Санкт-Петербургский государственный университет Программная инженерия

Дулетов Дмитрий Евгеньевич

Разработка системы передачи сообщений в децентрализованной сети подвижных узлов

Отчёт о прохождении производственной практики

Научный руководитель: д.ф.-м.н., профессор кафедры СП О.Н. Граничин

Оглавление

1.	Введение	3
2.	Постановка задачи	5
3.	Обзор	6
	3.1. Mesh сеть	6
	3.2. Ad hoc сеть	6
	3.3. Широковещание	7
4.	Система передачи сообщений	8
	4.1. Алгоритм работы узла	8
5.	Реализация	10
6.	Заключение	11
Ст	тисок литературы	12

1. Введение

В современном мире развитие технологий и искусственного интеллекта позволяет говорить о возможности создания децентрализованной сети роботов, способных выполнять различные задачи и функции, от автоматизации производства до оказания помощи в решении сложных задач [2]. Такое разнообразие возможностей делает данное направление развития технологий очень перспективным в ближайшем будущем.

Децентрализованная сеть роботов представляет собой группу роботов, взаимодействующих между собой и с окружающей средой без централизованного управления. Каждый робот в такой сети обладает определенной степенью автономности и может принимать решения на основе информации, полученной от других роботов и датчиков. Благодаря этому, такие сети обладают потенциалом для создания эффективных и гибких систем, способных адаптироваться к изменяющимся условиям. [1]

Концепция децентрализованных систем широко применяется в организации роя роботов. Такие сети состоят из множества подвижных узлов, которые взаимодействуют между собой без центрального сервера, что обеспечивает их высокую масштабируемость и устойчивость к сбоям. Подвижные узлы могут быть представлены как квадрокоптерами, так и машинами передвигающимися по земле.

В контексте децентрализированных сетей разработка системы передачи сообщений является актуальной и важной задачей. Узлам необходимо оперативно делиться информацией, чтобы регулировать работу сети. В связи с отсутствием центрального сервера, каждый узел обеспечивает передачу информации и от качества доставки сообщений зависит скорость работы всей сети. [3]

Однако, в связи с большой автономностью узлов, они редко обладают мощными передатчиками и большими вычислительными мощностями. В связи с этим встаёт вопрос о создании системы эффективной передачи сообщений большому количеству адресатов при ограниченных ресурсах.

2. Постановка задачи

Целью работы является разработка системы передачи сообщений в децентрализованной сети подвижных узлов.

Для достижения поставленной цели были поставлены следующие задачи:

- 1. Выполнить обзор в области передачи сообщений в крупных сетях.
- 2. Реализовать систему передачи сообщений.
- 3. Внедрить систему в проект Рой роботов.
- 4. Протестировать систему и провести эксперименты.

3. Обзор

Передача сообщений в децентрализованной сети подвижных узлов является очень важной задачей. Поскольку в сети отсутствует центральный узел, не существует единственного сервера, через который можно было бы вести обмен сообщениями. Также система предполагает движение узлов в пространстве, в связи с чем доступность окружающих абонентов может меняться. Последним фактором, ограничивающим систему является вычислительная мощность агентов. Размер сети может быть достаточно большим, вплоть до сотен узлов, и скорость обработки информации не позволяет отправлять сообщение отдельно каждому узлу внутри нашей сети.

Исходя из этих ограничений рассмотрим несколько подходов к организации системы обмена сообщениями:

3.1. Mesh сеть

Mesh сеть предполагает деление сети на кластеры по 8-12 узлов, каждый кластер имеет свою топологию и корневой узел. Корневые узлы связаны между собой для обеспечения общения между кластерами.

Поскольку кластеры не меняются в процессе работы системы, дополнительные операции по изменению топологии не требуются. Однако, такое построение сети ограничивает подвижность узлов, потому что излишнее отдаление конечного узла от корневого может привести к невозможности дальнейшей отправки сообщений и потере узла [6]. Также необходимо обеспечить общение кластеров между собой, для чего необходимо установить передатчики большей мощности в корневые узлы.

3.2. Ad hoc сеть

Ad hoc сеть является децентрализованной сетью с динамической топологией. Все узлы сети работают в клиентском режиме, принимая сообщения и пересылая свои. Топология сети строится во врем работы,

каждый узел сканирует и добавляет в адресаты ближайшие узлы.

Скорость развёртывания такой сети велика, поскольку построение топологии происходит автоматически. Также отсутствие ключевых узлов увеличивает отказоустойчивость сети [4]. При этом же растут расходы на поддержание топологии сети, поскольку узел должен самостоятельно искать новых абонентов при их появлении и поддерживать актуальность списка адресатов, удаляя из него недоступные больше узлы.

3.3. Широковещание

Протокол WiFi предполагает соединение, где узел подключается к другому узлу напрямую через PtP соединение, однако при указании адреса 255.255.255.255 может отправлять широковещательные пакеты. Такие сообщения нужны для определения MAC адреса новых узлов сети. В условия большого количества узлов вокруг, в том числе новых, при помощи широковещательных сигналов можно эффективно распространять информацию. При этом данные получат все, для кого сигнал оказался достаточно мощным. Использование широковещательного сигнал является аналогом использования радиосвязи.

4. Система передачи сообщений

Проектируемая система передачи сообщений должна обладать следующими характеристиками:

- Узлы должны передавать небольшие сообщения ближайшим узлам;
- Сообщения имеют высокую частоту и должны иметь низкую задержку, чтобы не терять актуальность;
- Во время работы взаимное расположение узлов может меняться, что влечёт за собой изменение ближайших узлов;
- Актуальность информации узла уменьшается при удалении от него;
- Число узлов в сети может быть настолько велико, что отправка сообщений с необходимой частотой каждому узлу отдельно станет невозможной.

В связи с поставленными ограничениями была предложена система обмена сообщениями на основе широковещательного канала. Все узлы работают в клиентском режиме, получая, обрабатывая и отправляя сообщения. Узел отправляет свои сообщения по широковещательному каналу, принимая сообщения от всех узлов и фильтруя их по качеству сигнала.

4.1. Алгоритм работы узла

На каждой итерации узел выполняет следующие операции:

- Считывает данные с внутренних детекторов и корректируя курс;
- Принимает входящие сообщения, добавляя их в список и сортируя по силе сигнала RSSI;

- Из полученных сообщений выбирает пять с наилучшим сигналом и из них случайно выбирает одно;
- Пересчитывает курс, опираясь на данные, полученные в сообщении;
- Отправляет свой курс по широковещательному каналу, указывая свою уверенность в нём.

Данный подход позволяет отправлять сообщения сразу всем адресатам, что решает сразу две проблемы. Во-первых, широковещательный сигнал не требует подключения устройств друг к другу и экономит время на рассылке системных пакетов не несущих полезной информации. Во-вторых, каждое сообщение отправляется только один раз, нет необходимости рассылать данные каждому узлу по отдельности.

5. Реализация

Для реализации был выбран протокол ESP-Now, разработанный EspressIf для популярного модуля ESP-32. Данный протокол позволяет передавать сообщения длинною не более 250 символов в режиме Peer-to-Peer соединения, используя Wi-Fi модуль. При таком способе передачи время задержки гораздо ниже, чем при использовании классического способа [5]. ESP-Now позволяет не только отправлять сообщения для конкретного получателя, но и использовать широковещательные запросы, а также получать сообщения, адресатом которого является модуль.

Функция вызова при получении сообщения в ESP-Now задаётся при помощи esp_now_register_recv_cb, которая позволяет обрабатывать сообщения. При получении сообщения мы добавляем его в список полученных сообщений. В конце итерации главного цикла мы сортируем список полученных сообщений, если их больше пяти и среди них выбираем одно случайным образом. На основе этого сообщения пересчитывается текущий курс.

В цикле мы с нужной частотой инициализируем отправку сообщения. Текущий курс побайтово записывается как текст сообщения. Далее отправляется сообщение при помощи функции esp_now_send с адресом broadcastAddress. Такое сообщение обработают все узлы для которых сигнал будет достаточно мощный.

6. Заключение

В рамках производственной практики были выполенены следующие задачи:

- 1. Выполнен обзор в области передачи сообщений в крупных сетях.
- 2. Реализована отправка сообщений нескольким адресатам при помощи ESP-Now.

Список литературы

- [1] Lundberg I.D., Decentralized communication. How to send messages to unresponsive clients in a chat network.// Bachelor's thesis. -2015. C. 1-25.
- [2] Довгаль В.А., Интеграция сетей и вычислений для построения умной системы управления роем дронов как сетевой системы управления.// Научный журнал "Вестник АГУ". Вып. 1 (296). 2022. С. 62-76.
- [3] Paulo Chainho, Steffen Drusedow, Ricardo Lopes Pereira, Ricardo Chaves, Nuno Santos, Decentralized Communications: Trustworthy Interoperability in Peer-To-Peer Networks.// Altice Labs, Deutsche Telekom AG. 2017.
- [4] Navid Alibabaei, Wireless Mesh Networks: a comparative study of Ad-Hoc routing protocols toward more efficient routing.// Master Thesis. – 2019.
- [5] Eridani, Dania Rochim, Adian Cesara, Faiz. Comparative Performance Study of ESP-NOW, Wi-Fi, Bluetooth Protocols based on Range, Transmission Speed, Latency, Energy Usage and Barrier Resistance.

 // International Seminar on Application for Technology of Information and Communication, 2021. c. 322-328.
- [6] J. Jun, M.L. Sichitiu, The nominal capacity of wireless mesh networks.//
 IEEE Wireless Communications, vol 10. 2003. C. 8 14.
- [7] Dimitrios J Vergados, Natalia Amelina, Yuming Jiang et al., Toward optimal distributed node scheduling in a multihop wireless network through local voting.// IEEE Transactions on Wireless Communications. 2017. Vol. 17, no. 1. P. 400–414.
- [8] https://docs.espressif.com/projects/esp-idf/en/stable/esp32/apireference/network/esp_now.html, дата обращения 03.03.2024

[9] Omar Sami Oubbati, Mohammed Atiquzzaman, Pascal Lorenz et al., Routing in flying ad hoc networks: Survey, constraints, and future challenge perspectives .// IEEE Access. — 2019. — Vol. 7. — P. 81057– 81105.