

CIRCUITOS ELÉTRICOS

Prof. Lucas Claudino

AULA 03 – Fontes de tensão e corrente

CIRCUTIOS ELÉTRICOS

Fontes

- √ Fornecer energia
- ✓ Fornecer potência!

SLIDE EXTERNO

Instrumentos de medição

Quando vemos resultados de, por exemplo, 5A, 30V, 3Ω, como esses valores são medidos na vida real?

Voltímetro

- Instrumento utilizado para medir a tensão entre dois pontos de um circuito.
- Para que a resistência do voltímetro não influencie no circuito, fazendo com que mude a corrente e com isso a tensão medida, a resistência interna de um voltímetro é considerada infinita

Amperimetro

- Instrumento responsável por medir a corrente de um circuito.
- A resistência interna do amperímetro é nula.
- Amperimetro conectado em série

Ohmímetro

- Instrumento que mede qual o valor da resistência.
- Adicionado em paralelo com a resistência.
- Para medir o valor real, o resistor deve estar desconectado do circuito.

Por que o resistor não pode estar conectado ao circuito?

Recapitulando

- Dados valores de tensão, corrente e resistência de um circuito série CC, é possível calcular qualquer valor desconhecido de tensão, corrente, resistência e potência
- Equações para um CC série

$$I_T = I_1 = I_2 = I_3 = \cdots$$
 $V_T = V_1 + V_2 + V_3 + \cdots$
 $R_T = R_1 + R_2 + R_3 + \cdots$
 $P_T = P_1 + P_2 + P_3 + \cdots$

Recapitulando

Variações da Lei de Ohm

$$V = I \times R$$

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

$$P = V \times I$$

Encontre todos os valores desconhecidos de E, I, R e P para o circuito série

	Tensão	Corrente	Resistência	Potência
R_1			12 Ω	
R_2			4Ω	
Total	24 V			

$$R_T = R_1 + R_2$$
$$= 12 \Omega + 4 \Omega$$
$$= 16 \Omega$$

$$I_{T} = \frac{E_{T}}{R_{T}}$$

$$= 24 \text{ V} / 16\Omega$$

$$= 1.5 \text{ A}$$

$$I_{T} = I_{1} = I_{2} = 1.5 \text{ A}$$

$$E_1 = I_1 \times R_1$$

$$= 1.5 \text{ A} \times 12 \Omega$$

$$= 18 \text{ V}$$

$$E_2 = I_2 \times R_2$$
= 1,5 A × 4 \Omega
= 6 V

$$P_{T} = E_{T} \times I_{T}$$

$$= 24 \text{ V} \times 1,5 \text{ A}$$

$$= 36 \text{ W}$$

$$P_1 = E_1 \times I_1$$
$$= 18 \text{ V} \times 1.5 \text{ A}$$
$$= 27 \text{ W}$$

$$P_2 = E_2 \times I_2$$
$$= 6 \text{ V} \times 1.5 \text{ A}$$
$$= 9 \text{ W}$$

Encontre todos os valores desconhecidos de E, I, R e P para o circuito série

	Tensão	Corrente	Resistência	Potência
R ₁			4 kΩ	
R_2			$2\mathrm{k}\Omega$	
R_3			14 kΩ	
Total	60 V			

Encontre todos os valores desconhecidos de E, I, R e P para o circuito série

	Tensão	Corrente	Resistência	Potência
R ₁			50 Ω	
R_2			30 Ω	
R_3	80 V			
Total		4 A		

A fonte de tensão da Figura tem uma tensão a vazio de 100 V. Sua resistência interna é 0,5 Ω. Calcule a tensão nos terminais de saída da fonte quando uma carga de 10 Ω é conectada a ela

	Tensão	Corrente	Resistência
R _s			0,5 Ω
R_L			10 Ω
Total	100 V		

Polaridade de circuitos série CC

- Todo elemento em um circuito possui polaridade
- Lado com polaridade positiva (+) → Mais próximo ao terminal positivo da fonte;
- Lado com polaridade negativa (-) → Mais próximo ao terminal negativo da fonte;
- Os lados positivo e negativo de uma carga não têm relação com os lados positivo e negativo de qualquer outra carga
- Um ponto é positivo ou negativo apenas em relação a outro ponto

- O ponto A é negativo em relação ao ponto B.
- O ponto B é negativo em relação ao ponto C.
- O ponto C é negativo em relação ao ponto D.

- Em alguns circuitos CC, um ponto no circuito é definido como referência ou terra comum e todas as tensões são medidas em relação a esse ponto
- Usando um ponto de referência comum, podem-se obter tensões de saída positivas e negativas, dependendo de qual ponto no circuito é ponto de referência ou terra comum

Os pontos A, B e C são todos positivos em relação ao ponto de referência. Os pontos A e B são positivos em relação ao ponto de referência, enquanto o ponto C é negativo.

Resistência série de um fio

- Resistência de condutores elétricos é muito baixa, mas um comprimento longo de fio pode provocar uma queda de tensão significativa.
- Essa queda de tensão é diretamente proporcional à resistência dos condutores e à corrente que circula por eles.

Exercício 5 – exemplo de falha

Suponha que o componente R1 do circuito série mostrado na Figura está aberto.

Exercício 6 – exemplo de falha

 Suponha que o componente R3 do circuito série mostrado na Figura possui um curto interno.

