API Description

LiDAR localization

Described product

API Description

Manufacturer

SICK AG Erwin-Sick-Str. 1 79183 Waldkirch Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of SICK AG.

The trademarks stated in this document are the property of their respective owner.

© SICK AG. All rights reserved.

Original document

This document is an original document of SICK AG.

Contents

1	Abo	About this document						
	1.1	Functio	n of this document	5				
2	Use	r interfa	ces	6				
3	Con	nmand /	API	ç				
	3.1	System		10				
		3.1.1	Command: GetSoftwareVersion	10				
		3.1.2	Command: IsSystemReady	12				
		3.1.3	Command: LoadPersistentConfig	14				
		3.1.4	Command: LocGetSystemState	16				
		3.1.5	Command: LocStartLocalizing	18				
		3.1.6	Command: LocStart	20				
		3.1.7	Command: LocStop	22				
		3.1.8	Command: LocGetLocalizationStatus	24				
	3.2	Mappin	ıg	27				
		3.2.1	Command: LocSetMappingActive	27				
		3.2.2	Command: LocSetMap	29				
		3.2.3	Command: LocSwitchMap	32				
		3.2.4	Command: LocLoadMapToCache	33				
		3.2.5	Command: LocClearMapCache	35				
		3.2.6	Command: LocGetMap	37				
	3.3	Initializa	ation	39				
		3.3.1	Command: LocInitializeAtPose	39				
		3.3.2	Command: LocResumeAtPose	42				
	3.4	Automa	tic start	45				
		3.4.1	Command: LocAutoStartSavePose	45				
	3.5	Odome	try	47				
		3.5.1	Command: LocSetOdometryActive	47				
	3.6	Kinema	atic	50				
		3.6.1	Command: LocSetKinematicVehicleModelActive	50				
	3.7	Lines		52				
		3.7.1	Command: LocSetLinesForSupportActive	52				
	3.8	Synchro	onization	54				
		3.8.1	Command: LocRequestTimestamp	54				
	3.9	Recordi	ing	56				
		3.9.1	Command: LocSetRecordingActive	56				
		3.9.2	Command: LocSetRingBufferRecordingActive	58				
		3.9.3	Command: LocSaveRingBufferRecording	60				
4	Stre	aming A	API (UDP)	62				
	4.1	User int	terface UDP	62				
	4.2	Header		64				
	4.3							

		4.3.1	Odometry - MsgType: 1	65
		4.3.2	Encoder - MsgType: 2	67
		4.3.3	1D Codes - MsgType: 3	69
		4.3.4	Line - MsgType: 4	71
		4.3.5	Localization result - MsgType: 5	73
		4.3.6	2D Codes - MsgType: 7	74
_	Δ			
5	Anne	€X		77
	5.1	Appendix	A: Communication via CoLa2	77
		5.1.1	Overview of the telegram format	77
		5.1.2	Sessions	80
		5.1.3	Using LiDAR-LOC with CoLa2	81
		5.1.4	CoLa2 data types	84
	5.2	Appendix	D: Examples of communication via CoLa2	85
		5.2.1	Example 1 - CoLa2: Setting a map	85
		5.2.2	Example 2 - CoLa2: Initialize at pose	86

1 **About this document**

1.1 **Function of this document**

This document describes the API (Application Programming Interface) to communicate with LiDAR-LOC. The interfaces described are:

- CoLa-A (Command Language ASCII) deprecated (SIMs only)
- CoLa 2 (Command Language 2)
- REST (REpresentational State Transfer)
- ROS (Robot Operating System)

The full description of the ROS driver can be found here:

https://github.com/SICKAG/sick_lidar_localization

The full operating instructions stated below are explicitly required for the use of LIDAR-LOC:

- Operating instructions (8025192)
- Hardware Integration (8025193)

NOTE

Some commands may change during SICK development processes. Please always use the latest version of the "API Description" document.

User interfaces 2

Overview

You can control, set, and call all localization functions with different user interfaces.

There are the following three interface types:

- GUI: Graphical User Interface
- Command interface
- Streaming interface

Status requests, situational information or configuration changes are exchanged between the localization controller and the vehicle controller via the command interface. After a restart of the localization controller, configuration changes are reset. Permanent configuration changes are saved in the configuration file.

With the streaming interface, the localization controller receives and sends data continuously to the external vehicle controller.

NOTE

The usage of the generic C++ driver in the vehicle controller can replace the command API CoLa-A, CoLa2 and REST as well as the streaming API (UDP). With this driver the LiDAR-LOC API is fully integrated.

Interfaces and ports

Table 1: Overview of the interfaces

Usage	Interface	Interface type	Source port	Destina- tion port	Description
SOPASair web server	HTTP	GUI	801)	801)	Control and setting of all localization functions via the web-interface.
Configuration in operation	REST (HTTP)	Command	801)	801)	Control of localization functions via REST API.
Configuration in operation	CoLa-A Deprecated (TCP)	Command	2111 / 2112	2111 / 2112	Control of localization functions via ASCII telegrams (only SICK controllers, SIMs). CoLa is a SICK proprietary format based on TCP/IP.
Configuration in operation	CoLa2 (TCP)	Command	Selected by CoLa2 client (e.g. vehicle controller)	2122	Control of localization functions via binary CoLa2 telegrams. CoLa is a SICK proprietary format based on TCP/IP.
Generic (C++)	UDP, REST	Command and Streaming	See corresponding protocol	See corresponding protocol	The usage of the generic C++ driver in the vehicle controller can replace the command API CoLa-A, CoLa2 and REST as well as the streaming API (UDP). With this driver the LiDAR-LOC API is fully integrated.
ROS	TCP, UDP, REST	Command and Streaming	-	-	When using ROS in the vehicle controller, the command API CoLa-A, CoLa2 and REST as well as the streaming data (UDP) can be replaced with the ROS driver.
Data input	UDP	Streaming	Selected by UDP client (e.g. LiDAR- LOC)	50092)	Streaming data to receive partly pre-processed sensor data of the external vehicle controller from 2D LiDAR sensor, wheel odometry, line and code sensors
Data output	UDP	Streaming	50082)	50102)	Streaming data to output localization results.
Data transfer	FTP	On request	23002)	23002)	Access to public directory to retrieve data, e.g. support data recording.

Usage	Interface	Interface type	Source port	Destina- tion port	Description
Measurement data LiDAR safety sensor	UDP	Streaming	Randomly selected	Configura- ble ³⁾	Continuous measurement data output of the sensor to the localization controller.
Configuration of LiDAR safety sensor	CoLa2 (TCP)	Configuration	Selected by CoLa2 client (e.g. LiDAR- LOC)	2122	Configuration of the measurement data output of the safety LiDAR sensor by the localization controller
Measurement data of LiDAR sensor	TCP, CoLa- A	Configuration and Streaming	Randomly selected	2111/211	Continuous measurement data output of the sensor to the localization controller. Configuration of the measurement data output of the LiDAR sensor by the localization controller
Measurement data picoScan150	UDP	Streaming	Randomly selected	Configura- ble, default 2115	Continuous measurement data output of the sensor to the localization controller. Configuration of the measurement data output of the LiDAR sensor by the localization controller or by user. MSGPCK and Compact format.

- Configurable for IPCs: Changing the web server port
- 2) Configured in lidarloc config.yml or in SOPASair Web GUI setup in communication.
- Configured in lidarloc config.yml or in SOPASair Web GUI setup in sensors -> lidars -> interface -> receiverPort.
 - Automatic: A random port 51000 to 51050 is selected.
 - Manual: A specified port is selected, for example 56661.

Can also be configured in the Safety Designer (Configuration -> Data output -> UDP port), e.g. 6060. The same value must then also be set in LiDAR-LOC.

Figure 1: Overview of the interfaces using SICK controller (SIM)

Figure 2: Overview of the interfaces using industrial PC (IPC)

- 1) Randomly chosen from ephermal range
 2) Chosen by customer
 3) Randomly chosen from ephermal range. Can be configured in config.yml (default 1st sensor: 56661) or when using ROS in the sick, safetyscanner launch file (1st sensor for example: 6060)
 4) Listener to port 5010 and to own IP address (localhost, 127.0.0.1)

Figure 3: Overview of the ports with auxiliary sensors

Complementary information

- You can find the required generic C++ and ROS driver as well as the documentation on GitHub:
 - https://github.com/SICKAG/sick_lidar_localization
- LiDAR-LOC Operating Instructions, 8027121

3 **Command API**

Overview

Status requests, situational information or configuration changes are exchanged between the localization controller and the vehicle controller via the command interface. After a restart of the localization controller, configuration changes are reset. Permanent configuration changes are saved in the configuration file.

The command API provides the following interfaces:

- **REST**
- CoLa-A Deprecated
- CoLa2
- ROS

Example start sequence

The simplified start sequence (figure 4) can be used if the localization system was previously successfully configured via SOPASair or API.

Figure 4: Simplified start sequence (commands and results are written in blue.)

3.1 **System**

3.1.1 Command: GetSoftwareVersion

Overview

Get the current software version of the localization controller's application software.

Request

Table 2: Request command

Туре	Command
Getter	GetSoftwareVersion

Table 3: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Read the current software version.

Table 4: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN sMN GetSoftwareVersion	
CoLa2	MN	MNGetSoftwareVersion
REST	POST	http://192.168.0.1/api/GetSoftwareVersion
Generic (C++)	<pre>seneric(C++) gen_srv ./build/gen_service_call LocGetSoftwareVers POST "{}" -d=2</pre>	
ROS 1	srv	rosservice call LocGetSoftwareVersion "{}"
ROS 2		<pre>ros2 service call LocGetSoftwareVersion sick_lidar_localization/srv/ LocGetSoftwareVersion Srv "{}"</pre>

Response

Table 5: Response data

Data field	Туре	Description	Range/Value
version	String	The software version.	Max length = 255

Example

The current software version is 2.0.0.14R.

Table 6: Response example

Interface	Response example			
CoLa-A Deprecated	Hexadecimal ¹⁾ sAN GetSoftwareVersion 9 2.0.0.14R			
CoLa2	ISO 8859-151) ANGetSoftwareVersion 0x00092.0.0.14R			
	Hexadecimal ¹⁾ 414E 4765 7453 6F66 7477 6172 6556 6572 7369 6F6E 2000 0932 2E30 2E30 2E31 3452			

Interface	Response example
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "version": "2.0.0.14R" } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

 $^{^{1)}}$ The string has a prefix that specifies the length of the string. In this case the character length is 0x9, $9_{\rm dec}$.

3.1.2 Command: IsSystemReady

Overview

Checks if the localization controller is booted and ready to process commands.

Request

Table 7: Request command

Туре	Command
Getter	IsSystemReady

Table 8: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Check if the system is ready.

Table 9: Request example

Interface	Туре	Request example	
CoLa-A	sMN	sMN IsSystemReady	
Deprecated			
CoLa2	MN	MNIsSystemReady	
REST	POST	http://192.168.0.1/api/IsSystemReady	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocIsSystemReady POST "{}" -d=2</pre>	
ROS 1	srv	rosservice call LocIsSystemReady "{}"	
ROS 2		<pre>ros2 service call LocIsSystemReady sick_lidar_localization/srv/LocIsSystemReadySrv "{}"</pre>	

Response

Table 10: Response data

Data field	Туре	Description	Range/Value
state	Bool_1	The localization controller is ready for communication	No answer or error: Localization controller is booting or LiDAR-LOC is loading 1 true: Localization controller is ready

Example 1:

The system is ready.

Table 11: Response example

Interface	Response example
CoLa-A Deprecated	sAN IsSystemReady 1
CoLa2	ISO 8859-15 ANIsSystemReady 1
	Hexadecimal 414E 4973 5379 7374 656D 5265 6164 7920 01

Interface	Response example
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"0k"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

Example 2:

The system is not yet booted and ready.

Table 12: Response example

Interface	Response example
CoLa-A Deprecated	no answer or error
CoLa2	no answer or error
REST	<pre>"header": { "status": 3, "message": "Internal Server Error" }</pre>
Generic (C++)	<pre>response: "{"header":{"status":3,"message":"Internal Server Error"}}"</pre>
ROS 1	no answer or error
ROS 2	

3.1.3 Command: LoadPersistentConfig

Overview

Reload the persistent LiDAR-LOC configuration file and discard the current changes.

Prerequisites

The localization software is in system state Configuration.

Request

Table 13: Request command

Туре	Command
Setter	LoadPersistentConfig

Table 14: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Load the persistent config and discard the current changes.

Table 15: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LoadPersistentConfig	
CoLa2	MN	MNLoadPersistentConfig	
REST	POST	http://192.168.0.1/api/LoadPersistentConfig	
Generic (C++)	gen_srv	./build/gen_service_call LocLoadPersistentConfig POST "{}" -d=2	
ROS 1	srv	rosservice call LocLoadPersistentConfig "{}"	
ROS 2		<pre>ros2 service call LocLoadPersistentConfig sick_lidar_localization/srv/ LocLoadPersistentConfigSrv "{}"</pre>	

Response

Table 16: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The persistent parameters have been loaded successfully and the temporary changes have been discarded.

Table 17: Response example

Interface	Response example
CoLa-A Deprecated	sAN LoadPersistentConfig 1 0
CoLa2	ISO 8859-15 ANLoadPersistentConfig 1 0
	Hexadecimal 414E 4C6F 6164 5065 7273 6973 7465 6E74 436F 6E66 6967 2001 2000

Interface	Response example
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true "response": "" } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true, "response": ""}}"</pre>
ROS 1	success=1
ROS 2	response=""

3.1.4 Command: LocGetSystemState

Overview

Read the current state of the localization state machine.

Request

Table 18: Request command

Туре	Command
Getter	LocGetSystemState

Table 19: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Read the state of the system.

Table 20: Request example

Interface	Туре	Request example	
CoLa-A	sMN	sMN LocGetSystemState	
Deprecated			
CoLa2	MN	MNLocGetSystemState	
REST	POST	http://192.168.0.1/api/LocGetSystemState	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocGetSystemState POST "{}" -d=2</pre>	
ROS 1	srv	rosservice call LocGetSystemState "{}"	
ROS 2		<pre>ros2 service call LocGetSystemState sick_lidar_localization/srv/ LocGetSystemStateSrv "{}"</pre>	

Response

Table 21: Response data

Data field	Туре	Description	Range/Value
systemState	Enum	Localization state.	 Configuration
			 Operation

Example

LiDAR-LOC is in "Operation" mode.

Table 22: Response example

Interface	Response example	
CoLa-A Deprecated	Hexadecimal ¹⁾ sAN LocGetSystemState 9 Operation	
CoLa2	ISO 8859-151) ANLocGetSystemState 0x0009Operation	
	Hexadecimal ¹⁾ 414E 4C6F 6347 6574 5379 7374 656D 5374 6174 6520 00094F70 6572 6174 696F 6E	

Interface	Response example
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "systemState": Operation } }</pre>
Generic (C++)	<pre>response: {"header": {"status":0,"message":"Ok"},"data{"systemState":"Opera tion"}}</pre>
ROS 1	systemstate: "Operation"
ROS 2	

 $^{^{1)}}$ The string has a prefix that specifies the length of the string. In this case the character length is 0x9, $9_{\rm dec}$.

3.1.5 Command: LocStartLocalizing

Overview

Start the localization.

NOTICE

This command is deprecated. Use LocStart instead.

Request

Table 23: Request command

Туре	Command
Setter	LocStartLocalizing

Table 24: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Start the localization.

Table 25: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocStartLocalizing	
REST	POST	http://192.168.0.1/api/LocStartLocalizing	
Generic (C++)	gen_srv	./build/gen_service_call LocStartLocalizing POST "{}" -d=2	
ROS 1	srv	rosservice call LocStartLocalizing "{}"	
ROS 2		<pre>ros2 service call LocStartLocalizing sick_lidar_localization/srv/ LocStartLocalizingSrv "{}"</pre>	

Response

Table 26: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The system started localizing.

Table 27: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocStartLocalizing 1
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>

Interface	Response example
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

3.1.6 Command: LocStart

Overview

Set the system to state **Operation**.

Request

Table 28: Request command

Туре	Command
Setter	LocStart

Table 29: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Set the system to state operation.

Table 30: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	sMN LocStart
CoLa2	MN	MNLocStart
REST	POST	http://192.168.0.1/api/LocStart
Generic (C++)	gen_srv	./build/gen_service_call LocStart POST "{}" -d=2
ROS 1	srv	rosservice call LocStart "{}"
ROS 2		<pre>ros2 service call LocStart sick_lidar_localization/srv/LocStartSrv "{}"</pre>

Response

Table 31: Response data

Data field	Туре	Description	Range/Value
set result	_	The command was valid and has been executed.	0 failed
		been executed.	1 success

Example

The system is in operation.

Table 32: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocStart 1
CoLa2	ISO 8859-15 ANLocStart 0x01 Hexadecimal 414E 4C6F 6353 7461 7274 2001
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>

Interface	Response example
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

3.1.7 Command: LocStop

Overview

Stop the localization and return to Configuration state.

Request

Table 33: Request command

Туре	Command
Setter	LocStop

Table 34: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Stop the localization.

Table 35: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	sMN LocStop
CoLa2	MN	MNLocStop
REST	POST	http://192.168.0.1/api/LocStop
Generic (C++)	gen_srv	./build/gen_service_call LocStop POST "{}" -d=2
ROS 1	srv	rosservice call LocStop "{}"
ROS 2		<pre>ros2 service call LocStop sick_lidar_localization/srv/LocStopSrv "{}"</pre>

Response

Table 36: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has been executed.	0 failed 1 success

Example

The localization has been stopped.

Table 37: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocStop 1
CoLa2	ISO 8859-15 ANLocStop 0x01 Hexadecimal 414E 4C6F 6353 746F 7020 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>

Interface	Response example
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

3.1.8 Command: LocGetLocalizationStatus

Overview

Read the current localization status parameter.

NOTE

To receive continous localization status data, use the continous UDP streaming message Localization result - MsgType: 5.

Request

Table 38: Request command

Туре	Command
Getter	LocGetLocalizationStatus

Table 39: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Read the localization status parameter.

Table 40: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocGetLocalizationStatus	
CoLa2	MN	MNLocGetLocalizationStatus	
REST	POST	http://192.168.0.1/api/LocGetLocalizationStatus	
Generic (C++)	gen_srv	./build/gen_service_call LocGetLocalizationStatus POST "{}" -d=2	
ROS 1	srv	rosservice call LocGetLocalizationStatus "{}"	
ROS 2		<pre>ros2 service call LocGetLocalizationStatus sick_lidar_localization/srv/ LocGetLocalizationStatusSrv "{}"</pre>	

Response

Table 41: Response data

Data field	Туре	Description	Range/Value
locStatus	UInt_8	The current localization status.	10: OK 20: Warning 30: Not Localized 40: System Error 100: Undefined
details	String	Further remarks on current localization status.	Max length = 10000000

¹⁾ Return value 100 when system state is in **Configuration**.

Example: Localization Status OK

LiDAR-LOC is in localization status is 0xA, 10_{dec} , \n with the meaning **0K**.

Table 42: Response example: Ok

Interface	Response example Hexadecimal ¹⁾	
CoLa-A		
Deprecated	sAN LocGetLocalizationStatus A 0	

Interface	Response example	
CoLa2	ISO 8859-15 ¹⁾ ANLocGetLocalizationStatus 0x0A 0x0000 Hexadecimal ¹⁾ 414E 4C6F 6347 6574 4C6F 6361 6C69 7A61 7469 6F6E 5374 6174 7573 200A 2000 00	
REST	<pre>{ "header": { "status": 0, "message": "0k" }, "data": { "locStatus": 10, "details": "" } }</pre>	
Generic (C++)	<pre>response: {"header": {"status":0,"message":"Ok"},"data{"locStatus":10,"deta ils": ""}}</pre>	
ROS 1 ROS 2	locStatus: 10 details: ""	

 $^{^{1)}}$ $\,$ The second hex digit specifies the length of the answer string. In this case the character length is 0x0000, 0_{dec} since there is no further detail description.

Example: Localization Status Warning

LiDAR-LOC is in localization status is 0x14, $20_{\rm dec}$, \n with the meaning Warning.

Table 43: Response example: Warning

Interface	Response example		
CoLa-A Deprecated	Hexadecimal ¹⁾ sAN LocGetLocalizationStatus 14 37 ReferenceScanLocalizer: Covariance over warning level;		
CoLa2	ISO 8859-15¹) ANLocGetLocalizationStatus 0x14 0x0037 ReferenceScanLocalizer: Covariance over warning level;		
	Hexadecimal ¹⁾ 414E 4C6F 6347 6574 4C6F 6361 6C69 7A61 7469 6F6E 5374 6174 7573 2014 2000 3752 6566 6572 656E 6365 5363 616E 4C6F 6361 6C69 7A65 723A 2043 6F76 6172 6961 6E63 6520 6F76 6572 2077 6172 6E69 6E67 206C 6576 656C 3B20		
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "locStatus": 20, "details": "ReferenceScanLocalizer: Covariance over warning level; " } }</pre>		

Interface	Response example	
Generic (C++)	<pre>response: {"header": {"status":0,"message":"0k"},"data{"locStatus":20,"deta ils": "ReferenceScanLocalizer: Covariance over warning level; "}}</pre>	
ROS 1 ROS 2	locStatus: 20 details: "ReferenceScanLocalizer: Covariance over warning level; "	

The second hex digit specifies the length of the answer string. In this case the character length is 0x37, 55_{dec} including the semicolon and ending space.

3.2 **Mapping**

3.2.1 Command: LocSetMappingActive

Overview

Enable or disable the recording of scan data for map creation.

Request

Table 44: Request command

Туре	Command	
Setter	LocSetMappingActive	

Table 45: Request data

Data field	Туре	Description	Range/Value
state	Bool_1	True to activate, false to deactivate the recording scan data for map creation.	0 false 1 true

Example

Set the recording of scan data for map creation active.

Table 46: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocSetMappingActive 1	
CoLa2	MN	MNLocSetMappingActive 1	
REST	POST	<pre>http://192.168.0.1/api/LocSetMappingActive { "data": { "active": true } }</pre>	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSetMappingActive POST "{\"data\": {\"active\":true}}" -d=2</pre>	
ROS 1	srv	<pre>rosservice call LocSetMappingActive "{active: true}"</pre>	
ROS 2		ros2 service call LocSetMappingActive sick_lidar_localization/srv/ LocSetMappingActiveSrv "{active: true}"	

Response

Table 47: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The recording of scan data for map creation has been started.

Table 48: Response example

Interface	Response example
CoLa-A	sAN LocSetMappingActive 1
Deprecated	

Interface	Response example
CoLa2	ISO 8859-15 ANLocSetMappingActive 0x01
	Hexadecimal 414E 4C6F 6353 6574 4D61 7070 696E 6741 6374 6976 6520 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

3.2.2 Command: LocSetMap

Overview

Load and activate a map.

The localization status is set to Not localized. If the parameter dataProcessing -> localizer -> stopWhenDelocalized is set to false, the initialization can be triggered. If the contour is sufficient and the coordinate system is the same, the localization status changes back to 0k.

Prerequisites

A reference map has been created with the SICK Map Engineering Tool (SMET) and transferred on the localization controller.

Request

Table 49: Request command

Туре	Command
Setter	LocSetMap

Table 50: Request data

Data field	Туре	Description	Range/Value
mapPath		The file name of the map that should be loaded.	Max length 255

Example

Load a map with the following parameters:

Map file name: "mytest.vmap"

Table 51: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	Hexadecimal length ¹⁾ sMN LocSetMap B mytest.vmap	
		Decimal length ¹⁾²⁾ sMN LocSetMap +11 mytest.vmap	
CoLa2	MN	ISO 8859-151) MNLocSetMap 0x000Bmytest.vmap	
		Hexadecimal 4D4E 4C6F 6353 6574 4D61 7020 000B 6D79 7465 7374 2E76 6D61 70	
REST	POST	http://192.168.0.1/api/LocSetMap { "data": {	
		<pre>"mapPath": "mytest.vmap" }</pre>	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSetMap POST "{\"data\": {\"mapPath\": \"mytest.vmap\"}}" -d=2</pre>	
ROS 1	srv	<pre>rosservice call /LocSetMap "{mappath: \"mytest.vmap\"}"</pre>	
ROS 2		<pre>ros2 service call /LocSetMap sick_lidar_localization/srv/LocSetMapSrv "{mappath: \"mytest.vmap\"}"</pre>	

The string has a prefix that specifies the length of the string. In this case the character length is OxB,

To use the decimal notation, a "+" must be prefixed.

Response

Table 52: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The map was available and has been activated.

Table 53: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocSetMap 1
CoLa2	ISO 8859-15 ANLocSetMap 1 Hexadecimal 414E 4C6F 6353 6574 4D61 7020 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

Complementary information

Corresponding relevant configuration parameters of the configuration file:

```
map:
  file: test.vmap
```

3.2.3 Command: LocSwitchMap

Overview

If the pose is close enough to a transition point between the current and the passed map, switches LocSwitchMap to the passed map. The transition must be defined in SMET in a *.vmaptr file. The localization status is not changed.

Use LocLoadMapToCache to accelerate the loading time.

Prerequisites

- A reference map has been created with the SICK Map Engineering Tool (SMET) and transferred on the localization controller.
- A transition file has been created with the SICK Map Engineering Tool (SMET) and transferred on the localization controller.

Request

Table 54: Request command

Туре	Command
Setter	LocSwitchMap

Table 55: Request data

Data field	Туре	Description	Range/Value
subMapName	String	The file name of the map that should be loaded.	Max length 255

Example

Load a map with the following parameters:

Map file name: "mytest.vmap"

Table 56: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	Hexadecimal length¹) sMN LocSwitchMap B mytest.vmap
		Decimal length ¹⁾²⁾ sMN LocSwitchMap +11 mytest.vmap
CoLa2	MN	ISO 8859-15 ¹⁾ MNLocSwitchMap 0x000Bmytest.vmap Hexadecimal ¹⁾ 4D4E 4C6F 6353 7769 7463 684D 6170 2000 0B6D 7974 6573 742E 766D 6170
REST	POST	<pre>http://192.168.0.1/api/LocSwitchMap { "data": { "subMapName": "mytest.vmap" } }</pre>
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSwitchMap POST "{\"data\": {\"subMapName\":\"mytest.vmap\"}}" -d=2</pre>

Interface	Туре	Request example
ROS 1	srv	<pre>rosservice call /LocSwitchMap {submapname:</pre>
ROS 2		<pre>ros2 service call /LocSwitchMap sick_lidar_localization/srv/LocSwitchMapSrv "{submapname: \"mytest.vmap\"}"</pre>

 $^{^{1)}}$ The string has a prefix that specifies the length of the string. In this case the character length is 0xB,

Response

Table 57: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The map was available and has been activated.

Table 58: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocSwitchMap 1
CoLa2	ISO 8859-15 ANLocSwitchMap 1
	Hexadecimal 414E 4C6F 6353 7769 7463 684D 6170 2001
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

²⁾ To use the decimal notation, a "+" must be prefixed.

3.2.4 Command: LocLoadMapToCache

Overview

Loads a map to the RAM of the localization controller if not already loaded. It does not set the map for localization. However, if you call LocSetMap or LocSwitchMap after this call the time for changing the map is reduced by the time it takes to load the map from the disk.

Prerequisites

A reference map has been created with the SICK Map Engineering Tool (SMET) and transferred on the localization controller.

Request

Table 59: Request command

Туре	Command
Setter	LocLoadMapToCache

Table 60: Request data

Data field	Туре	Description	Range/Value
mapPath	String	The file name of the map that should be loaded.	Max length 255

Example

Load a map with the following parameters:

Map file name: "mytest.vmap"

Table 61: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	Hexadecimal length ¹⁾ sMN LocLoadMapToCache B mytest.vmap	
		Decimal length ¹⁾²⁾ sMN LocLoadMapToCache +11 mytest.vmap	
CoLa2	MN	ISO 8859-151) MNLocLoadMapToCache 0x000Bmytest.vmap	
		Hexadecimal ¹⁾ 4D4E 4C6F 634C 6F61 644D 6170 546F 4361 6368 6520 000B 6D79 7465 7374 2E76 6D61 70	
REST	POST	<pre>http://192.168.0.1/api/LocLoadMapToCache { "data": { "mapPath": "mytest.vmap" } }</pre>	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocLoadMapToCache POST "{\"data\": {\"mappath\": \"mytest.vmap\"}}" -d=2</pre>	
ROS 1	srv	<pre>rosservice call LocLoadMapToCache "{mappath: \"mytest.vmap\"}"</pre>	
ROS 2		<pre>ros2 service call LocLoadMapToCacheMap sick_lidar_localization/srv/ LocLoadMapToCacheSrv "{mappath: \"mytest.vmap\"}"</pre>	

¹⁾ The string has a prefix that specifies the length of the string. In this case the character length is OxB, 11_{dec} .

 $^{^{2)}\,\,}$ To use the decimal notation, a "+" must be prefixed.

Response

Table 62: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The map was available and has been acitvated.

Table 63: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocLoadMapToCache 1
CoLa2	ISO 8859-15 ANLocLoadMapToCache 1 Hexadecimal 414E 4C6F 634C 6F61 644D 6170 546F 4361 6368 6520 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"0k"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

Complementary information

Corresponding relevant configuration parameters of the configuration file:

```
map:
  file: test.vmap
```

3.2.5 Command: LocClearMapCache

Overview

Removes the cached maps from the RAM of the Icoalization controller.¹⁾

Request

Table 64: Request command

Туре	Command
Setter	LocClearMapCache

Table 65: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Instruct to clear cache.

Table 66: Request example

Interface	Туре	Request example	
CoLa-A	sMN	sMN LocClearMapCache	
Deprecated			
CoLa2	MN	MNLocClearMapCache	
REST	POST	http://192.168.0.1/api/LocClearMapCache	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocClearMapCache POST "{}" -d=2</pre>	
ROS 1	srv	rosservice call LocClearMapCache "{}"	
ROS 2		<pre>ros2 service call LocClearMapCache sick_lidar_localization/srv/LocClearMapCacheSrv "{}"</pre>	

Response

Table 67: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The instruction to clear the cache has been passed and acknowledged.

Table 68: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocClearMapCache 1
CoLa2	ISO 8859-15 ANLocClearMapCache 0x01
	Hexadecimal 414E 4C6F 6343 6C65 6172 4D61 7043 6163 6865 2001

¹⁾ When the RAM is freed, depends on a garbage collection process. The RAM is not freed instantly in most cases.

Interface	Response example
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

3.2.6 Command: LocGetMap

Overview

Read the current map name. If the resulting map name is empty, no map is activated.

Request

Table 69: Request command

Туре	Command
Getter	LocGetMap

Table 70: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Read map name.

Table 71: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocGetMap	
CoLa2	MN	MNLocGetMap	
REST	POST	http://192.168.0.1/api/LocGetMap	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocGetMap POST "{}" -d=2</pre>	
ROS 1	srv	rosservice call LocGetMap "{}"	
ROS 2		<pre>ros2 service call LocGetMap sick_lidar_localization/srv/LocGetMapSrv "{}"</pre>	

Response

Table 72: Response data

Data field	Туре	Description	Range/Value
mapPath	String	The name of the map.	Max length = 255

Example

The map name is "mytest.vmap".

Table 73: Response example

Interface	Response example		
CoLa-A Deprecated	Hexadecimal length ¹⁾ sAN LocGetMap B mytest.vmap		
CoLa2	SO 8859-15 ¹) ANLocGetMap 0x000Bmytest.vmap		
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "mapPath": "mytest.vmap" } }</pre>		

Interface	Response example
Generic (C++)	<pre>response: {"header":{"status":0,"message":"Ok"},"data": {"mapPath":"mytest.vmap"}}</pre>
ROS 1	mappath: "mytest.vmap"
ROS 2	

The string has a prefix that specifies the length of the string. In this case the character length is 0xB, 11_{dec} .

Complementary information

```
map:
  file: test.vmap
```

3.3 Initialization

3.3.1 Command: LocInitializeAtPose

Overview

Sets the initial pose and automatically optimizes the pose to match the measured scan data in the loaded map. If the Localization Status does not reach at least Warning after several automatic optimization loops, the input parameters are set and the calculated optimal pose is discarded.

Prerequisites

The localization software is in system state **Operation**.

Request

Table 74: Request command

Туре	Command
Setter	LocInitializeAtPose

Table 75: Request data

Data field		Туре	Description	Range/Value
pose {				
}	x	Int_32	X coordinate	[mm]
,	у	Int_32	Y coordinate	[mm]
	yaw	Int_32	Yaw angle	[-180 000,180 000] [mdeg]
searchRadius		UInt_16	Translational uncertainty radius in [mm]. The rotational uncertainty is fixed to ±25°.	[300, 2 000] [mm] ¹⁾

¹⁾ Values < 300 will not throw an error, but will internally be set to 300 mm.

Example

Set the pose with the following parameters:

X coordinate: 10.3 m Y coordinate: -5.2 m 0 Yaw angle: 30° 0 searchRadius: 1 m

Table 76: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocInitializeAtPose +10300 -5200 +30000 +1000	
CoLa2	MN	SO 8859-15	

Interface	Туре	Request example	
REST	POST	<pre>http://192.168.0.1/api/LocInitializeAtPose { "data":</pre>	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocInitializeAtPose POST "{\"data\": {\"pose\":{\"x\":10300, \"y\":-5200, \"yaw\":30000}, \"searchRadius\":1000}}" -d=2</pre>	
ROS 1	srv	<pre>rosservice call /LocInitializeAtPose "{x: 10300, y: -5200, yaw: 30000, searchradius: 1000}"</pre>	
ROS 2		ros2 service call /LocInitializeAtPose sick_lidar_localization/srv/ LocInitializeAtPoseSrv "{x: 10300, y: -5200, yaw: 30000, searchradius: 1000}"	

Response

Table 77: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The initial pose is set and the measured scans could be matched against the map. A failure reason is, for example, if the Localization Status did not reach at least Warning after several automatic unsuccessful matches.

Table 78: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocInitializeAtPose 1
CoLa2	ISO 8859-15 ANLocInitializeAtPose 1 Hexadecimal 414E 4C6F 6349 6E69 7469 616C 697A 6541 7450 6F73 6520 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>

Interface	Response example
ROS 1	success=1
ROS 2	

Command: LocResumeAtPose 3.3.2

Overview

Sets the pose to the passed pose parameters. The Localization Status is set to Ok regardless to the actual map match. It can take between 10 ... 100 ms until the Localization Status switches to Ok.

NOTE

To initialize the vehicle after a restart, the command is not needed when AutoStart is active. The command could be useful in scenarios where you cannot initialize the vehicle, however, the operator is sure where the vehicle is located. In such a scenario, you could not set the vehicle to **Operation** without this command.

Important information

NOTICE

If LocResumeAtPose is sent, no scan matching with the map is made. If the sent pose differs from the real pose of the vehicle ("Kidnaped Robot"), accidents can occur.

Use LocResumeAtPose only when you can ensure that the sent pose equals the real pose.

DANGER

Danger of collision

When localizing from the initial position, the vehicle may collide with persons or obstacles.

Ensure that a safety system is implemented in the vehicle.

Prerequisites

The localization software is in system state **Operation**.

Request

Table 79: Request command

Туре	Command
Setter	LocResumeAtPose

Table 80: Request data

Data fie	eld	Туре	Description	Range/Value
pose {				
}	x	Int_32	X coordinate	[mm]
,	у	Int_32	Y coordinate	[mm]
	yaw	Int_32	Yaw angle	[-180 000,180 000] [mdeg]

Example

Set the pose with the following parameters and set the Localization Status to OK:

X coordinate: 10.3 m Y coordinate: -5.2 m 0 Yaw angle: 30 deg

Table 81: Request example

Interface	Туре	Request example	
CoLa-A	sMN	sMN LocResumeAtPose +10300 -5200 +30000	
Deprecated			

Interface	Туре	Request example
CoLa2	MN	ISO 8859-15 MNLocResumeAtPose +10300-5200+30000+1000
		Hexadecimal 4D4E 4C6F 6352 6573 756D 6541 7450 6F73 6520 0000 0406FF FFEB B000 0075 3003E8
REST	POST	http://192.168.0.1/api/LocResumeAtPose
		<pre>{ "data": {</pre>
Cararia (O. 1.)		/huild/non counice call LeaDeaument Dage DOOM
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocResumeAtPose POST "{\"data\": {\"x\":10300, \"y\":5200, \"yaw\":30000}}" -d=2</pre>
ROS 1	srv	rosservice call LocResumeAtPose "{x: 10300, y: -5200, yaw: 30000}"
ROS 2		<pre>ros2 service call LocResumeAtPose sick_lidar_localization/srv/LocResumeAtPoseSrv "{x: 10300, y: -5200, yaw: 30000}"</pre>

Response

Table 82: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The initial pose is configured and the Localization Status is set to OK.

Table 83: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocResumeAtPose 1
CoLa2	ISO 8859-15 ANLocResumeAtPose 1 Hexadecimal 414E 4C6F 6352 6573 756D 6541 7450 6F73 6520 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"0k"},"data":{"success":true}}"</pre>

Interface	Response example
ROS 1	success=1
ROS 2	

3.4 **Automatic start**

3.4.1 Command: LocAutoStartSavePose

Overview

The command is Deprecated. Auto Start does not need commands to be called by the vehicle software. Auto Start can be configured to automatically save poses.

Saves the current pose on-request for the automatic start of the application software.

Important information

NOTICE

The automatic start function might not work correctly if the vehicle is switched off while moving.

NOTICE

The automatic start function does not work correctly if the vehicle is moved after switching it off ("Kidnaped Robot").

Only place the vehicle at the location where it was switched off or initialize the pose manually.

DANGER

Danger of collision

When localizing from the initial position, the vehicle may collide with persons or obstacles.

Ensure that a safety system is implemented in the vehicle.

Prerequisites

The automatic start has to be enabled in the configuration file in section autoStart. The savePoseInterval should be set to 0 to keep the continuous saving switched off. autoStart:

```
# activate AutoStart [true, false]
active: true
savePoseInterval: 0
                      # interval in sec to save system state
```

Request

Table 84: Request command

Туре	Command
Setter	LocAutoStartSavePose

Table 85: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Save the current pose for initializing at the next automatic start.

Table 86: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	sMN LocAutoStartSavePose
CoLa2	MN	MNLocAutoStartSavePose
REST	POST	http://192.168.0.1/api/LocAutoStartSavePose

Interface	Туре	Request example
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocAutoStartSavePose POST "{}" -d=2</pre>
ROS 1	srv	rosservice call LocAutoStartSavePose "{}"
ROS 2		<pre>ros2 service call LocAutoStartSavePose sick_lidar_localization/srv/ LocAutoStartSavePoseSrv "{}"</pre>

Response

Table 87: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The pose has been saved.

Table 88: Response example

Interface	Response example	
CoLa-A Deprecated	sAN LocAutoStartSavePose 1	
CoLa2	ISO 8859-15 ANLocAutoStartSavePose 0x01 Hexadecimal 414E 4C6F 6341 7574 6F53 7461 7274 5361 7665 506F 7365 2001	
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>	
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>	
ROS 1	success=1	
ROS 2		

Complementary information

```
autoStart:
 active: true
                       # activate AutoStart [true, false]
 savePoseInterval: 0  # interval in sec to save system state
```

3.5 **Odometry**

3.5.1 Command: LocSetOdometryActive

Overview

Enable or disable the support of encoders or precomputed wheel odometry to enhance the robustness of the contour localization algorithm.

If the wheel odometry is configured in the configuration file, the input is active by default. The LocSetOdometryActive command can be used to disable the odometry in certain areas where odometry provides erroneous data.

This command does not effect the output. The LiDAR odometry is still active.

Prerequisites

- The odometer has to be configured in the configuration file in section vehicle > odometer.
- At least one LiDAR has to be configured and is providing data.

Request

Table 89: Request command

Туре	Command
Setter	LocSetOdometryActive

Table 90: Request data

Data field	Туре	Description	Range/Value
state	Bool_1	True to activate, false to deactivate the usage odometry for enhanced robustness.	0 false 1 true (default)

Example

Set the odometry for support active.

Table 91: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	sMN LocSetOdometryActive 1
CoLa2	MN	MNLocSetOdometryActive 1
REST	POST	<pre>http://192.168.0.1/api/LocSetOdometryActive { "data": { "active": true } }</pre>
Generic (C++)	gen_srv	./build/gen_service_call LocSetOdometryActive POST "{\"data\": {\"active\":true}}" -d=2
ROS 1	srv	<pre>rosservice call LocSetOdometryActive "{active: true}"</pre>
ROS 2		<pre>ros2 service call LocSetOdometryActive sick_lidar_localization/srv/ LocSetOdometryActiveSrv "{active: true}"</pre>

Response

Table 92: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The odometry support has been activated.

Table 93: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocSetOdometryActive 1
CoLa2	ISO 8859-15 ANLocSetMappingActive 0x01 Hexadecimal 414E 4C6F 6353 6574 4F64 6F6D 6574 7279 4163 7469 7665 2001
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

Complementary information

```
vehicle:
 odometer:
                 # [none / differentialDrive / external]
   type: none
   differentialDrive:
      encoderLeft:
       name: left
                          # identifier for debugging
       radius: 0.1
                          # wheel radius
       threshold: 1
       type: ABSOLUTE # [INCREMENTAL / ABSOLUTE]
                           # 2D pose of the encoder
       pose:
         type: 2D
         x: 0.0
         y: 0.195
         yaw: 0.0
       interface:
         sourceId: 21  # interface id
       ticsPerTurn: -83635 # tics for an entire turn
       maxValue: 4294967295 # ABSOLUTE encoders overflow
     encoderRight:
                          # identifier for debugging
       name: right
       radius: 0.1
                          # wheel radius
       threshold: 1
       type: INCREMENTAL # [INCREMENTAL / ABSOLUTE]
```

```
# 2D pose of the encoder
   pose:
     type: 2D
     x: 0.0
     y: -0.195
     yaw: 0.0
   interface:
     sourceId: 22
                        # interface id
   ticsPerTurn: 1326.5 # tics for an entire turn
external:
 name: odomIn
                        # identifier for debugging
                        # 2D pose of the odometer
 pose:
   type: 2D
   x: 0
   у: 0
   yaw: 0
 interface:
   sourceId: 31  # interface id
```

Kinematic 3.6

3.6.1 Command: LocSetKinematicVehicleModelActive

Overview

Optional (expert): The kinematics model (odometry and Y-movement restriction) can be switched off for the duration of the recording. Deactivate the kinematics model when the vehicle is moved manually without providing correct wheel odometry values

Request

Table 94: Request command

Туре	Command	
Setter	LocSetKinematicVehicleModelActive	

Table 95: Request data

Data field	Туре	Description	Range/Value
state	_	True to activate, false to deactivate	0 false
		the usage of the kinematic model.	1 true

Example

Set the usage of the kinematic vehicle model active.

Table 96: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	sMN LocSetKinematicVehicleModelActive 1
CoLa2	MN	MNLocSetKinematicVehicleModelActive 1
REST	POST	<pre>http://192.168.0.1/api/ LocSetKinematicVehicleModelActive { "data": { "active": true } }</pre>
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSetKinematicVehicleModelActive POST "{\"data\": {\"active\":true}}" -d=2</pre>
ROS 1	srv	<pre>rosservice call LocSetKinematicVehicleModelActive "{active: true}"</pre>
ROS 2		<pre>ros2 service call LocSetKinematicVehicleModelActive sick_lidar_localization/srv/ LocSetKinematicVehicleModelActiveSrv "{active: true}"</pre>

Response

Table 97: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The kinematic vehicle mode is active.

Table 98: Response example

Interface	Response example		
CoLa-A Deprecated	sAN LocSetKinematicVehicleModelActive 1		
CoLa2	ISO 8859-15 ANLocSetKinematicVehicleModelActive 0x01		
	Hexadecimal 414E 4C6F 6353 6574 4B69 6E65 6D61 7469 6356 6568 6963 6C65 4D6F 6465 6C41 6374 6976 6520 01		
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>		
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>		
ROS 1	success=1		
ROS 2			

Complementary information

The command sets the odometry and restriction of the Y motion temporarily inactive.

```
vehicle:
  physicalConstraints:
   linearMotion:
      vehicleCannotMoveAlongItsYAxis: false
  odometer:
    type: none
```

3.7 Lines

3.7.1 Command: LocSetLinesForSupportActive

Overview

The command is **Deprecated**. Lines itself are supported for further versions.

Enable or disable the use of the physical line sensor to support the LiDAR localization.

This command does not effect the output. The virtual line and code output is still active.

Request

Table 99: Request command

Туре	Command
Setter	LocSetLinesForSupportActive

Table 100: Request data

Data field	Туре	Description	Range/Value
state	Bool_1	True to activate, false to deactivate	0 false
		the usage of line sensors.	1 true

Example

Set the line support active.

Table 101: Request example

Interface	Туре	Request example
CoLa2	MN	MNLocSetLinesForSupportActive 1
REST	POST	<pre>http://192.168.0.1/api/ LocSetLinesForSupportActive { "data": { "active": true } }</pre>
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSetLinesForSupportActive POST "{\"data\": {\"active\":true}}" -d=2</pre>
ROS 1	srv	rosservice call LocSetLinesForSupportActive "{active: true}"
ROS 2		<pre>ros2 service call LocSetLinesForSupportActive sick_lidar_localization/srv/ LocSetLinesForSupportActiveSrv "{active: true}"</pre>

Response

Table 102: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has been executed.	0 failed 1 success

Example

The line support is activated.

Table 103: Response example

Interface	Response example
CoLa2	ISO 8859-15 ANLocSetLinesForSupportActive 0x01
	Hexadecimal 414E 4C6F 6353 6574 4C69 6E65 7346 6F72 5375 7070 6F72 7441 6374 6976 6520 01
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"0k"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

Complementary information

```
Input messages
```

```
sensors:
     line:
       - active: false
                           # active [true/ false]
        name : mls-0
                           # sensor identifier
         width: 0.3
                           # width of the line sensor
         pose:
                            # 2D mounting pose of the sensor
           type: 2D
           x: 0.652
           y: 0
           yaw: 180
         interface:
                           # UDP input interface
           sourceId: 1
                           # identifier
Output messages
   sensors:
     virtualLine:
       - active: false
                            # active [true/ false]
                            # sensor identifier
         name: vlsFront1
                            # width of the line sensor
         width: 0.6
                            # virtual 2D mounting pose
         pose:
           type: 2D
           x: 0.652
           y: 0
           yaw: 180
         interface:
                           # UDP output interface
           sourceId: 101
                           # output message identifier
           msgVersion: 3
                           # version of the UDP message
```

3.8 **Synchronization**

3.8.1 Command: LocRequestTimestamp

Overview

Request the current UNIX system time of the localization controller.

Request

Table 104: Request command

Туре	Command
Getter	LocRequestTimestamp

Table 105: Request data

Data field	Туре	Description	Range/Value
-	-	-	-

Example

Request the time stamp from the localization controller.

Table 106: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocRequestTimestamp	
<u>'</u>		1077	
CoLa2	MN	MNLocRequestTimestamp	
REST	POST	http://192.168.0.1/api/LocRequestTimestamp	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocRequestTimestamp POST "{}" -d=2</pre>	
ROS 1	srv	rosservice call LocRequestTimestamp "{}"	
ROS 2		<pre>ros2 service call LocRequestTimestamp sick_lidar_localization/srv/ LocRequestTimestampSrv "{}"</pre>	

Response

Table 107: Response data

Data field	Туре	Description	Range/Value
Time stamp	UInt_64	The current UNIX system time.	0 1.8E19 in [us]

Example

The current UNIX system time is 19.909.748.983 us, 19.909.748 ms or UTC time & date: Jan 01 1970 05:31:49

Table 108: Response example

Interface	Response example		
CoLa-A Deprecated	sAN LocRequestTimestamp 19909748983		
CoLa2	ISO 8859-15 ANLocRequestTimestamp 04 A2 B6 A8 F7		
	Hexadecimal 414E 4C6F 6352 6571 7565 7374 5469 6D65 7374 616D 7020 04A2 B6A8 F7		

Interface	Response example
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "timestamp": 19909748983 } }</pre>
Generic (C++)	response: "{"header": {"status":0,"message":"Ok"},"data":{"timestamp": 19909748983}}"
ROS 1	"timestamp_lidar_us: UInt_64, mean_time_vehicle_us:
ROS 2	UInt_64, delta_time_us: UInt_64,"

Recording 3.9

3.9.1 Command: LocSetRecordingActive

Overview

Start or stop the recording of support data for improved support in critical situations.

Request

Table 109: Request command

Туре	Command
Setter	LocSetRecordingActive

Table 110: Request data

Data field	Туре	Description	Range/Value
state	Bool_1	True to activate, false to deactivate	0 false
		the configuration.	1 true

Example

Start the recording of support data.

Table 111: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	sMN LocSetRecordingActive 1
CoLa2	MN	MNLocSetRecordingActive 1
REST	POST	<pre>http://192.168.0.1/api/LocSetRecordingActive { "data": { "active": true } }</pre>
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSetRecordingActive POST "{\"data\": {\"active\":true}}" -d=2</pre>
ROS 1	srv	rosservice call LocSetRecordingActive "{active: true}"
ROS 2		<pre>ros2 service call LocSetRecordingActive sick_lidar_localization/srv/ LocSetRecordingActiveSrv "{active: true}"</pre>

Response

Table 112: Response data

Data field	Туре	Description	Range/Value
set result	_	The command was valid and has	0 failed
		been executed.	1 success

Example

The recording configuration has been set.

Table 113: Response example

Interface	Response example	
CoLa-A Deprecated	sAN LocSetRecordingActive 1	
CoLa2	ISO 8859-15 ANLocSetRecordingActive 0x01 Hexadecimal 414E 4C6F 6353 6574 5265 636F 7264 696E 6741 6374 6976 6520 01	
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>	
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>	
ROS 1	success=1	
ROS 2		

3.9.2 Command: LocSetRingBufferRecordingActive

Overview

Enable or disable the continuous recording of data for improved support in critical situations.

Request

Table 114: Request command

Туре	Command	
Setter	LocSetRingBufferRecordingActive	

Table 115: Request data

Data field	Туре	Description	Range/Value
state	_	True to activate, false to deactivate the configuration.	0 false 1 true

Example

Set the ring buffer function active.

Table 116: Request example

Interface	Туре	Request example	
CoLa-A Deprecated	sMN	sMN LocSetRingBufferRecordingActive 1	
CoLa2	MN	MNLocSetRingBufferRecordingActive 1	
REST	POST	<pre>http://192.168.0.1/api/ LocSetRingBufferRecordingActive { "data": { "active": true } }</pre>	
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSetRingBufferRecordingActive POST "{\"data\": {\"active\":true}}" -d=2</pre>	
ROS 1	srv	<pre>rosservice call LocSetRingBufferRecordingActive "{active: true}"</pre>	
ROS 2		ros2 service call LocSetRingBufferRecordingActive sick_lidar_localization/srv/ LocSetRingBufferRecordingActiveSrv "{active: true}"	

Response

Table 117: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The ring buffer configuration has been set.

Table 118: Response example

Interface	Response example		
CoLa-A Deprecated	sAN LocSetRingBufferRecordingActive 1		
CoLa2	ISO 8859-15 ANLocSetRingBufferRecordingActive 0x01 Hexadecimal 414E 4C6F 6353 6574 5269 6E67 4275 6666 6572 5265		
	636F 7264 696E 6741 6374 6976 6520 01		
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>		
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>		
ROS 1	success=1		
ROS 2			

3.9.3 Command: LocSaveRingBufferRecording

Overview

Saves the most recent data (up to 60 seconds) from the continuous ring buffer record-

NOTE

If the storage of the sd card is full, the oldest recording file will be deleted when LocSaveRingBufferRecording is called

NOTE

The ring buffer recording must be enabled only once by the command LocSetRingBuffer-RecordingActive to use this function.

Request

Table 119: Request command

Туре	Command	
Setter	LocSaveRingBufferRecording	

Table 120: Request data

Data field	Туре	Description	Range/Value
reason	String	Reason why the recording should be saved.	Max length = 512

Example

Saves most recent data with information about time due to error with name "connection error"

Table 121: Request example

Interface	Туре	Request example
CoLa-A Deprecated	sMN	Hexadecimal length¹) sMN LocSaveRingBufferRecording 24 YYYY-MM- DD_HH-MM-SS connection error Decimal length¹¹²² sMN LocSaveRingBufferRecording +36 YYYY-MM- DD_HH-MM-SS connection error
CoLa2	MN	ISO 8859-15 ¹⁾ MNLocSaveRingBufferRecording 0x0024YYYY-MM- DD_HH-MM-SS connection error Hexadecimal 4D4E 4C6F 6353 6176 6552 696E 6742 7566 6665 7252 6563 6F72 6469 6E67 2000 2459 5959 592D 4D4D 2D44 445F 4848 2D4D 4D2D 5353 2063 6F6E 6E65 6374 696F 6E20 6572 726F 72
REST	POST	<pre>http://192.168.0.1/api/ LocSaveRingBufferRecording { "data": { "reason": "YYYY-MM-DD_HH-MM-SS connection error" } }</pre>

Interface	Туре	Request example
Generic (C++)	gen_srv	<pre>./build/gen_service_call LocSaveRingBufferRecording POST "{\"data\": {\"reason\": \"YYYY-MM-DD_HH-MM-SS connection error\"}}" -d=2</pre>
ROS 1	srv	<pre>rosservice call LocSaveRingBufferRecording "{reason: YYYY-MM-DD_HH-MM-SS connection error}"</pre>
ROS 2		ros2 service call LocSaveRingBufferRecording sick_lidar_localization/srv/ LocSaveRingBufferRecordingSrv "{reason: YYYY-MM-DD_HH-MM-SS connection error}"

¹⁾ The string has a prefix that specifies the length of the string. In this case the character length is 0x24,

Response

Table 122: Response data

Data field	Туре	Description	Range/Value
set result	Bool_1	The command was valid and has	0 failed
		been executed.	1 success

Example

The ring buffer recording has been saved. In case of a failed response, the SD card might have been full or the ring buffer was not activated.

Table 123: Response example

Interface	Response example
CoLa-A Deprecated	sAN LocSaveRingBufferRecording 1
CoLa2	ISO 8859-15 ANLocSaveRingBufferRecording 1 Hexadecimal 414E 4C6F 6353 6176 6552 696E 6742 7566 6665 7252 6563 6F72 6469 6E67 2001
REST	<pre>{ "header": { "status": 0, "message": "Ok" }, "data": { "success": true } }</pre>
Generic (C++)	<pre>response: "{"header": {"status":0,"message":"Ok"},"data":{"success":true}}"</pre>
ROS 1	success=1
ROS 2	

²⁾ To use the decimal notation, a "+" must be prefixed.

4 Streaming API (UDP)

4.1 **User interface UDP**

Overview

With the streaming interface, the localization controller receives and sends data continuously to the external vehicle controller. For that purpose the binary UDP protocol is used.

The UDP interface can be configured via the configuration file. The parameters are listed in Complementary information.

UDP message types

The following message types can be used in LiDAR-LOC:

Table 124: Streaming UDP message types

MsgType #	Message	Streaming
1	Odometry	Input and output
2	Encoder	Input
3	Codes	Input and output
4	Lines	Input and output
5	Localization results	Output
7	2D codes	Input

Ports

By default, 5009 is used to receive incoming UDP messages.

```
communication > smopUdp > input > port
```

By default, 5008 is used as source port to send outgoing UDP messages.

```
communication > smopUdp > output > sourcePort
```

The localhost with 127.0.0.1 is used as the destination IP by default. The IP specifies where the UDP messages are sent to in the receiving device (vehicle controller). Only one receiver address can be assigned. Multicast or broadcast addresses can be used for multiple receivers.

```
communication > smopUdp > output > destinationlp
```

By default, 5010 is used as the destination port. The port specifies where the UDP messages are sent to in the receiving device (vehicle controller). Only one destination port can be assigned. For different destination ports, e.g. on the same receiving device, port forwarding must be set up on the receiving device.

```
communication > smopUdp > output > destinationPort
```

Endianness

The endianness of the input header is automatically detected based on the header field PayloadType. However, the payload is parsed according to the endianness given by the field PayloadType. The endianness of the output header and payload is BIG_ENDIAN by default and can be changed in the configuration file with the variable:

```
communication > smopUdp > output > endianess
```

Framing

The telegrams consist of the header and the payload. The payload is directly attached to the header.

Table 125: LiDAR-LOC message framing

Section	Description	Size [byte]
Header	The header of each UDP message specifies how the payload is interpreted.	16
Payload	The payload is the part of transmitted data that is the actual intended message.	Depends on MsgType

Complementary information

```
Corresponding relevant configuration parameters of the configuration file:
    Input messages
        vehicle:
          odometer:
             encoderLeft:
             interface:
                sourceId: 21
               encoderRight:
              interface:
                sourceId: 22
             external:
              interface:
                sourceId: 31
        communication:
          smopUdp:
            input:
             port: 5009
                                       # port for input UDP stream
        sensors:
          line:
                                       # UDP input interface
            interface:
              sourceId: 1
                                       # identifier
          codeReader
            interface:
                                       # UDP input interface
              sourceId: 11
                                       # identifier
           lidar:
            interface:
                                        # TCP/IP interface
              ipAddress: 192.168.0.41 # IP Address of the sensor
                                       # sensor port (2111 or 2122)
              port: 2122
                                       # For MICS3/NANS3 devices
              receiverPort: 56661
              receiverIP: 192.168.0.11 # IP routing for MICS3/NANS3
    Output messages
        communication:
          smopUdp:
            output:
              sourcePort: 5008
                                       # port for sending output
              destinationIp: 127.0.0.1 # address to receive output
              destinationPort: 5010
                                       # port to receive output
              endianess: BIG ENDIAN
              localizationMsg:
                sourceId: 1
                                       # output message identifier
                                       # loc. message version
                msgVersion: 2
              odometryMsq:
                sourceId: 1
                                       # output message identifier
                msqVersion: 5
                                       # odometry message version
        sensors:
          virtualLine
           interface:
                                       # UDP input interface
              sourceId: 101
                                       # output message identifier
```

msqVersion: 2

virtualCodeReader interface:

UDP input interface

output message version

sourceId: 111 # output message identifier msqVersion: 4 # output message version

4.2 Header

The header of each UDP message specifies how the payload is interpreted.

Table 126: Header format

Variable	Description	Туре	Range of Value (deci- mal)	Size [byte]
MagicWord	M0bile PlatformS	String	Fixed: 0x4d4f5053, ("MOPS")	4
HeaderVersion	Version of the header.	UInt16	0 65 535, default: 2	2
PayloadLength	Number of bytes of the payload.	UInt16	0 UDP IPV4: 65 491 UDP IPV6: 65 471	2
PayloadType (endianness) ²⁾	Configuration of the byte endianness for the payload.	UInt16	BE: 0x0642 (default) LE: 0x06c2	2
MsgType ¹⁾²⁾	Definition of the payload type of the message.	UInt16	0 65 535	2
MsgTypeVersion ²⁾	Version of the MsgType payload.	UInt16	0 65 535	2
SourceID ²⁾	Identification of multiple sources for the same message.	UInt16	0 65 535	2
			HeaderLength	16 byte

- 1) MsgType 1: odometry messages
 - MsgType 2: encoder messages
 - MsgType 3: 1D code messages
 - MsgType 4: line messages
 - MsgType 5: localization result messages
 - MsgType 7: 2D code messages
- For input messages, the variable value is specified by the vehicle controller. For output messages, the variable value is specified in the configuration file (*.yml).

Example (hex):

4D4F 5053 0002 0018 0642 0001 0004 001F

Explanation of example:

- MagicWord: 0x4D4F 5053 ("MOPS")
- HeaderVersion: 0x0002
- PayloadLength: $0x0018 (8+8+2+2+4 = 24_{dec})$
- PayloadType: 0x0642 (Big Endian)
- MsgType: 1 (odometry)
- MsgTypeVersion: 4 (version 4, velocity-based odometry)
- SourceID: 1F (e. g. odometry sender with no 31_{dec})

Payload 4.3

Overview

The payload is the part of transmitted data that is the actual intended message. The payload is described for input and output messages. The endianness of the payload can be configured within the header via PayloadType.

Table 127: Standard variables

Variable	Description
TelegramCount	The counter starts at 0 and should be increased by 1 for each new message. An overflow (reset) of this variable is handled by the software.
	Example • Message 1: TelegramCount = 0 • Message 2: TelegramCount = 1 • Message 3: TelegramCount = 2 •
Time stamp	The time stamp corresponds to the current time when the data is generated in microseconds.
	 For input messages, the time stamp is generated from the sensor. For output messages, the time stamp is generated from the localization controller.
	The time stamp is used to calculate the time difference between two messages. A synchronization between vehicle and localization controller is not required. The SICK Software handles overflow (reset) of the variable.
	Example (time passed since start of the controller) • Message 1: Time stamp = 50 000 • Message 2: Time stamp = 50 025 • Message 3: Time stamp = 50 050

4.3.1 Odometry - MsgType: 1

Overview

This message can be used to send a precomputed motion of the vehicle to the LiDAR-LOC system.

Using this message does not require to specify any motion model. However, it does require the computation of the motion of the vehicle by the user.

LiDAR-LOC supports two different protocol versions for odometry input:

- MsgTypeVersion 4 contains the velocity vector of the vehicle with v_x , v_y and ω .
- MsgTypeVersion 5 accepts the pose of the vehicle computed by the wheel odometry in absolute values.

We recommend using version 5 to allow LiDAR-LOC to handle lost messages better than with version 4.

NOTE

If the vehicle kinematics is a differential drive, the simplified direct encoder input is preferred.

NOTE

The messages should be sent continuously, with a constant interval of 25 ms \pm 20 %. Variations in frequency can be compensated for with a sufficiently accurate time stamp in the message to the localization controller.

Input messages: wheel odometry

The messages are 64-bit aligned.

Table 128: MsgType: 1, Version: 4

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8

Variable	Туре	Range of Value (decimal)	Size [byte]
Time stamp	UInt64	0 1.8E19 us	8
X-component of velocity	Int16	±32 768 mm/s	2
Y-component of velocity	Int16	±32 768 mm/s	2
Angular velocity	Int32	±2.1E9 mdeg/s	4
		PayloadLength	24 _{dec} , 0x18

Table 129: Header and Payload example for MsgType: 1, Version: 4

```
--> 4D4F 5053 0002 0018 0642 0001 0004 001F 0000 0000 0000
03E80000 0000 0000 C350 FE0C01F4 FFFF FC18
```

Explanation of example:

- Header: 4D4F 5053 0002 0018 0642 0001 0004 001F
 - MagicWord: 0x4D4F 5053 ("MOPS")
 - HeaderVersion: 0x0002
 - o PayloadLength: $0x0018 (8+8+2+2+4 = 24_{dec})$
 - PayloadType: 0x0642 (Big Endian)
 - MsgType: 1 (odometry)
 - MsgTypeVersion: 4 (version 4, velocity-based odometry)
 - SourceID: 1F (e. g. odometry sender with no 31_{dec})
- TelegramCount: 1 000_{dec}, 0x03E8
- time stamp: 50 000 us, 0xC350
- X-component of velocity: -500 mm/s, OxFEOC
- Y-component of velocity: 500 mm/s, 0x01F4
- Angular velocity: -1 000 mdeg/s, 0xFC18

Table 130: MsgType: 1, Version: 5

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
X position ¹⁾	Int64	±9.2E18 mm	8
Y position ¹⁾	Int64	±9.2E18 mm	8
yaw ¹⁾	Int64	±180 000 mdeg	8
		PayloadLength	40 _{dec} , 0x28

¹⁾ Pose of the vehicle computed by the wheel odometry in absolute values.

Output messages: LiDAR odometry (expert function)

In rare cases, the output from the LiDAR localization might be needed as velocity or incremental position information. This output is the so called LiDAR odometry. The odometry output is the motion of the vehicle before applying the pose correction using the map. Therefore, the LiDAR odometry output is continuous without jumps as the Localization Result (MsgType 5) which is output after the reference scan matching.

Complementary information

Corresponding command:

LocSetOdometryActive

```
Input messages (wheel odometry)
    vehicle:
      odometer:
        type: external # [none / differentialDrive / ...]
        external:
                                  # identifier for debugging
          name: odomIn
```

```
# 2D pose of the odometer
          pose:
            type: 2D
            x: 0
            y: 0
            yaw: 0
          interface:
            sourceId: 31
                                  # interface id
Expert: Output messages (LiDAR odometry)
    communication:
      smopUdp:
                               # UDP input / output configuration
        output:
          odometryMsg:
            sourceId: 1
                               # output message identifier
            msgVersion: 5
                               # odometry UDP message version
```

Further topics

- LiDAR-LOC Operating Instructions, 8027121
 - "Wheel odometry and encoder (input)"

4.3.2 Encoder - MsgType: 2

Overview

This message is used to send encoder measurements to the LiDAR-LOC system such that LiDAR-LOC computes the motion of the vehicle using the specified motion model. LiDAR-LOC supports direct wheel encoder input only for differential drives. In the configuration file: vehicle > odometer > type: differentialDrive.

Implementation

The messages should be sent continuously, with a constant interval of 25 ms ± 20 %. Variations in frequency can be compensated for with a sufficiently accurate time stamp in the message to the localization controller.

The Encoder messages for left and right wheel should be sent at the same time. The break between two consecutive messages for each left an right message being around 25 ms.

Each input message for left and right wheel needs to be sent in a full message including header and payload. The messages for left and right wheel cannot be combined.

Prerequisites

Specified motion model in the configuration file.

Input messages

The messages are 64-bit aligned.

Table 131: MsgType: 2, Version: 2

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
Encoder value ¹⁾	Int64	±9.2E18	8
		PayloadLength	24 _{dec} , 0x18

¹⁾ In tics, either absolute or incremental

Table 132: Header and Payload example for MsgType: 2, Version: 2

```
--> 4D4F 5053 0002 0018 0642 0002 0002 0015 0000 0000 0000
```

Explanation of example:

```
Header: 4D4F 5053 0002 0018 0642 0002 0002 0015
```

MagicWord: 0x4D4F 5053 ("MOPS")

HeaderVersion: 0x0002

PayloadLength: $0x0018 (8+8+2+2+4 = 24_{dec})$

PayloadType: 0x0642 (Big Endian)

MsgType: 1 (Encoder) MsgTypeVersion: 2

SourceID: 15 (e. g. left encoder with no 21_{dec})

TelegramCount: 1 000_{dec}, 0x03E8

Time stamp: 50 000 us, 0xC350

Encoder value: 12345, 0x3039

Complementary information

Corresponding command:

LocSetOdometryActive

Corresponding relevant configuration parameters of the configuration file:

```
Input messages
```

```
vehicle:
 odometer:
   type: differentialDrive # [none / ... / external]
    differentialDrive:
      encoderLeft:
       name: left
                           # identifier for debugging
       radius: 0.1
                           # wheel radius
       threshold: 1
       type: ABSOLUTE # [INCREMENTAL / ABSOLUTE]
                            # 2D pose of the encoder
       pose:
         type: 2D
         x: 0.0
         y: 0.195
         yaw: 0.0
       interface:
                           # interface id
         sourceId: 21
       ticsPerTurn: -83635 # tics for an entire turn
       maxValue: 4294967295 # ABSOLUTE encoders overflow
     encoderRight:
       name: right
                           # identifier for debugging
       radius: 0.1
                           # wheel radius
       threshold: 1
       type: INCREMENTAL # [INCREMENTAL / ABSOLUTE]
       pose:
                            # 2D pose of the encoder
         type: 2D
         x: 0.0
         y: -0.195
         yaw: 0.0
        interface:
         sourceId: 22
                           # interface id
        ticsPerTurn: 1326.5 # tics for an entire turn
```

Further topics

- LiDAR-LOC Operating Instructions, 8027121
 - "Wheel odometry and encoder (input)"

4.3.3 1D Codes - MsgType: 3

Overview

Input messages to send event-based code measurements from vehicle controller to localization device when a code is detected. The map does not have to contain the code to be recognized as an input message.

Output messages from localization device to vehicle controller to send virtual code measurements from the LiDAR-LOC.

Prerequisites

For output messages: The codes are specified in the map.

Input messages

Table 133: MsgType: 3, Version: 3

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
Code	Int64	±9.2E18	8
		PayloadLength	24 _{dec} , 0x18

The messages are 64-bit aligned.

Payload example (hex):

0000 0000 0000 03E8 0000 0000 0000 C350 0000 0000 0000 3039

Explanation of example:

TelegramCount: 1 000_{dec}, 0x03E8 Time stamp: 50 000 us, 0xC350 Code value: 12345, 0x3039 Table 131: MedTyne: 3 Version: 5

1able 134.	wisg type. 5,	version. 5
Variable		

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
CodeLength	UInt16	0 65 535	2
Code	String	-	CodeLength
		PayloadLength	24 _{dec} +Code- Length, 0x18 +Code- Length

Due to the dynamic size of MsgType 3, version 5, the message is not memory aligned.

Output messages

Table 135: MsgType: 3, Version: 4

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
Code	Int32	±2.1E9	4
Distance ¹⁾	Int32	±2.1E9 mm	4
		PayloadLength	24 _{dec} , 0x18

Distance from center of sensor.

The messages are 64-bit aligned.

Payload example (hex):

0000 0000 0000 03E8 0000 0000 0000 C350 0000 3039 0000 FFE2

Explanation of example:

TelegramCount: 1 000_{dec}, 0x03E8 Time stamp: 50 000 us, 0xC350 Code value: 12345, 0x3039 Distance: -30 mm, 0xFFE2

Complementary information

Corresponding relevant configuration parameters of the configuration file:

```
Input messages
    sensors:
      codeReader:
                                   # sensor identifier
        - name: rfidReader
          active: true
                                   # active [true/ false]
          pose:
                                   # mounting pose of the sensor
            type: 2D
            x: 0.573
            y: 0.118
            yaw: 0
          interface:
                                   # UDP input interface
            sourceId: 11
                                   # identifier
Output messages
    sensors:
      virtualCodeReader:
         - active: false
                                    # active [true/ false]
          name: vcsRadial
type: RADIAL
                                   # sensor identifier
                                # options are [LINE / RADIAL]
          size: 0.2
                                   # reading area diameter
                                    # virtual 2D mounting pose
          pose:
            type: 2D
            x: 0.573
            y: 0.118
            yaw: 0
            # OUTP OULPUT INCOLLET

sourceId: 111 # output message identifier

msgVersion: 4 # version of the UDP message

# active [true/ false]
          interface:
        - active: false
          name: vcsLine
                                   # sensor identifier
          type: LINE
                                   # options are [LINE / RADIAL]
          size: 0.3
                                   # virtual sensor line length
                                   # virtual 2D mounting pose
          pose:
            type: 2D
            x: 0.573
            y: 0.15
            yaw: 0
                                    # UDP output interface
          interface:
            sourceId: 112
                                    # output message identifier
            msgVersion: 4
                                   # version of the UDP message
```

Further topics

- LiDAR-LOC Operating Instructions, 8027121
 - "Code sensors"

4.3.4 Line - MsgType: 4

Overview

This message can be used to send line measurements from a physical line sensor to the LiDAR-LOC System or to receive virtual line measurement from the LiDAR-LOC System.

LiDAR-LOC supports two different protocol versions:

- Version 3 allows a variable number of lanes
- Version 4 has a fixed size for up to 3 lanes

For the functionality of LiDAR-LOC both are equivalent.

Input and output messages

Table 136: MsgType: 4, Version: 3

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
NumOfLinesVisible	Unt8	255	1
Line1 ¹⁾	Int16	±32 768 mm	2
Line21)	Int16	±32 768 mm	2
Line3 ¹⁾	Int16	±32 768 mm	2
	Int16	±32 768 mm	
		PayloadLength	17 + 2n _{dec}

¹⁾ Exists only if corresponding NumOfLinesVisible >= Line# Line1 contains the lowest value, increasing with the line number.

Due to the dynamic size of MsgType: 4, Version: 3, the message is not memory aligned.

Payload example for message version 3 (hex):

0000 0000 0000 03E8 0000 0000 0000 C350 02 0032 FFEC

Explanation of example:

TelegramCount: 1 000_{dec}, 0x03E8 time stamp: 50 000 us, 0xC350 NumOfLinesVisible: 2, 0x02 Line1: 50 mm, 0x0032 Line2: -20 mm, 0xFFEC

Table 137: MsgType: 4, Version: 4

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
LCP1¹)	Int16	±32 768 mm	2
LCP2 ¹⁾	Int16	±32 768 mm	2
LCP3 ¹⁾	Int16	±32 768 mm	2
#LCP ²⁾	UInt8	0 7	1
Reserved	UInt8	-	1

Variable	Туре	Range of Value (decimal)	Size [byte]
		PayloadLength	24 _{dec} , 0x18

- 1) Line Center Point: Line offset to sensor center in mm The principle of LCP1 < LCP2 < LCP3 always applies to the LCPs.
- The field #LCP can take the following values:
 - 0: No lane visible. Ignore all values from LCP1-LCP3.
 - 2: Exactly one lane visible and stored in LCP2 (one middle lane). Ignore the values from LCP1 and
 - 3: Exactly two lanes visible. Lowest value stored in LCP1 with higher value stored in LCP2 (one left and one middle lane). Ignore the values from LCP3.
 - 6: Exactly two lanes visible. Lowest value stored in LCP2 with higher value in LCP3 (one middle and one right lane). Ignore the values from LCP1.
 - 7: Exactly three lanes visible. Lowest value stored in LCP1 with higher values in LCP2 and LCP3 respectivley.

Payload example for message version 4 (hex):

0000 0000 0000 03E8 0000 0000 0000 C350 FF95 0032 FF95 0300

Explanation of example:

- TelegramCount: 1 000_{dec}, 0x03E8
- time stamp: 50 000 us, 0xC350
- LCP1: -107 mm, 0xFF95
- LCP2: 50 mm, 0x0032
- LCP3: -107 mm, 0xFF95
- #LCP: 3, 0x03
- Reserved: 0x00

The messages are 64-bit aligned.

Complementary information

```
Input messages
```

```
sensors:
     line:
       - active: false
                            # active [true/ false]
                            # sensor identifier
         name : mls-0
                            # width of the line sensor
         width: 0.3
                             # 2D mounting pose of the sensor
         pose:
           type: 2D
           x: 0.652
           у: 0
           yaw: 180
                            # UDP input interface
         interface:
           sourceId: 1
                            # identifier
Output messages
   sensors:
     virtualLine:
                             # active [true/ false]
       - active: false
         name: vlsFront1
                            # sensor identifier
         width: 0.6
                            # width of the line sensor
         pose:
                             # virtual 2D mounting pose
           type: 2D
           x: 0.652
           y: 0
           yaw: 180
                             # UDP output interface
         interface:
           sourceId: 101
                            # output message identifier
           msgVersion: 3
                            # version of the UDP message
```

Further topics

- LiDAR-LOC Operating Instructions, 8027121
 - "Line sensors"

4.3.5 Localization result - MsgType: 5

Overview

This message is used to receive localization results from the LiDAR-LOC system.

Prerequisites

The localization software is in system state **Operation**.

Output messages

Table 138: MsgType: 5, Version: 2

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
Х	Int64	±9.2E18 mm	8
Υ	Int64	±9.2E18 mm	8
Yaw	Int32	±180 000 mdeg	4
LocalizationStatus ¹⁾	UInt8	10: OK 20: Warning 30: Not Localized 40: System Error 100: Undefined Return value 100 when system state is in Configuration.	1
MapMatchingStatus ²⁾	UInt8	0: None 30: Low 60: Medium 90: Good	1
Reserved	UInt16	-	2
		PayloadLength	40 _{dec} , 0x28

¹⁾ The localization status indicates the stability and reliability of the current localization. The status is the value for controlling the vehicle movement during operation.

The messages are 64-bit aligned.

Payload example (hex):

0000 0000 0000 03E8 0000 0000 0000 C350 0000 0000 0000 005D 0000 0000 0000 0021 0000 45E7 0A5A 0000

Explanation of example:

- TelegramCount: 1 000_{dec}, 0x03E8
- Time stamp: 50 000 us, 0xC350
- X: 93 mm, 0x005D
- Y: 33 mm, 0x0021
- Yaw: 17 895 mdeg, 0x45E7
- LocalizationStatus: 10 (OK), 0x0A

The Map Matching Status indicates how often and how well the system has corrected the pose by matching scans to the map. How well the environment is suited for LiDAR localization at the current pose. How well the current scans match the map -> how up-to-date the map is. The status can be regarded as a process evaluation and monitoring parameter. This enables the map to be evaluated, and corrective measures to improve the map quality to be identified.

MapMatchingStatus: 90 (Good), 0x5A

Reserved: 0, 0x0

Table 139: MsgType: 5, Version: 3

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
X	Int64	±9.2E18 mm	8
Υ	Int64	±9.2E18 mm	8
Yaw	Int32	±180 000 mdeg	4
LocalizationStatus	UInt8	10: OK 20: Warning 30: Not Localized 40: System Error 100: Undefined Return value 100 when system state is in Configuration.	1
MapMatchingStatus	UInt8	0: None 30: Low 60: Medium 90: Good	1
MapNameLength	UInt16	0 255	2
MapName	String	-	MapName- Length
		PayloadLength	40 _{dec} +Map- Name- Length, 0x28 +Map- NameLength

Due to the dynamic size of MsgType 5, version 3, the message is not memory aligned.

Complementary information

Corresponding relevant configuration parameters of the configuration file:

```
Output messages
   communication:
      smopUdp:
       output:
         localizationMsg:
           sourceId: 1
           msgVersion: 2
```

output message identifier # UDP message version

4.3.6 2D Codes - MsgType: 7

Overview

This message is used to send event-based 2D code measurements to the LiDAR-LOC system when a 2D code sensor reads a code.

Prerequisites

The codes are specified in the map.

Input messages

Table 140: MsgType: 7 Version: 1

Variable	Туре	Range of Value (decimal)	Size [byte]
TelegramCount	UInt64	0 1.8E19	8
Time stamp	UInt64	0 1.8E19 us	8
CodeLength	UInt16	0 65 535	2
Code	String	-	CodeLength
X code position ¹⁾	Int32	±2.1E9 mm	4
Y code position ¹⁾	Int32	±2.1E9 mm	4
Yaw code orientation ¹⁾	Int32	±180 000 mdeg	4
		PayloadLength	30 _{dec} + CodeLength 0x1E + CodeLength

¹⁾ Relative pose of the code along the according axis in the sensor frame.

Table 141: Header and Payload example for MsgType: 7, Version: 1

```
--> 4D4F 5053 0002 0022 0642 0007 0001 000B 0000 0000 0000 03E8
0000 0000 0000 C350 00043130 3130 0000 005D 0000 0021 0000 05AA
```

Explanation of example:

- Header: 4D4F 5053 0002 0022 0642 0007 0001 000B
 - MagicWord: 0x4D4F 5053 ("MOPS")
 - HeaderVersion: 0x0002
 - PayloadLength: 0x0022 (34_{dec})
 - PayloadType: 0x0642 (Big Endian)
 - MsgType: 7 (2D Codes)
 - MsgTypeVersion: 1 (version 1)
 - SourceID: 0x0B (e. g. 2D code sender with no 11_{dec})
- TelegramCount: 1 000_{dec}, 0x03E8
- Time stamp: 50 000 us, 0xC350
- CodeLength: 4 byte, 0x04
- Code: "1010", 0x31303130
- X: 93 mm, 0x005D
- Y: 23 mm, 0x0021
- Yaw: 1 450 mdeg, OxO5AA

Complementary information

Corresponding relevant configuration parameters of the configuration file:

Input messages

```
sensors:
 code2DReader:
    - name: code2DReader 1
                            # sensor identifier
     active: true
                            # active [true/ false]
     interfaceType: MOPS UDP # Type [MOPS UDP /
SENSOR ETHERNET]
       mopsinterface:
                            # UDP input interface
       sourceId: 11
                            # identifier
        timeOffset: 0
                            # mounting pose of the sensor
      pose:
       type: 2D
       x: 0.573
       y: 0.118
       yaw: 0
```

Further topics

- LiDAR-LOC Operating Instructions, 8027121
 - "Code sensors"

5 **Annex**

5.1 Appendix A: Communication via CoLa2

Overview

CoLa2 (Command Language 2) is a protocol from SICK, with which a client (controller, computer etc.) can access suitable SICK sensors and sofware via a network (TCP/IP).

The CoLa2 interface of the software allows you to request information from the software (read a parameter) or configure the software (set a parameter).

Figure 5: Cola2 protocol stack

How a client (vehicle controller, computers etc.) communicates with a server (LiDAR-LOC) via CoLa2 is described in the following.

In this context, every IT device counts as a client, for which the following applies:

- The device accesses LiDAR-LOC.
- The device sends data or commands to LiDAR-LOC.
- The device receives data from LiDAR-LOC.

The communication protocols underneath the application layer (ISO-/OSI layers 1 ... 6) are not described.

It is assumed that the communication is transparent and error-free, with the following exceptions:

- Connection loss.
- Connection blockades when there are full transmit queues.

Device-specific deviations

- Byte sequence: LiDAR-LOC uses the Big Endian format for the data according to the bytes cmd and Mode. Safety laser scanner, such as MICS3 or NANS3, use the Little Endian format.
 - Section: see "Layer 7.2, command layer", page 78)
- The TCP/IP for the CoLa2 communication of the safety laser scanner is port 2122
- A CoLa2 telegram can be split into fragments. The client must re-combine the fragments
- Methods of LiDAR-LOC can only be called up via name. Variable and methods for safety laser scanner, such as MICS3 or NANS3, can only be called up via index

5.1.1 Overview of the telegram format

The protocol defines 2 headers:

Header of the layer 7.1, message layer

- Synchronization of the direct communication partners
- Specification of the length of the telegram
- Header of the layer 7.2, command layer
 - Session ID that connects 2 end-to-end partners
 - Request ID that connects a client request with the answer of the server (LiDAR-LOC)
 - Command that is sent to the server (LiDAR-LOC) or answer of the server
 - Additional information, depending on the command and the transmission direction

The session ID and request ID make it possible that several commands or answers can be sent to further communication between 2 partners without consideration. Several commands can also be transported in a TCP/IP packet.

With TCP/IP, all CoLa 2.0 connect requests must be sent to port 2122 of the server (LiDAR-LOC). With the TCP/IP socket of the client, you can configure TCP_NODELAY so that even small TCP/IP packages can be sent immediately and the end-to-end communication is accelerated.

5.1.1.1 Layer 7.1, message layer

The header of layer 7.1, message layer, ensures that the rest of the telegram is transmitted to the receiver that is described in the header.

Figure 6: Header of the layer 7.1, message layer

Table 142: Header of the layer 7.1, message layer

Element	Length (bytes)	Function
STx	4	Start. 4 STx symbols (0x02) mark the start of each telegram. This pattern is not exclusive. Nevertheless, it allows you to find the start of a telegram after a synchronization loss in connection with the parameter length.
Length	4 (Big Endian)	Length. The number of bytes that follow as the rest of the telegram. After <length> bytes, 4 STx symbols should follow again, which mark the start of the next telegram.</length>
HubCntr	1	
NoC	1	

5.1.1.2 Layer 7.2, command layer

The layer 7.2, command layer consists of a header and information.

Data flow takes place in 2 directions:

- From a client to server (LiDAR-LOC) for execution
- From a server (LiDAR-LOC) for evaluation

A complete transmission consists of a pair of these byte streams. After a method invocation (see "Calling up methods", page 81), the SICK sensor sends two answers: immediately a confirmation and later a result.

Figure 7: Layer 7.2, command layer

Table 143: Layer 7.2, command layer

Element	Length (bytes)	Function
SessionID	4 (Big Endian)	The server (LiDAR-LOC) defines this 32-bit value when structuring the session with a client. The entire communication between these two partners must be marked with the session ID.
ReqID	2 (Big Endian)	Using the ReqID, the client can assign the answer of the LiDAR-LOC its own request. Within one session, the client numbers all requests. The server (LiDAR-LOC) returns the ReqID together with its answer.
Cmd	1	This byte contains the command to the server (LiDAR-LOC). The server returns Cmd and changes the rest of the telegram according to the specification of the command.
Mode	1	Modifier for Cmd. All servers (SICK sensors, LiDAR-LOC) understand a basic command set. In addition, some variables are available for all servers for reading or writing. In addition, many SICK sensors have specific parameters.
IndexName, data	(Variable)	Specific data depending on Cmd and direction of transmission.

5.1.1.2.1 Byte sequence

The byte sequence after the bytes Cmd and Mode depends on the components of a sensor and differs for many different servers (SICK sensors):

- For Big Endian, the Most Significant Byte of a value is sent first (Motorola format).
- For Little Endian, the Least Significant Byte of a value is sent first (Intel format).

LiDAR-LOC uses Big Endian. Other sensors, e.g. the MICS3 and NANS3, use Little Endian.

The client must convert the values if needed.

Example: the variable Angle should be assigned the value 456 (0x1C8):

Byte sequence	Addressing	Request	Response
Big endian	Name	WN_Angle_<0x01><0xC 8>	WA_Angle_
Little endian	Name	WN_Angle_<0xC8><0x0 1>	WA_Angle_

5.1.2 Sessions

The connection between a client (vehicle controller, computers etc.) and a server (LiDAR-LOC) is organized as a session. First a session must be established, only then can the partners communicate. Within a session, every communication exchange (each client request and accompanying server responses) is numbered with the ReqID. The server (LiDAR-LOC) creates the SessionID when setting up the session. The client creates a unique ReqID for each request to the server.

5.1.2.1 Setup of a session

Each client ((vehicle controller, computers etc.) must initiate at least one session, i.e. a direct connection to a server (LiDAR-LOC).

 For direct connection via Ethernet, you must open a socket for the IP address of LiDAR-LOC.

When setting up a session, the client can define several session parameters:

Figure 8: Setup of a session with a server (LiDAR-LOC)

The client sends a command to the server (LiDAR-LOC) via the selected hardware interface:

- HubCntr = 0
- NoC = 0
- SessionID = 0
- RegID = unique value defined by client
- Cmd = '0' (letter 0, 0x4F), **0**pen session
- Mode = 'X' (letter X, 0x58), Other
- Timeout = number of seconds (binary, 1 ... 255)
- ClientID = identifier of the client (bytestream)

The server (LiDAR-LOC) returns the command with the following changes:

- SessionID = The server sends the session ID that the client must use for all further requests to the server.
- Cmd = 'O' (letter O, 0x4F), **O**pen session
- Mode = 'A' (letter A, 0x41), Application Answer
- The Timeout and ClientID fields are truncated.

The set-up session exists up to explicit completion or up to the timeout.

If the server (LiDAR-LOC) does not receive a command from the client within <code>Timeout</code> seconds, it ends the session. Then the client answers requests with the <code>SessionID</code> with the error message "Invalid Session".

The client must send requests as often as necessary so that the timeout does not expire. You can implement a timer on the client for this that is reset for each request. After the timer has run out, the client should send a dummy command to maintain the session.

Figure 9: Expiration of a session

Command to end a session:

- Cmd = 'C' (letter C, 0x43), Close session
- Mode = 'X' (letter X, 0x58), Other

Server response:

- Cmd = 'C' (letter C, 0x43), Close session
- Mode = 'A' (letter A, Ox41), Application Answer

5.1.3 Using LiDAR-LOC with CoLa2

A client (vehicle controller, computer etc.) running LiDAR-LOC uses only the followin command type in operation:

Call up methods, i.e. activate a routine in LiDAR-LOC.

The following describes how the commands need to be structured and how the responses of the LiDAR-LOC can be evaluated.

The variables and methods are addressed using their names. LiDAR-LOC always responds with the names.

5.1.3.1 Calling up methods

A method is a program in LiDAR-LOC that the parameters are transmitted to and that can be started.

The client sends a command to the server (LiDAR-LOC) via the selected hardware interface:

- Cmd = 'M' (letter M, 0x4D), Invoke Method
- Mode = 'N' (letter N, Ox4E), By Name

The server (LiDAR-LOC) returns the command:

- Cmd = 'A' (letter A, 0x41), Method Answer
- Mode = 'N' (letter N, 0x4E), By Name

5.1.3.2 **Error messages**

The server (LiDAR-LOC) sends error numbers in the following format:

Index Cmd = F Mode = A Data = (UINT)	
--------------------------------------	--

- Cmd = 'F' (letter F, 0x46), Failure
- Mode = 'A' (letter A, 0x41), Application Answer

The error number is sent in the sensor-specific byte sequence, see "Byte sequence", page 79. SessionID and ReqID identify the command that caused the error.

Table 144: Fault numbers

Fault number	Name	Description
0x0001	METHODIN_ACCESSDENIED	Incorrect user group. Calling up the method not allowed.
0x0002	METHODIN_UNKNOWNINDEX	Method with the specified SOPAS index is not known.
0x0003	VARIABLE_UNKNOWNINDEX	Variable with the specified SOPAS index is not known.
0x0004	LOCALCONDITIONFAILED	Local condition infringed. Example: Specified value is outside the per- missible range for the variable.
0x0005	INVALID_DATA	Invalid data for variable.
0x0006	UNKNOWN_ERROR	Errors with unknown cause.
0x0007	BUFFER_OVERFLOW	Communication buffer too small for the data amount to be serialized.
0x0008	BUFFER_UNDERFLOW	More data was expected. The assigned buffer could not be filled.
0x0009	ERROR_UNKNOWN_TYPE	The variable has an unknown type. There are undocumented internal variables in the firmware of the device.
Ox000A	VARIABLE_WRITE_ ACCESS_DENIED	No values could be written in this variable.
0х000В	UNKNOWN_CMD_ FOR_NAME- SERVER	When calling up via the name: Name of the command is not known to the name server.
0x000C	UNKNOWN_COLA_COMMAND	Name of the command is not defined in the CoLa protocol. Name of the command is not known.
0x000D	METHODIN_SERVER_BUSY	Only one method can be sent to the device at the same time.
0x000E	FLEX_OUT_OF_BOUNDS	Array has the incorrect length.
0x000F	EVENTREG_UNKNOWNINDEX	When calling up via index: Event is not known.
0x0010	COLA_A_VALUE_OVERFLOW	Value is too large for the value field.
0x0011	COLA_A_INVALID_CHARACTER	Symbol unknown, likely not alphanumeric.
0x0012	OSAI_NO_MESSAGE	General error when reading a variable.
0x0013	OSAI_NO_ANSWER_MESSAGE	General error when writing to a variable.
0x0014	INTERNAL	Internal firmware error

Fault number	Name	Description
0x0015	n/a	Reserved.
 0x0018		
0x0019	AsyncMethodsAreSuppressed	An asynchronous method was called up, but the device does not permit any asynchronous methods.
0x001A	n/a	Reserved.
0x001F		
0x0020	ComplexArraysNotSupported	A complex array was found, but the device does not permit any complex arrays.
0x0021	SESSION_NORESOURCES	Session cannot be structured. Server resources are exhausted as too many clients are connected.
0x0022	SESSION_UNKNOWNID	Unknown session ID in the telegram header
0x0023	CANNOT_CONNECT	Connection cannot be established.
0x0024	InvalidPortId	PortID is not known to the server.
0x0025	n/a	Reserved.
 0x0029		
0x0030	-	Out of range.
0x0031	-	Invalid identifier .
0x0032	-	Not found .
0x0033	-	Parsing failed.
0x0034	-	A structured INode is invalid.
0x0035	-	No method handler set.
0x0036	-	Name not set.
0x0037	-	Invalid state.
0x0038	-	File is in bad state.
0x0039	-	No challenge.
0x0040	-	Password not changeable.
0x0041	-	Login error, might be due to timelock or invalid user/ password.
0x0042	-	Unexpected response (client).
0x0043	-	Thread communication is broken.
0x0044	-	No index set (client).
0x0045	-	Invalid challenge (client).
0x0046	-	Error during CID parsing, CID is broken.
0x0047	-	Default value parsing out of CID found an error.
0x0048	-	Invalid or unsupported UTF-8 character.
0x0049	-	SOPAS file format version is not supported.
0x0050	-	SOPAS file is broken or cannot be handled.

Fault number	Name	Description
0x0051	-	Parsing a name from a cloning string.
0x0052	-	Send UDP data failed.
0x0053	-	XML error.

5.1.4 CoLa2 data types

Table 145: CoLa2 data types

Name	Description	Value range
BOOL	Boolean	True (1), false (0)
USINT	Unsigned short (8 bit)	0 255
UINT	Unsigned int (16 bit)	0 65535
UDINT	Unsigned double int (32 bit)	0 4294967295
ULINT	Unsigned long int (64 bit)	0 18446744073709551616
SINT	Signed short (8 bit)	-128 127
INT	Signed int (16 bit)	-32768 32767
DINT	Signed double int (32 bit)	-2147483648 2147483647
LINT	Signed long int (64 bit)	-9223372036854775808 9223372036854775807
REAL	Float single precision (32 bit)	See IEEE 754
LREAL	Float double precision (64 bit)	See IEEE 754
ENUM8	Short enumeration (8 bit)	Values defined in a selection list (0 255)
ENUM16	Enumeration (16 bit)	Values defined in a selection list (0 65535)
STRING	Array of visible symbols (array of 8-bit symbols)	Symbol = USInt with a value between 0x20 0xFF ¹⁾
FLEXSTRING	Array of visible symbols with leading length specification (UInt) (array of 8-bit symbols)	See string and FlexArray
BYTE	Bitset (8 bit)	Value is transmitted as an array from USInt.
WORD	Bitset (16 bit)	Value is transmitted as an array from USInt.
DWORD	Bitset (32 bit)	Value is transmitted as an array from USInt.
LWORD	Bitset (64 bit)	Value is transmitted as an array from USInt.
XBYTE	Bitset (8, 16, 24, 32 bit)	Value is transmitted as an array from USInt.
SCONT	Bitset (8 bit)	Value is transmitted as USInt.
CONT	Bitset (16 bit)	Value is transmitted as UInt.
DCONT	Bitset (32 bit)	Value is transmitted as UDInt.
LCONT	Bitset (64 bit)	Value is transmitted as ULInt.
STRUCTURE	Sequence of various types	Possible types: basic types, structures, arrays.
ARRAY	Repetition of a type	The length is defined for every array. Possible types: basic types, structures, arrays.

Name	Description	Value range
FLEXARRAY	Repetition of variable length of one type	The maximum length is defined for every FlexArray. The actual length is transmitted as Ulnt at the start of the FlexArray. Possible types: basic types, structures, arrays.

¹⁾ Coded according to ISO 8859-15.

5.2 Appendix D: Examples of communication via CoLa2

This chapter describes how the connection to LiDAR-LOC is established via the CoLa2 network (TCP/IP) and the method is called-up.

It is strongly recommended to familiarize yourself with CoLa2 communication in advance, see "Appendix A: Communication via CoLa2", page 77.

Table 146: CoLa2 elements

Element	sTX	Length	Hub	NoC	Sessio- nID ¹⁾	ReqID	CMD	Mode	TimeOut ²⁾	ClientID (FlexString)	
										Length ³⁾	String
Length (bytes)	4	4	1	1	4	2	1	1	1	2	flex

- 1) The server (LiDAR-LOC) creates a unique SessionID when setting up the session.
- 2) Maximum timeout is 127 sec, 0x7F. Timeout is specified only when opening a session.
- 3) The length of the flexstring is used for only for methods with parameter type "string".

In the example, the CoLa2 and the TCP sessions are closed after calling the methods. Otherwise LiDAR-LOC would close the TCP session after the configured timeout of 30 seconds (0x1E). Data output via UDP is independent from a CoLa2 session and also continues to run after the end of a session. For configuration changes a new CoLa2 session can be established.

5.2.1 Example 1 - CoLa2: Setting a map

This chapter describes how the LocSetMap method is called up to activate a given map.

- 1. Open TCP session to LiDAR-LOC, port 2122.
- 2. Open CoLa2 session. To do so, send a CoLa2 telegram to establish a session (STX = 0x02020202, length $= 14_{dec}$, 0xE, Hub = 0, NoC = 0, SessionID = 0, ReqID = 1, Cmd = "0", Mode = "X", Timeout=30sec, ClientID Length = 1, ClientID Flexstring =

```
--> 02020202 0000000E 00 00 00000000 0001 4F 58 1E 0001 00
```

LiDAR-LOC confirms the command (length = 10_{dec}, 0xA, Cmd = "0", Mode = "A") and assigns a session ID (SessionID).

```
<-- 02020202 0000000A 00 00 2D6C2733 0001 4F 41
```

Call up method LocSetMap (length = 33_{dec}, 0x21, Cmd = "M", Mode = "N", Space (0x20) between method and parameter, ClientID Length = 11_{dec}, 0xB, ClientID Flexstring (parameter) = "mytest.vmap")

```
--> 02020202 00000021 00 00 2D6C2733 0002 4D 4E
4C6F635365744D6170 20 000B 6D79746573742E766D6170
```

LiDAR-LOC confirms the method call-up (length = 22_{dec}, 0x16, Cmd = "A", Mode = "N", FlexString success result = "1").

```
<-- 02020202 00000016 00 00 2D6C2733 0002 41 4E 20</pre>
4C6F635365744D6170 20 01
```

Close CoLa2 session (length = 10_{dec}, 0xA, Cmd = "C", Mode = "X").

```
--> 02020202 0000000A 00 00 2D6C2733 0003 43 58
```

LiDAR-LOC confirms the command (Cmd = "C", Mode = "A").

```
<-- 02020202 0000000A 00 00 2D6C2733 0003 43 41
```

Close the TCP session. 5.

5.2.2 Example 2 - CoLa2: Initialize at pose

This chapter describes how the LocInitializeAtPose method is called-up to initialize at a given pose.

- Open TCP session to LiDAR-LOC, port 2122.
- Open CoLa2 session. To do so, send a CoLa2 telegram to establish a session (STX = 0x02020202, length = 14_{dec} , 0xE, Hub = 0, NoC = 0, SessionID = 0, ReqID = 1, Cmd = "0", Mode = "X", Timeout=30sec, ClientID Length = 1, ClientID Flexstring = 0)

```
--> 02020202 0000000E 00 00 00000000 0001 4F 58 1E 0001 00
```

LiDAR-LOC confirms the command (length = 10_{dec}, 0xA, Cmd = "0", Mode = "A") and assigns a session ID (SessionID).

```
<-- 02020202 0000000A 00 00 2D6C2733 0001 4F 41</pre>
```

Call up method LocInitializeAtPose (length = 44_{dec}, 0x2C, Cmd = "M", Mode = "N", Space (0x20) between method and parameter, ClientID Flexstring: parameter 1 = X coordinate: 10.3 m, 10 300 mm, parameter 2 = Y coordinate: -5.2 m, -5 200 mm, parameter 3 = Yaw angle: 30 deg, 30 000mdeg, parameter 4 = searchRadius: 1 m. 1 000 mm

```
--> 02020202 0000002C 00 00 2D6C2733 0002 4D 4E
4C6F63496E697469616C697A654174506F7365 20 00000406 FFFFEBB0
00007530 03E8
```

LiDAR-LOC confirms the method call-up (length = 32_{dec}, 0x20, Cmd = "A", Mode = "N". FlexString success result = "1").

```
<-- 02020202 00000020 00 00 2D6C2733 0002 41 4E 20
4C6F63496E697469616C697A654174506F7365 20 01
```

Close CoLa2 session (length = 10_{dec} , 0xA, Cmd = "C", Mode = "X").

```
--> 02020202 0000000A 00 00 2D6C2733 0003 43 58
```

LiDAR-LOC confirms the command (Cmd = "C", Mode = "A").

```
<-- 02020202 0000000A 00 00 2D6C2733 0003 43 41
```

Close the TCP session.

Australia

Phone +61 (3) 9457 0600 1800 33 48 02 - tollfree

E-Mail sales@sick.com.au

Austria

Phone +43 (0) 2236 62288-0

E-Mail office@sick.at

Belgium/Luxembourg

Phone +32 (0) 2 466 55 66 E-Mail info@sick.be

Brazil

Phone +55 11 3215-4900 E-Mail comercial@sick.com.br

Canada

Phone +1 905.771.1444 E-Mail cs.canada@sick.com

Czech Republic

Phone +420 234 719 500 E-Mail sick@sick.cz

Chile

Phone +56 (2) 2274 7430 E-Mail chile@sick.com

China

Phone +86 20 2882 3600 E-Mail info.china@sick.net.cn

Denmark

Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland

Phone +358-9-25 15 800 E-Mail sick@sick.fi

France

Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Germany

Phone +49 (0) 2 11 53 010 E-Mail info@sick.de

Greece

Phone +30 210 6825100 E-Mail office@sick.com.gr

Hong Kong

Phone +852 2153 6300 E-Mail ghk@sick.com.hk Hungary

Phone +36 1 371 2680 E-Mail ertekesites@sick.hu

India

Phone +91-22-6119 8900 F-Mail info@sick-india.com

Israel

Phone +972 97110 11 E-Mail info@sick-sensors.com

Italy

Phone +39 02 27 43 41 E-Mail info@sick.it

Japan

Phone +81 3 5309 2112 E-Mail support@sick.jp

Malavsia

Phone +603-8080 7425 E-Mail enquiry.my@sick.com

Mexico

Phone +52 (472) 748 9451 E-Mail mexico@sick.com

Netherlands

Phone +31 (0) 30 204 40 00 E-Mail info@sick.nl

New Zealand

Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway

Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland

Phone +48 22 539 41 00 E-Mail info@sick.pl

Romania

Phone +40 356-17 11 20 E-Mail office@sick.ro

Singapore

Phone +65 6744 3732 E-Mail sales.gsg@sick.com

Slovakia

Phone +421 482 901 201 E-Mail mail@sick-sk.sk Slovenia

Phone +386 591 78849 E-Mail office@sick.si

South Africa

Phone +27 10 060 0550 E-Mail info@sickautomation.co.za

South Korea

Phone +82 2 786 6321/4 E-Mail infokorea@sick.com

Spain

Phone +34 93 480 31 00 E-Mail info@sick.es

Sweden

Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland

Phone +41 41 619 29 39 E-Mail contact@sick.ch

「aiwan

Phone +886-2-2375-6288 E-Mail sales@sick.com.tw

Thailand

Phone +66 2 645 0009 E-Mail marcom.th@sick.com

Turkey

Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates

Phone +971 (0) 4 88 65 878 E-Mail contact@sick.ae

United Kingdom

Phone +44 (0)17278 31121 E-Mail info@sick.co.uk

JSA

Phone +1 800.325.7425 E-Mail info@sick.com

Vietnam

Phone +65 6744 3732 E-Mail sales.gsg@sick.com

Detailed addresses and further locations at ${\bf www.sick.com}$

