Al-assisted summary of suicide risk Formulation

Rajib Rana, Niall Higgins, Kazi N. Haque, John Reilly, Kylie Burke, Kathryn Turner, Anthony R. Pisani, Terry Stedman

https://arxiv.org/abs/2412.10388

Computation and Language (cs.CL); Computers and Society (cs.CY)

Background: Formulation, associated with suicide risk assessment, is an individualised process that seeks to understand the idiosyncratic nature and development of an individual's problems. Auditing clinical documentation on an electronic health record (EHR) is challenging as it requires resource-intensive manual efforts to identify keywords in relevant sections of specific forms. Furthermore, clinicians and healthcare professionals often do not use keywords; their clinical language can vary greatly and may contain various jargon and acronyms. Also, the relevant information may be recorded elsewhere. This study describes how we developed advanced Natural Language Processing (NLP) algorithms, a branch of Artificial Intelligence (AI), to analyse EHR data automatically. Method: Advanced Optical Character Recognition techniques were used to process unstructured data sets, such as portable document format (pdf) files. Free text data was cleaned and pre-processed using Normalisation of Free Text techniques. We developed algorithms and tools to unify the free text. Finally, the formulation was checked for the presence of each concept based on similarity using NLP-powered semantic matching techniques. Results: We extracted information indicative of formulation and assessed it to cover the relevant concepts. This was achieved using a Weighted Score to obtain a Confidence Level. Conclusion: The rigour to which formulation is completed is crucial to effectively using EHRs, ensuring correct and timely identification, engagement and interventions that may potentially avoid many suicide attempts and suicides.

Reinforcement Learning Enhanced LLMs: A Survey

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu, Guoyin Wang, Eduard Hovy https://arxiv.org/abs/2412.10400

1 0

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

This paper surveys research in the rapidly growing field of enhancing large language models (LLMs) with reinforcement learning (RL), a technique that enables LLMs to improve their performance by receiving feedback in the form of rewards based on the quality of their outputs, allowing them to generate more accurate, coherent, and contextually appropriate responses. In this work, we make a systematic review of the most up-to-date state of knowledge on RL-enhanced LLMs, attempting to consolidate and analyze the rapidly growing research in this field, helping researchers understand the current challenges and advancements. Specifically, we (1) detail the basics of RL; (2) introduce popular RL-enhanced LLMs; (3) review researches on two widely-used reward model-based RL techniques: Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF); and (4) explore Direct Preference Optimization (DPO), a set of methods that bypass the reward model to directly use human preference data for aligning LLM outputs with human expectations. We will also point out current challenges and deficiencies of existing methods and suggest some avenues for further improvements.

Evaluating Robustness of LLMs on Crisis-Related Microblogs across Events, Information Types, and Linguistic Features

Muhammad Imran, Abdul Wahab Ziaullah, Kai Chen, Ferda Ofli https://arxiv.org/abs/2412.10413

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Social and Information Networks (cs.SI)

The widespread use of microblogging platforms like X (formerly Twitter) during disasters provides real-time information to governments and response authorities. However, the data from these platforms is often noisy, requiring automated methods to filter relevant information. Traditionally, supervised machine learning models have been used, but they lack generalizability. In contrast, Large Language Models (LLMs) show better capabilities in understanding and processing natural language out of the box. This paper provides a detailed analysis of the performance of six well-known LLMs in processing disaster-related social media data from a large-set of real-world events. Our findings indicate that while LLMs, particularly GPT-40 and GPT-4, offer better generalizability across different disasters and information types, most LLMs face challenges in processing flood-related data, show minimal improvement despite the provision of examples (i.e., shots), and struggle to identify critical information categories like urgent requests and needs. Additionally, we examine how various linguistic features affect model performance and highlight LLMs' vulnerabilities against certain features like typos. Lastly, we provide benchmarking results for all events across both zero- and few-shot settings and observe that proprietary models outperform open-source ones in all tasks.

Exploring Complex Mental Health Symptoms via Classifying Social Media Data with Explainable LLMs

Kexin Chen, Noelle Lim, Claire Lee, Michael Guerzhoy https://arxiv.org/abs/2412.10414

Computation and Language (cs.CL)

We propose a pipeline for gaining insights into complex diseases by training LLMs on challenging social media text data classification tasks, obtaining explanations for the classification outputs, and performing qualitative and quantitative analysis on the explanations. We report initial results on predicting, explaining, and systematizing the explanations of predicted reports on mental health concerns in people reporting Lyme disease concerns. We report initial results on predicting future ADHD concerns for people reporting anxiety disorder concerns, and demonstrate preliminary results on visualizing the explanations for predicting that a person with anxiety concerns will in the future have ADHD concerns.

Generative Adversarial Reviews: When LLMs Become the Critic

Nicolas Bougie, Narimasa Watanabe https://arxiv.org/abs/2412.10415

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The peer review process is fundamental to scientific progress, determining which papers meet the quality standards for publication. Yet, the rapid growth of scholarly production and increasing specialization in knowledge areas strain traditional scientific feedback mechanisms. In light of this, we introduce Generative Agent Reviewers (GAR), leveraging LLM-empowered agents to simulate faithful peer reviewers. To enable generative reviewers, we design an architecture that extends a large language model with memory capabilities and equips agents with reviewer personas derived from historical data. Central to this approach is a graph-based representation of manuscripts, condensing content and logically organizing information - linking ideas with evidence and technical details. GAR's review process leverages external knowledge to evaluate paper novelty, followed by detailed assessment using the graph representation and multi-round assessment. Finally, a meta-reviewer aggregates individual reviews to predict the acceptance decision. Our experiments demonstrate that GAR performs comparably to human reviewers in providing detailed feedback and predicting paper outcomes. Beyond mere performance comparison, we conduct insightful experiments, such as evaluating the impact of reviewer expertise and examining fairness in reviews. By offering early expert-level feedback, typically restricted to a limited group of researchers, GAR democratizes access to transparent and in-depth evaluation.

SUPERMERGE: An Approach For Gradient-Based Model Merging

Haoyu Yang,Zheng Zhang,Saket Sathe https://arxiv.org/abs/2412.10416

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large language models, such as ChatGPT, Claude, or LLaMA, are gigantic, monolithic, and possess the superpower to simultaneously support thousands of tasks. However, high-throughput applications often prefer smaller task-specific models because of their lower latency and cost. One challenge of using task-specific models is the incremental need for solving newer tasks after the model is already deployed for existing tasks. A straightforward solution requires fine-tuning the model again for both existing and new tasks, which is computationally expensive and time-consuming. To address this issue, we propose a model merging based approach called SUPERMERGE. SUPERMERGE is a gradient-based method to systematically merge several fine-tuned models trained on existing and new tasks. SUPERMERGE is designed to be lightweight and fast, and the merged model achieves similar performance to fully fine-tuned models on all tasks. Furthermore, we proposed a hierarchical model merging strategy to reduce the peak space requirement without sacrificing the performance of the merged model. We experimentally demonstrate that SUPERMERGE outperforms existing model merging methods on common natural language processing and computer vision tasks.

Leveraging Audio and Text Modalities in Mental Health: A Study of LLMs Performance

Abdelrahman A. Ali,Aya E. Fouda,Radwa J. Hanafy,Mohammed E. Fouda https://arxiv.org/abs/2412.10417

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Mental health disorders are increasingly prevalent worldwide, creating an urgent need for innovative tools to support early diagnosis and intervention. This study explores the potential of Large Language Models (LLMs) in multimodal mental health diagnostics, specifically for detecting depression and Post Traumatic Stress Disorder through text and audio modalities. Using the E-DAIC dataset, we compare text and audio modalities to investigate whether LLMs can perform equally well or better with audio inputs. We further examine the integration of both modalities to determine if this can enhance diagnostic accuracy, which generally results in improved performance metrics. Our analysis specifically utilizes custom-formulated metrics; Modal Superiority Score and Disagreement Resolvement Score to evaluate how combined modalities influence model performance. The Gemini 1.5 Pro model achieves the highest scores in binary depression classification when using the combined modality, with an F1 score of 0.67 and a Balanced Accuracy (BA) of 77.4%, assessed across the full dataset. These results represent an increase of 3.1% over its performance with the text modality and 2.7% over the audio modality, highlighting the effectiveness of integrating modalities to enhance diagnostic accuracy. Notably, all results are obtained in zero-shot inferring, highlighting the robustness of the models without requiring task-specific fine-tuning. To explore the impact of different configurations on model performance, we conduct binary, severity, and multiclass tasks using both zero-shot and few-shot prompts, examining the effects of prompt variations on performance. The results reveal that models such as Gemini 1.5 Pro in text and audio modalities, and GPT-40 mini in the text modality, often surpass other models in balanced accuracy and F1 scores across multiple tasks.

Constrained Decoding with Speculative Lookaheads

Nishanth Nakshatri, Shamik Roy, Rajarshi Das, Suthee Chaidaroon, Leonid Boytsov, Rashmi Gangadharaiah https://arxiv.org/abs/2412.10418

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Constrained decoding with lookahead heuristics (CDLH) is a highly effective method for aligning LLM generations to human preferences. However, the extensive lookahead roll-out operations for each generated token makes CDLH prohibitively expensive, resulting in low adoption in practice. In contrast, common decoding strategies such as greedy decoding are extremely efficient, but achieve very low constraint satisfaction. We propose constrained decoding with speculative lookaheads (CDSL), a technique that significantly improves upon the inference efficiency of CDLH without experiencing the drastic performance reduction seen with greedy decoding. CDSL is motivated by the recently proposed idea of speculative decoding that uses a much smaller draft LLM for generation and a larger target LLM for verification. In CDSL, the draft model is used to generate lookaheads which is verified by a combination of target LLM and task-specific reward functions. This process accelerates decoding by reducing the computational burden while maintaining strong performance. We evaluate CDSL in two constraint decoding tasks with three LLM families and achieve 2.2x to 12.15x speedup over CDLH without significant performance reduction.

Personalized and Sequential Text-to-Image Generation

Ofir Nabati, Guy Tennenholtz, ChihWei Hsu, Moonkyung Ryu, Deepak Ramachandran, Yinlam Chow, Xiang Li, Craig Boutilier https://arxiv.org/abs/2412.10419

Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG); Systems and Control (eess.SY)

We address the problem of personalized, interactive text-to-image (T2I) generation, designing a reinforcement learning (RL) agent which iteratively improves a set of generated images for a user through a sequence of prompt expansions. Using human raters, we create a novel dataset of sequential preferences, which we leverage, together with large-scale open-source (non-sequential) datasets. We construct user-preference and user-choice models using an EM strategy and identify varying user preference types. We then leverage a large multimodal language model (LMM) and a value-based RL approach to suggest a personalized and diverse slate of prompt expansions to the user. Our Personalized And Sequential Text-to-image Agent (PASTA) extends T2I models with personalized multi-turn capabilities, fostering collaborative co-creation and addressing uncertainty or underspecification in a user's intent. We evaluate PASTA using human raters, showing significant improvement compared to baseline methods. We also release our sequential rater dataset and simulated user-rater interactions to support future research in personalized, multi-turn T2I generation.

AutoPrep: Natural Language Question-Aware Data Preparation with a Multi-Agent Framework

Meihao Fan, Ju Fan, Nan Tang, Lei Cao, Xiaoyong Du https://arxiv.org/abs/2412.10422

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Answering natural language (NL) questions about tables, which is referred to as Tabular Question Answering (TQA), is important because it enables users to extract meaningful insights quickly and efficiently from structured data, bridging the gap between human language and machine-readable formats. Many of these tables originate from web sources or real-world scenarios, necessitating careful data preparation (or data prep for short) to ensure accurate answers. However, unlike traditional data prep, question-aware data prep introduces new requirements, which include tasks such as column augmentation and filtering for given questions, and question-aware value normalization or conversion. Because each of the above tasks is unique, a single model (or agent) may not perform effectively across all scenarios. In this paper, we propose AUTOPREP, a large language model (LLM)-based multi-agent framework that leverages the strengths of multiple agents, each specialized in a certain type of data prep, ensuring more accurate and contextually relevant responses. Given an NL question over a table, AUTOPREP performs data prep through three key components. Planner: Determines a logical plan, outlining a sequence of high-level operations. Programmer: Translates this logical plan into a physical plan by generating the corresponding low-level code. Executor: Iteratively executes and debugs the generated code to ensure correct outcomes. To support this multi-agent framework, we

design a novel chain-of-thought reasoning mechanism for high-level operation suggestion, and a tool-augmented method for low-level code generation. Extensive experiments on real-world TQA datasets demonstrate that AUTOPREP can significantly improve the SOTA TQA solutions through question-aware data prep.

Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM

Shaoqing Zhang, Zhuosheng Zhang, Kehai Chen, Rongxiang Weng, Muyun Yang, Tiejun Zhao, Min Zhang https://arxiv.org/abs/2412.10423

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Despite being empowered with alignment mechanisms, large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks that can compromise their alignment mechanisms. This vulnerability poses significant risks to the real-world applications. Existing work faces challenges in both training efficiency and generalization capabilities (i.e., Reinforcement Learning from Human Feedback and Red-Teaming). Developing effective strategies to enable LLMs to resist continuously evolving jailbreak attempts represents a significant challenge. To address this challenge, we propose a novel defensive paradigm called GuidelineLLM, which assists LLMs in recognizing queries that may have harmful content. Before LLMs respond to a query, GuidelineLLM first identifies potential risks associated with the query, summarizes these risks into guideline suggestions, and then feeds these guidelines to the responding LLMs. Importantly, our approach eliminates the necessity for additional safety fine-tuning of the LLMs themselves; only the GuidelineLLM requires fine-tuning. This characteristic enhances the general applicability of GuidelineLLM across various LLMs. Experimental results demonstrate that GuidelineLLM can significantly reduce the attack success rate (ASR) against the LLMs (an average reduction of 34.17\% ASR) while maintaining the helpfulness of the LLMs in handling benign queries. Code is available atthis https URL.

LLM-AS-AN-INTERVIEWER: Beyond Static Testing Through Dynamic LLM Evaluation

Eunsu Kim, Juyoung Suk, Seungone Kim, Niklas Muennighoff, Dongkwan Kim, Alice Oh https://arxiv.org/abs/2412.10424

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

We introduce a novel evaluation paradigm for large language models (LLMs), LLM-as-an-Interviewer. This approach consists of a two stage process designed to assess the true capabilities of LLMs: first, modifying benchmark datasets to generate initial queries, and second, interacting with the LLM through feedback and follow up questions. Compared to existing evaluation methods such as LLM as a Judge, our framework addresses several limitations, including data contamination, verbosity bias, and self enhancement bias. Additionally, we show that our multi turn evaluation process provides valuable insights into the LLM's performance in real-world scenarios, including its adaptability to feedback and its ability to handle follow up questions, including clarification or requests for additional knowledge. Finally, we propose the Interview Report, which offers a comprehensive reflection of an LLM's strengths

and weaknesses, illustrated with specific examples from the interview process. This report delivers a snapshot of the LLM's capabilities, providing a detailed picture of its practical performance.

Active Inference for Self-Organizing Multi-LLM Systems: A Bayesian Thermodynamic Approach to Adaptation

Rithvik Prakki https://arxiv.org/abs/2412.10425

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

This paper introduces a novel approach to creating adaptive language agents by integrating active inference with large language models (LLMs). While LLMs demonstrate remarkable capabilities, their reliance on static prompts limits adaptation to new information and changing environments. We address this by implementing an active inference framework that acts as a cognitive layer above an LLM-based agent, dynamically adjusting prompts and search strategies through principled information-seeking behavior. Our framework models the environment using three state factors (prompt, search, and information states) with seven observation modalities capturing quality metrics. By framing the agent's learning through the free energy principle, we enable systematic exploration of prompt combinations and search strategies. Experimental results demonstrate the effectiveness of this approach, with the agent developing accurate models of environment dynamics evidenced by emergent structure in observation matrices. Action selection patterns reveal sophisticated exploration-exploitation behavior, transitioning from initial information-gathering to targeted prompt testing. The integration of thermodynamic principles with language model capabilities provides a principled framework for creating robust, adaptable agents, extending active inference beyond traditional low-dimensional control problems to high-dimensional, language-driven environments.

CAP: Evaluation of Persuasive and Creative Image Generation

Aysan Aghazadeh, Adriana Kovashka https://arxiv.org/abs/2412.10426

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Graphics (cs.GR)

We address the task of advertisement image generation and introduce three evaluation metrics to assess Creativity, prompt Alignment, and Persuasiveness (CAP) in generated advertisement images. Despite recent advancements in Text-to-Image (T2I) generation and their performance in generating high-quality images for explicit descriptions, evaluating these models remains challenging. Existing evaluation methods focus largely on assessing alignment with explicit, detailed descriptions, but evaluating alignment with visually implicit prompts remains an open problem. Additionally, creativity and persuasiveness are essential qualities that enhance the effectiveness of advertisement images, yet are seldom measured. To address this, we propose three novel metrics for evaluating the creativity, alignment, and persuasiveness of generated images. Our findings reveal that current T2I models struggle with creativity, persuasiveness, and alignment when the input text is implicit messages. We further introduce a simple yet effective approach to enhance T2I models' capabilities in producing

images that are better aligned, more creative, and more persuasive.

Identifying and Manipulating Personality Traits in LLMs Through Activation Engineering

Rumi A. Allbert, James K. Wiles https://arxiv.org/abs/2412.10427

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The field of large language models (LLMs) has grown rapidly in recent years, driven by the desire for better efficiency, interpretability, and safe use. Building on the novel approach of "activation engineering," this study explores personality modification in LLMs, drawing inspiration from research like Refusal in LLMs Is Mediated by a Single Direction (arXiv:2406.11717) and Steering Llama 2 via Contrastive Activation Addition (arXiv:2312.06681). We leverage activation engineering to develop a method for identifying and adjusting activation directions related to personality traits, which may allow for dynamic LLM personality fine-tuning. This work aims to further our understanding of LLM interpretability while examining the ethical implications of such developments.

Imitate Before Detect: Aligning Machine Stylistic Preference for Machine-Revised Text Detection

Jiaqi Chen,Xiaoye Zhu,Tianyang Liu,Ying Chen,Xinhui Chen,Yiwen Yuan,Chak Tou Leong,Zuchao Li,Tang Long,Lei Zhang,Chenyu Yan,Guanghao Mei,Jie Zhang,Lefei Zhang https://arxiv.org/abs/2412.10432

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Cryptography and Security (cs.CR)

Large Language Models (LLMs) have revolutionized text generation, making detecting machine-generated text increasingly challenging. Although past methods have achieved good performance on detecting pure machine-generated text, those detectors have poor performance on distinguishing machine-revised text (rewriting, expansion, and polishing), which can have only minor changes from its original human prompt. As the content of text may originate from human prompts, detecting machine-revised text often involves identifying distinctive machine styles, e.g., worded favored by LLMs. However, existing methods struggle to detect machine-style phrasing hidden within the content contributed by humans. We propose the "Imitate Before Detect" (ImBD) approach, which first imitates the machine-style token distribution, and then compares the distribution of the text to be tested with the machine-style distribution to determine whether the text has been machine-revised. To this end, we introduce style preference optimization (SPO), which aligns a scoring LLM model to the preference of text styles generated by machines. The aligned scoring model is then used to calculate the style-conditional probability curvature (Style-CPC), quantifying the log probability difference between the original and conditionally sampled texts for effective detection. We conduct extensive comparisons across various scenarios, encompassing text revisions by six LLMs, four distinct text domains, and three machine revision types. Compared to existing state-of-the-art methods, our method yields a 13% increase in AUC for detecting text revised by open-source LLMs, and improves performance by 5% and 19% for detecting GPT-3.5 and GPT-4o revised text, respectively. Notably, our method surpasses the commercially trained GPT-Zero with just \$1,000\$ samples and five minutes of SPO, demonstrating its efficiency and effectiveness.

NAT-NL2GQL: A Novel Multi-Agent Framework for Translating Natural Language to Graph Query Language

Yuanyuan Liang, Tingyu Xie, Gan Peng, Zihao Huang, Yunshi Lan, Weining Qian https://arxiv.org/abs/2412.10434

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Databases (cs.DB)

The emergence of Large Language Models (LLMs) has revolutionized many fields, not only traditional natural language processing (NLP) tasks. Recently, research on applying LLMs to the database field has been booming, and as a typical non-relational database, the use of LLMs in graph database research has naturally gained significant attention. Recent efforts have increasingly focused on leveraging LLMs to translate natural language into graph query language (NL2GQL). Although some progress has been made, these methods have clear limitations, such as their reliance on streamlined processes that often overlook the potential of LLMs to autonomously plan and collaborate with other LLMs in tackling complex NL2GQL challenges. To address this gap, we propose NAT-NL2GQL, a novel multi-agent framework for translating natural language to graph query language. Specifically, our framework consists of three synergistic agents: the Preprocessor agent, the Generator agent, and the Refiner agent. The Preprocessor agent manages data processing as context, including tasks such as name entity recognition, query rewriting, path linking, and the extraction of query-related schemas. The Generator agent is a fine-tuned LLM trained on NL-GQL data, responsible for generating corresponding GQL statements based on queries and their related schemas. The Refiner agent is tasked with refining the GQL or context using error information obtained from the GQL execution results. Given the scarcity of high-quality open-source NL2GQL datasets based on nGQL syntax, we developed StockGQL, a dataset constructed from a financial market graph database. It is available at:this https URL. Experimental results on the StockGQL and SpCQL datasets reveal that our method significantly outperforms baseline approaches, highlighting its potential for advancing NL2GQL research.

MGM: Global Understanding of Audience Overlap Graphs for Predicting the Factuality and the Bias of News Media

Muhammad Arslan Manzoor, Ruihong Zeng, Dilshod Azizov, Preslav Nakov, Shangsong Liang https://arxiv.org/abs/2412.10467

Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (stat.ML)

In the current era of rapidly growing digital data, evaluating the political bias and factuality of news outlets has become more important for seeking reliable information online. In this work, we study the classification problem of profiling news media from the lens of political bias and factuality. Traditional profiling methods, such as Pre-trained Language Models (PLMs) and Graph Neural Networks (GNNs) have shown promising results, but they face notable challenges. PLMs focus solely on textual features, causing them to overlook the complex relationships between entities, while GNNs often struggle with

media graphs containing disconnected components and insufficient labels. To address these limitations, we propose MediaGraphMind (MGM), an effective solution within a variational Expectation-Maximization (EM) framework. Instead of relying on limited neighboring nodes, MGM leverages features, structural patterns, and label information from globally similar nodes. Such a framework not only enables GNNs to capture long-range dependencies for learning expressive node representations but also enhances PLMs by integrating structural information and therefore improving the performance of both models. The extensive experiments demonstrate the effectiveness of the proposed framework and achieve new state-of-the-art results. Further, we share our repository1 which contains the dataset, code, and documentation

Do Large Language Models Show Biases in Causal Learning?

Maria Victoria Carro, Francisca Gauna Selasco, Denise Alejandra Mester, Margarita Gonzales, Mario A. Leiva, Maria Vanina Martinez, Gerardo I. Simari https://arxiv.org/abs/2412.10509

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Causal learning is the cognitive process of developing the capability of making causal inferences based on available information, often guided by normative principles. This process is prone to errors and biases, such as the illusion of causality, in which people perceive a causal relationship between two variables despite lacking supporting evidence. This cognitive bias has been proposed to underlie many societal problems, including social prejudice, stereotype formation, misinformation, and superstitious thinking. In this research, we investigate whether large language models (LLMs) develop causal illusions, both in real-world and controlled laboratory contexts of causal learning and inference. To this end, we built a dataset of over 2K samples including purely correlational cases, situations with null contingency, and cases where temporal information excludes the possibility of causality by placing the potential effect before the cause. We then prompted the models to make statements or answer causal questions to evaluate their tendencies to infer causation erroneously in these structured settings. Our findings show a strong presence of causal illusion bias in LLMs. Specifically, in open-ended generation tasks involving spurious correlations, the models displayed bias at levels comparable to, or even lower than, those observed in similar studies on human subjects. However, when faced with null-contingency scenarios or temporal cues that negate causal relationships, where it was required to respond on a 0-100 scale, the models exhibited significantly higher bias. These findings suggest that the models have not uniformly, consistently, or reliably internalized the normative principles essential for accurate causal learning.

DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts

Tobias Braun, Mark Rothermel, Marcus Rohrbach, Anna Rohrbach https://arxiv.org/abs/2412.10510

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

The proliferation of disinformation presents a growing threat to societal trust and democracy, necessitating robust and scalable Fact-Checking systems. In this work, we present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME frames the problem of fact-checking as a six-stage process, dynamically deciding about the usage of external tools for the retrieval of textual and visual evidence. In addition to the claim's veracity, DEFAME returns a justification accompanied by a comprehensive, multimodal fact-checking report. While most alternatives either focus on sub-tasks of fact-checking, lack explainability or are limited to text-only inputs, DEFAME solves the problem of fact-checking end-to-end, including claims with images or those that require visual evidence. Evaluation on the popular benchmarks VERITE, AVeriTeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing it as the new state-of-the-art fact-checking system.

Solving the Inverse Alignment Problem for Efficient RLHF

Shambhavi Krishna, Aishwarya Sahoo https://arxiv.org/abs/2412.10529

Machine Learning (cs.LG); Computation and Language (cs.CL)

Collecting high-quality preference datasets for reinforcement learning from human feedback (RLHF) is resource-intensive and challenging. As a result, researchers often train reward models on extensive offline datasets which aggregate diverse generation sources and scoring/alignment policies. We hypothesize that this aggregation has an averaging effect on reward model scores, which limits signal and impairs the alignment process. Inspired by the field of inverse RL, we define the 'inverse alignment problem' in language model training, where our objective is to optimize the critic's reward for a fixed actor and a fixed offline preference dataset. We hypothesize that solving the inverse alignment problem will improve reward model quality by providing clearer feedback on the policy's current behavior. To that end, we investigate whether repeatedly fine-tuning a reward model on subsets of the offline preference dataset aligned with a periodically frozen policy during RLHF improves upon vanilla RLHF. Our empirical results demonstrate that this approach facilitates superior alignment and faster convergence compared to using an unaligned or out-of-distribution reward model relative to the LLM policy.

On Adversarial Robustness and Out-of-Distribution Robustness of Large Language Models

April Yang, Jordan Tab, Parth Shah, Paul Kotchavong https://arxiv.org/abs/2412.10535

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The increasing reliance on large language models (LLMs) for diverse applications necessitates a thorough understanding of their robustness to adversarial perturbations and out-of-distribution (OOD) inputs. In this study, we investigate the correlation between adversarial robustness and OOD robustness in LLMs, addressing a critical gap in robustness evaluation. By applying methods originally designed to improve one robustness type across both contexts, we analyze their performance on

adversarial and out-of-distribution benchmark datasets. The input of the model consists of text samples, with the output prediction evaluated in terms of accuracy, precision, recall, and F1 scores in various natural language inference tasks. Our findings highlight nuanced interactions between adversarial robustness and OOD robustness, with results indicating limited transferability between the two robustness types. Through targeted ablations, we evaluate how these correlations evolve with different model sizes and architectures, uncovering model-specific trends: smaller models like LLaMA2-7b exhibit neutral correlations, larger models like LLaMA2-13b show negative correlations, and Mixtral demonstrates positive correlations, potentially due to domain-specific alignment. These results underscore the importance of hybrid robustness frameworks that integrate adversarial and OOD strategies tailored to specific models and domains. Further research is needed to evaluate these interactions across larger models and varied architectures, offering a pathway to more reliable and generalizable LLMs.

RAGServe: Fast Quality-Aware RAG Systems with Configuration Adaptation

Siddhant Ray,Rui Pan,Zhuohan Gu,Kuntai Du,Ganesh Ananthanarayanan,Ravi Netravali,Junchen Jiang

https://arxiv.org/abs/2412.10543

Machine Learning (cs.LG); Computation and Language (cs.CL); Information Retrieval (cs.IR)

RAG (Retrieval Augmented Generation) allows LLMs (large language models) to generate better responses with external knowledge, but using more external knowledge often improves generation quality at the expense of response delay. Prior work either reduces the response delay (through better scheduling of RAG queries) or strives to maximize quality (which involves tuning the RAG workflow), but they fall short in optimizing the tradeoff between the delay and quality of RAG responses. This paper presents RAGServe, the first RAG system that jointly schedules queries and adapts the key RAG configurations of each query, such as the number of retrieved text chunks and synthesis methods, in order to balance quality optimization and response delay reduction. Using 4 popular RAG-QA datasets, we show that compared with the state-of-the-art RAG optimization schemes, RAGServe reduces the generation latency by \$1.64-2.54\times\$ without sacrificing generation quality.

Too Big to Fool: Resisting Deception in Language Models

Mohammad Reza Samsami, Mats Leon Richter, Juan Rodriguez, Megh Thakkar, Sarath Chandar, Maxime Gasse https://arxiv.org/abs/2412.10558

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Large language models must balance their weight-encoded knowledge with in-context information from prompts to generate accurate responses. This paper investigates this interplay by analyzing how models of varying capacities within the same family handle intentionally misleading in-context information. Our experiments demonstrate that larger models exhibit higher resilience to deceptive prompts, showcasing an advanced ability to interpret and integrate prompt information with their

internal knowledge. Furthermore, we find that larger models outperform smaller ones in following legitimate instructions, indicating that their resilience is not due to disregarding in-context information. We also show that this phenomenon is likely not a result of memorization but stems from the models' ability to better leverage implicit task-relevant information from the prompt alongside their internally stored knowledge.

Evidence Contextualization and Counterfactual Attribution for Conversational QA over Heterogeneous Data with RAG Systems

Rishiraj Saha Roy, Joel Schlotthauer, Chris Hinze, Andreas Foltyn, Luzian Hahn, Fabian Kuech https://arxiv.org/abs/2412.10571

Computation and Language (cs.CL); Information Retrieval (cs.IR)

Retrieval Augmented Generation (RAG) works as a backbone for interacting with an enterprise's own data via Conversational Question Answering (ConvQA). In a RAG system, a retriever fetches passages from a collection in response to a question, which are then included in the prompt of a large language model (LLM) for generating a natural language (NL) answer. However, several RAG systems today suffer from two shortcomings: (i) retrieved passages usually contain their raw text and lack appropriate document context, negatively impacting both retrieval and answering quality; and (ii) attribution strategies that explain answer generation usually rely only on similarity between the answer and the retrieved passages, thereby only generating plausible but not causal explanations. In this work, we demonstrate RAGONITE, a RAG system that remedies the above concerns by: (i) contextualizing evidence with source metadata and surrounding text; and (ii) computing counterfactual attribution, a causal explanation approach where the contribution of an evidence to an answer is determined by the similarity of the original response to the answer obtained by removing that evidence. To evaluate our proposals, we release a new benchmark ConfQuestions, with 300 hand-created conversational questions, each in English and German, coupled with ground truth URLs, completed questions, and answers from 215 public Confluence pages, that are typical of enterprise wiki spaces with heterogeneous elements. Experiments with RAGONITE on ConfQuestions show the viability of our ideas: contextualization improves RAG performance, and counterfactual attribution is effective at explaining RAG answers.

WHAT-IF: Exploring Branching Narratives by Meta-Prompting Large Language Models

Runsheng "Anson" Huang,Lara J. Martin,Chris Callison-Burch https://arxiv.org/abs/2412.10582

Computation and Language (cs.CL)

WHAT-IF -- Writing a Hero's Alternate Timeline through Interactive Fiction -- is a system that uses zero-shot meta-prompting to create branching narratives from a prewritten story. Played as an interactive fiction (IF) game, WHAT-IF lets the player choose between decisions that the large language model (LLM) GPT-4 generates as possible branches in the story. Starting with an existing linear plot as input, a branch is created at each key decision taken by the main character. By

meta-prompting the LLM to consider the major plot points from the story, the system produces coherent and well-structured alternate storylines. WHAT-IF stores the branching plot tree in a graph which helps it to both keep track of the story for prompting and maintain the structure for the final IF system. A video demo of our system can be found here:this https URL.

Evaluation of GPT-40 & GPT-40-mini's Vision Capabilities for Salt Evaporite Identification

Deven B. Dangi, Beni B. Dangi, Oliver Steinbock https://arxiv.org/abs/2412.10587

Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Identifying salts from images of their 'stains' has diverse practical applications. While specialized AI models are being developed, this paper explores the potential of OpenAI's state-of-the-art vision models (GPT-4o and GPT-4o-mini) as an immediate solution. Testing with 12 different types of salts, the GPT-4o model achieved 57% accuracy and a 0.52 F1 score, significantly outperforming both random chance (8%) and GPT-4o mini (11% accuracy). Results suggest that current vision models could serve as an interim solution for salt identification from stain images.

BinarySelect to Improve Accessibility of Black-Box Attack Research

Shatarupa Ghosh, Jonathan Rusert https://arxiv.org/abs/2412.10617

Cryptography and Security (cs.CR); Computation and Language (cs.CL)

Adversarial text attack research is useful for testing the robustness of NLP models, however, the rise of transformers has greatly increased the time required to test attacks. Especially when researchers do not have access to adequate resources (e.g. GPUs). This can hinder attack research, as modifying one example for an attack can require hundreds of queries to a model, especially for black-box attacks. Often these attacks remove one token at a time to find the ideal one to change, requiring \$n\$ queries (the length of the text) right away. We propose a more efficient selection method called BinarySelect which combines binary search and attack selection methods to greatly reduce the number of queries needed to find a token. We find that BinarySelect only needs \$\text{log}_2(n) * 2\$ queries to find the first token compared to \$n\$ queries. We also test BinarySelect in an attack setting against 5 classifiers across 3 datasets and find a viable tradeoff between number of queries saved and attack effectiveness. For example, on the Yelp dataset, the number of queries is reduced by 32% (72 less) with a drop in attack effectiveness of only 5 points. We believe that BinarySelect can help future researchers study adversarial attacks and black-box problems more efficiently and opens the door for researchers with access to less resources.

Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data

Xue Wu, Kostas Tsioutsiouliklis https://arxiv.org/abs/2412.10654

Computation and Language (cs.CL); Machine Learning (cs.LG)

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. However, they often struggle with complex reasoning tasks and are prone to hallucination. Recent research has shown promising results in leveraging knowledge graphs (KGs) to enhance LLM performance. KGs provide a structured representation of entities and their relationships, offering a rich source of information that can enhance the reasoning capabilities of LLMs. For this work, we have developed different techniques that tightly integrate KG structures and semantics into LLM representations. Our results show that we are able to significantly improve the performance of LLMs in complex reasoning scenarios, and ground the reasoning process with KGs. We are the first to represent KGs with programming language and fine-tune pretrained LLMs with KGs. This integration facilitates more accurate and interpretable reasoning processes, paving the way for more advanced reasoning capabilities of LLMs.

Chasing Progress, Not Perfection: Revisiting Strategies for End-to-End LLM Plan Generation

Sukai Huang, Trevor Cohn, Nir Lipovetzky https://arxiv.org/abs/2412.10675

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The capability of Large Language Models (LLMs) to plan remains a topic of debate. Some critics argue that strategies to boost LLMs' reasoning skills are ineffective in planning tasks, while others report strong outcomes merely from training models on a planning corpus. This study reassesses recent strategies by developing an end-to-end LLM planner and employing diverse metrics for a thorough evaluation. We find that merely fine-tuning LLMs on a corpus of planning instances does not lead to robust planning skills, as indicated by poor performance on out-of-distribution test sets. At the same time, we find that various strategies, including Chain-of-Thought, do enhance the probability of a plan being executable. This indicates progress towards better plan quality, despite not directly enhancing the final validity rate. Among the strategies we evaluated, reinforcement learning with our novel `Longest Contiguous Common Subsequence' reward emerged as the most effective, contributing to both plan validity and executability. Overall, our research addresses key misconceptions in the LLM-planning literature; we validate incremental progress in plan executability, although plan validity remains a challenge. Hence, future strategies should focus on both these aspects, drawing insights from our findings.

Inference Scaling for Bridging Retrieval and Augmented Generation

Youngwon Lee, Seung-won Hwang, Daniel Campos, Filip Grali■ski, Zhewei Yao, Yuxiong He https://arxiv.org/abs/2412.10684

Computation and Language (cs.CL)

Retrieval-augmented generation (RAG) has emerged as a popular approach to steering the output of a large language model (LLM) by incorporating retrieved contexts as inputs. However, existing work observed the generator bias, such that improving the retrieval results may negatively affect the outcome. In this work, we show such bias can be mitigated, from inference scaling, aggregating inference calls from the permuted order of retrieved contexts. The proposed Mixture-of-Intervention (MOI) explicitly models the debiased utility of each passage with multiple forward passes to construct a new ranking. We also show that MOI can leverage the retriever's prior knowledge to reduce the computational cost by minimizing the number of permutations considered and lowering the cost per LLM call. We showcase the effectiveness of MOI on diverse RAG tasks, improving ROUGE-L on MS MARCO and EM on HotpotQA benchmarks by ~7 points.

Learning to Verify Summary Facts with Fine-Grained LLM Feedback

Jihwan Oh, Jeonghwan Choi, Nicole Hee-Yeon Kim, Taewon Yun, Hwanjun Song https://arxiv.org/abs/2412.10689

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Training automatic summary fact verifiers often faces the challenge of a lack of human-labeled data. In this paper, we explore alternative way of leveraging Large Language Model (LLM) generated feedback to address the inherent limitation of using human-labeled data. We introduce FineSumFact, a large-scale dataset containing fine-grained factual feedback on summaries. We employ 10 distinct LLMs for diverse summary generation and Llama-3-70B-Instruct for feedback. We utilize this dataset to fine-tune the lightweight open-source model Llama-3-8B-Instruct, optimizing resource efficiency while maintaining high performance. Our experimental results reveal that the model trained on extensive LLM-generated datasets surpasses that trained on smaller human-annotated datasets when evaluated using human-generated test sets. Fine-tuning fact verification models with LLM feedback can be more effective and cost-efficient than using human feedback. The dataset is available atthis https URL.

VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation

Manan Suri, Puneet Mathur, Franck Dernoncourt, Kanika Goswami, Ryan A. Rossi, Dinesh Manocha https://arxiv.org/abs/2412.10704

Computation and Language (cs.CL)

Understanding information from a collection of multiple documents, particularly those with visually rich elements, is important for document-grounded question answering. This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings with rich multimodal content, including tables, charts, and presentation slides. We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG, combining robust visual retrieval capabilities with sophisticated linguistic reasoning. VisDoMRAG employs a multi-step reasoning process encompassing evidence curation and chain-of-thought reasoning for concurrent textual and visual RAG pipelines. A key novelty of VisDoMRAG is its consistency-constrained modality fusion mechanism, which aligns the reasoning processes across modalities at inference time to produce a coherent final answer. This leads to enhanced accuracy in scenarios where critical information is distributed across modalities and improved answer verifiability through implicit context attribution. Through extensive experiments involving open-source and proprietary large language models, we benchmark state-of-the-art document QA methods on VisDoMBench. Extensive results show that VisDoMRAG outperforms unimodal and long-context LLM baselines for end-to-end multimodal document QA by 12-20%.

Efficient Adaptation of Multilingual Models for Japanese ASR

Mark Bajo, Haruka Fukukawa, Ryuji Morita, Yuma Ogasawara https://arxiv.org/abs/2412.10705

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Sound (cs.SD); Audio and Speech Processing (eess.AS)

This study explores fine-tuning multilingual ASR (Automatic Speech Recognition) models, specifically OpenAl's Whisper-Tiny, to improve performance in Japanese. While multilingual models like Whisper offer versatility, they often lack precision in specific languages. Conversely, monolingual models like ReazonSpeech excel in language-specific tasks but are less adaptable. Using Japanese-specific datasets and Low-Rank Adaptation (LoRA) along with end-to-end (E2E) training, we fine-tuned Whisper-Tiny to bridge this gap. Our results show that fine-tuning reduced Whisper-Tiny's Character Error Rate (CER) from 32.7 to 20.8 with LoRA and to 14.7 with end-to-end fine-tuning, surpassing Whisper-Base's CER of 20.2. However, challenges with domain-specific terms remain, highlighting the need for specialized datasets. These findings demonstrate that fine-tuning multilingual models can achieve strong language-specific performance while retaining their flexibility. This approach provides a scalable solution for improving ASR in resource-constrained environments and languages with complex writing systems like Japanese.

Towards Effective, Efficient and Unsupervised Social Event Detection in the Hyperbolic Space

Xiaoyan Yu, Yifan Wei, Shuaishuai Zhou, Zhiwei Yang, Li Sun, Hao Peng, Liehuang Zhu, Philip S. Yu https://arxiv.org/abs/2412.10712

Computation and Language (cs.CL)

The vast, complex, and dynamic nature of social message data has posed challenges to social event detection (SED). Despite considerable effort, these challenges persist, often resulting in inadequately expressive message representations (ineffective) and prolonged learning durations (inefficient). In response to the challenges, this work introduces an unsupervised framework, HyperSED (Hyperbolic SED). Specifically, the proposed framework first models social messages into semantic-based message anchors, and then leverages the structure of the anchor graph and the expressiveness of the hyperbolic space to acquire structure- and geometry-aware anchor representations. Finally, HyperSED builds the partitioning tree of the anchor message graph by incorporating differentiable structural information as the reflection of the detected events. Extensive experiments on public datasets demonstrate HyperSED's competitive performance, along with a substantial improvement in efficiency compared to the current state-of-the-art unsupervised paradigm. Statistically, HyperSED boosts incremental SED by an average of 2%, 2%, and 25% in NMI, AMI, and ARI, respectively; enhancing efficiency by up to 37.41 times and at least 12.10 times, illustrating the advancement of the proposed framework. Our code is publicly available atthis https URL.

HITgram: A Platform for Experimenting with n-gram Language Models

Shibaranjani Dasgupta, Chandan Maity, Somdip Mukherjee, Rohan Singh, Diptendu Dutta, Debasish Jana https://arxiv.org/abs/2412.10717

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large language models (LLMs) are powerful but resource intensive, limiting accessibility. HITgram addresses this gap by offering a lightweight platform for n-gram model experimentation, ideal for resource-constrained environments. It supports unigrams to 4-grams and incorporates features like context sensitive weighting, Laplace smoothing, and dynamic corpus management to e-hance prediction accuracy, even for unseen word sequences. Experiments demonstrate HITgram's efficiency, achieving 50,000 tokens/second and generating 2-grams from a 320MB corpus in 62 seconds. HITgram scales efficiently, constructing 4-grams from a 1GB file in under 298 seconds on an 8 GB RAM system. Planned enhancements include multilingual support, advanced smoothing, parallel processing, and model saving, further broadening its utility.

WEPO: Web Element Preference Optimization for LLM-based Web Navigation

Jiarun Liu, Jia Hao, Chunhong Zhang, Zheng Hu https://arxiv.org/abs/2412.10742

Computation and Language (cs.CL)

The rapid advancement of autonomous web navigation has significantly benefited from grounding pretrained Large Language Models (LLMs) as agents. However, current research has yet to fully leverage the redundancy of HTML elements for contrastive training. This paper introduces a novel approach to LLM-based web navigation tasks, called Web Element Preference Optimization (WEPO). WEPO utilizes unsupervised preference learning by sampling distance-based non-salient web elements as negative samples, optimizing maximum likelihood objective within Direct Preference

Optimization (DPO). We evaluate WEPO on the Mind2Web benchmark and empirically demonstrate that WEPO aligns user high-level intent with output actions more effectively. The results show that our method achieved the state-of-the-art, with an improvement of 13.8% over WebAgent and 5.3% over the visual language model CogAgent baseline. Our findings underscore the potential of preference optimization to enhance web navigation and other web page based tasks, suggesting a promising direction for future research.

Are Language Models Agnostic to Linguistically Grounded Perturbations? A Case Study of Indic Languages

Poulami Ghosh, Raj Dabre, Pushpak Bhattacharyya https://arxiv.org/abs/2412.10805

Computation and Language (cs.CL)

Pre-trained language models (PLMs) are known to be susceptible to perturbations to the input text, but existing works do not explicitly focus on linguistically grounded attacks, which are subtle and more prevalent in nature. In this paper, we study whether PLMs are agnostic to linguistically grounded attacks or not. To this end, we offer the first study addressing this, investigating different Indic languages and various downstream tasks. Our findings reveal that although PLMs are susceptible to linguistic perturbations, when compared to non-linguistic attacks, PLMs exhibit a slightly lower susceptibility to linguistic attacks. This highlights that even constrained attacks are effective. Moreover, we investigate the implications of these outcomes across a range of languages, encompassing diverse language families and different scripts.

FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs

Yixuan Liang, Yuncong Liu, Boyu Zhang, Christina Dan Wang, Hongyang Yang https://arxiv.org/abs/2412.10823

Computation and Language (cs.CL); Machine Learning (cs.LG); Computational Finance (q-fin.CP); Trading and Market Microstructure (q-fin.TR)

Financial sentiment analysis is crucial for understanding the influence of news on stock prices. Recently, large language models (LLMs) have been widely adopted for this purpose due to their advanced text analysis capabilities. However, these models often only consider the news content itself, ignoring its dissemination, which hampers accurate prediction of short-term stock movements. Additionally, current methods often lack sufficient contextual data and explicit instructions in their prompts, limiting LLMs' ability to interpret news. In this paper, we propose a data-driven approach that enhances LLM-powered sentiment-based stock movement predictions by incorporating news dissemination breadth, contextual data, and explicit instructions. We cluster recent company-related news to assess its reach and influence, enriching prompts with more specific data and precise instructions. This data is used to construct an instruction tuning dataset to fine-tune an LLM for predicting short-term stock price movements. Our experimental results show that our approach improves prediction accuracy by 8\% compared to existing methods.

Rethinking Chain-of-Thought from the Perspective of Self-Training

Zongqian Wu,Baoduo Xu,Ruochen Cui,Mengmeng Zhan,Xiaofeng Zhu,Lei Feng https://arxiv.org/abs/2412.10827

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Chain-of-thought (CoT) reasoning has emerged as an effective approach for activating latent capabilities in large language models (LLMs). We observe that CoT shares significant similarities with self-training in terms of their learning processes. Motivated by these parallels, this paper explores the underlying relationship between CoT and self-training, demonstrating how insights from self-training can enhance CoT performance. Specifically, our study first reveals that CoT, like self-training, follows the principle of semantic entropy minimization. Leveraging this insight, we propose a novel CoT framework that incorporates two key components: (i) a task-specific prompt module designed to guide LLMs in generating high-quality initial reasoning processes, and (ii) an adaptive reasoning iteration module for progressively refining the reasoning process.

Large Language Models for Medical Forecasting -- Foresight 2

Zeljko Kraljevic, Joshua Au Yeung, Daniel Bean, James Teo, Richard J. Dobson https://arxiv.org/abs/2412.10848

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Foresight 2 (FS2) is a large language model fine-tuned on hospital data for modelling patient timelines (GitHub 'removed for anon'). It can understand patients' clinical notes and predict SNOMED codes for a wide range of biomedical use cases, including diagnosis suggestions, risk forecasting, and procedure and medication recommendations. FS2 is trained on the free text portion of the MIMIC-III dataset, firstly through extracting biomedical concepts and then creating contextualised patient timelines, upon which the model is then fine-tuned. The results show significant improvement over the previous state-of-the-art for the next new biomedical concept prediction (P/R - 0.73/0.66 vs 0.52/0.32) and a similar improvement specifically for the next new disorder prediction (P/R - 0.69/0.62 vs 0.46/0.25). Finally, on the task of risk forecast, we compare our model to GPT-4-turbo (and a range of open-source biomedical LLMs) and show that FS2 performs significantly better on such tasks (P@5 - 0.90 vs 0.65). This highlights the need to incorporate hospital data into LLMs and shows that small models outperform much larger ones when fine-tuned on high-quality, specialised data.

Superhuman performance of a large language model on the reasoning tasks of a physician

Peter G. Brodeur, Thomas A. Buckley, Zahir Kanjee, Ethan Goh, Evelyn Bin Ling, Priyank Jain, Stephanie Cabral, Raja-Elie Abdulnour, Adrian Haimovich, Jason A. Freed, Andrew Olson, Daniel J. Morgan, Jason Hom, Robert Gallo, Eric Horvitz, Jonathan Chen, Arjun K. Manrai, Adam Rodman https://arxiv.org/abs/2412.10849

Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Performance of large language models (LLMs) on medical tasks has traditionally been evaluated using multiple choice question benchmarks. However, such benchmarks are highly constrained, saturated with repeated impressive performance by LLMs, and have an unclear relationship to performance in real clinical scenarios. Clinical reasoning, the process by which physicians employ critical thinking to gather and synthesize clinical data to diagnose and manage medical problems, remains an attractive benchmark for model performance. Prior LLMs have shown promise in outperforming clinicians in routine and complex diagnostic scenarios. We sought to evaluate OpenAl's o1-preview model, a model developed to increase run-time via chain of thought processes prior to generating a response. We characterize the performance of o1-preview with five experiments including differential diagnosis generation, display of diagnostic reasoning, triage differential diagnosis, probabilistic reasoning, and management reasoning, adjudicated by physician experts with validated psychometrics. Our primary outcome was comparison of the o1-preview output to identical prior experiments that have historical human controls and benchmarks of previous LLMs. Significant improvements were observed with differential diagnosis generation and quality of diagnostic and management reasoning. No improvements were observed with probabilistic reasoning or triage differential diagnosis. This study highlights o1-preview's ability to perform strongly on tasks that require complex critical thinking such as diagnosis and management while its performance on probabilistic reasoning tasks was similar to past models. New robust benchmarks and scalable evaluation of LLM capabilities compared to human physicians are needed along with trials evaluating AI in real clinical settings.

CRENER: A Character Relation Enhanced Chinese NER Model

Yaqiong Qiao, Shixuan Peng https://arxiv.org/abs/2412.10858

Computation and Language (cs.CL); Information Retrieval (cs.IR)

Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known

Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model.

A Novel End-To-End Event Geolocation Method Leveraging Hyperbolic Space and Toponym Hierarchies

Yaqiong Qiao, Guojun Huang https://arxiv.org/abs/2412.10870

Computation and Language (cs.CL)

Timely detection and geolocation of events based on social data can provide critical information for applications such as crisis response and resource allocation. However, most existing methods are greatly affected by event detection errors, leading to insufficient geolocation accuracy. To this end, this paper proposes a novel end-to-end event geolocation method (GTOP) leveraging Hyperbolic space and toponym hierarchies. Specifically, the proposed method contains one event detection module and one geolocation module. The event detection module constructs a heterogeneous information networks based on social data, and then constructs a homogeneous message graph and combines it with the text and time feature of the message to learning initial features of nodes. Node features are updated in Hyperbolic space and then fed into a classifier for event detection. To reduce the geolocation error, this paper proposes a noise toponym filtering algorithm (HIST) based on the hierarchical structure of toponyms. HIST analyzes the hierarchical structure of toponyms mentioned in the event cluster, taking the highly frequent city-level locations as the coarse-grained locations for events. By comparing the hierarchical structure of the toponyms within the cluster against those of the coarse-grained locations of events, HIST filters out noisy toponyms. To further improve the geolocation accuracy, we propose a fine-grained pseudo toponyms generation algorithm (FIT) based on the output of HIST, and combine generated pseudo toponyms with filtered toponyms to locate events based on the geographic center points of the combined toponyms. Extensive experiments are conducted on the Chinese dataset constructed in this paper and another public English dataset. The experimental results show that the proposed method is superior to the state-of-the-art baselines.

BgGPT 1.0: Extending English-centric LLMs to other languages

Anton Alexandrov, Veselin Raychev, Dimitar I. Dimitrov, Ce Zhang, Martin Vechev, Kristina Toutanova https://arxiv.org/abs/2412.10893

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

We present BgGPT-Gemma-2-27B-Instruct and BgGPT-Gemma-2-9B-Instruct: continually pretrained and fine-tuned versions of Google's Gemma-2 models, specifically optimized for Bulgarian language understanding and generation. Leveraging Gemma-2's multilingual capabilities and over 100 billion tokens of Bulgarian and English text data, our models demonstrate strong performance in Bulgarian language tasks, setting a new standard for language-specific AI models. Our approach maintains the robust capabilities of the original Gemma-2 models, ensuring that the English language performance remains intact. To preserve the base model capabilities, we incorporate continual learning strategies based on recent Branch-and-Merge techniques as well as thorough curation and selection of training

data. We provide detailed insights into our methodology, including the release of model weights with a commercial-friendly license, enabling broader adoption by researchers, companies, and hobbyists. Further, we establish a comprehensive set of benchmarks based on non-public educational data sources to evaluate models on Bulgarian language tasks as well as safety and chat capabilities. Our findings demonstrate the effectiveness of fine-tuning state-of-the-art models like Gemma 2 to enhance language-specific AI applications while maintaining cross-lingual capabilities.

SusGen-GPT: A Data-Centric LLM for Financial NLP and Sustainability Report Generation

Qilong Wu,Xiaoneng Xiang,Hejia Huang,Xuan Wang,Yeo Wei Jie,Ranjan Satapathy,Ricardo Shirota Filho,Bharadwaj Veeravalli https://arxiv.org/abs/2412.10906

Computation and Language (cs.CL); Computational Engineering, Finance, and Science (cs.CE); Machine Learning (cs.LG); Computational Finance (q-fin.CP)

The rapid growth of the financial sector and the rising focus on Environmental, Social, and Governance (ESG) considerations highlight the need for advanced NLP tools. However, open-source LLMs proficient in both finance and ESG domains remain scarce. To address this gap, we introduce SusGen-30K, a category-balanced dataset comprising seven financial NLP tasks and ESG report generation, and propose TCFD-Bench, a benchmark for evaluating sustainability report generation. Leveraging this dataset, we developed SusGen-GPT, a suite of models achieving state-of-the-art performance across six adapted and two off-the-shelf tasks, trailing GPT-4 by only 2% despite using 7-8B parameters compared to GPT-4's 1,700B. Based on this, we propose the SusGen system, integrated with Retrieval-Augmented Generation (RAG), to assist in sustainability report generation. This work demonstrates the efficiency of our approach, advancing research in finance and ESG.

Quantifying Extreme Opinions on Reddit Amidst the 2023 Israeli-Palestinian Conflict

Alessio Guerra, Marcello Lepre, Oktay Karakus https://arxiv.org/abs/2412.10913

Social and Information Networks (cs.SI); Computation and Language (cs.CL)

This study investigates the dynamics of extreme opinions on social media during the 2023 Israeli-Palestinian conflict, utilising a comprehensive dataset of over 450,000 posts from four Reddit subreddits (r/Palestine, r/Judaism, r/IsraelPalestine, and r/worldnews). A lexicon-based, unsupervised methodology was developed to measure "extreme opinions" by considering factors such as anger, polarity, and subjectivity. The analysis identifies significant peaks in extremism scores that correspond to pivotal real-life events, such as the IDF's bombings of Al Quds Hospital and the Jabalia Refugee Camp, and the end of a ceasefire following a terrorist attack. Additionally, this study explores the distribution and correlation of these scores across different subreddits and over time, providing insights into the propagation of polarised sentiments in response to conflict events. By examining the quantitative effects of each score on extremism and analysing word cloud similarities through Jaccard

indices, the research offers a nuanced understanding of the factors driving extreme online opinions. This approach underscores the potential of social media analytics in capturing the complex interplay between real-world events and online discourse, while also highlighting the limitations and challenges of measuring extremism in social media contexts.

LLMs-in-the-Loop Part 2: Expert Small AI Models for Anonymization and De-identification of PHI Across Multiple Languages

Murat Gunay, Bunyamin Keles, Raife Hizlan https://arxiv.org/abs/2412.10918

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The rise of chronic diseases and pandemics like COVID-19 has emphasized the need for effective patient data processing while ensuring privacy through anonymization and de-identification of protected health information (PHI). Anonymized data facilitates research without compromising patient confidentiality. This paper introduces expert small AI models developed using the LLM-in-the-loop methodology to meet the demand for domain-specific de-identification NER models. These models overcome the privacy risks associated with large language models (LLMs) used via APIs by eliminating the need to transmit or store sensitive data. More importantly, they consistently outperform LLMs in de-identification tasks, offering superior performance and reliability. Our de-identification NER models, developed in eight languages (English, German, Italian, French, Romanian, Turkish, Spanish, and Arabic) achieved f1-micro score averages of 0.966, 0.975, 0.976, 0.970, 0.964, 0.974, 0.978, and 0.953 respectively. These results establish them as the most accurate healthcare anonymization solutions. surpassing existing small models and even general-purpose LLMs such as GPT-4o. While Part-1 of this series introduced the LLM-in-the-loop methodology for bio-medical document translation, this second paper showcases its success in developing cost-effective expert small NER models in de-identification tasks. Our findings lay the groundwork for future healthcare AI innovations, including biomedical entity and relation extraction, demonstrating the value of specialized models for domain-specific challenges.

Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning

Julia Witte Zimmerman, Denis Hudon, Kathryn Cramer, Alejandro J. Ruiz, Calla Beauregard, Ashley Fehr, Mikaela Irene Fudolig, Bradford Demarest, Yoshi Meke Bird, Milo Z. Trujillo, Christopher M. Danforth, Peter Sheridan Dodds https://arxiv.org/abs/2412.10924

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Tokenization is a necessary component within the current architecture of many language models, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DM) is sufficient for reasonably human-like language performance, and that the emergence of human-meaningful linguistic units among tokens motivates linguistically-informed

interventions in existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) semantic primitives and as (2) vehicles for conveying salient distributional patterns from human language to the model. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating sub-optimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokenization pretraining can be a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being meaningfully insulated from the main system intelligence.

Enhancing Discoverability in Enterprise Conversational Systems with Proactive Question Suggestions

Xiaobin Shen, Daniel Lee, Sumit Ranjan, Sai Sree Harsha, Pawan Sevak, Yunyao Li https://arxiv.org/abs/2412.10933

Computation and Language (cs.CL)

Enterprise conversational AI systems are becoming increasingly popular to assist users in completing daily tasks such as those in marketing and customer management. However, new users often struggle to ask effective questions, especially in emerging systems with unfamiliar or evolving capabilities. This paper proposes a framework to enhance question suggestions in conversational enterprise AI systems by generating proactive, context-aware questions that try to address immediate user needs while improving feature discoverability. Our approach combines periodic user intent analysis at the population level with chat session-based question generation. We evaluate the framework using real-world data from the AI Assistant for Adobe Experience Platform (AEP), demonstrating the improved usefulness and system discoverability of the AI Assistant.

Human-Centric NLP or Al-Centric Illusion?: A Critical Investigation

Piyapath T Spencer https://arxiv.org/abs/2412.10939

Computers and Society (cs.CY); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Human-Computer Interaction (cs.HC)

Human-Centric NLP often claims to prioritise human needs and values, yet many implementations reveal an underlying Al-centric focus. Through an analysis of case studies in language modelling, behavioural testing, and multi-modal alignment, this study identifies a significant gap between the ideas of human-centricity and actual practices. Key issues include misalignment with human-centred design principles, the reduction of human factors to mere benchmarks, and insufficient consideration of real-world impacts. The discussion explores whether Human-Centric NLP embodies true human-centred design, emphasising the need for interdisciplinary collaboration and ethical considerations. The paper advocates for a redefinition of Human-Centric NLP, urging a broader focus on real-world utility and societal implications to ensure that language technologies genuinely serve and

empower users.

Can LLMs Help Create Grammar?: Automating Grammar Creation for Endangered Languages with In-Context Learning

Piyapath T Spencer, Nanthipat Kongborrirak https://arxiv.org/abs/2412.10960

Computation and Language (cs.CL)

Yes! In the present-day documenting and preserving endangered languages, the application of Large Language Models (LLMs) presents a promising approach. This paper explores how LLMs, particularly through in-context learning, can assist in generating grammatical information for low-resource languages with limited amount of data. We takes Moklen as a case study to evaluate the efficacy of LLMs in producing coherent grammatical rules and lexical entries using only bilingual dictionaries and parallel sentences of the unknown language without building the model from scratch. Our methodology involves organising the existing linguistic data and prompting to efficiently enable to generate formal XLE grammar. Our results demonstrate that LLMs can successfully capture key grammatical structures and lexical information, although challenges such as the potential for English grammatical biases remain. This study highlights the potential of LLMs to enhance language documentation efforts, providing a cost-effective solution for generating linguistic data and contributing to the preservation of endangered languages.

Navigating Dialectal Bias and Ethical Complexities in Levantine Arabic Hate Speech Detection

Ahmed Haj Ahmed, Rui-Jie Yew, Xerxes Minocher, Suresh Venkatasubramanian https://arxiv.org/abs/2412.10991

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY)

Social media platforms have become central to global communication, yet they also facilitate the spread of hate speech. For underrepresented dialects like Levantine Arabic, detecting hate speech presents unique cultural, ethical, and linguistic challenges. This paper explores the complex sociopolitical and linguistic landscape of Levantine Arabic and critically examines the limitations of current datasets used in hate speech detection. We highlight the scarcity of publicly available, diverse datasets and analyze the consequences of dialectal bias within existing resources. By emphasizing the need for culturally and contextually informed natural language processing (NLP) tools, we advocate for a more nuanced and inclusive approach to hate speech detection in the Arab world.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong Lin, Rui Pan, Hanze Dong, Dylan Zhang, Pavlo Molchanov, Tong Zhang https://arxiv.org/abs/2412.11006

Machine Learning (cs.LG); Computation and Language (cs.CL)

Large language models (LLMs) have shown promise in performing complex multi-step reasoning, yet they continue to struggle with mathematical reasoning, often making systematic errors. A promising solution is reinforcement learning (RL) guided by reward models, particularly those focusing on process rewards, which score each intermediate step rather than solely evaluating the final outcome. This approach is more effective at guiding policy models towards correct reasoning trajectories. In this work, we propose an entropy-regularized process reward model (ER-PRM) that integrates KL-regularized Markov Decision Processes (MDP) to balance policy optimization with the need to prevent the policy from shifting too far from its initial distribution. We derive a novel reward construction method based on the theoretical results. Our theoretical analysis shows that we could derive the optimal reward model from the initial policy sampling. Our empirical experiments on the MATH and GSM8K benchmarks demonstrate that ER-PRM consistently outperforms existing process reward models, achieving 1% improvement on GSM8K and 2-3% improvement on MATH under best-of-N evaluation, and more than 1% improvement under RLHF. These results highlight the efficacy of entropy-regularization in enhancing LLMs' reasoning capabilities.

Dual Traits in Probabilistic Reasoning of Large Language Models

Shenxiong Li, Huaxia Rui https://arxiv.org/abs/2412.11009

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Computers and Society (cs.CY)

We conducted three experiments to investigate how large language models (LLMs) evaluate posterior probabilities. Our results reveal the coexistence of two modes in posterior judgment among state-of-the-art models: a normative mode, which adheres to Bayes' rule, and a representative-based mode, which relies on similarity -- paralleling human System 1 and System 2 thinking. Additionally, we observed that LLMs struggle to recall base rate information from their memory, and developing prompt engineering strategies to mitigate representative-based judgment may be challenging. We further conjecture that the dual modes of judgment may be a result of the contrastive loss function employed in reinforcement learning from human feedback. Our findings underscore the potential direction for reducing cognitive biases in LLMs and the necessity for cautious deployment of LLMs in critical areas.

A Contextualized BERT model for Knowledge Graph Completion

Haji Gul, Abdul Ghani Naim, Ajaz A. Bhat https://arxiv.org/abs/2412.11016

Computation and Language (cs.CL); Machine Learning (cs.LG)

Knowledge graphs (KGs) are valuable for representing structured, interconnected information across domains, enabling tasks like semantic search, recommendation systems and inference. A pertinent challenge with KGs, however, is that many entities (i.e., heads, tails) or relationships are unknown. Knowledge Graph Completion (KGC) addresses this by predicting these missing nodes or links, enhancing the graph's informational depth and utility. Traditional methods like TransE and ComplEx predict tail entities but struggle with unseen entities. Textual-based models leverage additional semantics but come with high computational costs, semantic inconsistencies, and data imbalance issues. Recent LLM-based models show improvement but overlook contextual information and rely heavily on entity descriptions. In this study, we introduce a contextualized BERT model for KGC that overcomes these limitations by utilizing the contextual information from neighbouring entities and relationships to predict tail entities. Our model eliminates the need for entity descriptions and negative triplet sampling, reducing computational demands while improving performance. Our model outperforms state-of-the-art methods on standard datasets, improving Hit@1 by 5.3% and 4.88% on FB15k-237 and WN18RR respectively, setting a new benchmark in KGC.

Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models

Di Wu,Xin Lu, Yanyan Zhao,Bing Qin https://arxiv.org/abs/2412.11041

Computation and Language (cs.CL)

Although large language models (LLMs) achieve effective safety alignment at the time of release, they still face various safety challenges. A key issue is that fine-tuning often compromises the safety alignment of LLMs. To address this issue, we propose a method named \textbf{IRR} (\textbf{I}\dentify, \textbf{R}\emove, and \textbf{R}\ecalibrate for Safety Realignment) that performs safety realignment for LLMs. The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones. We evaluate the effectiveness of IRR across various datasets, including both full fine-tuning and LoRA methods. Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks, while maintaining their performance on downstream tasks. The source code is available at: \url{this https URL}.

NITRO: LLM Inference on Intel Laptop NPUs

Anthony Fei, Mohamed S. Abdelfattah https://arxiv.org/abs/2412.11053

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large Language Models (LLMs) have become essential tools in natural language processing, finding large usage in chatbots such as ChatGPT and Gemini, and are a central area of research. A particular area of interest includes designing hardware specialized for these AI applications, with one such example being the neural processing unit (NPU). In 2023, Intel released the Intel Core Ultra processor with codename Meteor Lake, featuring a CPU, GPU, and NPU system-on-chip. However, official

software support for the NPU through Intel's OpenVINO framework is limited to static model inference. The dynamic nature of autoregressive token generation in LLMs is therefore not supported out of the box. To address this shortcoming, we present NITRO (NPU Inference for Transformers Optimization), a Python-based framework built on top of OpenVINO to support text and chat generation on NPUs. In this paper, we discuss in detail the key modifications made to the transformer architecture to enable inference, some performance benchmarks, and future steps towards improving the package. The code repository for NITRO can be found here:this https URL.

LAW: Legal Agentic Workflows for Custody and Fund Services Contracts

William Watson, Nicole Cho, Nishan Srishankar, Zhen Zeng, Lucas Cecchi, Daniel Scott, Suchetha Siddagangappa, Rachneet Kaur, Tucker Balch, Manuela Veloso https://arxiv.org/abs/2412.11063

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Software Engineering (cs.SE)

Legal contracts in the custody and fund services domain govern critical aspects such as key provider responsibilities, fee schedules, and indemnification rights. However, it is challenging for an off-the-shelf Large Language Model (LLM) to ingest these contracts due to the lengthy unstructured streams of text, limited LLM context windows, and complex legal jargon. To address these challenges, we introduce LAW (Legal Agentic Workflows for Custody and Fund Services Contracts). LAW features a modular design that responds to user queries by orchestrating a suite of domain-specific tools and text agents. Our experiments demonstrate that LAW, by integrating multiple specialized agents and tools, significantly outperforms the baseline. LAW excels particularly in complex tasks such as calculating a contract's termination date, surpassing the baseline by 92.9% points. Furthermore, LAW offers a cost-effective alternative to traditional fine-tuned legal LLMs by leveraging reusable, domain-specific tools.

Hanprome: Modified Hangeul for Expression of foreign language pronunciation

Wonchan Kim, Michelle Meehyun Kim https://arxiv.org/abs/2412.11090

Sound (cs.SD); Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)

Hangeul was created as a phonetic alphabet and is known to have the best 1:1 correspondence between letters and pronunciation among existing alphabets. In this paper, we examine the possibility of modifying the basic form of Hangeul and using it as a kind of phonetic symbol. The core concept of this approach is to preserve the basic form of the alphabet, modifying only the shape of a stroke rather than the letter itself. To the best of our knowledge, no previous attempts in any language have been made to express pronunciations of an alphabet different from the original simply by changing the shape of the alphabet strokes, and this paper is probably the first attempt in this direction.

Feature engineering vs. deep learning for paper section identification: Toward applications in Chinese medical literature

Sijia Zhou,Xin Li https://arxiv.org/abs/2412.11125

Computation and Language (cs.CL); Machine Learning (cs.LG)

Section identification is an important task for library science, especially knowledge management. Identifying the sections of a paper would help filter noise in entity and relation extraction. In this research, we studied the paper section identification problem in the context of Chinese medical literature analysis, where the subjects, methods, and results are more valuable from a physician's perspective. Based on previous studies on English literature section identification, we experiment with the effective features to use with classic machine learning algorithms to tackle the problem. It is found that Conditional Random Fields, which consider sentence interdependency, is more effective in combining different feature sets, such as bag-of-words, part-of-speech, and headings, for Chinese literature section identification. Moreover, we find that classic machine learning algorithms are more effective than generic deep learning models for this problem. Based on these observations, we design a novel deep learning model, the Structural Bidirectional Long Short-Term Memory (SLSTM) model, which models word and sentence interdependency together with the contextual information. Experiments on a human-curated asthma literature dataset show that our approach outperforms the traditional machine learning methods and other deep learning methods and achieves close to 90% precision and recall in the task. The model shows good potential for use in other text mining tasks. The research has significant methodological and practical implications.

AD-LLM: Benchmarking Large Language Models for Anomaly Detection

Tiankai Yang, Yi Nian, Shawn Li, Ruiyao Xu, Yuangang Li, Jiaqi Li, Zhuo Xiao, Xiyang Hu, Ryan Rossi, Kaize Ding, Xia Hu, Yue Zhao https://arxiv.org/abs/2412.11142

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.

The Superalignment of Superhuman Intelligence with Large Language Models

Minlie Huang, Yingkang Wang, Shiyao Cui, Pei Ke, Jie Tang https://arxiv.org/abs/2412.11145

Computation and Language (cs.CL)

We have witnessed superhuman intelligence thanks to the fast development of large language models and multimodal language models. As the application of such superhuman models becomes more and more common, a critical question rises here: how can we ensure superhuman models are still safe, reliable and aligned well to human values? In this position paper, we discuss the concept of superalignment from the learning perspective to answer this question by outlining the learning paradigm shift from large-scale pretraining, supervised fine-tuning, to alignment training. We define superalignment as designing effective and efficient alignment algorithms to learn from noisy-labeled data (point-wise samples or pair-wise preference data) in a scalable way when the task becomes very complex for human experts to annotate and the model is stronger than human experts. We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation. We then present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing. We discuss some important research problems in each component of this framework and highlight some interesting research ideas that are closely related to our proposed framework, for instance, self-alignment, self-play, self-refinement, and more. Last, we highlight some future research directions for superalignment, including identification of new emergent risks and multi-dimensional alignment.

Cultural Palette: Pluralising Culture Alignment via Multi-agent Palette

Jiahao Yuan, Zixiang Di, Shangzixin Zhao, Usman Naseem https://arxiv.org/abs/2412.11167

Computation and Language (cs.CL)

Large language models (LLMs) face challenges in aligning with diverse cultural values despite their remarkable performance in generation, which stems from inherent monocultural biases and difficulties in capturing nuanced cultural semantics. Existing methods lack adaptability to unkown culture after finetuning. Inspired by cultural geography across five continents, we propose Cultural Palette, a multi-agent framework for cultural alignment. We first introduce the Pentachromatic Cultural Palette Dataset synthesized using LLMs to capture diverse cultural values from social dialogues across five continents. Building on this, Cultural Palette integrates five continent-level alignment agents with a meta-agent using our superior Cultural MoErges alignment technique by dynamically activating relevant cultural expertise based on user prompts to adapting new culture, which outperforms other joint and merging alignment strategies in overall cultural value alignment. Each continent agent generates a

cultural draft, which is then refined and self-regulated by the meta-agent to produce the final culturally aligned response. Experiments across various countries demonstrate that Cultural Palette surpasses existing baselines in cultural alignment.

Unpacking the Resilience of SNLI Contradiction Examples to Attacks

Chetan Verma, Archit Agarwal https://arxiv.org/abs/2412.11172

Computation and Language (cs.CL)

Pre-trained models excel on NLI benchmarks like SNLI and MultiNLI, but their true language understanding remains uncertain. Models trained only on hypotheses and labels achieve high accuracy, indicating reliance on dataset biases and spurious correlations. To explore this issue, we applied the Universal Adversarial Attack to examine the model's vulnerabilities. Our analysis revealed substantial drops in accuracy for the entailment and neutral classes, whereas the contradiction class exhibited a smaller decline. Fine-tuning the model on an augmented dataset with adversarial examples restored its performance to near-baseline levels for both the standard and challenge sets. Our findings highlight the value of adversarial triggers in identifying spurious correlations and improving robustness while providing insights into the resilience of the contradiction class to adversarial attacks.

Analyzing the Attention Heads for Pronoun Disambiguation in Context-aware Machine Translation Models

Pawe Maka, Yusuf Can Semerci, Jan Scholtes, Gerasimos Spanakis https://arxiv.org/abs/2412.11187

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

In this paper, we investigate the role of attention heads in Context-aware Machine Translation models for pronoun disambiguation in the English-to-German and English-to-French language directions. We analyze their influence by both observing and modifying the attention scores corresponding to the plausible relations that could impact a pronoun prediction. Our findings reveal that while some heads do attend the relations of interest, not all of them influence the models' ability to disambiguate pronouns. We show that certain heads are underutilized by the models, suggesting that model performance could be improved if only the heads would attend one of the relations more strongly. Furthermore, we fine-tune the most promising heads and observe the increase in pronoun disambiguation accuracy of up to 5 percentage points which demonstrates that the improvements in performance can be solidified into the models' parameters.

Leveraging Large Language Models for Active Merchant Non-player Characters

Byungjun Kim, Minju Kim, Dayeon Seo, Bugeun Kim https://arxiv.org/abs/2412.11189

Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

We highlight two significant issues leading to the passivity of current merchant non-player characters (NPCs): pricing and communication. While immersive interactions have been a focus, negotiations between merchant NPCs and players on item prices have not received sufficient attention. First, we define passive pricing as the limited ability of merchants to modify predefined item prices. Second, passive communication means that merchants can only interact with players in a scripted manner. To tackle these issues and create an active merchant NPC, we propose a merchant framework based on large language models (LLMs), called MART, which consists of an appraiser module and a negotiator module. We conducted two experiments to guide game developers in selecting appropriate implementations by comparing different training methods and LLM sizes. Our findings indicate that finetuning methods, such as supervised finetuning (SFT) and knowledge distillation (KD), are effective in using smaller LLMs to implement active merchant NPCs. Additionally, we found three irregular cases arising from the responses of LLMs. We expect our findings to guide developers in using LLMs for developing active merchant NPCs.

Drawing the Line: Enhancing Trustworthiness of MLLMs Through the Power of Refusal

Yuhao Wang, Zhiyuan Zhu, Heyang Liu, Yusheng Liao, Hongcheng Liu, Yanfeng Wang, Yu Wang https://arxiv.org/abs/2412.11196

Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Multimodal large language models (MLLMs) excel at multimodal perception and understanding, yet their tendency to generate hallucinated or inaccurate responses undermines their trustworthiness. Existing methods have largely overlooked the importance of refusal responses as a means of enhancing MLLMs reliability. To bridge this gap, we present the Information Boundary-aware Learning Framework (InBoL), a novel approach that empowers MLLMs to refuse to answer user queries when encountering insufficient information. To the best of our knowledge, InBoL is the first framework that systematically defines the conditions under which refusal is appropriate for MLLMs using the concept of information boundaries proposed in our paper. This framework introduces a comprehensive data generation pipeline and tailored training strategies to improve the model's ability to deliver appropriate refusal responses. To evaluate the trustworthiness of MLLMs, we further propose a user-centric alignment goal along with corresponding metrics. Experimental results demonstrate a significant improvement in refusal accuracy without noticeably compromising the model's helpfulness, establishing InBoL as a pivotal advancement in building more trustworthy MLLMs.

Task-Oriented Dialog Systems for the Senegalese Wolof Language

Derguene Mbaye, Moussa Diallo https://arxiv.org/abs/2412.11203

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Human-Computer Interaction (cs.HC); Information Retrieval (cs.IR)

In recent years, we are seeing considerable interest in conversational agents with the rise of large language models (LLMs). Although they offer considerable advantages, LLMs also present significant risks, such as hallucination, which hinder their widespread deployment in industry. Moreover, low-resource languages such as African ones are still underrepresented in these systems limiting their performance in these languages. In this paper, we illustrate a more classical approach based on modular architectures of Task-oriented Dialog Systems (ToDS) offering better control over outputs. We propose a chatbot generation engine based on the Rasa framework and a robust methodology for projecting annotations onto the Wolof language using an in-house machine translation system. After evaluating a generated chatbot trained on the Amazon Massive dataset, our Wolof Intent Classifier performs similarly to the one obtained for French, which is a resource-rich language. We also show that this approach is extensible to other low-resource languages, thanks to the intent classifier's language-agnostic pipeline, simplifying the design of chatbots in these languages.

Smaller Language Models Are Better Instruction Evolvers

Tingfeng Hui,Lulu Zhao,Guanting Dong,Yaqi Zhang,Hua Zhou,Sen Su https://arxiv.org/abs/2412.11231

Computation and Language (cs.CL)

Instruction tuning has been widely used to unleash the complete potential of large language models. Notably, complex and diverse instructions are of significant importance as they can effectively align models with various downstream tasks. However, current approaches to constructing large-scale instructions predominantly favour powerful models such as GPT-4 or those with over 70 billion parameters, under the empirical presumption that such larger language models (LLMs) inherently possess enhanced capabilities. In this study, we question this prevalent assumption and conduct an in-depth exploration into the potential of smaller language models (SLMs) in the context of instruction evolution. Extensive experiments across three scenarios of instruction evolution reveal that smaller language models (SLMs) can synthesize more effective instructions than LLMs. Further analysis demonstrates that SLMs possess a broader output space during instruction evolution, resulting in more complex and diverse variants. We also observe that the existing metrics fail to focus on the impact of the instructions. Thus, we propose Instruction Complex-Aware IFD (IC-IFD), which introduces instruction complexity in the original IFD score to evaluate the effectiveness of instruction data more accurately. Our source code is available at: \href{this https URL}{this https URL}

TrimLLM: Progressive Layer Dropping for Domain-Specific LLMs

Lanxiang Hu, Tajana Rosing, Hao Zhang https://arxiv.org/abs/2412.11242

Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Specializing large language models (LLMs) for local deployment in domain-specific use cases is necessary for strong performance while meeting latency and privacy constraints. However, conventional task-specific adaptation approaches do not show simultaneous memory saving and inference speedup at deployment time. Practical compression techniques like quantization and pruning require dedicated hardware or kernel support to achieve measured inference speedup. We develop TrimLLM based on the layer-wise specialization phenomenon we empirically observed and verified on contemporary LLMs. TrimLLM reduces the depth of LLMs via progressive layer dropping. We show it retains LLMs' capacity in specific domains and achieves inference speedup irrespective of hardware and deep learning frameworks. We evaluated TrimLLM on LLMs of various sizes for inference; models adapted on medical, legal, and financial datasets all demonstrate \$2.1-5.7\times\$ inference speedup on consumer GPUs and up to \$3.1\times\$ speedup on A100 when compared to state-of-the-art model compression algorithms, with no loss in accuracy at 50\$\sim\$60\% model compression ratio.

Beyond Discrete Personas: Personality Modeling Through Journal Intensive Conversations

Sayantan Pal, Souvik Das, Rohini K. Srihari https://arxiv.org/abs/2412.11250

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large Language Models (LLMs) have significantly improved personalized conversational capabilities. However, existing datasets like Persona Chat, Synthetic Persona Chat, and Blended Skill Talk rely on static, predefined personas. This approach often results in dialogues that fail to capture human personalities' fluid and evolving nature. To overcome these limitations, we introduce a novel dataset with around 400,000 dialogues and a framework for generating personalized conversations using long-form journal entries from Reddit. Our approach clusters journal entries for each author and filters them by selecting the most representative cluster, ensuring that the retained entries best reflect the author's personality. We further refine the data by capturing the Big Five personality traits --openness, conscientiousness, extraversion, agreeableness, and neuroticism --ensuring that dialogues authentically reflect an individual's personality. Using Llama 3 70B, we generate high-quality, personality-rich dialogues grounded in these journal entries. Fine-tuning models on this dataset leads to an 11% improvement in capturing personality traits on average, outperforming existing approaches in generating more coherent and personality-driven dialogues.

CATER: Leveraging LLM to Pioneer a Multidimensional, Reference-Independent Paradigm in Translation Quality Evaluation

Kurando IIDA, Kenjiro MIMURA https://arxiv.org/abs/2412.11261

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

This paper introduces the Comprehensive Al-assisted Translation Edit Ratio (CATER), a novel and fully prompt-driven framework for evaluating machine translation (MT) quality. Leveraging large language models (LLMs) via a carefully designed prompt-based protocol, CATER expands beyond traditional

reference-bound metrics, offering a multidimensional, reference-independent evaluation that addresses linguistic accuracy, semantic fidelity, contextual coherence, stylistic appropriateness, and information completeness. CATER's unique advantage lies in its immediate implementability: by providing the source and target texts along with a standardized prompt, an LLM can rapidly identify errors, quantify edit effort, and produce category-level and overall scores. This approach eliminates the need for pre-computed references or domain-specific resources, enabling instant adaptation to diverse languages, genres, and user priorities through adjustable weights and prompt modifications. CATER's LLM-enabled strategy supports more nuanced assessments, capturing phenomena such as subtle omissions, hallucinations, and discourse-level shifts that increasingly challenge contemporary MT systems. By uniting the conceptual rigor of frameworks like MQM and DQF with the scalability and flexibility of LLM-based evaluation, CATER emerges as a valuable tool for researchers, developers, and professional translators worldwide. The framework and example prompts are openly available, encouraging community-driven refinement and further empirical validation.

Sequence-Level Analysis of Leakage Risk of Training Data in Large Language Models

Trishita Tiwari,G. Edward Suh https://arxiv.org/abs/2412.11302

Computation and Language (cs.CL); Machine Learning (cs.LG)

This work advocates for the use of sequence level probabilities for quantifying the risk of extraction training data from Large Language Models (LLMs) as they provide much finer-grained information than has been previously obtained. We re-analyze the effects of decoding schemes, model-size, prefix length, partial sequence leakages, and token positions to uncover new insights that have were not possible in prior work due to their choice of metrics. We perform this study on two pre-trained models, LLaMa and OPT, trained on the Common Crawl and Pile respectively. We discover that 1) Extraction rate, the predominant metric used in prior quantification work, underestimates the threat of leakage of training data in randomized LLMs by as much as 2.14x. 2) Though, on average, larger models and longer prefixes can extract more data, this is not true with a substantial portion of individual sequences. 30.4-41.5% of our sequences are easier to extract with either shorter prefixes or smaller models. 3) Contrary to prior belief, partial leakage in the commonly used decoding schemes like top-k and top-p are not easier than leaking verbatim training data. 4) Extracting later tokens in a sequence is as much as 912% easier than extracting earlier tokens. The insights gained from our analysis show that it is important to look at leakage of training data on a per-sequence basis.

Reliable, Reproducible, and Really Fast Leaderboards with Evalica

Dmitry Ustalov https://arxiv.org/abs/2412.11314

Computation and Language (cs.CL)

The rapid advancement of natural language processing (NLP) technologies, such as instruction-tuned large language models (LLMs), urges the development of modern evaluation protocols with human and

machine feedback. We introduce Evalica, an open-source toolkit that facilitates the creation of reliable and reproducible model leaderboards. This paper presents its design, evaluates its performance, and demonstrates its usability through its Web interface, command-line interface, and Python API.

RoLargeSum: A Large Dialect-Aware Romanian News Dataset for Summary, Headline, and Keyword Generation

Andrei-Marius Avram, Mircea Timpuriu, Andreea Iuga, Vlad-Cristian Matei, Iulian-Marius T∎iatu, Tudor G■in■, Dumitru-Clementin Cercel, Florin Pop, Mihaela-Claudia Cercel https://arxiv.org/abs/2412.11317

Computation and Language (cs.CL)

Using supervised automatic summarisation methods requires sufficient corpora that include pairs of documents and their summaries. Similarly to many tasks in natural language processing, most of the datasets available for summarization are in English, posing challenges for developing summarization models in other languages. Thus, in this work, we introduce RoLargeSum, a novel large-scale summarization dataset for the Romanian language crawled from various publicly available news websites from Romania and the Republic of Moldova that were thoroughly cleaned to ensure a high-quality standard. RoLargeSum contains more than 615K news articles, together with their summaries, as well as their headlines, keywords, dialect, and other metadata that we found on the targeted websites. We further evaluated the performance of several BART variants and open-source large language models on RoLargeSum for benchmarking purposes. We manually evaluated the results of the best-performing system to gain insight into the potential pitfalls of this data set and future development.

Generics are puzzling. Can language models find the missing piece?

Gustavo Cilleruelo Calderón, Emily Allaway, Barry Haddow, Alexandra Birch https://arxiv.org/abs/2412.11318

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Generic sentences express generalisations about the world without explicit quantification. Although generics are central to everyday communication, building a precise semantic framework has proven difficult, in part because speakers use generics to generalise properties with widely different statistical prevalence. In this work, we study the implicit quantification and context-sensitivity of generics by leveraging language models as models of language. We create ConGen, a dataset of 2873 naturally occurring generic and quantified sentences in context, and define p-acceptability, a metric based on surprisal that is sensitive to quantification. Our experiments show generics are more context-sensitive than determiner quantifiers and about 20% of naturally occurring generics we analyze express weak generalisations. We also explore how human biases in stereotypes can be observed in language models.

Segment-Level Diffusion: A Framework for Controllable Long-Form Generation with Diffusion Language Models

Xiaochen Zhu, Georgi Karadzhov, Chenxi Whitehouse, Andreas Vlachos https://arxiv.org/abs/2412.11333

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Diffusion models have shown promise in text generation but often struggle with generating long, coherent, and contextually accurate text. Token-level diffusion overlooks word-order dependencies and enforces short output windows, while passage-level diffusion struggles with learning robust representation for long-form text. To address these challenges, we propose Segment-Level Diffusion (SLD), a framework that enhances diffusion-based text generation through text segmentation, robust representation training with adversarial and contrastive learning, and improved latent-space guidance. By segmenting long-form outputs into separate latent representations and decoding them with an autoregressive decoder, SLD simplifies diffusion predictions and improves scalability. Experiments on XSum, ROCStories, DialogSum, and DeliData demonstrate that SLD achieves competitive or superior performance in fluency, coherence, and contextual compatibility across automatic and human evaluation metrics comparing with other diffusion and autoregressive baselines. Ablation studies further validate the effectiveness of our segmentation and representation learning strategies.

Can Al Extract Antecedent Factors of Human Trust in Al? An Application of Information Extraction for Scientific Literature in Behavioural and Computer Sciences

Melanie McGrath, Harrison Bailey, Necva Bölücü, Xiang Dai, Sarvnaz Karimi, Cecile Paris https://arxiv.org/abs/2412.11344

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Information extraction from the scientific literature is one of the main techniques to transform unstructured knowledge hidden in the text into structured data which can then be used for decision-making in down-stream tasks. One such area is Trust in AI, where factors contributing to human trust in artificial intelligence applications are studied. The relationships of these factors with human trust in such applications are complex. We hence explore this space from the lens of information extraction where, with the input of domain experts, we carefully design annotation guidelines, create the first annotated English dataset in this domain, investigate an LLM-guided annotation, and benchmark it with state-of-the-art methods using large language models in named entity and relation extraction. Our results indicate that this problem requires supervised learning which may not be currently feasible with prompt-based LLMs.

Codenames as a Benchmark for Large Language Models

Matthew Stephenson, Matthew Sidji, Benoît Ronval https://arxiv.org/abs/2412.11373

Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.

ChatTime: A Unified Multimodal Time Series Foundation Model Bridging Numerical and Textual Data

Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, Jianxin Liao https://arxiv.org/abs/2412.11376

Computation and Language (cs.CL); Machine Learning (cs.LG)

Human experts typically integrate numerical and textual multimodal information to analyze time series. However, most traditional deep learning predictors rely solely on unimodal numerical data, using a fixed-length window for training and prediction on a single dataset, and cannot adapt to different scenarios. The powered pre-trained large language model has introduced new opportunities for time series analysis. Yet, existing methods are either inefficient in training, incapable of handling textual information, or lack zero-shot forecasting capability. In this paper, we innovatively model time series as a foreign language and construct ChatTime, a unified framework for time series and text processing. As an out-of-the-box multimodal time series foundation model, ChatTime provides zero-shot forecasting capability and supports bimodal input/output for both time series and text. We design a series of experiments to verify the superior performance of ChatTime across multiple tasks and scenarios, and create four multimodal datasets to address data gaps. The experimental results demonstrate the potential and utility of ChatTime.

Why Does ChatGPT "Delve" So Much? Exploring the Sources of Lexical Overrepresentation in Large Language Models

https://arxiv.org/abs/2412.11385

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Scientific English is currently undergoing rapid change, with words like "delve," "intricate," and "underscore" appearing far more frequently than just a few years ago. It is widely assumed that scientists' use of large language models (LLMs) is responsible for such trends. We develop a formal, transferable method to characterize these linguistic changes. Application of our method yields 21 focal words whose increased occurrence in scientific abstracts is likely the result of LLM usage. We then pose "the puzzle of lexical overrepresentation": WHY are such words overused by LLMs? We fail to find evidence that lexical overrepresentation is caused by model architecture, algorithm choices, or training data. To assess whether reinforcement learning from human feedback (RLHF) contributes to the overuse of focal words, we undertake comparative model testing and conduct an exploratory online study. While the model testing is consistent with RLHF playing a role, our experimental results suggest that participants may be reacting differently to "delve" than to other focal words. With LLMs quickly becoming a driver of global language change, investigating these potential sources of lexical overrepresentation is important. We note that while insights into the workings of LLMs are within reach, a lack of transparency surrounding model development remains an obstacle to such research.

INTERACT: Enabling Interactive, Question-Driven Learning in Large Language Models

Aum Kendapadi, Kerem Zaman, Rakesh R. Menon, Shashank Srivastava https://arxiv.org/abs/2412.11388

Computation and Language (cs.CL)

Large language models (LLMs) excel at answering questions but remain passive learners--absorbing static data without the ability to question and refine knowledge. This paper explores how LLMs can transition to interactive, question-driven learning through student-teacher dialogues. We introduce INTERACT (INTEReractive Learning for Adaptive Concept Transfer), a framework in which a "student" LLM engages a "teacher" LLM through iterative inquiries to acquire knowledge across 1,347 contexts, including song lyrics, news articles, movie plots, academic papers, and images. Our experiments show that across a wide range of scenarios and LLM architectures, interactive learning consistently enhances performance, achieving up to a 25% improvement, with 'cold-start' student models matching static learning baselines in as few as five dialogue turns. Interactive setups can also mitigate the disadvantages of weaker teachers, showcasing the robustness of question-driven learning.

Attention with Dependency Parsing Augmentation for Fine-Grained Attribution

Qiang Ding,Lvzhou Luo, Yixuan Cao,Ping Luo https://arxiv.org/abs/2412.11404

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

To assist humans in efficiently validating RAG-generated content, developing a fine-grained attribution mechanism that provides supporting evidence from retrieved documents for every answer span is essential. Existing fine-grained attribution methods rely on model-internal similarity metrics between responses and documents, such as saliency scores and hidden state similarity. However, these approaches suffer from either high computational complexity or coarse-grained representations. Additionally, a common problem shared by the previous works is their reliance on decoder-only Transformers, limiting their ability to incorporate contextual information after the target span. To address the above problems, we propose two techniques applicable to all model-internals-based methods. First, we aggregate token-wise evidence through set union operations, preserving the granularity of representations. Second, we enhance the attributor by integrating dependency parsing to enrich the semantic completeness of target spans. For practical implementation, our approach employs attention weights as the similarity metric. Experimental results demonstrate that the proposed method consistently outperforms all prior works.

Biased or Flawed? Mitigating Stereotypes in Generative Language Models by Addressing Task-Specific Flaws

Akshita Jha, Sanchit Kabra, Chandan K. Reddy https://arxiv.org/abs/2412.11414

Computation and Language (cs.CL); Machine Learning (cs.LG)

Recent studies have shown that generative language models often reflect and amplify societal biases in their outputs. However, these studies frequently conflate observed biases with other task-specific shortcomings, such as comprehension failure. For example, when a model misinterprets a text and produces a response that reinforces a stereotype, it becomes difficult to determine whether the issue arises from inherent bias or from a misunderstanding of the given content. In this paper, we conduct a multi-faceted evaluation that distinctly disentangles bias from flaws within the reading comprehension task. We propose a targeted stereotype mitigation framework that implicitly mitigates observed stereotypes in generative models through instruction-tuning on general-purpose datasets. We reduce stereotypical outputs by over 60% across multiple dimensions -- including nationality, age, gender, disability, and physical appearance -- by addressing comprehension-based failures, and without relying on explicit debiasing techniques. We evaluate several state-of-the-art generative models to demonstrate the effectiveness of our approach while maintaining the overall utility. Our findings highlight the need to critically disentangle the concept of `bias' from other types of errors to build more targeted and effective mitigation strategies. CONTENT WARNING: Some examples contain offensive stereotypes.

ConceptEdit: Conceptualization-Augmented Knowledge Editing in Large Language Models for Commonsense Reasoning

Liyu Zhang, Weiqi Wang, Tianqing Fang, Yangqiu Song https://arxiv.org/abs/2412.11418

Computation and Language (cs.CL)

Knowledge Editing (KE) aims to adjust a Large Language Model's (LLM) internal representations and parameters to correct inaccuracies and improve output consistency without incurring the computational expense of re-training the entire model. However, editing commonsense knowledge still faces difficulties, including limited knowledge coverage in existing resources, the infeasibility of annotating labels for an overabundance of commonsense knowledge, and the strict knowledge formats of current editing methods. In this paper, we address these challenges by presenting ConceptEdit, a framework that integrates conceptualization and instantiation into the KE pipeline for LLMs to enhance their commonsense reasoning capabilities. ConceptEdit dynamically diagnoses implausible commonsense knowledge within an LLM using another verifier LLM and augments the source knowledge to be edited with conceptualization for stronger generalizability. Experimental results demonstrate that LLMs enhanced with ConceptEdit successfully generate commonsense knowledge with improved plausibility compared to other baselines and achieve stronger performance across multiple question answering benchmarks.

Optimized Quran Passage Retrieval Using an Expanded QA Dataset and Fine-Tuned Language Models

Mohamed Basem, Islam Oshallah, Baraa Hikal, Ali Hamdi, Ammar Mohamed https://arxiv.org/abs/2412.11431

Computation and Language (cs.CL); Information Retrieval (cs.IR)

Understanding the deep meanings of the Qur'an and bridging the language gap between modern standard Arabic and classical Arabic is essential to improve the question-and-answer system for the Holy Qur'an. The Qur'an QA 2023 shared task dataset had a limited number of questions with weak model retrieval. To address this challenge, this work updated the original dataset and improved the model accuracy. The original dataset, which contains 251 questions, was reviewed and expanded to 629 questions with question diversification and reformulation, leading to a comprehensive set of 1895 categorized into single-answer, multi-answer, and zero-answer types. Extensive experiments fine-tuned transformer models, including AraBERT, RoBERTa, CAMelbert, AraElectra, and BERT. The best model, AraBert-base, achieved a MAP@10 of 0.36 and MRR of 0.59, representing improvements of 63% and 59%, respectively, compared to the baseline scores (MAP@10: 0.22, MRR: 0.37). Additionally, the dataset expansion led to improvements in handling "no answer" cases, with the proposed approach achieving a 75% success rate for such instances, compared to the baseline's 25%. These results demonstrate the effect of dataset improvement and model architecture optimization in increasing the performance of QA systems for the Holy Qur'an, with higher accuracy, recall, and precision.

ACE-\$M^3\$: Automatic Capability Evaluator for Multimodal Medical Models

Xiechi Zhang, Shunfan Zheng, Linlin Wang, Gerard de Melo, Zhu Cao, Xiaoling Wang, Liang He https://arxiv.org/abs/2412.11453

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

As multimodal large language models (MLLMs) gain prominence in the medical field, the need for precise evaluation methods to assess their effectiveness has become critical. While benchmarks provide a reliable means to evaluate the capabilities of MLLMs, traditional metrics like ROUGE and BLEU employed for open domain evaluation only focus on token overlap and may not align with human judgment. Although human evaluation is more reliable, it is labor-intensive, costly, and not scalable. LLM-based evaluation methods have proven promising, but to date, there is still an urgent need for open-source multimodal LLM-based evaluators in the medical field. To address this issue, we introduce ACE-\$M^3\$, an open-sourced \textbf{A}utomatic \textbf{C}apability \textbf{E}valuator for \textbf{M}utimodal \textbf{M}edical \textbf{M}edical \textbf{M}odels specifically designed to assess the question answering abilities of medical MLLMs. It first utilizes a branch-merge architecture to provide both detailed analysis and a concise final score based on standard medical evaluation criteria. Subsequently, a reward token-based direct preference optimization (RTDPO) strategy is incorporated to save training time without compromising performance of our model. Extensive experiments have demonstrated the effectiveness of our ACE-\$M^3\$ model\footnote{\url{this https URL}} in evaluating the capabilities of medical MLLMs.

Towards Better Multi-task Learning: A Framework for Optimizing Dataset Combinations in Large Language Models

Zaifu Zhan,Rui Zhang https://arxiv.org/abs/2412.11455

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

To efficiently select optimal dataset combinations for enhancing multi-task learning (MTL) performance in large language models, we proposed a novel framework that leverages a neural network to predict the best dataset combinations. The framework iteratively refines the selection, greatly improving efficiency, while being model-, dataset-, and domain-independent. Through experiments on 12 biomedical datasets across four tasks - named entity recognition, relation extraction, event extraction, and text classification-we demonstrate that our approach effectively identifies better combinations, even for tasks that may seem unpromising from a human perspective. This verifies that our framework provides a promising solution for maximizing MTL potential.

Understanding Knowledge Hijack Mechanism in In-context Learning through Associative Memory

Shuo Wang, Issei Sato https://arxiv.org/abs/2412.11459

Computation and Language (cs.CL); Machine Learning (cs.LG)

In-context learning (ICL) enables large language models (LLMs) to adapt to new tasks without fine-tuning by leveraging contextual information provided within a prompt. However, ICL relies not only on contextual clues but also on the global knowledge acquired during pretraining for the next token prediction. Analyzing this process has been challenging due to the complex computational circuitry of LLMs. This paper investigates the balance between in-context information and pretrained bigram

knowledge in token prediction, focusing on the induction head mechanism, a key component in ICL. Leveraging the fact that a two-layer transformer can implement the induction head mechanism with associative memories, we theoretically analyze the logits when a two-layer transformer is given prompts generated by a bigram model. In the experiments, we design specific prompts to evaluate whether the outputs of a two-layer transformer align with the theoretical results.

NoteContrast: Contrastive Language-Diagnostic Pretraining for Medical Text

Prajwal Kailas, Max Homilius, Rahul C. Deo, Calum A. MacRae https://arxiv.org/abs/2412.11477

Machine Learning (cs.LG); Computation and Language (cs.CL)

Accurate diagnostic coding of medical notes is crucial for enhancing patient care, medical research, and error-free billing in healthcare organizations. Manual coding is a time-consuming task for providers, and diagnostic codes often exhibit low sensitivity and specificity, whereas the free text in medical notes can be a more precise description of a patients status. Thus, accurate automated diagnostic coding of medical notes has become critical for a learning healthcare system. Recent developments in long-document transformer architectures have enabled attention-based deep-learning models to adjudicate medical notes. In addition, contrastive loss functions have been used to jointly pre-train large language and image models with noisy labels. To further improve the automated adjudication of medical notes, we developed an approach based on i) models for ICD-10 diagnostic code sequences using a large real-world data set, ii) large language models for medical notes, and iii) contrastive pre-training to build an integrated model of both ICD-10 diagnostic codes and corresponding medical text. We demonstrate that a contrastive approach for pre-training improves performance over prior state-of-the-art models for the MIMIC-III-50, MIMIC-III-rare50, and MIMIC-III-full diagnostic coding tasks.

FTP: A Fine-grained Token-wise Pruner for Large Language Models via Token Routing

Zekai Li,Jintu Zheng,Ji Liu,Han Liu,Haowei Zhu,Zeping Li,Fuwei Yang,Haiduo Huang,Jinzhang Peng,Dong Li,Lu Tian,Emad Barsoum https://arxiv.org/abs/2412.11494

Computation and Language (cs.CL)

Recently, large language models (LLMs) have demonstrated superior performance across various tasks by adhering to scaling laws, which significantly increase model size. However, the huge computation overhead during inference hinders the deployment in industrial applications. Many works leverage traditional compression approaches to boost model inference, but these always introduce additional training costs to restore the performance and the pruning results typically show noticeable performance drops compared to the original model when aiming for a specific level of acceleration. To address these issues, we propose a fine-grained token-wise pruning approach for the LLMs, which presents a learnable router to adaptively identify the less important tokens and skip them across model

blocks to reduce computational cost during inference. To construct the router efficiently, we present a search-based sparsity scheduler for pruning sparsity allocation, a trainable router combined with our proposed four low-dimensional factors as input and three proposed losses. We conduct extensive experiments across different benchmarks on different LLMs to demonstrate the superiority of our method. Our approach achieves state-of-the-art (SOTA) pruning results, surpassing other existing pruning methods. For instance, our method outperforms BlockPruner and ShortGPT by approximately 10 points on both LLaMA2-7B and Qwen1.5-7B in accuracy retention at comparable token sparsity levels.

Intention Knowledge Graph Construction for User Intention Relation Modeling

Jiaxin Bai,Zhaobo Wang,Junfei Cheng,Dan Yu,Zerui Huang,Weiqi Wang,Xin Liu,Chen Luo,Qi He,Yanming Zhu,Bo Li,Yangqiu Song https://arxiv.org/abs/2412.11500

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Understanding user intentions is challenging for online platforms. Recent work on intention knowledge graphs addresses this but often lacks focus on connecting intentions, which is crucial for modeling user behavior and predicting future actions. This paper introduces a framework to automatically generate an intention knowledge graph, capturing connections between user intentions. Using the Amazon m2 dataset, we construct an intention graph with 351 million edges, demonstrating high plausibility and acceptance. Our model effectively predicts new session intentions and enhances product recommendations, outperforming previous state-of-the-art methods and showcasing the approach's practical utility.

Glimpse: Enabling White-Box Methods to Use Proprietary Models for Zero-Shot LLM-Generated Text Detection

Guangsheng Bao, Yanbin Zhao, Juncai He, Yue Zhang https://arxiv.org/abs/2412.11506

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Advanced large language models (LLMs) can generate text almost indistinguishable from human-written text, highlighting the importance of LLM-generated text detection. However, current zero-shot techniques face challenges as white-box methods are restricted to use weaker open-source LLMs, and black-box methods are limited by partial observation from stronger proprietary LLMs. It seems impossible to enable white-box methods to use proprietary models because API-level access to the models neither provides full predictive distributions nor inner embeddings. To traverse the divide, we propose Glimpse, a probability distribution estimation approach, predicting the full distributions from partial observations. Despite the simplicity of Glimpse, we successfully extend white-box methods like Entropy, Rank, Log-Rank, and Fast-DetectGPT to latest proprietary models. Experiments show that Glimpse with Fast-DetectGPT and GPT-3.5 achieves an average AUROC of about 0.95 in five latest source models, improving the score by 51% relative to the remaining space of the open source

baseline (Table 1). It demonstrates that the latest LLMs can effectively detect their own outputs, suggesting that advanced LLMs may be the best shield against themselves.

DART: An AIGT Detector using AMR of Rephrased Text

Hyeonchu Park, Byungjun Kim, Bugeun Kim https://arxiv.org/abs/2412.11517

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

As large language models (LLMs) generate more human-like texts, concerns about the side effects of Al-generated texts (AIGT) have grown. So, researchers have developed methods for detecting AIGT. However, two challenges remain. First, the performance on detecting black-box LLMs is low, because existing models have focused on syntactic features. Second, most AIGT detectors have been tested on a single-candidate setting, which assumes that we know the origin of an AIGT and may deviate from the real-world scenario. To resolve these challenges, we propose DART, which consists of four steps: rephrasing, semantic parsing, scoring, and multiclass classification. We conducted several experiments to test the performance of DART by following previous work. The experimental result shows that DART can discriminate multiple black-box LLMs without using syntactic features and knowing the origin of AIGT.

Let your LLM generate a few tokens and you will reduce the need for retrieval

Hervé Déjean https://arxiv.org/abs/2412.11536

Computation and Language (cs.CL)

In this paper, we investigate how efficiently large language models (LLM) can be trained to check whether an answer is already stored in their parametric memory. We distill an LLM-as-a-judge to compute the IK (I Know) score. We found that this method is particularly beneficial in the context of retrieval-assisted augmented generation (RAG), with a respectable accuracy of 80%. It enables a significant reduction (more than 50%) in the number of search and reranking steps required for certain data sets. We have also introduced the IK score, which serves as a useful tool for characterising datasets by facilitating the classification task. Interestingly, through the inclusion of response tokens as input, our results suggest that only about 20,000 training samples are required to achieve good performance. The central element of this work is the use of a teacher model - the LLM as a judge - to generate training data. We also assess the robustness of the IK classifier by evaluating it with various types of teachers, including both string-based methods and LLMs, with the latter providing better results.

Towards a Speech Foundation Model for Singapore and Beyond

Muhammad Huzaifah, Tianchi Liu, Hardik B. Sailor, Kye Min Tan, Tarun K. Vangani, Qiongqiong Wang, Jeremy H. M. Wong, Nancy F. Chen, Ai Ti Aw https://arxiv.org/abs/2412.11538

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Audio and Speech Processing (eess.AS)

This technical report describes the MERaLiON Speech Encoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON Speech Encoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON Speech Encoder was pre-trained from scratch on 200K hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond.

Error Diversity Matters: An Error-Resistant Ensemble Method for Unsupervised Dependency Parsing

Behzad Shayegh, Hobie H.-B. Lee, Xiaodan Zhu, Jackie Chi Kit Cheung, Lili Mouhttps://arxiv.org/abs/2412.11543

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

We address unsupervised dependency parsing by building an ensemble of diverse existing models through post hoc aggregation of their output dependency parse structures. We observe that these ensembles often suffer from low robustness against weak ensemble components due to error accumulation. To tackle this problem, we propose an efficient ensemble-selection approach that avoids error accumulation. Results demonstrate that our approach outperforms each individual model as well as previous ensemble techniques. Additionally, our experiments show that the proposed ensemble-selection method significantly enhances the performance and robustness of our ensemble, surpassing previously proposed strategies, which have not accounted for error diversity.

Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs

Yuchen Fu,Zifeng Cheng,Zhiwei Jiang,Zhonghui Wang,Yafeng Yin,Zhengliang Li,Qing Gu https://arxiv.org/abs/2412.11556

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.

The Role of Natural Language Processing Tasks in Automatic Literary Character Network Construction

Arthur Amalvy(LIA), Vincent Labatut(LIA), Richard Dufour(LS2N - équipe TALN) https://arxiv.org/abs/2412.11560

Computation and Language (cs.CL)

The automatic extraction of character networks from literary texts is generally carried out using natural language processing (NLP) cascading pipelines. While this approach is widespread, no study exists on the impact of low-level NLP tasks on their performance. In this article, we conduct such a study on a literary dataset, focusing on the role of named entity recognition (NER) and coreference resolution when extracting co-occurrence networks. To highlight the impact of these tasks' performance, we start with gold-standard annotations, progressively add uniformly distributed errors, and observe their impact in terms of character network quality. We demonstrate that NER performance depends on the tested novel and strongly affects character detection. We also show that NER-detected mentions alone miss a lot of character co-occurrences, and that coreference resolution is needed to prevent this. Finally, we present comparison points with 2 methods based on large language models (LLMs), including a fully end-to-end one, and show that these models are outperformed by traditional NLP pipelines in terms of recall.

AUEB-Archimedes at RIRAG-2025: Is obligation concatenation really all you need?

loannis Chasandras, Odysseas S. Chlapanis, Ion Androutsopoulos https://arxiv.org/abs/2412.11567

Computation and Language (cs.CL)

This paper presents the systems we developed for RIRAG-2025, a shared task that requires answering regulatory questions by retrieving relevant passages. The generated answers are evaluated using RePASs, a reference-free and model-based metric. Our systems use a combination of three retrieval models and a reranker. We show that by exploiting a neural component of RePASs that extracts important sentences ('obligations') from the retrieved passages, we achieve a dubiously high score (0.947), even though the answers are directly extracted from the retrieved passages and are not actually generated answers. We then show that by selecting the answer with the best RePASs among a few generated alternatives and then iteratively refining this answer by reducing contradictions and covering more obligations, we can generate readable, coherent answers that achieve a more plausible and relatively high score (0.639).

SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models

Jiale Cheng,Xiao Liu,Cunxiang Wang,Xiaotao Gu, Yida Lu,Dan Zhang, Yuxiao Dong,Jie Tang,Hongning Wang,Minlie Huang https://arxiv.org/abs/2412.11605

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available atthis https URL.

MT-LENS: An all-in-one Toolkit for Better Machine Translation Evaluation

Javier García Gilabert, Carlos Escolano, Audrey Mash, Xixian Liao, Maite Melero https://arxiv.org/abs/2412.11615

Computation and Language (cs.CL)

We introduce MT-LENS, a framework designed to evaluate Machine Translation (MT) systems across a variety of tasks, including translation quality, gender bias detection, added toxicity, and robustness to misspellings. While several toolkits have become very popular for benchmarking the capabilities of

Large Language Models (LLMs), existing evaluation tools often lack the ability to thoroughly assess the diverse aspects of MT performance. MT-LENS addresses these limitations by extending the capabilities of LM-eval-harness for MT, supporting state-of-the-art datasets and a wide range of evaluation metrics. It also offers a user-friendly platform to compare systems and analyze translations with interactive visualizations. MT-LENS aims to broaden access to evaluation strategies that go beyond traditional translation quality evaluation, enabling researchers and engineers to better understand the performance of a NMT model and also easily measure system's biases.

Fool Me, Fool Me: User Attitudes Toward LLM Falsehoods

Diana Bar-Or Nirman, Ariel Weizman, Amos Azaria https://arxiv.org/abs/2412.11625

Computation and Language (cs.CL)

While Large Language Models (LLMs) have become central tools in various fields, they often provide inaccurate or false information. This study examines user preferences regarding falsehood responses from LLMs. Specifically, we evaluate preferences for LLM responses where false statements are explicitly marked versus unmarked responses and preferences for confident falsehoods compared to LLM disclaimers acknowledging a lack of knowledge. Additionally, we investigate how requiring users to assess the truthfulness of statements influences these preferences. Surprisingly, 61\% of users prefer unmarked falsehood responses over marked ones, and 69\% prefer confident falsehoods over LLMs admitting lack of knowledge. In all our experiments, a total of 300 users participated, contributing valuable data to our analysis and conclusions. When users are required to evaluate the truthfulness of statements, preferences for unmarked and falsehood responses decrease slightly but remain high. These findings suggest that user preferences, which influence LLM training via feedback mechanisms, may inadvertently encourage the generation of falsehoods. Future research should address the ethical and practical implications of aligning LLM behavior with such preferences.

On Crowdsourcing Task Design for Discourse Relation Annotation

Frances Yung, Vera Demberg https://arxiv.org/abs/2412.11637

Computation and Language (cs.CL)

Interpreting implicit discourse relations involves complex reasoning, requiring the integration of semantic cues with background knowledge, as overt connectives like because or then are absent. These relations often allow multiple interpretations, best represented as distributions. In this study, we compare two established methods that crowdsource English implicit discourse relation annotation by connective insertion: a free-choice approach, which allows annotators to select any suitable connective, and a forced-choice approach, which asks them to select among a set of predefined options.

Specifically, we re-annotate the whole DiscoGeM 1.0 corpus -- initially annotated with the free-choice method -- using the forced-choice approach. The free-choice approach allows for flexible and intuitive insertion of various connectives, which are context-dependent. Comparison among over 130,000 annotations, however, shows that the free-choice strategy produces less diverse annotations, often

converging on common labels. Analysis of the results reveals the interplay between task design and the annotators' abilities to interpret and produce discourse relations.

SE-GCL: An Event-Based Simple and Effective Graph Contrastive Learning for Text Representation

Tao Meng, Wei Ai, Jianbin Li, Ze Wang, Yuntao Shou, Keqin Li https://arxiv.org/abs/2412.11652

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Text representation learning is significant as the cornerstone of natural language processing. In recent years, graph contrastive learning (GCL) has been widely used in text representation learning due to its ability to represent and capture complex text information in a self-supervised setting. However, current mainstream graph contrastive learning methods often require the incorporation of domain knowledge or cumbersome computations to guide the data augmentation process, which significantly limits the application efficiency and scope of GCL. Additionally, many methods learn text representations only by constructing word-document relationships, which overlooks the rich contextual semantic information in the text. To address these issues and exploit representative textual semantics, we present an event-based, simple, and effective graph contrastive learning (SE-GCL) for text representation. Precisely, we extract event blocks from text and construct internal relation graphs to represent inter-semantic interconnections, which can ensure that the most critical semantic information is preserved. Then, we devise a streamlined, unsupervised graph contrastive learning framework to leverage the complementary nature of the event semantic and structural information for intricate feature data capture. In particular, we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data augmentation techniques found in existing graph contrastive learning to boost algorithmic efficiency. We employ multiple loss functions to prompt diverse embeddings to converge or diverge within a confined distance in the vector space, ultimately achieving a harmonious equilibrium. We conducted experiments on the proposed SE-GCL on four standard data sets (AG News, 20NG, SougouNews, and THUCNews) to verify its effectiveness in text representation learning.

Self-Adaptive Paraphrasing and Preference Learning for Improved Claim Verifiability

Amelie Wührl, Roman Klinger https://arxiv.org/abs/2412.11653

Computation and Language (cs.CL)

In fact-checking, structure and phrasing of claims critically influence a model's ability to predict verdicts accurately. Social media content in particular rarely serves as optimal input for verification systems, which necessitates pre-processing to extract the claim from noisy context before fact checking. Prior work suggests extracting a claim representation that humans find to be checkworthy and verifiable. This has two limitations: (1) the format may not be optimal for a fact-checking model, and (2), it requires annotated data to learn the extraction task from. We address both issues and propose a method to

extract claims that is not reliant on labeled training data. Instead, our self-adaptive approach only requires a black-box fact checking model and a generative language model (LM). Given a tweet, we iteratively optimize the LM to generate a claim paraphrase that increases the performance of a fact checking model. By learning from preference pairs, we align the LM to the fact checker using direct preference optimization. We show that this novel setup extracts a claim paraphrase that is more verifiable than their original social media formulations, and is on par with competitive baselines. For refuted claims, our method consistently outperforms all baselines.

C3oT: Generating Shorter Chain-of-Thought without Compromising Effectiveness

Yu Kang, Xianghui Sun, Liangyu Chen, Wei Zou https://arxiv.org/abs/2412.11664

Computation and Language (cs.CL); Machine Learning (cs.LG)

Generating Chain-of-Thought (CoT) before deriving the answer can effectively improve the reasoning capabilities of large language models (LLMs) and significantly improve the accuracy of the generated answer. However, in most cases, the length of the generated CoT is much longer than the desired final answer, which results in additional decoding costs. Furthermore, existing research has discovered that shortening the reasoning steps in CoT, even while preserving the key information, diminishes LLMs' abilities. These phenomena make it difficult to use LLMs and CoT in many real-world applications that only require the final answer and are sensitive to latency, such as search and recommendation. To reduce the costs of model decoding and shorten the length of the generated CoT, this paper presents \$\textbf{C}\\$onditioned \$\textbf{C}\\$ompressed \$\textbf{C}\\$hain-of-\$\textbf{T}\\$hought (C3oT), a CoT compression framework that involves a compressor to compress an original longer CoT into a shorter CoT while maintaining key information and interpretability, a conditioned training method to train LLMs with both longer CoT and shorter CoT simultaneously to learn the corresponding relationships between them, and a conditioned inference method to gain the reasoning ability learned from longer CoT by generating shorter CoT. We conduct experiments over four datasets from arithmetic and commonsense scenarios, showing that the proposed method is capable of compressing the length of generated CoT by up to more than 50% without compromising its effectiveness.

BioBridge: Unified Bio-Embedding with Bridging Modality in Code-Switched EMR

Jangyeong Jeon, Sangyeon Cho, Dongjoon Lee, Changhee Lee, Junyeong Kim https://arxiv.org/abs/2412.11671

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Pediatric Emergency Department (PED) overcrowding presents a significant global challenge, prompting the need for efficient solutions. This paper introduces the BioBridge framework, a novel approach that applies Natural Language Processing (NLP) to Electronic Medical Records (EMRs) in written free-text form to enhance decision-making in PED. In non-English speaking countries, such as South Korea, EMR data is often written in a Code-Switching (CS) format that mixes the native language

with English, with most code-switched English words having clinical significance. The BioBridge framework consists of two core modules: "bridging modality in context" and "unified bio-embedding." The "bridging modality in context" module improves the contextual understanding of bilingual and code-switched EMRs. In the "unified bio-embedding" module, the knowledge of the model trained in the medical domain is injected into the encoder-based model to bridge the gap between the medical and general domains. Experimental results demonstrate that the proposed BioBridge significantly performance traditional machine learning and pre-trained encoder-based models on several metrics, including F1 score, area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and Brier score. Specifically, BioBridge-XLM achieved enhancements of 0.85% in F1 score, 0.75% in AUROC, and 0.76% in AUPRC, along with a notable 3.04% decrease in the Brier score, demonstrating marked improvements in accuracy, reliability, and prediction calibration over the baseline XLM model. The source code will be made publicly available.

Bias Vector: Mitigating Biases in Language Models with Task Arithmetic Approach

Daiki Shirafuji,Makoto Takenaka,Shinya Taguchi https://arxiv.org/abs/2412.11679

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

The use of language models (LMs) has increased considerably in recent years, and the biases and stereotypes in training data that are reflected in the LM outputs are causing social problems. In this paper, inspired by the task arithmetic, we propose the ``Bias Vector' method for the mitigation of these LM biases. The Bias Vector method does not require manually created debiasing data. The three main steps of our approach involve: (1) continual training the pre-trained LMs on biased data using masked language modeling; (2) constructing the Bias Vector as the difference between the weights of the biased LMs and those of pre-trained LMs; and (3) subtracting the Bias Vector from the weights of the pre-trained LMs for debiasing. We evaluated the Bias Vector method on the SEAT across three LMs and confirmed an average improvement of 0.177 points. We demonstrated that the Bias Vector method does not degrade the LM performance on downstream tasks in the GLUE benchmark. In addition, we examined the impact of scaling factors, which control the magnitudes of Bias Vectors, with effect sizes on the SEAT and conducted a comprehensive evaluation of our debiased LMs across both the SEAT and GLUE benchmarks.

Multilingual and Explainable Text Detoxification with Parallel Corpora

Daryna Dementieva, Nikolay Babakov, Amit Ronen, Abinew Ali Ayele, Naquee Rizwan, Florian Schneider, Xintong Wang, Seid Muhie Yimam, Daniil Moskovskiy, Elisei Stakovskii, Eran Kaufman, Ashraf Elnagar, Animesh Mukherjee, Alexander Panchenko https://arxiv.org/abs/2412.11691

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Even with various regulations in place across countries and social media platforms (Government of India, 2021; European Parliament and Council of the European Union, 2022, digital abusive speech

remains a significant issue. One potential approach to address this challenge is automatic text detoxification, a text style transfer (TST) approach that transforms toxic language into a more neutral or non-toxic form. To date, the availability of parallel corpora for the text detoxification task (Logachevavet al., 2022; Atwell et al., 2022; Dementievavet al., 2024a) has proven to be crucial for state-of-the-art approaches. With this work, we extend parallel text detoxification corpus to new languages -- German, Chinese, Arabic, Hindi, and Amharic -- testing in the extensive multilingual setup TST baselines. Next, we conduct the first of its kind an automated, explainable analysis of the descriptive features of both toxic and non-toxic sentences, diving deeply into the nuances, similarities, and differences of toxicity and detoxification across 9 languages. Finally, based on the obtained insights, we experiment with a novel text detoxification method inspired by the Chain-of-Thoughts reasoning approach, enhancing the prompting process through clustering on relevant descriptive attributes.

From Specific-MLLM to Omni-MLLM: A Survey about the MLLMs alligned with Multi-Modality

Shixin Jiang, Jiafeng Liang, Ming Liu, Bing Qin https://arxiv.org/abs/2412.11694

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

From the Specific-MLLM, which excels in single-modal tasks, to the Omni-MLLM, which extends the range of general modalities, this evolution aims to achieve understanding and generation of multimodal information. Omni-MLLM treats the features of different modalities as different "foreign languages," enabling cross-modal interaction and understanding within a unified space. To promote the advancement of related research, we have compiled 47 relevant papers to provide the community with a comprehensive introduction to Omni-MLLM. We first explain the four core components of Omni-MLLM for unified modeling and interaction of multiple modalities. Next, we introduce the effective integration achieved through "alignment pretraining" and "instruction fine-tuning," and discuss open-source datasets and testing of interaction capabilities. Finally, we summarize the main challenges facing current Omni-MLLM and outline future directions.

CoinMath: Harnessing the Power of Coding Instruction for Math LLMs

Chengwei Wei,Bin Wang,Jung-jae Kim,Guimei Liu,Nancy F. Chen https://arxiv.org/abs/2412.11699

Computation and Language (cs.CL)

Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding

instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.

Vocabulary Expansion of Chat Models with Unlabeled Target Language Data

Atsuki Yamaguchi, Terufumi Morishita, Aline Villavicencio, Nikolaos Aletras https://arxiv.org/abs/2412.11704

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Chat models (i.e. language models trained to follow instructions through conversation with humans) outperform base models (i.e. trained solely on unlabeled data) in both conversation and general task-solving abilities. These models are generally English-centric and require further adaptation for languages that are underrepresented in or absent from their training data. A common technique for adapting base models is to extend the model's vocabulary with target language tokens, i.e. vocabulary expansion (VE), and then continually pre-train it on language-specific data. Using chat data is ideal for chat model adaptation, but often, either this does not exist or is costly to construct. Alternatively, adapting chat models with unlabeled data is a possible solution, but it could result in catastrophic forgetting. In this paper, we investigate the impact of using unlabeled target language data for VE on chat models for the first time. We first show that off-the-shelf VE generally performs well across target language tasks and models in 71% of cases, though it underperforms in scenarios where source chat models are already strong. To further improve adapted models, we propose post-hoc techniques that inject information from the source model without requiring any further training. Experiments reveal the effectiveness of our methods, helping the adapted models to achieve performance improvements in 87% of cases.

Context Filtering with Reward Modeling in Question Answering

Sangryul Kim, James Thorne https://arxiv.org/abs/2412.11707

Computation and Language (cs.CL)

Question Answering (QA) in NLP is the task of finding answers to a query within a relevant context retrieved by a retrieval system. Yet, the mix of relevant and irrelevant information in these contexts can hinder performance enhancements in QA tasks. To address this, we introduce a context filtering approach that removes non-essential details, summarizing crucial content through Reward Modeling. This method emphasizes keeping vital data while omitting the extraneous during summarization model training. We offer a framework for developing efficient QA models by discerning useful information from dataset pairs, bypassing the need for costly human evaluation. Furthermore, we show that our approach can significantly outperform the baseline, as evidenced by a 6.8-fold increase in the EM Per

Token (EPT) metric, which we propose as a measure of token efficiency, indicating a notable token-efficiency boost for low-resource settings.

MiMoTable: A Multi-scale Spreadsheet Benchmark with Meta Operations for Table Reasoning

Zheng Li, Yang Du, Mao Zheng, Mingyang Song https://arxiv.org/abs/2412.11711

Computation and Language (cs.CL)

Extensive research has been conducted to explore the capability of Large Language Models (LLMs) for table reasoning and has significantly improved the performance on existing benchmarks. However, tables and user questions in real-world applications are more complex and diverse, presenting an unignorable gap compared to the existing benchmarks. To fill the gap, we propose a \textbf{M}ult\textbf{i}-scale spreadsheet benchmark with \textbf{M}eta \textbf{O}perations for \textbf{Table} reasoning, named as MiMoTable. Specifically, MiMoTable incorporates two key features. First, the tables in MiMoTable are all spreadsheets used in real-world scenarios, which cover seven domains and contain different types. Second, we define a new criterion with six categories of meta operations for measuring the difficulty of each question in MiMoTable, simultaneously as a new perspective for measuring the difficulty of the existing benchmarks. Experimental results show that Claude-3.5-Sonnet achieves the best performance with 77.4\% accuracy, indicating that there is still significant room to improve for LLMs on MiMoTable. Furthermore, we grade the difficulty of existing benchmarks according to our new criteria. Experiments have shown that the performance of LLMs decreases as the difficulty of benchmarks increases, thereby proving the effectiveness of our proposed new criterion.

Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework

Xuanming Zhang, Yuxuan Chen, Yiming Zheng, Zhexin Zhang, Yuan Yuan, Minlie Huang https://arxiv.org/abs/2412.11713

Computation and Language (cs.CL); Software Engineering (cs.SE)

In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open-source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Block, and Distorted Handling Solution. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in

detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices in real development scenarios, providing valuable insights for future improvements in code reliability.

LLMs Can Simulate Standardized Patients via Agent Coevolution

Zhuoyun Du,Lujie Zheng,Renjun Hu,Yuyang Xu,Xiawei Li,Ying Sun,Wei Chen,Jian Wu,Haolei Cai,Haohao Ying https://arxiv.org/abs/2412.11716

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Human-Computer Interaction (cs.HC); Multiagent Systems (cs.MA)

Training medical personnel using standardized patients (SPs) remains a complex challenge, requiring extensive domain expertise and role-specific practice. Most research on Large Language Model (LLM)-based simulated patients focuses on improving data retrieval accuracy or adjusting prompts through human feedback. However, this focus has overlooked the critical need for patient agents to learn a standardized presentation pattern that transforms data into human-like patient responses through unsupervised simulations. To address this gap, we propose EvoPatient, a novel simulated patient framework in which a patient agent and doctor agents simulate the diagnostic process through multi-turn dialogues, simultaneously gathering experience to improve the quality of both questions and answers, ultimately enabling human doctor training. Extensive experiments on various cases demonstrate that, by providing only overall SP requirements, our framework improves over existing reasoning methods by more than 10% in requirement alignment and better human preference, while achieving an optimal balance of resource consumption after evolving over 200 cases for 10 hours, with excellent generalizability. The code will be available atthis https URL.

Findings of the WMT 2024 Shared Task on Discourse-Level Literary Translation

Longyue Wang,Siyou Liu,Chenyang Lyu,Wenxiang Jiao,Xing Wang,Jiahao Xu,Zhaopeng Tu,Yan Gu,Weiyu Chen,Minghao Wu,Liting Zhou,Philipp Koehn,Andy Way,Yulin Yuan https://arxiv.org/abs/2412.11732

Computation and Language (cs.CL)

Following last year, we have continued to host the WMT translation shared task this year, the second edition of the Discourse-Level Literary Translation. We focus on three language directions: Chinese-English, Chinese-German, and Chinese-Russian, with the latter two ones newly added. This year, we totally received 10 submissions from 5 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. We release data, system outputs, and leaderboard atthis https URL.

Personalized LLM for Generating Customized Responses to the Same Query from Different Users

Hang Zeng, Chaoyue Niu, Fan Wu, Chengfei Lv, Guihai Chen https://arxiv.org/abs/2412.11736

Computation and Language (cs.CL)

Existing work on large language model (LLM) personalization assigned different responding roles to LLM, but overlooked the diversity of questioners. In this work, we propose a new form of questioner-aware LLM personalization, generating different responses even for the same query from different questioners. We design a dual-tower model architecture with a cross-questioner general encoder and a questioner-specific encoder. We further apply contrastive learning with multi-view augmentation, pulling close the dialogue representations of the same questioner, while pulling apart those of different questioners. To mitigate the impact of question diversity on questioner-contrastive learning, we cluster the dialogues based on question similarity and restrict the scope of contrastive learning within each cluster. We also build a multi-questioner dataset from English and Chinese scripts and WeChat records, called MQDialog, containing 173 questioners and 12 responders. Extensive evaluation with different metrics shows a significant improvement in the quality of personalized response generation.

CSR: Achieving 1 Bit Key-Value Cache via Sparse Representation

Hongxuan Zhang, Yao Zhao, Jiaqi Zheng, Chenyi Zhuang, Jinjie Gu, Guihai Chen https://arxiv.org/abs/2412.11741

Computation and Language (cs.CL)

The emergence of long-context text applications utilizing large language models (LLMs) has presented significant scalability challenges, particularly in memory footprint. The linear growth of the Key-Value (KV) cache responsible for storing attention keys and values to minimize redundant computations can lead to substantial increases in memory consumption, potentially causing models to fail to serve with limited memory resources. To address this issue, we propose a novel approach called Cache Sparse Representation (CSR), which converts the KV cache by transforming the dense Key-Value cache tensor into sparse indexes and weights, offering a more memory-efficient representation during LLM inference. Furthermore, we introduce NeuralDict, a novel neural network-based method for automatically generating the dictionary used in our sparse representation. Our extensive experiments demonstrate that CSR achieves performance comparable to state-of-the-art KV cache quantization algorithms while maintaining robust functionality in memory-constrained environments.

Beyond Dataset Creation: Critical View of Annotation Variation and Bias Probing of a Dataset for Online Radical Content Detection

Arij Riabi, Virginie Mouilleron, Menel Mahamdi, Wissam Antoun, Djamé Seddah https://arxiv.org/abs/2412.11745

Computation and Language (cs.CL)

The proliferation of radical content on online platforms poses significant risks, including inciting violence and spreading extremist ideologies. Despite ongoing research, existing datasets and models often fail to address the complexities of multilingual and diverse data. To bridge this gap, we introduce a publicly available multilingual dataset annotated with radicalization levels, calls for action, and named entities in English, French, and Arabic. This dataset is pseudonymized to protect individual privacy while preserving contextual information. Beyond presenting our \href{this https URL}{freely available dataset}, we analyze the annotation process, highlighting biases and disagreements among annotators and their implications for model performance. Additionally, we use synthetic data to investigate the influence of socio-demographic traits on annotation patterns and model predictions. Our work offers a comprehensive examination of the challenges and opportunities in building robust datasets for radical content detection, emphasizing the importance of fairness and transparency in model development.

Common Ground, Diverse Roots: The Difficulty of Classifying Common Examples in Spanish Varieties

Javier A. Lopetegui, Arij Riabi, Djamé Seddah https://arxiv.org/abs/2412.11750

Computation and Language (cs.CL)

Variations in languages across geographic regions or cultures are crucial to address to avoid biases in NLP systems designed for culturally sensitive tasks, such as hate speech detection or dialog with conversational agents. In languages such as Spanish, where varieties can significantly overlap, many examples can be valid across them, which we refer to as common examples. Ignoring these examples may cause misclassifications, reducing model accuracy and fairness. Therefore, accounting for these common examples is essential to improve the robustness and representativeness of NLP systems trained on such data. In this work, we address this problem in the context of Spanish varieties. We use training dynamics to automatically detect common examples or errors in existing Spanish datasets. We demonstrate the efficacy of using predicted label confidence for our Datamaps \cite{swayamdipta-etal-2020-dataset} implementation for the identification of hard-to-classify examples, especially common examples, enhancing model performance in variety identification tasks. Additionally, we introduce a Cuban Spanish Variety Identification dataset with common examples annotations developed to facilitate more accurate detection of Cuban and Caribbean Spanish varieties. To our knowledge, this is the first dataset focused on identifying the Cuban, or any other Caribbean, Spanish variety.

SCITAT: A Question Answering Benchmark for Scientific Tables and Text Covering Diverse Reasoning Types

Xuanliang Zhang, Dingzirui Wang, Baoxin Wang, Longxu Dou, Xinyuan Lu, Keyan Xu, Dayong Wu, Qingfu Zhu, Wanxiang Che

https://arxiv.org/abs/2412.11757

Computation and Language (cs.CL)

Scientific question answering (SQA) is an important task aimed at answering questions based on papers. However, current SQA datasets have limited reasoning types and neglect the relevance between tables and text, creating a significant gap with real scenarios. To address these challenges, we propose a QA benchmark for scientific tables and text with diverse reasoning types (SciTaT). To cover more reasoning types, we summarize various reasoning types from real-world questions. To involve both tables and text, we require the questions to incorporate tables and text as much as possible. Based on SciTaT, we propose a strong baseline (CaR), which combines various reasoning methods to address different reasoning types and process tables and text at the same time. CaR brings average improvements of 12.9% over other baselines on SciTaT, validating its effectiveness. Error analysis reveals the challenges of SciTaT, such as complex numerical calculations and domain knowledge.

QUENCH: Measuring the gap between Indic and Non-Indic Contextual General Reasoning in LLMs

Mohammad Aflah Khan, Neemesh Yadav, Sarah Masud, Md. Shad Akhtar https://arxiv.org/abs/2412.11763

Computation and Language (cs.CL)

The rise of large language models (LLMs) has created a need for advanced benchmarking systems beyond traditional setups. To this end, we introduce QUENCH, a novel text-based English Quizzing Benchmark manually curated and transcribed from YouTube quiz videos. QUENCH possesses masked entities and rationales for the LLMs to predict via generation. At the intersection of geographical context and common sense reasoning, QUENCH helps assess world knowledge and deduction capabilities of LLMs via a zero-shot, open-domain quizzing setup. We perform an extensive evaluation on 7 LLMs and 4 metrics, investigating the influence of model size, prompting style, geographical context, and gold-labeled rationale generation. The benchmarking concludes with an error analysis to which the LLMs are prone.

A Method for Detecting Legal Article Competition for Korean Criminal Law Using a Case-augmented Mention Graph

Seonho An, Young Yik Rhim, Min-Soo Kim https://arxiv.org/abs/2412.11787

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR); Machine Learning (cs.LG)

As social systems become increasingly complex, legal articles are also growing more intricate, making it progressively harder for humans to identify any potential competitions among them, particularly when drafting new laws or applying existing laws. Despite this challenge, no method for detecting such competitions has been proposed so far. In this paper, we propose a new legal AI task called Legal Article Competition Detection (LACD), which aims to identify competing articles within a given law. Our novel retrieval method, CAM-Re2, outperforms existing relevant methods, reducing false positives by 20.8% and false negatives by 8.3%, while achieving a 98.2% improvement in precision@5, for the LACD task. We release our codes atthis https URL.

ProsodyFM: Unsupervised Phrasing and Intonation Control for Intelligible Speech Synthesis

Xiangheng He, Junjie Chen, Zixing Zhang, Björn W. Schuller https://arxiv.org/abs/2412.11795

Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Prosody contains rich information beyond the literal meaning of words, which is crucial for the intelligibility of speech. Current models still fall short in phrasing and intonation; they not only miss or misplace breaks when synthesizing long sentences with complex structures but also produce unnatural intonation. We propose ProsodyFM, a prosody-aware text-to-speech synthesis (TTS) model with a flow-matching (FM) backbone that aims to enhance the phrasing and intonation aspects of prosody. ProsodyFM introduces two key components: a Phrase Break Encoder to capture initial phrase break locations, followed by a Duration Predictor for the flexible adjustment of break durations; and a Terminal Intonation Encoder which integrates a set of intonation shape tokens combined with a novel Pitch Processor for more robust modeling of human-perceived intonation change. ProsodyFM is trained with no explicit prosodic labels and yet can uncover a broad spectrum of break durations and intonation patterns. Experimental results demonstrate that ProsodyFM can effectively improve the phrasing and intonation aspects of prosody, thereby enhancing the overall intelligibility compared to four state-of-the-art (SOTA) models. Out-of-distribution experiments show that this prosody improvement can further bring ProsodyFM superior generalizability for unseen complex sentences and speakers. Our case study intuitively illustrates the powerful and fine-grained controllability of ProsodyFM over phrasing and intonation.

UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models

Boyang Xue, Fei Mi, Qi Zhu, Hongru Wang, Rui Wang, Sheng Wang, Erxin Yu, Xuming Hu, Kam-Fai Wong https://arxiv.org/abs/2412.11803

Computation and Language (cs.CL)

Despite demonstrating impressive capabilities, Large Language Models (LLMs) still often struggle to accurately express the factual knowledge they possess, especially in cases where the LLMs' knowledge boundaries are ambiguous. To improve LLMs' factual expressions, we propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries, and then

explicitly incorporates these representations as input features into prompts for LLMs to Align with factual knowledge. First, we prepare the dataset on knowledge question-answering (QA) samples by calculating two uncertainty estimations, including confidence score and semantic entropy, to represent the knowledge boundaries for LLMs. Subsequently, using the prepared dataset, we train a reward model that incorporates uncertainty estimations and then employ the Proximal Policy Optimization (PPO) algorithm for factuality alignment on LLMs. Experimental results indicate that, by integrating uncertainty representations in LLM alignment, the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions and refuse unknown questions on both in-domain and out-of-domain tasks, showing reliability improvements and good generalizability over various prompt- and training-based baselines.

EventSum: A Large-Scale Event-Centric Summarization Dataset for Chinese Multi-News Documents

Mengna Zhu,Kaisheng Zeng,Mao Wang,Kaiming Xiao,Lei Hou,Hongbin Huang,Juanzi Li https://arxiv.org/abs/2412.11814

Computation and Language (cs.CL)

In real life, many dynamic events, such as major disasters and large-scale sports events, evolve continuously over time. Obtaining an overview of these events can help people quickly understand the situation and respond more effectively. This is challenging because the key information of the event is often scattered across multiple documents, involving complex event knowledge understanding and reasoning, which is under-explored in previous work. Therefore, we proposed the Event-Centric Multi-Document Summarization (ECS) task, which aims to generate concise and comprehensive summaries of a given event based on multiple related news documents. Based on this, we constructed the EventSum dataset, which was constructed using Baidu Baike entries and underwent extensive human annotation, to facilitate relevant research. It is the first large scale Chinese multi-document summarization dataset, containing 5,100 events and a total of 57,984 news documents, with an average of 11.4 input news documents and 13.471 characters per event. To ensure data quality and mitigate potential data leakage, we adopted a multi-stage annotation approach for manually labeling the test set. Given the complexity of event-related information, existing metrics struggle to comprehensively assess the quality of generated summaries. We designed specific metrics including Event Recall, Argument Recall, Causal Recall, and Temporal Recall along with corresponding calculation methods for evaluation. We conducted comprehensive experiments on EventSum to evaluate the performance of advanced long-context Large Language Models (LLMs) on this task. Our experimental results indicate that: 1) The event-centric multi-document summarization task remains challenging for existing long-context LLMs; 2) The recall metrics we designed are crucial for evaluating the comprehensiveness of the summary information.

Advancements and Challenges in Bangla Question Answering Models: A Comprehensive Review

Md Iftekhar Islam Tashik, Abdullah Khondoker, Enam Ahmed Taufik, Antara Firoz Parsa, S M Ishtiak Mahmud

https://arxiv.org/abs/2412.11823

Computation and Language (cs.CL)

The domain of Natural Language Processing (NLP) has experienced notable progress in the evolution of Bangla Question Answering (QA) systems. This paper presents a comprehensive review of seven research articles that contribute to the progress in this domain. These research studies explore different aspects of creating question-answering systems for the Bangla language. They cover areas like collecting data, preparing it for analysis, designing models, conducting experiments, and interpreting results. The papers introduce innovative methods like using LSTM-based models with attention mechanisms, context-based QA systems, and deep learning techniques based on prior knowledge. However, despite the progress made, several challenges remain, including the lack of well-annotated data, the absence of high-quality reading comprehension datasets, and difficulties in understanding the meaning of words in context. Bangla QA models' precision and applicability are constrained by these challenges. This review emphasizes the significance of these research contributions by highlighting the developments achieved in creating Bangla QA systems as well as the ongoing effort required to get past roadblocks and improve the performance of these systems for actual language comprehension tasks.

Are You Doubtful? Oh, It Might Be Difficult Then! Exploring the Use of Model Uncertainty for Question Difficulty Estimation

Leonidas Zotos, Hedderik van Rijn, Malvina Nissim https://arxiv.org/abs/2412.11831

Computation and Language (cs.CL)

In an educational setting, an estimate of the difficulty of multiple-choice questions (MCQs), a commonly used strategy to assess learning progress, constitutes very useful information for both teachers and students. Since human assessment is costly from multiple points of view, automatic approaches to MCQ item difficulty estimation are investigated, yielding however mixed success until now. Our approach to this problem takes a different angle from previous work: asking various Large Language Models to tackle the questions included in two different MCQ datasets, we leverage model uncertainty to estimate item difficulty. By using both model uncertainty features as well as textual features in a Random Forest regressor, we show that uncertainty features contribute substantially to difficulty prediction, where difficulty is inversely proportional to the number of students who can correctly answer a question. In addition to showing the value of our approach, we also observe that our model achieves state-of-the-art results on the BEA publicly available dataset.

Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture

Jingze Shi,Bingheng Wu https://arxiv.org/abs/2412.11834

Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

In order to make the foundation model more efficient and effective, our idea is combining sequence transformation and state transformation. First, we prove the availability of rotary position embedding in the state space duality algorithm, which reduces the perplexity of the hybrid quadratic causal self-attention and state space duality by more than 4%, to ensure that the combining sequence transformation unifies position encoding. Second, we propose dynamic mask attention, which maintains 100% accuracy in the more challenging multi-query associative recall task, improving by more than 150% compared to quadratic causal self-attention and state space duality, to ensure that the combining sequence transformation selectively filters relevant information. Third, we design cross domain mixture of experts, which makes the computational speed of expert retrieval with more than 1024 experts 8 to 10 times faster than the mixture of experts, to ensure that the combining state transformation quickly retrieval mixture. Finally, we summarize these matrix algorithms that can form the foundation model: Wonderful Matrices, which can be a competitor to popular model architectures.

Improved Models for Media Bias Detection and Subcategorization

Tim Menzner, Jochen L. Leidner https://arxiv.org/abs/2412.11835

Computation and Language (cs.CL)

We present improved models for the granular detection and sub-classification news media bias in English news articles. We compare the performance of zero-shot versus fine-tuned large pre-trained neural transformer language models, explore how the level of detail of the classes affects performance on a novel taxonomy of 27 news bias-types, and demonstrate how using synthetically generated example data can be used to improve quality

A Benchmark and Robustness Study of In-Context-Learning with Large Language Models in Music Entity Detection

Simon Hachmeier, Robert Jäschke https://arxiv.org/abs/2412.11851

Computation and Language (cs.CL); Multimedia (cs.MM)

Detecting music entities such as song titles or artist names is a useful application to help use cases like processing music search queries or analyzing music consumption on the web. Recent approaches incorporate smaller language models (SLMs) like BERT and achieve high results. However, further research indicates a high influence of entity exposure during pre-training on the performance of the models. With the advent of large language models (LLMs), these outperform SLMs in a variety of downstream tasks. However, researchers are still divided if this is applicable to tasks like entity detection in texts due to issues like hallucination. In this paper, we provide a novel dataset of user-generated metadata and conduct a benchmark and a robustness study using recent LLMs with in-context-learning (ICL). Our results indicate that LLMs in the ICL setting yield higher performance than SLMs. We further uncover the large impact of entity exposure on the best performing LLM in our study.

GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training

Renqiu Xia, Mingsheng Li, Hancheng Ye, Wenjie Wu, Hongbin Zhou, Jiakang Yuan, Tianshuo Peng, Xinyu Cai, Xiangchao Yan, Bin Wang, Conghui He, Botian Shi, Tao Chen, Junchi Yan, Bo Zhang https://arxiv.org/abs/2412.11863

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.

Using Instruction-Tuned Large Language Models to Identify Indicators of Vulnerability in Police Incident Narratives

Sam Relins, Daniel Birks, Charlie Lloyd https://arxiv.org/abs/2412.11878

Computation and Language (cs.CL)

Objectives: Compare qualitative coding of instruction tuned large language models (IT-LLMs) against human coders in classifying the presence or absence of vulnerability in routinely collected unstructured text that describes police-public interactions. Evaluate potential bias in IT-LLM codings. Methods: Analyzing publicly available text narratives of police-public interactions recorded by Boston Police Department, we provide humans and IT-LLMs with qualitative labelling codebooks and compare labels generated by both, seeking to identify situations associated with (i) mental ill health; (ii) substance misuse; (iii) alcohol dependence; and (iv) homelessness. We explore multiple prompting strategies and model sizes, and the variability of labels generated by repeated prompts. Additionally, to explore model bias, we utilize counterfactual methods to assess the impact of two protected characteristics - race and gender - on IT-LLM classification. Results: Results demonstrate that IT-LLMs can effectively support human qualitative coding of police incident narratives. While there is some disagreement between LLM

and human generated labels, IT-LLMs are highly effective at screening narratives where no vulnerabilities are present, potentially vastly reducing the requirement for human coding. Counterfactual analyses demonstrate that manipulations to both gender and race of individuals described in narratives have very limited effects on IT-LLM classifications beyond those expected by chance. Conclusions: IT-LLMs offer effective means to augment human qualitative coding in a way that requires much lower levels of resource to analyze large unstructured datasets. Moreover, they encourage specificity in qualitative coding, promote transparency, and provide the opportunity for more standardized, replicable approaches to analyzing large free-text police data sources.

Classification of Spontaneous and Scripted Speech for Multilingual Audio

Shahar Elisha, Andrew McDowell, Mariano Beguerisse-Díaz, Emmanouil Benetos https://arxiv.org/abs/2412.11896

Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Distinguishing scripted from spontaneous speech is an essential tool for better understanding how speech styles influence speech processing research. It can also improve recommendation systems and discovery experiences for media users through better segmentation of large recorded speech catalogues. This paper addresses the challenge of building a classifier that generalises well across different formats and languages. We systematically evaluate models ranging from traditional, handcrafted acoustic and prosodic features to advanced audio transformers, utilising a large, multilingual proprietary podcast dataset for training and validation. We break down the performance of each model across 11 language groups to evaluate cross-lingual biases. Our experimental analysis extends to publicly available datasets to assess the models' generalisability to non-podcast domains. Our results indicate that transformer-based models consistently outperform traditional feature-based techniques, achieving state-of-the-art performance in distinguishing between scripted and spontaneous speech across various languages.

Can Language Models Rival Mathematics Students? Evaluating Mathematical Reasoning through Textual Manipulation and Human Experiments

Andrii Nikolaiev, Yiannos Stathopoulos, Simone Teufel https://arxiv.org/abs/2412.11908

Computation and Language (cs.CL)

In this paper we look at the ability of recent large language models (LLMs) at solving mathematical problems in combinatorics. We compare models LLaMA-2, LLaMA-3.1, GPT-4, and Mixtral against each other and against human pupils and undergraduates with prior experience in mathematical olympiads. To facilitate these comparisons we introduce the Combi-Puzzles dataset, which contains 125 problem variants based on 25 combinatorial reasoning problems. Each problem is presented in one of five distinct forms, created by systematically manipulating the problem statements through adversarial additions, numeric parameter changes, and linguistic obfuscation. Our variations preserve the mathematical core and are designed to measure the generalisability of LLM problem-solving

abilities, while also increasing confidence that problems are submitted to LLMs in forms that have not been seen as training instances. We found that a model based on GPT-4 outperformed all other models in producing correct responses, and performed significantly better in the mathematical variation of the problems than humans. We also found that modifications to problem statements significantly impact the LLM's performance, while human performance remains unaffected.

CharacterBench: Benchmarking Character Customization of Large Language Models

Jinfeng Zhou, Yongkang Huang, Bosi Wen, Guanqun Bi, Yuxuan Chen, Pei Ke, Zhuang Chen, Xiyao Xiao, Libiao Peng, Kuntian Tang, Rongsheng Zhang, Le Zhang, Tangjie Lv, Zhipeng Hu, Hongning Wang, Minlie Huang

https://arxiv.org/abs/2412.11912

Computation and Language (cs.CL)

Character-based dialogue (aka role-playing) enables users to freely customize characters for interaction, which often relies on LLMs, raising the need to evaluate LLMs' character customization capability. However, existing benchmarks fail to ensure a robust evaluation as they often only involve a single character category or evaluate limited dimensions. Moreover, the sparsity of character features in responses makes feature-focused generative evaluation both ineffective and inefficient. To address these issues, we propose CharacterBench, the largest bilingual generative benchmark, with 22,859 human-annotated samples covering 3,956 characters from 25 detailed character categories. We define 11 dimensions of 6 aspects, classified as sparse and dense dimensions based on whether character features evaluated by specific dimensions manifest in each response. We enable effective and efficient evaluation by crafting tailored queries for each dimension to induce characters' responses related to specific dimensions. Further, we develop CharacterJudge model for cost-effective and stable evaluations. Experiments show its superiority over SOTA automatic judges (e.g., GPT-4) and our benchmark's potential to optimize LLMs' character customization. Our repository is atthis https URL.

RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation

Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yongkang Wu, Zhonghua Li, Qi Ye, Zhicheng Dou https://arxiv.org/abs/2412.11919

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR)

Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose \textbf{RetroLLM}, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical

FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks. The code is available at \url{this https URL}.

PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection

Sepideh Mamooler, Syrielle Montariol, Alexander Mathis, Antoine Bosselut https://arxiv.org/abs/2412.11923

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensitive to the choice of demonstrations, and it remains unclear which demonstration attributes enable in-context generalization. In this work, we conduct a perturbation study of in-context demonstrations for low-resource Named Entity Detection (NED). Our surprising finding is that in-context demonstrations with partially correct annotated entity mentions can be as effective for task transfer as fully correct demonstrations. Based off our findings, we propose Pseudo-annotated In-Context Learning (PICLe), a framework for in-context learning with noisy, pseudo-annotated demonstrations. PICLe leverages LLMs to annotate many demonstrations in a zero-shot first pass. We then cluster these synthetic demonstrations, sample specific sets of in-context demonstrations from each cluster, and predict entity mentions using each set independently. Finally, we use self-verification to select the final set of entity mentions. We evaluate PICLe on five biomedical NED datasets and show that, with zero human annotation, PICLe outperforms ICL in low-resource settings where limited gold examples can be used as in-context demonstrations.

Explainable Procedural Mistake Detection

Shane Storks, Itamar Bar-Yossef, Yayuan Li, Zheyuan Zhang, Jason J. Corso, Joyce Chai https://arxiv.org/abs/2412.11927

Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Automated task guidance has recently attracted attention from the AI research community. Procedural mistake detection (PMD) is a challenging sub-problem of classifying whether a human user (observed through egocentric video) has successfully executed the task at hand (specified by a procedural text). Despite significant efforts in building resources and models for PMD, machine performance remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we recast PMD to an explanatory self-dialog of questions and answers, which serve as evidence for a decision. As this reformulation enables an unprecedented transparency, we leverage a fine-tuned natural language inference (NLI) model to formulate two automated coherence metrics for generated explanations. Our results show that while open-source VLMs struggle with this task off-the-shelf, their

accuracy, coherence, and dialog efficiency can be vastly improved by incorporating these coherence metrics into common inference and fine-tuning methods. Furthermore, our multi-faceted metrics can visualize common outcomes at a glance, highlighting areas for improvement.

A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges

Yibo Yan, Jiamin Su, Jianxiang He, Fangteng Fu, Xu Zheng, Yuanhuiyi Lyu, Kun Wang, Shen Wang, Qingsong Wen, Xuming Hu https://arxiv.org/abs/2412.11936

Computation and Language (cs.CL)

Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with mathematical reasoning tasks is becoming increasingly significant. This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs). We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs, with a focus on multimodal settings. We categorize the field into three dimensions: benchmarks, methodologies, and challenges. In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies. Finally, we identify five major challenges hindering the realization of AGI in this domain, offering insights into the future direction for enhancing multimodal reasoning capabilities. This survey serves as a critical resource for the research community in advancing the capabilities of LLMs to tackle complex multimodal reasoning tasks.

Precise Length Control in Large Language Models

Bradley Butcher, Michael O'Keefe, James Titchener https://arxiv.org/abs/2412.11937

Computation and Language (cs.CL)

Large Language Models (LLMs) are increasingly used in production systems, powering applications such as chatbots, summarization, and question answering. Despite their success, controlling the length of their response remains a significant challenge, particularly for tasks requiring structured outputs or specific levels of detail. In this work, we propose a method to adapt pre-trained decoder-only LLMs for precise control of response length. Our approach incorporates a secondary length-difference positional encoding (LDPE) into the input embeddings, which counts down to a user-set response termination length. Fine-tuning with LDPE allows the model to learn to terminate responses coherently at the desired length, achieving mean token errors of less than 3 tokens. We also introduce Max New Tokens++, an extension that enables flexible upper-bound length control, rather than an exact target. Experimental results on tasks such as question answering and document summarization demonstrate that our method enables precise length control without compromising response quality.

SEAGraph: Unveiling the Whole Story of Paper Review Comments

Jianxiang Yu, Jiaqi Tan, Zichen Ding, Jiapeng Zhu, Jiahao Li, Yao Cheng, Qier Cui, Yunshi Lan, Xiang Li https://arxiv.org/abs/2412.11939

Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author's thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors.

The Impact of Token Granularity on the Predictive Power of Language Model Surprisal

Byung-Doh Oh, William Schuler https://arxiv.org/abs/2412.11940

Computation and Language (cs.CL)

Word-by-word language model surprisal is often used to model the incremental processing of human readers, which raises questions about how various choices in language modeling influence its predictive power. One factor that has been overlooked in cognitive modeling is the granularity of subword tokens, which explicitly encodes information about word length and frequency, and ultimately influences the quality of vector representations that are learned. This paper presents experiments that manipulate the token granularity and evaluate its impact on the ability of surprisal to account for processing difficulty of naturalistic text and garden-path constructions. Experiments with naturalistic reading times reveal a substantial influence of token granularity on surprisal, with tokens defined by a vocabulary size of 8,000 resulting in surprisal that is most predictive. In contrast, on garden-path constructions, language models trained on coarser-grained tokens generally assigned higher surprisal to critical regions, suggesting their increased sensitivity to syntax. Taken together, these results suggest a large role of token granularity on the quality of language model surprisal for cognitive modeling.

Inferring Functionality of Attention Heads from their Parameters

Amit Elhelo, Mor Geva https://arxiv.org/abs/2412.11965

Computation and Language (cs.CL)

Attention heads are one of the building blocks of large language models (LLMs). Prior work on investigating their operation mostly focused on analyzing their behavior during inference for specific circuits or tasks. In this work, we seek a comprehensive mapping of the operations they implement in a model. We propose MAPS (Mapping Attention head ParameterS), an efficient framework that infers the functionality of attention heads from their parameters, without any model training or inference. We showcase the utility of MAPS for answering two types of questions: (a) given a predefined operation, mapping how strongly heads across the model implement it, and (b) given an attention head, inferring its salient functionality. Evaluating MAPS on 20 operations across 6 popular LLMs shows its estimations correlate with the head's outputs during inference and are causally linked to the model's predictions. Moreover, its mappings reveal attention heads of certain operations that were overlooked in previous studies, and valuable insights on function universality and architecture biases in LLMs. Next, we present an automatic pipeline and analysis that leverage MAPS to characterize the salient operations of a given head. Our pipeline produces plausible operation descriptions for most heads, as assessed by human judgment, while revealing diverse operations.

DARWIN 1.5: Large Language Models as Materials Science Adapted Learners

Tong Xie, Yuwei Wan, Yixuan Liu, Yuchen Zeng, Wenjie Zhang, Chunyu Kit, Dongzhan Zhou, Bram Hoex https://arxiv.org/abs/2412.11970

Computation and Language (cs.CL)

Materials discovery and design aim to find components and structures with desirable properties over highly complex and diverse search spaces. Traditional solutions, such as high-throughput simulations and machine learning (ML), often rely on complex descriptors, which hinder generalizability and transferability across tasks. Moreover, these descriptors may deviate from experimental data due to inevitable defects and purity issues in the real world, which may reduce their effectiveness in practical applications. To address these challenges, we propose Darwin 1.5, an open-source large language model (LLM) tailored for materials science. By leveraging natural language as input, Darwin eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery. We employ a two-stage training strategy combining question-answering (QA) fine-tuning with multi-task learning (MTL) to inject domain-specific knowledge in various modalities and facilitate cross-task knowledge transfer. Through our strategic approach, we achieved a significant enhancement in the prediction accuracy of LLMs, with a maximum improvement of 60\% compared to LLaMA-7B base models. It further outperforms traditional machine learning models on various tasks in material science, showcasing the potential of LLMs to provide a more versatile and scalable foundation model for materials discovery and design.

Emma-X: An Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning

Qi Sun, Pengfei Hong, Tej Deep Pala, Vernon Toh, U-Xuan Tan, Deepanway Ghosal, Soujanya Poria https://arxiv.org/abs/2412.11974

Robotics (cs.RO); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Traditional reinforcement learning-based robotic control methods are often task-specific and fail to generalize across diverse environments or unseen objects and instructions. Visual Language Models (VLMs) demonstrate strong scene understanding and planning capabilities but lack the ability to generate actionable policies tailored to specific robotic embodiments. To address this, Visual-Language-Action (VLA) models have emerged, yet they face challenges in long-horizon spatial reasoning and grounded task planning. In this work, we propose the Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning, Emma-X. Emma-X leverages our constructed hierarchical embodiment dataset based on BridgeV2, containing 60,000 robot manipulation trajectories auto-annotated with grounded task reasoning and spatial guidance. Additionally, we introduce a trajectory segmentation strategy based on gripper states and motion trajectories, which can help mitigate hallucination in grounding subtask reasoning generation. Experimental results demonstrate that Emma-X achieves superior performance over competitive baselines, particularly in real-world robotic tasks requiring spatial reasoning.

Speech Foundation Models and Crowdsourcing for Efficient, High-Quality Data Collection

Beomseok Lee, Marco Gaido, Ioan Calapodescu, Laurent Besacier, Matteo Negri https://arxiv.org/abs/2412.11978

Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

While crowdsourcing is an established solution for facilitating and scaling the collection of speech data, the involvement of non-experts necessitates protocols to ensure final data quality. To reduce the costs of these essential controls, this paper investigates the use of Speech Foundation Models (SFMs) to automate the validation process, examining for the first time the cost/quality trade-off in data acquisition. Experiments conducted on French, German, and Korean data demonstrate that SFM-based validation has the potential to reduce reliance on human validation, resulting in an estimated cost saving of over 40.0% without degrading final data quality. These findings open new opportunities for more efficient, cost-effective, and scalable speech data acquisition.

Mengjie Qian, Kate Knill, Stefano Banno, Siyuan Tang, Penny Karanasou, Mark J.F. Gales, Diane Nicholls https://arxiv.org/abs/2412.11985

Computation and Language (cs.CL)

This paper presents the "Speak & Improve Challenge 2025: Spoken Language Assessment and Feedback" -- a challenge associated with the ISCA SLaTE 2025 Workshop. The goal of the challenge is to advance research on spoken language assessment and feedback, with tasks associated with both the underlying technology and language learning feedback. Linked with the challenge, the Speak & Improve (S&I;) Corpus 2025 is being pre-released, a dataset of L2 learner English data with holistic scores and language error annotation, collected from open (spontaneous) speaking tests on the Speak & Improve learning platform. The corpus consists of 340 hours of audio data from second language English learners with holistic scores, and a 60-hour subset with manual transcriptions and error labels. The Challenge has four shared tasks: Automatic Speech Recognition (ASR), Spoken Language Assessment (SLA), Spoken Grammatical Error Correction (SGEC), and Spoken Grammatical Error Correction Feedback (SGECF). Each of these tasks has a closed track where a predetermined set of models and data sources are allowed to be used, and an open track where any public resource may be used. Challenge participants may do one or more of the tasks. This paper describes the challenge, the S&I; Corpus 2025, and the baseline systems released for the Challenge.

Speak & Improve Corpus 2025: an L2 English Speech Corpus for Language Assessment and Feedback

Kate Knill, Diane Nicholls, Mark J.F. Gales, Mengjie Qian, Pawel Stroinski https://arxiv.org/abs/2412.11986

Computation and Language (cs.CL)

We introduce the Speak \& Improve Corpus 2025, a dataset of L2 learner English data with holistic scores and language error annotation, collected from open (spontaneous) speaking tests on the Speak \& Improve learning platformthis https URL. The aim of the corpus release is to address a major challenge to developing L2 spoken language processing systems, the lack of publicly available data with high-quality annotations. It is being made available for non-commercial use on the ELiT website. In designing this corpus we have sought to make it cover a wide-range of speaker attributes, from their L1 to their speaking ability, as well as providing manual annotations. This enables a range of language-learning tasks to be examined, such as assessing speaking proficiency or providing feedback on grammatical errors in a learner's speech. Additionally, the data supports research into the underlying technology required for these tasks including automatic speech recognition (ASR) of low resource L2 learner English, disfluency detection or spoken grammatical error correction (GEC). The corpus consists of around 340 hours of L2 English learners audio with holistic scores, and a subset of audio annotated with transcriptions and error labels.

SciFaultyQA: Benchmarking LLMs on Faulty Science Question Detection with a GAN-Inspired Approach to Synthetic Dataset Generation

Debarshi Kundu

https://arxiv.org/abs/2412.11988

Computation and Language (cs.CL); Machine Learning (cs.LG)

Consider the problem: ``If one man and one woman can produce one child in one year, how many children will be produced by one woman and three men in 0.5 years?" Current large language models (LLMs) such as GPT-4o, GPT-o1-preview, and Gemini Flash frequently answer "0.5," which does not make sense. While these models sometimes acknowledge the unrealistic nature of the question, in many cases (8 out of 10 trials), they provide the nonsensical answer of "0.5 child." Additionally, temporal variation has been observed: if an LLM answers correctly once (by recognizing the faulty nature of the question), subsequent responses are more likely to also reflect this understanding. However, this is inconsistent. These types of questions have motivated us to develop a dataset of science questions, SciFaultyQA, where the questions themselves are intentionally faulty. We observed that LLMs often proceed to answer these flawed questions without recognizing their inherent issues, producing results that are logically or scientifically invalid. By analyzing such patterns, we developed a novel method for generating synthetic datasets to evaluate and benchmark the performance of various LLMs in identifying these flawed questions. We have also developed novel approaches to reduce the errors.

ExecRepoBench: Multi-level Executable Code Completion Evaluation

Jian Yang,Jiajun Zhang,Jiaxi Yang,Ke Jin,Lei Zhang,Qiyao Peng,Ken Deng,Yibo Miao,Tianyu Liu,Zeyu Cui,Binyuan Hui,Junyang Lin https://arxiv.org/abs/2412.11990

Computation and Language (cs.CL)

Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of \ourmethod{} can be used as a high-performance, local service for programming development\footnote{\url{this https} URL}}.

LLM-RG4: Flexible and Factual Radiology Report Generation across Diverse Input Contexts

Zhuhao Wang, Yihua Sun, Zihan Li, Xuan Yang, Fang Chen, Hongen Liao https://arxiv.org/abs/2412.12001

Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Drafting radiology reports is a complex task requiring flexibility, where radiologists tail content to available information and particular clinical demands. However, most current radiology report generation (RRG) models are constrained to a fixed task paradigm, such as predicting the full ``finding" section from a single image, inherently involving a mismatch between inputs and outputs. The trained models lack the flexibility for diverse inputs and could generate harmful, input-agnostic hallucinations. To bridge the gap between current RRG models and the clinical demands in practice, we first develop a data generation pipeline to create a new MIMIC-RG4 dataset, which considers four common radiology report drafting scenarios and has perfectly corresponded input and output. Secondly, we propose a novel large language model (LLM) based RRG framework, namely LLM-RG4, which utilizes LLM's flexible instruction-following capabilities and extensive general knowledge. We further develop an adaptive token fusion module that offers flexibility to handle diverse scenarios with different input combinations, while minimizing the additional computational burden associated with increased input volumes. Besides, we propose a token-level loss weighting strategy to direct the model's attention towards positive and uncertain descriptions. Experimental results demonstrate that LLM-RG4 achieves state-of-the-art performance in both clinical efficiency and natural language generation on the MIMIC-RG4 and MIMIC-CXR datasets. We quantitatively demonstrate that our model has minimal input-agnostic hallucinations, whereas current open-source models commonly suffer from this problem.

The Open Source Advantage in Large Language Models (LLMs)

Jiya Manchanda,Laura Boettcher,Matheus Westphalen,Jasser Jasser https://arxiv.org/abs/2412.12004

Computation and Language (cs.CL); Machine Learning (cs.LG)

Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid

approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.

Can LLM Prompting Serve as a Proxy for Static Analysis in Vulnerability Detection

Ira Ceka, Feitong Qiao, Anik Dey, Aastha Valechia, Gail Kaiser, Baishakhi Ray https://arxiv.org/abs/2412.12039

Cryptography and Security (cs.CR); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Software Engineering (cs.SE)

Despite their remarkable success, large language models (LLMs) have shown limited ability on applied tasks such as vulnerability detection. We investigate various prompting strategies for vulnerability detection and, as part of this exploration, propose a prompting strategy that integrates natural language descriptions of vulnerabilities with a contrastive chain-of-thought reasoning approach, augmented using contrastive samples from a synthetic dataset. Our study highlights the potential of LLMs to detect vulnerabilities by integrating natural language descriptions, contrastive reasoning, and synthetic examples into a comprehensive prompting framework. Our results show that this approach can enhance LLM understanding of vulnerabilities. On a high-quality vulnerability detection dataset such as SVEN, our prompting strategies can improve accuracies, F1-scores, and pairwise accuracies by 23%, 11%, and 14%, respectively.

How Private are Language Models in Abstractive Summarization?

Anthony Hughes, Nikolaos Aletras, Ning Ma https://arxiv.org/abs/2412.12040

Computation and Language (cs.CL)

Language models (LMs) have shown outstanding performance in text summarization including sensitive domains such as medicine and law. In these settings, it is important that personally identifying information (PII) included in the source document should not leak in the summary. Prior efforts have mostly focused on studying how LMs may inadvertently elicit PII from training data. However, to what extent LMs can provide privacy-preserving summaries given a non-private source document remains under-explored. In this paper, we perform a comprehensive study across two closed- and three open-weight LMs of different sizes and families. We experiment with prompting and fine-tuning strategies for privacy-preservation across a range of summarization datasets across three domains. Our extensive quantitative and qualitative analysis including human evaluation shows that LMs often cannot prevent PII leakage on their summaries and that current widely-used metrics cannot capture context dependent privacy risks.

Virtual Agent-Based Communication Skills Training to Facilitate Health Persuasion Among Peers

Farnaz Nouraei, Keith Rebello, Mina Fallah, Prasanth Murali, Haley Matuszak, Valerie Jap, Andrea Parker, Michael Paasche-Orlow, Timothy Bickmore https://arxiv.org/abs/2412.12061

Human-Computer Interaction (cs.HC); Computation and Language (cs.CL); Computers and Society (cs.CY)

Many laypeople are motivated to improve the health behavior of their family or friends but do not know where to start, especially if the health behavior is potentially stigmatizing or controversial. We present an approach that uses virtual agents to coach community-based volunteers in health counseling techniques, such as motivational interviewing, and allows them to practice these skills in role-playing scenarios. We use this approach in a virtual agent-based system to increase COVID-19 vaccination by empowering users to influence their social network. In a between-subjects comparative design study, we test the effects of agent system interactivity and role-playing functionality on counseling outcomes, with participants evaluated by standardized patients and objective judges. We find that all versions are effective at producing peer counselors who score adequately on a standardized measure of counseling competence, and that participants were significantly more satisfied with interactive virtual agents compared to passive viewing of the training material. We discuss design implications for interpersonal skills training systems based on our findings.

Semi-automated analysis of audio-recorded lessons: The case of teachers' engaging messages

Samuel Falcon, Carmen Alvarez-Alvarez, Jaime Leon https://arxiv.org/abs/2412.12062

Computation and Language (cs.CL); Computers and Society (cs.CY)

Engaging messages delivered by teachers are a key aspect of the classroom discourse that influences student outcomes. However, improving this communication is challenging due to difficulties in obtaining observations. This study presents a methodology for efficiently extracting actual observations of engaging messages from audio-recorded lessons. We collected 2,477 audio-recorded lessons from 75 teachers over two academic years. Using automatic transcription and keyword-based filtering analysis, we identified and classified engaging messages. This method reduced the information to be analysed by 90%, optimising the time and resources required compared to traditional manual coding. Subsequent descriptive analysis revealed that the most used messages emphasised the future benefits of participating in school activities. In addition, the use of engaging messages decreased as the academic year progressed. This study offers insights for researchers seeking to extract information from teachers' discourse in naturalistic settings and provides useful information for designing interventions to improve teachers' communication strategies.

Kuleen Sasse, Carlos Aguirre, Isabel Cachola, Sharon Levy, Mark Dredze https://arxiv.org/abs/2412.12072

Computation and Language (cs.CL)

WARNING: This paper contains content that maybe upsetting or offensive to some readers. Dog whistles are coded expressions with dual meanings: one intended for the general public (outgroup) and another that conveys a specific message to an intended audience (ingroup). Often, these expressions are used to convey controversial political opinions while maintaining plausible deniability and slip by content moderation filters. Identification of dog whistles relies on curated lexicons, which have trouble keeping up to date. We introduce \textbf{FETCH!}, a task for finding novel dog whistles in massive social media corpora. We find that state-of-the-art systems fail to achieve meaningful results across three distinct social media case studies. We present \textbf{EarShot}, a novel system that combines the strengths of vector databases and Large Language Models (LLMs) to efficiently and effectively identify new dog whistles.

SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator

Guoxuan Chen,Han Shi,Jiawei Li, Yihang Gao,Xiaozhe Ren, Yimeng Chen,Xin Jiang,Zhenguo Li,Weiyang Liu,Chao Huang https://arxiv.org/abs/2412.12094

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless special tokens (i.e., separators) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.

Observing Micromotives and Macrobehavior of Large Language Models

Yuyang Cheng,Xingwei Qu,Tomas Goldsack,Chenghua Lin,Chung-Chi Chen https://arxiv.org/abs/2412.10428

Physics and Society (physics.soc-ph); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Thomas C. Schelling, awarded the 2005 Nobel Memorial Prize in Economic Sciences, pointed out that ``individuals decisions (micromotives), while often personal and localized, can lead to societal outcomes (macrobehavior) that are far more complex and different from what the individuals intended." The current research related to large language models' (LLMs') micromotives, such as preferences or biases, assumes that users will make more appropriate decisions once LLMs are devoid of preferences or biases. Consequently, a series of studies has focused on removing bias from LLMs. In the NLP community, while there are many discussions on LLMs' micromotives, previous studies have seldom conducted a systematic examination of how LLMs may influence society's macrobehavior. In this paper, we follow the design of Schelling's model of segregation to observe the relationship between the micromotives and macrobehavior of LLMs. Our results indicate that, regardless of the level of bias in LLMs, a highly segregated society will emerge as more people follow LLMs' suggestions. We hope our discussion will spark further consideration of the fundamental assumption regarding the mitigation of LLMs' micromotives and encourage a reevaluation of how LLMs may influence users and society.

Transliterated Zero-Shot Domain Adaptation for Automatic Speech Recognition

Han Zhu, Gaofeng Cheng, Qingwei Zhao, Pengyuan Zhang https://arxiv.org/abs/2412.11185

Audio and Speech Processing (eess.AS); Computation and Language (cs.CL); Sound (cs.SD)

The performance of automatic speech recognition models often degenerates on domains not covered by the training data. Domain adaptation can address this issue, assuming the availability of the target domain data in the target language. However, such assumption does not stand in many real-world applications. To make domain adaptation more applicable, we address the problem of zero-shot domain adaptation (ZSDA), where target domain data is unavailable in the target language. Instead, we transfer the target domain knowledge from another source language where the target domain data is more accessible. To do that, we first perform cross-lingual pre-training (XLPT) to share domain knowledge across languages, then use target language fine-tuning to build the final model. One challenge in this practice is that the pre-trained knowledge can be forgotten during fine-tuning, resulting in sub-optimal adaptation performance. To address this issue, we propose transliterated ZSDA to achieve consistent pre-training and fine-tuning labels, leading to maximum preservation of the pre-trained knowledge. Experimental results show that transliterated ZSDA relatively decreases the word error rate by 9.2% compared with a wav2vec 2.0 baseline. Moreover, transliterated ZSDA consistently outperforms self-supervised ZSDA and performs on par with supervised ZSDA, proving the superiority of transliteration-based pre-training labels.

SpeechPrune: Context-aware Token Pruning for Speech Information Retrieval

Yueqian Lin, Yuzhe Fu, Jingyang Zhang, Yudong Liu, Jianyi Zhang, Jingwei Sun, Hai "Helen" Li, Yiran Chen

https://arxiv.org/abs/2412.12009

Audio and Speech Processing (eess.AS); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Sound (cs.SD)

We introduce Speech Information Retrieval (SIR), a new long-context task for Speech Large Language Models (Speech LLMs), and present SPIRAL, a 1,012-sample benchmark testing models' ability to extract critical details from approximately 90-second spoken inputs. While current Speech LLMs excel at short-form tasks, they struggle with the computational and representational demands of longer audio sequences. To address this limitation, we propose SpeechPrune, a training-free token pruning strategy that uses speech-text similarity and approximated attention scores to efficiently discard irrelevant tokens. In SPIRAL, SpeechPrune achieves accuracy improvements of 29% and up to 47% over the original model and the random pruning model at a pruning rate of 20%, respectively. SpeechPrune can maintain network performance even at a pruning level of 80%. This approach highlights the potential of token-level pruning for efficient and scalable long-form speech understanding.

The statistical advantage of automatic NLG metrics at the system level

Johnny Tian-Zheng Wei, Robin Jia https://arxiv.org/abs/2105.12437

Computation and Language (cs.CL)

Estimating the expected output quality of generation systems is central to NLG. This paper qualifies the notion that automatic metrics are not as good as humans in estimating system-level quality. Statistically, humans are unbiased, high variance estimators, while metrics are biased, low variance estimators. We compare these estimators by their error in pairwise prediction (which generation system is better?) using the bootstrap. Measuring this error is complicated: predictions are evaluated against noisy, human predicted labels instead of the ground truth, and metric predictions fluctuate based on the test sets they were calculated on. By applying a bias-variance-noise decomposition, we adjust this error to a noise-free, infinite test set setting. Our analysis compares the adjusted error of metrics to humans and a derived, perfect segment-level annotator, both of which are unbiased estimators dependent on the number of judgments collected. In MT, we identify two settings where metrics outperform humans due to a statistical advantage in variance: when the number of human judgments used is small, and when the quality difference between compared systems is small. The data and code to reproduce our analyses are available atthis https URL.

Why are state-space models more expressive than \$n\$-gram models?

Vinoth Nandakumar, Qiang Qu, Peng Mi, Tongliang Liu https://arxiv.org/abs/2306.17184

Computation and Language (cs.CL); Machine Learning (cs.LG)

Recent advancements in recurrent neural networks (RNNs) have reinvigorated interest in their application to natural language processing tasks, particularly with the development of more efficient and parallelizable variants known as state space models (SSMs), which have shown competitive performance against transformer models while maintaining a lower memory footprint. While RNNs and

SSMs (e.g., Mamba) have been empirically more successful than rule-based systems based on \$n\$-gram models, a rigorous theoretical explanation for this success has not yet been developed, as it is unclear how these models encode the combinatorial rules that govern the next-word prediction task. In this paper, we construct state space language models that can solve the next-word prediction task for languages generated from \$n\$-gram rules, thereby showing that the former are more expressive. Our proof shows how SSMs can encode \$n\$-gram rules using new theoretical results on their memorization capacity, and demonstrates how their context window can be controlled by restricting the spectrum of the hidden weight matrix. We conduct experiments with a small dataset generated from \$n\$-gram rules to show how our framework can be applied to SSMs and RNNs obtained through gradient-based optimization.

Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, Yue Zhang https://arxiv.org/abs/2310.05130

Computation and Language (cs.CL)

Large language models (LLMs) have shown the ability to produce fluent and cogent content, presenting both productivity opportunities and societal risks. To build trustworthy AI systems, it is imperative to distinguish between machine-generated and human-authored content. The leading zero-shot detector, DetectGPT, showcases commendable performance but is marred by its intensive computational costs. In this paper, we introduce the concept of conditional probability curvature to elucidate discrepancies in word choices between LLMs and humans within a given context. Utilizing this curvature as a foundational metric, we present **Fast-DetectGPT**, an optimized zero-shot detector, which substitutes DetectGPT's perturbation step with a more efficient sampling step. Our evaluations on various datasets, source models, and test conditions indicate that Fast-DetectGPT not only surpasses DetectGPT by a relative around 75% in both the white-box and black-box settings but also accelerates the detection process by a factor of 340, as detailed in Table 1. See \url{this https URL} for code, data, and results.

XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners

Yun Luo,Zhen Yang,Fandong Meng,Yingjie Li,Fang Guo,Qinglin Qi,Jie Zhou,Yue Zhang https://arxiv.org/abs/2310.05502

Computation and Language (cs.CL)

Active learning (AL), which aims to construct an effective training set by iteratively curating the most formative unlabeled data for annotation, has been widely used in low-resource tasks. Most active learning techniques in classification rely on the model's uncertainty or disagreement to choose unlabeled data, suffering from the problem of over-confidence in superficial patterns and a lack of exploration. Inspired by the cognitive processes in which humans deduce and predict through causal information, we take an initial attempt towards integrating rationales into AL and propose a novel

Explainable Active Learning framework (XAL) for low-resource text classification, which aims to encourage classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations. Specifically, besides using a pre-trained bi-directional encoder for classification, we employ a pre-trained uni-directional decoder to generate and score the explanation. We further facilitate the alignment of the model with human reasoning preference through a proposed ranking loss. During the selection of unlabeled data, the predicted uncertainty of the encoder and the explanation score of the decoder complement each other as the final metric to acquire informative data. Extensive experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines. Analysis indicates that the proposed method can generate corresponding explanations for its predictions.

MatFormer: Nested Transformer for Elastic Inference

Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia Tsvetkov, Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek Jain https://arxiv.org/abs/2310.07707

Machine Learning (cs.LG); Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Foundation models are applied in a broad spectrum of settings with different inference constraints, from massive multi-accelerator clusters to resource-constrained standalone mobile devices. However, the substantial costs associated with training these models often limit the number of unique model sizes that can be offered. Consequently, practitioners are compelled to select a model that may not be optimally aligned with their specific latency and cost requirements. We present MatFormer, a novel Transformer architecture designed to provide elastic inference across diverse deployment constraints. MatFormer achieves this by incorporating a nested Feed Forward Network (FFN) block structure within a standard Transformer model. During training, we optimize the parameters of multiple nested FFN blocks with varying sizes, enabling the extraction of hundreds of accurate smaller models without incurring additional computational costs. We empirically validate the efficacy of MatFormer across different model classes (decoders and encoders) and modalities (language and vision), demonstrating its potential for real-world deployment. We show that a 850M decoder-only MatFormer language model (MatLM) allows us to extract multiple smaller models spanning from 582M to 850M parameters, each exhibiting better validation loss and one-shot downstream evaluations than independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels extracted from MatFormer can lead to significant reduction in inference latency. Project website:this https URL

Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding

Computation and Language (cs.CL)

Logical reasoning remains a pivotal component within the realm of artificial intelligence. The recent evolution of large language models (LLMs) has marked significant progress in this domain. The adoption of strategies like chain-of-thought (CoT) has enhanced the performance of LLMs across diverse reasoning tasks. Nonetheless, logical reasoning that involves proof planning, specifically those that necessitate the validation of explanation accuracy, continues to present stumbling blocks. In this study, we first evaluate the efficacy of LLMs with advanced CoT strategies concerning such tasks. Our analysis reveals that LLMs still struggle to navigate complex reasoning chains, which demand the meticulous linkage of premises to derive a cogent conclusion. To address this issue, we finetune a smaller-scale language model, equipping it to decompose proof objectives into more manageable subgoals. We also introduce contrastive decoding to stepwise proof generation, making use of negative reasoning paths to strengthen the model's capacity for logical deduction. Experiments on EntailmentBank underscore the success of our method in augmenting the proof planning abilities of language models.

Aligning Large Language Models with Human Opinions through Persona Selection and Value--Belief--Norm Reasoning

Do Xuan Long, Kenji Kawaguchi, Min-Yen Kan, Nancy F. Chen https://arxiv.org/abs/2311.08385

Computation and Language (cs.CL)

Reasoning and predicting human opinions with large language models (LLMs) is essential yet challenging. Current methods employ role-playing with personae but face two major issues: LLMs are sensitive to even a single irrelevant persona, skewing predictions by up to 30%, and LLMs fail to reason strategically over personae. We propose Chain-of-Opinion (COO), a simple four-step solution modeling which and how to reason with personae, inspired by the Value--Belief--Norm (VBN) theory. COO differentiates between explicit personae (demographics and ideology) and implicit personae (historical opinions), involves: (1) filtering irrelevant attributes from explicit personae, (2) ranking implicit personae into a preferential list for selecting top-k, (3) applying novel VBN reasoning to extract user environmental and personal value, belief, and norm variables for accurate and reliable predictions, and (4) iterating VBN reasoning with progressively larger lists of implicit personae to handle potential persona insufficiency. COO efficiently achieves new state-of-the-art opinion prediction via prompting with only 5 inference calls, improving prior techniques by up to 4%. Notably, fine-tuning LMs with COO data results in significantly better opinion-aligned models, by up to 23%.

Distilling Rule-based Knowledge into Large Language Models

Wenkai Yang, Yankai Lin, Jie Zhou, Ji-Rong Wenhttps://arxiv.org/abs/2311.08883

Computation and Language (cs.CL)

Large language models (LLMs) have shown incredible performance in completing various real-world tasks. The current paradigm of knowledge learning for LLMs is mainly based on learning from examples, in which LLMs learn the internal rule implicitly from a certain number of supervised examples. However, this learning paradigm may not well learn those complicated rules, especially when the training examples are limited. We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules. That is, humans can learn new tasks or grasp new knowledge quickly and generalize well given only a detailed rule and a few optional examples. Therefore, in this paper, we aim to explore the feasibility of this new learning paradigm, which targets on encoding rule-based knowledge into LLMs. We further propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules, and then explicitly encode the knowledge into the parameters of LLMs by learning from the above in-context signals produced inside the model. Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability. Warning: This paper may contain examples with offensive content.

Prompt Valuation Based on Shapley Values

Hanxi Liu,Xiaokai Mao,Haocheng Xia,Jian Lou,Jinfei Liu,Kui Ren https://arxiv.org/abs/2312.15395

Computation and Language (cs.CL); Databases (cs.DB); Machine Learning (cs.LG)

Large language models (LLMs) excel on new tasks without additional training, simply by providing natural language prompts that demonstrate how the task should be performed. Prompt ensemble methods comprehensively harness the knowledge of LLMs while mitigating individual biases and errors and further enhancing performance. However, more prompts do not necessarily lead to better results, and not all prompts are beneficial. A small number of high-quality prompts often outperform many low-quality prompts. Currently, there is a lack of a suitable method for evaluating the impact of prompts on the results. In this paper, we utilize the Shapley value to fairly quantify the contributions of prompts, helping to identify beneficial or detrimental prompts, and potentially guiding prompt valuation in data markets. Through extensive experiments employing various ensemble methods and utility functions on diverse tasks, we validate the effectiveness of using the Shapley value method for prompts as it effectively distinguishes and quantifies the contributions of each prompt.

SecFormer: Fast and Accurate Privacy-Preserving Inference for Transformer Models via SMPC

Jinglong Luo, Yehong Zhang, Zhuo Zhang, Jiaqi Zhang, Xin Mu, Hui Wang, Yue Yu, Zenglin Xu https://arxiv.org/abs/2401.00793

Machine Learning (cs.LG); Computation and Language (cs.CL); Cryptography and Security (cs.CR)

With the growing use of Transformer models hosted on cloud platforms to offer inference services, privacy concerns are escalating, especially concerning sensitive data like investment plans and bank account details. Secure Multi-Party Computing (SMPC) emerges as a promising solution to protect the privacy of inference data and model parameters. However, the application of SMPC in

Privacy-Preserving Inference (PPI) for Transformer models often leads to considerable slowdowns or declines in performance. This is largely due to the multitude of nonlinear operations in the Transformer architecture, which are not well-suited to SMPC and difficult to circumvent or optimize effectively. To address this concern, we introduce a comprehensive PPI framework called SecFormer to achieve fast and accurate PPI for Transformer models. We successfully eliminate the high-cost exponential and maximum operations in PPI without sacrificing model performance and develop a suite of efficient SMPC protocols by employing suitable numerical computation methods to boost other complex nonlinear functions in PPI, including GeLU, LayerNorm, and a redesigned Softmax. Our extensive experiments reveal that SecFormer outperforms MPCFormer in performance, showing improvements of \$3.4\%\$ and \$24.7\%\$ for BERT\$_{\text{BASE}}}\$ and BERT\$_{\text{LARGE}}\$, respectively. In terms of efficiency, SecFormer is 3.57 and 3.58 times faster than PUMA for BERT\$_{\text{BASE}}}\$ and BERT\$_{\text{LARGE}}\$, demonstrating its effectiveness and speed.

Intention Analysis Makes LLMs A Good Jailbreak Defender

Yuqi Zhang,Liang Ding,Lefei Zhang,Dacheng Tao https://arxiv.org/abs/2401.06561

Computation and Language (cs.CL)

Aligning large language models (LLMs) with human values, particularly when facing complex and stealthy jailbreak attacks, presents a formidable challenge. Unfortunately, existing methods often overlook this intrinsic nature of jailbreaks, which limits their effectiveness in such complex scenarios. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis (\$\mathbb{IA}\\$). \$\mathbb{IA}\\$ works by triggering LLMs' inherent self-correct and improve ability through a two-stage process: 1) analyzing the essential intention of the user input, and 2) providing final policy-aligned responses based on the first round conversation. Notably, \$\mathbb{IA}\\$ is an inference-only method, thus could enhance LLM safety without compromising their helpfulness. Extensive experiments on varying jailbreak benchmarks across a wide range of LLMs show that \$\mathbb{IA}\\$ could consistently and significantly reduce the harmfulness in responses (averagely -48.2% attack success rate). Encouragingly, with our \$\mathbb{IA}\\$, Vicuna-7B even outperforms GPT-3.5 regarding attack success rate. We empirically demonstrate that, to some extent, \$\mathbb{IA}\\$ is robust to errors in generated intentions. Further analyses reveal the underlying principle of \$\mathbb{IA}\\$: suppressing LLM's tendency to follow jailbreak prompts, thereby enhancing safety.

Augmenting Math Word Problems via Iterative Question Composing

Haoxiong Liu, Yifan Zhang, Yifan Luo, Andrew Chi-Chih Yao https://arxiv.org/abs/2401.09003

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Despite the advancements in large language models (LLMs) for mathematical reasoning, solving competition-level math problems remains a significant challenge, especially for open-source LLMs without external tools. We introduce the MMIQC dataset, comprising a mixture of processed web data

and synthetic question-response pairs, aimed at enhancing the mathematical reasoning capabilities of base language models. Models fine-tuned on MMIQC consistently surpass their counterparts in performance on the MATH benchmark across various model sizes. Notably, Qwen-72B-MMIQC achieves a 45.0% accuracy, exceeding the previous open-source state-of-the-art by 8.2% and outperforming the initial version GPT-4 released in 2023. Extensive evaluation results on Hungarian high school finals suggest that such improvement can generalize to unseen data. Our ablation study on MMIQC reveals that a large part of the improvement can be attributed to our novel augmentation method, Iterative Question Composing (IQC), which involves iteratively composing new questions from seed problems using an LLM and applying rejection sampling through another LLM.

Steering Language Models with Game-Theoretic Solvers

Ian Gemp,Roma Patel, Yoram Bachrach,Marc Lanctot, Vibhavari Dasagi,Luke Marris,Georgios Piliouras,Siqi Liu,Karl Tuyls https://arxiv.org/abs/2402.01704

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computer Science and Game Theory (cs.GT)

Mathematical models of interactions among rational agents have long been studied in game theory. However these interactions are often over a small set of discrete game actions which is very different from how humans communicate in natural language. To bridge this gap, we introduce a framework that allows equilibrium solvers to work over the space of natural language dialogue generated by large language models (LLMs). Specifically, by modelling the players, strategies and payoffs in a "game" of dialogue, we create a binding from natural language interactions to the conventional symbolic logic of game theory. Given this binding, we can ask existing game-theoretic algorithms to provide us with strategic solutions (e.g., what string an LLM should generate to maximize payoff in the face of strategic partners or opponents), giving us predictors of stable, rational conversational strategies. We focus on three domains that require different negotiation strategies: scheduling meetings, trading fruit and debate, and evaluate an LLM's generated language when guided by solvers. We see that LLMs that follow game-theory solvers result in dialogue generations that are less exploitable than the control (no guidance from solvers), and the language generated results in higher rewards, in all negotiation domains. We discuss future implications of this work, and how game-theoretic solvers that can leverage the expressivity of natural language can open up a new avenue of guiding language research.

L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models

Hyesung Jeon, Yulhwa Kim, Jae-joon Kim https://arxiv.org/abs/2402.04902

Machine Learning (cs.LG); Computation and Language (cs.CL)

Due to the high memory and computational costs associated with large language models (LLMs), model compression techniques such as quantization, which reduces inference costs, and parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA), which reduce

training costs, have gained significant popularity. This trend has spurred active research into quantization-aware PEFT techniques, aimed at maintaining model accuracy while minimizing memory overhead during both inference and training. Previous quantization-aware PEFT methods typically apply post-training quantization (PTQ) to pre-trained LLMs, followed by PEFT to recover accuracy loss. Meanwhile, this approach has limitations in recovering the accuracy loss. In this paper, we propose L4Q, a method that integrates Quantization-Aware Training (QAT) with LoRA. By employing a memory-optimized layer design, L4Q significantly reduces QAT's memory overhead, making its training cost comparable to LoRA, while preserving the advantage of QAT in producing fully quantized LLMs with high accuracy. Our experiments demonstrate that this combined approach to quantization and fine-tuning achieves superior accuracy compared to decoupled fine-tuning schemes, particularly in 4-bit and 3-bit quantization, positioning L4Q as an efficient QAT solution. Using the LLaMA and Mistral models with instructional datasets, we showcase L4Q's capabilities in language tasks and few-shot learning.

Comprehensive Assessment of Jailbreak Attacks Against LLMs

Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes, Yang Zhang https://arxiv.org/abs/2402.05668

Cryptography and Security (cs.CR); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Jailbreak attacks aim to bypass the safeguards of LLMs. While researchers have studied different jailbreak attacks in depth, they have done so in isolation -- either with unaligned experiment settings or comparing a limited range of methods. To fill this gap, we present the first large-scale measurement of various jailbreak attack methods. We collect 17 cutting-edge jailbreak methods, summarize their features, and establish a novel jailbreak attack taxonomy. Based on eight popular censored LLMs and 160 questions from 16 violation categories, we conduct a unified and impartial assessment of attack effectiveness as well as a comprehensive ablation study. Our extensive experimental results demonstrate that all the jailbreak attacks have a powerful effect on the LLMs. This indicates that all LLMs fail to cover all the violation categories, and they are susceptible to significant jailbreak risks, with even the well-aligned Llama3 facing a maximum attack success rate of 0.88. Additionally, we test jailbreak attacks under eight advanced external defenses and find none of the defenses could mitigate the jailbreak attacks entirely. Our study offers valuable insights for future research on jailbreak attacks and defenses and serves as a benchmark tool for researchers and practitioners to evaluate them effectively.

Selective Forgetting: Advancing Machine Unlearning Techniques and Evaluation in Language Models

Lingzhi Wang,Xingshan Zeng,Jinsong Guo,Kam-Fai Wong,Georg Gottlob https://arxiv.org/abs/2402.05813

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

This paper explores Machine Unlearning (MU), an emerging field that is gaining increased attention due to concerns about neural models unintentionally remembering personal or sensitive information. We present SeUL, a novel method that enables selective and fine-grained unlearning for language models. Unlike previous work that employs a fully reversed training objective in unlearning, SeUL minimizes the negative impact on the capability of language models, particularly in terms of generation. Furthermore, we introduce two innovative evaluation metrics, sensitive extraction likelihood (S-EL) and sensitive memorization accuracy (S-MA), specifically designed to assess the effectiveness of forgetting sensitive information. In support of the unlearning framework, we propose efficient automatic online and offline sensitive span annotation methods. The online selection method, based on language probability scores, ensures computational efficiency, while the offline annotation involves a two-stage LLM-based process for robust verification. In summary, this paper contributes a novel selective unlearning method (SeUL), introduces specialized evaluation metrics (S-EL and S-MA) for assessing sensitive information forgetting, and proposes automatic online and offline sensitive span annotation methods to support the overall unlearning framework and evaluation process.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration

Fali Wang, Runxue Bao, Suhang Wang, Wenchao Yu, Yanchi Liu, Wei Cheng, Haifeng Chen https://arxiv.org/abs/2402.11441

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Large Language Models (LLMs) have achieved exceptional capabilities in open generation across various domains, yet they encounter difficulties with tasks that require intensive knowledge. To address these challenges, methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules. These approaches, however, face data inefficiency issues as they necessitate the processing of both known and unknown knowledge for fine-tuning. Thus, our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge. A risk of introducing new knowledge is the potential forgetting of existing knowledge. To mitigate this risk, we propose the innovative {\method} framework. This framework employs transformer internal states to determine when to enrich LLM outputs with additional information, effectively preventing knowledge forgetting. Performance evaluations using the UMLS-2.5k and MetaQA domain knowledge graphs reveal that {\method} not only successfully integrates new knowledge but also outperforms state-of-the-art baselines, reducing knowledge forgetting by 9\% and 6\%, respectively.

IRR: Image Review Ranking Framework for Evaluating Vision-Language Models

Kazuki Hayashi,Kazuma Onishi,Toma Suzuki,Yusuke Ide,Seiji Gobara,Shigeki Saito,Yusuke Sakai,Hidetaka Kamigaito,Katsuhiko Hayashi,Taro Watanabe https://arxiv.org/abs/2402.12121

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Multimedia (cs.MM)

Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. The datasets are available atthis https URL. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.

Neeko: Leveraging Dynamic LoRA for Efficient Multi-Character Role-Playing Agent

Xiaoyan Yu, Tongxu Luo, Yifan Wei, Fangyu Lei, Yiming Huang, Hao Peng, Liehuang Zhu https://arxiv.org/abs/2402.13717

Computation and Language (cs.CL)

Large Language Models (LLMs) have revolutionized open-domain dialogue agents but encounter challenges in multi-character role-playing (MCRP) scenarios. To address the issue, we present Neeko, an innovative framework designed for efficient multiple characters imitation. Unlike existing methods, Neeko employs a dynamic low-rank adapter (LoRA) strategy, enabling it to adapt seamlessly to diverse characters. Our framework breaks down the role-playing process into agent pre-training, multiple characters playing, and character incremental learning, effectively handling both seen and unseen roles. This dynamic approach, coupled with distinct LoRA blocks for each character, enhances Neeko's adaptability to unique attributes, personalities, and speaking patterns. As a result, Neeko demonstrates superior performance in MCRP over most existing methods, offering more engaging and versatile user interaction experiences. Code and data are available atthis https URL.

Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question Answering

Mingxu Tao, Dongyan Zhao, Yansong Feng https://arxiv.org/abs/2402.16313

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Open-ended question answering requires models to find appropriate evidence to form wellreasoned, comprehensive and helpful answers. In practical applications, models also need to engage in extended

discussions on potential scenarios closely relevant to the question. With augmentation of retrieval module, open-source Large Language Models (LLMs) can produce coherent answers often with different focuses, but are still sub-optimal in terms of reliable evidence selection and in-depth question analysis. In this paper, we propose a novel Chain-ofDiscussion framework to leverage the synergy among multiple open-source LLMs aiming to provide more correct and more comprehensive answers for open-ended QA, although they are not strong enough individually. Our experiments show that discussions among multiple LLMs play a vital role in enhancing the quality of answers.

Merging Text Transformer Models from Different Initializations

Neha Verma, Maha Elbayad https://arxiv.org/abs/2403.00986

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Recent work on permutation-based model merging has shown impressive low- or zero-barrier mode connectivity between models from completely different initializations. However, this line of work has not yet extended to the Transformer architecture, despite its dominant popularity in the language domain. Therefore, in this work, we investigate the extent to which separate Transformer minima learn similar features, and propose a model merging technique to investigate the relationship between these minima in the loss landscape. The specifics of the architecture, like its residual connections, multi-headed attention, and discrete, sequential input, require specific interventions in order to compute model permutations that remain within the same functional equivalence class. In merging these models with our method, we consistently find lower loss barriers between minima compared to model averaging, across models trained on a masked-language modeling task or fine-tuned on a language understanding benchmark. Our results show that the minima of these models are less sharp and isolated than previously understood, and provide a basis for future work on merging separately trained Transformer models.

Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries

Zelalem Gero, Chandan Singh, Yiqing Xie, Sheng Zhang, Praveen Subramanian, Paul Vozila, Tristan Naumann, Jianfeng Gao, Hoifung Poon https://arxiv.org/abs/2403.01002

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Summarizing clinical text is crucial in health decision-support and clinical research. Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation, especially in safety-critical domains such as health. Holistically evaluating text summaries is challenging because they may contain unsubstantiated information. Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process. It decomposes the evaluation process into a grounded procedure that uses an LLM for relatively simple structuring and scoring tasks, rather than the full task of holistic summary evaluation. Experiments show that AS consistently improves the correspondence

between human annotations and automated metrics in clinical text summarization. Additionally, AS yields interpretations in the form of a short text span corresponding to each output, which enables efficient human auditing, paving the way towards trustworthy evaluation of clinical information in resource-constrained scenarios. We release our code, prompts, and an open-source benchmark atthis https URL.

TEGEE: Task definition Guided Expert Ensembling for Generalizable and Few-shot Learning

Xingwei Qu, Yiming Liang, Yucheng Wang, Tianyu Zheng, Tommy Yue, Xingyuan Bu, Lei Ma, Stephen W. Huang, Jiajun Zhang, Yinan Shi, Chenghua Lin, Jie Fu, Ge Zhang https://arxiv.org/abs/2403.04233

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large Language Models (LLMs) exhibit the ability to perform in-context learning (ICL), where they acquire new tasks directly from examples provided in demonstrations. This process is thought to operate through an implicit task selection mechanism that involves extracting and processing task definitions from these demonstrations. However, critical questions remain: Which is more essential -- task extraction or definition? And how can these capabilities be further improved? To address these questions, we propose \textbf{TEGEE} (Task Definition Guided Expert Ensembling), a method that explicitly extracts task definitions and generates responses based on specific tasks. Our framework employs a dual 3B model approach, with each model assigned a distinct role: one focuses on task definition extraction, while the other handles learning from demonstrations. This modular approach supports the hypothesis that extracting task definitions is more vital than processing the task itself. Empirical evaluations show that TEGEE performs comparably to the larger LLaMA2-13B model. By leveraging a modular design, our approach extends traditional ICL from few-shot to many-shot learning, supporting an unlimited number of demonstrations and enhancing continual learning capabilities.

Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

Gemini Team Google:Petko Georgiev, Ving Ian Lei,Ryan Burnell,Libin Bai,Anmol Gulati,Garrett Tanzer,Damien Vincent,Zhufeng Pan,Shibo Wang,Soroosh Mariooryad, Yifan Ding,Xinyang Geng,Fred Alcober,Roy Frostig,Mark Omernick,Lexi Walker,Cosmin Paduraru,Christina Sorokin,Andrea Tacchetti,Colin Gaffney,Samira Daruki,Olcan Sercinoglu,Zach Gleicher,Juliette Love,Paul Voigtlaender,Rohan Jain,Gabriela Surita,Kareem Mohamed,Rory Blevins,Junwhan Ahn,Tao Zhu,Kornraphop Kawintiranon,Orhan Firat,Yiming Gu,Yujing Zhang,Matthew Rahtz,Manaal Faruqui,Natalie Clay,Justin Gilmer,JD Co-Reyes,Ivo Penchev,Rui Zhu,Nobuyuki Morioka,Kevin Hui,Krishna Haridasan,Victor Campos,Mahdis Mahdieh,Mandy Guo,Samer Hassan,Kevin Kilgour,Arpi Vezer,Heng-Tze Cheng,Raoul de Liedekerke,Siddharth Goyal,Paul Barham,DJ Strouse,Seb Noury,Jonas Adler,Mukund Sundararajan,Sharad Vikram,Dmitry Lepikhin,Michela Paganini,Xavier Garcia,Fan Yang,Dasha Valter,Maja Trebacz,Kiran Vodrahalli,Chulayuth Asawaroengchai,Roman Ring,Norbert Kalb,Livio Baldini Soares,Siddhartha Brahma,David Steiner,Tianhe Yu,Fabian Mentzer,Antoine He,Lucas Gonzalez,Bibo Xu,Raphael Lopez Kaufman,Laurent El Shafey,Junhyuk

Oh, Tom Hennigan, George van den Driessche, Seth Odoom, Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, Santiago Ontanon, Luheng He, Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis Ho, Sebastian Riedel, Karel Lenc, Chih-Kuan Yeh https://arxiv.org/abs/2403.05530

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.

Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua Lin, Chao Peng, Kai Chen https://arxiv.org/abs/2403.08604

Computation and Language (cs.CL); Software Engineering (cs.SE)

Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of coding, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. In this case study, we explore the performance of LLMs across the entire software development lifecycle with DevEval, encompassing stages including software design, environment setup, implementation, acceptance testing, and unit testing. DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.

Recurrent Drafter for Fast Speculative Decoding in Large Language Models

Yunfei Cheng, Aonan Zhang, Xuanyu Zhang, Chong Wang, Yi Wang https://arxiv.org/abs/2403.09919

Computation and Language (cs.CL); Machine Learning (cs.LG)

We present Recurrent Drafter (ReDrafter), an advanced speculative decoding approach that achieves state-of-the-art speedup for large language models (LLMs) inference. The performance gains are driven by three key aspects: (1) leveraging a recurrent neural network (RNN) as the draft model conditioning on LLM's hidden states, (2) applying a dynamic tree attention algorithm over beam search results to eliminate duplicated prefixes in candidate sequences, and (3) training through knowledge distillation from the LLM. ReDrafter accelerates Vicuna inference in MT-Bench by up to 2.8x with a PyTorch implementation on Nvidia H100 GPUs. To demonstrate its practicality in real environments, we also validated its effectiveness for on-device applications by implementing the approach in MLX and benchmarking performance on Metal GPUs in Apple Silicon chips, achieving up to 2.3x speedup.

Toward Adaptive Large Language Models Structured Pruning via Hybrid-grained Weight Importance Assessment

Jun Liu, Zhenglun Kong, Pu Zhao, Changdi Yang, Hao Tang, Xuan Shen, Geng Yuan, Wei Niu, Wenbin Zhang, Xue Lin, Dong Huang, Yanzhi Wang https://arxiv.org/abs/2403.10799

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Structured pruning for large language models (LLMs) has garnered significant academic interest due to its ability to efficiently compress and accelerate LLMs by eliminating redundant weight groups at a coarse-grained granularity. Current structured pruning methods for LLMs typically depend on a singular granularity for assessing weight importance, resulting in notable performance degradation in downstream tasks. Intriguingly, our empirical investigations reveal that utilizing unstructured pruning, which achieves better performance retention by pruning weights at a finer granularity, \emph{i.e.}, individual weights, yields significantly varied sparse LLM structures when juxtaposed to structured pruning. This suggests that evaluating both holistic and individual assessment for weight importance is essential for LLM pruning. Building on this insight, we introduce the Hybrid-grained Weight Importance Assessment (HyWIA), a novel method that merges fine-grained and coarse-grained evaluations of weight importance for the pruning of LLMs. Leveraging an attention mechanism, HyWIA adaptively determines the optimal blend of granularity in weight importance assessments in an end-to-end pruning manner. Extensive experiments on LLaMA-V1/V2, Vicuna, Baichuan, and Bloom across various benchmarks demonstrate the effectiveness of HyWIA in pruning LLMs. For example, HyWIA surpasses the cutting-edge LLM-Pruner by an average margin of 2.82\% in accuracy across seven downstream tasks when pruning LLaMA-7B by 50\%.

Learning from Synthetic Data for Visual Grounding

Ruozhen He, Ziyan Yang, Paola Cascante-Bonilla, Alexander C. Berg, Vicente Ordonez https://arxiv.org/abs/2403.13804

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Machine Learning (cs.LG)

This paper extensively investigates the effectiveness of synthetic training data to improve the capabilities of vision-and-language models for grounding textual descriptions to image regions. We explore various strategies to best generate image-text pairs and image-text-box triplets using a series of pretrained models under different settings and varying degrees of reliance on real data. Through comparative analyses with synthetic, real, and web-crawled data, we identify factors that contribute to performance differences, and propose SynGround, an effective pipeline for generating useful synthetic data for visual grounding. Our findings show that SynGround can improve the localization capabilities of off-the-shelf vision-and-language models and offers the potential for arbitrarily large scale data generation. Particularly, data generated with SynGround improves the pointing game accuracy of a pretrained ALBEF and BLIP models by 4.81% and 17.11% absolute percentage points, respectively, across the RefCOCO+ and the Flickr30k benchmarks.

Awakening Augmented Generation: Learning to Awaken Internal Knowledge of Large Language Models for Question Answering

Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, Kang Liu, Shengping Liu, Jun Zhao https://arxiv.org/abs/2403.15268

Computation and Language (cs.CL)

Retrieval-Augmented-Generation and Generation-Augmented-Generation have been proposed to enhance the knowledge required for question answering with Large Language Models (LLMs) by leveraging richer context. However, the former relies on external resources, and both require incorporating explicit documents into the context, which increases execution costs and susceptibility to noise data during inference. Recent works indicate that LLMs model rich knowledge, but it is often not effectively activated and awakened. Inspired by this, we propose a novel knowledge-augmented framework, \$\text{bf{Awakening-Augmented-Generation}}\$ (AAG), which mimics the human ability to answer questions using only thinking and recalling to compensate for knowledge gaps, thereby awaking relevant knowledge in LLMs without relying on external resources. AAG consists of two key components for awakening richer context. Explicit awakening fine-tunes a context generator to create a synthetic, compressed document that functions as symbolic context. Implicit awakening utilizes a hypernetwork to generate adapters based on the question and synthetic document, which are inserted into LLMs to serve as parameter context. Experimental results on three datasets demonstrate that AAG exhibits significant advantages in both open-domain and closed-book settings, as well as in out-of-distribution generalization. Our code will be available at \url{this https URL}.

Provably Secure Disambiguating Neural Linguistic Steganography

Yuang Qi,Kejiang Chen,Kai Zeng,Weiming Zhang,Nenghai Yu https://arxiv.org/abs/2403.17524

Cryptography and Security (cs.CR); Computation and Language (cs.CL)

Recent research in provably secure neural linguistic steganography has overlooked a crucial aspect: the sender must detokenize stegotexts to avoid raising suspicion from the eavesdropper. The segmentation ambiguity problem, which arises when using language models based on subwords, leads to occasional decoding failures in all neural language steganography implementations based on these models. Current solutions to this issue involve altering the probability distribution of candidate words, rendering them incompatible with provably secure steganography. We propose a novel secure disambiguation method named SyncPool, which effectively addresses the segmentation ambiguity problem. We group all tokens with prefix relationships in the candidate pool before the steganographic embedding algorithm runs to eliminate uncertainty among ambiguous tokens. To enable the receiver to synchronize the sampling process of the sender, a shared cryptographically-secure pseudorandom number generator (CSPRNG) is deployed to select a token from the ambiguity pool. SyncPool does not change the size of the candidate pool or the distribution of tokens and thus is applicable to provably secure language steganography methods. We provide theoretical proofs and experimentally demonstrate the applicability of our solution to various languages and models, showing its potential to significantly improve the reliability and security of neural linguistic steganography systems.

HeGTa: Leveraging Heterogeneous Graph-enhanced Large Language Models for Few-shot Complex Table Understanding

Rihui Jin, Yu Li, Guilin Qi, Nan Hu, Yuan-Fang Li, Jiaoyan Chen, Jianan Wang, Yongrui Chen, Dehai Min, Sheng Bi

https://arxiv.org/abs/2403.19723

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Databases (cs.DB); Multimedia (cs.MM)

Table understanding (TU) has achieved promising advancements, but it faces the challenges of the scarcity of manually labeled tables and the presence of complex tablethis http URLaddress these challenges, we propose HGT, a framework with a heterogeneous graph (HG)-enhanced large language model (LLM) to tackle few-shot TUthis http URLleverages the LLM by aligning the table semantics with the LLM's parametric knowledge through soft prompts and instruction turning and deals with complex tables by a multi-task pre-training scheme involving three novel multi-granularity self-supervised HG pre-trainingthis http URLempirically demonstrate the effectiveness of HGT, showing that it outperforms the SOTA for few-shot complex TU on several benchmarks.

Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?

Shuo Chen,Zhen Han,Bailan He,Zifeng Ding,Wenqian Yu,Philip Torr,Volker Tresp,Jindong Gu https://arxiv.org/abs/2404.03411

Machine Learning (cs.LG); Computation and Language (cs.CL); Cryptography and Security (cs.CR)

Various jailbreak attacks have been proposed to red-team Large Language Models (LLMs) and revealed the vulnerable safeguards of LLMs. Besides, some methods are not limited to the textual modality and extend the jailbreak attack to Multimodal Large Language Models (MLLMs) by perturbing

the visual input. However, the absence of a universal evaluation benchmark complicates the performance reproduction and fair comparison. Besides, there is a lack of comprehensive evaluation of closed-source state-of-the-art (SOTA) models, especially MLLMs, such as GPT-4V. To address these issues, this work first builds a comprehensive jailbreak evaluation dataset with 1445 harmful questions covering 11 different safety policies. Based on this dataset, extensive red-teaming experiments are conducted on 11 different LLMs and MLLMs, including both SOTA proprietary models and open-source models. We then conduct a deep analysis of the evaluated results and find that (1) GPT4 and GPT-4V demonstrate better robustness against jailbreak attacks compared to open-source LLMs and MLLMs. (2) Llama2 and Qwen-VL-Chat are more robust compared to other open-source models. (3) The transferability of visual jailbreak methods is relatively limited compared to textual jailbreak methods. The dataset and code can be foundthis https URL

Is There No Such Thing as a Bad Question? H4R: HalluciBot For Ratiocination, Rewriting, Ranking, and Routing

William Watson, Nicole Cho, Nishan Srishankar https://arxiv.org/abs/2404.12535

Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Hallucination continues to be one of the most critical challenges in the institutional adoption journey of Large Language Models (LLMs). While prior studies have primarily focused on the post-generation analysis and refinement of outputs, this paper centers on the effectiveness of queries in eliciting accurate responses from LLMs. We present HalluciBot, a model that estimates the query's propensity to hallucinate before generation, without invoking any LLMs during inference. HalluciBot can serve as a proxy reward model for query rewriting, offering a general framework to estimate query quality based on accuracy and consensus. In essence, HalluciBot investigates how poorly constructed queries can lead to erroneous outputs - moreover, by employing query rewriting guided by HalluciBot's empirical estimates, we demonstrate that 95.7% output accuracy can be achieved for Multiple Choice questions. The training procedure for HalluciBot consists of perturbing 369,837 queries n times, employing n+1 independent LLM agents, sampling an output from each query, conducting a Multi-Agent Monte Carlo simulation on the sampled outputs, and training an encoder classifier. The idea of perturbation is the outcome of our ablation studies that measures the increase in output diversity (+12.5 agreement spread) by perturbing a query in lexically different but semantically similar ways. Therefore, HalluciBot paves the way to ratiocinate (76.0% test F1 score, 46.6% in saved computation on hallucinatory queries), rewrite (+30.2% positive class transition from hallucinatory to non-hallucinatory), rank (+50.6% positive class transition from hallucinatory to non-hallucinatory), and route queries to effective pipelines.

RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?

Adrian de Wynter,Ishaan Watts,Tua Wongsangaroonsri,Minghui Zhang,Noura Farra,Nektar Ege Alt∎ntoprak,Lena Baur,Samantha Claudet,Pavel Gajdusek,Can Gören,Qilong Gu,Anna Kaminska,Tomasz Kaminski,Ruby Kuo,Akiko Kyuba,Jongho Lee,Kartik Mathur,Petter Merok,Ivana Milovanovi∎,Nani Paananen,Vesa-Matti Paananen,Anna Pavlenko,Bruno Pereira Vidal,Luciano

Strika, Yueh Tsao, Davide Turcato, Oleksandr Vakhno, Judit Velcsov, Anna Vickers, Stéphanie Visser, Herdyan Widarmanto, Andrey Zaikin, Si-Qing Chen https://arxiv.org/abs/2404.14397

Computation and Language (cs.CL); Computers and Society (cs.CY); Machine Learning (cs.LG)

Large language models (LLMs) and small language models (SLMs) are being adopted at remarkable speed, although their safety still remains a serious concern. With the advent of multilingual S/LLMs, the question now becomes a matter of scale: can we expand multilingual safety evaluations of these models with the same velocity at which they are deployed? To this end, we introduce RTP-LX, a human-transcreated and human-annotated corpus of toxic prompts and outputs in 28 languages. RTP-LX follows participatory design practices, and a portion of the corpus is especially designed to detect culturally-specific toxic language. We evaluate 10 S/LLMs on their ability to detect toxic content in a culturally-sensitive, multilingual scenario. We find that, although they typically score acceptably in terms of accuracy, they have low agreement with human judges when scoring holistically the toxicity of a prompt; and have difficulty discerning harm in context-dependent scenarios, particularly with subtle-yet-harmful content (e.g. microaggressions, bias). We release this dataset to contribute to further reduce harmful uses of these models and improve their safe deployment.

OpenFactCheck: Building, Benchmarking Customized Fact-Checking Systems and Evaluating the Factuality of Claims and LLMs

Yuxia Wang, Minghan Wang, Hasan Iqbal, Georgi Georgiev, Jiahui Geng, Preslav Nakov https://arxiv.org/abs/2405.05583

Computation and Language (cs.CL)

The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. Difficulties lie in assessing the factuality of free-form responses in open domains. Also, different papers use disparate evaluation benchmarks and measurements, which renders them hard to compare and hampers future progress. To mitigate these issues, we propose OpenFactCheck, a unified framework for building customized automatic fact-checking systems, benchmarking their accuracy, evaluating factuality of LLMs, and verifying claims in a document. OpenFactCheck consists of three modules: (i) CUSTCHECKER allows users to easily customize an automatic fact-checker and verify the factual correctness of documents and claims, (ii) LLMEVAL, a unified evaluation framework assesses LLM's factuality ability from various perspectives fairly, and (iii) CHECKEREVAL is an extensible solution for gauging the reliability of automatic fact-checkers' verification results using human-annotated datasets. Data and code are publicly available atthis https URL.

Human-interpretable clustering of short-text using large language models

Justin K. Miller, Tristram J. Alexander https://arxiv.org/abs/2405.07278

Computation and Language (cs.CL); Machine Learning (cs.LG)

Clustering short text is a difficult problem, due to the low word co-occurrence between short text documents. This work shows that large language models (LLMs) can overcome the limitations of traditional clustering approaches by generating embeddings that capture the semantic nuances of short text. In this study clusters are found in the embedding space using Gaussian Mixture Modelling (GMM). The resulting clusters are found to be more distinctive and more human-interpretable than clusters produced using the popular methods of doc2vec and Latent Dirichlet Allocation (LDA). The success of the clustering approach is quantified using human reviewers and through the use of a generative LLM. The generative LLM shows good agreement with the human reviewers, and is suggested as a means to bridge the `validation gap' which often exists between cluster production and cluster interpretation. The comparison between LLM-coding and human-coding reveals intrinsic biases in each, challenging the conventional reliance on human coding as the definitive standard for cluster validation.

Simulate and Eliminate: Revoke Backdoors for Generative Large Language Models

Haoran Li, Yulin Chen, Zihao Zheng, Qi Hu, Chunkit Chan, Heshan Liu, Yangqiu Song https://arxiv.org/abs/2405.07667

Cryptography and Security (cs.CR); Computation and Language (cs.CL)

With rapid advances, generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning. Yet, language models' inherent vulnerabilities may be exacerbated due to increased accessibility and unrestricted model training on massive data. A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data. Backdoored LLMs behave innocuously for normal queries and generate harmful responses when the backdoor trigger is activated. Despite significant efforts paid to LLMs' safety issues, LLMs are still struggling against backdoor attacks. As Anthropic recently revealed, existing safety training strategies, including supervised fine-tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), fail to revoke the backdoors once the LLM is backdoored during the pre-training stage. In this paper, we present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs. We initially propose Overwrite Supervised Fine-tuning (OSFT) for effective backdoor removal when the trigger is known. Then, to handle scenarios where trigger patterns are unknown, we integrate OSFT into our two-stage framework, SANDE. Unlike other works that assume access to cleanly trained models, our safety-enhanced LLMs are able to revoke backdoors without any reference. Consequently, our safety-enhanced LLMs no longer produce targeted responses when the backdoor triggers are activated. We conduct comprehensive experiments to show that our proposed SANDE is effective against backdoor attacks while bringing minimal harm to LLMs' powerful capability.

TransMI: A Framework to Create Strong Baselines from Multilingual Pretrained Language Models for Transliterated Data

Yihong Liu, Chunlan Ma, Haotian Ye, Hinrich Schütze https://arxiv.org/abs/2405.09913

Computation and Language (cs.CL)

Transliterating related languages that use different scripts into a common script is effective for improving crosslingual transfer in downstream tasks. However, this methodology often makes pretraining a model from scratch unavoidable, as transliteration brings about new subwords not covered in existing multilingual pretrained language models (mPLMs). This is undesirable because it requires a large computation budget. A more promising way is to make full use of available mPLMs. To this end, this paper proposes a simple but effective framework: Transliterate-Merge-Initialize (TransMI). TransMI can create strong baselines for data that is transliterated into a common script by exploiting an existing mPLM and its tokenizer without any training. TransMI has three stages: (a) transliterate the vocabulary of an mPLM into a common script; (b) merge the new vocabulary with the original vocabulary; and (c) initialize the embeddings of the new subwords. We apply TransMI to three strong recent mPLMs. Our experiments demonstrate that TransMI not only preserves the mPLM's ability to handle non-transliterated data, but also enables it to effectively process transliterated data, thereby facilitating crosslingual transfer across scripts. The results show consistent improvements of 3% to 34% for different mPLMs and tasks. We make our code and models publicly available at \url{this https URL}.

DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning

Zijian Zhou,Xiaoqiang Lin,Xinyi Xu,Alok Prakash,Daniela Rus,Bryan Kian Hsiang Low https://arxiv.org/abs/2405.14899

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

In-context learning (ICL) allows transformer-based language models that are pre-trained on general text to quickly learn a specific task with a few "task demonstrations" without updating their parameters, significantly boosting their flexibility and generality. ICL possesses many distinct characteristics from conventional machine learning, thereby requiring new approaches to interpret this learning paradigm. Taking the viewpoint of recent works showing that transformers learn in context by formulating an internal optimizer, we propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL. We empirically verify the effectiveness of our approach for demonstration attribution while being computationally efficient. Leveraging the results, we then show how DETAIL can help improve model performance in real-world scenarios through demonstration reordering and curation. Finally, we experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.

Planning with Multi-Constraints via Collaborative Language Agents

Cong Zhang, Derrick Goh Xin Deik, Dexun Li, Hao Zhang, Yong Liu https://arxiv.org/abs/2405.16510

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank, Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.

Thai Winograd Schemas: A Benchmark for Thai Commonsense Reasoning

Phakphum Artkaew https://arxiv.org/abs/2405.18375

Computation and Language (cs.CL)

Commonsense reasoning is one of the important aspect of natural language understanding, with several benchmarks developed to evaluate it. However, only a few of these benchmarks are available in languages other than English. Developing parallel benchmarks facilitates cross-lingual evaluation, enabling a better understanding of different languages. This research introduces a collection of Winograd Schemas in Thai, a novel dataset designed to evaluate commonsense reasoning capabilities in the context of the Thai language. Through a methodology involving native speakers, professional translators, and thorough validation, the schemas aim to closely reflect Thai language nuances, idioms, and cultural references while maintaining ambiguity and commonsense challenges. We evaluate the performance of popular large language models on this benchmark, revealing their strengths, limitations, and providing insights into the current state-of-the-art. Results indicate that while models like GPT-4 and Claude-3-Opus achieve high accuracy in English, their performance significantly drops in Thai, highlighting the need for further advancements in multilingual commonsense reasoning.

FedMKT: Federated Mutual Knowledge Transfer for Large and Small Language Models

Tao Fan, Guoqiang Ma, Yan Kang, Hanlin Gu, Yuanfeng Song, Lixin Fan, Kai Chen, Qiang Yang https://arxiv.org/abs/2406.02224

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Recent research in federated large language models (LLMs) has primarily focused on enabling clients to fine-tune their locally deployed homogeneous LLMs collaboratively or on transferring knowledge from server-based LLMs to small language models (SLMs) at downstream clients. However, a significant gap remains in the simultaneous mutual enhancement of both the server's LLM and clients' SLMs. To bridge this gap, we propose FedMKT, a parameter-efficient federated mutual knowledge transfer framework for large and small language models. This framework is designed to adaptively transfer knowledge from the server's LLM to clients' SLMs while concurrently enriching the LLM with clients' unique domain insights. We facilitate token alignment using minimum edit distance (MinED) and then selective mutual knowledge transfer between client-side SLMs and a server-side LLM, aiming to collectively enhance their performance. Through extensive experiments across three distinct scenarios, we evaluate the effectiveness of FedMKT using various public LLMs and SLMs on a range of NLP text generation tasks. Empirical results demonstrate that FedMKT simultaneously boosts the performance of both LLMs and SLMs.

ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models

David Anugraha, Genta Indra Winata, Chenyue Li, Patrick Amadeus Irawan, En-Shiun Annie Lee https://arxiv.org/abs/2406.09334

Computation and Language (cs.CL)

Performance prediction is a method to estimate the performance of Language Models (LMs) on various Natural Language Processing (NLP) tasks, mitigating computational costs associated with model capacity and data for fine-tuning. Our paper presents ProxyLM, a scalable task- and language-agnostic framework designed to predict the performance of LMs using proxy models. These proxy models act as surrogates, approximating the performance of the LM of interest. By leveraging these proxy models, ProxyLM significantly reduces computational overhead in task evaluations, achieving up to a 37.08x speedup over traditional methods, even with our smallest proxy models. Our results across multiple multilingual NLP tasks and various robustness tests demonstrate that ProxyLM not only adapts well to previously unseen languages in pre-trained LMs, but also generalizes effectively across different datasets, outperforming the state-of-the-art by at least 1.78x in terms of root-mean-square error (RMSE).

Grading Massive Open Online Courses Using Large Language Models

Shahriar Golchin, Nikhil Garuda, Christopher Impey, Matthew Wenger https://arxiv.org/abs/2406.11102

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Massive open online courses (MOOCs) offer free education globally. Despite this democratization of learning, the massive enrollment in these courses makes it impractical for an instructor to assess every student's writing assignment. As a result, peer grading, often guided by a straightforward rubric, is the method of choice. While convenient, peer grading often falls short in terms of reliability and validity. In this study, we explore the feasibility of using large language models (LLMs) to replace peer grading in

MOOCs. To this end, we adapt the zero-shot chain-of-thought (ZCoT) prompting technique to automate the feedback process once the LLM assigns a score to an assignment. Specifically, to instruct LLMs for grading, we use three distinct prompts based on ZCoT: (1) ZCoT with instructor-provided correct answers, (2) ZCoT with both instructor-provided correct answers and rubrics, and (3) ZCoT with instructor-provided correct answers and LLM-generated rubrics. We tested these prompts in 18 different scenarios using two LLMs, GPT-4 and GPT-3.5, across three MOOCs: Introductory Astronomy, Astrobiology, and the History and Philosophy of Astronomy. Our results show that ZCoT, when augmented with instructor-provided correct answers and rubrics, produces grades that are more aligned with those assigned by instructors compared to peer grading. Finally, our findings indicate a promising potential for automated grading systems in MOOCs, especially in subjects with well-defined rubrics, to improve the learning experience for millions of online learners worldwide.

Unveiling the Power of Source: Source-based Minimum Bayes Risk Decoding for Neural Machine Translation

Boxuan Lyu, Hidetaka Kamigaito, Kotaro Funakoshi, Manabu Okumura https://arxiv.org/abs/2406.11632

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Maximum a posteriori decoding, a commonly used method for neural machine translation (NMT), aims to maximize the estimated posterior probability. However, high estimated probability does not always lead to high translation quality. Minimum Bayes Risk (MBR) decoding (\citealp{kumar2004minimum}) offers an alternative by seeking hypotheses with the highest expected utility.Inspired by Quality Estimation (QE) reranking which uses the QE model as a ranker (\citealp{fernandes-etal-2022-quality}), we propose source-based MBR (sMBR) decoding, a novel approach that utilizes quasi-sources (generated via paraphrasing or back-translation) as ``support hypotheses' and a reference-free quality estimation metric as the utility function, marking the first work to solely use sources in MBR decoding. Experiments show that sMBR outperforms QE reranking and the standard MBR decoding. Our findings suggest that sMBR is a promising approach for NMT decoding.

SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models

Somnath Banerjee, Sayan Layek, Soham Tripathy, Shanu Kumar, Animesh Mukherjee, Rima Hazra https://arxiv.org/abs/2406.12274

Computation and Language (cs.CL)

Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on

safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.

MAGIC: Generating Self-Correction Guideline for In-Context Text-to-SQL

Arian Askari, Christian Poelitz, Xinye Tang https://arxiv.org/abs/2406.12692

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Databases (cs.DB); Human-Computer Interaction (cs.HC)

Self-correction in text-to-SQL is the process of prompting large language model (LLM) to revise its previously incorrectly generated SQL, and commonly relies on manually crafted self-correction guidelines by human experts that are not only labor-intensive to produce but also limited by the human ability in identifying all potential error patterns in LLM responses. We introduce MAGIC, a novel multi-agent method that automates the creation of the self-correction guideline. MAGIC uses three specialized agents: a manager, a correction, and a feedback agent. These agents collaborate on the failures of an LLM-based method on the training set to iteratively generate and refine a self-correction guideline tailored to LLM mistakes, mirroring human processes but without human involvement. Our extensive experiments show that MAGIC's guideline outperforms expert human's created ones. We empirically find out that the guideline produced by MAGIC enhance the interpretability of the corrections made, providing insights in analyzing the reason behind the failures and successes of LLMs in self-correction. We make all agent interactions publicly available to the research community, to foster further research in this area, offering a synthetic dataset for future explorations into automatic self-correction guideline generation.

Dissecting Adversarial Robustness of Multimodal LM Agents

Chen Henry Wu,Rishi Shah,Jing Yu Koh,Ruslan Salakhutdinov,Daniel Fried,Aditi Raghunathan https://arxiv.org/abs/2406.12814

Machine Learning (cs.LG); Computation and Language (cs.CL); Cryptography and Security (cs.CR); Computer Vision and Pattern Recognition (cs.CV)

As language models (LMs) are used to build autonomous agents in real environments, ensuring their adversarial robustness becomes a critical challenge. Unlike chatbots, agents are compound systems with multiple components, which existing LM safety evaluations do not adequately address. To bridge this gap, we manually create 200 targeted adversarial tasks and evaluation functions in a realistic threat model on top of VisualWebArena, a real environment for web-based agents. In order to systematically examine the robustness of various multimodal we agents, we propose the Agent Robustness Evaluation (ARE) framework. ARE views the agent as a graph showing the flow of intermediate outputs between components and decomposes robustness as the flow of adversarial information on the graph. First, we find that we can successfully break a range of the latest agents that use black-box frontier LLMs, including those that perform reflection and tree-search. With imperceptible perturbations to a single product image (less than 5% of total web page pixels), an attacker can hijack these agents to

execute targeted adversarial goals with success rates up to 67%. We also use ARE to rigorously evaluate how the robustness changes as new components are added. We find that new components that typically improve benign performance can open up new vulnerabilities and harm robustness. An attacker can compromise the evaluator used by the reflexion agent and the value function of the tree search agent, which increases the attack success relatively by 15% and 20%. Our data and code for attacks, defenses, and evaluation are available atthis https URL

SQLFixAgent: Towards Semantic-Accurate Text-to-SQL Parsing via Consistency-Enhanced Multi-Agent Collaboration

Jipeng Cen, Jiaxin Liu, Zhixu Li, Jingjing Wang https://arxiv.org/abs/2406.13408

Computation and Language (cs.CL)

While fine-tuned large language models (LLMs) excel in generating grammatically valid SQL in Text-to-SQL parsing, they often struggle to ensure semantic accuracy in queries, leading to user confusion and diminished system usability. To tackle this challenge, we introduce SQLFixAgent, a new consistency-enhanced multi-agent collaborative framework designed for detecting and repairing erroneous SQL. Our framework comprises a core agent, SQLRefiner, alongside two auxiliary agents: SQLReviewer and QueryCrafter. The SQLReviewer agent employs the rubber duck debugging method to identify potential semantic mismatches between SQL and user query. If the error is detected, the QueryCrafter agent generates multiple SQL as candidate repairs using a fine-tuned SQLTool. Subsequently, leveraging similar repair retrieval and failure memory reflection, the SQLRefiner agent selects the most fitting SQL statement from the candidates as the final repair. We evaluated our proposed framework on five Text-to-SQL benchmarks. The experimental results show that our method consistently enhances the performance of the baseline model, specifically achieving an execution accuracy improvement of over 3\% on the Bird benchmark. Our framework also has a higher token efficiency compared to other advanced methods, making it more competitive.

GenderAlign: An Alignment Dataset for Mitigating Gender Bias in Large Language Models

Tao Zhang, Ziqian Zeng, Yuxiang Xiao, Huiping Zhuang, Cen Chen, James Foulds, Shimei Pan https://arxiv.org/abs/2406.13925

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large Language Models (LLMs) are prone to generating content that exhibits gender biases, raising significant ethical concerns. Alignment, the process of fine-tuning LLMs to better align with desired behaviors, is recognized as an effective approach to mitigate gender biases. Although proprietary LLMs have made significant strides in mitigating gender bias, their alignment datasets are not publicly available. The commonly used and publicly available alignment dataset, HH-RLHF, still exhibits gender bias to some extent. There is a lack of publicly available alignment datasets specifically designed to address gender bias. Hence, we developed a new dataset named GenderAlign, aiming at mitigating a comprehensive set of gender biases in LLMs. This dataset comprises 8k single-turn dialogues, each

paired with a "chosen" and a "rejected" response. Compared to the "rejected" responses, the "chosen" responses demonstrate lower levels of gender bias and higher quality. Furthermore, we categorized the gender biases in the "rejected" responses of GenderAlign into 4 principal categories. The experimental results show the effectiveness of GenderAlign in reducing gender bias in LLMs.

Selected Languages are All You Need for Cross-lingual Truthfulness Transfer

Weihao Liu, Ning Wu, Wenbiao Ding, Shining Liang, Ming Gong, Dongmei Zhang https://arxiv.org/abs/2406.14434

Computation and Language (cs.CL)

Truthfulness stands out as an essential challenge for Large Language Models (LLMs). Although many works have developed various ways for truthfulness enhancement, they seldom focus on truthfulness in multilingual scenarios. Meanwhile, contemporary multilingual aligning technologies struggle to balance numerous languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we extend truthfulness evaluation to multilingual contexts and propose a practical method for cross-lingual truthfulness transfer called Fact-aware Multilingual Selective Synergy (FaMSS). FaMSS is able to select an optimal subset of all tested languages by language bias and transfer contributions, and then employ translation instruction tuning for cross-lingual truthfulness transfer. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and boost cross-lingual truthfulness transfer of LLMs.

RankAdaptor: Hierarchical Rank Allocation for Efficient Fine-Tuning Pruned LLMs via Performance Model

Changhai Zhou, Shijie Han, Lining Yang, Yuhua Zhou, Xu Cheng, Yibin Wang, Hongguang Li https://arxiv.org/abs/2406.15734

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The efficient compression of large language models (LLMs) has become increasingly popular. However, recovering the performance of compressed LLMs remains a major challenge. The current practice in LLM compression entails the implementation of structural pruning, complemented by a recovery phase that leverages the Low-Rank Adaptation (LoRA) algorithm. Structural pruning's uneven modification of model architecture, coupled with standard LoRA's fixed configuration allocation across layers in an online pipeline, leads to suboptimal performance in various downstream tasks for pruned models. To address this challenge, we introduce RankAdaptor, a hierarchical rank allocation method that enables efficient fine-tuning of pruned LLMs according to layerwise specific recovery requirements. We employ a performance model that conducts offline meta-learning and online incremental learning to explore optimal rank values for each layer. Comprehensive experiments on popular benchmarks show that RankAdaptor consistently outperforms state-of-the-art methods across a variety of pruning settings and LLM architectures, with improvements ranging from 0.7\% to 5.5\%.

InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection

Junjie Chen, Hang Yu, Subin Huang, Sanmin Liu, Linfeng Zhang https://arxiv.org/abs/2406.16464

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)

Sarcasm in social media, often expressed through text-image combinations, poses challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been demonstrated to overly rely on spurious cues within the textual modality, revealing a limited ability to genuinely identify sarcasm through nuanced text-image interactions. To solve this problem, we propose InterCLIP-MEP, which introduces Interactive CLIP (InterCLIP) with an efficient training strategy to extract enriched text-image representations by embedding cross-modal information directly into each encoder. Additionally, we design a Memory-Enhanced Predictor (MEP) with a dynamic dual-channel memory that stores valuable test sample knowledge during inference, acting as a non-parametric classifier for robust sarcasm recognition. Experiments on two benchmarks demonstrate that InterCLIP-MEP achieves state-of-the-art performance, with significant accuracy and F1 score improvements on MMSD and MMSD2.0. Our code is available atthis https URL.

Understanding Language Model Circuits through Knowledge Editing

Huaizhi Ge,Frank Rudzicz,Zining Zhu https://arxiv.org/abs/2406.17241

Computation and Language (cs.CL)

Recent advances in language model interpretability have identified circuits, critical subnetworks that replicate model behaviors, yet how knowledge is structured within these crucial subnetworks remains opaque. To gain an understanding toward the knowledge in the circuits, we conduct systematic knowledge editing experiments on the circuits of the GPT-2 language model. Our analysis reveals intriguing patterns in how circuits respond to editing attempts, the extent of knowledge distribution across network components, and the architectural composition of knowledge-bearing circuits. These findings offer insights into the complex relationship between model circuits and knowledge representation, deepening the understanding of how information is organized within language models. Our findings offer novel insights into the ``meanings" of the circuits, and introduce directions for further interpretability and safety research of language models.

Preserving Multilingual Quality While Tuning Query Encoder on English Only

Oleg Vasilyev,Randy Sawaya,John Bohannon https://arxiv.org/abs/2407.00923

Computation and Language (cs.CL)

A query encoder of a dual passage retrieval system can be tuned for specific types of queries or domains, while the precomputed and stored documents representations are kept intact. Switching from one query encoder to another when needed is easily feasible, unlike overhauling the embeddings of a whole knowledge base. In this work we raise a question: Can the generic, original qualities of the encoder be preserved or at least left not too degraded when it is tuned on a narrow domain? We conducted experiments on a high quality multilingual embedding model: Tuning it on a single English-only dataset, we observe that the tuning not only preserves the multilingual qualities, but even improves them. The embedding qualities on distinctly different data are also improved or at least preserved. Drawing on our observations, we suggest a more general hypothesis: Tuning with intentionally low learning rate can preserve or improve a system's properties acquired in training, but not specifically targeted by tuning. We call this adiabatic tuning and provide tentative explanations.

Language Model Alignment in Multilingual Trolley Problems

Zhijing Jin,Max Kleiman-Weiner,Giorgio Piatti,Sydney Levine,Jiarui Liu,Fernando Gonzalez,Francesco Ortu,András Strausz,Mrinmaya Sachan,Rada Mihalcea,Yejin Choi,Bernhard Schölkopf https://arxiv.org/abs/2407.02273

Computation and Language (cs.CL)

We evaluate the moral alignment of large language models (LLMs) with human preferences in multilingual trolley problems. Building on the Moral Machine experiment, which captures over 40 million human judgments across 200+ countries, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP. This dataset enables the assessment of LLMs' decision-making processes in diverse linguistic contexts. Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions: species, gender, fitness, status, age, and the number of lives involved. By correlating these preferences with the demographic distribution of language speakers and examining the consistency of LLM responses to various prompt paraphrasings, our findings provide insights into cross-lingual and ethical biases of LLMs and their intersection. We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems and highlighting the importance of incorporating diverse perspectives in AI ethics. The results underscore the need for further research on the integration of multilingual dimensions in responsible AI research to ensure fair and equitable AI interactions worldwide. Our code and data are atthis https URL

InverseCoder: Self-improving Instruction-Tuned Code LLMs with Inverse-Instruct

Yutong Wu,Di Huang,Wenxuan Shi,Wei Wang,Lingzhe Gao,Shihao Liu,Ziyuan Nan,Kaizhao Yuan,Rui Zhang,Xishan Zhang,Zidong Du,Qi Guo,Yewen Pu,Dawei Yin,Xing Hu,Yunji Chen https://arxiv.org/abs/2407.05700

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Software Engineering (cs.SE)

Recent advancements in open-source code large language models (LLMs) have been driven by fine-tuning on the data generated from powerful closed-source LLMs, which are expensive to obtain. This paper explores whether it is possible to use a fine-tuned open-source model to generate additional data to augment its instruction-tuning dataset. We make two observations: (1) A code snippet can serve as the response to different instructions. (2) Instruction-tuned code LLMs perform better at translating code into instructions than the reverse. Based on these observations, we propose Inverse-Instruct, a data augmentation technique that uses a fine-tuned LLM to generate additional instructions of code responses from its own training dataset. The additional instruction-response pairs are added to the original dataset, and a stronger code LLM can be obtained by fine-tuning on the augmented dataset. We empirically validate Inverse-Instruct on a range of open-source code models (e.g. CodeLlama-Python and DeepSeek-Coder) and benchmarks (e.g., HumanEval(+), MBPP(+), DS-1000 and MultiPL-E), showing it consistently improves the base models.

SOLO: A Single Transformer for Scalable Vision-Language Modeling

Yangyi Chen,Xingyao Wang,Hao Peng,Heng Ji https://arxiv.org/abs/2407.06438

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Machine Learning (cs.LG)

We present SOLO, a single transformer for Scalable visiOn-Language mOdeling. Current large vision-language models (LVLMs) such as LLaVA mostly employ heterogeneous architectures that connect pre-trained visual encoders with large language models (LLMs) to facilitate visual recognition and complex reasoning. Although achieving remarkable performance with relatively lightweight training, we identify four primary scalability limitations: (1) The visual capacity is constrained by pre-trained visual encoders, which are typically an order of magnitude smaller than LLMs. (2) The heterogeneous architecture complicates the use of established hardware and software infrastructure. (3) Study of scaling laws on such architecture must consider three separate components - visual encoder, connector, and LLMs, which complicates the analysis. (4) The use of existing visual encoders typically requires following a pre-defined specification of image inputs pre-processing, for example, by reshaping inputs to fixed-resolution square images, which presents difficulties in processing and training on high-resolution images or those with unusual aspect ratio. A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs; however, its limited adoption in the modern context likely stems from the absence of reliable training recipes that balance both modalities and ensure stable training for billion-scale models. In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM using moderate academic resources. The training recipe involves initializing from LLMs, sequential pre-training on ImageNet and web-scale data, and instruction fine-tuning on our curated high-quality datasets. On extensive evaluation, SOLO demonstrates performance comparable to LLaVA-v1.5-7B, particularly excelling in visual mathematical reasoning.

MMM: Multilingual Mutual Reinforcement Effect Mix Datasets & Test with Open-domain Information Extraction Large Language Models

Chengguang Gan, Sunbowen Lee, Qingyu Yin, Xinyang He, Hanjun Wei, Yunhao Liang, Younghun Lim, Shijian Wang, Hexiang Huang, Qinghao Zhang, Shiwen Ni, Tatsunori Mori https://arxiv.org/abs/2407.10953

Computation and Language (cs.CL)

The Mutual Reinforcement Effect (MRE) represents a promising avenue in information extraction and multitasking research. Nevertheless, its applicability has been constrained due to the exclusive availability of MRE mix datasets in Japanese, thereby limiting comprehensive exploration by the global research community. To address this limitation, we introduce a Multilingual MRE mix dataset (MMM) that encompasses 21 sub-datasets in English, Japanese, and Chinese. In this paper, we also propose a method for dataset translation assisted by Large Language Models (LLMs), which significantly reduces the manual annotation time required for dataset construction by leveraging LLMs to translate the original Japanese datasets. Additionally, we have enriched the dataset by incorporating open-domain Named Entity Recognition (NER) and sentence classification tasks. Utilizing this expanded dataset, we developed a unified input-output framework to train an Open-domain Information Extraction Large Language Model (OIELLM). The OIELLM model demonstrates the capability to effectively process novel MMM datasets, exhibiting significant improvements in performance. The OIELLM model and datasets is open-source in HuggingFace: \href{this https URL}{GitHub Website}\footnote{\url{this https URL}}

Conversational Query Reformulation with the Guidance of Retrieved Documents

Jeonghyun Park, Hwanhee Lee https://arxiv.org/abs/2407.12363

Computation and Language (cs.CL)

Conversational search seeks to retrieve relevant passages for the given questions in conversational question answering. Conversational Query Reformulation (CQR) improves conversational search by refining the original queries into de-contextualized forms to resolve the issues in the original queries, such as omissions and coreferences. Previous CQR methods focus on imitating human written queries which may not always yield meaningful search results for the retriever. In this paper, we introduce GuideCQR, a framework that refines queries for CQR by leveraging key information from the initially retrieved documents. Specifically, GuideCQR extracts keywords and generates expected answers from the retrieved documents, then unifies them with the queries after filtering to add useful information that enhances the search process. Experimental results demonstrate that our proposed method achieves state-of-the-art performance across multiple datasets, outperforming previous CQR methods. Additionally, we show that GuideCQR can get additional performance gains in conversational search using various types of queries, even for queries written by humans.

How Reliable are LLMs as Knowledge Bases? Re-thinking Facutality and Consistency

Danna Zheng, Mirella Lapata, Jeff Z. Pan

https://arxiv.org/abs/2407.13578

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large Language Models (LLMs) are increasingly explored as knowledge bases (KBs), yet current evaluation methods focus too narrowly on knowledge retention, overlooking other crucial criteria for reliable performance. In this work, we rethink the requirements for evaluating reliable LLM-as-KB usage and highlight two essential factors: factuality, ensuring accurate responses to seen and unseen knowledge, and consistency, maintaining stable answers to questions about the same knowledge. We introduce UnseenQA, a dataset designed to assess LLM performance on unseen knowledge, and propose new criteria and metrics to quantify factuality and consistency, leading to a final reliability score. Our experiments on 26 LLMs reveal several challenges regarding their use as KBs, underscoring the need for more principled and comprehensive evaluation.

Failures to Find Transferable Image Jailbreaks Between Vision-Language Models

Rylan Schaeffer, Dan Valentine, Luke Bailey, James Chua, Cristóbal Eyzaguirre, Zane Durante, Joe Benton, Brando Miranda, Henry Sleight, John Hughes, Rajashree Agrawal, Mrinank Sharma, Scott Emmons, Sanmi Koyejo, Ethan Perez https://arxiv.org/abs/2407.15211

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Cryptography and Security (cs.CR); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)

The integration of new modalities into frontier AI systems offers exciting capabilities, but also increases the possibility such systems can be adversarially manipulated in undesirable ways. In this work, we focus on a popular class of vision-language models (VLMs) that generate text outputs conditioned on visual and textual inputs. We conducted a large-scale empirical study to assess the transferability of gradient-based universal image ``jailbreaks" using a diverse set of over 40 open-parameter VLMs, including 18 new VLMs that we publicly release. Overall, we find that transferable gradient-based image jailbreaks are extremely difficult to obtain. When an image jailbreak is optimized against a single VLM or against an ensemble of VLMs, the jailbreak successfully jailbreaks the attacked VLM(s), but exhibits little-to-no transfer to any other VLMs; transfer is not affected by whether the attacked and target VLMs possess matching vision backbones or language models, whether the language model underwent instruction-following and/or safety-alignment training, or many other factors. Only two settings display partially successful transfer: between identically-pretrained and identically-initialized VLMs with slightly different VLM training data, and between different training checkpoints of a single VLM. Leveraging these results, we then demonstrate that transfer can be significantly improved against a specific target VLM by attacking larger ensembles of `highly-similar" VLMs. These results stand in stark contrast to existing evidence of universal and transferable text jailbreaks against language models and transferable adversarial attacks against image classifiers, suggesting that VLMs may be more robust to gradient-based transfer attacks.

LawLuo: A Multi-Agent Collaborative Framework for Multi-Round Chinese Legal Consultation

Jingyun Sun, Chengxiao Dai, Zhongze Luo, Yangbo Chang, Yang Li https://arxiv.org/abs/2407.16252

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)

Legal Large Language Models (LLMs) have shown promise in providing legal consultations to non-experts. However, most existing Chinese legal consultation models are based on single-agent systems, which differ from real-world legal consultations, where multiple professionals collaborate to offer more tailored responses. To better simulate real consultations, we propose LawLuo, a multi-agent framework for multi-turn Chinese legal consultations. LawLuo includes four agents: the receptionist agent, which assesses user intent and selects a lawyer agent; the lawyer agent, which interacts with the user; the secretary agent, which organizes conversation records and generates consultation reports; and the boss agent, which evaluates the performance of the lawyer and secretary agents to ensure optimal results. These agents' interactions mimic the operations of real law firms. To train them to follow different legal instructions, we developed distinct fine-tuning datasets. We also introduce a case graph-based RAG to help the lawyer agent address vague user inputs. Experimental results show that LawLuo outperforms baselines in generating more personalized and professional responses, handling ambiguous queries, and following legal instructions in multi-turn conversations. Our full code and constructed datasets will be open-sourced upon paper acceptance.

Positive Text Reframing under Multi-strategy Optimization

Shutong Jia, Biwei Cao, Qingqing Gao, Jiuxin Cao, Bo Liu https://arxiv.org/abs/2407.17940

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Differing from sentiment transfer, positive reframing seeks to substitute negative perspectives with positive expressions while preserving the original meaning. With the emergence of pre-trained language models (PLMs), it is possible to achieve acceptable results by fine-tuning PLMs. Nevertheless, generating fluent, diverse and task-constrained reframing text remains a significant challenge. To tackle this issue, a \textbf{m}ulti-\textbf{s}\textbf{o}ptimization \textbf{f}ramework (MSOF) is proposed in this paper. Starting from the objective of positive reframing, we first design positive sentiment reward and content preservation reward to encourage the model to transform the negative expressions of the original text while ensuring the integrity and consistency of the semantics. Then, different decoding optimization approaches are introduced to improve the quality of text generation. Finally, based on the modeling formula of positive reframing, we propose a multi-dimensional re-ranking method that further selects candidate sentences from three dimensions: strategy consistency, text similarity and fluency. Extensive experiments on two Seq2Seq PLMs, BART and T5, demonstrate our framework achieves significant improvements on unconstrained and controlled positive reframing tasks.

Hukai Huang, Shenghui Lu, Yahui Shan, He Qu, Wenhao Guan, Qingyang Hong, Lin Li https://arxiv.org/abs/2407.18581

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The Mixture of Experts (MoE) approach is well-suited for multilingual and code-switching (CS) tasks due to its multi-expert architecture. This work introduces the DLG-MoE, a Dynamic Language Group-based MoE optimized for bilingual and CS scenarios. DLG-MoE operates based on a hierarchical routing mechanism. First, the language router explicitly models the language and dispatches the representations to the corresponding language expert groups. Subsequently, the unsupervised router within each language group implicitly models attributes beyond language, and coordinates expert routing and collaboration. The model achieves state-of-the-art (SOTA) performance while also having unparalleled flexibility. It supports different top-k inference and streaming capabilities, and can also prune the model parameters to obtain a monolingual sub-model. The Code will be released.

AutoScale: Automatic Prediction of Compute-optimal Data Composition for Training LLMs

Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, Ruoxi Jia https://arxiv.org/abs/2407.20177

Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (stat.ML)

Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of language model pre-training. This paper demonstrates that the optimal composition of training data from different domains is scale-dependent, challenging the existing practice of determining optimal mixtures through small-scale experiments and directly applying them at larger scales. We derive an analytical model for the dependence of optimal weights on data scale and introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales. *AutoScale* first uses a principled optimization framework to find optimal compositions at smaller, feasible scales, then predicts optimal compositions at larger scales using our derived model. Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance. Particularly, for GPT-2 Large on RedPajama, *AutoScale* decreases validation perplexity 28% faster than baselines, with up to 38% speed-up over unweighted training, achieving the best performance across downstream tasks. This work provides insights into the varying benefits of data sources across training scales for language models, contributing to the burgeoning research on scale-dependent data curation. Code is open-sourced.

Efficient Solutions For An Intriguing Failure of LLMs: Long Context Window Does Not Mean LLMs Can Analyze Long Sequences Flawlessly

Computation and Language (cs.CL); Machine Learning (cs.LG)

Large Language Models (LLMs) have demonstrated remarkable capabilities in comprehending and analyzing lengthy sequential inputs, owing to their extensive context windows that allow processing millions of tokens in a single forward pass. However, this paper uncovers a surprising limitation: LLMs fall short when handling long input sequences. We investigate this issue using three datasets and two tasks (sentiment analysis and news categorization) across various LLMs, including Claude 3, Gemini Pro, GPT 3.5 Turbo, Llama 3 Instruct, and Mistral Instruct models. To address this limitation, we propose and evaluate ad-hoc solutions that substantially enhance LLMs' performance on long input sequences by up to 50%, while reducing API cost and latency by up to 93% and 50%, respectively.

From Words to Worth: Newborn Article Impact Prediction with LLM

Penghai Zhao, Qinghua Xing, Kairan Dou, Jinyu Tian, Ying Tai, Jian Yang, Ming-Ming Cheng, Xiang Li https://arxiv.org/abs/2408.03934

Computation and Language (cs.CL)

As the academic landscape expands, the challenge of efficiently identifying impactful newly published articles grows increasingly vital. This paper introduces a promising approach, leveraging the capabilities of LLMs to predict the future impact of newborn articles solely based on titles and abstracts. Moving beyond traditional methods heavily reliant on external information, the proposed method employs LLM to discern the shared semantic features of highly impactful papers from a large collection of title-abstract pairs. These semantic features are further utilized to predict the proposed indicator, TNCSI_SP, which incorporates favorable normalization properties across value, field, and time. To facilitate parameter-efficient fine-tuning of the LLM, we have also meticulously curated a dataset containing over 12,000 entries, each annotated with titles, abstracts, and their corresponding TNCSI_SP values. The quantitative results, with an MAE of 0.216 and an NDCG@20 of 0.901, demonstrate that the proposed approach achieves state-of-the-art performance in predicting the impact of newborn articles when compared to several promising methods. Finally, we present a real-world application example for predicting the impact of newborn journal articles to demonstrate its noteworthy practical value. Overall, our findings challenge existing paradigms and propose a shift towards a more content-focused prediction of academic impact, offering new insights for article impact prediction.

MABR: A Multilayer Adversarial Bias Removal Approach Without Prior Bias Knowledge

Maxwell J. Yin, Boyu Wang, Charles Ling https://arxiv.org/abs/2408.05497

Computation and Language (cs.CL)

Models trained on real-world data often mirror and exacerbate existing social biases. Traditional methods for mitigating these biases typically require prior knowledge of the specific biases to be addressed, such as gender or racial biases, and the social groups associated with each instance. In this paper, we introduce a novel adversarial training strategy that operates independently of prior

bias-type knowledge and protected attribute labels. Our approach proactively identifies biases during model training by utilizing auxiliary models, which are trained concurrently by predicting the performance of the main model without relying on task labels. Additionally, we implement these auxiliary models at various levels of the feature maps of the main model, enabling the detection of a broader and more nuanced range of bias features. Through experiments on racial and gender biases in sentiment and occupation classification tasks, our method effectively reduces social biases without the need for demographic annotations. Moreover, our approach not only matches but often surpasses the efficacy of methods that require detailed demographic insights, marking a significant advancement in bias mitigation techniques.

On Effects of Steering Latent Representation for Large Language Model Unlearning

Dang Huu-Tien, Trung-Tin Pham, Hoang Thanh-Tung, Naoya Inoue https://arxiv.org/abs/2408.06223

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Representation Misdirection for Unlearning (RMU), which steers model representation in the intermediate layer to a target random representation, is an effective method for large language model (LLM) unlearning. Despite its high performance, the underlying cause and explanation remain underexplored. In this paper, we theoretically demonstrate that steering forget representations in the intermediate layer reduces token confidence, causing LLMs to generate wrong or nonsense responses. We investigate how the coefficient influences the alignment of forget-sample representations with the random direction and hint at the optimal coefficient values for effective unlearning across different network layers. We show that RMU unlearned models are robust against adversarial jailbreak attacks. Furthermore, our empirical analysis shows that RMU is less effective when applied to the middle and later layers in LLMs. To resolve this drawback, we propose Adaptive RMU -- a simple yet effective alternative method that makes unlearning effective with most layers. Extensive experiments demonstrate that Adaptive RMU significantly improves the unlearning performance compared to prior art while incurring no additional computational cost.

Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation

Jieyong Kim, Hyunseo Kim, Hyunjin Cho, Seong Ku Kang, Buru Chang, Jinyoung Yeo, Dongha Lee https://arxiv.org/abs/2408.06276

Computation and Language (cs.CL)

Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically

fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.

Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors

Andrei C. Coman, Christos Theodoropoulos, Marie-Francine Moens, James Henderson https://arxiv.org/abs/2408.06778

Computation and Language (cs.CL)

We propose Fast-and-Frugal Text-Graph (FnF-TG) Transformers, a Transformer-based framework that unifies textual and structural information for inductive link prediction in text-attributed knowledge graphs. We demonstrate that, by effectively encoding ego-graphs (1-hop neighbourhoods), we can reduce the reliance on resource-intensive textual encoders. This makes the model both fast at training and inference time, as well as frugal in terms of cost. We perform a comprehensive evaluation on three popular datasets and show that FnF-TG can achieve superior performance compared to previous state-of-the-art methods. We also extend inductive learning to a fully inductive setting, where relations don't rely on transductive (fixed) representations, as in previous work, but are a function of their textual description. Additionally, we introduce new variants of existing datasets, specifically designed to test the performance of models on unseen relations at inference time, thus offering a new test-bench for fully inductive link prediction.

Game Development as Human-LLM Interaction

Jiale Hong,Hongqiu Wu,Hai Zhao https://arxiv.org/abs/2408.09386

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Human-Computer Interaction (cs.HC)

Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Chat Game Engine (ChatGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as a ChatGE, we instruct it to perform the following processes in each turn: (1) \$P_{script}: configure the game script segment based on the user's input; (2) \$P_{code}: generate the corresponding code snippet based on the game script segment; (3) \$P_{utter}: interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our ChatGE smoothly. We construct a ChatGE for poker

games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness.

QUITO-X: A New Perspective on Context Compression from the Information Bottleneck Theory

Yihang Wang,Xu Huang,Bowen Tian,Yueyang Su,Lei Yu,Huaming Liao,Yixing Fan,Jiafeng Guo,Xueqi Cheng

https://arxiv.org/abs/2408.10497

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Generative LLM have achieved remarkable success in various industrial applications, owing to their promising In-Context Learning capabilities. However, the issue of long context in complex tasks poses a significant barrier to their wider adoption, manifested in two main aspects: (i) The excessively long context leads to high costs and inference delays. (ii) A substantial amount of task-irrelevant information introduced by long contexts exacerbates the "lost in the middle" problem. Existing methods compress context by removing redundant tokens using metrics such as self-information or PPL, which is inconsistent with the objective of retaining the most important tokens when conditioning on a given query. In this study, we introduce information bottleneck theory (IB) to model the problem, offering a novel perspective that thoroughly addresses the essential properties required for context compression. Additionally, we propose a cross-attention-based approach to approximate mutual information in IB, which can be flexibly replaced with suitable alternatives in different scenarios. Extensive experiments on four datasets demonstrate that our method achieves a 25% increase in compression rate compared to the state-of-the-art, while maintaining question answering performance. In particular, the context compressed by our method even outperform the full context in some cases.

An Efficient Sign Language Translation Using Spatial Configuration and Motion Dynamics with LLMs

Eui Jun Hwang, Sukmin Cho, Junmyeong Lee, Jong C. Park https://arxiv.org/abs/2408.10593

Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Gloss-free Sign Language Translation (SLT) converts sign videos directly into spoken language sentences without relying on glosses. Recently, Large Language Models (LLMs) have shown remarkable translation performance in gloss-free methods by harnessing their powerful natural language generation capabilities. However, these methods often rely on domain-specific fine-tuning of visual encoders to achieve optimal results. By contrast, this paper emphasizes the importance of capturing the spatial configurations and motion dynamics inherent in sign language. With this in mind, we introduce Spatial and Motion-based Sign Language Translation (SpaMo), a novel LLM-based SLT framework. The core idea of SpaMo is simple yet effective. We first extract spatial and motion features using off-the-shelf visual encoders and then input these features into an LLM with a language prompt. Additionally, we employ a visual-text alignment process as a warm-up before the SLT supervision. Our experiments demonstrate that SpaMo achieves state-of-the-art performance on two popular datasets,

Against All Odds: Overcoming Typology, Script, and Language Confusion in Multilingual Embedding Inversion Attacks

Yiyi Chen, Russa Biswas, Heather Lent, Johannes Bjerva https://arxiv.org/abs/2408.11749

Computation and Language (cs.CL); Cryptography and Security (cs.CR)

Large Language Models (LLMs) are susceptible to malicious influence by cyber attackers through intrusions such as adversarial, backdoor, and embedding inversion attacks. In response, the burgeoning field of LLM Security aims to study and defend against such threats. Thus far, the majority of works in this area have focused on monolingual English models, however, emerging research suggests that multilingual LLMs may be more vulnerable to various attacks than their monolingual counterparts. While previous work has investigated embedding inversion over a small subset of European languages, it is challenging to extrapolate these findings to languages from different linguistic families and with differing scripts. To this end, we explore the security of multilingual LLMs in the context of embedding inversion attacks and investigate cross-lingual and cross-script inversion across 20 languages, spanning over 8 language families and 12 scripts. Our findings indicate that languages written in Arabic script and Cyrillic script are particularly vulnerable to embedding inversion, as are languages within the Indo-Aryan language family. We further observe that inversion models tend to suffer from language confusion, sometimes greatly reducing the efficacy of an attack. Accordingly, we systematically explore this bottleneck for inversion models, uncovering predictable patterns which could be leveraged by attackers. Ultimately, this study aims to further the field's understanding of the outstanding security vulnerabilities facing multilingual LLMs and raise awareness for the languages most at risk of negative impact from these attacks.

Prompto: An open source library for asynchronous querying of LLM endpoints

Ryan Sze-Yin Chan, Federico Nanni, Angus R. Williams, Edwin Brown, Liam Burke-Moore, Ed Chapman, Kate Onslow, Tvesha Sippy, Jonathan Bright, Evelina Gabasova https://arxiv.org/abs/2408.11847

Computation and Language (cs.CL)

Recent surge in Large Language Model (LLM) availability has opened exciting avenues for research. However, efficiently interacting with these models presents a significant hurdle since LLMs often reside on proprietary or self-hosted API endpoints, each requiring custom code for interaction. Conducting comparative studies between different models can therefore be time-consuming and necessitate significant engineering effort, hindering research efficiency and reproducibility. To address these challenges, we present prompto, an open source Python library which facilitates asynchronous querying of LLM endpoints enabling researchers to interact with multiple LLMs concurrently, while maximising efficiency and utilising individual rate limits. Our library empowers researchers and developers to interact with LLMs more effectively and allowing faster experimentation, data generation

and evaluation. prompto is released with an introductory video (this https URL) under MIT License and is available via GitHub (this https URL).

MGH Radiology Llama: A Llama 3 70B Model for Radiology

Yucheng Shi,Peng Shu,Zhengliang Liu,Zihao Wu,Quanzheng Li,Tianming Liu,Ninghao Liu,Xiang Li https://arxiv.org/abs/2408.11848

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

In recent years, the field of radiology has increasingly harnessed the power of artificial intelligence (AI) to enhance diagnostic accuracy, streamline workflows, and improve patient care. Large language models (LLMs) have emerged as particularly promising tools, offering significant potential in assisting radiologists with report generation, clinical decision support, and patient communication. This paper presents an advanced radiology-focused large language model: MGH Radiology Llama. It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2. Leveraging a unique and comprehensive dataset from Massachusetts General Hospital, comprising over 6.5 million de-identified medical reports across various imaging modalities, the model demonstrates significant improvements in generating accurate and clinically relevant radiology impressions given the corresponding findings. Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.

RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie, Ping Luo https://arxiv.org/abs/2409.02920

Robotics (cs.RO); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples improve the success rate of over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data. This significant improvement

demonstrates RoboTwin's potential to enhance the development and evaluation of dual-arm robotic manipulation systems. Project Page:this https URL.

GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding

Yukun Cao, Shuo Han, Zengyi Gao, Zezhong Ding, Xike Xie, S. Kevin Zhou https://arxiv.org/abs/2409.03258

Computation and Language (cs.CL)

Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as "positional biases". To address this, we propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.

SAM4MLLM: Enhance Multi-Modal Large Language Model for Referring Expression Segmentation

Yi-Chia Chen, Wei-Hua Li, Cheng Sun, Yu-Chiang Frank Wang, Chu-Song Chen https://arxiv.org/abs/2409.10542

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

We introduce SAM4MLLM, an innovative approach which integrates the Segment Anything Model (SAM) with Multi-Modal Large Language Models (MLLMs) for pixel-aware tasks. Our method enables MLLMs to learn pixel-level location information without requiring excessive modifications to the existing model architecture or adding specialized tokens. We introduce an inquiry-based approach that can effectively find prompt points for SAM to perform segmentation based on MLLM. It combines detailed visual information with the powerful expressive capabilities of large language models in a unified language-based manner without additional computational overhead in learning. Experimental results on pubic benchmarks demonstrate the effectiveness of our approach.

Improving Multi-candidate Speculative Decoding

Xiaofan Lu, Yixiao Zeng, Feiyang Ma, Zixu Yu, Marco Levorato https://arxiv.org/abs/2409.10644

Computation and Language (cs.CL)

Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs) by using a lower complexity draft model to propose candidate tokens verified by a larger target model. To further improve efficiency, Multi-Candidate Speculative Decoding (MCSD) improves upon this by sampling multiple candidate tokens from the draft model at each step and verifying them in parallel, thus increasing the chances of accepting a token and reducing generation time. Existing MCSD methods rely on the draft model to initialize the multi-candidate sequences and use static length and tree attention structure for draft generation. However, such an approach suffers from the draft and target model's output distribution differences, especially in a dynamic generation context. In this work, we introduce a new version of MCSD that includes a target model initialized multi-candidate generation, a dynamic sliced topology-aware causal mask for dynamic length adjustment, and decision models to optimize early stopping. We experimented with our method on Llama 2-7B and its variants and observed a maximum 27.5% speedup compared to our MCSD baseline across three benchmarks with Llama 2-7B as the target model and JackFram 68M as the draft model. Additionally, we evaluate the effects of using the target model initialized multi-candidate process with different draft models on output quality.

Attention-Seeker: Dynamic Self-Attention Scoring for Unsupervised Keyphrase Extraction

Erwin D. López Z., Cheng Tang, Atsushi Shimada https://arxiv.org/abs/2409.10907

Computation and Language (cs.CL); Information Retrieval (cs.IR)

This paper proposes Attention-Seeker, an unsupervised keyphrase extraction method that leverages self-attention maps from a Large Language Model to estimate the importance of candidate phrases. Our approach identifies specific components - such as layers, heads, and attention vectors - where the model pays significant attention to the key topics of the text. The attention weights provided by these components are then used to score the candidate phrases. Unlike previous models that require manual tuning of parameters (e.g., selection of heads, prompts, hyperparameters), Attention-Seeker dynamically adapts to the input text without any manual adjustments, enhancing its practical applicability. We evaluate Attention-Seeker on four publicly available datasets: Inspec, SemEval2010, SemEval2017, and Krapivin. Our results demonstrate that, even without parameter tuning, Attention-Seeker outperforms most baseline models, achieving state-of-the-art performance on three out of four datasets, particularly excelling in extracting keyphrases from long documents.

Propulsion: Steering LLM with Tiny Fine-Tuning

Md Kowsher, Nusrat Jahan Prottasha, Prakash Bhat https://arxiv.org/abs/2409.10927

Computation and Language (cs.CL)

The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing (NLP) and related fields. However, fine-tuning these models for specific tasks remains computationally expensive and risks degrading pre-learned features. To address these challenges, we propose Propulsion, a novel parameter efficient fine-tuning (PEFT) method designed to optimize task-specific performance while drastically reducing computational overhead. Inspired by the concept of controlled adjustments in physical motion, Propulsion selectively re-scales specific dimensions of a pre-trained model, guiding output predictions toward task objectives without modifying the model's parameters. By introducing lightweight, trainable Propulsion parameters at the pre-trained layer, we minimize the number of parameters updated during fine-tuning, preventing overfitting or overwriting of existing knowledge. Our theoretical analysis, supported by Neural Tangent Kernel (NTK) theory, shows that Propulsion approximates the performance of full fine-tuning with far fewer trainable parameters. Empirically, Propulsion reduces the parameter count from 355.3 million to just 0.086 million, achieving over a 10x reduction compared to standard approaches like LoRA while maintaining competitive performance across benchmarks.

Improving the Efficiency of Visually Augmented Language Models

Paula Ontalvilla, Aitor Ormazabal, Gorka Azkune https://arxiv.org/abs/2409.11148

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Despite the impressive performance of autoregressive Language Models (LM) it has been shown that due to reporting bias, LMs lack visual knowledge, i.e. they do not know much about the visual world and its properties. To augment LMs with visual knowledge, existing solutions often rely on explicit images, requiring time-consuming retrieval or image generation systems. This paper shows that explicit images are not necessary to visually augment an LM. Instead, we use visually-grounded text representations obtained from the well-known CLIP multimodal system. For a fair comparison, we modify VALM, a visually-augmented LM which uses image retrieval and representation, to work directly with visually-grounded text representations. We name this new model BLIND-VALM. We show that BLIND-VALM performs on par with VALM for Visual Language Understanding (VLU), Natural Language Understanding (NLU) and Language Modeling tasks, despite being significantly more efficient and simpler. We also show that scaling up our model within the compute budget of VALM, either increasing the model or pre-training corpus size, we outperform VALM for all the evaluation tasks.

LOLA -- An Open-Source Massively Multilingual Large Language Model

Nikit Srivastava, Denis Kuchelev, Tatiana Moteu Ngoli, Kshitij Shetty, Michael Röder, Hamada Zahera, Diego Moussallem, Axel-Cyrille Ngonga Ngomo https://arxiv.org/abs/2409.11272

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages.

AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs

Basel Mousi,Nadir Durrani,Fatema Ahmad,Md. Arid Hasan,Maram Hasanain,Tameem Kabbani,Fahim Dalvi,Shammur Absar Chowdhury,Firoj Alam https://arxiv.org/abs/2409.11404

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on dialect comprehension and generation, focusing specifically on low-resource Arabic dialects. Additionally, we introduce the first-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions, providing a novel dimension to LLM evaluation. Our findings demonstrate that while Arabic-specific models like Jais and AceGPT outperform multilingual models on dialectal tasks, significant challenges persist in dialect identification, generation, and translation. This work contributes \$\approx\$45K post-edited samples, a cultural benchmark, and highlights the importance of tailored training to improve LLM performance in capturing the nuances of diverse Arabic dialects and cultural contexts. We have released the dialectal translation models and benchmarks developed in this study (this https URL).

PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models

Andrianos Michail, Simon Clematide, Juri Opitz https://arxiv.org/abs/2409.12060

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

The task of determining whether two texts are paraphrases has long been a challenge in NLP. However, the prevailing notion of paraphrase is often quite simplistic, offering only a limited view of the vast spectrum of paraphrase phenomena. Indeed, we find that evaluating models in a paraphrase dataset can leave uncertainty about their true semantic understanding. To alleviate this, we create PARAPHRASUS, a benchmark designed for multi-dimensional assessment, benchmarking and selection of paraphrase detection models. We find that paraphrase detection models under our fine-grained evaluation lens exhibit trade-offs that cannot be captured through a single classification dataset. Furthermore, PARAPHRASUS allows prompt calibration for different use cases, tailoring LLM models to specific strictness levels. PARAPHRASUS includes 3 challenges spanning over 10 datasets, including 8 repurposed and 2 newly annotated; we release it along with a benchmarking library atthis https URL

\$\textit{SKIntern}\$: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models

Huanxuan Liao, Shizhu He, Yupu Hao, Xiang Li, Yuanzhe Zhang, Jun Zhao, Kang Liu https://arxiv.org/abs/2409.13183

Computation and Language (cs.CL)

Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce \$\textit{SKIntern}\$, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, \$\textit{SKIntern}\$ reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5\%, while reducing inference costs (measured in FLOPs) by up to \$4\times\$ across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at \url{this https URL}.

Neural-Symbolic Collaborative Distillation: Advancing Small Language Models for Complex Reasoning Tasks

Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, Kang Liu, Jun Zhao https://arxiv.org/abs/2409.13203

Computation and Language (cs.CL)

In this paper, we propose \$\textbf{Ne}\sural-\$\textbf{Sy}\\$mbolic \$\textbf{C}\\$ollaborative \$\textbf{D}\\$istillation (\$\textbf{NesyCD}\\$), a novel knowledge distillation method for learning the complex reasoning abilities of Large Language Models (LLMs, e.g., \textgreater 13B). We argue that complex reasoning tasks are difficult for Small Language Models (SLMs, e.g., \$\leq\$ 7B), as these tasks demand not only general cognitive abilities but also specialized knowledge, which is often sparse and difficult for these neural-based SLMs to effectively capture. Therefore, NesyCD distills the general capabilities and specialized knowledge in LLMs using different manners. On the one hand, we distill only general abilities from teacher LLMs into the student SLMs of parameterized neural networks. On the other hand, for the specialized abilities and uncommon knowledge of a complex reasoning task, we employ a symbolic knowledge distillation approach to obtain and store the specialized knowledge within a symbolic knowledge base (KB). By decoupling general and specialized capabilities, the proposed NesyCD can achieve superior performance cost-effectively, utilizing smaller models and blending parameterized neural networks with symbolic KB. Moreover, the specialized KB generalizes well and is comprehended and manipulated by humans. Our experiments show that NesyCD significantly boosts SLMs' complex reasoning performance on in-domain (BBH, GSM8K) and out-of-domain (AGIEval, ARC) datasets. Notably, our approach enabled the LLaMA3-8B and Qwen2-7B to surpass GPT-3.5-turbo in performance and come close to matching LLaMA3-70B, despite the latter having nine times more parameters. Our code will be available atthis https URL.

Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models

Anmol Mekala, Vineeth Dorna, Shreya Dubey, Abhishek Lalwani, David Koleczek, Mukund Rungta, Sadid Hasan, Elita Lobo

https://arxiv.org/abs/2409.13474

Computation and Language (cs.CL); Machine Learning (cs.LG)

Machine unlearning aims to efficiently eliminate the influence of specific training data, known as the forget set, from the model. However, existing unlearning methods for Large Language Models (LLMs) face a critical challenge: they rely solely on negative feedback to suppress responses related to the forget set, which often results in nonsensical or inconsistent outputs, diminishing model utility and posing potential privacy risks. To address this limitation, we propose a novel approach called Alternate Preference Optimization (AltPO), which combines negative feedback with in-domain positive feedback on the forget set. Additionally, we introduce new evaluation metrics to assess the quality of responses related to the forget set. Extensive experiments show that our approach not only enables effective unlearning but also avoids undesirable model behaviors while maintaining overall model performance.

Aligning Language Models Using Follow-up Likelihood as Reward Signal

Chen Zhang, Dading Chong, Feng Jiang, Chengguang Tang, Anningzhe Gao, Guohua Tang, Haizhou Li https://arxiv.org/abs/2409.13948

Computation and Language (cs.CL)

In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, "Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.

MQM-APE: Toward High-Quality Error Annotation Predictors with Automatic Post-Editing in LLM Translation Evaluators

Qingyu Lu,Liang Ding,Kanjian Zhang,Jinxia Zhang,Dacheng Tao https://arxiv.org/abs/2409.14335

Computation and Language (cs.CL)

Large Language Models (LLMs) have shown significant potential as judges for Machine Translation (MT) quality assessment, providing both scores and fine-grained feedback. Although approaches such as GEMBA-MQM have shown state-of-the-art performance on reference-free evaluation, the predicted errors do not align well with those annotated by human, limiting their interpretability as feedback signals. To enhance the quality of error annotations predicted by LLM evaluators, we introduce a universal and training-free framework, \$\textbf{MQM-APE}\$, based on the idea of filtering out non-impactful errors by Automatically Post-Editing (APE) the original translation based on each error, leaving only those errors that contribute to quality improvement. Specifically, we prompt the LLM to act as 1) \$\textit{evaluator}\$ to provide error annotations, 2) \$\textit{post-editor}\$ to determine whether errors impact quality improvement and 3) \$\textit{pairwise quality verifier}\$ as the error filter. Experiments show that our approach consistently improves both the reliability and quality of error spans against GEMBA-MQM, across eight LLMs in both high- and low-resource languages. Orthogonal to trained approaches, MQM-APE complements translation-specific evaluators such as Tower,

highlighting its broad applicability. Further analysis confirms the effectiveness of each module and offers valuable insights into evaluator design and LLMs selection.

Can a Neural Model Guide Fieldwork? A Case Study on Morphological Data Collection

Aso Mahmudi,Borja Herce,Demian Inostroza Amestica,Andreas Scherbakov,Eduard Hovy,Ekaterina Vvlomova

https://arxiv.org/abs/2409.14628

Computation and Language (cs.CL)

Linguistic fieldwork is an important component in language documentation and preservation. However, it is a long, exhaustive, and time-consuming process. This paper presents a novel model that guides a linguist during the fieldwork and accounts for the dynamics of linguist-speaker interactions. We introduce a novel framework that evaluates the efficiency of various sampling strategies for obtaining morphological data and assesses the effectiveness of state-of-the-art neural models in generalising morphological structures. Our experiments highlight two key strategies for improving the efficiency: (1) increasing the diversity of annotated data by uniform sampling among the cells of the paradigm tables, and (2) using model confidence as a guide to enhance positive interaction by providing reliable predictions during annotation.

How Transliterations Improve Crosslingual Alignment

Yihong Liu, Mingyang Wang, Amir Hossein Kargaran, Ayyoob Imani, Orgest Xhelili, Haotian Ye, Chunlan Ma, François Yvon, Hinrich Schütze https://arxiv.org/abs/2409.17326

Computation and Language (cs.CL)

Recent studies have shown that post-aligning multilingual pretrained language models (mPLMs) using alignment objectives on both original and transliterated data can improve crosslingual alignment. This improvement further leads to better crosslingual transfer performance. However, it remains unclear how and why a better crosslingual alignment is achieved, as this technique only involves transliterations, and does not use any parallel data. This paper attempts to explicitly evaluate the crosslingual alignment and identify the key elements in transliteration-based approaches that contribute to better performance. For this, we train multiple models under varying setups for two pairs of related languages: (1) Polish and Ukrainian and (2) Hindi and Urdu. To assess alignment, we define four types of similarities based on sentence representations. Our experimental results show that adding transliterations alone improves the overall similarities, even for random sentence pairs. With the help of auxiliary transliteration-based alignment objectives, especially the contrastive objective, the model learns to distinguish matched from random pairs, leading to better crosslingual alignment. However, we also show that better alignment does not always yield better downstream performance, suggesting that further research is needed to clarify the connection between alignment and performance. The code implementation is based on \url{this https URL}.

Analysing Zero-Shot Readability-Controlled Sentence Simplification

Abdullah Barayan, Jose Camacho-Collados, Fernando Alva-Manchego https://arxiv.org/abs/2409.20246

Computation and Language (cs.CL)

Readability-controlled text simplification (RCTS) rewrites texts to lower readability levels while preserving their meaning. RCTS models often depend on parallel corpora with readability annotations on both source and target sides. Such datasets are scarce and difficult to curate, especially at the sentence level. To reduce reliance on parallel data, we explore using instruction-tuned large language models for zero-shot RCTS. Through automatic and manual evaluations, we examine: (1) how different types of contextual information affect a model's ability to generate sentences with the desired readability, and (2) the trade-off between achieving target readability and preserving meaning. Results show that all tested models struggle to simplify sentences (especially to the lowest levels) due to models' limitations and characteristics of the source sentences that impede adequate rewriting. Our experiments also highlight the need for better automatic evaluation metrics tailored to RCTS, as standard ones often misinterpret common simplification operations, and inaccurately assess readability and meaning preservation.

Unveiling Language Skills via Path-Level Circuit Discovery

Hang Chen, Jiaying Zhu, Xinyu Yang, Wenya Wang https://arxiv.org/abs/2410.01334

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Circuit discovery with edge-level ablation has become a foundational framework for mechanism interpretability of language models. However, its focus on individual edges often overlooks the sequential, path-level causal relationships that underpin complex behaviors, thus potentially leading to misleading or incomplete circuit discoveries. To address this issue, we propose a novel path-level circuit discovery framework capturing how behaviors emerge through interconnected linear chain and build towards complex behaviors. Our framework is constructed upon a fully-disentangled linear combinations of ``memory circuits'' decomposed from the original model. To discover functional circuit paths, we leverage a 2-step pruning strategy by first reducing the computational graph to a faithful and minimal subgraph and then applying causal mediation to identify common paths of a specific skill, termed as skill paths. In contrast to circuit graph from existing works, we focus on the complete paths of a generic skill rather than on the fine-grained responses to individual components of the input. To demonstrate this, we explore three generic language skills, namely Previous Token Skill, Induction Skill and In-Context Learning Skill using our framework and provide more compelling evidence to substantiate stratification and inclusiveness of these skills.

Unified Multimodal Interleaved Document Representation for Retrieval

Jaewoo Lee, Joonho Ko, Jinheon Baek, Soyeong Jeong, Sung Ju Hwang https://arxiv.org/abs/2410.02729

Computation and Language (cs.CL); Artificial Intelligence (cs.Al); Information Retrieval (cs.IR)

Information Retrieval (IR) methods aim to identify documents relevant to a query, which have been widely applied in various natural language tasks. However, existing approaches typically consider only the textual content within documents, overlooking the fact that documents can contain multiple modalities, including images and tables. Also, they often segment each long document into multiple discrete passages for embedding, which prevents them from capturing the overall document context and interactions between paragraphs. To address these two challenges, we propose a method that holistically embeds documents interleaved with multiple modalities by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse IR scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information within documents.

Aligning LLMs with Individual Preferences via Interaction

Shujin Wu,May Fung,Cheng Qian,Jeonghwan Kim,Dilek Hakkani-Tur,Heng Ji https://arxiv.org/abs/2410.03642

Computation and Language (cs.CL); Artificial Intelligence (cs.Al); Human-Computer Interaction (cs.HC)

As large language models (LLMs) demonstrate increasingly advanced capabilities, aligning their behaviors with human values and preferences becomes crucial for their wide adoption. While previous research focuses on general alignment to principles such as helpfulness, harmlessness, and honesty, the need to account for individual and diverse preferences has been largely overlooked, potentially undermining customized human experiences. To address this gap, we train LLMs that can "interact to align", essentially cultivating the meta-skill of LLMs to implicitly infer the unspoken personalized preferences of the current user through multi-turn conversations, and then dynamically align their following behaviors and responses to these inferred preferences. Our approach involves establishing a diverse pool of 3,310 distinct user personas by initially creating seed examples, which are then expanded through iterative self-generation and filtering. Guided by distinct user personas, we leverage multi-LLM collaboration to develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures. Finally, we apply supervised fine-tuning and reinforcement learning to enhance LLMs using this dataset. For evaluation, we establish the ALOE (ALign With CustOmized PrEferences) benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations. Experimental results

demonstrate the effectiveness of our method in enabling dynamic, personalized alignment via interaction.

SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks

Tianhao Li,Jingyu Lu,Chuangxin Chu,Tianyu Zeng,Yujia Zheng,Mei Li,Haotian Huang,Bin Wu,Zuoxian Liu,Kai Ma,Xuejing Yuan,Xingkai Wang,Keyan Ding,Huajun Chen,Qiang Zhang https://arxiv.org/abs/2410.03769

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Cryptography and Security (cs.CR)

Large language models (LLMs) have a transformative impact on a variety of scientific tasks across disciplines including biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focusing on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages-including textual, molecular, protein, and genomic-and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a "jailbreak" enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.

Decoding Decoded: Understanding Hyperparameter Effects in Open-Ended Text Generation

Esteban Garces Arias, Meimingwei Li, Christian Heumann, Matthias Aßenmacher https://arxiv.org/abs/2410.06097

Computation and Language (cs.CL); Machine Learning (cs.LG)

Decoding strategies for generative large language models (LLMs) are a critical but often underexplored aspect of text generation tasks. Guided by specific hyperparameters, these strategies aim to transform the raw probability distributions produced by language models into coherent, fluent text. In this study, we undertake a large-scale empirical assessment of a range of decoding methods, open-source LLMs, textual domains, and evaluation protocols to determine how hyperparameter choices shape the outputs. Our experiments include both factual (e.g., news) and creative (e.g., fiction) domains, and incorporate a broad suite of automatic evaluation metrics alongside human judgments. Through extensive sensitivity analyses, we distill practical recommendations for selecting and tuning hyperparameters, noting that optimal configurations vary across models and tasks. By synthesizing these insights, this study provides actionable guidance for refining decoding strategies, enabling

researchers and practitioners to achieve higher-quality, more reliable, and context-appropriate text generation outcomes.

CursorCore: Assist Programming through Aligning Anything

Hao Jiang, Qi Liu, Rui Li, Shengyu Ye, Shijin Wang https://arxiv.org/abs/2410.07002

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Software Engineering (cs.SE)

Large language models have been successfully applied to programming assistance tasks, such as code completion, code insertion, and instructional code editing. However, these applications remain insufficiently automated and struggle to effectively integrate various types of information during the programming process, including coding history, current code, and user instructions. In this work, we propose a new conversational framework that comprehensively integrates these information sources, collect data to train our models and evaluate their performance. Firstly, to thoroughly evaluate how well models align with different types of information and the quality of their outputs, we introduce a new benchmark, APEval (Assist Programming Eval), to comprehensively assess the performance of models in programming assistance tasks. Then, for data collection, we develop a data generation pipeline, Programming-Instruct, which synthesizes training data from diverse sources, such as GitHub and online judge platforms. This pipeline can automatically generate various types of messages throughout the programming process. Finally, using this pipeline, we generate 219K samples, fine-tune multiple models, and develop the CursorCore series. We show that CursorCore outperforms other models of comparable size. This framework unifies applications such as inline chat and automated editing, contributes to the advancement of coding assistants. Code, models and data are freely available atthis https URL.

MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering

Jun Shern Chan,Neil Chowdhury,Oliver Jaffe,James Aung,Dane Sherburn,Evan Mays,Giulio Starace,Kevin Liu,Leon Maksin,Tejal Patwardhan,Lilian Weng,Aleksander M■dry https://arxiv.org/abs/2410.07095

Computation and Language (cs.CL)

We introduce MLE-bench, a benchmark for measuring how well AI agents perform at machine learning engineering. To this end, we curate 75 ML engineering-related competitions from Kaggle, creating a diverse set of challenging tasks that test real-world ML engineering skills such as training models, preparing datasets, and running experiments. We establish human baselines for each competition using Kaggle's publicly available leaderboards. We use open-source agent scaffolds to evaluate several frontier language models on our benchmark, finding that the best-performing setup--OpenAI's o1-preview with AIDE scaffolding--achieves at least the level of a Kaggle bronze medal in 16.9% of competitions. In addition to our main results, we investigate various forms of resource scaling for AI agents and the impact of contamination from pre-training. We open-source our benchmark code (this http URL) to facilitate future research in understanding the ML engineering capabilities of AI agents.

Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study over Open-ended Question Answering

Yuan Sui, Yufei He, Zifeng Ding, Bryan Hooi https://arxiv.org/abs/2410.08085

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Recent works integrating Knowledge Graphs (KGs) have led to promising improvements in enhancing reasoning accuracy of Large Language Models (LLMs). However, current benchmarks focus mainly on closed-ended tasks, leaving a gap in the assessment of more complex real-world scenarios. This gap has also obscured the evaluation of KGs' potential to mitigate the problem of hallucination in LLMs. To fill the gap, we introduce OKGQA, a new benchmark specifically designed to assess LLMs enhanced with KGs under open-ended, real-world question answering scenarios. OKGQA is designed to closely reflect the complexities of practical applications using questions from different types, and incorporates specific metrics to measure both the reduction in hallucinations and the enhancement in reasoning capabilities. To consider the scenario in which KGs may have varying levels of mistakes, we propose another benchmark variant OKGQA-P to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated. OKGQA aims to (1) explore whether KGs can make LLMs more trustworthy in an open-ended setting, and (2) conduct a comparative analysis to shed light on methods and future directions for leveraging KGs to reduce LLMs' hallucination. We believe that this study can facilitate a more complete performance comparison and encourage continuous improvement in integrating KGs with LLMs.

Sample then Identify: A General Framework for Risk Control and Assessment in Multimodal Large Language Models

Qingni Wang, Tiantian Geng, Zhiyuan Wang, Teng Wang, Bo Fu, Feng Zheng https://arxiv.org/abs/2410.08174

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Multimedia (cs.MM)

Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering

(VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.

LLM-Based Multi-Agent Systems are Scalable Graph Generative Models

Jiarui Ji,Runlin Lei,Jialing Bi,Zhewei Wei,Xu Chen,Yankai Lin,Xuchen Pan,Yaliang Li,Bolin Ding https://arxiv.org/abs/2410.09824

Computation and Language (cs.CL)

The structural properties of naturally arising social graphs are extensively studied to understand their evolution. Prior approaches for modeling network dynamics typically rely on rule-based models, which lack realism and generalizability, or deep learning-based models, which require large-scale training datasets. Social graphs, as abstract graph representations of entity-wise interactions, present an opportunity to explore network evolution mechanisms through realistic simulations of human-item interactions. Leveraging the pre-trained social consensus knowledge embedded in large language models (LLMs), we present GraphAgent-Generator (GAG), a novel simulation-based framework for dynamic, text-attributed social graph generation. GAG simulates the temporal node and edge generation processes for zero-shot social graph generation. The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics. Through the node classification benchmarking task, we validate GAG effectively captures the intricate text-structure correlations in graph generation. Furthermore, GAG supports generating graphs with up to nearly 100,000 nodes or 10 million edges through large-scale LLM-based agent simulation with parallel acceleration, achieving a minimum speed-up of 90.4%. The source code is available atthis https URL.

Assessing the Human Likeness of Al-Generated Counterspeech

Xiaoying Song, Sujana Mamidisetty, Eduardo Blanco, Lingzi Hong https://arxiv.org/abs/2410.11007

Computation and Language (cs.CL)

Counterspeech is a targeted response to counteract and challenge abusive or hateful content. It effectively curbs the spread of hatred and fosters constructive online communication. Previous studies have proposed different strategies for automatically generated counterspeech. Evaluations, however, focus on relevance, surface form, and other shallow linguistic characteristics. This paper investigates the human likeness of AI-generated counterspeech, a critical factor influencing effectiveness. We implement and evaluate several LLM-based generation strategies, and discover that AI-generated and human-written counterspeech can be easily distinguished by both simple classifiers and humans. Further, we reveal differences in linguistic characteristics, politeness, and specificity. The dataset used in this study is publicly available for further research.

VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models

Lisa Dunlap,Krishna Mandal,Trevor Darrell,Jacob Steinhardt,Joseph E Gonzalez https://arxiv.org/abs/2410.12851

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" -- such as tone, formatting, or writing style -- influence user preferences, yet traditional evaluations focus primarily on the singular axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model (vibes) that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discovers vibes from model outputs and then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with Llama-3-70b vs GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. VibeCheck discovers vibes like Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often overexplains its thought process on math problems compared to GPT-40, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash. Code can be found atthis https URL

Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models

Jiatao Li,Xinyu Hu,Xunjian Yin,Xiaojun Wan https://arxiv.org/abs/2410.13192

Computation and Language (cs.CL)

The integration of documents generated by LLMs themselves (Self-Docs) alongside retrieved documents has emerged as a promising strategy for retrieval-augmented generation systems. However, previous research primarily focuses on optimizing the use of Self-Docs, with their inherent properties remaining underexplored. To bridge this gap, we first investigate the overall effectiveness of Self-Docs, identifying key factors that shape their contribution to RAG performance (RQ1). Building on these insights, we develop a taxonomy grounded in Systemic Functional Linguistics to compare the influence of various Self-Docs categories (RQ2) and explore strategies for combining them with external sources (RQ3). Our findings reveal which types of Self-Docs are most beneficial and offer practical guidelines for leveraging them to achieve significant improvements in knowledge-intensive question answering tasks.

An Active Learning Framework for Inclusive Generation by Large Language Models

Sabit Hassan, Anthony Sicilia, Malihe Alikhani https://arxiv.org/abs/2410.13641

Computation and Language (cs.CL)

Ensuring that Large Language Models (LLMs) generate text representative of diverse sub-populations is essential, particularly when key concepts related to under-represented groups are scarce in the training data. We address this challenge with a novel clustering-based active learning framework, enhanced with knowledge distillation. The proposed framework transforms the intermediate outputs of the learner model, enabling effective active learning for generative tasks for the first time. Integration of clustering and knowledge distillation yields more representative models without prior knowledge of underlying data distribution and overbearing human efforts. We validate our approach in practice through case studies in counter-narration and style transfer. We construct two new datasets in tandem with model training, showing a performance improvement of 2%-10% over baseline models. Our results also show more consistent performance across various data subgroups and increased lexical diversity, underscoring our model's resilience to skewness in available data. Further, our results show that the data acquired via our approach improves the performance of secondary models not involved in the learning loop, showcasing practical utility of the framework.

Cross-Document Event-Keyed Summarization

William Walden, Pavlo Kuchmiichuk, Alexander Martin, Chihsheng Jin, Angela Cao, Claire Sun, Curisia Allen, Aaron Steven White https://arxiv.org/abs/2410.14795

Computation and Language (cs.CL)

Event-keyed summarization (EKS) requires summarizing a specific event described in a document given the document text and an event representation extracted from it. In this work, we extend EKS to the cross-document setting (CDEKS), in which summaries must synthesize information from accounts of the same event as given by multiple sources. We introduce SEAMUS (Summaries of Events Across Multiple Sources), a high-quality dataset for CDEKS based on an expert reannotation of the FAMUS dataset for cross-document argument extraction. We present a suite of baselines on SEAMUS -- covering both smaller, fine-tuned models, as well as zero- and few-shot prompted LLMs -- along with detailed ablations and a human evaluation study, showing SEAMUS to be a valuable benchmark for this new task.

Adsorb-Agent: Autonomous Identification of Stable Adsorption Configurations via Large Language Model Agent

Janghoon Ock, Tirtha Vinchurkar, Yayati Jadhav, Amir Barati Farimani https://arxiv.org/abs/2410.16658

Computation and Language (cs.CL); Materials Science (cond-mat.mtrl-sci)

Adsorption energy is a key reactivity descriptor in catalysis, enabling efficient screening for optimal catalysts. However, determining adsorption energy typically requires evaluating numerous adsorbate-catalyst configurations. Current algorithmic approaches rely on exhaustive enumeration of adsorption sites and configurations, which makes the process computationally intensive and does not inherently guarantee the identification of the global minimum energy. In this work, we introduce Adsorb-Agent, a Large Language Model (LLM) agent designed to efficiently identify system-specific stable adsorption configurations corresponding to the global minimum adsorption energy. Adsorb-Agent leverages its built-in knowledge and emergent reasoning capabilities to strategically explore adsorption configurations likely to hold adsorption energy. By reducing the reliance on exhaustive sampling, it significantly decreases the number of initial configurations required while improving the accuracy of adsorption energy predictions. We evaluate Adsorb-Agent's performance across twenty representative systems encompassing a range of complexities. The Adsorb-Agent successfully identifies comparable adsorption energies for 83.7% of the systems and achieves lower energies, closer to the actual global minimum, for 35% of the systems, while requiring significantly fewer initial configurations than conventional methods. Its capability is particularly evident in complex systems, where it identifies lower adsorption energies for 46.7% of systems involving intermetallic surfaces and 66.7% of systems with large adsorbate molecules. These results demonstrate the potential of Adsorb-Agent to accelerate catalyst discovery by reducing computational costs and improving the reliability of adsorption energy predictions.

Do Robot Snakes Dream like Electric Sheep? Investigating the Effects of Architectural Inductive Biases on Hallucination

Jerry Huang, Prasanna Parthasarathi, Mehdi Rezagholizadeh, Boxing Chen, Sarath Chandar https://arxiv.org/abs/2410.17477

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

The growth in prominence of large language models (LLMs) in everyday life can be largely attributed to their generative abilities, yet some of this is also owed to the risks and costs associated with their use. On one front is their tendency to \textit{hallucinate} false or misleading information, limiting their reliability. On another is the increasing focus on the computational limitations associated with traditional self-attention based LLMs, which has brought about new alternatives, in particular recurrent models, meant to overcome them. Yet it remains uncommon to consider these two concerns simultaneously. Do changes in architecture exacerbate/alleviate existing concerns about hallucinations? Do they affect how and where they occur? Through an extensive evaluation, we study how these architecture-based inductive biases affect the propensity to hallucinate. While hallucination remains a general phenomenon not limited to specific architectures, the situations in which they occur and the ease with which specific types of hallucinations can be induced can significantly differ based on the model architecture. These findings highlight the need for better understanding both these problems in conjunction with each other, as well as consider how to design more universal techniques for handling hallucinations.

ReflecTool: Towards Reflection-Aware Tool-Augmented Clinical Agents

Yusheng Liao, Shuyang Jiang, Yanfeng Wang, Yu Wang https://arxiv.org/abs/2410.17657

Computation and Language (cs.CL)

Large Language Models (LLMs) have shown promising potential in the medical domain, assisting with tasks like clinical note generation and patient communication. However, current LLMs are limited to text-based communication, hindering their ability to interact with diverse forms of information in clinical environments. Despite clinical agents succeeding in diverse signal interaction, they are oriented to a single clinical scenario and hence fail for broader applications. To evaluate clinical agents holistically, we propose Clinical Agent Bench~(CAB), a comprehensive medical agent benchmark consisting of 18 tasks across five key realistic clinical dimensions. Building on this, we introduce ReflecTool, a novel framework that excels at utilizing domain-specific tools within two stages. The first optimization stage progressively enlarges a long-term memory by saving successful solving processes and tool-wise experience of agents in a tiny pre-defined training set. In the following inference stage, ReflecTool can search for supportive successful demonstrations from already built long-term memory to guide the tool selection strategy, and a verifier improves the tool usage according to the tool-wise experience with two verification methods--iterative refinement and candidate selection. Extensive experiments on Clinical Agent Benchmark demonstrate that ReflecTool surpasses the pure LLMs with more than 10 points and the well-established agent-based methods with 3 points, highlighting its adaptability and effectiveness in solving complex clinical tasks.

\$C^2\$: Scalable Auto-Feedback for LLM-based Chart Generation

Woosung Koh, Jang Han Yoon, MinHyung Lee, Youngjin Song, Jaegwan Cho, Jaehyun Kang, Taehyeon Kim, Se-young Yun, Youngjae Yu, Bongshin Lee https://arxiv.org/abs/2410.18652

Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Generating high-quality charts with Large Language Models (LLMs) presents significant challenges due to limited data and the high cost of scaling through human curation. \$\langle \text{instruction}, \text{code} \text{code} \text{instruction}, \text{code} \text{code} \text{code} \text{code} \text{code}, \tex

examples.

No Argument Left Behind: Overlapping Chunks for Faster Processing of Arbitrarily Long Legal Texts

Israel Fama, Bárbara Bueno, Alexandre Alcoforado, Thomas Palmeira Ferraz, Arnold Moya, Anna Helena Reali Costa

https://arxiv.org/abs/2410.19184

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY); Machine Learning (cs.LG)

In a context where the Brazilian judiciary system, the largest in the world, faces a crisis due to the slow processing of millions of cases, it becomes imperative to develop efficient methods for analyzing legal texts. We introduce uBERT, a hybrid model that combines Transformer and Recurrent Neural Network architectures to effectively handle long legal texts. Our approach processes the full text regardless of its length while maintaining reasonable computational overhead. Our experiments demonstrate that uBERT achieves superior performance compared to BERT+LSTM when overlapping input is used and is significantly faster than ULMFiT for processing long legal documents.

Semantic Component Analysis: Discovering Patterns in Short Texts Beyond Topics

Florian Eichin, Carolin M. Schuster, Georg Groh, Michael A. Hedderich https://arxiv.org/abs/2410.21054

Computation and Language (cs.CL)

Topic modeling is a key method in text analysis, but existing approaches are limited by assuming one topic per document or fail to scale efficiently for large, noisy datasets of short texts. We introduce Semantic Component Analysis (SCA), a novel topic modeling technique that overcomes these limitations by discovering multiple, nuanced semantic components beyond a single topic in short texts which we accomplish by introducing a decomposition step to the clustering-based topic modeling framework. We evaluate SCA on Twitter datasets in English, Hausa and Chinese. It achieves competetive coherence and diversity compared to BERTopic, while uncovering at least double the semantic components and maintaining a noise rate close to zero. Furthermore, SCA is scalable and effective across languages, including an underrepresented one.

Reliability of Topic Modeling

Kayla Schroeder, Zach Wood-Doughty https://arxiv.org/abs/2410.23186

Computation and Language (cs.CL)

Topic models allow researchers to extract latent factors from text data and use those variables in downstream statistical analyses. However, these methodologies can vary significantly due to initialization differences, randomness in sampling procedures, or noisy data. Reliability of these methods is of particular concern as many researchers treat learned topic models as ground truth for subsequent analyses. In this work, we show that the standard practice for quantifying topic model reliability fails to capture essential aspects of the variation in two widely-used topic models. Drawing from a extensive literature on measurement theory, we provide empirical and theoretical analyses of three other metrics for evaluating the reliability of topic models. On synthetic and real-world data, we show that McDonald's \$\omega\$ provides the best encapsulation of reliability. This metric provides an essential tool for validation of topic model methodologies that should be a standard component of any topic model-based research.

GPTKB: Comprehensively Materializing Factual LLM Knowledge

Yujia Hu, Tuan-Phong Nguyen, Shrestha Ghosh, Simon Razniewski https://arxiv.org/abs/2411.04920

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Databases (cs.DB)

LLMs have majorly advanced NLP and AI, and next to their ability to perform a wide range of procedural tasks, a major success factor is their internalized factual knowledge. Since (Petroni et al., 2019), analyzing this knowledge has gained attention. However, most approaches investigate one question at a time via modest-sized pre-defined samples, introducing an availability bias (Tversky and Kahnemann, 1973) that prevents the discovery of knowledge (or beliefs) of LLMs beyond the experimenter's predisposition. To address this challenge, we propose a novel methodology to comprehensively materializing an LLM's factual knowledge through recursive querying and result consolidation. As a prototype, we employ GPT-40-mini to construct GPTKB, a large-scale knowledge base (KB) comprising 105 million triples for over 2.9 million entities - achieved at 1% of the cost of previous KB projects. This work marks a milestone in two areas: For LLM research, for the first time, it provides constructive insights into the scope and structure of LLMs' knowledge (or beliefs). For KB construction, it pioneers new pathways for the long-standing challenge of general-domain KB construction. GPTKB is accessible atthis https URL.

Beyond Toxic Neurons: A Mechanistic Analysis of DPO for Toxicity Reduction

Yushi Yang, Filip Sondej, Harry Mayne, Adam Mahdi https://arxiv.org/abs/2411.06424

Machine Learning (cs.LG); Computation and Language (cs.CL)

Safety fine-tuning algorithms are widely used to reduce harmful outputs in language models, but how they achieve this remain unclear. Studying the Direct Preference Optimization (DPO) algorithm for toxicity reduction, current explanations claim that DPO achieves this by dampening the activations of

toxic MLP neurons. However, through activation patching, we show that this explanation is incomplete. Projections onto a toxicity probe's direction show that only 4.9% of toxicity reduction comes from dampened toxic neurons. Instead, DPO reduces toxicity through distributed activation shifts across a majority of neurons, progressively shifting MLP layer outputs away from toxicity. These shifts accumulate across four neuron groups: two reducing toxicity and two promoting anti-toxicity. Activation patching validates the cumulative roles of these groups, where patching all identified groups effectively replicates DPO's effects. These findings illustrate DPO's mechanism: it reduces toxicity by accumulating small activation shifts across many neurons throughout the layers. Our findings provide new mechanistic insights into how safety fine-tuning reduces harmful outputs in language models.

LIFBench: Evaluating the Instruction Following Performance and Stability of Large Language Models in Long-Context Scenarios

Xiaodong Wu,Minhao Wang, Yichen Liu,Xiaoming Shi,He Yan,Xiangju Lu,Junmin Zhu,Wei Zhang https://arxiv.org/abs/2411.07037

Computation and Language (cs.CL)

As Large Language Models (LLMs) evolve in natural language processing (NLP), their ability to stably follow instructions in long-context inputs has become critical for real-world applications. However, existing benchmarks seldom focus on instruction-following in long-context scenarios or stability on different inputs. To bridge this gap, we introduce LIFBench, a scalable dataset designed to evaluate LLMs' instruction-following capabilities and stability across long contexts. LIFBench comprises three long-context scenarios and eleven diverse tasks, featuring 2,766 instructions generated through an automated expansion method across three dimensions: length, expression, and variables. For evaluation, we propose LIFEval, a rubric-based assessment method that enables precise, automated scoring of complex LLM responses without reliance on LLM-assisted assessments or human judgment. This method allows for a comprehensive analysis of model performance and stability from multiple perspectives. We conduct detailed experiments on 20 prominent LLMs across six length intervals. Our work contributes LIFBench and LIFEval as robust tools for assessing LLM performance in complex and long-context settings, offering valuable insights to guide future advancements in LLM development.

Gumbel Counterfactual Generation From Language Models

Shauli Ravfogel, Anej Svete, Vésteinn Snæbjarnarson, Ryan Cotterell https://arxiv.org/abs/2411.07180

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to \emph{intervene} on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we

propose a framework for generating true string counterfactuals by reformulating language models as a structural equation model using the Gumbel-max trick, which we called Gumbel counterfactual generation. This reformulation allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.

P\$^2\$ Law: Scaling Law for Post-Training After Model Pruning

Xiaodong Chen, Yuxuan Hu, Xiaokang Zhang, Yanling Wang, Cuiping Li, Hong Chen, Jing Zhang https://arxiv.org/abs/2411.10272

Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Pruning has become a widely adopted technique for reducing the hardware requirements of large language models (LLMs). To recover model performance after pruning, post-training is commonly employed to mitigate the resulting performance degradation. While post-training benefits from larger datasets, once the dataset size is already substantial, increasing the training data provides only limited performance gains. To balance post-training cost and model performance, it is necessary to explore the optimal amount of post-trainingthis http URLextensive experiments on the Llama-3 and Qwen-2.5 series models, pruned using various common pruning methods, we uncover the scaling \textbf{Law} for \textbf{P}ost-training after model \textbf{P}runing, referred to as the P\$^2\$this http URLlaw identifies four key factors for predicting the pruned model's post-training loss: the model size before pruning, the number of post-training tokens, the pruning rate, and the model's loss before pruning. Moreover, P\$^2\$ Law can generalize to larger dataset sizes, larger model sizes, and higher pruning rates, offering valuable insights for the post-training of pruned LLMs.

Unveiling Topological Structures in Text: A Comprehensive Survey of Topological Data Analysis Applications in NLP

Adaku Uchendu,Thai Le https://arxiv.org/abs/2411.10298

Computation and Language (cs.CL)

The surge of data available on the internet has led to the adoption of various computational methods to analyze and extract valuable insights from this wealth of information. Among these, the field of Machine Learning (ML) has thrived by leveraging data to extract meaningful insights. However, ML techniques face notable challenges when dealing with real-world data, often due to issues of imbalance, noise, insufficient labeling, and high dimensionality. To address these limitations, some researchers advocate for the adoption of Topological Data Analysis (TDA), a statistical approach that discerningly captures the intrinsic shape of data despite noise. Despite its potential, TDA has not gained as much traction within the Natural Language Processing (NLP) domain compared to structurally distinct areas like computer vision. Nevertheless, a dedicated community of researchers has been exploring the

application of TDA in NLP, yielding 87 papers we comprehensively survey in this paper. Our findings categorize these efforts into theoretical and non-theoretical approaches. Theoretical approaches aim to explain linguistic phenomena from a topological viewpoint, while non-theoretical approaches merge TDA with ML features, utilizing diverse numerical representation techniques. We conclude by exploring the challenges and unresolved questions that persist in this niche field. Resources and a list of papers on this topic can be found at:this https URL.

A dataset of questions on decision-theoretic reasoning in Newcomb-like problems

Caspar Oesterheld, Emery Cooper, Miles Kodama, Linh Chi Nguyen, Ethan Perez https://arxiv.org/abs/2411.10588

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

We introduce a dataset of natural-language questions in the decision theory of so-called Newcomb-like problems. Newcomb-like problems include, for instance, decision problems in which an agent interacts with a similar other agent, and thus has to reason about the fact that the other agent will likely reason in similar ways. Evaluating LLM reasoning about Newcomb-like problems is important because interactions between foundation-model-based agents will often be Newcomb-like. Some ways of reasoning about Newcomb-like problems may allow for greater cooperation between models. Our dataset contains both capabilities questions (i.e., questions with a unique, uncontroversially correct answer) and attitude questions (i.e., questions about which decision theorists would disagree). We use our dataset for an investigation of decision-theoretical capabilities and expressed attitudes and their interplay in existing models (different models by OpenAI, Anthropic, Meta, GDM, Reka, etc.), as well as models under simple prompt-based interventions. We find, among other things, that attitudes vary significantly between existing models; that high capabilities are associated with attitudes more favorable toward so-called evidential decision theory; and that attitudes are consistent across different types of questions.

SAM Decoding: Speculative Decoding via Suffix Automaton

Yuxuan Hu,Ke Wang,Xiaokang Zhang,Fanjin Zhang,Cuiping Li,Hong Chen,Jing Zhang https://arxiv.org/abs/2411.10666

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Speculative decoding (SD) has been demonstrated as an effective technique for lossless LLM inference acceleration. Retrieval-based SD methods, one kind of model-free method, have yielded promising speedup, but they often rely on incomplete retrieval resources, inefficient retrieval methods, and are constrained to certain domains. This paper presents a novel retrieval-based speculative decoding method that adapts suffix automaton (SAM) for efficient and accurate draft generation by utilizing common text corpus and dynamic text sequence. Unlike existing \$n\$-gram matching methods, SAM-Decoding finds the exact longest suffix match, achieving an average time complexity of O(1) per generation step of SAM update and suffix retrieval. It can also integrate with existing methods, adaptively selecting a draft generation strategy based on match length to generalize to broader

domains. Extensive experiments on Spec-Bench show that our method is \$18\%+\$ faster than other retrieval-based SD methods. Additionally, when combined with advanced EAGLE-2, it provides an additional speedup of \$3.28\%\$ -- \$11.13\%\$ across various-sized LLM backbones. Our code is available at our \href{this https URL}{repository}.

LL\"aMmlein: Compact and Competitive German-Only Language Models from Scratch

Jan Pfister, Julia Wunderle, Andreas Hotho https://arxiv.org/abs/2411.11171

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

We create two German-only decoder models, LLäMmlein 120M and 1B, transparently from scratch and publish them, along with the training data, for the German NLP research community to use. The model training involved several key steps, including extensive data preprocessing, the creation of a custom German tokenizer, the training itself, as well as the evaluation of the final models on various benchmarks. Throughout the training process, multiple checkpoints were saved and analyzed using the SuperGLEBer benchmark to monitor the models' learning dynamics. Compared to state-of-the-art models on the SuperGLEBer benchmark, both LLäMmlein models performed competitively, consistently matching or surpassing models with similar parameter sizes. The results show that the models' quality scales with size as expected, but performance improvements on some tasks plateaued early, offering valuable insights into resource allocation for future model development.

Rethinking MUSHRA: Addressing Modern Challenges in Text-to-Speech Evaluation

Praveen Srinivasa Varadhan,Amogh Gulati,Ashwin Sankar,Srija Anand,Anirudh Gupta,Anirudh Mukherjee,Shiva Kumar Marepally,Ankur Bhatia,Saloni Jaju,Suvrat Bhooshan,Mitesh M. Khapra https://arxiv.org/abs/2411.12719

Computation and Language (cs.CL); Machine Learning (cs.LG); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Despite rapid advancements in TTS models, a consistent and robust human evaluation framework is still lacking. For example, MOS tests fail to differentiate between similar models, and CMOS's pairwise comparisons are time-intensive. The MUSHRA test is a promising alternative for evaluating multiple TTS systems simultaneously, but in this work we show that its reliance on matching human reference speech unduly penalises the scores of modern TTS systems that can exceed human speech quality. More specifically, we conduct a comprehensive assessment of the MUSHRA test, focusing on its sensitivity to factors such as rater variability, listener fatigue, and reference bias. Based on our extensive evaluation involving 492 human listeners across Hindi and Tamil we identify two primary shortcomings: (i) reference-matching bias, where raters are unduly influenced by the human reference, and (ii) judgement ambiguity, arising from a lack of clear fine-grained guidelines. To address these issues, we propose two refined variants of the MUSHRA test. The first variant enables fairer ratings for synthesized samples that surpass human reference quality. The second variant reduces ambiguity, as

indicated by the relatively lower variance across raters. By combining these approaches, we achieve both more reliable and more fine-grained assessments. We also release MANGO, a massive dataset of 246,000 human ratings, the first-of-its-kind collection for Indian languages, aiding in analyzing human preferences and developing automatic metrics for evaluating TTS systems.

Scaling laws for nonlinear dynamical models of articulatory control

Sam Kirkham https://arxiv.org/abs/2411.12720

Computation and Language (cs.CL)

Dynamical theories of speech use computational models of articulatory control to generate quantitative predictions and advance understanding of speech dynamics. The addition of a nonlinear restoring force to task dynamic models is a significant improvement over linear models, but nonlinearity introduces challenges with parameterization and interpretability. We illustrate these problems through numerical simulations and introduce solutions in the form of scaling laws. We apply the scaling laws to a cubic model and show how they facilitate interpretable simulations of articulatory dynamics, and can be theoretically interpreted as imposing physical and cognitive constraints on models of speech movement dynamics.

Suicide Risk Assessment on Social Media with Semi-Supervised Learning

Max Lovitt, Haotian Ma, Song Wang, Yifan Peng https://arxiv.org/abs/2411.12767

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Social and Information Networks (cs.SI)

With social media communities increasingly becoming places where suicidal individuals post and congregate, natural language processing presents an exciting avenue for the development of automated suicide risk assessment systems. However, past efforts suffer from a lack of labeled data and class imbalances within the available labeled data. To accommodate this task's imperfect data landscape, we propose a semi-supervised framework that leverages labeled (n=500) and unlabeled (n=1,500) data and expands upon the self-training algorithm with a novel pseudo-label acquisition process designed to handle imbalanced datasets. To further ensure pseudo-label quality, we manually verify a subset of the pseudo-labeled data that was not predicted unanimously across multiple trials of pseudo-label generation. We test various models to serve as the backbone for this framework, ultimately deciding that RoBERTa performs the best. Ultimately, by leveraging partially validated pseudo-labeled data in addition to ground-truth labeled data, we substantially improve our model's ability to assess suicide risk from social media posts.

KBAlign: Efficient Self Adaptation on Specific Knowledge Bases

Zheni Zeng, Yuxuan Chen, Shi Yu, Ruobing Wang, Yukun Yan, Zhenghao Liu, Shuo Wang, Xu Han, Zhiyuan Liu, Maosong Sun https://arxiv.org/abs/2411.14790

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Humans can utilize techniques to quickly acquire knowledge from specific materials in advance, such as creating self-assessment questions, enabling us to achieving related tasks more efficiently. In contrast, large language models (LLMs) usually relies on retrieval-augmented generation to exploit knowledge materials in an instant manner, or requires external signals such as human preference data and stronger LLM annotations to conduct knowledge adaptation. To unleash the self-learning potential of LLMs, we propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases. Our method utilizes iterative training with self-annotated data such as Q&A; pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently. Experimental results on multiple datasets demonstrate the effectiveness of our approach, significantly boosting model performance in downstream tasks that require specific knowledge at a low cost. Notably, our approach achieves over 90% of the performance improvement that can be obtained by using GPT-4-turbo annotation, while relying entirely on self-supervision. We release our experimental data, models, and process analyses to the community for further exploration (this https URL).

A Survey on LLM-as-a-Judge

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, Jian Guo https://arxiv.org/abs/2411.15594

Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.

Enhancing Character-Level Understanding in LLMs through Token Internal Structure Learning

Zhu Xu,Zhiqiang Zhao,Zihan Zhang,Yuchi Liu,Quanwei Shen,Fei Liu,Yu Kuang,Jian He,Conglin Liu https://arxiv.org/abs/2411.17679

Computation and Language (cs.CL)

Tokenization methods like Byte-Pair Encoding (BPE) enhance computational efficiency in large language models (LLMs) but often obscure internal character structures within tokens. This limitation hinders LLMs' ability to predict precise character positions, which is crucial in tasks like Chinese Spelling Correction (CSC) where identifying the positions of misspelled characters accelerates correction processes. We propose Token Internal Position Awareness (TIPA), a method that significantly improves models' ability to capture character positions within tokens by training them on reverse character prediction tasks using the tokenizer's vocabulary. Experiments demonstrate that TIPA enhances position prediction accuracy in LLMs, enabling more precise identification of target characters in original text. Furthermore, when applied to downstream tasks that do not require exact position prediction, TIPA still boosts performance in tasks needing character-level information, validating its versatility and effectiveness.

Curriculum Demonstration Selection for In-Context Learning

Duc Anh Vu,Nguyen Tran Cong Duy,Xiaobao Wu,Hoang Minh Nhat,Du Mingzhe,Nguyen Thanh Thong,Anh Tuan Luu https://arxiv.org/abs/2411.18126

Computation and Language (cs.CL)

Large Language Models (LLMs) have shown strong in-context learning (ICL) abilities with a few demonstrations. However, one critical challenge is how to select demonstrations to elicit the full potential of LLMs. In this paper, we propose Curriculum Demonstration Selection (CDS), a novel demonstration selection method for ICL. Instead of merely using similarity, CDS additionally partitions samples by their complexity measurements. Following curriculum learning, CDS then selects demonstrations from easy to difficult. Thus the selected demonstrations cover a wide range of difficulty levels, enabling LLMs to learn from varied complexities within the training set. Experiments demonstrate that our CDS consistently outperforms baseline methods, achieving notable improvements across nine LLMs on three benchmarks. Moreover, CDS proves especially effective in enhancing LLM performance in solving challenging problems.

Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning

Di Zhang,Junxian Li,Jingdi Lei,Xunzhi Wang,Yujie Liu,Zonglin Yang,Jiatong Li,Weida Wang,Suorong Yang,Jianbo Wu,Peng Ye,Wanli Ouyang,Dongzhan Zhou https://arxiv.org/abs/2411.18203

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.

Retrofitting Large Language Models with Dynamic Tokenization

Darius Feher, Ivan Vuli■, Benjamin Minixhofer https://arxiv.org/abs/2411.18553

Computation and Language (cs.CL)

Current language models (LMs) use a fixed, static subword tokenizer. This default choice typically results in degraded efficiency and language capabilities, especially in languages other than English. To address this issue, we challenge the static design and propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text via a subword-merging algorithm inspired by byte-pair encoding. We merge frequent subword sequences in a batch, then apply a pre-trained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. For encoder-style models (e.g., XLM-R), this on average reduces token sequence lengths by >20% across 14 languages while degrading performance by less than 2%. The same method applied to pre-filling and scoring in decoder-style models (e.g., Mistral-7B; evaluated on English) results in minimal performance degradation at up to 6% reduction in sequence length. Overall, we find that dynamic tokenization can mitigate the limitations of static tokenization by substantially improving inference speed and promoting fairness across languages, enabling more equitable and adaptable LMs.

M\$^{3}\$D: A Multimodal, Multilingual and Multitask Dataset for Grounded Document-level Information Extraction

Jiang Liu, Bobo Li, Xinran Yang, Na Yang, Hao Fei, Mingyao Zhang, Fei Li, Donghong Ji https://arxiv.org/abs/2412.04026

Computation and Language (cs.CL)

Multimodal information extraction (IE) tasks have attracted increasing attention because many studies have shown that multimodal information benefits text information extraction. However, existing multimodal IE datasets mainly focus on sentence-level image-facilitated IE in English text, and pay little attention to video-based multimodal IE and fine-grained visual grounding. Therefore, in order to promote the development of multimodal IE, we constructed a multimodal multilingual multitask dataset, named M\$^{3}\$D, which has the following features: (1) It contains paired document-level text and video to enrich multimodal information; (2) It supports two widely-used languages, namely English and Chinese; (3) It includes more multimodal IE tasks such as entity recognition, entity chain extraction, relation extraction and visual grounding. In addition, our dataset introduces an unexplored theme, i.e., biography, enriching the domains of multimodal IE resources. To establish a benchmark for our dataset, we propose an innovative hierarchical multimodal IE model. This model effectively leverages and integrates multimodal information through a Denoised Feature Fusion Module (DFFM). Furthermore, in non-ideal scenarios, modal information is often incomplete. Thus, we designed a Missing Modality Construction Module (MMCM) to alleviate the issues caused by missing modalities. Our model achieved an average performance of 53.80% and 53.77% on four tasks in English and Chinese datasets, respectively, which set a reasonable standard for subsequent research. In addition, we conducted more analytical experiments to verify the effectiveness of our proposed module. We believe that our work can promote the development of the field of multimodal IE.

Large Language Models in Politics and Democracy: A Comprehensive Survey

Goshi Aoki https://arxiv.org/abs/2412.04498

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY)

The advancement of generative AI, particularly large language models (LLMs), has a significant impact on politics and democracy, offering potential across various domains, including policymaking, political communication, analysis, and governance. This paper surveys the recent and potential applications of LLMs in politics, examining both their promises and the associated challenges. This paper examines the ways in which LLMs are being employed in legislative processes, political communication, and political analysis. Moreover, we investigate the potential of LLMs in diplomatic and national security contexts, economic and social modeling, and legal applications. While LLMs offer opportunities to enhance efficiency, inclusivity, and decision-making in political processes, they also present challenges related to bias, transparency, and accountability. The paper underscores the necessity for responsible development, ethical considerations, and governance frameworks to ensure that the integration of

LLMs into politics aligns with democratic values and promotes a more just and equitable society.

Arctic-Embed 2.0: Multilingual Retrieval Without Compromise

Puxuan Yu,Luke Merrick,Gaurav Nuti,Daniel Campos https://arxiv.org/abs/2412.04506

Computation and Language (cs.CL); Information Retrieval (cs.IR); Machine Learning (cs.LG)

This paper presents the training methodology of Arctic-Embed 2.0, a set of open-source text embedding models built for accurate and efficient multilingual retrieval. While prior works have suffered from degraded English retrieval quality, Arctic-Embed 2.0 delivers competitive retrieval quality on multilingual and English-only benchmarks, and supports Matryoshka Representation Learning (MRL) for efficient embedding storage with significantly lower compressed quality degradation compared to alternatives. We detail the design and implementation, presenting several important open research questions that arose during model development. We conduct experiments exploring these research questions and include extensive discussion aimed at fostering further discussion in this field.

EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation

Yongxin Wang,Meng Cao,Haokun Lin,Mingfei Han,Liang Ma,Jin Jiang,Yuhao Cheng,Xiaodan Liang https://arxiv.org/abs/2412.04903

Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.

DEMO: Reframing Dialogue Interaction with Fine-grained Element Modeling

Minzheng Wang,Xinghua Zhang,Kun Chen,Nan Xu,Haiyang Yu,Fei Huang,Wenji Mao,Yongbin Li https://arxiv.org/abs/2412.04905

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Large language models (LLMs) have made dialogue one of the central modes in human-machine interaction, leading to the vast amounts of conversation logs and increasing demand for dialogue generation. The dialogue's life-cycle spans from the \$\textit{Prelude}\$ through the \$\textit{Interlocution}\$ to the \$\textit{Epilogue}\$, encompassing rich dialogue elements. Despite the large volumes of dialogue-related studies, there is a lack of benchmark that encompasses comprehensive dialogue elements, which hinders precise modeling, generation and systematic evaluation. To bridge this gap, in this paper, we introduce a new research task \$\textbf{D}\\$ialogue \$\textbf{E}\\$lement \$\textbf{MO}\\$deling, including \$\textit{Element Awareness}\$ and \$\textit{Dialogue Agent Interaction}\$, and propose a novel benchmark, \$\textbf{DEMO}\$, designed for a comprehensive dialogue modeling and assessment. On this basis, we further build the DEMO agent with the adept ability to model dialogue elements via imitation learning. Extensive experiments on DEMO indicate that current representative LLMs still have considerable potential for enhancement, and our DEMO agent performs well in both dialogue element modeling and out-of-domain tasks.

C\$^2\$LEVA: Toward Comprehensive and Contamination-Free Language Model Evaluation

Yanyang Li, Tin Long Wong, Cheung To Hung, Jianqiao Zhao, Duo Zheng, Ka Wai Liu, Michael R. Lyu, Liwei Wang https://arxiv.org/abs/2412.04947

Computation and Language (cs.CL)

Recent advances in large language models (LLMs) have shown significant promise, yet their evaluation raises concerns, particularly regarding data contamination due to the lack of access to proprietary training data. To address this issue, we present C\$^2\$LEVA, a comprehensive bilingual benchmark featuring systematic contamination prevention. C\$^2\$LEVA firstly offers a holistic evaluation encompassing 22 tasks, each targeting a specific application or ability of LLMs, and secondly a trustworthy assessment due to our contamination-free tasks, ensured by a systematic contamination prevention strategy that fully automates test data renewal and enforces data protection during benchmark data release. Our large-scale evaluation of 15 open-source and proprietary models demonstrates the effectiveness of C\$^2\$LEVA.

Specifications: The missing link to making the development of LLM systems an engineering discipline

Ion Stoica, Matei Zaharia, Joseph Gonzalez, Ken Goldberg, Koushik Sen, Hao Zhang, Anastasios Angelopoulos, Shishir G. Patil, Lingjiao Chen, Wei-Lin Chiang, Jared Q. Davis https://arxiv.org/abs/2412.05299

Software Engineering (cs.SE); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Despite the significant strides made by generative AI in just a few short years, its future progress is constrained by the challenge of building modular and robust systems. This capability has been a cornerstone of past technological revolutions, which relied on combining components to create increasingly sophisticated and reliable systems. Cars, airplanes, computers, and software consist of components-such as engines, wheels, CPUs, and libraries-that can be assembled, debugged, and replaced. A key tool for building such reliable and modular systems is specification: the precise description of the expected behavior, inputs, and outputs of each component. However, the generality of LLMs and the inherent ambiguity of natural language make defining specifications for LLM-based components (e.g., agents) both a challenging and urgent problem. In this paper, we discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute-and outline several future directions for research to enable the development of modular and reliable LLM-based systems through improved specifications.

Mixture of Hidden-Dimensions Transformer

Yilong Chen, Junyuan Shang, Zhengyu Zhang, Jiawei Sheng, Tingwen Liu, Shuohuan Wang, Yu Sun, Hua Wu, Haifeng Wang https://arxiv.org/abs/2412.05644

Computation and Language (cs.CL)

Transformer models encounter challenges in scaling hidden dimensions efficiently, as uniformly increasing them inflates computational and memory costs while failing to emphasize the most relevant features for each token. For further understanding, we study hidden dimension sparsity and observe that trained Transformers utilize only a small fraction of token dimensions, revealing an "activation flow" pattern. Notably, there are shared sub-dimensions with sustained activation across multiple consecutive tokens and specialized sub-dimensions uniquely activated for each token. To better model token-relevant sub-dimensions, we propose MoHD (Mixture of Hidden Dimensions), a sparse conditional activation architecture. Particularly, MoHD employs shared sub-dimensions for common token features and a routing mechanism to dynamically activate specialized sub-dimensions. To mitigate potential information loss from sparsity, we design activation scaling and group fusion mechanisms to preserve activation flow. In this way, MoHD expands hidden dimensions with negligible increases in computation or parameters, efficient training and inference while maintaining performance. Evaluations across 10 NLP tasks show that MoHD surpasses Vanilla Transformers in parameter efficiency and task performance. It achieves 1.7% higher performance with 50% fewer activation parameters and 3.7% higher performance with a 3x parameter expansion at constant activation cost. MOHD offers a new perspective for scaling the model, showcasing the potential of hidden dimension sparsity to boost efficiency

VP-MEL: Visual Prompts Guided Multimodal Entity Linking

Hongze Mi, Jinyuan Li, Xuying Zhang, Haoran Cheng, Jiahao Wang, Di Sun, Gang Pan https://arxiv.org/abs/2412.06720

Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

Multimodal entity linking (MEL), a task aimed at linking mentions within multimodal contexts to their corresponding entities in a knowledge base (KB), has attracted much attention due to its wide applications in recent years. However, existing MEL methods often rely heavily on mention words as retrieval cues, which limits their ability to effectively utilize information from both images and text. This reliance poses significant challenges in scenarios where mention words are absent, as current MEL approaches struggle to leverage image-text pairs for accurate entity linking. To solve these issues, we introduce a Visual Prompts guided Multimodal Entity Linking (VP-MEL) task. Given a text-image pair, VP-MEL aims to link a marked region (i.e., visual prompt) in an image to its corresponding entities in the knowledge base. To facilitate this task, we present a new dataset, VPWiki, specifically designed for VP-MEL. Furthermore, we propose a framework named FBMEL, which enhances visual feature extraction using visual prompts and leverages the pretrained Detective-VLM model to capture latent information. Experimental results on the VPWiki dataset demonstrate that FBMEL outperforms baseline methods across multiple benchmarks for the VP-MEL task.

When Every Token Counts: Optimal Segmentation for Low-Resource Language Models

Bharath Raj S,Garvit Suri,Vikrant Dewangan,Raghav Sonavane https://arxiv.org/abs/2412.06926

Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Traditional greedy tokenization methods have been a critical step in Natural Language Processing (NLP), influencing how text is converted into tokens and directly impacting model performance. While subword tokenizers like Byte-Pair Encoding (BPE) are widely used, questions remain about their optimality across model scales and languages. In this work, we demonstrate through extensive experiments that an optimal BPE configuration significantly reduces token count compared to greedy segmentation, yielding improvements in token-saving percentages and performance benefits, particularly for smaller models. We evaluate tokenization performance across various intrinsic and extrinsic tasks, including generation and classification. Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications, highlighting a promising direction for further research and inclusive NLP.

TRIM: Token Reduction and Inference Modeling for Cost-Effective Language Generation

Alfredo Garrachón Ruiz, Tomás de la Rosa, Daniel Borrajo https://arxiv.org/abs/2412.07682

Computation and Language (cs.CL)

The inference cost of Large Language Models (LLMs) is a significant challenge due to their computational demands, specially on tasks requiring long outputs. However, natural language often contains redundancy, which presents an opportunity for optimization. We have observed that LLMs can generate distilled language-concise outputs that retain essential meaning, when prompted appropriately. We propose TRIM, a pipeline for saving computational cost in which a shorter distilled output from the LLM is reconstructed into a full narrative by a smaller model with lower inference costs. Our experiments show promising results, particularly in general knowledge domains with 20.58% saved tokens on average with tiny decrease in evaluation metrics, hinting that this approach can effectively balance efficiency and accuracy in language processing tasks.

M2SE: A Multistage Multitask Instruction Tuning Strategy for Unified Sentiment and Emotion Analysis

Ao Li,Longwei Xu,Chen Ling,Jinghui Zhang,Pengwei Wang https://arxiv.org/abs/2412.08049

Computation and Language (cs.CL)

Sentiment analysis and emotion recognition are crucial for applications such as human-computer interaction and depression detection. Traditional unimodal methods often fail to capture the complexity of emotional expressions due to conflicting signals from different modalities. Current Multimodal Large Language Models (MLLMs) also face challenges in detecting subtle facial expressions and addressing a wide range of emotion-related tasks. To tackle these issues, we propose M2SE, a Multistage Multitask Sentiment and Emotion Instruction Tuning Strategy for general-purpose MLLMs. It employs a combined approach to train models on tasks such as multimodal sentiment analysis, emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction. We also introduce the Emotion Multitask dataset (EMT), a custom dataset that supports these five tasks. Our model, Emotion Universe (EmoVerse), is built on a basic MLLM framework without modifications, yet it achieves substantial improvements across these tasks when trained with the M2SE strategy. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in sentiment and emotion tasks. These results highlight the effectiveness of M2SE in enhancing multimodal emotion perception. The dataset and code are available atthis https URL.

Exploiting the Index Gradients for Optimization-Based Jailbreaking on Large Language Models

Jiahui Li, Yongchang Hao, Haoyu Xu, Xing Wang, Yu Hong

https://arxiv.org/abs/2412.08615

Computation and Language (cs.CL)

Despite the advancements in training Large Language Models (LLMs) with alignment techniques to enhance the safety of generated content, these models remain susceptible to jailbreak, an adversarial attack method that exposes security vulnerabilities in LLMs. Notably, the Greedy Coordinate Gradient (GCG) method has demonstrated the ability to automatically generate adversarial suffixes that jailbreak state-of-the-art LLMs. However, the optimization process involved in GCG is highly time-consuming, rendering the jailbreaking pipeline inefficient. In this paper, we investigate the process of GCG and identify an issue of Indirect Effect, the key bottleneck of the GCG optimization. To this end, we propose the Model Attack Gradient Index GCG (MAGIC), that addresses the Indirect Effect by exploiting the gradient information of the suffix tokens, thereby accelerating the procedure by having less computation and fewer iterations. Our experiments on AdvBench show that MAGIC achieves up to a 1.5x speedup, while maintaining Attack Success Rates (ASR) on par or even higher than other baselines. Our MAGIC achieved an ASR of 74% on the Llama-2 and an ASR of 54% when conducting transfer attacks on GPT-3.5. Code is available atthis https URL.

Large Concept Models: Language Modeling in a Sentence Representation Space

LCM team,Loïc Barrault,Paul-Ambroise Duquenne,Maha Elbayad,Artyom Kozhevnikov,Belen Alastruey,Pierre Andrews,Mariano Coria,Guillaume Couairon,Marta R. Costa-jussà,David Dale,Hady Elsahar,Kevin Heffernan,João Maria Janeiro,Tuan Tran,Christophe Ropers,Eduardo Sánchez,Robin San Roman,Alexandre Mourachko,Safiyyah Saleem,Holger Schwenk https://arxiv.org/abs/2412.08821

Computation and Language (cs.CL)

LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single words, to analyze information and to generate creative content. In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept. Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow. Hence, we build a "Large Concept Model". In this study, as proof of feasibility, we assume that a concept corresponds to a sentence, and use an existing sentence embedding space, SONAR, which supports up to 200 languages in both text and speech modalities. The Large Concept Model is trained to perform autoregressive sentence prediction in an embedding space. We explore multiple approaches, namely MSE regression, variants of diffusion-based generation, and models operating in a quantized SONAR space. These explorations are performed using 1.6B parameter models and training data in the order of 1.3T tokens. We then scale one architecture to a model size of 7B parameters and training data of about 2.7T tokens. We perform an experimental evaluation on several generative tasks, namely summarization and a new task of summary expansion. Finally, we show that our model exhibits impressive zero-shot generalization performance to many languages, outperforming existing LLMs of the same size. The training code of our models is freely available.

Improvement in Sign Language Translation Using Text CTC Alignment

Sihan Tan, Taro Miyazaki, Nabeela Khan, Kazuhiro Nakadai https://arxiv.org/abs/2412.09014

Computation and Language (cs.CL)

Current sign language translation (SLT) approaches often rely on gloss-based supervision with Connectionist Temporal Classification (CTC), limiting their ability to handle non-monotonic alignments between sign language video and spoken text. In this work, we propose a novel method combining joint CTC/Attention and transfer learning. The joint CTC/Attention introduces hierarchical encoding and integrates CTC with the attention mechanism during decoding, effectively managing both monotonic and non-monotonic alignments. Meanwhile, transfer learning helps bridge the modality gap between vision and language in SLT. Experimental results on two widely adopted benchmarks, RWTH-PHOENIX-Weather 2014 T and CSL-Daily, show that our method achieves results comparable to state-of-the-art and outperforms the pure-attention baseline. Additionally, this work opens a new door for future research into gloss-free SLT using text-based CTC alignment.

Evaluation Agent: Efficient and Promptable Evaluation Framework for Visual Generative Models

Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, Ziwei Liu https://arxiv.org/abs/2412.09645

Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Recent advancements in visual generative models have enabled high-quality image and video generation, opening diverse applications. However, evaluating these models often demands sampling hundreds or thousands of images or videos, making the process computationally expensive, especially for diffusion-based models with inherently slow sampling. Moreover, existing evaluation methods rely on rigid pipelines that overlook specific user needs and provide numerical results without clear explanations. In contrast, humans can quickly form impressions of a model's capabilities by observing only a few samples. To mimic this, we propose the Evaluation Agent framework, which employs human-like strategies for efficient, dynamic, multi-round evaluations using only a few samples per round, while offering detailed, user-tailored analyses. It offers four key advantages: 1) efficiency, 2) promptable evaluation tailored to diverse user needs, 3) explainability beyond single numerical scores, and 4) scalability across various models and tools. Experiments show that Evaluation Agent reduces evaluation time to 10% of traditional methods while delivering comparable results. The Evaluation Agent framework is fully open-sourced to advance research in visual generative models and their efficient evaluation.

ASLoRA: Adaptive Sharing Low-Rank Adaptation Across Layers

Junyan Hu,Xue Xiao,Mengqi Zhang,Yao Chen,Zhaochun Ren,Zhumin Chen,Pengjie Ren https://arxiv.org/abs/2412.10135

Computation and Language (cs.CL)

As large language models (LLMs) grow in size, traditional full fine-tuning becomes increasingly impractical due to its high computational and storage costs. Although popular parameter-efficient fine-tuning methods, such as LoRA, have significantly reduced the number of tunable parameters, there is still room for further optimization. In this work, we propose ASLoRA, a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing. Specifically, we share the low-rank matrix A across all layers and adaptively merge matrix B during training. This sharing mechanism not only mitigates overfitting effectively but also captures inter-layer dependencies, significantly enhancing the model's representational capability. We conduct extensive experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters, highlighting its flexibility and superior parameter efficiency. Furthermore, in-depth analyses of the adaptive sharing strategy confirm its significant advantages in enhancing both model flexibility and task adaptability.

Targeted Angular Reversal of Weights (TARS) for Knowledge Removal in Large Language Models

Harry J. Davies, Giorgos Iacovides, Danilo P. Mandic https://arxiv.org/abs/2412.10257

Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

The sheer scale of data required to train modern large language models (LLMs) poses significant risks, as models are likely to gain knowledge of sensitive topics such as bio-security, as well the ability to replicate copyrighted works. Methods designed to remove such knowledge must do so from all prompt directions, in a multi-lingual capacity and without degrading general model performance. To this end, we introduce the targeted angular reversal (TARS) method of knowledge removal from LLMs. The TARS method firstly leverages the LLM in combination with a detailed prompt to aggregate information about a selected concept in the internal representation space of the LLM. It then refines this approximate concept vector to trigger the concept token with high probability, by perturbing the approximate concept vector with noise and transforming it into token scores with the language model head. The feedforward weight vectors in the LLM which operate directly on the internal representation space, and have the highest cosine similarity with this targeting vector, are then replaced by a reversed targeting vector, thus limiting the ability of the concept to propagate through the model. The modularity of the TARS method allows for a sequential removal of concepts from Llama 3.1 8B, such as the famous literary detective Sherlock Holmes, and the planet Saturn. It is demonstrated that the probability of triggering target concepts can be reduced to 0.00 with as few as 1 TARS edit, whilst simultaneously removing the knowledge bi-directionally. Moreover, knowledge is shown to be removed across all languages despite only being targeted in English. Importantly, TARS has minimal impact on the general model capabilities, as after removing 5 diverse concepts in a modular fashion, there is minimal KL divergence in the next token probabilities of the LLM on large corpora of Wikipedia text (median of 0.0015).

xVal: A Continuous Numerical Tokenization for Scientific Language Models

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud Krawezik, Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, Bruno Régaldo-Saint Blancard, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho https://arxiv.org/abs/2310.02989

Machine Learning (stat.ML); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Due in part to their discontinuous and discrete default encodings for numbers, Large Language Models (LLMs) have not yet been commonly used to process numerically-dense scientific datasets. Rendering datasets as text, however, could help aggregate diverse and multi-modal scientific data into a single training corpus, thereby potentially facilitating the development of foundation models for science. In this work, we introduce xVal, a strategy for continuously tokenizing numbers within language models that results in a more appropriate inductive bias for scientific applications. By training specially-modified language models from scratch on a variety of scientific datasets formatted as text, we find that xVal generally outperforms other common numerical tokenization strategies on metrics including out-of-distribution generalization and computational efficiency.

CoVoMix: Advancing Zero-Shot Speech Generation for Human-like Multi-talker Conversations

Leying Zhang, Yao Qian, Long Zhou, Shujie Liu, Dongmei Wang, Xiaofei Wang, Midia Yousefi, Yanmin Qian, Jinyu Li, Lei He, Sheng Zhao, Michael Zeng https://arxiv.org/abs/2404.06690

Audio and Speech Processing (eess.AS); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG); Sound (cs.SD)

Recent advancements in zero-shot text-to-speech (TTS) modeling have led to significant strides in generating high-fidelity and diverse speech. However, dialogue generation, along with achieving human-like naturalness in speech, continues to be a challenge. In this paper, we introduce CoVoMix: Conversational Voice Mixture Generation, a novel model for zero-shot, human-like, multi-speaker, multi-round dialogue speech generation. CoVoMix first converts dialogue text into multiple streams of discrete tokens, with each token stream representing semantic information for individual talkers. These token streams are then fed into a flow-matching based acoustic model to generate mixed mel-spectrograms. Finally, the speech waveforms are produced using a HiFi-GAN model. Furthermore, we devise a comprehensive set of metrics for measuring the effectiveness of dialogue modeling and generation. Our experimental results show that CoVoMix can generate dialogues that are not only human-like in their naturalness and coherence but also involve multiple talkers engaging in multiple

rounds of conversation. This is exemplified by instances generated in a single channel where one speaker's utterance is seamlessly mixed with another's interjections or laughter, indicating the latter's role as an attentive listener. Audio samples are available atthis https URL.

Coding Speech through Vocal Tract Kinematics

Cheol Jun Cho, Peter Wu, Tejas S. Prabhune, Dhruv Agarwal, Gopala K. Anumanchipalli https://arxiv.org/abs/2406.12998

Audio and Speech Processing (eess.AS); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Sound (cs.SD)

Vocal tract articulation is a natural, grounded control space of speech production. The spatiotemporal coordination of articulators combined with the vocal source shapes intelligible speech sounds to enable effective spoken communication. Based on this physiological grounding of speech, we propose a new framework of neural encoding-decoding of speech -- Speech Articulatory Coding (SPARC). SPARC comprises an articulatory analysis model that infers articulatory features from speech audio, and an articulatory synthesis model that synthesizes speech audio from articulatory features. The articulatory features are kinematic traces of vocal tract articulators and source features, which are intuitively interpretable and controllable, being the actual physical interface of speech production. An additional speaker identity encoder is jointly trained with the articulatory synthesizer to inform the voice texture of individual speakers. By training on large-scale speech data, we achieve a fully intelligible, high-quality articulatory synthesizer that generalizes to unseen speakers. Furthermore, the speaker embedding is effectively disentangled from articulations, which enables accent-perserving zero-shot voice conversion. To the best of our knowledge, this is the first demonstration of universal, high-performance articulatory inference and synthesis, suggesting the proposed framework as a powerful coding system of speech.