ROC curve, PR curve, and AUCs

May 28, 2022

Thien

Data

```
> dt <- iris
> table(dt$Species)
    setosa versicolor virginica
        50
                    50
                               50
> dt <- dt[(dt$Species=="versicolor") | (dt$Species=="virginica"),c(1:2,5)]</pre>
> table(dt$Species)
    setosa versicolor virginica
         0
                    50
                               50
> dt$class <- ifelse(dt$Species == "virginica", 1, 0)</pre>
> head(dt)
   Sepal.Length Sepal.Width
                                Species class
51
                         3.2 versicolor
            7.0
                                                        > library(caret)
52
                         3.2 versicolor
                                                        > index <- createDataPartition(dt$Species, p=0.80, list=FALSE)</pre>
53
                         3.1 versicolor
                                                        Warning message:
54
            5.5
                         2.3 versicolor
                                                        In createDataPartition(dt$Species, p = 0.8, list = FALSE) :
55
            6.5
                         2.8 versicolor
                                                          Some classes have no records (setosa) and these will be ignored
56
                         2.8 versicolor
            5.7
                                                        > trainDT <- dt[index,]</pre>
                                                        > table(trainDT$Species)
                                                            setosa versicolor virginica
                                                                                       40
                                                        > testDT <- dt[-index.]
                                                        > table(testDT$Species)
                                                            setosa versicolor virginica
                                                                  0
                                                                            10
                                                                                       10
```

Bulid up logistic regression model

```
> logis <- glm(Species ~ Sepal.Length, trainDT, family="binomial")
> summary(logis)
Call:
glm(formula = Species ~ Sepal.Length, family = "binomial", data = trainDT)
Deviance Residuals:
     Min
                     Median
                                            Max
-1.87194 -0.88394
                   -0.06085
                              1.01817
                                        2.29151
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)
            -12.1450
Sepal.Length 1.9581
                         0.5237
                                  3.739 0.000185 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 110.904 on 79 degrees of freedom
Residual deviance: 90.316 on 78 degrees of freedom
AIC: 94.316
Number of Fisher Scoring iterations: 4
```


Prediction

```
> testDT$pred <- predict(logis, testDT, type="response")</pre>
> head(testDT)
   Sepal.Length Sepal.Width
                                   Species class
                                                         pred
                                                 0 0.2017335
54
              5.5
                            2.3 versicolor
59
              6.6
                            2.9 versicolor
                                                 0 0.6853359
61
              5.0
                            2.0 versicolor
                                                 0 0.0867056
                            2.2 versicolor
63
                                                 0 0.4021655
                            3.1 versicolor
66
                                                 0 0.7259583
              5.6
                            2.5 versicolor
                                                 0 0.2351086
> cutoff <- 0.5
> testDT$pred.species <- ifelse(testDT$pred > cutoff, "virginica",
 "versicolor")
> table(testDT$pred.species)
versicolor virginica
                  12
> head(testDT)
   Sepal.Length Sepal.Width
                              Species class
                                                 pred
                       2.3 versicolor
54
           5.5
                                          0 0.2017335
59
           6.6
                       2.9 versicolor
                                          0 0.6853359
61
           5.0
                       2.0 versicolor
                                         0 0.0867056
63
                       2.2 versicolor
           6.0
                                          0 0.4021655
66
           6.7
                       3.1 versicolor
                                          0 0.7259583
           5.6
                       2.5 versicolor
                                          0 0.2351086
70
  pred.species
54
    versicolor
59
     virginica
61
    versicolor
63
    versicolor
66
     virginica
    versicolor
```


Threshold = 0.5 for classification

Confusion Matrix

	Virginica	Versicolor
Virginica (Predicted)	9	5
Versicolor (Predicted)	1	5

	Actually Positive (1)	Actually Negative (0)
Predicted	True	False
	Positives	Positives
Positive (1)	(TPs)	(FPs)
Predicted	False	True
	Negative	Negative
Negative (0)	(FNs)	(TNs)

Sensitivity and Specificity

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negative (FNs)	True Negative (TNs)

- Sensitivity (true positive rate): probability of a positive test, conditioned on truly being positive. TPR = $\frac{\text{TPs}}{\text{TPs+FNs}}$
- Specificity (true negative rate): probability of a negative test, conditioned on truly being negative. TNR = $\frac{TNs}{FPs+TNs}$

Sensitivity and Specificity

	Virginica	Versicolor
Virginica (Predicted)	9	5
Versicolor (Predicted)	1	5

• Sens =
$$\frac{\text{TPs}}{\text{TPs+FNs}} = \frac{9}{5+5} = 0.9$$

• Spec =
$$\frac{\text{TNs}}{\text{FPs+TNs}} = \frac{5}{1+9} = 0.5$$

	Virginica	Versicolor
Virginica (Predicted)	0	0
Versicolor (Predicted)	10	10

• Sens =
$$\frac{\text{TPs}}{\text{TPs+FNs}} = \frac{0}{10+0} = 0.0$$

• Spec =
$$\frac{\text{TNs}}{\text{FPs+TNs}} = \frac{10}{10+0} = 1.0$$

```
Reference
Prediction versicolor virginica
  versicolor 10 10
  virginica 0 0
> sensitivity = cm[2, 2] / (cm[2, 2] + cm[1, 2])
> sensitivity
[1] 0
> specificity = cm[1, 1] / (cm[1, 1] + cm[2, 1])
> specificity
[1] 1
```


	Virginica	Versicolor
Virginica (Predicted)	10	10
Versicolor (Predicted)	0	0

• Sens =
$$\frac{\text{TPs}}{\text{TPs+FNs}} = \frac{10}{0+10} = 1.0$$

• Spec =
$$\frac{\text{TNs}}{\text{FPs+TNs}} = \frac{0}{0+10} = 0.0$$

False Positive Rate: probability of a positive test, conditioned on truly being negative.

Threshold [‡]	Sens [‡]	Spec [‡]
0.0	1.0	0.0
0.1	1.0	0.1
0.2	1.0	0.2
0.3	0.9	0.4
0.4	0.9	0.5
0.5	0.9	0.5
0.6	0.5	0.8
0.7	0.5	0.8
0.8	0.2	0.9
0.9	0.1	1.0
1.0	0.0	1.0

FPR

ROC curve (Receiver Operating Characteristic curve)

- Showing the performance of a classification model at all classification thresholds
- Provide a simple way to summarize information alternative to tons of confusion matrix
- ROC curve is a compromise of
 - False positive rate (FPR): X-axis
 - True positive rate (TPR): Y-axis

ROC curve

Threshold [‡]	Sens [‡]	Spec [‡]	FPR [‡]
0.0	1.0	0.0	1.0
0.1	1.0	0.1	0.9
0.2	1.0	0.2	0.8
0.3	0.9	0.4	0.6
0.4	0.9	0.5	0.5
0.5	0.9	0.5	0.5
0.6	0.5	0.8	0.2
0.7	0.5	0.8	0.2
0.8	0.2	0.9	0.1
0.9	0.1	1.0	0.0
1.0	0.0	1.0	0.0

ROC curve

AUC (Area Under the Curve)

ROC Curve https://www.youtube.com/watch?v=4jRBRDbJemM&t=821s

AUC (Area Under the Curve)

```
> ROC_height = (table_sens_spec$Sens[-1]+table_sens_spec$Sens[-length(table_sens_spec$Sens)])/2
> ROC_width = -diff(table_sens_spec$FPR)
> AUC <- sum(ROC_height*ROC_width)
                                                        1.00-
> AUC
[1] 0.74
                                                    True Positive Rate
                                                        0.00
                                                                        0.25
                                                                                   0.50
                                                                                               0.75
                                                                                                          1.00
                                                             0.00
                                                                         False Positive Rate
```

Accuracy: ratio of number of correct predictions to the total number of observations.

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negative (FNs)	True Negative (TNs)

• Accuracy =
$$\frac{TPs+TNs}{TPs+TNs+FPs+FNs}$$

Accuracy

	Virginica	Versicolor
Virginica (Predicted)	9	5
Versicolor (Predicted)	1	5

• Accuracy =
$$\frac{\text{TPs+TNs}}{\text{TPs+TNs+FPs+FNs}} = \frac{9+5}{9+5+5+1} = 0.7$$

Accuracy

• What if the test data have 990 Virginica and 10 Versicolor?

	Virginica	Versicolor
Virginica (Predicted)	990	10
Versicolor (Predicted)	0	0

• Accuracy =
$$\frac{\text{TPs+TNs}}{\text{TPs+TNs+FPs+FNs}} = \frac{990+0}{990+0+10+0} = 0.99$$

 The accuracy now is 0.99 but completely miss classified all Versicolor species → Imbalance

Precision and Recall

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negative (FNs)	True Negative (TNs)

• Precision (positive predictive value): The proportion of positive tests that were correctly classified. PPV = $\frac{TPs}{TPs+FPs}$

• Recall = Sensitivity: TPR =
$$\frac{\text{TPs}}{\text{TPs+FNs}}$$

Precision and Recall

Precision and Recall

	Virginica	Versicolor
Virginica (Predicted)	9	5
Versicolor (Predicted)	1	5

• PPV =
$$\frac{\text{TPs}}{\text{TPs+FPs}} = \frac{9}{9+5} = 0.64$$

• TPR = Sens =
$$\frac{\text{TPs}}{\text{TPs+FNs}} = \frac{9}{9+1} = 0.9$$

PR curve

Threshold [‡]	Sens [‡]	PPV [‡]
0.0	1.0	0.5000000
0.1	1.0	0.5263158
0.2	1.0	0.555556
0.3	0.9	0.6000000
0.4	0.9	0.6428571
0.5	0.9	0.6428571
0.6	0.5	0.7142857
0.7	0.5	0.7142857
0.8	0.2	0.6666667
0.9	0.1	1.0000000


```
AUPRC (Area Under the Precision-RecallCurve)
> PR_height = (table_sens_ppv$PPV[-1]+table_sens_ppv$PPV[-length(table_sens_ppv$PPV)])/2
> PR_width = -diff(table_sens_ppv$Sens)
> AUPRC <- sum(PR_height*PR_width)
                                    1.00
> AUPRC
[1] 0.7196825
                                    0.75
                                 Precision
```

0.25

0.00

0.00

0.25

0.75

1.00

0.50

Recall

Package for ROC, AUC, PR and AUPRC

library(precrec)
ROCnPR <- evalmod(scores = testDT\$pred, labels = testDT\$Species)
plot(ROCnPR)
autoplot(ROCnPR)
autoplot(ROCnPR, "ROC")
autoplot(ROCnPR, "PRC")
aucs <- auc(ROCnPR)
knitr::kable(aucs)</pre>

modnames	dsids	curvetypes		aucs
:	:	:	-	:
m1	1	ROC	İ	0.7300000
m1	1	PRC		0.7288747

Package for ROC, AUC, PR and AUPRC

dt.roc <- as.data.frame(ROCnPR)[as.data.frame(ROCnPR)\$type == "ROC",]
ggplot(dt.roc, aes(x=x, y=y)) + geom_path(size = 2) + geom_point() +
labs(x = "False Positive Rate", y = "True Positive Rate") + xlim(0,1) + ylim(0,1) +
geom_abline(intercept= 0, slope = 1, size =1, linetype=2) +
theme(text = element_text(size = 30))</pre>

dt.pr <- as.data.frame(ROCnPR)[as.data.frame(ROCnPR)\$type == "PRC",]
ggplot(dt.pr, aes(x=x, y=y)) + geom_path(size = 2) + geom_point() +
labs(x = "Recall", y = "Precision") + xlim(0,1) + ylim(0,1) +
geom_hline(yintercept = 0.5, size =1, linetype=2) +
theme(text = element text(size = 30))</pre>

Decision Boundary

versicolor / virginica Logistic Regression

8 Sepal.Width 3.0 2.5 5.0 5.5 7.5 8.0 6.0 6.5 7.0 Sepal.Length

setosa / versicolor Logistic Regression

https://rpubs.com/ZheWangDataAnalytics/DecisionBoundary

Exercises

- 1. Using Sepal.Length for Species (virginica/versicolor) prediction on test data on multiple thresholds with step=0.01:
 - 1.1. Generate Sensitivity, Specificity, False positive rate and Precision.
 - 1.2. Perform ROC cuvre, AUC, PR curve and AUPRC.
- 2. Using Sepal.Length + Sepal.Witdh for Species (virginica/versicolor) prediction on test data:
 - 2.1. Perform ROC cuvre, AUC, PR curve and AUPRC.
 - 2.2. Perform Decision Boundary
- 3. Using Sepal.Length + Sepal.Witdh for Species (setosa/versicolor) prediction on test data on multiple thresholds with step=0.01:
 - 3.1. Perform ROC cuvre, AUC, PR curve and AUPRC.
 - 3.2. Perform Decision Boundary