

Atividade: Frio nas alturas

Habilidades

EM13MAT302 Construir modelos empregando as funções polinomiais de 1º ou 2º graus, para resolver problemas em contextos diversos, com ou sem apoio de tecnologias digitais.

Para o professor

Objetivos específicos

- OE1 Explorar o zero da função afim.
- OE2 Compreender em um contexto específico a importância da determinação do zero da função.
- OE3 Perceber que a altitude de acionamento do sistema anti-gelo (o zero da função) se obtém dividindo o valor da temperatura pelo valor absoluto da taxa de variação.

Observações e recomendações

- É possível responder à pergunta e) pensando como um problema de progressão aritmética: Se a temperatura local é $30\,^{\circ}$ C e ela diminui $2\,^{\circ}$ C a cada $1.000\,$ pés, para chegar a zero devemos subtrair 2 de 30, um total de 15 vezes, logo, a altitude é $15.000\,$ pés.
- Os itens f) e g) pretendem dar uma ideia de como se obtem a expressão geral do zero da função afim. Caso julgue pertinente, estimule-os a pensar em situações hipotéticas em que as taxas de variação da temperatura em função da altitude sejam diferentem.

Atividade

Mesmo em pleno verão um avião, precisa lidar com temperaturas muito baixas. Quando uma aeronave opera em baixas temperaturas, com umidade presente, há a possibilidade de formação de gelo que virá a se acumular na sua estrutura ou em seu grupo moto-propulsor. O gelo se forma quando um avião voa através de uma nuvem ou de um ambiente contendo gotículas de água super-resfriadas. O principal problema causado pela formação de gelo é a modificação do fluxo de ar sobre as superfícies das asas, prejudicando assim o desempenho da nave e acarretando, eventualmente, em mais gastos de combustível. Para evitar problemas como esses as aeronaves contam com um sistema anti-gelo que diminui a formação de camadas de gelo em sua fuselagem, produzindo os chamados "rastros de condensação" como na imagem.

Patrocínio:

A temperatura na troposfera (primeira camada da atmosfera que tem aproximadamente 40.000 pés de altitude) diminui $2^{\circ}C$ a cada aumento de 1.000 pés na altitude. Suponha que, em um determinado dia, a temperatura em um aeroporto seja de $30^{\circ}C$, e que a água congela a $0^{\circ}C$.

- a) Qual a taxa de variação, em ${}^{\circ}C/{
 m p\acute{e}}$, da temperatura da atmosfera, T, em função da altitude, h.
- b) A função T(h) é crescente ou decrescente? Como isso se reflete na taxa de variação?
- c) Determine uma expressão para T(h) e represente seu gráfico.
- d) Qual a temperatura a 37.200 pés de altitude?
- e) A partir de que altitude o piloto deverá acionar o sistema anti-gelo da aeronave?
- f) Em outro dia, a temperatura no mesmo aeroporto era de $25^{\circ}C$. Qual a altitude de acionamento do sistema anti-gelo, nesse caso?
- g) Estabeleça uma maneira de calcular a altitude de acionamento do sistema anti-gelo quando a temperatura do aeroporto é igual a T_0 .

Solução:

- a) -0,002 °C/pé
- b) T é decrescente, portanto a taxa de variação é negativa.
- c) T(h) = 30-0.002h
- d) T(37.200) = -44.4 °C
- e) 15.000 pés
- f) 12.500 pés
- g) Nesse caso, T(h)=T0–0, ,02h. Para determinar a altitude, basta calcular h para o qual se tem T(h)=0, isto é, $h=\frac{T_0}{0.002}=500T_0$

Patrocínio: