Worksheet for the determination of the absorbed dose to water in a high-energy photon-beam

31/03/2025

CLINICA AUNA CHICLAYO Date:

User:

1. Radiation treatment unit and reference conditions for $D_{w,Q}$ determination Accelerator: **Infinity Chiclayo** Nominal Acc Potential: 6 (FFF) MV MU min⁻¹ Beam quality, Q (TPR 20,10) Nominal dose rate: 600.0 0.6791 Reference phantom: Set up: water Reference field size: 10 Reference distance: 10 cm x cm cm g cm⁻² Reference depth z_{ref} : 10.0 2. Ionization chamber and electrometer Serial No.: **270315003** Ion. chamber model g cm⁻² Chamber wall material: **PMMA** thickness: 0.078 g cm⁻² Waterproof sleeve material: thickness: g cm⁻² Phantom window material: thickness: Abs. dose-to-water calibration factor a 0.286 Calibration quality Q₀: Calibration depth: 5 If Q_0 is photons, give $TPR_{20,10}$: Reference conditions for calibration P₀: **101.3** kPa T_0 : Rel. humidity: Polarizing potential V_1 : Calibration polarity: User polarity: Calibration laboratory: **LSCD IPEN** Date: 26-Jun-24 Electrometer model: PC ELECTROMETER Serial no.: 270267006 Calib. separately from chamber: Range setting: If yes Calibration laboratory: Date: 3. Dosimetry reading b and correction for influence quantities Uncorrected dosimeter reading at V_1 and user polarity: 2.339 Corresponding accelerator monitor units: 100 MU Ratio of dosimeter reading and monitor units: 0.0234 $M_1 =$ (i) P: **100.7** kPa T: **23.5** °C Rel. humidity: 50 1.018 Electrometer calibration factor k_{elec}: Polarity correction ^a rdg at $+V_1$: $M_{+} =$ 2.206 rdg at $-V_1$: 2.220 1.003

(iv) Recombination correction (two-voltage method)
Polarizing voltages:
$$V_1$$
 (normal) = -300 V_2 (reduced) = -150 V_3 (reduced) = -150 V_4 (reduced) = -

Corrected dosimeter reading at the voltage V_1 :

2.4028E-02

4. Absorbed dose rate to water at the reference depth, z_{ref}

Beam quality corr. factor for user quality Q:

0.9901

6.8041E-03 Gy / MU

5. Absorbed dose rate to water at the depth of dose maximum, z_{max}

Depth of dose maximum:

 $z_{max} =$ **17.00** g cm⁻²

(i) SSD set-up

taken from

Percentage depth-dose at z_{ref} for a 10 cm x cm field size

$$PDD(z_{ref} = 10.0 \text{ g cm}^{-2}) = 67.72$$
 %

Absorbed-dose rate at z_{max} :

1.0047E-02 Gy / MU

(ii) SAD set-up

TMR at z_{ref} for a 10 cm x 10 cm field size:

$$TMR(z_{ref} = 10.0 \text{ g cm}^{-2}) =$$

Absorbed-dose rate at z_{max} :

Gy / MU

Notes:

300	-150	-300
-2.22	2.193	2.208
-2.22	2.193	2.205
-2.219	2.193	2.205
-2.220	2.193	2.206

0.006

0.006

^a Note that if Q $_{\it 0}$ is ⁶⁰Co, $N_{\it D,w,Qo}$ is denoted $N_{\it D,w}$

^b All readings should be checked for leakage and corrected if necessary

^d M in the denominator of K_{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M_+ or M_-) to the reading of an external monitor, M_{em} .

^e Strictly, readings should be corrected for polarity effect (average with both polarities). Preferably, each reading in the equation should be the average of the ratios of M_1 or M_2 to the reading of an external monitor, M_{em} .

 $^{^{\}rm f}$ It is assumed that the calibration laboratory has performed a recombination correction. Otherwise the factor should be used instead of k_s . When Q_0 is 60 Co, k_s , $_{QO}$ (at the calibration laboratory) will normally be close to unity and the effect of not using this equation will be negligible in most cases.

g Check that