ZCT-YLOC1连续液位传感器 中文手册

目录

1.概述	2
2.特点	2
3.应用	2
4. 管脚图示	2
5. 管脚描述	3
6.芯片功能	3
6.1 初始化时间	3
6.2 液位变化反应时间	3
6.5 输出逻辑·····	4
7. 应用原理图	4
8.I2C 接口	4
8.1 Start 和 Stop 信号······	4
8.2 数据有效	4
8.3 字节格式	5
8.4 器件地址	5
8.5 操作模式·····	5
8.6 液位传感器 控制寄存器列表····································	6
9.PCB 版图注意事项	6
10. 额定值	7
11.电气特性	7
12. ESD 特性	7
12	0

1. 概述

ZCT-YLOC1连续液位传感器是一个多通道电容传感芯片。它可以作为一个连续液位检测的控制器。通过检测液位不同高度时,不同通道的采样值变化,计算出相应的液位高度。

2.特点

- □ 可以控制 2 个采样通道
- □ 系统低成本
- □ PWM 输出和I2C 接口同时有效
- □ 降低系统复杂度提高稳定性
- □ 嵌入的共模干扰去除电路
- □ RoHS 兼容的 SOP-16 封装

3.应用

- □ 饮水机
- □ 咖啡机
- □ 工业设备
- □ 家电

4.管脚图示

ZCT-YLOC1连续液位传感器

连续液位检测传感器 Page 2 of

5.管脚描述

引脚	名称	输入/输出	描述
1	VSS	电源负极	地参考
2	VREG	模拟输出	内部参考源输出
3	SEN	模拟输入输出	灵敏度电容
4	CX0	模拟输入输出	感应输入 0 (不使用时悬空)
5	CX1	模拟输入输出	感应输入 1 (不使用时悬空)
6	CX2	模拟输入输出	感应输入 2 (不使用时悬空)
7	CX3	模拟输入输出	感应输入 3 (不使用时悬空)
8	CX4	模拟输入输出	感应输入 4(不使用时悬空)
9	CX5	模拟输入输出	感应输入 5 (不使用时悬空)
10	CX6	模拟输入输出	感应输入 6 (不使用时悬空)
11	CX7	模拟输入输出	感应输入 7 (不使用时悬空)
12	PWM	输出	液位检测结果 PWM 输出
13	SCL	输入	I2C 时钟输入
14	SDA	输入输出	I2C 数据输入输出
15	PRG	输入输出	编程管脚
16	VCC	电源正极	供电电压输入

SEN

此管脚电容大小为10pf~100pf, 电容越小灵敏度越高。推荐使用20pf。

VREG

内部参考源输出,接4.7nf电容。

CXO~CX7

感应管脚,串联电阻是3KΩ。

PWM

液位检测结果PWM输出端口、PWM的占空比由低到高,表示液位由低到高。

SCL, SDA

SCL 是I2C 时钟输入端口。SDA 是 I2C 数据输入输出端口。 SDA 端口有内部弱上拉。

PRG

编程管脚

6.芯片功能

6.1 初始化时间

上电复位后,芯片需要600ms进行初始化,计算感应管脚的环境电容,然后才能正常工作。

6.2 液位变化反应时间

电容值大约每隔4.8ms采样一次。经过消抖处理以后,每隔48ms得到一组液位值。

连续液位检测传感器 Page 3 of

6.5 输出逻辑

PWM输出:无液体时PWM端口为低电平,随着液位升高,PWM的占空比逐渐变大。满液位时,PWM输出高电N 平。PWM周期为100us,占空比变化范围是 $\frac{1}{256}$,($0 \le N \le 255$)。

7.应用原理图

8.I2C 接 口

8.1 Start 和 Stop信号

Start 信号(S)

当 SCL 是高电平时, SDA 由高到底变化,表示开始传输数据。

Stop 信号(P)

当 SCL 是高电平时, SDA 由低到高变化,表示结束数据传输。

8.2 数据有效

在 SCL 为高电平期间, SDA 必须保持稳定的电平。SDA 线上的高低电平变化只能在 SCL 为低电平期间。

连续液位检测传感器 Page 4 of

8.3 字节格式

字节由 8 位数据和一个应答信号组成

8.4 器件地址

液位传感器 固定唯一的器件地址是 0x40

地址 (A[6:0])	40H
读命令 (A[6:0]+RWB)	81H
写命令 (A[6:0]+RWB)	80H

8.5 操作模式

本液位传感器 是从器件,支持读写两种操作模式:

- 1) 写操作:
 - 首字节由 7 位从机地址和一位读写位组成(RWB=0)
 - 第二字节是要访问的内部寄存器地址
 - 下一个字节是要写入寄存器的内容
 - 继续写入下一个寄存器, 直到 STOP 信号出现
 - 收到数据后 液位传感器 会发送应答信号

2) 读操作:

读操作的首寄存器地址由不含数据的写操作指定,由 STOP 信号结束。

然后主机送出开始信号,和器件地址和读取位(R/WB=1),接下来的数据地址,是由首地址开始,然后地址依次加一。

连续液位检测传感器 Page 5 of

8.6 液位传感器 控制寄存器列表

- 	地址	读写	初始值(BIN)	寄存器功能描述							
寄存器	(HEX)			Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WL	00H	RW	0000 0000	WL[7:0]							
REG1	01H	RW	0000 0000	REG1[7:0]							
REG2	02H	RW	0000 0000	REG2[7:0]							
REG3	03H	RW	0000 0000	REG3[7:0]							

液位信息寄存器 WL (地址 00H)

WL[7:0]

WL由 0x00~0xFF,对应液位逐渐升高

REG1[7:0]~REG3[7:0] 和主机通信用,完成液位初始值的读取和参数设置(详情参考"ZCT-YLOC1连续液位传感器应用说明")

9.PCB 版图注意事项

- 1. VCC 和 VSS 电源线要单独走线,不能和其它芯片(单片机和 LCD 驱动芯片等)共用电源走线。以免使其它芯片的干扰信号通过电源线引到触摸芯片。
 - 2. CP, CVREG, CSEN 三个电容必须靠近芯片放置。感应线上串联的CXO~C1 电阻,靠近芯片放置为宜。
 - 3. 尽量大的铺地面积,可以提高抗干扰性。
- 4. 感应连线和感应焊盘优先布局。芯片靠近感应焊盘放置,感应连线不需要长度一致。感应连线线宽 尽量小。感应连线周围不能走其他电源线和信号线。如果实在不能避免,其他走线要垂直跨过感应连线。

连续液位检测传感器 Page 6 of

10.额定值

工作温度 -40 ~ +85℃ 存储温度 -50 ~ +150℃

电源电压 -0.3~+5.5V

管脚最大电流 ±20mA

管脚电压 −0.3V ~ (Vcc+ 0.3) Volts

* 注意 超出额定值可能会导致芯片永久损坏

11.电气特性

TA = 25℃

特性	符号	条件	最小值	典型值	最大值	单位
工作电压	Vcc		2.5		5. 5	V
电流消耗	Idd	VCC=5. OV		1.09		mA
		VCC=3. OV		570		UA
上电稳定时间	Tini			600		ms
感应电容范围	CX				2. 5*CSEN	
输出灌电流	Isk	VCC=5V			10.0	mA
输出拉电流	Ipl	VCC=5V			10.0	mA
最小检测电容	delta_CX	CSEN=15pf		0.2		pF
采样周期	Tsi	正常工作状		4.8		ms
		态				

12.ESD 特性

模式	极性	最大值	参考	
		8000V	VDD	
H.B.M	POS/NEG	S/NEG 8000V		
		8000V	P to P	
		600V	VDD	
M.M	POS/NEG	600V	VSS	
		600V	P to P	

连续液位检测传感器 Page 7 of

13.封装尺寸图 (SO-16)

Comple of	Dimen	sions In Milli	meters	Dimensions In Inches		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	1.30	1.50	1.70	0.051	0.059	0.067
A1	0.06	0.16 0.26		0.002	0.006	0.010
b	0.30	0.40	0.55	0.012	0.016	0.022
С	0.15	0.25	0.35	0.006	0.010	0.014
D	9.70	10.00	10.30	0.382	0.394	0.406
E	3.75	3.95	4.15	.0148	0.156	0.163
е		1.27			0.050	
Н	5.70	6.00	6.30	0.224	0.236	0.248
L	0.45	0.65	0.85	0.018	0.026	0.033
θ	0°		8°	0°		8°

连续液位检测传感器 Page 8 of