

$$\begin{cases} 4x - 6y = -z \\ -2x + ky = 4 \end{cases} = \Rightarrow \begin{pmatrix} 4 - 6 | -2 \\ -2 k | 4 \\ 6x - 9y = -k \end{pmatrix} \xrightarrow{V_2 \rightarrow r_4} \begin{pmatrix} -2 k | 4 \\ 4 - 6 | -2 \\ 6 - 9 | -k \end{pmatrix}$$

$$\begin{cases} r_2 \longrightarrow V_2 + 2r_4 \\ Y_2 \longrightarrow V_2 + 3r_4 \end{cases}$$

$$\begin{cases}
-2x+ky=4 & = 1 \\
6x-3y=-k
\end{cases} -2 & k = 1 \\
6 - 9 - k
\end{cases} -6 -2 \\
-2 & k = 1 \\
6 - 9 - k
\end{cases}$$

$$r_2 \rightarrow v_2 + 2v_4$$

$$v_3 \rightarrow v_3 + 3v_4$$

K=3 omette soluzioni perche ho:

$$\left(-z \quad 3 \mid 1 \right) \quad \infty^{2-1} = \infty^{1}$$

$$S_{k=3} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \middle| y = \frac{7}{3} + \frac{2}{3} \times \right\} = \left(\frac{x}{3} + \frac{2}{3} \times \right) \middle| x \in \mathbb{R}^2 \right\}$$

$$rg(A)=2$$
 $\rightarrow m sol.$
 $rg(A(b)=3$

$$\begin{pmatrix} x \\ \frac{1}{3} \end{pmatrix} + \langle \frac{1}{2} \rangle$$

$$\begin{pmatrix} x \\ \frac{1}{3} \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix} = x \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix}$$

OP. SU matrici

$$+: M_{m,n}(\mathbb{R}) \times M_{m,n}(\mathbb{R}) \longrightarrow M_{m,n}(\mathbb{R})$$
 $(A,B) \longrightarrow C$
 $i \in [1,m]$
 $C: s = a: s + b: s$
 $s \in [-1,m]$
 $prodotto scalare \quad k \times M_{m,n}(k) \longrightarrow M_{m,n}(k)$
 $(\lambda,A) \longrightarrow \lambda A$
 $(\lambda,a: s) \longrightarrow \lambda a: s$
 $prodotto \ righe \ per \ colonne$
 $M_{m,n}(K) \times M_{n,p}(k) \longrightarrow M_{m,p}(k)$
 $A \times B \longrightarrow AB$
 $C: s = \sum_{k=1}^{n} a_{nk} b_{k,j}$
 $A = {2 \choose 1} \quad B = {-1 \times 1} \quad C = {-1 \times 1 \choose 1} \quad D = {-1 \times 1} \quad D = {-1 \times 1} \quad D$
 $A + B \quad \text{mon Si ave}$

$$A \times B \rightarrow AB$$

$$C+D = \begin{pmatrix} -4 & 2 \\ 0 & 1 \end{pmatrix}$$

A. B = $\begin{pmatrix} -2 & 2 & 2 \\ -1 & 1 & 4 \\ -1 & 1 & 4 \end{pmatrix}$

13. A non

$$C \cdot D = \begin{pmatrix} -17 \\ 117 \end{pmatrix} \begin{pmatrix} 01 \\ -10 \end{pmatrix} = \begin{pmatrix} -1 \cdot 0 + 1 \cdot (-1) \\ 1 \cdot 0 + 1 \cdot (-1) \end{pmatrix} = \begin{pmatrix} -17 \\ 17 \end{pmatrix} \begin{pmatrix} 01 \\ -10 \end{pmatrix} = \begin{pmatrix} -17 \\ 17 \end{pmatrix} \begin{pmatrix} 01 \\ -10 \end{pmatrix} = \begin{pmatrix} -17 \\ -17 \end{pmatrix} \begin{pmatrix} -17 \\ -17 \end{pmatrix}$$

$$E(=\begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4}$$

Determinante			
De ver mi viauve		t : . M . c.	i i foolie rice i e
det: Mat _n (K) ->	k	a colonna s	isi toglie riga i e
$\frac{1}{2}$	· · · · · · · · · · · · · · · · · · ·	Y · c F	7
$\det M = \sum_{i=1}^{n} (-1)^{i}$	mis det (Ti;)	V (€ [4, N	
proprieta			
· · · · · · · · · · · · · · · · · · ·		, R4	1
det é lineare	nelle righe (coloni	he) $M = \begin{pmatrix} R_1 \\ R_{14} + R \\ R_{14} \end{pmatrix}$	iz)
		det M = det (F	Rid + det (Riz)
		\ F	Rh / Rh /
$-\det(\lambda M) = \lambda$	h LL(M)		
- OIEL (VII) = Y	det(11)		
-det (AB) = det	A. det B (teore	ma di Bivet)	