Tratamento de Dados Astronômicos - 2022.1

Projeto Módulo 1 - Estimando Rajo efetivo

Aluna: Yasmin Cavalcante Ferreira Coelho

1 Objetivo

A partir dos métodos estudados no módulo 1 e dos dados que utilizo em minha Iniciação Científica, irei tentar estimar o melhor raio efetivo para o modelo de uma galáxia. A metodologia usada nesse trabalho deve funcionar para qualquer galáxia da minha amostra, mas para fins ilustrativos farei apenas para uma.

A galáxia escolhida é NGC3381.

1.1 Sobre minha Iniciação Científica

Meu trabalho de iniciação ciêntifica é estudar distribuição de massa em galáxias do universo local, com interesse em particular em galáxias barradas. Para isso utilizo a decomposição das galáxias imageadas no infravermelho. Essa decomposição faz um modelo para cada galáxia e divide ela em diferentes componentes, que podem ser: bojo, disco, barra, fonte pontual e um disco secundário.

A partir da luz contida nas diferentes componetes de uma galáxia, consigo chegar ao valor de massa. Repetindo esse processo para várias galáxias, faço análise da distribuição de massa dessas galáxias.

1.2 Dados que utilizo - levantamento S^4G

O levantamento S^4G consiste em mais de 2300 galáxias do universo local (até 40Mpc) imageadas pelo instrumento IRAC (Infrared Array Camera) do telescópio Spitzer em duas bandas do infravermelho médio, 3.6 e 4.5 μm . Essas galáxias são grandes (> 1'), brilhantes ($m_B < 15.5$) e estão afastadas do plano Galáctico.

O levantamento está disponível publicamente no site do IRSA: https://irsa.ipac.caltech.edu/frontpage/

Parte da equipe S^4G fez a decomposição de todas as galáxias do levantamento na banda de 3.6 μm (Salo et al. 2015). Utilizo essa decomposição em minha iniciação ciêntífica e também nesse projeto.

Figure 1: Exemplo de decomposição feita pela equipe S^4G . Nesse caso, o modelo da galáxia possui barra, disco e bojo. Subtraindo o observado pelo modelo, resulta em um residual.

Toda a decomposição está disponível em:

https://www.oulu.fi/astronomy/S4G_PIPELINE4/MAIN/

2 Motivação

Nossa amostra é composta por 363 galáxias barradas, com inclinação < 65.

Como mencionado, o objetivo desse projeto é estimar o melhor raio efetivo para o modelo de uma galáxia. A decomposição feita pela equipe S^4G utiliza GALFIT. As funções utilizadas nessa ferramenta fazem a integração do modelo da galáxia até o infinito, uma região onde já teria terminado a galáxia. Ao fazer uma análise para a massa observada (massa a partir do fluxo observado da galáxia) e massa do modelo (massa a partir da soma dos fluxos das componentes), observamos de forma sistemática uma quantidade a mais de massa (uma quantidade a mais de luz) para o modelo das galáxias da nossa amostra, onde em geral a massa total do modelo é um pouco superior a massa observada.

Figure 2: Comparação de massa observada com massa do modelo em 363 galáxias. Em x a massa observada $(\log_{10} M_{\odot})$; em y a massa total do modelo $(\log_{10} M_{\odot})$

Uma possibilidade para tentar resolver esse excesso de luz no modelo seria estimar um raio efetivo onde o fluxo do modelo fosse igual ao fluxo observado.

3 Metodologia

A metodologia utilizada nesse projeto envolve reproduzir as equações de GAL-FIT em python e utilizar os parâmetros obtidos na decomposição da equipe S^4G nessas equações, com o objetivo de chegar ao perfil de brilho das componentes e então ao comparar com o fluxo observado, estimar um valor de raio efetivo que iguale o fluxo do modelo com o fluxo observado.

Detalhes aprofundados das equações utilizadas podem ser consultados no manual do GALFIT, disponível em:

https://users.obs.carnegiescience.edu/peng/work/galfit/README.pdf

A galáxia escolhida para ser o exemplo é uma galáxia cujo modelo é composto por duas componentes: disco e barra.

Figure 3: A esquerda, imagem observada da NGC3381; a direita, imagem do modelo da NGC3381 com disco e barra.

imagem obtida de: https://www.oulu.fi/astronomy/S4G_PIPELINE4/P4STORE/
NGC3381/FINAL_NS/NGC3381_dbar.outgal_components.jpg

Para o disco, utilizamos a equação "exponencial disk profile". No código adaptamos ela para nos devolver o fluxo total do disco e o perfil de brilho, o fluxo crescendo até esse valor.

Para a barra, utilizamos a equação "ferrer profile". No código, adaptamos ela para nos dar o perfil de brilho da barra, o fluxo crescendo até o valor do fluxo da componente.

O fluxo do modelo é a soma dos fluxos das componentes, nesse caso disco + barra. Nossa análise para estimar o raio efetivo é feita no residual desse fluxo, que seria o fluxo observado (que é o fluxo da galáxia na banda de 3.6 μm , um valor constante e não um perfil de brilho) subtraído do fluxo do modelo.

 ${\cal O}$ exemplo detalhado e os resultados obtidos estão no jupy
ter notebook desse projeto.

4 Referências

Sheth, K., et al. 2010; Peng et al. 2002, 2010; Salo et al. 2015.