



Progetto di alta formazione in ambito tecnologico economico e culturale per una regione della conoscenza europea e attrattiva approvato e cofinanziato dalla Regione Emilia-Romagna con deliberazione di Giunta regionale n. 1625/2021



Università degli Studi di Ferrara

# Outline

- Metrics for Hard Prediction
- Metrics for Ranking Prediction
- Metrics for Regression





# Outline

- Metrics for Hard Prediction
- Metrics for Ranking Prediction
- Metrics for Regression





# Predictive machine learning scenarios

- Hard Prediction (Classification): Predict a single category for each instance
  - Accuracy, Error, Precision, Recall (Sensitivity), Specificity, F1 Score
- Ranking Prediction: learn a model that outputs a score vector  $s(x)=(s_1(x),...,s_k(x))$  over the k classes
  - $s_i(x)$  is the score assigned to class  $C_i$  for instance x. This score indicates how likely it is that class label  $C_i$  applies. If we only have 2 classes, s(x) denotes the score of the positive class for x
  - ROC, Precision-Recall Curves





# Predictive machine learning scenarios

- **Probability Estimation**: learn a model that outputs a probability vector over classes
- **Regression:** learn an approximation  $g: X \to \mathbb{R}$  to the true labelling function f

• The metrics that you choose to evaluate your machine learning model is very important. Choice of metrics influences how the performance of machine learning algorithms is measured and compared





# Metrics for hard prediction

### **Confusion matrix**

- For **classification problems** where the output can be of two or more classes
- Each column refers to actual classes as recorded in the test set
- Each row to classes as predicted by the classifier

| <b>P</b>  | Actual    |           |  |
|-----------|-----------|-----------|--|
|           | Positives | Negatives |  |
| Positives | TP        | FP        |  |
| Negatives | FN        | TN        |  |

Assume positive label as true and negative label as false

**True positive (TP)**: predicted class true coincides with actual one, which is true

**True negative (TN)**: predicted false class coincides with actual false class

**False positive (FP)**: the actual data is false and the predicted is true

**False negative (FN)**: the actual data is true while the predicted is false





# Metrics for hard prediction

### **Confusion matrix**

# Actual Positives Negatives Positives TP FP Negatives FN TN

- Find a solution that maximizes TP and TN and minimizes FP and FN
- In the best solution FN and FP are 0





# Metrics for hard prediction

**Confusion matrix** 

Actual

F

F

Predicted

|           | Positives | Negatives | Marginals |
|-----------|-----------|-----------|-----------|
| Positives | 30        | 10        | 40        |
| Negatives | 20        | 40        | 60        |
| Marginals | 50        | 50        | 100       |

Actual

Predicted

|           | Positives | Negatives | Marginals |
|-----------|-----------|-----------|-----------|
| Positives | 20        | 30        | 50 -      |
| Negatives | 20        | 30        | 50        |
| Marginals | 40        | 60        | 100       |

same marginals, but the classifier makes a random choice





# 

# **Accuracy**

the proportion of correctly classified test instances

A atual

|          |           | Actual    |                                       |  |
|----------|-----------|-----------|---------------------------------------|--|
|          |           | Positives | Negatives                             |  |
| peq.     | Positives | TP        | FP                                    |  |
| redicted | Negatives | FN        | TN                                    |  |
| $\cap$   |           | ·         | · · · · · · · · · · · · · · · · · · · |  |

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Good when the number of examples for each label is nearly balanced.

Really bad when the set of examples is unbalanced (data are a majority of one class).





# Metrics for hard prediction

### **Accuracy**

The number of correct predictions made by the model.



Good when the number of examples for each some nearly balanced (data are a majority of one class)





# Metrics for hard prediction

### **Error rate**

The proportion of incorrectly classified test instances

### Actual

Positives Negatives

Positives TP FP

Negatives FN TN

$$Error\ rate = \frac{FP + FN}{TP + TN + FP + FN}$$

Equal to 1 - Accuracy





# Metrics for hard prediction

### **Error** rate

The proportion of incorrectly classified test instances



$$Error\ rate = \frac{FP + FN}{TP + TN + FP + FN}$$

Equal to 1 - Accuracy





# Metrics for hard prediction

# **True Positive Rate and False Positive Rate**

• The proportion of examples classified as positive (negative) among those that are actually true (false)

|       |           | Actual    |           |  |
|-------|-----------|-----------|-----------|--|
|       |           | Positives | Negatives |  |
| cted  | Positives | TP        | FP        |  |
| Predi | Negatives | FN        | TN        |  |

$$TP \ Rate = \frac{TP}{TP + FN}$$

$$FP \ Rate = \frac{FP}{FP + TN}$$





# Metrics for hard prediction

# Precision (P)

The proportion of examples predicted as true which are actually true

|       |           | Actual    |           |  |
|-------|-----------|-----------|-----------|--|
|       |           | Positives | Negatives |  |
| icted | Positives | TP        | FP        |  |
| redic | Negatives | FN        | TN        |  |

$$Precision = \frac{TP}{TP + FP}$$





# Metrics for hard prediction

### **Precision (P)**

The proportion of examples predicted as true which are actually true

$$Precision = \frac{TP}{TP + FP}$$

- Good when we need to minimize false positives
  - If we have 100 examples, 5 examples are +, if the model predicts ALWAYS TRUE P = 5 / (5+95) = 0.05 = 5% (FP high: 95)
  - If it predicts ALWAYS FALSE except for 1 + example classified as +, P = 1 / (1+0) = 100% (FP: 0)
- **Precision** is about being precise. So even if we managed to capture only one cancer case, and we captured it correctly, then we are 100% precise.





# Metrics for hard prediction

- Precision is a counterpart to TP rate:
  - TP rate is the proportion of predicted positives among the actual positives
  - P is the proportion of actual positives among the predicted positives

$$Precision = \frac{TP}{TP + FP}$$

• If the minority class is the class of interest and very small, accuracy and performance on the majority class are not the right quantities to optimise → USE PRECISION instead





# Metrics for hard prediction

# Recall (R) or Sensitivity

• Equal to TP Rate

Actual

Positives Negatives
Positives TP FP
Negatives FN TN

| Recall = | TP                   |
|----------|----------------------|
|          | $\overline{TP + FN}$ |

If we have 100 examples, 5 examples are +, if the model predicts ALWAYS TRUE recall is 100%, ALWAYS FALSE has recall 0%, ALWAYS FALSE except for ONE correct true has recall 20%

- Good when we need to minimize false negatives.
- Recall is not so much about capturing cases correctly but more about capturing all cases that have "cancer" with the answer as "cancer".





# Metrics for hard prediction

- So basically if we want to focus more on minimizing false negatives, we would want our Recall to be as close to 100% as possible without precision being too bad
- if we want to focus on **minimizing false positives**, then our focus should be to make Precision as close to 100% as possible.





# Metrics for hard prediction

# **Specificity**

• The proportion of false examples that are predicted as false.

### Actual

Positive O Negative

|    | Positives | Negatives |
|----|-----------|-----------|
| es | TP        | FP        |
| es | FN        | TN        |

$$Specificity = \frac{TN}{TN + FP}$$

**Good** when we need to minimize false positive. The exact opposite of Recall.

If we have 100 examples, 5 examples are +, if the model returns ALWAYS TRUE the specificity is 0%, ALWAYS FALSE the specificity is 100%





# Metrics for hard prediction

# F-Measure or F1-Score

- Considers Precision and Recall to give a score that represents both.
- Computed as the Harmonic mean

$$FMeasure = \frac{2 * Precision * Recall}{Precision + Recall}$$

With Recall=40% and Precision=60% the F-Measure is 48%.
With Recall=5% and Precision=100% the F-Measure is 9.5%.

If Accuracy and Recall are similar, the F-Measure behaves similar to an arithmetic mean, but as the difference between the two values increases, the F-Measure returns a score that tends to follow the lowest value the higher the difference is.





Next...

Metrics for ranking prediction



