# Современные проблемы информатики и вычислительной техники

# Лабораторная работа №3

# Задание

- 1. Сформулировать задачу прогнозирования из области информатики вычислительной техники, для решения которой было бы обосновано применение НС и ННС.
- 2. Сформировать обучающую выборку для НС и ННС.
- 3. Построить НС и, экспериментируя с количеством нейронов во входных и скрытых слоях, функциями активации, методами обучения, добиться наилучшего результата по прогнозированию.
- 4. Визуализировать полученную структуру НС в системе MATLAB.
- 5. Построить ННС и, экспериментируя с методами обучения, количеством функций принадлежности во входном слое, добиться наилучшего результата прогнозирования. Количество входов взять таким же, как и в п. 3 индивидуального задания.
- 6. Визуализировать полученную структуру ННС в системе MATLAB. Построить систему нечеткого логического вывода для полученной ННС.
- 7. Сравнить полученные с помощью НС и ННС результаты (численно) и сделать выводы.

### Ответ

### Задача прогнозирования

Анализ и прогнозирование количества загрузок прт пакета Redux

# Формирование обучающей выборки

прт предоставляет открытое апи, позволяющие получить статистику скачивания пакета по дням за определённый период. Нужно сделать GET запрос по пути со схожей структурой <a href="https://api.npmjs.org/downloads/range/2023-04-01:2023-04-30/redux">https://api.npmjs.org/downloads/range/2023-04-01:2023-04-30/redux</a>. (здесь получаются данные для пакета redux за апрель 2023 года). Сформированы файлы training.dat (статистика с 2023-04-

01 по 2023-04-30), testing.dat (статистика с 2023-08-01 по 2023-08-29) и checking.dat (статистика за 2023-08-30).

### Построение НС, эксперименты

```
Листинг 1: Построение и тренировка НС
clear;clc;
fileId = fopen('training.dat', 'r');
formatSpec = '%d';
trainingData = fscanf(fileId, formatSpec);
fclose(fileId);
% Использование первых 29 значений для обучения
input = trainingData(1:end-1);
% Использование последнего значения как цели обучения
output = trainingData(end);
% Преобразование входных и выходных данных в формат, подходящий для
inputFormatted = reshape(input, [29, 1]);
outputFormatted = output;
% Создание и обучение сети
network = newff(minmax(inputFormatted), [10, 1], {'logsig',
'purelin'});
network = train(network, inputFormatted, outputFormatted);
% Предсказание для тестового набора данных
prediction = network(inputFormatted);
```



Рисунок 1: Схема НС

На такой маленькой выборке обучение получилось плохим, из-за природы данных. Немного переделал скрипт, увеличил количество слоёв.

```
Листинг 2. Обновленный скрипт.

clear;clc;
trainingFileId = fopen('training.dat', 'r');
formatSpec = '%d';
trainingData = fscanf(trainingFileId, formatSpec);
fclose(trainingFileId);
testingFileId = fopen('testing.dat', 'r');
testingData = fscanf(testingFileId, formatSpec);
fclose(testingFileId);
checkingFileId = fopen('checking.dat', 'r');
checkingData = fscanf(checkingFileId, formatSpec);
```

```
fclose(checkingFileId);
INPUT_SIZE = 13;
OUTPUT_SIZE = 1;
% Чтение данных
fileId = fopen('training.dat', 'r');
data = fscanf(fileId, '%d');
fclose(fileId);
% Создание новой матрицы
numRows = length(data) - INPUT_SIZE; % Количество строк в новой матрице
matrix = zeros(numRows, INPUT_SIZE + OUTPUT_SIZE);
for i = 1:numRows
  matrix(i, :) = data(i:i+INPUT_SIZE)';
end
% Запись в файл
fileId = fopen('training-matrix.dat', 'w');
for i = 1:size(matrix, 1)
  fprintf(fileId, '%d ', matrix(i, :));
  fprintf(fileId, '\n');
end
fclose(fileId);
% Открытие файла
fileId = fopen('training-matrix.dat', 'r');
% Чтение и разделение данных
input = [];
output = [];
while ~feof(fileId)
  line = fgetl(fileId);
  nums = str2num(line);
  input = [input; nums(1:end-1)];
  output = [output; nums(end)];
end
fclose(fileId);
% Открытие файла
fileId = fopen('testing.dat', 'r');
% Чтение и разделение данных
```

```
testingInput = [];
testingOutput = [];
while ~feof(fileId)
  line = fgetl(fileId);
  nums = str2num(line);
  testingInput = [testingInput; nums(1:end-1)];
  testingOutput = [testingOutput; nums(end)];
end
fclose(fileId);
% Теперь input и output содержат входные и выходные данные для обучения сети
% Обучение нейронной сети
network = newff(minmax(input'), [INPUT_SIZE, floor(INPUT_SIZE / 2), floor(INPUT_SIZE / 3 + 1), 1], {'logsig'
'logsig' 'logsig', 'purelin'});
network.trainParam.lr = 0.01;
network.performFcn = 'mse';
network.trainParam.epochs = 100;
network.trainParam.goal = 1e-6;
network = train(network, input', output');
testSample = testingInput(1,:)';
% Проверка размера
if size(testSample, 1) ~= network.inputs{1}.size
  error('Размер входных данных не соответствует размеру входного слоя сети');
end
% Получение предсказания
result = network(testSample)
result =
 1.6306e+06
ans =
  1604144
```

В целом, точность предсказания неплохая.



Рисунок 2: 4 слоя в НС

### Построение ННС, эксперименты



Рисунок 3: Визуализация тренировочных данных



Рисунок 4: Структура ННС

Запустить с большими N у меня не получилось (получилось только для модели 6-1 [предсказание на следующий день по 6 предыдущим дням]) и небольшой обучащей выборке (20 строк). Иначе у меня крашился матлаб. Для модели 29-1 вообще не получилось запустить, матлаб поругался на превышенный размер.





В целом, ошибка тут меньше чем в обычной НС.

### Выводы

Сформулирована задача прогнозирования из области информатики и вычислительной техники, для решения которой обосновано применение НС и ННС. Сформирована обучающая выборка для НС и ННС. Построена НС, в ходе экспериментов уменьшена ошибка прогнозирования. Визуализирована структура построенной НС. Построенна ННС, в ходе экспериментов уменьшена ошибка прогнозирования. Визуализирована полученная структура ННС.