Felix Analysis 2

Justin Skycak June 14, 2016

R code for Figures

- In my Github folder felix_clustering
- In my first set of slides, labeled upper-right corners of slides with the name of the program that can be used to generate the figures

program name

Natural follow-up question: is ordering preserved with more clusters?

Last Time

Frequency and volume yields good separation; net amount saved or spent does not

Churns are more likely to come from lower-activity accounts

When code usage profiles are clustered, the cluster centers reveal a sequential ordering

This Time

What's the "story" behind churns and code profile ordering?

Code Profiles of Activity Clusters

TRANSFER

TRANSFER

OVERDRAFT CHARGE.....

PAYMENT.

INTEREST

CIRRUS FEE

ACH

SERVICE CHARGE DEBIT......

DEBIT

LOAN

 Code orderings and activity level orderings appear synchronized

(plot activity clusters.R)

Code Profile Ordering reflects Hierarchy of Convenience

Last time, we saw that

- High or low frequency, volume, and unit volume all tend to occur together as high or low "activity"
- Activity level is inversely related to risk of churning

Now, we see that code profile ordering reflects a "hierarchy of convenience" in the codes!

Code Profiles of High-to-Churn Accounts

On average, high-activity accounts that didn't churn tended to use more convenience codes than high-activity accounts which churned.

Time-Series of High-to-Churn Accounts (log scale)

(high_activity_to_churn_time_series_plots.R)

Time Series of High-to-Churn Accounts

These are the only observable churns (i.e. they occurred before the missing data interval)

SMA Time Series of High-to-Churn Accounts

30-day simple moving averages (still log scale)

Unable to find any consistent "telltale signs" preceding a churn

600 days

Code Use Raster Plots of High-to-Churn Accounts

Vertical axis corresponds to transaction codes, horizontal axis corresponds to time

Again, unable to find any consistent "telltale signs" preceding a churn

Code Profiles of Medium-to-Churn Accounts

Again: on average, medium-activity accounts that didn't churn tended to use more convenience codes than medium-activity accounts which churned.

Time-Series of Medium-to-Churn Accounts (log scale)

ID=8515

ID=8908

ID=8340

(high activity to churn time series plots.R)

- Some high-activity accounts that churned early were probably classified as medium-activity accounts

Time Series of Medium-to-Churn Accounts

These are the only observable churns (i.e. they occurred before the missing data interval)

SMA Time Series of Medium-to-Churn Accounts

30-day simple moving averages (still log scale)

Unable to find any consistent "telltale signs" preceding a churn

Won't show the code raster plots; there are a lot of them and they don't reveal any consistent "telltale signs" preceding a churn

Next Steps

- Just because I can't see any consistent "telltale signs" preceding a churn doesn't mean there aren't any.
- Is this a job for neural nets? I can envision training a convnet to classify accounts into "churn imminent" and "no churn imminent" categories based on windows of a code-amount plot, similar to the way Spotify has trained a convnet to classify songs into genres based on their time-frequency plots (http://benanne.github.io/2014/08/05/spotify-cnns.html).
- Caveat: This is pretty heavy machinery I haven't implemented convnets before, so it could take a while.
- Otherwise is there an alternative way to extract value from the data, other than predicting churns?

