Failure Theories, Q1

A force F is applied at D as shown. Assuming that the material is ductile and the critical point for failure is A. Compute the value of F assuming (a) Maximum shear stress theory, (b) Distortion energy theory Assume that the yield strength is 81 kpsi

Towards
$$G_{x}$$
, G_{z} , $G_{z_{x}}$ in terms of F

14 in

$$C_{tx} = \frac{T_{x}dah}{T_{A}} = \frac{(s F)(da/2)}{T_{A}} = \frac{16}{T_{A}} \left[15 F \right]$$

$$C_{tx} = \frac{76.4 F}{T} = \frac{M_{t}}{T} \frac{da/2}{64} = \frac{32}{T} \frac{14F}{T}$$

$$C_{x} = \frac{M_{t}y}{T} = \frac{M_{t}}{T} \frac{da/2}{64} = \frac{32}{T} \frac{14F}{T}$$

$$C_{x} = \frac{142.6 F}{G_{z}} = 0$$

$$\sqrt{2} = \frac{\delta_1 - \delta_3}{2}$$

$$\frac{6^{1}}{6^{2}} = \sqrt{6^{2} + 6^{2} - 6^{2} 6^{2} + 37^{2}}$$

$$\frac{\delta_{A,B}}{2} = \frac{\delta_{\Lambda} + \delta_{2}}{2} + \sqrt{\left(\frac{\delta_{\Lambda} - \delta_{2}}{2}\right)^{2} + 7\chi_{2}^{2}}$$

$$\delta_{A,R} = \frac{142.6F + 0}{2} \pm \sqrt{\left(\frac{142.6F}{2}\right)^2 + \left(76.4F\right)^2}$$

max = 104.5 f

$$6^{1} = \sqrt{6x^{2} + 6x^{2} - 6x^{2} + 37x^{2}}$$

$$6^{1} = \sqrt{(1426 F)^{2} + 3(76.4)^{2}}$$

6 = 194.5 F

$$109.5 F = 81 (13)$$
 => $F_{MSS} = 3881bF$

MOTE:

MSS is more conservative than DE

Failure Theories, Q2

criterion

The shaft shown below is subject to F = 1.75 kN, P = 9 kN, and T = 72 Nm. The material used is Aluminum with a yield strength of 276 Mpa. Using the table shown below and design factor n d = 4, (a) select a stock size for the shaft, and (b) compute the factor of safety. Assume von Mises stress as the failure

m = unit mass, kg/m

 $A = \text{area, in}^2 \text{ (cm}^2)$

 $I = \text{second moment of area, in}^4 \text{ (cm}^4)$

J = second polar moment of area, in⁴ (cm⁴)

k = radius of gyration, in (cm)

✓ Z = section modulus, in³ (cm³)

d, t = size (OD) and thickness, in (mm)

Size, mm	m	A 🗸	1	k	Z	J
12×2	0.490	0.628	0.082	0.361	0.136	0.163
16×2	0.687	0.879	0.220	0.500	0.275	0.440
16×3	0.956	1.225	0.273	0.472	0.341	0.545
 20×4	1.569	2.010	0.684	0.583	0.684	1.367
25×4	2.060	2.638	1.508	0.756	1.206	3.015
25×5	2.452	3.140	1.669	0.729	1.336	3.338
30×4	2.550	3.266	2.827	0.930	1.885	5.652
30×5	3.065	3.925	3.192	0.901	2.128	6.381
42×4	3.727	4.773	8.717	1.351	4.151	17.430
42×5	4.536	5.809	10.130	1.320	4.825	20.255
50×4	4.512	5.778	15.409	1.632	6.164	30.810
50 × 5	5.517	7.065	18.118	1.601	7.247	36.226

dxt

nd = Sy/o1 and table to choose stock size.

(2)
$$\delta^{1} = \sqrt{6\chi^{2} + 6\chi^{2} - 6\chi 6\chi} + 37\chi^{2}$$

 $\delta^{1} = \sqrt{\frac{P}{4} + \frac{0.12Fd}{2}} + 3(\frac{Td}{2})^{2}$
(3) $Nd^{2} = \frac{Sy}{\delta^{1}} = 34 = \frac{276}{\delta^{1}}$
 $\delta^{1} = 69$ MPa $-\pi$

EXAM 2 material upto here.

Table)					E			
===== ==== d x t	Α		 	J		f asig	==== ma'		
===== 12 x 2 16 x 2 16 x 3 20 x 4 25 x 5 30 x 4 30 x 5 42 x 4 42 x 5 50 x 4 50 x 5	0.628 0.879 1.225 2.010 2.638 3.140 3.266 3.925 4.773 5.809 5.778 7.065	0.082 2.220 0.273 0.684 1.508 1.669 2.827 3.192 8.717 10.130 15.409 18.118	0.164 4.440 0.546 1.368 3.016 3.338 5.654 6.384 17.434 20.260 30.818 36.236	60.42 50.66	6881 x 1 6020 x 1 6031 x 1 6339 x 1 6983 x 1 6852 x 1	0^6 0^6 0^6 0^6 0^6 0^6 0^6 10^6 10^6	69	(10 ⁶)	Pa (II)
===== Stoc	= Sy	3e; 	42 x 5 276 60.4	- (, - =	4·5				