ECS289: Scalable Machine Learning

Cho-Jui Hsieh UC Davis

Oct 6, 2015

Outline

- Multi-core v.s. multi-processor
- Parallel Gradient Descent
- Parallel Stochastic Gradient
- Parallel Coordinate Descent

Parallel Programming

Parallel algorithms can be different for the following two cases:

- Shared Memory Model (Multiple cores/multiple processors)
 - Independent L1 cache
 - Shared/independent L2 cache
 - Shared memory
- Distributed Memory Model (Multi computers)
 - Multiple computers

Shared Memory Model (Multiple cores)

- Shared memory model: each CPU can access the same memory space
- Programming tools:
 - C/C++: openMP, C++ thread, pthread, intel TBB, ...
 - Python: thread, ...
 - Matlab: parfor, ...

Parallel for loop in OpenMP (*)

```
#pragma omp parallel for private(i)
    for(i=0;i<w_size;i++)
    g[i] = w[i] + g[i];</pre>
```

Shared Memory Model (*)

Shared Memory Model

- Two types of shared memory model:
 - Uniform Memory Access (UMA)
 - Non-Uniform Memory Access (NUMA)

Distributed Memory Model

• Programming tools: MPI, Hadoop, Spark, ...

(Figure from http://web.sfc.keio.ac.jp/ rdv/keio/sfc/teaching/architecture/computer-architecture2013/lec09-smp.html)

Parallel Gradient Descent

Parallel Gradient Descent

• Gradient descent:

$$\mathbf{x} \leftarrow \mathbf{x} - \alpha \nabla f(\mathbf{x})$$

- Gradient computation is usually embarrassingly parallel
- Example: empirical risk minimization can be written as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w})$$

- Partition the dataset into k subsets S_1, \ldots, S_k
- Each machine or CPU computes $\sum_{i \in S_i} \nabla f_i(\mathbf{w})$
- Aggregated local gradients to get the global gradient (communication)

$$abla f(\mathbf{w}) = \frac{1}{n} \left(\sum_{i \in S_1} \nabla f_i(\mathbf{w}) + \dots + \sum_{i \in S_k} \nabla f_i(\mathbf{w}) \right)$$

Parallel Stochastic Gradient

Parallel Stochastic Gradient in Shared Memory Systems

• Stochastic Gradient (SG):

```
For t = 1, 2, ...i
Randomly pick an index i
\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta^t \nabla f_i(\mathbf{w}^t)
```

- Computation of $\nabla f_i(\mathbf{w}^t)$ only depends on the *i*-th sample—usually cannot be parallelized.
- Parallelizing SG is a hard research problem.

Mini-batch SG

Mini-batch SG with batch size b:

```
For t=1,2,\ldots Randomly pick a subset S\subseteq\{1,\ldots,n\} with size b \mathbf{w}^{t+1}\leftarrow\mathbf{w}^t-\eta^t\frac{1}{b}\sum_{i\in S}\nabla f_i(\mathbf{w}^t)
```

- Equivalent to gradient descent when b = n
- Equivalent to stochastic gradient when b=1

Mini-batch SG

Mini-batch SG with batch size b:

```
For t=1,2,\ldots Randomly pick a subset S\subseteq\{1,\ldots,n\} with size b \mathbf{w}^{t+1}\leftarrow\mathbf{w}^t-\eta^t\frac{1}{b}\sum_{i\in S}\nabla f_i(\mathbf{w}^t)
```

- Equivalent to gradient descent when b = n
- Equivalent to stochastic gradient when b=1
- Parallelization with *k* processors:

Let
$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$

$$\sum_{i \in S} \nabla f_i(\boldsymbol{w}^t) = \sum_{i \in S_1} \nabla f_i(\boldsymbol{w}^t) + \sum_{i \in S_2} \nabla f_i(\boldsymbol{w}^t) + \cdots + \sum_{i \in S_k} f_i(\boldsymbol{w}^t)$$
can be computed in parallel

 Other versions: divide-and-average (Mann et al., 2009; Zinkevich et al., 2010)

Mini-batch SG

• How to choose batch size *b*?

Mini-batch SG on distributed systems (*)

- Can we avoid wasting communication time?
- Use non-blocking network IO:
 Keep computing updates while aggregating the gradient

See (Dekel et al., "Optimal Distributed Online Prediction Using Mini-Batches". In JMLR 2012)

Asynchronous Stochastic Gradient

- Synchronized algorithms: all the machine has to stop and synchronize at some points
 - \Rightarrow longer waiting time

Asynchronous Stochastic Gradient (shared memory)

• The original SG:

```
For t = 1, 2, ...
Randomly pick an index i
\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f_i(\mathbf{w})
```

Asynchronous Stochastic Gradient (shared memory)

• The asynchronous parallel SG:

Each thread repeatedly performs the following updates:

For
$$t = 1, 2, ...$$

Randomly pick an index i
 $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \nabla f_i(\boldsymbol{w})$

Asynchronous Stochastic Gradient (shared memory)

• The asynchronous parallel SG:

Each thread repeatedly performs the following updates:

```
For t = 1, 2, ...
Randomly pick an index i
\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f_i(\mathbf{w})
```

- Main trick: in shared memory systems, every threads can access the same parameter w
- First discussed in (Langford et al., "Slow learners are fast". In NIPS 2009)
- Proposed in "Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent", NIPS 2011.

Asynchronous Stochastic Gradient (shared memory) (*)

- For convex function, converges to the global optimum under certain conditions:
 - (1) bounded delay, (2) small confliction rate
- For non-convex function, the convergence property is proved in:
 - "Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization". In NIPS 2015

Asynchronous Stochastic Gradient (distributed memory)

• Use a parameter server to update the parameters

See Dean et al., "Large Scale Distributed Deep Networks", in NIPS 2012

Parallel Coordinate Descent

Parallel Coordinate Descent

• (Stochastic) Coordinate Descent (CD):

```
For t = 1, 2, \dots
Randomly pick an index i
w_i^{t+1} \leftarrow w_i^t - \left(\operatorname{argmin}_{\delta} f(\boldsymbol{w}^t - \delta \boldsymbol{e}_i)\right)
```

A simplified version: each coordinate is updated by a gradient step

For
$$t = 1, 2, ...$$

Randomly pick an index i
 $w_i^{t+1} \leftarrow w_i^t - \eta \nabla_i f(\mathbf{w}^t)$

• How to parallelize it?

Synchronized Parallel Coordinate Descent

Synchronized Parallel Coordinate Descent:

```
For t=1,2,\ldots
Randomly pick a subset S\subset\{1,\ldots,n\} with size b
w_i^{t+1}\leftarrow w_i^t-\eta\nabla_i f(\mathbf{w}^t) for all i\in S
```

Synchronized Parallel Coordinate Descent

Synchronized Parallel Coordinate Descent:

For
$$t=1,2,\ldots$$

Randomly pick a subset $S\subset\{1,\ldots,n\}$ with size b
 $w_i^{t+1}\leftarrow w_i^t-\eta\nabla_i f(\boldsymbol{w}^t)$ for all $i\in S$

- Parallelization: let $S = S_1 \cup S_2 \cup \cdots \cup S_k$, j-th machine updates the variables in S_i
- Will it converge?

Yes, if η is small enough

First discussed in Bradley et al., "Parallel coordinate descent for ℓ_1 -regularized loss minimization". In ICML 2011

Theoretical guarantee in Richtarik & Takac, "Parallel coordinate descent methods for big data optimization". Mathematical Programming, 2012.

Asynchronous Parallel Coordinate Descent

The asynchronous parallel coordinate descent:

Each thread repeatedly performs the following updates:

For
$$t = 1, 2, ...$$

Randomly pick an index i
 $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f_i(\mathbf{w})$

Asynchronous Parallel Coordinate Descent

The asynchronous parallel coordinate descent:

Each thread repeatedly performs the following updates:

```
For t = 1, 2, ...
Randomly pick an index i
\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f_i(\mathbf{w})
```

- ullet Main trick: in shared memory systems, every thread can access the same parameter $oldsymbol{w}$
- First implemented in (Bradley et al., "Parallel coordinate descent for ℓ_1 -regularized loss minimization". In ICML 2011)
- Officially discussed in Liu & Wright "An Asynchronous Parallel Stochastic Coordinate Descent Algorithm", ICML 2014.

Coming up

Next class: Support Vector Machines (SVM)

Questions?