Suites réelles

Marc SAGE

15 novembre 2005

Table des matières

1	Mise en jambe	2
2	Un archi-classique : suites sous-additives	2
3	Un amuse-gueule	3
4	Suites de rationnels convergeant vers un irrationnel	3
5	Sur les bijections de $\mathbb N$ dans $\mathbb N$	4
6	Les suites et les hirondelles	4
7	Une équation fonctionnelle	5
8	Une autre équation fonctionnelle	5
9	Lim sup/inf et adhérence	6

1 Mise en jambe

On consière n réels $x_1,...,x_n > 0$ et n scalaires $\lambda_1,...,\lambda_n > 0$. Montrer que

$$\sqrt[p]{\lambda_1 x_1^p + ... + \lambda_n x_n^p} \xrightarrow{p \infty} \max \{x_1, ..., x_n\}.$$

Solution proposée.

On rappelle tout d'abord que, si (a_p) est une suite minorée à partir d'un certain rang par un réel $\alpha>0$, alors la suite $\sqrt[p]{a_p}=a_p^{\frac{1}{p}}=e^{\frac{\ln a_p}{p}}$ a pour limite 1 vu que $\left|\frac{\ln a_p}{p}\right|\leq \frac{|\ln \alpha|}{p}\stackrel{p\infty}{\longrightarrow} 0$.

Introduisons à présent l'ensemble I des indices $i\in\{1,...,n\}$ pour lesquels $x_i=M$ est maximum.

On a donc

$$\frac{1}{M^p} \sum_{i=1}^n \lambda_i x_i^p = \sum_{i=1}^n \lambda_i \left(\frac{x_i}{M}\right)^p = \sum_{i \in I} \lambda_i \underbrace{\left(\frac{x_i}{M}\right)^p}_{-1} + \sum_{i \notin I} \lambda_i \underbrace{\left(\frac{x_i}{M}\right)^p}_{-1}.$$

En notant que I est non vide, la suite ci-dessus converge vers $\sum_{i \in I} \lambda_i > 0$, donc est minorée à partir d'un certain rang par un réel > 0, et il suffit de prendre la racine p-ième pour obtenir $\frac{1}{M} \sqrt[p]{\sum_{i=1}^n \lambda_i x_i^p} \longrightarrow 1$, d'où le

De façon générale, si les λ_i sont normalisés (i.e. de somme $\sum \lambda_i = 1$), on définit la moyenne d'ordre $\alpha \in \mathbb{R}$ des x_i pondérée par les λ_i par

$$M\left(\alpha\right) = \sqrt[\alpha]{\sum_{i=1}^{n} \lambda_i x_i^{\alpha}}.$$

On peut montrer que la fonction M est strictement croissante (si les x_i ne sont pas tous égaux), que M se prolonge par continuité en 0 par

$$M\left(0\right) := \prod_{i=1}^{n} x_{i}^{\lambda_{i}},$$

et que $\begin{cases} M(-\infty) = \min x_i \\ M(\infty) = \max x_i \end{cases}$. On retiendra les encadrements suivants dans le cas où les λ_i sont tous égaux, ainsi que le nom des moyennes correspondantes :

$$\min x_i \leq \underbrace{\frac{n}{\frac{1}{x_1} + \dots \frac{1}{x_n}}}_{\text{harmonique}} \leq \underbrace{\frac{n}{\sqrt{x_1 \dots x_n}}}_{\text{géométrique}} \leq \underbrace{\frac{x_1 + \dots + x_n}{n}}_{\text{arithmétique}} \leq \underbrace{\frac{x_1^2 + \dots + x_n^2}{n}}_{\text{quadratique}} \leq \max x_i$$

avec égalité (dans n'importe quel cas) ssi tous les x_i sont tous égaux.

Ces égalités sont fondamentales et extrêmement utiles; il est regrettable qu'elles ne fassent pas plus souvent partie du baggage standard des taupins.

Un archi-classique : suites sous-additives

Soit (u_n) une suite réelle sous-additive, au sens où

$$\forall p, q \in \mathbb{N}, \ u_{p+q} \le u_p + u_q.$$

Montrer que la suite $\left(\frac{u_n}{n}\right)$ converge vers son infimum. Que dire des suites (v_n) positives telles que

$$\forall p, q \in \mathbb{N}, \ v_{p+q} \leq v_p v_q ?$$

Solution proposée.

Notons $\alpha = \inf_{n \ge 1} \frac{u_n}{n}$. On distingue les cas α fini et $\alpha = -\infty$.

Supposons α fini. À $\varepsilon > 0$ fixé, il y a donc un entier p pour lequel $\alpha < \frac{u_p}{p} < \alpha + \varepsilon$. Pour faire passer cette propriété pour tout n assez grand, on fait une division euclidienne par p: n = kp + r où $0 \le r < p$. On en déduit, à l'aide d'une récurrence hardie, que $u_n \leq ku_p + u_r$ par sous-additivité, d'où

$$\frac{u_n}{n} \leq \frac{k}{kp+r} u_p + \frac{u_r}{n} \leq \frac{u_p}{p} + \frac{\max\left\{u_0, ..., u_{p-1}\right\}}{n} \leq \alpha + \varepsilon + \varepsilon$$

pour n assez grand. Ceci tenant pour tout $\varepsilon > 0$, on a montré le résultat.

On raisonne de façon analogue pour le cas $\alpha = -\infty$. Fixons un A < 0: il y a un entier p tel que $\frac{u_p}{p} < A$. Pour n = kp + r, on aura de même

$$\frac{u_n}{n} \le A + \frac{\max\{u_0, ..., u_{p-1}\}}{n} \le \frac{A}{2}$$
 pour n assez grand, $CQFD$.

Soit à présent (v_n) comme dans l'énoncé. On se ramène au cas précédent en prenant le logarithme : la suite $\ln v_n$ est sous-additive, donc $\frac{\ln v_n}{n}$ converge vers son infimum α . En repassant à l'exponentielle, on trouve que $\sqrt[n]{v_n}$ converge vers e^{α} (qui est nul si $\alpha = 0$).

$\mathbf{3}$ Un amuse-gueule

Montrer que (u_n) définie par $u_n = \begin{cases} 1 \text{ si } n \text{ premier} \\ \frac{1}{n} \text{ sinon} \end{cases}$ diverge, mais que pour tout $k \geq 2$ la suite (u_{kn})

En déduire l'existence d'une suite (u_n) divergente et une extraction φ telle que pour tout $k \geq 2$ la suite $(u_{\varphi(n)+k})$ converge (noter bien que φ doit être indépendante de k).

Trouver d'autre exemples de telles suites et extractrices.

Solution proposée.

Si p est un nombre premier, on a $u_p = 1$ et $u_{p^2} = \frac{1}{p} \longrightarrow 0$, d'où deux valeurs d'adhérence distinctes pour (u_n) , qui du coup ne peut converger.

Fixons $k \geq 2$. On a alors $u_{kn} = \frac{1}{kn} \leq \frac{1}{kn} \longrightarrow 0$, d'où la convergence de (u_{kn}) . On prend (u_n) comme à la première question. Une idée pour trouver φ (en utilisant ce qui précède) consiste à "absorber" le k de $u_{\varphi(n)+k}$ dans le $\varphi(n)$ à partir d'un certain rang, afin que $u_{\varphi(n)+k}$ soit une sous-suite de u_{kn} à partir d'un certain rang. On pose pour cela $\varphi(n) = n!$.

Pour d'autre exemples, on peut par exemple considérer $u_n = (-1)^n$ et $\varphi(n) = 2n$.

Suites de rationnels convergeant vers un irrationnel 4

Soit $\left(\frac{p_n}{q_n}\right)$ une suite de rationnels convergeant vers un irrationnel $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. On suppose $(p_n, q_n) \in \mathbb{Z} \times \mathbb{N}^*$. Montrer que le dénominateur q_n tend vers ∞ .

Solution proposée.

Par l'absurde : si (q_n) ne tend pas vers l'infini, on peut en extraire une sous-suite bornée, de laquelle on extrait par Bolzano-Weierstrass une suite $(q_{\varphi(n)})$ convergente; on en déduit la convergence de $p_{\varphi(n)} = \frac{p_{\varphi(n)}}{q_{\varphi(n)}} q_{\varphi(n)}$. Or, toute suite d'entiers convergente converge vers un entier, donc $(p_{\varphi(n)}, q_{\varphi(n)}) \longrightarrow (p, q) \in \mathbb{Z} \times \mathbb{N}^*$, d'où $\alpha = \lim_{q \to \infty} \frac{p_{\varphi(n)}}{q_{\varphi(n)}} = \frac{p}{q} \in \mathbb{Q}, \ absurde.$

5 Sur les bijections de \mathbb{N} dans \mathbb{N}

Soit $\varphi: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ bijective. On suppose que la limite $l = \lim_{n \infty} \frac{\varphi(n)}{n}$ existe. Déterminer l.

Solution proposée.

Le cas $\varphi = \text{Id}$ permet raisonnablement d'intuiter l = 1. Supposons que ce ne soit pas le cas.

Si l>1, pour n grand on aura $\varphi(n)\simeq l\cdot n$, donc le graphe de φ sera proche d'une droite "pentue", ce qui va l'empêcher d'atteintre tous les entiers et contredire ainsi la surjectivité de φ . Plus précisément, en écrivant $l=1+\varepsilon$ avec $\varepsilon>0$, on aura $\frac{\varphi(n)}{n}>l-\frac{\varepsilon}{2}$ à partir d'un certain rang N, d'où

$$\varphi(n) > \lambda n \text{ pour } n \geq N \text{ avec } \lambda > 1.$$

En particulier, pour $n \ge N$ on doit avoir $\varphi(n) > \lambda n \ge \lambda N > N$, donc les entiers de 1 à N doivent être atteints (par surjectivité de φ) pour des n < N, ce qui est manifestement impossible.

Si l < 1, le graphe de φ sera proche d'un droite "plate", ce qui obligera φ à répéter certains entiers, contredisant ainsi son injectivité. Si l'on écrit $l = 1 - \varepsilon$, alors à partir d'un certain rang N on va avoir $\frac{\varphi(n)}{n} < l + \frac{\varepsilon}{2}$, d'où

$$\varphi(n) < \lambda n \text{ pour } n \geq N \text{ avec } \lambda < 1.$$

Maintenant, si p est un entier de \mathbb{N}^* , φ doit injecter le segment $\{N+1, N+2..., N+p\}$ dans $\{1, 2..., \lfloor \lambda (N+p) \rfloor \}$, ce qui impose $p \leq \lfloor \lambda (N+p) \rfloor \leq \lambda (N+p)$. Or, pour p assez grand, l'inégalité ci-dessus tombe en défaut.

Remarque. Il suffisait de traiter un seul des cas l > 1 ou l < 1. En effet, φ^{-1} est injective donc tend vers l'infini, ce qui permet d'écrire

$$\lim_{n \infty} \frac{\varphi^{-1}(n)}{n} = \lim_{n \infty} \frac{\varphi^{-1}(n)}{\varphi(\varphi^{-1}(n))} \stackrel{m = \varphi^{-1}(n)}{=} \lim_{m \infty} \frac{m}{\varphi(m)} = \frac{1}{l}.$$

On peut donc choisir de raisonner sur l ou $\frac{1}{l}$ selon nos goûts.

6 Les suites et les hirondelles

Soit (u_n) une suite réelle bornée telle que $\lim \left(u_n + \frac{u_{2n}}{2}\right) = 1$. Montrer que (u_n) converge et calculer sa limite

Solution proposée.

Comme l'a si bien dit naguère mon professeur M. Randé:

"La compacité appelle les suites extraites tout comme le printemps appelle les hirondelles".

Suivons donc les conseils du maître, et extrayons de la suite bornée (u_n) une sous-suite $u_{\varphi(n)} \longrightarrow l$ (merci Bolzano-Weierstrass). En réinjectant dans la seconde hypothèse, on obtient une autre suite extraite $u_{2\varphi(n)} \longrightarrow 2(1-l) =: l'$. En réinjectant à nouveau, on obtient $u_{2\varphi(n)} + \frac{u_{4\varphi(n)}}{2} \longrightarrow l$, mais cette fois la "nouvelle" suite $u_{4\varphi(n)}$ est extraite de $u_{2\varphi(n)}$, d'où l'équation $l' + \frac{l'}{2} = 1$. On trouve $l' = \frac{2}{3}$ puis $l = 1 - \frac{l'}{2} = \frac{2}{3}$.

Finalement, on vient de montre que u_n n'a qu'une seule valeur d'adhérence, et donc converge vers cette valeur d'adhérence $\frac{2}{3}$: en effet, on pourrait extraire sinon une sous-suite à valeurs hors d'un voisinage de $\frac{2}{3}$, puis extraire (par Bolzano) une sous-suite convergente, mais alors la limite serait en-dehors de ce voinsinage de $\frac{2}{3}$, contredisant l'unicité de la valeur d'adhérence $\frac{2}{3}$.

7 Une équation fonctionnelle

Trouver toutes les applications $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ telle que

$$f \circ f = 6 \operatorname{Id} - f$$
.

Solution proposée.

Fixons un $x \in \mathbb{R}^+$. Devant ce type d'équation fonctionnelle, il est très utile de consisérer la suite des itérés de x par f, disons

$$u_n(x) = \underbrace{f \circ f \circ \dots \circ f}_{n \text{ fois}}(x).$$

L'hypothèse permet d'écrire $u_{n+2} = 6u_n - u_{n+1}$, ce que l'on sait résoudre. Le polynôme caractéristique est

$$X^2 + X - 6 = (X - 2)(X + 3)$$

d'où la solution générale

$$u_n(x) = A(x) 2^n + B(x) (-3)^n$$
.

Si l'on veut que f – a fortiori $u_n(x)$ – reste positif, B(x) doit être nul, d'où

$$u_n(x) = u_0(x) 2^n = x2^n$$

et

$$f(x) = u_1(x) = 2x$$
.

On vérifie que $f = 2 \operatorname{Id}_{\mathbb{R}^+}$ est bien solution de l'équation proposée.

8 Une autre équation fonctionnelle

Trouver toutes les applications $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ telles que

$$f \circ f \circ f + f \circ f + f = 3 \operatorname{Id}_{\mathbb{N}^*}.$$

Solution proposée.

On fait comme dans l'excercice précédent, en introduisant les itérés $u_n(x)$ d'un entier x donné. On obtient la relation de récurrence $u_{n+3} + u_{n+2} + u_{n+1} = 3u_n$, de polynôme caractéristique

$$X^{3} + X^{2} + X - 3 = (X - 1)(X^{2} + 2X + 3) = (X - 1)(X + 1 + i\sqrt{2})(X + 1 - i\sqrt{2}),$$

d'où l'expression de la n-ième itérée

$$u_{n}\left(x\right)=A\left(x\right)+\left(-1\right)^{n}\left[B\left(x\right)\left(1+i\sqrt{2}\right)^{n}+C\left(x\right)\left(1-i\sqrt{2}\right)^{n}\right]$$

où A(x), B(x), C(x) sont des constantes (complexes). Laissons de côté la dépendance en x pour alléger la rédaction.

Faisant n=0, on voit que A est un entier $a \in \mathbb{N}^*$. Pour avoir une solution à valeurs entières, l'expression trouvée doit être stable par conjugaison, d'où, en notant $\alpha := 1 + i\sqrt{2}$,

$$B\alpha^{n} + C\overline{\alpha}^{n} = \overline{B\alpha^{n} + C\overline{\alpha}^{n}} = \overline{B}\overline{\alpha}^{n} + \overline{C}\alpha^{n} \implies \left(\frac{\overline{\alpha}}{\alpha}\right)^{n} (\overline{B} - C) = B - \overline{C};$$

ceci tenant pour tout n, on doit avoir $C = \overline{B}$. L'expression trouvée devient

$$u_n = a + (-1)^n 2 \operatorname{Re} (B\alpha^n).$$

En écrivant $B = be^{i\theta}$ et $\alpha = \sqrt{3}e^{i\varphi}$, cela donne

$$u_n = a + (-1)^n b\sqrt{3}^n 2\cos(\theta + n\varphi).$$

Pour *n* impair grand, la contribution en $\left(-\sqrt{3}\right)^n$ va faire que u_n deviendra négatif (si le cosinus est positif), d'où la contrainte b=0. Pour être précis, $\varphi=\tan\sqrt{2}<\cot\sqrt{3}=\frac{\pi}{3}$, donc on peut trouver deux entiers consécutifs arbitrairement grands tels que $\cos\left(\theta+n\varphi\right)>\frac{1}{2}$; l'un de ces entiers *n* est impair, d'où

$$u_n = a - b\sqrt{3}^n \underbrace{2\cos(\theta + n\varphi)}_{>1} \le a - b\sqrt{3}^n \implies b = 0 \text{ (pour empêcher } u_n < 0\text{)}.$$

On en déduit B=C=0, d'où

$$f(x) = u_1(x) = a(x) = u_0(x) = x,$$

qui est bien solution à l'équation.

Autre solution (bien plus débrouillarde).

Il est quasi-immédiat que f est injective.

Pour n = 1, on a $f^3(1) + f^2(1) + f(1) = 3$; chacun des termes de gauche est ≥ 1 car f est à valeurs dans \mathbb{N}^* , donc le membre de gauche est ≥ 3 ; puisqu'il vaut 3, on a égalité partout; par conséquent f(1) = 1.

Supposons par récurrence que f(k) = k pour tout k = 1, ..., n-1 où $n \ge 2$. On écrit $f^3(n) + f^2(n) + f(n) = 3n$; comme précédemment, $f(n) \ge n$ car f est injective et prend déjà les valeurs 1, ..., n-1, et pour les mêmes raisons on a $f^2(n) = f(f(n)) \ge n$ puis $f^3(n) \ge n$; on a donc $f^3(n) + f^2(n) + f(n) \ge n$, et le cas d'égalité

donne f(n) = n, ce qui achève la récurrence.

Il est par ailleurs évident que $Id_{\mathbb{N}^*}$ est solution de l'équation.

9 Lim sup/inf et adhérence

Soit (u_n) une suite réelle à valeurs dans $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. On définit la *limite supérieure* de (u_n) par

$$\limsup (u_n) := \lim_{n \to \infty} \sup_{k \ge n} u_k$$

et la limite inférieure de (u_n) par

$$\lim\inf (u_n) := \lim_{n \infty} \inf_{k \ge n} u_k.$$

On notera de façon plus concise $\begin{cases} \overline{\lim} u \text{ pour } \limsup \left(u_n\right) \\ \underline{\lim} u \text{ pour } \liminf \left(u_n\right) \end{cases}$. On notera également Adh u pour l'ensemble des valeurs d'adhérence de la suite (u_n) .

- Montrer que $\underline{\lim}u$ et $\overline{\lim}u$ existent dans $\overline{\mathbb{R}}$ et sont respectivement la plus petite et plus grande valeur d'adhérence de (u_n) .
- Montrer que, si (u_n) est à valeurs réelles (pas de $\pm \infty$), et sous l'hypothèse supplémentaire $u_{n+1}-u_n \longrightarrow 0$, alors l'adhérence de (u_n) est exactement le segment $[\underline{\lim} u, \overline{\lim} u]$.
- Étant donnée une suite complexe (a_n) , on appelle rayon de convergence de (a_n) le supremum des $r \in [0, \infty]$ tels que $(a_n r^n)$ soit bornée. Montrer qu'il s'exprime par

$$R\left(a_{n}\right) = \frac{1}{\overline{\lim} \sqrt[n]{\left|a_{n}\right|}}$$

avec les conventions évidente $0 = \frac{1}{\infty}$ et $\infty = \frac{1}{0^+}$.

Solution proposée.

• La suite $(\sup_{k\geq n} u_k)$ étant décroissante (on prend un sup sur des ensembles de plus en plus petits), elle converge dans \mathbb{R} vers son infimum, et de même $(\inf_{k\geq n} u_k)$ converge en croissant vers son supremum.

Construisons maintenant une extractrice φ telle que $u_{\varphi(n)}$ converge vers $\overline{\lim} u$, ce qui montrera que $\overline{\lim} u$ est une valeur d'adhérence.

Si pour tout $n \in \mathbb{N}$ le supremum $\sup_{k > n} u_k$ est atteint, on pose $\varphi(0) = 0$ et on construit par récurrence

$$\varphi(n+1) = \min \left\{ m > \varphi(n); \ u_m = \sup_{k > n} u_k \right\},$$

de sorte que $u_{\varphi(n)} = \sup_{k > n} u_k \longrightarrow \overline{\lim} u$.

S'il y a un rang n_0 pour lequel le supremum $s = \sup_{k \ge n_0} u_k$ n'est pas atteint, deux choses l'une.

Ou bien ce supremum est fini, auquel cas

$$\forall \varepsilon > 0, \ \exists N > n_0, \ s - \varepsilon < u_N < s$$

et il suffit de construire par récurrence $\varphi(n) > \max\{n_0, \varphi(n-1)\}$, ce qui montre que $s - \frac{1}{n} < u_{\varphi(n)} < s$ et donc $u_{\varphi(n)} \longrightarrow s$. Par ailleurs, pour $n > n_0$, à $\varepsilon > 0$ fixé, et en posant

$$\varepsilon' = \min \{ \varepsilon, s - u_{n_0+1}, s - u_{n_0+2}, ..., s - u_n \}$$

(qui est > 0 car $s > u_k$ pour tout $k > n_0$), on peut trouver un $N > n_0$ tel que $s - \varepsilon' < \underline{u_N} < s$, ce qui force N > n (puisque $s - u_N < \varepsilon'$) et $s - \varepsilon < u_N < s$ (car $\varepsilon' < \varepsilon$), d'où $\sup_{k \ge n} u_k = s$ et donc $\overline{\lim} u = s$.

Dans le cas où s est infini, on a

$$\forall A > 0, \ \exists N > n_0, \ u_N > A,$$

et on construit φ par récurrence telle que $u_{\varphi(n)} > n$ afin d'avoir $u_{\varphi(n)} \longrightarrow \infty = s$. Par ailleurs, pour $n > n_0$ et à A > 0 fixé, on peut trouver un $N \ge n_0$ tel que $u_N > \max\{A, u_{n_0}, u_{n_0+1}, ..., u_n\}$, ce qui force N > n et $u_N > A$, d'où $\sup_{k > n} u_k = \infty$ et donc $\overline{\lim} u = \infty = s$.

Dans tous les cas, on a montré que $\overline{\lim} u \in Adh u$. D'autre part, si $a = \lim u_{\varphi(n)}$ est une autre une valeur d'adhérence, on a $\sup_{k \geq n} u_k \geq u_{\varphi(n)}$ (puisque $\varphi(n) \geq n$), d'où $\limsup \geq a$ en prenant les limites, ce qui prouve finalement que

 $\overline{\lim} u = \max \operatorname{Adh} u$.

On obtiendrait les mêmes résultats sur la limite inférieure en appliquant ce qui précède à $(v_n) := -(u_n)$.

• Passons à la seconde question. D'après ce qui précède, on sait déjà que $\operatorname{Adh} u \subset [\underline{\lim} u, \overline{\lim} u]$. Réciproquement, on sait déjà que $\underline{\lim} u$ et $\overline{\lim} u$ sont dans $\operatorname{Adh} u$. Si maintenant $a \in]\underline{\lim} u, \overline{\lim} u[$ n'est pas une valeur d'adhérence, alors

$$\exists \varepsilon_0 > 0, \ \forall n \in \mathbb{N}, \ |u_n - a| > \varepsilon_0.$$

La suite (u_n) prend donc ses valeurs indifféremment à droite de $a + \varepsilon_0$ ou à gauche de $a - \varepsilon_0$. Or, l'hypthèse $u_{n+1} - u_n \longrightarrow 0$ permet d'affirmer qu'à partir d'un certain rang ces deux possibilités s'excluent mutuellement car u_n ne pourra plus franchir le saut $[a - \varepsilon_0, a + \varepsilon_0]$ sans y mettre les pieds. On peut donc supposer

$$\exists N \in \mathbb{N}, \ \forall n > N, \ u_n < a - \varepsilon_0.$$

Mais alors pour n > N on aurait $\sup_{k > n} u_k \le a - \varepsilon_0$, d'où

$$\overline{\lim} u \leq a - \varepsilon_0 < a \leq \overline{\lim} u$$
, contradiction.

• Notons R le rayon de convergence. On procède par double-inégalité. Pour r < R, la suite $(a_n r^n)$ est bornée, mettons $|a_n r^n| \le M$ pour tout n, d'où $\frac{1}{r} \ge \sqrt[n]{|a_n|} \sqrt[n]{\frac{1}{M}}$ et

$$\frac{1}{r} \ge \overline{\lim} \left(\sqrt[n]{|a_n|} \sqrt[n]{\frac{1}{M}} \right).$$

Maintenant, $\sqrt[n]{\frac{1}{M}}$ tend vers 1, donc les suites $\left(\sqrt[n]{|a_n|}\sqrt[n]{\frac{1}{M}}\right)$ et $\left(\sqrt[n]{|a_n|}\right)$ ont mêmes valeurs d'adhérence; elles ont par conséquent même limite supérieure d'après le premier point. On en déduit $\frac{1}{r} \geq \overline{\lim} \sqrt[n]{|a_n|}$ et $r \leq \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$. Ceci tenant pour tout r < R, on a la première inégalité $R \leq \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$.

Pour r > R, la suite $(a_n r^n)$ n'est pas bornée, sinon toutes les suites $(a_n \rho^n)$ pour $\rho \in [0, r]$ seraient bornées et on aurait $R \ge r$. On peut donc extraire $a_{\varphi(n)} r^{\varphi(n)}$ telle que $|a_{\varphi(n)} r^{\varphi(n)}| \ge 1$ pour tout n, d'où

$$\frac{1}{r} \le \sqrt[\varphi(n)]{\left|a_{\varphi(n)}\right|} \le \sup_{k \ge \varphi(n)} \sqrt[k]{|a_k|}.$$

Le terme de droite décroissant vers $\overline{\lim} \sqrt[n]{|a_n|}$, on obtient à la limite $\frac{1}{r} \leq \overline{\lim} \sqrt[n]{|a_n|}$, d'où $r > \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$ et l'inégalité réciproque $R \geq \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$ vu que r est pris quelconque > R.

Remarque. Le calcul du rayon de convergence est primordial en théorie des séries de fonctions puisqu'il donne le plus gros disque sur lequel on peut espérer définir une fonction du type $\sum a_n z^n$; une telle fonction est appelée série entière. Le troisième point donne une formule explicite du rayon de convergence à utiliser lorsque les critères usuels (D'Alembert et Gauss, principalement) ne s'appliquent pas.