Approximation Theory: Cheat Sheet for Midterm

Caleb Derrickson

April 15, 2024

Contents

1	Inti	roduction	2	
2	General Principles			
	1	Haar subspaces	5	
3	Continuous Functions			
	1	Chebyshev Polynomials	7	
	2	Regularity and Decay	9	
	3	Analyticity	9	
4	Interpolation		9	
	1	Lagrange Interpolation	9	
	2	The witch of Agnesi	10	

Introduction

- Errors for smooth functions accumulates and are due to the endpoints.
- If f is periodic as well as its derivatives and smooth, then the trapezoid rule if very good.

Schauder Basis:

A sequence $\{v_j\}_{j=1}^{\infty}$ in a Banach Space X is a Schauder basis if for all $v \in X$ there exists unique coefficients $\alpha_1, \alpha_2, \ldots$ (not finite!) such that

$$v = \sum_{j=1}^{\infty} \alpha_j v_j,$$

where implicitly we require the sum on the right hand side to converge.

Schauder Basis Bound:

Suppose $\{v_j\}_{j=1}^{\infty}$ is a Schauder basis of the Banach space X. Then there exists a constant M such that for all $v \in X$,

$$\left\| \sum_{j=1}^{N} \alpha_j v_j \right\| \le M \|v\|$$

for all N=1,2,... The minimal such bound M, which should hold for all N is called the basis constant.

- A Schauder Basis for a Banach space X does not always exist! A necessary condition for a Schauder basis to exist is for the space to be separable.
- There is an isomorphism from the Banach Space X to a new space, the set of coefficients of the Schauder basis expansion. This is a Banach Space, denoted E.
- The N-th partial sum of the Schauder basis expansion, $S_N(v)$, is a projection onto the first N Schauder bases. Note that S_N is uniformly bounded.

Orthogonal Basis Properties for Hilbert Spaces:

Let $\{v_j\}_{j=1}^{\infty}$ be an orthogonal system. The following are equivalent:

- 1. $\sum_{j} \alpha_{j} v_{j}$ converges in \mathcal{H} .
- 2. $\sum_{j} |\alpha_{j}|^{2} ||v_{j}||^{2} < \infty$.
- 3. $\sum_j \alpha_j v_j$ converges unconditionally
- 4. If there is convergence, then

$$\left\| \sum_{j} \alpha_{j} v_{j} \right\|^{2} = \sum_{j} |\alpha_{j}|^{2} \|v_{j}\|^{2}$$

Fourier Series are good:

Among all convergent sequences $s = \sum_j \alpha_j v_j$, ||v - s|| is minimized by the Fourier series of v. The same is true of partial sums.

• Given a Banach Space E, the linear operator $P:E\to E$ is called a projection if it is bounded and idempotent.

Projections to Subspaces:

Suppose $P: E \to E$ is a projection and the range of P is a subspace V of E. Then V is a closed subspace of E, and $V = \ker(\mathbb{I}_E - P)$

• $\mathbb{I} - P$ and P^* are also projections, since they are bounded and idempotent.

Projection Shenanigans:

Let $P,Q:E\to E$ be two projections. Define the operator $P\oplus Q=P+Q-PQ$. Suppose PQP=QP. Then,

- 1. $P \oplus Q$ is a projection onto range(P) + range(Q).
- 2. QP is a projection onto $range(P) \cap range(Q)$.

General Principles

- If U is an n-dimensional subspace of a Banach space E, then there exists a projection $P: E \to U$ with norm at most n.
- Given v ∈ X, let P_A(v) denote the set of nearest points to v in A, i.e., the set of best approximations to v in A.

$$P_A(v) := \{ u_0 \in A : ||v - u_0|| = d(v, A) = \inf_{u \in A} ||v - u|| \}$$

- A set A is called an existence set if $P_A(v)$ is nonempty for all $v \in A$, and is a uniqueness set if $|P_A(v)| \le 1$. If the set is both an existence and uniqueness set, then it is called a Chebyshev set.
- Existence sets are closed. Being closed does not imply existence.

If A is convex, then $P_A(v)$ is convex.:

Proof: Given $v \in X$, suppose $u_0, u_1 \in P_A(v)$. For any $\lambda \in [0, 1]$, set $u_\lambda = \lambda u_0 + (1 - \lambda)u_1$. Then,

$$||v - u_{\lambda}|| = ||\lambda(v - u_0) + (1 - \lambda)(v - u_1)||$$

$$\leq \lambda ||v - u_0|| + (1 - \lambda)||v - u_1||$$

$$= d(v, A)$$

Kolmogorov Criterion:

Suppose M is a convex set in a Banach space X, and $v \in X$, $v \notin \overline{M}$. Then u_0 is a best approximation to v in M if and only if there is a linear functional $\ell \in X^*$ satisfying the following conditions:

- 1. $\|\ell\|_{x^*} = 1$,
- $2. \ \ell(v u_0) = ||v u_0||,$
- 3. $\operatorname{Re}[\ell(u-u_0)] \leq 0$ for all $u \in M$.

Haar subspaces

- A Haar subspace M is an n-dimensional subspace of $C(\Omega)$ such that any $u \in M$ has at most n-1 zeros in Ω .
- M is an n dimensional Haar subspace if and only if for any n points $x_1, ..., x_n \in \Omega$ and $\beta_1, ..., \beta_n \in \mathbb{C}$, the interpolation problem:

Find
$$u \in M$$
 such that $u(x_i) = \beta_i, i = 1, ..., n$

always has a solution.

• Another equivalent phrasing is for any given basis $u_1, ..., u_n$, the $n \times n$ matrix Φ defined by $(\Phi)_{i,j} = u_j(x_i)$ is invertible for any distinct points $x_1, ..., x_n$.

Haar's uniqueness theorem (Not Important):

If Ω is locally compact, then a finite dimensional subspace M of $C(\Omega)$ has a unique best approximation in M, i.e., M is a Chebyshev set.

Marihuber-Curtis Theorem:

Suppose $\Omega \subset \mathbb{R}^d$, $d \geq 2$ contains an interior points. Then there is no Haar subspace of $C(\Omega)$ of dimension ≥ 2 .

Continuous Functions

• Do not need to regurgitate the following proof:

Stone-Weierstrass:

Let X be a compact metric space and \mathcal{A} be a subalgebra of C(X). If \mathcal{A} separates points in X and vanishes at no point in X, then \mathcal{A} is dense in C(X). Here \mathcal{A} and C(X) consists of real valued functions.

- Basically, all we need to know is that A separates points, vanishes nowhere, and is closed under addition and multiplication.
- Also, helps to know the general layout. Argument by compactness, and reduces to approximating the absolute value function.
- $\max\{a,b\} = \frac{a+b}{2} + \frac{|a-b|}{2}$.

Weierstrass Approximation Theorem:

For any $f \in C([0,1])$ and $\varepsilon > 0$ there exists a polynomial p such that $||f - p|| < \varepsilon$.

• Bernstein Polynomials for 1, x are fair game. Compute them for practice.

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

The Equioscillation Theorem:

The space of polynomials of degree at most n on [-1,1], which we denote by P_n is a Chebyshev set in C[-1,1], i.e., a best approximation always exists and is always unique. Moreover, if f is real, the best approximation p^* is real, and $f-p^*$ equioscillate in at least n+2 extreme points. That is to say, there exists ordered points $x_0, x_1, ..., x_{n+1} \in [-1, 1]$ such that

$$p^*(x_i) - f(x_i) = -[p^*(x_{i+1}) - f(x_{i+1})], \quad i = 0, ..., n$$

and
$$|p^*(x_i) - f(x_i)| = ||p^* - f||_{\infty}$$
 for all $i = 0, ..., n + 1$.

• The only thing should know to prove is uniqueness. It goes like this: Suppose p and q are both optimal polynomials. Set r = (p+q)/2. By the equioscillation characterization, there exists points $-1 \le x_0 < x_1 < ... < x_{n+1} \le 1$ for with $(f-r)(x_i) = (-1)^{i-1} ||f-r||$ for all i=0,...,n+1. But,

$$|f(x_i) - r(x_i)| = \left| \frac{1}{2} (f(x_i) - p(x_i)) + \frac{1}{2} (f(x_i) - q(x_i)) \right|$$

$$\leq \frac{1}{2} |f(x_i) - p(x_i)| + \frac{1}{2} |f(x_i) - q(x_i)|$$

$$\leq \frac{1}{2} ||f - p|| + \frac{1}{2} ||f - q||.$$

Also, $|f(x_i) - r(x_i)| = ||f - p|| = ||f - q||$ so it follows that

$$|f(x_i) - p(x_i)| = ||f - p|| = ||f - q|| = |f(x_i) - q(x_i)|$$

and the sign of $(f(x_i) - p(x_i))$ is the same as $(f(x_i) - q(x_i))$. Thus $p(x_i) = q(x_i)$ for i = 0, ..., n + 1. This implies that p = q.

de la Vallée Poussin :

Given $f \in C[a, b]$, suppose $p \in P_n$ and $f(x_i) - q(x_i)$ alternates in sign at $a \le x_0 < ... < x_{n+1} \le b$. If $E_n(f)$ denotes the error of the best approximation in P_n , then

$$E_n(f) \ge \min_{i=0,\dots,n+1} |f(x_i) - q(x_i)|$$

¹NOTE: FOR A POLYNOMIAL OF DEGREE n, NEED ONLY TO SET n+1 POINTS TO DEFINE IT UNIQUELY.

General Equioscillaiton Theorem:

Suppose V is an (n+1)-dimensional Haar subspace of C[-1,1]. Given $f \in C[-1,1]$, let u^* denote the best approximation to f from V. Then u^* is unique and $f-u^*$ equioscillates in at least n+2 extreme points.

Chebyshev Polynomials

- The *n*-th Chebyshev polynomial is defined as $T_n(x) = \cos(n\arccos(x))$.
- The recurrence formula is $T_n(x) = 2xT_{n-1}(x) T_{n-2}(x)$, setting $T_0(x) = 1, T_1(x) = x$.
- Another formula, which Hoskins gave but might not be true is $T_{n+1} + T_{n-1} = 2T_n$.

Convergence of Chebyshev series:

Suppose we are given a function f which is Lipschitz continuous on [-1,1]. Then f has a unique representation as a Chebyshev series,

$$f(x) = \sum_{k=0}^{\infty} \alpha_k T_k(x),$$

which is absolutely convergent and uniformly continuous. Moreover, the coefficients are given by the following formula,

$$\alpha_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(x)T_k(x)}{\sqrt{1 - x^2}} \, dx, k > 0$$

$$\alpha_0 = \frac{1}{\pi} \int_{-1}^1 \frac{f(x)}{\sqrt{1 - x^2}} \, dx$$

Chebyshev and best approximation:

Suppose f is bounded and continuous on [-1,1] and let p^* denote its best polynomial approximation from P_n . Let p denote its truncated Chebyshev expansion (truncated after n+1 terms). Then

$$\frac{\|f - p\|_{\infty}}{\|f - p^*\|_{\infty}} \sim \frac{4}{\pi^2} \log(n), \quad \text{as } n \to \infty.$$

All need to know in this proof is up to bound calculation on the projection. For a m-dimension subspace M of E, define $P_M(u) = \sum_{i=1}^m \phi_i \langle \varphi_i | u \rangle$. Then,

$$f - p = f - p^* - P_M(f - p).$$

 $\text{Implying, } \|f-p\|_{E} \leq \|f-p^{*}\|_{E} + \|P_{M}\| \|f-p^{*}\|_{E}, \text{ therefore, } \tfrac{\|f-p\|}{\|f-p^{*}\|} \leq 1 + \|P_{M}\|.$

• Corollary: Truncated Chebyshev expansion:

$$||f - f_n|| \le \frac{2V}{\pi (n-p)^p}$$

Regularity and Decay

• :)

Regularity:

For an integer $p \geq 0$, let $f, f', ..., f^{(p-1)}$ be absolutely continuous and suppose $f^{(p)}$ is of bounded variation with total variation V. This is to say

$$\int_{-1}^{1} \frac{|f^{(p)}(x)|}{\sqrt{1-x^2}} \, dx = V < \infty.$$

Then, for $k \geq p+1$, the Chebyshev coefficients α_k of f satisfy

$$|\alpha_k| \le \frac{2V}{\pi (k-p)^{(p+1)}}$$

Analyticity

• The Joukowsky map, $x = \frac{1}{2}(z + 1/z)$. For $\rho > 1$, the image of the circle of radius ρ , under this map, is a ellipse with foci at ± 1 . these ellipses are called Bernstein Ellipses and we will denote their interior by E_{ρ} .

Bernstein Ellipses:

Suppose f is defined on [-1,1] and is analytically continuable (to $\mathbb C$) to the open ellipse E_ρ and $|f(x)| \leq M$ on that ellipse. If α_k denotes its Chebyshev coefficients, then

$$|\alpha_0| \leq M$$

$$|\alpha_k| \le 2M\rho^{-k}$$

ullet Corollary: If f satisfies the conditions of the previous theorem, then

$$||f - f_n|| \le \frac{2M\rho^{-n}}{\rho - 1}$$

Interpolation

Lagrange Interpolation

• Lagrange interpolant:

$$\ell_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}, \quad i = 0, ..., n$$

9

• Given $x_1, ..., x_n$ the Lebesgue Constant Λ is defined via

$$\Lambda = \sup_{f \in C([a,b])} \frac{\|p_f\|_{L^{\infty}}}{\|\mathbf{f}\|_{\ell^{\infty}}} = \sup_{f \in C([a,b])} \frac{\|p_f\|_{L^{\infty}}}{\|f\|_{L^{\infty}}},$$

where $\mathbf{f} = (f_0, ..., f_n)^{\mathsf{T}}$ and

$$p_f = \sum_{j=0}^n f_j \ell_j(x)$$

• The function

$$\lambda(x) = \sum_{j=0}^{n} |\ell_j(x)|,$$

is called the Lebesgue function. Note that here we assume the x_i 's are in an interval [a, b] and the infinity norms are taken over that interval. In the first equality, the supremum should be taken over all \mathbf{f} which do not vanish at the x_i 's, and in the second, over all nonzero continuous functions.

- If all x_i 's are distinct, then $1 \le \Lambda < \infty$.
- Suppose we have our n+1 evaluation points and the Lebesgue constant Λ . Given some $f \in C([a,b])$, let p be its Lagrange approximation and p^* be its best polynomial approximation to f in P_n . Then,

$$||f - p|| \le (1 + \Lambda)||f - p^*||$$

Lebesgue Approximation:

On the interval [-1, 1], if Λ_n is the Lebesgue constant for any set of n + 1 distinct points in [-1, 1], then

- 1. $\Lambda_n \geq \frac{2}{\pi} \ln(n+1) + \frac{2}{\pi} \left(\gamma + \ln\left(\frac{4}{\pi}\right) \right)$
- 2. For Chebyshev roots,

$$\Lambda_n \le \frac{2}{\pi} \ln(n+1) + 1$$

• For equispaced points, the Lebesgue constant is bounded below by

$$\Lambda_n \ge \frac{2^{n-2}}{n^2}, \quad \Lambda_n \sim \frac{2^{n+1}}{en \log n}$$

The witch of Agnesi

Consider the function

$$f(x) = \frac{1}{1 + a^2 x^2}$$
$$|f(x) - p_f(x)| \le \sim \frac{1}{n^{3/2}} \sqrt{8\pi} \left(\frac{2a}{e}\right)^n$$

So $||f - p_f||$ converges if 2a/e < 1.