Digital Design IE1204

F12 Asynkrona sekvensnät del 1

william@kth.se

IE1204 Digital Design

Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg – delta i undervisningen – arbeta igenom materialet efteråt!

Detta har hänt i kursen ...

Decimala, hexadecimala, oktala och binära talsystemen AND OR NOT EXOR EXNOR Sanningstabell, mintermer Maxtermer PS-form Booles algebra SP-form deMorgans lag Bubbelgrindar Fullständig logik NAND NOR CMOS grindar, standardkretsar Minimering med Karnaugh-diagram 2, 3, 4, 5, 6

Registeraritmetik tvåkomplementrepresentation av binära tal

Additionskretsar Multiplikationskrets Divisionskrets

Multiplexorer och Shannon dekomposition Dekoder/Demultiplexor Enkoder

Prioritetsenkoder Kodomvandlare

VHDL introduktion

variabler

Vippor och Låskretsar SR-latch D-latch D-vippa JK-vippa T-vippa Räknare Skiftregister Vippor i VHDL Moore-automat Mealy-automat Tillståndskod Oanvända tillstånd Analys av sekvensnät Tillståndsminimering

Tillståndsmaskiner i VHDL

Asynkrona sekvensmaskiner

- En asynkron sekvensmaskin är en sekvensmaskin *utan vippor*
- Asynkrona sekvensmaskiner bygger på återkopplade kombinatoriska grindnätverk

Vid analys antar man: Endast EN signal i taget i grindnätet kan förändra sitt värde vid någon tidpunkt

Gyllene regeln

William Sandqvist william@kth.se

Asynkron tillståndsmaskin

Asynkrona tillståndsmaskiner används då det är nödvändigt att bibehålla ett tillstånd, men då det inte finns någon klocka tillgänglig.

- Alla vippor och latchar är själva asynkrona tillståndsmaskiner
- De är användbara för att synkronisera händelser i situationer där metastabilitet är/kan vara ett problem

SR-latchen med NOR-grindar

För att analyserar beteendet av en asynkron krets så antar man ideala grindar och sammanfattar all fördröjning till ett enda block med fördröjningen Δ .

William Sandqvist william@kth.se

Analys av det asynkrona sekvensnätet

Genom att vi har ett **fördröjningsblock** kan vi betrakta

- y som nuvarande tillstånd
- Y som nästa tillstånd

Tillståndsfunktion

Därmed kan vi ta fram ett funktionssamband hur nästa tillstånd Y beror på insignalerna S och R samt nuvarande tillstånd y

$$Y = \overline{R + \overline{(S + y)}}$$

Tillståndstabell BV använder binärkodsordning

Från tillståndsfunktion till sanningstabell

<u>y</u>	S	R	$Y = \overline{R + (\overline{S + y})}$
0	0	0	$0 = \overline{0 + (\overline{0 + 0})}$
0	0	1	0 = 1 + (0 + 0)
0	1	0	$1 = \overline{1 + (\overline{1 + 0})}$
0	1	1	$0 = \overline{1 + (\overline{1 + 0})}$
1	0	0	1 = 0 + (0 + 1)
1	0	1	$0 = \overline{1 + (0+1)}$
1	1	0	$1 = \overline{0 + (\overline{1+1})}$
1	1	1	$0 = \overline{1 + (\overline{1+1})}$

Y =	R +	$\overline{(S+)}$	<u>y</u>)

Present	Ne	extsta	ite	
state	SR = 00	01	10	11
У	Y	Y	Y	Y
0	0	0	1	0
1		0	1	0

Eller som på övningen – med hjälp av Karnaughdiagram ...

(Övningen SR analys)

$$Q^{+} = \overline{R + \overline{S + Q}} = \overline{R} \cdot \overline{\overline{(S + Q)}} = \overline{R} \cdot (S + Q) = S\overline{R} + \overline{R}Q$$

SF	3	Q	+		
Q	00	01	11	10	_
0	00	10	³ 0	21	SR
1	41	⁵ 0	⁷ 0	61	

 $\overline{R}Q$

Nuvarande	Nästa till	lstånd <i>Q</i> +					
tillstånd Q	Insignaler SR						
	00 01 11 10						
0	0	0	0	1			
1	1	1 0 0 1					

För binär ordning

Stabila tillstånd

Present	Ne	extsta	ıte	
state	SR = 00	01	10	11
У	Y	Y	Y	Y
$\mid o \mid$	0	0	1	0
	1	0	1	0

- Eftersom vi inte har vippor utan bara kombinatoriska kretsar kan en tillståndsändring medföra ytterligare tillståndsändringar
- Ett tillstånd är
 - stabilt om $Y(t) = y(t + \Delta)$
 - instabil om $Y(t) \neq y(t + \Delta)$

$$Y = y$$
 stabilt

Exitationstabell

Den asynkrona kodade tillståndstabellen kallas för **Excitationstabell**

De stabila tillstånden

(de med next state = present state) "ringas in"

Present	Ne	existe	ate	
state	SR = 00	01	10	11
У	Y	Y	Y	Y
$\mid o \mid$		0	1	0
1		0		0

$$Y = y$$

Terminologi

När man arbetar med asynkrona sekvensnät så används det en annan terminologi

Den asynkrona okodade
 tillståndstabellen kallas flödestabell

Flödestabell och Tillståndsdiagram (Moore)

Present	Next state	Output
state	SR = 00 01 10 11	Q
A	$\bigcirc A \bigcirc A \bigcirc B \bigcirc A \bigcirc$	0
B	$\bigcirc B$ A $\bigcirc B$ A	1

William Sandqvist william@kth.se

Flödestabell och Tillståndsdiagram (Mealy)

Present	Ne	Next state			Output, Q			
state	SR = 00	01	10	11	00	01	10	11
A	\bigcirc A	\bigcirc A	В	\bigcirc A	0	0	_	0
B	$\bigcirc B$	A	$\bigcirc B$	A	1	_	1	_

Don't care ('-') har valts för utgångsavkodaren. Det spelar ingen roll om utgången ändras före eller efter tillståndsövergången (= enklare grindnät).

Asynkron Moore kompatibel

- Asynkrona sekvensnät har liknande uppbyggnad som synkrona sekvensnät
- I stället för vippor har man "fördröjningsblock"

Asynkron Mealy kompatibel

- Asynkrona sekvensnät har liknande uppbyggnad som synkrona sekvensnät
- I stället för vippor har man "fördröjningsblock"

Med tillståndsdiagrammet vet vi allt som kan hända! $\frac{SR}{I}$

Analys av asynkrona kretsar

Analysen görs i följande steg:

- 1) Ersätt återkopplingar i kretsen med ett delay-element Δ_i . Insignalen till delay-elementet bildar nästa tillstånd (next state) signalen Y_i , medan utsignalen y_i representerar nuvarande tillstånd (present state).
- 2) Ta reda på next-state och output uttrycken
- 3) Ställ upp motsvarande excitationstabell
- 4) Skapa en **flödestabell** genom att byta ut kodade tillstånd mot symboliska
- 5) Rita ett tillståndsdiagram om så behövs

Först: D-latchens tillståndsfunktion

D-latchens tillståndsfunktion. Funktionssambandet mellan nuvarande tillstånd *y* och nästa tillstånd *Y*

$$Y = D \cdot C + y \cdot \overline{C}$$

$$\uparrow \qquad \uparrow$$

$$follow \quad \overline{latch}$$

William Sandqvist william@kth.se

Exempel: Master-Slave-vippan

Master-slave D-vippan är konstruerad av **två** asynkrona **D-latchar**.

Exitationstabell

Ur uttrycken kan man **direkt** härleda excitationstabellen (om man nu kan hålla allt i huvudet?)

$$Y_{m} = D \cdot C + y_{m} \cdot \overline{C}$$

$$Y_{s} = y_{m} \cdot \overline{C} + y_{s} \cdot C$$

Present	Next state	
state	CD = 00 01 10 11	Output
ym ys	Ym Ys	Q
00	<u>00</u> <u>00</u> <u>00</u> 10	0
01	00 00 (01) 11	1
10	11 11 00 (10)	0
11	$\begin{array}{cccc} 11 & 11 & 01 & 11 \end{array}$	1

eller med K-map till hjälp ...

11

binärkodsordning som BV

Flödestabell

Vi definierar fyra tillstånd S1, S2, S3, S4 och erhåller då flödestabellen

Present	Next state	
state	CD = 00 01 10 11	Output
ym ys	Ym Ys	Q
00	00 00 00 10	0
01	00 00 01 11	1
10	11 11 00 (10)	0
11	11 (11 01 (11)	1

Present	Ne	extsta	te		Output
state	CD = 00	01	10	11	Q
S1	S1	S1	<u>S1</u>	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	S4	S4	S1	(S3)	0
S4	S4	S4	S2	S4	1

Flödestabell

Kom ihåg: Bara en insignal kan ändras åt gången

• Därmed kommer vissa övergångar **aldrig** att kunna inträffa!

Present	Ne	Output			
state	CD = 00	01	10	11	Q
S1	<u>(S1)</u>	<u>S1</u>	<u>(S1)</u>	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	S4	S4	S1	(33)	0
S4	S4)	S4	S2	S4	1

Flödestabell – omöjliga övergångar

					
Present	Nextstate				Output
state	CD = 00	01	10	11	Q.
S1	S1	S1	S1	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	-\$4	S4	S1	S3	0
S4	S4	<u>S4</u>	S2	<u>S4</u>	1

Tillstånd S3

Enda stabila tillståndet för S3 är när ingångskombinationen är 11 Bara en ingång kan ändras \rightarrow möjliga ändringar är $11 \rightarrow 01$, $11 \rightarrow 10$

- Dessa kombinationer lämnar S3!
- Ingångskombinationen 00 i S3 är inte möjligt!
- Ingångskombinationen 00 sätts därför till **don't care**!

Flödestabell – omöjliga övergångar

	Present	Ne	Output				
	state	CD = 00	01	10	11	Q	
	S1	S1	S1	S1	S3	0	
	S2	S1	-	<u>S2</u>	S4	1	
	S3	_	S4	S1	S3	0	
	S4	S4	<u>S4</u>	S2	<u>\$4</u>	1	

Tillstånd S2

Enda stabila tillståndet för **S2** är när ingångskombinationen är 10 Bara en ingång kan ändras \rightarrow möjliga ändringar är $10 \rightarrow 11$, $10 \rightarrow 00$

- Dessa kombinationer lämnar S2!
- Ingångskombinationen 01 i S2 är inte möjligt!
- Ingångskombinationen 01 sätts därför till **don't care**!

D-vippans tillståndsdiagram

 Present state
 Next state
 Output Q

 S1
 (S1)
 (S1)
 (S1)
 (S3)
 (S1)
 (S3)
 (S3)
 (S4)
 (S4)</

Don't care kan användas för att förenkla kretsens nästa tillståndsavkodning.

William Sandqvist william@kth.se

Syntes av asynkrona kretsar

Syntesen genomförs i följande steg:

- 1) Skapa ett tillståndsdiagram enligt funktionsbeskrivningen
- 2) Skapa en flödestabell och reducera antalet tillstånd om möjligt
- 3) Tilldela koder till tillstånden och skapa excitationstabellen
- 4) Ta fram uttryck (överföringsfunktioner) för nästa tillstånd samt utgångar
- 5) Konstruera en krets som implementerar ovanstående uttryck

Exempel: seriell paritetskrets

Ingång x Utgång y y = 1 om antalet pulser på
ingången x har varit udda.

Med andra ord en "varannangång" krets ...

Skapa tillståndsdiagram

Skapa flödestabellen

Pres state	Next State		Q
	X=0	1	
А	(A)	В	0
В	C	B	1
С	\bigcirc	D	1
D	Α	D	0

Vad är bra tillståndskod?

00, 01, 10, 11 - binärkod?

Pres state	Next State	Q
	X=0 1	
y 2 y 1	Y_2Y_1	
00	00 01	0
01	10 01	1
10	11	1
11	00 11	0

Dålig kodning (HD=2!)

• Antag $X = 1 \quad Y_2 Y_1 = 11$ • därefter $X \to 0 \to Y_2 Y_1 = 00?$ $11 \to 10!$ $11 \to 01 \to 10! \quad ? \to 00$

Vi når aldrig 00?

Vad är bra tillståndskod?

00, 01, 11, 10 - graykod

Antag

$$X = 1$$
 $Y_2Y_1 = 10$

• därefter

$$X \rightarrow 0 \rightarrow Y_2 Y_1 = 00$$

$$10 \rightarrow 00$$

Pres state	Next State	Q
	X=0 ← 1	
y 2 y 1	Y_2Y_1	
00	100 01	0
01	11 01	1
11	11) 10	1
10	00 - 10	0

Bra kodning (HD=1)

Richard Hamming

- I asynkrona sekvensnät är det omöjligt att garantera att två tillståndsvariabler ändrar värdet samtidigt
 - Därmed kan en övergång 00 → 11 resultera i
 - en övergång $00 \rightarrow 01 \rightarrow ???$
 - en övergång $00 \rightarrow 10 \rightarrow ???$
- För att säkerställa funktionen MÅSTE alla tillståndsövergångar ha *Hamming distansen* 1
 - Hamming distansen är antalet bitar som skiljer sig i två binära tal
 - Hamming distansen mellan 00 och 11 är 2
 - Hamming distansen mellan 00 och 01 är 1

Bra tillståndskodning

- Procedur för att erhålla bra koder:
 - 1) Rita transitionsdiagram längs kanterna i hyperkuber (Graykod) som bildas av koderna
 - 2) Ta bort eventuella korsande linjer genom att
 - a) byta plats på två närliggande noder
 - b) utnyttja tillgängliga icke använda koder (utnyttja *instabila tillstånd*)
 - c) introducera *fler dimensioner* i hyperkuben

Dålig kodning av paritetskretsen

Den dåliga tillståndskodningen

Pres state	Next State	Q
	X=0-1	
y 2 y 1	Y_2Y_1	
A 00	00 01	0
B 01	10 (01)	1
C 10	11	1
D11	00 11	0

Dålig kodning – Hamming Distance = 2 (korsande linjer)

Bra kodning av paritetskretsen

Den bra tillståndskodningen

Pres state	Next State		Q	
	7	X=0 ←	<u>1</u>	
y 2 y 1		Y ₂ '	Υ ₁	
A 00	1	(00)	01	0
B 01		11	(1)	1
C 11		(1)	10	1
D 10		00	(10)	0

Bra kodning
Hamming Distance = 1
(inga korsande linjer)

Problem med icke stabila tillstånd

Ex. en annan krets:

Present	Ne	xtsta	te		Output
state	$r_2r_1=00$	01	10	11	9 ₂ 9 ₁
A 00	A	В	С	1	00
B 01	А	\bigcirc B	С	\bigcirc B	01
C 10	А	В	(C)	\bigcirc	10

Dålig kodning

Vid övergången från **B** till **C** (eller **C** till **B**) är Hamming distansen 2 (10↔01)! Risk att man fastnar i ett **ospecificerat** tillstånd (med kod 11)!

Lösning på icke stabila tillstånd

• Lösning: Införandet av ett övergångstillstånd som säkerställa att man inte hamnar i ett odefinierat läge!

Bra kodning

			-
_I	Present	Nextstate	
d	state	$r_2r_1 = 00 01 11 10$	Output
	y 2 y 1	Y ₂ Y ₁	$g_{2}g_{1}$
Α	00		00
В	01	00 (1) (1)	01
-	11	- d ₁ - 10	
С	10	00 11 10 10	10

Begära
"eftersändning"

$$01 \rightarrow 11 \rightarrow 10$$

 $10 \rightarrow 11 \rightarrow 01$
övergångstillstånd

Extra tillstånd – fler dimensioner

 Man kan öka antalet dimensioner för att kunna införa säkra tillståndsövergångar

Använd lediga tillstånd som övergångstillstånd ("eftersändning").

 $\mathbf{B} \rightarrow \mathbf{D} : \mathbf{B} \rightarrow \mathbf{E} \rightarrow \mathbf{D}$

• Om det inte på något sätt går att rita om diagrammet till HD=1 får man lägga till fler tillstånd genom att lägga till extra dimensioner. Man tar då närmsta större **hyperkub** och drar övergångarna genom tillgängliga icke stabila tillstånd ("eftersändning"). $\mathbf{B} \rightarrow \mathbf{D}$: $\mathbf{B} \rightarrow \mathbf{E} \rightarrow \mathbf{D}$.

Extra tillstånd – fler dimensioner

• Det är enklare att rita en "platt" 3D-kub (perspektivet då rakt framifrån)

Karnaughdiagrammen

			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Pres state	Next State	Q	0 0 0 0 0 1 1 0
Otato	X=0 1		0 0 1 1 0 0
y ₂ y ₁	Y ₂ Y ₁		$Y_2 = Y_1 =$
00	(00) 01	0	
01	11 01	1	$xy_1 + y_2y_1 + xy_2 + xy_2 + y_2y_1 + xy_1$
11	11) 10	1	$y_{2} = 0 $ 1
10	00 10	0	0 0 1
			1 0 1
			$Q = y_1$

De röda inringningarna är för att undvika Hazard (se senare avsnitt)!

Färdig krets

$$y_{1}$$
 y_{2}
 0
 1
 0
 1
 0
 1

$$Y_2 = xy_1 + y_2y_1 + xy_2$$
 $Q = y_1$

$$Q = y_1$$

$$Y_2 = xy_1 + y_2y_1 + xy_2$$

$$Y_1 = x\overline{y}_2 + \overline{y}_2 y_1 + \overline{x}y_1$$

William Sandqvist william@kth.se

Färdig krets

(enklare med D-vippa)

Vi har gjort en "varannangångkrets" tidigare i kursen. Då med en D-vippa. Men nu blev det ju mera "sport"!

Vad är Hazard?

- Hazard är ett begrepp som innebär att det finns en fara för att utgångsvärdet inte är stabilt, utan att det kan blinka till vid vissa ingångskombinationer.
- Hazard uppkommer om det är olika långt från olika ingångar till en utgång, signal-kapplöpning.
- För att motverka detta måste man lägga till primimplikanter för att täcka upp den farliga övergången.

Exempel på Hazard – MUX:en

Vid övergång från $xy_2y_1=(111) \rightarrow (011)$ kan utgången Q **blinka till**, eftersom vägen från x till Q är längre via den övre AND-grinden än den lägre (kapplöpning).

MER OM HAZARD I NÄSTA FÖRELÄSNING!

Asynkrona statemaskiner har många "ospecifierade" positioner i flödestabellen som man kan utnyttja för att minimera antalet tillstånd.

Sannolikheten för att färre tillstånd leder till en enklare realisering är hög när det gäller asynkrona nät!

Två steg:

Ekvivalens – ekvivalenta tillstånd. Samma steg som vid tillståndsminimering av synkrona sekvensnät, full flexibilitet finns kvar.

Kompatibilitet – kompatibla tillstånd blir olika för Moore-kompatibel eller Mealy-kompatibel realisering, de val man nu gör påverkar den fortsatta flexibiliteten.

tillstånd!

Procedur för minimering av antalet tillstånd

- Bilda ekvivalensgrupper.
 - För att vara i samma grupp ska följande gälla:
 - Utgångar måste ha samma värde
 - Stabila tillstånd måste finnas på samma plats (kolumn)
 - Don't cares för next state måste finnas på samma plats (kolumn)
- 2. Minimera ekvivalensgrupperna (state-reduktion)
- 3. Bilda **sammanslagningsdiagram**, olika för Mealy eller för Moore.
- 4. Slå ihop kompatibla tillstånd i grupper. Minimera samtidigt antalet grupper. Varje tillstånd får endast ingå i en grupp.
- 5. Konstruera den reducerade flödestabellen genom att slå samman raderna i de valda grupperna
- 6. Repetera steg 3-5 för att se om fler minimeringar kan göras

Godisautomat (BV sid 610)

- Godismaskinen har två ingångar:
 - -N: Nickel (5 cent)
 - D: Dime (10 cent)
- En godisbit kostar 10 cent
- Maskinen returnerar inga pengar om det finns 15 cent i automaten (en godisbit returneras)
- Utgången z är aktiv när det finns tillräckligt med pengar för en godisbit

Tillståndsdiagram, Flödestabell

- Inga "dubbeländringar" av insignalerna!
- Två mynt går inte att stoppa i samtidigt!

Pres	Next Stat	e 🌡	,	Q
state	X=00 01 10	1	1	
Α	(A) B 🕻	<u> </u>]	0
В	D B -	-		0
С	A - C) -		1
D	D E F	-		0
E	A E -) -		1
F	A - F) [_		1

$$(X = ND, Q = z)$$

En flödestabell som endast innehåller ett stabilt tillstånd per rad kallas för en *primitiv flödestabell*.

Tillståndsminimering innebär att **två** tillstånd kan vara ekvivalenta, och i så fall ersättas av **ett** tillstånd för att förenkla tillståndsdiagrammet, och nätet.

Man kan lätt inse att tillstånd C och F kommer att kunna ersättas med ett tillstånd eftersom godis *alltid* ska matas ut efter en Dime oavsett tidigare tillstånd.

Bilda/minimera ekvivalensgrupper

- 1. Bilda ekvivalensgrupper. För att vara i samma grupp ska följande gäller:
 - Utgångar måste ha samma värde
 - Stabila tillstånd måste finnas på samma plats (kolumn)
 - Don't cares för next state måste finnas på samma plats (kolumn)
- 2. Minimera ekvivalensgrupperna (state reduction).

Ekvivalensgrupper

Pres	Next State	l	Q
state	X=00 01 10	11	
Α	A B C	-	0
В	D (B) -	-	0
C	→ A - C	-	1
D	→ D E F	-	0
E	A (E) -	-	1
F	> A - F	-	1

$$(X = ND, Q = z)$$

Tillstånden delas i block efter utsignal. **ABD** har utsignal **0**, **CEF** har utsignal **1**. $P_1 = (ABD)(CEF)$

Stabila tillstånd måste finnas för samma insignal (kolumn), don't care måste finnas för samma kolumn.

AD har stabilt tillstånd för 00. **B** har stabilt för 01. **CF** har stabilt tillstånd för 10. **E** har stabilt för 01. **AD** och **CF** har don't care för motsvarande insignaler.

$$P_2 = (AD)(B)(CF)(E)$$

Slå ihop ekvivalensgrupper

Två rader kan "slås ihop" om det **inte** innebär någon **konflikt** för deras **efterföljartillstånd**

Pres	Next State	Q
state	X=00 01 10 1	1
Δ	/Ā\ΒC -	. <u> </u>
''		
В	D(B)	. 0
С	A - ① -	. 1
D	DEF -	. 0
E	Ā 🖺	. 1
F	A - (F) -	. 1

(X = ND, Q = z)

$$P_2 = (AD)(B)(CF)(E)$$

 $P_3 = (A)(D)(B)(C)(E)$
 $P_4 = P_3$.

Raderna C och F kan slås ihop med ny samlingsbeteckning C, medan A och D som har efterföljare i olika grupper *inte* kan slås ihop.

$$C,F_{00} \rightarrow (AD), (AD)$$

 $C,F_{01} \rightarrow -, -$
 $C,F_{10} \rightarrow (CF), (CF)$
 $C,F_{11} \rightarrow -, -$

$$A,D_{00} \rightarrow (AD), (AD)$$

 $A,D_{01} \rightarrow (B),(E)$
 $A,D_{10} \rightarrow (CF), (CF)$
 $A,D_{11} \rightarrow -, -$

Resulterande flödestabell

Pres	Next St	Next State		
state	X=00 01 1	10 11		
A	(A) B	C -	0	
В	D (B)		0	
C		<u> </u>	1	
D	D E	C -	0	
Е	A E		1	

Kompatibilitetsgrupper

- 3. Bilda sammanslagningsdiagram *antingen* för **Mealy** eller **Moore**
- 4. Slå ihop kompatibla tillstånd i grupper. Minimera samtidigt antalet grupper. Varje tillstånd får endast ingå i en grupp.
- 5. Konstruera den reducerade flödestabellen genom att slå samman raderna i de valda grupperna
- 6. Repetera steg 3-5 för att se om fler minimeringar kan göras

Sammanslagningsregler

- Två tillstånd är "kompatibla" och kan slås ihop om följande gäller
 - 1. åtminstone *ett* av följande villkor gäller för alla ingångskombinationer
 - både S_i och S_i har samma följdtillstånd, eller
 - både S_i och S_i är stabila, eller
 - följdtillståndet av S_i eller S_i eller båda är ospecifierade
 - 2. Sedan gäller följande om man vill konstruera en Moore-kompatibel automat
 - både S_i och S_j har samma **utgångsvärde** (gäller ju inte när man konstruerar en Mealy-kompatibel automat)

Sammanslagningsdiagram

Resulterande flödestabell

	Pres	Next State	Q
	state	X=00 01 10 1	1
	→A	(A) B C -	0
	В	D (B)	0
_	⇒ C	A - C -	1
l	D	DEC -	0
L	→E	A (E)	1

Varje rad blir en punkt i kompatibilitetsgrafen.

• När det finns flera möjligheter ...

Mealy-kompatibla: I tillstånd \mathbf{A} (X = 00) är utgången 0, i tillstånd \mathbf{C} är utgången 1

Ett illustrativt exempel (BV 9.8)

Primitiv flödestabell

• Ekvivalensklasser

Samma utsignal, samma position för stabilt tillstånd och för don't care tillstånd (AG) (BL) (HK)

$$\mathbf{P}_1 = (AG)(BL)(C)(D)(E)(F)(HK)(J)$$

Följdtillstånd: A, G är *inte* ekvivalenta

$$A,G_{00} \to (AG), (AG) \quad A,G_{01} \to (F),(BL)$$

 $A,G_{10} \to (C),(J) \quad A,G_{11} \to -, -$

$$B,L_{00} \to (AG), (AG) B,L_{01} \to (BL), (BL)$$

 $B,L_{10} \to -, - B,L_{11} \to (HK), (HK)$

$$H,K_{00} \rightarrow -, - H,K_{01} \rightarrow (BL), (BL)$$

 $H,K_{10} \rightarrow (E), (E) H,K_{11} \rightarrow (HK), (HK)$

$$P_2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)$$
 $P_3 = P_2$

Ett illustrativt exempel (BV 9.8)

Ekvivalens-klasser

Primitiv flödestabell

Pres	Next State	Q
state	X=00 01 10 11	
Α	(A) F C -	0
В	A B - H	1
С	G - (C) D	0
D	- F - D	1
E	G - 🖹 D	1
F	- 🕞 - K	0
G	GBJ-	0
Н	- L E (H)	1
J	G - (J) -	0
К	- B E (K)	1
L	А (L) - К	1

 P_1 = (AG)(BL)(C)(D)(E)(F)(HK)(J) P_2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J) P_3 = P_2

B för (BL) H för (HK)

Reducerad flödestabell

Pres	Next State	Q
state	X=00 01 10 11	
Λ.	A) F C -	0
Α	(A) F C -	U
В	А (В) - H	1
С	G - 🕝 D	0
D	- F - D	1
Е	G - 🖹 D	1
F	- (F) - Н	0
G	© В Ј -	0
Н	- в <u>е</u> (Н)	1
J	G - (j) -	0

Ett illustrativt exempel ...

• Kompatibilitet

Reducerad flödestabell

_	I				_
Pres	Next State			Q	
state	X=00	01	10	11	
-> A	(A)	F	С	-	0
→ B	А	B	-	Н	1
→C	G	-	(C)	D	0
→ D	-	F	-	(D)	1
₽E	G	-	(E)	D	1
⇒ F	-	F	-	Н	0
₽G	G	В	J	-	0
 	-	В	Е	\bigcirc	1
J	G	-	\bigcirc	-	0
	→ A → B → C → D → E → F	state $X=00$ A A B C C C C C C C	state	state X=00 01 10 → A A F C → B A B - → C G - C → D - F - → E G - E → F - G B J → H - B E	state X=00 01 10 11 → A A F C - → B A B - H → C G - C D → B - D - F - D → B - D - F - H → G B J - B E H

Pres	N	Next State			Q
state	X=00	01	10	11	
Α	Α	Α	С	В	0
В	Α	В	D	В	1
С	G	-	С	D	0
D	G	Α	D	D	1
G	G	В	G	-	0

Nya beteckningar B (BH), A (AF),

G(JG), D(DE)

William Sandqvist william@kth.se

Ett illustrativt exempel ...

Mer reducerad flödestabell

Pres	Next State	Ю	
state	X=00 01 10 11		
Α	A A C B	0	
В	A B D B	1	
→ C	G - © D	0	
D	G A D D	1	
→ G	© В © -	0	
	state A B C	state X=00 01 10 11 A A A A C B B A B D B → C G - C D D G A D D	state X=00 01 10 11 A A A A C B 0 B A B D B 1 → C G - C D 0 D G A D D 1

Ny	Kor	mpatibi	litets	-graf
			^	_

В	Α	D	C	G
•		•	Moore	

Slutlig flödestabell				
Pres	Next State Q			
state	X=00 01 10 11			
Α	(A) (A) C B 0			
В	A B D B 1			
С	© B © D 0			
D	C A D D 1			

Ny beteckning C för (CG)

Nu har alla ospecificerade tillstånd utnyttjats!

Sammanfattning

Asynkrona tillståndsmaskiner

- Bygger på analys av återkopplade kombinatoriska nät
- Alla vippor och latchar är asynkrona tillståndsmaskiner

• En liknande teori som för synkrona tillståndsmaskiner kan appliceras

- Bara en ingång eller tillståndsvariabel kan ändras åt gången!
- Man får även ta hänsyn till kapplöpningsproblem