4 Logarithme népérien (TS2)

I - Définition et propriétés

Définition 1

On appelle fonction logarithme népérien, notée ln, la primitive sur]0 , $+\infty$ [de la fonction $x \mapsto \frac{1}{x}$ et qui s'annule pour x = 1.

La touche In de la calculatrice permet de calculer le logarithme d'un réel.

Conséquences immédiates

- 1. Le domaine de définition de la fonction ln est]0, $+\infty[$.
- 2. La fonction ln est dérivable sur]0, $+\infty$ [et pour tout x > 0 on a $\ln'(x) = \frac{1}{x}$.
- 3. ln(1) = 0.
- 4. La dérivée de la fonction ln étant strictement positive sur]0, $+\infty[$, donc la fonction ln est strictement croissante sur]0, $+\infty[$.

Propriété 2

$$\forall a > 0, \quad \forall b > 0, \quad a < b \Longleftrightarrow \ln a < \ln b$$

$$a > b \Longleftrightarrow \ln a > \ln b$$

$$a = b \Longleftrightarrow \ln a = \ln b$$

Propriété 3 (fondamentale)

Pour tous a > 0 et b > 0, on a $\ln(ab) = \ln a + \ln b$

Démonstration

Soit la fonction $g: x \mapsto \ln(ax)$ où a > 0 et fixé.

g est définie et dérivable sur $]0, +\infty[$ et d'après le théorème de dérivation d'une fonction composée, on a :

$$\forall x > 0, \ g'(x) = (ax)' \ln'(ax) = a \times \frac{1}{ax} = \frac{1}{x}$$

On a donc $(g - \ln)'(x) = \frac{1}{x} - \frac{1}{x} = 0$ donc $(g - \ln)'(x) = 0$.

Il en résulte que la fonction $g - \ln$ est une constante sur $]0, +\infty[$.

Il existe donc $k \in \mathbb{R}$ tel que $\forall x > 0$; $g(x) - \ln(x) = k \Leftrightarrow \ln(ax) - \ln x = k$

Pour x = 1 on a $\ln a - \ln 1 = k$ donc $k = \ln a$. D'où $\ln(ax) = \ln x + \ln a$.

Conséquence 4

Soit a > 0 et b > 0.

$$1. \ln\left(\frac{1}{a}\right) = -\ln a$$

$$2. \ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

$$3. \ln \sqrt{a} = \frac{1}{2} \ln a$$

4.
$$\ln a^r = r \ln a \quad \forall r \in \mathbb{Q}$$

Démonstration

1.
$$\ln\left(a \times \frac{1}{a}\right) = \ln 1 = 0 = \ln\left(\frac{1}{a}\right) + \ln a$$
 d'où $\ln\left(\frac{1}{a}\right) = -\ln a$

2.
$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right) = \ln a + \ln\left(\frac{1}{b}\right) = \ln a - \ln b$$

3.
$$\ln a = \ln \left(\sqrt{a}\right)^2 = 2 \ln \sqrt{a}$$
 d'où $\ln \sqrt{a} = \frac{1}{2} \ln a$.

4. Pour
$$n = 0$$
 on a $\ln a^0 = \ln 1 = 0 = 0 \times \ln a$

Supposons la propriété vraie pour un entier naturel n quelconque.

On a
$$\ln a^{n+1} = \ln a^n \times a = \ln a^n + \ln a = n \ln a + \ln a = (n+1) \ln a$$

Il en résulte que la propriété est vraie $\forall n \in \mathbb{N}$.

Supposons que $n \in \mathbb{Z}^-$. Posons p = -n donc $p \in \mathbb{N}$.

$$\ln a^n = \ln a^{-p} = \ln \frac{1}{a^p} = -\ln a^p = -p \ln a = n \ln a$$
Donc pour tout $n \in \mathbb{Z}^-$ on a $\ln a^n = n \ln a$.

Soit $p \in \mathbb{N}^*$ on a $\ln(a)^{\frac{p}{p}} = p \ln a^{\frac{1}{p}} = \ln a$ d'où $\ln a^{\frac{1}{p}} = \frac{1}{n} \ln a$

Soit
$$r = \frac{n}{p} \in \mathbb{Q}$$
 alors $\ln(a)^{\frac{n}{p}} = n \ln a^{\frac{1}{p}} = n \left(\frac{1}{p} \ln a\right) = \frac{n}{p} \ln a = r \ln a$

II - Étude de la fonction ln

Limites

Les limites aux bornes de l'ensemble de définition de la fonction ln, sont données ci-dessous :

Propriété 5 —
$$\lim_{x \to +\infty} \ln x = +\infty$$

— $\lim_{x \to 0^+} \ln x = -\infty$

Démonstration

— La fonction ln est croissante et n'est pas majorée sur]0, $+\infty[$. Si elle était majorée sur]0, $+\infty[$, elle admettrait une limite finie L en $+\infty$. En posant X=5x, on obtiendrait:

$$L = \lim_{X \to +\infty} \ln X = \lim_{x \to +\infty} \ln 5x = \lim_{x \to +\infty} \ln 5 + \ln x = \ln 5 + L$$
, on about
it à une contradiction.

— Pour la limite en
$$0^+$$
, on fait le changement de variable $X = \frac{1}{x}$
Donc $\lim_{x \to 0} \ln x = \lim_{X \to +\infty} \ln \frac{1}{X} = \lim_{X \to +\infty} (-\ln X) = -\infty$

Tableau de variation

Des propriétés précédentes, on en déduit facilement le tableau de variation suivant.

Conséquences

La fonction ln est continue et strictement croissante sur]0, $+\infty[$ cela entraı̂ne que c'est une bijection de]0, $+\infty[$ vers $\ln(]0$, $+\infty[)=\mathbb{R}$.

Donc $\forall y \in \mathbb{R}$, il existe un unique $x \in]0$, $+\infty[$ tel que $\ln x = y$. En particulier il existe un unique réel noté e tel que : $\ln e = 1$. On démontre que $e \approx 2,718$ et que $e \notin \mathbb{Q}$.

e est appelé la constante d'Euler.

On a alors $\forall r \in \mathbb{Q}$, $\ln e^r = r \ln e = r$ Ainsi:

$$\ln x = r \iff x = e^r \mid \ln x > r \iff x > e^r \mid \ln x < r \iff x < e^r$$

Exercice 6

Résoudre dans \mathbb{R} l'équation : $\ln x + 1 = \frac{6}{\ln x}$

Solution. Cette équation est définie lorsque : x > 0 et $\ln x \neq 0$ c-à-d $x \neq 1$.

Donc le domaine de résolution est D =]0, $1[\cup]1$, $+\infty[$ Si $x \in D$ alors l'équation équivaut à $(\ln x)^2 + \ln x = 6$

Posons $X = \ln x$. On a: $X^2 + X - 6 = 0$ soit X = 2 ou X = -3

c-à-d $\ln x = 2$ ou $\ln x = -3$

D'où $x = e^2$ ou $x = e^{-3}$ d'où $S = \{e^2, e^{-3}\}$

Représentation graphique de la fonction ln

On construit les tangentes \mathbf{T}_1 et \mathbf{T}_2 à la courbe de l
n respectives aux points d'abscisses x=1 et x = e.

$$T_1 : y = \ln'(1)(x-1) + \ln 1$$
 soit $T_1 : y = x-1$
 $T_2 : y = \ln'(e)(x-e) + \ln e$ soit $T_2 : y = \frac{1}{e}x$

Dérivée de la fonction $\ln |u|$

Soit *u* une fonction dérivable sur un intervalle *I* et telle que : $\forall x \in I$, $u(x) \neq 0$.

Donc la fonction $x : \longrightarrow |u(x)|$ est dérivable sur I à valeurs dans \mathbb{R}_+^*

Donc la fonction $g = \ln |u|$ est définie et dérivable sur I.

$$\frac{\operatorname{Si} u(x) > 0}{\operatorname{Si} u(x) < 0} : g(x) = \ln u(x) \text{ et } g'(x) = u'(x) \times \ln'(u(x)) = u'(x) \times \frac{1}{u(x)} = \frac{u'(x)}{u(x)}.$$

$$\frac{\operatorname{Si} u(x) < 0}{u(x)} : g(x) = \ln(-u(x)) \text{ et } g'(x) = -u'(x) \times \ln'(-u(x)) = \frac{-u'(x)}{-u(x)} = \frac{u'(x)}{u(x)}.$$

$$\underline{\text{Si } u(x) < 0} : g(x) = \ln(-u(x)) \text{ et } g'(x) = -u'(x) \times \ln'(-u(x)) = \frac{-u'(x)}{-u(x)} = \frac{u'(x)}{u(x)}.$$

Dans tous les cas:

$$(\ln|u|)' = \frac{u'}{u}$$

Conséquence 7 — Si u est dérivable et strictement positive sur I alors la fonction $\ln u$ est

— Il en résulte que les primitives de la fonction $\frac{u'}{u}$, sont les fonctions du type ln|u| + C.

Quelques limites classiques

Propriété 8
$$- \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$- \lim_{x \to 0} x \ln x = 0$$

$$- \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1 \quad \text{ou} \quad \lim_{x \to 1} \frac{\ln(x)}{x-1} = 1$$

Démonstration

— Montrons que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ Soit g la fonction définie sur [1, +\infty[par g(x) = \ln x - x + 1.

g est dérivable sur $[1, +\infty[$ et $\forall x > 1$ $g'(x) = \frac{1}{x} - 1 < 0$ et g est donc strictement décroissante sur $[1, +\infty[$ or g(1) = 0.

D'où $\forall x > 1$ $g(x) \le 0$ soit $\ln x \le x - 1$.

En particulier $\forall x > 1$, $\ln \sqrt{x} \le \sqrt{x} - 1 < \sqrt{x}$. D'où $\frac{1}{2} \ln x < \sqrt{x} \Leftrightarrow 0 < \ln x < 2\sqrt{x}$

En divisant par x, on a $0 < \frac{\ln x}{x} < \frac{2}{\sqrt{x}}$ or $\lim_{x \to +\infty} \frac{2}{\sqrt{x}} = 0$ et d'après le théorème des gen-

darmes on a $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

- Montrons que $\lim_{x \to 0^+} x \ln x = 0$ En posant $X = \frac{1}{x}$, on obtient $\lim_{x \to 0^+} x \ln x = \lim_{X \to +\infty} \left(-\frac{\ln X}{X} \right) = 0$
- Montrons que $\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$ Soit $\varphi(x) = \ln(1+x)$. On a $\varphi'(x) = \frac{1}{1+x}$, $\varphi(0) = 0$ et $\varphi'(0) = 1$. Par suite $\lim_{x\to 0} \frac{\ln(x+1)}{x} = \lim_{x\to 0} \frac{\varphi(x) - \varphi(0)}{x - 0} = \varphi'(0) = 1$

III - Fonction logarithme décimal

Définition 9

On appelle fonction logarithme décimal (ou de base 10), notée Log ou log , la fonction définie sur]0 , $+\infty$ [par :

$$x \longmapsto \log(x) = \frac{\ln x}{\ln 10}$$

Remarque 10

$$log(1) = 0$$
 et $log(10) = 1$