

Table of Content

- Problem Statement and Background
- Analysis and Exploration of Data set
- Previous Research Works
- Methodology and Implementation
- Testing and Result Analysis
- Challenges and Future plan
- Conclusion
- Git Link: https://github.com/RumanaCU/Sleep-Staging

Problem Statement and Background Why Sleep Stage Classification?

- Pandemic situation increased this situation.
- Need to improve human lifestyle and healthiness.
- Significant importance to diagnose the symptoms and diseases.

Problem Statement and Background Why does data science solution need?

- Time consuming and expensive sleep stages labeling.
- Difficulty of ML and DL training for big data set.
- Data insufficiency for home based sleep monitoring devices.
- More dependency on cloud server.
- Latency and failure of service is an overhead.
- Need to develop a data-efficient model from raw sleep data.
- Edge devices can get accuracy and macro F1 score above 87%-83.

Previous Research works

- DeepSleepNet [3] A sleep stage scoring model based on single channel EEG.
 - · Sleep data set: MASS and Sleep-EDF.
 - Technique: Representation learning and sequence residual learning.
 - Accuracy: macro F1 score achieved: MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9.
- The Survey paper [4]- described about edge intelligence and intelligent edge:
 - Technique: practical implementation methods.
 - Enabling technologies.
 - Future challenges.
- The research paper [5]- initiated a model for automatic sleep staging:
 - Sleep data set: MASS and Sleep-EDF.
 - Technique: deep transfer learning.
 - Accuracy: 84:3%(source domain) and 85:2% (target domain database).

Analysis and Exploration of Data set

- Sleep-EDF Expanded Database- 197 whole-night Polysomnographic sleep recordings,
- Including EEG, EOG, Chin EMG, and event markers of around 20 subjects.
- **Downloaded from-**https://www.physionet.org/static/published-projects/sleep-edfx/sleep-edf-database-expanded-1.0.0.zip.
- Data and Annotation Files:
 - o *PSG.edf files
 - O SC*PSG.edf
 - o *Hypnogram.edf

Table 1: Sleep stage

Stage Label	Sleep Stage
W	wakefulness
R	rapid eye movement
N1	light sleep
N2	Deeper sleep
N3&4	deep sleep

Analysis and Exploration of Data set

- Sleep Cassette Study and Data:
- 153 SC*files of healthy Caucasians aged 25-101, with no medication.
- Variables: Filename- SC4ssNE0-PSG.edf.
 Where, ss=subject number, N=night.
 - Missing Values: The first night of subjects 36 and 52, and the second night of subject 13.
- Sleep Telemetry Study and Data:
 - 44 ST*files of temazepam effects on sleep in 22 Caucasians males and females, difficulty with falling asleep.
 - Variables: Filename- ST7ssNJ0-PSG.edf
 where, ss=subject number, N=night
- EOG, EMG, and EEG signals sampled at 100Hz.

Methodology and Implementation

- Train a DeepSleepNet as source domain
- Method: Deep neural network.
- Fine tune:

source domain target domain.

Figure 1: DeepSleepNet model

Methodology and Implementation (Cont.)

Figure 2: Flowchart

Technology

- Convolutional Neural Network
- Deep Transfer Learning
- Butter worth Filter

Figure 4: New CNN Model Training

Figure 3: New Model developed

Methodology and Implementation(cont.) PLATFORMS

- MATLAB (for data preparation)
- Python3,
- TensorFlow 2,
- Pytorch (for network training and evaluation)
- NumPy,
- SciPy,
- Sklearn,
- H5py.

Data Pre-processing

- Used Butterworth filtering to extract 30s window
- ★ Eliminate high frequency noise
- **★** Cutoff frequency of 30Hz.
- ★ Wrap them into PyTorch data set

Figure 6: Plot of filtered data

Data Pre-processing (Cont...)

Matlab data preprocessing [6]

- Sleep cassette data (first 20 subjects)
- Sleep telemetry data (placebo only)

Figure 7: Matlab Data pre-processing

Preliminary training with the pre-processed data in first way[8].

With number of examples in each set:

4

Training: 18845

7

Validation: 4094

4

Test: 9850

Figure 8: Number of training example

/iew	Inse	ert Cel	K	ernel		Widgets	Help			
16	1	₩ R	un 🔳	C	*	Code	~			
17		0.5836			0.	7532	0	.6997	0.5868	
18		0.5821			0.	7209	0	.6991	0.6067	
best	val	loss 0	7397	->	0.7	209				
19		0.5734			0.	7326	0	.7019	0.6070	
20		0.5616			0.	7368	0	.7066	0.6120	
21		0.5604			0.	7453	0	.7087	0.5747	
22		0.5559			0.	7097	0	.7059	0.6268	
best	val	loss 0	7209	->	0.7	097				
23		0.5466			0.	7466	0	.7134	0.5976	
24		0.5519			0.	7476	0	.7023	0.5853	
25		0.5456			0.	7050	0	.7094	0.6125	
best	val	loss 0	.7097	->	0.7	050				
26		0.5363			0.	7529	0	.7176	0.5934	
27		0.5404			0.	7040	0	.7095	0.6092	
best	val	loss 0	.7050	->	0.7	040				
28		0.5331			0.	7348	0	.7173	0.6062	
29		0.5356			0.	7170	0	.7162	0.6147	
30		0.5287			0.	6961	0	.7126	0.6163	
best	val	loss 0	.7040	->	0.6	961				
31		0.5240			0.	7056	0	.7194	0.6029	
32		0.5273			0.	7226		.7147	0.6061	
33		0.5173			0.	6910	0	.7231	0.6337	
best	val	loss 0	.6961	->	0.6	910				
34		0.5166			0.	7032		.7178	0.6184	
35		0.5130				7555	0	.7232	0.5934	
36		0.5162			0.	7118	0	.7217	0.5958	
37		0.5167			0.	7521		.7183	0.5742	
38		0.5118			0.	7202		.7232	0.5997	
39		0.5105			0.	7235		.7218	0.6036	
40		0.5072			0.	7042	0	.7257	0.6134	
41		0.5001			0.	7442	0	.7332	0.5834	
42		0.5015			0.	7112	0	.7274	0.6194	
43		0.4978			0.	7587	0	.7245	0.5989	
44		0.4983			0.	7211	0	.7269	0.6002	
45		0.4951			0.	7545		.7286	0.6022	
46		0.4962			0.	7384		.7300	0.5887	
47		0.4968			0.	6944		.7267	0.6352	
48		0.4914				7261	0	.7331	0.6282	
Stop	tra	ining a	t epo	ch 4	8					

JUDYTET TrainingSleepNet Last Checkpoint: an hour ago (autosaved)

Figure 9: Primary training

(Cont...)

Preliminary training result shows:

- Test Balance
- Accuracy: 0.757
- ✓ Test Cohen"s
- ✓ Kappa: 0.714

Figure 10: Visualization of loss

Figure 11: Visualization of performance

(Cont...)

Final training with examples:

Training: 45351

Validation: 5039

Test: 5599

Figure 12: Loss and validation loss Graph with epochs

Figure 13: Accuracy and validation accuracy graph with epochs

(Cont...)

F1 score:	0.7	7991289543390			
		precision	recall	f1-score	support
	0	0.93	0.93	0.93	1231
	1	0.52	0.35	0.42	435
	2	0.87	0.90	0.89	2341
	3	0.88	0.85	0.87	613
	4	0.77	0.82	0.79	979
accur	асу			0.85	5599
macro	avg	0.79	0.77	0.78	5599
weighted	avg	0.84	0.85	0.84	5599

Figure 14: Performance after training

Figure 15: Performance visualization

(Cont...)

- Expected result
- To Increase
- ✓ About 3%

Figure 16: Performance pattern after fine tuning[6]

Challenges and Future plan (Cont...)

- Big challenge is to train a model at home computer without GPU.
- Fine tune the new trained CNN model to target domain.
- Increasing performance for both as possible.

Conclusion

- Ensure sound sleep, ensure healthy life.
- Enrich sleep analysis with mobile computing.
- Increase reliable home-based sleep monitoring.

Thank you

Questions

???

References

- [1] https://poweredtemplate.com/05036/0/index.html
- [2] https://pngtree.com/free-backgrounds-photos/sleeping
- [3] Supratak, A., Dong, H., Wu, C., & Guo, Y. (2017). DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 1998-2008.
- [4] Wang, X., Han, Y., Leung, V. C., Niyato, D., Yan, X., & Chen, X. (2020). Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(2), 869-904.
- [5] Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.
- [6] Phan, H., Chén, O. Y., Koch, P., Lu, Z., McLoughlin, I., Mertins, A., & De Vos, M. (2020). Towards more accurate automatic sleep staging via deep transfer learning. IEEE Transactions on Biomedical Engineering.
- [7] The sleep-EDF database download link,
- https://www.physionet.org/static/published-projects/sleep-edfx/sleep-edf-database-expanded-1.0.0.zip.Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301,1982].
- [8] https://colab.research.google.com/github/hubertjb/dl-eeg-tutorial/blob/main/sleep_staging_physionet.ipynb#0.-Setting-up-the-environment.
- [9] Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., & Gramfort, A. (2018). A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 758-769