INDEX

Note: Page numbers followed by "f" indicate figures, and "t" indicate tables.

Α	at macrolevel, 179–183
Advanced Euler-Lagrange models, 217	at mesolevel, 174-179
Approximate deconvolution models	two-fluid model, 32-35, 33-34t
(ADM), 214	Cluster-induced turbulence (CIT), 179–180
	Coarse-grained computational fluid
В	dynamics-discrete element method
Beetstra-Van der Hoef-Kuipers (BVK) drag	(CFD-DEM), 69-70,
model, 61–63, 98–99	72–75, 77 <i>f</i>
Benchmarking particle-resolved direct	assumptions, 70–72, 71f
numerical simulation, 192–198	gas-particle flows, 19, 27-29, 28-30f
Bubbling fluidized bed	heat transfer, 75-80, 77f, 98-102, 99t
computational fluid dynamics-time-	time-driven hard-sphere contact model,
driven hard sphere model, 89-94	80-84
heat transfer, 98f	verification study, 94–97, 95–97 <i>f</i>
parameters in, 91t	Coarse-grained governing equations,
simulation setting, 90f	224–228
Buoyancy forces, 177	mass balance, 223–224
_	microscopic equations, 223
C	momentum equations, 224–226
Carbon mass fraction, 112–113	scalar transport equations, 226–227
fluid catalytic cracking regenerator,	transport equations, 227–228
121–123, 122 <i>f</i>	volume averaging, 223
CFD. See Computational fluid dynamics	Coarse-grained hard sphere (CGHS)
(CFD)	method, 109–110
CGHS method. See Coarse-grained hard	computational fluid dynamics, 102–109,
sphere (CGHS) method	103f
CGP. See Coarse-grained parcel (CGP)	fluidized catalytic cracking regenerator,
Chemical reactions	110–125, 111 <i>f</i> , 119–120 <i>f</i> ,
computational fluid dynamics-discrete	122f, 124f
element method, 68–69	methane-to-olefin reactor, 125–133 rare earth elements leaching reactor,
fluid catalytic cracking regenerator, 113–117	133–143, 136 <i>f</i> , 138–139 <i>f</i> ,
methane-to-olefin reactor, 128–129	141–143 <i>f</i>
rare earth elements leaching reactor,	Coarse-grained mass balance, 223–224
133–136	Coarse-grained parcel (CGP), 70–72
Circulating fluidized bed (CFB), 56, 109	contact radius, 79
computational fluid dynamics-coarse-	particle-fluid-wall heat transfer, 75-78
grained hard sphere method,	size and collision parameters, 72-74
102–109, 103 <i>f</i> , 147 <i>f</i>	Coarsening, 210–212
parameters, 104t	Cohesive forces, 212-214
simulation results, 74-75, 95	Coke mass fraction, 130–131, 131–132f
Closure laws, 23	Collision force, 65, 72–74

6	6
Computational fluid dynamics	D
(CFD), 54–56, 58–59	Damping coefficient, 64–65, 74
CFD-coarse-grained hard sphere method, 102–109, 103 <i>f</i>	Deconvolution approach, 214–215
Computational fluid dynamics–discrete	Defiltering method, 214
element method (CFD–DEM), 60	DEM. See Discrete element model (DEM)
	Dense fluid–particle systems
chemical reactions, 68–69	advanced Euler–Lagrange models, 217
coarse-grained, 69–80, 71 <i>f</i> , 77 <i>f</i> , 83 <i>f</i>	broader application, 217–219
fluid dynamics, 61	chemistry and material models, 156–157
heat transfer model, 66–68, 67 <i>f</i> , 99 <i>t</i>	closure laws
heights simulated with, 96 <i>f</i> instantaneous particles distribution,	at macrolevel, 179–183
92f, 95f	at mesolevel, 174–179
momentum transfer models, 61–64	coarse-grained equations, 224–228
solid particle dynamics, 64–65	coarse-grained mass balance, 223–224
Computational fluid dynamics—time-driven	connection of models
hard sphere (CFD–TDHS) model	computational strategies, 160–163
bubbling fluidized bed, 89–94	data science, 164
granular temperature profiles, 94 <i>f</i>	dispersion coefficients, 179
heights simulated with, 96f	filtering tools, 185–191
instantaneous particles distribution,	flow models, 157–159
92 <i>f</i> , 95 <i>f</i>	flow simulators, 183–184
verification study, 94–97	gas–particle system, 228–229
Conservation equations	heat transfer, 178–179, 183
for continuous phase, 21–22	hierarchy of models, 156–160 intraparticle transport phenomena,
for dense fluid–solid flows, 22	219–220
flow of continuum powder, 55–56	low mach number, 228
fluid phase, 9–10	mass transfer, 178–179, 183
heat transfer, 66	mathematical formulation
thermal energy, 68	continuous phase, 168–169
two-fluid models, 39	dispersed phase, 170–172
Contact force, 55-56, 64-65	Euler–Euler models, 165
Continuity equation, 7, 25, 35–37	Euler-Lagrange models, 165–168
Continuous forcing methods (CFM), 9	governing equations, 168–172
Continuous phase governing equations	macroscale models, 172
particle-resolved approach, 168-169	particle-resolved EL models,
particle-unresolved approach, 169	166–167
Conventional finite volume techniques, 184	particle-unresolved EL models,
Convergent approach, 189, 190f	167–168
Counter-current fluidized bed	mesoscale models
under different operating conditions,	cohesive systems, 212-214
136–139	cross effects, 199
geometries at different scales, 140t	deconvolution approach, 214–215
parameters, 138t	exchange coefficients, 200–203
CPPPO model, 160, 186-189, 188f	fluid-mediated particle-particle
Lagrangian vs. Eulerian filtering tools,	drag, 198
193 <i>f</i>	non-Boussinesq stress models, 212
Cross effects, 199	particle agitation, 199

particle coarsening, 210–212	hydrodynamics of pseudo 2D riser,
sequential fluid coarsening, 210–212	28–29, 30–31 <i>f</i>
wall effects, 203–209	numerical solution method, 24–26
microscopic equations, 223	particle phase equations, 23–24
momentum transfer, 180–181	MFIX-DEM software, 84–85, 135–136
buoyancy forces, 177	chemical reaction, 68
drag force, 175-177	linear spring-dashpot model, 80
ensemble-average vs. per-particle, 175	Discrete particle model (DPM), 5, 6f
fluid-particle interaction force	Dispersed-phase momentum transport
splitting, 174	models
no-slip condition at particle surface, 228	Eulerian description, 170
not-deformable particles, 228	Lagrangian description, 170-172
scale bridging, 154-156	Dispersion coefficients, 179
stress in particulate phase, 181-182	Divergent approach, 189-190, 190f
verification strategies	DNS. See Direct numerical simulation (DNS)
benchmarking particle-resolved direct	Drag force models, 61-64, 175-177
numerical simulation, 192–198	
filtering tools, 191-192	E
volume-averaged governing equations	
approximations of, 228-229	Embedded DNS box approach, 218
derivation of, 223-228	Energy minimization multiscale (EMMS)
Digital image analysis (DIA), 28-29, 37, 39	drag model, 61–63, 72–75, 126
Direct forcing methods (DFM), 9	Ensemble-average
Direct numerical simulation (DNS), 8-9, 8f	fluid–particle transfer coefficients, 194
flow and heat transfer, 13-18, 13t, 15f,	vs. per-particle, 175
16 <i>t</i> , 17 <i>f</i>	Eswaran—Pope forcing method, 218
fluid phase equations, 9–10	Euler–Euler (EE) models, 155, 160, 165
governing equations, 9–10	cluster-induced turbulence, 180
numerical solution method, 11-13	Euler Lagrange (EL) models 155 160 185
particle equations, 10	Euler–Lagrange (EL) models, 155, 160, 185
pseudo 2D fluidized bed of spheres,	cluster-induced turbulence, 180
18–20, 18 <i>t</i> , 20 <i>f</i>	dispersed multiphase flows, 220–229
Discrete element model (DEM), 55–56	particle coarsening, 211f
computational fluid dynamics with, 60	particle-resolved models, 166–167
chemical reactions, 68-69	particle-unresolved models, 167–168
coarse-grained, 69-80, 71f, 77f, 83f	sequential fluid coarsening, 211f Event-driven hard sphere (EDHS) method,
fluid dynamics, 61	59–60
heat transfer model, 66-68, 67f, 99t	Exchange coefficients, 200–203
heights simulated with, 96f	Exchange coefficients, 200–203
instantaneous particles distribution,	
92 <i>f</i> , 95 <i>f</i>	F
momentum transfer models, 61-64	Filtered drag model, 61-62
solid particle dynamics, 64-65	Filtering-Sampling-Binning (FSB) loop,
gas-particle flows, 8f, 21-22	187, 188 <i>f</i>
fluid phase equations, 22-23	Filtering tools, 185–191
gas-fluidized beds with heat	broader application, 217-219
production, 27-28, 28-29f	spatial filtering, 185–186
governing equations, 22-24	verification strategy, 191-192

Flow models, 157–159. <i>See also</i> Multiphase flow models	discrete element model, 27–28, 28–29
Flow simulators, 183–184	two-fluid model, 44–48, 47 <i>t</i> , 48 <i>f</i> pseudo 2D
Fluid dynamics, 61	direct numerical simulation, 18–20,
Fluidized bed, 54–56. See also Gas-fluidized	18 <i>t</i> , 20 <i>f</i>
bed	discrete element model, 28–29, 30–31
bubbling (see Bubbling fluidized bed)	two-fluid model, 37–39, 38f, 38t, 40f
circulating (see Circulating fluidized bed	Gas mixture properties, 112 <i>t</i>
(CFB))	Gas–particle flows, 4–8
counter-current, 136–139, 138 <i>t</i> , 140 <i>t</i>	direct numerical simulation, 8–9, 8f
gas—solids, 98—99	flow and heat transfer, 13–18, 13 <i>t</i> , 15 <i>t</i>
heat transfer mechanisms, 66	16 <i>t</i> , 17 <i>f</i>
liquid–solids, 135 <i>t</i> , 140–141	fluid phase equations, 9–10
uncertainties of, 72–73, 108–109	governing equations, 9–10
Fluidized catalytic cracking (FCC)	numerical solution method, 11–13
regenerator, 109–111	particle equations, 10
boundary conditions, 111f, 114t	pseudo 2D fluidized bed of spheres,
carbon mass fraction, 121–123, 122 <i>f</i>	18–20, 18 <i>t</i> , 20 <i>f</i>
chemical reaction kinetics model,	discrete element model, 8f, 21–22
113–117	fluid phase equations, 22–23
drag model, 63–64	gas-fluidized beds with heat
geometry conditions, 111f	production, 27–28, 28–29f
heat transfer, 118–121	governing equations, 22–24
hydrodynamics, 117–118	hydrodynamics of pseudo 2D riser,
initial conditions, 113, 115 <i>t</i>	28–29, 30–31 <i>f</i>
numerical parameters, 116 <i>t</i>	numerical solution method, 24–26
oxygen mass fraction distribution, 123,	particle phase equations, 23–24
123 <i>f</i>	multiscale approach, 8, 8f
particle flow field, 121–123, 122 <i>f</i>	suspension flows, 156–157
simulation setup, 111–113	two-fluid model, 8f, 30–32
species concentration, 121–125	bubble size distributions, 45f
temperature profiles, 118–121, 119–120 <i>f</i>	closure equations, $33-34t$
Fluid-mediated particle-particle drag, 198	gas-fluidized bed with heat
Fluid–particle systems. See also Dense	production, 44–48, 47 <i>t</i> , 48 <i>f</i>
fluid–particle systems	governing equations, 32–35, 32t
computational fluid dynamics-discrete	numerical solution method, 35–37
element method, 60–69	pseudo 2D gas-fluidized bed, 37–39,
flows, 59–60, 156 <i>f</i> , 161–163 <i>t</i>	38f, 38t, 40f
interaction force splitting, 174, 195	3D cylindrical bed, 39–44, 41 <i>t</i> , 42 <i>f</i>
Fluid phase equations, 9–10	Gas-particle system, 228–229
direct numerical simulation, 9–10	Gas phase stresses, 181
discrete element model, 22–23	Geldart D particles, 42–43, 90–91
Friction coefficient, 65, 74	Gidaspow drag model, 61–63, 102–103
Therefore coefficient, oc, 77	Governing equations
G	continuous phase
Gas-fluidized bed	particle-resolved approach, 168–169
granulator, 5, 5 <i>f</i>	particle-unresolved approach, 169
with heat production	scalar transport, 172–173

direct numerical simulation, 9–10 discrete element model, 22–24 dispersed phase Eulerian description, 170 Lagrangian description, 170–172	K Kinetic theory of granular flow (KTGF) model, 7–8, 8 <i>f</i> , 30–35, 32 <i>t</i> Konstanz information miner (KNIME) model, 160
two-fluid model, 32–35, 32 <i>t</i> Granular temperature equation, 7, 32–35, 37, 85, 93–94, 94 <i>f</i> Grinding process, 54, 141–142 Gulf Stream circulation, 42–43 Gunn correlation, 16–17, 27–28 Gunn's relation, 178	L Lagrange tracking method, 80–81 Lagrangian description method, 64 rotational motion, 171–172 translational motion, 170–171 Large Eddy simulation (LES), 210–212
H Heat transfer model, 66–68, 67 <i>f</i> , 99 <i>t</i> , 178–179, 183, 196–198, 202–203, 208–209	Lattice Boltzmann method (LBM), 9, 184 Linear spring-dashpot model, 59–60, 73–74, 80–81 Liquid-solids fluidized bed, 135 <i>t</i> Low mach number, 228
bubbling fluidized bed, 98 <i>f</i> computational fluid dynamics—discrete element method, 66–68, 67 <i>f</i> , 99 <i>t</i> coarse-grained, 75–80, 77 <i>f</i> , 98–102, 99 <i>t</i> fluid catalytic cracking regenerator, 118–121 physical properties, 99 <i>t</i> simulation parameters, 99 <i>t</i> stationary particle arrays, 13–18, 13 <i>t</i> , 15 <i>f</i> , 16 <i>t</i> , 17 <i>f</i> Hydrodynamic modeling, gas-fluidized beds, 7 discrete element model, 28–29, 30–31 <i>f</i> two-fluid model, 37–39, 38 <i>t</i> , 38 <i>f</i> , 40 <i>f</i>	M Macroscale models, 159 transport equations for, 172 Mass fraction fluid catalytic cracking regenerator, 121–125, 122–124f methane-to-olefin reactor, 130–132, 131–132f rare earth elements, 138–139, 138–139f, 142–143, 143f Mass-spring-dashpot equation, 74, 78–79 Mass transfer, 178–179, 183, 202–203, 208–209 Mathematical formulation, dense
Ideal gas law, 111–113 Immersed boundary method (IBM), 9, 168 Incomplete conjugate gradient method (ICGM), 12, 25–26, 37 Industrial reactors, CGHS, 109–110 fluidized catalytic cracking regenerator, 110–125, 111f, 119–120f, 122f, 124f methane-to-olefin reactor, 125–133 rare earth elements leaching reactor, 133–143, 136f, 138–139f, 141–143f Instantaneous particles distribution, 92f, 95f Intraparticle transport phenomena, 219–220	fluid–particle systems continuous phase, 168–169 dispersed phase, 170–172 Euler–Euler models, 165 Euler–Lagrange models, 165–168 governing equations, 168–172 macroscale models, 172 particle-resolved EL models, 166–167 particle-unresolved EL models, 167–168 Mesoscale models, 159 cohesive systems, 212–214 cross effects, 199 deconvolution approach, 214–215 exchange coefficients, 200–203 fluid-mediated particle-particle drag, 198

Mesoscale models (Continued)	N
non-Boussinesq stress models, 212	
particle agitation, 199	National Energy Technology Laboratory
sequential fluid and particle	(NETL), 102–103
coarsening, 210–212	Navier–Stokes equations, 168
wall effects, 203–209	Newtonian equations of motion, 8–10,
Methane-to-olefin (MTO) reactor,	21, 26
109–110, 125–126	Newton's second law, 23
chemical reaction kinetics model,	Non-Boussinesq stress models, 212
128–129	Not-deformable particles, 228
coke mass fraction, 130–131,	Numerical diffusion, 39–41, 55–56
131–132 <i>f</i>	Numerical solution method, 11–13
energy minimization multiscale drag	Nusselt number, 197 <i>f</i> , 208–209
model, 63	
parameters, 127 <i>t</i>	0
reaction constant, 129 <i>t</i>	Oxygen mass fraction distribution, 123, 123f
results and discussion, 129–133, 130f	
simulation setup, 126–128, 127 <i>f</i>	Р
species mass fraction, 132, 132f	ParScale software tool, 219–220
MFIX-DEM software, 84–85, 135–136	
chemical reaction, 68	Particle agitation, 199 Particle coarsening, 210–212
linear spring-dashpot model, 80	Particle flow field
Microscale models, 157	
· ·	fluid catalytic cracking regenerator,
Molecular dynamics (MD), 21–22	121–123, 122 <i>f</i>
Momentum conservation laws, 59–60, 80–81, 84, 95–96	rare earth element mass fraction, 138–139,
Momentum transfer equations, 11–12,	138f
61–64, 180–181	Particle—fluid convection, 66, 101f
	Particle–fluid–wall heat transfer model,
buoyancy forces, 177	66–67, 67 <i>f</i> , 75–76, 78, 101 <i>f</i>
computational fluid dynamics–discrete element method, 61–64	Particle image velocimetry (PIV), 28–29,
	37, 39
drag force, 175–177	Particle–particle conduction, 78–80
ensemble-average vs. per-particle, 175	Particle phase equations
on fluid cell, 61	direct numerical simulation, 10
fluid–particle interaction force	discrete element model, 23–24
splitting, 174	Particle-phase stresses, 181, 213f
solids phase, 32–35	Particle-resolved (PR)-EL models,
time discretization of, 11, 24, 35	166–167, 166 <i>f</i>
MTO reactor. See Methane-to-olefin	Particle resolved simulation (PRS), 8–9
(MTO) reactor	Particles fluctuating energy, 93–94
Multiphase flow models, 157–159, 158f	Particle size distribution (PSD), 117–121,
Multiphase particle-in-cell (MP-PIC),	145–147
55–56, 59–60	Particles settling system, 85, 85f, 86t
Multiscale approach, gas–particle	Particle-unresolved (PU)-EL models,
flows, 8, 8 <i>f</i>	167–168, 167 <i>f</i>
direct numerical simulation, 8–20	Particle velocity, 103–105, 121–123
discrete element model, 21–29	collision process, 81–82, 83f
two-fluid model, 30–48	measurements, 58–59
Multiscale models, 155–156	suspension process, 81

Particle-wall contact conduction, 66-68,	Time-driven hard-sphere (TDHS)
100–102, 101 <i>f</i>	model, 59–60
Particle–wall distance, 76–78	coarse-grained computational fluid
Particulate phase, stress in, 181-182	dynamics-discrete element method,
PIV. See Particle image velocimetry (PIV)	80–84
Positron emission particle tracking (PEPT)	computational fluid dynamics
technique, 42–43, 43 <i>f</i>	bubbling fluidized bed, 89–94
PR-direct numerical simulation (PR-DNS),	granular temperature profiles, 94 <i>f</i>
168–169	heights simulated with, 96f
Probe technique, 43–44	instantaneous particles distribution, 92 <i>f</i> ,
Pseudo 2D gas-fluidized bed	95 <i>f</i>
direct numerical simulation, 18–20, 18 <i>t</i> ,	verification study, 94–97
20 <i>f</i>	dense granular flow, 85–89
2	
discrete element model, 28–29, 30–31 <i>f</i>	Translational motion, 170–171
two-fluid model, 37–39, 38t, 38f, 40f	Two-fluid model (TFM), 7, 8f, 30–32, 155
_	bubble size distributions, 45f
R	closure equations, 33–34 <i>t</i>
Rand corporation study, 54	gas-fluidized bed with heat production,
Rare earth elements (REE) leaching reactor,	44–48, 47 <i>t</i> , 48 <i>f</i>
109–110, 133–143, 136 <i>f</i> , 138–139 <i>f</i> ,	governing equations, 32–35, 32 <i>t</i>
141–143 <i>f</i>	numerical solution method, 35–37
Reaction constant, methane-to-olefin, 129t	pseudo 2D gas-fluidized bed, 37–39, 38t,
Restitution coefficient, 74–75, 79, 84,	38f, 40f
105–107	3D cylindrical bed, 39–44, 41 <i>t</i> , 42 <i>f</i>
Richardson–Zaki type velocity–voidage	Two-fluid models (TFM), 72–73, 102–103
correlation, 61-62	U
Rotational motion, 171-172	·
	Uncertainties
S	evaluation, 58–59
Scalar transport models	fluidized beds, 72–73, 108–109
dispersion coefficients, 179	model-induced, 96–97
heat transfer, 178–179	W
mass transfer, 178–179	V
Scale bridging, 154–156	Volume-averaged governing equations
Scaling law, 74, 84	gas-particle system, 228–229
Sequential fluid coarsening, 210–212	low mach number, 228
SIMPLE algorithm, 21–22, 30–31, 36	no-slip condition, 228
Solid particle dynamics, 64–65	not-deformable particles, 228
Stokes drag law, 202	simplified equations, 229
Stokesian dynamics (SD), 183–184	Volume-averaged Navier-Stokes equations,
Superficial gas velocity, 47–48, 48f	7, 21, 61, 70
Suspension process, 80–81	•
	W
Syamlal–O'Brien drag model, 61–63, 89–90	Wall effects, 203–209
_	Wall radial distribution function, 206
Т	Wen-Yu drag model, 61-63, 136-138
Tangential contact force, 65	v
TFM. See Two-fluid model (TFM)	X
3D cylindrical bed, 39–44, 41 <i>t</i> , 42 <i>f</i>	X-ray tomography, 44, 45 <i>f</i>