Номер варианта — Ваш номер N в журнале. Если N > 14, то номер варианта N = 14.

1. Решить систему уравнений методом прогонки

1.
$$\begin{cases} 2X_1 + 2X_2 = 1 \\ -X_1 + 2X_2 - 0.5X_3 = 0 \\ X_2 - 3X_3 - X_4 = 2 \\ X_3 + 2X_4 = 2 \end{cases}$$

2.
$$\begin{cases} 3X_1 + X_2 = 5 \\ X_1 + 2X_2 + X_3 = 6 \end{cases}$$
$$3X_2 + 9X_3 + 6X_4 = 25$$
$$2X_3 + 4X_4 = 5$$

3.
$$\begin{cases} 4X_1 + X_2 = 5 \\ X_1 + 3X_2 - 2,5X_3 = 2 \\ 1,5X_2 - 5X_3 + X_4 = 1 \\ 2X_3 + 4X_4 = 7 \end{cases}$$

4.
$$\begin{cases} 7X_1 - 2X_2 = 5 \\ -2X_1 + 12X_2 + 4X_3 = 8 \end{cases}$$
$$\begin{cases} X_2 - 6X_3 + X_4 = 2 \\ 3X_3 + 5X_4 = 4 \end{cases}$$

5.
$$\begin{cases} 1,5X_1 + 0,5X_2 = 3,2 \\ -X_1 + 2X_2 - 0,4X_3 = -1 \\ 2,5X_2 + 5X_3 - 2X_4 = 4 \\ X_3 + 3X_4 = 3 \end{cases}$$

$$\begin{cases} 1,5X_1 + 0,5X_2 = 3,2 \\ -X_1 + 2X_2 - 0,4X_3 = -1 \\ 2,5X_2 + 5X_3 - 2X_4 = 4 \\ X_3 + 3X_4 = 3 \end{cases}$$

$$\begin{cases} 3X_1 + X_2 = 5 \\ X_1 + 4X_2 - X_3 = 3 \\ -X_2 + 5X_3 + X_4 = 12 \\ X_3 + 2X_4 = 6 \end{cases}$$

7.
$$\begin{cases} 6X_1 + 3X_2 = 4 \\ X_1 - 7X_2 - X_3 = -4 \\ X_2 + 4X_3 - X_4 = 3 \\ 2X_3 - 7X_4 = 1 \end{cases}$$

8.
$$\begin{cases} 2.5X_1 + 1.5X_2 = 8.4 \\ -2X_1 + 4X_2 - X_3 = 4 \\ X_2 + 6X_3 - X_4 = 5.6 \\ 2X_3 + 5X_4 = 7 \end{cases}$$

9.
$$\begin{cases} 1,25X_{1} - 0,2X_{2} = 2,3 \\ -1,7X_{1} + 2,87X_{2} - X_{3} = 4 \\ 1,4X_{2} + 4,7X_{3} - 2X_{4} = 3,5 \\ -X_{3} + 5X_{4} = 1,4 \end{cases}$$

$$\begin{cases} 3X_{1} + 2,3X_{2} = 2 \\ X_{1} - 3X_{2} + X_{3} = 3,2 \\ 2,2X_{1} + 4X_{2} - X_{3} = 6 \\ 5X_{3} + 7X_{4} = 5 \end{cases}$$

10.
$$\begin{cases} 3X_1 + 2, 3X_2 = 2 \\ X_1 - 3X_2 + X_3 = 3, 2 \\ 2, 2X_1 + 4X_2 - X_3 = 6 \\ 5X_3 + 7X_4 = 5 \end{cases}$$

11.
$$\begin{cases} 10X_1 - 4X_2 = 8 \\ X_1 + 2X_2 - 0.2X_3 = 5.5 \\ X_2 - 7X_3 + X_4 = 2 \\ -2X_3 + 5X_4 = -1 \end{cases}$$

12.
$$\begin{cases} 3X_1 + 2X_2 = 4 \\ X_1 - 8X_2 + X_3 = -1 \\ X_2 + 4X_3 - 3X_4 = 2 \\ X_3 + 2X_4 = 6 \end{cases}$$

13.
$$\begin{cases} 6X_1 + 3X_2 = 7 \\ X_1 - 2X_2 + 0.3X_3 = 4.3 \\ 2X_2 + 3X_3 - X_4 = 3 \\ -X_3 + 4X_4 = 8 \end{cases}$$

14.
$$\begin{cases} X_1 - 0.2X_2 = 2 \\ -3X_1 + 6.2X_2 + X_3 = 4.2 \\ -X_2 + 4X_3 - X_4 = 2.3 \\ X_3 + 2X_4 - 0.3X_5 = 2 \\ X_4 + 2X_5 = 3.4 \end{cases}$$

2. Используя метод конечных разностей, найти решение краевой задачи с точностью до 0.0001

1.
$$y'' + y'/x +2y=x$$

 $y'(0,7)=0,5$
 $y'(1)=1,2$

3.
$$y''-x y'+2y=x+1$$

 $y'(0,9)=2$
 $y(1,2)=1$

5.
$$y'' + xy'+y=x+1$$

 $y (0,5)=1$
 $y' (0,8)=1,2$

7.
$$y'' +2y'-y/x=3$$

 $y'(0,2)=2$
 $y'(0,5)=1$

9.
$$y''+1,5y'-xy=0,5$$

 $y(1,3)=1$
 $y(1,6)=3$

11.
$$y''+2xy'-y=0,4$$

 $y'(0,3)=1$
 $y'(0,6)=2$

13.
$$y''-0.5x y'+y=2$$

 $y'(0.4)=1.2$
 $y'(0.7)=1.4$

2.
$$y'' +2y'-xy=x^2$$

 $y'(0,6)=0,7$
 $y'(0,9)=1$

$$y'(0,9)=1$$
4. $y''-3y'+y/x=1$

$$y(0,4)=2$$

$$y'(0,7)=0,7$$

6.
$$y''-3y'-y/x=x+1$$

 $y'(1,2)=1$
 $y'(1,5)=0.5$

8.
$$y''- y'/2+3y=2x^2$$

 $y(1)=0,6$
 $y'(1,3)=1$

10.
$$y''+4y'-2y/x=1/x$$

 $y'(1,2)=0,8$
 $y(0,9)=1$

12.
$$y''-y'/2+4y/x=x/2$$

 $y'(1,3)=0,3$
 $y(1,6)=0,6$

3. Решить смешанную задачу для уравнения $u_t = au_{xx} - bu + f$, 0<x<1, 0<t<T с шагом h=0.01

1.
$$a=4$$
, $b=0$, $f=x^2+t^2$, $T=5$, $u(0,t)=0$, $u(1,t)=t^2$, $u(x,0)=x(1-x)$

2.
$$a=4$$
, $b=1$, $f=2x^2+1$, $T=5$, $u(0,t)=1$, $u_x(1,t)=1$, $u(x,0)=1-x$

3.
$$a=1$$
, $b=x$, $f=1+t^2$, $T=4$, $u(0,t)=t$, $u(1,t)=10-t$, $u(x,0)=10x$

4.
$$a=1, b=1, f=e^{x+t}, T=2, u(0,t)=1, u_x(1,t)=0, u(x,0)=1-x$$

5.
$$a=9$$
, $b=x^2$, $f=\sin(\pi x)$, $T=3$, $u(0,t)=t$, $u_x(1,t)=-1$, $u(x,0)=x$

6.
$$a=9$$
, $b=1+t$, $f=2x^2t$, $T=5$, $u_x(0,t)=1$, $u_x(1,t)=0$, $u(x,0)=\sin(\pi x)$

7.
$$a=1$$
, $b=5-t$, $f=2xt^2$, $T=4$, $u_x(0,t)=0$, $u_x(1,t)=0$, $u(x,0)=\cos(\pi x)$

8.
$$a=4$$
, $b=0$, $f=t(t+1)$, $T=5$, $u_x(0,t)=1$, $u_x(1,t)=2$, $u(x,0)=\sin(\pi x/2)$

9.
$$a=16$$
, $b=0$, $f=x+t^2$, $T=7$, $u(0,t)=5t$, $u(1,t)=t^2$, $u(x,0)=\sin(\pi x)$

10.
$$a=9$$
, $b=4$, $f=0$, $T=2$, $u(0,t)=2t^2$, $u(1,t)=2-2\cos(t)$, $u(x,0)=\sin(\pi x)$

11.
$$a=1$$
, $b=x^2(1-x)$, $f=4$, $T=4$, $u(0,t)=1$, $u_x(1,t)=-1$, $u(x,0)=2x+1$

12.
$$a=9$$
, $b=1-x^2$, $f=\sin^2(\pi x)$, $T=3$, $u(0,t)=0$, $u_x(1,t)=0$, $u(x,0)=x\cos(\pi x)$

13.
$$a=16$$
, $b=0$, $f=x+t$, $T=4$, $u(0,t)=3$, $u(1,t)=2+t^2$, $u(x,0)=3-x$

14.
$$a=9$$
, $b=1$, $f=t^2(t+1)/2$, $T=5$, $u_x(0,t)=1$, $u(1,t)=0$, $u(x,0)=\sin(\pi x)$

4. Решить задачу с помощью PDETools

Изучить, как им пользоваться, например, в doc-файле с руководством

1. Решить краевую задачу для уравнения Лапласа внутри кольцевого сектора со следующими граничными условиями:

$$u\big|_{\varphi=0}=0, \quad \frac{\partial u}{\partial \varphi}\Big|_{\varphi=\pi/2}=0, \quad \frac{\partial u}{\partial r}\Big|_{r=1}=\cos\varphi, \quad u\big|_{r=5}=20\sin 3\varphi.$$

2. Решить краевую задачу для уравнения Лапласа внутри кольцевого сектора со следующими граничными условиями:

$$\frac{\partial u}{\partial \varphi}\Big|_{\varphi=0} = 0, \quad u\Big|_{\varphi=\pi/2} = r^2, \quad \frac{\partial u}{\partial r}\Big|_{r=1} = 0, \quad u\Big|_{r=5} = 25\sin\varphi.$$

3. Решить краевую задачу для уравнения Пуассона $\Delta u = x^2 + 2y^2$ внутри прямоугольника $-4 \le x \le 4$, $0 \le y \le 3$ с вырезанным из него эллипсом $\frac{(x-1)^2}{4} + 2(y-1)^2 = 1$ со следующими граничными условиями:

$$\frac{\partial u}{\partial x}\Big|_{x=-4} = 0$$
, $u\Big|_{x=4} = y$, $u\Big|_{y=0} = 16 - x^2$, $u\Big|_{y=3} = x - 1$, на границе эллипса $u = 0$.

4. Решить краевую задачу для уравнения Пуассона $\Delta u = 3 + xy$ внутри прямоугольника $0 \le x \le 6$, $0 \le y \le 4$ с вырезанным из него эллипсом $\frac{(x-2)^2}{5} + 3(y-2)^2 = 1 \text{ со следующими граничными условиями: } u\big|_{y=0} = 0, \ u\big|_{y=4} = 5,$ $\frac{\partial u}{\partial x}\bigg|_{x=0} = 0, \ \left(\frac{\partial u}{\partial x} + 2u\right)\bigg|_{x=6} = 0, \ \text{на границе эллипса } \frac{\partial u}{\partial n} = 0.$

5. Решить начально-краевую задачу в круге:

$$u_t = \Delta u, \quad r \in (0,5), \quad \varphi \in [0,2\pi], \quad t \in (0,20),$$

 $u(r,\varphi,0) = 0, \quad r \in [0,5), \quad \varphi \in [0,2\pi],$
 $u(5,\varphi,t) = 8, \quad \varphi \in [0,2\pi], \quad t \in [0,+\infty).$

6. Решить начально-краевую задачу в эллипсе $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $u_t = 8 \Delta u, \qquad t \in (0, 10),$

$$u(r, \varphi, 0) = r$$
, $u_n(r_0, \varphi, t) = 2(5 + 2t - u)$

 u_n - производная по внешней нормали к границе

7. Решить начально-краевую задачу для уравнения $u_t = \Delta u + xy^2$ внутри прямоугольника $0 \le x \le 6$, $0 \le y \le 4$ с вырезанным из него эллипсом

$$\frac{(x-1.5)^2}{5} + 2(y-2)^2 = 1$$
 со следующими условиями: $u\Big|_{y=0} = 0$, $u\Big|_{y=4} = 0$, $\frac{\partial u}{\partial x}\Big|_{x=0} = 2$,

$$\left.\left(\frac{\partial u}{\partial x}+3u\right)\right|_{t=0}=0$$
, на границе эллипса $\frac{\partial u}{\partial n}=0$, $u\Big|_{t=0}=0, t\in(0,5)$.

- 8. Решить начально-краевую задачу для уравнения $u_{t}=\Delta u+r^{2}t(10-t)$ внутри кольца между эллипсами $\frac{x^{2}}{50}+\frac{y^{2}}{25}=1$ и $\frac{(x-2)^{2}}{9}+(y+1)^{2}=1$ со следующими условиями: на внешней границе u=0, на внутренней u=10, Начальное условие $u|_{t=0}=0,\ t\in(0,10).$
- 9. Решить начально-краевую задачу для уравнения $u_t = 4\Delta u + t^2(10-t)$ внутри прямоугольника $0 \le x \le 6$, $0 \le y \le 4$ с вырезанным из него эллипсом

$$\frac{(x-2)^2}{5} + 3(y-2)^2 = 1$$
 со следующими граничными условиями: $u\big|_{y=0} = 10, \ u\big|_{y=4} = 0,$

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = 0, \ \left(\frac{\partial u}{\partial x} + 3u \right) \right|_{x=6} = 0, \$$
 на границе эллипса $\left. \frac{\partial u}{\partial n} \right|_{x=0} = 0.$ Начальное условие $\left. u \right|_{t=0} = 10 - 2.5 \, y, \ t \in (0,10).$

10. Решить краевую задачу для уравнения Гельмгольца $\Delta u + 3u = 0$ внутри эллипса $\frac{x^2}{50} + \frac{y^2}{25} = 1$ с вырезанным из него прямоугольником $-1 \le x \le 2$, $0 \le y \le 2$. Граничные условия: На границе эллипса $u = \sin \varphi + \cos^2 \varphi$, на правой и левой сторонах прямоугольника u=1, на верхней и нижней его сторонах $\frac{\partial u}{\partial y} = 0$.

- 11. Решить краевую задачу для уравнения Гельмгольца $\Delta u u = 0$ внутри прямоугольника $-5 \le x \le 5, \ -2 \le y \le 2$ с вырезанным из него эллипсом $\frac{(x+1)^2}{5} + \frac{y^2}{2} = 1$. Граничные условия: На границе эллипса u = 0, на правой и левой сторонах прямоугольника u = 10, на верхней и нижней его сторонах $\frac{\partial u}{\partial y} = 0$.
- 12. Решить начально-краевую задачу для уравнения $u_{tt} = \Delta u + 2\sin t$ внутри круга $x^2 + y^2 = 25$ с вырезанным эллипсом $(x-1)^2 + \frac{(y+1)^2}{8} = 1$ со следующими условиями: на внешней границе u=0, на внутренней $\frac{\partial u}{\partial n} = 0$. Начальное условие $u|_{t=0} = 5-r, \quad u_t|_{t=0} = 0, \ t \in (0,10).$
- 13. Решить начально-краевую задачу для уравнения $u_{tt} = \Delta u$ внутри кольцевого сектора. Граничные условия:

$$u\big|_{\varphi=0} = 0$$
, $\frac{\partial u}{\partial \varphi}\Big|_{\varphi=\pi/2} = 0$, $\frac{\partial u}{\partial r}\Big|_{r=1} = \sin 2\varphi$, $u\big|_{r=5} = \sin 3\varphi$.

Начальные условия: $u\Big|_{t=0} = 0$, $u_t\Big|_{t=0} = 5 - r$, $t \in (0,5)$.

- 14. Решить начально-краевую задачу для уравнения $u_{tt} = \Delta u + 2t(5-t)$ внутри прямоугольника $-5 \le x \le 5, \ -2 \le y \le 2$ с вырезанным из него эллипсом $\frac{(x+1)^2}{6} + \frac{y^2}{2} = 1$. Граничные условия: На границе эллипса u = 0, на правой и левой сторонах прямоугольника u = 1, на верхней и нижней его сторонах $\frac{\partial u}{\partial y} = 0$.
- 15. Решить краевую задачу для уравнения Гельмгольца $\Delta u + 2u = x^2 + y$ внутри эллипса $\frac{x^2}{49} + \frac{(y-2)^2}{10} = 1$ с вырезанным из него прямоугольником $-1 \le x \le 4$, $0 \le y \le 2$. Граничные условия: На границе эллипса $u = 2x y^2$, на правой и левой сторонах прямоугольника $\frac{\partial u}{\partial x} = 0$, u=1, на верхней и нижней его сторонах $u = \cos x$.
- 11. Решить краевую задачу для уравнения Гельмгольца $\Delta u 5u = 0$ внутри прямоугольника $-5 \le x \le 5, -1.5 \le y \le 4$ с вырезанным из него эллипсом

 $\frac{(x+1)^2}{5} + \frac{(y-1)^2}{4} = 1$. Граничные условия: На границе эллипса $u = x^2 y$, на правой и левой сторонах прямоугольника u=0, на верхней и нижней его сторонах $\frac{\partial u}{\partial y} = x$.