Branch: main 2024-04-12 14:39:04+02:00

μ-Random thoughts

R.T. Polymath

Let \mathcal{U} be a monster model of signature L and let $T=\operatorname{Th}(\mathcal{U})$. We confuse formulas $\varphi(x)\in L(\mathcal{U})$ with the subset of $\mathcal{U}^{|x|}$ that they define. If $\mathcal{D}=\varphi(\mathcal{U})$, we may write $x\in\mathcal{D}$ for $\varphi(x)$. Unless otherwise stated, calligraphic capital letters denote definable sets (with parameters from \mathcal{U}). Global types are types over \mathcal{U} that are complete. Unless otherwise stated, any other type is partial.

We denote by ${}^*\mathcal{U}$ an elementary extension of \mathcal{U} where all global type are realized. If $\mathcal{D} = \varphi(\mathcal{U})$, we write ${}^*\mathcal{D}$ for $\varphi({}^*\mathcal{U})$. If $p(x) \subseteq L(\mathcal{U})$ we write *p for $p({}^*\mathcal{U})$.

Below by $\mu(x) \subseteq L(\mathcal{U})$ we always denote a consistent type closed under conjunctions and logical consequences modulo T that is, if $\varphi(x) \in \mu$ and $\varphi(x) \to \psi(x)$ then $\psi(x) \in \mu$. We denote by 1_{μ} the filter $\{\varphi(\mathcal{U}): \varphi(x) \in \mu\}$. We write 0_{μ} for the corresponding ideal that is, the ideal $\{\neg \varphi(\mathcal{U}): \varphi(x) \in \mu\}$. Note that the expressions $\mathcal{D} \in 1_{\mu}$ and ${}^*\mu \subseteq {}^*\mathcal{D}$ are synonymous.

The elements of ${}^*\mu$ are called μ -random. We say that $\varphi(x) \in L(\mathcal{U})$ is μ -wide if it is finitely consistent with $\mu(x)$. In other words, if $\varphi(\mathcal{U}) \notin 0_{\mu}$. A type $p(x) \subseteq L(\mathcal{U})$ is μ -wide if all the formulas in p are μ -wide. A global μ -wide type is also called a μ -random type. In other words, μ -random types are the type over \mathcal{U} of μ -random elements.

The following is tautological but worth noticing.

Remark 1. A type is μ -wide if and only if it is realized by a random element. Every μ -wide type extends to a μ -random type.

Let $\kappa = \kappa^{<\kappa}$ be the cardinality of \mathcal{U} . We say that μ is κ -prime if for every sequence $(\mathcal{D}_i : i < \kappa)$ of definable sets such that $\mathcal{D}_i \cup \mathcal{D}_j \in 1_{\mu}$ for every $i < j < \kappa$, there is an $i < \kappa$ such that $\mathcal{D}_i \in 1_{\mu}$. By the regularity of κ this equivalent to requiring that $\mathcal{D}_i \in 1_{\mu}$ for every $i < \kappa$.

Sometimes we use the dual version of this property which sounds: for every sequence $\langle \mathcal{D}_i : i < \kappa \rangle$ of definable sets such that $\mathcal{D}_i \cap \mathcal{D}_j \in 0_\mu$ for every $i < j < \kappa$, there is an $i < \kappa$ such that $\mathcal{D}_i \in 0_\mu$.

Example 2. Assume there is a finitely additive probability measure on the definable subsets of $\mathcal{U}^{|x|}$. Let 1_{μ} be the set of subsets of measure 1. Then μ is κ -prime.

1

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

2 R.T. POLYMATH

Proof. Assume for a contradiction that the sets $\langle \mathcal{D}_i : i < \kappa \rangle$ have positive measure but that $\mathcal{D}_i \cap \mathcal{D}_j$ has measure 0 for every $i < j < \kappa$. As κ is regular and uncountable, we may assume that for some n all sets \mathcal{D}_i have measure $\geq 1/n$. Then, up to a set measure 0, the sets $\mathcal{D}_1, \ldots, \mathcal{D}_n$ are pairwise disjoint and contained in $\neg \mathcal{D}_0$. This is a contradiction because $\neg \mathcal{D}_0$ has measure < 1.

We say that μ is S1 over A if for every A-indiscernible sequence $\langle \mathcal{D}_i : i < \omega \rangle$

$$\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_{\mu} \ \Rightarrow \ \mathcal{D}_0 \in 1_{\mu}.$$

Which may also be formulated as follows

$$\mathcal{D}_0$$
 is μ -wide $\Rightarrow \mathcal{D}_0 \cap \mathcal{D}_1$ is μ -wide.

The terminology originated in some obscure corner of Hrushovski's mind.

Fact 3. For any μ that is Lascar-invariant over A the following are equivalent

- 1. μ is κ -prime;
- 2. μ is S1 over A.

Proof. $(1\Rightarrow 2)$ Let $\langle \mathcal{D}_i: i < \omega \rangle$ be a sequence of A-indiscernibles such that $\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_\mu$. Then $\langle \mathcal{D}_i: i < \omega \rangle$ is M-indiscernible for some model M containing A. As μ is invarianty over M. By compactness, we can strech this sequence one to length κ . From indiscernibility and the M-invariance of μ we obtain that $\mathcal{D}_i \cup \mathcal{D}_j \in 1_\mu$ for every $i < j < \kappa$. Then $\mathcal{D}_i \in 1_\mu$ for some $i < \kappa$ and, again by indiscernibility and invariance, $\mathcal{D}_0 \in 1_\mu$.

 $(2\Rightarrow 1)$ The following fact is well-known.

Fact. For every sequence $\langle \mathcal{D}_i : i < \kappa \rangle$ there is an A-indiscernible sequence $\langle \mathcal{C}_i : i < \omega \rangle$ such that for every $n < \omega$ there is some $I \subseteq \kappa$ of cardinality n such that $\mathcal{C}_{\upharpoonright n} \equiv_A \mathcal{D}_{\upharpoonright I}$.

Suppose $\mathcal{D}_i \cup \mathcal{D}_j \in 1_\mu$ for every $i < j < \kappa$. Pick a model M containing A. Then μ is invariant over M. Apply the fact with n=2 and M for A to obtain A-indiscernible sequence $\langle \mathcal{C}_i : i < \omega \rangle$ such that $\mathcal{C}_0, \mathcal{C}_1 \equiv_M \mathcal{D}_i, \mathcal{D}_j$ for some $i < j < \kappa$. From the M-invariance of μ we obtain $\mathcal{C}_0 \cup \mathcal{C}_1 \in 1_\mu$. Then $\mathcal{C}_0 \in 1_\mu$. Again by M-invariance, $\mathcal{D}_i \in 1_\mu$.

Example 4. Let $1_{\mu} = \{ \mathcal{X} \subseteq \mathcal{U}^{|x|} : A^{|x|} \subseteq \mathcal{X} \}$. Then μ is S1 over A. Clearly, a type $p(x) \subseteq L(\mathcal{U})$ is μ -wide if and only if it is finitely satisfied in A.

Proof. Assume $\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_{\mu}$, where $\mathcal{D}_0, \mathcal{D}_1$ start a sequence of A-indiscernibles. Then $a \in \mathcal{D}_0 \cup \mathcal{D}_1$ for every $a \in A^{|x|}$. By indiscernibility, $a \in \mathcal{D}_0$ holds for every $a \in A^{|x|}$. Hence $\mathcal{D}_0 \in 1_{\mu}$.

For every small set A we define

 $\lambda^A(x) = \{ \varphi(x) : \varphi(x) \in p \text{ for every } p \in S_x(\mathcal{U}) \text{ that is Lascar-invariant over } A \}$

Clearly, a type is λ^A -wide if and only if it has an extension to a global type that is Lascar-invariant over A.

Lemma 5. λ^A is S1 over A.

Proof. Assume $\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_{\lambda^A}$, where \mathcal{D}_0 , \mathcal{D}_1 start a sequence of A-indiscernibles. Then \mathcal{D}_0 , \mathcal{D}_1 are conjugated over some model M containing A. If p is any global type Lascarinvariant over A, then p is invariant over M. Therefore p contains $x \in \mathcal{D}_0$ if and only if it contains $x \in \mathcal{D}_1$. Therefore $\mathcal{D}_0 \in 1_{\lambda^A}$.

We say that \mathcal{D} is generic over A if for every finitely many translates of \mathcal{D} under $\operatorname{Aut}(\mathcal{U}/A)$ cover $\mathcal{U}^{|x|}$. Note that \mathcal{D} is generic over A if and only if $\operatorname{orb}(\neg \mathcal{D}/A)$ does not have fip (i.e. the finite intersection propery).

The definition of Lascar-generic over A is similar, we only replace $\operatorname{Aut}(\mathcal{U}/A)$ by $\operatorname{Autf}(\mathcal{U}/A)$. Again, this is equivalent to requiring that $\operatorname{orbf}(\neg \mathcal{D}/M)$ does not have fip.

Fact 6. 1_{λ^A} is the filter generated by sets that are Lascar-generic over A.

Proof. (\supseteq) It suffices to prove if \mathcal{D} is Lascar-generic over A then $\mathcal{D} \in 1_{\lambda^A}$. That is, every λ^A -random type p contains $x \in \mathcal{D}$. Let p be λ^A -random. By Lascar-genericity, there are some strong A-automorphisms f_1, \ldots, f_n be such that $\mathcal{U}^{|x|} = \bigcup_i f_i \mathcal{D}$. By completeness, p contains $x \in f_i \mathcal{D}$ for some i. By Lascar-invariance, p contains also $x \in \mathcal{D}$.

(⊆) Assume that there are no Lascar-generic sets \mathcal{B}_i such that

$$\bigcap_{i=1}^{n} \mathcal{B}_i \subseteq \mathcal{D}$$

Hence, by taking complements, for any \mathcal{C}_i such that

$$\neg \mathcal{D} \subseteq \bigcup_{i=1}^n \mathcal{C}_i,$$

at least one orbf(\mathcal{C}_i/A) has the fip. By Fact 8 below, we obtain that $x \notin \mathcal{D}$ belongs to some global type that is Lascar-invariant over A. Therefore $\mathcal{D} \notin 1_{\lambda^A}$.

Fact 7. For every $\mathfrak D$ the following are equivalent

- 1. there is a global type containing $x \in \mathcal{D}$ that is invariant over A;
- 2. every finite cover $\{\mathcal{C}_1, \dots, \mathcal{C}_n\}$ of \mathcal{D} contains some \mathcal{C}_i such that $\operatorname{orb}(\mathcal{C}_i/A)$ has fip.

Proof. (1 \Rightarrow 2) Let p be a global A-invariant type containing $\varphi(x)$. Then p contains \mathcal{C}_i for some i. By invariance, p contains $x \in \mathcal{C}$ for every \mathcal{C} conjugated to \mathcal{C}_i hence (2) follows.

 $(2\Rightarrow 1)$ Let p be maximally finitely consistent type containing $\varphi(x)$ such that all formulas p have the property in (2). We claim that p is complete type. Suppose for a contradiction that $\vartheta(x)$, $\neg \vartheta(x) \notin p$. By maximality there is some $\psi(x) \in p$ and some $\mathcal{C}_1, \ldots, \mathcal{C}_n$ covering

R.T. POLYMATH

4

both $\psi(\mathcal{U}) \cap \mathcal{D}$ and $\psi(\mathcal{U}) \setminus \mathcal{D}$ such that no orb (\mathcal{C}_i/A) has fip. This is a contradiction because $\mathcal{C}_1, \ldots, \mathcal{C}_n$ also cover $\psi(\mathcal{U})$. Finally, (1) follows if we can prove that p is invariant over A. Suppose not then, by completeness, p contains $x \in \mathcal{B} \setminus f\mathcal{B}$ for some \mathcal{B} and some $f \in \operatorname{Aut}(\mathcal{U}/A)$. But $\mathcal{B} \setminus f\mathcal{B}$ is disjoint of $f\mathcal{B} \setminus f^2\mathcal{B}$, hence it cannot satisfy (2). A contradiction.

By essentially the same proof we obtain the following.

Fact 8. For every \mathcal{D} the following are equivalent

- 1. there is a global type containing $x \in \mathcal{D}$ that is Lascar-invariant over A;
- 2. every finite cover $\{\mathcal{C}_1, \dots, \mathcal{C}_n\}$ of \mathcal{D} contains some \mathcal{C}_i such that orb $f(\mathcal{C}_i/A)$ has fip.

In Example 4 the elements of $A^{|x|}$ are, trivially, μ -random. Clearly, there are many other μ -random types: all global types that are finitely satisfied in A are μ -random. If we allow elements outside \mathcal{U} , the filter $1_{\mathcal{X}^A}$ has an expression similar to 1_{μ} in Example 4. In fact, as the number of invariant types is bounded, it is immediate that there is a small set of \mathcal{X}^A -random elements R such that $1_{\mathcal{X}^A} = \{\mathcal{X} \subseteq \mathcal{U}^{|x|} : R \subseteq {}^*\mathcal{X}\}$.

Definition 9. Let 1_{v^A} be the filter generated by the sets $\mathcal{D} \subseteq \mathcal{U}^{|x|}$ such that there is an A-indiscerible sequence $\langle \mathcal{D}_i : i < \omega \rangle$ such that $\mathcal{D} = \mathcal{D}_0$ and $\mathcal{D}_0, \ldots, \mathcal{D}_n$ cover $\mathcal{U}^{|x|}$ for some n. We call 1_{v^A} the nonforking filter over A. We call 0_{v^A} the forking ideal over A.

Fact 10. Let μ be S1 over A. Then $1_{\nu^A} \subseteq 1_{\mu}$.

An immediate consequence that μ -random elements are v^A -random.

Proof. Let $\mathcal{D} \in 1_{v^A}$. Let $\langle \mathcal{D}_i : i < \omega \rangle$ be as in Definition 9. Then $\mathcal{D}_0 \cup \cdots \cup \mathcal{D}_n \in 1_{\mu}$ for some n. Assume n is minimal, we prove that n = 0. Otherwise, let $\mathcal{C}_i = \mathcal{D}_i \cup \cdots \cup \mathcal{D}_{i+n-1}$. Then $\langle \mathcal{C}_i : i < \omega \rangle$ is an A-indiscernible sequence and $\mathcal{C}_0 \cup \mathcal{C}_1 \in 1_{\mu}$. From S1 we obtain $\mathcal{C}_0 \in 1_{\mu}$ which contradicts the minimality of n.

A type p(x; y) that is Lascar-invariant over A is stable if $p(a_0; b_1) \to p(a_1; b_0)$ for every A-indiscernible sequence $\langle a_i; b_i : i < \omega \rangle$.

Fact 11. Every stable type p(x; y) is equivalent to a type $q(x; y) \subseteq p$ containing only stable formulas.

Proof. Let $i(\bar{x}; \bar{y})$ be the type that says that $\langle x_i; y_i : i < \omega \rangle$ is a sequence of indiscernibles over A. The required type q(x; y) contains the formulas $\psi(x; y) \in p$ such that $i(\bar{x}; \bar{y}) \land \psi(x_0; y_1) \rightarrow \psi(x_1; y_0)$.

Theorem 12. Let p(x;z), $q(x;z) \subseteq L(\mathcal{U})$ be Lascar-invariant over A. Let μ be S1 and Lascar-invariant over A. Then the relation

$$R(a,b) \Leftrightarrow p(x;a) \cup q(x;b)$$
 is wide.

is stable.

Proof. Pick $\varphi(x;z) \in p$ and $\psi(x;z) \in q$. Let $\langle a_i;b_i:i < \omega \rangle$ be a sequence of *A*-indiscernibles such that $\varphi(x;a_0) \wedge \psi(x;b_1)$ is μ -wide. By S1, also $[\varphi(x;a_0) \wedge \psi(x;b_1)] \wedge [\varphi(x;a_2) \wedge \psi(x;b_3)]$ is μ -wide. A fortiori $\varphi(x;a_2) \wedge \psi(x;b_1)$ is μ -wide and, by indiscernibility and the Lascar-invariance of μ , also $\varphi(x;a_1) \wedge \psi(x;b_0)$ is wide.

Fact 13. Let $q(x \ y) \subseteq L(M)$ be stable. Assume $a \equiv_M a'$ and $b \equiv_M b'$ are such that $a \downarrow_M b$ and $a' \downarrow_M b'$. Then $q(a \ b) \leftrightarrow q(a'; b')$.

Proof. By invariance we may assume that b' = b. Let $\varphi(x; y) \in q$. By Fact 11 we can assume that $\varphi(x; y)$ is stable. Then $\varphi(a; b) \leftrightarrow \varphi(a'; b)$ by stationarity.

Definition 14. We say that μ is type-definable over A if for every formula $\varphi(x;z) \in L$ the set $\{b \in \mathcal{U}^{|z|} : \varphi(x;z) \in \mu\}$ is type-definable over A.

For instance, μ in Example 4 is type definable.

Note that if μ is type-definable over A and $\varphi(x;b) \notin \mu$ the there is a formula $\vartheta(z) \in L(A)$ such that $\vartheta(b)$ and $\varphi(x;b') \notin \mu$ for every $b' \models \vartheta(z)$.

1. Stable groups

In this section \mathcal{U} is a group; the group operations, denoted by $1, \cdot, ^{-1}$, are among the symbols of L.

Let $\mathcal{D} \subseteq \mathcal{U}$ be a definable set.

Theorem 15. (*T* stable) The following are equivalent

- 1. \mathcal{D} is Lascar-generic over \emptyset ;
- 2. for some $g_1, ..., g_n \in \mathcal{U}$, the sets $g_i \cdot \mathcal{D}$ cover \mathcal{U} .

Proof (?). Let L' be a language that has only one binary relation symbol r(x, y). In \mathcal{U} we interprete r(x, y) by $y^{-1} \cdot x \in \mathcal{D}$. Note that \mathcal{D} is definable by the formula r(x, 1). By stability exactly one of the formulas r(x, 1) and $\neg r(x, 1)$ is almost finitely satisfied in \emptyset . Assume the first, then $\neg r(\mathcal{U}, 1)$ has no extension to a global Lascar-invariant L'-type. \square

Then L'-orbf $(\neg r(\mathcal{U}, 1))$ does not have fip. Equivalently, there are $f_i \in L'$ -Autf (\mathcal{U}) , where i = 1, ..., n such that the sets $r(\mathcal{U}, f_i 1)$ cover \mathcal{U} . Let $g_i = f_i \mathcal{U}$, then the sets $g_i \cdot \mathcal{D}$ covers \mathcal{U} .

R.T. POLYMATH

6

2. Subgroups with bounded orbit (tentative ramble)

Let $G \subseteq \operatorname{Aut}(\mathcal{U}/A)$. We write $\operatorname{orb}(a/G)$ and $\operatorname{orb}(a/A)$ for the orbit of a under G, respectively $\operatorname{Aut}(\mathcal{U}/A)$. We define $\operatorname{orb}(\mathcal{D}/G)$ and $\operatorname{orb}(\mathcal{D}/A)$ similarly.

We say that *G* is bounded if the action of *G* on \mathcal{U} has $< \kappa$ orbits. If *G* is bounded, then the number of *G*-invariant sets \mathcal{D} is also $< \kappa$.

3. Independence

Let $\mu \subseteq L_{\nu}(\mathcal{U})$, where $|\nu| = 1$, be *A*-invariant. When *x* is the tuple $\langle x_i : i < |x| \rangle$, we say that $p(x) \subseteq L(\mathcal{U})$ is μ -wide if it is finitely consistent with $\bigcup_i \mu(x_i)$.

Let $a \in \mathcal{U}^{|x|}$. We write $a \downarrow_{\mu} b$ if the type $\operatorname{tp}(a/A,b)$ is μ -wide. Clearly, this is equivalent to saying that, $\varphi(x;b)$ is μ -wide for every $\varphi(x;z) \in L(A)$ such that $\varphi(a;b)$.

We write $b \equiv_{\mu} b'$ if $\mu(x)$ implies $\varphi(x;b) \leftrightarrow \varphi(x;b')$ for every $\varphi(x;z) \in L(A)$.

Lemma 16. The following properties hold for all *a*, *b*, *c*

1. $a \downarrow_{\mu} b \Rightarrow f a \downarrow_{\mu} f b$ for every $f \in Aut(\mathcal{U}/A)$ invariance

2. $a \downarrow_{\mu} b \Leftarrow a_0 \downarrow_{\mu} b_0$ for all finite $a_0 \subseteq a$ and $b_0 \subseteq b$ finite character

3. $a \downarrow_{\mu} c, b$ and $c \downarrow_{\mu} b \Rightarrow a, c \downarrow_{\mu} b$ transitivity

4. $a \downarrow_{\mu} b \Rightarrow \text{ there exists } a' \equiv_{A,b} a \text{ such that } a' \downarrow_{\mu} b, c$ extension

5. $a \downarrow_{\mu} b_1, b_2$ and $b_1 \equiv_{\mu} b_2 \Rightarrow b_1 \equiv_{\mu, a} b_2$ non-splitting

Proof. Properties 1,2,3 are immediate. We prove 4. As tp(a/A, b) is μ -wide, it extends to a μ -random type p(x). Then we can take any $a' \models p_{\uparrow A,b,c}(x)$.

Definition 17. We say that \beth_{μ} is stationary if $a \equiv_M x \beth_{\mu} b$ is a complete type over M, b for all finite tuples b and a.

We say *n*-stationary if this is restricted to |a| = n.

Stationarity is often ensured by the following property.

Proposition 18. If for every $\varphi(x) \in L(\mathcal{U})$ there is a formula $\psi(x) \in L(M)$ such that $\varphi(\mathcal{U}) =_{\mu} \psi(\mathcal{U})$ then \mathcal{L}_{μ} is stationary.

Proof. Let $b \in \mathcal{U}^{|z|}$ and $a_1, a_2 \in \mathcal{U}^{|x|}$ be such that $a_i \downarrow_{\mu} b$ and $a_1 \equiv_M a_2$. We claim that $a_1 \equiv_{M,b} a_2$. We need to prove that $\varphi(b;a_1) \leftrightarrow \varphi(b;a_2)$ for every $\varphi(z;x) \in L(M)$. Let $\psi(x) \in L(M)$ be such that $\varphi(b;\mathcal{U}) =_M \psi(\mathcal{U})$. From $a_i \downarrow_{\mu} b$ we obtain that $\varphi(b;a_i) \leftrightarrow \psi(a_i)$. Finally, the claim follows because $a_1 \equiv_{\mu} a_2$.

References

- [MOS] Samaria Montenegro, Alf Onshuus, and Pierre Simon, *Stabilizers*, NTP₂ *groups* with f-generics, and PRC fields, J. Inst. Math. Jussieu **19** (2020), no. 3, 821–853.
 - [Hr] Ehud Hrushovski, *Stable group theory and approximate subgroups*, J. Amer. Math. Soc. **25** (2012), no. 1, 189–243.
- [MP] Amador Martin-Pizarro and Daniel Palacín, *Stabilizers, Measures and IP-sets* (2020), arXiv:1912.07252