Вероятностные алгоритмы проверки чисел на простоту

Баранов Иван НФИмд 01-22 10 ноября, 2022, Москва, Россия

Российский Университет Дружбы Народов

<u>Цели и задачи</u>

Цель лабораторной работы

Изучение алгоритов Ферма, Соловэя-Штрассена, Миллера-Рабина.

<u>работы</u>

Выполнение лабораторной

Наибольший общий делитель

Для построения многих систем защиты информации требуются простые числа большой разрядности. Всвязи с этим актуальной является задача тестирования на простоту натуральных чисел.

Тест Ферма

- Вход. Нечетное целое число n≥ 5.
- Выход. «Число n, вероятно, простое» или «Число n составное».
- 1. Выбрать случайное целое число $q^2 \le \alpha \le n-2$.
- 2. Вычислить $r = \partial_{-1}(modn)$
- 3. При r=1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное»..

Тест Соловэя-Штрассена

- Вход. Нечетное целое число n≥ 5.
- Выход. «Число n, вероятно, простое» или «Число n составное».
- 1. Выбрать случайное целое число q2 ≤ q≤ n− 2.
- 2. Вычислить $r = a^{(\frac{n-1}{2})} (math)$
- 3. При $r \neq 1$ и $r \neq n 1$ результат: «Число п составное».
- 4. Вычислить символ Якоби $s = (a)_n$
- 5. При *r*= (*mth*) результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

Тест Миллера-Рабина.

- 1. Представить n-1 в виде n-1=2утде r нечетное число
- 2. Выбрать случайное целое число q2 ≤ q≤ q1.
- 3. Вычислить y = l(modn)
- 4. При *у*≠ **1** и *у*≠ *n*− **1** выполнить действия
 - Положить *j*= 1
 - Если j≤ s− 1 и y≠ n− 1 то
 - Положить $y = \sqrt[3]{mah}$
 - При y=1 результат: «Число n составное».
 - Положить j= j+ 1
 - При *у*≠ *n*− 1 результат: «Число п составное».
- 5. Результат: «Число n, вероятно, простое».

Пример работы алгоритма

Figure 1: Работа алгоритма

Выводы

Результаты выполнения лабораторной работы

Изучили алгоритмы Ферма, Соловэя-Штрассена, Миллера-Рабина.