1 Background Materials

This section covers relevant background material to understanding the rest of the course and this script.

1.1 Set Theory

Material for this section is drawn from [1, Chapter 1] and [2, Chapters 1.2 and 6].

Intuitively, sets are collections of objects, which are called *elements* of the set. For example, one could consider a class of students to be a set – where each student is an element of that set.

1.1 Definition (Common sets and their notation)

- \mathbb{N} : the natural numbers
- \mathbb{Z} : the integers
- Q: the rational numbers
- \mathbb{R} : the real numbers
- C: the complex numbers

1.2 Remark (Notation)

Sets are denoted using braces: { and }. There are two common ways of describing sets, as follows.

1.3 Definition (Set-Roster Notation)

The elements of a set may be listed explicitly: starting and ending with braces, and with the elements comma separated. Ellipses may be used for infinite sets.

1.4 Example (Finite)

$$A = \{a, b, c, d\}$$
$$B = \{1, 2, 3, 4\}$$
$$S = \{a, 1, \%\}$$

1.5 Remark (Use of "...")

The elements of a set be defined using clear patterns and ellipses ("..."). This method is generally discouraged in all but the most obvious of use cases.

1.6 Example (Infinite)

$$C = \{\dots, -1, 0, 1, \dots\}$$
$$D = \{2, 4, 6, 8, \dots\}$$

1.7 Example (Ambiguous Pattern)

$$E = \{2, 4, \ldots\}$$

Exercise 1 Identify at least two patterns that can fit the set-roster notation in the above example.

1.8 Definition (The Empty Set)

The set with no elements in it is denoted as \emptyset .

1.9 Remark (Alternate Notation)

The empty set may sometimes be denoted as a pair of braces with nothing in between.

$$\emptyset = \{\}$$

1.10 Definition (Set-Builder Notation)

The most powerful – and common – way of describing a set is through set-builder notation. Essentially, it is a way to describe a set via some number of rules that all elements in the set must adhere.

1.11 Example (Representing Even Integers)

Recall that \mathbb{Z} is the set of all integers.

$$\mathbb{Z}^{\text{even}} = \{2x \mid x \in \mathbb{Z}, x \ge 0\}$$

1.12 Example (The Rational Numbers)

We can desribe the set of all rational numbers as follows.

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \}.$$

1.13 Remark (Reading Notation)

- The vertical line or "pipe", |, is read as "such that", "when" or "where,"; sometimes a colon is used instead.
- Commas in mathematics are read as "and."

1.14 Definition (Cardinality)

Cardinality of a set X, denoted as |X|, is the measure of a set representing the number of unique, distinct elements in that set.

1.15 Example (Cardinality)

Let $X = \{1, 2, a, \{3, 4\}, 9\}$. Then, the cardinality |X| = 5.

Exercise 2 Compute $|\emptyset|$.

Exercise 3 Compute $|\{\mathcal{R}\}|$.

1.16 Definition (Universal Quantifier)

The universal quantifier \forall is read as "for all", indicating that the corresponding condition holds for all cases.

1.17 Example (Using \forall)

For example, we may use this qualifer as an indexing operator, similar to a for loop in programming where we may want to compute a value for each natural number less than ten. That is, $\forall n \in \mathbb{N}$, s.t. n < 10, f(n).

1.18 Definition (Existential Quantifier)

The existential quantitier \exists is read as "exists", indicating that an arbitrary but particular value exists according to the corresponding condition.

1.19 Example (Using \exists)

For example, we may say that there exists a global minima in \mathbb{N} , as follows.

$$\exists n \text{ s.t. } \forall n' \in \mathbb{N}, n < n'$$

Exercise 4 Prove Example 1.19.

1.20 Definition (Improper Subset)

 $A \subseteq B \leftrightarrow \{a \mid a \in A, a \in B\}$

1.21 Example (Improper Subset)

Text

1.22 Definition (Proper Subset)

A is a proper subset of B, when $A \subset B$ iff $A \subseteq B$ and $\exists b \in B$ s.t. $b \notin A$.

1.23 Remark (Superset)

Terminologically, the inverse of a subset is the superset.

1.24 Definition (Set Union)

The Set Union C is denoted as

$$C = A \cup B$$

, where A, B, C are sets. It is defined as

$$C = \{c \mid c \in A \text{ or } c \in B\}$$

1.25 Example (Set Union)

Let
$$A = \{..., -2, -1, 0\}$$
 and $B = \{0, 1, 2, ...\}$. Then, $A \cup B = \mathbb{Z}$

1.26 Definition (Set Intersection)

The Set Union C is denoted as

$$C = A \cap B$$

, where A, B, C are sets. It is defined as

$$C = \{c \mid c \in A \text{ and } c \in B\}$$

1.27 Example (Set Intersection)

$$\mathbb{Z} \cap \mathbb{N} = \{0\}$$

Exercise 5 Compute

$$|\mathbb{Q} \cap \mathbb{Z} \cap \mathbb{N}|$$

1.28 Definition (Ordered Tuple)

An ordered tuple is a finite set of objects that has a static order. This is denoted with parentheses.

1.29 Example (Ordered Pair)

(1,2) is an example of an ordered pair (or an ordered 2-tuple).

1.30 Definition (Cartesian Product)

The Cartesian product $A \times B$ is defined as the set

$$A \times B = \{(a, b) \mid \forall a \forall b \ a \in A, b \in B\}$$

. Note that this generalizes to any number of sets in the Cartesian product.

1.31 Example (Cartesian Product)

Let
$$A = \{a, b\}$$
 and $B = \{1, 2\}$. Then, $A \times B = \{(a, 1), (b, 2)\}$.

Exercise 6 (Cartesian Product) Let $A = \{r, s\}, B = \{6, 7\}, \text{ and } C = \emptyset.$ Compute

$$A \times B \times C$$

.