$\begin{array}{c} {\bf Energies, \ fluids \ \& \ processes-Laboratory} \\ {\bf HSLU, \ Semester \ 2} \end{array}$

Matteo Frongillo

Last update: February 19, 2025

Contents

1	Introduction to energies, fluids, and processes	:
	1.1 Energy forms	
	1.1.1 Important forms of energy for fluid motion	
	1	
2	_	
2	Fluids as energy carriers	•
	_	:

1 Introduction to energies, fluids, and processes

Energy exists in different forms and can neither be destroyed nor generated, but only transformed.

1.1 Energy forms

• Potential energy: E = mgh

• Kinetic energy: $E = \frac{1}{2}mv^2$

• Thermal energy: $E = mc_p \Delta T$

• Light energy: $E = h\nu$

• Chemical energy: E = mH

• Electrical energy: $E = k \frac{q_1 q_2}{r}$

• Nuclear energy: $E = \Delta mc^2$

• Pressure energy (acoustic): $E = \frac{mp}{\rho}$

1.1.1 Important forms of energy for fluid motion

2 Fluids as energy carriers

2.1 Fluid definition

. . .

2.1.1 Properties of a fluid

Density ρ

Densitiy is a measure of working potential of a fluid:

$$\rho \triangleq \frac{m}{V} \ \left[\frac{kg}{m^3} \right]$$

where:

- m = mass;
- V = volume.

Kinematic viscosity ν

Viscosity is a measure of the specific loss capacity of a fluid:

$$\nu \triangleq \frac{\mu}{\rho} \left[\frac{N \cdot s}{m^2} = Pa \cdot s \right]$$

where:

- $\mu = \text{dynamic viscosity}$
- $\rho = \text{density}$

Remark: $\nu \propto \frac{1}{T}$