Поиск эволюционирующих подпоследовательностей (цепочек) временного ряда

Эволюция человека — это цепь непрерывных сомнений.

С. Михалюк

© М.Л. Цымблер 23.07.2023

Содержание

- Понятие цепочки
- Алгоритмы поиска цепочек
- Примеры применения

Матричный профиль ряда (напоминание)

Матричный профиль показывает расстояние от каждой подпоследовательности до ее *ближсайшего соседа* **Индекс матричного профиля** показывает место *ближсайшего соседа* каждой подпоследовательности

Упрощенное отображение мотивов ряда

- Подпоследовательности точки пространства \mathbb{R}^m
- Скопления соответствуют участкам ряда с локальными минимумами матричного профиля

Упрощенное отображение top-2 мотивов ряда

- Подпоследовательности точки пространства \mathbb{R}^m
- Скопления соответствуют участкам ряда с локальными минимумами матричного профиля

От мотивов ряда к цепочкам

От мотивов ряда к цепочкам

Определение цепочки

Упрощение:
$$m=1$$
, $dist(T_{i,m},T_{j,m})=|t_i-t_j|$

T 47 32 1 22 2 58 3 36 4 -5 5 40

Определение цепочки

- $LNN(\cdot)/RNN(\cdot)$ ближайший сосед слева/справа от данной подпоследовательности
- Если x и y два последовательных звена цепочки, то y = RNN(x), x = LNN(y)
 - Ближайший сосед слева *LNN*
 - Ближайший сосед справа *RNN*
 - Последовательные звенья соединены петлей

Определение цепочки

- $LNN(\cdot)/RNN(\cdot)$ ближайший сосед слева/справа от данной подпоследовательности
- Если x и y два последовательных звена цепочки, то y = RNN(x), x = LNN(y)
 - Ближайший сосед слева *LNN*
 - Ближайший сосед справа *RNN*
 - Последовательные звенья соединены петлей

Левый и правый матричные профили

Левый (правый) матричный профиль и его индекс хранит информацию о ближайшем соседе слева (справа)

Левый и правый матричные профили

- Левый профиль расстояния для $T_{i,m}$: $DL_i = \left\{ d_{i,l} \right\}_{l=1}^{i-m/4}$ $d_{i,j} = \mathrm{ED}_{\mathrm{norm}}(T_{i,m}, T_{j,m})$
- Правый профиль расстояния для $T_{i,m}$: $DR_i = \left\{d_{i,r}\right\}_{r=i+m/4}^{n-m+1}$
- Ближайший сосед слева для $T_{i,m}$: $LNN(T_{i,m}) = T_{i,m}$, $d_{i,j} = \min(DL_i)$
- Ближайший сосед справа для $T_{i,m}$: $RNN(T_{i,m}) = T_{j,m}$, $d_{i,j} = \min(DR_i)$
- Левый матричный профиль $T: PL = \{\min(DL_i)\}_{i=1}^{n-m+1}$
- Индекс левого матричного профиля $T: IL = \{IL_i\}_{i=1}^{n-m+1}, IL_i = j$ при $LNN(T_{i,m}) = T_{j,m}$
- Правый матричный профиль $T: PR = \{\min(DR_i)\}_{i=1}^{n-m+1}$
- Индекс левого матричного профиля $T:IR=\{IR_i\}_{i=1}^{n-m+1}$, $IR_i=j$ при $RNNig(T_{i,m}ig)=T_{j,m}$
- Цепочка $T: TSC = \left\{T_{C_i,m}\right\}_{i=1}^k, \ \forall i \in 1..k-1$ $C_i \leq C_{i+1}, \quad RNN\left(T_{C_i,m}\right) = T_{C_{i+1},m}, \qquad LNN\left(T_{C_{i+1},m}\right) = T_{C_i,m}$

Закрепленные (anchored) и незакрепленные (unanchored) цепочки

Закрепленная цепочка:

 $32 \rightleftharpoons 36 \rightleftharpoons 40$

Незакрепленная цепочка

имеет тах длину среди всех цепочек ряда:

$$1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5$$

Множество всех цепочек (All-Chain Set)

- Множество всех закрепленных цепочек, каждая из которых не включена в какую-либо другую цепочку
- Свойства МВЦ
 - 1. Включает в себя все элементы (подпоследовательности) ряда
 - 2. Каждый элемент (подпоследовательность) включен единожды

Содержание

- Понятие цепочки
- Алгоритмы поиска цепочек
- Примеры применения

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	0	0	0	0	0	0	0	0	0	0	0	0

Множество всех цепочек

	1	2	3	4	5	6	7	8	9	10	11	12
T												
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	0	0	0	0	0	0	0	0	0	0	0	0

Множество всех цепочек

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка47

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	0	0	0	0	0	0	0	0	0	0	0

Множество всех цепочек

47

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка47

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	0	0	0	0	0	0	0	0	0	0	0

Множество всех цепочек

47

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка

 $32 \rightleftharpoons 36 \rightleftharpoons 40$

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	0	0	0	0	0	1	0	0	0	1

Множество всех цепочек

 $47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40$

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка

 $32 \rightleftharpoons 36 \rightleftharpoons 40$

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	0	0	0	0	0	1	0	0	0	1

Множество всех цепочек

 $47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40$

21

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка

$$1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5$$

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	0	1	0	1	1	1	0	1	1

Множество всех цепочек

47
$$32 \rightleftharpoons 36 \rightleftharpoons 40$$
 $1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5$

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка22

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	0	1	1	1	0	1	1

Множество всех цепочек

 $47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40 \quad 1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5 \quad 22$

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Уже обработан

Текущая цепочка 22

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	0	1	1	1	0	1	1

Множество всех цепочек

$$47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40 \quad 1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5 \quad 22$$

										10		
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR												
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка22

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	0	1	1	1	0	1	1

Множество всех цепочек

 $47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40 \quad 1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5 \quad 22$

	1	2	3	4	5	6	7	8	9	10	11	12
		1							1	- 5		
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Текущая цепочка 58

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	1	1	1	1	0	1	1

Множество всех цепочек

 $47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40 \quad 1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5 \quad 22 \quad 58$

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Уже обработаны

Текущая цепочка

icky	щал	цепочка	a
- 5			

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	1	1	1	1	1	1	1

Множество всех цепочек

47
$$32 \rightleftharpoons 36 \rightleftharpoons 40$$
 $1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5$ 22 58 -5

	1	2	3	4	5	6	7	8	9	10	11	12
T	47	32	1	22	2	58	3	36	4	-5	5	40
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	1	1	1	1	1	1	1

Множество всех цепочек $47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40 \quad 1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5 \quad 22 \quad 58 \quad -5$

Левый и Правый индексы МП позволяют вычислить МВЦ за O(n)

Вычисление незакрепленной цепочки

	1	2	3	4	5	6	7	8	9	10	11	12
T				1	l	1	ı	I				
IR	12	8	5	8	7	12	9	12	11	11	12	0
IL	0	1	2	2	3	1	5	2	7	3	9	8

Элемент	47	32	1	22	2	58	3	36	4	-5	5	40
Обработан?	1	1	1	1	1	1	1	1	1	1	1	1

Множество всех цепочек

$$47 \quad 32 \rightleftharpoons 36 \rightleftharpoons 40 \quad 1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5 \quad 22 \quad 58 \quad -5$$

Самая длинная цепочка

$$1 \rightleftharpoons 2 \rightleftharpoons 3 \rightleftharpoons 4 \rightleftharpoons 5$$

Алгоритм поиска закрепленной цепочки (Anchored Time Series Chain)

```
Algorithm ATSC(IN: T, IR, IL, j; OUT: C)

C := \{j\}

while IR(j) \neq 0 and IL(IR(j)) = j do

j \coloneqq IR(j)

C \coloneqq C \cup j

return C
```

Алгоритм поиска незакрепленной цепочки

```
Algorithm ALLC(IN: T, IR, IL; OUT: S, UC)
Len := \{1\}_1^{n-m+1}; S := \emptyset
for i := 1 to |IR| do
  if Len(i) = 1 then
     j \coloneqq i; C \coloneqq \{j\}
     while IR(j) \neq 0 and IL(IR(j)) = j do
        j \coloneqq IR(j); Len(j) \coloneqq -1; Len(i) \coloneqq Len(i) + 1; C \coloneqq C \cup j
     S \coloneqq S \cup C
                                                              Исключает повторный просмотр
UC := ATSC(T, IL, IR, \arg\max Len(i))
```

цепочек, входящих в уже выявленные цепочки

return S, UC

Содержание

- Понятие цепочки
- Алгоритмы поиска цепочек
- Примеры применения

Введение в дисциплину 23.07.2023

Поиск цепочек: энергопотребление, тренировки

Энергопотребление холодильника

Запись датчика с левой икры спортсмена, когда он начал бег трусцой на беговой дорожке

Применение цепочек: Эксперимент с наклоняемой мед. каталкой

Введение в дисциплину 23.07.2023

Применение цепочек: Запросы Google

- Рост важности Киберпонедельника: за 10 лет выпуклость переходит от плавной и занимающей больший период между Днем благодарения и Рождеством к резкой и сосредоточенной на Дне благодарения
- Киберпонедельник (понедельник после Дня благодарения) маркетинговый термин для побуждения людей делать покупки онлайн; пресс-релиз "Киберпонедельник становится одним из крупнейших дней онлайн-покупок в году" от 28 ноября 2005 г., дата совпадает с первым проблеском острого пика в цепочке

Применение цепочек: Биометрическая идентификация по походке

- Набор данных о походке записан для проверки гипотезы о биометрической идентификации. Рассматривается нестабильность мобильного телефона с точки зрения его ориентации и положения, когда он свободно помещается в карман
- Характер походки начинается как непредсказуемый (телефон болтается в кармане пользователя) и в конечном итоге успокаивается (телефон становится на место)

Литература

- 1. Zhu Y., Imamura M., Nikovski D., Keogh E.J. Matrix Profile VII: Time series chains: A new primitive for time series data mining. 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21, 2017. pp. 695-704. https://doi.org/10.1109/ICDM.2017.79
- 2. Zhu Y., Imamura M., Nikovski D., Keogh E.J. Introducing time series chains: A new primitive for time series data mining. Knowl. Inf. Syst. 60(2), 1135-1161 (2019). https://doi.org/10.1007/s10115-018-1224-8
- 3. Imamura M., Nakamura T., Keogh E.J. Matrix Profile XXI: A geometric approach to time series chains improves robustness. KDD'20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, CA, USA, August 23-27, 2020. 1114-1122. https://doi.org/10.1145/3394486.3403164