全地形自主导航

马庆华 上海一坤电气工程有限公司

内容提要

全地形自主导航

- (1) 三维地图的构建、定位、路径规划,二维地图对比
 - (2) 全局与局部融合定位, 坐标系约定与变换
 - (3) 可通过性检测、costmap层级
 - (4) Gazebo仿真配置
 - (5) 轮腿式机器人导航

(1) 二维建图、定位

- SLAM
- 粒子定位
- costmap

(1) 三维建图一点云配准

● NDT—正态分布变换

$$score(\mathbf{p}) = \sum_{i} exp(-rac{(\mathbf{x}_{i}'-\mathbf{q}_{i})^{T}\Sigma_{i}^{-1}(\mathbf{x}_{i}'-\mathbf{q}_{i})}{2})$$

● ICP—迭代最近点

$$e(X,Y) = \sum_{i=1}^{m} (Rx_i + t - y_i)^2$$

"means1.txt"

(1) 三维建图一点云处理

- 去除噪音
- 降采样
- 移除行人
- 移除地面
- 点云变换与增量式注册
- Mesh化

(1) 三维建图—points、octomap、elevation

(1) 三维建图—depth_map、costmap

(1) 三维建图一地图势场

寻找最低能耗路径

(1) 三维建图一路径规划

- 2D Costmap
- Hopfield network
- Moveit三维模型

(2) 机器人定位一坐标系

- WGS84、UTM
- ENU
- 磁偏角
- navsat_transform

te_publisherBroadcaster: /robot_state_publisher Average rate: 50.625 Broadcaster: /robot_state_publisher Average rate: 50.617

(2) 机器人定位一局部定位

- EKF或UKF
- 里程计
- IMU

(2) 机器人定位一全局定位

- EKF或UKF
- 里程计
- Laser odom
- IMU
- GPS odom

(3)可通过性检测—Traversability

- 室内移动机器人
- 室外移动平台
- 双足/四足机器人
- 特种机器人
- (无人机?)

(3) 可通过性检测一点云法向量


```
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud(tmp_cloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
ne.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
ne.setRadiusSearch(0.5);
ne.compute(*cloud_normals);
//ROS_INFO("cloud_size: %d, normal_size: %d", tmp_cloud->points.size(), cloud_normals->points_marker_array_msg_.markers.resize(cloud_normals->points.size());
for (unsigned int i = 0; i < cloud_normals->points.size(); ++i)
{
```

(3)可通过性检测—traversability_layer

(4) Gazebo仿真配置

- 环境加载
- 传感器配置

(5) 轮腿式机器人导航

- 功耗
- 可通过性

(5) DARPA X-Vehicle

Ground X-Vehicle Technologies (GXV-T)

Final Demonstrations

QUESTIONS?

马庆华 +86-13564147965 hellocarp@gmail.com