

fake_memphis

File Name: C:\Rao\MERRA_Runs\fake_memphis.dgpx

Design Inputs

Design Life: 20 years Base construction: May, 2021 Climate Data 35, -90 Sources (Lat/Lon) Design Type: **FLEXIBLE**

Pavement construction: June, 2022

Traffic opening: September, 2022

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	Default asphalt concrete	2.0
Flexible	Default asphalt concrete	3.0
Flexible	Default asphalt concrete	6.0
NonStabilized	Crushed stone	12.0
Subgrade	A-7-6	Semi-infinite

Volumetric at Construction:				
Effective binder content (%)	13.3			
Air voids (%)	7.0			

Age (year)	Heavy Trucks (cumulative)
2022 (initial)	3.000

Traffic

2032 (10 years) 5,699,120 2042 (20 years) 12,646,300

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	118.90	50.00	94.67	Pass	
Permanent deformation - total pavement (in)	0.75	0.29	50.00	100.00	Pass	
AC bottom-up fatigue cracking (% lane area)	2.00	0.87	50.00	81.81	Pass	
AC thermal cracking (ft/mile)	1000.00	1351.68	50.00	29.86	Fail	
AC top-down fatigue cracking (ft/mile)	2000.00	0.00	50.00	100.00	Pass	
Permanent deformation - AC only (in)	0.25	0.06	50.00	100.00	Pass	

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Distress Charts

Threshold Value @ Specified Reliability --- @ 50% Reliability

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Traffic Inputs

Graphical Representation of Traffic Inputs

3,000 Initial two-way AADTT: Number of lanes in design direction: 2

Percent of trucks in design direction (%): 50.0 Percent of trucks in design lane (%): 95.0 60.0 Operational speed (mph)

Traffic Volume Monthly Adjustment Factors

Class 4	Class 5	Class 6	Class 7	Class 8	Class 9	Class 10	Class 11	Class 12	Class 13
Dec									
Un Co.		3	2	3	3		3	2	2
3c 1	2	2	3	3	2	3	3	2	3
And Jul S	s	===== _S	===== _s	=====s	_S	===== ₈	===== _s	s	==== _S
1									
Art		7			=======================================			=======================================	
u _a ,	2	2	2	2	3	2	2	2	2
14-	2	g	2	9	2	2	2	g	9
Adj. Nactor	Adj. Perctor	Adj. Factor	Adj. Pertor	Adj. Factor	Adj. Part tor	Adj. Pertor	Adj. Per ter	Adj. Perctor	Adj. Per tor

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOTH	4	5	6	7	8	9	10	11	12	13
January	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
February	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
March	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
April	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
May	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
June	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
July	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
August	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
September	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
November	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
December	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `´	Rate (%)	Function	
Class 4	1.3%	2%	Compound	
Class 5	8.5%	2%	Compound	
Class 6	2.8%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	7.6%	2%	Compound	
Class 9	74%	2%	Compound	
Class 10	1.2%	2%	Compound	
Class 11	3.4%	2%	Compound	
Class 12	0.6%	2%	Compound	
Class 13	0.3%	2%	Compound	

Axle Configuration

Traffic Wander	
Mean wheel location (in)	18.0
Traffic wander standard deviation (in)	10.0
Design lane width (ft)	12.0

51.6

Wheelbase	does	not	apply

Axle Configuration				
Average axle width (ft)	8.5			
Dual tire spacing (in)	12.0			
Tire pressure (psi)	120.0			

Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.62	0.39	0	0
Class 5	2	0	0	0
Class 6	1.02	0.99	0	0
Class 7	1	0.26	0.83	0
Class 8	2.38	0.67	0	0
Class 9	1.13	1.93	0	0
Class 10	1.19	1.09	0.89	0
Class 11	4.29	0.26	0.06	0
Class 12	3.52	1.14	0.06	0
Class 13	2.15	2.13	0.35	0

spacing (in) Tridem axle 49.2 spacing (in) Quad axle spacing 49.2 (in)

Average Axle Spacing

Tandem axle

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

AADTT (Average Annual Daily Truck Traffic) Growth

* Traffic cap is not enforced

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

fake_memphis

File Name: C:\Rao\MERRA_Runs\fake_memphis.dgpx

Climate Inputs

Climate Data Sources:

Climate Station Cities:

Location (lat lon elevation(ft))

US, TN

35.00000 -90.00000 338

Annual Statistics:

Mean annual air temperature (°F) 61.75 Mean annual precipitation (in) 49.28 Freezing index (°F - days) 96.70

Average annual number of freeze/thaw cycles: 43.11 Water table depth (ft)

10.00

Monthly Climate Summary:

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Hourly Air Temperature Distribution by Month:

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : Default asphalt concrete	Flexible (1)	1.00
Layer 2 Flexible : Default asphalt concrete	Flexible (1)	1.00
Layer 3 Flexible : Default asphalt concrete	Flexible (1)	1.00
Layer 4 Non-stabilized Base : Crushed stone	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-7-6	Subgrade (5)	-

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Thermal Cracking

Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/°F)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	20.3

Indirect Tensile Strength (Input Level: 3)		
Test Temperature (°F) Indirect Tensilte Strength (p		
14.0	322.23	

Creep Con	Creep Compliance (1/psi) (Input Level: 3)		
Loading time (sec)	-4 °F	14 °F	32 °F
1	5.85e-007	8.21e-007	1.08e-006
2	6.35e-007	9.47e-007	1.35e-006
5	7.09e-007	1.14e-006	1.81e-006
10	7.71e-007	1.32e-006	2.26e-006
20	8.38e-007	1.52e-006	2.82e-006
50	9.35e-007	1.84e-006	3.77e-006
100	1.02e-006	2.12e-006	4.71e-006

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

HMA Layer 1: Layer 1 Flexible : Default asphalt concrete

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 Created on: 3/3/2020 5:01 PM

with version: 2.5.5+7117.27682 Approved on: 3/3/2020 5:01 PM

HMA Layer 2: Layer 2 Flexible : Default asphalt concrete

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM Created

with version: 2.5.5+7117.27682 Approved on: 3/3/2020 5:01 PM

HMA Layer 3: Layer 3 Flexible : Default asphalt concrete

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM Created

with version: 2.5.5+7117.27682 Approved on: 3/3/2020 5:01 PM

Analysis Output Charts

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 Created on: 3/3/2020 5:01 PM

by:

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM Created

with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Layer Information

Layer 1 Flexible : Default asphalt concrete

Asphalt		
Thickness (in)	2.0	
Unit weight (pcf)	140.8	
Poisson's ratio	Is Calculated?	False
	Ratio	0.35
	Parameter A	-
	Parameter B	-

Asphalt Dynamic Modulus (Input Level: 3)

Gradation	Percent Passing
3/4-inch sieve	100
3/8-inch sieve	75
No.4 sieve	33.5
No.200 sieve	8

Asphalt Binder

Parameter	Value
Grade	Superpave Performance Grade
Binder Type	76-22
Α	9.715
VTS	-3.208

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	13.3
Air voids (%)	7
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	Default asphalt concrete
Description of object	
Author	
Date Created	10/30/2010 1:00:00 AM
Approver	
Date approved	10/30/2010 1:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Layer 2 Flexible : Default asphalt concrete

Asphalt		
Thickness (in)	3.0	
Unit weight (pcf)	143.4	
Poisson's ratio	ls Calculated?	False
	Ratio	0.35
	Parameter A	-
	Parameter B	-

Asphalt Dynamic Modulus (Input Level: 3)

Gradation	Percent Passing
3/4-inch sieve	89.4
3/8-inch sieve	55.5
No.4 sieve	33.1
No.200 sieve	5.8

Asphalt Binder

Parameter	Value
Grade	Superpave Performance Grade
Binder Type	70-22
Α	10.299
VTS	-3.426

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10
Air voids (%)	7
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	Default asphalt concrete
Description of object	
Author	
Date Created	10/30/2010 1:00:00 AM
Approver	
Date approved	10/30/2010 1:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Layer 3 Flexible : Default asphalt concrete

Asphalt		
Thickness (in)	6.0	
Unit weight (pcf)	143.4	
Poisson's ratio	Is Calculated?	False
	Ratio	0.35
	Parameter A	-
	Parameter B	-

Asphalt Dynamic Modulus (Input Level: 3)

Gradation	Percent Passing
3/4-inch sieve	89.4
3/8-inch sieve	55.5
No.4 sieve	33.1
No.200 sieve	5.8

Asphalt Binder

Parameter	Value
Grade	Superpave Performance Grade
Binder Type	64-22
A	10.98
VTS	-3.68

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10
Air voids (%)	7
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	Default asphalt concrete
Description of object	
Author	
Date Created	10/30/2010 1:00:00 AM
Approver	
Date approved	10/30/2010 1:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Layer 4 Non-stabilized Base : Crushed stone

Unbound	
Layer thickness (in)	12.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Innut		. 31
Wiodulus	llibut	Te A E I	,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

ı	Resilient Modulus (psi)
	30000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed stone
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

)	
Liquid Limit	6.0
Plasticity Index	3.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	126.1
Saturated hydraulic conductivity (ft/hr)	False	1.526e-01
Specific gravity of solids	False	2.7
Water Content (%)	False	8.2

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?	False	
af	11.0479	
bf	0.9651	
cf	0.9010	
hr	160.0000	

111	100.0000
Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	10.0
#100	
#80	
#60	
#50	
#40	
#30	
#20	
#16	
#10	
#8	
#4	20.0
3/8-in.	
1/2-in.	
3/4-in.	72.0
1-in.	
1 1/2-in.	85.0
2-in.	
2 1/2-in.	
3-in.	
3 1/2-in.	95.0

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

Layer 5 Subgrade : A-7-6

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 2)

Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

CBR	Resilient Modulus (psi)
3.0	5161

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-7-6
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	51.0
Plasticity Index	30.0
Is layer compacted?	False

	Is User Defined?	Value
, , ,		97.7
Saturated hydraulic conductivity (ft/hr)	False	8.946e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	22.2

User-defined Soil Water Characteristic Curve (SWCC)				
Is User Defined? False				
af 136.4179				
bf 0.5183				
cf 0.0324				
hr 500.0000				

***	000.0000
Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	79.1
#100	
#80	84.9
#60	
#50	
#40	88.8
#30	
#20	
#16	
#10	93.0
#8	
#4	94.9
3/8-in.	96.9
1/2-in.	97.5
3/4-in.	98.3
1-in.	98.8
1 1/2-in.	99.3
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.9

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM

fake memphis

File Name: C:\Rao\MERRA_Runs\fake_memphis.dgpx

Calibration Coefficients

AC Fatigue				
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{\varepsilon_1}\right)^{k_2 \beta_{f2}} \left(\frac{1}{E}\right)^{k_3 \beta_{f3}}$	k1: 3.75			
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{-}{\varepsilon_1}\right) \left(\frac{-}{E}\right)$	k2: 2.87			
	k3: 1.46			
$C = 10^M$	Bf1: (5.014 * Pow(hac,-3.416)) * 1 + 0			
$M = 4.84 \left(\frac{V_b}{V_c + V_b} - 0.69 \right)$	Bf2: 1.38			
$(V_a + V_b)$	Bf3: 0.88			

AC Rutting

$$\begin{split} &\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ &k_z = (C_1 + C_2 * depth) * 0.328196^{depth} \\ &C_1 = -0.1039 * H_{\alpha}^2 + 2.4868 * H_{\alpha} - 17.342 \end{split}$$

 $C_2 = 0.0172 * H_{\alpha}^2 - 1.7331 * H_{\alpha} + 27.428$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

 $H_{ac} = total AC thickness(in)$

ac	· /		
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001		
AC Layer 1	K1:-2.45 K2:3.01 K3:0.22	Br1:0.4 Br2:0.52 Br3:1.36	
AC Layer 2	K1:-2.45 K2:3.01 K3:0.22	Br1:0.4 Br2:0.52 Br3:1.36	
AC Layer 3	K1:-2.45 K2:3.01 K3:0.22	Br1:0.4 Br2:0.52 Br3:1.36	

Thermal Fracture

$$C_f = 400 * N(\frac{\log C/h_{ac}}{\sigma})$$

 $\Delta C = (k * \beta t)^{n+1} * A * \Delta K^n$

 $A = 10^{(4.389 - 2.52*log(E*\sigma_m*n))}$

 $C_f = observed$ amount of thermal cracking(ft/500ft)

k = refression coefficient determined through field calibration

N() = standard normal distribution evaluated at()

 $\sigma=$ standard deviation of the \log of the depth of cracks in the parments

C = crack depth(in)

 $h_{ac} = thickness of asphalt layer(in)$

 $\Delta C = Change$ in the crack depth due to a cooling cycle

 $\Delta K = Change$ in the stress intensity factor due to a cooling cycle

A, n = Fracture parameters for the asphalt mixture

E = mixture stiffness

 $\sigma_M = Undamaged$ mixture tensile strength

 $\beta_t = Calibration parameter$

Level 1 K: (0.13 * Pow(MAAT,2) - 11.68 * MAAT + 244.14) * 1 + QLevel 1 Standard Deviation: 0.14 * THERMAL + 343 Level 2 K: (0.13 * Pow(MAAT,2) - 11.68 * MAAT + 244.14) * 1 + dLevel 2 Standard Deviation: 0.20 * THERMAL + 343 Level 3 K: (0.13 * Pow(MAAT,2) - 11.68 * MAAT + 244.14) * 1 + dLevel 3 Standard Deviation: 0.2386 * THERMAL +

CSM Fatigue

$$N_f = 10$$

$$N_f = number\ of\ repetitions\ to\ fatigue\ cracking \ \sigma_s = Tensile\ stress(psi) \ M_r = modulus\ of\ rupture(psi)$$

k2: 0.0825 Bc1: 1 Bc2:1

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

with version: 2.5.5+7117.27682 Created on: 3/3/2020 5:01 PM

Unbound Layer Rutting				
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \left e^{-\left(\frac{\rho}{N}\right)^{\beta}} \right \qquad \begin{cases} N \\ \varepsilon_v \\ \varepsilon_0 \end{cases}$		$T_a = permanent deformation for the layer T_a = number of repetitions T_b = number of repet$		
Base Rutting		Subgrade Rutting		
k1: 0.965 Bs1: 1		k1: 0.675	Bs1: 1	
Standard Deviation (BASERUT) 0.1477 * Pow(BASERUT,0.6711) + 0.001		Standard Deviation (BASERUT) 0.1235 * Pow(SUBRUT,0.5012) + 0.001		

AC Cracking						
AC Top Down Cracking			AC Bottom Up Cracking			
$FC_{top} = \left(\frac{C_4}{1 + e^{\left(C_1 - C_2 * log_{10}(Damage)\right)}}\right) * 10.56$			$FC = \left(\frac{6000}{1 + e^{\left(C_1 * C_1' + C_2 * C_2' log_{10}(D * 100)\right)}}\right) * \left(\frac{1}{60}\right)$ $C_2' = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$ $C_1' = -2 * C_2'$			
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1.31	_ `	c3: 6000
			•		1+ 0	

Top down AC Cracking Standard Deviation	Bottom up AC Cracking Standard Deviation	
200 + 2300/(1+exp(1.072-2.1654*LOG10(TOP+0.0001)))	1.13 + 13/(1+exp(7.57-15.5*LOG10(BOTTOM+0.0001)))

CSM Cracking			IRI Flex	IRI Flexible Pavements			
$FC_{\text{ctb}} = C_1 + \frac{C_2}{1 + e^{C_3 - C_4 * log_{10}(Damage)}}$		C1 - Rus C2 - Fat	C1 - Rutting C2 - Fatigue Crack		C3 - Transverse Crack C4 - Site Factors		
C1: 0	C2: 75	C3: 2	C4: 2	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Star	ndard Deviation	n				,	-
CTB*1		7					

Reported with version: 2.5.5+7117.27682 on: 6/10/2020 10:07 AM

Created with version: 2.5.5+7117.27682 on: 3/3/2020 5:01 PM