TOWSON UNIVERSITY

OFFICE OF GRADUATE STUDIES

TOWARDS IMPROVED OFFENSIVE SECURITY ASSESSMENT USING COUNTER APT RED TEAMS

by

Jacob G. Oakley

A Dissertation

Presented to the faculty of

Towson University

in partial fulfillment

of the requirement for the degree of

Doctor of Science

Department of Computer & Information Sciences

Towson University Towson, Maryland 21252

May 2018

ProQuest Number: 10791183

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10791183

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106 – 1346

TOWSON UNIVERSITY OFFICE OF GRADUATE STUDIES ..

THESIS APPROVAL PAGE

This is to certify that the Thesis is prepared by:

Dean of Graduate Studies

Jacob Oakley Entitled: TOWARDS IMPROVED OFFENSIVE SECURITY ASSESSMENT USING COUNTER APT RED **TEAMS** Has been approved by the thesis committee as satisfactory completing the thesis requirements for the degree: Doctor of Science (i.e., Doctor of Science) Chairperson, Thesis Committee Signature Thesis Advisor, Type Name Date If other than Chairperson Signature Suvanjan Chakvabylg Type Name Committee Member Signature Committee Member Signature SIDD KAZA Type Name Committee Member Signature Janet V. Dehany Type Name

Abstract

Towards Improved Offensive Security Assessment Using Counter APT Red Teams

Jacob G. Oakley

Defending against cyber criminals, cyber warfare and cyber terrorism all rely on the mitigation of the motivated advanced persistent threats (APTs) that carry out such campaigns. The only proactive solution capable of addressing these threats is ethical hacker conducted emulation during offensive security assessments such as penetration testing and red teaming. Many security industry institutions label their products or services as addressing APTs unfortunately there is no agreed upon standard for the proper processes, tradecraft or techniques involved in doing so. Additionally, academic efforts regarding APTs largely focus on reactive monitoring or automated assessment which simulate known attack sequences and do not necessarily represent realistic future attacks. This dissertation aims to provide a standard for addressing APT attacks by counter-APT red teaming (CAPTR teaming). The CAPTR team concept seeks to build upon traditional red team processes to augment the offensive security assessment process. This will allow security practitioners a level playing field to engage and mitigate the threats and vulnerabilities most likely to be leveraged by APTs. Such an assessment counters the outcome of APT breaches by prioritizing vulnerabilities that enable an actor to compromise the data most important to an organization locally and pivoting outwards to points used for access and exfiltration. When an organization identifies critical items that represent unacceptable losses they should be protected as if an actor, regardless of motivation, were intent on compromising them. Adequate identification and protection of critical items via offensive security assessments

originating at such positions represents an approach more efficient and capable of mitigating the impact of an APT breach. In a threat landscape with hyper-focused actors it is the responsibility of the security field to provide an equally focused security assessment solution that goes beyond the attack simulations of traditional penetration tests or red team engagements. This dissertation discerns the need and novelty of the CAPTR teaming concept and ratifies the validity of the assessment paradigm through experimentation as well as case study.

Table of Contents

TABLE OF CONTENTS	V
TABLE OF FIGURES	XIV
TABLE OF TABLES	XVI
INTRODUCTION	1
WORST CASE RISK ANALYSIS & SCOPING.	2
CRITICAL INITIALIZATION PERSPECTIVE	3
REVERSE PIVOT CHAINING	4
SUCCESS OF THE CAPTR TEAM CONCEPT IN THE REAL WORLD	5
SUCCESS OF THE CAPTR TEAM CONCEPT IN EXPERIMENTAL EVALUATION	6
CAPTR TEAMING CONCEPT	7
LETHAL COMPROMISE	
COST BENEFIT	8
CAPTR TEAMING PROCESS	14
Risk Assessment & Scoping	15
Initialization Perspective	17
Evaluation	18
Post Evaluation	20
RELATED WORK	22
OFFENSIVE SECURITY ASSESSMENT LIFECYCLE	23
RED TEAM AUTOMATION IN ACADEMIA	25
Model Based Solutions	26

Non-Pivoting Technologies	28
Pivoting Technologies	30
RED TEAM AUTOMATION IN INDUSTRY	31
GENERAL DISADVANTAGES OF AUTOMATED RED TEAMING	32
CONCLUDING THE CASE FOR HUMAN RED TEAM ASSESSMENT	33
Initialization Perspectives	34
External Initialization Perspective	36
DMZ Initialization Perspective	37
Internal Initialization Perspective	38
CAPTR Team Critical Initialization Perspective	
INITIALIZATION PERSPECTIVE EFFECT ON RISK ASSESSMENT	40
External Perspective Effect on Risk Assessment	43
DMZ Perspective Effect on Risk Assessment	44
Internal Perspective Effect on Risk Assessment	46
CAPTR Team Critical Perspective Effect on Risk Assessment	47
INITIALIZATION PERSPECTIVE EFFECT ON ATTACK SURFACE COVERAGE	49
External Perspective Effect on Attack Surface Coverage	50
DMZ Perspective Effect on Attack Surface Coverage	51
Internal Perspective Effect on Attack Surface Coverage	52
CAPTR Team Critical Perspective Effect on Attack Surface Coverage	53
INITIALIZATION PERSPECTIVE ADVANTAGES / DISADVANTAGES	55
Advantages / Disadvantages: Introduction of Risk	55
Advantages / Disadvantages: Coordination Rurden	5.8

Advantages / Disadvantages: Emulated Threat	59
Taxonomy of Initialization Perspectives	61
TRADITIONAL RED TEAM PROCESS	62
TRADITIONAL RED TEAM SHORTCOMINGS	63
Zero-Day Vulnerabilities and Exploits	64
Insider Threats	65
Exfiltration	66
Efficiency	67
Introduced Risk	68
CAPTR TEAM ADDRESSING OF RED TEAM SHORTCOMINGS	69
Addressing Zero-Day Vulnerabilities and Exploits	69
Addressing Insider Threats	71
Addressing Exfiltration	73
Addressing Efficiency	73
Addressing Introduced Risk	75
EVALUATION METHODOLOGY	75
MONITORING TECHNOLOGIES	
Encryption Technologies	76
Firewall Technologies	77
OFFENSIVE SECURITY ASSESSMENT TECHNIQUES	77
IDENTIFYING REQUIREMENTS FOR DEFENSIBLE EVALUATION	
Controlled & Realistic Environment	
Defensible Security Assessments	80

Defensible Systems Administration	81
Emulation of a Motivated and Sophisticated Attacker	82
Measureable Results and Metrics	83
EVALUATION MEDIUMS	84
Real network with real attackers	84
Real network with simulated attackers	85
Lab network with real attackers	86
Lab network with simulated attacker	87
EXPERIMENT DESIGN	87
TARGET DETERMINATION.	88
EXPERIMENT SUMMARY	88
Lab Design.	90
Lab Network Operating Systems	90
Lab Network Layout	91
Underlying Software & Hardware	92
Access Technology & Software	93
Assessment Software	95
Experiment Metrics	96
PERSONNEL REQUIREMENTS.	98
Experiment Schedule & Walkthrough	99
Control Network and Related Documentation Created	101
Network Audited for Realism and Functionality	101
Control Network Cloned	

Red Team Assessment	102
Audit of Red Team Recommendations by Read Team Auditor	102
Audit of Red Team Recommendations by Systems Administration Auditor	102
Implementation of Red Team Recommendations	102
Verification of Red Teamer Recommended Changes	103
CAPTR Team Assessment	103
Audit of CAPTR Team Recommendations by CAPTR Team Auditor	104
Audit of CAPTR Team Recommendations by Systems Administration Auditor	104
Implementation of CAPTR Team Changes	104
Verification of CAPTR Teamer Recommended Changes	104
Recommended Changes Analyzed	105
Simulated Attacks	105
Metrics Compiled	106
Addressing Defensibility Requirements	106
Addressing Controlled & Realistic Environment Requirement	106
Addressing Defensible Security Assessments	106
Addressing Defensible Systems Administration	107
Addressing Motivated & Sophisticated Attacker	107
Addressing Measureable Results	108
RESULTS: RECOMMENDATION PHASE	108
RESULTS: CAMPAIGN PHASE	110
CASE STUDIES	113
CASE STUDIES SCENARIO 1	113

Scenario 1 Red Team Assessment Walkthrough	113
Scenario 1 CAPTR Team Assessment Walkthrough	114
Scenario 1 Conclusions	115
CASE STUDIES SCENARIO 2	115
Scenario 2 Red Team Assessment Walkthrough	116
Scenario 2 CAPTR Team Assessment Walkthrough	116
Scenario 2 Conclusions	117
DISCUSSION	118
CAPTR TEAM DISADVANTAGES	
CAPTR TEAM IMPLEMENTATION	
Feasibility.	
Future Growth	
CONCLUSIONS	
APPENDICES	126
APPENDIX A – EXPERIMENT SOFTWARE	126
APPENDIX B – CVSS SCORE OF COMPROMISE ITEMS	127
Compromise Item: Internet / DMZ Router	128
Compromise Item: DMZ / Corp Router	129
Compromise Item: Corp / Law Router	130
Compromise Item: Internet FTP Server	131
Compromise Item: Client Internet Machine 1	133
Compromise Item: Client Internet Machine 2	134
Compromise Item: Intranet FTP Server	135

Compromise Item: Domain Controller	136
Compromise Item: Back-UP Domain Controller	137
Compromise Item: Admin Server	138
Compromise Item: Admin Machine	139
Compromise Item: IT Machine	141
Compromise Item: Chief Executive Officer Machine	142
Compromise Item: VP of Human Resources Machine	143
Compromise Item: Chief Financial Officer Machine	
Compromise Item: Accountant	146
Compromise Item: Chief Technology Officer	147
Compromise Item: Office Assistant 2 Machine	149
Compromise Item: Big Conference Room Machine	150
Compromise Item: Small Conference Room Machine	151
Compromise Item: Interview Room 1 Machine	152
Compromise Item: Interview Room 2 Machine	153
Compromise Item: Partner 1 Machine	154
Compromise Item: Partner 1 Nephew Machine	155
Compromise Item: Partner 1 Secretary Machine	156
Compromise Item: Partner 1 Legal Aid 1 Machine	157
Compromise Item: Partner 1 Legal Aid 2 Machine	158
Compromise Item: Partner 2 Machine	159
Compromise Item: Partner 2 Secretary Machine	160
Compromise Item: Partner 2 Legal Aid Machine	161

Compromise Item: Partner 3 Machine	162
Compromise Item: Partner 3 Secretary Machine	163
Compromise Item: Partner 3 Legal Aid Machine	164
Compromise Item: Other Lawyer 1 Machine	165
Compromise Item: Other Lawyer 2 Machine	166
Compromise Item: Other Lawyer's Legal Aid Machine	167
Compromise Item: Junior Partner Machine	168
Compromise Item: Junior Partner Secretary Machine	
Compromise Item: Open Case Files Server	170
Compromise Item: Closed Case Files Server	171
Compromise Item: Case Files Back-Up Server	172
APPENDIX C - RESUMES	173
Systems Administrator	173
Systems Administration Auditor	176
Red Teamer	178
Red Team Auditor	180
CAPTR Teamer	183
CAPTR Team Auditor	186
APT Emulator	188
APPENDIX D – CONTROL NETWORK	191
APPENDIX E – CLONE 1 (RED TEAM ASSESSED NETWORK)	193
APPENDIX F – CLONE 2 (CAPTR TEAM ASSESSED NETWORK)	195
APPENDIX G – LETTER TO RED TEAMER	197

CURRICULUM VITAE	241
REFERENCES	221
APPENDIX M – CAPTR TEAM RECOMMENDATIONS CHANGELOG	220
APPENDIX L – CAPTR TEAM RECOMMENDATIONS	211
APPENDIX K – INTENT OF CAPTR TEAM	208
APPENDIX J – RED TEAM RECOMMENDATION CHANGELOG	205
APPENDIX I – RECOMMENDATION GUIDELINES	204
APPENDIX H – RED TEAM RECOMMENDATIONS	198

Table of Figures

FIGURE 1: ORGANIZATION OBJECT RISK VALUES	9
FIGURE 2: TRADITIONAL OFFENSIVE SECURITY SCOPE AND CAPTR TEAM INITIAL	SCOPE10
FIGURE 3: TRADITIONAL AND CAPTR TEAM EXAMPLE FINDINGS	11
FIGURE 4: CAPTR TEAM EXAMPLE FINDINGS	13
FIGURE 5: RED TEAM RISK FOCUS.	15
FIGURE 6: CAPTR TEAM RISK FOCUS	
FIGURE 7: CRITICAL PERSPECTIVE.	18
FIGURE 8: CAPTR TEAM PROCESS.	20
FIGURE 9: EXAMPLE OF RISK LINK HEAT MAP	22
FIGURE 10: ASSESSMENT PROCESS PHASES	24
FIGURE 11: OFFENSIVE SECURITY ASSESSMENT LIFECYCLE	25
FIGURE 12: EXTERNAL PERSPECTIVE	37
FIGURE 13: DMZ PERSPECTIVE.	38
FIGURE 14: INTERNAL PERSPECTIVE.	39
FIGURE 15: CRITICAL PERSPECTIVE.	40
FIGURE 16: DATA PROTECTION LEVEL LOCALITY	42
FIGURE 17: EXTERNAL PERSPECTIVE TIMELINE	43
FIGURE 18: DMZ PERSPECTIVE TIMELINE	45
FIGURE 19: INTERNAL PERSPECTIVE TIMELINE	46
FIGURE 20: CRITICAL PERSPECTIVE TIMELINE	48
FIGURE 21: EXTERNAL PERSPECTIVE ATTACK SURFACE ANALYSIS	51

FIGURE 22: DMZ PERSPECTIVE ATTACK SURFACE ANALYSIS	52
FIGURE 23: INTERNAL PERSPECTIVE ATTACK SURFACE ANALYSIS	53
FIGURE 24: CRITICAL PERSPECTIVE ATTACK SURFACE ANALYSIS	54
FIGURE 25: RED TEAM PROCESS	62
FIGURE 26: RED TEAM PATH	69
FIGURE 27: CAPTR TEAM PATH	70
FIGURE 29: ATTACK SURFACE TO ASSESS, CAPTR TEAM	
Figure 30: Network Diagram	91
FIGURE 31: TUNNEL SET-UP	94
FIGURE 32: ACCESS SET-UP.	96
FIGURE 33: CHANGES TO DEVICES IMPLEMENTED BY ADMINISTRATOR BASED ON	
RECOMMENDATIONS	110
FIGURE 34: RED TEAM VS. CAPTR TEAM CAMPAIGN RESULTS	111
FIGURE 35: REPRESENTATION OF RISK MEASURED BY CVSS SCORES	112
FIGURE 36: RED TEAM / CAPTR TEAM CROSSOVER	122

Table of Tables

TABLE 1: UC BERKELEY DATA CLASSIFICATION STANDARD	41
TABLE 2: EXTERNAL PERSPECTIVE RISK MATRIX	44
TABLE 3: DMZ PERSPECTIVE RISK MATRIX	45
TABLE 4: INTERNAL PERSPECTIVE RISK MATRIX	47
TABLE 5: CRITICAL PERSPECTIVE RISK MATRIX	
TABLE 6: TAXONOMY OF INITIAL PERSPECTIVES.	
TABLE 7: HARDWARE SPECIFICATIONS	92
TABLE 8: CVSS RATINGS	98
TABLE 9: RECOMMENDATIONS SUMMARY	109

Introduction

Successful cyber-attacks have become increasingly detrimental to victim organizations. In some cases, over 100 Million individuals are affected, and Billions of dollars of damage done. The recent Equifax breach affected 143 Million individuals whose social security numbers and other personal information, in some cases including credit card numbers, were compromised (Haselton, 2017). The company's stock tumbled almost 13% in 24 hours resulting in a loss of nearly 2.275 Billion dollars in market cap (Melin, 2017). Breaches are now becoming capable of leading to actual death of humans whether it is ransomware preventing adequate healthcare from being given (Wace, 2017) or SCADA systems controlling manufacturing and power plants maliciously sent awry (Hinden, n.d.). Increasing the challenges of keeping up with cyber threats, malicious actors have been able to get their hands on tools of ever increasing sophistication and capabilities thanks to leaks of nation state tools such as stuxnet (Mueller & Yadegari, 2012) and wannacrypt (Microsoft, 2017) by entities such as the Shadow Brokers (Perlroth, 2017). Ethical hacker conducted offensive security assessment represents the only true proactive tool towards addressing such prolific threats.

Unfortunately, by attempting to act on level terrain to Advanced persistent threats (APTs), practitioners of offensive security assessment are doing a disservice to their own success and the security of their customers. An offensive security assessment has a set time window and must follow an established set of rules as well as insure the legality of assessment activities.

Conversely, APTs such as nation states, crime syndicates and other extremely resourced and motivated actors abide by their own constraints if at all. Such actors can even resort to illegal means such as blackmail, espionage, and physical violence to enable successful cyber operations.

Though known as ethical hackers, offensive security assessors should be doing their best to cheat the competition. Malicious actors and traditional threat emulators alike spend a large amount of time and effort in attacking a whole organization in search of valuable machines and data. Security assessors should instead leverage purple team and operational resources to identify and prioritize assessment of such critical items. Further, offensive security assessors should start their campaigns from the comparative high ground, beginning assessment from high impact items instead of wasting time on the journey to them. It is in this spirit that counter-APT red teaming (CAPTR teaming) aims to shift the operational advantage away from APTs and towards detection and prevention. CAPTR teaming is an offensive security assessment model implementing three novel evaluation attributes.

- Worst case risk analysis to identify scope
- Critical compromise initialization perspective
- Vulnerability analysis and exploitation using reverse pivot chaining

Worst Case Risk Analysis & Scoping

The CAPTR team will work with both operational and security personnel in the organization to determine appropriate scoping for the assessment. The CAPTR team scope is a prioritization of critical items which have a high impact if compromised, regardless of the likelihood of that compromise. This allows for assessment resources to be spent in an efficient and effective manner on a worst-case scenario subset of the overall organization. Successful identification of high risk items requires stakeholders from both functional and security areas of the target organization. The operational staff may know which compromise objects could bring ruin to the organization if breached. However, such operational staff may not know the extent to

which devices and data within the network represent or support those objects which is where the knowledge of IT infrastructure and security staff is equally important to identifying as complete an initial scope as possible. Limiting the initial scope of CAPTR team assessment to high risk objects allows for assessors to focus on a small attack surface comprised entirely of assets of importance and prevents wasted resources being spent on anything but the most consequential attack surface. Adequate identification of priority assets during the scoping phase enables successful evaluation of critical compromise items. This leads to improvement of overall security posture via mitigation of worst case scenario threats.

Critical Initialization Perspective

Initialization perspective is the point of presence from which an offensive security assessment begins scanning and enumerating vulnerabilities. Examples of common Initialization perspectives may be from the internet, external to the organization or from different locations within the organization. The position of the initialization perspective effects many attributes of the security assessment such as the type of attack surface first assessed, the type of threat emulated and threat of identified vulnerabilities among others.

Beginning an assessment with a scope of high risk items from the initialization perspectives of an internet based threat, a compromised DMZ server or even a successfully spear phished internal user machine can hinder the progress and success of assessment. To best address vulnerabilities that may be leveraged by APTs, concessions must be made that those threats already have or will have the ability to penetrate the perimeter and subsequent layers of the organization. With high impact compromise objects identified and the scope created the CAPTR assessment model begins assessment from the priority risk items themselves. This is known as leveraging the critical initialization perspective. This perspective allows a CAPTR team

assessment to perform immediate assessment of high risk compromise objects instead of first spending the time identifying a path to them.

Reverse Pivot Chaining

Reverse pivot chaining is a two-part process for identifying findings that have the most consequence to those initially scoped compromise objects. A localized assessment is performed on each scoped compromise item. Then, these compromise objects are leveraged as critical initialization perspectives for outward assessment of the host organization. This outward assessment is done in an atypically targeted and unobtrusive fashion which identifies tiered levels of communicants and their relationships to the initially scoped items. These relationships ultimately represent a risk link web spreading outwards from prioritized high impact items.

Local assessment of the scoped critical objects is done using elevated privilege under the assumption that an APT could eventually achieve such context during a compromise. Local privilege escalation vulnerabilities and local misconfigurations that would allow an attacker to ultimately affect the confidentiality, integrity or availability of the compromise object are assessed at the very onset of the CAPTR team engagement window. Further, this local context is used to identify potential remote access vectors such as code execution exploits or poor authentication configurations. With access to locally stored data and operating system functions the CAPTR team assessor can efficiently identify access vectors an attacker would use against the initially scoped items without having to perform potentially risky blind scanning and exploitation.

The ability to leverage escalated execution on these devices also allows the CAPTR team assessor to determine the communication links that allow other devices and users remote access.

live data such as open sockets, running protocols and active users as well as artifacts such as authentication, application and system logging are used to aggregate a list of potential communicants to the initial perspectives and roll them into an expanding scope for the assessment. In an effort to pivot outwards The CAPTR team uses this information for targeted prosecution of communicants instead of widespread remote scanning. If access is gained to tier one communicants, the locally elevated assessment process begins anew and pivoting to next-tier links is then attempted once they are identified.

This reverse pivot chaining establishes a representation of threat relationships into a risk link web with the critical compromise items at the center. Even if remote exploitation of tier one or further outward communicants is not possible the communication link is still identified with an appropriate risk rating commiserate with its potential to enable attacker access to critical compromise objects. Such information is vital to empowering defensive security equities within an organization to mitigate and or monitor the threats identified by CAPTR team findings. This web of risk links is a unique step forward in collaboration between offensive and defensive security teams to improve security posture.

Success of the CAPTR Team Concept in the Real World

The offensive security assessment attributes involved in CAPTR teaming have been utilized alongside multiple real world red team engagements. The red team responsible for long-term offensive security campaigns and adversary emulation in a fortune 500 technology company leveraged the CAPTR methodology to coincide with several red team campaigns. Using the CAPTR team method, extremely dangerous findings to high value systems were discovered in a time window of only several days. This is instead of the weeks or longer taken during red team engagements against the same subset of the company. In several instances the

CAPTR team assessment method was able identify findings in areas that the traditional processes were unable to progress to at all during defined engagement windows. CAPTR teaming provided previously unattainable efficiency in impacting the company security posture by prioritizing assessment of critical items within the specific subsets of the company.

Success of the CAPTR Team Concept in Experimental Evaluation

Academic and industry research on ethical hacker conducted offensive security assessments should include a standardized, portable and repeatable experimental framework for defensible evaluation of different assessment processes. This dissertation outlines one such framework and details its construction and implementation to provide an experimental testbed for measuring the novelty and success of offensive security paradigms.

Comparative evaluation of the CAPTR team offensive security concept was accomplished using this experimental framework. A host organization network was created in a lab and clones of it assessed using traditional red team and CAPTR team methods. These assessments yielded recommendations to the host organization to mitigate identified security threats. These changes were implemented to the respective clones of the original network. Then, both the CAPTR team and red team secured networks as well as a control network with no changes were attacked by a highly skilled APT emulating ethical hacker to test the security posture of the organization.

The experimental data that was collected indicated that the CAPTR team process provided findings unique to those of established offensive security assessment methods. In identical assessment scenarios there was only one finding in common between the two assessment methods out of a total of sixteen. The findings and resulting recommendations from

the CAPTR team assessment ultimately empowered administration of systems that mitigated 400% the overall threat than was done by the red team assessment method. Further, the CAPTR team method protected all initially scoped compromise items throughout the attack campaign where the red team did not.

CAPTR Teaming Concept

The CAPTR team works with an organization to identify items of dire consequence referred to as critical or lethal compromises. CAPTR teaming allows for organizations to evaluate such items of severe impact as a priority during offensive security engagement. Lethal compromise items are not the only type of equity included in the initial scope of a CAPTR team assessment, as any scoped object that is critical, lethal or otherwise important to the organization will be prioritized for evaluation. Lethal compromise items do however represent the epitome of the cost benefit gains an organization can accomplish by leveraging the CAPTR team concept to protect such assets.

Lethal Compromise

Lethal compromise is meant to be interpreted as literal and figurative with regards to the target organization. In a literal sense a lethal compromise item could be a device or data that if affected could lead to a human being dying. This could be something medically related such as gaining access to remotely monitored insulin pumps and supplying lethal doses (Ray & Cleaveland, 2014). It could also be loss of control in a SCADA environment where robotic implements could crush a human or controllers could be tampered with leading to a chemical plant explosion (Narayanan, 2015). In the figurative sense a lethal compromise item is one that can cause an organization to cease to function. This lethality could be due to unpayable amounts