华东师范大学期中试卷(A) 2017-2018 学年第二学期

课程名称:	高等数学二						
生名:				学号:			
专业: 年级/班级:							
课程性质:专	业必修						
	1	1 1	111	四	总分	阅卷人签名	

填空题 (每题 4 分, 共计 20 分)

- 1. 过点(2,0,-3),且与直线 $\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程为_____。
- 2. 设 f(u,v) 是二元可微函数, $z = f(x^y, y^x)$,则 $\frac{\partial z}{\partial x} =$ ______。
- 3. 己知 $f(2x+y,x-2y) = 25(x^2+y^2) + \varphi(x-2y)$,且 $f(1,y) = y^2$,则 f(x,y)
- 4. 交换积分次序 $\int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) dx = _____.$
- 5. 计算 $div \ grad(x^3 + e^y + \cos z) =$ ______。

二、 选择题(每题3分,共计15分)

- 6. 设 \vec{a} , \vec{b} 为不共线向量,则以下各式成立的是()

 - (A) $\vec{a}^2 \vec{b}^2 = (\vec{a} \cdot \vec{b})^2$; (B) $\vec{a}^2 \times \vec{b}^2 = (\vec{a} \times \vec{b})^2$;

 - (C) $(\vec{a} \cdot \vec{b})^2 = (\vec{a} \times \vec{b})^2$; (D) $(\vec{a} \cdot \vec{b})^2 + (\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2$;
- 7. 考虑二元函数f(x,y)的下面 4 条性质: ①函数f(x,y)在点 (x_0,y_0) 处 连续;②函数f(x,y)在点 (x_0,y_0) 处两个偏导数连续;③函数f(x,y)

在点 (x_0,y_0) 处可微; ④函数f(x,y)在点 (x_0,y_0) 处两个偏导数存在。 则下面结论正确的是()

- (A) $2 \Rightarrow 3 \Rightarrow 1$; (B) $3 \Rightarrow 2 \Rightarrow 1$;
- (C) $3 \Rightarrow 4 \Rightarrow 1$; (D) $3 \Rightarrow 1 \Rightarrow 4$;
- 8. 设f(x,y)与 $\phi(x,y)$ 均为可微函数,且 $\varphi_{y}'(x,y) \neq 0$,已知 (x_{0},y_{0}) 是f(x,y)在约束条件 $\varphi(x,y)=0$ 下的一个极值点,下列选项正确的是()
 - (A)若 $f_x'(x_0, y_0) = 0$,则 $f_y'(x_0, y_0) = 0$;
 - (B)若 $f_x'(x_0, y_0) = 0$,则 $f_y'(x_0, y_0) \neq 0$;
 - (C)若 $f_x'(x_0, y_0) \neq 0$,则 $f_y'(x_0, y_0) = 0$;
 - (D)若 $f_x'(x_0, y_0) \neq 0$,则 $f_y'(x_0, y_0) \neq 0$.
- 9. 设 $\varphi(x)$ 为区间[0,1]上的正值连续函数, α 与b为任意常数,积分区 域 $D = \{(x,y) | 0 \le x, y \le 1\}$,则 $\iint_D \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} d\sigma = ($)
 - A. a+b

- B. a-b
- C. $\frac{a+b}{3}$ D. $\frac{a-b}{3}$
- 10. 设二元函数f(x,y)具有一阶连续偏导数,曲线L: f(x,y)=1 过第二 象限内的点M和第四象限内的点N, Γ 为L上从点M到的N的一段弧, 则下列积分值一定为负值的是()

 - (A) $\int_{\Gamma} f(x, y) ds$; (B) $\int_{\Gamma} f(x, y) dx$

 - (C) $\int_{\Gamma} f(x,y) dy$ (D) $\int_{\Gamma} f_x(x,y) dx + f_y(x,y) dy$
- 三、 计算题(每题 10 分,共计 60 分)
- **11.**求两曲面x+2y=1和 $x^2+2y^2+z^2=1$ 的交线上距原点最近的点。

- 12. 设二元函数 $f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1 \\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$,计算二重积分 $\iint_D f(x,y) d\sigma$ 的值,其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。
- 13. 计算 $\iint_{\Omega} (x^2 + y^2) dx dy dz$,其中 Ω 是由曲线 $y^2 = 2z$, x = 0绕z轴 旋转一圈而成的曲面与z = 2, z = 8所围。
- 14. 计算 $\iint_S (x+y+z+1)^2 dS$,其中S为球面 $(x-1)^2 + (y-1)^2 + (z-1)^2 = 1$ 。
- 15. 计算 $\iint_{S} (2x+z)dydz + zdxdy$, 其中 $S: z = x^{2} + y^{2}$, $(0 \le z \le 1)$, S的法向量 $\overrightarrow{n_{0}}$ 为z轴正向成锐角。
- 16. 设函数Q(x,y)在xOy平面上有连续的一阶偏导数,且曲线积分 $\int_{L} 2xydx + Q(x,y)dy$ 与积分路径无关,且对任意的t,恒有 $\int_{(0,0)}^{(t,1)} 2xydx + Q(x,y)dy = \int_{(0,0)}^{(1,t)} 2xydx + Q(x,y)dy$
 - (1) (6 分)试求Q(x,y);
 - (2) (4 分)求函数u,使得 $grad\ u = (2xy, Q(x, y))$,且u(0,0) = 1.

四、 综合题 (共计11分)

- 17. 设函数f(t)连续,区域 D_{uv} 是由x轴,直线 $y=x\tan u\left(0 < u < \frac{\pi}{2}\right)$, 圆 $x^2+y^2=v$ 和圆 $x^2+y^2=\frac{1}{v}~(v>1)$ 在第一象限围成的封闭区域,设二元函数 $F(u,v)=\iint_{D_{uv}} \frac{f(x^2+y^2)}{\sqrt{x^2+y^2}} dx dy$,
 - (1) 计算 $\frac{\partial F}{\partial u}$, $\frac{\partial F}{\partial v}$ 的值; (4 分)
 - (2) 若函数 $f(x) = \frac{1}{1+x}$ 计算 $F\left(\frac{\pi}{2}, 4\right)$ 的值; (4 分)
 - (3) 若函数 $f(x) = e^{-x}$,计算 $\lim_{v \to \infty} F\left(\frac{\pi}{2}, v\right)$ 的值; (3分)