CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12 Mathematics Extension 1

HSC ASSESSMENT Task 2 2013 Half-Yearly

Time allowed:	$1\frac{1}{2}$ hours				
Name:			***	 Class:	
Teacher	Gong	1	Cheng	 Strilakos	

Instructions:

- All questions should be attempted.
- Show ALL necessary working on your own paper.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Start each question on a new page and only write on one side of each sheet of paper.

	MC	Q1	Q2	Q3	Q4	Q5	TOTAL
HE1	/4				/10	/6	/20
HE2		/2				/4	/6
HE4	The second secon	/8	/5	/10			/23
HE6			/5				/5
TOTAL	/4	/10	/10	/10	/10	/10	/54

SECTION 1

MULTIPLE CHOICE (4 marks)

Question 1

The gradient of the tangent to the curve described parametrically by the equations x = 4t and $y = t^2$ at the point t = 8 is:

- (A)
- (B) 64
- (C)

Question 2

The value of $\int_{-\infty}^{0} \frac{e^x}{e^{x+1}} dx$ is:

- (A) · ∞
- (B) 0
- (C) ln 2
- (D)

Question 3

Which of the following is **not true** for the graph of $y = \frac{x^2}{x^2 - 1}$

The graph has an asymptote at:

- (A) x = -1 (B) y = 1 (C) x = 1 (D) y = 0

Question 4

The parametric equations $x = t^2 + 2$ and y = 3t represent which one of the following cartesian equations:

(A)
$$9x = y^2 + 2$$

(B)
$$x = y^2 + 18$$

(C)
$$9x + y^2 = 18$$

(D)
$$9x - 18 = y^2$$

SECTION 2

Ouestion 1 (10 marks) (Start a new page)

(a) Complete the last steps of the following Proof by Mathematical Induction:

2

1

To Prove:

$$3^n > n(n+1)(n+2)$$
 for $n \ge 5$

Proof: Step1: Show it is true for n = 5.

If
$$n = 5$$
, $3^5 = 243$ and $n(n + 1)(n + 2) = 5(6)(7) = 210$

Since 243 > 210, it is true for n = 5.

Step 2: Assume it is true for n = k i.e. $3^k > k(k+1)(k+2)$.

Prove ...

- (b) For the graph with equation $y = \frac{x^2-4}{(x-1)^2}$
 - (i) Find the coordinates of all points of intersection with the coordinate axes.
 - (ii) Find the equations of all asymptotes.
 - (iii) Find the coordinates of any points where the graph intersects its asymptotes. 1
 - (iv) Find the coordinates of, and nature of, any turning points.
 - (v) Sketch the graph, labelling all relevant points and clearly showing its asymptotic behaviour.

Question 2 (10 marks) (Start a new page)

- (a) Given $f(x) = (x^2 + 2x + 2)e^{-x}$
 - (i) Find f'(x)
 - (ii) Find a and b such that a < b and f''(a) = f''(b) = 0.
 - (iii) Hence, or otherwise, evaluate $\int_a^b x^2 e^{-x} dx$ 2
- (b) The tangent to the parabola $x^2 = 8y$ at the point $P(4p, 2p^2)$ makes an angle θ with the axis of the parabola and it makes an angle \emptyset with the focal chord which passes through the point P.
 - (i) State the coordinates of the focus S.
 - (ii) Find the equation of the tangent to the curve at the point P.
 - (iii) Find the co-ordinates of the point Q, where the tangent to P meets 1 the axis of the parabola.
 - (iv) Hence, or otherwise, show that $\angle \theta = \angle \emptyset$

Ouestion 3 (10 marks) (Start a new page)

- (a) The tangent at $P(2ap, ap^2), p \ge 0$, to the parabola $4ay = x^2$ cuts the x axis at A. The normal to the parabola at P cuts the y - axis at B.
 - (i) Find the equation of the tangent to the curve and the coordinates of the point A.
 - (ii) Find the equation of the normal to the curve and the coordinates of the point B.
 - (iii) Find the coordinates of the midpoint of AB.
 - (iv) Hence find the Cartesian equation of the locus of the midpoint of AB.
- (b) (i) Show that the equation of the tangent to the curve $y = \log_e x$ at the point $P(e^2, 2)$ is $y = \frac{x}{e^2} + 1$.
 - (ii) Sketch the curve $y = \log_e x$ and its tangent at P on the same set of axes, 1 labelling all relevant points..
 - (iii) Express x in terms of y for $y = \log_e x$.
 - (iv) Calculate the volume of the solid generated when the area bounded by the x axis, the y axis, the curve $y = \log_e x$ and its tangent at $x = e^2$ is rotated about the y axis.

Question 4 (10 marks) (Start a new page)

S is a set of points given by $x = t^4$, y = t - 5 for $0 \le t \le 5$.

- (i) If R is the distance between the origin and a point P in S, show that $R^2 = t^8 + t^2 10t + 25$
- (ii) Hence find the minimum value of R.
- (iii) Find the maximum value of R.
- (iv) Where does S cut the x- and y- axes?
- (v) The region bounded by S and the co-ordinate axes is rotated about the y-axis to form a solid of revolution, V. Find the volume of V.

4

Question 5 (10 marks) (Start a new page)

(a) Prove the following using Mathematical Induction:

$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2-1)}{3}$$
 for $n \ge 1$

Ouestion	5	(cont.)
C CCCCICIA	_	E COLUMN	Þ

(b)

(i) Sketch the curve $y = e^{-x^2}$, showing any stationary points and points of inflexion.

(ii) ABCD is a rectangle inscribed in the curve, with AB lying on the x -axis. Find the area of the largest rectangle that can be inscribed under the curve.

3

END OF PAPER

Question 5 (cont.)

(b)

The graphs of $y = e^x$ and $y = -e^x$ are shown together on the graph below.

- (i) Find an expression in terms of x for the area of a rectangle inscribed between these two curves and bounded by the line x=4.
- (ii) Find the value of x for which this area is a maximum. [3]
- (iii) Find this maximum area. [1]
- (iv) Hence find the maximum area that would be enclosed by the curve $y = e^x$, [1] the x-axis and the line x = 4.

,