KU LEUVEN

Generalized class group actions on oriented elliptic curves with level structure

S. Arpin, W. Castryck, J. Eriksen, G. Lorenzon, F. Vercauteren

Orientations

- Commutative group actions
 - Isogeny volcanoes

Level structures

- Rapid mixing graphs
- Security assumptions reductions

CSIDH with full level structure [GPV23]

Orientations

- Commutative group actions - Isogeny volcanoes

Level structures

- Rapid mixing graphs
- Security assumptions reductions

CSIDH with full level structure [GPV23]

Orientations

Commutative group actions
 Isogeny volcanoes

Level structures

- Rapid mixing graphs
- Security assumptions reductions

Overview

- Orientations, class group actions, level structures
 SCALLOP, CSIDH with full level structure
- A bigger story: generalized class group actions
- A family of generalized class groups
- Back to starting examples
- Security comments

3 - Orientations, class group actions, level structures

Some notation:

- \triangleright k field, char $k = p \ge 5$
- \triangleright E/k elliptic curve defined over k
- K imaginary quadratic number field
- \triangleright O, O' orders of K, namely subrings and free \mathbb{Z} -modules of rank 2
- ▶ f conductor of some $O' \subseteq O$, namely the index [O : O']

- ► I_O the group of invertible fractional ideals of O
- $ightharpoonup P_O \leq I_O$ the subgroup of principal fractional ideals

The (ideal) class group of O is

$$cl_O := \frac{I_O}{P_O}$$

- ▶ $\mathfrak{a} \subseteq O$ invertible ideal, $[\mathfrak{a}] \in cl_O$
- $ightharpoonup N(\mathfrak{a})$ the norm of \mathfrak{a} , namely $N(\mathfrak{a}) = [O : \mathfrak{a}]$

A (primitive) O-orientation on E is an embedding

$$\iota: O \hookrightarrow \operatorname{End}(E)$$

that cannot be extended to any $O' \supseteq O$

- \triangleright $\mathcal{E}\ell\ell_k(O)$ the set of E/k with a primitive O-orientation, up to oriented isomorphism
- ightharpoonup $(E,\iota)\in\mathcal{E}\ell\ell_k(O)$

An isogeny ϕ from (E, ι) induces an orientation on the codomain

$$\iota_\phi(lpha) := rac{1}{\deg \phi} \phi \circ \iota(lpha) \circ \hat{\phi} \quad ext{for all } lpha \in \mathcal{O}$$

3 - Orientations, class group actions, level structures

(Up to some conditions) cl_O acts freely and (essentially) transitively on $\operatorname{\mathcal{E}\!\ell\ell}_k(O)$

(Up to some conditions) cl_O acts freely and (essentially) transitively on $\operatorname{{\cal E}\!\ell\ell}_k(O)$

$$(E,\iota)\in\mathcal{E}\ell\ell_k(O)$$
, $\mathfrak{a}\subseteq O$,

$$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)) \leq E$$

$$\phi_{\mathfrak{a}}:(E,\iota)\to(E/E[\mathfrak{a}],\iota_{\phi_{\mathfrak{a}}})$$

(Up to some conditions) cl_O acts freely and (essentially) transitively on $\operatorname{{\cal E}\!\ell\ell}_k(O)$

$$(E,\iota)\in\mathcal{E}\ell\ell_k(O)$$
, $\mathfrak{a}\subseteq O$,

$$E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)) \leq E$$

$$\phi_{\mathfrak{a}}:(E,\iota)\to(E/E[\mathfrak{a}],\iota_{\phi_{\mathfrak{a}}})$$

Then define action

$$*: \mathsf{cl}_O \times \mathcal{E}\ell\ell_k(O) \to \mathcal{E}\ell\ell_k(O)$$

$$[\mathfrak{a}]*(E,\iota):=(E/E[\mathfrak{a}],\iota_{\phi_{\mathfrak{a}}})$$

The action being free means that

$$[\mathfrak{a}]*(E,\iota)=(E,\iota)$$
 if and only if $[\mathfrak{a}]=[O]=1_{\mathsf{cl}_O}$

The action being transitive means that

for any
$$(E_0, \iota_0), (E_1, \iota_1)$$
 there exists $\mathfrak a$ such that $(E_1, \iota_1) = [\mathfrak a] * (E_0, \iota_0)$

For suitable parameters $*: cl_O \times \mathcal{E}\ell\ell_k(O) \to \mathcal{E}\ell\ell_k(O)$ is cryptographic

Example (CSIDH (CLM+18))

$$k = \overline{\mathbb{F}}_p$$
, $K = \mathbb{Q}(\sqrt{-p})$, $O = \mathbb{Z}[\sqrt{-p}]$

 $\mathcal{E}\!\ell\ell_k(O)$ is a set of supersingular E/\mathbb{F}_p up to \mathbb{F}_p -isomorphism

 cl_O acts freely and transitively on $\mathscr{E}\!\ell\ell_k(O)$

3 - Orientations, class group actions, level structures

Example (SCALLOP, (FFK+23))

$$k = \overline{\mathbb{F}}_p$$
, $K = \mathbb{Q}(\sqrt{-1})$

 $O' = \mathbb{Z}[f\sqrt{-1}]$ suborder of conductor f of $O = \mathbb{Z}[\sqrt{-1}]$, (f,p) = 1. $cl_{O'}$ acts freely and (essentially) transitively on curves "downstairs" in f-isogeny volcano

E at the top has j = 1728, e.g. $y^2 = x^3 + x$ with O-orientation

$$\iota(\sqrt{-1})(x,y) := \mathbf{i}(x,y) = (-x,y\sqrt{-1})$$

Each curve "downstairs" is the codomain of an f-isogeny $\psi_j: E \to E_j$, $j=0,1,\ldots t$

$$E_j = E/C_j$$
 for some f -subgroup $C_j := \ker \psi_j \le E$

Think of C_i as level structure on E

3 - Orientations, class group actions, level structures

Recall $E[N] \cong \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$ for any integer N, (N, p) = 1

 $\Gamma \leq \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, a Γ -level structure on E is a choice of isomorphism

$$\Phi: \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \longrightarrow E[N]$$

up to precomposition with some $\gamma \in \Gamma$

In other words, fix basis P, Q of E[N], up to base change by matrices $\gamma \in \Gamma$

Recall $E[N] \cong \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$ for any integer N, (N, p) = 1

 $\Gamma \leq \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, a Γ -level structure on E is a choice of isomorphism

$$\Phi: \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \longrightarrow E[N]$$

up to precomposition with some $\gamma \in \Gamma$

In other words, fix basis P, Q of E[N], up to base change by matrices $\gamma \in \Gamma$

Example

Fix $\Phi: \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z} \rightarrow E[N]$, let $P = \Phi(1,0)$, $Q = \Phi(0,1)$.

$$\Gamma = \Gamma_N^0 = \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}, \quad \text{let } \gamma = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \Gamma_N^0,$$

 $\Phi \circ \gamma(1,0) = aP$, $\Phi \circ \gamma(0,1) = bP + cQ$, then only fix cyclic *N*-subgroup $\langle P \rangle$

Example

- $\Gamma_N^{0,0} = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \text{ -level structure fixes two independent cyclic N-subgroups}$
- $\Gamma_N^1 = \left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\} \text{ -level structure fixes a point of order } N$
- $\Gamma_N = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ -level structure fixes a basis of of } E[N] \text{ (full level structure)}$

Each curve "downstairs" is the codomain of an f-isogeny $\psi_i: E \to E_i$, $j=0,1,\ldots t$

$$E_j = E/C_j$$
 for some f -subgroup $C_j := \ker \psi_j \le E$

Think of C_j as Γ_f^0 -level structure on E

Can we somehow translate the action on E_j oriented by O' into an action on E oriented by O, but equipped with Γ_f^0 -level structure?

3 - Orientations, class group actions, level structures

Can we somehow translate the action on E_j oriented by O' into an action on E oriented by O, but equipped with Γ_f^0 -level structure?

Can we somehow translate the action on E_j oriented by O' into an action on E oriented by O, but equipped with Γ_f^0 -level structure?

For $(\alpha : \beta) \in \mathbb{P}^1(\mathbb{Z}/f\mathbb{Z})$, ideals

$$\mathfrak{a}_{\alpha,\beta}:=(f^2,f(\alpha+\beta\sqrt{-1}))\subseteq O'=\mathbb{Z}[f\sqrt{-1}]$$

form all of $cl_{O'}$

Letting $C_j = \langle P_j \rangle \leq E$,

$$[\mathfrak{a}_{\alpha,\beta}] * E/\langle P_j \rangle = E/\langle \alpha P_j - \beta i(P_j) \rangle$$

Can we make this translation less mysterious?

Could it be part of a bigger story?

Can we make this translation less mysterious?

Could it be part of a bigger story?

Some evidence:

There is a free and transitive action on curves in $\mathcal{E}\ell\ell_{\mathbb{F}_p}(\mathbb{Z}[\sqrt{-p}])$ with Γ_N -level structure by a ray class group [GPV23], [CK23]

- 4 A bigger story: generalized class group actions
- $ightharpoonup \mathfrak{m}$ modulus of O, namely a non-zero ideal $\mathfrak{m} \subseteq O$

For any \mathfrak{m} , each class in cl_O contains an $\mathfrak{a} \subseteq O$ coprime with \mathfrak{m} , namely

$$\mathfrak{a}+\mathfrak{m}=O$$

 $ightharpoonup \mathfrak{m}$ modulus of O, namely a non-zero ideal $\mathfrak{m} \subseteq O$

For any \mathfrak{m} , each class in cl_O contains an $\mathfrak{a} \subseteq O$ coprime with \mathfrak{m} , namely

$$\mathfrak{a} + \mathfrak{m} = O$$

- $I_O(\mathfrak{m}) \leq I_O$ the subgroup generated by all invertible ideals in O coprime with \mathfrak{m}
- ▶ $P_O(\mathfrak{m}) := I_O(\mathfrak{m}) \cap P_O \leq P_O$ the subgroup generated by all invertible principal ideals in O coprime with \mathfrak{m}

There is a natural isomorphism

$$\frac{I_O(\mathfrak{m})}{P_O(\mathfrak{m})} \cong \mathsf{cl}_O$$

A ray for modulus \mathfrak{m} is a principal fractional ideal

$$\alpha O, \alpha \in K^*$$
, such that $\alpha \equiv 1 \mod \mathfrak{m}$

$$\alpha \equiv \beta \mod \mathfrak{m}$$
 means if $\alpha = \alpha_1/\alpha_2, \beta = \beta_1/\beta_2, \alpha_i, \beta_i \in \mathcal{O}$, then $\alpha_1\beta_2 - \alpha_2\beta_1 \in \mathfrak{m}$

The ray group $P_{O,\{1\}}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m}

- 4 A bigger story: generalized class group actions
- ▶ $I_O(\mathfrak{m}) \leq I_O$ the subgroup generated by all invertible ideals in O coprime to \mathfrak{m}
- $P_O(\mathfrak{m}) \leq P_O$ the subgroup generated by all invertible principal ideals in O coprime to \mathfrak{m}
- $ightharpoonup P_{O,\{1\}}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m}

- 4 A bigger story: generalized class group actions
- ▶ $I_O(\mathfrak{m}) \leq I_O$ the subgroup generated by all invertible ideals in O coprime to \mathfrak{m}
- $P_O(\mathfrak{m}) \leq P_O$ the subgroup generated by all invertible principal ideals in O coprime to \mathfrak{m}
- $ightharpoonup P_{O,\{1\}}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m}

The ray class group for modulus m is

$$\mathsf{cl}_{P_{O,\{1\}}(\mathfrak{m})} := \frac{I_O(\mathfrak{m})}{P_{O,\{1\}}(\mathfrak{m})}$$

- 4 A bigger story: generalized class group actions
- ▶ $I_O(\mathfrak{m}) \leq I_O$ the subgroup generated by all invertible ideals in O coprime to \mathfrak{m}
- $P_O(\mathfrak{m}) \leq P_O$ the subgroup generated by all invertible principal ideals in O coprime to \mathfrak{m}
- $ightharpoonup P_{O,\{1\}}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m}

The ray class group for modulus m is

$$\mathsf{cl}_{P_{O,\{1\}}(\mathfrak{m})} := \frac{I_O(\mathfrak{m})}{P_{O,\{1\}}(\mathfrak{m})}$$

A congruence subgroup for modulus m is a subgroup

$$P_{O,\{1\}}(\mathfrak{m}) \leq H \leq P_O(\mathfrak{m})$$

- ▶ $I_O(\mathfrak{m}) \leq I_O$ the subgroup generated by all invertible ideals in O coprime to \mathfrak{m}
- $P_O(\mathfrak{m}) \leq P_O$ the subgroup generated by all invertible principal ideals in O coprime to \mathfrak{m}
- ▶ $P_{O,\{1\}}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m}

The ray class group for modulus m is

$$\mathsf{cl}_{P_{O,\{1\}}(\mathfrak{m})} := rac{I_O(\mathfrak{m})}{P_{O,\{1\}}(\mathfrak{m})}$$

A congruence subgroup for modulus m is a subgroup

$$P_{O,\{1\}}(\mathfrak{m}) \leq H \leq P_O(\mathfrak{m})$$

A generalized class group is

$$\operatorname{cl}_H := \frac{I_O(\mathfrak{m})}{H}$$

- ▶ *H* congruence subgroup, namely $P_{O,\{1\}}(\mathfrak{m}) \leq H \leq P_O(\mathfrak{m})$
- cl_H generalized class group relative to H

Example (The extremal cases)

If
$$H = P_O(\mathfrak{m})$$
, $\operatorname{cl}_H = \frac{I_O(\mathfrak{m})}{P_O(\mathfrak{m})} \cong \operatorname{cl}_O$ is the class group of O

- ▶ *H* congruence subgroup, namely $P_{O,\{1\}}(\mathfrak{m}) \leq H \leq P_O(\mathfrak{m})$
- cl_H generalized class group relative to H

Example (The extremal cases)

If
$$H = P_O(\mathfrak{m})$$
, $\operatorname{cl}_H = \frac{I_O(\mathfrak{m})}{P_O(\mathfrak{m})} \cong \operatorname{cl}_O$ is the class group of O

If
$$H=P_{O,\{1\}}(\mathfrak{m})$$
, $\operatorname{cl}_H=\frac{I_O(\mathfrak{m})}{P_{O,\{1\}}(\mathfrak{m})}$ is the ray class group for modulus \mathfrak{m}

Example (Suborder class group)

If $\mathfrak{m} = fO$ and

$$H = \{ \alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv g \text{ mod } fO \text{ for some } g \in \mathbb{Z}, (g, f) = 1 \} =: P_{O, \mathbb{Z}}(fO)$$

then

$$\mathsf{cl}_H \cong \mathsf{cl}_{O'}$$

where $O' \subseteq O$ suborder of conductor f

Recall SCALLOP:
$$O=\mathbb{Z}[\sqrt{-1}],\ O'=\mathbb{Z}[f\sqrt{-1}],\ \operatorname{cl}_{O'}$$
 acts freely and transitively on $\mathcal{E}\ell\ell_k(O')$

$$H \leq P_O(\mathfrak{m})$$
 implies $cl_H \geq cl_O$

Then there is a well-defined action

$$\mathsf{cl}_H imes \mathcal{E}\ell\ell_k(O) o \mathcal{E}\ell\ell_k(O)$$

$$\big([\mathfrak{a}],(E,\iota)\big)\mapsto \big(E/E[\mathfrak{a}],\iota_{\phi_{\mathfrak{a}}}\big)$$

$$H \leq P_O(\mathfrak{m})$$
 implies $cl_H \geq cl_O$

Then there is a well-defined action

$$\mathsf{cl}_H imes \mathcal{E}\ell\ell_k(O) o \mathcal{E}\ell\ell_k(O)$$

$$([\mathfrak{a}],(E,\iota))\mapsto (E/E[\mathfrak{a}],\iota_{\phi_{\mathfrak{a}}})$$

No longer free if $H \lneq P_O(\mathfrak{m})$, $cl_H \supsetneqq cl_O$

$$H \leq P_O(\mathfrak{m})$$
 implies $cl_H \geq cl_O$

Then there is a well-defined action

$$\mathsf{cl}_H imes \mathcal{E}\!\ell\ell_k(O) o \mathcal{E}\!\ell\ell_k(O)$$

$$([\mathfrak{a}], (E, \iota)) \mapsto (E/E[\mathfrak{a}], \iota_{\phi_{\mathfrak{a}}})$$

No longer free if $H \subsetneq P_O(\mathfrak{m})$, $cl_H \supsetneq cl_O$

Free on bigger set than $\mathcal{E}\ell\ell_k(O) \to \mathsf{add}$ extra information: \mathfrak{m} -level structure

4 - A bigger story: generalized class group actions

Lemma

Let $\mathfrak{m} \subseteq O$ be an invertible ideal of norm coprime to p. There is an isomorphism of O-modules

$$E[\mathfrak{m}]\cong O/\mathfrak{m}$$

It is in particular an isomorphism of groups

Lemma

Let $\mathfrak{m} \subseteq O$ be an invertible ideal of norm coprime to p. There is an isomorphism of O-modules

$$E[\mathfrak{m}] \cong O/\mathfrak{m}$$

It is in particular an isomorphism of groups

When
$$\mathfrak{m} = NO$$
, $(N, p) = 1$, $E[NO] = E[N]$ and

$$E[NO] \cong O/NO \cong \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$$

In general,

$$E[\mathfrak{m}] \cong \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$$
 for some $b \mid a$

Definition

Let \mathfrak{m} be an invertible ideal in O of norm coprime to p. Let $\Gamma \leq \operatorname{GL}(O/\mathfrak{m})$. Let E be primitively O-oriented. A Γ -level structure on E is a choice of a *group* isomorphism

$$\Phi: \mathcal{O}/\mathfrak{m} \to \mathcal{E}[\mathfrak{m}]$$

up to pre-composition with some $\gamma \in \Gamma$ and post-composition with oriented automorphisms

In other words, fix basis P, Q of $E[\mathfrak{m}]$, up to base changes by $\gamma \in \Gamma$

4 - A bigge	r story: gene	eralized class g	group actions

 $ightharpoonup Y_{\Gamma}$ the set of primitively *O*-oriented curves with with Γ-level structure, up to oriented isomorphism

4 - A bigge	r story: gene	eralized class g	group actions

 $ightharpoonup Y_{\Gamma}$ the set of primitively *O*-oriented curves with with Γ-level structure, up to oriented isomorphism

4 - A bigger story: generalized class group actions

Recap

- \rightarrow cl_H acts on $\mathcal{E}\ell\ell_k(O)$, not freely
- \rightarrow enlarge $\mathcal{E}\ell\ell_k(O)$ to Y_Γ with Γ -level structure

4 - A bigger story: generalized class group actions

Recap

- \rightarrow cl_H acts on $\mathcal{E}\ell\ell_k(O)$, not freely
- \rightarrow enlarge $\mathcal{E}\ell\ell_k(O)$ to Y_Γ with Γ -level structure

Now

- \rightarrow define a family of congruence subgroups H
- → find corresponding level structure
- \rightarrow find $Z_{\Gamma} \subseteq Y_{\Gamma}$ where cl_H acts transitively

Recall ray class group

$$\mathsf{cl}_{O,\{1\}}(\mathfrak{m}) = rac{I_O(\mathfrak{m})}{P_{O,\{1\}}(\mathfrak{m})}$$

where

$$P_{O,\{1\}}(\mathfrak{m}) = \{\alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv 1 \text{ mod } \mathfrak{m}\}$$

Recall a ray class group is

$$\mathsf{cl}_{O,\{1\}}(\mathfrak{m}) = \frac{I_O(\mathfrak{m})}{P_{O,\{1\}}(\mathfrak{m})}$$

where

$$P_{O,\{1\}}(\mathfrak{m}) = \{\alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv 1 \text{ mod } \mathfrak{m}\}$$

 $\Lambda \subseteq O$ multiplicatively closed subset, define

$$P_{O,\Lambda}(\mathfrak{m}) = \{ \alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv \lambda \text{ mod } \mathfrak{m} \text{ for some } \lambda \in \Lambda \text{ coprime to } N(\mathfrak{m}) \}$$

5 - A family of congruence subgroups

- $ightharpoonup \Lambda \subseteq O$ multiplicatively closed
- $ightharpoonup P_{O,\Lambda}(\mathfrak{m}) := \{ \alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv \lambda \text{ mod } \mathfrak{m} \text{ for some } \lambda \in \Lambda \text{ coprime to } N(\mathfrak{m}) \}$

Example (The extremal cases)

If $\Lambda = \{1\}$, $P_{O,\{1\}}(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m} , defining the ray class group $\operatorname{cl}_{P_{O,\{1\}}(\mathfrak{m})}$

5 - A family of congruence subgroups

- $ightharpoonup \Lambda \subseteq O$ multiplicatively closed
- $ightharpoonup P_{O,\Lambda}(\mathfrak{m}) := \{ \alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv \lambda \text{ mod } \mathfrak{m} \text{ for some } \lambda \in \Lambda \text{ coprime to } N(\mathfrak{m}) \}$

Example (The extremal cases)

If $\Lambda=\{1\}$, $P_{O,\{1\}}(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m} , defining the ray class group $\text{cl}_{P_{O,\{1\}}(\mathfrak{m})}$

If $\Lambda = O$, $P_{O,O}(\mathfrak{m}) = P_O(\mathfrak{m})$ is the group of invertible principal ideals coprime to \mathfrak{m} , defining the class group cl_O

5 - A family of congruence subgroups

- $ightharpoonup \Lambda \subseteq O$ multiplicatively closed
- $ho P_{O,\Lambda}(\mathfrak{m}) := \{ \alpha O \mid \alpha \in K^* \text{ and } \alpha \equiv \lambda \text{ mod } \mathfrak{m} \text{ for some } \lambda \in \Lambda \text{ coprime to } N(\mathfrak{m}) \}$

Example (The extremal cases)

If $\Lambda=\{1\}$, $P_{O,\{1\}}(\mathfrak{m})$ is the group of rays for modulus \mathfrak{m} , defining the ray class group $\operatorname{cl}_{P_{O,\{1\}}(\mathfrak{m})}$

If $\Lambda = O$, $P_{O,O}(\mathfrak{m}) = P_O(\mathfrak{m})$ is the group of invertible principal ideals coprime to \mathfrak{m} , defining the class group cl_O

Example (Suborder class group)

If $\Lambda = \mathbb{Z}$, $\mathfrak{m} = fO$, $P_{O,\mathbb{Z}}(fO)$ is the congruence subgroup defining the class group $\operatorname{cl}_{O'}$ of a suborder $O' \subseteq O$ of conductor f

Congruence subgroups $P_{O,\{1\}}(\mathfrak{m}) \leq H = P_{O,\Lambda}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ define generalized class groups $\operatorname{cl}_{P_{O,\Lambda}(\mathfrak{m})}$

Want to act on primitively O-oriented elliptic curves with Γ -level structure, which Γ ?

Congruence subgroups $P_{O,\{1\}}(\mathfrak{m}) \leq H = P_{O,\Lambda}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ define generalized class groups $\operatorname{cl}_{P_{O,\Lambda}(\mathfrak{m})}$

Want to act on primitively O-oriented elliptic curves with Γ -level structure, which Γ ?

$$\Gamma_{O,\Lambda}(\mathfrak{m}) = \{\mu_{\alpha} \mid \alpha O \in P_{O,\Lambda}(\mathfrak{m})\}\$$
 $\leq \mathsf{GL}(O/\mathfrak{m})$

where μ_{α} multiplication by α on O/\mathfrak{m}

Congruence subgroups $P_{O,\{1\}}(\mathfrak{m}) \leq H = P_{O,\Lambda}(\mathfrak{m}) \leq P_O(\mathfrak{m})$ define generalized class groups $\operatorname{cl}_{P_{O,\Lambda}(\mathfrak{m})}$

Want to act on primitively O-oriented elliptic curves with Γ -level structure, which Γ ?

$$\Gamma_{O,\Lambda}(\mathfrak{m}) = \{\mu_{\alpha} \mid \alpha O \in P_{O,\Lambda}(\mathfrak{m})\} = \{\mu_{\lambda} \mid \lambda \in O^*\Lambda \text{ coprime to } N(\mathfrak{m})\} \leq \operatorname{GL}(O/\mathfrak{m})$$
 where $\mu_{\alpha}, \mu_{\lambda}$ multiplication by α, λ on O/\mathfrak{m}

 $ightharpoonup Y_{\Gamma}$ the set of primitively *O*-oriented curves with with Γ-level structure, up to oriented isomorphism

If Γ consists of O-module automorphisms of O/\mathfrak{m} ,

 $ightharpoonup Z_{\Gamma} \subseteq Y_{\Gamma}$ the subset in which the level structure is an *O-module* isomorphism

Theorem

Let $\mathfrak{m} \subseteq O$ be an invertible ideal, let $H = P_{O,\Lambda}(\mathfrak{m})$. Then

$$[\mathfrak{a}] * (E, \iota, \Phi) = (E/E[\mathfrak{a}], \iota_{\phi_{\mathfrak{a}}}, \phi_{\mathfrak{a}} \circ \Phi)$$

is a well-defined free and transitive action of cl_H on $Z_{\Gamma_{\mathcal{O},\Lambda}(\mathfrak{m})}$

If $\Lambda \subseteq O^* \mathbb{Z}$, it extends to a free action on $Y_{\Gamma_{\mathcal{O},\Lambda}(\mathfrak{m})}$

Example Back to SCALLOP!

$$O = \mathbb{Z}[\sqrt{-1}]$$
, $\mathfrak{m} = fO$, then $E[\mathfrak{m}] = E[f] \cong \mathbb{Z}/f \mathbb{Z} \times \mathbb{Z}/f \mathbb{Z}$

Take $\Lambda = \mathbb{Z} \subseteq O$, $H = P_{O,\mathbb{Z}}(fO)$, then $\operatorname{cl}_H \cong \operatorname{cl}_{O'}$, $O' \subseteq O$ suborder of conductor f

Example Back to SCALLOP!

$$O = \mathbb{Z}[\sqrt{-1}]$$
, $\mathfrak{m} = fO$, then $E[\mathfrak{m}] = E[f] \cong \mathbb{Z}/f \mathbb{Z} \times \mathbb{Z}/f \mathbb{Z}$

Take $\Lambda = \mathbb{Z} \subseteq O$, $H = P_{O,\mathbb{Z}}(fO)$, then $\operatorname{cl}_H \cong \operatorname{cl}_{O'}$, $O' \subseteq O$ suborder of conductor f

$$\Gamma = \Gamma_{O,\mathbb{Z}}(fO) = \{\mu_{\lambda} \mid \lambda \in \mathbb{Z}, (\lambda, f) = 1\} = \Gamma_f^0 \le \operatorname{GL}_2(\mathbb{Z}/f\mathbb{Z})$$

Example Back to SCALLOP!

$$O = \mathbb{Z}[\sqrt{-1}]$$
, $\mathfrak{m} = fO$, then $E[\mathfrak{m}] = E[f] \cong \mathbb{Z} / f \mathbb{Z} \times \mathbb{Z} / f \mathbb{Z}$

Take $\Lambda = \mathbb{Z} \subseteq O$, $H = P_{O,\mathbb{Z}}(fO)$, then $\operatorname{cl}_H \cong \operatorname{cl}_{O'}$, $O' \subseteq O$ suborder of conductor f

$$\Gamma = \Gamma_{O,\mathbb{Z}}(fO) = \{\mu_{\lambda} \mid \lambda \in \mathbb{Z}, (\lambda, f) = 1\} = \Gamma_f^0 \le \operatorname{GL}_2(\mathbb{Z}/f\mathbb{Z})$$

The set of primitively O-oriented curves with Γ -level structure is

$$Y_{\Gamma_f^0} = \{(E,P,Q) \mid E \in \mathcal{E}\!\ell\ell_k(O), P, Q \text{ a basis of } E[f]\}/\sim$$
 $(E,P,Q) \sim (E,\lambda P,\lambda Q) \text{ for any } \lambda \in (\mathbb{Z}/f\,\mathbb{Z})^*$

6 - Back to SCALLOP

By our Theorem, $\operatorname{cl}_H\cong\operatorname{cl}_{O'}$ acts freely and transitively on $Z_{\Gamma_f^0}\subseteq Y_{\Gamma_f^0}$

In $Z_{\Gamma_{\ell}^{0}}$, level structure is isomorphism

$$\Phi: O/fO \rightarrow E[f]$$
 of *O*-modules $1 \mapsto P$

such that $P, \iota(\sqrt{-1})(P) = \mathbf{i}(P)$ basis of E[f], up to Γ_f^0

By our Theorem, $\operatorname{cl}_H\cong\operatorname{cl}_{O'}$ acts freely and transitively on $Z_{\Gamma_f^0}\subseteq Y_{\Gamma_f^0}$

In $Z_{\Gamma_2^0}$, level structure is isomorphism

$$\Phi: O/fO \rightarrow E[f]$$
 of *O*-modules $1 \mapsto P$

such that $P, \iota(\sqrt{-1})(P) = \mathbf{i}(P)$ basis of E[f], up to Γ^0_f

$$Z_{\Gamma_f^0} = \{(E,P) \mid E \in \mathcal{E}\!\ell\ell_k(O), P, \mathbf{i}(P) \text{ a basis of } E[f]\}/\sim$$

$$(E,P) \sim (E,\lambda P) \text{ for any } \lambda \in (\mathbb{Z}/f\mathbb{Z})^*$$

By our Theorem, $\operatorname{cl}_H\cong\operatorname{cl}_{O'}$ acts freely and transitively on $Z_{\Gamma_f^0}\subseteq Y_{\Gamma_f^0}$

In $Z_{\Gamma_{\ell}^0}$, level structure is isomorphism

$$\Phi: O/fO \rightarrow E[f]$$
 of *O*-modules $1 \mapsto P$

such that $P, \iota(\sqrt{-1})(P) = \mathbf{i}(P)$ basis of E[f], up to Γ_f^0

$$\begin{split} Z_{\Gamma_f^0} &= \{(E,P) \mid E \in \mathcal{E}\!\ell\ell_k(O), P, \mathbf{i}(P) \text{ a basis of } E[f]\} / \sim \\ &\qquad (E,P) \sim (E,\lambda P) \text{ for any } \lambda \in (\mathbb{Z}/f\,\mathbb{Z})^* \end{split}$$

In $Z_{\Gamma_2^0}$, level structure is given by f-subgroups $C = \langle P \rangle \leq E!$

If f prime inert in $\mathbb{Q}(\sqrt{-1})$,

$$Z_{\Gamma_{O,\mathbb{Z}}(fO)} = Z_{\Gamma_f^0} = \{(E,C_j) \mid E \in \mathcal{E}\ell\ell_k(O), C_j = \ker \psi_j \leq E\}, \quad j = 0, \dots t$$

If f prime inert in $\mathbb{Q}(\sqrt{-1})$,

$$Z_{\Gamma_{O,\mathbb{Z}}(fO)} = Z_{\Gamma_f^0} = \{(E,C_j) \mid E \in \mathcal{E}\ell\ell_k(O), C_j = \ker \psi_j \leq E\}, \quad j = 0, \dots t$$

 $\Lambda = \mathbb{Z} \not\subseteq O^* \mathbb{Z}$ but $\Gamma_{O,\mathbb{Z}}(fO)$ and $\Gamma_{O,O^* \mathbb{Z}}(fO)$ define same level structure

Replacing with $\Lambda = O^* \, \mathbb{Z}$ action extends freely to $Y_{\Gamma_{O,O^* \, \mathbb{Z}}(fO)}$

Example Back to CSIDH with full level structure!

$$O=\mathbb{Z}[\sqrt{-p}]$$
, $\mathfrak{m}=NO$, then $E[\mathfrak{m}]=E[N]$

$$\Lambda=\{1\},\ H=P_{O,\{1\}}(NO),$$
 then $\operatorname{cl}_H=\operatorname{cl}_{P_{O,\{1\}}(NO)}$ the ray class group

Example Back to CSIDH with full level structure!

$$O=\mathbb{Z}[\sqrt{-p}]$$
, $\mathfrak{m}=NO$, then $E[\mathfrak{m}]=E[N]$

$$\Lambda=\{1\}$$
, $H=P_{O,\{1\}}(NO)$, then $\operatorname{cl}_H=\operatorname{cl}_{P_{O,\{1\}}(NO)}$ the ray class group

$$\Gamma = \Gamma_{O,\{1\}}(NO) = \{\mu_{\lambda} \mid \lambda = 1\} = \Gamma_{N}$$
 full level structure

$$Y_{\Gamma_N} = \{(E, P, Q) \mid E \in \mathcal{E}\ell\ell_k(O), P, Q \text{ a basis of } E[N]\}/\sim (E, P, Q) \sim (E, -P, -Q) \text{ since } [-1] \text{ oriented automorphism}$$

 $\mathsf{cl}_{P_{O,\{1\}}(NO)}$ acts freely and transitively on Z_{Γ_N}

A $\mathbb{Z}[\sigma]$ -module morphism is $1\mapsto P$, such that $P,\iota(\sigma)(P)$ basis of E[N]

$$Z_{\Gamma_N} = \{(E,P) \mid E \in \mathcal{E}\ell\ell_k(O), P, \iota(\sqrt{-p})(P) \text{ a basis of } E[N]\}/\sim (E,P) \sim (E,-P) \text{ since } [-1] \text{ oriented automorphism}$$

 $\operatorname{cl}_{P_{O,\{1\}}(NO)}$ acts freely and transitively on Z_{Γ_N}

A $\mathbb{Z}[\sigma]$ -module morphism is $1\mapsto P$, such that $P,\iota(\sigma)(P)$ basis of E[N]

$$Z_{\Gamma_N} = \{(E,P) \mid E \in \mathcal{E}\ell\ell_k(O), P, \iota(\sqrt{-p})(P) \text{ a basis of } E[N]\}/\sim$$
 $(E,P) \sim (E,-P) \text{ since } [-1] \text{ oriented automorphism}$

$$\Lambda = \{1\} \subseteq O^* \mathbb{Z}$$
 so action extends freely to Y_{Γ_N}

Example Back to the class group action!

$$O=\mathbb{Z}[\sigma]$$
 for some $\sigma\in K$, $\mathfrak{m}=NO$, then $E[\mathfrak{m}]=E[N]$
$$\Lambda=O,\ H=P_{O,O}(\mathfrak{m})=P_O(\mathfrak{m}),\ \text{then cl}_H\cong \operatorname{cl}_O\ \text{the class group of }O$$

$$\Gamma=\Gamma_{O,O}(NO)=\{\mu_\lambda\mid \lambda\in O\ \text{coprime to }N\}$$

$$Y_\Gamma=\{(E,P,Q)\mid E\in\mathcal{E}\!\ell\ell_k(O),P,Q\ \text{a basis of }E[N]\}/\sim$$

 $(E, P, Q) \sim (E, \iota(\lambda)(P), \iota(\lambda)(Q))$ for any $\lambda \in O$ coprime to N

 ${\sf cl}_O$ acts freely and transitively on Z_Γ

A $\mathbb{Z}[\sigma]$ -module morphism is $1 \mapsto P$, such that $P, \iota(\sigma)(P)$ basis of E[N]

$$Z_{\Gamma} = \{(E, P) \mid E \in \mathcal{E}\ell\ell_k(O), P, \iota(\sigma)(P) \text{ a basis of } E[N]\}/\sim$$
$$(E, P) \sim (E, \iota(\lambda)(P)) \text{ for any } \lambda \in O \text{ coprime to } N$$

 ${\sf cl}_O$ acts freely and transitively on Z_Γ

A $\mathbb{Z}[\sigma]$ -module morphism is $1 \mapsto P$, such that $P, \iota(\sigma)(P)$ basis of E[N]

$$Z_{\Gamma} = \{(E, P) \mid E \in \mathcal{E}\ell\ell_k(O), P, \iota(\sigma)(P) \text{ a basis of } E[N]\}/\sim$$
$$(E, P) \sim (E, \iota(\lambda)(P)) \text{ for any } \lambda \in O \text{ coprime to } N$$

$$Z_{\Gamma} = \mathcal{E}\ell\ell_k(O)$$

 ${\sf cl}_O$ acts freely and transitively on Z_Γ

A $\mathbb{Z}[\sigma]$ -module morphism is $1 \mapsto P$, such that $P, \iota(\sigma)(P)$ basis of E[N]

$$Z_{\Gamma} = \{(E, P) \mid E \in \mathcal{E}\ell\ell_k(O), P, \iota(\sigma)(P) \text{ a basis of } E[N]\}/\sim$$
$$(E, P) \sim (E, \iota(\lambda)(P)) \text{ for any } \lambda \in O \text{ coprime to } N$$

$$Z_{\Gamma} = \mathcal{E}\ell\ell_k(O)$$

 $\Lambda = O \not\subseteq O^* \mathbb{Z}$ so action does not extend to Y_{Γ}

9 - Security comments

 $\operatorname{cl}_H \geq \operatorname{cl}_O$ acts on larger sets than $\operatorname{\mathcal{E}\!\ell\ell}_k(O)$

Is the vectorization problem harder for the action of cl_H ?

9 - Security comments

 $\operatorname{cl}_H \geq \operatorname{cl}_O$ acts on larger sets than $\operatorname{\mathcal{E}\!\ell\ell}_k(O)$

Is the vectorization problem harder for the action of cl_H ?

CSIDH with full level structure reduces to standard CSIDH [GPV23]

In general, vectorisation problem for cl_H reduces to that of cl_O

9 - Security comments

 $\operatorname{cl}_H \geq \operatorname{cl}_O$ acts on larger sets than $\operatorname{\mathcal{E}\!\ell\ell}_k(O)$

Is the vectorization problem harder for the action of cl_H ?

CSIDH with full level structure reduces to standard CSIDH [GPV23]

In general, vectorisation problem for cl_H reduces to that of cl_O

For SCALLOP: reduction through large prime degree isogenies!

References

[GPV23] S. Galbraith, D. Perrin, and J. Voloch. CSIDH with level structure. *IACR Cryptol. ePrint Arch.*, page 1726, 2023.

[FFK+23] L. De Feo, T. Fouotsa, P. Kutas, A. Leroux, S. Merz, L. Panny, and B. Wesolowski. SCALLOP: scaling the CSI-FiSh. In *Public-Key Cryptography - PKC 2023 Part I, volume 13940 of Lecture Notes in Computer Science*, pages 345–375. Springer, 2023.

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: an efficient post-quantum commutative group action. In *Advances in cryptology—ASIACRYPT 2018. Part III, volume 11274 of Lecture Notes in Comput. Sci.*, pages 395–427. Springer, Cham, 2018.

[CK23] L. Colò and D. Kohel. *On the modular OSIDH protocol*, 2023. Preprint https://www.leonardocolo.com/documents/articles/mosidh.pdf.

Thank you!

