Lecture Problem

With the given definition

Definition 1. We say a mapping $f: A \to B$ is well-defined if

- (a) $\forall a \in A, f(a) \in B$
- (b) $\forall a_1, a_2 \in A, a_1 = a_2 \implies f(a_1) = f(a_2)$

Part A

- 1. Give and example of f that doesn't satisfy (a)
- **2**. Give and example of f that doesn't satisfy (b)
- 3. Give and example of f that satisfies (a) and (b) and prove it

Part 1

Let f be defined as

$$f: [0,2] \to [0,1]: x \mapsto x^2.$$

In this case f doesn't satisfy (a) since $2 \in [0, 2]$, but $f(2) = 4 \notin [0, 1]$.

Part 2

Let f

$$f: [0,1] \to [-1,1]: x \mapsto \pm \sqrt{x}.$$

In this case f doesn't satisfy (b) since f(1) = 1 and f(1) = -1.

Part 3

Let f be defined as

$$f:A\to B$$
.

Where $A = \{0, 1\}$ and $B = \{2, 3\}$ where

$$0 \mapsto 2$$

$$1 \mapsto 3$$
.

Proof. Proof that f satisfies both conditions (a) and (b). Note that $\forall a \in A, f(a) \in B$ since $f(0) = 2 \in B$ and $f(1) = 3 \in B$. Let $a_1, a_2 \in A$ and assume $a_1 = a_2$. If $a_1 = a_2 = 0$, then $f(a_1) = f(a_2) = 2$ and if $a_1 = a_2 = 1$, then $f(a_1) = f(a_2) = 3$. Therefore both (a) and (b) are true for f.

Part B

Let

$$f: \mathbb{Q} \to \mathbb{Q}: \frac{a}{b} \mapsto a.$$

Show that *f* is not well-defined

Solution

Proof. Let $q_1 = \frac{1}{2}$ and $q_2 = \frac{2}{4}$. Then $q_1 = q_2$ but $f(q_1) = 1 \neq 2 = f(q_2)$, hence f is not well-defined.

Part C

Let

$$f: \mathbb{Q} \to \mathbb{Q}: \frac{a}{b} \mapsto \left(\frac{a}{b}\right)^2$$

Show that f is well-defined.

Proof. Let $q=\frac{a}{b}\in\mathbb{Q}$. Then $f(q)=f(\frac{a}{b})=\frac{a^2}{b^2}\in\mathbb{Q}$. Let $q_1=\frac{a_1}{b_1}\in\mathbb{Q}$ and $q_2=\frac{a_2}{b_2}\in\mathbb{Q}$. Assume $q_1=q_2$. Then

$$q_1 = q_2$$

$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$

$$\left(\frac{a_1}{b_1}\right)^2 = \left(\frac{a_2}{b_2}\right)^2$$

$$f(q_1) = f(q_2).$$

2