System Check_Head_1750MHz_151021

DUT: D1750V2-SN:1069

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL 1800 151021 Medium parameters used: f = 1750 MHz; $\sigma = 1.382$ S/m; $\varepsilon_r = 41.56$; ρ

Date: 2015.10.21

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 $^{\circ}\text{C}$; Liquid Temperature: 22.8 $^{\circ}\text{C}$

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.01, 8.01, 8.01); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 99.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.54 W/kg; SAR(10 g) = 5.03 W/kgMaximum value of SAR (measured) = 13.7 W/kg

System Check_Head_1900MHz_151021

DUT: D1900V2-SN:5d118

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900_151021 Medium parameters used: f = 1900 MHz; $\sigma = 1.417$ S/m; $\varepsilon_r = 40.994$; ρ

Date: 2015.10.21

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.66, 7.66, 7.66); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.4 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 106.2 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.7 W/kg; SAR(10 g) = 5.51 W/kg

Maximum value of SAR (measured) = 15.1 W/kg

System Check_Head_2450MHz_151022

DUT: D2450V2-SN:926

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450_151022 Medium parameters used: f = 2450 MHz; $\sigma = 1.861$ S/m; $\varepsilon_r = 39.575$; ρ

Date: 2015.10.22

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.01, 7.01, 7.01); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 22.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.44 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 14.13 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 23.0 W/kg

System Check_Body_835MHz_151019

DUT: D835V2-SN:4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_835_151019 Medium parameters used: f = 835 MHz; $\sigma = 0.967$ S/m; $\epsilon_r = 55.899$; $\rho =$

Date: 2015.10.19

 1000 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.49, 9.49, 9.49); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.59 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.63 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kgMaximum value of SAR (measured) = 2.58 W/kg

System Check_Body_1750MHz_151020

DUT: D1750V2-SN:1069

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL_1800_151020 Medium parameters used: f = 1750 MHz; $\sigma = 1.526$ S/m; $\varepsilon_r = 52.01$; ρ

Date: 2015.10.20

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C ; **Liquid Temperature**: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.74, 7.74, 7.74); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.4 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.99 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.44 W/kgMaximum value of SAR (measured) = 14.2 W/kg

System Check_Body_1900MHz_151020

DUT: D1900V2-SN:5d118

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_151020 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\epsilon_r = 54.484$; ρ

Date: 2015.10.20

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.87 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.32 W/kgMaximum value of SAR (measured) = 14.7 W/kg

System Check_Body_2450MHz_151022

DUT: D2450V2-SN:926

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_151022 Medium parameters used: f = 2450 MHz; $\sigma = 1.949$ S/m; $\epsilon_r = 51.667$; ρ

Date: 2015.10.22

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(6.95, 6.95, 6.95); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.1 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.03 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.65 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Appendix B. Plots of High SAR Measurement

Report No.: FA592401

The plots are shown as follows.

SPORTON INTERNATIONAL (SHENZHEN) INC.

#01_GSM850_GPRS(4 Tx slots)_Left Cheek_Ch251

Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 848.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_835_151021 Medium parameters used: f = 848.8 MHz; $\sigma = 0.913$ S/m; $\epsilon_r = 40.606$; $\rho = 1000$ kg/m³

Date: 2015.10.21

Ambient Temperature: 23.3 $^{\circ}$ C; Liquid Temperature: 22.9 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.48, 9.48, 9.48); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch251/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.763 W/kg

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.97 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.829 W/kg SAR(1 g) = 0.673 W/kg; SAR(10 g) = 0.522 W/kg Maximum value of SAR (measured) = 0.767 W/kg

#02_GSM1900_GPRS(4 Tx slots)_Left Cheek_Ch661

Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 1880 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900_151021 Medium parameters used: f = 1880 MHz; $\sigma = 1.392$ S/m; $\epsilon_r = 41.101$; $\rho = 1000$ kg/m³

Date: 2015.10.21

Ambient Temperature: 23.2 $^{\circ}$ C; Liquid Temperature: 22.9 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.66, 7.66, 7.66); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch661/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.524 W/kg

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.119 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.583 W/kg SAR(1 g) = 0.377 W/kg; SAR(10 g) = 0.236 W/kg Maximum value of SAR (measured) = 0.484 W/kg

#03_WCDMA Band V_RMC 12.2Kbps_Right Cheek_Ch4233

Communication System: UID 0, UMTS (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_835_151021 Medium parameters used: f = 846.6 MHz; $\sigma = 0.911$ S/m; $\epsilon_r = 40.638$; ρ

Date: 2015.10.21

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 $^{\circ}$ C; Liquid Temperature: 22.9 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.48, 9.48, 9.48); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4233/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.507 W/kg

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.619 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.545 W/kg SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.350 W/kg Maximum value of SAR (measured) = 0.506 W/kg

Communication System: UID 0, UMTS (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium: HSL_1800_151021 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.363$ S/m; $\varepsilon_r = 41.651$;

Date: 2015.10.21

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 $^{\circ}\text{C}$; Liquid Temperature: 22.8 $^{\circ}\text{C}$

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.01, 8.01, 8.01); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1413/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.578 W/kg

Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.815 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.603 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.276 W/kg

Maximum value of SAR (measured) = 0.516 W/kg

Communication System: UID 0, UMTS (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL_1900_151021 Medium parameters used: f = 1880 MHz; $\sigma = 1.392$ S/m; $\epsilon_r = 41.101$; ρ

Date: 2015.10.21

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C ; **Liquid Temperature**: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.66, 7.66, 7.66); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9400/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.458 W/kg

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.777 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.514 W/kg SAR(1 g) = 0.330 W/kg; SAR(10 g) = 0.207 W/kg Maximum value of SAR (measured) = 0.425 W/kg

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL_2450_151022 Medium parameters used: f = 2437 MHz; $\sigma = 1.846$ S/m; $\varepsilon_r = 39.627$; ρ

Date: 2015.10.22

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 $^{\circ}$ C; Liquid Temperature: 22.5 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.01, 7.01, 7.01); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch6/Area Scan (81x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.687 W/kg

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.467 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.998 W/kg SAR(1 g) = 0.498 W/kg; SAR(10 g) = 0.232 W/kg Maximum value of SAR (measured) = 0.754 W/kg

#07_GSM850_GPRS(4 Tx slots)_Back_10mm_Ch128

Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.08 Medium: MSL_835_151019 Medium parameters used: f = 824.2 MHz; $\sigma = 0.952$ S/m; $\varepsilon_r = 56.012$; $\rho = 1000$ kg/m³

Date: 2015.10.19

Ambient Temperature: 23.3 $^{\circ}$ C; Liquid Temperature: 22.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.49, 9.49, 9.49); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch128/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.06 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.543 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.930 W/kg; SAR(10 g) = 0.721 W/kg Maximum value of SAR (measured) = 1.06 W/kg

#08_GSM1900_GPRS(4 Tx slots)_Back_10mm_Ch810

Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: MSL_1900_151020 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.551$ S/m; $\epsilon_r = 54.465$; $\rho = 1000$ kg/m3

Date: 2015.10.20

Ambient Temperature: 23.4 $^{\circ}$ C; Liquid Temperature: 22.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.62 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.927 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.99 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.617 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.617 W/kg Maximum value of SAR (measured) = 1.56 W/kg

#09_WCDMA Band V_RMC12.2Kbps_Back_10mm_Ch4132

Communication System: UID 0, UMTS (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_835_151019 Medium parameters used: f = 826.4 MHz; $\sigma = 0.955$ S/m; $\epsilon_r = 55.99$; $\rho = 0.955$ S/m; $\epsilon_r = 55.99$; $\epsilon_r = 55.99$

Date: 2015.10.19

 1000 kg/m^3

Ambient Temperature: 23.3 $^{\circ}$ C; Liquid Temperature: 22.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.49, 9.49, 9.49); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4132/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.744 W/kg

Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.877 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.814 W/kg

SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.508 W/kg

Maximum value of SAR (measured) = 0.744 W/kg

Communication System: UID 0, UMTS (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL_1800_151020 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.506$ S/m; $\epsilon_r = 52.08$; $\rho = 1000$ kg/m3

Date: 2015.10.20

Ambient Temperature: 23.5 °C ; **Liquid Temperature**: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.74, 7.74, 7.74); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1413/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.21 W/kg

Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.245 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.85 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.616 W/kg Maximum value of SAR (measured) = 1.49 W/kg

#11_WCDMA Band II_RMC 12.2Kbps_Back_10mm_Ch9538

Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900_151020 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.549$ S/m; $\epsilon_r = 54.471$; $\rho = 1000$ kg/m3

Date: 2015.10.20

Ambient Temperature: 23.4 $^{\circ}$ C; Liquid Temperature: 22.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9538/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.48 W/kg

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.103 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.80 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.560 W/kg Maximum value of SAR (measured) = 1.41 W/kg

#12_WLAN2.4GHz_802.11b 1Mbps_Back_10mm_Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_151022 Medium parameters used: f = 2437 MHz; $\sigma = 1.931$ S/m; $\varepsilon_r = 51.715$; ρ

Date: 2015.10.22

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 $^{\circ}\text{C}$; Liquid Temperature: 22.6 $^{\circ}\text{C}$

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(6.95, 6.95, 6.95); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch6/Area Scan (81x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.176 W/kg

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.686 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.066 W/kgMaximum value of SAR (measured) = 0.166 W/kg

Communication System: UID 0, UMTS (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL_1800_151020 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.506$ S/m; $\epsilon_r = 52.08$; $\rho = 1000$ kg/m3

Date: 2015.10.20

Ambient Temperature: 23.5 $^{\circ}$ C; Liquid Temperature: 22.7 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.74, 7.74, 7.74); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1413/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.24 W/kg

Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.436 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.629 W/kg Maximum value of SAR (measured) = 1.45 W/kg

#14_WCDMA Band II_RMC 12.2Kbps_Back_10mm_Ch9538_Headset

Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900_151020 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.549$ S/m; $\epsilon_r = 54.471$; $\rho = 1000$ kg/m3

Date: 2015.10.20

Ambient Temperature: 23.4 $^{\circ}$ C ; **Liquid Temperature**: 22.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2014.11.13;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 2014.12.11
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9538/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.52 W/kg

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 2.670 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.578 W/kgMaximum value of SAR (measured) = 1.52 W/kg

Appendix C. DASY Calibration Certificate

Report No.: FA592401

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL (SHENZHEN) INC.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-CN (Auden)

Certificate No: D835V2-4d091_Nov14

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d091

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

November 21, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Michael Weber Function Laboratory Technician Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: November 21, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d091_Nov14

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	*
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	***
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition *	
SAR measured	250 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.11 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	×
SAR measured	250 mW input power	1.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.95 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	1.01 mho/m ± 6, %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.60 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.31 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d091_Nov14 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 1.8 jΩ		
Return Loss	- 32.2 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω - 4.2 jΩ	
Return Loss	- 25.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns
, ,	A STATE OF THE STA

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 15, 2009	

Certificate No: D835V2-4d091_Nov14

DASY5 Validation Report for Head TSL

Date: 19.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.46 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.69 W/kg

0 dB = 2.69 W/kg = 4.30 dBW/kg

Certificate No: D835V2-4d091_Nov14

Impedance Measurement Plot for Head TSL®

DASY5 Validation Report for Body TSL

Date: 21.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.36 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.89 W/kg

0 dB = 2.89 W/kg = 4.61 dBW/kg

Certificate No: D835V2-4d091_Nov14