Unit One

(1)
$$\lim_{h\to 0} \left(\frac{\cot(x+h)-\cot x}{h} \right) = \dots$$

- (a) $csc^2 x$
- (b) sec^2x
- (c) $-csc^2x$
- (d) $\cot x$

(2)
$$\lim_{h\to 0} \frac{\sec(\frac{\pi}{4}+h)-\sec(\frac{\pi}{4})}{h} = \dots$$

- (a) $\sqrt{2}$

- (c) $\frac{1}{\sqrt{2}}$ (d) Undefined
- If f(x) is a polynomial function, then $\lim_{h\to 0} \frac{f'(x+h)-f'(x)}{h} = \dots$
- (c) f'(h)
- If $\lim_{h\to 0} \frac{f'(1)-f'(1+h)}{2h} = 21$ where $f(x) = 2x^4 ax^3$, then $a = \dots$

(c) 13

- If y = f(x) and $f(x+h) f(x) = 5x^2h + h^2$, then $\frac{d^3y}{dx^3} = \dots$

(c) 14

18 (d)

- (6) If $y = \sin x \frac{1}{3}\sin^3 x$, then $\frac{dy}{dx} = (\dots)^3$
 - (a) $-\cos x$
- (c) $\cos x$
- (d) sin x

- (7) $\frac{d}{dx}[x^2 + \frac{d}{dx}(x + \sec x)] = \dots$
 - (a) $2x + 1 + \sec x \tan x$

(b) $2x + 2 \sec^3 x - \sec x$

(c) $2 + sec^3 x - sec x$

- (d) $2x + sec^2 x tan^2 x$
- If $f(x) = 8 x \sin x \cos x \cos 2x$, then $f'(\frac{\pi}{8}) = \dots$
 - (a) -2

- **(b)** zero
- (c) 1

- (d) 2
- If $y = \cot a x$ and $\frac{dy}{dx} + 4(1 + y^2) = 0$, then a =
 - (a) 1

(b) -2

(10) If
$$y = \sin x \sec \left(\frac{\pi}{2} - x\right)$$
 where x is an acute angle, then $\frac{dy}{dx} = \dots$

(a) zero

(b) 1

(c) $\cos x \csc x + \sin x \sec x$

(d) $\sin x \cos x + \sec x \cot x$

(11) If $0 < x < \frac{\pi}{2}$ and $f(\tan x) = \sin x$, then $f'(1) = \dots$

- (b) $\frac{\sqrt{2}}{2}$ (c) $\frac{\sqrt{2}}{4}$ (d) $\frac{\sqrt{2}}{6}$

(12) If $f(x) = x^2$, $g(x) = \cot x$ and $h(x) = (f \circ g)(x)$, then $h'(\frac{\pi}{4}) = \dots$

- (c) zero

(13) If $0 < x < \frac{\pi}{2}$ and $f(\sin x) = a \cos x$ where a is a constant and $f'(\frac{3}{5}) = -6$, then a = ...

(a) 2

(c) 6

(d) 8

(14) If $f(x) = \cos 3x \cos x - \sin 3x \sin x$, then $f''(\frac{\pi}{4}) = \dots$

(d) 16

(15) If $f(\sin x) = \sin^2 x$, then $f''(1) = \dots$

(a) 1

(c) π

(d) $\frac{\pi}{2}$

(16) If $f(x) = 2 \sin \frac{x}{2} \cos \frac{x}{2}$, then the 1000th derivative of this function equals

- (a) $\sin x$
- (b) $-\sin x$
- (c) $-\cos x$
- (d) $\sin^{-1} x$

(17) If $x^3 y^2 = 1$, then $\left[\frac{dy}{dx} \right]_{y=1} = \dots$

- (a) 1.5
- (b) 2

- (c) -1.5
- (d) 1

The rate of change of the slope of the tangent to the function $f: f(x) = 2 x^3$ at x = 3equals

12 (d)

(19) If $x^2 + y^2 = 4$, prove that: $y^3 \frac{d^2y}{dx^2} = \dots$

 $(b) \quad 4$

(20) If (x, y) is any point on the unit circle, then

(a)
$$y y'' - 2(y)^2 + 1 = 0$$

(b)
$$yy''-(y')^2+1=0$$

(a)
$$yy''-2(y)^2+1=0$$
 (b) $yy''-(y)^2+1=0$ (c) $yy''-(y)^2-1=0$ (d) $yy''+2(y)^2+1=0$

(d)
$$yy''+2(y')^2+1=0$$

(21) If $x^2 + y^2 = 2 x y$, then $y' = \dots$

$$(a)$$
 -1

$$(b)$$
 0

$$(d)$$
 2

(22) If $y^2 - 2\sqrt{x} = 0$, then $\frac{dy}{dx} =$

(a)
$$\frac{2y}{\sqrt{x}}$$

(b)
$$\sqrt{x}$$

(c)
$$\frac{x}{y^2}$$

(d)
$$\frac{1}{y^3}$$

(23) If $x = (1-y)(1+y)(1+y^2)(1+y^4)$, then $\frac{d^2y}{dx^2} = \dots$

(a)
$$\frac{-1}{8}y^{-7}$$

(b)
$$-56 y^6$$

(a)
$$\frac{-1}{8}y^{-7}$$
 (b) $-56y^6$ (c) $\frac{-7}{64}y^{-15}$

(d)
$$\frac{7}{8}y^6$$

(24) If $x^3 + 3x^2y + 3xy^2 + y^3 = 15$, then $\frac{dy}{dx} = ...$

$$(d)$$
 -3

(25) If f'(x) = x f(x), f(3) = -5, then f''(3) =

(a)
$$-50$$

$$(c)$$
 -40

(26) If h(x) = |x|, then $h'(-5) = \dots$

$$(c)$$
 -5

$$(d)$$
 -1

(27) If $y = 2t^3 + 7$ and $z = t^2 - 4$, then the rate of change of y with respect to z equals:

$$(c)$$
 6

(28) If $y = \frac{z+1}{z-1}$, $x = \frac{z-1}{z+1}$, then $\frac{dy}{dx} = \dots$ at x = 2

(a)
$$\frac{-1}{8}$$

(b)
$$\frac{-1}{4}$$

(c)
$$\frac{1}{4}$$

(a) $\frac{-1}{8}$ (b) $\frac{-1}{4}$ (c) $\frac{1}{4}$ (29) If $x = 2z^3 - 5$, $y = 6z^2 + 1$ find $\frac{d^2y}{dx^2} = \dots$ at z = 1

(a)
$$\frac{-1}{3}$$

(b)
$$\frac{-1}{9}$$

(c)
$$\frac{-2}{9}$$

(d)
$$\frac{-2}{3}$$

(30) The rate of change of $\sin x^3$ with respect to $\cos x^3$ equals

(a)
$$-\cot x^3$$

(b)
$$\cot x^3$$

(c)
$$\tan x^3$$

(d)
$$-\tan x^3$$

(31) If
$$x = \sin^3 \theta$$
, $y = \cos^3 \theta$, then $\frac{d^2 y}{dx^2} = \dots$ at $\theta = \frac{\pi}{4}$

- (a) $\frac{2}{3}$ (b) $\frac{8}{3}$ (c) $\frac{4\sqrt{3}}{3}$
- (d) $\frac{4\sqrt{2}}{3}$

(32) If
$$y = \sqrt{f(x)}$$
, and $f'(2) = 4$, $f(2) = 9$, then $\frac{dy}{dx} = \dots$ when $x = 2$

(c) $\frac{1}{6}$

(33) If
$$f(5x) = x^2 + x$$
, then $f'(2) =$

- (c) $\frac{3}{25}$

(34) If
$$f(x) = \frac{2}{x+1}$$
, $g(x) = 3x$, then $\frac{d}{dx}[(f \circ g)(x)] = \dots$ at $x = -2$

- (a) $-\frac{2}{25}$ (b) 6

- (c) $\frac{1}{25}$
- (d) $-\frac{6}{25}$

(35) If
$$f(x) = 3x^2 - 2$$
, then $(f \circ f)'(-1) = \dots$

- (a) -36
- (c) zero
- *(d)* 18

(36) If
$$f(2x+1)=x$$
. $h(2x-5)$ and $h(1)=2$, $h'(1)=4$, then $f'(7)=...$

(d) 13

(37) If
$$f(x) = g(x^2)$$
, then $\frac{f'(2)}{g'(4)} = \dots$

(c) 3

(38) If the function g is the inverse of the function f where f and g are differentiable functions on R and
$$f'(a) = 2$$
, $f(a) = b$, then $g'(b) =$

(d) 1

(39) If
$$f(x) = x^2$$
, then $(f \circ f')'(1) = \dots$

(a) 2

(c) 8

(d)

(40) If
$$y = x^n$$
 where n is a natural number and $\frac{d^4y}{dx^4} = 360 x^{n-4}$, then the value of $n = \dots$

Eslam Moor

- (b) 13
- (c) 5

(11) If f(x) 20x unuf (x) concice chine chine chine	(41)	If $f(x)$	$(x) = 20 x^{n-1}$ and f''	$f'''(x) = c \text{ where } c \in R$	C , $n \in z^+$, then $n + c$
---	------	-----------	------------------------------	--------------------------------------	----------------------------------

- (a) 104
- (b) 123
- (c) 124
- *125*

(42) If the function
$$f: f(x) = \begin{cases} ax^2 + bx + c & x < 0 \\ 2x + 5 & x \ge 0 \end{cases}$$
 is differentiable twice at $x = 0$, then $a + b - c = \dots$

(a) 7

(b)

(c) 3

(d) - 3

(43) If
$$y = 4 + \cot x - \sec^2 x$$
, then the equation of normal when $x = \frac{\pi}{4}$ is

(a) $x - 6y + 18 - \frac{\pi}{4} = 0$

(c) $x + 6y + 18 - \frac{\pi}{4} = 0$

- (c) $x-6y+18+\frac{\pi}{4}=0$
- (d) $x-6y-18-\frac{\pi}{4}=0$

(44) If two parametric equations to a curve are
$$x = t^2 - 6t$$
, $y = 8\sqrt{t-2}$, then the equation of the tangent when $t = 6$ is

- (a) x-3v-48=0

- (b) x-3y+48=0 (c) x+3y-48=0 (d) x+3y+48=0
- The area of the triangle bounded by x-axis, tangent and normal to the curve $3x^2 + y^2 =$ *(45)* $12 \text{ at point } (-1,3) = \dots \text{ unit area}$
 - (a) 9

(b) 8 (c) 10

(46) If the tangent and the normal to the curve
$$x^2 + 3xy + y^2 + 1 = 0$$
 at point $A(-1,1)$ intersect x-axis at the two points B , C , then the area of the triangle $ABC = \dots$ unit area

(a) 1.5

- (c) 0.5

(47) The equation the normal to the curve
$$x = t^2 + 2$$
, $y = t^3 + 1$ when $t = 1$ is

(a) 3x-2y-5=0

(b) 2x-3y-12=0

(c) 2x + 3y - 12 = 0

(d) 3x + 2y - 5 = 0

(48) The straight line
$$y + x - 1 = 0$$
 touches the curve of the function : $f(x) = x^2 - 3x$ +a then $a = \dots$

(a) 1

(b)

(c) 3

(49) The tangent to the curve
$$y = 3x^2 - 5$$
 at point (1, -2) passing through point

- (a) (5,-2)
- (b) (3,1)
- (c) (2,-4)
- (d) (0,-8)

, ,	If the equation of the normal to the curve $y = f(x)$ at point (1,1) is $x + 4y = 5$, then $f'(1) =$						
	(a) ₋₃	(b) $-\frac{1}{4}$	(c) 4	(d) -4			
(51)	The equation of tangent to the curve of the function $f(x) = (2x+3)^3$ at the point (-1,1) is						
	(a) 6y + x = 7	(b) $y = 6x + 7$	(c) 2y - 3x = 1	(d) y+2x=5			

- The slope of the normal to the curve of the function $y = |x^3|$ at the point (-2, 8) is...... *(52)*
 - (c) $\frac{1}{12}$ (d) $-\frac{1}{2}$ (a) -12
- The tangent to the curve $x^2 xy + y^2 = 27$ which is drawn at the point (6, 3) makes an *(53)* angle of measure owith the positive direction of x-axis
 - (a) 90°
 - **(b)** zero
- (c) 45°
- (d) 180°
- *(54)* The two curves of the functions f(x) and g(x) are tangential at the point (2, 4) and f'(2)= 3, then g'(2) =
 - (a) 2

(b) 3

(c) 4

- *(d)*
- If the tangent to the curve of the function $y = x^2 + a$ at the point (1, b) crosses the x-axis at x = -1, then $a \times b = \dots$
 - (a) 3

- The angle measure that the tangent to the curve $\sin 2x = \tan y$ makes with the positive *(56)* direction of x-axis at the point $(\frac{3\pi}{4}, \frac{3\pi}{4})$ equals
 - (a) zero
- (b) 135°
- (c) 45°
- (d) 26 34'
- If the tangent to the curve $y = x^3 3x^2$ makes an obtuse angle with the positive direction *(57)* of the x-axis then $x \in \dots$
 - (a) [0, 2]

- (b) [0, 2] (c) R [0, 2] (d) R [0, 2]
- *(58)* The rate of increase of side length of an equilateral triangle is 2 cm./sec., then the rate of increase of its perimeter is cm./sec.
 - (a) 2

(b) 8 (c) 4

(59) If
$$y = x^2 - 3x$$
, then $\frac{dy}{dt} = \frac{dx}{dt}$ at $x =$

(a) 1

(60) If a particle moves on the curve: $y^2 + x^2 = 10$ such that $\frac{dy}{dt} = 4$, then $\frac{dx}{dt} =$ at the point ($\sqrt{5}$, - $\sqrt{5}$)

- (b) $2\sqrt{5}$

A cube melt preserving its shape by rate 1 cm³./sec., then the rate of change of its edge length when its volume 8 cm³. is cm./sec.

- (b) $\frac{1}{192}$ (c) $\frac{-1}{24}$ (d) $\frac{-1}{12}$

If the side length of an equilateral triangle = a and it increases at a rate (k), then the rate of increase of the triangle area equals

- (a) $\frac{2}{\sqrt{3}}ak$
- (b) $\sqrt{3} ak$ (c) $\frac{\sqrt{3}}{2} ak$ (d) $\frac{\sqrt{2}}{\sqrt{2}} ak$

(63)The length of a rectangle is twice its width, if the rate of change of its width is 3 cm./sec., then the rate of change of its diagonal length = cm./sec.

(a) 6

- (b) $2\sqrt{5}$
- (c) $3\sqrt{5}$

The rate of increase of surface area of a sphere is 6 cm²./sec. at this moment its radius equals 30 cm., then the rate of increase of its volume = cm 3 ./sec.

- (a) 180

(c) 90

 90π

An isosceles triangle, the length of each of the two equal sides is 6 cm. and the measure *(65)* of their included angle equals (x), if the rate of change of (x) is $(\frac{\pi}{90})^{rad}$ per minute, then the rate of change of its area at $x = 30^{\circ}$ is

- (c) 9√3
- (d) 9

(66)The slope of the tangent to the curve y = f(x) at a point $= \frac{1}{2}$ and the x-coordinate of this point decreases at a rate 3 unit/sec. then the rate of change of its y-coordinate equals unit/sec.

- (b) $-\frac{3}{2}$ (c) $\frac{1}{6}$

- The height of right circular cone equals to its base diameter the rate of change of its base *(67)* $radius = \frac{1}{\pi}$ cm./sec. then the rate of change of its volume = cm³./sec. when its base $radius\ length = 5\ cm.$
 - (a) 50π
- (b) $\frac{250}{3} \pi$ (c) 150
- *50* (d)
- A man observes a plane flies horizontally at 3 km. high above him and with speed 480 km./h., then the rate of change of the distance between the man and the plane after 30 *sec. later* =

- (a) $\frac{320}{3}$ km./h. (b) 384km./sec. (c) 384 m./sec. (d) $\frac{320}{3}$ m./sec.
- 10 meter ladder is leaning against a vertical wall and its lower end on a horizontal ground , if the lower end slides 2 m./min. then the rate of change of inclination angle with the horizontal at the moment the lower end at a distance 8 m. equals rad.min.
 - (a) 3

- (c) $\frac{1}{3}$ (d) $-\frac{1}{3}$
- A circular segment, the radius length of its circle is 10 cm. and measure of its central angle (x°) changes in the rate 3^{rad} per minute, then the rate of increasing in the area of the circular segment at $x = 60^{\circ}$ is cm²./min.
 - (a) 125

- *150*
- 300 (d)