VI Lista de Exercícios – Matemática Discreta Funções e Relações

1. Sejam R e S as seguintes relações em $A = \{1, 2, 3\}$:

$$R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}\ e S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}\$$

Ache:

- a. $R \cap S$
- b. $R \cup S$
- c. R'
- $d. R \circ S$
- e. $S^2 = S \circ S$
- 2. Sejam R e S duas relações binárias em definidas por $x R y \Leftrightarrow x = y$ e $x S y \Leftrightarrow x < y$. Forneça descrições verbais para (a), (b) e (c); apresente o conjunto definido em (d).
 - a. Qual a relação $R \cup S$?
 - b. Qual a relação R'?
 - c. Qual a relação S'?
 - d. Qual a relação $R \cap S$?
- 3. Digamos que dois inteiros estão próximos um do outro se sua diferença for no máximo 2. Por exemplo, 3 está próximo de 5, 10 está próximo de 9, mas 8 não está próximo de 4. Representamos por R esta relação *estar próximo de*.

Escreva R como um conjunto de pares ordenados. Sua resposta deve apresentar-se como segue:

$$R = \{(x,y): \dots \}$$

- 4. Determine R⁻¹ para cada uma das seguintes relações:
 - a. $R = \{(1, 1), (2, 2), (3, 3)\}$
 - b. $R = \{(1, 2), (2, 3), (3, 4)\}$
 - c. $R = \{(x, y) : x, y \in \mathbb{Z}, x y = 1\}$
 - d. $R = \{(x, y) : x, y \in N, x \mid y\}$
 - e. $R = \{(x, y) : x, y \in \mathbb{Z}, xy > 0\}$
- 5. Sejam R e S duas relações binárias em definidas por $xRy \leftrightarrow x$ divide $y \in xSy \leftrightarrow 5x \le y$. Determine quais dos pares ordenados satisfazem às relações dadas:
 - a. $R \cup S: (2, 6), (3, 17), (2, 1), (0, 0)$
 - b. $R \cap S: (3, 6), (1, 2), (2, 12)$
 - c. R': (1, 5), (2, 8), (3, 15)
 - d. S': (1, 1), (2, 10), (4, 8)
- 6. A figura a seguir representa uma função.

Exercício 1

- a. Qual seu domínio? Qual seu contradomínio? Qual o conjunto imagem?
- b. Qual a imagem de 5? E de 8?
- c. Quais as pré-imagens de 9?
- d. Esta função é sobrejetora? É injetora?

- 7. Para cada uma das funções abaixo, calcule se possível:
 - a. f(1)

c. f(0)

e. f(-5)

b. *f*(-1)

d. f(5)

f. f(6)

i)
$$f(x) = 2x^2 - 5x + 1$$

$$ii) \qquad f(x) = 7$$

iii)
$$f(x) = \sqrt{-x+5}$$

$$iv) \qquad f(x) = \frac{1}{\sqrt{-x+5}}$$

$$v) \qquad f(x) = \frac{1}{\sqrt[3]{-x+5}}$$

8. Para cada uma das funções abaixo, encontre o domínio:

a.
$$f(x) = 2x^2 - 5x + 1$$

b.
$$f(x) = 7$$

c.
$$f(x) = \sqrt{-x+5}$$

$$d. \quad f(x) = \frac{1}{\sqrt{-x+5}}$$

e.
$$f(x) = \frac{1}{\sqrt[3]{-x+5}}$$

f.
$$f(x) = \frac{x^3 + 6}{x^2 - 5x + 6}$$

g.
$$f(x) = \sqrt[3]{x^2 - 5x + 6}$$

h.
$$f(x) = \frac{5x}{\sqrt{x^2 - 5x + 6}}$$

- 9. Seja $S = \{0, 2, 4, 6\}$ e $T = \{1, 3, 5, 7\}$. Determine se cada um dos conjuntos de pares ordenados a seguir é ou não uma função com domínio S e contradomínio T. Em cada caso afirmativo, indique se a função é injetora e/ou sobrejetora.
 - a. $\{(0,2), (2,4), (4,6), (6,0)\}$
 - b. $\{(4,1), (0,7), (2,5), (6,3)\}$
 - c. $\{(6,3),(2,1),(0,3),(4,5)\}$
 - d. $\{(2,3), (4,7), (0,1), (6,5)\}$
 - e. $\{(2, 1), (4, 5), (6, 3)\}$
 - f. $\{(6,1), (0,3), (4,1), (0,7), (2,5)\}$
- 10. Apresente a função inversa para cada bijeção do exercício anterior.
- 11. Sejam $S = \{a, b, c, d\}$ e $T = \{x, y, z\}$.
 - a. Apresente um exemplo de função de S em T que não seja nem sobrejetora nem injetora.
 - b. Apresente um exemplo de função de S em T que seja sobrejetora, mas não seja injetora.
 - c. É possível encontrar uma função de S em T que seja injetora?

12. Sejam $S = \{2, 4\}$ e $T = \{1, 5, 7\}$. Encontre o número de funções de S em T. Indique quais são injetoras e quais são sobrejetoras.

13. Seja
$$f(n) = \begin{cases} 2 & n = 1, \\ 5f(n-1) & n > 1. \end{cases}$$
 Obtenha f(4).

14. Seja
$$f(n) = \begin{cases} 1 & n = 1 \text{ ou } n = 2, \\ f(n-1) - f(n-2) & n \ge 3. \end{cases}$$

a. Complete a tabela:

n	1	2	3	4	5	6	7	8
f(n)								

- b. Obtenha f(2007).
- c. Obtenha f(2009).