Assignment #6

Introduction to GR, 2020 Fall

International Centre for Theoretical Sciences

Instructor: Prof. Bala Iyer, Tutor: Md Arif Shaikh¹

Due on Dec 9, 2020 11:59 PM.

1. (a) Show that under an infinitesimal coordinate transformation $x^{\text{new}\mu} = x^{\text{old}\mu} + \xi^{\mu}$, $h_{\mu\nu}$ transforms as

$$h_{\mu\nu}^{\text{new}} = h_{\mu\nu}^{\text{old}} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu} \tag{1}$$

and the trace reversed metric perturbation transforms as

$$\bar{h}_{\mu\nu}^{\text{new}} = \bar{h}_{\mu\nu}^{\text{old}} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu} + \eta_{\mu\nu}\partial_{\alpha}\xi^{\alpha}$$
 (2)

- (b) Assuming solution of the form $\bar{h}_{\mu\nu} = A_{\mu\nu} \exp(ik_{\alpha}x^{\alpha})$ and $\xi_{\mu} = B_{\mu} \exp(ik_{\alpha}x^{\alpha})$, express eq. 2 in terms of $A_{\mu\nu}$ and B_{μ} . Find the Lorenz gauge condition on $A_{\mu\nu}$. Show that $A_{\mu\nu}^{\text{new}}$ satisfies the gauge condition if $A_{\mu\nu}^{\text{old}}$ does.
- (c) Find the constrain on B_{μ} in order to make $A_{\mu\nu}$ traceless.
- (d) Show that the condition $A_{\mu\nu}u^{\nu}=0$, imposes only three constraints on B_{μ} . (u^{μ} is a consant time-like four-velocity). Do this by showing that the combination $k^{\mu}(A_{\mu\nu}u^{\nu})$ vanishes for any B_{μ} .
- (e) Use the results of the previous two questions to solve for B^{μ} as a function of k^{μ} , $A_{\mu\nu}^{\rm old}$ and u^{μ} .
- (f) Show that it is possible to choose ξ^{α} in eq. 1 to make any superposition of plane waves satisfy the equations $A_{\mu\nu}u^{\mu}=0$ and $A^{\mu}_{\mu}=0$, so that these are generally applicable to gravitational waves of any sort.
- (g) Show that we cannot achieve $A_{\mu\nu}u^{\mu}=0$ and $A^{\mu}_{\mu}=0$ for a static solution, i.e. one for which $\omega=0$.
- 2. The equation $(\nabla^2 + \Omega^2)B_{\mu\nu} = -16\pi S_{\mu\nu}$ in the vacuum region outside the source i.e. where $S_{\mu\nu} = 0$ can be solved by separation of variables. Assume a solution for $B_{\mu\nu}$ of the form $\sum_{lm} A_{\mu\nu}^{lm} f_l(r) Y_{lm}(\theta, \phi) / \sqrt{r}$, where Y_{lm} is the spherical harmonic.
 - (a) Show that $f_l(r)$ satisfies the equation

$$f_l^{"} + \frac{1}{r}f_l^{'} + (\Omega^2 - \frac{(l + \frac{1}{2})^2}{r^2})f_l = 0$$
(3)

(b) Show that the most general spherically symmetric solution is given by

$$B_{\mu\nu} = \frac{A_{\mu\nu}}{r} e^{i\Omega r} + \frac{Z_{\mu\nu}}{r} e^{-i\Omega r}.$$
 (4)

3. Show that

$$\oint \vec{n}.\nabla B_{\mu\nu}dS \approx -4\pi A_{\mu\nu}.$$
(5)

(Assume that the source is nonzero only inside a sphere of radius $\epsilon \ll 2\pi/\Omega$.)

¹arif.shaikh@icts.res.in