Math. - CC
$$_{17/02/22}$$

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

Résoudre dans \mathbb{R}^3 les systèmes linéaires suivants où a,b,c sont des réels fixés :

1.
$$\begin{cases} x+y+z &= 2\\ x+y-z &= 0\\ x+2y-z &= 3 \end{cases}$$

1.
$$\begin{cases} x+y+z = 2 \\ x+y-z = 0 \\ x+2y-z = 3 \end{cases}$$
 2.
$$\begin{cases} 2x-y+2z = a \\ 3x-y+z = b \\ -2x+3y-10z = c \end{cases}$$

EXERCICE 2

On s'intéresse dans cet exercice aux trois suites réelles (a_n) , (b_n) et (c_n) définies par

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = 2a_n - b_n + c_n \\ b_{n+1} = -4a_n + 7b_n - 6c_n \\ c_{n+1} = -5a_n + 7b_n - 6c_n \end{cases}$$

avec $a_0 = 2$, $b_0 = 1$ et $c_0 = -1$.

Pour tout entier naturel n, on note :

$$X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$$
 et $A = \begin{pmatrix} 2 & -1 & 1 \\ -4 & 7 & -6 \\ -5 & 7 & -6 \end{pmatrix}$

1. a. Vérifier que

$$\forall n \in \mathbb{N}, \ X_{n+1} = A \ X_n$$

b. En déduire que

$$\forall n \in \mathbb{N}, \ X_n = A^n \ X_0$$

2. Soit P la matrice définie par

$$P = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

a. Calculer P^2 et déterminer α , $\beta \in \mathbb{R}$ tels que :

$$P^2 = \alpha P + \beta I_3$$

b. En déduire que P est inversible, et déterminer P^{-1} .

3. a. Calculer $T = P^{-1}AP$ et en déduire que

$$\forall n \in \mathbb{N}, \ A^n = PT^nP^{-1}$$

b. A l'aide du binôme de Newton dont on justifiera l'utilisation, calculer T^n .

c. En déduire A^n en fonction de $n \in \mathbb{N}$.

4. Donner l'expression de a_n , b_n et c_n en fonction de $n \in \mathbb{N}$.

T.S.V.P.

EXERCICE 3

1. Montrer que

$$\forall x > 0, \ \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

- 2. Donner le développement limité de Arctan à l'ordre 3 au voisinage de 0.
- 3. Trouver alors trois réels a, b, c tels que

$$\operatorname{Arctan}(x) \underset{x \to +\infty}{=} a + \frac{b}{x} + \frac{c}{x^3} + o\left(\frac{1}{x^3}\right)$$

EXERCICE 4

Soit a et b deux réels strictement positifs.

1. Donner le domaine de définition de

$$f: x \mapsto \frac{1}{x^a (\ln(x)^b)}$$

2. Trouver les valeurs de $c \in \mathbb{R}$ telles que

$$f(x) \underset{x \to +\infty}{=} \circ \left(\frac{1}{x^c}\right)$$

3. Donner un équivalent de f(x) en 1.

EXERCICE 5

Soit f la fonction suivante :

$$f: \begin{array}{ccc} [0,1] & \to & \mathbb{R} \\ x & \mapsto & \mathrm{e}^{-\frac{x^2}{2}} \end{array}$$

1. a. Montrer que f est deux fois dérivable sur [0,1] et que

$$\forall x \in [0,1], \ f''(x) = (^2-1)f(x)$$

- **b.** En déduire les variations de la fonction f' sur [0,1].
- **c.** Montrer que pour tous $\alpha, \beta \in [0,1]$ tels que $\alpha \leq \beta$, on a :

$$f'(\beta)(\beta - \alpha) \le f(\beta) - f(\alpha) \le f'(\alpha)(\beta - \alpha)$$

- **2.** Soit $a \in [0,1]$. On note T_a la tangente à la courbe représentative de f au point d'abscisse a.
 - **a.** Donner l'équation réduite y = u(x) de T_a .
 - ${f b.}$ Montrer que :

$$\forall x \in [0,1], \ f(x) \le u(x)$$

On pourra distinguer les cas $0 \le x \le a < 1$ et $0 < a \le x \le 1$.

- c. Interpréter géométriquement ce résultat.
- 3. Soit $a, b \in [0, 1]$ tels que a < b. On note $D_{a,b}$ la droite passant par les points de coordonnées (a, f(a)) et (b, f(b)).
 - **a.** Donner l'équation réduite y = v(x) de $D_{a,b}$.
 - **b.** Montrer que

$$\exists c \in [a, b], \ f'(c) = v'(c)$$

c. Montrer que

$$\forall x \in [a, b], \ f(x) \ge v(x)$$

d. Interpréter géométriquement ce résultat.