Finite Automata

Definition

Q =the finite set of states

 q_0 = the initial state

 $F \subset Q$ the final/accepting state

 Σ = the finite alphabet

Each direct edge represents a transition from a state to another, the letter on the edge causes the transition

 $\delta: Q \times \Sigma \to Q$, $\forall q \in Q$. $\forall a \in \Sigma$. $\exists!$ e labelled by a and going out of q

Example

$$Q = \{q_0, q_1, q_2, q_3\}, q_0 \text{ initial, } q_1, q_2 \in F, \Sigma = \{0,1\}. \delta = \text{edges input } 0110, \text{ then } q_0 \to q_1 \to q_3 \to q_3 \to q_1$$

Definition Deterministic finite automata (DFA) is a 5-tuple, $M = (Q, \Sigma, \delta, q_0, F)$ After the entire input string had been read, M accepts x IFF the resulting state is in F.

If M DFA, $\mathcal{L}(M) = \{x \in \Sigma^* \mid M \text{ accepts } x\}$ is the language accepted by M

Example For the example above, $\mathcal{L}(M) = \left\{ x \in \Sigma^* \mid \mathcal{L}\left((1(0+1)^*) + \left((0+1)^*0\right)\right) \right\}$

Definition Extended transition function is the state reached when starting in initial state and reading each letters of string s

Treading each letters of string s
$$\delta^*\colon Q\times \Sigma^*\to Q\coloneqq \delta^*(q,s)=\begin{cases} q\mid s=\lambda\\ \delta(\delta^*(q,x),a)\mid s=xa \end{cases} \text{ or } \delta^*(q,s)=\begin{cases} q\mid s=\lambda\\ \delta^*(\delta(q,a),x)\mid s=ax \end{cases}$$
 Then, L(M) = $\{x\in \Sigma^*\mid \delta^*(q_0,x)\in F\}$ is the set of all languages accepted by machine M

Example $L_2 = \mathcal{L}((0+1)^*1(0+1)) = \{x \in \{0,1\}^* \mid \text{the second letter is } 1\}$

Then, $\mathcal{L}(M) = L_2$, find M

Consider M, the last two letters are 10 or 11,

Take $\{q_{00}, q_{01}, q_{10}, q_{11}\}$ where q_{ii} : i, j are 2 last symbols read, hence $q_{10}, q_{11} \in F$

Proof Let $\begin{array}{l} L_q = \big\{ \, x \in \Sigma^* \; \big| \; \delta^* \big(q_0, x \big) = q \, \big\} \\ L_{q_{ab}} = \big\{ \, x \in \Sigma^* \; \big| \; ab \; is \; a \; suffix \; of \; x \, \big\} \\ L_{q_a} = \{a\} \\ L_{q_\lambda} = \{\lambda\} \\ \forall n \in \mathbb{N}. \, \forall x \in \Sigma^*. \, |x| = n \; IMPLIES \, \big(x \in \mathcal{L}(M) \; IFF \; x \in L_2 \big) \end{array}$

Example $L = \{x \in \{a, b\}^* \mid x \text{ contains at most 2 a's} \}$ $r = b^*(a + \lambda)b^*(a + \lambda)b^*$

$$\begin{split} A &= \left(\left\{ q_0, q_1, q_2, q_3 \right\}, \{a, b\}, \delta, q_0, \left\{ q_0, q_1, q_2 \right\} \right) \\ \delta \left(q_i, b \right) &= q_i \mid i = \{0, 1, 2, 3\} \\ \delta \left(q_i, a \right) &= q_i \mid i = \{0, 1, 2\} \\ \delta \left(q_3, a \right) &= q_3 \end{split}$$

Proof Call $L_i = \{x \in \{a, b\}^* \mid x \text{ has exactly i } a's \}$

 $\begin{aligned} &\text{For all } x \in \{a,b\}^*, P(x) \coloneqq \left(\delta^* \big(q_0,x\big) = q_3 \text{ IFF } x \notin \left(L_0 \cup L_1 \cup L_2\right)\right) \text{ AND } \left(\delta^* \big(q_0,x\big) = q_i \text{ IFF } x \in \left(L_0 \cup L_1 \cup L_2\right)\right) \end{aligned}$

Suppose $x = \lambda$, then $x \in L_0$, $\delta^*(q_0, \lambda) = q_0$

Let x be an arbitrary string, suppose P(x),

Suppose $x \in L_0$, then $\delta^*(q_0,x) = q_0$, $xa \in q_1$, $xb \in q_2$ $\delta^*(q_0,xb) = \delta(\delta^*(q_0,x),b) = \delta(q_0,b) = q_0, \delta^*(q_0,xa) = \delta(\delta^*(q_0,x),a) = \delta(q_0,b) = q_1$

Similarly prove for other 3 cases $(x \in L_1, x \in L_2, x \notin (L_0 \cup L_1 \cup L_3))$

Example
$$L = \{x \in \{a, b, c\}^* \mid x \text{ doesn't contain all letters }\}$$

$$r = (a + b)^* + (a + c)^* + (b + c)^*$$
DFA

NFA

