Outline

Contents

1	Rese	earch Objectives	1
2	Wireless Sensor Networks		1
	2.1	Applications	1
		Network Model	
	2.3	System Overview: Hardware/Software	6
	2.4	Constraints and Challenges	7
3	Rese	earch Contributions	8
	3.1	Role-based Hierarchical Self Organization Protocol	8
	3.2	Unified Role Abstraction Framework	12
	3.3	Role-based Middleware	17
4	Sum	nmary	20

1 Research Statement

Research Goals

- Identify *common sensing* and *networking characteristics* among competing application-specific protocol solutions.
- Quantify desired *application-oriented context* and *contingencies* in terms of QoS and service requirements.
- Integrate aggregation, hierarchy, and approximation to promote scalability and portability.
- Design a *flexible* and *generic communication abstraction* that allow the same set of protocols to be used across applications and platforms with little or no modification.

2 Wireless Ad hoc Sensor Networks (WSNs)

2.1 Applications: Civil, Medical, Industrial, Military

Application Objectives

- Reliable *monitoring* of a variety of environments.
- Enables information gathering and processing.
- Integrates physical *sensing* and *controlling* capability with a *communication* oriented infrastructure, say Internet.
- Useful for various applications including civil and military.

Sensor Network Applications

Smart Homes and Offices

Typical Uses

- Sensors *controlling appliances* and electrical devices in the house.
- Better *lighting* and *heating* in office buildings.
- The *Pentagon* building has used sensors extensively.

Sensor Network Applications

Biomedical/Medical

Typical Uses

- Health Monitors: Glucose, Heart rate, Cancer detection.
- Chronic Diseases: Artificial retina, Cochlear implants.
- Hospital Sensors: Monitor vital signs, Record anomalies.

Sensor Network Applications

Military/Tactical

Typical Uses

- Remote deployment of sensors for *tactical monitoring* of enemy troop movements.
- Provides situational awareness.
- Supports troop collaboration, status, and coordination.

Sensor Network Applications

Commercial

Typical Uses

- Agricultural Crop Conditions.
- Inventory and in-Process Parts Tracking.
- Automated Problem Reporting.
- RFID: Theft Deterrent and Customer Tracing
- Plant Equipment Maintenance Monitoring

2.2 Network Model

Adphos Communication Paradisms N Infrastructure

Collaborative Sensing Paradigm

Collaborative Sensing Paradigmeral Sensing

Collaborative Sensing Paradism remental and Hierarchical

Collaborative Sensing Paradigm

Proposed Sensing Attributes (Metrics)

- Sensing Proximity Value (SPV).
- Cumulative Sensing Proximity Value (CSPV).
- Cumulative Sensing Degree (*CSD*).

Collaborative Sensing Paradigm

Sensing ProximiCuWallative Sensing Proximity Value

Collaborative Sensing Paradigm

Group Sensing

Cumulative Sensing Degree (sQoS)

• Degree of fault tolerant sensing by neighbors.

• Average of *CSPVs* of all sensing cells.

• CSD: Percentage coverage of ideal and solitary coverages.

2.3 System Overview: Hardware/Software

Hardware: System on Chip

Node Hardware Limitations

Hardware: Typical Mote

MICA2 Mote (MPR 400CB)

Hardware: Typical Sensor Board

Hardware: Programming Road $\mathbf{10}$

Typical Hardware Setup

Ad hoc Network With Base Station

TinyOS: Micro Operating System

- Single threaded.
- An open source development environment.
- Component-oriented programming language (NesC).
- Main Ideology: *Sleep* as *often* as possible to save power.
- *High Concurrency*, interrupt driven (no polling).
- Static memory allocation. No heap (malloc) and no function pointers.

2.4 Constraints and Challenges

Characteristics

- Large scale deployment.
- High unpredictability.
- Redundancy.
- Constrained resources.
- Real time constraints.
- In-network processing.
- Data-centric processing.
- Security.

3 Research Contributions

3.1 Role-based Hierarchical Self Organization Protocol

Visualizing Sensor Self-Organization and Route

Related Work: Proposed Architectures

Self-Organized Network Architectures (Proactive or Reactive & Flat or Hierarchical Implementations)

Clockwise: Spine, Tree, Chain, and Cluster (CDS)

Ad hoc Network Architectures

High-Irenel RRHS Organizacione

Recursive Role Domination

RBHSO: Algorithm Details

Construct CDS Hierarchy

- Neighbor Discovery.
- Initial Marking Process (Level 0 marked nodes).
- Dominating Set Reduction (Level 1+ marked nodes).

Metrics used in order

- Energy Level (EL),
- CSD (or Cumulative Sensing Degree),
- Connectivity based metric or node degree (ND), and
- ID of the sensor node.
- Sensor Coordinator Selection.
- Sensing Zone Formation Algorithm.

Example Self Organization Scenario

Example Self Organization Scenario

Example Self Organization Scenario

Simulation: Sensing Zones

Conclusions

Abstraction: Hierarchy, Approximation, and Aggregation

- Experimented with *roles*.
- Used several networking and sensing metrics as *rules*.
- Recursive dominating set reduction results in role-hierarchies.
- Mapped application-specified sQoS such as CSD.

3.2 Unified Role Abstraction Framework

Rescue Mission: Uncertainty and Chaos

Rescue Mission: Uncertainty and Chaos

Application, Protocols, and Layering Issues

• Protocol *optimization*(s) are at *odds* with each other.

- Warrants tradeoff decisions among competing goals.
- Appropriate *real-time response* to application demands and environmental situations.
- Context-awareness requires k-hop sharing of cross-layer information.
- Efficient coordination for fair resource-allocation becomes necessary.

Case for Reconffied Rose Arbstraction financial dilemma

Case for a Unified Role-Abstraction Framework

Generic Role and Rule based Abstraction

Abstraction: QoS, Resources, Tasks, Roles, and Rules

Elementary Sensor Network Tasks

Fundamental Actions Executed by a Node

• ON: Node turned ON and is idle

• OFF: Node completely turned OFF to save energy

• Sense: Sensing task, S

• *Process*: Processing role, P

• Store: Node storing data in its memory, M

• *Transmit*: Transmitter, *T*

• Listen: Role for listening to packets, L

Complex Role Formulations

Role Compositions

• Forwarder: $F \Leftrightarrow T \wedge L$

• Router: Series of forwarders, $R \Leftrightarrow \bigvee_{i=1}^n F^i$

• Aggregator: Storage and processing tasks, $A \Leftrightarrow M \land P$

• Sensing Collaborator: Transmits sensor readings and listens for coordination, S_m i.e. $S_m \Leftrightarrow (S \land P) \land (T \rightarrow L)$.

• Sensor Coordinator: Coordinates sensing zone and forwards data to sink, $S_h \Leftrightarrow (\bigvee_{i=1}^n S_m^i) \bigvee_{j=1}^m F^j$

• Sensing Zone: $S_r \Leftrightarrow ((\bigvee_{i=1}^n S_m^i) \bigwedge S_h) \bigvee_{j=1}^m F^j$.

• Target Tracking: Track manager, sector manager, and sector.

Hierarchical Task Decomposition and Grouping

Redundant Role Assignment (RA) Technique

Role Assignment Leads to Topology Differentiation

Role Coordination Graph

Domain Specific Models

Role Energy McChancave Resource Utility Model

Role Failures

Proactive and Reactive Monitoring

Other Role Properties

Execution Scheduling, State Machine, and Load Balancing

- Execution Scheduling: TDMA time slots coordinated by dominator for role control and execution.
- Role State Machine: Predefined for roles for message arrival, sensing events, and context changes.
- Load Balancing: Pairwise neighborhood role-exchange, role-mergers, and role-redirection protocols.

3.3 Role-based Middleware

Generic Code for specifying Executable Roles

Generic Specification Language for Application

- Simple requirement expressed as points in QoS space.
- Weighted sum of points in QoS space.
- Utility based QoS specification.
- Weighted utility based QoS specification.

Multi-Service Minimum Energy Role Assignment (MSMERA)

NP-Complete Problem

- Minimizing the *number of roles* for a service.
- Minimizing *network flows among roles* necessary to reduce communication overhead.
- Shortest path communication among roles.
- Solving the above distributedly with partial and local network information is NP-Complete.

Minimum Total Energy RA (MTERA)

Depends on following factors

- Number of messages exchanged during every RA round.
- Number of such RA rounds per service mapping.
- Number of roles per service mapping.
- Number of nodes/role.
- State dependency among distributed roles.
- Hop-count or path-distance among roles.

Multi-Service Minimum Energy Role Assignment (MSMERA) Techniques Our Proposals

- Redundant role assignment technique (naive).
- Greedy recursive domination set based reduction technique.
- Utility based role-assignment technique by way of ranking.
- Hybrid: Cooperative redundant coalitional role-assignment with iterative pruning.

Softwagea Development: Usert Front End GILI Environment

Software Developments Designation Triny DistyOS

Software Development: Design in TinyOS

Resource Usage Accounting Model

Software Newtoforment: Loesi galan Tid Pose-Execution

Performance Analysis: Simulation and Implementation

Performance Parameters

- RA algorithm efficiency: Load per node, number of nodes per role, and RA frequency.
- QoS mapping efficiency: Accuracy of mapping and its degradation with time.
- Effects of complex role formulations or task/subtask partitioing and/or grouping.

4 Summary

Conclusions

- Proposed a *role-based service paradigm* for sensor networks.
- Generalized and unified role-abstraction mechanism across layers, services, and applications.

- Supports rules formulation in terms of cross-layer network attributes for selecting roles.
- Supports service specification in terms of single or weighted set of QoS metrics and utilities.
- Developed *emphirical models* to quantify service composition quality in terms of energy and resource allocation utility.

Future Work

- Role formulation for other services, e.g. security.
- Export the programming language for roles and application specification over a generic *Virtual Machine*.
- How about interaction among *generic role-societies* that employ any role-composition.
- Economical Issues: Provider of a service should benefit monetarily.
- Utility based decision making, Game Theory, and Mechanism Design can provide better RA solutions.
- Standardization efforts needed in the WSN arena for universal adoption of roles.

Funding: Research and Graduate Studies

- National Science Foundation (*NSF*) under grant ANI-0086020.
- Graduate Dissertation Fellowship.
- Department of Computer Science.

Collaborators

- Dr. Loren Schwiebert (Advisor), Wayne State University.
- Dr. Sandeep K. S. Gupta (Co-advisor), Arizona State University.
- Discussion with colleagues: Dr. Daniel Grosu and Fernando Martincic.