Biológia pre informatikov

Askar Gafurov 22.9.2022

Walther Flemming, 1881

Hlavné postavy

Deoxyribonukleová kyselina (DNA)

Obsahuje genetickú informáciu prenášanú z generácie na generáciu.

Dlhý reťazec nukleotidov z množiny $\{A,C,G,T\}$

(adenín, cytozín, guanín, tymín).

Informácia uložená v symbolickej, digitálnej forme.

Ribonukleová kyselina (RNA)

Blízka príbuzná DNA, tymín T nahradený uracylom U

Proteíny (bielkoviny)

Katalyzujú biochemické reakcie v bunke (enzýmy),

prenášajú signály v rámci bunky/medzi bunkami,

sú dôležité pre stavbu bunky a pohyb.

Reťazec aminokyselín (20 rôznych aminokyselín).

Aká informácia je uložená v DNA?

Gény: Predpisy na tvorbu proteínov a funkčných RNA molekúl.

Riadenie ich expresie: kedy a koľko sa má tvoriť.

Centrálna dogma (Francis Crick 1958,1970)

"The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid."

DNA, chromozómy

DNA: dve komplementárne vlákna, strands (páry A-T, C-G),

v opačnej orientácii (konce sa nazývajú 5' a 3').

Napr. ACCATG je komplementárny s CATGGT.

Tvar dvojitej špirály:

Dvojvláknová štruktúra poskytuje redundanciu, možnosť opravy pri poškodení jedného vlákna.

Pri delení bunky sa dvojvláknová DNA rozdelí a ku každému vláknu sa doplní komplement (DNA replikácia).

Chromozóm: Súvislý úsek dvojvláknovej DNA a podporných proteínov.

Ľudský genóm má 22 párov chromozómov plus dva pohlavné, spolu 3GB.

Technológia: sekvenovanie DNA

- Postup na zisťovanie poradia báz v chromozómoch genómu.
- Chromozómy sa nasekajú na krátke kúsky, každý sa sekvenuje zvlášť napr. Sangerovým sekvenovaním.
 - využíva prírodné enzýmy, napr. DNA polymerázu

Sangerovo sekvenovanie (Sanger sequencing)

Sekvenujeme AGCTAGGACT (zobrazená sprava doľava)

Primer AGT + enzýmy + nukleotidy + modifikované ofarbené nukleotidy

```
Výsledky sekvenovacej reakcie:
```

```
T C A G G A T C G A A G T C C T A G C T C C T A
```

 $\begin{smallmatrix} T \end{smallmatrix} C \begin{smallmatrix} A \end{smallmatrix} G \begin{smallmatrix} G \end{smallmatrix} A \begin{smallmatrix} T \end{smallmatrix} C \begin{smallmatrix} G \end{smallmatrix} A \\ A \begin{smallmatrix} G \end{smallmatrix} T \begin{smallmatrix} C \end{smallmatrix} C \begin{smallmatrix} T \end{smallmatrix} A \begin{smallmatrix} G \end{smallmatrix} C \begin{smallmatrix} T \end{smallmatrix}$

T C A G G A T C G A
A G T C C T

A G T C C T A G

T C A G G A T C G A A G T C

Na géli zoradíme podľa dĺžky:

AGTCCTAGCT AGTCCTAGC

AGTCCTAG

AGTCCTA

 $A\ G\ T\ C\ C\ {\color{red}T}$

AGTCC

AGTC

Odčítaním farieb dostaneme komplementárne vlákno: AGTCCTAGCT

Technológia: sekvenovanie DNA

- Postup na zisťovanie poradia báz v chromozómoch genómu.
- Chromozómy sa nasekajú na krátke kúsky,
 každý sa sekvenuje zvlášť
 napr. Sangerovým sekvenovaním.
 využíva prírodné enzýmy, napr. DNA polymerázu

- Bioinformatický problém: skladanie celej sekvencie z kúskov.
- Dostupnosť genómov umožňuje katalogizovať gény a iné funkčné úseky, hľadať podobnosti a rozdiely medzi druhmi a jedincami.

PCR (polymerase chain reaction)

Zvolíme si dva krátke úseky DNA (primers)

PCR testuje či sú v DNA blízko seba (stovky, tisíce báz)

Ak áno, namnoží úsek medzi nimi

RNA

Ako sa líši od DNA?

- obsahuje ribózu namiesto deoxyribózy
- obsahuje uracil namiesto tymínu (bázy A,C,G,U)
- jednovláknové reťazce, zvyčajne kratšie
- zložitá sekundárna štruktúra: spárované komplementárne úseky

transferová RNA (tRNA)

Translácia

Kodón (trojica nukleotidov) určuje 1 aminokyselinu

Genetický kód

Ala / A	GCT, GCC, GCA, GCG	Leu / L	TTA, TTG, CTT, CTC, CTA, CTG
Arg / R	CGT, CGC, CGA, CGG, AGA, AGG	Lys / K	AAA, AAG
Asn / N	AAT, AAC	Met / M	ATG
Asp / D	GAT, GAC	Phe / F	TTT, TTC
Cys / C	TGT, TGC	Pro / P	CCT, CCC, CCA, CCG
Gln / Q	CAA, CAG	Ser / S	TCT, TCC, TCA, TCG, AGT, AGC
Glu / E	GAA, GAG	Thr / T	ACT, ACC, ACA, ACG
Gly / G	GGT, GGC, GGA, GGG	Trp / W	TGG
His / H	CAT, CAC	Tyr / Y	TAT, TAC
Ile / I	ATT, ATC, ATA	Val / V	GTT, GTC, GTA, GTG
START	ATG	STOP	TAA, TGA, TAG

Proteiny

Reťazce 20 rôznych aminokyselín s rôznymi chemickými vlastnosťami:

Aminokyselina	Postranný reťazec	Jeho vlastnosti
Alanín (A)	-CH3	hydrofóbny
Arginín (R)	-(CH2)3NH-C(NH)NH2	bázický
Asparagín (N)	-CH2CONH2	hydrofilný
Kyselina asparágová (D)	-CH2COOH	kyslý
Cysteín (C)	-CH2SH	hydrofóbny
Kyselina glutámová (E)	-CH2CH2COOH	kyslý
Glutamín (Q)	-CH2CH2CONH2	hydrofilný
Glycín (G)	-H	hydrofilný
Histidín (H)	-CH2-C3H3N2	bázický
Izoleucín (I)	-CH(CH3)CH2CH3	hydrofóbny
Leucín (L)	-CH2CH(CH3)2	hydrofóbny
Lyzín (K)	-(CH2)4NH2	bázický
Metionín (M)	-CH2CH2SCH3	hydrofóbny
Fenylalanín (F)	-CH2C6H5	hydrofóbny
Prolín (P)	-CH2CH2CH2-	hydrofóbny
Serín (S)	-CH2OH	hydrofilný
Treonín (T)	-CH(OH)CH3	hydrofilný
Tryptofán (W)	-CH2C8H6N	hydrofóbny
Tyrozín (Y)	-CH2-C6H4OH	hydrofóbny
Valín (V)	-CH(CH3)2	hydrofóbny

Štruktúra proteínov

Myoglobín, prvý proteín so známou štruktúrou (Kendrew a kol. 1958).

Proteíny sa vyskytujú poskladané v určitej stabilnej štruktúre, prípadne prechádzajú medzi niekoľkými stavmi.

Hydrofóbne aminokyseliny neinteragujú s vodou, zväčša sa vyskytujú vo vnútri štrukúry.

Štruktúra proteínu určuje jeho funkciu.

Regulácia expresie

Bunky v rôznych tkanivách toho istého organizmu zdieľajú ten istý genóm, vyzerajú a fungujú však veľmi rôzne.

Niektoré proteíny sa tvoria len za určitých okolností, alebo v premenlivom množstve.

Regulácia začatia transkripcie pomocou transkripčných faktorov:

Bioinformatický problém: zisti, ktoré faktory ovplyvňujú ktorý gén, kde presne sa viažu.

Technológia: microarray

Meranie množstva mRNA prítomnej v bunke pre **veľa génov** naraz. Zopakujeme za rôznych podmienok, študujeme korelácie medzi génmi. Môžu byť dôsledkom spoločného regulátora (transkripčného faktoru).

Bioinformatický problém:

niekoľko ko-regulovaných génov, nájdi motív, ku ktorému sa môže viazať spoločný transkripčný faktor (motif finding)

Príklad microarray dát

Pomer expresie génu v meranej a kontrolnej vzorke fg/bg

Červená: fg>bg

Zelená: fg<bg

517 génov

19 experimentov

Mutácie DNA

V DNA občas dochádza k zmenám, mutáciám (napr. pod vplyvom prostredia, či chybou pri replikácii).

Typy mutácií:

substitúcia, substitution (jedna báza sa zmení na inú), inzercia, insertion (vloží sa niekoľko nových báz), delécia, deletion (vynechá sa niekoľko báz), zmeny väčšieho rozsahu (napr. translokácie).

Bioinformatické problémy:

Ktoré sekvencie vznikli z spoločného predka mutovaním?
(hľadanie homológov, homology search)
Ktoré bázy v dvoch príbuzných sekvenciách si navzájom zodpovedajú?
(sequence alignment, zarovnávanie sekvencií)

Populačná genetika

Mutácie sa šíria v populácii z rodičov na potomkov.

Nebezpečné mutácie rýchlejšie vymiznú, prospešné sa rýchlejšie ujmú (prírodný výber, natural selection).

Polymorfizmus: genetický rozdiel medzi organizmami v rámci druhu.

Vedie k rozdielnosti vo fenotype, napr. výzor, dedičné choroby.

Sekvenovaním viacerých jedincov toho istého druhu získame prehľad o polymorfizme.

Bioinformatický problém:

Nájdi polymorfizmus zodpovedný za určitý znak (napr. chorobu).

Evolúcia

Vznik nových druhov (speciation):

Po rozdelení populácie na viacero oddelených častí nedochádza k výmene genetického materiálu.

Hromadia sa zmeny až kým nie je možné párenie: vznik nových druhov.

Bioinformatický problém:

Na základe dnešných sekvencií urči strom reprezentujúci vývoj druhov (fylogenetický strom, phylogenetic tree)

Prokaryotické vs. eukaryotické organizmy

Prokaryoty: baktérie, jednoduché jednobunkové organizmy.

Nemajú jadro (DNA priamo v cytoplazme),

majú kruhový chromozóm (a prípadné kratšie plasmidy),

jednoduchšia štruktúra génu atď.

Eukaryoty: živočíchy, rastliny, huby, niektoré jednobunkové organizmy.

Bunka obsahuje jadro s DNA, viacero organel.

Mitochondrie a chloroplasty sú pohltené prokaryoty, ktoré sa stali časťou eukaryotickej bunky.

Dlhší genóm v niekoľkých lineárnych chromozómoch.

Modelové organizmy

Dôležité pre biologický výskum, vieme o nich viac než o príbuzných druhoch. Poznatky širšie aplikovateľné.

Escherichia coli: baktéria žijúca v črevách. Jednoduchá manipulácia, delenie každých 20 min. Štúdium základných životných procesov: DNA replikácia, expresia génov, atď. Genóm s 4000 génmi, 4.6MB.

Saccharomyces cerevisiae: pekárske droždie. Jednoduchý eukaryotický organizmus. Genóm s 6000 génmi, 13MB. Delenie každé 2 hodiny. Štúdium špecificky eukaryotických javov.

Modelové organizmy

Arabidopsis thaliana: malá kvitnúca rastlina, 6-týždňový životný cyklus. Skúmanie javov špecifických pre rastliny.

Caenorhabditis elegans: malý červ, nematód, žijúci v pôde. Štúdium vývinu (ontogenéza, development), diferenciácie buniek.

Drosophila melanogaster: vínna muška. Štúdium genetiky, gény riadiace vývin jedinca.

Stavovce: žaba Xenopus laevis (veľké, ľahko manipuľovateľné vajíčka), akvarijná ryba Danio rerio (priehľadné embryá), myš Mus musculus (existuje veľa plemien so špeciálnymi vlastnosťami).

Dostupné dáta

- DNA sekvencie: celé genómy, ich časti
- Ich anotácia: súradnice génov a iných funkčných častí
- Sekvencie RNA, ich štruktúra
- Sekvencie proteínov, ich funkcia a štruktúra
- Merania množstva RNA/proteínu v bunke

• ...

Dáta založené na experimentoch alebo výsledky výpočtových metód Veľa chýb (v oboch prípadoch)

Ďalšie informácie

- Zvelebil, Baum: Understanding Bioinformatics, kap. 1
- Vysokoškolské učebnice molekulárnej biológie
- Anglická wikipédia
- Tutoriály na stránke predmetu

Úvod do pravdepodobnosti, sekvenovanie genómov (cvičenie)

Askar Gafurov 3.10.2019

- ullet $G=\mathrm{d}$ Ížka genómu, napr. 1 000 000
- ullet N= počet čítaní (readov), napr. 10 000
- ullet $L=\mathrm{d}\mathrm{\acute{l}}$ žka čítania, napr. 1000
- ullet T= potrebná dĺžka prekryvu, napr. 50

Náhodne generované čítania

Pokrytie jednotlivých báz

Počet báz s určitým pokrytím

Predpokladaný počet kontigov od počtu čítaní


```
nepokr: 0 koncov: 0
                         nepokr: 0 koncov: 0
                                                  nepokr: 0 koncov
nepokr: 274 koncov: 2
                         nepokr: 282 koncov: 1
                                                  nepokr: 0 koncov
nepokr: 0 koncov: 0
                         nepokr: 0 koncov: 0
                                                  nepokr: 8 koncov
nepokr: 0 koncov: 0
                         nepokr: 12 koncov: 1
                                                  nepokr: 0 koncov
nepokr: 122 koncov: 1
                         nepokr: 135 koncov: 1
                                                  nepokr: 111 konc
nepokr: 13 koncov: 1
                         nepokr: 1 koncov: 1
                                                  nepokr: 56 konco
nepokr: 265 koncov: 1
                         nepokr: 0 koncov: 0
                                                  nepokr: 10 konco
nepokr: 0 koncov: 0
                         nepokr: 0 koncov: 0
                                                  nepokr: 130 kond
nepokr: 217 koncov: 1
                         nepokr: 3 koncov: 1
                                                  nepokr: 0 koncov
                                                  nepokr: 86 konco
nepokr: 0 koncov: 0
                         nepokr: 0 koncov: 0
                         nepokr: 0 koncov: 0
nepokr: 139 koncov: 2
                                                  nepokr: 0 koncov
                         nepokr: 221 koncov: 1
nepokr: 76 koncov: 1
                                                  nepokr: 26 konco
nepokr: 0 koncov: 0
                         nepokr: 1 koncov: 1
                                                  nepokr: 0 koncov
nepokr: 0 koncov: 0
                         nepokr: 0 koncov: 0
                                                  nepokr: 0 koncov
                         nepokr: 0 koncov: 0
nepokr: 0 koncov: 0
                                                  nepokr: 12 konco
nepokr: 103 koncov: 2
                         nepokr: 0 koncov: 0
                                                  nepokr: 71 konco
```

nepokr: 0 koncov: 0

nepokr: 69 koncov: 1

Úvod do dynamického programovania, proteomika

Askar Gafurov 7.10.2021

Proteomika

Proteín: sekvencia pozostáva z 20 rôznych aminokyselín

MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASE DLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKH PGDFGADAQGAMNKALELFRKDMASNYKELGFQG

Z bunky sme izolovali určitý proteín, chceme zistiť jeho sekvenciu.

Hmotnostná spektrometria (mass spectometry)

- Meria pomer hmostnosť/náboj molekúl vo vzorke
- Používa sa na identifikáciu proteínov
- Proteín nasekáme enzýmom trypsín (seká na [KR] {P}) na peptidy
- Meriame hmostnosť kúskov, porovnáme s databázou proteínov.
- Tandemová hmotnostná spektrometria (MS/MS) ďalej fragmentuje každý kúsok a dosiahne podrobnejšie spektrum, ktoré obsahuje viac informácie
- V niektorých prípadoch tak vieme sekvenciu proteínu určiť priamo z MS/MS, bez databázy proteínov

Tandemová hmotnostná spektrometria MS/MS

Štiepenie peptidu na prefixy a sufixy

zdroj: Bafna and Reinert

b-ióny: prefixy

y-ióny: sufixy

Tandemová hmotnostná spektrometria MS/MS

b-ions	924	778	663	534	405	292	145	88
	K	D	E	E	L	F	G	S
y-ions	141	262	391	520	633	780	837	924

zdroj: Bafna and Reinert

Sekvenovanie peptidov pomocou MS/MS

Vstup: celková hmotnosť peptidu M, hmotnosti aminokyselín $a[1],\ldots,a[20]$ (celé čísla), spektrum ako tabuľka $f[0],\ldots,f[M]$, ktorá hmotnosti určí skóre podľa signálu v okolí príslušného bodu grafu

Označenie:

Nech $x = x_1 \dots x_k$ je postupnosť aminokyselín

Nech $m(x) = \sum_{j=1}^{k} a[x_j]$ je hmotnosť x

Nech $\mathcal{M}_P(x) = \{m(x_1 \dots x_j) \mid j = 1, \dots, k\}$ sú hmotnosti prefixov x

Nech $\mathcal{M}_S(x) = \{m(x_j \dots x_k) \mid j = 1, \dots, k\}$ sú hmotnosti sufixov x

Problém 1: uvažujeme iba b-ióny (prefixy)

Výstup: postupnosť aminokyselín x taká, že m(x)=M a $\sum_{m\in\mathcal{M}_P(x)}f[m]$ je maximálna možná

Príklad

Uvažujme len 3 aminokyseliny X,Y,Z

$$M = 23, a[X] = 4, a[Y] = 6, a[Z] = 7$$

\overline{m}	4	6	7	11	12	17	18	19
f[m]	1	1	1	1	1	1	1	1

Hmotnosti prefixov $\mathcal{M}_P(XZYY) =$

$$\{m(), m(X), m(XZ), m(XZYY), m(XZYY)\} = \{0, 4, 11, 17, 23\}$$

Hmotnosti sufixov $\mathcal{M}_S(XZYY) =$

$$\{m(), m(Y), m(YY), m(ZYY), m(XZYY)\} = \{0, 6, 12, 19, 23\}$$

Skóre XZYY:
$$\sum_{m \in \mathcal{M}_P(ZYXX)} f[m] = 0 + 1 + 1 + 1 + 0 = 3$$

Skóre XZXXX:
$$\sum_{m \in \mathcal{M}_P(ZYZZZ)} f[m] = 0$$

$$f[0] + f[4] + f[11] + f[15] + f[19] + f[23] = 0 + 1 + 1 + 0 + 1 + 0 = 3$$

Sekvenovanie peptidov pomocou MS/MS

Problém 2: uvažujeme prefixy aj sufixy, sčítame ich skóre

Výstup: postupnosť aminokyselín x taká, že m(x)=M a

$$\sum_{m\in\mathcal{M}_P(x)}f[m]+\sum_{m\in\mathcal{M}_S(x)}f[m]$$
 je maximálna možná

Problém 3: uvažujeme prefixy aj sufixy, sčítame ich skóre, ale každú hmotnosť započítame najviac raz

Výstup: postupnosť aminokyselín x taká, že m(x)=M a

$$\sum_{m \in \mathcal{M}_P(x) \cup \mathcal{M}_S(x)} f[m]$$
 je maximálna možná

Príklad

$$M = 23, a[X] = 4, a[Y] = 6, a[Z] = 7$$

\overline{m}		_	-			-	_	_
f[m]	1	1	1	1	1	1	1	1

$$\mathcal{M}_P(XZYY) = \{0, 4, 11, 17, 23\}$$
 $\mathcal{M}_S(XZYY) = \{0, 6, 12, 19, 23\}$

$$\mathcal{M}_P(XZXXX) = \{0, 4, 11, 15, 19, 23\}$$

$$\mathcal{M}_S(XZXXX) = \{0, 4, 8, 12, 19, 23\}$$

Problém 2: $\sum_{m \in \mathcal{M}_P(x)} f[m] + \sum_{m \in \mathcal{M}_S(x)} f[m]$

Skóre XZYY:
$$0+1+1+1+0+0+1+1+1+0=6$$

Skóre XZXXX:
$$0+1+1+0+1+0+0+1+0+1+1+0=6$$

Problém 3: $\sum_{m \in \mathcal{M}_P(x) \cup \mathcal{M}_S(x)} f[m]$

XZYY:
$$\{0, 4, 6, 11, 12, 17, 19, 23\}$$
, $1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 6$

$$XZXXX: \{0, 4, 8, 11, 12, 15, 19, 23\}, 1 + 0 + 1 + 1 + 0 + 1 + 0 = 4$$

Ekvivalencia problémov

Problém 2: maximalizujeme $\sum_{m \in \mathcal{M}_P(x)} f[m] + \sum_{m \in \mathcal{M}_S(x)} f[m]$

Iná formulácia: maximalizujeme $\sum_{m \in \mathcal{M}_p(x)} g[m]$

 $kde \ g[m] = f[m] + f[M-m]$

Ekvivalencia problémov

Problém 3: maximalizujeme $\sum_{m \in \mathcal{M}_P(x) \cup \mathcal{M}_S(x)} f[m]$

Iná formulácia: maximalizujeme $\sum_{m\in\mathcal{M}_p(x)\cup\mathcal{M}_S(x),m\leq M/2}h[m]$

$$\operatorname{kde} h[m] = \left\{ \begin{array}{ll} f[m] + f[M-m] & \operatorname{ak} m < M/2 \\ f[m] & \operatorname{ak} m = M/2 \end{array} \right.$$

Jadrá zarovnaní

Broňa Brejová 20.10.2022

Opakovanie: Heuristické lokálne zarovnávanie, BLAST

Príklad: k=2 (začíname z jadier dĺžky 2). (V praxi sa používa k=10 a viac.)

- 1. nájdi zhodné úseky
- 2. rozšír bez medzier
- 3. spoj medzerami

Senzitivita heuristického algoritmu

Odhad senzitivity:

Predpokladáme zarovnanie bez medzier, dĺžky L Každá pozícia je zhoda s pravdepodobnosťou p

Senzitivita:

 $f(L,p) = \Pr({\sf zarovnanie\ obsahuje\ } k\ {\sf zh\^{o}d\ za\ sebou})$

Senzitivita heuristického algoritmu

Predpokladáme zarovnanie bez medzier, dĺžky ${\cal L}$

Každá pozícia je zhoda s pravdepodobnosťou p

Senzitivita $f(L,p) = \Pr(\text{zarovnanie obsahuje } k \text{ zhôd za sebou})$

Budeme počítať

$$A[n] = 1 - f(n, p) = \Pr(\text{zarovnanie neobsahuje } k \text{ zhôd za sebou})$$

Opakovanie: ako funguje hľadanie jadier

DB: ulož k-mery do hašovacej tabuľky Query: hľadaj v tabuľke

AGTGGCTGCCAGGCTGG	cGaGGCTGCCtGGtTGG
AGTGG, 0	CGAGG
GTGGC, 1	GAGGC
TGGCT, 2	AGGCT <-
GGCTG, 3	GGCTG <-
GCTGC, 4	GCTGC <-
CTGCC, 5	CTGCC <-
TGCCA, 6	TGCCT
GCCAG, 7	GCCTG
CCAGG, 8	CCTGG
CAGGC, 9	CTGGT
AGGCT, 10	TGGTT
GGCTG,11	GGTTG
GCTGG, 12	GTTGG

Šetrenie pamäťou: BLAT

```
k = 5, s = 3
AGTGGCTGCCAGGCTGG cGaGGCTGCCtGGtTGG
AGTGG, 0
                      CGAGG
   GGCTG, 3
                       GAGGC
      TGCCA, 6
                       AGGCT
         CAGGC, 9
                      GGCTG <-
            GCTGG, 12
                          GCTGC
                           CTGCC
                            TGCCT
                             GCCTG
                              CCTGG
                               CTGGT
                                TGGTT
                                 GGTTG
                                  GTTGG
```

Šetrenie pamäťou: minimizery

```
k = 5, s = 3
AGTGGCTGCCAGGCTGG
                        cGaGGCTGCCtGGtTGG
AGTGG, 0
                        CGAGG
 GTGGC
                         GAGGC
  TGGCT
                          AGGCT*
   GGCTG, 3
                           GGCTG
    GCTGC, 4
                            GCTGC
     CTGCC, 5
                             CTGCC* <--
       TGCCA
                               TGCCT
        GCCAG
                                GCCTG
         CCAGG, 8
                                 CCTGG*
          CAGGC, 9
                                  CTGGT*
           AGGCT, 10
                                   TGGTT
            GGCTG
                                    GGTTG*
             GCTGG
                                     GTTGG
```

BLAST vs BLAT vs minimizers

n: dĺžka DB, m: dĺžka query, krok s

Program	k-merov v slovníku	k-merov hľadáme	jadro zaručené pri
BLAST	n	m	k zhôd pri sebe
BLAT	n/s	m	k+s-1 zhôd pri sebe
minimizery	$\operatorname{cca} 2n/(s+1)$	$\operatorname{cca} 2m/(s+1)$	k+s-1 zhôd pri sebe

V počtoch k-merov sme zanedbali členy typu -w+1

Algoritmy pre HMM

Broňa Brejová 26.10.2023

Opakovanie: HMM (skrytý Markovov model)

 $\Pr(S,A)$ – pravdepodobnosť, že model vygeneruje pár (S,A).

Predpokladajme, že model vždy začína v modrom stave.

$$Pr(acag) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$$

$$Pr(acag) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$$

Iný hračkársky príklad: počasie

- Obdobie nízkeho tlaku vzduchu: väčšinou prší
- Obdobie nízkeho tlaku vzduchu: väčšinou slnečno

Každé obdobie trvá typicky nieľkoko dní

Cvičenie: reprezentuj ako HMM

Parametre HMM (označenie)

Sekvencia
$$S = S_1, \dots, S_n$$

Anotácia $A = A_1, \dots, A_n$

Parametre modelu:

Prechodová pravdepodobnosť $a(u,v) = \Pr(A_{i+1} = v | A_i = u)$,

Emisná pravdepodobnosť $e(u, x) = \Pr(S_i = x | A_i = u)$,

Počiatočná pravdepodobnosť $\pi(u) = \Pr(A_1 = u)$.

\underline{a}				e	a	С	g	t
	0.99	0.007	0.003		0.24	0.27	0.28	0.21
	0.01	0.99	0		0.26	0.22	0.22	0.30
	0.001	0	0.999		0.27	0.23	0.23	0.27

Výsledná pravdepodobnosť:

$$\Pr(A,S) = \pi(A_1)e(A_1,S_1) \prod_{i=2}^{n} a(A_{i-1},A_i)e(A_i,S_i)$$

Pre dané HMM a sekvenciu S nájdi najpravdepodobnejšiu anotáciu (postupnosť stavov) $A = \arg\max_A \Pr(A,S) = \arg\max_A \Pr(A|S)$

Ako by ste to riešili?

Pripomeňme si príklad:

$$\Pr(\text{acag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$$

$$Pr(acag) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$$

Nájdi najpravdepodobnejšiu postupnosť stavov $A = \arg\max_{A} \Pr(A, S)$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Rekurencia?

$$V[u,1] =$$

$$V[u,i] =$$

Pripomeňme si označenie:

Sekvencia $S = S_1, \ldots, S_n$, anotácia (stavy) $A = A_1, \ldots, A_n$

Prechodová pravdepodobnosť $a(u, v) = \Pr(A_{i+1} = v | A_i = u)$,

Emisná pravdepodobnosť $e(u, x) = \Pr(S_i = x | A_i = u)$,

Počiatočná pravdepodobnosť $\pi(u) = \Pr(A_1 = u)$.

$$\Pr(A,S) = \pi(A_1)e(A_1,S_1) \prod_{i=2}^{n} a(A_{i-1},A_i)e(A_i,S_i)$$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Rekurencia:

$$V[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$V[u, i] = \max_{w} V[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Algoritmus, celková odpoveď, čas výpočtu?

Pripomeňme si označenie:

Sekvencia
$$S = S_1, \ldots, S_n$$
, anotácia (stavy) $A = A_1, \ldots, A_n$

Prechodová pravdepodobnosť
$$a(u,v) = \Pr(A_{i+1} = v | A_i = u)$$
,

Emisná pravdepodobnosť
$$e(u, x) = \Pr(S_i = x | A_i = u)$$
,

Počiatočná pravdepodobnosť
$$\pi(u) = \Pr(A_1 = u)$$
.

$$\Pr(A,S) = \pi(A_1)e(A_1,S_1) \prod_{i=2}^{n} a(A_{i-1},A_i)e(A_i,S_i)$$

Viterbiho algoritmus (zhrnutie)

Nájdi najpravdepodobnejšiu postupnosť stavov $A = \arg \max_A \Pr(A,S)$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Rekurencia:

$$V[u,1] = \pi(u) \cdot e(u, S_1)$$

$$V[u,i] = \max_{w} V[w,i-1] \cdot a(w,u) \cdot e(u, S_i)$$

Algoritmus:

Inicializuj V[*,1] for $i=2\dots n$ (n=dĺžka S) for $u=1\dots m$ (m=počet stavov) vypočítaj V[u,i], ulož najlepšie w do B[u,i] Maximálne V[u,n] cez všetky u je $\max_A \Pr(A,S)$ Cestu nájdi odzadu pomocou matice B Dynamické programovanie v čase $O(nm^2)$

Další problém: celková pravdepodobnosť S

Viterbi počíta $\arg \max_A \Pr(A, S)$

Teraz chceme celkovú pravdepodobnosť, že vygenerujeme sekvenciu ${\cal S}$

t.j.
$$\Pr(S) = \sum_{A} \Pr(A, S)$$

Užitočné napr. na porovnávanie rôznych modelov,

ktorý má väčšiu šancu vygenerovať S

Ako by ste to počítali?

Pripomeňme si príklad:

$$Pr(acag) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$$

$$Pr(acag) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$$

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$Pr(S) = \sum_{A} Pr(A, S)$$

Podproblém F[u,i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

$$F[u,i] = \Pr(A_i = u \land S_1, S_2, ..., S_i) = \sum_{A_1, A_2, ..., A_i = u} \Pr(A_1, A_2, ..., A_i \land S_1, S_2, ..., S_i)$$

Rekurencia?

$$F[u,1] = F[u,i] =$$

Pripomeňme si rekurenciu z Viterbiho:

$$V[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$V[u, i] = \max_{w} V[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$\Pr(S) = \sum_{A} \Pr(A, S)$$

Podproblém F[u, i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

Rekurencia

$$F[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$F[u, i] = \sum_{w} F[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Pripomeňme si rekurenciu z Viterbiho:

$$V[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$V[u, i] = \max_{w} V[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$Pr(S) = \sum_{A} Pr(A, S)$$

Podproblém F[u, i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

Rekurencia

$$F[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$F[u, i] = \sum_{w} F[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Výsledok?

Celková pravdepodobnosť $\Pr(S) =$

Čas výpočtu?

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$Pr(S) = \sum_{A} Pr(A, S)$$

Podproblém F[u,i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

$$F[u,i] = \Pr(A_i = u \land S_1, S_2, ..., S_i) = \sum_{A_1, A_2, ..., A_i = u} \Pr(A_1, A_2, ..., A_i \land S_1, S_2, ..., S_i)$$

Výsledok

Celková pravdepodobnosť $\Pr(S) = \sum_u F[u, n]$

Čas výpočtu $O(nm^2)$

Tretí problem: pravdepodobnosť, že S_i bolo generované v stave u

$$\Pr(A_i = u \mid S) = \frac{\Pr(A_i = u, S)}{\Pr(S)}$$
$$\Pr(A_i = u, S) = \sum_{A:A_i = u} \Pr(A, S)$$

Vypočítame kombináciou dopredného a spätného algoritmu

F[u,i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1,S_2,\ldots S_i$ a dostaneme sa do stavu u.

B[u,i]: pravdepodobnosť, že ak začneme v u na pozícii i, tak vygenerujeme $S_{i+1}\dots,S_n$ v najbližších krokoch

$$Pr(A_i = u, S) = F[u, i] \cdot B[u, i]$$

Spätný algoritmus (backward algorithm)

Dopredný algoritmus: pravdepodobnosť, že po i krokoch vygenerujeme

 $S_1, S_2, \dots S_i$ a dostaneme sa do stavu u.

$$F[u,1] = \pi(u) \cdot e(u, S_1)$$

$$F[u,i] = \sum_{w} F[w,i-1] \cdot a(w,u) \cdot e(u, S_i)$$

Spätný algoritmus: B[u,i]: pravdepodobnosť, že ak začneme v u na pozícii i, tak vygenerujeme $S_{i+1} \ldots, S_n$ v najbližších krokoch

Ako spočítať B[u,i]?

Spätný algoritmus (backward algorithm)

Dopredný algoritmus: pravdepodobnosť, že po i krokoch vygenerujeme

 $S_1, S_2, \dots S_i$ a dostaneme sa do stavu u.

$$F[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$F[u, i] = \sum_{w} F[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Spätný algoritmus: B[u,i]: pravdepodobnosť, že ak začneme v u na pozícii i, tak vygenerujeme $S_{i+1} \ldots, S_n$ v najbližších krokoch

$$B[u, n] = 1$$

 $B[u, i] = \sum_{w} B[w, i + 1] \cdot a(u, w) \cdot e(w, S_{i+1})$

Cvičenie: Ako spočítať $\Pr(S)$ pomocou matice B?

Aposteriórne dekódovanie (posterior decoding)

Videli sme:
$$\Pr(A_i = u \mid S) = \frac{F[u,i] \cdot B[u,i]}{\Pr(S)}$$

Aposteriórne pravdepodobnosti stavov:

Použitím dopredného a spätného alg. vieme teda spočítať

$$\Pr(A_i = u \,|\, S)$$
 pre všetky u a i v celkovom čase $O(nm^2)$

Aposteriórne dekódovanie

Pre dané S zvolíme A také že $A_i = \max_i \Pr(A_i = u \mid S)$

Výhoda: Berie do úvahy suboptimálne postupnosti stavov

Nevýhoda: $\Pr(A \mid S)$ môže byť 0 alebo veľmi nízka

Iná možnosť: zvolíme A Viterbiho algoritmom, aposteriórne pravdepodobnosti použijeme na priradenie dôveryhodnosti jendotlivým častiam A

Hľadanie génov s HMM

- Určenie stavov a prechodov v modeli: ručne, na základe poznatkov o štruktúre génu.
- ullet Trénovanie parametrov: pravdepodobnosti určíme na základe sekvencií so známymi génmi (trénovacia množina). Model zostavíme tak, aby páry (S,A) s vlastnosťami podobnými skutočným génom mali veľkú pravdepodobnosť $\Pr(S,A)$
- ullet Použitie: pre novú sekvenciu S nájdi najpravdepodobnejšiu anotáciu $A = \arg\max_A \Pr(A|S)$ Viterbiho algoritmom v $O(nm^2)$

Trénovanie HMM

- Stavový priestor + povolené prechody väčšinou ručne
- Parametre (pravdepodobnosti prechodu, emisie a počiatočné) automaticky z trénovacích sekvencií
- Čím zložitejší model a viac parametrov máme, tým potrebujeme viac trénovacích dát, aby nedošlo k **preučeniu**, t.j. k situácii, keď model dobre zodpovedá nejakým zvláštnostiam trénovacích dát, nie však ďalším dátam.
- Presnosť modelu testujeme na zvláštnych testovacích dátach, ktoré sme nepoužili na trénovanie.

Trénovanie HMM z anotovaných sekvencií

Vstup: topológia modelu a niekoľko trénovacích párov

$$(S^{(1)}, A^{(1)}), (S^{(2)}, A^{(2)}), \dots$$

Ciel': nastaviť $\pi(u)$, e(u,x), a(u,v) tak, aby $\prod_i \Pr(S^{(i)},A^{(i)})$ bola čo najväčšia

Dosiahneme jednoduchým počítaním frekvencií

Napr. a(u,v) : nájdeme všetky výskyty stavu u a zistíme, ako často za nimi ide stav v

Trénovanie HMM z neanotovaných sekvencií

Vstup: topológia modelu a niekoľko trénovacích sekvencií $S^{(i)}$ anotácie $A^{(i)}$ nepoznáme

Cieľ: nastaviť $\pi(u)$, e(u,x), a(u,v) tak, aby $\prod_i \Pr(S^{(i)})$ bola čo najväčšia

Používajú sa heuristické iteratívne algoritmy, napr. Baum-Welchov, ktorý je verziou všeobecnejšieho algoritmu EM (expectation maximization).

V každej iterácii používa dopradný a spätný algoritmus.

Tvorba stavového priestoru modelu

Príklad HMM na hľadanie génov

Substitution models

Askar Gafurov

November 9, 2023

Modelling the evolution of genomes

- The ultimate goal: to model the evolutionary distance between two genomes
 - ▶ Input: sequences $S_1, S_2 \in \{A, C, G, T\}^* = \Sigma^*$, evolutionary time t
 - ▶ Output: $Pr[S_1 \xrightarrow{t} S_2]$ (formal way to denote: $Pr[S_2 \mid S_1, t]$)
 - * Probability of sequence S_1 to mutate into sequence S_2 in evolutionary time t
 - * Formally: Probability of observing sequence S_2 , given that its evolutionary ancestor in time t is sequence S_1
- Requirements:
 - ▶ $Pr[S \stackrel{t=0}{\rightarrow} S] = 1$ (no evolution in zero time)
 - ▶ $\forall S' \in \Sigma^*$: $\Pr[S' \stackrel{t=\infty}{\to} S] = \pi_S$ (with enough time, the starting point is irrelevant)
 - $\blacktriangleright \ \mathsf{Pr}[S_1 \overset{t_1}{\to} S_2 \wedge S_2 \overset{t_2}{\to} S_3] = \mathsf{Pr}[S_1 \overset{t_1}{\to} S_2] \cdot \mathsf{Pr}[S_2 \overset{t_2}{\to} S_3] \ (\mathsf{no} \ \mathsf{memory})$
 - $\mathsf{Pr}[S_1 \overset{t = t_1 + t_2}{\to} S_3] = \sum_{S_2 \in \Sigma^*} \mathsf{Pr}[S_1 \overset{t_1}{\to} S_2] \cdot \mathsf{Pr}[S_2 \overset{t_2}{\to} S_3] \; (\mathsf{multiplicativity})$
 - * we can break time t into two parts t_1 and t_2 , and sum over all possible intermediate states

Askar Gafurov Substitution models November 9, 2023 2 / 24

What can we do with such a model (in the near future)

• Given a phylogenetic tree (phylogeny) $T = (\mathbf{S} \subset \Sigma^*, E \subset \mathbf{S}^2, t : E \to \mathbf{R})$ of sequences \mathbf{S} with times $\mathbf{t}(\cdot, \cdot)$ on the edges, we can compute its total probability by multiplying probabilities of each edge:

$$\Pr[\mathbf{S} \mid E, \mathbf{t}] = \Pr[S_{\text{root}}] \cdot \prod_{e: (S_a, S_s) \in E} \Pr[S_a \overset{\mathbf{t}(S_a, S_s)}{\to} S_s]$$

- This allows us to compute the likelihood $\mathcal{L}(E, \mathbf{t}; \mathbf{S})$ of a potential phylogeny T structure E and times \mathbf{t} w.r.t. sequences \mathbf{S} in the nodes
 - ▶ We can choose the best phylogeny structure by maximizing the total likelihood
- We can even maximize the likelihood using only sequences in the leaves (present species) by using the Felsenstein algorithm (next week)

Askar Gafurov Substitution models November 9, 2023 3/24

Simplifying assumptions

- No indels, only substitutions
 - $ightharpoonup \implies |S_1| = |S_2| = n$
- All bases mutate independently
 - Compute mutation prob. for each base, and then multiply:

$$\Pr[S_1 = (a_1, \dots, a_n) \xrightarrow{t} S_2 = (b_1, \dots, b_n)] =$$

$$= \Pr[a_1 \xrightarrow{t} b_1] \cdot \Pr[a_2 \xrightarrow{t} b_2] \cdot \dots \cdot \Pr[a_n \xrightarrow{t} b_n] =$$

$$= \prod_{i=1}^{n} \Pr[a_i \xrightarrow{t} b_i].$$

Now, we only need to model the **evolution of a single base** $Pr[a \xrightarrow{t} b]$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- General properties of matrix S(t):
 - $ightharpoonup \Pr[C \xrightarrow{t} G] =$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

• General properties of matrix S(t):

•
$$S(0) =$$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- General properties of matrix S(t):

 - $S(0) = I_4$
 - \triangleright $S(t_1) \cdot S(t_2) =$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

• General properties of matrix S(t):

$$Pr[C \xrightarrow{t} G] = \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} \cdot S(t) \cdot \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}^{T}$$

$$S(0) = I_4$$

$$S(t_1) \cdot S(t_2) = \left(\sum_{x \in \Sigma} \Pr[i \xrightarrow{t_1} x] \cdot \Pr[x \xrightarrow{t_2} j] \right)_{i,j \in \Sigma} \stackrel{\text{multiplicativity}}{=} \left(\Pr[i \xrightarrow{t_1 + t_2} j] \right)_{i,j \in \Sigma} = S(t_1 + t_2)$$

$$\star S(k \cdot t) = S^k(t)$$

Askar Gafurov Substitution models November 9, 2023 5 / 24

Model with discrete time

- Assume that evolutionary time t is discrete
 - ▶ at most one mutation occurs in time 1
- A base now has 4 possible states, and has a chance to transit between them in each time step, or stay the same ⇒ Markov chain
- S(t) =

Model with discrete time

- Assume that evolutionary time t is discrete
 - ▶ at most one mutation occurs in time 1
- A base now has 4 possible states, and has a chance to transit between them in each time step, or stay the same ⇒ Markov chain
- $S(t) = S^t(1) \Longrightarrow$ only need to define S(1)

Model with discrete time

- Assume that evolutionary time t is discrete
 - ▶ at most one mutation occurs in time 1
- A base now has 4 possible states, and has a chance to transit between them in each time step, or stay the same ⇒ Markov chain
- $S(t) = S^t(1) \Longrightarrow$ only need to define S(1)
- Stationary distribution (equilibrium)

$$S(\infty) = \lim_{t \to \infty} S(t) = \lim_{t \to \infty} S^t(1) = \begin{pmatrix} \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \end{pmatrix}$$

Quick summary so far

- Evolution model = prob. $\Pr[S_1 \xrightarrow{t} S_2] = \Pr[S_2 \mid S_1, t]$ of observing S_2 given that its ancestor in evolutionary time t is S_1
- Assuming only substitutions
 - ▶ $|S_1| = |S_2| = n$
- Assuming independent evolution for each base
 - $ightharpoonup \Pr[S_1 = (a_1, \ldots, a_n) \stackrel{t}{ o} S_2 = (b_1, \ldots, b_n)] = \prod_{i=1}^n \Pr[a_i \stackrel{t}{ o} b_i]$
 - ▶ Only need to define a (substitution) model for a single base

$$Pr[a \xrightarrow{t} b] = S(t) = \begin{pmatrix} Pr[A \xrightarrow{t} A] & Pr[A \xrightarrow{t} C] & Pr[A \xrightarrow{t} G] & Pr[A \xrightarrow{t} T] \\ Pr[C \xrightarrow{t} A] & Pr[C \xrightarrow{t} C] & Pr[C \xrightarrow{t} G] & Pr[C \xrightarrow{t} T] \\ Pr[G \xrightarrow{t} A] & Pr[G \xrightarrow{t} C] & Pr[G \xrightarrow{t} G] & Pr[G \xrightarrow{t} T] \\ Pr[T \xrightarrow{t} A] & Pr[T \xrightarrow{t} C] & Pr[T \xrightarrow{t} G] & Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- $> S(t_1 + t_2) = S(t_1) \cdot S(t_2)$
- For discrete time, only need to define S(1)
 - ▶ Classic Markov chain with states $\{A, C, G, T\}$, S(1) = matrix of transition probabilities

Askar Gafurov Substitution models November 9, 2023 7 / 24

Jukes-Cantor JC69 model

• The plan: define Markov chains with continuous time (CTMC), where all substitutions are equally likely

$$\triangleright$$
 $S(t) =$

Jukes-Cantor JC69 model

• The plan: define Markov chains with continuous time (CTMC), where all substitutions are equally likely

$$S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix} = I + \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \cdot s(t)$$

Jukes-Cantor JC69 model

 The plan: define Markov chains with continuous time (CTMC), where all substitutions are equally likely

$$S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix} = I + \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \cdot s(t)$$

- Let's look at s(t) closely
 - s(0) = 0
 - Let's denote the first derivative of s(t) at zero as α :

$$\star \ \, \mathsf{Formally,} \, \, \alpha := s'(0) \stackrel{\mathsf{def.}}{=} \lim_{\varepsilon \to 0} \frac{s(0+\varepsilon) - s(0)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{s(\varepsilon)}{\varepsilon}$$

$$\star \alpha = \left. \frac{\partial \Pr[a \xrightarrow{t} b]}{\partial t} \right|_{t=0}$$

Askar Gafurov Substitution models November 9, 2023 8 / 24

Derivative of S(t)

$$S'(t) \stackrel{\text{def.}}{=} \lim_{\varepsilon \to 0} \frac{S(t+\varepsilon) - S(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)}{\varepsilon} =$$

$$S(t) \cdot \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \cdot s(\varepsilon)$$

$$= \lim_{\varepsilon \to 0} \frac{S(t)(S(\varepsilon) - I)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(t)S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon) - S(\varepsilon) = \lim_{\varepsilon \to$$

Differential equation

- We've got diff. equation $S'(t) = S(t) \cdot R$, where $R = \begin{pmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{pmatrix}$
- R is called transition rate matrix
- It is really a system of 16 ordinary differential equations $S'(t)_{a,b} = (S(t) \cdot R)_{a,b}$
 - ► for (A, A): $-3s'(t) = (1 3s(t))(-3\alpha) + 3s(t)\alpha = -3\alpha + 12\alpha s(t)$ ★ $s'(t) = \alpha - 4\alpha s(t)$
 - for (A, C): $s'(t) = (1 3s(t))\alpha + s(t)(-3\alpha) + 2s(t)\alpha = \alpha 4\alpha s(t)$
 - which reduces to a single ordinary differential equation $s'(t) = \alpha 4\alpha s(t)$ with start condition s(0) = 0
- Solution: $s(t) = \frac{1}{4} \frac{1}{4}e^{-4\alpha t}; \quad 1 3s(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t}$

$$\frac{ds}{dt} = \alpha - 4\alpha s$$

$$\frac{ds}{\alpha - 4\alpha s} = dt$$

$$\frac{1}{\alpha} \int \frac{ds}{1 - 4s} = \int 1 dt$$

$$|(1 - 4s) = x, -4 ds = dx|$$

$$\frac{1}{-4\alpha} \int \frac{dx}{x} = \int 1 dt$$

$$\frac{1}{-4\alpha} \ln(1 - 4s) = t + C$$

$$1 - 4s = e^{-4\alpha t + C}$$

$$s = \frac{1 - e^{-4\alpha t + C}}{4}$$

$$s(0) = 0 \Longrightarrow \frac{1 - e^{C}}{4} = 0 \Longrightarrow C = 0$$
Solution: $s(t) = \frac{1 - e^{-4\alpha t}}{4}; 1 - 3s(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t}$

11 / 24

Askar Gafurov Substitution models November 9, 2023

Equilibrium for Jukes-Cantor model

$$\lim_{t \to \infty} \Pr[A \xrightarrow{t} A] = \lim_{t \to \infty} \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} = \frac{1}{4}$$
$$\lim_{t \to \infty} \Pr[A \xrightarrow{t} C] = \lim_{t \to \infty} \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} = \frac{1}{4}$$

$$S(\infty) = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Quick summary so far

- Jukes-Cantor substitution model:
 - ► Continuous time t
 - ▶ Equal probability of substitution $\forall a \neq b$: $\Pr[a \xrightarrow{t} b] = s(t)$
 - Matrix form

$$S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix}$$

- Diff. equation s'(t) = 1 3s(t), s(0) = 0
- $Pr[a \xrightarrow{t} b] = S_{JC}(t)_{a,b} = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} & a = b \\ \frac{1}{4} \frac{1}{4}e^{-4\alpha t} & a \neq b \end{cases}$
- Equilibrium for JC: $\pi_A = \pi_C = \pi_G = \pi_T = \frac{1}{4}$

Example for Jukes-Cantor

- Input: $S_1 = TAACCGT$, $S_2 = AATGCGT$, evolutionary time t = 0.5, $\alpha = 3$
- Result:

$$\Pr[S_1 \xrightarrow{t} S_2] = \prod_{i=1}^n \Pr[a_i \xrightarrow{t} b_i] = \left(\frac{1}{4} + \frac{3}{4}e^{-4\alpha t}\right)^{\#(a_i = b_i)} \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-4\alpha t}\right)^{\#(a_i \neq b_i)} =$$

$$= \left(\frac{1}{4} + \frac{3}{4}e^{-6}\right)^4 \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-6}\right)^3 \approx (0.2519)^4 \cdot (0.2493)^3 \approx 0.0000624$$

Askar Gafurov Substitution models November 9, 2023 14 / 24

Example for Jukes-Cantor

- Input: $S_1 = TAACCGT$, $S_2 = AATGCGT$, evolutionary time t = 0.5, $\alpha = 3$
- Result:

$$\Pr[S_1 \xrightarrow{t} S_2] = \prod_{i=1}^n \Pr[a_i \xrightarrow{t} b_i] = \left(\frac{1}{4} + \frac{3}{4}e^{-4\alpha t}\right)^{\#(a_i = b_i)} \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-4\alpha t}\right)^{\#(a_i \neq b_i)} =$$

$$= \left(\frac{1}{4} + \frac{3}{4}e^{-6}\right)^4 \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-6}\right)^3 \approx (0.2519)^4 \cdot (0.2493)^3 \approx 0.0000624$$

- Notice that parameters $t = 30, \alpha = 1/20$ would give the same result
 - ightharpoonup Because t and α are always in a product
 - Standard practice is to select α such that E[# mutations in time t=1]=1
 - * # mutations in time $t = 1 \sim Poisson(\lambda = 3\alpha)$, $E = 3\alpha$, E[#] = 1 when $\alpha = 1/3$

Askar Gafurov Substitution models November 9, 2023 14 / 24

Estimation of evolutionary time in JC model

- Input: $S_1 = TAACCGT$, $S_2 = AATGCGT$, $\alpha = 1/3$ (standard)
- Goal: find the best evolutionary time t^*
- Best = with highest likelihood
 - ▶ likelihood $\mathcal{L}(t; S_1, S_2, \alpha) = \Pr[S_1 \xrightarrow{t} S_2 \mid \alpha] = \left(\frac{1}{4} + \frac{3}{4}e^{-4\alpha t}\right)^{\#(a_i = b_i)} \cdot \left(\frac{1}{4} \frac{1}{4}e^{-4\alpha t}\right)^{\#(a_i \neq b_i)}$.
 - $t^* = \underset{t \geq 0}{\operatorname{arg\,max}} \ \mathcal{L}(t; S_1, S_2, \alpha) = -\frac{1}{4\alpha} \ln \left(1 \frac{4}{3}d\right)$, where d := proportion of different positions

Exact estimator of evolutionary time in JC model

$$t^* = \underset{t \geq 0}{\text{arg max}} \ \mathcal{L}(t; S_1, S_2, \alpha) = \underset{t \geq 0}{\text{arg max}} \ \log \mathcal{L}(t; S_1, S_2, \alpha) =$$

$$= \underset{t \geq 0}{\text{arg max}} \ \#(a_i = b_i) \log (1 - 3s(t)) + \#(a_i \neq b_i) \log s(t).$$

$$\frac{df}{ds} = -\frac{3\#(a_i = b_i)}{1 - 3s} + \frac{\#(a_i \neq b_i)}{s} = \frac{(1 - 3s)\#(\neq) - 3s\#(=)}{s(1 - 3s)}.$$

$$\frac{ds}{dt} = \alpha \cdot e^{-4\alpha t}.$$

$$\frac{df}{dt} = 0 \Longrightarrow \frac{df}{ds} \frac{ds}{dt} = 0 \Longrightarrow \frac{df}{ds} = 0 \Longrightarrow \frac{(1 - 3s)\#(\neq) - 3s\#(=)}{s(1 - 3s)} = 0 \Longrightarrow$$

$$\Longrightarrow (1 - 3s)\#(\neq) - 3s\#(=) = 0 \Longrightarrow s = \frac{\#(\neq)}{3 \cdot (\#(\neq) + \#(=))} = \frac{\#(\neq)}{3n}.$$

$$\frac{1}{4} - \frac{1}{4}e^{-4\alpha t} = \frac{\#(\neq)}{3n} \Longrightarrow -4\alpha t = \ln\left(1 - \frac{4\#(\neq)}{3n}\right) \Longrightarrow$$

$$\Longrightarrow t = \frac{-\ln\left(1 - \frac{4}{3}\frac{\#(\neq)}{n}\right)}{a^{\frac{1}{4}}} = \frac{-\ln\left(1 - \frac{4}{3}\frac{d}{n}\right)}{a^{\frac{1}{4}}}.$$

Askar Gafurov Substitution models November 9, 2023

Behaviour of the time estimator

$$t^* = -rac{1}{4lpha}\ln\left(1-rac{4}{3}\cdot d
ight)$$

Askar Gafurov Substitution models November 9, 2023 17 / 24

More general models

- JC69 model: rate matrix $R_{JC69} = \begin{pmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{pmatrix}$
- Sum in a row must equal to 0
- $R_{a,b} := \frac{\partial \Pr[a \xrightarrow{\tau} b]}{\partial t}$ speed of change from a to b

• In general:
$$R = \begin{pmatrix} * & \mu_{A,C} & \mu_{A,G} & \mu_{A,T} \\ \mu_{C,A} & * & \mu_{C,G} & \mu_{C,T} \\ \mu_{G,A} & \mu_{G,C} & * & \mu_{G,T} \\ \mu_{T,A} & \mu_{T,C} & \mu_{T,G} & * \end{pmatrix}$$

- ▶ Diagonal is set to make row sum up to 0
- Some regularity conditions apply

Solution to a general model

- The differential equation $S'(t) = S(t) \cdot R$ holds for any rate matrix R
- The general solution is $S(t) = e^{Rt}$
- How to compute e^{Rt} ?
 - diagonalization of matrix $R = Q \cdot \Lambda \cdot Q^{-1}$, where
 - \star Q = orthogonal matrix (of eigenvectors)
 - ★ $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_4)$ is a diagonal matrix (of eigenvalues)
 - $Arr R^n = (Q \cdot \Lambda \cdot Q^{-1})^n = Q \Lambda Q^{-1} Q \Lambda Q^{-1} Q \dots Q^{-1} Q \Lambda Q^{-1} = Q \Lambda^n Q^{-1} = Q$ $Q \cdot \operatorname{diag}(\lambda_1^n, \ldots, \lambda_n^n) \cdot Q^{-1}$

$$e^{Rt} = \sum_{i=0}^{\infty} \frac{(Rt)^n}{n!} = \sum_{i=0}^n \frac{Q \cdot \mathsf{diag}((\lambda_1 t)^n, \dots, (\lambda_4 t)^n) \cdot Q^{-1}}{n!} =$$

$$= Q \cdot \mathsf{diag} \left(\sum_{i=0}^{\infty} \frac{(\lambda_1 t)^n}{n!} - \sum_{i=0}^{\infty} \frac{(\lambda_1 t)^n}{n!} \right) \cdot Q^{-1} = Q \cdot \mathsf{diag} \left(e^{\lambda_1 t} - e^{\lambda_4 t} \right) \cdot Q^{-1}$$

$$Q = Q \cdot \operatorname{diag}\left(\sum_{i=0}^{\infty} rac{(\lambda_1 t)^n}{n!}, \ldots, \sum_{i=0}^{\infty} rac{(\lambda_1 t)^n}{n!}
ight) \cdot Q^{-1} = Q \cdot \operatorname{diag}\left(e^{\lambda_1 t}, \ldots, e^{\lambda_4 t}
ight) \cdot Q^{-1}$$

19 / 24 Askar Gafurov Substitution models November 9, 2023

Solution in general form

$$\frac{dS}{dt} = SR \Longrightarrow \int \frac{dS}{S} = \int Rdt \Longrightarrow \ln S = Rt + C \Longrightarrow S = e^{Rt + C}; S(0) = I \Longrightarrow S(t) = e^{Rt}$$

$$R_{JC69} = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \cdot \operatorname{diag}(-4\alpha, -4\alpha, -4\alpha, 0) \cdot \begin{pmatrix} -0.25 & -0.25 & -0.25 & 0.75 \\ -0.25 & -0.25 & 0.75 & 0.25 \\ -0.25 & 0.75 & -0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{pmatrix}$$

$$S_{JC69}(t) = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \cdot \operatorname{diag} \left(e^{-4\alpha t}, e^{-4\alpha t}, e^{-4\alpha t}, e^{-4\alpha t}, 1 \right) \cdot \begin{pmatrix} -0.25 & -0.25 & -0.25 & 0.75 \\ -0.25 & -0.25 & 0.75 & 0.25 \\ -0.25 & 0.75 & -0.25 & -0.25 \end{pmatrix}$$

Kimura's K80 model

- Also called Kimura's 2 parameter model (K2P)
- A and G are purines, C and T are pyrimidines
 - ▶ Transitions: within the same group $A \longleftrightarrow G$, $C \longleftrightarrow T$
 - ► Transversions: between the groups
- Transitions are more frequent than transversions
 - $ightharpoonup \kappa := rac{ ext{rate of transitions}}{ ext{rate of transversions}}, ext{ set rate of transversions to } 1$

$$ullet R_{K80} = egin{pmatrix} * & 1 & \kappa & 1 \ 1 & * & 1 & \kappa \ \kappa & 1 & * & 1 \ 1 & \kappa & 1 & * \end{pmatrix}$$

• Equilibrium is still $\pi_A = \pi_C = \pi_G = \pi_T = 25\%$

Hasewaga-Kishino-Yano HKY85 model

• Transition/transversion ratio κ & arbitrary equilibrium $(\pi_A, \pi_C, \pi_G, \pi_T)$

$$\bullet \ R_{HKY85} = \begin{pmatrix} * & \pi_C & \kappa \cdot \pi_G & \pi_T \\ \pi_A & * & \pi_G & \kappa \cdot \pi_T \\ \kappa \cdot \pi_A & \pi_C & * & \pi_T \\ \pi_A & \kappa \cdot \pi_C & \pi_G & * \end{pmatrix}$$

Other models

- Kimura's 3 parameter model (K3P, K81)
 - ▶ 1 transition rate + 2 transversion rates
 - admits Hadamard transformation (generalized Fourier)
- Felsenstein F81 model
 - ► JC69 + arbitrary equilibrium
- Tamura T92 model
 - ► K80 + GC content
- Tamura and Nay TN93 model
 - ▶ 2 transition rates + 1 transversion rate
- Tavaré GTR86 model (General Time Reversible)
 - everything from the above: arbitrary equilibrium + 6 rate parameters

Summary

- Evolution model: $\Pr[S_1 \xrightarrow{t} S_2]$
 - ▶ Independent base evolution $\Longrightarrow \Pr[S_1 \xrightarrow{t} S_2] = \prod_{i=1}^n \Pr[a_i \xrightarrow{t} b_i]$
 - ightharpoonup Continuous time $t + \text{Only substitutions} \Longrightarrow \text{Continuous time Markov chains (CTMC)}$
- Substitution model for one base (CTMC)
 - substitution rate matrix $R = \begin{pmatrix} * & \mu_{A,C} & \mu_{A,G} & \mu_{A,T} \\ \mu_{C,A} & * & \mu_{C,G} & \mu_{C,T} \\ \mu_{G,A} & \mu_{G,C} & * & \mu_{G,T} \\ \mu_{T,A} & \mu_{T,C} & \mu_{T,G} & * \end{pmatrix}$, rows sum up to zero
 - $S_{a,b}(t) = \Pr[a \xrightarrow{t} b]$ from $S(t) = e^{Rt}$ using diagonalization trick
- Different rate matrices R give different models:
 - ▶ JC69 model: all substitutions are equally likely, equilibrium 25%
 - ▶ K80 model: transition/transversion ratio κ , equlibrium 25%
 - ► HKY85 model: K80 + arbitrary equilibrium

Algoritmy pre HMM

Broňa Brejová 26.10.2023

Opakovanie: HMM (skrytý Markovov model)

 $\Pr(S,A)$ – pravdepodobnosť, že model vygeneruje pár (S,A).

Predpokladajme, že model vždy začína v modrom stave.

$$Pr(acag) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$$

$$Pr(acag) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$$

Iný hračkársky príklad: počasie

- Obdobie nízkeho tlaku vzduchu: väčšinou prší
- Obdobie nízkeho tlaku vzduchu: väčšinou slnečno

Každé obdobie trvá typicky nieľkoko dní

Cvičenie: reprezentuj ako HMM

Parametre HMM (označenie)

Sekvencia
$$S = S_1, \dots, S_n$$

Anotácia $A = A_1, \dots, A_n$

Parametre modelu:

Prechodová pravdepodobnosť $a(u,v) = \Pr(A_{i+1} = v | A_i = u)$,

Emisná pravdepodobnosť $e(u, x) = \Pr(S_i = x | A_i = u)$,

Počiatočná pravdepodobnosť $\pi(u) = \Pr(A_1 = u)$.

\underline{a}				e	a	С	g	t
	0.99	0.007	0.003		0.24	0.27	0.28	0.21
	0.01	0.99	0		0.26	0.22	0.22	0.30
	0.001	0	0.999		0.27	0.23	0.23	0.27

Výsledná pravdepodobnosť:

$$\Pr(A,S) = \pi(A_1)e(A_1,S_1) \prod_{i=2}^{n} a(A_{i-1},A_i)e(A_i,S_i)$$

Pre dané HMM a sekvenciu S nájdi najpravdepodobnejšiu anotáciu (postupnosť stavov) $A = \arg\max_A \Pr(A,S) = \arg\max_A \Pr(A|S)$

Ako by ste to riešili?

Pripomeňme si príklad:

$$Pr(acag) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$$

$$Pr(acag) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$$

Nájdi najpravdepodobnejšiu postupnosť stavov $A = \arg\max_{A} \Pr(A, S)$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Rekurencia?

$$V[u,1] =$$

$$V[u,i] =$$

Pripomeňme si označenie:

Sekvencia $S = S_1, \ldots, S_n$, anotácia (stavy) $A = A_1, \ldots, A_n$

Prechodová pravdepodobnosť $a(u, v) = \Pr(A_{i+1} = v | A_i = u)$,

Emisná pravdepodobnosť $e(u, x) = \Pr(S_i = x | A_i = u)$,

Počiatočná pravdepodobnosť $\pi(u) = \Pr(A_1 = u)$.

$$\Pr(A,S) = \pi(A_1)e(A_1,S_1) \prod_{i=2}^{n} a(A_{i-1},A_i)e(A_i,S_i)$$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Rekurencia:

$$V[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$V[u, i] = \max_{w} V[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Algoritmus, celková odpoveď, čas výpočtu?

Pripomeňme si označenie:

Sekvencia
$$S = S_1, \ldots, S_n$$
, anotácia (stavy) $A = A_1, \ldots, A_n$

Prechodová pravdepodobnosť
$$a(u,v) = \Pr(A_{i+1} = v | A_i = u)$$
,

Emisná pravdepodobnosť
$$e(u, x) = \Pr(S_i = x | A_i = u)$$
,

Počiatočná pravdepodobnosť
$$\pi(u) = \Pr(A_1 = u)$$
.

$$\Pr(A,S) = \pi(A_1)e(A_1,S_1) \prod_{i=2}^{n} a(A_{i-1},A_i)e(A_i,S_i)$$

Viterbiho algoritmus (zhrnutie)

Nájdi najpravdepodobnejšiu postupnosť stavov $A = \arg \max_A \Pr(A,S)$

Podproblém V[u,i]: pravdepodobnosť najpravdepodobnejšej cesty končiacej po i krokoch v stave u, pričom vygeneruje $S_1S_2\ldots S_i$

Rekurencia:

$$V[u,1] = \pi(u) \cdot e(u, S_1)$$

$$V[u,i] = \max_{w} V[w,i-1] \cdot a(w,u) \cdot e(u, S_i)$$

Algoritmus:

```
Inicializuj V[*,1] for i=2\dots n (n=dĺžka S) for u=1\dots m (m=počet stavov) vypočítaj V[u,i], ulož najlepšie w do B[u,i] Maximálne V[u,n] cez všetky u je \max_A \Pr(A,S) Cestu nájdi odzadu pomocou matice B Dynamické programovanie v čase O(nm^2)
```

Další problém: celková pravdepodobnosť S

Viterbi počíta $\operatorname{arg\,max}_A \Pr(A,S)$

Teraz chceme celkovú pravdepodobnosť, že vygenerujeme sekvenciu ${\cal S}$

t.j.
$$\Pr(S) = \sum_{A} \Pr(A, S)$$

Užitočné napr. na porovnávanie rôznych modelov,

ktorý má väčšiu šancu vygenerovať S

Ako by ste to počítali?

Pripomeňme si príklad:

$$Pr(acag) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$$

$$Pr(acag) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$$

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$Pr(S) = \sum_{A} Pr(A, S)$$

Podproblém F[u,i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

$$F[u,i] = \Pr(A_i = u \land S_1, S_2, ..., S_i) = \sum_{A_1, A_2, ..., A_i = u} \Pr(A_1, A_2, ..., A_i \land S_1, S_2, ..., S_i)$$

Rekurencia?

$$F[u,1] = F[u,i] =$$

Pripomeňme si rekurenciu z Viterbiho:

$$V[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$V[u, i] = \max_{w} V[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$\Pr(S) = \sum_{A} \Pr(A, S)$$

Podproblém F[u, i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

Rekurencia

$$F[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$F[u, i] = \sum_{w} F[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Pripomeňme si rekurenciu z Viterbiho:

$$V[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$V[u, i] = \max_{w} V[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$Pr(S) = \sum_{A} Pr(A, S)$$

Podproblém F[u, i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

Rekurencia

$$F[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$F[u, i] = \sum_{w} F[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Výsledok?

Celková pravdepodobnosť $\Pr(S) =$

Čas výpočtu?

Počíta celkovú pravdepodobnosť, že vygenerujeme sekvenciu S,

$$Pr(S) = \sum_{A} Pr(A, S)$$

Podproblém F[u,i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1, S_2, \ldots S_i$ a dostaneme sa do stavu u.

$$F[u,i] = \Pr(A_i = u \land S_1, S_2, ..., S_i) = \sum_{A_1, A_2, ..., A_i = u} \Pr(A_1, A_2, ..., A_i \land S_1, S_2, ..., S_i)$$

Výsledok

Celková pravdepodobnosť $\Pr(S) = \sum_u F[u, n]$

Čas výpočtu $O(nm^2)$

Tretí problem: pravdepodobnosť, že S_i bolo generované v stave u

$$\Pr(A_i = u \mid S) = \frac{\Pr(A_i = u, S)}{\Pr(S)}$$
$$\Pr(A_i = u, S) = \sum_{A:A_i = u} \Pr(A, S)$$

Vypočítame kombináciou dopredného a spätného algoritmu

F[u,i]: pravdepodobnosť, že po i krokoch vygenerujeme $S_1,S_2,\ldots S_i$ a dostaneme sa do stavu u.

B[u,i]: pravdepodobnosť, že ak začneme v u na pozícii i, tak vygenerujeme $S_{i+1}\dots,S_n$ v najbližších krokoch

$$Pr(A_i = u, S) = F[u, i] \cdot B[u, i]$$

Spätný algoritmus (backward algorithm)

Dopredný algoritmus: pravdepodobnosť, že po i krokoch vygenerujeme

 $S_1, S_2, \dots S_i$ a dostaneme sa do stavu u.

$$F[u,1] = \pi(u) \cdot e(u, S_1)$$

$$F[u,i] = \sum_{w} F[w,i-1] \cdot a(w,u) \cdot e(u, S_i)$$

Spätný algoritmus: B[u,i]: pravdepodobnosť, že ak začneme v u na pozícii i, tak vygenerujeme $S_{i+1} \ldots, S_n$ v najbližších krokoch

Ako spočítať B[u,i]?

Spätný algoritmus (backward algorithm)

Dopredný algoritmus: pravdepodobnosť, že po i krokoch vygenerujeme

 $S_1, S_2, \dots S_i$ a dostaneme sa do stavu u.

$$F[u, 1] = \pi(u) \cdot e(u, S_1)$$

$$F[u, i] = \sum_{w} F[w, i - 1] \cdot a(w, u) \cdot e(u, S_i)$$

Spätný algoritmus: B[u,i]: pravdepodobnosť, že ak začneme v u na pozícii i, tak vygenerujeme $S_{i+1} \ldots, S_n$ v najbližších krokoch

$$B[u, n] = 1$$

 $B[u, i] = \sum_{w} B[w, i + 1] \cdot a(u, w) \cdot e(w, S_{i+1})$

Cvičenie: Ako spočítať $\Pr(S)$ pomocou matice B?

Aposteriórne dekódovanie (posterior decoding)

Videli sme:
$$\Pr(A_i = u \mid S) = \frac{F[u,i] \cdot B[u,i]}{\Pr(S)}$$

Aposteriórne pravdepodobnosti stavov:

Použitím dopredného a spätného alg. vieme teda spočítať

$$\Pr(A_i = u \,|\, S)$$
 pre všetky u a i v celkovom čase $O(nm^2)$

Aposteriórne dekódovanie

Pre dané S zvolíme A také že $A_i = \max_i \Pr(A_i = u \mid S)$

Výhoda: Berie do úvahy suboptimálne postupnosti stavov

Nevýhoda: $\Pr(A \mid S)$ môže byť 0 alebo veľmi nízka

Iná možnosť: zvolíme A Viterbiho algoritmom, aposteriórne pravdepodobnosti použijeme na priradenie dôveryhodnosti jendotlivým častiam A

Hľadanie génov s HMM

- Určenie stavov a prechodov v modeli: ručne, na základe poznatkov o štruktúre génu.
- ullet Trénovanie parametrov: pravdepodobnosti určíme na základe sekvencií so známymi génmi (trénovacia množina). Model zostavíme tak, aby páry (S,A) s vlastnosťami podobnými skutočným génom mali veľkú pravdepodobnosť $\Pr(S,A)$
- ullet Použitie: pre novú sekvenciu S nájdi najpravdepodobnejšiu anotáciu $A = \arg\max_A \Pr(A|S)$ Viterbiho algoritmom v $O(nm^2)$

Trénovanie HMM

- Stavový priestor + povolené prechody väčšinou ručne
- Parametre (pravdepodobnosti prechodu, emisie a počiatočné) automaticky z trénovacích sekvencií
- Čím zložitejší model a viac parametrov máme, tým potrebujeme viac trénovacích dát, aby nedošlo k **preučeniu**, t.j. k situácii, keď model dobre zodpovedá nejakým zvláštnostiam trénovacích dát, nie však ďalším dátam.
- Presnosť modelu testujeme na zvláštnych testovacích dátach, ktoré sme nepoužili na trénovanie.

Trénovanie HMM z anotovaných sekvencií

Vstup: topológia modelu a niekoľko trénovacích párov

$$(S^{(1)}, A^{(1)}), (S^{(2)}, A^{(2)}), \dots$$

Ciel': nastaviť $\pi(u)$, e(u,x), a(u,v) tak, aby $\prod_i \Pr(S^{(i)},A^{(i)})$ bola čo najväčšia

Dosiahneme jednoduchým počítaním frekvencií

Napr. a(u,v) : nájdeme všetky výskyty stavu u a zistíme, ako často za nimi ide stav v

Trénovanie HMM z neanotovaných sekvencií

Vstup: topológia modelu a niekoľko trénovacích sekvencií $S^{(i)}$ anotácie $A^{(i)}$ nepoznáme

Cieľ: nastaviť $\pi(u)$, e(u,x), a(u,v) tak, aby $\prod_i \Pr(S^{(i)})$ bola čo najväčšia

Používajú sa heuristické iteratívne algoritmy, napr. Baum-Welchov, ktorý je verziou všeobecnejšieho algoritmu EM (expectation maximization).

V každej iterácii používa dopradný a spätný algoritmus.

Tvorba stavového priestoru modelu

Príklad HMM na hľadanie génov

Motif finding, EM algorithm, Gibbs sampling

Askar Gafurov

November 30, 2023

1/30

Motifs

- Motivation: DNA binding sites for a certain protein
 - ► E.g. RNA polymerase (in gene expression)
- The protein prefers some locations on DNA, but not a unique sequence
 - ► E.g. AATATACC, but also AGTATACG or CATATCTC
 - ▶ The probability of binding is not constant, some sequences are more likely to bind
- Motif = a table of probabilities for each position of a binding site

$$W = \begin{pmatrix} A: & 0.7 & 0.7 & 0.05 & 0.89 & 0.05 & 0.82 & 0.1 & 0.01 \\ C: & 0.2 & 0.05 & 0.05 & 0.01 & 0.05 & 0.1 & 0.8 & 0.8 \\ G: & 0.05 & 0.2 & 0.05 & 0.05 & 0.10 & 0.03 & 0.05 & 0.1 \\ T: & 0.05 & 0.05 & 0.85 & 0.05 & 0.80 & 0.05 & 0.05 & 0.09 \end{pmatrix}$$

- Pr[AGTATACG is binding | W] = $0.7 \cdot 0.2 \cdot 0.85 \cdot 0.89 \cdot 0.80 \cdot 0.82 \cdot 0.8 \cdot 0.1 \approx 0.006$
- Pr[AATATACC is binding | W] = $0.7 \cdot 0.7 \cdot 0.85 \cdot 0.89 \cdot 0.80 \cdot 0.82 \cdot 0.8 \cdot 0.8 \approx 0.156$

Askar Gafurov Motifs, EM, Gibbs 2/30 November 30, 2023

Generative model of a sequence with a motif

- Goal: define $Pr[S \mid O, W]$ and $Pr[O \mid W]$
- $Pr[O \mid W]$ is easy: binding is equally likely to occur at every position (if we don't know the sequence)
 - ▶ $Pr[O \mid W] := \frac{1}{m-l+1}$, where m = |S|
- $Pr[S \mid O, W]$ is a bit tricky.
 - We already know the prob. of letters at binding positions $(O, O+1, \ldots, O+L-1)$
 - Assign background frequency $q(\cdot)$ for letters outside the binding site

* e.g.
$$q(A) = q(T) = 0.3, q(C) = q(G) = 0.2$$

Now, the prob. of observing *S* is a product of probs. for each letter:

$$\Pr[S = CCTATTGTATACCTATACC \mid O = 6, W] =$$

$$= q(C)q(C)q(T)q(A)q(T) \cdot$$

$$\cdot W[T, 1]W[G, 2]W[T, 3]W[A, 4]W[T, 5]W[A, 6]W[C, 7]W[C, 8] \cdot$$

$$\cdot q(T)q(A)q(T)q(A)q(C)q(C) \approx$$

$$\approx 1.11 \times 10^{-9}$$

Motif in a larger sequence

- Question: Given a motif $W \in \mathbb{R}^{4 \times L}$ and sequence S = CCTATTGTATACCTATACC, where does the binding site starts?
 - Assume there is exactly one binding site
 - Let's denote the binding site start as O.
- We can compute $Pr[O \mid S, W]$ for each possible value of O.

$$\Pr[O \mid S, W] \stackrel{\mathsf{Bayes}}{=} \frac{\Pr[S \mid O, W] \cdot \Pr[O \mid W]}{\sum_{O'} \Pr[S \mid O', W] \cdot \Pr[O' \mid W]}$$

- In human words: compute prob. of observing S given start O and motif W for each value of O, and then normalize them to sum up to 1.
- Notation for the (eventual) renormalization:

$$Pr[O \mid S, W] \sim Pr[S \mid O, W] \cdot Pr[O \mid W]$$

Motifs, EM, Gibbs Askar Gafurov November 30, 2023 4 / 30

Motif in a larger sequence

• Now let's compute $Pr[S = CCTATTGTATACCTATACC \mid O, W]$ for each value of O and then renormalize it:

$$\begin{split} Pr[S|O=1,W] &\approx 4.76 \times 10^{-13} \\ Pr[S|O=2,W] &\approx 7.00 \times 10^{-17} \\ Pr[S|O=3,W] &\approx 1.04 \times 10^{-14} \\ Pr[S|O=4,W] &\approx 7.59 \times 10^{-14} \\ Pr[S|O=5,W] &\approx 2.92 \times 10^{-16} \\ Pr[S|O=6,W] &\approx 1.11 \times 10^{-09} \\ Pr[S|O=7,W] &\approx 7.87 \times 10^{-16} \\ Pr[S|O=8,W] &\approx 1.54 \times 10^{-14} \\ Pr[S|O=9,W] &\approx 9.19 \times 10^{-17} \\ Pr[S|O=11,W] &\approx 6.12 \times 10^{-15} \\ Pr[S|O=12,W] &\approx 1.67 \times 10^{-09} \\ \Sigma &\approx 2.78 \times 10^{-09} \end{split}$$

$$\begin{split} ⪻[O=1\mid S,W]\approx 4.76\times 10^{-13}/(2.78\times 10^{-09})\approx 0.00017\\ ⪻[O=2\mid S,W]\approx 7.00\times 10^{-17}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=3\mid S,W]\approx 1.04\times 10^{-14}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=4\mid S,W]\approx 7.59\times 10^{-14}/(2.78\times 10^{-09})\approx 0.00003\\ ⪻[O=5\mid S,W]\approx 2.92\times 10^{-16}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=6\mid S,W]\approx 1.11\times 10^{-09}/(2.78\times 10^{-09})\approx 0.39992\\ ⪻[O=7\mid S,W]\approx 7.87\times 10^{-16}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=8\mid S,W]\approx 1.54\times 10^{-14}/(2.78\times 10^{-09})\approx 0.00001\\ ⪻[O=9\mid S,W]\approx 9.19\times 10^{-17}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=10\mid S,W]\approx 6.12\times 10^{-15}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=12\mid S,W]\approx 1.67\times 10^{-09}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=12\mid S,W]\approx 1.67\times 10^{-09}/(2.78\times 10^{-09})\approx 0.00000\\ ⪻[O=12\mid S,W]\approx 1.67\times 10^{-09}/(2.78\times 10^{-09})\approx 0.59987 \end{split}$$

Quick summary so far

- Motif W = a table of letter probabilities at each position of the site
 - W[a,j] := Pr[j-th | letter of a site is letter a]
- Probability of sequence S with a site at position O, motif $W \in \mathbb{R}^{4 \times L}$ and background letter frequency q is computed as a product:
 - ▶ $\Pr[S \mid O, W] = \prod_{j=1}^{O-1} q(S[j]) \cdot \prod_{j=1}^{L} W[S[O+j-1], j] \cdot \prod_{j=O+L}^{m} q(S[j])$
- Probability of site being at position O of sequence S, motif W and b.f. q is computed by renormalizing $Pr[S \mid O, W]$ (assuming a unique occurrence):
 - $\blacktriangleright \ \Pr[O \mid S, W] \sim \Pr[S \mid O, W]$

Motif finding with known O (Two hands)

- Task: Given a vector of sequences $\mathbf{S} = (S_1, \dots, S_n)$ of length m each, a vector of site starts $\mathbf{O} = (O_1, \dots, O_n)$ and b.f. q, find the best motif W of length L!
 - Assuming that the motif occurs exactly once in each sequence
- Example of input data (the sites are shown as red text):

CGACTAAACCACGGA

AGATATAACAAAAAG

AAGTCACCATAAACT

AGTATTCCTATAGCA

TGACACATACCATGG

TAATATACCGCTTAC

TGCTAATAGTCCATA

TAATATACCGTATCT

Motif finding with known O (Two hands)

- best = most likely = with the maximum (log-)likelihood
 - ▶ Likelihood of W is $\mathcal{L}(W; \mathbf{O}, \mathbf{S}) \stackrel{\text{def.}}{=} \Pr[\mathbf{S}, \mathbf{O} \mid W]$
 - $W^* = \arg\max_{W \in \mathcal{W}} \mathcal{L}(W; \mathbf{O}, \mathbf{S}) = \arg\max_{W \in \mathcal{W}} \ln \mathcal{L}(W; \mathbf{O}, \mathbf{S})$
- \bullet Intuition: best W is obtained by counting letter frequencies at the sites

$$W^*[a,j] \stackrel{??}{=} \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{S_i[O_i+j-1]=a} =: \frac{\#_{a,j}(\mathbf{0})}{n}$$

CGACTAAACCACGGA

AGATATAACAAAAAG

AAGTCACCATAAACT AGTATTCCTATAGCA

TGACACATACCATGG

TAATATACCGCTTAC
TGCTAATAGTCCATA

TAATATACCGTATCT

$$W_{\text{counting}} = \begin{pmatrix} 5/8 & 6/8 & 0/8 & 8/8 & 2/8 & 6/8 & 1/8 & 0/8 \\ 2/8 & 1/8 & 1/8 & 0/8 & 0/8 & 0/8 & 7/8 & 7/8 \\ 1/8 & 1/8 & 0/8 & 0/8 & 1/8 & 0/8 & 0/8 & 0/8 \\ 0/8 & 0/8 & 7/8 & 0/8 & 5/8 & 2/8 & 0/8 & 1/8 \end{pmatrix}$$

Let's check the intuition

$$\begin{split} W^* := \underset{W \in \mathcal{W}}{\text{arg max}} & \ln \mathcal{L}(W; \mathbf{O}, \mathbf{S}) \overset{\text{def.}}{=} \underset{W \in \mathcal{W}}{\text{arg max}} & \ln \Pr[\mathbf{S}, \mathbf{O} \mid W] = \\ & = \underset{W \in \mathcal{W}}{\text{arg max}} & \ln \Pr[\mathbf{S} \mid \mathbf{O}, W] + \ln \Pr[\mathbf{O} \mid W] = \\ & = \underset{W \in \mathcal{W}}{\text{arg max}} & \sum_{i=1}^{n} \ln \Pr[S_i \mid O_i, W] = \\ & = \underset{W \in \mathcal{W}}{\text{arg max}} & \sum_{i=1}^{n} \left(\sum_{j=1}^{O_i-1} \ln q(S_i[j]) + \sum_{j=1}^{L} \ln W[S_i[O_i+j-1], j] + \sum_{j=O_i+L}^{m} \ln q(S_i[j]) \right) = \\ & = \underset{W \in \mathcal{W}}{\text{arg max}} & \sum_{j=1}^{L} \sum_{a \in \{A, C, G, T\}} \ln W[a, j] \cdot \sum_{i=1}^{n} \mathbf{1}_{S_i[O_i+j-1]=a} = \\ & = \underset{W \in \mathcal{W}}{\text{arg max}} & \sum_{j=1}^{L} \sum_{a \in \{A, C, G, T\}} \ln W[a, j] \cdot \#_{a,j}(\mathbf{O}) \end{split}$$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 9 / 30

Let's check the intuition, p.2

$$\bullet \ \ W^* = \argmax_{W \in \mathcal{W}} \ \sum_{j=1}^L \sum_{a \in \{A,C,G,T\}} \ln W[a,j] \cdot \#_{a,j}(\mathbf{0})$$

• Each column of W can be optimised independently:

- Using the method of Lagrange multipliers, we obtain $x_a^* = \frac{\#_{a,j}(\mathbf{O})}{\sum_a \#_{a,j}(\mathbf{O})} = \frac{\#_{a,j}(\mathbf{O})}{n}$
- Thus indeed $W^*[a,j] = \frac{\#_{a,j}(\mathbf{O})}{n}$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 10 / 30

Method of Lagrange multipliers

- Optimisation task: $\underset{\substack{x_1,\dots,x_4\geq 0\\\sum_i x_i=1}}{\arg\max} \ \sum_{i=1}^4 a_i \ln x_i$
- Define new function $T(x_1,\ldots,x_4,\lambda):=\sum_{i=1}^4 a_i \ln x_i + \lambda \cdot \left(-1+\sum_{i=1}^4 x_i\right)$
- Solve (unconstrained) optimisation task $\underset{x_1,...,x_4,\lambda \in \mathbf{R}}{\operatorname{arg max}} T$ e.g. by setting the gradient to zero:

$$\nabla T = \left(\frac{a_1}{x_1} + \lambda, \dots, \frac{a_4}{x_4} + \lambda, -1 + \sum_{i=1}^4 x_i\right)$$

$$\nabla T = 0 \Longrightarrow x_i = \frac{-a_i}{\lambda}, \sum_{i=1}^4 x_i = 1$$

$$\Longrightarrow \sum_{i=1}^4 \frac{-a_i}{\lambda} = 1 \Longrightarrow \lambda = -\sum_{i=1}^4 a_i$$

$$\Longrightarrow x_i = \frac{a_i}{\sum_{i=1}^4 a_i}$$

11/30

Quick summary so far

• Previous:

►
$$\Pr[S \mid O, W] = \prod_{j=1}^{O-1} q(S[j]) \cdot \prod_{j=1}^{L} W[S[O+j-1], j] \cdot \prod_{j=O+L}^{m} q(S[j])$$
► $\Pr[O \mid S, W] \sim \Pr[S \mid O, W]$

• (new!) Given sequences S and motif starts O, we can find the most likely motif W of length L using letter frequency counting

$$\qquad \qquad \mathbf{W}^* = \mathop{\arg\max}_{W \in \mathcal{W}} \; \ln \Pr[\mathbf{S} \mid \mathbf{O}, W] = \left(\frac{\#_{a,j}(\mathbf{O})}{n}\right)_{a \in \{A,C,G,T\}, 1 \le j \le L}$$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 12 / 30

Motif finding with distribution of O (One hand)

- Task: Given a vector of sequences $\mathbf{S} = (S_1, \dots, S_n)$ of length m each, a distribution of site starts $g(\mathbf{O}) = \prod_{i=1}^n g_i(O_i)$ and b.f. q, find the best motif W of length L!
 - ▶ Assuming that the motif **occurs exactly once** in each sequence
 - ▶ In human words: we don't know exactly where the motif starts occur, but we have a guess g_i for each sequence.
 - ▶ The values $g_i(1), \ldots, g_i(m-L+1)$ are "weights" for each position in sequence S_i
- Example of input data:

CGACTAAACCACGGA
AGATATAACAAAAAG
AAGTCACCATAAACT
AGTATTCCTATAGCA
TGACACATACCATGG
TAATATACCGCTTAC
TGCTAATAGTCCATA
TAATATACCGTATCT

$$(g_i(o))_{i,o} = \begin{pmatrix} 0.07 & 0.07 & 0.51 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ 0.07 & 0.51 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ 0.12 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.40 \\ 0.46 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.09 & 0.08 \\ 0.07 & 0.07 & 0.07 & 0.51 & 0.07 & 0.07 & 0.07 & 0.07 \\ 0.07 & 0.51 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ 0.07 & 0.51 & 0.07 & 0.07 & 0.51 & 0.07 & 0.07 & 0.07 \\ 0.07 & 0.51 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \end{pmatrix}$$

Motif finding with distribution of O (One hand)

• $best = with the maximum log-likelihood across all possible <math>\mathbf{0}$ with prob. \mathbf{g}

$$W^* = \underset{W \in \mathcal{W}}{\arg\max} \ E_{\mathbf{O} \sim g} \left[\ln \mathcal{L}(W; \mathbf{O}, \mathbf{S}) \right] \stackrel{\text{def.}}{=} \sum_{\mathbf{O} \in \mathcal{O}} \ln \mathcal{L}(W; \mathbf{O}, \mathbf{S}) \cdot g(\mathbf{O})$$

• Intuition: best W is obtained by counting letter frequencies at all possible sites weighted by g

$$W^*[a,j] \stackrel{??}{=} \frac{1}{n} \sum_{i=1}^n \sum_{O=1}^{m-L+1} g_i(O_i) \cdot \mathbf{1}_{S_i[O_i+j-1]=a} =: \frac{\#_{a,j}(g)}{n}$$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 14/30

Example of weighted frequency counting

• Looking for a motif of length L=3

• Input:
$$\mathbf{S} = \text{ACGACA}$$
, distrubution of starts $g = \begin{pmatrix} 0.2 & 0.3 & 0.4 & 0.1 \\ 0.4 & 0.1 & 0.2 & 0.3 \\ 0.1 & 0.1 & 0.6 & 0.2 \end{pmatrix}$

$$\#:\begin{pmatrix}A:&0.2+0.3+0.4+0.4+0.3+0.6&0.2+0.3+0.2+0.1&0.2+0.1+0.3+0.1\\C:&0.1+0.1+0.2&0.4+0.1+0.4+0.3+0.6+0.2&0.3+0.4+0.2+0.1+0.6\\G:&0.2&0.1&0.4+0.2\\T:&0.1&0.1&0.1\end{pmatrix}$$

$$W_{counting} = egin{pmatrix} A: & 2.2/3 & 0.8/3 & 0.7/3 \ C: & 0.5/3 & 2.0/3 & 1.6/3 \ G: & 0.2/3 & 0.1/3 & 0.6/3 \ T: & 0.1/3 & 0.1/3 & 0.2/3 \end{pmatrix}$$

Let's check the intuition

$$W^* := \underset{W \in \mathcal{W}}{\text{arg max}} \ E_{\mathbf{O} \sim g}[\ln \mathcal{L}(W; \mathbf{O}, \mathbf{S})] = \underset{W \in \mathcal{W}}{\text{arg max}} \ E_{\mathbf{O} \sim g}[\ln \prod_{i=1}^{n} \mathcal{L}(W; O_i, S_i)] = \\ = \underset{W \in \mathcal{W}}{\text{arg max}} \ \sum_{i=1}^{n} E_{\mathbf{O}_i \sim g_i}[\ln \mathcal{L}(W; O_i, S_i)] = \\ = \underset{W \in \mathcal{W}}{\text{arg max}} \ \sum_{i=1}^{n} \sum_{O_i = 1}^{m-L+1} (\ln \Pr[S_i \mid O_i, W] + \ln \Pr[O_i \mid W])g_i(O_i) = \\ = \underset{W \in \mathcal{W}}{\text{arg max}} \ \sum_{i=1}^{n} \sum_{O_i = 1}^{m-L+1} \left(\sum_{j=1}^{O_i - 1} \ln q(S_i[j]) + \sum_{j=1}^{L} \ln W[S_i[O_i + j - 1], j] + \sum_{j=O_i + L}^{m} \ln q(S_i[j]) \right) g_i(O_i) = \\ = \underset{W \in \mathcal{W}}{\text{arg max}} \ \sum_{j=1}^{L} \sum_{a \in \{A, C, G, T\}} \ln W[a, j] \left(\sum_{i=1}^{n} \sum_{O_i = 1}^{m-L+1} \mathbf{1}_{S_i[O_i + j - 1] = a} \cdot g_i(O_i) \right) = \\ = \underset{W \in \mathcal{W}}{\text{arg max}} \ \sum_{j=1}^{L} \sum_{a \in \{A, C, G, T\}} \ln W[a, j] \cdot \#_{a, j}(g).$$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 16 / 30

Quick summary so far

• Previous:

►
$$\Pr[S \mid O, W] = \prod_{j=1}^{O-1} q(S[j]) \cdot \prod_{j=1}^{L} W[S[O+j-1], j] \cdot \prod_{j=O+L}^{m} q(S[j])$$
► $\Pr[O \mid S, W] \sim \Pr[S \mid O, W]$

- For known \mathbf{S} and starts \mathbf{O}
- For known **S** and starts **O**:

$$W^* = \underset{W \in \mathcal{W}}{\operatorname{arg \, max}} \ \ln \mathcal{L}(W; \mathbf{S}, \mathbf{O}) = \left(n^{-1} \cdot \#_{a,j}(\mathbf{O})\right)_{a \in \{A, C, G, T\}, 1 \le j \le L}$$

- * $\#_{a,j}(\mathbf{0}) := \sum_{i=1}^n \mathbf{1}_{S_i[O_i+j-1]=a}$
- (new!) Given sequences **S** and motif starts distribution $g(\mathbf{O})$, we can find the most likely motif W of length L using weighted letter frequency counting:
 - $\blacktriangleright \ W^* = \underset{W \in \mathcal{W}}{\operatorname{arg \ max}} \ E_{\mathbf{O} \sim g}[\ln \mathcal{L}(W; \mathbf{S}, \mathbf{O})] = \left(n^{-1} \cdot \#_{\mathsf{a}, j}(g)\right)_{\mathsf{a} \in \{A, C, G, T\}, 1 \leq j \leq L}$
 - $\#_{a,j}(g) := \sum_{i=1}^n \sum_{O_i=1}^{m-L+1} g_i(O_i) \cdot \mathbf{1}_{S_i[O_i+j-1]=a}$

Motif finding without O (No hands)

- Task: Given a vector of sequences $\mathbf{S} = (S_1, \dots, S_n)$ of length m each and b.f. q, find the best motif W of length L!
 - Assuming that the motif occurs exactly once in each sequence
 - ▶ No information about the motif starts nor motif itself...
- Example of input data:

CGACTAAACCACGGA

AGATATAACAAAAAG

AAGTCACCATAAACT

AGTATTCCTATAGCA

TGACACATACCATGG

TAATATACCGCTTAC

TGCTAATAGTCCATA

TAATATACCGTATCT

Expectation-Maximisation algorithm

- The algorithm:
 - ▶ Start with random motif $W^{(0)}$
 - ► Repeat:
 - ★ (E-step) infer $g^{(t+1)}(\cdot)$ from $W^{(t)}$:

$$g^{(t+1)}(\mathbf{0}) := \mathsf{Pr}[\mathbf{0} \mid \mathbf{S}, W^{(t)}] \sim \prod_{i=1}^n \mathsf{Pr}[S_i \mid O_i, W^{(t)}]$$

★ (M-step) infer $W^{(t+1)}$ from $g^{(t+1)}(\cdot)$:

$$W^{(t+1)} := \underset{W \in \mathcal{W}}{\text{arg max}} \ E_{\mathbf{O} \sim g^{(t+1)}}[\ln \mathcal{L}(W; \mathbf{S}, \mathbf{O})] = \left(n^{-1} \cdot \#_{a, j}\left(g^{(t+1)}\right)\right)_{a \in \{A, C, G, T\}, 1 \le j \le L\}}$$

- Random $\Rightarrow W^{(0)} \stackrel{\mathsf{E}}{\Rightarrow} g^{(1)} \stackrel{\mathsf{M}}{\Rightarrow} W^{(1)} \stackrel{\mathsf{E}}{\Rightarrow} g^{(2)} \stackrel{\mathsf{M}}{\Rightarrow} W^{(2)} \stackrel{\mathsf{E}}{\Rightarrow} g^{(3)} \stackrel{\mathsf{M}}{\Rightarrow} W^{(3)} \stackrel{\mathsf{E}}{\Rightarrow} \dots$
- Each next $W^{(t)}$ is better than the previous one:

$$\Pr[S \mid W^{(t+1)}] \ge \Pr[S \mid W^{(t)}]$$

Time for a demo

Reconstruction of a missing motif start

- Task: Given sequences **S**, motif length L and motif starts with missing i-th coordinate $\mathbf{O}_{-i} = (O_1, \dots, O_{i-1}, ?, O_{i+1}, \dots, O_n)$, reconstruct the missing coordinate O_i .
 - ▶ We don't know the motif W
- Let's compute prob. for each possible value of O_i :

$$\Pr[O_i = k \mid \mathbf{O}_{-i}, \mathbf{S}] \stackrel{\text{cond.}}{=} \frac{\Pr[O_i = k, \mathbf{O}_{-i} \mid \mathbf{S}]}{\sum_{\ell} \Pr[O_i = \ell, \mathbf{O}_{-i} \mid \mathbf{S}]} \sim \\
\sim \Pr[\mathbf{O} = (O_1, \dots, O_{i-1}, k, O_{i+1}, \dots, O_n) \mid \mathbf{S}] = \\
= \frac{\Pr[\mathbf{S} \mid \mathbf{O}] \cdot \Pr[\mathbf{O}]}{\sum_{\mathbf{O}'} \Pr[\mathbf{S} \mid \mathbf{O}] \cdot \Pr[\mathbf{O}]} \sim \\
\sim \Pr[\mathbf{S} \mid \mathbf{O}]$$

• So, we only need to be able to compute $Pr[S \mid O]$ for arbitrary O...

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 21 / 30

How to compute Pr[S | O]

 Since we don't know the true motif, we have to average over all possible motifs. It's called marginalization:

$$\Pr[\mathbf{S} \mid \mathbf{O}] = E_{W}[\Pr[\mathbf{S}, W \mid \mathbf{O}]] = \int_{\mathcal{W}} \Pr[\mathbf{S} \mid W, \mathbf{O}] \cdot p(W) \ dW$$

- We need to define the "probability" p(W) of motif W.
- We want all combinations of frequencies to be "equally likely":

$$W_j \sim \mathsf{Dirichlet}(1,1,1,1)$$
 $p(W_j) = rac{\Gamma(4)}{\Gamma(1)^4} = rac{3!}{0!^4} = 6$
 $p(W) = 6^n$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 22 / 30

Let's compute some integrals

$$\Pr[\mathbf{S} \mid \mathbf{O}] = \int_{\mathcal{W}} \Pr[\mathbf{S} \mid W, \mathbf{O}] \cdot \mathbf{6}^{n} \ dW \sim$$

$$\sim \int_{\mathcal{W}} \Pr[\mathbf{S} \mid W, \mathbf{O}] \ dW = \int_{\mathcal{W}} \prod_{i=1}^{n} \Pr[S_{i} \mid W, O_{i}] \ dW =$$

$$= \int_{\mathcal{W}} \prod_{i=1}^{n} \prod_{j=1}^{O_{i}-1} q(S[j]) \cdot \prod_{j=1}^{L} W[S[O_{i}+j-1], j] \cdot \prod_{j=O_{i}+L}^{m} q(S[j]) \ dW =$$

$$= \int_{\mathcal{W}} \prod_{j=1}^{n} \prod_{a \in \{A, C, G, T\}}^{L} W[a, j]^{\#_{a,j}(\mathbf{O})} \ dW =$$

$$= \prod_{j=1}^{L} \int_{S^{4}} \prod_{a \in \{A, C, G, T\}} W[a, j]^{\#_{a,j}(\mathbf{O})} \ dW_{j} \dots$$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 23 / 30

Computation of integral over unit 4-simplex

• We need to compute a definite integral of form $\int_{\mathcal{S}^4} x_1^{a_1} \cdot x_2^{a_2} \cdot x_3^{a_3} \cdot x_4^{a_4} d\mathbb{X}$, where $\mathcal{S}^4 = \{(x_1, \dots, x_4) \in [0, 1]^4 : \sum_i x_i = 1\}$.

► A magic formula: $\mathcal{B}(z_1, z_2) \stackrel{\text{def.}}{=} \int_0^1 t^{z_1 - 1} \cdot (1 - t)^{z_2 - 1} dt = \frac{\Gamma(z_1) \cdot \Gamma(z_2)}{\Gamma(z_1 + z_2)}$

$$\int_{\mathcal{S}^4} x_1^{\mathfrak{d}_1} \cdot x_2^{\mathfrak{d}_2} \cdot x_3^{\mathfrak{d}_3} \cdot x_4^{\mathfrak{d}_4} \, d\mathbb{X} =$$

$$= \int_0^1 x_1^{\mathfrak{d}_1} \int_0^{1-x_1} x_2^{\mathfrak{d}_2} \int_0^{1-x_1-x_2} x_3^{\mathfrak{d}_3} \cdot (1-x_1-x_2-x_3)^{\mathfrak{d}_4} \, dx_3 \, dx_2 \, dx_1 =$$

$$= \int_0^1 x_1^{\mathfrak{d}_1} \int_0^{1-x_1} x_2^{\mathfrak{d}_2} \int_0^{\xi} x_3^{\mathfrak{d}_3} \cdot (\xi-x_3)^{\mathfrak{d}_4} \, dx_3 \, dx_2 \, dx_1 =$$

$$= \int_0^1 x_1^{\mathfrak{d}_1} \int_0^{1-x_1} x_2^{\mathfrak{d}_2} \xi^{\mathfrak{d}_3+\mathfrak{d}_4} \int_0^{\xi} \left(\frac{x_3}{\xi}\right)^{\mathfrak{d}_3} \cdot \left(1-\frac{x_3}{\xi}\right)^{\mathfrak{d}_4} \, dx_3 \, dx_2 \, dx_1 =$$

$$= \frac{\Gamma(\mathfrak{d}_3+1)\Gamma(\mathfrak{d}_4+1)}{\Gamma(\mathfrak{d}_3+\mathfrak{d}_4+2)} \int_0^1 x_1^{\mathfrak{d}_1} \int_0^{1-x_1} x_2^{\mathfrak{d}_2} (1-x_1-x_2)^{\mathfrak{d}_3+\mathfrak{d}_4+1} \, dx_2 \, dx_1 =$$

$$= \frac{\Gamma(\mathfrak{d}_3+1)\Gamma(\mathfrak{d}_4+1)}{\Gamma(\mathfrak{d}_3+\mathfrak{d}_4+2)} \frac{\Gamma(\mathfrak{d}_2+1)\Gamma(\mathfrak{d}_3+\mathfrak{d}_4+2)}{\Gamma(\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+3)} \int_0^1 x_1^{\mathfrak{d}_1} \cdot (1-x_1)^{\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+2} \, dx_1 =$$

$$= \frac{\Gamma(\mathfrak{d}_3+1)\Gamma(\mathfrak{d}_4+1)}{\Gamma(\mathfrak{d}_3+\mathfrak{d}_4+2)} \frac{\Gamma(\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+2)}{\Gamma(\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+3)} \frac{\Gamma(\mathfrak{d}_1+1)\Gamma(\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+3)}{\Gamma(\mathfrak{d}_1+\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+3)} =$$

$$= \frac{\mathfrak{d}_1!\mathfrak{d}_2!\mathfrak{d}_3!\mathfrak{d}_4!}{(3+\mathfrak{d}_1+\mathfrak{d}_2+\mathfrak{d}_2+\mathfrak{d}_2+\mathfrak{d}_3+\mathfrak{d}_4+3)} \frac{\mathfrak{d}_1!\mathfrak{d}_2!\mathfrak{d}_3!\mathfrak{d}_4!}{(3+\mathfrak{d}_1+\mathfrak{d}_2+\mathfrak{d}_2+\mathfrak{d}_2+\mathfrak{d}_3$$

Back to the main integral

$$\Pr[\mathbf{S} \mid \mathbf{O}] \sim \dots \sim \prod_{j=1}^{L} \int_{\mathcal{S}^{4}} \prod_{a \in \{A, C, G, T\}} W[a, j]^{\#_{a, j}(\mathbf{O})} dW_{j} = \\
= \prod_{j=1}^{L} \frac{\prod_{a \in \{A, C, G, T\}} \#_{a, j}(\mathbf{O})!}{(3+n)!} \sim \\
\sim \prod_{j=1}^{L} \prod_{a \in \{A, C, G, T\}} \#_{a, j}(\mathbf{O})!$$

Finally, we can compute the probabilities for the missing motif start:

$$\Pr[O_i = k \mid \mathbf{O}_{-i}, \mathbf{S}] \sim \prod_{j=1}^{L} \prod_{a \in \{A, C, G, T\}} \#_{a,j}(\mathbf{O})!$$

Hooray! Time to take a breath and regain posture.

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 25 / 30

Example of computing the prob. of missing start

• Formula: $\Pr[O_i = k \mid \mathbf{O}_{-i}, \mathbf{S}] \sim \prod_{j=1}^L \prod_{a \in \{A, C, G, T\}} \#_{a,j}(\mathbf{O})!$

• Input: $\mathbf{S} = \text{ACGTCA}, \ \mathbf{O}_{-2} = (2, ?, 3)$ $\text{TT}_{\mathbf{ACCG}}$

 $Pr[O_2 = 4 \mid \mathbf{O}_{-2}, \mathbf{S}] = 8/48 \stackrel{\cdot}{=} 0.17$

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 26 / 30

Sampling from $Pr[\mathbf{O} \mid \mathbf{S}]$ via Gibbs sampling algorithm

- A bigger goal: To sample motif starts **O** from Pr[**O** | **S**]
- Gibbs sampling algorithm:
 - ► Start with a random **O**⁽⁰⁾
 - ► Repeat:
 - ★ Select a random coordinate $i \in_R \{1, ..., n\}$
 - ★ Erase *i*-th coordinate from **O**^(t)
 - * Sample a replacement O' for it from $\Pr[O_i = k \mid \mathbf{O}_{-i}, \mathbf{S}] \sim \prod_{i=1}^L \prod_{a \in \{A, C, G, T\}} \#_{a,j}(\mathbf{O})!$
 - * new sample $\mathbf{O}^{(t+1)}$ is the same as $\mathbf{O}^{(t)}$, but with *i*-th coordinate replaced by O'
- This algorithm produces samples $O^{(0)}, O^{(1)}, O^{(2)}, O^{(3)}, \dots$ from $Pr[\mathbf{O} \mid \mathbf{S}]$
- Example:

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 27/30

Back to Motif finding without O (No hands)

- Task: Given a vector of sequences $\mathbf{S} = (S_1, \dots, S_n)$ of length m each and b.f. q, find the best motif W of length L!
- Algorithm using Gibbs sampling:
 - ▶ Sample many motif starts vectors $\mathbf{O}^{(1)}, \dots, \mathbf{O}^{(B)}$ from $\Pr[\mathbf{O} \mid \mathbf{S}]$
 - ► For each sampled motif starts vector $\mathbf{O}^{(t)}$, compute the optimal motif $W^{(t)} := \underset{W \in \mathcal{W}}{\operatorname{arg \ max}} \ \ln \mathcal{L}(W; \mathbf{S}, \mathbf{O}^{(t)}) = \left(n^{-1} \cdot \#_{a,j}\left(\mathbf{O}^{(t)}\right)\right)_{a \in \{A,C,G,T\}, 1 \leq j \leq L\}}$
 - Return the pair $(W^{(t)}, \mathbf{O}^{(t)})$ with the highest log-likelihood ln $\mathcal{L}(W^{(t)}; \mathbf{S}, \mathbf{O}^{(t)})$

Time for a demo

Summary

- Motifs are used to represent e.g. DNA bind sites of proteins
 - lacktriangle Motif W= a table of letter probabilities at each position of the site
 - ★ W[a,j] := Pr[j-th | letter of a site is letter a]
- ullet Motif finding = given sequences, where motif occurs, find the best motif W
- Motif finding can be solved by Expectation-Maximisation algorithm
 - ▶ Alternating improvement of $g(\mathbf{0})$ and W:
 - $\star \; \; \mathsf{Random} \Rightarrow \mathcal{W}^{(0)} \overset{\mathsf{E}}{\Rightarrow} \mathcal{g}^{(1)} \overset{\mathsf{M}}{\Rightarrow} \mathcal{W}^{(1)} \overset{\mathsf{E}}{\Rightarrow} \mathcal{g}^{(2)} \overset{\mathsf{M}}{\Rightarrow} \mathcal{W}^{(2)} \overset{\mathsf{E}}{\Rightarrow} \mathcal{g}^{(3)} \overset{\mathsf{M}}{\Rightarrow} \mathcal{W}^{(3)} \overset{\mathsf{E}}{\Rightarrow} \dots$
- Motif finding can be solved by Gibbs sampling
 - Random sampling of O from Pr[O | S], selecting the best one
 - Gibbs sampling works by altering one coordinate of a previous sample, sampling its value from a conditional distribution

Askar Gafurov Motifs, EM, Gibbs November 30, 2023 30 / 30

Course Summary

Broňa Brejová December 16, 2021

Probabilistic models

- Hidden Markov models (gene finding, phylogenetic HMMs for conserved elements, profile HMMs for protein families)
- Phylogenetic trees and substitution models
- Stochastic context-free grammars
- Gibbs sampling
- Maximum likelihood method
- Expectation maximization (EM)

Statistical methods

- Statistical significance, E-value, P-value
- Positive selection test
- Linkage disequilibrium, association mapping

Practice in dynamic programming

- Sequence alignment (global, local, affine gaps, saving memory)
- Hidden Markov models (Viterbi and forward algorithms)
- Computation on trees (parsimony, Felsenstein algorithm for likelihood)
- Mass spectrometry (MS/MS)
- Secondary RNA structure

Other

- Integer linear programming
- deBruijn graphs
- Clustering and classification

How to model real-life problems

- Consider what data are avilable, what are relevant questions
- Formulate as a computer-science problem (e.g. score optimization)
- Probabilistic models often lead to a systematic choice of a scoring scheme
- The resulting problem often NP hard
 - Heuristics, approximation algorithms
 - ILP and other techniques for exact solutions
 - Can we change problem formulation?
- Testing: are computation results relevant in a given domain?
 (is our formulation sufficiently realistic?)

Ďalšie predmety

- Strojové učenie 2-INF-150, Vinař/Boža (ZS, 4P, 6kr)
- Vybrané partie z dátových štruktúr 2-INF-237, Kováč (ZS, 4P, 6kr)
- Seminár z bioinformatiky (1)-(4) 2-AIN-50[56],25[12] (oba semestre, 2S, 2kr)
- Manažment dát 1-DAV-202, Brejová, Vinař, Boža (LS, 1P/2C, 4kr)
- Genomika 2-INF-269, Nosek a kol. (LS, 2P/1C, 4kr)
- Výzvy súčasnej bioinformatiky 1-BIN-105, Brejová, Vinař (LS, 2S, 2kr)
- http://compbio.fmph.uniba.sk/vyuka/

Integer Linear Programming

Tomáš Vinař December 16, 2021

Practical programs for NP-hard problems

They always find the optimal solution, often in reasonable time, but on some inputs very long runtimes

• ILP: CPLEX, Gurobi (commercial), SCIP (non-commercial)

• SAT: Minisat, Lingeling, glucose, CryptoMiniSat, painless

• TSP: Concorde

Other NP-complete problems can be transformed to one of these problems

ILP: Integer linear programming

Linear programming:

real-valued variables x_1,\ldots,x_n minimize $\sum_i a_i x_i$ for given weights a_1,\ldots,a_n under constraints of the form $\sum_i b_i x_i \leq c$

LP can be solved in polynomial time

Integer linear programming:

Add a constraint that some variables are integers or binary

NP-hard problem

Expressing known NP-hard problems as ILP

Knapsack

Given n items with weights $w_1 \dots w_n$ and costs $c_1 \dots c_n$.

Choose a subset so that overall weight is at most T and the overall cost is highest possible?

Expressing known NP-hard problems as ILP

Set cover

We have n subsets $S_1 \ldots, S_n$ of a set $U = \{1 \ldots m\}$.

Choose the smallest number of the input subsets so that their union is the whole set ${\cal U}.$

Protein threading

Protein A has a known sequence and structure, protein B only sequence.

Align A and B so that if two amino acids are close in A, their equivalents in B should be "compatible".

Choose "cores" in A which should remain conserved without insertions, deletions and in the same order

Cores are separated by "loops", whose length can arbitrarily change and whose alignements will not be scored

Protein threading, problem formulation

Input: sequence $B=b_1\dots b_n$, lengths of m cores $c_1\dots c_m$, scoring tables

- $-E_{ij}$: how well $b_j \dots b_{j+c_i-1}$ agrees with sequence of core i,
- $-E_{ijk\ell}$: how well would cores i and k interact, if they start at pos. j,ℓ .

Task: choose starts of cores x_1, x_2, \ldots, x_m so that

- they are in the correct order and without overlaps,
- they achieve maximum possible score

Note: we do not specify how to choose cores and scoring tables, which is a modeling, not an algorithmic problem

Protein threading, ILP

Notation: sequence $B=b_1\dots b_n$, lengths of m cores $c_1\dots c_m$, E_{ij} : how well $b_j\dots b_{j+c_i-1}$ agrees with sequence of core i, $E_{ijk\ell}$: how well would cores i and k interact, if they start at pos. j,ℓ , unknown starts of cores x_1,\dots,x_m .

ILP formulation:

Protein threading, ILP

Notation: sequence $B=b_1\dots b_n$, lengths of m cores $c_1\dots c_m$, E_{ij} : how well $b_j\dots b_{j+c_i-1}$ agrees with sequence of core i, $E_{ijk\ell}$: how well would cores i and k interact, if they start at pos. j,ℓ , unknown starts of cores x_1,\dots,x_m .

ILP formulation: