:

378 Chapter 5 • Integration

Practice Exercises

- 13. Area functions The graph of f is shown in the figure. Let $A(x) = \int_{-2}^{x} f(t) dt$ and $F(x) = \int_{4}^{x} f(t) dt$ be two area functions for f. Evaluate the following area functions.
 - **a.** A(-2) **b.** F(8) **c.** A(4) **d.** F(4) **e.** A(8)

- 14. Area functions The graph of f is shown in the figure. Let $A(x) = \int_0^x f(t) dt$ and $F(x) = \int_2^x f(t) dt$ be two area functions for f. Evaluate the following area functions.
 - **a.** A(2) **b.** F(5) **c.** A(0) **d.** F(8)
 - **e.** A(8) **f.** A(5) **g.** F(2)

- 15-16. Area functions for constant functions Consider the following functions f and real numbers a (see figure).
- **a.** Find and graph the area function $A(x) = \int_a^x f(t) dt$ for f.
- **b.** Verify that A'(x) = f(x).

- **15.** f(t) = 5, a = 0
- **16.** f(t) = 5, a = -5
- 17. Area functions for the same linear function Let f(t) = tand consider the two area functions $A(x) = \int_0^x f(t) dt$ and $F(x) = \int_2^x f(t) dt.$
 - a. Evaluate A(2) and A(4). Then use geometry to find an expression for A(x), for $x \ge 0$.
 - **b.** Evaluate F(4) and F(6). Then use geometry to find an expression for F(x), for $x \ge 2$.
 - c. Show that A(x) F(x) is a constant and that A'(x) = F'(x) = f(x).
- 18. Area functions for the same linear function Let f(t) = 2t 2and consider the two area functions $A(x) = \int_{1}^{x} f(t) dt$ and $F(x) = \int_4^x f(t) dt.$

- a. Evaluate A(2) and A(3). Then use geometry to find an expression for A(x), for $x \ge 1$.
- **b.** Evaluate F(5) and F(6). Then use geometry to find an expression for F(x), for $x \ge 4$.
- **c.** Show that A(x) F(x) is a constant and that A'(x) = F'(x) = f(x).
- 19-22. Area functions for linear functions Consider the following functions f and real numbers a (see figure).
- **a.** Find and graph the area function $A(x) = \int_a^x f(t) dt$.
- **b.** Verify that A'(x) = f(x).

- **19.** f(t) = t + 5, a = -5
- **20.** f(t) = 2t + 5, a = 0
- **21.** f(t) = 3t + 1, a = 2
- **22.** f(t) = 4t + 2, a = 0
- 23-24. Definite integrals Evaluate the following integrals using the Fundamental Theorem of Calculus. Explain why your result is consistent with the figure.
- **23.** $\int_0^1 (x^2 2x + 3) dx$ **24.** $\int_{-\pi/4}^{7\pi/4} (\sin x + \cos x) dx$

25-28. Definite integrals Evaluate the following integrals using the Fundamental Theorem of Calculus. Sketch the graph of the integrand and shade the region whose net area you have found.

25.
$$\int_{-2}^{3} (x^2 - x - 6) dx$$
 26. $\int_{0}^{1} (x - \sqrt{x}) dx$

26.
$$\int_0^1 (x - \sqrt{x}) dx$$

27.
$$\int_0^5 (x^2 - 9) \, dx$$

27.
$$\int_0^5 (x^2 - 9) dx$$
 28. $\int_{1/2}^2 \left(1 - \frac{1}{x^2}\right) dx$

29-62. Definite integrals Evaluate the following integrals using the Fundamental Theorem of Calculus.

29.
$$\int_{0}^{2} 4x^{3} dx$$

29.
$$\int_0^2 4x^3 dx$$
 30. $\int_0^2 (3x^2 + 2x) dx$ **31.** $\int_1^8 8x^{1/3} dx$

31.
$$\int_{1}^{8} 8x^{1/3} dx$$

2.
$$\int_{0}^{16} x^{-5/4} dx$$

32.
$$\int_{1}^{16} x^{-5/4} dx$$
 33. $\int_{0}^{1} (x + \sqrt{x}) dx$ **34.** $\int_{0}^{\pi/4} 2 \cos x dx$

35.
$$\int_{1}^{9} \frac{2}{\sqrt{x}} dx$$

36.
$$\int_{0}^{9} \frac{2 + \sqrt{t}}{\sqrt{t}} dt$$

35.
$$\int_{1}^{9} \frac{2}{\sqrt{x}} dx$$
 36. $\int_{4}^{9} \frac{2 + \sqrt{t}}{\sqrt{t}} dt$ **37.** $\int_{-2}^{2} (x^2 - 4) dx$

38.
$$\int_{0}^{\ln 8} e^{x} dx$$

39.
$$\int_{1/2}^{1} (t^{-3} - 8) dt$$

38.
$$\int_0^{\ln 8} e^x dx$$
 39. $\int_{1/2}^1 (t^{-3} - 8) dt$ **40.** $\int_0^4 t(t - 2)(t - 4) dt$

41.
$$\int_{1}^{4} (1-x)(x-4) dx$$
 42. $\int_{0}^{1/2} \frac{dx}{\sqrt{1-x^2}}$

42.
$$\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$$

43.
$$\int_{-2}^{-1} x^{-3} dx$$

44.
$$\int_{0}^{\pi} (1 - \sin x) dx$$

45.
$$\int_{0}^{\pi/4} \sec^2 \theta \ d\theta$$

46.
$$\int_{-\pi/2}^{\pi/2} (\cos x - 1) \, dx$$

47.
$$\int_{1}^{2} \frac{3}{t} dt$$

48.
$$\int_{4}^{9} \frac{x - \sqrt{x}}{x^2} dx$$

49.
$$\int_{1}^{8} \sqrt[3]{y} \, dy$$

50.
$$\frac{1}{2} \int_0^{\ln 2} e^x dx$$

51.
$$\int_{1}^{4} \frac{x-2}{\sqrt{x}} dx$$

52.
$$\int_{1}^{2} \frac{2s^2 - 4}{s^3} ds$$

53.
$$\int_{0}^{\pi/3} \sec x \tan x \, dx$$
 54.
$$\int_{\pi/4}^{\pi/2} \csc^{2} \theta \, d\theta$$

$$54. \int_{\pi/4}^{\pi/2} \csc^2 \theta \ d\theta$$

55.
$$\int_{\pi/4}^{3\pi/4} (\cot^2 x + 1) \, dx$$

53.
$$\int_{0}^{3} \sec x \tan x \, dx$$
54.
$$\int_{\pi/4}^{3} \csc^{2} \theta \, d\theta$$
A(x) =
$$\int_{0}^{x} f(t) \, dt$$
55.
$$\int_{\pi/4}^{3\pi/4} (\cot^{2} x + 1) \, dx$$
56.
$$\int_{0}^{1} 10e^{x+3} \, dx$$
57.
$$\int_{1}^{\sqrt{3}} \frac{1}{1+x^{2}} \, dx$$
58.
$$\int_{0}^{\pi/4} \sec x (\sec x + \cos x) \, dx$$

$$57. \int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx$$

$$58. \int_0^{\pi/4} \sec x (\sec x + \cos x) \, dx$$

$$\int_{\sqrt{2}}^{2} \frac{dx}{x\sqrt{x^2 - 1}}$$

61.
$$\int_0^{\pi} f(x) dx, \text{ where } f(x) = \begin{cases} \sin x + 1 & \text{if } x \le \pi/2 \\ 2\cos x + 2 & \text{if } x > \pi/2 \end{cases}$$

62.
$$\int_{1}^{3} g(x) dx, \text{ where } g(x) = 3x^{2} + 4x + 1 \quad \text{if } x \le 2$$
$$2x + 5 \quad \text{if } x > 2$$

63-66. Area Find (i) the net area and (ii) the area of the following regions. Graph the function and indicate the region in question.

63. The region bounded by $y = x^{1/2}$ and the x-axis between x

64. The region above the x-axis bounded by $y = 4 - x^2$

65. The region below the x-axis bounded by $y = x^4 - 16$

66. The region bounded by $y = 6 \cos x$ and the x-axis between $x = -\pi/2$ and $x = \pi$

 $x = -\pi/2$ and $x - \pi$ 67–72. Areas of regions Find the area of the region bounded by the graph of f and the x-axis on the given interval.

67.
$$f(x) = x^2 - 25$$
 on [2, 4] **68.** $f(x) = x^3 - 1$ on [-1, 2]

69.
$$f(x) = \frac{1}{x}$$
 on $[-2, -1]$

70.
$$f(x) = x(x+1)(x-2)$$
 on $[-1,2]$

71.
$$f(x) = \sin x$$
 on $\left[-\frac{\pi}{4}, \frac{3\pi}{4} \right]$ **72.** $f(x) = \cos x$ on $\left[\frac{\pi}{2}, \pi \right]$

73-86. Derivatives of integrals Simplify the following expressions.

73.
$$\frac{d}{dx} \int_{3}^{x} (t^2 + t + 1) dt$$
 74. $\frac{d}{dx} \int_{1}^{x} e^{t^2} dt$

74.
$$\frac{d}{dx}\int_{1}^{x}e^{t^{2}}dt$$

75.
$$\frac{d}{dx} \int_{x}^{1} \sqrt{t^4 + 1} dt$$
 76. $\frac{d}{dx} \int_{x}^{0} \frac{dp}{r^2 + 1}$

76.
$$\frac{d}{dx} \int_{x}^{0} \frac{dp}{p^2 + 1}$$

$$77. \quad \frac{d}{dx} \int_2^{x^3} \frac{dp}{p^2}$$

78.
$$\frac{d}{dx} \int_0^{x^2} \frac{dt}{t^2 + 4}$$

79.
$$\frac{d}{dx} \int_0^{\cos x} (t^4 + 6) dt$$
 80. $\frac{d}{dw} \int_0^{\sqrt{w}} \ln(x^2 + 1) dx$

81.
$$\frac{d}{dz} \int_{\sin z}^{10} \frac{dt}{t^4 + 1}$$

81.
$$\frac{d}{dz} \int_{\sin z}^{10} \frac{dt}{t^4 + 1}$$
 82. $\frac{d}{dy} \int_{y^3}^{10} \sqrt{x^6 + 1} \, dx$

83.
$$\frac{d}{dt} \left(\int_{1}^{t} \frac{3}{x} dx - \int_{t^{2}}^{1} \frac{3}{x} dx \right)$$

83.
$$\frac{d}{dt} \left(\int_{1}^{t} \frac{3}{x} dx - \int_{t^{2}}^{1} \frac{3}{x} dx \right)$$
 84. $\frac{d}{dt} \left(\int_{0}^{t} \frac{dx}{1+x^{2}} + \int_{1}^{1/t} \frac{dx}{1+x^{2}} \right)$

85.
$$\frac{d}{dx} \int_{-x}^{x} \sqrt{1+t^2} \, dt$$

(Hint:
$$\int_{-x}^{x} \sqrt{1+t^2} dt = \int_{-x}^{0} \sqrt{1+t^2} dt + \int_{-x}^{x} \sqrt{1+t^2} dt.$$
)

86.
$$\frac{d}{dx} \int_{e^x}^{e^{2x}} \ln t^2 dt$$

87. Matching functions with area functions Match the functions f, whose graphs are given in a-d, with the area functions

 $A(x) = \int_{0}^{x} f(t) dt$, whose graphs are given in A-D.

(a)

(A)

