Student Name: Emily Yeh Check one:

[] I completed this assignment without assistance or external resources.

[X] I completed this assignment with assistance from ___

and/or using these external resources: Math Stack Exchange, Wikipedia

I. Formal Proofs

Assuming $p \rightarrow q$ and $p \rightarrow r$, prove $p \rightarrow (q AND r)$.

1. $p \rightarrow q$ Given 2. $p \rightarrow r$ Given

3. *p* Given (I assume that *p* must exist in order to prove that $p \rightarrow q \Lambda r$)

4. *q* 5. *r* 6. *q AND r* 1, 3, modus ponens
 2, 3, modus ponens
 4, 5, conjunction

7. $p \rightarrow q AND r$ 3, 6, conditional introduction

Assuming $p \rightarrow (q \ OR \ r)$ and $p \rightarrow (q \ OR \ NOT \ r)$, prove $p \rightarrow q$.

1. $p \rightarrow (q \ OR \ r)$ Given 2. $p \rightarrow (q \ OR \ NOT \ r)$ Given

3. *p* Given (I assume that *p* must exist in order to prove that $p \rightarrow q$)

4. *q OR r*5. *q OR NOT r*6. (*q OR r*) *AND* (*q OR NOT r*)
7. *q OR* (*r AND NOT r*)
6. distributive property

8. *q OR (F)* 7, negation 9. *q* 8, identity

10. $p \rightarrow q$ 3, 9, conditional introduction

II. Truth Tables

Assuming $p \rightarrow q$ and $p \rightarrow r$, prove $p \rightarrow (q AND r)$.

p	q	r	q AND r
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Style note: Canonical order of the rows should be binary order.

The highlighted row indicates the row where I've proved $p \rightarrow (q AND r)$.

III. Tautology, Satisfiable, Contradiction

 $(p AND q AND r) \rightarrow (p OR q)$

p	q	r	p AND q AND r	p OR q
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

This is satisfiable. There is only one row in the truth table that renders both statements true; when p, q, and r are all true.

 $\underline{((p \rightarrow q) \text{ AND } (q \rightarrow r)) \rightarrow (p \rightarrow r)}$

$((p \rightarrow q) AND (q \rightarrow r)) \rightarrow (p \rightarrow r)$							
p	q	r	$(p \rightarrow q) AND (q \rightarrow r)$	$p \rightarrow r$			
0	0	0	1	1			
0	0	1	0	0			
0	1	0	0	1			
0	1	1	0	0			
1	0	0	0	0			
1	0	1	0	1			
1	1	0	0	0			
1	1	1	1	1			

This is satisfiable. There are two rows in the truth table that render both statements true; when p, q, and r have the same values (all 0s or all 1s).

(p	\rightarrow	a)	\rightarrow	p
(P		47		Р

(P + Q) - P							
p	q	$p \rightarrow q$	$(p \rightarrow q) \rightarrow p$				
0	0	1	0				
0	1	0	1				
1	0	0	0				
1	1	1	1				

This is satisfiable. There are two rows in the truth table that render both statements true; when p and q both have the same values (all 0s or all 1s).

 $(p \ OR \ q \ OR \ r) \ AND \ ((NOT \ p) \ OR \ (NOT \ q)) \ AND \ (p \ OR \ (NOT \ q)) \ AND \ (q \ OR \ (NOT \ r)) \ OR \ (r \ OR \ (not \ p))$

			1	2	3	4	5	6	7	8	9
p	q	r	p OR q OR r	(NOT p) OR (NOT q)	1 AND 2	p OR (NOT q)	q OR (NOT r)	r OR (NOT p)	3 AND 4	7 AND 5	8 OR 6
				OR (NOT r)							
0	0	0	0	1	0	1	1	1	0	0	1
0	0	1	1	1	1	1	0	1	1	0	1
0	1	0	1	1	1	0	1	1	0	0	1
0	1	1	1	1	1	0	1	1	0	0	1
1	0	0	1	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	0	1	1	0	1
1	1	0	1	1	1	1	1	0	1	1	1
1	1	1	1	0	0	1	1	1	0	0	1

This is a tautology. For any value assigned to *p*, *q*, and *r*, the result is 1 (true).

IV. CNF

 $p \ OR \ (q \ AND \ NOT \ (r \ AND \ (s \rightarrow t)))$

 $p V(q \Lambda \sim (r \Lambda (s \rightarrow t)))$

 $p V(q \Lambda \sim r \Lambda \sim (s \rightarrow t))$

 $p V(q \Lambda \sim r \Lambda \sim (\sim s V t))$

 $p V(q \Lambda \sim r \Lambda (s V \sim t))$

 $p V(q \Lambda (\sim r \Lambda s) V(\sim r \Lambda \sim t))$

 $(p \ V \ q) \Lambda (p \ V ((\sim r \Lambda \ s) \ V (\sim r \Lambda \sim t)))$

 $(p V q) \Lambda (p V (\sim r \Lambda (s V \sim t)))$

 $(p V q) \Lambda (p V \sim r) \Lambda (p V s V \sim t)$

Rewriting expression

de Morgan's

Eliminating implication

de Morgan's

Distributive property

Distributive property

Distributive property

Distributive property

V. Short Certificate $p \ OR \ (q \ AND \ NOT \ (r \ AND \ (s \rightarrow t)))$

This formula is satisfied when p is true, when q *AND NOT* (r *AND* $(s \rightarrow t))$ is true, and when both are true.

p	q	r	S	t	$s \to t$	$r AND (s \rightarrow t)$	$q AND NOT (r AND (s \rightarrow t))$	$p OR (q AND NOT (r AND (s \rightarrow t)))$
0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	1	1	0	0
0	1	0	0	0	1	0	1	1
0	1	0	0	1	0	0	1	1
0	1	0	1	0	0	0	1	1
0	1	1	0	0	1	0	1	1
0	1	1	0	1	0	0	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	0	1	0	0	1
1	0	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	1	0	1
1	1	0	0	0	1	0	1	1
1	1	0	0	1	0	0	1	1
1	1	0	1	0	0	0	1	1
1	1	1	0	0	1	1	0	1
1	1	1	0	1	0	0	1	1

I used short certificate and exhaustive enumeration to make this determination. By short certificate, I see that if p is true, then the whole formula is satisfied. Otherwise, if p is not true, I have to check if $(q \ AND \ NOT \ (r \ AND \ (s \rightarrow t)))$ is true. In the truth table, I highlighted all of the results that satisfy the formula. The green highlighted area indicates the results I get when p is true; the yellow highlighted area indicates the results I get when p is not true, but $(q \ AND \ NOT \ (r \ AND \ (s \rightarrow t)))$ is true. Therefore, this formula is definitely satisfiable.