Отчёт по лабораторной работе №6

Вариант 40

Аминов Зулфикор Мирзокаримович

Содержание

1.	Цель работы	3
2.	Теоретическое введение	4
3.	Задание	6
4.	Вариант 40	7
5.	Выполнение лабораторной работы и результат работы	8
6.	Выводы	11

1. Цель работы

Научиться строить модели эпидемии в OpenModelica.

2. Теоретическое введение

Задача об эпидемии

$$I(0) \leq I^*$$
 и $I(0) > I^*$

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,ecли } I(t) > I^* \ 0 & ext{,ecли } I(t) \leq I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,ecли } I(t) > I^* \ -eta I & ext{,ecли } I(t) \leq I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α, β - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

3. Задание

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- a) $I(0) \leq I^*$
- б) $I(0)>I^{st}$

4. Вариант 40

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 900) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=190, А число здоровых людей с иммунитетом к болезни R(0)=59. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) $I(0) \leq I^*$
- 2) $I(0) > I^*$

5. Выполнение лабораторной работы и результат работы

Код 1

```
model lab6_a
  parameter Real a=0.059;
  parameter Real b=0.072;

Real I(start=190);
  Real R(start=59);
  Real S(start=12651);

equation
    der(S) = 0;
    der(I) = -b*I;
    der(R) = b*I;

end lab6_a;
```


Рис. 5.1.: случай а

Код 2

```
model lab6_b
  parameter Real a=0.059;
  parameter Real b=0.072;

Real I(start=190);
  Real R(start=59);
  Real S(start=12651);

equation
    der(S) = -a*S;
    der(I) = a*S-b*I;
    der(R) = b*I;

end lab6_b;
```


Рис. 5.2.: случай б

6. Выводы

Познакомились с задачей об эпидемии и построили графики.