THE STANDARD MODE

IAN LIM LAST UPDATED JANUARY 22, 2019

These notes were taken for the The Standard Model course taught by Christopher Thomas at the University of Cambridge as part of the Mathematical Tripos Part III in Lent Term 2019. I live-TFXed them using Overleaf, and as such there may be typos; please send questions, comments, complaints, and corrections to itel2@cam.ac.uk.

Many thanks to Arun Debray for the LATEX template for these lecture notes: as of the time of writing, you can find him at https://web.ma.utexas.edu/users/a.debray/.

CONTENTS

1. Friday, January 18, 2019 1 3

Monday, January 21, 2019

Lecture 1.

Friday, January 18, 2019

Note. Here are some preliminary administrative notes on the course. Lecture notes and example sheets are available online at http://www.damtp.cam.ac.uk/user/cet34/teaching/. There are four example sheets and classes, plus a revision class in Easter Term. The instructor's email is c.e.thomas@damtp.cam.ac.uk. This course requires as prerequisites the Quantum Field Theory and Symmetries, Fields and Particles courses from Michaelmas term.

Some useful references are mentioned in the official course notes, including

- o Peskin and Schroeder
- Aitchinson and Hey
- o Halzen and Martin
- o Donoghue, Golowich, and Holstein.

The sign conventions will be mostly in line with the Tong QFT notes, though note the sign of γ^5 .

Quantum field theory was originally formulated to reconcile special relativity with quantum mechanics. The prototype for modern quantum field theories is quantum electrodynamics (QED), the quantum theory of light and charge. The Standard Model (SM) describes three fundamental forces (EM, weak, and strong) but does not include gravity. The model is an incredibly successful theory, having survived experimental tests up to the 1×10^8 GeV level. However, we know that because it does not include gravity, it must break down somewhere– perhaps at the Planck scale (1 \times 10¹⁹ GeV).

In the SM, forces are mediated by gauge bosons (spin = 1).

- \circ EM (QED): photon, γ (massless)
- Weak force: W boson and Z boson (massive)
- Strong force: gluon (massless)

Of course, our theory wouldn't be very good if we only had forces and no matter. In the SM, matter content is described by spin-1/2 fermions:

- \circ neutrinos: ν_e, ν_u, ν_τ (weak)
- charged leptons: e, μ, τ (weak and EM)
- \circ quarks: $\begin{pmatrix} u \\ d \end{pmatrix}$, $\begin{pmatrix} c \\ s \end{pmatrix}$, $\begin{pmatrix} t \\ b \end{pmatrix}$.

1

2 Standard Model Lecture Notes

We notice that there are three "generations" of matter particles where the properties of particles between generations are mostly the same, except the mass goes up in each generation.

Finally, we've got the Higgs boson, H (scalar, spin= 0). The Higgs is responsible for generating mass of the W and Z bosons as well as all the fermions. This was famously discovered at the Large Hadron Collider in 2012.¹

Gauge bosons are manifestations of *local* symmetries (as opposed to global symmetries)— we discussed this towards the end of Symmetries last term. The Standard Model gauge group is

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$
.

Here, $SU(3)_C$ is the "colour" symmetry of the strong interaction, QCD. The $SU(2)_L$ symmetry is a chiral (handedness) symmetry. And $U(1)_Y$ corresponds to something called hypercharge. It's actually a combination of the $SU(2)_L \times U(1)_Y$ symmetries that gives rise to the $U(1)_{EM}$ gauge symmetry of QED—these two symmetries together govern the electroweak interactions.

Chiral and gauge symmetries As always, we will use natural units in which $\hbar = c = 1$. To discuss *chiral symmetries*, let us consider a spin-1/2 Dirac fermion with a spinor field ψ satisfying the Dirac equation,

$$(i\partial \!\!\!/ - m)\psi = 0. \tag{1.1}$$

We use the Feynman slash notation, such that

$$\partial = \partial_{\mu} \gamma^{\mu}$$
.

The (Dirac) adjoint (bar notation) is defined $\bar{\psi} = \psi^{\dagger} \gamma^{0}$, and satisfies

$$\bar{\psi}(-i\partial^{\leftarrow} - m) = 0, \tag{1.2}$$

where δ^{\leftarrow} acts to the left. The Dirac matrices γ^{μ} are a set of 4×4 matrices which satisfy the Lorentz algebra,

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}I,\tag{1.3}$$

where we will take $g^{\mu\nu}={\rm diag}(1,-1,-1,-1)$ (the Minkowski metric with the mostly minus convention) and curly braces denote anticommutators as usual. We also define the γ^5 matrix to be

$$\gamma^5 = +i\gamma^0 \gamma^1 \gamma^2 \gamma^3 \tag{1.4}$$

so that $(\gamma^5)^2=I, \{\gamma^5, \gamma^\mu\}=0$. In the *chiral/Weyl basis*, the gamma matrices take the form

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \gamma^5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{1.5}$$

This basis is so named because γ^5 picks out the left- and right-handed components.

Consider the massless limit of the Dirac equation,

$$\partial \psi = 0 \implies \partial (\gamma^5 \psi) = 0. \tag{1.6}$$

Then we can define the projection operators,

$$P_{R,L} = \frac{1}{2}(1 \pm \gamma^5).. \tag{1.7}$$

This allows us to describe the components of a Dirac spinor:

$$\psi_{R,L} \equiv P_{R,L}\psi \implies \gamma^5 \psi_{R,L} = \pm \psi_{R,L}. \tag{1.8}$$

These are eigenstates of the chirality operator, and are called "right-handed" or "left-handed" depending on whether they change sign under application of γ^5 .

These are only properly eigenstates in the massless limit– if the particles are massive, then right-handed and left-handed states can mix (e.g. under Lorentz boosts). In chiral bases, ψ_R (ψ_L) only contains lower (upper) 2-component spinor degrees of freedom.

The effect of the field after projection is that ψ_L (ψ_R) annihilates left-handed (right-handed) chiral particles. Note also that the Dirac adjoint is

$$\bar{\psi}_{R,L} = (P_{R,L}\psi)^{\dagger}\gamma^{0} = \psi^{\dagger}\frac{1}{2}(1\pm\gamma^{5})\gamma^{0} = \bar{\psi}P_{L,R}.$$
(1.9)

¹Strictly, a Higgs-like particle which we have since verified many of the other properties of.

We now observe that a massless Dirac fermion has a *global* $U(1)_L \times U(1)_R$ chiral symmetry:

$$U(1)_{R,L}: \psi_{R,L} \to e^{i\alpha_{R,L}} \psi_{R,L}$$

as can be seen from the Dirac Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi = \bar{\psi}_L i\partial \!\!\!/ \psi_L + \bar{\psi}_R i\partial \!\!\!/ \psi_R - m(\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R).$$

However, the mass term explicitly breaks this chiral symmetry (it couples the left- and right-handed eigenstates together). It changes our chiral symmetry to a vector symmetry where $\alpha_L = \alpha_R = \alpha$ so the the field as a whole transforms to

$$U(1)_L \times U(1)_R \to U(1)_V : \psi \to e^{i\alpha} \psi.$$

Lecture 2.

Monday, January 21, 2019

Today we will continue the review of the Dirac field (cf. http://www.damtp.cam.ac.uk/user/tong/qft.html).

Review of Dirac field Recall that we can write the Dirac field ψ as a sum over momenta and spin states,

$$\psi(x) = \sum_{p,s} \left[b^s(p) u^s(p) e^{-ip \cdot x} + d^{s\dagger} v^s(p) e^{+ip \cdot x} \right], \tag{2.1}$$

where $s=\pm 1/2$ and $\sum_p\equiv\int \frac{d^3p}{(2\pi)^3\sqrt{2E_p}}$. Momentum eigenstates are defined as

$$|p\rangle = b^{\dagger}(p)|0\rangle$$
,

and the relativistic normalization of these momentum eigenstates is $\langle p|q\rangle=(2\pi)^3(2E_{\mathbf{p}})\delta^{(3)}(\mathbf{p}-\mathbf{q})$. The identity can be written as $I=\sum_p|p\rangle\langle p|$. Here, b^\dagger,d^\dagger are creation operators for positive and negative frequency modes and u,v are our plane wave solutions to the Dirac equation.

That is, instead of writing a full four-component spinor we can write solutions

$$(p - m)u = 0,$$

$$(p + m)v = 0,$$

so that in the chiral basis, our plane wave solutions take the form

$$u^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \xi^{s} \\ \sqrt{p \cdot \overline{\sigma}} \xi^{s} \end{pmatrix}, \quad u^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \overline{\sigma}} \eta^{s} \\ -\sqrt{p \cdot \overline{\sigma}} \eta^{s} \end{pmatrix}. \tag{2.2}$$

Here, $\sigma^{\mu} = (I_2, \sigma^i)$ and $\bar{\sigma}^{\mu} = (I_2, -\sigma^i)$. (I write the 2 × 2 identity matrix as I_2 here to avoid confusion.) *Helicity* is defined as the projection of angular momentum onto a linear momentum direction. That is, the helicity operator takes the form

$$h = \mathbf{J} \cdot \hat{\mathbf{p}} = \mathbf{s} \cdot \hat{\mathbf{p}} \tag{2.3}$$

where the angular momentum operator is

$$\mathbf{J} = \mathbf{r} \times \mathbf{p} + \mathbf{s} \tag{2.4}$$

with

$$s_i = \frac{i}{4} \epsilon_{ijk} \gamma^j \gamma^k = \frac{1}{2} \begin{pmatrix} \sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix}$$
 (2.5)

in the chiral basis.

A massless spinor u then satisfies pu = 0, which means that

$$hu(p) = \frac{\gamma^5}{2}u(p)$$

$$hu_{R,L} = \frac{\gamma^5}{2}u_{R,L} = \pm \frac{1}{2}u_{R,L}.$$

Thus u can be decomposed into a basis of eigenstates u_R , u_L of the chirality operator, where u_R has positive helicity and u_L , negative helicity.

A few notes on chirality:

- Chiral states are only eigenstates of the Dirac equation when m = 0 (i.e. they don't mix).
- Helicity is defined for m = 0 and $m \neq 0$, but it is not Lorentz invariant when $m \neq 0$. This is because for a massive spinor, we could always imagine Lorentz boosting into a frame where the particle appears to be going the other way (while the direction of its angular momentum is unchanged).
- \circ There is only a 1-1 correspondence between helicity and chirality when m = 0.

Review of gauge symmetry (local symmetry) Recall that we had a global symmetry where $\psi \to e^{i\alpha}\psi$, with $\alpha \in \mathbb{C}$. Now suppose we promote α to a function of x, $\alpha = \alpha(x)$ and

$$\psi \to e^{i\alpha(x)}\psi. \tag{2.6}$$

Under this local transformation, the old kinetic term is no longer invariant, as it becomes

$$\bar{\psi}i\partial\psi \to \bar{\psi}i\partial\psi - (\bar{\psi}\gamma^{\mu}\psi)(\partial_{\mu}\alpha(x)). \tag{2.7}$$

The way around this is to introduce a *covariant derivative* D_{μ} such that

$$D_{\mu}\psi(x) \to \exp(i\alpha(x))D_{\mu}\psi(x).$$
 (2.8)

That is, the derivative transforms like the field itself under a gauge transformation so that our kinetic terms are preserved.

To do this, let us introduce a gauge field $A_{\mu}(x)$ such that

$$D_{\mu}\psi = (\partial_{\mu} + igA_{\mu})\psi$$
 where $A_{\mu}(x) \to A_{\mu}(x) - \frac{1}{g}\partial_{\mu}\alpha$ (2.9)

so that $\bar{\psi}iD\psi$ is invariant.

We could also introduce a kinetic term for the gauge fields,

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} \equiv \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}. \tag{2.10}$$

Equivalently $F_{\mu\nu}$ can be defined by a condition on g,

$$igF_{\mu\nu} = [D_{\mu}, D_0].$$
 (2.11)

What other gauge theories can we discuss? The theory of QED has a U(1) gauge symmetry that treats LH and RH fields equivalently ($\alpha_L(x) = \alpha_R(x)$). However, the weak gauge bosons only couple to LH fields, but U(1) is actually not the appropriate symmetry—we will need SU(2). This completes the review of abelian gauge symmetries. We will review non-abelian gauge symmetries a little later.

Types of symmetry Symmetries may manifest themselves in a variety of ways.

- (1) We can have a symmetry that is *intact* (unbroken), e.g. the $U(1)_{EM}$ and $SU(3)_C$ gauge symmetries.
- (2) The symmetry of \mathcal{L} is broken by an *anomaly* (i.e. it holds classically but when we quantize, something breaks). Not a true symmetry. For example, the global axial U(1) symmetry in the SM.
- (3) A symmetry can hold for some terms in the Lagrangian but not others (i.e. the terms which break the symmetry might be small at some relevant energy scale, so we can treat them perturbatively). This is an *explicitly broken* symmetry, though it may be an approximate symmetry if the breaking terms are small. For example, the global *isospin* symmetry relating *u* and *d* quarks in QCD.
- (4) We might have a hidden symmetry which is respected by the Lagrangian but not by the vacuum.
 - (a) A *spontaneously broken symmetry* results in a vacuum expectation value (VEV) for one or more scalar fields (cf. Higgs mechanism). In the SM, the $SU(2)_L \times U(1)_{\gamma} \rightarrow U(1)_{EM}$ is a spontaneously broken symmetry.
 - (b) Even without scalar fields, we can have *dynamical breaking* from quantum effects, e.g. the $SU(2)_L \times SU(2)_R$ global symmetry in QCD (massless quarks).

Discrete symmetries Some discrete symmetries we should be familiar with include

- \circ Parity $(P): (t, \mathbf{x}) \to (t, -\mathbf{x})$
- Time reversal (T): $(t, \mathbf{x}) \rightarrow (-t, \mathbf{x})$
- \circ Charge conjugation (*C*): exchanges particles \leftrightarrow antiparticles.

These first two are spacetime symmetries, while the last is a bit different.

Example 2.12. Let's look at some examples of these symmetries in the Standard Model.

- The $\bar{\psi}\gamma^{\mu}\psi$ couplings between gauge bosons and fermions, e.g. QED and QCD, are invariant under P and C separately.
- $\bar{\psi}\gamma^{\mu}(1-\gamma^5)\psi$ couplings to fermions, e.g. the weak interaction, are not.
- The weak interaction violates *CP*, which implies that *T*-symmetry is also violated from the *CPT* theorem (i.e. a system must be invariant under the combination of *C*, *P*, and *T*).

To understand these statements, it will be useful to investigate the consequences of these C, P, T symmetries individually and together.

Symmetry operators We will start by quoting a result proven by Wigner.

Theorem 2.13. If physics is invariant under some transformation $\Psi \to \Psi'$ (with $\Psi, \Psi' \in$ some Hilbert space), then there is an operator W such that $\Psi' = W\Psi$ and where either W is linear and unitary, or antilinear and anti-unitary.