Encrypted matrix operations via bicyclic encoding

陈经纬

Joint work with Linhan Yang, Wenyuan Wu, Yang Liu, and Yong Feng

Dec. 18, 2024

Roadmap

- 1 Homomorphic encryption
 - Basics
- 2 Plaintext matrix-ciphertext vector multiplication
 - Fast linear transformation by Halevi-Shoup (2014, 2015)
- **③** Ciphertext matrix−ciphertext matrix multiplication
 - HE-friendly expression by Jiang et al. (2018)
- Bicyclic encoding and matrix multiplication
 - Ciphertext ciphertext matrix multiplication
 - Performance

Roadmap

- 1 Homomorphic encryption
 - Basics
- 2 Plaintext matrix-ciphertext vector multiplication
 - Fast linear transformation by Halevi-Shoup (2014, 2015)
- **③** Ciphertext matrix−ciphertext matrix multiplication
 - HE-friendly expression by Jiang et al. (2018)
- Bicyclic encoding and matrix multiplication
 - Ciphertext ciphertext matrix multiplication
 - Performance

Homomorphic encryption (HE)

- √ Communication security
- √ Storage security
- √ Computation security
- ✓ Post-quantum security

Homomorphic encryption (HE)

- √ Communication security
- √ Storage security
- √ Computation security
- ✓ Post-quantum security

Applications

- Secure outsourcing
- Non-interactive computation
- Privacy-preserving ML

A very brief history on HE

- 1st generation (2009-2012)
 - Plausibility: Gentry, DGHV

A very brief history on HE

- 1st generation (2009-2012)
 - Plausibility: Gentry, DGHV
- 2nd generation (2012-2015)
 - Optimizations: BGV, B/FV
 - Proof of concept implementations

A very brief history on HE

- 1st generation (2009-2012)
 - Plausibility: Gentry, DGHV
- 2nd generation (2012-2015)
 - Optimizations: BGV, B/FV
 - Proof of concept implementations
- 3rd and 4th generation, and more (2015-present)
 - Fast bootstrapping: DM, CGGI, ...
 - Real number arithmetic: CKKS
 - Further optimizations:
 - → LW '23, XZDDF '23, MHWW '24, WWLLWLW '24, ...
 - Public libraries: HElib, SEAL, OpenFHE, TFHE, Lattigo, ...
 - Practical applications: iDASH competition, Standardization, ...

- Packing method
 - Enc: $\mathbf{x} \mapsto \mathsf{ct} = \mathsf{Enc}(\mathbf{x})$, where $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$

- Packing method
 - Enc: $\mathbf{x} \mapsto \mathsf{ct} = \mathsf{Enc}(\mathbf{x})$, where $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$
- Homomorphic arithmetic (SIMD)
 - Add: Enc(x) + Enc(y) = Enc(x + y)
 - Mul: $\operatorname{Enc}(x) \times \operatorname{Enc}(y) = \operatorname{Enc}(x \circ y)$
 - → o: Hadamard product, i.e., element-wise multiplication
 - CMul: $\mathbf{a} \times \operatorname{Enc}(\mathbf{x}) = \operatorname{Enc}(\mathbf{a} \circ \mathbf{x})$

- Packing method
 - Enc: $\mathbf{x} \mapsto \mathsf{ct} = \mathsf{Enc}(\mathbf{x})$, where $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$
- Homomorphic arithmetic (SIMD)
 - Add: Enc(x) + Enc(y) = Enc(x + y)
 - Mul: $\operatorname{Enc}(x) \times \operatorname{Enc}(y) = \operatorname{Enc}(x \circ y)$
 - → o: Hadamard product, i.e., element-wise multiplication
 - CMul: $\mathbf{a} \times \operatorname{Enc}(\mathbf{x}) = \operatorname{Enc}(\mathbf{a} \circ \mathbf{x})$
- Rotation
 - Rot_i : $\operatorname{Enc}(x_0,\ldots,x_{n-1}) \mapsto \operatorname{Enc}(x_i,x_{n-1},x_0,\ldots,x_{i-1})$

- Packing method
 - Enc: $x \mapsto \text{ct} = \text{Enc}(x)$, where $x = (x_0, x_1, \dots, x_{n-1})$
- Homomorphic arithmetic (SIMD)
 - Add: Enc(x) + Enc(y) = Enc(x + y)
 - Mul: $\operatorname{Enc}(x) \times \operatorname{Enc}(y) = \operatorname{Enc}(x \circ y)$
 - → o: Hadamard product, i.e., element-wise multiplication
 - CMul: $\mathbf{a} \times \operatorname{Enc}(\mathbf{x}) = \operatorname{Enc}(\mathbf{a} \circ \mathbf{x})$
- Rotation
 - Rot_i : $\operatorname{Enc}(x_0,\ldots,x_{n-1}) \mapsto \operatorname{Enc}(x_i,x_{n-1},x_0,\ldots,x_{i-1})$
 - Cost: no multiplicative depth but a key switching

- Packing method
 - Enc: $\mathbf{x} \mapsto \mathsf{ct} = \mathsf{Enc}(\mathbf{x})$, where $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$
- Homomorphic arithmetic (SIMD)
 - Add: Enc(x) + Enc(y) = Enc(x + y)
 - Mul: $\operatorname{Enc}(x) \times \operatorname{Enc}(y) = \operatorname{Enc}(x \circ y)$
 - --- o: Hadamard product, i.e., element-wise multiplication
 - CMul: $\mathbf{a} \times \operatorname{Enc}(\mathbf{x}) = \operatorname{Enc}(\mathbf{a} \circ \mathbf{x})$
- Rotation
 - Rot_i : $Enc(x_0, \ldots, x_{n-1}) \mapsto Enc(x_i, x_{n-1}, x_0, \ldots, x_{i-1})$
 - Cost: no multiplicative depth but a key switching
- Compositions of the basic operations
 - TSum: $\operatorname{Enc}(x_0, \ldots, x_{n-1}) \mapsto \operatorname{Enc}(s, \ldots, s)$ with $s = x_0 + \cdots + x_{n-1}$
 - Cost of TSum: $\#Rot = \log n$

Roadmap

- Homomorphic encryption
 - Basics
- 2 Plaintext matrix-ciphertext vector multiplication
 - Fast linear transformation by Halevi-Shoup (2014, 2015)
- 3 Ciphertext matrix-ciphertext matrix multiplication
 - HE-friendly expression by Jiang et al. (2018)
- Bicyclic encoding and matrix multiplication
 - Ciphertext ciphertext matrix multiplication
 - Performance

Naïve method

Linear transformation on a ciphertext

- A plain n × n matrix A
- A ciphertext ct = Enc(x) of an *n*-dimensional vector x
- Goal: Compute an encrypted form of Ax

Naïve method

Linear transformation on a ciphertext

- A plain n × n matrix A
- A ciphertext ct = Enc(x) of an *n*-dimensional vector x
- Goal: Compute an encrypted form of Ax

A naïve algorithm

For $i = 0, 1, \dots, n-1$ do the following

- Compute $\mathtt{ct}_i = \mathtt{CMul}(\pmb{a}_i,\mathtt{ct}) \quad \#\pmb{a}_i$: the i-th row of \pmb{A} ; $\mathtt{ct}_i = \mathtt{Enc}(\pmb{a}_i \circ \pmb{x})$
- Compute $\operatorname{ct}_i = \operatorname{TSum}(\operatorname{ct}_i)$ $/\!\!/ \operatorname{ct}_i = \operatorname{Enc}(\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle, \dots, \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle)$

Naïve method

Linear transformation on a ciphertext

- A plain $n \times n$ matrix **A**
- A ciphertext ct = Enc(x) of an *n*-dimensional vector x
- Goal: Compute an encrypted form of Ax

A naïve algorithm

For $i = 0, 1, \dots, n-1$ do the following

- Compute $\mathtt{ct}_i = \mathtt{CMul}(\pmb{a}_i,\mathtt{ct}) \quad /\!\!/ \pmb{a}_i$: the i-th row of \pmb{A} ; $\mathtt{ct}_i = \mathtt{Enc}(\pmb{a}_i \circ \pmb{x})$
- Compute $\operatorname{ct}_i = \operatorname{TSum}(\operatorname{ct}_i)$ $/\!\!/ \operatorname{ct}_i = \operatorname{Enc}(\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle, \dots, \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle)$
- Cost of the naïve algorithm
 - #resulting ciphertexts: n
 - #CMul: n
 - #Rot: n log n

Diagonal vectors of a matrix and linear transformation*

^{*}S. Halevi, V. Shoup, Algorithms in HElib. CRYPTO 2014.

Diagonal vectors of a matrix and linear transformation*

- Diagonal vectors of an $n \times n$ matrix \mathbf{A} : $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}$
- Now we have

$$\mathbf{A}\mathbf{x} = \sum_{0 \le i \le n} \mathbf{d}_i \circ \mathrm{Rot}_i(\mathbf{x})$$

^{*}S. Halevi, V. Shoup, Algorithms in HElib. CRYPTO 2014.

Diagonal vectors of a matrix and linear transformation*

- Diagonal vectors of an $n \times n$ matrix **A**: $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}$
- Now we have

$$\mathbf{A}\mathbf{x} = \sum_{0 \le i \le n} \mathbf{d}_i \circ \mathrm{Rot}_i(\mathbf{x})$$

- Cost of the fast linear transformation on a ciphertext
 - #resulting ciphertexts: 1
 - #CMul: n
 - #Rot: n

^{*}S. Halevi, V. Shoup, Algorithms in HElib. CRYPTO 2014.

The baby-step-giant-step (BSGS) strategy[†]

• Reducing $n = \ell \cdot k$ rotations to $\ell + k$

[†]S. Halevi, V. Shoup, Bootstrapping for HElib. EUROCRYPT 2015.

The baby-step-giant-step (BSGS) strategy[†]

• Reducing $n = \ell \cdot k$ rotations to $\ell + k$

$$egin{aligned} oldsymbol{A} oldsymbol{x} &= \sum_{0 \leq i < n} oldsymbol{d}_i \circ \operatorname{Rot}_i(oldsymbol{x}) \ &= \sum_{0 \leq i < \ell} \sum_{0 \leq j < k} oldsymbol{d}_{ki+j} \circ \operatorname{Rot}_{ki+j}(oldsymbol{x}) \quad & ext{plaintext} \ &= \sum_{0 \leq i < \ell} \operatorname{Rot}_{ki} \left(\sum_{0 \leq j < k} \operatorname{Rot}_{-ki}(oldsymbol{d}_{ki+j}) \circ \operatorname{Rot}_j(oldsymbol{x})
ight) \end{aligned}$$

[†]S. Halevi, V. Shoup, Bootstrapping for HElib. EUROCRYPT 2015.

The baby-step-giant-step (BSGS) strategy[†]

• Reducing $n = \ell \cdot k$ rotations to $\ell + k$

$$egin{aligned} oldsymbol{A} oldsymbol{x} &= \sum_{0 \leq i < n} oldsymbol{d}_i \circ \operatorname{Rot}_i(oldsymbol{x}) \ &= \sum_{0 \leq i < \ell} \sum_{0 \leq j < k} oldsymbol{d}_{ki+j} \circ \operatorname{Rot}_{ki+j}(oldsymbol{x}) \quad & ext{plaintext} \ &= \sum_{0 \leq i < \ell} \operatorname{Rot}_{ki} \left(\sum_{0 \leq j < k} \operatorname{Rot}_{-ki}(oldsymbol{d}_{ki+j}) \circ \operatorname{Rot}_j(oldsymbol{x})
ight) \end{aligned}$$

- Cost of the even faster linear transformation on a ciphertext
 - #resulting ciphertexts: 1
 - #CMul: n
 - #Rot: $2\sqrt{n}$

[†]S. Halevi, V. Shoup, Bootstrapping for HElib. EUROCRYPT 2015.

Some sparse linear transformations[‡]

- Assume only $r = \ell \cdot k$ non-zero diag. vectors with indices satisfying g(ki+j) = g(ki) + g(j) for all $0 \le i < \ell$ and $0 \le j < k$
- Then we have

$$m{A}m{x} = \sum_{0 \leq i < \ell} \mathtt{Rot}_{g(ki)} \left(\sum_{0 \leq j < k} \mathtt{Rot}_{-g(ki)} \left(m{d}_{g(ki+j)}
ight) \circ \mathtt{Rot}_{g(j)}(m{x}) \right)$$

[‡]X. Jiang, M. Kim, K. Lauter, Y. Song. Secure outsourced matrix computation and application to neural networks, CCS 2018.

Some sparse linear transformations[‡]

- Assume only $r = \ell \cdot k$ non-zero diag. vectors with indices satisfying g(ki+j) = g(ki) + g(j) for all $0 \le i < \ell$ and $0 \le j < k$
- Then we have

$$m{A}m{x} = \sum_{0 \leq i < \ell} \mathtt{Rot}_{g(ki)} \left(\sum_{0 \leq j < k} \mathtt{Rot}_{-g(ki)} \left(m{d}_{g(ki+j)}
ight) \circ \mathtt{Rot}_{g(j)}(m{x}) \right)$$

- Cost of such a linear transformation
 - #resulting ciphertexts: 1
 - #CMul: r
 - #Rot: $2\sqrt{r}$

[‡]X. Jiang, M. Kim, K. Lauter, Y. Song. Secure outsourced matrix computation and application to neural networks, CCS 2018.

Some sparse linear transformations[‡]

- Assume only $r = \ell \cdot k$ non-zero diag. vectors with indices satisfying g(ki+j) = g(ki) + g(j) for all $0 \le i < \ell$ and $0 \le j < k$
- Then we have

$$m{A}m{x} = \sum_{0 \leq i < \ell} \mathtt{Rot}_{g(ki)} \left(\sum_{0 \leq j < k} \mathtt{Rot}_{-g(ki)} \left(m{d}_{g(ki+j)}
ight) \circ \mathtt{Rot}_{g(j)}(m{x}) \right)$$

- Cost of such a linear transformation
 - #resulting ciphertexts: 1
 - #CM111: r
 - #Rot: $2\sqrt{r}$
- E.g., useful for permutation

[‡]X. Jiang, M. Kim, K. Lauter, Y. Song. Secure outsourced matrix computation and application to neural networks, CCS 2018.

Roadmap

- Homomorphic encryption
 - Basics
- 2 Plaintext matrix-ciphertext vector multiplication
 - Fast linear transformation by Halevi-Shoup (2014, 2015)
- **③** Ciphertext matrix−ciphertext matrix multiplication
 - HE-friendly expression by Jiang et al. (2018)
- Bicyclic encoding and matrix multiplication
 - Ciphertext ciphertext matrix multiplication
 - Performance

Matrix encoding

- Identify a $d \times d$ matrix as a vector of dimension $n = d^2$ (row by row)
- Cost of some basic matrix operations
 - Matrix addition: #Add = 1
 - Rotation among rows: $\# \mathtt{Rot} = 1$

Matrix encoding

- Identify a $d \times d$ matrix as a vector of dimension $n = d^2$ (row by row)
- Cost of some basic matrix operations
 - Matrix addition: #Add = 1
 - Rotation among rows: #Rot = 1
 - Rotation among columns: #Rot = 2, #CMul = 2

Matrix multiplication $(d, d, d)^{\ddagger}$

[‡]X. Jiang, M. Kim, K. Lauter, Y. Song. Secure outsourced matrix computation and application to neural networks, CCS 2018.

Matrix multiplication $(d, d, d)^{\ddagger}$

• For $d \times d$ **SQUARE** matrices **A** and **B**

$$\textbf{\textit{A}} \cdot \textbf{\textit{B}} = \textbf{\textit{A}}_0 \circ \textbf{\textit{B}}_0 + \dots + \textbf{\textit{A}}_{d-1} \circ \textbf{\textit{B}}_{d-1}$$

[‡]X. Jiang, M. Kim, K. Lauter, Y. Song. Secure outsourced matrix computation and application to neural networks, CCS 2018.

Matrix multiplication $(d, d, d)^{\ddagger}$

• For $d \times d$ **SQUARE** matrices **A** and **B**

$${m A}\cdot{m B}={m A}_0\circ{m B}_0+\cdots+{m A}_{d-1}\circ{m B}_{d-1}$$

- Cost of a square matrix multiplication
 - Generation of **A**_i and **B**_i
 - #Mul: d; #Add: d-1

[‡]X. Jiang, M. Kim, K. Lauter, Y. Song. Secure outsourced matrix computation and application to neural networks, CCS 2018.

Generation of A_i and B_i

Generation of A_i and B_i

- Cost for A₀ (permutation)
 - #Non-zero diag. vectors: 2d 1
 - #CMul: 2d 1
 - #Rot: $2\sqrt{2d-1} \le 3\sqrt{d}$
- Cost for A_i from A_0 (column rotation)
 - #CMul: 2*d*
- Cost for B_0 (permutation)
 - #Non-zero diag. vectors: d
 - #CMul: d
 - #Rot: $2\sqrt{d}$
- Cost for B_i from B_0 (row rotation)
 - #Rot: d

Ciphertext matrix—ciphertext matrix multiplication (d, d, d)

Method	#Ctxts	#Mul	#CMul	#Rot	Mult. depth
Naïve	d^2	d^2	0	$d^2 \log d$	1 Mul
Halevi-Shoup	d	d^2	0	$2d\sqrt{d}$	1 Mul
JKLS	1	d	5 <i>d</i>	$3d + 5\sqrt{d}$	$1\mathrm{Mul} + 2\mathrm{CMul}$

Ciphertext matrix—ciphertext matrix multiplication (d, d, d)

Method	#Ctxts	#Mul	#CMul	#Rot	Mult. depth
Naïve	d^2	d^2	0	$d^2 \log d$	1 Mul
Halevi-Shoup	d	d^2	0	$2d\sqrt{d}$	1 Mul
JKLS	1	d	5 <i>d</i>	$3d + 5\sqrt{d}$	$1\mathrm{Mul} + 2\mathrm{CMul}$

• Can we do better?

Ciphertext matrix—ciphertext matrix multiplication (d, d, d)

Method	#Ctxts	#Mul	#CMul	#Rot	Mult. depth
Naïve	d^2	d^2	0	$d^2 \log d$	1 Mul
Halevi-Shoup	d	d^2	0	$2d\sqrt{d}$	1 Mul
JKLS	1	d	5 <i>d</i>	$3d + 5\sqrt{d}$	$1\mathrm{Mul} + 2\mathrm{CMul}$

- Can we do better?
 - Yes.

Roadmap

- Homomorphic encryption
 - Basics
- 2 Plaintext matrix-ciphertext vector multiplication
 - Fast linear transformation by Halevi-Shoup (2014, 2015)
- 3 Ciphertext matrix-ciphertext matrix multiplication
 - HE-friendly expression by Jiang et al. (2018)
- Bicyclic encoding and matrix multiplication
 - Ciphertext ciphertext matrix multiplication
 - Performance

Bicyclic encoding of a matrix

- Assume that **A** is an $n \times m$ matrix with gcd(n, m) = 1.
- Identify **A** as a vector of dim *mn*: a generalization of the diag vector

Bicyclic encoding of a matrix

- Assume that **A** is an $n \times m$ matrix with gcd(n, m) = 1.
- Identify A as a vector of dim mn: a generalization of the diag vector

Bicyclic encoding of a matrix

- Assume that **A** is an $n \times m$ matrix with gcd(n, m) = 1.
- Identify **A** as a vector of dim *mn*: a generalization of the diag vector

• Basic idea: $\mathbb{Z}/(mn)\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

Matrix multiplication (n, m, p) = (2, 3, 5)

• Let **A** and **B** be $n \times m$ and $m \times p$ matrices with n, m, p coprime.

Matrix multiplication (n, m, p) = (2, 3, 5)

Matrix multiplication (n, m, p) = (2, 3, 5)

- Cost (n, m, p are coprime)
 - #Mul: m
 - #Rot: $2m + \left\lceil \frac{n}{m} \right\rceil + \left\lceil \frac{p}{m} \right\rceil$
 - #CMul: 1
 - Mult. depth: 1 Mul + 1 CMul

Encrypted matrix multiplication (n, m, p)

Method	#Ctxts	#Mul	#CMul	#Rot	Mult. depth
Naïve	np	np	0	np log m	1 Mul
Halevi-Shoup*	p	pd	0	$2p\sqrt{d}$	1 Mul
JKLS [†]	1	d	5 <i>d</i>	$3d + 5\sqrt{d}$	$1\mathrm{Mul} + 2\mathrm{CMul}$
BMM-I [‡]	1	m	0	2m + 2	1 Mul

 $[*]d = \max(n, m)$

 $^{^{\}dagger}d = \max(n, m, p)$

 $^{^{\}ddagger}n$, m, p coprime, $\max(n,p) < m$

 $[\]S_n$, m, p coprime, m is a power-of-2 integer

Encrypted matrix multiplication (n, m, p)

Method	#Ctxts	#Mul	#CMul	#Rot	Mult. depth
Naïve	np	np	0	np log m	1 Mul
Halevi-Shoup*	p	pd	0	$2p\sqrt{d}$	1 Mul
JKLS [†]	1	d	5 <i>d</i>	$3d + 5\sqrt{d}$	$1\mathrm{Mul} + 2\mathrm{CMul}$
BMM-I [‡]	1	m	0	2m + 2	1 Mul
BMM-II ^{†§}	1	1	0	3 log <i>d</i>	1 Mul

 $[*]d = \max(n, m)$

 $^{^{\}dagger}d = \max(n, m, p)$

 $^{^{\}ddagger}n$, m, p coprime, $\max(n,p) < m$

 $[\]S_n$, m, p coprime, m is a power-of-2 integer

- Block matrix multiplication
 - E.g., Strassen algorithm $O(d^{\log_2 7})$
 - → Recursive: Large memory cost
 - → Loop: Large multiplicative depth

- Block matrix multiplication
 - E.g., Strassen algorithm $O(d^{\log_2 7})$
 - → Recursive: Large memory cost
 - → Loop: Large multiplicative depth
- BMM-III: Segment matrix multiplication
 - Depends on Segment version operations

- Block matrix multiplication
 - E.g., Strassen algorithm $O(d^{\log_2 7})$
 - → Recursive: Large memory cost
 - → Loop: Large multiplicative depth
- BMM-III: Segment matrix multiplication
 - Depends on Segment version operations

- Block matrix multiplication
 - E.g., Strassen algorithm $O(d^{\log_2 7})$
 - → Recursive: Large memory cost
 - → Loop: Large multiplicative depth
- BMM-III: Segment matrix multiplication
 - Depends on Segment version operations
 - #Mul: $m \cdot \lceil np/\ell \rceil$
 - #CMul: $(4\lceil np/\ell \rceil + 2)m + n + p$
 - #Rot: $2m \cdot \lceil np/\ell \rceil$
 - Mult. depth: 1 CMul + 1 Mul

Roadmap

- Homomorphic encryption
 - Basics
- 2 Plaintext matrix-ciphertext vector multiplication
 - Fast linear transformation by Halevi-Shoup (2014, 2015)
- **③** Ciphertext matrix−ciphertext matrix multiplication
 - HE-friendly expression by Jiang et al. (2018)
- 4 Bicyclic encoding and matrix multiplication
 - Ciphertext ciphertext matrix multiplication
 - Performance

Implementation and setup

- BMM-I, BMM-II
- Strassen block version of BMM-I, BMM-II
- BMM-III
- Based on CKKS in Microsoft SEAL
 - Ciphertext space: $\mathbb{Z}[X]/\langle X^N+1,q\rangle$
 - $\log q \approx 50 + L \cdot \log \Delta + 60$
 - L: the number of multiplicative depth
- Matrix entries: pow(-1, i + j) * rand()/pow(2, 30)
- Security: \geq 128 bits
- Error: $\leq 10^{-2}$

Small square matrix multiplication

Table: Performance comparison with the R.-T. algorithm for small-dimensional matrices. N=8192 and $\log \Delta=30$.

Method	log q	Dimension	Time (ms)	Speedup
RT.*	170	(16, 16, 16)	199	1.0×
BMM-I	170	(16, 19, 17)	130	1.5×
BMM-I	140	(16, 19, 17)	82	2.4x
BMM-II	140	(15, 16, 17)	13	16.6×

^{*}P. Rizomiliotis and A. Triakosia, On matrix multiplication with homomorphic encryption, in Proc. 2022 on Cloud Computing Security Workshop

Square matrix multiplication

Table: Performance comparison for (128, 128, 128) matrix multiplication. log $\Delta=30$ except for BMM-III with log $\Delta=40.$

Method	سسما	N = 81	.92	N = 3270	N = 32768	
	log q	Basic block	Time (s)	Basic block	Time (s)	
Naïve block JKLS	5 * 200	(64, 64, 64)	11.34	(128, 128, 128)	14.17	
Strassen + JKLS	* 200	(64, 64, 64)	10.34	(128, 128, 128)	14.17	
Naïve block BMN	Л-I 140	(43, 45, 44)	7.59	(86, 89, 87)	13.32	
Strassen + BMM	/I-I 140	(32, 35, 33)	8.31	(64, 67, 65)	11.99	
Naïve block BMM	/I-II 140	(15, 16, 17)	4.40	(21, 32, 23)	8.32	
Strassen + BMM	l-II 140	(11, 8, 9)	84.89	(17, 16, 19)	127.69	
BMM-III	190	(128, 131, 129)	11.05	(128, 131, 129)	41.60	

^{*}X. Jiang, M. Kim, K. Lauter, and Y. Song, Secure outsourced matrix computation and application to neural networks, CCS '18

Square matrix multiplication

Table: Performance comparison for (256, 256, 256) matrix multiplication, $\log \Delta = 40$.

l		N = 8192		N = 32768	
log q	Basic block	Time (s)	Basic block	Time (s)	
200	(64, 64, 64)	89.33	(128, 128, 128)	112.01	
200	(64, 64, 64)	71.54	(128, 128, 128)	97.90	
140	(43, 45, 44)	59.57	(86, 89, 87)	73.35	
140	(32, 35, 33)	56.98	(64, 67, 65)	80.99	
140	(15, 16, 17)	76.60	(21, 32, 23)	76.19	
190	(256, 259, 257)) 42.90	(256, 259, 257)	110.99	
	200 200 140 140 140	log q Basic block 200 (64, 64, 64) 200 (64, 64, 64) 140 (43, 45, 44) 140 (32, 35, 33) 140 (15, 16, 17)	log q Basic block Time (s) 200 (64, 64, 64) 89.33 200 (64, 64, 64) 71.54 140 (43, 45, 44) 59.57 140 (32, 35, 33) 56.98 140 (15, 16, 17) 76.60	log q Basic block Time (s) Basic block 200 (64, 64, 64) 89.33 (128, 128, 128) 200 (64, 64, 64) 71.54 (128, 128, 128) 140 (43, 45, 44) 59.57 (86, 89, 87) 140 (32, 35, 33) 56.98 (64, 67, 65) 140 (15, 16, 17) 76.60 (21, 32, 23)	

^{*}X. Jiang, M. Kim, K. Lauter, and Y. Song, Secure outsourced matrix computation and application to neural networks, CCS '18

Square matrix multiplication

Table: Performance comparison for matrix multiplication of dimension 512 and 1024 with N = 8192.

Method	log g	(512, 512, 51	(512, 512, 512) Basic block Time (s)		(1024, 1024, 1024)		
Wethod	log q	Basic block Ti			Time (s)		
Naïve block JKLS *	200	(64, 64, 64)	728	(64, 64, 64)	6028		
Strassen JKLS *	200	(64, 64, 64)	479	(64, 64, 64)	3514		
Naïve block BMM-I	140	(43, 45, 44)	490	(43, 45, 44)	4240		
Strassen + BMM-I	140	(32, 35, 33)	390	(32, 35, 33)	2757		
Naïve block BMM-II	140	(15, 16, 17)	1766	(15, 16, 17)	-		
BMM-III	190	(512, 515, 513)	181^{\dagger}	(1024, 1027, 1025) 1200		

 $^{^{\}dagger}$ By default, log $\Delta=30$ except for these with log $\Delta=40.$

^{*}X. Jiang, M. Kim, K. Lauter, and Y. Song, Secure outsourced matrix computation and application to neural networks, CCS '18

Rectangular matrix multiplication

Table: Performance for rectangular matrix multiplication (I).

Huang et al.'s	algorithm *	t	BMM-I	II [‡]	
Dimension	Time (s)	Dimension	KeyGen (s)	Total (s)	Speedup
(256, 256, 16)	6.19	(256, 257, 17)	16.15	23.60	
(256, 16, 256)	6.23	(256, 17, 257)	14.69	19.37	
(1024, 1024, 16)	108.22	(1024, 1025, 17)	14.68	55.79	1.9×
(1024, 16, 1024)	108.31	(1024, 17, 1025)) 14.47	43.64	2.4x
(2048, 2048, 8)	218.09	(2048, 2049, 11)) 14.49	98.01	2.2x
(2048, 8, 2048)	218.09	(2049, 8, 2051)	14.63	81.09	2.6x

 $^{^\}dagger$ For Huang et al.'s algorithm, N is set as the same as theirs and log $\Delta=30$.

 $^{^\}ddagger$ For BMM-III, N=8192 and $\log \Delta=40$.

^{*}Z. Huang, C. Hong, C. Weng, W.-j. Lu, and H. Qu, More efficient secure matrix multiplication for unbalanced recommender systems, IEEE TDSC, 2023

Rectangular matrix multiplication

Table: Performance (in sec.) for rectangular matrix multiplication (II). N=8192, $\log \Delta=30$.

Dimension	Naïve block JKLS *	Naïve block BMM-I	Speedup
(4, 1636, 5)	36.92	9.76	3.7×
(8,3405,9)	78.58	19.92	3.9×
(16,6903,17)	157.00	38.57	4.0×
(32, 13847, 33)	317.31	76.73	4.1×

^{*}X. Jiang, M. Kim, K. Lauter, and Y. Song, Secure outsourced matrix computation and application to neural networks, CCS '18

Rectangular matrix multiplication

Table: Performance (in sec.) for rectangular matrix multiplication (III). N=8192, $\log\Delta=30$.

Dimension	Naïve block JKLS *	Naïve block BMM-I	LKS* + Segment + Opt.
(4, 5, 1636)	36.31	0.10	0.25
(8, 9, 3405)	77.56	0.65	0.63
(16, 17, 6903)	157.32	4.96	2.23
(32, 33, 13847)	316.76	38.82	8.24

^{*}W. Lu, S. Kawasaki, and J. Sakuma, Using fully homomorphic encryption for statistical analysis of categorical, ordinal and numerical data, NDSS '17

Conclusion

- Encrypted matrix multiplication (n, m, p pairwise coprime)
- More flexible and more efficient
- Paper: https://doi.org/10.1109/TIFS.2024.3490862
- Code: https://github.com/hangenba/bicyclic_mat_mul
- Application: privacy-preserving LLM inference, e.g., iDASH HE track

Conclusion

- Encrypted matrix multiplication (n, m, p pairwise coprime)
- More flexible and more efficient
- Paper: https://doi.org/10.1109/TIFS.2024.3490862
- Code: https://github.com/hangenba/bicyclic_mat_mul
- Application: privacy-preserving LLM inference, e.g., iDASH HE track
- We did not mention the coefficient encoding method
 - ePrint 2023/1649, 2023/1678, ...
- We did not mention plaintext-ciphertext matrix multiplication
 - ePrint 2024/1284, ...

Conclusion

- Encrypted matrix multiplication (n, m, p pairwise coprime)
- More flexible and more efficient
- Paper: https://doi.org/10.1109/TIFS.2024.3490862
- Code: https://github.com/hangenba/bicyclic_mat_mul
- Application: privacy-preserving LLM inference, e.g., iDASH HE track
- We did not mention the coefficient encoding method
 - ePrint 2023/1649, 2023/1678, ...
- We did not mention plaintext-ciphertext matrix multiplication
 - ePrint 2024/1284, ...

Open problems

- How to remove the coprime condition?
- Encrypted BLAS? Fast vector/matrix/tensor ops on encrypted data