

Tain C & None	Can Co & New Person	We (True)	White (C) = Nave)	C, C Check Har Input	outest Charge (182, 11)	out Soda (an)	(0)	output Sode (a).	-,0	while (Cz == None)	Co & Check Por Inptt)	= \$5)	output Change (E\$2, \$22)	Soda (an ()	11	pyd	for	OSE N (CD == \$1)	Outpet Soda Car ()	Super Hange (1	7	else	$(I_{C_4}I)$	output Message ("anly \$1.52, \$5 coms accepted")	Co-None			
Chendras		3																										

b) carlinued; So xy	For all -(x,y) combinaturs (re exectiseno trethe "
c) Chuses! R,	7 %	
(N 1)	$= (\alpha \vee \gamma) \wedge (\alpha \wedge \Xi)$ $= (\alpha \vee \gamma) \wedge (\alpha \wedge \Xi)$	
Distributive => x(yz') = (xxz' + y) Associative of the sample of the sam	XXZ + 7XZ 2 + X y Z X Z	
The equetion is a just need to	be And a vidos that evaluate	Goolen expressions, so
11	10(0+0)=100	
	U 10 1 (1+0) 11	
	0 - 0	
1 (P)	(A) (G, 1) (G 1+ b) (6 1+b)	0) (a+c) (ad + ad!)+ac+c
4)+0	met => (a	butue =>(a+c)(a(d+cl))+ac
the of C+C!	(ab) (
Complements + 6	De Margans => (ab + ab);	Distributive=> aa + Ca+ac+C
	=> (a)	Associative =>atactactc
	Leenty Da	Idenpated Watacto

4		
	+6)+(9+0	3
Idemped	ab=> a'(a+b)+(b+a)(a+b))	
Distribut	fre=> a'a + a'b + (b +a)a + (b +a)b'	*
Distribut	the=> alatabtbatactbbitabi	
Complen	1	
Identer		
Absorpt		
Absorpti		
DeMargans	1	
DeMarga	1	
Distribut	6 ->	
Constenes	9) (=-	
DeMa	7	
, ,	7	
)		
Specifican distribution designation per		
		٠
2		