

X3-Class HiPerFET™ **Power MOSFET**

IXFP72N20X3M

200V **72A** $20m\Omega$

(Electrically Isolated Tab)

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	200	V	
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C , $R_{_{\rm GS}} = 1\text{M}\Omega$	200	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_c = 25$ °C, Limited by T_{JM}	72	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	130	Α	
I _A	$T_c = 25^{\circ}C$	36	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	1.2	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns	
P _D	$T_{c} = 25^{\circ}C$	36	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
V _{ISOL}	50/60 Hz, 1 Minute	2500	V~	
M _d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight		2.5	g	

OVERMOLDED TO-220	
$G_{D_{S}}$	Isolated Tab

G = Gate D = DrainS = Source

Features

- International Standard Package
- Plastic Overmolded Tab
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- 2500V~ Electrical Isolation
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsCharacter(T ₁ = 25°C, Unless Otherwise Specified)Min.		teristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	200		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 1.5$ mA	2.5		4.5 V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 μA 250 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 36A, Note 1$		15.7	20.0 mΩ

Symbol Test Conditions Cha		Char	racteristic Values		
$(T_{_{\rm J}} = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified})$ M		Min.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	30	48	S	
R_{gi}	Gate Input Resistance		2	Ω	
C _{iss}			3780	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		660	pF	
C _{rss}			1.7	pF	
	Effective Output Capacitance				
$\mathbf{C}_{o(er)}$	Energy related $\int V_{GS} = 0V$		340	pF	
$C_{o(tr)}$	Time related $\int_{DS} V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1030	pF	
t _{d(on)}	Resistive Switching Times		23	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		28	ns	
t _{d(off)}			78	ns	
t,	$R_{\rm G} = 10\Omega \text{ (External)}$		11	ns	
Q _{g(on)}			55	nC	
Q _{qs}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		19	nC	
Q _{gd}			15	nC	
R _{thJC}				3.5 °C/W	
R _{thCS}			0.50	°C/W	

MYZ	INCHES		MILLIN	/ETERS
2114	MIN	MAX	MIN	MAX
Α	.177	.193	4.50	4.90
A1	.092	.108	2.34	2.74
A2	.101	.117	2.56	2.96
b	.028	.035	0.70	0.90
b1	.050	.058	1.27	1.47
С	.018	.024	0.45	0.60
D	.617	.633	15.67	16.07
E	.392	.408	9.96	10.36
е	.100 BSC		2.54	BSC
Н	.255	.271	6.48	6.88
L	.499	.523	12.68	13.28
L1	.119	.135	3.03	3.43
ØΡ	.121	.129	3.08	3.28
Q	.126	.134	3,20	3.40

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_{J} = 25^{\circ}C, l)$	Jnless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			72	Α
sm	Repetitive, Pulse Width Limited by T_{JM}			288	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 36A$, -di/dt = 100A/ μ s $V_R = 100V$		95 380 8		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Pulse Width - Seconds

© 2019 IXYS CORPORATION, All Rights Reserved

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.