APPUNTI DI TOPOLOGIA

MASSIMO FERRAROTTI

1. Spazi metrici

1.1. Metriche.

Definizione 1.1. Sia X un insieme non vuoto. Una metrica (o distanza) d su X è una funzione $d: X \times X \to \mathbb{R}$ tale che valgano le seguenti proprietà per ogni coppia $(p,q) \in X \times X$:

- (1) Positività : $d(p,q) \ge 0$ e d(p,q) = 0 se e solo se p = q.
- (2) Simmetria: d(p,q) = d(q,p).
- (3) Disuguaglianza triangolare: $d(p,q) \le d(p,x) + d(x,q)$ per ogni $x \in X$.

La coppia (X, d) viene detta spazio metrico e gli elementi di X sono detti punti.

Proposizione 1.2. Se (X,d) è uno spazio metrico, allora $|d(p,x)-d(q,x)| \leq d(p,q)$ per p, q, x in X.

Dimostrazione.

$$d(p,x) \le d(p,q) + d(q,x)$$
 e $d(q,x) \le d(q,p) + d(p,x)$

implicano

$$d(p,x) - d(q,x) \le d(p,q)$$
 e $d(q,x) - d(x,p) \le d(p,q)$

da cui la tesi.

Sia (X, d) uno spazio metrico e sia $E \subseteq X$. La restrizione $d_E = d|_{E \times E}$ di d a $E \times E$ è una metrica su E detta metrica indotta da d su E. Per semplificare la notazione indicheremo d_E con d quando ciò non comporterà rischio di confusione.

Definizione 1.3. Sia (X,d) uno spazio metrico e sia $E \subseteq X$. Il diametro di E è l'estremo superiore (eventualmente $+\infty$) diam $(E) = \sup\{d(p,q) \mid p, q \in E\}$.

Se $diam(E) < +\infty$ l'insieme E si dice limitato, altrimenti E si dice illimitato. In particolare, d si dice limitata se X (e quindi ogni suo sottoinsieme) è limitato.

E immediato che se ogni sottoinsieme di un insieme limitato è limitato e che se un insieme $E \subseteq X$ contiene un insieme illimitato allora E è illimitato.

Definizione 1.4. Due metriche d_1 e d_2 definite su uno stesso insieme X si dicono equivalenti se esistono costanti positive m e M tali che

$$md_1(p,q) \le d_2(p,q) \le Md_1(p,q)$$

per ogni $(p,q) \in X \times X$.

Proposizione 1.5. La relazione di equivalenza tra metriche è una relazione di equivalenza.

Dimostrazione. Ovviamente una metrica è equivalente a sé stessa. Se d_1 e d_2 sono metriche equivalenti

allora

$$md_1 \le d_2 \le Md_1 \Rightarrow \frac{1}{M}d_2 \le d_1 \le \frac{1}{m}d_2,$$

quindi la proprietà simmetrica è verificata. Infine, data d_3 equivalente a d_2 ,

$$md_1 \leq d_2 \leq Md_1 \quad \text{e} \quad m'd_2 \leq d_3 \leq M'd_2 \Rightarrow mm'd_1 \leq d_3 \leq MM'd_1,$$
quindi d_1 è equivalente a d_3 .

Definizione 1.6. Sia (X,d) uno spazio metrico, sia $p \in X$ e sia r > 0 reale. L'insieme

$$B_d(p,r) = \{x \in X \mid d(p,x) < r\}$$

si dice palla (rispetto a d) di centro p e raggio r.

Ovviamente $B_d(p,r)$ è un insieme limitato. Per semplificare la notazione indicheremo $B_d(p,r)$ con B(p,r) quando ciò non comporterà rischio di confusione.

Si verifica direttamente che

Proposizione 1.7. Se d_1 e d_2 sono metriche equivalenti su X con

$$md_1(p,q) \le d_2(p,q) \le Md_1(p,q),$$

allora

$$B_{d_1}(p, \frac{r}{M}) \subseteq B_{d_2}(p, r) \subseteq B_{d_1}(p, \frac{r}{m}).$$

Esempio 1.8. [Metrica discreta] Se X è un insieme qualsiasi, definiamo

$$d_0(p,q) = \begin{cases} 0 & \text{se} \quad p = q \\ 1 & \text{se} \quad p \neq q \end{cases}$$

Allora d_0 è una metrica su X detta metrica discreta su X.

Esempio 1.9. [Metrica euclidea] In \mathbb{R}^n definiamo la metrica euclidea: se $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$ sia

$$d_{\mathcal{E}}(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}} = ||x - y||.$$

Posto $d = d_{\mathcal{E}}$, verifichiamo che $d_{\mathcal{E}}$ è una metrica. L'unica proprietà non immediata è la disuguaglianza triangolare: per provarla dimostriamo innanzitutto la seguente

Disuguaglianza di Schwarz Se $x, y \in \mathbb{R}^n$ allora

$$|x \cdot y| \le ||x|| ||y||,$$

dove $x \cdot y$ è il prodotto scalare canonico.

Dimostrazione. Se x=O o y=O la disuguaglianza è immediata, quindi supponiamo che siano entrambi non nulli. Abbiamo

$$0 \le \|(\|y\|x \pm \|x\|y)\|^2 = (\|y\|x \pm \|x\|y) \cdot (\|y\|x \pm \|x\|y) = 2\|x\|^2\|y\|^2 \pm 2\|x\|\|y\|x \cdot y$$

Ora, semplificando 2||x|||y|| e portando a sinistra del segno \leq il secondo addendo, otteniamo $\pm x \cdot y \leq ||x|| ||y||$ che equivale alla la tesi.

Disuguaglianza triangolare Se $x, y, z \in \mathbb{R}^n$ allora

$$d(x,y) \le d(x,z) + d(z,y).$$

Dimostrazione. Per la disuguaglianza di Schwarz

$$\|x+y\|^2 = \|x\|^2 + \|y\|^2 + 2x \cdot y \le \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| = (\|x\| + \|y\|)^2$$
e quindi

$$||x + y|| \le ||x|| + ||y||.$$

Allora, dato $x \in \mathbb{R}^n$, abbiamo

$$d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y).$$

cioè la disuguaglianza triangolare.

La sfera *n*-dimensionale in \mathbb{R}^{n+1} di centro p e raggio r > 0 sarà indicata con $S^n(p,r)$; in particolare poniamo $S^n(O,1) = S^n$ (n-sfera unitaria). Quindi

$$S^{n}(p,r) = \{x \in \mathbb{R}^{n+1} \mid ||x-p|| = r\}, \quad S^{n} = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}.$$

Esempio 1.10. [Metriche L^p su \mathbb{R}^n] Se $p \in \mathbb{N}$ o $p = \infty$ definiamo su \mathbb{R}^n le metriche L^p : se $x = (x_1, \dots, x_n)$ e $y = (y_1, \dots, y_n)$ poniamo

$$d_{L^{p}}(x,y) = \begin{cases} \left(\sum_{i=1}^{n} |x_{i} - y_{i}|^{p} \right)^{\frac{1}{p}} & p \in \mathbb{N} \\ \max\{|x_{i} - y_{i}| \mid i = 1, \dots, n\} & p = \infty \end{cases}$$

La positività e la simmetria sono anche in questo caso immediate mentre la disuguaglianza triangolare si prova con formule analoghe alla disuguaglianza di Schwarz. Osserviamo peraltro che per p=2 otteniamo la metrica euclidea $d_{\mathcal{E}}$. Per ogni p vale

$$d_{L^{\infty}} \le d_{L^p} \le n^{\frac{1}{p}} d_{L^{\infty}},$$

quindi le metriche L^p sono tutte equivalenti tra di loro.

Esempio 1.11. Sia (X, d) uno spazio metrico. Se $d_b = \frac{d}{1+d}$, allora d_b è una metrica su X. Basta evidentemente provare la disuguaglianza triangolare. Osserviamo a tal fine che la funzione $f(t) = \frac{t}{1+t}$ è definita e strettamente crescente per $t \neq 0$. Allora, per $p, q, x \in X$,

$$d_b(p,q) = \frac{d(p,q)}{1+d(p,q)} = f(d(p,q)) \le f(d(p,x)+d(x,q)) = \frac{d(p,x)+d(x,q)}{1+d(p,x)+d(x,q)} \le \frac{d(p,x)}{1+d(p,x)} + \frac{d(x,q)}{1+d(x,q)} = d_b(p,x) + d_b(x,q).$$

Si può notare che d_b è una metrica limitata per qualsiasi d: abbiamo $0 \le d_b(p,q) < 1$ per ogni p e q e quindi che ogni sottoinsieme (compreso X stesso) è limitato in (X, d_b) .

Vale anche $d_b \leq d$, ma se d non è limitata le due metriche non sono in generale equivalenti. Se infatti fosse $md \leq d_b$ per qualche m > 0, la metrica d sarebbe limitata in quanto avremmo $d(p,q) < \frac{1}{m}$ per $p, q \in X$.

Esempio 1.12. [Metrica SNCF] Se $x, y \in \mathbb{R}^n$ poniamo

$$d_{SNCF}(x,y) = \left\{ \begin{array}{ccc} \|x-y\| & \text{se} & x,\ y & \text{sono linearmente dipendenti} \\ \|x\| + \|y\| & \text{se} & x,\ y & \text{sono linearmente indipendenti} \end{array} \right.$$

Si verifichi per esercizio che d_{SNCF} è una metrica. Posto $d=d_{SNCF}$, vediamo di determinare le palle relative a d: sia $B_d(p,r)=B$. Se p=O, allora B è la palla euclidea $B_{d\varepsilon}(O,r)$. Se $p\neq O$, sia L la retta per O e sia $r_0=\|p\|$. Allora $B=B_1\cup B_2$, dove $B_1=B\cap L$ e $B_2=B\setminus L$. Si verifica che

$$B_1 = \{ tp \mid 1 - \frac{r}{r_0} < t < 1 + \frac{r}{r_0} \}$$

mentre $B_2 = \emptyset$ se $r \geq r_0$ e $B_2 = B_{d_{\mathcal{E}}}(O, r - r_0) \setminus L$ se $r > r_0$.

Esempio 1.13. [Metriche L^{∞} e L^{1} su spazi di funzioni]

Sia $X=C^0(I)$ l'insieme delle funzioni reali continue definite su un intervallo $I=[a\quad b].$ Se definiamo per $f,\ g\in X$

$$d_{L^{\infty}}(f,g) = \sup_{x \in I} |f(x) - g(x)|$$

 \mathbf{e}

$$d_{L^1}(f,g) = \int_a^b |f(x) - g(x)| dx,$$

otteniamo due metriche su X tali che $d_{L^1} \leq (b-a)d_{L^\infty}$ ma che non sono equivalenti. Infatti poniamo per semplictà $I=[0\quad 1]$ e supponiamo per assurdo che $d_{L^\infty} \leq M d_{L^1}$ per qualche M>0.

Se consideriamo la successione di funzioni in X definite da

$$f_n(x) = \begin{cases} 1 - nx & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \end{cases}$$

e se g(x) è la funzione nulla, allora per ogni n

$$d_{L^{\infty}}(f_n,g) = 1 \le M d_{L^1}(f_n,g) = \int_0^1 f_n(x) dx = \int_0^{1/n} (1-nx) dx = \frac{1}{2n},$$

il che è assurdo.

Esempio 1.14. [Metrica geodetica] Sia $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$. Oltre alla metrica indotta dalla metrica euclidea di \mathbb{R}^{n+1} , possiamo definire su S^n la metrica geodetica d_g : $d_g(p,q)$ è l'estremo inferiore delle lunghezze degli archi di curva $\gamma \colon [a \quad b] \to S^n$ tali che $\gamma(a) = p \in \gamma(b) = q$.

Tale distanza è realizzata dalla lunghezza dell'arco più breve tra i due in cui è divisa la circonferenza ottenuta dall'intersezione di S^n con il piano per p, q e l'origine O.

Comunque la metrica euclidea indotta su S^n e d_g sono equivalenti. Intanto è sempre vero che $d_{\mathcal{E}} \leq d_g$. Per le considerazioni precedenti basta provare l'equivalenza nel caso n=1.

Se ora $p, q \in S^1, d_g(p,q) = \theta$ dove θ è l'angolo in O (misurato in radianti) nel triangolo di vertici p, q, O: dunque $0 \le \theta \le \pi$. D'altra parte, per note formule trigonometriche, $d_{\mathcal{E}}(p,q) = \sqrt{2(1-\cos\theta)}$. Abbiamo

$$\lim_{\theta \to 0^+} \frac{\theta}{\sqrt{2(1-\cos\theta)}} = 1.$$

Quindi la funzione

$$f(\theta) = \frac{\theta}{\sqrt{2(1-\cos\theta)}} = \frac{d_g(p,q)}{d_{\mathcal{E}}(p,q)}$$

si estende con continuità all'intervallo chiuso e limitato $[0 \pi]$ ponendo f(0) = 1 ed è strettamente positiva su tale intervallo. Per il teorema di Weierstrass in una variabile reale, f ammette un valore massimo M > 0, quindi otteniamo

$$\frac{1}{M}d_g(p,q) \le d_{\mathcal{E}}(p,q) \le d_g(p,q).$$

per $p, q \in S^1$.

Si può definire la metrica geodetica per classi più ampie di sottoinsiemi di \mathbb{R}^n ma in generale tale metrica non sarà equivalente alla metrica euclidea indotta.

1.2. **Metriche su prodotti.** Se (X_1, d_1) e (X_2, d_2) sono spazi metrici, non vi è un modo univoco per stabilire sul prodotto cartesiano $X_1 \times X_2$ una metrica in funzione solo di d_1 e d_2 . In questa sottosezione introduciamo una famiglia di metriche sul prodotto tra loro equivalenti definite per analogia con le metriche L^p su \mathbb{R}^n .

Proposizione 1.15. Siano (X_1, d_1) e (X_2, d_2) spazi metrici. Se $p = (p_1, p_2)$ e $q = (q_1, q_2)$ appartengono a $X_1 \times X_2$ poniamo poniamo per $p \in \mathbb{N}$

$$d_{L^p}(p,q) = (d_1(p_1,q_1)^p + d_2(p_2,q_2)^p)^{\frac{1}{p}} \quad e \quad d_{L^{\infty}}(p,q) = \max\{d_1(p_1,q_1), d_2(p_2,q_2)\}.$$

Allora $d_{L^{\infty}}$ e d_{L^p} sono metriche equivalenti su $X_1 \times X_2$ per ogni $p \in \mathbb{N}$.

Dimostrazione. L'unica proprietà non immediata è la disuguaglianza triangolare per d_{L^p} quando $p \ge 2$, che proveremo nel caso p = 2. Verifichiamo la seguente disuguaglianza: se a_i , b_i e c_i per i = 1, 2 sono numeri reali ≥ 0 e se $a_i \le b_i + c_i$ per i = 1, 2 allora

$$\sqrt{a_1^2 + a_2^2} \le \sqrt{b_1^2 + b_2^2} + \sqrt{c_1^2 + c_2^2}.$$

Infatti, applicando la disuguaglianza di Schwarz al prodotto scalare $b_1c_1+b_2c_2$ otteniamo

$$a_1^2 + a_2^2 \leq (b_1 + c_1)^2 + (b_2 + c_2)^2 = b_1^2 + c_1^2 + b_2^2 + c_2^2 + 2(b_1c_1 + b_2c_2) \leq b_1^2 + c_1^2 + b_2^2 + c_2^2 + 2\sqrt{b_1^2 + b_2^2} sqrtc_1^2 + c_2^2 = (\sqrt{b_1^2 + b_2^2} + c_1^2 + b_2^2 + c_2^2 + c_2^2 + c_1^2 + c_2^2 + c_2^2$$

Da tale disuguaglianza ricaviamo la disuguaglianza triangolare

$$d_{L^2}(p,q) \le d_{L^2}(p,z) + d_{L^2}(z,q)$$

per $p = (p_1, p_2)$, $q = (q_1, q_2)$ e $z = (z_1, z_2)$ sostituendo $a_i = d_i(p_i, q_i)$, $b_i = d_i(p_i, z_i)$, $c_i = d_i(z_i, q_i)$ per i = 1, 2.

Poiché infine

$$d_{L^{\infty}} \le d_{L^p} \le 2^{\frac{1}{p}} d_{L^{\infty}},$$

abbiamo che tali metriche sono equivalenti.

Si verifica facilmente che $B_{d_L\infty}((p_1, p_2), r) = B_{d_1}(p_1, r) \times B_{d_2}(p_2, r)$. Questa osservazione ci porta a definire convenzionalmente come metrica prodotto $d_1 \times d_2$ la metrica d_{L^∞} .

1.3. Funzioni continue e isometrie.

La nozione di continuità per funzioni tra spazi metrici è una generalizzazione di quella per le funzioni da \mathbb{R}^n a valori in \mathbb{R}^m .

Definizione 1.16. Sia $f:(X,d) \to (Y,d')$ una funzione tra spazi metrici e sia $p \in X$. Si dice che f è continua in p (rispetto a d e d') se per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che $f(B_d(p,\delta)) \subseteq B_{d'}(f(p),\epsilon)$.

Si dice che f è continua su $E \subseteq X$ (rispetto a d e d') se lo è in ogni punto di E. Se E = X si dice semplicemente che f è continua.

Si dice che f è un omeomorfismo (di spazi metrici) se f è biunivoca e f^{-1} è continua.

Definizione 1.17. Siano (X,d) e Y,d') spazi metrici. Un'applicazione $f: X \to Y$ si dice isometria se è suriettiva e se d(p,q) = d'(f(p),f(q)) per ogni $p, q \in X$. Se esiste una isometria da X su Y, i due spazi si dicono isometrici.

Proposizione 1.18. Una isometria $f:(X,d)\to (Y,d')$ è un omeomorfismo. Inoltre anche la sua inversa $f^{-1}:Y\to X$ è una isometria.

Dimostrazione. Se f(p) = f(q) allora d(p,q) = d(f(p), f(q)) = 0 e p = q. Inoltre per ogni $p \in X$ e r > 0 si ha $f(B_d(p,r)) = B_{d'}(f(p),r)$.

E' immediato che se (X, d) e (Y, d') sono spazi metrici, le funzioni costanti da X a Y sono continue rispetto a d e a d' e che la funzione identità Id_X su X è una isometria di (X, d) con sè stesso.

7

Esempi 1.19.

- (1) Le nozioni di funzione continua e di isometria appena definita coincidono con quelle usuali quando si considerino funzioni su \mathbb{R}^n a valori in \mathbb{R}^m dotati delle rispettive metriche euclidee. In particolare le isometrie da \mathbb{R}^n in sè sono tutte e sole le applicazioni $f: \mathbb{R}^m \to \mathbb{R}^n$ del tipo f(x) = Nx + p dove N è una matrice ortogonale $n \times n$ (cioè tale che $N^t N = I_n$) e $p \in \mathbb{R}^n$.
- (2) Sia $\mathbb{R}^{m,n}$ lo spazio vettoriale delle matrici reali $m \times n$. Definiamo su $\mathbb{R}^{m,n} \times \mathbb{R}^{m,n}$ la seguente funzione:

$$d(A,B) = \left(\sum_{1 \le i \le m, \ 1 \le j \le n} (a_{i,j} - b_{i,j})^2)^{\frac{1}{2}}\right)$$

se $A = \{a_{i,j}\}$ e $B = \{b_{i,j}\}$. Allora d è una metrica, in quanto non è nient'altro che la metrica euclidea su \mathbb{R}^{mn} con un opportuno ordinamento delle coordinate. Indicheremo quindi d con $d_{\mathcal{E}}$ denominandola "metrica euclidea su $\mathbb{R}^{m,n}$ ". Evidentemente $(\mathbb{R}^{mn}, d_{\mathcal{E}})$ e $(\mathbb{R}^{m,n}, d_{\mathcal{E}})$ sono isometrici.

1.4. Spazi normati.

Definizione 1.20. Sia V uno spazio vettoriale su \mathbb{R} . Una norma $\|\cdot\|$ su V è una funzione $\|\cdot\|: V \to \mathbb{R}$ con le seguenti proprietà :

- (1) Se $v \in V$, $||v|| \ge 0$ e ||v|| = 0 se e solo se $v = O_V$.
- (2) Se $\alpha \in \mathbb{R}$ e $v \in V$, $\|\alpha v\| = |\alpha| \|v\|$.
- (3) Se $v_1, v_2 \in V, ||v_1 + v_2|| \le ||v_1|| + ||v_2||$.

La coppia $(V, \|\cdot\|)$ si dice spazio normato.

La seguente proposizione è di facile verifica.

Proposizione 1.21. Se $(V, \|\cdot\|)$ è uno spazio normato, $d(v_1, v_2) = \|v_1 - v_2\|$ definisce una metrica V, detta metrica indotta dalla norma.

Osserviamo che se $\|\cdot\|_1$ e $\|\cdot\|_2$ sono norme su V e se d_1 e d_2 sono le rispettive metriche indotte, d_1 e d_2 sono equivalenti con $md_1 \leq d_2 \leq Md_1$ se e solo se $m\|\cdot\|_1 \leq \|\cdot\|_2 \leq M\|\cdot\|_1$ (in questo caso le norme si dicono equivalenti).

Esempi 1.22.

(1) Per $1 \leq p \leq \infty$ possiamo considerare \mathbb{R}^n come spazio normato con le norme L^p date da ,

$$||x||_p = (\sum_{i=1}^n x_i^p)^{\frac{1}{p}}, \qquad ||x||_{\infty} = \sup\{|x_i| \mid 1 \le i \le n\}$$

che inducono le metriche L^p . In particolare, la norma L^2 induce la metrica euclidea, pertanto viene detta norma euclidea e in genere denotata semplicemente con $\|\cdot\|$.

(2) Se $A \in \mathbb{R}^{n,n}$ è una matrice simmetrica definita positiva, allora $||x||_A = \sqrt{x^t A x}$ definisce una norma su \mathbb{R}^n , che risulta essere la radice quadrata della forma quadratica associata a A. Infatti le (1) e (2) di 1.20 sono immediate dalla definizione. Per la (3), osserviamo che, con passaggi analoghi a quelli utilizzati per la disuguaglianza di Schwarz, si prova che $|x^t A y| \leq ||x||_A ||y||_A$ e si deduce da questa la disuguaglianza triangolare.

Ora, per il Teorema Spettrale, esistono una matrice ortogonale N e una matrice diagonale D tale che $N^tAN=D$. Ricordando che $||N^tx||=||x||$, che gli elementi $\lambda_1,\ldots,\lambda_n$ sulla diagonale principale di D sono gli autovalori di A e che $\lambda_i>0$ per ogni i, abbiamo $||x||_A^2=x^tAx=x^tNDN^tx$. Quindi, se $m=\sqrt{\min\{\lambda_i\}}$ e $M=\sqrt{\max\{\lambda_i\}}$, otteniamo $m||x||\leq ||x||_A\leq M||x||$. Infatti, se $y=(y_1,\ldots,y_n)=N^tx$,

$$m^2 ||x||^2 \le ||x||_A^2 = y^t Dy = \sum_{i=1}^n \lambda_i y_i^2 \le M^2 ||x||^2.$$

1.5. **Limiti.**

Se X è un insieme, una successione in X è una funzione da \mathbb{N} in X. Usualmente si indica con p_n sia l'elemento di X associato a n che la successione stessa, mentre l'immagine come sottinsieme di X si denota $\{p_n\}$.

Definizione 1.23. Sia (X,d) uno spazio metrico. Una successione p_n in X si dice convergente a $p_0 \in X$ (o che converge a p_0) per $n \to \infty$ se per ogni $\epsilon > 0$ esiste $n_{\epsilon} \in \mathbb{N}$ tale che $p_n \in B_d(p_0, \epsilon)$ per ogni $n \ge n_{\epsilon}$.

È immediato che p_n converge a p_0 se e solo se $\lim_{n\to\infty} d(p_n, p_0) = 0$. Se p_n è convergente a p_0 , tale p_0 è unico. Infatti se p_n convergesse a $p'_0 \neq p_0$ avremmo per la disuguaglianza triangolare

$$0 < d(p_0, p'_0) \le d(p_0, p_n) + d(p_n, p'_0)$$

per ogni $n\in\mathbb{N}.$ Poiché il membro destro di tale disuguaglianza tende a 0, abbiamo un assurdo.

Quindi, se p_n converge a p_0 possiamo dire che p_0 è il limite di p_n per $n \to \infty$ e scrivere $\lim_{n \to \infty} p_n = p_0$.

Ricordiamo che una sottosuccessione p'_k di una successione p_n in un insieme X è una successione in X definita come $p'_k = p_{n_k}$, dove n_k è una successione strettamente crescente in \mathbb{N} . In uno spazio metrico, un punto limite di una successione p_n è il limite di una sua sottosuccessione convergente. Se p_n è convergente a p_0 , p_0 è l'unico punto limite di p_n .

Definizione 1.24. Sia $f:(X,d) \to (Y,d')$ una funzione tra spazi metrici e siano $p_0 \in X$ e $\ell \in Y$. Allora diciamo che ℓ è il limite di f(p) per p che tende a p_0 se per ogni $\epsilon > 0$ esiste $\delta > 0$ tali che $f(B_d(p_0,\delta)) \subseteq B_{d'}(\ell,\epsilon)$.

In tal caso si dice anche che f(p) tende o converge a ℓ per p che tende a p_0 .

Analogamente al caso delle successioni, si prova con una dimostrazione del tutto simile che il limite, se esiste, è unico. Quindi ha senso la notazione $\lim_{p\to p_0} f(p) = \ell$.

Proposizione 1.25. Sia $f:(X,d) \to (Y,d')$ una funzione tra spazi metrici e e siano $p_0 \in X$ e $\ell \in Y$. Allora $\lim_{p \to p_0} f(p) = \ell$ se e solo se per ogni successione p_n in X tale $\lim_{n \to \infty} p_n = p_0$ si ha $\lim_{n \to \infty} f(p_n) = \ell$.

Dimostrazione. Per assurdo supponiamo che $\lim_{p\to p_0} f(p) \neq \ell$. Questo equivale a dire che esiste $\epsilon > 0$ tale che per ogni n esiste $p_n \in B_d(p_0, \frac{1}{n})$ tale che $f(p_n) \notin B_{d'}(\ell, \epsilon)$. Allora la successione $\lim_{n\to\infty} p_n = p_0$ converge mentre $d'(f(p_n), \ell) \geq \epsilon$ per ogni n.

Viceversa, sia f convergente a ℓ per $p \to p_0$ e sia p_n convergente a p_0 . Dato $\epsilon > 0$, esiste $\delta > 0$ tale che $f(B_d(p_0, \delta)) \subseteq B_{d'}(\ell, \epsilon)$ e esiste $n_\delta \in \mathbb{N}$ tale che $d(p_n, p_0) < \delta$ per $n \ge n_\delta$. Allora $d'(f(p_n), \ell) < \epsilon$ per ogni $n \ge n_\delta$, quindi $\lim_{n \to \infty} f(p_n) = \ell$.

Dalle definizioni di limite e continuità otteniamo

Proposizione 1.26. Sia $f:(X,d) \to (Y,d')$ una funzione tra spazi metrici e sia $p_0 \in X$. Allora $f \ \grave{e}$ continua in p_0 se e solo se $\lim_{p \to p_0} f(p) = f(p_0)$.

 $\operatorname{Se}(X,d)$ è uno spazio metrico e $E\subseteq X$. La distanza di $p\in X$ da E è definita come $d(p,E)=\inf\{d(p,q)\mid q\in E\}$. Abbiamo

Proposizione 1.27. Sia (X,d) uno spazio metrico e sia $E \subseteq X$. Allora la funzione $\delta_E : (X, \tau_d) \to (\mathbb{R}, \mathcal{E}_1)$ definita da $\delta_E(p) = d(p, E)$ è continua.

Dimostrazione. Sia $p_0 \in X$ e sia $\delta_0 = d_E(p_0) \in \mathbb{R}$. Per ogni $p \in X$ e $q \in E$ abbiamo

$$d(p,q) \le d(p,p_0) + d(p_0,q)$$
 e $d(p_0,q) \le d(p_0,p) + d(p,q)$

da cui

$$\delta_E(p) = \inf_{q \in E} d(p, q) \le d(p, p_0) + \delta_E(p_0) \quad \text{e} \quad \delta_E(p_0) \le d(p_0, p) + \delta_E(p).$$

Pertanto $|\delta_E(p) - \delta_E(p_0)| = |\delta_E(p) - d_0| \le d(p, p_0)$. Allora, dato $\epsilon > 0$, $V_{\epsilon} = (d_0 - \epsilon - d_0 + \epsilon)$ è la palla di centro d_0 e raggio $\epsilon > 0$ in $(\mathbb{R}, d_{\mathcal{E}})$ e $\delta_E(B(p_0, \epsilon)) \subseteq V_{\epsilon}$, da cui la continuità di δ_E .

1.6. Spazi completi.

Definizione 1.28. Sia (X, d) uno spazio metrico. Una successione p_n in X si dice di Cauchy se per ogni $\epsilon > 0$ esiste $n_{\epsilon} \in \mathbb{N}$ tale che $d(p_{n_1}, p_{n_2}) < \epsilon$ per $n_1 \geq n_{\epsilon}$ e $n_2 \geq n_{\epsilon}$.

Esempio 1.29. Osserviamo che per una successione p_n in uno spazio metrico (X,d) non basta per essere di Cauchy che $\lim_{n\to\infty} d(p_n,p_{n+1})=0$. Infatti sia in $(\mathbb{R},d_{\mathcal{E}})$ la successione definita ricorsivamente come $p_1=1,\ p_{n+1}=p_n+\frac{1}{n+1}$. Allora la condizone precedente è ovviamente soddisfatta ma abbiamo per ogni $n,\ k\in\mathbb{N}$

$$p_{n+k} - p_n = \sum_{h=n+1}^{n+k} \frac{1}{h}.$$

 $Per k = n \ si \ ha$

$$p_{2n} - p_n = \sum_{h=n+1}^{2n} \frac{1}{h} > \frac{1}{2}.$$

Le seguenti proposizioni esprimono importanti proprietà delle successioni di Cauchy.

Proposizione 1.30. Sia p_n una successione convergente in uno spazio metrico (X, d). Allora p_n è di Cauchy.

Dimostrazione. Sia $p_0 = \lim_{n \to \infty} p_n$. Dato $\epsilon > 0$, sia n_0 tale che $d(p_n, p_0) < \epsilon$ per $n \ge n_0$. Allora, se poniamo $n_e = n_0$, abbiamo

$$d(p_{n_1},p_{n_2}) < d(p_{n_1},p_0) + d(p_0,p_{n_2}) < \epsilon$$
 per $n_1 \ge n_\epsilon$ e $n_2 \ge n_\epsilon$.

Proposizione 1.31. Se p_n è successione di Cauchy in uno spazio metrico (X, d), l'insieme $\{p_n \mid n \in \mathbb{N}\}$ è limitato. Inoltre, se p_n ha p_0 come punto limite allora p_n converge a p_0 .

Dimostrazione. Sia $\epsilon > 0$. Allora per ogni $n \geq n_{\epsilon}$ si ha $d(p_n, p_{n_{\epsilon}}) < \epsilon$. Quindi $p_n \in B_d(p_{n_{\epsilon}}, \epsilon)$ per ogni $n \geq n_{\epsilon}$, da cui la tesi.

Inoltre, se p_0 è il limite della sottosuccessione p_{n_k} , per $\epsilon > 0$ esiste n_{ϵ} tale che $d(p_{n_k}, p_0) < \frac{\epsilon}{2}$ e $d(p_n, p_{n_k}) < \frac{\epsilon}{2}$ per $n \geq n_{\epsilon}$ e $k \geq n_{\epsilon}$. Allora

$$d(p_n, p_0) \le d(p_n, p_{n_k}) + d(p_{n_k}, p_0) < \epsilon$$

per $n, k \geq n_{\epsilon}$, da cui la tesi.

Il viceversa della proposizione 1.30 non è vero in generale, come si vede dal seguente esempio.

Esempio 1.32. Sia X l'intervallo (0 1) in \mathbb{R} con la metrica euclidea indotta. Allora $p_n = \frac{1}{n}$ è una successione in X di Cauchy che non converge (in X).

Quindi ha senso la seguente definizione

Definizione 1.33. Uno spazio metrico si dice completo se ogni successione di Cauchy in X è convergente.

La seguente proposizone è di facile verifica.

Proposizione 1.34. Sia (X, d) uno spazio metrico .

- (1) Se d' è una metrica su X equivalente a d, allora (X,d) è completo se e solo se (X,d') è completo.
- (2) Se (Y, d') è uno spazio metrico e se $f(X, d) \rightarrow (Y, d')$ è una isometria, allora (X, d) è completo se e solo se (Y, d') è completo.

Una proprietà importante degli spazi completi che ha molteplici applicazioni, tra le quali lo studio dell'esistenza di soluzioni di equzioni differenziali, è il Teorema del punto fisso.

Definizione 1.35. Sia (X,d) uno spazio metrico. Una funzione $f:(X,d) \to (X,d)$ si dice Lipschitziana se esiste $0 \le C$ in $\mathbb R$ tale che $d(f(p), f(q) \le Cd(p,q)$ per ogni $p, q \in X$. Inoltre, se C < 1 si dice che f è una contrazione.

Se f è Lipschitziana, l'estremo inferiore dei C per cui vale la disuguaglianza precedente si dice costante di Lipschitz.

Proposizione 1.36. Se $f:(X,d)\to (X,d)$ è Lipschitziana allora f è continua.

Dimostrazione. Se C=0 allora f è costante e quindi continua. Sia C>0; se $p_0 \in X$ e se $\epsilon>0$, posto $\delta=\frac{\epsilon}{C}$ abbiamo $f(B_d(p_0,\delta))\subseteq B_d(f(p_0),\epsilon)$.

Teorema 1.37 (Teorema del punto fisso). Sia (X,d) uno spazio metrico completo. Sia $f:(X,d)\to (X,d)$ una contrazione. Allora esiste un unico $\overline{p}\in X$ tale che $f(\overline{p})=\overline{p}$.

Dimostrazione. Sia $d(f(p), f(q)) \leq Cd(p, q)$. Se C = 0 la tesi è ovvia. Sia C > 0 e si consideri $p_0 \in X$. Si definisca ricorsivamente la successione $p_n = f(p_{n-1})$ per $n \in \mathbb{N}$. Allora per ipotesi per ogni $n \in \mathbb{N}$

$$d(p_n, p_{n+1}) \le C^n d(p_0, p_1).$$

per ogni $n \in \mathbb{N}$. Presi $m, n \in \mathbb{N}$ con $m \leq n$, per la disuguaglianza triangolare e l'ipotesi di contrazione si ha

$$d(p_n, p_m) \leq \sum_{i=m}^{n-1} d(p_i, p_{i+1}) \leq d(p_0, p_1) \sum_{i=m}^{n-1} C^i = d(p_0, p_1) C^m \sum_{i=0}^{n-m-1} C^i = d(p_0, p_1) \frac{C^m (1 - C^{n-m})}{1 - C}.$$

Dalla disuguaglianza precedente si deduce che p_n è di Cauchy, quindi per la completezza p_n converge a un limite \overline{p} . Poiché $p_{n+1} = f(p_n)$ per ogni $n \in \mathbb{N}$, per la continuità di f passando al limite abbiamo $f(\overline{p}) = \overline{p}$.

Proviamo ora l'unictà di \overline{p} . Se f(q) = q per qualche $q \in X$, avremmo

$$0 \le d(\overline{p}, q) = d(f(\overline{p}), f(q)) \le Cd(\overline{p}, q).$$

Poiché C < 1 dev'essere necessariamente $d(\overline{p}, q) = 0$ cioè $\overline{p} = q$.

Ricordiamo che, data una funzione $f: X \to X$ da un insieme in sè stesso, un punto $p \in X$ tale che f(p) = p si dice punto fisso di f.

Corollario 1.38. Sia (X, d) uno spazio metrico completo. Sia $f : (X, d) \to (X, d)$ una funzione tale che f^k è una contrazione per un $k \in \mathbb{N}$. Allora f ha un unico punto fisso.

Dimostrazione. Per 1.37 esiste un solo \overline{q} tale che $f^k(\overline{q}) = \overline{q}$. Allora $f(f^k(\overline{q})) = f^k(f(\overline{q})) = f(\overline{q})$. Quindi $f(\overline{q})$ è un punto fisso per f^k ; per l'unicità deve essere $f(\overline{q}) = \overline{q}$.

Esempio 1.39. Si consideri $(X, d_{\mathcal{E}})$ con $X = \begin{bmatrix} 1 \\ + \infty \end{bmatrix}$ e sia $f(x) = x + \frac{1}{x}$. Allora

$$|f(x) - f(y)| = \left| x + \frac{1}{x} - y - \frac{1}{y} \right| = |x - y| \left| 1 - \frac{1}{xy} \right| < |x - y|.$$

Allora |f(x) - f(y)| < |x - y| per ogni $x, y \in \mathbb{R}$ ma per ogni C con 0 < C < 1 esistono $x, y \in \mathbb{R}$ tali che $|f(x) - f(y)| \ge C|x - y|$. Poiché f non ha punti fissi, questo esempio mostra che 1.37 non vale se la costante di Lipschitz è C = 1.

2. Spazi topologici

2.1. Topologie su un insieme.

Definizione 2.1. Sia X un insieme non vuoto. Una topologia τ su X è un sottoinsieme dell'insieme delle parti $\mathcal{P}(X)$ di X tale che

TOP1 \emptyset , $X \in \tau$.

TOP2 Dato comunque un sottoinsieme $A \subseteq \tau$, l'unione $\bigcup_{A \in A} A$ appartiene a τ .

TOP3 Se $\{A_1, \ldots, A_k\} \subseteq \tau$, allora l'intersezione finita $\bigcap_{i=1}^k A_i$ appartiene a τ .

La coppia (X, τ) si dice *spazio topologico*, gli elementi di τ si dicono *aperti* di τ e gli elementi di X sono detti *punti*.

Definizione 2.2. Sia (X, τ) uno spazio topologico e sia $p \in X$. Gli aperti che contengono p sono detti intorni di p (in τ).

Indicheremo con \mathcal{U}_p la famiglia di tutti gli intorni di p. Evidentemente l'intersezione finita e l'unione di un numero qualsiasi di elementi di \mathcal{U}_p è ancora un elemento di \mathcal{U}_p e $X \in \mathcal{U}_p$ per ogni p.

Proposizione 2.3. Sia (X, τ) uno spazio topologico . Allora $A \in \tau$ se e solo se per ogni $p \in A$ esiste $U \in \mathcal{U}_p$ tale che $U \subseteq A$.

Dimostrazione. (\Rightarrow) Basta prendere U=A. (\Leftarrow) Per ogni $p\in A$ sia U_p un intorno contenuto in A: allora $A=\bigcup_{p\in A}U_p$, da cui la tesi.

Definizione 2.4. Sia (X, τ) uno spazio topologico . $C \subseteq X$ si dice chiuso se $X \setminus C \in \tau$.

Denoteremo l'insieme dei chiusi di τ con il simbolo τ^* . È facile provare la seguente

Proposizione 2.5. Sia X un insieme non vuoto.

- i) Se τ è una topologia su X abbiamo che
 - (a) \emptyset , $X \in \tau^*$.
 - (b) Dato comunque un sottoinsieme $C \subseteq \tau^*$, l'intersezione $\bigcap_{C \in \mathcal{C}} C$ appartiene a τ^* .
 - (c) Se $\{C_1, \ldots, C_k\} \subseteq \tau^*$, allora l'unione finita $\bigcup_{i=1}^k C_i$ appartiene a τ^* .
- ii) Viceversa, se $\sigma \subseteq \mathcal{P}(X)$ è un sottoinsieme che soddisfa alle proprietà a), b), c) di i), allora esiste un'unica topologia τ su X tale che $\tau^* = \sigma$.

Definizione 2.6. Siano τ e τ' topologie su un insieme X. Se $\tau \subset \tau'$ si dice che τ' è più fine di τ o che τ è meno fine di τ' . In tal caso si dice che τ e τ' sono confrontabili, altrimenti che τ e τ' sono non confrontabili.

Frequentemente, per provare che due topologie definite in modo differente sono coincidenti si verifica che una è contemporaneamente più e meno fine dell'altra.

Definizione 2.7. Una topologia τ su un insieme X si dice di Hausdorff se per ogni $p \in X$ e $q \in X$ esistono intorni $U \in \mathcal{U}_p$ e $V \in \mathcal{U}_q$ tali che $U \cap V = \emptyset$.

In tal caso lo spazio topologico (X, τ) si dice spazio di Hausdorff.

È immediato che se (X, τ) è di Hausdorff e se τ' è una topologia più fine di τ su X, allora anche (X, τ') è di Hausdorff. Inoltra abbiamo la seguente

Proposizione 2.8. Se (X, τ) è di Hausdorff allora per ogni $p \in X$ l'insieme $\{p\}$ è chiuso.

Dimostrazione. Se $q \in X \setminus \{p\}$, esiste $U \in \mathcal{U}_q$ tale che $p \notin U$, cioè $U \subseteq X \setminus \{p\}$: quindi $X \setminus \{p\}$ è aperto.

Nel seguito, se X è un insieme, indicheremo con #X la cardinalità di X.

Esempi 2.9. Sia X un insieme non vuoto.

- (1) L'insieme $\{\emptyset, X\}$ è una topologia su X detta topologia banale. Tale topologia è meno fine di qualsiasi altra su X e non è di Hausdorff se #X > 1.
- (2) L'insieme delle parti $\mathcal{P}(X)$ è una topologia su X detta topologia discreta. Tale topologia è più fine di qualsiasi altra su X e è evidentemente di Hausdorff. Osserviamo che $\mathcal{P}(X) = \mathcal{P}(X)^*$.
- (3) Sia $\tau_{cof} = \{A \subseteq X \mid \#(X \setminus A) < \infty\} \cup \{\emptyset\}$. Allora τ_{cof} è una topologia su X detta topologia cofinita. Per provarlo applichiamo 2.5. Infatti la famiglia $\sigma = \{C \subseteq X \mid \#C < \infty\} \cup \{X\}$ soddisfa evidentemente alle ipotesi di 2) in 2.5, e quindi esiste un'unica topologia τ su X tale che $\sigma = \tau^*$. Per la scelta di σ avremo necessariamente $\tau = \tau_{cof}$.

Osserviamo che se X è finito allora τ_{cof} coincide con la topologia discreta mentre se X è infinito τ_{cof} non è di Hausdorff: infatti non vi sono coppie di aperti non vuoti e disgiunti.

- (4) Se $p_0 \in X$, $\tau_{p_0} = \{A \subseteq X \mid p_0 \in A\} \cup \{\emptyset\}$ è una topologia su X detta topologia del punto p_0 .
- (5) Sia $A \subset X$ con $A \neq \emptyset$, e sia $\tau = \{\emptyset, A, X \setminus A, X\}$. Allora τ è una topologia meno fine di quella discreta ma tale che $\tau = \tau^*$. Tale topologia non è di Hausdorff: se $p, q \in A$, gli unici loro intorni sono $A \in X$.
- (6) Sia $X = \{a, b, c, d\}$. Allora $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ è una topologia su X mentre $\tau' = \{\emptyset, \{a, b\}, \{a, d\}, X\}$ non lo è . Comunque τ non è di Hausdorff in quanto l'unico intorno di $c \in d$ è X.
- (7) Sia $X = \mathbb{R}$ e sia

$$\mathcal{E}_1 = \{ A \subseteq X \mid \forall x \in A \exists (a \ b) \text{ tale che } x \in (a \ b) \subseteq A \} \cup \{\emptyset\}.$$

Allora \mathcal{E}_1 è una topologia di Hausdorff detta topologia euclidea su \mathbb{R} .

(8) Sia $X = \mathbb{R}$ e sia $\tau = \{(a + \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset, X\}$. Allora τ è una topologia meno fine di \mathcal{E}_1 e non di Hausdorff.

2.2. Topologia indotta.

Se (X,τ) è uno spazio topologico e $E\subseteq X$, su E viene indotta da τ una topologia in modo naturale. Infatti si verifica facilmente che l'insieme

$$\tau_E = \{ A \cap E \mid A \in \tau \}.$$

è una topologia su E detta topologia indotta su E da τ . Per indicare che consideriamo la topologia indotta invece di (E, τ_E) possiamo anche usare le notazioni (E, τ) o $E \subseteq (X, \tau)$. Nella prossima proposizione riassumiamo alcune proprietà della topologia indotta.

Proposizione 2.10. Sia (X, τ) uno spazio topologico e sia $E \subseteq X$.

- (1) $(\tau_E)^* = \{C \cap E \mid C \in \tau^*\}.$
- (2) $E \in \tau$ se e solo se $\tau_E = \{A \in \tau \mid A \subseteq E\}.$
- (3) $E \in \tau^*$ se e solo se $(\tau_E)^* = \{C \in \tau^* \mid C \subseteq E\}.$
- (4) Se $E' \subseteq E$, allora $(\tau_E)_{E'} = \tau_{E'}$.
- (5) Se τ è di Hausdorff anche τ_E lo è.

2.3. Topologie e metriche.

Se (X,d) è spazio metrico, definiamo una topologia τ_d associata alla metrica d. Sia

$$\tau_d = \{ A \subseteq X \mid \forall p \in A \ \exists r > 0 \text{ tale che } B(p,r) \subseteq A \} \cup \{\emptyset\}.$$

Proposizione 2.11. L'insieme τ_d è una topologia su X.

Dimostrazione. L'unica proprietà non immediata è la TOP3.

Siano A_1 e A_2 aperti di τ_d . Se $A_1 \cap A_2 = \emptyset$, tale intersezione è in τ_d per definizione. Se $p \in A_1 \cap A_2$, allora esistono $r_1 > 0$ e $r_2 > 0$ tali che $B_d(p, r_i) \subseteq A_i$ per i = 1, 2. Dunque, se $r = min\{r_1, r_2\}$, abbiamo $B_d(p, r) \subseteq A_1 \cap A_2$ il che prova che $A_1 \cap A_2 \in \tau_d$. Il caso generale dell'intersezione di un numero finito di aperti segue facilmente per induzione.

La topologia τ_d si dice topologia associata a d. Se non diversamente indicato, considereremo (X, d) come spazio topologico (X, τ_d) .

Osserviamo che se (X, d) è uno spazio metrico e se consideriamo su $E \subseteq X$ la metrica indotta d_E , allora si ha $(\tau_d)_E = \tau_{d_E}$.

La topologia su \mathbb{R}^n associata alla metrica euclidea $d_{\mathcal{E}}$ sarà detta topologia euclidea su \mathbb{R}^n e denotata con \mathcal{E}_n .

Proposizione 2.12. Sia (X, d) uno spazio metrico .

- (1) Se $p \in X$ e r > 0 allora $B_d(p, r) \in \tau_d$
- (2) (X, τ_d) è uno spazio di Hausdorff.
- (3) Se d' è una metrica su X tale che per ogni $p, q \in X$ si ha $d'(p,q) \leq Md(p,q)$ per qualche M > 0, allora $\tau_{d'} \subseteq \tau_d$. In particolare se d e d' sono equivalenti allora $\tau_d = \tau_{d'}$.

Dimostrazione.

(1) Se $x \in B_d(p,r)$ allora $\delta = d(p,x) < r$. Posto $\rho = r - \delta$, abbiamo che $B_d(x,\rho) \subseteq B(p,r)$: infatti, se $y \in B(x,\rho)$

$$d(y,p) \le d(y,x) + d(x,p) < \rho + \delta = r.$$

- (2) Se $p \neq q \in X$ e se $\delta = d(p,q)$, allora $B_d(p,\frac{\delta}{2}) \cap B_d(q,\frac{\delta}{2}) = \emptyset$.
- (3) Come in 1.7, per ogni $p \in X$ e r > 0

$$B_d(p, \frac{r}{M}) \subseteq B_{d'}(p, r),$$

quindi ogni elemento di $\tau_{d'}$ appartiene a τ_d .

Se inoltre abbiamo $md(p,q) \leq d'(p,q)$ per qualche m>0, abbiamo anche $d(p,q) \leq \frac{1}{m}d'(p,q)$ e possiamo riapplicare le considerazioni precedenti.

Esempio 2.13. Sia (X,d) uno spazio metrico e consideriamo la metrica $d_b = \frac{d}{1+d}$ dell'esempio 1.11. Abbiamo visto che d e d_b non sono equivalenti, ciononostante $\tau_d = \tau_{d_b}$. Infatti se d(p,q) < 1 allora $\frac{1}{2}d(p,q) \le d_b(p,q) \le d(p,q)$; inoltre d(x,p) < 1 per $d_b(x,p) < \frac{1}{2}$. Quindi per $r < \frac{1}{2}$ abbiamo

$$B_d(p,r) \subseteq B_{d_b}(p,r) \subseteq B_d(p,2r).$$

Pertanto $A \in \tau_d \Leftrightarrow A \in \tau_{d_b}$.

2.4. Basi e basi di intorni.

Definizione 2.14. Sia (X, τ) uno spazio topologico . Una base di τ è un sottoinsieme \mathcal{B} di τ tale che ogni aperto $A \in \tau$ è unione di elementi di \mathcal{B} .

Il seguente teorema permette di caratterizzare i sottoinsiemi di una topologia che sono sue basi e di definire una topologia assegnando una base.

Teorema 2.15.

- (1) Sia X un insieme e sia $\mathcal{B} \subseteq \mathcal{P}(X)$ tale che:
 - a) $\bigcup_{B \in \mathcal{B}} B = X$;
 - b) Se B_1 , $B_2 \in \mathcal{B}$ e se $p \in B_1 \cap B_2$, allora esiste $B_0 \in \mathcal{B}$ tale che $p \in B_0 \subseteq B_1 \cap B_2$. Allora esiste un'unica topologia $\tau_{\mathcal{B}}$ su X tale che \mathcal{B} è una base di $\tau_{\mathcal{B}}$.
- (2) Se (X, τ) è uno spazio topologico e se \mathcal{B} è una base di τ , allora \mathcal{B} soddisfa alle proprietà a) e b) del punto 1).

Dimostrazione.

(1) Definiamo

$$\tau_{\mathcal{B}} = \{ A \subseteq X \mid \forall p \in A \exists B \in \mathcal{B} \text{ tale che } p \in B \subseteq A \} \cup \{\emptyset\}.$$

i) $\tau_{\mathcal{B}}$ è una topologia.

Per definizione $\emptyset \in \tau_{\mathcal{B}}$, e la condizione a) implica che ogni $p \in X$ appartiene a un $B \in \mathcal{B}$. Inoltre è un facile esercizio provare che l'unione di un numero qualsiasi di elementi di $\tau_{\mathcal{B}}$ appartiene ancora a $\tau_{\mathcal{B}}$. Dimostriamo ora che l'intersezione di due

elementi di $\tau_{\mathcal{B}}$ è in $\tau_{\mathcal{B}}$: il caso generale di un numero finito seguirà per induzione. Siano A_1 , $A_2 \in \tau_{\mathcal{B}}$ e supponiamo che $p \in A_1 \cap A_2$. Allora esistono $B_i \in \mathcal{B}$ con i = 1, 2 tali che $p \in B_i \subseteq A_i$. Quindi $p \in B_1 \cap B_2$ da cui, per la condizione b), esiste $B_0 \in \mathcal{B}$ tale che $p \in B_0 \subseteq B_1 \cap B_2 \subseteq A_1 \cap A_2$. Questo prova che $A_1 \cap A_2 \in \tau_{\mathcal{B}}$.

ii) \mathcal{B} è una base di $\tau_{\mathcal{B}}$.

Infatti se $A \in \tau_{\mathcal{B}}$, per ogni $p \in A$ sia $B_p \in \mathcal{B}$ tale che $p \in B_p \subseteq A$; allora $A = \bigcup_{p \in A} B_p$.

 $iii) \tau_{\mathcal{B}} \stackrel{.}{e} unica.$

Se τ è topologia su X con base \mathcal{B} , allora $\tau_{\mathcal{B}} \subseteq \tau$, D'altra parte, se $A \in \tau$, allora A è unione di elementi di \mathcal{B} e quindi $A \in \tau_{\mathcal{B}}$.

(2) Se \mathcal{B} è una base di τ , allora X è unione di elementi di \mathcal{B} (condizione a)). Inoltre, se B_1 , $B_2 \in \mathcal{B}$ allora $B_1 \cap B_2 \in \tau$, quindi $B_1 \cap B_2$ è unione di elementi di \mathcal{B} : se $p \in B_1 \cap B_2$, esiste $B_0 \in \mathcal{B}$ tale che $p \in B_0 \subseteq B_1 \cap B_2$ (condizione b)).

Chiameremo la topologia $\tau_{\mathcal{B}}$ topologia generata da \mathcal{B} . Dalla dimostrazione di 2.15 si ottiene che $\tau_{\mathcal{B}}$ è la topologia meno fine che contiene \mathcal{B} . Osserviamo che mentre assegnata $\mathcal{B} \subseteq \mathcal{P}(X)$ che soddisfi alle ipotesi del punto 1) di 2.15 la topologia $\tau_{\mathcal{B}}$ è univocamente determinata, una topologia τ ammette in generale più basi.

Esempi 2.16.

- (1) Una base di $(\mathbb{R}, \mathcal{E}_1)$ è data dagli intervalli aperti $(a \ b), a < b$.
- (2) Sia $\mathcal{B} = \{[a \ b] \subseteq \mathbb{R} \mid a < b\}$. Allora \mathcal{B} è base di una topologia $\tau_{\mathcal{B}}$ su \mathbb{R} . Infatti $\mathbb{R} = \bigcup_{a < b} [a \ b]$ è $[a_1 \ b_1) \cap [a_2 \ b_2) = [max\{a_1, a_2\} \ min\{b_1, b_2\}) \in \mathcal{B}$. Tale topologia è più fine di \mathcal{E}_1 : infatti, dat a < b abbiamo

$$(a \quad b) = \bigcup_{k=2}^{\infty} [a + \frac{b-a}{k} \quad b).$$

Osserviamo che se (X, τ) è uno spazio topologico e se \mathcal{B} è una base di τ , allora $\mathcal{B}_E = \{B \cap E \mid B \in \mathcal{B}\}$ è una base di τ_E .

Definizione 2.17. Sia (X, τ) uno spazio topologico . Se $p \in X$, un sottoinsieme $\mathcal{B}_p \subseteq \mathcal{U}_p$ degli intorni di p si dice base di intorni di p se per ogni $U \in \mathcal{U}_p$ esiste $V \in \mathcal{B}_p$ tale che $V \subseteq U$.

Proposizione 2.18. Sia (X, τ) uno spazio topologico.

- (1) Se \mathcal{B} è una base di τ e se $p \in X$, l'insieme $\mathcal{B}_p = \{B \in \mathcal{B} \mid p \in B\}$ è una base di intorni di p.
- (2) Se per ogni $p \in X$ è definita una base di intorni \mathcal{B}_p , l'insieme $\mathcal{B} = \{B \in \mathcal{B}_p \mid p \in X\}$ è una base di τ .

Dimostrazione.

(1) Ogni $U \in \mathcal{U}_p$ è unione di elementi di \mathcal{B} , in particolare esiste $B \in \mathcal{B}$ tale che $p \in B \subset U$.

(2) Ovviamente $\bigcup_{B \in \mathcal{B}} B = X$. Siano $B_1, B_2 \in \mathcal{B}$ e $p \in B_1 \cap B_2$. Allora $B_1 \cap B_2 \in \mathcal{U}_p$, quind esiste $U \in \mathcal{B}_p \subseteq \mathcal{B}$ tale che $U \subseteq B_1 \cap B_2$.

Le topologie indotte da metriche ammettono basi formate da palle.

Proposizione 2.19. Sia (X, d) uno spazio metrico . L'insieme

$$\mathcal{B}_d = \{ B_d(p, r) \mid p \in X, r > 0 \}$$

è una base di (X, τ_d) . Inoltre per ogni $p \in X$ l'insieme

$$\{B_d(p,r) \mid r > 0\}$$

è una base di intorni per p in τ_d .

Dimostrazione. Ovviamente $X = \bigcup_{p \in X, r > 0} B(p, r)$. Siano ora $B_1 = B(p_1, r_1)$ e $B_2 = B(p_2, r_2)$ e sia $p_0 \in B_1 \cap B_2$. Siccome $d(p_0, p_i) = \delta_i < r_i$ per i = 1, 2, posto $\rho = \min\{r_1 - \delta_1, r_2 - \delta_2\}$, abbiamo $B(p_0, \rho) \subseteq B_1 \cap B_2$: infatti, per ogni $q \in B(p_0, \rho)$

$$d(q, p_i) \le d(q, p_0) + d(p_0, p_i) < \rho + \delta_i \le r_i - \delta_i + \delta_i = r_i$$

per i = 1, 2.

Per 2.15, \mathcal{B}_d genera una topologia $\tau_{\mathcal{B}_d}$. Proviamo ora che $\tau_{\mathcal{B}_d} = \tau_d$. Per definizione, ogni $A \in \tau_d$ è unione di elementi di \mathcal{B}_d , quindi $|B_d$ è una base di τ_d : per l'unicità della topologia generata abbiamo dunque $\tau_d = \tau_{\mathcal{B}_d}$.

La seconda affermazione è immediata.

Definizione 2.20. Sia (X,τ) uno spazio topologico . Se τ ammette una base la cui cardinalità è al più numerabile, τ si dice a base numerabile.

Se ogni $p \in X$ ammette una base di intorni numerabile, τ si dice a base di intorni numerabile.

In tali casi (X, τ) si dice spazio topologico a base (di intorni) numerabile).

Per il punto 2) di 2.18, base numerabile implica base di intorni numerabile mentre il viceversa non è vero.

Esempio 2.21. Se X è un insieme tale che $\#X > \aleph_0$ e se τ è la topologia discreta su X, allora (X,τ) non è a base numerabile. Infatti, sia \mathcal{B} una base di τ : poiché $\{p\} \in \tau$ per ogni $p \in X$, l'insieme $\{p\}$ deve essere unione di elementi \mathcal{B} . Pertanto $\{p\} \in \mathcal{B}$ e $\#\mathcal{B} \geq \#X > \aleph_0$.

D'altra parte ogni intorno di $p \in X$ contiene l'aperto $\{p\}$, che quindi è una base (finita!) di intorni di p.

Nell'esempio precedente la topologia è quella associata alla metrica discreta. In generale abbiamo che

Proposizione 2.22. Se (X, d) è uno spazio metrico, allora τ_d è a base di intorni numerabile.

Dimostrazione. Se $p \in X$, le palle $B_d(p, \frac{1}{n})$ formano una base di intorni per p.

Proposizione 2.23. $(\mathbb{R}^n, \mathcal{E}_n)$ è a base numerabile.

Dimostrazione. Infatti, siano $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ e $r\in\mathbb{R}^+$. Possiamo determinare numeri razionali $x_i', i=1,\ldots n$ e r'>0 tali che $r'<\frac{r}{2}$ e $|x_i-x_i'|<\frac{r'}{\sqrt{n}}$ per $i=1,\ldots,n$. Allora $x'=(x_1',\ldots,x_n')\in\mathbb{Q}^n$ e, se B(x,r) è la palla rispetto alla metrica euclidea, abbiamo $x\in B(x',r')\subseteq B(x,r)$. Infatti, $||x-x'||\leq r'$ e se $y\in B(x',r')$ allora $||y-x||\leq ||y-x'||+||x'-x||< r'+r'< r$

Si verifica quindi facilmente che l'insieme $\{B(x',r') \mid x' \in \mathbb{Q}^n, r' \in \mathbb{Q}\}$ è una base di \mathbb{R}^n che si può mettere in corrispondenza biunivoca con l'insieme numerabile \mathbb{Q}^{n+1} associando B(x',r') a (x',r').

2.5. Insiemi associati.

In questa sezione (X,τ) è uno spazio topologico e E è un fissato sottoinsieme di X.

2.5.1. Parte interna.

Definizione 2.24. La parte interna di E è l'insieme aperto dato dall'unione di tutti gli aperti contenuti in E; denoteremo la parte interna con $\stackrel{\circ}{E}$ o con Int(E).

I punti di $\stackrel{\circ}{E}$ si dicono punti interni di E. I punti interni di $X \setminus E$ si dicono anche punti esterni a E.

Possiamo interpretare $\stackrel{\circ}{E}$ come il massimo (rispetto all'inclusione) aperto contenuto in E. La seguente proposizione deriva immediatamente dalle definizioni.

Proposizione 2.25. .

- (1) Se \mathcal{B} è una base di τ allora $\overset{\circ}{E}$ è l'unione di tutti gli elementi di \mathcal{B} contenuti in E.
- (2) $Int(\stackrel{\circ}{E}) = \stackrel{\circ}{E} e E \in \tau \text{ se e solo se } E = \stackrel{\circ}{E}.$
- (3) $p \in \overset{\circ}{E}$ se e solo se esiste $U \in \mathcal{U}_p$ tale che $U \subseteq E$
- (4) Se $H \subseteq E$ e se $Int_E(H)$ è la parte interna di H in E rispetto a τ_E , allora $\overset{\circ}{H} \subseteq Int_E(H)$.

Esempio 2.26. In $(\mathbb{R}^2, \mathcal{E}_2)$ consideriamo l'asse delle ascisse $E = \{(x,0) \mid x \in \mathbb{R}\}$ con la topologia indotta, e sia $H = \{(x,0) \mid 0 \le x \le 1\} \subset X$. Allora $\overset{\circ}{H} = \emptyset$ mentre $Int_E(H) = \{(x,0) \mid 0 < x < 1\}$.

Rispetto alle operazioni insiemistiche la parte interna si comporta come segue:

Proposizione 2.27. $Sia\ E' \subseteq X$.

- (1) Se $E \subseteq E'$ allora $\stackrel{\circ}{E} \subseteq \stackrel{\circ}{E'}$.
- $(2) \stackrel{\circ}{E} \cup \stackrel{\circ}{E'} \subseteq \overbrace{E \cup E'}.$
- $(3) \ \overbrace{E \cap E'}^{\circ} = \overset{\circ}{E} \cap \overset{\circ}{E'}.$

Dimostrazione.

- (1) Ovvio.
- (2) Per il punto 1, $\stackrel{\circ}{E} \subseteq \stackrel{\circ}{E \cup E'}$ e $\stackrel{\circ}{E'} \subseteq \stackrel{\circ}{E \cup E'}$.
- (3) Per il punto 1, $\stackrel{\circ}{E\cap E'}\subseteq \stackrel{\circ}{E}\cap \stackrel{\circ}{E'}$. Inoltre $\stackrel{\circ}{E}\in \stackrel{\circ}{E'}$ sono aperti contenuti in Ee E' rispettivamente, quindi $\overset{\circ}{E}\cap\overset{\circ}{E'}$ è un aperto contenuto in $E\cap E'$, da cui

Esempio 2.28. Sia $(\mathbb{R}, \mathcal{E}_1)$ e siano $E = \begin{bmatrix} 0 & 1 \end{bmatrix}$ e $E' = \begin{bmatrix} 1 & 2 \end{bmatrix}$. Allora

$$\overset{\circ}{E} \cup \overset{\circ}{E'} = (0 \quad 1) \cup (1 \quad 2) \subsetneq \overbrace{E \cup E'}^{\circ} = (0 \quad 2).$$

2.5.2. Chiusura e frontiera.

Definizione 2.29. La chiusura \overline{E} di E è l'insieme chiuso dato dall'intersezione di tutti i chiusi contenenti E. I punti di \overline{E} si dicono punti aderenti di E

Possiamo interpretare \overline{E} come il minimo (rispetto all'inclusione) chiuso contenente E. La seguente proposizione deriva immediatamente dalle definizioni.

Proposizione 2.30.

- (1) $\overline{E} = \overline{E} \ e \ E \in \tau^* \ se \ e \ solo \ se \ E = \overline{E}$.
- (2) $p \in \overline{E}$ se e solo se $U \cap E \neq \emptyset$ per ogni $U \in \mathcal{U}_p$.
- (3) Se $H \subseteq E$ e se \overline{H}^E è la chiusura di H in E rispetto a τ_E , allora $\overline{H}^E = \overline{H} \cap E$.

Dimostrazione. Il punto 1 è immediato. Proviamo 2.

- (⇒) Per assurdo. Sia $p \in \overline{E}$ tale che esiste $U \in \mathcal{U}_p$ con $U \cap E = \emptyset$. Allora $X \setminus U$ è un chiuso contenente E, quindi $p \in \overline{E} \subseteq X \setminus U$, il che è assurdo.
- \Leftarrow) Per assurdo, supponiamo esista $C \in \tau^*$ tale che $E \subseteq C$ e $p \notin C$. Allora $X \setminus C \in \mathcal{U}_p$ e $(X \setminus C) \cap E = \emptyset$, contro l'ipotesi.

Applichiamo il punto 2 per provare 3. Se $p \in \overline{H}^E$, allora per ogni $U \in \mathcal{U}_p$ si ha $U \cap E \cap H \neq \emptyset$, da cui $p \in \overline{H} \cap E$. Viceversa, se $p \in \overline{H} \cap E$ abbiamo che $U \cap E \cap H \neq \emptyset$ per ogni $U \in \mathcal{U}_p$ in quanto $H \subseteq E$, dunque $p \in \overline{H}^E$.

Rispetto alle operazioni insiemistiche la chiusura si comporta come segue:

Proposizione 2.31. $Sia\ E' \subseteq X$.

- (1) Se $E \subseteq E'$ allora $\overline{E} \subseteq \overline{E'}$.
- (2) $\overline{X \setminus E} = X \setminus \stackrel{\circ}{E}$. (3) $\overline{E} \cup \overline{E'} = \overline{E} \cup \overline{E'}$.
- (4) $\overline{E \cap E'} \subset \overline{E} \cap \overline{E'}$.

Dimostrazione.

- (1) Ovvio.
- (2) $X \setminus E \subseteq X \setminus \overset{\circ}{E} \in \tau^*$, quindi $\overline{X \setminus E} \subseteq X \setminus \overset{\circ}{E}$. D'altra parte, se $p \in X \setminus \overset{\circ}{E}$, per ogni $U \in \mathcal{U}_p$ abbiamo che $U \not\subseteq E$, quindi $U \cap (X \setminus E) \neq \emptyset$, da cui $p \in \overline{X \setminus E}$.
- (3) $\overline{E} \cup \overline{E'}$ è un chiuso contenente $E \cup E'$ e quindi anche $\overline{E \cup E'}$. L'altra inclusione è conseguenza di 1).
- (4) $\overline{E} \cap \overline{E'}$ è un chiuso contenente $E \cap E'$ e quindi anche $\overline{E \cap E'}$.

Esempio 2.32. Sia $(\mathbb{R}, \mathcal{E}_1)$ e siano $E = (0 \ 1)$ e $E' = (1 \ 2)$. Allora

$$\emptyset = \overline{E \cap E'} \subset \overline{E} \cap \overline{E'} = \{1\}.$$

Definizione 2.33. Sia (X, τ) uno spazio topologico . Un sottoinsieme $E \subseteq X$ di dice denso (in X) se $\overline{E} = X$.

Se esiste in X un sottoinsieme denso e numerabile, X si dice separabile.

Esempio 2.34. $(\mathbb{R}, \mathcal{E}_1)$ è separabile. Infatti $\overline{\mathbb{Q}} = \mathbb{R}$ e \mathbb{Q} è numerabile. Per vedere che $\overline{\mathbb{Q}} = \mathbb{R}$, ricordiamo che, dato $x \in \mathbb{R}$, per ogni $\epsilon > 0$ esiste $x' \in \mathbb{Q}$ tale che $x' \in (x - \epsilon - x + \epsilon)$: dunque $\mathbb{R} \subseteq \overline{\mathbb{Q}}$. Per le stesse considerazioni $\mathbb{Q} = \emptyset$.

Definizione 2.35. L'insieme $Fr(E) = \overline{E} \setminus \overset{\circ}{E}$ si dice frontiera di E. I punti di Fr(E) si dicono punti di frontiera di E.

Come conseguenze della definizione e del punto 1 di 2.31 abbiamo:

Proposizione 2.36.

- (1) $Fr(E) = \overline{E} \cap \overline{X \setminus E}$.
- (2) $\overline{E} = \overset{\circ}{E} \cup Fr(E)$.
- (3) $E \in \tau^*$ se e solo se $Fr(E) \subseteq E$.

Esempi 2.38.

- (1) Sia $E \subseteq \mathbb{R}$ limitato superiormente o inferiormente e consideriamo su \mathbb{R} la topologia euclidea \mathcal{E}_1 . Allora sup E e inf E appartengono a \overline{E} .
- (2) Consideriamo su \mathbb{R} la topologia cofinita τ_{cof} . Se $E=(0\quad 1)$, allora $\overline{E}=\mathbb{R}$ e $\overset{\circ}{E}=\emptyset$, quindi $Fr(E)=\mathbb{R}$.

In generale, dato comunque un insieme X, nello spazio topologico (X, τ_{cof}) un insieme infinito E ha chiusura $\overline{E} = X$ mentre $\stackrel{\circ}{E} \neq \emptyset$ se e solo se $E \in \tau_{cof}$.

(3) Dati $a, b \in \mathbb{R}$, si consideri il sottoinsieme di \mathbb{R}^2 definito come

$$A_{a,b} = \{(x,y) \in \mathbb{R}^2 \mid x > a, \ y > b\}$$

e sia

$$\mathcal{B} = \{ A_{a,b} \mid a, b \in \mathbb{R} \}.$$

Si verifica facimente che \mathcal{B} è una base di una topologia τ su \mathbb{R}^2 meno fine di quella euclidea e non di Hausdorff. Se $E = \{(0,0)\}$, determiniamo \overline{E} .

Per definizione, \overline{E} è l'intersezione dei chiusi che contengono (0,0), quindi è l'intersezione dei complementari degli aperti che non contengono (0,0):

$$\overline{E} = \bigcap \{ \mathbb{R}^2 \setminus A \mid A \in \tau, \ (0,0) \notin A \} = \mathbb{R}^2 \setminus \bigcup \{ A \in \tau \mid (0,0) \notin A \}.$$

Se poniamo $A_0 = \bigcup \{A \in \tau \mid (0,0) \notin A\}$, abbiamo che

$$A_0 = \bigcup_{a>0} A_{a,b} \cup \bigcup_{b>0} A_{a,b} = \{(x,y) \mid x>0\} \cup \{(x,y) \mid y>0\},\$$

quindi
$$\overline{E} = \{(x, y) \in \mathbb{R}^2 \mid x \le 0, y \le 0\}.$$

- (4) Si consideri $E = \{(x, y) \in \mathbb{R}^2 \mid x^2y \ge 0\}$. Allora $\stackrel{\circ}{E} = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}, \overline{E} = E$ e $Fr(E) = \{(x, y) \in \mathbb{R}^2 \mid x = 0, \ y \le 0\} \cup \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$.
- 2.5.3. Derivato e punti isolati.

Definizione 2.39. Un punto $p \in X$ si dice punto di accumulazione di E se $(U \setminus \{p\}) \cap E \neq \emptyset$ per ogni $U \in \mathcal{U}_p$ L'insieme Der(E) dei punti di accumulazione di E si dice (insieme) derivato di E

Ovviamente $Der(E) \subseteq \overline{E}$; inoltre osserviamo che se $p \notin E$ allora $p \in Der(E)$ se e solo se $p \in \overline{E}$, quindi $\overline{E} \setminus E \subseteq Der(E)$.

Definizione 2.40. Un punto $p \in E$ si dice punto isolato di E se esiste $U \in \mathcal{U}_p$ tale che $U \cap E = \{p\}$. L'insieme dei punti isolati di E si indica con Iso(E).

Osserviamo che $p \in Iso(X)$ se e solo se $\{p\}$ è un aperto: per esempio se τ è la topologia discreta ogni punto è isolato e $Der(E) = \emptyset$ comunque scelto E. E' facile verificare la seguente:

Proposizione 2.41.

- (1) $E \in \tau^*$ se e solo se $Der(E) \subseteq E$.
- (2) $Iso(E) = E \setminus Der(E)$.
- (3) $\overline{E} = Der(E) \sqcup Iso(E)$ (dove \sqcup indica l'unione disgiunta).

Dimostrazione. Il punto 1 deriva alle inclusioni $\overline{E} = E \cup (\overline{E} \setminus E) \subseteq E$. I punti 2 e 3 discendono direttamente dalle definizioni.

Esempio 2.42. Sia in $(\mathbb{R}^2, \mathcal{E}_2)$ l'insieme $E = \{(x, y) \in \mathbb{R}^2 \mid (x^2 + y^2)\sqrt{x - 1} \in \mathbb{R}\}$. Allora $\overset{\circ}{E} = \{(x, y) \in \mathbb{R}^2 \mid x > 1\}, \ \overline{E} = E, \ Fr(E) = \{(x, y) \in \mathbb{R}^2 \mid x = 1\} \cup \{O\}, \ Der(E) = \{(x, y) \in \mathbb{R}^2 \mid x \geq 1\}, \ Iso(E) = \{O\}.$

In generale il derivato di un insieme non è chiuso, come si vede dal seguente esempio.

Esempio 2.43. Su \mathbb{R} si consideri la topologia $\tau = \{(-a \quad a) \mid a > 0\} \cup \{\emptyset, \mathbb{R}\}$ e sia $E = \{1\}$. Allora $\tau^* = \{(-\infty \quad -a] \cup [a \quad +\infty) \mid a > 0\} \cup \{\emptyset, \mathbb{R}\}$ e $\overline{E} = (-\infty \quad -1] \cup [1 \quad +\infty)$. Poiché ovviamente $Iso(E) = E = \{1\}$, $Der(E) = (-\infty \quad -1] \cup (1 \quad +\infty) \notin \tau^*$.

Nell'esempio precedente τ non è di Hausdorff.

Proposizione 2.44. Sia (X, τ) di Hausdorff. Allora per ogni $E \subseteq X$ abbiamo $Der(E) \in \tau^*$.

Dimostrazione. Proviamo che $X \setminus Der(E) \in \tau$. Per 2.41,

$$X \setminus Der(E) = X \setminus (\overline{E} \setminus Iso(E)) = X \setminus (\overline{E} \cap (X \setminus Iso(E)) = (X \setminus \overline{E}) \cup Iso(E).$$

Ovviamente $X \setminus \overline{E} \in \tau$. Se $p \in Iso(E)$, esiste $U \in \mathcal{U}_p$ tale che $U \cap E = \{p\}$. Poiché τ è di Hausdorff, per ogni $q \in U \setminus \{p\}$ esiste $V \in \mathcal{U}_q$ tale che $p \notin V$. Quindi $W = U \cap V$ è un intorno di q tale che $W \cap E = \emptyset$, cioè $q \notin \overline{E}$. Allora $U \setminus \{p\} \subseteq X \setminus \overline{E}$, da cui $U \subseteq X \setminus Der(E)$.

2.6. Chiusura negli spazi metrici.

Proposizione 2.45. Sia (X,d) uno spazio metrico e sia $E \subseteq X$. Allora E è limitato se e solo se \overline{E} è limitato.

Dimostrazione. Ovviamente \overline{E} limitato implica E limitato. Supponiamo ora che E sia limitato: allora esistono $p_0 \in X$ e $r_0 > 0$ tali che $E \subseteq B_d(p_0, r_0)$. Sia per assurdo \overline{E} illimitato: allora per ogni r > 0 esiste $p_r \in \overline{E}$ tale che $\rho = d(p_0, p_r) > r$. Allora $B = B_d(p_r, \rho - r) \cap B(p_0, r) = \emptyset$. Se infatti esistesse $q \in B$ avremmo

$$\rho = d(p_0, p_r) \le d(p_0, q) + d(q, p_r) < r + \rho - r = \rho$$

Ma allora $B_d(p_r, \rho - r) \cap E = \emptyset$, il che è assurdo in quanto $p_r \in \overline{E}$.

Abbiamo la seguente caratterizzazione della chiusura e del derivato per gli spazi metrici.

Proposizione 2.46. Sia (X, d) uno spazio metrico e sia $E \subseteq X$. Allora $p \in \overline{E}$ se e solo se esiste una successione p_n in X tale che $p_n \in E$ per ogni n e

$$\lim_{n\to\infty}\,p_n=p.$$

Inoltre p_n può essere scelta non definitivamente costante se e solo se $p \in Der(E)$.

Dimostrazione.

Sia $p \in \overline{E}$. Per $n \in \mathbb{N}$ consideriamo la base di intorni di p data da $B_n = B(p, \frac{1}{n})$. Allora per ogni n esiste $p_n \in B_n \cap E$; poiché $d(p_n, p) < \frac{1}{n}$, $\lim_{n \to \infty} p_n = p$.

Supponiamo che $\lim_{n\to\infty} p_n = p$ con $p_n \in E$. Se $U \in \mathcal{U}_p$, allora esiste n_U tale che $p_n \in U$ per ogni $n \geq n_U$. Quindi $U \cap E \neq \emptyset$ e $p \in \overline{E}$.

È immediato che $p \in Der(E)$ se e solo se possiamo prendere definitivamente $p_n \neq p$.

Ricordiamo che in uno spazio metrico (X,d) la distanza d(p,E) di un punto $p\in X$ da un sottoinsieme $E\subseteq X$ è definita da

$$d(p, E) = \inf\{d(p, x) \mid x \in E\}.$$

Allora vale

Proposizione 2.47. Sia (X,d) uno spazio metrico e sia $E \subseteq X$. Allora $p \in \overline{E}$ se e solo se d(p,E)=0.

Dimostrazione. Per definizione di inf esiste una successione p_n in E tale che

$$\lim_{n\to\infty} d(p_n, p) = 0.$$

La tesi segue da 2.46.

Proposizione 2.48. Sia (X, d) uno spazio metrico e sia $E \subseteq X$.

- (1) Se (X, d) è completo allora (\overline{E}, d) è completo.
- (2) Se(E,d) è completo allora E è chiuso.

Dimostrazione.

Se p_n è una successione di Cauchy in (\overline{E}, d) lo è anche in (X, d), quindi per ipotesi converge a un $p_0 \in X$. Allora $p_0 \in \overline{E}$ per 2.46.

Se $p_0 \in \overline{E}$, per 2.46 esiste una successione p_n in E convergente a p_0 . Per 1.30, p_n è di Cauchy, quindi per ipotesi di completezza dev'essere $p_0 \in E$.

Esempi 2.49.

(1) Sia (X, d) uno spazio metrico . Dati $p \in X$ e r > 0 sia $D(p, r) = \{x \in X \mid d(p, x) \le r\}$. Allora D(p, r) è chiuso: proviamolo dimostrando che $X \setminus D(p, r)$ è aperto. Se $q \notin D(p, r)$, allora $\delta = d(q, p) > r$ e $B(q, \delta - r) \cap D(p, r) = \emptyset$. Infatti, se esistesse $x \in B(q, \delta - r) \cap D(p, r)$ avremmo

$$\delta = d(p, q) < d(p, x) + d(x, q) < \delta - r + r = \delta$$

il che è assurdo. Dunque $B(q, \delta - r) \subseteq X \setminus D(p, r)$ e $X \setminus D(p, r) \in \tau_d$.

Poiché $B(p,r) \subseteq D(p,r)$, abbiamo $\overline{B(p,r)} \subseteq D(p,r)$ ma in generale non vale " = ". Per esempio, se #X > 1 e se d è la metrica discreta, allora $\overline{B(p,1)} = \{p\}$ mentre D(p,1) = X per ogni $p \in X$.

Se consideriamo invece $(\mathbb{R}^n, \mathcal{E}_n)$, abbiamo che $\overline{B(p,r)} = D(p,r)$. Infatti se $x \in D(p,r) \setminus B(p,r)$, allora la successione $x_k = \frac{k}{k+1}x + p$ è in B(p,r) e $\lim_{k \to \infty} x_k = x$. Quindi $D(p,r) \subseteq \overline{B(p,r)}$.

(2) Se $I = (-1 \ 1)$, consideriamo su $X = C^{\infty}(I) \cap C^{0}(\overline{I})$ la metrica $d = d_{L^{\infty}}$ e sia $E = X \cap \mathbb{R}[x]$, dove $\mathbb{R}[x]$ sono le funzioni polinomiali a coefficienti reali. Allora $e^{x} \in \overline{E}$. Per provarlo usiamo lo sviluppo di Taylor in 0 con resto di Lagrange di e^{x} : per ogni $x \in I$ e $k \in \mathbb{N}$ esiste $\xi(x, k)$ tale che $|\xi(x, k)| < |x|$ e

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \frac{e^{\xi(x,k)}}{(k+1)!} x^{k+1} = P_k(x) + \frac{e^{\xi(x,k)}}{(k+1)!} x^{k+1}.$$

dove $P_k(x)$ è il polinomio di Taylor di e^x in 0 di grado k. Allora

$$d(e^x, P_k(x)) = \sup_{I} \left\{ \frac{e^{\xi(x,k)}}{(k+1)!} |x|^{k+1} \right\} \le \frac{e}{(k+1)!}.$$

Quindi per $k \to \infty$ la successione $P_k(x)$ tende a e^x rispetto a d, e $e^x \in \overline{E}$ per 2.46.

Sia ora

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

per $x \in I$. Allora $f \in X$ ma si può provare che $f \notin \overline{E}$.

- (3) Sia $\mathbb{R}^{n,n}$ l'insieme delle matrici reali quadrate di ordine n dotato della topologia indotta dalla metrica $d_{\mathcal{E}}$ (vedi esempio 2 in 1.19). Allora i sottoinsiemi $GL_n(\mathbb{R})$ delle matrici invertibili e $Diag_n$ delle matrici diagonalizzabili su \mathbb{C} sono densi in $\mathbb{R}^{n,n}$.
 - i) Se $M \in \mathbb{R}^{n,n}$ e $k \in \mathbb{N}$, sia $M_k = M + \frac{1}{k}I_n$ per $k \in \mathbb{N}$. Evidentemente $d_{\mathcal{E}}(M, M_k) = \frac{sqrtn}{k}$, quindi $\lim_{k \to \infty} M_k = M$. Inoltre gli autovalori di M_k sono $\lambda_1 + \frac{1}{k}, \dots, \lambda_m + \frac{1}{k}$, dove $\lambda_1, \dots, \lambda_m$ sono gli autovalori di M, da cui abbiamo che $\frac{1}{k} \neq -\lambda_i$ per $1 \leq i \leq m$ definitivamente. Pertanto $M_k \in GL_n(\mathbb{R})$ per k abbastanza grande.
 - ii) Trattiamo per semplicità solo il caso n=2. Sia quindi

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

una matrice di $\mathbb{R}^{2,2}$ non diagonalizzabile su \mathbb{C} . Allora necessariamente il polinomio caratteristico $t^2-(a+d)t+ad-bc$ di M ha una radice reale doppia, cioè il suo discriminante $\Delta(M)=(a-d)^2+4bc$ è 0 e b e c non sono entrambi nulli. Se per $k\in\mathbb{N}$ definiamo

$$M_k = \left[\begin{array}{cc} a & b + \frac{1}{k} \\ c + \frac{1}{k} & d \end{array} \right]$$

abbiamo che $\Delta(M_k)=4\frac{b+c}{k}+4\frac{1}{k^2}$, che è definitivamente non nullo, quindi $M_k\in Diag_2$ definitivamente e $d_{\mathcal{E}}(M,M_k)=\frac{1}{k}$. Dunque $M\in \overline{Diag_2}$.

3. Funzioni continue e omeomorfismi

3.1. Continuità.

Se abbiamo una funzione f tra due spazi topologici possiamo dare una definizione di continuità in un punto p analoga a quella data per funzioni tra spazi metrici, sostituendo gli intorni di p e f(p) alle palle centrate in tali punti.

Definizione 3.1. Sia $f:(X,\tau) \to (Y,\tau')$ una funzione tra spazi topologici e sia $p \in X$. Si dice che f è continua in p (rispetto a τ e τ') se per ogni $V \in \mathcal{U}_{f(p)}$ esiste $U \in \mathcal{U}_p$ tale che $f(U) \subseteq V$.

Si dice che f è continua su $E\subseteq X$ se lo è in ogni punto di E. Se E=X si dice semplicemente che f è continua.

Definizione 3.2. Una funzione $f:(X,\tau)\to (Y,\tau')$ tra spazi topologici si dice omeomorfismo se f è biunivoca, continua e l'inversa f^{-1} di f è continua. In tal caso (X,τ) e (Y,τ') si dicono omeomorfi.

Nel caso di una funzione $f:(X,d)\to (Y,d')$ tra spazi metrici, per la 1.16 e 3.5 abbiamo che f è continua rispetto a d e a d' se e solo se f è continua rispetto a τ_d e $\tau_{d'}$. In particolare una isometria è un omeomorfismo. Osserviamo anche che le funzioni continue da $(\mathbb{R}^n, \mathcal{E}_n)$ a $(\mathbb{R}^m, \mathcal{E}_m)$ coincidono con quelle continue nel senso usuale.

La continuità globale ammette formulazioni equivalenti.

Proposizione 3.3. Sia $f:(X,\tau)\to (Y,\tau')$ una funzione tra spazi topologici. Allora le seguenti asserzioni sono equivalenti.

- (1) f è continua.
- (2) $A \in \tau' \Rightarrow f^{-1}(A) \in \tau$.
- (3) $C \in (\tau')^* \Rightarrow f^{-1}(C) \in \tau^*$.
- (4) $f(\overline{E}) \subseteq \overline{f(E)}$ per ogni $E \subseteq X$.

Dimostrazione.

- (1) \Leftrightarrow (2) Sia f continua e sia $A \in \tau'$. Se $p \in f^{-1}(A)$ allora $f(p) \in A$, e quindi esiste $V \in \mathcal{U}_{f(p)}$ tale che $V \subseteq A$. Per l'ipotesi di continuità esiste $U \in \mathcal{U}_p$ tale che $f(U) \subseteq V$, da cui $U \subseteq f^{-1}(A)$ e $f^{-1}(A) \in \tau$. Viceversa, supponiamo che $f^{-1}(A) \in \tau$ per ogni $A \in \tau'$. Se $p \in X$ e se $V \in \mathcal{U}_{f(p)}$, allora $V \in \tau'$ e quindi $p \in f^{-1}(V) \in \tau$. Dunque esiste $U \in \mathcal{U}_p$ tale che $U \subseteq f^{-1}(V)$, cioè $f(U) \subseteq V$ e quindi f è continua.
- (2) \Leftrightarrow (3) Segue direttamente dal punto precedente e dal fatto che $f^{-1}(Y \setminus E) = X \setminus f^{-1}(E)$ per ogni $E \subseteq Y$.
- (3) \Leftrightarrow (4) $(\Rightarrow) \text{ Si ha } f(E) \subseteq \overline{f(E)} \in \underline{(\tau')^*}, \text{ quindi } f^{-1}(\overline{f(E)}) \in \tau^* \text{ e } E \subseteq f^{-1}(f(E)) \subseteq f^{-1}(\overline{f(E)}). \text{ Allora } \overline{E} \subseteq f^{-1}(\overline{f(E)}), \text{ da cui } f(\overline{E}) \subseteq \overline{f(E)}.$ $(\Leftarrow) \text{ Sia } C \in \tau^*. \text{ Allora, applicando l'ipotesi con } E = f^{-1}(C) \text{ e ricordando che } f(f^{-1}(C)) \subseteq C \text{ abbiamo}$

$$f(\overline{f^{-1}(C)})\subseteq \overline{f(f^{-1}(C))}\subseteq \overline{C}=C.$$
 Quindi $\overline{f^{-1}(C)}\subseteq f^{-1}(C)\subseteq \overline{f^{-1}(C)}$ da cui $f^{-1}(C)\in \tau^*.$

Una diretta conseguenza del punto 4 della proposizione 3.3 è il seguente corollario.

Corollario 3.4. Se $f:(X,\tau)\to (Y,\tau')$ è continua e suriettiva e $D\subseteq X$ è denso allora f(D) è denso.

Proposizione 3.5. Sia $f:(X,\tau)\to (Y,\tau')$ una funzione tra spazi topologici.

- (1) Sia $p \in X$. Se q = f(p) e se \mathcal{B}_q è una base di interni di q allora f è continua in p se e solo se per ogni $V \in \mathcal{B}_q$ esiste $U \in \mathcal{U}_p$ tale che $f(U) \subseteq V$.
- (2) Se \mathcal{B} è una base di τ' allora f è continua se e solo $f^{-1}(B) \in \tau$ per ogni $B \in \mathcal{B}$.

Esempi 3.6.

- (1) L'identità $Id_X: (X,\tau) \to (X,\tau)$ e le funzioni costanti da (X,τ) in (Y,τ') sono continue per ogni X, Y, τ e τ' .
- (2) Per ogni $X, Y \in f, f: (X, \tau) \to (Y, \tau'), f$ è continua se τ è topologia discreta o se τ' è la topologia banale.
- (3) Sia Sia (X,τ) uno spazio topologico e sia $f:(X,\tau)\to(\mathbb{R},\mathcal{E}_1)$ una funzione continua. Allora
 - (a) gli insiemi $\{p \in X \mid f(p) > a\}$ e $\{p \in X \mid f(p) < a\}$ sono aperti per ogni $a \in \mathbb{R}$:
 - (b) gli insiemi $\{p \in X \mid f(p) \ge a\}, \{p \in X \mid f(p) \le a\}$ e $\{p \in X \mid f(p) = a\}$ sono chiusi per ogni $a \in \mathbb{R}$.

In generale, se $f:(X,\tau)\to (Y,\tau')$ è continua e τ' è di Hausdorff, per ogni $q\in Y$ abbiamo che $\{p\in X\mid f(p)=q\}=f^{-1}(\{q\})$ è chiuso.

(4) Si consideri $\mathcal{B} = \{B \subseteq \mathbb{R} \mid B = [a + \infty), a \in \mathbb{R}\}$. Allora si verifica facilmente che \mathcal{B} è una base di una topologia su \mathbb{R} i cui aperti sono le semirette positive sia chiuse che aperte, più \emptyset e \mathbb{R} . Infatti consideriamo una famiglia $\mathcal{A} = \{A_i = [a_i + \infty) \mid a_i \in \mathbb{R}, i \in I\} \subseteq \mathcal{B}$, dove I è un insieme di indici e sia $\alpha = \inf a_i$ (eventualmente $\alpha = -\infty$). Allora $\bigcup_{i \in I} A_i$ è uguale a $(\alpha + \infty)$ se $\alpha \neq a_i$ per ogni i, altrimenti coincide con $[\alpha + \infty)$.

Proviamo che $f:(\mathbb{R},\tau)\to(\mathbb{R},\tau)$ è continua se e solo se f è crescente.

- (⇒) Sia f continua. Per assurdo siano x_0 , $x_1 \in \mathbb{R}$ tali che $x_0 < x_1$ e $y_0 = f(x_0) > y_1 = f(x_1)$. Preso z tale che $y_1 < z < y_0$, per ipotesi l'insieme $A = f^{-1}([z + \infty)) \in \tau$, quindi è una semiretta positiva, il che è assurdo perché $x_0 \in A$ mentre $x_1 \notin A$ nonostante sia maggiore di x_0 .
- (\Leftarrow) Sia f crescente. Per assurdo sia $a \in \mathbb{R}$ tale che $A = f^{-1}([a + \infty)) \notin \tau$. Allora A non è una semiretta postiva, quindi esistono $x_0, x_1 \in \mathbb{R}$ tali che $x_0 < x_1, x_0 \in A$ e $x_1 \notin A$. Ma allora $f(x_1) < a \le f(x_0)$ contro l'ipotesi.

Proposizione 3.7. Sia $f:(X,\tau)\to (Y,\tau')$ una funzione continua.

(1) Se $g:(Y,\tau')\to (Z,\tau'')$ è continua allora la funzione composta $g\circ f:(X,\tau)\to (Z,\tau'')$ è continua.

(2) Se $E \subseteq X$ allora la restrizione $f|_E : (E, \tau_E) \to (Y, \tau')$ è continua. In particolare l'inclusione $i_E : (E, \tau_E) \to (X, \tau)$ di E in X è continua in quanto restrizione di Id_X a E.

Dimostrazione. Si ricordi che $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ per $A \subseteq Z$ e che $(f|_E)^{-1}(A) = A \cap E$ per $A \subseteq Y$ e si applichi 3.3.

Teorema 3.8 (Teorema di incollamento). Sia (X, τ) uno spazio topologico . Supponiamo che $X = X_1 \cup X_2$ con $X_i \in \tau$ o $X_i \in \tau^*$ per i = 1, 2 e siano $f_i : (X_i, \tau_{X_i}) \to (Y, \tau')$ funzioni continue tali che $f_1 = f_2$ su $X_1 \cap X_2$. Allora la funzione $f : (X, \tau) \to (Y, \tau')$ definita come $f(p) = f_i(p)$ se $p \in X_i$ è continua.

Proof. Se $A \in \tau'$, $f^{-1}(A) = f_1^{-1}(A) \cup f_2^{-1}(A)$ e $f_i^{-1}(A) \in \tau_{X_i}$. Se $X_i \in \tau$ anche $f_i^{-1}(A)$ lo è, e quindi f è continua. Analogamente nel caso di $X_i \in \tau^*$ si considera $f^{-1}(C)$ con $C \in (\tau')^*$.

Esempio 3.9. Siano $X = \mathbb{R}$, $\tau = \mathcal{E}_1$, $X_1 = (-\infty \ 0]$, $X_2 = (0 + \infty)$, $f_1(x) = x - 1$, $f_2(x) = x + 1$, le funzioni f_i sono continue su X_i ma la funzione f definita come in 3.8 non è continua:per esempio $f^{-1}((-2 \ 0)) = (-1 \ 0] \notin \mathcal{E}_1$.

Teorema 3.10 (Teorema del grafico chiuso). Siano f_1 , $f_2:(X,\tau)\to (Y,\tau')$ funzioni continue tra spazi topologici. Se τ' è di Hausdorff allora $\Gamma=\{p\in X\mid f_1(p)=f_2(p)\}\in \tau^*$.

Dimostrazione. Proviamo che $X \setminus \Gamma \in \tau$. Se $p_0 \in X \setminus \Gamma$, allora $q_1 = f_1(p_0) \neq q_2 = f_2(p_0)$. Per ipotesi esistono $V_1 \in \mathcal{U}_{q_1}$ e $V_2 \in \mathcal{U}_{q_2}$ tali che $V_1 \cap V_2 = \emptyset$. Per la continuità , esistono $U_1, \ U_2 \in \mathcal{U}_{p_0}$ tali che $f_i(U_i) \subseteq V_i$ per i = 1, 2. Quindi se $U = U_1 \cap U_2$, abbiamo che $f_1(p) \neq f_2(p)$ per ogni $p \in U$, cioè $U \subseteq X \setminus \Gamma$.

Possiamo utilizzare la continuità per provare che una topologia è di Hausdorff.

Proposizione 3.11. Se $f:(X,\tau)\to (Y,\tau')$ continua e iniettiva e se τ' è di Hausdorff allora τ è di Hausdorff.

Dimostrazione. Se p e q sono punti distinti di X allora $a = f(p) \neq f(q) = b$. Per ipotesi esistono $A \in \mathcal{U}_a$ e $B \in \mathcal{U}_b$ tali che $A \cap B = \emptyset$. Per la continuità esistono allora $U \in \mathcal{U}_p$ e $V \in \mathcal{U}_q$ tali che $f(U) \subseteq A$ e $f(V) \subseteq B$ e quindi $U \cap V = \emptyset$.

3.2. Omeomorfismi.

Definizione 3.12. Due (X, τ) e (Y, τ') spazi topologici si dicono omeomorfi se esiste un omeomorfismo $f: (X, \tau) \to (Y, \tau')$. In tal caso scriviamo $(X, \tau) \sim (Y, \tau')$.

Proposizione 3.13. La relazione \sim è una relazione di equivalenza

Dimostrazione. (X,τ) è omeomorfo a sè stesso tramite Id_X . Se $f:(X,\tau)\to (Y,\tau')$ è un omeomorfismo, per definizione anche $f^{-1}:(Y,\tau')\to (X,\tau)$ lo è . Infine, se $f:(X,\tau)\to (Y,\tau')$ e $g:(Y,\tau')\to (Z,\tau'')$ sono omeomorfismi anche $g\circ f:(X,\tau)\to (Z,\tau'')$ lo è .

La relazione di omeomorfismo è fondamentale nello studio delle proprietà topologiche. Se ora (X, τ) è uno spazio topologico e se $E, E' \subseteq X$, in generale diremo che E e E' sono omeomorfi se lo sono (E, τ_E) e (E', τ_E') . In questo caso possiamo dare una nozione più forte.

Definizione 3.14. Sia (X,τ) uno spazio topologico . Allora $E, E' \subseteq X$ si dicono omeomorfi nell'ambiente se esiste un omeomorfismo $f:(X,\tau)\to (X,\tau)$ tale che f(E)=E'.

Definizione 3.15. Sia $f:(X,\tau)\to (Y,\tau')$ una funzione tra spazi topologici.

- (1) Si dice che f è aperta se per ogni $A \in \tau$ si ha $f(A) \in \tau'$.
- (2) Si dice che f è chiusa se per ogni $C \in \tau^*$ si ha $f(C) \in (\tau')^*$.

Le nozioni di "funzione continua", "funzione aperta" e "funzione chiusa" sono in generale indipendenti tra loro. Peraltro è immediato che se f è biunivoca, f è aperta se e solo se è chiusa, in quanto $f(X \setminus E) = Y \setminus f(E)$.

Proposizione 3.16. Sia $f:(X,\tau)\to (Y,\tau')$ una funzione tra spazi topologici e sia \mathcal{B} una base di τ . Allora f è aperta se e solo se $f(B)\in \tau'$ per ogni $B\in \mathcal{B}$.

Dimostrazione. Un verso dell'equivalenza è immediato. Se ora $A \in \tau$, allora $A = \bigcup_{i \in I} B_i$, con $B_i \in \mathcal{B}$, da cui $f(A) = \bigcup_{i \in I} f(B_i)$ e quindi la tesi.

Esempi 3.17.

- (1) Dati un insieme X e due topologie τ e τ' su X, la funzione identità $Id_X : (X, \tau) \to (X, \tau')$ è continua se e solo se $\tau' \subseteq \tau$, aperta se e solo se $\tau \subseteq \tau'$ ed è un omeomorfismo se e solo se $\tau = \tau'$.
- (2) Se $f:(X,\tau)\to (Y,\tau')$ è costante e τ' è di Hausdorff, allora f è chiusa ma in generale non aperta (per esempio la funzione nulla $0:(\mathbb{R},\mathcal{E}_1)\to(\mathbb{R},\mathcal{E}_1)$).
- (3) La funzione $f: (\mathbb{R}^2, \mathcal{E}_2) \to (\mathbb{R}^2, \mathcal{E}_2)$ definita da f(x, y) = (x, 0) è continua ma non è chiusa nè aperta. Infatti $C = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\} \in \mathcal{E}_2^*$ ma $f(C) = \{(x, 0) \in \mathbb{R}^2 \mid x \neq 0\}$ non è chiuso e $Im(f) = \{(x, y) \in \mathbb{R}^2 \mid y = 0\} \notin \mathcal{E}_2$.
- (4) La funzione

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0 \\ 0 & \text{se } x \le 0 \end{cases}$$

è chiusa ma non è continua nè aperta.

Se invece $g:(\mathbb{R}^2,\mathcal{E}_2)\to(\mathbb{R},\mathcal{E}_1)$ è definita da $g(x,y)=x,\ g$ è continua, aperta ma non chiusa, infatti le palle rispetto a $d_{\mathcal{E}}$ vengono mandate in intervalli aperti di \mathbb{R} mentre di nuovo $g(C)\notin \mathcal{E}_1^*$.

(5) La funzione continua f da $(\mathbb{R}, \mathcal{E}_1)$ in $(\mathbb{R}, \mathcal{E}_1)$ definita da $f(x) = x^2$ non è aperta in quanto $f((-1 \ 1)) = [0 \ 1)$ ma è chiusa. Infatti se C è chiuso e se $y \in \overline{f(C)}$, esiste una successione x_n^2 convergente a y, con $x_n \in C$. Poiché $y \geq 0$, x_n avrà come limite $x_0 = \sqrt{y}$ o $x_0 = -\sqrt{y}$: in ogni caso $x_0 \in C$ e quindi $f(x_0) = y \in f(C)$.

(6) Se $I = [-1 \ 1]$, sia $f: (\mathbb{R}, \mathcal{E}_1) \to (I, \mathcal{E}_1)$ definita da

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Allora f è aperta ma non è continua. Osserviamo che se consideriamo f come funzione a valori in $(\mathbb{R}, \mathcal{E}_1)$, allora f non è più aperta.

(7) Se τ e τ' sono topologie su un insieme X, (X,τ) e (X,τ') possono essere omeomorfi anche se $\tau \cap \tau' = \{\emptyset, X\}$. Per esempio, se $X = \mathbb{R}$, $\tau = \{[a \quad \infty) \mid a \in \mathbb{R}\}$ e $\tau' = \{(-\infty \quad a) \mid a \in \mathbb{R}\}$, $f: (X,\tau) \to (X,\tau')$ data da f(x) = -x è un omeomorfismo.

Il seguente è un importante criterio oper stabilire se una funzione è un omeomorfismo.

Teorema 3.18. Una funzione $f:(X,\tau)\to (Y,\tau')$ tra spazi topologici è un omeomorfismo se e solo se f è biunivoca, continua e aperta (o chiusa).

Dimostrazione. Se f è biunivoca e aperta allora f^{-1} è continua, poiché $(f^{-1})^{-1}(E) = f(E)$ per ogni $E \subseteq X$.

Esempi 3.19. Consideriamo su \mathbb{R}^n e sui suoi sottoinsiemi rispettivamente la topologia euclidea \mathcal{E}_n e quella indotta da \mathcal{E}_n .

- (1) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione suriettiva e derivabile su \mathbb{R} con $f'(x) \neq 0$ per ogni $x \in \mathbb{R}$. Allora f è un omeomorfismo. Infatti f è continua e strettamente monotona, quindi biunivoca. Inoltre manda intervalli aperti in intervalli aperti, quindi è aperta.
- (2) Le funzioni $f: \mathbb{R} \to (-\frac{\pi}{2} \quad \frac{\pi}{2})$ e $g: \mathbb{R} \to \mathbb{R}^+ = (0 + \infty)$ definite da $f(x) = \arctan x$ e $g(x) = e^x$ sono omeomorfismi. Poiché ogni semiretta L è omeomorfa a \mathbb{R}^+ (se $L = (a + \infty)$ con $x \to x + a$, se $L = (-\infty \quad a)$ con $x \to -x + a$) e ogni intervallo aperto $(a \quad b)$ è omeomorfo a $(0 \quad 1)$ tramite $h(x) = \frac{1}{b-a}x + \frac{a}{a-b}$, abbiamo per composizione che gli intervalli generalizzati aperti di \mathbb{R} sono tutti omeomorfi a \mathbb{R} stesso.
- (3) Sia in $(\mathbb{R}^n, \mathcal{E}_n)$ la palla B = B(O, 1) di centro O e raggio 1 e sia $Q = \{x \in \mathbb{R}^n \mid |x_i| < 1, i = 1, ..., n\}$ il cubo n dimensionale di centro O e lato 2 (cioè la palla di centro O e raggio 1 rispetto alla metrica $d_{L^{\infty}}$). Allora
 - i) B è omeomorfo a ogni palla $B(x_0, r)$ rispetto alla metrica euclidea. Infatti basta osservare che l'applicazione $f(x) = rx + x_0$ ha come inversa $f^{-1}(y) = r^{-1}(y x_0)$, che $f \in f^{-1}$ sono entrambe continue e che f(B) = B(p, r).
 - ii) B è omeomorfo a Q. Se $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$, abbiamo $\|(x)\|_{L^\infty}=d_{L^\infty}(x,O)=\max\{|x_i|\ |\ i=1,\ldots,n\}$. Posto $k(x)=\frac{\|x\|_{L^\infty}}{\|x\|}$, consideriamo l'applicazione $f:(\mathbb{R}^n,\mathcal{E}_n)\to(\mathbb{R}^n,\mathcal{E}_n)$ definita da

$$f(x) = \begin{cases} k(x)x & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Allora f è un omeomorfismo di $(\mathbb{R}^n, \mathcal{E}_n)$ in sè tale che f(Q) = B.

Infatti $\frac{1}{\sqrt{n}} \leq k(x) \leq 1$ e $k(\alpha x) = k(x)$ per ogni $x \neq O$ e $\alpha \in \mathbb{R} \setminus \{0\}$, quindi $\lim_{x \to O} f(x) = O$ e f è continua su \mathbb{R}^n . Ora l'applicazione

$$g(x) = \begin{cases} \frac{1}{k(x)}x & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

è definita e continua su \mathbb{R}^n e $g \circ f = f \circ g = I_{\mathbb{R}^n}$. Quindi $g = f^{-1}$ e f è un omeomorfismo.

Inoltre $||f(x)|| = ||x||_{L^{\infty}}$ e $||g(x)||_{L^{\infty}} = ||x||$, pertanto f(Q) = B.

iii) B è omeomorfo a \mathbb{R}^n . Infatti possiamo seguire lo stesso procedimento del punto ii) con

$$f(x) = \begin{cases} \frac{\tan(\frac{\pi}{2}||x||)}{||x||}x & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

 \mathbf{e}

$$f^{-1}(x) = \begin{cases} \frac{2\arctan(\|x\|)}{\pi \|x\|} x & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

(4) **Proiezione stereografica.** Se $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ è la sfera unitaria e se $p \in S^n$, sia $\Sigma_p = S^n \setminus \{p\}$. Allora Σ_p è omeomorfo a \mathbb{R}^n .

Dimostrazione. Tramite opportune rotazioni possiamo provare che Σ_p e Σ_q sono omeomorfi per ogni $q \in \mathbb{R}^{n+1}$, quindi possiamo supporre $p = e_{n+1} = (0, \dots, 1)$. Poniamo per comodità $\Sigma_p = \Sigma$. Se $x \in \Sigma$, la retta r_x per p e x interseca il sottospazio $H = \{x_{n+1} = 0\}$ in unico punto, che indichiamo con f(x). Tale punto si determina facilmente: infatti, la retta r_x è data in forma parametrica da t(x-p)+p e, se $x = (x_1, x_2, \dots, x_{n+1})$, abbiamo $r_x : (tx_1, tx_2, \dots, t(x_{n+1} - 1) + 1)$. L'ultima coordinata si annulla per $t = \frac{1}{1-x_{n+1}}$, dunque $f(x) = \frac{1}{1-x_{n+1}}(x_1, \dots, x_n, 0)$ (Osserviamo che x_{n+1} è necessariamente < 1 in quanto $x \in \Sigma$). Abbiamo quindi definito una applicazione $f: \Sigma \to H$.

Se ora $x = (x_1, \ldots, x_n, 0) \in H$ e se r_x è la retta per x e p, sia $g(x) = r_x \cap \Sigma$. Allora l'applicazione $g: H \to \Sigma$ così definita è evidentemente l'inversa di f. Per determinarla analiticamente, osserviamo che $r_x: (tx_1, \ldots, tx_n, 1-t)$, quindi

$$||(tx_1,\ldots,tx_n,1-t)||^2=t^2(||x||^2+1)-2t+1=1$$
 solo per $t=0$ (che corrisponde a p) e per $t=\frac{2}{1+||x||^2}$. Dunque

$$g(x) = f^{-1}(x) = (\frac{2x_1}{1 + ||x||^2}, \dots, \frac{2x_n}{1 + ||x||^2}, \frac{||x||^2 - 1}{||x||^2 + 1}).$$

Quindi $f \in f^{-1}$ sono continue per le relative topologie euclidee. Si conclude osservando che H è omeomorfo in modo banale a \mathbb{R}^n tramite la funzione $(x_1, \ldots, x_n, 0) \to (x_1, \ldots, x_n)$.

4. Topologia prodotto

Se (X_1, τ_1) e (X_2, τ_2) sono spazi topologici, in generale la famiglia di sottoinsiemi

$$\mathcal{B} = \{ A_1 \times A_2 \mid A_i \in \tau_i, \ i = 1, 2 \}$$

non è una topologia sul prodotto cartesiano $X = X_1 \times X_2$. Per esempio, se $X_1 = X_2 = \mathbb{R}$ e $\tau_1 = \tau_2 = \mathcal{E}_1$, l'unione di $(0 - 1) \times (0 - 1)$ con $(1 - 2) \times (1 - 2)$ non è prodotto di due aperti. D'altra parte \mathcal{B} è una base di una topologia, in quanto $\bigcup_{B \in \mathcal{B}} B = X$ e, se $B = B_1 \times B_2$ e $B' = B'_1 \times B'_2$, allora $B \cap B' = (B_1 \cap B'_1) \times (B_2 \cap B'_2)$.

La topologia generata da \mathcal{B} su $X_1 \times X_2$ si dice topologia prodotto e verrà indicata con $\tau_1 \times \tau_2$. Si dice anche che $(X_1 \times X_2, \tau_1 \times \tau_2)$ è il prodotto topologico di (X_1, τ_1) e (X_2, τ_2) .

Se $\{(X_i, \tau_i)\}_{i=1,\dots,k}$ è una famiglia finita di spazi topologici, possiamo definire in modo ricorsivo la topologia prodotto $\tau_1 \times \dots \times \tau_k$ su $X_1 \times \dots \times X_k$ come $(\tau_1 \times \dots \times \tau_{k-1}) \times \tau_k$. Inoltre per induzione possiamo estendere a un prodotto finito qualunque i risultati provati per il prodotto di due spazi.

Proposizione 4.1. Siano (X_1, τ_1) e (X_2, τ_2) spazi topologici.

(1) Se \mathcal{B}_i è una base di τ_i per i = 1, 2 allora

$$\mathcal{B}_1 \times \mathcal{B}_2 = \{ B_1 \times B_2 \mid B_i \in \mathcal{B}_i, \ i = 1, 2 \}$$

è una base per $\tau_1 \times \tau_2$.

(2) $\tau_1 \times \tau_2$ è di Hausdorff se e solo se τ_i è di Hausdorff per i=1,2

Dimostrazione. Poniamo $X = X_1 \times X_2$, $\mathcal{B} = \mathcal{B}_1 \times \mathcal{B}_2$ e $\tau = \tau_1 \times \tau_2$.

(1) Ovviamente X è unione degli elementi di di \mathcal{B} . Inoltre se $p = (p_1, p_2) \in (B_1 \times B_2) \cap (B'_1 \times B'_2)$, con B_i , $B'_i \in \tau_i$ per i = 1, 2, allora esistono $B''_i \in \mathcal{B}_i$ per i = 1, 2 tali che $p_i \in B''_i \subseteq B_i \cap B'_i$. Quindi

$$p \in B_1'' \times B_2'' \subseteq (B_1 \cap B_1') \times (B_2 \cap B_2') = (B_1 \times B_2) \cap (B_1' \times B_2').$$

(2) Se $p=(p_1,p_2),\ q=(q_1,q_2)\in X$ con $p\neq q,$ allora per i=1 o i=2 abbiamo $p_i\neq q_i$: sia i=1. Per ipotesi esistono $U\in\mathcal{U}_{p_1}$ e $V\in\mathcal{U}_{q_1}$ tali che $U\cap V=\emptyset$. Dunque

$$U' = U \times X_2 \in \mathcal{U}_p, \ V' = V \times X_2 \in \mathcal{U}_q \quad e \quad U' \cap V' = \emptyset.$$

Viceversa, siano per esempio $p_1, q_1 \in X_1$ con $p_1 \neq q_1$. Allora, dato comunque $p_2 \in X_2$, abbiamo $p = (p_1, p_2) \neq q = (q_1, p_2)$. Per ipotesi esistono $U \in \mathcal{U}_p$ e $V \in \mathcal{U}_q$ con $U \cap V = \emptyset$. Per 2.18 esistono $U_1 \in \mathcal{U}_{p_1}, U_2 \in \mathcal{U}_{p_2}, V_1 \in \mathcal{U}_{q_1}$ e $V_2 \in \mathcal{U}_{p_2}$ tali che $U_1 \times U_2 \subseteq U$ e $V_1 \times V_2 \subseteq V$. Quindi $(U_1 \times U_2) \cap (V_1 \times V_2) = \emptyset$: allora necessariamente $U_1 \cap V_1 = \emptyset$.

Nel caso degli spazi metrici abbiamo la seguente naturale identificazione.

Proposizione 4.2. Se (X_1, d_1) e (X_2, d_2) sono spazi metrici, allora $\tau_{d_1 \times d_2} = \tau_{d_1} \times \tau_{d_2}$

Esempio 4.3. Su $\mathbb{R}^n = \mathbb{R} \times, \dots, \times \mathbb{R}$ abbiamo $\mathcal{E}_n = \mathcal{E}_1 \times, \dots \times, \mathcal{E}_1$. Infatti una base di $\mathcal{E}_1 \times, \dots \times, \mathcal{E}_1$ è data da

$$\{B \subseteq \mathbb{R}^n \mid B = \prod_{i=1}^n (x_i - r \quad x_i + r), \ x = (x_1, \dots, x_n) \in \mathbb{R}^n, \ r > 0\}.$$

La tesi segue dal fatto che $\prod_{i=1}^n (x_i - r \quad x_i + r) = B_{d_{L^{\infty}}}(x,r)$ e che $d_{L^{\infty}}$ è equivalente alla metrica euclidea $d_{\mathcal{E}_n}$.

Proposizione 4.4. Siano (X_1, τ_1) e (X_2, τ_2) spazi topologici e siano $E_1 \subseteq X_1$, $E_2 \subseteq X_2$. Allora in $(X_1 \times X_2, \tau_1 \times \tau_2)$ abbiamo

- (1) $E_1 \times E_2$ è aperto o chiuso in $\tau_1 \times \tau_2$ se e solo se gli E_i sono aperti o chiusi in τ_i per i = 1, 2.
- $per \ i = 1, 2.$ (2) $\underbrace{E_1 \times E_2}_{\circ} = \overset{\circ}{E_1} \times \overset{\circ}{E_2}.$
- (3) $\overline{E_1 \times E_2} = \overline{E_1} \times \overline{E_2}$.
- (4) $Fr(E_1 \times E_2) = (Fr(E_1) \times \overline{E_2}) \cup (\overline{E_1} \times Fr(E_2)).$

Usando la nozione di prodotto topologico possiamo caratterizzare gli spazi di Hausdorff. Se X è un insieme, chiamiamo diagonale di X il sottoinsieme $\Delta_X = \{(p, p) \mid p \in X\}.$

Proposizione 4.5. Sia (X, τ) uno spazio topologico . Allora τ è di Hausdorff se e solo se Δ_X è un chiuso in $(X \times X, \tau \times \tau)$.

Dimostrazione.

- (⇒) Sia τ di Hausdorff. Se $p = (p_1, p_2) \in (X \times X) \setminus \Delta_X$, allora $p_1 \neq p_2$, quindi esistono $U_1 \in \mathcal{U}_{p_1}$ e $U_2 \in \mathcal{U}_{p_2}$ tali che $U_1 \cap U_2 = \emptyset$. Allora $U_1 \times U_2 \subseteq (X \times X) \setminus \Delta_X$, quindi tale insieme è aperto in $\tau \times \tau$ e Δ_X è chiuso.
- (\Leftarrow) Sia $\Delta_X \in (\tau \times \tau)^*$. Se $p_1, p_2 \in X$ sono distinti, $p = (p_1, p_2) \in (X \times X) \setminus \Delta_X$, che è aperto. Dunque esistono $U_i \in \mathcal{U}_{p_i}$ per i = 1, 2 tali che $U_1 \times U_2 \subseteq (X \times X) \setminus \Delta_X$. Questo equivale a dire che $U_1 \cap U_2 = \emptyset$ e quindi prova la tesi.

Dato un prodotto cartesiano $X_1 \times X_2$, indicheremo con $P_i : X_1 \times X_2 \to X_i$ per i = 1, 2 le proiezioni sui fattori: ad esempio $P_1((p_1, p_2)) = p_1$. Valgono i seguenti risultati.

Proposizione 4.6. Sia $(X_1 \times X_2, \tau_1 \times \tau_2)$ un prodotto topologico. Allora

- (1) Per i = 1, 2 la funzione $P_i : (X_1 \times X_2, \tau_1 \times \tau_2) \to (X_i, \tau_i)$ è continua e aperta.
- (2) Se (X,τ) è uno spazio topologico, una funzione $f:(X,\tau)\to (X_1\times X_2,\tau_1\times \tau_2)$ è continua se e solo se le funzioni $P_i\circ f:(X,\tau)\to (X_i,\tau_i)$ per i=1,2 sono continue.
- (3) Se $X_2 = \{q_0\}$ è un punto e τ_2 è la topologia discreta (o banale),

$$P_1: (X_1 \times \{q_0\}, \tau_1 \times \tau_2) \to (X_1, \tau_1)$$

è un omeomorfismo. Analogamente se X_1 è un punto.

Dimostrazione.

(1) Se $A \in \tau_1$, allora $(P_1)^{-1}(A) = A \times X_2 \in \tau_1 \times \tau_2$ e quindi P_1 è continua. Se $A = A_1 \times A_2$ con $A_1 \in \tau_1$ e $A_2 \in \tau_2$, $P_1(A) = A_1$. La tesi segue da 3.16. In modo analogo si ragiona con i = 2. (2) Se f è continua anche le $P_i \circ f$ lo sono in quanto composizione di funzioni continue. Viceversa, supponiamo che le $f_i = P_i \circ f$ siano continue. Per 3.5 possiamo provare la continuità di f utilizzando una base di $\tau_1 \times \tau_2$. Se $A = A_1 \times A_2$, con $A_i \in \tau_i$, allora

$$f^{-1}(A) = \{ p \in X \mid (f_1(p), f_2(p)) \in A_1 \times A_2 \} =$$

$$= \{ p \in X \mid f_1(p) \in A_1 \} \cap \{ p \in X \mid f_2(p) \in A_2 \} = f_1^{-1}(A_1) \cap f_2^{-1}(A_2).$$

Per ipotesi $f_i^{-1}(A_i) \in \tau_i$ per i = 1, 2, quindi $f^{-1}(A) \in \tau$.

(3) $P_1:(X_1\times\{q_0\},\tau_1\times\tau_2)\to(X_1,\tau_1)$ è biunivoca, continua e aperta.

Esempio 4.7. Sia (X,d) uno spazio metrico . Allora $d:(X\times X,\tau_d\times\tau_d)\to(\mathbb{R},\mathcal{E}_1)$ è continua. Infatti sia $(p_0,q_0)\in X\times X$ fissato e sia $d_0=d(p_0,q_0)$. Dato $\epsilon>0$, per ogni $(p,q)\in B_d(p_0,\frac{\epsilon}{2})\times B_d(q_0,\frac{\epsilon}{2})$ abbiamo

$$d(p,q) \le d(p_0,p) + d_0 + d(q_0,q) < d_0 + \epsilon, \ d_0 \le d(p_0,p) + d(p,q) + d(q,q_0) < d(p,q) + \epsilon$$
 da cui $|d(p,q) - d_0| < \epsilon$.

5. Compatezza

5.1. Spazi compatti.

Se X è un insieme e $E \subseteq X$, un *ricoprimento* di E è un sottoinsieme $\mathcal{A} \subseteq \mathcal{P}(X)$ dell'insieme delle parti di X tale che $E \subseteq \bigcup_{A \in \mathcal{A}} A$. Osserviamo che se E = X sarà necessariamente $X = \bigcup_{A \in \mathcal{A}} A$.

Se (X, τ) è uno spazio topologico e $\mathcal{A} \subseteq \tau$, \mathcal{A} si dice *ricoprimento aperto* di E (in τ). Se $\mathcal{A}' \subseteq \mathcal{A}$ è ancora un ricoprimento di E, diremo che \mathcal{A}' è un ricoprimento estratto da \mathcal{A} .

Se necessario esprimere un ricoprimento in modo più esplicito scriveremo $\mathcal{A} = \{A_i\}_{i \in I}$, dove I è un insieme qualsiasi detto *insieme degli indici*. Evidentemente l'estrazione di un ricoprimento da \mathcal{A} equivale a selezionare un sottoinsieme $I' \subseteq I$ di indici e considerare $\mathcal{A}' = \{A_i\}_{i \in I'}$. Usualmente indicizzeremo con numeri interi i ricoprimenti finiti o numerabili.

Il prossimo teorema motiva la successiva definizione di compattezza.

Teorema 5.1. Si consideri su \mathbb{R} la topologia euclidea \mathcal{E}_1 e sia $E = [a \quad b]$ con a < b un intervallo chiuso e limitato. Se \mathcal{A} è un ricoprimento aperto di E allora è possibile estrarre da \mathcal{A} un ricoprimento finito.

Dimostrazione. Sia $\mathcal{A} = \{A_i\}_{i \in I}$ un qualsiasi ricoprimento aperto di E; ovviamente \mathcal{A} è un ricoprimento aperto di $[a \ x]$ per ogni $a < x \le b$.

Sia Z il sottoinsieme di E formato dagli $x \in (a \ b]$ tali che è possibile estrarre da A un ricoprimento finito di $[a \ x]$.

Proviamo $Z \neq \emptyset$. Infatti $a \in A_{i_0}$ per qualche $A_{i_0} \in \mathcal{A}$, pertanto esiste $\epsilon_0 > 0$ tale che $(a - \epsilon_0 - a + \epsilon_0) \subseteq A_{i_0}$. Dunque $[a - a + \frac{\epsilon_0}{2}] \subseteq A_{i_0}$, cioè estraendo da \mathcal{A} il solo A_{i_0} otteniamo un ricoprimento aperto dell'intervallo. Questo prova che $a + \frac{\epsilon_0}{2} \in Z$.

Poiché Z è non vuoto e superiormente limitato da b, $z_0 = \sup Z$ è un numero finito $\leq b$.

Proviamo che $z_0 = b$. Per assurdo, se fosse $z_0 < b$, esisterebbero $A_{i_1} \in \mathcal{A}$ e $\epsilon_1 > 0$ tali che

$$(z_0 - \epsilon_1 \quad z_0 + \epsilon_1) \subseteq A_{i_1} \cap \overset{\circ}{E}.$$

Poiché $z_0 = \sup Z$, esiste $x \in Z \cap (z_0 - \epsilon_1 \quad z_0]$. Allora

$$[a \quad x] \subseteq A_1 \cup \cdots \cup A_k \quad e \quad (z_0 - \epsilon_1 \quad z_0 + \frac{\epsilon_1}{2}] \subseteq A_{i_1} \cap \overset{\circ}{E}$$

implicano che

$$[a \quad z_0 + \frac{\epsilon_1}{2}] \subseteq A_{i_1} \cup A_1 \cup \cdots \cup A_k,$$

cioè che $z_1=z_0+\frac{\epsilon_1}{2}\in Z$: questo è assurdo in quanto avremmo $z_1>z_0=\sup Z$.

Concludiamo ora la dimostrazione. Sia $A_{i_2} \in \mathcal{A}$ tale che $b \in A_{i_2}$ e sia ϵ_2 tale che $(b-\epsilon_2 \quad b] \subseteq A_{i_2}$. Allora esiste $y \in Z \cap (b-\epsilon_2 \quad b]$: se $[a \quad y] \subseteq A_1 \cup \cdots \cup A_h$ per opportuni $A_j \in \mathcal{A}, 1 \leq j \leq h$, abbiamo

$$[a \quad b] = [a \quad y] \cup (b - \epsilon_2 \quad b] \subseteq \bigcup_{j=1}^h A_j \cup A_{i_2}$$

che prova la tesi.

Definizione 5.2. Sia (X,τ) uno spazio topologico . Un sottoinsieme $K\subseteq X$ si dice compatto se da ogni ricoprimento aperto di K si può estrarre un ricoprimento finito. Se X è compatto (considerato come sottoinsieme improprio), diremo che lo spazio topologico (X,τ) è compatto.

Inoltre K si dice relativamente compatto se \overline{K} è compatto.

Quindi in $(\mathbb{R}, \mathcal{E}_1)$ ogni intervallo chiuso e limitato è compatto.

Proposizione 5.3. Sia (X, τ) uno spazio topologico . Allora

- (1) Se (X, τ) è compatto e $\tau' \subseteq \tau$, allora (X, τ') è compatto.
- (2) $K \subseteq X$ è compatto se e solo se (K, τ_K) è compatto.
- (3) Se \mathcal{B} è una base di τ allora $K \subseteq X$ è compatto se e solo se per ogni ricoprimento di K formato da elementi di \mathcal{B} è possibile estrarre un ricoprimento finito.

Dimostrazione.

- (1) Ogni ricoprimento di X in τ' è anche un ricoprimento in τ .
- (2) Ogni ricoprimento aperto di K in τ_K è del tipo $\{A_i \cap K\}_{i \in I}$ con $A_i \in \tau$, quindi dà origine a un ricoprimento aperto di K in τ . Il viceversa è analogo.
- (3) Sia \mathcal{A} un ricoprimento aperto di K. Se $\{A_i\}_{i\in I}$, per ogni i si ha A_i è unione di elementi di \mathcal{B} . Quindi otteniamo un ricoprimento \mathcal{A}' di K formato da elementi di \mathcal{B} . Per ipotesi possiamo estrarre da \mathcal{A}' un ricoprimento finito B_1, \ldots, B_k di K. Ora per ogni j, $1 \leq j \leq k$ esiste $A_j \in \mathcal{A}$ tale che $B_j \subseteq A_j$, quindi $K \subseteq A_1 \cup \cdots \cup A_k$.

Esempi 5.4.

(1) Sia X un insieme. Se τ è una topologia su X con un numero finito di aperti (per esempio la topologia banale), allora (X,τ) è compatto. In particolare, se X è finito allora (X,τ) è compatto con qualsiasi topologia τ .

Invece se X è infinito e τ è la topologia discreta su X allora (X,τ) non è compatto, in quanto l'insieme $\{\{p\}\}_{p\in X}$ è un ricoprimento aperto di X.

- (2) $(\mathbb{R}^n, \mathcal{E}_n)$ non è compatto, in quanto $\{B(O, r)\}_{r \in \mathbb{R}^+}$ è un ricoprimento aperto di \mathbb{R}^n dal quale non è possibile estrarre un ricoprimento finito.
- (3) Si consideri su X la topologia cofinita τ_{cof} . Allora X e ogni suo sottoinsieme è compatto. Infatti sia \mathcal{A} un ricoprimento aperto di X. Se $A_0 \in \mathcal{A}$, $A_0 = X \setminus \{p_1, \ldots, p_h\}$. Allora per ogni $\ell = 1, \ldots, h$ si scelga A_{i_ℓ} tale che $p_\ell \in A_{i_\ell}$: l'insieme $\{A_0, A_{i_1}, \ldots, A_{i_h}\}$ è un ricoprimento finito estratto da \mathcal{A} .
- (4) Si consideri l'insieme $\tau = \{A \subseteq \mathbb{R} \mid |\mathbb{R} \setminus A| \leq |\mathbb{N}|\}$. Allora τ è una topologia su \mathbb{R} e (\mathbb{R}, τ) non è compatto.

Le verifica che τ è una topologia è un facile esercizio. Evidentemente l'insieme $A_* = \mathbb{R} \setminus \mathbb{Q}$ dei numeri irrazionali è un aperto in τ . Se ora poniamo $A_q = A_* \cup \{q\}$ per $q \in \mathbb{Q}$, l'insieme $\{A_q\}_{q \in \mathbb{Q}} \cup \{A_*\}$ è un ricoprimento aperto di \mathbb{R} dal quale non è

•

possibile estrarre un ricoprimento finito (si noti comunque che da ogni ricoprimento aperto in τ si può estrarre un ricoprimento numerabile).

Proposizione 5.5. Sia (X, τ) uno spazio topologico compatto. Se $C \in \tau^*$ allora C è compatto.

Dimostrazione. Sia \mathcal{A} un ricoprimento aperto di C. Poiché $A_0 = X \setminus C \in \tau$, l'insieme $\mathcal{A}' = \mathcal{A} \cup \{A_0\}$ è un ricoprimento aperto di X. Allora possiamo estrarre da \mathcal{A}' un ricoprimento finito di X. Eliminando da tale ricoprimento A_0 (se presente) otteniamo un ricoprimento finito di C estratto da \mathcal{A} .

In generale un sottoinsieme compatto non è chiuso

Esempio 5.6. Se $\tau = \{(-\infty \ a) \mid a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}, \tau$ è una topologia su \mathbb{R} . Se $x_0 \in \mathbb{R}$, l'insieme $K = \{x_0\}$ è compatto ma non è chiuso, in quanto $K \neq \overline{K} = [x_0 \ +\infty)$.

Inoltre \overline{K} non è compatto: basta considerare il ricoprimento aperto $\{(-\infty \quad x_0+n)\}_{n\in\mathbb{N}}$. Quindi K è anche un esempio di un compatto che non è relativamente compatto.

La topologia in 5.6 non è di Hausdorff. Aggiungendo tale ipotesi vediamo che i compatti sono necessariamente chiusi.

Lemma 5.7. Sia (X, τ) uno spazio topologico di Hausdorff e sia $K \subseteq X$ compatto. Se $p_0 \notin K$, allora esistono $U \in \mathcal{U}_{p_0}$ e $V \in \tau$ con $K \subseteq V$ tali che $U \cap V = \emptyset$.

Dimostrazione. Per ipotesi, per ogni $p \in K$ esistono $U_p \in \mathcal{U}_{p_0}$ e $V_p \in \mathcal{U}_p$ tali che $U_p \cap V_p = \emptyset$. Allora $\mathcal{A} = \{V_p\}_{p \in K}$ è un ricoprimento aperto di K, quindi possiamo estrarre da \mathcal{A} un ricoprimento finito V_{p_1}, \ldots, V_{p_h} . Ponendo $U = \bigcap_{i=1}^h U_{p_i}$ e $V = \bigcup_{i=1}^h V_{p_i}$ otteniamo gli aperti cercati.

Corollario 5.8. Sia (X, τ) uno spazio topologico di Hausdorff. Se $K \subseteq X$ è compatto allora $K \in \tau^*$.

Dimostrazione. Per 5.7, per ogni $p \in X \setminus K$ esiste $U \in \mathcal{U}_p$ con $U \subseteq X \setminus K$. Quindi $X \setminus K \in \tau$ da cui la tesi.

Proposizione 5.9. Sia (X, τ) uno spazio topologico .

- (1) Se K_1, \ldots, K_h sono compatti in X, allora $\bigcup_{i=1}^h K_i$ è compatto.
- (2) Se τ è di Hausdorff e $\{K_i\}_{i\in I}$ sono compatti, allora $\bigcap_{i\in I} K_i$ è compatto.

Dimostrazione. il punto 1 è di facile verifica. Per quanto riguarda il punto 2, abbiamo per 5.8 che ogni K_i è chiuso, allora $K = \bigcap_{i \in I} K_i$ è chiuso ed è contenuto in ogni K_i . Poichè i K_i sono compatti, anche K lo è per 5.5.

L'esempio 5.6 mostra che l'ipotesi di Hausdorff in 2 di 5.9 è necessaria anche per un numero finito di compatti.

Esempio 5.10. Se $\tau = \{(-\infty \ a) \mid a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$, gli aperti $A_a = (-\infty \ a)$, con $a \in \mathbb{R}$, non sono compatti, ma $A_a \cup \{b\}$ è compatto per ogni $b \geq a$. Quindi $A_a = A_a \cup \{b_1\} \cap A_a \cup \{b_2\}$ con $b_1 \neq b_2$ è un non compatto intersezione di 2 compatti.

Nel caso degli spazi metrici abbiamo

Proposizione 5.11. Se (X,d) è uno spazio metrico e $K \subseteq X$ è compatto (in τ_d), allora K è limitato.

Dimostrazione. Se consideriamo l'insieme $\{B_d(p,1) \mid p \in K\}$ delle palle di centro $p \in K$ e raggio 1 otteniamo un ricoprimento aperto di K. Per ipotesi ne possiamo estrarre un ricoprimento finito $\{B(p_1,1),\ldots,B(p_h,1)\}$. Sia $\delta = \max\{d(p_i,p_j) \mid 1 \leq i < j \leq h\}$. Dati $p, q \in X$ possiamo supporre a meno di riordinare gli indici, che $p \in B(p_1,1)$ e che $q \in B_d(p_h,1)$. Allora

$$d(p,q) \le d(p,p_1) + \sum_{i=1}^{h-1} d(p_i, p_{i+1}) + d(p_h, q) \le (h-1)\delta + 2,$$

da cui $diam(E) < +\infty$.

Teorema 5.12. Sia $(\mathbb{R}, \mathcal{E}_1)$. Allora $K \subseteq \mathbb{R}$ è compatto se e solo se K è chiuso e limitato.

Dimostrazione. (\Rightarrow) . Per 5.8 e 5.11 K è chiuso e limitato.

(\Leftarrow) Se K è limitato esiste $E = [a \quad b]$ tale che $K \subseteq E$. Poiché E è compatto per 5.1 e K è chiuso, si ha che K è compatto. ■

Esempio 5.13. Sia $X = \begin{bmatrix} 0 & 2 \end{bmatrix}$ e $\tau = \mathcal{E}_1$. Allora $\begin{bmatrix} 1 & 2 \end{bmatrix}$ è chiuso e limitato in (X, τ) ma non è compatto.

.

5.2. Compattezza e funzioni continue.

Teorema 5.14. Sia $f:(X,\tau)\to (Y,\tau')$ una funzione continua e sia $K\subseteq X$. Se K è compatto allora f(K) è compatto.

Dimostrazione. Sia \mathcal{A} un ricoprimento aperto di f(K). Per ogni $A \in \mathcal{A}$, $f^{-1}(A) \in \tau$ e $K \subseteq \bigcup_{A \in \mathcal{A}} f^{-1}(A)$. Quindi $\{f^{-1}(A) \mid A \in \mathcal{A}\}$ è un ricoprimento aperto di K, dal quale per ipotesi possiamo estrarre un ricoprimento finito $A'_1 = f^{-1}(A_1), \ldots A'_h = f^{-1}(A_h)$. Quindi

$$f(K) \subseteq f(\bigcup_{i=1}^h A_i') = f(f^{-1} \bigcup_{i=1}^h A_i)) \subseteq \bigcup_{i=1}^h A_i.$$

Quindi $A_1, \ldots A_h$ è un ricoprimento di f(K) estratto da \mathcal{A} .

Come diretta conseguenza di 5.14 abbiamo che se gli spazi topologici (X, τ) e (Y, τ') sono omeomorfi, allora (X, τ) è compatto se e solo se lo è (Y, τ') . In altre parole, la compattezza è un invariante topologico. Combinando 5.12 con 5.14 otteniamo il classico teorema di Weierstrass nela sua forma più generale.

Teorema 5.15 (Teorema di Weierstrass). Sia (X, τ) uno spazio topologico . Se $f: (X, \tau) \to (\mathbb{R}, \mathcal{E}_1)$ è una funzione continua e se $K \subseteq X$ è compatto allora esistono $p_1, p_2 \in K$ tali che $f(p_1) \le f(p) \le f(p_2)$ per ogni $p \in K$.

Dimostrazione. Per 5.14 abbiamo che f(K) è compatto in \mathcal{E}_1 , quindi f(K) è chiuso e limitato per 5.12. Dunque $\sup_K f = f(p_2)$ e $\inf_K f = f(p_1)$ per qualche $p_1, p_2 \in K$.

La seguente proposizione è spesso utilizzata per verificare se una funzione è un omeomorfismo.

Proposizione 5.16. Sia (X,τ) uno spazio topologico compatto, sia (Y,τ') uno spazio topologico di Hausdorff e sia $f:(X,\tau)\to (Y,\tau')$ continua. Allora f è chiusa. Se inoltre f è biunivoca allora f è un omeomorfismo.

Dimostrazione. Sia $C \in \tau^*$. Per 5.5, C è compatto e quindi, per 5.14, f(C) è compatto. Dunque, per l'ipotesi e per 5.8, $f(C) \in (\tau')^*$. La seconda asserzione è conseguenza di 3.18.

5.3. Prodotto topologico e compattezza.

In questa sottosezione proveremo che il prodotto topologico di spazi compatti è compatto e stabiliremo alcune conseguenze di questo fatto. Nella dimostrazione utilizzeremo il seguente lemma.

Lemma 5.17. Siano (X, τ) e (Y, τ') spazi topologici e supponiamo che (Y, τ') sia compatto. Sia $p_0 \in X$ e sia $A \in \tau \times \tau'$ tale che $\{p_0\} \times Y \subseteq A$. Allora esiste $U \in \mathcal{U}_{p_0}$ tale che $U \times Y \subseteq A$.

Dimostrazione. Per 4.6, $(\{p_0\} \times Y, \tau \times \tau')$ è omeomorfo a (Y, τ') , quindi è compatto. Per ogni $q \in Y$ esistono $U_q \in \mathcal{U}_{p_0}$ e $V_q \in \mathcal{U}_q$ tali che $W_q = U_q \times V_q \subseteq A$. L'insieme $\{W_q \subseteq X \times Y \mid q \in Y\}$ è un ricoprimento aperto di $\{p_0\} \times Y$, dal quale possiamo estrarre un ricoprimento finito $\{W_{q_1}, \ldots, W_{q_k}\}$. Allora $U = \bigcap_{i=1}^k U_{q_i} \in \mathcal{U}_{p_0}$ e $Y = \bigcup_{i=1}^k V_{q_i}$, quindi $U \times Y \subseteq \bigcap_{i=1}^k W_{q_i} \subseteq A$.

Teorema 5.18. Siano (X, τ) e (Y, τ') spazi topologici. Allora $(X \times Y, \tau \times \tau')$ è compatto se e solo se (X, τ) e (Y, τ') sono compatti.

Dimostrazione.

- (1) Sia $(X \times Y, \tau \times \tau')$ compatto. Le proiezioni P_1 e P_2 sui fattori sono suriettive e continue per 4.6, quindi la tesi segue da 5.14.
- (2) Siano (X, τ) e (Y, τ') compatti e sia $\mathcal{A} = \{A_i\}_{i \in I}$ un ricoprimento aperto di $X \times Y$. Per ogni $p \in X$, $\{p\} \times Y$ è compatto per 4.6, quindi esistono $k(p) \in \mathbb{N}$ dipendente da p ed k(p) aperti $A_{i_1}^p, \ldots, A_{i_{k(p)}}^p$ in \mathcal{A} tali che

$$\{p\} \times Y \subseteq \bigcup_{h=1}^{k(p)} A_{i_h}^p = A^p.$$

Applicando 5.17 a $\{p\} \times Y$ e a A^p , otteniamo per ogni $p \in X$ un intorno $U_p \in \mathcal{U}_p$ tale che $U_p \times Y \subseteq A^p$. Evidentemente $\{U_p \mid p \in X\}$ è un ricoprimento aperto di X, dal quale possiamo estrarre per ipotesi un ricoprimento finito U_{p_1}, \ldots, U_{p_m} . Allora $\{A_{i_h}^{p_j} \mid j=1,\ldots,m,\ h=1,\ldots,k(p_j)\}$ è un ricoprimento finito di $X \times Y$ estratto da \mathcal{A} .

.

Come applicazione dei precedenti risultati otteniamo il teorema di Heine-Borel.

Teorema 5.19 (Teorema di Heine-Borel). Se $n \in \mathbb{N}$, si consideri su \mathbb{R}^n la topologia euclidea \mathcal{E}_n . Allora $K \subseteq \mathbb{R}^n$ è compatto se e solo se è chiuso e limitato.

Dimostrazione. Abbiamo già visto che un compatto in uno spazio metrico è chiuso e limitato (5.12).

Viceversa, supponiamo che $K \subseteq \mathbb{R}^n$ sia chiuso e limitato e sia $\delta > diam(K)$. Se $\overline{x} = (\overline{x}_1, \dots, \overline{x}_n) \in K$, allora $|x_i - \overline{x}_i| < \delta$ per ogni $x = (x_1, \dots, x_n) \in K$, pertanto $K \subseteq K' = \prod_{i=1}^n [\overline{x}_i - \delta \ \overline{x}_i + \delta]$. Ora K' è un prodotto topologico i cui fattori sono compatti per 5.1, e quindi è compatto per 5.18.

Esempi 5.20.

- (1) La sfera $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\} \subset (\mathbb{R}^{n+1}, \mathcal{E}_{n+1})$ è un compatto in quanto chiuso e limitato.
- (2) L'insieme $E = \{(x,y) \in \mathbb{R}^2 \mid x^3 + xy + 1 = 0\} \subset (\mathbb{R}^2, \mathcal{E}_2)$ è chiuso ma non limitato, quindi non è compatto. Infatti, posto y = n con $n \in \mathbb{N}$, l'equazione $x^3 + nx + 1$ ha una soluzione reale x_n per ogni n. Quindi la successione $p_n = (x_n, n)$ è contenuta in E, che quindi non è limitato poiché $||p_n||$ diverge.
- (3) In \mathbb{R}^2 si considerino la retta r: y = 0 e il punto $p_0 = (0,1)$. Posto $X = r \cup \{p_0\}$, sia \mathcal{B} la famiglia di sottinsiemi B di X della forma $B = \{(x,0) \mid a < x < b\}$ o $B = \{(x,0) \mid x < a\} \cup \{(x,0) \mid x > b\} \cup \{p_0\}$ con a < b. Allora si verifica facilmente che \mathcal{B} è una base di una topologia τ su X di Hausdorff e meno fine di quella euclidea indotta.

Lo spazio (X, τ) è compatto (mentre non lo è con la topologia indotta). Infatti se $\{B_i\}_{i\in I}$ è un ricoprimento di X formato da elementi di \mathcal{B} , esiste B_0 con $p_0 \in B_0$. Posto $J = X \setminus B_0 = [a \ b] \times \{0\}, \ (J, \mathcal{E}_J)$ è omeomorfo all'intervallo chiuso e limitato $[a \ b]$ in $(\mathbb{R}, \mathcal{E}_1)$. Poiché τ è meno fine della topologia euclidea indotta, J è compatto in (X, τ) , quindi dal ricoprimento aperto $\{B_i\}_{i\in I}$ possiamo estrarre un ricoprimento finito $\{B_i\}_{i=1,\dots,k}$ di J. Allora $\{B_0, B_1, \dots, B_k\}$ è un ricoprimento finito di X e X è compatto.

Osserviamo che r con la topologia indotta da τ è omeomorfo a $(\mathbb{R}, \mathcal{E}_1)$ e quindi non è compatto, coerentemente col fatto che non è un chiuso in τ .

Se ora $\hat{S}^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$, la funzione $f: (S^1, \mathcal{E}_2|_{S^1})) \to (X,\tau)$ definita da

$$f((x,y)) = \begin{cases} \left(\frac{x}{1-y}, 0\right) & (x,y) \neq (0,1) \\ p_0 & (x,y) = (0,1) \end{cases}$$

è un omeomorfismo. Infatti f è continua in ogni punto di S^1 diverso da (0,1). Se $(x,y)\in S^1\setminus\{(0,1)\}$ abbiamo $x=\pm\sqrt{1-y^2}$ e |y|<1, quindi

$$\lim_{y \to 1^{-}} \frac{x}{1-y} = \lim_{y \to 1^{-}} \frac{\pm \sqrt{1-y^2}}{1-y} = \lim_{y \to 1^{-}} \pm \sqrt{\frac{1+y}{1-y}} = \pm \infty.$$

secondo che x > 0 o x < 0.

Sia $B = \{(x,0) \mid x < a\} \cup \{(x,0) \mid x > b\} \cup \{p_0\}$ un intorno di $f((0,1)) = p_0$: allora esiste un $\delta > 0$ tale che $f((\sqrt{1-y^2},y)) > b$ e $f(-(\sqrt{1-y^2},y)) < a$ per

 $1-y < \delta$. Quindi, se U è l'intorno di (0,1) in S^1 definito da $U = \{(x,y) \in S^1 \mid 1-y < \delta\}$, abbiamo provato che $f(U) \subseteq B$, cioè la continuità di f di (0,1).

Inoltre f è biunivoca. Infatti $f^{-1}(p_0) = \{p_0\}$ mentre $f^{-1}((t,0)) = \{(\frac{2t}{1+t^2}, \frac{t^2-1}{1+t^2})\}$ per ogni $t \in \mathbb{R}$. Quindi, poiché f è continua dal compatto S^1 allo spazio di Hausdorff (X, τ) , f è un omeomorfismo.

Osserviamo che la topologia τ permette di estendere la proiezione stereografica 4 in modo da avere un omeomorfismo.

(4) Si consideri il sottoinsieme $O(n) \subset \mathbb{R}^{n,n}$ delle matrici ortogonali con la topologia euclidea indotta. Allora O(n) è compatto. Infatti, poiché $O(n) = \{M \in \mathbb{R}^{n,n} \mid M^tM = I_n\}$, allora O(n) è la controimmagine del chiuso $\{I_n\}$ tramite la funzione continua $M \to M^tM$ da $\mathbb{R}^{n,n}$ in sè, quindi è chiuso. Inoltre la condizione $M^tM = I_n$ implica che, se $M = \{m_{i,j}\}$, allora $\sum_{j=1}^n m_{j,i}^2 = 1$ per ogni i, j. Quindi $|m_{i,j}| \leq 1$ per ogni i, j, pertanto O(n) è limitato e dunque compatto.

5.4. Compattezza per successioni.

I risultati che seguono ci permetteranno di introdurre per gli spazi metrici una nozione di compattezza equivalente a quella definita tramite ricoprimenti.

Teorema 5.21. Sia (X, τ) uno spazio topologico e sia $K \subseteq X$ compatto. Se $E \subseteq K$ è infinito, allora $Der(E) \neq \emptyset$.

Dimostrazione. Per assurdo assumiamo che $Der(E) = \emptyset$. Allora per ogni $p \in K$ esiste $U_p \in \mathcal{U}_p$ tale $U_p \cap E \subseteq \{p\}$. Allora $\{U_p\}_{p \in K}$ è un ricoprimento aperto di K, dal quale possiamo estrarre un ricoprimento finito $\{U_{p_1}, \ldots, U_{p_h}\}$. Ma allora

$$E = E \cap K \subseteq \bigcup_{i=1}^{h} E \cap U_{p_i} \subseteq \{p_1, \dots, p_h\},$$

il che è assurdo in quanto E è infinito.

Allora, come conseguenza di 5.21 nel caso degli spazi metrici abbiamo

Proposizione 5.22. Sia (X, d) uno spazio metrico e sia $K \subseteq X$ compatto (in τ_d). Sia p_n un successione in K. Allora esiste una sottosuccessione di p_n convergente a un elemento di K.

Dimostrazione. Sia $E = \{p_n \mid n \in \mathbb{N}\}$ l'insieme immagine della successione. Se E è finito, esisterà una successione strettamente crescente n_k in \mathbb{N} tale che $p_{n_i} = p_{n_j}$ per ogni $i, j \in \mathbb{N}$. Allora la sottosuccessione p_{n_k} è costante e quindi convergente.

Supponiamo ora che E sia infinito. Allora per 5.21 E ha un punto di accumulazione p_0 , e $p_0 \in K$ poiché K è chiuso (vedi 5.8). Quindi per ogni $k \in \mathbb{N}$ esiste $p_{n_k} \neq p_0$ tale che $p_{n_k} \in B_d(p_0, \frac{1}{k})$. Allora la sottosuccessione p_{n_k} converge a p_0 .

Definizione 5.23. Sia (X,d) uno spazio metrico e sia $K \subseteq X$. K si dice compatto per successioni se da ogni successione di elementi di K è possibile estrarre una sottosuccessione convergente.

Inoltre K si dice relativamente compatto per successioni se \overline{K} è compatto per successioni.

Vale il seguente teorema, del quale una implicazione è stata provata in 5.22:

Teorema 5.24. Sia (X, d) uno spazio metrico e sia $K \subseteq X$. Allora K è compatto rispetto a τ_d se e solo se è compatto per successioni .

Abbiamo anche che

Proposizione 5.25. Sia (X,d) uno spazio metrico e sia $K \subseteq X$. Allora K è relativamente compatto per successioni se e solo se da ogni successione in K è possibile estrarre una sottosuccessione convergente in \overline{K} .

Dimostrazione. (\Rightarrow) Immediato. (\Leftarrow) Sia p_n una successione in \overline{K} . Se da p_n possiamo estrarre una sottosuccessione in K, allora da tale successione sarà possibile per ipotesi estrarre una successione convergente a un punto p_0 appartenente a \overline{K} (vedi ??). Se invece definitivamente si ha $p_n \in Fr(K)$, per ogni n esiste $q_n \in B_d(p_n, \frac{1}{n}) \cap K$. Allora per ipotesi possiamo estrarre da q_n una sottosuccessione q_{n_k} convergente a $q_0 \in \overline{K}$ e tale che $d(q_{n_k}, p_{n_k}) < \frac{1}{n_k}$: dunque anche p_{n_k} converge a q_0 .

Nel caso della compattezza per successioni la dimostrazione di alcune proprietà è nettamente semplificata.

Proposizione 5.26. Siano (X, d) e (Y, d') spazi metrici.

- (1) Se $f:(X,d) \to (Y,d')$ è continua e $K \subseteq X$ è compatto per successioni, allora f(K) è compatto per successioni. In particolare, se f è un omeomorfismo, (X,d) è compatto per successioni se e solo se (Y,d') lo è.
- (2) $(X \times Y, d \times d')$ è compatto per successioni se e solo se lo sono (X, d) e (Y, d').

Dimostrazione.

- (1) Sia q_n un successione in f(K). Allora per ogni n esiste $p_n \in K$ tale che $f(p_n) = q_n$. Per ipotesi posso estrarre da p_n una successione p_{n_k} convergente a $p_0 \in K$. Allora, per la continuità di f (1.26) abbiamo che q_{n_k} converge a $f(p_0)$.
- (2) Sia $(X \times Y, d \times d')$ compatto per successioni. Le proiezioni P_1 e P_2 sui fattori sono suriettive e continue per 4.6, quindi la tesi segue da 5.14.

Viceversa, siano (X, d) e (Y, d') compatti per successioni e sia (p_n, q_n) una successione in $X \times Y$. Allora possiamo estrarre da p_n una sottosuccessione p_{n_k} convergente a un punto $p_0 \in X$. Quindi dalla successione q_{n_k} in Y possiamo estrarre $q_{n_{k_m}}$ convergente a $q_0 \in Y$. Dunque la sottosuccessione $(p_{n_{k_m}}, q_{n_{k_m}})$ convergerà a (p_0, q_0) .

Un conseguenza importante di 5.22 riguarda la completezza.

Proposizione 5.27. Sia (X, d) uno spazio metrico e sia $K \subseteq X$ compatto. Allora (K, d) è completo.

Dimostrazione. Per 5.22 ogni successione di Cauchy in K ammette punti limite, pertanto converge per 1.30

Teorema 5.28 (Completezza di \mathbb{R}^n). ($\mathbb{R}^n, d_{\mathcal{E}}$) è completo.

.

Dimostrazione. Sia p_n una successione di Cauchy in \mathbb{R}^n . Per 1.31, l'insieme $K = \overline{\{p_n\}}$ è chiuso e limitato per 2.45 e dunque compatto per 5.12. Allora K è completo (5.27) e p_n converge in K e dunque in \mathbb{R}^n .

Il seguente esempio prova che la completezza dipende dalla metrica, in quanto è possibile trovare una metrica su $\mathbb R$ che induce la topologia euclidea ma tale che il relativo spazio metrico non sia completo.

Esempio 5.29. Per $x, y \in \mathbb{R}$ si definisca

$$d(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|.$$

Osserviamo che $f(t) = \frac{t}{1+|t|}$ è strettamente crescente e biunivoca tra \mathbb{R} e (-1 - 1) e che d(x,y) = |f(x) - f(y)|.

- (1) d è una metrica su \mathbb{R} . Infatti d(x,y)=0 equivale a f(x)=f(y), da cui x=y. Le altre proprietà sono immediate.
- (2) $\tau_d = \mathcal{E}_1$. Infatti f è continua su \mathbb{R} , quindi se $x_0 \in \mathbb{R}$, per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che se $|x x_0| < \delta$ abbiamo $|f(x) f(x_0)| = d(x, x_0) < \epsilon$. Quindi $(x_0 \epsilon \quad x_0 + \epsilon) \subseteq B_d(x_0, \epsilon)$ e $\tau_d \subseteq \mathcal{E}_1$.

Inoltre l'inversa $f^{-1}: (-1 \quad 1) \to \mathbb{R}$ di f è data da $f^{-1}(t) = \frac{t}{1-|t|}$, quindi è anche essa continua. Se $x_0 \in \mathbb{R}$, sia $y_0 = f(x_0)$. Allora per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che se $|y - y_0| < \delta$ abbiamo $|f^{-1}(y) - f^{-1}(y_0)| < \epsilon$. Sostituendo y = f(x) otteniamo che $d(x, x_0) < \delta$ implica $|x - x_0| < \epsilon$, cioè $B_d(x_0, \delta) \subseteq (x_0 - \epsilon \quad x_0 + \epsilon)$ e dunque $\tau_d = \mathcal{E}_1$.

(3) (\mathbb{R}, τ_d) non è completo. Si consideri infatti la successione $p_n = n$. Allora p_n è di Cauchy rispetto a d, poiché

$$d(p_{n_1}, p_{n_2}) = \left| \frac{n_1}{1 + |n_1|} - \frac{n_2}{1 + |n_2|} \right| \quad \text{e} \quad \lim_{n \to \infty} \frac{n}{1 + |n|} = 1$$

rispetto alla metrica euclidea. D'altra parte, se p_n convergesse a $x_0 \in \mathbb{R}$ rispetto a d, avremmo

$$\lim_{n \to \infty} \; \left| \frac{n}{1 + |n|} - \frac{x_0}{1 + |x_0|} \right| = 0, \quad \text{da cui} \quad \frac{x_0}{1 + |x_0|} = 1,$$

il che è assurdo in quanto x = 1 + |x| non ha soluzioni.

6. Connessione

6.1. Spazi connessi.

Nelle definizone di topologia è implicito che \emptyset e X siano sia aperti che chiusi. La presenza o meno di altri insiemi con tale proprietà è una caratterisitica importante per una topologia.

Definizione 6.1. Sia (X, τ) uno spazio topologico

- (1) (X, τ) si dice connesso se $\tau \cap \tau^* = \{\emptyset, X\}$, altrimenti si dice sconnesso.
- (2) $E \subseteq X$ si dice connesso o sconnesso secondo che (E, τ_E) sia connesso o sconnesso.

Direttamente dalla definizione abbiamo

Proposizione 6.2. Sia (X, τ) uno spazio topologico .

- (1) (X, τ) è sconnesso se e solo se esistono aperti non vuoti A_1 e A_2 di τ tali che $A_1 \cap A_2 = \emptyset$ e $A_1 \cup A_2 = X$ (In questo caso si dice che A_1 e A_2 sconnettono X).
- (2) Sia τ' una topologia su X tale che $\tau \subseteq \tau'$. Se (X,τ) è sconnesso allora (X,τ') è sconnesso e, viceversa, se (X,τ') è connesso allora (X,τ) è connesso.

Esempi 6.3.

- (1) Se X è un insieme e τ è la topologia banale su X allora (X, τ) è connesso, mentre se |X| > 1 e τ è topologia discreta, allora (X, τ) è sconnesso.
- (2) Se X è un insieme con $|X| = \infty$ e τ_{cof} è la topologia cofinita allora (X, τ) è connesso, in quando ogni coppia di aperti non vuoti ha intersezione non vuota.

Definizione 6.4. Sia (X,τ) uno spazio topologico . Un sottoinsieme $E\subseteq (X,\tau)$ non vuoto è una componente connessa di (X,τ) se E è connesso e se ogni $E'\subseteq X$ tale che $E\subset E'$ è sconnesso.

Osserviamo che (X,τ) è connesso se e solo se ha una sola componente connessa.

Proposizione 6.5. Sia (X,τ) uno spazio topologico . Se $E\subseteq X$ è connesso, allora ogni H tale che $E\subseteq H\subseteq \overline{E}$ è connesso. In particolare \overline{E} è connesso e ogni componente connessa di X è un chiuso.

Dimostrazione. Se A_1 e A_2 sconnettono H in τ_H allora $A_1 \cap E$ e $A_2 \cap E$ sconnettono E, contro l'ipotesi. Per provarlo basta evidentemente che $A_i \cap E \neq \emptyset$ per i = 1, 2.

Sia $A_i = A' \cap H$ con $A' \in \tau$. Allora $A_i \subseteq A' \cap \overline{E}$ e $A' \cap \overline{E} \neq \emptyset$. Se $p_0 \in A' \cap \overline{E}$ e se U è un intorno di p_0 contenuto in A', allora $U \cap E \neq \emptyset$, quindi $A_i \cap E = A' \cap E \neq \emptyset$.

Se C è una componente connessa di X, allora \overline{C} è un connesso contenente C, quindi $C = \overline{C}$.

Definizione 6.6. Uno spazio topologico (X, τ) si dice totalmente sconnesso se ogni sua componente connessa ha cardinalità 1.

Esempi 6.7.

- (1) Ogni spazio topologico dotato della topologia discreta è totalmente sconnesso.
- (2) In $(\mathbb{R}, \mathcal{E}_1)$ consideriamo $E = \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$. Allora E è totalmente sconnesso e la componente connessa $\{0\}$ non è un aperto nella topologia indotta.

(3) Consideriamo su \mathbb{R} la topologia τ generata dalla base $\mathcal{B} = \{[a \ b) \mid a < b, \ a, b \in \mathbb{R}\}$ (2.16). Allora (\mathbb{R}, τ) è totalmente sconnesso. Proviamo che se $E \subseteq \mathbb{R}$ un sottoinsieme contenente almeno due punti allora E è sconnesso.

Se $x_0, x_1 \in E$ con $x_0 < x_1$, abbiamo $x_0 \in A_1 = (\infty \ x_1) \cap E$ e $x_1 \in A_2 = [x_1 \ +\infty)$. Allora $A_i \neq \emptyset$, $A_i \in \tau$ per i=1,2 e $A_1 \cup A_2 = E$, pertanto E è sconnesso per 6.2.

Ricordiamo che in \mathbb{R} un *intervallo* è un sottoinsieme I tale che se $x_0, x_1 \in I$ con $x_0 < x_1$, allora $x \in I$ per ogni x tale che $x_0 < x < x_1$. Pertanto, oltre che agli intervalli limitati aperti, semiaperti o chiusi, comprendiamo con tale termine anche le semirette aperte o chiuse e illimitate a destre o a sinistra e tutto \mathbb{R} . Se $I \subseteq (\mathbb{R}, \mathcal{E}_1)$ è un intervallo e inf $I = \alpha$, sup $I = \beta$ (eventualmente uguali a $\pm \infty$), allora $I = \alpha$.

Teorema 6.8. Un sottoinsieme $E \subseteq (\mathbb{R}, \mathcal{E}_1)$ è connesso se e solo se è un intervallo oppure |E| = 1.

Dimostrazione.

 \Rightarrow Se E si riduce a un punto allora è evidentemente connesso quindi possiamo assumere che |E| > 1.

Supponiamo ora che E sia un intervallo aperto $(\alpha \quad \beta)$ con $-\infty \le \alpha < \beta \le +\infty$. Sia $A \in \mathcal{E}_E \cap (\mathcal{E}_E)^*$ e $A \ne \emptyset$. La tesi sarà dimostrata se proviamo che A = E.

Siccome $A \in \mathcal{E}_E$, esiste un intervallo $(a_0 \ b_0) \subseteq A$ e gli insiemi $E_1 = \{a \in E \mid (a \ b_0) \subseteq A\}$ e $E_2 = \{b \in E \mid (a_0 \ b) \subseteq A\}$ sono non vuoti in quanto $a_0 \in E_1$ e $b_0 \in E_2$.

Se $\alpha_0 = \inf E_1$ e $\beta_0 = \sup E_2$, abbiamo $(\alpha_0 \quad b_0) \cup (a_0 \quad \beta_0) = (\alpha_0 \quad \beta_0) \subseteq A$. Dunque basterà provare che $\alpha_0 = \alpha$ e $\beta_0 = \beta$.

Osserviamo che per ogni $a \ge \alpha_0$ e $b \le \beta_0$ si ha $(a \ b_0) \subseteq A$ e $(a_0 \ b) \subseteq A$.

Sia per assurdo $\alpha_0 \neq \alpha$: poiché $E_1 \subseteq E$, si ha $\alpha < \alpha_0$ e quindi $\alpha_0 \in \mathbb{R}$. Ora, se $0 < \epsilon < b_0 - \alpha_0$, esiste $a \in E_1$ tale che $\alpha_0 \leq a < \alpha_0 + \epsilon$. Per definizione $(a \quad \alpha_0 + \epsilon) \subseteq (a \quad b_0) \subseteq A$, dunque esiste $a' \in A$ tale che $|\alpha_0 - a'| < \epsilon$. Quindi $\alpha_0 \in \overline{A} = A$.

Poiché $A \in \mathcal{E}_E$, allora esiste $\delta > 0$ tale che $(\alpha_0 - \delta \quad \alpha_0 + \delta) \subseteq A$. Dunque $(\alpha_0 - \delta \quad b_0) = (\alpha_0 - \delta \quad \alpha_0 + \delta) \cup (\alpha_0 + \frac{\delta}{2} \quad b_0) \subseteq A$, il che implica che $\alpha_0 - \delta \in E_1$, contro l'ipotesi che α_0 sia l'estremo inferiore di E_1 . In modo analogo si prova che $\beta_0 = \beta$.

Infine, se E non è aperto, risulta comunque $\overset{\circ}{E}\subseteq E\subseteq \overline{\overset{\circ}{E}},$ e quindi la tesi segue da 6.5.

 \Leftarrow Supponiamo che $E \subseteq \mathbb{R}$ non sia un intervallo. Allora esistono $x_0, x_1 \in y$ tali che $x_0, x_1 \in E, y \notin E$ e $x_0 < y < x_1$. Quindi gli aperti $(-\infty \ y)$ e $(y + \infty)$ sconnettono E.

6.2. Connessione e continuità.

Teorema 6.9. Se $f:(X,\tau)\to (Y,\tau')$ è una funzione continua tra spazi topologici e se $E\subseteq X$ è connesso allora f(E) è connesso.

Dimostrazione. Supponiamo per assurdo che A_1 , $A_2 \in \tau$ sconnettano f(E), cioè che $A_1 \cap f(E)$ e $A_2 \cap f(E)$ siano non vuoti, disgiunti e tali che $f(E) \subseteq A_1 \cup A_2$. Allora $f^{-1}(A_1)$ e $f^{-1}(A_2)$ sono aperti, non vuoti e disgiunti tali che $E \subseteq f^{-1}f(E) \subseteq f^{-1}(A_1 \cup A_2) = f^{-1}(A_1) \cup f^{-1}(A_2)$, pertanto sconnettono E, contro l'ipotesi.

Corollario 6.10. Sia $f:(X,\tau)\to (Y,\tau')$ un omeomorfismo.

- (1) (X,τ) è connesso se e solo se (Y,τ') è connesso.
- (2) Se C è una componente connessa di (X,τ) allora f(C) è una componente connessa di (Y,τ') e gli insiemi delle componenti connesse di (X,τ) e di (Y,τ') hanno la stessa cardinalità.

Dimostrazione. Se $f(C) \subseteq E$ con E connesso, allora $f^{-1}(E)$ è connesso per 6.9 e $C \subseteq f^{-1}(E)$, quindi $C = f^{-1}(E)$ da cui f(C) = E.

Nel caso delle funzioni a valori reali possiamo generalizzare due noti teoremi di analisi.

Teorema 6.11 (Teorema degli zeri). Sia $f:(X,\tau)\to(\mathbb{R},\mathcal{E}_1)$ una funzione continua e sia $E\subseteq X$ connesso. Se esistono $p_1,\ p_2\in E$ tali che $f(p_1)<0$ e $f(p_2)>0$, allora esiste $p_0\in E$ tale che $f(p_0)=0$.

Dimostrazione. Se per assurdo fosse $f(p) \neq 0$ per ogni $p \in E$, avremmo $E = E_1 \cup E_2$, con $E_1 = \{p \in E \mid f(p) < 0\}$ e $E_2 = \{p \in E \mid f(p) > 0\}$. Poiché E_1 e E_2 sono disgiunti per costruzione e non vuoti per ipotesi $(p_i \in E_i \text{ per } i = 1, 2)$, tali insiemi sconnettono E, contro l'ipotesi.

Corollario 6.12 (Teorema dei valori intermedi). Sia $f:(X,\tau)\to (\mathbb{R},\mathcal{E}_1)$ una funzione continua e sia $K\subseteq X$ connesso e compatto. Siano m e M rispettivamente il minimo e il massimo di f su K (vedi 5.15). Se $c\in [m\ M]$, allora esiste $p_0\in K$ tale che $f(p_0)=c$

Proof. Se $m = f(p_1)$ e $M = f(p_2)$ con $p_1, p_2 \in K$, la funzione F(p) = f(p) - c è continua e $F(p_1) < 0$ e $F(p_2) > 0$. Applicando 6.11 otteniamo la tesi.

6.3. Prodotto di connessi.

Per studiare il prodotto topologico di spazi connessi ci serviranno alcune proprietà dell'unione di connessi. Intanto è di immediata verifica il seguente

Lemma 6.13. Sia (X, τ) uno spazio topologico e supponiamo che A_1 e A_2 sconnettano (X, τ) . Se $E \subseteq X$ è connesso allora $E \subseteq A_1$ oppure $E \subseteq A_2$.

Lemma 6.14. Sia (X, τ) uno spazio topologico e sia $\{E_i\}_{i\in I}$ una famiglia di connessi in X tali che

- 1) $E_i \cap E_j \neq \emptyset$ per ogni $i, j \in I$ oppure
- 2) esiste $i_0 \in I$ tale che $E_i \cap E_{i_0} \neq \emptyset$ per ogni $i \in I$. Allora $E = \bigcup_{i \in I} E_i$ è connesso.

Dimostrazione. Supponiamo che E sia sconnesso da A_1 e A_2 . Per 6.13 per ogni $i \in I$ abbiamo $E_i \subseteq A_1$ o $E_i \subseteq A_2$.

- 1) Poiché A_1 e A_2 non sono vuoti, esistono $E_i \subseteq A_1$ e $E_j \subseteq A_2$, il che è assurdo in quanto $A_1 \cap A_2 = \emptyset$.
- 2) Sia $E_{i_0} \subseteq A_1$. Analogamente al punto 1, esiste $E_i \subseteq A_2$, il che è assurdo.

Teorema 6.15. Un prodotto di spazi topologici $(X \times Y, \tau \times \tau')$ è connesso se e solo se (X, τ) e (Y, τ') lo sono.

Dimostrazione.

- \Leftarrow Segue dalla continuità delle proiezioni P_1 e P_2 .
- \Rightarrow Siano (X,τ) e (Y,τ') connessi e sia $y_0 \in Y$. Allora

$$X \times Y = (\bigcup_{x \in X} \{x\} \times Y) \cup X \times \{y_0\}.$$

Posto $E_x = \{x\} \times Y$ e $E_0 = X \times \{y_0\}$, tali insiemi sono connessi in quanto omeomorfi a spazi connessi(vedi 4.6) e $E_x \cap E_0 = \{(x, y_0)\} \neq \emptyset$. Quindi $(X \times Y, \tau \times \tau')$ è connesso per 6.14.

Dal teorema precedente e da 6.8 otteninamo

Corollario 6.16. $(\mathbb{R}^n, \mathcal{E}_n)$ è connesso per ogni n.

6.4. Connessione per archi.

Definizione 6.17. Sia (X,τ) uno spazio topologico e si ponga $I=[0\ 1]$. Due punti $p, q \in X$ si dicono congiungibili se esiste una funzione continua $\alpha: (I, \mathcal{E}_1) \to (X, \tau)$ tale che $\alpha(0) = p$ e $\alpha(1) = q$.

In tal caso la funzione $\alpha(t)$ si dice detta arco congiungente p e q e che p e q sono conqiunti da o tramite $\alpha(t)$.

Se ogni coppia di punti p, $q \in X$ è congiungibile, (X, τ) si dice connesso per archi. Un sottoinsieme $E \subseteq X$ è connesso per archi se (E, τ_E) è connesso per archi.

Osserviamo che se abbiamo una funzione $\alpha:[a\quad b]\to X$, possiamo sempre cambiare variabile in modo che sia definita su I: basta sostituire t=(b-a)u+a con $0\leq u\leq 1$. Inoltre, se $\alpha:I\to X$ e $\beta:I\to X$ sono archi continui tali che $\alpha(1)=\beta(0)$ possiamo sempre ottenere un arco $\alpha*\beta:I\to X$ congiungente $\alpha(0)$ e $\beta(1)$ definendo

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{se } 0 \le t \le \frac{1}{2} \\ \beta(2t - 1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$

Vale quindi

Proposizione 6.18. Uno spazio topologico (X, τ) è connesso per archi se e solo esiste $p_0 \in X$ tale per ogni $p \in X$ i punti p e p_0 sono congiungibili.

Definizione 6.19. Sia (X, τ) uno spazio topologico . Un sottoinsieme $E \subseteq (X, \tau)$ è una componente connessa per archi di (X, τ) se E è connesso per archi e se ogni $E' \subseteq X$ tale che $E \subset E'$ non è connesso per archi.

E' immediato verificare che la relazione tra punti di X definita da $p\ e\ q\ sono\ congiungibili$ è una relazione di equivalenza su X le cui classi di equivalenza sono le componenti connesse per archi di X.

Esempi 6.20.

- (1) $(\mathbb{R}^n, \mathcal{E}_n)$ è connesso per archi: due punti $x, y \in \mathbb{R}^n$ sono congiungibili con $\alpha(t) = (1-t)x + ty$, $t \in I$. Analogamente i sottospazi vettoriali di \mathbb{R}^n e i sottoinsiemi convessi di \mathbb{R}^n sono connessi per archi.
- (2) Si consideri sull'insieme $X = C^0(I)$ delle funzioni continue su $I = [0 \ 1]$ a valori reali la metrica $d = d_{L^{\infty}}$. Allora (X, d) è connesso per archi. Siano $f, g \in X$ con $f \neq g$: allora $\alpha_t = (1 t)f + tg$ è un arco continuo in X congiungente f con g. Infatti per ogni $t \in I$, $\alpha_t(x)$ è una funzione continua su I. Proviamo che α_t è continua in $t_0 \in I$.

$$\begin{split} d(\alpha_t,\alpha_{t_0}) &= \sup_I |(1-t)f + tg - ((1-t_0)f + t_0g)| = \sup_I |(t_0-t)f + (t-t_0)g| \leq (\sup_I |f| + \sup_I |g|)|t - t_0|. \\ \text{Quindi, dato } \epsilon > 0, \text{ se } \delta &= \frac{\epsilon}{\sup_I |f| + \sup_I |g|} \text{ abbiamo che } |t - t_0| < \delta| \text{ implica } \\ d(\alpha_t,\alpha_{t_0})\epsilon, \text{ e quindi la continuità .} \end{split}$$

- (3) Se $f:([a \ b],\mathcal{E}_1) \to (X,\tau)$ è continua, allora la sua immagine è un insieme connesso per archi. Se $J \subseteq \mathbb{R}$ è un intervallo e se $f:(J,\mathcal{E}_1) \to (\mathbb{R},\mathcal{E}_1)$ è continua allora il grafico G_f di f è connesso per archi. Infatti G_f è l'immagine di della funzione continua $F:(J,\mathcal{E}_1) \to (\mathbb{R}^2,\mathcal{E}_2)$ data da F(t)=(t,f(t)).
- (4) Si consideri $S^2 \subseteq (\mathbb{R}^2, \mathcal{E}_3)$. Se $p, q \in S^2$ e se C è la circonferenza ottenuta intersecando S^2 con il piano per O, p e q, entrambi gli archi nei quali C è divisa da p e q congiungono p con q. Quindi S^2 è un connesso per archi .

La nozione di connessione per archi è più forte della connessione definita in precedenza.

Proposizione 6.21. Se (X,τ) è connesso per archi allora (X,τ) è connesso.

Dimostrazione. Per assurdo supponiamo che A_1 e A_2 sconnettano X. Siano $p_i \in A_i$ con i = 1, 2 congiunti $\alpha : I \to X$. Allora $\alpha^{-1}(A_1)$ e $\alpha^{-1}(A_2)$ sconnettono I, il che è assurdo per 6.8.

Il prossimo esempio prova che non vale il viceversa.

Esempio 6.22. Si consideri la funzione $f:((0+\infty),\mathcal{E}_1)\to (\mathbb{R},\mathcal{E}_1)$ definita da $f(x)=\sin(\frac{1}{x})$. Poichè f è continua, il suo grafico $G=\{(x,y)\in\mathbb{R}^2\mid y=f(x),\ 0< x\}$ è connesso per archi . Posto $E=\overline{G},\ E$ è connesso per 6.21 e 6.5. Proviamo che E non è connesso per archi .

Intanto abbiamo che

$$E \setminus G = E \cap \{x = 0\} = \{(0, y) \in \mathbb{R}^2 | |y| \le 1\}.$$

Infatti se $|y| \leq 1$ esiste $\theta \in [0 \ 2\pi)$ tale che $y = \sin \theta$, quindi se $x_k = \frac{1}{\theta + 2k\pi}$, la successione (x_k, y) in G converge a (0, y).

Viceversa, se $p_0 = (x_0, y_0) \in E$, esiste una successione $(x_k, f(x_k))$ in G convergente a p_0 . Per la permanenza del segno $x_0 \ge 0$; se $x_0 > 0$, avremmo per continuità $y_0 = f(x_0)$ e quindi $p_0 \in G$. Dunque se $p_0 \in E \setminus G$ necessariamente $x_0 = 0$. Inoltre $|y_0| \le 1$ in quanto limite di $f(x_k)$.

Supponiamo ora per assurdo che E sia connesso per archi e consideriamo i punti $p_0 = (0,0) \in E \setminus G$ e $q_0 = (\frac{1}{\pi},0) \in G$. Sia $\alpha(t) = (p(t),q(t))$ un arco continuo $\alpha:I \to E$ tale che $\alpha(0) = p_0$ e $\alpha(1) = q_0$. Poiché per ogni $t \in I$ si ha $p(t) \geq 0$, p(0) = 0 e $p(1) = \frac{1}{\pi}$, esiste \bar{t} in $(0 \ 1]$ tale che p(t) > 0 per $\bar{t} < t \leq 1$.

Se $t_0 = \inf\{\overline{t} \mid p(t) > 0 \ \forall t \in (\overline{t} \ 1]\}$, allora $p(t_0) = 0$. Infatti $t_0 \geq 0$, e se $t_0 = 0$ l'asserzione è ovvia. Sia $t_0 > 0$. Se per assurdo fosse $p(t_0) > 0$, allora esisterebbe $\epsilon > 0$ tale che p(t) > 0 per $t \in (t_0 - \epsilon \ t_0]$. Quindi avremmo p(t) > 0 per ogni $t \in (t_0 - \epsilon \ 1]$, contro la definizione di t_0 .

Ora per ogni $t \in (t_0 \quad 1]$ abbiamo che $\alpha(t) \in G$, dunque

$$\alpha(t) = (p(t), \sin \frac{1}{p(t)})$$
 e $\lim_{t \to t_0} \alpha(t) = \alpha(t_0) = (0, y_0)$

da cui $\lim_{t\to t_0} \sin\frac{1}{p(t)} = y_0.$

D'altra parte, se consideriamo p(t) come funzione da $[t_0 \ 1]$ a $[0 \ \frac{1}{\pi}]$, per 6.12 abbiamo che per ogni $k \in \mathbb{N}$ esistono t_k e t_k' in $[t_0 \ 1]$ tali che $p(t_k) = \frac{1}{k\pi}$ e $p(t_k') = \frac{2}{(4k+1)\pi}$. Allora $\lim_{k\to\infty} t_k = \lim_{k\to\infty} t_k' = t_0$. Infatti si consideri la successione t_k : per definizione $t_0 < t_k < 1$ per ogni k e p(t) > 0 per $t > t_0$. Se t_k non convergesse a t_0 , per la compattezza di $[t_0 \ 1]$ potremmo trovare una sottosuccessione t_{k_h} di t_k convergente a t_0 Quindi per la continuità avremmo $t_0 = t_0$ Quindi per la continuità avremmo $t_0 = t_0$ e t_0 o il che è assurdo in quanto $t_0 = t_0$. Per t_0 is ragiona in modo analogo.

quanto $\lim_{k\to\infty} p(t_k) = 0$. Per t_k' si ragiona in modo analogo. Poiché $\sin\frac{1}{p(t_k)} = 0$ e $\sin\frac{1}{p(t_k')} = 1$ per ogni k, la funzione $\sin\frac{1}{p(t)}$ non ha limite per $t\to t_0$ contro quanto ottenuto in precedenza.

Osserviamo che questo esempio mostra anche che la chiusura di un insieme connesso per archi non è necessariamente un connesso per archi e che le componenti connesse per archi non sono necessariamente dei chiusi.

Proposizione 6.23. Siano (X, τ) e (Y, τ') spazi topologici.

- (1) Se $f:(X,\tau)\to (Y,\tau')$ è continua e $E\subseteq X$ è connesso per archi , allora f(E) è connesso per archi .
- (2) $(X \times Y, \tau \times \tau')$ è connesso per archi se e solo se lo sono (X, τ) e (Y, τ') .

Dimostrazione. Se α congiunge p_1 e p_2 in E allora $f \circ \alpha$ congiunge $f(p_1)$ e $f(p_2)$ in f(E). Se $p = (p_1, p_2)$ e $q = (q_1, q_2)$ sono in $X \times Y$ e se per i = 1, 2 gli archi α_i congiungono p_i e q_i , allora l'arco continuo $\alpha = (\alpha_1, \alpha_2)$ congiunge p e q. L'altra implicazione segue dal punto 1 analogamente a 6.15.

Corollario 6.24. Sia $f:(X,\tau)\to (Y,\tau')$ un omeomorfismo.

(1) (X,τ) è connesso per archi se e solo se (Y,τ') è connesso per archi.

(2) Se C è una componente connessa per archi di (X,τ) allora f(C) è una componente connessa per archi di (Y,τ') e gli insiemi delle componenti connesse per archi di (X,τ) e di (Y,τ') hanno la stessa cardinalità.

Esempio 6.25. Si consideri lo spazio delle matrici invertibili reali $GL = GL_n(\mathbb{R})$ con la topologia euclidea indotta da $\mathbb{R}^{n,n}$. Allora GL è sconnesso e le sue componenti connesse (per archi) sono gli insiemi $GL^+ = \{M \in \mathbb{R}^{n,n} \mid \det M > 0\}$ e $GL^- = \{M \in \mathbb{R}^{n,n} \mid \det M < 0\}$.

Prova. GL_+ e GL^+ e GL^- sono aperti non vuoti disgiunti la cui unione è GL, quindi sconnettono. Se vogliamo verificare direttamente che GL non è connesso per archi possiamo ragionare cos ì: siano $M_0 \in GL^+$ e $M_1 \in GL^-$. Se esistesse un arco M_t continuo in GL con $0 \le t \le 1$, la funzione reale det M_t sarebbe continua su I, positiva in t = 0 e negativa in t = 1. Quindi per 6.11 det $M_{t_0} = 0$ per qualche $t_0 \in I$, contro l'ipotesi. Proveremo l'affermazione successiva nel caso n = 2.

In questo caso ricordiamo che, se $M \in \mathbb{R}^{2,2}$ e se α e β sono gli autovalori di M (reali distinti, coincidenti o complessi coniugati), allora det $M = \alpha\beta$.

• GL^+ è connesso per archi. Per 6.18 basterà provare che ogni $M \in GL^+$ è congiungibile in GL^+ con I_2 .

Distinguiamo 3 casi.

- i) $tr(M) = \alpha + \beta > 0$, cioè $\alpha > 0$ e $\beta > 0$. Sia $M_t = (1 t)M + tI_2$ per $0 \le t \le 1$: gli autovalori di M_t sono $(1 t)\alpha + t$ e $(1 t)\beta + t$, che sono entrambi > 0, quindi det $M_t > 0$ per ogni t.
- ii) $tr(M) = \alpha + \beta < 0$, cioè $\alpha < 0$ e $\beta < 0$. Sia $M_t = (1-t)M tI_2$ per $0 \le t \le 1$: M_t ha autovalori $(1-t)\alpha t$ e $(1-t)\beta t$, che sono entrambi < 0, quindi det $M_t > 0$ per ogni t.

Pertanto M è congiungibile in GL^+ con $-I_2$. D'altra parte quest'ultima è congiungibile in GL^+ con I_2 per mezzo dell'arco $-R_{\theta}$, dove

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

 $con 0 \le \theta \le \pi$

iii) $\alpha \in \mathbb{C} \setminus \mathbb{R}$ e $\beta = \overline{\alpha}$. Sia $M_t = (1 - t)M + tI_2$ per $0 \le t \le 1$: gli autovalori di M_t sono $(1 - t)\alpha + t$ e $(1 - t)\overline{\alpha} + t$, quindi

$$\det M_t = (1-t)^2 |\alpha|^2 + 2t(1-t)\Re e\alpha + t^2$$

per ogni t. Quest'ultima espressione è la valutazione sul vettore $(1-t,t) \in \mathbb{R}^2$ della forma quadratica associata alla matrice

$$A = \left[\begin{array}{cc} |\alpha|^2 & \Re e\alpha \\ \Re e\alpha & 1 \end{array} \right].$$

Poiché det $A = (\Im m\alpha)^2$ e $trA = |\alpha|^2 + 1$, la forma quadratica è definita positiva e quindi det $M_t > 0$ per ogni t.

• GL^- è connesso per archi. Sia

$$J = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

Se proviamo che ogni $M \in GL^-$ è congiungibile con J, la tesi seguirà da 6.18. Se $M \in GL^-$, M ha autovalori α e β reali distinti di segno opposto: sia $\alpha > 0$ e $\beta < 0$. Poiché M è diagonalizzabile su \mathbb{R} , esiste $N \in GL^+$ tale che

$$N^{-1}MN = D = \left[\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array} \right].$$

Allora, se $D_t = (1-t)D+tJ$, abbiamo det $D_t = (1-t)^2\alpha\beta+t(1-t)(\beta-\alpha)-t^2<0$ per $0 \le t \le 1$. Dunque M è congiungibile in GL^- con NJN^{-1} tramite ND_tN^{-1} . Siccome $N \in GL^+$, N è congiungibile con I_2 in GL^+ tramite un arco N_t . Quindi, poiché det $N_tJN_t^{-1} = -1$ per ogni t, NJN^{-1} è congiungibile in GL^- con J.

7. Spazi Quoziente

7.1. Insiemi quoziente.

Se X è un insieme, una relazione di equivalenza su X è una relazione \mathcal{R} tale che, per $p, q, z \in X$ si ha:

- (1) $p\mathcal{R}p$;
- (2) se $p\mathcal{R}q$ allora $q\mathcal{R}p$;
- (3) se pRz e zRq allora pRq.

Se $p \in X$, l'insieme $[p] = \{q \in X \mid q\mathcal{R}p\}$ è la classe di equivalenza di p. Le classi di equivalenza determinano una partizione di X, sono cioè non vuote, disgiunte e la loro unione è uguale a X. L'insieme di delle classi di equivalenza rispetto a \mathcal{R} si dice insieme quoziente e si denota con X/\mathcal{R} .

In varie occasioni definiremo una relazione di equivalenza specificando per ogni punto la relativa classe di equivalenza.

L'applicazione suriettiva $\pi: X \to X/\mathcal{R}$ definita da $\pi(p) = [p]$ si dice proiezione sul quoziente.

Osserviamo che se $E \subseteq X$, la restrizione a E di \mathcal{R} determina una relazione di equivalenza su E che indicheremo sempre con \mathcal{R} .

Definizione 7.1. Sia $E \subseteq X$. Il saturato di E è l'insieme

$$sat(E) = \{ p \in X \mid \exists q \in E, \ q \mathcal{R} p \} = \bigcup_{p \in E} [p].$$

Si verifica facilmente che $E \subseteq sat(E)$ e che $sat(E) = \pi^{-1}(\pi(E))$.

Definizione 7.2. Sia $E \subseteq X$. Se E = sat(E), E si dice saturo.

Esempio 7.3.

- (1) L'uguaglianza = è una relazione di equivalenza in modo banale.
- (2) Se $E \subseteq X$, è definita la relazione di equivalenza \mathcal{R}_E associata a E ponendo [p] = E se $p \in E$ e $[p] = \{p\}$ se $p \notin E$. In tal caso denoteremo X/\mathcal{R}_E con X/E.

7.2. Topologia quoziente.

Sia X un insieme sul quale sono definite una relazione di equivalenza \mathcal{R} e una topologia τ . Allora si verifica facilmente che

$$\tau/\mathcal{R} = \{ A \subseteq X/\mathcal{R} \mid \pi^{-1}(A) \in \tau \}$$

è una topologia su X/\mathcal{R} detta topologia quoziente. In base alla definizione abbiamo che τ/\mathcal{R} è la topologia più fine tale che $\pi:(X,\tau)\to (X/\mathcal{R},\tau/\mathcal{R})$ è continua. Diremo che $(X/\mathcal{R},\tau/\mathcal{R})$ è lo spazio (topologico) quoziente di (X,τ) rispetto a \mathcal{R} . Se $E\subseteq X$ denoteremo τ/\mathcal{R}_E con τ/E .

D'ora in poi (X, τ) sarà uno spazio topologico su cui supporremo definita una relazione di equivalenza \mathcal{R} . La caratterizzazione più utile per gli aperti di τ/\mathcal{R} è la seguente.

Proposizione 7.4. $A \in \tau/\mathcal{R}$ se e solo se esiste $B \in \tau$ saturo tale che $\pi(B) = A$.

Proof. Se $A \in \tau/\mathcal{R}$, l'insieme $B = \pi^{-1}(A)$ è saturo, aperto e $\pi(B) = A$. Viceversa, se $A = \pi(B)$ con B saturo e aperto in τ , allora $\pi^{-1}(A) = \pi^{-1}(\pi(B)) = B \in \tau$, e quindi $A \in \tau/\mathcal{R}$ per definizione.

Dalla suriettività e continuità di π otteniamo che

Proposizione 7.5. Se (X, τ) è compatto/connesso, anche $(X/\mathcal{R}, \tau/\mathcal{R})$ è compatto/connesso.

In generale il quoziente di uno spazio di Hausdorff non è di Hausdorff.

Esempio 7.6. Sia $X = \{(x,y) \in \mathbb{R}^2 \mid |y| = 1\}$, unione delle rette y = 1 e y = -1, con la topologia euclidea indotta e sia \mathcal{R} la relazione definita dalle classi di equivalenza $[(x,1)] = \{(x,1),(x,-1)\}$ se $x \neq 0$, $[(0,1)] = \{(0,1)\}$ e $[(0,-1)] = \{(0,-1)\}$. Allora ogni intorno saturo di (0,1) interseca ogni intorno di (0,-1) e viceversa, quindi X/\mathcal{R} non è di Hausdorff.

Proposizione 7.7. Se (X,τ) è di Hausdorff, $(X/\mathcal{R},\tau/\mathcal{R})$ è di Hausdorff se e solo per ogni $p, q \in X$ non equivalenti esistono intorni saturi $U \in \mathcal{U}_p$ e $V \in \mathcal{U}_q$ tali che $U \cap V = \emptyset$.

Dimostrazione. (\Rightarrow) Se $A = \pi(U)$ e $B = \pi(V)$, allora $A \in \mathcal{U}_{[p]}$, $B \in \mathcal{U}_{[q]}$ e $A \cap B = \emptyset$. (\Leftarrow) Abbiamo $[p] \neq [q]$. Se $A \in \mathcal{U}_{[p]}$, $B \in \mathcal{U}_{[q]}$ e $A \cap B = \emptyset$, esistono $U, V \in \tau$ saturi tali che $A = \pi(U)$ e $B = \pi(V)$. Ora $[p] = \pi(p')$ per qualche $p' \in U$, dunque $p\mathcal{R}p'$ e $p \in U$ in quanto U è saturo. Analogamente $q \in V$. Infine, $U \cap V = \emptyset$: infatti se fosse $z \in U \cap V$ avremmo $\pi(z) \in A \cap B$ il che è assurdo.

7.3. Funzioni compatibili.

Definizione 7.8. Una funzione $f: X \to Y$ tra insiemi si dice compatibile con una relazione di equivalenza \mathcal{R} su X se $p\mathcal{R}q \Rightarrow f(p) = f(q)$. Se $p\mathcal{R}q \Leftrightarrow f(p) = f(q)$ allora f si dice totalmente compatibile con \mathcal{R} .

Se $f: X \to Y$ è compatibile, è definita la funzione quoziente $f_{\mathcal{R}}: X/\mathcal{R} \to Y$ data da $f_{\mathcal{R}}([p]) = f(p)$. Ovviamente $f_{\mathcal{R}} \circ \pi = f$.

Proposizione 7.9. Sia $f: X \to Y$ una funzione compatibile con \mathcal{R} .

- (1) $f_{\mathcal{R}}$ è suriettiva se e solo se f è suriettiva ed $f_{\mathcal{R}}$ è iniettiva se e solo se f è totalmente compatibile.
- (2) $f:(X,\tau) \to (Y,\tau')$ è continua rispetto alle topologie τ e τ' se e solo se $f_{\mathcal{R}}:(X/\mathcal{R},\tau/\mathcal{R}) \to (Y,\tau')$ è continua e $f_{\mathcal{R}}$ è aperta se e solo se f manda aperti saturi in aperti.

Dimostrazione.

(1) Per costruzione $Im(f) = Im(f_{\mathcal{R}})$. Inoltre, $f_{\mathcal{R}}([p]) = f_{\mathcal{R}}([q]) \Rightarrow f(p) = f(q) \Rightarrow p\mathcal{R}q \Rightarrow [p] = [q]$.

(2) Sia f continua. Se $A \in \tau'$, da $f = f_{\mathcal{R}} \circ \pi$ abbiamo $f^{-1}(A) = \pi^{-1}(f_{\mathcal{R}}^{-1}(A)) \in \tau$, quindi $f_{\mathcal{R}}^{-1}(A)$) è un aperto per definizione di topologia quoziente. Viceversa, $f_{\mathcal{R}}$ è continua implica immediatamente che $f = \pi \circ f_{\mathcal{R}}$ è continua.

Supponiamo ora che l'immagine di un aperto saturo tramite f sia un aperto. Se $A \in \tau/\mathcal{R}$, esiste per 7.4 $B \in \tau$ saturo tale che $\pi(B) = A$. Allora per ipotesi

$$f_{\mathcal{R}}(A) = f_{\mathcal{R}}\pi(B) = f(B) \in \tau'.$$

Viceversa, se A è un aperto saturo in τ e $f_{\mathcal{R}}$ è aperta, abbiamo $f(A) = f_{\mathcal{R}}(\pi(A)) \in \tau'$ in quanto, sempre per 7.4, $\pi(A) \in \tau/\mathcal{R}$.

La totale compatibilità può essere utilizzata per stabilire se uno spazio quoziente è di Hausdorff.

Corollario 7.10. Sia $f:(X,\tau) \to (Y,\tau')$ continua e totalmente compatibile con \mathcal{R} e sia (Y,τ') di Hausdorff. Allora $(X/\mathcal{R},\tau/\mathcal{R})$ è di Hausdorff.

Dimostrazione. Per 7.9 $f_{\mathcal{R}}$ è iniettiva e continua, quindi la tesi segue da 3.11.

Esempio 7.11.

Siano $I = [0 \ 1]$ e $E = \{0, 1\}$. Proviamo che $(I/E, \mathcal{E}_1/E)$ è omeomorfo a (S^1, \mathcal{E}_2) . Infatti la funzione $f: (I, \mathcal{E}_1) \to (S^1, \mathcal{E}_2)$ definita da $f(t) = (\cos 2\pi t, \sin 2\pi t)$ è surgettiva, totalmente compatibile e continua, quindi $f_{\mathcal{R}_E}: (I/E, \mathcal{E}_1/E) \to (S^1, \mathcal{E}_2)$ è definita, biunivoca e continua per 7.9. Siccome $(I/E, \mathcal{E}_1/E)$ è compatto e (S^1, \mathcal{E}_2) è di Hausdorff, $f_{\mathcal{R}_E}$ è un omeomorfismo per 5.16.

Proposizione 7.12. Supponiamo che $(X/\mathcal{R}, \tau/\mathcal{R})$ sia di Hausdorff. Se esiste $K \subseteq X$ compatto tale che $K \cap [p] \neq \emptyset$ per ogni $p \in X$ allora $(X/\mathcal{R}, \tau/\mathcal{R})$ e $(K/\mathcal{R}, \tau_K/\mathcal{R})$ sono omeomorfi.

Dimostrazione. Se i_K è l'inclusione di K in X, la funzione $f:(K,\tau_K)\to (X/\mathcal{R},\tau/\mathcal{R})$ definita da $f=\pi\circ i_K$ è totalmente compatibile e continua. Inoltre per ipotesi è surgettiva. Poiché (K,τ_K) è compatto e $(X/\mathcal{R},\tau/\mathcal{R})$ è di Hausdorff, $f_{\mathcal{R}}:(K/\mathcal{R},\tau_K/\mathcal{R})\to (X,\tau/\mathcal{R})$ è un omeomorfismo.

L'ipotesi " τ/\mathcal{R} di Hausdorff" in 7.12 non può essere omessa, come prova il seguente controesempio.

Esempio 7.13. Consideriamo su $(\mathbb{R}, \mathcal{E}_1)$ la relazione di equivalenza data da $[0] = \{0\}$ e $[1] = \{x \in \mathbb{R} \mid x \neq 0\}$ e sia $K = \{0, 1\}$. Allora $\mathbb{R}/\mathcal{R} = \{[0], [1]\} = \pi(K)$, ma $\mathcal{E}_1/\mathcal{R} = \{\emptyset, \mathbb{R}/\mathcal{R}, [1]\}$, che non è di Hausdorff in quanto l'unico intorno di [0] è X, mentre $\tau_K/\mathcal{R} = \{\emptyset, K/\mathcal{R}, [0], [1]\}$ che è la topologia discreta: quindi $(X/\mathcal{R}, \tau/\mathcal{R})$ e $(K, \tau_K/\mathcal{R})$ non sono omeomorfi.

Diamo una semplice applicazione di 7.12.

Esempio 7.14. Si consideri su $(\mathbb{R}, \mathcal{E}_1)$ la relazione di di equivalenza: $x\mathcal{R}x' \Leftrightarrow x' - x \in \mathbb{Z}$. Allora la funzione $f : \mathbb{R} \to \mathbb{R}^2$ definita da $f(t) = (\cos 2\pi t), \sin 2\pi t)$) è continua e totalmente compatibile con \mathcal{R} , quindi per 7.10 $(\mathbb{R}/\mathcal{R}, \mathcal{E}_1/\mathcal{R})$ è di Hausdorff. D'altra parte, se $I = [0 \quad 1]$ e se π è la proiezione sul quoziente, $\pi(I) = X/\mathcal{R}$ e $x' \neq x$ in I sono equivalenti se e solo se uno dei due è 0 e l'altro è 1. Quindi per 7.12 e per l'esempio 7.11, $(\mathbb{R}/\mathcal{R}, \mathcal{E}_1/\mathcal{R})$ è omeomorfo a (S^1, \mathcal{E}_2) .

Le funzioni compatibili sono un caso particolare delle seguenti funzioni bi-compatibili.

Definizione 7.15. Una funzione $f: X \to Y$ tra insiemi si dice bi-compatibile con relazioni di equivalenza \mathcal{R} su X \mathcal{R}' su Y se $p\mathcal{R}q \Rightarrow f(p)\mathcal{R}'f(q)$. Se $p\mathcal{R}q \Leftrightarrow f(p)\mathcal{R}'f(q)$ allora f si dice totalmente bi-compatibile con \mathcal{R} .

Evidentemente ritroviamo le funzioni compatibili prendendo come \mathcal{R}' la relazione indentità . Analogamente al caso compatibile, se $f: X \to Y$ è bi-compatibile è definita la funzione quoziente $f_{\mathcal{R},\mathcal{R}'}: X/\mathcal{R} \to Y/\mathcal{R}'$ data da $f_{\mathcal{R},\mathcal{R}'}([p]) = [f(p)]$. Ovviamente $f_{\mathcal{R},\mathcal{R}'} \circ \pi = \pi' \circ f(p)$, dove π' è la proiezione su Y/\mathcal{R}' .

Proposizione 7.16. Sia $f: X \to Y$ una funzione bi-compatibile con \mathcal{R} e \mathcal{R}' .

- (1) $f_{\mathcal{R},\mathcal{R}'}$ è surgettiva se e solo se f è surgettiva ed $f_{\mathcal{R},\mathcal{R}'}$ è iniettiva se e solo se f è totalmente bi-compatibile.
- (2) $f:(X,\tau) \to (Y,\tau')$ è continua rispetto alle topologie τ e τ' se e solo se $f_{\mathcal{R},\mathcal{R}'}:(X/\mathcal{R},\tau/\mathcal{R}) \to (Y/\mathcal{R}',\tau'/\mathcal{R}')$ è continua e $f_{\mathcal{R},\mathcal{R}'}$ è aperta se e solo se f manda aperti saturi in aperti saturi.

7.4. Spazi proiettivi.

In questa sezione considerermo le *n*-sfere $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ come spazi topologici con la topologia euclidea $\mathcal{E} = \mathcal{E}_{n+1}$ indotta.

Definizione 7.17. Se \mathcal{R} è la relazione di equivalenza su S^n definita da $x'\mathcal{R}x \Leftrightarrow x' = \pm x$, lo spazio quoziente $(S^n/\mathcal{R}, \mathcal{E}/\mathcal{R})$ si dice n-spazio proiettivo reale o spazio proiettivo reale di dimensione n e si denota con $\mathbb{R}P^n$.

Proposizione 7.18. $\mathbb{R}P^n$ è di Hausdorff, compatto e connesso per archi.

Dimostrazione. La funzione $f: S^n \to S^n$ definita da f(x) = -x è un omeomorfismo di S^n in sè . Se [x] e [y] sono classi di equivalenza distinte siano $U_1 \in \mathcal{U}_x$, $U_2 \in \mathcal{U}_y$, $U_3 \in \mathcal{U}_{-x}$ e $U_4 \in \mathcal{U}_{-y}$ tali che $U_i \cap U_j = \emptyset$ per $i \neq j$. Se $U \subseteq U_1$ e $V \subseteq U_2$ sono intorni di x e y rispettivamente tali che $f(U) \subseteq U_3$ e $f(V) \subseteq U_4$, gli intorni U, V, f(U) e f(V) di x, y, -x, -y rispettivamente sono a due a due disgiunti.

Allora $A = U \cup f(U)$ e $B = V \cup f(V)$ sono aperti saturi disgiunti contenenti [x] e [y] rispettivamente. Quindi $\pi(A)$ e $\pi(B)$ sono intorni disgiunti di [x] e [y] rispettivamente. La restante parte della tesi deriva dal fatto che S^n è compatto e connesso per archi.

Proposizione 7.19. $\mathbb{R}P^1$ è omeomorfo a S^1 .

Dimostrazione. Rappresentando i punti di S^1 come gli elementi del piano complesso della forma $e^{i\theta}$ con $\theta \in [0 \ 2\pi)$, definiamo la funzione $f: S^1 \to S^1$ come $f(e^{i\theta}) = e^{2i\theta}$. Allora f è surgettiva e continua. Inoltre, $e^{i\theta}\mathcal{R}e^{i\phi}$ se e solo se $\phi = \theta + k\pi$ con k = 0, 1, cioè se e solo se $f(e^{i\theta}) = f(e^{i\phi})$: quindi f è anche totalmente compatibile.

Siccome $\mathbb{R}P^1$ è compatto e S^1 è di Hausdorff, $f_{\mathcal{R}}$ è un omeomorfismo tra $\mathbb{R}P^1$ e S^1 .

Per n>1 comunque $\mathbb{R}P^n$ e S^n non sono omeomorfi. Consderiamo ora un modo diverso di definire $\mathbb{R}P^n$.

Proposizione 7.20. Posto $X = \mathbb{R}^{n+1} \setminus \{O\}$, si consideri su (X, \mathcal{E}_{n+1}) la relazione di equivalenza \mathcal{R}' definita da $x\mathcal{R}'y \Leftrightarrow y = \lambda x$ per qualche $\lambda \in \mathbb{R} \setminus \{0\}$. Allora $\mathbb{R}P^n$ è omeomorfo a $(X/\mathcal{R}', \mathcal{E}/\mathcal{R}')$.

Dimostrazione. Siano π e π' le proiezioni sul quoziente rispettivamente di \mathcal{R} e \mathcal{R}' e sia $g: X \to S^n$ la funzione definita da $g(x) = \frac{x}{\|x\|}$. Allora la funzione $f: X \to \mathbb{R}P^n$ definita da $f = \pi \circ g$ è surgettiva e continua. Inoltre, se $y = \lambda x$,

$$g(y) = \frac{y}{\|y\|} = \frac{\lambda x}{|\lambda| \|x\|} = \pm \frac{x}{\|x\|} = \pm g(x)$$

e quindi $g(y)\mathcal{R}g(x)$.

Viceversa, se $g(y)\mathcal{R}g(x)$, si ha $\frac{y}{\|y\|} = \pm \frac{x}{\|x\|}$ e quindi $y = \pm \frac{\|y\|}{\|x\|}x$, cioè $y\mathcal{R}'x$. Quindi f è totalmente compatibile.

Siccome X/\mathcal{R}' è compatto in quanto $\pi'(S^n) = X/\mathcal{R}'$, abbiamo sempre per 5.16 che $f_{\mathcal{R}'}$ è un omeomorfismo di $(X/\mathcal{R}', \mathcal{E}_{n+1}/\mathcal{R}')$ con $\mathbb{R}P^n$.

7.5. Relazioni di equivalenza aperte.

Se \mathcal{R} è una relazione di equivalenza su (X,τ) , la proiezione sul quoziente $\pi:(X,\tau)\to (X/\mathcal{R},\tau/\mathcal{R})$ non è in generale una applicazione aperta. Per esempio, in 7.11 si consideri l'aperto $A=\begin{bmatrix}0&\frac{1}{2}\end{bmatrix}$. Se $B=\pi(A)$ allora $f_{\mathcal{R}}(B)=f(A)$ è l'arco semichiuso di circonferenza $(\cos 2\pi t,\sin 2\pi t),\ 0\leq t<\frac{1}{2}$ che non è un aperto in S^1 . Poiché $f_{\mathcal{R}}$ è un omeomorfismo anche B non è aperto.

Definizione 7.21. Se \mathcal{R} è una relazione di equivalenza su (X, τ) , \mathcal{R} si dice aperta se la proiezione sul quoziente $\pi: (X, \tau) \to (X/\mathcal{R}, \tau/\mathcal{R})$ è una applicazione aperta.

Proposizione 7.22. Una relazione \mathcal{R} su (X,τ) è aperta se e solo se il saturato di un aperto è aperto.

Dimostrazione. Se $A \in \tau \Rightarrow sat(A) \in \tau$, ricordando che $sat(A) = \pi^{-1}(\pi(A))$ e la definizione di topologia quoziente, otteniamo che $\pi(A) \in \tau/\mathcal{R}$.

Viceversa, se π è aperta e se $A \in \tau$, allora $\pi(A) \in \tau/\mathcal{R}$, quindi $sat(A) = \pi^{-1}(\pi(A)) \in \tau$ per la continuità di π .

Applichiamo la nozione di relazione aperta al quoziente di spazi prodotto.

Proposizione 7.23. Siano \mathcal{R}_1 e \mathcal{R}_2 relazioni di equivalenza su spazi topologici (X_1, τ_1) e (X_2, τ_2) rispettivamente. Se definiamo su $(X_1 \times X_2, \tau_1 \times \tau_2)$ la relazione di equivalenza $(p_1, p_2)\mathcal{R}(q_1, q_2) \Leftrightarrow p_1\mathcal{R}_1q_1$, $p_2\mathcal{R}_2q_2$, allora $(X_1 \times X_2/\mathcal{R}, \tau_1 \times \tau_2/\mathcal{R})$ e $(X_1/\mathcal{R}_1 \times X_2/\mathcal{R}, \tau_1/\mathcal{R}_1 \times \tau_2/\mathcal{R})$ sono omeomorfi.

Dimostrazione. Poniamo $\tau = \tau_1 \times \tau_2$, $\tau' = \tau_1/\mathcal{R}_1 \times \tau_2/\mathcal{R}_2$, $X = X_1 \times X_2$, $Y = X_1/\mathcal{R}_1 \times X_2/\mathcal{R}_2$ e sia π la proiezione sul quoziente di \mathcal{R} .

Si consideri la funzione $f:(X,\tau)\to (Y,\tau')$ definita da $f((x_1,x_2)=(\pi_1(x_1),\pi_2(x_2))$. Allora f è totalmente compatibile, surgettiva, continua. Inoltre, se $A=A_1\times A_2$ con $A_i\in\tau_i$ per i=1,2, abbiamo che $f(A)=\pi_1(A_1)\times\pi_2(A_2)$ è un aperto per ipotesi e quindi f è aperta per 3.16. Dunque $f_{\mathcal{R}}$ è un omeomorfismo.

Esempio 7.24. Sia $X_1 = X_2 = \mathbb{R}$, $\tau_1 = \tau_2 = \mathcal{E}_1$ e poniamo $x\mathcal{R}_1x' \Leftrightarrow x' - x \in \mathbb{Z}$, $y\mathcal{R}_2y' \Leftrightarrow y' \pm y$. Supponiamo che $A \in \mathcal{E}_1$. Allora il saturato di A rispetto \mathcal{R}_1 è $sat_1(A) = \{x + n \mid x \in A, n \in \mathbb{Z}\}$, mentre quello rispetto a \mathcal{R}_2 è $sat_2(A) = A \cup -A$ con $-A = \{x \in \mathbb{R} \mid -x \in A\}$. In entrambi i casi i saturati sono aperti in \mathcal{E}_1 e quindi le relazioni di equivalenza sono aperte. Ora X_1/\mathcal{R}_1 è omeomorfo a (S^1, \mathcal{E}_2) per 7.14 mentre X/\mathcal{R}_2 è

omeomorfo a ($[0 + \infty)$, \mathcal{E}_1). Infatti la funzione $f : \mathbb{R} \to [0 + \infty)$ data da f(y) = |y| è totalmente compatibile, suriettiva, continua e manda aperti saturi in aperti, quindi $f_{\mathcal{R}_2}$ è un omeomorfismo. Quindi (\mathbb{R}^2/\mathcal{R}) è omeomorfo a ($S^1 \times [0 + \infty)$, \mathcal{E}_3 per 7.23.

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

 $E ext{-}mail\ address: ferrarotti@polito.it}$