Advanced February Monthly Assignment Solutions

1. Let c and d be positive divisors of a natural number n such that c > d. Prove that

$$c > d + \frac{d^2}{n}.$$

Let n = kc = md. The inequality that we want to prove is then equivalent to

$$\frac{n}{k} > \frac{n}{m} + \frac{\frac{n^2}{m^2}}{n} \iff \frac{1}{k} > \frac{1}{m} + \frac{1}{m^2} \iff m^2 > mk + k.$$

Since c > d, we have that k < m, and so $k \le m - 1$, and so we have that

$$mk + k = k(m+1) < (m-1)(m+1) = m^2 - 1 < m^2$$

which proves the desired result.

2. Suppose a, b, c > 0 and $\sqrt{a-b} + \sqrt{a-c} > \sqrt{b+c}$. Prove that $a > \frac{3}{4}(b+c)$.

Suppose that $a \leq \frac{3}{4}(b+c)$. We will show that $\sqrt{a-b} + \sqrt{a-c} \leq \sqrt{b+c}$. Since $a \leq \frac{3}{4}(b+c)$, we have that

$$\sqrt{a-b} + \sqrt{a-c} \le \sqrt{\frac{3}{4}(b+c) - b} + \sqrt{\frac{3}{4}(b+c) - c} = \frac{1}{2} \left(\sqrt{3c-b} + \sqrt{3b-c} \right).$$

We thus wish to show that

$$\frac{1}{2}\left(\sqrt{3c-b}+\sqrt{3b-c}\right)\leq\sqrt{b+c}.$$

By squaring both sides, this is equivalent to

$$(3c - b) + (3b - c) + 2\sqrt{(3c - b)(3b - c)} \le 4(b + c).$$

We move the terms not under the square-root to the right hand side, divide by 2, and square again to obtain

$$(3c - b)(3b - c) \le (b + c)^2$$
.

Expanding each side of this inequality leads us to want to prove that

$$10bc - 3b^2 - 3c^2 \le b^2 + 2bc + c^2$$

which is equivalent to

$$4(b-c)^2 \ge 0$$

and so we are done.

Figure 1: Problem 3

3. Let ABCD be a square. Points P and Q lie on the segments AD and DC such that $\angle PBQ = 45^{\circ}$. Prove that BP bisects $\angle APQ$ and BQ bisects $\angle CQP$.

Let R be a point on DC extended such that CR = AP. Then in triangles BAP and BCR, we have that AP = CR, BA = BC, and $\angle BAP = \angle BCR = 90^{\circ}$. It follows that $\triangle BAP \cong \triangle BCR$, and so in particular we have that BP = BR and $\angle ABP = \angle CBR$.

We note this this implies that $\angle QBR = \angle QBC + \angle CBR = \angle QBC + \angle ABP = 90^{\circ} - \angle PBQ = 45^{\circ} = \angle QBP$.

In triangles QBP and QBR, we thus have that QB is common, BP = BR, and $\angle QBP = \angle QBR$. Thus $\triangle QBP \cong \triangle QBR$, and so $\angle RQB = \angle PQB$, as we wished to show. A similar argument shows that $\angle QPB = \angle APB$.

4. Let n be a positive integer. Show that there is a positive integer m such that $\varphi(m) = n!$, where φ denotes the Euler phi function.

Call a natural number n sufficiently factorial-like if whenever p_1, p_2, \ldots, p_k are distinct prime factors of n, we have that $(p_1 - 1)(p_2 - 1)\cdots(p_k - 1) \mid n$. Note that n! is always sufficiently factorial-like.

We will prove the following result, of which the current problem is a special case:

Lemma. Suppose that n is sufficiently factorial-like. Then there is a natural number m such that $\varphi(m) = n$, and such that if p is any prime that divides m, then p divides n.

Proof. We proceed by strong induction. We note that 1 is sufficiently factorial-like, and that $\phi(1) = 1$.

Suppose that n is sufficiently factorial-like, and that for all sufficiently factorial-like natural numbers a < n, there is a natural number b such that $\varphi(b) = a$ where all of the prime divisors of b are also prime divisors of a. We will construct a natural number m such that $\varphi(m) = n$ and such that all of the prime divisors of m are also prime divisors of n.

Let p be the largest prime number that divides n, and let p^k be the largest power of p that divides n. Let $a = \frac{n}{p^k(p-1)}$. Clearly a < n. We claim that a is sufficiently factorial-like.

Suppose that p_1, p_2, \ldots, p_k be distinct prime factors of a. Then p_1, p_2, \ldots, p_k, p are distinct prime factors of n, and so since n is sufficiently factorial-like, we have that

$$(p_1-1)(p_2-1)\cdots(p_k-1)(p-1)\mid n=p^k(p-1)a.$$

Since p was the largest prime factor of n, we have that $p \ge p_i > p_i - 1$ for each i, and so p does not divide $p_i - 1$. It follows that

$$\gcd((p_1-1)(p_2-1)\cdots(p_k-1),p^k)=1,$$

and so we have that $(p_1 - 1)(p_2 - 1)\cdots(p_k - 1)$ divides a by Euclid's Lemma. We see that a is indeed sufficiently factorial-like. By the induction hypothesis, there is a natural number b such that $\varphi(b) = a$, and such that all of the prime factors of b are prime factors of a. This implies that p is not a prime factor of b, and so the numbers p^{k+1} and b are relatively prime. Let $m = p^{k+1}b$. Then

$$\varphi(m) = \varphi(p^{k+1}b) = \varphi(p^{k+1})\varphi(b) = p^k(p-1)a = n.$$

Since all of the prime factors of m are also factors of n (they are either p, which is a factor of n, or a prime factor of b, thus a factor of a, thus a factor of n) we see that the desired result holds true for n as well. By the principle of strong mathematical induction, we have that the lemma is true for all sufficiently factorial-like natural numbers n.

5. Define the function $f(x) = x^2 + \sin(x)$ (where x is in radians in this context). Furthermore, let $\{a_n\}$ be a sequence with $a_n \in \mathbb{R}^+$ for all $n \in \mathbb{N}$. Let $a_1 = 1$, and $f(a_n) = a_{n-1}$ for $n \geq 2$. Prove that there exists $n \in \mathbb{N}$ such that

$$\sum_{k=1}^{n} a_i > 2021.$$

We will show by induction on n that $a_n \ge \frac{1}{n}$ for all natural numbers n. This is true for n = 1. Suppose that $a_n \ge \frac{1}{n}$ for some n. Then we have that

$$a_{n+1}^2 + a_{n+1} \ge a_{n+1}^2 + \sin(a_{n+1}) = f(a_{n+1}) = a_n \ge \frac{1}{n},$$

using the well-known fact that $\sin(x) \le x$ for all positive real numbers x. To show that this implies that $a_{n+1} \ge \frac{1}{n+1}$, we note that the function $x \mapsto x^2 + x$ is increasing over the positive real numbers, and so it is sufficient to show that

$$\left(\frac{1}{n+1}\right)^2 + \frac{1}{n+1} \le \frac{1}{n}.$$

But this is equivalent to

$$n + n(n+1) \le (n+1)^2$$

which in turn simplifies to 0 < 1.

We recall that the sum

$$\sum_{k=1}^{n} \frac{1}{k}$$

can be made arbitrarily large by taking n large enough. It follows that the same is true of the sum

$$\sum_{k=1}^{n} a_k.$$

6. Consider a triangle ABC with points M and N on BC and AB respectively such that AM ⊥ BC and CN ⊥ AB, and let AC and MN intersect at Y. It is given X is a point inside acute-angled triangle ABC such that MBNX is a parallelogram. Prove that the angle bisectors of ∠MXN and ∠MYC are perpendicular.

Figure 2: Problem 6

Let P and Q be the points of intersection of the lines MX and NX with the line AC respectively. Consider the arrangement of points in Figure 2. We will show that $\angle QPM = \angle QNM$.

Since $\angle ANC = \angle AMC = 90^{\circ}$, we have that the points A, N, M, and C are concyclic, implying that $\angle CAN = \angle CMY$. Since $MX \parallel BA$, we have that $\angle QPM = \angle CAN$, and since $NX \parallel BC$, we have that $\angle QNM = \angle CMY$. Hence $\angle QPM = \angle QNM$, as claimed.

Let Z be the intersection of the bisectors of angles $\angle MXN$ and $\angle MYC$. Let T be intersection of PM and YZ (extended), and let S be the intersection of NM and XZ (extended). Let x, α , β , and φ be the angled marked as such in Figure 3.

Then the angles of the triangle XZT are as follows: $\angle TXZ = \beta$, $\angle XZT = 180^{\circ} - x$, and $\angle XTZ = \varphi - \alpha$ by the exterior angle theorem in triangle TMY. These angles sum to 180° , and so we have that $\beta + 180^{\circ} - x + \varphi - \alpha = 180^{\circ}$, or equivalently that $x = \beta + \varphi - \alpha$.

Finally, we prove that $\beta + \varphi - \alpha = 90^{\circ}$. The angles in triangle MXN sum to 180° , and so we have that $\angle QNM = \angle XNM = 180^{\circ} - 2\beta - \varphi$. We also know that $\angle QPM = \angle YPM = \varphi - 2\alpha$ by the exterior angle theorem in triangle PMY. We proved earlier that $\angle QPM = \angle QNM$. This implies that $180^{\circ} - 2\beta - \varphi = \varphi - 2\alpha$, and so $\beta + \varphi - \alpha = 90^{\circ}$, as desired.

Figure 3: Problem 6