

FCC PART 22, 24 INDUSTRY CANADA RSS-131 MEASUREMENT AND TEST REPORT

For

Celluteq Electronics, LLC.

32108 Alvarado Blvd., Suite 353 Union City, CA 94587, USA

FCC ID: VOR-CE0501A IC: 7371A-CE0501A Model: CE0501A

Product Type: ☑ Original Report		Product Type: Cellular Phone Signal Amplifier
Test Engineer:	Dan Coronia	Allano
Report Number:	R0707233	
Report Date:	2008-01-16	
Reviewed By:	Boni Baniqued, Test Engineer	
Prepared By: (dc)	Bay Area Compliance Laboratories Corp. 1274 Anvilwood Ave. Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TABLE OF CONTENTS

I	GENERAL INFORMATION	
1.1		
1.2		
1.3		
1.4	· · · · · · · · · · · · · · · · · · ·	
1.5	(-)	
1.6		
1.7		
1.8		
2	SYSTEM TEST CONFIGURATION	6
2.1	JUSTIFICATION	6
2.2	2 EUT Exercise Software	6
2.3		6
	POWER SUPPLY AND LINE FILTERS	
	5 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
2.6	5 INTERFACE PORTS AND CABLING	6
3	SUMMARY OF TEST RESULTS	7
4	§1.1307(B) (1) & 2.1091 - RF EXPOSURE	8
4.1	APPLICABLE STANDARD	8
4.2		
4.3	3 TEST RESULT	12
5	FCC §2.1053, §22.917 & §24.238 & IC RSS-131 §6.4 – TRANSMITTER FIELD STRENGT	гн оғ
S PUI	RIOUS RADIATION	13
5.1	Applicable Standard	13
5.2		
5.3		
5.4	TEST EQUIPMENT LIST AND DETAILS	14
5.5	SUMMARY OF TEST RESULTS	14
5.6	5 Test Data	15
6	FCC §2.1046, §22.913, §24.232 & IC RSS-131 §6.2 - RF OUTPUT POWER	17
6.1		
6.2		
6.3		
6.4		
6.5		
7	FCC §2.1049, §22.917, §24.238 & RSS-131 §6.1 - OCCUPIED BANDWIDTH	22
, 7 1		
7.1 7.2		
7.2		
7.4		
7.5		
7.6		
ο	FCC §2.1051, §24.238(A) & RSS-131§6.3 - SPURIOUS EMISSIONS AT ANTENNA TERM	
0		
8.1		
8.2 8.3		
0.3	5 Environmental Conditions	09

8.4	TEST EQUIPMENT LIST AND DETAILS	69
8.5	TEST RESULTS	69
9	FCC §22.917, §24.238 & RSS-131 §6.4 – BAND EDGES	165
9.1	APPLICABLE STANDARD	165
9.2	TEST PROCEDURE	165
9.4	TEST EQUIPMENT LIST AND DETAILS	
9.5	TEST RESULTS	165
10	IC RSS-131 §6.1 – AMPLIFIER GAIN AND BANDWIDTH	178
10.1	APPLICABLE STANDARD	178
10.2	TEST PROCEDURE	178
10.3	TEST EQUIPMENT LIST AND DETAILS	178
10.4	TEST RESULTS	178
11	EXHIBIT A - FCC & IC EQUIPMENT LABELING REQUIREMENTS	183
11.1	FCC § 2.925 IDENTIFICATION OF EQUIPMENT	183
11.2	FCC ID LABELING REQUIREMENTS AS PER FCC § 15.19	183
11.3	SPECIFICATIONS: AS PER RSS GEN 5.2 EQUIPMENT LABELING:	
11.4	SUGGESTED FCC ID & IC LABEL	
11.5	PROPOSED LABEL LOCATION ON EUT	
11.6	FCC & IC WARNING STATEMENT	184
12	EXHIBIT B - TEST SETUP PHOTOGRAPHS	185
12.1	RADIATED EMISSIONS - FRONT VIEW	185
12.2	RADIATED EMISSIONS – REAR VIEW	185
13	EXHIBIT C – EUT PHOTOGRAPHS	186
13.1	TOP VIEW	186
13.2	BOTTOM VIEW	
13.3	FRONT VIEW (OUTDOOR ANTENNA PORT VIEW)	
13.4	REAR VIEW (INDOOR ANTENNA PORT VIEW	
13.5	DOWNLINK/UPLINK BOARD COMPONENT SIDE VIEW	
13.6	DOWNLINK/UPLINK BOARD SOLDER SIDE VIEW 1	
13.7	DOWNLINK/UPLINK BOARD SOLDER SIDE VIEW 2	
13.8	POWER SUPPLY TOP VIEW	
13.9	POWER SUPPLY BOTTOM VIEW	

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

The *Celluteq Electronics, LLC.* Product, *FCC ID: VOR-CE0501A, IC: 7371A-CE0501A, model: CE0501A* or the "EUT" as referred to in this report is a dual-band (Cellular and PCS) and bi-directional cellular phone signal amplifier. In combination with outside and inside antennas, the amplifier provides a wireless signal enhance system. It operates at 5VDC power supply that employs AMPS, GSM, TDMA and Code Division Multiple Access (CDMA) frequencies: cellular services at 800 MHz, and Personal Communication Services (PCS) at 1900 MHz.

1.2 Mechanical Description

The EUT Approximate measurement is: 120mm (L) x 105 mm (W) x 27 mm (H). It is of metallic construction.

* The test data gathered are from typical production sample, serial number: 001, provided by the manufacturer.

Please see additional photos in Exhibit C

1.4 Objective

This type approval report is prepared on behalf of *Celluteq Electronics*, *LLC*. in accordance with Part 2, Subpart J, Part 22 & 24 Subpart E, of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, band edge, conducted and radiated margin.

1.5 Related Submittal(s)/Grant(s)

No Related Submittals

1.6 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 H - Public Mobile Services Part 24 E – PCS

Industry Canada RSS-131 issue 2, July 2003

Applicable Standards: TIA/EIA 603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from +2.0 dB for Conducted Emissions tests and +4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.8 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database. Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2001670.htm

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

NA, signal was sent through EUT using a signal generator, device was set to normal operating mode.

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Power Supply and Line Filters

Manufacturer Description		Model	Serial Number
SL	AC-DC Adaptor	PW117RA0503B01	N/A

2.5 Local Support Equipment List and Details

Manufacturer	Ianufacturer Description		Serial Number
Midwest Microwave	10dB attenuator pad	ATT-0263-10-000-02	N/A
Agilent	DC Block	11742A	N/A

2.6 Interface Ports and Cabling

Cable Description	Length (M)	From	То
RF cable	0.2	Signal Generator	Input/ EUT
RF cable	0.2	Output/ EUT	Spectrum analyzer

3 SUMMARY OF TEST RESULTS

FCC/IC Rules	Description of Test	Result
FCC §1.1307, §2.1091 RSS-131 §5.5	RF Exposure	Compliant
FCC § 2.1053, § 22.917, § 24.238 IC RSS-131 §6.4	Spurious Emissions	Compliant
FCC §2.1046, § 22.913, § 24.232 IC RSS-131 §6.2	RF Output Power	Compliant
FCC § 2.1049, § 22.917, § 24.238 IC RSS-131 §6.1	Occupied Bandwidth	Compliant
FCC § 2.1051, §22.917, § 24.238, IC RSS-131 §6.3	Spurious Emissions at Antenna Terminals & Two- Tone Test	Compliant
FCC § 2.1055, § 22.355, § 24.235 IC RSS-131 §6.5	Frequency Stability	N/A
FCC §2.1051, § 22.917, § 24.238, IC RSS-131 §6.4	Band Edge	Compliant

4 §1.1307(b) (1) & 2.1091 - RF EXPOSURE

4.1 Applicable Standard

According to §1.1307 & 2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minute)
	Limits for Gen	eral Population/Unco	ntrolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

4.2 MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^{\text{2}}$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R =distance to the center of radiation of the antenna

AMPS Cellular Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 11.94 Maximum peak output power at antenna input terminal (mW): 15.63

Prediction distance (cm): 35

Prediction frequency (MHz): 881.50

Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): 0.004 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.588

^{* =} Plane-wave equivalent power density

Maximum peak output power at antenna input terminal (dBm): 29.80 Maximum peak output power at antenna input terminal (mW): 954.99 Prediction distance (cm): 35 Prediction frequency (MHz): 836.50 Antenna Gain, typical (dBi): 6 Maximum Antenna Gain (numeric): 3.98 Power density at predication frequency and distance (mW/cm²): 0.247MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.558

TDMA Cellular Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 12.57

Maximum peak output power at antenna input terminal (mW): 18.07

Prediction distance (cm): 35

Prediction frequency (MHz): 881.50

Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): 0.005

MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.588

Uplink:

Maximum peak output power at antenna input terminal (dBm): 29.31 Maximum peak output power at antenna input terminal (mW): 853.10 Prediction distance (cm): 35 Prediction frequency (MHz): 836.50 Antenna Gain, typical (dBi): 6 Maximum Antenna Gain (numeric): 3.98 Power density at predication frequency and distance (mW/cm²): 0.221 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.558

TDMA PCS Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 10.99 Maximum peak output power at antenna input terminal (mW): 12.56 Prediction distance (cm): 35 Prediction frequency (MHz): 1960.0 Antenna Gain, typical (dBi): 6 Maximum Antenna Gain (numeric): 3.98 Power density at predication frequency and distance (mW/cm²): 0.003 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 1.000

Maximum peak output power at antenna input terminal (dBm): 29.83 Maximum peak output power at antenna input terminal (mW): 961.11 Prediction distance (cm): 35 Prediction frequency (MHz): 1880.0 Antenna Gain, typical (dBi): 6 Maximum Antenna Gain (numeric): 3.98 Power density at predication frequency and distance (mW/cm²): 0.249 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 1.000

GSM Cellular Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 14.68

Maximum peak output power at antenna input terminal (mW): 29.38

Prediction distance (cm): 35

Prediction frequency (MHz): 881.6

Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): 0.008

MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.588

Uplink:

Maximum peak output power at antenna input terminal (dBm): 32.83 Maximum peak output power at antenna input terminal (mW): 1918.67 Prediction distance (cm): 35 Prediction frequency (MHz): 836.6 Antenna Gain, typical (dBi): 6 Maximum Antenna Gain (numeric): 3.98 Power density at predication frequency and distance (mW/cm²): 0.496 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.558

GSM PCS Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 12.59 Maximum peak output power at antenna input terminal (mW): 18.16 Prediction distance (cm): 35 Prediction frequency (MHz): 1960.0 Antenna Gain, typical (dBi): 6 Maximum Antenna Gain (numeric): 3.98 Power density at predication frequency and distance (mW/cm²): 0.005 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 1.000

Maximum peak output power at antenna input terminal (dBm): 30.18

Maximum peak output power at antenna input terminal (mW): 1042.32

Prediction distance (cm): 35

Prediction frequency (MHz): 1880.0

Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): <u>0.269</u> MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 1.000

CDMA Cellular Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 10.08

Maximum peak output power at antenna input terminal (mW): 10.19

Prediction distance (cm): 35

Prediction frequency (MHz): 881.40 Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): 0.003 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.588

Uplink:

Maximum peak output power at antenna input terminal (dBm): 25.64

Maximum peak output power at antenna input terminal (mW): 366.44

Prediction distance (cm): 35

Prediction frequency (MHz): 836.40

Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): 0.095 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.558

CDMA PCS Band

Downlink:

Maximum peak output power at antenna input terminal (dBm): 10.13 Maximum peak output power at antenna input terminal (mW): 10.30

Prediction distance (cm): 35

Prediction frequency (MHz): $\overline{\underline{1960.00}}$

Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): <u>0.003</u>

MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 1.000

Maximum peak output power at antenna input terminal (dBm): 24.03 Maximum peak output power at antenna input terminal (mW): 252.93

Prediction distance (cm): 35 Prediction frequency (MHz):

1880.00 Antenna Gain, typical (dBi): 6

Maximum Antenna Gain (numeric): 3.98

Power density at predication frequency and distance (mW/cm²): 0.065

MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 1.000

4.3 **Test Result**

The device is compliant with the requirement MPE limit for uncontrolled exposure at predication frequency 1.0 mW/cm². The maximum power density at the distance of 35 cm was 0.496 mW/cm². Thus, the requirement of at least 35 cm required by the manufacturer is in compliance with the MPE requirement.

5 FCC §2.1053, §22.917 & §24.238 & IC RSS-131 §6.4 – Transmitter Field Strength of Spurious Radiation

5.1 Applicable Standard

As per FCC § 2.1053, § 22.917, § 24.238:

According to FCC § 2.1053, § 22.917, § 24.238: "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

As per RSS-131 §6.4:

Spurious emissions of zone enhancers and translators shall be suppressed as much as possible. Spurious emissions shall be attenuated below the rated power of the enhancer by at least: 43 + 10 Log10(Prated in watts), or 70 dB, whichever is less stringent.

5.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \log (TX \text{ Power in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in dB = 43 + 10 Log 10 (power out in Watts)

5.3 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	58 %
ATM Pressure:	102.2 kPa

^{*} The testing was performed by Dan Coronia on 2007-07-30 to 08-16.

5.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
НР	Amplifier, Pre, Microwave	8449B	3147A00400	2006-08-21
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2007-04-20
НР	Generator, Signal	83650B	3614A00276	2006-10-10
A.R.A.	Antenna, Horn	DRG-118/A	1132	2006-08-17

• **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.5 Summary of Test Results

Worst case reading as follows:

Mode: Cellular Band Downlink				
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Input Frequency	
-5.7	1763.20	Vertical	881.60 MHz	

Mode: Cellular Band Uplink				
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Input Frequency	
-6.9	1673.20	Horizontal	836.600 MHz	

Mode: PCS Band Downlink						
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Input Frequency			
-16.56	3920.00	Vertical	1960 MHz			

Mode: PCS Band Uplink						
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Input Frequency			
-18.68	5640.00	Vertical	1880 MHz			

5.6 Test Data

Cellular Band Downlink

Input frequency = 881.600 MHz

Indica	ted	Azimuth	Test Ar	itenna			Substituted				
Freq. (MHz)	Amp. (dBuV)	(Degrees)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Gain Correction (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1763.20	56.17	163	1.2	v	1763.20	-26.60	9.25	1.36	-18.7	-13	-5.7
1763.20	56.67	178	1.2	h	1763.20	-27.80	9.25	1.36	-19.9	-13	-6.9
2644.80	45.17	162	1.4	v	2644.80	-31.70	9.24	1.58	-24.0	-13	-11.0
2644.80	44.50	308	1.3	h	2644.80	-35.30	9.24	1.58	-27.6	-13	-14.6
3526.40	53.17	216	1.6	v	3526.40	-45.20	11.09	1.84	-36.0	-13	-23.0
3526.40	51.50	340	1.0	h	3526.40	-53.10	11.09	1.84	-43.9	-13	-30.9
4408.00	54.33	300	1.2	v	4408.00	-52.93	10.86	2.31	-44.4	-13	-31.4
4408.00	52.17	91	1.5	h	4408.00	-56.11	10.86	2.31	-47.6	-13	-34.6

Cellular Band Uplink

Input frequency = 836.600 MHz

Indica	ted	Azimuth	Test Ar	itenna			Substituted				
Freq. (MHz)	Amp. (dBuV)	(Degrees)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Gain Correction (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1673.20	68.67	212	1.0	h	1673.20	-27.80	9.27	1.40	-19.9	-13	-6.9
4183.00	61.17	289	1.1	v	4183.00	-32.76	10.70	2.30	-24.4	-13	-11.4
2509.80	70.83	68	1.5	v	2509.80	-35.00	9.25	1.50	-27.3	-13	-14.3
2509.80	68.83	82	1.5	h	2509.80	-35.30	9.25	1.50	-27.6	-13	-14.6
1673.20	73.67	224	1.0	v	1673.20	-38.50	9.27	1.40	-30.6	-13	-17.6
3346.40	54.67	158	1.4	v	3346.40	-45.20	9.99	1.90	-37.1	-13	-24.1
3346.40	50.83	216	1.1	h	3346.40	-53.10	9.99	1.90	-45.0	-13	-32.0
4183.00	55.50	47	1.1	h	4183.00	-57.38	10.70	2.30	-49.0	-13	-36.0

PCS Band Downlink

Input frequency = 1960 MHz

Indica	nted	Azimuth	Test Aı	ntenna			Substituted			T,	
Freq. (MHz)	Amplitude (dBuV)	(Degrees)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Gain Correction (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
3920.00	68.90	80	1.3	v	3920.00	-37.85	10.37	2.08	-29.6	-13	-16.56
3920.00	67.65	190	1.6	h	3920.00	-38.60	10.37	2.08	-30.3	-13	-17.31
5880.00	49.40	160	1.0	v	5880.00	-44.86	11.42	2.85	-36.3	-13	-23.29
5880.00	46.57	220	1.1	h	5880.00	-46.99	11.42	2.85	-38.4	-13	-25.42
7840.00	35.90	100	1.5	v	7840.00	-51.95	11.02	2.89	-43.82	-13	-30.82
7840.00	33.73	90	1.7	h	7840.00	-54.35	11.02	2.89	-46.22	-13	-33.22

PCS Band Uplink

Input frequency = 1880 MHz

Indica	ıted	Azimuth	Test Ar	ntenna			Substituted			T !!/	Maria
Freq. (MHz)	Amplitude (dBuV)	(Degrees)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Gain Correction (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
3760.00	59.00	164	1.9	v	3760.00	-47.85	11.40	1.96	-38.4	-13	-25.41
3760.00	57.83	126	2.2	h	3760.00	-48.60	11.40	1.96	-39.2	-13	-26.16
5640.00	44.83	181	1.6	v	5640.00	-40.34	11.22	2.56	-31.7	-13	-18.68
5640.00	44.33	171	1.6	h	5640.00	-42.12	11.22	2.56	-33.5	-13	-20.46
7520.00	43.17	160	2.1	v	7520.00	-41.54	11.14	2.94	-33.34	-13	-20.34
7520.00	42.50	167	2.2	h	7520.00	-41.78	11.10	2.94	-33.62	-13	-20.62

6 FCC §2.1046, §22.913, §24.232 & IC RSS-131 §6.2 - RF OUTPUT POWER

6.1 Applicable Standard

FCC §2.1046, §22.913, §24.232.

RSS-131 §6.2.

6.2 Test Procedure

Conducted method:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.

6.3 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	58 %
ATM Pressure:	102.2 kPa

^{*} The testing was performed by Dan Coronia on 2007-07-30 to 08-16.

6.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
Rohde & Schwarz	Signal Generator	SMIQ03	849192/0085	2006-10-18

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.5 Summary of Test Results

AMPS (Cellular Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	869.03	AMPS	11.68
Middle	881.50	AMPS	11.94
High	893.97	AMPS	11.84

Uplink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	824.03	AMPS	27.20
Middle	836.50	AMPS	29.80
High	848.97	AMPS	27.54

TDMA (Cellular Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	869.10	TDMA	12.21
Middle	881.50	TDMA	12.57
High	893.90	TDMA	12.24

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	824.10	TDMA	26.06
Middle	836.50	TDMA	29.31
High	848.90	TDMA	26.92

TDMA (PCS Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	1930.10	TDMA	10.59
Middle	1960.00	TDMA	10.99
High	1989.90	TDMA	10.04

Uplink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	1850.10	TDMA	29.11
Middle	1880.00	TDMA	29.83
High	1909.90	TDMA	22.63

GSM (Cellular Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	869.20	GSM	12.71
Middle	881.60	GSM	14.68
High	893.80	GSM	12.89

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	824.20	GSM	30.95
Middle	836.60	GSM	32.83
High	848.80	GSM	29.07

GSM (PCS Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	1930.20	GSM	7.53
Middle	1960.00	GSM	12.59
High	1989.80	GSM	11.27

Uplink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	1850.20	GSM	29.88
Middle	1880.00	GSM	30.18
High	1909.80	GSM	23.04

CDMA (Cellular Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	869.73	CDMA	10.08
Middle	881.40	CDMA	10.11
High	893.19	CDMA	10.05

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	824.73	CDMA	24.12
Middle	836.40	CDMA	25.64
High	848.19	CDMA	23.80

CDMA (PCS Band)

Downlink

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	1931.25	CDMA	10.08
Middle	1960.00	CDMA	10.13
High	1989.75	CDMA	9.05

Channel	Frequency (MHz)	Modulation	Output Power (dBm)
Low	1851.25	CDMA	23.83
Middle	1880.00	CDMA	24.03
High	1908.75	CDMA	21.28

7 FCC §2.1049, §22.917, §24.238 & RSS-131 §6.1 - OCCUPIED BANDWIDTH

7.1 Applicable Standard

Requirements: CFR 47, § 2.1049, §22.917(b) & §24.238.

IC RSS-131 § 6.1

7.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 30 kHz (Cellular /PCS) and the 26 dB & 99% bandwidth was recorded.

7.3 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	58 %
ATM Pressure:	102.2 kPa

^{*} The testing was performed by Dan Coronia on 2007-07-30 to 08-16.

7.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
Rohde & Schwarz	Signal Generator	SMIQ03	849192/0085	2006-10-18

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.5 **Summary of Test Results**

7.5.1 AMPS:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	869.03	33.2574
Middle	881.50	33.2730
High	893.97	33.2776

Uplink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	824.03	33.2661
Middle	836.50	33.3500
High	848.97	33.2724

7.5.2 TDMA 800 MHz:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	869.10	33.1427
Middle	881.50	33.2889
High	893.90	33.5596

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	824.10	33.5940
Middle	836.50	33.2487
High	848.90	33.5786

7.5.3 TDMA 1900:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	1930.10	33.6219
Middle	1960.00	33.1888
High	1989.90	33.6093

Uplink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	1850.10	33.2396
Middle	1880.00	33.1969
High	1909.90	33.5942

7.5.4 **GSM 800**:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	869.20	243.3076
Middle	881.60	242.9681
High	893.80	243.7313

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	824.20	245.6566
Middle	836.60	244.9655
High	848.80	245.9868

7.5.5 GSM 1900:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	1930.20	244.0666
Middle	1960.00	244.2256
High	1989.80	243.8597

Uplink

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Low	1850.20	245.1227
Middle	1880.00	244.9683
High	1909.80	244.2660

7.5.6 CDMA 800:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)
Low	869.73	1.2648
Middle	881.40	1.2659
High	893.19	1.2650

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)
Low	824.73	1.2653
Middle	836.40	1.2655
High	848.19	1.2656

7.5.7 CDMA 1900:

Downlink

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)
Low	1931.25	1.2650
Middle	1960.00	1.2640
High	1988.75	1.2659

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)
Low	1851.25	1.2641
Middle	1880.00	1.2635
High	1908.75	1.2644

7.6 Test Data

7.6.1 AMPS: Forward (Downlink): Low Channel

Input

7.6.2 AMPS: Forward (Downlink): Middle Channel

Input

7.6.3 AMPS: Forward (Downlink): High Channel

Input

7.6.4 AMPS: Reverse (Uplink): Low Channel

Input

7.6.5 AMPS: Reverse (Uplink): Middle Channel

Input

7.6.6 AMPS: Reverse (Uplink): High Channel

Input

7.6.7 TDMA 800: Forward (Downlink): Low Channel

Input

7.6.8 TDMA 800: Forward (Downlink): Middle Channel

Input

7.6.9 TDMA 800: Forward (Downlink): High Channel

Input

7.6.10 TDMA 800: Reverse (Uplink): Low Channel

Input

7.6.11 TDMA 800: Reverse (Uplink): Middle Channel

Input

7.6.12 TDMA 800: Reverse (Uplink): High Channel

Input

7.6.13 TDMA 1900: Forward (Downlink): Low Channel

Input

7.6.14 TDMA 1900: Forward (Downlink): Middle Channel

Input

7.6.15 TDMA 1900: Forward (Downlink): High Channel

Input

7.6.16 TDMA 1900: Reverse (Uplink): Low Channel

Input

7.6.17 TDMA 1900: Reverse (Uplink): Middle Channel

Input

7.6.18 TDMA 1900: Reverse (Uplink): High Channel

Input

7.6.19 GSM 800MHz: Forward (Downlink): Low Channel

Input

7.6.20 GSM 800MHz: Forward (Downlink): Middle Channel

Input

7.6.21 GSM 800MHz: Forward (Downlink): High Channel

Input

7.6.22 GSM 800MHz: Reverse (Uplink): Low Channel

Input

7.6.23 GSM 800MHz: Reverse (Uplink): Middle Channel

Input

7.6.24 GSM 800MHz: Reverse (Uplink): High Channel

Input

7.6.25 GSM 1900MHz: Forward (Downlink): Low Channel

Input

7.6.26 GSM 1900MHz: Forward (Downlink): Middle Channel

Input

7.6.27 GSM 1900MHz: Forward (Downlink): High Channel

Input

7.6.28 GSM 1900MHz: Reverse (Uplink): Low Channel

Input

7.6.29 GSM 1900MHz: Reverse (Uplink): Middle Channel

Input

7.6.30 GSM 1900MHz: Reverse (Uplink): High Channel

Input

7.6.31 CDMA 800MHz: Forward (Downlink): Low Channel

Input

7.6.32 CDMA 800MHz: Forward (Downlink): Middle Channel

Input

7.6.33 CDMA 800MHz: Forward (Downlink): High Channel

Input

7.6.34 CDMA 800MHz: Reverse (Uplink): Low Channel

Input

