Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática

MPEI - Métodos Probabilísticos para Engenharia Informática (2015/2016)

PL 05A

Palavras-chave: Cadeias de Markov, matriz de transição, múltiplas transições, estado estacionário.

Nota: Adopte a a definição da matriz de transição em que o elemento t_{ij} da matriz corresponde à probabilidade de transição do estado j para o estado i.

1. Considere o seguinte diagrama representativo de uma Cadeia de Markov:

- (a) Defina, em Matlab, a matriz de transição T. Assuma p = 0, 4 e q = 0, 6;
- (b) Qual a probabilidade de o sistema chegar ao estado B após 10 transições adicionais caso inicialmente se econtre no estado A ? E de chegar a cada um dos outros estados para as mesmas condições ?
- (c) Visualize o comportamento desta cadeia usando o Markov chain "playground", disponível em http://setosa.io/markov/index.html.
- 2. Suponha que observa o estado do tempo uma vez por dia (por exemplo, de manhã às 11:00) e que considera três possíveis estados: sol, nuvens e chuva. Assumindo que o tempo no dia n+1 apenas depende do tempo no dia n e que as probabilidades de transição são as da tabela seguinte, responda às questões abaixo:

$dia \ n \setminus dia \ n+1 \rightarrow$	sol	nuvens	chuva
sol	0,7	0,2	0,1
nuvens	0,2	0,3	0,5
chuva	0,3	0,3	0,4

- (a) Defina, em Matlab, a correspondente matriz de transição;
- (b) Assumindo que a observação inicial (digamos no dia 0) é que o dia é de sol, qual a probabilidade do dia 2 ser de chuva ?
- (c) Calcule as n primeiras potências de T (n=20) e apresente num gráfico a evolução dos vários elementos da matriz em função de n;
- (d) Repita o processo da alínea anterior parando-o assim que o máximo da diferença entre os valores dos elementos da matriz em duas iterações consecutivas não exceda 10^{-4} ;
- (e) ** TPC ** Visualize o comportamento desta cadeia usando o Markov chain "playground", disponível em http://setosa.io/markov/index.html.

- 3. Crie uma matriz de transição para uma cadeia de 20 estados gerando os elementos dessa matriz com a ajuda da função rand(). Com base nessa matriz:
 - (a) Qual a probabilidade de o sistema fazer uma transição entre o primeiro e o último estado em 20 transições ? E em 40 ? E em 100 ?