OSU Mechanical Engineering

Smart Products Laboratory

Digital Communication | Four Prelab

ME Course Number Spring 2019

Table of Contents

List of Figures	3
1 Overview	
2 Background	4
2.1 Overview	4
3 References & Resources	8
3.1 References	8
4 Pre-lab	8
4.1 Items needed to complete lab two	8
5 Laboratory	8
5.1 Requirements & Hardware	8
5.2 Procedure	8
5.3 Exercises	9
Appendix	12
Understanding the Data Sheet – Example: I2C Temperature Sensor (MCP9800)	12

List of Figures

Figure 2 – Logic Level Thresholds	Figure 1 – Example Humanoid Robot System	4
Figure 4 – I2C overview		
Figure 5 - Circuit 1 Setup10Figure 6 - Circuit 2 Setup11Figure 7 - Example main file for communicating with a temperature sensor13Figure 8 - SPI data latching and Read/ Write Sequence13Figure 9 - SPI critical edges13Figure 10 - SPI Modes13Figure 11 - I2C communication13Figure 12 - I2C addressing13Figure 13 - Selecting Pull up resisters for I2C13Figure 14 - I2C Time Constants and Parasitic Bus Capacitance13Figure 15 - Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 - Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 - Raspberry Pi 2/3 GPIO memory addressing information13	Figure 3 – SPI overview	6
Figure 6 — Circuit 2 Setup	Figure 4 – I2C overview	7
Figure 7 – Example main file for communicating with a temperature sensor13Figure 8 – SPI data latching and Read/ Write Sequence13Figure 9 – SPI critical edges13Figure 10 – SPI Modes13Figure 11 – I2C communication13Figure 12 – I2C addressing13Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 5 – Circuit 1 Setup	10
Figure 8 – SPI data latching and Read/ Write Sequence13Figure 9 – SPI critical edges13Figure 10 – SPI Modes13Figure 11 – I2C communication13Figure 12 – I2C addressing13Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 6 – Circuit 2 Setup	11
Figure 9 – SPI critical edges13Figure 10 – SPI Modes13Figure 11 – I2C communication13Figure 12 – I2C addressing13Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 7 – Example main file for communicating with a temperature sensor	13
Figure 10 – SPI Modes13Figure 11 – I2C communication13Figure 12 – I2C addressing13Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 8 – SPI data latching and Read/ Write Sequence	13
Figure 10 – SPI Modes13Figure 11 – I2C communication13Figure 12 – I2C addressing13Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 9 – SPI critical edges	13
Figure 12 – I2C addressing13Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 10 – SPI Modes	13
Figure 13 – Selecting Pull up resisters for I2C13Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 11 – I2C communication	13
Figure 14 – I2C Time Constants and Parasitic Bus Capacitance13Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts13Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information13	Figure 12 – I2C addressing	13
Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts	Figure 13 – Selecting Pull up resisters for I2C	13
Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts	Figure 14 – I2C Time Constants and Parasitic Bus Capacitance	13
Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information	Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts	13
	Figure 8 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts	13
Figure 18 – BCM2835 peripherals function descriptions	Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information	13
	Figure 18 – BCM2835 peripherals function descriptions	13

1 Overview

In lab four, the fundamentals of digital communications are demonstrated through implementing the commonly used I2C protocol. In the part one of this lab you will investigate the signal properties of the protocol.

2 Background

The information below should provide a basic introduction to the concepts.

2.1 Overview

Figure 1 – Example Humanoid Robot System

Figure 2 – Logic Level Thresholds

SPI bus (Serial Peripheral Interface) hardware overview

- In SPI interfaces the master can connect to one or more slave devices
- In cases when multiple slave devices are used, the master will use multiple chip select (CS) lines

Figure 69: SPI master and slave configurations

Data and control lines

CS (chip select) = sometimes referred to as slave select. CS is driven by the master and arbitrates over the SPI bus. When driven low, the SPI bus is active.

SDO/SDI (serial data in and serial data out) = these names describe data flow for the device. The system names describe the data flow relationship between the master and slave. System names: MOSI = Master Out Slave In and MISO = Master In Slave Out. Example: SDO on a slave is MISO in the system and SDI is MOSI in the system.

SCLK (serial clock) = this is a square wave driven by the SPI master. Data on SDO and SDI have relative timing to the SCLK signal which controls the latching of the data on the SPI bus.

Figure 3 – SPI overview

I²C bus (Inter-Integrated Circuit) hardware overview

- On I²C buses the master can connect to one or more slave devices
- . The slave is selected by its I2C address. This allows one controller to connect to many slaves on the two-wire bus.

Figure 74: : I²C master and slave hardware connections

Data and control lines

SCL (serial clock) = this is a square wave driven by the master that controls how fast data is sent and when data is latched to the slave device(s)

SDA (serial data) = both master and slave place data on this line in sync with the clock pulses in a half-duplex fashion. Data on this line includes address, control, and communication data.

Master Controls SDA Line

Slave Controls SDA Line

Write to One Register in a Device

Figure 8. Example I²C Write to Slave Device's Register

Read From One Register in a Device

Figure 9. Example I²C Read from Slave Device's Register

Figure 4 – I2C overview

3 References & Resources

3.1 References

The following references may be helpful to complete the next lab.

- 1. http://www.ti.com/solution/service_robots?variantid=11713&subsystemid=19430
- 2. https://e2e.ti.com/blogs/b/analogwire/archive/2017/11/02/how-to-reduce-the-number-of-i-opins-with-a-switch-matrix-module
- 3. http://wiringpi.com/reference/i2c-library/
- 4. http://www.ni.com/tutorial/6552/en/
- 5. https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++-dos-anddonts.md
- 6. https://google.github.io/styleguide/cppguide.html
- 7. http://alanclements.org/clocks%20and%20timing.html
- 8. http://www.physics.ohio-state.edu/~hughes/cdf_osu/xft/documents/layout.pdf

4 Pre-lab

This section should be worked on prior to arriving in lab.

4.1 Items needed to complete lab two

Make sure you read this entire lab.

5 Laboratory

Complete the exercises and save all code and follow the procedure to turn in your work.

5.1 Requirements & Hardware

- 1. We will be using an impedance analyzer to observe the I2C signal
 - Info: https://store.digilentinc.com/pmod-ia-impedance-analyzer/
 - More Info: https://reference.digilentinc.com/reference/pmod/pmodia/referencemanual
- 2. Bread Board
- 3. Oscilloscope
- 4. Wires
- 5. Resistors
- 6. Capacitors
- 7. USB memory stick.

5.2 Procedure

- 1. Download the example executable
- 2. Gather the needed materials.
- 3. Build the different circuits.
- 4. For each circuit
 - a. Use the digital probes and capture the signals using the trigger functions and save the signals with the screen capture function on the oscilloscope.
 - b. Use the analog probes and capture the signals using the trigger functions and save the signals with the screen capture function on the oscilloscope.

5. Save all data, solutions, and results. They will be turned in with the next lab.

5.3 Exercises

- 1. Build the first circuit, using any resistance over 250 for the resistors R. Hookup the digital probe, to the SCL and SDA line. Try to capture the bus data using the bus analysis on the oscilloscope. Now Hookup the analog probes to the SCL and SDA lines. Use the trigger to capture the signals. Calculate:
 - a. The clock frequency
 - b. The time constant for rising edge data line.
 - c. The time constant for falling edge data line.
 - d. The overshoot if any for the rising and falling line.
- 2. Build the second circuit using a 0.1 uf capacitor for C. Hookup the digital probe, to the SCL and SDA line. Try to capture the bus data using the bus analysis on the oscilloscope. Now Hookup the analog probes to the SCL and SDA lines. Use the trigger to capture the signals. Calculate and comment on:
 - a. The time constant for the data line falling or rising. What happens to the program when you run it?
 - b. Try using different resistance and capacitors in series or parallel to see how it effects the signal lines.

Figure 5 - Circuit 1 Setup

Figure 6 – Circuit 2 Setup

Appendix

Understanding the Data Sheet – Example: I2C Temperature Sensor (MCP9800)

This example will show you how to interpret a data sheet for a wired-communication based peripheral using a I2C to read from a temperature sensor integrated chip. The data sheet for this example can be found at:

http://ww1.microchip.com/downloads/en/DeviceDoc/21909d.pdf

2-Wire High-Accuracy Temperature Sensor

Features:

- Temperature-to-Digital Converter
- Accuracy with 12-bit Resolution:
- ±0.5°C (typical) at +25°C
- ±1°C (maximum) from -10°C to +85°C
- ±2°C (maximum) from -10°C to +125°C
- ±3°C (maximum) from -55°C to +125°C
- User-selectable Resolution: 9-12 bit
- Operating Voltage Range: 2.7V to 5.5V
- 2-wire Interface: I2C™/SMBus Compatible
- Operating Current: 200 µA (typical)
- Shutdown Current: 1 µA (maximum)
- Power-saving One-shot Temperature Measurement
- Available Packages: SOT-23-5, MSOP-8, SOIC-8

Typical Applications:

- Personal Computers and Servers
- · Hard Disk Drives and Other PC Peripherals
- Entertainment Systems
- Office Equipment
- Data Communication Equipment
- Mobile Phones
- · General Purpose Temperature Monitoring

Typical Application

Description:

Microchip Technology Inc.'s MCP9800/1/2/3 fap digital temperature sensors converts temperatures between -55°C and +125°C to a digital word. They provide an accuracy of ±1°C (maximum) from -10°C to

MCP9800/1/2/3 family comes user-programmable registers that provide flexibility for temperature sensing applications. The register settings allow user-selectable 9-bit to measurement resolution, configuration of the power-saving Shutdown and One-shot (single conversion on command while in Shutdown) modes and the specification of both temperature alert output and hysteresis limits. When the temperature changes beyond the specified limits, the MCP9800/1/2/3 outputs an alert signal. The user has the option of setting the alert output signal polarity as an active-low or active-high comparator output for thermostat operation, or as temperature event interrupt output for microprocessor-based system

This sensor has an industry standard 2-wire, I2C™/ SMBus compatible serial interface, allowing up to eigh devices to be controlled in a single serial bus. These features make the MCP9800/1/2/3 ideal sophisticated multi-zone temperature-monitoring applications.

Package Types

MCP9800 MCP9802	MCP9801 MCP9803						
SOT-23-5 V _{DD} 1	SOIC, MSOP SDA 1						
MCP9802/03: Serial Bus time-out 35 ms (typ.) MCP9800/01: No Serial Bus time-out							

Most of the time, the most important information is on the front page. So, what to look for:

Operating Ranges: How am I to power the device, how much power will it consume, is the current and voltage compatible with my main MCU

Communication Options: How am I to communicate with the device: I2C, SPI, CAN, Analog...

Package types: how am I building the circuit around the device. Two general options: through-hole and surface mount. These are surface mounts.

MCP9800/1/2/3

1.0 **ELECTRICAL CHARACTERISTICS**

Absolute Maximum Ratings † V_{DD}...... 6.0V Voltage at all Input/Output pinsGND - 0.3V to 5.5V Storage temperature-65°C to +150°C Ambient temp. with power applied -55°C to +125°C Junction Temperature (T_J)150°C ESD protection on all pins (HBM:MM)(4 kV:400V) Latch-Up Current at each pin..... ±200 mA †Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at ether conditions above those indicated in the operational listings of this specification is not implied Exposure to maximum rating conditions for extended periods may affect device reliability.

More details on the electrical characteristics tells you what the values of device's properties should be under both operating conditions and maximum conditions.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = 2.7V to 5.5V, GND = Ground, and $T_{\Delta} = -55^{\circ}C \text{ to } +125^{\circ}C.$

I _A = -55°C to +125°C.						
Parameters	Sym	Min	Тур	Max	Unit	Conditions
Power Supply						
Operating Voltage Range	V_{DD}	2.7	_	5.5	V	
Operating Current	I _{DD}	-	200	400	μA	Continuous Operation
Shutdown Current	I _{SHDN}	_	0.1	1	μA	Shutdown mode
Power-on-Reset Threshold (POR)	V _{POR}	_	1.7	_	٧	V _{DD} falling edge
Line Regulation	Δ°C/ΔV	_	0.2	_	°C/V	V _{DD} = 2.7V to 5.5V
Temperature Sensor Accuracy						
Accuracy with 12-bit Resolution:						
$T_A = +25$ °C	TACY	_	±0.5	_	°C	V _{DD} = 3.3V
-10°C < T _A ≤ +85°C	TACY	-1.0	_	+1.0	°C	$V_{DD} = 3.3V$
-10°C < T _A ≤ +125°C	TACY	-2.0	_	+2.0	°C	V _{DD} = 3.3V
-55°C < T _A ≤ +125°C	TACY	-3.0	_	+3.0	°C	V _{DD} = 3.3V
Internal ΣΔ ADC						•
Conversion Time:						
9-bit Resolution	t _{CONV}	_	30	75	ms	33 samples/sec (typical)
10-bit Resolution	t _{CONV}	_	60	150	ms	17 samples/sec (typical)
11-bit Resolution	t _{CONV}	_	120	300	ms	8 samples/sec (typical)
12-bit Resolution	t _{CONV}	_	240	600	ms	4 samples/sec (typical)
Alert Output (Open-drain)						
High-level Current	I _{OH}	_	_	1	μA	V _{OH} = 5V
Low-level Voltage	V _{OL}	_	_	0.4	٧	I _{OL} = 3 mA
Thermal Response						•
Response Time	t _{RES}	_	1.4	_	S	Time to 63% (89°C) 27°C (Air) to 125°C (oil batt

DIGITAL	INPUT/OU	TPUT	PIN	CHARAC'	TERISTICS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Serial Input/Output (SCLK,	SDA, A0, A1	I, A2)				
Input						
High-level Voltage	V _{IH}	0.7 V _{DD}	_	_	V	1
Low-level Voltage	V _{IL}	_	_	0.3 V _{DD}	V	
Input Current	I _{IN}	-1	_	+1	μA	
Output (SDA)						
Low-level Voltage	V _{OL}	_	_	0.4	٧	I _{OL} = 3 mA
High-level Current	loH	_	_	1	μA	V _{OH} = 5V
Low-level Current	I _{OL}	6			mΑ	V _{OL} = 0.6V
Capacitance	C _{IN}	_	10	_	pF	-
SDA and SCLK Inputs						
Hysteresis	V _{HYST}	0.05 V _{DD}	_	_	V	

Graphical Symbol Description

TEMPERATURE CHARACTERISTICS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	TA	-55	_	+125	°C	(Note 1)
Operating Temperature Range	TA	-55	_	+125	°C	
Storage Temperature Range	TA	-65	_	+150	°C	
Thermal Package Resistances			•			•
Thermal Resistance, 5L-SOT23	θ_{JA}	_	256	_	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W	
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W	

Note 1: Operation in this range must not cause T_J to exceed Maximum Junction Temperature (+150°C).

Digital input/output reading levels tell you what is the minimum or maximum voltage/ current that a pin must be at for it know whether the digital state is high or low.

VIH: What is the minimum voltage I can send into the device for it to know that I am telling it the digital state is high.

VIL: What is the maximum voltage I can send into the device for it to know that I am telling it the digital state is low.

VOH: What is the minimum voltage that the device will send to me to indicate a digital state is high. Usually VOH = VDD (the supply voltage).

VOL: What is the maximum voltage that the device will send to me to indicate a digital state is low.

SERIAL INTERFACE TIMING SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, V_{DD} = 2.7V to 5.5V, GND = Ground, -55°C < T_A < +125°C, C_L = 80 pF, and all limits measured to 50% point.

Parameters	Cum	Min	Turn	Max	Units	Conditions				
	Sym		Тур	wax	Units	Conditions				
2-Wire I ² C™/SMBus Compatible Interface										
Serial Port Frequency	f _{SC}	0	_	400	kHz	I ² C MCP9800/01				
	f _{SC}	10	_	400	kHz	SMBus MCP9802/03				
Clock Period	t _{SC}	2.5	_	_	μs	*				
Low Clock	t _{LOW}	1.3	_	_	μs					
High Clock	t _{HIGH}	0.6	_	_	μs					
Rise Time	t _R	20	_	300	ns	10% to 90% of V _{DD} (SCLK, SDA)				
Fall Time	t _F	20	_	300	ns	90% to 10% of V _{DD} (SCLK, SDA)				
Data Setup Before SCLK High	t _{SU-DATA}	0.1	_	_	μs					
Data Hold After SCLK Low	t _{H-DATA}	0	_	0.9	μs					
Start Condition Setup Time	t _{SU-START}	0.6	_	_	μs					
Start Condition Hold Time	t _{H-START}	0.6	_	_	μs					
Stop Condition Setup Time	t _{SU-STOP}	0.6	_	_	μs					
Bus Idle	t _{IDLE}	1.3	_	_	μs					
Time Out	tour	25	35	50	ms	MCP9802/03 only				

Serial timing or sometimes referred to as AC characteristics provide information on how to setup the communication lines and how to engineer the circuitry to avoid missed bits.

Clock times & Frequency: What is the range of frequency which I can transmit in data at. In other words what frequency should my clock line be switch from high to low.

Time constants: Time constants or rise and fall times of the communication lines determine the time in which it should take for digital states to transition from one to the other. Too fast of a transient probably will result in overshoot. Too slow and you could start dropping bits of information

3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

PIN FUNCTION TABLE TABLE 3-1:

MCP9800 MCP9802 SOT-23-5	MCP9801 MCP9803 MSOP, SOIC	Symbol	Function
5	1	SDA	Bidirectional Serial Data
4	2	SCLK	Serial Clock Input
3	3	ALERT	Temperature Alert Output
2	4	GND	Ground
_	5	A2	Address Select Pin (bit 2)
_	6	A1	Address Select Pin (bit 1)
_	7	A0	Address Select Pin (bit 0)
1	8	V _{DD}	Power Supply Input

3.1 Serial Data Pin (SDA)

The SDA is a bidirectional input/output pin, used to serially transmit data to and from the host controller. This pin requires a pull-up resistor to output data.

3.2 Serial Clock Pin (SCLK)

The SCLK is a clock input pin. All communication and timing is relative to the signal on this pin. The clock is generated by the host controller on the bus.

Power Supply Input (VDD)

The V_{DD} pin is the power pin. The operating voltage, as specified in the DC electrical specification table, is applied on this pin.

3.4 Ground (GND)

The GND pin is the system ground pin.

3.5 **ALERT Output**

The MCP9800/1/2/3's ALERT pin is an open-drain output pin. The device outputs an alert signal when the ambient beyond temperature goes user-programmed temperature limit.

Address Pins (A2, A1, A0)

These pins are device or slave address input pins and are available only with the MCP9801/03. The device addresses for the MCP9800/02 are factory-set.

The address pins are the Least Significant bits (LSb) of the device address bits. The Most Significant bits (MSb) (A6, A5, A4, A3) are factory-set to <1001>. This is illustrated in Table 3-2.

SLAVE ADDRESS TABLE 3-2:

Device	A6	A5	A4	А3	A2	A1	A0
MCP9800/02A0	1	0	0	1	0	0	0
MCP9800/02A1	1	0	0	1	0	0	1
MCP9800/02A2	1	0	0	1	0	1	0
MCP9800/02A3	1	0	0	1	0	1	1
MCP9800/02A4	1	0	0	1	1	0	0
MCP9800/02A5	1	0	0	1	1	0	1
MCP9800/02A6	1	0	0	1	1	1	0
MCP9800/02A7	1	0	0	1	1	1	1
MCP9801/03	1	0	0	1	Х	Х	Х

Note: User-selectable address is shown by X.

Pin descriptions will tell you what each pin does. Some devices allow for programmable slave addresses to be able to have multiple slaves on one line.

FIGURE 4-1: Device Addressing.

4.1.5 DATA VALID

After the Start condition, each bit of data in transmission needs to be settled for a time specified by t_{SU-DATA} before SCL toggles from low-to-high (see "Serial Interface Timing Specifications" on Page 5).

With I2C slaves usually have 7-bit address that uniquely identify them. This is always the first packet that is sent of the data line. For this example lets say that we pulled all of the user selectable address pins to low (A0=A1=A2=0). Then our first packet sent would be...

Int slaveAddress = 0x48;

The LSB tells the slave whether the next word transmitted will be written to (W) it or sent from it (R)

REGISTER POINTER REGISTER 5-1:

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
0	0	0	0	0	0	P1	P0			
bit 7										

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'

bit 1-0 Px<1:0>: Pointer bits

00 = Temperature register (TA)

01 = Configuration register (CONFIG)

10 = Temperature Hysteresis register (T_{HYST})

11 = Temperature Limit-set register (T_{SET})

Register Pointer: The pointer to a register may have to be set before accessing information from that specific register. If we want to read the temperature first we have to write to the slave address 0x48 the value ...

Int register readTemp = 0x00;

Or set the configuration

Int register_Config = 0x01;

TABLE 5	-1:	BIT ASSIG	NMENT SU	MMARY FOR	R ALL REG	ISTERS				
Register MSB/		Bit Assignment								
Pointer P1 P0	LSB	7	6	5	4	3	2	1	0	
Ambient Temperature Register (T _A)										
0 0	MSB	Sign	2 ⁶ °C	2 ⁵ °C	2 ⁴ °C	2 ³ °C	2 ² °C	2 ¹ °C	20°C	
	LSB	2 ⁻¹ °C	2 ⁻² °C	2 ⁻³ °C	2 ⁻⁴ °C	0	0	0	0	
Sensor Co	onfigurat	tion Register	(CONFIG)	•						
0 1	LSB	One-Shot	Reso	olution	Fault (Queue	ALERT Polarity	COMP/INT	Shutdown	
Temperati	ire Hyst	eresis Registe	er (T _{HYST})					•		
1 0	MSB	Sign	2 ⁶ °C	2 ⁵ °C	2 ⁴ °C	2 ³ °C	2 ² °C	2 ¹ °C	20°C	
	LSB	2 ⁻¹ °C	0	0	0	0	0	0	0	
Temperate	ıre Limit	-Set Register	(T _{SET})	•						
1 1	MSB	Sign	2 ⁶ °C	2 ⁵ °C	2 ⁴ °C	2 ³ °C	2 ² °C	2 ¹ °C	20°C	
	LSB	2 ⁻¹ °C	0	0	0	0	0	0	0	

Bit functionality for Register: Each register will have definition definitions of what each bit of the word it holds. Some registers might need two words to store all the data, in which case two registers are used and the pointer, points to the beginning of first register. Some bits may be data values and other may be functions.

5.3.1 AMBIENT TEMPERATURE REGISTER (TA)

The MCP9800/1/2/3 has a 16-bit read-only Ambient Temperature register that contains 9-bit to 12-bit temperature data. (0.5°C to 0.0625°C resolutions, respectively). This data is formatted in two's complement. The bit assignments, as well as the corresponding resolution, is shown in the register

The refresh rate of this register depends on the selected ADC resolution. It takes 30 ms (typical) for 9-bit data and 240 ms (typical) for 12-bit data. Since this register is double-buffered, the user can read the register while the MCP9800/1/2/3 performs Analog-to-Digital conversion in the background. The decimal code to ambient temperature conversion is shown in Equation 5-2:

EQUATION 5-2:

 $T_A = \text{Code} \times 2^{-4}$

Where:

T_A = Ambient Temperature (°C) Code = MCP9800 output in decimal

REGISTER 5-2: AMBIENT TEMPERATURE REGISTER (TA) - ADDRESS <0000 0000>b

				, A			
Upper Half:							
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
Sign	2 ⁶ °C	2 ⁵ °C	2 ⁴ °C	2 ³ °C	2 ² °C	2 ¹ °C	2 ⁰ °C
bit 15							bit 8

Lower Half:							
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
2 ⁻¹ °C/bit	2 ⁻² °C	2 ⁻³ °C	2 ⁻⁴ °C	0	0	0	0
bit 7							bit 0

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note 1: When the 0.5°C, 0.25°C or 0.125°C resolutions are selected, bit 6, bit 7 or bit 8 will remain clear <0>, respectively.

Here we want to read the data of the temperature readings. So we first would send the address with a write intention then write the pointer to the register.

setSlaveAddress(slaveAddress)

write8(register_readTemp);

int tempData_16bit = read16();

int left = (tempData & 0xFF00)>>8;

int right = (tempData & 0xFF);

float temp =((float)(left)) + ((float)(right))/255.0;

FIGURE 5-3: Timing Diagram for Reading +25.25°C Temperature from the TA Register (See Section 5.3.1 "Ambient Temperature Register (TA)").

```
    #include <iostream>

2. #include <wiringPi.h>
#include <wiringSerial.h>
4. #include <wiringPiSPI.h>
5. #include <wiringPiI2C.h>
6.
7. #include <sys/stat.h>
8. #include <linux/i2c-dev.h>
9. #include <linux/i2c.h>
10. #include <sys/ioctl.h>
11.
12. #include <stdio.h>
13. #include <stdlib.h>
14. #include <stdint.h>
15. #include <unistd.h>
16. #include <string.h>
17.
18.
19. int setSlaveAddress(int fd_i2c, int slaveAddress)
20. {
21.
        Sets the I2C to communicate with this device
22.
23.
24.
      if (ioctl(this->fd_i2c, I2C_SLAVE, slaveAddress) < 0)</pre>
25.
            printf("problem setting slave\n");
26.
27.
            return -1;
28.
29.
        return 0;
30.}
31.
32.
33. int main()
34. {
35.
            Code to show how to use WiringPi I2C
36.
37.
        */
38.
     int slaveAddress = 0x48;
39.
        int register_readTemp = 0x00;
40.
        int i2c1_fd = wiringPiI2CSetup(slaveAddress);
41.
        setSlaveAddress(i2c1_fd, slaveAddress);
        int temp_word = wiringPiI2CRead16(i2c1_fd, register_readTemp, slaveAddr
42.
43.
        int left = (tempData & 0xFF00) >> 8;
44.
        int right = (tempData & 0xFF);
45.
        float temperature = ((float)(left)) + ((float)(right)) / 255.0;
46.
        return 0;
47. }
```

Figure 7 – Example main file for communicating with a temperature sensor

SPI data latching

- SPI data is latched on the rising or falling edge of SCLK
- The edge data is latched on is called the critical edge
- The figure below illustrates latching logic 1 on rising edge and logic 0 on falling edge

Figure 70: SPI SCLK critical edge

SPI read sequence example

- Critical edge is rising edge
- 2. Master output writing to slave (SDI label relative to slave device)
- 3. The active low $\overline{\text{CS}}$ pin is driven low to 0V, activating the slave SPI bus
- 4. Data is clocked in from MSB to LSB on the rising edge of SCLK
- Completed SPI transaction data is binary 1011001

Figure 71: Example SPI write sequence

Figure 8 – SPI data latching and Read/ Write Sequence

SPI critical edge

t_{SU} (setup time) = defines how long before the critical edge that the data on SDI must already be set and settled

t_{HO} (hold time) = defines how long after the critical edge data must be maintained on SDI.

t_{DO} (delay time) - defines the delay before data is valid after the critical edge for SDO.

Violation of any timing requirement could result in corruption of data.

The timing parameters, t_{SU} , t_{HO} and t_{DO} , are defined relative to the critical edge. In the example below for SDI the rising edge of SCLK is the critical edge and for SDO the falling edge of SCLK is the critical edge.

Figure 72: Setup and hold timing illustration

Figure 9 – SPI critical edges

SPI modes

CPHA (clock phase) = defines which edge data is latched on, a 0 representing the first edge and a 1 representing the second edge

CPOL (clock polarity) = defines whether the clock idles high or low in between SPI frames. CPOL = 0 idles low, CPOL = 1 idles high.

Figure 73: SPI modes of operation

Mode	CPOL	СРНА	Critical edge	Clock phase
0	0	0	Rising edge	Idles low
1	0	1	Falling edge	Idles low
2	1	0	Rising edge	ldles high
3	1	1	Falling edge	ldles high

Figure 10 – SPI Modes

I²C communication

START = initiated by the master pulling SDA low while SCL is high

STOP = initiated by the master releasing the SDA pin high while SCL is high

ACK (acknowledge) = each transfer in I²C is a single byte or 8-bits, with one SCL pulse per bit. The 9th pulse in each exchange is reserved for an acknowledgement signal from the slave, or an ACK signal. The ACK signal indicates that the previous transfer was successful.

Example I2C write sequence:

- 1. The master pulls down SDA to generate a START condition
- 2. The first bit is set up and the master pulls down and releases SCL to clock data into the DAC
- 3. On the 9th bit the master does not pull down SDA. If the slave pulls down SDA the 8-bit transaction is acknowledged.
- 4. The completed transaction in binary is 11001101

Figure 76: Complete I²C transaction

For valid data transfer:

- SDA must remain stable the entire time that SCL is high for a bit transfer to be valid
- SDA is only allowed to transition in between SCL pulses when SCL is low
- Instances where SDA changes while SCL is high are interpreted as START, RESTART, or STOP conditions

Figure 77: I²C data transfer

Figure 11 – I2C communication

I²C addressing

- Typical addressing in I²C is 7-bit addressing with an additional bit for read or write indication
- Each device on the I²C bus must have a unique address
- Duplicate addresses will result in communication errors
- Some devices may have pin programmable I²C addresses

Figure 75: : I²C addressing

Figure 12 – I2C addressing

I²C pull-up resistor selection

$$R_{\text{Pull}(\text{Min})} = \frac{\left(V_{\text{DD}} - V_{\text{OLMAX}}\right)}{I_{\text{SinkMax}}} \tag{179} \text{ Minimum I}^2\text{C pull-up resistance}$$

$$R_{\text{Pull}(\text{Max})} = \frac{t_r}{\left(0.8473 \times C_b\right)} \tag{180} \text{ Maximun I}^2\text{C pull-up resistance}$$

Where

 $R_{Pull(Min)}$ = this is the minimum pull-up resistance. This will give the shortest rise time. Using a pull-up smaller than this will draw too much current when the output transistor is on (logic low) and violate the maximum logic low output specification.

R_{Pull(Max)} = maximum pull-up resistance. This will give the longest rise time. Using a pull-up resistance larger than this will violate timing requirements.

 V_{DD} = supply voltage

V_{OI MAX} = maximum logic low output found in device data sheet. Typically 0.4V.

I_{SinkMax} = maximum sink current when the output transistor is on (logic low) found in device data sheet. Typically 3mA.

C_b = bus capacitance. Depends on width and length of PCB trace (see equation 155), and the capacitance of the devices connected to the bus.

Example

Find a pull-up resistor for: $V_{DD} = 5V$, $V_{OLMAX} = 0.4V$, $t_r = 300$ ns, and $C_b = 100$ pF.

Answer

$$\begin{split} R_{Pull(Min)} = & \frac{\left(V_{DD} - V_{OLMAX}\right)}{I_{SinkMax}} = \frac{\left(5V - 0.4V\right)}{0.003A} = 1.53k\Omega \\ R_{Pull(Max)} = & \frac{t_r}{\left(0.8473 \times C_b\right)} = \frac{300ns}{0.8473 \times 100pF} = 3.54k\Omega \\ R_{Pull} = & 2k\Omega \qquad \text{Selected as a standard value between } R_{Pull(Min)} \text{ and } R_{Pull(Max)} \end{split}$$

Figure 13 – Selecting Pull up resisters for I2C

I²C interface circuitry and rise/fall timing

The figure below illustrates the internal structure for an I²C SCL or SDA pin. The transistor will turn on for logic low discharging Cb to logic low. The transistor will turn off for a logic high and the pull-up, R_{pull}, will charge C_b to a logic high.

Figure 78: I²C data transfer

t_r (rise time) = the maximum amount of time for the signal to transition from logic low to logic high. Since I²C data is an open drain signal, rise time is set by the RC time constant of the pull-up resistance and the bus capacitance.

t_f (fall time) = the maximum amount of time for the signal to transition from logic high to logic low

Figure 79: I²C rise and fall timing

Figure 14 – I2C Time Constants and Parasitic Bus Capacitance

Figure 6-6: Internal pull-down resistor value determination, using a 100 k Ω resistor connected (a) from the GPIO pin to GND, and (b) from the GPIO pin to the 3.3 V supply

Figure 15 – Raspberry Pi 2/3 GPIO and pull-up/pull-down pinouts

Figure 17 – Raspberry Pi 2/3 GPIO memory addressing information

Name	Function	See section
SDA0	BSC ⁶ master 0 data line	BSC
SCL0	BSC master 0 clock line	BSC
SDA1	BSC master 1 data line	BSC
SCL1	BSC master 1 clock line	BSC
GPCLK0	General purpose Clock 0	<tbd></tbd>
GPCLK1	General purpose Clock 1	<tbd></tbd>
GPCLK2	General purpose Clock 2	<tbd></tbd>
SPI0_CE1_N	SPI0 Chip select 1	SPI
SPI0 CE0 N	SPI0 Chip select 0	SPI
SPI0 MISO	SPI0 MISO	SPI
SPI0 MOSI	SPI0 MOSI	SPI
SPI0 SCLK	SPI0 Serial clock	SPI
PWMx	Pulse Width Modulator 01	Pulse Width Modulator
TXD0	UART 0 Transmit Data	UART
RXD0	UART 0 Receive Data	UART
CTS0	UART 0 Clear To Send	UART
RTS0	UART 0 Request To Send	UART
PCM_CLK	PCM clock	PCM Audio
PCM_FS	PCM Frame Sync	PCM Audio
PCM DIN	PCM Data in	PCM Audio
PCM DOUT	PCM data out	PCM Audio
SAx	Secondary mem Address bus	Secondary Memory Interface
SOE N/SE	Secondary mem. Controls	Secondary Memory Interface
SWE_N/SRW_N	Secondary mem. Controls	Secondary Memory Interface
SDx	Secondary mem. data bus	Secondary Memory Interface
BSCSL SDA / MOSI	BSC slave Data, SPI salve MOSI	BSC ISP slave
BSCSL SCL / SCLK	BSC slave Clock, SPI slave clock	BSC ISP slave
BSCSL - / MISO	BSC <not used="">,SPI MISO</not>	BSC ISP slave
		BOO IOI SIAVE
BSCSL - / CE_N	BSC <not used="">, SPI CSn</not>	BSC ISP slave
BSCSL - / CE_N Name	BSC <not used="">, SPI CSn Function</not>	BSC ISP slave
Name	Function	BSC ISP slave See section
Name SPI1_CEx_N	Function SPI1 Chip select 0-2	BSC ISP slave See section Auxiliary I/O
Name	Function	BSC ISP slave See section
Name SPI1_CEx_N SPI1_MISO	Function SPI1 Chip select 0-2 SPI1 MISO	BSC ISP slave See section Auxiliary I/O Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI	BSC ISP slave See section Auxiliary I/O Auxiliary I/O Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock	BSC ISP slave See section Auxiliary I/O Auxiliary I/O Auxiliary I/O Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data	BSC ISP slave See section Auxiliary I/O Auxiliary I/O Auxiliary I/O Auxiliary I/O Auxiliary I/O Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N SPI2_MISO	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2 SPI2 MISO	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N SPI2_MISO SPI2_MOSI	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2 SPI2 MISO SPI2 MOSI	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N SPI2_MISO SPI2_MOSI SPI2_SCLK	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2 SPI2 MISO SPI2 MOSI SPI2 Serial clock	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N SPI2_MISO SPI2_MOSI SPI2_SCLK ARM_TRST	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2 SPI2 MISO SPI2 MOSI SPI2 Serial clock ARM JTAG reset	See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N SPI2_MISO SPI2_MOSI SPI2_MOSI SPI2_SCLK ARM_TRST ARM_RTCK	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2 SPI2 MISO SPI2 MOSI SPI2 Serial clock ARM JTAG reset ARM JTAG return clock	BSC ISP slave See section Auxiliary I/O
Name SPI1_CEx_N SPI1_MISO SPI1_MOSI SPI1_SCLK TXD0 RXD0 CTS0 RTS0 SPI2_CEx_N SPI2_MISO SPI2_MOSI SPI2_SCLK ARM_TRST ARM_TTCK ARM_TDO	Function SPI1 Chip select 0-2 SPI1 MISO SPI1 MOSI SPI1 Serial clock UART 1 Transmit Data UART 1 Receive Data UART 1 Clear To Send UART 1 Request To Send SPI2 Chip select 0-2 SPI2 MISO SPI2 MOSI SPI2 Serial clock ARM JTAG reset ARM JTAG return clock ARM JTAG Data out	BSC ISP slave See section Auxiliary I/O Auxiliary I/O

 $Figure\ 18-BCM2835\ peripherals\ function\ descriptions$