

MACHINE LEARNING

1. Which of the following methods do we use to find the best fit line for data in Linear Regression?

In Q1 to Q11, only one option is correct, choose the correct option:

	A) Least Square Error C) Logarithmic Loss Ans-D	B) Maximum Likelihood D) Both A and B
2.	Which of the following statement is true about A) Linear regression is sensitive to outliers C) Can't say Ans-A	outliers in linear regression? B) linear regression is not sensitive to outliers D) none of these
3.	A line falls from left to right if a slope isA) Positive C) Zero Ans-B	? B) Negative D) Undefined
4.	Which of the following will have symmetric revariable? A) Regression C) Both of them Ans-C	elation between dependent variable and independent B) Correlation D) None of these
5.	Which of the following is the reason for over fi A) High bias and high variance C) Low bias and high variance Ans-B	tting condition? B) Low bias and low variance D) none of these
6.	If output involves label then that model is ca A) Descriptive model C) Reinforcement learning Ans-B	lled as: B) Predictive modal D) All of the above
7.	Lasso and Ridge regression techniques below. A) Cross validation C) SMOTE Ans-D	ong to? B) Removing outliers D) Regularization
8.	To overcome with imbalance dataset which A) Cross validation C) Kernel Ans -D	technique can be used? B) Regularization D) SMOTE
9.	The AUC Receiver Operator Characteristic classification problems. It usesto match A) TPR and FPR C) Sensitivity and Specificity Ans-A	(AUCROC) curve is an evaluation metric for binary ke graph? B) Sensitivity and precision D) Recall and precision
10	 In AUC Receiver Operator Characteristic (A curve should be less. A) True Ans-False 	UCROC) curve for the better model area under the B) False

MACHINE LEARNING

- 11. Pick the feature extraction from below:
 - A) Construction bag of words from a email
 - B) Apply PCA to project high dimensional data
 - C) Removing stop words
 - D) Forward selection

Ans -B

In Q12, more than one options are correct, choose all the correct options:

- 12. Which of the following is true about Normal Equation used to compute the coefficient of the Linear Regression?
 - A) We don't have to choose the learning rate.
 - B) It becomes slow when number of features is very large.
 - C) We need to iterate.
 - D) It does not make use of dependent variable.

Ans -B

MACHINE LEARNING

Q13 and Q15 are subjective answer type questions, Answer them briefly.

- 13. Explain the term regularization?
- 14. Which particular algorithms are used for regularization?
- 15. Explain the term error present in linear regression equation?

13-ANS- **Overfitting** is a phenomenon that occurs when a Machine Learning model is constrained to training set and not able to perform well on unseen data. Regularization is a technique used to reduce errors by fitting the function appropriately on the given training set and avoid overfitting. The commonly used regularization techniques are:

14-ANS

L1 Regularization technique is called **LASSO(Least Absolute Shrinkage and Selection Operator)** regression.

A regression model that uses **L2 regularization** technique is called **Ridge regression**.

15- Error is difference between Actual Data and Predicted data in linear Regression