Actuarial Computation and Simulation

Week 5: Introduction to Risk Measures (Coherent Risk Axioms, Variance vs CVaR vs EVaR)

Aprida Siska Lestia

September 7, 2025

Learning objectives

- Memahami konsep risk measure dan empat aksioma koheren (Artzner et al., 1999).
- Menelaah Variance, VaR, CTE (TVaR), CVaR, dan EVaR beserta kelebihan/kelemahannya.
- Membedakan Variance vs CVaR vs EVaR dari sisi sensitivitas ekor (tail).
- Praktik: menghitung CVaR & EVaR pada data return sintetis dan membandingkannya dengan Variance.

Jenis Risiko dan Kegunaan Ukuran Risiko

Jenis-jenis risiko:

- Risiko pasar (kerugian akibat perubahan pada harga dan kondisi pasar)
- Risiko kredit (risiko dari nasabah)
- Risiko operasional (risiko bisnis yang bukan risiko pasar atau kredit)

Kegunaan ukuran risiko:

- Menentukan modal
 - Menentukan premi
 - Manajemen risiko internal
- Melaporkan kebijakan eksternal

Definisi Ukuran Risiko

Gagasan inti: fungsi yang memetakan distribusi kerugian (loss) \rightarrow bilangan riil yang merepresentasikan besaran risiko.

Notasi: untuk peubah acak kerugian X (konvensi aktuaria: $X \ge 0$ untuk loss), risk measure ditulis $\rho(X) \in \mathbb{R}$.

Definisi:

Suatu ukuran risiko dari kerugian acak X, notasi $\rho(X)$, adalah fungsi bernilai riil

$$\rho: X \to \mathbb{R},$$

dimana $\mathbb R$ adalah himpunan bilangan riil. Peubah acak X tak negatif.

Prinsip Premi dalam Ukuran Risiko

Misalkan mean dan variansi kerugian acak X adalah μ_X dan σ_X^2 .

Expected-value principle premium:

$$\rho(X) = (1 + \theta)\mu_X = \mu_X + \theta\mu_X,$$

dimana $\theta \geq 0$ adalah *premium loading factor*. Ukuran risiko dikatakan *pure premium* saat $\theta = 0$.

Variance principle premium:

$$\rho(X) = \mu_X + \alpha \sigma_X^2,$$

dimana $\alpha \geq 0$ adalah *loading factor*.

Aksioma Risk Measure Koheren

- Arztner dkk. (1999) mengusulkan empat aksioma untuk ukuran risiko dan menyatakan bahwa aksioma-aksioma ini harus dipenuhi oleh suatu ukuran risiko agar ukuran risiko tersebut dapat digunakan untuk mengelola risiko dengan baik.
- Ukuran risiko yang memenuhi keempat aksioma tersebut disebut sebagai ukuran risiko yang koheren (coherent risk measure).
- Risk measure ρ dikatakan **koheren** jika untuk semua X,Y dan $\lambda > 0$:
 - **1 Monotonicity**: $X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$.
 - **2** Translation Invariance: $\rho(X + a) = \rho(X) + a$.
 - **3** Positive Homogeneity: $\rho(aX) = a\rho(X)$.
 - **9** Subadditivity: $\rho(X + Y) \leq \rho(X) + \rho(Y)$.

Catatan: Subadditivity \Rightarrow ada insentif diversifikasi; sangat penting dalam manajemen risiko.

Aksioma Koherensi Ukuran Risiko

(T) Untuk setiap X dan konstanta tak negatif a,

$$\rho(X+a) = \rho(X) + a$$

(S) Untuk setiap X dan Y,

$$\rho(X+Y) \le \rho(X) + \rho(Y)$$

(PH) Untuk setiap X dan konstanta tak negatif a,

$$\rho(\mathsf{a}\mathsf{X}) = \mathsf{a}\,\rho(\mathsf{X})$$

(M) Untuk setiap X dan Y sehingga $X \leq Y$,

$$\rho(X) \le \rho(Y)$$

Standard Deviation Premium Principle (ringkas)

Bentuk umum (premi murni + loading proporsional simpangan baku)

$$\pi(X) = \mathbb{E}[X] + k \sqrt{\operatorname{Var}(X)}, \quad k > 0.$$

Kelebihan: sederhana, intuitif, historis penting dalam premium principle. **Keterhatasan:**

- Tidak fokus pada ekor; kurang tepat untuk heavy tail.
- Tidak memenuhi Monotonicity pada konstruksi tertentu ⇒ tidak koheren.

Value-at-Risk (VaR) (rekap)

Definisi (kontinu)

$$\operatorname{VaR}_{\alpha}(X) = F_X^{-1}(\alpha),$$

yakni kuantil ke- α dari loss X (probabilitas α loss $\leq \mathrm{VaR}_{\alpha}$).

Pro: satu angka yang mudah dikomunikasikan (regulasi, limit).

Kontra:

- Abaikan seberapa besar kerugian setelah melewati VaR.
- Tidak subadditive (counterexample i.i.d. Bernoulli losses) ⇒ tidak koheren.

Ilustrasi:

- Prob. kerugian $> VaR_{\alpha} = 1 \alpha$.
- Cocok sebagai threshold, bukan ukuran ekor rata-rata.

Ilustrasi VaR & CVaR pada Berbagai Distribusi/Return

Normal ($\alpha = 0.95$): VaR dan CVaR pada ekor kanan

Lognormal (ekor lebih berat): jarak CVaR dari VaR lebih besar

Histogram return simulasi: VaR & CVaR pada ekor kiri

Conditional Tail Expectation (CTE)

CTE memperhatikan informasi pada distribusi ekor di luar VaR.

CTE pada level peluang δ , notasi $CTE_{\delta}(X)$, didefinisikan sebagai

$$CTE_{\delta}(X) = E[X \mid X > x_{\delta}],$$

dengan x_δ adalah kuantil ke- δ dari X.

CTE dan Hubungannya dengan VaR

$$CTE_{\delta}(X) = E[X \mid X > VaR_{\delta}(X)], X \text{ kontinu.}$$

Ekspektasi di atas yang berpusat pada nilai $VaR_{\delta}(X)$:

$$E[X - VaR_{\delta}(X) \mid X > VaR_{\delta}(X)],$$

disebut **Conditional VaR** dan dinotasikan $CVaR_{\delta}(X)$.

$$\mathit{CVaR}_\delta(X) = \mathit{E}[X - \mathit{VaR}_\delta(X) \mid X > \mathit{VaR}_\delta(X)] = \mathit{CTE}_\delta(X) - \mathit{VaR}_\delta(X).$$

CTE, Mean Shortfall, dan TVaR

Ketika X kontinu, $VaR_\delta = x_\delta$ dan *mean shortfall*-nya adalah

$$E[(X-x_{\delta})_{+}]=E[X-x_{\delta}\mid X>x_{\delta}]P(X>x_{\delta}).$$

Sehingga,

$$E[(X-x_{\delta})_{+}]=(1-\delta) \, CVaR_{\delta},$$

atau

$$\frac{1}{1-\delta}E[(X-x_{\delta})_{+}]=CVaR_{\delta}=CTE_{\delta}(X)-x_{\delta}.$$

Evaluasi CTE dalam Bentuk Integral

Untuk X kontinu dengan pdf $f_X(x)$ dan cdf $F_X(x)$:

$$CTE_{\delta} = E[X \mid X > x_{\delta}] = \frac{1}{1-\delta} \int_{X_{\delta}}^{\infty} x f_X(x) dx = \frac{1}{1-\delta} \int_{X_{\delta}}^{\infty} x dF_X(x).$$

Atau dengan transformasi $u = F_X(x)$:

$$CTE_{\delta} = rac{1}{1-\delta} \int_{\delta}^{1} VaR_{u}(X) du.$$

Ringkasan: CTE, CVaR, TVaR

- $CTE_{\delta}(X) = E[X \mid X > VaR_{\delta}(X)]$
- $CVaR_{\delta}(X) = CTE_{\delta}(X) VaR_{\delta}(X)$
- $TVaR_{\delta}(X) = rac{1}{1-\delta} \int_{\delta}^{1} VaR_{u}(X) du$

Interpretasi: CTE \equiv rata-rata kuantil yang melampaui x_{δ} (tail average), sehingga sering juga disebut **Tail VaR**.

Entropic Value-at-Risk (EVaR)

Definisi EVaR

EVaR dengan $confidence\ level\ 1-\alpha$ (atau pada $risk\ level\ \alpha$), didefinisikan sebagai

$$\mathrm{EVaR}_{1-\alpha}(X) := \inf_{\theta > 0} \frac{1}{\theta} \Big(\ln M_X(\theta) - \ln \alpha \Big), \quad \alpha \in (0,1],$$

dengan $M_X(\theta) = \mathbb{E}[e^{\theta X}]$ adalah moment generating function (mgf).

Sifat utama:

$$VaR_{\alpha}(X) \leq CVaR_{\alpha}(X) \leq EVaR_{\alpha}(X),$$

sehingga EVaR lebih konservatif dibanding VaR dan CVaR.

EVaR (Entropic VaR)

Intuisi: menggunakan momen eksponensial untuk mengontrol ekor (dorong kebijakan konservatif).

Relasi hierarki: $VaR_{\alpha} \leq CVaR_{\alpha} \leq EVaR_{\alpha}$.

Catatan praktis: butuh estimasi MGF/CGF; robust untuk tail tebal, tapi bisa lebih konservatif.

Contoh untuk kerugian berdistribusi normal, $X \sim N(\mu, \sigma^2)$:

$$\operatorname{VaR}_{1-\alpha}(X) = \mu + z_{\alpha}\sigma,$$

$$\operatorname{CVaR}_{1-\alpha}(X) = \mu + \frac{\phi(z_{\alpha})}{\alpha}\sigma,$$

$$\operatorname{EVaR}_{1-\alpha}(X) = \mu + \sqrt{-2\ln\alpha}\sigma.$$

Perbandingan ringkas

- Variance: sensitif ke deviasi dari mean (dua sisi), tidak fokus ekor.
- VaR: batas kuantil; mudah dikomunikasikan, tidak koheren.
- CTE/TVaR = CVaR: rata-rata ekor di atas VaR; koheren.
- EVaR: konservatif, berbasis momen eksponensial; koheren, upper bound.

$$VaR_{\alpha} \leq CVaR_{\alpha} = CTE_{\alpha} \leq EVaR_{\alpha}$$

Koherensi: ringkasan hasil penting

Memenuhi koheren

• CTE/CVaR, EVaR

Tidak koheren

- VaR: gagal Subadditivity (counterexample risiko Bernoulli i.i.d.).
- Std. Dev. premium principle: gagal Monotonicity pada konstruksi tertentu.

Implikasi praktis

- Diversifikasi: gunakan ukuran yang subadditive.
- Manajemen ekor: gunakan ukuran yang menangkap tail risk (CVaR/EVaR).
- Variance tetap berguna untuk dispersion, tapi bukan pengganti tail risk.

Lab/Practice (sesuai silabus)

Tujuan: Menghitung CVaR & EVaR pada data return sintetis dan membandingkan dengan Variance.

Langkah:

- Simulasikan return i.i.d. (mis. Normal(μ , σ)) dan heavy-tail (mis. t- ν kecil atau lognormal).
- **2** Tentukan $\alpha \in \{0.90, 0.95, 0.99\}$.
- **1** Hitung: Variance, VaR_{α} , $CVaR_{\alpha}$, $EVaR_{\alpha}$.
- ${\color{red} \bullet}$ Bandingkan numerik & buat plot distribusi dengan garis vertikal pada mean, VaR, CVaR, EVaR.

Notebook Phyton: ACS_Week04.ipynb

Arahan Diskusi Hasil (Ringkas)

- Urutan konsisten: $VaR_{\alpha} \leq CVaR_{\alpha} \leq EVaR_{\alpha}$.
- Ekor berat ⇒ gap membesar (Lognormal, t(3), Pareto, Loglogistic > Weibull > Normal).
- Dampak α : makin besar α (90% \rightarrow 95% \rightarrow 99%), ketiga ukuran naik; **EVaR** naik paling cepat.
- Variance mengukur dispersi rata-rata; CVaR/EVaR menangkap tail loss (lebih relevan untuk ekstrem, modal/premi).
- Returns (ekor kiri): analisis sebagai loss L = -R; outlier negatif mendorong VaR/CVaR/EVaR.
- Catatan numerik: EVaR memakai MGF; untuk ekor sangat berat (mis. Pareto) EVaR bisa efektif tak hingga.

Tugas Lanjutan: Pareto, Loglogistic, Weibull

Tujuan: Uji kepekaan ukuran risiko terhadap bentuk ekor.

Instruksi singkat:

- Simulasi loss (kanan):
 - Pareto (α, x_m) , contoh: $\alpha \in \{1.5, 2.5\}$, $x_m = 1$.
 - Loglogistic (α, β) , contoh: $\alpha \in \{1.8, 2.2\}$, $\beta = 1$.
 - Weibull (k, λ) , contoh: $k \in \{0.8, 1.5\}$, $\lambda = 1$.
- ② Hitung untuk $\alpha \in \{0.90, 0.925, 0.95, 0.975, 0.99\}$: Mean, Var, VaR, CVaR, EVaR (\Rightarrow tabel .csv).
- Visual:
 - Histogram + garis Mean/VaR/CVaR/EVaR (1 gambar per level α).
 - Risk curves (1 gambar): VaR/CVaR/EVaR vs α untuk tiap distribusi.
- Oiskusi:
 - Bandingkan gap VaR-CVaR-EVaR dan keterkaitan dengan ekor.
 - Pareto: jelaskan mengapa EVaR dapat sangat besar (MGF tidak ada untuk $\theta > 0$).
 - Sensitivitas parameter (mis. Pareto $\alpha=1.5$ vs 2.5; Weibull k<1 vs >1).