

COMP3430 / COMP8430 Data wrangling

Lecture 25: Ontology matching (Lecturer: Peter Christen)

Based on slides by Anika Gross and Michael Hartung (University of Leipzig)

Lecture outline

- What are ontologies
- Ontology annotations and mappings
- Ontology evolution and trend discovery

What are ontologies? (1)

- Structured representations of knowledge
- Very large ontologies in many domains, for example in the biomedical domain

Anatomy

Medicine

NCIthesaurus

Chemistry

Molecular biology

For examples see: https://en.wikipedia.org/wiki/Ontology_(information_science)#Published_examples

What are ontologies? (2)

- Often multiple interrelated ontologies in a domain (e.g. anatomy)
- We need to identify overlapping information between ontologies
- Create mappings between ontologies

Ontology based annotations

• Standardised semantic descriptions of object properties Genes, proteins, ... Electronic health records

Publications

- Semantic search, navigation, etc.
- Functional analysis:
 Identification of significant characteristics of specific gene/proteins groups

Ensembl ID	GO ID
ENSP00000344151	GO:0015808 (L-alanine transport)
ENSP00000230480	GO:0005615 (extracellular space)
ENSP00000352999	GO:0006915 (apoptosis)

SNOMED CT

Annotation Mapping

Ontology mappings and alignments

- Overlapping ontologies allow the creation of mappings/alignments
- Useful for data integration and analysis across sources
- Ontology mapping: Set of semantic correspondences between

concepts of different ontologies

- Manual identification or (semi-) automatic matching approaches
- Use of mappings:
 - Ontology merging (such as creation of an integrated cross-species anatomy ontology)
 - Knowledge transfer (for example experiments for different species)
 - Ontology curation (find missing ontology annotations)

```
OM_{01.02}
 01
                                                            02
body
                                                          body
    ⊢limbs
                                                             <del>-</del>limbs
                                                               Llimb segments
       lower extremities
      upper extremities
    <del>-</del>head
                                                              <del>-</del>head
    -neck
                                                             <del>-</del>neck
    <del>-</del>tail
                                                              tail
    <del>-trunk</del>
```

Evolution of ontology-based mappings

- Ontologies are not static!
- Research, new knowledge → Continuous changes
- Release of new versions

Ontology changes:

Reuse of existing mappings

- Create new ontology mappings

 "Indirect" matching: combine existing mappings to create new mappings
 between so far unconnected sources
- Create up-to-date ontology mappings
 Migration of outdated mappings to currently valid ontology versions

Ontology matching workflow

- Manual creation of mappings between very large ontologies is too labor-intensive
- Semi-automatic generation of semantic correspondences: linguistic, structural, instance-based matching techniques (see lecture on schema matching, lecture 11)

Mapping composition

- Indirect composition-based matching
- Via intermediate ontology (*IO*) or hub ontology (*HO*), synonym dictionary, etc.

MA_0001421----- UBERON:0001092NCI_C32239Name: cervical vertebra 1Synonym: cervical vertebra 1Name: C1 VertebraSynonym: AtlasSynonym: C1 vertebra

- Find new correspondences via composition
- Reuse existing mappings to increase match quality and save computation time

Indirect matching

- Use mappings to intermediate ontologies $IO_1, ..., IO_k$ to indirectly match O1 and O2
- Reduce matching effort by reusing mappings to IO → Very fast composition

- → IO should have a significant overlap with O1 and O2
- $\rightarrow IO_1, ..., IO_k$ may complement each other
- → Centralized hub HO
- → Many mappings to other ontologies
- \rightarrow O_{new} aligned with any Oi via HO

Ontology evolution

- Unstable ontology regions
 - Many modifications → Focus of recent development
 - Impact of changes on ontology-based algorithms or applications → Redo analyses?
- Stable ontology regions
 - Already completed?
 - Low interest so far → Further changes necessary?

Where are the changes located?

How has the work progressed?

Potential for future development?

Are there (un)stable ontology regions?

Trend discovery

- Trend discovery based on sliding windows
- Monitor region changes over long periods of time
 - Ontology O, ontology region of interest OR
 - Time interval (t_{start} , t_{end})
 - Sliding window of size ω
 - Step width ∆
- Call region discovery algorithm within ω
 - Collect change intensities for region of interest over time

Outlook and research directions

- Ontologies are becoming increasingly important
 - In the life sciences (for example, conference series Data Integration in the Life Sciences – DILS)
 - Knowledge-bases and the semantic Web
 - Internet of Things
- Various research areas
 - Learning to match and map ontologies (semi-) automatically
 - Mapping of dynamic ontologies
 - Parallel algorithms for large-scale ontology matching, mapping and evolution