Contents

1	$Th\epsilon$	ermodynamik für Knechte		1		
	1.1	1 Was ist Thermodynamik?				
	1.2					
		1.2.1 Phase		2		
		1.2.2 Aggregatzustände		3		
		1.2.3 Gleichgewicht		3		
		1.2.4 0. Hauptsatz der Thermodynamik		3		
	1.3					
		der Stoffmenge				
		$n - \underline{\text{in}}$ dependent)		4		
		1.3.2 extensive Zustandsgrößen (abhängig von d	der Stoffmenge n	4		
		1.3.3 Definition einer spezifische Größe (teilen o	durch Masse)	4		
		1.3.4 Definition einer molaren Größe (teilen dur	rch Stoffmenge)	4		
		1.3.5 verschiedene Größen		4		
		1.3.6 thermodynamische Prozesse		5		
	1.4	Zustandsgleichung - Zusammenhang zwischen Zustandsgrößen				
2	Gas	se		6		
	2.1	Das ideale Gas		6		
		2.1.1 ideale Gasgleichung $pV = nRT$ bzw. pV_m	=RT	8		
	2.2	kinetische Gastheorie				
	2.3	Intermolekulare Wechselwirkungen				
	2.4	Reale Gase				
		2.4.1 Van der Waals Gleichung		11		
		2.4.2 Virialgleichung:		12		
		2.4.3 Kondensation		12		
		2.4.4 Kritischer Punkt		12		
3	Erster Hauptsatz der Thermodynamik 13					
	3.1	Arbeit, Wärme und Energie		13		
		3.1.1 Arbeit = Kraft · Weg		13		
		3.1.2 Volumenarbeit		14		
		3.1.3 Wärme		14		
	3.2	innere Energie 1.HS		15		
		3.2.1 thermische zustandsgleichungen ($pV = nR$		15		
		3.2.2 Freie Expansion		16		

1 Thermodynamik für Knechte

1.1 Was ist Thermodynamik?

Thermodynamik:

- makroskopische Skala
- Umwandlungen von Energie
 - Austausch von Wärme
 - Leistung von Arbeit

- Gleichgewicht
- Richtung von spontanen Prozessen

Chemische Thermodynamik: Lage der chemischen Gleichgewichte Wärmeeffekte dhemischer Reaktionen

Technische Thermodynamik: Umsetzung von Wärme und Arbeit

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

 $250-300 \text{ bar}$
 $450-550^{\circ}$

MeOH Automobilantrieb:

$$\mathrm{CH_3OH} + \frac{3}{2}\mathrm{O_2} \longrightarrow \mathrm{CO_2} + \mathrm{H_2O}$$

Anode

$$\mathrm{CH_3OH} + \mathrm{H_2O} \longrightarrow 6\,\mathrm{H}^+ + 6\,\mathrm{e}^- + \mathrm{CO_2}$$

Kathode

$$\frac{3}{2}$$
O₂ + 6 H⁺ + 6 e⁻ \longrightarrow 3 H₂O

1.2 Thermodynamische Systeme

Definitionen:

System: Der Teil des Universums, der uns interessiert

Umgebung: Der Rest (der im Kontakt mit dem System steht)

Grenze ist die Systemgrenze (Wand)

System	Materienaustausch	Energieaustausch
isoliert	_	_
geschlossem	_	+
offen	+	+

1.2.1 Phase

Bereich ohne Sprunghafte Änderung

- chemische Zusammensetzung
- physikalische Eigenschaften
- Aggregatzustände

Komponenten

• chemisch unterscheidbare Bestandteile (Stoffe)

Modifikationen von Elementen: Allotrope

1.2.2 Aggregatzustände

- Teilchenabstand
- Teilchenordnung

R ist der Abstand zwischen den Zentren zweier Atome, und d ist der Durchmessser eines Atomes.

Gasförmig:

R >> d

keine Ordnung

Flüssig:

 $R \approx d$

Nahordnung

Fest:

 $R \approx d$

 ${\bf Fernordnung}={\bf Kristallin}$

Nahordnung = Amorph

Es gibt noch Plasma, dabei haben sich Elektronen und Atomkerne separiert

1.2.3 Gleichgewicht

Mechanisch:

$$\sum \vec{F} = 0, \sum \vec{\tau} = 0$$

Anmerkung τ ist hier das Drehmoment

Thermisch:

$$\Delta T = T_{ex} - T_{in} = 0$$

Chemisch:

Chemische Potentiale (von Edukten/Produkten) sind gleich.

Dynmaisches Gleichgewicht \leftrightarrow Fließgleichgewicht

1.2.4 0. Hauptsatz der Thermodynamik

$$T_a \neq T_b \neq T_c - \Delta E - > T_a = T_b = T_c$$

 $T_a = T_b$

a,b im thermischen Gleichgewicht

und $T_b = T_c$

b,c im thermischen GLeichgewicht

dann muss auch $T_a = T_b$ gelten a,c im thermischen Gleichgewicht.

TD: thermodynamische oder absolute Temperatur T[K]Celsiustemperatur $\vartheta[^{\circ}C]$ $\vartheta = T - 273,15$

1.3 Zustandsgrößen

Zustand:

Beschaffenheit des Systems

→Alle Infos um das System eindeutig beschreiben zu können

Zustandsgrößen:

T, V, p, H (Enthalpie), S (Entropie) Änderungen sind wegunabhängig: $|\Delta A|$

Prozessgrößen:

 \overline{q} (Wärme), W (Arbeit), F (Kraft) beschreiben Zustandsänderungen

1.3.1 intensive Zustandsgrößen (unabhängig von der Stoffmenge n independent)

Temperatur T

Druck p

Dichte ρ

Viskosität η

extensive Zustandsgrößen (abhängig von der Stoffmenge n) 1.3.2

Volumen V

Stoffmenge n

Innere Energie U

Entropie S

1.3.3 Definition einer spezifische Größe (teilen durch Masse)

spezifisches Volumen $v = \frac{V}{m}$

1.3.4 Definition einer molaren Größe (teilen durch Stoffmenge)

molares Volumen $V_m = \frac{V}{n}$

1.3.5 verschiedene Größen

 $\begin{array}{l} \text{Molmasse } M \ [\frac{\text{g}}{\text{mol}}] \\ 1 \ \text{Mol Tielchen} = 6,02 \cdot 10^{23} \ \text{Teilchen} \\ N_A = 6.02 \cdot 10^{23} \frac{1}{\text{mol}} \end{array}$

$$N_A = 6.02 \cdot 10^{23} \frac{1}{\text{mod}}$$

Stoffmenge $n~[\mathrm{mol}] = \frac{N}{N_{\eta}} = \frac{\mathrm{Masse}}{\mathrm{Molmasse}} = \frac{m}{M}$

Konzentration $c\left[\frac{\text{mol}}{1}\right] = \frac{n}{V}$

Dichte $\rho~[\frac{\rm kg}{\rm m^3}]$

Molalität $b~[\frac{\rm mol}{\rm kg}] = \frac{\rm Stoffmenge}{\rm Masse_{L\"{o}M}} = \frac{n}{m_{LM}}$

Partielle Größen Molenbruch

$$x_i = \frac{n_i}{\sum_i n_i}$$

1.3.6 thermodynamische Prozesse

- Volumenänderung ("Arbeit") $w = -p\Delta V$
- \bullet Temperatruänderung ("Wärmeaustausch") $q=c\delta T$ hierbei: c=Wärmekapazität
- Phasenübergänge $q = \Delta H$
- \bullet chemische Reaktionen 2 A + B \longrightarrow c

$$n_c(t) = n_c(0) + \nu_i \xi$$

hierbei $\nu =$ Stöchiometrischer Koeffizient und $\xi =$ Reaktionsfortschritt

Prozessführung

Bezeichnung	Konstante Größe	Fachbegriff und Beschreinbung
Isotherm	T	adiabatisch: ohne Wärmeaustausch
Isobar	p	reversibel: im ständigen Gleichgewicht
Isochor	\overline{V}	irreversibel: nicht im Gleichgewicht

1.4 Zustandsgleichung - Zusammenhang zwischen Zustandsgrößen

$$A = B^2 + 3C$$

 ${\bf A}$ ist hierbei die Zustandsgröße, B und C sin Zustandsvariablen. Beispiel:

$$p = \frac{nRT}{V}$$

Totales Differential:

$$Z = f(x, y)$$
$$dz = \left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy$$

2 Gase

2.1 Das ideale Gas

- $\bullet\,$ Ein Teilchen ist punktförmig
- $\bullet\,$ Keine Wechselwirkungen
- $\bullet\:$ bei $p^o=1$ bar und Raumtemperatur gute Näherung

thermische Zustandsgleichung:

$$p = f(V, T.n) \Longrightarrow p = f(V_m, T)$$

Zustandsfläche

 $pV = \mathbf{konst}$

isotherm

 $p\varpropto T$

is ochor

 $V \varpropto T$

isobar

2.1.1 ideale Gasgleichung pV = nRT bzw. $pV_m = RT$

 $R=8.314\frac{\rm J}{\rm K\cdot mol}$ allgemeine Gaskonstante

$$R = kN_A$$

wobei k die Boltzmannkonstante ist

$$p^o = 1$$
bar

SATP:

- T = 298.15 K
- $p = p^o$
- $V_m = 24.789 \frac{\text{dm}^3}{mol}$

STP:

- $T = 273.15 \text{ K} = 0 \text{ }^{\circ}\text{C}$
- $p = p^o$
- $V_m = 22.414 \frac{\text{dm}^3}{mol}$

$$V(T,p,n) => dV = \left(\frac{\partial V}{\partial T}\right) dT + \left(\frac{\partial V}{\partial p}\right) dp + \left(\frac{\partial V}{\partial n}\right) dn$$

die partiellen Ableitungen sind:

thermische Ausdehnung, Komprassibilität, molares Volumen

2.2 kinetische Gastheorie

in diesem Raum bewegen sich kleine Gasteilchen.

- Mittlere Geschwindigkeit < v >
- Stöße elastisch

Parameter:

- $\bullet\,$ Fläche A
- \bullet Volumen V
- $\bullet\,$ TeilchenanzahlN

Zahl der Stöße in einer kleinen Zeit dt:

$$\frac{1}{6} \frac{N}{V} A \langle v \rangle dt$$

Impulsübertragung:

$$2m\langle v\rangle$$

Übertragender Impuls:

$$dp_A = \frac{1}{3} \frac{N}{V} Am \langle v \rangle^2 dt$$

Wichtig: p_A ist hier der Impuls

$$\frac{dp_A}{dt} = \frac{d(mv)}{dt} = m\frac{dv}{dt} = ma = F$$

$$p = \frac{F}{A} = \frac{1}{3} \frac{N}{V} m \langle v \rangle^2 = \frac{1}{3} \frac{N}{V} m \langle v^2 \rangle$$

Wichtig: p ist hier wieder der Druck

$$p = \frac{1}{3} \frac{N}{V} m \left\langle v^2 \right\rangle$$

Für 1 Mol:

$$pV_m = \frac{1}{3}N_A m \langle v^2 \rangle = \frac{2}{3}N_A E_{kin} = RT$$

$$\sqrt{\langle v^2 \rangle} = \sqrt{\frac{3RT}{M}}$$

Stoßzahl:

$$z_1 = \sqrt{2} \langle v \rangle \sigma \frac{N}{V}$$

Wobei σ die Kriesfläche eines Zylinders ist, in welchem sich das Tielchen fortbewegt.

Mittlere freie Wellenlänge:

$$\lambda = \frac{\langle v \rangle}{z_1} = \frac{1}{\sqrt{2}\sigma \frac{N}{V}}$$

$$pV = nRT; R = N_A k_B; n = \frac{N}{N_A}$$

damit:

$$\frac{N}{V} = \frac{p}{k_B T} = \frac{1}{\sqrt{2}\sigma \frac{p}{k_B T}}$$

2.3 Intermolekulare Wechselwirkungen

elektrischer Dipol.

Bei H liegt δ^+ , bei Cl δ^- somit geht $\vec{\mu}$ von Cl zu H, von δ^- zu δ^+

$$\vec{\mu} = q\vec{R}$$

Wobei q die Ladung ist und \vec{R} der Abstand

induzierter Dipol:

$$\vec{\mu_{ind}} = \alpha \vec{E}$$

Wobei α die Polarisierbarkeit ist und \vec{E} das elektrische Feld.

$$\cdot H \longrightarrow H \cdot \longrightarrow \cdot \cdot H \longrightarrow H$$

Momentanes Dipolmoment.

Es gibt folgende Wechselwirkungen:

- elektirscher Dipol elektrischer Dipol
- elektrischer Dipol induzierter Dipol
- momentaner Dipol induzierter Dipol

Alle Dipol-Dipol-Wechselwirkungen (Van-der-Waals-Wechselwirkungen) $E_{WW} \propto 1\frac{1}{R^6}$

$$E_{gesamt} = 4\epsilon \left\{ \left(\frac{r_0}{R}\right)^{12} - \left(\frac{r_0}{R}\right)^6 \right\}$$

Lennard-Jones-Potential, wobei ϵ mol. Parameter: μ, α Definitiv eine wichtige Gleichung.

2.4 Reale Gase

Kompressabilitätsfaktor:

$$Z = \frac{pV}{nRT} = 1 + \dots$$

Lösugsansätze:

- \bullet Korrekturterme \rightarrow Van der Waals Gasgleichung
- Reihenenwicklung \rightarrow Virial Gleichung

2.4.1 Van der Waals Gleichung

- 1) Eigenvolumen Kovolumen: $\frac{\frac{4}{3}\pi(2r)^3}{2}=4V_{Molek.}\Rightarrow p=\frac{nRT}{V-nb}$ wobei $b=4V_{Molek.}N_A$
- 2) Anziehung der Moleküle: $-a\left(\frac{n}{V}\right)^2 \Rightarrow p = \frac{nRT}{V-nb} a\left(\frac{n}{V}\right)^2$ $p = \frac{RT}{V_m-b} \frac{a}{V_m^2}$

2.4.2 Virialgleichung:

$$Z = 1 + B_p(T) \cdot p + C_p(T)p^2 + \dots$$

Wobei $B_p(T)$ der zweite Virialkoeffizient folgendes beinhaltet bzw. davon abhängig ist:

- Eigenvolumen
- ullet Intermolekulare Wechselwirkungen
- \bullet Temperatur

abstoßend (typisch: T klein $B_p < 0$)

T groß $B_p > 0$ Boyle T_B

$$Z = 1 + \frac{B_V(T)}{V} + \frac{C_V(T)}{V_m^2} + \dots$$

2.4.3 Kondensation

p,V-Diagramm

2.4.4 Kritischer Punkt

$$V_{m,g} = V_{m,l}$$

$$p_g = p_l$$

 $T>T_{Krit}$ nur Gas da $p\approx p_l$ überkritischen Fluid CO $_2$ $T_{Krit}=31\,^{\circ}\mathrm{C}$

Kritische Größen:

- \bullet T_{Krit}
- p_{Krit}
- \bullet V_{Krit}

$$\begin{split} V_{red} &= \frac{V_m}{V_{m,Krit}} (\text{reduziertesVolumen}) \\ p_{red} &= \frac{p}{p_{Krit}} (\text{reduzierterDruck}) \\ T_{red} &= \frac{T}{T_{Krit}} (\text{reduzierteTemperatur}) \end{split}$$

3 Erster Hauptsatz der Thermodynamik

3.1 Arbeit, Wärme und Energie

Energie E: Fähigkeit Arbeit zu verrichten E[J]

- \hookrightarrow Energieänderung ΔE :
 - Leistung von Arbeit w[J]
 - Austausch von Wärme q[J]

Vorzeichen (q, w) positiv, wenn dem System Energie zugefügt wird.

3.1.1 Arbeit = $Kraft \cdot Weg$

$$w = \vec{F} \cdot \vec{s} = \left| \vec{F} \right| \left| \vec{s} \right| \cos \varphi$$

 \hookrightarrow " · " ist hier ein Skalarprodukt.

 \hookrightarrow " φ " ist hier der Winkel zwischen Kraft und Weg.

Allgemein:

$$F \neq \text{konstant}; dw = \vec{F} \cdot d\vec{s}$$

Integration:

$$w = \int_A^E \, dw = \int_{s_1}^{s_2} \vec{F} \cdot d\vec{s} \, dw$$

3.1.2 Volumenarbeit

Volumenarbeit wird immer wie folgt geleistet:

- am System
- gegen einen äußeren Druck

$$dw = \vec{F} \cdot d\vec{z}$$

Es gilt $p_{ex} = \frac{F}{A}$ und $dz = \frac{dV}{A}$, somit:

$$dw = p_{ex} A \frac{dV}{A}$$

$$dw = -p_{ex}dV$$

Kraft und Weg entgegengesetzt.

$$W = -\int_{z_1}^{z_2} F \, dz = -\int_{V_A}^{V_E} p_{ex} \, dV$$

Beispiel 1 (Ein Ballon)

$$p_{ex}=0, w=? \rightarrow w=-\int_{V_A}^{V_E} p_{ex} \, dV=0;$$
 Freie Expansion

Beispiel 2

$$p_{ex} = \text{konst.}, w = -\int_{V_A}^{V_E} p_{ex} \, dV = -p_{ex} \int_{V_A}^{V_E} dV = -p_{ex} (V_E - V_A) = -p_{ex} \Delta V$$

Beispiel 3 isotherme, reversible Expansion

$$T = \text{konst}, p_{ex} = p_{in}, T_{ex} = T_{in}$$

$$w0 - \int_{V_A}^{V_E} p \, dV = -nRT \int_{V_A}^{V_E} \frac{1}{V} \, dV = nRT \ln(V)|_{V_A}^{V_E} = -nRT (\ln(V_E) - \ln(V_A)) = -nRT \ln\left(\frac{V_E}{V_A}\right) \\ |w_{rev}|_{p_{in} = p_{ex}} > |w_{innen}|_{p_{ex} = \text{konst.}}$$

3.1.3 Wärme

$$T_{System} = T_S, T_{Umgebung} = T_U$$

 $T_S > T_U$

Somit muss eine Wärmemenge q ausgetauscht werden.

Wenn keine Phasenänderungen und keine chemische Reaktionen stattfinden:

$$q \propto C\Delta T$$

Wobei C die Wärmekapazität ist.

Um nun die intensiven Zustandsgröße Wärmekapazität zu einer extensiven Zustandsgröße zu machen, wird die spezifische Wärmekapazität berechnet:

$$C_S = \frac{C}{m}$$

Oder die molare Wärmekapazität:

$$C_m = \frac{C}{n}$$

3.2 innere Energie und der 1. Hauptsatz

Gesamtenergie = äußere Energie \leftrightarrow äußere Koordinaten (Höhe) + Innere Energie \leftrightarrow innere Koordinaten (p,V,T,n)

Änderung der inneren Energie (Zustandsgröße, extensive Größe)

$$\Delta U = U_E - U_A = q + w$$

1. Hauptsatz (ab)geschlossene Systeme

$$U_1(\text{Zustand 1}) \xrightarrow{\text{Weg 1}} U_2(\text{Zustand 2})$$

U muss eine Zustandsgröße sein, sonst wäre ein perpetum mobile möglich. adiabatische Prozesse

$$q = 0 \rightarrow \Delta U = w$$

isochor:

$$\Delta V = 0 \rightarrow p\Delta V = 0, \ w = 0 \rightarrow \Delta U = q$$

abgeschlossen

$$\Delta U = 0$$

Zustandsgröße UWeggröße q, wÄnderung:

$$dU = \delta q + \delta w$$

Endliche Änderung:

$$\Delta U = U_E - U_A = \int_{U_A}^{U_E} dU$$

$$q = \int_{A}^{E} \delta q \neq q_e - q_a = \Delta q$$

K, n, p, VT (S)

3.2.1 thermische zustandsgleichungen (pV = nRT)

kalorische zustandsgleichung:

$$U = f(V, T)$$
?

totales Differential:

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

Verknüpfung mit dem 1. Hauptsatz $dU = \delta q + \delta w$ Wenn nur Volumenarbeit:

$$-p_{ex} \, dV + \delta q = \left(\frac{\partial U}{\partial T}\right)_V \, dT + \left(\frac{\partial U}{\partial V}\right)_T \, dV$$

Bei isochoren Prozessen: dV = 0

$$\delta q = \left(\frac{\partial U}{\partial T}\right)_V dT = C_V dT \Rightarrow dU = C_V dT$$

Da $\left(\frac{\partial U}{\partial T}\right)_V=C_V$ ist, ($C_V=$ Wärmekapazität bei konstantem Volumen) Für einatomige Gase:

$$U_m = N_A \langle E_{kin} \rangle = \frac{3}{2}RT \to C_V, m = \left(\frac{\partial U_m}{T}\right)_V = \frac{3}{2}R = 24, 9 \frac{\mathrm{J}}{\mathrm{K} \cdot \mathrm{mol}}$$

3.2.2 Freie Expansion

empirisch
$$q = 0$$

 $p_{ex} = 0 \rightarrow w = 0$
 $\hookrightarrow \Delta U = 0$
somit

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV = 0$$

Wobei $\left(\frac{\partial U}{\partial V}\right)_T\,dV$ der Binnendruck π_T ist. Wenn isotherm:

$$dT = 0 \to \left(\frac{\partial U}{\partial V}\right)_V = 0$$

 $\hookrightarrow \mathrm{ideales}\ \mathrm{Gas}$

$$dU = D_V dT + 0$$

Ideales Gas.

$$dU = C_V dT + \pi_T dV$$

Reale Gase.