A Bayesian-motivated test for linear model in high-dimensional setting

Rui Wang

Monday 19th November, 2018

1 Introduction

Suppose we would like to compare models \mathcal{M}_0 and \mathcal{M}_1 .

$$\mathcal{M}_0: \mathbf{y} = \mathbf{X}_a \boldsymbol{\beta}_a + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \phi^{-1} \mathbf{I}_n),$$

$$\mathcal{M}_1: \mathbf{y} = \mathbf{X}_a \boldsymbol{\beta}_a + \mathbf{X}_b \boldsymbol{\beta}_b + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \phi^{-1} \mathbf{I}_n).$$

Here β_a is q dimensional and β_b is p dimensional. We assume that as n tends to infinity, q is fixed while $p/n \to \infty$. This assumption is reasonable. In practice, p_0 is often 1 and \mathbf{X}_0 is $\mathbf{1}_n$.

Although several tests have been proposed, the following proposition implies that there is no unbiased test.

Proposition 1. Suppose $\mathbf{y} \sim \mathcal{N}_n(\mu, \phi^{-1}\mathbf{I}_n)$. We test $H_0: \mu = \mathbf{X}_a\boldsymbol{\beta}_a, \boldsymbol{\beta}_a \in \mathbb{R}^q$ versus $H_1: \mu \in \mathbb{R}^n$, where \mathbf{X}_a is an $n \times q$ matrix with full column rank, q < n. Let $\varphi(\mathbf{y})$ be a test function, that is, a Borel measurable function, $0 \le \phi(\mathbf{y}) \le 1$. If $\int \varphi(\mathbf{y}) \mathcal{N}_n(\mathbf{X}_a\boldsymbol{\beta}_a, \phi^{-1}\mathbf{I}_n)(d\mathbf{y}) = \alpha$ for $\boldsymbol{\beta}_a \in \mathbb{R}^q$, $\phi > 0$ and $\int \varphi(\mathbf{y}) \mathcal{N}_n(\mu, \phi^{-1}\mathbf{I}_n)(d\mathbf{y}) \ge \alpha$ for $\mu \in \mathbb{R}^n$, $\phi > 0$, then $\varphi(\mathbf{y}) = \alpha$, a.s.

So we can not find a universally good test. Instead, we would like to find a test with good average behaviour. So Bayesian methods are natural choices in this case.

Bayes hypothesis testing use the Bayes factor.

$$B_{10} = \frac{\int f_1(y|\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) \pi_1(\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) d\boldsymbol{\beta}_b d\boldsymbol{\beta}_a d\phi}{\int f_0(y|\boldsymbol{\beta}_a, \phi) \pi_0(\boldsymbol{\beta}_a, \phi) d\boldsymbol{\beta}_a d\phi}.$$

There have been several extensions of g-priors to p > n case: Maruyama and George (2011), Shang and Clayton (2011).

Under \mathcal{M}_0 , we impose the reference prior $\pi_0(\boldsymbol{\beta}_a, \phi) = c/\phi$. Note that under \mathcal{M}_1 , the posterior corresponding to the referece prior is proper only if n > q+p? That is, the minimal training sample size is q+p+1. So we cannot impose the reference prior under \mathcal{M}_1 provided q+p+1>n. We temporarily impose the conditional prior $\boldsymbol{\beta}_b|\boldsymbol{\beta}_a, \phi \sim \mathcal{N}_p(0, \kappa^{-1}\phi^{-1}\mathbf{I}_p)$. There are many literature

consider the choice of κ . Kass and Wasserman (1995) choose κ such that the amount of information about the parameter equal to the amount of information contained in one observation. Thus, under \mathcal{M}_1 , we put prior

$$\pi_1(\boldsymbol{\beta}_b|\boldsymbol{\beta}_a,\phi) = \frac{(\kappa\phi)^{p/2}}{(2\pi)^{p/2}} \exp\left\{-\frac{\kappa\phi}{2}\|\boldsymbol{\beta}_b\|^2\right\}, \quad \pi_1(\boldsymbol{\beta}_a,\phi) = \frac{c}{\phi}.$$

It is straightforward to show that the Bayes factor associated with these priors is

$$B_{10}^{\kappa} = \frac{\kappa^{p/2}}{|\mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}|^{1/2}} \cdot \left(\frac{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}}{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y} - \mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} \left(\mathbf{X}_{b}^{\top}(\mathbf{I} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}\right)^{-1} \mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}} \right)^{(n-q)/2}.$$

Thus,

$$2\log B_{10}^{\kappa} = p\log \kappa - \log |\mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}|$$
$$-(n-q)\log \left(1 - \frac{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} \left(\mathbf{X}_{b}^{\top}(\mathbf{I} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}\right)^{-1} \mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}}{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}}\right).$$

Denote by $\mathbf{I}_n - \mathbf{P}_a = \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top}$ the rank decomposition of $\mathbf{I}_n - \mathbf{P}_a$, where $\tilde{\mathbf{U}}_a$ is a $n \times (n-q)$ column orthogonal matrix. Let $\mathbf{X}_b^* = \tilde{\mathbf{U}}_a^{\top} \mathbf{X}_b$, $\mathbf{y}^* = \tilde{\mathbf{U}}_a^{\top} \mathbf{y}$. Let γ_i be the *i*th largest eigenvalue of $\mathbf{X}_b^* \mathbf{X}_b^{*\top}$, $i = 1, \ldots, n-q$. Denote by $\mathbf{X}_b^* = \mathbf{U}_b^* \mathbf{D}_b^* \mathbf{V}_b^{*\top}$ the singular value decomposition of \mathbf{X}_b^* , where \mathbf{U}_b^* , \mathbf{V}_b^* are $(n-q) \times (n-q)$ and $p \times (n-q)$ column orthogonal matrices, respectively, and $\mathbf{D}_b^* = \mathrm{diag}(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_{n-q}})$. Then

$$2\log B_{10}^{\kappa} = p\log \kappa - \sum_{i=1}^{n-q} \log(\gamma_{i} + \kappa) - (p - (n - q))\log \kappa$$

$$- (n - q)\log \left(1 - \frac{\mathbf{y}^{*\top}\mathbf{X}_{b}^{*} \left(\mathbf{X}_{b}^{*\top}\mathbf{X}_{b}^{*} + \kappa\mathbf{I}_{p}\right)^{-1}\mathbf{X}_{b}^{*\top}\mathbf{y}^{*}}{\mathbf{y}^{*\top}\mathbf{y}^{*}}\right)$$

$$= -\sum_{i=1}^{n-q} \log(\gamma_{i} + \kappa) + (n - q)\log \left(\frac{\mathbf{y}^{*\top}\mathbf{y}^{*}}{\mathbf{y}^{*\top}\mathbf{U}_{b}^{*} \left[\frac{1}{\kappa} \left(\mathbf{I}_{n-q} - \mathbf{D}_{b}^{*} \left(\mathbf{D}_{b}^{*2} + \kappa\mathbf{I}_{n-q}\right)^{-1}\mathbf{D}_{b}^{*}\right)\right]\mathbf{U}_{b}^{*\top}\mathbf{y}^{*}}\right)$$

$$= (n - q)\log \kappa - \sum_{i=1}^{n-q} \log(\gamma_{i} + \kappa) - (n - q)\log \left(1 - \frac{\mathbf{y}^{*\top}\mathbf{U}_{b}^{*}\mathbf{D}_{b}^{*} \left(\mathbf{D}_{b}^{*2} + \kappa\mathbf{I}_{n-q}\right)^{-1}\mathbf{D}_{b}^{*}\mathbf{U}_{b}^{*\top}\mathbf{y}^{*}}\right)$$

The main part of $2 \log B_{10}^{\kappa}$ is

$$T_n^{\kappa} = \frac{\mathbf{y}^{*\top} \mathbf{U}_b^* \mathbf{D}_b^* \left(\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_b^* \mathbf{U}_b^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}.$$

A large value of T_n^{κ} supports the alternative hypothesis. Under the null hypothesis,

$$E T_n^{\kappa} = \frac{1}{n-q} \operatorname{tr} \left(\mathbf{D}_b^{*2} (\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q})^{-1} \right).$$

Under the alternative hypothesis, consider $\beta_b = c\beta_b^{\dagger}$ where $\beta_b^{\dagger} \neq 0$ is a fixed direction and c > 0. As $c \to \infty$,

$$T_n^{\kappa} \to \frac{\boldsymbol{\beta}_b^{\dagger \top} \mathbf{V}_b^* \mathbf{D}_b^{*2} \left(\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_b^{*2} \mathbf{V}_b^{* \top} \boldsymbol{\beta}_b^{\dagger}}{\boldsymbol{\beta}_b^{\dagger \top} \mathbf{V}_b^* \mathbf{D}_b^{*2} \mathbf{V}_b^{* \top} \boldsymbol{\beta}_b^{\dagger}}.$$

We say T_n^{κ} is consistent along the direction β_b^{\dagger} if

$$\frac{\boldsymbol{\beta}_b^{\dagger \top} \mathbf{V}_b^* \mathbf{D}_b^{*2} \left(\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_b^{*2} \mathbf{V}_b^{*\top} \boldsymbol{\beta}_b^{\dagger}}{\boldsymbol{\beta}_b^{\dagger \top} \mathbf{V}_b^* \mathbf{D}_b^{*2} \mathbf{V}_b^{*\top} \boldsymbol{\beta}_b^{\dagger}} > \frac{1}{n-q} \operatorname{tr} \left(\mathbf{D}_b^{*2} (\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q})^{-1} \right),$$

or equivalently

$$\boldsymbol{\beta}_{b}^{\dagger \top} \mathbf{V}_{b}^{*} \left[\mathbf{D}_{b}^{*2} \left(\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_{b}^{*2} - \frac{1}{n-q} \operatorname{tr} \left(\mathbf{D}_{b}^{*2} (\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q})^{-1} \right) \mathbf{D}_{b}^{*2} \right] \mathbf{V}_{b}^{*\top} \boldsymbol{\beta}_{b}^{\dagger} > 0.$$

Let k_{κ} be the number of positive eigenvalues of

$$\mathbf{V}_{b}^{*} \left[\mathbf{D}_{b}^{*2} \left(\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_{b}^{*2} - \frac{1}{n-q} \operatorname{tr} \left(\mathbf{D}_{b}^{*2} (\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q})^{-1} \right) \mathbf{D}_{b}^{*2} \right] \mathbf{V}_{b}^{*\top}.$$

Let \mathcal{S}_{κ} be the linear space spanned by the first k_{κ} columns of \mathbf{V}_{b}^{*} . Denote by $\mathcal{S}_{\kappa}^{\perp}$ the orthogonal complement space of \mathcal{S}_{κ} . We have $\mathbb{R}^{p} = \mathcal{S}_{\kappa} \oplus \mathcal{S}_{\kappa}^{\perp}$. If $\boldsymbol{\beta}_{b}^{\dagger} \in \mathcal{S}_{\kappa}$,

$$\mathbf{V}_{b}^{*} \left[\mathbf{D}_{b}^{*2} \left(\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_{b}^{*2} - \frac{1}{n-q} \operatorname{tr} \left(\mathbf{D}_{b}^{*2} \left(\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \right) \mathbf{D}_{b}^{*2} \right] \mathbf{V}_{b}^{*\top} > 0.$$

On the other hand, if $\beta_b^{\dagger} \in \mathcal{S}_{\kappa}^{\perp}$,

$$\mathbf{V}_{b}^{*} \left[\mathbf{D}_{b}^{*2} \left(\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_{b}^{*2} - \frac{1}{n-q} \operatorname{tr} \left(\mathbf{D}_{b}^{*2} (\mathbf{D}_{b}^{*2} + \kappa \mathbf{I}_{n-q})^{-1} \right) \mathbf{D}_{b}^{*2} \right] \mathbf{V}_{b}^{*\top} \leq 0.$$

We would like to choose a hyperparameter κ which consists the most consistent directions. To achieve this, we maximize k_{κ} with respect to κ .

Proposition 2. For $\kappa_2 > \kappa_1 > 0$, we have $k_{\kappa_1} \geq k_{\kappa_2}$. That is, k_{κ} ($\kappa > 0$) is decreasing in κ .

The proposition implies that we should put κ as small as possible. This motivates us to consider $B_{10}^0 = \lim_{\kappa \to 0} B_{10}^{\kappa}$. It is straightforward to show that

$$2\log B_{10}^0 = -\sum_{i=1}^{n-q} \log(\gamma_i) + (n-q)\log\left(\frac{\mathbf{y}^{*\top}\mathbf{y}^*}{\mathbf{y}^{*\top}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^{-1}\mathbf{y}^*}\right).$$

 B_{10}^0 can be regarded as the Bayes factor with respect to noninformative prior.

2 Distribution under the null hypothesis

Under the null hypothesis, the distribution of $2 \log B_{10}$ does not rely on unknown parameters. Further more, its distribution is valid as long as the distribution of ϵ is spherically symmetric.

Proposition 3. Under the null hypothesis,

$$T_n := \frac{\mathbf{y} \top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{X}_b \left(\mathbf{X}_b^\top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{X}_b + \kappa \mathbf{I}_p \right)^{-1} \mathbf{X}_b^\top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{y}}{\mathbf{y} \top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{y}} \sim \frac{\sum_{i=1}^{n-q} \frac{\gamma_i}{\gamma_i + \kappa} Z_i^2}{\sum_{i=1}^{n-q} Z_i^2},$$

where γ_i is the ith eigenvalue of $\mathbf{X}_b^{\top}(\mathbf{I}_n - \mathbf{P}_a)\mathbf{X}_b$, $i = 1, \ldots, n-q$, and Z_1, \ldots, Z_{n-q} are iid $\mathcal{N}(0, 1)$ random variables.

Let
$$\nu_i = \gamma_i / (\gamma_i + \kappa)$$
, $\bar{\nu} = (n - q)^{-1} \sum_{i=1}^{n-q} \nu_i$.

Lemma 1. Under the null hypothesis, a necessary and sufficient condition for

$$\frac{n-q}{\sqrt{2\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})^2}}(T_n-\bar{\nu}) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$
(1)

is that

$$\frac{\max_{i \in \{1, \dots, n-q\}} (\nu_i - \bar{\nu})^2}{\sum_{i=1}^{n-q} (\nu_i - \bar{\nu})^2} \to 0.$$
 (2)

Proof. Note that

$$\frac{n-q}{\sqrt{2\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})^2}}(T_n-\bar{\nu}) \sim \frac{n-q}{\sum_{i=1}^{n-q}Z_i^2} \frac{\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})Z_i^2}{\sqrt{2\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})^2}}.$$

By Slutsky's theorem, (1) holds if and only if

$$\frac{\sum_{i=1}^{n-q} (\nu_i - \bar{\nu}) Z_i^2}{\sqrt{2 \sum_{i=1}^{n-q} (\nu_i - \bar{\nu})^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

From Lemma 1 of Wang and Xu (2018), (2) is a necessary and sufficient condition for this to hold. \Box

Appendices

Appendix A haha1

Proof of Proposition 1. We assume $0 < \alpha < 1$ since the case $\alpha = 0$ or 1 is trivial. Note that the condition implies $\int [\varphi(\mathbf{y}) - \alpha] \mathcal{N}_n(0, \phi^{-1}\mathbf{I}_n)(d\mathbf{y}) = 0$. Hence it suffices to prove $\varphi(\mathbf{y}) \geq \alpha$, a.s. We prove this by contradiction. Suppose $\lambda(\{\mathbf{y} : \varphi(\mathbf{y}) < \alpha\}) > 0$. Then there exists a $\eta > 0$, such that $\lambda(\{\mathbf{y} : \varphi(\mathbf{y}) < \alpha - \eta\}) > 0$. We denote $E = \{\mathbf{y} : \varphi(\mathbf{y}) < \alpha - \eta\}$. From Lebesgue density theorem (Cohn, 2013, Corollary 6.2.6), there exists a point $z \in E$, such that, for each $\epsilon > 0$ there is a $\delta_{\epsilon} > 0$ such that

$$\left| \frac{\lambda(E^{\complement} \cap C_{\epsilon})}{\lambda(C_{\epsilon})} \right| < \epsilon,$$

where $C_{\epsilon} = \prod_{i=1}^{n} [z_i - \delta_{\epsilon}, z_i + \delta_{\epsilon}]$. We put

$$\epsilon = \left(\frac{\sqrt{\pi}}{\sqrt{2}\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}\right)^n \frac{\eta}{3}.$$

Then for any $\phi > 0$,

$$\alpha \leq \int_{\mathbb{R}^{n}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y})$$

$$= \int_{E \cap C_{\epsilon}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y}) + \int_{E^{\complement} \cap C_{\epsilon}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y}) + \int_{C_{\epsilon}^{\complement}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y})$$

$$\leq \alpha - \eta + \int_{E^{\complement} \cap C_{\epsilon}} \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y}) + \int_{C_{\epsilon}^{\complement}} \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y})$$

$$\leq \alpha - \eta + \left(\frac{\phi}{2\pi}\right)^{n/2} \lambda(E^{\complement} \cap C_{\epsilon}) + 2n \left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right)$$

$$\leq \alpha - \eta + \left(\frac{\phi}{2\pi}\right)^{n/2} \epsilon(2\delta_{\epsilon})^{n} + 2n \left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right)$$

$$= \alpha - \eta + \left(\frac{\sqrt{\phi}\delta_{\epsilon}}{\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}\right)^{n} \frac{\eta}{3} + 2n \left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right).$$

Putting

$$\phi = \left(\frac{\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}{\delta_{\epsilon}}\right)^{2}$$

yields the contradiction $\alpha \leq \alpha - (2/3)\eta$. This completes the proof.

Proof of Proposition 2. For positive integer m, define $[m] = \{1, \ldots, m\}$. For a set A, denote by |A| its cardinality. We have

$$k_{\kappa} = \left| \left\{ i \in [n-q] : \frac{\gamma_i^2}{\gamma_i + \kappa} - \frac{1}{n-q} \sum_{j=1}^{n-q} \frac{\gamma_j \gamma_i}{\gamma_j + \kappa} > 0 \right\} \right|$$
$$= \left| \left\{ i \in [n-q] : \frac{\gamma_i}{\gamma_i + \kappa} > \frac{1}{n-q} \sum_{j=1}^{n-q} \frac{\gamma_j}{\gamma_j + \kappa} \right\} \right|.$$

Let X be a random variable uniformly distributed on $\{\gamma_1, \ldots, \gamma_{n-q}\}$. That is, $\Pr(X = \gamma_i) = 1/(n-q), i = 1, \ldots, n-q$. Then it can be seen that

$$k_{\kappa} = (n - q) \Pr \left(\frac{X}{X + \kappa} > \operatorname{E} \left[\frac{X}{X + \kappa} \right] \right).$$

Hence we only need to verify

$$\Pr\left(\frac{X}{X + \kappa_1} > \operatorname{E}\left[\frac{X}{X + \kappa_1}\right]\right) \ge \Pr\left(\frac{X}{X + \kappa_2} > \operatorname{E}\left[\frac{X}{X + \kappa_2}\right]\right). \tag{3}$$

Let $Y = X/(X + \kappa_2)$. Then

$$\frac{X}{(X+\kappa_1)} = \frac{\kappa_2 Y}{\kappa_1 + (\kappa_2 - \kappa_1)Y} := f(Y).$$

Note that f(Y) is increasing for $Y \geq 0$. Then the inequality (3) is equivalent to

$$\Pr(Y > f^{-1}(E f(Y))) \ge \Pr(Y > E Y).$$

Hence we only need to verify $f^{-1}(E f(Y)) \leq E Y$, or equivalently, $E f(Y) \leq f(E Y)$. But the last inequality is a direct consequence of the concavity of f(Y). This completes the proof.

Appendix B haha2

References

Cohn, D. L. (2013). *Measure Theory*. Birkhauser Advanced Texts Basler Lehrbucher. Birkhuser Basel, 2 edition.

Kass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. *Journal of the American Statistical Association*, 90(431):928–934.

Maruyama, Y. and George, E. I. (2011). Fully bayes factors with a generalized g -prior. *Ann. Statist.*, 39(5):2740–2765.

Shang, Z. and Clayton, M. K. (2011). Consistency of bayesian linear model selection with a growing number of parameters. *Journal of Statistical Planning and Inference*, 141(11):3463–3474.

Wang, R. and Xu, X. (2018). On two-sample mean tests under spiked covariances. *Journal of Multivariate Analysis*, 167:225 – 249.