

Grundlagen der Elektrischen Energietechnik (SoSe2024)

3. Übung Leistungselektronik

Tiefsetzsteller

Aufgabe 1:

Für alle Aufgabenteile gelten folgende Werte:

$$\mathbf{U_E} = 48~\mathrm{V}$$
 $\mathbf{R} = 6~\Omega$ $C \rightarrow \infty$ $\mathbf{f_T} = 100~\mathrm{kHz}$ $\mathbf{T_e} = 1/2~\mathrm{T}$

a) Vervollständigen Sie das Ersatzschaltbild des Tiefsetzstellers.

b) Berechnen Sie die Spannung Ud und den Strom Id.

c) Wie groß muss die Induktivität L sein, damit der Steller gerade nicht lückt?

d) Zeichnen Sie die zeitlichen Verläufe der Spannung $u_d(t)$ und des Stroms $i_L(t)$. Kennzeichnen Sie U_d und I_d .

Aufgabe 2:

Annahme: Die Ausgangsspannung U_d soll nun auf 6 V geändert werden, als Steuerverfahren soll die Pulsbreitensteuerung verwendet werden. Benutzen Sie für die Induktivität L den Wert aus Aufgabenteil 1c).

Weiterhin gilt:

$$U_E = 48 \text{ V}$$
 $R = 6 \Omega$ $C \rightarrow \infty$ $f_T = 100 \text{ kHz}$

a) Geben Sie für diesen Fall T und Te an.

b) Ist ein lückfreier Betrieb gegeben?

c) Skizzieren Sie die zeitlichen Verläufe der Spannung $u_d(t)$ und des Stroms $i_L(t)$ für den lückenden Betrieb. Kennzeichnen Sie U_d , I_d , T und Te

