

Bin-Count Network

Hyungdong Park, Inguk Yeo Department of Computer Engineering

Contents

- 1. Baseline Model
 - ReActNet-18
- 2. Implementing binarized counting in hardware architectures
 - Architectures and Benefits of binarized counting
- 3. Binarized counting techniques
 - PTQ-binarized counting
 - Simple QAT-binarized counting
 - QAT-binarized counting

- ReActNet-18 with CIFAR-10 using XNOR & Pop-count

Num of channels	64	64	128	256	512	
Num of layers	1	4	4	4	4	Dooling & EC
Image size	64 × 32 × 32	64 × 32 × 32	128 × 16 × 16	256 × 8 × 8	512 × 4 × 4	Pooling & FC
Operations	*	XNOR & Pop-Count & Multiplication & Batch Norm				
Activations and weights	\mathbb{R}	$\mathbb R$ (After BN) & Binarized values (1 or -1)			\mathbb{R}	

units of Mul

weights

 $c_0 \times h_0 \times w_0$

- Hardware computations per a xnor-popcount for ReActNet-18 (our baseline)

- Hardware computations per a xnor-popcount for our model

- Hardware computations per a layer

Models	Operations	# Operations per a layer	
ReActNet-18	Integer Multiplication & Bit shift	$c_o \times w_o \times h_o$ Integer Multiplications & Bit shifts	
QAT-binarized counting ReActNet-18	None	None	

- Hardware computations of model-wide perspective

Models	Operations	# Operations	
ReActNet-18	Integer Multiplication & Bit shift	557,056 Integer Multiplications & Bit shifts	
QAT-binarized counting ReActNet-18	None	None	

Binarized counting techniques

- Structure for the PTQ-binarized counting

 $|\alpha| \le (channel_num \times kernel^2)$ $\beta = \pm 1$ $\gamma = \pm scaling_factor$ $\delta = \pm (scaling_factor \times channel_num \times kernel^2)$

- PTQ-binarized counting's results with CIFAR-10

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
PTQ-binarized counting ReActNet-18	10.000	52.040
Bi-RealNet-18	88.770	98.250
PTQ-binarized counting Bi-RealNet-18	10.000	50.000

- Structure for the PTQ-binarized counting

: Inference model

: Training model

 $|\alpha| \le (channel_num \times kernel^2)$

 $\beta = \pm 1$

 $\gamma = \pm scaling_factor$

Forward

Backpropagation

- Simple QAT-binarized counting's results with CIFAR-10

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
Simple QAT-binarized counting ReActNet-18	84.930	99.250
Bi-RealNet-18	88.770	98.250
Simple QAT-binarized counting Bi-RealNet-18	30.070	79.690

- Structure for the PTQ-binarized counting

Forward in training

Backpropagation in training

```
|\alpha| \le (channel\_num \times kernel^2)

\beta = \pm 1

\gamma = \pm scaling\_factor

\delta = \pm (channel\_num \times kernel^2 \div division\_num)
```

- QAT-binarized counting ReActNet-18's results with CIFAR-10 along with division num

Division num	Top-1 Accuracy (%)	Top-5 Accuracy (%)
channel num + α	92.150	99.640
$(channel\ num\ imes\ kernel^2) + \alpha$	89.580	99.460
channel num \times α	92.510	99.640
$(channel\ num\ imes\ kernel^2)\ imes\ \alpha$	92.160	99.660
Min-Max Normalization (channel num \times kernel ²)	89.230	99.390

- QAT-binarized counting's results with CIFAR-10

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
Simple QAT-binarized counting ResNet-18	84.930	99.250
QAT-binarized counting ReActNet-18	92.510	99.640
Bi-RealNet-18	88.770	98.250
Simple QAT-binarized counting Bi-RealNet-18	30.070	79.690
QAT-binarized counting Bi-RealNet-18	87.660	98.720

Thank you