Worm Meeting Status Update

Joey Doll 8/13/08

Overview

- Fast Cantilever Fabrication
- ETH Worm Data

Fast Cantilever Status Update

- Mask design complete
- Mask is not being made yet by vendor to allow time for creating job file, will not affect timing (September now)
- Three device types
 - Piezoresistor only (4 layers, 19 design variations)
 - Piezoelectric unimorph actuator only (6 layers, 4 design variations)
 - Piezoresistor and piezoelectric (7 layers, 5 design variations)

Piezoresistor Only

Piezoelectric Only

Piezoresistor and Piezoelectric

Reticle Layout

Designs and Force Resolution

- Current designs for 0.3, 2, 5 and 10 micron device layer thicknesses (fabricating 2, 5 and 10 initially)
- Starting with thicker cantilevers to robustness, used to validate design methodology
- Designed performance
 - 10Hz 1kHz: 1.5 pN (0.3um), 5 pN (2um)
 - 1Hz 20kHz: 10 pN (0.3um), 120 pN (2um)
 - 1Hz 50kHz: 35 pN (0.3um), 278 pN (2um)
 - 1Hz 100kHz: 60 pN (0.3um), 576 pN (2um)
 - 1Hz 200kHz: 100 pN (0.3um), 1.16 nN (2um)
- Notes
 - Power < 10mW, V_{bias} < 5V
 - Resonant freq in vacuum = 5x max freq (water freq $\sim 3x$)
 - Q varies from 0.5 to 5 in water

Current Work

- Characterizing aluminum nitride piezoelectric actuator
 - Finished first round of XRD (looking good) and AFM
 - Working on thickness characterization
 - Vendor has deposited additional samples around conditions identified as good in first round of testing
- Driving and PI control circuit
 - Put some thought into it pre-Zurich, not much since
 - Analog with bank of resistors and capacitors for gain control
- Characterization on the AFM (freq and spring constant)

X-Ray Diffraction

X-Ray Diffraction

AFM on Aluminum Nitride

Topography (roughness)

Phase (grain size)

Timeline

- **September**: Fabrication
- October: Fabrication and characterization
- November:

 Characterization and circuits

ETH Worm Data

- Four strains measured (N2, HA1134, OSM9, OCR2)
- Data from 3/27-4/2 (silicon force sensor tip)
 - Quantified peak force only
 - Had issues with agar sticking to tip, rounding it
 - Large size of probe tip (50 x 50 microns) obscured view of touch location on worm
- Data from 5/12 (tungsten wire tip)
 - Have not analyzed yet
 - Finer tip (approx. 1 micron) worked really well
- Synchronized L4 worms moved freely on 2% agar unseeded plates
 - Constraining worm movement (sinusoidal PDMS channels) would make the measurements easy enough to be used as a screening tool
- Analyzing tungsten data now, will reanalyze earlier data

ETH Worm Data

- Details
 - Identify measurement times
 - Record screenshot for easy later reference
 - Extract some parameters automatically, some manually

Strain	Worm #	Time (s)	Stage Moving	Worm Response	Distance from Nose (um)	Force Duration (s)	Incident Angle (deg)	Peak Force (uN)	Peak dF/dt (N/s)
N2	1	79.533	No	Yes					
	1	124.332	Yes	Yes					
	2	48.922	No	Yes					
	3	132.469	No	No					
	3	357.764	Yes	Yes					
	3	367.03	Yes	Yes					
	3	482.154	Yes	Yes					