DÉTERMINATION DU REDSHIFT

Ana Fiallos & Emma Bordier

- ★ Définition du redshift
- * Importance pour le calcul de la masse du trou noir
- ★ Identification des raies
- * Calcul et validation du redshift

Définition du Redshift

Définition: Le redshift est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre, ce qui se traduit par un décalage vers le rouge pour le spectre visible.

Les galaxies sont soumises à l'expansion de l'univers, on a donc l'impression qu'elles « s'éloignent » → 2ème cas.

$$z = \frac{\lambda_r - \lambda_0}{\lambda_0}$$

NVSS J201943-364542

Importance pour la détermination de la masse du trou noir

Masse du trou noir

$$M_{
m BH} = ig(2.0^{+0.4}_{-0.3}ig) imes 10^6 igg(rac{L_{
m Hlpha}}{10^{42} {
m erg \ s^{-1}}}igg)^{0.55 \pm 0.02} igg(rac{
m FWHM_{
m Hlpha}}{10^3 {
m km \ s^{-1}}}igg)^{2.06 \pm 0.06} M_{\odot}.$$

Luminosité absolue

$$L=4\pi d_L^2 F$$

Distance de luminosité

$$d_L = (1+z)rac{c}{H_0}\int_0^z rac{\mathrm{d}z'}{\sqrt{\Omega_m(1+z')^3+\Omega_\Lambda}}$$

Identification des raies O_{III} et H_{α}

*On donne $z\sim2,15$ et les longueurs d'onde correspondant aux raies O_{III} et $H_{\alpha}: \lambda_0(O_{III})=500,7$ nm et $\lambda_0(H_{\alpha})=656,2$ nm.

* Afin d'identifier les raies O_{III} et H_{α} on applique la formule du redshift pour retrouver une approximation de λ_r (lumière reçue).

$$z = \frac{\lambda_r - \lambda_0}{\lambda_0} \Longleftrightarrow \lambda_r = \lambda_0 (z+1)$$

* Ainsi, on devrait retrouver la raie de O_{III} aux alentours de :

$$\lambda_r = 500,7*3,15 = 15772,1 \text{ Å}$$

De même pour H_{α} :

$$\lambda_r = 656,2*3,15 = 20670,3 \text{ Å}$$

Calcul du Redshift grâce à la raie O_{III}

★Pour la détermination de z, on choisit la raie de O_{III} qui est plus fine, ce qui nous permet d'avoir une valeur plus précise

$$\star \lambda_r = 15614,5 \text{ Å}$$

$$z = \frac{15614,5 - 5007}{5007} = 2,1185$$

Validation du redshift trouvé grâce à la raie Hx

 \bigstar On valide le redshift trouvé précédemment en faisant le même raisonnement et le même calcul avec la raie $H\alpha$

$$\star \lambda_r = 20461,4 \text{ Å}$$

$$z = \frac{20461, 4 - 6562}{6562} = 2,1182$$

