

An Engineering Data Book

Edited by
A J Munday and R A Farrar

REASON FOR PUBLICATION

This book has been produced to provide a pocketable source of data for students pursuing most Engineering Degree Courses, and for use in examinations. * It was not designed for use in Electrical Degree Courses.

It differs from other data books in two respects; it has a comprehensive key-word index and a symbols index in order that users may find data efficiently.

A Professional Engineer should not rely on the memory of facts for use in a design situation, until their frequent use has committed them permanently and accurately to the memory. Until that happy time is reached a data book makes life easier, and makes the permanent retention of accurate facts more likely.

The editors hope that no errors exist but cannot guarantee the accuracy of the data. If you find any errors the editors would appreciate your comments for inclusion in further editions.

A.J. MUNDAY and R.A. FARRAR
Department of Mechanical Engineering
Faculty of Engineering and Applied
Science

Acknowledgements

- i) International Nickel Ltd for the Periodic Table
- ii) Biometrika Trustees for the Statistical Tables
- iii) Mrs E.H. Day for the layout and typing of the booklet
- iv) Members of University Staff who made contributions:-
DJC, JRC, RJF, PWF, SPH, RHM, PJL, SJM, JAO, HJS,
KVHS, MTT, PLT, DRW, JBW, PW.
- v) Other engineering data sources too numerous to mention individually for commonly used values and equations.

* Where permitted by the examining body.

An Engineering Data Book

Edited by

A. J. Munday
and
R. A. Farrar

© University of Southampton 1979

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means without permission.

Published by
MACMILLAN EDUCATION LTD
Basingstoke and London

ISBN 0-333-25829-0

Printed in Hong Kong

First edition 1979
Reprinted 1979, 1980, 1982, 1986, 1989

M

1. UNITS AND ABBREVIATIONS

1.1 Decimal prefixes

symbol	prefix	factor by which unit is multiplied
T	tera	10^{12}
G	giga	10^9
M	mega	10^6
k	kilo	10^3
h	hecto	10^2
da	deca	10
d	deci	10^{-1}
c	centi	10^{-2}
m	milli	10^{-3}
u	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}

1.2 SI units

(1) Basic units

unit symbol	unit	quantity
m	metre	length
kg	kilogramme	mass
s	second	time
A	ampere	electric current
K	kelvin	thermodynamic temperature
cd	candela	luminous intensity

(II) Supplementary and derived units

quantity	unit	symbol	equivalent
plane angle	radian	rad	-
force	newton	N	kg m/s^2
work, energy heat	joule	J	N m
power	watt	W	J/s
frequency	hertz	Hz	s ⁻¹
viscosity:			
kinematic		m^2/s	10^6 cSt (centi-stoke)
dynamic		$\text{Ns/m}^2 = \text{Pa s}$	10^3 cP (centi-poise)
pressure		$\text{Pa} = \text{N/m}^2$	Called pascal, Pa
stress		Pa or N/m^2	
<u>electrical units</u>			
potential	volt	V	W/A
resistance	ohm	Ω	V/A
charge	coulomb	C	A s
capacitance	farad	F	A s/V
electric field strength	-	V/m	
electric flux density	-	C/m ²	
<u>magnetic units</u>			
magnetic flux	weber	Wb	$\text{V s} = \text{Nm/A}$
inductance	henry	H	$\text{V s/A} = \text{Nm/A}^2$
magnetic field strength	-	A/m	
magnetic flux density	tesla	T	$\text{Wb/m}^2 = \text{N/(Am)}$

1.3 Conversion factors for other units into SI units

Length, area, volume

1 in	= 25.4 mm exactly	$1 \text{ in} = 10^{-10} \text{ m}$
1 ft	= 0.3048 m	1 thou=1 mil = 0.001 in = 25.4 μm
1 yd	= 0.914 m	1 micron = 1 μm
1 mile	= 5280 ft	= 1.609 km
1 acre	= 0.4047 ha (Hectare)	= 4047 m^2
1 in ³	= 16.39 cm ³	
1 ft ³	= 0.02832 m ³	
1 gal	= 0.1605 ft ³	= 4546 cm ³ = 4.546 l (Litre)
1 USgal	= 0.1337 ft ³	= 3785 cm ³

Velocity

1 mile/h	= 1.467 ft/s	= 1.609 km/h	= 0.447 m/s
1 knot	= 1.689 ft/s	= 1.853 km/h	= 0.514 m/s

Mass

1 lb	= 0.4536 kg
1 slug	= 32.17 lb = 14.59 kg
1 ton	= 2240 lb = 1016 kg
1 tonne	= 1 Mg = 1 metric ton

Flowrate

1 ft ³ /s (1 cusec)	= 0.02832 m ³ /s
1 gal/min	= 7.577 10 ⁻⁵ m ³ /s = 0.07577 dm ³ /s

Density

1 lb/in ³	= 27.68 g/cm ³
1 lb/ft ³	= 16.02 kg/m ³
1 slug/ft ³	= 515.4 kg/m ³

Thermal conductivity

1 Btu/ft h deg R	= 1.731 J/m s ${}^{\circ}\text{C}$	= 1.731 W/(mK)
1 cal/cm s deg K	= 418.7 J/m s ${}^{\circ}\text{C}$	= 418.7 W/(mK)

Force

1 pdl	= 0.1383 N
1 lbf	= 32.17 pdl = 4.448 N
1 tonf	= 9964 N
1 kgf	= 2.205 lbf = 9.807 N
1 dyne	= 10 ⁻⁵ N

Torque

1 lbf ft	= 1.356 Nm
1 tonf ft	= 3037 Nm

Power

1 hp	= 550 ft lbf/s	= 0.7457 kW
1 ft lbf/s	= 1.356 W	
1 metric horsepower (ch, PS)	= 0.7355 kW	

Energy, work, heat

1 ft lbf	= 1.356 J
1 kW h	= 3.6 MJ
1 Btu	= 778.2 ft lbf = 252 cal = 1055 J
1 cal	= 4.187 J
1 hp h	= 2.685 MJ

Pressure, stress

1 lbf/in ²	= 0.07031 kgf/cm ²	= 6895 N/m ²
1 tonf/in ²	= 157.5 kgf/cm ²	= 15.44 MN/m ²
1 kgf/cm ²	= 0.09807 MN/m ²	= 0.9807 bar
1 kgf/mm ²	= 9.807 MN/m ²	= 0.9807 hbar
1 lbf/ft ²	= 47.88 N/m ²	
1 ft H ₂ O	= 62.43 lbf/ft ²	= 2989 N/m ²
1 in Hg	= 70.73 lbf/ft ²	= 3386 N/m ²
1 mm Hg	= 1 torr	= 133.3 N/m ²
1 bar	= 14.50 lbf/in ²	= 10 ⁵ N/m ²
1 Int atm	= 14.70 lbf/in ²	= 10.34 m water = 1.013 x 10 ⁵ N/m ²
	= 1.013 bar	= 760 mm Hg = 101.3 kPa

Dynamic viscosity

1 poise (g/cm s)	= 0.1 kg/m s = 0.1 N s/m ² = 0.1 Pa s
1 kgf s/m ²	= 0.9807 N s/m ²
1 lb/ft s	= 0.4132 mN s/m ²
1 slug/ft s	= 1 lbf s/ft ² = 47.88 N s/m ²
1 lbf s/in ²	= 5895 N s/m ²

Kinematic viscosity

1 ft ² /s	= 0.09290 m ² /s
1 in ² /s	= 645.2 mm ² /s
1 cst	= 1 mm ² /s

Electrical units

The conversion factors which follow are from the C.G.S. system to the SI system. (Note: in the C.G.S. system 1 e.m.u. = 3×10^{10} e.s.u. of charge).

capacitance	1 e.s.u. = $\frac{1}{3} \times 10^{-11}$ F
charge	1 e.m.u. = 10 C
current	1 e.m.u. = 10 A
electric field strength	1 e.s.u. = 3×10^4 V/m
electric flux density	1 e.s.u. = $\frac{1}{12\pi} \times 10^{-5}$ C/m ²
electric polarisation	1 e.s.u. = $\frac{1}{3} \times 10^{-5}$ C/m ²
inductance	1 e.m.u. = 10^{-9} H
intensity of magnetisation	1 e.m.u. = 10^3 A/m
magnetic field strength	1 e.m.u. = $\frac{1}{4\pi} \times 10^3$ A/m
magnetic flux	1 e.m.u. = 10^{-8} Wb
magnetic flux density	1 e.m.u. = 10^{-4} Wb/m ²
magnetic moment	1 e.m.u. = 10^{-3} A m ²
magnetomotive force	1 e.m.u. = $\frac{10}{4\pi}$ A
mass susceptibility	1 e.m.u/g = $4\pi \times 10^{-3}$ kg ⁻¹
potential	1 e.m.u. = 10^{-8} v
resistance	1 e.m.u. = 10^{-9} Ω

2. PHYSICAL CONSTANTS

Avogadro's number	N	= $6.023 \times 10^{26}/(\text{kg mol})$
Bohr magneton	g	= 9.27×10^{-24} A m ²
Boltzmann's constant	k	= 1.380×10^{-23} J/K
Stefan-Boltzmann constant	σ	= 5.67×10^{-8} W/(m ² K ⁴)
characteristic impedance of Z ₀ free space		= $(v_0/c_0)^{\frac{1}{2}} = 120\pi\Omega$
electron volt	eV	= 1.602×10^{-19} J
electron charge	e	= 1.602×10^{-19} C
electronic rest mass	m _e	= 9.109×10^{-31} kg
electronic charge to mass ratio	e/m _e	= 1.759×10^{11} C/kg
Faraday constant	F	= 9.65×10^7 C/(kg mol)
permeability of free space	μ ₀	= $4\pi \times 10^{-7}$ N/m
permittivity of free space	c ₀	= 8.85×10^{-12} F/m
Planck's constant	h	= 6.626×10^{-34} J s
proton mass	m _p	= 1.672×10^{-27} kg
proton to electron mass ratio	m _p /m _e	= 1836.1
standard gravitational acceleration	g	= 9.80665 m/s ² = 9.80665 N/kg
universal constant of gravitation	G	= 6.67×10^{-11} N m ² /kg ²
universal gas constant	R ₀	= 8.314 kJ/(kg mol K)
velocity of light in vacuo	c	= 2.9979×10^8 m/s
volume of 1 kg mol of ideal gas at 1 atm, 0°C		= 22.41 m ³

Temperature

$${}^{\circ}\text{C} = \frac{5}{9}({}^{\circ}\text{F} - 32)$$

$$\text{K} = \frac{5}{9}({}^{\circ}\text{F} + 459.67) = \frac{5}{9}{}^{\circ}\text{R} = {}^{\circ}\text{C} + 273.15$$

3. SUMMARY OF "BASIC"

This language contains the facilities provided in most versions of extended BASIC. Some instructions may vary somewhat from one system to another; however, equivalents should be available. This applies particularly to String Functions, Commands and Control Codes, and to items marked with a \dagger . We suggest that you modify the SYSTEM DEPENDENT INSTRUCTIONS MARKED BY \dagger to conform to your own system and add other instructions in the spaces provided.

Arithmetic Variable Names

numeric variables: e.g. A,X;B4,Z1

arithmetic array variables: e.g. S(4),A(I+1),N2(I,J),
C(I,B(1))

String Variable Names

character string variables: e.g. B\$

character string array variables: e.g. Z\$(4),N\$(A,B)
N.B. \$ may be £ on some terminals. Use the key 'shift 4'.

Arithmetic Operators

+ exponentiation e.g. 2^3 gives 8

- unary minus

* / multiplication, division

+ - addition, subtraction

Operations inside any given pair of brackets are performed before those outside. Subject to this, BASIC performs operations in the order of the operators above. The only (+) exception is At+B, interpreted as At(-B). Operators of equal priority are applied from left to right.

e.g. 2*(1+3/2*(1+1)) gives 16

Relational Operators (operate upon arithmetic and string values)

= >

< >=

<= (less than equal to) >< (not equal to)

Logical Operators

AND

XOR exclusive

OR inclusive

Matrix Operators

- * = addition or subtraction of matrices of equal dimensions
- * = multiplication of conformable matrices
- * = multiplication of a matrix by a scalar
e.g. MAT A = (X)*A

Arithmetic Functions (x represents any expression)

PI	has the constant value 3.1415927
SIN(x),COS(x),TAN(x)	sine, cosine, tangent (x in radians)
ATN(x)	arctan (radians)
LOG(x),LOG10(x)	natural log, common log
EXP(x)	exponentiation e^x where $e = 2.71828$
SQR(x)	square root
SGN(x)	sign of x (+ve gives 1, 0 gives 0, -ve gives -1)
ABS(x)	absolute value of x $\{ x \}$
INT(x)	largest integer $\leq x$
RND or RND(x)	returns a random number between 0 and 1, x, if present, is ignored.

String Functions

LEN(A\$)	returns the number of characters in the string A\$, including trailing blanks
SUB\$(A\$,N1,N2)	creates a sub string from the string A\$ starting with the N1th character and N2 characters long
SUB\$(A\$,N)	creates a sub string from the string A\$, starting with the Nth character to the last character in A\$
*CHR\$(x)	returns a one character string having the ASCII value x
*ASCII(A\$)	returns the ASCII value of the first character in A\$
NUM\$(N)	creates the string of characters that would be printed by PRINT N:
NUM\$(N,field)	creates the string of characters that would be printed by PRINT USING "field",N:
VAL(A\$)	computes the value that would be generated by the INPUT of the characters of A\$ to an arithmetic variable

*The ASCII value is based on seven bit characters. Treatment of the parity bit is system dependent.

Error functions (only valid in an error handling routine entered by D\$ERROR)

ERR contains the error number of the most recent error
 ERL contains the line number of the most recent error

Matrix functions

MAT Y = TRN(X) Y becomes the transpose of X
 MAT Y = INV(X) Y becomes the inverse of X
 DET contains the determinant of X after the evaluation of INV(X)

User defined functions - see DEF statement

Statements

Note - a program line may contain several statements separated by the colon (:) character

Type	Example
CLOSE	CLOSE 2
DATA	DATA 4.3,85,"MONDAY"
DEF	DEF FNA(X) = X+X DEF FN(A,B) = SQR(A+B) DEF FN(M) IF M = 1 THEN FNF = 1 ELSE FNF = M*FNF(M-1) FNEND
*	
DIM	DIM A(10),B\$(5,10)
END	END must be the last statement of a program
FOR	FOR X = 1 TO 10. FOR N = A TO A+R FOR I = 2 to 40 STEP 2
GOSUB	GOSUB 200
GOTO	GOTO 151
IF	IF B = A THEN Z1 IF A > Z THEN PRINT "BIGGER" IF R < N+1 THEN R = N ELSE R = N+2 IF A > B OR B < C THEN STOP IF FNA(R) = B GOTO 200
INPUT	INPUT A INPUT "TYPE YOUR NAME",AS INPUT #4,N,M
LET	LET A = 20 LET A,B,C = 0 AS = "TEXT" (LET is optional)

MAT	MAT C = CON all elements of C = 1 MAT B = IDN(10,10) identity matrix MAT A = ZER all elements of A = 0 MAT B = ZER(5,10) redimensions and zeros B
MATINPUT	MATINPUT A,B,C(4) MATINPUT # 3,A,C
MATPRINT	MATPRINT B MATPRINT B(10,5); MATPRINT # 2,A
MATREAD	MATREAD A,B(4,4)
NEXT	NEXT I
ON ERROR GOTO	ON ERROR GOTO 140
ON GOSUB	ON X GOSUB 200,250,300 ON FNA(A) + FNB(A) GOSUB 10,15,30,5
ON GOTO	ON A + 1 GOTO 14,25,50
OPEN	+
PRINT	PRINT A,B PRINT "RESULT": X PRINT # 4, 1*A.. "EXPERIMENT": N
+ PRINT USING	PRINT USING "# # #", A,B PRINT # 3, USING B\$,C,Z\$ PRINT USING T000,X
RANDOM	RANDOM
READ	READ A,B\$,F1,C
REM	REMARK THIS IS A COMMENT
:	An exclamation mark at the beginning of a line is equivalent to REM An exclamation mark after any statement causes the rest of the line to be treated as comment X = 0: ZERO CONTROL
RESTORE	RESTORE
RESUME	RESUME RESUME 240
RETURN	RETURN
STOP	STOP
TRACE	TRACE
+ \$	PRINTUSING Image, e.g. 10001 X = # #.#

***Commands**

RUN	runs the current program
LOAD	loads a program from paper tape (or other medium)
CLEAR }	remove any existing program
NEW }	
LIST	LIST prints the current program LIST n prints line n LIST n-m prints lines n to m
DELETE	DELETE 40-45 deletes specified lines from the current program
SAVE	saves a program on paper tape (or other medium)
REP	edits program line. Any non-numerical character can be used as separator e.g. REP10/X1/A REP30/.B/
RESEQUENCE	renumbers part or all of a program (including GOTO etc references) e.g. RESEQUENCE whole program, steps of 10 RESEQUENCE 900,1000 after old line 900, which becomes 1000, steps of 10 RESEQUENCE,,5 whole program, steps of 5

***Special control codes**

ESC }	breaks into the program and stops it, typing BASIC READY
CR }	
RETURN }	terminate a line of input
\ or \$	(on the same key as L, not A) Abandon the current line of input
+ or RUBOUT	delete the previous character or space (may be used repeatedly)

4. ANALYSES**4.1 Vector algebra**

$$\hat{a} = \underline{a}/|\underline{a}|$$

$$\underline{a} = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k} = (a_1, a_2, a_3)$$

$$a = |\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$\underline{a} + \underline{b} = (a_1+b_1, a_2+b_2, a_3+b_3)$$

Scalar (dot) product:

$$\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = ab \cos \theta$$

Vector (cross) product:

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = ab \sin \theta \hat{n} \quad \text{where } \hat{n} \perp \underline{a}, \hat{n} \perp \underline{b}$$

Triple scalar product:

$$[\underline{a} \underline{b} \underline{c}] = \underline{a} \cdot \underline{b} \times \underline{c} = \underline{a} \times \underline{b} \cdot \underline{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Triple vector product:

$$\begin{aligned} \underline{a} \times (\underline{b} \times \underline{c}) &= (a \cdot c) \underline{b} - (a \cdot b) \underline{c} \\ (\underline{a} \times \underline{b}) \times \underline{c} &= (a \cdot c) \underline{b} - (b \cdot c) \underline{a} \end{aligned}$$

Differentiation of vectors:

$$\frac{d}{dt}(\underline{a} + \underline{b}) = \frac{da}{dt} + \frac{db}{dt} \quad \frac{d}{dt}(f \underline{a}) = \frac{df}{dt} \underline{a} + f \frac{da}{dt}$$

$$\frac{d}{dt}(\underline{a} \cdot \underline{b}) = \underline{a} \cdot \frac{db}{dt} + \frac{da}{dt} \cdot \underline{b} \quad \frac{d}{dt}(\underline{a} \times \underline{b}) = \underline{a} \times \frac{db}{dt} + \frac{da}{dt} \times \underline{b}$$

$$\frac{d}{dt}(\underline{a} \cdot \underline{b} \times \underline{c}) = \frac{da}{dt} \underline{b} \times \underline{c} + \underline{a} \cdot \frac{db}{dt} \times \underline{c} + \underline{a} \cdot \underline{b} \times \frac{dc}{dt}$$

Gradient:

$$\text{grad } V = \nabla V = \frac{\partial V}{\partial x} \hat{i} + \frac{\partial V}{\partial y} \hat{j} + \frac{\partial V}{\partial z} \hat{k} \quad (\text{Cartesian})$$

$$= \frac{u_r}{r} \frac{\partial V}{\partial r} + u_\theta \frac{1}{r} \frac{\partial V}{\partial \theta} + u_z \frac{\partial V}{\partial z} \quad (\text{Cylindrical})$$

$$\text{where } u_r = \underline{i} \cos\phi + \underline{j} \sin\phi$$

$$u_\theta = -\underline{i} \sin\phi + \underline{j} \cos\phi$$

$$u_z = \underline{k}$$

$$= \frac{u_r}{r} \frac{\partial V}{\partial r} + \frac{u_\theta}{r} \frac{\partial V}{\partial \theta} + \frac{u_z}{r \sin\theta} \frac{\partial V}{\partial \phi} \quad (\text{Spherical})$$

$$\text{where } u_r = \underline{i} \cos\phi \sin\theta + \underline{j} \sin\phi \sin\theta + \underline{k} \cos\theta$$

$$u_\theta = \underline{i} \cos\phi \cos\theta + \underline{j} \sin\phi \cos\theta - \underline{k} \sin\theta$$

$$u_\phi = -\underline{i} \sin\phi + \underline{j} \cos\phi$$

Divergence:

$$\text{div } F = \nabla \cdot F = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \quad (\text{Cartesian})$$

$$= \frac{1}{r} \frac{\partial}{\partial r} [r F_r] + \frac{1}{r^2} \frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z} \quad (\text{Cylindrical})$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 F_r] + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} (F_\theta \sin\theta) + \frac{1}{r^2 \sin^2\theta} \frac{\partial F_\phi}{\partial \phi} \quad (\text{Spherical})$$

Curl:

$$\text{curl } F = \nabla \times F = \frac{1}{r} \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right] \hat{i} + \frac{1}{r} \left[\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right] \hat{j} + \frac{1}{r} \left[\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right] \hat{k} \quad (\text{Cartesian})$$

$$= \frac{1}{r} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$= \frac{1}{r} \begin{vmatrix} u_r & r u_\theta & u_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ F_r & r F_\theta & F_z \end{vmatrix} \quad (\text{Cylindrical})$$

$$= \frac{1}{r^2 \sin\theta} \begin{vmatrix} u_r & r u_\theta & r \sin\theta u_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ F_r & r F_\theta & r \sin\theta F_\phi \end{vmatrix} \quad (\text{Spherical})$$

Laplace:

$$\nabla \cdot \nabla V = \nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \quad (\text{Cartesian})$$

$$= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} \quad (\text{Cylindrical})$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 V}{\partial \phi^2} \quad (\text{Spherical})$$

Space curves:

$$\underline{s} = \frac{d\underline{s}}{dt}, \quad s = \text{arc length} \quad \underline{u} = \text{unit tangent}$$

$$\underline{n} = \frac{\underline{s}^2}{s} \underline{n} + \frac{d\underline{s}}{dt} \underline{u} \quad \underline{n} = \text{unit 'inward' normal}$$

$$\frac{d\underline{s}}{ds} = \frac{1}{\rho} \underline{n}, \quad \rho = \text{radius of curvature}$$

$$\underline{b} = \underline{u} \times \underline{n}, \quad \underline{b} = \text{binormal vector}$$

$$\frac{d\underline{b}}{ds} = -\frac{1}{\tau} \underline{n}, \quad \frac{d\underline{n}}{ds} = \frac{1}{\tau} \underline{b} - \frac{1}{\rho} \underline{u}, \quad \frac{1}{\tau} = \text{torsion}$$

Identities:

$$\nabla \cdot \underline{u} = \underline{\phi} \nabla \cdot \underline{u} + \underline{u} \cdot \nabla \underline{u}$$

$$\nabla \times \underline{u} = \underline{\phi} \nabla \times \underline{u} + \underline{u} \times \underline{\phi}$$

$$\underline{u} \times \underline{v} = \underline{v} \times \underline{u} - \underline{u} \cdot \nabla \underline{v}$$

4.2 Series

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \dots$$

for arbitrary a , $|x| < 1$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots \text{ for all } x$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n}{(2n)!} x^{2n} + \dots \text{ for all } x$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + \dots \text{ for all } x$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots \text{ for } |x| < \pi/2$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^n}{(n+1)} x^{n+1} + \dots$$

for $-1 < x < 1$

Taylor's

$$f(a+h) = f(a) + h f'(a) + \frac{h^2}{2!} f''(a) + \dots$$

$$+ \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a) + \frac{h^n}{n!} f^{(n)}(c) \text{ where } a < c < a+h$$

Maclaurin's

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots$$

$$+ \frac{x^{n-1}}{(n-1)!} f^{(n-1)}(0) + \frac{x^n}{n!} f^{(n)}(ex) \text{ where } 0 < e < 1$$

Stirling's formula for n!

For n large, $n! \approx \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$
 or, $\log_{10} n! \approx 0.39909 + (n+\frac{1}{2}) \log_{10} n + 0.43429 n$.

Fourier series

(i) General formulae

If $f(x)$ is periodic of period $2L$, $f(x+2L) = f(x)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

where

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L} dx \quad n = 0, 1, 2, \dots$$

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L} dx \quad n = 1, 2, 3, \dots$$

If $f(x)$ is an even function of x , i.e., $f(-x) = f(x)$

$$\text{then } a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx \quad n = 0, 1, 2, \dots$$

$$\text{and } b_n = 0 \quad n = 1, 2, 3, \dots$$

If $f(x)$ is an odd function of x , i.e., $f(-x) = -f(x)$

$$\text{then } a_n = 0 \quad n = 0, 1, 2, \dots$$

$$\text{and } b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx \quad n = 1, 2, 3, \dots$$

(ii) Special waveforms, all of period 2L

(a) Square wave, sine series

$$f(x) = \frac{4A}{\pi} \left[\sin \frac{\pi x}{L} + \frac{1}{3} \sin \frac{3\pi x}{L} + \frac{1}{5} \sin \frac{5\pi x}{L} + \dots \right]$$

$$\text{mean square value} = A^2$$

(b) Square wave, cosine series

$$f(x) = \frac{4A}{\pi} \left[\cos \frac{\pi x}{L} - \frac{1}{3} \cos \frac{3\pi x}{L} + \frac{1}{5} \cos \frac{5\pi x}{L} - \dots \right]$$

mean square value = A^2

(c) Triangular wave

$$f(x) = \frac{8A}{\pi^2} \left[\cos \frac{\pi x}{L} + \frac{1}{3} \cos \frac{3\pi x}{L} + \frac{1}{5} \cos \frac{5\pi x}{L} + \dots \right]$$

mean square value = $\frac{A^2}{3}$

(d) Saw-tooth wave

$$f(x) = \frac{2A}{\pi} \left[\sin \frac{\pi x}{L} - \frac{1}{3} \sin \frac{3\pi x}{L} + \frac{1}{5} \sin \frac{5\pi x}{L} - \dots \right]$$

mean square value = $\frac{A^2}{3}$

(e) Half-wave rectification

$$f(x) = \frac{A}{2} \sin \frac{\pi x}{L} + \frac{2A}{\pi} \left[\frac{1}{2} - \frac{1}{3} \cos \frac{2\pi x}{L} + \frac{1}{15} \cos \frac{4\pi x}{L} - \dots \right]$$

mean square value = $\frac{A^2}{4}$ average value = $\frac{A}{2}$

(f) Full-wave rectification

$$f(x) = \frac{4A}{\pi} \left[\frac{1}{2} - \frac{1}{3} \cos \frac{2\pi x}{L} - \frac{1}{15} \cos \frac{4\pi x}{L} - \dots \right]$$

mean square value = $\frac{A^2}{2}$ average value = $\frac{2A}{\pi}$

4.3 Trigonometric, hyperbolic and algebraic relations

$$2 \sin A \cos B = \sin(A+B) + \sin(A-B)$$

$$2 \cos A \cos B = \cos(A-B) + \cos(A+B)$$

$$2 \sin A \sin B = \cos(A-B) - \cos(A+B)$$

$$\sin A + \sin B = 2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$$

$$\sin A - \sin B = 2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$$

$$\cos A + \cos B = 2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$$

$$\cos A - \cos B = -2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$$

$$\begin{aligned}\sin(A+B) &= \sin A \cos B + \cos A \sin B \\ \cos(A+B) &= \cos A \cos B - \sin A \sin B \\ \tan(A+B) &= \frac{\tan A + \tan B}{1 - \tan A \tan B}\end{aligned}$$

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = \tan^2 A + 1$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\begin{aligned}\sin A &= \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)} \text{ where } s = \frac{1}{2}(a+b+c) \\ &= \frac{2}{bc} \text{ area} \\ a^2 &= b^2 + c^2 - 2bc \cos A\end{aligned}$$

Relation for Spherical Triangles

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$

$$\cos A = -\cos b \cos c + \sin b \sin c \cos a$$

$$\frac{\sin \frac{A}{2}}{\sin \frac{a}{2}} = \frac{\sqrt{s(s-b)\sin(s-c)}}{\sin b \sin c} \text{ where } s = \frac{1}{2}(a+b+c)$$

$$\frac{\sin \frac{a}{2}}{\sin \frac{A}{2}} = \frac{\sqrt{-\cos b \cos(c-\frac{A}{2})}}{\sin b \sin c} \text{ where } s = \frac{1}{2}(A+B+C)$$

Napier's Rules for right spherical triangles:

Arrange the five parts about the right angle with 'co' attached to the three parts opposite the right angle. E.g. for the right angle at A we have

N.B. co-A is the complement of a,
i.e. $90^\circ - a$

Then: The sine of the middle part is the product of the tangents of adjacent parts and is the product of the cosines of opposite parts.

N.B. A leg and its opposite angle are always in the same quadrant. If the hypotenuse is less than 90° the legs are in the same quadrant, otherwise they are in opposite quadrants.

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\cos iz = \cosh z$$

$$\sin iz = i \sinh z$$

$$\cosh iz = \cos z$$

$$\sinh iz = i \sin z$$

$$e^z = \cosh z + i \sinh z$$

$$\log_{10}(10^x) = \log_{10}(\text{anti log}_{10} x) = x = 10^{\log_{10} x} = e^{\log_{10} x} = e^{ix}$$

$$a^2 - b^2 = (a+b)(a-b) : a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

equations of curves

circle

$$x^2 + y^2 = a^2$$

ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

hyperbolas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

parabola

$$y^2 = ax$$

4.4 Complex numbers

$$z = r(\cos\theta + i\sin\theta) = x + iy$$

$$= r e^{i(\theta+2n\pi)} \quad (n = 0, \pm 1, \pm 2, \dots)$$

$$e^{iz} = \cos z + i \sin z \quad [\text{Euler's Formula}]$$

$$x + iy = \sqrt{x^2 + y^2} e^{i \tan^{-1}(y/x)}, \quad z^c = e^{ciz}$$

N.B. $\tan^{-1}(y/x)$ must be chosen to lie in the appropriate quadrant

4.5 Partial differentiation

(a) If $F = f(x,y)$, where $x = X(t)$, $y = Y(t)$ then

$$F = F(t) \text{ and } \frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

(b) If $F = f(x,y)$, where $y = Y(x)$, then $F = F(x)$ and

$$\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

(c) If $F = f(x,y)$, where $x = X(u,v)$, $y = Y(u,v)$ then

$$F = F(u,v) \text{ and } \frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u},$$

$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

4.6 Differential Equations

(i) First Order

Type	Characteristic	Method of solution
separable	$y' = P(x)Q(y)$	rearrange: $\int \frac{1}{Q(y)} dy = \int P(x) dx + c$
homogeneous	$y' = f\left(\frac{y}{x}\right)$	by substitution $y = ux$ to make equation separable
exact	$M(x,y)dx + N(x,y)dy$ where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	$\frac{\partial G}{\partial x} = M, \quad \frac{\partial G}{\partial y} = N$ Solve for G
linear	$y' + P(x)y = Q(x)$	multiply through by $e^{\int P(x)dx}$

(ii) Second Order, linear with constant coefficients

$$m\ddot{x} + a\dot{x} + kx = 0$$

$$\ddot{x} + 2\xi\omega_0 \dot{x} + \omega_0^2 x = 0, \quad \xi = \frac{a}{2\sqrt{mk}}, \quad \omega_0 = \sqrt{\frac{k}{m}}$$

(a) $\xi < 1$ (underdamping)

$$x = A e^{-\xi\omega_0 t} \cos(\omega t - \phi)$$

$$\omega = \omega_0 \sqrt{1-\xi^2}$$

(b) $\xi > 1$ (overdamping)

$$x = A_1 e^{-q_1 t} + A_2 e^{-q_2 t}$$

$$\text{where } q_1, q_2 = \omega_0 \{t \pm \sqrt{t^2 - 1}\}$$

(c) $\xi = 1$ (critical damping)

$$x = (A + Bt)e^{-\xi\omega_0 t}$$

Forced oscillations

$$\ddot{x} + 2\xi\omega_0 \dot{x} + \omega_0^2 x = a \cos pt, \quad a = \frac{F}{m}, \quad x_1 = \frac{F}{k}$$

$$x = \frac{Aa \cos(pt - \phi)}{\omega_0^2 - p^2 - 4\xi^2 \omega_0^2}$$

$$\text{Tang} = \frac{\frac{A}{\omega_0} \left(\frac{p}{\omega_0} \right)^2}{1 - \left(\frac{p}{\omega_0} \right)^2}$$

$$A = \left| \frac{A}{\omega_0} \right| \times \frac{1}{\left[\left(1 - \left(\frac{p}{\omega_0} \right)^2 \right)^2 + \left(2\xi \frac{p}{\omega_0} \right)^2 \right]^{\frac{1}{2}}}$$

At resonance $p = \omega_0 \sqrt{1 - 2\xi^2}$

$$x = \frac{x_1}{2\xi\sqrt{1-\xi^2}} \quad \text{Tang} = \frac{\sqrt{1-2\xi^2}}{\xi}$$

4.7 Rules of Differentiation and Integration

$$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\frac{d}{dx}(uvw) = uv \frac{dw}{dx} + uw \frac{dv}{dx} + vw \frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v^2} \left(v \frac{du}{dx} - u \frac{dv}{dx}\right)$$

$$\int uv \, dx = uw - \int u \, dw \quad \text{where } w = \int v \, dx$$

4.8 Standard Differentials and Integrals

$$\frac{d}{dx} x^n = nx^{n-1}$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$\frac{d}{dx} \ln|x| = \frac{1}{x}$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\frac{d}{dx} e^{ax} = ae^{ax}$$

$$\int e^{ax} \, dx = \frac{e^{ax}}{a}, \quad a \neq 0$$

$$\frac{d}{dx} a^x = a^x \ln a$$

$$\int a^x \, dx = \frac{a^x}{\ln a}, \quad a > 0, \quad a \neq 1$$

$$\frac{d}{dx} x^x = x^x(1+\ln x)$$

$$\int \ln x \, dx = x(\ln x - 1)$$

$$\frac{d}{dx} \sin x = \cos x$$

$$\int \cos x \, dx = \sin x$$

$$\frac{d}{dx} \cos x = -\sin x$$

$$\int \sin x \, dx = -\cos x$$

$$\frac{d}{dx} \tan x = \sec^2 x$$

$$\int \sec^2 x \, dx = \tan x$$

$$\frac{d}{dx} \cot x = -\operatorname{cosec}^2 x$$

$$\int \operatorname{cosec}^2 x \, dx = -\cot x$$

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x, \quad |x| < 1$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$

$$\int \frac{dx}{1+x^2} = \tan^{-1} x$$

$$\frac{d}{dx} \cosh x = \sinh x$$

$$\int \sinh x \, dx = \cosh x$$

$$\frac{d}{dx} \sinh x = \cosh x$$

$$\int \cosh x \, dx = \sinh x$$

$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$

$$\int \operatorname{sech}^2 x \, dx = \tanh x$$

$$\frac{d}{dx} \coth x = -\operatorname{cosech}^2 x$$

$$\int \operatorname{cosech}^2 x \, dx = -\coth x$$

$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1+x^2}}$$

$$\int \frac{dx}{\sqrt{1+x^2}} = \sinh^{-1} x$$

$$= \ln |x + \sqrt{(1+x^2)}|$$

$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2-1}}$$

$$\int \frac{dx}{\sqrt{x^2-1}} = \cosh^{-1} x$$

$$= \ln |x + \sqrt{(x^2-1)}|, x \geq 1$$

$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1-x^2}$$

$$\int \frac{dx}{1-x^2} = \tanh^{-1} x$$

$$= \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|, \quad x^2 < 1$$

$$\frac{d}{dx} \coth^{-1} x = \frac{1}{1-x^2}$$

$$\int \frac{dx}{x^2-1} = -\coth^{-1} x$$

$$= \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right|, \quad x^2 > 1$$

Some definite integrals (m,n integers)

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2} & n \text{ even} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{4}{3} \cdot \frac{2}{3} \cdot 1 & n \text{ odd} \end{cases}$$

$$I_{m,n} = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx = \binom{m-1}{m+n} I_{m-2,n} = \binom{n-1}{m+n} I_{m,n-2}, m \neq -n$$

$$\int_0^{\pi} \sin mx \sin nx dx = \int_0^{\pi} \cos mx \cos nx dx = 0 \quad (m \neq n)$$

$$\int_0^{\pi} \sin mx \cos nx dx = 0$$

$$\int_0^{\infty} e^{-bx} \sin bx dx = \frac{b}{b^2 + \pi^2} > 0$$

$$\int_0^{\infty} e^{-bx} \cos bx dx = \frac{b}{b^2 + \pi^2} > 0$$

$$\int_0^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

The error function $\operatorname{erf}z = \frac{2}{\sqrt{\pi}} \int_0^z e^{-u^2} du$ (refer to page 30 for tabulated value)

$$\int_0^{\pi} \frac{\sin \theta \cos \theta}{(1+\cos \theta)^2} d\theta = \frac{-2e^{-\frac{\pi}{2}}}{(1-e^{-\frac{\pi}{2}})^2}$$

$$\int_0^{\pi} \frac{\sin^2 \theta d\theta}{(1+\cos \theta)^2} = \frac{\pi}{2(1-e^{-\frac{\pi}{2}})^2/2}$$

$$\int_0^{2\pi} \frac{d\theta}{(1+\cos \theta)} = \frac{2\pi}{(1-e^{-\frac{\pi}{2}})^{1/2}}$$

4.9 Laplace Transforms

Definition $L[f(t)] = \int_0^{\infty} f(t)e^{-st} dt$

Theorems

Linearity $L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)]$

Final Value $\lim_{t \rightarrow \infty} f(t) = \lim_{s \rightarrow 0} sF(s)$

Initial Value $\lim_{t \rightarrow 0} f(t) = \lim_{s \rightarrow \infty} sF(s)$

Differentiation $L\left[\frac{df(t)}{dt}\right] = sF(s) - f(0)$

Integration $L[f(t)] = \frac{F(s)}{s} + \frac{f'(0)}{s}$

First Shifting $L[e^{at}f(t)] = F(s-a)$

Second Shifting $L[f(t-a)] = e^{-as}F(s)$

Convolution $L[f*g] = L\left[\int_0^t f(u)g(t-u)du\right] = F(s)G(s)$

Partial Differentiation $L\left[\frac{\partial f(t,a)}{\partial a}\right] = \frac{\partial}{\partial a} F(s,a)$

Time Multiplication $L[tf(t)] = -\frac{dF(s)}{ds}$

Transform Pairs

Function

$$\begin{cases} 1 & \\ H(t-T) = 0 & t < T \\ = 1 & t > T \end{cases}$$

$$t^n$$

$$e^{-at}$$

$$\sin \omega t$$

$$\cos \omega t$$

$$1 - e^{-t/T}$$

$$\frac{u_n}{\sqrt{1-\xi^2}} e^{-\xi u_n t} \sin(u_n \sqrt{1-\xi^2} t)$$

Laplace Transform

$$\begin{cases} \frac{1}{s} & \\ \frac{1}{s} e^{-sT} & \end{cases}$$

$$\frac{s^n}{s^{n+1}}$$

$$\frac{1}{s+a}$$

$$\frac{u}{s^2 + \omega^2}$$

$$\frac{s}{s^2 + \omega^2}$$

$$\frac{1}{s(1+s)}$$

$$\frac{1}{1 + 2\frac{\xi s}{u_n} + \frac{s^2}{u_n^2}}$$

$$1 - \frac{1}{\sqrt{1-\xi^2}} e^{-\xi w_n t} \sin \left[w_n \sqrt{1-\xi^2} t + \cos^{-1} \xi \right] = \frac{1}{s \left(1 + 2 \frac{\xi}{w_n} + \frac{\xi^2}{w_n^2} \right)}$$

4.10 Numerical analysis

(i) Approximate solution of an algebraic equation $f(x) = 0$

(a) Newton's Method

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

(b) Secant Method

$$x_1 = \frac{x_0 f(x_{-1}) + x_{-1} f(x_0)}{f(x_0) - f(x_{-1})}$$

(ii) Least-squares fitting of a straight line

If y_i ($i = 1, 2, \dots, n$) are the experimentally observed values of y at chosen (exact) values of x_i of the variable x , the line of 'best fit' passes through the centroid

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \quad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$$

and is given by $y = mx + c$ where,

$$m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}, \quad c = \bar{y} - m\bar{x}$$

$$= \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2}$$

(iii) Finite-difference formulae

$$\Delta f(x) = f(x+h) - f(x)$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

$$f'''(x) = \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^3}$$

(iv) Lagrange's interpolation formula for unequal intervals.

The polynomial $P(x)$ of degree 2 passing through the three points (x_i, y_i) , $i = 1, 2, 3$, is

$$P(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} y_3$$

(v) Formulas for numerical integration

Equal intervals h

$$x_n = x_0 + nh, \quad y_n = y(x_n)$$

(a) Trapezoidal Rule (1-strip):

$$\int_{x_0}^{x_1} y(x) dx = \frac{h}{2} [y_0 + y_1] + \epsilon, \\ \epsilon = -\frac{h^3}{12} y'' \text{ or, } -\frac{h}{12} h^2 y_0$$

(b) Simpson's Rule (2-strip):

$$\int_{x_0}^{x_2} y(x) dx = \frac{h}{3} [y_0 + 4y_1 + y_2] + \epsilon, \\ \epsilon = -\frac{h^5}{90} y_1^{(4)} \text{ or, } -\frac{h}{90} h^4 y_0$$

(vi) Runge-Kutta

$$\text{2nd order: } y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_n + h, y_n + k_1) \right]$$

$$\text{4th order: } y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

5. ANALYSIS OF EXPERIMENTAL DATA

5.1 Probability distributions for discrete random variables

Notation: $P(r) = f(r) \Rightarrow$ the probability distribution of random variable r is $f(r)$

$$\mu = \text{mean value of } r = \sum_{i=1}^N r_i f(r_i)$$

$$\sigma^2 = \text{variance of } r = \sum_{i=1}^N r_i^2 f(r_i) - \mu^2$$

$$\binom{n}{r} = \text{binomial coefficient} = \frac{n!}{(n-r)!r!} = \binom{n}{n-r}$$

evaluate using Pascal's Triangle

	$r = 0$	1	2	3	4	5	6	7	8	9	10
$n = 0$	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

(a) Binomial:

n = number of trials with constant probability p of success in each

r = number of successes

$$P(r) = \binom{n}{r} p^r (1-p)^{n-r} \quad r = 0, 1, 2, \dots, n$$

$$\mu = np, \quad \sigma^2 = np(1-p)$$

(b) Poisson:

μ = mean rate of occurrence of an event

r = number of events actually occurring in unit time

$$P(r) = e^{-\mu} \mu^r / r! \quad r = 0, 1, \dots$$

$$\sigma^2 = \mu$$

5.2 Probability distributions for continuous random variables

(a) Exponential:

probability density function $f(x) = \lambda e^{-\lambda x},$

$$x \geq 0, \lambda > 0$$

$$\mu = 1/\lambda$$

$$\sigma^2 = 1/\lambda^2$$

(b) Normal:

the standardised normal distribution, $N(0,1)$

has probability density function

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

$$\mu = 0$$

$$\sigma = 1$$

$\Phi(z) =$ cumulative distribution function

$\Phi(z) =$ probability that the random variable is observed to have a value $< z$ (the shaded area shown)

$$\Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$$

For negative z use $\Phi(-z) = 1 - \Phi(z)$

z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.0	.5000	1.0	.8413	2.0	.9772
.1	.5398	.1	.8643	.1	.9821
.2	.5793	.2	.8849	.2	.9861
.3	.6179	.3	.9032	.3	.9893
.4	.6554	.4	.9192	.4	.9918
.5	.6915	1.5	.9332	2.5	.9938
.6	.7257	.6	.9452	.6	.9953
.7	.7580	.7	.9554	.7	.9965
.8	.7881	.8	.9641	.8	.9974
.9	.8159	.9	.9713	.9	.9981
				3.0	.9987
				4.0	.99997

Percentage points of the Normal Distribution $N(0,1)$

$\Phi(z)$	%1-tail	%2-tails	z
.9500	5.0	10	1.6449
.9750	2.5	5	1.9600
.9900	1.0	2	2.3263
.9950	0.5	1	2.5758

The general normal distribution $N(\mu, \sigma^2)$ has probability density function $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$, $-\infty < x < \infty$

$$\text{where } \int_{-\infty}^{\infty} f(x) dx = 1$$

and cumulative distribution function $F(x)$

$$F(x) = \int_{-\infty}^{(x-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

To use tables of $\Phi(z)$, take $z = \frac{x-\mu}{\sigma}$.

5.3 Experimental Samples

x_1, x_2, \dots, x_n denote a set of n observations of a random variable having a normal distribution whose population mean μ is unknown.

$$\text{Range} = x_{\max} - x_{\min}$$

$$\text{Sample mean } \bar{x} = \frac{1}{n} \sum x_i$$

$$\text{Average deviation} = \frac{1}{n} \sum |x_i - \bar{x}|$$

$$\text{Sample standard deviation} = s,$$

$$\text{Sample variance} = s^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$$

$$\text{Distribution of } \bar{x} \text{ is } N(\mu, \sigma^2/n)$$

$$\text{Distribution of } \frac{\bar{x}-\mu}{s/\sqrt{n}} \text{ is } N(0,1)$$

$$\text{i.e. standard error of sample means} = \frac{s}{\sqrt{n}}$$

If population variance σ^2 is known,

$$95\% \text{ confidence interval for } \mu \text{ is } \bar{x} \pm 1.96 s/\sqrt{n}$$

$$99\% \text{ confidence interval for } \mu \text{ is } \bar{x} \pm 2.58 s/\sqrt{n}$$

If population variance σ^2 is unknown: $\frac{\bar{x}-\mu}{s/\sqrt{n}}$ has the t-distribution with $n-1$ degrees of freedom (t_{n-1}) and the 95% confidence interval for μ is obtained from \bar{x} st. s/\sqrt{n} and the table.

95% points of the t-distribution

$n-1$	t_c	$n-1$	t_c	$n-1$	t_c
1	12.7	6	2.45	12	2.18
2	4.30	7	2.36	15	2.13
3	3.18	8	2.31	20	2.09
4	2.78	9	2.26	30	2.04
5	2.57	10	2.23	60	2.00
				=	1.96

Thus for $n > 20$, $\bar{x} \pm 1.96 s/\sqrt{n}$ is a good approximation to the population mean with a 95% confidence.

3.4 Combination of Errors

If results are Normally Distributed, the Most Probable Error s_z in the calculated result $z = f(x, y, \text{etc.})$, due to the independent standard errors $s_x, s_y, \text{etc.}$ in $x, y, \text{etc.}$ is given by,

$$(s_z)^2 = \left(\frac{\partial z}{\partial x} s_x \right)^2 + \left(\frac{\partial z}{\partial y} s_y \right)^2 + \dots \text{etc.}$$

If the function f consists of multiplied and divided terms ONLY (i.e., no addition or subtraction)

$$\left(\frac{s_z}{z} \right)^2 = \left(n \frac{s_x}{x} \right)^2 + \left(m \frac{s_y}{y} \right)^2 + \dots \text{etc.}$$

where $n, m, \text{etc.}$ are the powers of $x, y, \text{etc.}$ in f .

Notes

- (1) The Maximum Possible Error ($\bar{s}_z = \frac{\partial z}{\partial x} \delta x + \frac{\partial z}{\partial y} \delta y, \text{etc.}$) is rarely of interest in engineering
- (2) Instrument 'rounding off' error δx may be treated as a Normally Distributed error by the equivalence $s_x \approx \frac{1}{3} \delta x$.

6. MECHANICS

Moments of inertia and Second moments of area - General theorems

N.6. The symbol I is used for both second moment of area and moment of inertia.

(i) Parallel axis theorem: Solids or Laminae

Centroid is at G

Centre of mass is at G

$$I_{X_1 X_1} = I_{XX} + Cy^2$$

$$I_{Y_1 Y_1} = I_{YY} + Cx^2$$

where for moment of inertia $C = \text{mass}$
and for second moment of area of a Lamina $C = \text{area}$

(ii) Perpendicular axis theorem for Laminae:

$$\text{Polar second moment } I_0 = I_{XX} + I_{YY} = I_{ZZ}$$

Radius of gyration k

$$\text{Second moment of area } I = Ak^2$$

$$\text{Moment of inertia } I = mk^2$$

where $A = \text{area}, m = \text{mass}$.

(a) UNIFORM ROD	k_{XX}^2	k_{YY}^2	A
	=	$\frac{k^2}{12}$	=
(b) LAMINAE			
Rectangle	$\frac{1}{12} d^2$	$\frac{1}{12} b^2$	db
Circle	$\frac{1}{4} r^2$	$\frac{1}{4} r^2$	πr^2

(b) LAMINAE (cont)	k_{XX}^2	k_{YY}^2	A
Semi-circle	$a^2 \left \frac{1}{4} - \left(\frac{4}{3\pi} \right)^2 \right $	$\frac{1}{4} a^2$	$\frac{\pi a^2}{2}$
Triangle	$\frac{1}{18} h^2$ $k_{XY}^2 = \frac{1}{36} h(b_1 - b_2)$	$\frac{1}{18} (b_1^2 + b_1 b_2 + b_2^2)$	$\frac{h}{2}(b_1 + b_2)$
Ellipse	$\frac{b^2}{4}$	$\frac{a^2}{4}$	πab
(c) SOLIDS	k_{XX}^2	k_{YY}^2 and k_{ZZ}^2	V
Cylinder	$\frac{1}{2} a^2$	$\frac{1}{4} a^2 + \frac{1}{12} z^2$	$\pi a^2 z$
Thin-walled cylinder	$a^2 + \frac{1}{4} t^2$	$\frac{1}{2} a^2 + \frac{1}{8} t^2 + \frac{1}{12} z^2$	$2\pi a t z$
Thick walled cylinder	$\frac{1}{2}(R^2 + r^2)$	$\frac{z^2}{12} + \frac{R^2 + r^2}{4}$	$\pi(R^2 - r^2)z$

(c) SOLIDS (cont)	k_{XX}^2 and k_{ZZ}^2	k_{YY}^2	V
Sphere	$\frac{2}{5} a^2$	$\frac{2}{5} a^2$	$\frac{4}{3} \pi a^3$
Cone	$\frac{3(4a^2 + h^2)}{80}$	$\frac{3a^2}{10}$	$\frac{\pi}{3} a^2 h$

Mohr's Circle for Second Moment of Area

Constant acceleration equations

$$\begin{aligned} v &= u + at \\ v^2 &= u^2 + 2ax \\ x &= ut + \frac{1}{2} at^2 \end{aligned}$$

Accelerations due to rotation

$$\begin{aligned} \text{Coriolis} &= 2 \omega \times \left(\frac{\partial r}{\partial t} \right) \\ \text{Central} &= \omega \times (\omega \times r) \end{aligned}$$

Friction

coefficient of static friction $\mu = \tan \phi$
for no slipping $\frac{F}{N} \leq \mu$

DRY SLIDING FRICTION COEFFICIENTS

Clutches	0.3-0.4
Brakes (lining) " (pads)	0.35-0.5 ~0.3
Nylon/Steel	0.3-0.5
Filled PTFE/Steel	0.05-0.3
Perspex/Steel	~0.5
Rubber/Steel	0.6-0.9
Rubber/Asphalt	0.5-0.8
Lignum vitae/Steel	~0.1

7. PROPERTIES AND MECHANICS OF SOLIDS

7.1 Bonding

(a) London-Morse Equation $V_{\text{total}} = \frac{-2e^2}{r^n} + \frac{B}{r^m} + C$

(b) Ionic Bond Equation $V_0 = \frac{-2Z_1 Z_2 e^2}{4\pi \epsilon_0 r} (1 - \frac{1}{n}) + \Delta E$

(c) Theoretical Density $\rho = \frac{nA}{VN}$

7.2 Atomic sizes in substitutional alloys

Element	Seitz radius $r(\text{\AA})$ (at 200°C)	Effective valency in solution
Al	1.58	3
Au	1.59	1
Cu	1.41	1
Fe(α)	1.41	?
Mg	1.05	2
Ni	1.38	1
P	1.58	3
Pb	1.95	4
Si	1.67	4
Sn	1.86	4
Zn	1.54	2

7.3 Phase Transformations

Length and volume changes may be related by:-

$$(1 + \Delta V/V) = (1 + \Delta L/L)^3$$

7.4 Crystallography

(a) In the Miller system:

Specific Plane $\{h.k.l\}$

Family of Planes $\{h.k.l\}$

Specific Direction $[h.k.l]$

Family of Directions $\langle h.k.l \rangle$

(b) Inter-planar spacings for Cubics

$$d_{\{h.k.l\}} = \frac{a}{\sqrt{h^2+k^2+l^2}} = \frac{a}{\sqrt{N}}$$

(c) Quadratic Forms of Miller Indices (N values)

Cubic Structure

N values

Simple	1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20,
Face Centred	3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32,
Body Centred	2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30,
Diamond	3, 8, 11, 16, 19, 24, 27, 32,

7.5 Defects and Diffusion Data

(a) Number of Defects $n = \alpha N^{1/3}$

(b) Diffusivity $D = D_0 e^{-\frac{E}{RT}}$

Note: these equations may be expressed in terms of Parather than k, the value of 0 must be quoted in the appropriate units.

(c) Macroscopic Diffusion

(i) D constant with composition, $\frac{dc}{dx}$ constant with time
 $J = -D \frac{dc}{dx}$ (This is a special case of (ii))

(ii) D constant with composition, $\frac{dc}{dx}$ varies with time
 $\frac{dc}{dt} = D \frac{d^2 c}{dx^2}$

Solution for a constant surface potential and impermeable sides

7.6 Selected Values of Error Function $\sqrt{\pi} \int_0^z e^{-u^2} du$

z	$erf z$						
0.00	0.0000	0.68	0.6638	1.36	0.9456	2.00	0.9953
0.02	0.0226	0.70	0.6778	1.38	0.9490	2.05	0.9963
0.04	0.0451	0.72	0.6914	1.40	0.9523	2.10	0.9970
0.06	0.0676	0.74	0.7047	1.42	0.9554	2.15	0.9976
0.08	0.0901	0.76	0.7175	1.44	0.9583	2.20	0.9981
0.10	0.1125	0.78	0.7300	1.46	0.9611	2.25	0.9983
0.12	0.1348	0.80	0.7421	1.48	0.9637	2.30	0.9989
0.14	0.1570	0.82	0.7538	1.50	0.9661	2.35	0.9991
0.16	0.1790	0.84	0.7651	1.52	0.9684	2.40	0.9993
0.18	0.2009	0.86	0.7761	1.54	0.9706	2.45	0.9995
0.20	0.2227	0.88	0.7867	1.56	0.9726	2.50	0.9996
0.22	0.2443	0.90	0.7969	1.58	0.9746	2.55	0.9997
0.24	0.2657	0.92	0.8068	1.60	0.9764	2.60	0.9998
0.26	0.2869	0.94	0.8163	1.62	0.9780	2.65	0.9998
0.28	0.3079	0.96	0.8254	1.64	0.9796	2.70	0.9999
0.30	0.3286	0.98	0.8342	1.66	0.9811	2.75	0.9999
0.32	0.3491	1.00	0.8427	1.68	0.9825	2.80	0.9999
0.34	0.3694	1.02	0.8508	1.70	0.9838	2.85	0.9999
0.36	0.3893	1.04	0.8587	1.72	0.9850	2.90	1.0000
0.38	0.4090	1.06	0.8661	1.74	0.9861	2.95	1.0000
0.40	0.4284	1.08	0.8733	1.76	0.9872	3.00	1.0000
0.42	0.4475	1.10	0.8802	1.78	0.9882	4.00	1.0000
0.44	0.4662	1.12	0.8868	1.80	0.9891		
0.46	0.4847	1.14	0.8931	1.82	0.9899		
0.48	0.5028	1.16	0.8991	1.84	0.9907		
0.50	0.5205	1.18	0.9048	1.86	0.9915		
0.52	0.5379	1.20	0.9103	1.88	0.9922		
0.54	0.5549	1.22	0.9155	1.90	0.9928		
0.56	0.5716	1.24	0.9205	1.92	0.9934		
0.58	0.5879	1.26	0.9252	1.94	0.9939		
0.60	0.6039	1.28	0.9297	1.96	0.9944		
0.62	0.6194	1.30	0.9340	1.98	0.9949		
0.64	0.6346	1.32	0.9381				
0.66	0.6494	1.34	0.9419				

7.7 Fracture

1) Fatigue

Manson-Coffin Law $\Delta P_{ep} = c$ (c = constant)

Miner's Rule $\sum \frac{N_i}{N_T} = 1$

Rayleigh Distribution $P(\sigma) = \sigma^{-2} \exp \left\{ -\frac{1}{2} \left(\frac{\sigma}{\sigma_r} \right)^2 \right\}$

Fraction of peak exceeding stress (σ) expressed in terms of E $E(\sigma) = \exp \left\{ -\frac{1}{2} \left(\frac{\sigma}{\sigma_r} \right)^2 \right\}$

11) Fracture Toughness

Stress Intensity $K = Q \sigma \sqrt{a}$

Paris Equation $\frac{da}{dt} = A(\Delta K)^n + A_1 a^{m/2}$ (A , A_1 , n and m are constants)

7.8 Some typical values of physical properties

All values are given, unless otherwise stated, for a temperature of 20°C.

	Carbon Steel	Alumi-nium Alloys	Brass 65/35	Copper	Concrete	Stain-less Steels	Wood
ρ (kg/m^3)	7850	2720	8450	8960	2400	8000	400-800
E (GN/m^2)	207	68.9	105	104	13.8	213	8-13
G (GN/m^2)	79.6	26.5	38.0	46		82	
K ($\text{GN/m}^{3/2}$)	172	57.5	115	130		178	
v	0.3	0.3	0.35	0.35	0.1	0.3	
α ($\mu\text{m}/(\text{mK})$)	11	23	19	11.2		18	-0.1%
σ_y (MN/m^2)	230-460	30-280	62-430	47-320		200-585	
σ_f (MN/m^2)	400-770	90-300	330-530	200-350	27-55	500-800	50-100

K for water is $2.3 \text{ GN/m}^{3/2}$

The lower values of σ_y and σ_f for carbon and stainless steels refer to materials such as plates and tubes while the higher figures refer to heat-treated material such as used for bolts. The range of values for aluminium, copper and brass is due to the change in material property achieved by heat-treatment and/or mechanical work.

7.6 Selected Values of Error Function $\frac{2}{\sqrt{\pi}} \int_0^z e^{-u^2} du$

z	erf z						
0.00	0.0000	0.68	0.6638	1.36	0.9456	2.00	0.9953
0.02	0.0226	0.70	0.6778	1.38	0.9490	2.05	0.9963
0.04	0.0451	0.72	0.6914	1.40	0.9523	2.10	0.9970
0.06	0.0676	0.74	0.7047	1.42	0.9554	2.15	0.9976
0.08	0.0901	0.76	0.7175	1.44	0.9583	2.20	0.9981
0.10	0.1125	0.78	0.7300	1.46	0.9611	2.25	0.9983
0.12	0.1348	0.80	0.7421	1.48	0.9637	2.30	0.9989
0.14	0.1570	0.82	0.7538	1.50	0.9661	2.35	0.9991
0.16	0.1790	0.84	0.7651	1.52	0.9684	2.40	0.9993
0.18	0.2009	0.86	0.7761	1.54	0.9706	2.45	0.9995
0.20	0.2227	0.88	0.7867	1.56	0.9726	2.50	0.9996
0.22	0.2443	0.90	0.7969	1.58	0.9746	2.55	0.9997
0.24	0.2657	0.92	0.8068	1.60	0.9764	2.60	0.9998
0.26	0.2869	0.94	0.8163	1.62	0.9780	2.65	0.9998
0.28	0.3079	0.96	0.8254	1.64	0.9796	2.70	0.9999
0.30	0.3286	0.98	0.8342	1.66	0.9811	2.75	0.9999
0.32	0.3491	1.00	0.8427	1.68	0.9825	2.80	0.9999
0.34	0.3694	1.02	0.8508	1.70	0.9838	2.85	0.9999
0.36	0.3893	1.04	0.8587	1.72	0.9850	2.90	1.0000
0.38	0.4090	1.06	0.8661	1.74	0.9861	2.95	1.0000
0.40	0.4284	1.08	0.8733	1.76	0.9872	3.00	1.0000
0.42	0.4475	1.10	0.8802	1.78	0.9882	4.00	1.0000
0.44	0.4662	1.12	0.8868	1.80	0.9891		
0.46	0.4847	1.14	0.8931	1.82	0.9899		
0.48	0.5028	1.16	0.8991	1.84	0.9907		
0.50	0.5205	1.18	0.9048	1.86	0.9915		
0.52	0.5379	1.20	0.9103	1.88	0.9922		
0.54	0.5549	1.22	0.9155	1.90	0.9928		
0.56	0.5716	1.24	0.9205	1.92	0.9934		
0.58	0.5879	1.26	0.9252	1.94	0.9939		
0.60	0.6039	1.28	0.9297	1.96	0.9944		
0.62	0.6194	1.30	0.9340	1.98	0.9949		
0.64	0.6346	1.32	0.9381				
0.66	0.6494	1.34	0.9419				

7.7 Fracture

i) Fatigue

$$\text{Manson-Coffin Law: } \frac{\Delta \sigma}{\sigma_{\text{U}}} \cdot \frac{\Delta \epsilon}{\epsilon_{\text{U}}} = c \quad (c = \text{constant})$$

$$\text{Miner's Rule: } \sum \left(\frac{\Delta \epsilon_i}{\epsilon_{\text{U},i}} \right)^n = 1$$

$$\text{Rayleigh Distribution: } P(\sigma) = \sigma^{-2} \exp \left\{ -\frac{1}{2} \left(\frac{\sigma}{\sigma_{\text{U}}} \right)^2 \right\}$$

$$\text{Fraction of peak exceeding stress } (\sigma) \text{ expressed in terms of } E: \epsilon(\sigma) = \exp \left\{ -\frac{1}{2} \left(\frac{\sigma}{\sigma_{\text{U}}} \right)^2 \right\}$$

ii) Fracture Toughness

$$\text{Stress Intensity } K = Q \sigma \sqrt{a}$$

$$\text{Paris Equation: } \frac{da}{dt} = A(\Delta K)^m = A_1 a^{m/2} \quad (A, A_1, m \text{ are constants})$$

7.8 Some typical values of physical properties

All values are given, unless otherwise stated, for a temperature of 20°C.

	Carbon Steel	Alumi-nium Alloys	Brass 65/35	Copper	Concrete	Stain-less Steels	Wood
ρ (kg/m^3)	7850	2720	8450	8960	2400	8000	400-800
E (GN/m^2)	207	68.9	105	104	13.8	213	8-13
G (GN/m^2)	79.6	26.5	38.0	46		82	
K ($\text{MN/m}^{3/2}$)	172	57.5	115	130		178	
v	0.3	0.3	0.35	0.35	0.1	0.3	
α ($\mu\text{m}/(\text{mK})$)	11	23	19	11.2		18	-0.15
σ_y (MN/m^2)	230-460	30-280	62-430	47-320		200-585	
σ_f (MN/m^2)	400-770	90-300	330-530	200-350	27-55	500-800	50-100

K for water is $2.3 \text{ MN/m}^{3/2}$

The lower values of σ_y and σ_f for carbon and stainless steels refer to materials such as plates and tubes while the higher figures refer to heat-treated material such as used for bolts. The range of values for aluminium, copper and brass is due to the change in material property achieved by heat-treatment and/or mechanical work.

Metals

Property	Copper	Iron
Crystal structure	f.c.c.	b.c.c.
Bonding	metallic	metallic
Lattice constant (\AA)	3.61	2.86
Atomic volume ($\text{m}^3/\text{kg mol}$)	7.09×10^{-3}	7.10×10^{-3}
ρ (kg/m^3)	8.96×10^3	7.87×10^3
Resistivity ($\Omega \text{ m}$)	1.72×10^{-8}	10×10^{-8}
Cohesive energy (J/kg mol)	3.38×10^8	4.05×10^8
Melting point ($^\circ\text{C}$)	1083	1530
$\alpha(\mu\text{m}/\text{mK})$	16.7	12.1
Fermi energy (eV)	7.04	11.2
Work Function (eV)	4.07 - 4.18	3.91 - 4.77
Temperature coefficient of resistance (K^{-1})	+0.0043	+0.0065
Effective radius (\AA) of (a) neutral atom	1.27	1.26
(b) singly charged ion	0.96	-
(c) doubly charged ion	0.70	0.75

Semiconductors

Property	Germanium	Silicon
Crystal structure	diamond	diamond
Bonding	covalent	covalent
Lattice constant (\AA)	5.6575	5.4307
Atomic volume ($\text{m}^3/\text{kg mol}$)	13.5×10^{-3}	12.0×10^{-3}
Density (kg/m^3)	5.32×10^3	2.33×10^3
Cohesive energy (J/kg mol)	3.72×10^8	4.39×10^8
Melting point ($^\circ\text{C}$)	958.5	1412
Mobility ($\text{m}^2/(\text{V s})$)	{electrons 0.38 holes 0.18}	{electrons 0.19 holes 0.05}
Energy gap (eV) (room temperature)	0.67	1.107
Density of states effective mass	{electrons 0.35 m_e holes 0.56 m_e }	{electrons 0.58 m_e holes 1.06 m_e }
$\alpha(\mu\text{m}/\text{mK})$	5.75	7.6

Polymers

PROPERTY	Polyethylene (H.D.)	Polyvinyl Chloride	Polystyrene
Polymer Structure	$\left[-\text{CH}_2-\text{CH}_2-\right]_n$	$\left[-\text{CH}_2-\text{CH}(\text{Cl})-\right]_n$	$\left[-\text{CH}_2-\text{CH}-\text{C}_6\text{H}_4-\right]_n$
Structural State	Crystalline	Amorphous/ Slightly Crystalline	Amorphous/ Crystalline
$\rho(\text{kg/m}^3)$	0.96×10^3	1.7×10^3	1.05×10^3
Resistivity (Ωm)	$10^6 - 10^{10}$	10^5	10^{10}
$\alpha(\mu\text{m}/\text{mK})$	120	190	63
$E(\text{GN/m}^2)$	70-280	2500-3500	3500-4200
$\sigma_f(\text{MN/m}^2)$	7-14	28-40	35-50
Tg($^\circ\text{K}$)	153	353	373
PROPERTY	Poly(methyl-methacrylate)	Polytetrafluoroethylene	Polyisoprene (Natural) Rubber
Polymer Structure	$\left[-\text{CH}_2-\text{C}(=\text{O})-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}(=\text{O})-\text{CH}_2-\right]_n$	$\left[-\text{CF}_2-\text{CF}_2-\right]_n$	$\left[-\text{CH}_2-\text{C}(\text{CH}_3)=\text{CH}-\text{CH}_2-\right]_n$
Structural State	Amorphous	Crystalline	Elastomer
$\rho(\text{kg/m}^3)$	1.2×10^3	2.2×10^3	1.5×10^3
Resistivity (Ωm)	10^8	10^8	$10^5 - 10^7$
$\alpha(\mu\text{m}/\text{mK})$	90	100	-
$E(\text{GN/m}^2)$	2500-4000	400-650	7-70
$\sigma_f(\text{MN/m}^2)$	50-70	14-30	2-10
Tg($^\circ\text{K}$)	380	399	203
PROPERTY	Nylon 6:6	Phenol-Formaldehyde Resin (Bakelite)	
Polymer Structure	$\left[-\text{NH}-\text{C}(\text{H}_3)_2-\text{NH}-\text{C}(=\text{O})-\text{CH}_2-\text{C}(=\text{O})-\text{NH}-\text{C}(\text{H}_3)_2-\text{NH}-\right]_n$	$\left[\text{HO}-\text{C}_6\text{H}_3(\text{OH})_2-\text{CH}_2-\text{C}_6\text{H}_3(\text{OH})_2-\text{CH}_2-\right]_n$	
Structure State	Crystalline	Amorphous	
$\rho(\text{kg/m}^3)$	1.15×10^3	1.3×10^3	
Resistivity (Ωm)	10^6	10^4	
$\alpha(\mu\text{m}/\text{mK})$	100	72	
$E(\text{GN/m}^2)$	2000-3000	7000	
$\sigma_f(\text{MN/m}^2)$	50-70	50	
Tg($^\circ\text{K}$)	323	-	

Periodic Table of the Elements

- The atomic number indicates the number of protons in the nucleus of an atom. In the neutral atom these protons are electrically balanced by an equal number of electrons outside the nucleus. Only neutral atoms are considered in the Periodic Classification.
 - Electrons travel far from the nucleus but if those regions where they spend most of their time are considered, a well-defined pattern of layers or 'Principal Shells' appears. Each shell is known by a Principal Quantum Number 1, 2, 3, ..., 7 or sometimes by the letters K, L, M, ... etc.
 - In each shell the electrons move around the nucleus in complicated, three-dimensional patterns called Orbitals. The laws of Quantum Mechanics permit only certain types of orbital. An electron following one of these paths possesses an amount of energy (Energy Level) characteristic of that orbital.
 - Four types of orbital are enumerated; they are identified by the letters s , p , d and f . s is the simplest whilst p , d and f are progressively more complex.
 - The number of orbitals per shell increases with shell number. (See the lower diagram overleaf.) The first contains only an s orbital, the second an s and three p 's, the third adds five d orbitals and the fourth seven f 's. These groups of like orbitals in any Principal Shell are called s sub-shells or p , d or f sub-shells. Each sub-shell, depending on its principal quantum number and type, has a characteristic energy the order of which is generally proportional to the distance of the sub-shell from the nucleus.
 - Each orbital accepts either one or two electrons and the maximum number of electrons per sub-shell is shown on the diagram.
 - Electrons take positions in orbitals where the energy level is lowest. Up to element 18 (Argon) sub-shells and shells are built in an orderly sequence to maximum capacity. But in the next group the order changes because it happens that the energy level of the $4\ s$ state is a little lower than that of the $3\ d$ state.
 - The first transition series begins with Scandium (element 21) where the energy levels of the $4\ s$ and $3\ d$ orbitals are so nearly equal that there is a tendency for electrons to move from one orbital to another, causing variable valency. The same happens in the fifth period with $5\ s$ and $4\ d$ orbitals and in the sixth period with the $6\ s$ and $5\ d$ orbitals.
 - In the Lanthanide series and Actinide series of elements, the $4\ f$ and $5\ f$ orbitals are occupied only after the $5\ s$, $4\ d$ and $5\ p$ orbitals outside them have filled or begun to fill. The effect upon the chemistry of the elements is very small because the f orbitals are deep in the core of the atom. For this reason there is little difference between one element and its immediate neighbours.
 - In any element, the so called Valency Electrons are those moving in orbitals of the highest energy levels. In this Chart of the Periodic Classification, the number and position of the valency electrons is indicated in the boxes underneath the various columns e.g. Rhodium—element 45—has nine valency electrons; 8 in the $4\ p$ sub-shell and 1 in the $5\ s$.

NOTE

1. The following atomic weights are based on the exact number 12 for the carbon isotope 12, as agreed between the International Union of Pure and Applied Physics and of Pure and Applied Chemistry, 1961.

2. The values given normally indicate the mean atomic weight of the mixture of isotopes found in nature. Particular attention is drawn to the value for hydrogen, boron, carbon, oxygen, silicon and sulphur, where the deviation shown is due to variation in relative concentration of isotopes.

Symbol	Name	Atomic Number	Atomic Weight	Symbol	Name	Atomic Number	Atomic Weight
A or Ar	Argon	18	39.948	Mg	Magnesium	12	24.312
Ac	Actinium	89	—	Mn	Manganese	25	54.9380
Ag	Silver	47	107.870	Mo	Molybdenum	42	95.94
Al	Aluminium	13	26.9815	N	Nitrogen	7	14.067
Am	Ameritium	95	—	Na	Sodium	11	22.9898
As	Arsenic	33	74.9216	Nb	Hafnium	41	92.906
At	Astatine	85	—	Nd	Neodymium	60	144.24
Au	Gold	79	196.967	Ne	Neon	10	20.183
B	Boron	5	10.811	Ni	Nickel	28	58.71
		± 0.003		No	Nobelium	102	—
Ba	Barium	56	137.34	Np	Neptunium	93	—
Be	Beryllium	4	9.0122	O	Oxygen	8	15.9994
Bi	Bismuth	83	208.980	Os	Osmium	76	190.2
Bk	Berkelium	97	—	P	Phosphorus	15	30.9738
Br	Bromine	35	79.909	Pa	Protactinium	91	—
C	Carbon	6	12.01115	Pd	Palladium	46	106.4
		± 0.00005	Po	Promethium	61	—	
Ca	Calcium	20	40.08	Pr	Praseodymium	59	140.907
Cd	Cadmium	48	112.40	Pt	Platinum	78	195.09
Ce	Cerium	58	140.12	Pu	Plutonium	94	—
Cl	Californium	98	—	Ra	Radium	88	—
Cl	Chlorine	17	35.453	Rb	Rubidium	37	85.47
Cm	Curium	96	—	Re	Rhenium	75	186.2
Co	Cobalt	27	58.932	Rh	Rhodium	45	102.905
Cr	Chromium	24	51.996	Rn	Radon	86	—
Cs	Cesium	55	132.905	S	Sulphur	16	32.064
Cu	Copper	29	63.54	Sb	Antimony	51	121.75
Dy	Dysprosium	66	162.50	Sc	Scandium	21	44.956
Er	Erbium	68	167.26	Se	Selenium	34	78.96
Es	Einsteiniun	99	—	Si	Silicon	14	28.086
Eu	Europium	63	151.96			± 0.003	
F	Fluorine	9	18.9984	Sm	Samarium	62	150.35
Fe	Iron	26	55.947	Tn	Tin	50	118.69
Fm	Fermium	100	—	Tl	Serontium	38	87.62
Fr	Francium	87	—	Ta	Tantalum	73	180.948
Ga	Gallium	31	69.72	Tb	Terbium	65	158.924
Gd	Gadolinium	64	157.25	Tc	Technetium	43	—
Ge	Germanium	32	72.59	Tc	Tellurium	52	127.60
H	Hydrogen	1	1.00797	Th	Thorium	90	232.038
		± 0.00001	Ti	Titanium	23	47.90	
He	Helium	2	4.0026	Tl	Thallium	81	204.37
Hf	Hafnium	72	178.49	Tm	Thulium	69	168.934
Hg	Mercury	80	200.59	U	Uranium	92	238.03
Ho	Holmium	67	164.930	V	Vanadium	23	50.942
I	Iodine	53	126.9044	W	Tungsten	74	183.85
In	Indium	49	114.82	Xe	Xenon	54	131.30
Ir	Iridium	77	192.2	Y	Yttrium	39	88.905
K	Potassium	19	39.102	Yb	Ytterbium	70	173.04
Kr	Krypton	36	83.80	Zn	Zinc	30	65.37
La	Lanthanum	57	138.91	Zr	Zirconium	40	91.22
Li	Lithium	3	6.939				
Lu	Lutetium	71	174.97				
Md	Mendelevium	101	—				

8. THERMODYNAMICS AND FLUID MECHANICS

8.1 Thermodynamic Relationships

1st Law	$dQ = dW + dU$
Enthalpy	$H = U + pV$ or $h = u + Pv$
For reversible process	$dS = \left(\frac{dQ}{T}\right)_{rev}$ or $dQ = TdS$
= = =	= = =
	$dW = pdV$
Helmholtz function	$F = U - TS$ or $f = u - Ts$
Gibbs function	$G = H - TS$ or $g = h - Ts$
Gibbs free energy	
From 1st Law for a homogeneous fluid	$Tds = du + pdv + dh - vdp$
Specific heat at constant volume	$c_v = \left(\frac{\partial u}{\partial T}\right)_V$
Specific heat at constant pressure	$c_p = \left(\frac{\partial h}{\partial T}\right)_P$
Specific heat ratio	$\gamma = c_p/c_v$
Reversible engine (Carnot) efficiency	$\eta = 1 - (T_{sink}/T_{source})$
Engine indicated Power	$P_i = P_m V_s N_c$
Steady flow energy equation	$(0-W)/m = h_2-h_1 + \frac{1}{2}(c_2^2 - c_1^2) + g(z_2-z_1)$
Continuity equation	$\dot{m} = \rho A c$
General relationships for a perfect gas:	
$pv = RT$	$pV = mRT$
$pV_0 = R_0 T$	$MR = R_0$
$\Delta U = mc_v(T_2-T_1)$	$\Delta H = mc_p(T_2-T_1)$
$\Delta S = mc_v \ln\left(\frac{T_2}{T_1}\right) + mc_p \ln\left(\frac{V_2}{V_1}\right)$	
$c_p - c_v = R$	$\frac{\gamma-1}{\gamma} = \frac{R}{c_p}$
Van der Waals' equation $(p + \frac{a}{V})(V - b) = RT$	
$S = k \ln P$	$k = R_0/N$
Availability, (closed system): $(A_1-A_0) = (U_1+P_0V_1-T_0S_1) - (U_0+P_0V_0-T_0S_0)$	
= = = (flow process) : $(B_1-B_0) = (H_1-T_0S_1) - (H_0-T_0S_0)$	
Maximum work of a reaction $W_{max} = G_{react} - G_{prod} = R_0 T \ln(K_p \cdot P_0)$	

For reversible polytropic ($pV^n = \text{constant}$) closed system:
 $W = (p_1 V_1 - p_2 V_2)/(n-1)$

For perfect gas also:

$$W = mR(T_1 - T_2)/(n-1) \quad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = \left(\frac{V_1}{V_2}\right)^{n-1}$$

$$0 = \frac{T_2 - n \cdot T_1}{T_1 - T_2}$$

For adiabatic reversible (isentropic reversible):

$$n = \gamma$$

For isothermal reversible:

$$W = 0 = pV \ln\left(\frac{V_1}{V_2}\right) \quad (n = 1)$$

Maxwell relations

$$\left[\frac{\partial T}{\partial V}\right]_S = -\left[\frac{\partial P}{\partial S}\right]_V \quad \left[\frac{\partial T}{\partial P}\right]_S = \left[\frac{\partial V}{\partial S}\right]_P$$

$$\left[\frac{\partial P}{\partial T}\right]_V = \left[\frac{\partial S}{\partial V}\right]_T \quad \left[\frac{\partial V}{\partial T}\right]_P = -\left[\frac{\partial S}{\partial P}\right]_T$$

Heat transfer

Conduction (one dimensional)
 $\dot{Q}/A = -k dT/dx$
 $= k(T_1 - T_2)/x_{1,2}$

" (radial flow)
 $\dot{Q}/E = 2\pi k \Delta T / \ln(r_2/r_1)$

Forced convection in a tube
 $Nu = 0.023 Re^{0.8} Pr^{0.4}$
 (characteristic length = hydraulic mean diameter) (see 8.5)

Log. mean temperature difference
 $\frac{\Delta T_{in} - \Delta T_{out}}{\ln(\Delta T_{in}/\Delta T_{out})} = \Delta T_m$

Stefan-Boltzmann Law of radiation
 $q_b = \sigma T^4$

Radiation exchange:

Grey body to black or large enclosure
 $\dot{Q}/A = \sigma \epsilon_1 (T_1^4 - T_2^4)$

Large parallel grey surfaces
 $\dot{Q}/A = \sigma \frac{(T_1^4 - T_2^4)}{1/\epsilon_1 + 1/\epsilon_2 - 1}$

Heat transfer coefficient $h = \dot{Q}/A \Delta T$
 emissivity $\epsilon = q/q_b$

Fluid Mechanics

Statics

$$\frac{\partial \sigma}{\partial z} = -g\rho$$

$$\text{Force} = g\rho A h$$

$$c = \frac{(Ak^2)_{\text{centroid}}}{Ag}$$

$$\overline{GM}_{\text{roll}} = \frac{Ak^2}{V} = \overline{GM}$$

(Ak^2 is 2nd moment of area about rolling axis)

Dynamics

For simple Newtonian flow
 $T = u \frac{dy}{dx}$

Euler's equation
 $\frac{1}{\rho} \frac{dp}{dx} + c \frac{dc}{dx} + g \frac{dz}{dx} = 0$

Bernoulli's equation
 $\frac{p}{\rho g} + \frac{c^2}{2g} + z = \text{constant}$

For constant area flow with friction (Fanno)

$$\frac{dp}{\rho} + c \frac{dc}{dx} + 2 \frac{f c^2}{D} dx = 0$$

Acceleration along a stream-line
 $a_s = V_s \frac{\partial V_s}{\partial x} + \frac{\partial V_s}{\partial t}$

Acceleration normal to a streamline
 $a_n = \frac{V_s^2}{r} + \frac{\partial V_n}{\partial t}$

Reynolds' Equation for bearings:

$$\frac{3}{8\pi} \left(\frac{\rho h^3}{12\eta} \frac{\partial p}{\partial x} \right) + \frac{3}{8y} \left(\frac{\rho h^3}{12\eta} \frac{\partial p}{\partial y} \right) = \frac{1}{2} \frac{3}{\pi x} (\rho U h) + \frac{3}{8\pi} (\rho h) + \rho w$$

$$\frac{1}{r} \frac{3}{8\pi} \left(\frac{\partial h^3}{12\eta} \frac{\partial p}{\partial r} \right) + \frac{1}{r^2} \frac{3}{8\theta} \left(\frac{\rho h^3}{12\eta} \frac{\partial p}{\partial \theta} \right) = \frac{1}{2} \frac{3}{8\pi} (\rho u h) + \frac{3}{8\pi} (\rho h) + \rho w$$

Hydraulic machines

Head coefficient
 $\psi = Y/\omega^2 D^2$

Flow
 $\phi = Q/\omega D^3$

Dimensionless specific speed
 $n_s = \left| \frac{\omega^{1/2} / Y^{1/4} \cdot \psi^{1/2} \cdot \phi^{1/3}}{\rho^{1/2} \cdot g^{1/2}} \right| n_{MAX}$

Dimensionless diameter	$\Delta = DY^{\frac{1}{2}}/Q^{\frac{1}{3}}$
Dimensionless suction specific speed	$N_{ss} = \omega Q^{\frac{1}{2}} / (NPSE)^{\frac{1}{3}}$
Cavitation number	σ or $k = (P_w - P_v) / (\frac{1}{2}\rho V_m^2)$, suffix = reference condition.
Cavitation number (Thoma)	$c_{Th} = (P_1 - P_v) / (P_2 - P_1)$ suffix 1, abs pressure at top side of machine; suffix 2, abs pressure at bp side of machine; suffix v, vapour pressure

Open Channel Hydraulics

Chézy equation $V = CVRS$

Manning equation: $V = \frac{1}{n} R^{\frac{3}{5}} S_f^{\frac{1}{2}}$

Steady gradually varied flow equation: $\frac{dy}{dx} = \frac{S_o - S_f}{1 - \alpha \frac{y}{R}}$ (rectangular channel)

Unsteady gradually varied flow equation: $\frac{dy}{dx} + \frac{y}{g} \frac{\partial V}{\partial x} + \frac{1}{g} \frac{\partial Y}{\partial t} = S_o - S_f$ no local inflow or outflow

Continuity equation: $A \frac{\partial V}{\partial x} + V \frac{\partial A}{\partial x} + T \frac{\partial d}{\partial t} = 0$ outflow

Conjugate depths in hydraulic jump: $\frac{d_2}{d_1} = \frac{1}{2} \left[\sqrt{1+8F_1^2} - 1 \right]$ (rectangular channel)

High speed gas flow

Nozzles: Mass flow given by $\dot{m} = AC_d \sqrt{\frac{2n}{(n-1)}} p_0 p_0 \left[\left(\frac{p_0}{p_0}\right)^{2/n} - \left(\frac{p_0}{p_0}\right)^{n+1} \right]$

Critical pressure ratio $\frac{p^*}{p_0} = \left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$

Sonic velocity $a = \sqrt{\gamma p/c}$

where $n = 1.3$ for steam, initially superheated

= 1.135 for steam, initially wet or dry saturated

= $\gamma = 1.4$ for air

For perfect gas:

Stagnation temperature $T_0 = T \left[1 + \frac{(\gamma-1)}{2} M^2 \right]$

For air in isentropic flow ($\gamma = 1.4$) $\frac{\partial T_0}{A^* p_0} = 0.0404 \frac{\text{kgK}^{\frac{1}{2}}}{\text{Ns}}$

Turbine Ellipse Law $\frac{\sqrt{T_0}}{A p_0} = \left[1 - \left(\frac{p}{p_0} \right)^2 \right]^{\frac{1}{2}}$

8.5 Dimensionless groups

Drag coefficient	$C_D = \text{drag force} / \frac{1}{2} \rho V^2 A$
Discharge coefficient	$C_d = \frac{Q_{\text{actual}}}{Q_{\text{throat}}} = \left[\frac{A_{\text{throat}}}{1 - \frac{A_{\text{throat}}}{A_{\text{pipe}}}} \right]^{\frac{1}{2}}$
Fourier number	$Fr = (k/\rho c_p) t/L^2$
Froude number	$Fr = V/\sqrt{gL}$
Grashof number	$Gr = g \beta T L^3 \rho^2 / \mu^3$
Mach number	$M = V/c$
Nusselt number	$Nu = hL/k$
Prandtl number	$Pr = \mu c_p / k$
Reynolds' number - general	$Re = \rho VL/\mu$
" " - rotating disc	$Re = \rho \omega D^2 / 4\mu$
Weber number	$We = V(pL/c)^{\frac{1}{2}}$
Pipeflow friction factor	$f = 8Df / 2\pi V^2$ (round pipes) $2gmh_f / LV^2$ (non-circular duct)
Wall shear stress coefficient f	$\tau_w / \frac{1}{2} \rho V^2$

8.6 Composition of air

	Vol. Analysis	Grav. Analysis
Nitrogen ($N_2 = 28.013$)	0.7809	0.7553
Oxygen ($O_2 = 31.999$)	0.2095	0.2314
Argon ($A_r = 39.948$)	0.0093	0.0128
Carbon dioxide ($CO_2 = 44.010$)	0.0003	0.0005

Mean Molecular Weight $M = 28.96$

Specific Gas Constant $R = 0.2871 \text{ kJ/(kgK)}$

8.7 Temperatures at the primary fixed points

Normal boiling point of oxygen (oxygen point)	-182.97°C
Triple point of water	0.01°C
Normal boiling point of water (steam point)	100.00°C
Normal boiling point of sulphur (sulphur point)	446.6°C
Normal melting point of silver (silver point)	960.8°C
Normal melting point of gold (gold point)	1063°C

(iii) Solids

8.8 Critical constants

	molecular weight	T _c (K)	P _c (bar)	ρ_c (kg/m ³) (10 ⁵ N/m ²)
hydrogen	2.02	39.3	13.0	31
helium (4)	4.00	5.3	2.29	69.3
water vapour	18.02	647.30	221.2	318.3
nitrogen	28.01	126.1	33.9	311
oxygen	32.00	154.4	50.4	430
carbon dioxide	44.01	304.15	73.8	468

8.9 Approximate physical properties at 20°C, 1 bar (10⁵N/m²)

	R kJ/kg K	ρ kg/m ³	c_p kJ/kg K	c_p/c_v	μ mNs/m ² sec P	k W/mK
hydrogen	4.16	0.082	14.3	1.40	8.8x10 ⁻³	1.8x10 ⁻¹
helium	2.08	0.164	5.23	1.66	1.96x10 ⁻²	1.4x10 ⁻¹
nitrogen	0.294	1.16	1.04	1.40	1.76x10 ⁻²	2.6x10 ⁻²
oxygen	0.260	1.31	0.91	1.40	2.03x10 ⁻²	2.6x10 ⁻²
carbon dioxide	0.190	1.80	0.84	1.28	1.47x10 ⁻²	1.7x10 ⁻²
air	0.287	1.19	1.005	1.40	1.82x10 ⁻²	2.6x10 ⁻²

(ii) Liquids

	ρ kg/m ³	c_p kJ/(kgK)	μ cP	k W/(mK)	σ N/m	β 10 ⁻³ K ⁻¹
water	1,000	4.19	1.002	0.6	0.073	0.21
mercury	13,600	0.14	1.55	8.7	0.51	0.18
castor oil	960	2.20	1000	0.18	0.039	
benzene	880	1.80	0.656	0.16	0.029	
ethyl alcohol	790	2.86	1.20	0.19	0.022	1.08
engine oil	890	1.9	80	0.15	-	0.8
Freon 12	1,350	0.96	0.273	0.073	-	

	ρ kg/m ³	c_p kJ/(kgK)	k W/(mK)	σ μm/(mK)
duralumin	2720	0.88	170	23
steel	7850	0.46	52	11
stainless steel (18% Ni, 8% Cr)	7810	0.46	16	18
brass (65/35)	8450	0.37	120	19
concrete	2400	0.88	1.1	10-14
wood (pine)	500	2.8	0.15	0.15
firebrick	170	0.81	0.38	3-9

(iv) Fuels

(a) Gases (fuels)

	Composition by Volume							Relative Density (Air) = 1	Calorific Value MJ/m ³ 15°C 1.01325 Bar	Theoretical Air Vol/Vol	
	N ₂	H ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂				
	Hydrogen	100						0.0696	12.10	10.22	2.38
Methane		100						0.5537	37.71	33.95	9.52
North Sea Gas 1.5	94.4	3.0	0.5	0.2				0.589	38.62	34.82	9.75
Propane*		1.5	91.0	2.5	5.0	1.523	93.87	86.43	23.76		
Butane*	0.1	0.5	7.2	87.0	4.2	1.941	117.75	108.69	29.92		

* Commercial Liquid petroleum Gas (L.P.G.) See also data on liquid fuels below.

(b) Liquids (fuels), typical values

	Composition % Mass			Density at 15°C kg/m ³	Calorific Value MJ/kg at 15°C	
	C	H	S		Gross	Net
Propane*	82.0	18.0		505	50.0	46.3
Butane*	81.9	17.0		575	49.3	45.8
Petrol	85.5	14.4	0.1	733	46.9	43.7
Kerosene	85.9	14.0	0.1	780	46.5	43.4
Diesel (Gas Oil)	85.7	13.4	0.9	840	45.4	42.4

B.10 Friction factor

B.11 Automatic control

1. Block Diagrams

2. Feedback Notation

$$\text{Input/Output closed loop transfer function} = \frac{C}{R} = \frac{G_1 G_2}{1 + G_1 G_2 H}$$

$$\text{Input/Error closed loop transfer function} = \frac{C}{E} = \frac{1}{1 + G_1 G_2 H}$$

Characteristic equation

$$G_1 G_2 H \triangleq KGH = \frac{K}{s^n} \prod_{i=1}^n (s + z_i) \quad -z_1, \dots, -z_n \quad \text{zeros and poles}$$

$$= \frac{1}{s^n} \prod_{i=1}^n (s + p_i) \quad 1 \quad \text{system type number}$$

$$n \quad \text{system order number}$$

3. Stability Criteria for Linear Systems

3.1 Root location: No closed loop system pole may have positive real part

3.2 Routh Array

Characteristic equation $a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$

	1	2	3	"
n	a_n	a_{n-2}	a_{n-4}	"
$n-1$	a_{n-1}	a_{n-3}	a_{n-5}	"
$n-2$	b_1	b_2	b_3	"
$n-3$	c_1	c_2	c_3	"
"	"	"	"	"
$b_1 = \frac{a_{n-1}a_{n-2} - a_n a_{n-3}}{a_{n-1}}$	$b_2 = \frac{a_{n-1}a_{n-4} - a_n a_{n-5}}{a_{n-1}}$			
$c_1 = \frac{b_1 a_{n-3} - a_{n-1} b_2}{b_1}$	$c_2 = \frac{b_1 a_{n-5} - a_{n-1} b_3}{b_1}$	etc.		

Number of closed loop poles with positive real part = number of sign changes in column 1.

3.3 Nyquist Encirclement

$$P = N + Z$$

N = number of clockwise encirclements of $(-1, j0)$ by open loop locus

P = number of closed loop poles with positive real part

Z = number of open loop poles with positive real part

3.4 Gain Margin = $|KG(j\omega_g)H(j\omega_g)|^{-1}$, ω_g such that

$$\angle KG(j\omega_g)H(j\omega_g) = -180^\circ$$

3.5 Phase Margin = $180^\circ + \angle KG(j\omega_p)H(j\omega_p)$, ω_p such that

$$|KG(j\omega_p)H(j\omega_p)| = 1$$

4. Rules of Root Locus Sketching

4.1 Every point, α , on the root locus for positive K satisfies

$$|G(\alpha)H(\alpha)| = 1/K$$

$$\angle G(\alpha)H(\alpha) = (1+2k)180^\circ \quad k = 0, \pm 1, \pm 2, \dots$$

4.2 The number of branches of the root locus is equal to the number of poles.

4.3 Branches of the locus can be considered to start on the poles ($K = 0$) and terminate on zeros ($K = \infty$).

4.4 Points of the root locus exist on the real axis to the left of an odd number of poles plus zeros.

4.5 The locus is symmetrical with respect to the real axis.

4.6 The angles of asymptotes, α_k , to the root locus are given by

$$\alpha_k = \frac{\pm(2k+1)\pi}{n-n} \quad k = 0, 1, 2, \dots$$

4.7 The intersection of the asymptotes and the real axis occurs at s_r

$$s_r = -\frac{\sum p_i - \sum z_i}{n-n}$$

4.8 The locus leaves the real axis or arrives at it at points α where α is given by

$$\frac{d}{da} [\ln(G(a)H(a))] = 0$$

4.9 The intersection of the root locus and the imaginary axis can be found by application of Routh's Stability criteria.

5. TABLE OF CHARACTERISTIC SYSTEMS

Typical Example			Basic form of transfer function $G(s)$
Electrical	Dynamic	Hydraulic	
			K
			$\frac{1}{s}$
			$\frac{1}{T+s}$
			$\frac{1}{s(1+Ts)}$
			$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
			$\frac{1+sTs}{1+sT}$
			$\frac{\omega_n^2 (1+2\xi s + \omega_n^2)}{s^2 + 2\xi\omega_n s + \omega_n^2}$

10. ELECTRICITY

Ohm's Law

$$V = IR, \quad R = \frac{V}{I}, \quad I = \frac{V}{R}$$

Power

$$\text{DC Power} = VI = I^2R = V^2/R$$

$$\text{AC Power} = \text{Re}(V \cdot I) = |V||I|\cos\phi$$

Resistance

$$I = \frac{\delta}{\rho_0(1+\alpha T)} \frac{dV}{dx} \quad R = \int \frac{\rho_0(1+\alpha T)}{\delta} dx$$

Inductance

$$e = -L \frac{di}{dt} \quad i = -\int \frac{V}{L} dt$$

$$L = N^2 \mu_0 A R^2 / E$$

for L-R circuit decay $i = I e^{-Rt/L}$

$$\text{Stored energy} = \frac{1}{2} L I^2$$

Capacitance

$$Q = CV = \int idt$$

$$i = \frac{dq}{dt} = C \frac{dv}{dt}$$

$C = \epsilon_0 \epsilon_r (n-1) a/d$, for n parallel plates

$$\epsilon_0 = 8.85 \cdot 10^{-12} \text{ F m}^{-1}$$

for RC circuit discharge $i = -I e^{-t/RC}$

$$\text{Stored energy} = \frac{1}{2} C V^2$$

$$F = \frac{1}{2} \epsilon_0 \epsilon_r \delta \left(\frac{V}{x} \right)^2$$

Electrostatics

$$F = \frac{q_1 q_2}{4\pi \epsilon_0 r^2} \quad E = \epsilon_0 E = +ve \text{ grady}$$

$$Q = \int D \cdot dS (\forall)$$

Electromagnetism

$$E = -N \frac{dv}{dt} \quad B = \frac{\mu_0 I}{2\pi r}$$

$$F = BIL \quad F = \frac{\mu_0 I_1 I_2 l}{2\pi d}$$

$$\frac{dH}{dt} = \frac{15 \sin \alpha}{4\pi k^2}$$

$$\text{For solenoid } H = \frac{NI}{l}$$

Magnetism

$$H = \frac{B}{\mu_0 l_f}$$

For a magnetic circuit

$$B = \frac{\Phi}{A}$$

$$\Phi = \frac{NI}{\frac{l_1}{\mu_1 A_1} + \frac{l_2}{\mu_2 A_2}}$$

$$\text{Stored Energy Density} = \frac{1}{2} HB = \frac{1}{2} \frac{B^2}{\mu_0}$$

$$F = \left(\frac{1}{2} HB \right) A = \frac{B^2 A}{2 \mu_0}$$

DC Machines

$$E = \frac{2\pi}{c} \frac{n}{60} p \phi \quad T = \frac{I_a Z p \phi}{2\pi c} \quad \text{where } c = 2 \text{ (wave) or } 2p \text{ (lap)}$$

$$V = E + I_a R_a$$

Shunt motor

Series motor AC or DC

Compound motor

AC Machines

Synchronous speed = f/p

$$E = 2.22 k \phi B^2 f_0 (\text{rms})$$

$$T = \frac{\theta^2 s R}{R^2 + (sX_0)^2}$$

unstable.

AC Circuits $V_{rms} = \frac{1}{\sqrt{2}} V_{max}$

Series LCR

$$Z = (R^2 + (\omega L - \frac{1}{\omega C})^2)^{\frac{1}{2}}$$

$$\omega = 2\pi f$$

$$Z = R + j\omega L + \frac{1}{j\omega C}$$

$$\text{Cos}\phi = \frac{R}{Z}$$

$$\text{At resonance } \omega = \omega_0 = \frac{1}{\sqrt{LC}} \quad Q \text{ factor} = \omega_0 L$$

Basic Op'Amp' Circuits

Inverting amplifier

non-inverting amplifier

Differential input amplifier

$$V_O = k_1V_I1 + k_2V_I2 - (k_1V_I1 + k_2V_I2)$$

Adding/Subtracting/Scaling

Voltage follower

Current amplifier

Integrating amplifier

Differentiating Amplifier

Colour Code

0 Black	2 Red	4 Yellow	6 Blue	8 Grey
1 Brown	3 Orange	5 Green	7 Violet	9 White

Preferred Values

10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

11 SOIL MECHANICS

11.1 Soil Classification

1. Size Classification

CLASSIFICATION	M.I.T. Size limits mm	B.S. Sieves used for separation mm
Gravel	— 20	20 —
	— 6	6.3 —
	— 2	2 —
Sand	— 0.6	0.6 —
	— 0.2	0.212 —
	— 0.06	0.063 —
Silt	— 0.02	—
	— 0.008	—
	— 0.002	—
Clay		

2. Casagrande Soil Classification, fine grained (50% or more passing B.S. No.200 sieve)

Silts and clays (Liquid limit less than 50)	Inorganic silts, silty or clayey fine sands, with ML slight plasticity
	Inorganic clays, silty clays, sandy clays of CL low plasticity
	Organic silts and organic silty clays of low plasticity OL
Silts and clays (Liquid limit greater than 50)	Inorganic silts of high plasticity MH
	Inorganic clays of high plasticity CH
	Organic clays of high plasticity OH
Highly organic soils	Peat and other highly organic soils Pt

M silt L low plasticity
C clay CH high plasticity
O organic

3. Volume-weight Relationships

Vol.	Air	Weight
1	0	$w = \frac{Se}{G_s}$
$\frac{Se}{G_s}$	Water	$\gamma = \frac{G_s(1+w)}{1+e} \gamma_w$
1	Solids	$e = \frac{G_s - 1}{1 + e} \gamma_w = \gamma_{sat} - \gamma_w$

$$e = \frac{n}{1+n}$$

$$\gamma = \frac{G_s(1+w)}{1+e} \gamma_w$$

$$w = \frac{Se}{G_s}$$

4. Stratigraphic Table

Subdivisions of Quaternary

Era	Period	Epoch	Relative Climate	U.K. Name
Cenozoic	Quaternary	Recent	Warm (current)	Flandrian (Holocene)
		Pleistocene	Cold	Devensian
	Tertiary	Miocene	Warm	Ipswichian
		Oligocene	Cold	Woolstonian
Mesozoic	Cretaceous	Eocene	Warm	Hoxian
		Paleocene	Cold	Anglian
			Warm	Cromerian
	Jurassic		Cold	Beestonian
Paleozoic	Triassic		Warm	Pastonian
	Permian		Cold	Baventian
		Carboniferous	Warm	Amian
		Devonian	Cold	Thurnian
Precambrian	Silurian		Warm	Ludlumian
	Ordovician		Cold	Waltonian
	Camrian			

11.2 Stresses and Displacements in Elastic Half-space

1. Vertical stress at depth z below corner of uniformly loaded rectangle

2. Boussinesq

(a) Point load Q at surface

$$\sigma_z = \frac{30}{2\pi z^2} \cos^2 \theta$$

$$w_s = \frac{Q(1+\nu)}{24\pi E} \cos \theta [\cos^2 \theta + 2(1-\nu)]$$

(b) Line load q at surface

$$\sigma_z = \frac{2q}{\pi z} \cos^2 \theta$$

$$w_s = \frac{2q(1-\nu)^2}{\pi E} \ln(\frac{d}{z}) \text{ where displacement at } d \text{ is assumed = 0 } (d \gg x)$$

3. Surface displacement of uniformly loaded rectangle

L/B Ratio	I_B		
	Centre	Corner	Average
1	1.12	.56	.95
1.5	1.36	.68	1.15
2	1.53	.76	1.30
3	1.78	.89	1.53
4	1.96	.98	1.70
5	2.10	1.05	1.83
7	2.33	1.16	2.04
10	2.53	1.27	2.25
20	2.95	1.47	2.64
30	3.23	1.61	2.88
50	3.54	1.77	3.22
100	4.01	2.00	3.69
Circle	1.00	Edge .64	.85

$$w_s = QB \frac{1-\nu^2}{E} I_B$$

11.3 Terzaghi Bearing Capacity Factors

$$\left. \begin{aligned} \text{Strip footing} \quad q &= cN_c + \gamma DN_q + .5y BN \\ \text{Square footing} \quad q &= 1.3 cN_c + \gamma DN_q + .4y BN_y \\ \text{Circular footing} \quad q &= 1.3 cN_c + \gamma DN_q + .3y BN_y \end{aligned} \right\} \text{FOOTING WIDTH } B$$

Note: Reduce c and $tan \phi$ to two thirds of measured values for local shear.

11.4 Slope Stability

TAYLOR STABILITY NUMBERS : CHART A

11.4 (cont)

TAYLOR STABILITY NUMBERS : CHART B

11.5 Consolidation-Time Curves

For curve (1): $U < .60$ $T = \frac{\pi}{4} U^2$

$$U > .60 \quad T = -.933 \log_{10}(1-U) - 0.085$$

$$T_{50} = .197$$

$$T_{90} = .848$$

11.5 (cont)

12. STRUCTURES

Buckling Loads

Buckling Load:

$$\frac{\pi^2 EI}{L^2}, \quad \frac{4\pi^2 EI}{L^2}, \quad \frac{2.048\pi^2 EI}{L^2}$$

$$\frac{\pi^2 EI}{4L^2}, \quad \frac{\pi^2 EI}{L^2}$$

Effective Length:

$$L$$

$$0.5L$$

$$0.699L$$

$$2L$$

$$L$$

Beams bent about principal axis

w is load/unit length	end slope	maximum deflection Δ
	$\frac{ML}{EI}$	$\frac{ML^2}{2EI}$
	$\frac{ML^2}{2EI}$	$\frac{WL^3}{3EI}$
	$\frac{wL^3}{6EI}$	$\frac{wL^4}{8EI}$
	$\frac{ML}{2EI}$	$\frac{ML^2}{8EI}$
	$\frac{WL^2}{16EI}$	$\frac{WL^3}{48EI}$
$b < c$	$b = \frac{Wac^2}{2EI}, \quad n_b = \frac{L+b}{L-a}, \quad z_b = \frac{L+b}{L-a} \cdot z_b$	$\frac{Wac^3}{3EI}$

Fixed End Moments

LH end conditions moment-shear	RH end conditions shear-moment	maximum deflection Δ	maximum deflection position c
$\frac{\pm L^2}{12}$	$\pm \frac{wL}{2}$	$\frac{wL^4}{30EI}$	$\frac{L}{2}$
$\frac{WL}{8}$	$\pm \frac{w}{2}$	$\frac{WL^3}{192EI}$	$\frac{L}{2}$
$\frac{Wab^2}{L^2}$	$\frac{Wa^2(L+2a)}{L^3}$	$\frac{Wa^2b}{EI}$	$\frac{2ab^2}{L+2b}$
$\frac{6EI}{L^2}$	$\frac{12EI}{L^3}$	$\frac{12EI}{L^3}$	$a < b$
$\frac{Mb}{L^2}(2a-b)$	$\pm \frac{M}{L}$	$\pm \frac{Mb}{L^2}(2b-a)$	-
$\frac{aL^2}{30}$	$\pm \frac{3aL}{20}$	$\pm \frac{7aL}{20} \uparrow \left(\frac{aL^2}{20}\right)$	$\frac{wL^4}{768EI}$
$\frac{3wL}{TE}$	$\pm \frac{11w}{16}$	0	$\frac{2wL^2}{21SET}$
$\frac{Wab(L+b)}{2L^2}$	$\frac{Wb-M}{L-E}$	$\frac{Wa-M}{L-E} \uparrow 0$	$\frac{W^2b}{6EI} \sqrt{\frac{b}{2L+b}}$
$\frac{aL^2}{8}$	$\pm \frac{5aL}{8}$	0	$b=0.4142L$
			$b=0.4142L$
			$\frac{aL^2}{8}$

Relations with elastic constants

$$G = E/(2(1 + \nu)) \quad K = E/(3(1 - 2\nu))$$

$$\text{Simple bending } \frac{M}{t} = \frac{\sigma}{y} = \frac{E}{R}$$

$$\text{Torsion of circular section } \frac{T}{J} = \frac{\tau}{r} = \frac{G\theta}{L}$$

Beam stiffness Coefficients

In the following the F's can be axial or shear forces, or, bending or torsional couples corresponding to the mode of deformation.

All beam and frame stiffness matrices may be built up from the following components of each beam element.

(a) axial stiffness giving $\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

(b) torsional stiffness giving $\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{GJ}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

(c) bending stiffness and lateral deflection stiffness in one plane

giving $\begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix} = \frac{EI}{L^3} \begin{bmatrix} 12 & -12 & 6L & 6L \\ -12 & 12 & -6L & -6L \\ 6L & -6L & 4L^2 & 2L^2 \\ 6L & -6L & 2L^2 & 4L^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$

In each case if one end is fixed and considered as a reaction, its deflections and forces may be ignored with a corresponding reduction of the stiffness matrix. Another possible form of reaction for case (c) occurs if the reaction end is pinned. Then the stiffness matrix components for the other end are given by

(c)(i) giving $\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{EI}{L^2} \begin{bmatrix} 3 & 3L \\ 3L & 3L^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

or

(c)(ii) giving $\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{EI}{L^2} \begin{bmatrix} 3 & -3L \\ -3L & 3L^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

A general plane frame element will have components (a) and (c) and require a 6×6 stiffness matrix. A general space frame element will require components of (a), (b) and (c) - the latter twice for two planes of bending - and will require a 12×12 stiffness matrix. The three modes of deflection (a), (b), (c) are orthogonal and may be combined into larger matrices with 0's in all unspecified positions. Space frame elements will, in general, have different values of I in the two principal planes of bending.

Shear

Shear flow per unit length of wall resulting from the applied shear forces S_x, S_y is

$$q = tr_{xs} \frac{(-S_x)}{I_{yy} I_{zz} - (I_{yz})^2} \left[I_{yy} \int_A z dA - I_{yz} \int_A y dA \right]$$

$$+ \frac{(-S_y)}{I_{yy} I_{zz} - (I_{yz})^2} \left[I_{zz} \int_A y dA - I_{yz} \int_A z dA \right]$$

The resultant force from this shear flow acts through the SHEAR CENTRE.

Torsion

$$\text{For a circular section } \frac{T_x}{J} = \frac{\tau_{xx}}{r} = \frac{G\theta}{L}$$

$$J = \frac{\pi D^4}{32} \text{ for a solid section}$$

$$= \frac{\pi}{32} [D_{\text{outer}}^4 - D_{\text{inner}}^4] \text{ for a hollow section}$$

For a thin walled closed section

$$T_x = 2Aq$$

$$= \frac{4A^2 G}{\frac{4ds}{t}} \cdot \frac{d}{L}$$

For a thin rectangular section

$$T_x = \frac{dt^2}{J} \tau_{zx, \text{max}}$$

$$= \frac{dt^3 G}{J} \frac{d}{L}$$

Asymmetric Bending

in terms of general axes

$$\sigma_{xx} = \frac{P_x}{A} + \frac{M_y(zI_{zx} - yI_{yz})}{I_{yy} I_{zz} - (I_{yz})^2}$$

$$- \frac{M_z(yI_{yy} - zI_{yz})}{I_{yy} I_{zz} - (I_{yz})^2}$$

When the principal axes m,n lie in directions y,z, then:

$$\sigma_{xx} = \frac{P_x}{A} + \frac{nM_m}{I_{mm}} - \frac{mM_n}{I_{nn}}$$

Stress and strain transformations

Mohr circle of stresses

Equilibrium of prism in σ_1, σ_3 directions gives

$$\begin{aligned}\sigma_1 \cos \theta &= \sigma_n \cos \theta + \tau_s \sin \theta \\ \sigma_3 \sin \theta &= \sigma_n \sin \theta - \tau_s \cos \theta\end{aligned}$$

$$\text{Then: } \sigma_1 \cos^2 \theta + \sigma_3 \sin^2 \theta = \sigma_n + \frac{\sigma_1}{2}(1+\cos 2\theta) + \frac{\sigma_3}{2}(1-\cos 2\theta)$$

$$= \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2\theta$$

$$(\sigma_1 - \sigma_3) \sin \theta \cos \theta = \tau_s = \frac{\sigma_1 - \sigma_3}{2} \sin 2\theta$$

$$\text{Also: } \sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \tau_{\max}; \quad \sigma_3 = \frac{\sigma_x + \sigma_y}{2} - \tau_{\max}; \quad \tau_{\max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$

$$\text{and: } \tan 2\theta = \frac{-2\tau_{xy}}{\sigma_x - \sigma_y}$$

Two-dimensional strain system

$\epsilon_x, \epsilon_y, \gamma$ are direct strains 'corresponding' to $\sigma_x, \sigma_y, \tau_{xy}$

$\frac{\gamma_{xy}}{2}, \frac{\gamma_y}{2}$ are shear strains 'corresponding' to τ_{xy}, τ_y

Three-dimensional stress system

If the principal stresses are $\sigma_1, \sigma_2, \sigma_3$, the principal shear stresses are $(\sigma_1 - \sigma_2)/2, (\sigma_2 - \sigma_3)/2$ and $(\sigma_3 - \sigma_1)/2$.

Strain energy per unit volume U may be expressed as

$$U = (\sigma_1 + \sigma_2 + \sigma_3)^2 / 16K$$

$$+ [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2] / 12G$$

13. SYMBOLS INDEX

GREEK ALPHABET

α, α alpha	η, η eta	ν, ν nu	τ, τ tau
β, β beta	θ, θ theta	ξ, ξ xi	υ, υ upsilon
γ, γ gamma	ι, ι iota	ω, ω omicron	ϕ, ϕ phi
δ, δ delta	κ, κ kappa	π, π pi	χ, χ chi
ϵ, ϵ epsilon	λ, λ lambda	ρ, ρ rho	ψ, ψ psi
ζ, ζ zeta	μ, μ mu	σ, σ sigma	ω, ω omega

MATHEMATICAL SYMBOLS

$L[\cdot]$	- Laplace Transform
\triangleq	- defined as
\sum	- repeated summation
\prod	- repeated multiplication
∂	- partial differential
$ z $	- modulus
∇	- Laplace differential, Del, Nabla
\vec{v}	- vector
\hat{v}	- unit vector
\perp	- at right angles to
\cdot	- scalar (dot) product
\times	- vector (cross) product
$\operatorname{Re} \cdot$	- real part of complex number
$\operatorname{Im} \cdot$	- imaginary part of complex number

Symbol	Page No. of use		Recommended S.I. Unit
a	51	velocity of sound	m/s
a	38	lattice parameter	m
a	41	$\frac{1}{2}$ crack length	m
a	60	area	m^2
a	37	acceleration	m/s^2
A	48, 50	area	m^2
A	38	Atomic weight	-
A	47	availability function (non-flow)	kJ
B	47	availability function (flow)	kJ
B	60	magnetic flux density	T
B	66, 67	breadth of footing	m

* of specified fluid			
c	67	cohesion	kN/m^2
c	49	velocity	m/s
c_p, c_v	47	specific heat	kJ/kgK
c	69	coefficient of consolidation	m^2/s
c	60	capacitance	F
c	39	concentration	mol/m^3
c	50	Chézy coefficient	$(\text{m}^2)/\text{s}$
Cd	50, 51	discharge coefficient	-
Cd	51	drag coefficient	-
Cd	38	interatomic spacing	m
d ₁ , d ₂	38	Interplanar spacing	m
d	50	depth of flow	m
d	50	" " before jump, after jump	m
D	51, 54	diameter	m
D	39	diffusion coefficient	m^2/s
D	67	depth of overburden	m
D	68, 69	depth factor	-
E	65	void ratio	-
E	41, 70	Young's Modulus	N/m^2
ΔE	38	energy difference	J
f	51	supply frequency	Hz
f	54	friction factor	-
f	51	wall shear stress coefficient	-
f	47	specific Helmholtz free energy function	kJ/kg
F	47	Helmholtz free energy function	kJ
F, F ₁	50, 51	Froude Number, before jump	-
F	60	force	N
g	47	specific Gibbs free energy function	kJ/kg
G _s	65	specific gravity of solids	-
G _s	41	Gibbs free energy function	kJ^2
G	41, 72	modulus of rigidity	N/m^2
G ₁ , G ₂ , G	55	transfer function	-
h _f	51, 54	frictional head loss	m*
h	47	specific enthalpy	kJ/kg
h	51	heat transfer coefficient	$\text{W/(m}^2\text{K)}$
H	47	enthalpy	kJ
H	60	magnetising force magnetic field strength	A/m
H	55	transfer function	-
i	60	current	A
i	35, 70	second moment of area	m^4
I	35	moment of inertia	kgn^2
J	39	diffusion flux	$\text{kg}/(\text{m}^2\text{s})$
k	48, 51	thermal conductivity	$\text{W}/(\text{mK})$
k	54	surface roughness	μm
k	35, 49	radius of gyration	m
k _a , k _p	61	distribution factor, pitch factor of winding	-
k _a	55	gain constant	-
K	41	stress intensity factor	$\text{Mn}^{-1/2}$
K	41, 72	bulk modulus	N/m^2
SK	41	stress intensity range	$\text{Mn}^{-1/2}$
K _p	47	equilibrium constant	$(\text{atmos})^{1/n}$
L	51	length	m
L	60	length of conductor	m
L	51	characteristic length	m
L	60	inductance	H
m	47	mass	kg
m	51, 54	mean hydraulic radius	m
m	47, 50	mass flowrate	kg/s

M	70	moment	-
M	51	Mach number	-
n	65	porosity	-
n	61	speed of rotation	r/min
n	50	Manning roughness coefficient	-
n	38	atoms per unit cell	-
n _i	41	total cycles at stress amplitude	-
n _p	41	total cycles to failure at strain amplitude	-
n _t	41	" " " stress	-
N	60, 61	number of turns	-
N	7, 38	Avogadro's number	$\text{kg}/(\text{kmol})$
N	47	cycles per unit time	Hz
N _F	39	total number of atoms	-
P	30	probability	-
P	47	mean effective pressure	N/m^2
P _B	61	number of pole pairs	-
P	47	thermodynamic probability or No. of quantum states	-
P _A	47	engine indicated power	kW
q	66, 67	surface normal stress	kN/m^2
q	48	heat flowrate per unit area emissive power	W/m^2
q _b	48	emissive power for black body	-
Q	39	activation energy	kJ
Q	47	heat (input + ve)	J/s
Q	49	volumetric flowrate	m^3/s
Q	41	crack shape factor	-
Q	60	charge	C
R	41	r.m.s. of stress	MN/m^2
R	60, 61	resistance, resistance per phase	Ω
R	50	hydraulic radius	m
R	47	characteristic gas constant	$\text{kJ}/(\text{kgmK})$
R	47	Universal gas constant	$\text{kJ}/(\text{kgmoK})$
S ₀	47	specific entropy	$\text{kJ}/(\text{kgK})$
S	61	fractional slip	-
S	65	degree of saturation	-
S	47	entropy	kJ/K
S	50	channel slope in uniform flow	-
S _f	50	friction slope	-
S _f	50	invert slope	-
t ⁰	37	time	s
T	68	time factor	-
T	61	torque	Nm
T	50	water surface width	m
T	47	temperature (absolute)	K
ΔT	48	temperature difference	°C
T	43	glass transition temperature	K
u _g	47	specific internal energy	kJ/kg
u	37	velocity	m/s
u	68	pore pressure	kN/m^2
U	68	degree of consolidation	-
U	47	internal energy	kJ
V	67	specific volume	m^3/kg
V	37	velocity	m/s
V ₀	47	molar volume	$\text{m}^3/(\text{kmol})$
V	60	voltage	V
V	38, 49	volume	m^3
V	38	volume of unit cell	m^3
V	50, 51	velocity	m/s
V _s	47	cylinder swept volume	m^3

w	65	water content	-
w _s	65, 67	surface displacement	m
w _s	47	work (output, +ve)	kJ
w _d	61	leakage reactance per phase	Ω
w _d	49	change in specific energy through a machine	J/kg
x	49	potential head	m*
x	61	number of armature conductors	-
x	62	impedance	Ω
a	41	coefficient of linear expansion	μm/(mK)
a	60	resistance coefficient	Ω/K
β	51	coefficient of volumetric expansion	K ⁻¹
y	65	unit weight of soil	kN/m ³
y	47, 60	specific heat ratio	-
y _w	65	unit weight of water	kN/m ³
y _{sat}	65	unit weight of saturated soil	kN/m ³
z	65	submerged unit weight of soil	-
c	54	relative roughness	-
c _{0,ε_r}	60	permittivity, free space, relative	F/m, -
c _ε	48	emissivity	-
c _p	41	plastic straining range	μm/m ²
μ _{0,μ_r}	60	permeability of free space, relative	m ² /s, -
μ	37	dynamic viscosity	mNs/m ²
v	72, 41, 66, 67	Poisson's ratio	-
ε	58, 23	damping ratio	-
ρ ₀	60	resistivity	Ωm
ρ	41, 42, 43, 51	density	kg/(m ³)
σ	48	Stefan-Boltzmann constant	W/(m ² K ⁴)
σ	51	surface tension in contact with air	N/m
σ _y	41	proof or yield stress	N/m ²
σ _f	41	ultimate (failure) stress	N/m ²
σ	49, 51	shear stress	N/m ²
φ	67	friction angle of soil	°
Φ	60, 61	magnetic flux, flux per pole	Wb
w	70, 71	load per unit length	N/m
w	51	angular velocity	rad/s
w _n	58	natural frequency	rad/s
w ₀	23, 62	natural frequency	rad/s
w _d	59	damped natural frequency	rad/s

14. KEYWORD INDEX

A.AC circuits 62
 AC machines 61
 Acceleration equations (constant) 37
 Acceleration of fluids 49
 Activation energy 39
 Air, composition 51
 Algebra 13,19
 Amplifier arrangements 62
 Area of shapes 35,36
 Asymmetric bending 73
 Atomic number 46
 Atomic sizes 38
 Atomic volume 42
 Atomic weight 46
 Availability function 47
 Avogadro's number 7,38

B.BASIC Language 8
 Beams 70
 Beam deflections 70,71
 Beam stiffness coefficients 72
 Bearings, Reynolds' equation 49
 Bonding 70,71
 Bernoulli's equation 49
 Binomial distribution 30
 Binomial series 75
 Black body 48
 Block diagrams (control) 55
 Bode diagram 59
 Bohr magneton 7
 Boiling point 51
 Boltzmann's constant 7
 Bonding 38,42

Boussinesq relationships 66
 Buckling loads 70
 Bulk modulus 41,72
 C.Calorific value 53
 Capacitance 6,60
 Carnot efficiency 47
 Casagrande soil classification 64
 Cavitation number 50
 Centre of buoyancy 49
 Centre of gravity 35,49
 Centre of mass 35
 Centre of pressure 49
 Centroid 35,49
 Channels 50
 Characteristic equation (control) 55,56
 Characteristic gas constant 47
 Chezy equation 50
 Coefficient: Linear expansion 41,42,43
 Resistance 42
 Cohesive energy 42
 Colour codes (resistors) 63
 Complex numbers 22
 Condon-Morse equation 38
 Conductivity 6
 Conjugate depths 50
 Consolidation, degree 58
 Consolidation - Time curves 58
 Constants 7
 Continuity equation 47,50
 Control: Order number 55
 Type number 55
 Control systems: Dynamic 58
 Electrical 58
 Hydraulic 58
 Convection 48
 Conversion factors 4,5,6
 Coriolis 37
 Cosine rule for triangle 20
 Critical constants, pressure,
 temperature, density 51
 Critical damping 23
 Cross product 13
 Crystallography 38
 Crystal structure 42
 Cubic crystals 38,39
 Cumulative distribution function 31,32
 Curl 14
 Curve fitting 28,29
 Cylindrical coordinates 14
 D.Damping ratio 23,58
 DC machines 61
 Defects 39
 Definite integrals 26
 Degrees of freedom 33
 Density 4,38,41,42,43,53
 Depth factors 68,69
 Differentials 24
 Differential equations 22
 Differentiation, rules 24
 Diffusivity 39
 Dimensionless groups 51
 Discharge coefficient 50,51
 Div 14
 Dot product 13
 Drag coefficient 51
 Dynamics, fluids 49
 Dynamic responses 23
 E.Elastic constants 41,43,72
 Elastic half spaces 55
 Electricity, formulae 60
 Electricity, units 2,6,60
 Electromagnetism 60
 Electron: Charge 7
 Rest mass 7
 Charge/Mass ratio 7
 Electrostatics 60
 Elements 44,46
 Emissivity 48
 Energy gap 42
 Engine indicated power 47
 Enthalpy 47
 Entropy 47
 Equations: 1st Order Differential 22
 2nd * 23
 Errors 33,34
 Error function 26,39,40
 Euler buckling 70
 Euler's formula 49
 Exact DE 22
 Expansion coefficient 41,42,53
 Experimental samples 33
 F.Faraday constant 7
 Fatigue 41
 Fermi energy 42
 Feedback notation 55
 Fick's Laws 39
 Finite difference formulae 28
 First Law 47
 Fixed end moments 71
 Flow coefficient 49
 Flowrate of gases 50
 Flowrate units 4
 Fluid mechanics 47,49
 Footings 67
 Forced convection 48
 Forced oscillation 23
 Forward path 55
 Fourier number 51
 Fourier series 16
 Fracture stress 41
 Frequency response 23,59,63
 Friction angle of soil 67
 Friction coefficients 37
 Friction factor 51,54
 Friction heat loss 51,54
 Froude number 50,51
 Fuels 53
 G.Gas properties 52,53
 Gas flow 50
 Gauss' theorem 60
 General normal distribution 32
 Geological divisions 55

- Gibbs function 47
 Glass transition temperature 43
 Grad 14
 Grashof number 51
 Gravitational constant 7
 Greek alphabet 75
 H.Hall mobility 42
 Head coefficient 49
 Heat conduction 48
 Heat transfer 48
 Heat transfer coefficient 48
 Helmholtz function 47
 Homogeneous DE 22
 Hyperbolic relations 19
 I.Indefinite integrals 24
 Identities 15
 Inductance 6,60
 Instrument error 34
 Integrals 24
 Integration by parts 24
 Internal energy 47
 International atmosphere 5
 Interplanar spacing 38
 Ionic bond equation 38
 Ionic radii 42
 L.Lagrange's Interpolation formula 29
 Laminar flow 54
 Laplace 15
 Laplace transforms 27
 Lattice constant (parameter) 38,42
 Least-squares fitting 28
 Linear DE 22,23
 Liquid limit 65
 Liquids, properties 52,53
 Loads: Line 66
 Point 66
 Logarithmic mean temperature difference 4
 Logarithmic relations 21
 Loops: Closed 55
 Open 55
 M.Mach number 51
 Machines, electrical: DC 61,
 AC 61
 Machines, hydraulic 49
 MacLaurin's series 16
 Magnetism, formulae 60,61
 Magnetism, units 2,6
 Manning equation 50
 Manson-Coffin Law 41
 Margin (control): Gain 56
 Phase 56
 Materials 38,52,53
 Mathematical symbols 75
 Maxwell relationships 48
 Melting point 42,51
 Mesh openings 64
 Metacentre 49
 Miller index system 38,39
 Miner's rule 41
 Modulus of rigidity 41,72
 Mohr's Circle 37
 Molar volume 47
 Molecular weight 52
 Moments of beams 71
 Moments of inertia 35
 Most probable error 34
 Motors, electrical 61
 N.Natural frequency 23,58,62
 Napier's rule 20
 Newtonian flow 49
 Newton's method 28
 Normal distribution 31,32
 Nozzle flow 50
 Numerical analysis 28
 Numerical integration 29
 Nusselt number 51
 Nyquist 56,59
 O.Ohm's Law 60
 Open channels 50
 Op 'Amp': Circuits 62
 Characteristics 63
 Orbitals 45
 Oscillations 23,59
 P.Parallel axes theorem 35
 Paris equation 41
 Partial differentiation 22,27
 Pascal's triangle 30
 Perfect gas equations 47,60
 Periodic table of the elements 44
 Perpendicular axes theorem 35
 Planck's constant 7
 Plasticity index (soil) 65
 Phase transformations 38
 Physical properties of solids 41,53
 Liquids and gases 52,53
 Pipe flow friction factor 51,54
 Poisson distribution 30
 Poisson's ratio 41,72
 Polar moment 35
 Poles 55
 Pole-Zero map 59
 Polymer structure 43
 Population variance 33
 Porosity 65
 Potential head 49
 Prandtl number 51
 Primary fixed points 51
 Principal shell 45
 Principal stresses 74
 Probability 30
 Probability density function 31
 Proof stress 41
 Q.Q factor 62
 Quadratic equation, solution 21
 R.Radiation 48
 Radius of gyration 35,49
 Random variables 30
 Rayleigh distribution 4
 Rectification 19
 Resistance: Formulae 60
 Preferred values 63
 Colour code 63
 Relative density 53
 Resistivity 42,43
 Response 23,58,62
 Response (control): Frequency 59
 Step 59
 Reynolds' equation 49
 Reynolds' number 51,54
 Rolling (buoyancy) 49
 Root locus 56,57,59
 Root mean square 17
 Rotation : Acceleration 37
 Roughness of pipes 54
 Rounding off error 34
 Routh array 56
 Runge Kutta equations 29
 S.Saw tooth wave 18
 Scalar product 13
 Secant method 28
 Second moment of area 35,37,70
 Seitz radius 38
 Series 15
 Semiconductors 42
 Separable DE 22
 Shear modulus 41
 Shear centre 73
 Shear stress 73
 Shear strain 74
 Shell (orbitals) 44
 SI system 2
 Sieve sizes 64
 Simpson's rule 29
 Single degree of freedom 22,23
 Slope angle 68 : Stability 68
 Soil mechanics 64
 Soil classification 64
 Soils: Volume-weight relationships 65
 Solids, properties 41,42,43,53
 Sonc velocity 50
 Space curves 15
 Specific entropy 47
 Specific heat 47,52,53
 Specific heat ratio 47,50
 Specific internal energy 47
 Specific speed 49
 Spherical coordinates 14
 Spherical triangles 20
 Square wave 17,18
 Stability criteria 56
 Stability numbers 68,69
 Stagnation temperature 50
 Standard deviations 33
 Standardised normal distribution 31
 Statics, fluids 49
 Stefan-Boltzmann's constant 7,48
 Step response 23,59
 Stirling's formula 16
 Strain-energy 74
 Strain systems 74
 Statigraphic periods 65
 Streamlines 49
 Stress systems 74
 Stress intensity factor 41
 Stress transformation 74
 Structures 70
 Substitutional alloys 38
 Suction specific speed 50
 Surface concentration 39
 Surface displacement 66,67
 Surface potential 39
 Surface tension 51
 Symbols 75
 Synchronous speed 61
 T.t-distribution 33
 Taylor's series 16
 Taylor stability numbers 68,69
 Temperature scales 5
 Terzaghi bearing capacity 67
 Thermal conductivity 46,57,52,53
 Thermal expansion coefficient 41,42,43,
 52,53
 Theoretical air 53
 Theoretical density 38
 Thermodynamics 47
 Thoms (cavitation number) 50
 Torsion 73
 Torsion of circular shaft 73
 Transfer function 55
 Transition zone 54
 Trapezoidal rule 29
 Triangular Wave 18
 Trigonometric: Functions 21
 Relations 19,20
 Triple point 51
 Triple scalar product 13
 Triple vector product 13
 Turbine Ellipse Law 50
 Turbulent flow 54
 U.Ultimate stress 41
 Units, SI 2,3
 Units, conversion facts 4,5,6
 Unit weight: Soil, water 65
 Universal gas constant 7,47
 V.Valency 38
 Valency electrons 45
 Van der Waals' equation 47
 Variance 33
 Variation 30,33
 Vectors 13
 Vector: Differentiation 13
 Product 13
 Velocity of light 7
 Viscosity 5,6,49,51
 Volume of shapes 36,37
 W.Wall shear stress 51
 Water content 65
 Waveforms 17
 Weber number 51
 Work function 42
 Y.Yield stress 41,43
 Young's modulus 41,43,70
 Zeros (control) 55

Contents

1. Units and Abbreviations
2. Physical Constants
3. Summary of BASIC
4. Analysis
5. Analysis of Experimental Data
6. Mechanics
7. Properties and Mechanics of Solids
8. Thermodynamics and Fluid Mechanics
9. Automatic Control
10. Electricity
11. Soil Mechanics
12. Structures
13. Symbols Index
14. Keyword Index

ISBN 0-333-25829-0

9 780333 258293

An Engineering Data Book

An Engineering Data Book

Edited by
A J Munday and R A Farrar