Math 443 Homework 3

Xander Naumenko

08/02/23

Question 1. Let x, y be arbitrary vertices and v be a maximum degree vertex of G. First it will be show that the distance between x, y and v is at most 2. Since x, y are arbitrary consider x, but the same argument holds for y. If x = v or $v \in N(x)$ then we are done, so assume neither is true. x has deg $x \ge \delta(G)$ neighbors and v has deg $v = \Delta(G)$ neighbors. There are |G| - 2 vertices other than x and v but deg $x + \deg v \ge \delta(G) + \Delta(G) \ge |G| - 1$ vertices that are neighbors to either x or v, so by the pigeonhole principle there must be a vertex that is adjacent to both x and y, so there exists a path P_x between x and v with length less than or equal to 2. As mentioned previously by symmetry this argument also works for y so there exists a path P_y between y and v with length less than or equal to 2. Thus the walk xP_xP_yy has length at most 4, and there exists a subpath of smaller or equal length, so the distance between x and y is less than or equal to 4. This holds for all x, y so $diam(G) \le 4$. \square

Question 2. Let T be a nontrivial tree with $\Delta(T) = k$ and v be a vertex with degree k in T. Next consider removing each edge incident to v, and let the resulting forest be F. Since each edge removed from a tree results in two separate tree and we removed k edges, the result is k+1 disjoint trees. Let T_1, \ldots, T_k be the trees created this way other than the trivial tree created out of v since we've removed all of it's vertices. We will show that each T_i contributed at least one leaf to T.

Let $i \in [k]$. If $|T_i| = 1$ then let $V(T_i) = \{u\}$, and so uv was the only edge incident to u in T, so u was a leaf in T. If $|T_i| \ge 2$, then we proved in class that it has at least two leaves. However we only deleted one vertex incident to T_i to separate it from T, so only one of these two leaves could have been created by doing deleting the edges incident to v. Thus T_i has at least one vertex that is a leaf and was also a leaf in T. Since this is true for all i and each T_i is disjoint, there are at least k leaves in T.

Question 3. Recall in class that we found that all trees T have ||T|| = |T| - 1. Also note that the number of edges in a forest is less than or equal to that of a tree, since it is possible to convert a forest into a tree strictly by adding edges. For any G with G, \overline{G} both forests then, $||G|| + ||\overline{G}|| \ge 2|G| - 2$. Note also that $\{V(G), E(G) \cup E(\overline{G})\} = K_{|G|}$ and $E(G) \cap E(\overline{G}) = \emptyset$ by definition, so $||G|| + ||\overline{G}|| = ||K_{|G|}|| = \frac{1}{2}|G|(|G| - 1)$. Putting these two facts together:

$$4|G| - 4 \le |G|^2 - |G| \implies |G| \le 4.$$

4 is reasonably small, so we can brute force check each graph with degree less that 4. One vertex:

•

Two vertices:

Question 4. Let $n \in \mathbb{N}$. Let T be a tree created by starting with a central vertex r and adding a new vertex connected only to r, n-1 times. The graph created this way is a tree because it is connected (everything is connected to r) and there are no cycles by construction. Let G be any graph with $\delta(G) = n - 2$ and $\Delta(G) = n - 2$, i.e. a regular graph. Then since $\deg r = n - 1$ but each vertex in G has degree n-2, clearly T can't be a subgraph of G.

Question 5. The statement is true. Consider constructing a subgraph of G that is isomorphic to H. Choose the first vertex arbitrarily, call the trivial resultant graph F. Then repeatedly add a new vertex to F by

Question 6a. Consider the following graph:

Any graph formed by Kruskal's algorithm will include some permutation of 2 edges of weight 1 but not all three, and will include the edge of weight 5 because the tree must be spanning.

Question 6b. Consider the following graph G, and set H = G:

In class we showed that for a tree T, ||T|| = |T| - 1, so any spanning tree T of G must have weight $w(T) \ge w(H) = -3$.

Question 6c. No such graph exists. By way of contradiction suppose that such a graph H did exist. Let T be a minimum spanning tree of G. If H is a tree, clearly $w(T) \leq w(H)$ by minimality of T. Thus H isn't a tree, so it must have an edge that isn't a bridge. Note that removing this edge decreases the weight of H, as $w(e) \geq 0 \forall e \in E(G)$. Repeat this process until this process results in a tree T'. Since each step decreased the total weight we definitely have $w(T') \leq w(H)$. But this contradicts our assumption that H is lighter than all spanning trees, so no such H exists. \square

Question 7. Let G, T be as in the question and assume by way of contradiction that $\exists x \in V(G), e \in E(G)$ s.t. $w(e) < w(f) \forall f \in E(T)$ with $x \in f, x \in e$ but $e \notin E(T)$.