Main Training

All models trained with:

batch_size = 4

epochs = 2

learning_rate = 0.001

momentum = 0.9

Mini-batch Gradient Descent

Cross Entropy Loss

Modifications made to models to fit 3x32x32 input size Training accuracy given for all models

LeNet()

```
Model size: parameters: 62006 Training time: 200.56246376037598
```

```
Accuracy of the network on the 10000 test images: 61 % Accuracy for class: plane is 51.9 % Accuracy for class: car is 75.0 % Accuracy for class: bird is 55.6 % Accuracy for class: cat is 30.2 % Accuracy for class: deer is 47.7 % Accuracy for class: dog is 54.9 % Accuracy for class: frog is 67.3 % Accuracy for class: horse is 74.3 % Accuracy for class: ship is 78.8 % Accuracy for class: truck is 74.5 %
```

AlexNet()

Model size: parameters: 36360074 Training time: 249.5857174396515

```
Accuracy of the network on the 10000 test images: 64 %
Accuracy for class: plane is 70.5 %
Accuracy for class: car is 74.0 %
Accuracy for class: bird is 38.6 %
Accuracy for class: cat is 59.2 %
Accuracy for class: deer is 45.5 %
Accuracy for class: dog is 56.6 %
Accuracy for class: frog is 74.7 %
Accuracy for class: horse is 67.9 %
Accuracy for class: ship is 78.5 %
Accuracy for class: truck is 78.2 %
```

Resnet-18()

```
Model size: parameters: 11184650 Training time: 259.30410146713257
```

```
Accuracy of the network on the 10000 test images: 52 %
Accuracy for class: plane is 40.7 %
Accuracy for class: car is 59.9 %
Accuracy for class: bird is 55.4 %
Accuracy for class: cat is 51.6 %
Accuracy for class: deer is 43.9 %
Accuracy for class: dog is 39.6 %
Accuracy for class: frog is 56.0 %
Accuracy for class: horse is 50.9 %
Accuracy for class: ship is 68.7 %
Accuracy for class: truck is 61.4 %
```

K-fold Cross Validation

K-fold tests were performed with:

batch_size = 40

folds = 5

other factors same as regular training

LeNet()

```
Fold 1
-----
Test set: Average loss: 0.0098, Accuracy: 2931/(10000.0) (29%)

Fold 2
----
Test set: Average loss: 0.0096, Accuracy: 2964/(10000.0) (30%)

Fold 3
----
Test set: Average loss: 0.0095, Accuracy: 3086/(10000.0) (31%)

Fold 4
----
Test set: Average loss: 0.0094, Accuracy: 3157/(10000.0) (32%)

Fold 5
----
Test set: Average loss: 0.0093, Accuracy: 3249/(10000.0) (32%)
```

AlexNet()

```
Fold 1
-----
Test set: Average loss: 0.0052, Accuracy: 6351/(10000.0) (64%)

Fold 2
----
Test set: Average loss: 0.0051, Accuracy: 6416/(10000.0) (64%)

Fold 3
----
Test set: Average loss: 0.0052, Accuracy: 6334/(10000.0) (63%)

Fold 4
----
Test set: Average loss: 0.0054, Accuracy: 6176/(10000.0) (62%)

Fold 5
----
Test set: Average loss: 0.0050, Accuracy: 6454/(10000.0) (65%)
```

ResNet()-18 was the best

Confusion matrix of ResNet-18:

Three hypotheses

1. Increasing batch size of LeNet()

This will decrease training time, with lower test accuracy as a result. There will be fewer changes to model parameters, preventing it from accurately fitting the data. However, the smaller amount of gradient calculations will decrease training time.

```
Model size: parameters: 62006
Training time: 39.29397535324097
```

```
Accuracy of the network on the 10000 test images: 10 %
Accuracy for class: plane is 0.0 %
Accuracy for class: bird is 0.0 %
Accuracy for class: cat is 0.0 %
Accuracy for class: deer is 13.0 %
Accuracy for class: dog is 0.0 %
Accuracy for class: frog is 0.0 %
Accuracy for class: frog is 0.0 %
Accuracy for class: horse is 1.7 %
Accuracy for class: ship is 89.0 %
Accuracy for class: truck is 0.0 %
```

An improvement in training time and decrease in accuracy is seen compared to the earlier result for LeNet(). The hypothesis is true.

2. Decreasing training input of LeNet() to 30,000

This will decrease accuracy due to overfitting of the smaller training set.

```
Accuracy of the network on the 10000 test images: 51 %
Accuracy for class: plane is 67.1 %
Accuracy for class: car is 63.7 %
Accuracy for class: bird is 22.8 %
Accuracy for class: cat is 30.3 %
Accuracy for class: deer is 51.9 %
Accuracy for class: dog is 40.3 %
Accuracy for class: frog is 53.0 %
Accuracy for class: horse is 61.5 %
Accuracy for class: ship is 58.5 %
Accuracy for class: truck is 64.2 %
```

Accuracy did decrease with a smaller training input size (compare to earlier result of 61% with 50,000 input size).

3. Modifying LeNet()

Modifying LeNet() by adding two new fully connected layers as shown:

```
self.fc1 = nn.Linear(16*5*5, 120)
self.fcNew1 = nn.Linear(120, 100) # for hypothesis test (not in original model)
self.fc2 = nn.Linear(100, 84)
self.fcNew2 = nn.Linear(84, 32) # for hypothesis test
self.fc3 = nn.Linear(32, 10)
```

This will improve performance, since a larger number of parameters will allow the model to better fit the data.

```
Accuracy of the network on the 10000 test images: 49 % Accuracy for class: plane is 60.5 % Accuracy for class: car is 71.5 % Accuracy for class: bird is 19.4 % Accuracy for class: cat is 42.6 % Accuracy for class: deer is 34.7 % Accuracy for class: dog is 31.7 % Accuracy for class: frog is 70.0 % Accuracy for class: horse is 61.7 % Accuracy for class: ship is 55.2 % Accuracy for class: truck is 50.9 %
```

Performance was actually worse with increased model complexity. Too much information may be discarded in the smaller layers.

```
# -*- coding: utf-8 -*-
"""Helhoski Assignment 3
Automatically generated by Colab.
Original file is located at
  https://colab.research.google.com/drive/1b5e0wix6CxNkA0N08cvFSChJdfgo19jl
#@title imports
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
from sklearn.model_selection import KFold
import time
import torch.cuda as cuda
#@title Loading Dataset
# much of model setup and training from:
https://pytorch.org/tutorials/beginner/blitz/cifar10 tutorial.html
transform = transforms.Compose(
  [transforms.ToTensor(),
  transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch size = 40
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                        download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                        download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                        shuffle=False, num workers=2)
classes = ('plane', 'car', 'bird', 'cat',
      'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#@title training
def train(model, train loader, optimizer):
  model.train()
  for batch idx, (data, target) in enumerate(train loader):
```

```
optimizer.zero_grad(set_to_none=True)
     data = data.to('cuda')
     target = target.to('cuda')
     output = model(data)
     output = output.to('cuda')
     criterion = nn.CrossEntropyLoss()
     loss = criterion(output, target)
     loss.backward()
     optimizer.step()
#@title Evaluation
def evalTotalSet(model):
 correct = 0
 total = 0
 model.eval()
 model.to('cuda')
 # since we're not training, we don't need to calculate the gradients for our outputs
 with torch.no grad():
   for data in testloader:
      images, labels = data
      images = images.to('cuda')
      labels = labels.to('cuda')
      # calculate outputs by running images through the network
      outputs = model(images)
      # the class with the highest energy is what we choose as prediction
      _, predicted = torch.max(outputs.data, 1)
      total += labels.size(0)
      correct += (predicted == labels).sum().item()
 print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
def evalCategories(model):
 # prepare to count predictions for each class
 correct_pred = {classname: 0 for classname in classes}
 total pred = {classname: 0 for classname in classes}
 model.eval()
 model.to('cuda')
 # again no gradients needed
 with torch.no_grad():
   for data in testloader:
      images, labels = data
      images = images.to('cuda')
      labels = labels.to('cuda')
      outputs = model(images)
      _, predictions = torch.max(outputs, 1)
      # collect the correct predictions for each class
```

```
for label, prediction in zip(labels, predictions):
         if label == prediction:
           correct pred[classes[label]] += 1
         total pred[classes[label]] += 1
 # print accuracy for each class
 for classname, correct count in correct pred.items():
    accuracy = 100 * float(correct_count) / total_pred[classname]
    print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
#@title Models
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module): # variation of LeNet from
https://pytorch.org/tutorials/beginner/blitz/cifar10 tutorial.html
  def __init__(self):
     super().__init__()
     self.conv1 = nn.Conv2d(3, 6, 5)
     self.pool = nn.MaxPool2d(2,2)
     self.conv2 = nn.Conv2d(6, 16, 5)
     self.fc1 = nn.Linear(16*5*5, 120)
     self.fcNew1 = nn.Linear(120, 100) # for hypothesis test (not in original model)
     self.fc2 = nn.Linear(100, 84)
     self.fcNew2 = nn.Linear(84, 32) # for hypothesis test
     self.fc3 = nn.Linear(32, 10)
  def forward(self, x):
     x = self.pool(F.relu(self.conv1(x)))
     x = self.pool(F.relu(self.conv2(x)))
     x = \text{torch.flatten}(x,1) \# \text{flatten all dimensions except batch}
     x = F.relu(self.fc1(x))
     x = F.relu(self.fcNew1(x))
     x = F.relu(self.fc2(x))
     x = F.relu(self.fcNew2(x))
     x = self.fc3(x)
     return x
class AlexNet(nn.Module):
  def init (self):
     super().__init__()
     self.conv1 = nn.Conv2d(3, 96, 3)
     self.conv2 = nn.Conv2d(96, 256, 4, padding=1)
     self.conv3 = nn.Conv2d(256, 384, 3, padding=1)
     self.conv4 = nn.Conv2d(384, 384, 2, padding=1)
     self.conv5 = nn.Conv2d(384, 256, 3, padding=1)
```

```
self.pool = nn.MaxPool2d(2, 2)
     self.fc1 = nn.Linear(256*4*4, 4096)
     self.fc2 = nn.Linear(4096, 4096)
     self.fc3 = nn.Linear(4096, 10)
  def forward(self, x):
     x = self.pool(F.relu(self.conv1(x)))
     x = self.pool(F.relu(self.conv2(x)))
    x = F.relu(self.conv3(x))
    x = F.relu(self.conv4(x))
    x = self.pool(F.relu(self.conv5(x)))
     x = \text{torch.flatten}(x,1) \# \text{flatten all dimensions except batch}
    x = F.relu(self.fc1(x))
     x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x
#@title Residual
class Residual(nn.Module):
  def init (self, input channels, num channels, use 1x1conv=False, strides=1):
     super(). init ()
     self.conv1 = nn.Conv2d(input channels, num channels, kernel size=3, padding=1,
stride=strides)
     self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
     if use_1x1conv:
       self.conv3 = nn.Conv2d(input channels, num channels, kernel size=1, stride=strides)
       self.conv3 = None
     self.bn1 = nn.BatchNorm2d(num channels)
     self.bn2 = nn.BatchNorm2d(num_channels)
  def forward(self, X):
     Y = F.relu(self.bn1(self.conv1(X)))
    Y = self.bn2(self.conv2(Y))
    if self.conv3:
       X = self.conv3(X)
    Y += X
     return F.relu(Y)
#@title ResNet-18
b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
            nn.BatchNorm2d(64), nn.ReLU(),
           nn.MaxPool2d(kernel size=3, stride=2, padding=1))
def resnet block(input channels, num channels, num residuals, first block=False):
```

```
blk = []
  for i in range(num residuals):
    if i == 0 and not first block:
       blk.append(Residual(input channels, num channels, use 1x1conv=True, strides=2))
     else:
       blk.append(Residual(num channels, num channels))
  return blk
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
resnet18Inst = nn.Sequential(b1, b2, b3, b4, b5,
            nn.AdaptiveAvgPool2d((1,1)),
            nn.Flatten(), nn.Linear(512, 10))
#@title training resnet
# training all 3 models and evaluating on test set
resnet18Inst.to('cuda')
batch size = 4
epochs = 2
optimizer = optim.SGD(resnet18Inst.parameters(), Ir=0.001, momentum=0.9)
#criterion = F.nll loss()
trainloader = torch.utils.data.DataLoader(trainset, batch size=batch size,
                         shuffle=True)
# method of counting parameters from:
https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325
print("Model size: parameters:", sum(p.numel() for p in resnet18Inst.parameters() if
p.requires grad))
start = time.time()
for epoch in range(epochs):
train(resnet18Inst, trainloader, optimizer)
end = time.time()
print("Training time: ", end-start)
import numpy
import matplotlib.pyplot as plt
resnet18Inst = nn.Sequential(b1, b2, b3, b4, b5,
            nn.AdaptiveAvgPool2d((1,1)),
            nn.Flatten(), nn.Linear(512, 10))
PATH = './cifar resNet.pth'
```

```
resnet18Inst.load_state_dict(torch.load(PATH, weights_only=True))
c matrix = numpy.zeros((10,10), dtype=int)
evalCategories(resnet18Inst)
print(c matrix)
#some code from:
https://stackoverflow.com/questions/20998083/show-the-values-in-the-grid-using-matplotlib
plt.matshow(c matrix)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('ResNet-18 Confusion Matrix')
plt.show()
#@title training lenet
# training all 3 models and evaluating on test set
leNetInst = LeNet()
leNetInst.to('cuda')
batch_size = 4
epochs = 2
optimizer = optim.SGD(leNetInst.parameters(), Ir=0.001, momentum=0.9)
#criterion = F.nll loss()
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                         shuffle=True)
# method of counting parameters from:
https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325
print("Model size: parameters:", sum(p.numel() for p in leNetInst.parameters() if
p.requires_grad))
start = time.time()
for epoch in range(epochs):
train(leNetInst, trainloader, optimizer)
end = time.time()
print("Training time: ", end-start)
evalTotalSet(leNetInst)
evalCategories(leNetInst)
# training all 3 models and evaluating on test set
alexInst = AlexNet()
alexInst.to('cuda')
```

```
batch size = 4
epochs = 2
optimizer = optim.SGD(alexInst.parameters(), Ir=0.001, momentum=0.9)
#criterion = F.nll loss()
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                         shuffle=True, num workers=2)
# method of counting parameters from:
https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325
print("Model size: parameters:", sum(p.numel() for p in alexInst.parameters() if
p.requires grad))
start = time.time()
for epoch in range(epochs):
train(alexInst, trainloader, optimizer)
end = time.time()
print("Training time: ", end-start)
PATH = './cifar alexNet.pth'
torch.save(alexInst.state_dict(), PATH)
#@title k-fold
def run k fold(folds, batch size, epochs):
 # kfold method/some code from:
https://saturncloud.io/blog/how-to-use-kfold-cross-validation-with-dataloaders-in-pytorch/#step-1
-importing-the-required-libraries
 kf = KFold(n splits=folds)
 # Loop through each fold
 for fold, (train idx, test idx) in enumerate(kf.split(trainset)):
   print(f"Fold {fold + 1}")
   print("----")
   # Define the data loaders for the current fold
   train loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=batch_size,
sampler=torch.utils.data.SubsetRandomSampler(train idx),
                              pin_memory=True, num_workers=2)
   test loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=batch_size,
sampler=torch.utils.data.SubsetRandomSampler(test_idx),
                              pin_memory=True, num_workers=2)
   # have to redefined entire model inside block so that residual blocks are reset
   b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
           nn.BatchNorm2d(64), nn.ReLU(),
           nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
   def resnet block(input channels, num channels, num residuals, first block=False):
```

```
blk = []
     for i in range(num residuals):
      if i == 0 and not first block:
       blk.append(Residual(input channels, num channels, use 1x1conv=True, strides=2))
      else:
       blk.append(Residual(num channels, num channels))
     return blk
   b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
   b3 = nn.Sequential(*resnet_block(64, 128, 2))
   b4 = nn.Sequential(*resnet block(128, 256, 2))
   b5 = nn.Sequential(*resnet_block(256, 512, 2))
   model = nn.Sequential(b1, b2, b3, b4, b5,
            nn.AdaptiveAvgPool2d((1,1)),
            nn.Flatten(), nn.Linear(512, 10))
   model.to('cuda')
   optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
   for epoch in range(epochs):
      train(model, train loader, optimizer)
   model.eval()
   test loss = 0
   correct = 0
   with torch.no grad():
      for data, target in test_loader:
        data = data.to('cuda')
        target = target.to('cuda')
        output = model(data)
        criterion = nn.CrossEntropyLoss()
        test_loss += criterion(output, target).item()
        pred = output.argmax(dim=1, keepdim=True)
        correct += pred.eq(target.view_as(pred)).sum().item()
   test loss /= len(test loader.dataset)
   accuracy = 100.0 * correct / (len(test_loader.dataset)/folds)
   print(f"Test set: Average loss: {test loss:.4f}, Accuracy:
{correct}/({len(test loader.dataset)/folds}) ({accuracy:.0f}%)")
   print()
```