Vorlesungsskript

Num. Lin. Algebra

Num. Lin. Algebra Konrad Rösler

Inhaltsverzeichnis

1. Einleitung	2
2. Das Gauß-Verfahren I	
2.1. Gaußsche Eliminationsverfahren und LR-Zerlegung	
2.2. Pivot-Strategien	8
2.3. Cholesky-Verfahren für symm. pos. definite A	
3. Fehleranalyse	12
3.1. Zahlendarstellung und Rundungsfehler	13
3.2. Kondition eines Problems	13
3.3. Stabilität von Algorithmen	16
4. Das Gauß-Verfahren II	20
4.1. Lösung von linearen Gleichungssystemen: Kondition	20
4.2. Stabilität der Gaußelimination	
4.3. Nachiteration	23
5. Die QR -Zerlegung	27
5.1. Householder-Transformationen	27
5.2. Berechnung der QR -Zerlegung	29

Num. Lin. Algebra Inhaltsverzeichnis Konrad Rösler

Definitionen

Num. Lin. Algebra Konrad Rösler

1. Einleitung

Wichtige Aufgabenklassen der linearen Algebra sind lineare Gleichungssysteme.

Gegeben: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

Gesucht: Ein/alle $x \in \mathbb{R}^m$ mit Ax = b

Herkunft:

• "direkt" aus der Anwendung, z.B. Beschreibung von Netzwerken, Tragwerk

- "indirekt" als Diskretisierung von stationären Prozessen, z.B. Belastung einer Membran
- "mittelbar" durch die Linearisierung nichtlinearer Modelle, z.B. Newton-Verfahren, Approximation von Lösungen gewöhnlicher DGL, notwendige Optimalitätsbedingungen

Klassifizierung:

• m = n: A quadratisch

Generische Situation: A regulär

⇒ ∃! Lösung

• m < n: "Unterbestimmtes System"

Generische Situation:

$$\begin{split} \operatorname{rg}(A) &= m \text{ (Vollrang)} \\ A & \widehat{=} [A_1 A_2] \quad A_1 \in \mathbb{R}^{m \times m} \end{split}$$

Lösungsmenge:

$$\mathcal{L} = \{x \in \mathbb{R}^n \mid Ax = b\} = \{x = x^+ + h, h \in \ker(A)\}$$

=(n-m)-dimensionale lineare Mannigfaltigkeit

Gesucht ist dann z.B. norm-minimale Lösung (Kap. 5)

• m > n: "Überbestimmtes System"

lösbar
$$\iff b \in \text{im}(A) = \{ y \in \mathbb{R}^m \mid \exists x : Ax = y \}$$

Generisch nicht lösbar!

Sinnvoll: Bestimme $\bar{x} \in \mathbb{R}^m$, so dass

$$\|A\bar{x}-b\|=\min_{x\in\mathbb{R}^m}\|Ax-b\|$$

 $\| \cdot \| =$ geeignete Norm, $\bar{x} =$ Bestapproximierender für diese Norm.

Mögliche Ansätze:

• $\|\ \|_{\infty}$: $\|Ax-b\|_{\infty}=\max_{1\leq i\leq m}\left|\left(Ax-b\right)_i\right|$ Ein nichtglattes Optimierungsproblem auch als lineares

Optimierungsproblem fomulierbar, schwierig zu lösen für m bzw. n groß.

-
$$\|\ \|_1 \colon \|Ax-b\|_1 = \sum_{i=1}^m |Ax-b|$$

Wie bei ∥ ∥ stückweise lineares Optimierungsproblem.

Aber stabil gegen Ausreißer.

≘ lineares Quadratmittelproblem, kleinste Quadrateproblem (Kap. 5)

Verfahren zur Lösung von LGS:

Direkte Verfahren:

- Transformation der Daten (A,b) in endlich viele in ein leichter zu lösendes LGS $\tilde{A}x=\tilde{b} \cong$ CG-Verfahren
- Transformationen lassen sich oftmals als Faktorisierung von A interpretieren

$$A = L \cdot R$$
 bzw. $A = Q \cdot R$

• Dafür i.d.R. Zugriff auf Elemente von $A \Longrightarrow$ limitiert die Größe der Matrix!

Kap. 2-5

Indirekte Verfahren:

- Ausgehend von einem Startvektor x^0 Iteration zur Berechnung von x^k mit $Ax^k \approx b$ Hierbei wird oftmals nur das Matrix-Vektor-Produkt Av benötigt! (Kap. 6)
- Eigenwertprobleme

Stabilitätsanalyse von Bauwerken. Verfahren dazu: numerische Optimierung

2. Das Gauß-Verfahren I

 $\text{Jetzt: } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n, \quad x : Ax = b?$

Satz 2.1: Existenz und Eindeutigkeit einer Lösung

Sei $A\in\mathbb{R}^{m\times n}$ eine Matrix mit $\det(A)\neq 0$ und $b\in\mathbb{R}^n$. Dann existiert genau ein $x\in\mathbb{R}^n$ mit

$$Ax = b$$

Beweis: lineare Algebra

 \implies Anwendung von Algorithmen zur Berechnung von x sinnvoll! Wie?

2.1. Gaußsche Eliminationsverfahren und LR-Zerlegung

≘ direktes Verfahren für quadratische System

Erste Idee: Systeme spezieller Struktur, z.B.

$$Rx = c, \quad R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ 0 & \ddots & \dots \\ 0 & 0 & r_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n}, \quad c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$$

Rx = c

$$\begin{split} r_{nn}x_n &= c_n \Longrightarrow x_n = \frac{c_n}{r_{nn}}, \quad r_{nn} \neq 0 \\ r_{n-1n-1}x_{n-1} + r_{n-1n}x_n &= c_{n-1} \\ x_{n-1} &= \frac{c_{n-1} - r_{n-1n}x_n}{r_{n-1n-1}}, \quad r_{n-1n-1} \neq 0 \end{split}$$

Algorithmus 2.2: Rückwärtssubsitution

$$x_n = \frac{c_n}{r_{nn}} \quad \text{falls } r_{nn} \neq 0$$

$$\vdots$$

$$x_i = \frac{c_i - \sum_{j=i+1}^n r_{ij} x_j}{r_{ii}} \quad \text{falls } r_{ii} \neq 0$$

$$\vdots$$

$$x_1 = \frac{c_1 - \sum_{j=2}^n r_{1j} x_j}{r_{11}} \quad \text{falls } r_{11} \neq 0$$

Algo. 2.2 anwendbar, wenn $\det(R) \neq 0$ (vgl. Theo. 2.1)

Wichtiger Aspekt dieser Vorlesung: Aufwandsabschätzung

Aufwand: i-te Zeile je n-i Additionen und Multiplikationen und 1 Division insgesamt:

$$\sum_{i=1}^n (i-1) = \frac{n(n-1)}{2} = \mathcal{O}\big(n^2\big)$$

Addition und Multiplikationen und n Divsionen.

Landau-Symbol: $\mathcal{O}(.)$

$$f(n) = \mathcal{O}(g(n)) \Longleftrightarrow \exists c > 0: |f(n)| \leq C|g(n)|$$

Für ein lineares Gleichungssystem der Form

$$Lx = z, \quad L = \begin{pmatrix} l_{11} & 0 \\ \vdots & \ddots \\ l_{n1} & \dots & l_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n} \quad z \in \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} \in \mathbb{R}^n$$

gibt es einen analogen Algorithmus:

$$x_1 = \frac{z_1}{l_{11}} \quad l_{11} \neq 0$$

$$\vdots$$

$$x_n = \frac{z_n - \sum_{i=1}^{n-1} l_{ni} x_i}{l_{nn}} \quad l_{nn} \neq 0$$

 \Longrightarrow Vorwärtssubstitution mit gleichem Aufwand $\mathcal{O}(n^2)$

Lösungsidee für ein allgemeines Gleichungssystem:

Faktorisiere $A = L \cdot R$ und berechne die Lösung x von Ax = b durch

$$Ax = L\underbrace{Rx}_{=:z} = b$$

 $Lz=b\Longrightarrow z=L^{-1}b$ Vorwärtssubstitution $Rx=z\Longrightarrow x=R^{-1}z$ Rückwärtssubstitution

Mit Aufwand: $\mathcal{O}(n^2)$

Frage: Wie berechnet man Zerlegung $A = L \cdot R$

Man generiert eine Folge von Matrizen:

$$A = A^{(1)} \longrightarrow A^{(2)} \longrightarrow \dots \longrightarrow A^n = R$$

von Matrizen der Gestalt

$$A^{(k)} = \begin{pmatrix} a_{11}^{(1)} & \dots & \dots & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & \dots & \dots & a_{2n}^{(2)} \\ 0 & \ddots & & \vdots \\ & & 0 & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & \vdots & & \vdots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{pmatrix}$$

Wie?

Sei
$$\boldsymbol{x} = (x_1,...,x_n)^T \in \mathbb{R}^n, x_k \neq 0 \ \widehat{=}\ k$$
-Spalte

Definiere: $l_{jk} = \frac{x_j}{x_k}$

$$l_k = \left(\underbrace{0, \dots, 0}_{k \text{ mal}}, l_{k+1k}, \dots, l_{nk}\right)^T$$

 $e_k=k$ -ter Einheitsvektor

$$L_k = I_n - l_k e_k^T \in \mathbb{R}^{n \times n}$$

Dann gilt

$$L_k x = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ & & -l_{k+1k} & \ddots \\ & & \vdots & \\ & & -l_{nk} & & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Jeder Eliminationsschritt $A^{(k)} \longrightarrow A^{(k+1)}$ lässt sich damit als Multiplikation mit einer Matrix $L_k \in \mathbb{R}^{n \times n}$ von links

$$A^{k+1} = L_k A^{(k)} = \begin{pmatrix} I_k & 0 \\ 0 & * I_{n-k} \end{pmatrix} \begin{pmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ A_{21}^{(k)} & A_{22}^{(k)} \end{pmatrix} = \begin{pmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ 0 & A_{22}^{(k+1)} \end{pmatrix} \quad * \in \mathbb{R}^{n-k,1}$$

Eine Matrix der Gestalt L_k heißt Frobeniusmatrix \to weitere Eigenschaften siehe Übung . Der Eliminationsschritt ist genau dann durchführbar wenn $a_{kk}^{(k)} \neq 0$ gilt. Angenommen, dies gilt, dann erhält man

$$L_n \cdots L_2 L_1 A = R$$

$$A = \underbrace{L_1^{-1} \cdots L_{n-2}^{-1} L_{n-1}^{-1}}_{=:L} R$$

Induktiv beweißt man

$$L = L_1^{-1} \cdots L_{n-1}^{-1} = \begin{pmatrix} 1 & & & 0 \\ l_{21} & \ddots & & \\ \vdots & l_{32} & \ddots & & \\ \vdots & \vdots & & \ddots & \\ l_{n1} & l_{n2} & \dots & l_{nn-1} & 1 \end{pmatrix}$$

Durch diese Struktur kann der Speicherplatz für A zum Speichern von L und R genutzt werden!

Algorithmus 2.3: *LR*-Zerlegung

Gegeben: $A \in \mathbb{R}^{n \times n}$

$$\begin{array}{l} \text{for } i=1,...,n \\ \text{for } j=i,...,n \\ \text{for } k=1,...,i-1 \\ a_{ij}=a_{ij}-a_{ik}*a_{kj} \\ \text{end} \\ \text{end} \\ \text{for } j=i+1,...,n \\ \text{for } k=1,...,i-1 \\ a_{ji}=a_{ji}-a_{jk}*a_{ki} \\ \text{end} \\ a_{ji}=\frac{a_{ji}}{a_{ii}} \\ \text{end} \\ \end{array}$$

Aufwand für die Dreieckszerlegung $A = L \cdot R$

#Operationen =

$$\begin{split} \sum_{i=1}^{n-1} & \left((n-i)^2 + (n-i) \right) = \frac{1}{3} n^3 - \frac{1}{2} n^2 + \frac{1}{6} n + \frac{1}{2} n^2 - \frac{1}{2} n \\ & = \frac{1}{3} n^3 + \mathcal{O}(n^2) = \mathcal{O}(n^3) \end{split}$$

 \implies kubischer Aufwand! Nur akzeptabel für moderates n!

Algorithmus 2.4: Gaußsche Eliminationsverfahren

Gegeben: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$

- 1) Berechne $A = L \cdot R$ $\mathcal{O}(n^3)$
- 2) Berechne z aus Lz = b $\mathcal{O}(n^2)$
- 3) Berechne x aus Rx = z $\mathcal{O}(n^2)$
- \implies Gesamtaufwand (Operationen): $\mathcal{O}(n^3)$, (Speicherplatz): $n^2 + n$

Vorteil der Faktorisierung:

Zerlegung (teuer) kann für mehrere rechte Seiten nachgenutzt werden.

2.2. Pivot-Strategien

Beispiel 2.5: Algo 2.4 kann selbst für einfache Schritte scheitern:

$$Ax = b$$
, $x = \begin{pmatrix} w \\ z \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\det(A) = -1$, $b = \begin{pmatrix} c \\ e \end{pmatrix}$

Bei der völlig äquivalenten Formulierung

$$\tilde{A}\tilde{x} = \tilde{b}, \quad \tilde{x} = \begin{pmatrix} w \\ z \end{pmatrix}, \quad \tilde{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \det(\tilde{A}) = 1, \quad \tilde{b} = \begin{pmatrix} e \\ c \end{pmatrix}$$

funktioniert Algo 2.4 mit

$$\begin{split} \tilde{A} &= I_2 = L \cdot R \\ L &= I_2 \quad R = I_2 \end{split}$$

 \implies Zeilenvertauschung in A und der rechten Seite, **nicht** in x bzw. \tilde{x} !

Die LR-Zerlegung versagt nicht nur bei verschwindenen Diagonalelementen, sondern auch wenn diese betragsmäßig klein im Vergleich zu den restlichen Elementen sind.

→ Praktikum, Fehlertheorie (Kap. III)

Algorithmus 2.6: LR-Zerlegung mit Spaltenpivotisierung

- 1. $k = 1, A^{(1)} = A$
- 2. Spaltenpivotisierung

Bestimme $p \in \{k, ..., n\}$ so, dass

$$\left|a_{pk}^{(k)}\right| \geq \left|a_{jk}^{(k)}\right|$$
 für $j=k,...,n$

3. Vertausche die Zeilen p und k durch

$$A^{(k)} \longrightarrow \tilde{A}^{(k)} \quad \mathrm{mit} \quad \tilde{a}_{ij}^{(k)} = egin{cases} a_{kj}^{(k)} & \mathrm{falls} \ i = p \ a_{pj}^{(k)} & \mathrm{falls} \ i = k \ a_{ij}^{(k)} & \mathrm{sonst} \end{cases}$$

4. Führen der Eliminationsschritte

$$\tilde{A}^{(k)} \longrightarrow A^{(k+1)} \quad \text{setzte } k = k+1$$

5. Falls k = n STOP

Sonst gehe zu 2.

Alternative Pivotisierungsstrategien:

- Zeilenpivotisierung und Spaltentausch
- vollständige Pivotisierung, d.h. Suche des betragsmäßig größten Elements in der Restmatrix

Aufwand:

- Sowohl Spalten- als auch Zeilenpivotisierung: Im schlimmsten Fall $\mathcal{O}(n^2)$ zusätzliche Operationen
- vollständige Pivotisierung: Im schlimmsten Fall $\mathcal{O}(n^3)$ zusätzliche Operationen

Formale Beschreibung von Algo 2.6? Dazu: Permutationsmatrizen $P_{\pi} \in \mathbb{R}^{n \times n}$

Jede Permutation $\pi:\{1,...,n\}\longrightarrow\{1,...,n\}$ der Zahlen 1,...,n bestimmt eine Matrix

$$P_\pi = \begin{pmatrix} e_{\pi(1)} & \dots & e_{\pi(n)} \end{pmatrix}$$

Eine Zeilenvertauschung in A kann dann durch das Produkt $P_\pi A$ beschrieben werden, Spaltenvertauschung durch AP_π . Des Weiteren gilt $P_\pi^{-1}=P_\pi^T$, $\det(P_\pi)=\{-1,1\}$.

Man kann beweisen, dass die LR-Zerlegung mit Spaltenpivotisierung <u>theoretisch</u> nur versagen kann, wenn $\det(A)=0$

Satz 2.7: Durchführbarkeit der LR-Zerlegung

Für jede invertierbare Matrix A existiert eine Permutationsmatrix P derart, dass für PA die LR-Zerlegung mit Spaltenpivotisierung durchgeführt werden kann. D.h., man erhält PA = LR. Dabei kann man P so wählen, dass alle Elemente von L betragsmäßig kleiner gleich 1 sind, also $|L| \leq 1$

Beweis: Da A invertierbar ist, gilt $\det(A) \neq 0$. Damit existiert eine Permutationsmatrix P_{π_1} , so dass das erste Diagonalelement $\tilde{a}_{11}^{(1)}$ der Matrix

$$\tilde{A}^{(1)} = P_{\pi_1} A^{(1)}$$

von Null verschieden ist und das betragsmäßig größte Element in der ersten Spalte ist:

$$0 \neq \left| \tilde{a}_{11}^{(1)} \right| \geq \left| \tilde{a}_{i1}^{(1)} \right| \; \text{ für } i = 1,...,n$$

Nach dem ersten Eliminationsschritt erhalten wir

$$A^{(2)} = L_1 ilde{A}^{(1)} = L_1 P_{\pi_1} A = egin{pmatrix} ilde{a}_{11}^{(1)} & * \ 0 & \check{A}_2^{(2)} \end{pmatrix}$$

Wegen (*) gilt für L_1 :

$$|l_{i1}| = \left| rac{ ilde{a}_{i1}^{(1)}}{ ilde{a}_{11}^{(1)}}
ight| \leq 1 \quad i = 2, ..., n$$

$$\Longrightarrow |L_1| \le 1, \quad \det(L_1) = 1$$

$$\begin{split} \det\!\left(A^{(2)}\right) &= \underbrace{\det\!\left(L_1\right)}_{=1} \underbrace{\det\!\left(P_{\pi_1}\right)}_{\in \{-1,1\}} \underbrace{\det\!\left(A\right)}_{\neq 0} \\ &\neq 0 \end{split}$$

$$\det\bigl(\check{A}^{(2)}\bigr) = \overbrace{\frac{\det\bigl(A^{(2)}\bigr)}{\tilde{a}_{11}^{(1)}}}^{\neq 0} \neq 0$$

Induktiv erhält man

$$R=A^{(n)}=L_{n-1}R_{\pi_{n-1}}L_{n-2}P_{\pi_{n-2}}\cdots L_1P_{\pi_1}A$$

mit $|L_k| \le 1$ und P_{π_k} entweder die Identität oder zwei Zeilen $j_1,j_2 \ge k$ vertauschen. Deswegen gilt für die Frobeniusmatrix

$$L_{k} = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{k+1k} & & \\ & & \vdots & & \ddots & \\ & & -l_{nk} & & 1 \end{pmatrix}, \text{dass}$$

$$\tilde{L}_k = P_{\pi_j} L_k P_{\pi_j^{-1}} = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{\pi_j(k+1)k} & & \\ & & \vdots & & \ddots & \\ & & -l_{\pi_j(n)k} & & 1 \end{pmatrix} \quad \text{für } j > k$$

Durch geschicktes Einfügen von $I = P_{\pi_{k+1}}^{-1} P_{\pi_{k+1}}$

$$\begin{split} R = A^{(n)} = L_{k-1} \Big(P_{\pi_{n-1}} L_{n-2} P_{\pi_{n-1}}^{-1} \Big) \Big(P_{\pi_{n-1}} P_{\pi_{n-2}} L_{k-3} P_{\pi_{n-2}}^{-1} P_{\pi_{n-1}}^{-1} \Big) \\ P_{\pi_{n-1}} P_{\pi_{n-2}} \cdot \ldots \cdot \left(\ldots L_1 P_{\pi_1} \ldots P_{\pi_{n-1}}^{-1} \left(P_{\pi_{n-1}} \ldots P_{\pi_1} A \right) \right) \end{split}$$

$$\Longrightarrow PA = \underbrace{\tilde{L}_1^{-1} \cdots \tilde{L}_{n-1}^{-1}}_{=:L} R \text{ mit}$$

$$L = \begin{pmatrix} 1 & & & 0 \\ l_{\tilde{\pi}_1(l)1} & \ddots & & & \\ & \ddots & \ddots & & \\ \vdots & & & & \\ l_{\tilde{\pi}_1(n)1} & \dots & l_{\tilde{\pi}_{n-1}(n)(n-1)} & 1 \end{pmatrix}$$

und $|L| \leq 1$

Bemerkungen:

• Gilt PA = LR, dann berechnet man

$$Ax = b$$

$$PAx = Pb$$

$$LRx = Pb$$

$$x = R^{-1}L^{-1}Pb$$

• Theoretisch sind die Formulierungen

$$Ax = b$$
 $DAx = Db$

für eine invertierbare Diagonalmatrix D äquivalent. Bei der praktischen Lösung auf dem Rechner haben solche Skalierungen aber u.U. einen **dramatischen** Einfluß, vgl. Kap. III.

 Auf dem Rechner: Verbesserung der unexakten Lösung durch sogenannte Nachiteration möglich, vgl. Kap. IV.

2.3. Cholesky-Verfahren für symm. pos. definite A

Gesucht: A sp
d eine $L \in \mathbb{R}^{n \times n}$ ($\det(L) > 0$) s.d. $A = LL^T$ siehe Übungen

Num. Lin. Algebra Konrad Rösler

3. Fehleranalyse

Situation

ideal: Eingabe $x \longrightarrow$ Algorithmus/Problemstellung $f \longrightarrow$ Ausgabe y = f(x)

real:
$$\tilde{x}=x+\varepsilon \longrightarrow \tilde{f} \longrightarrow \tilde{y}=\tilde{f}(\tilde{x})$$

Frage: $y \longleftrightarrow \tilde{y}$?

Ursachen für den Gesamtfehler $\tilde{y}-y$

Modellfehler

- ▶ Idealisierungsfehler, z.B. in der Modellbildung
- Datenfehler

Modellfehler lassen in der Regel nicht vermeiden!

Frage: Wie wirken sich solche Fehler **unabhängig** vom gewählten Algorithmus aus?

$$f(x) \longleftrightarrow f(\tilde{x})$$

Kondition eines Problems

· numerische Fehler

- ► Diskretisierungsfehler, kontinuierliches Problem versus diskretisierte Formulierung
- Abbruchfehler, eigentlich unendliche Algorithmen werden nach endlichen Schritten abgebrochen
- Approximationsfehler

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\Longrightarrow \widetilde{\sin}(x) = \sum_{n=0}^k (-1) \frac{x^{2n+1}}{(2n+1)!}$$

• Rechengenauigkeit, reelle Zahlen versus Gleitkommazahlen

Rundungsfehler und Approximationsfehler ⇒ **Stabilität** eines Alogrithmus

$$f(x) \longleftrightarrow \tilde{f}(x)$$

Vernachlässigung von Fehlerbetrachtungen kann dramatische Auswrikungen haben:

- 1991: Untergang der Bohrinsel Sleipner, Fehler in den Kräften von 47%
- 1. Golfkrieg: Eine Patriotrakete verpasst angreifende Rakete. Im Steuerprogramm der Patriotrakete durch Multiplikation mit 0.1. Nach 100 Betriebsstunden: Differenz der berechneten Zeit und tatsächlich vergangener Zeit von 0.34 Sekunden
- Absturz der ersten Ariane 5 Rakete (1996), Umwandlung einer 64 bit Gleitkommazahl in 16 bit integer Zahl in Software der Arian 4
- London Millenium Bridge (2000), flasche Abschätzung der Fußgängerkräfte

3.1. Zahlendarstellung und Rundungsfehler

→ Einführung in das wissenschaftliche Rechnen

3.2. Kondition eines Problems

Erwartungshaltung: kleiner Fehler in der Aufgabenstellung ($x \to \tilde{x}$ verursacht einen kleinen Fehler in der Lösung \tilde{y}

Beispiel 3.1: Störung eines LGS

Gegeben ist das lineare Gleichungssystem

$$\underbrace{\begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}}_{=:A} \binom{x_1}{x_2} = \underbrace{\begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix}}_{=:b}$$

mit $\det(A) \neq 0$ und der eindeutig bestimmten Lösung $x = \begin{pmatrix} 2 & 2 \end{pmatrix}^T$.

Jetzt: Störung der rechten Seite

$$b \rightsquigarrow \tilde{b} = \begin{pmatrix} 0.86419999 \\ 0.14400001 \end{pmatrix}$$

liefert die Lösung $\tilde{x} = \begin{pmatrix} 0.9911 & -0.4870 \end{pmatrix}^T$. Ursache?

Dazu: Formalisierung Eigenschaften der Problemstellung

Wichtig: Notation: x - Eingabe, f - Problemstellung, y - Ausgabe

Definition 3.2: Numerisches Problem

Ein numerisches Problem ist ein Paar (f,x) wobei $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ eine Abbildung, $x\in D$ die Eingabe und y=f(x) die Ausgabe ist.

Beispiel 3.3:

- Auswertung von $\sin(x)$: $x = 1.7, y = f(x) = \sin(x) = \sin(1.7)$
- Bestimmung von Nullstelle von $g(t) = at^2 + bt + c$

Eingabe:
$$x = (a, b, c), y = f(x)$$
 definiert durch $g(f(a, b, c)) \stackrel{!}{=} 0$

Zur Lösung eines numerischen Problems können verschiedene Algorithmen genutzt werden

(Algorithmus: endliche Folge von Elementaroperationen, deterministisch bestimmt)

Hier: Die Kondition ist unabhängig vom gewählten Algorithmus!

Definition 3.4: wohl gestelltes Problem, schlecht gestelltes Problem

Das numerische Problem (f,x) heißt wohlgestellt, falls es eine konstante $L_{\rm abs} \in \mathbb{R}^+$ gibt, so dass

$$\|f(\tilde{x}) - f(x)\| \leq L_{\mathrm{abs}} \; \|x - \tilde{x}\|$$

für alle $\tilde{x} \to x$. Existiert keine solche Konstante $L_{\rm abs}$, dann heißt (f,x) schlecht gestellt. Zur weiteren Analyse setzt man im wohldefinierten Fall

$$\kappa_{\text{abs}} \coloneqq \inf\{L_{\text{abs}} \mid L_{\text{abs}} \ge 0 \text{ und } (*) \text{ gilt}\}$$

Gilt $x \neq 0 \neq f(x)$, definiert man analog $\kappa_{\rm rel}$ als die kleinste Konstante mit

$$\frac{\|f(\tilde{x}) - f(x)\|}{\|f(x)\|} \le \kappa_{\mathrm{rel}} \frac{\|\tilde{x} - x\|}{\|x\|}$$

für alle \tilde{x} nahe x.

Bemerkungen:

- Die absolute Kondition $\kappa_{\rm abs}$ beschreibt die Verstärkung des absoluten Fehlers, die relative Kondition $\kappa_{\rm rel}$ die Verstärkung des relativen Fehlers
- Bei nichtlinearen Problemen hängen $\kappa_{\rm abs}$ und $\kappa_{\rm rel}$ meist stark von der Umgebung ab \Longrightarrow linearisierte Fehlertheorie!
- κ_{abs} und κ_{rel} hängen stark von den verwendeten Normen ab! $\|\cdot\|_2, \|\cdot\|_\infty, \|\cdot\|_p, \|\cdot\|_1$

Definition 3.5: absolute und relative Kondition

Die Konstante $\kappa_{\rm abs}$ gibt die absolute Kondition eines numerischen Problems (f,x) und $\kappa_{\rm rel}$ die relative Kondition.

Das numerische Problem (f,x) ist **schlecht konditioniert**, wenn $\kappa_{\rm abs}$ bzw. $\kappa_{\rm rel}$ "groß" sind und gut konditioniert, wenn $\kappa_{\rm abs}$ bzw. $\kappa_{\rm rel}$ "klein" sind.

Wie berechnet man $\kappa_{\rm abs}/\kappa_{\rm rel}$? Dafür: Mittelwertsatz der Differentialrechnung

Es sei $f:[a,b]\to\mathbb{R}$ stetig auf [a,b] und diffbar auf (a,b). Dann existiert $\bar{x}\in(a,b)$, so dass

$$f'(\bar{x}) = \frac{f(b) - f(a)}{b - a}$$

Anwendung in der Fehlertheorie: Für differenzierbare $f: \mathbb{R}^n \to \mathbb{R}$ existiert wegen der Taylorentwicklung für x und Δx ein $\bar{x} \in x + t\Delta x, t \in (0,1)$ mit

$$\Delta y \coloneqq \tilde{y} - y = f(x + \Delta x) - f(x) = \nabla f(\bar{x}) \Delta x$$

 $\Longrightarrow \|\nabla f(\bar{x})\|$ ist ein Fehlermaß $\sim \to x$.

Deswegen verwendet man den Term $\|\nabla f(x)\|$ als Maß für die Fehlerverstärkung des absoluten Eingabefehlers $\|\Delta x\| = \|\tilde{x} - x\|$.

Der relative Fehler ist meist von größerer Bedeutung. Für n=1 und $x\cdot y\neq 0$

$$\frac{\Delta y}{y} \approx \nabla f(x) \frac{\Delta x}{y} = \underbrace{\left(\nabla f(x) \frac{x}{f(x)}\right)}_{=\kappa_{\rm rol}} \underbrace{\frac{\Delta x}{x}}_{x}$$

Verallgemeinerung auf n>1: $\kappa_{\mathrm{rel}}=\left|\nabla f(x)^Tx\cdot\frac{1}{f(x)}\right|$ o **Beispiel 3.6:** Kondition der Addition

Problem: $f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2) = x_1 + x_2$ mit der l_1 -Norm

$$\nabla f(x) = (1,1)^T \Longrightarrow$$

$$\kappa_{\text{abs}} = \|\nabla f(x)\|_{1} = \|(1 \ 1)^{T}\|_{1} = 2$$

$$\kappa_{\text{rel}} = \|\nabla f(x)^T x \frac{1}{f(x)}\|_{1} = \frac{|x_1| + |x_2|}{|x_1 + x_2|}$$

Für die Addition zweier Zahlen mit gleichen Vorzeichen ergibt sich $\kappa_{\rm rel}=2\Longrightarrow$ gut konditioniert!

Gleikommazahlen: Hämmerlin, Hoffmann: Numerische Mathematik, Springer (1994)

Beispiel 3.6: $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x) = x_1 + x_2$

$$\kappa_{\mathrm{rel}} = \left\| \nabla f(x)^Y x \cdot \frac{1}{f(x)} \right\|_1 = \frac{|x_1| + |x_2|}{|x_1 + x_2|} = \star$$

 x_1, x_2 gleiche Vorzeichen, z.B. $x_1, x_2 > 0$

$$\star = \frac{x_1 + x_2}{x_1 + x_2} = 1$$

⇒ sehr gut konditioniert!

Beispiel 3.7: Subtraktion zweier Zahlen

Problem: $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = x_1 - x_2$

Wähle die l_1 -Norm

$$\begin{split} f'(x) &= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \implies \kappa_{\text{abs}} = \|Df(x)\|_1 = \|(1 \ -1)^T\|_1 = 2 \\ \kappa_{\text{rel}} &= \|\nabla f(x)^T x \frac{1}{f(x)}\|_1 = \frac{|x_1| + |x_2|}{|x_1 - x_2|} \end{split}$$

Subtraktion zwei fast gleicher Zahlen ist schlecht konditioniert da

$$|x_1 - x_2| \ll |x_1| + |x_2|$$

Für die Rechengenauigkeit eps $= 10^{-7}$ (einfache Genauigkeit)

$$x_1=1.23467*$$
 Störung in der 7. Stelle
$$x_2=1.23456*$$
 Störung in der 7. Stelle
$$x_1-x_2=0.00011*=0.11\cdot 10^{-3}$$
 Störung in der 3. Stelle

⇒ Man verliert 4 Stellen an Genauigkeit

$$\implies \kappa_{\rm rol} \approx 10^4$$

Problemstellung, Kondition \longleftrightarrow Algorithmus

Wichtiges Beispiel: Sekantenverfahren zur Lösung nichtlinearer Gleichungen theoretisch: serh schöne Konvergenzeigenschaften praktisch: Erhebliche Probleme durch schlechte Kondition der Subtraktion

3.3. Stabilität von Algorithmen

Jetzt: Wie wirken sich Eingabefehler und Fehler während der Rechnung auf das Endergebnis aus?

Vorwärtsanalyse

Definition 3.8: Vorwärtsstabilität (komponentenweise)

Die Implementierung \tilde{f} heißt vorwärtsstabil wenn für alle x aus dem Definitionsbereich von f mit $f(x) \neq 0$ ein moderates, von x unabhängiges $C_V > 0$, so dass

$$\left|\frac{\tilde{f}(x) - f(x)}{f(x)}\right| \leq C_V \cdot \kappa_{\mathrm{rel}} \cdot \mathrm{eps}$$

mit eps als Rechengenauigkeit gilt.

Hier betrachtet man die Fehlerfortpflanzung, d.h. die Auswirkung bereits gemachter Fehler.

Dazu: x_1,x_2 sind die exakten Daten, $\Delta x_1,\Delta x_2$ sind die bisher gemachten Fehler mit $\left|\frac{\Delta x_1}{x_1}\right|,\left|\frac{\Delta x_2}{x_2}\right|\ll 1$

Was passiert bei exakter Durchführung einer arithmetischen Operation?

Lemma 3.9: Gegeben seien $x_1,x_2,\Delta x_1,\Delta x_2\in\mathbb{R}$. Dann gelten mit $\circ\in\{+,-,\cdot,\div\}$ für den forgepflanzten Fehler

$$\Delta(x_1 \circ x_2) = (x_1 + \Delta x_1) \circ (x_2 + \Delta x_2) - x_1 \circ x_2$$

die Abschätzung:

$$\begin{split} \frac{\Delta(x_1\pm x_2)}{x_1\pm x_2} &= \frac{x_1}{x_1\pm x_2} \cdot \frac{\Delta x_1}{x_1} \pm \frac{x_2}{x_1\pm x_2} \cdot \frac{\Delta x_2}{x_2} \\ \frac{\Delta(x_1\cdot x_2)}{x_1\cdot x_2} &\approx \frac{\Delta x_1}{x_1} + \frac{\Delta x_2}{x_2} \\ \frac{\Delta\left(\frac{x_1}{x_2}\right)}{\frac{x_1}{x_2}} &\approx \frac{\Delta x_1}{x_1} - \frac{\Delta x_2}{x_2} \end{split}$$

Dabei bedeutet \approx ein Vernachlässigen von Termen höherer Ordnung, z.B. x_1^2, x_2^2

Beweis: Nachrechnen

Fazit: ± können u.U. zu einer erheblichen Fehlerverstärkung führen!

·, ÷: Im wesentlichen unkritische Fehlerforpflanzung

Die Fehlerverstärkung tritt besonders dann auf, wenn $|x_1|\approx |x_2|, x_1\pm x_2$ nahe Null. Dieser Effekt heißt **Auslöschung**

Rückwärtsanalyse

$$\tilde{f}(x) \stackrel{?}{=} f(\tilde{x}) = f(x + \Delta x)$$

Erwartungshaltung: Δx nicht zu groß

Definition 3.10: Rückwärtsstabilität (komponentenweise)

Die Implementierung \tilde{f} heißt **rückwärtsstabil**, wenn für alle $x \neq 0$ aus dem Definitionsbereich von f und Δx mit $\tilde{f}(x) = f(x + \Delta x)$ die Abschätzung

$$\left| \frac{\Delta x}{x} \right| \le C_R \cdot \text{eps}$$

für eps als Rechengenauigkeit und ein moderates von x unabhängiges $C_R>0$ gilt.

D.h. kann $\tilde{f}(x)$ als exaktes Ergebnis einer gestörten Eingabe $\tilde{x}=x+\Delta x$ interpretieren? Bemerkungen:

- Δx muss nicht existieren, z.B. außerhalb des Definitionsbereichs
- f nicht injektiv \Longrightarrow u.U. existieren mehrere Kondidaten, dann wählt man \tilde{x} so, dass $\|x-\tilde{x}\|$ minimal ist

$$f(x) \longleftrightarrow \tilde{f}(\tilde{x})$$
 ?

Es gilt:

$$\begin{split} &\left|\frac{\tilde{f}(x) - f(x)}{f(x)}\right| = \left|\frac{f(x + \Delta x) - f(x)}{f(x)}\right| \\ &\approx \kappa_{\mathrm{rel}} \left|\frac{x + \Delta x - x}{x}\right| \leq \kappa_{\mathrm{rel}} \cdot C_R \cdot \mathrm{eps} \end{split}$$

Also: Für ein wohl gestelltes Problem ist eine rückwärtsstabile Implementierung auch immer vorwärtsstabil mit $C_V=C_R$

Fazit für den Gesamtfehler:

$$\begin{split} \|f(x) - \tilde{f}(\tilde{x})\| &= \|f(x) - f(\tilde{x}) + f(\tilde{x}) - \tilde{f}(\tilde{x})\| \\ &\leq \underbrace{\|f(x) - f(\tilde{x})\|}_{\text{Kondition}} + \underbrace{\|f(\tilde{x}) - \tilde{f}(\tilde{x})\|}_{\text{Stabilität}} \end{split}$$

Ein gut konditioniertes Problem und ein stabiler Algorithmus sichern gute numerische Ergebnisse!

Beispiel 3.11: Auslöschung

Betrachtet wird

$$f(x) = x^3 \left(\frac{x}{x^2 - 1} - \frac{1}{x} \right)$$

Funktionsauswertung?

Matlab, x=2

$$y_1 = \frac{x}{x^2 - 1} = \frac{2}{3}, \quad y_2 = \frac{1}{x} = \frac{1}{2}, \quad y_3 = x^3 = 8, \quad y_4 = y_3 \cdot (y - 1 - y_2) = \frac{4}{3}$$

$$x = 1.2 \cdot 10^7$$

Wir können f umschreiben zu

$$f(x) = x^3 \left(\frac{x}{x^2 - 1} - \frac{1}{x}\right) = \frac{1}{1 - x^{-2}} =: g(x) > 1$$

Stabilität beider Formulierung?

Num. Lin. Algebra Fehleranalyse Konrad Rösler

$$f'(x) = \dots = -\frac{2x}{\left(x^2 - 1\right)^2}$$

$$\kappa_{\mathrm{rel}} = \frac{2}{x^2 - 1} \le 1 \quad \text{für } x \ge 4$$

⇒ Eingabefehler werden gedämpft!

$$\left| \frac{\tilde{f}(x) - f(x)}{f(x)} \right| \approx 0.02 = C_V \cdot \kappa_{\rm rel} \cdot {\rm eps}$$

$$\Longrightarrow C_V > 10^{13}$$

⇒ diese Implementierung ist nicht vorwärtsstabil!

Für $x = 1.2 \cdot 10^7$:

$$x^{-2} \approx 6.9\bar{4} \cdot 10^{-15}$$

$$1 - x^{-2} \approx 1.0$$

$$\frac{1}{1 - x^{-2}} \approx 1.0$$

Stabilität? Exakte Rechnung:

 $\Longrightarrow C_V\approx 10$, vorwärtsstabil

Num. Lin. Algebra Konrad Rösler

4. Das Gauß-Verfahren II

Wieder die Frage: Wann ist eine lineares Gleichungssystem lösbar? Jetzt mit Fehlertheorie!

Beispiel 4.1: Interpolationspolynome

siehe PDF-Datei

4.1. Lösung von linearen Gleichungssystemen: Kondition

Zwei Möglichkeiten:

- 1. Störung Δb in b. Löse $A(x + \Delta x) = b + \Delta b$. Größe von Δx ?
- 2. Störung ΔA in A. Existiert eine Lösung $x+\Delta x=\tilde{x}$ von $(A+\Delta A)(x+\Delta x)=b$. Größe von Δx ?

zu 1.:

Absolute Kondition:

$$\begin{split} \|\Delta x\| &= \|A^{-1}\Delta b\| \leq \|A^{-1}\| \cdot \|\Delta b\| \\ \Longrightarrow \kappa_{\mathrm{abs}} &= \|A^{-1}\| \end{split}$$

Relative Kondition:

$$\begin{split} \frac{\|\Delta x\|}{\|x\|} &\leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|} \\ \kappa_{\operatorname{rel}} &= \operatorname{cond}(A) \coloneqq \|A\| \cdot \|A^{-1}\| \end{split}$$

zu Bsp. 3.1: Hier gilt für $\|\ \| = \|\ \|_2$

$$\kappa_{\rm abs} \approx 1.5803 \cdot 10^8$$

$$\kappa_{\rm rel} \approx 1.5803 \cdot 10^8$$

Desweiteren gilt: (siehe ÜA)

$$\operatorname{cond}(A) = \frac{\max_{\|x\| \ = 1} \|Ax\|}{\min_{\|x\| \ = 1}} \in [1, \infty[$$

- Damit erhält man $A \neq 0$ ist genau dann singulär, wenn $\operatorname{cond}(A) = \infty$
- Außerdem gilt $\operatorname{cond}(\alpha A) = \operatorname{cond}(A)$ für $0 \neq \alpha \in \mathbb{R}$
 - ⇒ die Kondition einer Matrix ist skalierungsinvariant!

zu 2.: Warum existiert $(A + \Delta A)^{-1}$ zu der gestörten Matrix $A + \Delta A$?

$$A + \Delta A = A(I + A^{-1}\Delta A), \quad \det(A) \neq 0$$

Lemma 4.2: Neumannsche Reihe

Sei $C\in\mathbb{R}^{n\times n}$ mit $\|C\|<1$ mit einer submultiplikativen Norm. Dann ist I-C invertierbar und man schreibt

$$\left(I - C\right)^{-1} = \sum_{k=0}^{\infty} C^k$$

Weiterhin gilt

$$\|(I-C)^{-1}\| \le \frac{1}{1-\|C\|}$$

Beweis: ÜA

nach Carl Gottfried Neumann (1832 - 1925), deutsche Mathematiker

Satz 4.3: Störungssatz

Es sei $\operatorname{cond}(A) \cdot \frac{\|\Delta A\|}{\|A\|} < 1$ und $x + \Delta x$ die Lösung von $(A + \Delta A)(x + \Delta x) = b + \Delta b$. Dann gilt (*)

$$\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \bigg(1 - \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|} \bigg) \bigg(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|} \bigg)$$

für $x \neq 0$ und $b \neq 0$.

Beweis: ÜA

Wenn $\operatorname{cond}(A)\frac{\|\Delta A\|}{\|A\|}\ll 1$ und (*) gilt

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \cdot \operatorname{eps}$$

wenn der relative Fehler in A und b auf dem Niveau der Maschinengenauigkeit sind. Der Störungssatz liefert dann, dass man wegen der Kondition des numerischen Problems $(A,b)\mapsto x=A^{-1}b$ einen unvermeidbaren Fehler der Größenordnung $\operatorname{cond}(A)\cdot\operatorname{eps}$ erwarten kann.

Beispiel 4.4: Fortsetzung von Bsp. 3.1

$$A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}, \quad \operatorname{cond}(A) = 2.469 \cdot 10^8 \quad \text{für } \| \ \|_2, \quad b = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix}$$

$$\Longrightarrow x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

Lösung mit Matlab $x = A \setminus b$

$$x = \begin{pmatrix} 2.00000001802645 \\ -2.000000007450581 \end{pmatrix}$$

$$\Rightarrow \frac{\|\Delta x\|_{2}}{\|x\|_{2}} = 2.715 \cdot 10^{-9} \le 2.469 \cdot 10^{8} \cdot 10^{-16}$$

Dann: $\left\|\Delta b\right\|_2 = 1.614 \cdot 10^{-8}$

$$\begin{split} \frac{\left\|\Delta x\right\|_{2}}{\left\|x\right\|_{2}} &= 1.64679 \leq \operatorname{cond}(A) \cdot 1 \cdot \frac{\left\|\Delta b\right\|_{2}}{\left\|b\right\|_{2}} \\ &= 2.469 \cdot 10^{8} \cdot 1 \cdot 7.6799 \cdot 10^{7} \\ &\approx 1.9177 \end{split}$$

Beispiel 4.5:

$$A = \begin{pmatrix} 2 & 0.999 \\ 4 & 2.003 \end{pmatrix}, \quad b = \begin{pmatrix} 1.001 \\ 1.997 \end{pmatrix} \implies x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\implies A^{-1} = \begin{pmatrix} 200.2\bar{9} & -99.9\bar{9} \\ -399.\bar{9} & 199.9\bar{9} \end{pmatrix}$$

$$\implies \|A\|_{\infty} = 6.003$$

$$\implies \|A^{-1}\|_{\infty} = 5.99\bar{9}$$

$$\operatorname{cond}_{\infty}(A) = 3607.7\bar{9}$$

Jetzt:

$$\tilde{A} = \begin{pmatrix} 2 & 1 \\ 4 & 2.003 \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} 1.001 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0.001 \\ 0 & 0 \end{pmatrix}, \quad \Delta b = \begin{pmatrix} 0 \\ 0.003 \end{pmatrix}$$

$$\Rightarrow \|\Delta A\|_{\infty} = 0.001, \|\Delta b\|_{\infty} = 0.003$$

$$\Rightarrow \frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}} \le 14.4072$$

$$\tilde{x} = \begin{pmatrix} 0.8\bar{3} \\ -0.\bar{6} \end{pmatrix} \Rightarrow \frac{\|\Delta x\|}{\|x\|} = 1.49$$

gap

4.2. Stabilität der Gaußelimination

Stabilität der LR- bzw. Cholesky-Zerlegung.

Rückwärtsanalyse: Interpretation des Ergebnisses als Ergebnis exakter Rechnung mit gestörten Eingangsdaten.

Abschätzung von ΔA : Störungssatz 4.3 und Kondition von A.

1. Fall:

A spd Matrix

 \implies Cholesky-Verfahren $\mathcal{O}(n^2)$

Für die berechnete Lösung \tilde{x} als exakte Lösung des gestörten Systems:

$$(A + \Delta A) \underbrace{\tilde{x}}_{=x + \Delta x} = b$$

 $\min \frac{\|\Delta A\|_{\infty}}{\|A\|_{\infty}} \leq C_n \ \text{eps gilt, dass } c_n \text{ "klein" ist und nur von der Dimension von A abhängt,} \\ \text{d.h. } A \text{ ist im Rahmen der Maschinenungenauigkeit.}$

Des Weiteren erhält man

$$\frac{\left\|\Delta x\right\|_{\infty}}{\left\|x\right\|_{\infty}} = \frac{\left\|\tilde{x} - x\right\|_{\infty}}{\left\|x\right\|_{\infty}} \leq \frac{\operatorname{cond}_{\infty}(A)\left(\frac{\left\|\Delta A\right\|_{\infty}}{\left\|A\right\|_{\infty}}\right)}{1 - \operatorname{cond}_{\infty}(A)\left(\frac{\left\|\Delta A\right\|_{\infty}}{\left\|A\right\|_{\infty}}\right)} \lesssim \frac{\operatorname{cond}_{\infty}(A)c_n \text{ eps}}{1 - \operatorname{cond}_{\infty}(A)c_n \text{ eps}} \approx \operatorname{cond}_{\infty}(A)c_n \text{ eps}$$

falls $\operatorname{cond}_{\infty}(A) \frac{\|\Delta A\|_{\infty}}{\|A\|_{\infty}} \ll 1$. D.h. der Fehler in \tilde{x} bleibt bzgl. der Größenordnung im Rahmen der unvermeidbaren Fehler.

 \Longrightarrow Cholesky-Verfahren ist stabil

Eine genauere Analyse findet man bei Deuflhard/Hohmann und auch Stoer/Bulirsch.

2. Fall:

A nicht spd

 \implies LR-Zerlegung mit Spaltenpivotisierung

Dann gilt auch

$$(A + \Delta A)\tilde{x} = b$$
 mit $\frac{\|\Delta A\|_{\infty}}{\|A\|_{\infty}} \le \tilde{c}_n$ eps

Allerdings ist \tilde{c}_n sehr viel größer als c_n . Trotzdem kann die LR-Zerlegung mit Spaltenpivotisierung noch als stabil angesehen werden.

4.3. Nachiteration

Gauß-Elimination liefert \tilde{x} als Approximation der Lösung x von Ax=b. Wie gut ist \tilde{x} ? Für die exakte Lösung x verschwindet das Residuum r(x)=Ax-b=0.

Ist $r(\tilde{x}) = A\tilde{x} - b$ "klein" ein sinnvolles Kriterium?

Problem: Die Norm

 $\|r(\tilde{x})\|$ kann durch Zeilenskalierung beliebig verändert werden

$$Ax = b \iff DAx = Db$$

Deswegen: Beurteilung anhand der Rückwärtsanalyse, basiert auf einem Resultat von Rigal und Gaches (1967)

Satz 4.6: Gegeben sei das numerische Problem Ax = b, d.h. $x = A^{-1}b$. Dann ist der normweise relative Rückwärtsfehler einer Näherungslösung \tilde{x} gegeben durch:

$$\|\Delta x\| = \frac{\|A\widetilde{x} - b\|}{\|A\| \cdot \|\widetilde{x}\| + \|b\|}$$

Praktischer Nutzen? Nachiteration > D.h.:

Ausgehend von einer Fehlerhaften LR-Zerlegung, d.h.

$$\tilde{L}\tilde{R} \neq PA$$

und daher nur einer Näherungslösung $\tilde{x} =: x_0$ mit exakten Defekt

$$d_0 \coloneqq r(x_0) = b - Ax_0,$$

kann man die Zerlegung $\tilde{L}\tilde{R} \approx PA$ zur Lösung der sogenannten Defektgleichung

$$Aw = d_0 \Longrightarrow \tilde{L}\tilde{R}w = d_0.$$

 \Longrightarrow Korrektur w_1 für x_0 , d.h.

$$x_1 = x_0 + w_1$$

liefert dann

$$Ax_1 = Ax_0 + Aw_1 = Ax_0 - b + b + d_0 = b$$

 $\Longrightarrow x_1$ wäre exakte Lösung, aber: w_1 ist auch fehlerbehaftet

Frage: Ist x_1 eine bessere Lösung als x_0 ?

Dazu: Fehleranalyse basierend auf dem Störungssatz, Satz 4.3.

$$\frac{\|x_0-x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|PA-\tilde{L}\tilde{R}\|}{\|A\|}} \cdot \underbrace{\frac{\|PA-\tilde{L}\tilde{R}\|}{\|A\|}}_{\approx \operatorname{ens}}$$

 \Longrightarrow Stellenverlust entspricht der Kondition von A. Die zusätzlich auftretenden Rechenfehler werden vernachlässigt. Ersetzt man den exakten Defekt d_0 durch den Ausdruck

$$\hat{d}_0 = b - \hat{A}x_0$$

mit einer genaueren Darstellung von A,

$$\frac{\|A - \hat{A}\|}{\|A\|} \leq \tilde{\varepsilon} \ll \varepsilon$$

erhält man

$$\begin{aligned} x_1 &= x_0 + w_1 = x_0 + \left(\tilde{L} \tilde{R} \right)^{-1} \left(b - \hat{A} x_0 \right) = x_0 + \left(\tilde{L} \tilde{R} \right)^{-1} \left(A x - A x_0 + \left(A - \hat{A} \right) x_0 \right) \\ &\Longrightarrow x_1 - x = x_0 - x + \left(\tilde{L} \tilde{R} \right)^{-1} A (x - x_0) + \left(\tilde{L} \tilde{R} \right)^{-1} \left(A - \hat{A} \right) x_0 = (\star) \end{aligned}$$

Es gilt:

$$\begin{split} \tilde{L}\tilde{R} &= A - A + \tilde{L}\tilde{R} \\ &= A \Big(I - A^{-1} \Big(A - \tilde{L}\tilde{R} \Big) \Big) \end{split}$$

Dann liefert die Neumannsche Reihe (Lemma 4.2)

$$\begin{split} \| \left(\tilde{L} \tilde{R} \right)^{-1} \| & \leq \| A^{-1} \| \cdot \| I - A^{-1} \left(A - \tilde{L} \tilde{R} \right)^{-1} \| \\ & \leq \frac{\| A^{-1} \|}{1 - \| A^{-1} \left(A - \tilde{L} \tilde{R} \right) \|} \\ & \leq \frac{\| A^{-1} \|}{1 - \| A^{-1} \| \ \| A - \tilde{L} \tilde{R} \|} \\ & = \frac{\| A^{-1} \|}{1 - \operatorname{cond}(A) \frac{\| A - \tilde{L} \tilde{R} \|}{\| A \|}} \end{split}$$

Damit erhält man mit

$$(\star) = \left(\tilde{L}\tilde{R}\right)^{-1} \left(\tilde{L}\tilde{R} - A\right) (x_0 - x) + \left(\tilde{L}\tilde{R}\right)^{-1} \left(A - \hat{A}\right) x_0$$

dass

$$\frac{\|x_1-x\|}{\|x\|} \approx \operatorname{cond}(A) \left(\underbrace{\frac{\|A-\tilde{L}\tilde{R}\|}{\|A\|}}_{\varepsilon} \underbrace{\frac{\|x_0-x\|}{\|x\|}}_{\operatorname{cond}(A) \cdot \varepsilon} + \underbrace{\frac{\|A-\hat{A}\|}{\|A\|}}_{\leq \tilde{\varepsilon} \ll \varepsilon} \underbrace{\frac{\|x_0\|}{\|x\|}}_{\|x\|} \right)$$

wenn $\operatorname{cond}(A) \frac{\|PA - \widetilde{L}\widetilde{R}\|}{\|A\|} \ll 1$

$$\left(\operatorname{cond}(A)\right)^2 \cdot \left(\varepsilon^2 + \tilde{\varepsilon} \cdot \frac{\|x_0\|}{\|x\|}\right)$$

 x_1 ist nicht die exakte Lösung, deswegen wendet man die Nachiteration iterativ an. In der Praxis wird der Faktor in x nach wenigen Korrekturschritten (2-3) auf die Größenordnung der Defektgleichung reduziert, d.h. oft hat man

$$\frac{\|x_3-x\|}{\|x\|}\sim \tilde{\varepsilon}$$

Beispiel 4.7: Betrachtet wird das Gleichungssystem

$$\begin{pmatrix} 1.05 & 1.02 \\ 1.04 & 1.02 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (12)$$

Exakte Lösung

$$x = (-100, 103.9216)$$

LR-Zerlegung mit 3-stelliger Genauigkeit:

$$\begin{split} \tilde{L} &= \begin{pmatrix} 1 & 0 \\ 0.99 & 1 \end{pmatrix} \qquad \tilde{R} = \begin{pmatrix} 1.05 & 1.02 \\ 0 & 0.01 \end{pmatrix} \\ \tilde{L}\tilde{R} - A &= \begin{pmatrix} 0 & 0 \\ -5 \cdot 10^{-4} & -2 \cdot 10^{-4} \end{pmatrix} \checkmark \\ &\Longrightarrow \|\tilde{L}\tilde{R} - A\| \leq \text{eps} \end{split}$$

Näherungslösung $x_0=\left(-97.2,101\right)$ zugehöriges Residuum.

$$d_0 = b - Ax_0 = \begin{cases} \left(0,0\right)^T & \text{3-stellige Rechnung} \\ \left(-0.17, -0.14\right)^T & \text{6-stellige Rechnung} \end{cases}$$

Bei 3-stelliger Rechnung hat die Korrekturgleichung

$$\begin{pmatrix} 1 & 0 \\ 0.99 & 1 \end{pmatrix} \begin{pmatrix} 1.05 & 1.02 \\ 0 & 0.01 \end{pmatrix} \begin{pmatrix} w_0^1 \\ w_0^2 \end{pmatrix} = \begin{pmatrix} -0.17 \\ -0.14 \end{pmatrix}$$

die Lösung $w_1=(-2.90,2.83)\Longrightarrow x_1=x_0+w_1={-99.9\choose 104}$ ist eine deutlich bessere Lösung!

Vorsicht: Selbst, wenn die LR-Zerlegung mit Spaltenpivotisierung stabil ist, d.h. $\|PA - \tilde{L}\tilde{R}\|$ klein, kann die numerische Lösung \tilde{x} sehr ungenau sein, wenn $\operatorname{cond}(A)$ sehr groß ist. Dann können kleine Störungen zu A zu großen Störungen in x führen.

Abhilfe: Vorkonditionierung

$$Ax = b \stackrel{\tilde{P}}{\Longrightarrow} \tilde{P}Ax = \tilde{b}$$

Vorkonditionierung, so dass $\operatorname{cond}\!\left(\tilde{P}A\right)\ll\operatorname{cond}(A)$

Beispiel 4.8: Hilbertmatrix

Die Hilbertmatrix ist definiert durch $A = \left(\frac{1}{i+j-1}\right) \in \mathbb{R}^{n \times n}$. Man kann zeigen: $\operatorname{cond}(A)$ wächst exponentiell in n.

Num. Lin. Algebra Konrad Rösler

5. Die QR-Zerlegung

Jetzt: $A \in \mathbb{R}^{m \times n}$, $m \ge n$, rang(A) = n

 $A \in \mathbb{C}^{m \times n}$ genauso möglich, dann symmetrisch \rightsquigarrow hermitesch

Ziel: Faktorisierung A=QR mit R= rechte obere Dreiecksmatrix, $R\in\mathbb{R}^{m\times n}$, $Q\in\mathbb{R}^{m\times m}$ unitär, d.h. $Q^TQ=I_n$.

5.1. Householder-Transformationen

Alston Householder (1904-1993, 1958)

Eigenschaften unitärer Matrizen: Sei $Q \in \mathbb{R}^{m \times m}$ unitär, dann gilt

1.
$$\|Qx\|_2^2 = (Qx)^T Qx = x^T Q^T Qx = x^T x = \|x\|_2^2$$

 $\Longrightarrow Q$ normerhaltend

$$\begin{split} \left\|Qx\right\|_{2} &= \left\|x\right\|_{2} & \forall x \in \mathbb{R}^{m} \\ & \left\|Q\right\|_{2} = \max_{\left\|x\right\|_{2} = 1} \left\|Qx\right\|_{2} = 1 \\ & \left\|Q^{-1}\right\|_{2} = \left\|Q^{T}\right\|_{2} = \left\|Q\right\|_{2} = 1 \\ & \operatorname{cond}_{2}(Q) \leq \left\|Q\right\|_{2} \left\|Q^{-1}\right\|_{2} = 1 \end{split}$$

3. $P, Q \in \mathbb{R}^{m \times m}$ unitär $\Longrightarrow P \cdot Q$ unitär

Definition 5.1: Householder-Transformation

Sei $v\in\mathbb{R}^m\setminus\{0\}$. Dei Matrix $P_v=I_m-\frac{2}{\|v\|_2^2}vv^T\in\mathbb{R}^{m\times m}$ heißt Householder-Transformation.

Lemma 5.2: Sei $v \in \mathbb{R}^m \setminus \{0\}$. Dann ist P_v eine symmetrische unitäre mit $P_v v = -v$ und für alle $w \in \mathbb{R}^m$ mit $w \perp v$, d.h. $w^T v = 0$, gilt $P_v w = w$.

Beweis:

Symmetrie: klar

$$P_v^T P_v \stackrel{?}{=} I_m$$

$$\begin{split} P_v^T P_v &= \left(I_m - \frac{2}{\left\|v\right\|_2^2} v v^T\right)^T \left(I - \frac{2}{\left\|v\right\|_2^2} v v^T\right) \\ &= I_m - \frac{4}{\left\|v\right\|_2^2} v v^T + \frac{4}{\left\|v\right\|_2^2} \frac{v v^T v v^T}{\left\|v\right\|_2^2} \\ &= I_m \end{split}$$

Für v erhält man:

$$P_{v}v = \left(I_{m} - \frac{2}{\left\|v\right\|_{2}^{2}}vv^{T}\right)v = v - \frac{2}{\left\|v\right\|_{2}^{2}}v\overset{\left\|v\right\|_{2}^{2}}{v^{T}v} = -v$$

sowie für $w \in \mathbb{R}^m$ mit $w \perp v$

$$P_v w = \left(I_m - \frac{2}{\left\|v\right\|_2^2} v v^T\right) w = w - \frac{2}{\left\|v\right\|_2^2} v \underbrace{v^T w}_0 = w$$

Damit kann ${\cal P}_v$ als Spiegelung interpretiert werden.

Nun Einsatz von Householder-Transformationen um A auf die Dreiecksgestalt zu bringen. Dazu:

Lemma 5.3: Gegeben sei $x \in \mathbb{R}^n \setminus \{0\}$. Für $v = x + \tau e_1$ mit

$$\tau = \begin{cases} \pm \frac{x_1}{|x_1|} \|x\|_2 & \text{falls } x_1 \neq 0 \\ -\|x\|_2 & \text{falls } x_1 = 0 \end{cases}$$

gelte $v \neq 0$. Dann ist

$$P_v x = \left(I_m - \frac{2}{\left\|v\right\|_2^2} v v^T\right) x = -\tau e_1$$

Beweis:

$$\begin{split} \left\| x + \tau e_1 \right\|_2^2 &= \left\| x \right\|_2^2 + 2\tau e_1^T x + \tau^2 \\ &= 2\underbrace{(x + \tau e_1)^T}_{x} x \end{split}$$

Dann gilt: $2v^Tx=2(x+\tau e_1)^T=\left\|x+2e_1\right\|^2=\left\|v\right\|_2^2$

Mit der Defintion von v folgt weiterhin

 $m Num.\ Lin.\ Algebra$ Die QR-Zerlegung Konrad Rösler

$$\frac{2}{\left\|v\right\|_2^2}v(v^Tx)=v=x+\tau e_1 \quad \Longrightarrow \quad \text{Behauptung}$$

Bemerkung: Damit im Fall $x_1 \neq 0$ ($x_1 \in \mathbb{C}$) bei der Berechnung von v keine Auslöschung auftritt, kann man das Vorzeichen von τ entsprechend wählen.

5.2. Berechnung der QR-Zerlegung

Satz 5.4: Existenz einer QR-Zerlegung

Sei $A\in\mathbb{R}^{m\times n}$ mit $m\geq n$ mit $\mathrm{rang}(A)=n$. Dann existiert eine unitäre Matrix $Q\in\mathbb{R}^{m\times m}$ und eine obere Dreiecksmatrix $R\in\mathbb{R}^{m\times n}$ mit

$$A = Q \cdot R$$

so dass $v_{ii} \neq 0$, i = 1, ..., n.

Beweis:

Idee: Nutze Householder-Transformationen, um die Spalten von R zu erhalten. D.h. $Q_n \cdot \ldots \cdot A = R$ mit $Q_i \cong$ Householder-Transformationen, dann $Q \coloneqq Q_1^T Q_2^T \ldots Q_n^T = Q_1 \ldots Q_n$.

1. Schritt: $A_1 = A$, $0 \neq x = a_1 = 1$ Spalte von A.

 $Q_1 \in \mathbb{R}^{m \times n}$ Householder-Transformation mit v gemäß Lemma 5.3.

$$\Longrightarrow Q_1 x = Q a_1 = v_{11} e_1$$

mit $|v_{11}| = ||a_1|| \neq 0$ da 1 Vollrang besitzt.

Also

$$Q_1 A = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1m} \\ 0 & & & \\ \vdots & & A_2 & \\ 0 & & & \end{pmatrix}, \qquad A_2 \in \mathbb{R}^{(m-1)\times (n-1)}$$

2. Schritt: $x=a_2=1$ Spalte von $A_2,$ $x\in\mathbb{R}^{m-1}$ und $\tilde{Q}_2\in\mathbb{R}^{(m-1)\times(n-1)}$ als Householder-Transformation gemäß Lemma 5.3.

Dann folgt mit
$$Q_2 \coloneqq \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & \widetilde{Q_2} & \\ 0 & & \end{pmatrix}$$
 unitär, dass

$$Q_2Q_1A = \begin{pmatrix} v_{11} & v_{12} & \dots & \dots & v_{1m} \\ 0 & v_{22} & v_{23} & \dots & v_{2m} \\ \vdots & 0 & & & \\ \vdots & \vdots & & A_3 & \\ 0 & 0 & & & \end{pmatrix}$$

mit $v_{22} \neq 0$, da A Vollrang hat.

Nach n Schritten erhält man die gewünschte Zerlegung

Bemerkungen:

- "Naive" Householder-Transformation, d.h. Aufstellen der Matrix und Anwenden, erfordert $\mathcal{O}(m^2n)$ Multiplikationen.

 $\Longrightarrow \mathcal{O}(mn)$ Multiplikationen