Recueil d'exercices posés par M. Esperet

1.
$$(u_n) \in \mathbb{C}^{\mathbb{N}}$$
, $\Delta_n = \frac{1}{n+1} \sum_{k=0}^n u_k$. On suppose $\Delta_n \to 0$. Limite de $v_n = \sum_{k=0}^n \frac{u_k}{n+k+1}$?

- 2. a et r deux entiers supérieurs ou égaux à 2. On suppose $a^r 1$ premier. Montrer que r est premier et que a = 2. Etudier la réciproque.
- 3. 0 < a < b. $\lim_{x \to 0^+} \int_{ax}^{bx} \frac{\tan u u}{u^4} du = ?$
- 4. $u_n = \int_0^1 \frac{dx}{1+x^n}$. Etude de $(u_n)_n$, équivalent de $1-u_n$.
- 5. $f \in \mathcal{C}([0,1],\mathbb{C})$. On suppose que $\lim_{x\to 0^+} \frac{f(5x)-f(3x)}{x}$ existe. Montrer que f est dérivable en 0 à droite.
- 6. $u_n = \frac{n}{2} \sum_{k=1}^n \frac{n^2}{(n+k)^2}$. Equivalent de u_n .
- 8. $u_1 > 0$, a > 0, $u_{n+1} = u_n + \frac{1}{n^a u_n}$. Etude de $(u_n)_n$ selon a. Dans les cas où (u_n) diverge, équivalent à u_n .
- 9. $u_n = \frac{\cos(\frac{2n\pi}{3})}{n}$. Convergence et somme de $\sum_{n=1}^{\infty} u_n$.
- 10. $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $A^t A$ et $^t AA$ sont semblables.
- 11. Intégrabilité de $x \mapsto \sin(x^4 + x^2 + 1)$ sur \mathbb{R}_+ ? Existence de $\int_0^{\uparrow \infty} \sin(x^4 + x^2 + 1) dx$?
- 12. E un espace vectoriel de dimension n sur \mathbb{K} , $f_1, ..., f_n$ n endomorphismes, tous non-nuls. On suppose $f_i \circ f_j = \delta_{ij} f_i$. Montrer que $\forall i$, rg $(f_i) = 1$.
- 13. $x \ge 0$. $u(x) = x \sum_{k=0}^{+\infty} \frac{(-1)^k}{xk+1}$. Existence, $\lim_{x \to +\infty} u(x)$.
- 14. $u_n = \frac{1}{n} (\lfloor \sqrt{n+1} \rfloor \lfloor \sqrt{n} \rfloor)$. Convergence et somme des u_n .
- 15. $f \in C^1(\mathbb{R}, \mathbb{R})$. $\forall x \in \mathbb{R}, f(f(x)) = 5x + 2$. Trouver f. Même question avec f continue et dérivable en $-\frac{1}{2}$.
- 16. $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . p une semi-norme non-nulle, c'est à dire que p respecte tous les axiomes d'une norme sauf $p(A) = 0 \Rightarrow A = 0$. $\forall (A, B) \in \mathcal{M}_n(\mathbb{K}), p(AB) \leqslant p(A)p(B)$. Montrer que p est une norme.
- 17. On suppose $2^N + 1$ premier. Montrer que N est une puissance de 2.
- 18. $\sqrt[3]{5} + \sqrt[5]{3} \in \mathbb{Q}$?
- 19. $x \ge 0$. $u(x) = \sum_{n=1}^{+\infty} \frac{1}{n+n^2x}$. Domaine de défintion, limites en 0 et $+\infty$, équivalents en 0 et $+\infty$.
- 20. Montrer que tout cube supérieur ou égal à 3 est différence de deux carrés.
- 21. $(x_n)_n$ suite réelle positive, telle que $\forall n \in \mathbb{N}^*, x_{n+1} x_n \leqslant \frac{1}{n^{3/2}}$. Montrer que (x_n) converge.

- 22. $A \in \mathcal{M}_n(\mathbb{R})$. $\phi(A) = \sum_{i,j} a_{ij}^2$. Trouver les P inversibles tels que $\forall A, \ \phi(P^{-1}AP) = \phi(A)$.
- 23. f continue de \mathbb{R} dans \mathbb{R} , croissante. $F(x) = \int_0^x f$. On suppose $F(x) = x^2 + o(x)$ en $+\infty$. $f(x) \sim ?$ Ce résultat est-il encore vrai avec f non forcément croissante? En reprenant f croissante, montrer $f(x) = 2x + o(\sqrt{x})$.
- 24. $a < b, (a, b) \in \mathbb{R}^2$. (f, g) deux fonctions continues de [a, b] dans \mathbb{R} , avec sup $f = \sup g$. Montrer que l'équation $f^5(x) 5f(x) = g^5(x) 5g(x)$ admet une solution.
- 25. Montrer que $13 \mid 2^{70} + 3^{70}$.
- 26. $(A, B) \in \mathcal{M}_n(\mathbb{K})$. Résoudre $M + \operatorname{tr}(M)A = B$.
- 27. ω racine primitive n-ème de l'unité, c'est à dire $<\omega>=\mathbb{U}_n$. $\theta\in\mathbb{R}$, calculer $\prod_{k=0}^{n-1} (\omega^{2k}-2\cos(\theta)\omega^k+1)$.
- 28. $(u_1, v_1) \in \mathbb{R}^2$. $u_{n+1} = u_n \frac{v_n}{n(n+1)}$, $v_{n+1} = v_n + \frac{u_n}{n(n+1)}$. Montrer que $(u_n)_n$ et $(v_n)_n$ convergent.
- 29. $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \frac{u_{n-k}}{k!} = 1$. Exprimer u_n , trouver sa limite.
- 30. Dans l'espace des fonctions réelles continues en 0, on pose $\phi(f)(x) = g(x) = f(x) + f(2x)$. ϕ est-elle injective?
- 31. Un triangle ABC, un point M à l'intérieur. Trouver le maximum de d(M, (AB)).d(M, (BC)).d(M, (AC)).
- 32. Trouver les formes linéaires positives de $\mathbb{R}^{\mathbb{N}}$, c'est à dire : si $\forall n \in \mathbb{N}, u_n \geqslant 0$, alors $f(u) \geqslant 0$.
- 33. $(a_n)_n$ suite réelle décroissante vers 0. $u_n = \frac{a_n a_{n+1}}{a_n}$. Etudier $\sum u_n$.
- 34. 4xy'' + 2y' + y = 0. On sait qu'il existe deux solutions (α, β) telles que $\alpha\beta = 1$. Résoudre l'équation.
- 35. $F = \mathbb{R}^{\mathbb{R}}$. $\Delta : f \mapsto f(x+1) f(x)$. Trouver $\ker(\Delta^s)$.
- 36. $f \, \mathcal{C}^1 \, \text{sur} \, [1, +\infty[$ à valeurs réelles, f(1) = 1, $f'(x) = \frac{1}{x^2 + f^2(x)}$. Montrer que f admet une limite finie en $+\infty$. Encadrer l. (Et au passage justifier un peu l'énoncé...).
- 37. $U(t) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}t^k}{1-t^k}$. Domaine de définition de U, limite en 1^- , équivalent en 1^- .
- 38. ABC un triangle, M le barycentre de A, B et C, pondérés respectivement par α, β et γ . Montrer que, à coéfficient de proportionnalité près, $\gamma = \mathcal{A}(MAB), \beta = \mathcal{A}(MAC)$ et $\alpha = \mathcal{A}(MBC)$.
- 39. $P \in \mathbb{R}[X], \forall x \in \mathbb{R}, P(x) \geqslant 0$. Montrer qu'il existe $A, B \in \mathbb{R}[X]$ tels que $P = A^2 + B^2$.
- 40. $A \in \mathbb{K}[X], A \neq 0$. montrer que $\exists B \neq 0$ tel que AB soit de la forme $\sum c_k X^{k^2}$.
- 41. $x^5 + nx 1 = 0$. Montrer qu'il n'existe qu'une seule racine réelle et en donner un développement asymptotique.
- 42. E espace de dimension finie, $f \in \mathcal{L}(E)$. Montrer que les deux propriétes sont équivalentes :
 - (a) Seuls $\{0\}$ et E sont stables par f.
 - (b) χ_f est irréductible.
- 43. Calculer $\sum_{n=0}^{+\infty} \frac{x^{3n+1}}{4n+2}$.
- 44. $A, B \in S_n(\mathbb{R})$. $\phi : t \in \mathbb{R} \mapsto \max \operatorname{sp}(A + tB)$. Montrer que ϕ est convexe.
- 45. $(u_n)_n$ suite de fonctions continues positives sur [a, b]. Examiner les quatre implications suivantes :
 - (a) La suite (u_n) converge vers f continue \Rightarrow CVU

- (b) La suite (u_n) converge uniformément vers $f \Rightarrow f$ continue.
- (c) $\sum u_n$ converge simplement vers U continue $\Rightarrow \sum u_n$ CVU.
- (d) $\sum u_n$ CVU vers $U \Rightarrow U$ est continue.

46.
$$z \in \mathbb{C}, \ x = \Re(z)$$
. Comparer $\left| \frac{e^z - 1}{z} \right|$ et $\left| \frac{e^x - 1}{x} \right|$.

47. $(x, y, z) \in \mathbb{N}^{*3}$. x|y+z, y|x+z et z|x+y. Résoudre.

48.
$$\alpha > 0$$
. $u_n = \frac{(-1)^n}{\sqrt{n^{\alpha} + (-1)^n}}$. Nature de $\sum u_n$.

- 49. $u_0 \in \mathbb{C}^*$, $u_{n+1} = \frac{u_n + |u_n|}{2}$. Convergence et limite de (u_n) .
- 50. E l'espace vectoriel des applications \mathcal{C}^2 sur [0,1] telles ques f(0)=f(1)=0. On considère $N_1=||f||_{\infty},\ N_2=||f+f''||_{\infty}$ et $N_3=||f||_{\infty}+||f''||_{\infty}$. Montrer que ce sont des normes et les comparer entre elles.
- 51. Continuité de $(a,b) \in \mathbb{R}^2 \mapsto$ la plus grande racine de $x^3 + ax + b$?
- 52. E un ensemble. Montrer $|E| = +\infty \Leftrightarrow (\forall f \in E^E, f \text{ admet un stable propre}).$
- 53. Polynôme minimal de $\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$
- 54. G est l'ensemble des matrices de rotation de la forme $\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$. Montrer que G est un groupe, le caractériser par une relation simple entre a, b et c.
- 55. $E = \mathcal{C}(\mathbb{R}^p, \mathbb{R})$. Soit $f \in E$ telle que inf f existe. Montrer qu'il existe une suite points $(M_n)_n$ telle que $\operatorname{grad}(f)(M_n) \xrightarrow[n \infty]{} 0$.
- 56. $a, b \in \mathbb{R}$. $\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$. Convergence de $\sum u_n$ et somme.
- 57. $(f_n)_n$ suite d'applications de [0,1] dans \mathbb{R} . $f_0=1,\,f_{n+1}(x)=\int_0^x\sqrt{|f_n(u)|}du$. CVS, CVU de $(f_n)_n$.
- 58. $f \in \mathcal{L}(E)$, E de dimension finie n. On suppose que $\mu_f = a_p X^p + ... + X^d$, avec $d(\mu_f) = d$, et $a_p \neq 0$. Montrer que $\ker(f^p) \oplus \operatorname{im}(f^p) = E$.
- 59. $A, B \in \mathcal{M}_n(\mathbb{R})$. Calculer $\int_0^1 e^{sA} (A B) e^{(1-s)B} ds$.
- 60. \mathbb{R}^3 euclidien orienté muni de la base canonique. Trouver la matricde rotation par rapport à $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ d'angle θ .
- 61. Trouver les applications \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} telles que $\forall x \in \mathbb{R}, f^2(x) + (1 + f'(x))^2 \leq 1$.
- 62. On se place dans $\mathcal{M}_n(\mathbb{K})$. Trouver A telle que $\forall B \in \mathcal{M}_n(\mathbb{K}), \det(A+B) = \det(B)$.
- 63. $A = \begin{pmatrix} 0 & \dots & 0 & 2 \\ 1 & \ddots & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix}$. Montrer que $\mathbb{Q}[A]$ est un corps.
- 64. x > 0 Calculer $\int_{1}^{\infty} \frac{dt}{\sinh^{2}(xt)}$. Peut-on en déduire un équivalent en 0 de $\sum_{n=1}^{\infty} \frac{1}{\sinh^{2}(nx)}$?
- 65. $\mathcal{M}_n(\mathbb{C})$, β, γ différents et non-nuls. $A = \beta B + \gamma C$, $A^2 = \beta^2 B + \gamma^2 C$ et $A^3 = \beta^3 B + \gamma^3 C$. montrer que $\forall p > 1$, $A^p = \beta^p B + \gamma^p C$. En déduire $\exp(A)$.
- 66. G un groupe, |G| = 2p avec p premier. Montrer qu'il existe un sous-groupe de G de cardinal p.