Discrete Structures (MA5.101)

Mid Semester Examination (Monsoon 2021) International Institute of Information Technology, Hyderabad

Time: 90 Minutes Total Marks: 30

Instructions: This is online examination.

Write at the top of your answer book the following:

Discrete Structures (MA5.101)

Mid Semester Examination (Monsoon 2021)

Date: 10-Jan-2022

Name:

Roll Number:

Submit your scanned hand-written answer script in the moodle with the file name: RollNo_MidSem_SecNo_10Jan2022.pdf

NOTE: No email submissions for the answer scripts are allowed even if you are facing Internet issues or moodle problem from your end. In that case, viva-voce of mid semester examination will be considered later for fair evaluations to all.

10 January 2022

- 1. (a) We know that the composite gf of any two injections $f: S \to T$ and $g: T \to V$ is an injection. Extend the definition of the composite gf to the case in which the domain of g contains the codomain of f. Prove or disprove:
 - (i) the composite gf of any two injections is an injection.
 - (ii) the composite gf of any two surjectios is a surjection.
 - (b) A set S is said to be *infinite* if there is a one-to-one correspondence (bijection) between S and a proper subset of S. Using this definition, prove that the set of real numbers is infinite.

$$[(2.5 + 2.5) + 5 = 10]$$

- 2. (a) Let A, B, and C be the subsets of a set U with the properties that $B \cap C = \emptyset$ and $A = B \cup C$. Construct a bijection map $b: \mathcal{P}(A) \to \mathcal{P}(B) \times \mathcal{P}(C)$, where $\mathcal{P}(X)$ represents the power set of a given set X.
 - (b) Construct a truth table for each of these compound propositions:
 - (i) $(p \to q) \leftrightarrow (\neg q \to \neg p)$
 - (ii) $(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$

- 3. (a) Show that $\neg p \to (q \to r)$ and $q \to (p \lor r)$ are logically equivalent by a series of logical equivalences.
 - (b) (i) Build a digital circuit that produces the output $(a \lor \neg c) \land (\neg a \lor (b \lor \neg c))$, where input bits a, b, and c are given.
 - (ii) Show that $(a \lor b) \land (\neg a \lor c) \rightarrow (b \lor c)$ is a tautology.

$$[5 + (2.5 + 2.5) = 10]$$