More examples

Problem 9: Prove that $24|(5^{2n}-1)$ for all integers $n \geq 0$.

$$N=0$$
: $5^{2n}-1=0$ and $24|0$.
 $N=1$: $5^{2n}-1=24$ and $24|24$

Goals is to show that

Goals is to show that

Inductive if
$$24|5^{2n}-1$$
 then $24|5^{2(n+1)}-1$,

the pothesis

 $(-2)^n$

$$5^{2n} - 1 = (5^2)^n - 1 = 25^n - 1$$

$$= (1 + 24)^n - 1 = 4$$

$$5^{2(n+1)} - 1 = (5^2)^{(n+1)} - 1 = 25^{(n+1)} - 1$$

$$\frac{-2(n+1)}{-1} = (5^{2}) - 1 = 25^{2} - 1$$

$$= (1+24)^{n+1} - 1 = B$$

$$= (1+24)(1+24)^{n} - (1+24)^{n+1} - 1 = B$$

$$R = A + 24(A+1)$$

We know that 241A, so A = 24K so fa some K.

Problem 21: Prove that

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} + \frac{1}{2^n} \ge 1 + \frac{n}{2}$$

and conclude that the harmonic series diverges.

Check P(1):

Check P(1):

$$n=1$$
 $1+\frac{1}{2}$ $>$ $1+\frac{1}{2}$ The P(1) holds.

$$n=2 \quad l+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} > l+\frac{1}{2}+2\left(\frac{1}{4}\right) = l+\frac{1}{2}+\frac{1}{2}$$

$$= l+\frac{2}{2}$$

$$= l+\frac$$

Assume now that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{N}} > 1 + \frac{N}{2}$

2" tems all 7 from

$$1 + \frac{1}{2} + \dots + \frac{1}{2^{n}} + \frac{1}{2^{n}} + \dots + \frac{1}{2^{n}} > 1 + \dots + \frac{1}{2^{n}} > 1 + \frac{1}{2^{n}$$

We've shown P(a) => P(a+1)

So by induction Part is two for all NZO in Z.

Corollay: Hamoric Series diverges.