1.	Which of the following techniques were used to speed up the MIC-1
	microarchitecture?

translating the microinstructions

adding an instruction fetch unit

adding a microinstruction fetch unit

increasing the number of words in the control store

using a two-bus architecture

using a three-bus architecture

eliminating the Main1 microinstruction

adding registers to the data path

2. **Which** of the following are part of the **Instruction Fetch Unit**?

Shift Register

PC2 Register

A, B and C Registers

3. **How** was the data path **changed** to turn it into a pipelined microarchitecture?

4. **List** the **four** pipeline stages used in the MIC-3 microarchitecture:

Review Questions – Week 9

5. (a) The MIC-2 microcode below implements an IJVM instruction. If the stack was in the "before" state shown at right, **fill in the "after" state** of the stack to show what the microcode does.

xxx1	MAR = SP - 1; rd
xxx2	MAR = SP
xxx3	H = MDR; wr
xxx4	MDR = TOS
xxx5	MAR = SP - 1; wr
xxx6	TOS = H; goto (MBR1)

- (b) What is the name of the IJVM instruction that this microcode implements?
- 6. (a) The MIC-3 microcode below implements an IJVM instruction. If the stack was in the "before" state shown at right, **fill in the "after" state** of the stack to show what the microcode does.

Load ALU Inputs	Execute ALU Function	Store ALU Results
A = SP		
A = TOS	C = A + 1	
	C = A	SP = MAR = C
		MDR = C; wr; goto (MBR1)