5 Constructions de \mathbb{R} à partir de \mathbb{Q}

5.1 Coupures de Dedekind

Définition 1 Une coupure de Dedekind est une partie $\alpha \subseteq \mathbb{Q}$ telle que :

- a) $\emptyset \neq \alpha \neq \mathbb{Q}$;
- b) $\forall q$
- c) α n'a pas de plus grand élément (i.e. : $\forall x \in \alpha, \exists y \in \alpha, x < y$.

Théorème 5.1 Si α est une coupure, alors $q \notin \alpha \Rightarrow q > p$.

Exemple: $\{x \in \mathbb{Q} : x^2 \le 2\}$ et $\forall r \in \mathbb{Q}, r^* = \{x \in \mathbb{Q} : x < r\}$ sont des coupures.

Notons R l'ensemble des coupures de \mathbb{Q} . On a une application injective : $\mathbb{Q} \to R, r \mapsto \{x \in \mathbb{Q} : x < r\}$. Ordre

Soient α, β des coupures. On pose $\alpha < \beta$ si $\alpha \neq \beta$ et $\alpha \subseteq \beta$.

Exercice 1 On a toujours $\alpha = \beta$, $\alpha < \beta$ ou $\beta < \alpha$.

Proposition 5.2 L'ensemble R avec < a la propriété de la borne sup.

Démonstration : Soit $\emptyset \neq E \subseteq R$ tel qu'il existe $\beta \in R$ vérifiant : $\forall \alpha \in E, \alpha < \beta$.

Alors on peut poser $\sigma = \bigcup_{\alpha \in E} \alpha$. C'est une coupure! De plus, on a bien $\alpha \leq \sigma$ pour tout $\alpha \in E$. Et si $\alpha < \gamma$ pour tout $\alpha \in E$, alors $\sigma \leq \gamma$. $\underline{q.e.d.}$ Addition, multiplication

Si α , β sont des coupures de \mathbb{Q} , on pose $\alpha + \beta = \{x + y : x \in \alpha, y \in \beta\}$. On pose $0^* = \mathbb{Q}_{\leq 0}$ et $-\alpha = \{p \in \mathbb{Q} : \exists r > 0, -p - r \notin \alpha\}$.

Exercice 2 $-(-\alpha) = \alpha$

Si $\alpha, \beta > 0^* i.e.$ $0 \in \alpha, \beta$, on pose $\alpha\beta = \{p \in \mathbb{Q} : \exists r \in \alpha, s \in \beta, r, s > 0, p \le rs\}$. On pose $1^* = \mathbb{Q}_{<1}$.

Ensuite on pose
$$\alpha 0^* = 0^* \alpha = 0^*$$
 et $\alpha \beta = \begin{cases} (-\alpha)(-\beta) & \text{si } \alpha < 0^* ; \\ -((-\alpha)\beta) & \text{si } \alpha < 0^* \text{ et } \beta > 0^* ; \\ -(\alpha(-\beta)) & \text{si } \alpha > 0^* \text{ et } \beta < 0^* ; \end{cases}$

Lemme 5.3 Si $r, s \in \mathbb{Q}$, alors $(r+s)^* = r^* + s^*$, $(rs)^* = r^* s^*$, $r < s \Leftrightarrow r^* < s^*$.

Théorème 5.4 (R, +, ., <) est un corps totalement ordonné avec la propriété de la borne sup. On le notera \mathbb{R} .

Exercice 3 L'application $r \mapsto r^* = \mathbb{Q}_{< r}$ est un morphisme de corps (i.e. : préserve la somme et le produit et envoie 1 sur 1*.

5.2 Construction à partir des suites de Cauchy

Si $r \in \mathbb{Q}$, on pose $[r] = \{(x_n) \in \mathbb{Q}^{\mathbb{N}} : \lim_n x_n = r\}$. Si $x = (x_n)$ est une suite, on pose $[x] = \{(u_n) \in \mathbb{Q}^{\mathbb{N}} : \lim_n (u_n - x_n) = 0\}$.

On pose $\mathcal{C}(\mathbb{Q}) = \{\text{les suites rationelles de Cauchy}\}$. Et $R := \{[x] : x \in \mathcal{C}_{\mathbb{Q}}\}$.

Par exemple si $r \in \mathbb{Q}$, si (r, r, ...) est la suite constante égale à r, alors $[(r, r, ...)] = \{(x_n) : \lim_n x_n = r\} = [r].$

Exercice 4 Soient $x, y \in \mathbb{Q}^{\mathbb{N}}$:

$$[x] = [y] \Leftrightarrow \lim_{n} (x_n - y_n) = 0$$
.

Exemple: si $u_n = 1 + \frac{1}{2} + \frac{1}{6} + ... + \frac{1}{n!}$ et si $v_n = u_n + \frac{1}{n!}$, alors $[(u_n)] = [(v_n)]$.

Addition et produit :

Soient $x, y \in \mathscr{C}_{\mathbb{Q}}$. On pose [x + y] = [x + y], $[xy] = [(x_n y_n)_n]$. L'addition est bien définie et a pour de neutre [0]. La multiplication est bien définie et a pour neutre [1].

Théorème 5.5 Avec +, ., R est un corps.

Démonstration : Vérifions seulement que tout élément $[x] \neq [0]$ est inversible. Comme x_n est de Cauchy, et comme $\lim_n x_n \neq 0$, il existe $\epsilon \in \mathbb{Q}_{>0}$ tel que $\forall N \in \mathbb{N}$, $\exists n \geq N$, $|x_n| \geq \epsilon$; il existe aussi $N \in \mathbb{N}$ tel que $\forall m, n \geq N$, $|x_m - x_n| < \epsilon/2$. Mais alors si on choisit $n_0 \geq N$ tel que $|x_{n_0}| \geq \epsilon$, alors on a $\forall n \geq n_0$, $|x_n| \geq |x_{n_0}| - |x_n - x_{n_0}| \geq \epsilon/2$. En particulier, $x_n \neq 0$ si $n \geq n_0$ et la suite $(x_n^{-1})_{n \geq n_0}$ est de Cauchy. On vérifie facilement que $[(x_n^{-1})] = [x]^{-1}$... q.e.d.

5.2.1 Relation d'ordre

Soient $x, y \in \mathcal{C}_{\mathbb{Q}}$. On pose [x] < [y] s'il existe $\epsilon \in \mathbb{Q}_0$ tel que $\exists N \in \mathbb{N}, \forall n \ge N, x_n + \epsilon < y_n$. On posera aussi $|[x]| = [(|x_n|)_n]$ si $x = (x_n)_n$.

Théorème 5.6 Le corps (R, +, ., <) est archimédien et totalement ordonné.

Démonstration : Archimédien? en effet, si [x] > 0, si a est une suite de Cauchy, alors a est majorée donc il existe $M \in \mathbb{N}$ tel que $a_n \leq M$ pour tout n. Soit $\epsilon \in \mathbb{Q}_{>0}$ tel qu'il existe $N \in \mathbb{N}$ avec $\forall n \geq N, x_n > \epsilon$. On peut trouver $N' \in \mathbb{N}$ tel que $N' \epsilon > M$. On a alors N'[x] > [a].

Totalement ordonné? (exo)

q.e.d.

Théorème 5.7 Dans R, toutes les suites de Cauchy convergent vers un élément de R.

 $D\acute{e}monstration$: Soit $[x_n]$ une suite de Cauchy d'éléments de R. I. e. : pour tout n, la suite $(x_{nk})_{k\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$ est de Cauchy et :

$$\forall \epsilon \in \mathbb{Q}_{>0}, \exists N \in \mathbb{N}, \forall m, n \ge N^{\exists} K_{m,n} \in \mathbb{N}, \forall k \ge N_{m,n}, |x_{nk} - x_{mk}| < \epsilon.$$

Comme R est archimédien, pour tout $n \in \mathbb{N}^*$, il existe $r_n \in \mathbb{Q}$ tel que $[x_n] < [r_n] < [x_n + 1/n]$ donc il existe K_n tel que $\forall k \geq K_n, x_{nk} < r_n < x_{nk} + 1/n$.

alors la suite $r := (r_n) \in \mathbb{Q}^{\mathbb{N}}$ est de Cauchy (exo) et $|[x_n] - [r]| < 1/n$ pour tout n > 0 donc $\lim_n [x_n] = [r]$ existe dans R. q.e.d.

Pas fait en cours ...

6 Nombres décimaux

Soit $\mathbb{D}=\{p/10^k: k\geq 0, p\in \mathbb{Z}\}\subseteq \mathbb{Q}$. C'est l'ensemble des nombres décimaux.

Exercice 5 D contient Z, est stable par somme et par produit.

Si $x \in \mathbb{R}$, on pose n_0 le plus grand entier $\leq x$ et si $n_0, ... n_{k-1}$ sont définis, on pose n_k le plus grand entier tel que $n_0 + n_1/10 + ... + n_k/10^k \leq x$. Bien entendu, $n_k \in \{0, ..., 9\}$ pour tout $k \geq 1$. $n_0, n_1 n_2 ...$ est le développement décimal de x et on a $x = \sup\{n_0 + ... + \frac{n_k}{10^k}\}$.

Réciproquement si $n_0, n_1, ...$ est une suite infinie avec $n_k \in \{0, ..., 9\}$ pour tout $k \ge 1$, alors $\sup\{n_0 + ... + n_k/10^k\}$ existe dans \mathbb{R} .

En effet, c'est une suite croissante majorée par $n_0 + \sum_{k\geq 0} 9/10^k = n_0 + 1$. Exemple : $0 + 9/10 + 9/100 + \dots = 1$.

7 Théorème des valeurs intermédiaires

Lemme 7.1 Soit I un intervalle de \mathbb{R} . Soit $x \in I$ et $f: I \to \mathbb{R}$ une fonction continue en x. Soit u_n une suite réelle qui converge vers $x \in \mathbb{R}$. Si la suite $f(u_n)$ est définie alors $\lim_n f(u_n) = f(x)$.

Théorème 7.2 Soient $a < b \in \mathbb{R}$. On suppose que $f : [a,b] \to \mathbb{R}$ est continue. Alors si f(a) < y < f(b), il exite a < x < b tel que f(x) = y. De même si f(a) > y > f(b).

Démonstration : On pose $x = \sup\{t \in [a,b] : f(t) < y\}$. On vérifie que f(x) = y.

Exercice 6 Soit $\varphi : \mathbb{R} \to \mathbb{R}$ un morphisme de corps i.e. $\forall x, y \in \mathbb{R}$, $\varphi(x + y) = \varphi(x) + \varphi(y)$, $\varphi(xy) = \varphi(x)\varphi(y)$, $\varphi(1) = 1$. Alors $\varphi = \operatorname{Id}_{\mathbb{R}}$. Indication : φ est l'identité sur \mathbb{Q} et φ est croissante car $x \geq 0 \Leftrightarrow \exists y \in \mathbb{R}$, $x = y^2 \Rightarrow \varphi(x) = \varphi(y)^2 \Rightarrow \varphi(x) \geq 0$; si $x \in \mathbb{R}$, on peut trouver une suite croissante de rationnels et une suite décroissante de rationnels qui tendent vers $x \ldots$

Contre-exemple : l'ensemble $\{\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2}: a,b\in\mathbb{Q}\}$ est un sous-corps de \mathbb{R} et le morphisme $\mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2}), a+b\sqrt{2} \mapsto a-b\sqrt{2}$ n'est pas l'identité ...