

Problema de Minimização de Pilhas Abertas: Uma Abordagem Elementar

Marco A. M. Carvalho mamc@iceb.ufop.br Universidade Federal de Ouro Preto - MG

Nei Y. Soma soma@ita.br Instituto Tecnológico de Aeronáutica - SP

Descrição do Problema Motivação Exemplo

INTRODUÇÃO

Descrição do Problema

- Uma fábrica produz diferentes tipos de produtos em lotes
 - Apenas uma máquina;
 - Apenas um tipo de produto por estágio;
- Consumidores fazem pedidos por diferentes conjuntos de produtos
 - O conteúdo de cada pedido é colocado em uma pilha durante sua produção;
 - Quando a pilha recebe seu primeiro produto, ela é considerada aberta;
 - Quando a pilha recebe seu último produto, ela é considerada fechada
 - Os produtos podem ser entregues;
 - O espaço físico ocupado pela pilha é liberado.

Descrição do Problema

- Há uma limitação do espaço físico utilizado no ambiente de produção
 - Não há espaço suficiente para que haja uma pilha aberta para cada pedido ao mesmo tempo;
 - Se o número de pilhas abertas excede o espaço físico disponível, algumas pilhas precisam ser removidas temporariamente para liberar espaço para novas pilhas.
 - A sequência em que os produtos são produzidos pode reduzir o número máximo de pilhas abertas simultaneamente
 - Este é o objetivo do Problema de Minimização de Pilhas Abertas (Minimization of Open Stacks Problem - MOSP).

Motivação

- O MOSP é NP-Difícil e possui uma variedade de problemas equivalentes:
 - Corte de estoque:
 - Sequenciamento de Padrões de Corte.
 - Projeto VLSI:
 - Gate Matrix Layout Problem;
 - PLA Folding.
 - Problemas em grafos:
 - Pathwidth;
 - Interval Thickness;
 - Node Search Game;
 - Narrowness;
 - Split bandwidth;
 - Edge and Vertex Separation.

Introdução

- Formalmente, dada uma matriz de pertinência M:
 - As linhas representam os pedidos de compra;
 - As colunas correspondem aos produtos;
 - $-m_{ii}$ = 1 sse o pedido *i* contém o produto *j*;
 - $-m_{ij} = 0$ caso contrário;
 - As pilhas são associadas às linhas
 - Primeiro produto produzido: pilha aberta;
 - Último produto produzido: pilha fechada;
- O objetivo é encontrar uma permutação das colunas tal que o número máximo de pilhas abertas é minimizado.

Exemplo #1

	p1	p2	р3	p4	р5	p6
c1	1	0	0	1	1	0
c2	1	1	0	0	0	0
с3	0	0	1	1	0	0
c4	1	1	1	0	1	0
с5	0	1	0	1	1	1
с6	0	1	0	0	0	1

Exemplo #1

	Sequência de Produção							
		p2	p4	р5	p1	рЗ	p6	
	c1		1	1	1			
S	c2	1			1			
Pilhas	с3		1			1		
<u>α</u>	c4	1		1	1	1		
	с5	1	1	1			1	
	c6	1					1	

Max Pilhas Abertas: 6

	Sequência de Produção							
	р6	p2	p1	р3	p4	р5		
c1			1		1	1		
c2		1	1					
с3				1	1			
c4		1	1	1		1		
c5	1	1			1	1		
c6	1	1						
	c2 c3 c4 c5	p6 c1 c2 c3 c4 c5 1	p6 p2 c1 c2 1 c3 c4 1 c5 1 1	p6 p2 p1 c1 1 c2 1 1 c3 c4 1 1 c5 1 1	p6 p2 p1 p3 c1 1 c2 1 1 c3 1 1 c4 1 1 1 c5 1 1	p6 p2 p1 p3 p4 c1 1 1 c2 1 1 c3 1 1 1 c4 1 1 1 c5 1 1 1		

Max Pilhas Abertas: 4

Representação
Busca em Largura
Sequenciamento dos Produtos
Regras de Melhoria

UMA ABORDAGEM ELEMENTAR

Representação

- Em grafos MOSP, vértices correspondem aos pedidos de compras
 - Arestas conectam pedidos que compartilham pelo menos um produto em comum;
 - Arestas múltiplas não são considerados;
 - Cada produto induz um clique no grafo;
 - Existem algoritmos polinomiais para algumas topologias especiais.

Grafo MOSP

	р1	p2	рЗ	р4	р5	p6
c1	1	0	0	1	1	0
c2	1	1	0	0	0	0
с3	0	0	1	1	0	0
c4	1	1	1	0	1	0
c5	0	1	0	1	1	1
c6	0	1	0	0	0	1

- O MOSP lembra o Problema de Minimização de Banda em Matrizes (*Matrix Bandwidth Minimization Problem* - MBM)
 - O MBM busca uma permutação de linhas e colunas que mantenha os elementos não nulos da matriz tão próximos quanto possível da diagonal principal.

- A heurística *Cuthill-Mckee* (1969) para o MBM explora um grafo correspondente a sua matriz por busca em largura (*Breadth-First Search* BFS):
 - Escolha de vértices de menor grau
 - Empates resolvidos a favor do vértice de menor grau;
 - A sequência dos vértices na busca determina a permutação de linhas e colunas.

- A BFS nunca foi aplicada para solução do MOSP
 - As matrizes MOSP podem não ser esparsas, simétricas ou quadradas como as matrizes do MBM;
 - A estrutura de banda não é uma condição requerida para otimalidade.
- Porém, quando aplicada ao MOSP, a BFS gera bons resultados.

- O Não examinado
- O Examinado
- Todos os vizinhos examinados

- Depois de sequenciar os vértices (pedidos de compra), obtemos a permutação dos produtos:
 - Os pedidos de compra são analisados usando a político LIFO;
 - Cada produto comprado é inserido na solução usando a política LIFO.

	p1	p2p6	рЗ	p4	р5
c1	1	0	0	1	1
c2	1	1	0	0	0
c3	0	0	1	1	0
с4	1	1	1	0	1
с5	0	1	0	1	1
c6	0	1	0	0	0

	p2	p6
c1	0	0
c2	1	0
c3	0	0
c4	1	0
c5	1	1
c6	1	1

	p1	p2p6	рЗ	p4	р5
c1	1	0	0	1	1
c2	1	1	0	0	0
c3	0	0	1	1	0
c4	1	1	1	0	1
c5	0	1	0	1	1
c6	0	1	0	0	0

	p1	p2	p6
c1	1	0	0
c2	1	1	0
c3	0	0	0
c4	1	1	0
c5	0	1	1
c6	0	1	1

	p1	p2p6	рЗ	p4	р5
c1	1	0	0	1	1
c2	1	1	0	0	0
c3	0	0	1	1	0
c4	1	1	1	0	1
c5	0	1	0	1	1
c6	0	1	0	0	0

	p4	р5	p1	p2	p6
c1	1	1	1	0	0
c2	0	0	1	1	0
c3	1	0	0	0	0
c4	0	1	1	1	0
c5	1	1	0	1	1
c6	0	0	0	1	1

	p1	p2p6	рЗ	p4	р5
c1	1	0	0	1	1
c2	1	1	0	0	0
c3	0	0	1	1	0
c4	1	1	1	0	1
c5	0	1	0	1	1
c6	0	1	0	0	0

	р3	p4	р5	p1	p2	p6
c1	0	1	1	1	0	0
c2	0	0	0	1	1	0
c3	1	1	0	0	0	0
c4	1	0	1	1	1	0
c5	0	1	1	0	1	1
с6	0	0	0	0	1	1

		Sequência de Produção						
		р3	p4	р5	p1	p2	p6	
Pilhas	c1		1	1	1			
	c2				1	1		
	c3	1	1					
	c4	1		1	1	1		
	с5		1	1		1	1	
	c6					1	1	

Max Pilhas Abertas: 4

- Benefícios da BFS:
 - Vértices de grau baixo não são o gargalo do problema
 - Sequenciados primeiro.
 - Vértices de cliques e vértices de maior grau tendem a ser sequenciados contiguamente;
 - Processa diferentes componentes naturalmente;
 - Complexidade computacional;
 - Facilidade de implementação.

Regras de Melhoria

- Topologias especiais do grafo MOSP causam ma comportamento da BFS, gerando erros:
 - Cliques fracamente conectados;
 - Um clique dominante com poucos vértices em su o vizinhança.

- 1. Fechar pilhas inativas, antecipando a produção de sseu último produto;
- 2. Atrasar a abertura de novas pilhas, pelo atraso da produção dos produtos que abrem novas pilhas.

Regra de Melhoria #1

Regra de Melhoria #2

Instâncias Ambiente Computacional

EXPERIMENTOS COMPUTACIONAIS

Instâncias

- First Constraint Modeling Challenge (2005)
 - 5.806 instâncias;
 - Presença de instâncias passíveis de decomposição;
 - Topologias de solução polinomial.

Ambiente Computacional

- Pentium IV duo core 3.2 GHz;
- 1 GB RAM;
- Fedora Linux 11;
- Sem opções de otimização;
- Becceneri et al (2004): Heurística de Nó de Custo Mínimo
 - Estado da arte em heurísticas para o MOSP;
 - Implementado conforme descrição original.

Experimentos Computacionais

Soluções

Método	Becceneri et al (2004)	H <i>BF</i> _{2r}	
Melhores soluções	400 (6,89%)	636 (10,95%)	
Soluções ótimas	4.899 (84.21%)	5.084 (87.56%)	
Erro máximo do ótimo	8 pihas	4 pilhas	
Distância do ótimo	1,32%	0,88%	
Maior distância do ótimo	67%	167%	

Tempos de execução (ms)

Método	Min	Média	Max
Becceneri et al (2004)	0,00	0,02	24,00
H <i>BF_{2r}</i>	0,00	0,12	72,00

SUMÁRIO

Sumário

- Uma nova abordagem para o MOSP;
- Heurística de complexidade $O(p^3)$, em que p denota o número de produtos
 - Gap baixo;
 - Robusta baixo índice de erros;
 - Alto índice de soluções ótimas.
 - Rápida.
- Pode ser utilizada para gerar bons limitantes superiores rapidamente;
- Pode ser utilizada diretamente na solução do MOSP e problemas equivalentes.

Agradecimento

- Prof. Maria Garcia de la Banda (Monash University);
- Este trabalho contou com apoio da Fundação de Amparo à Pesquisa do estado de São Paulo, processo 2009/51831-9 (primeiro autor).

Perguntas?

OBRIGADO

