INT201 Decision, Computation and Language

Tutorial 9 Dr Yushi Li

1. Prove that CFGs are decidable.

2. Prove that CFLs are decidable.

3. Prove that the language $L_{TM}^{}$ is undecidable.

Solution

1.

Proof

On input $\langle G, w \rangle \in \Omega$, where G is a CFG and w is a string,

- 0. Check if $\langle G, w \rangle$ is proper encoding of CFG and string; if not, reject.
- 1. Convert G into equivalent CFG G' in Chomsky normal form.
- 2. If $w = \varepsilon$, check if $S \to \varepsilon$ is a rule of G'. If so, accept; otherwise, reject.
- 3. If $w \neq \varepsilon$, list all derivations with 2n-1 steps, where n = |w|.
- 4. If any generates w, accept; otherwise, reject.

Solution

2.

Proof

- \bullet Let L be a CFL
 - lacksquare G' be a CFG for language L
 - S be a TM from Theorem 4.7 that decides

$$A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$$

ullet Construct TM $M_{G'}$ for language L having CFG G' as follows:

$$M_{G'}=$$
 "On input w :

- 1. Run TM decider S on input $\langle G', w \rangle$.
- 2. If S accepts, accept; otherwise, reject."

3.

Proof

Suppose L_{TM} is decided by a TM H, with input $\langle M, w \rangle \in \Omega$

- If $\langle M, w \rangle \in L_{TM}$, then H terminates in its accept state.
- If $\langle M, w \rangle \notin L_{TM}$, then H terminates in its reject state.

Use H as a subroutine to construct a new TM D

- If H terminates in its accept state, then D terminates in its reject state.
- If H terminates in its reject state, then D terminates in its accept state.
- If $\langle M, w \rangle \in L_{TM}$, then D terminates in its reject state.
- If $\langle M, w \rangle \not\in L_{TM}$, then D terminates in its accept state.

3.

Proof

For any string $\langle M \rangle$

- If M accept (M), then D rejects (M)
- If M rejects $\langle M \rangle$ or does not terminate on it, then D accepts $\langle M \rangle$

If we input the string $\langle D \rangle$ and take M = D

- If D accept (D), then D rejects (D)
- If D rejects (D) or does not terminate on it, then D accepts (D)

Clearly a contradiction.

