

Redes Neurais Artificiais Aplicadas à Geração de Chaves Criptográficas Binárias

Gustavo Pasqua de Oliveira Celani Marcelo Vinícius Cysneiros Aragão

Sumário

- → Introdução
- → Objetivos e contribuições do trabalho
- → Revisão da Teoria
- → Revisão da Bibliografia
- → Proposta
- → Experimentos
- → Resultados
- → Conclusão

Era Industrial

Patrimônio Intelectual

Era da Informação (Era Digital)

- → Usuários podem ser alvo de ataques tanto diretamente quanto indiretamente
- → Perda de dados se torna algo catastrófico

Uber admite que omitiu ataque hacker que roubou dados de 57 milhões de usuários em 2016

Incidente atingiu informações tanto de motoristas quanto passageiros; informação foi revelada nesta terça-feira (21) pelo novo presidente da companhia.

InfoMoney Por G1 2/11/2017 20h52 - Atualizado há 11 meses POR RODRIGO TOLOTTI UMPIERES - EM MERCADOS / BITCOIN - Ø 19 DEZ, 2017 19H28 Corretora de Bitcoin sul-coreana declara falência após

Corretora de Bitcoin sul-coreana declara falência após ataque hacker

Este é o segundo ataque hacker em oito meses e, desta vez, a companhia perdeu 17% de suas reservas de ativos

Dados

Segurança da Informação (SI)

→ A **criptografia** é uma das principais ferramentas da Segurança da Informação

- → Os algoritmos de criptografia necessitam de **uma ou mais chaves**
- → As chaves criptográficas têm a função de parametrizar as operação dos algoritmos
- → Somente uma chave (ou conjunto) é capaz de descriptografar uma mensagem

Exemplo:

- → Criptografia simétrica
- → Uma chave envolvida
- → Chave compartilhada

- → A maneira mais comum de gerar chaves é utilizando valores **pseudoaleatórios**
- → Para garantir a pseudoaleatoriedade, é necessário colher **entropia** do sistema

```
ustavo@GustavoCelani-PC:~$ gpg --generate-key
pg (GnuPG) 2.2.4; Copyright (C) 2017 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
ote: Use "gpg --full-generate-key" for a full featured key generation dialog.
nuPG needs to construct a user ID to identify your key.
eal name: Gustavo
mail address: gustavo@mailserver.com
ou selected this USER-ID:
   "Gustavo <qustavo@mailserver.com>"
e need to generate a lot of random bytes. It is a good idea to perform
ome other action (type on the keyboard, move the mouse, utilize the
isks) during the prime generation; this gives the random number
 enerator a better chance to gain enough entropy.
  need to generate a tot of random bytes. It is a good idea to perform
ome other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
 pg: key 1AF3B3A05D532FF1 marked as ultimately trusted
pg: revocation certificate stored as '/home/gustavo/.gnupg/openpgp-revocs.d/A43
public and secret key created and signed.
    rsa3072 2018-11-11 [SC] [expires: 2020-11-10]
     A4328983DFB120AFB8267CF31AF3B3A05D532FF1
                        Gustavo <gustavo@mailserver.com>
     rsa3072 2018-11-11 [E] [expires: 2020-11-10]
```

We need to generate a lot of random bytes. It is a good idea to perform some other action (type on the keyboard, move the mouse, utilize the disks) during the prime generation; this gives the random number generator a better chance to gain enough entropy.

- → A quantidade de entropia é diretamente proporcional ao **tamanho da chave**
- → Sistemas com **fontes de entropia limitadas** se tornam ineficientes

Objetivos e Contribuições do Trabalho

Objetivos / Contribuições Inatel

- → **Gerar chaves** criptográficas binárias utilizando criptografia neural
- → Procedimento **metrificado** com base nos parâmetros necessários
- → Gerar chaves com **tamanho arbitrário** de forma otimizada
- → Apontar **potenciais melhorias** nos modelos atualmente propostos

Revisão da Teoria

Revisão da Teoria

- → Segurança da Informação
- → Criptografia
- → Chaves Criptográficas
- → Criptografia Neural
- → Redes Neurais Artificiais

Segurança da Informação

Segurança da Informação

→ Informação é tudo aquilo considero relevante o suficiente para ser processado ou armazenado, tanto por humanos, quanto por máquinas

Segurança da Informação

- → Mecanismos de defesa físicos:
- → Infraestrutura
- → Blindagem
- → Restrição de acesso
- → Vigilantes

Mecanismos de defesa lógicos:

- → Protocolos de comunicação
- → Certificação digital
- → Garantia de integridade (hashing)
- → Firewall de rede
- → *Proxy* de rede
- → Anti-virus
- → Criptografia

→ Funcionamento

В

→ Funcionamento

В

C

Algoritmos Criptográficos Relevantes

- → Cifra de César Chave inteira
- → Data Encryption Standard (DES) Chave de 64 bits
- → **Blowfish** Chaves de até 448 bits
- → **Twofish** Chave de 256 bits
- → Triple DES (3DES) Chave de 64 bits
- → *Cast-128 (Cast5)* Chave de até 128 bits
- → Cast-256 (Cast6) Chave de até 256 bits
- → Advanced Encryption Standard (AES) Chave de 256 bits

Chaves Criptográficas

Chaves Criptográficas

→ Chave pública

→ Chave privada

→ Protocolo Diffie-Hellman

Chaves Criptográficas

- → Ataque de Força Bruta
- → **Simples** e comum
- Busca exaustiva
- Testa todas as combinações possíveis
- 100% eficaz
- Computacionalmente inviável dependendo do comprimento da chave

Criptografia Neural

Criptografia Neural

- → Utiliza redes neurais artificiais na **geração** e **troca** de chaves criptográficas
- → Utiliza uma configuração de rede neural artificial chamada *Tree Parity Machine*
- → Explora a **sincronização mútua** entre duas *Tree Parity Machines*
- → Vetores de entrada compartilhados
- → **Vetor de pesos sinápticos** são as chaves resultantes ao final da sincronização

- → Reproduzir computacionalmente o processamento realizado pelo **cérebro** humano
- → Agregação de unidades discretas baseadas em **neurônios** biológicos

- → Tree Parity Machine
- → *Multilayer*: Possui múltiplas camadas
- → *Feedforward*: Saídas não realimentam neurônios anteriores

- → Parâmetros necessários:
- → **K**: Número de neurônios na camada escondida
- → **N**: Número de entradas para cada neurônio
- → L: Faixa de valores possíveis para os pesos sinápticos

→ Tree Parity Machine

- → Exemplo:
- \rightarrow K = 3
- \rightarrow N = 4

→ Tree Parity Machine

→ Saída:

$$\tau^{A/B} = \prod_{k=1}^{K} \sigma_k^{A/B} = \prod_{k=1}^{K} \sigma \left(\sum_{n=1}^{N} w_{k,n}^{A/B} \times x_{k,n}^{A/B} \right)$$

- → Gerar chaves utilizando características biométricas como fonte de entropia
- → Características consideradas **únicas** obtidas em seres vivos
- → Tornam o procedimento mais aleatório
- → Estreitamente **dependente** de entradas externas

- **→ Monrose et al. (2001)**
- → Chang et al. (2004)

- → Captura de voz
- → Impressão digital

- → Captura de imagens faciais
- → Identificação de iris

- → Em 2007, **Ruttor** propôs a técnica de sincronização entre *Tree Parity Machines* baseando-se em seus aprendizados mútuos
- → Os pesos sinápticos são inicializados aleatoriamente
- → Saídas eram compartilhadas
- → Caso as saídas coincidissem, a **regra de aprendizado** era aplicada
- → O critério de parada era a igualdade de ambos os vetores de pesos sinápticos
- → Estudo com relação aos principais ataques:
- → Ataque simples → Ataque geométrico
- → Ataque de maioria → Ataque genético

- → **Piazentin** realizou um estudo baseado em Ruttor no ano de 2011
- → Foram analisados os parâmetros em relação a segurança aos ataques:
- → **K**: Número de neurônios na camada escondida
- → **N**: Número de entradas para cada neurônio

- → Utilização de linguagem de alto nível (Python)
- → Não foi possível definir uma **configuração ideal** para os parâmetros estudados

- → Revankar et al. propôs um mecanismo de entrada dinâmica em 2010
- → As entradas **dependem do estado atual** da *Tree Parity Machine*

$$h_k = \frac{1}{\sqrt{N}} \times \sum_{l=1}^{L} (c_{k,+l} - c_{k,-l})$$

- → A **sincronização** utilizando as consultas propostas ocorreu **mais rápida**
- → Quantidade de informação trocada entre as redes foi maior
- → Tempo total de geração da chave foi maior do que quando utilizados vetores de entrada pseudoaleatórios

- → Allam e Abbas (2010)
- → Técnica de transmissão de **conteúdo falso** durante o processo de sincronização
- → Durante a sincronização, são enviadas mensagens errônias baseadas nas distâncias estimadas entre os pesos sinápticos das Tree Parity Machines

→ Evita vários tipos de ataques

$$\left| h_k^{A/B} \right| = \left| \sum_{n=1}^N (w_{k,n}^{A/B} \times x_{k,n}^{A/B}) \right|$$

Proposta

Proposta

- → Implementar a rede neural artificial *Tree Parity Machine*
- → Utilizar linguagem de programação C
- → **Sincronizar** duas *Tree Parity Machines*
- → Gerar chaves criptográficas binárias como resultado do processo
- → Realizar **experimentos** com o objetivo de otimizar o processo

Proposta

→ Regras de Aprendizado

$$W_{k,n}^{A/B} = w_{k,n}^{A/B} + x_{k,n} \tau^{A/B} \Theta(\tau^{A/B} \sigma_k^{A/B}) \Theta(\tau^A \tau^B)$$

$$W_{k,n}^{A/B} = w_{k,n}^{A/B} - x_{k,n} \sigma_k^{A/B} \Theta(\tau^{A/B} \sigma_k^{A/B}) \Theta(\tau^A \tau^B)$$

→ Random Walk

$$W_{k,n}^{A/B} = w_{k,n}^{A/B} + x_{k,n}\Theta(\tau^{A/B}\sigma_k^{A/B})\Theta(\tau^A\tau^B)$$

→ Funções de Ativação

→ Sinal

$$\varphi(x) := \begin{cases} -1 & \text{if } x \le 0 \\ +1 & \text{if } x > 0 \end{cases}$$

→ Funções de Ativação

→ Sigmóide

$$\varphi(x) = \frac{1}{1 + e^{-x}}$$

→ Funções de Ativação

→ Linear

$$\varphi(x) = x$$

- → Funções de Ativação
 - → Tangente Hiperbólica

$$\varphi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

→ Integridade dos Dados

- → **Semente** de geração pseudo-aleatória fixada
- → Cada configuração de *Tree Parity Machine* gerou **100 chaves consecutivas**
- → Foram utilizadas chaves de **1Kib** (1024 bits)
- → As métricas fazem referência à média aritmética dos valores obtidos no processo de geração de cada uma das 100 chaves

- → Métricas: Chaves repetidas
- → Número de chaves repetidas em cada conjunto
- → Probabilidade de ocorrência de cada chave

$$P_k[\%] = \frac{1}{2^{(K \times N)}} \times 100$$

→ Métricas: Épocas de Treinamento

- → Máximo
- → Mínimo
- → Média

→ Métricas: Volume de dados

→ Volume de dados trocados entre as duas *Tree Parity Machines* (em Bytes)

$$V[\textit{Bytes}] = \frac{epochs_avg \times [(K \times N) + K + 2]}{8}$$

→ Métricas: Comprimento do vetor de entrada

$$I_{[K,N]} = (K \times N) + K$$

→ Métricas: Tempo de geração

- → Máximo
- → Mínimo
- → Média

- Sistema Operacional: Xubuntu
- Processador: Intel(R) Core(TM) i7-5500U
- Clock Rate: 2.40 GHz
- Arquitetura: x86_64
- Núcleos: 4
- Memória RAM: 16 GB

Experimentos e Resultados

InatelInstituto Nacional de Telecomunicações

→ Aferir influência das regras de aprendizado

Configurações descartadas nas análises								
Função de	Regra de	Motivo do						
Ativação	Aprendizado	Descarte						
Sigmóide	Random Walk	Não convergiu						
Tangente Hiperbólica	Random Walk	Não convergiu						
Sigmóide	Hebbian	Chaves repetidas						
Linear	Hebbian	Chaves repetidas						
Tangente Hiperbólica	Hebbian	Chaves repetidas						

Resultados do Experimento 1										
Função de	Regra de	N	Vúmero	de Époc	as	Те	mpo [mio	crossegun	dos]	Volume de
Ativação	Aprendizado	min	max	médio	σ	min	max	médio	σ	Dados [Bytes]
Sinal	Hebbian	45	118	79	16.6	4007	12284	6352	1404.7	10448
	Anti-Hebbian	10	32	21	5	1085	4027	1765	423.9	2777
	Random Walk	45	178	86	22.2	3743	13932	6787	1745.2	11373
Linear	Anti-Hebbian	4	12	8	1.9	449	2969	876	501.6	1058
Linear	Random Walk	30	95	55	14	3149	11533	5845	1600.6	7274
Sigmóide	Anti-Hebbian	9	26	16	3.9	1003	4453	1748	551.9	2116
Tangente Hiperbólica	Anti-Hebbian	32	141	67	21.5	3611	15981	7503	2434.7	8860

Resultados do Experimento 1										
Função de	Regra de	N	Vúmero	de Época	as	Те	mpo [mio	crossegun	dos]	Volume de
Ativação	Aprendizado	min	max	médio	σ	min	max	médio	σ	Dados [Bytes]
Sinal	Hebbian	45	118	79	16.6	4007	12284	6352	1404.7	10448
	Anti-Hebbian	10	32	21	5	1085	4027	1765	423.9	2777
	Random Walk	45	178	86	22.2	3743	13932	6787	1745.2	11373
Linear	Anti-Hebbian	4	12	8	1.9	449	2969	876	501.6	1058
Lillear	Random Walk	30	95	55	14	3149	11533	5845	1600.6	7274
Sigmóide	Anti-Hebbian	9	26	16	3.9	1003	4453	1748	551.9	2116
Tangente Hiperbólica	Anti-Hebbian	32	141	67	21.5	3611	15981	7503	2434.7	8860

Resultados do Experimento 1										
Função de	Regra de	N	Vúmero	de Époc	as	Те	mpo [mio	crossegun	dos]	Volume de
Ativação	Aprendizado	min	max	médio	σ	min	max	médio	σ	Dados [Bytes]
Sinal	Hebbian	45	118	79	16.6	4007	12284	6352	1404.7	10448
	Anti-Hebbian	10	32	21	5	1085	4027	1765	423.9	2777
	Random Walk	45	178	86	22.2	3743	13932	6787	1745.2	11373
Linear	Anti-Hebbian	4	12	8	1.9	449	2969	876	501.6	1058
Linear	Random Walk	30	95	55	14	3149	11533	5845	1600.6	7274
Sigmóide	Anti-Hebbian	9	26	16	3.9	1003	4453	1748	551.9	2116
Tangente Hiperbólica	Anti-Hebbian	32	141	67	21.5	3611	15981	7503	2434.7	8860

Resultados do Experimento 1										
Função de	Regra de	N	Vúmero	de Époc	as	Те	mpo [mio	Volume de		
Ativação	Aprendizado	min	max	médio	σ	min	max	médio	σ	Dados [Bytes]
Sinal	Hebbian	45	118	79	16.6	4007	12284	6352	1404.7	10448
	Anti-Hebbian	10	32	21	5	1085	4027	1765	423.9	2777
	Random Walk	45	178	86	22.2	3743	13932	6787	1745.2	11373
Linear	Anti-Hebbian	4	12	8	1.9	449	2969	876	501.6	1058
Lilleai	Random Walk	30	95	55	14	3149	11533	5845	1600.6	7274
Sigmóide	Anti-Hebbian	9	26	16	3.9	1003	4453	1748	551.9	2116
Tangente Hiperbólica	Anti-Hebbian	32	141	67	21.5	3611	15981	7503	2434.7	8860

Resultados do Experimento 1										
Função de	Regra de	N	Vúmero	de Époc	as	Те	mpo [mio	crossegun	dos]	Volume de
Ativação	Aprendizado	min	max	médio	σ	min	max	médio	σ	Dados [Bytes]
Sinal	Hebbian	45	118	79	16.6	4007	12284	6352	1404.7	10448
	Anti-Hebbian	10	32	21	5	1085	4027	1765	423.9	2777
	Random Walk	45	178	86	22.2	3743	13932	6787	1745.2	11373
Linear	Anti-Hebbian	4	12	8	1.9	449	2969	876	501.6	1058
Lilleal	Random Walk	30	95	55	14	3149	11533	5845	1600.6	7274
Sigmóide	Anti-Hebbian	9	26	16	3.9	1003	4453	1748	551.9	2116
Tangente Hiperbólica	Anti-Hebbian	32	141	67	21.5	3611	15981	7503	2434.7	8860

→ Conjuntos selecionados

```
[ Sinal, Anti-Hebbian ]
```

[Linear, Anti-Hebbian]

[Sigmóide, Anti-Hebbian]

→ Conjuntos selecionados

[Sinal,

Linear,

[Sigmóide,

Anti-Hebbian

Anti-Hebbian

Anti-Hebbian

Regra de aprendizado mais eficiente

Anti-Hebbian

→ Aferir influênciade K e N

Configurações descartadas nas análises									
Função de Regra de Motivo do									
Ativação	Aprendizado	Descarte							
Sigmóide	Anti-Hebbian	Não convergiu							
Linear	Anti-Hebbian	Chaves repetidas							

→ Parâmetros ótimos

→ Regra de aprendizado: **Anti-Hebbian**

→ Função de ativação: **Sinal**

Função de ativação mais eficiente

Sinal

Resultados do Experimento 2										
$C_i[k]$	$[n,n_i]$	Époc	as	Tempo	[micro]	Volume de				
k_i	n_i	médio	médio σ		σ	Dados [B]				
1	1024	15	3.8	1188	308.8	1925				
2	512	16	3.1	1210	209.9	2056				
4	256	18 3.9		1263	305.2	2317				
8	128	18 3.6		1325	306.8	2455				
16	64	19 4.5		1570	427.9	2605				
32	32	21	21 5		309	2645				
64	16	21	21 5.2		350.4	2861				
128	8	23	5.4	1751	411	3317				
256	4	22	5.9	2010	413	3685				
512	2	23	5.4	2485	506.7	4421				
1024	1	15	3	2431	440.9	3843				

Resultados do Experimento 2										
$C_i[k]$	$[n_i, n_i]$	Époc	as	Tempo	[micro]	Volume de				
k_i	n_i	médio σ		médio	σ	Dados [B]				
1	1024	15 3.8		1188	308.8	1925				
2	512	16	3.1	1210	209.9	2056				
4	256	18	3.9	1263	305.2	2317				
8	128	18	3.6	1325	306.8	2455				
16	64	19	4.5	1570	427.9	2605				
32	32	21 5		1453	309	2645				
64	16	21 5.2		1575 350.4		2861				
128	8	23	5.4	1751	411	3317				
256	4	22	5.9	2010	413	3685				
512	2	23	5.4	2485	506.7	4421				
1024	1	15	3	2431	440.9	3843				

→ Influência do BIAS

$$I_{\lceil K,N \rceil} = (K \times N) + K$$

$$I_{[1,1024]} = (1024 \times 1) + 1 = 1025$$

$$I_{[1024,1]} = (1 \times 1024) + 1024 = 2048$$

→ Influência do BIAS

$$V[\textit{Bytes}] = \frac{epochs_avg \times [(K \times N) + K + 2]}{8}$$

$$V_{[1,1024]} = \frac{15 \times [(1 \times 1024) + 1 + 2]}{8} = 1925[B]$$

$$V_{[1024,1]} = \frac{15 \times [(1024 \times 1) + 1024 + 2]}{8} = 3843[B]$$

→ Parâmetros ótimos

→ Regra de aprendizado: **Anti-Hebbian**

→ Função de ativação: **Sinal**

→ K: 1

→ N: **1024** (Comprimento da chave)

Parâmetro K mais eficiente: 1

Parâmetro N mais eficiente: 1024

→ Aferir influência de L

→ Parâmetros ótimos

→ Regra de aprendizado: **Anti-Hebbian**

→ Função de ativação: **Sinal**

→ K: 1

→ N: **1024** (Comprimento da chave)

→ L: **2**

Parâmetro L adotado: 2

→ Parâmetros já foram individualmente analisádos

- → Gerar chaves criptográficas binárias de **10Kib** (10.240 bits)
- → Grupo 1 de 1.000 chaves
- → Grupo 2 de **10.000 chaves**

→ Estrutura ótima

Resultados do Experimento 4											
Configuração	Número	Número de Épocas				Те	mpo [mio	crossegun	Volume de	Chaves	
Ótima	de Chaves	min	min max médio σ			min	max	médio	σ	Dados [B]	Repetidas
K = 1											
N = 10240	1000	12	30	18	3	9991	23778	14080	1928.6	23046	0
L = 2											
Sinal	10000	11	42	18	3	9673	24824	14016	1865	23046	0
Anti-Hebbian											

Resultados do Experimento 4											
Configuração	Número	Número de Épocas				Tempo [microssegundos]				Volume de	Chaves
Ótima	de Chaves	min	min max médio σ			min	max	médio	σ	Dados [B]	Repetidas
K = 1											
N = 10240	1000	12	30	18	3	9991	23778	14080	1928.6	23046	0
L=2											
Sinal	10000	11	42	18	3	9673	24824	14016	1865	23046	0
Anti-Hebbian											

A2709E6F57D99F5E39FF8FF3E3F5FEBDB57F76DF6A16BFFF3B1D87CF510FB9FC6FEE06F6EA8EF7DB1EF7FFCF3F393FC32BFEE7FF6E3D75A8F B2E8C77DEF113F7D7FD95FF4C63D5FBDBFEFE7F8E49D4CF7DF6FF6F9DBFFEE667C1DF7ADCEE38F7FAB9F46FFFED75FBDEDBFFB0CC3EDBF 7BF77E5F9EDBDF727FFF8BB6FB257CF2BDF9C86D3CAED9EDEF88FFD09FFF573C7977CEA9FE7B8F039EDF7ADBC427E8EABC8AECFDF97F6D AFE66FDFBFFB6DAB7F9FD077B079F6FD49D7CD9B3377A33CA725FFFFDB25FFCFFFCD779A5A13B97F77DDF595C6F9DD5C163F6FBA5FA7F1 BB9F6F054FE339EE7F7DDFC545CBDED30F7ECD33FA56F27F7F6D3FE28F678FFDB77AFD67BDD4FBBA77DF5DCBF8FFDEFFED7B76BAD2CFE7 FE677EBBDCE7FCCE67CF64DEEFF1FFFE77873FB8F19EDBC5655DEAEEB4951EAFFD9BD5769E7C59DDF62FDFFFB32FFDF4725FEDF7DFEBBF B9EBEBBF71F1FE7D83D8FFD5BCB75F0AE6F3AF6EEAFCEBD0EFD3A6CBECB3AC4ECED17CE67F7F852B441F5B9DBB9D636CE7DFDBDD3EFBE BBA654DD7B7BE4D763DBFD777BEFE7F6DE2AD47155ED514F3C3C987D2D7DDB6FABF58BB5E949F9AF2BEBFA6BE3D536C79FDDD5BBD6BFFC F1F2DF49DAF6B0775D685B977FA57B55CE9CFBDBDB67F1ADAC8D67EA2B6ED8DD59B2ED5FFFBA9B2FEAC87EF25FFC5ACF15FFBE72FFBFF9 C35EA6EE2EEC956DEFED5359FDB49B7CB1CB58E7F53E279F387FFDAA5FF5146FF5DEEFFBA96BBB7B19C0CDFCEF657E17E999D57DD7A7E6 2AD3FB6E57F5EB2F475B35F6FCA79ABFB7F378D42F93FF49FF79655FFBEA67655F6F53BBB8FACE116C9F70FCEDBCB59EFBF7FEEDEBAAF00E 7E57BE8E17E5E75D4C59EF4AD7BEEDB7EBBE74876DADE5DE69532EEA09EEE36DB85953BE82E3BBBE2337BEC976E9E787097B2CBBE7EE7E6EE 39E3FE5B3FD5B5AD8E3E31FDA7371F50C77B3BFFFDF77156F778E4FE4794FBA667BFF01B3DA1FB54DFFFBCFBF5B3DFD0C7F7F7FDC36ADFC FED7E5FE27DFEDFFAAF8FD3CA76DC75C7055398FB5FE8BFDFD7493F4FD73C7914F7F3F75BBFFFA533ACF4FBFFBFFFBB2FDB92BB29F3B868 FED3DB697AFFFF713BCFD661FB174FBF7FD4AFBCFAF5F3BF845D97DDBBD14A4BFAFFF62F5F7A2D44B5F67FD7AAF6F5BF73D7FFF6BCFB6D5 3B66F87AA463BFDBFE34CFBBFA7B6FBF4BC393BFDB1FDFF6F635DFF63B76ABFD2F4B37FFFF978DD34973379325FCF792FDCF5F3F7A65FD72 DE4B7747614D377D8A8D97D7BD9FD6C5D7B37F8635D7B4B5FAB957E77ECDFFBFC53CF9F8BAEFA4E5B13CDAAAFFF7C0A2DFFF5BDDFE7CB8 D3C15AB7FFAE2174EF5DB7B9E745FAE6DFFF9E588FF6FB4CF7F3DFEEFAB2EDF5F2F389EC1FFE6E7EFD6B7D9277D4606793CBBA7AF77FEE86 B74DE86B5FEFDBBB59CFEFC7D77666703F7F376D9F5BDFDFCFFBDBFF76BBBEAB25DADF4EF9775AAD12B5BDBD1F6E01D2E63336F2795A45D 11EBF3F9DDF226EFD3BED79E5DFFFACFFD53FE5E2AFFBFE5BE742F83DFC5B9E83FDD4C53FA2BC03EBBB36FBEFFF4FF7F65CE76F2B562EDF F779C83EDEAE91ED771EE9E2E5A5EC07BE75A7BC3EBC7EA2E3EDA9E37AE7D33EE225C79E9EBE593DE32EEE8E59DEB442BEBE9E6AB0B7ED65 E3F0F7BDBD7C9B7FDFBB3F6DAFACBFAB9FB3398BFF7F5FC2F9DCF4FDF1F763AD30F37DFB71CD66BFDCFF6362B77FAF3D9F7BDF8FC3FF56 9E9B3EC0BED0BE1E7B5ECE16777ECB97C772DE45EBEEB23B75EEDE1EEB3CD3E27B7387A9DEC50C59EBDCD2EED47E1B9EBE6E6960DBE7E7 3E7FF6DF9

Conclusão

Conclusão

- → O patrimônio intelectual vêm sendo a propriedade mais valiosa nas empresas
- → Os principais **algoritmos** criptográficos são *open source*
- → As chaves criptográficas garantem a segurança dos dados
- → A geração e troca de chaves em sistemas reduzidos podem ser ineficientes
- → Uma configuração ótima para esta implementação foi alcançada
- → Geração de **10.000** chaves de **10Kib consecutivas distintas** em **14ms** por chave

Trabalhos Futuros

Trabalhos Futuros

→ Estudo de **vulnerabilidade**

- → Submeter a técnica aos **ataques** clássicos:
 - → Ataque simples
 - → Ataque geométrico
 - → Ataque de maioria
 - → Ataque genético

→ Implementar mecanismo de **realimentação** (*feedback*)

Redes Neurais Artificiais Aplicadas à Geração de Chaves Criptográficas Binárias

Gustavo Pasqua de Oliveira Celani Marcelo Vinícius Cysneiros Aragão

