Semantic Parsing with Dual Learning

-2019 ACL

Ruisheng Cao*, Su Zhu*, Chen Liu, Jieyu Li and Kai Yu

MoE Kev Lab of Artificial Intelligence SpeechLab, Department of Computer Science and Engineering Shanghai Jiao Tong University, Shanghai, China

Monday 29th July, 2019

Outline

Introduction and Motivation

Dual Learning Framework for Semantic Parsing

Experimental Results

Conclusion

What is Semantic Parsing

```
Question: show me all flights from washington
                                                semantic
Logical form:
                                                 parsing
  (lambda $0 e (and
      (from $0 washington: ci) (flight $0))
                        Execution
                                      Knowledge Base
                     results
                                           (KB)
```

Bottlenecks 1: data hungry

• Semantic annotation is labor-intensive and time-consuming

Figure: Training example from dataset OVERNIGHT

Bottlenecks 2: constrained decoding

Output space should be strictly constrained

Question:

show me all flights from washington

```
Correct logical form:
 lambda $0 e ( and ( from $0 washington:ci ) ( flight $0 ) ) )
Frror at structure level:
                                     missing parentheses
 lambda $0 e ( and ( from $0 washington:ci ( flight $0 ) ) )
Error at semantic level:
                            not type flight
 lambda $0 e ( and ( from washington:ci | $0 ) ( flight $0 ) )
```

Outline

Introduction and Motivation

Dual Learning Framework for Semantic Parsing

Experimental Results

Conclusion

Our method: Overview

 $\boldsymbol{\mathcal{X}}$: show me all flights from washington

y: (lambda \$0 e (and (from \$0 washington:ci) (flight \$0)))

Our method: Overview

 \boldsymbol{x} : raw input question

 y_i : intermediate logical form

x': reconstructed question

y: raw input logical form x_i : intermediate question

.

Question Logical form *start Semantic parsing reconstruction reward **Ouestion** Generation (a) question \rightarrow logical form \rightarrow question

Training Procedure: 3 stages

1. loop starts from question

1. loop starts from question

2. loop starts from logical form

2. loop starts from logical form

Outline

Introduction and Motivation

Dual Learning Framework for Semantic Parsing

Experimental Results

Conclusion

Synthesize more logical forms

Sampling and modification based on ontology (4592 more logical forms for ATIS)

```
1. (lambda $0 e (and (flight $0) (class type $0
  first:cl) ( from $0 ci0) ( to $0 ci1)))
2. (lambda $0 e (and (flight $0) (oneway $0) (from
  $0 ci0) (to $0 ci1)))
                            secification D
             first:cl.type = coach:cl.type
         one way.args0 = round trip.args0
                           entity/predicate replacement
 1. (lambda $0 e (and (flight $0)) (class type $0
   coach:cl) ( from $0 ci0) ( to $0 ci1)))
 2. (lambda $0 e (and (flight $0) (round trip $0) (
   from $0 ci0) (to $0 ci1)))
```

Directly revise grammar rules on OVERNIGHT (500 more logical forms on avg)

Results: ATIS

Results: OVERNIGHT

Semi-supervised experiment: 50%labeled/50%unlabeled

Outline

Introduction and Motivation

Dual Learning Framework for Semantic Parsing

Experimental Results

Conclusion

Conclusion

Core idea

Leverage query generation model and obtain effective feedback signals to enhance the semantic parsing process.

- Semantic parsing framework based on dual learning algorithm
- Utilize both labeled and unlabeled samples
- Implicit constraint signal incorporated into reward

Thanks & QA

21 / 28

References I

Chen, B., Sun, L., and Han, X. (2018).

Sequence-to-action: End-to-end semantic graph generation for semantic parsing.

In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 766–777.

Herzig, J. and Berant, J. (2017).

Neural semantic parsing over multiple knowledge-bases.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 623–628.

Jia, R. and Liang, P. (2016).

Data recombination for neural semantic parsing. arXiv preprint arXiv:1606.03622.

Su. Y. and Yan, X. (2017).

Cross-domain semantic parsing via paraphrasing. arXiv preprint arXiv:1704.05974.

Baseline Model: Att

Baseline Model: AttPtr

Semantic Parsing (Entity Mapping)

- Entities are identified by Universal Resource Identifier(URI) in Knowledge Base(KB)
 kobe bryant → en.player.kobe_bryant
- After copying, map words to corresponding URI

uestion Generation (Reverse Entity Mapping)

Reversely map KB entity to possible noun phrase before QG

Semi-supervised: vary ratio between labeled and unlabeled data

- unlabeled data = train set labeled data
- labeled data = 30%, fixed

Different choice for logical form validity reward

Method	Validity	ATIS	Overnight
Атт	LM_{lf}	80.6	71.5
+ Dual	grammar check	81.7	72.9
ATTPTR	LM_{lf}	86.2	71.4
+ Dual	grammar check	86.8	73.0

- labeled data = 50%, unlabeled data = 50%
- LM_{If} means using a logical form language model for validity reward
- "grammar check" means using the structure and semantic check