Operator Norm

Definition: Operator Norm

Let $\|\cdot\|$ be a vector norm on C^n and $A \in M_n$. The vector-induced matrix norm with respect to $\|\cdot\|$ is given by:

$$|||A||| = \max_{\|\vec{x}\|=1} \{||A\vec{x}||\}$$

This norm is often called the *operator norm*.

Check the five properties to make sure that the operator norm is in fact a proper matrix norm:

1). Nonnegativity

Assume
$$A \in M_n$$

Assume $\vec{x} \in \mathbb{C}^n$ such that $\|\vec{x}\| = 1$
By nonnegativity of the vector norm, $\|A\vec{x}\| \ge 0$
So $\max_{\|\vec{x}\|=1}\{\|A\vec{x}\|\} \ge 0$
 $\therefore |||A||| \ge 0$

2). Positivity

$$\implies \operatorname{Assume} A \neq 0$$

$$\exists \vec{y} \in \mathbb{C}^n, \|\vec{y}\| = 1 \text{ and } A\vec{y} \neq 0$$

$$\||A||| = \max_{\|\vec{x}\|=1} \{\|A\vec{x}\|\} \geq \|A\vec{y}\| > 0$$

$$\therefore \||A||| \neq 0$$

$$\iff \operatorname{Assume} \vec{x} \in \mathbb{C}^n, \|\vec{x}\| = 0$$

$$A\vec{x} = \vec{0}$$

$$\|A\vec{x}\| = \|\vec{0}\| = 0$$

$$\max_{\|\vec{x}\|=1} \{\|A\vec{x}\|\} = 0$$

$$\therefore \||A||| = 0$$

3). Homogeneity Assume $c \in \mathbb{C}$:

$$\begin{aligned} |||cA||| &= & \max_{\|\vec{x}\|=1} \{ ||cA\vec{x}|| \} \\ &= & \max_{\|\vec{x}\|=1} \{ |c| \, ||A\vec{x}|| \} \\ &= & |c| \max_{\|\vec{x}\|=1} \{ ||A\vec{x}|| \} \\ &= & |c| \, |||A||| \end{aligned}$$

4). Subadditivity

$$\begin{aligned} |||A + B||| &= \max_{\|\vec{x}\|=1} \{ ||(A + B)\vec{x}|| \} \\ &= \max_{\|\vec{x}\|=1} \{ ||A\vec{x} + B\vec{x}|| \} \\ &\leq \max_{\|\vec{x}\|=1} \{ ||A\vec{x}|| + ||B\vec{x}|| \} \\ &\leq \max_{\|\vec{x}\|=1} \{ ||A\vec{x}|| \} + \max_{\|\vec{x}\|=1} \{ ||B\vec{x}|| \} \\ &= |||A||| + |||B||| \end{aligned}$$

5). Submultiplicativity

Assume $A, B \in M_n$ Assume $\vec{x} \in \mathbb{C}^n, ||\vec{x}|| = 1$ Assume $B\vec{x} \in \mathbb{C}^n$

$$\begin{split} \left\| A \frac{B\vec{x}}{\|B\vec{x}\|} \right\| & \leq |||A||| \\ \|A(B\vec{x})\| & \leq |||A||| \, \|B\vec{x}\| \\ \|(AB)\vec{x}\| & \leq |||A||| \, \|B\vec{x}\| \\ \\ \left\| ||AB||| & = \max_{\|\vec{x}\|=1} \{ \|(AB)\vec{x}\| \} \\ & \leq \max_{\|\vec{x}\|=1} \{ |||A||| \, \|B\vec{x}\| \} \\ & = |||A||| \, \max_{\|\vec{x}\|=1} \{ \|B\vec{x}\| \} \\ & = |||A||| \, |||B||| \end{split}$$