CO₂ Footprint Minimisation for Additive Manufactured Bio-composite thin Structures

Author:
Alexandre CASTRO ALMEIDA

Supervisors:
Dr. Édouard DURIEZ
Pr. Frédéric LACHAUD
Pr. Kunal MASANIA
Pr. Joseph MORLIER

December 9, 2022

Introduction

Developed Work

Modified SIMP for Orthotropic Model

Geometry

FEM Analysis

Optimisation

Filtering

CO₂ Footprint Assessment

Considered Materials

Results

Different Initial Conditions or Materials

Different Mesh Sizes

CO₂ Footprint

Computation Time

G-code

Conclusion

Introduction

Developed Work

Modified SIMP for Orthotropic Model

Geometry

FEM Analysis

Optimisation

Filtering

CO₂ Footprint Assessment

Considered Materials

Results

Different Initial Conditions or Materials

Different Mesh Sizes

CO₂ Footprint

Computation Time

G-code

Conclusion

- Aeronautical industry brings about demands such as the reduction of fuel consumption;
- New 3D printing technologies allow for new design methods;
- Sustainability plays an increasingly important role.

Introduction

Developed Work

Modified SIMP for Orthotropic Model

Geometry

FEM Analysis

Optimisation

Filtering

CO₂ Footprint Assessment

Considered Materials

Results

Different Initial Conditions or Materials

Different Mesh Sizes

CO₂ Footprint

Computation Time

G-code

Conclusion

Modified SIMP for Orthotropic Model

► SIMP Model [Andreassen 2011]

Problem Formulation [Jiang] minimize : $c(x) = \mathbf{U}^\mathsf{T} \mathbf{K} \mathbf{U} = \sum_{\rho=1}^{N} u_\rho^\mathsf{T} k_\rho u_\rho$

$$\text{subject to}: \left\{ \begin{array}{c} \frac{V(x)}{V_0} = f \\ \textbf{KU} = \textbf{\textit{F}} \\ 0 < \rho_{min} \leq \rho \leq 1 \\ -1 \leq cos(\theta) \leq 1 \\ -1 \leq sin(\theta) \leq 1 \end{array} \right. \label{eq:equation:equation}$$

$$k_{\theta} = k_{\theta}(\rho_{\theta}, \theta_{\theta}) = (\rho_{\theta})^{p} k_{\theta}(\theta)$$

Geometry

Several load cases considered:

Figure: Half MBB Beam.

Figure: Cantilever Beam.

Figure: Mesh discretisation.

```
data.width = 30; % (mm) must be even because ...
of load case
data.height = 15; % (mm) must be even ...
because of load case
data.thickness = 1; % (mm)
data.elSize = 1; % square's side length (mm)
data.nelx = data.width/data.elSize;
data.nely = data.height/data.elSize;
data.elVol = ...
data.elSize*data.elSize*data.thickness*1E-9;
%m-3
```

FEM Analysis


```
%% FE-ANALYSIS
     = zeros(2*(d.nely+1)*(d.nelx+1),1);
[KE, dKE] = lkod_multi(d, ang);
sK = reshape(KE.*repmat(volPhys'.^d.penal, ...
    64, 1), 64*d.nelx*d.nelv,1);
K = sparse(d.iK,d.jK,sK); K = (K+K')/2;
% Cholesky factorization
[L,\neg,s] = chol(K(d.freedofs,d.freedofs), ...
    'lower', 'vector');
% Forward/backward substitution
U(d.freedofs(s))=L'\(L\d.F(d.freedofs(s)));
KEe = reshape(KE, 8, 8, d.nelx*d.nely);
dKEe = reshape(dKE, 8, 8, d.nelx*d.nely);
Ue = reshape(U(d.edofMat)', 8, 1, ...
    d.nelx*d.nely);
%% COMPUTE OBJECTIVE FUNCTION (compliance)
c = U'* K * U; %same as line above
```

Optimisation


```
%% INITIAL DESIGN
ang0 = linspace(-pi/2,pi/2,data.N)';
rho0 = data.volfrac*ones(length(ang0), ...
    data.nely*data.nelx);
cos0 = 0.5*cos(ang0)*ones(1, ...
    data.nelv*data.nelx):
sin0 = 0.5*sin(ang0)*ones(1, ...
    data.nely*data.nelx);
x0 = [rho0(:,:) cos0(:,:) sin0(:,:)];
X0 = CustomStartPointSet(x0):
                   problem = ...
                       createOptimProblem('fmincon','objective',...
                       @(x) fato_fmincon_multi(x, data), ...
                       ... % initial gues s:
                       'x0', ones(1,3*data.nely*data.nelx),...
                       ... % linear inequality constraints: none
                       ... % linear equality constraints:
                       'Aeq', Aeq, 'beq', beq, ...
                       ... % lower/upper bounds
                       'lb', lb, 'ub', ub, ...
                       ... % non-linear constraints: none
                       'options', options); %optimization options
                                                 ms = MultiStart('UseParallel',true, ...
                                                     'StartPointsToRun', 'all');
                                                 [data.x,data.fval,exitflag,output,solutionset] .
                                                     = run(ms,problem,X0);
```


Density Filtering

$$\tilde{X_{\theta}} = \frac{1}{\sum_{i \in N_{\theta}} H_{\theta i}} \sum_{i \in N_{\theta}} H_{\theta i} X_{i}$$
 (3)

where H_{ei} is the weight factor given by:

$$H_{ei} = max(0, r_{min} - \Delta(e, i))$$
 (4)

 Gaussian Filtering on Fiber Orientation

$$f(x,y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{(x-\mu)+(y-\mu)}{\sigma})^2}$$
 (5)

Figure: Gaussian Convolution. [Stragiotti 2020]

Input

Output

CO₂ Footprint Assessment

► Taking into account its production phase and use on a vehicle. [Duriez 2022]

$$CO_2^{tot} = CO_2^{mat} + LD \times CO_2^{veh}$$
 (6)

$$\textit{CO}_2^{\textit{mat}} = \textit{V}^i \times \textit{f}^i \times (\%^{\textit{Matrix}} \times \rho^{\textit{Matrix}} \times \textit{CO}_2^{\textit{Matrix}} + \%^{\textit{Fiber}} \times \rho^{\textit{Fiber}} \times \textit{CO}_2^{\textit{Fiber}}) \quad (7)$$

$$CO_2^{veh} = CO_2^{vehPerMass} \times Total Mass$$
 (8)

$$CO_2^{vehPerMass} = FRC \times Vehicle \ Life \times CO_2^{Fuel} \times LDE$$
 (9)

```
data.LD = 100000000; %Lifetime Distance (km)
data.VehLife = 25; % Vehicle life years
data.FRC = 1030; %kg Fuel /kg Transported ...
Mass /year
data.CD2vehle = 3.83E3;% kg CO2/Kg Fuel
data.CO2vehPerMass = ...
data.FRC*data.VehLife*data.CO2Fuel/data.LD; ...
%kgCO2 /km /Kg cof Material
```

Considered Materials

Table: Material properties of available fibers and resins.

Type	Material	ρ	Ε	ν	CO ² _{mat}
		Kg/m ³	GPa		Kg/Kg
	Bamboo	700	17.5	0.04	1.0565
Fibers	Flax	1470	53.5	0.355	0.44
	Hemp	1490	62.5	0.275	1.6
	Carbon High Modulus	2105	760	0.105	68.1
	Carbon Low Modulus	1820	242.5	0.105	20.3
	S-Glass	2495	89.5	0.22	2.905
	E-Glass	2575	78.5	0.22	2.45
	Cellulose	990	3.25	17.5 0.04 53.5 0.355 52.5 0.275 760 0.105 42.5 0.105 39.5 0.22 78.5 0.22 78.5 0.355 5.19 0.39 2.06 0.403 2.41 0.399	3.8
	PLA	1290	5.19	0.39	2.115
Resins	PETG (abs)	1270	2.06	0.403	4.375
	Epoxy	1255	2.41	0.399	5.94
	Polyester	1385	4.55	0.35	4.5

 Composite characteristics obtained by the Rule of Mixtures. [Alger 2017]

$$E_{\text{Longitudinal Composite}} = E_{\text{Fiber}} \times V_{\text{Fiber}} + E_{\text{Matrix}} \times V_{\text{Matrix}}$$
 (10)

$$E_{\text{Transverse Composite}} = (E_{\text{Fiber}} \times E_{\text{Matrix}})/(E_{\text{Fiber}} \times (1 - V_{\text{Fiber}})) + E_{\text{Matrix}} \times V_{\text{Fiber}}$$
 (11)

Introduction

Developed Work

Modified SIMP for Orthotropic Model

Geometry

FEM Analysis

Optimisation

Filtering

CO₂ Footprint Assessment

Considered Materials

Results

Different Initial Conditions or Materials

Different Mesh Sizes

CO₂ Footprint

Computation Time

G-code

Conclusion

Different Init. Conditions or Materials

► Half MBB Beam (30 x 15 elements)

- $\Rightarrow \text{ volfrac} = 0.3 \\ \Rightarrow \text{ penal} = 3 \\ \Rightarrow \text{ N} = 23$
 - Initial Condition Case # 1 Init Initial Angle = -73.6°

Cellulose and 0.5 of Bamboo

Epoxy and 0.25 of E-Glass

Different Mesh Sizes

Half MBB Beam - Cellulose and 0.5 of Bamboo

 \Rightarrow volfrac = 0.3

→ rmin = 1.5

 \Rightarrow penal = 3

⇒ N = 23

60 x 30

120 x 60

Different Mesh Sizes

Half MBB Beam - Cellulose and 0.5 of Bamboo

- \Rightarrow volfrac = 0.3
- \Rightarrow penal = 3

⇒ rmin = 1.5

 \Rightarrow N = 23

Initial Condition - Case # 1 Initial Condition - Case # 1 Initial Angle = 45.5* Initial Angle = 45.5*

ptimized Result - Case # 1

120 x 30 240 x 60

CO₂ Footprint

Figure: Info included in CO₂ results file.

Computation Time

Table: Execution time of optimisation of different cases.

Load Case & Domain Dimension	Material	Time (s)
HALF-MBB-BEAM	Cellulose & 0.5 Bamboo	10.990
60x30	Epoxy & 0.25 Flax	15.289
data.N = 23	Epoxy & 0.5 Flax	6.332
CANT	Cellulose & 0.5 Bamboo	16.930
60x30	Epoxy & 0.25 Flax	12.174
data.N = 23	Epoxy & 0.5 Flax	4.496
HALF-MBB-BEAM	Cellulose & 0.5 Bamboo	72.512
240x60	Epoxy & 0.25 Flax	43.575
data.N = 23	Epoxy & 0.5 Flax	53.078
CANT	Cellulose & 0.5 Bamboo	114.016
240x60	Epoxy & 0.25 Flax	86.849
data.N = 23	Epoxy & 0.5 Flax	40.068

Figure: G-code output.

Introduction

Developed Work

Modified SIMP for Orthotropic Model

Geometry

FEM Analysis

Optimisation

Filtering

CO₂ Footprint Assessment

Considered Materials

Results

Different Initial Conditions or Materials

Different Mesh Sizes

CO₂ Footprint

Computation Time

G-code

Conclusion

Conclusion

- ▶ It is possible to study environmental impact of structures in the earliest stages of a designing process;
- Topology optimisation and fibre path optimisation have many more applications than just mass reduction;
- Regardless of the impact on the production phase, the footprint of the use phase of the structure is much more important.

- Validate obtained data:
- Print a sample;
- Perform 3 point bending test.

Figure: GCode output.

- Extend to out of plane 3D TopOptim (fiber's spatial orientation);
- Apply to other fields: Cost, ...

Thank you for your attention! Do you have any questions?

Developed MATLAB code available on GitHub:

https://github.com/mid2SUPAERO/Fiber-Angle-and-Topology-Optimization

References I

Polymer Science Dictionary.

Springer Netherlands, Dordrecht, 2017.

Erik Andreassen, Anders Clausen, Mattias Schevenels, Boyan S. Lazarov and Ole Sigmund.

Efficient topology optimization in MATLAB using 88 lines of code.

Struct Multidisc Optim, vol. 43, no. 1, pages 1–16, January 2011.

Edouard Duriez, Joseph Morlier, Catherine Azzaro-Pantel and Miguel Charlotte.

Ecodesign with topology optimization.

Procedia CIRP, vol. 109, pages 454-459, 2022.

References II

Delin Jiang.

Three Dimensional Topology Optimization with Orthotropic Material Orientation Design for Additive Manufacturing Structures.

Enrico Stragiotti.

Continuous Fiber Path Planning Algorithm for 3D Printed Optimal Mechanical Properties. 2020.