CIS 675 Recurrences

Dr. Asif Salekin

Divide & Conquer

Recursive in nature

Smaller sub-problems will be same as the problem P(n)
 You can not transform them into another problem.

Example:

If P(n) is sorting an array of size n. The sub-problems can only be sorting an array of size m, where m<n.

Need a strategy to combine the solutions of the subproblems.

Warmup!

$$(1+a+a^2+.....+a^L)(a-1) = a+a^2+a^3+.....+a^L+a^{L+1}$$

-1-a-a²-a³- -a^L
= a^{L+1}-1

$$(1+a+a^2+....+a^L) = \frac{a^{L+1}-1}{a-1}$$

$$\sum_{i=0}^{L} a^i = \frac{\mathsf{a}^{\mathsf{L}+1}-1}{a-1}$$

Who has smallest SU ID in the first row?

When we can not memorize any number!

- 1 Stand
- Greet a neighbor (stop if you are the only person standing) (do not communicate with more than one!)
 - If you have larger SU ID sit
 If you have smaller SU ID compared to your neighbor's, remain standing
 - If you are standing & you have neighbor, go to 2

How fast does it work?

T(n) is a function: steps to finish in a room of n students

$$T(n)= 1+ 1 + T(\Gamma n/2 1)$$
 & $T(1)=3$

How can we solve it?

Recurrence?

$$T(n)= 2 + T(\Gamma n/2 1)$$
 & $T(1)=3$

- We are not going for exact solution!
- We will find an asymptotic bound!

Solve a simpler case when n is power of 2!

$$T(2^{K}) = 2 + T(2^{K-1}) + 2 + T(2^{K-2}) + 2 + T(2^{K-3}) + 2 + T(2^{K-4}) + 2 + T(2^{K-4}) + 2 + T(1) + 3$$
How many 2's involve?

 $T(2^{K}) = 2K + 3 = 2\log_{2}(2^{K}) + 3$

$$2^{K-K} = 2^0 = 1$$

Solve a simpler case when n is power of 2!

```
T(n) = 2 + T(\Gamma n/2 1)
T(2^{K})=2+T(2^{K-1})
                                                                    & T(1)=3
      = 2 + 2 + T(2^{K-2})
      = 2 + 2 + 2 + T(2^{K-3})
      = 2 + 2 + \dots + 2 + T(2^0)
      = 2K + 3
\forall 0<n<m, T(n) \leq T(m)
T(m) \le T(2^{\lceil \log(m) \rceil}) = 2 \lceil \log(m) \rceil + 3
```

```
Set of functions
f(X) = O(g(X)) \text{ at most within cost of g} \quad \text{for large n}
function f: \text{ there exist positive constants c, } n_0 \text{ such that}
for all \ n > n_0, \ 0 \le f(n) \le c \times g(n)
```

Important note: 0(g(X)) is actually a set!

When we say "f(x)=O(g(x)), we are actually Saying that $f(X) \in O(g(x))$

O(g) at most within const of g for large n

 $\Omega(g)$ at least within const of g for large n

Θ(g) within const of g for large n

Θ(g) For all of our algorithms we want to proof the theta bound

 $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2 \text{ and } n_0 \}$ such that $0 \le c_1 \times g(n) \le f(n) \le c_2 \times g(n) \text{ for all } n \ge n_0 \}$

The above definition means, if f(n) is theta of g(n), then the value f(n) is always between $c_1 \times g(n)$ and $c_2 \times g(n)$ for large values of n ($n \ge n_0$).

$$T(m) \le T(2^{\lceil \log(m) \rceil}) = 2^{\lceil \log(m) \rceil} + 3$$

$$T(m) = O(\log m)$$
Upper bound
$$\Omega(m) ?????$$

Main Ideas

- Break large problem into smaller ones.
- Use recurrence relation to analyze the running time.
- We use asymptotic notation to simplify the analysis.

How to solve recurrence relations?

Tree method

Guess & check method (induction)

Cookbook method "Master Theorem"

Substitution Technique

Multiplication

Main Ideas

- Break large problem into smaller ones.
- Use recurrence relation to analyze the running time.
- We use asymptotic notation to simplify the analysis.

Multiplication

$$17 \times 100 + 89$$
 $14 \times 100 + 32$ $14 \times 100 + 32$

$$(a \times c)(100^2) + (a \times d + b \times c) (100) + b \times d$$

Divide & Conquer

Recursive in nature

Smaller sub-problems will be same as the problem P(n)
 You can not transform them into another problem.

Example:

If P(n) is sorting an array of size n. The sub-problems can only be sorting an array of size m, where m<n.

Need a strategy to combine the solutions of the subproblems.

Multiplication

$$17 \times 100 + 89$$
 $14 \times 100 + 32$ $14 \times 100 + 32$

$$(a \times c)(100^2) + (a \times d + b \times c) (100) + b \times d$$

Let's analyze how well it works!

Multiplication

Mult(ab,cd)

BASE CASE:

return b × d if inputs are 1 digit

ELSE:

Compute X=mult(a,c)

Compute Y=mult(a,d)

Compute Z=mult(b,c)

Compute W=mult(b,d)

 $ac\times100^2+(ad+bc)\times100+bd$

$$T(n)=4T(\frac{n}{2})+6n$$

$$4 \times T(\frac{n}{2})$$

 $T(\frac{n}{2})$

 $T(\frac{n}{2})$

 $T(\frac{n}{2})$

Return $X \times ((10)^{(number of digit of a)})^2 + (Y+Z)\times (10)^{(number of digit of a)} + W$

7n steps

$T(n)=4T(\frac{n}{2}) +6n$, base case: T(1)=1

Calculations:

$$T(n) = 3n + 3n \times 2 + 3n \times 2^{2} + \dots + 3n \times 2^{\lceil \log n \rceil}$$

= $3n \times (1 + 2 + 2^{2} + \dots + 2^{\lceil \log n \rceil})$

=
$$3n \times \left[\frac{2^{1+\lceil \log n \rceil} - 1}{2-1}\right] = 3n \times \left[2 \times 2^{\lceil \log n \rceil}\right] - 1$$

= $3n[2n-1]$
= $6n^2 - 3n$
= $O(n^2)$

$$(1+a+a^2+....+a^L) = \frac{a^{L+1}-1}{a-1}$$

$$\sum_{i=0}^{L} a^i = \frac{a^{L+1}-1}{a-1}$$

n

Karatsuba

$$(a \times c)(100^2) + (a \times d + b \times c) (100) + b \times d$$

Karatsuba

Recursively compute:

- 1. ac,bd,(a+b)(c+d)
- 2. ad+bc=(a+b)(c+d) -ac-bd
- 3. $ac \times 100^2 + (ad+bc) \times 100 + bd$

$$3T(\frac{n}{2})$$

2 addition,

4n subtraction

4n addition

Approximately, Not exactly

Karatsuba (ab,cd)

BASE CASE:

return b × d if inputs are 1 digit

ELSE:

Compute ac=karatsuba(a,c)
$$\xrightarrow{T(\frac{n}{2})}$$

Compute bd=karatsuba(b,d) $\xrightarrow{T(\frac{n}{2})}$
Compute t=karatsuba((a+b),(c+d)) $\xrightarrow{T(\frac{n}{2})} + 2n$
mid=t-ac-bd

$$T(n)=3T(\frac{n}{2}) +9n$$

Ignoring issue of carries

4n steps

Return ac × ((10)^(number of digit of a))² +mid×(10)^(number of digit of a) +bd

$$T(n)=3T(\frac{n}{2}) +9n$$

9n

$$3 \times \frac{9n}{2} = \left(\frac{3}{2}\right)^1 \times 9n$$

$$9 \times \frac{9n}{4} = \left(\frac{3}{2}\right)^2 \times 9n$$

$$27 \times \frac{9n}{8} = \left(\frac{3}{2}\right)^3 \times 9n$$

$$\left(\frac{3}{2}\right)$$
 $\lceil \log n \rceil \times 9n$

Calculations:

$$(1+a+a^{2}+....+a^{L}) = \frac{a^{L+1}-1}{a-1}$$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1}-1}{a-1}$$

$$T(n) = 9n + \frac{3}{2} \times 9n + (\frac{3}{2})^2 \times 9n + \dots + (\frac{3}{2})^{\lceil \log n \rceil} \times 9n$$
$$= 9n \times (1 + \frac{3}{2} + (\frac{3}{2})^2 + \dots + (\frac{3}{2})^{\lceil \log n \rceil})$$

= 9n ×
$$\left[\frac{\left(\frac{3}{2}\right)^{\lceil \log n \rceil + 1} - 1}{\frac{3}{2} - 1}\right]$$
 = 9n × (2) × $\left[\left(\frac{3}{2}\right)^{\lceil \log n \rceil + 1} - 1\right]$

$$= 2 \times 9n[2^{\log_{2} \frac{3}{2}}]^{\log n+1} - 18n = 18n[2^{(\log_{2} 3^{-1})}]^{(\log n+1)} - 18$$