Amazon user Based Recommendation Model

By Ifalore Simeon

DESCRIPTION

The dataset provided contains movie reviews given by Amazon customers. Reviews were given between May 1996 and July 2014.

Data Dictionary UserID – 4848 customers who provided a rating for each movie 1 to Movie 206 – 206 movies for which ratings are provided by 4848 distinct users

Data Considerations

- All the users have not watched all the movies and therefore, all movies are not rated. These missing values are represented by NA.
- Ratings are on a scale of -1 to 10 where -1 is the least rating and 10 is the best.

Analysis Task

• Exploratory Data Analysis:

Which movies have maximum views/ratings? What is the average rating for each movie? Define the top 5 movies with the maximum ratings. Define the top 5 movies with the least audience.

• Recommendation Model: Some of the movies hadn't been watched and therefore, are not rated by the users. Netflix would like to take this as an opportunity and build a machine learning recommendation algorithm which provides the ratings for each of the users.

Divide the data into training and test data Build a recommendation model on training data Make predictions on the test data

Exploratory Data Analysis

[3]: N Out[3]:															
ouclo].		user_id	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie9	 Movie197	Movie198	Movie199	Movie
	0	A3R5OBKS7OM2IR	5.0	5.0	NaN	 NaN	NaN	NaN	١						
	1	AH3QC2PC1VTGP	NaN	NaN	2.0	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	١
	2	A3LKP6WPMP9UKX	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	N
	3	AVIY68KEPQ5ZD	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	N
	4	A1CV1WROP5KTTW	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	٨
	5 rc	ows × 207 columns													
	4														>
[4]: H		necking the shape	of the	data s	ets										

Out[4]: (4848, 207)

```
In [5]: ▶ amz.describe().T
```

Out[5]:

	count	mean	std	min	25%	50%	75%	max
Movie1	1.0	5.000000	NaN	5.0	5.00	5.0	5.0	5.0
Movie2	1.0	5.000000	NaN	5.0	5.00	5.0	5.0	5.0
Movie3	1.0	2.000000	NaN	2.0	2.00	2.0	2.0	2.0
Movie4	2.0	5.000000	0.000000	5.0	5.00	5.0	5.0	5.0
Movie5	29.0	4.103448	1.496301	1.0	4.00	5.0	5.0	5.0
Movie202	6.0	4.333333	1.632993	1.0	5.00	5.0	5.0	5.0
Movie203	1.0	3.000000	NaN	3.0	3.00	3.0	3.0	3.0
Movie204	8.0	4.375000	1.407886	1.0	4.75	5.0	5.0	5.0
Movie205	35.0	4.628571	0.910259	1.0	5.00	5.0	5.0	5.0
Movie206	13.0	4.923077	0.277350	4.0	5.00	5.0	5.0	5.0

206 rows × 8 columns

```
In [6]: #ploting the mean frequency
amz.describe().T['mean'].plot(bins=25, kind='hist', color = 'green');
```


In [7]: #ploting the count frequency
amz.describe().T['count'].plot(bins=25, kind='hist', color = 'purple');


```
In [8]:  # Movie that has maxmium view
amz.describe().T['count'].sort_values(ascending=False)[:1].to_frame()
```

Out[8]:

count

Movie127 2313.0

```
In [9]: # Movie that has maxmium ratings
amz.drop('user_id',axis=1).sum().sort_values(ascending=False)[:1].to_frame()
```

Out[9]:

Movie127 9511.0

```
In [10]:
           ▶ # Average rating of each movie
             amz.drop('user_id',axis=1).mean()
    Out[10]: Movie1
                          5.000000
             Movie2
                          5.000000
             Movie3
                          2.000000
             Movie4
                          5.000000
             Movie5
                          4.103448
                            . . .
             Movie202
                          4.333333
             Movie203
                          3.000000
             Movie204
                          4.375000
             Movie205
                          4.628571
             Movie206
                          4.923077
             Length: 206, dtype: float64
          #top 5 movies with the maximum rating
In [11]:
             amz.drop('user_id',axis=1).mean().sort_values(ascending=False)[0:5].to_frame()
    Out[11]:
                        0
               Movie1 5.0
              Movie66 5.0
              Movie76 5.0
              Movie75 5.0
              Movie74 5.0
          # Top 5 movies with Least audience
In [12]:
             amz.describe().T['count'].sort_values(ascending=True)[:5].to_frame()
    Out[12]:
                       count
                Movie1
                         1.0
               Movie71
                         1.0
               Movie145
                         1.0
               Movie69
                         1.0
               Movie68
                         1.0
```

User based Model building

Out[14]:

	user_id	Movies	Rating
0	A3R5OBKS7OM2IR	Movie1	5.0
1	AH3QC2PC1VTGP	Movie1	NaN
2	A3LKP6WPMP9UKX	Movie1	NaN
3	AVIY68KEPQ5ZD	Movie1	NaN
4	A1CV1WROP5KTTW	Movie1	NaN
998683	A1IMQ9WMFYKWH5	Movie206	5.0
998684	A1KLIKPUF5E88I	Movie206	5.0
998685	A5HG6WFZLO10D	Movie206	5.0
998686	A3UU690TWXCG1X	Movie206	5.0
998687	Al4J762Yl6S06	Movie206	5.0

998688 rows × 3 columns

```
#creating a dataset for training and testing
In [15]:
            rd = Reader(rating_scale=(-1,10))
            data = Dataset.load_from_df(movie_data.fillna(0),reader=rd)
   Out[15]: <surprise.dataset.DatasetAutoFolds at 0x18052b25e20>
         In [16]:
In [17]:
         #Using SVD (Singular Value Descomposition)
            svd = SVD()
In [18]: N svd.fit(train_data)
   Out[18]: <surprise.prediction_algorithms.matrix_factorization.SVD at 0x18051fc5490>
In [19]:
         pred = svd.test(test_data)
In [20]:

    accuracy.rmse(pred)

            RMSE: 0.2757
   Out[20]: 0.2756661256276847
In [21]: | accuracy.mae(pred)
            MAE: 0.0409
   Out[21]: 0.04094988248375935
In [22]: ▶ u id='AH30C2PC1VTGP'
            mv = 'Movie206'
            r_{id} = 5.0
            svd.predict(u_id, mv, r_ui=r_id, verbose= True)
            user: AH3QC2PC1VTGP item: Movie206 r_ui = 5.00 est = 0.04 {'was_impossible': False}
   Out[22]: Prediction(uid='AH3QC2PC1VTGP', iid='Movie206', r_ui=5.0, est=0.037522696094773544, details={'was_impossible': Fals
            e})
In [23]:

▶ | from surprise.model_selection import cross_validate
         ross_validate(svd, data, measures = ['RMSE', 'MAE'], cv = 3, verbose = True)
In [24]:
            Evaluating RMSE, MAE of algorithm SVD on 3 split(s).
                             Fold 1 Fold 2 Fold 3 Mean
                                                           Std
            RMSE (testset)
                             0.2790 0.2831 0.2855 0.2826 0.0027
            MAE (testset)
                             0.0429 0.0429 0.0427 0.0428 0.0001
                             69.14
            Fit time
                                    60.81
                                            74.83
                                                    68.26
                                                           5.76
            Test time
                             4.99
                                    4.19
                                            8.04
                                                    5.74
   Out[24]: {'test_rmse': array([0.27903865, 0.28312894, 0.28553412]),
             'test_mae': array([0.04288795, 0.04287469, 0.04269187]),
             'fit_time': (69.14156985282898, 60.80686831474304, 74.82693457603455),
             'test_time': (4.986289978027344, 4.192029714584351, 8.03850531578064)}
rd = Reader()
                data = Dataset.load_from_df(dframe, reader=rd)
                print(cross_validate(ml_type, data, measures = ['RMSE', 'MAE'], cv = 3, verbose = True))
                print("#"*10)
                u_id = 'AH3QC2PC1VTGP'
                m_id = 'Movie206'
                ra_u = 5.0
                print(ml_type.predict(u_id,mv,r_ui=ra_u,verbose=True))
                print("#"*10)
                print()
         ■ amz= amz.iloc[:3000, :50]
In [26]:
            movie_data = amz.melt(id_vars = amz.columns[0],value_vars=amz.columns[1:],var_name="Movies",value_name="Rating")
```

```
In [27]:
          ▶ | repeat(SVD(), movie_data.fillna(0), -1,10)
             repeat(SVD(),movie_data.fillna(movie_data.mean()),-1,10)
             repeat(SVD(),movie data.fillna(movie data.median()),-1,10)
             Evaluating RMSE, MAE of algorithm SVD on 3 split(s).
                               Fold 1 Fold 2 Fold 3 Mean
                                                               Std
                               1.0271 1.0310 1.0289 1.0290 0.0016
             RMSE (testset)
                               1.0116 1.0131 1.0123 1.0123
             MAE (testset)
                                                              0.0006
             Fit time
                               11.43
                                      14.13
                                              15.07
                                                      13.54
             Test time
                               0.60
                                       0.69
                                              0.90
                                                      0.73
                                                               0.12
             {'test_rmse': array([1.02705457, 1.03104907, 1.02894154]), 'test_mae': array([1.01163967, 1.01310641, 1.01227078]),
             'fit_time': (11.43297553062439, 14.131345510482788, 15.068916320800781), 'test_time': (0.6032133102416992, 0.686423
             5401153564, 0.8986828327178955)}
             #########
             user: AH3QC2PC1VTGP item: Movie206 r_ui = 5.00
                                                              est = 1.00 {'was_impossible': False}
             user: AH3QC2PC1VTGP item: Movie206  r_ui = 5.00
                                                               est = 1.00
                                                                            {'was_impossible': False}
             #########
             C:\Users\Public\Documents\Wondershare\CreatorTemp/ipykernel_18212/127061997.py:2: FutureWarning: Dropping of nuisan
             ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise Ty
             peError. Select only valid columns before calling the reduction.
               repeat(SVD(),movie_data.fillna(movie_data.mean()),-1,10)
             Evaluating RMSE, MAE of algorithm SVD on 3 split(s).
                               Fold 1 Fold 2 Fold 3 Mean
                                                               Std
             RMSE (testset)
                               0.0510 0.0649 0.0543 0.0567 0.0059
                               0.0076 0.0075 0.0072 0.0074
                                                              0.0002
             MAE (testset)
                               8.05
                                       9.37
                                              7.84
                                                       8.42
             Fit time
                                                               0.68
             Test time
                               1.08
                                       0.45
                                              0.82
                                                       0.78
                                                               0.26
             {'test_rmse': array([0.05096145, 0.06486785, 0.0543207 ]), 'test_mae': array([0.00759636, 0.0074677 , 0.00715425]),
             'fit_time': (8.04529333114624, 9.369925260543823, 7.844586133956909), 'test_time': (1.080878496170044, 0.4459848403
             930664, 0.8164474964141846)}
             ##########
             user: AH3QC2PC1VTGP item: Movie206 r_ui = 5.00
                                                                            {'was_impossible': False}
                                                              est = 4.53
             user: AH3QC2PC1VTGP item: Movie206
                                                 r_ui = 5.00
                                                               est = 4.53
                                                                            {'was_impossible': False}
             #########
             C:\Users\Public\Documents\Wondershare\CreatorTemp/ipykernel_18212/127061997.py:3: FutureWarning: Dropping of nuisan
             ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise Ty
             peError. Select only valid columns before calling the reduction.
               repeat(SVD(),movie_data.fillna(movie_data.median()),-1,10)
             Evaluating RMSE, MAE of algorithm SVD on 3 split(s).
                                                              Std
                               Fold 1 Fold 2 Fold 3 Mean
             RMSE (testset)
                               0.0555 0.0687 0.0626 0.0623
                                                              0.0054
             MAE (testset)
                               0.0053 0.0051 0.0051 0.0052
                                                              0.0001
             Fit time
                               8.25
                                       9.16
                                              7.77
                                                       8.39
                                                               0.58
             Test time
                               0.47
                                       0.81
                                              0.44
                                                      0.57
                                                               0.17
             {'test_rmse': array([0.05546185, 0.06872768, 0.06259858]), 'test_mae': array([0.00525613, 0.00513913, 0.00508715]),
             'fit_time': (8.248005390167236, 9.164777278900146, 7.766745090484619), 'test_time': (0.4727299213409424, 0.81245923
             04229736, 0.43959951400756836)}
             ##########
             user: AH3QC2PC1VTGP item: Movie206 r_ui = 5.00 est = 4.92
                                                                            {'was_impossible': False}
             user: AH3QC2PC1VTGP item: Movie206  r_ui = 5.00  est = 4.92  {'was_impossible': False}
             ##########
          ▶ #trying grid search and find optimum hyperparameter value for n_factors
In [28]:
             from surprise.model_selection import GridSearchCV
In [29]:
            param_grid = {'n_epochs':[20,30],
                          'lr_all':[0.005,0.001],
                          'n_factors':[50,100]}

  | gs = GridSearchCV(SVD,param_grid,measures=['rmse','mae'],cv=3)

In [30]:
             gs.fit(data)
          ▶ gs.best score
In [31]:
   Out[31]: {'rmse': 0.28011413685252345, 'mae': 0.04127550428050707}
          print(gs.best_score["rmse"])
In [32]:
             print(gs.best_params["rmse"])
             0.28011413685252345
             {'n_epochs': 30, 'lr_all': 0.005, 'n_factors': 50}
```