

深度學習 Deep Learning

模型壓縮

Instructor: 林英嘉 (Ying-Jia Lin)

2025/05/05

Course GitHub

Slido # DL_0505

Outline

- Model compression techniques
 - Knowledge Distillation
 - Pruning
 - Quantization

Why do we need model compression?

參數這麼多

- ViT: 86M
 - 86 x 4 bytes = 344M = 344000000 bytes = 344MB
- GPT-3: 175B = 175000M
 - 175000 x 4 bytes = 700000M = 70000000000 bytes = 700GB

為什麼我們不直接訓練一個小模型?

- 目前邏輯:先訓練大模型,再進行模型壓縮,但為什麼?
 - 小模型單獨無法達到大模型的表現,但是小模型可以透過學習大模型來達到大模型的表現 (Ba and Caruana, NeurIPS 2014)
 - 相較於大模型,小模型在訓練階段的收斂速度慢且不穩定 (Martinez et al., EMNLP Findings 2024)

[Ba and Caruana, NeurIPS 2014] Do Deep Nets Really Need to be Deep?
[Martinez et al., EMNLP Findings 2024] Tending Towards Stability: Convergence
Challenges in Small Language Models
https://datascience.stackexchange.com/questions/86395/do-smaller-neural-netsalways-converge-faster-than-larger-ones

為什麼我們不直接訓練一個小模型?

- 目前邏輯:先訓練大模型,再進行模型壓縮,但為什麼?
 - 實驗表明這樣的流程比較好

Knowledge Distillation

[Recap] 模型輸出的後處理

 x_i : 資料集中第 i 張影像

 y_i : label·在此範例中 j=1,2,3

Cross-entropy: $\mathcal{L}_i = -\sum_i y_i \log \hat{P}(y_i|x_i)$

各類別加總: $\mathcal{L}_i = -\log 0.225$

Teacher model and student model

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." *arXiv preprint arXiv:1503.02531* (2015).

模型輸出的後處理 for KD

 x_i : 資料集中第 i 張影像

 y_i : label·在此範例中 j=1,2,3

 $\text{KL-divergence: } \mathcal{L}_{\text{KL}}(x_i) = \text{KL}(\hat{P}_T || \hat{P}_S) = \sum_j \hat{P}_T(y_j | x_i) \log \frac{\hat{P}_T(y_j | x_i)}{\hat{P}_S(y_j | x_i)}$

各類別加總:
$$\mathcal{L}_{KL}(x_i) = 0.5 \log \frac{0.5}{0.225} + 0.275 \log \frac{0.275}{0.275} + 0.225 \log \frac{0.225}{0.5}$$

Optimizing a student model

KD目標函數

Hard Targets

label

^S probs

$$\mathcal{L}_{i} = -\sum_{j} \alpha \cdot y_{j} \log \hat{P}(y_{j}|x_{i}) + (1 - \alpha) \cdot \text{KL}(\hat{P}_{T}||\hat{P}_{S})$$
T probs
s probs

Soft Targets

 α 是一個超參數 (調整兩種 losses 的比例)

Problems of Knowledge Distillation

- We always need a pre-initialized student model.
- Training with unsupervised data is time-consuming.

Pruning

Figure source: https://www.uky.edu/Ag/Horticulture/QRLabels/Pruning.html

Overview of Pruning

Han, Song, et al. "Learning both weights and connections for efficient neural network." NeurIPS 2015.

Before Pruning

方式1: Weight Pruning

方式2: Node Pruning

Unstructured Pruning (方法)

移除 | weight 數值 | < threshold 的 weights

例如:threshold = 0.001

Before Pruning

方式1: Weight Pruning

Unstructured Pruning (優缺點)

方式1: Weight Pruning

• 優點:

- 剪的是單個權重,可以任意刪除來達到很高的壓縮率
- 剪掉的是影響小的權重,因此通常和原本模型相比的 效能損失可能較小

• 缺點:

- 難以構成統一的平行化矩陣,例如:
 - 有的 Nodes 有 2 個 outputs;有的 Node 只有 1 個 input
 - 有的 Nodes 有 2 個 inputs;有的 Nodes 有 1 個 input
- 雖然參數變少,但可能難以平行化,故速度可能慢

Structured Pruning (方法)

移除 | activations 數值 | < threshold 的 neurons

例如:threshold = 0.001

Before Pruning

方式2: Node Pruning

Structured Pruning (優缺點)

方式2: Node Pruning

優點:

• 等同於 hidden size 變小,因此可以透過GPU進行平行化

缺點:

- 一次刪除部分 Node(s) 可能使模型效能損失較大
- 壓縮率和 Unstructured Pruning 比起來較不彈性

Pruning 訓練流程

Han, Song, et al. "Learning both weights and connections for efficient neural network." NeurIPS 2015.

1. 訓練一個大的 模型 (Network)

2. 進行 Pruning

3. 訓練 Pruned 模型

4. 得到最後的模型

- 一般來說,我們不會一次把模型剪掉太多參數
 - 所以 Step 2. 和 Step 3. 會重複進行
 - 直到參數量足夠小(可自行決定)

[Recap] 先 pre-training,再 Fine-tuning

Pre-training — Fine-tuning

在<mark>大量</mark>資料上進行訓練,通常是 自監督式 (Self-Supervised Training) 在目標資料上 (Down-stream tasks,下游任務) 進行訓練,通常是監督式 (Supervised Training),也就是需要有標註的資料才能進行模型訓練

Pre-training, Fine-tuning, and Post-training

在<mark>大量</mark>資料上進行訓練,通常是 自監督式 (Self-Supervised Training) 在目標資料上 (Down-stream tasks,下游任務) 進行訓練,通常是監督式 (Supervised Training),也就是需要有標註的資料才能進行模型訓練

適應模型剪枝

Quantization 量化

[Recap] MLP is composed of weight matrices

Weights in Transformer layers

Transformer layers

看看 PyTorch 怎麼存 tensors

如果是浮點數的話, PyTorch 預設以 float32 (FP32) 儲存數值

```
>>> a = torch.tensor([[1., -1.], [1., -1.]])
>>> a.dtype
torch.float32
```

```
>>> a = torch.tensor([[1, -1], [1, -1]])
>>> a.dtype
torch.int64
```


數值範圍比較

數值類型名稱	PyTorch dtype	數值範圍	Bit數	Byte數
float32	torch.float32	約±3.4e38	32	4
float16	torch.float16	約±6.5e4	16	2
int8	torch.int8	-128 ~ 127	8	1
uint8	torch.uint8	0 ~ 255	8	1
int4	x	-8 ~ 7	4	0.5
uint4	x	0 ~ 15	4	0.5

u: unsigned (無號,代表數值只有正的)

Introduction to Quantization

(這頁只是示意圖,數值不精準)

$$\begin{bmatrix} -0.4 & 1.3 & 3.73 \\ -4.7 & -3.2 & -6.4 \\ 8.5 & 14.3 & 13.5 \end{bmatrix} \xrightarrow{\text{降低儲存精度}} \begin{bmatrix} 0 & 1 & 4 \\ -5 & -3 & -6 \\ 9 & 14 & 14 \end{bmatrix}$$
36 bytes

30 bytes

32-bit floating point (FP32): 1個

值需要4個bytes才能儲存

8-bit Integer (int8): 1個值需要 1個bytes才能儲存

誤差:
$$\begin{bmatrix} 0.4 & -0.3 & 0.27 \\ -0.3 & 0.2 & 0.4 \\ 0.5 & -0.3 & 0.5 \end{bmatrix}$$

計算機概論 / C 語言

- int8: 整數 (integer) 使用 8 個位元 (bits) 來儲存數值,可以分成 Unsigned int8 和 signed int8
- Unsigned int8 (無號整數):

bit 位數	7	6	5	4	3	2	1	0	_
二進位 (0或1)	1	0	0	1	1	1	1	1	
十進位	2 ⁷			24	2 ³	2 ²	2 ¹	2 ⁰	=128+16+8+4+2+1=159
bit 位數	7	6	5	4	3	2	1	0	_
二進位 (0或1)	1	0	0	0	0	0	0	0	
十進位	2 7								- =128

· 因此,Unsigned int8 的範圍為 0 到 255

計算機概論 / C 語言

- int8: 整數 (integer) 使用 8 個位元 (bits) 來儲存數值,可以分成 Unsigned int8 和 signed int8
- Signed int8 (有號整數):

bit 位數	7	6	5	4	3	2	1	0	_
二進位 (0或1)	1	0	0	1	1	1	1	1	
十進位	-2 ⁷			24	2 ³	2 ²	21	2 ⁰	=-128+16+8+4+2+1=-97
bit 位數	7	6	5	4	3	2	1	0	
二進位 (0或1)	0	1	1	1	1	1	1	1	
十進位		2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	=64+32+16+8+4+2+1=127

• 因此,signed int8 的範圍為 -128 到 +127

算出負數的二進位(電腦背後作法)

- 假設現在要算-5的二進位
- 先算+5的二進位:

十進位

2²

21

 $2^0 = 4+1=5$

二進位

0 0 0 0 0 1 0 1

• 取反 (1換成0,0換成1):

二進位

-2⁷

26

25

24

23

+1 =-128+64+32+16+8+2**+1**=-5

From FP32 to int4

當前資料以 FP32 儲存的值取絕對值最大者的正負號作為兩端,為r的數值範圍

Quantization 方式

Post-training Quantization (PTQ)

在模型訓練好之後,直接將權重轉成低精度, 不重新訓練

Quantization-aware Training (QAT)

在訓練過程中就模擬量化的影響,讓模型學 會適應低精度

PTQ 與 QAT 比較

	₩ PTQ	OAT
何時做量化?	模型訓練完之後	訓練過程中就模擬量化
需不需再訓練?	★ 有 pre-trained model 就可	
最後模型表現	較差 (轉換後精度越低,表現越差)	較好
實作難易度	較簡單	較難

Gemma 3 QAT

GEMMA / AI EDGE

Gemma 3 QAT Models: Bringing state-of-the-Art Al to consumer GPUs

APRIL 18, 2025

Edouard YVINEC Phil Culliton
Research Scientist ML Engineer

Figure source: https://developers.googleblog.com/en/gemm

Share

https://developers.googleblog.com/en/gemma-3-quantized-aware-trained-state-of-the-art-ai-to-consumer-gpus/

Summary

Comparison: What is Model Compression?

Apple Intelligence 最低 8GB 的 RAM?

對於 1B 的模型來說

Float32 -> 4GB

Float16 -> 2GB

8-bit -> 1GB

4-bit -> 0.5GB

模型	Gemma 3 4B	Gemma3 QAT	Llama 3.2 3B
參數量	4B	27B	3B
Memory	4 GB (8-bit)	13.5 GB (4-bit)	3 GB (8-bit)

Additional resources

- MIT EfficientML by Prof. Song Han
 - Pruning and Sparsity (Part I)
 - Pruning and Sparsity (Part II)
 - Quantization (Part I)
 - Quantization (Part II)
- bitsandbytes
 - https://huggingface.co/docs/transformers/en/quantization/bitsandbytes
- DeepLearning.Al course
 - https://www.deeplearning.ai/short-courses/quantization-fundamentals-with-hugging-face

Thank you!

Instructor: 林英嘉

yjlin@cgu.edu.tw

TA: 林君襄

becky890926@gmail.com