2017/18 浙江工业大学高等数学 II A 考试试卷

学 任	'院: :课老师:	班级:	姓名: _		学号:		
_,	一、填空、选择题(本题满分36分,每小题3分):						
1,	设二阶非齐次线	性方程 y"+P(x)y'+	Q(x)y =	f(x)的三个特	寺解为: x , e^x	e^{3x} ,	
则方	程满足初始条件	y(0) = 4, $y'(0) = 3$	的特解是_	$y = 3e^x$	$+e^{3x}-3x$		
2,	过点 $M(3,1,-5)$)且同时垂直 x 轴和 y	,轴的直线	方程是。 <i>x</i>	$\frac{x-3}{0} = \frac{y-1}{0} = \frac{z}{0}$	$\frac{x+5}{1}$	
3、	动点 $M(x,y,z)$	到原点的距离与到点	(1,-1,2)	的距离相等,	则动点 $M(x,y,$	z) 的轨	
迹方	程是 <u></u> 。 <i>x</i> – <i>y</i> +	2z = 3					
4、	函数 $u = 2xy -$	z ² 在点(1,-1,1)处方	向导数的最	最大值 <u></u> 。2、	/3		
5、	交换积分次序∫	$\int_{0}^{1} dy \int_{0}^{2y} f(x, y) dx = 1$	$\int_0^2 dx \int_{\frac{x}{2}}^1$	f(x,y)dy			
6、	设 D : $ x \le 1$,	$0 \le y \le 1$.则 $\iint_D (xe^y - y)$	+y)dxdy	=。1			
7、	若幂级数 $\sum_{n=0}^{\infty} a_n$	$(x-b)^n (b>0) \;, \; \stackrel{\text{def}}{=} \;$	$\dot{y} x = 0$ 时以	攵敛,当 <i>x</i> = 2	<i>!b</i> 时发散,则该	级数的	
收敛	半径是。 <i>b</i>						
8,	周期为 2 的函数	数 $f(x)$,它在一个周	期上的表	达式为 $f(x) =$	$= x - 1 \le x < 1$,设它	
的傅	里叶级数的和函	数为 $S(x)$,则 $S(\frac{3}{2})$:	=。-	$-\frac{1}{2}$			
9、	函数 $f(x,y) = $	$\sqrt{x^2 + y^4} \text{在点}(0,0)$	处 (C) .			
	(A) 两个偏导数 (C) 偏导数一个	(都不存在; 存在,一个不存在;		(B) 两个偏导 (D) 可微。	数存在;		
10	、若函数 $z = f($	(x,y) 在点 (x_0,y_0) 处	可微,则	下列结论错误的	的是(C)		
		$\triangle(x_0,y_0)$ 处连续;				E;	
	(C) $f_x(x,y), f_y(x,y)$ 在点 (x_0,y_0) 处连续;						
(D) 曲面 $z = f(x, y)$ 在点 $(x_0, y_0, f(x_0, y_0))$ 处有切平面。							

11、已知数项级数
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ 都收敛,则(B)

(A)
$$\sum_{n=1}^{\infty} (a_n b_n)^2$$
 收敛;

(B)
$$\sum_{n=1}^{\infty} (a_n + b_n)$$
 收敛;

(C)
$$\sum_{n=1}^{\infty} (a_n b_n)$$
收敛;

(D)
$$\sum_{n=1}^{\infty} (a_n^2 + b_n^2) 收敛.$$

12、下列级数中发散的是(D)

(A)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{2n^2+1}}$$
;

(B)
$$\sum_{n=1}^{\infty} (-1)^{n-1} (\sqrt{n+1} - \sqrt{n});$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi}{n+1};$$

(D)
$$\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$$

二、试解下列各题(本题满分12分,每小题6分):

1、求微分方程 xdy + (y-2x)dx = 0 的通解。

解:
$$\frac{dy}{dx} + \frac{1}{x}y = 2$$
 线性方程, 或齐次方程, 或凑微分 $d(xy) - dx^2 = 0$ 2分

通解
$$y = \frac{c}{x} + x$$
 6分

2、求函数 f(x,y) = xy(3-x-y) 的极值。

解:
$$\begin{cases} f_x(x,y) = 3y - 2xy - y^2 = 0 \\ f_y(x,y) = 3x - 2xy - x^2 = 0 \end{cases}$$
 驻点(0,0), (1,1), (0,3), (3,0) 3分

$$f_{xx} = -2x, f_{xy} = 3 - 2x - 2y, f_{yy} = -2y$$

对
$$(0,0)$$
 , $(0,3)$, $(3,0)$, $AC-B^2=-9<0$, 不是极值点 4分

对
$$(1,1)$$
, $AC-B^2=3>0$, 是极大值点, 极大值为 1 6 分

3、设
$$z$$
是方程 $z = x + y \sin z$ 所确定的 x , y 的函数,求: $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

解:
$$\frac{\partial z}{\partial x} = \frac{1}{1 - y \cos z}$$
, 3分 $\frac{\partial z}{\partial y} = \frac{\sin z}{1 - y \cos z}$ 6分

4、求曲线
$$\begin{cases} z = x^2 + y^2 - 1 \\ x = 1 \end{cases}$$
 上点 $M(1,1,1)$ 处的切线方程。

解: 曲线化为参数方程
$$x=1, y=t, z=t^2$$
,则切向量 $\vec{T}=(0,1,2)$, 3分

切线方程
$$\frac{x-1}{0} = \frac{y-1}{1} = \frac{z-1}{2}$$
 6分

5、求星形线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ (参数方程 $x = a\cos^3 t$, $y = a\sin^3 t$)围成图形在第一象限部分的面积。

解:记 L_1 为星形线, $L_2: x = 0, L_3: y = 0$ 为直线。

面积
$$A = \oint_L x dy = \int_L x dy + \int_L x dy + \int_L x dy$$
 3 分

$$=3a^{2}\int_{0}^{\frac{\pi}{2}}\cos^{4}x\sin^{2}xdx+0+0=\frac{3}{32}\pi a^{2}$$
 6 \(\frac{\pi}{2}\)

6、求 $\int_L \sqrt{y} ds$, 其中L是抛物线 $y = x^2$ 上点O(0,0)与点B(1,1)之间的一段弧。

解:
$$\int_{L} \sqrt{y} ds = \int_{0}^{1} x \sqrt{1 + 4x^2} dx$$
 4 分

$$=\frac{1}{12}(5\sqrt{5}-1)$$
 6 $\%$

三、试解下列各题(本题满分14分,每小题7分):

1、求 $\bigoplus_{\Sigma} zdS$, 其中 Σ 是由平面x=0,y=0,z=0及x+y+z=1所围成四面体的整个边界。

$$\bigoplus_{\Sigma} zdS = \left(\iint_{\Sigma_{1}} + \iint_{\Sigma_{2}} + \iint_{\Sigma_{3}} + \iint_{\Sigma_{4}} \right) zdS = \sqrt{3} \iint_{D_{xy}} (1 - x - y) dxdy + \iint_{D_{yz}} zdydz + \iint_{D_{xz}} zdxdz + 0$$

其中
$$\Sigma_1$$
: $x + y + z = 1$, Σ_2 : $x = 0$, Σ_3 : $y = 0$, Σ_4 : $z = 0$

$$\iint_{D_{xy}} (1 - x - y) \sqrt{3} dx dy = \sqrt{3} \int_0^1 dx \int_0^{1 - x} (1 - x - y) dy = \frac{\sqrt{3}}{6},$$
 5 \(\frac{1}{2}\)

$$\iint_{D_{-}} z dy dz = \iint_{D_{-}} z dy dz = \frac{1}{6}, \qquad \text{fill} \quad \oiint_{\Sigma} z dS = \frac{\sqrt{3} + 2}{6}$$
 7 分

2、求 $\bigoplus_{\Sigma} z(x^2+y^2+z^2)dxdy$,其中 Σ 是上半球面 $x^2+y^2+z^2=1$ 与平面 z=0 所围成立体的边界曲面的外侧。

解一: 直接计算
$$\iint_{\Sigma} z(x^2 + y^2 + z^2) dxdy = \iint_{D} \sqrt{1 - x^2 - y^2} dxdy + 0$$
 4 分

$$= \int_0^{2\pi} d\theta \int_0^1 \rho \sqrt{1 - \rho^2} d\rho = \frac{2}{3}\pi$$
 7 \(\frac{1}{2}\)

解二: 先化简被积函数, 代入曲面方程再用高斯公式

$$\iint_{\Sigma} z(x^2 + y^2 + z^2) dx dy = \iint_{\Sigma} z dx dy = \iiint_{\Omega} dx dy dz = \frac{2}{3}\pi$$

解三:直接用高斯公式

$$\oint_{\Sigma} z(x^2 + y^2 + z^2) dx dy = \iiint_{\Omega} (x^2 + y^2 + 3z^2) dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{0}^{\sqrt{1 - \rho^2}} (\rho^2 + 3z^2) dz$$

$$= 2\pi \int_{0}^{1} (\rho^3 \sqrt{1 - \rho^2} + \rho \sqrt{(1 - \rho^2)^3}) d\rho \stackrel{1 - \rho^2 = t}{=} \pi \int_{0}^{1} \sqrt{t} dt = \frac{2}{3} \pi$$

四、(8分)设L为xOy面上右半平面内任意一条简单闭曲线,f(x)有连续的二阶导数

且满足
$$\oint_L (x-f'(x))\frac{y}{x}dx+f'(x)dy=0$$
, $f(1)=f'(1)=0$, 求 $f(x)$, $x>0$ 。

解: 积分与路径无关, 由
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 有 $f''(x) = (x - f'(x))\frac{1}{x}$ 2分

得微分方程
$$xy'' + y' = x$$
, 通解 $y = \frac{1}{4}x^2 + C_1 \ln x + C_2$ 7分

由初始条件可得
$$f(x) = \frac{1}{4}x^2 - \frac{1}{2}\ln x - \frac{1}{4}$$
 8分

五、 (6分) 求幂级数 $\sum_{n=0}^{\infty} (2^{n+1}-1)x^n$ 的收敛域与和函数。

解: 收敛域
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 3分

$$\sum_{n=0}^{\infty} (2^{n+1} - 1)x^n = \frac{2}{1 - 2x} - \frac{1}{1 - x} = \frac{1}{(1 - 2x)(1 - x)}$$
 6 \(\frac{\(\frac{1}{2}\)}{1 - 2x} - \frac{1}{1 - x} = \frac{1}{(1 - 2x)(1 - x)}