Hazard and Operability Study HazOp

FPST 4333

Life Cycle Phase

Hazard and Operability (HAZOP)

- systematic team approach
- scenario development
 - Brainstorming what can go wrong
 - ⇒determine the consequences
 - deviations from the intended operation.

HAZOP Concept

- Objective: Identify, analyze, and control hazards and operability problems
 - ⇒Team Approach:
 - ⇒Multi-Disciplinary
- Traces flow of materials through a system operation divided into nodes
- Guide word based

HAZOP Differences

- System safety analysis is done as close to design origins and development as possible with a PHA completed by ~ 35% development.
 - ⇒HAZOP is performed when system design is mature but not fully settled.
 - ⇒FMEA concern hardware failures only
- HAZOP includes human factors and operator errors in addition to other failures.

HAZOP Terminology

1. Intentions How the process is expected to

operate or the activity is expected

to be performed

Deviations Departures from the design

intentions

Causes Ways deviations might occur

4. Consequences Results of the deviations

5. Safeguards Provisions for reducing the

frequency or the consequences

6. Actions Suggestions for procedural

changes, design changes, or

further study

The HazOp Process

HazOp Methodology

HAZOP Method

Guidewords, Parameters

- Guidewords (action words, keywords) help find deviations
 - ⇒Select a set of guidewords for the system type
- Select parameters for the system type, process, or operation
 - ⇒Parameter: variable, component, or activity in system under analysis

Deviations

- Begin search for deviations from the design intent
- Create a deviation statement
- Select a system parameter and link with a guideword or action phrase
- Check if the combination is meaningful or can be understood on a physical basis.

Combination

HAZOP Guidewords

Guideword	Meaning
No, not, none	None of the design intent is achieved
More, more of, higher	Quantitative increase in a parameter
Less, less of, lower	Quantitative decrease in a parameter
As well as, more than	An additional activity occurs
Part of	Only some of the design intention is achieved
Reverse	Logical opposite of the design intention occurs
Other than, other	Complete substitution – another activity occurs

Additional Guidewords

Guideword	Meaning				
Where else	For flows, transfers, sources, destinations				
Before, after	Step occurs out of sequence				
Early, late	Timing is different than the intention				
Faster, slower	Step is/is not with the right timing				

Process Parameter Examples

Flow	Level	Viscosity
Pressure	Time	рН
Temperature	Sequence	Signal
Composition	Particle size	Start/stop
Addition	Reaction	Operate
Separation	Phase	Maintain
Mixing	Speed	Services
Stirring	Measure	Communication
Transfer	Control	

Combination Examples

Guideword Combination Ex.	Parameter
None, more of, less of, reverse, elsewhere, as well as	Flow
Higher, lower	Temperature
Higher, lower, reverse	Pressure
Higher, lower, none	Level
More, less, none	Mixing
Higher rate, lower rate, none, reverse, as well as, other than, part of	Reaction

Parameter Guide Word Combinations, Process Lines

Table 10-4 Valid Guide Word and Process Parameter Combinations for Process Lines (x's represent valid combinations)

Process parameters	No, not, none	More, higher, greater	Less, lower	١	As well as	Part of	Reverse	Other than	Sooner, faster	Later, slower	Where else
Flow	X	X	X		X	X	X	X	X	X	
Temperature		X	X						X	X	
Pressure		X	X		X				X	X	
Concentration	X	X	X		X	X		X	X	X	
pН		X	X						X	X	
Viscosity		X	X						X	X	
State					X				X	X	

Crowl, D.A. and Louvar, J.F., Chemical Process Safety, 2nd ed, Prentice Hall, 2002

Parameter Guide Word Combinations, Vessels

Table 10-5 Valid Guide Word and Process Parameter Combinations for Process Vessels (x's represent valid combinations)

Process Parameters	No, not, none	More, higher, greater	Less, lower	As well as	Part of	Reverse		Sooner, faster	Later, slower	Where else
Level	X	X	X	X	X		X	X	X	X
Temperature		X	X					X	X	
Pressure		X	X	X				X	X	
Concentration	X	X	X	X	X		X	X	X	
pН		X	X					X	X	
Viscosity		X	X					X	X	
Agitation	X	X	X		X	X		X	X	
Volume	X	X	X	X	X			X	X	X
Reaction	X	X	X				X	X	X	
State				X			X	X	X	
Sample	X			X	X		X	X	X	

Crowl, D.A. and Louvar, J.F., *Chemical Process Safety*, 2nd ed, Prentice Hall, 2002

What is a Node?

- Nodes are small, manageable and logical portions into which the process is divided.
- Consider the following guidelines for the identification/selection of nodes on a P&ID:
 - ⇒Input streams to the equipment
 - ⇒Output streams from the equipment
 - ⇒ Utility connections to/from the equipment
 - ⇒Vent lines, drain lines, overflow lines
 - → Major Equipment, such as a reactor, tank, heat exchanger, dryer, centrifuge, etc.

Nodes

Node 1 intention = store process feed stocks

HAZOP Worksheet

	HAZOP ANALYSIS										
Node	Item	Function/Purpose	Parameter	Guide Word /Deviation	Consequences	Causes	Hazard	Risk	Recommendations	Comments	Status

The HazOp Process

Preparation

- Process safety and system information
- Team selection
- HAZOP schedule
- Pre-HAZOP facilitator (leader) and scribe preparation
- Pre-HAZOP team walk-through

Select study nodes, examples

- ⇒Major vessels
- ⇒ Major lines connected to process or storage vessels
- ⇒Pumps and compressors
- ⇒ Heat exchangers
- ⇒Major support systems

Apply guide words to study nodes

- ⇒ Determine deviation from design
- ⇒ Determine consequences of deviations
- ⇒Evaluate consequences

Typical causes of deviations

- ⇒ Hardware failures
- ⇒Human error
- **⇒**Outside forces
- ⇒Unanticipated process state

Suggested actions

- ⇒Change in design
- ⇒Change in equipment
- ⇒Alter operating procedures
- ⇒Improve maintenance
- ⇒Investigate further

HAZOP Follow-up

- ⇒Assign responsibility for carrying out recommendations
- ⇒Refer recommendations to appropriate managers
- ⇒Evaluate and review

Hazard containment actions

- ⇒Change the process
- ⇒Change process conditions
- ⇒Alter the physical design
- ⇒Change operating procedures

Record keeping

- ⇒Copy of all data used
- ⇒Copy of all working papers
- ⇒HAZOP worksheets

HAZOP Team Composition

- 5-7 team members optimum, All members should contribute
- Team leader HAZOP expertise
- Technical Members: design expertise, operating and maintenance experience, instruments, electrical, medical, explosion hazards expertise, etc.

⇒New Design

- *****Design Engineer
- *****Process Engineer
- *****Commissioning Manager ■
- *****Instrument Design Engineer
- ***Chemist**
- Scribe
- Consultants

⇒Existing Plant

- ***Plant Superintendent**
- *****Process Supervisor
- ***** Maintenance Engineer
- *****Instrument Engineer
- *****Technical Engineer

Team Leader Attributes

- Patience
- Stamina
- Organized
- Quick thinking
- Friendly and cooperative
- Able to focus on multiple items

- Able to read people
- Gentle authority
- Imaginative
- Seeks consensus
- Respected by team
- Diplomatic

Scribe Attributes

- Attention to detail
- Responsive
- Good listener
- Good computer entry skills
- Good spelling/grammar skills
- Process/technical knowledge

HAZOP Example

Coffee Maker

Coffee Maker

HAZOP Worksheet

					HAZOP ANALYSI	S					
Node	Item	Function/Purpose	Parameter	Guide Word /Deviation	Consequences	Causes	Hazard	Risk	Recommendations	Comments	Status
Water	1	To supply water to brewer system	Level	Less (8 OZ)	No product Burned out pump Burned out pot						
	2		temp	high Iow							
	3		quality	poor							
				high Low No reverse							

HAZOP Example

Water Pumping System

Water Pumping System

- Water is supplied to 3 steam generators, 2 of which are always needed.
- Electric drive pumps transfer the water from the tank to the motor operated valves (MOVs).
- The pumps, MOVs, and generators are monitored and controlled by a computer and powered from a common source.
- Parameters for HAZOP analysis: fluid, pressure, temperature, electricity, and steam.

HAZOP	Analysis
-------	----------

	HAZOF Allalysis									
No.	Node Item	Function/ Purpose	Parameter	Guide Word	Consequence	Cause	Hazard	Risk	Recommendation	Comments
1	Pipes	To carry water through system	Fluid	No	Loss of fluid, system failure; equipment damage	Pipe leak; pipe rupture	Equipment damage	2D		
2	•			More	Pressure becomes too high, resulting in pipe rupture	No pressure relief valves in system	Equipment damage	2C	Add pressure relief valves to system	
3				Less	Insufficient water for operation of generators	Pipe leak; pipe rupture	Equipment damage	2D		
5	Electric power	To provide electricity to operate pumps, MOVs, and generators	Electricity	Reverse No	Not applicable Loss of power to operate system components	Power grid loss; circuit breakers trip	Loss of system operation	 2D	Provide source of emergency backup power	

HAZOP Analysis

No.	Item	Function/ Purpose	Parameter	Guide Word	Consequence	Cause	Hazard	Risk	Recommendation
6				More	Trips circuit breakers	Power surge	Loss of system operation	2C	Provide for fault detection and isolation
7				Less	Insufficient power to adequately operate system components	Power grid fault	Equipment damage	2D	Provide source of emergency backup power
8				Reverse	Not applicable			_	

Analyst: Date: Page: 1 of 1

HAZOP Example

Acetic Anhydride System

Acetic Anhydride System

- Hydrolysis of acetic anhydride (AA) system in a continuously stirred tank reactor (CSTR).
- Water and AA are gravity fed from reservoirs and through rotameters to measure flow rate.
- Water is mixed with AA just prior to entering the reactor.
- Reactor temperature is maintained by water circulated by a pump through coils in the reactor from a temperature bath with controller.
- Samples are taken from the "Sample Point" to measure the AA concentration.

II										
Proj	ect Name:	Problem 10-2	2		Date: February 19, 2002 Page 1 of 2		Completed:			,
Proc	Process: Acetic Anyhydride Reactor System						No Action:			
Sect	ion: Reacto	r			Reference Drawing: Figure 10	-14	Reply Date:			
Item	Study Node	Process Parameters	Deviations (Guide Words)	Possible Causes	Possible Consequences	Action Required	Assigned To: ↓	Ţ	Ţ	ļ
	Reactor Feed	Flow	No	1. No stock in stock tanks	1 No feed and therefore no reaction	Operator must check prior to start- up to insure proper feed quantities - check pre-start-up checklist. Operator must check reactant levels during operation of unit.		6/02		
				2. Feed line is plugged.3. Feed line is cut.	No feed and therefore no reaction No feed and therefore no reaction. Possible spill of feed materials.	Update maintenance procedure Update maintenance procedure Insure that spill containment, skits, and proper clean-up PPE is available.	es. JFL	5/02 5/02		
1В			More	4. All feed valves are closed. 1. Rotameters are miscalibrated leading to higher flows than expected.	4. No feed and therefore no reaction.1. High reactant feed. High reaction rate. High temperature in reactor. Improper conversion to product.	4. Update start-up procedure so the valves are closed prior to start-up 1. Update calibration procedure. Add item to pre-startup check list check for recent calibration.	DAC	7/02 5/02		
1C			Less	 Throttling valves V1 - V5 cannot be shut or throttled, leading to higher flow. Addition of fresh stock to feed tanks resulting in higher level and higher gravity flow. Partially plugged feed line. 	 Same as 1. Same as 1. Less feed and less reaction. Improper product conversion. 	 2. Valves must be of the correct type, materials of construction and properly maintained. Check type, construction and maintenance. 3. Update procedure and train operator and feed stock charging procedure. 1. Check and update maintenance. 				,

Proje	ect Name:	Problem 10	-2 (continued)		Date:	Page 2 of 2	Completed:				7
Proc	Process:						No Action:				
Secti	on:				Reference Drawing:		Repl	y Pate	e:		
Item	Study Node	Process Parameters	Deviations (Guide Words)	Possible Causes	Possible Consequences	Action Required	Assig To:	gned ↓	Ţ	ţ	1
			,	 Leaking feed lines. Valve V-3 opened, leading to leakage of reactants. 	 Spill of reactants. Less feed to reactor, improper reactor conversion. Possible spill of reactants from sample line. Less feed to reactor, improper reactor conversion. 	 Update maintenance procedure. Insure that spill containment, kits, and proper clean-up PPE is available. Check pre-start-up checklist to insure that this valve is closed. Insure that spill containment, kits, and proper clean-up PPE is 	spill	DAC	7/02 6/02		
ID IE IF			As well as Reverse Other than	Contamination of feed stock reactants. Not possible - gravity feed system. Wrong material place in feed tank.	1. Possible side reactions, unknown chemical exposures, contamination of product. 1. No consequence. 1. Unknown and potentially severe consequence. Possible toxic contamination, runaway reaction, etc.	available. 1. Stock feed materials must be checked prior to usage. 1. No action. 1. Feed materials must be careful checked prior to operation to inst they are the proper materials. Chere-start-up checklist.	ure	JFL JFL	5/02 6/02	х	
						-					

HAZOP Example

Olefin Dimerization Plant

Figure 1. Feed section of proposed olefin dimerization plant.

Olefin Dimerization Feed Section

- An alkene/alkane fraction is pumped from storage by pipeline into a buffer/settling tank, where residual water is settled out and drained.
- The fraction is then passed through a feed/product heat exchanger and preheater to the reactor section.
- Residence time in the reactor is held closely for adequate conversion of the alkene and to avoid excessive polymer formation.
- ☐ The following is a HAZOP Analysis of the first line section from storage to the buffer/settling tank.

Node 1: Line Section from Intermediate Storage to Buffer Settling Tank Design Intent: Flow hydrocarbon to the buffer settling tank at 20°C and 35 psig

Parameter		Deviatio	Causes	Consequences	Recommendations
	Word	n			
Flow	No		(1) No hydrocarbon available at intermediate storage	and reduced output. Polymer formed in heat exchanger under no flow conditions.	(a) Ensure good communications with intermediate storage operator (b) Install low level alarm on settling tank LIC
			(2) J1 pump fails (motor fault, loss of drive, impeller, corrosion, etc)	Same as for (1) above	Covered by (b) above
			(3) Line blockage, isolation valve closed in error		
				Same as for (1) above and also J1 pump overheats	(c) Install kickback on J1 pumps (d) Check design of J1 pump strainers
				Same as for (1) above and also HC discharged into public highway	(e) Institute regular patrolling and inspection of transfer line

Node 1: Line Section from Intermediate Storage to Buffer Settling Tank Design Intent: Flow hydrocarbon to the buffer settling tank at 20°C and 35 psig

Parameter	Guide Word	Deviation	Causes	Consequences	Recommendations
Flow	More	More flow	LCV fails open.	Settling tank overfills	(f) Install high level alarm on LIC and check relief sizing.
				Incomplete separation of water phase in tank, leading to problems on reaction section.	(g) Install J2 pump suction line to 12" above tank base
Flow	Less	Less flow	Leaking flange. Note: All other causes considered in No flow	Material loss adjacent to public highway.	Covered by (e)

Node 1: Line Section from Intermediate Storage to Buffer Settling Tank Design Intent: Flow hydrocarbon to the buffer settling tank at 20°C and 35 psig

Parameter	Guide	Deviation	Causes	Consequences	Recommendations
	Word				
Flow	Part of		High water level in intermediate storage tank	Water sump fills up more quickly and increased chance of water passing to reaction section	(i) Arrange for frequent draining off of water from intermediate storage tank. Install high interface level
		Higher concentration of lower alkanes		Higher system pressure	alarm on sump. (j) Check that design of settling tank and associated pipework, including relief sizing will cope with sudden ingress of more volatile HCs
Flow	More than	Organic acids present	Disturbance on distillation columns upstream of intermediate storage	Increased rate of corrosion of tank base, sump and drain line	(k) Check suitability of materials of construction (I) Conduct sample analysis at appropriate frequency

Node 1: Line Section from Intermediate Storage to Buffer Settling Tank Design Intent: Flow hydrocarbon to the buffer settling tank at 20°C and 35 psig

Parameter	Guide Word	Deviation	Causes	Consequences	Recommendations
Pressure	More	More pressure	Isolation valve closed in error or LCV closes, with J1 pump running Thermal expansion in an isolated valved section due to fire or strong	Transfer line subjected to full pump delivery or surge pressure Line fracture or flange leak	(m) Covered by (c) except when kickback blocked or isolated. Check line and flange ratings. Install a PG upstream of LCV and an independent PG on settling tank (n) Install thermal expansion relief on valved section
			sunlight		
Pressure	Less	Less pressure	Covered by less flow analysis.		

Node 1: Line Section from Intermediate Storage to Buffer Settling Tank Design Intent: Flow hydrocarbon to the buffer settling tank at 20°C and 35 psig

Parameter	Guide Word	Deviation	Causes	Consequences	Recommendations
Temperature	More	More temperature	High intermediate storage temperature	Higher pressure in transfer line and settling tank.	(o) Install high temperature indicator at intermediate storage
Temperature	Less	Less temperature	Winter freeze	Water sump and drain line freeze up	(p) Steam trace drain valve and drain line downstream

HAZOP Advantages/Disadvantages

- Guide word tools help to identify hazards.
- Provides analysis of how hazards can develop from operating procedures and operational upsets.
- In practice: less down time, enhanced product quality, less waste, employees are more confident in safety of the system or process.
- Requires significant resources and time.