Kinematics Adventures

Jeff Nijsse & Yik Ching (Josh) Lee Dept. of Mathematical Sciences, Auckland University of Technology

Motivation

- Trying out new features in Desmos
 - We've done some interesting things with desmos already that also map into algebra/ calculus/ and eng. math classes that we already teach
- Historically difficult topic to teach
 - Early in the course & students may have never seen physics before
 - Concepts such as a=0 (but there's always gravity?)
- COVID
 - More and more have to be agile, recent lockdown had <1 day notice
 - Difficult to introduce the 'active' component of activities

Teaching Context

First Semester

Physics – Classical Mechanics (5 streams of 35 students)

Algebra

Academic Literacies

Programming

Second Semester

Calculus

Physics - Electricity & Magnetism

Intro to Engineering

Problem Solving

Classroom Pods of 5 / Online

The Problem – 1-dimensional kinematics

Regular Desmos

• Brilliant teaching companion

• Link to sine wave generator

• Link to area calculation

...however it can be confusing

• Link to 2D projectile motion example

Advanced Desmos

- <u>teacher.desmos.com</u>
- Supports teacher/classroom views
- Feedback from students can come to the teacher
- Students can be assigned work and complete it in their own time
- This activity was done in realtime in the classroom

1-D kinematics: demonstration (link)

Estimate how high you can throw

How fast can you throw a ball (straight) up?

Write your number in the box. (This will be $\,v_1\,$ in meters per second.)

Estimate how high it will go, then click submit.

Submit

The vertical displacement is displayed on the graph.

Click 'edit my response' to reset. Input a new velocity and estimate again.

Screen 3 of 6

What happens with negative velocity?

Input a negative number for your initial velocity, $v_1 =$

(Click 'edit my response' to reset.)

What is the difference when you use a negative velocity?

Screen 4 of 6

Change the acceleration

·····

<u>.....</u>

Screen 5 of 6

ground 0 20

Freefall?

How can you simulate dropping an object off the cliff?	
$a_g =$	
$v_1 =$	
Su	ubmit
($a_g^{}$ means acceleration due to gravity)	

Screen 6 of 6

2-D Range activity (link)

1 Projectile motion

Vertical and horizontal motions are independent of each other in projectile motion, and this characteristic can be used to predict the range of a projectile. (Recall that the vertical motion is under the influence of gravity.)

teacher.desmos.com

Benefits

- Discussion
- Students go at their own (groups' own) pace
- iteration

Difficulties

- Another widget to master
- Computation Layer is new
- At the mercy of the tech / static once 'published'
- ?

What do the students say?

Positive +

- it was easy to learn, by seeing the motion of the projectile visually
- I've used Desmos in my other classes so it was helpful
- Desmos is very helpful in regards to visually viewing the activity, despite not being able to come on campus due to COVID-19 restrictions.

Less Positive —

 but it was somewhat difficult to know how to use Desmos

Conclusion

Students & Lecturers found it helpful

• We'll iterate and do it again next year

Create a 2-D vector activity

- Thanks & Questions
- I'll post links in the chat

Survey Questions Asked

As part of course feedback the students were asked the following two questions in relation to this activity.

For kinematics & projectile motion there were accompanying activities using Desmos:

- 1. Was it easy to follow along with the Desmos activity?
- 2. Would you recommend a Desmos activity for future students when learning about projectile motion?