UNIVERSITY OF TEXAS AT ARLINGTON

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER VISION ASSIGNMENT 6

Nudrat Nawal Saber 1001733394

Problem 1:

Ans:

For problem 1,I resized the image to a fixed resolution, normalize and use k nearest neighbour to predict the label of the test images. For classify_knn_tiny, the accuracy is 19.7333%.

figure 1: Confusion matrix for KNN and Tiny Image Representation

Accuracy:

KNN_Tiny Accuracy 19.7333

Problem 2

Ans:

(c) classify_knn_bow: KNN model was used for the prediction. The vocabulary is computed using vl dsift using parameters Step=10 and dic size=50. The optimum results is given by the fast version of the function, accuracy is 52.0667% for k=10.

Figure 2: Confusion matrix for KNN and BoW representation

Accuracy:

KNNBoW Accuracy
52.0667

Extra Credit

Ans:

Classify_svm_bow: SVM model was used for the prediction. The vocabulary is computed using vl dsift using parameters Step=10. In this case, 15 binary classifiers have been trained by marking a particular label as 1 and all the other labels as -1The optimum results is given by the fast version of the function, the accuracy is 62% for dic_size=50.

Figure 3: Confusion matrix for SVM using BoW representation

Accuracy:

```
SVMBoW Accuracy
62
```

References

- 1. https://www.mathworks.com/help/stats/fitcsvm.html
- 2. https://stackoverflow.com/questions/33289003/vl-dsift-trying-to-get-a-feature-vector-at-every-pixel
- 3. https://www.mathworks.com/help/stats/classificationknn.predict.html
- 4. https://www.mathworks.com/help/textanalytics/ref/bagofwords.html