boites-robotisees-a-double-embrayage-22/

Sciences
Industrielles de
l'Ingénieur

# Chapitre 1

# Approche énergétique

### Savoirs et compétences :

## Cours

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.
- Res1.C3.SF1: Choisir une méthode pour déterminer la valeur des paramètres conduisant à des positions d'équilibre.
- Mod1.C4.SF1: Associer les grandeurs physiques aux échanges d'énergie et à la transmission de puissance.
- □ Mod1.C5.SF1 : Identifier les pertes d'énergie .
- □ Mod1.C6.SF1 : Évaluer le rendement d'une chaîne d'énergie en régime permanent.
- Mod1.C5.SF2: Déterminer la puissance des actions mécaniques extérieures à un solide ou à un ensemble de solides, dans son mouvement rapport à un autre solide.
- ☐ Mod1.C5.SF3 : Déterminer la puissance des actions mécaniques intérieures à un ensemble de solides.

| 1   | Caractéristiques d'inertie des solides 2        |
|-----|-------------------------------------------------|
| 1.1 | Détermination de la masse d'un solide           |
| 1.2 | Centre d'inertie d'un solide                    |
| 1.3 | Grandeurs inertielles d'un solide               |
| 2   | Cinétique et dynamique du solide indéformable 4 |
| 2.1 | Le torseur cinétique                            |
| 2.2 | Le torseur dynamique                            |
| 2.3 | Énergie cinétique                               |
| 3   | Principe fondamental de la dynamique 6          |
| 4   | Théorème de l'énergie puissance 6               |
| 5   | Méthodologie 6                                  |

## 1 Caractéristiques d'inertie des solides

L'inertie d'un solide peut se « caractériser » par la résistance ressentie lorsqu'on souhaite mettre un solide en mouvement. Pour un mouvement de translation, la connaissance de la masse permet de déterminer l'effort nécessaire à la mettre en mouvement. Pour un mouvement de rotation, il est nécessaire de connaître la répartition de la masse autour de l'axe de rotation.

## ■ Exemple

- Couple pour faire tourner une hélice bipale, tripale, quadripale.
- Couple pour faire tourner une bille et effort pour faire translater une bille.

## 1.1 Détermination de la masse d'un solide

### 1.1.1 Définition

### Définition

On peut définir la masse M d'un système matériel (solide) S par :

$$M = \int_{S} dm = \int_{P \in V} \mu(P) dv$$

avec:

- $\mu(P)$  la masse volumique au point P;
- dv un élément volumique de S.

## 1.1.2 Principe de conservation de la masse

### 1.2 Centre d'inertie d'un solide

### 1.2.1 Définition

**Définition** — Centre d'inertie d'un solide. La position du centre d'inertie G d'un solide S est définie par  $\int_{P \in S} \overrightarrow{GP} dm = \overrightarrow{0}.$ 

Pour déterminer la position du centre d'inertie d'un solide S, on passe généralement par l'origine du repère associé à S. On a alors  $\int\limits_{P\in S}\overrightarrow{GP}\,\mathrm{d}m=\int\limits_{P\in S}\left(\overrightarrow{GO}+\overrightarrow{OP}\right)\mathrm{d}m=\overrightarrow{0}\Leftrightarrow\int\limits_{P\in S}\overrightarrow{OG}\,\mathrm{d}m=\int\limits_{P\in S}\overrightarrow{OP}\,\mathrm{d}m\Leftrightarrow M\overrightarrow{OG}=\int\limits_{P\in S}\overrightarrow{OP}\,\mathrm{d}m.$ 

**Méthode** Pour déterminer les coordonnées  $(x_G, y_G, z_G)$  du centre d'inertie G du solide S dans la base  $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ , on a donc :

$$\begin{cases} M x_G = \mu \int_{P \in S} x_P \, dV \\ M y_G = \mu \int_{P \in S} y_P \, dV \\ M z_G = \mu \int_{P \in S} z_P \, dV \end{cases}$$

avec:

- d*V* : un élément volumique de *S* ;
- $\mu$ : la masse volumique supposée constante.

Pour simplifier les calculs, on peut noter que le centre d'inertie appartient au(x) éventuel(s) plan(s) de symétrie du solide.

### 1.2.2 Centre d'inertie d'un solide constitué de plusieurs solides

Soit un solide composé de n solides élémentaires dont la position des centres d'inertie  $G_i$  et les masses  $M_i$  sont connues. On note  $M = \sum_{i=1}^{n} M_i$ . La position du centre d'inertie G de l'ensemble S est donné par :

$$\overrightarrow{OG} = \frac{1}{M} \sum_{i=1}^{n} M_i \overrightarrow{OG_i}.$$

- 1.2.3 Théorème de Guldin
- 1.2.3.1 Centre d'inertie d'une courbe plane
- 1.2.3.2 Centre d'inertie d'une surface plane
  - 1.3 Grandeurs inertielles d'un solide
  - 1.3.1 Moment et produit d'inertie

**Définition** — **Moment d'inertie par rapport à un point dans**  $\mathscr{R}$ . Soit un repère  $\mathscr{R}\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$  et un point P de coordonnées (x, y, z) dans  $\mathscr{R}$ . On appelle moment d'inertie du solide S par rapport à un point O la quantité :



$$I_O(S) = \int_{S} \overrightarrow{OP}^2 dm = \int_{S} (x^2 + y^2 + z^2) dm.$$

**Définition** — Moment d'inertie par rapport à un axe dans  $\mathcal{R}$ . On appelle moment d'inertie du solide S par rapport à une droite ( $\Delta$ ) la quantité positive :

$$I_{\Delta}(S) = \int_{S} \left(\overrightarrow{\delta} \wedge \overrightarrow{AP}\right)^{2} dm$$

Par suite, le moment d'inertie du solide S par rapport à la droite  $(O, \overrightarrow{x})$  est donné par :

$$I_{(O,\overrightarrow{x})}(S) = \int_{S} (\overrightarrow{x} \wedge \overrightarrow{OP})^2 dm.$$

On détermine donc les moments d'inerties par rapport à  $(O, \overrightarrow{x}), (O, \overrightarrow{y})$  et  $(O, \overrightarrow{z})$ 

$$I_{(O,\overrightarrow{x})}(S) = \int_{S} (y^2 + z^2) dm \qquad I_{(O,\overrightarrow{y})}(S) = \int_{S} (x^2 + z^2) dm \qquad I_{(O,\overrightarrow{z})}(S) = \int_{S} (x^2 + y^2) dm.$$

# 1.3.2 Matrice d'inertie Définition Soient :

- un solide S de masse m en mouvement par rapport à un repère  $\mathcal{R}_0 = (O_0; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ ;
- $\mathcal{R}_S = (O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$  le repère lié au solide S;
- P un point de S tel que  $\overrightarrow{OP} = x_p \overrightarrow{i} + y_p \overrightarrow{j} + z_p \overrightarrow{k}$ ;
- $\overrightarrow{u}$  un vecteur unitaire du solide S.

On appelle opérateur d'inertie l'application linéaire définie par :

$$\overrightarrow{u} \to \overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int_{C} \overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP}) dm$$

On appelle matrice d'inertie du solide S en O,  $I_O(S)$ , l'image de cette application linéaire :  $\overline{I_{(O,S)}(\overrightarrow{u})} = I_O(S)\overrightarrow{u}$ .

Recherchons la matrice de l'application linéaire. On note  $\overrightarrow{u} = u_x \overrightarrow{i} + u_y \overrightarrow{j} + u_z \overrightarrow{k}$ . On a donc :

$$\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} \wedge \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \wedge \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} \rangle = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} \wedge \begin{bmatrix} u_y z_p - y_p u_z \\ -u_x z_p + x_p u_z \\ u_x y_p - x_p u_y \end{bmatrix} = \begin{bmatrix} y_p \left( u_x y_p - x_p u_y \right) - z_p \left( -u_x z_p + x_p u_z \right) \\ -x_p \left( u_x y_p - x_p u_y \right) + z_p \left( u_y z_p - y_p u_z \right) \\ x_p \left( -u_x z_p + x_p u_z \right) - y_p \left( u_y z_p - y_p u_z \right) \end{bmatrix}$$
 
$$= \begin{bmatrix} y_p^2 u_x - y_p x_p u_y + z_p^2 u_x - z_p x_p u_z \\ -x_p y_p u_x + x_p^2 u_y + z_p^2 u_y - z_p y_p u_z \\ -x_p z_p u_x + x_p^2 u_z - y_p z_p u_y + y_p^2 u_z \end{bmatrix} = \begin{bmatrix} y_p^2 + z_p^2 & -y_p x_p & -x_p z_p \\ -x_p y_p & x_p^2 + z_p^2 & -z_p y_p \\ -x_p z_p & -y_p z_p & y_p^2 + x_p^2 \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$

**Définition** — **Matrice d'inertie**. La matrice d'inertie s'écrit ainsi :

$$I_{O}(S) = \begin{pmatrix} \int_{S} \left( y_{p}^{2} + z_{p}^{2} \right) dm & -\int_{S} \left( x_{p} y_{p} \right) dm & -\int_{S} \left( x_{p} z_{p} \right) dm \\ -\int_{S} \left( x_{p} y_{p} \right) dm & \int_{S} \left( x_{p}^{2} + z_{p}^{2} \right) dm & -\int_{S} \left( y_{p} z_{p} \right) dm \\ -\int_{S} \left( x_{p} z_{p} \right) dm & -\int_{S} \left( y_{p} z_{p} \right) dm & \int_{S} \left( x_{p}^{2} + y_{p}^{2} \right) dm \end{pmatrix}_{\mathcal{R}_{S}} = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{\mathcal{R}_{S}}.$$

On appelle moments d'inertie par rapport aux axes  $(O, \overrightarrow{i}), (O, \overrightarrow{j})$  et  $(O, \overrightarrow{k})$  les termes A, B et C. On appelle produits d'inertie par rapport aux plans  $(O, \overrightarrow{j}, \overrightarrow{k}), (O, \overrightarrow{k}, \overrightarrow{i})$  et  $(O, \overrightarrow{i}, \overrightarrow{j})$  les termes D, E et F.



## Propriétés des matrices d'inertie

### 1.3.4 Théorème de Huygens

**Théorème** — **Théorème de Huygens**. Le moment d'inertie d'un solide par rapport à un axe  $(A, \vec{\delta})$  est donné

$$I_{(A,\overrightarrow{\delta})}(S) = I_{(G,\overrightarrow{\delta})}(S) + md^2$$

- avec:
   d: distance séparant  $(A, \overrightarrow{\delta})$  et  $(G, \overrightarrow{\delta})$  en m;

**Théorème** — **Théorème de Huygens.** Soit S un solide de centre d'inertie G, de masse m, d'inertie  $I_G(S)$  et d'inertie  $I_O(S)$  avec  $\overrightarrow{OG} = a\overrightarrow{x} + b\overrightarrow{y} + c\overrightarrow{z}$ . Les matrices  $I_O(S)$  exprimées dans la base  $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ sont liées par :

$$\begin{pmatrix} A_O & -F_O & -E_O \\ -F_O & B_O & -D_O \\ -E_O & -D_O & C_O \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} A_G & -F_G & -E_G \\ -F_G & B_G & -D_G \\ -E_G & -D_G & C_G \end{pmatrix}_{\mathcal{B}} + \begin{pmatrix} m \left( b^2 + c^2 \right) & -mab & -mac \\ -mab & m \left( a^2 + c^2 \right) & -mbc \\ -mac & -mbc & m \left( a^2 + b^2 \right) \end{pmatrix}_{\mathcal{B}}.$$

Si le solide est modélisé par une masse ponctuelle m en G et si on souhaite connaître le moment d'inertie pour un point situé à une distance d de G, on a  $I = md^2$ .

### **Démonstration**

Par définition,  $\overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int \overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP}) dm$ .

En introduisant le point G, on a  $\overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int\limits_{S} \left( \overrightarrow{OG} + \overrightarrow{GP} \right) \wedge \left( \overrightarrow{u} \wedge \left( \overrightarrow{OG} + \overrightarrow{GP} \right) \right) dm = \int\limits_{S} \left( \overrightarrow{OG} + \overrightarrow{GP} \right) \wedge \left( \overrightarrow{u} \wedge \overrightarrow{OG} + \overrightarrow{u} \wedge \overrightarrow{GP} \right) dm$  $= \int_{C} \left( \overrightarrow{OG} \wedge \left( \overrightarrow{u} \wedge \overrightarrow{OG} + \overrightarrow{u} \wedge \overrightarrow{GP} \right) + \overrightarrow{GP} \wedge \left( \overrightarrow{u} \wedge \overrightarrow{OG} + \overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) dm$  $= \int_{c}^{3} \left( \overrightarrow{OG} \wedge \left( \overrightarrow{u} \wedge \overrightarrow{OG} \right) + \overrightarrow{OG} \wedge \left( \overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) dm + \int_{c}^{3} \left( \overrightarrow{GP} \wedge \left( \overrightarrow{u} \wedge \overrightarrow{OG} \right) + \overrightarrow{GP} \wedge \left( \overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) dm$  $=\int\limits_{c}^{G}\left(\overrightarrow{OG}\wedge\left(\overrightarrow{u}\wedge\overrightarrow{OG}\right)\right)\mathrm{d}m+\int\limits_{c}^{G}\left(\overrightarrow{OG}\wedge\left(\overrightarrow{u}\wedge\overrightarrow{GP}\right)\right)\mathrm{d}m+\int\limits_{c}^{G}\left(\overrightarrow{GP}\wedge\left(\overrightarrow{u}\wedge\overrightarrow{OG}\right)\right)\mathrm{d}m+\int\limits_{c}^{G}\left(\overrightarrow{GP}\wedge\left(\overrightarrow{u}\wedge\overrightarrow{OG}\right)\right)\mathrm{d}m+\int\limits_{c}^{G}\left(\overrightarrow{GP}\wedge\left(\overrightarrow{u}\wedge\overrightarrow{OG}\right)\right)\mathrm{d}m$  $= \overline{J_{(G,S)}(\overrightarrow{u})} + \overrightarrow{OG} \wedge \left(\overrightarrow{u} \wedge \cancel{\bigcap} \overrightarrow{GP} dm\right) + \cancel{\bigcap} \left(\overrightarrow{GP}\right) dm \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG}\right) + \left(\overrightarrow{GP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{GP}\right)\right) \cancel{\bigcap} dm$ 

G étant le centre d'inertie du solide, on a  $\overrightarrow{GP}$  d $m = \overrightarrow{0}$  (par défintion du centre d'inertie).

En conséquences,  $\overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \overrightarrow{J_{(G,S)}(\overrightarrow{u})} + (\overrightarrow{GP} \land (\overrightarrow{u} \land \overrightarrow{GP})) \int_{\mathcal{C}} dm$ 

On note  $\overrightarrow{GP} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$  et  $M_S = \int dm$ .

En reprenant le calcul vu en 1.3.2, on a :  $(\overrightarrow{GP} \land (\overrightarrow{u} \land \overrightarrow{GP})) = \begin{bmatrix} b^2 + c^2 & -ab & -ac \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u \end{bmatrix}$ .

CQFD.

### Rotation de la matrice d'inertie

### 2 Cinétique et dynamique du solide indéformable

### Le torseur cinétique 2.1

### 2.1.1 **Définition**

**Définition** Le torseur cinétique d'un solide S dans son mouvement par rapport à  $R_0$  exprimé en un point Aquelconque se définit de la façon suivante,

$$\{\mathscr{C}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = \int_{P \in S} \overrightarrow{V}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\sigma(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A.$$



- La résultante du torseur cinétique  $\overrightarrow{R_c}(S/R_0)$  s'exprime en kg m s<sup>-1</sup> et ne dépend pas du point A mais uniquement du centre d'inertie G de S (de masse m) :  $\overrightarrow{R_c(S/R_0)} = m \overrightarrow{V}(G/R_0)$ .
- Le moment cinétique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point :  $\overrightarrow{\sigma(B, S/R_0)} = \overrightarrow{\sigma(A, S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_c}(S/R_0)$

Calculons alors le moment cinétique :

$$\overrightarrow{\sigma(A,S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(P \in S/R_0)} dm = \int_{P \in S} \overrightarrow{AP} \wedge \left( \overrightarrow{V(A \in S/R_0)} + \overrightarrow{PA} \wedge \overrightarrow{\Omega(S/R_0)} \right) dm$$

$$= \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(A \in S/R_0)} dm + \int_{P \in S} \overrightarrow{AP} \wedge \left( \overrightarrow{PA} \wedge \overrightarrow{\Omega(S/R_0)} \right) dm$$

$$= \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(A \in S/R_0)} dm + \int_{P \in S} \overrightarrow{AP} \wedge \left( \overrightarrow{\Omega(S/R_0)} \wedge \overrightarrow{AP} \right) dm$$

On reconnaît l'opérateur d'inertie : 
$$\int\limits_{P\in S}\overrightarrow{AP}\wedge\left(\overrightarrow{\Omega(S/R_0)}\wedge\overrightarrow{AP}\right)\,\mathrm{d}m=I_A(S)\overrightarrow{\Omega(S/R_0)}.$$

On a donc 
$$\overrightarrow{\sigma(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(A \in S/R_0)} dm + I_A(S) \overrightarrow{\Omega(S/R_0)} = \int_{P \in S} \overrightarrow{AP} dm \wedge \overrightarrow{V(A \in S/R_0)} + I_A(S) \overrightarrow{\Omega(S/R_0)}.$$

On reconnaît 
$$\int_{P \in S} \overrightarrow{AP} \, dm = m\overrightarrow{AG}$$
.  
Au final,  $\overrightarrow{\sigma(A, S/R_0)} = m\overrightarrow{AG} \wedge \overrightarrow{V(A \in S/R_0)} + I_A(S)\overrightarrow{\Omega(S/R_0)}$ .

### Cas particuliers 2.1.2

### Le torseur dynamique

### 2.2.1 **Définition**

**Définition** Le **torseur dynamique** d'un solide S dans son mouvement par rapport à  $R_0$  se définit de la façon suivante,

$$\{\mathscr{D}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = \int_{P \in S} \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\delta}(A, S/R_0) = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

• La résultante du torseur dynamique,  $\overrightarrow{R_d}(S/R_0)$  ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie :

$$\overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0).$$

Le moment dynamique dépend du point A et peut s'exprimer avec la formule fondamentale de changement

$$\overrightarrow{\delta(B,S/R_0)} = \overrightarrow{\delta(A,S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_d}(S/R_0).$$

: Calculons le moment dynamique. Pour cela, commençons par dériver le moment cinétique

$$\left[ \frac{d\overline{\sigma(A,S/\mathcal{R}_0)}}{dt} \right]_{\mathcal{R}_0} = \frac{d}{dt} \left[ \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm \right]_{\mathcal{R}_0} = \int_{P \in S} \frac{d}{dt} \left[ \overrightarrow{AP} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \right]_{\mathcal{R}_0} \, dm$$

$$= \int_{P \in S} \frac{d}{dt} \left[ \overrightarrow{AP} \right]_{\mathcal{R}_0} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm + \int_{P \in S} \overrightarrow{AP} \wedge \frac{d}{dt} \left[ \overrightarrow{V(P \in S/\mathcal{R}_0)} \right]_{\mathcal{R}_0} \, dm$$

$$= \int_{P \in S} \frac{d}{dt} \left[ \overrightarrow{AO} + \overrightarrow{OP} \right]_{\mathcal{R}_0} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathcal{R}_0)} \, dm$$

$$= \int_{P \in S} \left( -\overrightarrow{V(A \in S/\mathcal{R}_0)} + \overrightarrow{V(P \in S/\mathcal{R}_0)} \right) \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathcal{R}_0)} \, dm$$

$$= \int_{P \in S} \left( \overrightarrow{V(P \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} - \overrightarrow{V(A \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \right) dm + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathcal{R}_0)} \, dm$$

$$= -\int_{P \in S} \overrightarrow{V(A \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathcal{R}_0)} \, dm$$
On a donc
$$\overrightarrow{\delta(A,S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathcal{R}_0)} \, dm = \left[ \overrightarrow{d\overrightarrow{\sigma(A,S/\mathcal{R}_0)}} \right] + \int_{P \in S} \overrightarrow{V(A \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm$$
Par suite, 
$$\int_{P \in S} \overrightarrow{V(A \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm = \overrightarrow{V(A \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \, dm = \overrightarrow{V(A \in S/\mathcal{R}_0)} \wedge \overrightarrow{V(P \in S/\mathcal{R}_0)} \wedge \overrightarrow{W(Q \in S/\mathcal{R}_0)} \wedge \overrightarrow{W(Q \in S/\mathcal{R}_0)}$$



$$\frac{\operatorname{Au\,final},}{\overline{\delta(A,S/R_0)}} = \left[ \frac{\operatorname{d}\overline{\sigma(A,S/\mathscr{R}_0)}}{\operatorname{d}t} \right]_{\mathscr{R}_0} + m\overline{V(A \in S/\mathscr{R}_0)} \wedge \overline{V(G \in S/\mathscr{R}_0)} \text{ ou encore } \overline{\delta(A,S/R_0)} = \left[ \frac{\operatorname{d}\overline{\sigma(A,S/\mathscr{R}_0)}}{\operatorname{d}t} \right]_{\mathscr{R}_0} + \overline{V(A \in S/\mathscr{R}_0)} \wedge \overline{R_c(S/\mathscr{R}_0)}.$$

- 2.2.2 Cas particuliers
- 2.3 Énergie cinétique
- 2.3.1 Définition
- 2.3.2 Cas du solide indéformable
- 2.3.3 Cas d'un système de solide
- 2.3.4 Inertie équivalente
  - 3 Principe fondamental de la dynamique
  - 4 Théorème de l'énergie puissance
  - 5 Méthodologie

## Références

[1] Émilien Durif, Approche énergétique des systèmes, Lycée La Martinière Monplaisir, Lyon.