As a starter, take $T: V \to V$, where V is finite-dimensional (where V is a vector space over the field F, and we can consider F to be algebraically closed). Now, consider the following proposition.

Prop. If T is an operator on a finite-dimensional F-vector space, then the minimal polynomial of T has degree at most dim V.

We now give an outline of the proof. As a preliminary matter, consider the map $\alpha: F[x] \to \mathcal{L}(V)$, where dim V=n. Then, α gives the mapping $g(x) \mapsto g(T)$ and $\operatorname{nul} \alpha = (m(x)) \subseteq F[x]$. The proof is done by induction on the dimension. Now look at the base case(s). If n=0, then V=(0), f(x)=1, and f(T)=T=0. If n=1, then $V = F \cdot v$, $Tv = \lambda v$, so $(T - \lambda I)v = 0$, and $f(x) = x - \lambda$. If n = 2, we have $V = x - \lambda v$ F^2 , and T corresponds to $T=\begin{pmatrix} a & b \\ c & d \end{pmatrix}=:M.$ Then, $M^2-(a+d)M+(ad-bc)M^0=0.$ Now, consider the case where $n\geq 2.$ Then, necessarily, $V\ni v\neq 0$, and let X be the smallest T-invariant subspace of V containing v. When $n=2, X \ni v$, and we do not know if $Tv = \lambda v$ (which would then give $X = F \cdot v$). We set v, Tv to be linearly independent. Let now $X = \operatorname{span}(v, Tv, T^2v, \dots)$. Write v, Tv, \dots, T^nv (which is a list of length $n+1 > \dim V = n$). Thus, $v, Tv, \ldots, T^n v$ is linearly dependent. Say $v, Tv, \ldots, T^{m-1}v$ is linearly independent (with v, Tv, \ldots, T^mv linearly dependent). Then, $T^m v = a_0 v + a_1 T v + \cdots + a_{m-1} T^{m-1} v$ is a linear dependent dence relation. Take $h(x) = x^m - (a_{m-1}x^{m-1} + \cdots + a_0)$. Then, $h(T) \cdot v = 0$, h(T)Tv = T(h(T)v) = T(0) = 0. Thus, h(T) = 0 on X, h has degree m, and dim X = m. Then, $T^{m+1}v = T(T^mv) = \left(\sum_{i=0}^{m-2} a_i T^{i+1}v\right) + a_m T^m v$. Thus, $X = \operatorname{span}(v, Tv, \dots, T^{m-1}v)$. Our goal now is to show that there exists an f(x)(with deg $f \leq n$) with f(T) = 0 on V. We have shown $0 \subseteq X \subseteq V$, where X is T-stable (meaning applying T to the list v, Tv, T^2v, \ldots results in a shifting of the list) and there exists a polynomial h(x) with deg $h = \dim X$ such that h(T) = 0 on X.

Consider now the question: Is there a $v \in V$ such that $X = \operatorname{span}(v, Tv, \dots, T^{m-1}v)$ is all of V? Take now T = I. Then, $v = Tv = \dots = v$. Now, look at V/X. Since X is T-stable, we have V/X has an induced action of T, meaning that we have $T_{V/X}: V/X \to V/X$ (with $v+X \mapsto Tv+X$) and $T|_X: X \to X$ (so $h(T|_X) = 0$). We have $\dim X \geq 1$, while it could be that $\dim X \leq n$. However, $\dim(V/X) < n$, since $\dim(V/X) = \dim V - \dim X$. The induction hypothesis gives $\dim(V/X) < n$. So there exists a polynomial $g \in X$ with $\deg g \leq \dim(V/X)$ such that $g(T|_{V/X}) = 0$ (denote this last equation as *). Now consider $g(T): V \to V$, so * gives range $g(T) \subseteq X$. Define f = gh = hg. Then, $\deg f = \deg g + \deg h$. We have $\deg h = \dim X$ and $\deg g \leq \dim(V/x) = n - m$. Thus, $\deg f \leq n$. Now, take $(hg)(T) = h(T) \circ g(T) = 0$, and we are done.

Prop. If T is upper-triangular with respect to some basis of V, and if the diagonal entries of an upper-triangular matrix representation of T are $\lambda_1, \ldots, \lambda_n$, then $(T - \lambda_1 I) \cdots (T - \lambda_n I) = 0$.

Take an upper-triangular matrix with respect to the basis v_1, \ldots, v_n . Then, $Tv_1 = \lambda_1 v_1$, $Tv_2 = \lambda_2 v_2 + a_{12} v_1$, $Tv_3 = \lambda_3 v_3 + (a_{13} v_1 + a_{23} v_2)$. Thus, $(T - \lambda_1 I) \cdot \cdots \cdot (T - \lambda_n I) = 0$ iff $((T - \lambda_1 I) \cdot \cdots \cdot (T - \lambda_n I))v_j$ (where v_j is a basis vector). So, $(T - \lambda_1 I)v_1 = 0$, $(T - \lambda_2 I)v_2 = a_{12}v_1$, and $(T - \lambda_1 I)(T - \lambda_2 I)v_2 = 0$. Now consider $(x - \lambda_1) \cdot \cdots \cdot (x - \lambda_n) =: f(x)$ (where f is the characteristic polynomial). Then, f(T) = 0, so the minimal polynomial must divide f. Consider the following examples:

1. Take
$$T = I_n$$
. Then, $f(x) = (x - 1)^n$ and $m(x) = x - 1$.

2. Take
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
. Then, $f(x) = (x-1)^2$, but $m(x) = (x-1)^2$.

So far, we know that the eigenvalues of T are the roots of the minimal polynomial. Thus, every eigenvalue of T is one of the diagonal elements λ_i . We explore the converse next class.