CHAPTER 03

함수의 극한과 연속

함수의 극한 연속함수 중간값정리

김 수 환 동의대학교 수학과

Contents

- 3.1 함수의 극한 및 계산
- 3.2 연속함수
- 3.3 중간값 정리

함수의 극한

극한

국한의 정의 x 가 a 는 아니면서 a 에 가까이 갈 때, f(x) 가 실수 L 로 접근하면 L 을 f(x) 의 극한이라 하 $\lim_{x\to a} f(x) = L$ 로 나타낸다.

- \rightarrow 'x가 a가 아니면서'란 ' $x \neq a$ '
- f(x) = x + 3일 때 x가 2로 접근한다면, f(x)의 값

x	f(x)	x	f(x)
1.8	4.8	2.2	5.2
1.9	4.9	2.1	5.1
1.99	4.99	2.01	5.01
1,999	4.999	2,001	5.001

[그림 2-1] x가 2로 접근할 때 f(x)의 극한

> f(x)의 극한은 5이다. 이를 식으로 $\lim_{x \to 2} f(x) = 5$ 나타낸다.

함수의 극한

예제 2-1

y = f(x)의 그래프가 [그림 2-2]와 같을 때, x가 1로 가까이 갈 때 f(x)의 극한값은 어떻게 되는가?

[그림 2-2] y = f(x)의 그래프

● 좌극한과 우극한

작극한과 우극한의 정의 x가 a는 아니면서 a의 왼쪽에서부터 a에 가까이 갈 때, f(x)가 실수 L로 접근하면 L을 f(x)의 작극한이라 하고, 다음과 같이 나타낸다.

$$\lim_{x \to a^{-}} f(x) = L$$

반대로 x가 a는 아니면서 a의 오른쪽에서부터 a에 가까이 갈 때, f(x)가 실수 L로 접근하면 L을 f(x)의 우극한이라 하고, 다음과 같이 나타낸다.

$$\lim_{x \to a^+} f(x) = L$$

[그림 2-3] 좌극한과 우극한

예제 2-2

y = f(x)의 그래프가 [그림 2-4]와 같을 때, 다음 극한을

계산하라.

- (a) $\lim f(x)$ $x\rightarrow 1^{-}$
- (c) $\lim f(x)$ $x \rightarrow 2^-$

- (b) $\lim f(x)$ $x \rightarrow 1^+$
- (d) $\lim f(x)$ $x \rightarrow 2^+$

[그림 2-4] y = f(x)의 그래프

예제 2-3

다음 극한을 계산하라.

(a)
$$f(x) = \begin{cases} 2x - 1, & x \le 3 \\ 3x + 2, & x > 3 \end{cases}$$
 일 때, $\lim_{x \to 3^{-}} f(x)$ 와 $\lim_{x \to 3^{+}} f(x)$

(b)
$$g(x) = \begin{cases} x^2 - 1, & x < 0 \\ 2, & x = 0 \\ -x^2 + 3, & x > 0 \end{cases}$$
 때, $\lim_{x \to 0^-} g(x)$ 와 $\lim_{x \to 0^+} g(x)$

> 극한의 존재성 확인

정리 2-1 극한의 존재성

$$\lim_{x \to a} f(x) = L$$
이기 위한 필요충분조건은 $\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$ 이다.

예제 2-4

y = f(x)의 그래프가 [그림 2-5]와 같을 때, 다음 극한을 계산하라.

(a) $\lim_{x\to 0} f(x)$

(b) $\lim_{x\to 1} f(x)$

(c) $\lim_{x\to 2} f(x)$

(d) $\lim_{x \to 4} f(x)$

[그림 2-5] y = f(x)의 그래프

예제 2-5

다음 문제를 풀어라.

- (a) f(x) = |x|일 때, $\lim_{x \to 0} f(x)$ 를 구하라.
- (b) $g(x) = \frac{|x|}{x}$ 일 때, $\lim_{x \to 0} g(x)$ 를 구하라.

발산

● 발산

발산의 정의 x가 a는 아니면서 a에 가까이 갈 때, f(x)가 양의 값을 가지면서 한없이 커지면 f(x)는 양의 무한대로 발산한다고 하고, 다음과 같이 나타낸다.

$$\lim_{x \to a} f(x) = \infty$$

x가 b는 아니면서 b에 가까이 갈 때, f(x)가 음의 값을 가지면서 한없이 커지면 f(x)는 음의 무한대로 발산한다고 하고, 다음과 같이 나타낸다.

$$\lim_{x \to b} f(x) = -\infty$$

발산

예제 2-6

다음 극한을 계산하라.

- $(a) \lim_{x \to 0^+} \frac{1}{x}$
- (c) $\lim_{x \to 1^+} \frac{1}{(x-1)^2}$

- (b) $\lim_{x \to 0^{-}} \frac{1}{x}$
- (d) $\lim_{x \to 1^{-}} \frac{1}{(x-1)^2}$

극한의 기본 정리

● 기본적인 사칙 연산

정리 2-2 극한의 기본 정리

 $\lim_{x \to \infty} f(x)$ 와 $\lim_{x \to \infty} g(x)$ 가 존재할 때 다음이 성립한다. $x \rightarrow a$

(1)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

(2)
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

(3)
$$c$$
가 상수일 때 $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$

(4)
$$\lim_{x \to a} f(x) g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

(5)
$$\lim_{x \to a} g(x) \neq 0$$
일 때 $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$

극한의 기본 정리

예제 2-7

f(x) = 2x + 3이고 $g(x) = x^2 - 1$ 일 때, 다음을 계산하라.

(a) $\lim_{x\to 2} (f(x) + g(x))$

(b) $\lim_{x\to 2} (f(x) - g(x))$

(c) $\lim_{x\to 2} f(x) g(x)$

(d) $\lim_{x \to 2} \frac{f(x)}{g(x)}$

ullet $\frac{0}{0}$ 형태의 극한 계산법

$$\lim_{x \to a} \frac{f(x)}{g(x)} \quad \left(\quad \lim_{x \to a} f(x) = 0 \, \text{이코 } \lim_{x \to a} g(x) = 0 \, \text{일 때} \right)$$

- 1 분자와 분모를 인수분해하여 약분한 후 극한을 계산하거나
- 2 분자 또는 분모에 있는 근호를 유리화하여 약분한 후 극한을 계산한다.

•
$$\sqrt{x} - a = \frac{(\sqrt{x} - a)(\sqrt{x} + a)}{\sqrt{x} + a} = \frac{x - a^2}{\sqrt{x} + a}$$

•
$$\sqrt{x} + a = \frac{(\sqrt{x} + a)(\sqrt{x} - a)}{\sqrt{x} - a} = \frac{x - a^2}{\sqrt{x} - a}$$

•
$$\frac{1}{\sqrt{x}-b} = \frac{\sqrt{x}+b}{(\sqrt{x}-b)(\sqrt{x}+b)} = \frac{\sqrt{x}+b}{x-b^2}$$

•
$$\frac{1}{\sqrt{x}+b} = \frac{\sqrt{x}-b}{(\sqrt{x}+b)(\sqrt{x}-b)} = \frac{\sqrt{x}-b}{x-b^2}$$

예제 2-8

 $\frac{0}{0}$ 형태의 극한 계산법을 이용하여 다음 극한을 계산하라.

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

(c)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

(b)
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

(d)
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2}$$

유리함수의 극한 계산법 : 분자와 분모의 차수에 따라 결정

$$\lim_{x\to\infty} \frac{f(x)}{g(x)}$$
 ($f(x)$ 와 $g(x)$ 가 다항함수일 때)

① 분자인 f(x)의 차수가 분모인 g(x)의 차수보다 큰 경우

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty \quad \text{If } \lim_{x \to \infty} \frac{f(x)}{g(x)} = -\infty$$

② 분자인 f(x)의 차수가 분모인 g(x)의 차수보다 작은 경우

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

③ 분자인 f(x)의 차수와 분모인 g(x)의 차수가 같은 경우

$$f(x) = a_n x^n + a_{n-1} x^n + a_1 x + a_0$$
이고, $g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$ 이며, $a_n \neq 0$, $b_n \neq 0$ 이면

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{a_n}{b_n}$$

예제 2-9

유리함수의 극한 계산법을 이용하여 다음 극한을 계산하라.

(a)
$$\lim_{x \to \infty} \frac{2x^2 + 3}{x + 2}$$

(c)
$$\lim_{x \to \infty} \frac{2x+1}{x^2+2}$$

(e)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 3}{2x^3 + 3x - 1}$$

(b)
$$\lim_{x \to \infty} \frac{x^3 - 1}{-x + 1}$$

(d)
$$\lim_{x \to \infty} \frac{x-2}{-x^3+4}$$

(f)
$$\lim_{x \to \infty} \frac{x^2 + 2x - 1}{-3x^2 + 3x + 1}$$

압착정리

정리 2-3 압착정리

x = a의 적당한 근방에 있는 모든 점 x에 대해 $f(x) \le g(x) \le h(x)$ 이고

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$$

이면, $\lim_{x\to a} g(x) = L$ 이다.

예제 2-10

압착정리를 이용하여 다음 극한을 계산하라.

(a)
$$\lim_{x \to 0} x \sin \frac{1}{x}$$

(b)
$$\lim_{x\to 0} x \cos \frac{1}{x}$$

압착정리

● 삼각 함수의 극한 계산법

삼각함수에 관한 극한을 계산할 때는

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

을 이용한다. 이 극한을 일반화하면 $\lim_{x\to 0} \frac{\sin\square}{\square} = 1$ 이며, 이 극한의 결과는 $x\to 0$ 일 때,

□→0인 경우에만 성립한다.

압착정리

예제 2-11

삼각함수의 극한 계산법을 이용하여 다음 극한을 계산하라.

(a)
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

(c)
$$\lim_{x \to 0} \frac{\tan x}{x}$$

(e)
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 2x}$$

(b)
$$\lim_{x \to 0} \frac{\sin 5x}{2x}$$

(d)
$$\lim_{x \to 0} \frac{\tan 3x}{4x}$$

(f)
$$\lim_{x \to 0} \frac{3x}{\sin 2x}$$

예제 2-12

$$\lim_{x \to \infty} \frac{\sin 3x}{x}$$
 를 계산하라.

• 연속의 정의

한 점에서의 연속의 정의 x가 a에 가까이 갈 때, f(x)가 L에 가까이 가고 L=f(a)이면, 함수 f(x)가 x=a에서 연속이라고 한다.

연속을 엄밀하게 정의하면 다음과 같다.

y = f(x)가 다음 세 조건을 모두 만족하면 x = a에서 **연속**이라 한다.

- $1 \lim_{x \to a} f(x)$ 가 존재한다.
- 2 f(a)가 존재한다.
- 3 $\lim_{x\to a} f(x) = f(a)$ 가 성립한다.

만일 세 조건 중 어느 하나라도 만족하지 않으면, f(x)는 x=a에서 연속이 아니다.

예제 2-13

연속의 정의를 사용하여 다음 문제를 풀어라.

- (a) $f(x) = x^2 1$ 일 때, f(x)는 x = 1에서 연속인가?
- (b) g(x) = |x|일 때, g(x)는 x = 0에서 연속인가?

예제 2-14

다음 문제를 풀어라.

(a)
$$f(x) = \begin{cases} x-1, & x \ge 0 \\ -x+2, & x < 0 \end{cases}$$
 일 때, $f(x)$ 는 $x = 0$ 에서 연속인가?

(b)
$$g(x) = \frac{1}{x}$$
일 때, $g(x)$ 는 $x = 0$ 에서 연속인가?

(c)
$$h(x) = \begin{cases} 2x - 1, & x > 1 \\ 3, & x = 1 \\ x^2, & x < 1 \end{cases}$$
 때, $h(x)$ 는 $x = 1$ 에서 연속인가?

정리 2-4 연속함수의 기본 정리

함수 f(x)와 g(x)가 x=a에서 연속이면, 다음의 경우도 모두 x=a에서 연속이다.

(1)
$$f(x) + g(x)$$

(2)
$$f(x) - g(x)$$

$$(3) f(x) \cdot g(x)$$

(4)
$$g(a) \neq 0$$
일 때 $\frac{f(x)}{g(x)}$

예제 2-15

다음 함수의 연속성을 확인해 보자.

(a)
$$y = x^2 + \sin x$$
는 $x = 0$ 에서 연속인가?

(b)
$$y = \frac{x}{\cos x}$$
는 $x = 0$ 에서 연속인가?

구간에서의 연속의 정의 y = f(x)가 구간 [a, b] 내의 모든 점에서 연속일 때, f(x)는 구간 [a, b]에서 연속이라 한다.

How to 2-1 함수가 연속인 구간을 찾는 방법

함수가 주어졌을 때, 그 함수가 연속이 되는 점들의 집합은 그 함수의 정의역과 같다.

예제 2-16

다음 함수가 연속이 되는 점들의 집합을 구하라.

(a)
$$y = x^3 - x - 1$$

(c) $y = \sqrt{x+1}$

(e)
$$y = e^{3x-2}$$

(b)
$$y = \frac{1}{x^2 - 4}$$

(d)
$$y = \sin 2x$$

(f)
$$y = \ln(3x - 1)$$

예제 2-17

다음 유리함수가 불연속이 되는 점들의 집합을 구하라.

(a)
$$y = \frac{x^3 + 1}{x - 1}$$

(b)
$$y = \frac{x-2}{x^2-4}$$

How to 2-2 두 함수의 합 또는 차에 대해 연속인 구간을 찾는 방법

함수 f(x)가 연속인 점들의 집합이 D, 함수 g(x)가 연속인 점들의 집합이 E이면, f(x)+g(x)와 f(x)-g(x)가 연속인 점들의 집합은 $D\cap E$ 이다.

예제 2-18

[How to 2-2]를 이용하여 다음 함수가 연속이 되는 점들의 집합을 구하라.

(a)
$$y = x + \frac{1}{x}$$

(b)
$$y = \sin x - \frac{x+1}{2x-3}$$

(c)
$$y = \frac{x+2}{x-1} - \frac{x}{2x+1}$$

(d)
$$y = \ln x + \frac{1}{2x - 1}$$

중간값 정리

● **중간값 정리:** 방정식의 해가 존재하는지 증명 할 수 있다

정리 2-5 중간값 정리

 $f: [a, b] \to \mathbb{R}$ 가 연속이고 f(a)f(b) < 0이면, f(c) = 0인 c가 [a, b]에 적어도 하나 존재한다.

▶ 중간값 정리를 사용하기 위한 조건 확인

- 1 정의역은 폐구간이어야 한다.
- 2 f는 정의역 위에서 연속이어야 한다.
- ③ f(a)f(b) < 0인지 확인한다. 이는 정의역의 한 끝에서의 함숫값이 양이면 다른 끝에서의 함숫값이 음이 되어야 함을 의미한다.

중간값 정리

[그림 2-6] 중간값 정리 증명

중간값 정리

예제 2-19

$$x^3 - 5x + 2 = 0$$
이 구간 $[0, 1]$ 에서 적어도 하나의 실근을 가짐을 증명하라.

예제 2-20

$$x^3 - 4x - 1 = 0$$
이 적어도 하나의 실근을 가짐을 증명하라.

Thank you!