L2. Introduction to General Regression Analysis

Yonghui Zhang

School of Economics, RUC

October 12, 2020

Reading

- Chapter 2 Econometrics (Hansen, 2020)
- (If necessary) Chapters 1-6 *Introduction to Econometrics* (Hansen, 2020)

Outline

- Conditional distribution and other features
- Basic regression analysis with conditional mean
- Linear regression and best linear predictor
- Multivariate normality
- Causal Effects

Basic notation

- Let Z = (Y, X')' denote a $(k+1) \times 1$ random vector (rc) where Y is a scalar random variable (rv) and X is a $k \times 1$ r.c..
- Let f(x, y) denote the joint probability density function (pdf) of X and Y.
- Let $f_X(x)$ denote the marginal pdf of X and $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$ denote the conditional pdf of Y given X = x
- Suppress the subscripts and write $f_X(x)$ and $f_{Y|X}(y|x)$ as f(x) and f(y|x), respectively.
- We follow the tradition and study f(y|x) through the study of its corresponding *moments*.

Conditional mean and variance

Conditional mean (before 1982):

$$E(Y|x) = E(Y|X = x) = \int yf(y|x) dx \text{ or } \sum_{i=1}^{\infty} y_i f(y_i|x)$$

Conditional variance (Engle, 1982):

$$Var(Y|x) = Var(Y|X = x)$$

$$= E\left\{ [Y - E(Y|x)]^2 | x \right\}$$

$$= \int [y - E(Y|x)]^2 f(y|x) dy$$

$$= E(Y^2|x) - [E(Y|x)]^2$$

Conditional skewness and kurtosis

Conditional skewness

$$s(Y|x) = \frac{E\{[Y - E(Y|x)]^3 | x\}}{[Var(Y|x)]^{3/2}}$$

Conditional kurtosis

$$\kappa(Y|x) = \frac{E\left\{ \left[Y - E\left(Y|x\right) \right]^4 | x \right\}}{\left[\operatorname{Var}\left(Y|x\right) \right]^2}$$

Conditional skewness and kurtosis

- Conditional skewness and kurtosis are widely used in finance. For example,
 - Harvey, C.R and Siddique, A. 1999. Autoregressive conditional skewness. JFQA.
 - Harvey, C.R and Siddique, A. 2000. Conditional skewness in asset pricing tests. JOF.
 - Jondeau, E., and Rockinger, M. 2003. Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements. JEDC.
 - Ghysels, E., 2014. Conditional skewness with quantile regression models: SoFiE Presidential Address and a Tribute to Hal White. JFEc.
 - Langlois, H, 2020. Measuring skewness premia. JFE.
 - Jondeau, E., Zhang, Q., and Zhu, X. 2019. Average skewness matters.
 JFE.

Conditional skewness and kurtosis

 Stein, R., 2019. Why Does Skewness Matter? Ask Kurtosis. Working paper.

Abstract I investigate the relationship between measures of skewness and expected stock returns. Forcing the data to fit a linear model, past research finds only a negative relationship between these variables. Using a novel methodology that endogenously estimates breakpoints in the relationship between two variables, I find three distinct zone. Expected returns are decreasing in skewness, but only for a region of relatively low absolute values of skewness. For distributions which are highly left- or right-skewed, the relationship is actually positive. Moreover, I find that kurtosis plays a major role in mediating this relationship. Adding measures of the fourth moment to all models tested turns all skewness coefficients negative, and most statistically insignificant. Relying on probability theory, I provide a theoretical framework that supports all empirical findings.

Unconditional Moments

• Remarks. Recall the *unconditional* moments

$$\mu = E(Y),$$
 $\sigma^2 = \operatorname{Var}(Y) = E[(Y - \mu)^2]$
 $skewness = \frac{E[(Y - \mu)^3]}{\sigma^3},$
 $kurtosis = \frac{E[(Y - \mu)^4]}{\sigma^4}.$

Conditional Quantile

- Since Koenker and Basset (1978), conditional quantile function plays an important role in econometrics.
- The τ th conditional quantile function (CQF) of Y given X=x is defined as

$$Q_{\tau}\left(x
ight) = \inf\left\{y: F\left(y|x
ight) \geq \tau\right\}$$

= $F^{-1}\left(\tau|x
ight)$ when the inverse function exists.

- Clearly, $P(Y \leq Q_{\tau}(x) | X = x) = \tau$.
- When $\tau = 1/2$, $Q_{1/2}(x)$ is the conditional median.

Law of Iterated Expectations

• The key object in econometrics is E(Y|X). Why?

Definition (Regression function)

E(Y|X) is called the regression function (conditional mean) of Y given X.

Here is the first important property of the conditional mean:

Lemma (Law of Iterated/Double Expectations, LIE)

If
$$E|Y| < \infty$$
 and $E|g(X, Y)| < \infty$,

(i)
$$E[E(Y|X)] = E(Y)$$
;

(ii)
$$E\left\{ E\left[g\left(X,Y\right) \left| X\right] \right\} = E\left[g\left(X,Y\right) \right];$$

(iii)
$$E[E(Y|X,Z)|X] = E(Y|X)$$
.

Law of Iterated Expectations

Proof of LIE (ii).

Note: (i) is a special case of (ii) with g(X, Y) = Y. Assume that (X, Y)has a joint pdf f(x, y). Then

$$Eg(X,Y) = \int \int g(x,y) f(x,y) dxdy$$

$$= \int \int g(x,y) f(y|x) f(x) dxdy$$

$$= \int \left[\int g(x,y) f(y|x) dy \right] f(x) dx$$

$$= \int E[g(X,Y)|x] \cdot f(x) dx$$

$$= E\{E[g(X,Y)|X]\}$$

Law of Iterated Expectations

Proof of LIE (iii).

$$E[E(Y|X,Z)|X] = \int E(Y|X,z) \cdot f(z|X) dz$$

$$= \int \left[\int yf(y|X,z) dy \right] \cdot f(z|X) dz$$

$$= \int \int y \frac{f(y,X,z)}{f(X,z)} \cdot \frac{f(X,z)}{f(X)} dy dz$$

$$= \int y \left[\frac{\int f(y,X,z) dz}{f(X)} \right] dy$$

$$= \int y \frac{f(y,X)}{f(X)} dy = \int yf(y|X) dy = E(Y|X).$$

L2. Introduction to General Regression Analy:

Conditioning Theorem

Theorem (Conditioning Theorem)

If $E|Y| < \infty$, then

$$E[g(X) Y|X] = g(X) E(Y|X).$$

If in addition $E\left|g\left(X\right)\right|<\infty$ then

$$E[g(X) Y] = E[g(X) E(Y|X)].$$

Conditional mean

Example (The return of education)

Let
$$Y = wage$$
, $X = education$, $G = gender$ (male or female). Then

$$E(Y|X = High School)$$

$$= E(Y|X = HS, G = M) \cdot Pr(M|X = HS)$$

$$+E(Y|X = HS, G = F) \cdot Pr(F|X = HS)$$

$$= E[E(Y|X = HS, G)]$$

Conditional mean is optimal in MSE

Definition (Mean squared error, MSE)

Let g(X) be a predictor of Y. The mean squared error of g(X) is

$$MSE(g) = E[Y - g(X)]^{2}$$
.

Theorem (The optimality of E(Y|X))

$$E(Y|X) = \underset{g \in \mathcal{G}}{\operatorname{argminMSE}}(g) = \underset{g \in \mathcal{G}}{\operatorname{argmin}} E[Y - g(X)]^{2}$$

where ${\cal G}$ is the space of all measurable and square-integrable functions:

$$\mathcal{G} = \left\{ g : \int g(x)^2 f(x) dx < \infty \right\}.$$

Conditional mean is optimal in MSE

Proof of the optimality of conditional mean.

$$MSE(g) = E\left[\underbrace{Y - E(Y|X)}_{Y - E(Y|X)} + \underbrace{E(Y|X) - g(X)}_{Y - E(X)}\right]^{2} \\
= E\left[Y - E(Y|X)\right]^{2} + E\left[E(Y|X) - g(X)\right]^{2} \\
+ 2E\left\{\left[Y - E(Y|X)\right] \cdot \left[E(Y|X) - g(X)\right]^{2}\right\} \\
= E\left[Y - E(Y|X)\right]^{2} + E\left[E(Y|X) - g(X)\right]^{2} \\
+ 2E\left\{E\left[(Y - E(Y|X))(E(Y|X) - g(X))|X\right]\right\} \text{ (LIE)} \\
= E\left[Y - E(Y|X)\right]^{2} + E\left[E(Y|X) - g(X)\right]^{2} \\
+ 2E\left\{\underbrace{E\left[(Y - E(Y|X))|X\right]}_{=0} \cdot (E(Y|X) - g(X))\right\} \\
\ge E\left[Y - E(Y|X)\right]^{2}$$

Conditional mean is optimal in MSE

Remarks:

- The above theorem states the **optimality** of E (Y|X), which is the second important property of conditional mean.
 The MSE exitation is one of the most require exitation to evaluate how.
- ② The MSE criterion is one of the most popular criteria to evaluate how well a function (g(X)) above can approximate/predict Y.
- Other criteria for prediction in econometrics exist. For example, we will introduce mean absolutely deviation (MAE):

$$\mathtt{MAE}\left(g\right) =E\left| Y-g\left(X\right) \right| .$$

The optimizer for MAE (g) is the conditional median function $(Q_{0.5}(X), 0.5 \text{ conditional quantile}).$

Theorem (Variance decomposition formula)

Let X and Y be two rv's and $Var(Y) < \infty$. Then

$$\operatorname{Var}(Y) = \operatorname{Var}(E(Y|X)) + E[\operatorname{Var}(Y|X)].$$

Remarks:

- The variance of Y can be decomposed into two parts: "between group" variation $(\operatorname{Var}(E(Y|X)))$ and "within-group" variation $(E[\operatorname{Var}(Y|X)])$. In some sense, the regressor X is used to determine the "group", or we group the data according to variable X. You can image the case with only one discrete X.
- 2 The first part comes from the randomness of X (E(Y|X) = m(X) is a rv), which is the variance component captured by X.

Proof of variance decomposition formula.

$$Var(Y) = E(Y - EY)^{2}$$

$$= E[Y - E(Y|X) + E(Y|X) - EY]^{2}$$

$$= E\{E[(Y - E(Y|X) + E(Y|X) - EY)^{2} | X]\} \text{ (LIE)}$$

$$= E\{E[(Y - E(Y|X))^{2} | X]\} + E\{E[(E(Y|X) - EY)^{2} | X]\}$$

$$+ E\{E[(Y - E(Y|X)) \cdot (E(Y|X) - EY) | X]\}$$

$$= E[Var(Y|X)] + Var[E(Y|X)] + 0$$

because of
$$E\{E[(Y - E(Y|X))|X] \cdot (E(Y|X) - EY)\} = E\{0 \cdot (E(Y|X) - EY)\} = 0.$$

One important implication of variance decomposition formula is the following theorem.

Theorem

If
$$E(Y^2) < \infty$$
, then

$$Var(Y) \ge Var[Y - E(Y|X_1)] \ge Var[Y - E(Y|X_1, X_2)].$$

Proof.

Hint. (i)
$$\operatorname{Var}\left[Y - E\left(Y|X_{1}\right)\right] = E\left[Y - E\left(Y|X_{1}\right)\right]^{2} = E\left\{E\left[\left[Y - E\left(Y|X_{1}\right)\right]^{2}|X_{1}\right]\right\} = E\left[\operatorname{Var}\left(Y|X_{1}\right)\right].$$
 (ii) Let $A = Y - E\left(Y|X_{1}\right)$, and check $A - E\left(A|X_{1}, X_{2}\right) = Y - E\left(Y|X_{1}, X_{2}\right).$

Oct/2020

Remarks:

- You can also prove the above claim from the right hand side (RHS) to the left hand side (LHS); it is left as an exercise.
- ② The ratio can be explained by X is given by

$$\frac{\operatorname{Var}\left(E\left(Y|X\right)\right)}{\operatorname{Var}\left(Y\right)}.$$

Clearly, it lies between 0 and 1.

More regressors are used to explain Y, the variance explained by regressors should increase.

Conditional Mean Regression Equation

Definition (Conditional mean regression function)

Let

$$m(X) = E(Y|X)$$
 and $\varepsilon = Y - m(X)$.

Then we obtain the following regression equation

$$Y = m(X) + \varepsilon$$

where ε is called the regression disturbance/error term or conditional mean error, which satisfies $E\left(\varepsilon|X\right)=0$ because of

$$E(\varepsilon|X) = E(Y - m(X)|X) = E(Y|X) - m(X) = 0.$$

Conditional Mean Regression Equation

Remarks:

- E(Y|X) can be used to *predict* the mean value of Y using the information of X.
- $E\left(\varepsilon|X\right)=0$: there is no systematic bias in the above predictor. It further implies that
 - $E(\varepsilon) = 0$ by the LIE.
 - $E(g(X)\varepsilon) = 0$ and $E(X\varepsilon) = 0$.
- Nothing about higher order conditional moments of Y or ε given X.

$$\operatorname{Var}\left(Y|X\right)=\operatorname{Var}\left(\varepsilon|X\right)=\sigma^{2} \text{ or } \sigma^{2}\left(X\right).$$

Both conditional homoskedasticity or heteroskedasticity are allowed.

Conditional Mean Regression Equation

Let us look at the following example where the conditional variance is of the main interest (degenerated first order characteristics).

Example (Autoregressive conditional heteroskedasticity, ARCH)

Suppose $\varepsilon=Z\sqrt{\alpha_0+\alpha_1X^2}$, where Z and X are independent, $E\left(Z\right)=0$ and $\operatorname{Var}\left(Z\right)=1$. Then

$$E(\varepsilon|X) = E\left(Z\sqrt{\alpha_0 + \alpha_1 X^2}|X\right)$$
$$= E(Z|X)\sqrt{\alpha_0 + \alpha_1 X^2} = E(Z)\sqrt{\alpha_0 + \alpha_1 X^2} = 0$$

and

$$\begin{array}{lcl} \operatorname{Var}\left(\varepsilon|X\right) & = & E\left(\varepsilon^2|X\right) - \left[E\left(\varepsilon|X\right)\right]^2 = E\left[Z^2\left(\alpha_0 + \alpha_1 X^2\right)|X\right] - 0 \\ & = & E\left(Z^2\right)\left(\alpha_0 + \alpha_1 X^2\right) = \alpha_0 + \alpha_1 X^2. \end{array}$$

- In general, economic theory cannot predict the functional form of m(X) = E(Y|X);
- In the classical econometrics, it is frequently assumed that E(Y|X) is a function of X and a vector of unknown parameters β :

$$m(X, \beta)$$
 — a nonlinear function of β

In most case, m is specified as an *affine* function of X:

$$m(x,\beta) = x'\beta = \sum_{l=1}^{k} x_l \beta_l.$$

• Actually, $m(\cdot)$ can also be estimated *nonparametrically* (kernel method, sieve method, k-nearest-neighbor\KNN, neural network, deep learning,...).

Definition (Affine function)

Let $x=(x_1,\cdots,x_k)'$ and $\beta=(\beta_1,\cdots,\beta_k)'$. The class of affine functions is

$$\mathcal{A} = \{ m : m(x) = x'\beta = \sum_{l=1}^{k} x_l \beta_l, \beta_l \in \mathbb{R} \}.$$

Theorem (Best linear least square (LS) predictor)

Let Y and X be rv's such that $E\left(Y^2\right)<\infty$ and E(XX') is non-singular. Then the best linear least squares (LS) predictor that solves the minimization problem

$$\min_{m \in \mathcal{A}} E[Y - m(X)]^{2} = \min_{\beta \in \mathbb{R}^{k}} E[Y - X'\beta]^{2}$$

is the linear function $m^*(x) = x'\beta^*$ with $\beta^* = [E(XX')]^{-1} E(XY)$ being

Proof of best linear projection.

$$S(\beta) = E(Y - X'\beta)^2 = E(Y^2) + \beta' E(XX') \beta - 2E(YX') \beta$$

which is quadratic form of β . Take the FOC (first order condition) and get

$$\frac{\partial S(\beta)}{\partial \beta} = 2E(XX')\beta - 2E(XY) = 0.$$

It leads to $E(XX')\beta^* - E(XY) = 0$ and $\beta^* = [E(XX')]^{-1}E(XY)$. Note the SOC (second order condition) is

$$\frac{\partial S(\beta)}{\partial \beta \partial \beta'} = 2E(XX') > 0 \text{ (p.d.)}$$

Then β^* is a well-defined global minimizer.

Remarks

1 The conditions that $E(Y^2) < \infty$ and E(XX') is non-singular can ensure E(XY) is well defined by the Cauchy-Schwarz (CS) inequality. When X is a scalar rv. we have

$$E(XY) \le \left\{ E\left(X^2\right) E\left(Y^2\right) \right\}^{1/2}$$
.

- In almost all regressions, an intercept is included in the regression. That is $X = (1, X_2, \cdots, X_{\nu})^T$.
- 1 In general, $m^*(X) = X'\beta^* \neq E(Y|X)$ unless E(Y|X) is indeed linear in X.

Definition (Linear regression model)

The specification

$$Y = X'\beta + U, \ \beta \in \mathbb{R}^k$$

is called a linear regression model (LRM), where U is called the disturbance or error term of the model.

Theorem

Let Y and X be rv's such that $E\left(Y^2\right)<\infty$ and E(XX') is non-singular. Let

$$Y = X'\beta + U, \beta \in \mathbb{R}^k$$
.

Let β^* be the best linear LS approximation coefficients. Then

$$\beta = \beta^*$$
 if and only if $E(XU) = 0$.

Proof.

(Sufficiency) First, we prove the "if" part. If E(XU) = 0, then

$$E(XU) = E[X(Y - X'\beta)] = E[XY] - E[XX']\beta = 0.$$

It follows that $\beta = [E(XX')]^{-1} E(XY) = \beta^*$. (Necessity). Exercise.

• The above theorem holds no matter whether $E\left(Y|X\right)$ is linear or nonlinear in X. This is important because even if $E\left(Y|X\right)$ is nonlinear in X we can always write

$$Y = X'\beta + U$$

for some $\beta \in \mathbb{R}^k$ such that the orthogonality condition E(XU) = 0 holds. (Note that E(XU) = 0 is weaker than E(U|X) = 0)

• Reminder. The LRM is an artificial specification. Nothing in economics ensures that $E(Y|X) = X'\beta_0$ for some $\beta_0 \in \mathbb{R}^k$.

Definition (Correct specification in conditional mean)

The LRM

$$Y = X'\beta + U, \ \beta \in \mathbb{R}^k$$

is correctly specified for E(Y|X) if

$$E(Y|X) = X'\beta_0$$

for some $\beta_0 \in \mathbb{R}^k$.

- If $E(Y|X) \neq X'\beta$ for all $\beta \in \mathbb{R}^k$ then we say that the above LRM is misspecified for E(Y|X). (or $E(Y|X) \notin \mathcal{A}$: the class of affine functions)
- When the LRM is correctly specified, β_0 exists and is called the true parameter of interest.

Theorem

```
If the LRM Y=X'\beta+U is correctly specified for E(Y|X), then (i) Y=X'\beta_0+\varepsilon for some \beta_0\in\mathbb{R}^k where E(\varepsilon|X)=0; (ii) \beta_0=\left[E(XX')\right]^{-1}E(XY)=\beta^*.
```

Proof.

(i) The correct specification of the LRM $Y = X'\beta + U$ implies that

$$E(Y|X) = X'\beta_0$$
 for some $\beta_0 \in \mathbb{R}^k$.

Let $\varepsilon = Y - X'\beta_0$. Then

$$E(\varepsilon|X) = E(Y - X'\beta_0|X) = E(Y|X) - X'\beta_0 = 0.$$

(ii)
$$E(\varepsilon X) = E[E(\varepsilon X|X)] = E[E(\varepsilon|X)X] = 0$$
. Then

$$0 = E(\varepsilon X) = E[X(Y - X'\beta_0)] = E[XY] - E[XX']\beta_0 = 0.$$

It follows that $\beta_0 = [E(XX')]^{-1} E(XY)$.

Misspecification

• If the LRM $Y = X^T \beta + U$ is *misspecified*, we can have

$$E(XU) = 0$$
 but $E(U|X) \neq 0$.

Then

$$E(Y|X) = X'\beta + E(U|X)$$

and we usually cannot estimate E(Y|X) through the estimation of β .

- If one is interested in the estimation of $E\left(Y|X\right)$, a test for the correct specification of the LRM can be based on checking whether $E\left(U|X\right)=0$ or not.
- Keep in mind. E(U|X) = 0 is testable, but E(UX) = 0 is generally not testable.

Misspecification

Example

Consider the following data generating process (DGP):

$$Y=1+X_2+0.5\left(X_2^2-1
ight)+arepsilon$$
 where X_2 and $arepsilon$ are independent $N\left(0,1
ight)$.

- (i) Find $E(Y|X_2)$;
- (ii) Suppose a LRM: $Y = \beta_1 + \beta_2 X_2 + U$ is specified, where
- $\beta = (\beta_1, \beta_2)'$. Find the best LS approximation coefficient β^* and the
- linear LS predictor $m^*(X) = X'\beta^*$;
- (iii) Let $U = Y X'\beta^*$. Show that E(XU) = 0;
- (iv) Check whether $\frac{d}{dX_2}E(Y|X_2)=\beta_2^*$, the second element in β^* .

Omitted Variable Bias

Consider the long regression as

$$Y = \beta_1 X_1 + \beta_2 X_2 + U,$$

and the short regression as

$$Y = \gamma_1 X_1 + \epsilon$$

where U and ϵ are the projection errors, respectively. If β_1 in the long regression is the parameter of interest, omitting X_2 as in the short regression will render omitted variable bias (meaning $\gamma_1 \neq \beta_1$) unless $E\left(X_1X_2\right) = 0$.

Note that

$$\gamma_{1} = [E(X_{1}^{2})]^{-1} E(X_{1}Y)
= [E(X_{1}^{2})]^{-1} E[X_{1}(\beta_{1}X_{1} + \beta_{2}X_{2} + U)]
= \beta_{1} + \beta_{2} [E(X_{1}^{2})]^{-1} E(X_{1}X_{2}) \neq \beta_{1}$$

Misspecification

Final remarks on linear regression model:

- Most economic theories may have some implications on and only on the conditional mean of the underlying economic variable Y.
 E(Y|X) is important from a statistical perspective: it is the optimal predictor of Y under the MSE criterion.
- On the other hand, even though economic theory may suggest a nonlinear/linear relationship, it doesn't give a completely specified function form for $E\left(Y|X\right)$.
- The commonly-used linear regression model (LRM) uses a linear function to approximate $E\left(Y|X\right)$.
 - If the LRM is correctly specified, $\frac{\partial}{\partial X_j} E\left(Y|X\right) = \beta_j$, the partial (marginal) effect of X_j on Y, has a meaningful economic interpretation.
 - If the LRM is incorrectly specified, the above interpretation is invalid anymore. (only in average sense)
 - Therefore, we must be very cautious about the economic interpretations of the linear regression coefficients.

Definition (Multivariate normality)

Note that an $n \times 1$ rv

$$X \sim N(\mu, \Sigma)$$

if its pdf is given by

$$f(x) = (2\pi)^{-n/2} \left| \det(\Sigma) \right|^{-1/2} \exp\left\{ -\frac{(x-\mu)' \Sigma^{-1} (x-\mu)}{2} \right\}.$$

• Partition X as $X = (X'_1, X'_2)'$, where X_1 and X_2 are n_1 - and n_2 -dimensional, respectively. Partition the mean and variance of X conformably as:

$$\mu=\left(egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight) \ ext{and} \ \Sigma=\left(egin{array}{cc} \Sigma_{11} & \Sigma_{12} \ \Sigma_{12}' & \Sigma_{22} \end{array}
ight)$$

Let A and b be respectively a nonrandom matrix and nonrandom vector, each conformable with X.

The following theorem shows some important properties of multivariate normality

Theorem

If

$$\mathbf{X} = \left(\begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \end{array}\right) \sim \mathbf{N} \left[\left(\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array}\right), \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12}^T & \boldsymbol{\Sigma}_{22} \end{array}\right) \right]$$

then

(i)
$$AX + b \sim N(A\mu + b, A\Sigma A')$$
;

(ii)
$$(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi^2 (n)$$
;

(iii)
$$X_1 \perp X_2$$
 if and only if $\Sigma_{12} = 0$;

$$(iv)$$
 $X_1|X_2\sim N\left(\mu_1+\Sigma_{12}\Sigma_{22}^{-1}\left(X_2-\mu_2
ight)$, $\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}'
ight)$.

Proof.

Proof of part (iv). Consider a random vector:

$$\left(\begin{array}{c} X_1 - \Sigma_{12}\Sigma_{22}^{-1}X_2 \\ X_2 \end{array}\right) = \left(\begin{array}{cc} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{array}\right) \left(\begin{array}{c} X_1 \\ X_2 \end{array}\right)$$

which is normal as a linear transformation of X. It is easy to verify that the two sub-vectors $X_1-\Sigma_{12}\Sigma_{22}^{-1}X_2$ and X_2 are uncorrelated and thus independent. Now, write

$$X_1 = (X_1 - \Sigma_{12}\Sigma_{22}^{-1}X_2) + \Sigma_{12}\Sigma_{22}^{-1}X_2$$

where the first term is independent of X_2 and its conditional distribution given X_2 is the unconditional distribution, which is normal with mean $\mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\mu_2$ and variance $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^T$. The second term is a constant when X_2 is given, which only shifts the mean of the conditional distribution of X_1 given X_2 . Thus (iv) follows.

• For the bivariate normal example,

$$f(x) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \times \exp\left\{-\frac{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} - 2\rho\frac{x_{1}-\mu_{1}}{\sigma_{1}}\frac{x_{2}-\mu_{2}}{\sigma_{2}} + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}{2(1-\rho^{2})}\right\}$$

where
$$E\left(X\right)=\left(\mu_1,\mu_2\right)'$$
 and $\operatorname{Var}\left(X\right)=\left(egin{array}{cc} \sigma_1^2 &
ho\sigma_1\sigma_2 \\
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight)$

Then

$$E(X_1|X_2=x) = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2)$$
 $Var(X_1|X_2=x) = \sigma_1^2(1-\rho^2).$

• A variable X_1 can be said to have a causal effect on the response variable Y if the latter changes when all other inputs are held constant. To make this precise, we need a mathematical formulation. Write a full model for the response variable Y as

$$Y=h\left(X_{1},X_{2}.u\right)$$

where X_1 and X_2 are the observed variables, u is an $l \times 1$ unobserved random factor, and h is a functional relationship.

- This framework is called the potential outcomes framework.
- We define the causal effect of X₁ within this model as the change in Y due to a change in X₁ holding the other variables X₂ and u constant.

Definition

The causal effect of X_1 on Y is

$$C(X_1, X_2, u) = \frac{\partial h(X_1, X_2, u)}{\partial X_1},$$

the change in Y due to a change in X_1 , holding X_2 and u constant.

 Sometimes it is useful to write this relationship as a potential outcome function

$$Y(X_1) = h(X_1, X_2.u)$$

where the notation implies that $Y(X_1)$ is holding X_2 and u constant

Treatment effect of a binary regressor X_1

ullet $X_1=1$ -treatment and $X_1=0$ -non-treatment. Then

$$Y(0) = h(0, X_2, u)$$

$$Y(1) = h(1, X_2, u)$$

The causal effect of treatment for the individual is the change in Y
due to treatment while we hold both X₂ and u constant:

$$C(X_2, u) = Y(1) - Y(0),$$

which is random (a function of X_2 and u) as the potential outcomes Y(0) and Y(1) differ across individuals.

• Problems: (i) we can **only observe the realized value** Y = Y(0) if $X_1 = 0$, = Y(1) if $X_1 = 1$; (ii) As the causal effect **varies across individuals** and is not observable it cannot be measured on the individual level.

Average causal effects

Definition

The average causal effect of X_1 on Y conditional on $X_2 = x_2$ is

ACE
$$(x_1, x_2)$$
 = $E[C(X_1, X_2, u) | X_1 = x_1, X_2 = x_2]$
 = $\int_{\mathbb{R}^l} \frac{\partial h(x_1, x_2, u)}{\partial x_1} f(u|x_1, x_2) du$

where $f(u|x_1, x_2)$ is the conditional density of u given x_1 and x_2 .

Question

What is the relationship between the average causal effect ACE (x_1, x_2) and the regression derivative $\frac{\partial m(x_1, x_2)}{\partial x_1}$?

First, note that

$$m(x_1, x_2) = E(h(x_1, x_2, u) | x_1, x_2)$$

= $\int_{\mathbb{R}^l} h(x_1, x_2, u) f(u | x_1, x_2) du$

Second, we have

$$\begin{split} \frac{\partial m(x_1,x_2)}{\partial x_1} &= \int_{\mathbb{R}^l} \frac{\partial h(x_1,x_2,u)}{\partial x_1} f\left(u|x_1,x_2\right) du \\ &+ \int_{\mathbb{R}^l} h(x_1,x_2,u) \frac{\partial f(x_1,x_2,u)}{\partial x_1} du \\ &= \operatorname{ACE}\left(x_1,x_2\right) + \int_{\mathbb{R}^l} h(x_1,x_2,u) \frac{\partial f(x_1,x_2,u)}{\partial x_1} du \end{split}$$

When $\frac{\partial f(x_1,x_2,u)}{\partial x_1}=0$, namely, the conditional density of u given (X_1,X_2) does not depend on X_1 , the regression derivative equals the ACE.

Definition (Conditional Independence Assumption (CIA))

Conditional on X_2 , the rv X_1 and u are statistically independent.

• Under this assumption, $f\left(u|x_1,x_2\right)=f\left(u|x_2\right)$ and thus $\frac{\partial f(x_1,x_2,u)}{\partial x_1}=0.$

Theorem

The Conditional Independence Assumption implies

$$\frac{\partial m(x_1, x_2)}{\partial x_1} = ACE(x_1, x_2)$$

and the regression derivative equals the average causal effect for X_1 on Y conditional on X_2 .

Exercises

Due: October 19, 18:00PM (No LATE WILL BE ACCEPTED!)

• Let X be a uniform random variable on [0,1], i.e., its pdf is $f(x) = 1_{\{0 \le x \le 1\}}$, where 1_A is the usual indicator function. Suppose Y is binary variables such that

$$P(Y = 1|X = x) = x \text{ and } P(Y = 0|X = x) = 1 - x.$$

Calculate E(Y) and Var(Y) by the LIE and variance decomposition formula.

Wansen Econometrics. Ex 2.1, 2.2, 2.5, 2.6, 2.10-2.14, 2.16, 2.21.

