Behavioral Clustering and Transition Forecasting of Consumer Data for Marketing Insights

SeongYeon Moon¹

Hispanic Language and Literature¹, Seoul National University danielmoon@snu.ac.kr https://github.com/danielmoon2001/AI_final_project

Background and Methodology

- Traditional customer management techniques lack granularity and fail to address behavioural heterogeneity within the consumer base
- Data-driven consumer analytics enable ecommerce platforms to improve customer retention and purchase rates

- Raw data was extracted from server-side transactional logs spanning over 4 years
- Features related to purchasing and behavior patterns were engineered and selected
- K-means Clustering Algorithm was used for consumer base segmentation

T. Kansal, S. Bahuguna, V. Singh and T. Choudhury, "Customer Segmentation using K-means Clustering," 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), Belgaum, India, 2018, 135-139.

- Segment transition modeling was used to simulate consumer base evolution over time
- Forecasts for the upcoming season were conducted using ensemble predictions

Abdolreza Mosaddegh, Amir Albadvi, Mohammad Mehdi Sepehri and Babak Teimourpour, "Dynamics of customer segments: A predictor of customer lifetime value", Expert Systems with Applications, Volume 172, 2021, ISSN 0957-4174.

Research Goals

- Segment consumer base using Clustering methods
 - Utilize engineered features and K-means Clustering
- Forecast cluster patterns
 - Derive marketing insights for differentiated retention strategies

Customer Segmentation

- Designed behavior-defining features per customer
 - purchase_counts: total number of purchases made
 - days_since_joined: total number of days since joining platform
 - agree_to_marketing: ordinal encoding of marketing agreement levels
 - regular_prop: proportion of subscription orders
 - review_group: ordinal binning of review participation rates
- Performed Clustering and selected the total number of clusters
 - Utilized elbow-method techniques and t-SNE visualizations to determine optimal number of clusters

- Finalized cluster definitions
 - Reorganized consumer typology into five distinct segments:
- Newcomers / Opportunists / Semi-Regulars / Loyalists / Dormant

Transition Modeling

- Analyzed cluster characteristics and transition patterns
 - Identified key differentiating factors between clusters

- Discovered probable transition paths among clusters to predict future transition inflow/outflow (average transition rate: 5.5%)
- Loyalists showed strong stability, whereas inflow from Newcomers and Opportunists led to Semi-Regulars being projected as the next dominant segment (at 28.6%)

Conclusions

- Demonstrates the utility of unsupervised segmentation
 - ML-based segmentation techniques can help to detect structurally distinct user types from behavior data
- Temporal Modeling uncovers lifecycle-aware actionable insights
 - Provides evidence-based expectations for lifecycle trajectories
 - Suggests opportunities for precision-targeted retention strategies