GRIP - Task 1

February 3, 2021

0.0.1 Task 1

0.0.2 Author: Manisha Das

0.0.3 Objective:

To estimate the percetage of marks, obtained by a student who studies for 9.25 hours/day, given the data on marks and hours

```
[1]: import numpy as np
   import pandas as pd
   from pandas import Series,DataFrame
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   sns.set_style('whitegrid')
   from sklearn import metrics
   import statsmodels.api as sm
   from sklearn.model_selection import train_test_split
```

0.0.4 Import the Dataset

```
[2]: df = pd.read_csv('https://raw.githubusercontent.com/AdiPersonalWorks/Random/

→master/student_scores%20-%20student_scores.csv',sep=',')
```

```
[3]: df.head()
```

```
[3]:
        Hours Scores
     0
           2.5
                     21
     1
           5.1
                     47
     2
           3.2
                     27
     3
           8.5
                     75
     4
           3.5
                     30
```

0.0.5 Visualize the Entire Dataset

```
[4]: sns.pairplot(df)
```

[4]: <seaborn.axisgrid.PairGrid at 0x1c15730e988>

From the scatter plot, we can see that there is a positive relationship between Scores and Hours. This implies that if a student studies for more hours, they will obtain a higher score

0.0.6 Define the Dependent and Independent Variables

```
[5]: X=df.loc[:,df.columns!="Scores"]
     Y=df['Scores']
[6]:
    X.head()
[6]:
        Hours
          2.5
     0
          5.1
     1
     2
          3.2
     3
          8.5
     4
          3.5
    Y.head()
```

```
[7]: 0 21
1 47
2 27
```

3 75 4 30

Name: Scores, dtype: int64

0.0.7 Test Train Split

20 % of the entire dataset is used for testing purpose

```
[8]: X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.

→2,random_state=0)
```

0.0.8 Estimate the Model Using the Training Dataset

```
[11]: model = sm.OLS(Y_train, X_train)
```

```
[12]: result = model.fit()
```

[13]: print(result.summary())

OLS Regression Results

Dep. Variable:	Scores	R-squared:	0.952
Model:	OLS	Adj. R-squared:	0.949
Method:	Least Squares	F-statistic:	353.5
Date:	Wed, 03 Feb 2021	Prob (F-statistic):	2.79e-13
Time:	10:53:00	Log-Likelihood:	-62.686
No. Observations:	20	AIC:	129.4
Df Residuals:	18	BIC:	131.4

Df Model: 1
Covariance Type: nonrobust

=========	=======				:=======	========
	coef	std err	t	P> t	[0.025	0.975]
const Hours	2.0182 9.9107	3.057 0.527	0.660 18.802	0.517 0.000	-4.404 8.803	8.441 11.018
Omnibus: Prob(Omnibus):		097 Jarque	======================================		1.813 1.720
Skew:		-0.	296 Prob(.	JB):		0.423

Kurtosis: 1.691 Cond. No. 13.9

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.0.9 Visual Representation of the Fitted Model With Respect to the Training Dataset

0.0.10 Prediction using the Test Dataset

```
[18]: X_test = sm.add_constant(X_test)
Y_hat = result.predict(X_test)
Y_hat
```

[18]: 5 16.884145 2 33.732261 19 75.357018 16 26.794801 11 60.491033 dtype: float64

0.0.11 Checking the Performance of the Model With Respect to the Test Dataset

```
[19]: from sklearn.metrics import mean_squared_error,r2_score mean_squared_error(Y_test,Y_hat)
```

[19]: 21.59876930721748

```
[20]: r2_score(Y_test,Y_hat)
```

[20]: 0.9454906892105354

Here we see that the r² value is quite high. So we conclude that the model is a good fit.

0.0.12 Estimate the Percentage of Marks Obtained by a Student Who Studies for 9.25 Hours/Day

```
[21]: # Create a dataframe to estimate the percentage of marks obtained by a student who studies for 9.25 hrs/day

X_new = pd.DataFrame({'const':[1],'Hours':[9.25]})
```

[22]: X_new

[22]: const Hours 0 1 9.25

[23]: result.predict(X_new)

[23]: 0 93.691732 dtype: float64

The Estimated Percentage of Score, Obtained by the student is 94 (approximately)