ECT 2 23/09/2024

La question **4.a)** ne peut pas être traitée pour le moment. Vous pourrez la remplacer par : « Vérifier que $P \times P^{-1} = I$. »

Exercice 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par ses deux premiers termes $u_0=1$ et $u_1=2$ ainsi que la relation :

pour tout entier naturel
$$n$$
, $u_{n+2} = u_{n+1} - \frac{1}{4}u_n$.

Soit les matrices $A = \begin{pmatrix} 1 & -\frac{1}{4} \\ 1 & 0 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et, pour tout entier naturel n, $U_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$.

- **1. a)** Montrer que pour tout entier naturel n, $U_{n+1} = AU_n$.
 - **b)** Établir, par récurrence, que pour tout entier naturel n, $U_n = A^n U_0$.
- **2.** On pose $P = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$ et $T = \begin{pmatrix} \frac{1}{2} & 1 \\ 0 & \frac{1}{2} \end{pmatrix}$.
 - a) Vérifier que AP = PT.
 - **b)** Établir que pour tout entier naturel n, $A^nP = PT^n$.
- **3.** On pose $B = T \frac{1}{2}I$.
- a) Donner les quatre coefficients de B puis calculer B^2 . Donner B^k pour tout $k \ge 2$.
- **b)** En utilisant la formule du binôme, montrer que : $\forall n \ge 1, T^n = \frac{1}{2^n}I + \frac{n}{2^{n-1}}B$. Cette formule est-elle aussi vraie pour n = 0?
 - c) En déduire, pour tout entier naturel n, les quatre coefficients de T^n .
- **4. a)** Justifier que P est inversible et vérifier que : $P^{-1} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{pmatrix}$.
- **b)** Déduire des questions précédentes, pour tout entier naturel n, les quatre coefficients de A^n .
- 5. Déterminer, pour tout entier naturel n, une expression de u_n en fonction de n.