Encyclopaedia of Mathematics and Physics

Robin Adams

Contents

1	Relations	5
2	Order Theory	7
3	Field Theory 3.1 Ordered Fields	9 11
4	Real Analysis 4.1 Construction of the Real Numbers	13 13

4 CONTENTS

Relations

Definition 1.1 (Antisymmetric). A relation R on a set A is antisymmetric iff, whenever xRy and yRx, then x = y.

Definition 1.2 (Transitive). A relation R on a type A is *transitive* iff, whenever xRy and yRz, then xRz.

Order Theory

Definition 2.1 (Linear Order). A *linear order* on a set A is a binary relation \leq on A that is transitive, antisymmetric and:

$$\forall x, y \in A.x \le y \lor y \le x$$
.

A linearly ordered set is a pair (A, \leq) where A is a set and \leq is a binary relation on A.

We write x < y for $x \le y$ and $x \ne y$.

Definition 2.2 (Upper Bound). Let S be a linearly ordered set, $u \in S$ and $E \subseteq S$. Then u is an *upper bound* in E iff $\forall x \in E.x \leq u$. We say E is *bounded above* iff it has an upper bound.

The *up-set* of E, denoted $E \uparrow$, is the set of upper bounds of E.

Definition 2.3 (Lower Bound). Let S be a linearly ordered set, $l \in S$ and $E \subseteq S$. Then u is an lower bound in E iff $\forall x \in E.l \leq x$. We say E is bounded below iff it has a lower bound.

The down-set of E, denoted $E \downarrow$, is the set of lower bounds of E.

Definition 2.4 (Supremum). Let S be a linearly ordered set, $u \in S$ and $E \subseteq S$. Then u is the *least upper bound* or *supremum* of E iff u is an upper bound for E and, for any upper bound u' for E, we have $u \le u'$.

Definition 2.5 (Infimum). Let S be a linearly ordered set, $l \in S$ and $E \subseteq S$. Then l is the *greatest lower bound* or *infimum* of E iff l is a lower bound for E and, for any lower bound l' for E, we have $l' \leq l$.

Definition 2.6 (Least Upper Bound Property). A linearly ordered set S has the *least upper bound property* iff every nonempty subset of S that is bounded above has a least upper bound.

Proposition 2.7. Let S be a linearly ordered set and $E \subseteq S$.

1. If $E \downarrow has$ a supremum l, then l is the infimum of E.

2. If $E \uparrow has$ an infimum u, then U is the supremum of E.

PROOF

- $\langle 1 \rangle 1$. If $E \downarrow$ has a supremum l, then l is the infimum of E.
 - $\langle 2 \rangle 1$. l is a lower bound for E.
 - $\langle 3 \rangle 1$. Let: $x \in E$
 - $\langle 3 \rangle 2$. x is an upper bound for $E \downarrow$.

PROOF: For all $y \in E \downarrow$ we have $y \leq x$.

- $\langle 3 \rangle 3. \ l \leq x$
- $\langle 2 \rangle 2$. For any lower bound l' for E, we have $l' \leq l$.

PROOF: Since l is an upper bound for $E \downarrow$.

 $\langle 1 \rangle 2$. If $E \uparrow$ has an infimum u, then u is the supremum of E.

PROOF: Dual. \sqcap

Corollary 2.7.1. A linearly ordered set has the least upper bound property if and only if every nonempty set bounded below has an infimum.

Definition 2.8 (Closed Downwards). Let S be a linearly ordered set and $E \subseteq S$. Then E is closed downwards iff, whenever $x \in E$ and y < x, then $y \in E$.

Definition 2.9 (Closed Upwards). Let S be a linearly ordered set and $E \subseteq S$. Then E is *closed upwards* iff, whenever $x \in E$ and x < y, then $y \in E$.

Definition 2.10 (Greatest). Let S be a linearly ordered set and $u \in S$. Then u is greatest in S iff $\forall x \in S.x \leq u$.

Definition 2.11 (Least). Let S be a linearly ordered set and $l \in S$. Then l is least in S iff $\forall x \in S.l \leq x$.

Proposition 2.12. Let \leq be a linear order on a set S and $E \subseteq S$. Then $\leq \cap E^2$ is a linear order on E.

Proof: Easy. \square

Given a linearly ordered set (S, \leq) and $E \subseteq S$, we write just E for the linearly ordered set $(E, \leq \cap E^2)$.

Field Theory

Definition 3.1 (Field). A *field* F consists of a set F, two operations $+, \cdot : F^2 \to F$ and an element $0 \in F$ such that:

- \bullet + is commutative.
- \bullet + is associative.
- $\bullet \ \forall x \in F.x + 0 = x$
- $\forall x \in F. \exists y \in F. x + y = 0$
- \bullet · is commutative.
- \bullet · is associative.
- There exists $1 \in F$ such that $1 \neq 0$ and $\forall x \in F.x1 = x$ and $\forall x \in F.x \neq 0 \Rightarrow \exists y \in F.xy = 1$
- Distributive Law $\forall x, y, z \in F.x(y+z) = xy + xz$

Proposition 3.2. In any field F, the element 0 is the unique element such that $\forall x \in F.x + 0 = x$.

PROOF: If 0 and 0' both have this property then 0 = 0 + 0' = 0'. \square

Proposition 3.3. In any field F, given $x \in F$, there is a unique $y \in F$ such that x + y = 0.

PROOF: If
$$x + y = x + y' = 0$$
 then
$$y = y + 0$$
$$= y + x + y'$$
$$= 0 + y'$$
$$= y'$$

Definition 3.4. Let F be a field. Let $x \in F$. We denote by -x the unique element of F such that x + (-x) = 0.

Given $x, y \in F$, we write x - y for x + (-y).

Proposition 3.5. In any field F, if x + y = x + z then y = z.

PROOF: If x+y=x+z we have -x+x+y=-x+x+z $\therefore 0+y=0+z$ $\therefore y=z$

Proposition 3.6. In any field F, we have -(-x) = x.

PROOF: Since x + (-x) = 0. \square

Proposition 3.7. In any field F, the element 1 such that $\forall x \in F.x1 = x$ is unique.

PROOF: If 1 and 1' both have this property then $1 = 1 \cdot 1' = 1'$. \square

Proposition 3.8. In any field F, given $x \in F$ with $x \neq 0$, the element y such that xy = 1 is unique.

PROOF: If y and y' both have this property then we have

$$y = y1$$

$$= yxy'$$

$$= 1y'$$

$$= y'$$

Definition 3.9. In any field F, if $x \neq 0$, we write x^{-1} for the unique element such that $xx^{-1} = 1$.

We write x/y for xy^{-1} .

Proposition 3.10. In any field F, if xy = xz and $x \neq 0$ then y = z.

Proof:

$$y = 1y$$

$$= x^{-1}xy$$

$$= x^{-1}xz$$

$$= 1z$$

$$= z$$

Proposition 3.11. In any field F, if $x \neq 0$ then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

PROOF: Since $xx^{-1} = 1$. \square

Proposition 3.12. In any field F, we have x0 = 0.

11

Proof:

$$x0 + 0 = x0$$

$$= x(0 + 0)$$

$$= x0 + x0$$

$$\therefore 0 = x0$$

Proposition 3.13. In any field F, if xy = 0 then x = 0 or y = 0.

PROOF: If xy = 0 and $x \neq 0$ then we have $y = x^{-1}xy = x^{-1}0 = 0$. \square

Proposition 3.14. In any field F, we have (-x)y = -(xy).

Proof:

$$xy + (-x)y = (x + (-x))y$$

$$= 0y$$

$$= 0 (Proposition 3.12) \Box$$

Corollary 3.14.1. In any field F, we have (-x)(-y) = xy.

Proof:

$$(-x)(-y) = -(x(-y))$$

$$= -(-(xy))$$

$$= xy (Proposition 3.6) \Box$$

3.1 Ordered Fields

Definition 3.15 (Ordered Field). An *ordered field* F consists of a field F and a linear order \leq on F such that:

- For all $x, y, z \in F$, if y < z then x + y < x + z
- For all $x, y \in F$, if x > 0 and y > 0 then xy > 0.

We call x positive iff x > 0 and negative iff x < 0.

Example 3.16. \mathbb{Q} is an ordered field.

Proposition 3.17. In any ordered field, if x is positive then -x is negative.

PROOF: If x > 0 then 0 = x + (-x) > 0 = (-x) = -x.

Proposition 3.18. In any ordered field, if y < z and x is positive then xy < xz.

PROOF: If y < z then we have

$$0 < z - y$$

$$0 < x(z - y)$$

$$= xz - xy$$

$$xy < xz$$

Proposition 3.19. In any ordered field, if y < z and x is negative then xy > xz.

Proof:

- $\langle 1 \rangle 1$. -x is positive.
- $\langle 1 \rangle 2$. (-x)y < (-x)z
- $\langle 1 \rangle 3. -(xy) < -(xz)$
- $\langle 1 \rangle 4$. xz < xy

Proposition 3.20. In any ordered field, if $x \neq 0$ then $x^2 > 0$.

Proof:

 $\langle 1 \rangle 1$. If x > 0 then $x^2 > 0$.

PROOF: Proposition 3.18.

 $\langle 1 \rangle 2$. If x < 0 then $x^2 > 0$.

PROOF: Proposition 3.19.

Corollary 3.20.1. In any ordered field, we have 1 > 0.

Proposition 3.21. In any ordered field, if x is positive then x^{-1} is positive.

PROOF: If $x^{-1} < 0$ then we would have $1 = xx^{-1} < x0 = 0$ contradicting Corollary 3.20.1. \square

Proposition 3.22. In any ordered field, if 0 < x < y then $y^{-1} < x^{-1}$.

Proof:

- $\langle 1 \rangle 1$. Assume: 0 < x < y
- $\langle 1 \rangle 2$. x^{-1} and y^{-1} are positive.

- PROOF: Proposition 3.21. $\langle 1 \rangle 3. \ xy^{-1} < yy^{-1} = 1$ $\langle 1 \rangle 4. \ y^{-1} = x^{-1}xy^{-1} < x^{-1}1 = x^{-1}$

Real Analysis

4.1 Construction of the Real Numbers

Definition 4.1 (Cut). A *cut* is a subset α of \mathbb{Q} such that:

- $\emptyset \neq \alpha \neq \mathbb{Q}$
- α is closed downwards.
- α has no greatest element.

In this section, we write R for the set of all cuts.

Proposition 4.2. R is linearly ordered by \subseteq .

```
PROOF: The only difficult part is to prove that, for any cuts \alpha and \beta, either \alpha \subseteq \beta or \beta \subseteq \alpha.
```

```
\langle 1 \rangle 1. Assume: \alpha \nsubseteq \beta Prove: \beta \subseteq \alpha
```

 $\langle 1 \rangle 2$. PICK $q \in \alpha$ such that $q \notin \beta$

 $\langle 1 \rangle 3$. Let: $r \in \beta$

 $\langle 1 \rangle 4$. $q \not< r$

 $\langle 1 \rangle 5$. r < q

 $\langle 1 \rangle 6. \ r \in \alpha$

Proposition 4.3. R has the least upper bound property.

Proof:

 $\langle 1 \rangle 1$. Let: $E \subseteq R$ be nonempty and bounded above.

 $\langle 1 \rangle 2$. Let: $s = \bigcup E$

PROVE: s is a cut.

/1\3 Ø ≠ e

PROOF: Since E is nonempty and every element of E is nonempty.

 $\langle 1 \rangle 4. \ s \neq \mathbb{Q}$

- $\langle 2 \rangle 1$. PICK an upper bound u for E.
- $\langle 2 \rangle 2$. Pick $q \notin u$ Prove: $q \notin s$
- $\langle 2 \rangle 3. \ \forall \alpha \in E.\alpha \subseteq u$
- $\langle 2 \rangle 4. \ s \subseteq u$
- $\langle 2 \rangle 5. \ q \notin s$
- $\langle 1 \rangle$ 5. s is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in s$ and r < q.
 - $\langle 2 \rangle 2$. Pick $\alpha \in E$ such that $q \in \alpha$.
 - $\langle 2 \rangle 3. \ r \in \alpha$
 - $\langle 2 \rangle 4. \ r \in s$
- $\langle 1 \rangle 6$. s has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in s$
 - $\langle 2 \rangle 2$. PICK $\alpha \in E$ such that $q \in \alpha$.
 - $\langle 2 \rangle 3$. Pick $r \in \alpha$ such that q < r.
- $\langle 2 \rangle 4. \ r \in s$

Definition 4.4 (Addition). Given cuts α and β , we define

$$\alpha + \beta = \{q + r : q \in \alpha, r \in \beta\} .$$

Proposition 4.5. Given cuts α and β , we have $\alpha + \beta$ is a cut.

Proof:

 $\langle 1 \rangle 1$. $\alpha + \beta$ is nonempty.

PROOF: Since α and β are nonempty.

- $\langle 1 \rangle 2. \ \alpha + \beta \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $q \in \mathbb{Q} \alpha$ and $r \in \mathbb{Q} \beta$. Prove: $q + r \notin \alpha + \beta$
 - $\langle 2 \rangle 2$. Assume: for a contradiction $q + r \in \alpha + \beta$.
 - $\langle 2 \rangle 3$. Pick $x \in \alpha$ and $y \in \beta$ such that q + r = x + y
 - $\langle 2 \rangle 4$. x < q
 - $\langle 2 \rangle 5. \ y < r$
 - $\langle 2 \rangle 6$. x + y < q + r
 - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 3$. $\alpha + \beta$ is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in \alpha$, $r \in \beta$ and x < q + r
 - $\langle 2 \rangle 2$. x q < r
 - $\langle 2 \rangle 3. \ x q \in \beta$
 - $\langle 2 \rangle 4. \ x \in \alpha + \beta$
- $\langle 1 \rangle 4$. $\alpha + \beta$ has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in \alpha$ and $r \in \beta$.

PROVE: q + r is not greatest in $\alpha + \beta$.

- $\langle 2 \rangle 2$. Pick $q' \in \alpha$ with q < q' and $r' \in \beta$ with r < r'.
- $\langle 2 \rangle 3. \ q + r < q' + r' \in \alpha + \beta$

П

Proposition 4.6. Addition is commutative and associative on R.

PROOF: Immediate from definitions and the fact that addition is commutative and associative on \mathbb{Q} . \square

Definition 4.7. For any $q \in \mathbb{Q}$, let $q^* = \{r \in \mathbb{Q} : r < q\}$.

Proposition 4.8. For any $q \in \mathbb{Q}$, we have q^* is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. \ q^* \neq \emptyset
```

PROOF: Since $q - 1 \in q^*$.

 $\langle 1 \rangle 2. \ q^* \neq \mathbb{Q}$

PROOF: Since $q \notin q^*$.

 $\langle 1 \rangle 3$. q^* is closed downwards.

PROOF: Immediate from definition.

 $\langle 1 \rangle 4$. q^* has no greatest element.

PROOF: For all $r \in q^*$ we have $r < (q+r)/2 \in q^*$.

Proposition 4.9. For any cut α we have $\alpha + 0^* = \alpha$.

Proof:

 $\langle 1 \rangle 1. \ \alpha + 0^* \subseteq \alpha$

$$\langle 2 \rangle$$
1. Let: $q \in \alpha$ and $r \in 0^*$
Prove: $q + r \in \alpha$
 $\langle 2 \rangle$ 2. $r < 0$
 $\langle 2 \rangle$ 3. $q + r < q$
 $\langle 2 \rangle$ 4. $q + r \in \alpha$
 $\langle 1 \rangle$ 2. $\alpha \subseteq \alpha + 0^*$

 $\langle 2 \rangle 1$. Let: $q \in \alpha$

 $\langle 2 \rangle 2$. Pick $r \in \alpha$ such that q < r

 $\langle 2 \rangle 3. \ \ q = r + (q - r) \in \alpha + 0^*$

Proposition 4.10. For any cut α , there exists a cut β such that $\alpha + \beta = 0$.

$$\langle 1 \rangle 1. \ \text{Let:} \ \beta = \{ p \in \mathbb{Q} : \exists r > 0. - p - r \notin \alpha \}$$

 $\langle 1 \rangle 2$. β is a cut.

 $\langle 2 \rangle 1. \ \beta \neq \emptyset$

 $\langle 3 \rangle 1$. Pick $q \notin \alpha$

 $\langle 3 \rangle 2$. $-q - 1 \in \beta$

 $\langle 2 \rangle 2. \ \beta \neq \mathbb{Q}$

 $\langle 3 \rangle 1$. Pick $q \in \alpha$

Prove: $-q \notin \beta$

 $\langle 3 \rangle 2$. Assume: for a contradiction $-q \in \beta$

```
\langle 3 \rangle 3. Pick r > 0 such that q - r \notin \alpha
        \langle 3 \rangle 4. \ q - r < q
        \langle 3 \rangle 5. Q.E.D.
            PROOF: This contradicts the fact that \alpha is closed downwards.
    \langle 2 \rangle 3. \beta is closed downwards.
        \langle 3 \rangle 1. Let: p \in \beta and q < p.
        \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
        \langle 3 \rangle 3. -p-r < -q-r
        \langle 3 \rangle 4. -q - r \notin \alpha
        \langle 3 \rangle 5. \ q \in \beta
    \langle 2 \rangle 4. \beta has no greatest element.
        \langle 3 \rangle 1. Let: p \in \beta
        \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
        \langle 3 \rangle 3. \ -(p+r/2) - r/2 \notin \alpha
        \langle 3 \rangle 4. \ p + r/2 \in \beta
\langle 1 \rangle 3. \alpha + \beta \subseteq 0^*
    \langle 2 \rangle 1. Let: p \in \alpha and q \in \beta.
    \langle 2 \rangle 2. Pick r > 0 such that -q - r \notin \alpha.
    \langle 2 \rangle 3. p < -q - r
    \langle 2 \rangle 4. p+q < -r
    \langle 2 \rangle 5. p+q < 0
    \langle 2 \rangle 6. \ p+q \in 0^*
\langle 1 \rangle 4. \ 0^* \subseteq \alpha + \beta
    \langle 2 \rangle 1. Let: v \in 0^*
    \langle 2 \rangle 2. Let: w = -v/2
    \langle 2 \rangle 3. \ w > 0
    \langle 2 \rangle 4. PICK an integer n such that nw \in \alpha and (n+1)w \notin \alpha.
    \langle 2 \rangle5. Let: p = -(n+2)w
    \langle 2 \rangle 6. \ p \in \beta
    \langle 2 \rangle 7. \ v = nw + p
    \langle 2 \rangle 8. \ v \in \alpha + \beta
```

Theorem 4.11. There exists an ordered field with the least upper bound prop-

Proposition 4.12. There is no rational p such that $p^2 = 2$.

- $\langle 1 \rangle 1$. Assume: for a contradiction $p^2 = 2$.
- $\langle 1 \rangle 2$. PICK integers m, n not both even such that p = m/n.
- $\langle 1 \rangle 3. \ m^2 = 2n^2$
- $\langle 1 \rangle 4$. m is even.
- $\langle 1 \rangle$ 5. PICK an integer k such that m = 2k.

- $\langle 1 \rangle 8$. *n* is even.

 $\langle 1 \rangle 9.$ Q.E.D. PROOF: $\langle 1 \rangle 2,$ $\langle 1 \rangle 4$ and $\langle 1 \rangle 8$ form a contradiction. \Box