Análise de Sentimentos em Avaliações de Produtos

Disciplina: Processamento de Linguagem Natural

Professor: Luciano Barbosa

Link Colab:https://colab.research.google.com/drive/1c2C2npsFrDTuZ_sCrVhc-dFmQWe2ShZ0?usp=sharing

Alunos:

Igor Gabriel de Aráujo Pereira Conde | igapc@cin.ufpe.br

Introdução

Visão Geral:

Este projeto busca explorar o potencial do **Processamento de Linguagem Natural (NLP)** para realizar a análise de sentimentos em avaliações de produtos disponibilizados na plataforma **Amazon**. O objetivo principal é desenvolver uma solução robusta que possa classificar os sentimentos em três categorias: **positivo**, **negativo** e **neutro**, utilizando métodos modernos de machine learning e deep learning. Além disso, visa fornecer insights úteis para empresas que desejam aprimorar a experiência do cliente e tomar decisões baseadas em dados.

Objetivos do Projeto

Objetivos:

Desenvolver um modelo eficiente de análise de sentimentos em avaliações de produtos da Amazon, utilizando dados textuais para identificar e classificar sentimentos.

- Classificar os sentimentos em três categorias principais:
- **Positivo**: Sentimentos favoráveis sobre os produtos.
- **Negativo**: Críticas e insatisfações.
- Neutro: Avaliações imparciais ou sem emoção explícita.
- Aplicar técnicas de NLP e aprendizado supervisionado, incluindo:
- •SVM com Bag of Words (BoW): Representação baseada na frequência de palavras, treinada para identificar padrões de sentimentos no texto.
- •In-Context Learning com GPT-Neo: Uso de prompts pré-definidos para prever sentimentos, combinando exemplos ilustrativos e geração contextualizada de respostas.
- •Utilizar modelos avançados de Deep Learning, como BERT, para extrair embeddings semânticos e realizar a classificação dos textos.

Metodologia

Sobre o Dataset

Avaliações de produtos extraídas da Amazon, contendo texto completo, resumo e notas.

Dimensão: **913** de um produto especifico, registros com 10 colunas principais, incluindo:

- **Text**: Texto completo da avaliação.
- Score: Nota atribuída (1 a 5).
- HelpfulnessNumerator e HelpfulnessDenominator: Indicadores de utilidade da avaliação.

Amazon Product Reviews

568k Reviews de Produtos Diferentes

Metodologia

Pré-processamento de Texto

Análise Exploratória de Dados (EDA)

- Visualização da distribuição de Score e identificação de tendências nos textos.
- Geração de nuvem de palavras para palavras mais frequentes em cada categoria de sentimento.
- Análise de correlações entre votos úteis e notas atribuídas.
- Treinamento e Validação (80% para treinamento e 20% para testes.)

Limpeza e Normalização:

- Remoção de caracteres especiais, números e stopwords.
- Conversão para letras minúsculas e aplicação de tokenização.

Técnicas Aplicadas:

- Bag of Words (BoW): Frequência de palavras como representação vetorial.
- **mbeddings**: Relevância das palavras em relação ao corpus.
- Lematização: Redução das palavras às suas formas base.

Metodologia

Modelagem de Sentimentos

- SVM + BoW:
 - Treinamento de um modelo simples com BoW para capturar padrões básicos de sentimentos.
 - Avaliação de desempenho para identificar limitações de métodos convencionais.
- **Deep Learning com BERT:**
 - Extração de embeddings semânticos de alta qualidade.
 - Classificação dos textos com redes neurais profundas para capturar nuances contextuais.
- In-Context Learning com GPT-Neo:
 - Uso de prompts com exemplos ilustrativos para prever sentimentos.
 - Geração de respostas com base no contexto fornecido.

Fonte dos Dados

Fonte dos Dados:

Avaliações de produtos extraídas da Amazon, contendo texto completo, resumo e notas.

Características dos Dados:

Total de Avaliações: 368k

Amazon Product Reviews

568K + consumer reviews on different amazon products

amazon.com

Code (40) Discussion (3)

Suggestions (0)

About Dataset

Context

This dataset contains more than 568k consumer reviews on different amazon products. This dataset is also available on other dataset related sites, but I found it useful and shared it here

Usability ①

10.00

License

CC0: Public Domain

Expected update frequency Never

Analise Exploratória

EDA

- Analise dos campos principais
- Estrutura e preenchimento dos dados

O dataset possui 913 registros e 10 colunas, conforme a estrutura a seguir:

Estrutura do Dataset:

Id: Identificador único do registro.

ProductId: Identificador do produto avaliado.

Userld: Identificador do usuário que fez a avaliação.

ProfileName: Nome do perfil do usuário.

HelpfulnessNumerator: Número de votos úteis para a avaliação.

HelpfulnessDenominator: Número total de votos recebidos.

Score: Nota atribuída ao produto (1 a 5).

Time: Timestamp da avaliação (Unix).

Summary: Resumo da avaliação.

Text: Texto completo da avaliação.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 913 entries, 0 to 912
Data columns (total 10 columns):
                                Non-Null Count
     Td
                               913 non-null
                                                 int64
     ProductId
                               913 non-null
                                                 object
     UserId
                               913 non-null
                                                 object
     ProfileName
                               913 non-null
                                                 object
     HelpfulnessNumerator
                               913 non-null
                                                 int64
     HelpfulnessDenominator 913 non-null
                                                 int64
     Score
                                                 int64
                                913 non-null
     Time
                               913 non-null
                                                 int64
     Summary
                               913 non-null
                                                 object
                               913 non-null
                                                 object
dtypes: int64(5), object(5)
memory usage: 71.5+ KB
                                                                   pfulnessNumerator
                               jaimoi "Appreciator of good music"
                     1 Linda Painchaud-Steinman "PARK EDGE BOOKS"
                                                     carwash169
                                           P. Titus "Knitgirlll"
                        HelpfulnessDenominator Score
                                                 5 1343433600
                                                 5 1343433600
                                                 5 1343433600
                                                 5 1343433600
                                                 5 1343433600
                                                 Great Anytime of Day!
                        Ouaker Oats Oatmeal Raisin Mom Voxbox Review C...
                            Quick, simple HEALTHY snack for the kiddos!!!
```


Analise Exploratória

Analise de Texto

- Coluna Score
- •**Média**: 4,58 (indica uma tendência geral positiva).
- •Mínimo: 1 (representa avaliações mais críticas).
- •Máximo: 5 (avaliações altamente positivas).
- •Desvio Padrão: 0,71 (baixa variação nas notas).
- •Colunas HelpfulnessNumerator e HelpfulnessDenominator:
- •Média:
 - •Numerator: 0,045 (poucas avaliações receberam votos úteis).
 - Denominator: 0,050.
- •Máximo: Ambas chegam a 5 (máximo de votos úteis registrados).
- •A maioria das avaliações (75%) não possui votos úteis (valor 0 no percentil 75).

Analise Exploratória

Nuvem de Palavras

• Palavras como "cookie", "good", "taste", "love" e "soft" são frequentemente mencionadas, indicando um foco positivo nas avaliações sobre sabor e qualidade do produto.

cin.ufpe.br

Bag of Words e Modelagem de Tópicos

- Realizado a remoção do Stopwords
- Pré-processamento
- Criação das Features


```
# Implementação do BoW
vectorizer = CountVectorizer(max features=100, stop words='english')
bow matrix = vectorizer.fit transform(dataset['CleanedText'])
bow_df = pd.DataFrame(bow_matrix.toarray(), columns=vectorizer.get_feature_names_out())
print(bow df.head())
   absolutely amazing
                            baked
   thought
           time
                                     voxbox
[5 rows x 100 columns]
```


Extração de Tópicos Usando LDA

- Técnica aplicada: Latent Dirichlet Allocation (LDA).
- Objetivo: Identificar os principais tópicos abordados nos textos.
- Configuração: 5 tópicos principais com 10 palavras mais representativas cada.

```
tfidf vectorizer = TfidfVectorizer(max features=1000, stop words='english')
tfidf matrix = tfidf vectorizer.fit transform(dataset['CleanedText'])
# LDA para modelagem de topicos.
lda model = LatentDirichletAllocation(n components=5, random state=42)
lda_model.fit(tfidf_matrix)
topics = {}
for topic idx, topic in enumerate(lda model.components ):
    topics[f"Topic {topic idx + 1}"] = [tfidf vectorizer.get feature names out()[i] for i in topic.argsort()[-10:]]
topics_df = pd.DataFrame.from_dict(topics, orient='index', columns=[f"Word {i+1}" for i in range(10)])
print("Top Words for Each Topic:")
print(topics df)
Top Words for Each Topic:
           Word 1 Word 2
                             Word 3
                                          Word 4 Word 5
Topic 1
                   trust
                              looks combination lasted compliments
Topic 2
                               heat
                                         crumble
                                                                 mail
                     pick
Topic 3
              good
                    loved
                             auaker
                                           taste
                                                    love
                                                              oatmeal
                             little
                                                              oatmeal
Topic 4
              try really
                                            love
                                                    like
Topic 5 unhealthy lovers
                           cravings
                                                                 fake
                                         suggest
           Word 7 Word 8
                                        Word 10
                                         guilty
Topic 1
                   bomb deliciously
                                      afternoon
Topic 2
                             continue
Topic 3
           great
                  soft
                              cookie
                                        cookies
Topic 4
            good
                   soft
                             cookies
                                         cookie
```


Analise de Polaridade Textual

•Analisar a polaridade dos textos das avaliações, determinando o sentimento predominante:

•Positivo: Polaridade > 0. •Neutro: Polaridade = 0. •Negativo: Polaridade < 0.

	CleanedText	SentimentPolarity
0	love cookies healthy taste great soft definite	0.380000
1	quaker soft baked oatmeal cookies raisins deli	0.311818
2	usually huge fan oatmeal cookies literally mel	0.125000
3	participated product review included sample hr	0.371000
4	kids loved pleased give kids quick go healthy	0.561905
5	really enjoyed individually wrapped big oatmea	0.270370
6	surprised soft cookie usually buy little debbi	0.027976
7	filled oats raisins 'll love snack delic	0.633333
8	recently given complimentary `` vox box '' inf	0.158333
9	best freshest cookie comes package ate wishing	0.850000

SVM com Bag-of-Words

Resumo:

Classificar sentimentos com SVM utilizando Bag-of-Words (BoW) como representação vetorial.

Divisão dos Dados:

Treino: 70%Teste: 30%

Resultados:

Acurácia Geral: 98,28%

Categoria Positiva: Alta precisão e recall.

```
w_matrix
   y = dataset['SentimentCategory']
   X train, X test, y train, y test = train test split(X, y, test size=0.7, random state=42, stratify=y
    svm_model = LinearSVC(random_state=42)
   svm_model.fit(X_train, y_train)
   y pred = svm model.predict(X test)
   svm accuracy = accuracy score(v test, v pred)
    svm report = classification report(y test, y pred)
    svm_accuracy, svm_reportX = bo
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/ classification.py:1565: UndefinedMetricWarning
      warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/ classification.py:1565: UndefinedMetricWarning
     warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
   /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning
      warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
                   precision recall f1-score support\n\n
                        631\n\n accuracy
                                                                                         macro ave
```


BERT - Classificação de Sentimentos

1.Pré-processamento e Tokenização:

Utilização do BERT tokenizer para dividir os textos em tokens.

Textos ajustados para comprimento máximo de 256 tokens com padding e truncamento.

2. Divisão dos Dados:

Treino: **80%**

Teste: **20%**, com estratificação para manter a proporção entre categorias de sentimento.

3.Treinamento:

Modelo pré-treinado: bert-base-uncased.

Treinamento por **3 épocas**, utilizando o otimizador **AdamW** e escalonamento de aprendizado (Scheduler).

Uso de **mixed precision training** para otimização computacional.

4.Métricas de Avaliação:

Acurácia Geral: Desempenho total do modelo.

Precisão, Recall e F1-Score: Avaliação detalhada por categoria de sentimento.

- •Acurácia Geral: 98,36%.
- Positivo: Excelente performance.
- Desafios: Desequilíbrio de dados impactou o desempenho para as categorias "Neutro" e "Negativo".

BERT - Classificação de Sentimentos

In-Context Learning com GPT-Neo

Resumo:

Utilizar In-Context Learning com o modelo GPT-Neo para prever o sentimento das avaliações de produtos.

Estratégia de Prompting:

- •Um prompt é estruturado com exemplos claros de sentimentos positivos, negativos e neutros.
- •O texto da avaliação é adicionado como query no prompt para o modelo prever o sentimento.
- Predição:
- O modelo GPT-Neo gera uma saída textual que contém a classificação do sentimento (Positive, Neutral ou Negative).

Resultados

- Acurácia Geral: 98,57%.
- Detalhamento por Categoria:
 - Positivo: Excelente desempenho, devido à predominância dessa classe no dataset.
 - **Neutro e Negativo**: Desempenho limitado pelo desbalanceamento dos dados.
- •Matriz de Confusão: Mostra que a maioria das classificações erradas ocorre nas categorias "Neutro" e "Negativo".

In-Context Learning com GPT-Neo

Ferramentas e Bibliotecas:

- Manipulação e Visualização de Dados:
 - pandas, matplotlib, seaborn.
- •Pré-processamento de Texto:
 - •nltk, TextBlob.
- •Modelos de Machine Learning:
 - scikit-learn (SVM, CountVectorizer, TfidfVectorizer).
- Modelagem de Tópicos:
 - I atentDirichletAllocation do scikit-learn.
- Transformers e Deep Learning:
 - transformers (BERT, DistilBERT, Roberta).
 - •torch para construção e treinamento de modelos.
 - •GPT-Neo: transformers.pipeline para geração de texto e classificação contextualizada.
- •Utilitários:
 - numpy, wordcloud, collections (Counter)

Modelos Pré-treinados:

- •BERT: bert-base-uncased, distilbert-base-uncased.
- Roberta: roberta-base.
- •GPT-Neo: EleutherAl/gpt-neo-1.3B para *In-Context Learning*.