Characteristic temperatures of exchange biased systems

Alexey N. Dobrynin* and Ruslan Prozorov

Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, IA 50011

Characteristic temperatures in ferromagnetic - antiferromagnetic exchange biased systems are analyzed. In addition to usual blocking temperature of exchange bias T_B , and the Néel temperature of an antiferromagnet T_N , the inducing temperature T_{ind} , i.e., the temperature, at which the direction of exchange anisotropy is established, has been recently proposed. We demonstrate that this temperature is in general case different from T_B and T_N . Physics and experimental approaches to measure the inducing temperature are discussed. Measurements of T_{ind} , in addition to T_B , and T_N , provide important information about exchange interactions in ferromagnetic - antiferromagnetic heterostructures.

PACS numbers: 75.30.Gw, 75.70.Cn, 75.30.Et, 75.50.Ee

Exchange anisotropy appears in hybrid ferromagnetic (F) - antiferromagnetic (AF) systems due to exchange interactions at the F-AF interface [1]. The interfacial exchange creates an additional energy barrier, which F magnetic moments have to overcome during the magnetization reversal. The exchange anisotropy is unidirectional and shows up as a horizontal shift of the magnetic hysteresis loop after field cooling, and the exchange bias field is determined as the value to which the center of the hysteresis loop is shifted with respect to the zero field [2]. This assumes that the AF structure stays stable, which is valid unless the total AF magnetocrystalline anisotropy is too low, when AF spins rotate coherently with F spins, and the exchange bias vanishes [3, 4, 5]. The loop is normally shifted in the direction opposite to the cooling field, which indicates that the interfacial exchange coupling is ferromagnetic, i.e., it favors parallel orientation of the interfacial F and AF spins. The case of "positive" loop shifts, which may assume antiferromagnetic coupling at the F-AF interface (favoring antiparallel alignment of the interfacial F and AF spins), was described by Nogués et al. [6, 7].

It is a "common knowledge" that the exchange anisotropy is established when field cooling a F-AF system through the Néel temperature T_N of the antiferromagnet [8, 9]. The blocking temperature of exchange bias T_B is the temperature, at which exchange bias disappears. It has been recently demonstrated that the direction of exchange anisotropy can be established at a temperature larger than T_B , which is determined as exchange bias inducing temperature T_{ind} [10].

The procedure of measuring T_{ind} is as follows. At first the sample is field cooled in a "negative" field $-H_{FC}$ from temperature T_M ($T_M > T_N$), to a certain temperature T_{switch} , where the sign of the cooling field is changing. The further cooling to the temperature T_m

FIG. 1: Fig. 1. Exchange bias field H_{eb} , measured at temperature T_m as a function of temperature T_{switch} , at which the direction of the cooling field is changed from $-H_{FC}$ to $+H_{FC}$. The temperature is scanning from T_M down to T_m . In case of $T_{ind} < T_{switch} < T_M$ the exchange bias is negative $(-H_m)$, since it's induced by a positive cooling field $+H_{FC}$. For $T_m < T_{switch} < T_{ind}$ the exchange bias is positive $(+H_m)$, because it's induced by a negative cooling field $-H_{FC}$. T_{ind} is the temperature, at which the direction of the exchange anisotropy is established.

is performed at field $+H_{FC}$. T_m is the temperature, at which the hysteresis loop is measured ($T_m < T_B$ should be satisfied). The absolute value of the exchange bias field at T_m is H_m . If the direction of the exchange anisotropy is not established at T_{switch} , then the exchange bias field, measured at T_m will be $-H_m$, since it will be induced in a positive cooling field $+H_{FC}$. In the second case, the direction of exchange anisotropy will be established at a temperature higher than T_{switch} , and changing the sign of the cooling field does not influence the sign of the exchange bias field $+H_m$, measured at T_m . By scanning T_{switch} from T_M down to T_m , the transition temperature T_{ind} will be found, at which the direction of exchange anisotropy is established [11]. The

^{*}Electronic address: dobrynin@ameslab.gov

dependence of the exchange bias field H_{eb} , measured at T_m , versus T_{switch} , is schematically illustrated in Fig. 1. In the above description we assume that there is no training effect in the system [12]. Otherwise, the transition at T_{ind} would be not from $-H_m$ to $+H_m$, but from $-H_m$ to H_{mTL} , where the last value is the exchange bias field of the first training loop at T_m .

In order to understand the origin of the inducing temperature, and its difference from the blocking temperature, we consider a one-dimensional F-AF model system, which is schematically shown in Fig. 2. In the assumption that the exchange interactions exist only between localized nearest-neighbor spin magnetic moments, the exchange Hamiltonian of the system may be written as:

$$H_{ex} = -J_F \sum_{i=1}^{N_F - 1} \mathbf{S}_{\mathbf{F}i} \mathbf{S}_{\mathbf{F}i+1} - J_A \sum_{j=1}^{N_A - 1} \mathbf{S}_{\mathbf{A}j} \mathbf{S}_{\mathbf{A}j+1} - J_{int} \mathbf{S}_{\mathbf{F}N_F} \mathbf{S}_{\mathbf{A}N_A}$$

$$(1)$$

Here $\mathbf{S_F}$ and $\mathbf{S_A}$ are F and AF spin magnetic moments respectively, $J_F > 0$ is the exchange coupling constant between F spins, $J_A < 0$ is the exchange coupling constant between AF spins, and $J_{int} > 0$ is the exchange coupling constant between interfacial F and AF spins $\mathbf{S_F}_{N_F}$ and $\mathbf{S_A}_{N_A}$ respectively.

The first term in Eq. 1 is responsible for the stability of the F magnetic structure, the second term - for that of the AF structure, and the third one - for the interfacial F-AF coupling, which causes the exchange anisotropy. The direction of the exchange anisotropy is determined by the orientation of $\mathbf{S}_{\mathbf{A}N_A}$, since in the ground state F spins are parallel to the interfacial AF spin, as imaged in Fig. 2 (a). We define T_{Nint} , as the temperature, at which the AF exchange interaction between $\mathbf{S}_{\mathbf{A}N_A}$ and $\mathbf{S}_{\mathbf{A}N_A-1}$ is established. The temperature, at which the interfacial F-AF interaction (i.e., interaction between $\mathbf{S}_{\mathbf{F}N_F}$ and $\mathbf{S}_{\mathbf{A}N_A}$) is established, is designated as T_{FAF} . T_{Nint} is proportional to J_A , while T_{FAF} is proportional to J_F (in many dimensional case these freeing temperatures are proportional to the product of the corresponding exchange coupling constant and the corresponding coordination number).

Assume that the system was cooled in a "positive" field through T_N , and the direction of the field was changed just after passing T_N . T_{Nint} is less than T_N due to the reduced AF coordination number at the interface. Therefore, the interfacial spin can still be aligned by the external negative field, yielding the configuration, shown in Fig. 2 (b). However this is a metastable state, rather than the ground state of the system, since $\mathbf{S}_{\mathbf{A}N_A}$ favors antiparallel orientation with $\mathbf{S}_{\mathbf{A}N_A-1}$. The ground state still will be that, shown in Fig. 2 (a), and therefore, the direction of exchange anisotropy is established when

FIG. 2: Fig. 2. Schematic view of the one-dimensional F-AF system. (a) The system is cooled in a "positive" field, and the ground state is formed. (b) $J_{int} > J_A$: the interfacial AF spin rotates coherently with the F part, and the exchange bias field is determined by J_A . (c) $J_{int} < J_A$: the interfacial AF spin stays stable during the magnetization reversal, and the exchange bias field is determined by J_{int} .

passing the T_N , i.e., $T_{ind} = T_N$ for the one-dimensional case

In the real three-dimensional system the above described situation is not the only possibility. Most of the models of exchange bias assume a kind of frustrated interfacial AF spin configuration [13]. In particular, uncompensated interfacial AF spins were found to be the reason of exchange bias in many systems [14, 15, 16, 17]. Such an uncompensated AF spin has both parallel and antiparallel AF neighbors, and, therefore, is in a frustrated state. Similar configurations may exist if other mechanisms are involved in the exchange anisotropy, such as spin-flop coupling [18, 19], hybrid F-AF domain walls [20] or partial AF domains [21]. The frustrated state of the interfacial AF spins in combination with the reduced AF coordination number at the interface leads to the situation, when T_{Nint} is less than T_N , and the interfacial AF spins can be reoriented by an external field above this temperature, and below T_N [22]. When further field cooled, the frustrated interfacial AF spin will couple to the neighboring AF spin with antiparallel orientation, forming a ground state. This

direction will be the easy direction of magnetization of the whole system. This way, the temperature at which the most favorable orientation of the interfacial AF spins is established, is the inducing temperature of exchange bias.

While the fact of the difference of T_B and T_N is well established [23], the strict definition of T_B is missing. It is a common way to determine T_B as the maximal temperature at which exchange bias exists after field cooling a F-AF system through T_N . We find it appropriate to accept this as a definition of T_B . This way, T_B and T_{ind} are easily measurable values, which in different situations correspond to real freezing temperatures T_N (also measurable), T_{FAF} , or T_{Nint} . Below we discuss these possibilities.

Obviously, exchange bias can not exist while all interfacial exchange interactions are established. Thus, $T_B = min(T_{FAF}, T_{Nint})$. If the interfacial F-AF exchange energy is weaker than the exchange energy between the interfacial AF spins and the rest of the AF part $(J_{int} < J_A)$ for the one dimensional case, then the measurements of T_B will yield T_{FAF} , while T_{ind} corresponds to T_{Nint} (frustrated case) or T_N (non-frustrated case), and, therefore, $T_B < T_{ind}$. This also means that the interfacial AF spins will stay stable during the magnetization reversal at T_m , and the exchange bias value is determined by J_{int} . This situation is shown in Fig. 2 (c).

If $J_{int} > J_A$ then $T_{FAF} > T_{Nint}$. The interfacial uncompensated (i.e., those, responsible for exchange bias) AF spins will rotate coherently with the F spins during the magnetization reversal at T_m , and the exchange bias value is determined by J_A . If the interfacial AF structure is frustrated, then the measurements of T_B will yield T_{Nint} , as well as the measurements of T_{ind} . If $J_{int} > J_A$, and the interfacial AF structure is not frustrated, T_B will be less than $T_{ind} = T_N$, because it still corresponds to T_{Nint} , while the direction of exchange bias will be set at T_N , as was discussed for the one-dimensional case. This situation corresponds to one, shown in Fig. 2 (b).

A slight difference between T_B and T_{ind} has been recently observed in oxidized Co nanocluster films [10]. This difference is expected to be larger for systems with rough F-AF interface, where J_{int} is significantly reduced as compared to that in natively oxidized or epitaxially grown F-AF systems [24, 25].

Sometimes the technique, developed by Soeya et al. [26], is used to determine T_B . With this method a sample is first field cooled to the temperature T_m , then

warmed up at zero field to a certain temperature, at which the magnetic field of the opposite sign is applied, and the sample is cooled back to T_m at this field. The temperature, at which the direction of exchange bias, measured at T_m , can be changed, is accepted as T_B . Apparently, this technique will yield the same result, as the technique for measuring T_{ind} unless there is some thermal hysteresis in the system. Thus, Soeya et al. method will not yield the true T_B value in all situations, as discussed above.

In this letter we have demonstrated that it is necessary to distinguish between the temperature at which the direction of exchange anisotropy is established (T_{ind}) , the maximal temperature, at which exchange bias may exist (T_B) , and the Néel temperature of the antiferromagnet (T_N) in F-AF heterostructures. The modified method of measuring T_{ind} was proposed, and the method, yielding the true T_B value has been highlighted. Moreover, important information about interfacial F-AF structure and exchange interactions may be extracted by comparing these three temperatures. The case of $T_{ind} < T_N$ suggests presence of a frustrated interfacial AF structure in a system, otherwise $T_{ind} = T_N$. If $T_B = T_{ind} < T_N$, the interfacial F-AF interactions are stronger than that between the interfacial AF spins and the rest of the AF part, assuming rotation of the interfacial AF spins during the magnetization reversal. The exchange bias value in this case is determined by the latter AF exchange coupling. In the case of $T_B < T_{ind} < T_N$ the interfacial AF spins stay stable, and the exchange bias field is determined by the interfacial F-AF exchange coupling. Systematic comparison of T_{ind} , T_B , and T_N in different exchange biased systems will help to reveal the involved exchange mechanisms, and understand better the exchange bias phenomenon.

Acknowledgments

A. D. appreciates discussions with P. Lievens, K. Temst, and J. Nogués. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. This work was supported in part by the Director for Energy Research, Office of Basic Energy Sciences. R. P. acknowledges support from the Alfred P. Sloan Foundation.

W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

^[2] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).

^[3] A. N. Dobrynin, D. N. Ievlev, K. Temst, P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou,

A. Vantomme, E. Piscopiello, and G. Van Tendeloo, Appl. Phys. Lett. 87, 012501 (2005).

^[4] M. S. Lund, W. A. A. Macedo, K. Liu, J. Nogués, I. K. Schuller, and C. Leighton, Phys. Rev. B 66, 054422 (2002).

^[5] W. H. Meiklejohn, J. Appl. Phys. **33**, 1328 (1962).

- [6] J. Nogués, D. Lederman, T. J. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996).
- [7] J. Nogués, C. Leighton, and I. K. Schuller, Phys. Rev. B 61, 1315 (2000).
- [8] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).
- [9] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. Munoz, and M. Baró, Physics reports 422, 65 (2005).
- [10] A. N. Dobrynin, D. N. Ievlev, C. Hendrich, K. Temst, P. Lievens, U. Hörmann, J. Verbeeck, G. Van Tendeloo, and A. Vantomme, Phys. Rev. B 73, 245416 (2006).
- [11] The described technique is slightly different from that, proposed in Ref. [10]. In the latter case different values of positive and negative cooling fields were used (external field cooling and remanent field cooling). This leads to different values of the exchange bias field at T_m . While not affecting the final result, this approach introduces unnecessary complications to the T_{ind} measuring procedure.
- [12] A. Hoffmann, Phys. Rev. Lett. **93**, 097203 (2004).
- [13] C. Leighton, J. Nogués, B. J. Jönsson-Åkerman, and I. K. Schuller, Phys. Rev. Lett. 84, 3466 (2000).
- [14] A. Hoffmann, J. W. Seo, M. R. Fitzsimmons, H. Siegwart, J. Fompeyrine, J.-P. Locquet, J. A. Dura, and C. F. Majkrzak, Phys. Rev. B 66, 220406 (2002).
- [15] P. Kappenberger, S. Martin, Y. Pellmont, H. J. Hug, J. Kortright, O. Hellwig, and E. Fullerton, Phys. Rev.

- Lett. 91, 267202 (2003).
- [16] H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey, and J. Stöhr, Phys. Rev. Lett. 91, 017203 (2003).
- [17] K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
- [18] Y. Ijiri, J. Borchers, R. Erwin, S.-H. Lee, P. van der Zaag, and R. Wolf, Phys. Rev. Lett. 80, 608 (1998).
- [19] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997).
- [20] C. L. Chien, V. S. Gornakov, V. I. Nikitenko, A. J. Shapiro, and R. D. Shull, Phys. Rev. B 68, 014418 (2003).
- [21] I. N. Krivorotov, C. Leighton, J. Nogués, I. K. Schuller, and E. Dan Dahlberg, Phys. Rev. B 68, 054430 (2003).
- [22] M. S. Lund, M. R. Fritzsimmons, S. Park, and C. Leighton, Appl. Phys. Lett. 85, 2845 (2004).
- [23] P. J. van der Zaag, Y. Ijiri, J. A. Borchers, L. F. Feiner, R. M. Wolf, J. M. Gaines, R. W. Erwin, and M. A. Verheijen, Phys. Rev. Lett. 84, 6102 (2000).
- [24] C. Leighton, J. Nogués, H. Suhl, and I. K. Schuller, Phys. Rev. B 60, 12837 (1999).
- [25] J. Nogués, D. Lederman, T. J. Moran, and I. K. Schuller, Appl. Phys. Lett. 68, 3186 (1996).
- [26] S. Soeya, T. Imagawa, K. Mitsuoka, and S. Narishige, J. Appl. Phys. 76, 5356 (1994).