

Sampling Distributions Chapter 7

207 QUA

King Saud University

December 15, 2022

Random Variables

- A random variable is a variable, the values of which occur according to some specified probability distribution.
- A discrete random variable is a random variable which takes only finitely many or countably infinitely many different values.
- A continuous random variable is a random variable that can take on a continuum of values.

Probability Distributions

- For a discrete random variable: The probability distribution is a mathematical formula that gives the probability of each value of the variable.
- For a continuous random variable: The probability distribution is a curve described by a mathematical formula that specifies, by way of areas under the curve, the probability that the variable falls within a particular interval

Definition

- Sample statistics are statistics calculated from a random sample.
- Sample statistics are random variables.
- Random variables have probability distributions.
- The sampling distribution is the probability distribution of a statistic calculated from a random sample of a particular size

An Example

- Suppose we obtained the GPA from a random sample of 50 students from the college of business and computed the mean GPA for the sample.
- The mean GPA is a sample statistic and it's called the sample mean.
- If we obtained different random samples of size 50 you will compute a different mean for each sample.
- ► We are interested in the distribution of all potential mean GPAs we might calculate for samples of 50 students.

The Population

- Assume there is a population of four people (N = 4).
- The variable of interest, X, is the age of individuals.
- ► The values of *X*, in years, are 18, 20, 22, and 24.

The Probability Distribution of *X*

X	$P(X=x_i)$
18	0.25
20	0.25
22	0.25
24	0.25

Table 1: The Probability Distribution of *X*

The Probability Distribution of *X*

Figure 1: Graphical representation of Table 1

Summary Measures of The Probability distribution of X

▶ The population mean, μ_x , is:

$$\mu_X = \sum_{i=1}^{N} x_i P(X = x_i) = 21$$

▶ The population standard deviation, σ_X , is:

$$\sigma_X = \sqrt{\sum_{i=1}^{N} (x_i - \mu_X)^2 P(X = x_i)} = 2.236$$

All Possible Samples of size (n = 2)

1 st	2 nd Observation				
Obs	18	20	22	24	
18	(18, 18)	(18, 20)	(18, 22)	(18, 24)	
20	(20, 18)	(20, 20)	(20, 22)	(20, 24)	
22	(22, 18)	(22, 20)	(22, 22)	(22, 24)	
24	(24, 18)	(24, 20)	(24, 22)	(24, 24)	

Table 2: All the 16 possible samples when sampling with replacement

All Possible Sample Means

1 st	2 nd Observation			
Obs	18	20	22	24
18	18	19	20	21
20	19	20	21	22
22	20	21	22	23
24	21	22	23	24

Table 3: The means of the 16 possible samples

The Probability Distribution of \bar{X}

\bar{X}	$P(\bar{X}=\bar{x}_i)$
18	0.0625
19	0.125
20	0.1875
21	0.25
22	0.1875
23	0.125
24	0.0625

Table 4: The Probability Distribution of \bar{X}

The Probability Distribution of \bar{X}

Figure 2: Graphical representation of Table 4

Summary Measures of The Probability distribution of \bar{X}

▶ The population mean, $\mu_{\bar{x}}$, is:

$$\mu_{\bar{X}} = \sum_{i=1}^{N} \bar{x}_i P(\bar{X} = \bar{x}_i) = 21$$

▶ The population standard deviation, $\sigma_{\bar{\chi}}$, is:

$$\sigma_{\bar{x}} = \sqrt{\sum_{i=1}^{N} (\bar{x}_i - \mu_{\bar{x}})^2 P(\bar{X} = \bar{x}_i)} = 2.236$$

Review
Sampling Distributions
Practice

Let's practice!

Review
Sampling Distributions
Practice