ЛАБОРАТОРНА РОБОТА 1

Виконав Ваврикович Михайло ПМІ-43

При заданих цільових функціях $f_1(x)$, $f_2(x)$ і порогових значеннях f_1^* , f_2^* визначити множину Парето на заданому інтервалі при обмеженнях $f_1(x) \le f_1^*$, $f_2(x) \ge f_2^*$. Звузити множину Парето, використовуючи прийоми технічних обмежень.

Варіант 5

	Цільові ф	Обмеження		Межі		
№	$f_1(x)$	$f_2(x)$	f_1^*	f_2^*	для x	
5	$30 + 7x - 6x^2$	10 + 3x	21	11	0	4

Хід роботи

Нехай потрібно знайти та звузити множину Парето і визначити умови раціонального компромісу для заданих цільових функцій

$$f_1(x) = 30 + 7x - 6x^2$$
, $f_2(x) = 10 + 3x$, $x \in [0; 4]$

за обмежень

$$f_1(x) \ge f_1^*; f_2(x) \ge f_2^*;$$

 $f_1^* = 21, f_2^* = 11$

Спочатку визначу множину Парето на інтервалі $[x^-, x^+]$, де справедливі нерівності

$$\frac{f_1(x)}{21} \ge 1$$
; $\frac{f_2(x)}{11} \ge 1$

або

$$30 + 7x - 6x^2 \ge 21, 10 + 3x \ge 11$$

Розв'язавши дану систему нерівностей, отримую, що шукана множина Парето лежить в інтервалі $x \in \left[\frac{1}{3}, \frac{7+\sqrt{265}}{12}\right]$

Визначу множину Парето

Для звуження множини Парето і зведення вихідної двокритеріальної задачі до однокритеріальної скористаюсь технічними обмеженнями, що грунтуються на принципах мінімаксу та максиміну. Знаходжу значення відповідних відношень на інтервалі $x \in \left[\frac{1}{3}, \frac{7+\sqrt{265}}{12}\right]$, з кроком сітки 0,1

x	f1 / f1*	f2 / f2*	max(fi / fi*)	min max(fi / fi*)	min(fi / fi*)	max min(fi / fi*)
0,3333	1,5079	1,0000	1,5079	-	1,0000	-
0,4333	1,5194	1,0273	1,5194	-	1,0273	-
0,5333	1,5251	1,0545	1,5251	-	1,0545	-
0,6333	1,5251	1,0818	1,5251	-	1,0818	-
0,7333	1,5194	1,1091	1,5194	-	1,1091	-
0,8333	1,5079	1,1364	1,5079	-	1,1364	-
0,9333	1,4908	1,1636	1,4908	-	1,1636	-
1,0333	1,4679	1,1909	1,4679	-	1,1909	-
1,1333	1,4394	1,2182	1,4394	-	1,2182	-
1,2333	1,4051	1,2454	1,4051	-	1,2454	-
1,3333	1,3651	1,2727	1,3651	-	1,2727	-
1,4333	1,3194	1,3000	1,3194	1,3194	1,3000	1,300
1,5333	1,2680	1,3273	1,3273	-	1,2680	-
1,6333	1,2108	1,3545	1,3545	-	1,2108	-
1,7333	1,1480	1,3818	1,3818	-	1,1480	-
1,8333	1,0794	1,4091	1,4091	-	1,0794	-
1,9333	1,0051	1,4364	1,4364	-	1,0051	-

Посилання на таблицю:

МВ-ТПР-Лаб-1

Висновок

3 таблиці бачу, що для двох досліджуваних функцій як раціональний компроміс слід вибрати стратегію x = 1,4333