

CDR(3): Floating Point representation Lecture #4 – part 2 (Section 2.4 textbook)

Prof. Soraya Abad-Mota, PhD

Learning objectives

After the Floating point sessions students should be able to:

- 1. Describe how are fractional binary numbers interpreted.
- Describe the IEEE floating point standard representation to approximate real numbers.
- Perform conversions between IEEE fp and real numbers in decimal.
- 4. Define and perform the operations of rounding, addition, and multiplication of floating point.
- 5. Define how are floating point numbers represented in C.

Floating Point coverage

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Properties of the computer representation of FP and integers
- Summary

Fractional binary numbers

- What is 1011.101₂?
- ▶ After the "binary point" → negative powers of 2

Fractional Binary Numbers

 $\sum b_k \times 2^k$

k=-j

Fractional binary numbers

- What is 1011.101₂?
 - 1 x 2³ + 0 x 2² + 1 x 2¹ + 1 x 2⁰ = 11_{10} (left of bp) • 1 x 2⁻¹ + 0x2⁻² + 1x2⁻³ = $\frac{1}{2}$ + $\frac{1}{8}$ = $\frac{5}{8}$ (right of bp)
 - 11 5/8 in decimal

Fractional Binary Numbers: Examples

Value

101 11.

Right of the binary point

5 3/4

101.11₂

Representation

2 7/8

10.111₂

 $7/8 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$

3/4 = 1/2 + 1/4

1 7/16

1.01112

7/16 = 1/4 + 1/8 + 1/16

Observations

- Divide by 2 by shifting right (unsigned) (moving binary point to the left)
- Multiply by 2 by shifting left (moving binary point to the right)
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0ε to represent them

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations and their value is approximated ("with increasing accuracy by lengthening the binary representation.").
 - Value Representation
 - 1/3 **0.01010101[01]...**2
 - 1/5 **0.001100110011[0011]...**2
 - 1/10 **0.000110011[0011]...**2

Representable Numbers (2)

- Limitation #2
 - Just one setting of binary point within the w bits (positional notation)
 - Limited range of numbers (very small values? very large?)
 - not very efficient for very large numbers bit pattern with a large number of zeroes
 - Instead, we want to represent numbers of the form
 x * 2^y and just give x and y

Floating Point

- Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats, each computer manufacturer had their own
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining the standard

Floating Point Representation

Numerical Form: (interpretation of bit pattern)

$$(-1)^{s} M \times 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0) or [0,1)
- Exponent E weights value by power of two
- Encoding (how we represent it in the computer)
 - MSB s is sign bit s (1 bit)
 - exp field encodes E (but is not equal to E) (k bits)
 - frac field encodes M (but is not equal to M) (n bits)

s exp frac

Precision options

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

Possible values encoded

The bit representation encodes a value in one of the 3 cases below, determined by *exp* value.

- Case 1: "Normalized" values
- Case 2: "Denormalized" values, to represent +0, -0, and numbers that are very close to 0.0
- Case 3: Special values, for infinity and NaN

1. "Normalized" Values

 $v = (-1)^s M 2^e$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2 (1.0 >= M < 2.0)</p>
 - xxx...x: bits of frac field
 - Minimum when frac = 000...0 (M = 1.0)
 - Maximum when frac = 111...1 (M = 2.0ε)
 - Get extra leading bit (= 1) for "free"

First Normalized Encoding Example

$$v = (-1)^{s} M 2^{E}$$

E = Exp - Bias

Significand

23 bits for frac

Exponent

$$E = 3$$
 $Bias = 127 (k = 8, 2^{k-1} - 1 = 128 - 1)$
 $Exp = 130 = 10000010_2$

Result:

s exp frac

Another Normalized Encoding Example

$$v = (-1)^s M 2^E$$

E = Exp - Bias

Significand

$$M = 1.101101101_2$$

frac= $101101101101_000000000_2$

23 bits for frac

Exponent

$$E = 13$$
 $Bias = 127 (k = 8, 2^{k-1} - 1 = 128 - 1)$
 $Exp = 140 = 10001100_2$

Result:

2. Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Condition: exp = 000...0
- **Exponent value:** E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

3. Special Values

Condition: **exp** = **111**...**1**

- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

