MATH 7211 Homework 8

Andrea Bourque

May 9, 2023

1 Problem 10.1.18

are done.

Let $F = \mathbb{R}, V = \mathbb{R}^2$ and let T be the linear transformation from V to V which is rotation clockwise about the origin by $\pi/2$ radians. Show that V and 0 are the only F[x]-submodules for this T.

Proof. Of course, a module and 0 are always submodules of the same module. Dummit and Foote Section 10.1 gives a bijection between F[x]-submodules of V considered as an F[x]-module and T-stable linear subspaces of V. Now, 0 and V are the only 0 and 2-dimensional subspaces of V, and since the dimension of V is 2, there are no higher dimensional subspaces. Let W be any one-dimensional subspace of V, say spanned by $\begin{bmatrix} a \\ b \end{bmatrix}$. Then if $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ -a \end{bmatrix}$ is in W, say $\begin{bmatrix} b \\ -a \end{bmatrix} = c\begin{bmatrix} a \\ b \end{bmatrix}$ for some $c \in F$, we find $a = -ac^2$. If $a \neq 0$, then $c^2 = -1$, which is impossible since $F = \mathbb{R}$. Thus a = 0. But then we have $\begin{bmatrix} b \\ 0 \end{bmatrix} = c\begin{bmatrix} 0 \\ b \end{bmatrix}$, which implies b = 0. But $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ does not span a one-dimensional space, which is a contradiction. Thus, none of the one-dimensional subspaces of V correspond to F[x]-submodules. Since we have exhausted all of the possible dimensions, we

2 Problem 10.2.6

Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}$, where d is the greatest common divisor of m, n.

Proof. Let us first deal with the trivial cases of n=1 and m=1 (I don't know if these are supposed to be included, but might as well). For n=1 we consider $\mathbb{Z}/n\mathbb{Z}=0$ and d=1. Thus we have to show $\operatorname{Hom}(0,\mathbb{Z}/m\mathbb{Z})=0=\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},0)$. The first equality is true because the only morphism from 0 has to map to 0 in the codomain, and the second equality is true because the only map into 0 must be the one sending everything to 0.

Now assume that n,m are both greater than 1. A morphism from $\mathbb{Z}/n\mathbb{Z}$ is determined by where a generator, call it 1, is sent. However, not every element in $\mathbb{Z}/m\mathbb{Z}$ is a valid image of 1. In particular, we must have nf(1) = f(n) = f(0) = 0. Since we always have mf(1) = 0 for $f(1) \in \mathbb{Z}/m\mathbb{Z}$, the Euclidean algorithm implies df(1) = 0. Conversely, any element $x \in \mathbb{Z}/m\mathbb{Z}$ with dx = 0 satisfies nx = (n/d)dx = (n/d)0 = 0. Thus $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ is in bijection with the elements in $\mathbb{Z}/m\mathbb{Z}$ satisfying dx = 0. We have x = m/d as one candidate for such elements. Conversely, if dx = 0, then m divides dx, so m/d divides x. Thus 0, m/d, ..., (d-1)m/d are the only elements satisfying dx = 0 in $\mathbb{Z}/m\mathbb{Z}$. In particular, the morphism $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ with f(1) = m/d is a generator for all the other morphisms in $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$, since kf(1) = km/d. We see that f has order d, so $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}$ as desired. \square

3 Problem 10.3.9

Show that an R-module is irreducible iff $M \neq 0$ and M is cyclic module with any nonzero element as a generator. Determine all irreducible \mathbb{Z} -modules.

Proof. (\rightarrow) By definition, an irreducible module is non-zero. Let $a \in M$ be non-zero. Then Ra is a submodule of M. By irreducibility, it is either 0 or M. Since $a \neq 0$ and $1 \in R$, the submodule Ra cannot be 0. Thus M = Ra for any non-zero $a \in M$ as desired.

 (\leftarrow) Let N be a non-zero submodule of M. Then N contains some non-zero element a. By assumption on M, we have M=Ra. But $Ra\subseteq N$ by definition of a module, so N=M, showing that M is irreducible.

Now we that we know irreducible modules are special non-zero cyclic modules, we can easily classify the irreducible \mathbb{Z} -modules. Of course, \mathbb{Z} -modules are just abelian groups under a different name. All cyclic groups are abelian, and the cyclic groups are \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for n>1. It is clear that \mathbb{Z} is not irreducible, since the nonzero element 2 does not generate \mathbb{Z} ; 1 is not a multiple of 2. For n=p prime, we know that any non-zero element of $\mathbb{Z}/p\mathbb{Z}$ is a generator, since $|(\mathbb{Z}/p\mathbb{Z})^{\times}|=p-1=|\mathbb{Z}/p\mathbb{Z}-\{0\}|$. Thus all prime order cyclic groups are irreducible \mathbb{Z} -modules. If n is not prime, then choose a proper divisor d>1 of n, so that d is of order n/d, i.e. it generates a subgroup of order n/d < n. Thus the irreducible \mathbb{Z} modules are the prime order cyclic groups. \square

4 Problem 10.3.11

Show that if M_1 and M_2 are irreducible R-modules, then any nonzero R-module morphism from M_1 to M_2 is an isomorphism. Deduce that if M is irreducible then $\operatorname{End}_R(M)$ is a division ring.

Proof. Let $f: M_1 \to M_2$ be a non-zero R-module morphism. Then $\ker f$ is a submodule of M_1 ; by irreducibility, $\ker f$ is either 0 or M_1 . If $\ker f = M_1$, then f is the zero map, which we assume it is not. Thus $\ker f = 0$, so f is injective. Similarly, $\operatorname{im} f$ is a submodule of M_2 , so it is either 0 or M_2 . If $\operatorname{im} f = 0$, that means f is the zero map, which we again assume it is not. Thus $\operatorname{im} f = M_2$, so f is surjective. Bijective module morphisms are isomorphisms, so f is an isomorphism.

Let M be irreducible. By the previous result, every non-zero element of $\operatorname{End}_R(M)$ is an isomorphism, i.e. there is an inverse element in $\operatorname{End}_R(M)$. Thus $\operatorname{End}_R(M)$ is a division ring.

5 Problem 10.3.12

Let R be commutative and let A, B, and M be R-modules. Prove the following isomorphisms of R-modules:

- 1. $\operatorname{Hom}_R(A \times B, M) \cong \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$.
- 2. $\operatorname{Hom}_R(M, A \times B) \cong \operatorname{Hom}_R(M, A) \times \operatorname{Hom}_R(M, B)$.

Proof. 1. We define a function $\psi: \operatorname{Hom}_R(A \times B, M) \to \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$. We first need functions $i_1: A \to A \times B$ and $i_2: B \to A \times B$, which we can define via $a \mapsto (a,0)$ and $b \mapsto (0,b)$. In fact, these are clearly module morphisms. Then we define $\psi(f) = (f \circ i_1, f \circ i_2)$. That ψ is a module morphism follows from composition being bilinear.

We can demonstrate an explicit inverse of ψ , namely $\psi^{\wedge}(g,h):(a,b)\mapsto g(a)+h(b)$. Indeed, $(f\circ i_1)(a)+(f\circ i_2)(b)=f(a,0)+f(0,b)=f(a,b)$, so $\psi^{\wedge}\circ\psi=\mathrm{id}$, and (g(a)+h(0))+(g(0)+h(b))=g(a)+h(b), since g(0)=h(0)=0, so $\psi\circ\psi^{\wedge}=\mathrm{id}$. Since ψ has an inverse function, it is a bijection; thus ψ is an isomorphism as desired.

2. The proof is similar; this time, we need morphisms $p_1: A \times B \to A, p_2: A \times B \to B$, which we take to be the projections onto each factor. Then we define $\varphi: \operatorname{Hom}_R(M, A \times B) \to \operatorname{Hom}_R(M, A) \times \operatorname{Hom}_R(M, B)$ by $\varphi(f) = (p_1 \circ f, p_2 \circ f)$. Once again, bilinearity of composition implies φ is a module morphism.

We prove φ is a bijection by giving an explicit inverse. Given $(g,h) \in \operatorname{Hom}_R(M,A) \times \operatorname{Hom}_R(M,B)$, define $(\varphi^{\wedge}(g,h))(m) = (g(m),h(m))$. Then $(\varphi \circ \varphi^{\wedge})(g,h) = (p_1 \circ \varphi^{\wedge}(g,h), p_2 \circ \varphi^{\wedge}(g,h))$, and by definition of φ^{\wedge} , we have $p_1 \circ \varphi^{\wedge}(g,h) = g, p_2 \circ \varphi^{\wedge}(g,h) = h$, so $(\varphi \circ \varphi^{\wedge})(g,h) = (g,h)$, i.e. $\varphi \circ \varphi^{\wedge} = \operatorname{id}$. We also see that $(\varphi^{\wedge} \circ \varphi)(f) = \varphi^{\wedge}(p_1 \circ f, p_2 \circ f)$. If f(m) = (a,b), then $\varphi^{\wedge}(p_1 \circ f, p_2 \circ f)(m) = (p_1 \circ f(m), p_2 \circ f(m)) = (p_1(a,b), p_2(a,b)) = (a,b) = f(m)$. Thus $(\varphi^{\wedge} \circ \varphi)(f) = f$, so $\varphi^{\wedge} \circ \varphi = \operatorname{id}$. Since φ has an inverse function, it is a bijection, so it is an isomorphism, as desired.