Diszkét Matematika II. - Szorgalmi feladat II.

Feladat:

Legyen F_n az n-edik Fibonacci-szám! Mi lesz $\big(F_{n+2},F_n\big)$ ill. $\big(F_{n+3},F_n\big)$?

Megoldás:

1.
$$(F_{n+2}, F_n)$$

Euklideszi algoritmussal:

Mivel $F_{n+2}=F_{n+1}+F_n$, ezért $F_{n+2} \, \mathrm{mod} \, F_n=F_{n+1}$

osztandó	osztó
F_{n+2}	F_n
F_n	$F_{n+2} \operatorname{mod} F_n = F_{n+1}$
F_{n+1}	$F_n \bmod F_{n+1} = F_{n-1}$
F_{n-1}	$F_{n+1} \operatorname{mod} F_{n-1} = F_{n-2}$
•••	
F_3	F_1
F_2	F_1
F_1	0

Minden lépésnél a maradék ${\cal F}_{k-1}$

Így végül a legkisebb nem nulla maradék $F_1=1$, és

$$\gcd(F_{n+2}, F_n) = \gcd(F_2, F_1) = \gcd(1, 1) = 1$$

2.
$$(F_{n+3}, F_n)$$

Mivel

$$F_{n+3} = F_{n+2} + F_{n+1} = \left(F_{n+1} + F_n\right) + F_{n+1} = 2F_{n+1} + F_n.$$

ezért

$$F_{n+3}\operatorname{mod} F_n = \left(2F_{n+1} + F_n\right)\operatorname{mod} F_n = 2F_{n+1}\operatorname{mod} F_n$$

Így

osztandó	osztó
F_{n+3}	F_n
F_n	$2F_{n+1}$
$2F_{n+1}$	$2F_{n-1}$
$2F_{n-1}$	$2F_{n-2}$
$2F_{n-2}$	$2F_{n-3}$
•••	
$2F_r$	$2F_{r-3}$
$2F_{r-3}$	0

Minden lépésnél a maradék $2F_{k+1} \mod 2F_{k-1} = 2F_{k-2}$ így hárommal csökken az index. Végül arra az r-re jutunk, amelyre $0 \le r < 3$ három lehetőség:

- Ha $n\equiv 0(\operatorname{mod}3)$ akkor az utolsó nem nulla sor $\operatorname{gcm}(2F_3,2F_0)=\operatorname{gcm}(2,1)=2$
- Ha $n\equiv 1(\bmod 3)$ akkor az utolsó nem nulla sor $\gcd(2F_1,2F_{-2})=\gcd(2\cdot 1,2\cdot 1)=1$ (feltéve hogy negatív fibonaccik értelmesek és egyenlőek eggyel (?))
- Ha $n\equiv 2(\operatorname{mod}3)$ akkor hasonlóan $\operatorname{gcm}(2F_3,2F_0)=\operatorname{gcm}(2,1)=2$

Tehát:

$$\operatorname{gcm}(F_{n+3}, F_n) = \begin{cases} 2, & 3 \mid n \\ 1, & 3 \mid n \end{cases}$$