CANS2D モデルパッケージ md_shkref

反射衝擊波

2006. 1. 9.

1 はじめに

このモデルパッケージは、2 次元平面内での非線形波面 (衝撃波・膨張波・接触不連続)の相互作用を解くためのものである。基本的には、Woodward & Colella (1984) の計算に倣っている。

2 仮定と基礎方程式

流体は非粘性・圧縮性流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ 、 $V_z=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y についての 2 次元 Euler 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}(\rho V_x^2 + p) + \frac{\partial}{\partial y}(\rho V_x V_y) = 0$$
 (2)

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}(\rho V_x V_y) + \frac{\partial}{\partial y}(\rho V_y^2 + p) = 0$$
(3)

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 \right) + \frac{\partial}{\partial x} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x \right] + \frac{\partial}{\partial y} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y \right] = 0 \tag{4}$$

である。ここで、 γ は比熱比。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は計算領域の y 方向の大きさ、 $C_{\rm S0}$ は初期一様状態の音速。密度は初期一様状態の値 ρ_0 の $1/\gamma$ 倍で無次元化する。以下、無次元化した変数を使う。

4 パラメータ・初期条件・計算条件・境界条件

 $0 < x < X_{
m bnd}$ 、 $0 < y < Y_{
m bnd}$ の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。衝撃波上流側(静止流体側) $x > (-\tan heta_{
m in})y + X_{
m edge}$ では

$$\rho = \rho_0 \ (= \gamma$$
で固定)

$$p = p_0$$
 (= 1 で固定)

変数	規格化単位	
x, y	L_0	
V_x, V_y	$C_{ m S0}$	
t	$L_0/C_{\rm S0}$	
ho	$ ho_0$	
p	$ \rho_0 C_{\rm S0}^2 $	

表 1: 変数と規格化単位

$$V_x = 0$$

$$V_y = 0$$

衝撃波下流側(流入流側) $x \leq (-\tan\theta_{\rm in})y + X_{\rm edge}$ では

$$\rho = \rho_1$$

$$p = p_1$$

$$V_x = V_{x1}$$

$$V_y = V_{y1}$$

ここで、流入流の速度は、

$$V_{x1} = MC_{\rm S0}\cos\theta_{\rm in}$$

$$V_{y1} = MC_{\rm S0} \sin \theta_{\rm in}$$

とする。 $C_{\rm S0}=\sqrt{\gamma p_0/\rho_0}$ は静止流体側の音速、 $\theta_{\rm in}$ は流入流の x 軸に対する角度、M は流入流の Mach 数。 ρ_1 、 p_1 、 V_{x1} 、 V_{y1} などは、M で決まる Rankine-Hugoniot 条件をみたすように決める。

パラメータ	値	コード中での変数名	設定サブルーチン名
比熱比 γ	7/5	gm	model
流入流 Mach 数 M	10	rmach	model
流入流角度 $ heta_{ m in}$	-30 度	thetain	model
反射壁縁の位置 $X_{ m edge}$	1/6	xedge	model

表 2: おもなパラメータ

境界条件は、流入流部分は固定値境界。つまり「x=0」と「 $0 < x < X_{\rm in}$ かつ $y=Y_{\rm bnd}$ 」と「 $0 < x < X_{\rm edge}$ かつ y=0」とでは

$$\rho = \rho_1, \quad p = p_1, \quad V_x = V_{x1}, \quad V_y = V_{y1}$$

とする。ただし

$$X_{\rm in} = X_{\rm edge} - \tan \theta_{\rm in} Y_{\rm bnd} + M C_{\rm S0} / \cos \theta_{\rm in}$$

反射壁部分つまり「 $x>X_{\rm edge}$ かつ y=0」では対称境界。それ以外「 $x>X_{\rm in}$ かつ $y=Y_{\rm bnd}$ 」と「 $x=X_{\rm bnd}$ 」とでは自由境界。

計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
境界の位置 x 方向 X_{bnd}	4	_	model
境界の位置 y 方向 $Y_{ m bnd}$	1	_	model
グリッド数 x 方向	489	ix	main
グリッド数 y 方向	129	jx	main
マージン	4	margin	main
終了時刻	0.2	tend	main
出力時間間隔	0.02	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献

Woodward, P., Colella, P., 1984, JCP, 54, 115-173.