Physics of the Qubit Practical Quantum Computing using Qiskit and IBMQ

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

October 1, 2020

Outline

Introduction

The framework of Quantum Mechanics Spin $\frac{1}{2}$

The dynamics of a spin $\frac{1}{2}$ particle

The basis states and the Schrödinger equation Playing with phases Time evolution and gates

Realistic Qubits

Practical concerns Multi-qubit systems

Concluding Remarks and Examples

The Divincenzo criteria

Quantum Mechanics: Mathematical framework

- ▶ The state of a quantum system is defined as a vector $|\psi\rangle$ in an appropriately defined Hilbert space.
- Measurable physical quantities are represented by Hermitian operators $(\hat{A}=\hat{A}^{\dagger})$ and the expectation value of the quantity represented by \hat{A} is given by $\left\langle \hat{A} \right\rangle = \left\langle \psi \middle| \hat{A} \middle| \psi \right\rangle$.
- ▶ The time evolution of the state (dynamics) is governed by another Hermitian operator, The Hamiltonian, \hat{H} , which in most cases represents the total energy of the system.
- ▶ The dynamics of the state is described by the Schrödinger equation:

$$\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} \ket{\psi(t)} = \hat{H} \ket{\psi}$$

where, $i^2=-1$ and $\hbar=\frac{h}{2\pi}$, h is the Planck constant.

► It should be noted that this is only one approach to studying quantum systems, there are other equivalent frameworks.

A word about magnets

When a classical magnetic dipole (bar magnet, current carrying loop) is placed in a steady external magnetic field \vec{B} , the energy U of the dipole is given by:

$$U = -\vec{\mu} \cdot \vec{\mathsf{B}} = -\mu \,\mathsf{B} \cos \theta$$

here, $\vec{\mu}$ is the magnetic dipole moment.

- ► Therefore, the energy is lowest when the angle between the moment and the applied field is 0 and highest when the angle is 180°.
- If the direction of the magnetic field is taken to be the z-axis, then the energy is given in terms of the components of $\vec{\mu}$ as follows:

$$U = -\mu_z B$$

The spin- $\frac{1}{2}$ particle

- ▶ It is known that in the quantum mechanical description of particles, one encounters the quantity of spin. Spin is a microscopic version of the magnetic moment.
- ▶ It is experimentally observed that certain particles (like an electron or proton) when measured have, their spins either perfectly along the magnetic field or perfectly against the field.
- The energies corresponding to these outcome states are given by $U=\pm\gamma\frac{\hbar}{2}\mathsf{B}$ for the aligned and non-aligned case respectively.
- Such particles are referred to as spin $\frac{1}{2}$ particles. The Hamiltonian for such a system is given by:

$$\hat{H} = -\gamma B \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = -\gamma B \frac{\hbar}{2} \sigma_z$$

An orthonormal basis

- It can be seen that the vector, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenstate of the Hamiltonian with eigenvalue (energy value) $E_0 = -\gamma \frac{\hbar}{2} \mathsf{B}$. This is labelled as $|0\rangle$.
- ▶ The vector, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is an eigenstate of the Hamiltonian with eigenvalue $E_1 = \gamma \frac{\hbar}{2} B$. This is labelled as $|1\rangle$.
- These vectors are orthonormal and may form a basis for a suitably defined Hilbert space.
- It is also possible to define the a linear combination state of these basis vectors $|\psi\rangle=a\,|0\rangle+b\,|1\rangle$. The form of a,b will define the Hilbert space.

The dynamic state

> Solving the Schrödinger equation using the Hamiltonian defined above for the state $|\psi\rangle$ gives the following.

$$|\psi(t)
angle\,=\,a\,e^{-\mathrm{i}{\it E}_{0}\cdot t/\hbar}\,|0
angle+b\,e^{-\mathrm{i}{\it E}_{1}\cdot t/\hbar}\,|1
angle$$

- ▶ These phase factors indicate that allowing a, b to be complex numbers would be the right choice. The Hilbert space for this system is therefore $\mathbb{C}^2 \equiv \mathbb{C} \times \mathbb{C}$.
- ► These vectors are sometimes referred to as *spinors*. All previously defined properties of quantum states apply to spinors.
- A system with only two observable energy levels is called a "two-state quantum system".

From spinors to qubits

▶ Neglecting a global phase of $e^{-\mathrm{i}E_0 \cdot t/\hbar}$ from $|\psi(t)\rangle$ gives:

$$\begin{split} |\psi(t)\rangle \; &\equiv \; a\,|0\rangle + b\,e^{-\mathrm{i}(E_1 - E_0)\cdot t/\hbar}\,|1\rangle \\ &= \; a\,|0\rangle + b\,e^{-\mathrm{i}\gamma\mathrm{B}\cdot t}\,|1\rangle \end{split}$$

▶ If, a, b are constrained to be real, then $|\psi(t)\rangle$ corresponds to a vector on the Bloch sphere rotating about the z-axis.

Figure 1: The Bloch Sphere [Source: Quantum Computation and Quantum Information, Nielsen, M. and Chuamg I., 10th Anniversary edition, Cambridge University Press]

▶ This phenomenon is called Larmor precession and $\omega = \gamma B$ is called the Larmor frequency. $\gamma = \omega/B$ is called the gyromagnetic ratio.

Defining quantum gates

- It can be seen that the dynamics of a spin $\frac{1}{2}$ particle placed in a steady magnetic field is described by a quantum state with a time dependent relative phase.
- ► Therefore it is possible to rotate the state vector by applying this steady magnetic field for a limited amount of time.
- ▶ This is indeed how Z and Phase (P_{ϕ}) gates are applied in the case of spin based qubits.
- These systems were first realized in Nuclear Magnetic Resonance experiments and they were the first physically demonstrated quantum computers.
- ▶ Other single qubit transformations are applied through magnetic fields (usually time-varying) along the *xy* plane. These transformations can be understood by the concept Rabi oscillation.

Practical Qubit systems

- ► In reality many two-state systems, are not easily available for use as qubits.
- ► In such cases, a quantum system with many discrete energy levels are utilized.
- ► The effect of Rabi oscillation is used to identify two energy states and ensure that the system exists in states that are linear combinations of these two energy levels.
- ► This approach has lead to the development of a wide variety of qubit systems and proposals to build quantum computers out of them.

The problem multiple qubits

- Multi-qubit systems are are defined by having several single qubits that interact with each other.
- ▶ It is however not possible to control the interaction of these qubits to an arbitrary degree.
- ► This places limitations on the type of multi-qubit gates that can be applied and therefore, different platforms have different representations for multi-qubit operations.
- ▶ It is also not possible to make all qubits in a quantum computer interact with each other. This leads to that fact that different quantum computers have different connectivities for their qubits.
- ► This layout of qubits for a computer defined the *topology* of the quantum computer.

Theoretical Prescriptions

- The theoretical physicist David P. Divincenzo identified the following criteria that a quantum system should fulfil for performing of quantum computations.
 - A scalable physical system with well-characterized qubits.
 - ▶ The ability to initialize the state of the qubits to a simple fiducial state, such as $|000...\rangle$.
 - ► A "universal" set of quantum gates.
 - Long relevant decoherence times, much longer than the gate-operation time.
 - A qubit-specific measurement capability.
- In the present-day there are no systems that fulfil all of the above criteria.
- ► The American theoretical physicist John Preskill refers to the current phase of quantum computation as the "Noisy Intermediate Scale Quantum" computation era or the NISQ era.

Examples of Quantum Computing Systems

Over the last few years, several companies have developed hardware capable of performing quantum computation. The following are some examples.

- ▶ IBM has developed several chip based quantum computing devices based on *Superconducting Circuits*. Access to some of these devices is available through the IBM Quantum Experience (IBMQ), https://www.ibm.com/quantum-computing.
- Rigetti Computing is a start up that aims to develop commercially viable quantum computers based on Superconducting Circuits, https://www.rigetti.com.
- Xanadu has developed Photonics based quantum computing chips and an associated computing library, Strawberry Fields, https://strawberryfields.ai.
- ▶ lonQ has developed quantum computers based on Trapped Ion Qubits, https://ionq.com.