# Fast Document Clustering with Search Technologies

Debasis Ganguly

IBM Research, Dublin

April 24, 2017

#### Overview

**Document Clustering** 

K-means Algorithm

Fast K-means

Experiments and Results

## Clustering

- ▶ **Clustering**: Groups *similar* items in equivalence classes.
- ▶ Items could be images, videos, text documents, users etc.
- In general, consider each item as a feature vector in some feature space.





## **Document Clustering Usefulness**

- In the era of user driven content generation, the number of documents in the web, including social media and community based forums, is increasing very rapidly.
- Efficient content management techniques typically involve clustering similar documents into groups.
- Clusters of documents has been used to:
  - 1. Distributed indexing, or ranking clusters of documents as a whole.
  - 2. Smooth language models for improving retrieval quality.
  - 3. Improve initial retrieval and relevance feedback quality.
  - 4. Perform document expansion to enrich the informative content of documents.
  - 5. Effective information presentation for exploratory browsing.



## **Document Clustering Fundamentals**

- ► **Term Vector space**: Each document is a point in a term vector space.
- Dimensionality of this space is the number of unique terms in a collection or the vocabulary size.
- Each component of this vector is the (weighted) term frequency.
- Example: Consider a three term word comprised of terms 'a', 'b' and 'c'.
- Vector for document D₁: (abaa) is (3, 1, 0), that of D₂: (ccb) is (0, 1, 2).
- ▶ A popular weighting scheme is weighting by the **idf** values to capture term importance.



## **Document Clustering**

- ▶ For large collections, a document vector is extremely sparse.
- A convenient way to represent documents is with sparse vectors, e.g. the sparse vector representation of  $D_1$  is  $\{(a,3),(b,1)\}.$
- The most efficient way of storing sparse vectors is with the help of inverted lists.
- In an inverted list:
  - Each list head is a term.
  - Each list head points to a sorted list of document ids with the corresponding term weights. For our example:
    - a:  $(D_1, 3)$
    - ▶ b:  $(D_1,1)$   $(D_2,1)$
    - c:  $(D_2, 2)$



### K-means Review

- ► Starts with a set of **randomly chosen initial centres**.
- ► E-step: Each input point is repeatedly assigned to its nearest cluster centre.
- ► M-step: Cluster centres are then recomputed by making use of the current assignments.





## Curse of Dimensionality

- ► Advantage of sparse representation: Fast cluster assignments and re-computation of the cluster centres.
- Recomputation of the cluster centres results in an increase in the dimensionality of the centroid vectors (producing denser vectors) in subsequent iterations.
- Work with the *medoids* instead of the centroids, an algorithm called the K-medoids. This ensures that dimensionality remains fixed. Why?

#### Fast K-means

- ▶ The main bottleneck of the K-means is to assign each non-centroid document d ( $d \in D \bigcup_{k=1}^{K} C_k$ ) to a cluster.
- Can efficiently be achieved with the help of the inverted list data structure.
- ▶ The inverted list data structure is particularly suitable for efficiently computing the set TOP(x) for a given document vector x.

#### Fast K-means



## Key idea

- Select random cluster centres.
- Use each cluster centre document as a query to retrieve documents similar to it.
- Assign identical cluster ids to all these documents.
- Assign the longest document of every cluster group as its new cluster centre.

## Fast K-means Algorithm

#### Algorithm 2: FPAC Heuristic Algorithm

```
Input: K, the number of clusters
   Input: Collection of N documents D(|D| = N)
   Input: M, the maximum number of iterations
   Output: A partition of D, \bigcup_{k=1}^{K} D_k = D
 1 begin
 2
       for j = 1, \dots, M do
            // Initialize the cluster centres
 3
            L \leftarrow \Phi
            for k = 1, ..., K do
 4
                Randomly initialize C_k from D-L
                L \leftarrow L | TOP(C_k, \tau)
 6
            end
 7
            // Execute queries and merge ranked lists
            for each x \in \bigcup_{k=1}^{K} C_k do
 8
                // Assign d to its nearest cluster centre
                x_{\tau} \leftarrow \mathbf{ExtractQuery}(x)
                Retrieve ranked list L(x) \leftarrow TOP(x_{\tau})
10
                L \leftarrow \bigcup L_x
11
12
            end
            // Assign documents to clusters based on
                retrieval scores
            Sort L by normalized retrieval scores
13
14
            for each d \in L do
                D'_{k} = D'_{k} \cup d, where the retrieval score of d is
15
                  maximum in list L(k')
            end
16
            // Consider the document with the most number
                of unique terms as the central one.
            for k = 1, \dots, K do
17
                C_{\nu} \leftarrow d \in D_{\nu} \text{ s.t. } |d| > |d'|, \forall d' \in D_{\nu}
18
            end
19
20
       end
```

#### Dataset

|                                       | Train   | Test      |
|---------------------------------------|---------|-----------|
| #Documents (N)                        | 348,867 | 681,611   |
| $\#Terms\;(V)$                        | 603,816 | 1,273,397 |
| #Reference classes (web domains)      | 49      | 203       |
| Avg. length of a document             | 404.48  | 525.35    |
| Avg. #documents in a cluster (domain) | 7119.55 | 3357.69   |
| Max. #documents in a cluster          | 43,500  | 60,906    |
| Min. #documents in a cluster          | 33      | 3         |

Table: Characteristics of the WMT '16 dataset.

#### Results

|            |                |           |        | Results on Dataset |        |        |          |        |      |        |        |          |        |
|------------|----------------|-----------|--------|--------------------|--------|--------|----------|--------|------|--------|--------|----------|--------|
| Clustering | Initial        | Centroid  |        | Train              |        |        |          |        | Test |        |        |          |        |
| method     | centroid sel   | recomp.   | #iters | K                  | Purity | RI     | Time (s) | Gain   | K    | Purity | RI     | Time (s) | Gain   |
| K-means    | Random         | Vec sum   | 50     | 49                 | 0.5371 | 0.8895 | 161K     | -      | 203  | 0.6602 | 0.9597 | 433,870  | _      |
| FPAC       | Random         | Vec sum   | 50     | 49                 | 0.1388 | 0.9245 | 1780     | 90.57  | 203  | 0.0942 | 0.9670 | 4771     | 90.93  |
| FPAC       | Min. inter-sim | Vec sum   | 50     | 49                 | 0.1471 | 0.9245 | 818      | 197.09 | 203  | 0.1396 | 0.9672 | 1579     | 274.77 |
| FPAC       | Min. inter-sim | Max_terms | 50     | 49                 | 0.1471 | 0.9245 | 743      | 216.98 | 203  | 0.1396 | 0.9673 | 1531     | 283.83 |

Table: Comparison of FPAC and its baseline variations with the K-means algorithm.