Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Севастопольский государственный университет»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы №5

по дисциплине

«Геоинформатика»

для студентов всех форм обучения направления подготовки 09.03.02 «Информационные системы и технологии» профиль: «Геоинформационные системы и технологии»

Севастополь 2017

Методич	ческие у	казания	к вы	полнению	лабо	раторі	ной работ	ы №	5 по
дисциплине	«Геоинф	орматика	ı» для	студентов	всех	форм	обучения	направ	ления
подготовки	09.03.02	«Инфор	мацион	ные сист	гемы	и т	технологии	» про	филь:
«Геоинформа	щионные с	истемы и т	гехноло	огии» /Cocт	. O.A.	Сырых	к – Севасто	поль: С	евГУ,
2017 7 c.									

Методические рекомендации рассмотрены и утверждены на заседании кафедры «Информационные системы» (протокол № 1 от « 29» августа 2016 г.)

Лабораторная работа №5 Исследование методов определения направлений на картах.

Цель:

- изучить методы определения направлений на картах;
- приобрести практические навыки определения направлений на картах.

Время: 2 часа

Исходные данные к работе: картографический материал.

Лабораторное оборудование: персональные компьютеры, офисный пакет приложений Microsoft Office

Краткие теоретические сведения

Ориентирование направлений

Ориентировать линию — значит определить ее направление относительно сторон горизонта или какого-либо другого направления, принимаемое за начальное.

За начальное направление в геодезии обычно берут направление географического или магнитного меридиана, а также северное направление вертикальной линии километровой сетки (параллельной, как известно, осевому меридиану зоны Гаусса- Крюгера).

В зависимости от начального направления различают так называемые ориентировочные углы - азимуты (географический и магнитный), дирекционные углы, румбы.

Географическим (истинным) азимутом (A) называют угол, отсчитываемый от северного направления географического (истинного) меридиана по ходу часовой стрелки до заданного направления (в пределах от 0° до 360°).

Магнитным азимутом (Ам) называют угол, отсчитываемый от северного направления магнитного меридиана по ходу часовой стрелки до заданного направления (в пределах от 0° до 360°).

Положение географических и магнитных полюсов на земном шаре различно, поэтому магнитный меридиан не совпадает обычно с географическим. Угол между географическим и магнитным меридианами называется магнитное склонение (δ). Если магнитный меридиан отклоняется от истинного меридиана к востоку, то δ называют восточным (+ положительным), к западу – западным (- отрицательным).

Дирекционным углом (а) называют угол, отсчитываемый от северного направления осевого меридиана зоны (или вертикальных линий километровой сетки) по ходу часовой стрелки до заданного направления (в пределах от 0° до 360°).

Осевой и географический меридианы могут не совпадать. Угол между северным направлением географического меридиана и линией километровой сетки называется углом сближения меридианов (ү). Если линия километровой сетки отклоняется от истинного меридиана к востоку, то ү называют восточным (+ положительным), к западу – западным (- отрицательным).

Сведения о величине углов сближения меридианов и магнитного склонения приводятся под южной рамкой карты.

Истинный румб линии — острый горизонтальный угол, отсчитываемый от ближайшего направления истинного меридиана (северного или южного) до данной линии

Зависимость между дирекционными углами (азимутами) и румбами определяется для четвертей по следующим формулам:

I четверть (CB) $r = \alpha$

II четверть (ЮВ) $r = 180^{\circ} - \alpha$

III четверть (ЮЗ) $r = \alpha - 180^{\circ}$

IV четверть (C3) $r = 360^{\circ} - \alpha$

Прямая и обратная геодезические задачи

В геодезии часто приходится передавать координаты с одной точки на другую. Например, зная исходные координаты точки A (рис.1), горизонтальное расстояние S_{AB} от неё до точки B и направление линии, соединяющей обе точки (дирекционный угол α_{AB} или румб r_{AB}), можно определить координаты точки B. В такой постановке передача координат называется прямой геодезической задачей.

Рис. 1. Прямая геодезическая задача

Обратная геодезическая задача заключается в том, что при известных координатах точек A (X_A , Y_A) и B (X_B , Y_B) необходимо найти длину S_{AB} и направление линии AB: румб r_{AB} и дирекционный угол α_{AB} (рис.2).

Рис. 2. Обратная геодезическая задача

Программа и порядок выполнения

Задание 1. Выбрать 10 контрольных точек, определить направление из одной точки в другую. Измерить дирекционный угол движения (из 1 во 2, из 2 в 3, ..., из 10 в 1). Вычислить истинный и магнитный азимуты. Вычислить румбы направлений по азимутам. Результаты оформить в таблице 1.

Результаты измерений оформить в таблицу:

Таблица 1

№	Координаты	Дирекционный	Истинный	Истинный румб	Магнитный	Магнитный
точек	точек	угол	азимут		азимут	румб
1-2						
10-1						

Рекомендации по выполнению задания. Для измерения дирекционного угла линии ее продолжают до пересечения с ближайшей вертикальной линией километровой сетки или через начальную ее точку проводят прямую, параллельную вертикальной линии сетки. Затем с помощью транспортира измеряют угол от северного конца линии сетки до данного направления по ходу часовой стрелки.

Вычисления истинного и магнитного азимутов проводят по формулам

$$A_{H} \equiv lpha + \gamma,$$
 $A_{u} = A_{\scriptscriptstyle M} + \delta_{\scriptscriptstyle BOCM}$, $A_{u} = A_{\scriptscriptstyle M} - \delta_{\scriptscriptstyle 3an}$

с учетом магнитного склонения и сближения меридианов, указанных на карте.

Задание 2. Определить истинный азимут $A_{\it U}$, и дирекционный угол $^{\it \alpha}$, если известны величины магнитного азимута $A_{\it M}$, магнитного склонения $^{\it \delta}$ и сближения меридианов $^{\it \gamma}$ (табл. 2).

Таблица 2

Вариант	$A_{\scriptscriptstyle \mathrm{M}}$	δ	γ	№	$A_{\scriptscriptstyle M}$	δ	γ
1	256 ° 15′	-12 ° 55′	+1 ° 30′	16	81 ° 35′	-12 ° 10′	-1 ° 15′
1	357 ° 30′	+9 ° 30′	- 2 ° 30′	10	12 ° 40′	+8 ° 00′	-1 0 13 -2 0 45'
	7 ° 30′	-10 ° 45′	+1 ° 45′		193 ° 15′	-5 ° 55′	+2 ° 30′
2	8 ° 45′	+15 ° 30′	+2 ° 15′	17	275 ° 30′	-7 ° 15′	+2 ° 10′
	355 ° 00′	-11 ° 30′	-2 ° 30′	1,	2 ° 45′	-5 ° 50′	-1 ° 55′
	185 ° 15′	+10 ° 10′	-1 ° 15′		306 ° 25′	-4 ° 10′	-1 ° 05′
3	98 ° 10′	+7 ° 15′	-2 ° 10′	18	293 ° 15′	+3 ° 40′	-3 ° 00′
	105 ° 40′	+4 ° 20′	+1 ° 40′		201 ໍ 00′	-7 ໍ 00′	-2 ° 05′
	134 ° 30′	-1 ໍ 30′	-2 ° 50′		7 ° 25′	-9 ° 15′	+1 ° 40′
4	182 ໍ 15′	+4 ° 20′	-2 ° 30′	19	359 ° 10′	+8 ° 15′	+1 ° 45′
	175 ໍ 45′	+1 ໍ 50′	-2 ° 10′		140 ໍ 00′	-6 ံ 00′	-2 ° 00′
	210 ໍ 10′	+8 ° 30′	-2 ° 30′		154 ° 30′	-9 ံ 30′	-2 ° 15′
5	273 [°] 55′	-7 ໍ 45′	+2 ° 45′	20	215 ° 30′	-11 ໍ 00′	+3 ° 05′
	324 ໍ 40′	+4 ° 30′	-3 ° 00′		347 ° 10′	-12 ° 30′	+3 ° 20′
	35 ໍ 50′	-14 ° 15′	+2 ° 45′		9 ° 45′	+4 [°] 15′	-1 ໍ 30′
6	165 ° 25′	-11 ໍ 45′	+2 ° 40′	21	237 ° 15′	-7 ໍ 45′	+1 ° 15′
	358 ໍ 45′	+8 [°] 30′	-1 ° 30′		342 ° 50′	+6 [°] 40′	+3 ° 00′
	8 ໍ 15′	-11 ໍ 45′	+2 [°] 45′		135 ° 40′	-3 ໍ 15′	+2 ° 10′
7	9 ໍ 45′	+5 ໍ 15′	+3 ° 30′	22	8 [°] 45′	+15 ° 30′	+2 ° 15′
	358 ໍ 00′	-7 ံ 30′	-3 ° 15′		355 ° 00′	-11 ໍ 30′	-2 ° 30′
	275 ໍ 15′	+9 ໍ 10′	-2 ° 45′		185 ° 15′	+10 ំ 10′	-1 ° 15′
8	189 ໍ 10′	+8 [°] 15′	-3 ° 10′	23	3 ° 30′	-5 ໍ 40′	+2 [°] 45′
	130 ໍ 40′	+5 ° 20′	+2 [°] 10′		356 ° 10′	-2 ໍ 10′	-1 ° 25′
	142 ° 30′	-11 ໍ 30′	-2 ° 15′		191 ံ 25′	+2 [°] 45′	-3 ° 10′
9	128 ° 25′	+3 ° 40′	-1 ° 30′	24	256 ° 15′	-12 <u>°</u> 55′	+1 ° 30′
	157 ° 50′	+11 ° 50′	-1 ំ 10′		357 ° 30′	+9 <u>°</u> 30′	- 2 ° 30′
	120 <u>°</u> 10′	+8 ° 30′	-2 ° 30′		7 <u>°</u> 30′	-10 ໍ 45′	+1 0 45'
10	237 <u>°</u> 15′	-7 <u>°</u> 45′	+1 ំ 15′	25	98 <u>å</u> 10′	+7 <u>°</u> 15′	-2 ° 10′
	342 <u>°</u> 50′	+6 <u></u> 40′	+3 ° 00′		105 ° 40′	+4 <u>°</u> 20′	+1 ° 40′
	135 ° 40′	-3 ° 15′	+2 ° 10′	_	134 ° 30′	-1 ° 30′	-2 ° 50′
11	8 <u>°</u> 50′	-12 <u>°</u> 50′	+1 <u> </u>	26	128 ° 25′	+3	-1 <u>°</u> 30′
	6 <u>40′</u>	+13 ° 30′	+3 ° 20′		157 ° 50′	+11 <u>°</u> 50′	-1 ° 10′
	359 ° 10′	+9 ° 30′	-2 ° 10′		120 ° 10′	+8 <u>°</u> 30′	-2 ° 30′
12	350 ° 40′	+11 ° 20′	-1 ° 50′	27	126 ° 00′	-8 ° 00′	+3 0 55′
	152 ° 20′	+10 ° 25′	+3 0 15′		15 ° 25′	-8 ° 05′	+2 0 35′
1.0	6 ° 30′	-13 ° 10′	-3 ° 10′	20	311 ° 10′	+7 <u>°</u> 25′	+2 ° 40′
13	96 ° 40′	+6 ° 00′	-1 ° 25′	28	273 ° 55′	-7 ° 45′	+2 ° 45′
	182 ° 50′	-3 ° 55′	+1 \(\display 30'\)		324 \(\cdot \) 40'	+4 ° 30′	-3 ° 00′
1.4	268 ° 40′	-8 ° 40′	+2 05′	20	35 ° 50′	-14 ° 15′	+2 \(\display \) 45'
14	3 ° 30′	-5 ° 40′	+2 \(\display \) 45'	29	165 ° 25′	-11 ° 45′	+2 ° 40′
	356 ° 10′	-2 ° 10′	-1 ° 25′		358 ° 45′	+8 ° 30′	-1 ° 30′
	191 ° 25′	+2 ° 45′	-3 ° 10′		8 ° 15′	-11 ° 45′	+2 ° 45′

Задание 3. Разработать маршрут движения через 10 произвольных точек, указав азимуты (истинный) и длины направлений. Построить три маршруга. Оформить в виде таблицы 2.

Таблица 2

Пример построения маршрутов

Вариант Маршрут А		рут А	Маршрут Б		Маршрут В	
Стороны	Азимуты	Длины	Азимуты	Длины	Азимуты	Длины
хода	сторон	сторон (м)	сторон	сторон	сторон	сторон
				(M)		(M)
1-2	80 ்	8000	90 ்	6000	45 Å	3000
2-3	145 ்	5800	20 ்	3000	180 ்	6400
3-4	240 ்	6700	130 ்	3400	253 ்	4000
4-5	0 ்	4400	0 ்	5600	115 ்	8800

Задание 4. Выбрать на карте две произвольные точки A и B. Решить прямую геодезическую задачу относительно точки B (Координаты точки A, расстояние между точками и дирекционный угол измерить на карте). Результаты вычислений проверить по карте, сделать выводы. Решение задачи оформить в виде таблицы 3.

Провести вычисления для пяти пар точек.

Таблица 3

Координати		Дирекционный	Вычисленные	Координаты
Координаты точки А	Расстояние	УГОЛ	координаты	точки B на
точки А		yron	точки B	карте

Рекомендации по выполнению задания.

Дано: Точка $A(X_A, Y_A)$, S_{AB} и α_{AB} .

Найти: точку $B(X_B, Y_B)$.

Непосредственно из рисунка 1 имеем:

$$\Delta X = X_B - X_A;$$

 $\Delta Y = Y_B - Y_A.$

Разности ΔX и ΔY координат точек последующей и предыдущей называются приращениями координат. Они представляют собой проекции отрезка AB на соответствующие оси координат. Их значения находятся из прямоугольного прямоугольника ABC:

$$\Delta X = S_{AB} \cos \alpha_{AB}$$
;
 $\Delta Y = S_{AB} \sin \alpha_{AB}$.

Вычислив приращения координат, находим искомые координаты другой точки:

$$X_B = X_A + \Delta X$$
;
 $Y_B = Y_A + \Delta Y$.

Таким образом, координаты любого числа точек находятся по правилу: координаты последующей точки равны координатам предыдущей точки плюс соответствующие приращения.

Задание 5. Выбрать на карте две произвольные точки A и В. Решить обратную геодезическую задачу. Результаты вычислений проверить по карте, сделать выводы.

Решение задачи оформить в виде таблицы 4.

Провести вычисления для пяти пар точек.

Координаты точки А	Координаты точки <i>В</i>	Расстояние	Дирекционный угол	Расстояние, измеренное по карте	Дирекционный угол, измеренный по карте
-----------------------	------------------------------	------------	----------------------	---------------------------------------	--

Рекомендации по выполнению задания. Данная задача решается следующим образом. Сначала находится приращения координат (рис. 2):

$$\Delta X = X_B - X_A$$
;
 $\Delta Y = Y_B - Y_A$.

Величина угла *г*_{AB} определяется из отношения

$$\frac{\Delta Y}{\Delta X} = tg \; r_{AB}$$

По знакам приращений координат вычисляется четверть, в которой располагается румб, и его название. Используя зависимость между дирекционными углами и румбами, находится α_{AB} .

Для контроля расстояние S_{AB} дважды вычисляемся по формулам: $\sin \alpha_{AB}$

$$S_{AB} = \frac{\cos \alpha_{AB}}{\cos \alpha_{AB}} = \frac{\sin \alpha_{AB}}{\sin \alpha_{AB}}$$
$$S_{AB} = \frac{\Delta X}{\cos r_{AB}} = \frac{\Delta Y}{\sin r_{AB}}$$

Расстояние S_{AB} можно определить также по формуле $S_{AB} = \sqrt{\Delta X^2 + \Delta Y^2}$

Содержание отчета

Отчет по выполняемой лабораторной работе выполняется каждым студентом индивидуально в тетради или на листах формата A4 в рукописном или машинном варианте исполнения и должен содержать:

- название работы;
- цель и задачи исследований;
- выполненные задания;
- выводы по работе.

Контрольные вопросы

- 1. Ориентирование линий
- 2. Дирекционный угол
- 3. Румб
- 4. Зависимость между дирекционными углами и румбами
- 5. Истинный азимут
- 6. Угол сближения меридианов
- 7. Зависимость между истинным азимутом и дирекционным углом
- 8. Магнитный азимут
- 9. Магнитное склонение
- 10. Прямая геодезическая задача
- 11. Обратная геодезическая задача