ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Ползу	честь	мате	риалов
• /			

Цель работы:

- 1) Проверить линейность ползучести материала.
- 2) Проверить принцип суперпозиции Больцмана для линейно ползучих материалов.

Теоретические сведения:

Способность материала деформироваться под действием постоянных напряжений называется *ползучестью*.

Результаты испытаний при одноосном растяжении представляются в виде *кривых ползучести* – кривых зависимости деформации от времени.

С увеличением времени наблюдается возрастание деформации при постоянном уровне напряжений. Полная деформация образца в момент времени t' определяется суммой упругой деформации $\varepsilon^{y}(t_0)$ и деформацией ползучести $\varepsilon^{n}(t')$:

$$\varepsilon(t') = \varepsilon^{\mathbf{y}}(t_0) + \varepsilon^{\mathbf{n}}(t') = \frac{\sigma}{E} + \Pi(\sigma, t_0, t'),$$

где Π – функция ползучести, E – модуль Юнга.

Если увеличение деформаций ползучести пропорционально увеличению напряжений, то говорят о *линейной ползучести*, в противном случае – о *нелинейной ползучести*.

При линейной ползучести кривые, полученные при разных уровнях напряжений, оказываются подобными. Это означает, что деформация ползучести может быть найдена как произведение двух функций: одна из которых зависит только от напряжения, вторая – только от времени.

$$\varepsilon(t) = \frac{\sigma}{E} + \Pi(t, t_0)\sigma.$$

В некоторых материалах наблюдаются изменения механических свойств во времени при неизменных условиях. Это явление получило условное название *«старение»*. Деформация ползучести при *«старении»* зависит не только от уровня и продолжительности действия нагрузки, но и от момента её приложения (возраста материала).

Ползучесть нестареющих материалов зависит только от уровня напряжения и продолжительности его действия, и не зависит от момента приложения нагрузки.

У нестареющих материалов функция ползучести П будет разностного типа:

$$\varepsilon(t) = \frac{\sigma}{E} + \Pi(t - t_0)\sigma.$$

В силу линейности задачи (если рассматривать только линейную ползучесть) для получения зависимости между переменными напряжениями и и деформациями важное значение имеет *принцип суперпозиции Больцмана*. Согласно ему суммарная деформация ползучести при переменном напряжении может быть найдена как сумма деформаций ползучести, вызванных соответствующими приращениями напряжений. Величина деформации ползучести $\Delta \varepsilon^n$ зависит от величины приращения напряжений $\Delta \sigma$ и продолжительности его действия, но не зависит то величины и длительности действия других приращений.

$$\varepsilon(t_4) = \frac{\sigma(t_4)}{F_c} + \Pi(t_4 - t_0)\Delta\sigma_1 + \Pi(t_4 - t_1)\Delta\sigma_2 + \Pi(t_4 - t_2)\Delta\sigma_3 + \Pi(t_4 - t_3)\Delta\sigma_4.$$

Если изменение напряжения протекает по непрерывной кривой, то суммирование заменяется интегрированием

$$\varepsilon(t) = \frac{\sigma(t)}{E} + \int_{0}^{t} \Pi(t - \tau) d\sigma(\tau),$$

где t – момент наблюдения, au – текущее время.

Рис. 1: Пример ступенчатого и непрерывного нагружения

Преобразуем подынтегральное выражение, для этого вычислим интеграл по частям:

$$\varepsilon(t) = \frac{\sigma(t)}{E} + \Pi(t - \tau)\sigma(\tau) \Big|_0^t - \int_0^t \frac{\partial}{\partial t} \Pi(t - \tau)\sigma(\tau) d\tau,$$

при $\tau = 0, \, \sigma(0) = 0;$ при $\tau = t, \, \Pi(t - \tau) = 0,$ отсюда получаем

$$\varepsilon(t) = \frac{\sigma(t)}{E} + \int_{0}^{t} k(t - \tau)\sigma(\tau)d\tau,$$

где $k(t-\tau)=-\partial\Pi(t-\tau)/\partial t$ – ядро ползучести или функция влияния.

В простейшем случае, функцию ползучести можно представить выражением

$$\Pi(t-\tau) = A - A \exp\{-\alpha(t-\tau)\}.$$

В данной работе будем использовать немного другое выражение для функции ползучести, а именно

$$\Pi(t-\tau) = A - B \exp\{-\alpha(t-\tau) - C \exp\{-\beta(t-\tau)\},\$$

причём стоит заметить, что A = B + C, так как $\Pi(0) = 0$.

Обработка данных: Параметры установки: b = 19.6 мм, d = 5.6 мм, $S = b \cdot d$; $l_0 = 50$ мм. Будем снимать зависимость удлинениния от времени в течение 20-ти минут. После первых 10-ти минут увеличим силу примерно в два раза. Результаты измерений представлены в таблице ниже. По данным из таблицы построим графики зависимости деформации и напряжения от времени.

Таблица 1: Данные измерений удлинения от времени

$F_1 = 30.5 \text{ H}$		$F_2 = 60.8$			
t, мин	Δl , mm	ε^{Π}	t, мин	Δl , mm	ε^{Π}
0	0.2615	0	10	0,7280	0,004136
0,5	0,2845	0,00046	11	0,8231	0,006038
1	0,2938	0,000646	12	0,8714	0,007004
2	0,3031	0,000832	13	0,9029	0,007634
3	0,3123	0,001016	14	0,9278	0,008132
5	0,3214	0,001198	15	0,9465	0,008506
9	0,3336	0,001442	19	1,0080	0,009736
10	0,3367	0,001504	20	1,0142	0,009860

