Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

Case2: △=0

no x-intercepts.

f(0) = -490 f-intercept.

 $\triangle = -1764 < 0$

However there is a f-intercept.

∆=0

 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the x-intercepts of multiplicity 1. f(0) = c computes the single f-intercept.

Given a quadratic $f(x) = ax^2 + bx + c$ compute its discriminant \triangle :

$$f(0) = c$$
 computes the single f-intercept.
 Example 1.

 $\triangle=121>0$ $x_{1,2}=7,-4$ f(0)=28 f-intercept.

 $f(x) = -x^2 + 3x + 28$ compute its discriminant \triangle :

-50

 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single x-intercept of multiplicity 2.

Example 2. $f(x) = 3x^2 - 12x + 12 \text{ compute its discriminant } \triangle$:

$$x_{1,2}=2,2$$
 $f(0)=12$ f-intercept.

Example 3. $f(x) = -9 x^2 + 126 x - 490 \text{ compute its discriminant } \triangle:$