

Lecture 9: Queueing networks

For today

- 09:00 09:45: Queueing networks I
- 10:00 10:30: Queueing networks II
- 10:30 11:00: Exercise on queueing networks
- 11:00 12:35: Assignment time
- 12:35 12:45: Wrap Up

Addressing quality attributes

Create general scenario as a context view:

Environment

- Address in each view how the property is satisfied
- Quality attributes can and will change views!

Last Monday: back-of-the-envelope analysis

Environment

	QS 1	QS 2	
Environment	Running system	Running system	
Source	User	User	
Stimulus	Initiates a query	Initiates a command	
Artifact	System	System	
Response	Gives result	Command processed	
Measure	Latency	Latency	

Utrecht Unive Query Can we do this analysis systematically? Controller Command Client Server 60 per hour per client 3s per request

Last Monday: back-of-the-envelope analysis

Environment

Preliminaries

"I will win this time!"

- "My favourite numbers have not been drawn for too long! At least two weeks!"
- "It is for the law of large numbers. I am sure!"
 You shouldn't be

Memorylessness!

Besides, the law of large numbers states that, given a sample of independent and identically distributed values, the empirical mean converges towards the expected value.

Queueing networks

Queueing networks

- Each element is handled on a first come, first served principle: FIFO
- Arrival rate:

how many enter the queue per time unit?

- Service rate:
 - how many can you process per time unit?
- These are probability distributions:

What is the chance that an element arrives at moment X? What is the service time of a unit?

- On average, a new order is handled by Abazon in a second and a half.
- What is the probability we handle the next order somewhen
- between 4 and 6 seconds?
- Between 2 and 3 seconds?
- Between 8 and 9 seconds?
- Between 0.5 and 2?

Probability density function

$$f(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} \text{ with } x \ge 0\\ 0 \text{ otherwise} \end{cases}$$

Cumulative distribution function

$$F(x; \lambda) = \begin{cases} 1 - e^{-\lambda x} \text{ with } x \ge 0\\ 0 \text{ otherwise} \end{cases}$$

To answer these questions, we should compute the area (read: the integral of the function over an interval) underneath the curve

Rate

 $\lambda = 1.5$

0.4

0.3

0.2

Exponential distribution

Exponential distribution

Rate parameter: λ

Expected value: $E[X] = \frac{1}{\lambda}$

Variance: $\sigma^2[X] = \frac{1}{\lambda^2}$

$$P(X > s + t \mid X > s) = P(X > t)$$
 for all $s, t \ge 0$

We call this the **memorylessness property**:

Chance of next occurrence of an event is **independent of** previous occurrences

Poisson process

Let N(t) be the amount of orders in interval [0, t]Suppose the oreder rate is **exponentially distributed** Parameter: λ

Then:

N(t) is a **Poisson distribution** with **parameter**: $\lambda \cdot t$

Expected value: $E[N(t)] = \lambda \cdot t$

Variance: $\sigma^2[N(t)] = \lambda \cdot t$

By approximation:

 $P[\text{Order in } (t, \Delta t)] \approx \lambda \cdot \Delta t$

Generally not true,
Only holds for exponential distribution!

Do you recognize the **memorylessness property**?

Two properties of Poisson processes

Merging:

Let $N_1(t)$ be a **Poisson process** with **arrival rate** λ_1 Let $N_2(t)$ be a **Poisson process** with **arrival rate** λ_2

Then: $N_1(t) + N_2(t)$ is a **Poisson process** with **arrival rate** $\lambda_1 + \lambda_2$

Splitting:

Let N(t) be a Poisson process with arrival rate λ Mark every served order independently with chance p

Then:

Marked served orders form a **Poisson process** with **arrival rate** $n \cdot \lambda$

Unmarked served orders form a **Poisson process** with **arrival rate** $(1-p)\cdot \lambda$

Queues combine these ideas!

Queues are FIFO: First in, First out

Inter-arrival rate: how many enter the queue in a time unit? **Service rate:** how many can you process in a time unit?

These are probability distributions!

Kendall's notation: A/B/c

A: type of distribution for **inter-arrival rate**

B: type of distribution **for service time**

c: number of servers (workers / handlers / ...)

Typical values in Kendall's notation:

M: memoryless (here, exponential) or Markovian

G: general distribution

D: deterministic

0.1

1.2 1.1 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Exponential distribution

Exponential distribution

Rate parameter: μ

Expected value: $E[X] = \frac{1}{\mu}$

Variance: $\sigma^2[X] = \frac{1}{\mu^2}$

For forward-compatibility, let us rebrand λ with μ

We call this the **memorylessness property**:

Chance of next occurrence of an event is **independent** of previous occurrences

M/M/c queues

Notation for M/M/c queues:

Arrival rate: λ Service rate: μ

- Occupation rate: ρ Amount of work per time unit

 ρ should always be smaller than 1. Try with 0.8!

Incoming: $60 \cdot 10,000 = 600,000$ Processing: 120

Our aim: $\rho = 1$

Required: $\frac{600,000}{120} = 5,000$

Arrival rate: 600,000 Service rate: 120

Occupation rate: $\rho = \frac{600,000}{c \cdot 120}$

 $c = 5000 \Rightarrow \rho = 1$

M/M/1 queues

Intuitively, the fraction of time that the server is busy should be $^{\lambda}/_{\mu}=\rho$, and the fraction of time that the server is idle (because the queue is empty) should be $1-\rho$

Notation for M/M/1 queues:

Arrival rate: λ Service rate: μ

- Occupation rate: ρ Amount of work per time unit

$$\rho = \frac{\lambda}{\mu}$$

Probability of n elements in the node in steady state:

$$P(N = n) = (1 - \rho) \cdot \rho^n$$
 for $n \in [0, \infty)$

Probability of **0 elements in the node** in steady state:

$$P(N=0) = 1 - \rho$$
 for $n \in [0, \infty)$

Notice that the average nr of elements in a node is λ times the soujourn time: $E[N] = \lambda \cdot S$

If you do not trust the above, prove it!

M/M/1 queue performance characteristics

- We call a queue together with a server a **node**.
- If we have one server, formulae are "easy"
- Average nr of elements in a node: $E[N] = \frac{\rho}{1-\rho}$
- Average nr of elements in the queue: $\frac{\rho^2}{1-\rho}$
- Average waiting time of an element in the queue: $\frac{\rho}{\mu-\lambda}$
- Average waiting time of an element in a node: $S = \frac{1}{\mu \lambda}$ We call this **sojourn time!**

Queue length: measure of performance seen from the viewpoint of the system operator.

Expected waiting time in the queue; sojourn time: more relevant from the point of view of a customer.

ho should always be smaller than 1! The model is considere d stable only if $\lambda < \mu$ here as $ho = \frac{\lambda}{\mu}$ with c=1

M/M/c queues

• What happens if there are *c* servers?

Good news is, there is a calculator for us!

www.staff.science.uu.nl/~werf0006/queues/

You have to wait if all servers are "busy"

Queue length, given c servers and occupation rate ρ :

$$\frac{(c\rho)^{c}}{c!} \left((1-\rho) \sum_{n=0}^{c-1} \frac{(c\rho)^{n}}{n!} + \frac{(c\rho)^{c}}{c!} \right)^{-1} \cdot \frac{\rho}{1-\rho}$$

Queuing networks (1)

M/M/c queues have a nice property:

Lemma:

If the incoming arrival rate follows a Poisson process with rate λ and the service time is exponentially distributed then the outgoing arrival rate follows a Poisson process with rate λ

Queuing networks (2)

Consequence:

For each node, the previous formulae hold!

Generally not true.
Only holds for the exponential distribution!

Queuing networks (2): an example

• Arrival rate: $\lambda = 10$ per minute

Expected sojourn time:

• Utilisation (per node):

Queuing networks (2): an example

Expected sojourn time:

$$E[S] = \sum_{i=1}^{2} \frac{1}{\mu_i - \lambda_i} = \frac{1}{12 - 10} + \frac{1}{15 - 10} = \frac{1}{2} + \frac{1}{5} = \frac{7}{10}min = 42s$$

Utilisation (per node):

$$\rho_1 = \frac{\lambda_1}{\mu_1} = \frac{10}{12} \qquad \rho_2 = \frac{\lambda_2}{\mu_2} = \frac{10}{15}$$

Utilization **only** per node!

How about self loops?

Given the following network

How about self loops?

How about self loops?

Given the following network

Remember the property about merging

How can we calculate the arrival rates?

$$\lambda_{1} = \lambda + p \cdot \lambda_{1}$$

$$\Rightarrow \lambda_{1} - p \cdot \lambda_{1} = \lambda$$

$$\Rightarrow (1 - p)\lambda_{1} = \lambda$$

$$\Rightarrow (1 - p)\lambda_{1} = \lambda$$

How to handle this one in a structured way?

Queueing networks: let us generalize!

This gives us a system of linear equations we can solve (e.g., using Gaussian elimination)

1: Create an adjacency matrix

From / to	Node 1	Node 2	Noue 3	Node 4	о1	o2		
Input								
Node 1								
Node 2								
Node 3								
Node 4								

Arc's tail

$$\sum_{j=1}^{n} p'_{i,j} = 1$$

$$\Rightarrow p'_{i,n} = 1 - \sum_{j=1}^{n-1} p'_{i,j}$$

1: Create the adjacency matrix

From / to	Node 1	Node 2	Node 3	Node 4	о1	o2
Input	i ₁		i ₂			
Node 1		(1-a)	a			
Node 2		b	С	(1-b-c)		
Node 3				d		(1-d)
Node 4					1	

2: Create the equation system for arrival rates

From / to	Node 1	Node 2	Node 3	Node 4	01	o2
Input	i ₁		i ₂			
Node 1		(1-a)	а			
Node 2		b	С	(1-b-c)		
Node 3				d		(1-d)
Node 4					1	

$$\begin{cases} \lambda_1 = i_1 \\ \lambda_2 = (1-a)\lambda_1 + b\lambda_2 \\ \lambda_3 = i_2 + a\lambda_1 + c\lambda_2 \\ \lambda_4 = (1-b-c)\lambda_2 + d\lambda_3 \end{cases}$$

For each node
$$i$$
: $\lambda_i = r_i + \sum_{j=1}^k (p_{j,i} \cdot \lambda_j)$
We take the probabilities from the columns in the adjacency matrix!

Step 2: create equation system for arrival rates

From / to	Node 1	Node 2	Node 3	Node 4	01	o2
Input	i ₁		i ₂			
Node 1		(1-a)	а			
Node 2		b	С	(1-b-c)		
Node 3				d		(1-d)
Node 4					1	

$$\begin{cases} \lambda_1 = i_1 \\ \lambda_2 = (1-a)\lambda_1 + b\lambda_2 \\ \lambda_3 = i_2 + a\lambda_1 + c\lambda_2 \\ \lambda_4 = (1-b-c)\lambda_2 + d\lambda_3 \end{cases}$$

$$\begin{cases} \lambda_1 = i_1 \\ \lambda_2 = \frac{(1-a) \cdot i_i}{(1-b)} \\ \\ \lambda_3 = i_2 + a \cdot i_1 + \frac{c \cdot (1-a) \cdot i_i}{(1-b)} \\ \\ \lambda_4 = \frac{(1-b-c) \cdot (1-a) \cdot i_i}{(1-b)} + d \cdot \left(i_2 + a \cdot i_1 + \frac{c \cdot (1-a) \cdot i_i}{(1-b)}\right) \end{cases}$$

Step 2: create equation system for arrival rates

From / to	Node 1	Node 2	Node 3	Node 4	01	o2
Input	i ₁		i ₂			
Node 1		(1-a)	а			
Node 2		b	С	(1-b-c)		
Node 3				d		(1-d)
Node 4					1	

$$\begin{cases} \lambda_1 = i_1 \\ \lambda_2 = (1-a)\lambda_1 + b\lambda_2 \\ \lambda_3 = i_2 + a\lambda_1 + c\lambda_2 \\ \lambda_4 = (1-b-c)\lambda_2 + d\lambda_3 \end{cases}$$

$$\begin{cases} \lambda_1 = i_1 \\ \lambda_2 = (1-a)\lambda_1 + b\lambda_2 \\ \lambda_3 = i_2 + a\lambda_1 + c\lambda_2 \\ \lambda_4 = (1-b-c)\lambda_2 + d\lambda_3 \end{cases}$$
 By rewriting, we obtain:
$$\begin{cases} \lambda_1 = i_1 \\ \lambda_2 = \frac{1-a}{1-b} \cdot i_1 \\ \lambda_3 = i_2 + \frac{a \cdot (1-b) + c \cdot (1-a)}{1-b} \cdot i_1 \\ \lambda_4 = \frac{(1-b-c+d \cdot c) \cdot (1-a) + d \cdot a \cdot (1-b)}{1-b} \cdot i_1 + d \cdot i_2 \end{cases}$$

Oh, what a beautiful theory! How can we apply this in practice?

Exercise: Train Controller module

What is the utilization of the Train Command?

- The architects need to analyse the **utilisation of the Train Command module**. They assume all components to be M/M/1.
- They know that 50% of the messages to Train Command are handled in time. Of the other half, 20% is routed back to the Train Command, and the remainder is sent to the Sensor Input node.
- 20% of the Sensor Input is used by the Railway Fanatic Controller, whereas the remainder is directly fed in the Train Command.
- Each output of the Railway Fanatic Controller leads to a message to the Train Command.
 - The architects assume that handling a Train Command message takes about 3 seconds. The railway fanatics are so fanatic that they send 6 commands per minute

Rate: 6 per minute

Exercise: Train Controller module

From / to	Node 1	Node 2	Node 3	Out
Input				
Node 1				
Node 2				
Node 3				

$$\rho_2 = ?$$

Rate: 6 per minute

Exercise: Train Controller module

From / to	Node 1	Node 2	Node 3	Out
Input			i	
Node 1		0.8	0.2	
Node 2	0.3	0.2		0.5
Node 3		1		

$$\begin{cases} \lambda_1 = 0.3\lambda_2 \\ \lambda_2 = 0.8\lambda_1 + 0.2\lambda_2 + \lambda_3 \\ \lambda_3 = 0.2\lambda_1 + i \end{cases}$$

$$\Rightarrow \begin{cases} \lambda_1 = 0.3\lambda_2 \\ \lambda_2 = \frac{i}{0.5} = 2i \\ \lambda_3 = 0.2\lambda_1 + i \end{cases}$$

$$\rho_2 = \frac{\lambda_2}{\mu_2} = \frac{2 \cdot 6}{20} = 0.6$$

What would happen if the fanatics sent 12 commands per minute?

The model (and the system) would be unstable!

Klock et al. 2017: What is the main message?

For today

- 09:00 09:45: Queueing networks I
- 10:00 10:30: Queueing networks II
- 10:30 11:00: Exercise on queueing networks
- 11:00 12:35: Assignment time
- 12:35 12:45: Wrap Up

Next Lecture: Monday

- Read papers:
 - (F) M. Shaw, D. Garlan (1995). Formulations and formalisms in software architecture.
 - (G) L. de Alfaro, Th. Henzinger. Interface Automata
 - (H) T. Murata (1989). Petri nets: Properties, Analysis and Applications.

The information in this presentation has been compiled with the utmost care, but no rights can be derived from its contents.