超限帰納法抜きで選択公理から Zorn の補題 を証明してみた

縫田 光司

平成 23 年 12 月 8 日

概要

このノートでは、超限帰納法を使わずに選択公理から Zorn の補題を導く証明を与える (ただし、悲しいことにノートを書いてから気が付いたのだが、証明の本質的なアイデアは H. Rubin, J. E. Rubin, "Equivalents of the Axiom of Choice, II", Second Edition, Studies in Logic and the Foundations of Mathematics vol.116, North-Holland, 1985 の定理4.19 の証明と同じであった)。

このノートを通して、 (X,\leq) は任意の空でない半順序集合であって、どの鎖(全順序部分集合もしくは線形順序部分集合と呼ばれる場合もある)C も (\leq に関する)X における上界(つまり、 $x\in X$ であって任意の $c\in C$ について $c\leq x$ を満たすもの)を持つという性質を持つものとする。このとき Z orn の補題とは、このような X が常に (\leq に関する)極大元(つまり、 $x\in X$ であって、x< y となる $y\in X$ が存在しないもの)を持つというものである。選択公理から Z orn の補題を(集合論の Z ormelo-Fraenkel 公理系の下で)証明する際、「自然な」方針を採ろうとすると通常は超限帰納法のお世話になるのだが、このノートでは超限帰納法を使わない証明を紹介する。

背理法の仮定として、X は冒頭に述べた条件を満たす半順序集合であるけれども、極大元を持たないものとする。この仮定から出発して矛盾を導く。まず定義や用語をいくつか準備しておく。

- $C \subset Y \subset X$ かつ C が鎖であるときに、C が Y において有界であるとは、ある元 $x \in Y \setminus C$ が存在して、全ての $c \in C$ について c < x が成り立つことを指すものとする。
- X の鎖 C が整列されているとは、C の任意の空でない部分集合が最小 元を持つことを指すものとする。
- 鎖 C と元 $c \in C$ について、部分集合 $\{d \in C \mid d < c\}$ を c による C の始切片と呼び、 $s_C(c)$ と記す。

X の空でない鎖全体の集合を C と記す。各 $C\in \mathcal{C}$ について、 $U_C=\{x\in X\setminus C\mid$ 全ての $c\in C$ について $c< x\}$ と定義する。ここで以下の性質を注意しておく。

補題 1. 全ての $C \in \mathcal{C}$ について $U_C \neq \emptyset$ が成り立つ。

Proof. Zorn の補題の前提より、C は上界 $x\in X$ を持つ。各 $y\in U_{\{x\}}$ について、 $c\leq x< y$ (従って c< y) が全ての $c\in C$ で成り立つことから、 $y\not\in C$ 、また $y\in U_C$ となる。よって $U_{\{x\}}\subset U_C$ であるが、一方で X が極大元を持たないという背理法の仮定から $U_{\{x\}}\neq\emptyset$ となるので、結局 $U_C\neq\emptyset$ が成り立つ。

集合族 $\{U_C\}_{C\in\mathcal{C}}$ の選択関数 f であって、後の議論に都合の良い性質を備えているものを(選択公理を用いて)構成したい。

各 $C_1,C_2\in\mathcal{C}$ について、 $C_1\sim_{\operatorname{pre}}C_2$ という関係を、鎖 $C_1\cap C_2$ が C_1 と C_2 のいずれにおいても有界でないという関係として定義する。このとき $\sim_{\operatorname{pre}}$ は \mathcal{C} 上の対称な関係である。そして、 \mathcal{C} 上の同値関係 \sim を $\sim_{\operatorname{pre}}$ の推移閉包として定義する。即ち $C_1\sim C_2$ は、 \mathcal{C} の要素の有限列 $C_1=C_0',C_1',\ldots,C_n'=C_2$ ($n\geq 0$) であって、各 $0\leq i\leq n-1$ について $C_i'\sim_{\operatorname{pre}}C_{i+1}'$ を満たすことと同値である。 $C_1\sim C_2$ かつ C_1 が最大元 c を持つならば、 $c\in C_2$ であり c が C_2 の最大元でもあることを注意しておく。ここで以下の補題が成り立つ。

補題 2. もし $C_1, C_2 \in \mathcal{C}$ かつ $C_1 \sim C_2$ であれば、 $U_{C_1} = U_{C_2}$ が成り立つ。

Proof. $C_1 \sim_{\operatorname{pre}} C_2$ のときに $U_{C_1} \subset U_{C_2}$ が成り立つことを示せば充分である。 $x \in U_{C_1}$ とする。 もし $x \in C_2$ であるとすると、 $x \in C_2 \setminus (C_1 \cap C_2)$ であって x は C_1 の、従って $C_1 \cap C_2$ の上界であるため、 $C_1 \cap C_2$ が C_2 において有界となり、 $C_1 \sim_{\operatorname{pre}} C_2$ という前提に矛盾する。よって $x \notin C_2$ が成り立つ。 また、もしある $c \in C_2$ について $c \nleq x$ であるとすると、 $C_1 \cap C_2$ が C_2 において有界でないという前提から、 $c \leq d \nleq x$ を満たすような元 $d \in C_1 \cap C_2$ が存在する。特に $d \in C_1$ かつ $d \nleq x$ となるが、これは $x \in U_{C_1}$ という x の選び方に矛盾する。以上より全ての $c \in C_2$ について c < x となり、 $c \in C_2$ が成り立つ。

同値関係 \sim による同値類 $\mathcal E$ の各々について、 $U_{\mathcal E}\subset X$ を $U_{\mathcal E}=U_C$ ただし $C\in\mathcal E$ 、と定義すると、補題 2 より $U_{\mathcal E}$ は $C\in\mathcal E$ の選び方に依らずきちんと 定まる。選択公理を用いて、集合族 $\{U_{\mathcal E}\}_{\mathcal E\in X/\sim}$ の選択関数 f を得る。 さら に、表記の簡略化のため、各 $C\in\mathcal C$ について f(C)=f([C])(ただし [C] は C の \sim -同値類)と記す。すると各 $C\in\mathcal C$ について $f(C)\in U_C$ であり、また $C_1,C_2\in\mathcal C$ かつ $C_1\sim C_2$ であれば $f(C_1)=f(C_2)$ が成り立つ。

以下、元 $x_0 \in X$ を一つ固定する。ここで以下の定義を導入する。

• 鎖 $C\in\mathcal{C}$ が f-継続的であるとは、C が整列されており、 x_0 が C の最小元であり、さらに全ての $c\in C\setminus\{x_0\}$ について $f(s_C(c))=c$ が成り立つことを指すものとする。

f-継続的な鎖に関するいくつかの性質を述べる。

補題 3. 鎖 $C \in \mathcal{C}$ が f-継続的であり、C の空でない部分集合 C' が C において有界であるとする。このとき、 $C \setminus C'$ に属する C' の上界全体の集合の最小元を d とすると、f(C') = d が成り立つ。

 $Proof.\ C'\in \mathcal{C}$ であることを注意しておく。また、C が整列されており C' が C において有界であることから、主張にあるような元 d は確かに存在することを注意しておく。ここで $s_C(d)\sim C'$ を示すことができれば、f の定義と C が f-継続的であることから $f(C')=f(s_C(d))=d$ となるため、 $s_C(d)\sim C'$ を示せば充分である。まず、 $C'\subset s_C(d)$ であるから、 $s_C(d)\cap C'=C'$ は C' において有界でない。一方、 $x\in s_C(d)\setminus C'$ のとき、d の最小性より x は C' の上界ではあり得ない。よって C' は $s_C(d)$ において有界でない。従って $s_C(d)\sim C'$ が成り立つ。

補題 $4. C_1, C_2 \in \mathcal{C}$ が f-継続的な鎖であるとき、以下の三つの条件のうちちょうど一つが成り立つ。

- 1. $C_1 = C_2$
- 2. C_1 は C_2 の始切片である
- 3. C_2 は C_1 の始切片である

Proof. 二つ以上の条件が同時に成り立たないことは明らかである。

まず、各 $i \in \{1,2\}$ について、 $x \in C_1 \cap C_2$ かつ $y \in s_{C_i}(x)$ ならば $y \in C_1 \cap C_2$ が成り立つことを示す。背理法を使うために、このようなある x について反例となる y が存在すると仮定して、最小の反例を y と記す(C_i は整列されているため、そのような y は確かに存在する)。 $x_0 \in C_1 \cap C_2$ なので $s_{C_i}(y) \neq \emptyset$ である。 y の選び方より、 $s_{C_i}(y) \subset C_{3-i}$ かつ $y \notin C_{3-i}$ が成り立つ。 C_i は f-継続的なので $f(s_{C_i}(y)) = y$ である。一方、 $x \in C_1 \cap C_2$ かつ y < x なので C_{3-i} の部分集合 $s_{C_i}(y)$ は C_{3-i} において有界であり、従って補題 $s_{C_i}(y)$ は $s_{C_i}(y)$ において有界であり、従って補題 $s_{C_i}(y)$ は $s_{C_i}(y)$ は $s_{C_i}(y)$ は $s_{C_i}(y)$ は $s_{C_i}(y)$ は $s_{C_i}(y)$ について $s_{C_i}(y)$ は $s_{C_i}(y)$ について $s_{C_i}(y)$ について $s_{C_i}(y)$ の始切片であることを導く($s_{C_i}(y)$ のとき、 $s_{C_i}(y)$ の最小元を考えればよい)。

後は $C_1\cap C_2$ が C_1 または C_2 と一致することを示せば充分である。そうでないと仮定して矛盾を導く。このとき $C_1\cap C_2$ は C_1 と C_2 両方の始切片であり、 C_1 と C_2 は f-継続的なので、 $f(C_1\cap C_2)\in C_1\cap C_2$ が成り立つ。しかし、一方で f の定義より $f(C_1\cap C_2)\not\in C_1\cap C_2$ なので、矛盾である。以上より主張が成り立つ。

f-継続的な鎖全ての和集合を C_0 と記す ($\{x_0\} \in \mathcal{C}$ が f-継続的なので、 f-継続的な鎖が少なくとも一つ存在することを注意しておく 》このとき補題 4

より $C_0\in\mathcal{C}$ が成り立つ ($x,y\in C_0$ のとき、f-継続的な鎖 C と C' でそれぞれ x と y を含むものが存在し、件の補題より $x\in C\subset C'$ もしくは $y\in C'\subset C$ である)。ここで以下の補題を準備しておく。

補題 5. 各 $c\in C_0$ について、C が c を含む f -継続的な鎖ならば $s_{C_0}(c)=s_C(c)$ が成り立つ。

Proof. まず、 C_0 の定義より $C \subset C_0$ なので $s_C(c) \subset s_{C_0}(c)$ であることを注意しておく。後は各 $d \in s_{C_0}(c)$ について $d \in C$ となることを示せばよい。 C_0 の定義より、 $d \in C'$ となる f-継続的な鎖 C' が存在する。ここで、C' = C' もしくは C' が C の始切片である場合には $d \in C'$ C が成り立つ。また、C が C' の始切片である場合には、 $c \in C$ 、 $d \in C'$ かつ d < c なので、やはり $d \in C$ が成り立つ。従って補題 $d \in C$ が成り立つ。

以下、 C_0 自体が f-継続的であることを証明していく。 x_0 が C_0 の最小元であることは明らかである。

補題 6. C_0 は整列されている。

Proof. A を C_0 の空でない任意の部分集合とする。a \in A を一つ選んでおき、a を含む f-継続的な鎖 C を取る(これは C_0 の定義より存在する)。C は整列されているため、 $A\cap C$ は最小元を持つ。それを a_0 と記す。このとき、もし $a'\in A$ かつ $a'< a_0$ であるとすると、補題 5 より $a'\in s_{C_0}(a_0)=s_C(a_0)$ が成り立ち、即ち $a'\in A\cap C$ かつ $a'< a_0$ となるが、これは a_0 の選び方に矛盾する。従って全ての $a'\in A$ について $a'\geq a_0$ となり、 a_0 は A の最小元である。

補題 7. 全ての $c \in C_0 \setminus \{x_0\}$ について $f(s_{C_0}(c)) = c$ が成り立つ。

 $Proof.\ c$ を含む f-継続的な鎖 C を取る (これは C_0 の定義より存在する)。このとき補題 5 より $s_{C_0}(c)=s_C(c)$ が成り立つ。C は f-継続的なので、 $f(s_{C_0}(c))=f(s_C(c))=c$ となる。

補題 6 と補題 7 より、 C_0 は確かに f-継続的である。さて、このとき C_0 \cup $\{f(C_0)\}$ もまた f-継続的な鎖となるが、これは C_0 の部分集合ではないため、 C_0 の定義と矛盾する。従って背理法により、X は極大元を持つ。以上で Zorn の補題が証明された。

おまけ:超限帰納法を用いた証明

このおまけでは、比較参考として、超限帰納法を用いて選択公理から Zorn の補題を導く証明を与える。最初に、超限再帰的定義に関する原理を述べておく(例えばケネス・キューネン著、藤田博司訳『集合論 独立性証明への

案内』(日本評論社、2008年、原題: SET THEORY, An Introduction to Independence Proofs) 第 I 章定理 9.3 を参照)。

定理 1. $\varphi(x,y)$ を (Zermelo–Fraenkel 集合論における) 式で自由変数 x と y を持ち、 $\forall x \exists ! y \varphi(x,y)$ を満たすものとする。このとき、自由変数 x と y を持つ式 $\Phi(x,y)$ で以下の二つの条件を満たすものが存在する。

- 1. $\forall x ((x \in \mathbf{ON} \to \exists! y \Phi(x, y)) \land (\neg x \in \mathbf{ON} \to \neg \exists y \varphi(x, y)))$
- 2. $\forall x (x \in \mathbf{ON} \to \forall y, z (y = \Phi \upharpoonright_x \land \varphi(y, z) \to \Phi(x, z)))$

ただし、「 $x \in \mathbf{ON}$ 」は「x は順序数」の略記とし、「 Φ 」、は集合 $\{\langle a,b\rangle \mid a \in x \land \Phi(a,b)\}$ ($\langle a,b\rangle$ は $a \ge b$ の順序対)の略記とする。

この定理の直感的な意味は以下の通りである。即ち、順序数全体(これは集合をなさないのであるが)で定義される「関数」 Φ を定義したいとき、順序数 α における値を α より小さな順序数における値から定める方法を指定すれば、その条件を満たす「関数」 Φ が確かに存在する。この定理は ZF 集合論における定理であり、選択公理は用いていないことを注意しておく。

定理 1 (と超限帰納法)を用いて、選択公理から Zorn の補題を証明する。 $X \neq 0$ を、Zorn の補題の主張に現れる半順序集合とする。背理法の仮定として、X は極大元を持たないと仮定する。すると、X の空でない部分集合 C であってある順序数と同型(特に全順序集合)なものの各々について、選択公理を用いてC の上界 D の上界 D を一つずつ選ぶことができる。

定理 1 を適用すべく、まず X の元 a を一つ固定しておき、式 $\varphi(x,y)$ を以下の要領で定義する。

- x=0 ($=\emptyset$) のとき、 $\varphi(x,y)$ は y=a を意味するように定める。
- x がある順序数 $\alpha>0$ から X への関数であって像 $\mathrm{Im}(x)$ への(半順序集合としての)同型写像であるとき、 $\varphi(x,y)$ は $y=b_{\mathrm{Im}(x)}$ を意味するように定める($\mathrm{Im}(x)$ は空でない順序数 α と同型なので、 $b_{\mathrm{Im}(x)}$ が確かに定義されることに注意)。
- それ以外のとき、 $\varphi(x,y)$ は y=0 を意味するように定める。

この式 $\varphi(x,y)$ は定理 1 の前提を満たすので、定理の主張にあるような式 $\Phi(x,y)$ が存在する。ここで以下の補題が成り立つ。

補題 8. x を順序数とし、x' を $\Phi(x,x')$ が成り立つ唯一の元とする。

- 1. このとき $x' \in X$ が成り立つ。
- 2. このとき、y < x かつ $\Phi(y,y')$ が成り立つならば X において y' < x' である。

 $Proof.\ x$ に関する超限帰納法を用いて証明する。まず、x=0 のときは、 φ の定義より x'=a となるので、件の条件が成り立つ。次に x>0 のときを考える。超限帰納法の仮定より、定理 1 の主張に現れる集合 $\Phi \upharpoonright_x$ は x から X のある部分集合 C への同型写像となる(x は全順序集合であることに注意)。このとき Φ と φ の定義より $x'=b_C$ となり、従って件の条件は x に関しても成り立つ(二つ目の条件については、 $b_C\in X\setminus C$ が C の上界であることから導かれる)、以上より主張が成り立つ。

補題 8 の二つ目の性質より、各 $v\in X$ について、 $\Phi(x,v)$ を満たす順序数 x は高々一つしか存在しない。X の部分集合 X' を、ある(一意に定まる)順序数 x について $\Phi(x,v)$ が成り立つような $v\in X$ 全体の集合として定める。置換公理を集合 X' と式 $\Phi'(x,y):=\Phi(y,x)$ に適用すると、順序数 y のうち、 $\Phi(y,y')$ を満たす唯一の y' が X' に属するような y を全て要素に持つ集合 Y の存在が示される。ここで補題 8 の一つ目の性質より、この集合 Y は全ての順序数を要素に持つことになる。しかし、これは Burali—Forti の逆理(即ち、全ての順序数を要素に持つ集合は存在しないという定理)に矛盾する。従って背理法により、X は極大元を持つ。以上で Z orn の補題が証明された。