1- Given parameters:

Fuel Material	kfven[W/cmk]	O[W/cm3]	Treeting [K]
Umetal	0.38	3 9 5	1405
UO2	0.03	779	3138
UC	0.25	531	3123
UN	0.2	553	3133
U ₃ Si ₂	0.23	463	1938

Values taken from slide 18 of Lec 2.

Relevant equations:

$$T_{m}-T_{s}=\frac{Q}{4k_{f}}$$

Fuel Material	Tmesty (K)	Tooler kne [K]
Umetal	1405	1147
UO2	3138	1647
UC	3123	1028
UN	3 133	(68 0
U ₃ Si ₂	1938	986

Calculated in HW-1

Temperature profile across radius with time

temperature difference was calculated for each time step. Steady-state solution was obtained if DTmox < & = 0.001.

c)

Analytical solution and steady-state solution show slight variation. The main reason of this difference is the usage of constant k in analytical solution.

0-3)

We can rewrite this relation as fellows!

By using the results obtained in O-1, we can calculate DTMox for each first material:

