Step-1

We know that the determinant is defined only for a square matrix.

So, from the given details, we follow that Ax = b is a non homogeneous system of three linear equations in three variables seen as

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \mathbf{b}$$
where \mathbf{a}_i is the i th column of the coefficient matrix A .

This can otherwise be written as

This equation can simply be written as $\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$

Step-2

Let us consider $|\mathbf{b} \ \mathbf{a}_2 \ \mathbf{a}_3| = |\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 \ \mathbf{a}_2 \ \mathbf{a}_3|$

= $|\mathbf{a}_1 x_1 \ \mathbf{a}_2 \ \mathbf{a}_3| + |\mathbf{a}_2 x_2 \ \mathbf{a}_2 \ \mathbf{a}_3| + |\mathbf{a}_3 x_3 \ \mathbf{a}_2 \ \mathbf{a}_3|$ By the properties of determinants.

 $= x_1 |\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3| + x_2 |\mathbf{a}_2 \ \mathbf{a}_3| + x_3 |\mathbf{a}_3 \ \mathbf{a}_2 \ \mathbf{a}_3|$

 $= x_1 |A| + x_2 (0) + x_3 (0)$

Consequently, $x_1 = \frac{|\mathbf{b} \ \mathbf{a}_2 \ \mathbf{a}_3|}{|\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3|} = \frac{B_1}{|A|}$

Step-3

(b) Proceeding as above by using $\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$ in the middle place of $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$, we get $x_2 = \frac{\begin{vmatrix} \mathbf{a}_1 & \mathbf{b} & \mathbf{a}_3 \end{vmatrix}}{\begin{vmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{vmatrix}} = \frac{B_2}{|A|}$.

Similarly, $x_3 = \frac{|\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{b}|}{|\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3|} = \frac{B_3}{|A|}$