MAT 243 Rules of Inference Proof Practice

Solve the following problems, showing any necessary work. (Problems 1 and 2 should be easy, 3 and 4 what you would expect on a test, and 5 through 7 are more challenging.)

1. Prove $\neg r$, assuming the following:

$$\begin{array}{l} q \vee p \\ q \rightarrow \neg r \\ \neg p \end{array}$$

2. Prove $(\neg(\neg p \land r) \land r) \to (\neg q \lor p)$, assuming the following:

$$((q \land r) \to (\neg q \lor p)) \lor p$$
$$\neg p$$
$$(\neg (\neg p \land r) \land r) \to (q \land r)$$

3. Prove p, assuming the following:

$$\begin{aligned} q &\to \neg r \\ s \\ r \\ ((r \land p) \lor q) \lor \neg s \end{aligned}$$

4. Prove $\neg r \lor \neg s$, assuming the following:

$$\neg((q \to p) \land p) \to \neg(\neg p \lor q)$$
$$\neg p \lor q$$
$$p \land (s \to \neg((q \to p) \land p))$$

5. Prove r, assuming the following:

$$t \\ \neg(\neg q \lor \neg p) \land q \\ p \lor \neg q \\ \neg(\neg q \land \neg p) \land (t \to (\neg (p \land \neg r) \land (p \to r)))$$

6. Prove $\neg t$, assuming the following:

$$\begin{array}{l} q \\ s \rightarrow (\neg r \rightarrow (q \land ((\neg q \lor \neg t) \land \neg t))) \\ s \\ (\neg p \land \neg r) \lor \neg q \end{array}$$

7. Prove $\neg(r \lor \neg p) \to \neg t$, assuming the following:

$$r \lor q$$

$$(r \to (s \to (\neg(r \lor \neg p) \to \neg t))) \lor \neg t$$

$$t$$

$$\neg q \to s$$

$$\neg(\neg p \to \neg s)$$

$$q \to (\neg p \to \neg s)$$

$$\neg p \to \neg q$$

$$\neg p$$

Solutions

Note that there are other solutions possible (see the comment about problem #7), even if you avoid using "Logical Equivalences" in your proof.

1.

- (1) $q \lor p$ Assumption (2) $q \to \neg r$ Assumption
- (3) $\neg p$ Assumption (4) q Disjunctive Syllogism (1), (3)
- (5) $\neg r$ Modus Ponens (2), (4)

2.

- $\begin{array}{ll} (1) & ((q \wedge r) \to (\neg q \vee p)) \vee p & \text{Assumption} \\ (2) & \neg p & \text{Assumption} \\ (3) & (\neg (\neg p \wedge r) \wedge r) \to (q \wedge r) & \text{Assumption} \end{array}$
- (4) $(q \wedge r) \rightarrow (\neg q \vee p)$ Disjunctive Syllogism (1), (2)
- (5) $(\neg(\neg p \land r) \land r) \rightarrow (\neg q \lor p)$ Hypothetical Syllogism (3), (4)

3.

- (1) $q \to \neg r$ Assumption (2) s Assumption (3) r Assumption (4) $((r \land p) \lor q) \lor \neg s$ Assumption (5) $(r \land p) \lor q$ Disjunctive Syllogism (4), (2)
- $\begin{array}{ll} (6) & \neg q & \text{Modus Tollens (1), (3)} \\ (7) & r \wedge p & \text{Disjunctive Syllogism (5), (6)} \end{array}$
- (8) p Simpificiation (7)
- 4. Notice that no r's appear in the assumptions! That means that the $\neg r$ in $\neg r \lor \neg s$ was added using Addition, and the real deduction you have to make is $\neg s$.
 - $\begin{array}{ll} (1) & \neg((q \to p) \land p) \to \neg(\neg p \lor q) & \text{Assumption} \\ (2) & \neg p \lor q & \text{Assumption} \\ (3) & p \land (s \to \neg((q \to p) \land p)) & \text{Assumption} \end{array}$
 - (4) $\neg((q \to p) \land p)$ Modus Tollens (1), (2) (5) $s \to \neg((q \to p) \land p)$ Simplification (3)
 - (6) $\neg s$ Modus Tollens (5), (4)
 - (7) $\neg r \lor \neg s$ Addition (6)

5.

(1) tAssumption (2) $\neg(\neg q \lor \neg p) \land q$ Assumption Assumption $(4) \neg (\neg q \land \neg p) \land (t \to (\neg (p \land \neg r) \land (p \to r)))$ Assumption (5) $t \to (\neg(p \land \neg r) \land (p \to r))$ Simplification (4) (6) $\neg (p \land \neg r) \land (p \rightarrow r)$ Modus Ponens (5), (1)(7) $p \rightarrow r$ Simplification (6) (8) qSimplification (2) (9) pDisjunctive Syllogism (8), (3) (10) rModus Ponens (7), (9)

6.

$$\begin{array}{lll} (1) & q & \text{Assumption} \\ (2) & s \rightarrow (\neg r \rightarrow (q \land ((\neg q \lor \neg t) \land \neg t))) & \text{Assumption} \\ (3) & s & \text{Assumption} \\ (4) & (\neg p \land \neg r) \lor \neg q & \text{Assumption} \\ (5) & \neg r \rightarrow (q \land ((\neg q \lor \neg t) \land \neg t)) & \text{Modus Ponens } (2), (3) \\ (6) & \neg p \land \neg r & \text{Disjunctive Syllogism } (4), (1) \\ (7) & \neg r & \text{Simplification } (6) \\ (8) & q \land ((\neg q \lor \neg t) \land \neg t) & \text{Modus Ponens } (5), (7) \\ (9) & (\neg q \lor \neg t) \land \neg t & \text{Simplification } (8) \\ (10) & \neg t & \text{Simplification } (9) \\ \end{array}$$

7. Note that step 10 can be replaced with Modus Ponens (7), (8). (Not all of the assumptions are necessary for the result to be true; this is a defect of my problem generator.)

(1)	$r \lor q$	Assumption
(2)	$(r \to (s \to (\neg(r \lor \neg p) \to \neg t))) \lor \neg t$	Assumption
(3)	t	Assumption
(4)	$\neg q \rightarrow s$	Assumption
(5)	$\neg(\neg p \to \neg s)$	Assumption
(6)	$q \to (\neg p \to \neg s)$	Assumption
(7)	$\neg p \rightarrow \neg q$	Assumption
(8)	$\neg p$	Assumption
(9)	$r \to (s \to (\neg(r \lor \neg p) \to \neg t))$	Disjunctive Syllogism (2), (3)
(10)	$\neg q$	Modus Tollens (6), (5)
(11)	r	Disjunctive Syllogism (1), (10)
(12)	$s \to (\neg(r \lor \neg p) \to \neg t)$	Modus Ponens (9), (11)
(13)	s	Modus Ponens (4), (10)
(14)	$\neg(r \vee \neg p) \to \neg t$	Modus Ponens (12), (13)