SPRAWOZDANIE

Zajęcia: Analiza procesów uczenia

Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium 1 13 czerwca 2020

Temat: Podstawy języka R

Wariant: 1

Adres repozytorium: https://github.com/Konradbor/APU/tree/master/1

Konrad Boroń Informatyka II stopień, stacjonarne, 7 semestr, Gr. 1A

Do zmiennej a podstaw wartość wyrażenia 2 * $\exp(5)$. Do zmiennej b podstaw podwojona wartość zmiennej a. Wywolaj funkcje sprawdzajaca, która z wartości zmiennych jest wieksza.

2. Wprowadzane dane:

```
> a <- 2*exp(5)
```

$$> \max(a,b)$$

3. Wynik działania:

Values	
a	296.826318205153
Ь	593.652636410306

1. Polecenie:

Uruchom i poczytaj dokumentacje dla funkcji sum().

- 2. Wprowadzane dane:
 - > help(sum)
- 3. Wynik działania:

Stwórz wektor a zawierajacy liczby od 15 od 25. Policz sume liczb zawartych w wektorze.

2. Wprowadzane dane:

```
> a <- 15:25
> sum(a)
```

3. Wynik działania:

```
> a
 [1] 15 16 17 18 19 20 21 22 23 24 25
> sum(a)
[1] 220
```

1. Polecenie:

Wyświetl wszystkie funkcje zawierajace fraze sum w swojej nazwie.

2. Wprowadzane dane:

```
> apropos("sum", mode = "function")
```

3. Wynik działania:

```
> apropos("sum", mode = "function")
 [1] ".colSums"
                                ".rowSums"
                                                           ".rs.callSummary"
                                                                                      ".rs.summarizeDir"
 [5] ".tryResumeInterrupt"
                                "colSums"
                                                           "contr.sum"
                                                                                      "cumsum"
[9] "format.summaryDefault"
                               "print.summary.table"
                                                           "print.summary.warnings"
                                                                                     "print.summaryDefault"
[13] "rowsum"
                                "rowsum.data.frame"
                                                           "rowsum.default"
                                                                                      "rowSums"
[17] "sum"
                                "summary"
                                                           "Summary"
                                                                                      "summary.aov"
[21] "summary.connection"
                                "summary.data.frame"
                                                           "Summary.data.frame"
                                                                                      "summary.Date"
[25] "Summary.Date"
                                "summary.default"
                                                           "Summary.difftime"
                                                                                      "summary.factor"
[29] "Summary.factor"
                                "summary.glm"
                                                           "summary.lm"
                                                                                      "summary.manova"
[33] "summary.matrix"
                                "Summary.numeric_version" "Summary.ordered"
                                                                                      "summary.POSIXct"
[37] "Summary.POSIXct"
                                "summary.POSIXlt"
                                                          "Summary.POSIXlt"
                                                                                      "summary.proc_time"
[41] "summary.srcfile"
                                "summary.srcref"
                                                           "summary.stepfun"
                                                                                      "summary.table"
[45] "summary.warnings"
                                "summaryRprof"
```

1. Polecenie:

Ustaw dowolny katalog roboczy. Nastepnie stwórz zmienna a zawierajaca lańcuch znaków "smartfony Samsung". Zapisz zmienna a z obszaru roboczego do pliku w katalogu roboczym. Nastepnie usuń zmienna a. Sprawdź wartość zmiennej a (powinno jej brakować). Na końcu wczytaj plik ze zmienna a i sprawdź jej wartość.

2. Wprowadzane dane:

- > a = "smartfony Samsung"
 > save.image("~/Dokumenty/APU/1/e.RData")
 > remove(a)
 > load("~/Dokumenty/APU/1/e.RData")
- 3. Wynik działania:

1. Polecenie:

Zainstaluj i zaladuj pakiet gridExtra, który umożliwia m.in ladna wizualizacje danych tabelarycznych. Nastepnie przy pomocy dokumentacji pakietu znajdź funkcje do wizualizacji danych tabelarycznych. Użyj jej na pierwszych 10 wier-

2. Wprowadzane dane:

3. Wynik działania:

Files Plots Packages	Help	Vie	wer								
→ Publish → □											
	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.44	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3	1
Duster 360	14.3	8	360	245	3.21	3.57	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	1	0	4	4

1. Polecenie:

Stwórz wektor zawierajacy ciag liczb 100, 96, 92,... 20.

2. Wprowadzane dane:

3. Wynik działania:

> a

```
52
[1] 100
            92
                88
                    84
                        80 76
                                72 68
                                       64
                                           60
                                               56
                                                       48
      40
          36
            32
                  28
                     24
                         20
```

Stwórz wektora a z liczbami od 9 do 5 oraz wektor b z liczbami od 11 do 16. Utwórz nowy wektory d bedacy polaczeniem wektora b i a (w takiej kolejności). Wyświetl go.

2. Wprowadzane dane:

```
> a <- seq(9,5)
> b <- seq(11,16)
> d <- c(b, a)</pre>
```

3. Wynik działania:

```
> d
[1] 11 12 13 14 15 16 9 8 7 6 5
```

1. Polecenie:

Stwórz wektor nazwa zawierajay nazwy 10 smartfonów Samsung z systemem Android 8 i osmiordzieniowym procesorem. Potem stwórz wektory wyświetlacz, pamieć_RAM i pamieć_wbudowana, aparat_foto, cena, liczba_opinii zawierajace kolejno dane 10 smartfonów. Nastepnie stwórz ramke danych smartfony zlożona z wektorów nazwa, wyświetlacz, pamieć_RAM, pamieć_wbudowana, aparat_foto, cena oraz liczba opinii. Wylicz średnia cene smartfonów.

2. Wprowadzane dane:

```
> nazwa <- c("Galaxy J2 Core (2020)",</pre>
+
              "Galaxy Xcover FieldPro",
              "Galaxy A2 Core",
+
              "Galaxy View2",
+
              "Galaxy M30",
+
              "Galaxy M20",
+
              "Galaxy M10",
+
+
              "Galaxy Tab Advanced2",
              "Galaxy Tab A 8.0 (2018)",
+
+
              "Galaxy A6s")
  wyświetlacz <-c(5.0)
+
+
                     5.0,
+
                     17.3,
```

```
6.4,
+
                        6.3,
+
                        6.22,
+
                        10.1,
+
                        8.0,
+
                        6.0)
+
> pamięć_RAM <- c(1,</pre>
                      1,
+
                      3,
+
                      3,
                      3,
+
                      2,
+
                      3,
+
                      2,
+
                      6)
+
> pamieć_wbudowana <- c(</pre>
       16,
+
       64,
+
       8,
+
       64,
+
       32,
+
       32,
+
       16,
+
       32,
+
       32,
+
       64
+
> aparat_foto <- c(8,</pre>
                        12,
+
                        5,
+
                        0,
+
                        13,
                        13,
+
                        13,
                        8,
+
                        8,
+
                        12)
+
       cena <- c(80,
                   1020,
+
                   120,
+
                   660,
+
                   300,
+
                   300,
+
```

```
135,
  +
                   200,
  +
                   130.
  +
                   300)
  +
    liczba_opinii <- c(17,
                          48.
  +
                          36,
  +
                          50,
                          316,
                          358.
                          107,
                          8,
                          40,
                          86)
  > ramka <- data.frame(nazwa, wyświetlacz, pamięć RAM,
       pamieć wbudowana,
                           aparat foto, cena, liczba opinii)
3. Wynik działania:
  > mean(ramka$cena)
   [1] 324.5
```

Do stworzonej w poprzednim zadaniu ramki danych smartfonów dodaj wpis zawierajacy dane nowego smartfonu. Wylicz średnia ceny ponownie.

2. Wprowadzane dane:

```
> ramka <- rbind(ramka, data.frame(nazwa = "Galaxy A9 (2018)",
   wyświetlacz = 6.3, pamięć RAM = 6, pamieć wbudowana = 64,
aparat foto = 24, cena = 359, liczba opinii = 320))
```

3. Wynik działania:

```
> mean(ramka$cena)
[1] 327.6364
```

1. Polecenie:

Korzystajac z ramki danych smartfony dodaj nowa kolumne określajac ocene klientów. Wpisz do kolumny odpowiednio oceny w skali od 0 do 5 krok 0.5. Dodana kolumna powinna sie automatycznie przekonwertować do cech jakościowych

(tzw. factors). Wylicz średnia ceny każdej oceny.

2. Wprowadzane dane:

```
> ramka$ocena <- factor(c(3, 5, 5, 4, 4, 4, 4, 5, 4.5, 5, 4.5))</pre>
```

3. Wynik działania:

```
> mean(as.numeric(levels(ramka$ocena)[ramka$ocena]))
[1] 4.363636
```

1. Polecenie:

Do ramki danych smartfony dodaj kolejne 4 smartfony. Narysuj na wykresie slupkowym liczebność reprezentantów każdej z ocen klientow.

2. Wprowadzane dane:

```
ramka <- rbind(ramka, data.frame(nazwa = c("Galaxy A7 (2018)",
    "Galaxy Note9",
    "Galaxy J6+",
    "Galaxy J4 Core"
),
    wyświetlacz = c(6.0,6.4,6.0,6.0),
    pamięć_RAM = c(4,6,3,1),
    pamieć_wbudowana = c(64,128,32,16),
    aparat_foto = c(12,12,10,5),
    cena = c(309,820,230,150),
    liczba_opinii = c(223,1243,198,87),
    ocena = factor(c(4,5,4,3.5)))
)</pre>
```

- 3. Wynik działania:
 - > barplot(table(ramka\$ocena))

Wykorzystujac ramke danych smartfony pokaż procentowy udzial każdej oceny przy pomocy wykresu kolowego oraz wachlarzowego.

2. Wprowadzane dane:

```
>install.packages("plotrix")
>library(plotrix)
> prop.table(table(ramka$ocena))
                          4.5
                                       5
                                                 3.5
0.06666667 0.40000000 0.13333333 0.33333333 0.06666667
```

3. Wynik działania:

```
> pie(prop.table(table(ramka$ocena)))
> fan.plot(prop.table(table(ramka$ocena)), labels =
   names(prop.table(table(ramka$ocena))))
```


Do ramki danych smartfony dodaj nowa kolumn status_opinii z wartościami: "nie ma", "mniej 50 opinii", "50-100 opinii", "wiecej 100 opinii" w zależności od liczby opinii. Zamień dodana kolumne na cechy jakościowe. Nastepnie przy pomocy wykresu kolowego wyrysuj procentowy udział smartfonów o konkretnym statusie opinii.

2. Wprowadzane dane:

3. Wynik działania:

> pie(prop.table(table(ramka\$status_opinii)))

1. Polecenie:

Wykorzystujac ramke danych smartfony stwórz zdanie o każdym z smartfonów postaci: nazwa + " ma ocene klientów " + ocena_klientów + "bo ma liczbe opinii" + liczba_opinii. Plus oznacza konkatenacje lańcuchów i wartości.

2. Wprowadzane dane:

3. Wynik działania:

- [1] "Galaxy J2 Core (2020) ma ocene klientow 3 bo ma liczbę opinii 17"
- [1] "Galaxy Xcover FieldPro ma ocene klientow 5 bo ma liczbę opinii 48"
- [1] "Galaxy A2 Core ma ocene klientow 5 bo ma liczbę opinii 36"
- [1] "Galaxy View2 ma ocene klientow 4 bo ma liczbę opinii 50"
- [1] "Galaxy M30 ma ocene klientow 4 bo ma liczbę opinii 316"
- [1] "Galaxy M20 ma ocene klientow 4 bo ma liczbę opinii 358"
- [1] "Galaxy M10 ma ocene klientow 4 bo ma liczbę opinii 107"
- [1] "Galaxy Tab Advanced2 ma ocene klientow 5 bo ma liczbę opinii 8"
- [1] "Galaxy Tab A 8.0 (2018) ma ocene klientow 4.5 bo ma liczbę opinii 40"
- [1] "Galaxy A6s ma ocene klientow 5 bo ma liczbę opinii 86"
- [1] "Galaxy A9 (2018) ma ocene klientow 4.5 bo ma liczbę opinii 320"
- [1] "Galaxy A7 (2018) ma ocene klientow 4 bo ma liczbę opinii 223"
- [1] "Galaxy Note9 ma ocene klientow 5 bo ma liczbę opinii 1243"
- [1] "Galaxy J6+ ma ocene klientow 4 bo ma liczbę opinii 198"
- [1] "Galaxy J4 Core ma ocene klientow 3.5 bo ma liczbę opinii 87"

Zachować ramke danych w pliku .csv. Zaladować ramke danych z pliku .csv

2. Wprowadzane dane:

- > write.csv(ramka, "smartfony.csv")
- > read.csv("smartfony.csv")

3. Wynik działania:

>	геас	d.csv("smartfony.csv")									
	Χ	nazwa	wyświetlacz	pamięć_RAM	pamieć_wbudowana	aparat_foto	cena	liczba_opinii	ocena	status_opinii	i
1	1	Galaxy J2 Core (2020)	5.00	1	16	8	80	17	3.0	mniej niż 50 opinii	i
2	2	Galaxy Xcover FieldPro	5.10	4	64	12	1020	48	5.0	mniej niż 50 opinii	i
3	3	Galaxy A2 Core	5.00	1	8	5	120	36	5.0	mniej niż 50 opinii	i
4	4	Galaxy View2	17.30	3	64	0	660	50	4.0	50-100 opinii	i
5	5	Galaxy M30	6.40	3	32	13	300	316	4.0	więcej niż 100 opinii	i
6	6	Galaxy M20	6.30	3	32	13	300	358	4.0	więcej niż 100 opinii	i
7	7	Galaxy M10	6.22	2	16	13	135	107	4.0	więcej niż 100 opinii	i
8	8	Galaxy Tab Advanced2	10.10	3	32	8	200	8	5.0	mniej niż 50 opinii	i
9	9	Galaxy Tab A 8.0 (2018)	8.00	2	32	8	130	40	4.5	mniej niż 50 opinii	i
10	10	Galaxy A6s	6.00	6	64	12	300	86	5.0	50-100 opinii	i
11	11	Galaxy A9 (2018)	6.30	6	64	24	359	320	4.5	więcej niż 100 opinii	i
12	12	Galaxy A7 (2018)	6.00	4	64	12	309	223	4.0	więcej niż 100 opinii	i
13	13	Galaxy Note9	6.40	6	128	12	820	1243	5.0	więcej niż 100 opinii	i
14	14	Galaxy J6+	6.00	3	32	10	230	198	4.0	więcej niż 100 opinii	i
15	15	Galaxy J4 Core	6.00	1	16	5	150	87	3.5	50-100 opinii	i