

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 97/11194
C12Q 1/68, C07H 21/04	A1	(43) International Publication Date:	27 March 1997 (27.03.97)
(21) International Application Number: PCT/FI (22) International Filing Date: 20 September 1996 (patent (AT, BE, CH, DE, DK, E	IP, NO, NZ, US, European SS, FI, FR, GB, GR, IE, IT,
(30) Priority Data: 08/531,070 20 September 1995 (20.09.9	95) T	Published With international search report	
(71) Applicant (for all designated States except US): H UNIVERSITY LICENSING LTD. OY [FI/FI]; V 8 A, FIN-00710 Helsinki (FI).	ELSIN iikinka	KI ari	
(72) Inventors; and (75) Inventors/Applicants (for US only): DE LA CH. Albert [FI/FI]; Vuorimiehenkatu 11, FIN-00140 (FI). AITTOMÄKI, Kristiina [FI/FI]; Kuutamol 43, FIN-02210 Espoo (FI). HUHTANIEMI, Ilpe Kotimäenkatu 12, FIN-20540 Turku (FI).	Helsir katu 4	iki B	
(74) Agent: OY JALO ANT-WUORINEN AB; Iso Roof 4-6 A, FIN-00120 Helsinki (FI).	bertinka	atu	
		,	

(54) Title: METHOD FOR DIAGNOSIS OF OVARIAN DYSGENESIS

(57) Abstract

A method is provided for determining a follicle stimulating hormone receptor genotype in a human patient, which method is particularly useful for diagnosing ovarian dysgenesis in affected human females. The method comprises analysis of DNA from a patient which encodes all or a portion of the receptor for follicle-stimulating hormone.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	ſΤ	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	
BR	Brazil	KE	Kenya	RO	Portugal
BY	Belarus	KG	Kyrgystan	RU	Romania
CA	Canada	KP	Democratic People's Republic		Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE SG	Sweden
СН	Switzerland	KZ	Kazakhstan		Singapore
CI	Côte d'Ivoire	ŭ	Liechtenstein	St	Slovenia
CM	Cameroon	LK	Sri Lanka	SK	Slovakia
CN	China	LR	— ·- ·-	SN	Senegal
CS	Czechoslovalcia	LT	Liberia	SZ	Swaziland
CZ	Czech Republic	LU	Lithuania	TD	Chad
DE	Germany		Luxembourg	TG	Togo
DK	Denmark	LV	Latvia	TJ	Tajikistan
EE	Estonia	MC	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	UA	Ukraine
es Fi	Spam Finland	MG	Madagascar	UG	Uganda
FR	France	ML	Mali	US	United States of America
GA		MN	Mongolia	UZ	Uzbekistan
UA	Gabon	MR	Mauritania	VN	Viet Nam

15

20

25

30

METHOD FOR DIAGNOSIS OF OVARIAN DYSGENESIS

FIELD OF THE INVENTION

The present invention relates to methods for the detection of hereditary ovarian dysgenesis.

BACKGROUND OF THE INVENTION

Normal gonadal function depends upon the integrity of the pituitarygonadal axis. In females, regulatory control of the ovary is primarily accomplished by the pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). At birth, development of the ovarian follicles is normally arrested until pituitary gonadotropin stimulation at puberty causes follicular maturation. Either the failure of the pituitary to secrete sufficient amounts of FSH and/or LH or the failure of the ovary to respond to gonadotropin stimulation results in hypogonadism. In females, such a condition may be characterized by the development of anatomically normal internal and external genitalia, variably developed secondary sexual characteristics, and amenorrhea. Failure of the ovaries to respond appropriately to FSH and/or LH stimulation results in poorly-developed (streak) ovaries and increased circulating levels of the hormone(s) to which the ovary is not responding. Such a condition is referred to as ovarian dysgenesis. That disease is one of a group of diseases characterized by hypogonadism which are often referred to generally as hypergonadotropic hypogonadisms. Many such diseases are due to mutations in the sex chromosomes. However, ovarian dysgenesis in females with an XX karyotype is rare and may be due to an autosomal recessive mutation. Simpson, et al., Birth Defects: Original Article Series, 7:215-228 (1971); Aittomäki, Am. J. Genet., 54:844-851 (1994).

Also of interest to the present invention are the receptors for FSH and LH. Each of those receptors is a member of a family of receptors which are coupled to GTP-binding proteins (G-proteins) in order to effect intracellular signalling. Other members of this family include certain adrenergic receptors, muscarinic cholinergic receptors, vasopressin receptors, and angiotensin receptors. Most receptors in this family comprise three distinct domains, an extracellular domain, a

WO 97/11194 PCT/F196/00501

- 2 -

transmembrane domain typically having seven membrane-spanning regions with six intervening loops, and an intracellular carboxy-terminal domain. The transmembrane domain is highly conserved in G-protein coupled receptors. However, LH and FSH are distinguished from other members of the family by their relatively large extracellular ligand binding domain.

While ovarian dysgenesis has been studied at the hormonal level, no causative mutation has been proposed and no screening method for diagnosis of ovarian dysgenesis has been available. Accordingly, there is a need in the art for an accurate, reliable method for diagnosing ovarian dysgenesis as provided by the present invention.

SUMMARY OF THE INVENTION

The invention provides a method for diagnosing ovarian dysgenesis genotypes and conditions based on polynucleotide sequence differences between wild type alleles of the follicle-stimulating hormone receptor (fshr) gene and alleles of the gene that are associated with hypergonadotropic hypogonadisms such as ovarian dysgenesis. The method of the invention can identify individuals (male or female) that are genetic carriers as well as identify patients that exhibit (or, upon maturation, will exhibit) a particular hypergonadotropic hypogonadism. Any methodologies for analyzing polynucleotides are contemplated for analyzing polynucleotides according to the method of the invention, including sequencing techniques, techniques exploiting restriction mapping of nucleic acids to reveal restriction pattern differences, and nucleic acid hybridization strategies designed to detect polynucleotide sequence differences as small as a single nucleotide difference. Of course, any of these techniques may be combined with additional techniques to facilitate the practice of the methods of the invention, such as amplification of the nucleic acids in a biological sample by, e.g., the polymerase chain reaction (PCR) technique.

In a preferred embodiment, a method for diagnosing ovarian dysgenesis in a patient (e.g., a female patient) comprises the steps of obtaining a cell sample from a patient, isolating nucleic acids from the cell sample; amplifying a portion of the nucleic acids encoding a receptor for follicle-stimulating hormone,

5

10

15

20

thereby generating amplified DNA; exposing the amplified DNA to a restriction endonuclease selected from the group consisting of *BsmI* and restriction endonucleases having a recognition site which overlaps that of *BsmI*, under conditions wherein the restriction endonuclease specifically cleaves DNA at its recognition site; detecting polynucleotide restriction fragments of the amplified DNA; and diagnosing ovarian dysgenesis from the restriction fragments, wherein ovarian dysgenesis is correlated with a C to T mutation in codon 189 of the DNA encoding a receptor for follicle-stimulating hormone, the mutation eliminating a recognition site of the restriction endonuclease. The enzyme *BsmI* recognizes the sequence 5'-NG'CATTC-3' and cleaves between the indicated G and C. Restriction endonucleases that recognize sequences which overlap the recognition site of *BsmI*, such as *SacIII* or *SstIII*, may also be used. *SacIII* and *SstIII* recognize sequences internal to a *BsmI* site.

The portion of nucleic acids subjected to amplification need not include the entire coding sequence for a follicle-stimulating hormone receptor. For example, the portion of nucleic acids amplified in the method of the invention may include only exon 7, or only a portion of exon 7. Depending upon the particular portion of nucleic acid amplified in the method of the invention, and the particular restriction enzyme used, the number and/or size of restriction fragments may vary. For example, using nucleic acids comprising exon 7 of a follicle-stimulating hormone receptor (fshr) allele and BsmI, a diagnosis of ovarian dysgenesis is made if the amplified nucleic acid remained uncut when exposed to the restriction endonuclease (i.e., a single fragment comprising the uncut amplified nucleic acid is observed).

In another preferred embodiment, the invention provides a method for diagnosing ovarian dysgenesis in a female patient suspected of having ovarian dysgenesis, comprising the steps of obtaining a cell sample from the female patient; isolating nucleic acid from the cell sample; amplifying a portion of the isolated nucleic acid comprising exon 7 of a follicle-stimulating hormone receptor gene, thereby generating amplified DNA; sequencing the amplified DNA; comparing the sequence of the amplified DNA to SEQ ID NO:1; and diagnosing ovarian dysgenesis by the presence of one or more sequence differences between the sequence

5

10

15

20

25

WO 97/11194 PCT/FI96/00501

- 4 -

of the amplified DNA and SEQ ID NO:1. The sequence differences, for example, may involve a single nucleotide difference at position 640 of SEQ ID NO:1 (e.g., a thymidylate in the amplified DNA corresponding to the cytidylate at position 640 of SEQ ID NO:1).

Another aspect of the invention is directed to a method for determining a follicle-stimulating hormone receptor (fshr) genotype in a human patient, which comprises the steps of providing a biological sample comprising nucleic acid from the patient, the nucleic acid including the patient's fshr alleles; analyzing the nucleic acid for the presence of a mutation or mutations in codon 189 of the fshr alleles; and determining an fshr genotype from the analyzing step, wherein the presence of a mutation in codon 189 of a fshr allele is correlated with an ovarian dysgenesis genotype. The method is useful for screening both male and female patients for determining an fshr genotype, for predicting/diagnosing disease states (e.g., ovarian dysgenesis in a female patient), and for genetic counseling purposes (e.g, for couples intending to have children). The biological sample may be any sample from the patient containing nucleic acid suitable for analysis (e.g., tissue and fluid samples); a cell sample is a preferred biological sample. Further, the analyzing step of the invention embraces a variety of analytical techniques including sequencing all, or a portion, of a nucleic acid (which may be DNA or RNA) comprising codon 189 of a fshr allele. By way of further illustration, the analyzing step of the invention includes restriction endonuclease analyses, wherein a nucleic acid is exposed to a restriction endonuclease having a recognition site that includes codon 189 of a wild type fshr allele, under conditions wherein the restriction endonuclease specifically cleaves DNA at its recognition site; and detecting the nucleic acid or polynucleotide restriction fragments thereof resulting from the exposing step. Restriction endonucleases for use in this embodiment of the invention include BsmI, restriction endonucleases recognizing sites that overlap a BsmI site, restriction endonucleases recognizing the same cleavage sites as BsmI, and isoschizomers of BsmI.

In another aspect of the invention, a method for screening for an ovarian dysgenesis genotype in a patient comprises the steps of providing a biolo-

5

10

15

20

25

gical sample comprising nucleic acid from the patient, the nucleic acid including the patient's follicle-stimulating hormone receptor (fshr) alleles; amplifying a portion of the nucleic acid to generate amplified DNA, the portion including codon 189 of the fshr alleles; exposing the amplified DNA to a restriction endonuclease selected from the group consisting of BsmI restriction endonuclease and restriction endonucleases having a recognition site which overlaps a BsmI recognition site, under conditions wherein the restriction endonuclease specifically cleaves DNA at the recognition site of the restriction endonuclease; thereafter detecting said amplified DNA or restriction fragments thereof; comparing the amplified DNA or fragments thereof to control nucleic acid of a human subject free of an ovarian dysgenesis genotype, wherein said control nucleic acid has been amplified, exposed, and detected as described above; and screening for an ovarian dysgenesis from the comparison, wherein an ovarian dysgenesis genotype in the patient is correlated with a different number of detected amplified DNA or restriction fragments thereof from the patient's amplified DNA than from the control amplified DNA. In screening for ovarian dysgenesis genotypes, for example, a homozygous ovarian dysgenesis genotype may be correlated with fewer detected restriction fragments from the patient's amplified DNA than from the control amplified DNA. Consistently, the screening may correlate a heterozygous ovarian dysgenesis genotype with a greater number of detected amplified DNA or restriction fragments thereof from the patient's amplified DNA than from the control DNA.

Yet another aspect of the invention is a method comprising the steps of obtaining a cell sample from a female patient; isolating DNA from the cell sample; amplifying a portion of the DNA encoding exon 7 of the follicle-stimulating hormone receptor; exposing the amplified DNA to *BsmI* or another restriction endonuclease which recognizes the *BsmI* site; and diagnosing ovarian dysgenesis as the presence of a single fragment upon digestion.

Additional aspects of the invention will become apparent upon consideration of the following detailed description thereof.

25

5

10

15

15

DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of the human FSH receptor showing the multi-exon structure of the gene encoding the protein; the extracellular (Ec), transmembrane (Tm), and intracellular (Ic) domains of the receptor; and the Ala to Val and Asn to Ser transitions (boxed) described herein.

Figure 2 shows a pedigree of families used in studies of ovarian dysgenesis inheritance patterns.

Figure 3 is a map of microsatellite markers on human chromosome 2.

Figure 4 depicts the nucleotide sequence, and deduced amino acid sequence, of the FSH receptor (SEQ ID NO:1) gene, showing BsmI sites in bold.

Figure 5 is a graph showing results of FSH-induced cAMP production by MSC01 cells transfected with wild-type or mutant FSH receptor-encoding DNA.

Figure 6 is a graph showing Scatchard analysis of FSH binding to MSC-1 cells transfected with wild-type (circles) or mutated (triangles) FSH receptor-encoding DNA.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods for the diagnosis of diseases characterized by hypergonadotropic hypogonadisms such as ovarian dysfunction. In particular, methods of the invention are useful in the diagnosis of ovarian dysgenesis in females. Diagnostic methods according to the invention may be used at any time in the life of the patient, even prior to the onset of symptoms, such as the failure of normal onset of menstruation at puberty. Methods of the invention are primarily based upon the discovery that a mutation in the coding sequence of the gene for the follicle-stimulating hormone receptor accounts for the inability of FSH to generate signal transduction at its receptor.

In the normal genotype for the follicle-stimulating hormone receptor,
four BsmI restriction sites (5'-NGCATTC-3') exist, as shown in Figure 4 (SEQ ID NO:1). In individuals having ovarian dysgenesis, the FSH receptor gene has been observed to have a mutation at position 640 (SEQ ID NO:1), such that a thymine

10

15

is substituted for a cytosine, resulting in the sequence, 5'-NGTATTC-3'. This substitution eliminates the BsmI site spanning nucleotides 638-644 in the normal (wild type) fshr gene. Thus, digestion of DNA encoding a wild-type FSH receptor with BsmI normally produces five fragments (due to cleavage at all four BsmI sites in a linear DNA). However, the thymine-to-cytosine mutation at position 640 results in a mutated DNA that produces only four restriction fragments upon BsmI digestion. As shown below, mutation at position 640 is uniquely associated with ovarian dysgenesis; whereas no mutation at any of the other three BsmI sites in the FSH receptor DNA has been found in patients suffering from that disease. Accordingly, BsmI digestion and subsequent observation of the products produced is useful as a diagnostic method or a screening method for ovarian dysgenesis. As detailed below, position 640 in SEO ID NO:1 falls within exon 7 of the fshr gene. In one embodiment of the invention, the region of exon 7, or a portion thereof, of the FSH receptor coding sequence may also be isolated and exposed to BsmI. Exon 7 contains a unique BsmI site which, if mutated, will produce no BsmI digestion products, thereby enabling diagnosis of ovarian dysgenesis.

The gene encoding the FSH receptor has been mapped to human chromosome 2p16-21. Rousseau-Merck, et al., Genomics, 15:222-224 (1993). The FSH receptor coding sequence is shown in SEQ ID NO:1 and in Figure 4 and is available in the Genbank database as Accession No. S59900. Figure 1 shows a schematic of the FSH receptor showing the regions encoded by the 10 exons.

The following examples illustrate preferred means for detecting FSH receptor genotypes generally and for diagnosis of ovarian dysgenesis in human females.

25

30

20

EXAMPLE 1

Venous blood samples were obtained from 37 individuals, each belonging to one of 6 families having at least two females with symptoms of ovarian dysgenesis. Total DNA was isolated from fresh white blood cells or lymphoblastoid cell lines established from the samples. The method of Chomczynski, et al., Anal. Biochem., 162:156-159 (1987), incorporated by reference herein, was

used to isolate RNA from the samples. A pedigree showing inheritance patterns in individuals used to isolate the ovarian dysgenesis locus is shown in Figure 2.

Linkage was investigated using Généthon microsatellite markers as reported in Weissenbach, et al., Nature, 359:794-801 (1992), incorporated by reference herein. A linkage map for chromosome 2 is provided in Figure 3. Forty-seven markers were chosen at approximately 20 centimorgan (cM) intervals. Pairwise linkage analyses were carried out using the MLINK subprogram of the LINKAGE program package reported in Lathrop, et al., Proc. Nat'l. Acad. Sci. (USA), 81:3443-3446 (1984), incorporated herein by reference. The disease allele frequency was set to 0.01 and lod scores were computed under a model of equilibrium between the disease locus and each marker locus, assuming a recessive mode of inheritance with full penetrance in females. A lod score is defined as the log₁₀ of the ratio of the probability that the data obtained would have arisen from unlinked loci and represents a criterion for assigning a given restriction fragment length polymorphism to a particular linkage group. Linkage was confirmed using the G2113A transition located in exon 10 of the FSH receptor gene as a polymorphic marker (see below). Amplification was accomplished using PCR according to the method of Sankila, et al., Hum. Mol. Genet., 4:93-98 (1995), incorporated by reference herein.

Preliminary evidence of linkage of the ovarian dysgenesis phenotype was noted for markers D2S134 and D2S177 on chromosome 2. Linkage was confirmed using markers D2S119 and D2S123, each of which is located between D2S134 and D2S177. Markers D2S119 and D2S123 define an approximately 12 cM region of chromosome 2. That region was further studied using markers D2S391, D2S288, CA21 and CA7, each of which is located in the 12 cM region defined above, and linkage of the ovarian dysgenesis locus to this region of chromosome 2 was confirmed.

Pairwise linkage analyses produced 46 potentially informative meioses, of which 30 were from affected females. The lod scores obtained from those meioses revealed no recombinations between the markers and the ovarian dysgenesis locus as evidenced by phenotype. The highest lod score, $Z_{max} = 4.71$, was obtained for marker D2S391, while two other marker loci, D2S288 and CA21,

5

10

15

20

25

10

15

20

25

30

provided lod scores exceeding the limit of proven linkage (Z≥3.0). The region in which linkage of the ovarian dysgenesis phenotype exists was, therefore, isolated to the 2p region of chromosome 2 based upon the above linkage analysis. That region of chromosome 2 is the region which contains the genes encoding the receptors for follicle-stimulating hormone and luteinizing hormone. Thus, it was hypothesized that a nonlethal mutation in one of these two genes was responsible for ovarian dysgenesis. On the basis that an LH receptor mutation would also cause severe hypogonadism in males and no males were affected in the pedigrees producing affected females, the LH receptor gene was considered unlikely as a site of mutation causing ovarian dysgenesis. Accordingly, the gene encoding the FSH receptor was investigated as a source of the ovarian dysgenesis phenotype.

EXAMPLE 2

As shown in Figure 1, the FSH receptor gene comprises 10 exons. As recited above, the polynucleotide sequence of the entire fshr coding region can be obtained from Genbank under Accession Number S59900. The polynucleotide sequence of each one of the ten exons of fshr has also been deposited under individual accession numbers in the Genbank database. A comparison of the sequences of the individual exons to the coding region of the entire coding region presented in SEQ ID NO:1 reveals that a few terminal nucleotides from each exon are lost in the process of forming a mature mRNA during expression. The correlation between the sequences of the individual exons and the sequence presented in SEQ ID NO:1 follows. Nucleotides 1-158 of exon 1 (Acc. No. X91738) are found at positions 70-227 of SEQ ID NO:1; nucleotides 7-77 of exon 2 (Acc. No. X91739) span positions 228-298 of SEQ ID NO:1; nucleotides 6-80 of exon 3 (Acc. No. X91740) are found at positions 299-373 of SEQ ID NO:1; nucleotides 6-82 of exon 4 (Acc. No. X91741) span positions 374-450 of SEQ ID NO:1; nucleotides 8-77 of exon 5 (Acc. No. X91742) are found at positions 451-520 of SEO ID NO:1; nucleotides 6-83 of exon 6 (Acc. No. X91743) span positions 521-598 of SEQ ID NO:1; nucleotides 6-75 of exon 7 (Acc. No. X91744) are found at positions 599-668 of SEQ ID NO:1; nucleotides 7-80 of exon 8 (Acc. No. X91745) span positions 669-742 of SEQ ID NO:1; nucleotides 6-191 of exon 9 (Acc. No.

WO 97/11194 PCT/FI96/00501

- 10 -

X91746) are found at positions 743-928 of SEQ ID NO:1; and nucleotides 102-1352 of exon 10 (Acc. No. S73526) span positions 929-2179 of SEQ ID NO:1.

A systematic analysis was performed to determine the change or changes in that gene which are responsible for expression of the ovarian dysgenesis phenotype.

The large terminal exon of the FSH receptor was screened for mutations using denaturing gradient gel electrophoresis. Exon 10 was amplified with GC clamped primers in four different PCR reactions with overlapping products covering the entire transmembrane and intracellular domains. Pairs of GC clamped primers used in PCR were primer 10f: 5'-CGCCGCGCGCCCCGCGCCCC GGCCCGCCCCCCGGACTTATGCAATGAAGTGGTTG-3' (forward, SEQ ID NO:2), 10r: 5'-GTGAAAAAGCCAGCAGCATC-3' (reverse, SEQ ID GCCCGATTGACTGGCAAACTGGGG-3' (forward, SEQ ID NO:4), 11r: 5'-AGAGGAGGACACGATGTTGG-3' (reverse, SEQ ID NO:5); primer 12f: 5'-CGCCCGCCCCCGCCCCGCCCCGCCCGGGCTGCTA-TATCCACATCTACC-3' (forward, SEQ ID NO:6), 12r: 5'-CAGAACCAGCA-GAATCTTTGC-3' (reverse, SEQ ID NO:7); and primer 13f:5'-CATTTCTGCC-3' (forward, SEQ ID NO:8), 13r 5'-CAAAGGCAAGGACT-GAATTATC-3' (reverse, SEQ ID NO:9). Each pair of primers was optimized for each fragment with the MELT 87 program described in Lerman, et al., Methods in Enzymology (Wu, et al., eds. 1989), incorporated by reference herein. For each

For each cycle, denaturation was conducted for 1 minute at 94°C, annealing was conducted for 1 minute at 57°C, 58°C, 57°C, and 54°C for primer pairs 10, 11, 12, and 13, respectively, and extension was for 30 seconds at 72°C.

PCR run, samples were heated to 94°C for 4 minutes and put through 34 cycles.

A 7% polyacrylamide gel was designed for each fragment with a linear concentration gradient of formamide. Gels were run in an aquarium at a stable temperature of about 60°C for 16-20 hours in a denaturing gel electrophoresis system, model DGGE2000 (C.B.S. Scientific Co.). Denaturing gradient gel electrophoresis procedures are generally known in the art and are available, for

5

10

15

20

WO 97/11194 PCT/FI96/00501

- 11 -

example, in Ausubel, et al. (eds.) Current Protocols in Molecular Biology, 2.12, et seq. (1987), incorporated by reference herein.

A sequence polymorphism was detected in the terminal region of exon 10. A 326 bp fragment beginning at nucleotide 1892 of the FSH receptor coding sequence was amplified using primers 14f: 5'-AGCAAAGATTCTGCTGG-TTC-3' (forward, SEQ ID NO:10) and 14r: 5'-CAAAGGCAAGGACTGAAT-TATC-3' (reverse, SEQ ID NO:9). The amplified PCR product was sequenced using the dideoxy chain termination method as reported in *Molecular Cloning: A Laboratory Manual* (Sambrook, *et al.*, eds 1989), incorporated by reference herein. A G-to-A transition was observed in the sequenced product at nucleotide position 2113 (G2113A transition). Position 2113 of SEQ ID NO:1 is in the region encoding the intracellular domain of the FSH receptor and predicts a change from Ser to Asn at amino acid position 680 of the corresponding protein structure. The G2113A transition abolishes a *BsrI* site, thus enabling *BsrI* to be used as a screen for the two alleles. The polymorphism at that site was designated FSHR1.

The G2113A transition observed in exon 10 of the FSH receptor coding sequence had previously been identified as a difference between the ovarian and testicular forms of the gene encoding the FSH receptor. Kelton, et al., Mol. Cell. Endocrinol., 89:141-151 (1992). Denaturing gradient gel electrophoresis analysis of samples obtained from a family having females both with and without ovarian dysgenesis showed that the allelic form of the gene at the G2113A transition had no affect on phenotype. Thus, the allelic variance at position 2113 was not considered to be disease causing. No recombinations between that locus and the disease phenotype were observed, as shown in Table 1.

25

5

10

15

10

TABLE 1

Recombination fraction, Θ										
Marker locus	0.00	0.001	0.01	0.05	0.10	0.20	0.30	90% support interval		
D2S119	2.41	2.41	2.35	2.12	1.82	1.20	0.62	0-0.17		
D2S391	4.71	4.70	4.59	4.14	3.56	2.38	1.26	0-0.09		
D2S288	3.10	3.10	3.03	2.72	2.33	1.52	0.78	0-0.13		
CA21	4.20	4.19	4.11	3.74	3.24	2.19	1.16	0-0.10		
CA7	2.66	2.66	2.60	2.35	2.03	1.36	0.71	0-0.16		
D2S123	2.68	2.67	2.62	2.39	2.08	1.44	0.79	0-0.16		
FSHR1	2.72	2.71	2.66	2.44	2.14	1.49	0.82	0-0.16		

The FSHR1 locus was, however, used as a marker in the linkage analysis described above. Since the polymorphism in exon 10 was excluded as the source of the ovarian dysgenesis phenotype, the other exons of the FSH receptor were screened.

20

25

30

EXAMPLE 3

Exons 1-5 and 9 were screened by amplifying each with flanking intronic primers and sequencing the PCR product. None of those exons showed a mutation associated with the ovarian dysgenesis phenotype.

Complete sequences for the flanking introns of exons 6, 7, and 8 were not available. However, it was determined that FSH receptor-encoding mRNA could be isolated by using RNA from blood leukocytes as a template. Such a process takes advantage of so-called illegitimate transcription, whereby small amounts of mRNA encoding most tissue-specific proteins are produced by white blood cells. Due to the sensitivity of PCR and since PCR products can be directly sequenced, small amounts of RNA produced by white blood cells were used to amplify the FSH receptor coding region. RNA was isolated from white

10

15

20

25

30

blood cells and exons 6-9 were amplified by reverse transcription PCR in order to identify mutations by direct sequencing of the PCR products as follows.

Total RNA was isolated from white blood cells or from lymphoblasts. Approximately 0.8 μ g RNA was used as a template for first-strand cDNA synthesis and primed for reverse transcription by 40 pmol of primer 15r: 5'-TAGTTTTGGGCTAAATGACTTAGAGGG-3' (SEQ ID NO:11), which is complementary to nucleotides 2161-2135 of SEQ ID NO:1. Approximately 1mM each of dATP, dCTP, dTTP, dGTP and 200 U M-mLv reverse transcriptase were combined in M-mLv reverse transcriptase buffer (Promega, Madison, WI) to a final volume 20 μ L. Samples were incubated at 42°C for 1 hour. Samples were then heated to 95°C for 10 minutes and a 5 μ l aliquot of the resulting cDNA product was used as a template for PCR.

The cDNA was amplified in two rounds of PCR using a nesting strategy in order to increase yield and specificity. In the first round of PCR, primer 15r (see above) and primer 16f: 5'-CCTGCTCCTGGTCTCTTTGCTG-3' (SEQ ID NO:12) were used. The reaction was heated for 2 minutes at 94°C and put through 20 cycles each comprising 1 minute denaturing at 94°C, 1 minute annealing at 58°C and 2 minutes extension at 73°C to produce a 2082 bp product. The product contained exons 6-9 and 5µl was used as a template for amplification of exon 7 using primer 6f: 5'-AGAAATTCTTTCGTGGGGCT-3' (forward, SEQ ID NO:13) and 6r: 5'-GTTTGCAAAGGCACAGCAAT-3' (reverse, SEQ ID NO:14). The resulting PCR product was a 357 bp fragment corresponding to nucleotides 558-914 of SEQ ID NO:1.

The 357 bp product, which included exon 7, was sequenced. Upon inspection of the resulting sequence in a number of patients (both affected and unaffected), it was noticed that all affected individuals were homozygous for a C-to-T transition at nucleotide 640 (C640T transition) of the FSH receptor sequence shown in SEQ ID NO:1. That change predicts an Ala-to-Val substitution at amino acid position 189 in the corresponding protein primary structure. The C640T transition segregated perfectly with the disease phenotype and all affected individuals were determined to be homozygous recessive for the mutation from cysteine to thymine. The mutation at position 640 abolishes a *BsmI* restriction site, thus

- 14 -

enabling diagnosis of the disease by digestion of FSH receptor DNA with *BsmI*. Thus, it was determined that the C640T transition in exon 7 of the FSH receptor gene is predictive of ovarian dysgenesis in affected individuals.

5

10

15

20

25

EXAMPLE 4

Digestion of genomic DNA with BsmI was next used in order to confirm the use of that enzyme in the diagnosis of ovarian dysgenesis.

Genomic DNA isolated from 15 affected and 22 unaffected individuals was amplified by PCR by heating for 12 minutes at 94°C followed by 30 cycles at 94°C for 1 minute, 54°C for 1 minute, and 72°C for 2 minutes using primers 7f: 5′-GTTATTTCAGATGGCTGAATAAG-3′ (SEQ ID NO:15) and 7r: 5′-GCTCATCTAGTTGGGTTC-3′ (SEQ ID NO:16). These primers were selected to amplify a 78 base pair portion of genomic DNA encompassing a portion of the intron between exons 6 and 7 and most of exon 7 of the follicle stimulating hormone receptor gene. Exon 7 of the wild type *fshr* gene contains a unique *BsmI* site at nucleotides 638-644 of SEQ ID NO: 1 which is abolished by the C640T transition observed in individuals with the ovarian dysgenesis phenotype (the three additional *BsmI* sites in the FSH receptor coding sequence shown in Fig. 4 are not in exon 7 and are not included in the above-described PCR product). Fifteen microliters of the resulting 78 bp PCR product was digested to completion with 20 IU of *BsmI* (Promega). The product of digestion was fractionated on a 10% non-denaturing polyacrylamide gel and the DNA was visualized with ethidium bromide.

In unaffected individuals, the PCR product is cleaved into 51 bp and 27 bp fragments by *BsmI*. However, in affected individuals, only a 78 bp fragment appears in the gel. Heterozygous individuals, such as the parents shown in the Family 7 pedigree in Figure 2, show all three fragments. Thus, *BsmI* digestion is probative of ovarian dysgenesis by detecting the C640T transition. The pathogenic role of the C640T transition was further confirmed in FSH receptor signalling and binding studies.

10

15

20

25

30

EXAMPLE 5

Human FSH receptor-encoding DNA was obtained by reverse transcription PCR using testicular poly (A⁺) RNA as reported in Gromoll, et al., Biochem. Biophys. Res. Commun., 188:1077-1083 (1992), incorporated by reference herein. The resulting PCR product was subcloned into a pBluescript SR(-) vector (Stratagene Inc., La Jolla, CA). A 5' untranslated region which contained a stop codon was deleted and a Kozak translation initiation sequence was added. The resulting construct comprised 2088 bp of the FSH receptor coding region with a 5-base 5' extension and a 92-base 3' extension. The FSH receptor coding sequence with 5' and 3' extensions was excised by digestion with SmaI and KpnI and blunt-end ligated into a blunted EcoRI site in the pSG5 vector (Stratagene).

A plasmid comprising the mutated receptor (i.e. the C640T allele) was created by site-directed mutagenesis of the wild-type cDNA. Site-directed mutagenesis was accomplished using a Clontech Transformer site-directed mutagenesis kit (Clontech, Palo Alto, CA) according to the manufacturer's instructions. The selection primer, 5'-GAGTGCACCATGGGCGGTGTGAAAT-3' (SEQ ID NO:17), transformed an NdeI site into an NcoI site in the vector. The mutagenesis primer, 5'-GGGATTCAAGAAATACACAACTGTGTATTCAATGGAACCC-3' (SEQ ID NO:18), accomplishes the C-to-T transition at position 640. Plasmid sequences were verified by restriction digestion and sequencing.

An MSC-1 cell line was used for transfection. That cell line was derived from a transgenic mouse Sertoli cell tumor generated by expressing the SV40 virus T-antigen under the control of the anti-muellerian hormone promoter reported in Peschon, et al., Mol. Endocrinol., 6:1403-1411 (1992), incorporated by reference herein. Despite their Sertoli cell origin, MSC-1 cells do not express endogenous FSH receptor. MSC-1 cells in exponential growth phase were transiently transfected with either the wild-type or mutated FSH receptor-containing plasmids described above. Transfection was accomplished in DMEM/F12 (1:1) medium using lipofection (Gibco Life Technologies, Inc.) according to the manufacturer's instruction. A mock transfection with buffer was run as a control. Transfection efficiency was maintained by cotransfection with a luciferase-expressing pCmv-luci plasmid as reported in Gossen, et al., Proc. Nat'l. Acad. Sci.

10

15

20

(USA), 89:5547-5551 (1992). Transfected cells were cultured in 2 cm culture plates.

Seventy-two hours after transfection, cells were exposed to one of 2, 10, 50, 100, or 200 IU/L of recombinant human FSH (rhFSH, Org 32489, approximately 10,000 IU/mg, Organon International BV). A control (vehicle only) was also run. After 3 hours, cells and media were removed from the culture plates and divided into two equal aliquots. One of the aliquots was diluted 1:1 with 2 mM theophylline, heated for 5 minutes at 100°C, spun for 5 minutes at 1500 g; and used to measure cAMP activity as described in Harper, et al., J. Cycl. Nucleotide Res., 1:207-218 (1975), incorporated by reference herein.

Stimulation with rhFSH of MSC-1 cells transfected with wild-type FSH receptor DNA produced a 3-4 fold dose-dependent stimulation of cAMP. The ED₅₀ of stimulation was approximately 75 IU/L. In contrast, cells transfected with DNA comprising the C640T allele or mock-transfected with only pCmv-luci produced only negligible increases in cAMP activity, indicating that such cells are not stimulated by FSH. The results are shown in Figure 5, wherein squares denote transfections with the wild type allele, circles denote transfections with the mutant allele, and triangles represent mock transfections. Each data point in Figure 5 represents the mean of results in three identical experiments.

The foregoing results show that the ovarian dysgenesis allele (i.e. that with a substitution of T for C at position 640) results in the expression of a receptor which is unable to produce a signal upon stimulation by FSH.

EXAMPLE 6

25

30

MSC-1 cells which had been transfected with either mutant or wild-type FSH receptor plasmids were next used in FSH binding studies performed 48 hours after transfection. Cells were recovered and reconstituted to a concentration of $2x10^6$ cells/ml in buffer. The rhFSH described above was radiolabelled with ¹²⁵I iodine using the solid-phase lactoperoxidase method of Karonen, et al., Anal. Biochem., 67:1-10 (1975), incorporated by reference herein, to a specific activity of 30 Ci/g and 20% specific binding of radioactivity to an excess of FSH receptor as determined according to Catt, et al., Methods in Receptor Research (Belcher,

10

15

20

ed. 1976) 175-250, incorporated by reference herein. Triplicate aliquots of 100 μ l each of the cell suspension (containing approximately 200,000 cells each) were incubated in the presence of 3.13, 6.25, 12.5, 25, 50, or 100 ng of radiolabelled rhFSH in a total volume of 250 μ l. Non-specific binding was determined in the presence of 1.5 IU rhFSH. After overnight incubation at room temperature, radioactivity was measured in a gamma spectrometer.

Scatchard analysis revealed a 28-fold increase in binding of FSH to cells which had been transfected with wild-type FSH receptor-encoding DNA compared to cells transfected with DNA encoding the C640T allele. The equilibrium constant of FSH binding was K_a =6.7 x 10° L/mol for the wild-type receptor and 4.8 x 10° L/mol for the mutated receptor. Results are shown in Figure 6, wherein circles represent wild-type receptors and triangles represent mutant receptors. In each case specific binding was equalized to a constant amount of luciferase activity. As shown in Figure 6, specific binding was 18.2 pmol/L for the wild type and 0.63 pmol/L for the ovarian dysgenesis allele.

The foregoing results show that a mutation from C to T at position 640 of the FSH receptor coding sequence is responsible for ovarian dysgenesis in human females and that because that mutation abolishes a *BsmI* site, digestion with *BsmI* or another restriction endonuclease which recognizes the *BsmI* site is useful as a diagnostic tool for ovarian dysgenesis. It is apparent from the foregoing that other mutations may also produce the ovarian dysgenesis phenotype. Comparison of the nucleotide sequence of the FSH receptor gene in those cases with the wild-type sequence also provides a basis for diagnosis of the disease.

WO 97/11194 PCT/F196/00501

- 18 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Helsinki University Licensing Ltd Oy
 - (B) STREET: Viikinkaari 8 A

 - (C) CITY: Helsinki (E) COUNTRY: Finland
 - (F) POSTAL CODE: FIN-00710
 - (ii) TITLE OF INVENTION: Method For Diagnosis Of Ovarian Dysgenesis
 - (iii) NUMBER OF SEQUENCES: 18
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Oy Jalo Ant-Wuorinen Ab
 - (B) STREET: Iso Roobertinkatu 4-6 A
 - (C) CITY: Helsinki
 - (E) COUNTRY: Finland
 - (F) POSTAL CODE: FIN-00120
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/531,070
 - (B) FILING DATE: 20-SEP-1995
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Karvinen, Leena
 - (C) REFERENCE/DOCKET NUMBER: 29160
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 358 0 648606
 - (B) TELEFAX: 358 0 640 575
 - (C) TELEX: 123505 JALO SF
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2179 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 75..2159
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGTGGAGCTT CTGAGATCTG TGGAGGTTTT TCTCTGCAAA TGCAGGAAGA AATCAGGTGG

ATGGATGCAT AATT	ATG GCC CTG Met Ala Leu 1	CTC CTG GTC Leu Leu Val 5	TCT TTG CTG GCA Ser Leu Leu Ala 10	TTC CTG 110 Phe Leu
AGC TTG GGC TCA Ser Leu Gly Ser 15	GGA TGT CAT Gly Cys His	CAT CGG ATC His Arg Ile 20	TGT CAC TGC TCT Cys His Cys Ser 25	AAC AGG 158 Asn Arg
GTT TTT CTC TGC Val Phe Leu Cys 30	CAA GAG AGC Gln Glu Ser 35	AAG GTG ACA Lys Val Thr	GAG ATT CCT TCT Glu Ile Pro Ser 40	GAC CTC 206 Asp Leu
CCG AGG AAT GCC Pro Arg Asn Ala 45	ATT GAA CTG Ile Glu Leu 50	AGG TTT GTC Arg Phe Val	CTC ACC AAG CTT Leu Thr Lys Leu 55	CGA GTC 254 Arg Val 60
ATC CAA AAA GGT Ile Gln Lys Gly	GCA TTT TCA Ala Phe Ser 65	GGA TTT GGG Gly Phe Gly 70	GAC CTG GAG AAA Asp Leu Glu Lys	ATA GAG 302 Ile Glu 75
ATC TCT CAG AAT Ile Ser Gln Asn 80	Asp Val Leu	GAG GTG ATA Glu Val Ile 85	GAG GCA GAT GTG Glu Ala Asp Val 90	TTC TCC 350 Phe Ser
Asn Leu Pro Lys 95	Leu His Glu	Ile Arg Ile 100	GAA AAG GCC AAC Glu Lys Ala Asn 105	Asn Leu
Leu Tyr Ile Asn 110	Pro Glu Ala 115	Phe Gln Asn	CTT CCC AAC CTT Leu Pro Asn Leu 120	Gin Tyr
Leu Leu Ile Ser 125	Asn Thr Gly	, Ile Lys His	CTT CCA GAT GTT Leu Pro Asp Val 135	His Lys 140
Ile His Ser Leu	Gln Lys Val	Leu Leu Asp 150		lle Asn 155
ATC CAC ACA ATT Ile His Thr Ile 160	e Glu Arg Ası	T TCT TTC GTG Ser Phe Val 165	GGG CTG AGC TTT Gly Leu Ser Phe 170	GAA AGT 590 Glu Ser
Val Ile Leu Trp 175	o Leu Asn Ly:	3 Asn Gly Ile 180	CAA GAA ATA CAC Gln Glu Ile His 185	Asn Cys
Ala Phe Asn Gly 190	y Thr Gln Le	u Asp Glu Lei 5	AAT CTA AGC GAT ABN Leu Ser Asp 200	Asn Asn
Asn Leu Glu Gl 205	u Leu Pro As 210	n Asp Val Phe	C CAC GGA GCC TCT His Gly Ala Ser 215	220
Val Ile Leu As	p Ile Ser Ar 225	g Thr Arg Ile 23		235
GGC TTA GAA AA Gly Leu Glu As 24	n Leu Lys Ly	G CTG AGG GC s Leu Arg Al 245	C AGG TCG ACT TAC a Arg Ser Thr Tyr 250	Asn Leu

- 20 -

AAA	AAG	CTG	CCI	ACT	CTG	GAA	AAG	CTI	GTC	GCC	CTC	ATG	GAA	GCC	AGC	85	78
•		255		•	Deu	Giu	260	Leu	val	Ala	Leu	Met 265	Glu	Ala	Ser	•	
	270	-,-		JCI	1115	275	Cys	Ala	Pne	Ala	280	Trp	Arg	Arg	CAA Gln	92	26
ATC Ile 285		GAG Glu	CTT Leu	CAT His	CCA Pro 290	ATT Ile	TGC Cys	AAC Asn	AAA Lys	TCT Ser 295	He	TTA Leu	AGG Arg	CAA Gln	GAA Glu 300	97	74
GTT Val	GAT Asp	TAT Tyr	ATG Met	ACT Thr 305	CAG Gln	ACT Thr	AGG Arg	GGT Gly	CAG Gln 310	AGA Arg	TCC	TCT Ser	CTG Leu	GCA Ala 315	GAA Glu	102	22
GAC Asp	AAT Asn	GAG Glu	TCC Ser 320	AGC Ser	TAC Tyr	AGC Ser	AGA Arg	GGA Gly 325	TTT Phe	GAC Asp	ATG Met	ACG Thr	TAC Tyr 330	ACT Thr	GAG Glu	107	0
TTT Phe	GAC Asp	TAT Tyr 335	GAC Asp	TTA Leu	TGC Cys	AAT Asn	GAA Glu 340	GTG Val	GTT Val	GAC Asp	GTG Val	ACC Thr 345	TGC Cys	TCC Ser	CCT Pro	111	.8
AAG Lys	CCA Pro 350	GAT Asp	GCA Ala	TTC Phe	AAC Asn	CCA Pro 355	TGT Cys	GAA Glu	GAT Asp	ATC Ile	ATG Met 360	GGG Gly	TAC Tyr	AAC Asn	ATC Ile	116	6
CTC Leu 365	AGA Arg	GTC Val	CTG Leu	ATA Ile	TGG Trp 370	TTT Phe	ATC Ile	AGC Ser	ATC Ile	CTG Leu 375	GCC Ala	ATC Ile	ACT Thr	GGG Gly	AAC Asn 380	121	4
ATC Ile	ATA Ile	GTG Val	CTA Leu	GTG Val 385	ATC Ile	CTA Leu	ACT Thr	ACC Thr	AGC Ser 390	CAA Gln	TAT Tyr	AAA Lys	CTC Leu	ACA Thr 395	GTC Val	126	2
CCC Pro	AGG Arg	TTC Phe	CTT Leu 400	ATG Met	TGC Cys	AAC Asn	CTG Leu	GCC Ala 405	TTT Phe	GCT Ala	GAT Asp	CTC Leu	TGC Cys 410	ATT Ile	GGA Gly	131	0
ATC Ile	TAC Tyr	CTG Leu 415	CTG Leu	CTC Leu	ATT Ile	GCA Ala	TCA Ser 420	GTT Val	GAT Asp	ATC Ile	CAT His	ACC Thr 425	AAG Lys	AGC Ser	CAA Gln	1358	8
TAT Tyr	CAC His 430	AAC Asn	TAT Tyr	GCC Ala	ATT Ile	GAC Asp 435	TGG Trp	CAA Gln	ACT Thr	GGG Gly	GCA Ala 440	Gly	TGT Cys	GAT Asp	GCT Ala	1406	5
GCT Ala 445	GGC Gly	TTT Phe	TTC Phe	ACT Thr	GTC Val 450	TTT Phe	GCC Ala	AGT Ser	GAG Glu	CTG Leu 455	TCA Ser	GTC Val	TAC Tyr	ACT Thr	CTG Leu 460	1454	4
ACA Thr	GCT Ala	ATC Ile	TIIL	TTG Leu 465	GAA Glu	AGA Arg	TGG Trp	His	ACC Thr 470	ATC Ile	ACG Thr	CAT His	GCC Ala	ATG Met 475	CAG Gln	1502	2
CTG Leu	GAC Asp	Cys	AAG Lys 480	GTG Val	CAG Gln	CTC Leu	arg	CAT His 485	GCT Ala	GCC Ala	AGT Ser	Val	ATG Met 490	GTG Val	ATG Met	1550)
GGC Gly	115	ATT Ile 495	TTT Phe	GCT Ala	TTT Phe	Ala .	GCT Ala 500	GCC Ala	CTC Leu	TTT Phe	CCC Pro	ATC Ile 505	TTT Phe	GGC Gly	ATC Ile	1598	3

							•							•		
AGC Ser	AGC Ser 510	TAC Tyr	ATG Met	AAG Lys	GTG Val	AGC Ser 515	ATC Ile	TGC Cys	CTG Leu	CCC Pro	ATG Met 520	GAT Asp	ATT Ile	GAC Asp	AGC Ser	1646
CCT Pro 525	TTG Leu	TCA Ser	CAG Gln	CTG Leu	TAT Tyr 530	GTC Val	ATG Met	TCC Ser	CTC Leu	CTT Leu 535	GTG Val	CTC Leu	AAT Asn	GTC Val	CTG Leu 540	1694
GCC Ala	TTT Phe	GTG Val	GTC Val	ATC Ile 545	TGT Cys	GGC Gly	TGC Cys	TAT Tyr	ATC Ile 550	CAC His	ATC Ile	TAC Tyr	CTC Leu	ACA Thr 555	GTG Val	1742
CGG Arg	AAC Asn	CCC Pro	AAC Asn 560	ATC Ile	GTG Val	TCC Ser	TCC Ser	TCT Ser 565	AGT Ser	GAC As p	ACC Thr	AGG Arg	ATC Ile 570	GCC Ala	AAG Lys	1790
CGC Arg	ATG Met	GCC Ala 575	ATG Met	CTC Leu	ATC Ile	TTC Phe	ACT Thr 580	GAC Asp	TTC Phe	CTC Leu	TGC Cys	ATG Met 585	GCA Ala	CCC Pro	ATT Ile	1838
TCT Ser	TTC Phe 590	TTT Phe	GCC Ala	ATT Ile	TCT Ser	GCC Ala 595	TCC Ser	CTC Leu	AAG Lys	GTG Val	CCC Pro 600	CTC Leu	ATC Ile	ACT Thr	GTG Val	1886
TCC Ser 605	AAA Lys	GCA Ala	AAG Lys	ATT Ile	CTG Leu 610	CTG Leu	GTT Val	CTG Leu	TTT Phe	CAC His 615	CCC Pro	ATC Ile	AAC Asn	TCC Ser	TGT Cys 620	1934
GCC Ala	AAC Asn	CCC Pro	TTC Phe	CTC Leu 625	TAT Tyr	GCC Ala	ATC Ile	TTT Phe	ACC Thr 630	AAA Lys	AAC Asn	TTT Phe	CGC Arg	AGA Arg 635	GAT Asp	1982
TTC Phe	TTC Phe	ATT Ile	CTG Leu 640	CTG Leu	AGC Ser	AAG Lys	TGT Cys	GGC Gly 645	TGC Cys	TAT Tyr	GAA Glu	ATG Met	CAA Gln 650	GCC Ala	CAA Gln	2030
ATT Ile	TAT Tyr	AGG Arg 655	ACA Thr	GAA Glu	ACT Thr	TCA Ser	TCC Ser 660	ACT Thr	GTC Val	CAC His	AAC Asn	ACC Thr 665	CAT His	CCA Pro	AGG Arg	2078
AAT Asn	GGC Gly 670	CAC His	TGC Cys	TCT Ser	TCA Ser	GCT Ala 675	CCC Pro	AGA Arg	GTC Val	ACC Thr	AAT Asn 680	Gly	TCC Ser	ACT Thr	TAC Tyr	2126
ATA Ile 685	CTT Leu	GTC Val	CCT Pro	CTA Leu	AGT Ser 690	His	TTA Leu	GCC Ala	CAA Gln	AAC Asn 695	TAA	AACA	CAA	TGTG	AAAATG	2179

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 62 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGCCCGCCGC GCCCCGCCC CCCCCCCCC GACTTATGCA ATGAAGTGGT 60 62 TG

WO 97/11194 PCT/FI96/00501

- 22 -

(2)	INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GTG	AAAAAGC CAGCAGCATC	20
(2)	INFORMATION FOR SEQ ID NO:4:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CGC	CCGCCGC GCCCCGCCC CCCCCGCCCG ATTGACTGGC AAACTGGGG	59
	INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
AGAC	GGAGGAC ACGATGTTGG	20
(2)	INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 62 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CGCC	CCGCCGC GCCCCGCCC CGGCCCGCCG CCCCGCCCG GGCTGCTATA TCCACATCTA	60
CC		62
(2)	INFORMATION FOR SEQ ID NO:7:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
CAGAACCAGC AGAATCTTTG C	21
(2) INFORMATION FOR SEQ ID NO:8:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CGCCCGCCGC GCCCCGCCGC CGCCCGCCCG CTTTCTTT	60
(2) INFORMATION FOR SEQ ID NO:9:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CAAAGGCAAG GACTGAATTA TC	22
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
AGCAAAGATT CTGCTGGTTC	20
(2) INFORMATION FOR SEQ ID NO:11:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
TAGTTTTGGG CTAAATGACT TAGAGGG	21

(2)	INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CCTG	SCTCCTG GTCTCTTTGC TG	22
(2)	INFORMATION FOR SEQ ID NO:13:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
AGAA	ATTCTT TCGTGGGGCT	20
(2)	INFORMATION FOR SEQ ID NO:14:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GTTT	GCAAAG GCACAGCAAT	20
(2)	INFORMATION FOR SEQ ID NO:15:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
GTTA	TTTCAG ATGGCTGAAT AAG	23
(2)	INFORMATION FOR SEQ ID NO:16:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	

WO 97/11194	PCT/FI96/00501
- 25 -	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GCTCATCTAG TTGGGTTC	18
(2) INFORMATION FOR SEQ ID NO:17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
GAGTGCACCA TGGGCGGTGT GAAAT	25
(2) INFORMATION FOR SEQ ID NO:18:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GGGATTCAAG AAATACACAA CTGTGTATTC AATGGAACCC

PCT/FI96/00501

CLAIMS

We claim:

- 1. A method for determining a follicle-stimulating hormone receptor (fshr) genotype in a human patient, comprising the steps of:
- 5 (a) providing a biological sample comprising nucleic acid from said patient, said nucleic acid including said patient's *fshr* alleles;
 - (b) analyzing said nucleic acid for the presence of a mutation or mutations in codon 189 of said *fshr* alleles; and
- (c) determining an *fshr* genotype from said analyzing step, wherein the presence of a mutation in codon 189 of a *fshr* allele is correlated with an ovarian dysgenesis genotype.
 - 2. The method according to claim 1 wherein said biological sample is a cell sample.
- 3. The method according to claim 1 or 2 wherein said patient is a female.
 - 4. The method according to any one of claims 1-3 wherein said analyzing comprises sequencing a portion of said nucleic acid, said portion comprising codon 189 of said *fshr* alleles.
- 5. The method according to any one of claims 1-4 wherein said nucleic 20 acid is DNA.
 - 6. The method according to claim 5 wherein said analyzing step comprises the steps of:
 - (a) exposing said nucleic acid to a restriction endonuclease having a recognition site that includes codon 189 of a wild type *fshr* allele, under conditions wherein said restriction endonuclease specifically cleaves DNA at its recognition site; and

10

15

20

- (b) detecting said nucleic acid or polynucleotide restriction fragments thereof from said exposing step.
- 7. The method according to claim 6 wherein said restriction endonuclease is selected from the group consisting of *BsmI*, restriction endonucleases recognizing sites that overlap a *BsmI* site, restriction endonucleases recognizing the same cleavage sites as *BsmI*, and isoschizomers of *BsmI*.
- 8. The method according to claim 6 wherein said restriction endonuclease is *Bsm*I.
- 9. A method for screening for an ovarian dysgenesis genotype in a patient, comprising the steps of:
 - (a) providing a biological sample comprising nucleic acid from said patient, said nucleic acid including said patient's follicle-stimulating hormone receptor (fshr) alleles;
- (b) amplifying a portion of said nucleic acid to generate amplified DNA, said portion including codon 189 of said fshr alleles;
- (c) exposing said amplified DNA to a restriction endonuclease selected from the group consisting of *BsmI* restriction endonuclease and restriction endonucleases having a recognition site which overlaps a *BsmI* recognition site, under conditions wherein said restriction endonuclease specifically cleaves DNA at the recognition site of said restriction endonuclease;
- (d) thereafter detecting said amplified DNA or restriction fragments thereof;
- (e) comparing the amplified DNA or fragments thereof of step (d) to control nucleic acid of a human subject free of an ovarian dysgenesis genotype, wherein said control nucleic acid has been amplified, exposed, and detected in accordance with steps (b), (c), and (d); and
- (f) screening for an ovarian dysgenesis genotype from said comparison, wherein an ovarian dysgenesis genotype in said patient is correlated with a

10

20

25

different number of detected amplified DNA or restriction fragments thereof from said patient's amplified DNA than from said control amplified DNA.

- 10. The method according to claim 9 wherein in said screening step a homozygous ovarian dysgenesis genotype is correlated with fewer detected restriction fragments from said patient's amplified DNA than from said control amplified DNA.
- 11. The method according to claim 9 wherein in said screening step a heterozygous ovarian dysgenesis genotype is correlated with a greater number of detected amplified DNA or restriction fragments thereof from said patient's amplified DNA than from said control amplified DNA.
- 12. The method according to claim 9 wherein said patient is a human female.
- 13. The method according to claim 9 wherein said portion comprises exon 7 of said *fshr* alleles.
- 15 14. A method for diagnosing ovarian dysgenesis in a female patient, comprising the steps of:

obtaining a cell sample from a female patient;

isolating nucleic acids from said cell sample;

amplifying a portion of said nucleic acids encoding a receptor for follicle-stimulating hormone, thereby generating amplified DNA;

exposing said amplified DNA to a restriction endonuclease selected from the group consisting of *BsmI* and restriction endonucleases having a recognition site which overlaps that of *BsmI*, under conditions wherein said restriction endonuclease specifically cleaves DNA at its recognition site;

detecting polynucleotide restriction fragments of said amplified DNA; and

10

15

20

diagnosing ovarian dysgenesis from said restriction fragments, wherein ovarian dysgenesis is correlated with a C to T mutation in codon 189 of said DNA encoding a receptor for follicle-stimulating hormone, said mutation eliminating a recognition site of said restriction endonuclease.

15. A method for diagnosing ovarian dysgenesis in a female patient comprising the steps of:

obtaining a cell sample from a female patient; isolating nucleic acids from said cell sample;

amplifying a portion of said nucleic acids comprising exon 7 of a follicle-stimulating hormone receptor gene, said portion excluding any *BsmI* site outside of exon 7, thereby generating amplified DNA;

exposing said amplified DNA to a restriction endonuclease selected from the group consisting of *BsmI* and restriction endonucleases having a recognition site which overlaps that of *BsmI*, under conditions wherein said restriction endonuclease specifically cleaves DNA at its recognition site:

detecting said amplified DNA or polynucleotide restriction fragments thereof after said exposing step; and

diagnosing ovarian dysgenesis from said detecting step, wherein ovarian dysgenesis is correlated with the detection of said amplified DNA and the absence of polynucleotide restriction fragments thereof.

- 16. The method according to claim 14 or 15, wherein said restriction endonucleases having a recognition site which overlaps that of *BsmI* are selected from the group consisting of *SacIII* and *SstIII*.
- 17. A method for diagnosing ovarian dysgenesis in a female patient suspected of having ovarian dysgenesis, comprising the steps of:

 obtaining a cell sample from said female patient;
 isolating nucleic acid from said cell sample;

WO 97/11194 PCT/FI96/00501

- 30 -

amplifying a portion of said isolated nucleic acid comprising exon 7 of a follicle-stimulating hormone receptor gene, thereby generating amplified DNA; sequencing said amplified DNA; comparing the sequence of said amplified DNA to SEQ ID NO:1;

5 and

diagnosing ovarian dysgenesis by the presence of one or more sequence differences between the sequence of said amplified DNA and SEQ ID NO:1.

- 18. The method according to claim 17, wherein said one or more differences between the sequence of said amplified DNA and SEQ ID NO:1 comprises a difference at nucleotide position 640 in SEQ ID NO:1.
 - 19. The method according to claim 18, wherein a cytidylate at position 640 in SEQ ID NO:1 is a thymidylate at a corresponding position in said amplified DNA.

WO 97/11194 PCT/FI96/00501

FIG. 1

2/10

FIG. 2

3/10

RECTIFIED SHEET (RULE 91)
ISA/EP

4/10

AFM240vh12 AFM191wg9 AFM143xe1] AFM177xh4 AFM262xb5 AFM016yc5 AFM032xg5 AFM211yd6 AFM087xg9AFM052xb4 AFM172xc3 AFM220ze3 AFM052xf8 AFM119xd2 AFM157xe3 **AFM207vf8** AFM183xc3 AFM094zc9 AFM087xa1 AFM198ta1 AFM205tg] AFM021tc1 D2S156 D2S145 D2S139 D2S113 D2S160 D2S132 D2S142 D2S169 D2S135 D2S176 D2S110 **D2S114 D2S129 D2S127** D2S150 D2S122 **D2S124** D2S111 D2S151 D2S141 D2S121 D2S112 0.07 90.0 90.0 0.13 0.00 0.00 0.00 0.06 0.02 0.00 0.01 0.07 0.00 0.01 0.07 0.01 0.01 0.01 CRI C138 P/D2S25 CRI L34 M/D2S20

RECTIFIED SHEET (RULE 91)
ISA/EP

0.06 D2S133 AFM165zh8 0.07 D2S159 AFM218zg3 0.06 D2S172 AFM248wc5 0.22 D2S125 AFM112yd4 0.04 D2S125 AFM112yd4

TGTGGAGCTT CTGAGATCTG TGGAG	GTTTT TCTCTGCAAA	TGCAGGAAGA AATCAGGTGG	60
ATGGATGCAT AATT ATG GCC CTG	CTC CTG GTC TCT	TTG CTG GCA TTC CTG	110
Met Ala Leu	Leu Leu Val Ser	Leu Leu Ala Phe Leu	12
AGC TTG GGC TCA GGA TGT CAT	CAT CGG ATC TGT	CAC TGC TCT AAC AGG	158
Ser Leu Gly Ser Gly Cys His	His Arg Ile Cys	His Cys Ser Asn Arg	28
GTT TTT CTC TGC CAA GAG AGC Val Phe Leu Cys Gln Glu Ser	AAG GTG ACA GAG	ATT CCT TCT GAC CTC	206
	Lys Val Thr Glu	Ile Pro Ser Asp Leu	44
CCG AGG AAT GCC ATT GAA CTG	AGG TTT GTC CTC	ACC AAG CTT CGA GTC	254
Pro Arg Asn Ala Ile Glu Leu	Arg Phe Val Leu	Thr Lys Leu Arg Val	60
ATC CAA AAA GGT GCA TTT TCA	GGA TTT GGG GAC	CTG GAG AAA ATA GAG	302
Ile Gln Lys Gly Ala Phe Ser	Gly Phe Gly Asp	Leu Glu Lys Ile Glu	76
ATC TCT CAG AAT GAT GTC TTG	GAG GTG ATA GAG	GCA GAT GTG TTC TCC	350
Ile Ser Gln Asn Asp Val Leu	Glu Val Ile Glu	Ala Asp Val Phe Ser	92
AAC CTT CCC AAA TTA CAT GAA	ATT AGA ATT GAA	AAG GCC AAC AAC CTG	398
Asn Leu Pro Lys Leu His Glu	Ile Arg Ile Glu	Lys Ala Asn Asn Leu	108
CTC TAC ATC AAC CCT GAG GCC	TTC CAG AAC CTT	CCC AAC CTT CAA TAT	446
Leu Tyr Ile Asn Pro Glu Ala	Phe Gln Asn Leu	Pro Asn Leu Gln Tyr	124
CTG TTA ATA TCC AAC ACA GGT	ATT AAG CAC CTT	CCA GAT GTT CAC AAG	494
Leu Leu Ile Ser Asn Thr Gly	Ile Lys His Leu	Pro Asp Val His Lys	140
ATT CAT TCT CTC CAA AAA GTT	TTA CTT GAC ATT	CAA GAT AAC ATA AAC	542
Ile His Ser Leu Gln Lys Val	Leu Leu Asp Ile	Gln Asp Asn Ile Asn	156
ATC CAC ACA ATT GAA AGA AAT	TCT TTC GTG GGG	CTG AGC TTT GAA AGT	590
Ile His Thr Ile Glu Arg Asn	Ser Phe Val Gly	Leu Ser Phe Glu Ser	172
GTG ATT CTA TGG CTG AAT AAG	AAT GGG ATT CAA	GAA ATA CAC AAC TGT	638
Val Ile Leu Trp Leu Asn Lys	Asn Gly Ile Gln	Glu Ile His Asn Cys	188
GCA TTC AAT GGA ACC CAA CTA	GAT GAG CTG AAT	CTA AGC GAT AAT AAT	686
Ala Phe Asn Gly Thr Gln Leu	Asp Glu Leu Asn	Leu Ser Asp Asn Asn	204
AAT TTA GAA GAA TTG CCT AAT	GAT GTT TTC CAC	GGA GCC TCT GGA CCA	734
Asn Leu Glu Glu Leu Pro Asn	Asp Val Phe His	Gly Ala Ser Gly Pro	220
GTC ATT CTA GAT ATT TCA AGA	ACA AGG ATC CAT	TCC CTG CCT AGC TAT	782
Val Ile Leu Asp Ile Ser Arg	Thr Arg Ile His	Ser Leu Pro Ser Tyr	236
GGC TTA GAA AAT CTT AAG AAG	CTG AGG GCC AGG	TCG ACT TAC AAC TTA	830
Gly Leu Glu Asn Leu Lys Lys	Leu Arg Ala Arg	Ser Thr Tyr Asn Leu	252
AAA AAG CTG CCT ACT CTG GAA	AAG CTT GTC GCC	CTC ATG GAA GCC AGC	878
Lys Lys Leu Pro Thr Leu Glu	Lys Leu Val Ala	Leu Met Glu Ala Ser	268
CTC ACC TAT CCC AGC CAT TGC	TGT GCC TTT GCA	AAC TGG AGA CGG CAA	926
Leu Thr Tyr Pro Ser His Cys	Cys Ala Phe Ala	Asn Trp Arg Arg Gln	284
ATC TCT GAG CTT CAT CCA ATT Ile Ser Glu Leu His Pro Ile	TGC AAC AAA TCT	ATT TTA AGG CAA GAA	974
	Cys Asn Lys Ser	Ile Leu Arg Gln Glu	300
GTT GAT TAT ATG ACT CAG ACT Val Asp Tyr Met Thr Gln Thr	AGG GGT CAG AGA	TCC TCT CTG GCA GAA	1022
	Arg Gly Gln Arg	Ser Ser Leu Ala Glu	316
GAC AAT GAG TCC AGC TAC AGC	AGA GGA TTT GAC	ATG ACG TAC ACT GAG	1070
Asp Asn Glu Ser Ser Tyr Ser	Arg Gly Phe Asp	Met Thr Tyr Thr Glu	332
TTT GAC TAT GAC TTA TGC AAT	GAA GTG GTT GAĆ	GTG ACC TGC TCC CCT	1118
Phe Asp Tyr Asp Leu Cys Asn	Glu Val Val Asp	Val Thr Cys Ser Pro	348

		GAT Asp														1166 364
		GTC Val														1214 380
ATC	ATA	GTG	CTA	GTG	ATC	CTA	ACT	ACC	AGC	CAA	TAT	AAA	CTC	ACA	GTC	1262
Ile	Ile	Val	Leu	Val	Ile	Leu	Thr	Thr	Ser	Gln	Tyr	Lys	Leu	Thr	Val	396
CCC	AGG	TTC	CTT	ATG	TGC	AAC	CTG	GCC	TTT	GCT	GAT	CTC	TGC	ATT	GGA	1310
Pro	Arg	Phe	Leu	Met	Cys	Asn	Leu	Ala	Phe	Ala	Asp	Leu	Cys	Ile	Gly	412
ATC	TAC	CTG	CTG	CTC	ATT	GCA	TCA	GTT	GAT	ATC	CAT	ACC	AAG	AGC	CAA	1358
Ile	Tyr	Leu	Leu	Leu	Ile	Ala	Ser	Val	Asp	Ile	His	Thr	Lys	Ser	Gln	428
TAT	CAC	AAC	TAT	GCC	ATT	GAC	TGG	CAA	ACT	GGG	GCA	GGC	TGT	GAT	GCT	1406
Tyr	His	Asn	Tyr	Ala	Ile	Asp	Trp	Gln	Thr	Gly	Ala	Gly	Cys	Asp	Ala	444
GCT	GJ Y	TTT	TTC	ACT	GTC	TTT	GCC	AGT	GAG	CTG	TCA	GTC	TAC	ACT	CTG	1454
Ala		Phe	Phe	Thr	Val	Phe	Ala	Ser	Glu	Leu	Ser	Val	Tyr	Thr	Leu	460
ACA	GCT	ATC	ACC	TTG	GAA	AGA	TGG	CAT	ACC	ATC	ACG	CAT	GCC	ATG	CAG	1502
Thr	Ala	Ile	Thr	Leu	Glu	Arg	Trp	His	Thr	Ile	Thr	His	Ala	Met	Gln	476
CTG	GAC	TGC	AAG	GTG	CAG	CTC	CGC	CAT	GCT	GCC	AGT	GTC	ATG	GTG	ATG	1550
Leu	Asp	Cys	Lys	Val	Gln	Leu	Arg	His	Ala	Ala	Ser	Val	Met	Val	Met	492
GGC	TGG	ATT	TTT	GCT	TTT	GCA	GCT	GCC	CTC	TTT	CCC	ATC	TTT	GGC	ATC	1598
Gly	Trp	Ile	Phe	Ala	Phe	Ala	Ala	Ala	Leu	Phe	Pro	Ile	Phe	Gly	Ile	508
AGC	AGC	TAC	ATG	AAG	GTG	AGC	ATC	TGC	CTG	CCC	ATG	GAT	ATT	GAC	AGC	1646
Ser	Ser	Tyr	Met	Lys	Val	Ser	Ile	Cys	Leu	Pro	Met	Asp	Ile	Asp	Ser	524
CCT	TTG	TCA	CAG	CTG	TAT	GTC	ATG	TCC	CTC	CTT	GTG	CTC	AAT	GTC	CTG	1694
Pro	Leu	Ser	Gln	Leu	Tyr	Val	Met	Ser	Leu	Leu	Val	Leu	Asn	Val	Leu	540
GCC	TTT	GTG	GTC	ATC	TGT	GGC	TGC	TAT	ATC	CAC	ATC	TAC	CTC	ACA	GTG	1742
Ala	Phe	Val	Val	Ile	Cys	Gly	Cys	Tyr	Ile	His	Ile	Tyr	Leu	Thr	Val	556
CGG	AAC	CCC	AAC	ATC	GTG	TCC	TCC	TCT	AGT	GAC	ACC	AGG	ATC	GCC	AAG	1790
Arg	Asn	Pro	Asn	Ile	Val	Ser	Ser	Ser	Ser	Asp	Thr	Arg	Ile	Ala	Lys	572
CGC	ATG	GCC	ATG	CTC	ATC	TTC	ACT	GAC	TTC	CTC	TGC	ATG	GCA	CCC	ATT	1838
Arg	Met	Ala	Met	Leu	Ile	Phe	Thr	Asp	Phe	Leu	Cys	Met	Ala	Pro	Ile	588
TCT	TTC	TTT	GCC	ATT	TCT	GCC	TCC	CTC	AAG	GTG	CCC	CTC	ATC	ACT	GTG	1886
Ser		Phe	Ala	Ile	Ser	Ala	Ser	Leu	Lys	Val	Pro	Leu	Ile	Thr	Val	604
TCC	AAA	GCA	AAG	ATT	CTG	CTG	GTT	CTG	TTT	CAC	CCC	ATC	AAC	TCC	TGT	1934
Ser	Lys	Ala	Lys	Ile	Leu	Leu	Val	Leu	Phe	His	Pro	Ile	Asn	Ser	Cys	620
Ala	Asn	CCC Pro	Phe	Leu	Tyr	Ala	Ile	Phe	Thr	Lys	Asn	Phe	Arg	Arg	Asp	1982 636
TTC	TTC	ATT	CTG	CTG	AGC	AAG	TGT	GGC	TGC	TAT	GAA	ATG	CAA	GCC	CAA	2030
Phe	Phe		Leu	Leu	Ser	Lys	Cys	Gly	Cys	Tyr	Glu	Met	Gln	Ala	Gln	652
		AGG Arg													_	2078 668
AAT	GGC	CAC	TGC	TCT	TCA	GCT	CCC	AGA	GTC	ACC	AAT	GGT	TCC	ACT	TAC	2126
Asn		His	Cys	Ser	Ser	Ala	Pro	Arg	Val	Thr	Asn	Gly	Ser	Thr	Tyr	684
ATA Ile	CTT Leu	GTC Val	CCT Pro	CTA Leu	AGT Ser	CAT His	TTA Leu	GCC Ala	CAA Gln	AAC Asn	TAA	AACA	CAA 1	rgtgi	AAAATG	2179 695

FIG. 5

SUBSTITUTE SHEET (Rule 26)

-1G. 6

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/FI 96/00501

		1	101/12 30/00002			
A. CLASSII IPC 6	FICATION OF SUBJECT MATTER C12Q1/68 C07H21/04		-			
According to	. International Patent Classification (IPC) or to both national clas	sification and IPC				
	SEARCHED					
Minimum do	ocumentation searched (classification system followed by classific C12Q C07K	ation symbols)				
Documentati	non searched other than minimum documentation to the extent the	it such documents are inc	luded in the fields searched			
Electronic d	lata base consulted during the international search (name of data t	nase and, where practical,	search terms used)			
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.			
Т	CELL, vol. 82, no. 6, 22 September 199 pages 959-68, XP000609143 AITTOMÄKI, K. ET AL: "Mutation follicle-stimulating hormone recauses heriditary hypergonadotre ovarian failure " see the whole document	1-18				
A	AMERICAN JOURNAL OF HUMAN GENET vol. 54, no. 5, May 1994, pages 844-51, XP000612836 AITTOMÄKI, K.: "The genetics o gonadal dysgenesis" cited in the application see the whole document	1				
		-/				
X Fur	ther documents are listed in the continuation of box C.	Patent family	members are listed in annex.			
'A' docum 'E' earlier filing 'L' docum which citate 'O' docum other 'P' docum	nent defining the general state of the art which is not dered to be of particular relevance r document but published on or after the international date nent which may throw doubts on priority claim(s) or it is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means nent published prior to the international filing date but than the priority date claimed e actual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report				
	11 December 1996	0 7. 01.	97			
Name and	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripswyk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized office				

Form PCT/ISA/210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Inter: 1al Application No PCI/FI 96/00501

. / (Ontinu			
Category *	Action) DOCUMENTS CONSIDERED TO BE RELEVANT		
Cawgury	Citation of document, with indication, where appropriate, of the relevant passages	•	Relevant to claim No.
A	NATURE GENETICS, vol. 9, February 1995, pages 160-4, XP000612866 KREMER H ET AL: "Male pseudohermaphroditism due to a homzygous missense mutation of the luteinizing hormone receptor gene" see the whole document		1
A	GENOMICS , vol. 15, January 1993, pages 222-24, XP000612862 ROUSSEAU-MERCK M ET AL: "The chromosomal localization of the human follicle hormone receptor gene (FSHR) on 2p21-2p15 is similar to that of the luteinizing hormone receptor gene" cited in the application see the whole document		

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

FIG. 1

FIG. 2

٢1

11

रा ग

12

CC

12

ĊC

21

CC

11

TT

11

TT

11

Ττ

11

11

11

TT

11

2 1

TT CT

FIG. 3 (10f4) AFM200wa1 AFM240yc3 AFM263zh9 AFM155yd2 AFM242yd8 AFM217xb8 AFM225zg5 AFM240vf6 AFM193yb4 **AFM254vc9** AFM198wc5 AFM168xg1 AFM260xc5 AFM234ya9 AFM240yf8 AFM267zc9 A.FM077yb7 AFM093xh3 **AFM199vb6** AFM234zh2 4FM172xe7 D2S205 D2S162 D2S148 D2S175 D2S168 D2S131 D2S158 D2S146 D2S119 D2S144 D2\$174 D2S165 D2S170 D2S134 D2S136 D2S171 D25177 D2\$123 D2S166 D2S147 90.0 0.08 0.000.02 0.00 0.02 0.00 0.02 0.04 0.8 0.10 0.07 0.01 0.01 0.01 0.11 0.01 CRI L1247 M/D2S34

RECTIFIED SHEET (RULE 91)
ISA/EP

pTBAB 5-7 Py/D2S47

				Ē
	⊢	 		
AFM198ta1 AFM240vh12 AFM177xh4 AFM052xb4 AFM172xc3	· · · · · · ·	AFM032xg5 AFM052xf8 AFM143xe11 AFM119xd2	AFM205tg1 AFM087xg9 AFM157xe3 AFM207vf8	AFM183xc3 AFM183xc3 AFM211yd6 AFM021tc1 AFM094xc9
D2S145 D2S169 D2S139 D2S113 D2S135	D2S160 D2S121 D2S121	D2S112 D2S114 D2S129 D2S127	D2S150 D2S122 D2S132 D2S131 D2S151	D2S141 D2S141 D2S156 D2S111 D2S124
0.09	0.06	0.01	0.00	0.06 0.06 0.06 0.00 0.00 0.00
	CRI C138 P/D2S25			CRI L34 M/D2S20

RECTIFIED SHEET (RULE 91)
ISA/EP

FIG. 3 (4of 4)

133 AFM165zh8	159 AFM218zg3		206 AFM259yc9	125 AFM112yd4	(40 AFM182va5
D2S133	0.00 D2S159	0.0/ D2S172	0.00 D2S206	$\frac{0.22}{2}$ D2S125	0.04 D2S140
/					

TGTGGAGCTT CTGAGAT	CTG TGGAGGTTTI	TCTCTGCAAA	TGCAGGAAGA AATCAGGTGG	60
ATGGATGCAT AATT AY	TG GCC CTG CTC	CTG GTC TCT Lau Val Ser	TTG CTG GCA TTC CTG Leu Leu Ala Phe Leu	110 12
AGC TTG GGC TCA GG	A TOT CAT CAT	CGG ATC TGT	CAC TGC TCT AAC AGG	158
Ser Leu Gly Ser Gl	y Cys His His	Arg lle Cys	His Cys Ser Asn Arg	28
GTT TTT CTC TGC CX	A GAG AGC AAG	GTG ACA GAG	ATT CCT TCT GAC CTC	206
Val Phe Leu Cys Gl	n Glu Ser Lys	Val Thr Glu	Ile Pro Ser Asp Leu	44
CCG AGG AAT GCC AT	T GAA CTG AGG	TTT GTC CTC	ACC AAG CTT EGA GTC	254
Pro Arg Asn Ala II	e Glu Leu Arg	Phe Val Leu	Thr Lys Leu Arg Val	60
ATC CAA AAA GGT GC	ል ተሞሞ ጥጥል ተቋቋል	TTT GGG GAG	CTG GAG AAA ATA GAG Leu Glu Lys Ile Glu	302 76
ATC TCT CAG AAT GA	T GTC TTG GAG	GTG ATA GAG	GCA GAT GTG TTC TCC	350
Ile Ser Gln Asn As	p Val Leu Glu	Val Ile Glu	Ala Asp Val Phe Ser	92
			AAG GCC AAC AAC CTG Lys Ala Aan Aan Leu	398 108
			CCC AAC CTT CAA TAT Pro Abn Leu Gln Tyr	446 124
			CCA GAT GTT CAC AAG Pro Asp Val His Lys	494 140
			CAA GAT AAC ATA AAC Gin Asp Asn Ile Asn	542 156
			CTG AGC TTT GAA AGT Leu Ser Phe Glu Ser	590 172
			GAA ATA CAC AAC TGT Glu lle His Asn Cys	638 188
GCA TTC AAT GGA AC	C CAA CTA GAT of Gin Leu Asp	GAG CTG AAT	CTA AGC GAT AAT AAT	686
Ala Phe Asn Gly Th		Glu Leu Asn	Leu Ser Asp Asn Asn	2 04
AAT TTA GAA GAA TT	G CCT AAT GAT on Pro Asp	GTT TTC CAC	GGA GCC TCT GGA CCA	734
Asn Leu Glu Glu Le		Val Phe His	Gly Ala Ser Gly Pro	220
GTC ATT CTA GAT AT	T TCA AGA ACA .	AGG ATC CAT	TCC CTG CCT AGC TAT	782
Val lie Leu Asp 11	e Ser Arg Thr .	Arg Ile His	Ser Leu Pro Ser Tyr	236
and and the real party	d rhe rha refi	arg ara arg	TCG ACT TAC AAC TTA Ser Thr Tyr Asn Leu	830 252
			CTC ATG GAA GCC AGC Leu Met Glu Ala Ser	678 268
CTC ACC TAT CCC AG	C CAT TGC TGT	GCC TTT GCA	AAC TGG AGA CGG CAA	926
Leu Thr Tyr Pro Se	r His Cys Cys	Ala Phe Ala	Asn Trp Arg Arg Gln	284
ATC TCT GAG CTT CA	T CCA ATT TGC .	AAC AAA TCT	ATT TTA AGG CAA GAA	974
lle Ser Glu Leu Hi	s Pro Ile Cys .	Asn Lys Ser	Ile Leu Arg Gln Glu	300
GTT GAT TAT ATG AC	T CAG ACT AGG	GGT CAG AGA	TCC TCT CTG GCA GAA	1022
Val Asp Tyr Met Th	r Gln Thr Arg	Gly Gln Arg	Ser Ser Leu Ala Glu	316
GAC AAT GAG TCC AG	C TAC AGC AGA (GGA TTT GAC	ATG ACG TAC ACT GAG	1070
Asp Asn Glu Ser Se	I Tyl Ser Arg	Gly Phe Asp	Met Thr Tyr Thr Glu	332
TTT GAC TAT GAC TT	A TGC AAT GAA	GTG GTT GAC	GTG ACC TGC TCC CCT	1118
Phe Asp Tyr Asp Le	u Cys Asn Glu	Val Val Asp	Val Thr Cys Ser Pro	348

AAG	CCA	gat	GCA	TTC	AAC	CCA	TGT	GAA	GAT	ATC	ATG	gge	TAC	AAC	ATC	1166
Lys	Pro	Asp	Ala	Phe	ABII	Pro	Cys	Glu	Asp	Ile	Met	Giy	Tyr	Asn	Ile	364
CTĆ	AGA	GTC	CTG	ATA	TGG	TTT	ATC	AGÇ	ATÇ	CTG	GCC	ATC	ACT	GGG	AAC	1214
Leu	Arg	Val	Leu	11e	Trp	Pbe	Ile	Ser	Ile	Lau	Ala	11e	Thr	Gly	Asn	380
ATC	ATA	GTG	CTA	GTG	ATC	CTA	ACT	AÇÇ	AGC	CAA	TAT	AAA	crc	ACA	GTC	1262
Ile	11e	Val	Leu	Val	11e	Leu	The	Thr	Ser	Gln	Tyr	Lys	Leu	Thr	Val	396
CCC	AGG	TTC	CTT	ATG	TGC	AAC	CTG	GCC	TTT	GCT	GAT	CTC	TGC	ATT	GGA	1310
Pro	Arg	Pbe	Leu	Met	Cys	Asn	Leu	Ala	Phe	Ala	Asp	Leu	Cys	Ile	Gly	412
ATC	TAC	CTG	CTG	ÇTÇ	ATT	GCA	TCA	GTT	GAT	ATC	CAT	ACC	AAG	AGC	CAA	13 5 8
Ile	Tyr	Leu	Leu	Leu	11e	Ala	Ber	Val	Asp	Ile	Bill	Thr	Lys	Ser	Gln	42 8
TAT	CAC	AAC	TAT	GCC	ATT	GAC	TGG	CAA	ACT	eee	GCA	GGC	TGT	GAT	GCT	1406
Tyr	His	Asn	Tyr	Ala	Ile	Asp	Trp	Gln	Thr	Gly	Ala	Gly	Cys	Asp	Ala	444
GCT	GGC	TTT	TTC	ACT	GTC	TTT	GCC	AGT	GAG	CTG	TCA	GTC	TAC	ACT	CTG	1454
Ala	Gly	Phe	Phe	Thr	Val	Phe	Ala	Ser	Glu	Leu	Ser	Val	Tyr	Thr	Leu	460
ACA	GCT	ATC	ACC	.TTG	GAA	aga	TGG	CAT	ACC	ATC	ACG	CAT	GCC	ATG	CAG	1502
Thr	Ala	ile	Thr	Leu	Glu	Arg	Trp	His	Thr	Ile	Thr	His	Ala	Met	Gln	476
CTG	GAC	TGC	AAG	GTG	CAG	CTC	CGC	CAT	GCT	GCC	AGT	GTC	ATG	GTG	ATG	1550
Leu	Asp	Cys	Lys	Val	nlD	Leu	Arg	Nis	Ala	Ala	Ser	Val	Met	Val	Met	492
GCC	TGG	ATT	TTT	GCT	TTT	GCA	GCT	GCC	CTC	TTT	CCC	ATC	TTT	GGC	ATC	1598
Gly	Trp	Ile	Phe	Ala	Phe	Ala	Ala	Ala	Leu	Phe	Pro	lle	Phe	Gly	11e	508
AGC	AGC	TAC	ATG	AAG	GTG	AGC	ATC	TGC	CTG	CCC	ATG	GAT	ATT	GAC	AGC	1646
Ser	Sei	TYT	Met	Lyb	Val	Ser	Ile	Cya	Leu	Pro	Met	Asp	Ile	Asp	Ser	524
CCT	TTG	TCA	CAG	CTG	TAT	GTC	ATG	TCC	CTC	CTT	GTG	CTC	AAT	GTC	CTG	1694
Pro	Leu	Ser	Gln	Leu	TYT	Val	Met	Ser	Leu	Leu	Val	Leu	ABD	Val	Leu	540
GCC	TTT	GTG	GTC	ATC	ТСТ	GGC	TGC	TAT	ATC	CAC	ATC	TAC	CTC	ACA	GTG	1742
Ala	Phe	Val	Val	Ile	Сув	Gly	Cys	Tyr	Ile	His	11e	Tyr	Leu	Thr	Val	556
CGG	AAC	CCC	AAĊ	ATC	GTG	TCC	TCC	TCT	AGT	gac	ACC	AGG	ATC	GCC	AAG	1790
Arg	aeA	CCC	Asn	Ile	Val	Ser	Ser	Ser	Ser	Asp	Thr	Arg	Ile	Ala	Lys	572
CGC Arg	ATG Met	GCC Ala	ATG Met	CTC Leu	ATC Ile	TTC Phe	ACT Thr	GAC Asp	TTC Phe	CTC	TGC Çys	ATG Met	GCA Ala	CCC Pro	ATT Ile	1838 588
TCT	TTC	TTT	Ala	ATT	TCT	GCC	TCC	CTC	AAG	grg	ççç	CTC	ATC	ACT	GTG	1886
Ser	Phe	Phe	GCC	Ile	Ser	Ala	Ser	Leu	Lye	Val	Pro	Leu	Ila	Thr	Val	604
TCC Ser	AAA Lys	GCA Ala	AAG Lys	ATT Ile	CTG Leu	CTG Leu	GTT Val	CTG Leu	TTT	CAC	CCC Pro	ATC Ile	AAC Asn	TCC Ser	TGT Cys	1934 620
GCC	AAC	CCC	TTC	CTC	TAT	GCC	ATC	TTT	ACC	AAA	AAC	TTT	Arg	AGA	GAT	1982
Ala	Asn	Pro	Phe	Leu	Tyr	Ala	Ile	Phe	Thr	Lys	Asn	Phe	CGC	Arg	Asp	636
TTC	TTC	ATT	CTG	CTG	AGC	AAG	TGT	GGC	TGC	TAT	GAA	ATC	CAA	GCC	CAA	2030
Phe	Phe	lle	Leu	Leu	Ser	Lys	Cys	Gly	Cys	Tyr	Glu	Met	Gla	Ala	Gln	652
ATT	TAT	AGG	ACA	GAA	ACT	TCA	TCC	ACT	GTC	CAC	AAC	ACC	CAT	CCA	AGG	2078
Ile	Tyr	Arg	Thr	Glu	Thr	Ser	Ser	Thr	Val	His	Aan	Thr	His	Pro	Arg	668
AAT	GGC	CAC	TGC	TCT	TCA	GCT	CCC	AGA	GTC	ACC	AAT	GGT	TCC	ACT	TAC	2126
Asn	Gly	His	Cys	Ser	Ser	Ala	Pro	Arg	Val	Thr	Asn	Gly	Ser	Thr	Tyr	684
ATA Ile	CTT Leu	GTC Val	CCT Pro	CTA Leu	AGT Ser	CAT Kib	TTA Leu	GCC Ala	CAA Gln	AAC Asn	AAT	AACA	CAA	Tere.	RAAAT G	2179 695

FIG. 4 (2 of 2)

FIG. 5

SUBSTITUTE SHEET (Rule 26)

G. 6

