

Amazon Intent Natural Language Classification Project

Date: December 22nd, 2023

Authors: Boom Devahastin Na Ayudhya, Kevin Xie, Lance Lepelstat, Muaaz Noor

Motivation and Context

- Classifying user intent has multitudinous applications for problems across industries.
 - Consumer Banking: automated chatbots take in queries from user, return number of suggested self-help links via classification of issues based on certain phrases in source
 - Airlines: customers call to inquire about flight information and expect right response to execute demands
- More broadly, virtual assistants such as Amazon Alexa are tasked with parsing language to then classify intentions in order to elicit the appropriate response.

Research Goal

Goal: To build a multi-classification NLP model that ingests input from a user and outputs a probabilistic prediction of each of the class labels that message/intention falls into.

Data Overview and Project Roadmap

Dataset Overview:

- Amazon Alexa Intent Classification dataset publicly available
- User input sequences stored as text
- 60 labels for defining the task associated with the input sequence
 - Can be further classified into 17 parent classes

Literature Review and Dataset Overview

Basic Parametric Models:

- Naive Bayes Classifier
- Support Vector Machines

Deep Learning Models:

- Basic LSTM implementation
- Attention based RNN

Hierarchical Modeling:

• The idea of dividing the target labels into subclasses to create a parent-child labels

Evaluation Metric, Simple Baseline, Strong Baseline

Evaluation Metric:

- Total accuracy is used to evaluate a model
- This metric has been widely used and accepted in multi-class intent classification problems

Simple Baseline:

- Majority Class Classifier was used as the first simple baseline
 - Resulted in 7.03% accuracy which is too trivial
- KNN (K=I) Classifier was explored as a better alternative
 - Cosine similarity used to measure distance between data points
 - Resulted in **74.65**% accuracy

Strong Baseline:

- Bi-directional LSTM with Glove embeddings used
 - The embeddings of the input sequence passed into the LSTM layer
 - The output of the LSTM passed into a fully connected layer that outputs class probabilities
- Resulted in an accuracy of **85.58**%

Extension: Hierarchical Modeling Tree

Architecture:

- One root model
- One child node for each model class
- Each child model trained on relevant data
- Each model node using an LSTM

Best Hyper-parameters:

- Learning Rate = 0.01
- Parent Batch Size = 128
- Child Batch Size = 64

Performance:

- Accuracy = **0.8551**
- F1 Score = 0.8634

Model Architecture

Extension: Parent-Child Prediction using LSTM

Parent/child class:

- Child: audio_volume_down
- Parent: audio

Architecture:

- Additional <PAD>
- Final hidden state passed to second LSTM
- Two predictions/loss computations

Best Hyper-parameters:

- Learning Rate = 0.01
- Batch Size = 128

Performance:

- Accuracy = **0.8697**
- FI Score = **0.8681**

Model Architecture

Error Analysis

Top Classes with Most Misclassification:

- general_quirky: random requests
- qa_factoid: requests for factual information

Major Error Categories:

- I. Slang and Faux Word Confusion
 - o "wakey wakey eggs and bakey" → recipe request
- II. Oversensitivity/Overfitting to Food-Themed Words
 - o "are jello shots calorie free" → recipe request
- III. Short/Vague Commands
 - o "sports"
 - o "none"

Conclusion

- I. Successful experiment
- II. Best performance: Parent-Child Prediction using LSTM
- III. Major error categories identified
- IV. Further exploration
 - Continued hyper-parameter tuning
 - > New data