2001 年全国硕士研究生招生考试试题

一、填空题(本题共5小题,每小题3分,满分15分)

$$(1) \lim_{x \to 1} \frac{\sqrt{3-x} - \sqrt{1+x}}{x^2 + x - 2} = \underline{\hspace{1cm}}.$$

(2) 设函数 y = f(x) 由方程 $e^{2x+y} - \cos(xy) = e - 1$ 所确定,则曲线 y = f(x) 在点(0,1) 处的法线方程为_____.

$$(3) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + \sin^2 x) \cos^2 x dx = \underline{\qquad}.$$

(4) 过点 $\left(\frac{1}{2},0\right)$ 且满足关系式 $y'\arcsin x + \frac{y}{\sqrt{1-x^2}} = 1$ 的曲线方程为_____.

(5) 设方程组
$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
有无穷多解,则 $a =$ _____.

二、选择题(本题共5小题,每小题3分,满分15分)

(A)0. (B)1.
$$(C) \begin{cases} 1, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$
 (D) $\begin{cases} 0, & |x| \le 1, \\ 1, & |x| > 1. \end{cases}$

(2) 设当 $x \to 0$ 时, $(1 - \cos x) \ln(1 + x^2)$ 是比 $x \sin x^n$ 高阶的无穷小, $x \sin x^n$ 是比 $e^{x^2} - 1$ 高阶的无穷小,则正整数 n 等于()

- (A)1. (B)2. (C)3. (D)4.
- (3) 曲线 $y = (x-1)^2(x-3)^2$ 的拐点个数为() (A)0. (B)1. (C)2. (D)3.

(4) 已知函数 f(x) 在区间(1 – δ ,1 + δ) 内具有二阶导数, f'(x) 严格单调减少,且 f(1) = f'(1) = 1.则(

- (A) 在(1 δ,1) 和(1,1 + δ) 内均有 f(x) < x.
- (B) 在(1 δ,1) 和(1,1 + δ) 内均有 f(x) > x.
- (C) 在 $(1 \delta, 1)$ 内, f(x) < x, 在 $(1, 1 + \delta)$ 内, f(x) > x.
- (D) 在 $(1 \delta, 1)$ 内, f(x) > x, 在 $(1, 1 + \delta)$ 内, f(x) < x.

(5) 已知函数 y = f(x) 在其定义域内可导,它的图形如右图所示,则其导函数 y = f'(x) 的图形为()

三、(本题满分6分)

$$\Re \int \frac{\mathrm{d}x}{(2x^2+1)\sqrt{x^2+1}}.$$

四、(本题满分7分)

求极限 $\lim_{t\to x} \left(\frac{\sin t}{\sin x}\right)^{\frac{x}{\sin t-\sin x}}$,记此极限为f(x),求函数f(x)的间断点并指出其类型.

五、(本题满分7分)

设 $\rho = \rho(x)$ 是抛物线 $y = \sqrt{x}$ 上任一点 $M(x,y)(x \ge 1)$ 处的曲率半径, s = s(x) 是该抛物线上介于点 A(1,1) 与 M 之间的弧长, 计算 $3\rho \frac{\mathrm{d}^2 \rho}{\mathrm{d}s^2} - \left(\frac{\mathrm{d}\rho}{\mathrm{d}s}\right)^2$ 的值.

(在直角坐标系下曲率公式为 $K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$.)

六、(本题满分7分)

设函数 f(x) 在 $[0, +\infty)$ 上可导, f(0)=0, 且其反函数为 g(x). 若 $\int_0^{f(x)}g(t)\mathrm{d}t=x^2\mathrm{e}^x$, 求 f(x).

七、(本题满分7分)

设函数 f(x), g(x) 满足 f'(x) = g(x), $g'(x) = 2e^x - f(x)$, 且 f(0) = 0, g(0) = 2, 求 $\int_0^\pi \left[\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right] dx.$

八、(本题满分9分)

设L是一条平面曲线,其上任意一点P(x,y)(x>0) 到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点 $\left(\frac{1}{2},0\right)$.

- (1) 试求曲线 L 的方程;
- (2) 求 L 位于第一象限部分的一条切线,使该切线与 L 以及两坐标轴所围图形的面积最小.

九、(本题满分7分)

一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0. 假设在融化过程

历年考研数学真题解析及复习思路(数学二)

中雪堆始终保持半球体状,已知半径为 r_0 的雪堆在开始融化的3小时内,融化了其体积的 $\frac{7}{8}$,问雪堆全部融化需要3少小时?

十、(本题满分8分)

设f(x) 在区间[-a,a](a>0) 上具有二阶连续导数, f(0)=0.

- (1) 写出 f(x) 的带拉格朗日余项的一阶麦克劳林公式;
- (2) 证明在[-a,a] 上至少存在一点 η ,使 $a^3 f''(\eta) = 3 \int_{-a}^a f(x) dx$.

十一、(本题满分6分)

已知矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, 且矩阵 X 满足 $AXA + BXB = AXB + BXA + E$, 其中

E 是 3 阶单位矩阵, 求 X.

十二、(本题满分6分)

已知 α_1 , α_2 , α_3 , α_4 是线性方程组 Ax = 0 的一个基础解系, 若 $\beta_1 = \alpha_1 + t\alpha_2$, $\beta_2 = \alpha_2 + t\alpha_3$, $\beta_3 = \alpha_3 + t\alpha_4$, $\beta_4 = \alpha_4 + t\alpha_1$, 讨论实数 t 满足什么关系时, β_1 , β_2 , β_3 , β_4 也是 Ax = 0 的一个基础解系.