线性代数 笔记

任云玮

目录

1	Linear Algebra Done Right			
	1.3	Linear Maps	2	
	1.8	Operators on Complex Vector Spaces	2	
2	Mul	tilinear Algebra and Applications	3	
	2.1	Introduction	3	
	2.2	Review of Linear Algebra	3	
	2.3	Multilinear Forms	3	
	2.4	Inner Products	3	
	2.5	Tensors	4	

1 Linear Algebra Done Right

1.3 Linear Maps

p101. Dual Space 我们可以认为 V' 是 V 中的超平面¹所组成的线性空间。考虑 \mathbb{R}^n ,对于一个超平面,它由

$$a_1 x_1 + \dots + a_n x_n = a^T x = 0$$

所确定,其中 a 即为平面的一个法向量,而等式的左边即为一个线性泛函 $\varphi(x) = a^T x$.

p103. Dual Map

1.8 Operators on Complex Vector Spaces

p243. 8.4 这一定理表明,如果 $T^{n+k}u = 0$,则 $T^nu = 0$,其中 k > 0.

p243. 8.5 一般而言, $V = \text{null } T \oplus \text{range } T$ 是不成立的,注意到虽然 $\dim V = \dim \text{null } T + \dim \text{range } T$ 始终成立,但是 null T 和 range T 之间可能有非零的重合。所以实际上这一定理的内容主要是 $\text{null } T^n \cap \text{range } T^n = \{0\}$.

p247. The proof of 8.13 注意有 $(T - \lambda_1 I)(T - \lambda_2 I) = ((T - \lambda_2 I)(T - \lambda_1 I))$. 我们的 思路在于逐个证明 $a_j = 0$. 要做到这一点,首先要去掉其他的项并保留当前 a_j 项,要消去其他项,只需利用 $v_k \in G(\lambda, T) = \operatorname{null}(T - \lambda_k I)^n$,即利用 $(T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n$ 即可. 但是这样仅能得到

$$0 = a_1(T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n v_1.$$

由于我们不能确保上式右侧的,不考虑系数的向量最后不为零,所以不能直接得出 $a_1=0$. 因此我们希望给 v_1 再作用一个 $(T-pI)^q$ 形式的线性算子(以确保仍可交换)使得它一定不为零。在此注意到如果 w 是 T 的非广义特征向量,则可以满足条件,同时我们有 $(T-\lambda_1 I)^k v_1$ 是 T 的一个非广义特征向量。

¹我们所指的都是过原点的超平面

2 Multilinear Algebra and Applications

2.1 Introduction

换基公式 设 \mathcal{B} 和 $\widetilde{\mathcal{B}}$ 为两组基而 $\widetilde{\mathcal{B}} = \mathcal{B}L_{\widetilde{\mathcal{B}}\mathcal{B}}$. 则 $[v]_{\widetilde{\mathcal{B}}} = L^{-1}[v]_{\mathcal{B}}$.

2.2 Review of Linear Algebra

换基公式 设 $L_{\widetilde{\mathcal{B}}\mathcal{B}} = [L_j^i]$ 且 $\Lambda = L^{-1}$. 则 $\tilde{b}_j = L_j^i b_i$ 且 $b_j = \Lambda_j^i \tilde{b}_i$. 设线性变换 T 在这两组基下的矩阵分别为 A 和 \widetilde{A} ,则有 $\widetilde{A} = L^{-1}AL$.

2.3 Multilinear Forms

p25. For every $\alpha \in V^*$, $\alpha = \alpha(b_i)\beta^i$.

p25. 换基公式(线性泛函) 设 $\alpha \in V^*$ 且 $\widetilde{b}_j = b_i L^i_j$,则 $[\alpha]_{\widetilde{\mathcal{B}}^*} = [\alpha]_{\mathcal{B}^*} L$. 即线性泛函的坐标为 covariant 的.

p30.

covarian	ace of a basis	contravariance of the dual basis
contrava	ariance of the coordinate vectors	covariance of linear forms

 $\mathbf{p34}$. 换基公式(双线性) $\tilde{B} = L^T B L$.

2.4 Inner Products

p41. 双线性, 二次型, 内积

- 1. 双线性: $\varphi: V \times V \to \mathbb{R}$, 对于各分量线性。
- 2. 内积: $q: V \times V \to \mathbb{R}$, 满足对称性和正定性的双线性函数。
- 3. 二次型: $\mathbb{R}^n \to \mathbb{R}$,对于双线性取 $V = \mathbb{R}^n$,同时取相同的第一第二分量,即 $\varphi(v,v)$. 可证明,任意二次型都为 v^TSv 的形式。通常要求 S 为对称阵,即要求原双线性 函数为对称的。

p42. 内积与标准正交基 设 $\mathcal{B} \subset V$ 是内积 g 下的一组标准正交基,则 g 在 B 下的矩 阵为单位阵。由于标准正交基 \mathcal{B} 是一定存在的,所以任意内积都有形式

$$g(u,v) = [u]_{\mathcal{B}}^T [v]_{\mathcal{B}} = v^i w_i$$

p48. Reciprocal Basis Let $g: V \times V \to \mathbb{R}$ be an inner product, $\mathcal{B} = \{b_1, \dots, b_n\}$ a basis of V and $\mathcal{B}^g = \{b^1, \dots, b^n\}$ the reciprocal basis of \mathcal{B} . Put $G = [g]_{\mathcal{B}} = [g_{ij}]$ and $M = [g]_{\mathcal{B}^g} = [g^{ij}]$. Then

- 1. MG = I.
- 2. $\mathcal{B}^g = \mathcal{B}M$ and vice versa. Namely, $M = L_{\mathcal{B}^g\mathcal{B}}$.
- 3. The reciprocal basis is contravariant and the vector coordinates w.r.t to the reciprocal basis if covariant. Namely, $[v]_{\widetilde{\mathcal{B}}^g}^T = [v]_{\mathcal{B}^g}^T L_{\widetilde{\mathcal{B}}\mathcal{B}}$.
- 4. (Change of basis to the reciprocal basis) TODO

2.5 Tensors

p58. (5.2)
$$\varphi_v\{\alpha \mapsto \alpha(v)\}.$$