Ė名:		
2号:		
≌院(系): _	
	级	班

大 连 理 工 大 学

课程名称: 概率统计A 试卷: A(48 学时)考试形式: 闭卷

授课院 (系): _数 学_ 考试日期: 2016年5月4日 试卷共 4页

		_	Ξ	四	五	六	七	总分
标准分	24	12	14	10	10	15	15	100
得分								

一.(共3个小题,每题8分)

装

1. 设某人向一目标连续射击,每次击中的概率均为 $\frac{1}{3}$,且各次射击是否 命中相互独立。求此人第6次射击时恰好命中第3次的概率。

订

2. $\bigcirc A, B$ 为两个事件,且 0 < P(A) < 1, 0 < P(B) < 1,已知 P(A|B) = 1, 求 $P(\overline{B} \mid \overline{A}) = 1$ 。

设随机变量 X 服从参数为 p 的几何分布,求 P(X > 6 | X > 3)。

二. 设张三每天接到的电话个数 X 服从参数为 6 的泊松分布,而每个电话为诈骗电话的概率均为 $\frac{1}{3}$,以 Y 表示张三每天接到的诈骗电话个数,求 Y 的分布列。

- 三. 设二维随机变量(X,Y)的联合密度函数为f(x,y)=2,0 < x < 1,0 < y < 1-x。
 - (1). 求X与Y的边际密度 $f_X(x)$ 与 $f_Y(y)$; (2). 求 $Z = \frac{Y}{X}$ 的密度函数。

从单位球面上等可能地任取一点M,以X,Y,Z分别表示该点的横坐标,纵 坐标, 竖坐标. 试求 DX。

五)设X为一个随机变量,且 $\ln X$ 服从正态分布N(0,4),求 EX^3 。

六 已知总体 X 的密度函数为 $f(x) = \frac{1}{2\theta} \exp(-\frac{|x|}{\theta}), x \in R$, X_1, X_2, \dots, X_n 为总体 X 的简

单随机样本。(1) 求 θ 的极大似然估计量 $\hat{\theta}$; (2) 验证 $\hat{\theta}$ 是否为 θ 的无偏估计量。

七. 某工厂生产某种型号的零件,已知零件的直径 X 服从正态分布。从某天生产的产品 中随机抽取 16 个,测得样本均值为 \bar{x} = 50.41 cm,样本标准差为s = 2.12 cm。(1)求直径 X均值的置信区间(精确到小数点后两位数字)。(2)可否认为总体标准差 σ 等于 2cm?

 $(\alpha = 0.05, t_{0.025}(15) = 2.1315, \chi_{0.025}^{2}(15) = 27.488, \chi_{0.975}^{2}(15) = 6.262)$

姓名: ________ 学号: ______ 院系: ______ 级_____ 班 任课老师: ____

大连理工大学

课程名称: <u>概率统计A</u> 试卷: <u>A</u> 考试形式: <u>闭卷</u> 授课院(系): <u>数</u> 学 考试日期: <u>2014年11月11日</u> 试卷共<u>4</u>页

	_	=	三	四	五.	六	七	八	总分
标准分	10	10	14	12	14	- 10	15	15	100
温 分									

一. 设 A_1,A_2,\cdots,A_n 为样本空间 Ω 的一组划分,且 $P(A_i)=p_i>0$,' $\sum_{i=1}^n p_i=1$ 。

试用全概率公式求 A_i 比 A_j 先发生的概率。 $(i \neq j)$ 。

装

订

二. 已知随机变量 X 服从参数为 p 的几何分布,证明对于任意的非负整数 n, m,

 $P(X > n+m \mid X > m) = P(X > n).$

继

- 三. 已知随机变量 X 的密度函数为 $f(x) = \begin{cases} a, & -1 \le x < 0 \\ b, & 0 \le x < 2 \\ 0, & 其他 \end{cases}$
 - (1) 求参数 a,b; (2) 求 $Y = X^2$ 的密度函数。

- 四. 某射手对一目标独立地进行射击,每次命中的概率均为p,以X表示第一次命中时的射击次数,以Y表示第三次命中时的射击次数。
 - (1) 求二维随机变量(X,Y)的联合分布列; (2) 求X与Y的边际分布列。

ant 25 在 1 左, **徐科本为傻 X = 76** 2.5 1 年 8 7.8

- 五. 设二维随机变量 (X,Y) 的联合密度为 $f(x,y) = \begin{cases} \frac{1}{2x^2y}, & 1 < x < \infty, \frac{1}{x} < y < x \\ 0, &$ 其他
 - (1) 求X与Y的边际密度;
- (2) 求Z = XY的密度函数。

六. 设二维随机变量(X,Y)的联合密度为 $f(x,y) = \begin{cases} 12y^2, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$,求 EX^2 。

七、设总体 X 服从区间 $[-\theta,\theta]$ 上的均匀分布. X_1X_2,\cdots,X_n 为随机样本。

试求参数 θ 的矩估计量 $\hat{\theta}$,并求 $E\hat{\theta}^2$.

八. 设学生在某次考试中的成绩 X 服从正态分布 $N(\mu,\sigma^2)$, 其中 μ 与 σ^2 均未知. 今随机地 抽取 25 个样本,得样本均值 $\bar{x}=78.25$,样本方差 $s^2=2.5^2$.

(1) 试求总体方差 σ^2 的置信区间。

(2) 问可否认为总体均值 $\mu = 80$?

 $(\alpha = 0.05, t_{0.025}(24) = 2.0639, \chi_{0.025}^{2}(24) = 39.364, \chi_{0.975}^{2}(24) = 12.401)$