Package 'cardinalR'

April 16, 2024

Type Package

```
Title Collection of Data Structures
Version 0.1.1
Description A collection of simple simulation datasets designed for
      generating Nonlinear Dimension Reduction representations
      techniques such as t-distributed Stochastic Neighbor Embedding,
      and Uniform Manifold Approximation and Projection. These
      datasets serve as a valuable resource for understanding the
      reliability of Nonlinear Dimension Reduction representations in various contexts.
License MIT + file LICENSE
URL https://github.com/JayaniLakshika/cardinalR
BugReports https://github.com/JayaniLakshika/cardinalR/issues
Depends R (>= 3.5.0)
Imports purrr, stats
Suggests knitr, langevitour, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-GB
LazyData true
RoxygenNote 7.3.1
NeedsCompilation no
Author Jayani P.G. Lakshika [aut, cre]
       (<https://orcid.org/0000-0002-6265-6481>),
      Dianne Cook [aut] (<a href="https://orcid.org/0000-0002-3813-7155">https://orcid.org/0000-0002-3813-7155</a>),
      Paul Harrison [aut] (<a href="https://orcid.org/0000-0002-3980-268X">https://orcid.org/0000-0002-3980-268X</a>),
      Michael Lydeamore [aut] (<a href="https://orcid.org/0000-0001-6515-827X">https://orcid.org/0000-0001-6515-827X</a>),
      Thiyanga S. Talagala [aut] (<a href="https://orcid.org/0000-0002-0656-9789">https://orcid.org/0000-0002-0656-9789</a>)
Maintainer Jayani P.G. Lakshika < jayanilakshika 76@gmail.com>
Repository CRAN
Date/Publication 2024-04-16 09:00:06 UTC
```

R topics documented:

cell_cycle
clust_diff_shapes
clust_diff_shapes_pts
conic_spiral_3d
conic_spiral_3d_row
cube_3d
curvy_branch
curvy_branch_clust
curvy_branch_clust_bkg
curvy_cycle
curvy_tree
curv_2d
diff_sphere
dini_surface_3d
dini_surface_3d_row
eight_branch
four_branch
four_long_clust
four_long_clust_bkg
gau_clust
gau_clust_diff
gau_curvy_clust
gau_curvy_clust_bkg
gen_bkg_noise
gen_noise_dims
mirror_scurves
mobius_5d
mobius_5d_row
mobius_clust
mobius_clust_data
mobius_clust_tsne_param1
mobius_clust_tsne_param2
mobius_clust_tsne_param3
mobius_clust_umap_param1
mobius_clust_umap_param2
mobius_clust_umap_param3
nonlinear_2d
nonlinear_connect
nonlinear_mirror
one_doublet
one_doublet_bkg
one_doublet_diff_patterns
one_doublet_diff_var_clust
one_doublet_four_clusts
one_grid
one_grid_bkg

R	topics	documented:
---	--------	-------------

Index

65

plane	3
plane_2d_hole	39
roman_surface_3d	40
roman_surface_3d_row	40
scurve	41
scurve_hole	42
seven_branch	42
sine_curve	43
sphere	. 44
spiral_3d	. 44
swiss_roll	45
three_circulars	46
three_clust_diff_dist	46
three_clust_mirror	47
three_diff_linear	48
three_doublets	48
three_grid	49
three_long_clust	. 50
three_nonlinear	. 50
torus_3d	. 51
torus_3d_row	. 52
tree	. 52
tri_3d	53
tri_plane_bkg	. 54
two_circulars	. 54
two_curvilinear	. 55
two_curvy	. 56
two_curvy_diff_pts	56
two_curvy_panckakes	57
two_doublets_bkg	58
two_doublets_parallel	59
two_grid	
two_grid_comb	60
two_grid_comb_bkg	6
two_long_clust	61
$two_long_clust_diff \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	62
two_nonlinear	63
two_scurves	63
two_scurve_hole	64

clust_diff_shapes

cell_cycle

Generate Cell Cycle Data with Noise

Description

This function generates a cell cycle dataset with added noise dimensions.

Usage

```
cell_cycle(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the cell cycle data with added noise.

Examples

```
set.seed(20240412)
cell_cycle_data <- cell_cycle(
  n = 300, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

clust_diff_shapes

Generate Clusters with Different Shapes

Description

This function generates clusters with different shapes, including both Gaussian and non-Gaussian clusters.

clust_diff_shapes 5

Usage

```
clust_diff_shapes(
    n,
    num_gau_clust,
    num_non_gau_clust,
    clust_sd_gau,
    clust_sd_non_gau,
    num_dims,
    a,
    b
)
```

Arguments

The total number of data points to be generated. n The number of Gaussian clusters to generate. num_gau_clust num_non_gau_clust The number of non-Gaussian clusters to generate. clust_sd_gau The standard deviation for the Gaussian clusters. clust_sd_non_gau The standard deviation for the non-Gaussian clusters. num_dims The number of dimensions for the data points. The scaling factor for the non-Gaussian cluster shape. а b The translation factor for the non-Gaussian cluster shape.

Value

A matrix containing the generated clusters with different shapes.

```
# Generate clusters with default parameters
set.seed(20240412)
data <- clust_diff_shapes(
   n = 300, num_gau_clust = 4,
   num_non_gau_clust = 2, clust_sd_gau = 0.05, clust_sd_non_gau = 0.1,
   num_dims = 7, a = 2, b = 4
)</pre>
```

Description

This function generates clusters with different shapes, including both Gaussian and non-Gaussian clusters, with different numbers of points in each cluster.

Usage

```
clust_diff_shapes_pts(
  clust_size_vec,
  num_gau_clust,
  num_non_gau_clust,
  clust_sd_gau,
  clust_sd_non_gau,
  num_dims,
  a,
  b
)
```

Arguments

```
clust_size_vec A vector specifying the number of points for each cluster.

num_gau_clust The number of Gaussian clusters to generate.

num_non_gau_clust The number of non-Gaussian clusters to generate.

clust_sd_gau The standard deviation for the Gaussian clusters.

clust_sd_non_gau The standard deviation for the non-Gaussian clusters.

num_dims The number of dimensions for the data points.

a The scaling factor for the non-Gaussian cluster shape.

b The translation factor for the non-Gaussian cluster shape.
```

Value

A matrix containing the generated clusters with different shapes and different numbers of points.

```
# Generate clusters with default parameters
set.seed(20240412)
data <- clust_diff_shapes_pts(
   clust_size_vec = c(50, 50, 50, 50, 100, 100),
   num_gau_clust = 4,</pre>
```

conic_spiral_3d 7

```
num_non_gau_clust = 2, clust_sd_gau = 0.05, clust_sd_non_gau = 0.1,
num_dims = 7, a = 2, b = 4
)
```

conic_spiral_3d

Generate data points along a conic spiral curve with optional noise.

Description

This function generates data points along a conic spiral curve with optional noise.

Usage

```
conic_spiral_3d(n, num_noise, min_n, max_n)
```

Arguments

n Total number of data points to generate.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated data points with or without added noise.

Examples

```
set.seed(20240412)
conic_spiral_3d(n = 100, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

conic_spiral_3d_row

Generate points on a conic spiral in 3D space.

Description

This function generates points on a conic spiral in 3D space.

Usage

```
conic_spiral_3d_row(a, b, c, w)
```

8 cube_3d

Arguments

a	Final radius of the cone.
b	Height of the object.
С	Inner radius.
W	Number of spirals.

Value

A matrix containing the generated points on the conic spiral.

Examples

```
set.seed(20240412)
conic_spiral_3d_row(1, 2, 0.5, 3)
```

cube_3d

Generate a 3D cube with optional noise.

Description

This function generates a 3D cube along with optional noise.

Usage

```
cube_3d(num_dims, num_noise, min_n, max_n)
```

Arguments

num_dims	Number of effective dimensions (default is 3 for a 3D cube).
num_noise	Number of additional noise dimensions to add to the data.
min_n	Minimum value for the noise added to the data.
max_n	Maximum value for the noise added to the data.

Value

A list containing the generated data matrix and the sample size.

```
set.seed(20240412)
cube_3d(num_dims = 3, num_noise = 2, min_n = -0.01, max_n = 0.01)
```

curvy_branch 9

curvy_branch	Generate Curvy Branching Clusters with Noise
	3 - · · · · · · · · · · · · · · · · · ·

Description

This function generates data with curvy branching clusters along with added noise.

Usage

```
curvy_branch(n, num_noise, min_n, max_n)
```

Arguments

n	The total number	of data point	ts to be generated.
!!	THE total number	or data pom	is to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate curvy branching clusters with noise with custom parameters set.seed(20240412) data <- curvy_branch(n = 200, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

```
curvy_branch_clust Generate Curvy Branching Cluster Data
```

Description

This function generates curvy branching cluster data with three clusters of different shapes.

Usage

```
curvy_branch_clust(n, clust_vec, num_noise, min_n, max_n)
```

Arguments

n	The total number of data points to be generated.
clust_vec	A vector specifying the number of points for each cluster. If not provided, the n is divided equally among the clusters.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max_n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate curvy branching cluster data with custom parameters
set.seed(20240412)
data <- curvy_branch_clust(
   n = 300, clust_vec = c(100, 150, 50),
   num_noise = 2, min_n = -0.05, max_n = 0.05
)</pre>
```

curvy_branch_clust_bkg

Generate Curvy Branching Cluster Data with Background Noise

Description

This function generates data with four clusters, two of which follow a curvilinear pattern and the other two are distributed randomly.

Usage

```
curvy_branch_clust_bkg(n, num_noise, min_n, max_n)
```

Arguments

n	The total number of data points to be generated.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

curvy_cycle 11

Examples

```
# Generate curvy branching cluster data with background noise with custom parameters set.seed(20240412) data <- curvy_branch_clust_bkg(  n = 400, \ num_noise = 2, \ min_n = -0.05, \\ max_n = 0.05  )
```

curvy_cycle

Generate Curvy Cell Cycle Data with Noise

Description

This function generates a curvy cell cycle dataset with added noise dimensions.

Usage

```
curvy_cycle(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the curvy cell cycle data with added noise.

```
set.seed(20240412)
curvy_cell_cycle_data <- curvy_cycle(
  n = 300, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

12 curv_2d

curvy_tree	Generate Curvy Tree Data with Noise

Description

This function generates a dataset representing a curvy tree structure, with added noise.

Usage

```
curvy_tree(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the curvy tree data with added noise.

Examples

```
set.seed(20240412)
tree_data <- curvy_tree(n = 300, num_noise = 2, min_n = -0.05, max_n = 0.05)</pre>
```

curv_2d

Generate points on a curvilinear 2D manifold

Description

This function generates points on a curvilinear 2D manifold based on a nonlinear equation.

Usage

```
curv_2d(n, num_noise, min_n, max_n)
```

Arguments

n The number of points to generate.

num_noise The number of noise dimensions to add to the generated points.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

diff_sphere 13

Value

A matrix containing the generated points on the curvilinear 2D manifold.

Examples

```
set.seed(20240412)
curvilinear_points <- curv_2d(
    n = 100, num_noise = 2, min_n = -0.01,
    max_n = 0.01
)</pre>
```

diff_sphere

Generate data representing small spheres within a larger encompassing sphere with added noise.

Description

This function generates data points representing small spheres within a larger encompassing sphere and adds noise to the data if specified.

Usage

```
diff_sphere(n, num_noise, min_n, max_n)
```

Arguments

n Total number of data points to generate, should be a multiple of 13.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated data points with or without added noise.

```
set.seed(20240412)
diff_sphere(
    n = 390, num_noise = 2,
    min_n = -0.05, max_n = 0.05
)
```

14 dini_surface_3d_row

dini_surface_3d

Generate points sampled from the Dini surface with optional noise.

Description

This function generates points sampled from the Dini surface along with optional noise.

Usage

```
dini_surface_3d(n, num_noise, min_n, max_n)
```

Arguments

n Total number of data points to generate.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated data points with or without added noise.

Examples

```
set.seed(20240412)
dini_surface_3d(n = 100, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

dini_surface_3d_row

Generate points on a Dini's surface.

Description

This function generates points on a Dini's surface.

Usage

```
dini_surface_3d_row(a = 1, b = 1)
```

Arguments

- a Outer radius of the surface.
- b Space between loops.

eight_branch 15

Value

A matrix containing the generated points on the surface.

Examples

```
set.seed(20240412)
dini_surface_3d_row(a = 1, b = 1)
```

eight_branch

Generate Eight Branching Data with Noise

Description

This function generates a dataset representing eight branching patterns, with added noise.

Usage

```
eight_branch(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the eight branching data with added noise.

```
set.seed(20240412)
branching_data <- eight_branch(
  n = 400, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

16 four_long_clust

four_branch Generate Four-Branching Data with Noise	
---	--

Description

This function generates a dataset representing four branches with added noise.

Usage

```
four_branch(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the four-branching data with added noise.

Examples

```
set.seed(20240412)
four_branching_data <- four_branch(
  n = 400, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

four_long_clust

Generate Four Different Long Clusters with Noise

Description

This function generates a dataset consisting of four different long clusters with added noise.

Usage

```
four_long_clust(n, num_noise, min_n, max_n)
```

Arguments

The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

four_long_clust_bkg 17

Value

A matrix containing the four different long clusters with added noise.

Examples

```
set.seed(20240412)
four_diff_long_clusters <- four_long_clust(
  n = 200, num_noise = 2,
  min_n = -0.05, max_n = 0.05
)</pre>
```

four_long_clust_bkg Generate Four Long Clusters with Background Noise

Description

This function generates data with four long clusters along with background noise.

Usage

```
four_long_clust_bkg(n, num_noise, min_n, max_n)
```

Arguments

n	The total number of data points to be generated.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max_n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

```
# Generate four long clusters with background noise with custom parameters set.seed(20240412) data <- four_long_clust_bkg(  n = 400, \ num\_noise = 4, \ min\_n = -0.05, \\ max\_n = 0.05 )
```

18 gau_clust

gau_clust

Generate synthetic data with Gaussian clusters

Description

Generate Gaussian Clusters

Usage

```
gau_clust(
    n,
    num_clust,
    mean_matrix,
    var_vec,
    num_dims,
    num_noise,
    min_n,
    max_n
)
```

Arguments

n The total number of data points to be generated.

num_clust The number of clusters to generate.

mean_matrix A matrix where each row represents the mean vector for a cluster.

var_vec A vector specifying the variance for each cluster.

num_dims The number of effective dimensions for the data points.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Details

This function generates Gaussian clusters with specified parameters.

Value

A matrix containing the generated Gaussian clusters.

```
set.seed(20240412)
gau_clust(
  n = 300, num_clust = 5,
  mean_matrix = rbind(
```

gau_clust_diff 19

```
c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0), \\ c(0, 0, 0, 1), c(0, 0, 0, 0) \\ ), var_vec = c(0.05, 0.05, 0.05, 0.05, 0.05), \\ num_dims = 4, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

gau_clust_diff

Generate Gaussian Clusters with Different Points

Description

This function generates Gaussian clusters with different numbers of points per cluster.

Usage

```
gau_clust_diff(
  clust_size_vec,
  num_clust,
  mean_matrix,
  var_vec,
  num_dims,
  num_noise,
  min_n,
  max_n
)
```

Arguments

clust_size_vec A vector specifying the number of points in each cluster.

num_clust The number of clusters to generate.

mean_matrix A matrix where each row represents the mean vector for a cluster.

var_vec A vector specifying the variance for each cluster.

num_dims The number of effective dimensions for the data points.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated Gaussian clusters with different points.

20 gau_curvy_clust

Examples

```
# Generate Gaussian clusters with custom parameters
set.seed(20240412)
data <- gau_clust_diff(
   clust_size_vec = c(50, 100, 200, 50),
   num_clust = 4, mean_matrix =
    rbind(
        c(1, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0),
        c(0, 0, 1, 0, 0, 0), c(0, 0, 0, 1, 0, 0)
    ),
   var_vec = c(0.02, 0.05, 0.06, 0.1),
   num_dims = 6, num_noise = 4,
   min_n = -0.05, max_n = 0.05
)</pre>
```

gau_curvy_clust

Generate Cluster and Curvilinear Data with Noise

Description

This function generates data with two clusters, one following a curvilinear pattern and the other distributed randomly.

Usage

```
gau_curvy_clust(n, clust_size_vec, num_noise, min_n, max_n)
```

Arguments

n	The total number of data points to be generated.
	A vector specifying the number of points for each cluster. If not provided, the n is divided equally between the two clusters.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max_n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

gau_curvy_clust_bkg 21

Examples

```
# Generate cluster and curvilinear data with custom parameters
set.seed(20240412)
data <- gau_curvy_clust(
    n = 300, clust_size_vec = c(100, 200), num_noise = 3,
    min_n = -0.05, max_n = 0.05
)</pre>
```

gau_curvy_clust_bkg

Generate Clusters and Curvilinear Data with Noise

Description

This function generates data with clusters and curvilinear patterns along with added background noise.

Usage

```
gau_curvy_clust_bkg(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

```
# Generate clusters and curvilinear data with noise with custom parameters set.seed(20240412) data <- gau_curvy_clust_bkg(  n = 260, \ num\_noise = 2, \ min\_n = -0.05, \\ max\_n = 0.05 )
```

22 gen_noise_dims

gen	bkg	_noise
8°''-	-∼…⊳-	_110100

Generate Background Noise Data

Description

This function generates background noise data with specified parameters such as the number of samples, number of dimensions, mean, and standard deviation.

Usage

```
gen_bkg_noise(n, num_dims, mean, sd)
```

Arguments

n Number of samples to generate.

num_dims Number of dimensions (columns) of the data.

mean Mean of the normal distribution used to generate noise (default is 0).

sd Standard deviation of the normal distribution used to generate noise (default is

1).

Value

A matrix containing the generated background noise data, with n rows and num_dims columns.

Examples

```
# Generate background noise with custom mean and standard deviation set.seed(20240412) gen_bkg_noise(n = 50, num_dims = 3, mean = 5, sd = 2)
```

gen_noise_dims

Generate Random Noise Dimensions

Description

This function generates random noise dimensions to be added to the coordinates of a sphere.

Usage

```
gen_noise_dims(n, num_noise, min_n, max_n)
```

mirror_scurves 23

Arguments

n	The number of	of observation	ons for which	ch to generate	noise dimensions.

num_noise The number of noise dimensions to generate.

min_n The minimum value for the random noise.

max_n The maximum value for the random noise.

Value

A matrix containing the generated random noise dimensions.

Examples

```
# Generate random noise dimensions with 3 dimensions, minimum value -1, and maximum value 1 set.seed(20240412) gen_noise_dims(n = 50, num_noise = 3, min_n = -0.01, max_n = 0.01)
```

mirror_scurves

Generate Mirror S-curve Datasets with Noise

Description

This function generates mirror S-curve datasets with added noise dimensions.

Usage

```
mirror_scurves(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate (should be divisible by 2).

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the combined mirror S-curve datasets with added noise.

```
set.seed(20240412)
mirror_s_curve_data <- mirror_scurves(
    n = 200, num_noise = 2,
    min_n = -0.05, max_n = 0.05
)</pre>
```

24 mobius_5d_row

	h :		5d
mo	n ı	115	ากต

Generate a 5-D Mobius Strip

Description

This function generates a dataset representing a 5-dimensional Mobius strip.

Usage

```
mobius_5d(n, num_noise, min_n, max_n)
```

Arguments

The number of points to generate for the Mobius strip.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the generated Mobius strip.

Examples

```
set.seed(20240412) mobius_data <- mobius_5d(n = 100, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

mobius_5d_row

Generate a Single Row for a 5-D Mobius Strip

Description

This function generates a single row of data representing a point on a 5-dimensional Mobius strip.

Usage

```
mobius_5d_row()
```

Value

A vector containing the coordinates of the point on the Mobius strip.

```
set.seed(20240412)
mobius_row <- mobius_5d_row()</pre>
```

mobius_clust 25

mobius_clust (Generate Mobius	Cluster with Noise
----------------	-----------------	--------------------

Description

This function generates a dataset consisting of a mobius cluster with added noise.

Usage

```
mobius_clust(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the mobius cluster with added noise.

Examples

```
mobius_cluster <- mobius_clust(
  n = 200, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

mobius_clust_data

Mobius clust dataset with noise dimensions

Description

The 'mobius_clust_data' dataset contains a 3-dimensional Mobius and Gaussian cluster with added noise dimensions. Each data point is represented by five dimensions (x1 to x5).

Usage

```
data(mobius_clust_data)
```

Format

A data frame with 500 rows and 5 columns:

```
x1, x2, x3, x4, x5 High-dimensional coordinates
```

Source

This dataset is generated for illustrative purposes.

Examples

```
# Load the mobius_clust_data dataset
data(mobius_clust_data)

# Display the first few rows of the dataset
head(mobius_clust_data)
```

```
mobius_clust_tsne_param1
```

tSNE embedding for mobius_clust_data dataset which with noise dimensions tSNE parameters set to perplexity: 15.

Description

The 'mobius_clust_tsne_param1' dataset contains the tSNE (t-distributed Stochastic Neighbor Embedding) embeddings of a five-dimensional mobius_clust_data. Each data point is represented by two tSNE coordinates (emb1 and emb2).

Usage

```
data(mobius_clust_tsne_param1)
```

Format

'mobius_clust_tsne_param1' A data frame with 500 rows and 2 columns:

```
emb1 Numeric, first tSNE 2D embeddings.
```

emb2 Numeric, second tSNE 2D embeddings.

Source

This dataset is generated for illustrative purposes.

```
# Load the mobius_clust_tsne_param1 dataset
data(mobius_clust_tsne_param1)

# Display the first few rows of the dataset
head(mobius_clust_tsne_param1)
```

```
mobius_clust_tsne_param2
```

tSNE embedding for mobius_clust_data dataset which with noise dimensions tSNE parameters set to perplexity: 30.

Description

The 'mobius_clust_tsne_param2' dataset contains the tSNE (t-distributed Stochastic Neighbor Embedding) embeddings of a five-dimensional mobius_clust_data. Each data point is represented by two tSNE coordinates (emb1 and emb2).

Usage

```
data(mobius_clust_tsne_param2)
```

Format

'mobius_clust_tsne_param2' A data frame with 500 rows and 2 columns:

```
emb1 Numeric, first tSNE 2D embeddings.
```

emb2 Numeric, second tSNE 2D embeddings.

Source

This dataset is generated for illustrative purposes.

Examples

```
# Load the mobius_clust_tsne_param2 dataset
data(mobius_clust_tsne_param2)
# Display the first few rows of the dataset
head(mobius_clust_tsne_param2)
```

```
mobius_clust_tsne_param3
```

tSNE embedding for mobius_clust_data dataset which with noise dimensions tSNE parameters set to perplexity: 5.

Description

The 'mobius_clust_tsne_param3' dataset contains the tSNE (t-distributed Stochastic Neighbor Embedding) embeddings of a five-dimensional mobius_clust_data. Each data point is represented by two tSNE coordinates (emb1 and emb2).

Usage

```
data(mobius_clust_tsne_param3)
```

Format

'mobius_clust_tsne_param3' A data frame with 500 rows and 2 columns:

emb1 Numeric, first tSNE 2D embeddings.

emb2 Numeric, second tSNE 2D embeddings.

Source

This dataset is generated for illustrative purposes.

Examples

```
# Load the mobius_clust_tsne_param1 dataset
data(mobius_clust_tsne_param3)
# Display the first few rows of the dataset
head(mobius_clust_tsne_param3)
```

```
mobius_clust_umap_param1
```

UMAP embedding for mobius_clust_data dataset which with noise dimensions UMAP parameters set to n-neighbors: 15 and min-dist: 0.1.

Description

The 'mobius_clust_umap_param1' dataset contains the UMAP (Uniform Manifold Approximation and Projection) embeddings of a five-dimensional mobius_clust_data. Each data point is represented by two UMAP coordinates (emb1 and emb2).

Usage

```
data(mobius_clust_umap_param1)
```

Format

'mobius_clust_umap_param1' A data frame with 500 rows and 2 columns:

emb1 Numeric, first UMAP 2D embeddings.

emb2 Numeric, second UMAP 2D embeddings.

Source

This dataset is generated for illustrative purposes.

Examples

```
# Load the mobius_clust_umap_param1 dataset
data(mobius_clust_umap_param1)

# Display the first few rows of the dataset
head(mobius_clust_umap_param1)
```

```
mobius_clust_umap_param2
```

UMAP embedding for mobius_clust_data dataset which with noise dimensions UMAP parameters set to n-neighbors: 30 and min-dist: 0.08.

Description

The 'mobius_clust_umap_param2' dataset contains the UMAP (Uniform Manifold Approximation and Projection) embeddings of a five-dimensional mobius_clust_data. Each data point is represented by two UMAP coordinates (emb1 and emb2).

Usage

```
data(mobius_clust_umap_param2)
```

Format

'mobius_clust_umap_param2' A data frame with 500 rows and 2 columns:

```
emb1 Numeric, first UMAP 2D embeddings.
```

emb2 Numeric, second UMAP 2D embeddings.

Source

This dataset is generated for illustrative purposes.

```
# Load the mobius_clust_umap_param2 dataset
data(mobius_clust_umap_param2)
```

```
# Display the first few rows of the dataset
head(mobius_clust_umap_param2)
```

30 nonlinear_2d

```
mobius_clust_umap_param3
```

UMAP embedding for mobius_clust_data dataset which with noise dimensions UMAP parameters set to n-neighbors: 5 and min-dist: 0.9.

Description

The 'mobius_clust_umap_param3' dataset contains the UMAP (Uniform Manifold Approximation and Projection) embeddings of a five-dimensional mobius_clust_data. Each data point is represented by two UMAP coordinates (emb1 and emb2).

Usage

```
data(mobius_clust_umap_param3)
```

Format

'mobius_clust_umap_param3' A data frame with 500 rows and 2 columns:

```
emb1 Numeric, first UMAP 2D embeddings.
```

emb2 Numeric, second UMAP 2D embeddings.

Source

This dataset is generated for illustrative purposes.

Examples

```
# Load the mobius_clust_umap_param3 dataset
data(mobius_clust_umap_param3)
# Display the first few rows of the dataset
head(mobius_clust_umap_param3)
```

nonlinear_2d

Generate points on a nonlinear 2D manifold

Description

This function generates points on a nonlinear 2D manifold based on a given equation.

Usage

```
nonlinear_2d(n, num_noise, min_n, max_n)
```

nonlinear_connect 31

Arguments

n The number of points to generate.

num_noise The number of noise dimensions to add to the generated points.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the generated points on the nonlinear 2D manifold.

Examples

```
set.seed(20240412)
nonlinear_points <- nonlinear_2d(
  n = 100, num_noise = 2, min_n = -0.01,
  max_n = 0.01
)</pre>
```

nonlinear_connect

Generate Nonlinear Connected Data with Noise

Description

This function generates a dataset representing nonlinear connected clusters with added noise.

Usage

```
nonlinear_connect(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the nonlinear connected data with noise.

```
set.seed(20240412)
nonlinear_connect <- nonlinear_connect(
  n = 400, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

one_doublet

nonlinear_mirror

Generate Nonlinear Mirror Data with Noise

Description

This function generates a dataset representing two mirror-image clusters with added noise.

Usage

```
nonlinear_mirror(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the nonlinear mirror data with noise.

Examples

```
set.seed(20240412)
nonlinear_mirror <- nonlinear_mirror(
  n = 400, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

one_doublet

Generate Doublets with Noise

Description

This function generates data with one set of doublets (pairs of clusters) along with added background noise.

Usage

```
one_doublet(n, num_noise, min_n, max_n)
```

one_doublet_bkg 33

Arguments

n	The total	number	of data	points to	be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate doublets with noise with custom parameters set.seed(20240412) data <- one_doublet(n = 220, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

one_doublet_bkg

Generate Doublets with Background Noise

Description

This function generates data with doublets (pairs of clusters) along with added background noise.

Usage

```
one_doublet_bkg(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

```
# Generate doublets with background noise with custom parameters set.seed(20240412) data <- one_doublet_bkg(n = 250, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

```
one_doublet_diff_patterns
```

Generate Doublets with Different Pattern Clusters and Noise

Description

This function generates data with one set of doublets (pairs of clusters) having different patterns, along with added background noise.

Usage

```
one_doublet_diff_patterns(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate doublets with different pattern clusters and noise with custom parameters set.seed(20240412) data <- one_doublet_diff_patterns(  n = 280, \ num\_noise = 2, \ min\_n = -0.05, \\ max\_n = 0.05 )
```

```
one_doublet_diff_var_clust
```

Generate Doublets with Different Variance Clusters and Noise

Description

This function generates data with one set of doublets (pairs of clusters) having clusters with different variance, along with added background noise.

Usage

```
one_doublet_diff_var_clust(n, num_noise, min_n, max_n)
```

Arguments

n	The total num	ber of data points t	o be generated.
---	---------------	----------------------	-----------------

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate doublets with different variance clusters and noise with custom parameters set.seed(20240412) data <- one_doublet_diff_var_clust(  n = 260, \ num\_noise = 2, \\ min\_n = -0.05, \ max\_n = 0.05 )
```

```
one_doublet_four_clusts
```

Generate Doublets with Four Clusters and Noise

Description

This function generates data with one set of doublets (pairs of clusters) containing four clusters, along with added background noise.

Usage

```
one_doublet_four_clusts(n, num_noise, min_n, max_n)
```

Arguments

n	The total	number	of data	points to	be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

one_grid

Examples

one_grid

Generate Grid Data with Noise

Description

This function generates a grid dataset with specified grid points along the x and y axes, and optionally adds noise dimensions.

Usage

```
one_grid(nx, ny, num_noise, min_n, max_n)
```

Arguments

nx The number of grid points along the x axis.

ny The number of grid points along the y axis.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the grid data with added noise.

```
set.seed(20240412) one\_grid <- one\_grid(nx = 10, ny = 10, num\_noise = 2, min\_n = -0.05, max\_n = 0.05)
```

one_grid_bkg

one	_grid	hkø
one_	_gritu	_L

Generate One Grid with Different Values and Background Noise

Description

This function generates a grid dataset with different values and background noise.

Usage

```
one_grid_bkg(n_value, num_noise, min_n, max_n)
```

Arguments

n_value	The number of grid points along each axis for the grids.
num_noise	The number of additional noise dimensions to add to the data.
min_n	The minimum value for the noise dimensions.
max_n	The maximum value for the noise dimensions.

Value

A list containing the one grid datasets with background noise and the sample size.

Examples

```
set.seed(20240412)
one_grid_bkg <- one_grid_bkg(
    n_value = 10, num_noise = 2, min_n = -0.05,
    max_n = 0.05
)</pre>
```

plane

Generate points on a plane in 2D space

Description

This function generates points on a plane in 3D space based on the provided coefficients, intercepts, and ranges for the parameters.

38 plane

Usage

```
plane(
  n,
  coef_x1,
  coef_x2,
  coef_y1,
  coef_y2,
  intercept_x,
  intercept_y,
  u_min,
  u_max,
  v_min,
  v_max,
  num_noise,
  min_n,
  max_n
)
```

Arguments

n	The number of points to generate.
coef_x1	The coefficient of the first parameter in the x-dimension equation.
coef_x2	The coefficient of the second parameter in the x-dimension equation.
coef_y1	The coefficient of the first parameter in the y-dimension equation.
coef_y2	The coefficient of the second parameter in the y-dimension equation.
intercept_x	The intercept for the x-dimension equation.
intercept_y	The intercept for the y-dimension equation.
u_min	The minimum value for the first parameter (u) range.
u_max	The maximum value for the first parameter (u) range.
v_min	The minimum value for the second parameter (v) range.
v_max	The maximum value for the second parameter (v) range.
num_noise	The number of noise dimensions to add to the generated points.
min_n	The minimum value for the noise dimensions.
max_n	The maximum value for the noise dimensions.

Value

A matrix containing the generated points on the plane.

```
set.seed(20240412)
plane_points <- plane(
  n = 100, coef_x1 = 1, coef_x2 = 1,
  coef_y1 = -1, coef_y2 = 1, intercept_x = -10,</pre>
```

plane_2d_hole 39

```
intercept_y = 8, u_min = 10, u_max = 30, v_min = 10, v_max = 20,
 num_noise = 2, min_n = -0.05, max_n = 0.05
)
```

plane_2d_hole

Generate 2D Plane with Hole and Noise

Description

This function generates a dataset representing a 2D plane with a hole in the middle, with added

Usage

```
plane_2d_hole(n, num_noise, min_n, max_n)
```

Arguments

max_n

The total number of samples to generate. The number of additional noise dimensions to add to the data. num_noise The minimum value for the noise dimensions. min_n The maximum value for the noise dimensions.

Value

A list containing the 2D plane data with a hole and the sample size.

```
set.seed(20240412)
plane_data <- plane_2d_hole(</pre>
  n = 100, num_noise = 2,
  min_n = -0.05, max_n = 0.05
```

roman_surface_3d

Generate data points on a Roman surface with optional noise.

Description

This function generates data points on a Roman surface with optional noise.

Usage

```
roman_surface_3d(n, num_noise, min_n, max_n)
```

Arguments

n Total number of data points to generate.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated data points with or without added noise.

Examples

```
set.seed(20240412) roman_surface_3d(n = 100, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

roman_surface_3d_row Generate points on a Roman surface in 3D space.

Description

This function generates points on a Roman surface in 3D space.

Usage

```
roman_surface_3d_row(a = 1)
```

Arguments

a Maximum radius of the object.

Value

A matrix containing the generated points on the Roman surface in 3D space.

scurve 41

Examples

```
set.seed(20240412)
roman_surface_3d_row(a = 1)
```

scurve

Generate S-curve Data

Description

This function generates S-curve data, which is a commonly used dataset for testing and visualizing dimensionality reduction algorithms.

Usage

```
scurve(n, num_noise, min_n, max_n)
```

Arguments

n The number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the generated S-curve data.

```
set.seed(20240412)
s_curve_data <- scurve(
    n = 100, num_noise = 2,
    min_n = -0.05, max_n = 0.05
)</pre>
```

42 seven_branch

scurve	hΛ	۵ ا
Scul ve	_1101	LC

Generate S-curve Data with a Hole

Description

This function generates S-curve data with a hole by filtering out samples that are not close to a specified anchor point.

Usage

```
scurve_hole(n, num_noise, min_n, max_n)
```

Arguments

n The number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the generated S-curve data with a hole.

Examples

```
set.seed(20240412)
s_curve_hole_data <- scurve_hole(
   n = 100, num_noise = 2,
   min_n = -0.05, max_n = 0.05
)</pre>
```

seven_branch

Generate Seven-Branching Data with Noise

Description

This function generates a dataset representing seven branches with added noise.

Usage

```
seven_branch(n, num_noise, min_n, max_n)
```

sine_curve 43

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the seven-branching data with added noise.

Examples

```
set.seed(20240412)
seven_branching_data <- seven_branch(
  n = 210, num_noise = 2, min_n = -0.05,
  max_n = 0.05
)</pre>
```

sine_curve

Generate Sine Curve Data with Noise

Description

This function generates a dataset representing a sine curve with added noise.

Usage

```
sine_curve(n, num_noise, min_n, max_n)
```

Arguments

n The number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the sine curve data with noise.

```
set.seed(20240412)
sine_curve <- sine_curve(n = 100, num_noise = 2, min_n = -0.05, max_n = 0.05)</pre>
```

spiral_3d

an.	h^	~~
50	ne	re

Generate Coordinates for a Sphere

Description

This function generates the coordinates for a sphere in three-dimensional space.

Usage

```
sphere(radius, resolution, num_noise, min_n, max_n)
```

Arguments

radius The radius of the sphere.

resolution The number of points used to approximate the surface of the sphere.

num_noise The number of additional noise dimensions to add to the coordinates.

min_n The minimum value for the random noise added to the coordinates.

The maximum value for the random noise added to the coordinates.

Value

A matrix containing the Cartesian coordinates of the points on the sphere.

Examples

```
# Generate coordinates for a sphere with radius 1 and resolution 20 set.seed(20240412) sphere( radius = 1, resolution = 20, num_noise = 3, min_n = -0.05, max_n = 0.05)
```

spiral_3d

Generate a spiral dataset with optional noise.

Description

This function generates a dataset arranged in a spiral pattern with optional noise.

Usage

```
spiral_3d(n, num_dims, num_noise, min_n, max_n)
```

swiss_roll 45

Arguments

n Total number of o	data points to generate.
---------------------	--------------------------

num_dims Number of effective dimensions for each data point.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated data points with or without added noise.

Examples

```
set.seed(20240412) spiral_3d(n = 100, num_dims = 10, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

swiss_roll

Generate Swiss Roll Data

Description

This function generates data points in the shape of a Swiss roll.

Usage

```
swiss_roll(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated Swiss roll data points.

```
# Generate Swiss roll data with noise with custom parameters set.seed(20240412) data <- swiss_roll(n = 200, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

46 three_clust_diff_dist

three_circulars

Generate Three Circular Clusters with Noise

Description

This function generates three circular clusters in 4D space with added noise dimensions.

Usage

```
three_circulars(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the three circular clusters with added noise.

Examples

```
set.seed(20240412)
circular_clusters_data <- three_circulars(
  n = 300, num_noise = 2,
  min_n = -0.05, max_n = 0.05
)</pre>
```

three_clust_diff_dist Generate three clusters of data points with optional noise.

Description

This function generates three clusters of data points along with optional noise.

Usage

```
three_clust_diff_dist(n, num_dims, num_noise, min_n, max_n)
```

three_clust_mirror 47

Arguments

n	Total number of	data ¹	points to	generate.	should be	a multiple of three.

num_dims Number of dimensions for each data point.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated data points with or without added noise.

Examples

```
set.seed(20240412)
three_clust_diff_dist(
    n = 150, num_dims = 7, num_noise = 4, min_n = -0.05,
    max_n = 0.05
)
```

three_clust_mirror

Generate Three Cluster Mirror with Noise

Description

This function generates data with three clusters forming a mirror image, along with added noise.

Usage

```
three_clust_mirror(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

```
# Generate three cluster mirror with noise with custom parameters
set.seed(20240412)
data <- three_clust_mirror(n = 300, num_noise = 2, min_n = -0.05, max_n = 0.05)</pre>
```

three_doublets

three_diff_linear

Generate Three Different Linear Data with Noise

Description

This function generates a dataset consisting of three different linear patterns with added noise.

Usage

```
three_diff_linear(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the three different linear data with added noise.

Examples

```
set.seed(20240412)
three_diff_linear <- three_diff_linear(
   n = 150, num_noise = 2, min_n = -0.05,
   max_n = 0.05
)</pre>
```

three_doublets

Generate Doublets with Three Clusters and Noise

Description

This function generates data with three sets of doublets (pairs of clusters) along with added background noise.

Usage

```
three_doublets(n, num_noise, min_n, max_n)
```

three_grid 49

Arguments

n	The total number of data points to be generated.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max_n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate doublets with three clusters and noise with custom parameters set.seed(20240412) data <- three_doublets( n = 420, \ num\_noise = 2, \\ min\_n = -0.05, \ max\_n = 0.05)
```

three_grid

Generate Three Grids with Noise

Description

This function generates three grid datasets with noise dimensions.

Usage

```
three_grid(n_value, num_noise, min_n, max_n)
```

Arguments

n_value	The number of grid points along the x and y axes for each grid.
num_noise	The number of additional noise dimensions to add to the data.
min_n	The minimum value for the noise dimensions.
max_n	The maximum value for the noise dimensions.

Value

A list containing three grid datasets with added noise and the sample size of each dataset.

```
set.seed(20240412)
three_grids <- three_grid(
    n_value = 19, num_noise = 2, min_n = -0.05,
    max_n = 0.05
)</pre>
```

50 three_nonlinear

three_long_clust	Generate Three Linear Clusters with Noise	
------------------	---	--

Description

This function generates data with three linear clusters, along with added noise.

Usage

```
three_long_clust(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate three linear clusters with noise with custom parameters
set.seed(20240412)
data <- three_long_clust(n = 300, num_noise = 2, min_n = -0.05, max_n = 0.05)</pre>
```

three_nonlinear

Generate Three Nonlinear Clusters with Noise

Description

This function generates data with three nonlinear clusters, along with added noise.

Usage

```
three_nonlinear(n, num_noise, min_n, max_n)
```

Arguments

The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

torus_3d 51

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate three nonlinear clusters with noise with custom parameters set.seed(20240412) data <- three_nonlinear(n = 300, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

torus_3d

Generate a torus-shaped dataset with optional noise.

Description

This function generates a torus-shaped dataset along with optional noise.

Usage

```
torus_3d(n, num_noise, min_n, max_n)
```

Arguments

n Total number of data points to generate.

num_noise Number of additional noise dimensions to add to the data.

min_n Minimum value for the noise added to the data.

max_n Maximum value for the noise added to the data.

Value

A matrix containing the generated torus-shaped data points with or without added noise.

```
set.seed(20240412)

torus_3d(n = 100, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

52 tree

torus_3d_row

Generate a row of data points for a 3D torus.

Description

This function generates a row of data points for a 3D torus with given radii.

Usage

```
torus_3d_row(radius)
```

Arguments

radius

A numeric vector containing the radii of the torus, from largest to smallest.

Value

A vector representing a row of data points for the 3D torus.

Examples

```
set.seed(20240412)
torus_3d_row(c(2, 1))
```

tree

Generate Tree-like Data with Noise

Description

This function generates a dataset representing a tree-like structure, with added noise.

Usage

```
tree(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the tree-like data with added noise.

tri_3d 53

Examples

```
set.seed(20240412) tree_data <- tree(n = 300, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

tri_3d

Generate Triangular 3D Datasets with Noise

Description

This function generates triangular 3D datasets with added noise dimensions.

Usage

```
tri_3d(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the triangular 3D datasets with added noise.

```
set.seed(20240412)
triangular_3d_data <- tri_3d(
    n = 100, num_noise = 2,
    min_n = -0.05, max_n = 0.05
)</pre>
```

54 two_circulars

tri_plane_bkg	Generate Triangular Plane with Background Noise	
tri_piane_bkg	Generate Triangular Plane with Background Noise	

Description

This function generates a triangular plane dataset with background noise dimensions.

Usage

```
tri_plane_bkg(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the triangular plane dataset with background noise.

Examples

```
set.seed(20240412)
triangular_plane_data <- tri_plane_bkg(
   n = 216,
   num_noise = 2, min_n = -0.05, max_n = 0.05)</pre>
```

two_circulars

Generate Linked Data

Description

This function generates linked data points.

Usage

```
two_circulars(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated. Should be a product of two.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

two_curvilinear 55

Value

A matrix containing the generated linked data points.

Examples

```
# Generate linked data with noise with custom parameters set.seed(20240412) data <- two_circulars(n = 200, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

two_curvilinear

Generate Two Curvilinear Data with Noise

Description

This function generates a dataset representing two curvilinear clusters with added noise.

Usage

```
two_curvilinear(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the two curvilinear data with noise.

```
set.seed(20240412)
two_curvilinear <- two_curvilinear(
  n = 250, num_noise = 2, min_n = -0.05,
  max_n = 0.05</pre>
```

56 two_curvy_diff_pts

two	CII	rw
two	_cu	1 V Y

Generate Two Curvilinear Clusters with Noise

Description

This function generates data with two curvilinear clusters along with added noise.

Usage

```
two_curvy(n, num_noise, min_n, max_n)
```

Arguments

n	The total	number	of data	points to	be generated.
• • • • • • • • • • • • • • • • • • • •	I II C CCCCI				oc goneratea.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate two curvilinear clusters with noise with custom parameters set.seed(20240412) data <- two_curvy(n = 200, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

```
two_curvy_diff_pts
```

Generate Two Curvilinear Differentiated Clusters with Noise

Description

This function generates data with two curvilinear clusters that are differentiated from each other, along with added noise.

Usage

```
two_curvy_diff_pts(cluster_size_vec, num_noise, min_n, max_n)
```

two_curvy_panckakes 57

Arguments

```
cluster_size_vec
```

A vector specifying the number of points in each cluster.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

two_curvy_panckakes

Generate Two Curvy Pancakes with Noise

Description

This function generates a dataset representing two curvy pancake-shaped clusters with added noise.

Usage

```
two_curvy_panckakes(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A matrix containing the two curvy pancakes data with noise.

58 two_doublets_bkg

Examples

```
set.seed(20240412)
two_curvy_panckakes <- two_curvy_panckakes(
  n = 300, num_noise = 2,
  min_n = -0.05, max_n = 0.05
)</pre>
```

two_doublets_bkg

Generate Two Doublets with Background Noise

Description

This function generates data with two doublets along with added background noise.

Usage

```
two_doublets_bkg(n, num_noise, min_n, max_n)
```

Arguments

n	The total number of data points to be generated.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max_n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

```
# Generate two doublets with background noise with custom parameters set.seed(20240412) data <- two_doublets_bkg(n = 200, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

two_doublets_parallel 59

two_doublets_parallel Generate Doublets in Parallel with Noise

Description

This function generates data with two sets of doublets (pairs of clusters) running in parallel, along with added background noise.

Usage

```
two_doublets_parallel(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate doublets in parallel with noise with custom parameters set.seed(20240412) data <- two_doublets_parallel(n = 440, num_noise = 2, min_n = -0.05, max_n = 0.05)
```

two_grid

Generate Two Grids with Noise

Description

This function generates two grid datasets with noise dimensions.

Usage

```
two_grid(n_value, num_noise, min_n, max_n)
```

Arguments

n_value The number of grid points along the x and y axes for each grid.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

60 two_grid_comb

Value

A list containing two grid datasets with added noise and the sample size of each dataset.

Examples

```
set.seed(20240412)
two_grids <- two_grid(n_value = 19, num_noise = 2, min_n = -0.05, max_n = 0.05)</pre>
```

two_grid_comb

Generate One Grid with Different Offset

Description

This function generates a single grid dataset with a different offset.

Usage

```
two_grid_comb(n_value, num_noise, min_n, max_n)
```

Arguments

n_value The number of grid points along each axis for the grids.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A list containing the grid dataset with different offsets and the sample size.

```
set.seed(20240412)
two_grid_comb <- two_grid_comb(
   n_value = 10, num_noise = 2, min_n = -0.05,
   max_n = 0.05
)</pre>
```

two_grid_comb_bkg 61

two_grid_comb_bkg	Generate Two Grids with Background Noise
-------------------	--

Description

This function generates two grid datasets with background noise.

Usage

```
two_grid_comb_bkg(n_value, num_noise, min_n, max_n)
```

Arguments

n_value The number of grid points along each axis for the grids.

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

Value

A list containing the two grid datasets with background noise and the sample size.

Examples

```
set.seed(20240412)
two_grid_comb_bkg <- two_grid_comb_bkg(
    n_value = 10, num_noise = 2,
    min_n = -0.05, max_n = 0.05
)</pre>
```

two_long_clust

Generate Long Cluster Data

Description

This function generates a dataset consisting of two long clusters with added noise.

Usage

```
two_long_clust(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samp	les to generate.
----------------------------	------------------

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

62 two_long_clust_diff

Value

A matrix containing the long cluster data with added noise.

Examples

```
set.seed(20240412)
long_cluster <- two_long_clust(
    n = 200, num_noise = 2, min_n = -0.05,
    max_n = 0.05
)</pre>
```

two_long_clust_diff

Generate Two Linear Differentiated Clusters with Noise

Description

This function generates data with two linear clusters that are differentiated from each other, along with added noise.

Usage

```
two_long_clust_diff(n, num_noise, min_n, max_n)
```

Arguments

n	The total number of data points to be generated.
num_noise	The number of additional noise dimensions to be generated.
min_n	The minimum value for the noise added to the data points.
max_n	The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

two_nonlinear 63

two_nonlinear	Generate Two Nonlinear Clusters with Noise	

Description

This function generates data with two nonlinear clusters along with added noise.

Usage

```
two_nonlinear(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the generated data, with each row representing a data point.

Examples

```
# Generate two nonlinear clusters with noise with custom parameters set.seed(20240412) data <- two_nonlinear(n = 200, num_noise = 2, min_n = -0.05, max_n = 0.50)
```

two	scurves	
LWO_	_SCUI VES	

Generate Two S-curve Datasets with Noise

Description

This function generates two S-curve datasets with added noise dimensions.

Usage

```
two_scurves(n, num_noise, min_n, max_n)
```

Arguments

n The total number of samples to generate (should be divisible by 2).

num_noise The number of additional noise dimensions to add to the data.

min_n The minimum value for the noise dimensions.

max_n The maximum value for the noise dimensions.

64 two_scurve_hole

Value

A matrix containing the combined S-curve datasets with added noise.

Examples

```
set.seed(20240412)
two_s_curve_data <- two_scurves(
    n = 200, num_noise = 2,
    min_n = -0.05, max_n = 0.05
)</pre>
```

two_scurve_hole

Generate Two S-Curve Data with Noise

Description

This function generates two S-curve data with noise.

Usage

```
two_scurve_hole(n, num_noise, min_n, max_n)
```

Arguments

n The total number of data points to be generated.

num_noise The number of additional noise dimensions to be generated.

min_n The minimum value for the noise added to the data points.

max_n The maximum value for the noise added to the data points.

Value

A matrix containing the two S-curve datasets with added noise.

```
# Generate two S-curve data with noise with custom parameters
set.seed(20240412)
data <- two_scurve_hole(
   n = 200, num_noise = 2,
   min_n = -0.05, max_n = 0.05
)</pre>
```

Index

* datasets mobius_clust_data, 25 mobius_clust_tsne_param1, 26 mobius_clust_tsne_param2, 27 mobius_clust_tsne_param3, 27 mobius_clust_umap_param1, 28 mobius_clust_umap_param2, 29 mobius_clust_umap_param3, 30	mobius_5d_row, 24 mobius_clust, 25 mobius_clust_data, 25 mobius_clust_tsne_param1, 26 mobius_clust_tsne_param2, 27 mobius_clust_tsne_param3, 27 mobius_clust_umap_param1, 28 mobius_clust_umap_param2, 29
<pre>cell_cycle, 4 clust_diff_shapes, 4 clust_diff_shapes, 1</pre>	mobius_clust_umap_param3, 30 nonlinear_2d, 30 nonlinear_2d, 31
<pre>clust_diff_shapes_pts, 6 conic_spiral_3d, 7 conic_spiral_3d_row, 7</pre>	nonlinear_connect, 31 nonlinear_mirror, 32
<pre>cube_3d, 8 curv_2d, 12 curvy_branch, 9 curvy_branch_clust, 9 curvy_branch_clust_bkg, 10 curvy_cycle, 11 curvy_tree, 12</pre>	one_doublet, 32 one_doublet_bkg, 33 one_doublet_diff_patterns, 34 one_doublet_diff_var_clust, 34 one_doublet_four_clusts, 35 one_grid, 36 one_grid_bkg, 37
diff_sphere, 13 dini_surface_3d, 14 dini_surface_3d_row, 14	plane, 37 plane_2d_hole, 39 roman_surface_3d, 40
eight_branch, 15	roman_surface_3d_row, 40
four_branch, 16 four_long_clust, 16 four_long_clust_bkg, 17	scurve, 41 scurve_hole, 42 seven_branch, 42 sine_curve, 43
gau_clust, 18 gau_clust_diff, 19 gau_curvy_clust, 20	sphere, 44 spiral_3d, 44 swiss_roll, 45
gau_curvy_clust_bkg, 21 gen_bkg_noise, 22 gen_noise_dims, 22	three_circulars, 46 three_clust_diff_dist, 46 three_clust_mirror, 47
mirror_scurves, 23 mobius_5d, 24	three_diff_linear, 48 three_doublets, 48

INDEX

```
three_grid, 49
three\_long\_clust, 50
three_nonlinear, 50
torus_3d, 51
torus_3d_row, 52
tree, <u>52</u>
tri_3d, 53
tri_plane_bkg, 54
{two\_circulars}, {\color{red}54}
two_curvilinear, 55
two_curvy, 56
two_curvy_diff_pts, 56
two_curvy_panckakes, 57
two_doublets_bkg, 58
two_doublets_parallel, 59
two_grid, 59
{\tt two\_grid\_comb}, \textcolor{red}{60}
two_grid_comb_bkg, 61
two_long_clust, 61
two_long_clust_diff, 62
two_nonlinear, 63
two_scurve_hole, 64
two\_scurves, 63
```