Геометрический разнобой

- 1. Дан четырехугольник ABCD в котором AB=CD. Пусть P точка пересечения его диагоналей. Докажите, что ортоцентр треугольника BPC равноудален от середин отрезков AB и CD.
- **2.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H. Пусть B_2 и C_2 точки на отрезках BH и CH соответственно такие, что $BB_2 = B_1H$ и $CC_2 = C_1H$. Описанная окружность треугольника B_2HC_2 пересекает описанную окружность треугольника ABC в точках D и E. Докажите, что треугольник DEH прямоугольный.
- 3. Четырехугольник ABCD описан около окружности ω . Пусть E ближайшая к A точка пересечения ω и диагонали AC. Точка F диаметрально противоположна точке E на окружности ω . Касательная к ω в точке F пересекает прямые AB, BC, AD и CD в точках A_1 , C_1 , A_2 и C_2 соответственно. Докажите, что $A_1C_1 = A_2C_2$.
- **4.** В треугольнике ABC биссектрисы внутреннего и внешнего угла $\angle BAC$ пересекают прямую BC в D и E соответственно. Пусть F вторая точка пересечения прямой AD с описанной окружностью треугольник ABC. Пусть O центр описанной окружности треугольника ABC, а D_0 отражение D относительно O. Докажите, что $\angle D_0FE = 90^\circ$.
- 5. Пусть ABC остроугольный треугольник с центром описанной окружности O и ортоцентром H. Пусть ω описанная окружность треугольника ABC, а N середина OH. Касательные к ω в точках B и C и прямая, проходящая через H перпендикулярно прямой AN образуют треугольник Δ_a . Обозначим через ω_a описанную окружность Δ_a . Определим ω_b и ω_c аналогично. Докажите, что общие хорды ω_a, ω_b и ω_c пересекаются на прямой OH.