Árboles I: EIF-203-I-2017

DR. CARLOS LORÍA-SÁENZ ESCUELA DE INFORMÁTICA, UNA

Objetivos Generales

- Conceptos y aplicaciones
- Propiedades básicas
- Representación computacional (ADT Árbol)
- Árboles orientados
- Árboles de expresiones y recorridos
- Árboles Binarios
- Árboles Binarios de Búsqueda
- Árboles de Huffman

Objetivos de esta parte

- Conceptos intuitivos de grafo y ejemplos de uso informático
- ► Ejemplos comunes
 - ▶ File System
 - ► HTML
 - Compilación/evaluación de expresiones
- Árboles orientados
- Árbol de expresiones y recorridos

Ejemplo: árbol de expresión

- ► Considere evaluar (50 + 25 * 3)/5 4 == 21
- Para evaluar hay que "leer toda expresión"
- Ineficiente. Problemas con la precedencia de operadores
- Las computadoras no evalúan así
- Se quiere evaluar de izquierda a derecha
- Solución: Un árbol y un recorrido
- Una estructura jerárquica los de abajo se evalúan primero

(50 + 25 * 3)/5 - 4 == 21

Evaluación

Recorrido post-Orden

- Dado un árbol T
- ▶ Si *T* es consta de una hoja *P* procese el valor de la hoja
- ▶ Si no es hoja:
 - Procesar el hijo izquierdo I
 - Procesar el hijo derecho D
 - ▶ Procesar el nodo actual P
- \blacktriangleright En resumen: I D P

Post-orden

Notación post-fija (polaca inversa)

- Es la que se obtiene de recorrer en post-orden un árbol de expresión:
- ▶ En el ejemplo anterior: $50\ 25\ 3 * + 5/4 21 ==$
- ► Fácil de ejecutar usando una pila

50253*+5/4-21=

Tres recorridos

- ▶ En-orden: I-P-D
- ▶ Pre-orden: P-I-D
- ▶ Post-orden: I-D-P
- Las otras combinaciones se descartan asumiendo la izquierda primera que la derecha siempre

Árbol Libre

Grafo simple tal que entre dos vértices distintos existe siempre existe un camino que los conecta

Árbol

- \blacktriangleright Mínima forma de conectar n nodos
- ▶ Tiene n-1 arcos
- No puede tener ciclos (probar)

Árbol con raíz y orientado

- Se fija una orientación (arriba-abajo-izquierda-derecha)
- Se escoge un nodo cualquiera, la raíz
- Sus sucesores se ordenan de izquierda a derecha y cuelgan de la raíz: se llaman hijos
- Lo mismo se repite con cada hijo
- Los nodos finales (sin hijos) se llaman <u>hojas</u>. Los otros <u>interiores</u>

Árbol orientado

Sub-árbol: árbol es una <u>estructura</u> recursiva

- \blacktriangleright Si T es un árbol orientado y n un nodo entonces cada grafo que tenga a n como raíz es también un árbol.
- Se llama sub-árbol

Niveles, altura

Altura: máximo nivel alcanzable. Camino más largo desde la raíz a una hoja

Árbol *m*-ario

- lackbox Un árbol orientado se dice ser m-ario si cada nodo interno tiene a lo más m hijos
- \blacktriangleright Se dice <u>lleno</u> si cada nodo interior tiene exactamente m hijos
- Se dice "completo" si está lleno en cada nivel, excepto tal vez, en el último nivel y los nodos están acomodados lo más a la izquierda posible
- ▶ Cuando m = 2 se llama <u>árbol binario</u>

Ejemplos

Indique la "ariedad" ¿Cuáles son llenos? ¿Completos? Complete los que no lo están

Árbol binario balanceado

▶ Un árbol binario está <u>balanceado</u> si la diferencia entre la altura de sus hijos no excede 1.

Balanceado (no lleno ni completo)

3 árboles Desbalanceados

Conteos en binarios llenos

- ▶ Sea T binario no vacío y lleno con n(T) nodos. Sean i(T) el número de nodos interiores y l(T) el número de hojas. Se cumplen:
 - l(T) = l(T) + 1
 - 2. n(T) = 2i(T) + 1 o equivalentemente i(T) = (n(T) 1)/2
 - 3. n(T) = 2l(T) 1 o equivalentemente $l(T) = \frac{n(T) + 1}{2}$
- ▶ Ejercicio: Probar

Contando en binarios

- lacktriangle Un árbol binario T tiene a los más 2^h hojas donde h es su altura
- ▶ Entonces $h \ge log(l)$ en el caso general
- Si T está lleno y es balanceado se da la igualdad:
 - ▶ Es decir, en ese caso: $h = \log(l)$ o equivalentemente $2^h = l$
- ► Ejercicio: Probar
- Nota: Este resultado vale para árboles m-arios: $h \ge log_m(l)$. La igualdad se da si el árbol está lleno y balanceado.

Ejemplo: comparaciones para ordenar n objetos

- Dada una lista de n números, cuántas comparaciones se necesitan para ordenarlos (peor caso) si sólo se permiten comparaciones entre dos números como única operación.
- ▶ Por ejemplo $S = \{a, b, c\}$.
- ▶ 3! posibles hojas

Ejemplo: continuado

- ▶ Dados n objetos se producen l = n! hojas.
- \blacktriangleright La altura h de ese árbol binario es el peor caso en comparaciones
- $h \ge \log(n!) = n\log(n).$
- ightharpoonup Yh-1 sería el mejor caso (se ahorra la última comparación). Note que está balanceado
- ▶ <u>Conclusión</u>: No se puede ordenar por comparaciones haciendo menos de nlog(n) 1 de ellas. Es decir cualquier ordenamiento por comparaciones es $\Omega(nlog(n))$