

Sebastian Gonzalez Tirado

GloBIAS

Shout-outs

- James Fellow Yates (Leibniz-HKI / MPI-EVA)
- Christian Tischer (EMBL)

Outcomes of this talk

What are workflow managers and why should I care?

Examples of complex bioimaging workflows orchestrated with Nextflow.

Practical recommendations to create your own workflows.

Have you ever faced one of these problems?

Make sure your work is reusable h-index from 0 to hero

Only one rule for bioimage analysts club: be lazy

What are workflow managers?

Like orchestra directors managing the flow of your pipeline/symphony.

What do they do?

Workflow managers provide a framework for the creation, execution, and monitoring of a pipeline. <...>

They simplify pipeline development, optimize resource usage, handle software installation and versions, and run on different compute platforms, enabling workflow portability and sharing.

Other benefits

You also benefit from

REUSABLE

- Increased portability
- More **efficiency**:
 - Less headaches from installation
 - Better resource management and monitoring
 - Extremely parallelised

Getting more technical

Nextflow is a reactive workflow framework and a programming DSL

Getting more technical

Nextflow is a reactive workflow framework and a programming DSL

In line with our first rule: do not reinvent the wheel

A community effort to collect a curated set of analysis pipelines built using XNextflow.

nf-core

Introduction

nf-core/molkart is a pipeline for processing Molecular Cartography data from Resolve Bioscience (combinatorial FISH). It takes as input a table of FISH spot positions (x,y,z,gene), a corresponding DAPI image (TIFF format) and optionally an additional staining image in the TIFF format. nf-core/molkart performs end-to-end processing of the data including image processing, QC filtering of spots, cell segmentation, spot-to-cell assignment and reports quality metrics such as the spot assignment rate, average spots per cell and segmentation mask size ranges.

>_ run with				
nf-core p	ipelines la	unch	nf-cor	
nf-core	Nextflow	Sec	qera Platfo	orm
subscribers	sta	'S		
163	13			
open issues		open PRs		
11		2		
last release		last update		
8 months ago		8 months ago		
included module	S			
cellpose	leepcell_mesmer	ila	stik_multic	ut
ilastik_pixelcla	assification			
mindagap_duplicatefinder and 3 more modules				
included subwor	kflows			
utils_nextflow_pipeline utils_nfcore_pipeline				
utils_nfschem	a_plugin			
contributors				

Adapting to nf-core specs takes time

You can also just write your own pipline:

https://github.com/BioImageTools/iss-nf

iss-nf: A Nextflow-based end-to-end in situ sequencing decoding workflow

D Nima Vakili, Sebastián González-Tirado, D Nils Kurzawa, D Dmytro Dvornikov, Zeinab Mokhtari, Frank Wippich, D Giovanna Bergamini, Rainer Pepperkok, D Christian Tischer, D Luis A. Vale-Silva doi: https://doi.org/10.1101/2025.10.16.682795

This article is a preprint and has not been certified by peer review [what does this mean?].

Main components of a nextflow script

```
images = Channel.fromPath("${params.inputDir}/*.tif")
    .map { file -> tuple(file.baseName, file) }

workflow = {
    labels = SEGMENT ( images )
    MEASURE ( images.join( labels ) )
}
```

```
workflow = {
    labels = SEGMENT ( images )
    MEASURE ( images.join( labels ) )
}
```

```
process SEGMENT {
    input:
    path(image)
    output:
    path("*.tif")
    script:
    cellpose --input ${image} --pretrained_model cyto --save_tif
    .....
process MEASURE {
    publishDir '${params.outputDir}', mode: 'copy'
    input:
   tuple path(image), path(labels)
   output:
    path("*.csv")
    script:
    0.00
   fiji --run measure.groovy "${image}, ${labels}, ${imageID}.csv"
```


How do we run it?

\$ nextflow run your_nextflow_script.nf -inputDir /path/2/images

```
) nextflow run practice_nextflow.nf --inputDir /Users/sebgoti/Documents/PhD/Riken_Globias/training_repo/train_cyto2
Nextflow 25.04.8 is available - Please consider updating your version to it

N E X T F L 0 W  ~ version 24.10.4

Launching `practice_nextflow.nf` [curious_lavoisier] DSL2 - revision: 4063a8a561

executor > local (10)
[1b/91e239] SEGMENT (10) [100%] 10 of 10 
Completed at: 18-oct-2025 08:48:55
Duration : 16m 16s
CPU hours : 1.6
Succeeded : 10
```


Some of the most important aspects to consider

Configuration files (my_file.config):

```
process {
   executor = 'slurm'
   queue = 'htc-el8'
   cpus = 8
   memory = 16.GB
   time = 20.min
   container = "docker://segonzal/fish analysis:0.0.3"
   withLabel: 'long' {
       cpus = 8
       memorv = 32.GB
       container = "docker://segonzal/fish_analysis:0.0.3"
   withLabel: 'registration' {
       cpus = 4
       memory = 32.GB
   withLabel: 'min' {
       cpus = 1
       memory = 400.MB
```


That is it for the theory!

Before moving on to the exercises, questions???

Familiarize yourself with it

1. Create your first nextflow script 'practice_nextflow.nf', define the channel with the input images and print this channel (tip: check the entry for the .view() operator on the **nextflow documentation**).

What you should see:

Familiarize yourself with it

2. Make your first process: use cellpose to segment the images from the channel you created in 1.

Familiarize yourself with it

3. Quantify the average intensity of the cells in the masks. You can create your own script or macro!