BULK 2023

Постановка задачи

Требуется определить распределение величины температуропроводности одномерной балки

Описание эксперимента

При нагревании теплопроводящей балки замеряют значения температуры по ее профилю необходимо по данным замеров восстановить параметры температуропроводности балки

Этапы работ

- Загрузка данных замера температуры
- Расчет параметров материала
- Моделирование нагрева
- Оценка ошибки модельной и фактической температур

Исходные данные

- Размер балки, число ее разбиений для замеров (разбиения эквидистантные)
- Данные замеров температур балки по времени в точках замеров (количество времен замеров и само время)

- Максимальное количество разбиений балки – не более 10000
- Максимальное количество времен замеров – не более 1000

Формат исходных данных

- Текстовый файл
- Ключевые слова
- Данные для расчета
- Комментарии

- Ключевые слова
- **GRID** блок данных о разбиении балки на участки замеров
- **TEMP** блок данных о фактических замерах температуры на участках замеров
- **TUBE** блок данных о величине температуропроводности

- -- комментарий может быть либо в новой строке, либо в конце текущей строки
- / окончание блока данных
- Данные в блоке пишутся после ключевого слова с новой строки

Ключевые слова. **GRID** – указываются длина балки в метрах, количество ее разбиений и моментов времени в формате L N T.

GRID

3.0 300 100/ -- балка длинной 3м 300 замеров по длине и 100 по времени.

Пример

GRID

300.0 300 100

/ балка длинной 300м 300 замеров по длине и 100 по времени.

Ключевые слова. **ТЕМР** – указывается общее количество замеров температуры по всем моментам времени в формате $t_1 T_1 T_2 \dots T_n t_2 T_1 T_2 \dots T_n \dots$

Время указано в секундах, температура в кельвинах. Момент времени Ос должен содержать данные начальной температуре всей балки. Всегда должны быть заданы значения температуры на концах балки.

Если указано отрицательное значение температуры – замер в этом месте балки в это время не проводился.

TEMP

0.00 300.0 400.0 0.1 300.0 -1 / -- 0.00 с замеры 300К и 400К, 0.1с 300К нет замера

Пример

TEMP

 $0.00\ 300.0\ 400.0\ 0.1\ 300.0\ -1\ /$ -- $0.00\ c$ замеры 300К и 400К, 0.1с 300К нет замера

Ключевые слова. **TUBE** – значения температуропроводности по всей длине балки

TUBE

 $1.2\ 2.2\ 3.9$ / -- $1.2\ 2.2\ 3.9\ \text{m}^2/\text{c}$

Пример

TUBE

 $1.2\ 2.2\ 3.9\ /\ --\ 1.2\ 2.2\ 3.9\ M^2/c$

Общие требования и метод решения

- Время расчета для максимально-допустимой задачи не более 10 минут
- Для решения уравнения теплопроводности необходимо использовать неявную схему расчета

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \frac{(a_{i-1} + a_i)(T_{i-1}^{n+1} - T_i^{n+1}) - (a_i + a_{i+1})(T_i^{n+1} - T_{i+1}^{n+1})}{2\Delta x^2}$$

- На используемый метод решения обратной задачи ограничений нет
- В случае отсутствия решения требуется об этом сообщить
- Итоговая невязка по отклонению температуры рассчитывается по формуле: $F = \sum_t \sum_N (T_{calc} T_{fact})^2$

Команда и отчетность

- До 5 человек в группе
- Руководитель группы
- Trello
- Промежуточные тесты
- Отчет и прочие материалы
 - Постановка задачи
 - Метод решения
 - Результаты тестирования алгоритмов
 - Исходные коды

