

Application of Graph Learning to inverse problems

Cédric Mendelin <cedric.mendelin@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

09.12.2021

Outline

Imaging methods

2 Graph Denoising

3 Conclusion

- Imaging methods
- 2 Graph Denoising
- Conclusion

Cryo-electron microscopy (cryo-EM)

- > Allows observation of molecules in near atomic resolution.
- Samples are frozen and further observed in electron microscope.
- During freezing, molecules rotate randomly.
- Frozen molecules are fragile, electron microscope needs to work with low power.
- > Observations can be reconstructed to 3D model.

Figure: Cryo-EM workflow Doerr 2016, Figure

Cryo-electron microscopy (cryo-EM)

- Allows observation of molecules in near atomic resolution.
- Samples are frozen and further observed in electron microscope.
- During freezing, molecules rotate randomly.
- Frozen molecules are fragile, electron microscope needs to work with low power.
- > Observations can be reconstructed to 3D model.

Only single particle cryo-EM is considered.

Figure: Cryo-EM workflow Doerr

Cryo-EM

Figure: Cryo-EM overview Singer 2018, Figure 1 and Figure 2

Cryo-EM challenges

- High-noise level
- Unknown rotation during freezing
- > (Structural variety of observations)

(a) Noiseless photograph

(b) Noisy photograph

Figure: Noise observation example

Cryo-EM challenges

- High-noise level
- > Unknown rotation during freezing
- > (Structural variety of observations)

Master Thesis domain of interest is to high-noise regime (cryo-EM). Goal is to introduce a denoise method for cryo-EM 2D projections.

(a) Noiseless photograph

(b) Noisy photograph

Figure: Noise observation example

Computed Tomography

- Related to cryo-EM
- > Can be seen as simpler version in 2D
- > Good to start with

Outline

- Imaging methods
- 2 Graph Denoising
- 3 Conclusion

Consider *n* observed images (x_0, x_1, \dots, x_n) , where $x_i \in \mathbb{R}^M$ with M as image dimension. A graph can be constructed by:

- > V: Images can be used as nodes.
- E: If similarity measure d of two images x_i, x_j is smaller than given threshold τ , there will be an edge.

Consider *n* observed images (x_0, x_1, \dots, x_n) , where $x_i \in \mathbb{R}^M$ with M as image dimension. A graph can be constructed by:

- > V: Images can be used as nodes.
- E: If similarity measure d of two images x_i, x_j is smaller than given threshold τ , there will be an edge.

Definition (Adjacency Matrix)

$$A_{ij} = \begin{cases} 1 & \text{if } d(x_i, x_j) < \tau \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Consider n observed **noisy** images (y_0, y_1, \ldots, y_n) , where $y_i \in \mathbb{R}^M$ with M as image dimension. Then, $y_i = x_i + \eta$ with η drawn from $\mathcal{N} \sim (0, \sigma^2)$ and (x_0, x_1, \ldots, x_n) as the original images. A noisy graph can be constructed like:

- > V: **Noisy** images y can be used as nodes.
- E: If similarity measure d of two **noisy** images y_i, y_j is smaller than given threshold τ , there will be an edge.

Consider n observed **noisy** images (y_0, y_1, \ldots, y_n) , where $y_i \in \mathbb{R}^M$ with M as image dimension. Then, $y_i = x_i + \eta$ with η drawn from $\mathcal{N} \sim (0, \sigma^2)$ and (x_0, x_1, \ldots, x_n) as the original images. A noisy graph can be constructed like:

- > V: **Noisy** images y can be used as nodes.
- E: If similarity measure d of two **noisy** images y_i, y_j is smaller than given threshold τ , there will be an edge.

Definition (Noisy Adjacency Matrix)

$$A_{0_{ij}} = \begin{cases} 1 & \text{if } d(y_i, y_j) < \tau \\ 0, & \text{otherwise} \end{cases}$$
 (2)

Graph Denoising

Graph denoising is the task, to estimate a denoised graph \tilde{G} from a given noisy graph G_0 , with underlying original graph G:

Definition (Graph Denoising)

$$GD: G_0 \mapsto \tilde{G} \approx G,$$

where G_0 , \tilde{G} , G denotes noisy, estimated denoised and original graph respectively.

Outline

- Imaging methods
- Graph Denoising
- 3 Conclusion

Abstract model without noise

Definition (Noiseless observation abstract model)

$$y_i = A(x, \theta_i)$$
, with $1 \le i \le N$,

- $\Omega \subset \mathbb{R}^D$ as original object space with dimension D
- $ho \ ilde{\Omega} \subset \mathbb{R}^{D-1}$ as observations space with dimension D-1.
- $>y_i\in ilde{\Omega}^M$ with M observation dimension
- $x \in L^2(\Omega)$
- $> heta_i \in \mathbb{R}^P$ projection angle vector with projection dimension P
- $A: L^2(\Omega) \to L^2(\tilde{\Omega}), x \mapsto A(x; \theta_i), \text{ a non-linear operator}$

Computed tomography - low-dimensional manifold

- \triangleright Observations y_i with angle θ_i
- There is a mapping between observation y_i and θ_i
- For computed tomography, $heta \in [0,2\pi]$ (circle)
- Therefore, there exists a one to one mapping from *y_i* to points on the circle.

Manifolds

We know structure of manifolds for noiseless data:

- \rightarrow Computed Tomography \rightarrow circle
- \rightarrow Cryo-Em \rightarrow sphere

If data is noisy, manifold will "drift" away from noiseless manifold:

Figure: Manifolds for phantom without noise, and different noise levels.

Project Conclusion - Next steps

- > Focus on high-noise domain (cryo-EM)
- > Introduce Graph Denoising method
- Exploit known manifold in 2D and 3D
- > Further study Graph Laplacian and connection with
 - > Tomography domain
 - > GNNs and Machine Learning in general
- > Evaluate on toy dataset in 2D and 3D
- Nice to have: evaluate on cryo-EM / CT dataset

Project schedule

References

- Doerr, Allison (2016). "Single-particle cryo-electron microscopy". In: Nature methods 13.1, pp. 23–23.
- Singer, Amit (2018). "Mathematics for cryo-electron microscopy". In: Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018. World Scientific, pp. 3995–4014.