

OBLON ET AL (763) 413-3000 DOCKET # 278942US SHEET 5 OF 19

OBLON ET AL (763) 413-3000 DOCKET # 278942US SHEET 10 OF 19

OBLON ET AL (763) 413-3000 DOCKET # <u>278942WS</u> SHEET // OF <u>19</u>

58 (36E 58 00 0.0 50 34P36E 5 E 50 36P 36S ∞

Fig. 16

					-							
FOURTH REFERENCE EXAMPLE	LOOP LOOP INDUCTANCE	(pH)		88	75	75	65	. 79	90	90	57	
RANDOM	LOOP INDUCTANCE	(pH)	115	109	100	95	90	85	85	_	06	-
GRID FORMATION	LOOP INDUCTANCE	(Hď)	1 8	75	29	26	22	55	55	55	20	09
STAGGERED FORMATION (THICK COPPER)	LOOP	(Hď)	93	87	73	73	63	59	. 89	59	55	63
	THICKNESS OF CORE	SUBSTRATE (μm)	009	009	009	009	009	. 009	009	009	009	009
	THROUGH HOLE	DIAMETER $(\mu \text{ m})$	450	400	350	300	275	250	225	200	50	25
·	THROUGH	PITCH (μm)	650	009	550	500	475	450	425	400	80	50

NOTE: A DIFFERENCE BETWEEN FOURTH REFERENCE EXAMPLE AND GRID FORMATION (THICK COPPER) IS JUST A SUM OF THICKNESSES OF CONDUCTIVE LAYERS IN MULTI-LAYER CORE SUBSTRATE.

17/19 Fig. 17 (A)

*	STAGGERED I (THICK CO		GRID FORMATION (THICK COPPER)			
THROUGH	CRACK IN	RESULT OF	CRACK IN	RESULT OF		
HOEL	INSULATING	CONDUCTIVITY	INSULATING	CONDUCTIVITY		
PITCH	LAYER	TEST	LAYER	TEST		
(μm)						
650	0	0	0	0		
600	0	0	0	0		
500	0	0	0	0		
400	0	0	0	0		
80	0	0	0	0		
50	X	×	×	×		

CRACK IN INSULATING LAYER: \bigcirc NO CRACK \times CRACK

RESULT OF CONDUCTIVITY TEST: O NO ABNORMALITY IN RESISTANCE

× ABNORMALITY IN RESISTANCE

(B)

·	STAGGERED	GRID	
·	FORMATION	FORMATION	
THROUGH	LOOP	LOOP	
HOEL PITCH	INDUCTANCE	INDUCTANCE	
(μm)	(Hq)	(pH)	
650	93	84	
600	87	75	
550	73	60	
500	63	56	
475	63	57	
450	59	55	
425	58	54	
400	55	52	
350	54	50	
300	54	50	
200	53	50	
100	54	49	
75	54	49	
60	55	50	
50	63	60	

F i g. 19
RATIO OF CORE POWER LAYER