Exercise 2

Problem

$$\max_{x1,x2\in\mathbb{R}}2x_0x_1 \ ext{s.t.} egin{cases} x_0^2-x_0=0 \ -x_1^2+x_1+rac{1}{4}\geq 0 \end{cases}$$

Solution

We have $x_0^2-x_0=0.$ So $x_0\in\{0,1\}.$

Case 1: $x_0 = 0$

The objective function becomes 0.

Case 2: $x_0 = 1$

The objective function becomes $2x_1$.

The condition is $-x_1^2 + x_1 + \frac{1}{4} \ge 0$.

And yet, $-x_1^2 + x_1 + \frac{1}{4} = \frac{1}{2} - \left(x_1 - \frac{1}{2}\right)^2$. So we need to have $\frac{1}{2} - \left(x_1 - \frac{1}{2}\right)^2 \geq 0$. So we need to have $\frac{1}{2} \geq \left(x_1 - \frac{1}{2}\right)^2$.

So we need to have $x_1 - \frac{1}{2} \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$.

So we need to have $x_1 \in \left[\frac{1}{2} - \frac{1}{\sqrt{2}}, \frac{1}{2} + \frac{1}{\sqrt{2}}\right]$.

So we have $2x_1 \in \left[1-\sqrt{2}, 1+\sqrt{2}
ight]$.

So the maximum is $1+\sqrt{2}$, for $x_1=\frac{1}{2}+\frac{1}{\sqrt{2}}$.

Conclusion

The maximum is:

$$1+\sqrt{2}$$

for

$$(x_0,x_1)=\left(1,rac{1}{2}+rac{1}{\sqrt{2}}
ight)$$