多种血清型重组腺病毒伴随病毒载体的 大规模生产、分离、纯化及其用途

技术领域

本发明属于生物技术领域,具体涉及多种不同的血清型的重组腺病毒伴随病毒载体(腺病毒伴随病毒亦称:腺相关病毒)的大规模生产的方法,及用这些方法所产生的重组腺病毒伴随病毒载体的用途。

背景技术

基因治疗是二十世纪八十年代发展起来的一种全新疾病治疗模式,它有别于传统的药物治疗,而是将基因本身导入人体,以纠正缺陷基因或发挥治疗作用。与传统治疗方法相比,基因治疗的优势是明显的,它一次给药,长期有效,且更接近人体基因表达的自然状态,因此更安全、更有效。据统计,截止至2002年,全世界已经通过的基因治疗临床方案800多个,治疗对象主要是对人类健康威胁严重的疾病,如遗传病、肿瘤、传染病及各种代谢性疾病等,已有超过3400人接受了这种疗法。

基因治疗的关键问题是找到将治疗基因安全而有效导入人体,并使治疗基因长期表达的途径。通常采用的方法有物理方法和生物方法。

物理方法是通过磷酸钙、电转、脂质体等将治疗基因导入细胞,这种方法安全性好,但效率低,通常处于实验研究。

生物方法是使用对人体有天然感染能力的生物体,主要是病毒作为载体,通过基因重组技术将治疗基因组装到病毒载体中,通过病毒的感染将治疗基因导入人体。病毒载体的转导效率高,目前绝大多数基因治疗方案都是采用这种方法。(Morgan, R. A. and W. F. Anderson, Annu. Rev. Biochem. 62:191-217, 1993).

病毒载体系统

目前已有的病毒载体主要有逆转录病毒载体、腺病毒载体、腺相关病毒载体、单纯疱疹病毒载体等。

逆转录病毒载体曾经是使用最多的病毒载体,这是因为逆转录病毒载

体可以将治疗基因插入人体细胞的染色体并稳定地随细胞的分裂而分裂,使治疗基因稳定而持久表达。但由于其插入是随机的,存在破坏人体正常基因功能的危险。

腺病毒载体基因不插入人染色体,且可感染的细胞种类也比逆转录病毒多,但由于治疗基因不插入染色体,所以需要多次反复用药,而不幸的是腺病毒有很强的免疫原性,在人体中多次使用会激活中和抗体的表达,并降低治疗效果。因此,腺病毒载体在患者身上的使用次数是有限的。

单纯疱疹病毒载体有转导效率高、可感染分裂和非分裂细胞、在神经系统中可以逆轴突传导等特点,因此在神经系统中有较好的应用前景。目前限制其应用的主要是它有神经毒性,因此还处于研究阶段。

AAV 病毒载体

腺相关病毒(AAV)作为基因治疗载体的应用在近几年得到了较快的发展。野生型 AAV 能以较高滴度感染多种包括人在内的哺乳动物细胞或组织,包括分裂细胞和非分裂细胞,并能在人体细胞中定点整合(位于第19 号染色体长臂中)(Kotin, R. M., et al., Proc. Natl. Acad. Sci. USA 87:2211-2215, 1990) (Samulski, R. J., et al., EMBO J. 10:3941-3950, 1991)。去除了 rep 和 cap 基因的 AAV 载体失去了定点整合的特性,但仍旧能介导外源基因的长期稳定表达。在细胞中 AAV 载体有 2 种存在形式,一种是染色体外游离子形式;另一种是整合到染色体中,以前种形式为主。而且,AAV 至今未发现与任何人类疾病相关,也未发现任何由于整合而引起的生物性状的改变,因此安全性明显好于逆转录病毒载体和腺病毒载体,后者分别于人类的癌症和呼吸道疾病相关。

AAV 病毒载体具有免疫源性低、长期稳定表达外源基因、可感染多种组织细胞等特点,因此近几年获得了长足的发展。但是 AAV 病毒载体也有亟待改进的地方。

目前通用的 AAV 病毒载体都是基于血清型 2型的,即 AAV2,对它的研究已有近 30年的历史。实验证明重组 AAV2 (rAAV2)在多种组织中都是很好的基因转移载体 (Monahan, P and R. Samulski, 2000, Gene Ther. 7:24-30),但随着体内实验的增加,rAAV2 载体的局限也越来越明显

PCT/CN2003/000861 WO 2005/035743

(Bartlett, J. S., R. Wilcher, and R. J. Samulski. 2000. J. Virol. 74:2777-2785.) (Davidson, B., C. Stein, J. Heth, et al. 2000. Proc. Natl. Acad. Sci. USA 97:3428-3432.): AAV2 在某些组织中感染效率很高,而 在另一些组织中的感染效率却很低; 另外, 人体对 AAV 的感染会产生中 和抗体,在正常人群中有 85%存在针对 AAV2 的抗体。

为了进一步提高 AAV 病毒载体的感染效率和宿主范围,科研人员进行 了多种尝试,比如用双功能抗体介导 AAV 病毒载体的靶向导入 (Bartlett, J. S., J. Kleinschmidt, R. S. Boucher, and R. J. Samulski. 1999. Nat. Biotechnol. 17:181-186.)、诱变筛选外壳蛋白 (Girod, A., M. Ried, C. Wobus, et al. 1999. Nat. Med. 5:1052-1056.)(Wu, P., W. Xiao, T. Conlon, J. Hughes, et al. 2000. J. Virol. 74:8635-8647.)等方法,并取得了一定的成效。 近几年人们将目光集中在对各种血清型的 AAV 病毒载体的组织特异性的 研究上,利用 AAV 各血清型的天然感染特性,可以获得对各种组织具有 不同转导效率的 AAV 病毒载体。(Chao, H., Y. Liu, J. Rabinowitz, C. Li, R. J. Samulski, et al. 2000. Mol. Ther. 2:619-623.) (Chiorini, J., L. Yang, Y. Liu, B. Safer, and R. Kotin. 1999. J. Virol. 73:1309-1319.)(Chiorini, J. A., B. Zimmermann, L. Yang, R.et al. 1998. Mol. Cell. Biol. 18:5921-5929.)

AAV 病毒及基因组结构

AAV 病毒是一类体积小、无包膜的病毒,内含单链 DNA,其中正链和 负链的数量基本相等。AAV 病毒属于微小病毒属 (Parvoviridae),它的复 制需要辅助病毒的存在。(Kotin, RM. 1994.Hum. Gene Ther. 5:793-801)。 文献报道的的主要的灵长类 AAV 病毒有六种血清型,分别被 命名为 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6。(Baclunann PA, MD. Hoggan, JL. Melnick, 1975, Parvoviridae, Intervirology 5:83-92) (Bantel-Schaal U., and H. zur Hausen. 1998. Virology 134:52-63)(Rutledge. EA., CL. Halbert, and DW. Russell. 1998. J. Virol. 72:309-319)到目前为止, AAV1、2、3、4、5、6的全序列都已经清楚,各种血清型基因组的同源性 在 52-82%之间 (Bantel-Schaal U., and H. zur Hausen. J. Virol. 1999, 73:939-947)。另外,有越来越多的新的 AAV 血清型报道,比如 AAV7、

AAV8 等。

AAV 研究最清楚的是 AAV2, 其基因组是长 4680 bp 的单链 DNA(Laughlin, C. A., J. D. Tratschin, H. Coon, and B. J. Carter. 1983. Gene 23: 65-73)。基因组两端是"反向末端重复序列"(ITR), 它是中间有间断的回纹结构, 形成发卡结构以稳定单链基因组。基因组中有只有两个大开放阅读框(ORF), (Srivastava AE., Lusby and KI. Berns. 1983. J. Virol. 45:555-564), 它们分别是 rep 和 cap 基因。

AAV2 基因组左侧是 rep 基因,它编码 AAV 的非结构蛋白 Rep,分别 由 p5 和 p19 启动子起始,各自分别得到经切割和未经切割的 mRNA 转录 产物,从而得到四种蛋白:Rep78、Rep68、Rep52和 Rep40。Rep 蛋白的 作用是控制 AAV 的转录,参与 AAV 复制,并在子代基因组的产生和病毒 颗粒的组装中起重要作用。其中 Rep78 和 Rep68 与 ITR 中的末端解链位 点 trs(terminal resolution site)和 GAGY 重复序列表位(repeat motif) 特异性结合,启动 AAV 基因组由单链向双链的复制过程。(Chiorini, J. A., S. M. Wiener, R. M. Kotin, R. A. Owens, and B. Safer. 1994. J. Virol. 68:7448-7457) Rep 与 DNA 结合和末端解链过程也是 AAV 基因组定点插 入 19 号染色体长臂的 AAVS1 位点的过程。(Kotin, R. M., J. C. Menninger, D. C. Ward, and K. I. Berns. 1991. Genomics 10:831-834) ITR 中 trs 和 GAGC 重复序列表位是 AAV 基因组复制的中心,因此虽然在各种血清型 的 AAV 病毒中 ITR 序列都不尽相同,但是都能构成发卡结构和存在 Rep 结合位点 (比如 AAV2 的 GAGY) 和 trs。在 rep78、rep68 下游图谱位置 19 处还有另外两个 rep 基因, 分别表达 Rep52 和 Rep40, 它们的启动子是 p19。Rep52 和 Rep40 没有结合 DNA 的功能, 而有 ATP 依赖的 DNA 解旋 酶活性。(Smith, R., and R. M. Kotin. 1998. J. Virol. 72:4874-4881) Rep 蛋 白的保守程度在 AAV1、2、3、4、6 中较高, 其中 Rep78 在上述病毒中的 同源性达到 89-93% Chiorini JA., L. Yang, Y. Liu, and RM. Kotin. 1997. J. Virol. 71:6823-6833. Muramatsu. SI. H. Mizukami, NS. Young and KE. Brown. 1996. Virology 221:208-217)

AAV2 基因组的右半部是 cap 基因,后者编码外壳蛋白 VP1、VP2 和

VP3。其中,VP3分子量最小,但数量最多,VP1分子量最大但数量最少,在成熟的 AAV 颗粒中 VP1、VP2、VP3 的比例为 1:1:20。VP1 是形成有感染性的 AAV 所必需的;VP2 协助 VP3 进入细胞核;VP3 是组成 AAV 颗粒的主要蛋白(Muzyczka. N. 1992. Curr. Top. Microbiol. Immunol. 158:97-129)。与 Rep 不同,Cap 蛋白在各种血清型 AAV 中的保守程度较低,这是不同血清型 AAV 的具有不同宿主范围和特异性的主要原因。

各种血清型 AAV 病毒的同源性比较

文献报道的灵长类 AAV 病毒共有六种血清型,分别被命名为血清型 1、 2、3、4、5、6。其中只有 AAV5 最初是从人体中分离出来的(Bantel-Schaal, and H. zur Hausen. 1984. Virology 134:52-63), 其余 5 种血清型的 AAV 病 毒都是在研究腺病毒时发现的(Ursula Bantel-Schaal, Hajo Delius and Harald zur Hausen. J. Virol. 1999, 73: 939-947)。到目前为止,全部 6 种血 清型的 AAV 病毒的全序列都已经清楚, (John Chiorini, Frank Kim, Linda Yang, and Robert Kotin. J. Virol. 1999, 73:1309-1319),除 AAV5 外, AAV1、 2、3、4、6 血清型基因组的同源性普遍较高,特别是 ITR 和 Rep 区域, 其中 Rep 在 AAV1、2、3、4、6 中的同源性高达 89-93%, 因此 AAV1、2、 3、4、6 血清型之间 Rep 可以识别来自另一血清型的 ITR, 并支持其包装。 (Chiorini J, L. Yang, Y. Liu, B. Safer, and M.Kotin. 1997. J. Virol. 71:6823-6833) (Muramatsu, S., H. Mizukami, N. Young, and K. Brown. 1996. Virology 221:208-217)。而 AAV5 与其它 AAV 血清型的 Rep 的同源 性只有 67% (Ursula Bantel-Schaal, Hajo Delius and Harald zur Hausen. J. Virol. 1999, 73: 939-947) (John Chiorini, Frank Kim, Linda Yang, and Robert Kotin. J. Virol. 1999, 73:1309-1319),因此 AAV5 的 Rep 不能识别 其它血清型 AAV 的 ITR。

AAV 病毒的细胞受体

与Rep相比,AAV各血清型的Cap的同源性较低,AAV1、AAV2、AAV3、AAV5、AAV4、AAV6的Cap的氨基酸同源性在45~80%之间,其中AAV1与AAV6之间的同源性最高(Capsid的氨基酸同源性大于99%),AAV5与其它血清型的Cap的同源性最低。(Ursula Bantel-Schaal, Hajo

Delius and Harald zur Hausen. J. Virol. 1999, 73: 939-947)。这是各血清型 具有不同宿主范围和细胞特异性的基础。AAV 病毒的宿主范围和细胞特异 性是由其感染的细胞上相应受体的种类和多少决定的。目前受体研究较清 楚的是 AAV2、AAV3、AAV4、AAV5 等血清型。AAV2、AAV3 血清型的 细胞受体是硫酸肝素糖蛋白 (heparan sulfate proteoglycan), 其受体结合 位点位于 AAV2 的 VP3 蛋白上。其共受体(coreceptor, 功能是帮助 AAV 病 毒进入细胞)是人成纤维生长因子受体 1 (fibroblast growth factor receptor) 1)和整合素αVβ5。(Qing, K., C. Mah, J. Hansen, S. Zhou, V. Dwarki, and A. Srivastava. 1999. Nat. Med. 5:71-77 X Summerford, C., J. S. Bartlett, and R. J. Samulski. 1999. Nat. Med. 5:78-82)。AAV4、AAV5 的细胞受体是唾液酸 (sialic acid) (Walters RW, Yi SM, Keshavjee S, Brown KE, et al. J Biol Chem 2001, 276:20610-6), 没有硫酸肝素结合位点, 因此 AAV5 的细胞特 异性与 AAV2 等有很大区别,尤其表现在 AAV5 在动物和人的神经系统和 呼吸道上皮的感染效率比 AAV2 高得多(AAV4 不感染呼吸道上皮)。AAV1 的受体尚不清楚。AAV6可能是 AAV1 和 AAV2 的重组株,其受体不清楚, 但它能与肝素结合,为其纯化提供了亲合层析的条件。有报道,AAV6 在 小鼠呼吸道上皮的感染效率高于 AAV2 15-74 倍。 (J. V. 2001. 6615-6624. AAV6 vectors mediate efficient transduction of airway epithelial cells in mouse lungs-companed to that of AAV2 vectors)

对现有 AAV2 载体进行"换壳"改造(杂合 AAV 病毒载体的构建)对现有 AAV2 载体进行"换壳"改造,是获得除 AAV2 外的其它 5 种 AAV 血清型的细胞亲嗜性的 AAV 病毒载体的最简捷途径。动物实验发现,与 AAV2 载体相比,AAV1 在除神经组织外的其他组织,比如肌肉组织和肝脏中的转导效率都普遍较高;而 AAV5 在视网膜、大脑和胰岛(Terence Flotte, Anupam agarwal, Jianming Wang et al. 2001. Diabetes, 50:515-520)中有更好的感染效率。其中 AAV1 对肌肉组织的感染效率比 AAV2 高100-1000 倍。(Joseph E. Rabinowitz Fabienne Rolling Chengwen, 2002. J. Virol, 76:791-801)不同血清型的 AAV 在肝脏和肌肉组织中感染效率由高到低的血清型的顺序是 1、5、3、2、4;在大鼠视网膜中不同血清型的

AAV 的感染效率顺序是 5、4、1、2、3。总之,对 AAV2 以外的每一种血清型的研究将获得针对不同细胞类型有不同感染特性的 AAV 病毒载体,扩展 AAV 病毒载体的应用领域。

AAV 各血清型的基因组之间既高度同源又有区别的特性,使我们可以比较容易地对我们现有的 AAV2 载体进行"换壳"改造。即不改变现有 AAV 病毒载体顺式元件 ITR (来自 AAV2)的同时,通过更换各 AAV 血清型的外壳蛋白 Cap,分别获得具有 AAV1、AAV3、AAV4、AAV5、AAV6 血清型细胞亲嗜性的杂合 AAV病毒载体(ITR来自 AAV2、外壳分别来自 AAV1、AAV3、AAV4、AAV5 和 AAV6)。其中 AAV1、AAV3、AAV4、AAV6 与 AAV2 的同源性较高,只要改变 Cap 而不改变 AAV2 的 Rep,就能反式包装出相应的外壳来自 AAV1、AAV3、AAV4、AAV5 或 AAV6 而 ITR 来自 AAV2 的 AAV 杂合载体。

AAV2 病毒载体的生产方法

AAV2 的基因组为线性单链 DNA,全长约 4800 bp,其两端含有 2个各 145bp长的倒转末端重复序列(Inverted terminal repeat,ITR),它们是 AAV 基因组的复制起点,并与 AAV 复制、整合或包装等功能有关。其基因组其余部分可分为 2个功能区,rep 基因区和 cap 基因区。rep 基因有 4 种不同的形式的产物: Rep78, Rep68, Rep52, Rep40。它们为 AAV 复制和病毒基因表达等所必需的调节蛋白。cap 基因编码 3 种结构蛋白,VP1, VP2, VP3, 共同组装成 AAV 病毒的外壳。rep 和 cap 基因编码的蛋白在 AAV产毒性复制中都是反式作用蛋白。因此,在不改变 ITR 的情况下,只要改变各种血清型 AAV 的 cap 蛋白,就可以得到具有各血清型的感染特征的杂合 AAV 病毒载体,即可以继续使用为包装 AAV2 载体构建的大量带有各种治疗基因和标记基因的载体细胞株,从而大大简化了 AAV 病毒载体"换外壳"的过程。

产生 rAAV 病毒的经典方法为将 rAAV 病毒载体质粒与含有 rep-cap 基因的辅助质粒共转染导入细胞中,再用腺病毒或单纯疱疹病毒等辅助病毒感染该细胞。2-3 天后从培养上清及病变的细胞中即可收获到重组 AAV 病毒 (rAAV),同时还含有所用的腺病毒或单纯疱疹病毒。腺病毒和单纯疱

疹病毒都可用热处理 (55℃30 分钟至 2 小时) 而灭活, 但不影响 AAV 病毒的活性。

虽然这种生产 rAAV 病毒的方法比较简单,但仍存在许多明显的缺点。首先,每次制备 rAAV 病毒时都需要双质粒共转染细胞以及大量制备质粒 DNA。由于转染方法自身的限制,转染及共转染效率较低,是产生 rAAV 病毒滴度较低的原因之一。而且,用转染方法目前还难以大规模转导细胞,因此不适应大量生产 rAAV 病毒的需要。因此,有必要研究一种能用于大量生产 rAAV 病毒的系统和方法。

颇子颖等 1996 年曾申请名为 "能用于包装重组腺病毒伴随病毒的单纯疱疹病毒载体及其用途"的发明专利(中国专利申请号 96 1 20549.0,公开号 CN 1159480A)。该专利介绍了一种将 AAV2 的 rep-cap 基因置于HSV1 扩增子载体质粒中构建成 pHSV-AAV(+/-)。将该质粒导入细胞中,在HSV1 野生型病毒的存在下,可获得一种野生型 HSV1 和含 rep-cap 基因的假病毒的混合病毒,该混合病毒具有提供 rAAV 病毒制和包装的全部辅助功能,但仍存在效率低下问题而无法很好达到预期的目的。而 Conway等(Conway JE et al, J. Virol. 71: 8780-8789, 1997)也报道了类似的研究。但是,这种混合病毒中假病毒所占的比例较小(<10%),所能提供的辅助功能有限;并且假病毒与野生型病毒的比例在病毒传中不固定,不利于大量生产的质量控制。

吴小兵等将 AAV2 的 rep-cap 基因置于 HSV1 基因组中,构建成用于简便而大量生产 rAAV-2 病毒的全功能辅助病毒 HSV1-rc。(吴小兵等,用于重组腺伴随病毒生产的全功能辅助病毒的产生及其用途,中国专利申请号98120033.8)。用 HSV1-rc 感染 rAAV 病毒载体质粒转染的细胞或稳定携带 rAAV 病毒载体质粒的细胞株,就能产生大量有感染性的 rAAV 毒粒。用这种方法产生的 rAAV 能将外源基因导入哺乳动物细胞中并表达。(伍志坚,吴小兵等,具有 AAV 载体包装功能的重组 HSV 的产生,科学通报,1999,44(5):506-509;伍志坚,吴小兵等,一种高效的重组腺伴随病毒载体生产系统,中国科学 C 辑。2001,31(5):423-430;WU Zhijian,WU Xiaobing,et al. A novel and high efficient production system for

recombinant adeno-associated virus vector, Science in China(Series C).2002,45 (1): 96-104; WU Zhijian, WU Xiaobing,et al. Gerreration of a recombinant herpes simplex virus which can provide packaging function for recombinant adeno-associated virus, Chinese Science Bulletin. 1999,44(8): 715-718.)

腺相关病毒(adeno-associated virus, AAV)载体因其安全、稳定性好、表达时程长、细胞感染谱广且可以感染非分裂的细胞等特点,已经成为发展最快和最有希望的用于基因治疗的病毒载体。以往 AAV 载体都是以 AAV 血清型 2型 (AAV2)为基础构建的。近几年的研究发现,AAV2在一些组织中的感染效率较低;另外,AAV对人体的感染可能会产生中和抗体,在正常人群中有 85%人体内存在针对 AAV2 的抗体。这将可能影响 AAV2 载体在基因治疗中的应用。

目前自然界 AAV 病毒发现有 6种血清型,分别命名为 AAV1、2、3、4、5、6。这 6种血清型的 AAV 的与复制有关蛋白的基因 rep 的同源性较高,而表达外壳蛋白的 cap 基因存在程度不等的差异,这些差异造成了这六种血清型 AAV 在感染特性和抗原性等方面存在差异有许多不同。因此,可以使用不同血清型的 AAV 病毒外壳,以便 AAV 载体针对不同人体组织细胞都有相对较高的感染效率;此外在人体已经产生针对某一血清型 AAV 载体的中和抗体时,可以使用另一种血清型 AAV 载体,从而进一步提高 AAV 载体的感染效率。

发明内容

本发明中所涉及的重组腺病毒伴随病毒载体的各种血清型特指 1型、3型、4型、5型、6型等血清型,即 rAAV-1、rAAV-3、rAAV-4、rAAV-5、rAAV-6,本发明涉及上述 5种血清型的重组腺病毒伴随病毒载体的大规模生产、分离、纯化的方法及其用途。

本发明不涉及血清型2的重组腺病毒伴随病毒载体的大规模生产方法. 及其用途(即 rAAV-2),有关 rAAV-2 的大规模生产方法及其用途已经在 我们先前申请的发明专利中描述过,其专利申请号为 99119039.4,发明名

称为"可用于大规模生产的腺病毒伴随病毒生产方法及用途"。

本发明是建立在申请号为 99119039.4、02117965.4、99119038.6 和 99123723.4 的专利的基础上的。

在我们先前申报的发明"可用于大规模生产的腺病毒伴随病毒生产方法及用途"(专利申请号: 99119039.4; 公开号: CN 1252441A)中,我们描述了用"一株载体细胞/一株辅助病毒"生产2型重组腺病毒伴随病毒载体(即rAAV-2)的策略。

本发明同样采用"一株载体细胞/一株辅助病毒"的生产策略,但使用的"一株辅助病毒"将分别是 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6,而与所使用的辅助病毒相对应的、生产出来的重组腺病毒伴随病毒载体的外壳也将分别是 rAAV-1、rAAV-3、rAAV-4、rAAV-5、rAAV-6 病毒的外壳。

本发明所述"一株载体细胞",是指被导入了真核表达质粒载体 pSNAV 及其改造载体的细胞,真核表达质粒载体 pSNAV 上设计了包含有 AAV 的 ITR 元件和目的基因插入位点的基因表达盒,有关真核表达质粒载体 pSNAV 的详细的构建过程和内容参见我们先前申报的发明专利(申请号: 99119038.6,公开号: CN 1252450A)和后来发表的文章(伍志坚、吴小兵、侯云德,系列腺病毒伴随病毒载体的构建及表达半乳糖苷酶的研究,病毒学报,2000,16(1),1-6)。

各种不同的目的基因均可插入到多克隆位点中,从而最终生产出包含有各种不同目的基因的 rAAV,这些包含有各种不同目的基因的 rAAV 的血清型是由所使用的不同的辅助病毒决定的。

本发明所述"导入了真核表达质粒载体 pSNAV 的细胞"中所指的细胞可以是 AAV 和 pSNAV 的各种允许细胞,我们已经试验使用过的细胞种类包括: BHK、Vero、CHO、293 等传代细胞,啮齿类动物和人源性的各种组织细胞被证明也是可以被 AAV、HSV 等病毒感染的。这里允许细胞是指能接受或耐受某种病毒或生物体感染和生长的细胞。

为了相适应于我们的试验需要,我们对我们先前申报的发明(申请号: 99119038.6) 所涉及的真核表达质粒载体 pSNAV 进行了系列改造。我们

将 pSNAV 中含有的 AAV-2 的 ITR 元件分别更换成了 AAV-1 的 ITR 元件、AAV-3 的 ITR 元件、AAV-4 的 ITR 元件、AAV-5 的 ITR 元件、AAV-6 的 ITR 元件,分别相应构建成了 pSNAV-N1、pSNAV-N3、pSNAV-N4、pSNAV-N5、pSNAV-N6 (通称: pSNAV-NX, X可以分别指 1、3、4、5、6)。

本发明具体将涉及5种血清型的重组腺病毒伴随病毒载体的大规模生产方法及其用途。它们均采用"一株载体细胞/一株辅助病毒"的生产策略。

关于"一株载体细胞":

rAAV-1 的生产中,我们用辅助病毒 HSV1-r2c1 感染载体细胞以大量制备具有 rAAV-1 外壳的重组病毒。其中,一种载体细胞中导入了含有AAV2 的 ITR 元件的真核表达质粒载体 pSNAV; 另一种载体细胞中导入了含有 AAV1 的 ITR 元件的真核表达质粒载体 pSNAV-N1。试验显示,使用这两种细胞对病毒的包装和生产都没有不利的影响,它们均可以包装出具有 AAV-1 外壳的病毒颗粒,只是这两种 rAAV-1 病毒颗粒中包含的基因表达盒中的 ITR 元件是不相同的,一种含 AAV2 的 ITR 元件,我们称之为重组 AAV2/1 杂合病毒;另一种含 AAV1 的 ITR 元件,称为重组 AAV1 病毒。虽然这两种 ITR 元件的同源性很高,但仍然是不同的。

rAAV-3 的生产中,我们用辅助病毒 HSV1-r2c3 感染载体细胞以大量制备具有 rAAV-3 外壳的重组病毒。其中,一种载体细胞中导入了含有AAV2 的 ITR 元件真核表达质粒载体 pSNAV; 另一种载体细胞中导入了含有 AAV3 的 ITR 元件的真核表达质粒载体 pSNAV-N3。试验显示,使用这两种细胞对病毒的包装和生产都没有不利的影响,它们均可以包装出具有 AAV-3 外壳的病毒颗粒,只是这两种 rAAV-3 病毒颗粒中包含的基因表达 盒中的 ITR 元件是不相同的,一种含 AAV2 的 ITR 元件,我们称之为重组 AAV2/3 杂合病毒; 另一种含 AAV3 的 ITR 元件,称为重组 AAV3 病毒。虽然这两种 ITR 元件的同源性很高,但仍然是不同的。

rAAV-4的生产中,我们用辅助病毒 HSV1-r2c4 感染载体细胞以大量制备具有 rAAV-4 外壳的重组病毒。其中,一种载体细胞中导了含有 AAV2

的 ITR 元件的真核表达质粒载体 pSNAV; 另一种载体细胞中导入了含有 AAV4 的 ITR 元件的真核表达质粒载体 pSNAV-N4。试验显示,使用这两种细胞对病毒的包装和生产都没有不利的影响,它们均可以包装出具有 AAV-4 外壳的病毒颗粒,只是这两种 rAAV-4 病毒颗粒中包含的基因表达 盒中的 ITR 元件是不相同的,一种含 AAV2 的 ITR 元件,我们称之为重组 AAV2/4 杂合病毒; 另一种含 AAV4 的 ITR 元件,称为重组 AAV4 病毒。虽然这两种 ITR 元件的同源性很高,但仍然是不同的。

rAAV-5 的生产中,我们分别用辅助病毒 HSV1-r2c5 感染载体细胞以大量制备具有 rAAV-5 外壳的重组病毒.其中,载体细胞中导了含有 AAV2的 ITR 元件的真核表达质粒载体 pSNAV, 生产出的病毒我们称之为重组 AAV2/5 杂合病毒; 我们没有使用含有 AAV5的 ITR 元件的真核表达质粒载体 pSNAV-N5的载体细胞,原因是 AAV2的 Rep 不能识别 AAV5的 ITR。(John A. Chiorini, Sandra Afione and Robert M. Kotin, Adeno-associated virus type 5 Rep protein cleaves a unique terminal resolution site compared with other AAV serotypes, Journal of Virology, 1999, 4293-4298)(Markus Hildinger, James m. Wilson et al. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer, Journal of Virology, 2001, 6199-6203)。

rAAV-6 的生产中,我们用辅助病毒 HSV1-r2c6 感染载体细胞以大量制备具有 rAAV-6 外壳的重组病毒。其中,一种载体细胞中所导了含有AAV6 的 ITR 元件的真核表达质粒载体 pSNAV; 另一种载体细胞中导入了含有 AAV6 的 ITR 元件的真核表达质粒载体 pSNAV-N6。试验显示,使用这两种细胞对病毒的包装和生产都没有不利的影响,它们均可以包装出具有 AAV-6 外壳的病毒颗粒,只是这两种 rAAV-6 病毒颗粒中包含的基因表达盒中的 ITR 元件是不相同的,一种含 AAV2 的 ITR 元件,我们称之为重组 AAV2/6 杂合病毒;另一种含 AAV6 的 ITR 元件,称为重组 AAV6 病毒。虽然这两种 ITR 元件的同源性很高,但仍然是不同的。

关于"一株辅助病毒","一株辅助病毒": 指用于感染"一株载体细胞" 且能导致该载体细胞产生 rAAV 的辅助病毒,本发明采用的是重组人1型

单纯疱疹病毒 (rHSV-1)。

本发明描述了 5 株重组单纯疱疹病毒(分别为 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6,通称为 HSV1-rXcY),它们的共同点是其基因组中都插入了(AAV2)的 rep 基因,不同之处是其基因组中分别插入了血清型 1(AAV1)、3(AAV3)、4(AAV4)、5(AAV5)6(AAV6)的 cap 基因,即:用 AAV2的 rep 基因与 AAV1的 cap 基因组合插入到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒 HSV1-r2c1,用 AAV2的 rep 基因与 AAV3的 cap 基因组合插入到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到生组单纯疱疹病毒基因组中得到生组单纯疱疹病毒 HSV1-r2c3,用 AAV2的 rep 基因与 AAV4的 cap 基因组合插入到重组单纯疱疹病毒 HSV1-r2c4,用 AAV2的 rep 基因与 AAV5的 cap 基因组合插入到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒 HSV1-r2c5,用 AAV2的 rep 基因与 AAV6的 cap 基因组合插入到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒基因组中得到重组单纯疱疹病毒

将这些重组单纯疱疹病毒分别感染载体细胞,被感染的载体细胞能在表达 AAV2 的 Rep 蛋白的同时还分别表达 AAV1、3、4、5、6 的 Cap 蛋白。用这些重组单纯疱疹病毒(rHSV1-r2c1、rHSV1-r2c3、rHSV1-r2c4、rHSV1-r2c5、rHSV1-r2c6)作为辅助病毒,感染含有 AAV2 的 ITR 和外源基因的基因序列(ITR--外源基因—ITR)的基因表达盒的细胞株,可以分别产生具有 1、3、4、5、6 血清型 AAV 外壳的重组 AAV 病毒载体(rAAVs)。不同种类 AAV 的外壳蛋白 Cap 决定了 AAV 的组织感染特异性和感染效率,通过改用某一种血清型的衣壳蛋白,可以获得能高效感染某些特定组织的 rAAV 病毒载体,从而提高 rAAV 病毒载体在基因治疗中的有效性和安全性。

本发明利用吴小兵等构建 HSV1-rc 的相同原理 (吴小兵等,用于重组 腺伴随病毒生产的全功能辅助病毒的产生及其用途,中国专利申请号 98120033.8。伍志坚,吴小兵等,科学通报。1999,44 (5):506-509。伍志坚,吴小兵等,中国科学 C 辑。2001,31(5):423-430。WU Zhijian,WU Xiaobing,et al. Science in China(Series C).2002,45(1):96-104。WU Zhijian,

WU Xiaobing, et al. Chinese Science Bulletin. 1999,44(8): 715-718。), 在 我们已有的具有 AAV2 全功能的辅助病毒的基础上,通过对 HSV1-rc 进行 的基因重组分别可得到具有血清型 1、3、4、5、6 的 AAV 病毒载体生产 功能的辅助病毒 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、 HSV1-r2c6。其特征在于在 HSV1 基因组中插入了一个拷贝的、分别来自 AAV2 (rep)和 AAV1、3、4、5、6 (cap)的 rep-cap 基因(约 4kb,方 向不限定)。本发明所构建的5株重组单纯疱疹病毒中,rep-cap基因分别 插入在 HSV1 UL2 基因(编码尿嘧啶 DNA 糖基化酶)或者 HSV1 UL44 基因 (编码糖蛋白 C)的 XbaI 位点中,或用同源重组的方法插入 HSV1 基因 组的其它非必需基因区。非必需基因指对于 HSV1 在体外培养细胞中的增 殖和传代是非必需的,即将外源基因插入这些非必需基因中不会影响 HSV1 病毒的正常复制和繁殖。这些重组 HSV1 病毒均可以在 HSV1 敏感 细胞(如 BHK-21、 Vero、CHO、293)中增殖和稳定传代。本发明所构建 的 5 株单纯疱疹病毒可用于分别感染 rAAV 病毒载体质粒转染后的细胞或 稳定携带 rAAV 病毒载体质粒的细胞株,能产生分别含 AAV1、3、4、5、 6的外壳的有感染性的 rAAV 毒粒。

本发明所用上述几种辅助病毒的产生是在对一套含有 HSV1 病毒全基 因组的粘性质粒 Set C 粘粒(包括 cos6, cos14, cos28, cos48, cos56 共 5 个粘粒, Cunningham, C. and A. J. Davison 1993 A cosmid-base system for constructing mutants of Herpes Simplex Virus Type 1. Virology 197: 116-124)进行改造的基础上实现的。

本发明分别将 AAV1、3、4、5、6 的 cap 基因与 AAV2 的 rep 基因相连,成为 rep2cap1、rep2cap3、rep2cap4、rep2cap5、rep2cap6 DNA 片段(分别见附图 1、2、3、4、5),将这 5 个 DNA 片段分别装入 HSV1 基因组中,得到表达 AAV1、3、4、5、6 的 cap 蛋白和 AAV2 的 rep 蛋白的重组 HSV1: HSV-r2c1、HSV-r2c3、HSV-r2c4、HSV-r2c5、HSV-r2c6。用它们分别感染 rAAV 病毒载体质粒转染的细胞或稳定携带 rAAV 病毒载体质粒的细胞株,就能产生分别含 AAV1、3、4、5、6 的核衣壳的有感染性的 rAAV 毒粒。得到 rep2cap1、rep2cap3、rep2cap4、rep2cap5、rep2cap6

DNA 片段所用方法可以是下列方法中之一: (1)将 AAV2 的 rep 基因分别与 AAV1、AAV3、AAV4、AAV5、AAV6 的 cap 基因相连; (2) 在不干扰 AAV2 的 Rep 蛋白对 AAV2 的 ITR 的包装功能的前提下,用部分分别来自 AAV1、AAV3、AAV4、AAV5、AAV6 的 rep 基因(位于整个 rep 基因的下游,即 3'端)取代 AAV2 的 rep 基因的相应部分,同时用 AAV1、AAV3、AAV4、AAV5、AAV6 的 cap 基因取代 AAV2 的 cap 基因。这种部分 rep 基因的取代有时会提高 rAAV 病毒的包装效率和产量。

另外,本发明分别具有血清型 1、血清型 3、血清型 4、血清型 5、血清型 6 的 AAV 病毒载体生产功能的辅助病毒中的插入片段 (rep 和 cap) 也可以是来自同一种血清型,即 rep 和 cap 基因均来自 AAV1、AAV3、AAV4、AAV5 或 AAV6。

rep和 cap 片段可以以单拷贝形式插入 HSV1 基因组的同一位置,也可以分别插入 HSV1 的不同位置。

rep和 cap 片段也可以以两个或两个以上拷贝形式插入 HSV1 基因组的同一位置,也可以分别插入 HSV1 的不同位置。

本发明同样适用于除 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6 等的其它血清型的 AAV 载体的辅助病毒的产生。比如 AAV7、AAV8 等。

将上述 5个 DNA 片段分别装入 HSV1 基因组中,得到可分别表达 AAV1、3、4、5、6的 cap 蛋白并同时表达 AAV2 的 rep 蛋白的 5 株重组 HSV1: HSV1-r2c1 可以同时表达 AAV1 的 cap 蛋白和 AAV2 的 rep 蛋白; HSV1-r2c3 可以同时表达 AAV3 的 cap 蛋白和 AAV2 的 rep 蛋白)、HSV1-r2c4 可以同时表达 AAV4 的 cap 蛋白和 AAV2 的 rep 蛋白; HSV1-r2c5 可以同时表达 AAV5 的 cap 蛋白和 AAV2、5 的杂合 rep 蛋白或 AAV2 的 rep 蛋白; HSV1-r2c6 可以同时表达 AAV6 的 cap 蛋白和 AAV2、6 的杂合 rep 蛋白或 AAV2 的 rep 蛋白。用上述 5 株单纯疱疹病毒作为辅助病毒分别感染 rAAV 病毒 载体质粒转染的细胞或稳定携带 rAAV 病毒载体质粒的细胞株,能产生分别含血清型 1、3、4、5、6 的病毒衣壳的有感染性的 rAAV 毒粒。

对上述 5 株重组单纯疱疹病毒 (通称为 HSV1-rXcY) 的特征描述如下:

(1) HSV1-r2c1:

一种重组单纯疱疹病毒(HSV1),其特征在于其基因组中插入了一种DNA序列,它具有 SEQ ID NO.1(是 rep2cap1)所示的核苷酸序列或其同源序列。其中 DNA序列 SEQ ID NO.1 被插入 HSV1 基因组的 UL2 基因的 xbaI 位点中。rep2cap1 核苷酸序列片段是被插入到 Set C 的 COS6 的 UL2 基因的 xbaI 位点中。

另外,DNA序列 SEQ ID NO.1 也可以通过插入 HSV1 的 UL44基因的 XbaI 位点或用同源重组的方法插入 HSV1 的其它非必需基因区。比如用同源臂方法用 SEQ ID NO.1 替代 HSV1 的非必需基因 tk。 rep2cap1 核苷酸序列片段是被插入到 Set C 的 COS56 的 UL44基因的 xbaI 位点中。

(2) HSV1-r2c3:

一种重组单纯疱疹病毒(HSV1),其特征在于其基因组中插入了一种DNA序列,它具有 SEQ ID NO.2(是 rep2cap3)所示的核苷酸序列或其同源序列。其中 DNA序列 SEQ ID NO.2 被插入 HSV1 基因组的 UL2 基因的 xbal 位点中。rep2cap3 核苷酸序列片段是被插入到 Set C 的 COS6 的 UL2 基因的 xbal 位点中。

另外,DNA序列 SEQ ID NO.2 也可以通过插入 HSV1 的 UL44 基因的 XbaI 位点或用同源重组的方法插入 HSV1 的其它非必需基因区。比如用同源臂方法用 SEQ ID NO.2 替代 HSV1 的非必需基因 tk。 rep2cap3 核苷酸序列片段是被插入到 Set C 的 COS56 的 UL44 基因的 xbaI 位点中。

(3) HSV1-r2c4:

一种重组单纯疱疹病毒(HSV1),其特征在于其基因组中插入了一种DNA序列,它具有 SEQ ID NO.3(是 rep2cap4)所示的核苷酸序列或其同源序列。其中 DNA序列 SEQ ID NO.3 被插入 HSV1 基因组的 UL2 基因的 xbaI 位点中。rep2cap4 核苷酸序列片段是被插入到 Set C 的 COS6 的 UL2 基因的 xbaI 位点中。

另外,DNA序列 SEQ ID NO.3 也可以通过插入 HSV1 的 UL44 基因的 XbaI 位点或用同源重组的方法插入 HSV1 的其它非必需基因区。比如用同源臂方法用 SEQ ID NO.3 替代 HSV1 的非必需基因 tk。 rep2cap4 核

苷酸序列片段是被插入到 Set C 的 COS56 的 UL44 基因的 xbaI 位点中。

(4) HSV1-r2c5:

一种重组单纯疱疹病毒(HSV1),其特征在于其基因组中插入了一种DNA序列,它具有 SEQ ID NO.4(是 rep2cap5)所示的核苷酸序列或其同源序列。其中 DNA序列 SEQ ID NO.4被插入 HSV1 基因组的 UL2 基因的 xbaI 位点中。rep2cap5 核苷酸序列片段是被插入到 Set C 的 COS6 的 UL2 基因的 xbaI 位点中。

另外,DNA序列 SEQ ID NO.4 也可以通过插入 HSV1 的 UL44 基因的 XbaI 位点或用同源重组的方法插入 HSV1 的其它非必需基因区。比如用同源臂方法用 SEQ ID NO.4 替代 HSV1 的非必需基因 tk。rep2cap5 核苷酸序列片段是被插入到 Set C 的 COS56 的 UL44 基因的 xbaI 位点中。

(5) HSV1-r2c6:

一种重组单纯疱疹病毒(HSV1),其特征在于其基因组中插入了一种DNA序列,它具有 SEQ ID NO.5(是 rep2cap6)所示的核苷酸序列或其同源序列。其中 DNA序列 SEQ ID NO.5 被插入 HSV1 基因组的 UL2 基因的 xbaI 位点中。rep2cap6 核苷酸序列片段是被插入到 Set C 的 COS6 的 UL2 基因的 xbaI 位点中。

另外,DNA序列SEQ ID NO.5也可以通过插入HSV1的UL44基因的XbaI位点或用同源重组的方法插入HSV1的其它非必需基因区。比如用同源管方法用SEQ ID NO.5替代HSV1的非必需基因tk。rep2cap6核苷酸序列片段是被插入到Set C的COS56的UL44基因的xbaI位点中。

本发明提出了 5 株重组单纯疱疹病毒的制备方法,该方法包括构建含有 SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4 或 SEQ ID NO.5 的 DNA 片段,并利用基因工程的方法将该 DNA 片段插入单纯疱疹病毒的基因组中,从而获得重组的单纯疱疹病毒;或者插入与 SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4 或 SEQ ID NO.5 的 DNA 片段同源的其它 DNA 序列,获得功能相同或相似的重组单纯疱疹病毒 HSV-rXcY。同时,本发明提出了这 5 株重组单纯疱疹病毒的用途。

本发明用于构建 5 株重组单纯疱疹病毒的原始生物材料中包括 Set C

粘粒等。

Set C 粘粒: 由依次分载了 HSV1 病毒全基因组的 5 个粘粒组成:cos6, cos14 cos28, cos48, cos56. 为 Davision AJ赠送(Conningham C, Davision AJ. Virology,1993, 197: 116-124)。(cos6, cos14 cos28, cos48, cos56 的序列分别见 Seq6、Seq7、Seq8、Seq9、Seq10)。该套粘粒中装载的每一 HSV1 病毒基因组片段的末端与装载于另一粘粒中的 HSV1 片段的末端序列重复, 这是 5 个 HSV1 基因组片段在细胞中发生同源重组从而产生重组 HSV1 的基础(见附图 8)。Set C 中的 cos6 上的非必需基因 UL2和 cos56 上 HSV1的非必需基因 UL44 中有一个 XbaI 单切点,用于将外源基因插入其中,并通过 5 个粘粒重组而产生插入了外源基因的重组 HSV 病毒。

AAV1、AAV3、AAV4 三枝病毒株背景: ATCC 编号分别为 ATCC VR645、ATCC VR681、ATCC VR646 的病毒株。

AAV5 病毒株: 来源见文献。(Bantel-Schaal U, Zur Hausen H. Virology 1984, 134:52-63)

AAV6 病毒株: 来源见文献。(Rutledge,E.A., Halbert,C.L. and Russell,D.W. J. Virol. 1998, 72:309-319)

SSV9: 含 AAV2 的 rep 和 cap 基因的质粒。(Du B, Wu P, Boldt-Houle DM, Terwilliger EF Gene Ther 1996, 3:254-61)

与本发明有关的专利

吴小兵等,以粘粒为基础构建重组单纯疱疹病毒及其用途,中国专利申请98101753.3,公开号: CN 1234441A;

吴小兵等,用于重组腺伴随病毒生产的全功能辅助病毒的产生及其用途,中国专利申请号 98120033.8 公开号: CN 1243878A。

吴小兵等,可用于大规模生产的重组腺病毒伴随病毒生产方法及用途, 中国专利申请号 99119039.4,公开号: CN 1252441A。

吴小兵等,一种快速高效分离和纯化重组腺病毒相关病毒的方法和用途,中国专利申请号:99123723.4;公开号:CN 1272538A。

5株重组单纯疱疹病毒的制备方法:

采用与制备 HSV1-lacZ100 重组病毒基本相同的策略和方法。制备

HSV1-lacZ100 重组病毒是将 lacZ 基因插入 cos6 的 XbaI 位点中,并通过5个粘粒重组的方法,得到了 HSV1-lacZ100 重组病毒。(吴小兵等,以粘粒为基础构建重组单纯疱疹病毒及其用途,中国专利申请号 98101753.3)

rep(AAV2)和 cap (AAV1、AAV3、AAV4、AAV5、AAV6)基因分别用上下游引物从各自的病毒基因组模板,通过 PCR 方法获得后,再采用限制性内切酶切、连接的方法分别得到相应的 r2c1、r2c3、r2c4、r2c5和r2c6基因片段,这些基因片段的两端都是 XbaI 位点(见附图 1、2、3、4、5)。

r2c5基因片段中,rep2是由 AAV5的 rep基因的一部分与 AAV2的 rep基因的一部分融合而成的杂合 rep基因,即,此 rep2是部分 rep5和部分 rep2的杂合基因。其制备是:用 AAV2的 rep的一对引物从 AAV2 病毒基因组模板,通过 PCR 方法获得 rep2的一部分,用 AAV5的 rep的一对引物从 AAV5 病毒基因组模板,通过 PCR 方法获得 rep5的另一部分,再采用限制性内切酶切、连接的方法得到此含有部分 rep5和部分 rep2的杂合 rep基因。

cos6及cos56粘粒中的装载的HSV1基因组片段中各有一个XbaI 单酶 切位点,分别位于非必需基因 UL2 和 UL44 内,通常可用于插入外源基因。 将经过 XbaI 酶切的 r2c1、r2c3、r2c4、r2c5 和 r2c6 基因片段分别插入 cos6 的 XbaI 位点中,分别构建成重组粘粒 cos6-r2c1ΔUL2、cos6-r2c3ΔUL2、 (通称为 $\cos 6 - r^2 \cos \Delta U L^2$ cos6-r2c6ΔUL2 cos6-r2c4ΔUL2 cos6-rXcYΔUL2, 图谱见附图 6)。将 cos6-r2c1ΔUL2、cos6-r2c3ΔUL2、 cos6-r2c4ΔUL2、cos6-r2c5ΔUL2、cos6-r2c6ΔUL2中之一分别与 cos14, cos28, cos48, cos56 等摩尔混合,用 Pacl 酶切去 cos 骨架,用脂质体共转染 BHK-21 细胞, 5 个 HSV1 片段在细胞内发生同源重组而分别产生 HSV1-r2c1、 HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6 等重组病毒: 5天后细 胞开始出现病变, 待细胞完全病变后收培养液上清, 2000 r/min 离心 5min, 上清分装保存于-20℃。用该方法产生的含有目的 DNA 片段的重组 HSV1 病毒的概率达50~100%。通过空斑筛选很容易获得纯一的重组病毒。

同样,将 r2c1、r2c3、r2c4 和 r2c5 等基因片段分别插入 cos56 的 XbaI

位点,也可以得到与上述 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6等重组病毒功能相同的重组病毒。其制备过程是:将经过 XbaI酶切的 r2c1、r2c3、r2c4、r2c5 和 r2c6 基因片段分别插入 cos56 的 XbaI位点中,分别构建成重组粘粒 cos56-r2c1 UL44、cos56-r2c3 UL44、cos56-r2c4 UL44、cos56-r2c5 UL44、cos56-r2c6 UL44(通称为 cos56-rXcY UL44、图谱见附图 7)。将 cos56-r2c1 UL44、cos56-r2c3 ΔUL44、cos56-r2c4 ΔUL44、cos56-r2c5 ΔUL44、cos56-r2c4 ΔUL44、cos56-r2c5 ΔUL44、cos56-r2c4 ΔUL44 中之一分别与 cos6, cos14, cos28, cos48等摩尔混合,用 PacI酶切去 cos 骨架,用脂质体共转染 BHK-21 细胞,5 个 HSV1 片段在细胞内发生同源重组而分别产生 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6等重组病毒:5天后细胞开始出现病变,待细胞完全病变后收培养液上清,2000 r/min 离心 5min,上清分装保存于-20℃。用该方法产生的含有目的 DNA 片段的重组 HSV1病毒的概率同样可达 50~100%。通过空斑筛选很容易获得纯一的重组病毒。

另外,将 r2c1、r2c3、r2c4、r2c5 和 r2c6 等基因片段通过同源臂重组、转座子、定点插入、随机插入等方式插入 HSV1 基因组中,同样可以得到与上述 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6等重组病毒功能相同的重组病毒。

同样,本发明描述的 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c5、HSV1-r2c6 等重组病毒也可以是插入了与 SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4 或 SEQ ID NO.5 的 DNA 片段同源的其它 DNA 序列。"其它同源 DNA 序列" 指非 SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4 或 SEQ ID NO.5,但与其有一定 DNA 序列 同源性,同样可以起 AAV 载体辅助病毒功能的其它 DNA 序列。

用 5 株重组单纯疱疹病毒分别制备具有 AAV1、3、4、5、6 的血清型的 rAAV1、3、4、5、6:

用 5 株重组单纯疱疹病毒分别制备分别具有 AAV1、3、4、5、6 的血清型衣壳蛋白的 5 种重组 AAV, 具体包括: rAAV1、rAAV3、rAAV4、rAAV5、rAAV6。

在 AAV1、3、4、5、6中,AAV5的 rep 与 AAV2的 rep 差异最大,因此需要用部分 AAV5的 rep 取代 AAV2的 rep 的一部分,能有效保证 AAV5的基因复制和 rAAV5病毒的包装(Yoon, M, D. Smith, P. Ward, F, et al. 2001. J. Virol. 75:3230-3239)。本发明的 HSV1-r2c5 留取了 AAV2的 rep 基因 5'端约 860bp (BamHI 位点处),用它感染含 ITR (AAV2)-外源基因-ITR (AAV2)的 AAV 包装细胞株,得到了具有 AAV5 血清型的 rAAV5病毒。但是如前所述,不用部分 AAV5的 rep 取代 AAV2的 rep 的一部分,而完全用 AAV2的 rep 也同样可以包装出较高滴度的 AAV5杂合病毒。(Dirk Grimmk, Mark A. Kay, et al. Pre-clinical in vivo evaluation of pseudotyped adeno-associated virue vectors for liver gene therapy, Blood, prepublished online June 5, 2003, DOI 10.1182/blood-2003-02-0495)

除 AAV5 外, AAV1、3、4、6 的 rep 与 AAV2 有较大的同源性, 因此, 本发明构建的 HSV1-r2c1、HSV1-r2c3、HSV1-r2c4、HSV1-r2c6 等重组 病毒中的 AAV 的 rep 基因基本上都来自 AAV2,用前者分别感染含 ITR (AAV2)-外源基因-ITR (AAV2)的 AAV 包装细胞株, 可以得到分别具有 AAV1、3、4、6的血清型的 rAAV1、3、4、6。

AAV 包装细胞株的构建过程是:构建含"ITR (AAV2)-外源基因-ITR (AAV2)"和抗性基因如 neo"的质粒载体 pSNAV (申请号:99119038.6,公开号: CN 1252450A),转染到 HSV1 敏感的传代细胞株,如 BHK-21中,用 G418筛选抗性细胞株,即得到 AAV 包装细胞株,用含 AAV 的 rep-cap的 rHSV1 的辅助病毒感染该细胞株,即得到 rAAV 病毒载体。(方法参考:吴小兵等,以粘粒为基础构建重组单纯疱疹病毒及其用途,中国专利申请号 98101753.3;吴小兵等,用于重组腺伴随病毒生产的全功能辅助病毒的产生及其用途,中国专利申请号 98120033.8)。

我们对质粒载体 pSNAV 进行了系列改造。我们将 pSNAV 中含有的AAV-2 的 ITR 元件分别更换成了 AAV-1 的 ITR 元件、AAV-3 的 ITR 元件、AAV-4 的 ITR 元件、AAV-5 的 ITR 元件、AAV-6 的 ITR 元件,分别相应构建成了质粒载体 pSNAV-N1、pSNAV-N3、pSNAV-N4、pSNAV-N5、pSNAV-N6 (通称: pSNAV-NX, X 可以分别指 1、3、4、5、6)。将上述

各种质粒载体转染到 HSV1 敏感的传代细胞株,如 BHK-21 中,用 G418 筛选抗性细胞株,即得到 AAV 包装细胞株,用含有 AAV 的 rep-cap 的 rHSV1 辅助病毒感染该细胞株,即得到 rAAV 病毒载体。

5种血清型的重组腺病毒伴随病毒载体的大规模生产:

- rAAV-1 的生产: 用辅助病毒 HSV1-r2c1 感染已导入 pSNAV 或 pSNAV-N1 的载体细胞大量生产 rAAV-1 病毒。
- rAAV-3 的生产: 用辅助病毒 HSV1-r2c3 感染已导入 pSNAV 或 pSNAV-N3 的载体细胞大量生产 rAAV-3 病毒。
- rAAV-4的生产: 用辅助病毒 HSV1-r2c4 感染已导入 pSNAV 或 pSNAV-N4的载体细胞大量生产 rAAV-4 病毒。
- rAAV-5 的生产: 用辅助病毒 HSV1-r2c5 感染已导入 pSNAV 或 pSNAV-N5 的载体细胞大量生产 rAAV-5 病毒。
- rAAV-6 的生产: 用辅助病毒 HSV1-r2c6 感染已导入 pSNAV 或 pSNAV-N6 的载体细胞大量生产 rAAV-6 病毒。

在我们先前申报的发明《一种快速高效分离和纯化重组腺病毒相关病毒的方法和用途》(专利申请号: 99123723.4; 公开号: CN 1272538A)中提出了一种重组腺病毒相关病毒的分离、纯化、浓缩的新方法,同样本发明的5种血清型的重组腺病毒伴随病毒载体的分离、纯化是以上述发明专利为依据的,也采用其中描述的方法进行分离、纯化,具体为:

- 1. 主要由以下步骤组成:
- 1) 氯仿破碎细胞、灭活 HSV 辅助病毒及使大量细胞蛋白变性沉淀;
- 2) 用 DNaseI和 RNase 处理细胞裂解液以降解核酸;
- 3) 加 NaCl 促使 rAAV 与细胞碎片分离,离心去除细胞碎片;
- 4) 用 PEG/NaCl 沉淀 rAAV;
- 5) 用氯仿抽提去除杂蛋白和残余的 PEG;
- 6) 透析除盐;
- 7) 用密度梯度离心法或亲和层析法进一步纯化 rAAV。
- 2.在具体操作上,将如下进行:
- 1) rAAV 的大量产生: 用本发明提及的各种 HSV1-rXcY 为辅助病毒分别感

染对应载体细胞,待细胞出现完全 CPE 变化并漂浮起来时(约 48~72hr), 收获细胞培养物(细胞及培养液)作为粗制裂解液,测量其体积;

- 2) 辅助病毒灭活及细胞裂解: 用氯仿处理原料液(即粗制裂解液)可达到灭活辅助病毒 HSV1-rXcY和裂解细胞的双重目的,但对 AAV 病毒没有影响。有感染性的单纯疱疹病毒颗粒有双层脂质外膜及镶嵌在其中多种病毒糖蛋白,该层被膜是 HSV 病毒感染细胞所必需的。氯仿可以溶解脂质,并使大量蛋白变性。用氯仿处理可 100% 灭活 HSV 病毒,同时可以高效裂解细胞膜和核膜。AAV 病毒颗粒具有氯仿抗性,用氯仿处理对其结构和感染活性没有影响。
- 3)细胞碎片和变性蛋白的去除:在细胞裂解液中加固体氯化钠至终浓度 1.0~1.2mol/L,搅拌溶解。11000g 离心 10~15min。将上清移入一干净三角 烧瓶中瓶中,估算其体积。弃去离心的沉淀和下层氯仿。加氯化钠可促使 AAV 病毒颗粒与细胞碎片分离,也是下一步用聚乙二醇沉淀 AAV 病毒所必需。
- 4) 在上清中加入固体聚乙二醇 8000 至终浓度 6~12%, 搅拌溶解。4℃放置 1小时以上至过夜。12000g 离心 10~15min。将上清倾入另一干净烧瓶中,尽量让上清流尽。沉淀用适量的 PBS²+溶解, 加 DnaseI 和 RNase 消化 AAV 病毒颗粒之外的残余 DNA 和 RNA。加等体积的氯仿抽提,12000g 离心 5min, 在无菌操作下小心吸出上层水相,移入无菌管中。该液体即为浓缩和纯化的 rAAV 病毒液。
- 5) 用以上方法纯化 rAAV 可获得的 rAAV 病毒纯度可达到>99%。从 2×10% cells (5 只 110×288mm 转瓶) 粗制裂解液中制备的 rAAV 滴度可达到 $10^{14~15}$ particles/ml, 感染滴度可达> $10^{12~13}$ TU/ml。 rAAV 的回收率>90%。 获得的 rAAV 可用于体外实验和动物实验,进一步纯化后可获得临床级的 rAAV 产品。
- 6) 该病毒液进一步纯化可采用双液相萃取方法。用 PEG/盐系统或 PEG/Dex 系统。最终用透析去除 PEG 和盐,用超滤除菌。
- 7) 进一步精纯化亦可采用柱层析(包括分子筛层析、亲和层析)或氯化铯超速离心及透析、超滤等方法。

该粗纯化方法纯化的 AAV 载体病毒的纯度大于 60%,杂蛋白含量小于 40%。经该方法处理的 AAV 载体病毒去除了大多数来自细胞的杂蛋白和脂质,可以较容易地进行进一步的精纯化,从而制备出符合临床实验标准的 AAV 载体。

将上述获得的 rAAV 液进行进一步精纯化包括:上述获得的 rAAV 液过用缓冲液平衡好的离子交换柱,再用缓冲液平衡离子交换柱,然后用加盐的缓冲液洗脱并收集洗脱峰;将收集的洗脱峰过用缓冲液平衡好的分子筛柱,再继续用缓冲液洗脱,得到进一步纯化的 rAAV;在具体操作上,将如下进行:

本发明中的离子交换柱可以选用 QFF 柱子(Q Sepharose Fast Flow 柱子, Amersham Pharmacia 公司生产)等,分子筛柱可以选用 S200 柱子(Sephacryl S-200 High Resolution 柱子, Amersham Pharmacia 公司生产)等。

将上述获得的 rAAV 液上样到用缓冲液平衡好的 QFF 柱子, ;接着再用缓冲液平衡好 QFF 柱子, 然后用加盐 (可选用 Nacl 等,选用 Nacl 终浓度可为 1M)缓冲夜洗脱,收集洗脱峰;

将收集的洗脱峰上样到用缓冲液平衡好的 S200 柱子,继续用缓冲液洗脱,收集洗脱峰得到进一步纯化的临床级的 rAAV。

研究中我们发现,用 5 种重组单纯疱疹病毒分别感染未转染 AAV 载体 DNA 的细胞(如: BHK 细胞), 也可以产生大量 AAV 病毒颗粒。只是这种病毒颗粒为病毒空壳。说明 AAV 病毒形成病毒颗粒时是预装好病毒空壳后再将基因组 DNA 包裹到壳粒中。

附图说明

图 1 为 rep2cap1 图谱。 rep 基因 以 AAV2 的 rep 基因为主体(长约 1721bp), 3'端含有来自 AAV1 的一小段 rep(长约 280bp)。cap 基因完全来自 AAV1(长约 2210bp)。

图 2 为 rep2cap3 图谱。 rep 基因完全来自 AAV2; cap 基因主体来自 AAV3 (长约 2040bp), 5'端一小段来自 AAV2 (长约 30bp)。

图 3 为 rep2cap4 图谱。 rep 基因主体来自 AAV2 (长约 1721bp), 3'

端一小段来自 AAV4(长约 280bp); cap基因主体来自 AAV4(长约 2170bp), 3'端一小段来自 AAV2(长约 160bp)。

图 4 为 rep2cap5 图谱。 rep 基因 5'端来自 AAV2 (长约 860bp), 3'端来自 AAV5 (长约 1122bp); cap 基因完全来自 AAV5 (长约 2170bp)。

图 5 为 rep2cap6 图谱。 rep 基因主体来自 AAV2 (长约 1721bp), 3°端一小段来自 AAV6(长约 280bp); cap 基因完全来自 AAV6(长约 2210bp)。

图 6 为 cos6-rXcYAUL2 图谱。 其中 rXcY 分别是 r2c1、r2c3、r2c4、r2c5、r2c6。基因方向不限。

图 7 为 cos56-rXcYΔUL44 图谱。 其中 rXcY 分别是 r2c1、r2c3、r2c4、r2c5、r2c6。基因方向不限。

图 8 为 Set C 图谱。 cos6、cos28、cos14、cos56、cos48 组成 Set C, 后者用 Pac I 切去 cos 骨架后, 转染细胞, 经同源重组得到 HSV1 病毒。 其中 cos6 的 HSV1 的 UL2 基因、cos56 上的 HSV1 的 UL44 基因中各有一各 Xba I 位点, 用于插入外源基因。

图 9 为 pSNAV-GFP 图谱。GFP (绿色荧光蛋白)基因由人 CMV 病毒的立即早期启动子启动, polyA来自 SV40 病毒。GFP表达盒两端是 AAV2的 ITR (反向末端重复)。将本发明提出的重组 HSV 病毒: HSV-r2c1、HSV-r2c3、HSV-r2c4、HSV-r2c5、HSV-r2c6 分别感染已经转染 pSNAV-GFP 的细胞株,分别能得到带有 AAV1、AAV3、AAV4、AAV5、AAV6 血清型的表达报告基因 GFP 的 AAV 病毒载体。

图 10 为 pSNAV-N1 图谱, 其中 ITR 为 AAV-1 的 ITR 元件;

图 11 为 pSNAV-N3 图谱, 其中 ITR 为 AAV-3 的 ITR 元件;

图 12 为 pSNAV-N4 图谱, 其中 ITR 为 AAV-4 的 ITR 元件;

图 13 为 pSNAV-N5 图谱, 其中 ITR 为 AAV-5 的 ITR 元件;

图 14 为 pSNAV-N6 图谱, 其中 ITR 为 AAV-6 的 ITR 元件;

图 15 是纯化的 1 型血清型的 rAAV/r2c1-GFP 病毒的电镜分析 (× 54800);

图 16 是纯化的 3 型血清型的 rAAV/r2c3-GFP 病毒的电镜分析 (×54800);

图 17 是纯化的 4 型血清型的 rAAV/r2c4-GFP 病毒的电镜分析 (× 54800);

图 18 是纯化的 5 型血清型的 rAAV/r2c5-GFP 病毒的电镜分析 (× 54800);

图 19 是纯化的 6 型血清型的 rAAV/r2c6-GFP 病毒的电镜分析 (× 54800);

图 20 是纯化的 1 型血清型的 AAV 空壳病毒的电镜分析 (×38000);

图 21 是纯化的 3 型血清型的 AAV 空壳病毒的电镜分析 (×38000);

图 22 是纯化的 4型血清型的 AAV 空壳病毒的电镜分析 (×38000);

图 23 是纯化的 5型血清型的 AAV 空壳病毒的电镜分析 (×38000);

图 24 是纯化的 6型血清型的 AAV 空壳病毒的电镜分析 (×38000);

图 25 是精纯化中 1 型血清型的 rAAV/r2c1-GFP 病毒液过离子交换柱的 SDS-PAGE 电泳图;其中 泳道 1: rAAV/r2c1-GFP 病毒液过离子交换柱收集的洗脱峰; 泳道 2: AAV2 的对照; 泳道 3: mark;

图 26 是精纯化中 1 型血清型的 rAAV/r2c1-GFP 病毒液过分子筛柱的 SDS-PAGE 电泳图; 其中泳道 1: mark; 泳道 2: rAAV/r2c1-GFP 病毒液过分子筛柱收集的洗脱峰; 泳道 3: AAV2 的对照;

具体实施方式

以下通过实施例结合附图对本发明的多种血清型重组腺病毒伴随病毒载体的大规模生产、分离、纯化及其用途作了进一步详细说明,但并不意味着限制本发明的范围。

实施例1 1型血清型重组腺病毒伴随病毒栽体的大规模生产、分离、 纯化及其用途

实施例 1-1 cos6-r2c1ΔUL2 的构建

以 AAV1 为模板, PCR 方法扩增出相应的 cap1 (AAV1)(引物见引物序列 1、2)。反应条件: 94℃30sec, 55℃30sec, 72℃3min, 30个循环, 得到 2210bp 的 PCR 片段 cap1, 用限制性内切酶 KpnI+XbaI 双酶切后, 与从 pSSV9用 KpnI+XbaI 切出的 AAV2 的 rep2 (1721bp) 相连接, 将连

接产物装入 pGEM-p3zf(+) 质粒(Promega 公司)的 XbaI 位点中,得到 p3zf-r2c1 质粒。再用 XbaI 从 p3zf-r2c1 质粒中切下 r2c1(约 4347bp),装入 cos6 的 XbaI 位点中,得到 cos6-r2c1ΔUL2。

引物序列 1: AAV1 cap 上游引物: 5'-GTCTGGAGCATGACTTTGGC-3' (SEQ ID NO. 6)

引物序列 2: AAV1 cap 下游引物: 5'-TCTAGAAGCGCAACCAAGCAGTTAAT-3' (SEQ ID NO. 7)

实施例 1-2 重组 HSV1-r2c1 的制备

将 cos6-r2c1∆UL2与 cos14, cos28, cos48, cos56等 5个粘粒等摩尔混合,用 PacI 酶切去 cos 骨架 (不必分离去除),用酚、酚/氯仿 (1:1)和氯仿各抽提一次,吸取上清,用 2.5 倍无水乙醇沉淀 DNA。用 lipofactamine (GIBCO BRL)20ul 与 10 ug DNA 按产品说明书共转染 80%铺满的BHK-21细胞 (约 2×106)细胞,5个 HSV1 片段将在细胞内发生同源重组而分别产生 HSV1-r2c1 重组病毒。转染 24h 后换用含 2%FBS 的 1640 培养液 37℃培养,每天换液一次。5天后细胞开始出现病变,待细胞完全病变后收培养液上清,2000 r/min 离心 5min,上清分装保存于-20℃。对获得的重组病毒进行两次空斑纯化,可得到纯一的 HSV1-r2c1 重组病毒。

实施例 1-3 AAV 包装细胞株 BHK/pSNAV-GFP 和BHK/pSNAV-N1-GFP的建立

在 pSNAV-1 质粒 (伍志坚、吴小兵、侯云德,系列腺病毒伴随病毒载体的构建及表达半乳糖苷酶的研究,病毒学报,2000,16(1),1-6)的基础上构建成含有 GFP 基因的重组质粒 pSNAV-GFP,其结构为带有"ITR(AAV2)-外源基因-ITR(AAV2)"和抗性基因 neo^r的质粒(见附图 8)。将该质粒用脂质体方法导入 BHK-21 细胞(ATCC CCL-10),用 G418 200ug/ml选择培养 10-15d,获得的抗性细胞株命名为 BHK/pSNAV-GFP。

AAV1 和腺病毒 5 感染 293 细胞, 3 天后冻融细胞, 5800g 离心 30 分钟, CsCl 纯化方法见 (J.V.1997,71:8429-8436)。上述 AAV1 病毒在 0.1%SDS、

0.2 毫克/毫升蛋白酶 k, 37℃作用 3 小时, 再用酚/氯仿抽提 2 次, 氯仿抽 提1次,加醋酸钠和酒精沉淀 DNA, DNA 沉淀后用 TE (PH8.0) 重悬, 95℃、5分钟,在 0.3-1.0M NaCl 中 50-60℃处理 2 小时,使双链退火。用 Qiaex IIgel extraction kit (Qiagen) 纯化琼脂糖凝胶上跑出的约 5Kb 的 AAV1 DNA 带,再用 Klenow 大片段补平末端,加上 XbaILinker (dCTCTAGAG) 连接纯化后 XbaI 切开,装入 pGEM-3zf (Promega 公 司产品)的 XbaI 位点中,在 E.Coli DH5α Max Efficiency 中扩增。挑出单 克隆, 提取质粒, 用内切酶酶切以及 rep2 探针方法筛出含完整 AAV1 基因 组的克隆,再将该质粒转染 BHK 细胞,24 小时后再感染 HSV-1,2 天后 用 Hirt 法提取细胞染色体外小分子 DNA, DpnI 酶切 、Southern 转印, 用 rep 探针杂交,用 monomer 以 Dimer 带证明基因组完整性,得到 pAAV1。 pAAV1 用 Eco47-3 和 NcoI 双切,回收含 AAV1 ITRs 的载体质粒片段用 T4 DNA 聚合酶补平,将 Promega 公司的 pSV2neo 的抗性基因 neor 用 Bgl II和 SmaI 酶切回收抗性基因 neor、用 T4 DNA 聚合酶补平,装入含 AAV1 ITRs 的载体质粒片段中,再将 pSNAV-1 用 XhoI 和 BamHI 酶切回收 CMV-PolyA 片段,用 T4 DNA 聚合酶补平,装入含 AAV1 ITRs 的载体质 粒片段中,得到含有 AAV1的 ITR 元件的重组质粒 pSNAV-N1。

在 pSNAV-N1 的基础上构建成含有 GFP 基因的重组质粒 pSNAV-N1-GFP, 其结构为带有 "ITR (AAV1)-外源基因-ITR (AAV1)" 和抗性基因 neo^r的质粒 (见图 10)。将该质粒用脂质体方法导入 BHK-21细胞 (ATCC CCL-10), 用 G418 200ug/ml 选择培养 10-15d, 获得的抗性细胞株命名为 BHK/pSNAV-N1-GFP。

实施例 1-4 具有 AAV1 血清型的 rAAV/r2c1-GFP 的制备

用 HSV1-r2c1 感染 BHK/pSNAV-GFP 细胞,细胞病变(36-72h)后反复 冻融 4 次裂解细胞。细胞裂解液中含有 rAAV/r2c1-GFP 和辅助病毒 HSV1-r2c1。低速离心去除细胞碎片,取裂解液 56℃处理 30min 以灭活辅助病毒 HSV1-r2c1,得到细胞裂解液上清中含有的 AAV1 血清型的rAAV/r2c1-GFP,它可用于体外、体内感染培养的哺乳动物细胞。

实施例 1-5 用 rAAV/r2c1-GFP 转导体外培养细胞

取 rAAV/r2c1-GFP 病毒 (MOI=1) 加入培养的 BHK-21 细胞 (80% 铺满)中,24-48 h 后在荧光显微镜下 (激发光波长 490 nm) 观察,均可见到大量的绿色细胞。表明产生的 rAAV/r2c1-GFP 病毒具有感染性,并能将外源基因导入细胞中表达。

实施例 1-6 用转瓶生产具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒将 pSNAV -GFP 用 Lipofectamine (GIBCO BRL公司生产)转染试剂导入 BHK-21 细胞 (购自 ATCC,用含 10% FBS 的 RPMI1640 培养液 37%培养)中,加 G418 800μg/ml 选择培养 10~15d。获得混合细胞克隆的载体细胞 BHK/pSNAV-GFP。将该载体细胞扩大培养至 4只 35cm²的方形玻璃培养瓶中,长满(约有 8×10⁷ 个细胞)后用胰酶消化,接种到 1 只转瓶(110×288mm)中,37℃低速转动(1转/分钟)培养。培养液体积为 200ml/转瓶。3d 后将该转瓶中的细胞用胰酶消化传入 5 只转瓶中扩大培养。待细胞长满后(约有 2×10⁹ 个细胞),将培养液倾出,加辅助病毒 HSV1-r2c1 5~10ml(MOI = 0.5~2),低速转动(1转/分钟)吸附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动(1转/分钟)以附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动(1转/分钟)培养。待细胞完全病变、容易脱落时,盖紧瓶盖剧烈振摇,将瓶壁上的细胞全部洗脱至培养液中。收集合并 5 转瓶的培养物,估算其体积,分装至 500-ml 三角烧瓶中,250ml/瓶。用于下一步纯化。

实施例 1-7 具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒的纯化

接上实施例。在每一只三角瓶中加入氯仿 25ml (10:1 v/v),置于 37℃ 摇床中剧烈振摇 1~1.5hr。取出在室温下静置 10min。加 DNase 和 RNase 至终浓度 1µg/ml。轻轻混匀,室温下消化 30~60min。加入固体氯化钠至终浓度 1mol/L,振摇溶解。4℃ 12000rpm 离心 15min。取出上层水相,弃去氯仿和沉淀。加 PEG8000 至终浓度 10% (w/v)。振摇溶解。4℃放置过夜。4℃ 11000rpm/min 离心 15min。将上清倒入干净容器中。将离心管倒扣在吸水纸上,让上清尽量流尽。用 5mlPBS*缓冲液将各离心管管底和管壁上的沉

淀吹打洗脱下来合并,将其分装至 1.5-ml 塑料离心管中 (0.6ml/管),加等体积的氯仿抽提。4℃12000g 离心 5min,在无菌操作下小心吸出上层水相,移入无菌管中。该液体即为浓缩和纯化的 rAAV/r2c1-GFP 病毒液。该病毒液体积比初始体积浓缩了 200 倍。

实施例 1-8 具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒的电镜分析 将上实施例中纯化的 rAAV/r2c1-GFP 病毒液经负染后在电镜下观察, 可见大小均匀一致、清晰可辨的实心病毒颗粒。粒径约为 20~24nm。电镜 结果参见说明书附图之图 15。

实施例 1-9 具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒滴度检测接实施例 1-7。用地高辛标记(Boehringer Mannhein 试剂盒)的 GFP 探针点杂交方法检测纯化的病毒液中的 rAAV/r2c1-GFP 病毒的滴度 (particles/ml)。取 10ul 纯化的病毒液用 PBS $^{2+}$ 缓冲液稀释 10 倍。加 DNase 和 RNase 至终浓度 1ug/ml37℃消化 1hr。沸水浴 5min 之后置于冰浴中。用 dilution buffer 10 倍比系列稀释后点膜,1ul/点。120℃烤膜 30min。68℃预杂交 1hr。加探针 68℃杂交过夜。洗膜,显色。结果第 1~4 点明确阳性,第 5 点弱阳性。假设点杂交方法检测 DNA 的灵敏度为 10^6 分子,计算病毒滴度 = $10^{4-5} \times 10^6 \times 10 \times 1000 = 10^{14-15}$ particles/ml。

实施例 1-10 具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒感染性滴度的测定

用含 10% FBS 的 RPMI1640 培养液 37%, 5% CO2 培养 HeLa 细胞。在 24 孔板上接种 HeLa 细胞, 5×10^5 细胞/孔。培养过夜后,吸出培养液;取 10 ul 纯化的 rAAV/r2c1-GFP 病毒液稀释至 1 ml,以 10 倍比系列稀释,每孔加不同稀释度的病毒液 0.5 ml,37% 培养 1 hr。每孔加 5 型腺病毒(Ad5)50 ul(MOI=5),及培养液 0.5 ml。37% 培养 36 hr 后在倒置荧光显微镜下观察绿色荧光细胞,计数其中某孔的绿色细胞数 n(10<n<100)。计算rAAV/r2c1-GFP 病毒滴度: $n\times$ 稀释倍数 \times $1000/5=n\times10^9\times200=2n\times10^{11}$

TU/ml。估算 rAAV/r2c1-GFP 病毒的感染滴度为 2×10¹²⁻¹³ TU/ml 之间。

实施例 1-11 AAV 空壳病毒颗粒的生产和纯化

用转瓶培养 BHK-21 细胞。细胞长满后加辅助病毒 HSV1-r2c1 用与实施例 1-6 相同的方法获得病变细胞培养物。用本发明提出的 rAAV 纯化方法提取该培养物的 AAV 病毒。获得的病毒液进行电镜观察(参见说明书附图之图 20),可见大量病毒颗粒,颗粒中心密度较高,表明为病毒空壳。该结果说明用辅助病毒 HSV1-r2c1 感染没有转染 AAV 载体 DNA(不含 ITR 序列)的 BHK 细胞可有效地产生 AAV 病毒空壳颗粒。

实施例 1-12 具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒的进一步纯化接实施例 1-7,经过粗纯化的 AAV1 血清型的 rAAV/r2c1-GFP 病毒样品,可以通过柱纯化得到纯度为 95%(SDS-PAGE)以上的产品,滴度为 7× 10^{11} vg/ml,体外表达 MOI 值为 1×10^5 时有多于 20%的表达,残余核酸量也合乎要求,将获得的 rAAV/r2c1-GFP 病毒液上样到用 $0.1\times PBS$ 、PH=8.0 缓冲液平衡好的 QFF 柱子,上样流速 5-10 毫升/分钟;接着再用 $0.1\times PBS$ 、PBS、PH=8.0 缓冲液平衡好 QFF 柱子,然后用缓冲夜 $0.1\times PBS$ 、1MNacl、PH=8.0 洗脱,收集电导在 $9.0\sim21.0$ ms/cm 之间的洗脱峰;

将收集的洗脱峰上样到用 1×PBS、PH=7.4 缓冲液平衡好的 S200 柱子, 上样流速为 1.5-5 毫升/分钟,继续用 1×PBS、PH=7.4 缓冲液洗脱,收集洗 脱峰得到进一步纯化的临床级的 rAAV。

实施例2 3型血清型重组腺病毒伴随病毒载体的大规模生产、分离、 纯化及其用途

实施例 2-1 cos6-r2c3ΔUL2 的构建

以 AAV3 为模板, PCR 方法扩增出相应的 cap3 (AAV3)(引物见引物序列 3、4)。反应条件: 94℃30sec, 55℃30sec, 72℃3min, 30个循环,得到 2040bp 的 PCR 片段 cap3,用限制性内切酶 XhoI+XbaI 双酶切后,与从 pSSV9用 XhoI+XbaI 切出的 AAV2 的 rep2 (2040bp) 相连接,将连接产物装入 pGEM-p3zf (+) 质粒 (Promega 公司)的 XbaI 位点中,得

到 p3zf- r2c3 质粒。再用 XbaI 从 p3zf- r2c3 质粒中切下 r2c3(约 4287bp), 装入 cos6 的 XbaI 位点中,得到 cos6-r2c3ΔUL2。

引 物 序 列 3 : AAV3 cap 上 游 引 物 : 5'-TCTAGAGGTCAAAGAGACTGTGGGGA-3' (SEQ ID NO.8)

引 物 序 列 4: AAV3 cap 下 游 引 物: 5'-TCTAGATGCACAAGAGCCAAAGTTCA-3' (SEQ ID NO. 9)

实施例 2-2 重组 HSV1-r2c3 的制备

将 cos6-r2c3ΔUL2与 cos14, cos28, cos48, cos56等 5个粘粒等摩尔混合,用 PacI 酶切去 cos 骨架 (不必分离去除),用酚、酚/氯仿 (1:1)和氯仿各抽提一次,吸取上清,用 2.5 倍无水乙醇沉淀 DNA。用 lipofactamine (GIBCO BRL)20ul 与 10 ug DNA 按产品说明书共转染 80%铺满的BHK-21细胞 (约 2×106)细胞,5个 HSV1 片段将在细胞内发生同源重组而分别产生 HSV1-r2c3 重组病毒。转染 24h 后换用含 2%FBS 的 1640 培养液 37℃培养,每天换液一次。5 天后细胞开始出现病变,待细胞完全病变后收培养液上清,2000 r/min 离心 5min,上清分装保存于-20℃。对获得的重组病毒进行两次空斑纯化,可得到纯一的 HSV1-r2c3 重组病毒。

实施例 2-3 AAV 包装细胞株 BHK/pSNAV-N3-GFP 的建立

AAV3 和腺病毒 5 感染 293 细胞, 3 天后冻融细胞, 5800g 离心 30 分钟, CsCl 纯化方法见 (J.V.1997,71:8429-8436)。上述 AAV3 病毒在 0.1%SDS、0.2 毫克/毫升蛋白酶 k 中 37℃作用 3 小时,再用酚/氯仿抽提 2 次,氯仿抽提 1 次,加醋酸钠和酒精沉淀 DNA,DNA 沉淀后用 TE (PH8.0) 重悬, 95℃、5 分钟,在 0.3-1.0M NaCl 中 50-60℃处理 2 小时,使双链退火。用Qiaex IIgel extraction kit (Qiagen) 纯化琼脂糖凝胶上跑出的约 5Kb 的AAV3 DNA 带,再用 Klenow 大片段补平末端,加上 XbaILinker (dCTCTAGAG) 连接纯化后 XbaI 切开,装入 pGEM-3zf (Promega 公司) XbaI 位点中,在 E.Coli DH5α Max Efficiency 中扩增。挑出单克隆,提取质粒,用内切酶酶切以及 rep2 探针方法筛出含完整 AAV3 基因组的克

隆,再将该质粒转染 BHK 细胞,24小时后再感染 HSV-1,2 天后用 Hirt 法提取细胞染色体外小分子 DNA, DpnI 酶切、Southern 转印,用 rep 探针杂交,用 monomer 以 Dimer 带证明基因组完整性,得到 pAAV3。pAAV3用 BssHI 和 Apall 双切,回收含 AAV3 ITRs 的载体质粒片段用 T4 DNA聚合酶补平,将 pSNAV-1用 XhoI 和 BamHI 酶切回收 CMV -PolyA 片段,用 T4 DNA 聚合酶补平,装入含 AAV3 ITRs 的载体质粒片段中,再将Promega 公司的 pSV2neo 的抗性基因 neo^r 用 Bgl II和 SmaI 酶切回收抗性基因 neo^r、用 T4 DNA聚合酶补平,装入含 AAV3 ITRs 的载体质粒片段中,得到含有 AAV3 的 ITR 元件的重组质粒 pSNAV-N3。

在 pSNAV-N3 的基础上构建成含有 GFP 基因的重组质粒 pSNAV-N3-GFP, 其结构为带有 "ITR (AAV3)-外源基因-ITR (AAV3)" 和抗性基因 neo^r的质粒 (见图 11)。将该质粒用脂质体方法导入 BHK-21 细胞 (ATCC CCL-10), 用 G418 200 ug/ml 选择培养 10-15d, 获得的抗性 细胞株命名为 BHK/pSNAV-N3-GFP。

实施例 2-4 具有 AAV3 血清型的 rAAV/r2c3-GFP 的制备

用 HSV1-r2c3 感染 BHK/pSNAV-GFP 细胞,细胞病变(36-72h)后反复冻融 4 次裂解细胞。细胞裂解液中含有 rAAV/r2c3-GFP 和辅助病毒 HSV1-r2c3。低速离心去除细胞碎片,取裂解液 56℃处理 30min 以灭活辅助病毒 HSV1-r2c3,得到细胞裂解液上清中含有的 AAV3 血清型的rAAV/r2c3-GFP,它可用于体外、体内感染培养的哺乳动物细胞。

实施例 2-5 用 rAAV/r2c3-GFP 转导体外培养细胞

取 rAAV/r2c3-GFP 病毒 (MOI=1) 加入培养的 BHK-21 细胞 (80% 铺满)中,24-48 h 后在荧光显微镜下 (激发光波长 490 nm) 观察,均可见到大量的绿色细胞。表明产生的 rAAV/r2c3-GFP 病毒具有感染性,并能将外源基因导入细胞中表达。

实施例 2-6 用转瓶生产具有 AAV1 血清型的 rAAV/r2c1-GFP 病毒

将 pSNAV -GFP 用 Lipofectamine (GIBCO BRL公司生产)转染试剂导入 BHK-21 细胞 (购自 ATCC,用含 10% FBS 的 RPMI1640 培养液 37%培养)中,加 G418 800µg/ml 选择培养 10~15d。获得混合细胞克隆的载体细胞 BHK/pSNAV-GFP。将该载体细胞扩大培养至 4只 35cm²的方形玻璃培养瓶中,长满(约有 8×10⁷ 个细胞)后用胰酶消化,接种到 1 只转瓶(110×288mm)中,37℃低速转动(1转/分钟)培养。培养液体积为 200ml/转瓶。3d 后将该转瓶中的细胞用胰酶消化传入 5 只转瓶中扩大培养。待细胞长满后(约有 2×10⁹ 个细胞),将培养液倾出,加辅助病毒 HSV1-r2c3 5~10ml(MOI = 0.5~2),低速转动(1转/分钟)吸附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动(1转/分钟)培养。待细胞完全病变、容易脱落时,盖紧瓶盖剧烈振摇,将瓶壁上的细胞全部洗脱至培养液中。收集合并 5 转瓶的培养物,估算其体积,分装至 500-ml 三角烧瓶中,250ml/瓶。用于下一步纯化。

实施例 2-7 具有 AAV3 血清型的 rAAV/r2c3-GFP 病毒的纯化

接上实施例。在每一只三角瓶中加入氯仿 25ml (10:1 v/v),置于 37℃ 摇床中剧烈振摇 1~1.5hr。取出在室温下静置 10min。加 DNase 和 RNase 至终浓度 1µg/ml。轻轻混匀,室温下消化 30~60min。加入固体氯化钠至终浓度 1mol/L,振摇溶解。4℃ 12000rpm 离心 15min。取出上层水相,弃去氯仿和沉淀。加 PEG8000 至终浓度 10% (w/v)。振摇溶解。4℃放置过夜。4℃ 11000rpm/min 离心 15min。将上清倒入干净容器中。将离心管倒扣在吸水纸上,让上清尽量流尽。用 5mlPBS⁺缓冲液将各离心管管底和管壁上的沉淀吹打洗脱下来合并,将其分装至 1.5-ml 塑料离心管中 (0.6ml/管),加等体积的氯仿抽提。4℃12000g 离心 5min,在无菌操作下小心吸出上层水相,移入无菌管中。该液体即为浓缩和纯化的 rAAV/r2c3-GFP 病毒液。该病毒液体积比初始体积浓缩了 200 倍。

实施例 2-8 具有 AAV3 血清型的 rAAV/r2c3-GFP 病毒的电镜分析 将上实施例中纯化的 rAAV/r2c3-GFP 病毒液经负染后在电镜下观察,

可见大小均匀一致、清晰可辨的实心病毒颗粒。粒径约为 20~24nm。电镜 结果参见说明书附图之图 16。

实施例 2-9 具有 AAV3 血清型的 rAAV/r2c3-GFP 病毒滴度检测

接实施例 2-7。用地高辛标记(Boehringer Mannhein 试剂盒)的 GFP 探针点杂交方法检测纯化的病毒液中的 rAAV/r2c3-GFP 病毒的滴度 (particles/ml)。取 10ul 纯化的病毒液用 PBS^{2+} 缓冲液稀释 10 倍。加 DNase 和 RNase 至终浓度 1ug/ml37℃消化 1hr。沸水浴 5min 之后置于冰浴中。用 dilution buffer 10 倍比系列稀释后点膜,1ul/点。120℃烤膜 30min。68℃预杂交 1hr。加探针 68℃杂交过夜。洗膜,显色。结果第 1~4点明确阳性,第 5点弱阳性。假设点杂交方法检测 DNA 的灵敏度为 10^6 分子,计算病毒滴度 $=10^{4-5}\times10^6\times10\times1000=10^{14-15}$ particles/ml。

实施例 2-10 具有 AAV3 血清型的 rAAV/r2c3-GFP 病毒感染性滴度的测定

用含 10% FBS 的 RPMI1640 培养液 37%, 5% CO2 培养 HeLa 细胞。在 24 孔板上接种 HeLa 细胞, 5×10^5 细胞/孔。培养过夜后,吸出培养液;取 10 ul 纯化的 rAAV/r2c3-GFP 病毒液稀释至 1 ml,以 10 倍比系列稀释,每孔加不同稀释度的病毒液 0.5 ml,37% 培养 1 hr。每孔加 5 型腺病毒(Ad5)50 ul(MOI=5),及培养液 0.5 ml。37% 培养 36 hr 后在倒置荧光显微镜下观察绿色荧光细胞,计数其中某孔的绿色细胞数 n(10<n<100)。计算rAAV/r2c3-GFP 病毒滴度: $n\times$ 稀释倍数 \times 1000/5 = $n\times10^9\times200$ = $2n\times10^{11}$ TU/ml。估算 rAAV/r2c3-GFP 病毒的感染滴度为 $2\times10^{12-13}$ TU/ml 之间。

实施例 2-11 AAV 空壳病毒颗粒的生产和纯化

用转瓶培养 BHK-21 细胞。细胞长满后加辅助病毒 HSV1-r2c3 用与实施例 2-6 相同的方法获得病变细胞培养物。用本发明提出的 rAAV 纯化方法提取该培养物的 AAV 病毒。获得的病毒液进行电镜观察(参见说明书附图之图 21),可见大量病毒颗粒,颗粒中心密度较高,表明为病毒空壳。该

结果说明用辅助病毒 HSV1-r2c3 感染没有转染 AAV 载体 DNA(不含 ITR 序列)的 BHK 细胞可有效地产生 AAV 病毒空壳颗粒。

实施例3 4型血清型重组腺病毒伴随病毒载体的大规模生产、分离、 纯化及其用途

实施例 3-1 cos6-r2c4∆UL2 的构建

以 AAV1 为模板, PCR 方法扩增出相应的 cap4 (AAV4)(引物见引物序列 5、6)。反应条件: 94℃30sec, 55℃30sec, 72℃3min, 30个循环,得到 2255bp 的 PCR 片段 cap4, 用限制性内切酶 KpnI 酶切后,与从 pSSV9用 KpnI 切出的、去除含 cap2 DNA 片段的大片段相连,得到 SSV9-cap4质粒。再用 XbaI 从 SSV9-cap4 质粒中切下 r2c4 (约 4536bp),装入 cos6的 XbaI 位点中,得到 cos6-r2c4∆UL2。

引物序列 5: AAV4 cap 上游引物: 5'-GCGGACAGGTACCAAAACAA-3' (SEQ ID NO. 10)

引物序列 6: AAV4 cap 下游引物: 5'-GAAGGATTCGCAGGTACCGG-3' (SEQ ID NO. 11)

实施例 3-2 重组 HSV1-r2c4 的制备

将 cos6-r2c4∆UL2与 cos14, cos28, cos48, cos56等 5个粘粒等摩尔混合,用 PacI 酶切去 cos 骨架 (不必分离去除),用酚、酚/氯仿 (1:1)和氯仿各抽提一次,吸取上清,用 2.5 倍无水乙醇沉淀 DNA。用 lipofactamine (GIBCO BRL)20ul 与 10 ug DNA 按产品说明书共转染 80%铺满的BHK-21细胞 (约 2×106)细胞,5个 HSV1 片段将在细胞内发生同源重组而分别产生 HSV1-r2c4 重组病毒。转染 24h 后换用含 2% FBS 的 1640 培养液 37℃培养,每天换液一次。5 天后细胞开始出现病变,待细胞完全病变后收培养液上清,2000 r/min 离心 5min,上清分装保存于-20℃。对获得的重组病毒进行两次空斑纯化,可得到纯一的 HSV1-r2c4 重组病毒。

实施例 3-3 AAV 包装细胞株 BHK/pSNAV-N4-GFP 的建立

AAV4和腺病毒 5感染 293 细胞, 3天后冻融细胞, 5800g 离心 30 分钟, CsCl 纯化方法见 (J.V.1997,71:8429-8436)。上述 AAV3 病毒在 0.1%SDS、 0.2 毫克/毫升蛋白酶 k中 37℃作用 3 小时,再用酚/氯仿抽提 2 次,氯仿抽 提1次,加醋酸钠和酒精沉淀 DNA, DNA 沉淀后用 TE (PH8.0) 重悬, 95℃、5分钟,在 0.3-1.0M NaCl 中 50-60℃处理 2 小时,使双链退火。用 Qiaex IIgel extraction kit (Qiagen) 纯化琼脂糖凝胶上跑出的约 5Kb 的 AAV3 DNA 带,再用 Klenow 大片段补平末端,加上 XbalLinker (dCTCTAGAG) 连接纯化后 XbaI 切开,装入 pGEM-3zf (Promega 公 司) XbaI 位点中,在 E.Coli DH5α Max Efficiency 中扩增。挑出单克隆, 提取质粒,用内切酶酶切以及 rep2 探针方法筛出含完整 AAV4 基因组的克 隆,再将该质粒转染 BHK 细胞,24 小时后再感染 HSV-1,2 天后用 Hirt 法提取细胞染色体外小分子 DNA,DpnI 酶切、Southern 转印,用 rep 探 针杂交,用 monomer 以 Dimer 带证明基因组完整性,得到 pAAV4。pAAV4 用 Ava II 和 NcoI 双切, 回收含 AAV4 ITRs 的载体质粒片段用 T4 DNA 聚 合酶补平,将 pSNAV-GFP 用 XhoI 和 BamHI 酶切回收 CMV-PolyA 片段, 用 T4 DNA 聚合酶补平,装入含 AAV4 ITRs 的载体质粒片段中,再将 Promega 公司的 pSV2neo 的抗性基因 neor 用 Bgl II 和 SmaI 酶切回收抗 性基因 neo^r、用 T4 DNA 聚合酶补平,装入含 AAV4 ITRs 的载体质粒片 段中,得到含有 AAV4的 ITR 元件的重组质粒 pSNAV-N4

在 pSNAV-N4 的基础上构建成含有 GFP 基因的重组质粒 pSNAV-N4-GFP, 其结构为带有 "ITR (AAV4)-外源基因-ITR (AAV4)" 和抗性基因 neo^r的质粒 (见图 12)。将该质粒用脂质体方法导入 BHK-21 细胞 (ATCC CCL-10), 用 G418 200ug/ml 选择培养 10-15d, 获得的抗性 细胞株命名为 BHK/pSNAV-N4-GFP。

实施例 3-4 具有 AAV4 血清型的 rAAV/r2c4-GFP 的制备

用 HSV1-r2c4 感染 BHK/pSNAV-GFP 细胞,细胞病变(36-72h)后反复 冻融 4 次裂解细胞。细胞裂解液中含有 rAAV/r2c4-GFP 和辅助病毒 HSV1-r2c4。低速离心去除细胞碎片,取裂解液 56℃处理 30min 以灭活辅

助病毒 HSV1-r2c4,得到细胞裂解液上清中含有的 AAV4 血清型的rAAV/r2c4-GFP,它可用于体外、体内感染培养的哺乳动物细胞。

实施例 3-5 用 rAAV/r2c4-GFP 转导体外培养细胞

取 rAAV/r2c4-GFP 病毒 (MOI=1) 加入培养的 BHK-21 细胞 (80% 铺满)中,24-48 h 后在荧光显微镜下 (激发光波长 490 nm) 观察,均可见到大量的绿色细胞。表明产生的 rAAV/r2c4-GFP 病毒具有感染性,并能将外源基因导入细胞中表达。

实施例 3-6 用转瓶生产具有 AAV4 血清型的 rAAV/r2c4-GFP 病毒将 pSNAV -GFP 用 Lipofectamine (GIBCO BRL 公司生产)转染试剂导入 BHK-21 细胞 (购自 ATCC,用含 10% FBS 的 RPMI1640 培养液 37%培养)中,加 G418 800μg/ml 选择培养 10~15d。获得混合细胞充隆的载体细胞 BHK/pSNAV-GFP。将该载体细胞扩大培养至 4只 35cm²的方形玻璃培养瓶中,长满(约有 8×10⁷ 个细胞)后用胰酶消化,接种到 1 只转瓶(110×288mm)中,37℃低速转动(1转/分钟)培养。培养液体积为 200ml/转瓶。3d 后将该转瓶中的细胞用胰酶消化传入 5 只转瓶中扩大培养。待细胞长满后(约有 2×10⁹ 个细胞),将培养液倾出,加辅助病毒 HSV1-r2c4 5~10ml(MOI = 0.5~2),低速转动(1转/分钟)吸附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动(1转/分钟)吸附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动(1转/分钟)培养。待细胞完全病变、容易脱落时,盖紧瓶盖剧烈振摇,将瓶壁上的细胞全部洗脱至培养液中。收集合并 5 转瓶的培养物,估算其体积,分装至 500-ml 三角烧瓶中,250ml/瓶。用于下一步纯化。

实施例 3-7 具有 AAV4 血清型的 rAAV/r2c4-GFP 病毒的纯化

接上实施例。在每一只三角瓶中加入氯仿 25ml (10:1 v/v),置于 $37\mathbb{C}$ 摇床中剧烈振摇 $1\sim1.5\text{hr}$ 。取出在室温下静置 10min。加 DNase 和 RNase 至终浓度 $1\mu\text{g/ml}$ 。轻轻混匀,室温下消化 $30\sim60\text{min}$ 。加入固体氯化钠至终浓度 1mol/L,振摇溶解。 $4\mathbb{C}$ 12000rpm 离心 15min。取出上层水相,弃去

氯仿和沉淀。加 PEG8000 至终浓度 10% (w/v)。振摇溶解。4℃放置过夜。4℃ 11000rpm/min 离心 15min。将上清倒入干净容器中。将离心管倒扣在吸水纸上,让上清尽量流尽。用 5mlPBS*缓冲液将各离心管管底和管壁上的沉淀吹打洗脱下来合并,将其分装至 1.5-ml 塑料离心管中 (0.6ml/管),加等体积的氯仿抽提。4℃12000g 离心 5min,在无菌操作下小心吸出上层水相,移入无菌管中。该液体即为浓缩和纯化的 rAAV/r2c4-GFP 病毒液。该病毒液体积比初始体积浓缩了 200 倍。

实施例 3-8 具有 AAV4 血清型的 rAAV/r2c4-GFP 病毒的电镜分析 将上实施例中纯化的 rAAV/r2c4-GFP 病毒液经负染后在电镜下观察, 可见大小均匀一致、清晰可辨的实心病毒颗粒。粒径约为 20~24nm。电镜 结果参见说明书附图之图 17。

实施例 3-9 具有 AAV4 血清型的 rAAV/r2c4-GFP 病毒滴度检测接实施例 3-7。用地高辛标记(Boehringer Mannhein 试剂盒)的 GFP 探针点杂交方法检测纯化的病毒液中的 rAAV/r2c4-GFP 病毒的滴度(particles/ml)。取 10ul 纯化的病毒液用 PBS²+缓冲液稀释 10 倍。加 DNase 和 RNase 至终浓度 1ug/ml37℃消化 1hr。沸水浴 5min 之后置于冰浴中。用 dilution buffer 10 倍比系列稀释后点膜,1ul/点。 120℃烤膜 30min。 68℃ 预杂交 1hr。加探针 68℃杂交过夜。洗膜,显色。结果第 1~4点明确阳性,第 5点弱阳性。假设点杂交方法检测 DNA 的灵敏度为 10^6 分子,计算病毒滴度 = $10^{4-5} \times 10^6 \times 10 \times 1000 = 10^{14-15}$ particles/ml。

实施例 3-10 具有 AAV4 血清型的 rAAV/r2c4-GFP 病毒感染性滴度的测定

用含 10% FBS 的 RPMI1640 培养液 37%, 5% CO2 培养 HeLa 细胞。在 24 孔板上接种 HeLa 细胞, 5×10^5 细胞/孔。培养过夜后,吸出培养液;取 10ul 纯化的 rAAV/r2c4-GFP 病毒液稀释至 1ml,以 10 倍比系列稀释,每孔加不同稀释度的病毒液 0.5ml,37% 培养 1hr。每孔加 5 型腺病毒(Ad5)

50ul (MOI=5),及培养液 0.5ml。37℃培养 36hr 后在倒置荧光显微镜下观察绿色荧光细胞,计数其中某孔的绿色细胞数 n(10<n<100)。计算 rAAV/r2c4-GFP 病毒滴度: $n \times$ 稀释倍数 \times 1000/5 = $n \times$ $10^9 \times 200$ = $2n \times 10^{11}$ TU/ml。估算 rAAV/r2c4-GFP 病毒的感染滴度为 $2 \times 10^{12-13}$ TU/ml 之间。

实施例 3-11 AAV 空壳病毒颗粒的生产和纯化

用转瓶培养 BHK-21 细胞。细胞长满后加辅助病毒 HSV1-r2c4 用与实施例 3-6 相同的方法获得病变细胞培养物。用本发明提出的 rAAV 纯化方法提取该培养物的 AAV 病毒。获得的病毒液进行电镜观察(参见说明书附图之图 22),可见大量病毒颗粒,颗粒中心密度较高,表明为病毒空壳。该结果说明用辅助病毒 HSV1-r2c4 感染没有转染 AAV 载体 DNA(不含 ITR 序列)的 BHK 细胞可有效地产生 AAV 病毒空壳颗粒。

实施例 4 5型血清型重组腺病毒伴随病毒载体的大规模生产、分离、 纯化及其用途

实施例 4-1 cos6-r2c5ΔUL2 的构建

以 AAV5 为模板,PCR 方法扩增出相应的 cap5 (AAV5)(引物见引物序列 7、8)。反应条件: 94℃30sec,55℃30sec,72℃3min,30个循环,得到 2170bp 的 PCR 片段 cap5,用限制性内切酶 BamHI+XbaI 双酶切后,与从 pSSV9 用 BamHI+XbaI 切出的 AAV2 的 rep2(860bp)相连接,将连接产物装入 pGEM-p3zf (+) 质粒 (Promega 公司)的 XbaI 位点中,得到 p3zf- r2c5质粒。再用 XbaI从 p3zf- r2c5质粒中切下 r2c5(约 4314bp),装入 cos6 的 XbaI 位点中,得到 cos6-r2c5 Δ UL2。

引物序列 7: AAV5 cap 上游引物: 5'-GGATCCAGGAAAATCAGGAG-3' (SEQ ID NO. 12)

引物序列 8: AAV5 cap 下游引物: 5'-TCTAGACATGAATGGGTTAAAGGG-3' (SEQ ID NO. 13)

实施例 4-2 重组 HSV1-r2c5 的制备

将 cos6-r2c5∆UL2与 cos14, cos28, cos48, cos56等 5个粘粒等摩尔混合,用 PacI 酶切去 cos 骨架 (不必分离去除),用酚、酚/氯仿 (1:1)和氯仿各抽提一次,吸取上清,用 2.5 倍无水乙醇沉淀 DNA。用 lipofactamine (GIBCO BRL)20ul 与 10 ug DNA 按产品说明书共转染 80%铺满的BHK-21细胞 (约 2×106)细胞,5个 HSV1 片段将在细胞内发生同源重组而分别产生 HSV1-r2c5 重组病毒。转染 24h 后换用含 2% FBS 的 1640 培养液 37℃培养,每天换液一次。5 天后细胞开始出现病变,待细胞完全病变后收培养液上清,2000 r/min 离心 5min,上清分装保存于-20℃。对获得的重组病毒进行两次空斑纯化,可得到纯一的 HSV1-r2c5 重组病毒。

实施例 4-3 AAV 包装细胞株 BHK/pSNAV-N5-GFP 的建立

AAV5 和腺病毒 5 感染 293 细胞, 3 天后冻融细胞, 5800g 离心 30 分 钟, CsCl 纯化方法见 (J.V.1997,71:8429-8436)。上述 AAV4 病毒在 0.1%SDS、0.2 毫克/毫升蛋白酶 k 中 37℃作用 3 小时, 再酚/氯仿抽提 2 次, 氯仿抽提 1次, 加醋酸钠和酒精沉淀 DNA, DNA 沉淀后用 TE(PH8.0) 重悬,95℃、5分钟,在0.3-1.0M NaCl 中50-60℃处理2小时,使双链退 火。用 Qiaex IIgel extraction kit(Qiagen)纯化琼脂糖凝胶上跑出的约 5Kb 的 AAV4 DNA 带,再用 Klenow 大片段补平末端,加上 XbaILinker (dCTCTAGAG) 连接纯化后 XbaI 切开,装入 pGEM-3zf (Promega 公 司) Xbal 位点中,在 E.Coli DH5α Max Efficiency 中扩增。挑出单克隆, 提取质粒,用内切酶酶切以及 rep2 探针方法筛出含完整 AAV4 基因组的克 隆,再将该质粒转染 BHK 细胞,24 小时后再感染 HSV-1,2 天后用 Hirt 法提取细胞染色体外小分子 DNA, DpnI 酶切、Southern 转印,用 rep 探 针杂交,用 monomer 以 Dimer 带证明基因组完整性,得到 pAAV5。pAAV5 用 BssH II 和 MseI 双切,回收含 AAV5 ITRs 的载体质粒片段用 T4 DNA 聚合酶补平,将 pSNAV-GFP 用 XhoI 和 BamHI 酶切回收 CMV-PolyA 片 段,用 T4 DNA 聚合酶补平,装入含 AAV5 ITRs 的载体质粒片段中,再 将 Promega 公司的 pSV2neo 的抗性基因 neor 用 Bgl II 和 SmaI 酶切回收 抗性基因 neo^r、用 T4 DNA 聚合酶补平,装入含 AAV5 ITRs 的载体质粒

片段中,得到含有 AAV5 的 ITR 元件的重组质粒 pSNAV-N5。

在 pSNAV-N5 的基础上构建成含有 AAV5 的 GFP 基因的重组质粒 pSNAV-N5-GFP, 其结构为带有"ITR (AAV5)-外源基因-ITR (AAV5)" 和抗性基因 neo^r的质粒 (见图 13)。将该质粒用脂质体方法导入 BHK-21 细胞 (ATCC CCL-10), 用 G418 200ug/ml 选择培养 10-15d, 获得的抗性 细胞株命名为 BHK/pSNAV-N5-GFP。

实施例 4-4 具有 AAV5 血清型的 rAAV/r2c5-GFP 的制备

用 HSV1-r2c5 感染 BHK/pSNAV-GFP 细胞,细胞病变(36-72h)后反复冻融 4 次裂解细胞。细胞裂解液中含有 rAAV/r2c5-GFP 和辅助病毒 HSV1-r2c5。低速离心去除细胞碎片,取裂解液 56℃处理 30min 以灭活辅助病毒 HSV1-r2c5,得到细胞裂解液上清中含有的 AAV5 血清型的rAAV/r2c5-GFP,它可用于体外、体内感染培养的哺乳动物细胞。

实施例 4-5 用 rAAV/r2c5-GFP 转导体外培养细胞

取 rAAV/r2c5-GFP 病毒 (MOI=1) 加入培养的 BHK-21 细胞 (80% 铺满)中,24-48 h 后在荧光显微镜下 (激发光波长 490 nm) 观察,均可见到大量的绿色细胞。表明产生的 rAAV/r2c5-GFP 病毒具有感染性,并能将外源基因导入细胞中表达。

实施例 4-6 用转瓶生产具有 AAV5 血清型的 rAAV/r2c5-GFP 病毒将 pSNAV -GFP 用 Lipofectamine (GIBCO BRL 公司生产)转染试剂导入 BHK-21 细胞 (购自 ATCC, 用含 10% FBS 的 RPMI1640 培养液 37%培养)中,加 G418 800μg/ml 选择培养 10~15d。获得混合细胞克隆的载体细胞 BHK/pSNAV-GFP。将该载体细胞扩大培养至 4只 35cm²的方形玻璃培养瓶中,长满(约有 8×10⁷ 个细胞)后用胰酶消化,接种到 1 只转瓶(110×288mm)中,37℃低速转动(1转/分钟)培养。培养液体积为 200ml/转瓶。3d 后将该转瓶中的细胞用胰酶消化传入 5 只转瓶中扩大培养。待细胞长满后(约有 2×10⁹ 个细胞),将培养液倾出,加辅助病毒 HSV1-r2c5 5~10ml

(MOI = 0.5~2), 低速转动 (1转/分钟) 吸附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动 (1转/分钟) 培养。待细胞完全病变、容易脱落时,盖紧瓶盖剧烈振摇,将瓶壁上的细胞全部洗脱至培养液中。收集合并 5 转瓶的培养物,估算其体积,分装至 500-ml 三角烧瓶中,250ml/瓶。用于下一步纯化。

实施例 4-7 具有 AAV5 血清型的 rAAV/r2c5-GFP 病毒的纯化

接上实施例。在每一只三角瓶中加入氯仿 25ml (10:1 v/v),置于 37℃ 摇床中剧烈振摇 1~1.5hr。取出在室温下静置 10min。加 DNase 和 RNase 至终浓度 1µg/ml。轻轻混匀,室温下消化 30~60min。加入固体氯化钠至终浓度 1mol/L,振摇溶解。4℃ 12000rpm 离心 15min。取出上层水相,弃去氯仿和沉淀。加 PEG8000 至终浓度 10% (w/v)。振摇溶解。4℃放置过夜。4℃ 11000rpm/min 离心 15min。将上清倒入干净容器中。将离心管倒扣在吸水纸上,让上清尽量流尽。用 5mlPBS⁺缓冲液将各离心管管底和管壁上的沉淀吹打洗脱下来合并,将其分装至 1.5-ml 塑料离心管中 (0.6ml/管),加等体积的氯仿抽提。4℃12000g 离心 5min,在无菌操作下小心吸出上层水相,移入无菌管中。该液体即为浓缩和纯化的 rAAV/r2c5-GFP 病毒液。该病毒液体积比初始体积浓缩了 200 倍。

实施例 4-8 具有 AAV5 血清型的 rAAV/r2c5-GFP 病毒的电镜分析 将上实施例中纯化的 rAAV/r2c5-GFP 病毒液经负染后在电镜下观察, 可见大小均匀一致、清晰可辨的实心病毒颗粒。粒径约为 20~24nm。电镜 结果参见说明书附图之图 18。

实施例 4-9 具有 AAV5 血清型的 rAAV/r2c5-GFP 病毒滴度检测接实施例 4-7。用地高辛标记 (Boehringer Mannhein 试剂盒)的 GFP 探针点杂交方法检测纯化的病毒液中的 rAAV/r2c5-GFP 病毒的滴度 (particles/ml)。取 10ul 纯化的病毒液用 PBS²+缓冲液稀释 10 倍。加 DNase 和 RNase 至终浓度 1ug/ml37℃消化 1hr。沸水浴 5min 之后置于冰浴中。

用 dilution buffer 10 倍比系列稀释后点膜,1ul/点。120℃烤膜 30min。68℃ 预杂交 1hr。加探针 68℃杂交过夜。洗膜,显色。结果第 1~4点明确阳性,第 5点弱阳性。假设点杂交方法检测 DNA 的灵敏度为 10^6 分子,计算病毒滴度 $=10^{4-5}\times10^6\times10\times1000=10^{14-15}$ particles/ml。

实施例 4-10 具有 AAV5血清型的 rAAV/r2c5-GFP 病毒感染性滴度的测定

用含 10% FBS 的 RPMI1640 培养液 37%, 5% CO2 培养 HeLa 细胞。在 24 孔板上接种 HeLa 细胞, 5×10^5 细胞/孔。培养过夜后,吸出培养液;取 10 ul 纯化的 rAAV/r2c5-GFP 病毒液稀释至 1 ml,以 10 倍比系列稀释,每孔加不同稀释度的病毒液 0.5 ml,37% 培养 1 hr。每孔加 5 型腺病毒(Ad5) 50 ul (MOI=5),及培养液 0.5 ml。 37% 培养 36 hr 后在倒置荧光显微镜下观察绿色荧光细胞,计数其中某孔的绿色细胞数 n(10<n<100)。计算rAAV/r2c5-GFP 病毒滴度: $n\times$ 稀释倍数 \times 1000/ $5=n\times10^9\times200=2n\times10^{11}$ TU/ml。估算 rAAV/r2c5-GFP 病毒的感染滴度为 $2\times10^{12-13}$ TU/ml 之间。

实施例 4-11 AAV 空壳病毒颗粒的生产和纯化

用转瓶培养 BHK-21 细胞。细胞长满后加辅助病毒 HSV1-r2c5 用与实施例 4-6 相同的方法获得病变细胞培养物。用本发明提出的 rAAV 纯化方法提取该培养物的 AAV 病毒。获得的病毒液进行电镜观察(参见说明书附图之图 23),可见大量病毒颗粒,颗粒中心密度较高,表明为病毒空壳。该结果说明用辅助病毒 HSV1-r2c5 感染没有转染 AAV 载体 DNA(不含 ITR序列)的 BHK 细胞可有效地产生 AAV 病毒空壳颗粒。

实施例 5 6型血清型重组腺病毒伴随病毒载体的大规模生产、分离、 纯化及其用途

实施例 5-1 cos6-r2c6ΔUL2 的构建

以 AAV1 为模板, PCR 方法扩增出相应的 cap6 (AAV6)(引物见引物序列 9、10)。反应条件: 94℃30sec, 55℃30sec, 72℃3min, 30个循环,

得到 2210bp 的 PCR 片段 cap6, 用限制性内切酶 KpnI+XbaI 双酶切后, 与从 pSSV9 用 KpnI+XbaI 切出的 AAV2 的 rep2 (1721bp) 相连接, 将连接产物装入 pGEM-p3zf (+) (Promega 公司)中,得到 p3zf-r2c6 质粒。 再用 XbaI 从 p3zf-r2c6 质粒中切下 r2c6 (约 4239bp),装入 cos6 的 XbaI 位点中,得到 cos6-r2c6ΔUL2。

引物序列 9: AAV6 cap 上游引物: 5'-TTTGCCGACAGGTACCAAAA-3' (SEQ ID NO. 14)

引物序列 10: AAV6 cap 下游引物: 5'-TCTAGACACACAATTACAGGGGAC-3' (SEQ ID NO. 15)

实施例 5-2 重组 HSV1-r2c6 的制备

将 cos6-r2c6∆UL2 与 cos14, cos28, cos48, cos56 等 5 个粘粒等摩尔混合,用 PacI 酶切去 cos 骨架 (不必分离去除),用酚、酚/氯仿 (1:1) 和氯仿各抽提一次,吸取上清,用 2.5 倍无水乙醇沉淀 DNA。用 lipofactamine (GIBCO BRL)20ul 与 10 ug DNA 按产品说明书共转染 80%铺满的BHK-21 细胞 (约 2×106)细胞,5 个 HSV1 片段将在细胞内发生同源重组而分别产生 HSV1-r2c6 重组病毒。转染 24h 后换用含 2% FBS 的 1640 培养液 37℃培养,每天换液一次。5 天后细胞开始出现病变,待细胞完全病变后收培养液上清,2000 r/min 离心 5min,上清分装保存于-20℃。对获得的重组病毒进行两次空斑纯化,可得到纯一的 HSV1-r2c6 重组病毒。

实施例 5-3 AAV 包装细胞株 BHK/pSNAV-N6-GFP 的建立

AAV6 和腺病毒 5 感染 293 细胞,3 天后冻融细胞,5800g 离心 30 分钟,CsCl 纯化方法见(J.V.1997,71:8429-8436)。上述 AAV6 病毒在 0.1%SDS、0.2 毫克/毫升蛋白酶 k 中 37℃作用 3 小时,再酚/氯仿抽提 2 次,氯仿抽提 1 次,加醋酸钠和酒精沉淀 DNA,DNA 沉淀后用 TE(PH8.0) 重悬,95℃、5 分钟,在 0.3-1.0M NaCl 中 50-60℃处理 2 小时,使双链退火。用 Qiaex IIgel extraction kit(Qiagen)纯化琼脂糖凝胶上跑出的约 5Kb的 AAV6 DNA 带,再用 Klenow 大片段补平末端,加上 XbalLinker (dCTCTAGAG) 连接纯化后 Xbal 切开,装入 pGEM-3zf (Promega 公

司)XbaI 位点中,在 E.Coli DH5α Max Efficiency 中扩增。挑出单克隆,提取质粒,用内切酶酶切以及 rep2 探针方法筛出含完整 AAV6 基因组的克隆,再将该质粒转染 BHK 细胞,24 小时后再感染 HSV-1,2 天后用 Hirt 法提取细胞染色体外小分子 DNA,DpnI 酶切、Southern 转印,用 rep 探针杂交,用 monomer 以 Dimer 带证明基因组完整性,得到 pAAV6。pAAV6用 PMacI 和 BstE II 双切,回收含 AAV6 ITRs 的载体质粒片段用 T4 DNA聚合酶补平,将 pSNAV-GFP 用 XhoI 和 BamHI 酶切回收 CMV -PolyA 片段,用 T4 DNA聚合酶补平,装入含 AAV6 ITRs 的载体质粒片段中,再将 Promega 公司的 pSV2neo 的抗性基因 neo^r 用 Bgl II 和 SmaI 酶切回收 抗性基因 neo^r、用 T4 DNA聚合酶补平,装入含 AAV6 ITRs 的载体质粒片段中,得到含有 AAV6 的 ITR 元件的重组质粒 pSNAV-N6。

在 pSNAV-N6 的基础上构建成含有 GFP 基因的重组质粒 pSNAV-N6-GFP, 其结构为带有"ITR (AAV6)-外源基因-ITR (AAV6)"和抗性基因 neo^r的质粒 (见图 14)。将该质粒用脂质体方法导入 BHK-21细胞 (ATCC CCL-10), 用 G418 200ug/ml 选择培养 10-15d, 获得的抗性细胞株命名为 BHK/pSNAV-N6-GFP。

实施例 5-4 具有 AAV6 血清型的 rAAV/r2c6-GFP 的制备

用 HSV1-r2c6 感染 BHK/pSNAV-GFP 细胞,细胞病变(36-72h)后反复 冻融 4 次裂解细胞。细胞裂解液中含有 rAAV/r2c6-GFP 和辅助病毒 HSV1-r2c6。低速离心去除细胞碎片,取裂解液 56℃处理 30min 以灭活辅助病毒 HSV1-r2c6,得到细胞裂解液上清中含有的 AAV6 血清型的rAAV/r2c6-GFP,它可用于体外、体内感染培养的哺乳动物细胞。

实施例 5-5 用 rAAV/r2c6-GFP 转导体外培养细胞

取 rAAV/r2c6-GFP 病毒 (MOI=1) 加入培养的 BHK-21 细胞 (80% 铺满)中,24-48 h 后在荧光显微镜下 (激发光波长 490 nm) 观察,均可见到大量的绿色细胞。表明产生的 rAAV/r2c6-GFP 病毒具有感染性,并能将外源基因导入细胞中表达。

实施例 5-6 用转瓶生产具有 AAV6 血清型的 rAAV/r2c6-GFP 病毒将 pSNAV -GFP 用 Lipofectamine (GIBCO BRL 公司生产)转染试剂导入 BHK-21 细胞 (购自 ATCC,用含 10% FBS 的 RPMI1640 培养液 37%培养)中,加 G418 800μg/ml 选择培养 10~15d。获得混合细胞克隆的载体细胞 BHK/pSNAV-GFP。将该载体细胞扩大培养至 4 只 35cm²的方形玻璃培养瓶中,长满(约有 8×10⁷ 个细胞)后用胰酶消化,接种到 1 只转瓶(110×288mm)中,37℃低速转动(1转/分钟)培养。培养液体积为 200ml/转瓶。3d 后将该转瓶中的细胞用胰酶消化传入 5 只转瓶中扩大培养。待细胞长满后(约有 2×10⁹ 个细胞),将培养液倾出,加辅助病毒 HSV1-r2c6 5~10ml(MOI = 0.5~2),低速转动(1转/分钟)吸附病毒 1~2hr。加 200ml/转瓶无血清 1640 培养液 37℃低速转动(1转/分钟)培养。待细胞完全病变、容易脱落时,盖紧瓶盖剧烈振摇,将瓶壁上的细胞全部洗脱至培养液中。收集合并 5 转瓶的培养物,估算其体积,分装至 500-ml 三角烧瓶中,250ml/瓶。用于下一步纯化。

实施例 5-7 具有 AAV6 血清型的 rAAV/r2c6-GFP 病毒的纯化

接上实施例。在每一只三角瓶中加入氯仿 25ml (10:1 v/v),置于 37℃ 摇床中剧烈振摇 1~1.5hr。取出在室温下静置 10min。加 DNase 和 RNase 至终浓度 1µg/ml。轻轻混匀,室温下消化 30~60min。加入固体氯化钠至终浓度 1mol/L,振摇溶解。4℃ 12000rpm 离心 15min。取出上层水相,弃去氯仿和沉淀。加 PEG8000 至终浓度 10% (w/v)。振摇溶解。4℃放置过夜。4℃ 11000rpm/min 离心 15min。将上清倒入干净容器中。将离心管倒扣在吸水纸上,让上清尽量流尽。用 5mlPBS⁺缓冲液将各离心管管底和管壁上的沉淀吹打洗脱下来合并,将其分装至 1.5-ml 塑料离心管中 (0.6ml/管),加等体积的氯仿抽提。4℃12000g 离心 5min,在无菌操作下小心吸出上层水相,移入无菌管中。该液体即为浓缩和纯化的 rAAV/r2c6-GFP 病毒液。该病毒液体积比初始体积浓缩了 200 倍。

实施例 5-8 具有 AAV6 血清型的 rAAV/r2c6-GFP 病毒的电镜分析

将上实施例中纯化的 rAAV/r2c6-GFP 病毒液经负染后在电镜下观察,可见大小均匀一致、清晰可辨的实心病毒颗粒。粒径约为 20~24nm。电镜结果参见说明书附图之图 19。

实施例 5-9 具有 AAV6 血清型的 rAAV/r2c5-GFP 病毒滴度检测接实施例 5-7。用地高辛标记(Boehringer Mannhein 试剂盒)的 GFP 探针点杂交方法检测纯化的病毒液中的 rAAV/r2c6-GFP 病毒的滴度 (particles/ml)。取 10ul 纯化的病毒液用 PBS $^{2+}$ 缓冲液稀释 10 倍。加 DNase 和 RNase 至终浓度 1ug/ml37℃消化 1hr。沸水浴 5min 之后置于冰浴中。用 dilution buffer 10 倍比系列稀释后点膜,1ul/点。120℃烤膜 30min。68℃ 预杂交 1hr。加探针 68℃杂交过夜。洗膜,显色。结果第 1~4点明确阳性,第 5点弱阳性。假设点杂交方法检测 DNA 的灵敏度为 10^6 分子,计算病毒滴度 = $10^{4-5} \times 10^6 \times 10 \times 1000 = 10^{14-15}$ particles/ml。

实施例 5-10 具有 AAV6 血清型的 rAAV/r2c6-GFP 病毒感染性滴度的测定

用含 10% FBS 的 RPMI1640 培养液 37% , 5% CO2 培养 HeLa 细胞。在 24 孔板上接种 HeLa 细胞, 5×10^5 细胞/孔。培养过夜后,吸出培养液;取 10 ul 纯化的 rAAV/r2c6-GFP 病毒液稀释至 1 ml,以 10 倍比系列稀释,每孔加不同稀释度的病毒液 0.5 ml,37% 培养 1 hr。每孔加 5 型腺病毒(Ad5)50 ul (MOI=5),及培养液 0.5 ml。37% 培养 36 hr 后在倒置荧光显微镜下观察绿色荧光细胞,计数其中某孔的绿色细胞数 n(10<n<100)。计算rAAV/r2c6-GFP 病毒滴度: $n\times$ 稀释倍数 $\times1000$ / $5=n\times10^9\times200=2n\times10^{11}$ TU/ml。估算 rAAV/r2c6-GFP 病毒的感染滴度为 $2\times10^{12-13}$ TU/ml 之间。

实施例 5-11 AAV 空壳病毒颗粒的生产和纯化用转瓶培养 BHK-21 细胞。细胞长满后加辅助病毒 HSV1-r2c6 用与实施例 5-6 相同的方法获得病变细胞培养物。用本发明提出的 rAAV 纯化方法提取该培养物的 AAV 病毒。获得的病毒液进行电镜观察(参见说明书附图

之图 24), 可见大量病毒颗粒, 颗粒中心密度较高, 表明为病毒空壳。该结果说明用辅助病毒 HSV1-r2c5 感染没有转染 AAV 载体 DNA(不含 ITR序列)的 BHK 细胞可有效地产生 AAV 病毒空壳颗粒。

权利要求

- 1. 一种重组单纯疱疹病毒, 其特征在于, 其基因组中插入了一种 DNA 序列, 所述 DNA 序列具有选自 SEQ ID NO. 1、2、3、4和5的核苷酸序列或其同源序列。
- 2. 如权利要求 1 所述的重组单纯疱疹病毒,其中所述的 DNA 序列被插入 HSV 基因组的 UL2 基因或 UL44 基因的 xbaI 位点中。
- 3. 如权利要求 1 所述的重组单纯疱疹病毒,其中所述的 DNA 序列 SEQ ID NO. 1 或 SEQ ID NO. 2 或 SEQ ID NO. 3 或 SEQ ID NO. 4 或 SEQ ID NO. 5 被插入到 HSV 基因组的其他非必需基因区。
- 4. 一种重组单纯疱疹病毒的制备方法,该方法包括构建含有 SEQ ID NO. 1或 SEQ ID NO. 2或 SEQ ID NO. 3或 SEQ ID NO. 4或 SEQ ID NO. 5的 DNA 片段,并利用基因工程的方法将所述的 5个 DNA 片段分别插入单纯疱疹病毒的基因组中,从而获得重组的单纯疱疹病毒。
- 5. 如权利要求 1 所述的重组单纯疱疹病毒,其中插入了与 SEQ ID NO. 1 或 SEQ ID NO. 2 或 SEQ ID NO. 3 或 SEQ ID NO. 4 或 SEQ ID NO. 5 的 DNA 片段同源的其它 DNA 序列。
- 6. 一种针对 1型或 3型或 4型或 5型或 6型血清型重组腺病毒相关病毒的大规模生产和制备的方法,其特征是,该方法包括:
 - (1) 制备和产生权利要求1所述的重组单纯疱疹病毒;
 - (2) 建立"一株载体细胞",即重组 AAV 载体细胞株;
 - (3) 用(1)所述的5种重组单纯疱疹病毒感染相应的载体细胞株;
- (4) 载体细胞株在 5 种重组单纯疱疹病毒感染的作用下产生大量的 重组腺病毒相关病毒。
- 7. 一种针对 1 型或 3 型或 4 型或 5 型或 6 型血清型重组腺病毒相关病毒的分离、纯化的方法, 其特征是, 以含有重组腺病毒相关病毒的细胞及培养液作为粗制裂解液, 经过以下步骤进行分离、纯化:
- 1) 在粗制裂解液中加入氯仿,灭活 HSV 辅助病毒、裂解细胞、使 大量细胞蛋白变性沉淀,得到细胞裂解液;

2) 在细胞裂解液中加入固体氯化钠至终浓度 1.0~1.2 mol/L, 搅拌溶解, 离心、留上清;

- 3) 用 PEG/NaCl 沉淀 rAAV, 在步骤 2)所述的含氯化钠的上清中加入固体聚乙二醇,搅拌溶解,静置、离心、弃上清,留沉淀;
- 4) 用 DNaseI 和 RNase 处理细胞裂解液以降解核酸,溶解步骤 3) 中所述的沉淀,加 DNaseI 和 RNase 溶解 rAAV 病毒颗粒以外的残余核酸;
- 5) 用氯仿抽提去除杂蛋白和残余的 PEG, 加入氯仿抽提, 离心, 吸取上层水相;
 - 6) 透析除盐;
 - 7) 用密度梯度离心法或亲和层析法进一步纯化 rAAV。
- 8. 一种重组载体质粒 pSNAV-NX, 其特征是, 所述的重组质粒含有 AAV-1 或 AAV-3 或 AAV-4 或 AAV-5 或 AAV-6 基因组两端的 ITR, 在两个 ITR 之间依次为巨细胞病毒立早增强子和启动子、多克隆位点和 polyA信号, 在 ITR 外侧具有新霉素抗性基因表达盒。
- 9. 根据权利要求 7 所述的针对 1 型或 3 型或 4 型或 5 型或 6 型血清型 重组腺病毒相关病毒的分离、纯化的方法,其特征是,该方法可用于 1 型或 3 型或 4 型或 5 型或 6 型血清型 AAV 病毒内不含有基因的所谓 "AAV 病毒空壳"的大量分离和纯化制备。
- 10. 一种针对 1 型或 3 型或 4 型或 5 型或 6 型血清型重组腺病毒相关病毒的纯化的方法, 其特征是, 该方法包括: 将获得的 rAAV 液调节电导值后过用缓冲液平衡好的离子交换柱, 再用缓冲液平衡离子交换柱, 然后用加盐的缓冲液洗脱收集洗脱峰; 将收集的洗脱峰过用缓冲液平衡好的分子筛柱, 再继续用缓冲液冲洗。

rep2cap1 (4347 bp)

图 1 rep2cap1 图谱

rep2cap3 (4287bp)

图 2 rep2cap3 图谱

图 3 rep2cap4 图谱

rep2-cap5 (4314 bp)

图 4 rep2cap5 图谱

图 5 rep2cap6 图谱

rXcY

图 6 cos6-rXcY∆UL2 图谱

图 7 cos56-rXcYΔUL44 图谱

图 8 Set C图谱

图 9 pSNAV-GFP 图谱

图 10 pSNAV-N1 图谱

图 11 pSNAV-N3 图谱

图 12 pSNAV-N4 图谱

图 13 pSNAV-N5 图谱

图 14 pSNAV-N6 图谱

图 15 纯化的 1 型血清型的 rAAV/r2c1-GFP 病毒的电镜分析 (× 54800)

图 16 纯化的 3 型血清型的 rAAV/r2c3-GFP 病毒的电镜分析 (×54800)

图 17 纯化的 4 型血清型的 rAAV/r2c4-GFP 病毒的电镜分析 (×54800)

纯化的 5 型血清型的 rAAV/r2c5-GFP 病毒的电镜分析 (× 54800)

图 19 纯化的 6 型血清型的 rAAV/r2c6-GFP 病毒的电镜分析 (×54800)

图 20 纯化的 1 型血清型的 AAV 空壳病毒的电镜分析(× 38000)

图 21 纯化的 3 型血清型的 AAV 空壳病毒的电镜分析(× 38000)

图 22 纯化的 4 型血清型的 AAV 空壳病毒的电镜分析(× 38000)

图 23 纯化的 5 型血清型的 AAV 空壳病毒的电镜分析(× 38000)

图 24 纯化的 6 型血清型的 AAV 空壳病毒的电镜分析 (×38000);

1 2 3

图 25

图 26

序列表

```
<110> 本元正阳基因技术股份有限公司
<120> 多种血清型重组腺病毒伴随病毒载体的大规模生产、分离、纯化及其用途
<130> PF030071PCT
<160> 15
<170> PatentIn version 3.1
<210> 1
<211> 4347
<212> DNA
<213> 人工序列
<220>
<223> rep2cap1
<400> 1
ctagagtcct gtattagagg tcacgtgagt gttttgcgac attttgcgac accatgtggt
                                                                     60
cacgctgggt atttaagccc gagtgagcac gcagggtctc cattttgaag cgggaggttt
                                                                    120
gaacgcgcag ccgccatgcc ggggttttac gagattgtga ttaaggtccc cagcgacctt
                                                                    180
gacgggcatc tgcccggcat ttctgacagc tttgtgaact gggtggccga gaaggaatgg
                                                                    240
gagttgccgc cagattctga catggatctg aatctgattg agcaggcacc cctgaccgtg
                                                                    300
gccgagaage tgcagcgcga ctttctgacg gaatggcgcc gtgtgagtaa ggccccggag
                                                                    360
gcccttttct ttgtgcaatt tgagaaggga gagagctact tccacatgca cgtgctcgtg
                                                                    420
gaaaccaccg gggtgaaatc catggttttg ggacgtttcc tgagtcagat tcgcgaaaaa
                                                                    480
ctgattcaga gaatttaccg cgggatcgag ccgactttgc caaactggtt cgcggtcaca
                                                                    540
aagaccagaa atggcgccgg aggcgggaac aaggtggtgg atgagtgcta catccccaat
                                                                    600
tacttgctcc ccaaaaccca gcctgagctc cagtgggcgt ggactaatat ggaacagtat
                                                                    660
ttaagegeet gtttgaatet caeggagegt aaaeggttgg tggegeagea tetgaegeae
                                                                    720
gtgtcgcaga cgcaggagca gaacaaagag aatcagaatc ccaattctga tgcgccggtg
                                                                    780
atcagatcaa aaacttcagc caggtacatg gagctggtcg ggtggctcgt ggacaagggg
                                                                    840
attacctcgg agaagcagtg gatccaggag gaccaggcct catacatctc cttcaatgcg
                                                                    900
gcctccaact cgcggtccca aatcaaggct gccttggaca atgcgggaaa gattatgagc
                                                                    960
ctgactaaaa ccgcccccga ctacctggtg ggccagcagc ccgtggagga catttccagc
                                                                    1020
aatcggattt ataaaatttt ggaactaaac gggtacgatc cccaatatgc ggcttccgtc
                                                                    1080
tttctgggat gggccacgaa aaagttcggc aagaggaaca ccatctggct gtttgggcct
                                                                    1140
gcaactaccg ggaagaccaa catcgcggag gccatagccc acactgtgcc cttctacggg
                                                                    1200
tgcgtaaact ggaccaatga gaactttccc ttcaacgact gtgtcgacaa gatggtgatc
                                                                    1260
 tggtgggagg aggggaagat gaccgccaag gtcgtggagt cggccaaagc cattctggga
                                                                    1320
ggaagcaagg tgcgcgtgga ccagaaatgc aagtcctcgg cccagataga cccgactccc
                                                                    1380
gtgatcgtca cctccaacac caacatgtgc gccgtgattg acgggaactc aacgaccttc
                                                                    1440
```

i

				aactcacccg		1500
				ttttccggtg		1560
				gtggagccaa		1620
-				gcgagtcagt		1680
				ggtaccaaaa		1740
_				catgcgagag		1800
				cagagtgctt		1860
				aactctgtgc		1920
				atctggtcaa		1980
				atggctgccg		2040
				gagtggtggg		2100
				gacggccggg		2160
				aagggggagc		2220
				cagcagctca		2280
				caggagcgtc		2340
tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	gccaagaagc	gggttctcga	2400
acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	ggaaagaaac	gtccggtaga	2460
gcagtcgcca	caagagccag	actcctcctc	gggcatcggc	aagacaggcc	agcagcccgc	2520
taaaaagaga	ctcaattttg	gtcagactgg	cgactcagag	tcagtccccg	atccacaacc	2580
tctcggagaa	cctccagcaa	ccccgctgc	tgtgggacct	actacaatgg	cttcaggcgg	2640
tggcgcacca	atggcagaca	ataacgaagg	cgccgacgga	gtgggtaatg	cctcaggaaa	2700
ttggcattgc	gattccacat	ggctgggcga	cagagtcatc	accaccagca	cccgcacctg	2760
ggccttgccc	acctacaata	accacctcta	caagcaaatc	tccagtgctt	caacgggggc	2820
cagcaacgac	aaccactact	tcggctacag	cacccctgg	gggtattttg	atttcaacag	2880
attccactgc	cacttttcac	cacgtgactg	gcagcgactc	atcaacaaca	attggggatt	2940
ccggcccaag	agactcaact	tcaaactctt	caacatccaa	gtcaaggagg	tcacgacgaa	3000
tgatggcgtc	acaaccatcg	ctaataacct	taccagcacg	gttcaagtct	tctcggactc	3060
ggagtaccag	cttccgtacg	tcctcggctc	tgcgcaccag	ggctgcctcc	ctccgttccc	3120
ggcggacgtg	ttcatgatic	cgcaatacgg	ctacctgacg	ctcaacaatg	gcagccaagc	3180
cgtgggacgt	tcatcctttt	actgcctgga	atatttccct	tctcagatgc	tgagaacggg	3240
caacaacttt	accttcagct	acacctttga	ggaagtgcct	ttccacagca	gctacgcgca	3300
cágccagagc	ctggaccggc	tgatgaatcc	tctcatcgac	caatacctgt	attacctgaa	3360
cagaactcaa	aatcagtccg	gaagtgccca	aaacaaggac	ttgctgttta	gccgtgggtc	3420
tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	ggaccctgtt	atcggcagca	3480
gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	tttacctgga	ctggtgcttc	3540
aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	ggcactgcta	tggcctcaca	3600
caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	atgatttttg	gaaaagagag	3660
cgccggagct	tcaaacactg	cattggacaa	tgtcatgatt	acagacgaag	aggaaattaa	3720
agccactaac	cctgtggcca	ccgaaagatt	tgggaccgtg	gcagtcaatt	tccagagcag	3780
				gcattacctg		3840
				aaaattcctc		3900
				aagaacccgc		3960
				gagttttcag		4020
				gtggaaattg		4080
				tacacatcca		4140

atctgccaac gttgattta ctgtggacaa caatggactt tatactgagc ctcgcccat tggcacccgt taccttaccc gtcccctgta attacgtgtt aatcaataaa ccggttgatt cgtttcagtt gaactttggt ctcctgtcct tcttatctta	4200 4260 4320 4347
400 0	
<400> 2 ctagagtcct gtattagagg tcacgtgagt gttttgcgac attttgcgac accatgtggt	60
cacgctgggt atttaagccc gagtgagcac gcagggtctc cattttgaag cgggaggttt	120
gaacgcgcag ccgccatgcc ggggttttac gagattgtga ttaaggtccc cagcgacctt	180
gacgggcatc tgcccggcat ttctgacagc tttgtgaact gggtggccga gaaggaatgg	240
gagttgccgc cagattctga catggatctg aatctgattg agcaggcacc cctgaccgtg	300
gecgagaage tgeagegega etttetgaeg gaatggegee gtgtgagtaa ggeeeeggag	360
gcccttttct ttgtgcaatt tgagaaggga gagagctact tccacatgca cgtgctcgtg	420
gaaaccaccg gggtgaaatc catggttttg ggacgtttcc tgagtcagat tcgcgaaaaa	480
ctgattcaga gaatttaccg cgggatcgag ccgactttgc caaactggtt cgcggtcaca	540
aagaccagaa atggcgccgg aggcgggaac aaggtggtgg atgagtgcta catccccaat	600
tacttgctcc ccaaaaccca gcctgagctc cagtgggcgt ggactaatat ggaacagtat	660
ttaagcgcct gtttgaatct cacggagcgt aaacggttgg tggcgcagca tctgacgcac	720
gtgtcgcaga cgcaggagca gaacaaagag aatcagaatc ccaattctga tgcgccggtg	780
atcagatcaa aaacttcagc caggtacatg gagctggtcg ggtggctcgt ggacaagggg	840
attacctcgg agaagcagtg gatccaggag gaccaggcct catacatctc cttcaatgcg	900
gcctccaact cgcggtccca aatcaaggct gccttggaca atgcgggaaa gattatgagc	960
ctgactaaaa ccgccccga ctacctggtg ggccagcagc ccgtggagga catttccagc	1020
aatcggattt ataaaatttt ggaactaaac gggtacgatc cccaatatgc ggcttccgtc	1080
tttctgggat gggccacgaa aaagttcggc aagaggaaca ccatctggct gtttgggcct	1140
gcaactaccg ggaagaccaa catcgcggag gccatagccc acactgtgcc cttctacggg	1200
tgcgtaaact ggaccaatga gaactttccc ttcaacgact gtgtcgacaa gatggtgatc	1260
tggtgggagg aggggaagat gaccgccaag gtcgtggagt cggccaaagc cattctggga	1320
ggaagcaagg tgcgcgtgga ccagaaatgc aagtcctcgg cccagataga cccgactccc	1380
gtgatcgtca cctccaacac caacatgtgc gccgtgattg acgggaactc aacgaccttc	1440 1500
gaacaccage ageogttgea agaceggatg tteaaatttg aacteaceeg eegtetggat	1560
catgactttg ggaaggtcac caagcaggaa gtcaaagact ttttccggtg ggcaaaggat	1620
cacgtggttg aggtggagca tgaattctac gtcaaaaagg gtggagccaa gaaaagaccc	1680
gccccagtg acgcagatat aagtgagccc aaacgggtgc gcgagtcagt tgcgcagcca	1740
togacgteag acgoggaage ttogateaac tacgoagaca ggtaccaaaa caaatgttot	1800
cgtcacgtgg gcatgaatct gatgctgttt ccctgcagac aatgcgagag aatgaatcag	1860
aattcaaata totgottoac toacggacag aaagactgtt tagagtgott toccgtgtca	

			,			
				aactgtgcta		1920
				tggtcaatgt		1980
gactgcatct	ttgaacaata	aatgatttaa	atcaggtatg	gctgccgatg	gttatcttcc	2040
agattggctc	gaggacaacc	tttctgaagg	cattcgtgag	tggtgggctc	tgaaacctgg	2100
agtccctcaa	cccaaagcga	accaacaaca	ccaggacaac	cgtcggggtc	ttgtgcttcc	2160
gggttacaaa	tacctcggac	ccggtaacgg	actcgacaaa	ggagagccgg	tcaacgaggc	2220
ggacgcggca	gccctcgaac	acgacaaagc	ttacgaccag	cagctcaagg	ccggtgacaa	2280
cccgtacctc	aagtacaacc	acgccgacgc	cgagtttcag	gagcgtcttc	aagaagatac	2340
gtcttttggg	ggcaaccttg	gcagagcagt	cttccaggcc	aaaaagagga	tccttgagcc	2400
tcttggtctg	gttgaggaag	cagctaaaac	ggctcctgga	aagaaggggg	ctgtagatca	2460
gtctcctcag	gaaccggact	catcatctgg	tgttggcaaa	tcgggcaaac	agcctgccag	2520
aaaaagacta	aatttcggtc	agactggaga	ctcagagtca	gtcccagacc	ctcaacctct	2580
cggagaacca	ccagcagccc	ccacaagttt	gggatctaat	acaatggctt	caggcggtgg	2640
cgcaccaatg	gcagacaata	acgagggtgc	cgatggagtg	ggtaattcct	caggaaattg	2700
gcattgcgat	tcccaatggc	tgggcgacag	agtcatcacc	accagcacca	gaacctgggc	2760
cctgcccact	tacaacaacc	atctctacaa	gcaaatctcc	agccaatcag	gagcttcaaa	2820
cgacaaccac	tactttggct	acagcacccc	ttgggggtat	tttgacttta	acagattcca	2880
ctgccacttc	tcaccacgtg	actggcagcg	actcattaac	aacaactggg	gattccggcc	2940
caagaaactc	agcttcaagc	tcttcaacat	ccaagttaga	ggggtcacgc	agaacgatgg	3000
cacgacgact	attgccaata	accttaccag	cacggttcaa	gtgtttacgg	actcggagta	3060
tcagctcccg	tacgtgctcg	ggtcggcgca	ccaaggctgt	ctcccgccgt	ttccagcgga	3120
cgtcttcatg	gtccctcagt	atggatacct	caccctgaac	aacggaagtc	aagcggtggg	3180
acgctcatcc	ttttactgcc	tggagtactt	cccttcgcag	atgctaagga	ctggaaataa	3240
cttccaattc	agctatacct	tcgaggatgt	accttttcac	agcagctacg	ctcacagcca	3300
gagtttggat	cgcttgatga	atcctcttat	tgatcagtat	ctgtactacc	tgaacagaac	3360
gcaaggaaca	acctctggaa	caaccaacca	atcacggctg	ctttttagcc	aggctgggcc	3420.
tcagtctatg	tctttgcagg	ccagaaattg	gctacctggg	ccctgctacc	ggcaacagag	3480
actttcaaag	actgctaacg	acaacaacaa	cagtaacttt	ccttggacag	cggccagcaa	3540
atatcatctc	aatggccgcg	actcgctggt	gaatccagga	ccagctatgg	ccagtcacaa	3600
ggacgatgaa	gaaaaatttt	tccctatgca	cggcaatcta	atatttggca	aagaagggac	3660
aacggcaagt	aacgcagaat	tagataatgt	aatgattacg	gatgaagaag	agattcgtac	3720
caccaatcct	gtggcaacag	agcagtatgg	aactgtggca	aataacttgc	agagctcaaa	3780
tacagctccc	acgactggaa	ctgtcaatca	tcagggggcc	ttacctggca	tggtgtggca	3840
agatcgtgac	gtgtaccttc	aaggacctat	ctgggcaaag	attcctcaca	cggatggaca	3900
ctttcatcct	tctcctctga	tgggaggctt	tggactgaaa	catccgcctc	ctcaaatcat	3960
gatcaaaaat	actccggtac	cggcaaatcc	tccgacgact	ttcagcccgg	ccaagtttgc	4020
ttcatttatc	actcagtact	ccactggaca	ggtcagcgtg	gaaattgagt	gggagctaca	4080
					acaacaagtc	4140
					gccctattgg	4200
aacccggtat	ctcacacgaa	acttgtgaat	cctggttaat	caataaaccg	tttaattcgt	4260
tcagttgaac	tttggctctt	gtgcat				4286

<210> 3

<211> 4536

<212> DNA

人工序列 <213>

<220>

<223> rep2cap4

<400> 3

ctagagtcct gtattagagg tcacgtgagt gttttgcgac attttgcgac accatgtggt 60 cacgctgggt atttaagccc gagtgagcac gcagggtctc cattttgaag cgggaggttt 120 gaacgcgcag ccgccatgcc ggggttttac gagattgtga ttaaggtccc cagcgacctt 180 gacgggcatc tgcccggcat ttctgacagc tttgtgaact gggtggccga gaaggaatgg 240 gagttgccgc cagattctga catggatctg aatctgattg agcaggcacc cctgaccgtg 300 gccgagaagc tgcagcgcga ctttctgacg gaatggcgcc gtgtgagtaa ggccccggag 360 gcccttttct ttgtgcaatt tgagaaggga gagagctact tccacatgca cgtgctcgtg 420 gaaaccaccg gggtgaaatc catggttttg ggacgtttcc tgagtcagat tcgcgaaaaa 480 ctgattcaga gaatttaccg cgggatcgag ccgactttgc caaactggtt cgcggtcaca 540 aagaccagaa atggcgccgg aggcgggaac aaggtggtgg atgagtgcta catccccaat 600 tacttgctcc ccaaaaccca gcctgagctc cagtgggcgt ggactaatat ggaacagtat 660 720 ttaagcgcct gtttgaatct cacggagcgt aaacggttgg tggcgcagca tctgacgcac 780 gtgtcgcaga cgcaggagca gaacaaagag aatcagaatc ccaattctga tgcgccggtg 840 atcagatcaa aaacttcagc caggtacatg gagctggtcg ggtggctcgt ggacaagggg attacctcgg agaagcagtg gatccaggag gaccaggcct catacatctc cttcaatgcg 900 gcctccaact cgcggtccca aatcaaggct gccttggaca atgcgggaaa gattatgagc 960 ctgactaaaa ccgccccga ctacctggtg ggccagcagc ccgtggagga catttccagc 1020 aatcggattt ataaaatttt ggaactaaac gggtacgatc cccaatatgc ggcttccgtc 1080 1140 tttctgggat gggccacgaa aaagttcggc aagaggaaca ccatctggct gtttgggcct gcaactaccg ggaagaccaa catcgcggag gccatagccc acactgtgcc cttctacggg 1200 1260 tgcgtaaact ggaccaatga gaactttccc ttcaacgact gtgtcgacaa gatggtgatc tggtgggagg aggggaagat gaccgccaag gtcgtggagt cggccaaagc cattctggga 1320 1380 ggaagcaagg tgcgcgtgga ccagaaatgc aagtcctcgg cccagataga cccgactccc gtgatcgtca cctccaacac caacatgtgc gccgtgattg acgggaactc aacgaccttc 1440 gaacaccagc agccgttgca agaccggatg ttcaaatttg aactcacccg ccgtctggat 1500 1560 catgactttg ggaaggtcac caagcaggaa gtcaaagact ttttccggtg ggcaaaggat cacgtggttg aggtggagca tgaattctac gtcaaaaagg gtggagccaa gaaaagaccc 1620 gcccccagtg acgcagatat aagtgagccc aaacgggtgc gcgagtcagt tgcgcagcca 1680 tegaegteag aegeggaage ttegateaae taegeagaea ggtaeeaaaa eaaatgttet 1740 cgtcacgtgg gtatgaatct gatgcttttt ccctgccggc aatgcgagag aatgaatcag 1800 aatgtggaca tttgcttcac gcacggggtc atggactgtg ccgagtgctt ccccgtgtca 1860 gaatctcaac ccgtgtctgt cgtcagaaag cggacgtatc agaaactgtg tccgattcat 1920 cacatcatgg ggagggggcc cgaggtggcc tgctcggcct gcgaactggc caatgtggac 1980 ttggatgact gtgacatgga acaataaatg actcaaacca gatatgactg acggttacct 2040 2100 tccagattgg ctagaggaca acctctctga aggcgttcga gagtggtggg cgctgcaacc tggagcccct aaacccaagg caaatcaaca acatcaggac aacgctcggg gtcttgtgct 2160 teegggttae aaataceteg gaceeggeaa eggaetegae aagggggaae eegteaaege 2220 2280 ageggaegeg geageeeteg ageaegaeaa ggeetaegae eageagetea aggeeggtga caacccctac ctcaagtaca accacgccga cgcggagttc cagcagcggc ttcagggcga 2340

						_
		tcggcagagc				2400
_		aagcgggtga				2460
		actcctccac				2520
		aagacgaaac			_	2580
		atgacagtga		_	_	2640
cgagggcgga	caaggtgccg	atggagtggg	taatgcctcg	ggtgattggc	attgcgattc	2700
cacctggtct	gagggccacg	tcacgaccac	cagcaccaga	acctgggtct	tgcccaccta	2760
caacaaccac	ctctacaagc	gactcggaga	gagcctgcag	tccaacacct	acaacggatt	2820
ctccaccccc	tggggatact	ttgacttcaa	ccgcttccac	tgccacttct	caccacgtga	2880
ctggcagcga	ctcatcaaca	acaactgggg	catgcgaccc	aaagccatgc	gggtcaaaat	2940
cttcaacatc	caggtcaagg	aggtcacgac	gtcgaacggc	gagacaacgg	tggctaataa	3000
ccttaccagc	acggttcaga	tctttgcgga	ctcgtcgtac	gaactgccgt	acgtgatgga	3060
tgcgggtcaa	gagggcagcc	tgcctccttt	tcccaacgac	gtctttatgg	tgccccagta	3120
cggctactgt	ggactggtga	ccggcaacac	ttcgcagcaa	cagactgaca	gaaatgcctt	3180
ctactgcctg	gagtactttc	cttcgcagat	gctgcggact	ggcaacaact	ttgaaattac	3240
gtacagtttt	gagaaggtgc	ctttccactc	gatgtacgcg	cacagccaga	gcctggaccg	3300
gctgatgaac	cctctcatcg	accagtacct	gtggggactg	caatcgacca	ccaccggaac	3360
caccctgaat	gccgggactg	ccaccaccaa	ctttaccaag	ctgcggccta	ccaacttttc	3420
caactttaaa	aagaactggc	tgcccgggcc	ttcaatcaag	cagcagggct	tctcaaagac	3480
tgccaatcaa	aactacaaga	tccctgccac	cgggtcagac	agtctcatca	aatacgagac	3540
gcacagcact	ctggacggaa	gatggagtgc	cctgaccccc	ggacctccaa	tggccacggc	3600
tggacctgcg	gacagcaagt	tcagcaacag	ccagctcatc	tttgcggggc	ctaaacagaa	3660
cggcaacacg	gccaccgtac	ccgggactct	gatcttcacc	tctgaggagg	agctggcagc	3720
caccaacgcc	accgatacgg	acatgtgggg	caacctacct	ggcggtgacc	agagcaacag	3780
caacctgccg	accgtggaca	gactgacagc	cttgggagcc	gtgcctggaa	tggtctggca	3840
aaacagagac	atttactacc	agggtcccat	ttgggccaag	attcctcata	ccgatggaca	3900
ctttcacccc	tcaccgctga	ttggtgggtt	tgggctgaaa	cacccgcctc	ctcaaatttt	3960
tatcaagaac	accccggtac	ctgcgaatcc	tgcaacgacc	ttcagctcta	ctccggtaaa	4020
ctccttcatt	actcagtaca	gcactggcca	ggtgtcggtg	cagattgact	gggagatcca	4080
gaaggagcgg	tccaaacgct	ggaaccccga	ggtccagttt	acctccaact	acggacagca	4140
aaactctctg	ttgtgggctc	ccgatgcggc	tgggaaatac	actgagccta	gggctatcgg	4200
tacctgcgaa	tccttcgacc	accttcagtg	cggcaaagtt	tgcttccttc	atcacacagt	4260
actccacggg	acacggtcag	cgtggagatc	gagtgggagc	tgcagaagga	aaacagcaaa	4320
cgctggaatc	ccgaaattca	gtacacttcc	aactacaaca	agtctgttaa	tcgtggactt	4380
accgtggata	ctaatggcgt	gtattcagag	cctcgcccca	ttggcaccag	atacctgact	4440
cgtaatctgt	aattgcttgt	taatcaataa	accgtttaat	tcgtttcagt	tgaactttgg	4500
tctctgcgta	tttctttctt	atctagtttc	catgct			4536

- <210> 4
- <211> 4314
- <212> DNA
- <213> 人工序列
- <220>
- <223> rep2cap5

<400> 4

ctagagtcct	gtattagagg	tcacgtgagt	gttttgcgad	attttgcgac	accatgtggt	60
cacgctgggt	atttaagccc	gagtgagcac	gcagggtctc	cattttgaag	cgggaggttt	120
gaacgcgcag	g ccgccatgcc	ggggttttac	gagattgtga	ı ttaaggtccc	cagcgacctt	180
gacgggcato	tgcccggcat	ttctgacagc	tttgtgaact	gggtggccga	gaaggaatgg	240
gagttgccgc	cagattctga	catggatctg	aatctgattg	agcaggcacc	cctgaccgtg	300
gccgagaagc	tgcagcgcga	ctttctgacg	gaatggcgcc	gtgtgagtaa	ggccccggag	360
gcccttttct	ttgtgcaatt	tgagaaggga	gagagctact	tccacatgca	cgtgctcgtg	420
gaaaccaccg	gggtgaaatc	catggttttg	ggacgtttcc	tgagtcagat	tcgcgaaaaa	480
ctgattcaga	gaatttaccg	cgggatcgag	ccgactttgc	caaactggtt	cgcggtcaca	540
aagaccagaa	atggcgccgg	aggcgggaac	aaggtggtgg	atgagtgcta	catccccaat	600
tacttgctcc	ccaaaaccca	gcctgagctc	cagtgggcgt	ggactaatat	ggaacagtat	660
ttaagcgcct	gtttgaatct	cacggagcgt	aaacggttgg	tggcgcagca	tctgacgcac	720
gtgtcgcaga	cgcaggagca	gaacaaagag	aatcagaatc	ccaattctga	tgcgccggtg	780
atcagatcaa	aaacttcagc	caggtacatg	gagctggtcg	ggtggctcgt	ggacaagggg	840
attacctcgg	agaagcagtg	gatccaggaa	aatcaggaga	gctacctctc	cttcaactcc	900
accggcaact	ctcggagcca	gatcaaggcc	gcgctcgaca	acgcgaccaa	aattatgagt	960
ctgacaaaaa	gcgcggtgga	ctacctcgtg	gggagctccg	ttcccgagga	catttcaaaa	1020
aacagaatct	ggcaaatttt	tgagatgaat	ggctacgacc	cggcctacgc	gggttccatc	1080
ctctacggct	ggtgtcagcg	ctccttcaac	aagaggaaca	ccgtctggct	ctacggaccc	1140
gccacgaccg	gcaagaccaa	catcgcggag	gccatcgccc	acactgtgcc	cttttacggc	1200
tgcgtgaact	ggaccaatga	aaactttccc	tttaatgact	gtgtggacaa	aatgctcatt	1260
tggtgggagg	agggaaagat	gaccaacaag	gtggttgaat	ccgccaaggc	catcctgggg	1320
ggctcaaagg	tgcgggtcga	tcagaaatgt	aaatcctctg	ttcaaattga	ttctacccct	1380
gtcattgtaa	cttccaatac	aaacatgtgt	gtggtggtgg	atgggaattc	cacgaccttt	1440
gaacaccagc	agccgctgga	ggaccgcatg	ttcaaatttg	aactgactaa	gcggctcccg	1500
ccagattttg	gcaagattac	taagcaggaa	gtcaaggact	tttttgcttg	ggcaaaggtc	1560
aatcaggtgc	cggtgactca	cgagtttaaa	gttcccaggg	aattggcggg	aactaaaggg	1620
gcggagaaat	ctctaaaacg	cccactgggt	gacgtcacca	atactagcta	taaaagtctg	1680
gagaagcggg	ccaggctctc	atttgttccc	gagacgcctc	gcagttcaga	cgtgactgtt	1740
gatcccgctc	ctctgcgacc	gctcaattgg	aattcaaggt	atgattgcaa	atgtgactat	1800
catgctcaat	ttgacaacat	ttctaacaaa	tgtgatgaat	gtgaatattt	gaatcggggc	1860
aaaaatggat	gtatctgtca	caatgtaact	cactgtcaaa	tttgtcatgg	gattccccc	1920
tgggaaaagg	aaaacttgtc	agattttggg	gattttgacg	atgccaataa	agaacagtaa	1980
ataaagcgag	tagtcatgtc	ttttgttgat	caccctccag	attggttgga	agaagttggt	2040
gaaggtcttc	gcgagttttt	gggccttgaa	gcgggcccac	cgaaacçaaa	acccaatcag	2100
cagcatcaag	atcaagcccg	tggtcttgtg	ctgcctggtt	ataactatct	cggacccgga	2160
aacggtctcg	atcgaggaga	gcctgtcaac	agggcagacg	aggtcgcgcg	agagcacgac	2220
atctcgtaca	acgagcagct	tgaggcggga	gacaacccct	acctcaagta	caaccacgcg	2280
gacgccgagt	ttcaggagaa	gctcgccgac	gacacatcct	tcgggggaaa	cctcggaaag	2340
gcagtctttc	aggccaagaa	aagggttctc	gaaccttttg	gcctggttga	agagggtgct	2400
aagacggccc	ctaccggaaa	gcggatagac	gaccactttc	caaaaagaaa	gaaggctcgg	2460
accgaagagg	actccaagcc	ttccacctcg	tcagacgccg	aagctggacc	cagcggttcc	2520
cagcagctgc	aaatcccagc	ccaaccagcc	tcaagtttgg	gagctgatac	aatgtctgcg	2580
ggaggtggcg	gcccattggg	cgacaataac	caaggtgccg	atggagtggg	caatgcctcg	2640

2700

2760

ggagattggc attgcgattc cacgtggatg ggggacagag tcgtcaccaa gtccacccga

acctgggtgc tgcccagcta caacaaccac cagtaccgag agatcaaaag cggctccgtc

```
gacggaagca acgccaacgc ctactttgga tacagcaccc cctgggggta ctttgacttt
                                                                     2820
aaccgcttcc acagccactg gagcccccga gactggcaaa gactcatcaa caactactgg
                                                                     2880
ggcttcagac cccggtccct cagagtcaaa atcttcaaca ttcaagtcaa agaggtcacg
                                                                     2940
gtgcaggact ccaccaccac catcgccaac aacctcacct ccaccgtcca agtgtttacg
                                                                     3000
gacgacgact accagetgcc ctacgtcgtc ggcaacggga ccgagggatg cctgccggcc
                                                                     3060
ttccctccgc aggtctttac gctgccgcag tacggttacg cgacgctgaa ccgcgacaac
                                                                     3120
acagaaaatc ccaccgagag gagcagette ttetgeetag agtaetttee cagcaagatg
                                                                     3180
ctgagaacgg gcaacaactt tgagtttacc tacaactttg aggaggtgcc cttccactcc
                                                                     3240
agettegete écagteagaa cetetteaag etggeeaace egetggtgga ecagtaettg
                                                                     3300
taccgcttcg tgagcacaaa taacactggc ggagtccagt tcaacaagaa cctggccggg
                                                                     3360
agatacgcca acacctacaa aaactggttc ccggggccca tgggccgaac ccagggctgg
                                                                     3420
aacctgggct ccggggtcaa ccgcgccagt gtcagcgcct tcgccacgac caataggatg
                                                                     3480
gagetegagg gegegagtta ecaggtgeec eegeageega aeggeatgae caacaacete
                                                                     3540
cagggcagca acacctatgc cctggagaac actatgatct tcaacagcca gccggcgaac
                                                                     3600
ccgggcacca ccgccacgta cctcgagggc aacatgctca tcaccagcga gagcgagacg
                                                                     3660
cageeggtga acegegtgge gtacaacgte ggegggeaga tggecaceaa caaceagage
                                                                     3720
tecaccactg eccegegae eggeaegtae aacetecagg aaategtgee eggeagegtg
                                                                     3780
tggatggaga gggacgtgta cctccaagga cccatctggg ccaagatccc agagacgggg
                                                                     3840
gegeacttte acceetetee ggeeatggge ggatteggae teaaacacee accgeecatg
                                                                     3900
atgeteatea agaacaegee tgtgeeegga aatateacea gettetegga egtgeeegte
                                                                     3960
agcagettea teacceagta cagcaceggg caggteaceg tggagatgga gtgggagete
                                                                     4020
aagaaggaaa actccaagag gtggaaccca gagatccagt acacaaacaa ctacaacgac
                                                                     4080
ccccagtttg tggactttgc cccggacagc accggggaat acagaaccac cagacctatc
                                                                     4140
ggaacccgat accttacccg acccctttaa cccattcatg tcgcataccc tcaataaacc
                                                                     4200
gtgtattcgt gtcagtaaaa tactgcctct tgtggtcatt caatgaataa cagcttacaa
                                                                     4260
catctacaaa acctccttgc ttgagagtgt ggcactctcc cccctgtcgc gcgt
                                                                     4314
<210> 5
<211> 4239
<212> DNA
<213> 人工序列
<220>
<223> rep2cap6
<400> 5
ctagagtcct gtattagagg tcacgtgagt gttttgcgac attttgcgac accatgtggt
                                                                      60
cacgctgggt atttaagccc gagtgagcac gcagggtctc cattttgaag cgggaggttt
                                                                     120
gaacgcgcag ccgccatgcc ggggttttac gagattgtga ttaaggtccc cagcgacctt
                                                                     180
gacgggcatc tgcccggcat ttctgacagc tttgtgaact gggtggccga gaaggaatgg
                                                                     240
gagttgccgc cagattctga catggatctg aatctgattg agcaggcacc cctgaccgtg
                                                                     300
gccgagaagc tgcagcgcga ctttctgacg gaatggcgcc gtgtgagtaa ggccccggag
                                                                     360
gcccttttct ttgtgcaatt tgagaaggga gagagctact tccacatgca cgtgctcgtg
                                                                     420
```

					tcgcgaaaaa	480
ctgattcaga	gaatttaccg	cgggatcgag	ccgactttgc	: caaactggtt	cgcggtcaca	540
	atggcgccgg					600
	ccaaaaccca					660
	gtttgaatct					720
	cgcaggagca					780
	aaacttcagc				_	840
	agaagcagtg					900
	cgcggtccca					960
ctgactaaaa	ccgcccccga	ctacctggtg	ggccagcagc	ccgtggagga	catttccagc	1020
aatcggattt	ataaaatttt	ggaactaaac	gggtacgatc	cccaatatgc	ggcttccgtc	1080
tttctgggat	gggccacgaa	aaagttcggc	aagaggaaca	ccatctggct	gtttgggcct	1140
	ggaagaccaa					1200
tgcgtaaact	ggaccaatga	gaactttccc	ttcaacgact	gtgtcgacaa	gatggtgatc	1260
tggtgggagg	aggggaagat	gaccgccaag	gtcgtggagt	cggccaaagc	cattctggga	1320
ggaagçaagg	tgcgcgtgga	ccagaaatgc	aagtcctcgg	cccagataga	cccgactccc	1380
gtgatcgtca	cctccaacac	caacatgtgc	gccgtgattg	acgggaactc	aacgaccttc	1440
gaacaccagc	agccgttgca	agaccggatg	ttcaaatttg	aactcacccg	ccgtctggat	1500
catgactttg	ggaaggtcac	caagcaggaa	gtcaaagact	ttttccggtg	ggcaaaggat	1560
cacgtggttg	aggtggagca	tgaattctac	gtcaaaaagg	gtggagccaa	gaaaagaccc	1620
gccccagtg	acgcagatat	aagtgagccc	aaacgggtgc	gcgagtcagt	tgcgcagcca	1680
tcgacgtcag	acgcggaagc	ttcgatcaac	tacgcagaca	ggtaccaaaa	caaatgttct	1740
cgtcacgcgg	gcatgcttca	gatgctgttt	ccctgcaaaa	catgcgagag	aatgaatcag	1800
aatttcaaca	tttgcttcac	gcacgggacc	agagactgtt	cagaatgitt	ccccggcgtg	1860
tcagaatctc	aaccggtcgt	cagaaagagg	acgtatcgga	aactctgtgc	cattcatcat	1920
ctgctggggc	gggctcccga	gattgcttgc	teggeetgeg	atctggtcaa	cgtggatctg	1980
gatgactgtg	tttctgagca	ataaatgact	taaaccaggt	atggctgccg	atggttatct	2040
tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	gagtggtggg	acttgaaacc	2100
tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	gacggccggg	gtctggtgct	2160
tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	aagggggagc	ccgtcaacgc	2220
ggcggatgca	gcggccctcg	agcacgacaa	ggcctacgac	cagcagctca	aagcgggtga	2280
caatccgtac	ctgcggtata	accacgccga	cgccgagttt	caggagcgtc	tgcaagaaga	2340
tacgtctttt	gggggcaacc	tegggegage	agtcttccag	gccaagaaga	gggttctcga	2400
accttttggt	ctggttgagg	aaggtgctaa	gacggctcct	ggaaagaaac	gtccggtaga	2460
gcagtcgcca	caagagccag	actcctcctc	gggcattggc	aagacaggcc	agcagcccgc	2520
taaaaagaga	ctcaattttg	gtcagactgg	cgactcagag	tcagtccccg	acccacaacc	2580
tctcggagaa	cctccagcaa	ccccgctgc	tgtgggacct	actacaatgg	cttcaggcgg	2640
tggcgcacca	atggcagaca	ataacgaagg	cgccgacgga	gtgggtaatg	cctcaggaaa	2700
ttggcattgc	gattccacat	ggctgggcga	cagagtcatc	accaccagca	cccgaacatg	2760
ggccttgccc	acctataaca	accacctcta	caagcaaatc	tccagtgctt	caacgggggc	2820
cagcaacgac	aaccactact	tcggctacag	caccccctgg	gggtattttg	atttcaacag	2880
attccactgc	catttctcac	cacgtgactg	gcagcgactc	atcaacaaca	attggggatt	2940
ccggcccaag	agactcaact	tcaagctctt	caacatccaa	gtcaaggagg	tcacgacgaa	3000
tgatggcgtc	acgaccatcg	ctaataacct	taccagcacg	gttcaagtct	tctcggactc	3060
ggagtaccag	ttgccgtacg	teeteggete	tgcgcaccag	ggctgcctcc	ctccgttccc	3120

```
ggcggacgtg ttcatgattc cgcagtacgg ctacctaacg ctcaacaatg gcagccaggc
                                                                   3180
agtgggacgg tcatcctttt actgcctgga atatttccca tcgcagatqc tgagaacggg
                                                                   3240
caataacttt accttcagct acaccttcga ggacgtgcct ttccacagca gctacgcgca
                                                                   3300
cagecagage etggacegge tgatgaatee teteategae cagtacetgt attacetgaa
                                                                   3360
cagaactcag aatcagtccg gaagtgccca aaacaaggac ttgctgttta qccqqqggtc
                                                                   3420
tccagctggc atgtctgttc agcccaaaaa ctggctacct ggaccctgtt accggcagca
                                                                   3480
gegegtttet aaaacaaaaa cagacaacaa caacagcaac tttacetgga etggtgette
                                                                   3540
aaaatataac cttaatgggc gtgaatctat aatcaaccct ggcactgcta tqqcctcaca
                                                                   3600
caaagacgac aaagacaagt totttoccat gageggtgto atgatttttg gaaaggagag
                                                                   3660
cgccggagct tcaaacactg cattggacaa tgtcatgatc acagacgaag aggaaatcaa
                                                                   3720
agccactaac cccgtggcca ccgaaagatt tgggactgtg gcagtcaatc tccagagcag
                                                                   3780
cagcacagac cctgcgaccg gagatgtgca tgttatggga gccttacctg gaatggtgtg
                                                                   3840
gcaagacaga gacgtatacc tgcagggtcc tatttgggcc aaaattcctc acacggatgg
                                                                   3900
acactttcac cegtetecte teatgggegg etttggaett aageaceege etecteagat
                                                                   3960.
cctcatcaaa aacacgcctg ttcctgcgaa tcctccggca gagttttcgg ctacaaaqtt
                                                                   4020
tgetteatte ateacceagt attecacagg acaagtgage gtggagattg aatgggaget
                                                                   4080
gcagaaagaa aacagcaaac gctggaatcc cgaagtgcag tatacatcta actatgcaaa
                                                                   4140
atctgccaac gttgatttca ctgtggacaa caatggactt tatactgagc ctcgcccat
                                                                   4200
tggcacccgt tacctcaccc gtcccctgta attgtgtgt
                                                                    4239
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 用于 AAV1 的 cap1 的上游引物
<400> 6
gtctggagca tgactttggc
                                                               20
<210> 7
<211> 26
<212> DNA
<213> 人上序列
<220>
<223> 用于 AAV1 的 cap1 的下游引物
<400> 7
tctagaagcg caaccaagca gttaat
                                                              26
<210> 8
<211> 26
```

<212> DNA

WO 2005/035743 <213> 人工序列 <220> <223> 用于 AAV3 cap3 的上游引物 <400> 8 26 tctagaggtc aaagagactg tgggga <210> 9 <211> 26 <212> DNA <213> 人工序列 <220> <223> 用于 AAV3 cap3 的下游引物 <400> 9 26 tctagatgca caagagccaa agttca <210> 10 <211> 20 <212> DNA <213> 人工序列 <220> <223> 用于 AAV4 的 cap4 的上游引物 <400> 10 gcggacaggt accaaaacaa 20 <210> 11 <211> 20 <212> DNA <213> 人工序列 <220> <223> 用于 AAV4 的 cap4 的下游引物 <400> 11 gaaggattcg caggtaccgg 20 <210> 12 <211> 20 <212> DNA

PCT/CN2003/000861

<213> 人工序列

WO 2	005/035743	PCT/CN2003/000861
<220>		
<223>	用于 AAV5 的 cap5 的上游引物	
	-	
<400>	12	
ggatco	cagga aaatcaggag	20
<210>	13	
<211>		
<212>		
	人工序列	
<220>		
<223>	用于 AAV5 的 cap5 的下游引物	
<400>		
tctaga	catg aatgggttaa aggg	24
<210>	14	
<211>		
<212>		
<213>	人工序列	
<220>		
<223>	用于 AAV6 的 cap6 的上游引物	
<400>		
tttgcc	gaca ggtaccaaaa	20
<210>	15	
<211>	24	
<212>	DNA ·	
<213>	人工序列	
<220>		
<223>	用于 AAV6 的 cap6 的下游引物	
4.0.5		
<400>	15	
tctaga	caca caattacagg ggac	24

INTERNATIONAL SEARCH REPORT

Intern application No.
PCT / CN03 / 00861

A. CLA	SSIFICATION OF SUBJECT MATTER IPC^7 : C12	2N7/01				
According to	o International Patent Classification(IPC) or to both nation					
B. FIEL	DS SEARCHED					
Minimum o	documentation searched(classification system follo					
	IPC ⁷ : C1:					
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included	in the field searched			
Electronic d	Electronic data base consulted during the international search(name of data base and, where practicable, search terms used)					
	WPI, CPRS, Genbank					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant claim No.			
X	CN, A, 1243878(AGTC GENE TECHN	OLOGY COMPANY LTD.)	1-10			
	09.Feburary 2000, See the whole doc	ument				
Х	WO, A2, 0017377 (UNIV FLORIDA)		1-10			
	30.March 2000, See the whole docume	ent				
i						
□ Boset	her documents are listed in the continuation of Box C.	See patent family annex.				
	categories of cited documents:					
"A"documen	t defining the general state of the art which is not considered f particular relevance					
"E"earlier do	cument but published on or after the international filing date					
cited to	"L"document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other					
"O"documer	special reason(as specified) "O"document referring to an oral disclosure, use, exhibition or other					
"P"document	means "P"document published prior to the international filing date but later than the priority date claimed					
Date of the	actual completion of the international search	Date of mailing of the international so	earch report			
	06.July 2004(06.07.04) 22 · JUL 2004 (2 2 · 0 7 · 2 0 0 4)					
Name and	mailing address of the ISA/ The Chinese Patent Office	Authorized officer	群潘			
	6, Xitucheng Road, Haidian District, Beijing, 100088, China	PAN, aiqun	印爱			
Facsimile 1		Telephone No. 86-10-62085349				

INTERNATIONAL SEARCH REPORT

Inte ional application No. PCT/CN03/00861

			C1103/00001
Patent document cited in search report	Publication date	Patent family members	Publication date
CN-A-1243878	09-02-00	None	
WO-A2-0017377	30-03-00	AU—A—200010949	100400
			·
	,		

国际申请号 PCT/CN03/00861

A. 主题的分类

Int.Cl7: C12N7/01

按照国际专利分类表(IPC)或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献(标明分类体系和分类号)

Int.Cl7: C12N7/01

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库(数据库的名称和,如果实际可行的,使用的检索词) WPI, CPRS, Genbank

C. 相关文件

类型*	引用文件,必要时,包括相关段落的说明	相关的权利要求编号
X	CN, A, 1243878(本元正阳基因技术股份有限公司)	1-10
	09.2 月 2000,参见全文	
х		1-10
	WO, A2,0017377 (弗罗里达大学)	
	30.3 月 2000,参见全文	
1		

☐ 其余文件在 C 栏的续页中列出。

* 引用文件的专用类型:

- "A" 明确表示了一般现有技术、不认为是特别相关的文件
- "E" 在先文件,但是在国际申请目的同一门或之后公布的 "L"对优先权要求可能产生怀疑或者用来确定另一篇引用
- "O" 涉及口头公开、使用、展览或其他手段的文件
- "P" 在国际申请日之前但迟于所要求的优先权 | | 公布的文件

国际检索实际完成的日期

06.7月 2004(06.07.04)

□ 见同族专利附件。

- "T"在国际申请日或优先权日之后公布的在后文件,它与申请不 相抵触,但是引用它是为了理解构成发明基础的理论或原理
- "X"特别相关的文件,当该文件被单独使用时,要求保护的发明不能认为是新颖的或不能认为具有创造性
- "Y"特别相关的文件,当该文件与其他一篇或多篇这类文件结 合在一起,这种结合对本领域技术人员是显而易见的,要 求保护的发明不能认为具有创造性
- "&" 同族专利成员的文件。

国际检索报告邮寄日期

22 · 7月 2004 (2 2 · 0 7 · 2 0 0 4)

国际检索单位名称和邮寄地址

中国专利局

中国北京市海淀区西土城路 6 号(100088)

传真号:

86-010-62019451

受权官员:

潘爱群

电话号码: 86-10-62085349

国际检索报告 同族专利成员的情报

国际申请号 PCT/CN03/00861

检索报告中引用的 专利文件	公布日期	同族专利成员	公布日期
CN-A-1243878	09-02-00	无	
WO-A2-0017377	30-03-00	AU-A-200010949	10-04-00
	ļ		
			_
			,
	•		
	•		
	h		
	<u> </u>	<u> </u>	