Lecture 5 – Identifiers (2)

COSE212: Programming Languages

Jihyeok Park

2024 Fall

- Identifiers
 - Bound identifiers
 - Free identifiers
 - Shadowing
- VAE AE with variables
 - Concrete syntax
 - Abstract syntax
- In this lecture, we will
 - implement the interpreter for VAE
 - define the natural semantics for VAE

Contents

1. Evaluation with Environments

2. Interpreter and Natural Semantics for VAE

Numbers

Addition and Multiplication

Variable Definition

Variable Lookup

3. Examples

Contents

1. Evaluation with Environments

2. Interpreter and Natural Semantics for VAE

Numbers

Addition and Multiplication

Variable Definition

Variable Lookup

3. Example:

Let's evaluate the following VAE expressions:

How to evaluate the expression x + y into the value 3?

$$\vdash x + y \Rightarrow 3$$

We need to keep track of the **environment** that maps identifiers to values:

$$[x\mapsto 1, y\mapsto 2]\vdash x+y\Rightarrow 3$$

For AE, the interpreter takes an expression and returns a number.

$$\vdash e \Rightarrow n$$

For VAE, we extend the interpreter to take an **environment** as well.

$$\sigma \vdash e \Rightarrow n$$

We read it as "with the environment σ , the expression e evaluates to the number n"

For example, the interpreter should be able to evaluate like this:

$$[x \mapsto 1, y \mapsto 2] \vdash x + y \Rightarrow 3$$

Contents

1. Evaluation with Environments

2. Interpreter and Natural Semantics for VAE

Numbers Addition and Multiplication Variable Definition Variable Lookup

3. Examples

Interpreter and Natural Semantics for VAE

For VAE, we need to 1) implement the **interpreter** with **environments**

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the **natural semantics** with **environments**.

 $\sigma \vdash e \Rightarrow n$

where

$$\begin{array}{ll} \text{Environments} & \sigma \in \mathbb{X} \xrightarrow{\text{fin}} \mathbb{Z} & (\texttt{Env}) \\ \text{Integers} & n \in \mathbb{Z} & (\texttt{BigInt}) \\ \text{Identifiers} & x \in \mathbb{X} & (\texttt{String}) \end{array}$$

(Id)

Interpreter and Natural Semantics for VAE


```
def interp(expr: Expr, env: Env): Value = expr match
 case Num(n) => ???
 case Add(1, r) => ???
 case Mul(1, r) => ???
 case Val(x, e, b) \Rightarrow ???
 case Id(x) => ???
```

$$\left[\begin{array}{c} \sigma \vdash e \Rightarrow n \end{array}\right]$$
Num
$$\frac{???}{\sigma \vdash n \Rightarrow ???}$$

Add
$$\frac{???}{\sigma \vdash e_1 + e_2 \Rightarrow ???}$$
 Mul $\frac{???}{\sigma \vdash e_1 * e_2 \Rightarrow ???}$

Val
$$\frac{???}{\sigma \vdash \text{val } x = e_1; \ e_2 \Rightarrow ???}$$
 Id $\frac{???}{\sigma \vdash x \Rightarrow ???}$

ID
$$\frac{???}{\sigma \vdash x \Rightarrow ???}$$

Numbers


```
def interp(expr: Expr, env: Env): Value = expr match
  case Num(n) => ???
  ...
```

$$\sigma \vdash e \Rightarrow n$$

Num
$$\frac{???}{\sigma \vdash n \Rightarrow ???}$$

Numbers


```
def interp(expr: Expr, env: Env): Value = expr match
  case Num(n) => n
  ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\operatorname{Num}\, \overline{\sigma \vdash n \Rightarrow n}$$

With the **environment** σ , the **expression** n evaluates to the **number** n.

Addition


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Add(1, r) => ???
    ...
```

$$\sigma \vdash e \Rightarrow n$$

Add
$$\frac{???}{\sigma \vdash e_1 + e_2 \Rightarrow ???}$$

Addition


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Add(1, r) => interp(1, env) + interp(r, env)
    ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\text{Add} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 + e_2 \Rightarrow n_1 + n_2}$$

With the **environment** σ , the **expression** e_1 + e_2 evaluates to the **number** $n_1 + n_2$ when

- With the **environment** σ , the **expression** e_1 evaluates to the **number** n_1 .
- With the **environment** σ , the **expression** e_2 evaluates to the **number** n_2 .

Multiplication


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Mul(1, r) => interp(1, env) * interp(r, env)
   ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\text{MUL } \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 * e_2 \Rightarrow n_1 \times n_2}$$

With the **environment** σ , the **expression** $e_1 * e_2$ evaluates to the **number** $n_1 \times n_2$ when

- With the **environment** σ , the **expression** e_1 evaluates to the **number** n_1 .
- With the **environment** σ , the **expression** e_2 evaluates to the **number** n_2 .


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Val(x, e, b) => ???
    ...
```

$$\sigma \vdash e \Rightarrow n$$

Val
$$\frac{???}{\sigma \vdash \text{val } x = e_1; \ e_2 \Rightarrow ???}$$


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Val(x, e, b) => ... interp(e, env) ...
   ...
```

$$\sigma \vdash e \Rightarrow n$$

VAL
$$\frac{\sigma \vdash e_1 \Rightarrow n_1}{\sigma \vdash \text{val } x = e_1; e_2 \Rightarrow ???}$$

With the **environment** σ , the **expression** val $x = e_1$; e_2 evaluates to the **number** ??? when

- **1** With the **environment** σ , the **expression** e_1 evaluates to the **number** n_1 .
- 2 ...


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Val(x, e, b) => ... env + (x -> interp(e, env)) ...
   ...
```

$$\sigma \vdash e \Rightarrow n$$

VAL
$$\frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \qquad \dots}{\sigma \vdash \text{val } x = e_1; \ e_2 \Rightarrow ???}$$

With the **environment** σ , the **expression** val $x = e_1$; e_2 evaluates to the **number** ??? when

- **1** With the **environment** σ , the **expression** e_1 evaluates to the **number** n_1 .
- **2** With the **environment** $\sigma[x \mapsto n_1], \ldots$


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Val(x, e, b) => interp(b, env + (x -> interp(e, env)))
    ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\operatorname{Val} \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \vdash e_2 \Rightarrow n_2}{\sigma \vdash \operatorname{val} x = e_1; \ e_2 \Rightarrow n_2}$$

With the **environment** σ , the **expression** val $x = e_1$; e_2 evaluates to the **number** n_2 when

- **1** With the **environment** σ , the **expression** e_1 evaluates to the **number** n_1 .
- **2** With the **environment** $\sigma[x \mapsto n_1]$, the **expression** e_2 evaluates to the **number** n_2 .

Variable Lookup


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Id(x) => ???
    ...
```

$$\sigma \vdash e \Rightarrow n$$

ID
$$\frac{fff}{\sigma \vdash x \Rightarrow ???}$$

Variable Lookup


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))
   ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\operatorname{Id} \ \frac{x \in \operatorname{Domain}(\sigma)}{\sigma \vdash x \Rightarrow \sigma(x)}$$

With the **environment** σ , the **expression** x evaluates to the **number** $\sigma(x)$ when

1 The variable x is in the domain of the environment σ .

Contents

1. Evaluation with Environments

Interpreter and Natural Semantics for VAE

Numbers

Addition and Multiplication

Variable Definition

Variable Lookup

3. Examples

$$\operatorname{NUM}_{\mathsf{VAL}} \frac{ \prod\limits_{\varnothing \vdash 1 \Rightarrow 1} \operatorname{ADD}}{ \operatorname{ADD}} \frac{x \in \mathsf{Domain}([x \mapsto 1])}{[x \mapsto 1] \vdash x \Rightarrow 1} \, \operatorname{NUM} \frac{}{[x \mapsto 1] \vdash 2 \Rightarrow 2} \frac{}{[x \mapsto 1] \vdash x + 2 \Rightarrow 3}$$

We can name environments σ_i to make the derivation tree concise.

$$\text{Num}_{\text{VAL}} \frac{\text{ID}}{ \frac{\varnothing \vdash 1 \Rightarrow 1}{\text{Val}}} \frac{x \in \text{Domain}(\sigma_0)}{\frac{\sigma_0 \vdash x \Rightarrow 1}{\sigma_0 \vdash x \Rightarrow 2}} \frac{\text{Num}}{\sigma_0 \vdash 2 \Rightarrow 2} \frac{}{\sigma_0 \vdash x + 2 \Rightarrow 3}$$

$$\sigma_0 = [x \mapsto 1]$$

$$\begin{array}{c} \text{Num} \\ \text{Num} \\ \text{Val} \end{array} \frac{ \begin{array}{c} \text{Num} \\ \text{Val} \end{array} \frac{x \in \mathsf{Domain}(\sigma_1)}{\sigma_1 \vdash x \Rightarrow 1} \quad \mathsf{ID} \ \frac{y \in \mathsf{Domain}(\sigma_1)}{\sigma_1 \vdash y \Rightarrow 2} \\ \hline \sigma_0 \vdash 2 \Rightarrow 2 \end{array} }{ \begin{array}{c} \sigma_0 \vdash x \Rightarrow 1 \end{array} } \\ \begin{array}{c} \sigma_0 \vdash x \Rightarrow 1 \end{array} } \\ \begin{array}{c} \text{Val} \ \frac{y \in \mathsf{Domain}(\sigma_1)}{\sigma_1 \vdash y \Rightarrow 2} \\ \hline \sigma_0 \vdash x \Rightarrow 1 \end{array} } \\ \hline \mathcal{O} \vdash \mathsf{Val} \ y = 2; \ x + y \Rightarrow 3 \end{array}$$

$$\begin{array}{rcl} \sigma_0 & = & [x \mapsto 1] \\ \sigma_1 & = & [x \mapsto 1, y \mapsto 2] \end{array}$$

$$\operatorname{Val} \frac{\operatorname{Num}}{\operatorname{Val}} \frac{\frac{\sigma_0 \vdash 2 \Rightarrow 2}{\sigma_0 \vdash 2 \Rightarrow 2} \quad \operatorname{Id} \frac{x \in \operatorname{Domain}(\sigma_1)}{\sigma_1 \vdash x \Rightarrow 2}}{\frac{\sigma_0 \vdash \operatorname{val} x = 2; \ x \Rightarrow 2}{\sigma_0 \vdash \operatorname{Val} x = 2; \ x} \quad \operatorname{Id} \frac{x \in \operatorname{Domain}(\sigma_0)}{\sigma_0 \vdash x \Rightarrow 1}}{\frac{\sigma_0 \vdash \operatorname{Val} x = 2; \ x}{\sigma_0 \vdash x \Rightarrow 3}}$$

$$\varnothing \vdash \operatorname{val} x = 1; \ \{\operatorname{val} x = 2; \ x\} + x \Rightarrow 3$$

$$\begin{array}{rcl}
\sigma_0 & = & [x \mapsto 1] \\
\sigma_1 & = & [x \mapsto 2]
\end{array}$$

where

$$\sigma_0 = [x \mapsto 1]$$

We cannot draw the derivation tree for this example because of the **free** variable x in the right-hand side of the addition.

Summary


```
def interp(expr: Expr, env: Env): Value = expr match
  case Num(n) => n
  case Add(1, r) => interp(1, env) + interp(r, env)
  case Mul(1, r) => interp(1, env) * interp(r, env)
  case Val(x, e, b) => interp(b, env + (x -> interp(e, env)))
  case Id(x) => env.getOrElse(x, error(s"free identifier: $x"))
```

$$\sigma \vdash e \Rightarrow n$$

$$\operatorname{Num} \, \overline{\sigma \vdash n \Rightarrow n}$$

$$\text{Add} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \quad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 + e_2 \Rightarrow n_1 + n_2} \qquad \text{MuL} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \quad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 * e_2 \Rightarrow n_1 \times n_2}$$

$$\operatorname{Val} \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \vdash e_2 \Rightarrow n_2}{\sigma \vdash \operatorname{val} \ x = e_1; \ e_2 \Rightarrow n_2} \qquad \qquad \operatorname{Id} \frac{x \in \operatorname{Domain}(\sigma)}{\sigma \vdash x \Rightarrow \sigma(x)}$$

Exercise #2

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/vae

- Please see above document on GitHub:
 - Implement interp function.
 - Implement freeIds function.
 - Implement bindingIds function.
 - Implement boundIds function.
 - Implement shadowedIds function.
- It is just an exercise, and you don't need to submit anything.
- However, some exam questions might be related to this exercise.

Next Lecture

First-Order Functions

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr