بسم الله الرحمن الرحيم

المادة: مقدمة في بحوث العمليات (100 بحث) الفصل الدراسي الأول للعام الدراسي 1442 هـ الاختبار الفصلي الأول

	الرقم الجامعي:		اسم الطالب:
كشف الحضور:	الرقم التسلسلي في ا		أستاذ المقرر:
	من 30	الدرجة:	

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
A	C	В	C	A	D	В	A	D	C	В	D	C	A	В

السوال الأول:

إحدى الشركات لديها مصنعين لتصنيع منتجين. الوقت اللازم (دقيقة / وحدة) لتصنيع كل منتج معطى كما يلي:

منتج B	A منتج	
10	8	مصنع الرياض
12	9	مصنع الدمام

كلا المصنعين يعملان لمدة (8) ساعات يومياً. التكلفة (ريال/وحدة) لتصنيع كل منتج معطى كما يلي:

منتج B	A منتج	
22	20	مصنع الرياض
28	25	مصنع الدمام

الشركة تريد أن تخطط لكمية الإنتاج اليومية الأقل تكلفة وفقا للشروط التالية:

- 1. يجب أن لا يقل إجمالي الإنتاج من كلا المنتجين عن 40 وحدة.
- 2. عدد الوحدات المصنعة في مصنع الرياض تكون على الأقل مثل عدد الوحدات المصنعة في مصنع الدمام.
 - 3. عدد الوحدات المصنعة من المنتج A لا يزيد عن 50% من إجمالي إنتاج الشركة من كلا المنتجين.

عند صياغة المسألة بنموذج رياضي خطي ، أجب عن ما يلي:

1. متغيرات القرار:

В

 $\chi_1=1$ عدد وحدات المنتج A المصنعة يومياً في الرياض $\chi_2=1$ عدد وحدات المنتج B المصنعة يومياً في الرياض $\chi_3=1$ عدد وحدات المنتج A المصنعة يومياً في الدمام $\chi_4=1$ عدد وحدات المنتج B المصنعة يومياً في الدمام

A

الرياض $\chi_1 = 1$ الوقت اللازم لتصنيع المنتج $\chi_2 = 1$ الوقت اللازم لتصنيع المنتج $\chi_3 = 1$ الوقت اللازم لتصنيع المنتج $\chi_3 = 1$ الوقت اللازم لتصنيع المنتج $\chi_4 = 1$ في الدمام

D

عدد وحدات المنتجين ${
m A}$ و ${
m B}$ المصنعة يومياً في الرياض ${
m C}= {
m X}_1$ عدد وحدات المنتجين ${
m A}$ و ${
m B}$ المصنعة يومياً في الدمام

C

A عدد الوحدات المصنعة يومياً من المنتج χ_1 B عدد الوحدات المصنعة يومياً من المنتج χ_2

2. دالة الهدف:

B min $z = 42x_1 + 53x_2$

 $\mathbf{A} \quad \text{min} \quad z = 20x_1 + 22x_2 + 25x_3 + 28x_4$

 $\mathbf{D} \quad \text{min} \quad z = 8x_1 + 10x_2 + 9x_3 + 12x_4$

 $\mathbf{C} \qquad \qquad \min \quad z = 45x_1 + 50x_2$

3. من ضمن القيود الخطية:

$$\mathbf{B} | 8x_1 + 9x_2 \le 8 (60)$$

$$\mathbf{A} \qquad 8x_1 + 10x_2 \ge 8 \ (60)$$

$$\mathbf{D} \qquad 8x_1 + 10x_2 \le 8$$

4. من ضمن القيود الخطية:

$$\mathbf{B} \qquad \qquad x_1 + x_2 \ge 40$$

$$\mathbf{A} \qquad x_1 + x_2 + x_3 + x_4 \le 40$$

$$x_1 + x_2 + x_3 + x_4 \ge 40$$

$$\mathbf{C} \qquad \qquad x_1 + x_2 \le 40$$

5. من ضمن القيود الخطية:

$$\mathbf{B} \qquad \qquad x_1 + x_2 \ge x_3 + x_4$$

$$\mathbf{A} \qquad \qquad x_1 + x_2 \le x_3 + x_4$$

$$\mathbf{D} \qquad \qquad x_1 \geq x_2$$

$$C \mid x_1 \leq x_2$$

6. من ضمن القيود الخطية:

$$\mathbf{B} \qquad x_1 + x_3 \ge 0.50(x_1 + x_2 + x_3 + x_4)$$

$$\mathbf{A} \qquad x_1 \le 0.50(x_1 + x_2)$$

$$\mathbf{D} | x_1 \ge 0.50(x_1 + x_2)$$

 x_2

السوال الثاني:

ليكن لدينا البرنامج الخطي التالي:

$$\max z = -x_1 + 2x_2$$

s.t.
$$3x_1 + 3x_2 \le 9$$

$$2x_1 - 2x_2 \le 1$$

$$-2x_1 + 2x_2 \le 4$$

$$3x_1 + 2x_2 \ge 3$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$

7. ظلل منطقة الحلول الممكنة في الرسم. منطقة الحلول الممكنة هي المضلع:

D CEFHK

8. الحل الأمثل للبرنامج الخطي هو عند النقطة:

9. القيمة المثلى لدالة الهدف هي:

$$\mathbf{A} \boxed{ -0.2}$$

السؤال الثالث:

ليكن لدينا البرنامج الخطى التالى:

max
$$z = 3x_1 - 2x_2$$

s.t. $3x_1 + 2x_2 \le 6$
 $4x_1 + 2x_2 \ge 4$
 $2x_1 + 4x_2 \le 8$
 $-2x_1 + 4x_2 \ge 0$
 $x_1 \ge 0$, $x_2 \ge 0$

10. ظلل منطقة الحلول الممكنة في الرسم. منطقة الحلول الممكنة هي المضلع:

D	BCDE	C	EHKG	В	BEGF	A	ACB
---	------	---	------	---	------	---	-----

11. الحل الأمثل للبرنامج الخطي هو عند النقطة:

						-	
D	С	\mathbf{C}	В	В	К	A	E

12. القيمة المثلى لدالة الهدف هي:

: هي: القيمة المثلى لدالة الهدف $z=-3x_1+2x_2$ القيمة المثلى لدالة الهدف هي:

السؤال الرابع:

ليكن لدينا البرنامج الخطي التالي:

min
$$z = -2x_1 + x_2$$

s.t. $2x_1 + 2x_2 \le 6$
 $4x_1 + 2x_2 \ge 4$
 $2x_1 - 2x_2 \le 2$
 $x_1 \ge 0$, $x_2 \ge 0$

14. القيمة المثلى لدالة الهدف هي:

D	2	C	-3	В	3	A	-1
---	---	---	----	---	---	---	----

. إذا تغير القيد الأول ليصبح $2x_1 + 2x_2 \ge 6$ ، فإن الحل الأمثل لهذا البرنامج الخطي . 15.

D	يوجد حلول مثلي متعددة	C	حل أمثل وحيد	В	لا يوجد حلول ممكنة	A	الحل الأمثل غير محدود