Regressão Linear

Renato Martins Assunção

DCC - UFMG

2015

Predição de preços imobiliários

- Qual o valor de um imóvel?
- Existem softwares para fazer esta predição de forma automática a partir de várias características do imóvel.
- Menos subjetivo, mais rápido, primeira avaliação.
- Como um software desses pode ser construído?

Preços de imóveis

- Coletamos preços de 1500 imóveis a venda no mercado de BH.
- Alguns são caros, outros são baratos.
- O que faz com que os preços dos imóveis variem?
- As três coisas mais importantes que afetam o valor de um imóvel...

Localização

- Localização:
 - Dividir a cidade em pequenas áreas.
- Outra abordagem mais simples:
 - Localização é status socio-econômico;
 - Status é mensurado por renda.
 - Renda é medida pelo IBGE em 2000 pequenas áreas da cidade.
 - Renda do "chefe do domícilio".
- Então: "localização" = renda média da região onde está o imóvel.

Outras características do imóvel

- Ano da construção
- Área total do imóvel
- Número de quartos
- Número de suítes
- Quantos aptos por andar?
- Possui salão de festas? 0 ou 1
- Possui piscina? 0 ou 1
- ETC...
- Ao todo, 30 características numéricas para cada um dos 1500 imóveis.

Visão matricial

- Organizar os dados como vetores e matrizes.
- Preços: um vetor Y de dimensão 1500.
- As características: matriz 1500 × 30
 - Cada linha = um imóvel
 - 1ª. coluna = renda média da região
 - 2ª. coluna = ano da construção
 - 3^a. coluna = área total
 - Etc.

Visão matricial

Preços de 1500 imóveis (vetor de dimensão 1500)

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{1499} \\ y_{1500} \end{pmatrix}$$

$$X = \left(\begin{array}{cccc} \operatorname{renda_1} & \operatorname{\acute{a}rea_1} & \cdots & \operatorname{sal\~ao_1} \\ \operatorname{renda_2} & \operatorname{\acute{a}rea_2} & \cdots & \operatorname{sal\~ao_2} \\ \vdots & \vdots & \vdots \\ \operatorname{renda_{1499}} & \operatorname{\acute{a}rea_{1499}} & \cdots & \operatorname{sal\~ao_{1499}} \\ \operatorname{renda_{1500}} & \operatorname{\acute{a}rea_{1500}} & \cdots & \operatorname{sal\~ao_{1500}} \end{array} \right)$$

ullet 30 características de 1500 imóveis (Matriz X de dimensao 1500 imes 30) ullet

Preço é uma soma ponderada

- Procuramos um modelo matemático simples que possa explicar, a partir das características, porque alguns imóveis são caros e outros são baratos.
- Área total: quanto maior o imóvel, maior o preço.

Influência de área

- Vamos fazer uma primeira aproximação, talvez muito grosseira e sujeita a revisões.
- Mas será um ponto de partida.
- Vamos imaginar que, APROXIMADAMENTE, o preço aumenta linearmente com a área do imóvel.
- Isto é, que o preço $Y \approx a + b * \text{área}$.

Um gráfico com 150 imóveis

- Cada ponto é um imóvel
 - O eixo vertical tem os preços (em milhares de reais)
 - O eixo horizontal tem as áreas (em metros quadrados)
- Parece que o preço é, grosseiramente, uma função linear da área.
- Isto é, $Y \approx a + b * \text{área}$.

Um gráfico com 150 imóveis

- Reta no gráfico corresponde a esta equação:
 - Preço $Y \approx 50 + 2 * \text{área.}$

Área não é tudo

- Dois imóveis com praticamente a mesma área possuem preços diferentes
- O que causa a diferença?
- Idade do imóvel?
- Dois imóveis, com áreas iguais: se um for mais velho, provavelmente será mais barato.

Ampliando o modelo inicial

- Podemos então imaginar que a idade traz um impacto adicional ao nosso modelo de preço.
- Neste momento, temos $Y \approx a + b * \text{área}$.
- Já vimos até mesmo que $a \approx 50$ e $b \approx 2$
- Podemos agora acrescentar o impacto de idade imaginando que:
 - $Y \approx a + b * \text{área} + c * \text{idade}$.
- Como maior idade reduz o preço, devemos ter c < 0.

Um modelo ainda mais complexo

- Mas o preço não depende apenas de área e idade.
- Dois imóveis com mesma área e mesma idade podem ter preços bem diferentes dependendo de:
 - Sua localização (renda da sua região)
 - Número de suítes
 - Número de vagas na garagem
 - Etc.
- Cada fator pode ser acrescido ao modelo inicial de forma linear.

Modelo mais complexo

- Vamos considerar um modelo que, a partir das 30 características do imóvel, fornece uma predição do preço da seguinte forma:
 - Y é aproximadamente igual a

$$a + b * \text{área} + c * \text{idade} + d * \text{localização} + \text{ETC} \dots$$

- O problema é:
 - como encontrar os valores de a, b, c, etc. que tornem a aproximação a melhor possível?

O problema de forma matemática

 Queremos que cada um desses 1500 valores seja aproximadamente igual a uma combinação linear das 30 características (mais a constante a)

$$y_1 \approx a + b * \text{área}_1 + c * \text{idade}_1 + \dots$$
 $y_2 \approx a + b * \text{área}_2 + c * \text{idade}_2 + \dots$
 \vdots
 $500 \approx a + b * \text{área}_{1500} + c * \text{idade}_{1500} + \dots$

• Podemos escrever isto de forma matricial.

O problema de forma matemática

• Para facilitar a notação no futuro, vamos escrever os pesos que multiplicam cada característica como b_0 (para a constante), b_1 (para área), b_2 (para idade), ..., b_{30} para a presença ou não de salão de festas

$$y_1 \approx b_0 + b_1 * \text{área}_1 + b_2 * \text{idade}_1 + \dots b_{30} * \text{salão}_1$$
 $y_2 \approx b_0 + b_1 * \text{área}_2 + b_2 * \text{idade}_2 + \dots b_{30} * \text{salão}_2$
 \vdots
 $y_{1500} \approx b_0 + b_1 * \text{área}_{1500} + b_2 * \text{idade}_{1500} + \dots b_{30} * \text{salão}_{1500}$

O problema de forma matricial

$$y_{1} \approx b_{0} + b_{1} * ext{área}_{1} + b_{2} * ext{idade}_{1} + \dots b_{30} * ext{sal} ilde{ao}_{1}$$
 $y_{2} \approx b_{0} + b_{1} * ext{área}_{2} + b_{2} * ext{idade}_{2} + \dots b_{30} * ext{sal} ilde{ao}_{2}$
 \vdots
 $y_{1500} \approx \underbrace{b_{0} + b_{1} * ext{área}_{1500} + b_{2} * ext{idade}_{1500} + \dots b_{30} * ext{sal} ilde{ao}_{1500}}_{\text{b0}} + b_{1} * ext{área}_{1500} + b_{2} * ext{idade}_{1500} + \dots b_{30} * ext{sal} ilde{ao}_{1500}}_{\text{sal} ilde{ao}_{1500}}$
 $\xrightarrow{b_{0} + b_{1} * ext{área}_{1500} + b_{2} * ext{idade}_{1500} + \dots b_{30} * ext{sal} ilde{ao}_{1500}}_{\text{sal} ilde{ao}_{1500}}$
 $\xrightarrow{b_{0} + b_{1} * ext{área}_{1500} + b_{2} * ext{idade}_{1500} + \dots b_{30} * ext{sal} ilde{ao}_{1500}}_{\text{sal} ilde{ao}_{1500}}$

 Os valores y₁, y₂,..., y₁₅₀₀ devem ser colocados em um vetor de dimensão 1500.

Forma vetorial

$$Y = \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_{1499} \\ y_{1500} \end{array} \right) \approx b_0 \left(\begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{array} \right) + b_1 \left(\begin{array}{c} \operatorname{área_1} \\ \operatorname{área_2} \\ \vdots \\ \operatorname{área_{1499}} \\ \operatorname{área_{1500}} \end{array} \right) + b_2 \left(\begin{array}{c} \operatorname{idade_1} \\ \operatorname{idade_2} \\ \vdots \\ \operatorname{idade_{1499}} \\ \operatorname{idade_{1500}} \end{array} \right) + \ldots + b_{30} \left(\begin{array}{c} \operatorname{salão_1} \\ \operatorname{salão_2} \\ \vdots \\ \operatorname{salão_{1499}} \\ \operatorname{salão_{1500}} \end{array} \right)$$

- Y é um vetor de dimensão 1500 escrito como combinação linear de 31 vetores, cada um deles de dimensão 1500.
- Problema: encontrar os coeficientes b_0, b_1, \ldots, b_{30} que tornem a aproximação acima a melhor possível.

A solução do problema

- Veremos com detalhes mais tarde no curso como resolver este problema.
- Neste momento, basta dizer que nosso problema fica reduzido a um sistema de equações lineares.
- Ou ainda, a um problema de inverter uma certa matriz quadrada.

A matriz de desenho X

• Seja X a matriz 1500×31 abaixo (note que ela tem uma coluna composta apenas de 1's):

$$X = \begin{pmatrix} 1 & {\rm renda_1} & {\rm \acute{a}rea_1} & \cdots & {\rm sal\~ao_1} \\ 1 & {\rm renda_2} & {\rm \acute{a}rea_2} & \cdots & {\rm sal\~ao_2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & {\rm renda_{1499}} & {\rm \acute{a}rea_{1499}} & \cdots & {\rm sal\~ao_{1499}} \\ 1 & {\rm renda_{1500}} & {\rm \acute{a}rea_{1500}} & \cdots & {\rm sal\~ao_{1500}} \end{pmatrix}$$

Vetores próximos

Nosso problema é encontrar os coeficientes $b_0, b_1, \dots b_{30}$ tais que

$$Y = \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_{1499} \\ y_{1500} \end{array}\right) \approx b_0 \left(\begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{array}\right) + b_1 \left(\begin{array}{c} \operatorname{\acute{a}rea_1} \\ \operatorname{\acute{a}rea_2} \\ \vdots \\ \operatorname{\acute{a}rea_{1499}} \\ \operatorname{\acute{a}rea_{1500}} \end{array}\right) + b_2 \left(\begin{array}{c} \operatorname{idade_1} \\ \operatorname{idade_2} \\ \vdots \\ \operatorname{idade_{1499}} \\ \operatorname{idade_{1500}} \end{array}\right) + \ldots + b_{30} \left(\begin{array}{c} \operatorname{sal\~ao_1} \\ \operatorname{sal\~ao_{1499}} \\ \operatorname{sal\~ao_{1499}} \\ \operatorname{sal\~ao_{1500}} \end{array}\right)$$

Ou seja, encontrar $b_0, b_1, \dots b_{30}$ tais que

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{1498} \\ y_{1499} \\ y_{1499} \\ y_{1490} \end{pmatrix} \approx \begin{pmatrix} 1 & \text{renda}_1 & \text{área}_1 & \cdots & \text{salão}_1 \\ 1 & \text{renda}_2 & \text{área}_2 & \cdots & \text{salão}_2 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \text{renda}_{1499} & \text{área}_{1499} & \cdots & \text{salão}_{1499} \\ 1 & \text{renda}_{1500} & \text{área}_{1500} & \cdots & \text{salão}_{1500} \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{30} \end{pmatrix} = Xb$$

onde $b = (b_0, \dots b_{30})^{\mathsf{r}}$. Isto é, queremos $Xb \approx Y$. Como resolver isto?

Solução: um sisteam linear

Queremos encontrar b para resolver o "sistema" linear $Y \approx Xb$

X é uma matriz 1500×31 e Y é um vetor de 1500 posições.

Como X não é uma matriz quadrada, não é um sistema linear usual: não tem soluç ao, em geral.

Solução: um sistema linear

Um truque para resolver este "sistema" linear: multiple dos dois lados pela matriz X^t (como se fosse uma constante) e troque \approx por =

$$\underbrace{(X^tX)}_A b \approx \underbrace{X^tY}_c$$

Assim, terminamos com um sistema linear legítimo do tipo Ab=c onde $A=X^tX$ é matriz quadrada 31×31 e $c=X^tY$ é vetor com 31 posições.

Solução: um sistema linear

• A solução $\mathbf{b} = (b_0, b_1, \dots, b_{30})^t$ de nosso problema é dada pelo vetor 31×1 que é a solução desta equação matricial:

$$X^t X \mathbf{b} = X^t Y$$

- Ou ainda, $\mathbf{b} = (X^t X)^{-1} X^t Y$.
- A matriz X^tX é de dimensão 31×1 .
- Inversão via eliminação gaussiana ou, mais profissionalmente, decomposição QR.