Session 69: General Linear Recurrence Relations

- Homogeneous Recurrence Relations with Repeated Root
- Linear Homogeneous Recurrence Relations of Arbitrary Degree

Solving Linear Homogeneous Recurrence Relations with Repeated Root

Theorem 2: Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that

$$r^2 - c_1 r - c_2 = 0$$

has one repeated root r_0 . Then the sequence $\{a_n\}$ is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$$

for n = 0, 1, 2,..., where α_1 and α_2 are constants.

Example

What is the solution to the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

Characherisdic equation:
$$r^2 - 6r + 9 = 0$$

Roods: $r_1 = r_2 = 3$

Pherefore dhe sequence has the form: $a_n = \alpha_n 3^n + \alpha_2 n 3^n$

Using initial conditions:

$$a_0 = 1 = \alpha_1 + \alpha_2 \cdot 0 = \alpha_1 \Rightarrow \alpha_1 = 1$$

$$a_1 = 6 = 3^1 + \alpha_2 \cdot 1 \cdot 3^1 \Rightarrow 3\alpha_2 = 3 \Rightarrow \alpha_2 = 1$$
He sequence is: $\alpha_1 = 3^n + \alpha_3^n$

Solving Linear Homogeneous Recurrence Relations of Arbitrary Degree

Theorem 3: Let c_1 , c_2 ,..., c_k be real numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \dots - c_k = 0$$

has k distinct roots r_1 , r_2 , ..., r_k . Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^m + \dots + \alpha_k r_k^n$$

for n = 0, 1, 2, ..., where $\alpha_1, \alpha_2, ..., \alpha_k$ are constants.

The General Case with Repeated Roots Allowed

Theorem 4: Let $c_1, c_2, ..., c_k$ be real numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \cdots - c_k = 0$$

has t distinct roots $r_1, r_2, ..., r_t$ with multiplicities $m_1, m_2, ..., m_t$, respectively so that $m_i \ge 1$ for i = 0, 1, 2, ..., t and $m_1 + m_2 + ... + m_t = k$. Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

if and only if

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n$$

$$+(\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n$$

$$+\dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n$$

for n = 0, 1, 2, ..., where $\alpha_{i,j}$ are constants for $1 \le i \le t$ and $0 \le j \le m_{i-1}$.

Example

What is the solution to the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with $a_0 = 1$, $a_1 = -2$, and $a_2 = -1$.

Claradoristic equation:
$$r^3 + 3r^2 + 3r + 1 = 0$$

Roots: $r = -1$ $(r+1)^3$
therefore $a_n = \alpha_n(-1)^n + \alpha_2 n(-1)^n + \alpha_3 n^2(-1)^n$
 $a_0 = 1 = \alpha_n$
 $a_1 = -2 = (-1) + \alpha_2(-1) + \alpha_3(-1) = \alpha_2 + \alpha_3 = 1 = \alpha_3 = 1 - \alpha_2$
 $a_2 = -1 = (-1)^2 + \alpha_2 (-1)^2 + (1 - \alpha_2)^2 (-1)^2$
 $a_1 = 1 + 2\alpha_2 + 1 - 4\alpha_2$
 $a_2 = -1 = (-1)^2 + \alpha_2 (-1)^2 + (1 - \alpha_2)^2 (-1)^2$
 $a_1 = 1 + 2\alpha_2 + 1 - 4\alpha_2$
 $a_2 = 1 + 2\alpha_2 + 1 - 4\alpha_2$
 $a_3 = 1 - 2\alpha_2 + 2\alpha_2 = 3$, $a_3 = -2$
therefore $a_1 = (-1)^n + 3n(-1)^n - 2n^2(-1)^n = (-1)^n (1 + 3n - 2n^2)$

Summary

- Homogeneous Recurrence Relations with Repeated Root
- Linear Homogeneous Recurrence Relations of Arbitrary Degree