Ecole Nationale Supérieure de Techniques Avancées Paris PRB202 - Martingales et Algorithmes Stochastiques PC5 - 16 décembre 2019

Exercice 1: Ruine du joueur

Un joueur et un casino se livrent à une partie de pile ou face avec une pièce non nécessairement équilibrée; on note p la probabilité d'apparition de pile lors d'un jet.

Le joueur reçoit un euro du casino s'il obtient pile et en donne un dans le cas contraire.

Sa fortune initiale est de $a \in \mathbb{N}^*$ euros et celle du casino de $b \in \mathbb{N}^*$ euros; les parties se poursuivent jusqu'à épuisement du capital du joueur ou de celui du casino.

On modélise ce jeu de la manière suivante : si $(X_n)_{n\geq 1}$ est une suite de variables aléatoires indépendantes et de même loi telles que $\mathbb{P}(X_n=1)=p$ et $\mathbb{P}(X_n=-1)=q=1-p$, X_n , $n\geq 1$ représente le gain algébrique du joueur pour le $n^{\text{ième}}$ lancer.

En posant $S_0 = 0$ et $S_n = \sum_{i=1}^n X_i$, pour tout $n \ge 1$, S_n constitue alors le total des gains accumulés par le joueur après n parties (pour un jeu qui ne s'arrête pas).

Nous poserons $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, pour tout $n \ge 1$.

- 1. Déterminer la nature du processus $(S_n)_{n\in\mathbb{N}}$ suivant les valeurs de p.
- 2. Soit τ le numéro de la dernière partie avant la fin du jeu, soit $\tau = \inf\{n \in \mathbb{N}^*; S_n \in \{-a, b\}\}$. Montrer que τ est un $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -temps d'arrêt.
- 3. On suppose dans cette question que $p=q=\frac{1}{2}$.
 - (a) Montrer que $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable et préciser son crochet $(\langle S \rangle_n)_{n\in\mathbb{N}}$.
 - (b) A l'aide du théorème central-limite, démontrer que $\mathbb{P}(\tau < +\infty) = 1$.
 - (c) Prouver que $(S_{\tau \wedge n})_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale uniformément intégrable.
 - (d) Calculer alors la valeur de $\mathbb{P}(S_{\tau} = -a)$.
 - (e) Montrer que $(S_{\tau \wedge n}^2 \langle S \rangle_{\tau \wedge n})_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale uniformément intégrable et en-déduire $\mathbb{E}[\tau]$.
- 4. On considère maintenant le cas où p > q.
 - (a) Ecrire la décomposition de Doob de la $(\mathcal{F}_n)_{n\in\mathbb{N}}$ sous-martingale $(S_n)_{n\in\mathbb{N}}$ et déterminer son compensateur noté $(A_n)_{n\in\mathbb{N}}$.
 - (b) En appliquant la loi des grands nombres, montrer que τ est un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -temps d'arrêt fini presque-sûrement.
 - (c) On définit pour tout s > 0, le processus $(U_n)_{n \in \mathbb{N}}$ par, quel que soit $n \in \mathbb{N}$, $U_n = s^{S_n}$. Déterminer s pour que $(U_n)_{n \in \mathbb{N}}$ soit une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale non constante.
 - (d) Vérifier alors que $(U_{\tau \wedge n})_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale uniformément intégrable.
 - (e) En-déduire la probabilité de ruine du joueur, soit $\mathbb{P}(S_{\tau} = -a)$, et calculer $\mathbb{E}[\tau]$, le temps moyen du jeu.

Exercice 2: Processus de branchement

Soit $(U_k^n)_{(n,k)\in(\mathbb{N}^*)^2}$ une suite de variables aléatoires indépendantes et de même loi, de carré intégrable et à valeurs dans \mathbb{N} . Notons $\mu=\mathbb{E}[U_1^1]$ et $\mathrm{Var}(U_1^1)=\sigma^2$; dans la suite, on supposera que $\mu>0$.

On considère alors le modèle démographique suivant : la population à l'instant n, soit Z_n , $n \in \mathbb{N}$ est

définie par : $Z_0 = 1$ puis $Z_{n+1} = 0$ si $Z_n = 0$ et $Z_{n+1} = \sum_{k=1}^{Z_n} U_k^{n+1}$, dans le cas contraire. Autrement

dit, le $k^{\text{ième}}$ individu vivant à l'instant $n, k \in \{1, \dots, Z_n\}$, donne naissance à U_k^{n+1} descendants puis disparaît.

Définissons la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ par $\mathcal{F}_0=\{\emptyset,\Omega\}$ et $\mathcal{F}_n=\sigma(U_k^l;1\leq l\leq n\,,k\geq 1)\,$, pour tout $n\geq 1$ et considérons le processus $(X_n)_{n\in\mathbb{N}}$ donné par $X_n=\frac{Z_n}{\mu^n}$, quel que soit $n\in\mathbb{N}$.

- 1. Montrer que pour tout $(n,s) \in (\mathbb{N}^*)^2$, $\mathbb{E}[Z_{n+1}\mathbf{1}_{\{Z_n=s\}}|\mathcal{F}_n] = \mu s \mathbf{1}_{\{Z_n=s\}}$. En-déduire que : $\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mu Z_n$, quel que soit $n \in \mathbb{N}$.
- 2. Démontrer de la même manière que $\mathbb{E}[Z_{n+1}^2|\mathcal{F}_n] = \sigma^2 Z_n + \mu^2 Z_n^2$, pour tout $n \in \mathbb{N}$.
- 3. En-déduire, pour tout $n \in \mathbb{N}$, les valeurs de $\mathbb{E}[Z_n]$ et $\mathbb{E}[Z_n^2]$.
- 4. Démontrer que $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale de carré intégrable et calculer son crochet $(\langle X \rangle_n)_{n\in\mathbb{N}}$.
- 5. Montrer que $(X_n)_{n\in\mathbb{N}}$ converge presque-sûrement vers une variable aléatoire intégrable X_∞ .
- 6. Démontrer que, si $\mu > 1$, alors $(X_n)_{n \in \mathbb{N}}$ converge dans L^2 .
- 7. On suppose dans cette question que $\mu=1$ et $\mathbb{P}(U_k^n=1)<1$, pour tout $(n,k)\in(\mathbb{N}^*)^2$.
 - (a) Introduisons la fonction génératrice, notée ϕ , des variables aléatoires U_k^n , $(n,k) \in (\mathbb{N}^*)^2$. Montrer que, pour tout $m \geq 1$, si $p_m = \mathbb{P}\left(\sum_{k=1}^m U_k^n = m\right) = 1$, alors $\phi(t) = t$, pour tout $t \in [0,1]$.
 - En-déduire que $p_m < 1$, quel que soit $m \ge 1$.
 - (b) On pose $\tilde{\Omega} = \bigcup_{N \geq 1} \cap_{n \geq N} \{X_n = X_\infty\}$; démontrer que $\mathbb{P}(\tilde{\Omega}) = 1$.
 - (c) Déduire de ce qui précède que $\mathbb{P}(X_{\infty}=m)=0$, pour tout entier $m\geq 1$. La martingale $(X_n)_{n\in\mathbb{N}}$ est-elle uniformément intégrable dans ce cas?