MA 503: Homework 12

Dane Johnson

October 21, 2020

Problem 20

(Part 1) Show that the sum of simple functions is a simple function and the product of simple functions is a simple function.

Let ϕ_1 and ϕ_2 be simple functions both defined on the measurable set $E \subset \mathbb{R}$ (by definition, a simple function must be measurable which means its domain must be measurable) with:

$$\phi_1(x) = \sum_{n=1}^N \alpha_n \chi_{A_n}, \quad \text{where } A_n = \{x : \phi_1(x) = \alpha_n\}$$

$$\phi_2(x) = \sum_{m=1}^M \beta_m \chi_{B_m}, \quad \text{where } B_m = \{x : \phi_2(x) = \beta_m\}$$

Since ϕ_1 and ϕ_2 are measurable functions, the sum $\phi_1 + \phi_2$ is measurable. To show that $\phi_1 + \phi_2$ is simple, we need to show that $\phi_1 + \phi_2$ assumes only a finite number of values. Adding sets and relabeling if necessary, we can assume that $E = \bigcup A_m$ and $E = \bigcup$. This allows us to write:

$$\begin{split} \phi_1 + \phi_2 &= \sum_{m=1}^M \sum_{n=1}^N (\alpha_n + \beta_m) \chi_{A_n \cap B_m} \\ &= \sum_{m=1}^M \left[(\alpha_1 + \beta_m) \chi_{A_1 \cap B_m} + \dots + (\alpha_N + \beta_m) \chi_{A_N \cap B_m} \right] \\ &= \left[(\alpha_1 + \beta_1) \chi_{A_1 \cap B_1} + \dots + (\alpha_N + \beta_1) \chi_{A_N \cap B_1} \right] \\ &+ \left[(\alpha_1 + \beta_2) \chi_{A_1 \cap B_2} + \dots + (\alpha_N + \beta_2) \chi_{A_N \cap B_2} \right] \\ &\vdots \\ &+ \left[(\alpha_1 + \beta_M) \chi_{A_1 \cap B_M} + \dots + (\alpha_N + \beta_M) \chi_{A_N \cap B_M} \right] \\ &\vdots \\ &+ \left[(\gamma_1 \chi_{C_1} + \dots + \gamma_N \chi_{C_N}) \right] \\ &+ \left[(\gamma_{N+1} \chi_{C_{N+1}} + \dots + \gamma_{2N} \chi_{C_{2N}}) \right] \\ &\vdots \\ &+ \left[\gamma_{(M-1)N+1} \chi_{C_{(M-1)N+1}} + \dots + \gamma_{MN} \chi_{C_{MN}} \right] \\ &= \sum_{i=1}^{MN} \gamma_i \chi_{C_i} \;, \end{split}$$

where we used the fact that for any pair $n, m, \alpha_n + \beta_m$ is a real number and $A_n \cap B_m$ is a measurable set so that we can we can assign a coefficient γ_i and a characteristic function χ_{C_i} to each term in the finite sum. Also, since the A_n and B_m are disjoint, $(A_n \cap B_m) \cap (A_{n'} \cap B_{m'}) = \emptyset$ whenever $(n, m) \neq (n', m')$. This shows that $\phi_1 + \phi_2$ can be written in the form of a simple function and so

takes on only a finite number of values. Conclude that $\phi_1 + \phi_2$ is simple. By very similar reasoning, using coefficients of the form $\gamma_i = \alpha_n \beta_m$ instead of $\gamma_i = \alpha_n + \beta_m$ for the possible pairs (n, m),

$$\phi_1 \phi_2 = \sum_{m=1}^M \sum_{n=1}^N \alpha_n \beta_m \chi_{A_n \cap B_m} = \sum_{i=1}^{MN} \gamma_i \chi_{C_i} ,$$

where the C_i are disjoint measurable sets with $\cup C_i = E$. Conclude that $phi_1\phi_2$ is a measurable function (as the product of measurable functions) that assumes only a finite number of values and is therefore a simple function.

(Part 2) Let A and B be sets of real numbers and χ_A and χ_B corresponding characteristic functions. Show that the sum $\chi_A + \chi_B$ and the product $\chi_A \chi_B$ are simple functions and that,

$$\chi_{A \cap B} = \chi_A \chi_B$$

$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \chi_B$$

$$\chi_{A^c} = 1 - \chi_A$$

We may as well assume that $\chi_A, \chi_B, \chi_{A \cap B}, \chi_{A \cup B}, \chi_{\overline{A}} : D \subset \mathbb{R} \to \{0, 1\}$; that is, all characteristic functions mentioned have the same domain D where $A, B \subset D$. The reasoning would look the same for any choice of $D \subset \mathbb{R}$. Whether or not D is measurable is not important for the identities we are proving here, only for whether the functions are measurable or not. Let $x \in D$.

Either $x \in A \cap B$ or $x \notin A \cap B$. If $x \in A \cap B$ then $\chi_{A \cap B}(x) = 1$, $\chi_{A}(x) = 1$, and $\chi_{B}(x) = 1$ so $\chi_{A \cap B}(x) = 1 = 1 \cdot 1 = \chi_{A}(x)\chi_{B}(x)$. If $x \notin A \cap B$ then $\chi_{A \cap B}(x) = 0$ and $\chi_{A}(x) = 0$ or $\chi_{B}(x) = 0$ (or both of course). Then $\chi_{A \cap B}(x) = 0 = \chi_{A}\chi_{B}$. Since x was arbitrary, this shows that $\chi_{A \cap B} \equiv \chi_{A}\chi_{B}$ on D.

Exactly one of these four possibilities must hold: (i) $x \in A \cap B$, (ii) $x \in A \setminus B$, (iii) $x \in B \setminus A$, or (iv) $x \notin A \cup B$. We check that the equality $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$ is satisfied in each case.

(i)
$$\chi_{A \cup B}(x) = \chi_A(x) = \chi_B(x) = \chi_{A \cap B}(x) = 1$$

 $\implies \chi_{A \cup B}(x) = 1 = 1 + 1 - 1 = \chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$
(ii) $\chi_{A \cup B}(x) = \chi_A(x) = 1, \chi_B(x) = \chi_{A \cap B}(x) = 0$
 $\implies \chi_{A \cup B} = 1 = 1 + 0 - 0 = \chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$
(iii) $\chi_{A \cup B}(x) = \chi_B(x) = 1, \chi_A(x) = \chi_{A \cap B}(x) = 0$
 $\implies \chi_{A \cup B} = 1 = 0 + 1 - 0 = \chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$
(iv) $\chi_{A \cup B}(x) = \chi_A(x) = \chi_B(x) = \chi_{A \cap B}(x) = 0$
 $\implies \chi_{A \cup B}(x) = 0 = 0 + 0 - 0 = \chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$

Either $x \in A$ or $x \in A^c$. If $x \in A$, then $\chi_{A^c}(x) = 0$ and $\chi_A = 1$ so $\chi_{A^c} = 0 = 1 - 1 = 1 - \chi_A$. If $x \in A^c$, then $\chi_{A^c} = 1$ and $\chi_A = 0$ so $\chi_{A^c} = 1 = 1 - 0 = 1 - \chi_A$. Conclude that $\chi_{A^c} \equiv 1 - \chi_A$ on D.

Proposition 14 Let (E_i) be a sequence of decreasing measurable sets, that is, a sequence with $E_{n+1} \subset E_n$ for each $n \in \mathbb{N}$. Let $m(E_1) < \infty$. Then,

$$m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$$
.

Proposition 15 Let E be a given set. The following five statements are equivalent.

- i. E is measurable.
- ii. Given $\epsilon > 0$ there is an open set $O \supset E$ such that $m^*(O \setminus E) < \epsilon$.
- iii. Given $\epsilon > 0$ there is a closed set $F \subset E$ such that $m^*(E \backslash F) < \epsilon$.
- iv. There is a $G \in G_{\delta}$ with $E \subset O$ such that $m^*(G \setminus E) = 0$.

v. There is an $F \in F_{\sigma}$ with $F \subset E$ such that $m^*(E \backslash F) = 0$.

If $m^*(E) < \infty$, the above statements are equivalent to:

vi. Given $\epsilon > 0$, there is a finite union U of open intervals such that $m^*(U \triangle E) < \epsilon$.

Proposition 22 Let f be a measurable function defined on an interval [a, b], and assume that f takes on the values $\pm \infty$ only on a set of measure zero. Then given ϵ , we can find a step function g and a continuous function h such that

$$|f-g| < \epsilon$$
 and $|f-h| < \epsilon$

except on a set of measure less than ϵ ; i.e., $m(\{x: |f(x)-g(x)| \geq \epsilon\}) < \epsilon$ and $m(\{x: |f(x)-g(x)| \geq \epsilon\}) < \epsilon$. If in addition, $m \leq f \leq M$, then we may choose the functions g and h such that $m \leq g, h \leq M$.

Definition If A is any set, we define the characteristic function χ_A of the set A as

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}.$$

The function A is measurable if and only if A is measurable.

Remark By this definition, the existence of a nonmeasurable set implies the existence of a non-measurable function.

Definition A real-valued function ϕ is called <u>simple</u> if it is measurable and assumes only a finite number of values. If ϕ is simple and has the values $\alpha_1, ..., \alpha_n$ then $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$ where $A_i = \{x : \phi(x) = \alpha_i\}$. The sum, product, and difference of two simple functions are simple.

Problem 23 Prove Proposition 22 by establishing the following lemmas:

(a) Given a measurable function f on [a, b] that takes on the values $\pm \infty$ only on a set of measure zero, and given $\epsilon > 0$, there is an M such that $|f| \leq M$ except on a set of measure less than $\epsilon/3$.

Let $E_n = \{x : |f(x)| > n\}$ for each $n \in \mathbb{N}$. Since f is measurable, |f| is measurable and therefore each set E_n is measurable. Also, $E_{n+1} \subset E_n$ for each n and $m(E_1) \leq m([a,b]) < \infty$. By Proposition 14,

$$\lim_{n\to\infty} m(E_n) = m\left(\bigcap_{n=1}^{\infty} E_n\right) = m(\{x : f(x) = \pm \infty\}) = 0.$$

It follows that given $\epsilon > 0$, there is an M such that for all $n \geq M$, $m(E_n) < \epsilon/3$. In particular, $m(E_M) < \epsilon/3$ and $E_M^c = \{x : |f(x)| \leq M\}$. That is, $|f| \leq M$ except on the set E_M , which is of measure $\epsilon/3$.

(b) Let f be a measurable function on [a,b]. Given $\epsilon > 0$ and $M \ge 0$ there is a simple function ϕ such that $|f(x) - \phi(x)| < \epsilon$ except where $|f(x)| \ge M$. If $m \le f \le M$, then we may take ϕ so that $m \le \phi \le M$.

Let $\epsilon > 0$. Since $M < \infty$, there is a $k \in \mathbb{N}$ such that $k\epsilon \geq M$ and $-k\epsilon \leq M$. Assume k to be the smallest such integer.

$$A_{1} = f^{-1}([0, \epsilon)),$$

$$A_{2} = f^{-1}([\epsilon, 2\epsilon)),$$

$$A_{3} = f^{-1}([2\epsilon, 3\epsilon)),$$

$$\vdots$$

$$A_{k} = f^{-1}([(k-1)\epsilon, k\epsilon))$$

$$A_{-1} = f^{-1}([-\epsilon, 0)),$$

$$A_{-2} = f^{-1}([-2\epsilon, -\epsilon))$$

$$\vdots$$

$$A_{-k} = f^{-1}([-k\epsilon, -(k-1)\epsilon))$$

The A_i are disjoint and for $I:=\{-k,...,-1,1,...,k\},\ \cup_{i\in I}A_n\supset [-M,M]$. So for each $x\in [a,b]$ such that $|f(x)|\leq M,\ f(x)$ lies within exactly one of the A_i . Let $\alpha_i=i\epsilon-\epsilon/2$ for i=1,...,k and $\alpha_i=-i\epsilon+\epsilon/2$ for i=-1,...,-k. That is, α_i is the midpoint of the half open interval used in the definition of the set A_i . Define $\phi(x)=\sum_{i\in I}\alpha_i\chi_{A_i}(x)$ for each $x\in [a,b]$ such that $|f(x)|\leq M$. Then since each of the A_i are measurable (this follows from the fact that f is measurable), χ_{A_i} is measurable for each i and so ϕ is measurable. Since ϕ is measurable and assumes only finitely many values, ϕ is a simple function. Let $x\in [a,b]$ such that $|f(x)|\leq M$. Then $x\in A_i$ for some $i\in I$ so $|f(x)-\phi(x)|=|f(x)-\alpha_i|\leq \epsilon/2<\epsilon$.

If $m \leq f \leq M$ use a similar approach. Find $k \in \mathbb{N}$ such that $m + k\epsilon \leq M$ but for which $m + (k+1)\epsilon > M$.

$$A_{1} = f^{-1}([m, m + \epsilon))$$

$$A_{2} = f^{-1}([m + \epsilon, m + 2\epsilon))$$

$$\vdots$$

$$A_{k} = f^{-1}([m + (k - 1)\epsilon, m + k\epsilon))$$

$$A_{k+1} = f^{-1}([m + k\epsilon, M]) \quad (\epsilon \ge M - (m + k\epsilon) \ge 0)$$

Define $\alpha_1 = m + \epsilon/2$, $\alpha_2 = m + (3/2)\epsilon,...,\alpha_k = m + (k-1/2)\epsilon$, $\alpha_{k+1} = (m+k\epsilon+M)/2$. That is, take α_i to be the midpoint of the interval used to define A_i . Let $\phi = \sum_{i=1}^{k+1} \alpha_i \chi_{A_i}$. Then ϕ is a simple function. For each $x \in [a,b]$, $x \in A_i$ for exactly one of the disjoint A_i and so $|\phi(x) - f(x)| < \epsilon$ and $m \le \phi \le M$.

(c) Given a simple function ϕ defined on [a,b], there is a step function g defined on [a,b] such that $g(x) = \phi(x)$ except on a set of measure $\epsilon/3$. If $m \le \phi(x) \le M$, then we may take g so that $m \le g \le M$.

Let $\phi: [a,b] \to \{\alpha_1,...,\alpha_n\}$, $\phi(x) = \sum_{i=1}^n \alpha_i \chi_{A_i}(x)$. Each A_i is measurable and $m^*(A_i) = m(A_i) \le m([a,b]) < \infty$. By Proposition 15 (ii) there is an open set O_i' such that $m^*(O_i' \setminus A_i) < \epsilon/(6n)$. Let $O_i = O_i' \cap [a,b]$ for which we still have $A_i \subset O_i$ (since $A_i \subset [a,b]$ and $A_i \subset O_i'$) and $m^*(O_i \setminus A_i) < \epsilon/(6n)$. The open set O_i can be written as a countable union of disjoint open intervals, $O_i = \bigcup_{n \in \mathbb{N}} I_n$.

$$m^*(O_i) = m^*\left(\bigcup I_n\right) = m\left(\bigcup I_n\right) = \sum_{n=1}^\infty m(I_n) = \lim_{N \to \infty} \sum_{n=1}^N m(I_n)$$

$$\Longrightarrow \exists N \text{ s.t. } \sum_{N+1}^\infty m(I_n) < \epsilon/(6n) \quad \text{(the terms of a convergent series tend to zero)}.$$
 Define $U_i := \bigcup_{n=1}^N I_n$
$$m^*(O_i \backslash U_i) = m^*(O_i \cap U_i^c) = m^*(\bigcup_{n=N+1}^\infty I_n) = m(\bigcup_{n=N+1}^\infty I_n) = \sum_{n=N+1}^\infty m(I_n) < \epsilon/(6n)$$

Repeat this process for each A_i to produce a U_i . Since each U_i is a union of open intervals, we can define the step function $g = \sum_{i=1}^n \alpha_i \chi_{U_i}$. Since the U_i are disjoint, for each $x \in [a, b]$, $x \in U_i$ for at most one U_i . Then $g(x) = \alpha_i = \phi(x)$ for $x \in A_i \cap U_i$. So for each i we have $\phi(x) = \alpha_i = g(x)$ except on $U_i \triangle A_i$ and:

$$m(U_i \triangle A_i) = m((U_i \backslash A_i) \cup (A_i \backslash U_i))$$

$$\leq m(U_i \backslash A_i) + m(A_i \backslash U_i)$$

$$= m^*(U_i \backslash A_i) + m^*(A_i \backslash U_i)$$

$$\leq m^*(O_i \backslash A_i) + m^*(O_i \backslash U_i)$$

$$< \epsilon/(6n) + \epsilon/(6n) = \epsilon/(3n) .$$

In total, $\phi(x) = g(x)$ except on a set of measure $n\epsilon/(3n) = \epsilon/3$.

If $m \leq \phi(x) \leq M$, define g just as before except that instead of using χ_{U_i} , use

$$\chi'_{U_i} = \begin{cases} 1 & x \in U_i \\ m & x \notin U_i \end{cases}.$$

Then whenever $\phi(x) = g(x)$, it must be that $m \leq g(x) \leq M$ and whenever $\phi(x) \neq g(x)$ we still have either $m \leq g(x) = \alpha_i \leq M$ for some α_i or $g(x) = m \leq M$. This change accounts for the possibility that m > 0 which would allow g(x) = 0 < m to occur.

(d) Given a step function g defined on [a,b] there is a continuous function h defined on [a,b] such that g(x) = h(x) except on a set of measure $\epsilon/3$. If $m \le g \le M$ we can take h such that $m \le h \le M$.

Let g be a step function defined on [a,b]. Then g can be written in the form $g = \sum_{i=1}^m \alpha_i \chi_{I_i}$ where the I_i are intervals. The intervals can be taken so that they are disjoint and $\bigcup_{i=1}^m I_i = [a,b]$. Also, if it is the case that I_j and I_k are consecutive intervals and $\alpha_j = \alpha_k$ then we can collapse I_j and I_k into a single interval $I_l = I_j \cup I_k$ on which $g(x) = \alpha_j = \alpha_k =: \alpha_l$. Relabelling if necessary, assume a is the left endpoint of the interval I_1 and b the right endpoint of the last interval, I_m , used in the definition of g. We will use a construction that does not depend on whether the endpoints of any particular interval are open or closed (to include a and b we need at least two closed endpoints). For purely notational convenience, therefore, we will write most of the intervals as if they were all open - but it should be understood that these intervals may not take this form. Write

$$I_1 = [p_0, p_1) = [a, p_1)$$

$$I_2 = (p_1, p_2)$$

$$\vdots$$

$$I_n = (p_{n-1}, p_n] = (p_{n-1}, b] .$$

The function g is discontinuous at the n-1 points $p_1,...,p_{n-1}$. We define h to be equal to g except at intervals of the size $\epsilon/[3(n-1)]$ around each of these points of discontinuity (if n=1, g is constant on [a,b] and so already continuous itself). Let $\Delta x = \epsilon/[3(n-1)]$.

$$h(x) = \begin{cases} \alpha_1 & a \leq x \leq p_1 - \Delta x/2 \\ \frac{\alpha_2 - \alpha_1}{\Delta x} [x - (p_1 - \Delta x/2)] + \alpha_1 & p_1 - \Delta x/2 < x < p_1 + \Delta x/2 \\ \alpha_2 & p_1 + \Delta x/2 \leq x \leq p_2 - \Delta x/2 \\ \frac{\alpha_3 - \alpha_2}{\Delta x} [x - (p_2 - \Delta x/2)] + \alpha_2 & p_2 - \Delta x/2 < x < p_2 + \Delta x/2 \\ \vdots & \vdots & \vdots \\ \frac{\alpha_n - \alpha_{n-1}}{\Delta x} [x - (p_{n-1} - \Delta x/2)] + \alpha_{n-1} & p_{n-1} - \Delta x/2 < x < p_{n-1} + \Delta x/2 \\ \alpha_n & p_{n-1} + \delta x/2 \leq x \leq b \end{cases}$$

The result is that h is constant and agrees with g except near the 'jumps' of g, where h is then defined to be a linear function connecting each of the constant portions in order to satisfy continuity. Then h disagrees with g on n-1 intervals each of length $\epsilon/[3(n-1)]$. That is, h is a continuous function for which h(x) = g(x) except on a set of measure $\epsilon/3$. Using this construction of h, it follows that if $m \le g \le M$, then $m \le h \le M$ as well.

Conclusion Let f be a measurable function defined on [a,b] and assume that f takes on the values $\pm\infty$ only on a set of measure zero. Then given $\epsilon>0$, there is an M such that $|f|\leq M$ except on a set A of measure less than $\epsilon/3$ by (a). By (b) there is a simple function ϕ such that $|f-\phi|<\epsilon$ except where $|f|\geq M$. By (c) there is a step function g such that $\phi=g$ except on a set C of measure less than $\epsilon/3$. So $|f-g|=|f-\phi|<\epsilon$ except possibly on $A\cup C$ where $m(A\cup C)<2\epsilon/3<\epsilon$. By (d) there is a continuous function h such that g=h except on a set D of measure less than $\epsilon/3$. So $|f-h|=|f-g|=|f-\phi|<\epsilon$ except possibly on $A\cup C\cup D$ with $m(A\cup C\cup D)<3\epsilon/3=\epsilon$. The results are only improved if $m\leq f\leq M$ since in this case we can find ϕ such that $|f-\phi|<\epsilon$ over a more inclusive set.