Corrigé du Test 1 du 16 octobre 2018

Exercice 1. 1) -La fonction f_1 est un polynôme trigonométrique sur $[-\pi,\pi[$. Par périodisation sur $\mathbb R$ elle est donc donnée par la même formule sur $\mathbb R$ tout entier, à savoir $f_1(t) = (\cos(2t-3))^2$, pour tout $t \in \mathbb R$. Il s'agit donc d'un polynôme trigonométrique sur $\mathbb R$, donc d'une fonction C^{∞} .

- La fonction f_2 est, sur $[-\pi,\pi[$, la composée de la fonction $h:t\mapsto\cos t$, qui est de classe C^∞ sur $\mathbb R$, et de la fonction $w:s\mapsto |s|$, qui est continue, mais qui n'est pas dérivable en 0. On a donc $f_2(t)=w(h(t))=w\circ h(t)$, pour $t\in [-\pi,\pi[$. Comme la fonction h est 2π -périodique, la périodisation de f_2 est donnée par la même formule, à savoir $f_2(t)=|\cos t|=w\circ h(t)$, pour tout $t\in \mathbb R$. La fonction f_2 est continue, comme composée de fonctions continues. En revanche, comme h n'est pas dérivable en zéro, on ne peut pas affirmer 1 que f_2 est C^1 . On s'aperçoit alors que f_2 n'est pas dérivable en $\pi/2$. En effet, on a $f_2(t)=\cos t$ pour $t\in]0,\pi/2[$, de sorte que f_2 est dérivable sur $]0,\pi/2[$, avec $f_2'(t)=-\sin t$. De même $f_2(t)=-\cos t$ pour $t\in]\pi/2,\pi[$, de sorte que f_2 est dérivable sur $]\pi/2,\pi[$, avec $f_2'(t)=\sin t$. On a donc :

$$\lim_{t \to \frac{\pi}{2}^{-}} f_2'(t) = -\sin\frac{\pi}{2} = -1 \text{ et } \lim_{t \to \frac{\pi}{2}^{+}} f_2'(t) = \sin\frac{\pi}{2} = 1.$$

En $\pi/2$, il y a donc des dérivées à gauche et à droite, mais elles ne coïncident pas, de sorte que f_2 n'est pas dérivable en $\frac{\pi}{2}$. La fonction n'est donc pas C^1 , a fortiori pas C^2 .

-La fonction f_3 n'est pas continue en π . En effet, par périodicité, on a $f_3(t) = \exp(t-2\pi)$, pour $t \in [\pi, 3\pi[$. On a donc

$$\lim_{t \to \pi^{-}} f_{3}(t) = \exp \pi \text{ et } \lim_{t \to \pi^{+}} f_{3}(t) = \exp(-\pi).$$

Les deux limite ne coïncident pas, donc la fonction n'est pas continue en π . A fortiori, elle n'est ni C^1 , ni C^2 .

3) Comme f_1 est un polynôme trigonométrique, on calcule ses coefficients dans la base $\{\exp(ik\cdot)\}_{k\in\mathbb{Z}}$ en dévellopant le "cube". On a ainsi

$$f_{1}(t) = \frac{1}{8} \left(\exp(i(2t - 3)) + \exp(-i(2t - 3)) \right)^{3} = \frac{1}{8} \left(\exp(6it - 9i) + 3\exp(2it - 3i) + 3\exp(-2it + 3i) + \exp(-i6t + 9i) \right) = \frac{1}{8} \exp(-9i) \cdot \exp(6it) + \frac{3}{8} \exp(-3i) \cdot \exp(2it) + \frac{3}{8} \exp(3i) \cdot \exp(-2it) + \frac{1}{8} \exp(9i) \cdot \exp(-6it).$$
(1)

^{1.} ni le contraire non plus, d'ailleurs.

On a donc $\widehat{f}(k) = 0$ si $k \notin \{-6, -2, 2, 6\}$, et $\widehat{f}(-6) = \frac{1}{8} \exp(9i)$, $\widehat{f}(-2) = \frac{3}{8} \exp(3i)$, $\widehat{f}(2) = \frac{3}{8} \exp(-3i)$ et $\widehat{f}(6) = \frac{1}{8} \exp(-9i)$.

4) Pour simplifier un peu les calculs, on peut utiliser comme intervalle de taille 2π l'intervalle $[-\pi/2, 3\pi//2]$. On obtient, comme $f_2(s) = \cos s$ pour $s \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ et $f_2(s) = -\cos s$ pour $s \in [\frac{\pi}{2}, \frac{3\pi}{2}]$

$$\widehat{f}_{2}(k) = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} |\cos s| \exp(-iks) ds$$

$$= \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos s \exp(-iks) ds - \frac{1}{2\pi} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos s \exp(-iks) ds.$$

On a, si $k \neq \pm 1$, comme $\exp(\frac{i\pi}{2}) = i$ et $\exp(-\frac{i\pi}{2}) = -i$

$$\begin{split} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos s \exp(-iks) \mathrm{d}s &= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\exp(is) + \exp(-is) \right) \exp(-iks) \mathrm{d}s \\ &= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\exp(i(1-k)s) + \exp(-i(k+1)s) \right) \mathrm{d}s \\ &= \left[\frac{\exp(i(1-k)s)}{2i(1-k)} - \frac{\exp(-i(1+k)s)}{2i(1+k)} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{i^{1-k} - (-i)^{1-k}}{2i(1-k)} - \frac{(-i)^{k+1} - i^{k+1}}{2i(1+k)}. \end{split}$$

De même, comme $\exp(\frac{i\pi}{2}) = i$ et $\exp(\frac{3i\pi}{2}) = -i$

$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos s \exp(-iks) ds = \left[\frac{\exp(i(1-k)s)}{2i(1-k)} - \frac{\exp(-i(1+k)s)}{2i(1+k)} \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = -\frac{i^{1-k} - (-i)^{1-k}}{2i(1-k)} + \frac{(-i)^{k+1} - i^{k+1}}{2i(1+k)}.$$

En regroupant, on trouve, pour $k \neq \pm 1$

$$\begin{split} \widehat{f}_2(k) &= \frac{i^{1-k} - (-i)^{1-k}}{2\pi i (1-k)} - \frac{(-i)^{k+1} - i^{k+1}}{2\pi i (1+k)} = \frac{i^{1-k} (1 - (-1)^{k-1})}{2\pi i (1-k)} + \frac{i^{k+1} (1 - (-1)^{k+1})}{2\pi i (1+k)} \\ &= \left(1 - (-1)^{k-1}\right) \left[\frac{(-i)^k}{2\pi (1-k)} + \frac{i^k}{2\pi (k+1)}\right] = \left(1 - (-1)^{k-1}\right) \frac{i^k}{2\pi} \left[\frac{(-1)^k}{(1-k)} + \frac{1}{(k+1)}\right]. \end{split}$$

On calcule de même

$$\widehat{f}_2(1) = \frac{((-i)^2 - i^2)}{4\pi i} = 0, \widehat{f}(-1) = 0,$$

5) On a, comme $\exp(i\pi) = \exp(-i\pi) = -1$,

$$\widehat{f}_{3}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp s \exp(-iks) ds = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp((1-ik)s) ds = \frac{1}{2\pi} \left[\frac{\exp((1-ik)s)}{1-ik} \right]_{-\pi}^{\pi}$$

$$= \frac{\exp((1-ik)\pi) - \exp((-1+ik)\pi)}{2\pi(1-ik)} = \frac{(-1)^{k} (\exp \pi - \exp(-\pi))}{2\pi(1-ik)}.$$

6) On utilise la formule $\widehat{f_1}_{\text{per}}\widehat{f_3}(k) = 2\pi \widehat{f_1}(k)\widehat{f_3}(k)$ et on utilise les formules des questions 3) et 5).

Exercice 2. A1) La fonction g_k n'est pas périodique, car elle est non nulle à support compact (la seule fonction périodique à support compact étant la fonction nulle). On vérifie que $g_k(-t) = -g_k(t)$ sur la formule qui définie g_k .

A2) La fonction g_k est continue sur chacun des ensembles]-1,1[et $\mathbb{R} \setminus [-1,1]$. Pour vérifier qu'elle est continue, il suffit de vérifier qu'elle est continue en +1, et -1, et par imparité, il suffit de le faire en +1. Or on a

$$\lim_{t \to 1^{-}} g_k(t) = \lim_{t \to 1^{-}} \sin(k\pi t) = \sin k\pi = 0 \text{ et } \lim_{t \to 1^{+}} g_k(t) = 0.$$

La fonction g_k est donc continue. La fonction g_k est dérivable sur chacun des ensembles]-1,1[et $\mathbb{R}\setminus[-1,1]$. Pour qu'elle soit C^1 sur \mathbb{R} , il faut et il suffit que les dérivées à gauche et à droite en +1 et en -1 coïncident. Par imparité, il suffit de le faire en +1. Or on a

$$\lim_{t \to 1^{-}} g'_k(t) = \lim_{t \to 1^{-}} k \cos(k\pi t) = k \cos k\pi = k(-1)^k \text{ et } \lim_{t \to 1^{+}} g'_k(t) = 0.$$

La fonction n'est donc pas C^1 et a fortiori pas C^2 .

A3) La fonction g_k est continue, donc on $\|g_k\|_{\infty} = \sup\{|g_k(t)|, t \in \mathbb{R}\}$. On a toujours $|g_k(t)| \le 1$, $\forall t \in \mathbb{R}$, et $|g_k(\pi/2)| = 1$. Donc, $\|g_k\|_{\infty} = 1$. A4) On a

$$||g_1||_{L^1(\mathbb{R})} = \int_{\mathbb{R}} |g_1(s)| ds = \int_1^1 |\sin(\pi s)| ds = \int_0^1 \sin(\pi s) ds - \int_{-1}^0 \sin(\pi s) ds$$

$$= 2 \int_0^1 \sin(\pi s) ds = 2 \left[\frac{\cos(\pi s)}{\pi} \right]_0^1 = \frac{4}{\pi}.$$
(2)

B2) La fonction $\mathbf{1}_{[-1,1]}$ n'est pas continue en -1 et en +1, les limites à gauche et à droite en chacun de ces points étant différentes. Elle est paire.

B3) La fonction $\mathbf{1}_{[-1,1]}$ appartient à $L^{\infty}(\mathbb{R})$, car elle est bornée. On a en effet $|\mathbf{1}_{[-1,1]}(t)| \leq 1$ pour tout $t \in \mathbb{R}$ et $|\mathbf{1}_{[-1,1]}(t)| = 1$ pour $t \in]-1,1[$, c'est à dire sur un ensemble de mesure non nulle, de sorte que sa norme dans L^{∞} est égale à 1. Elle appartient à $L^{1}(\mathbb{R})$ puisqu'elle est intégrable. En effet $\int_{\mathbb{R}} |\mathbf{1}_{[-1,1]}(t)| \mathrm{d}t = \int_{-1}^{1} 1 \mathrm{d}t = 2$, de sorte que sa norme dans L^{1} est égale à 2.

C1) Pour tout $t \in \mathbb{R}$, la fonction $s \mapsto \mathbf{1}_{[-1,1]}(s)g_k(t-s)$ est bornée, et nulle en dehors de l'intervalle [-1,1] de sorte qu'elle est intégrable. On peut donc définir $f_k(t)$ pour tout t. Comme on a un produit de convolution d'une fonction paire avec une fonction impaire, f_k est impaire (cf TD1).

C2) Chacune des deux fonctions $\mathbf{1}_{[-1,1]}$ et g_k est à support dans [-1,1], de sorte que le produit de convolution f_k des deux fonctions est à support dans [-1,1] + [-1,1] = [-2,2], et s'annule donc en dehors de cet intervalle (cf cours).

C3) Il suffit de considérer le cas $t \ge 0$, le cas t < 0 s'en déduit par imparité. On a, pour $t \ge 0$, $f_k(t) = \int_{\mathbb{R}} g_k(s) \mathbf{1}_{[-1,1]}(s) \mathrm{d}s = \int_{-1}^1 \sin(\pi k s) \mathbf{1}_{[-1,1]}(t-s) \mathrm{d}s$. Or $\mathbf{1}_{[-1,1]}(t-s) = 1$ si $s \in [-1+t,1+t]$, 0 sinon. Si $0 \le t \le 2$ alors $-1 \le -1+t \le 1 \le 1+t$, et on obtient pour $0 \le t \le 2$

$$f_k(t) = \int_{-1+t}^1 \sin(\pi k s) ds = \left[\frac{\cos(\pi k s)}{\pi k} \right]_{-1+t}^1 = \frac{1}{\pi k} \left[\cos(\pi k (t-1) - (\cos \pi k)) \right].$$
 (3)

Par imparité, on en déduit que $f_k(t) = \frac{1}{\pi k} [(\cos \pi k) - \cos(\pi k(t+1))]$ pour $-2 \le t \le 0$, et $f_k(t) = 0$ dans tous les autres cas.

- C4) La formule (3) montre que f_k est C^{∞} sur $\mathbb{R} \setminus \{-2,0,2\}$. Par imparité, il suffit d'étudier le cas t=2. Comme les limites à gauche et à droite en 0 et +2 de f_k sont identiques, égales à 0, on en déduit que f_k est continue sur \mathbb{R} . Par ailleurs, la dérivée de f_k est donnée sur]0,2[par $f'_k(t)=-\sin(\pi k(t-1))$, qui tend vers 0 lorsque $t\to 2^-$. La fonction f est donc dérivable en 2, et on vérifie de même qu'elle l'est en 0. Elle est donc C^1 .
- B5) Par imparité, on a $\int_{\mathbb{R}} f_1(t) dt = \int_{-2}^2 f_1(t) dt = 0$.
- C1) La fonction h est paire, puisque la fonction $t \mapsto |t|$ est paire.
- C2) Pour tout $t \in \mathbb{R}$, la fonction $s \mapsto g_1(s)h(t-s)$ est bornée, et nulle en dehors de l'intervalle [-1,1] de sorte qu'elle est intégrable. Le produit de convolution $w \equiv g_1 \star h$ est donc bien défini. Comme on a un produit de convolution d'une fonction paire et d'une fonction impaire, w est impaire (cf TD1).
- C3) On a, pour $t \ge 0$, $w(t) = \int_{-1}^{1} \sin(\pi s) \exp(-|t s|) ds$. Si $t \ge 1$, on a alors |t s| = t s pour tout $s \in [-1, 1]$, et donc

$$\begin{split} w(t) &= \int_{-1}^{1} \sin(\pi s) \exp{-(t-s)} \mathrm{d}s = \mathrm{Im} \left[\int_{-1}^{1} \exp(i\pi s) \exp{-(t-s)} | \mathrm{d}s \right] \\ &= \mathrm{Im} \left[\int_{-1}^{1} \exp((i\pi + 1)s - t) \mathrm{d}s \right] = \exp(-t) \mathrm{Im} \left[\frac{\exp(i\pi + 1) - \exp(-i\pi - 1)}{i\pi + 1} \right]. \end{split}$$

Si $0 \le t \le 1$, on a |t - s| = t - s pour tout $s \in [t, 1]$, |t - s| = s - t pour $s \in [-1, t]$, et donc $w(t) = \int_{-1}^{t} \sin(\pi s) \exp(t - s) ds + \int_{t}^{1} \sin(\pi s) \exp(-(t - s)) ds$, soit

$$\begin{split} w(t) &= \operatorname{Im} \left[\int_{-1}^{t} \exp(i\pi - 1)s + t) \mathrm{d}s + \int_{t}^{1} \exp((i\pi + 1)s - t) \mathrm{d}s \right] \\ &= \exp(t) \operatorname{Im} \left[\frac{\exp((i\pi - 1)t) - \exp(-i\pi + 1)}{i\pi - 1} \right] - \exp(-t) \operatorname{Im} \left[\frac{\exp((i\pi + 1)t) - \exp(i\pi + 1)}{i\pi + 1} \right]. \end{split}$$

C4) Les formules données en C3) montrent que w est C^{∞} sur $\mathbb{R} \setminus \{-1,0,1\}$. On vérifie qu'elle est continue en 0, 1 et -1 en étudiant les limites à gauche et à droite en ces points.