1 Transformers

Token Embeddings

I $\in \mathbb{R}^{\mathrm{voc} \times N}$: Input Sequence - $\mathbf{M}_{\mathrm{emb}} \in \mathbb{R}^{\mathrm{dim_emb} \times \mathrm{voc}}$: Embedding Matrix - $\mathbf{M}_{\mathrm{pos}} \in \mathbb{R}^{\mathrm{dim_emb} \times N}$: Positional Embedding - $\mathbf{E} \in \mathbb{R}^{\mathrm{dim_emb} \times N}$: Token Embeddings

$$\mathbf{E} = \mathbf{M}_{\mathrm{emb}} \times \mathbf{I} + \mathbf{M}_{\mathrm{pos}}$$

Self Attention

 $\mathbf{W} = [\mathbf{W}_q \ \mathbf{W}_k \ \mathbf{W}_v]^\top \in \mathbb{R}^{3\text{dim_emb} \times \text{dim_emb}} - \mathbf{Q}, \ \mathbf{K}, \ \mathbf{V} \in \mathbb{R}^{\text{dim_emb} \times N} : \text{Query, Key, Value - } \mathbf{A} \in \mathbb{R}^{N \times N} : \text{Attention Matrix}$

$$\left[\mathbf{Q} \ \mathbf{K} \ \mathbf{V}\right]^{\top} = \mathbf{W} \times \mathbf{E}$$

$$\mathbf{A} = \operatorname{softmax}\left(\frac{\mathbf{Q}^{\top} \mathbf{K}}{\sqrt{d_k}}\right) \ \odot \ \mathbf{M}_{\operatorname{mask}}$$

With d_k being the dimension of the key vectors. E.g. pos_emb for single head attention

MLP

 $\mathbf{M}_{\mathrm{up}} \in \mathbb{R}^{4\mathrm{dim_emb} \times \mathrm{dim_emb}}$: Up projection - $\mathbf{M}_{\mathrm{down}} \in \mathbb{R}^{\mathrm{dim_emb} \times 4\mathrm{dim_emb}}$: Down projection

$$E_{\text{mlp}} = \sigma(\mathbf{M}_{\text{down}} \times \sigma(\mathbf{M}_{\text{up}} \times \mathbf{E}_{\text{att}})))$$

With σ being the activation applied elementwise

Computation: FLOPS $\approx 6N \cdot D$ - With D being the number of training tokens.

3.2 Evaluation

Perplexity:
$$\exp\left(-\frac{1}{N}\sum_{i=1}^{N}\log P(t_i)\right)$$

With t_i being the *i*th token in the expected output sequence

Benchmarks

Paloma: Perplexity over a diverse set to text.

HellaSwag: QA Benchmark. Most likely answer by perplexity is chosen

MMLU: QA Benchmark. Answers are part of the Prompt. Model can answer A, B, C or D. Most likely token is chosen.

2 Tokenizers

3 Training

3.1 Datasets

Common Crawl: Database of scraped websites. WebText: OpenAI internal dataset. Scraped links from Reddit which received at least 3 karma. Page de-duplication and light-cleaning. 8M Documents, 40GB of text.

OpenWebText: Open replication of WebText

C4: Colossal Clean Crawled Corpus. Filtered version of Common Crawl. Discard pages with fewer than 5 sentences and lines with fewer than 3 words. Filter for unwanted keywords. Remove lines with the word Javascript. Remove pages with "lorem ipsum". Remove pages with "f". Deduplicate any three-sentence span occurring multiple times. Filter pages that are not in English.

The Stack: Coding dataset.

PeS2o: STEM papers.

DOLMA: Combination of Common Crawl, C4, The Stack, Reddit, PeS2o, Project Gutenberg, Wikipedia/Wikibooks The Pile: 800GB Dataset of Diverse Text. Academic, Internet, Prose, Dialoque and Misc (GitHub, Math ...)

Dataset Cleaning Pipeline: Language Filtering \rightarrow Deduplication (by URL) \rightarrow Quality Filters \rightarrow Content Filters \rightarrow Deduplication (by text overlap)

3.3 Fine-Tuning

Possible with around 1000 high quality prompts and responses or more.

RLHF - Reinforcement Learning from Human Feedback

$$y_{1}, y_{2} \propto \pi_{\text{SFT}}(y \mid x) \qquad y_{w} > y_{\ell} \mid x$$

$$p^{*}(y_{1} > y_{2} \mid x) = \frac{1}{1 + \exp(r^{*}(x \mid y_{2}) - r^{*}(x \mid y_{1}))}$$

$$\mathcal{L}(r) = -\mathbb{E}\left[\log \sigma(r(x \mid y_{\ell}) - r(x \mid y_{w}))\right]$$

Where r is the reward model and \mathcal{L} is the loss of the reward model.

$$\max_{\pi} \mathbb{E}\left[r(x, y) - \beta \operatorname{D}_{\mathrm{KL}}(\pi(y \mid x) \mid \pi_{\mathrm{ref}}(y \mid x)\right]$$

 $\mathrm{D_{KL}}$ to reduce the deviation from the base model (SFT).

DPO - Direct Preference Optimization

$$\mathcal{L}_{\mathrm{DPO}} = -\mathbb{E}\left[\log\sigma\left(\beta\log\frac{\pi_{\theta}(y_w\mid x)}{\pi_{\mathrm{ref}}(y_w\mid x)} - \beta\log\frac{\pi_{\theta}(y_\ell\mid x)}{\pi_{\mathrm{ref}}(y_\ell\mid x)}\right)\right]$$

$$L(D) \approx \frac{A}{D^{\alpha_D}} \qquad L(N) \approx \frac{B}{N^{\alpha_N}}$$

$$R(f_{N,D}) = R(f^*) + (R(f_N) - R(f^*)) + (R(f_{N,D}) - R(f_N))$$

$$R(f_{N,D}) = E + L(N) + L(D)$$

Let $R(f^*)$ be the irreducible error, $R(f_N) - R(f^*)$ the approximation error of a N-parameter model and $R(f_{N,D}) - R(f_N)$ the statistical error Parameter Values depend on data and precise model architecture.

4.1 Compute Optimality

 $\operatorname{arg\,min} L(N,D)$ for a constant compute budget C(N,D)=H by choosing the best N and D.

Training curve envelope - Plot training curves $(x: \log(\text{FLOPS}), y: L(N, D))$, Find the envelope (Minimal loss per FLOP), Plot envelope points twice $(x: \log(\text{FLOPS}), y: \log(D), \log(N))$, Fit a line to the points and extrapolate to the desired FLOPS to find the optimal N and D.

IsoFLOP Curves - Train various model sizes with D such that the final FLOPs are constant, Repeat for different final FLOPs, Plot final loss (x: $\log(N)$, y: L(N,D)), Locate optimal model size for a given compute budget (loss valley), Plot optimal models (x: $\log(\text{FLOPS})$, y: $\log(D)$, $\log(N)$) and extrapolate.

Parametric fit - Fit parametric Risk function $R(f_{N,D})$ to the training results (Training like IsoFLOP), Plot contours $(x: \log(\text{FLOPS}), y: \log(N))$, Fit line such that it goes through each iso-loss contour at the point with the fewest FLOPs. Extrapolate to desired FLOPs. Alternative - Plot isoFLOP slice $(x: \log(N), y: L(N,D))$, plot parametric risk for desired compute budget, Locate the minimum.

Key finding: For compute optimal training D should scale proportionally with N - Compute Optimality doesn't consider inference cost

5 Ensembles and MoE

5.1 Ensembles

Linear interpolation - $P(y \mid x) = \sum_{m} P_m(y \mid x) P(m \mid x)$ Log-linear interpolation - softmax $\left(\sum_{m} \log P(y \mid x) \lambda_m(x)\right)$ With $P_m(y \mid x)$ being the output of the model m and $P(m \mid x)$ the "reliability" of the model given the Input. λ_m is an interpolation coefficients for the model m. **Parameter Averaging** - Calculate model weights by accumulating (average, weighted average ...) weights from multiple models

5.2 MoE - Mixture of Experts

Gaussian mixture model - $p(y \mid x) = \sum_k p_{\theta_k}(y) p_k(x)$

Where p_{θ_k} is a gaussian distribution parametrized by θ_k giving the propability of the output y. p_k is the probability of that distribution given the input x.

Allows the approximation of more complex distributions using only simple distributions (gaussian and logistic)

Routing

Shazeer - Mixtral - Switch routing -

$6.1 \; \text{Multicore Processing}$

GPUs are optimized for performing the same operation on different data points simultaneously.

 \mathbf{SIMD} - single-instruction multiple-data

Amdahl's law - Let the non-parallizable part of a program take a fraction s of the time, then m workers can result in a speedup of:

$$\frac{1}{s + \frac{1-s}{m}}$$

Floating Point Numbers

	Sign	Exponential	Mantissa
FP32	1 Bit	8 Bits	23 Bits
FP16	1 Bit	5 Bits	10 Bits
BF16	1 Bit	8 Bits	7 Bits

BF16 - FP32 range with FP16 precision

Error: $|x - \widetilde{x}| \le \epsilon/2 |x|$ with $\epsilon \ne 0$

6.1.1 CUDA

thread - core; thread block - streaming multiprocessor (SM); kernel grid - CUDA-capable GPU

CUDA Thread - Smallest compute entity

CUDA Block - Group of threads (up to 1024)

Streaming Multiprocessor - Executes one CUDA Block

6.2 Distributed Computing

7 Vision Models

6 Scalable Computing