GRUPY

Rozważmy działanie dwuargumentowe (operację binarną) w zbiorze A:

$$*: A \times A \rightarrow A$$
,

które każdej parze uporządkowanej elementów ze zbioru *A* przyporządkowuje pewien element także ze zbioru *A*.

Przykłady działań dwuargumentowych

- operacja dodawania liczb rzeczywistych,
- operacja mnożenia liczb rzeczywistych,
- operacja mnożenia macierzy kwadratowych tego samego rozmiaru,
- operacja sumowania mnogościowego podzbiorów danego zbioru,
- operacja składania permutacji tego samego rzędu.

Z reguły symbol odwzorowania * umieszczamy pomiędzy parą argumentów i zamiast *(a, b) = c piszemy a * b = c

Działanie dwuargumentowe * określamy jako:

łączne, jeśli

(a*b)*c = a*(b*c) dla każdej trójki elementów $a,b,c \in A$ przemienne, jeśli

a * b = b * a dla każdej pary elementów $a, b \in A$

Element $e \in A$ nazywamy **elementem neutralnym** działania dwuargumentowego * w zbiorze A, jeśli

a * e = e * a = a dla każdego $a \in A$

Parę uporządkowaną (A, *) złożoną ze zbioru i działania dwuargumentowego zdefiniowanego w tym zbiorze nazywamy **grupą**, jeśli

- działanie * jest łączne,
- istnieje w A element neutralny działania *,
- dla każdego $a \in A$ istnieje **element odwrotny** $a^{-1} \in A$, taki że $a * a^{-1} = a^{-1} * a = e$

Element neutralny jest w grupie określony jednoznacznie. Każdy element w grupie ma dokładnie jeden element do niego odwrotny.

Grupę nazywamy **grupą przemienną** lub abelową, jeśli działanie * jest przemienne.

Grupę nazywamy **grupą skończoną**, jeśli A jest zbiorem skończonym.

Przykłady grupy skończonej

Zbiór permutacji $S_n = Bij(X, X)$ dla |X| = n, z działaniem składania permutacji jest **grupą skończoną** (tzw. grupą symetryczną stopnia n). $|S_n| = n!$ i dla dowolnych permutacji $f, g, h \in S_n$ spełnione są zależności:

$$f(gh) = (fg)h$$

$$fe = ef = f$$

$$f^{-1}f = ff^{-1} = e$$

Grupa symetryczna **nie jest** grupą przemienną dla $n \ge 3$.

Dowolny podzbiór $G \subseteq S_n$ spełniający warunki:

$$f, g \in G \implies f g \in G$$
 dla wszystkich $f i g$,
$$f \in G \implies f^{-1} \in G \text{ dla każdego } f,$$

nazywany jest **grupą permutacji stopnia** *n* .

Przykłady grup permutacji stopnia 3

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$
$$p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$G_1 = \{ e, p_1, p_2, p_3, p_4, p_5 \}$$

Tabela grupy G_1 :

	e	p_1	p_2	p_3	p_4	p_5
e	e	p_1	p_2	p_3	p_4	p_5
p_1	p_1	e	p_4	p_5	p_2	p_3 p_1 p_2 e
p_2	p_2	p_5	e	p_4	p_3	p_1
p_3	p_3	p_4	p_5	e	p_1	p_2
p_4	p_4	p_3	p_1	p_2	p_5	e
		p_2				

$$G_2 = \{ e, p_1 \}$$

Tabela grupy G_2 :

	e	p_1
e	e	p_1
p_1	p_1	e

Rozważmy dwie grupy $(G_1, *)$ i (G_2, \bullet) . Odwzorowanie $z: G_1 \to G_2$

nazywamy izomorfizmem (grup), jeśli

- z jest **bijekcj** \mathfrak{q} ($z \in Bij(G_1, G_2)$),
- równość z(a * b) = z(a) z(b) zachodzi dla każdych $a, b \in G_1$

Grupy izomorficzne mają identyczne struktury, tzn. różnią się jedynie oznaczeniem swoich elementów.

Izomorfizm grup oznaczamy symbolicznie $(G_1, *) \cong (G_2, \bullet)$.

Przykład izomorfizmu grup

Grupa symetryczna S_3 i grupa nałożeń trójkąta równobocznego na siebie.

$$G_1 = \{ e, p_1, p_2, p_3, p_4, p_5 \}$$
 i $G_2 = \{ o_0, o_1, o_2, s_A, s_B, s_C \}$

 o_0 - obrót o 0°,

 o_1 - obrót o 120°,

 o_2 - obrót o 240°,

 s_A - odbicie względem osi symetrii AA',

s_B - odbicie względem osi symetrii BB',

 $s_{\mathbb{C}}$ - odbicie względem osi symetrii \mathbb{CC}'

Tabela grupy G_1 :

	e	p_1	p_2	p_3	p_4	p_5
e	e	p_1	p_2	p_3	p_4	p_5
p_1	p_1	e	p_4	p_5	p_2	p_3
p_2	p_2	p_5	e	p_4	p_3	p_1
p_3	p_3	p_4	p_5	e	p_1	p_2
p_4	p_4	p_3	p_1	p_2	p_5	e
p_5	p_5	p_2	p_3	p_1	e	p_4

Tabela grupy G_2 :

	o_0	o_1	02	s_{A}	s_{B}	s_{C}
o_0	o_0	o_1	o_2	SA	SB	s_{C}
o_1	o_1	o_2	o_0	s_{C}	SA	s_{B}
o_2	o_2	o_0	o_1	s_{B}	s_{C}	SA
SA	SA	s_{B}	s_{C}	o_0	o_1	o_2
SB	SB	s_{C}	s_{A}	o_2	o_0	o_1
SC	SC	SA	 O₂ O₀ O₁ SC SA SB 	o_1	o_2	o_0

Izomorfizm:

G_1	e	p_1	p_2	p_3	p_4	p_5
$z(G_1)$	o_0	SA	s_{B}	s_{C}	o_1	o_2

Dla wszystkich par elementów z grupy G_1 zachodzą równości, takie jak np.

$$z(p_1p_3) = z(p_5) = o_2 = z(p_1) z(p_3) = s_A s_C = o_2$$

 $z(p_3p_5) = z(p_2) = s_B = z(p_3) z(p_5) = s_C o_2 = s_B$
 $z(p_4p_5) = z(e) = o_0 = z(p_4) z(p_5) = o_1 o_2 = o_0$
itd.

Twierdzenie (Cayley)

Każda grupa skończona jest izomorficzna z pewna grupą permutacji.

Za pomocą grup permutacji można zatem opisywać z dokładnością do izomorfizmu <u>wszystkie</u> grupy skończone.

WPROWADZENIE DO OGÓLNEJ TEORII ZLICZANIA

Rozważmy dowolny zbiór skończony A (|A| = n) i pewną grupę G permutacji zbioru A.

Zdefiniujmy następującą relację binarną R_G w zbiorze A:

$$a R_G b$$
 dla $a, b \in A \iff$ istnieje permutacja $p \in G$, taka że $p(a) = b$

 R_G nazywana jest **relacją indukowaną** w zbiorze A przez grupę G. O wprowadzeniu relacji indukowanej mówi się również, że grupa G działa na zbiorze A.

Przykład relacji indukowanej

$$A = \{1, 2, 3, 4\}$$
; $G = \{e, p_1, p_2, p_3\}$, gdzie $e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$,

$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Tablica relacji R_G :

	1	2	3	4
1	1	1	0	0
2	1	1	0	0
3	0	0	1	1
4	0	0	1	1

Twierdzenie

Relacja indukowana $R_G \subseteq A \times A$ w zbiorze A przez grupę permutacji G tego zbioru, jest relacją **równoważności**.

Każda relacja równoważności w zbiorze A dzieli ten zbiór na rozłączne klasy abstrakcji $A=\bigcup_{a\in A}a\,|\,R_G$, gdzie $a\,|\,R_G=\{x\in A\colon a\,R_Gx\}.$

Każdą z klas abstrakcji relacji indukowanej przez grupę permutacji G działającą na zbiorze A nazywamy **orbitą działania** grupy G.

Zatem zbiór klas abstrakcji $A \mid R_G$, to zbiór orbit działania grupy G.

Liczbę orbit działania grupy G oznaczamy symbolem o(G).

Wyznaczenie liczby o(G) jest pierwszym zagadnieniem rozważanym w ogólnej teorii zliczania.

1. przykład wyznaczania orbit działania grupy permutacji

$$A = \{1, 2, 3, 4\}$$
; $G = \{e, p_1, p_2, p_3\}$, gdzie $e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$,

$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Tablica relacji R_G :

	1	2	3	4
1	1	1	0	0
2	1	1	0	0
3	0	0	1	1
4	0	0	1	1

Orbity działania grupy *G*: $1 \mid R_G = \{1, 2\}, 3 \mid R_G = \{3, 4\} \text{ i } o(G) = 2$

2. przykład wyznaczania orbit działania grupy permutacji

Mamy zadany zbiór wszystkich dwukolorowych szachownic o 4 polach.

Ile wzorów szachownic można rozróżnić, jeśli szachownice mogą być dowolnie obracane na płaszczyźnie wokół swego środka?

zostać nałożone po dokonaniu pewnego obrotu, jak np. s_7 i s_{10} . Należy rozważyć obroty o 0° , 90° , 180° i 270° , bo tylko one

Zauważmy, że niektóre szachownice są nierozróżnialne, bo mogą

pozwalają nakładać na siebie szachownice o 4 polach.

Przechodzenie jednej szachownicy w drugą po dokonaniu każdego z wymienionych obrotów można zapisać w postaci permutacji zbioru *A*:

permutacja e odpowiada obrotowi o 0° , permutacja p_1 odpowiada obrotowi o 90° , permutacja p_2 odpowiada obrotowi o 180° i permutacja p_3 odpowiada obrotowi o 270° .

Zbiór podanych permutacji z działaniem złożenia tworzy grupę

$$G = \{e, p_1, p_2, p_3\}.$$

Tabela grupy G:

	e	p_1	p_2	p_3
e	e	p_1	p_2	p_3
p_1	p_1	p_2	p_3	e
p_2	p_2	p_3	e	p_1
p_3	p_3	e	p_1	p_2

Tablica relacji indukowanej R_G :

	s_1	s_2	s_3	s_4	S_5	s_6	s_8	S 9	s_{11}	<i>S</i> ₇	s_{10}	<i>s</i> ₁₂	s_{13}	s ₁₄	<i>s</i> ₁₅	<i>s</i> ₁₆
s_1	1															
s_2		1	1	1	1											
s_3		1	1	1	1											
s_4		1	1	1	1											
S 5		1	1	1	1											
s_6						1	1	1	1							
s_8						1	1	1	1							
S 9						1	1	1	1							
s_{11}						1	1	1	1							
<i>S</i> ₇										1	1					
s_{10}										1	1					
s_{12}												1	1	1	1	
s_{13}												1	1	1	1	
S ₁₄												1	1	1	1	
S ₁₅												1	1	1	1	
<i>s</i> ₁₆																1

Orbity działania grupy permutacji G na zbiorze szachownic A:

Zatem o(G) = 6 i tyle jest rozróżnialnych wzorów szachownic.

Element $a \in A$ nazywamy **niezmiennikiem** permutacji p zbioru A, jeśli p(a) = a.

Liczbę niezmienników permutacji p oznaczamy Inv(p).

Przykład wyznaczania liczby niezmienników

A = {1, 2, 3, 4, 5, 6, 7, 8},
$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 3 & 4 & 2 & 1 & 7 & 6 \end{pmatrix}$$

$$p(3) = 3$$
, $p(4) = 4$, $p(7) = 7$, a zatem $Inv(p) = 3$

Twierdzenie (Burnside)

Liczba orbit działania grupy permutacji G działającej na zbiorze A

dana jest równością:
$$o(G) = \frac{1}{|G|} \sum_{p \in G} Inv(p)$$

(liczba orbit działania grupy permutacji = liczba klas abstrakcji, na które relacja równoważności R_G indukowana przez grupę G działającą na zbiorze A, dzieli ten zbiór)

William Burnside (1852 – 1927)

Przykład wyznaczania liczby orbit działania grupy permutacji

Rozważamy ponownie zbiór wszystkich dwukolorowych szachownic

o 4 polach:
$$A = \{s_1, s_2, ..., s_{16}\},$$
 $G = \{e, p_1, p_2, p_3\}.$

$$e = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 & s_{10} & s_{11} & s_{12} & s_{13} & s_{14} & s_{15} & s_{16} \\ s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 & s_{10} & s_{11} & s_{12} & s_{13} & s_{14} & s_{15} & s_{16} \end{pmatrix}$$

$$p_1 = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 & s_{10} & s_{11} & s_{12} & s_{13} & s_{14} & s_{15} & s_{16} \\ \bullet & s_1 & s_3 & s_4 & s_5 & s_2 & s_9 & s_{10} & s_6 & s_{11} & s_7 & s_8 & s_{15} & s_{12} & s_{13} & s_{14} & s_{16} \end{pmatrix}$$

$$p_2 = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 & s_{10} & s_{11} & s_{12} & s_{13} & s_{14} & s_{15} & s_{16} \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ s_1 & s_4 & s_5 & s_2 & s_3 & s_{11} & s_7 & s_9 & s_8 & s_{10} & s_6 & s_{14} & s_{15} & s_{12} & s_{13} & s_{16} \end{pmatrix}$$

$$p_{3} = \begin{pmatrix} s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} & s_{8} & s_{9} & s_{10} & s_{11} & s_{12} & s_{13} & s_{14} & s_{15} & s_{16} \\ \bullet & s_{1} & s_{5} & s_{2} & s_{3} & s_{4} & s_{8} & s_{10} & s_{11} & s_{6} & s_{7} & s_{9} & s_{13} & s_{14} & s_{15} & s_{12} & s_{16} \end{pmatrix}$$

$$Inv(e) = 16$$
, $Inv(p_1) = 2$, $Inv(p_2) = 4$, $Inv(p_3) = 2$

$$o(G) = \frac{1}{|G|} \left(Inv(e) + Inv(p_1) + Inv(p_2) + Inv(p_3) \right) = \frac{1}{4} \left(16 + 2 + 4 + 2 \right) = 6$$

Przykład zastosowania tw. Burnside'a

Mamy możliwość kolorowania wierzchołków trójkąta równobocznego trzema kolorami. Na ile rozróżnialnych sposobów można to zrobić, jeśli trójkąt może być obracany w trzech wymiarach?

Zbiór A wszystkich możliwości pokolorowania <u>oznaczonych</u> wierzchołków trójkata zawiera $3^3 = 27$ elementów.

Grupa nałożeń trójkąta równobocznego składa się z 6 elementów

$$G = \{o_0, o_1, o_2, s_A, s_B, s_C\}$$

Każdemu z elementów tej grupy odpowiada permutacja zbioru A.

Liczba niezmienników = liczba pokolorowań pasujących po nałożeniu

$$Inv(o_0) = 27$$
, $Inv(o_1) = 3$, $Inv(o_2) = 3$,

$$Inv(o_1) = 3,$$

$$Inv(o_2) = 3$$
,

$$Inv(s_{A}) = 9,$$
 $Inv(s_{B}) = 9,$ $Inv(s_{C}) = 9.$

$$Inv(s_{\mathsf{B}}) = 9,$$

$$Inv(s_{\mathbb{C}}) = 9$$

Liczba orbit działania grupy permutacji G wynosi zatem:

$$o(G) = \frac{1}{|G|} \sum_{p \in G} Inv(p) = \frac{1}{6} (27 + 3 + 3 + 9 + 9 + 9) = 10$$

Każda orbita działania (klasa abstrakcji relacji indukowanej R_G) zawiera pokolorowania nierozróżnialne przy dowolnym obracaniu trójkata. Zatem wzorów rozróżnialnych bez względu na obrócenie trójkąta jest właśnie tyle, ile jest orbit działania grupy G, czyli $\mathbf{10}$:

