Inteligência Computacional: Agrupamentos

Aprendizagem Não-Supervisionada

- Quando os dados ou amostras de um problema não estão rotulados.
- Tarefa principal: Agrupamento
- Descobrir grupos (clusters) instâncias similares segundo algum critério.

Aprendizagem Não-Supervisionada

- Motivação:
 - □ Rotular bases de dados é uma tarefa de alto custo
 - □ Não é raro não se ter conhecimento das classes do problema.
 - ☐ Mineração e descoberta de conhecimento.

Aprendizagem Não-Supervisionada

- Um passo antes da criação de um classificador:
 - □ Dada uma base de dados não rotulada, podese utilizar a aprendizagem nãosupervisionada para fazer uma préclassificação, e então treinar um classificador de maneira supervisionada.

Agrupamento (Clustering)

 Organização de objetos em grupos (clusters) segundo algum critério de similaridade.

Cluster

- Uma coleção de objetos que são similares entre si, e diferentes dos objetos pertencentes a outros clusters.
- Isso requer uma medida de similaridade.
- Usualmente uma distância.
 - □ Distance-based Clustering

k-Means Clustering

- É a técnica mais simples de aprendizagem não supervisionada.
- Consiste em fixar *k* centróides (de maneira aleatória), um para cada grupo (cluster).
- Associar cada indivíduo ao centróide mais próximo.
- Recalcular os centróides com base nos indivíduos classificados.

Algoritmo k-Means

- Determinar os centróides
- Atribuir a cada objeto do grupo o centróide mais próximo.
- 3. Após atribuir um centróide a cada objeto, recalcular os centróides.
- Repetir os passos 2 e 3 até que os centróides não sejam modificados.

- Importância da inicialização.
- Quando se tem noção dos centróides, pode-se melhorar a convergência do algoritmo.
- Execução do algoritmo várias vezes, permite reduzir impacto da inicialização aleatória.

Calculando Distâncias

Distância Euclidiana

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan (City Block)

$$d = \sum_{i=1}^{n} \left| x_i - y_i \right|$$

Calculando Distâncias

- Minkowski
 - □ Parâmetro r
 - r = 2, distância Euclidiana
 - r = 1, City Block

$$d = \left(\sum_{i=1}^{n} (x_i - y_i)^r\right)^{1/r}$$

Calculando Distâncias

Mahalanobis

□ Leva em consideração as variações estatísticas dos pontos. Por exemplo, se x e y são dois pontos da mesma distribuição, com matriz de covariância C, a distância é dada pela equação

$$d = (x - y)'C^{-1}(x - y)^{\frac{1}{2}}$$

☐ Se a matriz C for uma matriz identidade, essa distância é igual a distância Euclidiana.

A Importância das Medidas de Distâncias

- Suponha que dois exemplos pertencem ao mesmo cluster se a distância Euclidiana entre eles for menor que d.
- É obvio que a escolha de *d* é importante.
- Se *d* for muito grande, provavelmente teremos um único cluster, se for muito pequeno, vários clusters.

A Importância das Medidas de Distâncias

■ Nesse caso, estamos definido *d* e não *k*.

Critérios de Otimização

- Até agora discutimos somente como medir a similaridade.
- Um outro aspecto importante em *clustering* é o critério a ser otimizado.
- Considere um conjunto $D = \{x_1,...,x_n\}$ composto de n exemplos, e que deve ser dividido em c sub-conjuntos disjuntos $D_1,...,D_c$
- Cada sub-conjunto representa um *cluster*.

Critérios de Otimização

- O problema consiste em encontrar os clusters que minimizam/maximizam um dado critério.
- Alguns critérios de otimização:
 - □ Soma dos Erros Quadrados.
 - □ Critérios de Dispersão

Soma dos Erros Quadrados

- É o mais simples e usado critério de otimização em clustering.
- Seja n_i o número de exemplos no cluster D_i e m_i a média desse exemplos

$$m_i = \frac{1}{n_i} \sum_{x \in D_i} x$$

A soma dos erros quadrados é definida

$$J_e = \sum_{i=1}^c \sum_{x \in D_i} (x - m_i)^2$$

M

Soma dos Erros Quadrados

Adequado nesses casos - Separação natural

Não é muito adequado para dados mais dispersos.

Outliers podem afetar bastante os vetores médios **m**

Critérios de Dispersão

- Vetor médio do cluster i $m_i = \frac{1}{n_i} \sum_{x \in D_i} x$
- Vetor médio total $m = \frac{1}{n} \sum_{D} x$
- Dispersão do cluster i $S_i = \sum_{x \in D_i} (x m_i)(x m_i)^t$
- Within-cluster $S_w = \sum_{i=1}^{c} S_i$
- Between-cluster $S_B = \sum_{i=1}^c n_i (m_i m)(m_i m)^t$

Algumas Aplicações de Clustering

- Marketing: Encontrar grupos de consumidores com comportamento similares
- Biologia: Classificar grupos de plantas e animais.
- Bibliotecas: Organização de livros.
- Administração: Organização de cidades, classificando casas de acordo com suas características.
- WWW: Classificação de conteúdos.

Problemas

- Vetores de característica muito grandes: tempo de processamento elevado.
- Definição da melhor medida de distância: Depende do problema. As vezes é difícil, especialmente quando se trabalha com grandes dimensões.
- O resultado do clustering pode ser interpretado de diferentes maneiras.

k-Means - Simulação

Um applet java para a simulação do k-Means pode ser encontrado na seguinte URI:

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html

Principais Técnicas

- K-means
- X-Means: K-means, onde K é definido automaticamente.
 Usa BIC (Bayesian Information Criterion).
- Fuzzy C-means: usa noção de pertinência. Uma instância pode pertencer a mais de um cluster.
- Hirárquico: organiza os grupos em uma estrutura hierárquica.
- Mixture of Gaussians: baseado em modelo. EM (Expectation Maximization)