Geometria Analítica

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

Setembro de 2019

Dados um ponto P e um vetor \overrightarrow{u} , o ponto Q tal que o segmento orientado (P,Q) é representante de \overrightarrow{u} é chamado de soma de P com \overrightarrow{u} e indicado por $P+\overrightarrow{u}$.

Simbolicamente:

$$P + \overrightarrow{u} = Q \Leftrightarrow \overrightarrow{PQ} = \overrightarrow{u}$$

Decorre da definição que, quaisquer que sejam os pontos P e Q,

$$P + \overrightarrow{PQ} = Q$$

Pode-se entender $P+\overrightarrow{u}$ como o resultado do deslocamento de um ponto material, inicialmente situado na origem do segmento até a sua extremidade.

OBS: A notação $P - \overrightarrow{u}$ indica a soma de P com o vetor oposto de \overrightarrow{u} .

OBS: A operação que ao par ordenado (P, \overrightarrow{u}) associa o ponto $P + \overrightarrow{u}$ é chamada *adição de ponto com vetor*.

P1
$$(A + \overrightarrow{u}) + \overrightarrow{v} = A + (\overrightarrow{u} + \overrightarrow{v})$$

P1
$$(A + \overrightarrow{u}) + \overrightarrow{v} = A + (\overrightarrow{u} + \overrightarrow{v})$$

P2 $A + \overrightarrow{u} = A + \overrightarrow{v} \Rightarrow \overrightarrow{u} = \overrightarrow{v}$

P1
$$(A + \overrightarrow{u}) + \overrightarrow{v} = A + (\overrightarrow{u} + \overrightarrow{v})$$

P2
$$A + \overrightarrow{u} = A + \overrightarrow{v} \Rightarrow \overrightarrow{u} = \overrightarrow{v}$$

P3
$$A + \overrightarrow{u} = B + \overrightarrow{u} \Rightarrow A = B$$

P1
$$(A + \overrightarrow{u}) + \overrightarrow{v} = A + (\overrightarrow{u} + \overrightarrow{v})$$

P2
$$A + \overrightarrow{u} = A + \overrightarrow{v} \Rightarrow \overrightarrow{u} = \overrightarrow{v}$$

P3
$$A + \overrightarrow{u} = B + \overrightarrow{u} \Rightarrow A = B$$

P4
$$(A - \overrightarrow{u}) + \overrightarrow{u} = A$$

Introdução

Diversas aplicações práticas no estudo de paralelismo são facilmente solucionadas através da utilização dos conceitos de dependência linear.

Introdução

Diversas aplicações práticas no estudo de paralelismo são facilmente solucionadas através da utilização dos conceitos de dependência linear. Seja $n \in \mathbb{N}$, o símbolo $(\overrightarrow{v}_1, \overrightarrow{v}_2, \ldots, \overrightarrow{v}_n)$ indica a sequência, ou n-upla ordenada.

$$(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n) = (\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_n)$$

 \Leftrightarrow

$$\overrightarrow{V}_1 = \overrightarrow{u}_1, \overrightarrow{V}_2 = \overrightarrow{u}_2, \dots, \overrightarrow{V}_n = \overrightarrow{u}_n$$

Em nossos estudos, o conceito de *dependência linear* de uma sequência $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n)$ será definido caso a caso, dependendo do valor de *n*.

1 Uma sequência (\overrightarrow{v}) é linearmente dependente se $\overrightarrow{v} = \overrightarrow{0}$ e linearmente independente se $\overrightarrow{v} \neq \overrightarrow{0}$

Em nossos estudos, o conceito de *dependência linear* de uma sequência $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n)$ será definido caso a caso, dependendo do valor de *n*.

- **1** Uma sequência (\overrightarrow{v}) é **linearmente dependente** se $\overrightarrow{v} = \overrightarrow{0}$ e **linearmente independente** se $\overrightarrow{v} \neq \overrightarrow{0}$
- ② Uma sequência $(\overrightarrow{u}, \overrightarrow{v})$ é linearmente dependente se \overrightarrow{u} e \overrightarrow{v} são paralelos. Caso contrário, $(\overrightarrow{u}, \overrightarrow{v})$ é linearmente independente.

Em nossos estudos, o conceito de *dependência linear* de uma sequência $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n)$ será definido caso a caso, dependendo do valor de *n*.

- **1** Uma sequência (\overrightarrow{v}) é **linearmente dependente** se $\overrightarrow{v} = \overrightarrow{0}$ e **linearmente independente** se $\overrightarrow{v} \neq \overrightarrow{0}$
- ② Uma sequência $(\overrightarrow{u}, \overrightarrow{v})$ é **linearmente dependente** se \overrightarrow{u} e \overrightarrow{v} são paralelos. Caso contrário, $(\overrightarrow{u}, \overrightarrow{v})$ é **linearmente independente**.
- ① Uma tripla ordenada $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é **linearmente dependente** se $\overrightarrow{u}, \overrightarrow{v}$ e \overrightarrow{w} são paralelos a um mesmo plano. Caso contrário, $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é **linearmente independente**.

Em nossos estudos, o conceito de *dependência linear* de uma sequência $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n)$ será definido caso a caso, dependendo do valor de *n*.

- **1** Uma sequência (\overrightarrow{v}) é **linearmente dependente** se $\overrightarrow{v} = \overrightarrow{0}$ e **linearmente independente** se $\overrightarrow{v} \neq \overrightarrow{0}$
- ② Uma sequência $(\overrightarrow{u}, \overrightarrow{v})$ é linearmente dependente se \overrightarrow{u} e \overrightarrow{v} são paralelos. Caso contrário, $(\overrightarrow{u}, \overrightarrow{v})$ é linearmente independente.
- ① Uma tripla ordenada $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é **linearmente dependente** se $\overrightarrow{u}, \overrightarrow{v}$ e \overrightarrow{w} são paralelos a um mesmo plano. Caso contrário, $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é **linearmente independente**.
- Se n ≥ 4, qualquer sequência de n vetores é linearmente dependente.

Observação

Dependência e independência linear são qualidades referentes a uma sequência de vetores e não aos próprios vetores. Usualmente vamos tratar como "Os vetores \overrightarrow{u} e \overrightarrow{v} são LI" tratando que o par ordenado $(\overrightarrow{u},\overrightarrow{v})$ é II.

Combinação Linear

Se $\overrightarrow{u} = \alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \cdots + \alpha_n \overrightarrow{v}_n$, dizemos que \overrightarrow{u} é **combinação linear** de $\overrightarrow{v}_1, \overrightarrow{v}_2, \ldots, \overrightarrow{v}_n$, ou que \overrightarrow{u} é **gerado** por $\overrightarrow{v}_1, \overrightarrow{v}_1, \overrightarrow{v}_3, \ldots, \overrightarrow{v}_n$. Os escalares $\alpha_1, \alpha_2, \ldots, \alpha_n$ são chamados **coeficientes** da combinação linear.

Exemplo

- Sabe-se que $\overrightarrow{u} = 3\overrightarrow{v}$. Escreva três expressões diferentes do vetor nulo como combinação linear de \overrightarrow{u} , \overrightarrow{v} .
- 2 Refaça o item anterior, supondo que $(\overrightarrow{u}, \overrightarrow{v})$ seja LI.

Exemplo

- Sabe-se que $\overrightarrow{u} = 3\overrightarrow{v}$. Escreva três expressões diferentes do vetor nulo como combinação linear de \overrightarrow{u} , \overrightarrow{v} .
- 2 Refaça o item anterior, supondo que $(\overrightarrow{u}, \overrightarrow{v})$ seja LI.

A partir de agora, ao invés de analisar se a sequência de vetores são paralelos a um plano dado, basta verificar se algum deles é gerado pelos demais.

Proposição: Se $(\overrightarrow{u}, \overrightarrow{v})$ é LI, então $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LD se, e somente se, \overrightarrow{w} é gerado por \overrightarrow{u} , \overrightarrow{v}

Proposição: Se $(\overrightarrow{u}, \overrightarrow{v})$ é LI, então $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LD se, e somente se, \overrightarrow{w} é gerado por $\overrightarrow{u}, \overrightarrow{v}$ **Proposição:** $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LD se, e somente se, um dos vetores é gerado pelos outros dois.

Proposição: Se $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LI, então qualquer vetor \overrightarrow{x} é combinação linear de $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$.

Proposição: Se $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LI, então qualquer vetor \overrightarrow{x} é combinação linear de $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$.

Proposição: Uma sequência $(\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n)$, com $n \ge 2$, é LD se, e somente se, algum vetor da sequência é gerado pelos demais.

Proposição: Uma sequência $(\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n)$, com $1 \leq n \leq 3$, é LI se, e somente se, a equação $\alpha_1 \overrightarrow{V}_1 + \alpha_2 \overrightarrow{V}_2 + \dots + \alpha_n \overrightarrow{V}_n = \overrightarrow{0}$ admite apenas a solução nula $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

Proposição: Uma sequência $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n)$, com $1 \leq n \leq 3$, é LI se, e somente se, a equação $\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \dots + \alpha_n \overrightarrow{v}_n = \overrightarrow{0}$ admite **apenas** a solução nula $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

Corolário: Se $(\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n)$ é LI, então, para cada vetor gerador por $\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n$, os coeficientes são univocamente determinados, isto é,

$$\alpha_{1}\overrightarrow{\mathbf{v}}_{1} + \alpha_{2}\overrightarrow{\mathbf{v}}_{2} + \dots + \alpha_{n}\overrightarrow{\mathbf{v}}_{n} = \beta_{1}\overrightarrow{\mathbf{v}}_{1} + \beta_{2}\overrightarrow{\mathbf{v}}_{2} + \dots + \beta_{n}\overrightarrow{\mathbf{v}}_{n}$$

$$\Rightarrow$$

$$\alpha_{1} = \beta_{1}, \alpha_{2} = \beta_{2}, \dots, \alpha_{n} = \beta_{n}$$

Preposição

Preposição: Uma sequência $(\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n)$, com $1 \leq n \leq 3$, é LD se, e somente se, a equação $\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \dots + \alpha_n \overrightarrow{v}_n = \overrightarrow{0}$ admite solução não-nula, isto é, existem escalares $\alpha_1, \alpha_2, \dots, \alpha_n$, não todos nulos, tais que $\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \dots + \alpha_n \overrightarrow{v}_n = \overrightarrow{0}$

Uma tripla ordenada linearmente independente $E = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ chama-se **base** de \mathbb{V}^3 .

Uma tripla ordenada linearmente independente $E = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ chama-se **base** de \mathbb{V}^3 .

Sendo $E = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ uma base, podemos dizer que todo vetor \overrightarrow{u} é gerado por $\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3$, isto é, existem escalares $\alpha_1, \alpha_2, \alpha_3$ tais que

$$\overrightarrow{U} = \alpha_1 \overrightarrow{e}_1 + \alpha_2 \overrightarrow{e}_2 + \alpha_3 \overrightarrow{e}_3$$

Essa tripla ordenada de escalares é única, devido a unicidade da combinação linear, e é chamada como **coordenada de** \overrightarrow{u} **em relação à base** E

Notação: $\overrightarrow{u} = (\alpha_1, \alpha_2, \alpha_3)_E$ ou $\overrightarrow{u} = (\alpha_1, \alpha_2, \alpha_3)$

Proposição:

Os vetores $\overrightarrow{u}=(a_1,b_1,c_1)_E$ e $\overrightarrow{V}=(a_2,b_2,c_2)_E$ são LD se, e somente se, a_1,b_1,c_1 e a_2,b_2,c_2 são proporcionais ou, equivalentemente, os três determinantes

$$\left| \begin{array}{c|cccc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right|, \left| \begin{array}{c|cccc} a_1 & c_1 \\ a_2 & c_2 \end{array} \right|, \left| \begin{array}{c|cccc} b_1 & c_1 \\ b_2 & c_2 \end{array} \right|$$

são nulos.

Os vetores $\overrightarrow{u} = (a_1, b_1, c_1)_E$, $\overrightarrow{v} = (a_2, b_2, c_2)_E$ e $\overrightarrow{w} = (a_3, b_3, c_3)_E$ são LD se, e somente se,

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Exemplo

Verifique se são LI ou LD os vetores $\overrightarrow{u} = (1, -1, 2)_E$, $\overrightarrow{v} = (0, 1, 3)_E$, $\overrightarrow{w} = (4, -3, 11)_E$.

- Os vetores não-nulos \overrightarrow{u} e \overrightarrow{v} são **ortogonais** se existe um representante (A, B) de um deles e um representante (C, D) do outro tais que AB e CD sejam ortogonais.
 - Notação: $\overrightarrow{u} \perp \overrightarrow{v}$
- O vetor nulo é ortogonal a qualquer vetor.

Os vetores \overrightarrow{u} e \overrightarrow{v} são ortogonais se, e somente se,

$$||\overrightarrow{u} + \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2$$

Os vetores \overrightarrow{u} e \overrightarrow{v} são ortogonais se, e somente se,

$$||\overrightarrow{\textit{u}}+\overrightarrow{\textit{v}}||^2=||\overrightarrow{\textit{u}}||^2+||\overrightarrow{\textit{v}}||^2$$

Definição: Uma base $(\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ é **ortonormal** se e_1, e_2 e e_3 são unitários e dois a dois ortogonais.

Os vetores \overrightarrow{u} e \overrightarrow{v} são ortogonais se, e somente se,

$$||\overrightarrow{u} + \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2$$

Definição: Uma base $(\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ é **ortonormal** se e_1, e_2 e e_3 são unitários e dois a dois ortogonais.

Proposição: Seja $(\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ uma base ortonormal. Se $\overrightarrow{u} = \alpha \overrightarrow{e}_1 + \beta \overrightarrow{e}_2 + \gamma \overrightarrow{e}_3$, então

$$||\overrightarrow{u}|| = \sqrt{\alpha^2 + \beta^2 + \gamma^2}$$

Exemplo

Seja E uma base ortonormal e $\overrightarrow{u} = (2, -1, 3)_E$. Calcule $||\overrightarrow{u}||$.

Mudança de Base

A mudança de base tem como objetivo facilitar as operações. Nosso interesse é na seguinte situação:

Sejam $B = \{u_1, \ldots, u_n\}$ e $B' = \{w_1, \ldots, w_n\}$ duas bases ordenadas de um mesmo espaço vetorial V. Dado um vetor $v \in V$, podemos escrevê-lo como:

$$v = x_1 u_1 + \dots + x_n u_n \tag{1}$$

$$v = y_1 w_1 + \dots + y_n w_n \tag{2}$$

Podemos relacionar as coordenadas de v em relação à base B,

$$[v]_B = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right]$$

e também podemos relacionar as coordenadas de ν em relação à base B^\prime ,

$$[v]_{B'} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right]$$

Como $\{u_1,\ldots,u_n\}$ é base de V, podemos escrever os vetores w_1 como combinação linear dos u_j , isto é,

$$\begin{cases} w_1 = a_{11}u_1 + a_{21}u_2 + \dots + a_{n1}u_n \\ w_2 = a_{12}u_1 + a_{22}u_2 + \dots + a_{n2}u_n \\ \vdots & \vdots & \vdots \\ w_n = a_{1n}u_1 + a_{2n}u_2 + \dots + a_{nn}u_n \end{cases}$$
(3)

Substituindo os valores de (3) em (2) tem-se

$$v = y_1w_1 + \dots + y_nw_n$$

= $y_1(a_{11}u_1 + \dots + a_{n1}u_n) + \dots + y_n(a_{1n}u_1 + \dots + a_{nn}u_n)$
= $(a_{11}y_1 + \dots + a_{1n}y_n)u_1 + \dots + (a_{n1}y_1 + \dots + a_{nn}y_n)u_n$

Como $v = x_1u_1 + \cdots + x_nu_n$ e as coordenadas em relação a uma base são únicas, temos:

Matricialmente, temos a seguinte equação:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Definindo,

$$[I]_{B}^{B'} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

Temos a seguinte relação:

$$[v]_B = [I]_B^{B'}[v]_{B'}$$

A matriz $[I]_B^{B'}$ é chamada matriz de mudança de base B' para a base B.

Compare $[I]_B^{B'}$ com (3) e observe que esta matriz é obtida, colocando as coordenadas em relação a B de w_i na i-ésima coluna. Uma vez obtida $[I]_B^{B'}$ podemos encontrar as coordenadas de v na base B' (supostamente conhecidas).

Exemplo

Exemplo: Sejam $B = \{(2, -1), (3, 4)\}$ e $B' = \{(1, 0), (0, 1)\}$ bases de \mathbb{R}^2 . Determine $[I]_B^{B'}$.

Exemplo - Resolução

Inicialmente, determinaremos os vetores de B' como combinação linear dos vetores de B, assim:

$$w_1 = (1,0) = a_{11}(2,-1) + a_{21}(3,4)$$

 $(1,0) = (2a_{11} + 3a_{21}, -a_{11} + 4a_{21})$

Determinando os coeficientes, segue que:

$$a_{11} = \frac{4}{11} e a_{21} = \frac{1}{11}$$

$$w_2 = (0,1) = a_{12}(2,-1) + a_{22}(3,4)$$

 $(0,1) = (2a_{12} + 3a_{22}, -a_{12} + 4a_{22})$

Determinando os coeficientes, segue que:

$$a_{12} = \frac{-3}{11}$$
 e $a_{22} = \frac{2}{11}$

Exemplo - Resolução

Portanto,

$$[I]_{B}^{B'} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{4}{11} & \frac{-3}{11} \\ \frac{1}{11} & \frac{2}{11} \end{bmatrix}$$

Exemplo - Resolução

Podemos utilizar o mesmo exemplo para determinar as coordenadas do vetor v = (5, -8) na base B.

$$[(5,-8)]_{B} = [I]_{B}^{B'}[(5,-8)]_{B'}$$

$$= \begin{bmatrix} \frac{4}{11} & \frac{-3}{11} \\ \frac{1}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Ou seja,

$$(5,-8) = 4(2,-1) - 1(3,4)$$

O cálculo utilizando a matriz de mudança de base é operacionalmente vantajoso quando trabalhamos com mais vetores, pois não há necessidade de resolução de mais de um sistema de equação para cada vetor.

Proposição: Toda matriz de mudança de base possui matriz inversa.

Proposição: Toda matriz de mudança de base possui matriz inversa.

Proposição: Se
$$E = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$$
, $F = (\overrightarrow{f}_1, \overrightarrow{f}_2, \overrightarrow{f}_3)$ e $G = (\overrightarrow{g}_1, \overrightarrow{g}_2, \overrightarrow{g}_3)$ são bases, então

$$M_{EF}M_{FG}=M_{EG}$$

Proposição: Toda matriz de mudança de base possui matriz inversa.

Proposição: Se
$$E = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$$
, $F = (\overrightarrow{f}_1, \overrightarrow{f}_2, \overrightarrow{f}_3)$ e $G = (\overrightarrow{g}_1, \overrightarrow{g}_2, \overrightarrow{g}_3)$ são bases, então

$$M_{EF}M_{FG}=M_{EG}$$

Proposição: A matriz de mudança de F para E é a matriz inversa da matriz de mudança de E para F, isto é, $M_{FE}=M_{EF}^{-1}$

Medida Angular

Sejam \overrightarrow{u} e \overrightarrow{v} vetores não-nulos. Chama-se **medida angular entre** \overrightarrow{u} e \overrightarrow{v} a medida θ , onde $0 \le \theta \le \pi$, do ângulo $P\hat{O}Q$, sendo (O,P) e (O,Q), respectivamente, representantes quaisquer de \overrightarrow{u} e \overrightarrow{v} com mesma origem Notação: $\theta = ang(\overrightarrow{u}, \overrightarrow{v})$, se necessário, especificando a unidade adotada (grau ou radiano).

Medida Angular

Sejam \overrightarrow{u} e \overrightarrow{v} vetores não-nulos. Chama-se **medida angular entre** \overrightarrow{u} e \overrightarrow{v} a medida θ , onde $0 \le \theta \le \pi$, do ângulo $P \hat{O} Q$, sendo (O,P) e (O,Q), respectivamente, representantes quaisquer de \overrightarrow{u} e \overrightarrow{v} com mesma origem Notação: $\theta = ang(\overrightarrow{u},\overrightarrow{v})$, se necessário, especificando a unidade adotada (grau ou radiano).

Se $ang(\overrightarrow{u},\overrightarrow{v}) < 90^\circ$ então dizemos que é um *ângulo agudo* formado por \overrightarrow{u} e \overrightarrow{v} , analogamente, se $ang(\overrightarrow{u},\overrightarrow{v}) = 90^\circ$ então dizemos que é um *ângulo reto* formado por \overrightarrow{u} e \overrightarrow{v} .

Determinando $\cos(\theta)$ através de $\overrightarrow{u},\overrightarrow{v}$

Lousa

Definição

O **produto escalar** entre dois vetores \overrightarrow{u} , \overrightarrow{v} , indicado por $\overrightarrow{u} \cdot \overrightarrow{v}$, é o número real tal que:

- se \overrightarrow{u} ou \overrightarrow{v} é nulo, $\overrightarrow{u} \cdot \overrightarrow{v} = 0$;
- ② se \overrightarrow{u} e \overrightarrow{v} não são nulos e θ é a medida angular entre eles, $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}||||\overrightarrow{v}|| \cos(\theta)$

Proposição

• Se \overrightarrow{u} e \overrightarrow{v} não são nulos e $\theta = ang(\overrightarrow{u}, \overrightarrow{v})$, então

$$\cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{u}||||\overrightarrow{v}||}$$

2 Qualquer que seja o vetor \overrightarrow{u} ,

$$||\overrightarrow{u}|| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}}$$

3 Quaisquer que sejam os vetores \overrightarrow{u} e \overrightarrow{v} ,

$$\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0$$

Proposição

Se em relação a uma base ortonormal, $\overrightarrow{u}=(a_1,b_1,c_1)$ e $\overrightarrow{v}=(a_2,b_2,c_2)$, então

$$\overrightarrow{u}\cdot\overrightarrow{v}=a_1a_2+b_1b_2+c_1c_2$$

Proposição

Se em relação a uma base ortonormal, $\overrightarrow{u}=(a_1,b_1,c_1)$ e $\overrightarrow{v}=(a_2,b_2,c_2)$, então

$$\overrightarrow{u}\cdot\overrightarrow{v}=a_1a_2+b_1b_2+c_1c_2$$

Exemplo: Em relação a uma base ortonormal, são dados $\overrightarrow{u}=(2,0,-3)$ e $\overrightarrow{v}=(1,1,1)$. Calcule a medida angular entre \overrightarrow{u} e \overrightarrow{v} .

Propriedades

Quaisquer que sejam os vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} e qualquer que seja o número real λ , são válidas:

Exemplo

As medidas angulares entre os vetores \overrightarrow{u} e \overrightarrow{v} , \overrightarrow{u} e \overrightarrow{w} e \overrightarrow{v} e \overrightarrow{w} são, respectivamente, 30, 45 e 90 graus. Mostre que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é base.

Introdução

Sejam $\overrightarrow{u} = \overrightarrow{OA}$ e $\overrightarrow{V} = \overrightarrow{OB}$ vetores não-nulos, que formam um *ângulo* agudo de medida θ radianos e C é o pé da perpendicular, por B, à reta OA. O vetor $\overrightarrow{p} = \overrightarrow{OC}$ é a projeção ortogonal de \overrightarrow{V} sobre \overrightarrow{u} . Tem-se que \overrightarrow{p} é paralelo a \overrightarrow{u} e, dentre todos os vetores paralelos a \overrightarrow{u} , parece ser \overrightarrow{p} o único para o qual $\overrightarrow{V} - \overrightarrow{p}$, ou seja, \overrightarrow{CB} é ortogonal a \overrightarrow{u} .

Introdução

Sejam $\overrightarrow{u} = \overrightarrow{OA}$ e $\overrightarrow{V} = \overrightarrow{OB}$ vetores não-nulos, que formam um ângulo agudo de medida θ radianos e C é o pé da perpendicular, por B, à reta OA. O vetor $\overrightarrow{p} = \overrightarrow{OC}$ é a projeção ortogonal de \overrightarrow{V} sobre \overrightarrow{u} . Tem-se que \overrightarrow{p} é paralelo a \overrightarrow{u} e, dentre todos os vetores paralelos a \overrightarrow{u} , parece ser \overrightarrow{p} o único para o qual $\overrightarrow{V} - \overrightarrow{p}$, ou seja, \overrightarrow{CB} é ortogonal a \overrightarrow{u} . Uma outra forma de se observar é através da decomposição de \overrightarrow{V} como soma de duas parcelas, \overrightarrow{p} e \overrightarrow{q} , onde \overrightarrow{p} é paralelo a \overrightarrow{u} e \overrightarrow{q} ortogonal a \overrightarrow{u} ($\overrightarrow{q} = \overrightarrow{CB} = \overrightarrow{V} - \overrightarrow{p}$):

$$\overrightarrow{V} = \overrightarrow{p} + \overrightarrow{q}$$

$$\overrightarrow{p} / / \overrightarrow{u}$$

$$\overrightarrow{q} \perp \overrightarrow{u}$$

Definição

Seja $\overrightarrow{u} \neq \overrightarrow{0}$. Dado \overrightarrow{v} qualquer, o vetor \overrightarrow{p} é chamado de **projeção ortogonal de** \overrightarrow{v} **sobre** \overrightarrow{u} , e indicado por $proj_{\overrightarrow{u}} \overrightarrow{v}$, se satisfaz as condições:

- $\bigcirc \overrightarrow{p}//\overrightarrow{u}$
- $(\overrightarrow{v} \overrightarrow{p}) \perp \overrightarrow{u}$

Preposição

Seja \overrightarrow{u} um vetor não-nulo. Qualquer que seja \overrightarrow{v} , existe e é única a projeção ortogonal de \overrightarrow{v} sobre \overrightarrow{u} . Sua expressão em termos de \overrightarrow{u} e \overrightarrow{v} é:

$$proj_{\overrightarrow{u}}\overrightarrow{V} = \frac{\overrightarrow{V} \cdot \overrightarrow{u}}{||\overrightarrow{u}||^2}\overrightarrow{u}$$

e a expressão de sua norma,

$$||proj_{\overrightarrow{u}}\overrightarrow{v}|| = \frac{|\overrightarrow{v}\cdot\overrightarrow{u}|}{||\overrightarrow{u}||}$$

Exemplo

Dada a base ortonormal $B = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, sejam $\overrightarrow{u} = 2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$ e $\overrightarrow{v} = 3\overrightarrow{i} - 6\overrightarrow{j}$

- **1** Obtenha a projeção ortogonal de \overrightarrow{v} sobre \overrightarrow{u}
- ② Determine \overrightarrow{p} e \overrightarrow{q} tais que $\overrightarrow{v} = \overrightarrow{p} + \overrightarrow{q}$, sendo \overrightarrow{p} paralelo e \overrightarrow{q} ortogonal a \overrightarrow{u}

Exemplo

Seja $B = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ e $E = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ base qualquer. Prove que E é ortonormal se, e somente se, a matriz $M = M_{BE}$ satisfaz a igualdade $M^tM = I$, ou seja, sua inversa é igual a sua transposta.