```
#importing necessary libraries
In [1]:
         import pandas as pd
         import numpy as np
         from sklearn import ensemble
         from sklearn.metrics import f1_score
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.model_selection import GridSearchCV
         from sklearn.metrics import confusion_matrix, classification_report ,accuracy_score
         from imblearn.combine import SMOTETomek
In [2]: #import train and test data
         train= pd.read_csv("train.csv")
         test =pd.read_csv('test.csv')
         #shape of train and test data
In [3]:
         train.shape , test.shape
         ((6650, 11), (2851, 10))
Out[3]:
         #concatenate train and test data to build a model
In [4]:
         data = pd.concat([train,test], axis=0).reset_index(drop=True)
         # shape of data
         data.shape
         (9501, 11)
Out[4]:
         #ischurn became float type
In [5]:
         data.head()
Out[5]:
                 ID
                     Age
                          Gender
                                 Income
                                             Balance
                                                     Vintage Transaction_Status Product_Holdings Credit_Card (
                                     5L -
            84e2fcc9
                           Female
                                           563266.44
                                                                            0
                                                                                                        0
                                      10L
                                     Less
                                                          2
            57fea15e
                           Female
                                           875572.11
                                   than 5L
                                    More
                                                                                             2
            8df34ef3
                                           701607.06
                                                          2
                                                                            1
                       35
                          Female
                                     than
                                     15L
                                    More
                                                                                             2
          c5c0788b
                                                          0
                                                                            1
                      43
                          Female
                                     than
                                          1393922.16
                                     15L
                                    More
         4 951d69c4
                      39
                          Female
                                     than
                                           893146.23
                                                          1
                                                                            1
                                                                                             1
                                      15L
         label = {'Less than 5L':1, '5L - 10L': 2, '10L - 15L':3, 'More than 15L':4 }
         data['Income'] = data.Income.map(label)
         data.head()
In [7]:
```

Out[7]:		ID	Age	Gender	Income	Balance	Vintage	Transactio	on_Status P	roduct_Holdi	ngs Credit_Card (
	0	84e2fcc9	36	Female	2 !	563266.44	4		0		1 0
	1	57fea15e	53	Female	1 8	875572.11	2		1		1 1
	2	8df34ef3	35	Female	4	701607.06	2		1		2 0
	3	c5c0788b	43	Female	4 13	393922.16	0		1		2 1
	4	951d69c4	39	Female	4 8	893146.23	1		1		1 1
4											•
In [8]:	da		_dumr	-	onvert cat a ,columns					redit_Cate	gory'],drop_firs
Out[8]:		ID	Age	Income	Balance	Vintage	Transact	ion_Status	Credit_Care	d Is_Churn	Gender_Female G
	0	84e2fcc9	36	2	563266.44	4		0	(0 1.0	1
	1	57fea15e	53	1	875572.11	2		1		1 0.0	1
	2	8df34ef3	35	4	701607.06	2		1	(0.0	1
	3	c5c0788b	43	4	1393922.16	0		1		1 1.0	1
	4	951d69c4	39	4	893146.23	1		1		1 1.0	1
4											•
In [9]:	da	ta.head(2	2)								
Out[9]:		ID	Age	Income	Balance	Vintage	Transactio	on Status	Credit Card	Is Churn	Gender_Female Ger
	0	84e2fcc9	36		563266.44	4		0	0	1.0	1
		57fea15e	53		875572.11	2		1	1		1
4											>
In [10]:		plit back ain_proc				rain.shap	pe[0]] ,	data[tra	in.shape[0]:].reset_	index(drop=True)
	<pre>features = [c for c in train_proc.columns if c not in ['ID','Is_Churn']]</pre>										
In [11]:	tr	ain_proc.	head	(2)							
Out[11]:		ID	Age	Income	Balance	Vintage	Transactio	on_Status	Credit_Card	ls_Churn (Gender_Female Ger
	0	84e2fcc9	36	2	563266.44	4		0	0	1.0	1
	1	57fea15e	53	1	875572.11	2		1	1	0.0	1
4											>
In [12]:	te	st_proc.h	nead(2	2)							
Out[12]:				Income	Ralanco	Vintage	Transact	ion Status	Credit Care	d le Churn	Gender_Female G
046[12].	0	55480787	50		1008636.39			1		1 NaN	1
		9aededf2	36	2				0		1 NaN	0
		Jasasail	30		5.1.100.12			J			
In [13]:		mbalanced			count - ()						•
	aa	ta['Is_Ch	iurn'	.varue_	counts()						

```
0.0
                5113
Out[13]:
                1537
         1.0
         Name: Is_Churn, dtype: int64
In [14]: # split the train dataset into train and validation sets (80% belongs to train and 20% test)
         trn , val = train_test_split(train_proc, test_size=0.2 , random_state=1)
         #splitting the trn data to train and validate model
         x_trn, x_val = trn[features], val[features]
         y_trn, y_val = trn['Is_Churn'],val['Is_Churn']
         #for testing our data from test.csv
         X_test = test_proc[features]
In [15]: x_trn.shape , y_trn.shape
         ((5320, 14), (5320,))
Out[15]:
In [16]:
         y_trn.value_counts()
         # unbalaced data
                4083
         0.0
Out[16]:
         1.0
                1237
         Name: Is_Churn, dtype: int64
         # since the data is imbalance we will balance the data
In [17]:
         state = np.random.RandomState(42)
         X_outliers = state.uniform(low=0, high =1, size=(x_trn.shape[0], x_trn.shape[1]))
In [18]: #implement over_sampling for handling Imbalanced
         smk = SMOTETomek(random_state=42)
         X_res, Y_res= smk.fit_resample(x_trn, y_trn)
         print(X_res.shape)
         print(Y_res.shape)
         (6072, 14)
         (6072,)
In [19]:
         Y_res.value_counts()
                3036
         0.0
Out[19]:
         1.0
                3036
         Name: Is_Churn, dtype: int64
In [20]:
         Y res.head()
              1.0
Out[20]:
         1
              0.0
         2
              0.0
         3
              1.0
              0.0
         Name: Is_Churn, dtype: float64
In [21]: X_res.head()
```

```
0
          0
              37
                           36045.00
                                         4
                                                                      0
                                                                                                 1
          1
              30
                       2 2151102.15
                                          1
                                                                      0
          2
              29
                          210585.06
                                          0
                                                           1
                                                                      0
                                                                                    0
                       1
                                                                                                 1
          3
              43
                       1
                          446160.06
                       1
                                                                      1
                                                                                    0
          4
              31
                           99873.00
                                          1
                                                           1
                                                                                                 1
          #using Random forest classifier, fit the model and get the accuracy on training data
In [22]:
          rfc = RandomForestClassifier()
          #hyperparameter tuning using gridsearchcv
In [23]:
          forest_params = {'max_depth':range(1,5), 'max_features': range(5,10)}
          clf = GridSearchCV(rfc, forest_params, cv = 10, scoring='accuracy')
         clf.fit(X_res,Y_res)
In [24]:
         GridSearchCV(cv=10, estimator=RandomForestClassifier(),
Out[24]:
                       param_grid={'max_depth': range(1, 5),
                                    'max_features': range(5, 10)},
                       scoring='accuracy')
          print(clf.best_params_)
In [25]:
          {'max depth': 4, 'max features': 5}
          print(clf.best_score_)
In [26]:
          0.7699950684990896
          #predcton on valdation data
In [27]:
          y_pred = clf.predict(x_val)
         y_pred
In [28]:
          array([0., 0., 0., ..., 0., 1., 0.])
Out[28]:
In [29]:
          #check validation score less compared to test data
          clf.score(x_val,y_val)
          0.7255639097744361
Out[29]:
          #pring the classification report and test data
In [40]:
          print(classification_report(y_val,y_pred))
                                      recall f1-score
                        precision
                                                         support
                   0.0
                             0.80
                                        0.86
                                                  0.83
                                                             1030
                   1.0
                             0.35
                                        0.26
                                                             300
                                                  0.30
              accuracy
                                                  0.73
                                                            1330
                                                  0.57
                             0.58
                                        0.56
                                                            1330
             macro avg
          weighted avg
                             0.70
                                        0.73
                                                  0.71
                                                            1330
In [31]: # evalution metric - f1 score with average macro
          print(f1_score(y_val, y_pred, average='macro'))
          0.565651531649862
         #predict target values for X_test
In [32]:
```

Balance Vintage Transaction_Status Credit_Card Gender_Female Gender_Male Product_

Out[21]:

Age Income

#X_test = test_proc[features]

```
Y_test = clf.predict(X_test)
          Y_test
          array([0., 0., 0., ..., 1., 1., 0.])
Out[32]:
          #predctng the probability for class zero and one respectively
In [33]:
          y_pr = clf.predict_proba(X_test)
          #the probality to churn to predct the analsis in near future
In [34]:
          test['Probability for churn'] = y_pr[:,1]
In [35]:
          test.tail()
Out[35]:
                                                 Balance Vintage Transaction_Status Product_Holdings Credit_Can
                      ID Age Gender Income
                                         10L -
                                               1338458.22
                                                               0
                                                                                 0
                                                                                                  1
          2846
                19e40adf
                           40
                               Female
                                          15L
                                         More
                                                               0
                                                                                                  2
          2847 52d5bc8d
                                         than 1448280.27
                           48
                               Female
                                                                                 1
                                          15L
                                         More
                                                               3
                                                                                 0
                                                                                                  1
               f708121b
                           59
                                         than 1100555.64
          2848
                                 Male
                                          15L
                                          5L -
          2849
                f008715d
                                               1502818.92
                                                               2
                                                                                 0
                                                                                                  1
                           34
                               Female
                                          10L
                                         10L -
                                                               0
                                                                                 1
                                                                                                  2
          2850
                36b81f59
                           61
                               Female
                                                913787.73
                                          15L
          df = pd.DataFrame({'ID':test_proc['ID'] , 'Is_Churn' :Y_test })
In [36]:
          df.head()
Out[36]:
                   ID Is_Churn
          0 55480787
                           0.0
          1 9aededf2
                           0.0
          2 a5034a09
                           0.0
          3 b3256702
                           0.0
          4 dc28adb5
                           0.0
In [42]:
          #convert to csv file for submission
          df.to_csv('sample_sub_final.csv',index=False)
 In [ ]:
```