

FACULDADE DE TECNOLOGIA DE JACAREÍ - Prof. Francisco de Moura

TECNOLOGIA EM DESENVOLVIMENTO DE SOFTWARE MULTIPLATAFORMA

ESTATÍSTICA APLICADA

Rita von Randow

rita.randow@fatec.sp.gov.br

1º semestre 2025

12 a 27/02/2025

MEDIDAS DE DISTRIBUIÇÃO DE FREQÜÊNCIAS

A- Medidas de Tendência Central

- Média
- Mediana
- Moda

B- Medidas de Dispersão ou Variabilidade

- Desvio Médio
- Variância
- Desvio Padrão
- Coeficiente de variação: medida de dispersão relativa

C- Medidas de Posição

- Quartil
- Decil
- Percentil

As medidas de posição central tem por objetivo resumir e representar um conjunto de dados. As medidas de posição central mais utilizadas são: **moda**, **mediana** e **média**.

A- Medidas de Tendência Central

MÉDIA ARITMÉTICA

- É a mais usual das medidas estatísticas.
- É a soma dos valores de todos os dados dividido pelo número de dados ATENÇÃO:

Essas fórmulas somente serão usadas quando os dados **não estiverem agrupados em tabelas de distribuição de frequências**.

MEDIANA

 É o dado que fica na posição central de um conjunto de dados que estão em ordem crescente ou decrescente.

> Qual valor está no centro dos dados ordenados?

Como encontrar a mediana?

Depois de ordenados os valores por ordem crescente ou decrescente, a mediana é:

- o valor que ocupa a posição central, se a quantidade desses valores for ímpar
- a média dos dois valores centrais, se a quantidade desses valores for par.

MODA

- É valor que mais se repete num conjunto de dados, ou seja, é o dado que ocorre com maior frequência.
- Se dois dados ocorrem com a mesma frequência elevada, cada dado é uma moda e os dados são chamados bimodais.

Caso não haja dados repetidos, os dados são

EXEMPLO 1:

Média, Moda e Mediana

Gastos em eletricidade:

Esta tabela não é de distribuição de frequências.

Meses	JAN.	FEV.	MAR.	ABR.	MAI.
Gasto (em €)	25€	22€	35€ 🦟	28€	35€

Média: 29 €

$$\overline{x} = \frac{25 + 22 + 35 + 28 + 35}{5} = \frac{145}{5} = 29 \implies \overline{x} = 29$$

Moda: 35 €

Mediana: 28 €

Rol: 22

28

35

35

Número impar de dados 8

Agora é com vocês! Calculem a média, mediana e moda nesse exemplo

EXEMPLO 2: Média, Moda e Mediana

Gastos em eletricidade:

Meses	JAN.	FEV.	MAR.	ABR.	MAI.	JUN.
Gastos (em €)	25€	22€	35€	28€	35€	33€

Média: 29,67 €

$$\bar{x} = \frac{25 + 22 + 35 + 28 + 35 + 33}{6} = \frac{178}{6} = 29,67 \implies \bar{x} = 29,67$$

Moda: 35€

Mediana: 30,5 €

Rol: 22 25 28 33 35 35

$$\frac{28+33}{2} = \frac{61}{2} = 30,5$$

Número par de dados

Média Ponderada

A média ponderada é utilizada quando cada valor de um conjunto de dados tem importâncias diferentes, isto é, aquelas com a maior importância (maior peso) devem influenciar mais na média. A média ponderada é:

$$\overline{\mathbf{X}}_{G} = \sum_{i=1}^{k} \mathbf{X}_{i} \times \mathbf{p}_{i}$$

Onde p_i é o peso com as seguintes condições:

$$0 < p_i < 1 e \sum_{i=1}^{k} p_i = 1$$

MÉDIA DE DADOS AGRUPADOS

 A média de uma distribuição de frequências para uma amostra é dada por ATENÇÃO:

Esta fórmula é usada quando os dados estão agrupados em tabelas de distribuição de frequências.

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{n} \quad \text{onde} \quad n = \sum_{i=1}^{n} f_i$$

 $X_i = Pm_i = variável ou ponto médio da classe i$ $<math>f_i = frequência da classe i$

EXEMPLO 1 MÉDIA PARA DADOS AGRUPADOS

Use a distribuição de frequências abaixo para calcular a média do número de minutos que uma amostra de internautas gastou durante sua navegação mais recente na rede.

Xi	fi
12,5	6
24,5	10
36,5	13
48,5	8
60,5	5
72,5	6
84,5	2
Ĵ	Σf;=50

Como os dados estão agrupados em uma distribuição de frequências, temos que usar a seguinte fórmula:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i f_i}{n} \quad onde \quad n = \sum_{i=1}^{n} f_i$$

Solução

Xi	fi	X _i ·f _i
12,5	6	75,0
24,5	10	245,0
36,5	13	474,5
48,5	8	388,0
60,5	5	302,5
72,5	6	435,0
84,5	2	169,0
	Σf;=50	$\Sigma X_i f_i = 2089,0$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{n} = \frac{2089}{50} = 41.8$$

Logo,
$$\bar{x} = 41.8 \text{ minutos.}$$

EXEMPLO 2 MÉDIA PARA DADOS AGRUPADOS

Use a distribuição de frequências abaixo para calcular a média dos estaturas, em cm, de 50 atletas.

Estaturas	fi
150 155	2
155 160	10
160 165	12
165 170	15
170 - 175	5
175 - 180	6
	$\Sigma f_i = 50$

Como os dados estão agrupados em uma distribuição de frequências, temos que usar a seguinte fórmula, porém, inicialmente, temos que encontrar os **pontos médios de cada** classe Xi:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{n} \quad onde \quad n = \sum_{i=1}^{n} f_i$$

EXEMPLO 2 MÉDIA PARA DADOS AGRUPADOS

Use a distribuição de frequências abaixo para calcular a média dos estaturas, em cm, de 50 atletas.

Estaturas	Xi	fi
150 155	152,5	2
155 160	157,5	10
160 - 165	162,5	12
165 170	167,5	15
170 - 175	172,5	5
175 - 180	177,5	6
	Ĭ	$\Sigma f_i = 50$

Como os dados estão agrupados em uma distribuição de frequências, temos que usar a seguinte fórmula, porém, inicialmente, temos que encontrar os **pontos médios de cada** classe X_i:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{n}$$
 onde $n = \sum_{i=1}^{n} f_i$

Solução

Estaturas	Xi	fi	X _i f _i
150 155	152,5	2	305
155 160	157,5	10	1575
160 - 165	162,5	12	1950
165 170	167,5	15	2512,5
170 - 175	172,5	5	862,5
175 - 180	177,5	6	1065
		$\Sigma f_i = 50$	$\sum X_i f_i = 8270$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i f_i}{n} = \frac{8270}{50} = 165,4$$

Logo,
$$\overline{x} = 165,4 \text{ cm}$$
.

MEDIDAS DE DISTRIBUIÇÃO DE FREQÜÊNCIAS

B- Medidas de Dispersão ou Variabilidade

- Amplitude Total
- Desvio Médio
- Variância
- Desvio Padrão
- Coeficiente de variação

MEDIDAS DE DISPERSÃO

- Numa pesquisa, os dados coletados podem:
 - assumir valores diferentes entre si
 - situar-se próximos ou não de uma medida de tendência central, como a média aritmética
 - situar-se próximos entre si ou não
 - ser discrepantes, em alguns casos
- Medidas de dispersão visam atribuir um valor numérico, da melhor forma possível, que expresse a homogeneidade ou não entre os diversos valores obtidos numa pesquisa.

AMPLITUDE TOTAL

 A amplitude total de um conjunto de dados é a diferença entre o valor máximo e o valor mínimo assumido pela variável.

$$AT = (X_{m\acute{a}x} - X_{m\acute{i}n}) \ do \ rol$$

onde X é a variável.

DESVIO

• O desvio de um conjunto de dados é a diferença entre os valores da variável e a média do conjunto de dados, podendo ser para mais (+) ou para menos (-). $d_i = X_i - \bar{X}$

EXEMPLO - DESVIO

A empresa A contratou dez pessoas com curso superior. O salário inicial nessa companhia é mostrado a seguir.

Salário inicial na empresa A (em milhares de dólares)

 Determine o desvio de cada salário inicial para a empresa A.

	Salário	Desvio
	(milhares de dólares)	(milhares de dólares)
	Xi	$X - \overline{X}_t$
ſ	37	-4,5
	38	-3,5
	39	-2,5
-	41	-0,5
n=10	41	-0,5
	41	-0,5
	42	0,5
	44	2,5
	45	3,5
Į	47	5,5
	$\Sigma X_i = 415$	$\Sigma(X_i - \bar{X}) = 0$

O salário médio inicial da empresa é

$$\bar{X} = \frac{\sum X_i}{n}$$

$$\bar{X} - \frac{415}{n} - 415$$

$$\bar{X} = 41,5$$

Observe que a soma dos desvios é zero. Isso ocorre para todo conjunto de dados. Se calcularmos a média dos desvios, obteremos sempre zero.

DESVIO MÉDIO

 Para resolver o problema anterior (média dos desvios igual a zero), calculamos o módulo dos desvios. Obtemos assim o desvio médio.

$$DM = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

EXEMPLO - DESVIO MÉDIO

Salário	Módulo do Desvio
(milhares de dólares) X _i	(milhares de dólares) $ X - \overline{X}_t $
37	-4,5 = 4,5
38	-3,5 = 3,5
39	-2,5 = 2,5
41	-0,5 = 0,5
41	-0,5 = 0,5
41	-0,5 = 0,5
42	0,5 = 0,5
44	2,5 = 2,5
45	3,5 = 3,5
47	5,5 = 5,5
$\Sigma X_i = 415$	$\sum X_i - \bar{X} = 24$

O desvio médio do salário inicial da empresa A é:

$$DM = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

$$DM = \frac{24}{10} = 2.4$$
 mil dólares

VARIÂNCIA

- Dispensa o uso do MÓDULO.
- Usa os desvios ao quadrado.
- Em um conjunto de dados, a média dos quadrados dos desvios é chamada de variância.

VARIÂNCIA AMOSTRAL

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Para a variância populacional utilizamos:

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{N}$$

DESVIO PADRÃO

- Resolve o problema dimensional da variância.
- Desvio padrão é a raiz quadrada da variância.

DESVIO PADRÃO AMOSTRAL

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Para o desvio padrão populacional utilizamos:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{N}}$$

EXEMPLO VARIÂNCIA E DESVIO PADRÃO

Obtenha a variância e o desvio padrão amostrais do salário inicial para a empresa A.

Salário inicial na empresa A (em milhares de dólares)

Salário (milhares de dólares) X _i	Desvio ao quadrado (milhares de dólares) $(x_i - \overline{x})^2$
37	$(37-41,5)^2 = (-4,5)^2 = 20,25$
38	$(38-41,5)^2 = (-3,5)^2 = 12,25$
39	$(39-41,5)^2 = (-2,5)^2 = 6,25$
41	$(41-41,5)^2 = (-0,5)^2 = 0,25$
41	$(41-41,5)^2 = (-0,5)^2 = 0,25$
41	$(41-41,5)^2 = (-0,5)^2 = 0,25$
42	$(42-41,5)^2 = (0,5)^2 = 0,25$
44	$(44-41,5)^2 = (2,5)^2 = 6,25$
45	$(45-41,5)^2 = (3,5)^2 = 12,25$
47	$(47-41,5)^2 = (5,5)^2 = 30,25$
$\Sigma X_i = 415$	$\Sigma (X_i - \overline{X})^2 = 88.5$

$$\bar{X} = \frac{\sum X_i}{n} = \frac{415}{10} = 41,5$$

Variância amostral:

$$\mathbf{s}^2 = \frac{\sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}})^2}{\mathbf{n} - 1}$$

$$s^2 = \frac{88,5}{10-1} = \frac{88,5}{9} = 9,83$$

Desvio padrão amostral:

$$s = \sqrt{9,83} \approx 3,14$$

MEDIDA DE DISPERSÃO RELATIVA

- As medidas de dispersão que vimos anteriormente (amplitude total, desvio médio, variância e desvio padrão) somente são comparáveis quando se referem a mesma escala de medida e quando os grupos têm média não muito diferentes.
- Para avaliar a variação dos dados de pesquisa através de um número índice (porcentagem), utilizamos o coeficiente de variação.

COEFICIENTE DE VARIAÇÃO

 Coeficiente de variação (C.V.) é a razão entre o desvio padrão e a média, multiplicada por 100. Portanto, ele é dado em porcentagem.

$$C.V. = \frac{s}{\bar{X}} \cdot 100 \, (\%)$$

EXEMPLO COEFICIENTE DE VARIAÇÃO

Compare a variação das idades dos 2 grupos seguintes.

1º grupo - Idade, em anos, de três crianças: 1, 3, 5

2º grupo- Idade, em anos, de três adultos: 53, 55, 57

Cálculo da média aritmética dos dois grupos:

1º grupo

$$\bar{X} = \frac{1+3+5}{3} = \frac{9}{3} = 3 \ anos$$

2º grupo

$$\bar{X} = \frac{53+55+57}{3} = \frac{165}{3} = 55 \ anos$$

Cálculo do desvio padrão (dispersão absoluta) dos dois grupos:

1º grupo

Xi	(Xi - X)2
1	$(1-3)^2=4$
3	$(3-3)^2=0$
5	$(5-3)^2=4$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{8}{2} = 4$$

$$s = \sqrt{4} = 2 \text{ anos}$$

2º grupo

Xi	(Xi - X) 2		
53	$(53 - 55)^2 = 4$		
55	$(55 - 55)^2 = 0$		
57	$(57 - 55)^2 = 4$		
	$\sum (X - \overline{X})^2 = 8$		

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{8}{2} = 4$$

$$s = \sqrt{4} = 2 \text{ anos}$$

A dispersão dos dados em torno da média é exatamente a mesma (s = 2 anos), porém, a diferença de 2 anos no 1º grupo é bastante significativo na mudança física, já no 2º grupo não o é.

Cálculo do coeficiente de variação (dispersão relativa) dos dois grupos:

1o grupo:

2o grupo:

$$C.V. = \frac{s}{\overline{X}} \cdot 100$$
 (%)

$$C.V. = \frac{s}{\overline{X}} \cdot 100 \, (\%)$$

$$C. V. = \frac{2}{3} \cdot 100 = 66,7\%$$

$$C.V. = \frac{2}{55} \cdot 100 = 3,64\%$$

Como o coeficiente de variação foi maior no 1º grupo, concluímos que o 1º grupo teve maior variação nos seus dados.

DESVIO PADRÃO PARA DADOS AGRUPADOS

 A fórmula para o desvio padrão da amostra de uma distribuição de frequência é:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot f_i}{n-1}}$$

onde $n = \Sigma f_i$ é o número total de dados.

EXEMPLO 1- DESVIO PADRÃO PARA DADOS AGRUPADOS EM DISTRIBUIÇÃO DE FREQUÊNCIAS

Os resultados de uma amostra do número de crianças por família em uma região estão dispostos na tabela abaixo. Determine a média e o desvio padrão.

Xi	fi	$X_i \cdot f_i$	$(X_i - \overline{X})^2 \cdot f_i$
0	10	0	$(0-1,8)^2 \cdot 10 = (3,24) \cdot 10 = 32,4$
1	19	19	$(1-1.8)^2 \cdot 19 = (0.64) \cdot 19 = 12.16$
2	7	14	$(2-1.8)^2 \cdot 7 = (0.04) \cdot 7 = 0.28$
3	7	21	$(3-1.8)^2 \cdot 7 = (1.44) \cdot 7 = 10.08$
4	2	8	$(4-1.8)^2 \cdot 2 = (4.84) \cdot 2 = 9.68$
5	1	5	$(5-1.8)^2 \cdot 1 = (10.24) \cdot 1 = 10.24$
6	4	24	$(6-1.8)^2 \cdot 4 = (17.64) \cdot 4 = 70.56$
	$\Sigma f_i = 50$	$\Sigma X_i \cdot f_i = 91$	$\mathcal{L}(X_i - \bar{X})^2 f = 145,40$

Média:
$$\bar{X} = \frac{\sum X_i \cdot f_i}{\sum f_i} = \frac{91}{50} = 1$$
, 8 crianças

Média:
$$\bar{X} = \frac{\sum X_i \cdot f_i}{\sum f_i} = \frac{91}{50} = 1$$
, 8 $crian$ ças

Desvio padrão: $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot f_i}{n-1}} = \sqrt{\frac{145,4}{49}} = \sqrt{2,967} = 1$, 7 $crian$ ças

Agora é com vocês! Calculem o desvio padrão para o exemplo abaixo

EXEMPLO 2- DESVIO PADRÃO PARA DADOS AGRUPADOS EM DISTRIBUIÇÃO DE FREQUÊNCIAS

O resultado de uma sondagem na qual mil adultos foram indagados sobre quanto gastavam anualmente na preparação de uma viagem de férias resultou na distribuição de frequência abaixo. Estime a média e o desvio padrão amostrais do

conjunto de dados.

Gastos (US\$)	fi
0 - 100	380
100 - 200	230
200 300	210
300 400	50
400 500	60
500 600	70
	$\Sigma f_i = 1000$

stos f _i		$X_i f_i$	$(Xi-\bar{X})^2f_i$		
380	50	19.000	$(50 - 189)^2 \cdot 380 = 7.341.980$		
230	150	34.500	$(150 - 189)^2 \cdot 230 = 349.830$		
210	250	52.500	$(250 - 189)^2 \cdot 210 = 781.410$		
50	350	17.500	$(350 - 189)^2 \cdot 50 = 1.296.050$		
60	450	27.000	$(450 - 189)^2 \cdot 60 = 4.087.260$		
70	550	38.500	$(550 - 189)^2 \cdot 70 = 9.122.470$		
$\Sigma f_i = 1000$		$\Sigma X_i \cdot f_i = 189.000$	$\mathcal{L}(X_i - \bar{X})^2 fi = 22.979.000$		
	230 210 50 60 70	230 150 210 250 50 350 60 450 70 550	380 50 19.000 230 150 34.500 210 250 52.500 50 350 17.500 60 450 27.000 70 550 38.500		

Média:
$$\bar{X} = \frac{\sum X_i \cdot f_i}{\sum f_i} = \frac{189000}{1000} = 189 \ d\'olares$$

Desvio padrão:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot f_i}{n-1}} = \sqrt{\frac{22979000}{999}} = \sqrt{23002,002} = 151,66 \text{ dólares}$$

FÓRMULAS MEDIDAS DE <u>DISPERSÃO</u>

 As fórmulas seguintes são usadas para dados agrupados em distribuição de frequências.

Variância Amostral

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot f_i}{n-1}$$

Desvio Padrão Amostral

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot f_i}{n-1}}$$

MEDIDAS DE POSIÇÃO

C- Medidas de Posição

- Quartil
- Decil
- Percentil

QUARTIS

- Quartis são números que dividem aproximadamente um conjunto ordenado de dados em quatro partes iguais.
- Portanto, há 3 quartis: Q1, Q2 e Q3.
- Cerca de ¼ dos dados é menor ou igual ao 1º quartil.
- Cerca de ½ (metade) dos dados é menor ou igual ao 2º quartil. O 2º quartil é igual à mediana do conjunto de dados.
- Cerca de ¾ dos dados é menor ou igual ao 3º quartil.

QUARTIS

Ou seja, cada parte deve ter 25% dos dados.

- →→ Primeiro quartil é o valor onde 25% dos dados são menores ou iguais a ele, consequentemente 75% são maiores ou iguais a ele;
- →→ Segundo quartil (mediana) é o valor onde 50% dos dados são menores ou iguais a ele e, 50% são maiores ou iguais a a ele;
- →→ Terceiro quartil é é o valor onde 75% dos dados são menores ou iguais a ele, 25% são maiores ou iguais a ele.

O segundo quartil coincide com a mediana, portanto, é pouco utilizado.

EXEMPLO - QUARTIS

A pontuação nos testes de 15 empregados envolvidos em um curso de treinamento está disposta a seguir. Obtenha os 3 quartis da pontuação dos testes.

13	9	18	15	14	21	7	10	11	20	5	18	37	16	17

Em 1° lugar, ordene o conjunto de dados e obtenha a mediana, que é igual ao 2° quartil.

Uma vez obtido o 2° quartil, pode-se dividir o conjunto de dados em 2 metades. O 1° e o 3° quartis são as medianas das metades inferior e superior do conjunto de dados.

Assim, cerca de ¼ dos empregados fez dez pontos ou menos, cerca da metade fez 15 pontos ou menos e cerca de ¾ conseguiu 18 pontos ou menos.

QUARTIS

No cálculo do quartil, deve-se primeiramente calcular a posição onde ele se encontra e, depois calculá-lo através de uma média ponderada de dois valores, caso seja necessário. O quartil pode ser obtida através de:

$$Q_i = x_{\left(\frac{i \times n}{4} + \frac{1}{2}\right)}$$

Com i = 1, 2 e 3 para se obter Q_1 , Q_2 e Q_3 para um conjunto com n dados. O uso da média ponderada de dois valores é aplicado quando o resultado da posição

$$\left(\frac{i\times n}{4} + \frac{1}{2}\right)$$
 não é inteiro.

EXEMPLO 1

Para um conjunto com n = 10:

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀
9	10	12	14	16	17	17	19	20	22
L									

O primeiro quartil e o terceiro quartil são:

$$Q_1 = X_{(\frac{1\times 10}{4} + \frac{1}{2})} = X_{(3)} = 12$$

e

$$Q_3 = X_{(\frac{3\times10}{4} + \frac{1}{2})} = X_{(8)} = 19$$

Como as posições do primeiro quartil e terceiro quartil deram números inteiros, os quartis são associados à posição no conjunto ordenado de dados.

EXEMPLO 2

Para um conjunto com n = 11 tem-se:

O primeiro quartil é:

$$Q_1 = X_{(\frac{1\times 11}{4} + \frac{1}{2})} = X_{(3,25)}$$

Nesse caso, a "posição" 3,25 (número não inteiro) indica que o primeiro quartil está entre o terceiro e o quarto valor e, as casas decimais, 0,25, são interpretadas como proximidade maior ao terceiro do que o quarto elemento. As casas decimais também serão utilizadas como peso no cálculo do Q_1 e, quanto maior a proximidade maior será o peso para o cálculo de Q_1 . A média ponderada entre x_3 e x_4 tem pesos iguais a (1-0,25) para x_3 e (0,25) para o x_4 , respectivamente.

O procedimento para a obtenção dos quartis é inicialmente calcular:

$$Q_i = X_{(\frac{i \times n}{4} + \frac{1}{2})} = X_{(j,d)}$$

Representando o resultado por $x_{(j,d)}$ com j o número inteiro e d a casa decimal da expressão, o quartil é dado por:

$$Q_i = X_{(j,d)} = X_{(j,d)} = (1-d) \times X_{(j)} + (d) \times X_{(j+1)}$$

Para i =1, 2 e 3.

Assim, o primeiro quartil será:

$$Q_1 = x_{\left(\frac{1\times11}{4} + \frac{1}{2}\right)} = x_{(3,25)}$$

Nesse caso, o primeiro quartil está entre o terceiro e o quarto valor e a casa decimal (0,25), indica que está mais próximo do terceiro elemento.

O primeiro quartil é:

$$Q_1 = x_{\left(\frac{1\times11}{4} + \frac{1}{2}\right)} = x_{(3,25)} = (1 - 0,25) \times x_3 + (0,25) \times x_4$$
$$= (1 - 0,25) \times 12 + (0,25) \times 14 = 12,5$$

Assim, o terceiro quartil será:

$$Q_3 = x_{\left(\frac{3\times11}{4} + \frac{1}{2}\right)} = x_{(8,75)}$$

Nesse caso, o terceiro quartil está entre o oitavo e o nono valor e a casa decimal (0,75), indica que está mais próximo do nono elemento.

O terceiro quartil é:

$$Q_{3} = X_{\left(\frac{3\times11}{4} + \frac{1}{2}\right)} = X_{(8,75)} = (1-0,75) \times X_{8} + (0,75) \times X_{9}$$

$$= (1-0,75) \times 19 + (0,75) \times 20$$

$$= 19,75$$

Exercício:

Calcule o primeiro, segundo e terceiro quartis do seguinte conjunto:

$$Q_i = x_{\left(\frac{i \times n}{4} + \frac{1}{2}\right)}$$

Exercício:

Calcule o primeiro, segundo e terceiro quartis do seguinte conjunto:

```
17
20
                                                  Q_i = X_{(\frac{i \times n}{a} + \frac{1}{2})} = X_{(j,d)}
22
27
9
12
            Q_i = X_{(j,d)} = X_{(j,d)} = (1-d) \times X_{(j)} + (d) \times X_{(j+1)}
14
17
             Para i = 1, 2 e 3.
19
24
                     10 12 | 14 16 17 | 17 19 20 | 22 24 27
10
                           Q1=13
                                      Q2=17
                                                    03 = 21
16
```

DECIS E PERCENTIS

- DECIS dividem o conjunto de dados em 10 partes iguais. São 9 decis: D1, D2, D3, ... D9
- **PERCENTIS** dividem o conjunto de dados em 100 partes iguais. São 99 percentis: **P**1, **P**2, **P**3, ... **P**99
- Os percentis são frequentemente usados na Educação e nos campos relacionados à Saúde para indicar como um indivíduo se compara com os outros em um determinado grupo. Pontuações em testes e medidas de crescimento infantil, por exemplo, são frequentemente expressos em percentis.

Desta forma, os **Decis** são calculados da seguinte forma:

$$D_i = x_{\left(\frac{i \times n}{10} + \frac{1}{2}\right)}$$

Com i variando de 1 até 9.

O cálculo é feito como o dos quartis e o resultado pode ser representado por $x_{(j,d)}$, com j a parte inteira e d a parte das casas decimais.

O cálculo dos decis é dado por:

$$D_i = X_{(j,d)} = X_{(j,d)} = (1-d) \times X_{(j)} + (d) \times X_{(j+1)}$$

Agora com vocês!

Calcule **o primeiro decil, o segundo decil e o nono decil** do conjunto ordenado de 20 números dado a seguir:

$$D_i = X_{(j,d)} = X_{(j,d)} = (1-d) \times X_{(j)} + (d) \times X_{(j+1)}$$

para i =1, 2, ..., 9.

36

$$D_{1} = X_{\left(\frac{1\times20}{10} + \frac{1}{2}\right)} = X_{(2,5)} = (1-0,5) \times X_{(2)} + (0,5) \times X_{(3)}$$

$$= (1-0,5) \times 10 + (0,5) \times 12$$

$$= 11$$

Interpretação: 10% dos dados são menores ou iguais a 11 ou 90% são maiores ou iguais 11.

$$D_2 = X_{\left(\frac{2\times20}{10} + \frac{1}{2}\right)} = X_{(4,5)} = (1-0,5) \times X_{(4)} + (0,5) \times X_{(5)}$$
$$= (1-0,5) \times 14 + (0,5) \times 16$$

Interpretação: 20% dos dados são menores ou iguais a 15 ou 80% são maiores ou iguais a 15.

$$D_{9} = X_{\left(\frac{9\times20}{10} + \frac{1}{2}\right)} = X_{(18,5)} = (1-0,5) \times X_{(18)} + (0,5) \times X_{(19)}$$
$$= (1-0,5) \times 3 + (0,5) \times 38$$
$$= 37,5$$

Interpretação: 90% dos dados são menores ou iguais a 37,5 ou 10% são maiores ou iguais a 37,5.

Como são calculados os Percentis?

$$P_i = x_{\left(\frac{i \times n}{100} + \frac{1}{2}\right)}$$

Com *i* variando de 1 até 99 para obter P₁, P₂, ..., P₉₉.

Exemplo: Calcule o P₅, P₉₅ da série ordenada a seguir:

X ₁	X_2	X_3	X_4	X_5	X_6	X ₇	X_8	X_9	X ₁₀
9	10	12	14	16	17	17	19	20	22
X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇	X ₁₈	X ₁₉	X ₂₀
24	27	30	31	32	34	35	37	38	39

Resposta: P5 = 9,5 e P95 = 38,5₅9

APLICAÇÃO

Claudia é gerente de Marketing da empresa **Calça & Moda.** Ela gostaria de saber se a promoção de desconto na compra da segunda peça aumentou o gasto por cliente. Para isso, ela analisou no banco de dados o gasto de 20 clientes antes da promoção e, o gasto de 16 clientes durante a promoção. Os gastos observados são:

GASTOS ANTES DA PROMOÇÃO (em reais)			₹ % }	GASTO: (em rea		TE A PRON	ИОÇÃО		
141	117	129	115		108	88	1 10	79	
113	69	133	96		112	90	123	97	
86	168	63	151		1 25	130	102	140	
104	104	59	115		158	108	1 29	1 19	
90	138	131	84						

A gerente gostaria de saber o valor da compra dos 10% e 25% dos menores gastos e também dos 5% e 25% dos maiores gastos por compra.

Outra informação é a média dos gastos e a mediana dos gastos antes e durante a promoção.

Em termos de Quartis, Decis e Percentis. O que vocês deverão calcular?

As medidas de ordenamento desejadas pela Claudia são:

P10 = D1 : o valor dos 10% que menos gastam por compra;

P25 = Q1 : o valor dos 25% que menos gastam por compra;

P95 : o valor dos 5% que mais gastam por compra;

P75= Q3: o valor dos 25% que mais gastam por compra.

Além da média e mediana de gastos antes e durante a promoção.

Os resultados obtidos foram:

	ANTES DA PROMOÇÃO	DURANTE A PROMOÇÃO
D_1	66	88,2
Q_1	88	99,5
Md	114	111
Q_3	132	127
P ₉₅	159,5	152,6
média	110,3	113,63

APLICAÇÃO DOS QUARTIS: BOX PLOT

- Uma aplicação importante dos quartis é o box plot, também conhecidos como plotes maria-chiquinha, que é uma maneira de representar os dados.
- BOX PLOT é um gráfico de dispersão que relaciona os valores de uma variável com medidas estatísticas.

RESUMO CINCO-NÚMEROS DOS DADOS

 Para fazer um box plot é preciso conhecer os seguintes valores:

 Esses 5 valores são chamados de resumo cinconúmeros do conjunto de dados.

COMO FAZER UM BOX PLOT?

- 1. Obtenha o resumo cinco-números do conjunto de dados
- Construa uma escala horizontal que abranja a amplitude total dos dados.
- 3. Plote os cinco números acima da escala horizontal.
- 4. Faça uma caixa acima da escala horizontal de Q1 a Q3 e trace uma reta vertical na caixa, passando por Q2.
- Faça as "tranças" a partir da cabeça para o menor valor e o maior valor.

MODELO DE BOX PLOT

 Círculos, bem como quadradinhos indicam valores em uma pesquisa pelos quais diferem de grandeza dos demais, isto é, são dados distorcidos.

EXEMPLO - BOX PLOT

Faça um Box Plot que represente a pontuação dos 15 testes dados... (exemplo dos quartis). O que você pode concluir a partir do gráfico?

O resumo cinco-números das pontuações no teste são:

Menor valor = 5

 $Q_1 = 10$

 $Q_2 = 15$

 $Q_3 = 18$

Maior valor = 37

BOX PLOT

Uma das conclusões: cerca de metade das pontuações está entre 10 e 18.

Se eu tenho outliers no Boxplot

O limite de detecção de outliers é construído utilizando o intervalo interquartílico, dado pela distância entre o primeiro e o terceiro quartil. Sendo assim, os limites inferior e superior de detecção de outlier são dados por:

- •Limite Inferior = Primeiro Quartil 1,5 * (Terceiro Quartil Primeiro Quartil)
- Limite Superior = Terceiro Quartil + 1,5 * (Terceiro Quartil Primeiro Quartil)

Dados Agrupados em Intervalos

Quando os dados já estiverem agrupados em intervalos (na forma de tabela de frequência) e os dados brutos não são disponíveis para o cálculo exato das medidas de ordenamento, devemos obter essas medidas através de aproximações. Adota-se um procedimento para o cálculo do percentil que valerá para o cálculo do quartil e decil, pois essas medidas são casos particulares dos percentil.

Supondo o cálculo de Pi, com i = 1, 2, 3, ..., 99. O primeiro passo é calcular: $\frac{1}{2}$

 $\left(\frac{i \times n}{100}\right)$

que identifica a posição onde se encontra o percentil em questão e, depois calcular as frequências acumuladas.

O primeiro valor da frequência acumulada que ultrapassar ou igualar ao $\left(\frac{i\times n}{100}\right)$ é o intervalo que contém o Pi e, depois

utilizar a fórmula de Pi dado a seguir. Essa expressão é obtida por relação de proporcionalidade (regra de três).

$$P_{i} = LimInf + h \times \frac{\frac{i \times n}{100} - F_{acumulada anterior}}{f_{classe do i}}$$

Onde:

- LimInf: é o limite inferior do intervalo que contém o percentil i;
- > h: é o tamanho do intervalo que contém o percentil i;
- **n:** é o tamanho da amostra;
- → **F**_{acumulada anterior}: é a frequência acumulada anterior ao intervalo que contém o percentil i;
- → **f**_{classe do i}: é a frequência do intervalo que contém o percentil i.

Exemplo:

Utilizando a tabela de frequência a seguir calcule o P₁₀ como exemplo.

	LAS	SSE		FREQUÊNCIA	
LIMITE INFERIOR		LIMITE SUPERIOR	FREQUÊNCIA	ACUMULADA	
10	⊢	15	5	5	
15	\vdash	20	12	17	
20	\vdash	25	8	25	
25	25 ⊢		3	28	
		total (n)	28		

Para achar a posição do P_{10} , 1° calculo $\left(\frac{i \times n}{100}\right)$

$$i = 10e \ n = 28 \Rightarrow \left(\frac{10 \times 28}{100}\right) = 2.8$$

 $\therefore P_{10}$ está na 1ª classe, de frequência acumulada de 0 a 5

Exemplo:

Utilizando a tabela de frequência a seguir calcule o P_{10} como exemplo.

LIMITE INFERIOR		LIMITE SUPERIOR	FREQUÊNCIA
10	\vdash	15	5
15	\vdash	20	12
20	\vdash	25	8
25	H	30	3
		total (n)	28

1.	•	1	c	1	\sim
	ım	ım	г —	- 11	11
ш	ım		. –		J

\perp		CLAS	SE		FREQUÊNCIA	
L	LIMITE INFERIOR		LIMITE SUPERIOR	FREQUÊNC	A ACUMULADA	f = C
	10	<u> </u>	15	5	5	> intervalo do P ₁₀
	15		20	12	17	
	20	—	25	8	25	
	25	—	30	3	28	
			total (n)	28		
ŀ	ı = 15 - 10 = 5				$f_{10 \text{ percentil}} = 5$	

- -

Nesse caso, o P₁₀ será:

$$P_{i} = LimInf + h \times \frac{\frac{i \times n}{100} - F_{acumulada anterior}}{f_{classe do i}}$$

$$= 10 + 5 \times \frac{\frac{10 \times 28}{100} - 0}{5}$$

$$= 12.8$$

Obs.: Se P_i está contido no primeiro intervalo a frequência acumulada anterior será igual a zero.

Exercício:

Em um escritório, o tempo por dia (em minutos), no horário de trabalho, que a Internet na área que João trabalha fica fora do ar em virtude de uma falha da prestadora de serviços, está apresentado na distribuição seguir.

Tempo parado em minutos	0 – 10	10 – 20	20 – 30	30 40	40 – 50	Total
Fi	2	15	17	13	3	50

- a) Calcule a média, moda e mediana.
- b) Calcule o Q3, D3, P63.

Referências

SANTIAGO, M. S.; AKAMINE, C. T.; MORSELLI, N. V. Estatítica Aplicada à Gestão. UNIVESP. São Paulo, 2016.