(Take any Dataset of your choice ,perform EDA(Exploratory Data Analysis) and apply a suitable Classifier, Regressor or Clusterer and calculate the accuracy of the model.)

Aim - Predicting insurance charges for customers.

Problem type - Regression

Source - Kaggle (Medical Cost Personal Datasets)

Algorithms/Techniques applied - Linear Regression, Random Forest Regressor,

AdaBoost Regressor, Ordinary Least Square (Statsmodel)

Data input for models - Cross-validation and Train-Test splitting

Import packages

import pandas as pd

import numpy as np

 $from \ sklearn.linear_model \ import \ LinearRegression$

from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor

 $from \ sklearn.model_selection \ import \ train_test_split, \ cross_val_predict$

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

 ${\tt import\ statsmodels.api\ as\ sm}$

import seaborn as sns

to read the dataset

data = pd.read_csv("/content/insurance.csv")

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0) no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

#View type of data and its statistical information.

to find top 5 data from the dataset data.head()

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

to find last 5 data from the dataset data.tail

<box< td=""><td>d met</td><td>hod NDFr</td><td>ame.tail of</td><td>= ,</td><td>age</td><td>sex bm</td><td>i children smoker</td><td>region</td><td>charges</td></box<>	d met	hod NDFr	ame.tail of	= ,	age	sex bm	i children smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400		
1	18	male	33.770	1	no	southeast	1725.55230		
2	28	male	33.000	3	no	southeast	4449.46200		
3	33	male	22.705	0	no	northwest	21984.47061		
4	32	male	28.880	0	no	northwest	3866.85520		
1333	50	male	30.970	3	no	northwest	10600.54830		
1334	18	female	31.920	0	no	northeast	2205.98080		
1335	18	female	36.850	0	no	southeast	1629.83350		
1336	21	female	25.800	0	no	southwest	2007.94500		
1337	61	female	29.070	0	yes	northwest	29141.36030		

[1338 rows x 7 columns]>

```
# to find the shape of the dataset
data.shape
```

(1338, 7)

 $\ensuremath{\mbox{\#}}$ View all column names and statistical description of data data.columns

Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtype='object')

to find the information about the dataset data.info()

to describe the dataset data.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

Check for missing values data.isnull()

	age	sex	bmi	children	smoker	region	charges
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
1333	False	False	False	False	False	False	False
1334	False	False	False	False	False	False	False
1335	False	False	False	False	False	False	False
1336	False	False	False	False	False	False	False
1337	False	False	False	False	False	False	False
1338 rc	ws × 7	columns	;				

data.isnull().sum()

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

```
data.sex = [1 \text{ if } x == 'male' \text{ else 0 for x in data.sex}]
```

Text(0.5, 1.0, 'Distribution of charges values :')


```
# Generate Box-plots to check for outliers and relation of each feature with 'charges'
cols = ['age', 'children', 'sex', 'smoker', 'region']
for col in cols:
    plt.figure(figsize=(6,6))
    sns.boxplot(x = data[col], y = data['charges'])
```

₽

 $\mbox{\tt\#}$ Create Correlation matrix for all features of data. data.corr()

	age	sex	bmi	children	smoker	region	charges
age	1.000000	NaN	0.109272	0.042469	NaN	NaN	0.299008
sex	NaN	NaN	NaN	NaN	NaN	NaN	NaN
bmi	0.109272	NaN	1.000000	0.012759	NaN	NaN	0.198341
children	0.042469	NaN	0.012759	1.000000	NaN	NaN	0.067998
smoker	NaN	NaN	NaN	NaN	NaN	NaN	NaN
region	NaN	NaN	NaN	NaN	NaN	NaN	NaN
charges	0.299008	NaN	0.198341	0.067998	NaN	NaN	1.000000

Generate heatmap to visualize strong & weak correlations.
sns.heatmap(data.corr(), square = True)

В

age -

-1.0

Generate predictions using all features by a Linear Regression model. sns.pairplot(data)

#------ Prepare data for predictive regression models ------

```
ax.scatter(y, predRF)
\texttt{ax.plot}([\texttt{y.min(), y.max()}], [\texttt{y.min(), y.max()}])
ax.set_xlabel('Actual value ->')
ax.set_ylabel('Predicted value ->')
     Text(0, 0.5, 'Predicted value ->')
        60000
        50000
      Predicted value ->
        40000
        30000
        20000
        10000
                   10000
                                 30000
                                       40000
                               Actual value ->
# Predict using Linear Regression
predLR = cross_val_predict(lin_reg, X, y, cv=10)
fig, ax = plt.subplots()
ax.scatter(y, predLR)
ax.plot([y.min(), y.max()], [y.min(), y.max()])
ax.set_xlabel('Actual value ->')
ax.set_ylabel('Predicted value ->')
# Predict using ADABoost Regressor
predADA = cross_val_predict(ada_reg, X, y, cv=10)
fig, ax = plt.subplots()
ax.scatter(y, predADA)
ax.plot([y.min(), y.max()], [y.min(), y.max()])
ax.set_xlabel('Actual value ->')
ax.set_ylabel('Predicted value ->')
     Text(0, 0.5, 'Predicted value ->')
        60000
        50000
        40000
      Predicted value
        30000
        20000
        10000
                   10000
                          20000
                                 30000
                                       40000
                                              50000
                                                     60000
                               Actual value ->
# ------ 2nd Approach - Using Train-test-split -----
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = None)
# Predict using Random Forest Regressor.
rf_reg.fit(X_train, y_train)
predtrainRF = rf_reg.predict(X_train)
                                            # Prediction for train data
predtestRF = rf_reg.predict(X_test)
                                            # Prediction for test data
# Compute R-squared score for both train and test data.
print("R2-score on train data:", r2_score(y_train,predtrainRF))
print("R2-score\ on\ test\ data:",\ r2\_score(y\_test,\ predtestRF))
     R2-score on train data: 0.8421530759713811
     R2-score on test data: 0.015220923209714687
# Predict using Linear Regression
lin_reg.fit(X_train, y_train)
predtrainL = lin_reg.predict(X_train)
predtestL = lin_reg.predict(X_test)
\verb|print("R2-score on train data:",r2\_score(y\_train, predtrainL))|\\
print("R2-score on test data:",r2_score(y_test, predtestL))
# Predict using XGBoost Regressor
ada_reg.fit(X_train, y_train)
```

Predict using Random Forest Regressor.
predRF = cross_val_predict(rf_reg, X, y, cv=10)

predtrainAda = ada_reg.predict(X_train)
predtestAda = ada_reg.predict(X_test)

fig, ax = plt.subplots()

```
R2-score on train data: 0.0022309708434786746
    R2-score on test data: 0.11948408035181801
# ------ Using Ordinary Least Square from Statsmodel -----
# ------ Allows to view full summary statistics along with p-value and F-statistics ------
# On Train data.
X_newtrain = sm.add_constant(X_train)
ols_train = sm.OLS(y_train, X_newtrain)
```

OLS Regression Results ______

print("R2-score on train data:",r2_score(y_train, predtrainAda)) print("R2-score on test data:",r2_score(y_test, predtestAda))

Dep. Varia	able:		y R-	squared:		0.112			
Model:			OLS Ad	j. R-squared	l:	0.109			
Method:		Least Squ	ares F-	statistic:		44.76			
Date:		Sun, 27 Nov	2022 Pr	ob (F-statis	tic):	3.04e-27			
Time:		05:4	5:36 Lo	g-Likelihood	l:	-11481.			
No. Observ	/ations:		1070 AI	C:		2.297e+04			
Df Residua	als:		1066 BI	C:		2.299e+04			
Df Model:			3						
Covariance	e Type:	nonro	bust						
=======			======						
	coef				[0.025	_			
age	225.325		9.31		177.880				
sex	1.162e-12	3.98e-13	2.91	8 0.004	3.81e-13	1.94e-12			
bmi	313.0189	55.591	5.63	1 0.000	203.939	422.098			
children	576.886	282.063	2.04	5 0.041	23.425	1130.347			
smoker	(0	na	n nar	0	0			
region	-6043.4113	3 1930.328	-3.13	1 0.002					
Omnibus:	=======	 276	.607 Du	rbin-Watson:		2.036			
Prob(Omnib	ous):	0	.000 Ja	rque-Bera (J	B):	531.270			
Skew:	,			ob(JB):	,	4.33e-116			
Kurtosis:				nd. No.		inf			
=======									

Notes:

4

ols_train_new = ols_train.fit() print(ols_train_new.summary())

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 0. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat excep x = pd.concat(x[::order], 1)

0.153

/usr/local/lib/python3.7/dist-packages/statsmodels/regression/linear_model.py:1860: RuntimeWarning: divide by zero encountered in double_scalars return np.sqrt(eigvals[0]/eigvals[-1])

On Test data. X_newtest = sm.add_constant(X_test) ols_test = sm.OLS(y_test, X_newtest) ols_test_new = ols_test.fit() print(ols_test_new.summary())

Dep. Variable:

OLS Regression Results _____

y R-squared:

Model: OLS				Adj.	R-squared:		0.144
Method: Least Square				F-sta	atistic:		15.95
Date:		Sun, 27 Nov	2022	Prob	(F-statisti	c):	1.46e-09
Time:		05:4	16:40	Log-I	Likelihood:		-2905.9
No. Observ	ations:		268	AIC:			5820.
Df Residua	ls:		264	BIC:			5834.
Df Model:			3				
Covariance	Type:	nonro	bust				
=======	=======					=======	=======
	coef	std err		t	P> t	[0.025	0.975]
age	295.2113			5.250	0.000	184.492	405.931
sex	3.468e-12			2.358	0.019	5.72e-13	6.36e-12
bmi	394.5134	130.673	3	3.019	0.003	137.219	651.808
children	535.4063	631.125	(0.848	0.397	-707.274	1778.086
smoker	(0		nan	nan	0	0
region	-9976.455	4205.032	-2	2.373	0.018	-1.83e+04	-1696.787
	=======					=======	
Omnibus:			2.447		in-Watson:		1.839
Prob(Omnib		0.000		ue-Bera (JB)	78.163		
Skew:		1	L.299	Prob	, ,		1.06e-17
Kurtosis:		3	3.498	Cond	. No.		inf
=======						=======	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.[2] The smallest eigenvalue is 0. This might indicate that there are
- [2] The smallest eigenvalue is

strong multicollinearity problems or that the design matrix is singular.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat excep x = pd.concat(x[::order], 1)

/usr/local/lib/python3.7/dist-packages/statsmodels/regression/linear_model.py:1860: RuntimeWarning: divide by zero encountered in double_scalars return np.sqrt(eigvals[0]/eigvals[-1])