Almost Gibbsian Measures on a Cayley Tree

Seminário de Probabilidade e Mecânica Estatística, IMPA

20 September 2023, 13:00 (Rio de Janeiro time)

Matteo D'Achille

joint with Arnaud Le Ny

(MPRF 2022 or 2105.05767)

/26

Statistical mechanics and the ensembles of Gibbs

"to derive the laws of thermal equilibrium [...] using only the equations of mechanics and the probability calculus"

Elementary Principles in Statistical Mechanics

Gibbs 1902 **Klein** 1990

Einstein 1902

Peliti-Rechtman 2016

For describing the **Gibbs** (equilibrium) measure(s) of **spatially** ∞ lattice spin systems, **two main problems**:

- Microscopic hamiltonian is divergent;
- Unicity in phase transitions (Kolmogorov extension Thm).

Dobrushin-Lanford-Ruelle (DLR) approach

Dobrushin 1968

Lanford-Ruelle 1969

Marginal probabilities \Longrightarrow **Conditional** probabilities wrt prescribed **boundary conditions**

Put on rigorous ground by Georgii

(Friedli-Velenik 2017)

Phase transitions and the renormalisation group

- Critical opalescence, Cagniard de Latour 1822
- Para-ferromagnetic transition, Pierre Curie 1895

Kadanoff 1966

Wilson 1983

J. Zinn-Justin 2005

A few motivations

Aim: different global behaviors compatible w. given local laws. Observables are local functions on a configuration space (Ω, \mathcal{F}) .

$$\mathscr{F}=\mathscr{P}(\{-1,+1\})$$
 for Ising, a Borel σ -algebra (continuous spins)

Physical states are modeled by Gibbs measures, which are well understood if $|\Omega| < \infty$. For Λ a finite subset of a lattice \mathcal{L} :

- Measurability for events supported outside Λ, which can be interpreted as boundary conditions;
- Concentration of the resulting measure on Λ (**properness**);
- "Nested" conditioning (consistency).

The synthesis is called local specification (Georgii 1988)

Local specifications: extended Markov chains

(Föllmer 1975, Preston 1976) A local specification is a family $(\gamma_{\Lambda})_{\Lambda \Subset \mathscr{L}}$ of probability kernels $\gamma_{\Lambda} : \mathscr{F} \times \Omega \to [0,1]$ satisfying also properness and consistency.

- 1. \forall config. $\omega \in \Omega$: $\gamma_{\Lambda}(\cdot | \omega)$ is a **probab. measure**;
- 2. \forall event $A \in \mathscr{F}$: $\gamma_{\Lambda}(A|\cdot)$ is \mathscr{F}_{Λ^c} -measurable;
- 3. \forall config. $\omega \in \Omega$: $\gamma_{\Lambda}(B|\omega) = \mathbf{1}_{B}(\omega)$, $B \in \mathscr{F}_{\Lambda^{c}}$ (properness);
- **4.** \forall boxes $\Lambda \subset \Lambda'$, finite, $\gamma_{\Lambda'} \gamma_{\Lambda} = \gamma_{\Lambda'}$ (consistency).

See D'A-van Enter-Le Ny 2022a for global specifications for XY models

Quasilocality

A function f is **quasilocal** iff it is a limit (in the sup norm) of a sequence of **local** functions (taking a finite number of values in any finite set). Equivalently,

$$\lim_{\Lambda\uparrow\mathscr{L}}\sup_{\sigma,\omega:\sigma_{\Lambda}=\omega_{\Lambda}}\mid f(\omega)-f(\sigma)\mid=0.$$

 $\textbf{Neighborhoods} \colon \mathscr{N}^{\Lambda}(\sigma) = \{\omega \in \Omega \text{ coinciding w } \sigma \text{ in } \Lambda \Subset \mathscr{L}\}$

Remark: In any model with finite state space (e.g. Ising, Potts)

Quasilocality \iff (uniform) continuity

Gibbs specification, measures, and the set $\mathscr{G}(\gamma)$

Gibbs specification: for $\beta > 0$, Λ finite and a priori measure ρ

$$\gamma_{\Lambda}(d\sigma \mid \omega) \stackrel{\mathsf{def}}{=} \frac{1}{Z_{\Lambda}^{\beta\Phi}(\omega)} e^{-\beta H_{\Lambda}^{\Phi}(\sigma \mid \omega)} (\rho_{\Lambda} \otimes \delta_{\omega_{\Lambda^c}})(d\sigma).$$

A measure μ is **specified** by (or **consistent with**) γ_{Λ} if it satisfies the **DLR equations**:

$$\mu[A\mid \mathscr{F}_{\Lambda^c}](\sigma)=\gamma_{\Lambda}(A\mid \sigma),\ \mu ext{-a.e.}\ \sigma\in\Omega$$
 .

A **Gibbs measure** is a measure specified by a **Gibbs specification**.

The set of all Gibbs measures $\mathscr{G}(\gamma)$ is a **Choquet symplex** and is thus uniquely represented by a proba. on **extremal measures**

The Kozlov–Sullivan Theorem

Action of a local specification on functions: for $\omega \in \Omega$,

$$\gamma_{\Lambda}f(\pmb{\omega}) = \int_{\Omega}f(\pmb{\sigma})\gamma_{\Lambda}(d\pmb{\sigma}|\pmb{\omega}) = \gamma_{\Lambda}[f|\pmb{\omega}]$$
 (sums for Ising)

A specification is **quasilocal** if it preserves quasilocal functions:

f is quasilocal $\Longrightarrow \gamma_{\Lambda} f$ is quasilocal

 μ is a Gibbs measure $\iff \mu$ is specified by a **non-null** and **quasilocal** specification.

Kozlov 1974, Sullivan 1973 (see also Barbieri et al. 2021)

Some motivations: Renormalization Group (RG)

In RG one wants to transform your Gibbs measure (decimation, majority rule...). Main **mathematical challenges**:

- Existence (Griffiths, Pearce, Israel);
- RG pathologies, later interpreted as loss of Gibbs property (van Enter-Fernandez-Sokal 1993)
- $lue{r}$ Kozlov–Sullivan as proxy: v not quasilocal $\Longrightarrow v$ non-Gibbsian

Show/measure the set of points of (ess.) **discontinuity** of **renormalized measures** ("bad configurations")

Extensions of Gibbsianness: Almost and Weakly Gibbs

Dobrushin famously advocated for a restoration program.

A measure μ specified by a Gibbs specific. γ with potential Φ is:

- Almost Gibbsian if $\mu(\Omega_{\gamma}) = 1$, where Ω_{γ} is the set of good configurations of γ ;
- Weakly Gibbsian if $\mu(\Omega_{\Phi})=1$, where Ω_{Φ} is the set on which Φ is convergent.

Ising model on \mathcal{T}^k : definition

Let \mathcal{T}^k be the (k+1)-regular infinite tree (a.k.a. Bethe lattice)

• Configuration space, events, a priori measure:

$$\Omega = \{-1,1\}^{\mathscr{T}^k}, \, \mathscr{F} = [\mathscr{P}(\{-1,+1\})]^{\otimes \mathscr{T}^k}, \quad \rho = \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_{+1}\right)^{\otimes \mathscr{T}^k}$$

• Ferromagnetic potential $(\Phi_A)_{A\in \mathscr{T}^k}$: for all $\sigma\in\Omega$ and J(i,j)>0

$$\Phi_{\{i,j\}}(\sigma) = -J(i,j) \ \sigma_i \sigma_j, \qquad \Phi_{\{k\}} = -h_k \sigma_k$$

• Hamiltonian in finite volume $V \in \mathcal{T}^k$ and boundary condition ω :

$$H_V^{\Phi}(\sigma \mid \omega) \stackrel{\mathsf{def}}{=} \sum_{A \in \mathscr{T}^k, V \cap A \neq \emptyset} \Phi_A(\sigma_V \omega_{V^c}).$$

Ising model on \mathcal{T}^k : a few milestones

- '74 **Preston**: proof of existence of phase transition;
- '77 Higuchi: extremal and non-translation invariant measures;
- '89 **Lyons**: proof of critical inverse temperature on an arbitrary infinite tree; For \mathscr{T}^k with J=1, $\beta_c=\operatorname{arctanh} \frac{1}{k}$;
- '90s → onwards Bleher-Ganikhodjaev 90, Akin-Rozikov-Temir '11, Gandolfo-Ruiz-Shlosman '20, Coquille-Külske-Le Ny '23: zoology of extremal non-automorphism invariant Gibbs measures.

The modified majority rule T

Here and afterwards k = 2 ($\mathcal{T}^2 = \text{infinite 3-regular tree}$)

The majority rule
$$T: \Omega = \{-1, +1\}^{\mathscr{T}^2} \to \{-1, 0, +1\}^{\mathscr{T}^2} = \Omega'$$

$$v = T\mu$$
 defined by $v(A') = \mu(T^{-1}A') \quad \forall A'$ measurable

Main result: almost Gibbs at all temperatures

Theorem (4.1 in D'A-Le Ny 2022)

The measures $v = T\mu$ are almost Gibbsian at any β .

Plan of the proof

Coupling with β -dependent percolation of zeros.

Four major steps:

- 1. Magnetization at r (ess.) continuous if 0s do not percolate;
- 2. Detailed analysis for a **single path** of 0s;
- 3. **Growth estimate** for the # of percolating paths of 0s;
- 4. **Upper bound** (by zero) on the measure of **bad configs**.

A few definitions

Consider $\mathcal{T}_0^2 = \infty$ binary tree rooted at r (Bleher-Ganikhodjaev 90) in binary representation, for which $\Omega_0' = \{-1,0,+1\}^{\mathcal{T}_0^2}$.

A **path of** 0**s** in η' is a seq. of n.n. 0 (primed) spins starting at r.

- $N_R(\eta')=\#\{\text{paths of 0s in }\eta'\in\Omega'_0 \text{ reaching depth }R\};$
- $N(\eta') = \lim_{R \to \infty} N_R(\eta') = \#\{\infty \text{ paths of 0s in } \eta' \in \Omega_0'\}.$

If $N(\eta') \neq 0$ we say that there is **percolation of** 0s.

Quasilocal function: $\langle \sigma_r' \rangle^{\eta',R} = v[\sigma_r' \mid \sigma_{\{r\}^c}' = \omega_{\{r\}^c}', \ \omega' \in \mathcal{N}^R(\eta')]$

1. Magnetization ess. cont. if 0s do not percolate

Le Ny 2000 proved that $\eta' = 0_{\mathscr{T}^2}$ is a bad configuration.

By Kozlov–Sullivan v are **non-Gibbsian** at any temperature $oldsymbol{eta}$.

 $\eta' = 0_{\mathscr{T}^2}$ (and similar configs) are **quite unlikely** under ν .

- $\stackrel{\sim}{\mathbb{R}}$: start from very "few" 0s and control the growth in R.
- Consider absence of percolation. Then

$$N(\eta') = 0 \implies \langle \sigma'_r \rangle^{\eta',R}$$
 is (ess.) cont. as a function of η' .

Idea of proof: $\langle \sigma'_r \rangle^{\eta',R}$ is actually **independent** of R for R large enough (i.e. larger than $R_0 = \max_{\sigma'_i \in \eta' \text{s.t.} \sigma'_i = 0} \operatorname{dist}_{\mathscr{T}_0^2}(i,r)$)

2. Detailed analysis of $N(\eta') = 1$

Let $\eta' \in \Omega'_0$ be such that $N(\eta') = 1$.*

Let Y' be the **projection** of η' onto the ∞ path and $Y = T^{-1}(Y')$.

Define $X_n := Y_{R-n+1}$ for $n \le R$. Then X is an explicit **inhomogeneous Markov chain** (possibly with some forbidden transition)

^{*}Except a few (v-negligible) peculiar configurations

2. Detailed analysis of $N(\eta') = 1$ - bis

The law of X within η' is the one of a **1-d Ising model** in an inhomogeneous external field $h(\eta') = (h(\eta')_n)_{n \in \mathbb{N}}$.

This can be dealt via transfer matrices ...

... after some work, it turns out that:

- $\langle \sigma_r' \rangle^{\eta',R}$ is (ess.) cont. at $\eta' \in \Omega_0'$ if $N(\eta') = 1$;
- For every $R \ge 0$, $\exists C > 0$ (indep. on such η') s.t.

$$|\langle \sigma_r' \rangle^{\omega_1,R} - \langle \sigma_r' \rangle^{\omega_2,R}| \leq C \cdot \left(e^{-oldsymbol{eta}}
ight)^R \qquad orall \omega_1, \omega_2 \in \mathscr{N}^R(oldsymbol{\eta}').$$

3. From 1 to a finite number of paths of 0s

Let now $N_R(\eta') = 2$. We can put r at the unique common ancestor of the paths of 0s and use the **Markov property** of μ to get

$$\forall R > 0, \left| \langle \sigma_r' \rangle^{\omega_1',R} - \langle \sigma_r' \rangle^{\omega_2',R} \right| \leq p(\beta) \left| \langle \sigma_{r1}' \rangle^{\omega_1',R} \langle \sigma_{r0}' \rangle^{\omega_1',R} - \langle \sigma_{r1}' \rangle^{\omega_2',R} \langle \sigma_{r0}' \rangle^{\omega_2',R} \right|$$
 for some $p(\beta) \in [0,1]$ depending only on β .

Now apply the following elementary inequality at RHS:

$$|xy - wz| \le |x - w| + |y - z|, \quad \forall x, y, w, z \in [0, 1].$$

For $N_R > 2$ (finite) we can proceed by iteration.

3. Growth estimate for the # of percolating paths of 0s

Bottom line: for a finite # of percolating paths of 0s

$$\forall R>0, \sup_{\omega_1',\omega_2'\in\mathscr{N}^R(\eta')}\left|\langle\sigma_r'
angle^{\omega_1',R}-\langle\sigma_r'
angle^{\omega_2',R}
ight|\leq C_2\cdot N_R(\eta')\cdot\left(e^{-eta}
ight)^R$$

This result suggests that everything is fine for configs. whose number of 0s grows at most as $e^{\beta R}$ in the depth R.

$$\Omega_g = \left\{ \eta' \in \Omega_0 \ : \ \lim_{R o \infty} rac{N_R}{e^{eta R}} = 0
ight\}$$

4. Upper bound on the measure of bad configurations

Lemma (4.5 in D'A-Le Ny 2022)

$$\nu(\Omega_g)=1.$$

Proof. First we prove i) $\lim_{R\to\infty}\frac{\mathbb{E}_{v}[N_{R}]}{e^{\beta R}}=0.$

$$\mathbb{E}_{\nu}[N_R \mid \mathscr{F}_{R-1}] = p^2(N_{R-1}+1) + 2p(1-p)N_{R-1} + (1-p)^2(N_{R-1}-1)$$
$$= N_{R-1} + (2p-1)$$

where $p=p(\pmb{\beta})$ is an (explicit) bond percolation probability. i) follows by induction.

4. Upper bound on the measure of bad configurations

Second we show that
 ii)
$$\forall \theta \geq 0$$
, $\nu[N_R(\eta') > e^{\beta R}] \leq e^{\theta(R - e^{R\beta})}$.

ii) follows using the same recurrence, then bounding the MGF $\mathbb{E}_{v}[e^{\theta N_{r}(\eta')}]$ uniformly in θ and exponential Chebyshev inequality. This proves the statement.

In order to conclude the proof of the main Theorem, we show that those $\eta' \in \Omega_g$ having no infinite alternating external fields h around their paths of 0s are also of full v measure. The growth estimate applied to such configurations concludes the proof.

Conclusions

The renormalized measure v obtained by acting with the majority rule T on the Gibbs measure μ of the Ising model on \mathscr{T}^2 was known to be non-Gibbsian.

By studying the problem with a β dependent percolation model, we have proved that the set of bad configurations is ν -negligible, rendering ν almost Gibbsian (hence weakly Gibbsian) at all temperatures.

Our result provides a neat example in which the **Dobrushin restoration program** turned out to be a **rich source** of mathematical work (already for one single RG step!)

Three perspectives

- rightharpoonup k vs eta tradeoff in the percolation model;
- Other choices for the majority rule (size of cell, inhomogeneity);
- Study a stochastic version of the majority rule.

Obrigado!

Percolation probability $p(\beta)$

Look at cell *j* and use the law of total expectation:

$$v[\eta'_{j1} = 0] = \sum_{x \in \{-,0,+\}} v[\eta'_{j1} = 0 \mid \eta'_{j} = x] \cdot v[\eta'_{j} = x] .$$

Then evaluate explicitly each cond. prob.in terms of the measure μ (Ising model on the complete graph K_3). It turns out that those cond. prob. all are equal. Thus, despite the primed spin being dependent (cells overlap!), the three considered events are actually uncorrelated.

We get the marginal probability

$$v[\eta'_j = 0] = \frac{2 + e^{-\beta}}{(e^{\beta} + e^{-\beta})^2} := p(\beta), \quad \forall j \in \mathscr{T}_0^2.$$

Essential discontinuity

Detailed definition

A configuration $\omega \in \Omega$ is an **essential discontinuity** for a conditional proba μ , if $\exists \Lambda_0 \in \mathcal{L}$, a local function f, and a real $\delta > 0$, s.t. $\forall \Lambda$ containing Λ_0 , 2 neighborhoods of ω $\mathcal{N}_{\Lambda}^1(\omega)$ and $\mathcal{N}_{\Lambda}^2(\omega)$ exists s.t.

$$\forall \boldsymbol{\omega}^{1} \in \mathcal{N}_{\Lambda}^{1}(\boldsymbol{\omega}), \ \forall \boldsymbol{\omega}^{2} \in \mathcal{N}_{\Lambda}^{2}(\boldsymbol{\omega}), \\ \left| \mu \left[f | \mathscr{F}_{\Lambda^{c}} \right] (\boldsymbol{\omega}^{1}) - \mu \left[f | \mathscr{F}_{\Lambda^{c}} \right] (\boldsymbol{\omega}^{2}) \right| > \delta.$$

Equivalently:

$$\lim_{\Delta\uparrow\mathscr{L}}\sup_{\omega^1,\omega^2\in\Omega}\left|\mu\big[f|\mathscr{F}_{\Lambda^c}\big](\omega_{\!\Delta}\omega_{\!\Delta^c}^1)-\mu\big[f|\mathscr{F}_{\Lambda^c}\big](\omega_{\!\Delta}\omega_{\!\Delta^c}^2)\right|>\delta.$$