

Multimedia Communication Systems I

Video Coding Basics

Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu

Outline

- Motivation for video coding
- Basic ideas in video coding
- Block diagram of a typical video codec
- Different modes of operation: I, B, P
- Block DCT Coding
 - DCT
 - Quantization
 - Run-length coding
 - Difference between I and P/B blocks

Why Compress?

M.C.	C . 1	F D.4.	D. D.4. D.4						
Y Size			Raw Data Rate						
	Sampling	(Hz)	(Mbps)						
HDTV Over air. cable, satellite, MPEG2 video, 20-45 Mbps									
1280x720	4:2:0	24P/30P/60P	265/332/664						
1920x1080	4:2:0	24P/30P/60I	597/746/746						
Video production, MPEG2, 15-50 Mbps									
720x480/576	4:4:4	60I/50I	249						
720x480/576	4:2:2	60I/50I	166						
,	SDTV), MPEG2, 4-	-10 Mbps							
720x480/576	4:2:0	60I/50I	124						
Intermediate quality video distribution (VCD, WWW), MPEG1, 1.5 Mbps									
352x240/288	4:2:0	30P/25P	30						
Video conferencing over ISDN/Internet U 261/U 262/MDECA 129 294 Vhns									
	· ·	, I	37						
332X200	4.2.0	301	31						
Video telephony over wired/wireless modem, H.263/MPEG4, 20-64 Kbps									
176x144	4:2:0	30P	9.1						
]	1280x720 1920x1080 MPEG2, 15-50 Mbp 720x480/576 720x480/576 distribution (DVD, 720x480/576 y video distribution 352x240/288 g over ISDN/Interne 352x288 ver wired/wireless m	Sampling able, satellite, MPEG2 video, 20-45 Mbp 1280x720 4:2:0 1920x1080 4:2:0 MPEG2, 15-50 Mbps 720x480/576 4:4:4 720x480/576 4:2:2 distribution (DVD, SDTV), MPEG2, 4-720x480/576 4:2:0 y video distribution (VCD, WWW), MF 352x240/288 4:2:0 g over ISDN/Internet, H.261/H.263/MPF 352x288 4:2:0 yer wired/wireless modem, H.263/MPEG	Sampling (Hz) sble, satellite, MPEG2 video, 20-45 Mbps 1280x720						

Multimedia Communication Standards

Standards	Application	Video Format	Raw Data Rate	Compressed Data Rate
H.320 (H.261)	Video conferencing over ISDN	CIF QCIF	37 Mbps 9.1 Mbps	>=384 Kbps >=64 Kbps
H.323 (H.263)	Video conferencing over Internet	4CIF/ CIF/ QCIF		>=64 Kbps
H.324 (H.263)	Video over phone lines/ wireless	QCIF	9.1 Mbps	>=18 Kbps
MPEG-1	Video distribution on CD/ WWW	CIF	30 Mbps	1.5 Mbps
MPEG-2	Video distribution on DVD / digital TV	CCIR601 4:2:0	128 Mbps	3-10 Mbps
MPEG-4	Multimedia distribution over Inter/Intra net	QCIF/CIF		28-1024 Kbps
GA-HDTV	HDTV broadcasting	SMPTE296/295	<=700 Mbps	1845 Mbps

Components in a Coding System

Image Coding Revisited

- Why can we compress an image
 - Adjacent pixels are correlated (have similar color values)
- How to compress (the JPEG way)
 - Use transform to decorrelate the signal (DCT)
 - Quantize the DCT coefficients
 - Runlength code the quantized indices
 - Zigzag ordering
 - Huffman coding each pair (zero runlength, non-zero value)
- What is different with video?
 - We can apply JPEG to each video frame (Motion-JPEG)
 - But we can do more than that to achieve higher compression!

Characteristics of Typical Videos

Adjacent frames are similar and changes are due to object or camera motion

--- Temporal correlation

Frame 66 Frame 69

Absolute Difference w/o Motion Compensation

Absolute Difference with Motion Compensation

Key Ideas in Video Coding

- Predict a new frame from a previous frame and only specify the prediction error (INTER mode)
- Prediction error will be coded using an image coding method (e.g., DCT-based as in JPEG)
- Prediction errors have smaller energy than the original pixel values and can be coded with fewer bits
- Those regions that cannot be predicted well will be coded directly using DCT-based method (INTRA mode)
- Use motion-compensated temporal prediction to account for object motion
- Work on each macroblock (MB) (16x16 pixels) independently for reduced complexity
 - Motion compensation done at the MB level
 - DCT coding of error at the block level (8x8 pixels)
 - Block-based hybrid video coding

MB Structure in 4:2:0 Color Format

4 8x8 Y blocks

1 8x8 Cb blocks 1 8x8 Cr blocks

Encoder Block Diagram of a Typical Block-Based Hybrid Coder

From [Wang02]

Decoder Block Diagram

Decoder

From [Wang02]

Block Matching Algorithm for Motion Estimation

Frame t-1 (Reference Frame)

Frame t (Predicted frame)

Block Matching Algorithm Overview

- For each MB in a new (predicted) frame
 - Search for a block in a reference frame that has the lowest matching error
 - Using sum of absolute errors between corresponding pels
 - Search range: depends on the anticipated motion range

$$E_{\text{DFD}}(\mathbf{d}_{\text{m}}) = \sum_{\mathbf{x} \in B_m} \left| \psi_2(\mathbf{x} + \mathbf{d}_m) - \psi_1(\mathbf{x}) \right|^p \longrightarrow \min$$

- Displacement between the current MB and the best matching MB is the MV
- Current MB is replaced by the best matching MB (motioncompensated prediction or motion compensation)
- This subject will be discussed in more detail in a separate lecture

Temporal Prediction

- No Motion Compensation:
 - Work well in stationary regions

$$\hat{f}(t,m,n) = f(t-1,m,n)$$

- Uni-directional Motion Compensation:
 - Does not work well for uncovered regions due to object motion or newly appeared objects

$$\hat{f}(t,m,n) = f(t-1,m-d_x,n-d_y)$$

- Bi-directional Motion Compensation
 - Can handle better covered/uncovered regions

$$\hat{f}(t,m,n) = w_b f(t-1, m - d_{b,x}, n - d_{b,y}) + w_f f(t+1, m - d_{f,x}, n - d_{f,y})$$

Different Coding Modes

Encoding order: 1 4 2 3 7 5 6

<u>Intra:</u> coded directly; <u>Predictive:</u> predicted from a previous frame; <u>B</u>idirectional: predicted from a previous frame and a following frame.

Can be done at the block or frame level.

From [Wang02]

DCT-Based Coding Revisited

- Why do we use DCT:
 - To exploit the correlation between adjacent pixels
 - Typically only low frequency DCT coefficients are significant
- For I-blocks, DCT is applied to original image values
- For P/B-blocks, DCT is applied to prediction errors

Basis Images of 8x8 DCT

Low-Low

High-Low

Low-High

High-High

DCT on a Real Image Block

```
>>imblock = lena256(128:135,128:135)-128
imblock=

54 68 71 73 75 73 71 45

47 52 48 14 20 24 20 -8

20 -10 -5 -13 -14 -21 -20 -21

-13 -18 -18 -16 -23 -19 -27 -28

-24 -22 -22 -26 -24 -33 -30 -23

-29 -13 3 -24 -10 -42 -41 5

-16 26 26 -21 12 -31 -40 23

17 30 50 -5 4 12 10 5
```

```
>>detblock = det2(imblock)

detblock=

31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873

113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005

195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585

35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125

40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606

7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087

-1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799
```

Note that most DCT coefficients are close to zero except those at the low-low range

Quantization Matrices

For I-blocks: non-uniform scaling is used (as in JPEG)

$w_{u,v}$	0	1	2	3	4	5	6	8	
0	8	16	19	22	26	27	29	34	
1	16	16	22	24	27	29	34	37	
2	19	22	26	27	29	34	34	38	
3	22	22	26	27	29	34	37	40	
4	22	26	27	29	32	35	40	48	Figure 13.13 Default weights for
5	26	27	29	32	35	40	48	58	quantization of I-blocks in MPEG-1.
6	26	27	29	34	38	46	56	69	Weights for horizontal and vertical
7	27	29	35	38	46	56	69	83	frequencies differ.

 For P/B blocks: the same stepsize (8) is used for all coefficients, and this stepsize can be scaled by a userselectable parameter (quantization parameter or QP) that controls the trade-off between bit-rate and quality

Zig-Zag Ordering

Zig-Zag ordering: converting a 2D matrix into a 1D array, so that the frequency (horizontal+vertical) increases in this order, and the coefficient variance (average of magnitude square) decreases in this order.

Run-length Coding

- Runlength coding
 - Many coefficients are zero after quantization
 - Runlength Representation:
 - Ordering coefficients in the zig-zag order
 - Specify how many zeros before a non-zero value
 - Each symbol=(length-of-zero, non-zero-value)
 - For I-blocks, the DC coefficient is specified directly
 - Code all possible symbols using Huffman coding
 - More frequently appearing symbols are given shorter codewords
 - One can use default Huffman tables or specify its own tables.
 - Instead of Huffman coding, arithmetic coding can be used to achieve higher coding efficiency at an added complexity.

Example of Runlength Coding

Quantized DCT indices for an I block =

Run-length symbol representation: $\{2,(0,5),(0,9),(0,14),(0,1),(1,-2),(0,-1),(0,1),(0,3),(0,2),(0,-1),(0,-1),(0,2),(1,-1),(2,-1),(0,-1),(0,-1),(0,1),EOB\}$

EOB: End of block, one of the symbol that is assigned a short Huffman codeword

Macroblock Coding in I-Mode

DCT transform each 8x8 DCT block

Quantize the DCT coefficients with properly chosen quantization matrices (different matrices for Y and C)

The quantized DCT coefficients are zig-zag ordered and run-length coded

Macroblock Coding in P-Mode

For each macroblock (16x16), find the best matching block in a previous frame, and calculate the prediction errors

The prediction errors in each of the DCT blocks (8x8) are DCT transformed, quantized (according to specified QP), zig-zag scanned, and run-length coded

1 pair of motion vector (MV) also needs to be coded

Macroblock Coding in B-Mode

- Same as for the P-mode, except that a macroblock is predicted from both a previous picture and a following one.
- Two pair of MVs needed to be coded.

Coding Mode Selection

- Which mode should we use for a given MB?
- Frame-level control
 - I frame use only I-mode
 - P-frame use P-mode, except when prediction does not work (back to I-mode)
 - B-frame use B-mode (but can switch to P-mode and I-mode)
- Block-level control
 - A MB is coded using the mode that leads to the lowest bitrate for the same distortion -> rate-distortion optimized mode selection
 - I-mode is used for the first frame, and is inserted periodically in following frames, to stop transmission error propagation
- Mode information is coded in MB header.

Rate Control

- For a fixed QP, the bit rate varies from block to block
 - I mode needs more bits than P and B modes
 - Even when the mode is the same, blocks with complex motion and texture require more bits
- To reach a desired bit rate (averaged over a frame or a group of frames), one can adjust
 - QP
 - Encoding frame rate (frame skip)
 - Controlled by the status of a buffer that stores the bits produced by the encoder

Sensitivity to Transmission Errors

- Prediction and variable length coding makes the video stream very sensitive to transmission errors on the bitstream
 - Error in one frame will propagate to subsequent frames
 - Bit errors in one part of the bit stream make the following bits undecodable

Effect of Transmission Errors

Example reconstructed video frames from a H.263 coded sequence, subject to packet losses

Error Resilient Encoding

- To help the decoder to resume normal decoding after errors occur, the encoder can
 - Periodically insert INTRA mode (INTRA refresh)
 - Insert resynchronization codewords at the beginning of a group of blocks (GOB)
- More sophisticated error-resilience tools
 - Multiple description coding
- Trade-off between efficiency and error-resilience
- Can also use channel coding / retransmission to correct errors

Error Concealment

- With proper error-resilience tools, packet loss typically lead to the loss of an isolated segment of a frame
- The lost region can be "recovered" based on the received regions by spatial/temporal interpolation → Error concealment
- Decoders on the market differ in their error concealment capabilities

Without concealment

With concealment

Scalable Coding

Motivation

- Real networks are heterogeneous in rate
 - streaming video from home (56 kbps) using modem vs. corporate LAN (10-100 mbps)

Scalable video coding

- Ideal goal (embedded stream): Creating a bitstream that can be accessed at any rate
- Practical video coder:
 - layered coder: base layer provides basic quality, successive layers refine the quality incrementally
 - Coarse granularity (typically known as layered coder)
 - Fine granularity (FGS)

Bit Stream Scalability

Bit stream

Illustration of Scalable Coding

6.5 kbps

21.6 kbps

133.9 kbps

436.3 kbps

What you should know

- What are the principle steps in a video coder? What are the three types of information coded? You should be able to draw the block diagram of a typical block-based video codec (encoder and decoder) using motion-compensation and know the function of each step
- Why do we use motion-compensated prediction?
- What are the difference between I, B, and P modes? Why do we
 use different modes? What may be the problem if we use Pmodes only (except the first frame)?
- What are the basic steps in DCT-based coding? How to apply it to I and P/B blocks?
- Why is error-resilience and error-concealment important in video encoder and decoder design?
- What is scalable coding? What are the benefits and trade-offs?

References

- Y. Wang, J. Ostermann, Y. Q. Zhang, *Video Processing and Communications*, Prentice Hall, 2002. Chapters 9,11,13
- Y. Wang and Q. Zhu, "Error control and concealment for video communication: a review," *Proceedings of the IEEE*, vol. 86, pp. 974-997. May 1998.