SWCON253: Machine Learning

Probability & Information Theory

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Contents

- 1. Probability Review
- 2. Information Theory

1. Probability Review

- 1. Probability
- 2. Conditional Probability & Bayes Theorem
- 3. ML (Maximum Likelihood) vs. MAP (Maximum A Posteriori)
- 4. Random Variables
- 5. Independence
- 6. Expectations
- 7. Correlation & Covariance
- 8. Gaussian Distribution

References

 "Schaum's Outline of Probability, Random Variables, and Random Processes," by Hwei P. Hsu

Probability

- Random Experiment
 - experiment: any process of observation
 - outcomes: the results of an observation
 - random experiment: if outcome cannot be predicted with certainty
- Sample Space (S) and Event Space (E)
 - sample space S: the set of all possible outcomes
 - event: any subset of the sample space S
 ★ Note that Ø and S are also events.
 - event space E: the set of all possible events
- ◆ Probability Space (S, E, P)
 - probability measure P: a function defined over the event space E
 - probability space: the triplet (S, E, P)

Example: Rolling a Dice

sample space S:

event space E:

probability measure P:

Probability (cont'd)

- Axiomatic Definition of Probability
 - Consider a probability space (S, E, P).
 - The probability P(A) of an event A∈E is defined as a real number assigned to A which satisfies the following three axioms:
 - 1. $P(A) \ge 0$
 - 2. P(S) = 1
 - 3. $P(A \cup B) = P(A) + P(B)$ if $P(A \cap B) = \emptyset$ (disjoint)
- Properties of Probability
 - $\star P(A^c) = 1 P(A)$
 - $\star P(\emptyset) = 0$
 - $\star P(A) \leq P(B) \text{ if } A \subseteq B$
 - $\star P(A) \leq 1$
 - $\star P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability & Bayes' Theorem

- Conditional Probability
 - The conditional probability of an event A given event B, P(A|B), is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- $\star P(A \cap B)$ is the joint probability of A and B.
- ★ Note that A|B is not a set (i.e., not an event). '|B' is just a notation saying that event B has occurred already.
- Bayes' Rule
 - Note that $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$.
 - Thus, we can obtain the following Bayes' Rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Example: Rolling a Dice

Assume all outcomes are equally likely. And let A={1, 2, 3, 4} and B={4, 5, 6}.

- P(A) =
- P(B) =
- P(A∩B) =
- P(A|B) =

Conditional Probability & Bayes' Theorem (cont'd)

- Bayes' Theorem
 - Suppose the events A₁, A₂, ..., A_n are a partition of S, i.e.,
 - $\bigstar A_i \cap A_i = \emptyset$ for $\forall i \neq j$: mutually exclusive (disjoint)
 - $\star U_{i-1}^n A_i = S$
 - Let B be any event in S. Then we can obtain P(B) by:

 $P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$; the total probability

Using Bayes' Rule, we obtain Bayes' Theorem:

$$P(A_{i}|B) = \frac{P(B|A_{i})P(A_{i})}{\sum_{i=1}^{n} P(B|A_{i})P(A_{i})}$$

- * Sometimes, we call each component:
 - P(A_i|B): a posteriori probability
 - P(B|A_i): a likelihood/conditional probability
 → ¾ ¾ 4
 - P(A_i): a priori probability
 - y day, cat, tigera many sin

ML (Maximum Likelihood) vs. MAP (Maximum A Posteriori)

- Example
 - Animal class: S_A={dog, tiger}, P(dog)=0.8, P(tiger)=0.2
 - Tail length: S_L={30, 40, 50, 60}
 - Joint Sample Space: S= S_A x S_L ={(dog,30), (tiger,30), (dog,40),...,(tiger,60)}
 - Conditional Probability: P(L|dog) and P(L|tiger) are given as the figure.

→ tiger!

- ★ ML test: P(L|dog) ≥ P(L|tiger) P(L=soldog) = 0.3 < P(L=soltiger) = 0.4
- * MAP test: P(dog|L) ≥ P(tiger|L)
- → P(L|dog)P(dog) ≥ P(L|tiger)P(tiger)
 - P(L=50|dog)P(dog) = 0.24 > P(L=50|tiger)P(tiger) = 0.08
 - → dog!

ML & MAP Classification

- Problem Definition
 - 입력 샘플 \mathbf{x}_{new} 를 K개의 class $C = \{c_1, c_2, \dots, c_K\}$ 중 하나로 분류하는 문제를 생각해 보자.
 - ★ 앞의 예에서 x는 꼬리길이, c₁=dog, c₂=tiger
 - x에 관한 확률분포(probability density)를 이미 알고 있다면, ML이나 MAP을 이용하여 입력 샘플을 분류할 수 있 다.
- Maximum Likelihood (ML) Classification
 - If we know the class conditional distributions (i.e., the likelihoods of c_{ν}) $P(\mathbf{x}|c_{\nu})$ for all k=1...K, then we can classify a new sample \mathbf{x}_{new} by : $k^* = \arg \max_{k=1}^{m} P(\mathbf{x}_{new}|c_k)$

- Maximum A Posteriori (MAP Classification
- If we also know the prior distribution P(ck) for all k = 1 ... K, then we can classify a new sample \mathbf{x}_{new} by $k^* = \arg\max_{k=1..K} P(\mathbf{x}_{new}|c_k) P(c_k)$
- 이 확률분포들을 어떻게 구하지? → Density Estimation (분포추정)

Random Variables

- Definition
 - A random variable X is a function that assigns a real number to each sample point (i.e., outcome) of S.

Independence

- Independent Events
 - $P(A \cap B) = P(A)P(B)$
 - $P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i)$
- Independent Random Variables
 - Concept: P(X = x, Y = y) = P(X = x)P(Y = y) for any x and y
 - $p_{XY}(x_i, y_i) = p_X(x_i)p_Y(y_i)$ for any x_i and y_i Discrete:
 - Continuous: $f_{XY}(x,y) = f_X(x)f_Y(y)$ for any x and y

Cf.) Naive Bayes Classifiers

Naive Bayes Assumption

- The features are conditionally independent given the class label
 - ★ Called "naive" since we do not expect the features to be independent, even conditional on the class label

$$P(\mathbf{x}|c_k) = \prod_{d=1}^{D} P(x_d|c_k)$$

(-1) -- (-1)

والبين

- 각 샘플벡터(\mathbf{x})들의 발생 확률은 통상 독립으로 가정한다: $P(\mathbf{x}|c_k) = P(\mathbf{x}_1,...,\mathbf{x}_n|c_k) = \prod_{i=1}^n P(\mathbf{x}_i|c_k)$
 - 그러나 각 샘플벡터의 원소(feature)들의 발생 확률은 독립으로 가정하기 어렵다. Naive Bayes는 (naive하게도) 이걸 독립이라고 가정한다: $P(\mathbf{x}|c_k) = P(x_1,...,x_n|c_k) = \prod_{d=1}^D P(x_i|c_k)$

- Note: even if the naive Bayes assumption is not true, it often results in classifiers that work well
 - ★ One reason for this is that the model is quite simple (it only has O(CD) parameters, for C classes and D features), and hence it is relatively immune to overfitting.

Expectations

The mean (or expected value) of a r.v. X, denoted by μ_v or E(X), is defined by

$$\mu_X = E(X) = \begin{cases} \sum_k x_k p_X(x_k) & X: \text{ discrete} \\ \int_{-\infty}^{\infty} x f_X(x) \, dx & X: \text{ continuous} \end{cases}$$

The variance of a r.v. X, denoted by σ_v^2 or Var(X), is defined by

Mean (Expectation) of a Random Variable

$$\sigma_X^2 = \text{Var}(X) = E\{[X - E(X)]^2\}$$

$$= \begin{cases} \sum_{k} (x_k - \mu_X)^2 p_X(x_k) & X: \text{ discrete} \\ \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx & X: \text{ continuous} \end{cases}$$

$$Var(X) = E(X^2) - [E(X)]^2$$

[Note] Mean & Variance from Samples

Sample Mean (empirical mean)

Sample Variance (empirical variance)

Expectations (cont'd)

- Conditional Expectation
 - Two random variables: X and Y

$$E(Y|X) = \begin{cases} \sum_{k} y_k p(\theta_k|X) & Y: \text{ discrete} \\ \int_{0}^{\infty} y_k f(y_k) dy & Y: \text{ continuous} \end{cases}$$

- Expectation of a Function of a Random Variable
 - Y = g(X)

$$E(g(x)) < \int_{x}^{\infty} g(x_{x}) p(x_{x}) \quad X: discrete$$

$$\int_{x}^{\infty} g(x_{x}) f(x) dx \quad X: continuous$$

Correlation & Covariance

Two Random Variables: X and Y

Correlation:

$$\star$$
 orthogonal: $E(XY) = 0$

$$\star$$
 uncorrelated: $E(XY) = E(X)E(Y)$

• Covariance: $Cov(X,Y) = \sigma_{vv} = E[(X - E(X))(Y - E(Y))]$

$$E(XY) - E(X)E(Y)$$

 \star uncorrelated: $\sigma_{vv} = 0$

Correlation Coefficient: a normalized covariance

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \qquad |\rho_{XY}| \le 1$$

- Note
 - ★ Independence implies uncorrelatedness (1)
 - ★ Uncorrelatedness does NOT imply independence (2)

(1) $E(XY) = \sum_{y_i} \sum_{x_i} x_i y_j p_{XY}(x_i, y_j) = \sum_{y_i} \sum_{x_i} x_i y_j p_{X}(x_i) p_{Y}(y_j)$

$$= \left[\sum_{x_i} x_i p_X(x_i)\right] \left[\sum_{y_i} y_j p_Y(y_j)\right] = E(X)E(Y)$$

(2)
$$p_{XY}(x_i, y_j) = \begin{cases} \frac{1}{3} & (0, 1), (1, 0), (2, 1) \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} E(X) &= \sum_{x_i, p_X(x_i)} = (0) \left(\frac{1}{3}\right) + (1) \left(\frac{1}{3}\right) + (2) \left(\frac{1}{3}\right) = 1 \\ E(Y) &= \sum_{j_1, j_2} x_i y_j p_3 y_1(x_i, y_j) \\ E(XY) &= \sum_{j_2, j_3} x_i x_j y_j p_3 y_2(x_i, y_j) \\ &= (0) (1) \left(\frac{1}{3}\right) + (1) (0) \left(\frac{1}{3}\right) + (2) (1) \left(\frac{1}{3}\right) = \frac{2}{3} \end{split}$$

$$E(XY) = \sum_{y_j} \sum_{x_i} x_i y_j p_{XY}(x_i, y_j)$$

$$= (0)(1)\left(\frac{1}{3}\right) + (1)(0)\left(\frac{1}{3}\right) + (2)(1)\left(\frac{1}{3}\right) = \frac{1}{3}$$

 $p_{XY}(0,1) = \frac{1}{2} \neq p_X(0)p_Y(1) = \frac{2}{2}$

◆ Correlation Coefficient & Linear Dependence

Let
$$Y = aX + b$$
.

- (a) Find the covariance of X and Y.
- (b) Find the correlation coefficient of X and Y.
- (a) By Eq. (4.131), we have

$$E(XY) = E[X(aX + b)] = aE(X^{2}) + bE(X)$$

$$E(Y) = E(aX + b) = aE(X) + b$$

Thus, the covariance of X and Y is [Eq. (3.51)]

$$\begin{split} \underline{\operatorname{Cov}(X,Y)} &= \sigma_{XY} = E(XY) - E(X)E(Y) \\ &= aE(X^2) + bE(X) - E(X)[aE(X) + b] \\ &= a\{E(X^2) - [E(X)]^2\} = a\sigma_X^2 \end{split}$$

(b) By Eq. (4.130), we have $\sigma_{\rm Y} = |a| \sigma_{\rm X}$. Thus, the correlation coefficient of X and Y is

$$\underline{\rho_{XY}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{a\sigma_X^2}{\sigma_X |a|\sigma_X} = \frac{a}{|a|} = \begin{cases} 1 & a > 0 \\ -1 & a < 0 \end{cases}$$

- Covariance Matrix of a Random Vector
 - · random vector: an array of random variables

$$\mathbf{X} = [X_1 \quad \dots \quad X_n]^T$$

covariance matrix of X :

$$K_{\pmb{X}} = \begin{bmatrix} \sigma_{11} & \dots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \dots & \sigma_{nn} \end{bmatrix} \quad \text{where } \sigma_{ij} = Cov(X_i, X_j)$$

★ If X_i 's are uncorrelated, then K becomes a diagonal matrix since $\sigma_{ij} = 0$ for $\forall i \neq j$.

$$K_X = \begin{bmatrix} \sigma_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{nn} \end{bmatrix}$$

Estimating Mean & Covariance from a Dataset

$$X = \{X^{(1)}, X^{(2)}, \dots, X^{(n)}\}, \quad X^{(k)} = \left[x_1^{(k)} \dots x_d^{(k)}\right]^T$$

• The mean of each component can be estimated from the given dataset:

$$\mu_i \equiv E[x_i] \approx \frac{1}{n} \sum_{k=1}^{n} x_i^{(k)} \quad (1 \le i \le d)$$

or we can collectively estimate the mean vector by:

$$\mu = E[\mathbf{x}] = [\mu_1 \dots \mu_d]^T \approx \frac{1}{T} \sum_{k=1}^n \mathbf{x}^{(k)}$$

• The covariance of each pair of data components (i.e., feature components) is: $\sigma_{i,j} \equiv E[(x_i - \mu_i)(x_j - \mu_i)] \approx \frac{1}{2} \sum_{k=1}^{n} \left(x_i^{(k)} - \mu_i\right) \left(x_i^{(k)} - \mu_i\right) \quad (1 \le i, j \le d)$

or we can collectively estimate the covariance matrix by:

$$K \equiv \left[\sigma_{ij}\right] \approx \frac{1}{n} \sum_{k=1}^{n} \left(\mathbf{x}^{(k)} - \mathbf{\mu}\right) \left(\mathbf{x}^{(k)} - \mathbf{\mu}\right)^{T}$$

$$= (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} = \begin{bmatrix} (x_1 - \mu_1) \\ \vdots \\ (x_r - \mu_s) \end{bmatrix} [(x_1 - \mu_1) \dots (x_d - \mu_d)] = \begin{bmatrix} (x_1 - \mu_1)(x_1 - \mu_1) & \cdots & (x_1 - \mu_1)(x_d - \mu_d) \\ \vdots & \ddots & \vdots \\ (x_r - \mu_s)(x_r - \mu_s) & \cdots & (x_r - \mu_s)(x_r - \mu_s) \end{bmatrix} \Rightarrow \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{1n} & \cdots & \sigma_{nd} \end{bmatrix}$$

◆ 평균 벡터와 공분산 행렬 예제

Iris 데이터베이스의 생플 중 8개만 가지고 공분산 행렬을 계산하자.

$$\mathbb{X} = (\mathbf{x_1} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x_2} = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x_3} = \begin{pmatrix} 4.6 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \mathbf{x_4} = \begin{pmatrix} 4.6 \\ 1.5 \\ 1.5 \\ 0.4 \end{pmatrix}, \mathbf{x_5} = \begin{pmatrix} 5.0 \\ 3.6 \\ 1.4 \\ 0.4 \end{pmatrix}, \mathbf{x_6} = \begin{pmatrix} 5.4 \\ 3.7 \\ 1.4 \\ 0.4 \end{pmatrix}, \mathbf{x_8} = \begin{pmatrix} 4.6 \\ 3.4 \\ 1.5 \\ 0.5 \end{pmatrix}, \mathbf{x_8} = \begin{pmatrix} 4.6 \\ 3.4 \\ 1.5 \\ 0.4 \end{pmatrix}$$

먼저 평균벡터를 구하면 μ = (4.9125, 3.3875, 1.45, 0.2375) $^{\tau}$ 이다. 첫 번째 샘플 \mathbf{x} ,을 식 (2.39)에 적용하면 다음과 같다.

$$\begin{split} (\mathbf{x}_1 - \boldsymbol{\mu})(\mathbf{x}_1 - \boldsymbol{\mu})^T &= \begin{pmatrix} 0.1125 \\ -0.05 \\ -0.05 \\ 0.0375 \end{pmatrix} \begin{pmatrix} 0.1875 \\ 0.1125 \\ -0.05 \\ 0.0375 \end{pmatrix} \begin{pmatrix} 0.1875 \\ 0.1125 \\ -0.005 \\ -0.0094 \\ -0.0094 \\ -0.0094 \\ -0.0094 \\ -0.0096 \\ -0.0094 \\ -0.0096 \end{pmatrix} \begin{pmatrix} 0.0215 \\ -0.0095 \\ -0.0094 \\ -0.0096 \\ -0.0094 \\ -0.0096 \\ -0.0096 \\ -0.0096 \end{pmatrix} \begin{pmatrix} 0.0215 \\ -0.0096 \\ -0.0096 \\ -0.0096 \\ -0.0096 \\ -0.0096 \end{pmatrix} \end{split}$$

나머지 7개 샘플도 같은 계산을 한 다음, 결과를 모두 더하고 8로 나누면 다음과 같은 공분산 행렬을 얻는다.

$$\Sigma = \begin{pmatrix} 0.0661 & 0.0527 & 0.0181 & 0.0083 \\ 0.0527 & 0.0736 & 0.0181 & 0.0130 \\ 0.0181 & 0.0181 & 0.0125 & 0.0056 \\ 0.0083 & 0.0130 & 0.0056 & 0.0048 \end{pmatrix}$$

Gaussian Distribution

- Univariate
 - A r.v. X is called a normal (or Gaussian) r.v. if its pdf is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

$$\mu_X = E(X) = \mu$$

$$\sigma_Y^2 = Var(X) = \sigma^2$$

Bivariate

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y(1-\rho^2)^{1/2}} \exp\left[-\frac{1}{2}q(x,y)\right] \qquad \qquad q(x,y) = \frac{1}{1-\rho^2}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_y}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right] + \frac{1}{2\pi\sigma_x\sigma_y(1-\rho^2)^{1/2}} \exp\left[-\frac{1}{2}q(x,y)\right] \qquad \qquad q(x,y) = \frac{1}{1-\rho^2}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_y}{\sigma_x}\right)\right] + \frac{1}{2\pi\sigma_x\sigma_y(1-\rho^2)^{1/2}} \exp\left[-\frac{1}{2}q(x,y)\right] + \frac{1}{2\pi\sigma_x\sigma_x(1-\rho^2)^{1/2}} \exp\left[-\frac{1}{2}q(x,y)\right] + \frac$$

If the correlation coefficient $\rho = 0$ (i.e., uncorrelated), then X and Y are independent.

$$\begin{split} \underline{f_{XY}}(x,y) &= \frac{1}{2\pi\sigma_X \sigma_Y} \exp\left[-\frac{1}{2} \left[\left(\frac{x - \mu_X}{\sigma_X}\right)^2 + \left(\frac{y - \mu_Y}{\sigma_Y}\right)^2 \right] \right] \\ &= \frac{1}{\sqrt{2\pi\sigma_X}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu_X}{\sigma_X}\right)^2 \right] \frac{1}{\sqrt{2\pi\sigma_Y}} \exp\left[-\frac{1}{2} \left(\frac{y - \mu_Y}{\sigma_Y}\right)^2 \right] = f_X(x) f_Y(y) \end{split}$$

Gaussian Distribution (cont'd)

Multivariate

- Consider an *n*-dimensional random vector $\mathbf{X} = [X_1 \dots X_n]^T$.
- The random vector is called an n-variate normal if its joint pdf is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\det K|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T K^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad \qquad \mathbf{\mu} = E[X] = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} E(X_1) \\ \vdots \\ E(X_n) \end{bmatrix} \qquad \qquad K = \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_{nn} \end{bmatrix} \qquad \qquad \sigma_{ij} = \operatorname{Cov}(X_i, X_j)$$

• Note that $f_{\mathbf{X}}(\mathbf{x})$ stands for $f_{X_1,\dots,X_n}(x_1,\dots,x_n)$.

.4. It is are unamodeled, then
$$K = \begin{cases} 6i & 0 \\ 0 & -\infty \end{cases}$$
 and ideals in $\prod_{k=1}^{\infty} f_{kk}(x_k) = \prod_{k=1}^{\infty} f_{kk}(x_k)$.

- The Diagonal Covariance Matrix (i.e., Uncorrelated Gaussian)
 - Consider the simple case where n = 2 (i.e., bivariate):

Consider the simple case where
$$\mathbf{n}=2$$
 (i.e., bivariate):
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

$$p(x;\mu,\Sigma) = \frac{1}{2\pi \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}} \begin{bmatrix} -\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}$$

$$= \frac{1}{2\pi (\sigma_1^2 \cdot \sigma_2^2 - 0 \cdot 0)^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^T \begin{bmatrix} -\frac{1}{\alpha_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ x_2 - \mu_2 \end{bmatrix} \right),$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^T \begin{bmatrix} -\frac{1}{\alpha_1^2} (x_1 - \mu_1) \\ \frac{1}{\sigma_2^2} (x_2 - \mu_2) \end{bmatrix} \right),$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) \cdot \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2 \right).$$

- In general, an n-dimensional Gaussian with mean $\mu \in \mathbb{R}^n$ & diagonal covariance matrix $\Sigma = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_n^2)$ is the same as the product of n independent Gaussian with mean μ_i and variance σ_n^2 , respectively.
- ★ Gaussian의 경우는 uncorrelated면 independent!

Contents

- 1. Probability Review
- 2. Information Theory

2. Information Theory

- 1. Information
- 2. Entropy
- 3. Source Coding Theorem
- 4. Cross-Entropy & KL Divergence

References

- "Schaum's Outline of Probability. Random Variables, and Random Processes." by Hwei P. Hsu
- "*기계학습*" by 오일석

×

$$I(x_i) = \log_b \frac{1}{P(x_i)} = -\log_b P(x_i)$$

 $I(x_i) = 0$ for $P(x_i) = 1$

$$P(x_i) = 1$$

$$I(x_i) > I(x_j)$$
 if $P(x_i) < P(x_j)$
 $I(x_i, x_j) = I(x_i) + I(x_j)$ if x_i and x_j are independent

 $X \in \{x_i\}_{i=1..m}$

Vision & Learning Lab Kyung Hee University

 $I(x_i) \ge 0$

×

$$\begin{split} H(X) &= E[I(x_i)] = \sum_{i=1}^m P(x_i)I(x_i) \\ &= -\sum_{i=1}^m P(x_i)\log_2 P(x_i) \quad \text{b/symbol} \end{split}$$

 $0 \le H(X) \le \log_2 m$ (m: the number of symbols of the source X)

Source Coding Theorem

Source Coding

A conversion of the output of a DMS into a sequence of binary symbols (binary code word) is called source coding. The device that performs this conversion is called the source encoder (Fig. 10-7).

An objective of source coding is to minimize the average bit rate required for representation of the source by reducing the redundancy of the information source.

Source Coding Theorem (cont'd)

Average Code Length

Let X be a DMS with finite entropy H(X) and an alphabet $\{x_1, \ldots, x_m\}$ with corresponding probabilities of occurrence $P(x_i)(i=1,\ldots,m)$. Let the binary code word assigned to symbol x_i by the encoder have length n_i , measured in bits. The length of a code word is the number of binary digits in the code word. The average code word length L, per source symbol, is given by

$$L = \sum_{i=1}^{m} P(x_i) n_i$$

The source coding theorem states that for a DMS X with entropy H(X), the average code word length L per symbol is bounded as (Prob. 10.39)

Source Coding Theorem

$$L \ge H(X) = -\sum_{i=1}^{m} P(x_i) \log_2 P(x_i)$$

Source Coding Theorem (cont'd)

Example:

• FLC (Fixed Length Coding) vs. VLC (Variable Length Coding)

Х	а	b	с	d	е	f	g	
P(X)	24/32	2/32	2/32	1/32	1/32	1/32	1/32	
I(X)	0.42	4	4	5	5	5	5	2
FLC (n _x)	000 (3)	001 (3)	010 (3)	011 (3)	100 (3)	101 (3)	110 (3)	
VLC (n _x)	0 (1)	10 (2)	110 (3)	1110 (4)	11110 (5)	111110 (6)	1111110 (7)	1

Cross-Entropy & KL Divergence

- ◆ 교차 엔트로피와 상대 엔트로피
 - DMS X = {x₁,...,x_m}에 대한 두 개의 확률분포 p(X)와 q(X)를 생각하자.
 - ★ p: true pdf, q: our guess or approximation
 - 이때, 확률분포 p에 대한 확률분포 q의 교차 엔트로피를 다음과 같이 정의 한다.

$$H(p,q) = E_p\big[I_q(X)\big] = E_p\big[-\log(q(X))\big] = -\sum_{i=1}^m p(x_i)\log(q(x_i))$$

● <u>이때, 확률분포 a에서 p로의 Kullback-Leibler (KL) Divergence (상</u>대 엔트로피)는 다음과 같이 정의 된다.

$$D_{\mathsf{RL}}(p||q) = \sum_{i=1}^{m} p(x_i) \log \left(\frac{p(x_i)}{q(x_i)} \right) = H(p,q) - H(p,p) \ge 0$$

★ 교차 엔트로피와의 관계 증명:

$$H(p,q) - H(p,p) = \sum_{l=1}^{m} p(x_l) \log(q(x_l)) - \sum_{l=1}^{m} p(x_l) \log(p(x_l)) = \sum_{l=1}^{m} p(x_l) \log\left(\frac{p(x_l)}{q(x_l)}\right) = D_{KL}(p||q)$$

Cross-Entropy & KL Divergence (cont'd)

Example

Х	а	b	с	d	е	f	g	
p(X)	24/32	2/32	2/32	1/32	1/32	1/32	1/32	₩ +E HOSH = LOO
I _p (X)	0.42	4	4	5	5	5	5	S (ref.)
q(X)	16/32	4/32	4/32	4/32	2/32	1/32	1/32	Huge:
I _q (X)	1	3	3	3	4	5	5 🛦	o multiple :

Cross-Entropy & KL Divergence (cont'd)

Cross-Entropy & KL Divergence (cont'd)

×

For Multi-class Classification (# classes=K)

$$\begin{split} H(p,q) &= -p(x_1) \log \left(q(x_1)\right) - p(x_2) \log \left(q(x_2)\right) \\ &= -p(x_1) \log \left(q(x_1)\right) - (1-p(x_1)) \log \left(1-q(x_1)\right) \end{split}$$

$$H(p,q) = -\sum_{i=1}^{K} p(x_i) \log(q(x_i))$$

$$H(y,h(x)) = -y\log(h(x)) - (1-y)\log(1-h(x))$$

$$H(y_i, h(x_i)) = -\sum_{i=1}^{K} y_i \log(h(x_i))$$

- ★ y_i∈{0,1}: true label (true probability)
- ★ $h(x_i)$: our predicted probability $(0 \le h(x_i) \le 1)$