ZAD. 1.

Describe the orbits of the natural action of $GL_n(\mathbb{R})$ on \mathbb{R}^n .

The natural action of $GL_n(\mathbb{R})$ on \mathbb{R}^n would be for $A \in GL_n(\mathbb{R})$

$$\phi_A(x) = Ax.$$

An orbit for \mathbb{R}^n is a set

$$O(x) = {\phi_A(x) : A \in GL_n(\mathbb{R})}.$$

In this case an orbit is a set of vectors y such that there exists an invertible matrix A for which Ax = y. So these are all isometries of x. And some more?

ZAD. 2.

Let (A, +) be a commutative group.

(a) Show that the following formula:

$$(\forall a \in A) \ 0 \cdot a = a, \ 1 \cdot a = -a$$

(gives an action of \mathbb{Z}_2 on A by automorphism.

I guess this means that for all $x \in \mathbb{Z}_2$ we have that $\phi_X(a)$ defined as above is an automorphism. So let us take any two $a, b \in A$. Then we have

$$\phi_0(a) + \phi_0(b) = a + b = \phi_0(a + b)$$

$$\phi_1(a + b) = -(a + b) = (-b) + (-a) = (-a) + (-b) = \phi_1(a) + \phi_1(b)$$

(b) Describe the homomorphism

$$\psi: \mathbb{Z}_2 \to \operatorname{Aut}(A)$$

which corresponds to the action from (a) above.

So we send 0 to identity and 1 to function such that $a \mapsto a^{-1}$, let us call it f. This is a homomorphism, because

$$\psi(0) = \mathrm{id}$$

$$\psi(1) = \mathrm{f}$$

$$\psi(0+1) = \psi(0) \circ \psi(1) = \mathrm{id} \circ \mathrm{f} = \mathrm{f} = \psi(1) = \psi(1+0)$$

$$\psi(1+1) = \psi(1) \circ \psi(1) = \mathrm{f} \circ \mathrm{f} = \mathrm{id} = \psi(0) = \psi(1+1)$$

(c) For which groups A, the homomorphism ψ from (b) above is a monomorphism?

For groups that have at least three elements.

ZAD. 3.

Assume that there is $g \in G \setminus \{e\}$ such that $ord(g) \neq 2$. Show that:

Aut(G)
$$\neq$$
 {id_G}.

KURWA NIE WIEEEEEEEEEEEEM

ZAD. 4.

Show that

$$\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2) \simeq S_3$$
.

Ok. So. Big brain time. Cuz Dominik had a proof that is waaay tooooo looooooooong.

The group on the right has 4 elements: (0, 0), (0, 1), (1, 0), (1, 1). For a homomorphism we only need to determine where does (0, 1) and (1, 0) go. Neither of them can go onto (0, 0) cus its the neutral element.