

According to Amberes circuital law

$$\Rightarrow$$
 Night - N2i2 = $\phi \frac{L}{Aho \mu r}$

Now for bractical T/F pr is finite. Therefore

$$N_1i_1-N_2i_2=N_1i_y$$

$$\Rightarrow i_1 = \frac{N_2}{N_1} i_2 + i_{\Psi}$$

$$\Rightarrow$$
 $I_1 = \frac{N_2}{N_1} I_2 + I_{\psi}$ [Phasor Representation]

$$\Rightarrow \overline{I_1} = \overline{I_2} + \overline{I_{\Psi}}$$

 $\overline{I_1} = \overline{I_2} + \overline{I_{\Psi}}$ $\overline{I_{\Psi}} = Magnetizing current.$

 $\overline{I}_{\psi} = \frac{\overline{E}_{I}}{j \times m}$

*m = Inductive Reactan

Wat represents the mutual

flux

Ty creates the mutual flux om. So we can say on and Ty are at same phase.

However according to Hysteresis curve the current leads the flux

the component of Io which is along on creates the flux. The component of Io perpendicular to om represents the core loss component.

O complete equivalent cxt diagram of T/F:-

The core loss =
$$\frac{|\overline{E_1}|^2}{Re}$$
 = Pcore

	The equivalent circuit of a real T/F accounts
	for >
	V
i)	
	ohmic losses and voltage drops.
	[Primary (coil-1) and Secondary (coil-2)
	resistances
ii)	Leakage flux [weak coupling]
	[Primary (coil-1) and Secondary (coil-2)
	reactances
(iii	Finile permiability
	Im is introduced and so the jxm
iy	Core Losses
-	
	Rc is the resistance that represents the Core loss.
	•

1/F equivalent cut referred to brimary side:-

Secondary equations of the T/F is as follows

$$\overline{E}_{2} = \overline{V}_{1000}d + \overline{I}_{2}(R_{2}+j\times_{2}) \qquad \qquad \overline{E}_{1} = \overline{E}_{2} \\
\overline{V}_{1} = \overline{E}_{1} = \overline{V}_{1000}d + \overline{I}_{2}(R_{2}+j\times_{2}) \qquad \qquad \overline{E}_{1} = \overline{N}_{1} = \overline{E}_{2} \\
\Rightarrow \overline{E}_{1} = \overline{N}_{1} = \overline{V}_{1000}d + \overline{N}_{1}(R_{2}+j\times_{2}) = \overline{I}_{2} = \overline{N}_{1} = \overline{I}_{2} = \overline{N}_{2} \\
\Rightarrow \overline{E}_{1} = \overline{N}_{1} = \overline{V}_{1000}d + \overline{N}_{1}(R_{2}+j\times_{2}) = \overline{I}_{2} = \overline{N}_{1} = \overline{I}_{2} = \overline{N}_{2} \\
\Rightarrow \overline{I}_{1} = \overline{N}_{1} = \overline{I}_{2} = \overline{N}_{2} = \overline{I}_{2} = \overline{I$$

$$\Rightarrow \overline{E_1} = \overline{V_{\text{load}}} + \left(\frac{N_1}{N_2}\right)^2 \overline{I_2}' \left(R_2 + \dot{I}^{\times 2}\right)$$

$$\Rightarrow \overline{E}_1 = \overline{V}_{load} + \overline{I}_2' \left(R_2 + j \times 2 \right)$$

where
$$R_2' = R_2 \left(\frac{N_1}{N_2}\right)^2$$

 $\chi_2' = \chi_2 \left(\frac{N_1}{N_2}\right)^2$

Secondary impedance referred to primary.

 $\Rightarrow \bar{\mathbf{f}}_2 = \left(\frac{N_1}{N_2}\right) \bar{\mathbf{f}}_2^{\prime}$

and
$$V_{load} = \left(\frac{N_1}{N_2}\right) \overline{V_{load}}$$
 Secondary terminal voltage referred to primary.

we also can refer the load to the Brimary side.

$$\Rightarrow \left(\frac{N_{2}}{N_{1}}\right) \overline{V_{1}} \text{ foad } = \overline{I_{2}} \text{ Z toad}$$

$$\Rightarrow \overline{V_{1}} \text{ foad } = \left(\frac{N_{1}}{N_{2}}\right) \overline{I_{2}} \text{ Z toad}$$

$$\Rightarrow \overline{V_{1}} \text{ foad } = \left(\frac{N_{1}}{N_{2}}\right)^{2} \overline{I_{2}} \text{ Z toad}$$

$$\Rightarrow \overline{V_{1}} \text{ foad } = \left(\frac{N_{1}}{N_{2}}\right)^{2} \overline{I_{2}} \text{ Z toad}$$

$$\Rightarrow \overline{V}_{1} = \overline{I}_{2} = \overline{Z}_{1} = \overline{Z}_{1$$

Now draw the equivalent ext of t/f referred to the secondary

@ Approximate equivalent circuit of T/F:

The equivalent circuit of a Transformer referred to primary side is >

1 Tests on T/F to find out circuit parameter:

Oc Test :-

Dealculation of oc test?-

we have the readings Vo, Io, Wo

$$Cos\theta_0 = \frac{W_0}{V_0 I_0} \qquad \theta_0 = Cos^{-1} \frac{W_0}{V_0 I_0}$$

$$\theta_0 = \cos^{-1} \frac{W_0}{V_0 I_0}$$

$$I_e = I_0 C_0 S \theta_0$$
 and $I_{\psi} = I_0 S m \theta$

$$R_0 = \frac{V_0}{I_0} = \frac{V_0}{I_0 c_0 s} \theta_0 \qquad \text{and} \qquad \times_m = \frac{V_0}{I_{\psi}} = \frac{V_0}{I_0 sin \theta_0}$$

$$\times_{m} = \frac{V_{o}}{1\psi} = \frac{V_{o}}{I_{o} \sin \theta_{o}}$$

These parameters are referred to (LY) side

☐ calculation of sc test :-

We have the readings Vsc, Isc, Wsc

$$Cos\theta_{SC} = \frac{W_{SC}}{V_{SC} I_{SC}}$$

$$\theta_{SC} = Cos^{-1} \frac{W_{SC}}{V_{SC} I_{SC}}$$

$$|z| = \frac{V_{SC}}{I_{SC}}$$
 Req = $|z| Cos \theta_{SC}$
 $|z| = \frac{V_{SC}}{I_{SC}}$ Req = $|z| Cos \theta_{SC}$

These parameters are referred to (HV) side