Optimisation TD 2

Centrale Casablanca, 2023-2024

30 avril 2024

Exercice 1

On considère la fonction f définie sur \mathbb{R}^2 par

$$f(x,y) = x^4 + y^4 - 2(x-y)^2$$

1. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}_{+*} \times$ (et les déterminer) tels que $f(x, y) \ge \alpha ||(x, y)||^2 + \beta$ pour tous $(x, y) \in \mathbb{R}^2$, où la notation $||\cdot||$ désigne la norme euclidienne de \mathbb{R}^2 . En déduire que le problème

$$(\mathcal{P}) \quad \inf_{(x,y)\in\mathbb{R}^2} f(x,y)$$

possède au moins une solution.

- 2. La fonction f est-elle convexe sur \mathbb{R}^2 ?
- 3. Déterminer les points critiques de f, et préciser leur nature (minimum local, maximum local, point-selle, ...).
- 4. Résoudre alors le problème (\mathcal{P}).

Exercice 2(Fonctions quadratiques)

On considère le problème de minimisation de la fonction quadratique suivante :

minimize
$$J(x) = \frac{1}{2}x^T A x + b^T x + r$$

où $A \in \mathbf{S}^n$.

- 1. Calculer la dérivée première et la dérivée seconde de J
- 2. Montre que si *A* n'est pas semi-définie positive, c.a.d la fonction *J* n'est pas convexe, alors le problème n'est pas borné inferieurement.
- 3. On suppose que $A \ge 0$, c.a.d la fonction J est convexe, écrire l'equation d'Euler associée au problème.
- 4. Montrer que si *b* n'est pas dans l'image de la matrice *A*, le problème de minimisation n'est pas borné inferieurement.

Exercice 3 (moindres carrés)

On considère la fonction f définie sur l'intervalle [-1,1] par $f(x)=x^3$. L'espace $C^0([-1,1])$ des fonctions continues sur [-1,1] est muni du produit scalaire défini par $\langle h,g\rangle=\int_{-1}^1 h(x)g(x)dx$ et on note $\|\cdot\|$ la norme associée, définie par $\|h\|=\sqrt{\langle h,h\rangle}$, pour tous $(h,g)\in \left(C^0([-1,1])^2\right)$. On souhaite déterminer le polynôme P de degré inférieur ou égal à 1 qui approche le mieux f au sens des moindres carrés, c'est-à-dire qui minimise $\|f-P\|^2$ parmi tous les polynômes de degré inférieur ou égal à 1 (sous réserve qu'il existe et soit unique).

- 1. Mettre ce problème sous la forme d'un problème de moindres carrés de dimension finie. Quelle est cette dimension?
- 2. Étudier l'existence/l'unicité des solutions de ce problème.
- 3. Résoudre ce problème.

Exercice 4

Le but de l'exercice est de prouver le théorème de projection sur convexe fermé dans un Hilbert :

Soit \mathcal{C} un sous-ensemble convexe fermé non vide d'un Hilbert V. Soit $\mathbf{u} \in V$, alors il existe un unique point $P_C(\mathbf{u}) \in \mathcal{C}$, tel que :

$$||P_C(\mathbf{u}) - \mathbf{u}|| = \min_{\mathbf{v} \in C} ||\mathbf{v} - \mathbf{u}||$$

On l'appelle le projeté de u sur C. Il est caractérisé par :

$$\forall \mathbf{v} \in \mathcal{C}, \langle P_C(\mathbf{u}) - \mathbf{u}, \mathbf{v} - P_C(\mathbf{u}) \rangle \geqslant 0$$

De plus l'application P_C est contract ante, i.e. :

$$\forall \mathbf{x}, \mathbf{y} \in V, ||P_C(\mathbf{x}) - P_C(\mathbf{y})|| \leq ||\mathbf{x} - \mathbf{y}||$$

- 1. Prouver l'existence et l'unicité de $P_C(\mathbf{u})$.
- 2. Prouver la caractérisation donnée de $P_C(\mathbf{u})$.
- 3. Utiliser cette caractérisation pour prouver que P_C est une application contractante.

Exercice 5

Soient V un espace de Hilbert et a une forme bilinéaire symétrique continue sur $V \times V$. Soit L une forme linéaire continue sur V. On pose $J(u) = \frac{1}{2}a(u,u) - L(u)$.

- 1. Montrer que J est déivable sur V et que $\langle J'(u), w \rangle = a(u, w) L(w)$ pour tout $u, w \in V$.
- 2. Soit $V = L^2(\Omega)(\Omega)$ ét ant un ouvert de \mathbb{R}^N , $a(u,v) = \int_{\Omega} uv dx$, et $L(u) = \int_{\Omega} f u dx$ avec $f \in L^2(\Omega)$. En identifiant V et V', montrer que J'(u) = u f.
- 3. Soit $V = H^1(\Omega) := \{uL^2(\Omega), \nabla u \in L^2(\Omega)\}$ munit du produit scalaire $\langle u, v \rangle = \int_{\Omega} uv dx + \int_{\Omega} \nabla u \nabla v dx$ et on définit la fonctionnelle J par

$$J(v) = \frac{1}{2}\lambda \int_{\Omega} |\nabla v|^2 dx + \frac{1}{2}k \int_{\Omega} |v|^2 dx - \int_{\Omega} f(x)v(x)dx$$

Étudier la problème de minimisation suivant :

$$\inf_{v \in H^1(\Omega)} J(v)$$