Lecture #7 NMR in Liouville Space

- Topics
 - Statistical Mixture of Quantum States
 - The Density Operator
 - NMR in Liouville Space
- Handouts and Reading assignments
 - van de Ven, section 1.10: pp 45-48.
 - Miller, Chapter 14, pp 335-353 (optional).

Problem Statement

- Previous lecture provided a rather clumsy treatment of an ensemble of spins.
- A system of N spins with wavefunctions $|\psi\rangle = c_{\alpha}|\alpha\rangle + c_{\beta}|\beta\rangle$ $(P_{\alpha} = |c_{\alpha}|^2, P_{\beta} = |c_{\beta}|^2, P_{\alpha} + P_{\beta} = 1)$ could contain spins in many different states since $\angle c_1$ and $\angle c_2$ are arbitrary.
- In practice, the state of the system is almost never perfectly determined (i.e. not all $|\psi_i\rangle$ precisely known).
- Question: How can we best incorporate the partial information we have about a system in order to make optimal predictions and calculations?

A Collection of Spins

- In a typical experiment, the number of nuclear spins, N, can be very large, e.g. 10^{20} .
- For independent spins, the complete quantum state is described by the wavefunction (or state vector):

• We rarely, if ever, know $|\psi\rangle$ precisely. Rather, we typically have only a statistical model for the state of the system.

Statistical Mixture of States

- Given a system such that the state is $|\psi_1\rangle$ with probability p_1 or $|\psi_2\rangle$ with probability p_2 , etc. ($\sum p_i = 1$), then the system is said to consist of a <u>statistical mixture</u> of states.
- $|\psi_i\rangle$ s need not be orthogonal, but can be chosen to be normalized.
- Probabilities enter at two fundamentally different levels.
 - The system state vector is not perfectly well know, rather we only have a statistical model for being in a given state.
 - Even if the state vector *were* perfectly well known, the probabilistic predictions arising from the QM postulates regarding the measurement process still apply.
- A system described by a statistical mixture of states is *not* the same as a system whose state vector $|\psi\rangle$ is a <u>linear superposition</u> of states: $|\psi\rangle = \sum a_i |\psi_i\rangle$

i

"Average State Vector"?

- Consider a system with state vector: $|\psi\rangle = \sum a_i |\psi_i\rangle$
- Measurements of this system involve computing $\langle \psi | \hat{O} | \psi \rangle$ which contains not only terms such as $|a_1|^2$, $|a_2|^2$, ... but also cross terms of the form $a_i a_j^*$ representing interference effects.
- Such cross terms are very important! For example, in MR these are the terms which give rise to transverse magnetization.
- Let p_i be the probability of the system being in state $|\psi_i\rangle$. In this statistical mixture of states, measurements are of the form:

$$\sum_{i} p_{i} \langle \psi_{i} | \hat{O} | \psi_{i} \rangle \implies \text{no } a_{i} a_{j}^{*} \text{ cross terms!}$$

- While there is <u>no</u> "average state vector", it turns out there <u>is</u> an "average operator" which can adequately describe a statistical mixture of states.
 - "average operator" = density operator

Density Operator for a Pure State

- A system with a perfectly know state (i.e. all p_i =0 except one) is said to be in a <u>pure state</u>.
 - Consider a system in a pure state with normalized state vector $|\psi(t)\rangle = \sum_{i} c_i(t)|u_i\rangle$ where $\{|u_i\rangle\}$ form an orthonormal basis.
 - Time evolution: $\frac{\partial}{\partial t} |\psi(t)\rangle = -i\hat{H}(t) |\psi(t)\rangle$
 - Expectation of observable \hat{A} : $\langle \hat{A} \rangle = \langle \psi(t) | \hat{A} | \psi(t) \rangle = \sum_{i,j} c_i^*(t) c_j(t) A_{ij}$ $A_{ij} = \langle u_i | \hat{A} | u_j \rangle \text{ (matrix elements of } \hat{A} \text{ in the } \{ |u_i \rangle \} \text{ basis)}$
- Noting that $\langle u_j | \psi(t) \rangle \langle \psi(t) | u_i \rangle = c_i^*(t) c_j(t)$ density operator: $\hat{\rho}_{\psi}(t) = |\psi(t)\rangle \langle \psi(t)|$

Density Operator for a Pure State

- We now need to:
 - 1) show $\langle \hat{A} \rangle$ can be computed from $\hat{\rho}_{\psi}(t)$. an arbitrary observable
 - 2) find the time evolution of $\hat{\rho}_{\psi}(t)$.
- Using the expressions for A_{ii} and $c_i^*(t)c_j(t)$,

$$\left\langle \hat{A} \right\rangle (t) = \sum_{i,j} \left\langle u_{j} \middle| \hat{\rho}_{\psi}(t) \middle| u_{i} \right\rangle \left\langle u_{i} \middle| \hat{A} \middle| u_{j} \right\rangle = \sum_{j} \left\langle u_{j} \middle| \hat{\rho}_{\psi}(t) \hat{A} \middle| u_{j} \right\rangle = \underbrace{\operatorname{Tr} \left\{ \hat{\rho}_{\psi}(t) \hat{A} \middle| u_{j} \right\}}_{======}$$

• Time evolution:

Time evolution:
$$-i\hat{H}|\psi\rangle \qquad i\langle\psi|\hat{H}$$

$$\frac{\partial}{\partial t}\hat{\rho}_{\psi}(t) = \frac{\partial}{\partial t}\Big[|\psi(t)\rangle\langle\psi(t)|\Big] = \frac{\partial}{\partial t}\Big[\psi(t)\rangle\langle\psi(t)| + |\psi(t)\rangle\frac{\partial}{\partial t}\langle\psi(t)|$$

$$= -i\Big[\hat{H},|\psi(t)\rangle\langle\psi(t)|\Big]$$

$$\therefore \text{ in superoperator notation } : \frac{\partial}{\partial t}\hat{\rho}_{\psi} = -i\hat{H}\hat{\rho}_{\psi}$$

$$\frac{\partial}{\partial t}\hat{\rho}_{\psi} = -i\hat{H}\hat{\rho}_{\psi}$$

Density Operator: Statistical Mixture • Consider a system consisting of a statistical mixture of states $|\psi_i\rangle$

- Consider a system consisting of a statistical mixture of states $|\psi_i\rangle$ with associated probabilities p_i .
- Let a_i be an eigenvalue of \hat{A} with associated eigenket $|u_i\rangle$.

... if the state vector were
$$|\psi_n\rangle$$
: $\mathcal{P}_n(a_i) = \langle \psi_n | \hat{P}_i | \psi_n \rangle = \text{Tr} \{\hat{\rho}_n \hat{P}_i\}$

$$|u_i\rangle\langle u_i| \qquad |\psi_n\rangle\langle \psi_n|$$

... in general:
$$P(a_i) = \sum_{n} p_n P_n(a_i)$$

$$= \sum_{n} p_n \operatorname{Tr} \{ \hat{\rho}_n \hat{P}_i \} = \operatorname{Tr} \left\{ \sum_{n} p_n \hat{\rho}_n \hat{P}_i \right\} = \operatorname{Tr} \{ \hat{\rho} \hat{P}_i \}$$

where $\hat{\rho} = \sum_{n} p_n \hat{\rho}_n$ is, by definition, the density operator for the system.

• It is then easy to show that: ensemble average

$$\langle \hat{A} \rangle = \text{Tr} \{ \hat{\rho} \hat{A} \}$$
 and $\frac{\partial}{\partial t} \hat{\rho} = -i \hat{H} \hat{\rho}$ (Liouville-von Neuman equation)

Spin Density Operator: Spin-Lattice Disconnect

• Complete QM description of a molecule involves lots of terms in the Hamiltonian (nuclear spin, molecular motion, electron-nucleus interactions, etc). $\hat{H} = \hat{H}_l + \hat{H}_s + \hat{H}_i$ lattice spin interaction term

• Assuming weak interaction between nuclear spin and the lattice:

$$\hat{H} \approx \hat{H}_l + \hat{H}_s$$
 (We'll revisit this when discussing relaxation theory)

• It then suffices to solve the Liouville equations independently.

$$\frac{\partial}{\partial t} \hat{\rho}_{l} = -i\hat{H}_{l} \hat{\rho}_{l}$$
lattice density operator
$$\frac{\partial}{\partial t} \hat{\sigma} = -i\hat{H}_{s} \hat{\sigma}$$
conventional notation for spin density operator
$$\frac{\overline{A}}{\overline{A}} = -i\hat{H}_{s} \hat{\sigma}$$
We'll just

• For any spin operator: $\langle \hat{A}_s \rangle = \text{Tr}(\hat{o}\hat{A}_s)$ We'll just solve this one.

Hilbert Space vs Liouville Space

QM property

System:

Time evolution:

Time independent \hat{H} :

Observables: - pure state

- statistical ensemble

Hilbert Space

$$|\psi(t)
angle$$
 (metric = inner product)

$$\frac{\partial}{\partial t} |\psi\rangle = -i\hat{H} |\psi\rangle$$

$$|\psi(t)\rangle = \underline{e^{-i\hat{H}t}}|\psi(0)\rangle$$

rotation in ket space

$$\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle$$

computable but ugly

Liouville Space

$$\hat{\sigma}(t)$$
 (metric = trace)

$$\frac{\partial}{\partial t}\hat{\sigma} = -i\hat{\hat{H}}\hat{\sigma}$$

$$\hat{\sigma}(t) = \underline{e^{-i\hat{H}t}} \hat{\sigma}(0)$$

rotation in operator space

$$\langle \hat{A} \rangle = \text{Tr} \{ \hat{\sigma}_{\psi} \hat{A} \}$$

$$\overline{\langle \hat{A} \rangle} = \text{Tr} \{ \hat{\sigma} \hat{A} \}$$

Observations about $\hat{\sigma}$, \hat{I}_x , \hat{I}_y , and \hat{I}_z

- Let $\hat{\sigma} = \sum_{n} b_{n} \hat{B}_{n}$ where \hat{B}_{n} are an orthonormal set of Hermitian basis operators, *i.e.* $(\hat{B}_{n} | \hat{B}_{m}) = \text{Tr}(\hat{B}_{n}^{\dagger} \hat{B}_{m}) = \text{Tr}(\hat{B}_{n} \hat{B}_{m}) = \delta_{nm}$. $\langle \hat{B}_{n} \rangle = \text{Tr}(\hat{\sigma} \hat{B}_{n}) = \sum_{m} b_{m} \text{Tr}(\hat{B}_{m} \hat{B}_{n}) = b_{n}$
 - $\therefore \hat{\sigma} = \sum_{n} \overline{\langle \hat{B}_{n} \rangle} \hat{B}_{n}$ Coefficients of the expansion are the ensemble averages of the expected values of the respective operators!
- $\operatorname{Tr}(\hat{I}_{p}\hat{I}_{q}) = \frac{1}{4}\delta_{pq}$ for $p,q \in \{x,y,z\}$ \Longrightarrow $\{\hat{E},\hat{I}_{x},\hat{I}_{y},\hat{I}_{z}\}$ form an orthogonal Hermitian basis set.
- Hence, in any expansion of $\hat{\sigma}$ in terms of $\{\hat{E}, \hat{I}_x, \hat{I}_y, \hat{I}_z\}$, the expansion coefficients will be directly proportional to the expected values of the respective spin operators (would be equal if operators were normalized).

 To what physical quantity does $\langle \hat{I}_x \rangle$ correspond?

Geometric Picture

• $\hat{\sigma}$ is a "vector" in Liouville space (also called "operator" or "coherence" space).

Key idea: $\hat{\sigma}$ rotates around in coherence space.

• Consider $\{\hat{E}, \hat{I}_x, \hat{I}_y, \hat{I}_z\}$ basis:

Thermal Equilibrium Spin Density Operator eigenkets

• Following the Hilbert Space formulation, $|\psi(0)\rangle = \sum_{i} c_{i} e^{-i\phi_{i}} |u_{i}\rangle$, the spin density matrix has elements:

$$\sigma_{ij}(0) = \overline{c_i c_j e^{-i(\phi_i - \phi_j)}} = \overline{c_i^2} \delta_{ij} = P_i \delta_{ij}$$
 Kronecker delta function

In general:
$$\underline{\sigma} = \begin{pmatrix}
P_1 & C_{1,2} & \cdots & C_{1,n} \\
C_{2,1} & P_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & C_{n-1,n} \\
C_{n,1} & \cdots & C_{n,n-1} & P_n
\end{pmatrix}$$
Diagonal elements called "coherences" (= 0 at thermal equilibrium).

• Using the Boltzmann distribution one can verify:

$$\hat{\sigma}(0) = \frac{1}{Z} e^{-\hbar \hat{H}_0 / kT} \quad \text{where} \quad Z = \text{Tr}(e^{-\hbar \hat{H}_0 / kT}).$$
remember \hat{H} defined as E/\hbar

• As before, using the high temperature approximation:

$$\hat{\sigma}(0) \approx \frac{1}{2} (\hat{E} - \frac{\hbar}{kT} \hat{H}_0)$$
 (spin 1/2 particles)

Solving the Liouville-von Neuman Eqn

• Let $\hat{\sigma}$ be the spin density operator for a system consisting of a statistical ensemble of states. The time evolution of $\hat{\sigma}$ is given by:

$$\frac{\partial}{\partial t}\hat{\sigma}(t) = -i\hat{H}(t)\hat{\sigma}(t).$$

• Case 1: \hat{H} independent of time.

Solution:
$$\hat{\sigma}(t) = e^{-i\hat{H}t}\hat{\sigma}(0) = e^{-i\hat{H}t}\hat{\sigma}(0)e^{i\hat{H}t}$$
(superoperator notation) (notation used in most texts)

• Case 2: Piecewise constant: $0 \stackrel{\hat{H}_1}{\longleftarrow} 1 \stackrel{\hat{H}_2}{\longleftarrow} 1 \stackrel{\hat{H}_3}{\longleftarrow} 1 \stackrel{\hat{H}_3}{\longleftarrow} 1 \stackrel{\hat{H}_4}{\longleftarrow} 1 \stackrel{\hat{H}_5}{\longleftarrow} 1 \stackrel{\hat{H}_5}{\longrightarrow} 1 \stackrel{\hat{H}_5}{\longleftarrow} 1 \stackrel{\hat{H}_5}{\longrightarrow} 1 \stackrel{\hat{H}_5}{\longrightarrow} 1 \stackrel{\hat{H}_5}{\longrightarrow} 1 \stackrel{$

Solution:
$$\hat{\sigma}(0)$$
 $\xrightarrow{\hat{H}_1 t_1} \hat{\sigma}(0) e^{i\hat{H}_1 t_1}$ $\xrightarrow{\hat{H}_2 t_2} e^{-i\hat{H}_2 t_2} e^{-i\hat{H}_1 t_1} \hat{\sigma}(0) e^{i\hat{H}_1 t_1}$ Numerical simulations most often use the

umerical simulations most often use the matrix version of this formulation.

A Simple NMR Experiment

• Consider the following experiment:

• Ignoring relaxation, what are $\hat{\sigma}(t)$, $M_x(t)$, $M_y(t)$, and $M_z(t)$ for the time intervals t_1 , t_2 , and t_3 ?

Sign Conventions

- Many MRS texts define $\omega_0 = -\gamma B_0$.
- For this class, $\omega_0 = \gamma B_0$ (consistent with most MRI texts and Bloch!).
- Leads to the following sign conventions...

NMR in Liouville Space: _____t,

- At thermal equilibrium, $\hat{\sigma}(0) = \frac{1}{2}(\hat{E} + \frac{\hbar \gamma B_0}{kT}\hat{I}_z)$. (note: $\hat{H}_0 = -\gamma B_0\hat{I}_z$)
 - Since \hat{E} is invariant under rotations and orthogonal to \hat{I}_x , \hat{I}_y , and \hat{I}_z (Why?), we can ignore this term (i.e. let's just work in a 3D subspace):

$$\hat{\sigma}_0 = C\hat{I}_z$$
 where $C = \frac{\hbar \gamma B_0}{2kT}$ \Longrightarrow matrix form: $\underline{\sigma}_0 = C\begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$

• Question: What are the equilibrium values of M_x , M_y , and M_z ?

$$\hat{\sigma}_{0} = 0 \cdot \hat{I}_{x} + 0 \cdot \hat{I}_{y} + C\hat{I}_{z} \implies M_{x} = M_{y} = 0, \quad M_{z} = \rho \gamma \hbar \overline{\langle \hat{I}_{z} \rangle}$$

$$= \rho \gamma \hbar \frac{1}{2} C = \rho \frac{\gamma^{2} \hbar^{2} B_{0}}{4kT}$$
Sime evolution:
$$\text{spins/volume} \text{normalization value for Tr}(\hat{r}_{z}^{2})$$

Time evolution:

$$\hat{\sigma}(t) = e^{-i\hat{H}t}\hat{\sigma}(0) = C\underline{e^{i\gamma B_0\hat{I}_z t}}\hat{I}_z = C\hat{I}_z \implies M_z = \rho \frac{\gamma^2 \hbar^2 B_0}{4kT} = M_0$$
time independent
$$M_z = M_y = 0 \qquad \text{for } t_0 < t < t_1$$

Rotation about I_7 axis!

NMR in Liouville Space:

- RF excitation: $\hat{H}(t) = -\gamma B_0 \hat{I}_z \gamma B_1 (\hat{I}_x \cos \omega t \hat{I}_y \sin \omega t)$
 - \hat{H} is now time-varying. Solve by switching to the rotating frame (hereafter we'll do almost everything in the rotating frame).

$$\hat{H}' = e^{-i\omega t \hat{I}_z} \hat{H} \quad \text{and} \quad \hat{\sigma}' = e^{-i\omega t \hat{I}_z} \hat{\sigma}$$

$$\Rightarrow \frac{\partial}{\partial t} \hat{\sigma}' = -i\hat{H}_{eff} \hat{\sigma}' \quad \text{where} \quad \hat{H}_{eff} = -(\omega_0 - \omega)\hat{I}_z - \omega_1 \hat{I}_x$$

- On resonance: $\hat{\sigma}'(t) = Ce^{-i\hat{H}_{eff}t}\hat{I}_z = Ce^{i\omega_1 t\hat{I}_x}\hat{I}_z = C(\hat{I}_z\cos(\omega_1 t) + \hat{I}_y\sin(\omega_1 t))$ rotation about I_x axis Uses fact that spin operators commute cylically

• Following a 90° pulse: $\hat{O}'(t) = CI_v$

NMR in Liouville Space:

- Let's consider the case of being slightly off-resonance (on-resonance case is trivial)...
- Free precession (RF turned off): $\hat{H}' = -(\omega_0 \omega)\hat{I}_z = -\Omega\hat{I}_z$

$$\hat{\sigma}'(t) = C e^{i\Omega t \hat{I}_z} \hat{I}_y = C \left(\hat{I}_y \cos(\Omega t) + \hat{I}_x \sin(\Omega t) \right)$$
rotation about \hat{I}_z axis

$$\Rightarrow \overline{\langle \hat{I}_x \rangle} = \frac{1}{2} C \sin(\Omega t), \overline{\langle \hat{I}_y \rangle} = \frac{1}{2} C \cos(\Omega t), \overline{\langle \hat{I}_z \rangle} = 0$$

$$\implies M_z = 0$$
, $M_x = M_0 \sin(\Omega t)$, $M_y = M_0 \cos(\Omega t)$ for $t > t_1 + t_2$

Larmor precession!

Congratulations!

All the hard stuff is over. (well almost)

A Comparison

Given: Ensemble of independent spins slightly off resonance (ω_0 - ω = Ω)

For independent spin 1/2 particles, Liouville space is 4D. What happened to the fourth dimension?

Next lecture: Chemical shift and Coupling