EXAMEN FINAL Análisis Numérico I / Análisis Numérico 26/07/2023

Apellido y nombr Carrera: LCC

Condición Raular

Cantidad de hojas (sin contar hoja de emmeiados): 5

Nota: Todos los desarrollos deben estar debidamente justificados.

	Práctico						Teórico				ATOMEA.
1	2	3	4	Libre	Total	1	2	Total	Total	Total	NOTA
25	48	75	5	1		50	15	65	/	138	

Parte Práctica

1. Si $x, y \ge 0$, demostrar que:

$$\left|\frac{x+y-fl(fl(x)+fl(y))}{x+y}\right| \le 2\epsilon + \epsilon^2,$$

donde $fl(x) = x(1 + \delta_x)$ y $|\delta_x| \le \epsilon$ para todo x.

- Dar una estimación del error que se comete al interpolar la función f(x) = ln(x) por un polinomio interpolante de grado 9, que interpola a f en 10 puntos en el intervalo [1, 2].
- 3. Se desea estimar un cero de la función $f(x) = x^4 3x^2 3$ en el intervalo [1, 2].
 - a) Determine una función apropiada para usar el método de iteración de punto fijo.
 - b) Verifique que dicha función satisface las condiciones de convergencia en el intervalo en cuestión.
 - c) Realice tres iteraciones comenzando con $x_0 = 1$.

Resolver el siguiente problema de programación lineal

minimizar
$$-x_1 - 2x_2 - 3x_3$$

sujeto a $x_1 + x_2 + x_3 \le 12$,
 $2x_1 + x_2 + 3x_3 \le 18$,
 $x_1, x_2, x_3 \ge 0$.

(Sólo alumnos libres) Determine una cota para el error absoluto al aproximar la integral

$$\int_0^6 \sin(x^2) \, dx,$$

tilizando la regla compuetas del Trapecio con 101 puntos equiespaciados.

Parte Teórica

- I. a) Enuncie y demuestre el teorema de convergencia del método de bisección.
 - b) De ejemplos que muestren que las hipótesis para la convergencia son necesarias.
- 2. a) Demuestre que dada una familia de polinomios ortogonales en [a,b] con peso w(x) cada uno de los polinomios tiene todas sus raíces reales en el intervalo [a,b].
 - b) Muestre cuál es la exactitud de una regla gaussiana de integración.