Copyright © Natural Language Processing & Artificial Intelligence Lab.

CHAPTER 9 언어 모델 (Language Model)

언어 모델이란?

언어 모델(Language Model, LM)

: 언어를 이루는 구성 요소(글자, 형태소, 단어, 단어열 혹은 문장,

문단 등)를 문맥으로 하여 이를 바탕으로 다음 구성 요소를 예측

하거나 생성하는 모델

언어 모델이란?

언어 모델이란?

언어 모델

(Language Model, LM)

통계적 언어 모델

(Statistical Language Model, SLM)

딥러닝 언어 모델

(Deep Neural Network Language Model, DNN LM)

• 주어진 문서(코퍼스) 내 단어열(혹은 문장)의 등장 확률을 기반으로 각 단어의 조합을 예

측하는 전통적인 언어 모델

• 실제로 많이 사용하는 단어열(문장)의 확률 분포를 정확하게 근사하는 것이 모델의 목표

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 조건부 확률

조건부 확률 P(B|A): 사건 A가 일어났을 때 사건 B가 일어날 확률

언어 모델

단어 A가 등장했을 때 바로 다음에 단어 B가 등장할 확률

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 조건부 확률과 결합확률

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

$$P(A)P(B|A) = P(A,B)$$

$$P(A, B) = P(A)P(B|A)$$

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 연쇄 법칙

연쇄 법칙(Chain rule)

$$P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

언어 모델

P(나는, 사과를, 먹는다)=P(나는)P(사과를 | 나는)P(먹는다 | 나는, 사과를)

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 연쇄 법칙

연쇄 법칙(Chain rule)

$$P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

n개 단어(w)의 결합 확률

$$\begin{split} P(w_1, w_2, w_3, \cdots, w_n) &= P(w_1) P(w_2 | w_1) P(w_3 | w_1, w_2) \cdots P(w_n | w_1, \cdots, w_{n-1}) \\ &= \prod^n P(w_n | w_1, \cdots, w_{n-1}) \end{split}$$

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 카운트 기반 계산

: 코퍼스(corpus) 내에서 각 단어들의 조합이 나오는 횟수를 **카운트(count)**한 후이에 기반하여 확률을 계산

$$P(먹는다 | 나는, 사과를) = \frac{count(나는, 사과를, 먹는다)}{count(나는, 사과를)}$$

- → 모든 단어 조합의 경우의 수를 다 세어야 함
- → 계산 복잡도가 높아질 뿐만 아니라 무한한 크기의 코퍼스 필요
- → 어려움, 비현실적

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 마르코프 가정(Markov assumption)

- ✓ 기존 연쇄 법칙의 복잡성을 해결하고 간소화하기 위함
- ✓ 미래 사건에 대한 조건부가 과거에 대해서는 독립이며 현재의 사건에만 영향을 받는다는 가정을 전제로 연쇄법칙 설명
- ✓ 단어 w_n 이 나타날 확률은 그 앞의 단어 w_{n-1} 이 나타날 확률하고만 연관이 있다고 봄

$$P(w_1, w_2, \dots, w_n) \approx P(w_1)P(w_2|w_1) \cdots P(w_n|w_{n-1})$$

- 조건부 확률(Conditional probabilities)과 언어 모델
 - 마르코프 가정(Markov assumption)

$$P(w_1, w_2, \dots, w_n) \approx P(w_1)P(w_2|w_1) \cdots P(w_n|w_{n-1})$$

P(나는, 사과를, 먹는다) $\approx P$ (나는)P(사과를 | 나는)P(먹는다 | 사과를)

- N-gram 언어 모델(N-gram Language Model)
- 마르코프 가정(Markov assumption)의 한계

- ✔ 어떤 단어의 등장 확률이 바로 앞의 단어하고만 연관이 있다는 마르코프 가정
- ✓ 언어 현상에 적용하기에는 지나친 단순화
- ✓ 언어의 장기 의존성 간과됨
- ✓ (예: The <u>computer</u> which I had just put into the machine room on the fifth floor <u>crashed</u>.)
- ✔ 예측 정확도 낮아질 수 있음

- N-gram 언어 모델(N-gram Language Model)
 - N-gram

- ✓ 문장 내 단어는 주변의 여러 단어와 연관된다고 가정
- ✓ N: 주변 몇 개의 단어를 볼 것인지 정하는 임의의 숫자
- ✓ N-gram: N개의 단어열

- N-gram 언어 모델(N-gram Language Model)
 - ✓ 1-gram(unigram): The, boy, is, looking, at, a, pretty, girl
 - ✓ 2-gram(bigram): The boy, boy is, is looking, looking at, at a, a pretty,
 pretty girl
 - ✓ 3-gram(trigram): The boy is, boy is looking, is looking at, looking at a, at
 a pretty, a pretty girl
 - ✓ 4-gram: The boy is looking, boy is looking at, is looking at a, looking at a
 pretty, at a pretty girl

- N-gram 언어 모델(N-gram Language Model)
- N-1차 마르코프 가정

: 특정 단어가 등장하는 확률을 계산할 때에 이전 N-1개의 단어가 등장하는 확률만을 고려한다는 가정

- N-gram 언어 모델(N-gram Language Model)
- N-1차 마르코프 가정

1-gram(유니그램, unigram):
$$P(w_1,w_2,\cdots,w_n) pprox \prod_{i=1}^n P(w_i)$$

2-gram(바이그램, bigram):
$$P(w_1,w_2,\cdots,w_n) pprox \prod_{i=1}^n P(w_i|w_{i-1})$$

• • •

N-gram :
$$P(w_1, w_2, \dots, w_n) \approx \prod_{i=1}^n P(w_i | w_{i-N}, \dots, w_{i-1})$$

- N-gram 언어 모델(N-gram Language Model)
- N-1차 마르코프 가정

 $P(먹는다 | 나는, 사과를) \approx P(먹는다 | 사과를)$

$$\frac{count}(\mbox{나는, 사과를, 먹는다})}{count}(\mbox{나는, 사과를}) \approx \frac{count}(\mbox{사과를, 먹는다})}{count}(\mbox{사과를})$$

- N-gram 언어 모델(N-gram Language Model)
- 예제: 3개 문장과 2-gram 모델로 단어열의 등장 확률 계산

코퍼스 예시

<s>I eat an apple</s>

<s>an apple I eat</s>

<s>I like cheese cake</s>

- N-gram 언어 모델(N-gram Language Model)
 - 예제: 3개 문장과 2-gram 모델로 단어열의 등장 확률 계산

$$P(I|< s>) = \frac{count(< s>, I)}{count(< s>)} = \frac{2}{3} = 0.6667$$

$$P(an | < s >) = \frac{count(< s >, an)}{count(< s >)} = \frac{1}{3} = 0.3333$$

$$P(eat|I) = \frac{count(I, eat)}{count(I)} = \frac{2}{3} = 0.6667$$

$$P(| apple) = \frac{count(apple,)}{count(apple)} = \frac{1}{2} = 0.5$$

$$P(like | I) = \frac{count(I, like)}{count(I)} = \frac{1}{3} = 0.3333$$

$$P(cake | cheese) = \frac{count(cheese, cake)}{count(cheese)} = \frac{1}{2} = 0.5$$

- N-gram 언어 모델(N-gram Language Model)
 - 예제: 셰익스피어 작품 기반 N-gram 문장 생성

Unigram

- ✓ To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
- ✓ Hill he late speaks; or! A more to leg less first you enter

- \rightarrow 1-gram 모델은 단어의 열(sequence) 고려X, 모든 단어가 독립적이라고 봄
- → 서로 무관한 단어들이 생성됨

- N-gram 언어 모델(N-gram Language Model)
 - 예제: 셰익스피어 작품 기반 N-gram 문장 생성

Bigram

- ✓ Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- ✓ What means, sir. I confess she? Then all sorts, he is trim, captain.

- → 2-gram 모델은 바로 앞 1개의 단어를 고려
- → 1-gram 보다 자연스럽지만 전체적으로는 여전히 매우 부자연스러움

- N-gram 언어 모델(N-gram Language Model)
 - 예제: 셰익스피어 작품 기반 N-gram 문장 생성

Trigram

- ✓ King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- ✓ It cannot be but so.
 - → 1-gram 및 2-gram 모델의 문장보다 자연스러움
 - → 코퍼스에 존재하는 텍스트에 가깝게 생성
 - → 새로운 문장이라고 보기 어려움(low diversity)

- N-gram 언어 모델(N-gram Language Model)
- N-gram에 따른 성능 비교

- N-gram 언어 모델(N-gram Language Model)
 - 한계

- ✓ 생성된 문장이 지나치게 부자연스럽거나 기존 코퍼스와 지나치게 유사함
- ✓ 단어열의 확률값이 코퍼스에 따라 크게 달라짐
- ✓ 방대한 양의 코퍼스 필요
- ✓ 희소성 문제(코퍼스에 등장하지 않는 단어열의 확률값은 모두 0)
- ✓ 예측의 정확도를 떨어트리는 요인
- ✓ 교착어인 한국어에서 희소성 문제가 크게 발생
- ✓ (예: 한국어에서 형태소 분석 등 전처리 진행하지 않으면 '사과가', '사과를', '사과도', '사과에'는 모두 다른 단어로 처리되어 '사과'가 포함된 단어열의 확률값이 0에 가까워짐)

- N-gram 언어 모델(N-gram Language Model)
- 로그 확률(Log probabilities)

- ✔ 언어 모델의 확률 계산시 원래 확률값(raw probabilities)에 로그(log)를 취하는 것이 보편적
- ✓ 이는 **언더플로(underflow)**를 피하기 위함
 - * 언더플로: 부동 소수점 연산에서 컴퓨터가 표현할 수 있는 것보다 작은 값이 발생하여 계산 결과를 표시할 수 없는 상태

- N-gram 언어 모델(N-gram Language Model)
- 로그 확률(Log probabilities)

$$\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$$

- ✓ 곱셈 연산은 덧셈 연산보다 계산 리소스가 크고 결과값이 0에 가까운 작은 값으로 계산될 가능성이 있음
- ✓ 전체 확률 계산을 로그 공간에서 계산할 시 곱셈을 덧셈으로 환산할 수 있음
- ✓ 계산이 간단해지고 원래 확률 계산보다 언더플로를 피할 수 있음

- N-gram 언어 모델(N-gram Language Model)
- 로그 확률(Log probabilities)

✓ 로그 공간에서 n개의 단어로 이루어진 단어열의 확률을 계산하는 N-gram 모델 식

$$\log P(w_1, w_2, \dots, w_n) \approx \sum_{i=1}^{n} \log P(w_i | w_{i-N}, \dots, w_{i-1})$$

- ✓ 통계적 언어 모델은 제한된 양의 코퍼스로 인해 이전에 보지 못한 단어열에 대해서는 제대로 예측하지 못하고 정확도가 떨어짐
- ✓ 이와 같은 **희소성 문제를 해결**하고 모델의 **일반화 능력을 향상**시키기 위해 다양한 일반화 기법 들 제시됨 (Laplace smoothing, Good-Turing smoothing, Witten-Bell smoothing, Interpolation, Back off, Kneser-Ney discounting 등)

■ 스무딩(Smoothing)

- ✓ 모델이 한번도 본 적 없는 단어 조합(unseen n-gram)에 특정 값(α)을 부여하여 확률 분포에 약간의 변화를 주는 방법 ($0 < \alpha \le 1$)
- ✓ 코퍼스에 없는 단어열로 인해 전체 문장의 확률이 0이 되는 **희소성 문제 방지**

■ 스무딩(Smoothing)

$$P(w_i|w_{<\,i}) \approx \frac{count(w_{<\,i},w_i) + \alpha}{count(w_{<\,i}) + \alpha\,V}$$

w < i

: *i*번째 단어 이전에 등장하는 모든 단어

V

: 어휘(vocabulary) 사이즈 (코퍼스에 등장하는 단일 단어 개수)

- 스무딩(Smoothing)
- 라플라스 스무딩(Laplace smoothing)

$$P(w_i|w_{<\,i}) \approx \frac{count(w_{<\,i},w_i) + \alpha}{count(w_{<\,i}) + \alpha\,V}$$

- \checkmark α 값을 1로 지정하는 방법
- ✓ 한번도 등장하지 않은 단어열이 최소 한번은 등장했다고 가정

- 스무딩(Smoothing)
- 라플라스 스무딩(Laplace smoothing) 예제

코퍼스 예시

"I eat a strawberry"

"I eat a blueberry"

"I eat a strawberry cake"

문제: 2-gram 모델로 "I eat a blueberry cake"의 확률 구하기

- 스무딩(Smoothing)
- 라플라스 스무딩(Laplace smoothing) 예제

P(I, eat, a, blueberry, cake)

P(eat | I) P(a | eat) P(blueberry | a) P(cake | blueberry)

기존 확률 계산식: P(cake|blueberry) = 0, 전체 문장의 등장 확률 = 0

- 스무딩(Smoothing)
- 라플라스 스무딩(Laplace smoothing) 예제

$$P(cake \,|\, blueberry) \approx \frac{count(blueberry, cake) + 1}{count(blueberry) + V}$$

$$\approx \frac{0+1}{1+6} = \frac{1}{7} = 0.143$$

라플라스 스무딩 적용시: $0 < P(cake|blueberry) \le 1, 0 < 전체 문장의 등장 확률 \le 1$

- 스무딩(Smoothing)
 - 라플라스 스무딩(Laplace smoothing) 한계

- ✓ 라플라스 스무딩은 제로 데이터(코퍼스에 등장하지 않는 단어열)가 적은 경우 유용
- ✓ 그러나, 계산을 거듭할수록 원래 단어의 빈도수에서 크게 벗어나는 문제를 야기
- ✓ 또한, 제로 데이터에 특정 값을 부여하여도 N-gram 모델의 일반화 문제는 완전히 해소되지 않음

■ 보간법(Interpolation)

- ✓ 특정 N-gram의 확률을 이전 N-gram의 확률과 섞는 방법
- \checkmark 3-gram 모델 예시: 2-gram, 1-gram 모델의 확률까지 모두 구한 후 **일정한 비율(\lambda)의 가중치**를 각각 곱한 후 모두 합하는 방식 ($0 < \lambda \le 1, \sum_i \lambda_i = 1$)

$$\hat{P}(w_n|w_{n-1},w_{n-2}) = \lambda_1 P(w_n|w_{n-1},w_{n-2}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

■ 보간법(Interpolation)

- ✓ 라플라스 스무딩은 모든 제로 데이터에 똑같은 빈도수를 부여하기 때문에 문제 발생
- ✓ 보간법 사용시, 제로 데이터들의 N-gram 정보에 따라 서로 다른 빈도를 부여할 수 있음
- ✓ 가중치(λ)는 검증 코퍼스에서 각 N-gram의 확률을 최대화하는 0보다 크고 1보다 작거나 같은 값으로 설정

■ 백오프(Back off)

- ✓ 보간법과 유사, 여러 N-gram을 함께 고려
- ✓ 모든 N-gram의 확률을 합하지 않는다는 점이 보간법과의 차이
- ✓ 3-gram 모델 예시: 3-gram, 2-gram, 1-gram 확률 중 빈도수가 0 이상이며 N의 차수가 높은 N-gram 확률을 사용

$$\hat{P}(w_i|w_{i-2},w_{i-1}) = \begin{cases} P(w_i|w_{i-2},w_{i-1}), \text{ if } count(w_{i-2},w_{i-1},w_i) > 0 \\ \alpha_1 P(w_i|w_{i-1}), \text{ if } count(w_{i-2},w_{i-1},w_i) = 0 \text{ and } count(w_{i-1},w_i) > 0 \\ \alpha_2 P(w_i), \text{ } otherwise. \end{cases}$$

■ 생각해 볼 문제: 사람의 일반화와 차이점

- ✓ 보간법과 백오프는 특정 N-gram보다 작은 N-gram의 단어열을 고려하여 보다 나은 일반화 가능
- ✓ 그러나 스무딩과 보간법, 백오프 등의 일반화 방법은 문장 내에서 유사한 <mark>패턴</mark>을 찾음으로써 새로운

정보를 학습하는 사람의 일반화 방식과는 사뭇 다름

■ 생각해 볼 문제: 사람의 일반화와 차이점

- ✓ 사람의 경우 "I eat a strawberry", "I eat a blueberry", "I eat a strawberry cake"라는 문장을 학습하고 나면 비슷한 패턴의 "I eat a blueberry cake"라는 문장도 가능할 수 있음을 직관적으로 학습함

■ 언어 모델의 평가

- ✓ 일반적인 방법은 모델 간 비교. But 상당한 시간 소요
- ✓ 퍼플렉서티(Perplexity, PPL): 언어 모델의 성능을 자체적으로 평가하는 내부 평가(intrinsic evaluation) 척도
 - → 간이 실험 등 짧은 시간 안에 간단히 모델을 평가할 때, 혹은 모델 간 비교시 평가척도로 사용

■ 퍼플렉서티(Perplexity, PPL)

- ✓ 주어진 확률 모델이 샘플을 얼마나 잘 예측하는가에 대한 측정 지표
- ✓ 'perplexity'는 '헷갈리는 정도'를 뜻함
- ✓ 모델이 테스트 데이터셋에 대하여 확률 분포를 얼마나 확실하게 (헷갈리지 않게) 예측할 수있는지를 나타내는 지표
- ✓ PPL 점수가 낮을수록 (헷갈리는 경우가 적을수록) 좋음

■ 퍼플렉서티(Perplexity, PPL) 계산

✓ 퍼플렉서티는 모델이 선택할 수 있는 경우의 수를 의미하는 분기계수(branching factor)

■ 퍼플렉서티(Perplexity, PPL) 계산

10개 MNIST 데이터에 대한 분기계수 예시

■ 퍼플렉서티(Perplexity, PPL) 계산

- ✓ 퍼플렉서티는 모델이 선택할 수 있는 경우의 수를 의미하는 분기계수(branching factor)
- ✓ 즉, 모델이 샘플의 확률을 예측하는 시점에서 얼마나 많은 후보군을 두고 고민하는가
 를 나타냄
 - → PPL이 높다는 것은 모델이 더 많은 후보군을 두고 고민하는 것
 - → 예측에 대한 확실성이 낮음을 뜻함

■ 퍼플렉서티(Perplexity, PPL) 계산

- ✓ PPL = 10
- ✓ 30,000개 단어들 중 다음 단어로 올 확률이 가장 높은 단어를 예측하는 언어모델이라면 PPL = 30,000
- ✓ 후보군에 대한 확률의 역수를 후보군의 개수로 정규화(normalization)하여 계산

- 퍼플렉서티(Perplexity) 계산
 - 언어 모델의 PPL 계산 식

$$\begin{split} PPL(W) &= P(w_1, w_2, ..., w_N)^{-\frac{1}{N}} \\ &= \sqrt[N]{\frac{1}{P(w_1, w_2, ..., w_N)}} \\ &= \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_1 | w_1, w_2, ..., w_{i-1})}} \end{split}$$

✓ N개의 단어 w_N 으로 이루어진 문장 W에 대하여 다음 단어를 예측하는 **언어 모델의 PPL 계산 식**

- 퍼플렉서티(Perplexity) 계산
- MNIST 예제 적용 예시

$$PPL(W) = P(w_1, w_2, ..., w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1, w_2, ..., w_N)}}$$

$$=\sqrt[N]{\prod_{i=1}^{N}rac{1}{P(w_{1}|w_{1},w_{2},...,w_{i-1})}}$$

$$PPL(W) = P(w_1, w_2, ..., w_N)^{-\frac{1}{N}}$$

$$\rightarrow$$

$$=\left(\frac{1}{10^{N}}\right)^{-\frac{1}{N}}$$

$$=\left(\frac{1}{10}\right)^{-1}$$

$$= 10$$

- 퍼플렉서티(Perplexity) 계산
 - 2-gram 모델 PPL 계산식

- ✓ N-gram 모델에서는 'N-1차 마르코프 가정'에 따른 연쇄법칙이 적용됨
- ✔ 이를 반영한 2-gram 모델의 계산식

$$PPL(W) = \sqrt{\frac{1}{\prod_{i=1}^{N} P(w_i|w_{i-1})}}$$

질의 응답