

CREDIT RISK PREDICTION PROJECT REPORT

Student Name: Pragati Gupta Date of Performance: 03-03-2025

UID: 24MCI10255 Subject: Machine Learning Lab

Section/Group: 24MAM-4/A Subject Code: 24CAP-672

Branch: UIC Semester: 2nd

O Aim:

To build a machine learning model that predicts the likelihood of a client defaulting on a loan using credit application data.

O Task to be done:

- 1. Load and inspect the dataset for completeness and structure.
- 2. Clean the data to make it suitable for modeling (e.g., handle missing values, feature engineering).
- 3. Perform Exploratory Data Analysis (EDA) to uncover trends and patterns.
- 4. Build and train a classification model (Random Forest Classifier) to predict loan default.
- 5. Evaluate the model using standard classification metrics.
- 6. Visualize feature importance to understand key predictors.

O Algorithm:

Random Forest Classifier

- Ensemble method using multiple decision trees.
- Trains on different random subsets of the data and aggregates results.
- Robust to overfitting and handles both categorical and numerical data.

Steps Implemented:

1. Data Preprocessing:

- Derived features: AGE, YEARS_EMPLOYED, DEBT_TO_INCOME.
 Encoded categorical variables using one-hot encoding.
- Handled missing values and outliers.

2. Exploratory Data Analysis:

 Analyzed default distribution.
 Investigated relationships between loan default and features like age, debt-toincome ratio, and education level.

3. Model Training & Evaluation:

o Data split: 70% training, 30% testing. o Classifier: RandomForestClassifier(n_estimators=50, random_state=42) o Evaluation: Precision, Recall, F1-score, Accuracy, Confusion Matrix.

O Data Set:

File Name:

application_data.csv **Rows:** 307,511 **Key Columns**

Used:

- TARGET: Loan default flag (0 = No Default, 1 = Default)
- AGE, YEARS EMPLOYED, DEBT TO INCOME
- AMT INCOME TOTAL, AMT CREDIT
- CODE GENDER, NAME EDUCATION TYPE
- EXT SOURCE 2 (external risk score)

O Code for the experiment:

```
# Import essential libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix

# Set visualization style
sns.set(style="whitegrid")
plt.rcParams['figure.figsize'] = (10, 5)

# 1. Data Loading & Initial Inspection
def load_and_inspect():
# Load data (use a smaller sample for demo)
```



```
data = pd.read csv('application data.csv')
  # Basic inspection
  print(f"Data shape: {data.shape}")
  print("\nTarget distribution:")
  print(data['TARGET'].value counts(normalize=True))
  return data
# 2. Data Cleaning
def clean data(df):
  # Simple cleaning steps
  df clean = df.copy()
  # Convert days to years
  df clean['AGE'] = abs(df clean['DAYS BIRTH']) / 365
  df clean['YEARS EMPLOYED'] = abs(df clean['DAYS EMPLOYED']) / 365
  # Handle extreme employment years
  df clean.loc[df clean['YEARS EMPLOYED'] > 50, 'YEARS EMPLOYED'] = np.nan
  df clean['YEARS EMPLOYED'].fillna(df_clean['YEARS_EMPLOYED'].median(),
inplace=True)
  # Create simple features
  df clean['DEBT TO INCOME'] = df clean['AMT CREDIT'] /
df clean['AMT INCOME TOTAL']
  # Select only key columns for simplicity
  keep cols = ['TARGET', 'AGE', 'YEARS_EMPLOYED', 'DEBT_TO_INCOME',
         'AMT INCOME TOTAL', 'AMT CREDIT', 'CODE GENDER',
         'NAME EDUCATION TYPE', 'EXT SOURCE 2']
  return df clean[keep cols].dropna()
# 3. Exploratory Data Analysis
def perform_eda(df):
  # Target distribution
  plt.figure()
```



```
sns.countplot(x='TARGET', data=df)
  plt.title('Loan Default Distribution')
  plt.show()
  # Age vs Default
  plt.figure()
  sns.boxplot(x='TARGET', y='AGE', data=df)
  plt.title('Age Distribution by Loan Status')
  plt.show()
  # Debt-to-Income vs Default
  plt.figure()
  sns.boxplot(x='TARGET', y='DEBT TO INCOME', data=df)
  plt.title('Debt-to-Income Ratio by Loan Status')
  plt.show()
  # Education vs Default
  if 'NAME EDUCATION TYPE' in df.columns:
    plt.figure(figsize=(10, 5))
    edu rates = df.groupby('NAME EDUCATION TYPE')['TARGET'].mean().sort values()
    sns.barplot(x=edu rates.values, y=edu rates.index)
    plt.title('Default Rate by Education Level')
    plt.show()
# 4. Modeling
def build_model(df):
  # Encode categorical variables
  df model = pd.get dummies(df, drop first=True)
  # Split data
  X = df \mod drop(TARGET', axis=1)
  y = df model['TARGET']
  X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
  # Simple model
  model = RandomForestClassifier(n estimators=50, random state=42)
  model.fit(X train, y train)
```



```
# Evaluate
  y pred = model.predict(X test)
  print("\nClassification Report:")
  print(classification_report(y_test, y_pred))
  # Feature importance
  plt.figure()
  feat importances = pd.Series(model.feature importances , index=X.columns)
  feat_importances.nlargest(5).plot(kind='barh')
  plt.title('Top 5 Important Features')
  plt.show()
# Main execution
def main():
  print("=== Simplified Credit Risk Analysis ====")
  #1. Load data
  print("\nLoading data...")
  data = load_and_inspect()
  #2. Clean data
  print("\nCleaning data...")
  clean_df = clean_data(data)
  #3. EDA
  print("\nPerforming EDA...")
  perform eda(clean df)
  #4. Modeling
  print("\nBuilding model...")
  build model(clean df)
  print("\nAnalysis complete!")
if __name__ == "__main__":
  main()
```


Output:

```
Loading data...
Data shape: (307511, 9)

Target distribution:
TARGET
0 0.919271
1 0.080729
Name: proportion, dtype: float64

Cleaning data...

Performing EDA...
```

Interpretation:

- The dataset contains 307,511 records and 9 features (after feature selection).
- The **TARGET** variable represents whether a client defaulted (1) or not (0) on a loan.
- Only ~8% of the customers defaulted, while ~92% did not.

 This is a classic example of class imbalance, which can affect model performance especially recall on the minority class (defaults).

This bar plot shows the frequency of each class in the target variable.

Interpretation:

- A huge imbalance is visually evident.
- The model might **lean heavily towards predicting '0'** (no default) because it dominates the dataset.
- Special care or techniques (e.g., SMOTE, stratified sampling) might be needed in future iterations to balance this bias.

Interpretation:

- This plot compares the age distribution of clients who did and did not default.
- Boxplots summarize median, quartiles, and potential outliers.

Key Insights:

- Defaulters (TARGET=1) tend to be **younger** on average compared to non-defaulters.
- Older clients are **less likely to default**, which could relate to financial stability or established credit history.

Interpretation:

• This shows how **debt-to-income ratio (credit/income)** varies between defaulters and nondefaulters.

Key Insights:

- Defaulters tend to have a **slightly higher median debt-to-income ratio**, indicating **more financial strain**.
- However, there's **significant overlap**, meaning this feature alone may not separate classes well.

Interpretation:

• Calculates and plots the **mean default rate for each education level**.

Key Insights:

- Lower education levels (e.g., Secondary or Incomplete) generally have higher default rates.
- Higher education (like academic degrees) correlates with **lower default probability**, likely due to better income potential and financial literacy.

Building model.	••			
Classification	Report:			
F	recision	recall	f1-score	support
Ø	0.92	1.00	0.96	84528
1	0.34	0.01	0.02	7528
accuracy			0.92	92056
macro avg	0.63	0.50	0.49	92056
weighted avg	0.87	0.92	0.88	92056

Metrics Explained:

Metric	Class 0 (No Default)	Class 1 (Default)
Precision	92%	34%
Recall	100%	1% (!)

F1-Score	96%	2%	
----------	-----	----	--

Key Insights:

- The model is **very good at identifying non-defaulters** (class 0), achieving **high accuracy** and recall.
- But it completely fails to detect defaulters (class 1) recall is just 1%.
- This is due to class imbalance; the model sees so few defaulters in training that it essentially **ignores them** to maximize accuracy.
- Accuracy (92%) is misleading here; the model isn't useful if we care about identifying risk!

Interpretation:

- Visualizes the top 5 most important features used by the Random Forest model. Key Insights:
- Features like EXT_SOURCE_2, AGE, AMT_INCOME_TOTAL, YEARS_EMPLOYED, and DEBT_TO_INCOME likely contribute most to the decision-making.
- EXT_SOURCE_2 is a known external risk score and is a **very powerful predictor** in many credit datasets.
- AGE and EMPLOYMENT DURATION support earlier EDA findings about stability and default risk.

O Learning Outcomes:

- Gained hands-on experience with real-world imbalanced datasets.
- Learned effective feature engineering techniques from temporal features.

- Understood how class imbalance affects model performance (e.g., low recall for minority class).
- Improved data visualization and interpretation using Seaborn and Matplotlib.
- Applied a machine learning pipeline from raw data to model evaluation.
- Identified the most important features influencing loan default using model explainability tools.

Github link: https://github.com/prag211/ML-credit-risk-analysis.git