Q.1.

Note that there is no mutual coupling between the 5 H and 6 H inductors in the circuit of Fig. 13.50. (a) Write a set of equations in terms of $\mathbf{I}_1(j\omega)$, $\mathbf{I}_2(j\omega)$, and $\mathbf{I}_3(j\omega)$. (b) Find $\mathbf{I}_3(j\omega)$ if $\omega = 2$ rad/s.

■ FIGURE 13.50

Q.2.

Consider the circuit represented in Fig. 13.55. The coupling coefficient k = 0.75. If $i_s = 5 \cos 200t$ mA, calculate the total energy stored at t = 0 and t = 5 ms if (a) a-b is open-circuited (as shown); (b) a-b is short-circuited.

■ FIGURE 13.55

Q.3.

Assume the following values for the circuit depicted schematically in Fig. 13.16: $R_1 = 10 \ \Omega$, $R_2 = 1 \ \Omega$, $L_1 = 2 \ \mu$ H, $L_2 = 1 \ \mu$ H, and $M = 500 \ \text{nH}$. Calculate the input impedance for $\omega = 10 \ \text{rad/s}$ if \mathbf{Z}_L is equal to (a) $1 \ \Omega$; (b) $j \ \Omega$; (c) $-j \ \Omega$; (d) $5/33^{\circ} \ \Omega$.

Q.4.

For the circuit of Fig. 13.61, determine an expression for (a) I_L/V_s ; (b) V_1/V_s .

■ FIGURE 13.61

Q.5. For the circuit of Fig. 13.62, if $vs = 8 \cos 1000t \text{ V}$, calculate vo.

■ FIGURE 13.62