MAT8010 Homeworks #7

BY YUEJIAN MO June 14, 2018

1(19H). Let \mathcal{D} be a $3 - (v, k, \lambda)$ design.	Suppose that the	derived design of	of \mathcal{D} with	respect to
a point p is a symmetric design.				

(1). Show that $\lambda(v-2) = (k-1)(k-2)$

Proof.

- (2). Show that any two blocks of \mathcal{D} meet in 0 or $\lambda + 1$ points
- (3). Show that the set of points not on a block B together with the blocks disjoint form B from a 2-design \mathcal{D}^B .

- (4). Apply Fisher's inequality to the design \mathcal{D}^B and deduce that v=2k or otherwise $k=(\lambda+1)(\lambda+2)$ or $k=2(\lambda+1)(\lambda+2)$.
- **2.** Let Γ be an $\operatorname{srg}(v, k, \lambda, \mu)$ and let -s be its smallest eigenvalue. If C is a coclique (independent set) of Γ , then $|C| \leq sv/(k+s)$, equality holds if and only if every vertex x of Γ not in C has exactly s neighbors in C.
- **3(21Q).** Prove the so-called *Friendship Theorem:* At a party with n people (n > 3) every two persons have exactly one mutual friend. Then there is a unique person at the party who is a friend of all the others. Use problem 1J.

Proof.

(1) This problem equal to following statement:

G is a finite graph in which any two vertices have precisely one common neighbor. Then there is a vertex which is adjacent to all the other vertices.

From Problem 1J, we know that

Let G be a simple graph on n vertices (n > 3) with no vertex of degree n - 1. Suppose that for any two vertices of G there is a unique vertex joined to both of them.