QUESTIONS: -

- 1. Identify the applications of computer graphics and compare Rastas scan, Random scan displays.
- 2. Develop The working principle of Bresenham's line drawing algorithm for different slopes of a line
- 3. Construct any 10 openGI output primiture functions.
- 4. Build the working of a CRT and Election gein.
- 5. Interview the following terms with respect the computer graphies:
 - a. Bitmah
 - b. Aspert satur
- 1. Frame buffer
- d. stribute
- 6. Design the diagram with different contenting reference frames used in process of constructing and displaying a scene.
- 7. Develop an OpenGIL pergram to create a house like strendure using suitable openGIL

PAGE NO 03

* Graphs and sharts are practically used to summarize statistical, mathematical data for reports, research, etc.

COMPUTER AIDED DESIGN (CAD):

* competer sided Design (CAD) or competer sided Drafted Designs (CADD) are used on a large scale in arthitectural and engineering fields.

of usuals or suchitedural platforms and also to useate animations related to it.

VIRTUAL REALITY (UR):

offication that helps us analyze vacious scenarios in real which are actually visitual.

* If gloves are freevided a freeson ran experience feeling and friking objects in the visituality. This can be used to see the rinks in construction of a design and evaluate it.

EDUCATION AND TRAINING:

education and training to individuals in many ways, one of which is simulation tools. An individual can learn to drive a rat or fly a plane by running their simulations.

PAGE NO. 04

RASTER SCAN DISPLAY	RANDOM SLAN DUPLAY
Election beam is	Election beam is
swept servers the entire	directly pointed at the
surein from top to	black on a sussen
bottom, one sow at a	where the future is to
time.	Le digion
Resolution is poor as	Resolution is smoot
Raster scan display	as Random scan display
produces zig-zag lines	perdues straight lines in
leading to discrete	line path.
points sets.	
Picture is stored as	Picture is stored as
pixels in refresh-	line dearoing instructions
buffer area.	in a display file.
Realistie display son	Realistic display connot
be freduced as fixels	be produced as line
are used to store	drawing instructions are
hutures.	used to store future.
screen points or fixels	Mothematical functions
are used to draw an	are used to draw an
image.	mage.

PAGE HO OS

Jo illustrate Bresenhan's approach

i> We consider bean conversion process for

lines with positive slope less than 10.

ii> Posel positions along a line path are

determined by sampling at unit intervals of a.

Starting from end point (10, yo) of a given line,
we stip each column and flot fixel whose

sean line y value is closests to line fath.

iii> consider the equation of straight line

y = mx + c,

where m = dy

ALGORITHM:

lare 1: 1/m/ < 1.0

it Input the two end points and store left

infert end points in (0,40)

ii) Plot the first point by setting colour frame

buffer position (20,40).

obtain starting value for decision parameter as

Po = 2 Ay - Ax.

iv) At each olk along the line, from K=0

performing following.

as if PKKO the next foint is (XXXI, YK)

and PK+1 = PK + 2Ay - 2AX (YK+1-YK) else

next point is (XX+1, YX+1).

1) Repeal step (iv) Ax -1 times

Scanned by TapScanner

	PAGE NO. (13)	
	WORKING:	
	it when a beam of elutions is emitted by	
	election gun, harsed through focusing and	
	deflection systems, the beam is derected to	
	a sperified position on the phosphorous screen.	
	ii) Now the phosphos peoduces a small	
	shot of light at each position, contacted by	
	fades very rapidly.	
	iii) One way to maintain the screen future	
	is to store histure as a sharge distribution	
	within CRT.	
	iv) The most common method is to redeaco	
	future repeatedly by quickly directing election	
	bean back over same screen points.	
	8 de aum on 1880 en see is salle de la la la	
	Redeawn on skeen or is talled refresh rate.	
5-		
q.	BITMAP: The frame buffer storing the values of	
	fra fixels on a black and white system is ralled Bitmap. Each entry in Bilmap is a	
	salled Bitman. Each entry in Bitman is a	
	1. bit data which determines the ON and	
	OFF the intensity of the fixel.	
6	ASPECT RATIO: It is the satio between 14	
	of an image and height of the image 910	
	computer graphic has a aspect ratio of 31	
	ASPECT RATIO: It is the ratio between width of an image and height of the image of a computer graphic has a aspect ratio of 3:1, means width of glaphic is three times its hight	
	KSIT	
RIGHT SHIP TO SHIP		

```
1 X OPENGL PROGRAM TO CREATE HOUSE LIKE STRUCTURE
 USING OPEN-GIL FUNCTIONS */
#include (GIL/glut.h)
#include <stdio.h7
 void display () 1
    glClear (GIL COLOR BUFFER_BIT);
    gl Color 3f (1.0, 0.0, 0.0);
     glPointSize (2.0);
     glBegin (GIL-QUADS):
     g/Vertex2f (2.0, 1.0);
     g/Vertex2f (2.0,-1.5);
     9/VP8tex2f (-2.0, -1.5);
     g/Vertex 2+ (-2.0, 7.0);
     glEnd();
     91 Begin (GIL TRIANGLES);
      gl(olor3f(0.0, 1.0, 0.0);
      91 Vertex21 (-3,1);
      91 Vertex 21 (3,1);
       91 Vertex 21 (0,3);
       giEnd();
      gi Begin (GIL-QUADS);
      91(010r3f(0.0, 1.0, 1.0);
       g/Vertex 2+ (+0.5, 0.0);
      glvertex2f(+0.5;-2.5);
glvertex2f(-1.0;-0.5);
glvertex2f(-1.0;-0.5);
       gIEnd ();
      glBegin (GL-QUADS);
                                                       KSIT
```

PAGE NO. 16

distant point outside the 10-ordinate extends Of the closed polyline. b) Then wunt the number of line segments Krossing along the line. line is odd, the P is interior point else Pis exterior point. de un une this providure tre ful the interior area. er This method is also called as oddparity or even-parity rule. MON-ZERO WINDING RULE: a) In this method the number of times the boundary of an objects winds" around a particular proint in the sountee-clock wire direction is counted. b> This is called winding number. et The line we choose must not pars through any end point 10-ordinates. dr As we move along the line from position P to distant point, we count number of object line segments that class reference line un each direction. er we add I to the winding number every time we intersuit a segment. f> If the winding number is non-zero, Pis interes point or else it is exterior point.

er v -> veitor Eq: glRecti(200,100,500,250); int verterse) = 1200, 1004; int vertex2() = 2500,250 %;

V> These woder are

as i -> integers

er for float

di da double

b> s -> short

giEnd fair.

girect iv (Vertex 1, Vertex 2);