Klausur Analysis 2 (05.02.2007) Total: 500 Punkte

Note 1: 250 Punkte Unter 100 Punkten: Nicht bestanden

Aufgabe 1 (Rotation und Divergenz von Vektorfeldern) 50 Punkte

Gegeben sei das Magnetfeld \vec{B} (eines mit der konstanten Stromstärke I durchflossenen unendlich dunnen und langen Leiters in z-Richtung) an einem beliebigen Raumpunkt \vec{r} :

$$\vec{B} = \vec{I} \times \frac{\vec{\rho}}{\rho^3}$$

mit $\rho = |\vec{\rho}|$ dem Abstand des Raumpunktes $\vec{r} = (x, y, z)$ von der z-Achse: $\rho = \sqrt{x^2 + y^2}$, und $\vec{\rho} = (x, y, 0)$ dem Abstandsvektor des Raumpunkts von der z-Achse, und $\vec{I} = (0, 0, I)$ dem Strom in z-Richtung..

a) Berechnen Sie die Rotation des Magnetfelds

$$\mathbf{rot}\,\overline{B}(x,y,z)$$

25 Punkte

b) Berechnen Sie die Divergenz des Magnetfelds

$$\mathbf{div}\,\overline{B}(x,y,z)$$

20 Punkte

c) Läßt sich das Magnetfeld als Gradient eines Skalarfelds darstellen? Begründen Sie Ihre Antwort. 5 Punkte

Aufgabe 2 (Vektoranalysis)

30 Punkte

Berechnen Sie:

a) rot
$$\overline{F}$$
 für $\overline{F}(x, y, z) = (x \sin z, z \ln y, y)$

10 Punkte

b) grad
$$\overline{A} * \overline{r}$$
 für $\overline{A} = (a,b,c)$ konstant und $\overline{r} = (x,y,z)$

10 Punkte

c) div grad U(x,y,z) für U(x,y,z) = Q/r

und
$$r = Betrag von \overrightarrow{r} = (x,y,z)$$
 und $Q = const.$

10 Punkte

Aufgabe 3 (Differentialgleichung erster Ordnung)

Gegeben ist die DGL erster Ordnung::

$$y' = \frac{1 + c(y/x)}{c - (y/x)}$$

Mit c = const.

- a) Ist diese DGL linear? Begründen Sie Ihre Antwort! Wie muß der Definitionsbereich (x,y) eingeschränkt werden? $\Rightarrow \neq \emptyset$; $(\frac{\checkmark}{?}) \neq \zeta$ 10 Punkte
- b) Allgemeine Lösung der Differentialgleichung (beliebige Anfangsbedingungen)?
 40 Punkte

Tip:
$$\int \frac{c-z}{1+z^2} dz = c \int \frac{1}{1+z^2} dz - \int \frac{z}{1+z^2} dz$$

Lösung:
$$\sqrt{x^2 + y^2} = De^{\frac{carctg^2}{x}}$$
 mit D = const.

- c) Wie lautet die Lösung für die Anfangsbedingung y(1) = 0?
- 10 Punkte
- d) Allgemeine Lösung bei Verwendung von Polarkoordinaten? \mathcal{L}
- 20 Punkte

$$x = r\cos\phi$$
, $y = r\sin\phi$ d. e^{x}

Aufgabe 4 (Inhomogene Differentialgleichung erster Ordnung)

Gegeben ist die inhomogene DGL erster Ordnung::

$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}$$

- a) Ist diese DGL linear? Begründen Sie Ihre Antwort! Lösen Sie die zugeordnete homogene Differentialgleichung allgemein.
 40 Punkte
- b) Allgemeine Lösung der inhomogenen Differentialgleichung?
- 40 Punkte

Aufgabe 5 (Homogene DGL 2. Ordnung, Taylor-Entwicklung, Linearisierung))

70 Punkte

Die DGL für den Auslenkungswinkel ϕ eines schwingenden Pendels in Abhängigkeit von der Zeit tist gegeben durch:

$$\phi + \frac{g}{l}\sin\phi = 0$$

Mit der konstanten Pendellänge I und der (konstanten) Erdbeschleunigung g.

Gesucht ist die Lösungsfunktion $\phi(t)$ (Dabei ist die Zeit t die unabhängige Variable).

a) Warum ist diese DGL nicht linear? Entwickeln Sie die Funktion $\sin \phi$ nach ϕ (Taylorentwicklung) um $\phi=0$ bis zur dritten Ordnung in ϕ . Bei welcher Ordnung müssen Sie die Entwicklung abbrechen, damit obige DGL linear wird? (Gute Näherung für kleine Auslenkungswinkel!) Lösen Sie die so linearisierte DGL

$$\ddot{\phi} + \frac{g}{l}\phi = 0$$

45 Punkte

allgemein. Wählen Sie als Abkürzung $\omega = \sqrt{\frac{g}{l}}$

c) Wie lautet die Lösung für die Anfangsbedingungungen

25 Punkte

$$\phi(t=0) = \phi_0 \qquad \phi(t=0) = 0$$

Welchem Zustand entsprechen diese Anfangsbedingungen bei der Pendelschwingung?

Aufgabe 6 (Inhomogene Differentialgleichung dritter Ordnung) 90 Punkte

Gegeben ist die lineare inhomogene DGL dritter Ordnung mit konstanten Koeffizienten:

$$y''' - 5y'' + 8y' - 4y = x$$

- d) Lösen Sie die zugeordnete homogene Differentialgleichung allgemein (Eine Lösung des charakteristischen Polynoms in λ ist: $\lambda_1 = 1$) 50 Punkte
- e) Finden Sie eine spezielle Lösung der inhomogenen DGL und schreiben Sie dann die allgemeine Lösung der inhomogenen DGL hin.
 40 Punkte

Aufgabe 7 (System von Differentialgleichungen erster Ordnung; Einsetzverfahren, Matrixverfahren)

100 Punkte

Gegeben ist das System von Differentialgleichungen erster Ordnung mit den Anfangsbedingungen $y_1(0) = 1$ und $y_2(0) = 1$.

$$y_1' = y_1 - y_2$$

$$y_2' = 4y_1 - 3y_2$$

- a) Ist das System linear? Sind die Koeffizienten konstant? Lösen Sie dieses System nach dem Einsetzverfahren und berücksichtigen Sie die Vielfachheit der Nullstellen des charakteristischen Polynoms.
 50 Punkte
- b) Lösen Sie das System nach dem Matrixverfahren..

50 Punkte