DISCRETE MATH PROJECT 2

SHRESHT BHOWMICK

Contents

1	Part A	1
	1.1 Proof:	1
2	Part B	1
3	Part C	1

1 Part A

Invariant Strategy:

Let the number of squares in each row be n_1, n_2, \dots, n_k . Define the *XOR-sum* as:

$$S = n_1 \oplus n_2 \oplus \cdots \oplus n_k$$

where \oplus is the bitwise XOR operation.

Claim: A position is winning if $S \neq 0$. The strategy is to move in such a way that S = 0 after our turn.

1.1 Proof:

If S=0, any move results in $S\neq 0$, leaving the opponent in a winning position. If $S\neq 0$, the player can always adjust one row, say n_i , to $n_i\oplus S$, making the new XOR-sum zero:

$$S' = n_1 \oplus n_2 \oplus \cdots \oplus (n_i \oplus S) \oplus \cdots \oplus n_k = 0$$

Thus, the optimal strategy is to always move to ensure S=0 after our turn.

2 Part B

- Input: The current state of the board, with n_1, n_2, \ldots, n_k squares in each row.
- **Step 1:** Calculate the XOR-sum:

$$S = n_1 \oplus n_2 \oplus \cdots \oplus n_k$$

- Step 2: If S = 0, the opponent made a mistake; wait for their next move.
- Step 3: If $S \neq 0$, find the row r_i such that $n_i \oplus S < n_i$.
- Step 4: Set $n_i = n_i \oplus S$.
- Step 5: Remove the corresponding number of squares from row r_i .
- **Step 6:** Update the board state and pass the turn to the opponent.

3 Part C

Written in Python file.