

ET0730

Chapter 7 Transport Layer Protocols

Singapore Polytechnic
School of Electrical & Electronic Engineering

Objectives

- Explain why Transport Layer is needed.
- Explain the OSI Seven Layer Model and TCP/IP model.
- Explain the two Transport Layer protocols: TCP and UDP.
- Understand the differences between TCP and UDP.
- Understand what Internet Socket is.
- Describe the types of port numbers.
- Understand the use of port numbers.

Outline

- Introduction The Need for Transport Layer
- Layered Network Models
 - OSI Seven Layer Model
 - TCP/IP Model
- Transport Layer Protocols
 - TCP
 - UDP
- Internet Sockets
- Port Number
 - Well-known Ports
 - Registered Ports
 - Dynamic/Private/Ephemeral Ports

Introduction (1)

A Busy Laptop

- Many communications may be going on simultaneously for a host.
- Example: you may be doing the following things (different "applications") on your laptop at the same time:
 - browsing the Yahoo web page using Firefox,
 - watching an YouTube video using Chrome,
 - transferring a file from a file server,
 - having an instant messaging session with your friends using Skype, and
 - sending/reading emails using Outlook.

Introduction (2):

Which IP Packet is for which application?

- For each communication activity that you are having over the internet, the data are carried in IP packets.
- Many IP packets are leaving your laptop (outgoing traffic) and coming to your laptop (incoming traffic) simultaneously.

• Question:

- Your laptop has only one IP address.
- When the IP packets come in, how are the IP packets directed to the correct application or process?

Introduction (3)

Sort out the IP Packets

 In order to distinguish the IP packets belonging to different applications or processes, we need to provide separate data channels for different applications or processes.

How do we provide separate data channels?

- Answer: Transport Layer Protocols
- The Transport Layer establishes a data channel for an application to achieve end-to-end data exchange.

- To understand how Transport Layer achieves this, we need to know:
 - Network Protocols
 - Layered Network Models
 - Transport Layer and its protocols

Networking Protocols (1)

- All networks have four basic elements in common:
 - Devices
 - Media
 - Messages
 - Rules
- In any communication system it is necessary to have a set of rules or procedures, which must be obeyed if information transfer is to be implemented successfully.

Networking Protocols (2)

- Rules" or "Procedures" define how messages are sent, directed, received and interpreted.
- In computer networking, we call these rules or procedures the Protocols.
- There are many different protocols, each performs certain networking functions.

Layered Network Models (1)

- What are Layered Network Models?
 - Layering is a structuring technique that groups network protocols according to their functions.
 - Each group is a layer of a layered network model.
 - Each layer is independent from every other in its purpose and responsibilities.
 - Each layer of the network uses the protocols and software of the layer below it.
 - Each layer communicates with the layer above it so that the higher layer can use the resources it provides.

Layered Network Models (2)

- Reasons for layering
 - Simplifies the network model.
 - Enables programmers to specialize in a particular level or layer of the networking model.
 - Provides design modularity.
 - Encourages interoperability.
 - Allows for standardized interfaces to be produced by networking vendors.

Layered Network Models (3)

- In this chapter, we will learn about two important layered network models:
 - OSI Seven Layer Model
 - TCP/IP Model

OSI Seven Layer Model (1)

- Rapid growth in demand for data communication in the 1970's led to each manufacturer developed their own standards and protocols.
- Most manufacturer solutions were different and hence created problems with equipment compatibility.
- In 1977, International Standards Organisation (ISO) created a committee to unify networks.
- The committee established the concept of an "Open System", one in which standard protocols are used and hence interconnection is easy to implement.

OSI Seven Layer Model (2)

- The committee also defined an Interconnection Reference Model, which defines the seven layers of communication protocol with specific functions associated with each layer.
- The "Open System Interconnection (OSI) Reference Model" or "7 Layer Model" is now an accepted International Standard for use in data communication networks.

OSI Seven Layer Model (3)

 In OSI Seven Layer Model, the protocols are organised into 7 layers according to their functions.

Main function of each layer:

Purpose for communication

Syntax conversion

Transmission control and order

Ensures delivery

Routes data

Media access

Bit conversion and transmission

Data Encapsulation (1)

- When data is sent from the source host to the destination host, the data goes through
 - encapsulations at the source host
 - De-encapsulations at the destination host
- Encapsulation is the process of adding headers (packaging) to the data.
- De-encapsulation is the process of removing the headers (unpackaging).

Data Encapsulation (2)

- At the sending host, as the data (e.g. email) goes down the layers, the encapsulation process adds "header" to the data.
- Data Link Layer may add a "trailer" to the data too.
- Encapsulation process increases the size of the data packet.

De-Encapsulation

- At the receiving host, as the data goes up the layers, the deencapsulation process removes "header" from the data.
- Eventually the original data (e.g. email) is recovered.

TCP/IP Model (1)

- For internet as well as other similar computer networks, a set of protocols have been developed over the years.
- This set of communication protocols are collectively known as "Internet Protocol Suite"
- Internet Protocol Suite is also commonly known as "TCP/IP" because of the two most important protocols:
 - TCP (Transmission Control Protocol)
 - IP (Internet protocol)

TCP/IP Model (2)

- The development of the TCP/IP was funded by DARPA, an agency of the United States Department of Defense in the late 1960s.
- The TCP/IP model and related protocols are maintained by the Internet Engineering Task Force (IETF).
- Documents of IETF standards are call RFCs (Requests for Comments), downloadable from www.ietf.org.

TCP/IP Model (3)

 The protocols in TCP/IP Model are organised into 4 layers, according to the scope of networking involved.

Application Layer

Transport Layer

Internet Layer

Network Access
Layer

Main function of each layer:

Provides process-to-process application data exchange.

Handles host-to-host communication.

Connects hosts across networks.

Handles communication for a single network segment (link).

TCP/IP Model (4)

 The TCP/IP Model also uses the same concept of encapsulation and de-encapsulation of data as the data goes through the layers.

Mapping between OSI Seven Layer Model and TCP/IP Model

- The TCP/IP Model merges the top three layers of the OSI Seven Layer Model into the "Application Layer" in TCP/IP Model.
- The TCP/IP Model also merges the bottom two layers of the OSI Seven Layer Model into the "Network Access Layer" in TCP/IP Model.

Which Model to Use?

- Network engineers need to know both models.
- In this module, we will use both models.

OSI Seven Layer Model

Application Layer					
Presentation Layer					
Session Layer					
Transport Layer					
Network Layer					
Data Link Layer					
Physical Layer					

TCP/IP Model

Application Layer

Transport Layer

Internet Layer

Network Access Layer

TCP/IP Protocols

- You have already come across some of the TCP/IP protocols.
- Example:
 - DHCP (Application Layer)
 - DNS (Application Layer)
 - HTTP for web service (Application Layer)
 - IP (Internet Layer)
 - ICMP for pinging (Internet Layer)
 - Ethernet (Network Access Layer)
- In this chapter, you will learn the Transport Layer.

Application Layer (DHCP, DNS, HTTP)

Transport Layer

Internet Layer (IP, ICMP)

Network Access Layer (Ethernet)

Transport Layer

- The Transport Layer establishes a data channel for an application to achieve end-to-end data exchange.
- Besides providing end-to-end data exchange, the Transport Layer is also responsible for:
 - Application Addressing
 - Segmentation of Data
 - Error Control
 - Flow Control
 - Congestion Control
- In this module, we will only look at "Application Addressing". The rest will be covered in year-2 module.

Transport Layer Protocols

- Two main protocols in TCP/IP's Transport Layer are:
 - Transmission Control Protocol (TCP)
 - Connection-oriented
 - User Datagram Protocol (UDP)
 - Connectionless

Transmission Control Protocol (TCP)

- TCP is for connection-oriented communications.
- Connection establishment
 - TCP establishes connection between the hosts before communication can take place.
- Flow-control
 - TCP provides flow-control to allow the hosts to adjust the speed of communication between the hosts.
- Reliable transmission
 - TCP provides a mechanism to keep track of the data transmission between the hosts.
 - Receiving host sends acknowledgement to sending host upon receiving incoming data successfully.
 - Unsuccessful transmission can be detected, and retransmission will be carried out to resend the data.

TCP Header – For Information

- Minimum 20 bytes long.
 - "Options" can be as long as 40 bytes (i.e. TCP header can be up to 60 bytes).
- There are ten compulsory fields in TCP header.
 - Source Port, Destination Port, Sequence Number, Acknowledgement Number, Header Length, Reserved, Window, Checksum and Urgent.

TCP Header – For Information

- Feature of TCP, and header field(s) involved:
 - Application Addressing ("channel for end-to-end data exchange")
 - Source Port
 - Destination Port
 - Reliable transmission
 - Sequence Number
 - Acknowledgement Number
 - Flow-control
 - Window

User Datagram Protocol (UDP)

- UDP is for connectionless communications.
- No connection establishment
 - The sending host sends out data without establishing the connection first.
 - Assume that there is a path to reach the receiving host.
- No flow-control.
- Unreliable transmission
 - The sending host does not expect (and does not wait) for acknowledgement from the receiving host.
 - No detection of failed transmission, and hence no retransmission is possible.

UDP Header – For Information

	Bit 0		Bit 15	Bit 16	Bit 31
UDP header (8 bytes)		Source Port (16 bits)		Destination Por	t (16 bits)
		Length (16 bits)		Checksum (1	6 bits)

- 8 bytes long (much shorter than TCP).
- UDP header consists of 4 fields only.
 - Source Port, Destination Port, Length and Checksum.
- No "Sequence Number" and "Acknowledgement Number", hence unreliable transmission.
- No "Window" field, hence no flow-control is possible.

Comparison between TCP and UDP

- TCP is reliable but slow.
 - The sending host needs to wait for acknowledgement from the receiving host before sending out more data.
 - Analogous to sending "registered posts".
- UDP is unreliable but fast.
 - The sending host simply sends out data as it desires.
 - Analogous to sending normal posts.
- TCP is less efficient than UDP because TCP has a much longer header (variable, from 20 to 60 bytes) than UDP (only 8 bytes).

Which to use? TCP or UDP?

- Whether to use TCP or UDP as the Transport Layer protocol depends on the application.
- If "reliability" is important, use TCP.
 - Examples: file transfer, web-browsing
- If "speed" is critical, use UDP.
 - Examples: voice/video streaming

Internet Sockets (1)

- To provide "Application Addressing", the Transport Layer uses the concept of the "port".
- Both the TCP and UDP headers come with two fields related to "port":
 - Source Port
 - Destination Port
- The Transport Layer uses port numbers (16 bits, hence from 0 to 65535) to identify sending and receiving application end-points on a host.

Internet Sockets (2)

- Each side of a Transport Layer connection has a port number reserved by the sending or receiving application.
 - Sending application uses "Source Port".
 - Receiving application uses "Destination Port".
- An internet socket is the combination of 4 elements:
 - source host address
 - source port
 - destination host address
 - destination port

Internet Sockets (3)

 Arriving data packets are identified as belonging to a specific Transport Layer connection by its internet socket.

User's laptop

Internet Sockets (4)

- Not only that a client (laptop) may have many sockets, a server can have many sockets to provide several clients with several services simultaneously.
 - Clients initiate simultaneous internet sockets with the server.

Port Number (1)

- The Transport Layer provides separate sockets using different port numbers.
- Port numbers are 16 bits long.
- 2^{16} = 65536 different port numbers (0 to 65535).
- Some port numbers are reserved for commonly used applications.
- Examples:
 - Web service : Port 80
 - File Transfer (FTP): Ports 20 and 21
 - Telnet: Port 23
 - Email (SMTP): 25

Port Number (2)

- Three basic categories of Port Numbers
 - Well-known Ports
 - Registered Ports
 - Dynamic, Private or Ephemeral Ports

Port Number

Well-known Ports

- Range: 0 To 1023.
- Assigned by the IANA.
- Used by system processes that provide widely used network services.
- Run on servers and passively listen for connections.
- Examples

Application	Port(s)
HTTP	80
FTP	20 and 21
SMTP	25
TELNET	23
SSH	22
SSL	443

Port Number

Registered Ports

- Range: 1024 to 49151.
- Assigned by IANA for specific service upon application by a requesting entity.
- Typically used by end user applications as ephemeral (short-lived, temporary) source ports when contacting servers.

Port Number

Dynamic/Private/Ephemeral Ports

- Range: 49152 to 65535.
- Contains dynamic or private ports that cannot be registered with IANA.
- Used for private, or customised services or temporary purposes and for automatic allocation of ephemeral ports.

Source & Destination Port Numbers (1)

 Both Source Port and Destination Port fields are available in TCP and UDP headers.

Source Port

- The port number of the process that produces the data segment on the source host.
- Normally this is an ephemeral (short-lived, ≥ 1024) port number for a request sent by a client to a server.

Destination Port

- The port number of the process that is the intended recipient of the data segment on the destination host.
- Usually this is a "well-known" or "registered" port number for a server to "listen" to.

Source & Destination Port Numbers (2)

- When a sending host sends a data segment to the receiving host,
 - the sending process's port number becomes the Source Port number in the Transport Layer header.
 - the sending host will use the Destination Port number in the Transport Layer header to indicate the recipient process at the receiving host.
- When the receiving host replies to the sending host, the Source port number and Destination Port number are swapped.

Source & Destination Port Numbers (3)

Example:

- A laptop (sending host) sends a request to a web server (receiving host) for the web page.
 - Note: Well-known port for web service is Port 80.

May I have the web page? (HTTP Request)

Source Address = 66.77.88.99 Source port = 1024

Destination Address = 30.40.50.60

Destination port = 80

Web page (HTTP Reply)

Source Address = 30.40.50.60

Source port = 80

Destination Address = 66.77.88.99

Destination port = 1024

Web server IP = 30.40.50.60

Source & Destination Port Numbers (4)

• Example:

 Two laptops (sending hosts) send request to a web server (receiving host) for the web page.

Source & Destination Port Numbers (5)

Example:

 A laptop (sending host) is used for surfing two web pages, connected to a FTP server, and a TELNET session to a remote server.

What TCP & UDP Ports are Opened on Your Computer?

 You can use the command netstat -a on Windows computers to check what TCP and UDP ports are opened on the computers.

Firewalls & Port Numbers

- It is important to know what port numbers are used by an application.
- If the firewall blocks the port number needed by an application, the IP packet for that application cannot get through the firewall.
 - Result: Application will not work.
- You also want to block unused TCP and UDP port numbers in your firewall to better protect your computer.

Questions & Answers

