Matrice de Gram et application

Partie A: produit scalaire et distance

Pour fixer les choses nous allons travailler dans les ensembles \mathbb{R}^3 (espace usuel) ou \mathbb{R}^2 (plan usuel), pour les autres ensembles, c'est exactement la même chose.

Définition : Un produit scalaire est une application bilinéaire symétrique définie positive que l'on note $(. \mid .)$.

Ce qui veut dire que:

- 1) $(u \mid v) = (v \mid u) = (v \mid u)$ symétrique
- 2) $(\alpha u + u' | v) = \alpha (u | v) + (u' | v)$ linéaire
- 3) $(u \mid u) \ge 0$ avec égalité si et seulement si, u = 0

Exemple: $R^3 \times R^3 \rightarrow R$

$$(x,y) \rightarrow (x \mid y) = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 avec $x(x_1, x_2, x_3)$ et $y(y_1, y_2, y_3)$

Exercice : Montrer que l'application précédente est bien un produit scalaire sur R^3

Remarque : Ce produit scalaire n'est pas unique dans R^3 mais il est lié à la norme euclidienne.

Exercice:

- 1) Rappeler la formule de la norme euclidienne de ||x|| , on peut revenir à R^2 .
- 2) Calculez $\sqrt{|x| x}$, que remarque-t-on?

Définition : La distance entre x et y se note d(x, y) et est égale à d(x, y) = ||x - y||.

Exercice : Calculez la distance entre x(1,0,1) et y(1,2,3).

Partie B : Déterminant

Définition : Le déterminant d'une matrice carrée $n \times n$ est une forme n-linéaire alternée des vecteurs colonnes ou des vecteurs lignes que l'on note : $|\dot{\boldsymbol{\epsilon}}|$

. Cette définition a les conséquences suivantes :

- si l'on permute deux lignes ou deux colonnes, le déterminant change de signe ;
- si deux lignes ou deux colonnes sont identiques, le déterminant est nul ;
- on peut ajouter à une colonne (ou une ligne) un multiple d'une autre colonne (ou d'une autre ligne) sans changer la valeur du déterminant :
- si l'on multiplie tous les termes d'une même ligne ou d'une même colonne par un réel k, le déterminant est multiplié par k ;
- en conséquence, si une ligne ou une colonne est nulle, le déterminant est nul.

Enfin, le déterminant se comporte bien avec le produit des matrices :

$$det(A \times B) = det(A) \times det(B)$$
.

Conséquence : Le déterminant de n vecteurs liés est nul et non nul s'ils sont libres.

Application sur les dimensions 2 et 3 :

Pour
$$n=2$$
 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Pour
$$n=3$$
 $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei+bfg+cdh-(ceg+hfa+idb)$

Exercice : Vérifiez les propriétés des déterminants sur des déterminants 2×2 et 3×3

Partie C: Bases orthonormées

Définition : Une base d'un espace vectoriel de dimension finie est une famille de vecteurs libres et générateurs.

Exercice : Essayez de définir les termes générateur et libre

Exercice: La famille (e_1, e_2) avec $e_1(1,0)$ et $e_2(0,1)$ est-elle une base de \mathbb{R}^2 ?

Exprimez le vecteur v(2,3) à l'aide des vecteurs e_1 et e_2 .

Définition : $(e_1, e_2, e_3, \dots, e_n)$ est une base orthonormée si $(e_1, e_2, e_3, \dots, e_n)$ est une base et si

$$(e_i | e_j) = \begin{cases} 1 \sin i = j \\ 0 \sin i \neq j \end{cases}$$
 pour tout i, j éléments de $[1, n]$

Exercice : Déterminez si les vecteurs suivants forment une base orthonormée de \mathbb{R}^3 :

$$e_1 = \frac{1}{\sqrt{2}}(-1,0,1)$$
, $e_2 = (0,1,0)$, $e_3 = \frac{1}{\sqrt{2}}(1,0,1)$.

Partie D: Matrice de Gram

Définition:

Soit E un espace préhilbertien réel. Si $x_1,...,x_n$ sont n vecteurs de E, la matrice de Gram associée est la matrice symétrique de terme général $(x_i|x_i)$. Le **déterminant de Gram** est le déterminant de cette matrice

$$G(x_1, \dots, x_n) = \begin{vmatrix} (x_1|x_1) & (x_1|x_2) & \dots & (x_1|x_n) \\ (x_2|x_1) & (x_2|x_2) & \dots & (x_2|x_n) \\ \vdots & \vdots & & \vdots \\ (x_n|x_1) & (x_n|x_2) & \dots & (x_n|x_n) \end{vmatrix}$$

Propriétés:

Écriture à l'aide d'une matrice représentative

Soit B une <u>base orthonormale</u> de l'espace engendré par les x_i ; elle contient $d \le n$ vecteurs. Soit X la matrice représentative du système de vecteurs x_i dans B. C'est une matrice de taille $n \times d$, dont chaque colonne contient les composantes d'un des vecteurs x_i . La matrice de Gram n'est autre que ${}^t X X$.

Effet d'opérations élémentaires

- la multiplication d'un des vecteurs par le réel a provoque une multiplication du déterminant de Gram par a²
- le déterminant de Gram est invariant par permutation des x_i
- l'ajout à un vecteur d'une combinaison linéaire des autres vecteurs laisse invariant le déterminant de Gram

Propriétés

- si $x_1 \perp x_i$ pour tout $i \in [\![2,n]\!]$, alors on a $G(x_1,\ldots,x_n) = ||x_1||^2$ $G(x_2,\ldots,x_n)$
- le déterminant de Gram d'une famille de n vecteurs est toujours positif
- il est nul si et seulement si la famille est liée (ce qui est un cas particulier de l'énoncé sur le rang de la famille de Gram)

Démonstration

Si la famille est liée, $\exists k, \ x_k$ est combinaison linéaire des autres x_i ; donc

$$G(x_1,\ldots,x_n)=G(x_1,\ldots,x_{k-1},0,x_{k+1},\ldots,x_n)=0.$$

Si la famille est libre, alors d=n, X est une matrice carrée inversible comme <u>matrice de passage</u> d'une base à une autre. Le déterminant de Gram est $(detX)^2$ qui est strictement positif.

Application à la distance d'un vecteur à un sous-espace vectoriel

Soit F un sous-espace vectoriel de dimension finie n de E. Soient $x_1, ..., x_n, n$ vecteurs formant une base de F. Tout vecteur x de E admet un projeté orthogonal p(x) sur F.

On a : x = x - p(x) + p(x). Or p(x) est combinaison linéaire des x_i donc :

$$G(x, x_1, \dots, x_n) = G(x - p(x), x_1, \dots, x_n) + G(p(x), x_1, \dots, x_n) = G(x - p(x), x_1, \dots, x_n)$$

$$\text{Puis}: G(x-p(x), x_1, \dots, x_n) = \begin{vmatrix} (x-p(x)|x-p(x)) & (x-p(x)|x_1) & \dots & (x-p(x)|x_n) \\ (x_1|x-p(x)) & (x_1|x_1) & \dots & (x_1|x_n) \\ \vdots & & \vdots & & \vdots \\ (x_n|x-p(x)) & (x_n|x_1) & \dots & (x_n|x_n) \end{vmatrix}$$

$$G(x-p(x),x_1,\ldots,x_n) = \begin{vmatrix} (x-p(x)|x-p(x)) & 0 & \ldots & 0 \\ 0 & (x_1|x_1) & \ldots & (x_1|x_n) \\ \vdots & \vdots & & \vdots \\ 0 & (x_n|x_1) & \ldots & (x_n|x_n) \end{vmatrix}$$

Ainsi :
$$G(x,x_1,\ldots,x_n) = \|x-p(x)\|^2.G(x_1,\ldots,x_n) = d(x,F)^2.G(x_1,\ldots,x_n)$$

Application au calcul des composantes d'un vecteur dans une base quelconque

Soit F un sous-espace vectoriel de dimension finie n de E, muni d'une base (x_1,\ldots,x_n) . Soit $x\in F$.

On pose
$$x = \sum_{i=1}^n p_i x_i$$
 . Alors pour tout $j \in \llbracket 1, n
rbracket$ on a la relation

$$p_j^2 G(x_1, \dots, x_n) = G(x_1, \dots, x_{j-1}, x, x_{j+1}, \dots, x_n)$$

Il ne reste plus qu'à trouver le signe de chaque p_i

Matrice de Gram

Les vecteurs colonnes de la matrice de Gram admettent les mêmes relations de dépendance linéaire (dans l'espace \mathbf{R}^n des n-uplets de réels) que les vecteurs x_i dans E; c'est-à-dire, si on note C_1, \ldots, C_n la famille des vecteurs colonnes de la matrice de Gram, pour toute famille de réels a_1, \ldots, a_n :

$$\sum_{i=1}^n a_i x_i = 0_E$$
 si et seulement si $\sum_{i=1}^n a_i C_i = 0_{{f R}^n}.$

Il s'ensuit que la matrice de Gram de la famille de vecteurs x_1, \dots, x_n a le même rang que ladite famille de vecteurs.