All following problems are concerned with cylinders of radius R and infinitely long along z direction.

- 1. Calculate the electric field E(r) and electrostatic potential $\phi(r)$ of a uniformly charged solid cylinder with 3D charge density ρ , for r over all space. (10 pts)
- 2. Calculate the electric field E(r) and electrostatic potential $\phi(r)$ of a cylindrical conductor with charge per unit length λ along z direction, for r over all space. (10 pts)
- 3. Calculate the mutual capacitance per unit length C between two parallel cylindrical conductors separated at a distance $d\gg R$. (20 pts)

p(r)= 2260 ly/r) + com for rock Const Const Cujures (V) is continuous at R When two Glinderal conductors one for any coch chare is nearly morn in the surface of coch [3] $\frac{1}{\sqrt{2}} = \frac{6}{\sqrt{2}} \left(\frac{1}{2} \right) + \frac{6}{\sqrt{2}} \left(\frac{1}{2} \right)$ $= \frac{6}{\sqrt{2}} \left(\frac{1}{2} \right) + \frac{6}{\sqrt{2}} \left(\frac{1}{2} \right)$ $\phi_1 \sim \phi(x,R) = \frac{6}{226} \left(\frac{d}{R}\right) \sim \frac{6}{226} \left(\frac{d}{R}\right)$ $\phi_{L} = \phi_{L} = \frac{6}{\sqrt{2}} \log \left(\frac{d}{R} \right) = -\frac{6}{\sqrt{2}} \log \left(\frac{d}{R} \right)$ $\sqrt{-\frac{1}{2}} + \frac{6}{26} \left(\frac{1}{2} \right)$ $C = \frac{6}{\sqrt{2}} = \frac{\frac{2}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$

8.311 Electrodynamics Page