Segmentation:

Regions & K-means

Dr. Tushar Sandhan

Introduction

Goal of segmentation (multiclass)

Image credit: J. Jordan

Introduction

Goal of segmentation (multiclass)

Image credit: J. Jordan

- Partition the image *I* into *m* regions
 - o every pix belong to some region
 - o each pix is assigned to only one region
 - o all pix in a region, share similar property
 - o all pix in diff. regions have distinct properties
 - Prerequisites:
 - 1. seed points
 - 2. similarity measures
 - 3. stopping criterion

- Partition the image I into m regions
 - o every pix belong to some region
 - o each pix is assigned to only one region
 - o all pix in a region, share similar property
 - o all pix in diff. regions have distinct properties
 - Prerequisites:
 - 1. seed points
 - 2. similarity measures
 - 3. stopping criterion

$$I = \bigcup_{i=1}^{m} R$$

- Partition the image *I* into *m* regions
 - o every pix belong to some region
 - o each pix is assigned to only one region
 - o all pix in a region, share similar property
 - o all pix in diff. regions have distinct properties
 - Prerequisites:
 - 1. seed points
 - 2. similarity measures
 - 3. stopping criterion

$$I = \bigcup_{i=1}^{m} R_i \qquad R_i \bigcap R_j = \phi, \qquad \forall \ i \neq j$$

- Partition the image *I* into *m* regions
 - o every pix belong to some region
 - o each pix is assigned to only one region
 - o all pix in a region, share similar property
 - o all pix in diff. regions have distinct properties
 - Prerequisites:
 - 1. seed points
 - 2. similarity measures
 - 3. stopping criterion

$$I = \bigcup_{i=1}^{m} R_i$$

$$R_i \bigcap R_j = \phi, \quad \forall i \neq j$$

- Partition the image *I* into *m* regions
 - o every pix belong to some region
 - o each pix is assigned to only one region
 - o all pix in a region, share similar property
 - o all pix in diff. regions have distinct properties
 - Prerequisites:
 - seed points
 - 2. similarity measures
 - 3. stopping criterion

$$I = \bigcup_{i=1}^{m} R_i$$

$$R_i \bigcap R_j = \phi, \quad \forall i \neq j$$

after few iterations

- Partition and grow
 - Start with a seed point s_j for region R_j
 - For every S_j
 - Initialize mean intensity of each region: $\mu_j = s_j$
 - Initialize region: $R_j = \{s_j\}$
 - For each point p in R_j
 - Get its 4-connect neighborhood: $\mathcal{N}_i(p)$, i = 1, 2, 3, 4
 - If $|\mathcal{N}_i(p) \mu_j| < \tau$, $\mathcal{N}_i(p) \notin \mathcal{R}_k$ $j \neq k$
 - $\mathcal{R}_j \leftarrow \mathcal{R}_j \bigcup \mathcal{N}_i(p)$
 - update μ_i
 - Stop growing when no neighborhood pixel matches
 - Move to the next seed point, until the whole image is partitioned.

Region growing: CT scan

Seed-1

stricter similarity

Region growing: CT scan

Seed-1

Seed-2

Comparative example

region growing with variance of 2 in respect to value II with reference to threshold $T \ge II$

Split

- sub-quadrants
 - e.g. 4 parts: quadregions
 - quadtree (having leaves as quadregions or quadimages)
- continuous splitting
 - adjacent quadimages will be having identical properties

- Split
 - sub-quadrants
 - e.g. 4 parts: quadregions
 - quadtree (having leaves as quadregions or quadimages)
 - continuous splitting
 - adjacent quadimages will be having identical properties

R			
R_1	R_2		
R_3	R_{41}	R_{42}	
	R_{43}	R_{44}	

Split

- sub-quadrants
 - e.g. 4 parts: quadregions
 - quadtree (having leaves as quadregions or quadimages)
- o continuous splitting
 - adjacent quadimages will be having identical properties

Merging

- quadimages that satisfy closeness in similarity criterion
 - quadimages to be merged should be adjacent
 - · merging begins when no further splitting is possible

R			
R_1	R_2		
R_3	R_{41}	R_{42}	
	R_{43}	R_{44}	

Split

- sub-quadrants
 - e.g. 4 parts: quadregions
 - quadtree (having leaves as quadregions or quadimages)
- continuous splitting
 - adjacent quadimages will be having identical properties

Merging

- quadimages that satisfy closeness in similarity criterion
 - quadimages to be merged should be adjacent
 - merging begins when no further splitting is possible

- Segment the ring of supernova
 - o quadimages size 32x32, 16x16 & 8x8
 - o variance and mean of quadimages can be used as merging criterion

X-ray band image

- Segment the ring of supernova
 - o quadimages size 32x32, 16x16 & 8x8
 - o variance and mean of quadimages can be used as merging criterion

X-ray band image

- Segment the ring of supernova
 - o quadimages size 32x32, 16x16 & 8x8
 - o variance and mean of quadimages can be used as merging criterion

- Segment the ring of supernova
 - o quadimages size 32x32, 16x16 & 8x8
 - o variance and mean of quadimages can be used as merging criterion

Clustering

Clustering

- Organizing data into multiple (#clusters) classes s.t.:
 - intra-class variance is low (high similarity)
 - inter-class variance is high (low similarity)
- Unsupervised learning paradigm
 - o finding class labels directly from data
 - o training data labels are not available
- What are similarity measures:
 - distance
 - e.g. euclidian, cosine
 - density
 - · e.g. amount of neighbourhood

Clustering

- Organizing data into multiple (#clusters) classes s.t.:
 - o intra-class variance is low (high similarity)
 - inter-class variance is high (low similarity)
- Unsupervised learning paradigm
 - o finding class labels directly from data
 - o training data labels are not available
- What are similarity measures:
 - distance
 - e.g. euclidian, cosine
 - density
 - · e.g. amount of neighbourhood

- K-means clustering
 - o unsupervised learning method: requires data but not labels
 - o useful for pattern recognition, when we don't know what to look for
 - o detects united patterns e.g. groups of text topics, regions of images
 - o pros: simple iterative
 - o cons: difficult to guess K

- K-means clustering
 - o unsupervised learning method: requires data but not labels
 - o useful for pattern recognition, when we don't know what to look for
 - o detects united patterns e.g. groups of text topics, regions of images
 - o pros: simple iterative
 - o cons: difficult to guess K

- Input: $x^{(1)}, x^{(2)}, ..., x^{(n)}$
- Output: Set of clusters $C_1, C_2, ... C_k$
- Initialization: Randomly pick k centroids $z^{(1)}, z^{(2)}, ..., z^{(k)}$
- **Itereate** until convergence or up to iterations *T*
 - Assignment: Assign each point to its closest centroid

for each
$$j = 1, ..., k$$

 $C_j = \{i | \text{s.t. } x^{(i)} \text{ is closest to } z^{(j)} \}$

• **Update:** Recompute centroids with newly assigned points

$$z^{(j)} = \frac{1}{|C_j|} \sum_{i \in C_j} x^{(i)}$$

Courtesy: wiki

Courtesy: wiki

Courtesy: wiki

Courtesy: wiki

- Properties
 - o guaranteed to converge in a finite iterations
 - at each iteration the error reduces
 - o running time
 - data assignment to the closest cluster: O(kN)
 - update the means : O(N)
 - Total complexity : O(kNT)
 - o global minima?

- Properties
 - o guaranteed to converge in a finite iterations
 - at each iteration the error reduces
 - o running time
 - data assignment to the closest cluster: O(kN)
 - update the means : O(N)
 - Total complexity : O(kNT)
 - o global minima?
 - o feature type selection also plays imp role
 - o how should we choose initial clusters?
 - no good method available
 - do multiple runs and choose best results
 - o similarity function choice?
 - euclidean
 - cosine

- Properties
 - o guaranteed to converge in a finite iterations
 - at each iteration the error reduces
 - o running time
 - data assignment to the closest cluster: O(kN)
 - update the means : O(N)
 - Total complexity : O(kNT)
 - o global minima?
 - o feature type selection also plays imp role
 - o how should we choose initial clusters?
 - no good method available
 - · do multiple runs and choose best results
 - o similarity function choice?
 - euclidean
 - cosine

- Properties
 - o guaranteed to converge in a finite iterations
 - at each iteration the error reduces
 - o running time
 - data assignment to the closest cluster: O(kN)
 - update the means : O(N)
 - Total complexity : O(kNT)
 - o global minima?
 - o feature type selection also plays imp role
 - o how should we choose initial clusters?
 - no good method available
 - · do multiple runs and choose best results
 - o similarity function choice?
 - euclidean
 - cosine

Convergence

$$\min_{z^{(1)}, \dots, z^{(k)}} \min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{i \in C_j} ||x^{(i)} - z^{(j)}||^2$$

Convergence

$$\min_{z^{(1)}, \dots, z^{(k)} C_1, \dots C_k} \sum_{j=1}^k \sum_{i \in C_j} ||x^{(i)} - z^{(j)}||^2$$

assignment: optimize C with fixed z

$$\min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{i \in C_j} \|x^{(i)} - z^{(j)}\|^2 = \sum_{i=1}^n \min_{j=1:k} \|x^{(i)} - z^{(j)}\|^2$$

Convergence

$$\min_{z^{(1)}, \dots, z^{(k)} C_1, \dots C_k} \sum_{j=1}^{k} \sum_{i \in C_j} ||x^{(i)} - z^{(j)}||^2$$

assignment: optimize C with fixed z

$$\min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{i \in C_j} \|x^{(i)} - z^{(j)}\|^2 = \sum_{i=1}^n \min_{j=1:k} \|x^{(i)} - z^{(j)}\|^2$$

o update: fix C, optimize for z

$$J(z) = \min_{z^{(1)}, \dots, z^{(k)}} \sum_{j=1}^{k} \sum_{i \in C_j} ||x^{(i)} - z^{(j)}||^2$$

$$z^{(j)} = \frac{1}{|C_j|} \sum_{i \in C_j} x^{(i)}$$

$$\frac{\delta J(z)}{\delta z^{(j)}} \to 0$$

input

Courtesy: D. Sontag

EE604: IMAGE PROCESSING sandhan@iitk.ac.in

input

input

$$K = 2$$

input

$$K = 2$$

$$K = 3$$

input

$$K = 2$$

$$K = 3$$

input

$$K = 2$$

$$K = 3$$

$$K = 10$$

Region growing in feature space

Image credit: PA Dias

Conclusion

- Regions
- Clustering

Conclusion

- Regions
- Clustering

- Region growing
- ☐ Region splitting & merging
- Clustering
 - K-means clustering

