

Description

Image

Caption

Medium carbon steel is the material of cheap tools. Low alloy steels are much superior and only a little more expensive -- quality tools are low alloy. © Granta Design

The material

Medium carbon steel (0.25-0.7% carbon) hardens when quenched - a quality that gives great control over properties. "Hardenability" measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels). Medium carbon steels are used on an enormous scale for railroad tracks; there are many other lower-volume applications.

Composition (summary)

Fe/0.3 - 0.7%C

General properties

Density	487	-	493	lb/ft^3
Price	* 0.29	-	0.349	USD/lb
Date first used	1610			

Mechanical properties

Young's modulus	29	-	31.3	10^6 psi
Shear modulus	11.2	-	12.3	10^6 psi
Bulk modulus	22.9	-	24.7	10^6 psi
Poisson's ratio	0.285	-	0.295	
Yield strength (elastic limit)	44.2	-	131	ksi
Tensile strength	59.5	-	174	ksi
Compressive strength	44.2	-	255	ksi
Elongation	4	-	39	% strain
Hardness - Vickers	120	-	565	HV
Fatigue strength at 10^7 cycles	* 33.2	-	87	ksi

Medium carbon steel

Fracture toughness	* 10.9 - 83.7 ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 2.2e-4 - 0.00119
Thermal properties	
Melting point	2.52e3 - 2.76e3 ℉
Maximum service temperature	* 698 - 788 F
Minimum service temperature	* -90.727.7 F
Thermal conductor or insulator?	Good conductor
Thermal conductivity	26 - 31.8 BTU.ft/h.ft^2.F
Specific heat capacity	0.105 - 0.124 BTU/lb.℉
Thermal expansion coefficient	5.56 - 7.78 µstrain/℉
Electrical properties	
Electrical conductor or insulator?	Good conductor
Electrical resistivity	15 - 22 μohm.cm
Optical properties	
Transparency	Opaque
Critical Materials Risk	
High critical material risk?	No
Processability	
Castability	2 - 3
Formability	4 - 5
Machinability	3 - 4
Weldability	4 - 5
Solder/brazability	5
Durability: water and aqueous solutions	
Water (fresh)	Acceptable

Durability: acids

Soils, acidic (peat)

Soils, alkaline (clay)

Water (salt)

Wine

Acetic acid (10%)	Limited use
Acetic acid (glacial)	Unacceptable
Citric acid (10%)	Unacceptable
Hydrochloric acid (10%)	Unacceptable
Hydrochloric acid (36%)	Unacceptable

Limited use

Acceptable

Acceptable

Unacceptable

Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Unacceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Limited use
Acetone	Excellent
Ethyl alcohol (ethanol)	Acceptable
Ethylene glycol	Acceptable
Formaldehyde (40%)	Unacceptable
Glycerol	Excellent
Methyl alcohol (methanol)	Acceptable

Durability: halogens and gases

Chlorine gas (dry)	Acceptable
Fluorine (gas)	Excellent
O2 (oxygen gas)	Limited use

Sulfur dioxide (gas)	Acceptable				
Durability: built environments					
Industrial atmosphere	Limited use	Limited use			
Rural atmosphere	Acceptable				
Marine atmosphere	Limited use				
UV radiation (sunlight)	Excellent				
Durability: flammability					
Flammability	Non-flammable				
Durability: thermal environments					
Tolerance to cryogenic temperatures	Unacceptable				
Tolerance up to 150 C (302 F)	Excellent				
Tolerance up to 250 C (482 F)	Excellent				
Tolerance up to 450 C (842 F)	Acceptable				
Tolerance up to 850 C (1562 F)	Unacceptable				
Tolerance above 850 C (1562 F)	Unacceptable				
Geo-economic data for principal component	0.00				
Annual world production, principal component	2.26e9 ton/yr				
Reserves, principal component	1.57e11 I. ton				
Primary material production: energy, CO2 and	vater				
Embodied energy, primary production	* 2.72e3 - 3.01e3 kcal/lb				
CO2 footprint, primary production	* 1.72 - 1.9 lb/lb				
Water usage	* 5.22 - 5.78 gal(US)/lb				
Eco-indicator 95	86 millipoints/kg				
Eco-indicator 99	106 millipoints/kg				
Material processing: energy					
Casting energy	* 1.18e3 - 1.31e3 kcal/lb				
Extrusion, foil rolling energy	* 644 - 712 kcal/lb				
Rough rolling, forging energy	* 337 - 373 kcal/lb				
Wire drawing energy	* 2.33e3 - 2.58e3 kcal/lb				
Metal powder forming energy	* 3.89e3 - 4.63e3 kcal/lb				
Vaporization energy	* 1.18e6 - 1.3e6 kcal/lb				
Coarse machining energy (per unit wt removed)	* 97.4 - 108 kcal/lb				
Fine machining energy (per unit wt removed)	* 511 - 564 kcal/lb				
Grinding energy (per unit wt removed)	* 971 - 1.07e3 kcal/lb				
Non-conventional machining energy (per unit wt removed	1.18e4 - 1.3e4 kcal/lb				

Material	processi	ing: (CO2 1	ootprint

Casting CO2	* 0.819	-	0.906	lb/lb
Extrusion, foil rolling CO2	* 0.446	-	0.492	lb/lb
Rough rolling, forging CO2	* 0.233	-	0.258	lb/lb
Wire drawing CO2	* 1.61	-	1.78	lb/lb
Metal powder forming CO2	* 2.87	-	3.42	lb/lb
Vaporization CO2	* 815	-	901	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0674	-	0.0745	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.354	-	0.391	lb/lb
Grinding CO2 (per unit wt removed)	* 0.672	-	0.743	lb/lb
Non-conventional machining CO2 (per unit wt removed	8.15	-	9.01	lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	✓				
Embodied energy, recycling	* 754	-	833	kcal/lb	
CO2 footprint, recycling	* 0.547	-	0.605	lb/lb	
Recycle fraction in current supply	40	-	44	%	
Downcycle	✓				
Combust for energy recovery	×				
Landfill	✓				
Biodegrade	×				
Toxicity rating	Non-toxio	Non-toxic			
A renewable resource?	×				

Environmental notes

The production energy of steel is comparatively low - per unit weight, about a half that of polymers; per unit volume, though, twice as much. Carbon steels are easy to recycle, and the energy to do so is small.

Supporting information

Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at

Phase diagram

Phase diagram description

Medium carbon steels are alloys of iron (Fe) with 0.3 - 0.7% carbon (C), for which this is the phase diagram.

Typical uses

General construction, general mechanical engineering, automotive, tools, axles, gears, bearings, cranks, shafts, bells, cams, knives and scissors.

Links

Reference

ProcessUniverse

Producers