#### NUMERIC COMPUTATION

Yujing M. Jiang
The University of Melbourne, 2018

## Things you need to go over before final exam

numericA.pdf

#### Algorithmic objectives



For symbolic processing (for example, sorting strings), desire algorithms that are:

- Above all else, <u>correct</u>
- <u>Straightforward</u> to implement
- <u>Efficient</u> in terms of memory and time
- (For massive data) Scalable and/or parallelizable
- (For simulations) Statistical confidence in answers and in the assumptions made.

#### Algorithmic objectives



For numeric processing, desire algorithms that are:

- Above all else, <u>correct</u>
- Straightforward to implement
- <u>Effective</u>, in that yield correct answers and have broad applicability and/or limited restrictions on use
- <u>Efficient</u> in terms of memory and time
- (For approximations) Stable and reliable in terms of the underlying arithmetic being performed.

### Algorithmic objectives: Example 1

$$f(x) = x \cdot (\sqrt{x+1} - \sqrt{x})$$

$$g(x) = \frac{x}{\sqrt{x+1} + \sqrt{x}}$$

## Algorithmic objectives: Example 1 Result

```
x = 1.000e+00, f(x) = 4.1421356797e-01, g(x) = 4.1421356797e-01
x = 1.000e+01, f(x) = 1.5434713364e+00, g(x) = 1.5434713364e+00
x = 1.000e+02, f(x) = 4.9875621796e+00, g(x) = 4.9875621796e+00
x = 1.000e+03, f(x) = 1.5807437897e+01, g(x) = 1.5807437897e+01
x = 1.000e+04, f(x) = 4.9998748779e+01, g(x) = 4.9998748779e+01
x = 1.000e+05, f(x) = 1.5811349487e+02, g(x) = 1.5811349487e+02
x = 1.000e+06, f(x) = 4.9999987793e+02, g(x) = 4.9999987793e+02
x = 1.000e+07, f(x) = 1.5811387939e+03, g(x) = 1.5811387939e+03
x = 1.000e+08, f(x) = 0.0000000000e+00, g(x) = 5.0000000000e+03
x = 1.000e+09, f(x) = 0.0000000000e+00, g(x) = 1.5811388672e+04
x = 1.000e+10, f(x) = 0.0000000000e+00, g(x) = 5.0000000000e+04
x = 1.000e+11, f(x) = 0.0000000000e+00, g(x) = 1.5811387500e+05
x = 1.000e + 12, f(x) = 0.0000000000e + 00, g(x) = 5.0000000000e + 05
```

## Algorithmic objectives: Mathematical proof

$$f(x) = x \cdot (\sqrt{x+1} - \sqrt{x})$$
$$g(x) = \frac{x}{\sqrt{x+1} + \sqrt{x}}$$

$$\lim_{x \to \infty} \sqrt{x+1} - \sqrt{x} = 0$$

$$f(x)|_{x\to\infty}\to 0$$
 in C programming

### Algorithmic objectives: Example 2

To calculate:

$$h(n) = \sum_{i=1}^{\infty} \frac{1}{i}$$

$$h(n) = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$h(n) = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$h(n) = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{1}$$

### Algorithmic objectives: Example 2 Result

```
n=
        n=
        4, f(x) = 2.083333492279053, g(x) = 2.083333253860474
n=
        8, f(x) = 2.717857360839844, g(x) = 2.717857122421265
n=
    32768, f(x) = 10.974409103393555, g(x) = 10.974443435668945
n=
n= 65536, f(x) = 11.667428016662598, g(x) = 11.667588233947754
   131072, f(x) = 12.360085487365723, g(x) = 12.360732078552246
n=
  262144, f(x) = 13.051303863525391, g(x) = 13.053880691528320
n=
   524288, f(x) = 13.737017631530762, g(x) = 13.747056007385254
n=
   1048576, f(x) = 14.403683662414551, g(x) = 14.440231323242188
n=
   2097152, f(x) = 15.403682708740234, g(x) = 15.132899284362793
n=
   4194304, f(x) = 15.403682708740234, g(x) = 15.829607009887695
n=
   8388608, f(x) = 15.403682708740234, g(x) = 16.514152526855469
n=
  16777216, f(x) = 15.403682708740234, g(x) = 17.232707977294922
```

# Algorithmic objectives: Mathematical proof

Let 
$$a_i = \frac{1}{i}$$
  $h(n) = \sum_{i=1}^n a_i$ 

The harmonic series diverges.

However, 
$$\lim_{i \to \infty} a_i = 0$$

### Number Representation: Abstract

- Similar to *Scientific Notation*:  $+1.234567 \times 10^{12}$
- Stored as 3 parts:
- 1. Sign (+ or -)
- 2. Fraction (aka. Mantissa, 1.234567)
- 3. Exponential offset ( $\underline{12}$  in  $\times$   $10^{12}$ )
- However, The precision of fraction is limited. Normally 6 decimal points (7 digits in total) for float.

# Adding a (relatively) small number to a large number

- 1. Precision of fraction is limited.
- 2. Exponential alignment (to the larger number)
- E.g.  $1.234567 \times 10^9 + 1.0$  turns to:
- $\blacksquare$  1.234567000 × 10<sup>9</sup>
- $+ 0.000000001 \times 10^9$
- $\blacksquare 1.234567001 \times 10^9$
- However, only 6 decimal points are reserved.
- The output is:  $1.234567 \times 10^9$ . The same number?

### Algorithmic objectives: Example 2

To calculate:

$$h(n) = \sum_{i=1}^{n} \frac{1}{i}$$

#### What happens?

$$h(n) = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$h(n) = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$
 
$$h(n) = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{1}$$

# Algorithmic objectives: Logical proof

- Known: Adding a relatively small number to a large number can lose precision.
- $\blacksquare \ a_i = \frac{1}{i}$ , and  $\lim_{i \to \infty} a_i = 0$
- For every iteration: Large + Small → Large + ZERO
- However, it <u>drops</u> all small numbers added.
- Large + many \* Small → Large + many \* ZERO

$$10,000,000(1 \times 10^7) + 1 = 10,000,000$$
  
 $10,000,000(1 \times 10^7) + 1 + 1 + \dots + 1 = 10,000,000 \text{ still!}$   
More than  $10^7 * 1$ 

#### Pitfalls •

In all numeric computations need to watch out for:

- subtracting numbers that are (or may be) close together, because absolute errors are <u>additive</u>, and relative errors are <u>magnified</u>.
- adding large sets of small numbers to large numbers one by one, because precision is likely to be lost
- comparing values which are the result of floating point arithmetic, zero may not be zero.

And even when these dangers are avoided, <u>numerical analysis</u> may be required to demonstrate the <u>convergence</u> and/or stability of any algorithmic method.

#### Binary numbers

- In decimal, the number 345 describes the calculation  $3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$ .
- Similarly, in <u>binary</u>, the number 1101 describes the computation  $1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ , or **thirteen** in decimal.

$$10^3 10^2 10^1 10^0 2^3 2^2 2^1 2^0$$
 $0 3 4 5 1 1 0 1$ 

Decimal

Binary

#### Binary numbers



### Integer representations

| Bit pattern | Integer representation |               |            |  |
|-------------|------------------------|---------------|------------|--|
| Dit pattern | unsigned               | sign-magn.    | twos-comp. |  |
| 0000        | 0                      | 0             | 0          |  |
| 0001        | 1                      | 1             | 1          |  |
| 0010        | 2                      | 2             | 2          |  |
| 0011        | 3                      | 3             | 3          |  |
| 0100        | 4                      | 4             | 4          |  |
| 0101        | 5                      | 5             | 5          |  |
| 0110        | 6                      | 6             | 6          |  |
| 0111        | 7                      | 7             | 7          |  |
| 1000        | 8                      | -0            | -8         |  |
| 1001        | 9                      | -1            | <b>-7</b>  |  |
| 1010        | 10                     | -2            | -6         |  |
| 1011        | 11                     | -3            | -5         |  |
| 1100        | 12                     | -4            | -4         |  |
| 1101        | 13                     | -5            | -3         |  |
| 1110        | 14                     | <del>-6</del> | -2         |  |
| 1111        | 15                     | -7            | -1         |  |

### Binary: Sign-magnitude

| Sign | 2 <sup>2</sup> | $2^1$ | $2^0$ | Decimal    |
|------|----------------|-------|-------|------------|
| 0    | 1              | 0     | 1     | + 5        |
| 1    | 1              | 0     | 1     | <b>–</b> 5 |
| 0    | 0              | 0     | 0     | + 0        |
| 1    | 0              | 0     | 0     | - 0        |
| 0    | 0              | 1     | 0     | + 2        |
| 1    | 0              | 1     | 0     | <b>-</b> 2 |
|      |                |       |       |            |

*Sign*: 0 + 1 -

| Bit pattern | representation |  |
|-------------|----------------|--|
| ыт рассетт  | sign-magn.     |  |
| 0000        | 0              |  |
| 0001        | 1              |  |
| 0010        | 2              |  |
| 0011        | 3              |  |
| 0100        | 4              |  |
| 0101        | 5              |  |
| 0110        | 6              |  |
| 0111        | 7              |  |
| 1000        | -0             |  |
| 1001        | -1             |  |
| 1010        | -2             |  |
| 1011        | -3             |  |
| 1100        | -4             |  |
| 1101        | -5             |  |
| 1110        | -6             |  |
| 1111        | <b>-7</b>      |  |
|             |                |  |

representation

### Binary: Two's complement



| Bit pattern | twos-comp. |
|-------------|------------|
| 0000        | 0          |
| 0001        | 1          |
| 0010        | 2          |
| 0011        | 3          |
| 0100        | 4          |
| 0101        | 5          |
| 0110        | 6          |
| 0111        | 7          |
| 1000        | -8         |
| 1001        | <b>-7</b>  |
| 1010        | -6         |
| 1011        | -5         |
| 1100        | -4         |
| 1101        | -3         |
| 1110        | -2         |
| 1111        | -1         |

### Binary: Two's complement



How to represent a negative number?

- 1. Flip all bits of the positive binary.
- 2. Plus 1.

| Bit pattern |            |  |
|-------------|------------|--|
| Die pattern | twos-comp. |  |
| 0000        | 0          |  |
| 0001        | 1          |  |
| 0010        | 2          |  |
| 0011        | 3          |  |
| 0100        | 4          |  |
| 0101        | 5          |  |
| 0110        | 6          |  |
| 0111        | 7          |  |
| 1000        | -8         |  |
| 1001        | <b>-7</b>  |  |
| 1010        | -6         |  |
| 1011        | -5         |  |
| 1100        | -4         |  |
| 1101        | -3         |  |
| 1110        | -2         |  |
| 1111        | -1         |  |

|       | Sign | $2^2$ | $2^1$ | $2^0$ | Decimal    |
|-------|------|-------|-------|-------|------------|
|       | 0    | 1     | 0     | 1     | + 5        |
| Flip: | 1    | 0     | 1     | 0     |            |
| +1:   | 1    | 0     | 1     | 1     | <b>–</b> 5 |
|       | 0    | 0     | 1     | 0     | + 2        |
| Flip: | 1    | 1     | 0     | 1     |            |
| +1:   | 1    | 1     | 1     | 0     | <b>-</b> 2 |

#### Overflow

#### In C Programming:

Storage: Sign-magn.

Operation: *Unsigned* 

```
int4 i = 7;
i = i + 1;
printf("%d ", i);
// Output: -0

int4 i = 7;
i = i + 2;
printf("%d ", i);
// Output: -1
```

| Bit pattern | Intege   | er representation |
|-------------|----------|-------------------|
| Dit pattern | unsigned | sign-magn.        |
| 0000        | 0        | 0                 |
| 0001        | 1        | 1                 |
| 0010        | 2        | 2                 |
| 0011        | 3        | 3                 |
| 0100        | 4        | 4                 |
| 0101        | 5        | 5                 |
| 0110        | 6        | 6                 |
| 0111        | 7        | 7                 |
| 1000        | 8        | -0                |
| 1001        | 9        | -1                |
| 1010        | 10       | -2                |
| 1011        | 11       | -3                |
| 1100        | 12       | -4                |
| 1101        | 13       | -5                |
| 1110        | 14       | -6                |
| 1111        | 15       | <b>-7</b>         |

### Number Representation: Decimal

- Similar to *Scientific Notation*:  $+1.234567 \times 10^{12}$
- Stored as 3 parts:
- 1. Sign (+ or -)
- 2. Fraction (aka. Mantissa, 1.234567)
- 3. Exponential offset ( $\underline{12}$  in  $\times$   $10^{12}$ )

## Number Representation: Binary

- Similar to <u>Scientific Notation</u>:  $+0.101 \times 2^3$  (101/five)
- Stored as 3 parts:
- 1. Sign (+ or −)
- 2. Fraction (aka. Mantissa, 0.101)
- 3. Exponential offset (3 in  $\times 2^3$ )
- However, in fraction (mantissa), the standard form is 0.xxxxx

### Number Representation: Binary

- Similar to *Scientific Notation*:  $+0.101 \times 2^3$
- Stored as 3 parts:
- 1. Sign (+ or −)
- 2. Fraction (aka. Mantissa, 1.01)
- 3. Exponential offset ( $\underline{3}$  in  $\times$   $2^3$ )
- However, in fraction (mantissa), the standard form is 0.xxxx.

| Number<br>(decimal) | Number<br>(binary)        | Exponent<br>(decimal) | Mantissa<br>(binary) | Representation (bits) |
|---------------------|---------------------------|-----------------------|----------------------|-----------------------|
| 0.5                 | 0.1                       | 0                     | .10000000000         | 0 000 1000 0000 0000  |
| 0.375               | 0.011                     | -1                    | .110000000000        | 0 111 1100 0000 0000  |
| 3.1415              | 11.001001000011           | 2                     | .110010010000        | 0 010 1100 1001 0000  |
| -0.1                | $-0.0001100110011 \cdots$ | -3                    | .110011001100        | 1 101 1100 1100 1100  |