Fraud Detection

Identifying fraudulent transactions using sklearn, flask, and bootstrap.

Anton, Jake M, Matt G and Mitch

Data:

Upcoming Event

Event Calendar

Upcoming Events Calendar

Event

Special Event

Event Venue

Concert Tickets

Eventbrite.com

14337 Observations

45 Features

2002 - 2013

Fraud Heatmap

EDA

EDA

EDA

Solution:

- Create a machine-learning model that will detect *potentially* fraudulent transactions, and flag them for manual review
- Considerations:
 - An oversensitive model will have too many false positives, straining our resources and costing us valuable man-hours.
 - An undersensitive model will allow too many fraudulent transactions to go through, costing us revenue and hurting our credibility with paying customers.

Scope:

- We initially took only the numerical and boolean features
- Trained models using Logistic Regression, RandomForest, and Gradient Boosting
- Measured success by accuracy and false positive / false negative rates

What information do we have at our disposal?

[180]:	approx_payout_date	-0.042553
	body_length	-0.118308
	channels	-0.165358
	delivery_method	-0.194046
	event created	-0.006436
	event_end	-0.042553
	event published	-0.077322
	event start	-0.044995
	fb published	-0.099143
	gts	-0.017875
	has analytics	-0.084626
	has_header	-0.082101
	has logo	-0.169485
	name_length	-0.158447
	num_order	-0.078008
	num payouts	-0.083433
	object_id	0.026721
	org_facebook	-0.181792
	org_twitter	-0.205692
	sale duration	-0.179512
	sale_duration2	-0.179550
	show_map	-0.076217
	user age	-0.215929
	user_created	0.184360
	user type	-0.213911
	venue latitude	0.010126
	venue_longitude	0.066057
	fraud	1.000000
	Name: fraud, dtype:	float64

Building the Model

^{*}accuracies measured on validation data

Web API Demo

Actionable items:

- Our models were very simply and left much of the data unused, given the accuracy we decided to move forward with deploying our model.
- Given more time, both the text and date-time data could be used to improve our model.
- Connect to the online database to detect fraud in real-time.

Questions:

Anton: Time-Series and Geographical Analysis

Jake: Prediction Models and Web API

Matt: Feature-Engineering and Data-Engineering

Mitch: WebDev and Model Deployment

References:

1. https://www.prnewswire.com/news-releases/payment-card-fraud-losses-reach-27-85-billion-3
oog63232.html