Thème 2

Logique (1)

Mathématiques pour l'informatique

I) Proposition

Définition

Une **proposition** est une affirmation à laquelle on peut associer une unique valeur de vérité parmi les deux valeurs possibles : Vrai (V ou 1) ou Faux (F ou 0). (Il n'y a pas d'autres possibilités.)

Exemples de propositions

P₁: « Chartres est la préfecture d'Eure et Loir. »

 P_2 : « $10110_2 = 22_{10}$ »

 $P_3 : \ll 5 < 4 \gg$

Remarques

Certaines affirmations ne sont pas des propositions. on peut citer par exemple « 4+5 » ou encore « x=2 ». En algorithmique, on utilise souvent les propositions, elles sont appelées « conditions » (lors des structures de test, les boucles, ...)

En mathématiques, certaines propositions sont données « vraies » a priori, car elles constituent le fondement d'une théorie. Elles sont appelées « axiomes ». Par exemple, le classique « par deux points distincts, il ne passe qu'une seule droite » est un axiome de la géométrie euclidienne mais qui peut être faux dans d'autres géométries dites non euclidienne.

Les autres propositions d'une théorie mathématique (celles dont on « démontre » la vérité) sont appelées théorèmes ou tout simplement propositions (sous-entendu « propositions vraies »).

II) Connecteurs logiques

A partir de propositions P, Q, R, ... on peut en construire d'autres dont la valeur de vérité ne dépend que de celle des propositions initiales. On décrit de telles constructions à l'aide de tables de vérité, qui donnent, en fonction des valeurs de vérité des propositions initiales, la valeur de vérité de la construction.

1) La négation

Définition

A toute proposition P, on peut associer une nouvelle proposition, notée $\neg P$ ou \overline{P} (se lit **non P**), dont la valeur de vérité est donnée par la table ci-dessous :

P	$\neg P$
V	F
F	V

<u>Remarques</u>

- La négation est un connecteur logique unitaire, il agit sur une seule proposition.
- Pour démontrer qu'une proposition est fausse, il suffit de démontrer que sa négation est vraie.
- Pour toute proposition $P, \neg \neg P$ (ou encore $\overline{\overline{P}}$) a la même valeur que P:

P	$\neg P$	$\neg\neg P$
V	F	V
F	V	F

2) La conjonction (« et »)

Définition

A tout couple de propositions (P, Q), la conjonction associe la proposition, notée $P \wedge Q$ ou « P et Q » (se lit P et Q), dont la valeur de vérité est donnée par la table ci-après :

P	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

Remarque

 $P \wedge Q$ est vraie dans le seul cas où P et Q sont vraies toutes les deux.

3) Disjonction

Définition

A tout couple de propositions (P, Q), la disjonction associe la proposition, notée $P \vee Q$ ou « P ou Q » (se lit P ou Q), dont la valeur de vérité est donnée par la table ci-dessous :

P	Q	$P \vee Q$
V	V	V
V	F	V
F	V	V
F	F	F

Remarques

- $P \vee Q$ est fausse dans le seul cas où P et Q sont fausses toutes les deux.
- Attention à ne pas confondre le « ou » connecteur logique du « ou » du langage courant. En fait, en français, le « ou » a deux sens soit exclusif (fromage ou dessert) soit inclusif (qu'il pleuve ou qu'il vente, arrose quand tu plantes!), en logique il n'y en a qu'un, le « ou inclusif ».

4) Implication

Définition

A tout couple de propositions (P, Q), l'implication associe la proposition, notée $P \Rightarrow Q$ (se lit **P** implique **Q**), dont la valeur de vérité est donnée par la table ci-dessous :

P	Q	$P\Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Remarques

- Le faux implique toujours le vrai!
- En mathématiques, on utilise souvent la première ligne du tableau de l'implication lors des raisonnements. En effet, on a *P* vraie, on démontre que *P* ⇒ *Q* (que l'on écrit souvent « si *P* alors *O* ») et on en déduit que *Q* est vraie.

5) Équivalence

Définition

A tout couple de propositions (P, Q), l'équivalence associe la proposition, notée $P \Leftrightarrow Q$ (se lit « Péquivaut à Q » ou encore « P est équivalent à Q »), dont la valeur de vérité est donnée par la table ci-

P	Q	$P \Leftrightarrow Q$
V	V	V
·V	F	F
F	V	F
F	F	V

Remarque

- $P \Leftrightarrow Q$ est vrai dans les cas où P et Q ont la même valeur de vérité.
 - 6) Connecteurs « nand » et « nor »

Définitions

- Pour tout couple de propositions (P,Q), on note $P \uparrow Q$ (se lit **nand**, pour « non et ») la proposition $\neg (P \land Q)$ (c'est à dire $\overline{P \wedge Q}$).
- Pour tout couple de propositions (P,Q), on note $P \downarrow Q$ (se lit **nor**, pour « non ou ») la proposition $\neg (P \lor Q)$ (c'est à dire $\overline{P \vee Q}$).

Les tables de vérités sont les suivantes (elles découlent immédiatement des paragraphes précédents) :

P	Q	PAQ
1	V	V
\ \	F	F
F	V	F
	F	F
F	-	

Q	P	Q	$P \uparrow Q$
	V	V	F
	V	F	V
	F	V	V
	F	F	V

2200 0		WAR 13 23 2.1 A	w w. / C. C. W.
P	Q	PVQ	
J	V	V	F
V	F	V	F
F	V	V	F
F	F	F	V

21	P	Q	$P \downarrow Q$
	V	V	F
	V	F	F
	F	V	F
	F	F	V

III) Propriétés des connecteurs logiques

1) Commutativité de \(\lambda \) et \(\lambda \).

Pour toutes propositions P et Q:

- $(P \land Q) \Leftrightarrow (Q \land P).$ $(P \lor Q) \Leftrightarrow (Q \lor P).$
- 2) Associativité de \(\text{et} \ \ \text{.} \)

Pour toutes propositions P, Q et R:

- $\begin{array}{ccc} ((P \ \wedge \ Q) \ \wedge \ R) \ \Leftrightarrow \ (P \ \wedge \ (Q \ \wedge \ R)). \\ ((P \ \vee \ Q) \ \vee \ R) \ \Leftrightarrow \ (P \ \vee \ (Q \ \vee \ R)). \end{array}$

7Q =>7P 0 =>P.

3) Tiers exclu et non contradiction.

Pour toute proposition P:

- $P \lor \neg P$ (c'est à dire $P \lor \overline{P}$) est toujours vraie.
- $P \land \neg P$ (c'est à dire $P \land \overline{P}$) est toujours fausse.
- 4) Double distributivité

Pour toutes propositions P, Q et R:

- $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R)).$ $(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R)).$

Pour toutes propositions P et Q:

- $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ soit encore $\overline{P \land Q} \Leftrightarrow \overline{P} \lor \overline{Q}$. $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$ soit encore $\overline{P \land Q} \Leftrightarrow \overline{P} \land \overline{Q}$.
- 6) Implication et équivalence

Pour toutes propositions P et Q:

- $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ soit encore $(P \Rightarrow Q) \Leftrightarrow (\overline{P} \lor Q)$.
- $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$ soit encore $(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$. Contrapose $(P \Leftrightarrow Q) \Leftrightarrow ((P \Rightarrow Q) \land (Q \Rightarrow P))$. Let equivalence.

Fiche 1

Exercices

Logique (1)

Mathématiques pour l'informatique

Exercice 1

Démontrer que :

- 1) $P \lor \neg P$ est toujours vraie.
- 2) $P \land \neg P$ est toujours fausse.

Exercice 2

A l'aide de tables de vérité, démontrer les équivalences suivantes :

- 1) $(P \land Q) \Leftrightarrow (Q \land P)$ [on a de même : $(P \lor Q) \Leftrightarrow (Q \lor P)$]. commutativilé du \land [et du \lor]
- 2) $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$ [on a de même : $((P \land Q) \land R) \Leftrightarrow (P \land (Q \land R))$]. associativité du
- 3) $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$ distributive du y sur le \land (du \land sur le \lor) \lor (et du \land) [on a de même : $(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R))$].
- 4) $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ [on a de même : $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$]. Let de De Morgan
- 5) $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$. (de) à connaisse)
- 6) $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$. Contra pare
- 7) $(P \oplus Q) \Leftrightarrow ((P \oplus Q) \land (Q \oplus P))$. (def a connaine)

Exercice 3: Le connecteur « nand »

- 1) Démontrer que pour toute proposition $P, \neg P \Leftrightarrow (P \uparrow P)$.
- 2) Déduire de la définition de $P \uparrow Q$ et du résultat du 1) une proposition équivalente à $P \land Q$ dans laquelle seul le connecteur \uparrow apparaît.
- 3) Démontrer à l'aide d'une loi de Morgan que, pour toutes propositions P et Q:

$$(P \lor Q) \Leftrightarrow ((P \uparrow P) \uparrow (Q \uparrow Q)).$$

Conclusion: tous les connecteurs binaires peuvent être obtenus à l'aide du seul connecteur « nand ».

Exercice 4 : Le connecteur « nor »

- 1) P étant une proposition quelconque, déterminer une proposition équivalente à $\neg P$ dans laquelle seul le connecteur \downarrow apparaît.
- 2) P et Q étant deux propositions quelconques, déterminer une proposition équivalente à $P \vee Q$ dans laquelle seul le connecteur \downarrow apparaît.
- 3) Même question en remplaçant \vee par \wedge .

Conclusion: tous les connecteurs binaires peuvent être obtenus à l'aide du seul connecteur « nor ».