

동기: 적절한 이상점 제거기준?

예측웹서비스 스타트업 운영 중 (qtell.co.kr) 예측정확도에 결정적인 ¹⁾ 이상점 처리방식 필요성

2. 데이터량별로 이상점 형태 다름

예) 군식당 이상점 요인

예) 한 달 vs 한 분기 vs 1년

- 비상대기: 북한 핵 실험, 국가 사고
- 군사훈련: 을지 포커스렌즈
- 복날: 저렴한 닭 한 마리
- 기상상황:비

→ 세 종류의 산업 수요데이터 바탕으로 적합한 이상점 제거 기준탐구

그림1. 산업별 다른 이상점 특성 (우유, 물류, 군식당)

제안: 데이터의 이상점 특성별, 데이터 개수별로 변하는 이상점 제거기준

그림2. 민감도 관점 산업별 이상점 특성

높은 민감도

- = 높은 변동성 (표준편차/평균)
- = 높은 이상점 극단성 (상위 5% 이상점과 나머지의 평균비)

Different beta depending on Data!

정적 제거 신호잡음 분리에 고정된 β

VS

동적 제거

민감도, 데이터 개수 따라 다른 β (β = 이상점 극단성 + 데이터량 x축 sigmoid함수)

그림3. 정적과 동적 이상점 제거 방식 비교

결과 분석

	제거x	정적 제거	동적 제거
우유	1.102	0.702	0.661
물류	0.865	0.688	0.688
군식당	1.422	1.174	1.174

표1. 산업과 이상점 제거 방식에 따른 예측오차

	제거x	정적 제거	동적 제거
60일 (1회 예측)	0.818	0.713	0.713
120일 (3회 예측)	0.813	0.704	0.697
240일 (5회 예측)	0.791	0.714	0.695

표2. 데이터량과 이상점 제거 방식에 따른 예측오차

낮은 민감도 -> 동적 제거 방식 효과적!

많은 데이터량 -> 동적 제거 방식 효과적!

한계점 및 개선 방안

Outlier = Noise?

과거의 error 분석 통해 유사 error를 예방가능! e.g. 9.11테러같은 상상 초월 사건도 거시적인 관점에서는 이상치가 아닐 수 있다 2)(네이트 실버)

이상점을 noise로 간주하고 삭제한 것이 한계

- 이상치제거에서 손실되는 정보량의 최소화를 위해
- 이상점 생성기작을 모형에 반영하는 mixture models 3) 통해 개선 가능

참고문헌 Rousseeuw, P. J., & Leroy, A. M. (2005). Robust regression and outlier detection (Vol. 589). John wiley & sons.

- Silver, N. (2012). The signal and the noise: the art and science of prediction. Penguin UK.
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.