

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo Vetorial e Equações Diferenciais

09 de Dezembro de 2017

Os Teoremas de Gauss e Stokes

- (1) Use o Teorema de Stokes para calcular $\int_C F dr$, onde C tem orientação anti-horária vista de cima no eixo z:
 - a) $\overrightarrow{F}(x, y, z) = (x + y^2, y + z^2, z + x^2)$ e C é o triângulo com vértices (1, 0, 0), (0, 1, 0) e (0, 0, 1).
 - b) $\overrightarrow{F}(x,y,z) = (yx,2xz,e^{xy})$ e C é o círculo $x^2 + y^2 = 16, z = 5.$
- (2) Use o Teorema de Stokes para calcular $\iint_S rot F dS$:
 - a) $\overrightarrow{F}(x,y,z)=(x^2z^2,y^2z^2,xyz)$ e S é a parte do parabolóide $z=x^2+y^2$ que está dentro do cilindro $x^2+y^2=4$, orientada para cima.
 - b) $\overrightarrow{F}(x,y,z)=(xyz,xy,x^2yz)$ e S consiste no topo e os 4 lados (mas não o fundo) de um cubo com vértices $(\pm 1,\pm 1,\pm 1)$, orientado para fora.
- (3) Calcule o fluxo de saída do campo vetorial F através da superfície S:
 - a) $\overrightarrow{F}(x,y,z)=(x^2+y,z^2,e^y-z)$ e S é a superfície do sólido retangular limitado pelos planos coordenados e os planos $x=3,\ y=1$ e z=2.
 - b) $\overrightarrow{F}(x,y,z)=(x^3-e^y,y^3+\sin z,z^3-xy)$ e S é a superfície do sólido limitado acima por $z=\sqrt{4-x^2-y^2}$ e por baixo pelo plano XY.
 - c) $\overrightarrow{F}(x,y,z)=(x^3,x^2y,xy)$ e S é a superfície do sólido limitado acima por $z=4-x^2,$ y+z=5, z=0 e y=0.

O Teorema de Green

- (4) Considere o campo de forças $\overrightarrow{F}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$, definido para $(x,y) \neq (0,0)$.
 - a) Calcule o trabalho realizado pelo campo \overrightarrow{F} numa partícula que se move ao longo de uma circunferência de raio R.
 - b) Considere D a região delimitada pela circunferência de centro em (0,0) e raio R menos a origem. Esta região é descrita por $\{(x,y)/0 < x^2 + y^2 \le R^2\}$. Mostre que

$$\int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0$$

c) Usando o Teorema de Green e a parte a), mostre que $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r} = 0$ para toda curva fechada simples C, suave por partes, que circunda a origem.

Dica: aqui o teorema de Green não pode ser usado diretamente com b) - Por quê?

(5) Considere o campo de forças $\overrightarrow{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$, definido para $(x,y) \neq (0,0)$.

- a) Calcule o trabalho realizado pelo campo \overrightarrow{F} numa partícula que se move ao longo de uma circunferência de raio R, no sentido anti-horário.
- b) Usando o Teorema de Green e a parte a), mostre que $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r'} = 2\pi$ para toda curva fechada simples C, suave por partes, que circunda a origem.
- c) Calcule o trabalho realizado pelo campo \overrightarrow{F} na curva abaixo:

Gabarito

- (1) a) -1
 - b) 80π
- (2) a) 0
 - b) 0
- (3) a) 12
 - b) $\frac{192\pi}{5}$
 - c) $\frac{4608}{35}$
- (4) (a) 0
- (5) (a) 0
 - (b)
 - (c) 2π