CÁLCULO AVANZADO Segundo Cuatrimestre — 2019

Primer Parcial

Apellido y nombre:	
L.U.:	HOJAS:

1. Sea $f: \mathbb{R} \to \mathbb{R}$ una función y sea S el conjunto de los puntos $x \in \mathbb{R}$ tales que $\lim_{y \to x} f(y) = +\infty$. Muestre que S es un subconjunto G_{δ} de \mathbb{R} y que si es denso en \mathbb{R} , entonces no es numerable.

Solución. Para cada $n \in \mathbb{N}$ sea U_n el conjunto de los puntos x de \mathbb{R} tales que hay un abierto I de \mathbb{R} con $x \in I$ y $f(y) \ge n$ para todo $y \in I \setminus \{x\}$. Veamos que U_n es un abierto. Sea $x \in U_n$ y sea I un abierto tal que $x \in I$ y $f(y) \ge n$ si $y \in I \setminus \{x\}$. Si $z \in I$, entonces o bien z = x y, por lo tanto, $z \in U_n$, o bien $z \ne x$ y $J = I \setminus \{x\}$ es un abierto de \mathbb{R} tal que $z \in J$ y $f(y) \ge n$ para todo $y \in J \setminus \{z\}$: vemos así que $z \in U_n$ y, por lo tanto, que $I \subseteq U_n$. Esto nos dice que x es un punto interior de U_n .

El conjunto S del enunciado coincide con $\bigcap_{n\geq 1}U_n$. En efecto, si $x\in S$, entonces para todo $n\in \mathbb{N}$ existe $\delta>0$ tal que $f(y)\geq n$ si $y\in B^*_\delta(x)$, así que $x\in U_n$. Recíprocamente, si x es un punto de aquella intersección y $n\in \mathbb{N}$, entonces $x\in U_n$ y existe un abierto I tal que $x\in I$ y $f(y)\geq n$ para todo $y\in I\setminus \{x\}$. Como I es abierto, existe $\delta>0$ tal que $B_\delta(x)\subseteq I$ y es claro que $f(y)\geq n$ para todo $y\in B^*_\delta(x)$: esto nos dice que $\lim_{y\to x} f(y)=+\infty$, esto es, que $x\in S$.

Vemos así que el conjunto S del enunciado es un subconjunto G_δ de $\mathbb R$. Supongamos ahora, para llegar a un absurdo, que es denso y numerable. Como S es denso, interseca todo abierto no trivialmente y, por lo tanto, su complemento $\mathbb R\setminus S$ tiene interior vacío. Por otro lado, como S es G_δ , su complemento $\mathbb R\setminus S$ es unión numerable de cerrados de $\mathbb R$, y estos cerrados tienen interior vacío porque están contenidos en $\mathbb R\setminus S$, que tiene interior vacío. Así, $\mathbb R\setminus S$ es unión numerable de cerrados de interior vacío. Como $S=\bigcup_{s\in S}\{s\}$ también es unión numerable de cerrados de interior vacío y, por supuesto, $\mathbb R=S\cup(\mathbb R\setminus S)$, vemos que nuestra hipótesis implica que $\mathbb R$ es de primera categoría: esto contradice la conclusión del teorema de Baire.

2. Muestre que un subconjunto de un espacio métrico es la frontera de un abierto si y solamente si es cerrado y tiene interior vacío.

Solución. Sea X un espacio métrico y sea F un subconjunto de X.

 (\Longrightarrow) Supongamos primero que hay un abierto A de X tal que $F=\partial A$. Si $x\in \overline{F}$ y U es un entorno abierto de x, entonces hay un punto $y\in U\cap F$. Como y está en F, U es un entorno de y y $F=\partial A$, tenemos que U interseca no trivialmente tanto a A como a $X\setminus A$. Así, todo entorno de x toca a A y a $X\setminus A$, así que $x\in F$: esto prueba que F es cerrado.

Por otro lado, si x es un punto de F° , entonces hay un entorno abierto V de x tal que $V \subseteq F$. Como $x \in F = \partial A$, es $V \cap A \neq \emptyset$. Sea $y \in V \cap A$: el conjunto $V \cap A$ es un entorno abierto de y que es disjunto de $X \setminus A$, así que $y \notin \partial A = F$, pero esto es absurdo, ya que $y \in V \subseteq F$. Vemos así que $F^{\circ} = \emptyset$.

(⇐⇒) Supongamos ahora que F es cerrado y tiene interior vacío, y sea $A = X \setminus F$, que es un abierto de X. Sea $x \in F$: si U es un entorno abierto de x, entonces porque F tiene interior vacío tenemos que $U \not\subseteq F$, así que $U \cap A \neq \emptyset$. Por otro lado, es $y \in U \cap F = U \cap (X \setminus A)$: vemos así que U interseca a A y a su complemento. Así, $x \in \partial A$ y, por lo tanto, $F \subseteq \partial A$.

Como también tenemos que $\partial A = \overline{A} \cap \overline{X} \setminus \overline{A} = \overline{A} \cap \overline{F} = \overline{A} \cap F \subseteq F$, es $F = \partial A$.

3. Determine el cardinal del conjunto de todas sucesiones $(a_n)_{n\geq 1}$ de elementos de \mathbb{N} tales que $a_n \mid a_{n+1}$ para todo $n \in \mathbb{N}$ y $\sum_{n=1}^{\infty} \frac{1}{a_n} < \infty$.

Solución. Escribamos X al conjunto descripto en el enunciado. Los elementos de X son sucesiones de elementos de \mathbb{N} , así que $X \subseteq \mathbb{N}^{\mathbb{N}}$ y, por lo tanto, $\#X \le \#(\mathbb{N}^{\mathbb{N}}) = \mathfrak{c}$.

Por otro lado, sea $f:\{1,2\}^{\mathbb{N}}\to\mathbb{Z}^{\mathbb{N}}$ la función tal que si $x=(x_n)_{n\geq 1}$ es un elemento de $\{0,1\}^{\mathbb{N}}$, entonces f(x) es la sucesión $(y_n)_{n\geq 1}$ con $y_n=2^nx_n$ para cada $n\in\mathbb{N}$. Esta función tiene imagen contenida en el conjunto X: si $(x_n)_{n\geq 1}\in\{1,2\}^{\mathbb{N}}$ e $y=(y_n)_{n\geq 1}=f(x)$, entonces la serie $\sum_{n\geq 1}\frac{1}{y_n}=\sum_{n\geq 1}\frac{1}{2^nx_n}$ está acotada término a término por la serie $\sum_{n\geq 1}\frac{1}{2^n}$, que converge, así que ella misma converge. Por otro lado, si $n\in\mathbb{N}$, entonces $y_n=2^nx_n$ es igual a 2^n o a 2^{n+1} , mientras que $y_{n+1}=2^{n+1}x_{n+1}$ es igual a 2^{n+1} o a 2^{n+2} , así que en cualquier caso tenemos que $y_n\mid y_{n+1}$.

Correstringiendo f obtenemos una función $\{1,2\}^{\mathbb{N}} \to X$. Como esta última es claramente inyectiva, esto implica que $\mathfrak{c} = \#(\{1,2\}^{\mathbb{N}}) \le \#X$. Esto y lo que ya teníamos implican juntos que $\#X = \mathfrak{c}$.

4. Todo abierto de \mathbb{R} es la unión de una familia a lo sumo numerable de intervalos abiertos disjuntos dos a dos.

Solución. Sea A un abierto no vacío de \mathbb{R} . Sabemos que A es unión de sus componentes conexas y —ya que A es localmente conexo, porque es un abierto de \mathbb{R} y \mathbb{R} lo es— que esas componentes son abiertas en A y, por lo tanto, en \mathbb{R} . El conjunto de componentes es, por lo tanto, una familia de abiertos de \mathbb{R} disjuntos dos a dos, así que es a lo sumo numerable. Por otro lado, cada uno de ellos es conexo, así que se trata de un intervalo.

5. Un espacio métrico es conexo si y solamente si todos sus subconjuntos propios y no vacíos tienen frontera no vacía.

Solución. Sea X un espacio métrico conexo y sea A un subconjunto de X que tiene frontera vacía. Como $\overline{A} = A \cup \partial A$, el conjunto A es cerrado. Como $\partial (X \setminus A) = \partial A$, por la misma razón el conjunto $X \setminus A$ es cerrado. Los conjuntos A y $X \setminus A$ son, por lo tanto, dos cerrados disjuntos de X que lo cubren: se sigue de esto que sus complementos $X \setminus A$ y A son dos abiertos disjuntos de X que lo cubren. Como X es conexo, alguno de estos últimos tiene que ser vacío y, por lo tanto, A es igual a X o a \emptyset . Esto prueba la necesidad de la condición del ejercicio.

Veamos ahora la suficiencia. Supongamos X no es conexo, de manera que existen dos abiertos no vacíos A y B en X que son disjuntos y que lo cubren. Como A y $X \setminus A = B$ son cerrados de X, tenemos que $\partial A = \overline{A} \cap \overline{X} \setminus \overline{A} = A \cap B = \emptyset$. Como A no es ni vacío ni igual a X, vemos que la condición del enunciado no se satisface.

6. Sea K el conjunto de todas las sucesiones de elementos de $\{0,1\}$. Si $x = (x_n)_{n \ge 1}$ e $y = (y_n)_{n \ge 1}$ son elementos distintos de K, podemos poner

$$v(x,y) := \min\{i \in \mathbb{N} : x_i \neq y_i\},\$$

ya que el conjunto cuyo mínimo estamos tomando no es vacío.

Muestre que hay una métrica $d: K \times K \to \mathbb{R}$ tal que $d(x, y) = 2^{-\nu(x, y)}$ siempre que x e y son elementos distintos de K, y que el espacio métrico (K, d) es separable, completo, totalmente desconexo y que no tiene puntos aislados.

Solución. Consideremos la función $d: K \times K \rightarrow \mathbb{R}$ tal que

$$d(x,y) = \begin{cases} 0 & \text{si } x = y; \\ 2^{-\nu(x,y)} & \text{si } x \neq y. \end{cases}$$

Es claro que d es simétrica, porque v lo es, y que se anula si y solamente si sus dos argumentos son iguales. Veamos que satisface la desigualdad triangular. Sean $x=(x_n)_{n\geq 1},\ y=(y_n)_{n\geq 1}$ y $z=(z_n)_{n\geq 1}$ tres elementos de K: queremos probar que $d(x,z)\leq d(x,y)+d(y,z)$. Si x=y o y=z, entonces la desigualdad es evidente (ya que una de las tres distancias que aparecen en ella es nula y las otras dos iguales entre sí), y si x=z la desigualdad es evidente porque a la izquierda tiene un y0. Consideremos la situación restante, en la que y0, y1, y2 son distintos dos a dos, de manera que las distancias y2, y3, y3, y4, y5, y5, y5, y6, y7, y8, y8, y9, y9,

Supongamos por un momento que d(x,z)>d(x,y) y que d(x,z)>d(y,z), es decir, que v(x,z)< v(x,y) y que v(x,z)< v(y,z). Esto implica que $x_{v(x,z)}\neq y_{v(x,z)}$ y que $y_{v(x,z)}\neq y_{v(x,z)}$ y, como $y_{v(x,z)}$, $y_{v(x,z)}$ y $y_{v(x,z)}$ son elementos de $\{0,1\}$, que $y_{v(x,z)}=y_{v(x,z)}$: esto es absurdo, por la forma en que definimos el número y(x,z). Tenemos entonces que $y_{v(x,z)}=y_{v(x,z)}$ y la designaldad que queremos claramente se cumple.

Mostremos ahora que *K* tiene las propiedades listadas en el enunciado.

- Veamos que K es separable. Sea D el conjunto de los elementos $(x_n)_{n\geq 1}$ de K tales que existe $n_0\in\mathbb{N}$ con $x_n=x_{n_0}$ para todo $n\geq n$. Sabemos que D es numerable: veamos que es denso. Sea $y=(y_n)_{n\geq 1}$ un elemento de K y sea $m\in\mathbb{N}$. La sucesión $z=(z_n)_{n\geq 1}$ con $z_n=y_n$ si $n\leq m$ y $z_n=y_m$ si $n\geq m$ es un elemento de D y claramente o bien y=z o bien $y\neq z$ y $v(y,z)\geq m$: en cualquiera de los dos casos es $d(y,z)\leq 2^{-m}$. Esto prueba que D es denso, como queríamos.
- Veamos que K es completo. Sea $(x_n)_{n\geq 1}$ una sucesión de Cauchy en K, con $x_n=(x_{n,m})_{m\geq 1}$ para cada $n\in\mathbb{N}$. Sea $l\in\mathbb{N}$. Como la sucesión es de Cauchy, existe $N_l\in\mathbb{N}$ tal que si $n\geq N_l$ entonces $d(x_n,x_m)<2^{-l}$, así que o bien $x_n=x_m$ y, en particular, $x_{n,l}=x_{m,l}$, o bien $x_n\neq x_m$ y $v(x_n,x_m)>l$, de manera que otra vez

 $x_{n,l} = x_{m,l}$. Esto muestra que

$$n, m \ge N_1 \implies x_{m,l} = x_{m,l}$$
.

Para cada $l \in \mathbb{N}$ pongamos $M_l := \max\{N_i : 1 \le i \le l\}$ y consideremos la sucesión $\xi = (x_{M_n,n})_{n \ge 1}$. Para lo que queremos será suficiente que mostremos que la sucesión $(x_n)_{n \ge 1}$ converge a ξ .

Sea $m \in \mathbb{N}$. Si $k \geq M_m$, entonces para todo $i \in \{1, \ldots, m\}$ tenemos que $k \geq N_i$ y que $M_i \geq N_i$, así que la forma en que elegimos al número N_i implica que $x_{M_i,i} = x_{k,i}$: esto nos dice que o bien $\xi = x_k$ o bien $\xi \neq x_k$ y $\nu(\xi, x_k) > m$, y en cualquiera de los dos casos que $d(\xi, x_k) < 2^{-m}$. Esto prueba que $(x_n)_{n \geq 1}$ converge a ξ .

- Veamos que *K* no tiene puntos aislados. Sea *x* = (*x_n*)_{n≥1} un elemento de *K* y sea *m* ∈ N. El conjunto *B*₂-*m*(*x*) es el de todas las sucesiones de *K* que tienen sus primeras *m*+1 componentes iguales a las correspondientes componentes de *x*: este conjunto es manifiestamente no numerable, así que tiene por supuesto un elemento distinto de *x*.
- Para terminar, mostremos que K es totalmente desconexo. Empecemos por mostrar que toda bola abierta es cerrada. Sea $x \in K$, sea $\epsilon > 0$ y pongamos $m := \min\{i \in \mathbb{N} : 2^{-i} < \epsilon\}$. Es claro que $B_{\epsilon}(x) = B_{2^{-m}}(x)$ y que $B_{2^{-m}}(x)$ es el conjunto de elementos de K que coinciden con x en al menos las primeras m+1 coordenadas: tenemos, por lo tanto, que si $y \in K \setminus B_{2^{-m}}(x)$, entonces $B_{2^{-m}}(y) \subseteq K \setminus B_{2^{-m}}(x)$, de manera que y es un punto interior del complemento de $B_{2^{-m}}(x)$.

Vemos así que todas las bolas abiertas de K son cerradas. Esto es cierto, entonces, para todo subespacio de K y, como consecuencia de esto, para ver que K es totalmente desconexo es suficiente que probemos que

un espacio métrico que en el que las bolas abiertas son cerradas no es conexo si tiene más de un punto.

Sea X un espacio métrico cuyas bolas abiertas son cerradas y que posee al menos dos puntos distintos x e y. Sea $\epsilon := d(x,y)/2$, que es un número positivo, y sea $A := B_{\epsilon}(x)$. El conjunto A es abierto y cerrado, y su complemento $X \setminus A$ es un abierto de X disjunto de A. Como $x \in A$, $y \in X \setminus A$, $A \cap (X \setminus A) = \emptyset$ y $A \cup (X \setminus A) = X$, es claro que X no es conexo.