Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Герра Максимиано

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Постановка задачи	6
	3.2 Построение модели	6
	3.3 Оптимизация модели двух стратегий обслуживания	11
4	Выводы	18

Список иллюстраций

3.1	Модель первой стратегии обслуживания	7
3.2	Отчёт по модели первой стратегии обслуживания	8
3.3	Модель второй стратегии обслуживания	Ö
3.4	Отчет по модели второй стратегии обслуживания	Ö
3.5	Модель двух стратегий обслуживания с 1 пропускным	
	пунктом	11
3.6	Отчёт по модели двух стратегий обслуживания с 1	
	пропускным пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными	
	пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3	
	пропускными пунктами	14
3.9	Модель первой стратегии обслуживания с 4 пропускными	4 -
0.46	пунктами	15
3.10	Отчёт по модели первой стратегии обслуживания с 4	4 -
0 11	пропускными пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными	1.0
2 12	пунктами	16
3.12	2Отчёт по модели второй стратегии обслуживания с 3	1.0
2 1 2	пропускными пунктами	16
3.13	ВМодель второй стратегии обслуживания с 4 пропускными	17
2 1 /	пунктами	1 /
J.14	Ютчёт по модели второй стратегии обслуживания с 4	17
	пропускными пунктами	Ι/

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: $\mu=1$, 75 мин, a=1 мин, b=7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания

автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 3.1).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
 (7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 3.2).

lab16_1.1.	1 - REPOR	1							
	START TIME		END	TIME B	LOCKS F	ACILITIES	STORAGE	ES	
		0.000		10080.000 18 2 0					
	NAME			VA	LUE				
OBSL_1					.000				
	OBSL_2			11					
	OTHER1			10000					
	OTHER2			10001					
	PUNKT1			10003					
	PUNKT2			10002	.000				
LABEL			BLOCK TYPE GENERATE						
					5853 5853	_) (0	
		3	TEST TEST		5853 4162	0		0	
					2431	_		0	
OBSL 1		5	TRANSFER QUEUE		2928	387		0	
OBSL_I			SEIZE		2541			0	
			DEPART		2541	0		0	
			ADVANCE		2541	1		0	
		_	RELEASE		2540	_		0	
		-	TERMINATE		2540	_		0	
OBSL 2			QUEUE		2925	388		0	
0000_0			SEIZE		2537			0	
			DEPART		2537	0		0	
			ADVANCE		2537	-		0	
			RELEASE		2536	_		0	
			TERMINATE		2536	-		0	
			GENERATE		1	0		0	
			TERMINATE		1	0		0	
FACTLITY		FNTDIFS	UTIL. AV	/F TIME	AVATT.	OWNED DENI	TNTED I	DETDV	DET.AV
PUNKT2			0.996			5078 O			
PUNKT1		2541					0	0	
1011111		2011	0.557	0.50		3073			507
OUEUE		MAX C	ONT. ENTRY E	NTRY (O)	AVE.CON	IT. AVE.TIM	E AVE	. (-0)	RETRY
OTHER1			387 2928						
OTHER2			388 2925						
							-		-
FEC XN	PRI	BDT	ASSEM	CURREN	T NEXT	PARAMETER	VAL	UE	
5855	0		102 5855		1				
5079			517 5079		9				

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 3.3, 3.4).

```
M lobic_2ops

punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

ENTER punkt,1; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE | punkt,1; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

	START	TIME		END	TIME	BLOC	KS F	ACILITIE	S STO	RAGES	
	0	.000		1008	0.000	9		0		1	
	NAM	E				VALUE					
	OTHER				100	001.00	0				
	PUNKT				100	00.00	0				
LABEL		LOC	BLO	CK TYPE	I	ENTRY	COUNT	CURRENT	COUNT	RETRY	
		1	GEN	ERATE		571	9		0	0	
		2	QUE	UE		571	9	6	68	0	
		3	ENT	ER		505	1		0	0	
		4	DEP	ART		505	1		0	0	
		5	ADV	ANCE		505	1		2	0	
		6	LEA	VE		504	9		0	0	
		7	TER	MINATE		504	9		0	0	
		_		ERATE			1		0	0	
		9	TER	MINATE			1		0	0	
QUEUE		MAX	CONT.	ENTRY I	ENTRY	(0) AV	E.CON	T. AVE.T	IME	AVE.(-0) RET
OTHER		668	668	5719	4	34	4.466	607.	138	607.56	2 0
STORAGE		CAP.	REM.	MIN. M	AX. E	ENTRIE	S AVL	. AVE.C	. UTII	. RETRY	DELA
PUNKT		2	0	0	2	5051	1	2.000	1.00	0 0	668
FEC XN	PRI	BD	r	ASSEM	CURI	RENT	NEXT	PARAMET	ER	VALUE	
5721		10080	.466	5721	()	1				
5051	0	10081	.269	5051	5	5	6				
5052		10083	.431	5052	5	5	6				
5722	0	20160	.000	5722	()	8				

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. ??).

Таблица 3.1: Сравнение стратегий {#tbl:strategy}:

	-				00 -
	стра	тегия			
Показатель	1				стратегия 2
	пунк	·т 1	пункт 2	в пелом	

	стратегия			_
Показатель	1			стратегия 2
Поступило	2928	2925	5853	5719
автомобилей				
Обслужено	2540	2536	5076	5049
автомобилей				
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина	187,098	187,114	374,212	344,466
очереди				
Среднее время	644,107	644,823	644,465	607,138
ожидания				

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 3.5).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей QUEUE Other; присоединение к очереди 1 SEIZE punkt; занятие пункта 1 DEPART Other; выход из очереди 1 ADVANCE 4,3; обслуживание на пункте 1 RELEASE punkt; освобождение пункта 1 TERMINATE; автомобиль покидает систему; задание условия остановки процедуры моделирования GENERATE 10080; генерация фиктивного транзакта,; указывающего на окончание рабочей недели; (7 дней х 24 часа х 60 мин = 10080 мин) TERMINATE 1; остановить моделирование START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 3.5).

lab16_2.6.	1 - REPOR	Т							
	START	TIME	END	TIME	BLOCKS	FACILIT	IES	STORAGES	
	(0.000	1008	0.000	9	1		0	
	NAI	1E		7	/ALUE				
	OTHER			1000	00.00				
	PUNKT			1000	01.000				
LABEL		TOC	BLOCK TYPE	T)	יידפע כהוו	MT CHODE	NT CC	NIMT DETEV	
LADEL		1	GENERATE		5744	NI CORRE	0	0	
			OUEUE		5744		3233	-	
			SEIZE		2511		0	_	
			DEPART		2511		0	0	
		5	ADVANCE		2511		1	0	
		6	RELEASE		2510		0	0	
		7	TERMINATE		2510		0	0	
		8	GENERATE	E		1		0	
		9	TERMINATE		1		0	0	
ACILITY		ENTRIES	UTIL. A	VE. TIN	ME AVAIL	. OWNER	PEND	INTER RETR	Y DELAY
PUNKT		2511	1.000	4.0	014 1	2512	0	0 0	3233
UEUE		MAX C	ONT. ENTRY	ENTRY () AVE.C	ONT. AVE	.TIME	AVE. (-0) RETRY
OTHER		3234 3	233 5744	1	1617.6	76 283	8.819	2839.31	3 0
EC XN	PRI	BDT	ASSEM	CURRI	ENT NEX	T PARAM	ETER	VALUE	
	0		255 2512	5	_				
5746			384 5746						
5747	0	20160	000 5747	0	8				

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 3.7, 3.8).

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL	LOC BLO	CK TYPE	ENTRY C	OUNT CURRE	NT COUNT	RETRY	
		ERATE	5547		0	0	
	2 TRA	NSFER	5547		0	0	
GO	3 TRA	NSFER	3682		0	0	
OBSL 1	4 QUE	UE	1853		1	0	
-	5 SEI	ZE	1852		0	0	
	6 DEP	ART	1852		0	0	
	7 ADV	ANCE	1852		1	0	
	8 REL	EASE	1851		0	0	
	9 TER	MINATE	1851		0	0	
OBSL 2	10 QUE	UE	1829		0	0	
-	11 SEI	ZE	1829		0	0	
	12 DEP	ART	1829		0	0	
	13 ADV	ANCE	1829		0	0	
	14 REL	EASE	1829		0	0	
	15 TER	MINATE	1829		0	0	
OBSL_3	16 QUE	UE	1865		3	0	
	17 SEI	ZE	1862		0	0	
	18 DEP	ART	1862		0	0	
	19 ADV	ANCE	1862		1	0	
	20 REL	EASE	1861		0	0	
		MINATE	1861		0	0	
		ERATE	1		0	0	
	23 TER	MINATE	1		0	0	
FACILITY	ENTRIES UT	TT 317E	TIME NU	TI OWNED	DEND THE	en nemny	DELVA
PUNKT2			3.952 1		0 INI	O O	DELAI 0
PUNKT3	1829 0 1862 0	.717	4.006 1			0 0	3
PUNKT1	1852 0			5546			1
PUNKII	1052 0	. 121	3.93/ 1	3340	U	0 0	1
QUEUE	MAX CONT.	ENTRY ENT	RY(0) AVE	.CONT. AVE	.TIME	AVE. (-0)	RETRY
OTHER2	11 0	1829	508 1	.112	6.126	8.482	0
OTHER3				.134	6.132	8.458	0
OTHER1	9 1	1853	529 0	.929	5.055	7.075	0
FEC XN PRI	BDT	ASSEM C	URRENT N	EXT PARAM	ETER	VALUE	
5549 O	10081.799			1			
5534 0	10082.440		_	0			
5546 0	10085.099		7				
5550 0	20160.000			2			

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 3.9, 3.10).

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

									1		0	
				EASE		14			0		0	
		28	TER	MINATE		14			0		0	
		29	GEN.	ERATE			1		0		0	
		30	TER	MINATE			1		0		0	
FACILITY		ENTRIES	UT	IL.	AVE. TIM	IE A'	VAIL.	OWNER	PEND	INTER	RETRY	DELAY
PUNKT4		1413	0	.557	3.9	71	1	5623	0	0	0	0
PUNKT3		1378	0	.545	3.9	89	1	0	0	0	0	0
PUNKT2					3.9			0	0	0	0	0
PUNKT1					4.0			5621	0	0	0	0
QUEUE		MAX CO	ONT.	ENTRY	ENTRY (0) A	VE.CON	T. AVE	E.TIME	AV	E.(-0)	RETRY
OTHER4		7	0	1413	628		0.415	5	2.958	3	5.325	0
OTHER3		8	0	1378	655		0.345	5	2.527	7	4.816	0
OTHER2		6	0	1366	625		0.363	3	2.676	5	4.934	0
OTHER1		6	0	1465	590		0.492	2	3.385	5	5.667	0
FEC XN	DDT	BDT) CCE	א כנוסספ	NT	NEVT	וגסגס	WETER	777	THE	
5624		10080.0					1	FARAI	TETER	VA.	LUE	
5621	0	10080.0			8		9					
5623	0	10080.3			26		-					
	•											
5625	0	20160.0	000	5625	0		29					

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
punkt STORAGE 3;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER	10001.000
	PUNKT	10000.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
		1 GENERATE 5683 0 0
		2 QUEUE 5683 0 0
		3 ENTER 5683 0 0
		4 DEPART 5683 0 0
		5 ADVANCE 5683 3 0
		6 LEAVE 5680 0 0
		7 TERMINATE 5680 0 0
		8 GENERATE 1 0 0
		9 TERMINATE 1 0 0
QUEUE		MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OTHER		12 0 5683 2521 1.063 1.885 3.388 0
STODAGE		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
PUNKT		3 0 0 3 5683 1 2.243 0.748 0 0
1011111		0 0 0 0 0000 1 2.210 0.710 0 0
FEC XN	PRI	BDT ASSEM CURRENT NEXT PARAMETER VALUE
5680	0	10080.434 5680 5 6
5683	0	10080.631 5683 5 6
5685	0	10082.068 5685 0 1
5684	0	10085.592 5684 5 6
5686	0	20160.000 5686 0 8

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней к 24 часа к 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

LABEL		LOC	BLOC	K TYPE	EN7	RY COUNT	CURRENT	COUNT	RETRY	
		1	GENE	RATE		5719		0	0	
		2	QUEU	E		5719		0	0	
		3	ENTE	R		5719		0	0	
		4	DEPA	RT		5719		0	0	
		5	ADVA	NCE		5719		4	0	
		6	LEAV	E		5715		0	0	
		7	TERM	INATE		5715		0	0	
		8	GENE	RATE		1		0	0	
		9	TERM	INATE		1		0	0	
OTHER		MAX C	0	5719	4356	0.194	0.	341	1.431	0
PUNKT		4	0	0	4 5	5719 1	2.253	0.56	3 0	0
FEC XN	PRI	BDT	:	ASSEM	1 CURREN	NT NEXT	PARAMET	ER '	VALUE	
5718	0	10082.	346	5718	5	6				
5717	0	10082.	412	5717	5	6				
3/1/	0	10083.	393	5719	5	6				
5717					0	1				
	0	10084.	393	5721	U					
5719	-				5	6				

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.