

Space-Time Video Super-Resolution Using Deformable Attention Network Hai Wang¹, Xiaoyu Xiang^{2*}, Yapeng Tian³, Wenming Yang¹, Qingmin Liao¹

¹Tsinghua University, ²Meta Reality Lab, ³University of Rochester

T4V: Transformers for Vision

ZSM

TMNet

TMNet

Introduction

- ➤ **Motivation**: Most space-time video super-resolution (STVSR) models only use two adjacent frames, that is, short-term features, to synthesize the missing frame embedding, which cannot fully explore the information flow of consecutive input low-resolution frames. In addition, existing STVSR methods hardly exploit the temporal contexts explicitly to assist high-resolution frame reconstruction.
- Key Ideas: we propose a deformable attention network called STDAN for STVSR.
- First, we devise a long-short term feature interpolation (LSTFI) module, which is capable of excavating abundant content from more neighboring input frames for the interpolation process through a bidirectional RNN structure.
- Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts in dynamic video frames are adaptively captured and aggregated to enhance superresolution reconstruction.

LSTFI module consists of long-short term cells (LSTCs) with bidirectional RNN, which can fully exploit the whole input video frame features during the interpolation process.

Framework

Spatial-Temporal Deformable Feature Aggregation: through deformable attention, the cross-frame spatial aggregation phase dynamically fuses useful content from different frames. The adaptive temporal aggregation phase mixes the temporal contexts among these fused frame features further to acquire enhanced features.

Three different aggregation methods: the feature vector (red point) attends the valuable spatial content (yellow points) in a (a) 1x1 window, (b) 3x3 window, and (c) deformable window.

Overlayed LR Comparison Compariso

Overlayed LR

Quantitative Comparisons

STVSR	Vid4		Vimeo-Slow		Vimeo-Medium		Vimeo-Fast		Params
Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(M)
STARnet [1]	25.99	0.7819	33.10	0.9164	34.86	0.9356	36.19	0.9368	111.61
ZSM [7]	26.14	0.7974	33.36	0.9138	35.41	0.9361	36.81	0.9415	11.10
TMNet [8]	26.23	0.8011	33.51	0.9159	35.60	0.9380	37.04	0.9435	12.26
STDAN (Ours)	26.28	0.8041	33.66	0.9176	35.70	0.9387	37.10	0.9437	8.29

STARnet

STARnet

✓ We can see that our STDAN with the least parameters obtains state-of-theart performance on both Vid4 and Vimeo.

Ablation Study

			Ω_3		Ω_5	
Pa	5.44	5.54	5.54	5.82	8.29	
Feature	Short-term	1	1	1	1	
Interpolation	Long-short term					✓
Feature Aggregation	1×1 fixed window		✓			
	3×3 fixed window			/		
	deformable window				✓	✓
Vid4 (25.27	25.69	25.85	25.97	26.28	
Vimeo-F	35.88	36.22	36.41	36.63	37.10	
		-				

- ✓ Feature aggregation module can improve the reconstruction results.
- ✓ The larger the spatial range of feature aggregation, the more useful information can be captured to enhance recovery quality of HR frames.
- ✓ Combining long-term and short-term information can achieve better feature interpolation results.

^{*}Corresponding author