

Static Timing Analysis (STA)

Lecture #10: Derivation of Setup & Hold Timing Equations,

Maximum Operating Frequency

Video Lecture Link

Something about Clock with respect to Timing Path – They (Timing Paths) are relative/synchronous to a clock

Note:

- Data arrives at a start point relative to a clock
- Data gets captured at a end point relative to a clock
- Starting a new cycle, the clock signal resets the time at the register
- STA tool breaks all the timing paths at registers, so that each timing path has *one clock cycle* or *one clock period* as the timing goal (**Required Time**)

Slack:

Slack = Required Time – Arrival Time (*For Setup*)

Slack = Arrival Time – Required Time (*For Hold*)

Required Time: Defined by the timing constraints like Clock Period

Arrival Time: When the signal actually arrives at a end point

Note:

Positive Slack indicates that path Met timing constraint requirement, Negative Slack indicates that path did not Met timing requirements.

Setup Requirement for Register-to-Register Path:

Clk_to_Q [REG1] + Comb Delay <= Clock Period - T_{setup}[REG2]

Here, Required Time = Clock Period – $T_{\text{setup}}[REG2]$

Arrival Time = Clk_to_Q [REG1] + Comb Delay

Hence, Setup Slack = Required Time – Arrival Time

Hold Requirement for Register-to-Register Path:

 $Clk_to_Q [REG1] + Comb Delay >= Hold_Check[0] + T_{hold} [REG2]$

Here, Required Time = Hold_Check[0] + T_{hold} [REG2]
Arrival Time = Clk_to_Q [REG1] + Comb Delay

Hence, Hold Slack = Arrival Time – Required Time

Note: Default Hold Check is at 0

Input-to-Register Path:

Setup Requirement for Input-to-Register Path:

Required Time = Clock Period – T_{setup} [REG2]

Arrival Time = {Clk_to_Q[REG1] + Comb Logic 1 Delay} + Comb Logic 2 Delay

Arrival Time = Input Delay + Comb Logic 2 Delay

Setup Slack = Required Time – Arrival Time

Hold Requirement for Input-to-Register Path:

Required Time = Hold_Check $[0] + T_{hold}$ [REG2]

Arrival Time = {Clk_to_Q[REG1] + Comb Logic 1 Delay} + Comb Logic 2 Delay

Arrival Time = Input Delay + Comb Logic 2 Delay

Hold Slack = Arrival Time – Required Time

Setup Requirement for Register-to-Output Path:

Setup Requirement for Register-to-Output Path:

Required Time = Clock Period – T_{setup} [REG2]

Arrival Time = Clk_to_Q [REG1] + Comb Logic 1 Delay + Comb Logic 2 Delay

Arrival Time = Clk_to_Q [REG1] + Comb Logic 1 Delay + **Output Delay**

Setup Slack = Required Time – Arrival Time

Hold Requirement for Register-to-Output Path:

Required Time = Hold_Check[0] + T_{hold} [REG2]

Arrival Time = Clk_to_Q [REG1] + Comb Logic 1 Delay + Comb Logic 2 Delay

Arrival Time = Clk_to_Q [REG1] + Comb Logic 1 Delay + **Output Delay**

Setup Slack = Arrival Time – Required Time

Input – to – Output Path Timing Requirements:

There is no clock defined for combinational paths. So, we need to use either a virtual clock or set path delays to Constrain input to output paths

Using Virtual Clock or Dummy Clock –

Slack = Clock Period – Input Delay – Output Delay – Comb Logic Delay

Note: Input Delay and Output Delay are set with respect to a Clock

Static Timing Analysis (STA) – Setup & Hold (Summary)

- 1) For setup constraints, the data has to be propagate fast enough to be captured by the next clock edge.
 - This sets our maximum frequency
 - If we have setup failures, we can always just slow down the clock
- 2) For Hold constraints the data path delay has to be long enough so it is not accidently captured by the same clock edge
 - This is independent of the clock period
 - If there is hold failure, you can throw your chip away!!!

Static Timing Analysis (STA) – Maximum Operating Frequency

Maximum Operating Frequency:

 $Clk_to_Q [REG1] + Comb Delay <= Clock Period - T_{setup}[REG2]$ {Setup Equation}

Clock Period (T) \geq Clk_to_Q[REG1] + Comb Delay + T_{setup}(REG2)

So, Minimum Clock Period (T) = $Clk_{to}Q[REG1] + Comb Delay + T_{setup}(REG2)$

Hence, Maximum Clock Frequency = 1/T

Best Free VLSI Content

- 1. Verilog HDL Crash Course Link
- 2. Static Timing Analysis (STA) Theory Concepts Link
- 3. Static Timing Analysis (STA) Practice/Interview Questions <u>Link</u>
- 4. Low Power VLSI Design Theory Concepts <u>Link</u>
- 5. Low Power VLSI Design (LPVLSI) Practice/Interview Questions Link
- 6. Digital ASIC Design Verilog Projects Link

Please Like, Comment, Share & Subscribe My Channel in Order to Reach Out the Content to a Larger Audience.

Thanks !!