Véletlen fizikai folyamatok, második házi feladat

Horváth Bendegúz

2018. február 25.

1. feladat

A feladat szövege

A következőfeladatban leírt Perrin kísérlet megértéséhez oldjuk meg előszőr a két-dimenziós Brown mozgás egy egyszerűváaltozatát: l rácsállandójúnégyzetrácson egy részecske τ időközönként, egyenlő valószínűséggel ugrik a négy szomszédos rácspont egyikébe. A részecske (x0=0,y0=0) pontból indul. Határozzuk meg a $t=N\tau$ idő alatti várható elmozdulást, $\sqrt{\langle r^2 \rangle} = \sqrt{\langle x_t^2 \rangle + \langle y_t^2 \rangle}$ -t!

A feladat megoldása

Az órán megbeszltekhez hasonlóan a valószínűségi változó várható értékét felírhatjuk a valószínűségek és értékük összegeként, csak itt most két dimenziós vektorok összege lesz:

$$\langle e_i \rangle = \frac{1}{4} ((0,1) + (0,-1) + (1,0) + (-1,0)) = 0,$$

$$x_N = l \cdot \sum_{i=1}^N \sqrt{e_i^2},$$

mert e_i egy vektor, ezért kell a négyzetét venni, majd a gyökét, hogy a távolságot megkapjuk.

$$\langle x_N^2 \rangle = l^2 \sum_{j=1}^N e_j \sum_{i=1}^N \langle e_i \rangle = l^2 \sum_{i,j=1}^N \langle e_i e_j \rangle = l^2 \left(\sum_{i=1}^N \langle e_i^2 \rangle + \sum_{i,j\neq 1}^N \langle e_i e_j \rangle \right) = l^2 \sum_{i=1}^N \langle e_i^2 \rangle = l^2 N$$

$$\sqrt{\langle r^2 \rangle} = l \sqrt{N}$$

2. feladat

A feladat szövege

Perrin kísérletében kolloid részecskék mozgását vizsgáalták híg, vizes oldatban. A részecskék sugara $a=0.52\mu m, \tau=30s$ -ként mérték a helyzetüket, s az ábrán látható négyzetrács rácsállandóa $3.125\mu m$. Becsüljük meg a kolloidrészecskék diffúziós együtthatóját kétféleképpen: (a) a kezdő és a végpont közötti elmozdulásból, feltételezve, hogy a mozgás diffúziv, és (b) a τ idő alatti ugráshosszok négyzetének átlagából!

A feladat megoldása

(a) A feladat megoldásához meg kellett számolni mind a 3 részecskének a kiindulási helyüktől megtett távolságot és a lépések számát. Az így kapott eredményeket a következő táblázatban foglalom össze:

részecske	lépések száma	távolság négyzete $[m]$	t [s]
baloldali	46	$2.225 \cdot 10^{-9}$	1380
középső	30	$2.769 \cdot 10^{-9}$	900
jobboldali	40	$0.711 \cdot 10^{-9}$	1200

Kihasználva a következő összefüggést a diffúziós együtthatóra:

$$R^2(t) = 2Dt.$$

R(t)a kiindulásiponttól megtett távolsága, a képletbe behelyettesítve a diffúzós állandók sorrendben $8.15\cdot 10^{-13}\frac{m^2}{s},~1.53\cdot 10^{-12}\frac{m^2}{s},$ és $2.96\cdot 10^{-13}\frac{m^2}{s}$ lettek. Ezeknek az átlaga $D=8.83\cdot 10^{-13}\frac{m^2}{s}.$

(b) Ennél a feladatnál le kellett számolni egy bolyongásban az összes lépésnek a négyzetét, majd ennek az átlagát venni. Ezt megtettem, a számolásokat egy táblázatkezelő programban végeztem [1]. A D diffúziós együtthatót a következő módon lehet megkapni az ugráshosszok négyzetének átlagából:

$$D = \frac{\langle \Delta^2 \rangle}{2\tau}.$$

 Δ jelöli az ugráshosszakat, $\tau=30s$ esetünkben. Így, balról jobbra az egyes bolyongásokhoz tartozó diffuziós együtthatók: $1.36\cdot 10^{-12}\frac{m^2}{s},\, 6.24\cdot 10^{-13}\frac{m^2}{s}$ és $7.52\cdot 10^{-13}\frac{m^2}{s}.$ A diffúziós együtthatók átlaga: $D=9.12\cdot 10^{-13}\frac{m^2}{s}$

Bár az (a) és (b) feladatoban egyes bolyongásokhoz tartozó D-k l

Bár az (a) és (b) feladatoban egyes bolyongásokhoz tartozó D-k különböznek egymástól, az átlagok viszont egész közel vannak egymáshoz. Ezért a 3-as feladatban a kettőnek az átlagát fogom használni a becslésben.

2

3. feladat

A feladat szövege

Használjuk a (2) feladat eredményét, valamint a Brown mozgás Langevin féle leírásának eredményeképp kapott kifejezést a kolloidrészecskék diffúziós együttthatójára, s becsüjük meg az Avogadro számot! A kolloidrészecskék sűrűségét tekinthetjük vízhez közelinek, a hőmérsékletet pedig szobahőmérsékletnek.

A feladat megoldása

A megoldáshoz elhasználjuk a következő kifejezést, ami a Brown-mozgás Langevin féle levezetéséből kaptunk:

 $D = \frac{k_B T}{6\pi \eta a}$

A kifejezésben η a viszkozitás, a a kolloidrészecske sugara, T a hőmérséklet. Esetünkben η -t víz közeli sűrűségűnek vettem, $\eta = 8 \cdot 10^{-4} Pa \cdot s$, $a = 5.2 \cdot 10^{-7} m$, T = 290°K. és D az előző feladatból a kétféleképpen megkapott eredmény átlaga lett, $D = 8.97 \cdot 10^{-13} \frac{m^2}{s}$. Ismert még, hogy

 $k_B = \frac{R}{N_A},$

ahol a R az egyetemes gázállandó, N_A pedig az Avogadro-szám. Így a megoldandó egyenlet:

$$D = \frac{R \cdot T}{6\pi \eta a N_A}.$$

Megfelelő alakra rendezve és behelyettesítve az adatokat[1], az Avogadro-számra $N_A = 3.461 \cdot 10^{23} mol^{-1}$ jön ki, ami kicsivel több mint a fele az elméleti értéknek.

4. feladat

A feladat szövege

Tegyük fel, hogy a kolloidrészecskék diffúziós együttthatójárajára kapott kifejezés extrapolálható molekuláris szintre. Milyen értéket kapunk egy nem túlságosan nagy molekulekula vízben történő termális mozgásának diffúziós együtthatójára? Keressünk nagy (biológiai) molekulákat (DNS?), amelyekre a diffúziós együtható ismert, s hasonlítsuk össze értéküket a becsüt eredménnyel!

A feladat megoldása

Hivatkozások

[1] Horváth Bendegúz, http://hbendeguz.web.elte.hu/java/vélf2_1