

DELD – Tutorial 1

ECED SVNIT

 What value of series resistor is required to limit the current through a LED to a 20 mA with a forward drop of 1.6 V when connected to a 10 V Supply?

$$V_S = 10 \text{ V}; \quad V_D = 1.6 \text{ V}; \quad I_F = 20 \text{ mA} = 20 \times 10^{-3} \text{ A}$$

$$R_S = \frac{V_S - V_D}{I_F}$$

$$R_S = \frac{10 - 1.6}{20 \times 10^{-3}} = 420 \Omega$$

• Determine Vo and the series current/Diode current Id. Assume the forward drop across LED to be 1.8 Volts.

$$V_o = E - V_{K_1} - V_{K_2} = 12 \text{ V} - 2.5 \text{ V} = 9.5 \text{ V}$$

$$I_D = I_R = \frac{V_R}{R} = \frac{V_o}{R} = \frac{9.5 \text{ V}}{680 \Omega} = 13.97 \text{ mA}$$

 Find 1) Output Voltage 2) Voltage drop a cross series resistance 3) The current thro ugh Zener Diode

$$V = \frac{R_L E_i}{R + R_L} = \frac{10 \times 120}{5 + 10} = 80 \text{ V}$$
 Output voltage = $V_Z = 50 \text{ V}$

Voltage drop across $R = \text{Input voltage} - V_Z = 120 - 50 = 70 \text{ V}$

Load current,
$$I_L = V_Z/R_L = 50 \text{ V}/10 \text{ k}\Omega = 5 \text{ mA}$$

Current through R , $I = \frac{70 \text{ V}}{5 \text{ k}\Omega} = 14 \text{ mA}$

Applying Kirchhoff's first law, $I = I_L + I_Z$ \therefore Zener current, $I_Z = I - I_L = 14 - 5 = 9 \text{ mA}$

Concept of Rectification

Effect of Barrier Potential on HWR

Clamper Circuits

 A clamper is a network constructed of a diode, a resistor, and a capacitor that shifts a waveform to a different dc level without changing the appearance of the applied signal.

Steps

Step 1: Start the analysis by examining the response of the portion of the input signal that will forward bias the diode.

Step 2: During the period that the diode is in the "on" state, assume that the capacitor will charge up instantaneously to a voltage level determined by the surrounding network.

Step 3: Assume that during the period when the diode is in the "off" state the capacitor holds on to its established voltage level.

Step 4: Throughout the analysis, maintain a continual awareness of the location and defined polarity for v_o to ensure that the proper levels are obtained.

Step 5: Check that the total swing of the output matches that of the input.

This is a property that applies for all clamping networks, giving an excellent check on the results obtained.

Clamper - Working

Clamper - Working

Concept Check

Concept Check

Two Level Clipper Circuit

Determine Output assuming Ideal Diodes

Zener Diode Clipper Circuits

To Be Continued...

