Fundamentos de ciencia de datos con R - Módulo 1 Clase 3: R como calculadora

CEPAL - Unidad de Estadísticas Sociales

2025-10-28

Introducción

Antes de adentrarnos en el análisis de datos, es fundamental comprender cómo funciona R como lenguaje numérico.

R fue diseñado inicialmente por Ross Ihaka y Robert Gentleman (1996) en la Universidad de Auckland como un entorno para el cálculo estadístico y la exploración de datos, inspirado en el lenguaje S.

Introducción

Desde entonces, su fortaleza radica en que combina la precisión matemática de una calculadora científica con la flexibilidad de un lenguaje de programación reproducible.

🥊 Ihaka & Gentleman (1996), "R: A Language for Data Analysis and Graphics":

"R es tanto un lenguaje como un entorno; permite realizar desde cálculos simples hasta análisis estadísticos complejos con el mismo nivel de control y transparencia."

[1] 5

R puede ejecutar operaciones matemáticas directamente, sin necesidad de funciones adicionales.

Esto lo convierte en una herramienta ideal para validar resultados y explorar conceptos numéricos.

```
1 + 2

[1] 3

3 * 5

[1] 15

(10 + 5) / 3
```

Orden de operaciones

Al igual que en matemáticas, R respeta la jerarquía clásica de operaciones:

 $\mathsf{Par\acute{e}ntesis} \to \mathsf{Potencias} \to \mathsf{Multiplicaci\acute{e}n} \ y \ \mathsf{Divisi\acute{e}n} \to \mathsf{Suma} \ y \ \mathsf{Resta}$

```
2 + 3 * 4 # Multiplicación antes que suma
```

[1] 14

```
(2 + 3) * 4 # Paréntesis cambia el orden
```

[1] 20

2 ^ 3 + 1 # Potencia antes que suma

[1] 9

Operaciones comunes

Operación	Símbolo / Función	Ejemplo	
Suma	+	4 + 3	
Resta	_	9 - 2	
Multiplicación	*	6 * 5	
División	/	10 / 4	
Potencia	^	2 ^ 3	
Raíz cuadrada	sqrt()	sqrt(16)	
Valor absoluto	abs()	abs(-9)	
Redondear	round()	round(3.1416, 2)	

[1] 7.389056

Funciones matemáticas más usadas

R incluye funciones matemáticas avanzadas listas para usar:

```
log(10) # Logaritmo natural (base e)
[1] 2.302585
log10(1000) # Logaritmo base 10
[1] 3
exp(2) # Exponencial (e^2)
```

Funciones matemáticas más usadas

```
sin(pi/2) # Seno de 90 grados (en radianes)
[1] 1
cos(pi) # Coseno de 180 grados
[1] -1
tan(pi/4) # Tangente de 45 grados
[1] 1
```

Uso de variables

Una de las mayores ventajas de R frente a una calculadora tradicional es la capacidad de almacenar resultados. Esto se logra mediante el operador de asignación <-, que permite crear objetos.

```
x <- 3 * 4
x
```

[1] 12

```
resultado <- (59 + 73 + 2) / 3
resultado
```

[1] 44.66667

Uso de variables

 $\ensuremath{\mathsf{R}}$ recuerda el valor y puede reutilizarlo en cálculos posteriores:

resultado +10

[1] 54.66667

Cálculos combinados

Podemos combinar operaciones y funciones para resolver expresiones más complejas:

```
x \leftarrow 4

y \leftarrow 9

resultado \leftarrow sqrt(x^2 + y^2)

resultado
```

[1] 9.848858

Errores frecuentes

Error común	Causa	Ejemplo incorrecto
Uso de = en lugar de <-	Confusión con el operador de asignación	x = 5
Paréntesis abiertos sin cerrar	Error de sintaxis	sqrt(9
Uso de coma , en lugar de punto . para decimales	Diferencia cultural	3,14

R detiene la ejecución y muestra un mensaje de error que ayuda a identificar el problema.