Russel-McPherron, Equinoctial and Axial effects on geomagnetic activity

DLR-SO SKP PhD Seminar November 18, 2021

Russel-McPherron Effect

GSE ↔ GSEQ (small angle)

Assumption: $[B_z]_{GSEQ} = 0$

Problems:

- $[B_z]_{GSE} \ll 0$ events are dominant cause of $[B_z]_{GSM} < 0$
- F UT pattern not observed in geomagnetic activity indices

local dusk at earth northern geomagnetic pole

local dawn at earth northern geomagnetic pole

$$LT \approx UTC - 5$$

The Equinoctial effect

(a). Equinox at 18 UT June Solstice March Equinox at 24 UT at 18 UT (b). (e). cos(φ) (d). Minimum ø Maximum ø December solstice June solstice September equinox UT = 4.72hrsUT = 16.72hrs UT = 10.72 hrs

September

Geomagnetic activity indices fit F - UTpattern well

Suggested effects that depend on ϕ :

- Kelvin-Helmholtz instability of magnetopause
- stand-off distance of solar wind
- reconnection voltage of dayside magnetic field lines
- tilt-induce changes in ionospheric conductivities
- - → remains open to debate

local noon at earth northern geomagnetic pole

local midnight at earth northern geomagnetic pole

The Axial effect

- difference between GSE and GSEQ becomes important now
- higher chance to encounter fast solar wind at higher solar magnetic latitudes
- no UT, only F variation
- appears to be seen in *Dst* index, but Dst responds to storms which have a 'recharge' time that smooths out UT variation

$$X_{GSEQ} = -R = X_{GSE}$$

$$Y_{GSEO} = -T$$
 $Z_{GSEO} = N$

$$Z_{GSEQ} = N$$

Summary and Contradictions

Russel-McPherron effect	Equinoctial effect
 maxima at April 4 and October 7 (2019) 	maxima at equinoxes
	 geomagnetic indices seem to follow
 explains southward IMF occurrence during solar quiet times 	equinoctial effect pattern
	 explains part(?) of the geomagnetic
 geomagnetic activity after sudden storm commencements (SSCs) follows R-M pattern 	activity after SSC

- → strongly contradicting conclusions of different papers
- → probably both effects contribute (60% Equinoctial, 40% R-M has been suggested?)

