Computational model of lambda calculus

Martin Stoev, Anton Dudov2018-9-28

Contents

1 General Definitions

1 General Definitions

Definition 1.1. An enumeration operator (or e-operator) Ψ^A is a r.e. set. For any $A \subseteq \mathbb{N}$

$$x \in \Psi^A \iff \exists u \ (finite \ D_u \subseteq A) \& \ ((x, u) \in \Psi)$$
 (1)

Definition 1.2. If A is a r.e. set then Ψ_A is the enumeration operator defined by it, namely

$$x \in \Psi_A^B \iff \exists u \, (D_u is finite) \, \& \, ((x, u) \in A \land D_u \subseteq B)$$
 (2)

Definition 1.3. If θ is an enumeration operator then G_{θ} is a well-defined r.e. set defining it, namely

$$(x,u) \in G_{\theta} \iff x \in \theta^{D_u}$$
 (3)

Lemma 1.1. If Φ is an enumeration operator, then $\Phi_{G_{\Psi}} = \Psi$

Proof. (\subseteq)

$$x \in \Phi_{G_{\Psi}}^{B} \Rightarrow \exists u < x, u > \in G_{\Psi} \& D_{u} \subseteq B$$
$$\Rightarrow \exists u < x, u > \in \Psi^{D_{u}} \& D_{u} \subseteq B$$

since Du \subseteq B & e-operator is monotone it follows that: $x \in \Psi^B$ (\supseteq)

Since Ψ is an e-operator, then $\forall B \; \exists e : \; \Psi = \Phi_e$, therefore:

$$x \in \Phi_e^B \Rightarrow \exists u < x, u > \in W_e \& D_u \subseteq B$$

$$\Rightarrow \exists u < x, u > \in W_e \& D_u \subseteq D_u, therefore$$

$$x \in \Psi^{D_u} \Rightarrow < x, u > \in G_{\Psi}$$

$$\Rightarrow \exists u < x, u > \in G_{\Psi} \& D_u \subseteq B$$

$$\Rightarrow x \in \Phi_{G_{\Psi}}$$

Definition 1.4. Let η be an assignment of r.e. sets to the variables of lambda calculus. With every λ -term E we inductively associate a r.e. set $[\![E]\!]_{\eta}$:

1. $[\![x]\!]_{\eta} = \eta(x)$

2. $[E_1 E_2]_{\eta} = \Psi_{[E_1]_{\eta}}([E_2]_{\eta})$

3. $[\![\lambda x.E]\!]_{\eta} = G_{\lambda X.[\![E]\!]_{\eta[x:=X]}}$

Where $\lambda X.[\![E]\!]_{\eta[x:=X]}$ is a function

$$A \in W \mapsto [\![E]\!]_{\eta[x:=A]} \tag{4}$$

Lemma 1.2. For any environment η and term t, $[\![t]\!]_{\eta}$ is an c.e. set.

Proof. By structural induction on the definition of $[t]_{\eta}$.

- 1. $[x]_{\eta} = \eta(x)$ by definition
- 2. To show that $\Psi_{\llbracket E_1 \rrbracket_{\eta}}(\llbracket E_2 \rrbracket_{\eta})$ is a c.e. set we prove that Ψ_A^B is an enumeration operator which follows from

$$n \in \Psi_A^B \iff \exists u (D_u \subseteq B \& < n, u > \in A)$$
 (5)

3. Since the graph of an enumeration operator is an r.e. set, to show that $[\![\lambda_x u]\!]_\eta \stackrel{def1.4.3}{=} G_{\Lambda X.[\![u]\!]_{\eta[x:=X]}} \text{ is an r.e. set we prove that } \Lambda X.[\![u]\!]_{\eta[x:=X]} \text{ is an e-operator. This can be done inductively on u:}$

Let

$$[\![E]\!]_{\eta}[x := W_1 \ y := W_2] = {}^{E}\Psi_1^W \oplus W_2, where$$

$${}^{E}\Psi = \{ \langle x, v \rangle \mid x \in [\![E]\!]_{\eta_{[x := L(D_v) \ y := R(D_v)]}} \}$$

$$x \in {}^{E}\Psi^W \iff \exists u < x, u > \in {}^{E}\Psi \& D_u \subset W$$

- If u = x, then $\Lambda X.[[u]]_{\eta[x:=X]}$ is the identity function $\Lambda X.X$, which is an enumeration operator.
- If $u = y \neq x$, then $\Lambda X.[u]_{\eta[x:=X]}$ is the constant function $\Lambda X.\eta(y)$, which is an enumeration operator.
- If $u = u_1 u_2$, then $\Lambda X. \llbracket u \rrbracket_{\eta[x:=X]}$ is $\Lambda X \Phi_{\llbracket u_1 \rrbracket_{\eta[x:=X]}} (\llbracket u_2 \rrbracket_{\eta[x:=X]})$. Where by the i.h. $\llbracket u_1 \rrbracket_{\eta[x:=X]}$ is an e operator, namely ${}^{u_1}\Psi$ and $\llbracket u_2 \rrbracket_{\eta[x:=X]}$ is an e operator, namely ${}^{u_2}\Psi$ Therefore $\Phi_{u_1}\Psi({}^{u_2}\Psi)$ is an e operator (by the proof from 1.2.2).
- If $u = \lambda_y$ E. Then

$$\stackrel{def}{=}^{E} \{ \langle x, v \rangle | \exists u \ x \in [\![E]\!]_{\eta} [x := L(D_u), y := R(D_u)] \& D_u \subseteq W \oplus D_v \}$$

$$= \{ \langle \langle x, v \rangle, u \rangle | x \in [\![E]\!]_{\eta} [x := L(D_u), y := R(D_u)] \& D_u \subseteq W \oplus D_v \}$$

Since $[\![E]\!]_{\eta}[x := L(D_u), y := R(D_u)]$ is an e operator (i.h) (e operators are r.e. by definition) and $D_u \subseteq W \oplus D_v$ is r.e. set it follows that the above set is an e operator.

Lemma 1.3. For the following theorem we will need one lemma beforehand for better readability, namely

$$[\![u]\!]_{\eta[x:=[\![v]\!]_{\eta}]} = [\![u[x \mapsto v]\!]\!]_{\eta} \tag{6}$$

Proof. Structural induction on u.

1. u = x, then:

$$[\![x]\!]_{\eta[x:=[\![v]\!]_{\eta}]} = \eta(x) = [\![v]\!]_{\eta} = [\![x[x \mapsto v]]\!]_{\eta}$$
(7)

2. $u = y \neq x$, then:

$$[\![y]\!]_{\eta[x:=[\![v]\!]_{\eta}]} = \eta(y) = [\![y]\!]_{\eta} = [\![y[\![x \mapsto v]\!]]_{\eta}$$
(8)

3. u = pq, then:

4. $u = \lambda_y$ p, then:

$$\begin{split} [\![\lambda_y p]\!]_{\eta[x:=[\![v]\!]_{\eta}]} &\stackrel{def1.4.3}{=} G_{\Lambda Y.[\![p]\!]_{\eta[x:][\![v]\!]_{\eta};y:=Y]}} \\ &\stackrel{ind.hyp}{=} G_{\Lambda Y.[\![p[x\mapsto v]]\!]_{\eta[y:=Y]}} \\ &\stackrel{def1.4.3}{=} [\![\lambda_y p[x\mapsto v]]\!]_{\eta} \end{split}$$

Theorem 1.4. If $E_1 \stackrel{\beta}{\twoheadrightarrow} E_2$ then $[\![E_1]\!]_{\eta} = [\![E_2]\!]_{\eta}$ for any η .

Proof. We will prove one step of the β reduction and then by induction the rest will follow

We have that $(\lambda x E_1)E_2 = E_1[x \mapsto E_2]$ and we will prove that

$$\begin{split} [\![(\lambda x E_1) E_2]\!]_{\eta} &= [\![E_1[x \mapsto E_2]]\!]_{\eta} \\ &= [\![(\lambda x E_1) E_2]\!]_{\eta} \overset{def.1.4.2}{=} \Psi_{[\![\lambda x E_1]\!]_{\eta}}([\![E_2]\!]_{\eta}) \\ &\overset{def.1.4.3}{=} \Psi_{G_{\Lambda X}[\![E_1]\!]_{\eta[x:=X]}}([\![E_2]\!]_{\eta}) \\ &\overset{Lemma1.1}{=} \Lambda X [\![E_1]\!]_{\eta[x:=[\![E_2]\!]_{\eta}]} \\ &\overset{def \Lambda}{=} [\![E_1]\!]_{\eta[x:=[\![E_2]\!]_{\eta}]} \\ &\overset{Lemma1.3}{=} [\![E_1[x \mapsto E_2]\!]_{\eta}] \end{split}$$

Definition 1.5. We define the fixed point combinator Y to be:

$$Y \stackrel{def}{=} \lambda f.((\lambda x. f(x x)) ((\lambda x. f(x x)))$$
(9)

Exercise 1.1. Show that any λ -term F has fixed point YF, such that

$$YF = F(YF). (10)$$

Proof.

$$\begin{split} YF &= \left(\left(\lambda x. F(x \; x) \right) \left(\left(\lambda x. F(x \; x) \right) \right. \\ &= F(\left(\lambda x. F(x \; x) \right) \left(\left(\lambda x. F(x \; x) \right) \right. \\ &= F(\lambda f. \left(\left(\lambda x. f(x \; x) \right) \left(\left(\lambda x. f(x \; x) \right) F \right) \\ &= F(YF) \end{split}$$

Exercise 1.2. Let Ψ be any e-operator. Show that Ψ can be expressed as:

$$\Psi = \Psi_{\llbracket x \rrbracket_n} \tag{11}$$

for suitable choise of assignment η .

Proof. Since Ψ is an e-operator, then $\forall B \; \exists e : \; \Psi = \Phi_e$, therefore:

$$n \in \Psi^B \iff \exists u < n, u > \in W_e \& D_u \subseteq B$$

$$\iff \exists u < n, u > \in \llbracket x \rrbracket_{\eta} \& D_u \subseteq B, where \eta(x) = W_e$$

$$\iff n \in \Psi^B_{\llbracket x \rrbracket_{\eta}}$$

Exercise 1.3. Let Ψ be any e-operator. Show that Ψ has a r.e. fixed point W, such that:

$$\Psi^W = W \tag{12}$$

Proof. Let $W = [\![Yx]\!]_{\eta}$, then:

$$[\![Yx]\!]_{\eta} = [\![x(Yx)]\!]_{\eta} = \Phi_{[\![x]\!]_{\eta}}([\![Yx]\!]_{\eta})$$
(13)

$$n \in \Phi_{\llbracket x \rrbracket_{\eta}}(\llbracket Yx \rrbracket_{\eta}) \iff \exists u < n, u > \in \llbracket x \rrbracket_{\eta} \& D_{u} \subseteq \llbracket Yx \rrbracket_{\eta}, \ let \ \eta(x) = W_{e}$$

$$\iff \exists u < n, u > \in W_{e} \& D_{u} \subseteq \llbracket Yx \rrbracket_{\eta}$$

$$\iff \eta \in \Psi^{\llbracket Yx \rrbracket_{\eta}}$$

Exercise 1.4. Show that for any assignment η :

$$[\![Yx]\!]_{\eta[x:=\emptyset]} = \emptyset \tag{14}$$

Proof. We know that:

$$[\![Yx]\!]_{\eta[x:=\emptyset]} = [\![x(Yx)]\!]_{\eta[x:=\emptyset]} = \Phi_{[\![x]\!]_{\eta[x:=\emptyset]}} ([\![Yx]\!]_{\eta[x:=\emptyset]})$$
(15)

$$n \in \Phi_{\llbracket x \rrbracket_{\eta[x:=\emptyset]}}(\llbracket Yx \rrbracket_{\eta[x:=\emptyset]}) \iff \exists u < n, u > \in \llbracket x \rrbracket_{\eta[x:=\emptyset]} \& D_u \subseteq \llbracket Yx \rrbracket_{\eta[x:=\emptyset]}$$
$$\iff \exists u < n, u > \in \emptyset \& D_u \subseteq \llbracket Yx \rrbracket_{\eta[x:=\emptyset]}$$
$$\Rightarrow \neg \exists n : n \in \Phi_{\llbracket x \rrbracket_{\eta[x:=\emptyset]}}$$

Random citation [1] embeddeed in text. Random citation [2] embeddeed in text.

References

- [1] S. B. Cooper, Computability Theory. 2003.
- [2] P. Odifreddi, Classical recursion theory. 1989.