Tsinghua-Berkeley Shenzhen Institute LARGE DEVIATION THEORY Spring 2021

Homework 2

Feng Zhao June 22, 2021

2.1. (a) We divide the proof into three parts.

i. If
$$X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y \Rightarrow X_n + Y_n \xrightarrow{P} X + Y$$
.

Proof. For any $\epsilon > 0$, since the event
$$\{|X_n + Y_n - X - Y| > \epsilon\} \subset \{|X_n - X| > \frac{\epsilon}{2}\} \cup \{|Y_n - Y| > \frac{\epsilon}{2}\},$$
we have

$$\limsup_{n \to \infty} P(|X_n + Y_n - X - Y| > \epsilon) \le \limsup_{n \to \infty} P(|X_n - X| > \frac{\epsilon}{2}) + \limsup_{n \to \infty} P(|X_n - X| > \frac{\epsilon}{2}) = 0$$

ii. If $X_n \xrightarrow{P} 0$ and Y is a random variable, $X_n Y \xrightarrow{P} 0$. Proof. For any $\epsilon > 0$ and A > 0, since the event $\{|X_n Y| > \epsilon\} \subset \{|X_n| > \frac{\epsilon}{A}\} \cup \{|Y| > A\}$, we have

$$\limsup_{n \to \infty} P(|X_n Y| > \epsilon) \le \limsup_{n \to \infty} P(|X_n| > \frac{\epsilon}{A}) + P(|Y| > A) = P(|Y| > A)$$

Let
$$A \to \infty$$
, we have $P(|Y| > A) \to 0$. Therefore $P(|X_nY| > \epsilon) \to 0$ as $n \to \infty$.

iii. If $X_n \xrightarrow{P} 0, Y_n \xrightarrow{P} 0 \Rightarrow X_n Y_n \xrightarrow{P} 0$.

Proof. For any $\epsilon>0$ and A>0, since the event $\{|X_nY_n|>\epsilon\}\subset\{|X_n|>\sqrt{\epsilon}\}\cup\{|Y_n|>\sqrt{\epsilon}\}$, we have

$$\limsup_{n \to \infty} P(|X_n Y| > \epsilon) \le \limsup_{n \to \infty} P(|X_n| > \sqrt{\epsilon}) + \limsup_{n \to \infty} P(|Y_n| > \sqrt{\epsilon}) = 0$$

П

Based on the above three conclusions, if $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, we have $(X_n - X)Y_n = (X_n - X)(Y_n - Y) + Y(X_n - X) \xrightarrow{P} 0$ and $X(Y_n - Y) \xrightarrow{P} 0$. Summing the two up we have $X_n Y_n - XY \xrightarrow{P} 0$.

(b) Let $\Omega = \{0, 1\}$ with measure $P(\{0\}) = P(\{1\}) = \frac{1}{2}$. $X_n(0) = 1, X_n(1) = 0$ while $Y_n(1) = 1, Y_n(0) = 0$. Then both X_n, Y_n follow Bern $(\frac{1}{2})$. Therefore, $X_n \stackrel{d}{\to} X, Y_n \stackrel{d}{\to} Y$ where we choose $X = Y = X_n$. However, $Z_n = X_n Y_n = 0$ in a sense that $Z_n(0) = Z_n(1) = 0$.

Therefore, Z_n does not converge to $XY = X^2$ in distribution.

- (c) By Skorokhod's representation, we can find independent uniform random variables U_n, V_n, U, V on [0,1] such that $U_n, V_n(U, V)$ have the same distribution $X_n, Y_n(X, Y)$. and $U_n \xrightarrow{a.s.} U$ and $V_n \xrightarrow{a.s.} V$. Then $U_n V_n \xrightarrow{a.s.} UV$. Since $X_n, Y_n(X, Y)$ are independent, so are $U_n, V_n(U, V)$. $P(U_n \leq t_1, V_n \leq t_2) = P(U_n \leq t_1)P(V_n \leq t_2) = P(X_n \leq t_1)P(Y_n \leq t_2) = P(X_n \leq t_1, Y_n \leq t_2)$. Therefore, they have the same joint distribution. Then for any bounded continuous function f, $\mathbb{E}[f(X_n Y_n)] = \mathbb{E}[f(U_n V_n)]$. Using the bounded convergence theorem we have $\lim_{n\to\infty} \mathbb{E}[f(U_n V_n)] = \mathbb{E}[f(UV)] = \mathbb{E}[f(XY)]$. We get $\mathbb{E}[f(X_n Y_n)] \to \mathbb{E}[f(XY)]$ for any bounded continuous function. Then $X_n Y_n \xrightarrow{d} XY$.
- 2.2. (a) We choose $Z \sim \mathcal{N}(0,1)$. We discretize ϵ using $\frac{1}{n}$. Then $X + \frac{Z}{n}$ converges to X in probability. $X + \frac{Z}{n} \xrightarrow{d} X$ follows.
 - (b) The CDF of X_{ϵ} is $F_{X_{\epsilon}}(a) = P(X + \epsilon Z < a) = P(Z < \frac{a X}{\epsilon})$. Since $X \perp \!\!\! \perp Z$, $P(Z < \frac{a X}{\epsilon}) = \mathbb{E}[\Phi(\frac{a X}{\epsilon})]$ where Φ is the CDF of standard Gaussian distribution. Now let $a_n \to a$, then the random variable $Y_n = \Phi(\frac{a_n X}{\epsilon})$ converges to $\Phi(\frac{a X}{\epsilon})$ in probability. Further Y_n is uniformly bounded by 1. By the bounded convergence theorem, we have $E[Y_n] \to E[Y]$. That is, $F_{X_{\epsilon}}(a)$ is continuous. Since Φ is smooth function, we can exchange the differential operation with the expectation and get the PDF of X_{ϵ} as $f_{X_{\epsilon}}(a) = \mathbb{E}[f_Z(\frac{a X}{\epsilon})\frac{1}{\epsilon}]$.
 - (c) Similar to (b). Using the bounded convergence theorem we can show that $f_{X_{\epsilon}}(a)$ is continuous.
 - (d) Since derivatives of f_Z are uniformly bounded, X_{ϵ} has a continuous, bounded, infinitely-differentiable PDF.
- 2.3. Since almost surely convergence implies convergence in probability. We only need to prove the other part. The proof is divided into three lemmas.
 - (a) If X_i are independent, $\sum_{n=1}^{\infty} \mathbb{E}[X_n^2]$ converges and $S_n \xrightarrow{p} c$ for some constant. Then $\sum_{i=1}^{n} \mathbb{E}[X_i]$ also converges.

Proof. Since $\operatorname{Var}[S_n] \geq 0$, $S_n^2 \leq \sum_{i=1}^n \mathbb{E}[X_i^2]$. Since $\sum_{n=1}^\infty \mathbb{E}[X_n^2]$ converges, $|S_n| \leq M$ for all n. $|\mathbb{E}[S_n] - c| \leq 2P(|S_n - c| > \epsilon)M + (1 - P(|S_n - c| > \epsilon)\epsilon)$ where $P(|S_n - c| > \epsilon)$ converges to zero. Therefore $\mathbb{E}[S_n] \to c$.

(b) If X_i are independent random variables, $\mathbb{E}[X_n] = 0, S_n \xrightarrow{d} S$ and $|X_n| < c$ for some constant. Then $\sum_{n=1}^{\infty} \mathbb{E}[X_n^2]$ converges.

Proof. We proceed by contradiction and assume that $\sum_{n=1}^{\infty} \mathbb{E}[X_n^2] = \infty$. Since $\mathbb{E}[X_n^3] \leq c \mathbb{E}[X_n^2]$, for S_n we can check the condition in Central Limit Theorem (Lyapunov):

$$\frac{\sum_{i=1}^n \mathbb{E}[X_n^3]}{(\sum_{i=1}^n \mathbb{E}[X_n^2])^{3/2}} \leq \frac{c}{(\sum_{i=1}^n \mathbb{E}[X_n^2])^{1/2}} \to 0. \text{ Therefore,}$$

$$\frac{S_n}{(\sum_{i=1}^n \mathbb{E}[X_n^2])^{1/2}} \stackrel{d}{\to} \mathcal{N}(0,1). \text{ Then}$$

$$P(S_n \geq t) \to 1 - \Phi(\frac{t}{\sum_{i=1}^n \mathbb{E}[X_n^2])^{1/2}}) \sim \frac{1}{2}. \text{ On the other hand,}$$

$$S_n \stackrel{d}{\to} S, \text{ which implies } P(S \geq t) = \frac{1}{2}, \text{ which is impossible for a valid random variable. Therefore, } \sum_{n=1}^\infty \mathbb{E}[X_n^2] \leq \infty.$$

(c) Let X_i be independent, and both $S_n = \sum_{i=1}^n \mathbb{E}[X_i]$ and $\sum_{i=1}^n \mathbb{E}[X_i^2]$ converge. Then S_n converges almost surely.

Proof. We first that the conclusion holds for $\mathbb{E}[X_n] = 0$. For general case, consider $X'_n = X_n - \mathbb{E}[X_n]$, which has zero mean, and $\sum_{i=1}^n \mathbb{E}[X_n'^2] = \sum_{i=1}^n \mathbb{E}[X_n^2] - \sum_{i=1}^n \mathbb{E}^2[X_n] \leq \sum_{i=1}^n \mathbb{E}[X_n^2]$. Therefore, $\sum_{i=1}^n \mathbb{E}[X_n'^2]$ converges. Using Kolmogorov's inequality for $S_k, n \leq k \leq n+m$ we have

$$P(\max_{n \le k \le n+m} |S_k| \le \delta) \le \frac{1}{\delta^2} \mathbb{E}[(\sum_{k=1}^m X_{n+k})^2] \to 0$$

since $\sum_{n=1}^{\infty} \mathbb{E}[X_n^2] \leq \infty$. By Cauchy Convergence criterion, S_n converges almost surely.

For each X_n , we construct X'_n which has the same distribution but is independent with X. Consider $Y_n = X_n - X'_n$. Then $|Y_n| \leq 2$ and $\mathbb{E}[Y_n] = 0$. Since $S_n \stackrel{p}{\to} c$, $Y_n \stackrel{p}{\leftarrow} 0$, then $Y_n \stackrel{d}{\to} 0$. By (b) we get $\sum_{n=1}^{\infty} \mathbb{E}[Y_n^2] \leq \infty$. Since $\mathbb{E}[Y_n^2] = 2\mathbb{E}[X_n^2]$, we have $\sum_{n=1}^{\infty} \mathbb{E}[X_n^2] \leq \infty$. Then we can apply (a) and get $\sum_{i=1}^n \mathbb{E}[X_i]$ converges. Finally, we apply (c) and reach the conclusion.