perpendicular a propagação do feixe paraxial (eixo z), e os parâmetros φ_c e φ_a são os eixos da orientação dos efeitos de coma e astigmatismo respectivamente. Isso
também explica o porquê de não haver um parâmetro angular para aberração esférica:
trata-se de uma aberração simétrica em φ , o que fica muito claro pela seção anterior.

Uma breve explicação das aberrações será feita a seguir, (talvez colocar a explicação das aberrações em um apêndice. Posso fazer isso depois, com tempo e calma para produzir imagens ilustrativas. Vou dar foco às equações que usei na simulação.) baseada em trabalhos do grupo [5, 6, 9], onde detalhes do seguinte desenvolvimento podem ser encontrados.

Considemos agora o problema prático: os experimentos que serviram de base comparatória para as simulações desenvolvidas não possuem coma e os efeitos de aberração esférica podem ser negligenciados. Portanto, somente o astigmatismo será levado em conta nas equações apresentadas. Como a fase referente ao astigmatismo possui uma dependência em ϕ , podemos concluir que a integral da equação 2.10 será modificada.

Uma vez apresentadas todas as correções feitas ao modelo MD, vamos apresentar as expressões para força em termos dos coeficientes de multipolo.

2.7 Expressões para força.

Como dito no começo do capítulo, o método para se obter a força na pinça ótica é resolver a integral 2.1. A forma mais fácil de faze-lo é tomando a superfície σ no infinito, já que a escolha dessa é arbitrária. Podemos argumentar também que a integral envolvendo o vetor de Poynting é zero. No limite que tal superfície está no infinito, usamos as expressões assintóticas das funções de Bessel (com dependência em kr) dentro dos potenciais de Debye.

Portanto, o resultado para o fator de eficiência em coordenadas cilíndricas ($\mathbf{Q} = (Q_{s\rho} + Q_{e\rho})\hat{\rho} + (Q_{s\phi} + Q_{e\phi})\hat{\phi} + (Q_{sz} + Q_{ez})\hat{z}$), para uma polarização qualquer, corrigida para aberração esférica e astigmatismo, tem a forma [6]:

$$Q_{sz}(\rho,\phi,z) = -\frac{4\gamma^2}{AN} \sum_{jm\sigma} \left[\frac{\sqrt{j(j+2)(j+m+1)(j-m+1)}}{j+1} \left((a_j a_{j+1}^* + b_j b_{j+1}^*) \times \mathcal{G}_{j,m}^{(\sigma)} \mathcal{G}_{j+1,m}^{(\sigma)*} (1-\sigma\sin 2\theta) + (a_j a_{j+1}^* - b_j b_{j+1}^*) \mathcal{G}_{j,m}^{(\sigma)} \mathcal{G}_{j+1,m}^{(-\sigma)*} \cos 2\theta e^{i2\sigma(\phi-\theta)} \right) + \frac{2j+1}{j(j+1)} \right]$$
(2.20)

$$Q_{ez}(\rho, \phi, z) = -\frac{a}{a} \tag{2.21}$$

$$Q_{s\phi}(\rho,\phi,z) = -\frac{a}{a} \tag{2.22}$$

$$Q_{e\phi}(\rho,\phi,z) = -\frac{a}{a} \tag{2.23}$$

$$Q_{s\rho}(\rho,\phi,z) = -\frac{a}{a} \tag{2.24}$$

$$Q_{e\rho}(\rho,\phi,z) = -\frac{a}{a} \tag{2.25}$$

separar as equações e colocar no apêndice? Vale a pena: posso reescrever as equações com a dependência em θ separada, como fiz no código.

2.8 Interação Spin-Órbita.

YADA

Capítulo 3

Experimento e Simulação

Neste capítulo vamos apresentar o experimento que foi simulado com a teoria MDSA+ para obter os resultados da presente dissertação, bem como os procedimentos de tal simulação.

3.1 Método Experimental.

O aparato que descreverei nessa seção mede a transferência de momento angular da luz na pinça ótica. O experimento foi realizado em 2018 por Diniz et al. [6], e foi também resultado do mestrado do mesmo [7]. Detalhes do procedimento experimental, do material e das ferramentas usadas nesse experimento podem ser encontradas em sua tese e no artigo citado, e não serão a abordados nesse trabalho.

A descrição do experimento deve ser dividida em partes. De forma geral, temos um feixe que é produzido na mesa ótica sendo levado para dentro de um microscópio. Dentro desse microscópio há uma lente objetiva e o porta-amostra, que contém um meio fluido com as microesferas diluidas. Este porta amostra esta acoplado a um suporte que pode ser movido na direção horizontal (plano xy) manualmente ou por um componente piezo-elétrico. Este suporte fica inserido no estágio do microscópio, que permite deslocar o porta amostra verticalmente (direção z). Tudo isso forma o aparato da pinça ótica, e deixaremos para o final a descrição do experimento que foi simulado.

Primeiramente, trataremos do feixe paraxial: trata-se de um laser com perfil gaussiano (TEM_{00}) e comprimento de onda $\lambda_0=1064nm$. Suas caraterísticas são importantes para definir o feixe focalizado pela objetiva, como vimos no capítulo anterior. A largura da cintura ω_0 do feixe é essencial para garantir a condição de aprisionamento da microesfera, pois se esta for muito menor que a entrada da objetiva, teremos o que se chama de underfilling, que faz com que o fator de eficiência da pinça seja muito reduzida. Por outro lado, **conferir isso com paulo ou rafael** preencher a entrada da objetiva pode fazer com que a meia abertura do feixe focalizado alcance ângulos que produziriam reflexão total na interface entre a lamínula (vidro) e a água falar antes da solução? aberração esférica foi tratada no cap anterior. Isso significa que ondas evanescentes são produzidas, e podem alterar a força ótica quando a microesfera estiver perto da lamínula.

A cintura mínima é medida fazendo o feixe passar por uma pupila e medindo-se a potência média transmitida. Como o campo tem perfil gaussiano e a potência é proporcional ao quadrado do campo, a potência transmitida deve obedecer

$$P(R) = P_i(1 - e^{\frac{-2R}{\omega_0}}), \tag{3.1}$$

onde R é o raio da pupila e P_i é a potência do laser. O ajuste dessa função com valores medidos da potência fornece o valor da cintura: $\omega_0 = 5.82 \pm 0.08$.

O feixe de laser, logo após ser gerado, incide sobre um divisor de feixe que o polariza linearmente. A direção de polarização é paralela à mesa, e quando o feixe de polarização linear entra no microscópio onde o porta-amostra se encontra, a direção de polarização passa a definir o eixo x das nossas coordenadas. É com esse eixo que vamos medir o ângulo ϕ das coordenadas cilindricas da microesfera e o ângulo φ_a do eixo do astigmatismo. O feixe se propaga na diração do eixo z com sentido positivo ao entrar no microscópio.

Como ja foi explicado, o astigmatismo gera um alongamento no perfil do feixe, fazendo com que o spot tenha um formato elipsoidal ao invés de circular. A direção do alongamento que define o ângulo ϕ . Dessa forma, medir esse ângulo é realizado de forma muito fácil

uma vez que se obtenha a imagem do perfil do feixe.

Capítulo 4 Título do Quarto Capítulo

blablabla...

blablabla...

blablabla...

Capítulo 5

Considerações Finais

blablabla...

blablabla...

blablabla...

Referências Bibliográficas

- [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. *Physical Review Letters*, 24(4):156–159, jan 1970. 1
- [2] A. Ashkin and J. M. Dziedzic. Observation of Resonances in the Radiation Pressure on Dielectric Spheres. *Physical Review Letters*, 38(23):1351–1354, jun 1977. 1
- [3] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. Observation of a single-beam gradient force optical trap for dielectric particles. *Optics Letters*, 11(5):288, may 1986.
- [4] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats. Spin-orbit interactions of light. *Nature Photonics*, 9(12):796–808, nov 2015. 3
- [5] Rafael de Sousa Dutra. Parametrizando uma Pinça Ótica: Efeitos de Aberrações e Absorção. PhD thesis, Universidade Federal do Rio de Janeiro, 2011. 2, 12
- [6] K. Diniz, R. S. Dutra, L. B. Pires, N. B. Viana, H. M. Nussenzveig, and P. A. Maia Neto. Negative optical torque on a microsphere in optical tweezers. *Optics Express*, 27(5):5905, feb 2019. 2, 12, 13, 15
- [7] Kainã Gonçalves Diniz. Momento angular de spin em pinças Óticas. Master's thesis, Universidade Federal do Rio de Janeiro, 2018. 15

- [8] R S Dutra, N B Viana, P A Maia Neto, and H M Nussenzveig. Polarization effects in optical tweezers. *Journal of Optics A: Pure and Applied Optics*, 9(8):S221–S227, jul 2007. 1
- [9] R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig. Absolute calibration of forces in optical tweezers. *Physical Review A*, 90(1), jul 2014. 2, 11, 12
- [10] John David Jackson. Classical Electrodynamics. John Wiley & Sons Inc, 1998. 3
- [11] A. Mazolli. Teoria das Pinças Óticas. PhD thesis, Universidade Federal do Rio de Janeiro, 2003. 2, 3
- [12] A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig. Theory of trapping forces in optical tweezers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2040):3021–3041, dec 2003. 1
- [13] P. A. Maia Neto and H. M Nussenzveig. Theory of optical tweezers. *Europhysics Letters (EPL)*, 50(5):702–708, jun 2000. 1
- [14] B. Richards and E. Wolf. Electromagnetic diffraction in optical systems, II. structure of the image field in an aplanatic system. *Proceedings of the Royal Society of London.*Series A. Mathematical and Physical Sciences, 253(1274):358–379, dec 1959. 9
- [15] N. B. Viana, A. Mazolli, P. A. Maia Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita. Absolute calibration of optical tweezers. Applied Physics Letters, 88(13):131110, mar 2006.
- [16] N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig. Towards absolute calibration of optical tweezers. *Physical Review E*, 75(2), feb 2007. 2, 11

Apêndice A Título do Primeiro Apêndice

blablabla...

blablabla...

blablabla...

Apêndice B Título do Segundo Apêndice

blablabla...

blablabla...

blablabla...