

# 데이터시각화이해와실습

Lecture 04. 데이터 시각화 기초

동덕여자대학교 데이터사이언스 전공 권 범

# 목차

- ❖ 01. 기본 그래프 그리기 <-- 꺾은 선 그래프 <-- matplotlib
- ❖ 02. 크리스마스의 기온 변화를 그래프로 그리기
- ❖ 03. 기온 데이터를 다양하게 시각화하기 <-- 히스토그램

- 02. 크리스마스의 기온 변화를 그래프로 그리기
- 03. 기온 데이터를 다양하게 시각화하기

### ❖ 시각화 라이브러리

● 데이터 분석 목적에 따라 선택적으로 사용

| Basic |                  |                                                                                                                                                                      |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 시각화 라이브러리        | 특징                                                                                                                                                                   |
|       | 맷플롯립(Matplotlib) | 파이썬에서 가장 많이 사용하며, 데이터를 차트나 플롯으로 시각화하는 라이브<br>러리이다. 판다스의 데이터프레임을 바로 시각화할 때도 내부적으로 맷플롯립<br>을 사용한다. 맷플롯립은 데이터 분석 이전의 데이터 이해를 위한 시각화 또는<br>데이터 분석 이후의 결과를 시각화하기 위해 사용된다. |
|       | 시본(Seaborn)      | 맷플롯립을 기반으로 색 테마, 차트 기능 등을 추가해 주는 라이브러리이다. 맷플롯립과 함께 사용하며 히트맵, 카운트 플롯 등을 제공한다.                                                                                         |
|       | 폴리움(Folium)      | 지도 데이터를 이용하여 위치 정보를 시각화하는 라이브러리이다. 자바스크립<br>트 기반으로 상호작용의 그래프를 그릴 수 있다.                                                                                               |
|       | 파이치트(Pyecharts)  | 바이두(Baidu)에서 데이터 시각화를 위해 만든 파이썬 버전의 라이브러리이다.<br>다양한 그래프들이 내장되어 있고 자바스크립트 기반으로 상호작용의 그래프를<br>그릴 수 있다.                                                                 |
|       | 플로트나인(Plotnine)  | R의 ggplot2에 기반을 두어 그래프를 그려 주는 라이브러리이다. R 시각화 경험이 있다면 편리하게 사용할 수 있다.                                                                                                  |
|       | 플로틀리(Plotly)     | 상호작용 그래프를 그려 주는 라이브러리이다. R, 스칼라, 파이썬, 자바스크립트, 매트랩 등에서 사용할 수 있다. 사용이 쉽고 세련된 도구이며 온라인과 오프라인 버전이 따로 존재한다.                                                               |
|       | 보케(Bokeh)        | 맷플롯립의 대화형 버전으로, 다양한 기능을 제공하고 디자인이 훌륭하며 플롯<br>(축)들 간의 링크가 가능하다. 반면 시본에 비교하여 문법이 복잡하다는 단점이<br>있다.                                                                      |

### 시각화 라이브러리

[사진출처] 데이터 분석을 위한 전처리와 시각화 with 파이썬 (출판사: 길벗)

- ❖ matplotlib 라이브러리란? (1/7)
  - 파이썬으로 데이터를 시각화할 때 가장 많이 사용하는 라이브러리 중 하나
  - 2차원 형태의 그래프, 이미지 등을 그릴 때 사용
  - 실제 과학 컴퓨팅 연구 분야나 인공지능 연구 분야에서도 많이 활용



- ❖ matplotlib 라이브러리란? (2/7)
  - 어떤 그래프들을 그릴 수 있나요?

### **Basic Plot Types**



- ❖ matplotlib 라이브러리란? (3/7)
  - 어떤 그래프들을 그릴 수 있나요?



### Plots of Arrays and Fields



- ❖ matplotlib 라이브러리란? (4/7)
  - 어떤 그래프들을 그릴 수 있나요?



원 그래프, 파이 차트

- ❖ matplotlib 라이브러리란? (5/7)
  - 어떤 그래프들을 그릴 수 있나요?

### **Unstructured Coordinates**









- ❖ matplotlib 라이브러리란? (6/7)
  - matplotlib 홈페이지: <a href="https://matplotlib.org/">https://matplotlib.org/</a>



- ❖ matplotlib 라이브러리란? (7/7) pip install 라이브러리 이름(아나콘다는 기본 설치되어 있음)
  - matplotlib의 pyplot 모듈 불어오기
  - 1 import matplotlib.pyplot
  - 1 from matplotlib import pyplot
  - matplotlib 라이브러리의 pyplot 모듈을 'plt'라는 별명으로 부르기(alias)
  - 1 import matplotlib.pyplot as plt
  - 1 | from matplotlib import pyplot as plt

❖ 선 그래프 그리기: ① plt.plot([y축 데이터])

```
import matplotlib.pyplot as plt
plt.plot([10, 20, 30, 40])
plt.show()
```



- ✓ 현재 plt.plot()에 입력된 리스트 값은 y축 값임
- ✓ x축 값도 입력하고 싶다면 어떻게 해야 할까?

❖ 선 그래프 그리기: ② plt.plot([x축 데이터], [y축 데이터])

```
1 import matplotlib.pyplot as plt
2 plt.plot([1, 2, 3, 4], [12, 43, 25, 15])
3 plt.show()
```



- ✓ 첫 번째 리스트 값은 x축을 나타냄
- ✓ 두 번째 리스트 값은 y축을 나타냄

❖ 선 그래프 그리기: ② plt.plot([x축 데이터], [y축 데이터])

```
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [12, 43, 25, 15, 10])
plt.show()
```

#### 실행결과

```
ValueError Traceback (most recent call last)
<ipython-input-5-64a4c9281e2e> in <cell line: 2>()
        1 import matplotlib.pyplot as plt
----> 2 plt.plot([1, 2, 3, 4], [12, 43, 25, 15, 10])
        3 plt.show()
... (중략) ...
ValueError: x and y must have same first dimension, but have shapes (4,) and (5,)
```

x축 데이터와 y축 데이터의 개수가 같지 않으면, 오류가 발생함

### ❖ 그래프에 제목(Title) 추가하기

```
import matplotlib.pyplot as plt
plt.title("plotting")
plt.plot([10, 20, 30, 40])
plt.show()
```



❖ 그래프에 x축 및 y축 레이블(Label) 정보 추가하기

```
import matplotlib.pyplot as plt
plt.title("x and y labels")
plt.plot([10, 20, 30, 40])

plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.show()
```

#### 실행결과



다른 사람이 내가 만든 그래프를 봤을 때, 쉽게 이해할 수 있게 x, y축 레이블 정보를 추가하도록 하자

### ❖ 그래프에 범례(Legend) 추가하기

```
import matplotlib.pyplot as plt
plt.title("legend")
plt.plot([10, 20, 30, 40], label="ascending")
plt.plot([40, 30, 20, 10], label="descending")
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.legend()
plt.show()
```



- ✓ 경우에 따라서 그래프를 출력할 때, 흑백으로 출력하는 경우가 있음
- ✓ 이 경우, 색(Color)으로 범례를 구분하는 것이 어려울 수 있음

### ❖ 그래프 색상(Color) 바꾸기

```
import matplotlib.pyplot as plt
plt.title("color")
plt.plot([10, 20, 30, 40], label="skyblue", color="skyblue")

plt.plot([40, 30, 20, 10], label="pink", c="pink")

plt.xlabel("x-axis")

plt.ylabel("y-axis")

plt.legend()

plt.show()
```



- ✓ color 대신에 축약어인 c로도 특성 지정이 가능함
- ✓ 아래 색상에 대해서는 약자로 표기할 수 있음
- $\checkmark$  red  $\rightarrow$  r
- $\checkmark$  green → g
- √ blue → b
- $\checkmark$  black → k
- ✓ yellow → y

### ❖ 그래프 선 모양(Line Style) 바꾸기

```
import matplotlib.pyplot as plt
plt.title("linestyle")
plt.plot([10, 20, 30, 40], label="dashed", c='r', linestyle="--")
plt.plot([40, 30, 20, 10], label="dotted", c='b', ls=':')
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.legend()
plt.show()
```



- ✓ linestyle 대신에 축약어인 Is로도 특성 지정이 가능함
- ✓ '-', '--', '-:, ':', " 등의 선 모양을 지정할 수 있음

### ❖ 그래프 마커(Marker) 모양 바꾸기

```
import matplotlib.pyplot as plt
plt.title("marker")
plt.plot([10, 20, 30, 40], label="diamond", c='r', ls="--", marker='d')
plt.plot([40, 30, 20, 10], label="triangle up", c='b', ls=':', marker='^')
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.legend()
plt.show()
```



### ❖ 그래프 선 굵기(Line Width) 바꾸기

```
import matplotlib.pyplot as plt
plt.title("linewidth")
plt.plot([10, 20, 30, 40], label="thick", c='r', ls="--", marker='d', linewidth=3)
plt.plot([40, 30, 20, 10], label="thin", c='b', ls=':', marker='^', lw=0.5)
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.legend()
plt.show()
```



- ✓ linewidth 대신에 축약어인 lw로도 특성 지정이 가능함
- ✓ 원하는 실수 값으로 지정하면 됨

01. 기본 그래프 그리기

03. 기온 데이터를 다양하게 시각화하기

- ❖ ① 데이터에 질문하기 (1/2)
  - 매년 크리스마스의 최고 기온을 그래프로 그린다면 어떤 모양일까?
  - 데이터를 읽어와서 최고 기온 데이터를 출력해 보자

```
import csv

f = open("seoul.csv", encoding="cp949")

data = csv.reader(f)

header = next(data)

for row in data:
    print(row[4])

f.close()
```

### ❖ ① 데이터에 질문하기 (2/2)

● 최고 기온 데이터를 리스트에 저장하자

```
import csv
  f = open("seoul.csv", encoding="cp949")
  data = csv.reader(f)
  header = next(data)
                                # 최고 기온 데이터를 저장할 리스트 생성
  result = []
  for row in data:
                          # 최고 기온 데이터가 존재한다면
    if row[4] != ":
      result.append(float(row[4])) # result 리스트에 최고 기온 값을 추가
10
11
  f.close()
13
  print(len(result))
  print(result)
```

### ❖ ② 데이터 시각화하기 (1/4)

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   header = next(data)
  result = []
   for row in data:
10
     if row[4] != ":
       result.append(float(row[4]))
11
12
   f.close()
14
   plt.plot(result, 'r')
16 | plt.xlabel("Day")
   plt.ylabel("The Highest Temperature")
   plt.show()
```

❖ ② 데이터 시각화하기 (2/4)



### ❖ ② 데이터 시각화하기 (3/4)

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   header = next(data)
  result = []
   for row in data:
10
     if row[4] != ":
       result.append(float(row[4]))
12
                                            ✓ figsize=(가로 길이, 세로 길이)
13 | f.close()
                                             ✓ 길이의 단위: 인치(Inch)
   plt.figure(figsize=(10, 2))
                                            ✓ 1 inch = 2.54 cm
   plt.plot(result, 'r')
16 | plt.xlabel("Day")
17 | plt.ylabel("The Highest Temperature")
18 plt.show()
```

❖ ② 데이터 시각화하기 (4/4)



그래프를 크게 해봐도 의미를 파악하는 것이 어려움

- ❖ ③ 날짜 데이터 추출하기 (1/16)
  - 매년 크리스마스(12월 25일)의 최고 기온 데이터를 추출하기 위해서 우선 '2020-12-25' 같은 형태의 날짜 데이터를 '-'를 기준으로 년, 월, 일로 분리해야 함
  - 파이썬이 제공하는 split() 함수를 이용해, 분리해 보자

```
1 s = "Happy New Year!"
2 print(s.split())
```

#### 실행결과

['Happy', 'New', 'Year!']

split() 함수는 사용자가 설정하는 특정 문자가 없다면, 기본적으로 공백 문자를 기준으로 문자열을 분리함

### ❖ ③ 날짜 데이터 추출하기 (2/16)

● split() 함수를 이용하여 '2020-12-25' 같은 형태의 날짜 데이터를 '-'를 기준으로 년, 월, 일로 분리해 보자

```
1 date = "2000-12-25"
2 print(date.split('-'))
```

```
['2000', '12', '25']
```

### ❖ ③ 날짜 데이터 추출하기 (3/16)

● 리스트의 인덱싱(Indexing) 기능을 활용하여, 날짜의 년, 월, 일 정보를 각각 추출해 보자

```
1 date = "2000-12-25"
2 print(date.split('-')[0])
3 print(date.split('-')[1])
4 print(date.split('-')[2])
```

#### 실행결과

2000

12

25

### ❖ ③ 날짜 데이터 추출하기 (4/16)

● split() 함수를 이용하여, 매년 12월의 최고 기온 데이터만 추출하여 그래프로 그려 보자

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   header = next(data)
  |result = []
   for row in data:
     if row[4] != ":
10
       if row[0].split('-')[1] == "12":
11
12
         result.append(float(row[4]))
13
14 | f.close()
   plt.figure(figsize=(10, 2))
16 | plt.plot(result, 'r')
17 | plt.xlabel("Day")
18 | plt.ylabel("The Highest Temperature")
   plt.show()
```

❖ ③ 날짜 데이터 추출하기 (5/16)



### ❖ ③ 날짜 데이터 추출하기 (6/16)

● split() 함수를 이용하여, 매년 12월 25일의 최고 기온 데이터만 추출하여 그래프로 그려 보자

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   header = next(data)
  |result = []
   for row in data:
     if row[4] != ":
10
       if row[0].split('-')[1] == "12" and row[0].split('-')[2] == "25":
11
12
         result.append(float(row[4]))
13
14 | f.close()
   plt.figure(figsize=(10, 2))
16 | plt.plot(result, 'r')
17 | plt.xlabel("Day")
18 | plt.ylabel("The Highest Temperature")
   plt.show()
```

❖ ③ 날짜 데이터 추출하기 (7/16)



### ❖ ③ 날짜 데이터 추출하기 (8/16)

● 매년 12월 25일의 평균, 최저, 최고 기온 데이터로 그래프를 그려 보자

```
import csv
  import matplotlib.pyplot as plt
  f = open("seoul.csv", encoding="cp949")
  data = csv.reader(f)
  header = next(data)
   mean = [] # 평균 기온 데이터를 저장할 리스트 생성
  |low = [] # 최저 기온 데이터를 저장할 리스트 생성
   high = [] # 최고 기온 데이터를 저장할 리스트 생성
10
  for row in data:
11
    if row[4] != ":
12
      if row[0].split('-')[1] == "12" and row[0].split('-')[2] == "25":
13
        mean.append(float(row[2]))
14
        low.append(float(row[3]))
15
        high.append(float(row[4]))
16
  f.close()
18
19
```

#### ❖ ③ 날짜 데이터 추출하기 (9/16)

```
plt.figure(figsize=(10, 2))
plt.plot(mean, 'k')
plt.plot(low, 'b')
plt.plot(high, 'r')
plt.xlabel("Day")
plt.ylabel("Temperature")
plt.show()
```

#### 실행결과



- ❖ ③ 날짜 데이터 추출하기 (10/16)
  - 그래프를 다듬어 보자
  - 한글 폰트 사용하기(Windows 기준)
    - ◆ Malgun Gothic은 "맑은 고딕"임
    - ◆ 만약 macOS 운영체제를 사용하고 있다면, "AppleGothic"이라고 쓰면 됨

```
1 plt.rc("font", family="Malgun Gothic")
2 plt.title("크리스마스의 기온 변화 그래프")
```

- ◆ 한글 폰트 사용시 마이너스 부호 표현하기
- 1 plt.rcParams["axes.unicode\_minus"] = False

- ❖ ③ 날짜 데이터 추출하기 (11/16)
  - 그래프를 다듬어 보자

```
plt.figure(figsize=(10, 4))
plt.rc("font", family="Malgun Gothic")
plt.rcParams["axes.unicode_minus"] = False
plt.title("크리스마스의 기온 변화 그래프")
plt.plot(mean, 'k', label="mean")
plt.plot(low, 'b', label="low")
plt.plot(high, 'r', label="high")
plt.xlabel("Day(December 25)")
plt.ylabel("Temperature")
plt.legend()
plt.grid()
31 plt.show()
```

코랩(Colab)은 Linux 운영체제를 사용하고 있어, 나눔 폰트를 설치해야 에러 없이 실행됨

WARNING:matplotlib.font\_manager:findfont: Font family 'Malgun Gothic' not found.

❖ ③ 날짜 데이터 추출하기 (12/16)



- ❖ ③ 날짜 데이터 추출하기 (13/16)
  - 연평균 기온 변화 그래프를 그려 보자

```
import csv
  import matplotlib.pyplot as plt
  f = open("seoul.csv", encoding="cp949")
  data = csv.reader(f)
  header = next(data)
              # 연도 데이터를 저장할 리스트 생성
  year = []
  day = [] # 1년 단위로 일별 평균기온 데이터를 저장할 리스트 생성
               # 연평균 기온을 저장할 리스트 생성
  mean = []
11
12
13
14
         다음 슬라이드로 넘어가기 전에, 연평균 기온 변화 그래프를 그리려면
15
                   어떻게 코드를 작성해야 하는지 고민해 보자
16
17
18
19
```

#### ❖ ③ 날짜 데이터 추출하기 (14/16)

```
| for row in data:
    y = int(row[0].split('-')[0]) # 연도 데이터 추출
    if y not in [1907, 1950, 1951, 1952, 1953, 2024]:
22
      if row[2] != '': # 평균기온 데이터가 결측치가 아니라면
23
24
        day.append(float(row[2]))
        if row[0].split('-')[1] == "12" and row[0].split('-')[2] == "31":
25
          # 12월 31일이 되면, 지금까지 day 리스트에 저장했던 평균기온 데이터의
26
          # 평균 값을 계산해 mean 리스트에 추가
27
          mean.append(sum(day)/len(day))
28
          year.append(y)# 연도 데이터 y를 year 리스트에 추가day = []# 다음 연도 계산을 위해, 리스트를 비움
29
30
31
     elif y == 2024:
32
      break
33
   f.close()
34
35
36
37
38
39
```

#### ❖ ③ 날짜 데이터 추출하기 (15/16)

```
plt.figure(figsize=(10, 4))
plt.rc("font", family="Malgun Gothic")

plt.rcParams["axes.unicode_minus"] = False

plt.title("연평균 기온 변화 그래프")

plt.plot(year, mean, 'k', marker='d')

plt.xlabel("Year")

plt.ylabel("Average Temperature")

plt.grid()

plt.show()
```

❖ ③ 날짜 데이터 추출하기 (16/16)



서울의 연평균 기온이 상승하고 있음을 알 수 있음

- 1. 히스토그램
- 2. 상자 그림 Box plot

- 01. 기본 그래프 그리기
- 02. 크리스마스의 기온 변화를 그래프로 그리기

- ❖ ① 데이터에 질문하기
  - 아래 그래프는 최고 기온 데이터를 추출하여 그린 결과임



이 그래프만 봐서는 특별한 정보를 얻을 수가 없음. 꺾은선 그래프가 아닌 다른 형태로 시각화 하면 어떨까?

#### ❖ ② 히스토그램 (1/6)

- 히스토그램(Histogram)은 데이터의 분포 상태를 직사각형 모양의 막대 그래프로 나타냄
- 데이터의 빈도에 따라 직사각형의 높이가 결정됨 → hist() 함수

```
import matplotlib.pyplot as plt
plt.figure()
plt.hist([1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 10])
plt.show()
```

#### 실행결과



- ❖ ② 히스토그램 (2/6)
  - 주사위 시뮬레이션
    - ◆ Step 1) 주사위를 굴림 1과 6사이의 랜덤 숫자를 만듦
    - ◆ Step 2) 나온 결과를 기록함

리스트에 저장함

◆ Step 3) Steps 1-2의 과정을 n번 반복함

for 반복문

◆ Step 4) 주사위의 눈이 나온 횟수를 히스토그램으로 그림

- ❖ ② 히스토그램 (3/6)
  - 1과 6사이의 랜덤 숫자 만들기
  - 1 import random
    2 print(random.randint(1, 6))

#### 실행결과

2

1

매 실행마다 값이 달라짐

#### ❖ ② 히스토그램 (4/6)

● 주사위 시뮬레이션 5회 수행하기

```
import random
dice = []
for j in range(5):
    dice.append(random.randint(1, 6))

print(dice)
```

#### 실행결과

[4, 1, 2, 1, 6]

매 실행마다 값이 달라짐

#### ❖ ② 히스토그램 (5/6)

● 주사위 시뮬레이션 5회 수행 결과를 히스토그램으로 시각화하기

```
import random
import matplotlib.pyplot as plt
dice = []
for j in range(5):
    dice.append(random.randint(1, 6))

plt.figure()
plt.hist(dice, bins=6)
plt.show()
```





- ❖ ② 히스토그램 (6/6)
  - range(5)를 range(100), range(1000000)으로 수정하여, 히스토그램 결과를 확인해 보자



주사위를 던지는 횟수가 늘어날 수록 주사위의 특정 숫자가 나오는 횟수가 전체의 1/6에 가까워 짐을 알 수 있음

큰 수의 법칙(Law of Large Numbers, LLN)

- ❖ ③ 기온 데이터를 히스토그램으로 표현하기 (1/6)
  - 최고 기온 데이터를 히스토그램으로 시각화하기

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   next(data)
   result = []
   for row in data:
     if row[4] != ":
10
       result.append(float(row[4]))
11
12
   f.close()
13
14
   plt.figure()
   plt.hist(result, bins=100, color='r')
   plt.show()
```

❖ ③ 기온 데이터를 히스토그램으로 표현하기 (2/6)



- ❖ ③ 기온 데이터를 히스토그램으로 표현하기 (3/6)
  - 8월의 최고 기온 데이터를 히스토그램으로 시각화하기

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   next(data)
   aug = []
   for row in data:
     month = row[0].split('-')[1]
10
     if row[4] != ":
11
       if month == "08":
         aug.append(float(row[4]))
13
14
   f.close()
16
   plt.figure()
   plt.hist(aug, bins=100, color='r')
   plt.show()
```

❖ ③ 기온 데이터를 히스토그램으로 표현하기 (4/6)



- ❖ ③ 기온 데이터를 히스토그램으로 표현하기 (5/6)
  - 1월과 8월의 최고 기온 데이터를 히스토그램으로 시각화하기

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   next(data)
   jan, aug = [], []
   for row in data:
10
     month = row[0].split('-')[1]
     if row[4] != ":
11
       if month == "01":
12
         jan.append(float(row[4]))
13
       elif month == "08":
14
15
         aug.append(float(row[4]))
16
   f.close()
18
19
```

❖ ③ 기온 데이터를 히스토그램으로 표현하기 (6/6)

```
plt.figure()
plt.hist(jan, bins=100, color='b', label="January")
plt.hist(aug, bins=100, color='r', label="August")
plt.legend()
plt.show()
```

#### 실행결과



#### ❖ ④ 기온 데이터를 상자 그림으로 표현하기 (1/11)

● 상자 그림(Boxplot)은 데이터에서 얻어낸 최대값, 최소값, 상위 1/4, 2/4(중앙), 3/4에 위치한 값을 보여주는 그래프임

```
import matplotlib.pyplot as plt
import random

result = []
for j in range(13):
    result.append(random.randint(1,1000))

print(sorted(result))

plt.figure()
plt.boxplot(result)
plt.show()
```

❖ ④ 기온 데이터를 상자 그림으로 표현하기 (2/11)



- ❖ ④ 기온 데이터를 상자 그림으로 표현하기 (3/11)
  - 최고 기온 데이터를 상자 그림으로 시각화하기

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   next(data)
   result = []
   for row in data:
     if row[4] != ":
10
       result.append(float(row[4]))
11
12
13
   f.close()
14
   plt.figure()
   plt.boxplot(result)
   plt.show()
```

❖ ④ 기온 데이터를 상자 그림으로 표현하기 (4/11)



- ❖ ④ 기온 데이터를 상자 그림으로 표현하기 (5/11)
  - 1월과 8월의 최고 기온 데이터를 상자 그림으로 시각화하기

```
import csv
   import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   next(data)
   jan, aug = [], []
   for row in data:
     month = row[0].split('-')[1]
10
     if row[4] != ":
11
       if month == "01":
12
13
         jan.append(float(row[4]))
       elif month == "08":
14
15
         aug.append(float(row[4]))
16
   f.close()
18
19
```

❖ ④ 기온 데이터를 상자 그림으로 표현하기 (6/11)

```
plt.figure()
plt.boxplot(jan)
plt.boxplot(aug)
plt.show()
```

#### 실행결과



사분범위(IQR) = 3사분위 - 1사분위 1사분위 - IQR \* 1.5 3사분위 + IQR \* 1.5

1월과 8월 데이터를 분리하여 표현할 순 없을까?

- ❖ ④ 기온 데이터를 상자 그림으로 표현하기 (7/11)
  - 1월과 8월의 최고 기온 데이터를 분리하여 상자 그림으로 시각화하기

```
plt.figure()
plt.boxplot([jan, aug])
plt.show()
```

#### 실행결과



- ❖ ④ 기온 데이터를 상자 그림으로 표현하기 (8/11)
  - 1월부터 12월까지의 최고 기온 데이터를 상자 그림으로 시각화하기

```
import csv
  import matplotlib.pyplot as plt
  f = open("seoul.csv", encoding="cp949")
  data = csv.reader(f)
  next(data)
  # 월별 데이터를 저장할 리스트 month (12개 생성)
         for row in data:
    if row[4] != ":
10
      # 월과 같은 번호의 인덱스에 월별 데이터를 추가(예: 1월 → month[0])
11
      month[int(row[0].split('-')[1])-1].append(float(row[4]))
12
13
  f.close()
15
  plt.figure()
  plt.boxplot(month)
  plt.show()
```

❖ ④ 기온 데이터를 상자 그림으로 표현하기 (9/11)



- ❖ ④ 기온 데이터를 상자 그림으로 표현하기 (10/11)
  - 1월 일별 기온 데이터를 상자 그림으로 시각화하기

```
import csv
  import matplotlib.pyplot as plt
   f = open("seoul.csv", encoding="cp949")
   data = csv.reader(f)
   next(data)
   day = []
   for _ in range(31):
     day.append([])
10
   for row in data:
12
     if row[4] != ":
       if row[0].split('-')[1] == "01":
13
         # 일과 같은 번호의 인덱스에 일별 데이터 추가(예: 1일 → day[0])
14
15
         day[int(row[0].split('-')[2])-1].append(float(row[4]))
16
   f.close()
18
19
```

❖ ④ 기온 데이터를 상자 그림으로 표현하기 (11/11)

```
20 plt.style.use("ggplot") # 그래프 스타일 지정
21 plt.figure(figsize=(10, 5)) # 그래프 크기 수정
22 plt.boxplot(day, showfliers=False) # 이상치(Outlier) 표시 생략
23 plt.show()
```



# 끝맺음

- ❖ 01. 기본 그래프 그리기
- ❖ 02. 크리스마스의 기온 변화를 그래프로 그리기
- ❖ 03. 기온 데이터를 다양하게 시각화하기

# THANK YOU! Q & A

■ Name: 권범

■ Office: 동덕여자대학교 인문관 B821호

Phone: 02-940-4752

■ E-mail: <u>bkwon@dongduk.ac.kr</u>