

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA Departamento de Ciência da Computação Tecnólogo em Análise e Desenvolvimento de Sistemas

Engenharia de requisitos - PARTE 1 (processo de engenharia de requisitos)

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Relembrando a classificação de requisitos ...

- Requisitos podem ser classificados de duas formas:
 - Classificação por nível de detalhamento
 - Requisitos de usuário
 - Requisitos de sistema

Relembrando a classificação de requisitos ...

- Requisitos podem ser classificados de duas formas:
 - Classificação por nível de detalhamento
 - Requisitos de usuário
 - Requisitos de sistema
 - Classificação por funcionalidade
 - Requisitos funcionais
 - Requisitos não-funcionais

Classificação por nível de detalhamento

Requisitos de usuário:

descrição abstrata através de diagramas ou linguagem natural

 O MHC-PMS deve gerar relatórios gerenciais mensais que mostrem o custo dos medicamentos prescritos por cada clínica durante aquele mês.

Requisitos de sistema:

descrição detalhada dos requisitos (especificação funcional)

- 1.1 No último dia útil de cada mês deve ser gerado um resumo dos medicamentos prescritos, seus custos e as prescrições de cada clínica.
- 1.2 Após 17:30h do último dia útil do mês, o sistema deve gerar automaticamente o relatório para impressão.

Classificação de requisitos por funcionalidade

Requisitos funcionais:

descrevem os serviços fornecidos, reação à entradas específicas e comportamento

Requisitos não-funcionais:

restrições sobre os serviços ou funções do sistema

RF1: Pesquisa de listas de agendamento por cliníca

RF2: Geração diária de lista de pacientes com consulta confirmada

RF3: Identificação de usuários do sistema por número de 8 dígitos

RNF1: Sistema disponível de segunda a sexta-feira, das 08h30 às 17h30.

RNF2: Autenticação dos usuários com seus cartões de identificação.

RNF3: Disposições de privacidade dos pacientes e dos seus dados.

Requisitos não-funcionais

- Podem afetar a arquitetura geral de um sistema
 - Ex: para garantir que os requisitos de desempenho sejam atendidos, precisamos
 - Organizar o sistema para minimizar a comunicação entre os componentes
 - Ex: Modulo de autenticação (login) -> Banco de dados

Classificação de requisitos não-funcionais

- Requisitos do produto: associados ao comportamento do software
 - Ex: desempenho, memória consumida pelo sistema, etc
- Requisitos organizacionais: derivados das políticas e procedimentos da organização do cliente e do desenvolvedor
 - o **Ex**: linguagens de programação, ambiente operacional, etc
- Requisitos externos: derivam de fatores externos ao sistema e seu processo de desenvolvimento
 - Ex: requisitos reguladores, legais, éticos, etc

Classificação de requisitos não-funcionais

- I Os requisitos de usuário e sistema são classificações baseadas nos aspectos funcionais de um software.
- II Os requisitos funcionais e não-funcionais descrevem um sistema de maneira detalhada e de maneira abstrata, respectivamente.
- III Os requisitos não funcionais não afetam a arquitetura geral do sistema.
- IV Requisitos não funcionais podem ser classificados em requisitos de produto, organizacionais ou externos. A primeira categoria possui requisitos derivado de políticas e procedimentos do cliente e do desenvolvedor, a segunda contem àqueles associados ao comportamento do software, e a ultima contém requisitos derivados de fatores externos ao sistema.
- Todas as assertivas são verdadeiras.
 Somente I e II.
 Somente III.
 Somente III e IV.
 Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

I - Os requisitos de usuário e sistema são classificações baseadas nos aspectos funcionais de um software.

II - Os requisitos funcionais e não-funcionais descrevem um sistema de maneira detalhada e de maneira abstrata, respectivamente.

III - Os requisitos não funcionais não afetam a arquitetura geral do sistema.

IV - Requisitos não funcionais podem ser classificados em requisitos de produto, organizacionais ou externos. A primeira categoria possui requisitos derivado de políticas e procedimentos do cliente e do desenvolvedor, a segunda contem àqueles associados ao comportamento do software, e a ultima contém requisitos derivados de fatores externos ao sistema. Todas as assertivas são verdadeiras.
 Somente I e II.
 Somente III.
 Somente III e IV.
 Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

I - Os requisitos de usuário e sistema são classificações baseadas nos aspectos funcionais de um software.

II - Os requisitos funcionais e não-funcionais descrevem um sistema de maneira detalhada e de maneira abstrata , respectivamente.

III - Os requisitos não funcionais não afetam a arquitetura geral do sistema.

IV - Requisitos não funcionais podem ser classificados em requisitos de produto, organizacionais ou externos. A primeira categoria possui requisitos derivado de políticas e procedimentos do cliente e do desenvolvedor, a segunda contem àqueles associados ao comportamento do software, e a ultima contém requisitos derivados de fatores externos ao sistema. Todas as assertivas são verdadeiras.
 Somente I e II.
 Somente III.
 Somente III e IV.
 Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

I - Os requisitos de usuário e sistema são classificações baseadas nos aspectos funcionais de um software.

II - Os requisitos funcionais e não-funcionais descrevem um sistema de maneira detalhada e de maneira abstrata , respectivamente.

III - Os requisitos não funcionais não afetam a arquitetura geral do sistema.

IV - Requisitos não funcionais podem ser classificados em requisitos de produto, organizacionais ou externos. A primeira categoria possui requisitos derivado de políticas e procedimentos do cliente e do desenvolvedor, a segunda contem àqueles associados ao comportamento do software, e a ultima contém requisitos derivados de fatores externos ao sistema. Todas as assertivas são verdadeiras.
 Somente I e II.
 Somente III.
 Somente III e IV.
 Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

I - Os requisitos de usuário e sistema são classificações baseadas nos aspectos funcionais de um software.

II - Os requisitos funcionais e não-funcionais descrevem um sistema de maneira detalhada e de maneira abstrata , respectivamente.

III - Os requisitos não funcionais não afetam a arquitetura geral do sistema.

IV - Requisitos não funcionais podem ser classificados em requisitos de produto, organizacionais ou externos. A primeira categoria possui requisitos derivado de políticas e procedimentos do cliente e do desenvolvedor, a segunda contem àqueles associados ao comportamento do software e a ultima contém requisitos derivados de fatores externos ao sistema.

- Todas as assertivas são verdadeiras.
- Somente I e II.
- Somente III.
- Somente III e IV.
 - Nenhuma das alternativas anteriores.

Dependência de requisitos

- Os requisitos não são independentes uns dos outros
 - Requisitos podem gerar ou restringir outros requisitos
 - Ex: Suponha um sistema com requisito de usuário 1 (RU1) de "limitação de acesso a usuários autorizados"
 - RU1 parece um requisito não-funcional, mas ele gera outros requisitos, como o requisito funcional 1 (RF1) de "autenticação de usuário no sistema"
 - **RF1** é funcional pois requer implementação de telas (login) e estruturas de dados (usuario, senha)

Imprecisão nos requisitos

- A imprecisão na especificação de requisitos causa problemas
 - Um desenvolvedor de sistemas pode interpretar um requisito ambíguo de uma maneira que simplifique a sua implementação
 - A implementação pode não atender à demanda do cliente
 - Definir novos requisitos e realizar alterações no sistema
 - Atrasos de entrega e aumento nos custos

Exemplo de Imprecisão nos requisitos

- Requisito: Usuário deve ser capaz de buscar as listas de agendamentos para todas as clínicas
 - Implementação 01: Dado um nome de paciente, o sistema procura por esse nome em todos os agendamentos de todas as clínicas

Exemplo de Imprecisão nos requisitos

- Requisito: Usuário deve ser capaz de buscar as listas de agendamentos para todas as clínicas
 - Implementação 01: Dado um nome de paciente, o sistema procura por esse nome em todos os agendamentos de todas as clínicas
 - Implementação 02: usuário escolhe uma clínica e realiza a pesquisa
 - Envolve mais entradas do usuário e necessita de mais tempo que a primeira implementação

Propriedades dos requisitos

Completude

Todos os serviços exigidos pelo usuário devem ser definidos

Consistencia

Os requisitos não devem ter definições contraditórias

É praticamente impossível alcançar completude e consistência dos requisitos em sistemas grandes ou complexos

Razão 01: Facilidade de cometer erros e omissões

Razão 02: Esses sistemas possuem muitos *stakeholders*, com necessidades diferentes (muitas vezes inconsistentes)

Diretrizes para completude e consistência de requisitos

- Padronização na descrição dos requisitos (especificação estruturada)
 - Definições de requisitos aderem a um formato padronizado
 - Templates (modelos) para especificar os requisitos de sistema
 - o Racional:
 - Torna menos provável omissões na descrição
 - Facilita a verificação dos requisitos

Método VOLERE

(ROBERTSON e ROBERTSON, 1999)

- Método para padronização da descrição dos requisitos
- Os requisitos de usuário são inicialmente escritos em cartões, um requisito por cartão
- Cada cartão tem um conjunto de campos, por exemplo:
 - Função (comportamento esperado)
 - Dependências de outros requisitos
 - Entrada / Saida
 - Colaterais / Ação / Condições

Bomba de insuli	na/Software de controle/SRS/3.3.2
Função	Calcula doses de insulina: nível seguro de açúcar.
Descrição	Calcula a dose de insulina a ser fornecida quando o nível de açúcar está na zona de segurança entre três e sete unidades.
Entradas	Leitura atual de açúcar (r2), duas leituras anteriores (r0 e r1).
Fonte	Leitura atual da taxa de açúcar pelo sensor. Outras leituras da memória.
Saídas	CompDose — a dose de insulina a ser fornecida.
Destino	Loop principal de controle.
Ação	CompDose é zero se o nível de açúcar está estável ou em queda ou se o nível está aumentando, mas a taxa de aumento está diminuindo. Se o nível está aumentando e a taxa de aumento está aumentando, então CompDose é calculado dividindo-se a diferença entre o nível atual de açúcar e o nível anterior por quatro e arredondando-se o resultado. Se o resultado é arredondado para zero, então CompDose é definida como a dose mínima que pode ser fornecida.
Requisitos	Duas leituras anteriores, de modo que a taxa de variação do nível de açúcar pode ser calculada.
Pré-condição	O reservatório de insulina contém, no mínimo, o máximo de dose única permitida de insulina.
Pós-condições	r0 é substituída por r1 e r1 é substituída por r2.
Efeitos colaterais	Nenhum.

- I Requisitos podem depender uns dos outros, pois um requisito pode gerar ou restringir outros.
- II A imprecisão na especificação de requisitos pode acarretar em problemas, pois requisitos pouco precisos fornecem maior flexibilidade aos desenvolvedores.
- III Idealmente, todos os requisitos devem possuir completude e consistência, descrevendo todos os serviços demandados pelo usuário, sem definições contraditórias.
- IV Sistemas grandes e complexos de alta qualidade possuem completude e consistência em todos os seus requisitos.

0	Todas as assertivas são verdadeiras.
0	Somente I.
0	Somente III.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

- I Requisitos podem depender uns dos outros, pois um requisito pode gerar ou restringir outros.
- II A imprecisão na especificação de requisitos pode acarretar em problemas, pois requisitos pouco precisos fornecem maior flexibilidade aos desenvolvedores.
- III Idealmente, todos os requisitos devem possuir completude e consistência, descrevendo todos os serviços demandados pelo usuário, sem definições contraditórias.
- IV Sistemas grandes e complexos de alta qualidade possuem completude e consistência em todos os seus requisitos.

0	Todas as assertivas são verdadeiras.
0	Somente I.
0	Somente III.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

- I Requisitos podem depender uns dos outros, pois um requisito pode gerar ou restringir outros.
- II A imprecisão na especificação de requisitos pode acarretar em problemas, pois requisitos pouco precisos fornecem maior flexibilidade aos desenvolvedores.
- III Idealmente, todos os requisitos devem possuir completude e consistência, descrevendo todos os serviços demandados pelo usuário, sem definições contraditórias.
- IV Sistemas grandes e complexos de alta qualidade possuem completude e consistência em todos os seus requisitos.

0	Todas as assertivas são verdadeiras.
0	Somente I.
0	Somente III.
0	Somente IV.
	Nenhuma das alternativas anteriores.

- I Requisitos podem depender uns dos outros, pois um requisito pode gerar ou restringir outros.
- II A imprecisão na especificação de requisitos pode acarretar em problemas, pois requisitos pouco precisos fornecem maior flexibilidade aos desenvolvedores.
- III Idealmente, todos os requisitos devem possuir completude e consistência, descrevendo todos os serviços demandados pelo usuário, sem definições contraditórias.
- IV Sistemas grandes e complexos de alta qualidade possuem completude e consistência em todos os seus requisitos.

0	Todas as assertivas são verdadeiras.
0	Somente I.
0	Somente III.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos , marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I Requisitos podem depender uns dos outros, pois um requisito pode gerar ou restringir outros.
- II A imprecisão na especificação de requisitos pode acarretar em problemas, pois requisitos pouco precisos fornecem maior flexibilidade aos desenvolvedores.
- III Idealmente, todos os requisitos devem possuir completude e consistência, descrevendo todos os serviços demandados pelo usuário, sem definições contraditórias.
- IV Sistemas grandes e complexos de alta qualidade possuem completude e consistência em todos os seus requisitos.

Todas as assertivas são verdadeiras.

O Somente I.

Somente III.

Somente IV.

Nenhuma das alternativas anteriores.

Diretrizes para completude e consistência de requisitos

- Destaque as partes fundamentais (negrito, itálico, cores)
- Use linguagem consistente para distinguir requisitos
 - Requisitos obrigatórios: o sistema DEVE fornecer
 - São essenciais
 - Requisitos desejáveis: o sistema PODE fornecer
 - São não essenciais

Propriedades dos requisitos

Completude

Todos os serviços exigidos pelo usuário devem ser definidos

Consistencia

Os requisitos n\u00e3o devem ter defini\u00f3\u00f3es contradit\u00f3rias

Testabilidade

Os requisitos devem ser, sempre que possivel, testáveis

Exemplos de requisitos testáveis

- Contra-exemplo (requisito NÃO TESTÁVEL):
 - O sistema com boa usabilidade pelo pessoal médico
 - Ele deve ser organizado de tal maneira que os erros dos usuários sejam minimizados

Exemplos de requisitos testáveis

• Contra-exemplo (requisito NÃO TESTÁVEL):

- O sistema com boa usabilidade pelo pessoal médico
- Ele deve ser organizado de tal maneira que os erros dos usuários sejam minimizados

Exemplo:

- Equipe médica deve ser capaz de usar todas as funções do sistema após 4 horas de treinamento.
- Após treinamento, a média de erros cometidos por usuários experientes não deve exceder 2 / hora de uso do sistema.

Méticas para avaliação de requisitos

Propriedade	Medida	
Velocidade	Transações processadas/segundo Tempo de resposta de usuário/evento Tempo de atualização de tela	
Tamanho	Megabytes Número de chips de memória ROM	
Facilidade de uso	Tempo de treinamento Número de frames de ajuda	
Confiabilidade	Tempo médio para falha Probabilidade de indisponibilidade Taxa de ocorrência de falhas Disponibilidade	
Robustez	Tempo de reinicio após falha Percentual de eventos que causam falhas Probabilidade de corrupção de dados em caso de falha	
Portabilidade	Percentual de declarações dependentes do sistema-alvo Número de sistemas-alvo	

Documento de requisitos de software

- É o objetivo final dos processos de engenharia de requisitos
- Também chamado de especificação de requisitos de software
- Declaração oficial do que deve ser implementado, contendo
 - Requisitos de usuário
 - Requisitos de sistema
- Pode ser subdividido em vários documentos, conforme a quantidade de requisitos

Norma IEEE para documento de requisitos (IEEE, 1998)

Capítulo	Descrição
Prefácio	Define os leitores do documento, descreve o histórico de versões e justificativa para criação de uma nova versão, resume as mudanças feitas de uma versão para outra
Introdução	Descreve as funções e interações do sistema com demais softwares, e como o sistema colabora para atingir os objetivos de negócio ou do cliente que o encomendou
Glossário	Define termos técnicos, sem supor experiencia ou conhecimentos prévios do leitor
Requisitos de usuário	Descreve de alto nível de requisitos funcionais, não-funcionais, normas de produto e processos a serem seguidas

Essa é uma norma **genérica**, que PODE ser adaptada conforme necessário para o projeto, metodologia de desenvolvimento e políticas da empresa 3

Norma IEEE para documento de requisitos (IEEE, 1998)

Arquitetura do sistema	Visão de alto nível da arquitetura do sistema, com os módulos e funções correspondentes
Requisitos do sistema	Descreve requisitos funcionais e não-funcionais detalhadamente.
Modelos do sistema	Descreve graficamente o relacionamento entre os componentes do sistema e entre o sistema e o meio externo
Evolução do sistema	Descreve os pressupostos do sistema, bem como mudanças previstas para a evolução do sistema
Apêndices	Fornece descrição de hardware, banco de dados e demais necessidades exigidas para o funcionamento do sistema

Finalidade do documento de requisitos

Usuário	Utilizam o documento de requisitos para
Clientes	Especificar e verificar requisitos
Gerentes	Planejar propostas e processo de desenvolvimento
Engenheiros de sistema	Entender o funcionamento do sistema
Engenheiros de testes	Desenvolver testes de validação do sistema
Engenheiros de manutenção	Entender o funcionamento do sistema

- I Pelo método VOLERE, os requisitos de usuário são escritos em cartões, sendo um requisito por cartão.
- II Cada cartão contem apenas um campo.
- III Os requisitos devem ser testáveis, sempre que possível.
- IV A especificação de requisitos de software, também chamada de documento de requisitos de software, pode ser subdividido em vários documentos, conforme necessário.

0	Somente I.
0	Somente I, III e IV.
0	Somente III.
0	Somente IV.
0	Nenhuma das alternativas anteriores

- I Pelo método VOLERE, os requisitos de usuário são escritos em cartões, sendo um requisito por cartão.
- II Cada cartão contem apenas um campo.
- III Os requisitos devem ser testáveis, sempre que possível.
- IV A especificação de requisitos de software, também chamada de documento de requisitos de software, pode ser subdividido em vários documentos, conforme necessário.

0	Somente I.
0	Somente I, III e IV.
0	Somente III.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos , marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I Pelo método VOLERE, os requisitos de usuário são escritos em cartões, sendo um requisito por cartão.
- II Cada cartão contem apenas um campo.
- III Os requisitos devem ser testáveis, sempre que possível.
- IV A especificação de requisitos de software, também chamada de documento de requisitos de software, pode ser subdividido em vários documentos, conforme necessário.

Somente I.

Somente I, III e IV.

Somente III.

Somente IV.

Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos , marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I Pelo método VOLERE, os requisitos de usuário são escritos em cartões, sendo um requisito por cartão.
- II Cada cartão contem apenas um campo.
- III Os requisitos devem ser testáveis, sempre que possível.
- IV A especificação de requisitos de software, também chamada de documento de requisitos de software, pode ser subdividido em vários documentos, conforme necessário.

Somente I.

Somente I, III e IV.

Somente III.

Somente IV.

Nenhuma das alternativas anteriores.

Considerando a engenharia de requisitos, marque a alternativa que Somente L contém somente as assertivas VERDADEIRAS. Somente I, III e IV. I - Pelo método VOLERE, os requisitos de usuário são escritos em cartões, Somente III. sendo um requisito por cartão. Somente IV. II - Cada cartão contem apenas um campo. Nenhuma das alternativas anteriores, III - Os requisitos devem ser testáveis, sempre que possível.

IV - A especificação de requisitos de software, também chamada de

documentos, conforme necessário.

documento de requisitos de software, pode ser subdividido em vários

Engenharia de requisitos

- É um processo que visa construir a especificação do sistema
 (documento de requisitos), composto pelas seguintes atividades:
 - Estudo de viabilidade: análise de viabilidade do sistema
 - Elicitação e análise: descoberta e análise de requisitos
 - Especificação: documentação dos requisitos
 - Validação: verificação dos requisitos

Visão em espiral da Engenharia de Requisitos

As atividades da engenharia de requisitos são intercaladas, sendo representadas como uma espiral

Estudo de viabilidade

- O software pode ser concebido, com as restrições legais, éticas e demais restrições aplicáveis?
- Qual o potencial do software de melhorar o modelo de negócios ou a lucratividade da empresa?
- Custo do sistema justifica seu benefício potencial para empresa?

- Engenheiros de software trabalham com clientes e usuários finais para obter informações sobre
 - Domínio da aplicação
 - Serviços oferecidos pelo sistema
 - Desempenho do sistema
 - Restrições de hardware
 - Demais informações importantes sobre o sistema

- Composta pelas seguintes atividades:
 - Descoberta de requisitos
 - Classificação e organização
 - Priorização e negociação
 - Especificação

Descoberta de requisitos:

interação com os stakeholders do sistema para descobrir seus requisitos

Descoberta de requisitos:

interação com os stakeholders do sistema para descobrir seus requisitos

Classificação e organização:

agrupa requisitos relacionados e os organiza em grupos coerentes

Descoberta de requisitos:

interação com os stakeholders do sistema para descobrir seus requisitos

Classificação e organização:

agrupa requisitos relacionados e os organiza em grupos coerentes

Priorização e negociação:

priorizar requisitos e resolver conflitos por meio da negociação de requisitos

- I O estudo de viabilidade identifica as restrições legais, éticas e demais restrições aplicáveis ao software, visando responder se o mesmo pode ser concebido ou não.
- II Na elicitação e análise de requisitos, os engenheiros de software precisam obter informações sobre o domínio da aplicação, serviços oferecidos pelo sistema, e demais informações relevantes sobre o sistema.
- III Na especificação de requisitos, há a análise dos requisitos.
- IV Na atividade de Validação, há a análise do potencial do software em melhorar o modelo de negócios da empresa.

0	Somente I.
0	Somente I e II.
0	Somente II
0	Somente II, III e IV.
0	Nenhuma das alternativas anteriores.

- I O estudo de viabilidade identifica as restrições legais, éticas e demais restrições aplicáveis ao software, visando responder se o mesmo pode ser concebido ou não.
- II Na elicitação e análise de requisitos, os engenheiros de software precisam obter informações sobre o domínio da aplicação, serviços oferecidos pelo sistema, e demais informações relevantes sobre o sistema.
- III Na especificação de requisitos, há a análise dos requisitos.
- IV Na atividade de Validação, há a análise do potencial do software em melhorar o modelo de negócios da empresa.

0	Somente I.
0	Somente I e II.
0	Somente II
0	Somente II, III e IV.
0	Nenhuma das alternativas anteriores.

- I O estudo de viabilidade identifica as restrições legais, éticas e demais restrições aplicáveis ao software, visando responder se o mesmo pode ser concebido ou não.
- II Na elicitação e análise de requisitos, os engenheiros de software precisam obter informações sobre o domínio da aplicação, serviços oferecidos pelo sistema, e demais informações relevantes sobre o sistema.
- III Na especificação de requisitos, há a análise dos requisitos.
- IV Na atividade de Validação, há a análise do potencial do software em melhorar o modelo de negócios da empresa.

0	Somente I.
0	Somente I e II.
0	Somente II
0	Somente II, III e IV.
0	Nenhuma das alternativas anteriores.

- I O estudo de viabilidade identifica as restrições legais, éticas e demais restrições aplicáveis ao software, visando responder se o mesmo pode ser concebido ou não.
- II Na elicitação e análise de requisitos, os engenheiros de software precisam obter informações sobre o domínio da aplicação, serviços oferecidos pelo sistema, e demais informações relevantes sobre o sistema.
- III Na especificação de requisitos, há a análise dos requisitos.
- IV Na atividade de Validação, há a análise do potencial do software em melhorar o modelo de negócios da empresa.

Considerando a engenharia de requisitos, marque a alternativa que Somente I. contém somente as assertivas VERDADEIRAS. Somente I e II. I - O estudo de viabilidade identifica as restrições legais, éticas e demais Somente II restrições aplicáveis ao software, visando responder se o mesmo pode ser concebido ou não. Somente II. III e IV. II - Na elicitação e análise de requisitos, os engenheiros de software precisam Nenhuma das alternativas anteriores. obter informações sobre o domínio da aplicação, serviços oferecidos pelo sistema, e demais informações relevantes sobre o sistema. III - Na especificação de requisitos, há a análise dos requisitos.

IV - Na atividade de Validação, há a análise do potencial do software em

melhorar o modelo de negócios da empresa.

Atividade

- Inicie a elaboração da especificação funcional e diagramas associados à elicitação e análise de requisitos
- Exemplos de documentos de especificação funcional (DEFs):
 - https://github.com/andre-romano/aulas/tree/master/eng_soft1 /especificacao_funcional
- Exemplos de diagramas UML com PlantUML:
 - https://github.com/andre-romano/aulas/tree/master/eng_soft1 /plantuml

Referencial Bibliográfico

SOMMERVILLE, Ian. Engenharia de Software. 6. ed.
 São Paulo: Addison-Wesley, 2003.

 PRESSMAN, Roger S. Engenharia de Software. São Paulo: Makron Books, 1995.

JUNIOR, H. E. Engenharia de Software na Prática.
 Novatec, 2010.