Dog + Pet Adoptions

Andrew Kim, Olivia Kris, Chae Won Yun

Problem

- Shelters are incredibly **overcrowded**, resulting in many dogs and other pets being euthanized due to lack of shelter space/lack of adoptions
- Exploring to determine which attributes make prospective dog owners more inclined to adopt a dog
 - Helps shelters **reduce likelihood of euthanization**
- Key Stakeholders: those running shelters, those seeking to adopt a dog

Why Machine Learning?

- Can help us better understand what qualities increase the likelihood of adoption
- Allows us to take a dataset with multiple factors (ex. Breed, size, etc.) to compile an accurate model of how each pet will do in the adoption process

Data Cleaning + First Steps

- Datasets were found on Kaggle
 - collected the information of adoptable dogs off of Petfinder.com's API
- Dataset provides columns describing attributes of dogs in the API.
 - Ex: breed, color, state where they were found, age, etc.
- Merged datasets on unique IDs of pets, called it all_dogs
- Filtered through duplicate ID values and removed them
- Discovered faulty data, such as values being in the wrong column, by using
 .value_counts and removed these values from our rows
- Filled any remaining nan values with "unknown" or False using the .fillna function

Initial Data Prior to Cleaning

Data Cleaning: Filtering

- Irrelevant
 - Ex. 'Type.x' and 'Type.y' were all type 'Dog,' which remained constant
- Inconsistencies across data
 - Ex. 'Breed_mixed' was dropped due to 'breed_primary' and 'breed_secondary,' as we saw discrepancies between the relationship between the two where 'breed_mixed' was set to False when there were secondary breeds involved
- Only nan values
 - Ex. 'Declawed' had only nan values, which was not useful to our ML process
- Too many unique values that were not relevant
 - Ex. 'Found' had the specific street name and situation in which the dogs were found, but there are too many unique values and this is not relevant in someone's decision to adopt a dog

Post Data Cleaning

Methods

We want our model to be able to handle mostly categorical data such as breed type and color of dog

1. Baseline Model

- a. the accuracy of predicting whether a dog will be adopted
- b. serves as a guideline for how powerful our models predictions are

2. Logistic Regression

- a. Best suited for prediction and categorization problems
- b. ROC/AUC

3. CART/Decision Trees

- a. Easily handles both categorical and continuous variables
- b. Ideal for larger datasets

4. Decision Trees with Cross-Validation

- a. Gives us a better estimate of our trained model when applied to different datasets
- b. Protection against overfitting
- c. Pruning decision tree with ccp_alpha

Train-Test Splitting

- Decided our y variable would be if a dog was removed or not from the shelter, meaning it was or was not adopted
 - a. Used 'remove' column
- 2. Got dummy values of X
 - a. Used train_test_split to separate everything into X_train, X_test, y_train,y_test
- 3. Split \(\frac{1}{3} \) of data to be used for validation


```
#count of removed and not removed dogs
sns.countplot(x = y)
plt.show()
```

Visualization of Removed Dogs

```
# baseline model
print(y_test.value_counts())
notremoved = np.sum(y_test == False)
removed = np.sum(y_test == True)

baseline_acc = notremoved / (notremoved + removed)

print(f'Baseline Accuracy: {baseline_acc}')
```

False 1039 True 318

Name: remove, dtype: int64

Baseline Accuracy: 0.765659543109801

```
# logistic regression
    logreg_model = LogisticRegression(random_state=42)
 5 result = logreg_model.fit(X_train, y_train)
    #logit_model=sm.Logit(y, X.astype(float))
   #result=logit_model.fit()
   #print(result.summary())
10
    #logreq_model = smf.logit(formula = "remove ~ fixed + house_trained + \
    #special_needs + shots_current", data = logmodeltemp).fit()
13
   # make predictions
   y_pred = logreg_model.predict(X_test)
16 #binary = [1 \text{ if } x \ge 0.5 \text{ else } 0 \text{ for } x \text{ in predictions}]
   # calculate accuracy
   log_acc = accuracy_score(y_test, y_pred)
19
    print(f'LogReg Test Accuracy: {log_acc}')
21
```

LogReg Test Accuracy: 0.7693441414885778

Baseline Accuracy: 0.765659543109801

Logistic Regression Accuracy

```
# baseline model
print(y_test.value_counts())
notremoved = np.sum(y_test == False)
removed = np.sum(y_test == True)

baseline_acc = notremoved / (notremoved + removed)

print(f'Baseline Accuracy: {baseline_acc}')
```

False 1039 True 318

Name: remove, dtype: int64

Baseline Accuracy: 0.765659543109801

LogReg Test Accuracy: 0.7693441414885778

LogReg Confusion Matrix:

[[992 47] [266 52]]

True Positive Rate: 0.16352201257861634
False Positive Rate: 0.04523580365736285
True Negative Rate: 0.9547641963426372

False Negative Rate: 0.04523580365736285

Here we understand the reason behind our logistic regression model **not showing significant improvement over the baseline**

Visualization of ROC Curve

Visualization of Decision Tree with Cross Validation

Results

Baseline Model	Logistic Regression	CART	Cross Validated CART
0.765659543109801	0.7693441414885780	0.7715549005158440	0.7811348563006630

After testing all of our models, we concluded that the cross-validated CART model performed the best among the other models.

Results Cont.

Certain breeds of dogs are more likely to be adopted

- Due to the perceived image of a certain breed (ex: Golden Retrievers vs. Pitbulls)

Color of dog is likely to be highly correlated with the breed of dog

- one of our splits being color yellow/tan/blonde, which are primary colors of common friendly dog breeds such as golden retrievers (the split immediately following this is whether the dog is a labrador retriever)

If the dog is kept up on shots, house trained, good with children, and/or NOT fixed, they are more likely to be adopted

 It is much easier to go through with a spaying/neutering procedure in the future than to upkeep all missing shots, house train, and determine whether a dog is good around children

Conclusions + Implications

Implications of our models demonstrate that the breed of dog, whether they are **up to date on shots**, if they are **house trained**, if they are **good with children**, and if they are **fixed** are all strong determinants of whether a dog will be adopted or not.

Because of our findings from our models, our results are nearly ready to be used in the real world.

Room for Improvement

- Addition of sentimentality score using description column (given to each dog) as another predictor
 - Out of scope
- Improved decision tree parameters
- We could have more definitive results if not for the fact that values are occasionally missing for dogs
 - No even distribution of the breeds of dogs available in our data
 - Ex: Labradors have 675 values in data compared to Bernese Mountain Dog with 1
 - Would be fixed with more data and consistently recorded data

Sources

Chauhan, A. (2022, October 28). Dog adoption. Kaggle.

https://www.kaggle.com/datasets/whenamancodes/dog-adoption?select=dogTravel.csv

Databender. (2020, August 19). PET adoption modified data cleaned. Kaggle.

https://www.kaggle.com/datasets/umairnsr87/petadoption-mod/data

Pet statistics. ASPCA. (n.d.).

https://www.aspca.org/helping-people-pets/shelter-intake-and-surrender/pet-statistics

Thank you!

Any questions or comments?

