Αρμονικοί ταλαντωτές

Αρμονικοί ταλαντωτές

- Μερικά από τα θέματα που θα καλύψουμε:
- □ Μάζες σε ελατήρια, εκκρεμή
- \Box Διαφορικές εξισώσεις: $\frac{d^2x}{dt^2} + \frac{K}{m}x = 0$
 - ightharpoonup Με λύση της μορφής: $x = x_{\text{max}} \cos(\omega t + \varphi)$ όπου $\omega^2 = \frac{K}{m}$
- Φθίνουσες ταλαντώσεις
- Εξαναγκασμένες ταλαντώσεις

Ελατήρια

□ Θεωρήστε το γνωστό σας ελατήριο

Το σύστημα έχει ένα βαθμό ελευθερίας

Η εξίσωση της κίνησης γράφεται σύμφωνα με το 2° νόμο του Newton

$$F = ma = -Kx$$
 σε συνδυασμό με το νόμο του Hooke

Ξέρουμε όμως ότι η επιτάχυνση
$$a = \frac{d^2x}{dt^2} = \ddot{x}$$

Η εξίσωση της κίνησης γράφεται λοιπόν σαν:

$$F = m\ddot{x} = -Kx \Longrightarrow m\ddot{x} + Kx = 0$$

Δευτέρας τάξης (δεύτερη παράγωγος), ομογενής (=0), γραμμική (οι παράγωγοι εμφανίζονται σε πρώτη δύναμη) διαφορική εξίσωση Oooops τι κάνουμε?

Λύση της Δ.Ε. του απλού αρμονικού ταλαντωτή

Ένας τρόπος για να λύσουμε την εξίσωση είναι με τη μέθοδο διαχωρισμού των μεταβλητών.

Ορίζω:
$$ω^2 = \frac{K}{m}$$

$$\frac{d^2x}{dt^2} = -\omega^2 x \Rightarrow \frac{dv}{dt} = -\omega^2 x \Rightarrow \frac{dv}{dx} \frac{dx}{dt} = -\omega^2 x \Rightarrow v \frac{dv}{dx} = -\omega^2 x \Rightarrow v dv = -\omega^2 x dx$$

$$\Rightarrow \int v \, dv = \int -\omega^2 x \, dx \Rightarrow \frac{1}{2} v^2 = -\frac{1}{2} \omega^2 x^2 \Rightarrow v^2 = -\omega^2 x^2 \Rightarrow v = \pm \sqrt{-\omega^2} x$$

Παύση... Είμαστε στη μέση!!

Αυτή τη στιγμή έχουμε τη ταχύτητα συναρτήσει της θέσης.

Θέλουμε όμως την θέση συναρτήσει του χρόνου! Δηλαδή x(t) = ...

$$\upsilon = \sqrt{-\omega^2} x \Rightarrow \frac{dx}{dt} = \sqrt{-\omega^2} x \Rightarrow \frac{dx}{x} = \sqrt{-\omega^2} dt \Rightarrow \int \frac{dx}{x} = \int \sqrt{-\omega^2} dt \Rightarrow$$

$$\ln x + C = \sqrt{-\omega^2}t \implies x = Ae^{\pm\sqrt{-\omega^2}t}$$
 Λύση της διαφορικής εξίσωσης

Λύση της Δ.Ε. απλού αρμονικού ταλαντωτή

□ Yeaks !!! Η μέθοδος είναι μακρόσυρτη και καθόλου ευχάριστη

Το αποτέλεσμα είναι όμως ενδιαφέρον: $x(t) = Ae^{\pm \sqrt{-\omega^2}t}$

Τη λύση αυτή μπορούσαμε να την δοκιμάσουμε από την αρχή!!

Δηλαδή για να λύσουμε την Δ.Ε. δοκιμάζουμε διάφορες λύσεις.

Αν την επαληθεύουν τότε το τι δοκιμάσαμε είναι όντως λύση!!!

Η λύση που βρήκαμε είναι η μοναδική? Υπάρχουν άλλες λύσεις?

Από θεωρία Δ.Ε.: Για κάθε Δ.Ε. εξίσωση η-τάξης υπάρχουν η-ανεξάρτητες μεταξύ τους λύσεις.

(γραμμικές μόνο): Αν n-λύσεις είναι ανεξάρτητες μεταξύ τους τότε και ο γραμμικός τους συνδυασμός είναι λύση

Δηλαδή
$$x(t) = Ae^{+\sqrt{-\omega^2}t} + Be^{-\sqrt{-\omega^2}t}$$

είναι λύση και μάλιστα καλείται <mark>γενική λύση ή πλήρης λύση</mark> της εξίσωσης

Ένα ακόμα προβληματικό σημείο:

Τι συμβαίνει με το ω? Είναι θετικό ? αρνητικό?

Λύση Δ.Ε. απλού αρμονικού ταλαντωτή

- \square Av K < 0 ή m < 0 (δεν έχουμε φυσικό σύστημα) $-ω^2$ = -K/m > 0
 - ightharpoonup Οι λύσεις είναι της μορφής $x(t) = Ae^{\omega t}$ και $x(t) = Be^{-\omega t}$
 - Ο γραμμικός τους συνδυασμός είναι επίσης λύση $x(t) = Ae^{\omega t} + Be^{-\omega t}$

Η εξίσωση αυτή δεν αντιστοιχεί σε αρμονική κίνηση.

Εν αντιθέσει αντιστοιχεί σε εκθετικά αυξανόμενη ή φθίνουσα κίνηση

Χρησιμοποιώντας την: $e^{\omega t} = \cosh \omega t + \sinh \omega t$

Μπορούμε να γράψουμε τις λύσεις με τις ακόλουθες ισοδύναμες μορφές:

$$x(t) = Ae^{\omega t} + Be^{-\omega t}$$

$$x(t) = C \cosh \omega t + D \sinh \omega t$$

$$x(t) = \operatorname{E} \cosh(\omega t + \varphi_1)$$

$$x(t) = F \sinh(\omega t + \varphi_2)$$

Λύση Δ.Ε. Απλού αρμονικού ταλαντωτή

□ Αν K>0 και m>0 (φυσικό σύστημα) τότε ω>0 → $-ω^2<0$ Οι λύσεις είναι της μορφής $x(t)=Ae^{iωt}$ και $x(t)=Be^{-iωt}$ με πλήρη λύση: $x(t)=Ae^{iωt}+Be^{-iωt}$ Χρησιμοποιώντας $e^{iθ}=\cos \theta+i\sin \theta$ έχουμε $x(t)=C\cos ωt+D\sin ωt$ $x(t)=E\cos(ωt+φ_1)$ Όλες οι μορφές είναι λύσεις της διαφορικής εξίσωσης του αρμονικού ταλαντωτή

Οι σταθερές A,B, ή C και D, E,F και ϕ_1,ϕ_2 καθορίζονται από τις αρχικές συνθήκες του προβλήματος.

Δηλαδή την κατάσταση του συστήματος μια χρονική στιγμή $t=t_0$ συνήθως $t_0=0$.

$$A$$
V $x(t) = A \cos \omega t + B \sin \omega t$ τότε $x(0) = A$ αρχική θέση $\frac{dx(0)}{dt} = \omega B$ αρχική ταχύτητα

Απλός αρμονικός ταλαντωτής

Η γενική μορφή της λύσης του αρμονικού ταλαντωτή είναι

$$x(t) = A\cos\omega \ t + B\sin\omega \ t$$

 \Box Εν γένει αν x(t) = x(t+T) η κίνηση είναι περιοδική με περίοδο T $\cos \omega t = \cos(\omega(t+T)) = \cos(\omega t + 2\pi)$

$$T = \frac{2\pi}{\omega} = \frac{1}{v}$$

αν $T = \frac{2\pi}{c} = \frac{1}{V}$ Περίοδος ταλάντωσης ή συχνότητα

Οι μορφές που γράψαμε πριν βγαίνουν από την γενική με την βοήθεια τριγωνομετρικών σχέσεων και οι σταθερές συνδέονται μεταξύ τους

Χρησιμοποιώντας cos(A + B) = cos A cos B - sin A sin B

$$x(t) = E\cos(\omega t + \varphi_1) = E\cos(\omega t)\cos\varphi_1 - E\sin(\omega t)\sin\varphi_1$$

Επομένως για $A = E \cos \varphi_1$ και $B = -E \sin \varphi_1$ γίνεται:

$$x(t) = E\cos(\omega t + \varphi_1) = A\cos(\omega t) + B\sin(\omega t)$$

Απλός αρμονικός ταλαντωτής και κυκλική κίνηση

- □ Επομένως η εξίσωση $x(t) = A\cos(\omega t + \varphi)$ παριστάνει μια περιοδική, συνημιτονοειδή κίνηση με απομάκρυνση ή πλάτος A και η γωνία ϕ προσδιορίζει την ϕ άση της κίνησης.
 - Το πλάτος και η φάση είναι σταθερές της κίνησης που προσδιορίζονται από τις αρχικές συνθήκες του συστήματος.
 - Η φάση εν γένει χρησιμοποιείται για την σύγκριση της κίνησης δύο συστημάτων.
- Χαρακτηριστικά, η κίνηση που περιγράφεται από την εξίσωση είναι όμοια με την κίνηση που εκτελεί η προβολή μιας κυκλικής κίνησης στον x-άξονα

Ομοιόμορφη κυκλική κίνηση χαρακτηρίζεται από

$$\vec{a} = -\omega^2 \vec{r} \Rightarrow a_x = -\omega^2 x \Rightarrow \frac{d^2 x}{dt^2} = -\omega^2 x \Rightarrow \ddot{x} = -\omega^2 x$$

Ίδια διαφορική εξίσωση με αυτή μάζας εξαρτημένης σε ελατήριο

Απλός αρμονικός ταλαντωτής και κυκλική κίνηση

- Για t=0, θ=φ η γωνία που διαγράφει η ΟΡ με τον x-άξονα
- Συναρτήσει του t, το P περιστρέφεται πάνω στο κύκλο ακτίνας R=A ενώ το T κινείται παλινδρομικά στο x-άξονα ανάμεσα σε +A και –A
 Τα σημεία P και T έχουν την ίδια συντεταγμένη x → x=Acos(ωt+φ)
- Ο χρόνος για μια πλήρη περιστροφή είναι ίσος με την περίοδο κίνησης
 - → γωνιακή ταχύτητα περιστροφής = γωνιακή συχνότητα ταλάντωσης
- ➤ Η γραμμική ταχύτητα του P, υ=ωR=ωA ενώ του T, υ_x=-ωAsin(ωt+φ) από dx/dt
- ➤ Η γραμμική επιτάχυνση του P έχει φορά προς το κέντρο, α=ω²Α
- ➤ Η επιτάχυνση του Τ: α_x=-ω²Acos(ωt+φ)=x-συνιστώσα της α του Ρ

Απλή Αρμονική ταλάντωση – Εξισώσεις κίνησης

Από την εξίσωση-λύσης της ΔΕ του αρμονικού ταλαντωτή μπορούμε να εξαγάγουμε τις υπόλοιπες εξισώσεις κίνησης:

$$x(t) = A\cos(\omega t + \varphi)$$

$$v(t) = \frac{dx}{dt} = -A\omega\sin(\omega t + \varphi)$$

$$a(t) = \frac{d^2x}{dt^2} = \frac{dv}{dt} = -\omega^2 A\cos(\omega t + \varphi) \Rightarrow a(t) = -\omega^2 x$$

Οι ακραίες τιμές είναι επομένως:

$$v(t)_{\text{max}} = -A\omega$$
 $a(t)_{\text{max}} = -A\omega^2$

- Η φάση της ταχύτητας διαφέρει από αυτή της θέσης κατά 90° ή π/2
- Η φάση της ταχύτητας διαφέρει από αυτή της επιτάχυνσης κατά 90° ή π/2
- Η φάση της επιτάχυνσης διαφέρει από αυτή της θέσης κατά 180° ή π

Μάζα σε ελατήριο

$$x(t) = A\cos(\omega t)$$

Για t=0, x(0)=0 το σύστημα περνά από τη θέση ισορροπίας

Απλή αρμονική ταλάντωση

Τι έχουμε δει μέχρι τώρα

$$F = m\ddot{x} = -Kx \Rightarrow m\ddot{x} + Kx = 0$$
 Εξίσωση κίνησης αρμονικού ταλαντωτή

Διάφορες μορφές λύσεις της εξίσωσης:

$$x(t) = A\cos(\omega t + \varphi)$$

$$x(t) = B\sin(\omega t + \varphi)$$

$$x(t) = C\cos\omega t + D\sin\omega t$$

$$x(t) = Ee^{i\omega t} + Fe^{-i\omega t}$$
A: πλάτος ταλάντωσης
$$\varphi$$
: φάση
$$\omega = \sqrt{\frac{K}{m}} = \frac{2\pi}{T} = 2\pi v \text{ γωνιακή συχνότητα}$$

Άλλες εξισώσεις κίνησης:

$$v_x = -(A\omega)\sin(\omega t + \varphi)$$
 Ταχύτητα: $v_{\text{max}} = A\omega$

$$a(t) = \ddot{x} = -(A\omega^2)\cos(\omega t + \varphi)$$
 Επιτάχυνση: $a_{\text{max}} = A\omega^2$

- Κίνηση παρόμοια με την κίνηση της προβολής στον x-άξονα ενός σώματος που εκτελεί κυκλική κίνηση
- ➤ Η ταχύτητα μικρότερη κοντά στο Α → περνά περισσότερη ώρα εκεί

Ενέργεια απλού αρμονικού ταλαντωτή

- ✓ Στις διαλέξεις για έργο και ενέργεια είχαμε συζητήσει την δυναμική ενέργεια που αποθηκεύεται σε ένα ελατήριο κατά την συμπίεση ή επιμήκυνσή του καθώς και την σχέση μεταξύ δυναμικής και κινητικής ενέργειας για μια μάζα m εξαρτημένη από το ελατήριο.
- Ξέρουμε ότι το ελατήριο με μια μάζα εξαρτώμενη από το ένα άκρο του αποτελούν σύστημα απλού αρμονικού ταλαντωτή: $x(t) = A\cos(\omega t + \varphi)$

$$E = K + U$$
 και διατηρείται

$$\Box$$
 Η μηχανική ενέργεια είναι: $E=K+U$ και διατηρείται $K=rac{1}{2}mv^2=rac{1}{2}m\omega^2 {
m A}^2 \sin^2(\omega t+\varphi)=rac{1}{2}k{
m A}^2 \sin^2(\omega t+\varphi)$ αφού $\omega=\sqrt{rac{k}{m}}$

$$U = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega t + \varphi)$$

$$U_{\text{max}} = K_{\text{max}}$$
 Ε ανάλογη πλάτους

$$U_{\text{max}} = K_{\text{max}} \qquad \text{E aváloyh that ous} \qquad \frac{1}{2}kA^2$$

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 \Rightarrow$$

$$v = \pm \sqrt{\frac{k}{m}(A^2 - x^2)} = \pm \omega\sqrt{(A^2 - x^2)}$$

Παράδειγμα

□ Μάζα 12Kg είναι εξαρτημένη σε ελατήριο με K=1.3x10⁴. Το σύστημα ξεκινά με επιμήκυνση +55cm. Ποια η υ_{max}.

$$x(t) = A\cos(\omega t + \varphi)$$

$$v(t) = -A\omega\sin(\omega t + \varphi)$$

$$v(t=0) = -A\omega \sin(\varphi) = 0 \Rightarrow \varphi = 0 \ \eta \ \varphi = \pi$$

Διαλέγουμε την περίπτωση με φ=0 μια και η αρχική επιμήκυνση >0

$$x(t=0) = A\cos(\varphi) = 0.55$$

$$\omega = \sqrt{\frac{k}{m}} = 33rad / s$$

$$x(t) = 0.55\cos(33t)$$

$$v_{\text{max}} = A\omega = 18m / s$$

$$v(t) = -v_{\text{max}} \sin(33t)$$

Συνθήκες για να έχουμε απλή αρμονική ταλάντωση

- Μια κίνηση είναι απλή αρμονική ταλάντωση μόνο όταν μια από τις 2 παρακάτω ισοδύναμες συνθήκες ισχύουν:
 - (α) Αν υπάρχει μια συνισταμένη δύναμη σε ένα σύστημα η οποία είναι ανάλογη της θέσης του συστήματος όπως μετριέται από τη θέση ισορροπίας του με μια σταθερά αναλογίας του τύπου του ελατηρίου

$$\vec{F}_{tot} = -kx\hat{i}$$

ανεξάρτητα από το αν η δύναμη είναι από ελατήριο ή όχι και αν η δύναμη αυτή, ή η δύναμη μαζί με μια σταθερή δύναμη που ασκείται κατά μήκος του ίδιου άξονα, είναι οι μόνες δυνάμεις του συστήματος ενεργούσες στην x-διεύθυνση

(β) Αν εφαρμόζοντας το νόμο του Newton καταλήξουμε σε Δ.Ε. πανομοιότυπη της Δ.Ε. του απλού αρμονικού ταλαντωτή.

$$\frac{d^2x}{dt^2} + \omega^2 x = 0 \ m/s^2$$

Απλή αρμονική ταλάντωση - Αρχικές συνθήκες

 \square Αν δίνονται τα K και m, και οι αρχικές συνθήκες $x(0)=x_0$ και $u(0)=u_0$ να βρεθεί η εξίσωση τροχιάς x(t).

Λύση:

Κάθε μορφή της λύσης της εξίσωσης κίνησης περιέχει ΔΥΟ άγνωστες ποσότητες.

Αυτές δεν μπορούν να υπολογισθούν από την F=ma.

- Προσδιορίζονται από τις 2 αρχικές τιμές της θέσης (x) και ταχύτητας (υ)

και ταχύτητας (υ)
Aν γράψουμε το x σαν
$$x(t) = A\cos(\omega t + \varphi) \Rightarrow \mu \varepsilon \quad \omega = \sqrt{\frac{K}{m}}$$

 $x_0 \equiv x(t=0) = A\cos\varphi$
 $v_0 \equiv v(t=0) = A\omega\sin\varphi$ $\Rightarrow \tan\varphi = -\frac{v_0}{\omega x_0}$ $A = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}}$ $\Rightarrow \frac{\Delta \iota \alpha \tau \dot{\eta} \rho \eta \sigma \eta}{\varepsilon v \dot{\varepsilon} \rho \gamma \varepsilon \iota \alpha \varsigma}$
 $\frac{1}{2}KA^2 = \frac{1}{2}Kx_0^2 + \frac{1}{2}mv_0^2$
Aν χρησιμοποιούσαμε $x(t) = C\cos\omega t + D\sin\omega t$ $A^2 = x_0^2 + \frac{w_0^2}{\omega^2} = x_0^2 + \frac{m}{K}v_0^2$

ightharpoonup Αν χρησιμοποιούσαμε $x(t) = C \cos \omega t + D \sin \omega t$

$$\begin{vmatrix} x_0 \equiv x(t=0) = C \\ v_0 \equiv v(t=0) = \omega D \end{vmatrix} \Rightarrow x(t) = x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t$$
 Έτσι φαίνονται περισσότερο οι αρχικές συνθήκες

Γιατί τα κοιτάζουμε όλα αυτά?

 \mathbf{X}_0

- □ Διαλέγουμε να μελετήσουμε την F=-kx για δύο βασικούς λόγους:
 - Τέτοιες δυνάμεις συναντάμε πολύ συχνά στη φύση
 - > Μπορούμε εύκολα να λύσουμε την εξίσωση κίνησης
- □ Σχετικά με το πρώτο λόγο, φανταστείτε ένα δυναμικό της μορφής V(x).
- □ Επικεντρώνουμε την προσοχή μας σε ένα τοπικό ελάχιστο.
- □ Έστω ότι το V(x) έχει ένα ελάχιστο στη θέση x₀. Μπορούμε να πάρουμε το ανάπτυγμα σε σειρά Taylor του V(x) της μορφής:

$$V(x) = V(x_0) + V'(x_0)(x - x_0) + \frac{1}{2!}V''(x_0)(x - x_0)^2 + \frac{1}{3!}V'''(x_0)(x - x_0)^3 + \cdots$$
σταθ. εξ'ορισμού=0 αρκετά μικρό για x κοντά στο x_0

Επομένως μπορούμε να γράψουμε: $V(x) \approx \frac{1}{2}V''(x_0)(x-x_0)^2$

παραβολή Δηλαδή κάθε δυναμικό μοιάζει με μια παραβολή αν πάμε αρκετά κοντά σε ένα ελάχιστο.

^x Δηλαδή π.χ.
$$V''(x_0) = "K"$$
 τότε: $\frac{1}{2}V''(x_0)(x-x_0)^2 \leftrightarrow \frac{1}{2}K(ax)^2$