

All from your face?

Concept: Insights from Personal Photos

Introduced by Gerry Pesavento, Sr. Director Yahoo! Inc.

From a users photos, one can compute an accurate contextual advertising profile including hobbies, events, age, ethnicity, gender, work/home address, and current product ownership. Currently advertising profiles are done through web clicks and purchase intent; a more accurate profile is possible through photo analysis. This project can be done using photo repositories (Flickr, Facebook, etc) and Tensorflow and AI APIs (Google, Microsoft, etc).

Can we identify one's personality type from a profile picture?

Social Network Profile

Face Recognition

Myers-Briggs Types

ISTJ	ISFJ	INFJ	INTJ
ISTP		INFP	INTP
ESTP			
ESTJ			ENTJ

Approach

Steps

Scrape 1,000 profile pictures from members of each of the 16 Myers-Briggs personality groups (ENTJ, INFP, etc.) on Facebook

- Facebook API

Tools

- Python Web-scraping
- Amazon AWS S3 storage

Tag Photos

Collect Data

 Write Python script to call Amazon's image tagging API 16,000 times to tag all photos and store them in csv files

- Amazon Rekognition API

- Python Scripting
- OpenCV

Train Models

- Group similar tags together using NLTK
- Build, tune, and test predictive models with scikit-learn (SKL), using grouped tags as features

- NLTK Wordnet
- SKL Decision Trees
- SKL SVM
- SKL Logistic Regression
- TensorFlow & Keras
- Matplotlib
- Google Slides

Apply Insights

- Analyze correlations between tags and personality traits
- Communicate findings

Technical Architecture

[1] Collect the Data


```
import requests
import pandas as pd
import numpy as np
import json
import time

# Facebook Graph API access token. needed to use API
access_token='EAAZAQLburfFIBACUkZBKfu4FF26naC1clijmZBaETGZBjjVTmrNAkNEfd3sPsaUnuvF00cZCBRzXXyWoxTS2JJR7RfB
nHxzVcwzcywUULKQFRiYI9sUJ1m0kzZATqAIHQWmM1s9ZAyOL8BZCIXZAyfed6n185B6DRGDhd8Ac0gjxLogZDZD'
```

Level 1.

Personality type Facebook group

Level 2.

Extract profile photos for each personality types

Level 3.

Use Photo recognition API for face & personality relationship analysis

[2] Tagging Images Using Amazon Rekognition

Tagging 1 photo at a time

Amazon Rekognition Deep learning-based visual analysis service Search, verify, and organize millions of images and videos

16,000 photos = 1,000 per type

```
import boto3
import pandas as pd
from botocore.exceptions import ClientError
s3 = boto3.resource('s3')
s3bucket = s3.Bucket('dataxteamprojectfacebookphotos')
bucket='dataxteamprojectfacebookphotos'
client=boto3.client('rekognition')
def callRekognition(MBTItype):
    MBTI = list(s3bucket.objects.filter(Prefix='Facebook/'+str(MBTItype)))
    MBTIlist = list()
    for i in MBTI:
        MBTIlist.append(i.key)
    MBTIphotos = pd.DataFrame(MBTIlist,columns=['fileName'])
    imageNames = []
    Labels = []
    faceDetails = []
    for i in range(0,1000):
            response = client.detect labels(Image={'S3Object':{'Bucket':bucket,'Name':MBTIphotos.fileName[i]}}\
                                            ,MinConfidence=50,MaxLabels=50)
            response1 = client.detect_faces(Image={'S3Object':{'Bucket':bucket,'Name':MBTIphotos.fileName[i]}}\
                                            ,Attributes=['ALL'])
            Labels.append(response['Labels'])
            faceDetails.append(response1['FaceDetails'])
            imageNames.append(MBTIlist[i])
            print(str(i) + " photos complete")
        except (ClientError, ValueError):
            continue
    MBTItags = pd.DataFrame(imageNames,columns=['fileName'])
    MBTItags['Labels'] = Labels
    MBTItags['FaceDetails'] = faceDetails
    MBTItags.to_csv(str(MBTItype)+'-1000.csv')
```

[3] Data Preprocessing - Feature Extraction

One-hot encoding tags

- Over 1,700 total features > preliminary models severely **overfitting**
- Need to reduce tags by grouping features

	Human	People	Person	Apparel	Clothing	Maillot	Female	Dress	Bra	Lingerie	 Ribs	Jaguar	Toucan	Christmas Stocking	Stocking	Steak	I- E	s. N	T- F	J- P
0	1	1	1	1	1	0	0	0	0	0	 0	0	0	0	0	0	Е	Ν	F	J
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	Е	Ν	F	J
2	1	1	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	Е	Ν	F	J
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	Е	Ν	F	J
4	1	1	1	0	0	0	1	0	0	0	 0	0	0	0	0	0	Е	Ν	F	J
5 rc	ows × 17	65 colun	nns																	

[4] Data Preprocessing - Feature Grouping


```
tag list = list(df.columns.values)
tag list.remove('I-E')
# use wordnet to get similarity scores between words in similarity_df
list1 = tag list
list2 = tag list
similarity df = pd.DataFrame(index = list1, columns = list1)
# find word similary score between each word in tag list
for word1 in list1:
    for word2 in list2:
        syns1 = wordnet.synsets(word1)
        syns2 = wordnet.synsets(word2)
        if len(syns1) == 0:
            d = None
        elif len(syns2) == 0:
            d = None
        else:
            d = syns1[0].wup similarity(syns2[0])
            similarity df.loc[word1, word2] = d
```

```
# create df of what other tag each tag is most similar to (None is no similar words, i.e. word not in dictionary)
most_similar_df = pd.DataFrame(index = tag_list, columns = ['most_similar_word'])

for tag in list1:
    most_similar_percent = similarity_df[tag].sort_values(ascending = False)
    most_similar_word = most_similar_percent.index.values[1]

if pd.isnull(most_similar_percent[0]):
    most_similar_df.loc[tag] = None
else:
    most_similar_df.loc[tag] = most_similar_word
```

NLTK Wordnet

Group features (tags) by similarity score

02	most_similar_word				
Dress	Sari				
Bra	Underwear				
Lingerie	Underwear				
Underwear	Lingerie				
Art	Mosaic				

[5] Testing Models

K-Nearest Neighbors

model_fit(KNeighborsClassifier(n_neighbors = 10), X_train, X_test, y_train, y_test)

Train accuracy: 51.50656 Test accuracy: 49.74811

Logistic Regression

model_fit(LogisticRegression(penalty = '12', C = 10), X_train, X_test, y_train, y_test)

Train accuracy: 54.35171 Test accuracy: 55.24769

[5] Testing Models Cont...

SVM

model_fit(SVC(), X_train, X_test, y_train, y_test)

Train accuracy: 53.96325 Test accuracy: 55.62552

Decision Trees

Train accuracy: 54.30971 Test accuracy: 55.58354

Random Forest
Adaboost
XGBoost
ExtraTrees

...

[5] Testing Models Cont...

CNN

- 2,000 photos per personality type

[5] Testing Models Cont...

CNN

- 2,000 photos per personality type

I think this is a I with 96.4937% probability

I think this is a E type person with 73.67375% probability

[6] Results

> 55% Test Accuracy

- Predicting all 4 personality type combinations (I/E, S/N, T/F, J/P) : **Hypertuned Random Forest**

Tag Correlation Matrix

[6] Results

Introverted (I) vs Extroverted (E)

- 1. Female (E) 3.8%
- 2. Animals (I) 3%
- 3. Sunglasses (I) 2.9%
- 4. Suit (E) 2.5%
- 5. Flowers (I) 1.8%

Thinking (T) vs Feeling (F)

- 1. Smile (F) 6.1%
- 2. Face (F) 5.1%
- 3. Beard (T) 3.1%
- 4. Female (F) 3.1%
- 5. Vehicle (T) 2.4%

Sensing (S) vs Intuition (N)

- 1. Smile (S) 3.2%
- 2. Animal (S) 2.9%
- 3. Beard (N) 2.7%
- 4. Selfie (N) 2.2%
- 5. Art (N) 1.6%

Judging (J) vs Perceiving (P)

- 1. Smile (J) 5.1%
- 2. Animal (J) 2.4%
- 3. Hat (J) 2.1%
- 4. Beard (P) 1.6%
- 5. Sunglasses (J) 1.4%

Learning Path

Photos

How can we filter out noisy data from social media APIs?

Analysis

How can we counteract matrix sparsity for the best possible analysis?

Database

How do we best store and transfer a large amount of image data?

Application

How can our analysis be valuable?

Business opportunities

Marketing

User research

. . .

Intended User Interface

Existing image recognition service - Add personality tags for output

Extrovert	90%
Introvert	10%

Potential Uses

Targeted Marketing

Marketers can create personalized campaigns based on a more concrete membership database

User Research

UI/UX and Product Designers can understand user intent and justify user behavior

Business Strategy

Project managers can more accurately predict trends of target demographics

Thank You

Special thanks to our mentors:

- Gerry Pesavento, Sr. Director Yahoo!
- Peter Cnudde, VP Yahoo!

https://github.com/jeff-go nda/data-x-team-project

