Lycée Berthollet MPSI² 2023-24

Exercices sur les fonctions de deux variables

Exercice 1 Est-il possible de trouver un ouvert non vide A de \mathbb{R}^2 et $X \in \mathbb{R}^2 \setminus A$ tels que $A \sqcup \{X\}$ soit encore un ouvert?

Exercice 2 L'ensemble $A = \mathbb{R}^2 \setminus \bigcup_{x \in \mathbb{R}} \{(x, n); x \in \mathbb{R}\}$ est-il ouvert dans \mathbb{R}^2 ?

Même question pour $B = \mathbb{R}^2 \setminus \bigcup_{n \in \mathbb{N}^*}^{n \in \mathbb{N}^*} \left\{ \left(x, \frac{1}{n} \right); x \in \mathbb{R} \right\}.$

Exercice 3 La fonction $f:(x,y)\longmapsto \frac{x^2-y^2}{x^2+y^2}$ est-elle prolongeable par continuité en (0,0)?

Exercice 4 Représenter graphiquement de plusieurs manières différentes la fonction $(x,y) \mapsto (x+y)^2$ et donner l'équation de son plan tangent en chaque point de son graphe.

Exercice 5 Représenter graphiquement la fonction $(x,y) \longmapsto \sqrt{x^2 + y^2}$. Cette fonction est-elle de classe C^1 sur \mathbb{R}^2 ?

Exercice 6 Soient $f \in \mathcal{C}^1_{\mathbb{R}}(\mathbb{R}^2)$ et $g:(r,\theta) \longmapsto f(r\cos\theta,r\sin\theta)$.

- 1. Montrer que $g \in \mathcal{C}^1_{\mathbb{R}}(\mathbb{R}^2)$.
- 2. Exprimer les dérivées partielles de g en fonction de celles de f.
- 3. Pour $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$, exprimer les dérivées partielles de f en $(r\cos\theta, r\sin\theta)$ en fonction des dérivées partielles de g.

Exercice 7 Soit $f \in \mathcal{C}^1_{\mathbb{R}}(\mathbb{R}^2)$.

1. Justifier que la fonction

$$(u,v) \longmapsto g(u,v) = f\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$$

est de classe C^1 sur $\mathbb R$ et exprimer ses dérivées partielles à l'aide de celles de f.

2. Résoudre l'équation aux dérivées partielles $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$.

Exercice 8 Trouver les points critiques de la fonction $f:(x,y) \longmapsto (x^2+y^2)e^{x^2-y^2}$ après voir montré soigneusement qu'elle est de classe C^1 sur \mathbb{R}^2 . Pouvez-vous déterminer les extrema de f?

Exercice 9 Même exercice que le précédent avec la fonction $f:(x,y) \longmapsto x^4 + y^4 - 2(x-y)^2$.

Exercice 10

- 1. Déterminer les extrema de la fonction $f:(x,y)\longmapsto \sqrt{(x-1)^2+y^2}+\sqrt{(x+1)^2+y^2}$.
- 2. Soit $\lambda > 1$. On pose, pour $t \in \mathbb{R}$, $x(t) = \lambda \cos t$ et $y(t) = \sqrt{\lambda^2 1} \sin t$. Montrer que $g_{\lambda} : t \longmapsto f(x(t), y(t))$ est dérivable, la dériver et en déduire l'allure des lignes de niveau de f, puis le résultat de la question précédente.