Appunti per il 1° Anno - 2° Semestre - Gruppo C2

Geometria

Dalle lezioni della prof.ssa Cioffi Francesca

Anno 2023/24 - Di Tota Gaetano

Geometria - a.a. 2023/2024

Simboli

Lezione 1° del 04/03/2024	1
Vettore libero	1
Definizioni e Notazioni	1
Prodotto Cartesiano	2
Principio di Induzione	2
Relazione tra insiemi	
Classe di equivalenza	
Lezione 2° del 06/03/2024	5
Relazione di Parallelismo	
Direzione e Verso	
Applicazione	6
Lezione 3° del 11/03/2024	7
Restrizione e Riduzione	
Cardinalità di un'insieme	
Operazioni binarie	
Struttura algebrica / Spazio Vettoriale	8
Lezione 4° del 13/03/2024	10
Sotto-spazio Vettoriale / Linearmente Chiuso	12
Combinazione lineare	13
Chiusura lineare	
Sistema di Generatori	13
Matrici	15
Lezione 5° del 18/03/2024	15
Linearmente Dipendente	15
Linearmente Indipendente	15
Lezione 6° del 20/03/2024	17
Base di uno Spazio-Vettoriale	17
Dimensione	
Lezione 7° del 25/03/2024	20
Isomorfismo associato ad una Base	21
Lezione 8° del 27/05/2024	22
Somma Diretta	24
Lezione 9° del 03/04/2024	26
Applicazioni Lineari	26
Lezione 10° del 08/04/2024	29
Matrice	31
Trasformazioni elementari	32
Lezione 11° del 10/04/2024	33
Sistemi di Equazioni Lineari	36
Lezione 12° del 15/04/2024	43
Prodotto Righe per Colonne	43

Lezione 13° del 17/04/2024	46
Matrice associata ad applicazione lineare	
Lezione 14° del 06/05/2024	48
Matrici quadrate	
Permutazioni	
Lezione 15° del 07/05/2024	53
Minore complementare	53
Minore	55
Orlato	55
Lezione 16° del 08/05/2024	60
Spazio affine	60
Lezione 17° del 13/05/24	62
Matrice di passaggio da B a B'	
Matrici di passaggio da B a B' negli spazi affini	
Affinemente indipendenti	
Rette Sghembe	67
Lezione 18° del 15/05/24	68
Parallelismo	
Incidenza	
Fasci Propri e Impropri	73
Lezione 19° del 20/05/24	73
Prodotto scalare euclideo	
Spazio vettoriale euclideo	
Base ortogonale e ortonormale	76
Lezione 20° del 22/05/24	77
Matrice di passaggio da B a B' negli spazio vettoriali euclidei	
Matrice ortogonale	
Spazio vettoriale euclideo orientato	
Spazio euclideo	
Complemento ortogonale	
Ortogonalità	80
Lezione 21° del 27/05/24	82
Distanze	82
Lezione 22° del 29/05/24	86
Punto medio	
Matrici simili	
Autovalori e Autovettori di un Endomorfismo	
Lezione 23° del 03/06/24 Diagonalizzabilità	92 94
Base spettrale	
	J-T

Simboli

U unione	
∩ intersezione	
∀ per ogni	
∃ esiste	
∈ appartiene	
∉ non appartiene	
V o disgiunzione	
∧ e congiunzione	
⇔ equivalente	
¬ negazione	
⇒ implica	
⊆ inclusione	
\triangle differenza simmetrica	
\ differenza insiemistica	
U unione unaria	
∩ intersezione unaria	

Lezione 1° del 04/03/2024

Vettore libero

Definizione - Vettore libero

Un vettore rappresenta lo spostamento da un punto ad un altro, esso ha come caratteristiche: direzione, verso e lunghezza.

Definizioni e Notazioni

Definizione - Simboli

- ∅ = Insieme vuoto
- $A \subseteq B \Leftrightarrow \forall x \in A(x \in B)$
- $A = B \Leftrightarrow A \subset B \land B \subset A$
- $A \cap B \Leftrightarrow \{x \mid x \in A \land x \in B\}$
- $A \cup B \Leftrightarrow \{x \mid x \in A \lor x \in B\}$
- $B \setminus A \Leftrightarrow \{x \mid x \in B \land x \notin A\}$

Domanda - Come assegnare un'insieme?

Per assegnare degli oggetti ad un'insieme abbiamo due modi distinti

- 1. Elencare gli elementi che appartengono all'insieme
 - $x \in A$ oppure $y \notin A$
- 2. Caratterizzare gli elementi che appartengono all'insieme mediante una proprietà

 $B = \{x \mid x \text{ è uno studente del corso di Geometria}\}$

Definizione - Complemento

Prendiamo $A \subseteq X$ e chiamiamo l'operazione $X \setminus A$ complemento di A in X che indichiamo con $C_X(A)$

Definizione - Leggi di De Morgan sul Complemento

Unione dei Complementi
$$C_X(A \cup B) = C_X(A) \cap C_X(B)$$

Dimostrazione

$$y \in C_X(A \cup B) \Leftrightarrow y \in X \land y \not \in A \cup B \Leftrightarrow y \in X \land (y \not \in A \lor y \not \in B) \Leftrightarrow (y \in X \lor y \not \in A) \land (y \in X \lor y \not \in b) \Leftrightarrow y \in C_X(A) \land y \in C_X(B) \Leftrightarrow y \in C_X(A) \cap C_X(B)$$

Intersezione dei Complementi
$$C_X(A \cap B) = C_X(A) \cup C_X(B)$$

Dimostrazione

$$y \in C_X(A \cap B) \Leftrightarrow y \in X \land y \not\in A \cap B \Leftrightarrow y \in X \land (y \not\in A \lor y \not\in B) \Leftrightarrow (y \in X \land y \not\in A) \lor (y \in X \land y \not\in b) \Leftrightarrow y \in C_X(A) \lor y \in C_X(B) \Leftrightarrow y \in C_X(A) \cup C_X(B)$$

Prodotto Cartesiano

Definizione - Prodotto Cartesiano

Siani $A, B \neq \emptyset$ allora definiamo prodotto cartesiano tra due insiemi $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Esempio - Prodotto Cartesiano

Siano
$$A = \{1, 2, 3\}$$
 e $B = \{x, y\}$ allora otteniamo $A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$

Sia $A_1, A_2, ..., A_n \neq \emptyset$ abbiamo che $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1 \land a_2 \in A_2 \land ... \land a_n \in A_n\}$ allora

- Preso il polinomio $3x_1 x_2 + 4x_3 + x_5 = 1$
- Definiamo l'insieme di soluzioni $S = \{(\overline{x_1}, \overline{x_2}, \overline{x_3}, \overline{x_4}, \overline{x_5}) \in \mathbb{R}^5 \mid 3\overline{x_1} \overline{x_2} + 4\overline{x_3} + \overline{x_5} = 1\}$
- Dove sappiamo che $(1, 3, -1, 0, 5) \in S$

Principio di Induzione

Definizione - Principio di Induzione

 $\forall n \in \mathbb{N}^*$ sia P(n) un'affermazione che dipende da n allora

- 1. Base induttiva: $\exists \overline{n} \in \mathbb{N}^*$ ($P(\overline{n} \text{ è verificata})$)
- 2. Passo induttivo: $\forall n > \overline{n} \quad (P(n-1) \Rightarrow P(n))$

Esempio - Principio di Induzione

Sia P(n) = "Se A ha n elementi allora $\mathcal{P}(A)$ ha 2^n elementi" allora abbiamo

- Base induttiva: $\overline{n} = 0$ allora $P(0): A = \emptyset$ e $\mathcal{P}(A) = \{\emptyset\}$ esattamente $2^0 = 1$ elementi
- Passo induttivo: $\forall n > 0$ $P(n-1) \Rightarrow P(n)$

Siano $A = \{\alpha_1, \alpha_2, ..., \alpha_{n-1}\} \subseteq B = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ allora so che

- 1. $\mathcal{P}(A) = \{x \mid x \subseteq A\} = \{x \mid x \subseteq B \land \alpha_n \notin x\} \subseteq \mathcal{P}(B)$
- 2. $\mathcal{P}(B) \setminus \mathcal{P}(A) = \{x \mid x \subseteq B \land \alpha_n \in x\}$
- 3. $\mathcal{P}(B) = \mathcal{P}(A) \cup \{x \cup \{\alpha_n\} \mid x \subseteq A\}$

Concludo quindi che $\mathfrak{P}(A)$ ha $2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$ elementi

Relazione tra insiemi

Definizione - Relazione

Siano $A, B \neq \emptyset$ chiamiamo relazione (oppure corrispondenza) di A in B un sottoinsieme $\rho \subseteq A \times B$

Sia $a \in A$ e $b \in B$ allora indichiamo $a \rho b \Leftrightarrow (a, b) \in \rho$

Chiamiamo **relazione capovolta** la sua inversa $\widehat{\rho} = \{(b, a) \mid (a, b) \in \rho\}$

$$\forall a, b \in A(a \stackrel{\frown}{\rho} b \Leftrightarrow b \rho a)$$

Definizione - Relazione di equivalenza

Sia $A = B = \emptyset$ è detta relazione binaria in A ed è di equivalenza se rispetta le seguenti proprietà

1. Riflessiva: $\forall a \in A(a \rho a)$

in termini di coppia ordinata $(a, a) \in \rho$

2. **Simmetrica**: $\forall a, b \in A(a \rho b \wedge b \rho a)$

in termini di coppia ordinata $(a, b) \Rightarrow (b, a) \in \rho$

3. Transitiva: $\forall a, b, c \in A(a \rho b \wedge b \rho c \Rightarrow a \rho c)$

in termini di coppia ordinata $(a,b) \in \rho \land (b,c) \in \rho \Rightarrow (a,c) \in \rho$

Esempio - Relazione di equivalenza

Sia
$$A = \{1, 3, 5\}$$
 allora $\rho = \{(1, 1), (3, 3), (5, 5), (3, 5), (5, 3)\}$

Sia
$$A = \mathbb{N}^*$$
 allora $\rho = \{(x, y) \mid |x - y| \text{ è pari o nullo}\}$

Sia
$$A = \mathbb{Z} \times \mathbb{N}^*$$
 allora $\rho \subseteq A \times A$ abbiamo che $\rho = \{(m, n), (m', n') \mid m \cdot n' = m' \cdot n\} = \mathbb{Q}$

Teorema - $\rho = \stackrel{\frown}{\rho}$ quando ρ è di equivalenza

Sia
$$\rho \subseteq A \times A$$
 posso dimostrare una sola inclusione perché $(\stackrel{\longleftarrow}{\rho}) = \rho$

Dimostrazione Sia
$$(a, b) \in \rho \Rightarrow (b, a) \in \rho \Rightarrow (a, b) \in \rho$$

Domanda - Quale relazione identifica due vettori applicati uguali?

È chiamata relazione di equipollenza quella che identifica due coppie di punti sul piano che hanno stessa direzione, verso e lunghezza.

Definiamo quindi ho che identifica due vettori applicati uguali:

- $F = \{P \mid P \text{ è un punto nello spazio della geometria elementare}\}$
- $A = F \times F = \{(P, Q) \mid P, Q \in F\}$ ottenendo l'insieme dei vettori applicati
- Sia poi $\rho \subseteq A \times A$ ottenendo $\rho = \{((P,Q),(P',Q')) \mid (P,Q) \in (P',Q') \text{ abbiamo stessa direzione, verso e lunghezza}\}$

Classe di equivalenza

Definizione - Classe di equivalenza

Sia $A \neq \emptyset$ e ρ una relazione di equivalenza su A allora chiamo classe di equivalenza

$$\forall a \in A \quad [a]_{\rho} := \{x \in A \mid x \rho a\}$$

Le classi di equivalenza hanno le seguenti proprietà

- 1. $\forall a \in A \quad a \in [a]_{\rho}$
- 2. $\forall a, b \in A$ $a \in [b]_{\rho} \Rightarrow [a]_{\rho} = [b]_{\rho}$
- 3. $\forall a, b \in A$ $[a]_{\rho} \cap [b]_{\rho} = \emptyset \vee [a]_{\rho} = [b]_{\rho}$

Dimostrazione

- 1. $(a, a) \in \rho$
- 2. Qui dobbiamo osservare una doppia inclusione
 - " \subseteq " $z \in [a]_{\rho} \Rightarrow z \ \rho \ a \Rightarrow (z, a) \in \rho$ per ipotesi $a \in [b]_{\rho} \Rightarrow (a, b) \in \rho$ $\Rightarrow (z, b) \in \rho \Rightarrow z \in [b]_{\rho}$
 - " \supseteq " $z \in [b]_{\rho} \Rightarrow z \ \rho \ b \Rightarrow (z, b) \in \rho$ per ipotesi $a \in [b]_{\rho} \Rightarrow (a, b) \in \rho \Rightarrow (b, a) \in \rho$ $\Rightarrow (z, a) \in \rho \Rightarrow z \in [a]_{\rho}$
- 3. Se $\exists z \in [a]_{\rho} \cap [b]_{\rho}$ allora sappiamo che $z \in [a]_{\rho}$ e $z \in [b]_{\rho} \Rightarrow [a]_{\rho} = [z]_{\rho} = [b]_{\rho}$

Domanda - Qual'è l'insieme delle classi di equivalenza?

Se ρ è una relazione di equivalenza su A allora definiamo insieme quoziente (oppure partizione) $\frac{A}{\rho} := \{[a]_{\rho} \mid a \in \rho\}$ l'insieme di tutte le classi di equivalenza, questo ci dice due cose

- $\bullet \ \ A = \bigcup_{[a]_{\rho} \in \frac{A}{\rho}} [a]_{\rho}$
- Se $[a]_{\rho} \cap [b]_{\rho} = \emptyset \Rightarrow [a]_{\rho} \neq [b]_{\rho}$

Esempio - Classi di Equivalenza

Sia $A = \{1, 3, 5\}$ e la relazione $\rho = \{(1, 1), (3, 3), (5, 5), (3, 5), (5, 3)\}$ allora abbiamo le seguenti classi di equivalenza

- [1] = {1}
- [3] = {3,5}
- [5] = {5,3}

Dove otteniamo che [3] = [5] e inoltre che [1] \cup [3] = A

Lezione 2° del 06/03/2024

Relazione di Parallelismo

Definizione - Relazione di Parallelismo

Siano r_1 e r_2 due rette distinte, allore diciamo che sono parallele se sono complanari, cioè se esiste un piano che contiene sia r_1 e r_2 dove la loro intersezione risulta vuota.

NOTA una retta si dice sempre parallela a se stessa.

Definiamo quindi l'insieme delle rette $A = \{r \mid \text{retta dello spazio nella geometria elementare}\}$ e su questo costruiamo $\rho \subseteq A \times A$ che definiamo usando la relazione di parallelismo $\rho = \{(r_1, r_2) \mid r_1, r_2 \text{ sono parallele}\}$

Sappiamo che la relazione di parallelismo è di equivalenza perché:

• Riflessiva: $\forall r \in A \quad (r, r) \in \rho$

• Simmetrica: $\forall r, r_1 \in A \quad (r, r_1) \in \rho \Rightarrow (r_1, r) \in \rho$

• Transitiva: $\forall r, r_1, r_2 \in A$ (r, r_1) e $(r_1, r_2) \in \rho \Rightarrow (r, r_2) \in \rho$

Direzione e Verso

Definizione - Direzione

Per dare la definizione di direzione, dobbiamo partire dalla definizione di retta per poi usare questo strumento per definire la direzione, vediamo come

- 1. **Retta**: usiamo le classi di equivalenza per definire se due rette hanno la stessa direzione, ovvero se sono parallele, quindi $[r]_{\rho} = \{r_1 \in A \mid r_1 \ \rho \ r\}$
- 2. **Vettore applicato**: due vettori applicati (P,Q) e (R,T) hanno la stessa direzione se sono contenuti in rette parallele
- 3. **Vettore libero**: due vettori liberi \overrightarrow{PQ} e \overrightarrow{RT} hanno la stessa direzione se si possono disegnare su rette parallele

Nota - Vettore Nullo

Definiamo (P, P) il vettore nullo che ha direzione e verso indefinite.

Definizione - Verso

Per questa definizione dobbiamo sfruttare come strumento la retta e le classi di equivalenza, perché

- **Vettore applicato**: siano (P,Q) e (R,T) due vettori applicati paralleli, allora hanno lo stesso verso se applicando uno dei due nel punto di applicazione dell'altro, otteniamo che i due secondi estremi si trovano nella stessa parte della retta individuata rispetto al comune punto di applicazione
- **Vettore libero**: siano \overrightarrow{PQ} e \overrightarrow{RT} due vettori liberi paralleli, allora hanno lo stesso verso se lo hanno i loro rappresentati (P,Q) e (R,T)

Applicazione

Definizione - Applicazione

Siano $A, B \neq \emptyset$ allora definiamo una corrispondenza $f \subseteq A \times B$ che chiamiamo applicazione (oppure funzione) di A in B che indichiamo con $f : A \rightarrow B$ se verifica la seguente condizione:

$$\forall a \in A \quad \exists! b \in B \quad (a, b) \in f$$

Chiamiamo A dominio e B codominio di f, inoltre questa applicazione si dice

• Iniettiva: due elementi distinti di A corrispondono a due elementi distinti di B

$$\forall a, b \in A \quad f(a) = f(b) \Rightarrow a = b$$

• Suriettiva: ogni elemento di B è immagine di almeno un elemento di A

$$\forall b \in B \quad \exists a \in A \quad f(a) = b$$

• Biettiva: se è sia iniettiva che suriettiva

$$\forall b \in B \quad \exists! a \in A \quad f(a) = b$$

Definizione - Applicazione inversa

Sia $f:A\to B$ allora definiamo $f^{-1}=\{(b,a)\mid f(a)=b\}$ applicazione inversa che indichiamo con $f^{-1}:B\to A$ ed esiste quando

- $f_o f^{-1}: B \xrightarrow{f^{-1}} A \xrightarrow{f} B$ quindi $f_o f^{-1} = id_B$
- $f_o^{-1}f: A \xrightarrow{f} B \xrightarrow{f^{-1}} A$ quindi $f_o^{-1}f = id_A$

Nota - Se f è biettiva allora anche f^{-1} è biettiva

Sia $f:A\to B$ un'applicazione biettiva allora sappiamo dire per f^{-1} che è un'applicazione biettiva perché

$$f^{-1} \subseteq B \times A$$
 biettiva $\Leftrightarrow \forall b \in B \quad \exists ! a \in A \quad (b, a) \in f^{-1} \Leftrightarrow \forall b \in B \quad \exists ! a \in A \quad (a, b) \in f \Leftrightarrow f \subseteq A \times B$ è biettiva

Esempio - Applicazione

Siano $A = \{1, 3, 5\}$ e $B = \{x, y\}$ allora data $f : A \to B$ composta in questo modo $f = \{(1, x), (3, x), (5, y)\}$ sappiamo che è un'applicazione.

Attenzione che l'applicazione inversa $f^{-1} = \{(x, 1), (x, 3), (y, 5)\}$ non è un'applicazione

Esempio - Suriettività e Iniettività

Siano $A = \{1, 3, 5\}$ e $B = \{x, y\}$ osserviamo le seguenti applicazioni

- $g: B \to A$ composta in questo modo $g = \{(x, 1), (y, 5)\}$ vediamo che
 - è iniettiva
 - non è suriettiva perché 3 ∈ A ma $\nexists y \in B$: g(y) = 3
- $h: A \to A$ composta in questo modo $h = \{(1,3), (3,5), (5,1)\}$ vediamo che

- è iniettiva
- è suriettiva
- è biettiva
- $k: A \rightarrow A$ composta in questo modo $k = \{(1,5), (3,5), (5,3)\}$ vediamo che
 - non è iniettiva
 - non è suriettiva perché $1 \in A$ ma $\nexists y \in A : k(y) = 1$

Domanda - Cosa succede se considerano l'applicazione f e f^{-1} su una singola parte?

Andiamo prima a considerare una parte del dominio e poi del codominio applicate rispettivamente all'applicazione f e poi alla sua inversa f^{-1}

- $\forall X \subseteq A$ $f(X) = \{f(a) \mid a \in X\} \subseteq B$
- $\forall Y \subseteq B$ $f^{-1}(Y) = \{a \in A \mid f(a) \in Y\} \subseteq A$

NOTA da questo deduciamo che $Im\ f = \{f(a) \mid a \in A\}$ ovvero esattamente $Im\ f := f(A)$

Definizione - Applicazione composta

Siano $f:A\to B$ e $g:B\to C$ allora possiamo definire l'applicazione composta l'unione di più applicazioni

$$g_{o}f:A\rightarrow C$$

Questa applicazione segue il seguente schema $A \xrightarrow{f} B \xrightarrow{g} C$ ovvero $g_0 f(a) = g(f(a))$

Domanda - Cosa posso dire sulle proprietà della composizione di applicazioni?

Se prese le singole applicazioni f e g osservando la loro composta $g_{o}f$ posso dire

f e g	$g_o f$
iniettiva	iniettiva
suriettiva	suriettiva
biettiva	biettiva

Lezione 3° del 11/03/2024

Restrizione e Riduzione

Definizione - Restrizione

Una restrizione è una sostituzione del dominio con un suo sottoinsieme non vuoto, sia $f:A\to B$ e un suo sottinsieme $\emptyset\neq X\subseteq A$, chiamo restrizione di f a X l'applicazione

$$f_{|X}: X \to B$$
 con la proprietà che $\forall x \in X \quad f_{|X}(x) = f(x)$

Definizione - Riduzione

Una riduzione è una sostituzione del codominio con un suo sottoinsieme non vuoto, sia $f:A\to B$ e un suo sottinsieme $\emptyset\neq Y\subseteq B$, chiamo riduzione di f a Y l'applicazione

$$f^{|Y|}: X \to Y$$
 con la proprietà che $f(X) \subseteq Y$

Cardinalità di un'insieme

Definizione - Insiemi equipotenti

Siano A e B due insiemi, li definiamo equipotenti (ovvero hanno la stessa potenza o ordine) se esiste un'applicazione biettiva $f: A \to B$ con la proprietà che $\exists ! f^{-1}: B \to A$

Nota - Potenze numerabil

Sono dette potenze numerabili tutti gli insiemi equipotenti ad \mathbb{N} , infatti possiamo prendere in esempio $|\mathbb{Z}| = |\mathbb{N}| = |\mathbb{Q}|$ ma sappiamo anche che $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}| > |\mathbb{N}|$, da questo deduciamo che "infinito" è solo un aggettivo e non una cardinalità.

Operazioni binarie

Definizione - Operazione binaria

Siano A, B, $C \neq \emptyset$ chiamiamo operazione binaria un'applicazione $\bot: A \times B \to C$ e ne distinguiamo due tipi

- 1. **Interna** quando A = B = C
- 2. **Esterna** quando B = C e si dice che ha operatori in A

Domanda - Qual è insieme dei vettori liberi?

Sfruttando le classi di equivalenza e l'insieme quoziente, usiamo la relazione di equipollenza ρ e il prodotto cartesiano $F \times F$ dove F è l'insieme dei punti, definendo così l'insieme dei vettori liberi V:

$$\frac{F \times F}{2} = V = \{ \overrightarrow{PQ} \mid P, Q \text{ sono punti dello spazio della geometria elementare} \}$$

Nota - Operazioni tra vettori liberi

Definiamo adesso le operazioni tra vettori liberi usando lo strumento delle operazioni binarie

- $+: V \times V \rightarrow V \quad (u, v) \rightsquigarrow w$
- $\cdot : \mathbb{R} \times \mathbb{V} \to \mathbb{V} \quad (\alpha, u) \leadsto \alpha u$

Andiamo ad osservare più nel dettaglio queste operazioni e le loro proprietà

- + è un'operazione interna che restituisce un vettore libero ottenuto prendendo come rappresentati di u e v coppie del tipo (P,Q),(Q,R) tali che w=[(P,R)]
- · è un'operazione esterna tale che αu è un vettore che ha stessa direzione di u, la sua lunghezza è calcolata come $|\alpha||u|$ e stesso verso se $\alpha \geq 0$ oppure opposto se $\alpha < 0$

NOTA Se $\alpha = 0 \Rightarrow \alpha u = 0 = (P, P)$ ovvero il vettore nullo con verso, direzione e lunghezza indefinita

Struttura algebrica / Spazio Vettoriale

Definizione - Struttura algebrica

Si tratta di una n-upla $(n \in \mathbb{N})$ costituita da insiemi e operazioni definite su questi insiemi.

Definizione - Gruppoide

Una struttura algebrica dalla forma (A, \bot) con l'insieme $A \neq \emptyset$ e l'operazione $\bot : A \times A \rightarrow A$ della quale possiamo analizzare le seguenti proprietà:

- Associativa $\forall a, b, c \in A \quad (a \perp b) \perp c = a \perp (b \perp c)$
- Commutativa $\forall a, b \in A \quad a \perp b = b \perp a$
- Neutro $\exists t \in A \quad \forall x \in A \quad x \perp t = x = t \perp x$
- Simmetrici $\forall a \in A \quad \exists \overline{a} \in A \quad a \perp \overline{a} = t = \overline{a} \perp a$

Definizione - Gruppo

Sia data la struttura algebrica (A, \bot) si dice gruppo se \bot è associativa, ammette neturo e simmetrici, inoltre se è anche commutativa è detto **Abeliano**

Definizione - Anello

Sia data la struttura algebrica $(A, +, \cdot)$ con le operazioni definite così $+: A \times A \rightarrow \cdots : A \times A \rightarrow A$, allora si chiama anello se

- 1. + è un gruppo Abeliano
- 2 è associativa
- 3. è distributiva rispetto a +

Inoltre distinguiamo anche i seguenti tipi di anelli

- Commutativo è commutativa
- Unitario · ammette neutro
- Campo anello commutativo unitario dove ogni elemento, tranne lo 0_A , ha inverso rispetto a \cdot

Definizione - Spazio vettoriale

Sia $(K, +, \cdot)$ un campo e V un'insieme non vuoto, definiamo le seguenti operazioni

- ullet $\boxplus: V \times V \to V$ come operazione interna
- $\Box: K \times V \to V$ come operazione esterna

Allora la struttura algebrica $(K, V, \boxplus, \boxdot)$ è chiamata spazio vettoriale su K quando

- 1. (V, \boxplus) è un gruppo Abeliano
- 2. $\forall \alpha \in K \quad \forall u, v \in V \quad \alpha \boxdot (u \boxplus v) = (\alpha \boxdot u) \boxplus (\alpha \boxdot v)$
- 3. $\forall \alpha, \beta \in K \quad \forall u \in V \quad u \boxdot (\alpha + \beta) = (\alpha \boxdot u) \boxplus (\beta \boxdot u)$
- 4. $\forall \alpha, \beta \in K \quad \forall u \in V \quad (\alpha \cdot \beta) \boxdot u = \alpha \boxdot (\beta \boxdot u)$
- 5. $\forall u \in V$ $1_K \square u = u$

NOTA! Gli elementi di K sono detti scalari e gli elementi di V vettori

Teorema - Sui Gruppoidi

Sia (A, \perp) un gruppoide allora sappiamo che

1. Se \perp ammette neutro t esso è unico

$$\forall a \in A \quad a \perp t = x = t \perp a$$

2. Se \perp ammette neutro t ed è associativa, allora se $a \in A$ ha un simmetrico a', esso è unico

$$a \in A \quad \exists a' \in A \quad a \perp a' = t = a' \perp a$$

3. Se \perp ammette neutro t ed è associativa, con $a_1, a_2 \in A$ simmetrizzabili, allora $a_1 \perp a_2$ ha come simmetrico $a'' \perp a'$ $a_1, a_2, \in A$ $\exists a', a'' \in A$ $a_1 \perp a' = t = a' \perp a_1$ $a_2 \perp a'' = t = a'' \perp a_2$

Dimostrazione

- 1. Se esiste $t' \in A$ con le stesse proprietà di t allora abbiamo $t = t \perp t' = t'$
- 2. Se esiste $a'' \in A$ con le stesse proprietà di a' allora abbiamo $a' = a' \bot t = a' \bot (a \bot a'') = (a' \bot a) \bot a'' = t \bot a'' = a''$
- 3. $(a_1 \perp a_2) \perp (a'' \perp a') = a_1 \perp (a_2 \perp a'') \perp a' = a_1 \perp t \perp a' = a_1 \perp a' = t$

Lezione 4° del 13/03/2024

Teorema - Sugli Spazi Vettoriali

Sia $(K, +, \cdot)$ un campo e $V = K^n$ con $n \in \mathbb{N}^*$, sappiamo che $(K, K^n, \boxplus, \boxdot)$ è uno spazio vettoriale su K, definiamo le operazioni dello spazio vettoriale:

- $\boxplus : K^n \times K^n \to K^n$ $((a_1, ..., a_n 2), (b_1, ..., b_n)) \rightsquigarrow (a_1 + b_1, ..., a_n + b_n)$
- $\Box : K \times K^n \to K^n$ $(\alpha, (a_1, ..., a_n)) \leadsto (\alpha a_1, ..., \alpha a_n)$

Dimostrazione per il caso in cui n = 2

- (K^2, \boxplus) è un gruppo abeliano
 - \boxplus è commutativa $\forall (a_1, a_2), (b_1, b_2) \in K^2$

$$(a_1, a_2) \boxplus (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (b_1 + a_1, b_2 + a_2) = (b_1, b_2) \boxplus (a_1, a_2)$$

- \boxplus è associativa $\forall (a_1, a_2), (b_1, b_2), (c_1, c_2) \in K^2$

$$((a_1, a_2) \boxplus (b_1, b_2)) \boxplus (c_1, c_2) = ((a_1 + b_1) + c_1, (a_2 + b_2) + c_2) = (a_1 + (b_1 + c_1), a_2 + (b_2 + c_2)) = (a_1, a_2) \boxplus ((b_1, b_2) \boxplus (c_1, c_2))$$

- \blacksquare ha elemento neutro $\forall (a_1, a_2) \in K^2$ $\exists (t_1, t_2) \in K^2$

$$(a_1, a_2) \boxplus (t_1, t_2) = (a_1 + t_1, a_2 + t_2) = (a_1, a_2) \Leftrightarrow \begin{cases} a_1 + t_1 = a_1 \Leftrightarrow t_1 = 0_K \\ a_2 + t_2 = a_2 \Leftrightarrow t_2 = 0_K \end{cases} \Leftrightarrow (t_1, t_2) = (0_K, 0_K)$$

- \boxplus ammette simmetrici $\forall (a_1, a_2) \in K^2$ $\exists (a'_1, a'_2) \in K^2$

$$(a_1, a_2) \boxplus (a'_1, a'_2) = (a_1 + a'_1, a_2 + a'_2) = (0_K, 0_K) \Leftrightarrow \begin{cases} a_1 + a'_1 = 0_K \Leftrightarrow a'_1 = -a_1 \\ a_2 + a'_2 = 0_K \Leftrightarrow a'_2 = -a_2 \end{cases} \text{ in } K$$

- $\forall \alpha \in K \quad \forall (a_1, a_2), (b_1, b_2) \in K^2 \quad \alpha \boxdot ((a_1, a_2) \boxplus (b_1, b_2)) = (\alpha \boxdot (a_1, a_2)) \boxplus (\alpha \boxdot (b_1, b_2))$
 - $\alpha \boxdot ((a_1, a_2) \boxplus (b_1, b_2)) = \alpha \boxdot (a_1 + b_1, a_2 + b_2) = (\alpha a_1 + \alpha b_1, \alpha a_2 + \alpha b_2) = (\alpha a_1, \alpha a_2) \boxplus (\alpha b_1, \alpha b_2) = (\alpha \boxdot (a_1, a_2)) \boxplus (\alpha \boxdot (b_1, b_2))$
- $\forall \alpha, \beta \in K \quad \forall (a_1, a_2) \in K^2 \quad (a_1, a_2) \boxdot (\alpha + \beta) = ((a_1, a_2) \boxdot \alpha) \boxplus ((a_1, a_2) \boxdot \beta)$

$$(\alpha+\beta)\boxdot(a_1,a_2)=((\alpha+\beta)a_1,(\alpha+\beta)a_2)=(\alpha a_1+\beta a_1,\alpha a_2+\beta a_2)=(\alpha a_1,\alpha a_2)\boxplus(\beta a_1,\beta a_2)=(\alpha\boxdot(a_1,a_2))\boxplus(\beta\boxdot(a_1,a_2))$$

• $\forall \alpha, \beta \in K \quad \forall (a_1, a_2) \in K^2 \quad (\alpha \cdot \beta) \boxdot (a_1, a_2) = \alpha \boxdot (\beta \boxdot (a_1, a_2))$

$$(\alpha \cdot \beta) \boxdot (a_1, a_2) = ((\alpha \cdot \beta) \cdot a_1, (\alpha \cdot \beta) \cdot a_2) = (\alpha \cdot (\beta \cdot a_1), \alpha \cdot (\beta \cdot a_2)) = \alpha \boxdot (\beta \boxdot (a_1, a_2))$$

• $\forall (a_1, a_2) \in K^2$ $1_a \square (a_1, a_2) = (a_1, a_2)$

$$1_K \boxdot (a_1, a_2) = (1_K \cdot a_1, 1_K \cdot a_2) = (a_1, a_2)$$

Teorema - Propietà Aritmetiche sugli Spazi Vettoriali

- 1. $\forall \alpha \in K \quad \forall u \in V \quad \alpha \boxdot u = 0 \Leftrightarrow \alpha = 0 \text{ oppure } u = 0$
- 2. $\forall \alpha \in K \quad \forall u \in V \quad -(\alpha \boxdot u) = -(\alpha) \boxdot u = \alpha \boxdot -(u)$
- 3. $\forall \alpha \neq 0 \quad \forall u, v \in V \quad \alpha \boxdot u = \alpha \boxdot v \Rightarrow u = v$
- 4. $\forall \alpha, \beta \in K \quad \forall u \in V \setminus \{0\} \quad \alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha = \beta$

Dimostrazione

- 1. " ⇐ "
 - Sia $\alpha=0$ ed osserviamo che $0 \boxdot u=(0+0) \boxdot u=(0\boxdot u)\boxplus (0\boxdot u)$ quindi so che $\exists -(0\boxdot u)$

$$\underline{0} = (0 \boxdot u) - (0 \boxdot u) = ((0 \boxdot u) \boxplus (0 \boxdot u)) - (0 \boxplus u) = 0 \boxdot u$$

- Sia $u = \underline{0}$ ed osserviamo che $\alpha \boxdot \underline{0} = \alpha \boxdot (\underline{0} + \underline{0}) = (\alpha \boxdot \underline{0}) \boxplus (\alpha \boxdot 0)$ quindi so che ∃ - $(\alpha \boxdot \underline{0})$

$$\underline{0} = (\alpha \boxdot \underline{0}) - (\alpha \boxdot \underline{0}) = ((\alpha \boxdot \underline{0}) \boxplus (\alpha \boxdot \underline{0})) - (\alpha \boxdot \underline{0}) = \alpha \boxdot \underline{0}$$

- " ⇒ "
 - Se $\alpha \neq 0 \Rightarrow \exists \alpha^{-1}$ allora

$$u = 1 \boxdot u = (\alpha^{-1}\alpha) \boxdot u = \alpha^{-1} \boxdot (\alpha \boxdot u) = \alpha^{-1} \boxdot \underline{0} = \underline{0}$$

2. $\forall \alpha \in K \quad \forall u \in V \quad -(\alpha \boxdot u) = -(\alpha) \boxdot u = \alpha \boxdot -(u)$

$$(-(\alpha) \boxdot u) \boxplus (\alpha \boxdot u) = (-\alpha + \alpha) \boxdot u = 0 \boxdot u = \underline{0}$$

$$(\alpha \boxdot -(u)) \boxplus (\alpha \boxdot u) = \alpha \boxdot (-(u) \boxplus u) = \alpha \boxdot 0 = 0$$

3. $\forall \alpha \neq 0 \quad \forall u, v \in V \quad \alpha \boxdot u = \alpha \boxdot v \Rightarrow u = v$

$$u = 1 \boxdot u = (\alpha^{-1} \cdot \alpha) \boxdot u = \alpha^{-1} \boxdot (\alpha \boxdot u) = \alpha^{-1} \boxdot (\alpha \boxdot v) = (\alpha^{-1} \cdot \alpha) \boxdot v = 1 \boxdot v = v$$

4. $\forall \alpha, \beta \in K \quad \forall u \in A \setminus \{0\} \quad \alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha = \beta$

$$\alpha\boxdot u=\beta\boxdot u\Rightarrow\alpha\boxdot u\boxplus -(\beta)\boxdot u=\underline{0}\Rightarrow(\alpha-\beta)\boxdot u=\underline{0}\Rightarrow\alpha-\beta=\underline{0}\Rightarrow\alpha=\beta$$

Sotto-spazio Vettoriale / Linearmente Chiuso

Definizione - Linearmente Chiuso

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e $X \subseteq V$ questo si dice Linearmente chiuso se

- 1. $X \neq \emptyset$
- 2. $\forall u, v \in X \quad u \boxplus v \in X$
- 3. $\forall \alpha \in K \quad \forall u \in X \quad \alpha \boxdot u \in X$

Esempio - Linearmente Chiuso

Sia $(\mathbb{R}, \mathbb{R}^2, +, \cdot)$ uno spazio vettoriale su un campo \mathbb{R} allora siano

- $H = \{(\alpha, 0) \mid \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^2$
- $U = \{(\alpha, 3) \mid \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^2$

Sappiamo che H è linearmente chiuso mentre U non lo è perché non è chiuso rispetto alle operazioni

Domanda - Ma $\underline{0}$ e l'opposto di u appartengono a X?

- Se $X \neq \emptyset$ allora sappiamo che $\exists u \in X$ con la proprietà che $\underline{0} = 0 \square u \in X$
- Se $u \in X$ e $-u \in V$ allora sappiamo che $-u = (-1) \boxdot u \in X$

Definizione - Sotto-Spazio Vettoriale

Un sottoinsieme $X\subseteq V$ linearmente chiuso si dice sotto-spazio vettoriale di V se $(K,X,\boxplus_{|X},\boxdot_{|X})$ è uno spazio vettoriale su K

Esempio - Sotto-Spazio Vettoriale

Sia $(R, R^3, +, \cdot)$ uno spazio vettoriale, allora preso $H = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid a_3 = a_1, a_2\} = \{(a_1, a_2, a_1 + a_2) \in R^3\}$ osserviamo che sia un sotto-spazio vettoriale

- $(\mathbb{R}, +)$ è ancora un gruppo abeliano
- Le proprietà di distributività della · rispetto all' + sono ancora rispettate perché ogni vettore di H è vettore di \mathbb{R}^3
- La proprietà di associatività della \cdot è ancora rispettata perché ogni vettore di H è vettore di \mathbb{R}^3
- La proprietà di neutro di R rispetto alla \cdot è conservata perché ogni vettore di H è vettore di \mathbb{R}^3

Ci resta solo da controllare la chiusura lineare di H

- $H \neq \emptyset$ perché se prendiamo $a_1 = a_2 = 0$ otteniamo il vettore $(0,0,0) \in H$
- $(a_1, a_2, a_1 + a_2) + (b_1, b_2, b_1 + b_2) = (a_1 + b_1, a_2 + b_2, a_1 + a_2 + b_1 + b_2) \in H$
- $\alpha \in \mathbb{R}$ $\alpha(a_1, a_2, a_1 + a_2) = (\alpha \cdot a_1, \alpha \cdot a_2, \alpha(a_1 + a_2)) \in H$

Quindi $(\mathbb{R}, H, +, \cdot)$ è un sotto-spazio vettoriale

Combinazione lineare

Definizione - Combinazione lineare

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e preso una *n*-upla di vettori $(u_1, ..., u_n)$ definiamo una sua combinazione lineare

un vettore
$$u = \alpha_1 \boxdot u_1 \boxplus ... \boxplus \alpha_n \boxdot u_n$$
 dove $(\alpha_1, ..., \alpha_n) \in K$

Chiusura lineare

Definizione - Chiusura lineare

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e $X \subseteq V$ allora chiamiamo chiusura lineare di X l'insieme di tutte le combinazioni lineari

$$\mathcal{L}(X) = \left\{ \begin{array}{l} \{\underline{0}\}, \text{ se } X = \emptyset \\ \{\alpha_1 \boxdot u_1 \boxplus ... \boxplus \alpha_n \boxdot u_n \mid n \in \mathbb{N}^* \quad u_1, ..., u_n \in X \quad \alpha_1, ..., \alpha_n \in K \} \end{array} \right\}$$

NOTA! Si dice $\mathscr{L}(X)$ è il sotto-spazio vettoriale generato da X

Sistema di Generatori

<u>Definizione - Sistema di Generatori</u>

Sia $S \subseteq V$ allora si dice sistema di generatori di V se $V = \mathcal{L}(S)$, ossia ogni vettore di V è combinazione lineare dei vettori di S

S è sistema di generatori di $V \Leftrightarrow \forall u \in V \quad u \in \mathcal{L}(S)$

NOTA! V si dice finitamente generato se ha un sistema di generatori finito

Esempio - Sistema di Generatori

Osservando il caso di K^n sappiamo che preso $S = \{(1,0,...,0),(0,1,0,...,0),(0,...,0,1)\}$ è un sistema di generatori di K^n perché

- $S \subset K^n$
- |S| = n
- $\forall (\alpha_1,...,\alpha_n) \in K^n$ $(a_1,a_2,...,a_n) = a_1(1,0,...,0) + a_2(0,1,0,...,0) + a_3(0,...,0,1)$

Se osserviamo il campo dei polinomi abbiamo che se $K[x] \le h$ sappiamo che preso $S = \{1, x, ..., x^h\}$ è un sistema di generatori di $K[x] \le h$ perché

- |S| = h + 1
- Sia $a_i \in K$ allora $a_0 + a_1x + ... + a_hx^h = a_0 \cdot 1 + a_1 \cdot x + ... + a_h \cdot x^h$ che è combinazione lineare di S

 $(\mathbb{R}, \mathbb{R}^2, +, \cdot)$ uno spazio vettoriale, sappiamo allora che $S = \{(1,0), (0,1)\}$ è un sistema di generatori di \mathbb{R}^2 , osserviamo allora che $S' = \{(2,2), (3,1)\}$ sia un sistema di generatori di \mathbb{R}^2

- Siamo certi che $S' \subseteq \mathcal{L}(S) = \mathbb{R}^2$
- Vediamo che $S \subseteq \mathcal{L}(S')$

$$-(1,0) = \alpha_1(2,2) + \alpha_2(3,1) = (2\alpha_1, 2\alpha_1) + (3\alpha_2, \alpha_2)$$

$$\begin{cases} 1 = 2\alpha_1 + 3\alpha_2 \\ 0 = 2\alpha_1 + \alpha_2 \end{cases} \Rightarrow \begin{cases} 1 = 2\alpha_1 - 6\alpha_1 \\ \alpha_2 = -2\alpha_1 \end{cases} \Rightarrow \begin{cases} 1 = 4\alpha_1 \\ \alpha_2 = -2\alpha_1 \end{cases} \Rightarrow \begin{cases} \alpha_1 = -\frac{1}{4} \\ \alpha_2 = \frac{1}{2} \end{cases}$$

Quindi
$$(1,0) = -\frac{1}{4}(2,2) + \frac{1}{2}(3,1)$$

$$-(0,1) = \alpha_1(2,2) + \alpha_2(3,1) = (2\alpha_1, 2\alpha_1) + (3\alpha_2, \alpha_2)$$

$$\begin{cases} 0 = 2\alpha_1 + 3\alpha_2 \\ 1 = 2\alpha_1 + \alpha_2 \end{cases} \Rightarrow \begin{cases} 0 = 2\alpha_1 + 3 - 6\alpha_1 \\ \alpha_2 = 1 - 2\alpha_1 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{3}{4} \\ \alpha_2 = 1 - \frac{6}{4} \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{3}{4} \\ \alpha_2 = -\frac{1}{2} \end{cases}$$

Quindi
$$(0,1) = \frac{3}{4}(2,2) - \frac{1}{2}(3,1)$$

S' è un sistema di generatori di \mathbb{R}^2

Nota - K[x] non è finitamente generato

Sappiamo che $K[x] \neq \emptyset$ perché ha sicuramente x al suo interno, ma vediamolo perché

- Preso $X = \{p_1(x), ..., p_m(x)\}$ con $m \in \mathbb{N}^*$ pongo $d_1 = gr(p_1(x))$... $d_m = gr(p_m(x))$
- allora $\forall \alpha_1, ..., \alpha_m \in K$ abbiamo che $gr(\alpha_1 \cdot p_1(x) + ... + \alpha_m \cdot p_m(x)) \leq max(d_1, ..., d_m)$
- Posto $d = max(d_1, ..., d_m)$ allora so per certo che $x^{d+1} \notin \mathcal{L}(X)$ ma $x^{d+1} \in K[x]$

Nota - Allegeriamo la notazione!

Da ora in poi useremo i simboli usuali anche per l'addizione e la motiplicazione dello spazio vettoriale, quindi per distinguerli da quelli del campo basterà confrontare gli operandi, se le operazioni hanno come operando un vettore stiamo usando l'operazione dello spazio vettoriale

Teorema - Sulla Chiusura Lineare

- 1. $X \subseteq \mathcal{L}(X)$
- 2. $\mathcal{L}(X)$ è linearmente chiuso
- 3. Comunque prendo un sottospazio vettoriale $W \subseteq V$ con la proprietà che $X \subseteq W$ allora $\mathcal{L}(X) \subseteq W$

Dimostrazione

- 1. $u \in X \Rightarrow u = 1 \cdot u \in \mathcal{L}(X)$
- 2. Osserviamo la chiusura lineare di entrambe le operazioni
 - Addizione siano $v, w \in \mathcal{L}(X) \Rightarrow \begin{cases} \exists u_1, ..., u_n \in X & \exists \alpha_1, ..., \alpha_n \in V & v = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n \\ \exists k_1, ..., k_m \in X & \exists \beta_1, ..., \beta_m \in V & w = \beta_1 \cdot k_1 + ... + \beta_m \cdot k_m \end{cases}$

Quindi
$$v + w = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n + \beta_1 \cdot k_1 + ... + \beta_m \cdot k_m \in \mathcal{L}(X)$$

• Moltiplicazione Sia $\gamma \in K$ e $v \in \mathcal{L}(X)$ allora $\gamma \cdot v = \gamma(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = \gamma(\alpha_1 \cdot u_1) + ... + \gamma(\alpha_1 \cdot u_n)$

Quindi
$$\gamma \cdot v = (\gamma \cdot \alpha_1) \cdot u_1 + ... + (\gamma \cdot \alpha_n) \cdot u_n \in \mathcal{L}(X)$$

3. Sia $v \in \mathcal{L}(X)$ allora $\exists u_1, ..., u_n \in X \quad \exists \alpha_1, ..., \alpha_n \in K \quad v = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$

$$\left. \begin{array}{cccc} u_1 \in X & \Rightarrow & \alpha_1 \cdot u_1 \in W \\ & \vdots & & \vdots \\ & u_1 \in X & \Rightarrow & \alpha_1 \cdot u_1 \in W \end{array} \right\} \Rightarrow v = \alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n \in W$$

Matrici

Definizione - Matrici

Sia K un'insieme non vuoto e presi $n, m \in \mathbb{N}^*$ chiamiamo matrice su K di tipo $n \times m$ l'applicazione

Lezione 5° del 18/03/2024

Linearmente Dipendente

Definizione - Linearmente Dipendente

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa una n-upla $(u_1, ..., u_n)$ di vettori di V si dice lienearmente dipendente se il vettore nullo si può scrivere come una combinazione lineare di vettori della n-upla anche con scalari non tutti nulli

$$\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{\underline{0}\} \quad \underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$$

Esempio - Linearmente Dipendente

 $S = \{(1,0),(1,1),(0,2)\}$ è un sistema di generatori, ma è linearmente dipendente?

$$\exists \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \setminus \{0\} : \alpha_1(1,0) + \alpha_2(1,1) + \alpha_3(0,2) = (\alpha_1,0) + (\alpha_2,\alpha_2) + (0,2\alpha_3) = (0,0)$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} 0 = \alpha_1 + \alpha_2 \\ 0 = \alpha_2 + 2\alpha_3 \end{cases} \Rightarrow \begin{cases} \alpha_2 = -\alpha_1 \\ \alpha_2 = -2\alpha_3 \end{cases} \Rightarrow \begin{cases} \alpha_2 = -\alpha_1 \\ \alpha_3 = -\frac{\alpha_1}{2} \end{cases}$$

Quindi S è linearmente dipendente perché $\forall \alpha_1 \in \mathbb{R} \setminus \{0\}$ $-\alpha_1(1,0) + \alpha_1(1,1) - \frac{\alpha_1}{2}(0,2) = (0,0)$

Linearmente Indipendente

Definizione - Lienearmente Indipendente

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa una n-upla $(u_1, ..., u_n)$ di vettori di V si dice linearmente indipendente se il vettore nullo si può scrivere come combinazione lineare di vettori della n-upla solo con scalari tutti nulli

$$(\alpha_1, \dots, \alpha) \in K^n$$
 $0 = \alpha_1 \cdot u_1 + \dots + \alpha_n \cdot u_n \Rightarrow \alpha_1 = \dots = \alpha_n = 0$

NOTA! L'insieme vuoto è linearmente indipendente

Domanda - Come posso capire velocemente se un'insieme è linearmente dipendente?

Sia $X \subseteq V$ allora X si dice linearmente dipendente se esiste un sotto-insieme finito di X linearmente dipendente

Sia $S = \{u_1, ..., u_n\}$ linearmente dipendente allora vediamo che se $T = S \cup \{u_{n+1}, ..., u_m\}$ allora T è linearmente dipendente, siccome S è linearmente dipendente allora

$$\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{\underline{0}\} \quad \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n = \underline{0} \Rightarrow \alpha_1 \cdot u_1 + ... + \alpha_{n+1} \cdot u_{n+1} + ... + \alpha_m \cdot u_m = \underline{0}$$

Esempio - Linearmente Indipendente

 $S = \{(2, 1), (1, -2)\}$ è un sistema di generatori di \mathbb{R}^2 ma è linearmente indipendente?

$$\exists \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} : \alpha_1(2,1) + \alpha_2(1,-2) = (2\alpha_1, \alpha_1) + (\alpha_2, -2\alpha_2) = (0,0) \Rightarrow \alpha_1 = \alpha_2 = 0$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} 0 = 2\alpha_1 + \alpha_2 \\ 0 = \alpha_1 - 2\alpha_2 \end{cases} \Rightarrow \begin{cases} 0 = 2\alpha_1 + \alpha_2 \\ \alpha_1 = 2\alpha_2 \end{cases} \Rightarrow \begin{cases} 0 = 4\alpha_2 + \alpha_2 \\ \alpha_1 = 2\alpha_2 \end{cases} \Rightarrow \begin{cases} \alpha_2 = 0 \\ \alpha_1 = 0 \end{cases}$$

Quindi S è linearmente indipendente

Teorema - sui sotto-insiemi linearmente dipendenti

Sia $(K, V, +, \cdot)$ con $X \subseteq V$ sappiamo che X è linearmente dipendente $\Leftrightarrow \exists u \in X \quad \mathscr{L}(X) = \mathscr{L}(X \setminus \{u\})$

Unico caso particolare da osservare è se $X=\{\underline{0}\}$ sappiamo che $X\setminus\{\underline{0}\}=\emptyset$ ed abbiamo che $\mathscr{L}(X)=\{\underline{0}\}=\mathscr{L}(\emptyset)$

Dimostrazione Se $|X| \ge 2$ osserviamo entrambi i lati della dell'implicazione

• " \Rightarrow " per ipotesi X è linearmente dipendente, ovvero $\exists (\alpha_1,...,\alpha_n) \in K^n \setminus \{\underline{0}\}$ $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$ Sia allora $\alpha_1 \neq 0$ e questo ci dice che $\exists \alpha_1^{-1} \quad \alpha_1^{-1}(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = \alpha_1^{-1} \cdot \underline{0} = \underline{0}$ sfruttando la distributività e l'associatività abbiamo $(\alpha_1^{-1} \cdot \alpha_1)u_1 + ... + (\alpha_1^{-1} \cdot \alpha_n)u_n = u_1 + ... + (\alpha_1^{-1} \cdot \alpha_n)u_n$

Sfruttando l'uguaglianza precedente abbiamo che $u_1 = -(\alpha_1^{-1} \cdot \alpha_2) - \ldots - (\alpha_1^{-1} \cdot \alpha_n) u_n \in \mathcal{L}(X \setminus \{u_1\})$

• " \Leftarrow " per ipotesi $\exists u \in X \quad \mathscr{L}(X) = \mathscr{L}(X \setminus \{u\})$

Allora sappiamo che $\exists v_1, ..., v_n \in X \setminus \{u\} \quad \exists \beta_1, ..., \beta_n \in A \quad u = \beta_1 \cdot v_1 + ... + \beta_n \cdot v_n$

Ma questo ci porta a dire che $1 \cdot u - (\beta_1) \cdot u_1 - \dots - (\beta_n) \cdot u_n = \underline{0}$ e quindi X è linearmente dipendente

Esempio - Teorema sui sotto-insiemi linearmente dipendenti

Sia $S = \{(1,0,1),(1,1,0),(2,2,0)\} \subseteq \mathbb{R}^3$ so che è linearmente dipendente perché

- 1. (0,0,0) = 0(1,0,1) 2(1,1,0) + (2,2,0)
- 2. Inoltre (2, 2, 0) = 0(1, 0, 1) + 2(1, 1, 0)

Sia $S' = \{(1,0,1), (1,1,0)\}$ allora $(2,2,0) \in \mathcal{L}(S')$ quindi $\mathcal{L}(S) = \mathcal{L}(S \setminus \{(2,2,0)\}) = \mathcal{L}(S')$

Lezione 6° del 20/03/2024

Domanda - Quando due chiusure lineari coincidono?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e $S, T \subseteq V$ allora sappiamo che $\mathcal{L}(S) = \mathcal{L}(T) \Leftrightarrow S \subseteq \mathcal{L}(T)$ e $T \subseteq \mathcal{L}(S)$

- " \Rightarrow " $S \subseteq \mathcal{L}(S) = \mathcal{L}(T)$ e $T \subseteq \mathcal{L}(T) = \mathcal{L}(S)$
- " \Leftarrow " $S \subseteq \mathcal{L}(T) \Rightarrow \mathcal{L}(S) \subseteq \mathcal{L}(T)$ $T \subseteq \mathcal{L}(S) \Rightarrow \mathcal{L}(T) \subseteq \mathcal{L}(S)$ $\Rightarrow \mathcal{L}(S) = \mathcal{L}(T)$

Base di uno Spazio-Vettoriale

Definizione - Base di uno Spazio-Vettoriale

Una base di uno spazio vettoriale V è un sistema di generatori di V linearmente indipendente

NOTA! è chiamata base canonica la base composta da $\{(1,0,...,0),(0,1,0,...,0),(0,....,0,1)\}$

Base ordinata (oppure riferimento), dove l'unica *n*-upla di scalari che da luogo a un vettore è detta *n*-upla delle componenti

Teorema - Di estrazione di una Base

Sia V uno spazio vettoriale finitamente generato su un campo K e sia $S = \{u_1, ..., u_n\}$ un suo sistema di generatori finito, allora sappiamo che esiste una base B di V tale che $B \subseteq S$

Dimostrazione Per ipotesi sappiamo che $\mathcal{L}(S) = V$

- 1. Se S è linearmente indipendente allora B = S ed è base di V
- 2. Altrimenti $\exists u \in S \quad \mathcal{L}(S) = \mathcal{L}(S \setminus \{u\})$ e sia $u = u_1$
- 3. Allora $S' = S \setminus \{u\} = \{u_2, ..., u_n\}$ se è linearmente indipendente e anche un sistema di generatori di V

Ripetiamo il processo finché non si trova un base di V

Esempio - Estrazione di una base

Sia $S = \{(1,1),(2,2),(2,3),(0,1)\}$ sistema di generatori di \mathbb{R}^2 , sappiamo che è linearmente dipendente perché

$$(2,2) = 2(1,1) + 0(2,3) + 0(0,1)$$

Quindi sia $S' = S \setminus \{(2,2)\} = \{(1,1),(2,3),(0,1)\}$ sappiamo che è linearmente dipendente perché

$$(1,1) = \frac{1}{2}(2,3) - \frac{3}{2}(0,1)$$

Quindi sia $S'' = S' \setminus \{(1,1)\} = \{(2,3),(0,1)\}$ sappiamo che è linearmente indipendente perché

$$(0,0) = \alpha(2,3) + \beta(0,1) = (2\alpha,3\alpha) + (0,\beta)$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} 0 = 2\alpha_1 \\ 0 = 3\alpha_1 + \beta \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

S'' è sistema di generatori e linearmente indipendente \Rightarrow base di \mathbb{R}^2

Nota - Cosa succede nel caso di un'insieme linearmente dipendente con due vettori?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale con $S \subseteq V$ dove $S = \{u, v\}$ allora

S è linearmente dipendente $\Leftrightarrow \exists \gamma \in K \quad u = \gamma \cdot v$ oppure $v = \gamma \cdot u$

Infatti per ipotesi $\exists (\alpha, \beta) \in K^2 \setminus \{(0, 0)\}$ $\alpha u + \beta v = \underline{0}$ ma questo ci dice che $\alpha \neq 0$ oppure $\beta \neq 0$

- Se $\alpha \neq 0$ allora $\exists \alpha^{-1}$ ottenendo $\frac{\alpha^{-1}(\alpha \cdot u + \beta \cdot v) = \alpha^{-1} \cdot \underline{0} = \underline{0}}{(\alpha^{-1} \cdot \alpha)u + (\alpha^{-1} \cdot \beta)v = 1 \cdot u + (\alpha^{-1} \cdot \beta)v}$ $\Rightarrow u = -(\alpha^{-1} \cdot \beta)v$
- Se $\beta \neq 0$ allora $\exists \beta^{-1}$ ottenendo $\begin{cases} \beta^{-1}(\alpha \cdot u + \beta \cdot v) = \beta^{-1} \cdot \underline{0} = \underline{0} \\ (\beta^{-1} \cdot \alpha)u + (\beta^{-1} \cdot \beta)v = (\beta^{-1} \cdot \alpha)u + 1 \cdot v \end{cases} \Rightarrow v = -(\beta^{-1} \cdot \alpha)u$

Nota - Se poniamo lo stesso caso sui vettori?

Sia V uno spazio vettoriale su ℝ allora sappiamo che

- $u, v \in V \setminus \{u, v\}$ è linearmente dipendente $\Leftrightarrow u \parallel v$
- $u, v, w \in V \setminus \{u, v, w\}$ è linearmente dipendente $\Leftrightarrow u, v, w$ sono complanari

Teorema - sui sotto-insiemi linearmente indipendenti

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa $S \subseteq V$, sia S linearmente indipendente allora $\exists u \in V \quad u \notin \mathcal{L}(S) \Rightarrow S \cup \{u\}$ è linearmente indipendente

Dimostrazione Sia $S \cup \{u\} = \{u, v_1, ..., v_n\}$ allora $\alpha, \alpha_1, ..., \alpha_n \in K$ $\alpha \cdot u + ... + \alpha_n \cdot v_n = \underline{0}$ con la proprietà che $\alpha = ... = \alpha_n = \underline{0}$

Supponiamo per assurdo che $\alpha \neq 0$ allora $\exists \alpha^{-1} \in K$ allora abbiamo la seguente uguaglianza

$$1 \cdot u + (\alpha^{-1} \cdot \alpha_1)v_1 + \dots + (\alpha^{-1} \cdot \alpha^n)v_n = \alpha^{-1}(\alpha \cdot u + \dots + \alpha_n \cdot v_n) = \alpha^{-1} \cdot \underline{0} = \underline{0}$$

Quindi $u = -(\alpha^{-1} \cdot \alpha_1)v_1 + ... + -(\alpha^{-1} \cdot \alpha_n)v_n \in \mathcal{L}(\{v_1, ..., v_n\}) = \mathcal{L}(S)$ ma questo è impossibile

Esempio - Teorema sui sotto-insiemi linearmente indipendenti

Sia $S = \{(1,0,0),(0,0,1)\} \subseteq \mathbb{R}^3$ è linearmente indipendente perché

$$\forall (a_1, a_2, a_3) \in \mathbb{R}^3 \quad \exists \alpha, \beta \in \mathbb{R} : \alpha(1, 0, 0) + \beta(0, 0, 1) = (\alpha, 0, \beta)$$

Ma $(0,1,0) \notin \mathcal{L}(S)$ quindi $S \cup \{(0,1,0)\}$ è linearmente indipendente

Teorema - di Steinitz

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K allora sappiamo che

- $S = \{u_1, ..., u_n\} \subseteq V$ con la proprietà che $V = \mathcal{L}(S)$
- $X = \{v_1, ..., v_m\} \subset V$

Allora sappiamo che se $|X| = m > n = |S| \Rightarrow X$ è linearmente dipendente

Domanda - Cosa succede nel caso opposto?

Dal teorema di Steinitz ricaviamo che se $Y \subseteq V$ con la proprietà che Y è linearmente indipendente $\Rightarrow |Y| \leq |S|$

Teorema - Di Equipotenza delle Basi

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K allora ogni base di V è finita ed ha lo stesso numero di vettori (sono equipotenti)

Dimostrazione Sia S un sistema di generatori finito di V allora

- 1. Presa B una base estratta da S allora $|B| = n < +\infty$
- 2. Sia B' un'altra base di V
- 3. B' è linearmente indipendente e sistema di generatori di V, ovvero $\mathcal{L}(B') = V = \mathcal{L}(B)$

Quindi per il teorema di Steinitz abbiamo che

$$|B'| \leq |B|$$
 altrimenti avremmo $B' = \{v_1, ..., v_{n+1}\}$ linearmente dipendente B è linearmente indipendente $\mathscr{L}(B') = V$ $\Rightarrow |B| = |B'|$

Esempio - Teorema Equipotenza delle Basi

Sia $S = \{(1,1),(2,2),(2,3),(0,1)\} \subseteq \mathbb{R}^2$ tale che $\mathcal{L}(S) = \mathbb{R}^2$, S è linearmente dipendente perché

$$S' = S \setminus \{(2,2)\} = \{(1,1),(2,3),(0,1)\}$$
 allora sappiamo che $\mathcal{L}(S') = \mathcal{L}(S \setminus \{(2,2)\})$

Sappiamo che S' è linearmente dipendente perché

$$S'' = S' \setminus \{(1,1)\} = \{(2,3), (0,1)\}$$
 allora sappiamo oche $\mathcal{L}(S'') = \mathcal{L}(S' \setminus \{(1,1)\})$

Sappiamo che S" è linearmente indipendente perché $(0,0) = \alpha(2,3) + \beta(0,1) = (2\alpha,3\alpha), (0,\beta)$

$$\begin{cases} 2\alpha = 0 \\ 3\alpha + \beta = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

S'' è sistema di generatori e linearmente indipendente, ovvero base di \mathbb{R}^2

Dimensione

Definizione - Dimensione

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, sia V finitamente generato su K allora la cardinalità comune alle sue basi si dice dimensione di V e si indica con dim(V)

Teorema - sui Sistemi di Generatori Linearmente Indipendenti

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, sia V finitamente generato su K con dim(V) = n

Allora preso $S = \{u_1, ..., u_n\} \subseteq V$ ottengo che S è linearmente indipendente $\Leftrightarrow S$ è un sistema di generatori di V

Dimostrazione

• " \Rightarrow " Per assurdo supponiamo che $\mathscr{L}(S) \subset V$, ovvero $\exists u \in V \quad u \notin \mathscr{L}(S)$ quindi otteniamo che

$$S \text{ è linearmente indipendente} \\ u \not\in \mathcal{L}(S) \\ u \in V$$
 $\Rightarrow S \cup \{u\} \text{ è linearmente indipendente}$

ma questo è assurdo perché $|S \cup \{u\}| = n + 1 > n = dim(V)$

• " \Leftarrow " Per assurdo S è linearmente dipendente, quindi $\exists u \in S$ $\mathscr{L}(S \setminus \{u\}) = \mathscr{L}(S) = V$ allora per il teorema di estrazione di una base sappiamo che

$$\exists B \subseteq S \setminus \{u\}$$
 tale che B è una base di V con la proprietà che $|B| \leq |S \setminus \{u\}| = n-1$

Ma questo è assurdo proprio per il teorema di equipotenza delle basi

Lezione 7° del 25/03/2024

Teorema - Di Completamento di una Base

Sia $(K, V, +, \cdot)$ finitamente generato su un campo K dove n = dim(V)

Sia $X = \{v_1, ..., v_t\} \subseteq V$ linearmente indipendente con |X| < n

Allora sappiamo che $\exists v_{t+1},...,v_n \in V$ tali che $X \cup \{v_{t+1},...,v_n\}$ è base di V

Dimostrazione

Siccome |X| < n sappiamo che X non è un sistema di generatori di V e non una base perché $dim(V) = n \neq t$ allora seguiamo i seguenti passaggi

- 1. Allora $\mathcal{L}(X) \subset V$ quindi $\exists v_{t+1} \in V \setminus \mathcal{L}(X)$ per cui $X' = X \cup \{v_{t+1}\}$ è linearmente indipendente
- 2. Se t + 1 = n allora X' è una base di V è abbiamo terminato
- 3. Altrimenti X' è un sistema di generatori di V, ovvero $\mathcal{L}(X') \subset V$, e ripetiamo il procedimento dal passaggio $\widehat{\mathbb{T}}$

Esempio - Teorema di Completamento di una Base

Trovare una base di \mathbb{R}^2 che contenga (2,7)

- 1. Partiamo da $S = \{(2,7)\}$ che sappiamo essere linearmente indipendente ma non sistema di generatori di \mathbb{R}^2
- 2. inoltre $\forall \alpha \in \mathbb{R}$ sappiamo che $\alpha(2,7) \neq (0,1)$ allora $(0,1) \notin \mathcal{L}(S) \Rightarrow S' = S \cup \{(0,1)\} = \{(2,7),(0,1)\}$
- 3. S' è linearmente indipendente e sappiamo che $|S'|=2=dim(\mathbb{R}^2)$

Teorema - sulle Basi Ordinate

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K con dim(V) = n

Sia $B = (u_1, ..., u_n)$ un'insieme ordinato con la proprietà che |B| = n allora abbiamo che

B è base di
$$K \Leftrightarrow \forall v \in V \quad \exists ! (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n$$

Dimostrazione

- \Leftarrow per ipotesi $\forall v \in V \quad \exists ! (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n \in \mathcal{L}(B)$ quindi sappiamo che
 - 1. B è un sistema di generatori di V
 - 2. B è linearmente indipendente perché se $v = \underline{0}$ allora $\underline{0} = 0 \cdot u_1 + ... + 0 \cdot u_n$ ma $\exists ! (0, ..., 0)$
- \bullet \Rightarrow Siccome B è una base di V allora è anche un suo sistema di generatori, guindi
 - 1. $\forall v \in V \quad \exists (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n \in \mathcal{L}(B)$ ma questa *n*-upla è unica
 - 2. Se prendiamo una n-upla con le stesse proprietà $(\beta_1,...,\beta_n) \in K^n$ $v = \beta_1 \cdot u_1 + ... + \beta_n \cdot u_n$ otteniamo
 - (a) v v = 0
 - (b) $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n (\beta_1 \cdot u_1 + ... + \beta_n \cdot u_n) = (\alpha_1 \beta_1)u_1 + ... + (\alpha_n \beta_n)u_n$

Ma essendo
$$B$$
 linearmente indipendente $\Rightarrow \begin{cases} \alpha_1 - \beta_1 = 0 \\ \dots \\ \alpha_n - \beta_n = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \beta_1 \\ \dots \\ \alpha_n = \beta_n \end{cases}$

Esempio - Teorema Basi Ordinate

Sia $V = \mathbb{R}[x] \le 2$ allora questo mi dice che dim(V) = 3

Sia $B = (1 + x, 1 - x, 1 + x^2)$ andiamo a determinare il vettore delle componenti di $u = 3 + 2x - x^2$

$$u = 3 + 2x - x^2 = \alpha_1(1+x) + \alpha_2(1-x) + \alpha_3(1+x^2) = (\alpha_1 + \alpha_2 + \alpha_3) + (\alpha_1 - \alpha_2)x + \alpha_3x^2$$

Allora giungiamo al seguente sistema lineare

$$\begin{cases} 3 = \alpha_1 + \alpha_2 + \alpha_3 \\ 2 = \alpha_1 - \alpha_2 \\ -1 = \alpha_3 \end{cases} \Rightarrow \begin{cases} 3 = 2\alpha_2 + 1 \\ \alpha_1 = 2 + \alpha_2 \\ \alpha_3 = -1 \end{cases} \Rightarrow \begin{cases} \alpha_2 = 1 \\ \alpha_1 = 2 + \alpha_2 \\ \alpha_3 = -1 \end{cases}$$

Questo ci dice che le componenti di u in B sono (3,1,-1)

Isomorfismo associato ad una Base

Definizione - Isomorfismo associato ad una Base

Sia $(V, K, +, \cdot)$ uno spazio vettoriale finitamente generato su K con n = dim(V)

Sia $B = (u_1, ..., u_n)$ una base ordinata di V allora definiamo osomorfismo associato a B l'applicazione:

$$\phi_B: V \rightarrow K^n$$
 $u \rightsquigarrow (\alpha_1, ..., \alpha_n)$

Ovvero ad ogni vettore associa i suoi componenti in B

Esempio - Omomorfismo associato ad una base

Sia $B = \{(1,1), (-1,1)\} \subseteq \mathbb{R}^2$ quindi abbiamo che $|B| = 2 = dim(\mathbb{R}^2)$, determiniamo ϕB

$$\forall (a_1, a_2) \quad \exists ! (\alpha_1, \alpha_2) \in \mathbb{R} : (a_1, a_2) = \alpha_1(1, 1) + \alpha_2(-1, 1) = (\alpha_1, \alpha_1) + (-\alpha_2, \alpha_2)$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} a_1 = \alpha_1 - \alpha_2 \\ a_2 = \alpha_1 + \alpha_2 \end{cases} \Rightarrow \begin{cases} \alpha_1 = a_1 + \alpha_2 \\ a_2 = 2\alpha_2 + a_1 \end{cases} \Rightarrow \begin{cases} \alpha_1 = a_1 + \alpha_2 \\ 2\alpha_2 = a_2 - a_1 \end{cases} \Rightarrow \begin{cases} \alpha_1 = a_1 + \frac{a_2}{2} - \frac{a_1}{2} \\ \alpha_2 = \frac{a_2}{2} - \frac{a_1}{2} \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{a_1}{2} + \frac{a_2}{2} \\ \alpha_2 = \frac{a_2}{2} - \frac{a_1}{2} \end{cases}$$

Quindi otteniamo il seguente omomorfismo

$$\begin{array}{cccc} \phi_B: & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & (a_1, a_2) & \leadsto & \left(\frac{a_1}{2} + \frac{a_2}{2}, \frac{a_2}{2} - \frac{a_1}{2}\right) \end{array}$$

Teorema - sui Sottospazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato con dim(V) = n e W un sottospazio vettoriale di V allora

- 1. $dim(W) = 0 \Leftrightarrow W = \{0\}$
- 2. $dim(W) \leq dim(V)$
- 3. $dim(W) = dim(V) \Leftrightarrow W = V$

Dimostrazione

- 1. " \Rightarrow " Se dim(W) = 0 allora \emptyset è una base di W per cui $\mathcal{L}(W) = W = \{\underline{0}\}$
 - " \Leftarrow " Se $W = \{\underline{0}\}$ allora $W = \{\underline{0}\} = \mathcal{L}(W)$ percui
- 2. Sia $B_w = \{u_1, ..., u_t\}$ una base di W, allora B_w è un sottoinsieme di V linearmente indipendente percui $|B_w| = t < n = dim(V)$
- 3. Sia $B_w = \{u_1, ..., u_t\}$ una base di W allora
 - " \Rightarrow " per ipotesti t = dim(W) = dim(V) = n ma B_w allora

 $\left. \begin{array}{l} B_w \text{ è linearmente indipendente} \\ B_w \text{ è sistema di generatori di } V \end{array} \right\} \Rightarrow V = \mathcal{L}(B_w) = W$

• " \Leftarrow " per ipotesi ogni base di W è base di V e viceversa e quindi dim(W) = dim(V)

Lezione 8° del 27/05/2024

Teorema - Intersezione di due Spazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale su un campo K

Presi due sottospazi vettoriali W_1, W_2 di V allora sappiamo che $W_1 \cap W_2$ è un sottospazio vettoriale

Dimostrazione

• $W_1 \cap W_2$ non è vuoto

$$0 \in W_1$$
 $0 \in W_2 \Rightarrow 0 \in W_1 \cap W_2 \neq \emptyset$

• $W_1 \cap W_2$ è linearmente chiuso rispetto alla somma

Siano $u, v \in W_1 \cap W_2 \Rightarrow u, v \in W_1$ $u, v \in W_2 \Rightarrow u + v \in W_1$ $u + v \in W_2 \Rightarrow u + v \in W_1 \cap W_2$

• $W_1 \cap W_2$ è linearmente chiuso rispetto al prodotto

Sia $\alpha \in K$ allora $u \in W_1 \cap W_2 \Rightarrow u \in W_1$ $u \in W_2 \Rightarrow \alpha \cdot u \in W_1$ $\alpha \cdot uW_2 \Rightarrow \alpha \cdot u \in W_1 \cap W_2$

Esempio - Intersezione di due Spazi Vettoriali

Siano $W_1 = \mathcal{L}((1,0,2),(0,1,1))$ e $W_2 = \mathcal{L}((1,1,1),(2,0,1))$

Quindi sappiamo che $u \in W_1 \cap W_2 \Leftrightarrow u \in W_1$ e $u \in W_2$ ovvero

- $u \in W_1$ $\exists \alpha, \beta \in \mathbb{R} : \alpha(1,0,2) + \beta(0,1,1) = (\alpha,0,2\alpha) + (0,\beta,\beta) = (\alpha+\beta,\beta,2\alpha+\beta)$
- $u \in W_2$ $\exists \gamma, \delta \in \mathbb{R} : \gamma(1, 1, 1) + \delta(2, 0, 1) = (\gamma, \gamma, \gamma) + (2\delta, 0, \delta) = (\gamma + 2\delta, \gamma, \gamma + \delta)$

Allora $u=(\alpha,\beta,2\alpha+\beta)=(\gamma+2\delta,\gamma,\gamma+\delta)$ quindi risolviamo il sistema lineare

$$\begin{cases} \alpha = \gamma + 2\delta \\ \beta = \gamma \\ 2\alpha + \beta = \gamma + \delta \end{cases} \Rightarrow \begin{cases} \alpha = \beta + 2\delta \\ \beta = \gamma \\ 2\alpha + \beta = \beta + \delta \end{cases} \Rightarrow \begin{cases} \delta = \frac{\alpha - \beta}{2} \\ \beta = \gamma \\ 2\alpha = \frac{\alpha - \beta}{2} \end{cases} \Rightarrow \begin{cases} \delta = \frac{\alpha - \beta}{2} \\ \beta = \gamma \\ 2\alpha = -\frac{\beta}{2} \end{cases} \Rightarrow \begin{cases} \delta = \frac{\alpha - \beta}{2} \\ \beta = \gamma \\ -3\alpha = \beta \end{cases}$$

Ricaviamo quindi che $W_1 \cap W_2 = \mathcal{L}((1,3,-1))$ perché

$$u \in W_1 \cap W_2 \Leftrightarrow u = \alpha(1,0,2) - 3\alpha(0,1,1) = (\alpha,0,2\alpha) + (0,-3\alpha,-3\alpha) = (\alpha,-3\alpha,-\alpha) = \alpha(1,-3,-1)$$

Teorema - Somma (Unione) di due Spazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale su un campo K

Presi due sottospazi vettoriali W_1 , W_2 di V allora sappiamo che W_1+W_2 in generale non è un sottospazio vettoriale

Infatti è un sottospazio vettoriale soltanto in due casi

- 1. $W_1 \subseteq W_2 \Rightarrow W_1 \cup W_2 = W_2$
- 2. $W_2 \subseteq W_1 \Rightarrow W_1 \cup W_2 = W_1$

La soluzione è definire l'unione come la somma sapendo che questo è un sottospazio vettoriale

Dimostrazione È un sottospazio vettoriale $W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1 \in W_2 \in W_2\}$

• $W_1 + W_2$ non è vuoto

$$\underline{0} \in W_1 \quad \underline{0} \in W_2 \Rightarrow \underline{0} \in W_1 + W_2 \neq \emptyset$$

• $W_1 + W_2$ è linearmente chiuso rispetto alla somma

Siano
$$u, v \in W_1 + W_2 \Rightarrow w_1, w_1' \in W_1$$
 $w_2, w_2' \in W_2$ $u = w_1 + w_1'$ $v = w_2 + w_2'$

Ma allora
$$u + v = w_1 + w_1' + w_2 + w_2' = (w_1 + w_2) + (w_1' + w_2') \in W_1 + W_2$$

• $W_1 + W_2$ è linearmente chiuso rispetto al prodotto

Sia
$$\alpha \in K$$
 allora $\alpha \cdot u = \alpha(w_1 + w_1') = \alpha \cdot w_1 + \alpha \cdot w_1' \in W_1 + W_2$

Adesso vediamo che se $W_1=\mathcal{L}(S_1)$ e $W_2=\mathcal{L}(S_2)$ allora $W_1+W_2=\mathcal{L}(S_1\cup S_2)$

• " \supseteq " Sia $u \in \mathcal{L}(S_1 \cup S_2)$ allora

$$\exists v_1, \dots, v_n \in S_1 \quad \exists \alpha_1, \dots, \alpha_n \in K \\ \exists u_1, \dots, u_m \in S_2 \quad \exists \beta_1, \dots, \beta_m \in K \end{cases} u = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n + \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m \in W_1 + W_2$$

• " \subseteq " Sia $u \in W_1 + W_2$ allora $\exists w_1 \in W_1$ e $\exists w_2 \in W_2$ $u = w_1 + w_2$ con $W_1 = \mathcal{L}(S_1)$ e $W_2 = \mathcal{L}(S_2)$

$$\exists v_1, \dots, v_n \in S_1 \\ \exists \alpha_1, \dots, \alpha_n \in K$$

$$w_1 = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n$$

$$\Rightarrow u = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n + \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m \in \mathcal{L}(S_1 \cup S_2)$$

$$\exists u_1, \dots, u_m \in S_2 \\ \exists \beta_1, \dots, \beta_m \in K$$

$$w_2 = \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m$$

Teorema - Relazione di Grassmann

Sia $(K, V, +, \cdot)$ e siano W_1 e W_2 sottospazio vettoriali finitamente generati di V allora sappiamo che

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

Somma Diretta

Definizione - Somma Diretta

Sia $(K, V, +, \cdot)$ e siano W_1 e W_2 sottospazio vettoriali di V allora si dice somma diretta quando

$$W_1 + W_2 = W_1 \boxplus W_2 \text{ se } W_1 \cap W_2 = \{0\}$$

Nel caso avessimo $W_1 + \dots + W_n$ dove n > 2 allora si dice somma diretta se

$$\forall i \in \{1,2,...,n\} \quad W_i \cap (W_1 \boxplus ... \boxplus W_{i-1} \boxplus W_{i+1} \boxplus ... \boxplus W_n) = \{\underline{0}\}$$

Domanda - Cosa succede se applico la relazione di Gaussmann alla somma diretta?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e $W_1, ..., W_n$ sottospazio vettoriale di V tali che abbiano una somma diretta, allora

1.
$$dim(W_1 \boxplus ... \boxplus W_n) = dim(W_1) + ... + dim(W_n)$$

$$\left. \begin{array}{c} B_1 \text{ base di } W_1 \\ 2. \ldots \\ B_n \text{ base di } W_n \end{array} \right\} \Rightarrow B_1 \cup \ldots \cup B_n \text{ base di } W_1 \boxplus \ldots \boxplus W_n$$

Dimostrazione Per induzione su *n*

• Se n = 2 basta usare la relazione di Gaussmann e otteniamo

$$dim(W_1 \boxplus W_2) = dim(W_1) + dim(W_2)$$

Inoltre
$$\begin{cases} \text{Se } B_1 \text{ è base di } W_1 \\ \text{Se } B_2 \text{ è base di } W_2 \end{cases} \Rightarrow W_1 \boxplus W_2 = \mathcal{L}(B_1 \cup B_2)$$

Ossia $B_1 \cup B_2$ è base di $W_1 \boxplus W_2$ perché

- 1. $B_1 \cup B_2$ è sistema di generatori di $W_1 \boxplus W_2$
- 2. $|B_1 \cup B_2| = dim(W_1 \boxplus W_2)$
- Se n > 2 per ipotesi di induzione $dim(W_1 \boxplus ... \boxplus W_{n-1}) = d_1 + ... + d_{n-1}$ con base $B_1 \cup ... \cup B_{n-1}$ Per Grassmann $(W_1 \boxplus ... \boxplus W_{n-1}) \boxplus W_n = (d_1 + ... + d_{n-1}) + d_n = |(B_1 \cup ... \cup B_{n-1}) \cup B_n|$

Domanda - Quando so che una somma è una somma diretta?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e W_1 e W_2 sottospazi vettoriali di V

Allora so che è una somma diretta quando $W_1 \cap W_2 = \{\underline{0}\} \Leftrightarrow \forall u \in W_1 + W_2 \quad \exists ! (w_1, w_2) \in W_1 \times W_2 \quad u = w_1 + w_2$

Dimostrazione

• " \Rightarrow " Per ipotesi $W_1 \cap W_2 = \{\underline{0}\}$ quindi $u \in W_1 + W_2 \Rightarrow \exists w_1 \in W_1 \quad \exists w_2 \in W_2 \quad u = w_1 + w_2$ Siano allora $w_1' \in W_1$ e $w_2' \in W_2$ tali che $u = w_1' + w_2'$ osserviamo che

$$\underline{0} = u - u = w_1 + w_2 - (w_1' + w_2') = w_1 + w_2 - w_1' - w_2' \Rightarrow w_1 - w_1' = w_2 - w_2' \in W_1 \cap W_2 = \{\underline{0}\}$$

Perché se $w_1 - w_1' = \underline{0} \Rightarrow w_1 = w_1'$ e analogamente $w_2 - w_2' = \underline{0} \Rightarrow w_2 = w_2'$

• " \Leftarrow " Quindi $u \in W_1 \cap W_2 \Rightarrow u \in W_1$ e $u \in W_2 \Rightarrow \underline{0} = u + \underline{0} = \underline{0} + u$ Per ipotesi sappiamo che $(u,\underline{0}) = (\underline{0},u) \Rightarrow u = \underline{0}$

Esempio - Somma Diretta tra due Spazi Vettoriali

Siano $W_1 = \mathcal{L}((2,0,1),(1,-1,2))$ e $W_2 = \mathcal{L}((1,1,-1),(0,0,1))$ cerchiamone la base

- Le loro rispettive basi $B_1 = \{(2,0,1), (1,-1,2)\}\ e\ B_2 = \{(1,1,-1), (0,0,1)\}$
- Allora $W_1 + W_2 = \mathcal{L}(B_1 \cup B_2) = \mathcal{L}((2,0,1),(1,1,-2),(1,1,-1),(0,0,1))$
- Controlliamo che $B = B_1 \cup B_2$ è linearmente dipendente

Sappiamo che B è linearmente dipendente perché (1,1,-1)=(1)(1,1,-2)+(1)(0,0,1)

Allora $B' = B \setminus \{(1, 1, -1)\} = \{(2, 0, 1), (1, 1, -2), (0, 0, 1)\}$ che è linearmente indipendente perché

$$\exists \alpha, \beta, \gamma \in \mathbb{R} : \alpha(2,0,1) + \beta(1,1,-2) + \gamma(0,0,1) = (2\alpha,0,\alpha) + (\beta,\beta,-2\beta) + (0,0,\gamma)$$

Risolviamo il sistema lineare

$$\begin{cases} 2\alpha + \beta = 0 \\ \beta = 0 \\ \alpha - 2\beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$$

Osserviamo il caso $\mathbb{R}[x] \le 2$ e sia $W_1 = \mathcal{L}(B_1)$ con $B_1 = \{1 - x, 1 + x\}$ e determiniamo uno sotto-spazio vettoriale $W_2 \subseteq \mathbb{R}[x] \le 2$ tale che la somma sia diretta

Se prendiamo $W_2 = \mathcal{L}(B_2)$ con $B_2 = \{x^2\} \not\in \mathcal{L}(B_1)$ abbiamo che $B = B_1 \cup B_2 = \{1 - x, 1 + x, x^2\}$ è linearmente indipendente

Lezione 9° del 03/04/2024

Applicazioni Lineari

Definizione - Applicazione Lineare

Siano $(K, V, +, \cdot)$ e $(K, W, +, \cdot)$ definiamo $T: V \to W$ un'applicazione lineare quando

- 1. $\forall u, v \in V$ T(u+v) = T(u) + T(v)
- 2. $\forall u \in V \quad \forall \alpha \in K \quad T(\alpha \cdot u) = \alpha \cdot T(u)$

Inoltre diciamo che questa applicazione è

- Monomorfismo: Se T è iniettiva
- **Epimorfismo**: Se *T* è suriettiva
- **Isomorfismo**: Se T è biettiva
- Endomorfismo: Se dominio e codominio coincidono
- Automorfismo: Se dominio e codominio coincidono e T è biettiva

Esempio - Applicazione Lineare

$$f: V \rightarrow w \\ u \rightsquigarrow \underline{0}_W$$
 è l'unica applicazione costante lineare

$$\begin{array}{ccccc} h: & \mathbb{R}[x] \leq 2 & \to & \mathbb{R}^2 \\ & a_0 + a_1 x + a_2 x^2 & \leadsto & \left(a_0 + 3 a_1, a_2 - a_0\right) \end{array} \ \ \text{\'e lineare}$$

Teorema - Proprietà delle Applicazioni Lineari

Sia $T: V \to W$ un'applicazione lineare

- 1. $T(\underline{0}_{V}) = \underline{0}_{W}$
- 2. T conserva le combinazioni lineari, ovvero

$$\forall u_1, ..., u_n \in V \quad \forall \alpha_1, ..., \alpha_n \in K \quad T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n))\alpha_1 \cdot T(u_1) + ... + \alpha_n \cdot T(u_n)$$

Dimostrazione

- 1. $T(\underline{0}_V) = T(0 \cdot \underline{0}_V) = \underline{0}_W$
- 2. Per induzione su *n* abbiamo che
 - n = 1 $T(\alpha_1 \cdot u_1) = \alpha_1 \cdot T(u_1)$
 - n > 1 $n-1 \Rightarrow n$

$$T((\alpha_1 \cdot u_1 + \dots + \alpha_{n-1} \cdot u_{n-1}) + \alpha_n \cdot u_n) =$$

$$= T(\alpha_1 \cdot u_1 + \dots + \alpha_{n-1} \cdot u_{n-1}) + T(\alpha_n + u_n) =$$

$$= \alpha_1 \cdot T(u_1) + \dots + \alpha_{n-1} \cdot T(u_{n-1}) + \alpha_n + T(u_n)$$

Domanda - Come caratterizziamo iniettività e suriettività di un'applicazione lineare?

Data $T: V \to W$ applicazione lineare. caratterizziamo la suriettività secondo la classica definizione.

Per l'iniettività? T è iniettiva $\Leftrightarrow Kern(T) = \{u \in V \mid T(u) = \underline{0}_W\} = \{\underline{0}_V\}$

Dimostrazione

- " \Rightarrow " Prendiamo $v \in V \setminus \{\underline{0}_v\}$ $v \neq \underline{0}_v \Rightarrow T(v) \neq \underline{0}_W \Rightarrow v \notin Kern(T)$
- " \Leftarrow " Presi $u, v \in V : T(u) = T(v)$ sappiamo che

$$\underline{0}_W = T(u) - T(v) = T(u - v) \Rightarrow u - v \in Kern(T) = \{\underline{0}_v\} \Rightarrow u - v = \underline{0}_v \Rightarrow u = v$$

Teorema - Le Applicazioni Lineari conservano Sotto-Spazi Vettoriali

Sia $T: V \to W$ un'applicazione lineare

- 1. Sia $X \subseteq V$ dove X è sotto-spazio vettoriale di $V \Rightarrow T(X)$ è sotto-spazio vettoriale di W
- 2. Sia $Y \subseteq W$ dove Y è sotto-spazio vettoriale di $W \Rightarrow T^{-1}(Y)$ è sotto-spazio vettoriale di V

Dimostrazione

- 1. Verifichiamo che T(X) sia un sotto-spazio vettoriale sapendo che X è sotto-spazio vettoriale
 - T(X) non è vuoto perché possiamo prendere $u \in X$ ma allora $T(u) \in T(X) \Rightarrow T(X) \neq \emptyset$
 - Prendiamo $u', v' \in T(X)$ con la proprietà che $\exists u, v \in X : T(u) = u'$ e T(v) = v'

Allora
$$u' + v' \Rightarrow T(u) + T(v) \Rightarrow T(u + v) \in T(X)$$

- Preso $\alpha \in K$ abbiamo che $\alpha \cdot u' = \alpha \cdot T(u') = T(\alpha \cdot u') \in T(X)$
- 2. Verifichiamo che $T^{-1}(Y)$ sia un sotto-spazio vettoriale sapendo che Y è sotto-spazio vettoriale
 - $T^{-1}(Y)$ non è vuoto perché $T(\underline{0}_V)=\underline{0}_W\in Y\Rightarrow T^{-1}(Y)\neq\emptyset$
 - Prendiamo $u, v \in T^{-1}(Y)$ e sappiamo che $T(u), T(v) \in Y$

Allora
$$T(u) + T(v) \in Y \Rightarrow T(u+v) \in Y \Rightarrow u+v \in T^{-1}(Y)$$

• Preso $\alpha \in K$ abbiamo che $\alpha \cdot T(u) \in Y \Rightarrow T(\alpha \cdot u) \in Y \Rightarrow \alpha \cdot u \in T^{-1}(Y)$

Nota - Sotto-spazi vettoriali conservati dalle Applicazioni Lineari

Sappiamo che sono sotto-spazio vettoriali

- Im(T) = T(V) è un sotto-spazio vettoriale di W
- $Kern(T) = T^{-1}(\{\underline{0}_W\})$ è un sotto-spazio vettoriale di V

Teorema - Le Applicazioni Lineari conservano Sistemi di Generatori

Sia $T: V \to W$ un'applicazione lineare

- 1. Sia $X = \mathcal{L}(S)$ sotto-spazio vettoriale di $V \Rightarrow T(X) = \mathcal{L}(T(S))$
- 2. $(u_1, ..., u_n)$ una n upla di vettori di V linearmente dipendente $\Rightarrow (T(u_1), ..., T(u_n))$ è linearmente dipendente
- 3. Se T è iniettiva allora $(u_1, ..., u_n)$ una n upla di vettori di V linearmente indipendente $\Rightarrow (T(u_1), ..., T(u_n))$ è

linearmente indipendente

Dimostrazione

- 1. Controlliamo la doppia inclusione
 - " \supset " Essendo $S \subset X$ allora $T(S) \subset T(X) \Rightarrow \mathcal{L}(T(S)) \subset T(X)$
 - " \subset " Sia $u' \in T(\mathcal{L}(S))$ allora sappiamo che $\exists u \in \mathcal{L}(S) : T(u) = u'$ allora

$$\begin{cases} \exists u_1, ..., u_n \in S \\ \exists \alpha_1, ..., \alpha_n \in K \end{cases} : u = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n \Rightarrow u' = T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n)$$

Ma allora $u' = \alpha_1 \cdot T(u_1) + ... + \alpha_n \cdot T(u_n) \in \mathcal{L}(T(S))$

2. Per ipotesi $\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{0\} : \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n = \underline{0}_V \Rightarrow T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = T(0_V)$

Allora $T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = T(\alpha_1 \cdot u_1) + ... + T(\alpha_n \cdot u_n) \Rightarrow (T(u_1), ..., T(u_n))$ è linearmente dipendente

3. Per ipotesi T è iniettiva, siano $\exists \alpha_1, ..., \alpha_n \in K : \alpha_1 \cdot T(u_1) + ... + \alpha_n \cdot T(u_n) = 0_M$ allora

$$T(\alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n) = T(\underline{0}_V) \Rightarrow \alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n \in Kern(T) = \{\underline{0}_V\} \Rightarrow \alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n = \underline{0}_V$$

Ma $\alpha_1 = ... = \alpha_n = 0$ quindi $(u_1, ..., u_n)$ è linearmente indipendente

Esempio - Iniettività e Suriettività delle Applicazioni Lineari

Sia
$$T : \mathbb{R}[x] \le 2 \to \mathbb{R}^3$$
 ovvero che ad ogni $a_0 + a_1 x + a_2 x^2 \leftrightarrow (a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2)$

Controlliamo se sia lineare, suriettiva ed iniettiva

- Controlliamo conservi l'operazione di addizione
 - Sia $u = a_0 + a_1 x + a_2 x^2$
 - Sia $v = b_0 + b_1 x + b_2 x^2$
 - Sia $u + v = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$

$$T(u) + T(v) = (a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2) + (b_1 + 3b_2, -b_0 + b_1, b_0 + 3b_2) = (a_1 + b_1 + 3(a_2 + b_2), -(a_0 + b_0) + a_1 + b_1, a_0 + b_0 + 3(a_2 + b_2) = T(u + v)$$

- Controlliamo conservi l'operazione di moltiplicazione
 - $\forall \alpha \in K$
 - Sia $u = a_0 + a_1 x + a_2 x^2$
 - Sia $\alpha \cdot u = \alpha \cdot a_o + \alpha \cdot a_1 x + \alpha \cdot a_2 x^2$

$$T(\alpha \cdot u) = (\alpha \cdot a_1 + 3\alpha \cdot a_2, -\alpha \cdot a_0 + \alpha \cdot a_1, \alpha \cdot a_0 + 3\alpha \cdot a_2) = \alpha(a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2) = \alpha \cdot T(u)$$

- Controlliamo sia suriettiva
 - Sia $Im(T) = \{T(u) \mid u \in V\} = T(V) = T(\mathbb{R}[x] \le 2) = \mathcal{L}(T(1), T(x), T(x^2))$
 - Calcolate le immagini della base canonica T(1)=(0,-1,1) T(x)=(1,1,0) $T(x^2)=(3,0,3)$
 - Controlliamo che sia suriettiva ottenendo che $\mathcal{L}((0,-1,1),(1,1,0),(3,0,3))$ sia base di \mathbb{R}^3
 - Risolviamo il sistema di $\alpha(0, -1, 1) + \beta(1, 1, 0) + \gamma(3, 0, 3) = (0, 0, 0)$

$$\begin{cases} \beta + 3\gamma = 0 \\ -\alpha + \beta = 0 \\ \alpha + 3\gamma = 0 \end{cases} \Rightarrow \begin{cases} \beta + 3\gamma = 0 \\ \alpha = \beta \end{cases} \Rightarrow \begin{cases} \gamma = -\frac{1}{3}\beta \\ \alpha = \beta \end{cases} \quad \forall \beta \in \mathbb{R}$$

Questa n-upla è linearmente dipendente quindi non è una base di \mathbb{R}^3 e la nostra applicazione non è suriettiva

- Controlliamo che sia iniettiva
 - Sia $Kern(T) = \{u \in V \mid T(u) = \underline{0}_W\} = \{a_0 + a_1x + a_2x^2 \mid (a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2) = (0, 0, 0)\}$
 - Risolviamo il sistema

$$\begin{cases} a_1 + 3a_2 = 0 \\ -a_0 + a_1 = 0 \\ a_0 + 3a_2 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = -\frac{1}{3}a_1 \\ a_0 = a_1 \end{cases}$$

- Quindi otteniamo che $Kern(T) = \{a_1 + a_1x \frac{1}{3}a_1x^2 \mid a_1 \in \mathbb{R}\} = \{a_1(1+x-\frac{1}{3}x^2 \mid a_1 \in \mathbb{R}\} = \mathcal{L}(1+x-\frac{1}{3}x^2)\}$
- Quindi T non è iniettiva perché dim(Kern(T)) = 1

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ un'applicazione lineare che ad ogni $(a_1, a_2) \rightsquigarrow (2a_1 - a_2, a_1 + a_2)$

- Controlliamo che sia iniettiva
 - Sia $Kern(T) = \{u \in V \mid T(u) = \underline{0}_W\} = \{(a_1, a_2) \mid (2a_1 a_2, a_1 + a_2) = (0, 0)\}$
 - Risolviamo il sistema

$$\begin{cases} 2a_1 - a_2 = 0 \\ a_1 + a_2 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = 2a_1 \\ a_1 + 2a_1 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = 0 \\ a_1 = 0 \end{cases}$$

- Quindi otteniamo che $Kern(T) = \{(0,0)\}$ è questo ci dice che T è iniettiva
- Controlliamo sia suriettiva
 - Sia $Im(T) = \{T(u) \mid u \in V\} = T(V) = T(\mathbb{R}^2) = \mathcal{L}(T((1,0)), T((0,1)))$
 - Calcolate le immagini della base canonica T((1,0)) = (2,1) T((0,1)) = (-1,1)
 - Controlliamo che sia suriettiva ottenendo che $\mathcal{L}((2,1),(0,1))$ sia base di \mathbb{R}^2
 - Risolviamo il sistema di $\alpha(2,1) + \beta(0,1)$

$$\begin{cases} 2\beta - \beta = 0 \\ \alpha + \beta = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha + \alpha = 0 \\ \alpha = -\beta \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \alpha = -\beta \end{cases}$$

 $\mathbb{R}^2 = 2 = dim(\mathcal{L}((2,1),(0,1)))$ ed è linearmente indipendente e la nostra applicazione è suriettiva

Lezione 10° del 08/04/2024

Teorema - Dell'Equazione Dimensionale

Sia $T: V \to W$ un'applicazione lineare dove dim(V) = n

$$dim(V) = dim(Kern(T)) + dim(Im(T))$$

Domanda - Cosa so dire sulla dim(V) se T è iniettiva o suriettiva?

Sia $T: V \to W$ un'applicazione lineare dove dim(V) = n vediamo che

- 1. Se T è iniettiva $\Rightarrow dim(V) < dim(W)$
- 2. Se T è suriettiva $\Rightarrow dim(V) > dim(W)$

Dimostrazione

1. Se T è iniettiva allora $Kern(T) = \{\underline{0}_V\}$ quindi dim(Kern(T)) = 0 e riscrivendo l'equazione dimensionale

$$dim(V) = 0 + dim(Im(T)) = dim(Im(T)) \le dim(W)$$

2. Se T è suriettiva allora Im(T) = W e riscrivendo l'equazione dimensionale

$$dim(V) = Kern(T) + dim(Im(T)) = Kern(T) + dim(W) \ge dim(W)$$

Teorema - Una *n*-upla di vettori è linearmente indipendente solo se lo sono i suoi componenti

Sia V uno spazio vettoriale su K dove dim(V) = n allora sappiamo che $V \simeq K^n$

Una *n*-upla di vettori di $V(u_1,...,u_n)$ è linearmente indipendente $\Leftrightarrow (\phi_B(u_1),...,\phi_B(u_n))$ è linearmente indipendente

Dimostrazione

- " \Rightarrow " Basta ricordarsi che ϕ_B è un omomorfismo è quindi ad ogni vettore associa una sola coppia di componenti
- " \Leftarrow " ϕ_B^{-1} è un isomorfismo allora $(\phi_B^{-1}(\phi_B(u_1)),...,\phi_B^{-1}(\phi_B(u_n))=(u_1,...,u_n)$

Esempio - Una n-upla di vettori è linearmente indipendente solo se lo sono i suoi componenti Sia $\mathbb{R}[x] \leq 3$ uno spazio vettoriale su R quindi $dim(\mathbb{R}[x] \leq 3) = 4 = \mathbb{R}^4$ allora $\mathbb{R}[x] \leq 3 \simeq \mathbb{R}^4$

Presa $B = \{1-x, 1+x, x^2-x^3, 1+x^3\}$ base di $\mathbb{R}[x] \leq 3$ vediamo che è linearmente indipendente tramite l'isomorfismo associato alla base

- 1. Prendiamo $\overline{B} = \{1, x, x^2, x^3\}$ base canonica
- 2. Prendiamo l'isomorfismo associato $\phi_{\overline{B}}$ che ad ogni $a_0+a_1x+a_2x^2+a_3x^3 \rightsquigarrow (a_0,a_1,a_2,a_3) \in \mathbb{R}^4$
- 3. Prendiamo l'immagine dei vettori di B ottenendo
 - (a) $\phi_{\overline{B}}(1-x) = (1,-1,0,0)$
 - (b) $\phi_{\overline{B}}(1+x) = (1,1,0,0)$
 - (c) $\phi_{\overline{B}}(x^2 x^3) = (0, 1, -1, 0)$
 - (d) $\phi_{\overline{B}}(1+x^3) = (1,0,0,1)$
- 4. Essendo B una base sappiamo che ((1, -1, 0, 0), (1, 1, 0, 0), (0, 1, -1, 0), (1, 0, 0, 1)) è linearmente indipendente
- 5. Risolviamo il sistema $\alpha(1,-1,0,0)+\beta(1,1,0,0)+\gamma(0,1,-1,0)+\delta(1,0,0,1)$

$$\begin{cases} \alpha + \beta + \delta = 0 \\ -\alpha + \beta + \gamma = 0 \\ -\gamma = 0 \\ \delta = 0 \end{cases} \Rightarrow \begin{cases} \alpha + \beta = 0 \\ \beta = \alpha \\ \gamma = 0 \\ \delta = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha = 0 \\ \beta = \alpha \\ \gamma = 0 \\ \delta = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = \alpha \\ \gamma = 0 \\ \delta = 0 \end{cases}$$

Allora B è linearmente indipendente

Calcoliamo adesso l'isomorfismo associato a B ovvero $\phi_B: \mathbb{R}[x] \leq 3 \to \mathbb{R}^4$

- 1. Allora noi associamo ad ogni $a_0 + a_1x + a_2x^2 + a_3x^3$ il corrispettivo $\alpha(1-x) + \beta(1+x) + \gamma(x^2-x^3) + \delta(1+x^3)$
- 2. Risolviamo il sistema

$$\begin{cases} \alpha + \beta + \delta = a_0 \\ \alpha - \beta = a_1 \\ \gamma = a_2 \\ -\gamma + \delta = a_3 \end{cases} \Rightarrow \begin{cases} 2\beta = a_0 - a_1 - a_2 - a_3 \\ \alpha = \beta + a_1 \\ \gamma = a_2 \\ \delta = a_3 + a_2 \end{cases} \Rightarrow \begin{cases} \beta = \frac{1}{2}(a_0 - a_1 - a_2 - a_3) \\ \alpha = \frac{1}{2}(a_0 + a_1 - a_2 - a_3) \\ \gamma = a_2 \\ \delta = a_3 + a_2 \end{cases}$$

3. Allora ϕ_B associa $a_0 + a_1x + a_2x^2 + a_3x^3 \Leftrightarrow (\frac{1}{2}(a_0 + a_1 - a_2 - a_3), \frac{1}{2}(a_0 - a_1 - a_2 - a_3), a_2, a_2 + a_3)$

Matrice

Definizione - Matrice

Siano $m, n \in \mathbb{N}$ e dato il campo $(K, +, \cdot)$ chiamiamo $A \in M_{m \times n}$ una matrice su K

$$A = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & & \vdots \\ a_1^m & \dots & a_n^m \end{pmatrix} = (a_j^i)$$

Indicando le righe come $\begin{cases} a^{1} = (a_{1}^{1}, ..., a_{n}^{1}) \\ \vdots \\ a^{m} = (a_{1}^{m}, ..., a_{n}^{m}) \end{cases}$ e le colonne come $\begin{cases} a_{1} = (a_{1}^{1}, ..., a_{1}^{m}) \\ \vdots \\ a_{n} = (a_{n}^{1}, ..., a_{n}^{m}) \end{cases}$

Definizione - Matrice Trasposta

Data una matrice A chiamiamo la sua trasposta ${}^tA = B \in M_{m \times n}(K)$ tale che $b^1 = a_1, ..., b^m = a_n$

Esempio - Matrice Trasposta

$$A = \begin{pmatrix} 2 & 0 & 7 \\ -\pi & 1 & -5 \end{pmatrix} \quad B = \begin{pmatrix} 2 & -\pi \\ 0 & 1 \\ 7 & -5 \end{pmatrix}$$

Definizione - Rango di una matrice

Il rango di A che indichiamo con rango(A) è la dimensione dello spazio vettoriale generato dalle colonne di A

Esempio - Rango di una matrice

$$rango\left(\begin{pmatrix} 1 & 2 & 3 & 4\\ 0 & 1 & 2 & 3\\ 1 & 1 & 1 & 1 \end{pmatrix}\right) = 2$$

Teorema - Una matrice ha lo stesso rango della sua trasposta

Data una matrice $A \in M_{m \times n}(K)$ allora sappiamo che

$$rango(A) = rango(^tA)$$

Esempio - Una matrice ha lo stesso rango della sua trasposta

Presa la matrice
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} = 2$$
 sappiamo che il $rango(A) = 2$

Osserviamo che la dimensione dello spazio vettoriale delle colonne è uguale a quello delle righe

$$\mathbb{R}^2 \cong \mathcal{L}((1,2,3,4),(0,1,2,3),(1,1,1,1)) = \mathcal{L}((1,0,1),(2,1,1),(3,2,1),(4,3,1)) \cong \mathbb{R}^2$$

Trasformazioni elementari

Definizione - Trasformazioni elementari

Sono chiamate Trasformazioni elementari le seguenti operazioni effettuabili sulle matrici

- Scambio di una riga: $h, k \in \{1, ..., m\}$ $a^h \Leftrightarrow a^k$
- Moltiplicazione di una riga per uno scalare: $h \in \{1, ..., m\}$ $\alpha \in K \setminus \{0\}$ $a^h \to \alpha \cdot a^h$
- Somma di una riga moltiplicata per uno scalare: $h, k \in \{1, ..., m\} : h \neq k \quad \beta \in K \quad a \to a^h + \beta \cdot a^k$

Nota - Le Trasformazioni elementari sono invertibili

Questo vuol dire che posso sempre riottenere la matrice di partenza applicando le operazioni inverse!

Esempio - Trasformazioni elementari

Data la matrice
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
 allora possiamo applicare una serie di trasformazioni elementari

1. Somma di una riga moltiplicata per uno scalare dove h=2 k=1 $\beta=-1$

$$a^{2} \rightarrow a^{2} + (-1)a^{1} \qquad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

2. Moltiplicazione di una riga per uno scalare dove h=2 $\alpha=-\frac{1}{2}$

$$a^{2} \to \left(-\frac{1}{2}\right)a^{2} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

3. Somma di una riga moltiplicata per uno scalare dove h=4 k=1 $\beta=-1$

$$a^{4} \rightarrow a^{4} + (-1)a^{1} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

4. Somma di una riga moltiplicata per uno scalare dove h=4 k=2 $\beta=1$

$$a^{4} \rightarrow a^{4} + 1 \cdot a^{2} \qquad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Effettuando le operazioni inverse troviamo la matrice originale A

Lezione 11° del 10/04/2024

Definizione - Matrice Ridotta a Scalini

Sia $A \in M_{m \times n}$ allora si dice ridotta a scalini se $\exists h : 0 \le h \le m$ tale che

- 1. $\forall r \in \{1, ..., h\}$ e posto $j_r = min(\{j \in \{1, ..., n\}\} \mid a_j^r \neq 0)$ e $j_1 < j_2 < ... < j_h$ (Per ogni riga da 1 a h il minimo della riga diverso da 0 si trova "più a sinistra" del minimo della prossima riga)
- 2. $\forall r \in \{h+1,...,m\}$ $a^r = \underline{0}$ (Tutte le righe successive a quella di h sono uguali al vettore nullo)

Pivot: Viene chiamato pivot l'elemento più "più a sinistra" di ogni riga che indichiamo con $a_{j_r}^r$

Esempio - Matrice Ridotta a Scalini

$$\begin{pmatrix} 0 & 2 & 3 & 0 & 4 \\ 0 & 0 & -3 & 7 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Definizione - Matrice Completamente Ridotta

Sia $A \in M_{m \times n}$ allora si dice completamente ridotta se, già ridotta a scalini, e inoltre

• $\forall r \in \{1, ..., h\}$ $a_{j_r}^r = 1$ e $\forall i < r$ $a_{j_r}^i = 0$ (Ogni pivot è uguale a 1 e ogni elemento nella sua colonna che si trova sopra di lui è uguale a zero)

Esempio - Matrice Completamente Ridotta

$$\begin{pmatrix}
1 & 7 & 0 & 3 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Teorema - Algoritmo di Gauss

Ogni matrice su un campo K può essere trasformata in una matrice a gradini oppure in una matrice completamente ridotta mediante un numero finito di trasformazioni elementari

Dimostrazione

Data la matrice
$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^m & a_2^m & \dots & a_n^m \end{pmatrix}$$
 e allora definiamo

- Il minimo indice di colonna con elementi non nulli $k = min(\{j \in \{1, ..., n\} \mid a_j \neq 0\})$
- Il minimo indice di riga con elementi non nulli $h = min(\{i \in \{1,...,m\} \mid a_k^i \neq 0\})$

Allora eseguiamo i passi dell'algoritmo

1. Scambio di una riga (dove indichiamo con P il pivot di ogni riga)

$$a^{1} \leftrightarrow a^{h} \quad A = \begin{pmatrix} 0 & \dots & 0 & P & \dots \\ \vdots & & \vdots & \vdots & \vdots \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & \vdots \end{pmatrix}$$

2. Somma di una riga moltiplicata per uno scalare (rendendo nulli tutti gli elementi sotto il pivot)

$$\forall i \in \{2, ..., m\} \quad a^{i} \leftrightarrow a^{i} + \beta_{i} \cdot a^{1} \quad A = \begin{pmatrix} 0 & ... & 0 & P & ... \\ \vdots & & \vdots & 0 & \\ \vdots & & \vdots & \vdots & \\ 0 & ... & 0 & 0 \end{pmatrix}$$

Tale che $a_k^i + \beta_i \cdot a_k^1 = 0 \Rightarrow \beta_i = -a_k^i \cdot (a_k^1)^{-1}$

3. Ripetiamo questo tipo di trasformazioni fino a quando non si ottiene una matrice a scalini

$$a^{1} \leftrightarrow a^{h} \quad A = \begin{pmatrix} 0 & \dots & 0 & P & \dots \\ \vdots & & \vdots & 0 & P \\ \vdots & & \vdots & \vdots & 0 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}$$

- 4. Per trasformare questa matrice a gradini in matrice completamente ridotta eseguiamo le seguenti trasformazioni
 - (a) Normalizziamo i pivot (indichiamo con p il numero di pivot): $\forall i \in \{1,...,p\} \quad a^i \to \frac{1}{a^i_{ii}} \cdot a^i$
 - (b) $\forall r \in \{p, ..., 2\}$ $\forall i \in \{1, ..., r-1\}$ $a^i \to a^i a^i_r \cdot a^r$

Esempio - Algoritmo di Gauss

Consideriamo
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} \in M_{3\times 6}(\mathbb{R})$$
 allora

- 1. Individuiamo il minimo indice di una colonna non nulla, in guesto caso la 3
- 2. Individuiamo il minimo indice di riga di un elemento non nullo sulla colonna 3 in questo caso il 2
- 3. Scambio di una riga dove h = 1 e k = 2

$$a^1 \leftrightarrow a^2$$

$$\begin{pmatrix} 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

4. Somma di una riga moltiplicata per uno scalare dove h=3 k=1 $\beta=-\frac{1}{2}$

$$a^{3} \rightarrow a^{3} + (-\frac{1}{2})a^{1}$$

$$\begin{pmatrix} 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

5. Somma di una riga moltiplicata per uno scalare dove h=3 k=2 $\beta=-1$

$$a^{3} \rightarrow a^{3} + (-1)a^{2}$$

$$\begin{pmatrix} 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & -\frac{3}{2} & \frac{5}{2} \end{pmatrix}$$

NOTA: Adesso la matrice è ridotta a scalini

6. Moltiplicazione di una riga per uno scalare dove h=1 $\alpha=\frac{1}{2}$

$$a^{1} \to \frac{1}{2} \cdot a^{1} \qquad \begin{pmatrix} 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & -\frac{3}{2} & \frac{5}{2} \end{pmatrix}$$

7. Moltiplicazione di una riga per uno scalare dove h=3 $\alpha=-\frac{2}{3}$

$$a^{3} \rightarrow -\frac{2}{3} \cdot a^{3} \quad \begin{pmatrix} 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 & -\frac{5}{3} \end{pmatrix}$$

8. Somma di una riga moltiplicata per uno scalare dove h=2 k=3 $\beta=-2$

$$a^{2} \rightarrow a^{2} + (-2)a^{3} \qquad \begin{pmatrix} 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & \frac{4}{3} \\ 0 & 0 & 0 & 1 & -\frac{5}{3} \end{pmatrix}$$

9. Somma di una riga moltiplicata per uno scalare dove h=2 k=3 $\beta=-2$

$$a^{1} \rightarrow a^{1} + \frac{1}{2} \cdot a^{3} \qquad \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 1 & 0 & \frac{4}{3} \\ 0 & 0 & 0 & 1 & -\frac{5}{3} \end{pmatrix}$$

Teorema - Il rango di una matrice ridotta a gradini è uguale al numero di pivot

Sia $A \in M_{m \times n}$ allora rango(A) = numero di pivot = righe non nulle di <math>A

Dimostrazione Per induzione sul numero di pivot (che indichiamo con h)

• Se h = 0 allora la matrice A è nulla per cui rango(A) = 0

- ullet Supponiamo vero l'enunciato, per ipotesi di induzione, per matrici h-1 pivot allora
 - Cancellando la prima riga otteniamo da A otteniamo che $\{a^2,...,a^h\}$ è linearmente indipendente
 - Osserviamo che $a^1 \not\in \mathcal{L}(a^2, ..., a^h)$
 - Allora $\{a^1, a^2, ..., a^h\}$ è linearmente indipendente e rango(A) = h

Esempio - Teorema del rango di una matrice ridotta a scalini

Sia $K = \mathbb{R}[x] \le 3$ allora prendiamo $W = \mathcal{L}(1+x^2, 1-x-x^2)$ e $U = \mathcal{L}(2-x, x+x^2+x^3)$ e osserviamo se la loro somma è diretta.

Ricordiamo che per la relazione di Grassmann abbiamo che $dim(W+U)=dim(W)+dim(U)\Leftrightarrow W\boxplus U$

Procediamo quindi con l'esercizio

- 1. Osserviamo che dim(W) = 2 = dim(U) quindi $W \boxplus U \Leftrightarrow dim(W + U = 4)$
- 2. Calcoliamo la loro somma $W + U = \mathcal{L}(1 + x^2, 1 x x^2, 2 x, x + x^2 + x^3)$
- 3. Presa la base canonica $B = (1, x, x^2, x^3)$ consideriamo le componenti di ogni vettore
 - $\phi_B(1+x^2) = (1,0,1,0)$
 - $\phi_B(1-x-x^2)=(1,-1,-1,0)$
 - $\phi_B(2-x) = (2,-1,0,0)$
 - $\phi_B(x + x^2 + x^3) = (0, 1, 1, 1)$
- 4. Adesso sappiamo che $\{1+x^2, 1-x-x^2, 2-x, x+x^2+x^3\}$ è linearmente indipendente \Leftrightarrow $\{(1,0,1,0), (1,-1,-1,0), (2,-1,0,0), (0,1,1,1)\}$ è linearmente indipendente
- 5. $\{(1,0,1,0),(1,-1,-1,0),(2,-1,0,0),(0,1,1,1)\}$ è linearmente indipendente $\Leftrightarrow rango(\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 \\ 2 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}) = 4$
- 6. Riducendo la matrice precedente a scalini otteniamo $rango(\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}) = 3 \neq 4$

Quindi abbiamo che $W + U \neq W \boxplus U$

Sistemi di Equazioni Lineari

Definizione - Sistema di Equazioni Lineari

Sia $(K, +, \cdot)$ un campo e $m \in \mathbb{N}$ allora definiamo un sistema di equazioni lineari in questo modo

$$\Sigma \begin{cases} a_1^1 x_1 + \dots + a_n^1 x_n = b_1 \\ a_1^2 x_1 + \dots + a_n^2 x_n = b_2 \\ \vdots \\ a_1^m x_1 + \dots + a_n^m x_n = b_n \end{cases}$$

 Σ è un sistema di m equazioni con coefficienti in K in n incognite

Definizione - Sistema di Equazione in forma matriciale

Sia
$$\Sigma$$
:
$$\begin{cases} a_1^1x_1 + \ldots + a_n^1x_n = b_1 \\ a_1^2x_1 + \ldots + a_n^2x_n = b_2 \\ \vdots \\ a_1^mx_1 + \ldots + a_n^mx_n = b_m \end{cases}$$
 un sistema di m equazioni lineari in n incognite sul campo K (ovvero $a_j^i, b_i \in K$)

Allora possiamo osservare il sistema in forma matriciale come $\Sigma: A \cdot X = B$ dove

- Matrice dei coefficienti $A = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ a_1^2 & \dots & a_n^2 \\ \vdots & \vdots \\ a_1^n & \dots & a_n^m \end{pmatrix}$
- Matrice delle incognite $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
- Matrice dei termini noti $B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$
- $\bullet \ \, \textbf{Matrice completa} \, \, \mathcal{C} = \begin{pmatrix} a_1^1 \, \ldots \, a_n^1 & b_1 \\ \vdots & \vdots & \vdots \\ a_1^n \, \ldots \, a_n^m & b_n \\ \end{pmatrix}$

Esempio - Sistema di Equazioni Lineari in forma matriciale

Sia
$$\Sigma:$$

$$\begin{cases} 2x_1-x_2+4x_3=1\\ -x_1+3x_2+2x_2=0 \end{cases}$$
 allora otteniamo che

- Matrice dei coefficienti $A = \begin{pmatrix} 2 & -1 & 4 \\ -1 & 3 & 2 \end{pmatrix}$
- Matrice delle incognite $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$
- Matrice dei termini noti $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- Matrice completa $C = \begin{pmatrix} 2 & -1 & 4 & 1 \\ -1 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Definizione - Soluzione di un sistema lineare

Una soluzione di un sistema lineare $\Sigma: A \cdot X = B$ di m equazioni in n incognite sul campo K è una n-upla di scalare $(y_1, ..., y_n) \in K^n$ tale che sostituiti ordinatamente alle n variabili soddisfano le equazioni del sistema, ovvero

$$\forall i \in \{1, ..., m\}$$
 $a_1^i \cdot y_1 + a_2^i \cdot y_2 + ... a_n^i \cdot y_n = b_i$ oppure più semplicemente $A \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = B$

Incompatibile o Impossibile Σ si dice incompatibile o impossibile se non ammette soluzioni ovvero, $S = \emptyset$ (se ammette soluzioni invece è detto compatibile)

Esempio - Soluzione di un sistema lineare

Sia
$$\Sigma:$$

$$\begin{cases} 2x_1-x_2+4x_3=1\\ -x_1+3x_2+2x_2=0 \end{cases}$$
 allora agiamo per sostituzione

$$\begin{cases} 2(3x_2 + 2x_3) - x_2 + 4x_3 = 1 \Rightarrow 6x_2 + 4x_3 - x_2 + 4x_3 = 1 \\ x_1 = 3x_2 + 2x_3 \end{cases}$$

$$\begin{cases} 5x_2 = 1 - 8x_3 \Rightarrow x_2 = \frac{1}{5} - \frac{8}{5}x_3 \\ x_1 = 3(\frac{1}{5} - \frac{8}{5})x_3 - 8x_3 = \frac{3}{5} - \frac{24}{5}x_3 - 8x_3 = \frac{3}{4} - \frac{32}{5}x_3 \end{cases}$$

Quindi l'insieme delle soluzioni di Σ è $\mathscr{S}=\{(\frac{3}{5}-\frac{32}{5}x_3,\frac{1}{5}-\frac{8}{5}x_3,x_3)\mid x_3\in\mathbb{R}\}\subseteq\mathbb{R}^3$

Teorema - di Rouché-Capelli

Sia $\Sigma : A \cdot X = B$ allora abbiamo che

$$\Sigma$$
 è compatibile $\Leftrightarrow rango(A) = rango(C)$

Dimostrazione

Evidenziamo il nostro sistema di equazioni lineari sfruttando la forma vettoriale per ottenere

$$\Sigma : \left\{ x_1 \cdot \begin{pmatrix} a_1^1 \\ \vdots \\ a_1^m \end{pmatrix} + x_2 \cdot \begin{pmatrix} a_2^1 \\ \vdots \\ a_2^m \end{pmatrix} + \ldots + x_n \cdot \begin{pmatrix} a_n^1 \\ \vdots \\ a_n^m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \right.$$

Mettendo così in evidenza che B si scrive come combinazione lineare delle colonne di A allora

$$\exists y = (y_1, ..., y_n) \in K^n \quad y_1 \cdot a_1 + y_2 \cdot a_2 + ... + y_n \cdot a_n = b \Leftrightarrow b \in \mathcal{L}(a_1, a_2, ..., a_n)$$

Dimostriamo entrambi i lati dell'implicazione

• \Rightarrow per ipotesi $b \in \mathcal{L}(a_1, ..., a_n)$ quindi di conseguenza abbiamo

$$\left. \begin{array}{l} \mathscr{L}(a_1, ..., a_n, b) \subseteq \mathscr{L}(a_1, ..., a_n) \\ \mathscr{L}(a_1, ..., a_n) \subseteq \mathscr{L}(a_1, ..., a_n, b) \end{array} \right\} \Rightarrow dim(\mathscr{L}(a_1, ..., a_n, b)) = rango(C) = rango(A) = dim(\mathscr{L}(a_1, ..., a_n))$$

• \Leftarrow per ipotesi rango(C) = rango(A) ma allora

$$\dim(\mathcal{L}(a_1,...,a_n,b)) = \operatorname{rango}(C) = \operatorname{rango}(A) = \dim(\mathcal{L}(a_1,...,a_n))$$
Sappiamo che $\mathcal{L}(a_1,...,a_n) \subseteq \mathcal{L}(a_1,...,a_n,b)$

Esempio - Teorema di Rouché-Capelli

Sia $\Sigma:$ $\begin{cases} x_1+x_2=1 \\ 2x_1+2x_2=3 \end{cases}$ sappiamo allora che Σ è incompatibile perché

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 allora $rango(A) = 1 \neq 2 = rango(C)$ che è uguale a $C = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \end{pmatrix}$

Determinare l'insieme delle soluzioni del seguente sistema lineare di 4 equazioni di 5 incognite su R

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 + x_5 = 1 \\ -x_1 - 2x_2 - x_3 + 2x_4 &= 2 \\ -x_2 - 3x_3 + 3x_4 + x_5 = 3 \\ -x_2 + 2x_3 &+ x_5 = 0 \end{cases}$$
 con matrice completa $C = \begin{pmatrix} 1 & 1 & -2 & 1 & 1 & 1 \\ -1 & -2 & -1 & 2 & 0 & 2 \\ 0 & -1 & -3 & 3 & 1 & 3 \\ 0 & 1 & 2 & 0 & 1 & 0 \end{pmatrix}$

Effettuando le seguenti operazioni riduciamo completamente la matrice C

1.
$$c^2 \to c^2 + c^1$$

2.
$$c^3 \rightarrow c^3 - c^2$$

3.
$$c^4 \rightarrow c^4 + c^2$$

$$4. c^3 \leftrightarrow c^4$$

5.
$$c^2 \to (-1)c^2$$

6.
$$c^3 \to (-1)c^3$$

7.
$$c^2 \to c'' - 3c^3$$

8.
$$c^1 \rightarrow c^2 + 2c^3$$

9.
$$c^2 \to c^1 - c^2$$

Trovando la seguente matrice

$$C = \begin{pmatrix} 1 & 0 & 0 & -11 & -8 & | & -11 \\ 0 & 1 & 0 & 6 & 5 & | & 6 \\ 0 & 0 & 1 & -3 & -2 & | & -3 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \text{ che ci da il seguente sistema } \Sigma' : \begin{cases} x_1 = 11x_4 + 8x_5 - 11 \\ x_2 = -6x_4 - 5x_4 + 6 \\ x_3 = 3x_4 + 2x_5 - 3 \end{cases}$$

Ottenendo che $\mathscr{S} = \{(11x_4 + 8x_5 - 11, -6x_4 - 5x_4 + 6, x_3 = 3x_4 + 2x_5 - 3, x_4, x_5) \mid x_4, x_5 \in \mathbb{R}\}$

Definizione - Sistemi di equazioni lineari Equivalenti

Siano $\Sigma : A \cdot X = B$ e $\Sigma' : A' \cdot X = B'$ sistemi lineari in n incognite su un campo K

Chiamiamo $\mathscr S$ l'insieme delle soluzioni di Σ e $\mathscr S'$ l'insieme delle soluzioni di Σ' allora

$$\Sigma$$
 e Σ' sono equivalenti $\Leftrightarrow \mathscr{S} = \mathscr{S}'$

(Ovvero hanno le stesse soluzioni)

Teorema - Metodo di risoluzione di Gauss-Jordan

Sia $\Sigma:A\cdot X=B$ un sistema lineare di m equazioni in n incognite su K la cui matrice completa è C=(A|B)

Se $\Sigma': A' \cdot X = B'$ è un sistema lineare la cui matrice completa C' è ottenuta da C mediante un numero finito di operazioni elementari (di riga) allora Σ e Σ' sono equivalenti

Dimostrazione vediamo che per ogni operazione elementare $\mathscr{S} = \mathscr{S}'$

$$\text{Dato il sistema di equazioni } \Sigma : \begin{cases} a_1^1 x_1 + \ldots + a_n^h x_n - b_i = 0 \\ \vdots \\ a_1^h x_1 + \ldots + a_n^h x_n - b_h = 0 \\ \vdots \\ a_1^k x_1 + \ldots + a_n^k x_n - b_k = 0 \\ \vdots \\ a_1^m x_1 + \ldots + a_n^m x_n - b_m b = 0 \end{cases} \text{ e la sua matrice completa } C = \begin{pmatrix} a_1^1 & \ldots & a_n^1 & b_1 \\ \vdots & & \vdots & \vdots \\ a_1^h & \ldots & a_n^h & b_h \\ \vdots & & \vdots & \vdots \\ a_1^m & \ldots & a_n^m & b_m \end{pmatrix}$$

• Scambiando le righe avremmo sempre che $\mathscr{S}=\mathscr{S}'$

$$c^h \leftrightarrow c^k \quad \Sigma' : \begin{cases} I_1(x) = 0 \\ I_k(x) = 0 \\ I_h(x) = 0 \\ I_m(x) = 0 \end{cases}$$

• Moltiplicando una riga per uno scalare otteniamo che

$$\alpha \in K \setminus \{0\}$$
 $c^h \to \alpha \cdot c^h$ $\Sigma' : \begin{cases} l_1(x) = 0 \\ \alpha \cdot l_h(x) = 0 \end{cases}$ $l_k(x) = 0$ $l_m(x) = 0$

Allora $\forall i \in \{1, ..., m\}$ data una soluzione $y = (y_1, ..., y_n) \in \mathscr{S} \Rightarrow l_i(y) = 0 \Rightarrow \alpha \cdot l_i(y) = \alpha \cdot 0 = 0 \Rightarrow y \in \mathscr{S}'$

• Sommando una riga moltiplicata per uno scalare abbiamo che

$$\alpha \in K$$
 $c^h \to c^h + \alpha \cdot c^k$ $\Sigma' :$

$$\begin{cases} l_1(x) = 0 \\ l_h(x) + \alpha \cdot l_k(x) = 0 \\ l_k(x) = 0 \\ l_m(x) = 0 \end{cases}$$

Allora data una soluzione $y = (y_1, ..., y_n) \in \mathscr{S} \Rightarrow l_h(y) = 0$ e $l_k(y) = 0 \Rightarrow l_h + \alpha \cdot l_k(y) = 0 + \alpha \cdot 0 = 0 \Rightarrow y \in \mathscr{S}'$

Esempio - Metodo di rosluzione di Gauss-Jordan

Prendiamo in esempio il seguente sistema di equazioni

$$\Sigma : \begin{cases} x_2 + 2x_3 + x_4 = 1 \\ x_1 + x_2 - x_3 - 2x_4 = 0 \\ 2x_1 + 2x_2 + x_3 + x_4 = 1 \end{cases}$$

Dal quale abbiamo la sequente matrice completa

$$C = \begin{pmatrix} 0 & 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 & 0 \\ 2 & 2 & 1 & 1 & 1 \end{pmatrix}$$

La riduciamo quindi a gradini

$$C = \begin{pmatrix} 1 & 1 & -1 & -2 & 0 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 3 & 5 & 1 \end{pmatrix}$$

Otteniamo quindi il sistema di equazione Σ' che è equivalente a Σ

$$\Sigma : \begin{cases} x_1 + x_2 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + x_4 = 1 \\ 3x_3 + 5x_4 = 1 \end{cases}$$

Da qui abbiamo due possibilità

- 1. Sostituzione a ritroso
- 2. Continuiamo a ridurre completamente la matrice

Se adottiamo la prima possibilità otteniamo che

$$\begin{cases} x_1 = -x_2 + x_3 + 2x_4 = -x_2 - \frac{5}{3}x_4 + \frac{1}{3} + 2x_4 \\ x_2 = -2x_3 - x_4 + 1 = -2(-\frac{5}{3}x_2 + \frac{1}{3}) - x_4 + 1 \\ x_3 = -\frac{5}{3}x_4 + \frac{1}{3} \end{cases}$$

$$\begin{cases} x_1 = -\frac{7}{3}x_4 - \frac{1}{3} - \frac{5}{3}x_4 + \frac{1}{3} + 2x_4 = -2x_4 \\ x_2 = \frac{7}{3}x_4 + \frac{1}{3} \\ x_3 = -\frac{5}{3}x_4 + \frac{1}{3} \end{cases}$$

L'insieme delle soluzioni è quindi $\mathscr{S} = \{(-2x_4, \frac{7}{3}x_4 + \frac{1}{3}, -\frac{5}{3}x_4 + \frac{1}{3}, x_4) \mid x_4 \in \mathbb{R}\}$

Se adottiamo la seconda soluzioni abbiamo che la matrice ridotta completamente è

$$C = \begin{pmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & -\frac{7}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{5}{3} & \frac{1}{3} \end{pmatrix}$$

Dandoci il seguente sistema di equazioni

$$\begin{cases} x_1 2x_2 = 0 \\ x_2 - \frac{7}{3}x_4 = \frac{1}{3} \\ x_3 + \frac{5}{3}x_4 = \frac{1}{3} \end{cases}$$

$$\begin{cases} x_1 = -2x_2 \\ x_2 = \frac{7}{3}x_4 + \frac{1}{3} \\ x_3 = -\frac{5}{3}x_4 + \frac{1}{3} \end{cases}$$

L'insieme delle soluzioni è quindi $\mathscr{S} = \{(-2x_4, \frac{7}{4}x_4 + \frac{1}{3}, -\frac{5}{3}x_4 + \frac{1}{3}, x_4) \mid x_4 \in \mathbb{R}\}$

Risolviamo il seguente sistema lineare

$$\Sigma : \begin{cases} x_1 + x_2 - 2x_3 + x_4 + x_5 = 1 \\ -x_1 - 2x_2 - x_3 + 2x_4 = 2 \\ -x_2 - 3x_3 + 3x_4 + x_5 = 3 \\ x_2 + 2x_3 + x_5 = 0 \end{cases}$$

Ne ricaviamo la seguente matrice completa

$$C = \begin{pmatrix} 1 & 1 & -2 & 1 & 1 & 1 \\ -1 & -2 & -1 & 2 & 0 & 2 \\ 0 & -1 & -3 & 3 & 1 & 3 \\ 0 & 1 & 2 & 0 & 1 & 0 \end{pmatrix}$$

Che ridotta completamente diventa

$$C = \begin{pmatrix} 1 & 0 & 0 & -11 & -8 & -11 \\ 0 & 1 & 0 & 6 & 5 & 6 \\ 0 & 0 & 1 & -3 & -2 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Ne ricaviamo il seguente sistema d'equazione

$$\begin{cases} x_1 - 11x_4 - 8x_5 = -11 \\ x_2 + 6x_4 + 5x_5 = 6 \\ x_3 - 3x_4 - 2x_5 = -3 \end{cases}$$

$$\begin{cases} x_1 = 11x_4 + 8x_5 - 11 \\ x_2 = -6x_4 - 5x_5 + 6 \\ x_3 = 3x_4 + 2x_5 - 3 \end{cases}$$

L'insieme delle soluzioni è quindi $\mathscr{S} = \{(11x_4 + 8x_5 - 11, -6x_4 - 5x_5 + 6, 3x_4 + 2x_5 - 3, x_4, x_5) \mid x_4, x_5 \in \mathbb{R}\} \subseteq \mathbb{R}^5$

Sia $\Sigma:A\cdot X=B$ un sistema di equazioni lineare di 3 equazioni in 3 incognite su $\mathbb R$

$$\Sigma: \begin{cases} x_1 - x_2 + 2x_3 = 1 \\ 2x_1 + x_2 - x_3 = 0 \text{ con matrice completa } C = \begin{pmatrix} 1 & -1 & 2 & | & 1 \\ 2 & 1 & -1 & | & 0 \\ 0 & 3 & -5 & | & 1 \end{pmatrix}$$

Applicando le seguenti operazioni

- 1. $c^2 \rightarrow c^2 2c^1$
- 2. $c^2 \to c^3 c^2$

Troviamo la seguente matrice

$$C = \begin{pmatrix} 1 & -1 & 2 & | & 1 \\ 0 & 3 & -5 & | & -2 \\ 0 & 0 & 0 & | & 3 \end{pmatrix} \text{ che ci da il seguente sistema } \Sigma' : \begin{cases} x_1 - x_2 + 2x_3 & = 1 \\ & 3x_2 - 5x_3 & = -2 \\ & & 0 = 3 \end{cases}$$

Essendo Σ' incompatibile questo vuol dire che anche Σ è incompatibile

Nota - Variabili Libere

Le variabili che corrispondono a colonne che non contengono pivot si dicono variabili libere esse sono esattamente n-rango(A)

Lezione 12° del 15/04/2024

Definizione - Sistema di equazioni lineari Omogeneo

Sia $\Sigma = A \cdot X = B$ allora chiamiamo questo sistema omogeneo se $B = \underline{0}$ e lo indichiamo con Σ_0

NOTA! In questo caso \mathscr{S} è un sotto-spazio vettoriale di K^n

Prodotto Righe per Colonne

Definizione - Conformabile

Data la coppia di matrici (A, B) con $A \in M_{m \times n}$ e $B \in M_{p \times q}$ si dice conformabile quando

n = p ovvero il numero di colonne di A è uguale al numero di righe di B

Esempio - Conformabile

Date le seguenti matrici

$$A = \begin{pmatrix} 1 & 2 \\ 7 & -4 \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) \quad B = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 7 & -5 \end{pmatrix} \in M_{2 \times 3}(\mathbb{R})$$

Sappiamo che (A, B) è conformabile mentre (B, A) non è conformabile

Definizione - Prodotto Scalare Numerico

Sia $(K, +, \cdot)$ un campo e $(K, K^n, +, \cdot)$ uno spazio vettoriale numerico su K con dimensione n

Chiamiamo prodotto scalare numerico la sequente applicazione

$$K^n \times K^n \longrightarrow K$$

 $(a_1, ..., a_n), (b_1, ..., b_n) \longrightarrow a_1 \cdot b_1 + ... + a_n \cdot b_n$

Ed ha le seguenti proprietà

- **Commutatività**: $\forall u, v \in K^n \quad u \cdot v = v \cdot u$
- Bilinearità: $\begin{cases} \forall u, v \in K^n & \forall \alpha \in K & u(\alpha \cdot v) = \alpha(u \cdot v) \\ \forall u, v, w \in K^n & u(v + w) = u \cdot v + u \cdot w \end{cases}$
- Sul campo dei Reali $(K = \mathbb{R})$: $\forall u \in K^n \quad u \cdot u \geq 0$

Definizione - Prodotto Righe per Colonne

Siano la coppia di matrici (A, B) conformabile con $A \in M_{m \times n}$ e $B \in M_{p \times q}$

Definiamo in questo modo il prodotto righe per colonne

$$A \cdot B = \begin{pmatrix} a^{1} \cdot b_{1} & a^{1} \cdot b_{2} & \dots & a^{1}b_{p} \\ a^{2} \cdot b_{1} & a^{2} \cdot b_{2} & \dots & a^{2}b_{p} \\ \vdots & \vdots & & \vdots \\ a^{m} \cdot b_{1} & a^{m} \cdot b_{2} & \dots & a^{m}b_{p} \end{pmatrix} \in M_{m \times p}$$

Ed ha le seguenti proprietà, prendendo $A \in M_{m \times n}(K)$ $B \in M_{n \times p}(K)$ $C \in M_{p \times q}(K)$

- Associatività: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- **Distributività** (destra e sinistra rispetto a +): $(A + B) \cdot C = C \cdot A + C \cdot B$

Esempio - Prodotto Righe per Colonne

Date le due matrici

$$A = \begin{pmatrix} 2 & -3 \\ 4 & 7 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 1 & 1 \end{pmatrix}$$

Abbiamo che il prodotto righe per colonne è uguale a

$$A \cdot B = \begin{pmatrix} a^1 \cdot b_1 & a^1 \cdot b_2 & a^1 \cdot b_3 \\ a^2 \cdot b_1 & a^2 \cdot b_2 & a^2 \cdot b_3 \end{pmatrix} = \begin{pmatrix} 11 & -3 & 1 \\ -17 & 7 & 15 \end{pmatrix}$$

Nota - Matrice quadrata nel prodotto righe per colonne

Sia · il prodotto righe per colonne allora abbiamo che è un'operazione interna perché

$$: M_{n \times n}(K) \times M_{n \times n}(K) \to M_{n \times n}(K)$$

Inoltre sappiamo che ha le seguenti proprietà

- Associatività
- **Elemento neutro**: $I_n = \begin{pmatrix} 1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & 1 \end{pmatrix}$ (ovvero la diagonale composta da 1 e tutto i restanti 0)

Quindi definiamo $Gl_n(K) = \{A \in M_{n \times n} \mid A \text{ è invertibile}\}$ ottenendo il gruppo $(Gl_n(K), \cdot)$ detto gruppo generale lineare di ordine n su K

Teorema - $\mathscr S$ di di un sistema lineare omogeneo è un sottospazio vettoriale numerico

Dato $\Sigma_0:A\cdot X=\underline{0}$ un sistema di equazioni omogeneo allora $\mathscr{S}_0\subseteq K^n$ in particolare

 \mathscr{S}_0 è un sotto-spazio vettoriale di K^n

Dimostrazione

- Non è vuoto perché $\underline{0} \in \mathscr{S}_0$
- La somma appartiene ancora a \mathscr{S}_0 infatti presi $y=(y_1,...,y_n)\in\mathscr{S}_0$ e $z=(z_1,...,z_n)\in\mathscr{S}_0$ abbiamo

$$A\left(\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}\right) = A\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + A\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = 0 + 0 = 0 \Rightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathscr{S}_0$$

• La moltiplicazione per uno scalare appartiene ancora a \mathscr{S}_0 infatti $\forall \alpha \in K$ abbiamo

$$A\left(\alpha\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}\right) = \alpha \cdot A\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix} = \alpha \cdot 0 = 0 \Rightarrow \alpha(y_1,...,y_n) \in \mathscr{S}_0$$

Esempio - Sistemi di equazioni lineari omogenei

Calcoliamo \mathscr{S}_0 del seguente sistema di equazioni omogeneo

$$\Sigma: \begin{cases} x_1 + x_2 - x_3 + 2x_4 + x_5 = 0\\ 2x_1 + x_2 + x_3 + x_4 - x_5 = 0 \text{ con matrice } A = \begin{pmatrix} 1 & 1 & -1 & 2 & 1\\ 2 & 1 & 1 & 1 & -1\\ 1 & 0 & 2 & -1 & -2 \end{pmatrix}$$

Andiamo quindi a ridurla effettuando le seguenti operazioni

1.
$$a^2 \rightarrow a^2 - 2a^1$$

2.
$$a^3 \to a^3 - a^1$$

3.
$$a^3 \to a^3 - a^2$$

4.
$$a^2 \to (-1)a^2$$

5.
$$a^1 \to a^1 - a^2$$

Ottenendo la seguente matrice e sistema di equazioni lineare

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 & -2 \\ 0 & 1 & -3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ e il sistema } \Sigma : \begin{cases} x_1 & +2x_3 - x_4 - 2x_5 = 0 \\ x_2 - 3x_3 + 3x_4 + 3x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -2x_3 + x_4 + 2x_5 \\ x_2 = 3x_3 - 3x_4 - 3x_5 \end{cases}$$

Troviamo quindi che $\mathscr{S}_0 = \{(2x_3 + x_4 + 2x_5, 3x_3 - 3x_4 - 3x_5, x_3, x_4, x_5) \mid x_3, x_4, x_5 \in \mathbb{R}\}$

Vediamo che \mathscr{S}_0 è linearmente indipendente perché $\mathscr{L}((-2,3,1,0,0),(1,-3,0,1,0),(2,-3,0,0,1)) = \mathscr{S}_0$

$$(2x_3 + x_4 + 2x_5, 3x_3 - 3x_4 - 3x_5, x_3, x_4, x_5) = x_3(-2, 3, 1, 0, 0) + x_4(1, -3, 0, 1, 0) + x_5(2, -3, 0, 0, 1)$$

Ed il rango formato dalla matrice $\begin{pmatrix} -2 & 3 & 1 & 0 & 0 \\ 1 & -3 & 0 & 1 & 0 \\ 2 & -3 & 0 & 0 & 1 \end{pmatrix}$ è esattamente uguale al numero di vettori della sua chiusura lineare

Determinare la base di \mathscr{S}_0 del seguente sistema di equazioni lineari omogeneo

$$\Sigma: \begin{cases} x_2 - x_3 + 2x_4 + x_5 = 0 \\ x_1 + 2x_2 + x_3 - x_4 + 2x_5 = 0 \text{ con matrice } A = \begin{pmatrix} 0 & 1 & -1 & 2 & 1 \\ 1 & 2 & 1 & -1 & 2 \\ 2 & 3 & 3 & 1 & -1 \end{pmatrix}$$

Andiamo quindi a ridurla effettuando le seguenti operazioni

1.
$$a^1 \leftrightarrow a^2$$

2.
$$a^3 \to a^3 - a^1$$

3.
$$a^4 \rightarrow a^4 - 2a^1$$

4.
$$a^3 \to a^3 - a^2$$

$$5 a^4 \rightarrow a^4 + a^2$$

$$6 \quad a^4 \leftrightarrow a^4$$

Ottenendo la seguente matrice e sistema di equazioni lineare

$$A = \begin{pmatrix} 1 & 2 & 1 & -1 & 2 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ e il sistema } \Sigma : \begin{cases} x_1 = -2x_2 - x_3 + x_4 - 2x_5 \\ x_2 = x_3 - 2x_4 - x_5 \end{cases} \Rightarrow \begin{cases} x_1 = -3x_3 + 4x_5 \\ x_2 = x_3 - \frac{13}{5}x_5 \end{cases}$$

Troviamo quindi che $\mathscr{S}_0 = \{(-3x_3 + 4x_5, x_3 - \frac{13}{5}x_5, x_3, \frac{4}{5}x_5, x_5) \mid x_3, x_5 \in \mathbb{R}\} = \mathscr{L}((-3, 1, 1, 0, 0), (4, -\frac{13}{5}, 0, \frac{4}{5}, 1))$ perché i vettori sono linearmente indipendenti

Lezione 13° del 17/04/2024

Matrice associata ad applicazione lineare

Definizione - Matrice associata ad applicazione lineare

Sia $A_{m \times n} \in (K)$ allora questa matrice sarà associata alla seguente applicazione

$$\widetilde{T}_A: K^n \rightarrow K^m$$

$$(x_1, ..., x_n) \sim A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Esempio - Matrice associata ad applicazione lineare

Sia data la seguente matrice

$$A = \begin{pmatrix} 2 & 3 \\ -7 & 1 \\ 0 & 5 \end{pmatrix} \in M_{3 \times 2}(\mathbb{R})$$

Definisco la seguente applicazione lineare con matrice associata

$$\widetilde{T}_A: \mathbb{R}^2 \to \mathbb{R}^3
(x_1, x_2) \rightsquigarrow A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Quindi al singolo vettore (x_1, x_2) associo $(2x_1 + 3x_2, -7x_1 + x_2, 5x_2)$ ad esempio $\overset{\sim}{T_A}((2, 1)) = (7, -13, 5)$

Teorema - T_A è un'applicazione lineare

Sia $T_A : K^n \to K^n$ allora presi due vettori $u = (x_1, ..., x_n) \in K^n$ e $v = (y_1, ..., y_n) \in K^n$ vediamo che è un'applicazione lineare

Dimostrazione

•
$$\widetilde{T}_A(u+v) = A\left(\begin{pmatrix} x_1 \\ \vdots \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\right) = A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + A\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \widetilde{T}_A(u) + \widetilde{T}_A(v)$$

•
$$\forall \alpha \in K$$
 $\widetilde{T}_A(\alpha \cdot u) = A\left(\alpha \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = \alpha \cdot A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \alpha \cdot \widetilde{T}_A(u)$

Domanda - Cosa succede se applico il teorema dell'equazione dimensionale

Per il teorema dell'equazione dimensionale so che $dim(K^n) = dim(Kern(\widetilde{T_A})) + dim(Im(\widetilde{T_A}))$

Osserviamo quindi che:

• $dim(K^n) = n$

•
$$dim(Im(\widetilde{T_A})) = dim(\mathscr{L}(\widetilde{T_A}(1,0,...,0),...,\widetilde{T_A}(0,...,0,1)) = rango(A)$$

•
$$dim(Kern(\widetilde{T_A})) = n - rango(A)$$

La dimensione di $Im(\widetilde{T_A}) = rango(A)$ e si dimostra che presa la matrice associata A otteniamo che

$$A = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & & \vdots \\ a_1^m & \dots & a_n^m \end{pmatrix} \text{ facendo l'immagine dei vettori della base canonica } A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = a_1 \text{ e così via fino a } A \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} = a_n$$

Questo ci porta a concludere che $dim(Kern(\widetilde{T_A})) = n - rango(A)$

Teorema - per ogni applicazione lineare, esiste una matrice associata

Sia $T: K^n \to K^m$ un'applicazione lineare allora

$$\exists A \in M_{m \times n}(K) : T = \widetilde{T}_A$$

Dimostrazione

 $\text{Se A esiste allora sappiamo che} \begin{cases} T(1,0,0,...,0) = (a_1^1,a_1^2,...,a_1^m) \\ T(0,1,0,...,0) = (a_2^1,a_2^2,...,a_2^m) \\ \vdots \\ T(0,0,...,0,1) = (a_n^1,a_n^2,...,a_n^m) \end{cases}$

Con queste informazioni costruiamo la matrice associata $A = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & & \vdots \\ a_1^m & \dots & a_n^m \end{pmatrix}$

Adesso vediamo che $\forall (b_1,...,b_n) \in K^n \quad T(b_1,...,b_n) = \overset{\sim}{T_A}(b_1,...,b_n)$

$$(b_1,...,b_n) = b_1(1,0,...,0) + ... + b_n(0,...,0,1) \Rightarrow T(b_1,...,b_n) = b_1 \cdot T(1,0,...,0) + ... + b_n \cdot T(0,...,0,1)$$

Per costruzione di A abbiamo che il tutto è uguale a

$$b_1 \cdot \widetilde{T}_A(1, 0, ..., 0) + ... + b_n \cdot \widetilde{T}_A(0, ..., 0, 1) = \widetilde{T}_A(b_1, ..., b_n)$$

Matrice associata nelle basi B e B'

Definizione - Matrice associata nelle basi B e B'

Siano V, W spazi vettoriali sul campo K con

- dim(V) = n con base ordinata $B = (a_1, ..., a_n)$
- dim(W) = m con base ordinata $B' = (a'_1, ..., a'_m)$

Presa $T: V \to W$ un'applicazione lineare

$$V \xrightarrow{T} W \downarrow_{\phi_{B'}} \downarrow_{K^m} K^m$$

Si chiama matrice associata a T nelle basi B e B' che indico con $M_{B,B'}(T) \Rightarrow \exists A \in M_{m \times n}(K) : \phi_{B}^{-1} \circ T_{\circ} \phi_{B'} = \overset{\sim}{T_A}$

Quindi le colonne della matrice associata A sono le immagini di vettori delle basi canoniche di K^n mediante $\overset{\sim}{T_A}$ in K^m

$$\begin{array}{lll} \phi_B(a_1) = (1,0,0,...,0) & \text{e viceversa abbiamo} & \phi_B^{-1}((1,0,0,...,0)) = a_1 \\ \phi_B(a_2) = (0,1,0,...,0) & \text{e viceversa abbiamo} & \phi_B^{-1}((0,1,0,...,0)) = a_2 \\ & \vdots & & \vdots & & \vdots \\ \phi_B(a_n) = (0,...,0,0,1) & \text{e viceversa abbiamo} & \phi_B^{-1}((0,...,0,0,1)) = a_n \end{array}$$

Quindi questo ci dice che possiamo calcolarci le immagini di $\overset{\sim}{T_A}$ in questo modo

$$\begin{split} \phi_{B'}(T(\phi_B^{-1}((1,0,0,...,0)))) &= \phi_{B'}(T(a_1)) = \widetilde{T}_A((1,0,0,...,0)) \\ \phi_{B'}(T(\phi_B^{-1}((0,1,0,...,0)))) &= \phi_{B'}(T(a_2)) = \widetilde{T}_A((0,1,0,...,0)) \\ & \vdots \\ \phi_{B'}(T(\phi_B^{-1}((0,...,0,0,1)))) &= \phi_{B'}(T(a_n)) = \widetilde{T}_A((0,...,0,0,1)) \end{split}$$

Lezione 14° del 06/05/2024

Matrici quadrate

Definizione - Matrice quadrata

A è una matrice quadrata di ordine n con elementi in K se $A \in M_{n \times n}(K) = M_n(K)$ dove $n \in \mathbb{N}$

Inoltre può avere le seguenti proprietà

- Simmetrica: ∀i, j ∈ {1, ..., n} aⁱ_j = a^j_i
 (Ha gli elementi speculari rispetto alla diagonale)
- Anti-Simmetrica: $\forall i, j \in \{1, ..., N\}$ $a_j^i = -a_j^i$ (Ha gli elementi speculari di segno opposto rispetto alla diagonale)
- Triangolare superiore: $\forall i, j \in \{1, ..., N\}$ $i > j \Rightarrow a^i_j = 0$ (Gli elementi che hanno il numero di riga maggiore del numero di colonna sono azzerati)
- Triangolare inferiore: $\forall i, j \in \{1, ..., N\}$ $i < j \Rightarrow a^i_j = 0$ (Gli elementi che hanno il numero di riga minore del numero di colonna sono azzerati)
- Diagonale: $\forall i, j \in \{1, ..., N\}$ $i \neq j \Rightarrow a^i_j = 0$ (Gli elementi che hanno il numero di riga diverso dal numero di colonna sono azzerati)

Esempio - Matrice quadrata

Sia dato il campo $K = \mathbb{R}$ allora osserviamo le seguenti matrici

Simmetrica

$$A = \begin{pmatrix} 2 & 4 & -7 \\ 4 & 1 & 8 \\ -7 & 8 & 0 \end{pmatrix}$$

• Anti-Simmetrica

$$A = \begin{pmatrix} 0 & 2 & 8 \\ -2 & 0 & 4 \\ -8 & -4 & 0 \end{pmatrix}$$

• Triangolare superiore

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 7 \\ 0 & 0 & 5 \end{pmatrix}$$

• Triangolare inferiore

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 7 & 5 \end{pmatrix}$$

• Diagonale

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Nota - La diagonale nella Matrice quadrata Anti-Simmetrica!

All'interno della Matrice quadrata Anti-Simmetrica la diagonale si annulla sempre per la proprietà stessa!

Permutazioni

Definizione - Permutazioni

Sia S un'insieme non vuoto con cardinalità n allora definiamo le permutazioni di S le definiamo come

$$P_n = \{f : S \Rightarrow S \mid f \text{ è biettiva}\}\$$
 e sappiamo che P_n ha cardinalità $n!$

Definizione - Inversione

Presa un'applicazione $f \in P_n$ diciamo che essa ha inversione se

$$\exists i, x \in \{1, ..., n\}$$
 $i < x \in f(i) > f(x)$

Sulla base dell'inversione definiamo il segno di f secondo questa definizione

$$sign(f) = \begin{cases} 1 \text{ se } f \text{ ha un numero pari o dispari di inversioni} \\ -1 \text{ Altrimenti} \end{cases}$$

Definizione - Determinante

Definiamo il determinante di una matrice quadrata $A \in M_n(K)$ come

$$det(A) = \sum_{f \in P_n} sign(f) \cdot a_{f(1)}^1 \cdot a_{f(2)}^2 \cdot \dots \cdot a_{f(n)}^n$$

Domanda - Determinante della matrice B derivante dalla matrice A dopo n operazioni elementari

- Se effettuiamo uno scambio di righe o colonne allora det(B) = -det(A)
- Se moltiplichiamo per uno scalare $\alpha \in K \setminus \{0_K\}$ allora $det(B) = \alpha \cdot det(A)$
- Se sommiamo una riga moltiplicata per uno scalare $\alpha \in K \setminus \{0_K\}$ allora det(B) = det(A)

Nota - Calcolo del determinante nei casi in qui n=2 o 3

Nel caso in cui n=2 allora seguiamo la seguente formula

$$det(A) = a_1^1 \cdot a_2^2 - a_2^1 \cdot a_1^2$$

Nel caso in cui n=3 allora seguiamo la seguente formula (Anche detta regola di Sarrus)

$$det(A) = a_1^1 \cdot a_2^2 \cdot a_3^3 + a_2^1 \cdot a_3^2 \cdot a_1^3 + a_1^3 \cdot a_1^2 \cdot a_2^3 - a_1^3 \cdot a_2^2 \cdot a_1^3 - a_1^1 \cdot a_2^2 \cdot a_2^3 - a_2^1 \cdot a_1^2 \cdot a_3^3$$

Esempio - Regola di Sarrus

Per quali valori del parametro α il seguente insiemi di vettori di \mathbb{R}^3 costituisce una base di \mathbb{R}^3 ?

$$S = \{(\alpha - 1, \alpha, 0), (1, 1, \alpha), (0, 1, \alpha)\}$$

$$det \left(\begin{pmatrix} \alpha - 1 & \alpha & 0 \\ 1 & 1 & \alpha \\ 0 & 1 & \alpha \end{pmatrix} \right) \begin{pmatrix} \alpha - 1 & \alpha \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$det = (\alpha - 1) \cdot 1 \cdot \alpha + 0 + 0 - \alpha^2 - (\alpha - 1) \cdot \alpha \cdot 1 - 0 = -\alpha^2 = 0 \Leftrightarrow \alpha = 0$$

S è base di $\mathbb{R}^3 \quad \forall \alpha \in \mathbb{R} \setminus \{0\}$

Nota - Determinante della matrice trasposta

Il determinante della matrice trasposta è uguale al determinante della matrice originale, ovvero $det(A) = det(^tA)$

Nota - Determinante della Matrice Identica

Per definizione di determinante la matrice identica ha come determinante 1

Teorema - di Binet

Siano $A, B \in M_n(K)$ allora sappiamo che

$$det(A \cdot B) = det(A) \cdot det(B)$$

Teorema - su Matrici Triangolari

Sia $A \in M_n(K)$ se questa matrice è triangolare superiore o inferiore allora $det(A) = a_1^1 \cdot a_2^2 \cdot \ldots \cdot a_n^n$

Dimostrazione Sia A una matrice triangolare alta allora $a_1^1 \cdot a_2^2 \cdot ... \cdot a_n^n \neq 0 \Leftrightarrow f(i) = i \quad \forall i \in \{1, ..., n\}$

Se $f_n \neq id$ allora otteniamo che

- 1. $f(n) \neq n \Rightarrow a_{f(n)}^n = 0$ allora per assurdo il det(A) = 0 quindi f(n) = n
- 2. $f(n-1) \neq n-1 \Rightarrow a_{f(n-1)}^{n-1} = 0$ allora per assurdo il det(A) = 0 quindi f(n-1) = n-1

Proseguendo in questo modo dimostriamo che ogni elemento della diagonale ha immagine non nulla nella permutazione

Teorema - determinante non nullo $\Rightarrow rango(A) = n$

Sia $A \in M_n(K)$ e B una matrice a gradini ricavata da A mediante un numero finito di operazioni elementari allora

$$rango(A) = n \Leftrightarrow det(B) \neq 0$$

Dimostrazione

 $rango(A) = rango(B) = n \Leftrightarrow \# \text{ pivot di } B = n \Leftrightarrow det(B) \neq 0 \text{ (i pivot di } B \text{ sono sulla diagonale)} \Leftrightarrow det(A) \neq 0$

Teorema - sulle Matrici invertibili

Sia $A \in M_n(K)$ allora sappiamo che

$$\exists A^{-1} \Leftrightarrow det(A) \neq 0$$

Dimostrazione

• \Rightarrow per ipotesi sappiamo che $\exists A^{-1}$ e che $A^{-1} \cdot A = I_n$ allora sfruttando il teorema di Binet abbiamo

$$\frac{\det(A^{-1} \cdot A) = \det(I_n) = 1}{\det(A^{-1}) \cdot \det(A)} \right\} \Rightarrow \det(A) \neq 0$$

• \Leftarrow Prendiamo la matrice aggiunta di A

$$A^{\#} = \begin{pmatrix} A_1^1 & A_2^1 & \dots & A_n^1 \\ \vdots & \vdots & & \vdots \\ A_1^n & A_2^n & \dots & A_n^n \end{pmatrix}$$

Questo ci porta alla tesi che $A^{-1} = \frac{1}{\det(A)} \cdot {}^t(A^\#)$

$$C = {}^{t}(A^{\#}) \cdot A = \begin{pmatrix} A_{1}^{1} & A_{2}^{1} & \dots & A_{n}^{1} \\ \vdots & \vdots & & \vdots \\ A_{1}^{n} & A_{2}^{n} & \dots & A_{n}^{n} \end{pmatrix} \cdot \begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \dots & a_{n}^{1} \\ \vdots & \vdots & & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{n}^{n} \end{pmatrix} = (c_{j}^{i})$$

Effettuando il prodotto righe per colonne otteniamo che $\forall i, j \in \{1, ..., n\}$

$$c_i^i = (A_i^1 + A_i^2 + \dots + A_i^n) \cdot (a_i^1 + a_i^2 + \dots + a_i^n) = a_i^1 \cdot A_i^1 + a_i^2 \cdot A_i^2 + \dots + a_i^n \cdot A_i^n = \delta_i^i \cdot det(A)$$

 $\text{Ma questo ci porta a dire che } C = \begin{pmatrix} \det(A) & 0 \\ & \ddots & \\ & 0 & \det(A) \end{pmatrix} \text{ e quindi } \frac{1}{\det(A)} \cdot {}^t(A^\#) = \frac{1}{\det(A)} \cdot A \cdot C = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ & 0 & 1 \end{pmatrix}$

Nota - Il valore del determinante di A^{-1}

Il valore del determinante della matrice inversa lo traiamo dalla seguente eguaglianza

$$det(A^{-1}) \cdot det(A) = 1 \Rightarrow det(A^{-1}) = \frac{1}{det(A)}$$

Esempio - Matrice invertibile

Data la seguente matrice

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \text{ con determinante } det(A) = 6 - 3 = 3$$

Prendiamo la matrice aggiunta di A

$$A^{\#} = \begin{pmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_3^1 & A_2^3 & A_3^3 \end{pmatrix}$$

Calcoliamo adesso tutti i complementi algebrici

- $A_1^1 = (-1)^2 \cdot det(\begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}) = 3$
- $A_2^1 = (-1)^3 \cdot det(\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}) = 1$
- $A_3^1 = (-1)^4 \cdot det(\begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}) = -3$
- $A_1^2 = (-1)^3 \cdot det(\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}) = 0$
- $A_2^2 = (-1)^4 \cdot det((\frac{2}{1}, \frac{1}{1})) = 1$
- $A_3^2 = (-1)^5 \cdot det((\begin{smallmatrix} 2 & 0 \\ 1 & 0 \end{smallmatrix})) = 0$
- $A_1^3 = (-1)^4 \cdot det(\begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}) = -3$
- $A_2^3 = (-1)^5 \cdot det((\frac{2}{0}, \frac{1}{1})) = -2$
- $A_3^3 = (-1)^6 \cdot det((\begin{smallmatrix} 2 & 0 \\ 0 & 3 \end{smallmatrix})) = 6$

Quindi otteniamo che la matrice inversa di A ha questa forma

$$A^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 0 & -3 \\ 1 & 1 & -2 \\ -3 & 0 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ -1 & 0 & 2 \end{pmatrix}$$

NOTA! Potremmo procedere anche con la riduzione completa di Gauss ma se la matrice non ha rango massimo non è invertibile

$$B = \left(\begin{array}{ccc|c} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

Effettuami le seguenti operazioni

- $b^3 \to b^3 \frac{1}{2}b^1$
- $b^1 \rightarrow \frac{1}{2}b^1$
- $b^2 \rightarrow \frac{1}{3}b^2$

- $b^3 \rightarrow 2b^3$
- $b^2 \to b^2 \frac{1}{2}b^3$
- $b^1 \to b^1 \frac{1}{2}b^3$

Ritroviamo quindi la seguente matrice dove oltre la "linea di sbarramento" abbiamo la matrice inversa

$$B = \left(\begin{array}{ccc|ccc|ccc|ccc} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ 0 & 0 & 1 & -1 & 0 & 2 \end{array}\right)$$

Teorema - di Cramer

Sia $\Sigma : AX = B$ un sistema lineare su K con $A \in M_n(K)$ allora

Se $\exists A^{-1}$ allora Σ ha come unica soluzione $A^{-1}B$

Dimostrazione

$$(y_1, ..., y_n)$$
 è soluzione di $\Sigma \Leftrightarrow A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = B \Leftrightarrow A^{-1}(A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}) = A^{-1}B \Leftrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A^{-1}B$

Lezione 15° del 07/05/2024

Minore complementare

<u> Definizione - Minore complementare</u>

Sia $A \in M_n(K)$ una matrice quadrata allora presi gli indici $i, h \in \{1, ..., n\}$ individuiamo una sotto-matrice quadrata di A che indichiamo con M_h^i dove eliminiamo la riga i e la colonna h

 M_h^i si chiama minore complementare dell'elemento a_h^i di A

Definizione - Complemento algebrico

Preso l'elemento a_h^i indichiamo il suo complemento algebrico con $A_h^i = (-1)^{i+h} \cdot det(M_h^i)$

Esempio - Minore complementare

$$A = \begin{pmatrix} 7 & -1 & 0 \\ 2 & 4 & -3 \\ 1 & 0 & 1 \end{pmatrix} \text{ scelti } i = 2 \text{ e } h = 1 \text{ abbiamo } M_1^2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Calcoliamo quindi il complemento algebrico $A_1^2=(-1)^{1+2}\cdot det(M_1^2)=(-1)(-1)=1$

$$B = \begin{pmatrix} 2 & -3 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \text{ scelti } i = 3 \text{ e } h = 1 \text{ abbiamo } M_1^3 = \begin{pmatrix} -3 & 1 \\ 1 & 2 \end{pmatrix}$$

Calcoliamo quindi il complemento algebrico $B_1^3 = (-1)^{1+3} \cdot det(M_1^3) = -6 - 1 = -7$

Teorema - primo di Laplace

Sia $A \in M_n(K)$ allora sappiamo che

•
$$\forall i \in \{1, ..., n\}$$
 $det(A) = a_1^i \cdot A_1^i + a_2^i \cdot A_2^i + ... + a_n^i \cdot A_n^i$

•
$$\forall j \in \{1, ..., n\}$$
 $det(A) = a_i^1 \cdot A_i^1 + a_i^2 \cdot A_i^2 + ... + a_i^n \cdot A_i^n$

Esempio - Teorema primo di Laplace

Calcoliamo il det(A) applicando il Teorema primo di Laplace rispetto alla riga di indice i = 3

$$A = \begin{pmatrix} 2 & 1 & 0 & 3 \\ -2 & 2 & 3 & 1 \\ 4 & 0 & 1 & 0 \\ 2 & 2 & 4 & 3 \end{pmatrix}$$

$$det(A) = a_1^3 \cdot A_1^3 + a_2^3 \cdot A_2^3 + a_3^3 \cdot A_3^3 + a_4^3 \cdot A_4^3 = 4 \cdot A_1^3 + 0 \cdot A_2^3 + 1 \cdot A_3^3 + 0 \cdot A_4^3 = 4 \cdot A_1^3 + 1 \cdot A_3^3 + 0 \cdot A_4^3 = 4 \cdot A_1^3 + 1 \cdot A_2^3 + 0 \cdot A_2^3 + 1 \cdot A_3^3 + 0 \cdot A_4^3 = 4 \cdot A_1^3 + 1 \cdot A_2^3 + 0 \cdot A_2^3 + 1 \cdot A_3^3 + 0 \cdot A_4^3 = 4 \cdot A_1^3 + 0 \cdot A_2^3 + 0 \cdot$$

Dobbiamo calcolarci soltanto A_1^3 e A_3^3 ed otteniamo che

•
$$A_1^3 = (-1)^{1+3} \cdot det(M_1^3)$$

•
$$A_3^3 = (-1)^{3+3} \cdot det(M_3^3)$$

Calcoliamo quindi i determinanti del minore complementare

$$M_1^3 = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 3 & 1 \\ 2 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 2 & 4 \end{pmatrix}$$

$$det(M_1^3) = 1 \cdot 3 \cdot 3 + 0 + 3 \cdot 2 \cdot 4 - (3 \cdot 3 \cdot 2 + 1 \cdot 1 \cdot 4 + 0) = 9 + 24 - (18 + 4) = 11$$

$$M_3^3 = \begin{pmatrix} 2 & 1 & 3 \\ -2 & 2 & 1 \\ 2 & 2 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -2 & 2 \\ 2 & 2 \end{pmatrix}$$

$$det(M_3^3) = 2 \cdot 2 \cdot 4 + \cdot 1 \cdot 1 \cdot 2 + 3 \cdot (-2) \cdot 2 - (3 \cdot 2 \cdot 2 + 2 \cdot 1 \cdot 2 + 1 \cdot (-2) \cdot 4) = 24 + 2 - 12 - (12 + 4 - 8) = 14 - 8 = 6$$

In fine mettendo assieme i risultati otteniamo che

•
$$A_1^3 = (-1)^{1+3} \cdot det(M_1^3) = 1 \cdot 11 = 11$$

•
$$A_3^3 = (-1)^{3+3} \cdot det(M_3^3) = 1 \cdot 6 = 6$$

Allora troviamo che $det(A) = 4 \cdot 11 + 6 = 44 + 6 = 50$

Teorema - secondo di Laplace

Sia $A \in M_n(K)$ allora sappiamo che

•
$$\forall i, k \in \{1, ..., n\}$$
 $i \neq k$ $det(A) = a_1^i \cdot A_1^k + a_2^i \cdot A_2^k + ... + a_n^i \cdot A_n^k = 0$

•
$$\forall j, h \in \{1, ..., n\}$$
 $j \neq h$ $det(A) = a_i^1 \cdot A_h^1 + a_i^2 \cdot A_h^2 + ... + a_i^n \cdot A_h^n = 0$

Teorema - Generalizzato di Laplace

Denotiamo il simbolo di Kronecker δ_k^i ovvero l'elemento tale che $\delta_k^i = \begin{cases} 1 \text{ se } i = k \\ 0 \text{ se } i \neq k \end{cases}$ allora

- $\forall i, k \in \{1, ..., n\}$ $a_1^i A_1^k + a_2^i A_2^k + ... + a_n^i A_n^k = \delta_k^i \cdot det(A)$
- $\forall j, h \in \{1, ..., n\}$ $a_h^1 A_i^1 + a_h^2 A_i^2 + ... + a_h^n A_i^n = \delta_i^h \cdot det(A)$

Minore

Definizione - Minore

Sia $A \in M_{m \times n}(K)$ una matrice, un minore di A è una sua sotto-matrice quadrata di ordine h

Esempio - Minore

Data la seguente matrice

$$A = \begin{pmatrix} 2 & 7 & 11 & -3 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

Prendiamo un minore scegliendo $i_1 = 2$ e $i_2 = 3$ per le righe mentre $j_1 = 2$ e $j_2 = 4$ per le colonne ottenendo

$$M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Orlato

Definizione - Orlato

Sia M un minore di $A \in M_{m \times n}(K)$ di ordine h allora se h < min(m, n) chiamiamo un orlato di M un minore di A di ordine h + 1 di cui M è una sotto-matrice.

Esempio - Orlato

Tornando all'esempio precedente, possiamo "orlare" M nei seguenti modi, avendo rispettivamente le righe e colonne per M_1

- $i_1 = 2$ $i_2 = 3$ $i_3 = 1$
- $j_1 = 2$ $j_2 = 4$ $j_3 = 1$

$$M_1 = \begin{pmatrix} 2 & 7 & -3 \\ 2 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Mentre per M_2

- $i_1 = 2$ $i_2 = 3$ $i_3 = 1$
- $j_1 = 2$ $j_2 = 4$ $j_3 = 3$

$$M_2 = \begin{pmatrix} 7 & 11 & -3 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

Teorema - degli Orlati

Sia $A_{m \times n} \in (K)$ il rango di A è uguale a $h \le min(m,n)$ se e solo se esiste un minore M di A di ordine h con $det(M) \ne 0$ e si verifica una delle due condizioni

- 1. h = min(m, n)
- 2. Tutti gli orlati di M hanno determinante nullo

Esempio - Teorema degli Orlati

Sia data la seguente matrice

$$A = \begin{pmatrix} 2 & 1 & 3 & -7 & 1 \\ 1 & 2 & 1 & 3 & 0 \\ 0 & -1 & 2 & -10 & 1 \\ 0 & -3 & 1 & -13 & 1 \end{pmatrix}$$

Prendiamo il minore M=(3) dove $i_1=1$ e $j_1=3$ allora so che $det(3)=3\neq 0$ andiamo quindi a orlare M

$$M' = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 con $i_2 = 2$ e $j_2 = 2$ dove $det(M') = 1 - 6 = -5 \neq 0 \Rightarrow rango(A) \geq 2$

Orliamo quindi M'

$$M'' = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & -1 & 2 \end{pmatrix} \text{ con } i_3 = 3 \text{ e } j_3 = 3 \text{ dove } det(M'') = 5 \neq 0 \Rightarrow rango(A) \geq 3$$

Posso orlare M'' in due modi diversi allora

$$M_1''' = \begin{pmatrix} 2 & 1 & 3 & -7 \\ 1 & 2 & 1 & 3 \\ 0 & -1 & 2 & -10 \\ 0 & -3 & 1 & -13 \end{pmatrix}$$
 con $i_4 = 4$ e $j_4 = 4$ oppure $M_2''' = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & -1 & 2 & 1 \\ 0 & -3 & 1 & 1 \end{pmatrix}$ con $i_4 = 4$ e $j_4 = 5$

Ma vediamo che $det(M_1''') = 0 = det(M_2''')$ e questo ci dice che rango(A) = 3

Teorema - Rappresentazione di un sotto-spazio vettoriale numerico

Sia $W \subseteq K^n$ un sotto-spazio vettoriale numerico allora esiste $\Sigma_0 : AX = 0$ tale che

L'insieme di soluzione di \mathscr{S}_0 di Σ_0 è uguale a W

Dimostrazione Sia dim(W) = h e $B = (w_1, ..., w_n)$ base ordinata di W allora sappiamo che $W = \mathcal{L}(B)$ ed ogni elemento di B lo scriviamo come

- $\bullet \ w_1=\left(a_1^1,a_1^2,...,a_1^n\right)\in W\subseteq K^n$
- $w_2 = (a_2^1, a_2^2, ..., a_2^n) \in W \subseteq K^n$

• $w_n = (a_n^1, a_n^2, ..., a_n^n) \in W \subseteq K^n$

Preso un generico $u=(x_1,...,x_n)\in K^n$ possiamo dimostrare che $u\in W$ in due modi

1.
$$\exists t_1, ..., t_n \in K : (x_1, ..., x_n) = t_1 \cdot w_1 + ... + t_n \cdot w_n = t_1(a_1^1, a_1^2, ..., a_n^n) + ... + t_n(a_n^1, a_n^2, ..., a_n^n)$$

in rappresentazione parametrica
$$\begin{cases} x_1 = a_1^1 \cdot t_1 + \dots + a_n^1 \cdot t_n \\ x_2 = a_1^2 \cdot t_1 + \dots + a_n^2 \cdot t_n \\ \vdots \\ x_n = a_1^n \cdot t_1 + \dots + a_n^n \cdot t_n \end{cases}$$

2. Presa la seguente matrice

$$A = \begin{pmatrix} a_1^1 & \dots & a_n^1 & x_1 \\ \vdots & & \vdots & \vdots \\ a_1^n & \dots & a_n^n & x_n \end{pmatrix}$$

Possiamo imporre che questo rango sia h in due modi

(a) Tramite la riduzione di Gauss riducendo A in una matrice a gradini \overline{A}

$$\overline{A} = \begin{pmatrix} \rho_1^1 & \dots & \dots & a_2^1 x_1 + a_2^1 x^2 + \dots + a_n^1 x_n \\ 0 & \rho_2^2 & \dots & a_2^2 x_1 + a 2 1_2 x^2 + \dots + a_n^2 x_n \\ \vdots & 0 & \ddots & \vdots \\ \vdots & \vdots & \rho_n^h & a_2^h x_1 + a_2^h x^2 + \dots + a_n^h x_n \\ 0 & 0 & \dots & 0 & a_1^{h+1} x_1 + a_2^{h+1} x^2 + \dots + a_n^{h+1} x_n \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & a_1^n x_1 + a_2^n x^2 + \dots + a_n^n x_n \end{pmatrix}$$

In rappresentazione parametrica il sistema è $\begin{cases} a_1^{h+1}x_1 + a_2^{h+1}x^2 + \dots + a_n^{h+1}x_n = 0 \\ \vdots \\ a_1^nx_1 + a_2^nx^2 + \dots + a_n^nx_n = 0 \end{cases}$

(b) Usando il teorema degli orlati sappiamo che esiste un minore M di ordine h di A con $det(M) \neq 0$ quindi a meno di uno scambio di righe possiamo supporre che

$$M = \begin{pmatrix} a_1^1 & \dots & a_h^1 \\ \vdots & & \vdots \\ a_1^h & \dots & a_h^h \end{pmatrix} \text{ dove } det(M) \neq 0$$

Allora abbiamo che $rango(A) = h \Leftrightarrow$ tutti gli orlati di M hanno determinate uguale a 0, ottenendo qui il sistema lineare che cercavamo

$$\begin{cases} det(M_1) = 0 \\ \vdots \\ det(M_{n-h}) = 0 \end{cases}$$

Esempio - Rappresentazione di un sotto-spazio vettoriale numerico

Sia $W = \mathcal{L}((2,1,-2)) \subseteq \mathbb{R}^3$ dove B = ((2,1,-2)) quindi dim(W) = 1, otteniamo quindi la matrice

$$B = \begin{pmatrix} 2 & x_1 \\ 1 & x_2 \\ -2 & x_3 \end{pmatrix}$$

Col primo metodo effettuiamo le operazioni elementari per ridurre a gradini B

Dopo aver effettuato le seguenti operazioni
$$b^2 \to b^2 - \frac{1}{2}b^1$$
 ottenendo $B = \begin{pmatrix} 2 & x_1 \\ 0 & x_2 - \frac{1}{2}x_1 \\ 0 & x_3 + x_1 \end{pmatrix}$

Abbiamo in rappresentazione cartesiana $(x_1, x_2, x_3) \in W \Leftrightarrow \begin{cases} x_2 - \frac{1}{2}x_1 = 0 \\ x_3 + x_1 = 0 \end{cases}$ mentre in parametrica $\begin{cases} x_1 = 2t \\ x_2 = t \\ x_3 = -2t \end{cases}$

Col secondo metodo usiamo gli orlati, preso M=(2) sappiamo che $det(M)=2\neq 0$ osserviamo allora gli orlati

usando
$$i_2 = 2$$
 e $j_2 = 2$ otteniamo $M' = \begin{pmatrix} 2 & x_1 \\ 1 & x_2 \end{pmatrix}$ $det(M') = 2_x - x1$

mentre
$$i_2 = 3$$
 e $j_2 = 2$ otteniamo $M'' = \begin{pmatrix} 2 & x_1 \\ -2 & x_3 \end{pmatrix}$ $det(M'') = 2_x 3 + 2x_1$

Dandoci il seguente sistema $\begin{cases} 2x_2 - x_1 = 0 \\ 2x_3 + 2x_2 = 0 \end{cases}$

Esempio - Rappresentazione di un sotto-spazio vettoriale numerico

Sia $U \subseteq \mathbb{R}^4$ e $U = \mathcal{L}((1,0,1,1),(2,1,2,3),(1,1,1,2))$ sappiamo che la sua base è $B_U = \{(1,0,1,1),(2,1,2,3)\}$

Perché
$$(1,1,1,2) = (2,1,2,3) - (1,0,1,1)$$

Se applichiamo la riduzione di Gauss alla matrice B otteniamo

$$B = \begin{pmatrix} 1 & 2 & x_1 \\ 0 & 1 & x_2 \\ 1 & 2 & x_3 \\ 1 & 3 & x_4 \end{pmatrix} \text{ con le seguenti operazioni } b^3 \to b^3 - b^1 \text{ otteniamo } \begin{pmatrix} 1 & 2 & x_1 \\ 0 & 1 & x_2 \\ 0 & 0 & x_3 - x_1 \\ 0 & 0 & x_4 - x_1 - x_2 \end{pmatrix}$$

Trovando il seguente sistema $\begin{cases} x_3 - x_1 = 0 \\ x_4 - x_1 - x_2 = 0 \end{cases}$

Usando gli orlati troviamo analogamente lo stesso sistema

$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 ha come $det(M) = 1 \neq 0$

Controlliamo gli orlati e abbiamo

usando
$$i_3 = 3$$
 e $j_3 = 3$ otteniamo $M' = \begin{pmatrix} 1 & 2 & x_1 \\ 0 & 1 & x_2 \\ 1 & 2 & x_3 \end{pmatrix}$ $det(M') = x_3 + 2x^2 - x_1 - 2x_2 = x_3 - x_1$

mentre
$$i_3 = 4$$
 e $j_3 = 3$ otteniamo $M'' = \begin{pmatrix} 1 & 2 & x_1 \\ 0 & 1 & x_2 \\ 1 & 3 & x_4 \end{pmatrix}$ $det(M'') = x_4 + 2x_2 - x_1 - 3x_2 = x_4 - x_2 - x_1$

Esempio - Rappresentazione di un sotto-spazio vettoriale numerico

Sia
$$W = \mathcal{L}((2,1,0,3,1),(2,-1,1,4,0)) \subseteq \mathbb{R}^5$$
 quindi $dim(W) = 2 = n - rango(A) \Rightarrow rango(A) = 3$

Vediamo quindi quando un vettore $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ appartiene a W

$$A = \begin{pmatrix} 2 & 2 & x_1 \\ 1 & -1 & x_2 \\ 0 & 1 & x_3 \\ 3 & 4 & x_4 \\ 1 & 0 & x_5 \end{pmatrix}$$

Col primo metodo effettuiamo le operazioni elementari per ridurre a gradini A

Abbiamo in rappresentazione cartesiana
$$(x_1, x_2, x_3, x_4, x_5) \in W \Leftrightarrow \begin{cases} x_3 + \frac{1}{2}x_2 - \frac{1}{4}x_1 = 0 \\ x_4 + \frac{1}{2}x_2 - \frac{7}{4}x_1 = 0 \\ x_5 - \frac{1}{2}x_2 - \frac{1}{4}x_1 = 0 \end{cases}$$

Col secondo metodo usiamo gli orlati, troveremo lo stesso sistema (non sempre succede!)

Esempio - Rappresentazione di un sotto-spazio vettoriale numerico

Siano $W, U \subset \mathbb{R}^4$ con dim(W) = 2 = dim(U) allora determiniamo la loro intersezione, data la loro chiusura lineare

- $W = \mathcal{L}((1,2,0,1),(0,0,1,1))$
- $U = \mathcal{L}((1,0,1,1),(1,2,1,3))$

Calcoliamo prima la rappresentazione di W

Calcoliamo poi la rappresentazione di *U*

Dopo aver effettuato le seguenti operazioni
$$a^{3} \rightarrow a^{3} - a^{1}$$
 ottenendo $W = \begin{pmatrix} 1 & 1 & x_{1} \\ 0 & 2 & x_{2} \\ 0 & 0 & x_{3} - x_{1} \\ 0 & 0 & x_{4} - x_{1} - x_{2} \end{pmatrix}$

Per calcolare poi $W \cap U$ uniamo le loro rappresentazioni

$$W \cap U : \begin{cases} x_2 - 2x_1 = 0 \\ x_4 - x_1 - x_3 = 0 \\ x_3 - x_1 = 0 \\ x_4 - x_1 - x_2 = 0 \end{cases} \Rightarrow \begin{cases} x_2 = 2x_3 \\ x_4 = 2x_3 \\ x_1 = x_3 \\ x_3 = 0 \end{cases}$$

Definizione - Rappresentazione di W in una base B

Sia $V \subset K$ con dim(V) = n e sia data B base ordinata di V

Preso $W \subset V$ con $W = \mathcal{L}(S)$ e dato il sistema $\Sigma_0 : AX = 0$

Il sistema Σ_0 rappresenta W in B significa che un vettore $u \in V$ appartiene a W se e solo se $\phi_B(u)$ è soluzione di Σ_0

Sia $V \subset K$ con dim(V) = n e sia data B base ordinata di V, preso $W \subset V$ con $W = \mathcal{L}(S)$

Sappiamo che $\phi_B(W)=\mathscr{L}(\phi_B(W))$ si chiama rappresentazione di W nella base ordinata B

Lezione 16° del 08/05/2024

Spazio affine

Definizione - Spazio affine

Nello spazio elementare della geometria definiamo uno spazio affine come una struttura (V, A, π) dove

- V spazio vettoriale su K
- A rappresenta "l'insieme dei punti"
- $\pi: \mathcal{A} \times \mathcal{A} \to V$ che ad ogni coppia (P,Q) associa $\pi((P,Q)) = \overrightarrow{PQ}$

Affinché siano uno spazio affine richiediamo però che

- 1. $\forall P \in \mathcal{A} \quad \forall u \in V \quad \exists ! X \in \mathcal{A} : \overrightarrow{PX} = u$
- 2. $\forall P, Q, R \in \mathcal{A} \quad \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$

Teorema - Proprietà spazio affine

- 1. $\forall P, Q \in \mathcal{A} \quad \overrightarrow{PQ} = 0 \Leftrightarrow P = Q$
- 2. $\forall P, Q \in \mathcal{A} \quad -\overrightarrow{PQ} = \overrightarrow{OP}$

Dimostrazione

1. • " \Leftarrow " Per la seconda proprietà degli spazi affini $\overrightarrow{PP} + \overrightarrow{PP} = \overrightarrow{PP}$ $\Rightarrow \overrightarrow{PP} + \overrightarrow{PP} - (\overrightarrow{PP}) = \overrightarrow{PP} - (\overrightarrow{PP}) = 0$ Per ipotesi so che P = Q quindi $\overrightarrow{PP} = \overrightarrow{PQ}$

Per la prima proprietà degli spazi affini so che Q è unico • " \Rightarrow " Per ipotesi so che $\overrightarrow{PQ} = 0$ Per ipotesi so che $\overrightarrow{PQ}=\underline{0}$ Se prendo quindi un secondo punto con la proprietà che $\overrightarrow{PP}=$

2. $\overrightarrow{PQ} + \overrightarrow{QP} = \overrightarrow{PP} = 0$

Esempio - Spazio affine

Sia V uno spazio vettoriale con $\mathcal{A}=V$ e data l'applicazione $\pi:V\times V\to V$ che ad ogni coppia (u,v) associa v-u

Vediamo se soddisfa le proprietà di spazio affine:

- 1. Vediamo se $\forall u \in V \quad \forall w \in V \quad \exists! v \in V : \pi((u, v)) = w$ quindi ci basta prendere v = w + u
- 2. $\forall u, v, w \in V$ $\pi(u, v) + \pi(v, w) = \pi(u, w)$

Definizione - Riferimento cartesiano

Sia (V, A, π) uno spazio affine dove dim(V) = n = dim(A) possiamo definire un riferimento cartesiano $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Ovvero una coppia formata da $\mathcal{O} \in \mathcal{A}$ detto origine del riferimento e \mathcal{B} che è una base ordinata di V

Definizione - Coordinate di un punto

Sia (V, A, π) uno spazio affine con dim(A) = n e il suo riferimento cartesiano $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Allora $\forall P \in \mathcal{A}$ le coordinate di P in \mathcal{R} sono le componenti in \mathcal{B} del vettore \overrightarrow{OP} ovvero $P \equiv_{\mathcal{B}} (x_1,...,x_n) = \phi_{\mathcal{B}}(\overrightarrow{OP})$

Teorema - sulle Coordinate di un Punto

Sia (V, A, π) uno spazio affine con dim(A) = n ed il suo riferimento cartesiano $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Allora $\forall P, Q \in \mathcal{A}$ siano le coordinate dei due punti

- $P \equiv_{\mathcal{B}} (x_1, ..., x_n)$
- $Q \equiv_{\mathcal{B}} (y_1, \dots, y_n)$

Allora $\phi_{\mathcal{B}}(\overrightarrow{PQ}) = (y_1 - x_1, ..., y_n - x_n)$

Dimostrazione $\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ} = -(\overrightarrow{OP}) + \overrightarrow{OQ}$

 $\phi_{\mathcal{B}}(\overrightarrow{PQ}) = -\phi_{\mathcal{B}}(\overrightarrow{OP}) + \phi_{\mathcal{B}}(\overrightarrow{OQ}) = -(x_1, ..., x_n) + (y_1, ..., y_n)$

Definizione - Sotto-spazi affini

Sia (V, A, π) uno spazio affine, dato $\mathcal{H} \subseteq A$ si dice sotto-spazio affine di A se ha le seguenti proprietà

- 1. $\pi(\mathcal{H} \times \mathcal{H})$ è un sotto-spazio vettoriale di V
- 2. $\forall P \in \mathcal{H} \quad \forall u \in \vec{\mathcal{H}} \quad \text{l'unico punto } X \text{ tale che } \overrightarrow{PX} = u \text{ appartiene ad } \mathcal{H}$

Ovvero $(\vec{\mathcal{H}}, \mathcal{H}, \pi_{\mathcal{H} \times \mathcal{H}})$ è uno spazio affine con $\pi : \mathcal{H} \times \mathcal{H} \to \vec{\mathcal{H}}$

Nota - Giacitura e Iperpiano

Sia (V, \mathcal{A}, π) uno spazio affine e $(\vec{\mathcal{H}}, \mathcal{H}, \pi_{\mathcal{H} \times \mathcal{H}})$ un sotto-spazio affine di \mathcal{A}

Chiamiamo $\vec{\mathcal{H}} = \pi(\mathcal{H} \times \mathcal{H})$ giacitura mentre se $dim(\mathcal{A}) = n$ e $dim(\mathcal{H}) = n - 1$ allora \mathcal{H} si dice iperpiano

Definizione - Varietà Lineare

Sia (V, A, π) uno spazio affine con $U \subseteq V$ uno sotto-spazio vettoriale e $P_0 \in A$

Chiamiamo varietà lineare la coppia $(P_0, U) = \{Q \in A \mid \overrightarrow{P_0Q} \in U\}$ passante per P_0 e parallela a U

Teorema - sulla Varietà Lineare

Sia (V, A, π) uno spazio affine con H sottospazio affine con giacitura $\vec{\mathcal{H}}$ allora sappiamo che

- 1. Se $(\mathcal{H}, \vec{\mathcal{H}}, \pi)$ è un sotto-spazio affine allora $H = (P_0, \vec{\mathcal{H}})$ è varietà lineare con $P_o \in \mathcal{H}$
- 2. $\forall P_0 \in \mathcal{H}$ ogni varietà lineare $(P_0, \vec{\mathcal{H}})$ è un sotto-spazio affine con giacitura $\vec{\mathcal{H}}$

Lezione 17° del 13/05/24

Teorema - di Caratterizzazione

Siano V, W spazi vettoriali sul campo K con

- dim(V) = n con base ordinata $B = (a_1, ..., a_n)$
- dim(W) = m con base ordinata $B' = (a'_1, ..., a'_m)$

Allora $\forall u \in V$ prendiamo $u \equiv_B (x_1, ..., x_n)$

$$\exists ! A \in M_{m \times n}(K) : A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = {}^t \phi_B(T(u))$$

Dimostrazione

Supponiamo che $\phi_B^{-1}{}_o T_o \phi_{B'} = \overset{\sim}{T_A}$ allora

- $\bullet \ u = x_1 a_1 + \ldots + x_n a_n$
- $T(u) = y_1 a'_1 + ... + y_m a'_m$

Questo ci porta a dedurre che

$$T(u) = T(x_1 a_1 + ... + x_n a_n) = x_1 T(a_1) + ... + x_n T(a_n) =$$

$$=x_1(a_1^1a_1'+\ldots+a_1^ma_m')+\ldots+x_n(a_1^1a_1'+\ldots+a_1^ma_m')=(a_1^1x_1+\ldots+a_n^1x_n)a_1'+\ldots(a_1^mx_1+\ldots+a_n^mx_n)a_m'$$

Allora questo ci porta a dedurre che

$$A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_1^1 x_1 + \dots + a_n^1 x_n \\ \vdots \\ a_1^m x_1 + \dots + a_n^m x_n \end{pmatrix}$$

Esempio - Teorema di Caratterizzazione

Sia data l'applicazione lineare $T: M_{2\times 2} \to \mathbb{R}^3$ che associa $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \leadsto (a-2b,a+2c+d,2b+2c+d)$

Date le rispettive basi

•
$$B = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

•
$$B' = ((1,1,0),(0,1,1),(0,0,1))$$

Adesso costruiamo l'omomorfismo associato alla base B' per trovarci le componenti delle immagini dei vettori della base canonica

Preso un generico vettore (a_1, a_2, a_3) sarà uguale a $\alpha(1, 1, 0) + \beta(0, 1, 1) + \gamma(0, 0, 1) = (\alpha, \alpha + \beta, \beta + \gamma)$ quindi risolviamo il sistema

$$\begin{cases} \alpha = a_1 \\ \alpha + \beta = a_2 \\ \beta + \gamma = a_3 \end{cases} \Rightarrow \begin{cases} \alpha = a_1 \\ \beta = a_2 - a_1 \\ \gamma = a_3 - a_2 + a_1 \end{cases}$$

Quindi otteniamo l'isomorfismo $\phi_{B'}:\mathbb{R}^3 \to \mathbb{R}^3$ che associa $(a_1,a_2,a_3) \leadsto (a_1,a_2-a_1,a_3-a_2+a_1)$

Facciamo quindi l'immagine dei vettori della base B e prendiamo i componenti in B'

•
$$T\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) = (1, 1, 0) = \phi_{B'}(1, 1, 0) = (1, 0, 0)$$

•
$$T\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) = (-2, 0, 2) = \phi_{B'}(-2, 0, 2) = (-2, 2, 0)$$

•
$$T\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right) = (0, 2, 2) = \phi_{B'}(0, 2, 2) = (0, 2, 0)$$

•
$$T\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) = (0, 1, 1) = \phi_{B'}(0, 1, 1) = (0, 1, 0)$$

Ottenendo così la matrie associate nelle base B e B'

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Matrice di passaggio da B a B'

Definizione - Matrice di passaggio da B a B'

Sia l'applicazione lineare $T = id_V$ ovvero $T : V \to V$ dove dim(V) = n

Date le basi del dominio e codominio

- $B = (a_1, ..., a_n)$
- $\overline{B} = (\overline{a_1}, ..., \overline{a_n})$

Sia $P=M_{B\overline{B}}(id_V)$ è detta matrice di passaggio da B a \overline{B} oppure di cambiamento di base

Infatti sia $u=x_1a_1+\ldots+x_na_n$ allora la sua immagine $id_V(u)=x_1\overline{a_1}+\ldots+x_n\overline{a_n}$ allora otteniamo che

$$P\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \overline{x_1} \\ \vdots \\ \overline{x_n} \end{pmatrix}$$

Esempio - Matrice di Passaggio da B a \overline{B}

Sia $V = \mathbb{R}^2$ e date le due basi

- B = ((1,0),(0,1))
- $\overline{B} = ((1,1),(1,-1))$

Allora calcoliamo le componenti dei vettori della base di B in \overline{B}

1.
$$(1,0) = \alpha(1,1) + \beta(1,-1) = (\alpha + \beta) + (\alpha - \beta)$$

2.
$$(0,1) = \alpha(1,1) + \beta(1,-1) = (\alpha + \beta) + (\alpha - \beta)$$

Risolviamo i sistemi di equazione associati

1.
$$\begin{cases} 1 = \alpha + \beta \\ 0 = \alpha - \beta \end{cases} \Rightarrow \begin{cases} \beta = \frac{1}{2} \\ \alpha = \beta \end{cases}$$

2.
$$\begin{cases} 0 = \alpha + \beta \\ 1 = \alpha - \beta \end{cases} \Rightarrow \begin{cases} \alpha = -\beta \\ \beta = \frac{1}{2} \end{cases}$$

Quindi troviamo la matrice di passaggio

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Nota - Composizione di Applicazioni Lineari e Matrici di passaggio

Sia $T:V\to W_{B'}$ un'applicazione lineare con matrice di passaggio $A=M_{BB'}(T)$ osserviamo due casi

- 1. Se T è un isomorfismo allora $A^{-1} = M_{B'B}(T^{-1})$
- 2. Se $T': W \to U$ un'applicazione lineare con matrice di passaggio $A' = M_{B'B''}(T')$ allora $A' \cdot A = M_{BB''}(T'_oT)$

Matrici di passaggio da B a B' negli spazi affini

Teorema - Matrice di Passaggio da B a B' negli spazi affini

Sia (V, A, π) con dim(A) = n e fissiamo le basi ed i riferimenti

- $\mathcal{R} = (\mathcal{O}, \mathcal{B} = (a_1, ..., a_n))$
- $\mathcal{R}' = (\mathcal{O}', \mathcal{B}' = (a'_1, ..., a'_n))$

Fissiamo un punto P e prendiamo le sue coordinate $P \equiv_{\mathcal{R}} (x_1,...,x_n)$ e nel secondo riferimento $P \equiv_{\mathcal{R}'} (x_1',...,x_n')$

Con la notazione fissata, sia E la matrice di passaggio da B a B' otteniamo

$$\begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = E \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \phi_{\mathcal{B}} (\overrightarrow{\mathcal{O}'\mathcal{O}})$$

Dimostrazione

Siccome $\overrightarrow{\mathcal{O}'P} = \overrightarrow{\mathcal{O}'\mathcal{O}} + \overrightarrow{\mathcal{O}P}$ osserviamo le componenti in \mathcal{B}'

$$\phi_{\mathcal{B}}(\overrightarrow{\mathcal{O'P}}) = \phi_{\mathcal{B}}(\overrightarrow{\mathcal{O'O}} + \overrightarrow{\mathcal{OP}}) = \phi_{\mathcal{B'}}(\overrightarrow{\mathcal{O'O}}) + \phi_{\mathcal{B}}(\overrightarrow{\mathcal{OP}})$$

Quindi otteniamo la tesi che volevamo dimostrare

Esempio - Matrice di Passaggio da B a B' negli spazi affini

Sia (V, A, π) con dim(V) = 2 e fissiamo le basi ed i riferimenti

- $\mathcal{R} = (\mathcal{O}, \mathcal{B} = (a_1, a_2))$
- $\mathcal{R}' = (\mathcal{O}', \mathcal{B}' = (a'_1, a'_2))$

Fissiamo $\mathcal{O}' \equiv_{\mathcal{R}} (2,1)$ ed anche i vettori della base \mathcal{B}' in modo da trovare la matrice e di passaggio da \mathcal{B}' a \mathcal{B}

$$\begin{vmatrix} a_1' = a_1 + 3a_2 \\ a_2' = 2a_1 - a_2 \end{vmatrix} \Rightarrow E' = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$

Calcoliamoci quindi il determinante di E' = -1 - 6 = -7 quindi è invertibile, calcoliamo i complementi algebrici

- $E_1^1 = (-1)^2 \cdot \det(-1) = -1$
- $E_2^1 = (-1)^3 \cdot \det(3) = -3$
- $E_1^2 = (-1)^3 \cdot \det(2) = -2$
- $E_2^2 = (-1)4 \cdot \det(1) = 1$

Completiamo quindi la matrice $E^{\#}$

$$E^{\#} = \begin{pmatrix} -1 & -3 \\ -2 & 1 \end{pmatrix}$$

Non ci resta che calcolare la matrice E

$$E = -\frac{1}{7} \cdot \begin{pmatrix} -1 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{1}{7} \end{pmatrix}$$

Adesso mancano solo le coordinate di \mathcal{O} nel riferimento \mathcal{R}' ma per la proprietà degli omomorfismi sappiamo che

$$\phi_{\mathcal{B}'}(\overrightarrow{\mathcal{O}'\mathcal{O}}) = \phi_{\mathcal{B}'}(\overrightarrow{-\mathcal{O}\mathcal{O}'}) = -\phi_{\mathcal{B}'}(\overrightarrow{\mathcal{O}\mathcal{O}'}) = -E\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} -\frac{4}{7}\\-\frac{5}{7} \end{pmatrix}$$

Allora infine troviamo che

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -\frac{4}{7} \\ -\frac{5}{7} \end{pmatrix} + \begin{pmatrix} \frac{1}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{1}{7} \end{pmatrix} + \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Rightarrow \begin{cases} x_1' = -\frac{4}{7} + \frac{1}{7}x_1 + \frac{2}{7}x_2 \\ x_2' = -\frac{5}{7} + \frac{3}{7}x_1 - \frac{1}{7}x_2 \end{cases}$$

Teorema - Rappresentazione in $\mathcal R$ di $\mathcal H$

Sia (V, A, π) con dim(A) = n e fissiamo un riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Se $\mathcal H$ è un sotto-spazio vettoriale affine di $\mathcal A$ allora $\exists \Sigma: AX=B$ ovvero un sistema di equazioni in n variabili sul campo K tale che il suo insieme $\mathscr S$ delle soluzioni coincida con l'insieme delle coordinate in $\mathcal R$ dei punti di $\mathcal H$

Dimostrazione

- 1. Presa la varietà lineare $\mathcal{H} = (P_0, \vec{\mathcal{H}}) = \{Q \in \mathcal{A} \mid \overrightarrow{P_0Q} \in \vec{\mathcal{H}}\} \quad \forall P_0 \in \mathcal{H}$
- 2. Noi sappiamo che $Q \equiv_{\mathcal{R}} (x_1, ..., x_n)$ e che $Q \in \mathcal{H} \Leftrightarrow \overrightarrow{P_0 Q} \in \overrightarrow{\mathcal{H}} \Leftrightarrow \phi_{\mathcal{B}}(\overrightarrow{P_0 Q}) \in \phi_{\mathcal{B}}(\overrightarrow{\mathcal{H}})$
- 3. Sappiamo che $\exists \Sigma_0 : AX = 0$ le cui soluzioni sono tutti e soli i vettori di $\phi_{\mathcal{B}}(\vec{\mathcal{H}})$

Ma quindi un punto
$$Q \in \mathcal{H} \Leftrightarrow A \begin{pmatrix} x_1 - a_1 \\ \vdots \\ x_n - a_n \end{pmatrix} = 0 \Leftrightarrow A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} - A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = 0 \Leftrightarrow A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

Teorema - Inverso alla Rappresentazione in $\mathcal R$ di $\mathcal H$

Se $\Sigma: AX = B$ è un sistema lineare sul campo K in n incognite, allora esiste un sotto-spazio affine \mathcal{H} in uno spazio affine \mathcal{A} sul campo K con $dim(\mathcal{A}) = n$ che in un riferimento cartesiano fissato è rappresentato da Σ .

Inoltre se $\mathcal{H} \neq \emptyset$ allora $dim(\mathcal{H}) = n - rango(A)$

Affinemente indipendenti

Definizione - Affinemente indipendenti

Una *n*-upla di punti $(P_0, P_1, ..., P_n)$ si dice affinemente indipendente se $\{\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_n}\}$ è linearmente indipendente

Nota - Non conta l'ordine nell'insieme dei punti

Quando controlliamo se una n-upla di punti è affinemente indipendente vale che

$$(P_0, P_1, ..., P_n)$$
 è affinemente indipendete $\Leftrightarrow (P_{i_0}, ..., P_{i_n}) \quad \forall (i_0, ..., i_n)$

Rette Sghembe

Definizione - Rette Sghembe

Sia (V, A, π) uno spazio affine con dim(A) = 3 e fissato un riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prese due rette r ed r' allora abbiamo che

- $r \in r'$ sono totalmente sghembe $\Leftrightarrow r \cap r' = \emptyset \in \vec{r} \cap \vec{r'} = \{0\}$
- $r \in r'$ sono sghembe $\Leftrightarrow r \cap r' = \emptyset \in r \not | r'$

In maniera inversa diciamo r ed r' non sono sghembe $\Leftrightarrow \vec{r} \neq \vec{r'} \Leftrightarrow r \cap r' = \{\underline{0}\}$

Domanda - Che informazioni mi danno due rette se sono oppure non sono sghembe?

Prese due rette r e r' allora vediamo che informazioni possiamo trarre dall'essere o non essere sghembe

- 1. Se esiste un piano \mathcal{H} che contiene sia r sia r' allora le due rette non possono essere sghembe
- 2. Se due rette non sono sqhembe, sono incidenti o parallele $\Rightarrow r$ e r' sono complanari

Da questo ricaviamo che r e r' sono complanari $\Leftrightarrow r$ e r' non sono sghembe

Esempio - Rette

Sia (V, A, π) uno spazio affine con dim(A) = 2 sul campo \mathbb{R} e fissiamo un riferimento cartesiano $\mathcal{R} = (\mathcal{O}, \mathcal{B} = (a_1, a_2))$

Rappresentiamo la retta r passante per $P\equiv_{\mathcal{R}}(2,1)$ e $P'\equiv_{\mathcal{R}}(3,-1)$ procedendo step-by-step

- 1. Sappiamo che se $P, Q \in r \Rightarrow \overrightarrow{PQ} \in \overrightarrow{r}$
- 2. Ma $\vec{r} = \mathcal{L}(u(1, -2)) = \mathcal{L}(\phi_{\mathcal{B}}(\overrightarrow{PP'}))$
- 3. Quindi $Q \equiv_{\mathcal{R}} (x_1, x_2) \in r \Leftrightarrow \overrightarrow{PQ} \in \overrightarrow{r} \Leftrightarrow \overrightarrow{PQ} \in \mathscr{L}(u(1, -2))$

Quindi dobbiamo imporre il rango della matrice uguale ad 1

$$\begin{pmatrix} 1 & x_1 - 2 \\ -2 & x_2 - 1 \end{pmatrix}$$

Ed otteniamo che $x_2 - 1 + 2(x_1 - 2) = 0 \Rightarrow r : 2x_1 + x_2 = 5$

Rappresentiamo adesso la ressa s parallela ad r e passante per il punto $Q \equiv_{\mathcal{R}} (7, -5)$

- 1. Per la prima condizione abbiamo che $s \parallel r \Leftrightarrow \vec{s} = \vec{r}$ allora $\vec{s} : 2x_1 + x_2 = 0$
- 2. Abbiamo quindi che $s : 2x_1 + x_2 + k = 0$
- 3. Sostituiamo in punti di Q per trovare k e otteniamo $9 + k = 0 \Rightarrow k = -9$

Quindi la nostra retta $s: 2x_1 + x_2 - 9 = 0$

In alternativa possiamo usare la forma parametrica di r dicendo che $\exists t \in \mathbb{R}: (x_1-2,x_2-1)=t(1,-2)$ $\begin{cases} x_1=2+t\\ x_2=1-2t \end{cases}$

Sia (V, A, π) uno spazio affine con dim(A) = 3 sul campo \mathbb{R} e fissiamo un riferimento cartesiano $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Rappresentiamo il piano α passante per $P_0(0,-2,1), P_1(1,1,-1), P_2(2,1,0)$ ovvero $\vec{\alpha}=\mathscr{L}(\overrightarrow{P_0P_1},\overrightarrow{P_0P_2})$

Quindi
$$Q(x_1, x_2, x_3) \in \alpha \Leftrightarrow \overrightarrow{P_0Q} \in \vec{\alpha} \Leftrightarrow \text{rango} \begin{pmatrix} 1 & 2 & x_1 \\ 3 & 3 & x_2 + 2 \\ -2 & -1 & x_3 - 1 \end{pmatrix} = 2$$

Usiamo quindi la regola di Sarrus per calcolarci il determinante, imponendolo uguale a 0 e ottenendo il piano che cercavamo

$$\begin{pmatrix} 1 & 2 & x_1 \\ 3 & 3 & x_2 + 2 \\ -2 & -1 & x_3 - 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 3 \\ -2 & -1 \end{pmatrix}$$

Otteniamo
$$3(x_3-1)-4(x_2+2)-3x_1+6x_1+(x_2+2)-6(x_3-1)=3x_3-3-4x_2-8-3x_1+6x_1+x_2+2-6x_3+6=0$$

Facciamo i conti ed abbiamo che $3x_1 - 3x_2 - 3x_3 + 3 = 0$ quindi il piano che cercavamo è $\alpha: x_1 - x_2 - x_3 + 1 = 0$

Lezione 18° del 15/05/24

Nota - Dimensione di Rette e Piani

Definiamo il piano un sotto-spazio affine di dimensione 2 mentre una retta un sotto-spazio affine di dimensione 1

Parallelismo

Definizione - Parallelismo

Sia (V, A, π) uno spazio affine e presi $\mathcal{H}, \mathcal{H}'$ sotto-spazi affini allora diciamo che sono paralleli quando

$$\mathcal{H} \parallel \mathcal{H}' \Leftrightarrow \vec{\mathcal{H}} \subseteq \vec{\mathcal{H}}' \text{ oppure } \vec{\mathcal{H}}' \subseteq \vec{\mathcal{H}}$$

Mentre se prendiamo una retta r diciamo che è parallela a ${\cal H}$ quando

$$r \parallel \mathcal{H} \Leftrightarrow \vec{r} \subseteq \vec{\mathcal{H}}$$
 oppure $\vec{\mathcal{H}} \subseteq \vec{r}$

Esempio - Parallelismo

Sia (V, A, π) uno spazio affine con dim(A) = 3 e con $K = \mathbb{R}$ fissiamo un riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prendiamo il piano ${\cal H}$ e la retta r come segue

|| piano
$$\mathcal{H}$$
: $3x_1 - 4x_2 + x_3 - 2 = 0$ e |a retta r :
$$\begin{cases} x_1 + x_2 - 2x_3 = 0 \\ 2x_1 - x_2 + x_3 = 1 \end{cases}$$

La retta r è parallela ad \mathcal{H} ? Se la risposta è negativa determinare una retta s parallela ad \mathcal{H} e passante per P(-1,4,1)

Prendiamo quindi le due giaciture e controlliamo che $\vec{r} \subseteq \vec{\mathcal{H}}$ (il contrario è impossibile per le dimensioni)

Giacitura del piano
$$\vec{\mathcal{H}}: 3x_1 - 4x_2 + x_3 = 0$$
 e la giacitura della retta $\vec{r}: \begin{cases} x_1 + x_2 - 2x_3 = 0 \\ 2x_1 - x_2 + x_3 = 0 \end{cases}$

Per sapere se sono paralleli vediamo se $V_r \in \vec{\mathcal{H}} \Rightarrow \mathscr{L}(V_r) \in \vec{\mathcal{H}}$ sapendo che $\mathscr{L}(V_r) = \vec{r}$

Prendiamo quindi la matrice associata ad \vec{r} e riduciamola a gradini per trovare l'insieme di soluzioni \mathscr{S}_0

$$\begin{pmatrix}1&1&-2\\2&-1&1\end{pmatrix} \text{ effettuando le operazioni} & a^2 \to a^2-2a^1\\ a^2 \to -\frac{1}{3}a^2 & \text{otteniamo} & \begin{pmatrix}1&1&-2\\0&1&-\frac{5}{3}\end{pmatrix}$$

Otteniamo quindi il sistema

$$\begin{cases} x_1 = -x_2 + 2x_3 \\ x_2 = \frac{5}{3}x_3 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = \frac{5}{3}x_3 \end{cases}$$

Quindi abbiamo l'insieme di soluzioni $\mathscr{S}_0 = \{(\frac{1}{3}x_3, \frac{5}{3}x_3, x_3) \mid x_3 \in \mathbb{R}\} = \mathscr{L}((\frac{1}{3}, \frac{5}{3}, 1)) \Rightarrow V_r = (\frac{1}{3}, \frac{5}{3}, 1)$

Quindi $\overrightarrow{r} \subseteq \overrightarrow{\mathcal{H}} \Leftrightarrow 3 \cdot 1 - 4 \cdot 5 + 1 \cdot 3 = 0$ ma sappiamo che questa equivalenza è falsa allora $r \not \mid \mathcal{H}$

Andiamo a definire quindi una retta s parallela a $\mathcal H$ ovvero $u(1,1,1)\in\mathcal H\Rightarrow \mathscr L(u(1,1,1))\subseteq\vec{\mathcal H}$

Quindi $\overrightarrow{s}: \mathscr{L}(u(1,1,1))$ e facciamola passare per il punto P=(1,4,-1) ottenendo

$$s = \begin{cases} x_1 = -1 + t \\ x_2 = 4 + t \\ x_3 = 1 + t \end{cases} \Rightarrow \begin{cases} t = x_1 + 1 \\ x_2 = 4 + x_1 + 1 \\ x_3 = 1 + x_1 + 1 \end{cases} \Rightarrow \begin{cases} -x_1 + x_2 = 5 \\ -x_1 + x_3 = 2 \end{cases}$$

Domanda - Come passo da rappresentazione Cartesiana a Parametrica

Se prendiamo una generica rappresentazione cartesiana del tipo

$$\begin{cases} x_1 - x_2 + 2x_3 = 3 \\ -x_1 + 2x_2 - x_3 = -1 \end{cases}$$

Allora prendiamo la matrice associata al sistema di equazioni lineari e riduciamola completamente

$$\begin{pmatrix}1&-1&2&3\\-1&2&-1&-1\end{pmatrix} \text{ effettuando le operazioni } \begin{matrix}a^2\to a^2+a^1\\a^1\to a^1+a^2\end{matrix} \text{ troviamo } \begin{pmatrix}1&0&3&5\\0&1&1&2\end{pmatrix}$$

Quindi otteniamo il sistema

$$\begin{cases} x_1 = -3x_3 + 5 \\ x_2 = -x_3 + 2 \end{cases} \Rightarrow \begin{cases} x_1 = 5 - 3t \\ x_2 = 2 - t \\ x_3 = t \end{cases}$$

Esempio - Trova le soluzioni del sistema lineare

Dato il seguente sistema di equazioni lineari

$$\begin{cases} x_1 + x_2 + 4x_3 = -2\\ 2x_1 + 2x_2 - 2x_3 = 0 \end{cases}$$

Prendo la matrice associata e la riduco a gradini

$$\begin{pmatrix}1&1&4&-2\\2&2&-2&0\end{pmatrix} \text{ effettuando le operazioni } a^2 \rightarrow a^2-2a^1 \text{ troviamo } \begin{pmatrix}1&1&4&-2\\0&0&-10&4\end{pmatrix}$$

Quindi abbiamo il sequente sistema di equazioni associato

$$\begin{cases} x_1 = -x_2 - 4x_3 - 2 \\ -10x_3 = 4 \end{cases} \Rightarrow \begin{cases} x_1 = -x_2 - \frac{2}{5} \\ x_3 = -\frac{2}{5} \end{cases}$$

Quindi abbiamo il seguente insiemi di soluzioni $\mathscr{S}=\{(-x_2-\frac{2}{5},x_2,-\frac{2}{5}\mid x_2\in\mathbb{R}\}$ quindi in rappresentazione parametrica

$$\begin{cases} x_1 = -t - \frac{2}{5} \\ x_2 = t \\ x_3 = -\frac{2}{5} \end{cases}$$
 quindi otteniamo che $V_r(-1, 1, 0)$

Non mi resta che controllare che l'insieme di soluzioni sia corretto vedendo se V_r è soluzione del sistema

$$\begin{cases} x_1 + x_2 + 4x_3 = 0 \\ 2x_1 + 2x_2 - 2x_3 = 0 \end{cases}$$

Incidenza

Definizione - Incidenza

Sia (V, A, π) uno spazio affine e fissato un riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$ osserviamo le condizioni di incidenza per le rette

Dimensione 2

Prendiamo due rette r e r' con le loro giaciture e intersezione

- $r: ax_1 + bx_2 = c$ $\vec{r}: ax_1 + bx_2 = 0$
- $r': a'x_1 + b'x_2 = c'$ $\vec{r'}: a'x_1 + b'x_2 = 0$

Adesso prendiamo la loro intersezione e la matrice completa associata

$$r \cap r' : \begin{cases} ax_1 + bx_2 = c \\ a'x_1 + b'x_2 = c' \end{cases} \quad \text{e la matrice } C = \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix}$$

Sappiamo che 1 < rango(A) < rango(C) < 2 e osserviamo le varie possibilità

- $1 = rango(A) = rango(C) \Rightarrow r = r'$
- $1 = rango(A) < rango(C) = 2 \Rightarrow r \parallel r' \text{ ovvero } (r \cap r' = \emptyset \text{ e } \vec{r} = \vec{r'})$
- $2 = rango(A) = rango(C) \Rightarrow r \cap r' = \{P\} \text{ (dove } P \text{ è il punto di intersezione)}$

Dimensione 3

Prendiamo due rette r e r' con le loro giaciture e intersezione

•
$$r: \begin{cases} ax_1 + bx_2 + cx_3 = d \\ \alpha x_1 + \beta x_2 + \gamma x_3 = \delta \end{cases}$$
 $\vec{r}: \begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ \alpha x_1 + \beta x_2 + \gamma x_3 = 0 \end{cases}$

•
$$r': \begin{cases} a'x_1 + b'x_2 + c'x_3 = d' \\ \alpha'x_1 + \beta'x_2 + \gamma'x_3 = \delta' \end{cases}$$
 $\vec{r'}: \begin{cases} a'x_1 + b'x_2 + c'x_3 = 0 \\ \alpha'x_1 + \beta'x_2 + \gamma'x_3 = 0 \end{cases}$

Adesso prendiamo la loro intersezione e la matrice completa associata

$$r \cap r' : \begin{cases} ax_1 + bx_2 + cx_3 = d \\ \alpha x_1 + \beta x_2 + \gamma x_3 = \delta \\ a'x_1 + b'x_2 + c'x_3 = d' \\ \alpha' x_1 + \beta' x_2 + \gamma' x_3 = \delta' \end{cases}$$
 e la matrice $C = \begin{pmatrix} a & b & c & d \\ \alpha & \beta & \gamma & \delta \\ a' & b' & c' & d' \\ \alpha' & \beta' & \gamma' & \delta' \end{pmatrix}$

Sappiamo che $2 \le rango(A) \le rango(C) \le 4$ e osserviamo le varie possibilità

- $2 = rango(A) = rango(C) \Rightarrow r = r'$
- $2 = rango(A) < rango(C) = 3 \Rightarrow r \parallel r' \text{ ovvero } (r \cap r' = \emptyset \text{ e } \vec{r} = \vec{r'})$
- $3 = rango(A) = rango(C) \Rightarrow r \cap r' = \{P\} \text{ (dove } P \text{ è il punto di intersezione)}$
- $3 = rango(A) < rango(C) = 4 \Rightarrow r \cap r' = \emptyset$ e $r \not | r'$ (ossia $r \in r'$ sono sghembe)

Prendiamo una retta r e un piano H con le loro giaciture e intersezione

•
$$r: \begin{cases} ax_1 + bx_2 + cx_3 = d \\ \alpha x_1 + \beta x_2 + \gamma x_3 = \delta \end{cases}$$
 $\vec{r}: \begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ \alpha x_1 + \beta x_2 + \gamma x_3 = 0 \end{cases}$

•
$$\mathcal{H}: a'x_1 + b'x_2 + c'x_3 = d'$$
 $\vec{\mathcal{H}}: a'x_1 + b'x_2 + c'x_3 = 0$

Adesso prendiamo la loro intersezione e la matrice completa associata

$$r \cap \mathcal{H}: \begin{cases} ax_1 + bx_2 + cx_3 = d \\ \alpha x_1 + \beta x_2 + \gamma x_3 = \delta \\ a'x_1 + b'x_2 + c'x_3 = d' \end{cases} \quad \text{e la matrice } C = \begin{pmatrix} a & b & c & d \\ \alpha & \beta & \gamma & \delta \\ a' & b' & c' & d' \end{pmatrix}$$

Sappiamo che $2 \le rango(A) \le rango(C) \le 3$ e osserviamo le varie possibilità

- $2 = rango(A) = rango(C) \Rightarrow r \subseteq \mathcal{H}$
- $2 = rango(A) < rango(C) = 3 \Rightarrow r \parallel \mathcal{H} \text{ ovvero } (r \cap r' = \emptyset \text{ e } \vec{r} = \vec{\mathcal{H}})$
- $3 = rango(A) = rango(C) \Rightarrow r \cap \mathcal{H} = \{P\} \text{ (dove } P \text{ è il punto di intersezione)}$

Prendiamo due piani \mathcal{H} e \mathcal{H}' con le loro giaciture e intersezione

- $\mathcal{H} : ax_1 + bx_2 = c$ $\vec{\mathcal{H}} : ax_1 + bx_2 = 0$
- $\mathcal{H}': a'x_1 + b'x_2 = c'$ $\vec{\mathcal{H}}': a'x_1 + b'x_2 = 0$

Adesso prendiamo la loro intersezione e la matrice completa associata

$$\mathcal{H} \cap \mathcal{H}' : \begin{cases} ax_1 + bx_2 = c \\ a'x_1 + b'x_2 = c' \end{cases} \quad \text{e la matrice } C = \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix}$$

Sappiamo che $1 \le rango(A) \le rango(C) \le 2$ e osserviamo le varie possibilità

- $1 = rango(A) = rango(C) \Rightarrow \mathcal{H} = \mathcal{H}'$
- $1 = rango(A) < rango(C) = 2 \Rightarrow \mathcal{H} \parallel \mathcal{H}' \text{ ovvero } (\mathcal{H} \cap \mathcal{H}' = \emptyset)$
- $2 = rango(A) = rango(C) \Rightarrow \mathcal{H} \cap \mathcal{H}'$ è un sotto-spazio affine rappresentato in due equazioni in tre incognite (ovvero una retta)

Nota - Le rette complanari in dimensione 3

Sia (V, A, π) con dim(A) = 3 e fissato un riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$ allora

Due rette parallele oppure incidenti sono complanari, ossia esiste un piano che le contiene entrambe

Domanda - Come trovo un piano nel caso due rette siano parallele o incidenti in dimensione 3?

Prese due rette r e r' e vogliamo trovare un piano che le contenga entrambe dobbiamo differire due casi

- Parallele: il piano $\mathcal{H} = (P, \mathcal{L}(u, \overrightarrow{PQ}))$ dove $\vec{r} = \vec{r'} = \mathcal{L}(u)$ mentre $r = \mathcal{L}(P, \mathcal{L}(u))$ e $r' = \mathcal{L}(Q, \mathcal{L}(u))$
- Incidenti il piano $\mathcal{H} = (P, \mathcal{L}(u, v))$ dove $r \cap r' = P$ mentre $\vec{r} = \mathcal{L}(u)$ e $\vec{r'} = \mathcal{L}(v)$

Esempio - Piano tra rette parallele o incidenti in dimensione 3

Osserviamo il caso in cui due rette r ed r' sono parallele

Presa
$$r:$$

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ 2x_1 - 2x_2 + x_3 = -2 \end{cases}$$
 e $r':$
$$\begin{cases} x_1 = 2 + t \\ x_2 = -3 + t \\ x_3 = 1 \end{cases}$$

Sappiamo che $r \cap r' = \emptyset \Rightarrow r \parallel r'$ e quindi prendiamo un un punto appartenente a r e r' e un vettore direttore di r'

- $P = (-2, 1, 4) \in r$
- $P' = (2, -3, 1) \in r'$
- $u(1,1,0) \in \vec{\mathcal{H}}$

Prendiamo un generico punto e calcoliamo $\mathcal{H}=((1,1,0),(4,-4,-3,),(x_1+2,x_2-1,x_3-4))$ e imponiamo il determinante uguale a 0

$$\begin{pmatrix} 1 & 4 & x_1 + 2 \\ 1 & -4 & x_2 - 1 \\ 0 & -3 & x_3 - 4 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 1 & -4 \\ 0 & -3 \end{pmatrix}$$

Otteniamo
$$-4(x_3-4)+0+(-3)(x_1+2)-0-(-3)(x_2-1)-4(x_3-4)=-4x_3+16-3x_1-6+3x_2-3-4x_3+16=0$$

Facciamo i conti ed abbiamo che $\mathcal{H}: -3x_1 + 3x_2 - 8x_3 + 23 = 0$

Osserviamo il caso in cui due rette r ed r' si intersecano

Presa
$$r:$$

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ 2x_1 - 2x_2 + x_3 = -2 \end{cases}$$
 e $r':$
$$\begin{cases} x_1 = -2 - t \\ x_2 = 1 + 2t \\ x_3 = 4 + t \end{cases}$$

Calcoliamoci quindi il punto d'intersezione dopo aver portato r' in rappresentazione cartesiana

$$r \cap r' : \begin{cases} x_1 - x_2 + x_3 = 1 \\ 2x_1 - 2x_2 + x_3 = -2 \\ 2x_1 + x_2 = -3 \\ x_1 + x_3 = 2 \end{cases} \Rightarrow \begin{cases} x_1 - x_2 + x_3 = 1 \\ x_3 = 4 \\ x_2 = 1 \\ x_1 = -2 \end{cases}$$

Questo ci dice che il punto di intersezione P = (-2, 1, 4)

Quindi otteniamo che $\mathcal{H} = ((1, 1, 0), (-1, 2, 1), (x_1 + 2, x_2 - 1, x_3 - 4))$ e poniamo il determinante uguale a zero

$$\begin{pmatrix} 1 & -1 & x_1 + 2 \\ 1 & 2 & x_2 - 1 \\ 0 & 1 & x_3 - 4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Otteniamo
$$2(x_3 - 4) + 0 + (x_1 + 2) - 0 - (x_2 - 1) - (-1)(x_3 - 4) = 2x_3 - 8 + x_1 + 2 - x_2 + 1 + x_3 - 4 = 0$$

Facciamo i conti ed abbiamo che $\mathcal{H}: x_1 - x_2 + 3x_3 - 9 = 0$

Fasci Propri e Impropri

Definizione - Fascio proprio

Il fascio proprio di r è l'insieme di tutti e soli i piani che contengono r

Dato il piano $\mathcal{H}: ax + by + c = d$ sarà l'insieme dei piani ax + by + c = k $\forall k \in K$

Definizione - Fascio improprio

Il fascio improprio di giacitura $\vec{\mathcal{H}}$ è l'insieme ti tutti e soli i piani paralleli ad \mathcal{H}

Data la retta
$$r: \begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$$

Saranno tutti i piani del tipo $\alpha(ax + by + cz - d) + \beta(a'x + b'y + c'z - d') = 0 \quad \forall (\alpha, \beta) \in K^2 \setminus \{(0, 0)\}$

Lezione 19° del 20/05/24

Prodotto scalare euclideo

Definizione - Prodotto scalare euclideo

Sia $(\mathbb{R}, V, +, \cdot)$ uno spazio vettoriale sul campo \mathbb{R} , allora un prodotto scalare euclideo su V è un'applicazione:

$$\begin{array}{cccc} \langle \cdot, \cdot \rangle : & V \times V & \to & \mathbb{R} \\ & (u, v) & \leadsto & \langle u, v \rangle \end{array}$$

Ed ha le sequenti proprietà

- Simmetria $\forall u, v \in V \quad \langle u, v \rangle = \langle v, u \rangle$
- Bilinearità $\begin{cases} \forall u, v, w \in V & \langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \\ \forall u, v \in V & \forall \alpha \in \mathbb{R} & \langle u, \alpha v \rangle = \alpha \langle u, v \rangle \end{cases}$
- $\forall u \in V \quad \langle u, u \rangle \ge 0 \text{ se } \langle u, v \rangle \Leftrightarrow u = \underline{0}$

Esempio - Prodotto scalare euclideo

Vediamo alcuni esempi di prodotti scalare euclidei

(a)
$$\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$
 $(a_1, ..., a_n), (b_1, ..., b_n) \longrightarrow a_1b_1 + ... + a_nb_n$

(b)
$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
 $(x_1, x_2), (y_1, y_2) \mapsto 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$

$$\text{(c)} \quad \begin{array}{ccc} M_{2\times 2}(\mathbb{R}) \times M_{2\times 2}(\mathbb{R}) & \to & \mathbb{R} \\ \left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right), \left(\begin{smallmatrix} a' & b' \\ c' & d' \end{smallmatrix} \right) \right) & \leadsto & 3aa' + 2bb' + cc' + dd'$$

$$\text{(d)} \quad \begin{array}{ccc} \mathbb{V} \times \mathbb{V} & \to & \mathbb{R} \\ (u, v) & \leadsto & |u||v|\cos(\widehat{uv}) \end{array}$$

Definizione - Lunghezza o norma di un vettore

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo allora

$$\forall u \in V$$
 la sua lunghezza è $||u|| = \sqrt{\langle u, u \rangle}$

Nota - La lunghezza di un vettore nell'insieme dei vettori liberi

Se V = V allora $\forall u \in V$ abbiamo che |u| = ||u|| infatti se applichiamo il prodotto scalare geometrico otteniamo che

$$||u|| = \sqrt{\langle u, u \rangle} = \sqrt{|u||u|\cos(\widehat{u}u)} = \sqrt{|u|^2} = |u|$$

Spazio vettoriale euclideo

Definizione - Spazio vettoriale euclideo

Uno spazio vettoriale euclideo è una coppia $(V, \langle \cdot, \cdot \rangle)$ dove

- ullet V è uno spazio vettoriale numerico su ${\mathbb R}$
- $\langle \cdot, \cdot \rangle$ è un prodotto scalare su V

Ed ha le seguenti proprietà

- $\forall u \in V \quad \langle u, \underline{0} \rangle = 0 \text{ (perché } \langle u, 0 \cdot \underline{0} \rangle = 0 \langle u, \underline{0} \rangle = 0)$
- Se $\exists v \in V$ tale che $\forall u \in V$ $\langle u, v \rangle = 0 \Rightarrow v = \underline{0}$
- $\forall v \in V \quad \forall \alpha \in \mathbb{R} \quad ||\alpha v|| = |\alpha| \cdot ||v|| \text{ (perché } ||\alpha u|| = \sqrt{\langle \alpha u, \alpha u \rangle} = \sqrt{\alpha^2 \langle u, u \rangle} = |\alpha| \sqrt{\langle u, u \rangle} = |\alpha| \cdot ||u||)$

Teorema - Disuguaglianza di Schwarz

$$\forall u, v \in V \quad |\langle u, v \rangle| \leq ||u|| \cdot ||v||$$

Dimostrazione Sia β un parametro reale

$$0 < \langle u + \beta v, u + \beta v \rangle = \langle u, u + \beta v \rangle + \langle \beta v, u + \beta v \rangle =$$

$$= \langle u, u \rangle + \langle u, \beta v \rangle + \langle \beta v, u \rangle + \langle \beta v, \beta v \rangle = \langle u, u \rangle + 2 \langle u, \beta v \rangle + \beta^2 \langle v, v \rangle = ||u||^2 + 2\beta \langle u, v \rangle + \beta^2 ||v||^2$$

Adesso se consideriamo $||u||^2 + 2\beta \langle u, v \rangle + \beta^2 ||v||^2$ come un polinomio nella variabile β

$$\frac{\Delta}{4} = \langle u, v \rangle^2 - ||u||^2 ||v||^2 \le 0 \Rightarrow |\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Teorema - Disuguaglianza di Minkowski

$$\forall u, v \in V \quad ||u + v|| \le ||u|| + ||v||$$

Dimostrazione Poniamo il parametro $\beta = 1$

$$\langle u + v, u + v \rangle = ||u + v||^2 = ||u||^2 + 2 \langle u, v \rangle + ||v||^2 \le$$

$$\leq ||u||^2 + 2|\langle u, v \rangle| + ||v||^2 \leq ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

Definizione - Angolo

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo e presi $u, v \in V$ tali che $u, v \neq \underline{0}$ allora

$$-1 \le \frac{\langle u, v \rangle}{||u|| \cdot ||v||} \le 1$$

Se prendiamo come funzione biettiva $cos:[0,\pi]\to[-1,1]$ questo mi assicura che

$$\exists!\alpha\in[0,\pi]:cos(\alpha)=\frac{\langle u,v\rangle}{||u||\cdot||v||}$$

Allora posso chiamare proprio questo lpha l'angolo tra u e v

Nota - L'angolo col prodotto scalare geometrico nell'insieme dei vettori liberi

Se V = V allora $\forall u \in V$ abbiamo che |u| = ||u|| infatti se applichiamo il prodotto scalare geometrico otteniamo che

$$cos(\alpha) = \frac{\langle u, v \rangle}{||u|| \cdot ||v||} = \frac{|u| \cdot |v| \cdot cos(\widehat{uv})}{|u| \cdot |v|} = cos(\widehat{uv})$$

Definizione - Vettori ortogonali

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo allora $\forall u, v \in V$ si dicono ortogonali quando

$$u \perp v \Leftrightarrow \langle u, v \rangle = 0$$

Teorema - di Pitagora

$$\forall u, v \in V$$
 $\langle u, v \rangle = 0 \Leftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2$

Dimostrazione

$$||u + v||^2 = ||u||^2 + 2\langle u, v \rangle + ||v||^2 = ||u||^2 + ||v||^2 \Leftrightarrow \langle u, v \rangle = 0$$

Teorema - Elementi ortogonali ⇒ insieme linearmente indipendente

Sia $S = \{u_1, ..., u_n\} \subseteq V \setminus \{\underline{0}\}$ con la proprietà che

$$\forall i, j \in \{1, ..., n\}$$
 $i \neq j$ $\langle u_i, u_i \rangle = 0 \Rightarrow S$ è linearmente indipendente

Dimostrazione Sia $(\alpha_1,...\alpha_n) \in \mathbb{R}^n$ $\alpha_1 u_1 + ... + \alpha_n u_n = \underline{0} \Rightarrow (\alpha_1,...\alpha_n) = \underline{0}$

(Dimostriamo solo per il primo elemento ma può essere iterato per tutti gli altri)

$$0 = \langle u_1, \underline{0} \rangle = \langle u_1, \alpha_1 u_1 + \ldots + \alpha_n u_n \rangle = \langle u_1, \alpha_1 u_1 \rangle + \ldots + \langle u_1, \alpha_n u_n \rangle = \alpha_1 \langle u_1, u_1 \rangle + \ldots + \alpha_n \langle u_1, u_n \rangle$$

Essendo che tutti gli elementi diversi sono ortogonali otteniamo che $\alpha_1 \langle u_1, u_1 \rangle + 0 + ... + 0$

Per la stessa proprietà $\langle u_1, u_1 \rangle > 0 \Rightarrow \alpha_1 = 0$

Base ortogonale e ortonormale

Definizione - Base ortogonale

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo con dim(V) = n allora una base $B = \{v_1, ..., v_n\}$ si dice ortogonale quando

$$\forall i, j \in \{1, ..., n\} \quad i \neq j \quad \langle v_i, v_j \rangle = 0$$

Definizione - Base Ortonormale

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo con dim(V) = n allora una base $B = \{v_1, ..., v_n\}$ si dice ortonormale quando

B è una base già ortogonale è $\forall i \in \{1, ..., n\} \quad ||v_i|| = 1$

Nota - Processo di normalizzazione

Se B è una base ortogonale allora $B' = \{\frac{1}{||v_1||} \cdot v_1, ..., \frac{1}{||v_n||} \cdot v_n\}$ è una base ortonormale, il passaggio da B a B' è detto di normalizzazione

Teorema - Sulle basi ordinate orotonormali

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo e $B = (e_1, ..., e_n)$ base ordinata ortonormale di V allora

1.
$$\forall u \in V \quad \phi_B(u) = (x_1, ..., x_n)$$
 allora $x_1 = \langle u, e_1 \rangle ... x_m = \langle u, e_n \rangle$

2.
$$\forall u, v \in V \quad \phi_B(u) = (x_1, ..., x_n) \quad \phi_B(v) = (y_1, ..., y_n) \quad \langle u, v \rangle = x_1 y_1 + ... + x_n y_n$$

Dimostrazione

1. $u = x_1 e_1 + ... + x_n e_n$ allora otteniamo

(a)
$$\langle u, e_1 \rangle = \langle x_1 e_1 + \dots + x_n e_n, e_1 \rangle = x_1 \langle e_1, e_1 \rangle + \dots + x_n \langle e_n, e_1 \rangle = x_1$$

 \vdots

(b)
$$\langle u, e_n \rangle = \langle x_1 e_1 + \ldots + x_n e_n, e_n \rangle = x_1 \langle e_1, e_n \rangle + \ldots + x_n \langle e_n, e_n \rangle = x_n$$

2. (Sia
$$n = 2$$
) $\langle u, v \rangle = \langle x_1 e_1 + x_2 e_2, y_1 e_1 + y_2 e_2 \rangle = \langle x_1 e_1, y_1 e_1 \rangle + \langle x_1 e_1, y_2 e_2 \rangle + \langle x_2 e_2, y_1 e_1 \rangle + \langle x_2 e_2, y_2 e_2 \rangle = x_1 y_1 \langle e_1, e_1 \rangle + x_1 y_2 \langle e_1, e_2 \rangle + x_2 y_1 \langle e_2, e_1 \rangle + x_2 y_2 \langle e_2, e_2 \rangle = x_1 y_1 + x_2 y_2$

Teorema - di Gram-Schimdt

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo e $B = (u_1, ..., u_n)$ base ordinata di V allora $B' = (w_1, ..., w_n)$ tale che

•
$$w_1 = u_1$$

•
$$w_2 = u_2 - \frac{\langle u_2, w_1 \rangle}{||w_1||^2} w_1$$

:

•
$$w_n = u_n - \sum_{i=1}^{n-1} \frac{\langle u_n, w_i \rangle}{||w_i||^2} w_i$$

in questo modo B' è una base ortogonale

Dimostrazione per il caso n = 2

$$\langle w_1, w_2 \rangle = \left\langle w_1, u_2 - \frac{\langle u_2, w_1 \rangle}{||w_1||^2} w_1 \right\rangle = \left\langle w_1, u_2 \right\rangle - \left\langle w_1, \frac{\langle u_2, w_1 \rangle}{||w_1||^2} w_1 \right\rangle =$$

$$= \left\langle w_1, u_2 \right\rangle - \frac{\langle u_2, w_1 \rangle}{||w_1||^2} \left\langle w_1, w_1 \right\rangle = \left\langle w_1, u_2 \right\rangle - \left\langle u_2, w_1 \right\rangle = 0$$

Esempio - Teorema di Gram-Schimdt

Prendiamo in esempio una base in \mathbb{R}^3 col prodotto scalare numerico B = ((1,1,0),(1,0,1),(0,0,1))

Ricaviamo la base ortogonale col teorema di Gram-Schimdt $B' = (w_1, w_2, w_3)$

- $w_1 = (1, 1, 0)$
- $w_2 = (1,0,1) \frac{(1,0,1)(1,1,0)}{(1,1,0)(1,1,0)}(1,1,0) = (1,0,1) \frac{1}{2}(1,1,0) = (\frac{1}{2},-\frac{1}{2},1)$
- $w_3 = (0,0,1) \frac{(0,0,1)(1,1,0)}{(1,1,0)(1,1,0)}(1,1,0) \frac{(0,0,1)(\frac{1}{2},-\frac{1}{2},1)}{(\frac{1}{2},-\frac{1}{2},1)(\frac{1}{2},-\frac{1}{2},1)}(\frac{1}{2},-\frac{1}{2},1) = (1,0,1) \frac{2}{3}(\frac{1}{2},-\frac{1}{2},1) = (-\frac{1}{3},\frac{1}{3},\frac{1}{3})$

 $B'=((1,1,0),(\tfrac{1}{2},-\tfrac{1}{2},1),(-\tfrac{1}{3},\tfrac{1}{3},\tfrac{1}{3})) \text{ è una base ortogonale, rendiamola una base ortonormale calcolando la norma$

- $||w_1|| = \sqrt{2}$
- $||w_2|| = \sqrt{\frac{3}{2}}$
- $||w_3|| = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}}$

$$B'' = ((\tfrac{1}{\sqrt{2}}, \tfrac{1}{\sqrt{2}}, 0), (\tfrac{\sqrt{2}}{2\sqrt{3}}, -\tfrac{\sqrt{2}}{2\sqrt{3}}, \tfrac{\sqrt{2}}{\sqrt{3}}), (-\tfrac{\sqrt{3}}{3}, \tfrac{\sqrt{3}}{3}, \tfrac{\sqrt{3}}{3})) = ((\tfrac{1}{\sqrt{2}}, \tfrac{1}{\sqrt{2}}, 0), (\tfrac{1}{\sqrt{6}}, -\tfrac{1}{\sqrt{6}}, \tfrac{2}{\sqrt{2}}), (-\tfrac{1}{\sqrt{3}}, \tfrac{1}{\sqrt{3}}, \tfrac{1}{\sqrt{3}})) \ \text{è orotonormale}$$

Lezione 20° del 22/05/24

Matrice di passaggio da B a B' negli spazio vettoriali euclidei

Domanda - Come è composta la matrice di passaggio negli spazio vettoriali eculidei?

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo con $K = \mathbb{R}$ e dim(V) = n definiamo le basi ortonormali

- $B = (e_1, ..., e_n)$
- $B' = (e'_1, ..., e'_n)$

Otteniamo la matrice

$$P = M_{BB'}(id_V) \begin{pmatrix} \phi_{B'}(e_1^1) & \dots & \phi_{B'}(e_n^1) \\ \vdots & & \vdots \\ \phi_{B'}(e_1^n) & \dots & \phi_{B'}(e_n^n) \end{pmatrix}$$

Questa matrice ha rango massimo ed inoltre $P^{-1} = {}^{t}P$

Matrice ortogonale

Definizione - Matrice Ortogonale

Sia $A \in Mn \times m(K)$ si dice ortogonale se $\exists A^{-1} = {}^tA$

Teorema - Proprietà delle matrici ortogonali

Sia $A \in Mn \times m(K)$ una matrice ortogonale allora $det(A) = \pm 1$

Dimostrazione

$$1 = det(I_n) = det(^tA) \cdot det(A) = det(A) \cdot det(A) = det(A)^2 \Rightarrow det(A) = \pm 1$$

Domanda - Quando un'applicazione lineare conserva il prodotto scalare?

- 1. Sia $A \in Mn \times m(K)$ una matrice ortogonale associata a $\overset{\sim}{T_A}$
- 2. Se $T:V\to V'$ tra spazi vettoriali euclidei con $B\in B'$ basi ortonormali ha $M_{BB'}(T)$ ortogonale

ovvero
$$\forall u, v \in V \quad \langle u, v \rangle = \langle T(u), T(v) \rangle$$

Spazio vettoriale euclideo orientato

Definizione - Spazio vettoriale euclideo orientato

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo con B base di V allora la coppia (V, B) si dice spazio vettoriale euclideo orientato

Se siamo in dimensione tre, dato lo spazio vettoriale euclideo orientato (V, B) allora $\forall u, v \in V$ il prodotto vettoriale $u \land v$ ha come risultato

- Se $\{u, v\}$ è lineare dipendente allora $u \wedge v = 0$
- Se $\{u, v\}$ è linearmente indipendente allora $u \wedge v$ è l'unico vettore tale che
 - 1. **Verso**: $(u, v, u \wedge v)$ è una base concorde con B
 - 2. Lunghezza: $||u \wedge v|| = ||u|| \cdot ||v|| \cdot sin(\widehat{uv})$
 - 3. **Direzione**: $u \wedge v$ è ortogonale a $u \in v$

NOTA Non è commutativo quindi $u \wedge v \neq v \wedge u$

Nota - Base concorde o discorde

Una base B' di V si dice concorde con B se $det(M_{BB'}(id_V)) > 0$ altrimenti si dice discorde

Nota - Calcolo del prodotto vettoriale in uno spazio vettoriale euclideo in dimensione 3

Se B è una base ortonormale e $\phi_B(u)=(I,m,n)$ e $\phi_B(v)=(I',m',n')$ allora

$$\phi_{\mathcal{B}}(u \wedge v) = (\det \begin{pmatrix} \begin{pmatrix} m & n \\ m' & n' \end{pmatrix}), -\det \begin{pmatrix} \begin{pmatrix} l & n \\ l' & n' \end{pmatrix} \end{pmatrix}, \det \begin{pmatrix} \begin{pmatrix} l & m \\ l' & m' \end{pmatrix} \end{pmatrix})$$

Esempio - Calcolo del prodotto vettoriale in uno spazio vettoriale euclideo in dimensione 3

Sia $(V, \langle \cdot, \cdot \rangle)$ uno spazio vettoriale euclideo e sia $B = (I_1, I_2, I_3)$ base ortonormale, allora presi $u, v \in V$

- $\phi_B(u) = (2, -5, 1)$
- $\phi_B(v) = (-1, 3, 4)$

Allora effettuiamo il calcolo

$$\phi_B(u \wedge v) = (\det\left(\begin{pmatrix} -5 & 1 \\ 3 & 4 \end{pmatrix}\right), -\det\left(\begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}\right), \det\left(\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}\right)) = (-23, -9, 1)$$

Spazio euclideo

Definizione - Spazio euclideo

Uno spazio euclideo è uno spazio affine (V, A, π) tale che V è uno spazio vettoriale euclideo $(V, \langle \cdot, \cdot \rangle)$

In questo caso indichiamo V con $\overrightarrow{\xi}$ e \mathcal{A} con ξ e il riferimento cartesiano $\mathcal{R}=(\mathcal{O},\mathcal{B})$ ha la base \mathcal{B} ortonormale

Complemento ortogonale

Definizione - Complemento ortogonale

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\overrightarrow{\xi}) = n$ allora preo $W \subseteq \overrightarrow{\xi}$

Chiamo complemento ortogonale di W in $\overrightarrow{\xi}$

$$^{\perp}W = \{ u \in \overrightarrow{\xi} \mid \langle u, w \rangle = 0 \quad \forall w \in W \}$$

Ha le seguenti proprietà

- $\bot W$ è un sotto-spazio vettoriale di $\overleftarrow{\xi}$
- $W = \mathcal{L}(B) \Rightarrow {}^{\perp}W = \{u \in \overrightarrow{\xi} \mid \langle u, w \rangle = 0 \quad \forall w \in W\}$
- $W \cap {}^{\perp}W = \{\underline{0}\} e^{\perp}W \boxplus W = \overrightarrow{\xi} (dim({}^{\perp}W) = n dim(W))$
- $\bullet^{\perp}(^{\perp}W))=W$
- $W \subseteq U \Rightarrow {}^{\perp}U \subseteq {}^{\perp}W$

Esempio - Complemento ortogonale

In \mathbb{R}^3 dato $\langle \cdot, \cdot \rangle = \overrightarrow{\xi}$ come il prodotto scalare numerico definiamo $W = \mathcal{L}((3, -2, 5))$ e calcoliamo il complemento dato un certo $u = (x_1, x_2, x_3)$

$$^{T}W = \{u \in \mathbb{R}^{3} \mid \langle u, (3, -2, 5) \rangle = 0\} \text{ ovvero } 3x_{1} - 2x_{2} + 5x_{3} = 0$$

Osserviamo il caso in qui $B = (l_1, l_2, l_3, l_4, l_5)$ base ortonormale e dati due elementi

- $\phi_B(u_1) = (2, -3, 2, 1, -1)$
- $\phi_B(u_2) = (1, 0, 1, 0, 2)$

Adesso prendiamo $W=\mathscr{L}(u_1,u_2)$ e un generico $u\in\overrightarrow{\xi}$ allora il suo complemento sarà formato così

$$\overset{\mathsf{T}}{W} = \{ u \in \overrightarrow{\xi} \mid \langle u, u_1 \rangle = 0 \text{ e } \langle u, u_2 \rangle = 0 \} \text{ ottenendo il seguente sistema } \begin{cases} \langle u, u_1 \rangle = 2x_1 - 3x_2 + 2x_3 + x_4 - x_5 = 0 \\ \langle u, u_2 \rangle = x_2 + x_3 + 2x_5 = 0 \end{cases}$$

Ortogonalità

Definizione - Ortogonalità

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo e prese due rette r, r' diciamo che sono ortogonali quando

$$r \perp r' \Leftrightarrow \vec{r} \subseteq {}^{\perp}\vec{r'}$$
 oppure $\vec{r'} \subseteq {}^{\perp}\vec{r}$

NOTA Con una base ortonormale le componenti nelle basi che generano le giaciture devono essere ortogonali

$$r = \mathcal{L}(u(l_1, ..., l_n))$$

$$r' = \mathcal{L}(u(l'_1, ..., l'_n))$$

$$\Rightarrow \langle u, u \rangle = 0 \Leftrightarrow (l_1, ..., l_n) \cdot (l'_1, ..., l'_n) = 0$$

Sia $(\overrightarrow{\xi},\xi,\pi)$ uno spazio euclideo e presi \mathcal{H},\mathcal{H}' sotto-spazi affini e formati in questo modo

- \mathcal{H} : $a_1x_1 + \dots + a_nx_n = b$
- $\mathcal{H}': a_1'x_1 + ... a_n'x_n = b'$

Presi i due vettori normali

- $\phi_B(w) = (a_1, ..., a_n)$
- $\phi_B(w') = (a'_1, ..., a'_n)$

allora diciamo che sono ortogonali quando

$$\mathcal{H} \perp \mathcal{H}' \Leftrightarrow \operatorname{preso} \langle w, w' \rangle = 0$$

Mentre se prendiamo una retta r diciamo che è ortogonale a ${\cal H}$ quando

$$r \perp \mathcal{H} \Leftrightarrow \vec{r} = {}^{\perp} \vec{\mathcal{H}}$$
 oppure $\vec{\mathcal{H}} = {}^{\perp} \vec{r}$

Ovvero sia $\vec{r} = \mathcal{L}(u)$ e sia $\vec{\mathcal{L}} = \mathcal{L}(w)$ allora

$$r \perp \mathcal{H} \Leftrightarrow \exists \alpha \in K \quad u = \alpha w$$

Esempio - sull'ortogonalità

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\overrightarrow{\xi}) = 5$

Preso l'iper-piano $\mathcal{H}: 2x_1 - 2x_2 + 7x_3 - x_4 + x_5 = 3$ e la sua giacitura $\vec{\mathcal{H}}: 2x_1 - 2x_2 + 7x_3 - x_4 + x_5 = 0$

Il complemento ortogonale della giacitura è ${}^{\perp}\mathcal{H} = \mathscr{L}(w(2,-2,7-,1,1))$

Se consideriamo quindi un secondo piano $\mathcal{H}': x_1 + x_2 + x_4 + x_5 = 10$ con vettore normale w'(1,1,0,1,1)

Allora $\mathcal{H} \perp \mathcal{H}'$ perché $(1, 1, 0, 1, 1) \cdot (2, -2, 7, -1, 1) = 0 = \langle w, w' \rangle$

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\overrightarrow{\xi}) = 3$ e dato il riferito $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Data la retta r: $\begin{cases} x - 2y + z = 1 \\ -x + y - 2z = 0 \end{cases}$

- 1. Determinare il piano ortogonale a r e passante per P(1,0,1)
- 2. Determinare una retta ortogonale a r e passante per P(1,0,1)

Cominciamo col prendere la giacitura \vec{r} : $\begin{cases} x - 2y + z = 0 \\ -x + y - 2z = 0 \end{cases}$ allora sappiamo che $\vec{r} = \mathcal{L}(u(-3, -1, 1))$

- 1. Sia allora $\mathcal{H}: -3x-y+z=k$ ma $P\in\mathcal{H}\Rightarrow -3-0+1=k\Rightarrow k=-2$ allora $\mathcal{H}: -3x-y+z=-2$
- 2. Vediamo che (1, -2, 1)(-3, -1, 1) = -3 + 2 + 1 = 0 allora $\vec{r'}$: $\begin{cases} x = 1 + t \\ y = 0 2t \\ z = 1 t \end{cases} \Rightarrow \begin{cases} x = 1 + z 1 \\ y = -2z + 2 \end{cases}$

Teorema - sugli Iper-piani ortogonali

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo e preso $\mathcal H$ sotto-spazio affine con $dim(\mathcal H) = n-1$

$$\mathcal{H}: a_1x_1 + \ldots + a_nx_n = b$$

Allora $dim(^{\perp}\mathcal{H}) = 1$

Dimostrazione Sia ${}^{\perp}\mathcal{H} = \mathscr{L}(w(a_1,...,a_n))$

- 1. Preso un generico $u \in \vec{\mathcal{H}}$ ne definiamo le componenti $\phi_B(u) = (y_1,...,y_n)$
- 2. Sappiamo che $u \in \vec{\mathcal{H}} \Leftrightarrow a_1y_1 + ... + a_ny_n = 0$
- 3. Ovvero $a_1y_1 + ... + a_ny_n = (a_1, ..., a_n) \cdot (y_1, ..., y_n) = \langle w, u \rangle = 0$

Quindi otteniamo che $\frac{w \in {}^{\perp}\mathcal{H}}{dim({}^{\perp}\mathcal{H}) = n - (n-1) = 1} \} \Rightarrow {}^{\perp}\mathcal{H} = \mathscr{L}(w)$

Esempio - sugli Iper-piani ortogonali

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\overrightarrow{\xi}) = 5$

Preso l'iper-piano $\mathcal{H}: 2x_1 - 2x_2 + 7x_3 - x_4 + x_5 = 3$ e la sua giacitura $\vec{\mathcal{H}}: 2x_1 + -2x_2 + 7x_3 - x_4 + x_5 = 0$

Il complemento ortogonale della giacitura è ${}^{\perp}\mathcal{H}=\mathscr{L}(w(2,-2,7-1-1))$

Lezione 21° del 27/05/24

Distanze

Definizione - Distanza tra due punti

Sia $(\overrightarrow{\xi},\xi,\pi)$ uno spazio euclideo definiamo così la distanza tra due punti

$$\forall P, Q \in \xi \quad d(P,Q) = ||\overrightarrow{PQ}|| = \sqrt{\langle \overrightarrow{PQ}, \overrightarrow{PQ} \rangle}$$

Domanda - Quando la distanza tra due punti è zero?

Se presi due punti P e Q possiamo imporre la loro distanza uguale a 0 e vediamo che

$$d(P,Q) = 0 \Leftrightarrow ||\overrightarrow{PQ}|| = 0 \Leftrightarrow \left\langle \overrightarrow{PQ}, \overrightarrow{PQ} \right\rangle = 0 \Leftrightarrow \overrightarrow{PQ} = 0 \Leftrightarrow P = Q$$

Definizione - Distanza tra due sotto-insiemi

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo definiamo così la distanza tra due sotto-insiemi

$$\forall X, Y \in \xi \quad d(X, Y) = inf(\{d(P, Q) \mid P \in X, Q \in Y\})$$

Definizione - Distanza tra un punto e un iper-piano

Sia $(\overrightarrow{\xi},\xi,\pi)$ uno spazio euclideo e il riferimento cartesiano $\mathcal{R}=(\mathcal{O},\mathcal{B})$

Preso l'iper-piano $\mathcal{H}: a_1x_1 + ... + a_nx_n = b$ distinguiamo due casi per calcolare la sua distanza da un punto

- 1. $P \in \mathcal{H}$ allora $d(P, \mathcal{H}) = d(P, P) = 0$
- 2. $P \not\in \mathcal{H}$ allora $d(P,\mathcal{H}) = inf(\{d(P,Q) \mid Q \in \mathcal{H}\}) = d(P,\overline{P})$ (dove \overline{P} è la proiezione ortogonale di P su \mathcal{H})

Domanda - Ma come trovo \overline{P} ?

Prendiamo il vettore normale $w(a_1,...,a_n)$ a \mathcal{H} e costruiamo una retta r passante per P ed ortogonale ad \mathcal{H} così da ottenere che $r \cap \mathcal{H} = \overline{P}$ (chiamiamo \overline{P} la proiezione ortogonale di P su \mathcal{H})

- 1. Prendiamo le coordinate di $P \equiv_{\mathcal{B}} (\overline{x_1}, ..., \overline{x_n})$
- 2. Costruiamo la retta r: $\begin{cases} x_1 = \overline{x_1} + a_1 \cdot t \\ \vdots & \text{sapendo che } r \perp \mathcal{H} \Leftrightarrow \overrightarrow{r} = \overrightarrow{\mathcal{H}} = \mathscr{L}(w(a_1, ..., a_n)) \\ x_n = \overline{x_n} + a_n \cdot t \end{cases}$
- 3. Faccio l'intersezione per trovare \overline{t} che mi darà esattamente le coordinate \overline{P}

$$a_1(\overline{x_1} + a_1 \cdot t) + \dots + a_n(\overline{x_n} + a_n \cdot t) = b$$

$$a_1\overline{x_1} + a_1^2 \cot t + \dots + a_n\overline{x_n} + a_n^2 \cot t - b = 0$$

$$(a_1^2 + \dots + a_n^2)t = b - a_1\overline{x_1} - \dots - a_n\overline{x_n}$$

$$\overline{t} = \frac{b - a_1\overline{x_1} - \dots - a_n\overline{x_n}}{a_1^2 + \dots + a_n^2}$$

4. Adesso sappiamo le coordinate di $\overline{P} = (\overline{x_1} + a_1 \cdot \overline{t}, ..., \overline{x_n} + a_n \cdot \overline{t})$

5.
$$\parallel$$
 nostro vettore $\overrightarrow{PP} = (a_1 \cdot \overline{t}, ..., a_n \cdot \overline{t})$

6. Calcoliamo quindi la distanza
$$d(P, \overline{P}) = ||\overrightarrow{PP}|| = \sqrt{a_1^2 \cdot \overline{t^2} + ... + a_n^2 \cdot \overline{t^2}}$$

Effettuando un po' di calcoliamo troviamo che

$$d(P, \overline{P}) = d(P, \mathcal{H}) = \sqrt{a_1^2 \cdot \overline{t^2} + \dots + a_n^2 \cdot \overline{t^2}} = \sqrt{(a_1^2 + \dots + a_n^2) \frac{(b - a_1 \overline{x_1} - \dots - a_n \overline{x_n})^2}{(a_1^2 + \dots + a_n^2)^2}} = \frac{|a_1 \overline{x_1} + \dots + a_n \overline{x_n} - b|}{\sqrt{(a_1^2 + \dots + a_n^2)^2}}$$

Esempio - Distanza tra un punto e un iper-piano

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 4$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prendiamo il piano $\mathcal{H}: x_1-x_2+2x_3-5x_4+3=0$ e dato il punto $P\equiv_{\mathcal{R}}(2,3,-1,1)$ calcoliamo la distanza tra P ed \mathcal{H}

- 1. Costruiamo la retta r: $\begin{cases} x_1 = 2 + t \\ x_2 = 3 t \\ x_3 1 + 2t \\ x_4 = 1 + 5t \end{cases}$ ortogonale ad \mathcal{H} e passante per P
- 2. Il punto $\overline{P} = r \cap \mathcal{H}$
- 3. Possiamo calcolare direttamente la distanza applicando la formula $d(P, \overline{P}) = \frac{|2-3-2-5+3|}{\sqrt{1+1+4+25}} = \frac{5}{\sqrt{31}}$

Definizione - Distanza tra due iper-piani

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo e il riferimento cartesiano $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Presi gli iper-piani paralleli $\mathcal{H}: a_1x_1 + ... + a_nx_n = b$ ed $\mathcal{H}': a_1x_1 + ... + a_nx_n = b'$

Allora $\forall P \in \mathcal{H} \quad P \equiv_{\mathcal{R}} (\overline{x_1},...,\overline{x_n})$ e possiamo applicare la formula

$$\forall P \in \mathcal{H} \quad d(\mathcal{H}, \mathcal{H}') = d(P, \mathcal{H}') = \frac{|a_1\overline{x_1} + \ldots + a_n\overline{x_n} - b'|}{\sqrt{a_1^2 + \ldots + a_n^2}} = \frac{|b - b'|}{\sqrt{a_1^2 + \ldots + a_n^2}}$$

Esempio - Distanza tra due iper-piani

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prendiamo i due piani paralleli $\mathcal{H}:2x_1+x_2-x_3+1=0$ e $\mathcal{H}':4x_1+2x_2-2x_3-7=0$

Prima di applicare la formula notiamo che non hanno la stessa giacitura, allora riscriviamo $\mathcal{H}': 2x_1+x_2-x_3-\frac{7}{2}=0$ in modo da poter applicare la formula

$$d(\mathcal{H}, \mathcal{H}') = \frac{|1 + \frac{7}{2}|}{\sqrt{4 + 1 + 1}} = \frac{\frac{9}{2}}{\sqrt{6}}$$

Definizione - Distanza tra una retta ed un iper-piano

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prendiamo la retta r ed il piano $\mathcal{H}: a_1x_1+...+a_nx_n=b$ e distinguiamo due casi

- $r \cap \mathcal{H} \neq \emptyset \Rightarrow d(r, \mathcal{H}) = 0$
- $r \cap \mathcal{H} = \emptyset \Rightarrow r \parallel \mathcal{H} \Leftrightarrow \vec{r} = \vec{\mathcal{H}}$

Allora $\forall P \in r \quad P \equiv_{\mathcal{R}} (\overline{x_1}, ..., \overline{x_n}) \quad d(r, \mathcal{H}) = d(P, \mathcal{H}) = \frac{|a_1 \overline{x_1} + ... + a_n \overline{x_n} - b|}{(a_1^2 + ... + a_n^2)}$

Esempio - Distanza tra una retta ed un iper-piano

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Preso l'iper-piano
$$\mathcal{H}: -x_1 + 3x_2 + 2x_3 - 5 = 0$$
 e la retta $r: \begin{cases} x_1 = t \\ x_2 = t \\ x_3 = -t \end{cases}$

Prendiamo la giacitura dell'iper-piano $\vec{\mathcal{H}}: -x_1+3x_2+2x_3=0$ e controlliamo che sia parallela usando il vettore direttore della retta $\vec{r}=\mathcal{L}((1,1,-1))$

$$(1, 1, -1) \cdot (-1, 3, 2) = 1 \cdot -1 + 3 \cdot 1 + -1 \cdot 2 = 0$$

Appurato che siano paralleli prendiamo un punto di r

 $P \equiv_{\mathcal{R}} (0,0,0) \in r$ e controlliamo non sia in \mathcal{H} infatti $P \not\in \mathcal{H}$

Infine applichiamo la formula $d(r, \mathcal{H}) = d(0, \mathcal{H}) = \frac{|-5|}{\sqrt{1+9+4}} = \frac{5}{\sqrt{14}}$

Definizione - Distanza tra due rette

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prendiamo dure rette r ed r' e valutiamo diversi casi

- $r \cap r' \neq \emptyset \Rightarrow d(r, r') = 0$
- $r \cap r' = \emptyset$ e $r \parallel r' \Rightarrow d(r, r') = d(P, r') \quad \forall P \in r$
- $r \cap r' = \emptyset$ e $r \not | r' \Rightarrow$ l'uso del Teorema della comune perpendicolare

Esempio - Distanza tra due rette

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prendiamo le due rette
$$r: \begin{cases} x_1 = 1 + t \\ x_2 = -1 + 2t \\ x_3 = 3 - t \end{cases}$$
 e $r': \begin{cases} x_1 = 2t' \\ x_2 = 4t' \\ x_3 = 1 - 2t' \end{cases}$

Avendo lo stesso vettore direttore $\vec{r} = \mathcal{L}(u(1,2,-1)) = \vec{r'} = \mathcal{L}(u'(2,4,-2))$ sappiamo che $r \cap r' = \emptyset$ quindi

- 1. Definiamo un iper-piano parallelo ad r ed r' che chiamiamo $\mathcal{H}: x_1 + 2x_2 x_3 + k = 0$
- 2. Facciamo passare H per $P(1,-1,3) \in R$ ovvero $P \in \mathcal{H} \Rightarrow -1-2-3=-k \Rightarrow k=4$
- 3. Otteniamo quindi $\mathcal{H}: x_1 + 2x_2 x_3 + 4 = 0$
- 4. Preso un generico punto $P' \equiv_{\mathcal{R}} (2t', 4t', 1 2t') \in r'$ e cerchiamo le sue coordinate in \mathcal{H}
- 5. $P' = r' \cap \mathcal{H}' = 2t' + 8t' 1 + 2t' + 4 = 0 \Rightarrow 12t' = -3 \Rightarrow t' = -\frac{1}{4}$
- 6. Otteniamo quindi $P' \equiv_{\mathcal{R}} \left(-\frac{2}{4}, -\frac{4}{4}, 1 + \frac{2}{4}\right) = \left(-\frac{1}{2}, -1, \frac{3}{2}\right)$
- 7. Quindi $\overrightarrow{PP'}\equiv_{\mathcal{R}}(-\frac{3}{2},0,-\frac{3}{2})$ e calcolandone la lunghezza otteniamo $||PP'||=\sqrt{\frac{9}{4}+\frac{9}{4}}=\frac{3}{2}\sqrt{2}$

Teorema - della Comune Perpendicolare

Se due rette r e r' sono sghembe allora esiste un'unica retta s che è ortogonale sia a r sia ad r' ed è incidente sia con r che con r' ovvero

$$\exists ! \text{ retta } s : s \perp r \text{ e } s \perp r' \text{ dove } P = s \cap r \neq \emptyset \text{ e } P' = s \cap r' \neq \emptyset$$

Calcoliamo quindi la distanza tra due rette sghembe come d(r, r') = d(P, P')

Dimostrazione sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

- Prese le rette r: $\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$ e r': $\begin{cases} x' = x'_0 + l't' \\ y' = y'_0 + m't' \\ z' = z'_0 + n't' \end{cases}$ ed i vettori direttori u(l, m, n) e u'(l', m', n')
- Siano i punti $P(x_0 + lt, y_0 + mt, z_0 + nt) \in r \in P'(x_0' + l't', y_0' + m't', z_0' + n't') \in r'$
- Prendiamo il vettore $\overrightarrow{PP'}(x'_0 + l't' (x_0 + lt), y'_0 + m't' (y_0 + mt), z'_0 + n't' (z_0 + nt))$

Adesso ci tocca imporre la condizione di ortogonalità ad entrambe le rette

$$\begin{cases} \overrightarrow{PP'} \perp r \Leftrightarrow \left\langle \overrightarrow{PP'}, r \right\rangle = 0\\ \overrightarrow{PP'} \perp r' \Leftrightarrow \left\langle \overrightarrow{PP'}, r' \right\rangle = 0 \end{cases}$$

Espandendo la condizione troviamo

$$\begin{cases} (x_0' + l't' - x_0 - t)l + (y_0' + m't' - y_0 - mt)m + (z_0' + n't' - z_0 - nt)n = 0\\ (x_0' + l't' - x_0 - lt)l' + (y_0' + m't' - y_0 - mt)m' + (z_0' + n't' - z_0 - nt)n' = 0 \end{cases}$$

Raccogliendo per il termine t e t' troviamo che

$$\begin{cases} (l'l + m'm + n'n)t' + (-l^2 - m^2 - n^2)t + \dots = 0\\ (l^2' + m^2' + n^2')t' + (-ll' - mm' - nn')t + \dots = 0 \end{cases}$$

Adesso prendiamo la matrice dei coefficienti A e calcoliamone il determinante

$$A = \begin{pmatrix} \langle u, u' \rangle & -||u||^2 \\ ||u'||^2 & -\langle u, u' \rangle \end{pmatrix} \text{ ne calcoliamo il determinante } \det(A) = -\langle u, u' \rangle^2 + ||u||^2 \cdot ||u'||^2$$

Ci troviamo davanti due possibili casi

- 1. det(A) = 0 e per la disuguaglianza di Schwarz abbiamo $|\langle u, u' \rangle| = ||u|| \cdot ||u'||$ ma questo è possibile quando $\{u, u'\}$ sono linearmente dipendenti (ASSURDO!)
- 2. $det(A) \neq 0$ allora per il Teorema di Cramer $\exists ! (t, t')$ che soddisfa il teorema e sono esattamente $P \in r$ e $P' \in r'$ tali che $P, P' \in s$

Esempio - Teorema della Comune Perpendicolare

Sia $(\overrightarrow{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$ e dato il riferimento $\mathcal{R} = (\mathcal{O}, \mathcal{B})$

Prese le due rette sghembe r : $\begin{cases} x = \frac{3}{2} - t \\ y = \frac{1}{2} + t \\ z = t \end{cases}$ e r' : $\begin{cases} x = 1 + t' \\ y = 2t' \\ z = 1 - t' \end{cases}$ procediamo al calcolo della comune perpendicolare

- 1. Presi i punti $P \equiv_{\mathcal{R}} (\frac{3}{2} t, \frac{1}{2} + t, t) \in r \in P' \equiv_{\mathcal{R}} (1 + t', 2t', 1 t') \in r'$
- 2. Calcoliamo il vettore $\overrightarrow{PP'} \equiv_{\mathcal{R}} \left(-\frac{1}{2} + t' + t, 2t' \frac{1}{2} t, 1 t' t \right)$
- 3. Presi i rispettivi vettori direzionali u(-1,1,1) e u'(1,2,-1)

Imponiamo le condizioni di ortogonalità

$$\begin{cases} +\frac{1}{2} - t' - t + 2t'\frac{1}{2} - t + 1 - t' - t = 0 \\ -\frac{1}{2} + t' - t + 4t' - 1 - 2t - 1 + t' + t = 0 \end{cases} \Leftrightarrow \begin{cases} 3t = 1 \\ 6t' = \frac{5}{2} \end{cases} \Leftrightarrow \begin{cases} t = \frac{1}{3} \\ t' = \frac{5}{12} \end{cases}$$

Adesso calcoliamo i punti $P \in P'$ ed il vettore $\overrightarrow{PP'}$

- $P \equiv_{\mathcal{R}} (\frac{3}{2} \frac{1}{3}, \frac{1}{2} + \frac{1}{3}, \frac{1}{3}) = (\frac{7}{6}, \frac{5}{6}, \frac{1}{3})$
- $P' \equiv_{\mathcal{R}} \left(1 + \frac{5}{12}, \frac{10}{12}, 1 \frac{5}{12}\right) = \left(\frac{17}{12}, \frac{10}{12}, \frac{7}{12}\right)$
- $\overrightarrow{PP'} = (\frac{3}{12}, 0, \frac{3}{12}) = (\frac{1}{4}, 0, \frac{1}{4})$

Adesso calcoliamo la lunghezza ed abbiamo terminato $||PP'|| = \sqrt{\frac{1}{16} + \frac{1}{16}} = \frac{\sqrt{2}}{4}$

Lezione 22° del 29/05/24

Punto medio

Definizione - Punto medio

Sia $(\vec{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = n$

Presi i punti $A, B \in \xi$ allora esiste un unico punto M detto punto medio del semento (A, B) tale che $\overrightarrow{AM} = \overrightarrow{MB}$

Domanda - Come so che $\overrightarrow{AM} = \overrightarrow{MB}$?

Ricordiamoci che essendo in uno spazio euclideo abbiamo che nel riferimento fissato \mathcal{B} è una base ortonormale

Prendiamo i punti

- $A(x_1^A, ..., x_n^A)$
- $B(x_1^B, ..., x_n^B)$
- $M(x_1, ..., x_n)$

Allora possiamo vedere che

$$\overrightarrow{AM} = \overrightarrow{MB} \Leftrightarrow \phi_B(\overrightarrow{AM}) = (x_1 - x_1^A, ..., x_n - x_n^A) \Leftrightarrow (x_1 - x_1^A, ..., x_n - x_n^A) \Leftrightarrow (x_1 - x_1^A, ..., x_n - x_n^A) = (x_1^B - x_1, ..., x_n^B - x_n)$$

Ritroviamo quindi il seguente sistema

$$\begin{cases} x_{1} - x_{1}^{A} = x_{1}^{B} - x_{1} \\ \vdots \\ x_{n} - x_{n}^{A} = x_{n}^{B} - x_{n} \end{cases} \Leftrightarrow \begin{cases} 2x_{1} = x_{1}^{B} + x_{1}^{A} \\ \vdots \\ 2x_{n} = x_{n}^{B} + x_{n}^{A} \end{cases} \Leftrightarrow \begin{cases} x_{1} = \frac{x_{1}^{B} + x_{1}^{A}}{2} \\ \vdots \\ x_{n} = \frac{x_{n}^{B} + x_{n}^{A}}{2} \end{cases}$$

Esempio - Punto medio

Sia $(\vec{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$

Dati i punti A(2,-1,5) e B(3,5,-7) troviamo facilmente il punti medio $M(\frac{5}{2},2,-1)$

Definizione - Asse del segmento (A, B)

Sia $(\vec{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = n$

Presi i due punti $A, B \in \xi$ sappiamo che $M \in X = \{Q(x_1, ..., x_n) \mid d(Q, A) = d(Q, B)\}$

Ma analizzando meglio l'insieme e la condizione di appartenenza di un singolo punto abbiamo

$$Q(x_1,...,x_n) \in X \Leftrightarrow ||\overrightarrow{AQ}|| = ||\overrightarrow{QB}|| \Leftrightarrow ||\overrightarrow{AQ}||^2 = ||\overrightarrow{QB}||^2 \Leftrightarrow \left\langle \overrightarrow{AQ},\overrightarrow{AQ}\right\rangle = \left\langle \overrightarrow{QB},\overrightarrow{QB}\right\rangle$$

Svolgendo il prodotto scalare otteniamo che

$$(x_1 - x_1^A)^2 + \dots + (x_n - x_n^A)^2 = (x_1^B - x_1)^2 + \dots + (x_n^B - x_n)^2$$

$$x_1^2 - 2x_1^A x_1 + x_1^{A^2} + \dots + x_n^2 - 2x_n^A x_n + x_n^{A^2} = x_n^{B^2} - 2x_1^B x_1 + x_1^2 + \dots + x_n^{B^2} - 2x_n^B x_n + x_n^2$$

$$2x_1^A x_1 + x_1^{A^2} + \dots - 2x_n^A x_n + x_n^{A^2} = x_n^{B^2} - 2x_1^B x_1 + \dots + x_n^{B^2} - 2x_n^B x_n$$

Possiamo quindi notare che se spostiamo tutto a destra otteniamo l'equazione

$$2(x_1^B - x_1^A)x_1 + \dots + 2(x_n^B - x_n^A)x_n + x_1^{A^2} + \dots + x_n^{A^2} - x_1^{B^2} - \dots + x_n^{B^2} = 0$$

Questa equazione rappresenta l'equazione di un iper-piano ortogonale alla retta con vettore direzionale $\mathcal{H}:=X$ chiamato asse del segmento (A,B)

Esempio - Asse del segmento

Sia $(\vec{\xi}, \xi, \pi)$ uno spazio euclideo con $dim(\xi) = 3$

Dati i punti A(2,-1,5) e B(3,5,-7) troviamo facilmente il punti medio $M(\frac{5}{2},2,-1)$ e il vettore $\overrightarrow{AB}(1,6,-12)$

Questo ci da il piano $\mathcal{H}: x_1 + 6x_2 - 12x_3 + d = 0$

Se imponiamo il passaggio per il punto $M \in \mathcal{H} \Rightarrow \frac{5}{2} + 12 + 12 + d = 0 \Rightarrow d = -\frac{53}{2}$

Ottendo il piano $\mathcal{H}: x_1+6x_2-12x_3-\frac{53}{2}=0$

Matrici simili

Definizione - Matrici simili

 $\forall A, \overline{A} \in M_{n \times n}(K)$ si dicono simili se $\exists E \in M_{n \times n}(K)$ invertibile con la proprietà che

$$A = E^{-1} \cdot \overline{A} \cdot E$$

Nota - La relazione di similitudine è di equivalenza

Abbiamo che ogni matrice A è simile a se stessa perché $A = I_n^{-1} \cdot A \cdot I_n$

Osserviamo che se A e \overline{A} sono simili allora

$$A = E^{-1} \cdot \overline{A} \cdot E \Leftrightarrow E \cdot A = E \cdot E^{-1} \cdot \overline{A} \cdot E = \overline{A} \cdot E \Leftrightarrow E \cdot A \cdot E^{-1} = \overline{A} \cdot E \cdot E^{-1} = \overline{A}$$

Teorema - sulle Matrici Simili

Siano $A, \overline{A} \in M_n(K)$ allora

 $A \in \overline{A}$ sono simili $\Leftrightarrow \exists T : V \to V$ endomorfismo

Dove dim(V) = n ed $\exists B, \overline{B}$ basi ordinate di $V: A := M_{BB}(T)$ e $\overline{A} := M_{\overline{BB}}$

Dimostrazione solo dell'implicazione "⇒"

Presi un elemento $u \in V$ e la sua immagine $T(u) \in V$ prendo le componenti nelle basi

- $\phi_B(u) = (x_1, ..., x_n) \quad \phi_B(T(u)) = (y_1, ..., y_n)$
- $\bullet \ \phi_{\overline{B}}(u) = (\overline{x_1}, ..., \overline{x_n}) \quad \phi_{\overline{B}}(T(u)) = (\overline{y_1}, ..., \overline{y_n})$

Se considero la matrice di passaggio $P=M_{B\overline{B}}(id_V)$ so che $\exists P^{-1}$ e che P ha le seguenti proprietà

$$P\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \overline{x_1} \\ \vdots \\ \overline{x_n} \end{pmatrix} \qquad P\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \overline{y_1} \\ \vdots \\ \overline{y_n} \end{pmatrix}$$

Quindi se prendo la matrice \overline{A} che si comporta in questo modo

$$\overline{A} \begin{pmatrix} \overline{x_1} \\ \vdots \\ \overline{x_n} \end{pmatrix} = \begin{pmatrix} \overline{y_1} \\ \vdots \\ \overline{y_n} \end{pmatrix}$$

E sostituisco con la matrice di passaggio ottengo che

$$\overline{A}P\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = P\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$P^{-1}\overline{A}P\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = P^{-1}P\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$P^{-1}\overline{A}P\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Ma la matrice A è unica quindi $P^{-1}\overline{A}P = A$

Esempio - Teorema sulle matrici simili

Sia data la seguente applicazione

$$T: \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}^2$$

$$(a,b) \quad \leadsto \quad (2a+b,2b)$$

Prese le basi B = ((1,0),(0,1)) e $\overline{B} = ((1,1),(-1,1))$ ci calcoliamo le matrici associate

$$A = M_B T = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad \overline{A} = M_{\overline{B}}(T) = \begin{pmatrix} \frac{5}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

Calcoliamo le matrici di passaggio

$$P^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Per il teorema otteniamo che $A=P^{-1}\overline{A}P$ mentre $\overline{A}=PAP^{-1}$

Autovalori e Autovettori di un Endomorfismo

Definizione - Autovalore

Sia V uno spazio vettoriale su K con $T:V\to V$ endomorfismo allora

 $\forall \lambda \in K \quad \lambda \text{ si dice autovalore di } T \Leftrightarrow \exists u \in V \setminus \{\underline{0}\} : T(u) = \lambda u$

Domanda - Quanto λ è un autovalore?

Sia $\lambda \in K$ allora $\underline{0} \in U_{\lambda} := \{u \in V \mid T(u) = \lambda u\}$ quindi questo insieme alla definizione di autovalore ci dice che

 λ è autovalore $\Leftrightarrow U_{\lambda} \neq \{\underline{0}\}$

Teorema - U_{λ} è un sotto-spazio vettoriale di V

 $\forall \lambda \in K$ U_{λ} è un sotto-spazio vettoriale di V

Dimostrazione

• $U_{\lambda} \neq \emptyset$

Sappiamo che $\underline{0} \in U_{\lambda} \Rightarrow \forall \lambda \in K \quad T(\underline{0}) = \lambda \underline{0}$

- $\forall u, u' \in U_{\lambda}$ $u + u' \in U_{\lambda}$ $T(u) = \lambda u$ $T(u') = \lambda u' \Rightarrow T(u + u') = T(u) + T(u') = \lambda u + \lambda u' = \lambda(u + u') \Rightarrow u + u' \in U_{\lambda}$
- $\forall u \in U_{\lambda} \quad \forall \alpha \in K \quad \alpha u \in U_{\lambda}$ $T(\alpha u) = \alpha T(u) = \alpha \lambda u = \lambda(\alpha u) \Rightarrow \alpha u \in U_{\lambda}$

Definizione - Autospazi e Autovettori

Se λ è autovalore di T allora abbiamo che

- ullet U_{λ} si dice autospazio di T relativo a λ
- ullet i vettori (non nulli) di U_λ si dicono Autovettori relativi a Λ

Teorema - sugli autovettori e autovalori

Sia $T: V \to V$ un endomorfismo con dim(V) e B base ordinata di V

Sia $A = M_{BB}(T)$ allora $\forall \lambda \in K$ abbiamo che

- 1. λ è autovalore di $T \Leftrightarrow det(A \lambda I_n) = 0$
- 2. $\forall u \in V \quad u \in U_{\lambda} \Leftrightarrow \phi_B(u)$ è soluzione di $\Sigma_0 : (A \lambda I_n)X = 0$

Dimostrazione

1. Dato u e prese le sue componenti $\phi_B(x_1,...,x_n)$ abbiamo che

$$\lambda$$
 è autovalore di $T \Leftrightarrow \exists u \in V \setminus \{\underline{0}\} : T(u) = \lambda u$

$$\updownarrow$$

$$\exists (x_1, ..., x_n) \in K^n \setminus \{0\} : A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

1

$$\exists (x_1, ..., x_n) \in K^n \setminus \{0\} : A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} - \lambda I_n \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Per il teorema di Cramer sappiamo che questo è vero se e solo se $det(A - \lambda I_n) = 0$

2.
$$u \equiv_{\mathcal{B}} (x_1, ..., x_n) \in U_{\lambda} \Leftrightarrow (x_1, ..., x_n) \in \phi_{\mathcal{B}}(U_{\lambda}) \Leftrightarrow (x_1, ..., x_n) \text{ è soluzione di } \Sigma_0 : (A - \lambda I_n) = 0$$

Nota - Polinomio caratteristico e Equazione caratteristica

Il $det(A - \lambda I_n)$ è un polinomio in λ di grado n detto polinomio caratteristico di T mentre $det(A - \lambda I_n) = 0$ si chiama equazione caratteristica

Esempio - Autospazio e Autovettori

Sia $T: \mathbb{R}^2[x] \le 2 \Rightarrow \mathbb{R}^2[x] \le 2$ un endomorfismo e presa la base canonica $B = (1, x, x^2)$ ne facciamo l'immagine delle componenti

- $1 \rightsquigarrow 1 + x$
- $x \rightsquigarrow 1 x$
- $x^2 \rightsquigarrow -3x^2$

Possiamo comporre la matrice associata

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Ma soprattutto vediamo che -3 è autovalore perché $T(x^2) = (-3)x^2$

Calcoliamoci quindi $U_{-3}: (A - (-3)I_n) = 0$

$$\begin{pmatrix} 4 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Questo da vita al seguente sistema di equazioni lineari

$$\begin{cases} 4x_1 + x_2 = 0 \\ x_1 + 2x_2 = 0 \end{cases} \Rightarrow \mathscr{S} = \{(0, 0, x_3) \mid x_3 \in \mathbb{R}\} = \mathscr{L}((0, 0, 1)) = \phi_B(U_{-3})$$

Quindi $U_{-3} = \mathcal{L}(x^2)$

Teorema - sui determinanti dei Polinomi Caratteristici

Sia $T:V\to V$ un endomorfismo con dim(V)=n e prese B,\overline{B} basi ordinate di V

Prese le matrici $A = M_{BB}(T)$ e $\overline{A} = M_{\overline{BB}}(T)$ allora

$$det(A - \lambda I_n) = det(\overline{A} - \lambda I_n)$$

Dimostrazione per la premessa so che $\exists P \in M_{n \times n}(K) : A = P^{-1}\overline{A}P$

$$det(A - \lambda I_n) = det(P^{-1}\overline{A}P - \lambda P^{-1}P) = det(P^{-1}(\overline{A} - \lambda I_n)P) = det(P^{-1}) \cdot det(\overline{A} - \lambda I_n) \cdot det(P) = det(\overline{A} - \lambda I_n)$$

Questo perché $det(P^{-1}) = det(P)^{-1}$ e quindi si annulla con il det(P)

Molteplicità geometrica e algebrica

Definizione - Molteplicità geometrica

Sia $\lambda \in K$ un autovalore di T allora la $dim(U_{\lambda})$ si dice molteplicità geometrica di λ

$$mg(\lambda) = dim(U_{\lambda})$$

Definizione - Molteplicità algebrica

Sia $p(x) \in K[x]$ allora $\forall b \in K$ abbiamo che la molteplicità algebrica di b si definisce come

$$ma(b) = max(\{k \in \mathbb{N} : (x - b)^k \mid p(x)\})$$

Teorema - di Ruffini

Sia $p(X) \in K[x]$ allora $\forall b \in K$

 $b \in \text{soluzione di } p(x) \Leftrightarrow \exists q(x) \in K[x] : p(x) = (x - b)q(x) \text{ (ovvero } x - b \mid p(x))$

Esempio - Molteplicità geometrica e algebrica

Sia
$$p(x) = x(x-1)^2 = (x-1)(x-1)x$$
 allora $ma(0) = 1$ e $ma(1) = 2$

Sia
$$t(x) = x^3(x - 1)$$
 allora $ma(0) = 3$ e $ma(1) = 1$

Teorema - sulla Molteplicità geometrica e algebrica

Sia $T: V \to V$ con dim(V) = n e data la base B e la matrice associata $A = M_{BB}(T)$

Se $\lambda \in K$ è autovalore di T allora $mg(\lambda) \leq ma(\lambda)$

Lezione 23° del 03/06/24

Teorema - Autovalori diversi implica che la loro intersezione sia vuota

Siano λ_1 , λ_2 autovalori di T allora

$$\lambda_1 \neq \lambda_2 \Rightarrow U_{\lambda_1} \cap U_{\lambda_2} = \emptyset$$

Dimostrazione

$$u \in U_{\lambda_1} \cap U_{\lambda_2} \Rightarrow u \in U_{\lambda_1}$$
 e $u \in U_{\lambda_2} \Rightarrow T(u) = U_{\lambda_1} u$ e $T(u) = U_{\lambda_2} u \Rightarrow U_{\lambda_1} u = U_{\lambda_2} u$

Quindi troviamo un assurdo, ovvero

$$U_{\lambda_1}u - U_{\lambda_2}u = 0 \Rightarrow (U_{\lambda_1} - U_{\lambda_2})u = 0 \Rightarrow U_{\lambda_1} - U_{\lambda_2} = 0$$
 oppure $u = 0$

Appunto l'assurdo è che $U_{\lambda_1} - U_{\lambda_2} = \underline{0}$

Teorema - Gli elementi degli autovalori formano un'insieme linearmente indipendente

Sia $T:V\to V$ un endomorfismo e siano $\lambda_1,...,\lambda_n$ autovalori di V a due a due distinti

Allora prendiamo un elemento da ogni autovalore di T

•
$$v_1 \in \lambda_1 \setminus \{\underline{0}\}$$

.

• $v_n \in \lambda_n \setminus \{\underline{0}\}$

L'insieme $\{v_1, ..., v_n\}$ è linearmente indipendente

Dimostrazione per induzione su *n* quindi siano $\alpha_1,...,\alpha_n \in K: \alpha_1 v_1 + ... + \alpha_n v_n = 0 \Rightarrow \alpha_1 = ... = \alpha_n = 0$

Se n = 1 otteniamo che

$$\alpha_1 v_1 = \underline{0} \Rightarrow \alpha_1 = 0$$

Se n > 1 allora osserviamo due casi

1.
$$T(\alpha_1 v_1 + \ldots + \alpha_n v_n) = \alpha_1 T(v_1) + \ldots + \alpha_n T(v_n) = T(\underline{0}) = \underline{0} \Leftrightarrow \alpha_1 \lambda_1 v_1 + \ldots + \alpha_n \lambda_n v_n = \underline{0}$$

2.
$$\lambda_n(\alpha_1 v_1 + ... + \alpha_n v_n) = \lambda_n \underline{0} = \underline{0} \Leftrightarrow \lambda_n \alpha_1 v_1 + ... + \lambda_n \alpha_n v_n = \underline{0}$$

Per ipotesi di induzione $\{v_1, ..., v_{n-1}\}$ è linearmente indipendente allora se sottraggo 1 e 2 ottengo che

$$\alpha_{1}(\lambda_{1} - \lambda_{n})v_{1} + \dots + \alpha_{n-1}(\lambda_{n-1}\lambda_{n})v_{n-1} = \underline{0} \Rightarrow \begin{cases} \alpha_{1}(\lambda_{1} - \lambda_{n}) = \underline{0} \Rightarrow \alpha_{1} = 0 \\ \vdots \\ \alpha_{n-1}(\lambda_{n-1} - \lambda_{n}) = \underline{0} \Rightarrow \alpha_{n-1} = 0 \end{cases}$$

Allora abbiamo che $\alpha_1 v_1 + ... + \alpha_{n-1} v_{n-1} + \alpha_n v_n = \underline{0} \Rightarrow \alpha_n = 0$

Teorema - Somma diretta di autovalori

Siano $\lambda_1, ..., \lambda_n$ autovalori a due a due distinti allora

$$\forall i \in \{1, ..., n\}$$
 $U_{\lambda_i} \cap (U_{\lambda_1} + ... + U_{\lambda_{i-1}} + U_{\lambda_{i+1}} + ... + U_{\lambda_n}) = \{\underline{0}\}$

Ma allora otteniamo la somma diretta $U_{\lambda_1} + ... + U_{\lambda_n} = U_{\lambda_1} \boxplus ... \boxplus U_{\lambda_n}$

Dimostrazione dell'enunciato per i=1

- Sia $u \in U_{\lambda_1} \cap (U_{\lambda_2} \cap ... \cap U_{\lambda_n}) \Rightarrow u \in U_{\lambda_1} \in u \in U_{\lambda_2} + ... + U_{\lambda_n}$
- Allora otteniamo che $\exists u_2 \in U_{\lambda_2}, ..., u_n \in U_{\lambda_n} : u = u_2 + ... + u_n \Rightarrow u u_2 ... u_n = \underline{0}$
- Ma questo vuol dire che $\{u, u_2, ..., u_n\}$ è linearmente indipendente

Ma per il teorema precedente deve accadere che $u=u_2=\ldots=u_n=\underline{0}$

Domanda - Quando ottengo che V una base formata da autovettori?

Siano $\lambda_1,...,\lambda_n$ autovalori di V allora prendiamo

- B_1 base di λ_1
- ;
- B_n base di λ_n

Quindi $B_1 \cup ... \cup B_n$ è base di $U_{\lambda_1} \boxplus ... \boxplus U_{\lambda_n}$ allora se $V = U_{\lambda_1} \boxplus ... \boxplus U_{\lambda_n} \Rightarrow V$ ha una base fatta da autovettori

Diagonalizzabilità

Definizione - Endomorfismo diagonalizzabile

Sia $T: V \to V$ un endomorfismo con dim(V) = n allora

T è diagonizzabile \Leftrightarrow esiste \overline{B} base ordinata di V tale che $\overline{A}=M_{\overline{BB}}(T)$ è diagonale

Quindi T è diagonizzabile se e solo se ogni matrice A associata a V in qualche base B di V è simile a una matrice diagonale

Definizione - Matrice Diagonale

Sia $A \in M_{n \times n}(K)$ una matrice allora si dice diagonizzabile se è simile matrice diagonale, ovvero

 $\exists P \in M_{n \times n}(K)$ invertibile tale che $P^{-1}AP$ è diagonale

Base spettrale

Definizione - Base spettrale

Una base di V costituita da autovettori di T (endomorfismo) si dice base spettrale di V rispetto a T

Teorema - Spettrale

Sia $T: V \to V$ un endomorfismo con dim(V) = n

Siano $\lambda_1, ..., \lambda_n$ gli autovalori di T e sia A la matrice associata a T in una base ordinata $B = (l_1, ..., l_n)$

Allora sono equivalenti le seguenti affermazioni

- 1. A è diagonalizzabile
- 2. Esiste una base spettrale di V rispetto a T
- $3. \sum_{i=1}^{h} mg(\lambda_1) = n$
- 4. $V = U_{\lambda_1} \boxplus ... \boxplus U_{\lambda_n}$
- 5. $\sum_{i=1}^{h} ma(\lambda_1) = n$
- 6. $\forall i \in \{1, ..., h\}$ $ma(\lambda_i) = mg(\lambda_i)$

Dimostrazione $(1) \Leftrightarrow (2) \quad (2) \Rightarrow (3) \quad (3) \Rightarrow (4) \quad (4) \Rightarrow (2)$

• $(1) \Rightarrow (2)$

Per ipotesi esiste $\overline{B} = (\overline{e_1}, ..., \overline{e_n})$ base di V tale che

$$\overline{A} = M_{\overline{BB}}(T) = \begin{pmatrix} a_1^1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & a_n^n \end{pmatrix}$$

Per definizione di matrice associata abbiamo che

-
$$T(\overline{e_1}) = a_1^1 \overline{e_1} + 0 \overline{e_2} + ... + 0 \overline{e_n} = a_1^1 \overline{e_1} \Rightarrow \overline{e_1}$$
 è autovettore di autovalore a_1^1 :

$$- \ T(\overline{e_1}) = a_1^1 \overline{e_1} + 0 \overline{e_2} + \ldots + 0 \overline{e_n} = a_1^1 \overline{e_1} \Rightarrow \overline{e_1} \ \text{\`e} \ \text{autovettore di autovalore} \ a_1^1$$

Quindi otteniamo che $\overline{B} = (\overline{e_1}, ..., \overline{e_n})$ è una base spettrale

• $(2) \Rightarrow (1)$

Supponiamo che $\overline{B}=(\overline{e_1},...,\overline{e_n})$ sia una base spettrale allora calcoliamo $\overline{A}=M_{\overline{BB}}(T)$

-
$$\mathcal{T}(\overline{e_1}) = a_1^1 \overline{e_1}$$
 (perché $\overline{e_1}$ è autovettore) con $\mathcal{T}(\overline{e_1}) \equiv_{\overline{B}} (a_1^1, 0, ..., 0)$

$$-\mathcal{T}(\overline{e_n})=a_n^n\overline{e_n}$$
 (perché $\overline{e_n}$ è autovettore) con $\mathcal{T}(\overline{e_n})\equiv_{\overline{B}}(0,...,0,a_n^n)$

Quindi otteniamo che

$$\overline{A} = M_{\overline{BB}}(T) = \begin{pmatrix} a_1^1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & a_n^n \end{pmatrix}$$

• ② \Rightarrow ③ Per ipotesi esiste $\overline{B} = (\overline{e_1}, ..., \overline{e_n})$ base di V

Riordiniamo la base
$$\overline{B} = (\underline{\overline{e_1}^1,...,\overline{e_r}^1},\underline{\overline{e_1}^1,...,\overline{e_{r_2}^1}},\underline{\overline{e_1}^1,...,\overline{e_{r_2}^1}},...,\underline{\overline{e_1}^1,...,\overline{e_{r_h}^1}})$$
Autovalore λ_1
Autovalore λ_2
Autovalore λ_b

Sappiamo quindi che

$$- r_1 \leq dim(\lambda_1)$$

$$-r_2 \leq dim(\lambda_2)$$

.

$$-r_h < dim(\lambda_h)$$

Ma questo ci porta alla conclusione che

$$n = r_1 + r_2 + \dots + r_h \le dim(\lambda_1) + dim(\lambda_2) + \dots + dim(\lambda_h) = \sum_{i=1}^h mg(\lambda_i) \le n$$

Concludiamo quindi che $\sum_{i=1}^{h} mg(\lambda_i) = n$

• $(3) \Rightarrow (4)$

Per ipotesi abbiamo che $\sum\limits_{i=1}^h mg(\lambda_i) = n$ ma osserviamo che

$$dim(V) = n = \sum_{i=1}^{h} mg(\lambda_i) = dim(U_{\lambda_1} \boxplus ... \boxplus U_{\lambda_h}) = V$$

 \bullet $(4) \Rightarrow (2)$

Per ipotesi abbiamo che $U_{\lambda_1} \boxplus ... \boxplus U_{\lambda_h} = V$ allora prendiamo

$$B_1 \text{ base di } U_{\lambda_1}$$

$$\vdots$$

$$B_h \text{ base di } U_{\lambda_h}$$

$$\Rightarrow B_1 \cup ... \cup B_2 \text{ è base spettrale di } V$$

Esempio - Diagonalizzabilità

Sia dato l'endomorfismo $T: \mathbb{R}^2 \to \mathbb{R}^2$ con base canonica B = ((1,0),(0,1)) e la matrice associata

$$M_B(T) = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Abbiamo che $\phi_B=id_{\mathbb{R}^2}$ e andiamo a calcolarci il determinante $det(A-\lambda I_2)$

$$det\begin{pmatrix} 1-\lambda & 1\\ 0 & 1-\lambda \end{pmatrix} = (1-\lambda)^2 = 0 \Leftrightarrow \lambda = 1$$

Otteniamo quindi che ma(1) = 2 e calcoliamo l'auto-spazio

$$U_1: \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \Leftrightarrow \left\{ x_2 = 0 \right\}$$

Otteniamo quindi che $\mathscr{S} = \{(x_1, 0) \mid x_1 \in \mathbb{R}\} = \mathscr{L}((1, 0)) = \phi_B(U_1)$

Abbiamo che $\sum_{i=0}^h mg(\lambda_i) = 1 \neq 2 = n$ ed inoltre $\exists \lambda : ma(\lambda) \neq mg(\lambda)$ quindi T non è diagonalizzabile

Osserviamo adesso il caso di $T: \mathbb{R}[x] \leq 2 \to \mathbb{R}[x] \leq 2$ con base $B = (1 + x, 1 - x, x^2)$ e matrice associata

$$M_B(T) = A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Andiamo a calcolarci il determinante $det(A - \lambda I_3)$

$$det\begin{pmatrix} -\lambda & 1 & 1 \\ 0 & 1-\lambda & 1 \\ 0 & 0 & 0-\lambda \end{pmatrix} = \lambda^2(1-\lambda) \Leftrightarrow \lambda = 0 \text{ oppure } \lambda = 1$$

Otteniamo quindi che ma(0) = 2 e calcoliamo l'auto-spazio U_0

$$U_0: \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \Leftrightarrow \left\{ x_2 + x_3 = 0 \right\}$$

Otteniamo quindi che $\mathscr{S} = \{(x_1, -x_3, x_3) \mid x_1, x_3 \in \mathbb{R}\} = \mathscr{L}((1, 0, 0), (0, -1, -1)) = \phi_B(U_0)$

Ovvero abbiamo che $U_0 = \mathcal{L}(1+x, -1+x+x^2)$

Adesso sappiamo che ma(1) = 1 e calcoliamo l'auto-spazio U_1

$$U_1: \begin{pmatrix} -1 & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = 0 \Leftrightarrow \begin{cases} -x_1 + x_2 + x_3 = 0\\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_2\\ x_3 = 0 \end{cases}$$

Otteniamo quindi che $\mathscr{S}=\{(x_1,x_1,0)\mid x_1\in\mathbb{R}\}=\mathscr{L}((1,1,0))=\phi_B(U_1)$

Ovvero abbiamo che $U_1=\mathscr{L}(1+x+1-x)=\mathscr{L}(2)$

Abbiamo quindi che la base spettrale è $\overline{B}=(1+x,-1+x+x^2,2)$ e calcoliamoci una matrice che diagonalizza

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ tale che } P^{-1} \cdot A \cdot P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$