Neural Networks

Matt R

July 1, 2022

Contents

Ι	Neural Networks and Deep Learning	3
1	Logistic Regression1.1 The Gradient1.2 Implementation in Python via numpy1.3 Implementation in Python via sklearn	4 5 8 12
2	Neural Networks: A Single Hidden Layer 2.1 Activation Functions	14 16 16 17 17 18 19
	3.1 Implementation in Python via numpy	
	Training, Development and Test Sets 4.1 Python Implementation	34 35 37

5	Reg	gularization	40	
	5.1	Python Implementation	41	
	5.2	(Inverted) Dropout Regularization	45	
		5.2.1 Python Implementation	46	
	5.3	Data Augmentation	51	
	5.4	Early Stopping	51	
6	Gra	dients and Numerical Remarks	52	
	6.1	Numerical Gradient Checking	52	
	6.2	Python Implementation	53	
7	Gra	dient Descent	54	
	7.1	Weighted Averages	56	
	7.2	Gradient Descent with Momentum	58	
	7.3	Root Mean Squared Propagation (RMSProp)	60	
	7.4	Adaptive Moment Estimation: The Adam Algorithm	61	
	7.5	Learning Rate Decay	63	
	7.6	Python Implementation	63	
8	Tun	ing Hyper-Parameters	7 1	
	8.1	Python Implementation	72	
9	Bat	ch Normalization	73	
	9.1	Backward Propagation	75	
	9.2	Inferencing	81	
	9.3	Algorithm Outline	82	
	9.4	Better Backpropagation	84	
	9.5	Python Implementation	90	
10	Mu	lti-Class Softmax Regression	91	
Re	References			

Part I Neural Networks and Deep Learning

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{n \times N}$ with binary labels $y \in \{0,1\}^{1 \times N}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^{1 \times n}$, $b \in \mathbb{R}$, and let

$$a = \sigma(wx + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize an error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y=1|x)=a, \qquad \mathbb{P}(y=0|x)=1-a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$,

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function $\mathbb J$ defined by

$$\mathbb{J}(w,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(a_j, y_j)
= -\frac{1}{N} \sum_{j=1}^{N} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{N} \sum_{j=1}^{N} \left[y_j \log(\sigma(wx_j + b)) + (1 - y_j) \log(1 - \sigma(wx_j + b)) \right].$$

1.1 The Gradient

We wish to compute the gradient of our cost function \mathbb{J} with respect to our trainable parameters, $w \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}$. To this end, we define the functions

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad \phi(w, x) = wx,$$

and

$$\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \psi(b, u) = u + b.$$

Then our logistic regression model for a single example follows the following network layout:

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Let's now analyze our reverse differentials for this type of composition:

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$r_1 \uparrow \qquad \overline{r}_1 \uparrow \qquad \uparrow$$

$$\mathbb{R}^n \longleftarrow \phi \longleftarrow \psi \longleftarrow \overline{\sigma} \longleftarrow \mathbb{L} \longleftarrow \mathbb{R}$$

1.

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad u := \phi(w, x) = wx.$$

Then for for any $(w,x) \in \mathbb{R}^{1 \times n} \times \mathbb{R}^n$ and any $\eta \in T_w \mathbb{R}^{1 \times n}$, we have that

$$d_1\phi_{(w,x)}(\eta) = \eta x$$

= $R_x(\eta)$,

where R_x is the right-multiplication operator. It then follows that for any $\zeta \in T_u\mathbb{R}$, that

$$\langle r_1 \phi_{(w,x)}(\zeta), \eta \rangle_{\mathbb{R}^{1 \times n}} = \langle \zeta, d_1 \phi_{(w,x)}(\eta) \rangle_{\mathbb{R}}$$
$$= \langle \zeta, R_x(\eta) \rangle_{\mathbb{R}}$$
$$= \langle R_{xT}(\zeta), \eta \rangle_{\mathbb{R}^{1 \times n}},$$

and hence that

$$r_1\phi_{(w,x)} = R_{x^T}.$$

2.

$$\psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad z := \psi(b, u) = u + b.$$

Then for any $(b, u) \in \mathbb{R} \times \mathbb{R}$ and any $\xi \in T_u \mathbb{R}$, we have that

$$d\psi_{(b,u)}(\xi) = \mathbb{1}_{\mathbb{R}}(\xi),$$

and similarly for any $\eta \in T_b\mathbb{R}$, we have that

$$\overline{d}_1\psi_{(b,u)}(\eta) = \mathbb{1}_{\mathbb{R}}(\eta).$$

We then immediately have that

$$r\psi_{(b,u)}=\mathbb{1}_{\mathbb{R}},$$

and

$$\overline{r}_1\psi_{(b,u)}=\mathbb{1}_{\mathbb{R}}.$$

3.

$$\sigma: \mathbb{R} \to \mathbb{R}, \qquad a := \sigma(z) = \frac{1}{1 + e^{-z}}.$$

Then

$$r\sigma_z = \frac{e^{-z}}{(1+e^{-z})^2}$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}}$$

$$= \sigma(z) \frac{1+e^{-z}-1}{1+e^{-z}}$$

$$= \sigma(z)(1-\sigma(z))$$

$$= a(1-a).$$

4.

$$\mathbb{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)].$$

Then

$$r\mathbb{L}_{(a,y)} = -\frac{y}{a} + \frac{1-y}{1-a}$$

We now compute the gradients with respect to w and b. To this end,

$$\frac{\partial \mathbb{J}}{\partial w} = \frac{1}{N} \sum_{j=1}^{N} r_1 \phi_{w,x_j} \circ r \psi_{(b,u_j)} \circ r \sigma_{z_j} \circ r \mathbb{L}_{(a_j,y_j)}$$

$$= \frac{1}{N} \sum_{j=1}^{N} R_{x_j^T} \circ \left[-\frac{y_j}{a_j} + \frac{1 - y_j}{1 - a_j} \right] \cdot (a_j (1 - a_j))$$

$$= \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j) x_j^T$$

$$= \frac{1}{N} (a - y) x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} \overline{r}_1 \psi_{b,u_j} \circ r \sigma_{z_j} \circ r \mathbb{L}_{(a_j,y_j)}$$
$$= \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)$$

1.2 Implementation in Python via numpy

Here we include the general method of coding a logistic regression model with L^2 -regularization via the classical numpy library.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import apply_activation
  class LinearParameters():
      def __init__(self, dims, bias=True, seed=1):
           Parameters:
10
           -----
11
           dims : tuple(int, int)
12
           bias : Boolean
13
               Default : True
14
           seed : int
15
               Default : 1
16
           Returns:
18
           None
20
21
           np.random.seed(seed)
22
           self.dims = dims
           self.bias = bias
24
           self.w = np.random.randn(*dims) * 0.01
25
           if bias:
26
               self.b = np.zeros((dims[0], 1))
27
28
      def forward(self, x):
29
30
           Parameters:
31
32
           x : array_like
33
34
           Returns:
35
           -----
           z : array_like
37
38
           z = np.einsum('ij,jk', self.w, x)
39
           if self.bias:
40
               z += self.b
41
```

```
return z
43
44
      def backward(self, dz, x):
45
46
           Parameters:
47
           _____
48
           dz : array_like
49
           x : array_like
50
51
           Returns:
52
           _____
53
           None
54
55
           if self.bias:
56
               self.db = np.sum(dz, axis=1, keepdims=True)
57
               assert (self.db.shape == self.b.shape)
58
59
           self.dw = np.einsum('ij,kj', dz, x)
60
           assert (self.dw.shape == self.w.shape)
61
62
       def update(self, learning_rate=0.01):
63
64
           Parameters:
65
66
           learning_rate : float
67
               Default: 0.01
69
70
           Returns:
71
           None
72
           11 11 11
73
           w = self.w - learning_rate * self.dw
74
           self.w = w
75
76
           if self.bias:
77
               b = self.b - learning_rate * self.db
78
               self.b = b
79
80
81 class LogisticRegression():
       def __init__(self, lp_reg):
82
83
           Parameters:
84
           lp_reg : int
85
               2 : L_2 Regularization is imposed
86
               1 : L_1 Regularization is imposed
87
               0 : No regulariation is imposed
88
```

```
Returns:
90
            -----
91
            None
92
93
            self.lp_reg = lp_reg
94
95
       def predict(self, params, x):
97
98
            Parameters:
            _____
99
            params : class[LinearParameters]
100
            x : array_like
101
102
            Returns:
103
            -----
104
            a : array_like
105
106
            dg : array_like
107
            z = params.forward(x)
108
            a, dg = apply_activation(z, 'sigmoid')
109
            return a, dg
110
111
       def cost_function(self, params, x, y, lambda_=0.01, eps=1e-8):
112
113
            Parameters:
114
            -----
115
            params : class[LinearParameters]
116
117
            x : array_like
            y : array_like
118
            lambda_ : float
119
                Default : 0.01
120
            eps : float
121
                Default : 1e-8
122
123
            Returns:
124
125
            cost : float
126
127
            n = y.shape[1]
128
129
            R = np.sum(np.abs(params.w) ** self.lp_reg)
130
            R *= (lambda_ / (2 * n))
131
132
            a, _ = self.predict(params, x)
133
            a = np.clip(a, eps, 1 - eps)
134
135
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
136
```

```
137
            cost = float(np.squeeze(J + R))
138
139
            return cost
140
141
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, seed=1, num_iters=10000):
142
            11 11 11
143
            Parameters:
144
            -----
145
            x : array_like
146
            y : array_like
147
            learning_rate : float
148
                Default : 0.1
149
            lambda_ : float
150
                Default : 0.0
151
            num_iters : int
152
                Default : 10000
153
154
            Returns:
155
156
            costs : List[floats]
157
            params : class[Parameters]
            11 11 11
159
            dims = (y.shape[0], x.shape[0])
160
            n = x.shape[1]
161
            params = LinearParameters(dims, True, seed)
162
163
            if self.lp_reg == 0:
164
                lambda_ = 0.0
165
166
            costs = []
167
            for i in range(num_iters):
168
                a, _ = self.predict(params, x)
169
                cost = self.cost_function(params, x, y, lambda_)
170
                costs.append(cost)
171
                dz = (a - y) / n
172
                params.backward(dz, x)
173
                params.update(learning_rate)
174
175
                if i % 1000 == 0:
176
                     print(f'Cost_after_iteration_{i}:_{cost}')
177
178
179
            return params
180
       def evaluate(self, params, x):
181
182
            Parameters:
183
```

```
184
            params : class[Parameters]
185
            x : array_like
186
187
            Returns:
188
189
            y_hat : array_like
191
            a, _ = self.predict(params, x)
192
            y_hat = (\sim(a < 0.5)).astype(int)
193
194
            return y_hat
195
196
       def accuracy(self, params, x, y):
197
198
            Parameters:
199
200
            params : class[Parameters]
201
            x : array_like
202
            y : array_like
203
204
205
            Returns:
            _____
206
            accuracy : float
207
208
            y_hat = self.evaluate(params, x)
209
210
            accuracy = np.sum(y_hat == y) / y.shape[1]
211
212
            return accuracy
213
```

1.3 Implementation in Python via sklearn

Here we include the general method of coding a logistic regression model via scikit-learn's modeling library.

```
#! python3

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

def main(csv):
    df = pd.read_csv(csv)
    dataset = df.values
```

```
x = dataset[:, :10]
11
12
      y = dataset[:, 10]
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
14
      mu = np.mean(x, axis=0, keepdims=True)
      var = np.var(x, axis=0, keepdims=True)
16
      x_train = (x_train - mu) / np.sqrt(var)
      x_{test} = (x_{test} - mu) / np.sqrt(var)
18
19
      log_reg = LogisticRegression()
20
      log_reg.fit(x_train, y_train)
      train_acc = log_reg.score(x_train, y_train)
22
      print(f'The_accuracy_on_the_training_set:_{train_acc}.')
      test_acc = log_reg.score(x_test, y_test)
^{24}
      print(f'The_accuracy_on_the_test_set:_{test_acc}.')
```

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{n^{[0]} \times N}$ and $y \in \{0, 1\}^{1 \times N}$. Usually with logistic regression we have the following type of structure:

$$\mathbb{R}^{1 \times n^{[0]}} \qquad \mathbb{R} \qquad \{0, 1\} \\
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

Such a structure will be called a *network*, and the *a* is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary built from a linear-surface), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\mathbb{R}^{n^{[1]} \times n^{[0]}} \quad \mathbb{R}^{n^{[1]}} \quad \mathbb{R}^{1 \times n^{[1]}} \quad \mathbb{R} \quad \{0,1\}$$

$$w^{[1]} \downarrow \quad b^{[1]} \downarrow \quad w^{[2]} \downarrow \quad b^{[2]} \downarrow \quad y \downarrow$$

$$\mathbb{R}^{n^{[0]}} \stackrel{a^{[0]} := x}{\longrightarrow} \phi^{[1]} \stackrel{u^{[1]}}{\longrightarrow} \psi^{[1]} \stackrel{z^{[1]}}{\longrightarrow} G^{[1]} \stackrel{a^{[1]}}{\longrightarrow} \phi^{[2]} \stackrel{u^{[2]}}{\longrightarrow} \psi^{[2]} \stackrel{z^{[2]}}{\longrightarrow} G^{[2]} \stackrel{a^{[2]}}{\longrightarrow} \mathbb{L} \stackrel{\mathrm{loss}}{\longrightarrow} \mathbb{R}$$

In the above diagram, we use ·^[0] to denote everything in layer-0, i.e., the input layer; we use ·^[1] to denote everything in layer-1, i.e., the hidden layer; and we use ·^[2] to denote everything in layer-2, i.e., the output layer. Moreover, we have the functions (where we suppress the layer-notation)

$$\phi: \mathbb{R}^{n \times m} \times \mathbb{R}^m \to \mathbb{R}^n, \qquad u := \phi(w, a) = wa,$$

 $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \qquad z:=\psi(b,u)=u+b,$

$$G: \mathbb{R}^n \to \mathbb{R}^n, \qquad a := G(z),$$

where G is the broadcasting of some activating function $q: \mathbb{R} \to \mathbb{R}$.

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^n \to \mathbb{R}^n$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^n if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^n$ and $\{e_i : 1 \le i \le n\}$ is the standard basis for \mathbb{R}^n . In practice, we will sometimes write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^n . Then the differential $dG_z: T_z\mathbb{R}^n \to T_{G(z)}\mathbb{R}^n$ is given by

$$dG_z(\xi) = [g'(z^i)] \odot [\xi^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

We use the notation

$$G'(z) := [g'(z^i)] \in \mathbb{R}^n$$

and thus may write

$$dG_z(v) = G'(z) \odot \xi.$$

Furthermore, we have that for $\zeta \in T_{G(z)}\mathbb{R}^n$,

$$rG_z(\zeta) = G'(z) \odot \zeta.$$

Proof: We calculate

$$dG_z(\xi) = \frac{d}{dt} \Big|_{t=0} G(z + t\xi)$$

$$= \frac{d}{dt} \Big|_{t=0} (g(z^i + t\xi^i))$$

$$= (g'(z^i)\xi^i)$$

$$= [g'(z^i)] \odot [\xi^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Furthermore, for $\zeta \in T_{G(z)}\mathbb{R}^n$, we have that

$$\langle rG_z(\zeta), \xi \rangle_{\mathbb{R}^n} = \langle \zeta, dG_z(\xi) \rangle_{\mathbb{R}^n}$$

$$= \langle \zeta, G'(z) \odot \xi \rangle_{\mathbb{R}^n}$$

$$= \langle G'(z) \odot \zeta, \xi \rangle_{\mathbb{R}^n},$$

and the result follows.

Returning to our network, we see call the full composition of network functions resulting in $a^{[2]}$, the forward propagation. That is, given an example $x \in \mathbb{R}^{n^{[0]}}$, we have that

П

$$a^{[2]} = G^{[2]}(\psi^{[2]}(b^{[2]}, \phi^{[2]}(w^{[2]}, G^{[1]}(\psi^{[1]}(b^{[1]}, \phi^{[1]}(w^{[1]}, x))))).$$

2.1 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions (but many more built from these that follow).

2.1.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma: \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

2.1.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Furthermore, we note that

$$\frac{1}{2}\left(\tanh\left(\frac{z}{2}\right) + 1\right) = \sigma(z).$$

Indeed,

$$1 + \tanh \frac{z}{2} = 1 + \frac{e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= \frac{e^{\frac{z}{2}} + e^{-\frac{z}{2}} + e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= 2\frac{e^{\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= 2\frac{1}{1 + e^{-z}}$$

$$= 2\sigma(z),$$

as desired.

2.1.3 The Rectified Linear Unit Function

We have the leaky-ReLU function $ReLU(z; \beta)$ given by

$$\mathrm{ReLU}: \mathbb{R} \to \mathbb{R}, \qquad \mathrm{ReLU}(z; \beta) = \max\{\beta z, z\},\$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0 \\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

2.1.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use this function on the outer-layer to obtain a probability distribution over our predicted labels when dealing with multi-class regression. Let

$$S^i = x^i \circ \operatorname{softmax}(z),$$

denote the *i*-th component of $\operatorname{softmax}(z)$, and so we calculate

$$\begin{split} \frac{\partial S^i}{\partial z^j} &= \frac{\partial}{\partial z^j} \left[\left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \right] \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} \left(\sum_{k=1}^m e^{z^k} \delta^k_j \right) e^{z^i} + \left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \delta^i_j \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} e^{z^j} e^{z^i} + S^i \delta^i_j \\ &= -S^j S^i + S^i \delta^i_j \\ &= S^i (\delta^i_j - S^j). \end{split}$$

That is, as a map $dS_z: T_z\mathbb{R}^m \to T_{S(z)}\mathbb{R}^m$, we have that

$$dS_z = [S^i(\delta^i_j - S_j)]^i_j,$$

and we make note that dS_z is symmetric (i.e., it's also the reverse differential).

2.2 Backward Propagation

We consider a neural network of the form

where we have the functions:

1.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

2.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\phi^{[\ell]}(w, x) = wx.$$

3.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\psi^{[\ell]}(b, x) = x + b.$$

4.

$$\mathbb{L}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]}} \to \mathbb{R}$$

is the given loss-function.

We now consider back-propagating through the neural network via "reverse exterior differentiation". We represent our various reverse derivatives via the following diagram:

First, we need to consider our individual derivatives:

1. Suppose $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for $(x,\xi) \in T\mathbb{R}^n$, we have that

$$dG_x(\xi) = G'(x) \odot \xi$$

= diag(G'(x)) \cdot \xi

and for any $\zeta \in T_{G(x)}\mathbb{R}^n$, the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta$$

= diag $(G'(x)) \cdot \zeta$.

2. Suppose $\phi: \mathbb{R}^{m \times n} \times \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\phi(w, x) = wx.$$

Then we have two differentials to consider:

(a) For any $(w,x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\phi_{(w,x)}(\xi) = w\xi$$

= $L_w(\xi)$;

and for any $\zeta \in T_{\phi(w,x)}\mathbb{R}^m$, we have the reverse derivative

$$r\phi_{(w,x)}(\zeta) = w^T \zeta$$

= $L_{w^T}(\zeta)$;

where $L_A(B) = AB$, i.e., left-multiplication by A.

(b) For any $(w,x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\eta \in T_w \mathbb{R}^{m \times n}$ we have that

$$d_1\phi_{(w,x)}(\eta) = \eta x$$

= $R_x(\eta)$;

and for any $\zeta \in T_{\phi(w,x)}\mathbb{R}^m$, we have the reverse derivative

$$r_1 \phi_{(w,x)}(\zeta) = \zeta x^T$$

= $R_{x^T}(\zeta)$;

where $R_A(B) = BA$, i.e, right-multiplication by A.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\psi(b, x) = x + b.$$

Then we again have two (identical) differentials to consider:

(a) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\psi_{(b,x)}(\xi) = \xi;$$

and for any $\zeta \in T_{\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\eta \in T_b \mathbb{R}^n$, we have that

$$d_1\psi_{(b,x)}(\eta)=\eta;$$

and for any $\zeta \in T_{(\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$\overline{r}_1\psi_{(b,x)}(\zeta)=\zeta.$$

Returning to our neural network, for each point (x_j, y_j) in our training set, we first let

$$F_j := \mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]},$$

and we have our cost function

$$\mathbb{J} := \frac{1}{N} \sum_{j=1}^{N} F_j.$$

We use the following notation for our inputs and outputs of our respective functions:

 $\phi^{[\ell]}:(w^{[\ell]},a^{[\ell-1]}{}_i)\mapsto u^{[\ell]}{}_i,$

 $\psi^{[\ell]}:(b^{[\ell]},u^{[\ell]}{}_i)\mapsto z^{[\ell]}{}_i,$

 $G^{[\ell]}: z^{[\ell]}{}_j \mapsto a^{[\ell]}{}_j.$

Let $p=(w^{[1]},b^{[1]},w^{[2]},b^{[2]})$ is a point in our parameter space. Suppose we wish to apply gradient descent with learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R}$, we would define our parameter updates via

$$\begin{split} w^{[1]} &:= w^{[1]} - r_1 \mathbb{J}_p(\alpha) \\ b^{[1]} &:= b^{[1]} - \overline{r}_1 \mathbb{J}_p(\alpha) \\ w^{[2]} &:= w^{[2]} - r_2 \mathbb{J}_p(\alpha) \\ b^{[2]} &:= b^{[2]} - \overline{r}_2 \mathbb{J}_p(\alpha). \end{split}$$

Moreover, by linearity (and independence of our training data), we see that

$$r\mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} r(F_j)_p,$$

so we need only calculate the various reverse derivatives of F_j .

To this end, we suppress the index j when we're working with the compositional function F. We calculate the reverse derivatives in the order traversed in our back-propagating path along the network.

1. $\overline{r}_2 \mathbb{J}_p$:

$$\begin{split} \overline{r}_2 F_p &= \overline{r}_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]})_p \\ &= \overline{r}_2 \psi_p^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_2 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}$$

 $2. r_2 \mathbb{J}_p$:

$$\begin{split} r_2 F_p &= r_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]})_p \\ &= r_2 \phi_p^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_2 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} R_{a^{[1]T}_j} \circ rG_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

Notice that this is not just a sum after matrix multiplication since we have composition with an operator, namely, $R_{a^{[1]T_j}}$. However, since the learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R} \cong \mathbb{R}$, which may pass through the aforementioned linear composition, we conclude that

$$\begin{split} r_2 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{a^{[1]T}_j} \circ r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} a^{[1]T}_j. \end{split}$$

3. $\overline{r}_1 \mathbb{J}_p$:

$$\begin{split} \overline{r}_1 F_p &= \overline{r}_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]})_p \\ &= \overline{r}_1 \psi_p^{[1]} \circ r G_{z^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbbm{1} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ \mathbbm{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_1 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^N r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

4. $r_1 \mathbb{J}_p$:

$$\begin{split} r_1 F_p &= r_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]})_p \\ &= r_1 \phi_p^{[1]} \circ r \psi_{u^{[1]}}^{[1]} \circ r G_{z^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ \mathbb{1} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\begin{split} r_1 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{x_j^T} \circ r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \cdot x_j^T \end{split}$$

3 Deep Neural Networks

In this section we discuss a general "deep" neural network, which consist of L layers. That is, we have a network of the form:

$$\mathbb{R}^{n[1]} \times n[0] \qquad \mathbb{R}^{n[1]} \qquad \mathbb{R}^{n[2]} \times n[1] \qquad \mathbb{R}^{n[2]} \times n[1] \qquad \mathbb{R}^{n[2]} \times \mathbb{R}^{n$$

In general nothing fundamentally changes when adding more layers to a network. We may have different activator functions for each layer, but the general outline of computing forward propagation via composition, and then apply gradient descent by using reverse differentiation to "backtrack" through the network. Here we give a more general outline for computing our desired gradients.

To this end, we reverse our network to use reverse differentiation:

$$\mathbb{R}^{n^{[1]} \times n^{[0]}} \qquad \mathbb{R}^{n^{[1]}} \qquad \mathbb{R}^{n^{[2]} \times n^{[1]}} \qquad \mathbb{R}^{n^{[2]}}$$

$$\mathbb{R}^{n^{[0]}} \leftarrow r \qquad \phi^{[1]} \leftarrow r \qquad \phi^{[1]} \leftarrow r \qquad \phi^{[1]} \leftarrow r \qquad \phi^{[2]} \leftarrow r \qquad \phi^{[2]} \leftarrow r \qquad \phi^{[2]} \leftarrow r \qquad \cdots$$

$$\cdots \leftarrow r \qquad G^{[L-1]} \leftarrow r \qquad \phi^{[L]} \leftarrow r \qquad \phi^{[L]} \leftarrow r \qquad \phi^{[L]} \leftarrow r \qquad \mathbb{E} \leftarrow \mathbb{R}$$

$$\downarrow^{r_L} \qquad \downarrow^{r_L} \qquad \downarrow^{r_L} \qquad \downarrow^{y}$$

$$\mathbb{R}^{n^{[L]} \times n^{[L-1]}} \longrightarrow \mathbb{R}^{n^{[L]}}$$

We compute differentials recursively as follows:

1. Define $\delta^{[L]}_{j} \in \mathbb{R}^{n^{[L]}}$ by

$$\begin{split} \delta^{[L]}{}_j &:= r (\mathbb{L} \circ G^{[L]})_{z^{[L]}{}_j} \\ &= r G^{[L]}_{z^{[L]}{}_j} \circ r \mathbb{L}_{(a^{[L]}{}_j, y_j)} \\ &= G^{[L]\prime}(z^{[L]}{}_j) \odot r \mathbb{L}_{(a^{[L]}{}_i, y_j)}. \end{split}$$

2. Compute

$$\frac{\partial \mathbb{J}}{\partial b^{[L]}} = \frac{1}{N} \sum_{i=1}^{N} \delta^{[L]}_{j},$$

and

$$\frac{\partial \mathbb{J}}{\partial w^{[L]}} = \frac{1}{N} \sum_{j=1}^{N} \delta^{[L]}{}_{j} a^{[L-1]T}{}_{j}$$
$$= \frac{1}{N} \delta^{[L]} a^{[L-1]T}.$$

3. Define $\delta^{[L-1]}_{j} \in \mathbb{R}^{n^{[L-1]}}$ by

$$\begin{split} \delta^{[L-1]}{}_j &:= r (\mathbb{L} \circ G^{[L]} \circ \psi^{[L]} \circ \phi^{[L]} \circ G^{[L-1]})_{z^{[L-1]}{}_j} \\ &= r G^{[L-1]}_{z^{[L-1]}{}_j} \circ r \phi^{[L]}_{(w^{[L]},a^{[L-1]}{}_j)} \circ r \psi^{[L]}_{(b^{[L]},u^{[L]}{}_j)} \circ r G^{[L]}_{z^{[L]}_j} \circ r \mathbb{L}_{(a^{[L]}{}_j,y_j)} \\ &= G^{[L-1]'}(z^{[L-1]}{}_j) \odot w^{[L]T} \cdot \delta^{[L]}{}_j. \end{split}$$

4. Compute

$$\frac{\partial \mathbb{J}}{\partial b^{[L-1]}} = \frac{1}{N} \sum_{i=1}^{N} \delta^{[L-1]}{}_{j}$$

and

$$\begin{split} \frac{\partial \mathbb{J}}{\partial w^{[L-1]}} &= \frac{1}{N} \sum_{j=1}^{N} \delta^{[L-1]}{}_{j} a^{[L-2]T}{}_{j} \\ &= \frac{1}{N} \delta^{[L-1]} a^{[L-2]T}. \end{split}$$

- 5. Given $\delta^{[\ell+1]}_{j} \in \mathbb{R}^{n^{[\ell+1]}}$, define $\delta^{[\ell]}_{j} \in \mathbb{R}^{n^{[\ell]}}$ by $\delta^{[\ell]}_{j} := G^{[\ell]'}(z^{[\ell]}_{j}) \odot w^{[\ell+1]T} \delta^{[\ell+1]}_{j}.$
- 6. Compute

$$\frac{\partial \mathbb{J}}{\partial b^{[\ell]}} = \frac{1}{N} \sum_{i=1}^{N} \delta^{[\ell]}{}_{j}$$

and

$$\begin{split} \frac{\partial \mathbb{J}}{\partial w^{[\ell]}} &= \frac{1}{N} \sum_{j=1}^N \delta^{[\ell]}{}_j a^{[\ell-1]T}{}_j \\ &= \frac{1}{N} \delta^{[\ell]} a^{[\ell-1]T}, \end{split}$$

with the caveat that if $\ell=1,\ a^{[0]}:=x,$ and we've completed the recursion.

3.1 Implementation in Python via numpy

We implement a neural network with an arbitrary number of layers and nodes, with the ReLU function as the activator on all hidden nodes and the sigmoid function on the output layer for binary classification with the log-loss function.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import LinearParameters, apply_activation
7 class NeuralNetwork():
      def __init__(self, config):
10
           Parameters:
           -----
11
           config : Dict
12
               config['lp_reg'] = 0,1,2
13
               config['nodes'] = List[int]
14
               config['bias'] = List[Boolean]
15
               config['activators'] = List[str]
16
17
           Returns:
18
           -----
19
           None
20
21
           self.config = config
22
           self.lp_reg = config['lp_reg']
23
           self.nodes = config['nodes']
24
           self.bias = config['bias']
           self.activators = config['activators']
26
           self.L = len(config['nodes']) - 1
27
28
      def forward_propagation(self, params, x):
29
30
31
           Parameters:
32
           params : Dict[class[Parameters]]
33
               params[l].w = Weights
               params[1].bias = Boolean
35
               params[1].b = Bias
36
37
           x : array_like
38
           Returns:
39
           _____
```

```
cache = Dict[array_like]
41
               cache['a'] = a
42
               cache['dg'] = dg
43
44
45
           # Initialize dictionaries
46
           a = \{\}
47
           dg = \{\}
48
49
           a[0], dg[0] = apply_activation(x, self.activators[0])
50
51
           for l in range(1, self.L + 1):
52
               z = params[1].forward(a[1 - 1])
53
               a[l], dg[l] = apply_activation(z, self.activators[l])
54
55
           cache = \{'a' : a, 'dg' : dg\}
56
           return cache
57
58
      def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
59
60
           Parameters:
61
           params: class[Parameters]
63
           a: array_like
64
           y: array_like
65
           lambda_: float
               Default: 0.01
67
           eps: float
68
               Default: 1e-8
69
70
           Returns:
71
           -----
72
           cost: float
73
74
           n = y.shape[1]
75
           if self.lp_reg == 0:
76
               lambda_ = 0.0
77
78
           # Compute regularization term
79
           R = 0
80
           for param in params.values():
               R += np.sum(np.abs(param.w) ** self.lp_reg)
82
           R *= (lambda_ / (2 * n))
83
84
           # Compute unregularized cost
85
           a = np.clip(a, eps, 1 - eps)
                                              # Bound a for stability
86
           J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
87
```

```
88
            cost = float(np.squeeze(J + R))
89
90
            return cost
91
92
       def backward_propagation(self, params, cache, y):
93
            Parameters:
95
            -----
96
            params : Dict[class[Parameters]]
97
                params[1].w = Weights
98
                params[1].bias = Boolean
99
                params[1].b = Bias
100
            cache : Dict[array_like]
101
                cache['a'] : array_like
102
                cache['dg'] : array_like
103
104
            y : array_like
105
            Returns:
106
107
            None
108
            11 11 11
109
110
            # Retrieve cache
111
            a = cache['a']
112
            dg = cache['dg']
113
114
            # Initialize differentials along the network
115
            delta = {}
116
            delta[self.L] = (a[self.L] - y) / y.shape[1]
117
118
            for 1 in reversed(range(1, self.L + 1)):
119
                delta[1 - 1] = dg[1 - 1] * params[1].backward(delta[1], a[1 - 1])
120
121
       def update_parameters(self, params, learning_rate=0.1):
122
123
            Parameters:
124
125
            params : Dict[class[Parameters]]
126
                params[1].w = Weights
127
                params[1].bias = Boolean
128
                params[1].b = Bias
129
            learning_rate : float
130
                Default: 0.01
131
132
            Returns:
133
            -----
134
```

```
None
135
136
            for param in params.values():
137
                param.update(learning_rate)
138
139
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, num_iters=10000):
140
            11 11 11
            Parameters:
142
            -----
143
            x : array_like
144
            y : array_like
145
            learning_rate : float
146
                Default : 0.1
147
            lambda_ : float
148
                Default : 0.0
149
            num_iters : int
150
                Default : 10000
151
152
            Returns:
153
154
            costs : List[floats]
155
            params : class[Parameters]
157
            # Initialize parameters per layer
158
            params = {}
159
            for 1 in range(1, self.L + 1):
160
                params[l] = LinearParameters((self.nodes[l], self.nodes[l - 1]), self.b
161
162
            costs = []
163
            for i in range(num_iters):
164
                cache = self.forward_propagation(params, x)
165
                cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
166
                costs.append(cost)
167
                self.backward_propagation(params, cache, y)
168
                self.update_parameters(params, learning_rate)
169
170
                if i % 1000 == 0:
171
                    print(f'Cost_after_iteration_{i}:_{cost}')
172
173
            return params
174
175
       def evaluate(self, params, x):
176
177
            Parameters:
178
179
            params : class[Parameters]
180
            x : array_like
181
```

```
182
            Returns:
183
            -----
184
            y_hat : array_like
185
186
            cache = self.forward_propagation(params, x)
187
            a = cache['a'][self.L]
            y_hat = (\sim(a < 0.5)).astype(int)
189
            return y_hat
190
191
       def accuracy(self, params, x, y):
193
            Parameters:
194
195
            params : class[Parameters]
196
            x : array_like
197
198
            y : array_like
199
            Returns:
200
201
            accuracy : float
202
203
            y_hat = self.evaluate(params, x)
204
            acc = np.sum(y_hat == y) / y.shape[1]
205
206
207
            return acc
```

3.2 Implementation in Python via tensorflow

We implement a neural network using tensorflow.keras.

```
1 #! python3
з import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
6 from tensorflow import keras
7 from keras import Model, Input
8 from keras.layers import Dense
10 def keras_functional_nn(csv):
      df = pd.read_csv(csv)
11
      dataset = df.values
12
      x, y = dataset[:, :-1], dataset[:, -1].reshape(-1, 1)
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.15)
14
      train = {'x' : x_train, 'y' : y_train}
```

```
test = {'x' : x_test, 'y' : y_test}
16
      mu = np.mean(train['x'], axis=0, keepdims=True)
17
      var = np.var(train['x'], axis=0, keepdims=True)
18
       train['x'] = (train['x'] - mu) / np.sqrt(var)
19
      test['x'] = (test['x'] - mu) / np.sqrt(var)
20
21
      ## Define network structure
22
      input_layer = Input(shape=(10,))
23
      hidden_layer_1 = Dense(
24
           32,
25
           activation='relu',
           kernel_initializer='he_normal',
27
           bias_initializer='zeros'
28
      )(input_layer)
29
      hidden_layer_2 = Dense(
30
           8,
31
           activation='relu',
32
           kernel_initializer='he_normal',
33
           bias_initializer='zeros'
34
      )(hidden_layer_1)
35
      output_layer = Dense(
36
37
           1,
           activation='sigmoid',
38
           kernel_initializer='he_normal',
39
           bias_initializer='zeros'
40
      )(hidden_layer_2)
41
42
      model = Model(inputs=input_layer, outputs=output_layer)
43
      model.summary()
44
45
      ## Compile desired model
46
      model.compile(
47
           loss='binary_crossentropy',
48
           optimizer='adam',
49
           metrics=['accuracy']
50
      )
51
52
      ## Train the model
53
      hist = model.fit(
54
           train['x'],
55
           train['y'],
           batch_size=32,
57
           epochs = 150,
58
           validation_split=0.17
59
      )
60
61
      ## Evaluate the model
```

```
test_scores = model.evaluate(test['x'], test['y'], verbose=2)
print(f'Test_Loss:_{test_scores[0]}')
print(f'Test_Accuracy:_{test_scores[1]}')
```

Part II
Improving Deep Neural
Networks: Hyperparameter
Tuning, Regularization, and
Optimization

4 Training, Development and Test Sets

Let $\mathbb{D} = \{(x_j, y_j) \in \mathbb{R}^m \times \mathbb{R}^K : 1 \leq j \leq N\}$ denote a dataset. Then we partition \mathbb{D} into three distinct sets

$$\mathbb{D} = \mathbb{X} + \mathcal{D} + \mathcal{T}.$$

where \mathbb{X} is called our training set, \mathcal{D} is called our development, or cross-validation set, and \mathcal{T} is called our test set. We make this partition randomly, however, if $N = |\mathbb{D}| \leq 10^4$, we see a partition being divided accordingly to the following ratios:

$$n_X := |\mathbb{X}| \approx \frac{3}{5}N,$$

$$n_D := |\mathcal{D}| \approx \frac{1}{5}N,$$

and

$$n_T := |\mathfrak{T}| \approx \frac{1}{5}N.$$

If however, we have a very large dataset (i.e., $N > 10^4$), then we assume a much smaller ratio of something similar to

$$\frac{n_X}{N} \approx 0.98, \qquad \frac{n_D}{N} \approx 0.01, \qquad \frac{n_T}{N} \approx 0.01.$$

In general, we use our training set \mathbb{X} to train our parameters $W^{[\ell]}$ and $b^{[\ell]}$, we use our development set \mathcal{D} to tune our hyper-parameters (i.e., learning rate, number of layers, number of nodes per layer, activation function, number of iterations to perform gradient descent, regularization parameters, etc), and we use our test set \mathcal{T} to evaluate the accuracy of our model. Since we're partitioning our dataset to better increase the accuracy of our model, we need to define an error function. To this end, define $\mathcal{E}: 2^{\mathbb{D}} \to [0,1]$ by

$$\mathcal{E}(\mathcal{A}) = \frac{1}{|\mathcal{A}|} \sum_{(x,y) \in \mathcal{A}} \varepsilon(x,y),$$

where $\varepsilon : \mathbb{D} \to \{0,1\}$ is defined by

$$\varepsilon(x,y) = \begin{cases} 1 & \text{if } y = \hat{y}(x) \\ 0 & \text{else.} \end{cases}$$

From our partition and error function we can make several claims of the fitting of our model to our data. Indeed, let $\epsilon > 0$ be a small percentage (with exact value depending on specific examples), then:

- If $\mathcal{E}(\mathbb{X}) < \epsilon$ and $\mathcal{E}(\mathbb{X}) < \mathcal{E}(\mathcal{D}) \lesssim 10\epsilon$, then we say our model has high variance since our model is overfitting the data.
- If $\mathcal{E}(\mathbb{X}) \approx \mathcal{E}(\mathcal{D}) \gtrsim 10\epsilon$, then we say our model has high bias since our model is underfitting the data.
- If $10\epsilon \lesssim \mathcal{E}(\mathbb{X}) \ll \mathcal{E}(\mathcal{D})$, then we say our model has both high bias (since it doesn't fit our training data well) and high variance (because the model fits the training data better than the development data).
- If $\mathcal{E}(\mathbb{X})$, $\mathcal{E}(\mathcal{D}) < \epsilon$, then we say the model has both low bias and low variance.

Remark 4.1. The interpretations of our error percentage is based on two crucial assumptions:

- \mathcal{D} and \mathcal{T} come from samplings with the same distribution of outputs (i.e., if we're determining whether a collection of images contain a cat, we should never have that \mathcal{D} is mostly cat pictures, and \mathcal{T} is mostly non-cat pictures).
- The optimal error for the model is approximately 0%. That is, if a human were looking at the data, they could determine the correct response with negligible error. This is sometimes called the Bayes error.

If either of these assumptions fail to hold, other methods of analysis may be required to obtain meaningful insights for the performance of our model.

A methodology for using errors could be as follows

- 1. Check $\mathcal{E}(\mathbb{X})$ for high bias.
 - a. If "Yes", then we can try a bigger network, we can train longer, or we can change the neural network architecture. Then we return to (1.).
 - b. If "No", then we move to (2.).
- 2. Check $\mathcal{E}(\mathcal{D})$ for high variance.
 - a. If "Yes", then we can try to get more data, try regularization, or try changing the neural network architecture. Then we return to (1.).
 - b. If "No", then we're done.

4.1 Python Implementation

To implement a partitioning we could do something like the following:

```
1 ## Shuffle, split and normalize data
  class ProcessData():
      def __init__(self, x, y, test_percent, *dev_percents, seed=1, shuffle=True, fea-
           Parameters:
5
           _____
          x : array_like
               x.shape = (examples, features)
           y : array_like
               y.shape = (examples, labels)
10
           test_percent : float
11
           dev_pervents : Tuple(floats)
12
           seed : int
               Default = 1
14
           shuffle : Boolean
15
               Default = True
16
           feat_as_col : Boolean
17
               Default = True
18
19
           Returns:
20
           _____
21
          None
22
23
           self.x = x
24
25
           self.y = y
           self.test_percent = test_percent
26
           self.dev_percent = list(dev_percents)
27
           self.k_fold = len(self.dev_percent)
           self.seed = seed
29
           self.shuffle = shuffle
30
           self.feat_as_col = feat_as_col
31
           self.split()
33
           self.normalize()
34
35
           print(f"x_train.shape:_{self.train['x'].shape}")
36
           print(f"y_train.shape:_{self.train['y'].shape}")
37
           print(f"x_test.shape:_{self.test['x'].shape}")
38
           print(f"y_test.shape:_{self.test['y'].shape}")
39
           for k in range(self.k_fold):
40
               print(f"x_dev[{k}].shape:_{self.dev['x'][k].shape}")
41
               print(f"y_dev[{k}].shape:_{self.dev['y'][k].shape}")
42
43
      def split(self):
44
```

```
11 11 11
45
           Parameters:
46
           -----
47
           None
48
49
           Returns:
50
           -----
           None
52
           11 11 11
           x_aux, x_test, y_aux, y_test = train_test_split(self.x, self.y, test_size=se
54
           left_over = 1 - self.test_percent
55
           x_{dev} = []
56
           y_{dev} = []
57
           for perc in self.dev_percent:
58
               aux_perc = perc / left_over
59
               x_{aux}, x_{d}, y_{aux}, y_{d} = train_test_split(x_{aux}, y_{aux}, test_size=aux_pe
60
61
               x_dev.append(x_d)
               y_dev.append(y_d)
62
               left_over -= perc
63
64
           if self.feat_as_col:
65
               self.train = {'x' : x_aux, 'y' : y_aux}
               self.test = {'x' : x_test, 'y' : y_test}
67
               self.dev = {'x' : x_dev, 'y' : y_dev}
68
           else:
69
               self.train = {'x' : x_aux.T, 'y' : y_aux.T}
70
               self.test = {'x' : x_test.T, 'y' : y_test.T}
71
               x_{dev} = [cv.T for cv in x_{dev}]
72
               y_dev = [cv.T for cv in y_dev]
73
               self.dev = {'x' : x_dev, 'y' : y_dev}
74
75
      def normalize(self, z=None, eps=0.0):
76
77
           Parameters:
78
           -----
79
           z : array_like
80
               Default : None - For initialization
81
           eps : float
82
               Default 0.0 - For stability
83
84
           Returns:
           z_scale : array_like
86
87
           if z == None:
88
               x = self.train['x']
89
               axis = 0 if self.feat_as_col else 1
90
               self.mu = np.mean(x, axis=axis, keepdims=True)
91
```

```
self.var = np.var(x, axis=axis, keepdims=True)
92
93
               self.theta = 1 / np.sqrt(self.var + eps)
               self.train['x'] = self.theta * (x - self.mu)
94
               self.test['x'] = self.theta * (self.test['x'] - self.mu)
95
               for k in range(self.k_fold):
                   self.dev['x'][k] = self.theta * (self.dev['x'][k] - self.mu)
97
           else:
99
               z_scale = self.theta * (z - self.mu)
100
               return z_scale
101
```

5 Regularization

Suppose we're training an L-layer neural network with dataset $\{(x_j, y_j)\} \subset \mathbb{R}^{m_0} \times \mathbb{R}^{m_L}$ with N examples. Assuming a generic loss function $\mathbb{L} : \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$, then we have our cost function \mathbb{J} defined on our one-parameter families of parameters W and b given by

$$\mathbb{J}(W,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(\hat{y}_j, y_j).$$

If our model suffers from overfitting the training set, it's reasonable to impose constraints on the parameters W and/or b. That is, define the function

$$R(W) = \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_F^2,$$

for some $\lambda > 0$, where $\|\cdot\|_F$ represents the Frobenius norm on matrices, and we define the regularized cost function \mathbb{J}^R given by

$$\mathbb{J}^{R}(W,b) = \mathbb{J}(W,b) + R(W)
= \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(\hat{y}_{j}, y_{j}) + \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2}.$$

Adding such an R(W) to our cost function is known as L^2 -regularization. We note that by linearity we have the following equalities amongst gradients:

$$\frac{\partial \mathbb{J}^R}{\partial b^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial b^{[\ell]}}$$

and

$$\frac{\partial \mathbb{J}^R}{\partial W^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial W^{[\ell]}} + \frac{\lambda}{N} W^{[\ell]}.$$

The idea behind regularization is that we're now minimizing

$$\min_{W,b} \mathbb{J}^R(W,b) = \min_{W,b} \left\{ \mathbb{J}(W,b) + R(W) \right\},\,$$

and so for suitably chosen $\lambda > 0$, it forces $||W^{[\ell]}||_F$ to be small, along with minimizing the cost \mathbb{J} . This balancing-act of minimizing the two functions simultaneously helps with overfitting the data.

A typical usage of regularization would be similar to the following outline:

- i. Partition our dataset $\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}$.
- ii. Give a set Λ of potential regularization parameters.
- iii. For each $\lambda \in \Lambda$, we first train on X, that is, we obtain

$$(W, b) = \arg\min_{W, b} \mathbb{J}^{R}(W, b)$$

$$= \arg\min_{W, b} \left\{ \frac{1}{n_{X}} \sum_{(x, y) \in \mathbb{X}} \mathbb{L}(\hat{y}, y) + \frac{\lambda}{2n_{X}} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2} \right\}$$

which dependent on λ .

- iv. Then using the aforementioned $(W, b) = (W, b)(\lambda)$, we evaluate $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$.
- v. After finding $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$ for each $\lambda \in \Lambda$, we choose our desired λ and hence our desired parameters W and b.
- vi. We evaluate our model on \mathcal{T} to determine the overall accuracy.

5.1 Python Implementation

```
1 import numpy as np
з import mlLib.utils as utils
4 import mlLib.npActivators as npActivators
6 def forward_propagation(x, params, activators):
      Parameters
      x : array_like
10
          x.shape = (layers[0] n)
11
      params : Dict[Dict]
12
          params['w'][1] : array_like
13
               wl.shape = (layers[1], layers[1-1])
14
          params['b'][1] : array_like
15
               bl.shape = (layers[l], 1)
16
      activators : List[str]
17
          activators[1] = activation function of layer 1+1
18
      Returns
19
20
      cache : Dict[Dict]
```

```
cache['z'][1] : array_like
22
               z[1].shape = (layers[1], n)
23
           cache['a'][1] : array_like
24
               a[1].shape = (layers[1], n)
25
26
      # Retrieve parameters
27
      w = params['w']
      b = params['b']
29
      L = len(w) # Number of layers excluding output layer
      n = x.shape[1]
31
      # Set empty caches
      a = \{ \}
33
      z = \{\}
34
      # Initialize a
35
      a[0] = x
36
      for l in range(1, L + 1):
37
           z[1], a[1] = utils.linear_activation_forward(a[1 - 1], w[1], b[1], activator
38
39
      cache = \{'a' : a, 'z' : z\}
40
      return cache
41
42
43 def compute_cost(y, params, cache, lambda_=0.0):
44
      Parameters
45
      -----
46
      y : array_like
47
           y.shape = (layers[-1], n)
48
      params : Dict[Dict[array_like]]
           params['w'][1] : array_like
50
               w[1].shape = (layers[1], layers[1-1])
51
           params['b'][1] : array_like
52
               b[1].shape = (layers[1], 1)
53
      cache : Dict[Dict[array_like]]
54
           cache['z'][1] : array_like
55
               z[1].shape = (layers[1], n)
56
           cache['a'][1] : array_like
57
               a[1].shape = (layers[1], n)
      lambda_ : float
59
           Default: 0.0
60
61
      Returns
62
       _____
63
      cost : float
64
           The cost evaluated at y and aL
65
      ## Retrieve parameters
67
      n = y.shape[1]
```

```
a = cache['a']
69
       w = params['w']
70
       L = len(a)
71
       aL = a[L - 1]
72
73
       ## Regularization term
74
       R = 0
       for l in range(1, L):
76
           R += np.sum(w[1] * w[1])
77
       R *= (lambda_ / (2 * n))
78
       ## Unregularized cost
80
       J = (-1 / n) * (np.sum(y * np.log(aL)) + np.sum((1 - y) * np.log(1 - aL)))
81
82
       ## Total Cost
83
       cost = J + R
84
       cost = float(np.squeeze(cost))
85
       return cost
86
87
88 def backward_propagation(x, y, params, cache, activators, lambda_=0.0):
89
90
       Parameters
       _____
91
       x : array_like
92
           x.shape = (layers[0], n)
93
       y : array_like
           y.shape = (layers[-1], n)
95
       params : Dict[Dict[array_like]]
           params['w'][1] : array_like
97
                w[1].shape = (layers[1], layers[1-1])
98
           params['b'][1] : array_like
99
                b[1].shape = (layers[1], 1)
100
       cache : Dict[Dict[array_like]]
101
           cache['a'][1] : array_like
102
                a[1].shape = (layers[1], n)
103
           cache['z'][1] : array_like
104
                z[1].shape = (layers[1], n)
105
       activators : List[str]
106
           activators[l] = activation function of layer 1+1
107
       lambda_ : float
108
           Default: 0.0
109
110
111
       Returns
       -----
112
       grads : Dict[Dict]
113
           grads['dw'][l] : array_like
114
                dw[1].shape = w[1].shape
115
```

```
grads['db'][1] : array_like
116
                db[1].shape = b[1].shape
117
118
       ## Retrieve parameters
119
       a = cache['a']
120
       z = cache['z']
121
       w = params['w']
       n = x.shape[1]
123
       L = len(z)
124
125
       ## Compute deltas
126
       delta = {}
127
       delta[L] = a[L] - y
128
       for 1 in reversed(range(1, L)):
129
            delta[1] = utils.linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], a_0
130
131
       ## Compute gradients
132
       dw = \{\}
133
       db = \{\}
134
       for l in range(1, L + 1):
135
            db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
136
            assert(db[1].shape == (w[1].shape[0], 1))
137
            dw[1] = (1 / n) * (delta[1] @ a[1 - 1].T + lambda_ * w[1])
138
            assert(dw[1].shape == w[1].shape)
139
       grads ={ 'dw' : dw, 'db' : db}
140
       return grads
141
142
143
144 def model(x, y,
              hidden_layer_sizes,
145
              activators,
146
              lambda_=0.0,
147
              num_iters=1e4,
148
              print_cost=False):
149
150
       Parameters
151
       -----
152
       x : array_like
153
            x.shape = (layers[0], n)
154
       y : array_like
155
            y.shape = (layers[-1], n)
156
       hidden_layer_sizes : List[int]
157
            The number nodes layer 1 = hidden_layer_sizes[1-1]
158
       activators : List[str]
159
            activators[1] = activation function of layer 1+1
160
       lambda_ : float
161
            The regularization parameter
162
```

```
Default: 0.0
163
       num iters : int
164
           Number of iterations with which our model performs gradient descent
165
           Default: 10000
166
       print_cost : Boolean
167
           If True, print the cost every 1000 iterations
168
           Default: False
170
       Returns
171
       _____
172
       params : Dict[Dict]
173
           params['w'][1] : array_like
174
               w[1]. shape = (layers[1], layers[1-1])
175
           params['b'][1] : array_like
176
                b[1].shape = (layers[1], 1)
177
       cost : float
178
           The final cost value for the optimized parameters returned
179
180
       ## Set dimensions and Initialize parameters
181
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
182
       params = utils.initialize_parameters_random(layers)
183
       # main gradient descent loop
185
       for i in range(num_iters):
186
           cache = forward_propagation(x, params, activators)
187
           cost = compute_cost(y, params, cache, lambda_)
           grads = backward_propagation(x, y, params, cache, activators, lambda_)
189
           params = utils.update_parameters(params, grads)
190
191
           if print_cost and i % 1000 == 0:
192
                print(f'Cost_after_iteration_{i}:_{cost}')
193
194
       return params, cost
195
```

5.2 (Inverted) Dropout Regularization

For illustrative purposes, suppose we have a 3-layer neural network of the following form:

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\varphi^{[2]}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_2} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_2} \end{bmatrix}}_{\varphi^{[3]}} \xrightarrow{\text{output}},$$

Let Q_0, Q_1, Q_2 denote the collection of all nodes in Layers 0, 1, 2, respectively. Let $p_0, p_1, p_2 \in [0, 1]$, and define a probability distribution \mathbb{P}_{ℓ} on Q_{ℓ} by

$$\mathbb{P}_{\ell}(q=1) = p_{\ell}, \qquad \mathbb{P}_{\ell}(q=0) = 1 - p_{\ell},$$

where q=1 represents the node existing in layer- ℓ , and q=0 represents the dropping of the node from layer- ℓ . That is we're effectively reducing the number of nodes throughout the network, thus simplifying the network and reducing the amount of influence of any single feature or node on the entire model. That is, we would implement a methodology similar to the following:

i. For each layer ℓ and each training example x_j define the "dropout vector" $D^{[\ell]}{}_j$ by

$$D^{[\ell]}{}_j = \begin{bmatrix} d^1_j \\ \vdots \\ d^{m_\ell}_j \end{bmatrix},$$

where

$$d_j^i = \begin{cases} 1 & \text{if } \mathbb{P}(q^i) \le p_\ell \\ 0 & \text{if } \mathbb{P}(q^i) > p_\ell \end{cases}.$$

ii. During forward propagation, we redefine

$$a^{[\ell]} \mapsto \frac{a^{[\ell]} \odot D^{[\ell]}}{p_\ell}.$$

iii. During backward propagation, we define

$$\delta^{[\ell]} \mapsto \frac{\delta^{[\ell]} \odot D^{[\ell]}}{p_\ell}.$$

iv. Then perform gradient descent, etc with these new values.

5.2.1 Python Implementation

We see here the use of inverted dropout regularization in a general neural network.

```
1 import numpy as np
3 import mlLib.utils as utils
5 def dropout_matrices(layers, num_examples, keep_prob):
      Parameters
      _____
      layers : List[int]
          layers[1] = number of nodes in layer 1
10
      num_examples : int
11
          The number of training examples
12
      keep_prob : List[float]
13
          keep_prob[1] = The probabilty of keeping a node in layer 1
14
15
      Returns
16
      _____
17
      D : Dict[array_like]
18
          D[1].shape = (layers[1], num_ex)
19
          D[1] = a Boolean array
20
21
      np.random.seed(1)
22
      L = len(layers)
23
      D = \{\}
24
      for l in range(L - 1):
25
          D[1] = np.random.rand(layers[1], num_examples)
          D[1] = (D[1] < keep_prob[1]).astype(int)
27
          assert(D[1].shape == (layers[1], num_examples))
      return D
29
30
31
32
33 def forward_propagation(x, params, activators, D, keep_prob):
34
      Parameters
35
      _____
36
      x : array_like
37
          x.shape = (layers[0] n)
38
      params : Dict[Dict]
39
          params['w'][1] : array_like
40
               wl.shape = (layers[1], layers[1-1])
41
          params['b'][1] : array_like
42
               bl.shape = (layers[l], 1)
43
      activators : List[str]
44
          activators[1] = activation function of layer 1+1
      D : Dict[array_like]
46
          D[1].shape = (layer_dims[1], num_ex)
```

```
D[1] = a Boolean array
48
      keep_prob : List[float]
49
           keep_prob[1] = The probabilty of keeping a node in layer 1
50
51
      Returns
52
       _____
53
      cache : Dict[Dict]
           cache['z'][1] : array_like
55
               z[1].shape = (layers[1], n)
           cache['a'][l] : array_like
57
               a[1].shape = (layers[1], n)
59
      # Retrieve parameters
60
      w = params['w']
61
      b = params['b']
62
      L = len(w) # Number of layers including input layer
63
64
      n = x.shape[1]
      # Set empty caches
66
      a = \{\}
67
      z = \{\}
68
      # Dropout on layer 0
      a[0] = x
70
      a[0] = a[0] * D[0]
71
      a[0] /= keep_prob[0]
72
      # Loop through hidden layers
      for l in range(1, L):
74
           zl, al = utils.linear_activation_forward(a[1 - 1], w[1], b[1], activators[1]
75
           al = al * D[1]
76
           al /= keep_prob[1]
77
           z[1] = z1
78
           a[1] = a1
79
80
      # Output layer
      z[L], a[L] = utils.linear_activation_forward(a[L - 1], w[L], b[L], activators[-
82
83
      cache = \{'z' : z, 'a' : a\}
84
85
      return cache
86
87 def backward_propagation(x, y, params, cache, activators, D, keep_prob):
88
      Parameters
89
90
      x : array_like
91
           x.shape = (layers[0], n)
      y : array_like
93
           y.shape = (layers[-1], n)
```

```
params : Dict
 95
                                params['w'][1] : array_like
 96
                                           w[1].shape = (layers[1], layers[1-1])
 97
                                params['b'][1] : array_like
 98
                                           b[1].shape = (layers[1], 1)
 99
                    cache : Dict
100
                                cache['a'][1] : array_like
                                            a[1].shape = (layers[1], n)
102
                                cache['z'][1] : array_like
103
                                            z[1].shape = (layers[1], n)
104
                    activators : List[str]
105
                                activators[1] = activation function of layer 1+1
106
                    D : Dict[array_like]
107
                               D[1].shape = (layer[1], num_ex)
108
                                D[1] = a Boolean array
109
                    keep_prob : List[float]
110
                                keep_prob[1] = The probabilty of keeping a node in layer 1
111
112
                    Returns
113
114
                    grads : Dict[Dict]
115
                                grads['dw'][1] : array_like
116
                                            dw[1].shape = w[1].shape
117
                                grads['db'][1] : array_like
118
                                            db[1].shape = b[1].shape
119
120
                    ## Retrieve parameters
121
                    a = cache['a']
122
                    z = cache['z']
123
                    w = params['w']
124
                    n = x.shape[1]
125
                    L = len(z)
126
127
                    ## Compute deltas
128
                    delta = \{\}
129
                    delta[L] = a[L] - y
130
                    for 1 in reversed(range(1, L)):
131
                                deltal = utils.linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activation_backward(delta[1 + 1], activation_backward(delta[1 + 1], z[1], w[1 + 1], activation_backward(delta[1 + 1], z[1], w[1 + 1], w[1 + 1]
132
                                deltal = deltal * D[1]
133
                                deltal /= keep_prob[1]
134
                                delta[1] = deltal
135
136
                    ## Compute gradients
137
                    dw = \{\}
138
                    db = \{\}
139
140
                    for l in range(1, L + 1):
141
```

```
db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
142
           assert(db[1].shape == (w[1].shape[0], 1))
143
           dw[1] = (1 / n) * delta[1] @ a[1 - 1].T
144
           assert(dw[1].shape == w[1].shape)
145
       grads = {'dw' : dw, 'db' : db}
146
       return grads
147
149 def model(x, y,
                hidden_sizes,
150
                activators,
151
                keep\_prob = 1.0,
152
                num_iters=2500,
153
                learning_rate=0.1,
154
                print_cost=False):
155
156
       Parameters
157
       _____
158
       Parameters
159
       _____
160
       x : array_like
161
           x.shape = (layers[0], n)
162
       y : array_like
163
           y.shape = (layers[-1], n)
164
       hidden_sizes : List[int]
165
           The number nodes layer 1 = hidden_sizes[1-1]
166
       activators : List[function]
167
           activators[1] = activation function of layer 1+1
168
       keep_prob : List[float] | float
169
           keep_prob[1] = The probabilty of keeping a node in layer 1
170
           keep_prob = The same probability for all input and hidden layers
171
       num_iters : int
172
           Number of iterations with which our model performs gradient descent
173
       learning_rate : float
174
           The learning rate for gradient descent
175
       print_cost : Boolean
176
           If True, print the cost every 1000 iterations
177
178
       Returns
179
       _____
180
       params : Dict[Dict]
181
           params['w'][1] : array_like
182
                w[1].shape = (layers[1], layers[1-1])
183
184
           params['b'][1] : array_like
                b[1].shape = (layers[1], 1)
185
       cost : float
           The final cost value for the optimized parameters returned
187
188
```

```
## Retrieve parameters
189
       n, layers = utils.dim_retrieval(x, y, hidden_sizes)
190
       params = utils.initialize_parameters_random(layers)
191
192
       ## Expand keep_prob to a list if it's a single float
193
       if isinstance(keep_prob, float):
194
           keep_prob = [keep_prob] * (len(layers) - 1)
       ## Main gradient descent loop
196
       for i in range(num_iters):
197
           D = dropout_matrices(layers, n, keep_prob)
198
           cache = forward_propagation(x, params, activators, D, keep_prob)
199
           cost = utils.compute_cost(y, cache)
200
           grads = backward_propagation(x, y, params, cache, activators, D, keep_prob)
201
           params = utils.update_parameters(params, grads, learning_rate)
202
203
           if print_cost and i % 1000 == 0:
204
               print(f'Cost_after_iteration_{i}:_{cost}')
205
206
       return params, cost
207
```

5.3 Data Augmentation

This section requires work.

There are few other regularization techniques. One of the simplest techniques is data augmentation, i.e., transforming data you currently have into related but different example to gather a larger dataset (e.g., flipping or distorting images to obtain other relevant images).

5.4 Early Stopping

This section requires work.

Another technique is stop the training early (fewer iterations) before the model develops higher variance.

6 Gradients and Numerical Remarks

This section requires work. See "He Initialization" and "Xavier Initialization"

We first remark, that by our use of gradient descent, there are few outlier cases which may occur. Namely our gradients may explode or vanish. One way to attempt to fix such a situation to impose a normalization on our weights depending on our activation functions.

• If $g^{[\ell]} = \text{ReLU}$, then we wish to impose the requirement that

$$\mathbb{E}[(W^{[\ell]2})] = \frac{1}{m_{\ell-1}}.$$

6.1 Numerical Gradient Checking

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function. Then, we recall the definition of the partial derivative

$$\frac{\partial f}{\partial x^j} = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$
$$= \lim_{\epsilon \to 0^+} \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon},$$

and so for sufficiently small $\epsilon > 0$, we have the approximation

$$\frac{\partial f}{\partial x^j} \approx \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon}.$$

Define the approximation function $F: \mathbb{R}^n \times (0,1) \to \mathbb{R}^n$ by

$$F(x,\epsilon) = \frac{1}{2\epsilon} \begin{bmatrix} f(x+\epsilon e_1) - f(x-\epsilon e_1) \\ \vdots \\ f(x+\epsilon e_n) - f(x-\epsilon e_n) \end{bmatrix}.$$

Then we may check that our gradient computation $\nabla f(x)$ is correct by checking that

$$\frac{\|F(x,\epsilon) - \nabla f(x)\|_2}{\|F(x,\epsilon)\|_2 + \|\nabla f(x)\|_2} \approx 0.$$

6.2 Python Implementation

```
_{1} ## f(x) = x_1*x_2*...*x_n
2 def fctn(x):
      n = x.shape[0]
      y = np.prod(x)
      grad = np.zeros((n, 1))
      for i in range(n):
           omit = 1 - np.eye(1, n, i).T
           omit = np.array(omit, dtype=bool)
           grad[i, 0] = np.prod(x, where=omit)
9
      return y, grad
10
11
12 def gradient_check(grad, f, x, epsilon=1e-3):
13
      Parameters
14
      -----
15
      grad : array_like
16
           grad.shape= (n, 1)
17
      f : function
18
           The function to check.
      x : array_like
20
           x.shape = (n, 1)
21
      epsilon : float
22
           Default 0.001
      Returns
24
      error : float
25
26
      11 11 11
27
      n = x.shape[0]
28
29
      y_diffs = []
      for i in range(n):
30
           e = np.eye(1, n, i).T
31
           x_plus = x + epsilon * e
32
           x_minus = x - epsilon * e
33
           y_plus, _ = f(x_plus)
           y_{minus}, = f(x_{minus})
35
           y_diffs.append(y_plus - y_minus)
36
      y_diffs = np.array(y_diffs).reshape(n, 1)
37
      y_diffs = y_diffs / (2 * epsilon)
39
      error = (np.linalg.norm(y_diffs - grad)
                   / (np.linalg.norm(y_diffs) + np.linalg.norm(grad)))
41
      return error
```

7 Gradient Descent

So far in our implementation of gradient descent, we use the entire training set for every iteration of gradient descent. This method is called *batch gradient descent*. Gradient descent has many downfalls. Indeed, since we're typically working in a *very* high dimensional space, the majority of the critical points for our cost function are actually saddle points (these can be thought of as plateaus of the loss-manifold). These pitfalls (amongst others) are what we wish to overcome. To this end, we first consider a modification of batch gradient descent by partitioning the training set into smaller "mini-batches" and using each mini-batch recursively throughout the iterative process.

That is, suppose we have training set \mathbb{X} with $|\mathbb{X}| = n$, where n is very large (e.g., n = 5000000). We fix a batch size b (e.g., b = 5000), and partition \mathbb{X} into (e.g., 1000 distinct) mini-batches

$$\left\{ \mathbb{X}^k : 1 \le k \le \left\lceil \frac{n}{b} \right\rceil \right\}, \qquad \mathbb{X} = \bigcup_{k=1}^{\left\lceil \frac{n}{b} \right\rceil} \mathbb{X}^k,$$

where $\lceil \frac{n}{b} \rceil$ denote the ceiling function. If we shuffle \mathbb{X} and partition during each epoch (i.e., each iteration) so our loss-manifold changes during each batch iteration within each epoch, we can then perform gradient descent in the following manner:

- 1. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Perform forward propagation on \mathbb{X}^k :

$$\begin{split} a^{[0]} &= x(\mathbb{X}^k) \\ z^{[\ell]} &= W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} \\ a^{[\ell]} &= g^{[\ell]} (z^{[\ell]}) \end{split}$$

ii. Evaluate the cost \mathbb{J}^k on \mathbb{X}^k :

$$\mathbb{J}^{k}(W,b) = \frac{1}{|\mathbb{X}^{k}|} \sum_{(x,y) \in \mathbb{X}^{k}} \mathbb{L}(\hat{y},y) + \frac{\lambda}{2|\mathbb{X}^{k}|} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2}.$$

iii. Perform backward propagation on \mathbb{X}^k :

$$\frac{\partial \mathbb{J}^k}{\partial W^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \delta^{[\ell]} a^{[\ell-1]T} + \frac{\lambda}{|\mathbb{X}^k|} W^{[\ell]}$$
$$\frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \sum_{\rho \sim \mathbb{X}^k} \delta^{[\ell]}{}_{\rho}$$

iv. Perform gradient descent:

$$\begin{split} W^{[\ell]} &:= W^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial W^{[\ell]}} \\ b^{[\ell]} &:= b^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} \end{split}$$

We make several remarks about mini-batch gradient descent:

- Batch gradient descent doesn't always decrease (e.g., our learning rate is too large). Mini-batch may oscillate rapidly, but the general direction should move towards a minimum.
- If b = n, then we fully recover batch gradient descent. This is typically too computationally expensive since we use the full training set for each iteration.
- If b = 1, then we recover stochastic gradient descent, i.e., we train our model on a different example during each iteration. We lose all the speed related to vectorization, since we're dealing with single examples during each iteration.
- Choose 1 < b < n is typically always the best solution, since it deals with both of the aforementioned problems.
- \bullet Due to the nature of a computer's internal structure, it's typically better to choose a batch size b for the form

$$b = 2^{p}$$
.

for some $p \in \{6, 7, 8, 9, 10\}$ (usually p < 10).

 \bullet Choose a batch size b that ensures your computer's CPU/GPU can hold a dataset of that size.

7.1 Weighted Averages

Suppose $x_t \in \mathbb{R}^m$ is some collection of data indexed by t which we may consider a time-variable, that is, after each successive unit of time (say for example, each day), our collection adds a new data point. That is, the collection

$$\{x_t \in \mathbb{R}^m : 1 \le t \le T\}$$

has variable T.

Then if X is the random vector associated to x, our usual mean μ is given by

$$\mu(T) := \mathbb{E}[X] = \frac{1}{T} \sum_{t=1}^{T} x_t.$$

Since our collection of data is growing and evolving over time, it's reasonable in many applications to have the most recent data points affect a model more than older data points. That is, we wish to impose a "weight" on more recent data points.

One way (and likely the most trivial) to achieve such a weighing is to have only the most recent k examples affect our model. That is, for fixed $k \in \mathbb{N}$, and $t \geq k$, define the vector $\hat{x}_{t+1} \in \mathbb{R}^m$ by

$$\hat{x}_{t+1} = \frac{1}{k} \sum_{j=t-mk+1}^{t} x_j.$$

Then \hat{x}_{t+1} represents the mean of the most recent k-examples. This may be interpreted as the "predicted-value" for x_{t+1} . This predictive model is known as a *simple moving average*, or SMA.

The simple moving average satisfies our weight requirement of focusing more on the most recent data, however, older data, though being less relevant, should still affect our model, but in a reduced form. The simple model does not satisfy this more refined requirement. Let's modify the simple model as follows: Fix $\beta_1 \in [0,1)$ and we initialize a $V_0 = 0 \in \mathbb{R}^m$, and define recursively the vector $V_t \in \mathbb{R}^m$ given by

$$V_t = \beta_1 V_{t-1} + (1 - \beta_1) x_t.$$

We claim that V_t can be interpreted as the next predicted value \hat{x}_{t+1} . Indeed,

expanding our recursive definition

$$V_{t} = \beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}(\beta_{1}V_{t-2} + (1 - \beta_{1})x_{t-1}) + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}^{2}V_{t-2} + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{2}(\beta_{1}V_{t-3} + (1 - \beta_{1})x_{t-2}) + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{3}V_{t-3} + (1 - \beta_{1})(\beta_{1}^{2}x_{t-2} + \beta_{1}x_{t-1} + x_{t})$$

$$\vdots$$

$$= \beta_{t}^{t}V_{0} + (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}$$

$$= (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}.$$

Moreover, if we define a probability distribution \mathbb{P} as given by

$$\mathbb{P}(X = x_j) = (1 - \beta_1)\beta_1^j,$$

then we immediately see that V_t is the weighted-average over the last t-days, and hence may be interpreted as the predicted-value \hat{x}_{t+1} as desired. Finally, since

$$1 - \beta_1 = \frac{1}{\frac{1}{1 - \beta_1}},$$

we may interpret $\frac{1}{1-\beta_1}$ as the size of the relevant sampling, i.e., V_t is the average of x over the previous $\frac{1}{1-\beta_1}$ days (assuming our time-units are measured in days). This predictive model is known as an *exponentially moving* average, or EMA.

Remark 7.1. We note that since we initialize our EMA with $V_0 = 0$, that our predictive model is very bad for small t. This usually is irrelevant for many models, but if we need to correct for bias, we may make the modification of

$$V_t = \frac{\beta_1 V_{t-1} + (1 - \beta_1) x_t}{1 - \beta_1^t}.$$

Indeed, since $\beta_1 \in [0,1)$, we note that

$$\frac{1}{1-\beta_1} = \sum_{j=0}^{\infty} \beta_1^j$$

$$= \sum_{j=t}^{\infty} \beta_t^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \beta_1^t \sum_{j=0}^{\infty} \beta_1^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \frac{\beta_1^t}{1-\beta_1} + \sum_{j=0}^{t-1} \beta_1^j,$$

and so

$$\sum_{j=0}^{t-1} \beta_1^j = \frac{1 - \beta_1^t}{1 - \beta_1}.$$

We then see that

$$V_{t} = \frac{\beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}}{1 - \beta_{1}^{t}}$$

$$= \frac{(1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{1 - \beta_{1}^{t}}$$

$$= \frac{\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{\sum_{j=0}^{t-1}\beta_{1}^{j}},$$

which is the explicit definition of a weighted-average.

7.2 Gradient Descent with Momentum

Gradient descent has an issue with potentially plateauing during areas with a flat gradient, or bouncing around drastically before arriving at a minimum. One reason for this is that each iterative step only depends on the previous value of the gradient (or rather, the most recently updated parameter). The algorithm doesn't see larger trends, and so this leads to give our algorithm more history of the movements. We do this by using EMA.

We first recall our gradient descent algorithm:

1. We initialize $W^{\{0\}}$ and $b^{\{0\}}$.

- 2. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$b^{\{t\}} = b^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}^{\{t\}}}{\partial b}^{\{t\}}$$

Using this formulation of gradient descent, we insert EMA applied to the sequences of gradients depending on the iteration t := i + k. That is, we have the following algorithm:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$. Fix a momentum hyper-parameter $\beta_1 \in [0, 1)$.
- 2. For $0 \le i < \mathsf{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_{W}^{\{t\}} = \beta_{1} V_{W}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$V_{b}^{\{t\}} = \beta_{1} V_{b}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}$$

v. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha V_W^{\{t\}}$$

$$b^{\{t\}} = b^{\{t-1\}} - \alpha V_b^{\{t\}}$$

7.3 Root Mean Squared Propagation (RMSProp)

One of the main drawbacks to gradient descent with momentum is the uniformity of the modification regardless of the direction. That is, suppose our desired minimum is in the \vec{b} direction, but the gradient $\partial_b \mathbb{J}$ is small while the gradient $\partial_W \mathbb{J}$ is large. As a result, our steps will oscillate wildly in the \vec{w} direction, while moving very slowing in the \vec{b} direction to our desired minimum. This as a whole can be very computationally slow, and is undesired.

The main idea for fixing these oscillatory issues is have a variable learning rate α which also depends on the direction. That is, if $\partial_W \mathbb{J}$ is large, and not in our desired direction of motion, we would like our update for W to be small, and vice-versa if $\partial_b \mathbb{J}$ is small. Moreover, we wish to exaggerate the magnitudes of these vectors so we ensure our algorithm works efficiently. That is, we relate some vector S via

$$S \sim \frac{\partial \mathbb{J}^2}{\partial W},$$

where we're taking that Hadamard-square (i.e., component-wise product with itself). Then we perform step via

$$W = W - \alpha \frac{1}{\sqrt{S}} \odot \frac{\partial \mathbb{J}}{\partial W},$$

where where taking the Hadamard-root. Note that this root is necessary for our update to make sense (consider the units involved in such an equation), but it does introduce the potential to divide by zero (which we'll fix by a small . Moreover, we would like use the history of gradients as in EMA to further our refinement of the descent algorithm. To this end, we have the following *RMSProp algorithm*:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix a momentum $\beta_2 \in [0,1)$ and let $\epsilon > 0$ be sufficiently small ($\epsilon = 10^{-8}$ is a good starting point).
- 2. For $0 \le i < \mathsf{num_iter}$:

a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{X^k\}$

b. For $1 \le k \le B$:

- i. Apply forward propagation on \mathbb{X}^k .
- ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
- iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}\right)^2$$
$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}\right)^2$$

v. Update parameters via

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}}{\sqrt{S_W^{\{t\}} + \epsilon}} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}}{\sqrt{S_b^{\{t\}} + \epsilon}} \end{split}$$

7.4 Adaptive Moment Estimation: The Adam Algorithm

We first note that with the momentum algorithm utilizing the EMA as it does, that it is an algorithm of the first moment (i.e., the mean of the gradients). Similarly, with RMSProp utilizing the square of the gradient as it does, we say it is an algorithm of the second moment (i.e., the uncentered variance of the gradients). Our goal it utilize both gradient descent with momentum and RMSProp simultaneously to optimize our parameters. This combination of algorithms is called the *Adam algorithm* and is implemented as follows:

1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$ and $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix our constants of momenta $\beta_1, \beta_2 \in [0, 1)$ and let $\epsilon > 0$ be sufficiently small.

2. For $0 \le i < \mathsf{num_iters}$:

a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$

b. For $1 \le k \le B$:

i. Apply forward propagation on \mathbb{X}^k .

ii. Compute the cost \mathbb{J} on \mathbb{X}^k .

iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_{W}^{\{t\}} = \beta_{1} V_{W}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}},$$

$$V_{b}^{\{t\}} = \beta_{1} V_{b}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}},$$

and define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}\right)^2,$$

$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}\right)^2.$$

v. Utilize bias correction via:

$$\hat{V}_{W}^{\{t\}} = \frac{V_{W}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{V}_{b}^{\{t\}} = \frac{V_{b}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{S}_{W}^{\{t\}} = \frac{S_{W}^{\{t\}}}{1 - \beta_{2}^{t}}$$

$$\hat{S}_{b}^{\{t\}} = \frac{S_{b}^{\{t\}}}{1 - \beta_{5}^{t}}$$

vi. Update the parameters:

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\hat{V}_W^{\ \{t\}}}{\sqrt{\hat{S}_W^{\ \{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\hat{V}_b^{\ \{t\}}}{\sqrt{\hat{S}_b^{\ \{t\}}} + \epsilon} \end{split}$$

We note that though we may still need to tune the hyper-parameter α , the hyper-parameters β_1, β_2 and ϵ typically work quite well with default values of

$$\beta_1 = 0.9, \qquad \beta_2 = 0.999, \qquad \epsilon = 10^{-8}.$$

7.5 Learning Rate Decay

Finally, one further method we may utilize in our optimization problem, is the idea of slowly reducing our learning rate α . That is, if i is our epoch iteration, and $\eta > 0$ is a fixed decay rate, we can define new learning rates in many ways. That is, for $\alpha = \alpha(i)$ we can define

$$\alpha(i) = \frac{1}{1 + \eta i} \alpha_0,$$

$$\alpha(i) = \alpha_0 \eta^i,$$

•

$$\alpha(i) = \frac{\eta}{\sqrt{i}}\alpha_0.$$

One could also implement a "manual decay", but this should only be used under ideal circumstances.

7.6 Python Implementation

```
import copy

import numpy as np
from sklearn.utils import shuffle
```

```
6 import mlLib.utils as utils
8 def get_batches(x, y, b):
9
      Parameters
10
11
      x : array_like
12
           x.shape = (m, n)
13
      y : array_like
           y.shape = (k, n)
15
      b : int
16
17
      Returns
18
       -----
19
      batches : List[Dict]
20
           batches[i]['x'] : array_like
21
               x.shape = (m, b) # except last batch
               y.shape = (k, b) # except last batch
23
24
      ,, ,, ,,
25
      m, n = x.shape
26
      ## Shuffle the data
27
      x, y = \text{shuffle}(x.T, y.T) \# \text{Only shuffles rows, so transpose is needed}
28
      x = x.T
29
      y = y.T
30
31
      B = int(np.ceil(n / b))
32
      batches = []
      for i in range(B):
34
           x_{temp} = x[:,(b * i):(b * (i + 1))]
35
           y_{temp} = y[:,(b * i):(b * (i + 1))]
36
           batches.append({'x' : x_temp, 'y' : y_temp})
37
      # Slicing automatically ends at the end of
38
      # the list if the stop is outside the index
39
      return batches
40
41
42 def initialize_momenta(layers):
43
      Parameters
44
       -----
45
      layers : List[int]
46
           layers[1] = # nodes in layer 1
47
48
      Returns
       -----
49
      v : Dict[Dict[array_like]]
      s : Dict[Dict[array_like]]
51
```

```
vw = \{\}
53
      vb = \{\}
54
      sw = \{\}
55
      sb = \{\}
56
      for l in range(1, len(layers)):
57
           vw[1] = np.zeros((layers[1], layers[1 - 1]))
58
           sw[1] = np.zeros((layers[1], layers[1 - 1]))
           vb[1] = np.zeros((layers[1], 1))
60
           sb[1] = np.zeros((layers[1], 1))
61
62
      v = \{'w' : vw, 'b' : vb\}
63
      s = \{'w' : sw, 'b' : sb\}
64
65
      return v, s
66
67
68 def learning_rate_decay(epoch, learning_rate=0.01, decay_rate=0.0):
69
      Parameters
70
       _____
71
      eposh : int
72
      learning_rate : float
73
           Default: 0.01
      decay_rate : float
75
           Default: 0.0 - Returns a constant learning_rate
76
77
      Returns
       _____
79
      learning_rate : float
80
81
      learning_rate = (1 / (1 + epoch * decay_rate)) * learning_rate
82
      return learning_rate
83
84
85 def corrected_momentum(v, grads, update_iter, beta1=0.0):
86
      Parameters
87
88
      v : Dict[Dict[array_like]]
89
           v['w'][1].shape = w[1].shape
90
           v['b'][1].shape = b[1].shape
91
      grads : Dict[Dict]
92
           grads['w'][l] : array_like
93
               dw[1].shape = w[1].shape
94
           grads['b'][l] : array_like
95
               db[1].shape = b[1].shape
96
      update_iter : int
      beta1 : float
98
           Default: 0.0 - Returns grads
```

```
Usual: 0.9
100
101
       Returns
102
       _____
103
       v : Dict[Dict[array_like]]
104
            v['w'][1].shape = dw[1].shape
105
            v['b'][1].shape = db[1].shape
106
107
       ## Retrieve velocities and gradients
108
       vw = v['w']
109
       vb = v['b']
110
       dw = grads['w']
111
       db = grads['b']
112
       L = len(dw)
113
114
       for l in range(1, L + 1):
115
            vw[1] = beta1 * vw[1] + (1 - beta1) * dw[1]
116
            vw[l] /= (1 - beta1 ** update_iter)
117
            assert(vw[1].shape == dw[1].shape)
118
            vb[1] = beta1 * vb[1] + (1 - beta1) * db[1]
119
            vb[1] /= (1 - beta1 ** update_iter)
120
            assert(vb[1].shape == db[1].shape)
121
122
       v = \{'w' : vw, 'b' : vb\}
123
       return v
124
125
126 def corrected_rmsprop(s, grads, update_iter, beta2=0.999):
127
       Parameters
128
       _____
129
       s : Dict[Dict[array_like]]
130
            s['w'][1]. shape = w[1]. shape
131
           s['b'][1].shape = b[1].shape
132
       grads : Dict[Dict]
133
            grads['w'][1] : array_like
134
                dw[1].shape = w[1].shape
135
            grads['b'][l] : array_like
136
137
                db[1].shape = b[1].shape
       update_iter : int
138
       beta2 : float
139
           Default: 0.999
140
141
142
       Returns
       -----
143
       s : Dict[Dict[array_like]]
            s['w'][1].shape = w[1].shape
145
            s['b'][1]. shape = b[1]. shape
146
```

```
11 11 11
147
       ## Retrieve accelerations and gradients
148
       sw = s['w']
149
       sb = s['b']
150
       dw = grads['w']
151
       db = grads['b']
152
       L = len(dw)
154
       for l in range(1, L + 1):
155
            sw[1] = beta2 * sw[1] + (1 - beta2) * (dw[1] * dw[1])
156
            sw[1] /= (1 - beta2 ** update_iter)
157
            assert(sw[1].shape == dw[1].shape)
158
            sb[1] = beta2 * sb[1] + (1 - beta2) * (db[1] * db[1])
159
            sb[1] /= (1 - beta2 ** update_iter)
160
            assert(sb[1].shape == db[1].shape)
161
162
       s = \{'w' : sw, 'b' : sb\}
163
       return s
164
165
166
167 def update_parameters_adam(params, grads, epoch, batch_iter, v, s, momenta=[1e-8, 0
168
       Parameters
169
170
       params : Dict[Dict]
171
            params['w'][1] : array_like
172
                w[l].shape = (layers[l], layers[l-1])
173
            params['b'][1] : array_like
174
                b[1].shape = (layers[1], 1)
175
       grads : Dict[Dict]
176
            grads['dw'][1] : array_like
177
                dw[1].shape = w[1].shape
178
            grads['db'][1] : array_like
179
                db[1].shape = b[1].shape
180
       epoch : int
181
       batch_iter : int
182
       learning_rate : float
183
            Default: 0.01
184
       momenta : List[float]
185
            momenta[0] = epsilon
186
                Default: 10^{-8}
187
            momenta[1] = beta_1
188
                Default: 0.9
189
            momenta[2] = beta_2
190
                Default: 0.999
191
192
       Returns
```

193

```
194
       params : Dict[Dict]
195
            params['w'][1] : array_like
196
                w[1].shape = (layers[1], layers[1-1])
197
            params['b'][1] : array_like
198
                b[1].shape = (layers[1], 1)
199
200
       update_iter = epoch + batch_iter
201
202
       ## Retrieve parameters
       w = copy.deepcopy(params['w'])
203
       b = copy.deepcopy(params['b'])
204
       L = len(w)
205
206
       ## Update velocites and accelerations
207
       v = corrected_momentum(v, grads, update_iter, momenta[1])
208
       vw = v['w']
209
210
       vb = v['b']
       s = corrected_rmsprop(s, grads, update_iter, momenta[2])
211
       sw = s['w']
212
       sb = s['b']
213
214
       ## Update learning rate
215
       learning_rate = learning_rate_decay(epoch, alpha0, decay_rate)
216
217
       ## Perform update
218
       for l in range(1, L + 1):
219
           w[1] = w[1] - learning_rate * vw[1] / (np.sqrt(sw[1]) + momenta[0])
220
           b[1] = b[1] - learning_rate * vb[1] / (np.sqrt(sb[1]) + momenta[0])
221
222
       params = \{'w' : w, 'b' : b\}
223
       return params
224
225
226 def model(x, y,
            hidden_layer_sizes,
227
            activators,
228
            batch_size,
229
            lambda_=0.0,
230
231
            num_iters=10000,
            print_cost=False):
232
233
       Parameters
234
       _____
235
236
       x : array_like
           x.shape = (layers[0], n)
237
       y : array_like
238
            y.shape = (layers[-1], n)
239
       hidden_layer_sizes : List[int]
^{240}
```

```
The number nodes layer 1 = hidden_layer_sizes[1-1]
241
       activators : List[str]
242
           activators[1] = activation function of layer 1+1
243
       batch_size : int
244
       lambda_ : float
^{245}
           The regularization parameter
246
           Default: 0.0
247
       num_iters : int
248
           Number of iterations with which our model performs gradient descent
249
           Default: 10000
250
       print_cost : Boolean
251
           If True, print the cost every 1000 iterations
252
           Default: False
253
254
       Returns
255
       -----
256
257
       params : Dict[Dict]
           params['w'][1] : array_like
258
                w[l].shape = (layers[l], layers[l-1])
259
           params['b'][1] : array_like
260
                b[1].shape = (layers[1], 1)
261
       cost : float
262
           The final cost value for the optimized parameters returned
263
264
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
265
       params = utils.initialize_parameters_random(layers)
266
       v, s = initialize_momenta(layers)
267
268
269
       ## main descent loop
270
       for i in range(num_iters):
271
           batches = get_batches(x, y, batch_size)
272
           ## batch loop
273
           batch_iter = 1
274
           cost = 0
275
           for batch in batches:
276
                x = batch['x']
277
                y = batch['y']
278
                cache = utils.forward_propagation(x, params, activators)
279
                cost += utils.compute_cost(y, params, cache)
280
                grads = utils.backward_propagation(x, y, params, cache, activators)
281
                params = update_parameters_adam(params,
282
283
                                             grads,
                                             i,
284
                                             batch_iter,
                                             ٧,
286
287
                                             s,
```

```
momenta=[1e-8, 0.9, 0.999],
288
                                            learning_rate=0.01,
289
                                             decay_rate = 0.0
290
               batch_iter += 1
291
292
           if print_cost and i % 1000 == 0:
293
               print(f'Cost_after_iteration_{i}:_{cost}')
294
295
       return params, cost
296
```

8 Tuning Hyper-Parameters

Suppose that we have the dataset \mathbb{D} with the usual partition of

$$\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}.$$

Furthermore, suppose we impose a neural network architecture which has a collection of hyper-parameters (relabeled as):

$$\eta_1, \eta_2, ... \eta_K$$
.

The naive method of hyper-parameter tuning would instinctively be something of the form: Let $[d_i, d_i + k_i \Delta_i]$ denote an interval for which we require

$$\eta_i \in [d_i, d_i + k_i \Delta_i],$$

with an even-partition of

$$d_i < d_i + \Delta_i < d_i + 2\Delta_i < \dots < d_i + k_i \Delta_i$$

of length Δ_i . This collection forms a "grid" in \mathbb{R}^K for which each point of the grid gives us a full collection of hyper-parameters which we can then use to train our model. However, if certain hyper-parameters do not affect our model's accuracy very much, we've added at least a full dimension of validation which is not needed. A more randomized approach would be best to determine such a hyper-parameter characterization must faster. Thus a random collection of points H_i for which we constrain $\eta_i \in H_i$.

How should we implement this set H_i ? Suppose for example, we wish to find

$$\eta_i \in [0.0001, 1],$$

but the majority of the random points will likely be in [0.1, 1]. Suppose we partition the interval

$$[0.0001, 1] = 0.0001 < 0.001 < 0.01 < 0.1 < 1$$
$$= 10^{-4} < 10^{-3} < 10^{-2} < 10^{-1} < 10^{0}.$$

This suggests we obtain a distribution of points using a logarithmic (in base 10) scale. Indeed, let

$$p\in [0,1],$$

be a random point. Then letting $r=-4p\in[-4,0],$ we obtain another random point, and let

$$H_i = \{10^{-4p} : p \in \text{rand}([0,1])\},\$$

for some prescribed set-cardinality. This allows us to choose more appropriately scaled-options for our hyper-parameters.

Remark 8.1. Suppose we're using exponentially moving averages and have a hyper-parameter $\beta_1 \in [0,1)$. If we do not use a log-scale, then the sensitivity of our model with respect to β_1 when $\beta_1 \approx 1$ is very strong. Indeed, we recall that when $\beta_1 = 0.999$, this corresponds to averaging over the previous 1000 days. And it we change β_1 slightly to

$$\beta_1 = 0.9995,$$

then we've changed the interpretation of our model to the previous 2000 days. A subtle change for β_1 , but a drastic change to our model. The log-scale fixes this issue immediately.

We finally note that our hyper-parameters can become *stale* over time. That is, suppose we've trained a neural network, and tuned the hyper-parameters to allow an acceptable accuracy for our model. As the model refines over time, with more data being inserted to train on, it's import to re-test our hyper-parameters to make sure our model hasn't opened up to a better choice of one (or some or all) of the hyper-parameters we've previously tuned.

8.1 Python Implementation

```
1 def hyperparameter_scale(k, p):
2
      Parameters
3
      -----
4
      k : int
          The number random points to generate
6
      p: int
          The smallest magnitude for our log-scale
      Returns
10
      _____
11
      hypers : List[float]
12
          The list of hyper-parameters with which to tune
13
14
      hypers = []
15
      for _ in range(k):
16
          r = p * np.random.rand()
17
          hypers.append(10 ** r)
18
      return hypers
```

9 Batch Normalization

See [1].

We recall feature-normalization: Suppose $x \in \mathbb{R}^{m \times n}$ is some training data, and let

$$\mu = \mathbb{E}[X], \qquad \sigma^2 = \mathbb{E}[(X - \mu)^2],$$

denote the mean and variance of the random-vector representation X of x, respectively. Then we consider the map

$$x_j \mapsto \frac{x_j - \mu}{\sigma} =: \hat{x}_j,$$

to be the normalization of x_i .

This definition is so "vanilla", that it should be clear that this can be easily applied to each hidden-layer (we shall not use it on the output layer) of a neural network as well. However, we first note that there is an ambiguous choice amongst the implementation, namely, do we normalize $z^{[\ell]}$ or $a^{[\ell]}$, i.e., does normalization occur before or after we compute the activation unit. It seems more common to apply normalization to $z^{[\ell]}$, so that is what we do here without further mention of this choice.

Let $\gamma, \beta \in \mathbb{R}^m$, if we consider the map

$$\hat{x}_i \mapsto \gamma \odot \hat{x}_i + \beta := \tilde{x}_i,$$

we can see fairly trivially that we can recover x_j (thus allowing for identity activation units), indeed, let $\gamma = \sigma$ and $\beta = \mu$, and hence

$$\tilde{x}_{j} = \gamma \odot \hat{x}_{j} + \beta$$

$$= \gamma \odot \frac{x_{j} - \mu}{\sigma} + \beta$$

$$= x_{j} - \mu_{\beta}$$

$$= x_{j}$$

as desired. Moreover, we see that we can actually control what mean and variance we wish to impose on our input-vectors x. Indeed, let \hat{x} denote the

normalized x, and consider

$$\mathbb{E}[\gamma \odot \hat{X} + \beta] = \frac{1}{n} \sum_{j=1}^{n} (\gamma \odot \hat{x}_j + \beta)$$
$$= \gamma \odot \mathbb{E}[\hat{X}] + \beta$$
$$= 0 + \beta$$
$$= \beta,$$

and so the new mean would be given by β . Similarly,

$$\mathbb{E}[(\gamma \odot \hat{X} + \beta - \beta)^2] = \frac{1}{n} \sum_{j=1}^n (\gamma \odot \hat{x}_j)^2$$

$$= \frac{1}{n} \sum_{j=1}^n (\gamma^2 \odot \hat{x}_j^2)$$

$$= \gamma^2 \odot \mathbb{E}[(\hat{X} - 0)^2]$$

$$= \gamma^2 \odot 1$$

$$= \gamma^2$$

and so we see the new variance would be given by γ^2 . Thus, we see that by composition, the act of normalization can be characterized by the new parameters γ and β , and is mathematically-superfluous to consider both, but for computational considerations and algorithmic stability it shall be beneficial to keep both. That is, suppose we're training on some batch \mathbb{X}^k and focused on layer- ℓ , with parameters $\gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_\ell}$ and some $\epsilon > 0$, arbitrarily small and prescribed for numerical stability, we define the batch-normalization map $BN_{\gamma^{[\ell]},\beta^{[\ell]}}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell}$ given by the compositional-map

$$\begin{split} z^{[\ell]} &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} z^{[\ell]} =: \mu^{[\ell]}; \\ (z^{[\ell]}, \mu^{[\ell]}) &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]})^2 =: \sigma^{[\ell]2}; \\ (z^{[\ell]}, \mu^{[\ell]}, \sigma^{[\ell]}, \epsilon) &\mapsto \frac{z^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} =: \hat{z}^{[\ell]}; \\ (\hat{z}^{[\ell]}, \gamma^{[\ell]}, \beta^{[\ell]}) &\mapsto \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]} =: \tilde{z}^{[\ell]}. \end{split}$$

Suppose we have an L-layer neural network, each layer with m_{ℓ} nodes, and we focus on the ℓ -th layer specifically to expand:

$$\cdots \xrightarrow{\varphi^{[\ell]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{\ell}} \end{bmatrix}}^{BN_{\gamma^{[\ell]}},\beta^{[\ell]}} \xrightarrow{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_{\ell}} \end{bmatrix}}^{g^{[\ell]}} \xrightarrow{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_{\ell}} \end{bmatrix}}^{\varphi^{[\ell+1]}} \xrightarrow{\cdots}$$

$$\xrightarrow{\text{Laver } \ell}$$

The procedure for forward propagation should be immediately obvious from the closer look at layer- ℓ . However, we notice that

$$a^{[\ell-1]} \mapsto \gamma^{[\ell]} \odot \frac{W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]^2} + \epsilon}} + \beta^{[\ell]}$$
$$= \frac{\gamma^{[\ell]}}{\sqrt{\sigma^{[\ell]^2} + \epsilon}} (W^{[\ell]} a^{[\ell-1]} - \mu^{[\ell]}) + \beta^{[\ell]},$$

after absorbing the $b^{[\ell]}$ into the parameter $\beta^{[\ell]}$. That is, we have 3 trainable parameters given by $W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, \gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_{\ell}}$.

9.1 Backward Propagation

We now show how batch normalization affects the backward propagation algorithm. For illustrative purposes, we assume a 2-layer neural network with arbitrary activation functions and generic loss function. We recall the setup (without bias $b^{[\ell]}$) used in ??

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\Phi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Exper 1}} \xrightarrow{BN_{\gamma,\beta}} \underbrace{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_\ell} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\Phi^{[2]}} \cdots$$

$$\underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_2} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_2} \end{bmatrix}}_{\text{Exper 2}} \xrightarrow{\Xi} \underbrace{\begin{bmatrix} \hat{y}^1 \\ \vdots \\ \hat{y}^{m_2} \end{bmatrix}}_{\text{Magazian}},$$

where

$$\Phi^{[1]}: \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \Phi^{[1]}(A, x) = Ax;$$

and

$$\Phi^{[2]}: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \to \mathbb{R}^{m_2}, \qquad \Phi^{[2]}(A, b, x) = Ax + b.$$

Define the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\gamma,\beta}(\Phi^{[1]}(A, x))).$$

This leads to compute some auxiliary differentials before continuing further.

Lemma 9.1. For $N \in \mathbb{N}$, we define the expectation function $\mathbb{E} : \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{E}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} x_j.$$

Let $z = \{z_1, ..., z_N\} \subset \mathbb{R}$ be fixed, and define the mean

$$\mu := \mathbb{E}[z] = \frac{1}{N} \sum_{j=1}^{N} z_j.$$

Then as a differential, we have that $d\mathbb{E}_z: T_z\mathbb{R}^N \to T_\mu\mathbb{R}$ given by

$$d\mathbb{E}_z = \frac{1}{N} \sum_{j=1}^{N} dx_j |_{x=z}, \qquad d\mathbb{E}_z(v) = \frac{1}{N} \sum_{j=1}^{N} v^j.$$

Moreover, for $\alpha = 1, ..., N$, let $\iota_{z_{\alpha}} : \mathbb{R} \to \mathbb{R}^{N}$ denote the inclusion

$$\iota_{z_{\alpha}}(x) = (z_1, ..., z_{\alpha-1}, x, z_{\alpha+1}, ..., z_N).$$

Then the differentials

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} := d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R} \to T_{\mu}\mathbb{R},$$

are given by

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} = d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= d\mathbb{E}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= \frac{1}{N} dx_{z_{\alpha}}.$$

Since we don't use batch normalization on the output layer, the bias term still exists.

Similarly, we define the variance function $\mathbb{V}: \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{V}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} (x_j - \mathbb{E}[(x_1, ..., x_N)])^2.$$

For fixed z, define the variance

$$\sigma^2 = \mathbb{V}[z].$$

Then as a differential, we have that $d\mathbb{V}_z: T_z\mathbb{R}^N \to T_{\sigma^2}\mathbb{R}$ given by

$$d\mathbb{V}_z = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) dx^j \big|_{x=z}, \qquad d\mathbb{V}_z(v) = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) v^j.$$

Moreover, for $\alpha = 1, ..., N$, the differentials

$$d_{\alpha} \mathbb{V}_{z_{\alpha}} := d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R} \to T_{\sigma^{2}} \mathbb{R}$$

are given by

$$\begin{aligned} d_{\alpha} \mathbb{V}_{z_{\alpha}} &= d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} \\ &= d\mathbb{V}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}} \\ &= \frac{2}{N} (z_{\alpha} - \mu) dx_{z_{\alpha}} \end{aligned}$$

Proof: Immediate from direct calculation.

Corollary 9.2. For $\alpha = 1, ..., N$, let $\mathcal{N}_{\alpha} : \mathbb{R}^{m \times N} \to \mathbb{R}^m$ denote the α -th component of the vector-valued, normalization transformation. That is,

$$\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x_1, ..., x_N),$$

with

$$\hat{x}_{\alpha}^{i} = \frac{\pi_{\alpha}(x^{i}) - \mathbb{E}[x^{i}]}{(\mathbb{V}[x^{i}] + \epsilon)^{\frac{1}{2}}},$$

where $\pi_{\alpha}: \mathbb{R}^{N} \to \mathbb{R}$ is the projection onto the α -th coordinate

$$\pi_{\alpha}(x_1,...,x_N) = x_{\alpha}.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, let $\mu = \mathbb{E}[z] \in \mathbb{R}^m$ denote vector-mean and let $\sigma^2 = \mathbb{V}[z] \in \mathbb{R}^m$ denote the component-wise, vector-variation (i.e., $(\sigma^2)^i = \mathbb{V}[z^i]$). Then the differentials

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} := d(\mathcal{N}_{\alpha} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R}^m \to T_{\hat{z}_{\alpha}} \mathbb{R}^m$$

are given by the diagonal matrices

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^2)^i + \epsilon}} - \frac{1}{N} \frac{(z_{\alpha}^i - \mu^i)^2}{((\sigma^2)^i + \epsilon)^{\frac{3}{2}}}\right) \delta_j^i.$$

Proof: We compute directly after noting that

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \begin{bmatrix} d_{\alpha}(\hat{x}_{\alpha}^{1})_{z_{\alpha}^{1}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & d_{\alpha}(\hat{x}_{\alpha}^{m})_{z_{\alpha}^{m}} \end{bmatrix}$$

To this end, fix $1 \le i \le m$ and we compute

$$\begin{split} d_{\alpha}(\hat{x}_{\alpha}^{i})_{z_{\alpha}^{i}} &= d_{\alpha}(\mathcal{N}_{\alpha}^{i})_{z_{\alpha}^{i}} \\ &= \frac{d_{\alpha}(\pi_{\alpha})_{z_{\alpha}^{i}} - d_{\alpha}\mathbb{E}_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} d_{\alpha}\mathbb{V}_{z_{\alpha}^{i}} \\ &= \frac{dx_{z_{\alpha}^{i}} - \frac{1}{N}dx_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \left(\frac{2}{N}(z_{\alpha}^{i} - \mu^{i})dx_{z_{\alpha}^{i}}\right) \\ &= \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}}\right) dz_{\alpha}^{i}, \end{split}$$

as desired.

Proposition 9.3. Let $\mathcal{N}: \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the usual normalization transformation with $\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x)$. Let $BN: \mathbb{R}^{m} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the batch normalization transformation $[x_{j}] \mapsto [\tilde{x}_{j}]$, i.e.,

$$\tilde{x}_j^i = \gamma^i \hat{x}_j^i + \beta^i,$$

where $x^i \in \mathbb{R}^N$. Moreover, given $\gamma, \beta \in \mathbb{R}^m$, for $\alpha \in \{1, ..., N\}$, let

$$BN_{\alpha}^{\gamma,\beta}:\mathbb{R}^{m\times N}\to\mathbb{R}^m$$

denote

$$BN_{\alpha}^{\gamma,\beta}(x) = \gamma \odot \mathcal{N}_{\alpha}(x) + \beta.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, and let

$$\hat{z}_{\alpha} = \mathcal{N}_{\alpha}(z_1, ..., z_N) \in \mathbb{R}^m, \qquad \mu^i = \mathbb{E}[z^i] \in \mathbb{R}, \qquad (\sigma^2)^i = \mathbb{V}[z^i] \in \mathbb{R}.$$

For $\alpha \in \{1,...,N\}$, $z \in \mathbb{R}^{m \times N}$ and for $\gamma, \beta \in \mathbb{R}^m$, we have the differentials:

• $d(BN_{\alpha}^{\beta,z})_{\gamma}: T_{\gamma}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$, is given by

$$d(BN_{\alpha}^{\beta,z})_{\gamma}(v) = \hat{z}_{\alpha} \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \gamma^{j}} = \hat{z}_{\alpha}^{i} \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,z})_{\beta}: T_{\beta}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$ is given by

$$d(BN_{\alpha}^{\gamma,z})_{\beta}(v) = v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \beta^{j}} = \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}: T_{\hat{z}_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}}\mathbb{R}^{m}$ is given by

$$d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}(v) = \gamma \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \hat{z}_{\alpha}^{j}} = \gamma^{i} \delta_{j}^{i}.$$

• $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} := d(BN_{\alpha}^{\gamma,\beta} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}_{\alpha}}\mathbb{R}^{m} \text{ is given by}$ $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} = (\gamma \odot)d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}},$

$$\frac{\partial \tilde{z}_{\alpha}^{i}}{\partial z_{\alpha}^{j}} = \gamma^{i} \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \right) \delta_{j}^{i}$$

Proof: Follows immediately from the previous Corollary.

We now return to considering the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x_{\alpha}) = \mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, \beta}(\Phi^{[1]}(A, x))).$$

We compute (and since $\alpha \in \{1, ..., N\}$ is fixed, we ignore implied summation for the moment)

 $d_{B}G_{B}(V) = d_{B}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]})_{B}(V)$ $= \frac{d}{dt}\Big|_{t=0} \mathbb{L}_{y} \circ g^{[2]}((B+tV)a^{[1]}_{\alpha} + b)$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho} \frac{d}{dt}\Big|_{t=0} \left[(B_{\lambda}^{\rho} + tV_{\lambda}^{\rho})a^{[1]}_{\alpha}^{\lambda} + b^{\rho}) \right]$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho}V_{\lambda}^{\rho}a^{[1]}_{\alpha}^{\lambda}$ $= (a^{[1]}_{\alpha}\delta^{[2]}_{\alpha}^{T})_{\rho}^{\lambda}V_{\lambda}^{\rho},$

and hence

$$d_B G_B = a^{[1]}{}_{\alpha} \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial B} = \delta^{[2]}{}_{\alpha} a^{[1]}{}_{\alpha}{}^T.$$

•

$$d_b G_b(v) = d_B(\mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]})_b(v)$$

$$= (\delta^{[2]}{}_{\alpha}{}^T)_{\rho} \left. \frac{d}{dt} \right|_{t=0} \left[B_{\lambda}^{\rho} a^{[1]}{}_{\alpha}^{\lambda} + (b^{\rho} + tv^{\rho}) \right]$$

$$= \delta^{[2]}{}_{\alpha}{}^T v$$

yielding

$$d_b G_b = \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial b} = \delta^{[2]}{}_{\alpha}.$$

•

$$\begin{split} d_{\gamma}G_{\gamma}(\xi) &= d_{\gamma}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\beta, z^{[1]}_{\alpha}}))_{\gamma}(\xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]}(\hat{z}_{\alpha} \odot \xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]} \mathrm{diag}(\hat{z}_{\alpha}^{[1]}) \xi \\ &= \delta^{[1]}_{\alpha}^{T} \mathrm{diag}(\hat{z}^{[1]}_{\alpha}) \xi, \end{split}$$

and so

$$d_{\gamma}G_{\gamma} = \delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\hat{z}^{[1]}{}_{\alpha}), \qquad \frac{\partial G}{\partial \gamma} = \operatorname{diag}(\hat{z}^{[1]}{}_{\alpha})\delta^{[1]}{}_{\alpha}.$$

$$d_{\beta}G_{\beta}(\eta) = d_{\beta}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, z^{[1]}_{\alpha}}))_{\beta}(\eta)$$

= $\delta^{[1]}{}_{\alpha}{}^{T}\eta$,

thus

$$d_{\beta}G_{\beta} = \delta^{[1]}{}_{\alpha}{}^{T}, \qquad \frac{\partial G}{\partial \beta} = \delta^{[1]}{}_{\alpha}.$$

 $d_A G_A(V) = \delta^{[1]}{}_{\alpha}{}^T \cdot d_{\alpha} (BN_{\alpha}^{\gamma,\beta})_{z^{[1]}{}_{\alpha}} d\Phi_A^{[1]}(V)$ $= \delta^{[1]}{}_{\alpha}{}^T \operatorname{diag}(\gamma) d_{\alpha} (\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}} V x_{\alpha},$

and hence

$$d_{A}G_{A} = x_{\alpha}\delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}},$$
$$\frac{\partial G}{\partial A} = \operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}}\delta^{[1]}{}_{\alpha}x_{\alpha}{}^{T}.$$

Finally, since

$$\mathbb{J}(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}) = \frac{1}{N} \sum_{\alpha=1}^{N} G(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}, x_{\alpha}),$$

we've described our desired gradients after summation.

9.2 Inferencing

We note that in our computation for forward propagation, that our normalization transforms change with out batches. This leads to ambiguity when predicting a label for a new example. One fix would be to average our means and variances over our batches. That is, suppose during our iteration process, we have training-batches of the form $\{\mathbb{X}^k : 1 \leq k \leq K\}$, where each \mathbb{X}^k has cardinality $|\mathbb{X}^k| = n$. Then for each hidden-layer $\ell \in \{1, ..., L-1\}$, we obtain the means

$$\mu^{[\ell]}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]},$$

and the variances

$$\sigma^{2^{[\ell]}}{}_k = \frac{1}{n} \sum_{z \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2.$$

That is, for each hidden-layer ℓ , we have the collection

$$\{\mu^{[\ell]}_k : 1 \le k \le K\}$$

from which we average again to obtain

$$\mu^{[\ell]} := \frac{1}{K} \sum_{k=1}^{K} \mu^{[\ell]}_{k},$$

and the collection

$$\{\sigma^{2^{[\ell]}}_{k}: 1 \le k \le K\},\$$

from which we use the unbiased estimate

$$\sigma^{2[\ell]} := \frac{n}{n-1} \frac{1}{K} \sum_{k=1}^{K} \sigma^{2[\ell]}_{k}.$$

These quantities are what we use when computing the batch-normalization transforms of the hidden units for new examples.

9.3 Algorithm Outline

Suppose we have a training set \mathbb{X} with which we wish to train a binary classification via an L-layer neural network. Let $N = |\mathbb{X}|$ and let $n = 2^p$ be the batch size with $K = \lceil \frac{N}{n} \rceil$ batches per epoch. Then our algorithm would be as follows:

- 1. Set hyper-parameters. Initialize parameters.
- 2. For $0 \le i \le \text{num_iters}$:
 - a. Generate batches $\{X^k : 1 \le k \le K\}$.
 - b. For $1 \le k \le K$:
 - i. Perform forward propagation on \mathbb{X}^k :

 $z^{[1]} = W^{[1]}x$ • For $\ell \in \{1,...,L-1\}$: $- z^{[\ell]} = W^{[\ell]}a^{[\ell-1]}$

$$\mu^{[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]}$$

$$\sigma^{2[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2$$

$$\hat{z}^{[\ell]} = (\sigma^{2[\ell]}{}_k + \epsilon)^{-\frac{1}{2}} \odot (z^{[\ell]} - \mu^{[\ell]}{}_k)$$

$$\tilde{z}^{[\ell]} = \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]}$$

$$a^{[\ell]} = g^{[\ell]} (\tilde{z}^{[\ell]})$$

$$z^{[L]} = W^{[L]} a^{[L-1]} + b$$

- ii. Compute cost \mathbb{J} on \mathbb{X}^k .
- iii. Apply backwards propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial b}, \quad \frac{\partial \mathbb{J}}{\partial \gamma^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial \beta^{[\ell]}}.$$

- iv. Update parameters.
- 3. Compute

$$\begin{split} \boldsymbol{\mu}^{[\ell]} &= \mathbb{E}[\boldsymbol{\mu}^{[\ell]}_{k}], \\ \boldsymbol{\sigma}^{2[\ell]} &= \frac{n}{n-1} \mathbb{E}[\boldsymbol{\sigma}^{2[\ell]}_{k}] \end{split}$$

4. Return

$$W^{[\ell]}, \quad b, \quad \gamma^{[\ell]}, \quad \beta^{[\ell]}, \quad \mu^{[\ell]}, \quad \sigma^{2^{[\ell]}}.$$

9.4 Better Backpropagation

We consider a neural network utilizing batch normalization of the form

where we have the functions

1.

$$\mathbb{L}: \mathbb{R}^{n^{[2]} \times N} \times \mathbb{R}^{n^{[2]} \times N} \to \mathbb{R}$$

is the given loss function. If we're working with a binary classification problem, then we have that

$$\mathbb{L}(y, \hat{y}) = -\frac{1}{N} \sum_{j=1}^{n} \{ y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j) \}$$
$$= -\frac{1}{n} [\langle y, \log y \rangle_{\mathbb{R}^N} + \langle 1 - y, \log(1 - \hat{y}) \rangle_{\mathbb{R}^N}].$$

2.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

3.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\phi^{[\ell]}(W, x) = Wx.$$

4.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\psi(b, x) = x + b\vec{1}^T,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n^{[\ell]}}.$$

5.

$$N^{[1]}: \mathbb{R}^{n^{[1]} \times N} \to \mathbb{R}^{n^{[1]} \times N}$$

is the normalization operator given by

$$N^{[1]}: x_j^i \mapsto \frac{x_j^i - \mathbb{E}[x^i]}{\sqrt{\mathbb{V}[x^i] + \epsilon}},$$

where \mathbb{E} is the expectation operator, i.e.,

$$\mathbb{E}[x^i] = \frac{1}{N} \sum_{j=1}^{N} x_j^i,$$

and V is the variance operator, i.e.,

$$\mathbb{V}[x^i] = \mathbb{E}[(x^i - \mathbb{E}[x^i])^2].$$

6.

$$\Gamma^{[\ell]} \cdot \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\Gamma(\gamma, x) = \gamma \vec{1}^T \odot x,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n^{[\ell]}}.$$

We now consider back-propagating through the network via reverse differentiations as in the following diagram:

We consider our individual derivatives:

1. Suppose $G: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for any $(x, \xi) \in T\mathbb{R}^{m \times n}$ we have that

$$dG_x(\xi) = G'(x) \odot \xi.$$

Then for any $\zeta \in T_{G(x)}\mathbb{R}^{m\times n}$, we have the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta.$$

2. Suppose $\phi : \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N} \to \mathbb{R}^{m \times N}$ is given by

$$\phi(W, x) = Wx.$$

Then we have two differential paths to consider:

(a) For any $(W, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N}$ and any $\xi \in T_x \mathbb{R}^{n \times N}$, we have that

$$d\phi_{(W,x)}(\xi) = W \cdot \xi$$
$$= L_W(\xi),$$

and for any $\zeta \in T_{\phi(W,x)}\mathbb{R}^{m\times N}$, we have the reverse differential

$$r\phi_{(W,x)}(\zeta) = W^T \cdot \zeta$$

= $L_{W^T}(\zeta)$.

(b) For any $(W, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N}$ and any $Z \in T_W \mathbb{R}^{m \times n}$, we have that

$$d_1\phi_{(W,x)}(Z) = Z \cdot x$$
$$R_x(Z),$$

and for any $\zeta \in T_{\phi(W,x)}\mathbb{R}^{m\times N}$, we have the reverse differential

$$r_1 \phi_{(W,x)}(\zeta) = \zeta \cdot x^T$$

= $R_{r^T}(\zeta)$.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$ is given by

$$\psi(b, x) = x + b\vec{1}^T,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^N.$$

Then we look at the two differential paths and for any $(b, x) \in \mathbb{R}^n \times \mathbb{R}^{n \times N}$ any any $\xi \in T_x \mathbb{R}^{n \times N}$, $\eta \in T_b \mathbb{R}^n$ and $\zeta \in T_{\psi(b,x)} \mathbb{R}^{n \times N}$:

(a) In the network direction, we have that

$$d\psi_{(b,x)}(\xi) = \xi,$$

with reverse differential

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) In the parameter-space direction, we have that

$$\overline{d}\psi_{(b,x)}(\eta) = \eta \cdot \overrightarrow{1}^T
= R_{\overrightarrow{\tau}T}(\eta),$$

with reverse differential

$$\overline{r}\psi_{(b,x)}(\zeta) = \zeta \cdot \vec{1}$$

$$= R_{\vec{1}}(\zeta).$$

4. Suppose $\Gamma: \mathbb{R}^n \times \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$ is given by

$$\Gamma(\gamma, x) = \gamma \vec{1}^T \odot x.$$

The considering the two paths of differentiation, we have that for any $((\gamma, x), (\eta, \xi)) \in T(\mathbb{R}^n \times \mathbb{R}^{n \times N})$ and $\zeta \in T_{\Gamma(\gamma, x)} \mathbb{R}^{n \times N}$ that:

(a) In the network direction, we have that

$$d\Gamma_{(\gamma,x)}(\xi) = \gamma \vec{1}^T \odot \xi,$$

with reverse differential

$$r\Gamma_{(\gamma,x)}(\zeta) = \gamma \vec{1}^T \odot \zeta.$$

(b) In the parameter-space direction, we have that

$$\hat{d}\Gamma_{(\gamma,x)}(\eta) = \eta \vec{1}^T \odot x$$

= $\odot_x \circ R_{\vec{1}^T}(\eta),$

with reverse differential

$$\hat{r}\Gamma_{(\gamma,x)}(\zeta) = (x \odot \zeta) \cdot \vec{1}$$
$$= R_{\vec{1}} \circ \odot_x(\zeta).$$

- 5. As the normalization operator is quite involved, we move its computation to the appendix, ??.
- 6. For the loss function $\mathbb{L}: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ given by

$$L(y, \hat{y}) = -\frac{1}{N} [\langle y, \log \hat{y} \rangle + \langle 1 - y, \log(1 - \hat{y}) \rangle],$$

we fix $y, \hat{y} \in \mathbb{R}^N$ and for $\xi \in T_{\hat{y}} \mathbb{R}^N$, we see that

$$d\mathbb{L}_{(y,\hat{y})}(\xi) = -\frac{1}{N} \sum_{j=1}^{N} \left[\frac{y_j}{\hat{y}_j} - \frac{1 - y_j}{1 - \hat{y}_j} \right] \xi_j$$
$$= -\frac{1}{N} \left\langle \frac{y}{\hat{y}} - \frac{1 - y}{1 - \hat{y}}, \xi \right\rangle,$$

and hence for $\zeta \in T_{L(y,\hat{y})}\mathbb{R}$, it follows that

$$r\mathbb{L}_{(y,\hat{y})}(\zeta) = -\frac{1}{N} \left[\frac{y}{\hat{y}} - \frac{1-y}{1-\hat{y}} \right] \zeta.$$

We're now ready to compute our various gradients of our cost function. That is, if we let

$$\mathbb{J}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]} \times n^{[1]}} \times \mathbb{R}^{n^{[1]}} \times \mathbb{R}^{n^{[1]}} \times \mathbb{R}^{n^{[1]} \times n^{[0]}} \rightarrow \mathbb{R}$$

is given by

$$\mathbb{J}(W^{[2]},\gamma^{[1]},\beta^{[1]},W^{[2]},b^{[2]}) = \mathbb{L}(y,G^{[2]}\circ\psi^{[2]}(b^{[2]},\phi^{[2]}(W^{[2]},G^{[2]}\circ\psi^{[2]}(\beta^{[1]},\Gamma^{[1]}(\gamma^{[1]},N^{[1]}\circ\phi^{[1]}(W^{[1]},x)))))$$

and we compute the reverse differentials for a learning rate $\alpha \in T_{\mathbb{J}}\mathbb{R}$ with the assumption that our second activator function is the sigmoid function. Indeed,

$$r(\mathbb{L} \circ G^{[2]})_v(\alpha) = rG_v^{[2]} \circ r\mathbb{L}_a(\alpha)$$

$$= -\frac{\alpha}{N}G^{[2]'}(v) \odot \left[\frac{y}{a} - \frac{1-y}{1-a}\right]$$

$$= -\frac{\alpha}{N}a(1-a)\left[\frac{y}{a} - \frac{1-y}{1-a}\right]$$

$$= -\frac{\alpha}{N}[y(1-a) - a(1-y)]$$

$$= -\frac{\alpha}{N}[y-a]$$

$$= \frac{a-y}{N}\alpha.$$

This leads us to

$$\begin{split} \overline{r}_{2} \mathbb{J}_{b^{[2]}}(\alpha) &= \overline{r}_{2}(\psi^{[2]})_{(b^{[2]}, u^{[2]})} \circ rG_{v^{[2]}}^{[2]} \circ r\mathbb{L}_{(y, a^{[2]})} \\ &= \frac{\alpha}{N} R_{\vec{1}}(a^{[2]} - y) \\ &= \frac{\alpha}{N} \sum_{i=1}^{N} (a^{[2]}_{j} - y_{j}); \end{split}$$

$$\begin{split} r_2 \mathbb{J}_{W^{[2]}}(\alpha) &= r_2 \phi_{(W^{[2]}, a^{[1]})}^{[2]} \circ r \psi_{(b^{[2]}, u^{[2]})}^{[2]} \left(\frac{\alpha}{N} (a^{[2]} - y) \right) \\ &= r_2 \phi_{(W^{[2]}, a^{[1]})}^{[2]} \left(\frac{\alpha}{N} (a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} (a^{[2]} - y) a^{[1]T}; \end{split}$$

$$\begin{split} \overline{r}_{1} \mathbb{J}_{\beta^{[1]}}(\alpha) &= \overline{r}_{1} \psi_{(\beta^{[1]},\hat{z}^{[1]})}^{[1]} \circ r G_{\tilde{z}^{[1]}}^{[1]} \circ r \phi_{(W^{[2]},a^{[2]})}^{[2]} \circ r \psi_{(b^{[2]},u^{[2]})}^{[2]} \circ r (\mathbb{L} \circ G^{[2]})_{v^{[2]}}(\alpha) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]},\hat{z}^{[1]})}^{[1]} \circ r G_{\tilde{z}^{[1]}}^{[1]} \circ r \phi_{(W^{[2]},a^{[2]})}^{[2]}(a^{[2]} - y) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]},\hat{z}^{[1]})}^{[1]} \circ r G_{\tilde{z}^{[1]}}^{[1]} \left(W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]},\hat{z}^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} \sum_{i=1}^{N} g^{[1]'}(\tilde{z}^{[1]}_{j}) \odot W^{[2]T}(a^{[2]}_{j} - y_{j}); \end{split}$$

$$\begin{split} \hat{r}_{1} \mathbb{J}_{\gamma^{[1]}}(\alpha) &= \frac{\alpha}{N} \hat{r}_{1} \Gamma_{(\gamma^{[1]}, z^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} R_{\vec{1}} \left(z^{[1]} \odot \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \right) \\ &= \frac{\alpha}{N} \sum_{j=1}^{n} z^{[1]}{}_{j} \odot g^{[1]'}(\tilde{z}^{[1]}{}_{j}) \odot W^{[2]T}(a^{[2]}{}_{j} - y_{j}); \end{split}$$

and finally,

$$\begin{split} r_{1}\mathbb{J}_{W^{[1]}}(\alpha) &= \frac{\alpha}{N}r_{1}\phi_{(W^{[1]},x)}^{[1]} \circ rN_{u^{[1]}}^{[1]} \circ r\Gamma_{(\gamma^{[1]},z^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}r_{1}\phi_{(W^{[1]},x)}^{[1]} \circ rN_{u^{[1]}}^{[1]} \left(\gamma\vec{1}^{T} \odot G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}R_{x^{T}} \circ rN_{u^{[1]}}^{[1]} \left(\gamma\vec{1}^{T} \odot G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}\sum_{j,l=1}^{N}\sum_{i=1}^{n^{[1]}}T_{i}^{jk}_{l}\gamma^{i}g^{[1]'}(\tilde{z}^{[1]i}_{j})W^{[2]}_{i}(a^{[2]}_{j} - y_{j})x_{l}^{m} \end{split}$$

9.5 Python Implementation

Work in Progress

10 Multi-Class Softmax Regression

Thus far, we've mostly been dealing with binary classification problems, that is, our true label y takes values in $\{0,1\}$, where y=1 represents when the object in question represents our desired classification, and y=0 when it does not. However, in many examples we wish to expand upon this, for example, instead of knowing whenever an image contains a cat (y=1) or it doesn't contain a cat (y=0), maybe we would like to have a table of the following

Table 1: Classification	
y	Label
y = 0	None of the following
y = 1	Cat
y = 2	Dog
y = 3	Bird
y = 4	Elephant
y = 5	Bear

That is, we have a total of 6 classes we wish to distinguish. If we were to train a neural network for this classification problem, the only time this needs to be considered is on the output layer. With this in mind, we shall only consider the simple regression problem

$$\begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} \xrightarrow{Wx+b} \begin{bmatrix} z^1 \\ \vdots \\ z^C \end{bmatrix} \xrightarrow{g(z)} \begin{bmatrix} a^1 \\ \vdots \\ a^C \end{bmatrix} \longrightarrow \hat{y},$$

where C is the number of labels in our classification.

First, we need to *one-hot encode* our labels. That is, if our labels are given by

$${0,1,...,C-1},$$

then we consider the basis vectors in \mathbb{R}^C

$$\{e_1, ..., e_C\},\$$

which clearly admits a bijection

$$\{0, 1, ..., C-1\} \xrightarrow{\cong} \{e_1, ..., e_C\}, \qquad i \mapsto e_{i+1}.$$

Thus, we've effectively mapped our true labels

$$y \in \{0, 1, ..., C - 1\}^N \mapsto y \in \mathbb{R}^{C \times N}$$

where

$$(y=i) \mapsto (y=e_{i+1}).$$

Next, we need to decide which type of nonlinearity $g: \mathbb{R}^C \to \mathbb{R}^C$ to impose. To this end, we would like a^i to satisfy

$$a^i = \mathbb{P}(y = i - 1),$$

then we can declare a prediction via

$$i_0 = \arg \max_i a^i, \qquad \hat{y} = e_{i_0} \leftrightarrow \hat{y} = i_0 - 1.$$

That is, we would like our target output vector $a \in \mathbb{R}^C$ to be a probability distribution, i.e.,

$$0 \le a^i \le 1, i \in \{1, ..., C\},\$$

and

$$\sum_{i=1}^{C} a^i = 1.$$

This leads us to letting g be the softmax function, i.e.,

$$g(z^1,...,z^C) = \frac{1}{\sum_{i=1}^C e^{z^i}} \begin{bmatrix} e^{z^1} \\ \vdots \\ e^{z^C} \end{bmatrix}.$$

Finally, we need to define a cost function $\mathbb{L}: \mathbb{R}^C \times \mathbb{R}^C \to \mathbb{R}$ with which we can compare our true value to our predicted value. To this end, we consider the cross-entropy function \mathbb{L} defined by

$$\mathbb{L}(a_j, y_j) = -\sum_{i=1}^{C} y_j^i \log a_j^i.$$

We note that since $y_j = e_k$ for some $k \in \{1, ..., C\}$, that this sum is actually a single element. Moreover, when C = 2, we recover our log-loss function for the sigmoid activation. This finally yields a cost function

$$J(W, b) = -\frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{C} y_j^i \log a_j^i$$
$$= -\frac{1}{N} (y : \log a),$$

where

$$A: B = \langle A, B \rangle_F = \operatorname{tr}(A^T B),$$

is the Frobenius norm on $\mathbb{R}^{C \times N}$.

To minimize our cost, we first note

$$\frac{\partial \mathbb{L}_{y} \circ g}{\partial z^{\mu}} = \sum_{i=1}^{C} \frac{\partial \mathbb{L}_{y}}{\partial a^{i}} \frac{\partial S^{i}}{\partial z^{\mu}}$$

$$= -\sum_{i=1}^{C} \frac{y^{i}}{a^{i}} a^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -\sum_{i=1}^{C} y^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -y^{\mu} + a^{\mu} \sum_{i=1}^{C} y^{i}$$

$$= a^{\mu} - y^{\mu},$$

then we see that

$$\begin{split} \frac{\partial z^{\mu}}{\partial W^{\alpha}_{\beta}} &= \frac{\partial}{\partial W^{\alpha}_{\beta}} (W^{\mu}_{k} x^{k} + b^{\mu}) \\ &= \sum_{k=1}^{m} \delta^{\mu}_{\alpha} \delta^{\beta}_{k} x^{k} \\ &= \delta^{\mu}_{\alpha} x^{\beta}, \end{split}$$

and

$$\frac{\partial z^{\mu}}{\partial b^{\alpha}} = \delta^{\mu}_{\alpha}.$$

Hence,

$$\frac{\partial \mathbb{L}_y}{\partial W_\beta^\alpha} = \sum_{\mu=1}^C (a^\mu - y^\mu) \delta_\alpha^\mu x^\beta$$
$$= x(a-y)^T,$$

yielding a gradient of

$$\frac{\partial \mathbb{L}_y}{\partial W} = (a - y)x^T,$$

and similarly

$$\frac{\partial \mathbb{L}_y}{\partial b^{\alpha}} = \sum_{\mu=1}^C (a^{\mu} - y^{\mu}) \delta_{\alpha}^{\mu}$$
$$= a^{\alpha} - y^{\alpha},$$

and so

$$\frac{\partial \mathbb{L}_y}{\partial b} = a - y.$$

Finally, we conclude that

$$\frac{\partial \mathbb{J}}{\partial W} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)(x_j)^T = \frac{1}{N} (a - y)x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j).$$

We remark that for a deep neural network, the backwards propagation follows a similar path backwards through the network since we have the aforementioned differentials.

References

[1] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.