

1. 논리와 증명

3조

김민지

김현영

정진아

홍인표

1-2 번

- 문제 1: 다음 명제들이 항진명제라는 것을 진리표를 이용해서 보이시오

- ① $\sim (\sim p \land q) \lor q$
- $(\sim p \lor q) \lor (p \land \sim q)$

р	q	~p	(~p∧ q)	~(~p^ q)	~(~p∧ q) ∨ q
Т	Т				
Т	F				
F	Т				
F	F				

1. 논리와 증명 1

@	þ	3	(npvg)	(pr 28)	(~pvを)v(pハハタ)
	Τ	Т	Т	F	Т
	T	F T	T	T	7
	F	F	Т	F	て

2-2 번

- 문제 2: 다음 명제들이 모순명제라는 것을 진리표를 이용해서 보이시오
 - ① $(\sim p \lor q) \land (p \land \sim q)$
 - $(p \land q) \land (p \land \sim q)$

р	q	~p	$(\sim p \lor q)$	~q	$(p \land \sim q)$	$(\sim p \lor q) \land (p \land \sim q)$
Т	Т					
Т	F					
F	Т					
F	F					

3-2 번

- 문제 3: 다음 명제의 쌍 들에 대해서 두 명제가 동등한지를 진리표를 이용해 확인하시오

①
$$p \land (p \lor q)$$
와 p

②
$$\sim p \lor \sim q$$
와 $\sim (p \lor q)$

р	q	$(p \lor q)$	$p \wedge (p \vee q)$
Т	Т		
Т	F		
F	Т		
F	F		

① 등등 X

P 8	N\$ V~9	~ (pv8)
TT	T	F
TF	F	T
FT	T	F
FF	T	F

4-2 번

- 문제 4: 명제식의 변형을 통하여 다음 명제를 <u>간소화하시오</u>.
 - ① $(p \land \sim q) \lor (p \land q)$

$$(p \lor \sim q) \land (\sim p \lor \sim q)$$

5-2 번 & 5-4번

- 문제 5: 다음 명제들이 참인지 <u>확인하시오</u>. 단, R은 실수의 집합을 의미하고, Z는 정수의 집합을 의미한다.
 - (1) $\forall x \in R, x^2 \ge x$
 - (2) $\forall x \in Z, x^2 \geq x$
 - $\exists x \in R, x^2 < x$
 - **4** ∃ $x \in Z, x^2 < x$

 - ③ $\exists x \in R, x^2 < x$ $\stackrel{\text{def}}{=}$ (")
 - $\exists x \in Z, x^2 < x \quad \forall \chi \quad (10)$

*선체한성자 : "SE"의 의미

V (for every) Ya: 35 XOI CHOHH

* 존재한성자: "존재"를 의미.

크(there exists) 크z: 어떤 모에 대해서

7번

- 문제 7: n이 홀수이면 $n^2 + n$ 은 짝수임을 증명하라.

9번

- 문제 9: (대우를 증명) 자연수 n에 대해, $n^2 + 5$ 가 홀수이면 n은 짝수임을 증명하라 (힌트: 명제 대신, n이 홀수이면 $n^2 + 5$ 은 짝수임을 증명한다)

CHT)
$$n=\frac{2}{2}\uparrow \rightarrow n^{2}+5=\frac{2}{2}\uparrow$$

$$n=2k-1 \rightarrow n^{2}+5=\frac{4}{2}k^{2}-4k+6$$

$$=-1(2k^{2}-2k+3) \rightarrow \frac{2}{2}\uparrow$$

10번

- <mark>문제 10</mark>: n^2 이 짝수이면 n은 짝수임을 증명하라.

$$(44) \quad n \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}}}} \longrightarrow n \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}}}}$$

$$n = 2k - 1 \longrightarrow n \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}}} + k \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}}} + k + 1$$

$$= 2[2k \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}} - 2k] + 1 \longrightarrow \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}}} + k \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}}$$

11번

- 문제 11: (경우를 나누어 증명) 자연수 n에 대해 $n^2 + 5n + 3$ 은 항상 홀수임을 증명하라.

(힌트: n이 짝수인 경우와 홀수인 경우를 따로 증명한다)

i)
$$N=2k-1 \stackrel{?}{>} CCH$$
 $n^2+5N+3=4k^2-7k+1+10k-5+3$
 $=4k^2+6k-1$
 $=2[2k^2+3k-1]+1-6^{\frac{3}{2}}\widehat{T}$

ii) $N=2k\stackrel{?}{=} CCH$
 $n^2+5N+3=4k^2+10k+3$
 $=2(2k^2+5k+1)+1-6^{\frac{3}{2}}\widehat{T}$

12번

- 문제 12: n^2 이 3의 배수이면 n은 3의 배수임을 증명하라.