Walkthrough with paired single cell RNA-seq and ATAC-seq data of Kidney cells

Load data

```
addpath('./Data')
load('Kidney_sciCAR_data.mat');
```

Process data and select features

This step includes two aspects: Removing cells and features in low quality and selecting features.

Process scRNA-seq data

```
minCells = 10; minCounts = 500;
proData1 = preprocessing(RNA,minCells,minCounts);

processing data:

X1_all = proData1.data; Genes_all = proData1.Features; Cells1 = proData1.Cells;
```

Gene selection: if there are experiment conditions (e.g. time series), we select differentially expressed genes by Wilcoxon rank test, we select high variable genes otherwise.

```
condition = []; system_used = 'Mac';
r = []; fc = []; cutoff = []; flag = 2;
id1 = gene_selection(X1_all,condition,system_used,r,fc,cutoff,flag);
```

```
selecting genes:
Loading required package: ggplot2
Loading required package: hydroGOF
Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

Loading required package: glmnet
Loading required package: Matrix
Loading required package: foreach
Loaded glmnet 2.0-18

Loading required package: StatMatch
```

```
Loading required package: proxy
Attaching package: 'proxy'
The following object is masked from 'package:Matrix':
    as.matrix
The following objects are masked from 'package:stats':
    as.dist, dist
The following object is masked from 'package:base':
    as.matrix
Loading required package: clue
Loading required package: survey
Loading required package: grid
Loading required package: survival
Attaching package: 'survey'
The following object is masked from 'package:graphics':
    dotchart
Loading required package: RANN
Loading required package: lpSolve
Loading required package: fpc
Loading required package: MASS
Loading required package: session
Loading required package: data.table
Loading required package: plyr
Loading required package: reshape
Attaching package: 'reshape'
The following objects are masked from 'package:plyr':
    rename, round any
The following object is masked from 'package:data.table':
   melt
The following object is masked from 'package:Matrix':
    expand
Loading required package: abind
Loading required package: drc
'drc' has been loaded.
Please cite R and 'drc' if used for a publication,
for references type 'citation()' and 'citation('drc')'.
Attaching package: 'drc'
The following object is masked from 'package:survey':
    twophase
```

```
The following objects are masked from 'package:stats':

gaussian, getInitial

Loading required package: ROCR
Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

lowess

There were 13 warnings (use warnings() to see them)

X1 = X1_all(id1,:); Genes = Genes_all(id1);
```

Process scATAC-seq data

Loci = Loci(id2);

```
minCells = 5; minCounts = 200;
proData2 = preprocessing(ATAC, minCells, minCounts);

processing data:

X2 = proData2.data; Loci = proData2.Features; Cells2 = proData2.Cells;
```

Loci selection (optional): To reduce the dimension of chromatin accessibility profiles, we just focus on near loci of high variable genes. Note: we did not do this step in the paper. If you want to shorten running time, you can uncomment the following steps.

```
species = 'mouse';
system used = 'Mac';
genes regions = search gene loci(Genes, system used, species);
Batch submitting query [====>----] 20% eta: 1m
Batch submitting query [======>----] 30% eta: 1m
Batch submitting query [=======>----- 40% eta: 1m
Batch submitting query [========>----] 50% eta: 1m
Batch submitting query [========>----] 60% eta: 1m
Batch submitting query [==========] 100% eta: 0s
bin = 50000;
genes nearby loci = search nearby loci(Genes, Loci, Loci, system used, bin, species);
[~,~,id2] = intersect(genes nearby loci,Loci,'stable');
X2 = X2 (id2,:);
```

Intersect scRNA-seq and scATAC-seq

```
[~,index1,index2] = intersect(Cells1,Cells2,'stable');
Cells = Cells1(index1); X1_all = X1_all(:,index1);
prior_clusters = prior_clusters(index1);
X1 = X1(:,index1); X2 = X2(:,index2);
c1 = median(X1(X1 ~= 0)); c2 = median(X2(X2 ~= 0));
X2 = X2/c2*c1;
RNA = array2table(X1,'RowNames',Genes,'VariableNames',Cells);
ATAC = array2table(X2,'RowNames',Loci,'VariableNames',Cells);
RNA_all = array2table(X1_all(:,index1),'RowNames',Genes_all,'VariableNames',...
Cells);
```

Run scAl

```
K = 20; alpha = 1; lambda = 100000; gamma = 1; s = 0.25; Inits = []; repeat = 1;
result = run_scAI(X1, X2, K, alpha, lambda, gamma, s, Inits, repeat);
best_one = result{repeat};
```

Downstream analyses

After decomposing transcriptomic and epigenomic data into multiple biologically relevant factors (i.e., gene, locus and cell loading matrices), scAl enables a variety of downstream analyses, including the following four steps:

- 1. Identify cell clusters
- 2. Umap visualization
- 3. Identify factor / cluster specific markers
- 4. Visualize markers alongside the cells in two-dimensions using VscAI

1 Identify cell clusters

```
Warning message:
package 'reticulate' was built under R version 3.5.2
```

2 Umap visualization

```
H = best_one.H;
method = 'UMAP';
cell_coords = reducedDims(H,Cells,method);
title_name = 'UMAP';
cellVisualizaiton(cell_coords,clust,term,colors,title_name,method);
```


Feature plot

```
index = [1,8,2];
Feature_plot(H,cell_coords,index)
```

Component 1

Component 8

Component 2

3a Identify component specific markers

```
W1 = best_one.W1; W2 = best_one.W2;
```

Identify factor specific genes

```
[factor_genes, factor_topgenes] = identifyFactorMarkers(X1,W1,H,Genes);
```

Identify factor specific loci

```
[factor_loci, factor_toploci] = identifyFactorMarkers(X2,W2,H,Loci);
```

Plot the rank of marker genes, which are given by the user or use top genes of each factor (topngenes).

```
marker_genes = {'Slc12a3','Trpm6','Abca13','Klhl3','Wnk1','Tsc22d1','Cadps2',...
    'Egfem1','Calb1','K1','Temem72','Dach1','Ptprm','Sgms2','Tox3','Frmpd4',...
    'Rbms3','Fxyd4','Dnm3','Cacnb2','Pde1c','Pde8b'};
top_per = 0.5;
featureRankingPlot(W1,Genes,marker_genes,[],index,top_per);
```


3b Identify cluster specific markers

Identify cluster specific marker genes

```
[Top10genes,~,scale_RNA] = identify_cluster_specific_markers(RNA_all,system_used);
```

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Warning message:
package 'dplyr' was built under R version 3.5.2

Warning message:
package 'ggplot2' was built under R version 3.5.2

Warning: Feature names cannot have underscores ('_'), replacing with dashes ('-')

Warning message:
Feature names cannot have underscores '_', replacing with dashes '-'TRUE
Centering and scaling data matrix
```

```
0%
 |====
                                          6%
                                        | 11%
                                        | 17%
                                        | 22%
 |----
                                        1 28%
 |-----
                                        | 33%
 |-----
 |-----
                                        | 39%
                                         44%
                                        | 50%
                                        | 56%
 |-----
 | 61%
 _____
                                        | 67%
 |-----
                                        | 72%
 |-----
                                        | 78%
                                        1 83%
 |-----
                                        1 89%
                                        | 94%
 |-----
 |----| 100%
Calculating cluster 2
Calculating cluster 4
Calculating cluster 14
Calculating cluster 6
Calculating cluster 11
Calculating cluster 1
Calculating cluster 5
Calculating cluster 3
Calculating cluster 9
Calculating cluster 8
Calculating cluster 7
Calculating cluster 10
Calculating cluster 15
Calculating cluster 16
Calculating cluster 13
Calculating cluster 17
Calculating cluster 12
```

plot the heatmap of cluster specific marker genes

```
warning ('off','all');
```


Generate adjusted aggregated scATAC-seq data

```
X2a = generate_aggregated_matrix(X2,best_one,clust);
ATACa = array2table(X2a,'RowNames',Loci,'VariableNames',Cells);
```

Identify cluster specific marker loci

```
[Top10loci,marker_loci,scale_ATACa] = identify_cluster_specific_markers(ATACa,system_u
```

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Warning message:
```

1			
			0%
=			1%
==		1	2%
==		1	3%
===		1	4%
====		1	6%
=====		1	7%
=====	:	1	8%
=====	:	1	9%
=====	=	1	10%
=====	==	1	11%
=====	===	1	12%
=====	===	1	13%
=====	====	1	15%
=====	=====	1	16%
=====		1	17%
=====			18%
=====			19%
=====			20%
=====			21%
=====		1	22%
=====			24%
=====			25%
=====			26%
=====			27%
=====			28%
=====		1	29%
=====		1	30%
=====			31%
=====		1	33%

 ===================================	1	34%
	I	35%
 ===================================	I	36%
 ===================================	1	37%
 ===================================	1	38%
 ===================================	1	39%
 ===================================		40%
 ===================================	I	42%
 ===================================		43%
 ===================================		44%
 ===================================		45%
 ===================================		46%
 ===================================		47%
 ===================================		48%
 ===================================		49%
 ===================================	I	51%
 ===================================	1	52%
 ===================================		53%
 ===================================	1	54%
 ===================================	1	55%
 ===================================	1	56%
======== 	1	57%
======== 	1	58%
 ===================================		60%
====================================		61%
====================================		62%
======== 		63%
====================================		64%
======== 		65%
 		66%
======== 		67%
 		69%

			70%
	 ===================================	I	71%
	 	1	72%
	 ===================================	I	73%
	 ===================================	I	74%
	 ===================================	1	75%
	 ===================================	I	76%
	 ===================================	I	78%
	 ===================================	I	79%
	 ===================================	I	80%
	 ===================================	1	81%
	 ===================================	I	82%
	 ===================================	1	83%
	 ===================================	I	84%
	 ===================================	I	85%
	 ===================================	I	87%
	 ===================================	I	888
	 ===================================	I	89%
	 ===================================	I	90%
	 ===================================	I	91%
	 ===================================	I	92%
	 	I	93%
	 	1	94%
	 	1	96%
	 ===================================	I	97%
	 	1	98%
	 	1	99%
	 	=	100%
	lculating cluster 2		
	lculating cluster 4		
	lculating cluster 14		
	lculating cluster 6		
	culating cluster 11		
	lculating cluster 1		
	lculating cluster 5 lculating cluster 3		
Cal	loulating cluster 0		

Calculating cluster 8

```
Calculating cluster 7
Calculating cluster 10
Calculating cluster 15
Calculating cluster 16
Calculating cluster 13
Calculating cluster 17
Calculating cluster 12
```

plot the heatmap of cluster specific marker loci

```
plot_heatmap_markers(scale_ATACa,clust,Top10loci);
```


Identify the detail differential accessible loci and plot the heatmap of scATAC-seq and aggregated data

```
compare_index = [4,5,3,8];
warning ('off','all');
plot_accessibility_heatmap(X2,Loci,clust,compare_index,marker_loci);
```


4 Visualize markers alongsize the cells in two-dimensions using VscAl

The following object is masked from 'package:Seurat':

ExtractField

```
marker_loci = [];
[sample_coords, factor_coords] = getEmbeddings(RNA, ATACa, marker_genes,...
    marker_loci, best_one, system_used, alpha, lambda, gamma, s);

Loading required package: ggplot2
Loading required package: cowplot

Attaching package: 'cowplot'

The following object is masked from 'package:ggplot2':
    ggsave

Loading required package: Matrix
Warning messages:
1: package 'ggplot2' was built under R version 3.5.2
2: package 'cowplot' was built under R version 3.5.2
3: package 'Matrix' was built under R version 3.5.2
Attaching package: 'swne'
```

```
Initial stress : 0.30966
stress after 10 iters: 0.10895, magic = 0.461
stress after 20 iters: 0.10202, magic = 0.500
stress after 30 iters: 0.10188, magic = 0.500
stress after 40 iters: 0.10186, magic = 0.500
```

Visualize marker genes across all cells

