ROZMAITOŚCI RÓŻNICZKOWALNE. LISTA 2.

Rozkłady jedności i ich zastosowania

- 1. Dla ciągłych funkcji rzeczywistych $f,g:M\to R$ na rozmaitości dładkiej M, oraz dla $\varepsilon>0$ mówimy, że g jest ε -aproksymacją f jeśli $||f-g||<\varepsilon$ (tzn. dla każdego $x\in M$ mamy $|f(x)-g(x)|<\varepsilon$).
 - (a) Uzasadnij, że dla każdego $\varepsilon>0$ każda ciągła funkcja $F:M\to R$ posiada gładką ε -aproksymację.
 - (b) Rozszerz ten wynik do sytuacji gdy $\varepsilon: M \to R$ jest dowolną ciągłą dodatnią funkcją rzeczywistą, zaś ε -aproksymacja funkcji f to dowolna taka funkcja g, że dla każdego $x \in M$ mamy $|f(x) g(x)| < \varepsilon(x)$.
 - (c) Niech $D \subset M$ będzie dowolnym domkniętym podzbiorem. Dla dowolnego ε jak w punkcie (b) uzasadnij, że dowolna funkcja ciągła $f: M \to R$, która jest gładka na pewnym otwartym otoczeniu zbioru D, posiada gładką ε -aproksymację $g: M \to R$ taką, że $g|_D = f|_D$.
- 2. Dla niezwartej rozmaitości gładkiej M skonstruuj gładką funkcję $f: M \to R$ taką, że dla każdego naturalnego n przeciwobraz $f^{-1}([-n,n])$ jest zwartym podzbiorem w M. Funkcje o tej własności nazywają się funkcjami wlaściwymi. Wskazówka: wykorzystaj zadanie 6 z listy 1; uzasadnij też najpierw następujący fakt pomocniczy: istnieje ciąg otwartych zbiorów V_i takich, że $\cup_i V_i = M$, oraz dla każdego i domlnięcie $\operatorname{cl}(V_i)$ w M jest zwarte i zawarte w V_{i+1} .
- 3. Niech \mathcal{U} będzie dowolnym pokryciem rozmaitości M zbiorami prezwartym, i niech $\{f_j\}_{j\geq 1}$ będzie gładkim rozkładem jedności wpisanym w \mathcal{U} . Uzasadnij, że funkcja $h=\sum_{j\geq 1} j\cdot f_j$ jest gładką funkcją właściwą o dodatnich wartościach. Uzasadnij, że funkcja ta, jak każda rzeczywista funkcja właściwa ograniczona od dołu, posiada globalne minimum (czyli taki punkt $p\in M$, że dla każdego $x\in M$ zachodzi $f(x)\geq f(p)$).
- 4. Dla rozmaitości M z brzegiem skonstruuj taką gładką funkcję $f:M\to [0,\infty)$, że $\partial M=f^{-1}(0)$ oraz rząd f w dowolnym punkcie brzegowym wynosi 1.

Odwzorowania gładkie

- 5. Uzasadnij, że naturalne włożenie $i: S^n \to \mathbb{R}^{n+1}$ jest gładkie.
- 6. Niech M,N będą rozmaitościami różniczkowalnymi, i niech $f:M\to N$ będzie przekształceniem gładkim, zaś $g:N\to R$ gładką funkcją rzeczywistą. Uzasadnij z definicji, że złożenie $g\circ f:M\to R$ jest funkcją gładką.
- 7. Sprawdź, że dla naturalnej struktury rozmaitości gładkiej na produkcie $M \times N$ dwóch rozmaitości gładkich rzutowania $M \times N \to M$ i $M \times N \to N$ są odwzorowaniami gładkimi.
- 8. Niech $\mathcal L$ będzie rozmaitoścą prostych na płaszczyźnie.
 - (a) Zdefiniuj rozmaitość kierunków prostych na płaszczyźnie i pokaż, że odwzorowanie przyporządkowujące prostej z \mathcal{L} jej kierunek jest gładkie.
 - (b) Pokaż, że odwzorowanie $\mathcal{L} \to \mathcal{L}$ przyporządkowujące każdej prostej prostopadłą do niej przechodzącą przez punkt (0,0) jest gładkie.
 - (c) Dane są gładkie funkcje $p: R \to R^2$ oraz $\theta: R \to R$. Niech $L: R \to \mathcal{L}$ będzie odwzorowaniem, w którym L(t) jest prostą przechodzącą przez punkt p(t) i mającą kierunek $\theta(t)$ (liczony w mierze łukowej, tak że wartości różniące się o π oznaczają ten sam kierunek). Wykaż za pomocą map dla \mathcal{L} , że L jest odwzorowaniem gładkim (gładką krzywą w \mathcal{L}).
- 9. Odwzorowanie $F: S^3 \to S^2$ zadane jest wzorem $F(z,w) = (z\bar{w} + w\bar{z}, iw\bar{z} iz\bar{w}, z\bar{z} w\bar{w})$, gdzie S^3 traktujemy jak podzbiór w C^2 zadany równaniem $|z|^2 + |w|^2 = 1$. Uzasadnij za pomocą wyliczenia w mapach, że F jest odwzorowaniem gładkim. Wcześniej uzasadnij, że jest ono dobrze określone.

Dyfeomorfizmy

10. Niech M,N będą gładkimi rozmaitościami n-wymiarowymi, i niech $f:M\to N$ będzie gładkim różnowartościowym odwzorowaniem M na N (surjekcja). Załóżmy, że spełniony jest warunek: (*) rząd odwzorowania f w każdym punkcie $p\in M$ wynosi n. Udowodnij, że f jest wówczas dyfeomorfizmem. Pokaż też, że tak być nie musi gdy nie jest spełniony warunek (*).

Wskazówka: skorzystaj z twierdzenia o funkcji odwrotnej z analizy wielu zmiennych.

- 11. Sprawdź, że odwzorowanie $i: M \times M \to M \times M$ zadane przez i(x,y) = (y,x) jest dyfeomorfizmem. Mając dan permutację σ zbioru $\{1,\ldots,n\}$, zrób to samo dla odwzorowania $g_{\sigma}: (M)^n \to (M)^n$ zadanego przez $g_{\sigma}(x_1,x_2,\ldots,x_n) = (x_{\sigma(1)},\ldots,x_{\sigma(n)})$.
- zadanego przez $g_{\sigma}(x_1, x_2, \dots, x_n) = (x_{\sigma(1)}, \dots, x_{\sigma(n)}).$ 12. Znajdź dyfeomeorfizm pomiędzy $R^n \setminus \{O\}$ a rozmaitością produktową $R \times S^{n-1}$.
- 13. Znajdź przykłady dyfeomorfizmów pomiędzy następującymi rozmaitościami:
 - (a) całe R^2 oraz otwarty podzbiór R^2 zadany jako

$$U = \{(x, y) \in \mathbb{R}^2 : y > 0, y < x\}$$

(wnętrze kata o mierze $\pi/4$);

(b) cała półpłaszczyzna $H^2=\{(x,y):y\geq 0\}$ oraz jej otwarty podzbiór $V=H^2\setminus\{(x,0):x\leq 0\}$. WSKAZÓWKA: przydatne może być znalezienie najpierw pomocniczych dyfeomorfizmów, np. całego R^2 z otwartym podzbiorem $\{(x,y):x>0,y>0\}$, albo V z otwartym podzbiorem $W\subset H^2$ zadanym przez $W=\{(x,y)\in H^2:x>0\}$.

Dyfeomorfizmy i dyskretne ilorazy rozmaitości

- 14. Uzasadnij, że odwzorowanie antypodyczne $a: S^n \to S^n$ określone wzorem a(x) = -x jest gładkie. Uzasadnij, że jest ono dyfeomorfizmem.
- 15. Rozważmy dwuelementowy zbiór dyfeomorfizmów sfery S^n zoony z identyczności oraz z dyfeomorfizmu antypodycznego z poprzedniego zadania. Uzasadnij, że zbiór ten tworzy grupę dyfeomorfizmów izomorficzną z grupą cykliczną Z_2 . Uzasadnij, że tak zadane działanie grupy Z_2 na sferze S^n jest wolne i właściwie nieciągłe.
- 16. Rozmaitość ilorazową S^n/Z_2 , dla działania Z_2 na S^n jak w poprzednim zadaniu, nazywa się nwymiarową przestrzenią rzutową (gdy n=2 płaszczyzną rzutową), i oznacza się symbolem RP^n (od agielskiego: real projective). Jej punkty, będące parami (nieuporządkowanymi) punktów antypodycznych (czyli orbitami antypodycznego działania Z_2) oznaczamy przez [x], gdzie $x \in S^n$, za [x] to para $\{x, -x\}$ (orbita punktu x). Podaj opis przestrzeni rzutowej RP^n , jako gładkiej rozmaitości, za pomocą jawnego zbioru map (gładkiego atlasu).
- 17. Niech a > 1 będzie liczbą rzeczywistą. Uzasadnij, że przekształcenia $f_n : R^n \setminus \{O\} \to R^n \setminus \{O\}$ zadane przez $f_n(x) = a^n \cdot x$ są dyfeomorfizmami, i tworzą grupę dyfeomorfizmów izomorficzną z grupą cykliczną Z. Uzasadnij, że grupa ta działa w sposób wolny i właściwie nieciągły na $R^n \setminus \{O\}$.
- 18. Ustalmy względnie pierwsze liczby naturalne $p>q\geq 1$. Na sferze $S^3=\{(z_1,z_2)\in C^2:|z_1|^2+|z_2|^2=1\}$ mamy przekształcenia $g_n:S^3\to S^3,\,n=0,1,\ldots,p-1,$ zadane przez

$$g_n(z_1, z_2) = (e^{2\pi i n/p} \cdot z_1, e^{2\pi i n q/p} \cdot z_2).$$

Uzasadnij, że przekształcenia g_n są dyfeomorfizmami, i tworzą grupę dyfeomorfizmów izomorficzną z grupą cykliczną Z_p . Uzasadnij też, że grupa ta działa w sposób wolny i właściwie nieciągły na S^3 .

- 19. Niech G będzie grupą działającą na M przez dyfeomorfizmy, w sposób wolny i właściwie nieciągły. Mówimy, że odwzorowanie $f:M\to N$ jest G-niezmiennicze jeśli dla każdego $x\in M$ i dla każdego $g\in G$ zachodzi f(g(x))=f(x). Niech $f:M\to N$ będzie gładkim odwzorowaniem G-niezmienniczym. Uzasadnij, że wówczas odwzorowanie $F:M/G\to N$ zadane przez F(G(x)):=f(x) jest gładkie. Uzasadnij też, że rząd odwzorowanie F w punkcie G(x) jest taki sam jak rząd odwzorowania F w punkcie F0.
- 20 . Posługując się poprzednim zadaniem uzasadnij, że rozmaitość ilorazowa $R^n \setminus \{O\}/Z$ dla działania z zadania 17 jest dyfeomorficza z produktem $S^{n-1} \times S^1$.
- 21. Uzasadnij, że rozmaitość ilorazowa R^1/Z jest dyfeomorficzna ze sferą S^1 .
- 22. Uzasadnij, że działanie grupy liczb całkowitych Z na \mathbb{R}^n określone wzorem

$$k \cdot (x_1, x_2, \dots, x_n) = (x_1 + k, (-1)^k \cdot x_2, x_3, \dots, x_n)$$

- jest wolnym i właściwie nieciągłym działaniem przez dyfeomorfizmy. Zrób to samo dla powyższego działania grupy Z obciętego do podzbioru $\{x \in \mathbb{R}^n : -1 \leq x_2 \leq 1\}$. Dla n=2 rozmaitość ilorazową tego ostatniego działania nazywamy wstęga Möbiusa, zaś jej wnętrze otwartą wstęga Möbiusa.
- 23. Uzasadnij, że rozmaitość \mathcal{L} prostych na płaszczyźnie jest dyfeomorficzna z otwartą wstegą Möbiusa.
- 24. Ta sama grupa G działa przez dyfeomorfizmy na rozmaitościach M i N, na obu w sposób wolny i właściwie nieciągły. Odwzorowanie $f: M \to N$ nazywamy wtedy G-ekwiwariantnym (albo G-współzmienniczym), jeśli dla każdego $x \in M$ i dla każdego $g \in G$ zachodzi f(g(x)) = g(f(x)). Uzasadnij, że dla dowolnego gładkiego i G-ekwiwariantnego odwzorowania $f: M \to N$ odwzorowanie $f_G: M/G \to N/G$ zadane przez $f_G(G(x)) := G(f(x))$ jest dobrze określone i gładkie. Ponadto, jeśli f jest dyfeomorfizmem, to f_G też jest dyfeomorfizmem.
- 25. Niech v_1, v_2 będą liniowo niezależnymi wektorami w R^2 . Rozważmy działanie grupy Z^2 na R^2 zadane w zapisie wektorowym przez $(k, m)(x) = x + k \cdot v_1 + m \cdot v_2$. Uzasadnij, że jest to wolne i właściwie nieciągłe działanie przez dyfeomorfizmy. Oznaczając taką grupę dyfeomorfizmów przez $Z \cdot v_1 \oplus Z \cdot v_2$ uzasadnij też, że dla różnych par wektorów v_1, v_2 rozmaitości ilorazowe $R^2/(Z \cdot v_1 \oplus Z \cdot v_2)$ są dyfeomorficzne.
- 26. Niech $f: M \to M$ będzie dyfeomorfizmem rozmaitości różniczkowalnej M. Rozważmy działanie grupy Z na produkcie $M \times R$ zadane przez $k(x,t) := (f^k(x), t+k)$ (stosujemy tu konwencję, że $f^0 = id_M$). Uzasadnij, że powyższe działanie jest wolnym i właściwie nieciągłym działaniem przez dyfeomorfizmy. Iloraz $(M \times R)/Z$ tego działania oznaczmy przez $(M \times R)/\langle (f, t+1) \rangle$.
- 27. Niech S będzie rozmaitością ilorazową działania Z na R przez k(t) = t + k. Pokaż, że rzutowanie $\pi: M \times R \to R$ jest wtedy Z-ekwiwariantne względem działania Z na $M \times R$ opisanego w zadaniu 20. Pokaż też, że indukowane odwzorowanie $\pi_Z: (M \times R)/\langle (f,t+1) \rangle \to R/Z$ ma rząd 1 w każdym punkcie.
- 28. Dyfeomorfizmy $f_0, f_1: M \to M$ nazywamy *izotopijnymi*, jeśli istnieje gładko zależna od parametru t rodzina dyfeomorfizmów $f_t: M \to M$ "łącząca" f_0 z f_1 . Uzasadnij, że jeśli dyfeomorfizmy f_0, f_1 są izotopijne, to rozmaitości $M \times R/\langle (f_i, t+1) \rangle$ są dyfeomorficzne. Wskazówka: możesz użyć pomocniczej funkcji gładkiej $g: [0,1] \to [0,1]$ stale równej 0 na otoczeniu 0, i stale równej 1 na otoczeniu 1.