함께 일하는 팀원간의 소통과 철력 그리고 끈기로 나아가는 개발자

EDUCATION

창원대 전기공학과 졸업 2016.03-2023.08 창신고등학교 졸업 2013.03-2016.2

CERTIFICATE

운전면허 자격증 1종 보통 2015.12 Toeic Speaking (IM3) 2022.08 Cadence - Full Custom IC Design & Term Project (50H) 2023.12

EXPERIENCE

하만 세미콘 반도체 설계 아카데미 (900H)
 2023,07,19~2024,01,27
 [부산 대한상공회의소]

TOOLS & SKILLS

• OrCAD Capture - Analog 회로 설계 및

해석 Schematic,

Simulation

• Allegro PCB Editor - PCB Artwork 설계

Xilinx Vivado, Vitis - Basys3를 이용한

Verilog 기반의 I2C,

UART, SPI통신 기능

활용 Peripheral 설계

STM32 CubeIDE - ARM 칩을 활용한 C언어

기반의 프로그래밍

Cadence Virtuoso - Schematic,

Simulation, Layout,

DRC, LVS

PROJECTS

- 하드웨어 환경 감시를 위한 신호처리 시스템 설계 프로젝트 (Analog 초음파 거리 측정기)
 아날로그 발진기, 증폭기, 검파회로, 필터회로로 구성된 초음파 거리 측정기
- 2) Veilog를 이용한 디지털 시계 설계 프로젝트 (Digital Clock) Verilog 기반 Digital Analog Clock 제작
- 하만 커넥티드 자율 이동체 개발 프로젝트 (자율 이동체 개발 RC카)
 ARM 기반의 장애물 회피 RC 카 제작 Window10 Client Server 통신 제어
- 4) One Chip Design 시스템 반도체 Full Custom IC 설계

1. 하드웨어 환경 감시를 위한 신호처리 시스템 설계 프로젝트

개요

수행 기간

2023.08.24 ~ 2023.09.15

수행 목표

초음파 센서를 이용한 거리 측정 회로를 이해하고 설계, 제작 측정 VR1(2)을 조절해 TP(2)에서 40kHz(17.2kHz) 주파수 구현

사용 TOOL

OrCAD Pspice, Allegro PCB Editor

작품 소개

초음파 센서를 사용하여 물체의 거리값에 따른 수치를 FND에 표기하는 회로

FND 각 자리에 따라 백의 자리, 십의 자리, 일의 자리를 표기

신호처리 알고리즘

부품목록(EBOM)

회로도(1)

초음파 펄스 발진 (40Hz, 16Hz), 초음파 센서 송신부 회로 초음파 센서 수신부 회로, 클램퍼 및 정류 반파 회로, 신호 검출 비교 회로도

사용 기술

1. NE555 Timer를 이용한 발진회로 설계 2. Op-Amp 증폭기 설계 3 다이오드를 이용한 평활회로 설계 4. 슈미트-트리거 Not gate

회로도(2)

클럭 발생 회로, FND 회로도

결과 및 고찰

작품 결과물

- NE555 7번 단자 설계 오류로 인한 FND에 흘는 전류가 매우 작아 작동 되지 않은 오류 발샘 -> 주파수 공식을 활용하여 가변저항 값을 수정하여 해당 오류를 해결
- IC 칩 자체 문제 및 납땜 문제로 인한 오류 발생 -> IC칩 교체 및 소자들의 납땜 재작업으로 오류를 해결
- 파워 서플라이 전압의 순간전압이 27V 까지 튀면서 NE555가 파손 되는 문제 팔생 -> 파워 서플라이를 변경 하여 문제 해결

2. VERILOG를 이용한 디지털 시계 설계 프로젝트

개요

수행 기간

2023.09.25 ~ 2023.10.20

수행 목표

Verilog로 Basys FPGA 보드를 제어하여 디지털 시계의 여러 스위치와 동작 모드 구현

사용 TOOL

Xilinx Vivado

디지털 시계의 스위치와 동작모드

모드 선택(SW0)		선택1(SW1)	선택2(SW2)	선택3(SW3)	
0	시계 모드	현재 시간 출력			
1	시간 설정	위치 선택 (Hour/Min)	시간 증가		
2	알람 설정	위치 선택 (Hour/Min)	시간 증가	알람 ON/OFF	
3	타이머(스톱워 치)	위치 선택 (Start/Stop)	리셋		

블록 다이어그램

동작 시연

동작 시연 영상

시뮬레이션

Alarm Logic

Timer

동작

CLOCK DIVIDER

주파수가 다른 것을 Parameter N의 변수로 지정해 주어 편하게 수정

MASTER SELECT

mode를 선택 하는 동작

reset신호가 조건이 맞을 때 sw0/1/2/3에서

시계모드, 시간설정, 알람설정, 타이머 등의 모드를 선택

ALARM LOGIC

Alarm의 역할을 할 수 있도록 시, 분, 초의 값을 정해서 저장한 뒤 LED에 알람이 설정됨을 표기

DATA 4*1 MUX

Basys 3 보드에서는 FND표기를 4자리 밖에 할 수 없음

시 분 초를 한번에 표현 불가능

Datamux를 사용해서 Switch를 지정

Switch ON/OFF 시, 분 / 분, 초 의 모드로 전환

3. 하만 커넥티드 자율 이동체 개발 프로젝트

개요

수행 기간

2023.10.16 ~ 2023.12.08

수행 목표

주행모드(자동/수동)의 제어가 가능하고 초음파 센서의 거리값 에 따라 제어가 가능한 자율 이동체 설계

작품 소개

자율주행시 장애물 발생한 경우 회피 기능, 블루투스 모듈을 이용한 RC카 수동 제어 기능, 부저음을 통한 위험 상황 통제 및 알림기능 구현.

부품목록(EBOM)

No.	Items	Q'ty	No.	Items	Q'ty
1	49	4	7	블루투스모듈	1
2	DC Motor	4	8	조음파센서 (HX-SR04)	3
3	모터 고정 핀	8	9	건전지 (AA)	8
4	Bread board	1	10	아크릴 프레임	3
5	STM32 411RE	2	11	건전지 소켓 4구	2
6	buzzer	3	12	모터드라이버	1

※총 12종 40개 부품 사용

구성도

하드웨어 구성도

사용 기술

1. 운영체제 : Windows 11, Android

2. 개발도구: STM32 CubeIDE, MIT App Inventor

3. 개발언어 : C Language

원격제어모드

앱인벤터 이용

블루투스 모듈로 안 드로이드 연결

동작 시연

동작 시연 영상

결과 및 고찰

- 초음파 센서를 이용한 자율 이동체 자율 주행 구현
- 블루투스 모듈을 이용항 자율 이동체 수동 제어 구현
- 부저음을 통한 위험 상황 통제 및 알림 구현
- 부저 사용 시 초음파센서와 부저의 딜레이 간격으로 1개 의 마이크로컨트로러의 사용이 불가 -> 마이크로컨트롤 러를 추가하여 동작이 원활하게 작동하도록함.
- 현재 상태(블루투스 연결, 자동/수동 모드 등)를 구분하기
 어려워 조작에 불폄함이 생김 -> 현재 상태에 따른 버튼
 비활성화를 통하여 사용자의 불편함을 해소함.

4. FULL CUSTOM IC ONE CHIP 설계

개요

수행 기간

2023.12.11 ~ 2023.12.20

수행 목표

CMOS 집적회로에 대한 이론을 바탕으로 Logic Gate를 직접 설계하면서 설계기술 및 검증 능력 숙달

사용 TOOL

Cadence Virtuoso Schematic/Layout Editor/ADE, Assura LVS/DRC

FLOW CHART

SCHEMATIC

XOR Schematic

NAND Schematic

INV Schematic

NOR Schematic

XOR	연산	진리	표
-----	----	----	---

Α	В	x
0	0	0
1	0 1	1 0

사용 기술

Digital Logic Gate, Analog Circuit

SYMBOL

XOR Symbol

SIMULATION

XOR Transient Simulation

XOR 시뮬레이션 결과

LAYOUT

결과 및 고찰

- VDD에 따라 NMOS width에 대한 PMOS width의 값이 달라짐 (VDD = 1.2V -> Wn:Wp = 1:2.67, VDD = 1V -> Wn:Wp = 1:2.91
- 공정 상의 한계가 존재하므로 Wp는 소수 둘째자리까지 근사 (gqdk090의 경우)
 - -> 공정에 따라 달라질 수 있음
- 출력 파형의 지연과 왜곡(Trade-off)
 - -> 적절한 용량의 출력단 커패시터 필요
- System on chip 설계에서는 노이즈와 파워 관리가 핵심 -> 적절한 via 생성과 guardring 필요