Math 4310 Assignment #5 University of Lethbridge, Fall 2014

Sean Fitzpatrick

October 4, 2014

Due date: Friday, October 10th, by 5 pm.

Please submit solutions to the following problems (except where indicated). As usual, all the textbook exercises are recommended as practice problems if they don't appear as an assigned problem below.

- 1. If $X \times Y$ has the product topology, and $A \subseteq X$, $B \subseteq Y$, show that $\overline{A \times B} = \overline{A} \times \overline{B}$, $(A \times B)^{\circ} = \overset{\circ}{A} \times \overset{\circ}{B}$, and $\partial (A \times B) = \partial A \times \partial B$.
- 2. Given a countable number of spaces X_1, X_2, \ldots , the product $X = \prod_i X_i$ is the set of all points of the form $x = (x_1, x_2, \ldots)$, where $x_i \in X_i$ for $i = 1, 2, \ldots$. The product topology on X is defined to be the coarsest topology for which all of the projections $\pi_i : X \to X_i$ are continuous. (This is sometimes known as the *weak* product topology.)
 - (a) Construct a basis for this topology in terms of the open subsets of the spaces X_1, X_2, \ldots
 - (b) (In which a hint for part (a) is given.) The box topology on $X = \prod_i X_i$ is the topology defined by the basis $\mathcal{B} = \{U_1 \times U_2 \times \cdots \mid U_i \text{ is open in } X_i, i = 1, 2, \ldots\}$. Show that the box topology contains the product topology in part (a) (this is your hint: your answer for (a) should be different than the basis in (b)!), and that the two sets are equal if and only if X_i has the indiscrete topology for all but finitely many values of i.

Note: this problem is a bit tricky. For 2(a), start by asking yourself which sets definitely have to be open for the projections to be continuous. These won't quite form a basis on their own, but they do form a subbasis.

For problems 3 and 4, the diagonal map $\Delta: X \to X \times X$ is given by $\Delta(x) = (x, x)$, and the diagonal in $X \times X$ is the image $\Delta(X) = \{(x, x) \mid x \in X\}$ of the diagonal map.

3. Prove that a topological space X is discrete if and only if $\Delta(X)$ is an open subset of $X \times X$ in the product topology.

Hint: if you read the Chapter 10 supplement you'll get about 80% of the proof.

- 4. Prove that X is Hausdorff if and only if $\Delta(X)$ is a closed subset of $X \times X$ in the product topology.
- 5. Suppose that X is Hausdorff.
 - (a) Show that $\{x\}$ is closed, for any $x \in X$.
 - (b) Let \mathcal{U} denote the collection of all open neighbourhoods of some $x \in X$. Prove that $\bigcap_{U \in \mathcal{U}} U = \{x\}$.
- 6. Suppose that X is an infinite set with the finite complement (co-finite) topology.
 - (a) Show that $\{x\}$ is closed, for any $x \in X$.
 - (b) Show that, in spite of part (a), X is not Hausdorff.
 - (c) Let \mathcal{U} denote the collection of all open neighbourhoods of some $x \in X$. Show that it is not true that $\bigcap_{U \in \mathcal{U}} U = \{x\}$.
- 7. (Bonus) Show that $[0,1) \times [0,1)$ is homeomorphic to $[0,1] \times [0,1)$.

(If you sketch the two spaces as subsets of \mathbb{R}^2 you can see visually how one can be continuously deformed into the other, but to give a rigorous proof you need to come up with a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that is maps $[0,1) \times [0,1)$ onto $[0,1] \times [0,1)$. I couldn't think of one off the top of my head so I figured I probably shouldn't assign the problem for credit.)