Analysis and Computation of Google's PageRank

llse Ipsen

North Carolina State University

Joint work with Rebecca M. Wills

Overview

Goal: Compute (citation) importance of a web page

- Simple Web Model
- Google Matrix
- Stability of PageRank
- Eigenvalue Problem: Power Method
- Linear System: Jacobi Method
- Dangling Nodes

Simple Web Model

Construct matrix S

- Page i has $d \ge 1$ outgoing links: If page i has link to page j then $s_{ij} = 1/d$ else $s_{ij} = 0$
- Page i has 0 outgoing links: $s_{ij} = 1/n$ (dangling node)

 s_{ij} : probability that surfer moves from page i to page j

Matrix S

S is stochastic: $0 \le s_{ij} \le 1$ $S\mathbf{1} = \mathbf{1}$ Left eigenvector: $\omega^T S = \omega^T$ $\omega \ge 0$ $\|\omega\|_1 = 1$

Ranking: ω_i is probability that surfer visits page i But:

- S does not model surfing behaviour properly
- Rank sinks, and pages with zero rank
- Several eigenvalues with magnitude 1
 power method does not converge

Remedy: Change the matrix

Google Matrix

Convex combination

$$G = \alpha S + (1 - \alpha) \mathbf{1} v^T$$

Stochastic matrix SDamping factor $0 < \alpha < 1$, e.g. $\alpha = .85$ Personalization vector v > 0 $||v||_1 = 1$

Properties of G:

- stochastic ⇒ G has eigenvalue 1
- primitive ⇒ spectral radius 1 unique

Page Rank

Unique left eigenvector:

$$\pi^T G = \pi^T \qquad \pi > 0 \qquad \|\pi\|_1 = 1$$

Power method converges to π

*i*th entry of π : PageRank of page *i*

PageRank \doteq largest left eigenvector of G

Stability of PageRank

How sensitive is PageRank π to

- Round off errors
- Changes in damping factor α
- Changes in personalization vector v
- Addition/deletion of links

Perturbation Theory

For Markov chains

Schweizer 1968, Meyer 1980
Haviv & van Heyden 1984
Funderlic & Meyer 1986
Seneta 1988, 1991
Ipsen & Meyer 1994
Kirkland, Neumann & Shader 1998
Cho & Meyer 2000, 2001
Kirkland 2003, 2004

Perturbation Theory

For Google matrix

Chien, Dwork, Kumar & Sivakumar 2001 Ng, Zheng & Jordan 2001 Bianchini, Gori & Scarselli 2003 Boldi, Santini & Vigna 2004 Langville & Meyer 2004 Golub & Greif 2004 Kirkland 2005

Changes in the Matrix S

Exact:

$$\pi^T G = \pi^T$$
 $G = \alpha S + (1 - \alpha) \mathbf{1} v^T$

Perturbed:

$$\tilde{\pi}^T \tilde{G} = \tilde{\pi}^T$$
 $\tilde{G} = \alpha (S + E) + (1 - \alpha) \mathbf{1} v^T$

Error:

$$\tilde{\pi}^T - \pi^T = \alpha \tilde{\pi}^T E (I - \alpha S)^{-1}$$

$$\|\tilde{\pi} - \pi\|_1 \le \frac{\alpha}{1 - \alpha} \|E\|_{\infty}$$

Changes in Damping Factor α

Exact:

$$\pi^T G = \pi^T$$
 $G = \alpha S + (1 - \alpha) \mathbf{1} v^T$

Perturbed:

$$\tilde{\pi}^T \tilde{G} = \tilde{\pi}^T$$
 $\tilde{G} = (\alpha + \mu)S + (1 - (\alpha + \mu))\mathbf{1}v^T$

Error:

$$\|\tilde{\pi} - \pi\|_1 \le \frac{2}{1 - \alpha} \mu$$

[Langville & Meyer 2004]

Changes in Vector v

Exact:

$$\pi^T G = \pi^T$$
 $G = \alpha S + (1 - \alpha) \mathbf{1} v^T$

Perturbed:

$$\tilde{\pi}^T \tilde{G} = \tilde{\pi}^T$$
 $\tilde{G} = \alpha S + (1 - \alpha) \mathbf{1} (v + f)^T$

Error:

$$\|\tilde{\pi} - \pi\|_1 \le \|f\|_1$$

Sensitivity of PageRank π

$$\pi^T G = \pi^T$$
 $G = \alpha S + (1 - \alpha) \mathbf{1} v^T$

Changes in

- S: condition number $\alpha/(1-\alpha)$
- α : condition number $2/(1-\alpha)$
- f: condition number 1

 $\alpha = .85$: condition numbers ≤ 14

 $\alpha = .99$: condition numbers ≤ 200

PageRank insensitive to perturbations

Adding an In-Link

$$\tilde{\pi}_i \geq \pi_i$$

Adding an in-link can only increase PageRank

Removing an in-link can only decrease PageRank

[Chien, Dwork, Kumar, Sivakumar 2001]

Adding an Out-Link

$$\tilde{\pi}_3 = \frac{1 + \alpha + \alpha^2}{3(1 + \alpha + \alpha^2/2)} < \pi_3 = \frac{1 + \alpha + \alpha^2}{3(1 + \alpha)}$$

Adding an out-link may decrease PageRank

PageRank Computation

$$\pi^T G = \pi^T$$
 $G = \alpha S + (1 - \alpha) \mathbf{1} v^T$

Compute π by power method:

Pick
$$x_0 > 0$$
, $||x_0||_1 = 1$
For $k = 0, 1, 2 \dots$ $x_{k+1}^T = x_k^T G$

Error in iteration k:

$$||x_k - \pi||_1 \le \alpha^k ||x_0 - \pi||_1$$

[Bianchini, Gori & Scarselli 2003]

Why is Power Method Cheap?

Google matrix
$$G = \alpha S + (1 - \alpha) \mathbf{1} v^T$$

$$S = H + \underbrace{dw^T}_{\text{dangling nodes}} \qquad w \geq 0 \quad \|w\|_1 = 1$$

Matrix *H*: models webgraph substochastic dimension: several billion very sparse

Matrix Vector Multiplication

Vector
$$x > 0 ||x||_1 = 1$$

$$\mathbf{x}^{T}G = \mathbf{x}^{T} \left[\alpha (\mathbf{H} + d\mathbf{w}^{T}) + (1 - \alpha) \mathbf{1} v^{T} \right]$$

$$= \alpha \mathbf{x}^{T} \mathbf{H} + \alpha \mathbf{x}^{T} d \mathbf{w}^{T} + (1 - \alpha) v^{T}$$
scalar

Cost: # non-zeros in H

Stopping Criterion

Residual

$$x_k^T G - x_k = x_{k+1}^T - x_k^T$$

Currently: stop when

$$||x_{k+1} - x_k||_1 \le \tau$$

where $\tau \approx 10^{-4}, 10^{-6}, 10^{-8}$

Better: stop when

$$||x_{k+1} - x_k||_1 \le \frac{n}{\tau}$$

where n is dimension of G

Comparison

n	its (au)	its $(n\tau)$	Agrees	Disagrees
2293	86	39	2257	36
2947	85	37	2977	20
3468	90	41	3462	6
5757	90	39	5735	22

Its $(n\tau)$: # iterations with bound $n\tau$

Agrees: # pages with same ranking for both bounds

$$\tau = 10^{-8}$$

Stopping Criterion

Old:
$$||x_{k+1} - x_k||_1 \le \tau$$

Bound becomes more stringent as n grows

New:
$$||x_{k+1} - x_k||_1 \le n\tau$$

- Reduces iteration count by 50%
- Disagreements in ranking $\leq 1.5\%$

Properties of Power Method

- Converges to unique vector
- Convergence rate α
- Vectorizes
- Storage for only a single vector
- Matrix vector multiplication with very sparse matrix
- Accurate (no subtractions)
- Simple (few decisions)

But: can be slow

PageRank Computation

- Power method Page, Brin, Motwani & Winograd 1999
- Acceleration of power method Brezinski & Redivo-Zaglia 2004 Kamvar, Haveliwala, Manning & Golub 2003 Haveliwala, Kamvar, Klein, Manning & Golub 2003
- Aggregation/Disaggregation
 Langville & Meyer 2002, 2003, 2004
 Ipsen & Kirkland 2004

PageRank Computation

- Methods that adapt to web graph
 Broder, Lempel, Maghoul & Pedersen 2004
 Kamvar, Haveliwala & Golub 2004
 Haveliwala, Kamvar, Manning & Golub 2003
 Lee, Golub & Zenios 2003
 Lu, Zhang, Xi, Chen, Liu, Lyu & Ma 2004
- Krylov methods
 Golub & Greif 2004

PageRank from Linear System

Eigenvector problem:

$$\pi^{T}(\alpha S + (1 - \alpha)\mathbf{1}v^{T}) = \pi^{T} \qquad \pi \ge 0 \quad \|\pi\|_{1} = 1$$

Linear system:

$$\pi^T(I - \alpha S) = (1 - \alpha)v^T$$

 $I - \alpha S$ nonsingular M-matrix

[Arasu, Novak, Tomkins & Tomlin 2002]

[Bianchini, Gori & Scarselli 2003]

Stationary Iterative Methods

$$\pi^T(I - \alpha S) = (1 - \alpha)v^T$$

- Can be faster than power method
- Can be faster than Krylov space methods
- Predictable, monotonic convergence
- Can converge even for $\alpha \approx 1$
- No failure due to "memory overload" (unlike Krylov space methods)
- Accurate (no subtractions)

Example

[Gleich, Zhukov & Berkhin 2005]

Web graph: 1.4 billion nodes

6.6 billion edges

Beowulf cluster with 140 processors

Stopping criterion: residual norm $\leq 10^{-7}$

BiCGSTAB: 28.2 minutes (preconditioner?)

Power method: 35.5 minutes

Jacobi Method

Assume no page has a link to itself

$$\pi^{T}(I - \alpha S) = (1 - \alpha)v^{T} \qquad I - \alpha S = D - O$$

$$x_{k+1}^{T} = x_{k}^{T}OD^{-1} + (1 - \alpha)v^{T}D^{-1}$$

- $I \alpha S$ is M-matrix
- Jacobi converges
- No dangling nodes: D = I $O = \alpha S$ Jacobi method = power method

Dangling Nodes

 $S = H + dw^T$ is dense

What to do about dangling nodes?

- Remove [Brin, Page, Motwani & Winograd 1998]
 No PageRank for dangling nodes
 Biased PageRank for other nodes
- Lump into single state [Lee, Golub & Zenios 2003]
 As above
- Remove dw^T [Langville & Meyer 2004] H is not stochastic What is being computed?

Use v for Dangling Nodes

$$\pi^{T}(I - \alpha S) = (1 - \alpha)v^{T} \qquad S = H + dw^{T}$$

Choose w = v

$$\pi^T(I - \alpha H) = \underbrace{(1 - \alpha + \alpha \pi^T d) \; v^T}_{\text{multiple of } v^T}$$

Solve $\delta^T(I - \alpha H) = \text{multiple of } v^T$

Then δ is multiple of π

[Arasu, Novak, Tomkins & Tomlin 2002]

Extension to Arbitrary w

$$\pi^{T}(I - \alpha S) = (1 - \alpha)v^{T} \qquad S = H + dw^{T}$$

Rank-one update: $I - \alpha S = (I - \alpha H) - \alpha dw^T$

1. Solve
$$\delta^T = (1 - \alpha)v^T(I - \alpha H)^{-1}$$

2. Update
$$\pi^T = \delta^T + \text{stuff}$$

This requires only two sparse solves

1. Solve: $\delta^T = (1 - \alpha)v^T(I - \alpha H)^{-1}$

After similarity permutation:

$$H = \begin{pmatrix} H_1 & H_2 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \delta_1^T & \delta_2^T \end{pmatrix} \begin{pmatrix} I - \alpha H_1 & -\alpha H_2 \\ 0 & I \end{pmatrix} = (1 - \alpha) \begin{pmatrix} v_1^T & v_2^T \end{pmatrix}$$

1. Sparse solve
$$\delta_1^T = (1-\alpha)v_1^T(I-\alpha H_1)^{-1}$$

2. Set
$$\delta_2^T = \alpha \ \delta_1^T H_2 + (1 - \alpha) v_2^T$$

2. Update: $\pi^T = \delta^T + \text{stuff}$

$$H = \begin{pmatrix} H_1 & H_2 \\ 0 & 0 \end{pmatrix} \quad dw^T = \begin{pmatrix} 0 \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{w_1^T} & \mathbf{w_2^T} \end{pmatrix}$$

1. Sparse solve
$$z^T = \alpha w_1^T (I - \alpha H_1)^{-1}$$

2. Set
$$y^T = \alpha(w_2^T + z^T H_2)$$

3. Update
$$\pi^T = \delta^T + \frac{\|\delta_2\|_1}{1 - \|y\|_1} \begin{pmatrix} z^T & y^T \end{pmatrix}$$

PageRank via Linear System

$$\pi^T(I - \alpha S) = (1 - \alpha)v^T \quad S = \begin{pmatrix} H_1 & H_2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \mathbf{1} \end{pmatrix} \boldsymbol{w^T}$$

Arbitrary dangling node vector w, $w \ge 0$, $||w||_1 = 1$ Cost:

Two sparse solves with $I-\alpha H_1$ via Jacobi Two matrix vector multiplications with H_2 Inner products and vector additions

Summary

Google Matrix
$$G = \alpha S + (1 - \alpha)ev^T$$

- PageRank = left eigenvector of G
- PageRank insensitive to perturbations in G
- Adding in-links can only increase PageRank
- Adding out-links may decrease PageRank
- Improved stopping criterion
- Compute PageRank from linear system
- Jacobi can be competitive with Krylov methods
- Efficient treatment of dangling nodes