1 Последовательность.

$$f: \mathbb{N} \to \mathbb{R}$$
$$f(n) =: f_n$$

Опр. Последовательность называется ограниченной сверху, если $\exists M: |f_n| \leqslant M$. Снизу, если $\exists m: f_n \geqslant m$. f_n — ограниченная, если ограничена сверху и снизу.

Опр. $M_0 = supf_n$, если M_0 — верхняя грань и $\forall \varepsilon > 0 \ \exists n_0 : f_{n0} > M_0 - \varepsilon$. $m_0 = inff_n$, если m_0 — нижняя грань и $\forall \varepsilon > 0 \ \exists n_0 : f_{n0} < m_0 + \varepsilon$.

Аксиома вещественных чисел. Если множество X ограничено сверху, то $\exists sup X$. Если f_n неограничено сверху, то $sup f_n =: +\infty$. Если снизу, то $inf f_n =: -\infty$.

Опр. f_n — бесконечно большая (бб), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |f_n| > \frac{1}{\varepsilon} \ \forall n \geqslant N. \ f_n$ — не бб, $\exists \varepsilon > 0 : \forall N \exists n > N : |f_n| \leqslant \frac{1}{\varepsilon}$. **Опр.** f_n — бесконечно малая (бм), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |f_n| < \varepsilon \ \forall n \geqslant N$.

Лемма. $f_n -$ бм $\Rightarrow f_n -$ ограничена.

Доказательство:

Пусть $\varepsilon = 1$, тогда $\exists N : |f_n| \leqslant 1 \ \forall n \geqslant N$

 $M := max|f_1|, \ldots, |f_{N-1}|, 1$, тогда $|f_n| \leq M \ \forall n \in N$.

Лемма.

a)
$$f_n - 66 \Rightarrow \frac{1}{f_n} - 6M$$

b)
$$f_n -$$
бм $(f_n \neq 0) \Rightarrow \frac{1}{f_n} -$ бб

Лемма. f_n — неограниченная последовательность, тогда существует бб подпоследовательность f_{nk} . Доказательство:

$$\exists n_1 : |f_{n1} > 1|,$$

$$\exists n_2 > n_1 : |f_{n_2} > 2|,$$

$$\exists n_3 > n_2 : |f_{n3}| > 3,$$

$$\exists n_1 < n_2 < \dots < n_k < \dots$$

$$|f_{nk}| > k \Rightarrow f_{nk}$$
 — 66.

Лемма.

a)
$$6M + 6M = 6M$$

b)
$$6m \cdot C = 6m$$

c)
$$6m \cdot 6m = 6m$$

d)
$$66 \cdot C = 66, C \neq 0$$

e)
$$66 \cdot 66 = 66$$

1.1 Предел последовательности.

 a_n — последовательность.

Опр. $a = \lim a_n$, если $\forall \varepsilon > 0 \ \exists N : |a_n - a| < \varepsilon \ \forall n \geqslant N$.

Опр. Эпсилон окрестность: $U_{\varepsilon}(a) := (a - \varepsilon; a + \varepsilon)$. Выколотая эпсилон окрестность: $U_{\varepsilon}^{\circ}(a) := U_{\varepsilon}(a) \setminus \{a\}$.

 $\varepsilon_1 < \varepsilon_2 \Rightarrow U_{\varepsilon_1}(a) \subset U_{\varepsilon_2}(a), a \in \overline{\mathbb{R}}.$

Опр. $\mathbb{R} \cup \{\pm \infty\} = \overline{\mathbb{R}}$ — расширенная числовая прямая.

Onp.
$$\varepsilon > 0$$
 $U_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty); U_{\varepsilon}(-\infty) = (-\infty; -\frac{1}{\varepsilon}).$

$$\lim |a_n| = +\infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) : |a_n| > \frac{1}{\varepsilon}.$$

Если
$$a_n$$
 — $бб \Leftrightarrow \lim |a_n| = +\infty$.

Если
$$a_n - 6M \Leftrightarrow \lim |a_n| = 0.$$

Утв. $\lim a_n = a \Leftrightarrow \exists$ бм последовательность d_n , такая что $a_n = a + d_n$.

Утв. Если предел последовательности существует, то он единственный.

Доказательство:

 $\exists a < b$ и $a = \lim a_n, b = \lim a_n$.

Тогда
$$\varepsilon := \frac{b-a}{42}$$
 :

$$\exists N_1 : a_n \in U_{\varepsilon}^{\tilde{\tau}_2}(a) \forall n \geqslant N_1$$

$$\exists N_2 : a_n \in U_{\varepsilon}(b) \forall n \geqslant N_2$$

$$\Rightarrow a_n \in (U_{\varepsilon}(a) \cap U_{\varepsilon}(b)) = \emptyset \ \forall n \geqslant \max\{N_1, N_2\}!?!.$$

Предельный переход в неравенства. $a_n \leqslant b_n \ \forall n \geqslant N_0$.

Пусть $\exists \lim a_n = a; \lim b_n = b, a, b \in \mathbb{R}$

Тогда $a \leq b$.

Доказательство:

Пусть a > b. Тогда $\varepsilon := \frac{a-b}{42}$:

 $\exists N_1 : a_n \in U_{\varepsilon}(a) \forall n \geqslant N_1$

 $\exists N_2: a_n \in U_{\varepsilon}(b) \forall n \geqslant N_2$

 $\Rightarrow a_n > b_n \ \forall n \geqslant \max\{N_1, N_2\}!?!.$

Лемма о сжатых последовательностях. Пусть $a_n \leqslant b_n \leqslant c_n \ \forall n \geqslant N_0$ и $\exists \lim a_n = \lim c_n = a \in \overline{\mathbb{R}}$, тогда $\exists \lim b_n = a$. Доказательство:

 $\varepsilon > 0$:

 $\exists a_n \in U_{\varepsilon}, n \geqslant N_1$

 $\exists c_n \in U_{\varepsilon}, \, n \geqslant N_2$

 $\Rightarrow b_n \in U_{\varepsilon} : \forall n \geqslant \{N_1, N_2, N_0\} =: N \Rightarrow a = \lim b_n$ по определению.

Лемма об отделимости от нуля. Пусть $\exists \lim a_n = a > 0$. Тогда $\exists N : a_n > \frac{a}{2} > 0, \forall n \geqslant N$. Следствие. Если $\lim a_n \neq 0 \Rightarrow \frac{1}{a_n}$ ограничена $(a_n \neq 0)$.

Доказательство:

 $\lim a_n = a > 0$

 $\exists N_1 : a_n > \frac{a}{2} \Rightarrow 0 < \frac{1}{a_n} < \frac{2}{a} \ \forall n \geqslant N_1$ $\min\{a_1, \dots, a_{N-1}, \frac{a}{2}\} \leqslant \frac{1}{a_n} \leqslant \max\{a_1, \dots, a_{N-1}, \frac{2}{a}\}$

Теорема. Арифметические свойства предела. Пусть $\lim a_n = a$, $\lim b_n = b$; $a, b \in \overline{\mathbb{R}}$. Тогда:

1.
$$\lim(a_n+b_n)=a+b$$
, кроме случаев $+\infty+(-\infty), -\infty+(+\infty)$

2.
$$\lim(ka_n) = ka$$
, кроме случая $0 \cdot (\pm \infty)$

3.
$$\lim(a_n \cdot b_n) = ab$$
, кроме случая $0(\pm \infty)$

4.
$$\lim \frac{a_n}{b_n} = \frac{a}{b}$$
, кроме случаев $\frac{0}{0}$, $\frac{\infty}{\infty}$

Доказательство:

 $a, b \in \mathbb{R}$

$$a_n = a + \alpha_n$$
, $b_n = b + \beta_n$; $\alpha_n, \beta_n - \delta_M$.

1.
$$a_n + b_n = (a+b) + (\alpha_n + \beta_n) \Leftrightarrow \lim(a_n + b_n) = a+b$$
.

2. Аналогично.

3.
$$a_n b_n = (a + \alpha_n)(b + \beta_n) = ab + \alpha_n b + \beta_n a + \alpha_n + \beta_n$$

4. Если
$$b \neq 0$$
 $\frac{1}{b}$ — ограниченна

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{\alpha_n b - \beta_n a}{b_n b} = \frac{1}{b} \cdot \frac{1}{b_n} \cdot (\alpha_n b - \beta_n a)$$

4. Если $b \neq 0$ $\frac{1}{b_n}$ — ограниченна $\frac{a_n}{b_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{\alpha_n b - \beta_n a}{b_n b} = \frac{1}{b} \cdot \frac{1}{b_n} \cdot (\alpha_n b - \beta_n a)$ Если $b = 0 \Rightarrow b_n$ бм $\Rightarrow \frac{1}{b_n}$ — бб $\Rightarrow a_n \cdot \frac{1}{b_n}$ = ограниченная бб