

Femtoscopy with identified particles for NICA/MPD

P. Batyuk, L. Malinina, K. Mikhaylov, G.Nigmatkulov

Dubna, Joint Institute for Nuclear Research

June 4, 2019

Outline:

- Motivation
- Hybrid vHLLE+UrQMD model
- Comparison with BES-I STAR
 - pions
 - first results with kaons (NEW!)
- Package for Femtoscopic Analysis
- Summary

Femtoscopy formalism

Correlation femtoscopy:

Measurement of space-time characteristics R, c_{τ} of particle production using particle correlations due to the effects of quantum statistics (OS) and final state interactions (FSI)

Two-particle correlation function:

theory:
$$C(q) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_2(p_2)}, C(\infty) = 1$$

experiment: $C(q) = \frac{S(q)}{B(q)}, q = p_1 - p_2$

S(q) is a distribution of pair momentum difference of particles from the same event

B(q) is a reference distribution built by mixing of particles from different events

Parametrizations used:

$$C(q_{inv}) = 1 + \lambda e^{-R^2 q_{inv}^2}$$

R is a Gaussian radius in PRF,

 λ is a correlation strength parameter 1D-analysis is sensitive only to the system size averaged over all directions.

 $C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$ Both R and q are in Longitudinally Co-Moving

Frame (LCMS)

3D-analysis gives an access to the three system sizes in three directions separately.

Definition of femtoscopy radii:

S. Pratt. Phys. Rev. D 33 (1986) 1314 G. Bertsch. Phys. Rev. C37 (1988) 1896

Motivation

• Femtoscopy allows one:

- To obtain spatial and temporal information on particle-emitting source at kinetic freeze-out
- To study collision dynamics depending on EoS
- RHIC Beam Energy Scan program (BES-I): $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39 GeV Measured pion and kaon femtoscopic parameters: m_T -dependences of radii, flow-induced x p correlations
- NICA energy range: $\sqrt{s_{NN}} = 4$ 11 GeV

Expected features of first order phase transition (1PT)

Predicted:

 $\frac{R_{out}}{R_{side}}$ » 1 & Large R_{long} due to emission stalling during phase transition

D. H. Rischke, M. Gyulassy,Nucl. Phys. A608, 479 (1996)

Phys.Rev. C92 (2015) 1, 014904

r-t

correlations in expanding source reduce $R_{out} \rightarrow$

 $R_{out} \rightarrow R_{out}/R_{side}$

Study of

femtoscopy observables allows one to perform tune of the models to describe correctly

collision

dynamics

Femtoscopy with vHLLE+UrQMD

Iu. Karpenko, P. Huovinen, H.Petersen, M. Bleicher, Phys.Rev. C 91, 064901 (2015)

Pre-thermal phase hydrodynamic phase hadronic cascade

UrQMD VHLLE UrQMD

Parameters $\tau_0,\,R_\perp,\,R_\eta$ and η/s adjusted using basic observables

in the RHIC BES-I region.

$\sqrt{s_{\mathrm{NN}}}$ [GeV]	$\tau_0 [\text{fm/c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9	1.0	0.7	0.08
62.4	0.7	1.0	0.7	0.08
200	0.4	1.0	1.0	0.08

Model tuned by matching with existing experimental data from SPS and BES-I BHIC

EoS to be used in the model

- Chiral EoS crossover transition
 J. Steinheimer et al., J.
 Phys. G 38, 035001 (2011)
- Hadron Gas + Bag Model
 1-st order phase transition
 P. F. Kolb et al., Phys.Rev.
 C 62, 054909 (2000)

Hydrodynamic phase lasts longer with 1PT, especially at lower energies but cascade smears this difference.

Pion emission time

(a) - after hydrodynamic phase

3D Pion radii versus m_T with vHLLE+UrQMD

Crossover EoS "works" better for lowest collision energies.

- R_{out} (XPT) at high energies and R_{out} (1PT) at all energies are slightly overestimated
- $R_{out,long}$ (1PT) $> R_{out,long}$ (XPT) by value of \sim 1-2 fm.

$\overline{R_{out}/R_{side}} \ ext{with} \ ext{vHLLE} + ext{UrQMD} \ ext{model}$

Exp. data:

 R_{out}/R_{side} and $R_{out}^2-R_{side}^2$ as a function of $\sqrt{s_{NN}}$ at a fixed m_T demonstrate a wide maximum near $\sqrt{s_{NN}} pprox 20~{
m GeV}$

Our calculations:

 R_{out}/R_{side} (XPT) agrees with almost all STAR data points within rather large systematic errors, while R_{out}/R_{side} (1PT) overestimates the data.

Ratio of $R_{out,side,long}(1PT)/R_{out,side,long}(XPT)$ vs. $\sqrt{s_{NN}}$

- R_{side} practically coincide for both scenarios
- R_{out} and R_{long} for 1PT EoS are greater than for XPT EoS demonstrating a strong k_T -dependence

Why?

The difference comes from a weaker transverse flow developed in the fluid phase with 1PT EoS as compared to XPT EoS and its longer lifetime in 1PT EoS

Kaon correlation functions with vHLLE+UrQMD (NEW!)

Kaons:

Analysis:

- AuAu, $\sqrt{s_{NN}} = 11.5 \text{ GeV}$
- $N_{events} \approx 400000$
- Standard 3D Gaussian fit used
- Projections of 3D-kaon correlation functions on out-side-long directions are more Gaussian
- XPT CF projections on long direction are visibly wider than 1PT especially for kaons

Pion & Kaon radii vs. m_T with vHLLE+UrQMD

Pion & Kaon radii vs. m_T with vHLLE+UrQMD

Summarising ...

- Hydro phase lasts longer with 1PT.
- vHLLE+UrQMD with XPT-scenario describes BES-I STAR femtoscopy radii at $\sqrt{s_{NN}}=7.7,\,11.5$ GeV better than the 1PT-scenario.
- R_{long} for 1PT is greater than for XPT.
- R_{out}/R_{side} for 1PT also is greater than for XPT.
- First results with kaon femtoscopy look promising and this study is planned to be continued.

Package for Femtoscopic Analysis

Femtoscopy

- Inherited from STAR (StHbtMaker) and ALICE (AliFemto)
- Keeps the same hierarchy as in ALICE (PckgName/, PckgNameUser/, macros/)
- Works with ROOT 5 and 6
- Lighter than ancestors:
 - Most of STAR-developed classes replaced with ROOT ones
 - Better compression, smaller sizes
- Implemented running options (INDEPENDENT on experiment-dependent software):
 - Standalone mode compile with g++ (clang) and run on your "laptop"
 - Maker; Tasks will be also implemented

Data formats (DST)

- General-purpose data format for Monte Carlo generators -McDst https: //github.com/nigmatkulov/McDst
- Similar to UniGen (developed at GSI)
- ullet Lighter, faster, easy expandable, works with ROOT 5 and 6, g++ (clang)
- Possibility to add converters from other generators: Terminator, EPOS, AMPT ...
- Group has a positive experience on the data format developments:
 - PicoDst format in STAR (standard data format for physics analysis)

Package for Femtoscopic Analysis

Output ROOT tree:

It allows:

- To set track cuts, particle pair cuts, number of events to be used for mixing ...
- ullet To get 1D and 3D correlation functions for a set of k_T -bins
- To switch on / off different physics effects (QS, FSI ...)

Main macro to define conditions of user's analysis

```
int main(int argc, char* argv[]) {
 // Create and set track cut
trackCut->setPdgId(particlePdg);
trackCut->setEta(-1., 1.):
trackCut->setPt(0.15, 1.55);
trackCut->setMass(particleMass);
  Set how many events to mix
hbtAnalysis -> setNumEventsToMix(10);
// Lednicky weight generator
hbtWeight -> setPairTvpe(pairTvpe):
hbtWeight -> setCoulOn();
hbtWeight -> setQuantumOn():
hbtWeight -> setStrongOff():
hbtWeight -> set3BodyOff();
// Create 1D correlation function
// integrated over kT
StHbtModelQinvCorrFctn *oneDim =
new StHbtModelQinvCorrFctn
("hTheorQinv", 40, 0, 0, 4):
// Create 3D correlation function
// integrated with kT binning
StHbtModelBPLCMS3DCorrEctnKt *threeDim =
new StHbtModelBPLCMS3DCorrFctnKt
("hTheorBPLCMS", 80, -0.4, 0.4, 4,
0.15.0.59):
```

Where will it be studied?

MPD Layout:

Benefits:

- Hermeticity, 2π-acceptance in azimuth
- 3D-tracking (TPC, ECT)
- Vertex high-resolution (IT)
- Powerful PID (TPC, TOF, ECAL)
 - π , K up to 1.5 GeV/c
 - K, p up to 3 GeV/c
 - γ , e from 0.1 GeV/c up to 3 GeV/c
- Precise event characterization (FHCAL)
- Fast timing and triggering (FFD)
- Low material budget
- High event rate (up to 7 kHz)

Participants:

- Tsinghua University, Beijing, China
- GSI, Darmstadt, Germany
- WUT, Warsaw, Poland

- MEPhI, Moscow, Russia
- INR, RAS, Russia
- PPC BSU, Minsk, Belarus
- Dubna, JINR, Russia

Realization progress:

- Preparation for / start of mass production
- First stage is planned to be started in 2021
- ullet Second stage and full commissioning (IT + end-cups) 2023

Femtoscopy & correlations activities within RFBR mega grant

Activity has been supported by the RFBR grant for a period of three years (2019-2021)

Aim: Study of collective effects and dynamics of quark-hadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at the NICA energies

Our physics to be studied:

- Development of data analysis methods and software to be integrated in the MPD software environment
- Analysis of simulated events with different event generators (in particular, UrQMD+vHLLE) at the NICA energies
- Understanding dependence of femtoscopic radii and scaled factorial moments of particle multiplicity on the initial conditions and properties of nuclear matter EoS

Our the most future plans:

- Software development for femtoscopic analyses & factorial moments of multiplicity distributions
- Femtoscopic analysis for pions and kaons (correlation functions, source functions ...) for the events simulated (model investigations)
- Study of detector effects on femtoscopic measurements to be taken into account when doing analysis for reco-output from MPD

Thank you for your attention!