Turing Machines and Time Complexity

(Infinitely long) Tape of 1's and 0's

- (Infinitely long) Tape of 1's and 0's
- Able to read and write the tape, and move the tape

- (Infinitely long) Tape of 1's and 0's
- Able to read and write the tape, and move the tape
- Has initial state, instructions, halt state

- (Infinitely long) Tape of 1's and 0's
- Able to read and write the tape, and move the tape
- Has initial state, instructions, halt state
- Instructions define for each state and value:

- (Infinitely long) Tape of 1's and 0's
- Able to read and write the tape, and move the tape
- Has initial state, instructions, halt state
- Instructions define for each state and value:
 - What value to write?

- (Infinitely long) Tape of 1's and 0's
- Able to read and write the tape, and move the tape
- Has initial state, instructions, halt state
- Instructions define for each state and value:
 - What value to write?
 - Whether the tape should be moved, and in which direction?

M - Turing Machine (The program)

- M Turing Machine (The program)
- ∑ Alphabet of Turing Machine

- M Turing Machine (The program)
- ∑ Alphabet of Turing Machine
- x String at which M begins (Input)

- M Turing Machine (The program)
- **\Sum_** Alphabet of Turing Machine
- x String at which M begins (Input)
- y String at which M halts (Output)

- M Turing Machine (The program)
- **\Sum_** Alphabet of Turing Machine
- x String at which M begins (Input)
- y String at which M halts (Output)

I.e. for each value of x, M computes a function such that:

- M Turing Machine (The program)
- ∑ Alphabet of Turing Machine
- x String at which M begins (Input)
- y String at which M halts (Output)
- I.e. for each value of x, M computes a function such that:
- $f: \Sigma^* \rightarrow \Sigma^*$

$q_0, 1, q_1, 1, L$	96,1,96,1,L
$q_1, b, q_2, *, R$	q ₇ ,*,q ₇ ,*,R
$q_2, \beta, q_3, \beta, L$	$q_7, 1, q_7, 1, R$
q2,*,q2,*,R	q_7, X, q_5, X, L
$q_2,1,q_2,1,R$	q_7, A, q_7, A, R
q_2, X, q_2, X, R	98,b,93,b,L
q_2, A, q_2, A, R	$q_8, 1, q_8, 1, R$
93,1,94,b,L	q_8, X, q_8, X, R
q_3, X, q_4, X, L	$q_8, A, q_8, 1, R$
q4,1,q4,1,L	q9,*,q10,b,S
q_4, X, q_5, X, L	q9,1,q9,1,L
95,*,98,*,R	$q_{10}, \beta, (q_{11}), \beta, S$
95,1,96,A,L	q ₁₀ ,1,q ₁₀ ,b,R
q5,A,q5,A,L	$q_{10}, X, q_{10}, \beta, R$
96, b, 97, 1, R	q_{10}, A, q_{10}, b, R
96,*,96,*,L	

M can be given in the form

$q_0, 1, q_1, 1, L$	q6,1,q6,1,L
$q_1, b, q_2, *, R$	q ₇ ,*,q ₇ ,*,R
q_2, b, q_3, b, L	$q_7, 1, q_7, 1, R$
q2,*,q2,*,R	q_7, X, q_5, X, L
$q_2,1,q_2,1,R$	q_7, A, q_7, A, R
q_2, X, q_2, X, R	98,6,93,6,L
q_2, A, q_2, A, R	q ₈ ,1,q ₈ ,1,R
93,1,94,b,L	q_8, X, q_8, X, R
q_3, X, q_4, X, L	$q_8, A, q_8, 1, R$
q4,1,q4,1,L	99,*,910,B,S
q_4, X, q_5, X, L	q9,1,q9,1,L
95,*,98,*,R	$q_{10}, \beta, (q_{11}), \beta, S$
95,1,96,A,L	910,1,910,b,R
q5,A,q5,A,L	$q_{10}, X, q_{10}, \beta, R$
96,b,97,1,R	q_{10}, A, q_{10}, b, R
96,*,96,*,L	

M can be given in the form of a set of: (q, s, q', s', d)

$q_0,1,q_1,1,L$	q6,1,q6,1,L
$q_1, b, q_2, *, R$	q ₇ ,*,q ₇ ,*,R
92,6,93,6,L	$q_7,1,q_7,1,R$
q2,*,q2,*,R	q_7, X, q_5, X, L
$q_2,1,q_2,1,R$	q_7, A, q_7, A, R
q_2, X, q_2, X, R	$q_8, 1, q_3, 1, L$
q_2, A, q_2, A, R	$q_8, 1, q_8, 1, R$
93,1,94,b,L	q_8, X, q_8, X, R
q_3, X, q_4, X, L	$q_8, A, q_8, 1, R$
q4,1,q4,1,L	99,*,910,B,S
q_4, X, q_5, X, L	q9,1,q9,1,L
95,*,98,*,R	$q_{10}, b, (q_{11}), b, S$
95,1,96,A,L	q ₁₀ ,1,q ₁₀ ,b,R
95, A, 95, A, L	q_{10}, X, q_{10}, b, R
96,b,97,1,R	q_{10}, A, q_{10}, b, R
96,*,96,*,L	2 / 240 // /

M can be given in the form of a set of: (q, s, q', s', d)

Where:

$q_0,1,q_1,1,L$	q6,1,q6,1,L
$q_1, b, q_2, *, R$	q ₇ ,*,q ₇ ,*,R
q_2, b, q_3, b, L	$q_7, 1, q_7, 1, R$
q2,*,q2,*,R	q_7, X, q_5, X, L
$q_2,1,q_2,1,R$	q_7, A, q_7, A, R
q_2, X, q_2, X, R	98, b, 93, b, L
q_2, A, q_2, A, R	$q_8, 1, q_8, 1, R$
93,1,94,B,L	q_8, X, q_8, X, R
q_3, X, q_4, X, L	$q_8, A, q_8, 1, R$
q4,1,q4,1,L	99,*,910,b,S
q_4, X, q_5, X, L	99,1,99,1,L
95,*,98,*,R	910, b, (911), b, S
95,1,96,A,L	910,1,910,b,R
95, A, 95, A, L	q ₁₀ ,X,q ₁₀ ,b,R
96, b, 97, 1, R	910, A, 910, B, R
96,*,96,*,L	7.07-7.7107-7
	q ₁ , β, q ₂ , *, R q ₂ , β, q ₃ , β, L q ₂ , *, q ₂ , *, R q ₂ , 1, q ₂ , 1, R q ₂ , X, q ₂ , X, R q ₂ , A, q ₂ , A, R q ₃ , 1, q ₄ , β, L q ₃ , X, q ₄ , X, L q ₄ , 1, q ₄ , 1, L q ₄ , X, q ₅ , X, L q ₅ , *, q ₈ , *, R q ₅ , 1, q ₆ , A, L q ₆ , β, q ₇ , 1, R

M can be given in the form of a set of: (q, s, q', s', d)

Where:

q - Current State

$q_0,1,q_1,1,L$	q ₆ ,1,q ₆ ,1,L
$q_1, b, q_2, *, R$	q ₇ ,*,q ₇ ,*,R
92,6,93,6,L	$q_7,1,q_7,1,R$
q2,*,q2,*,R	q_7, X, q_5, X, L
$q_2,1,q_2,1,R$	q_7, A, q_7, A, R
q_2, X, q_2, X, R	$q_8, 1, q_3, 1, L$
q_2, A, q_2, A, R	$q_8, 1, q_8, 1, R$
93,1,94,16,L	q_8, X, q_8, X, R
q_3, X, q_4, X, L	$q_8, A, q_8, 1, R$
q4,1,q4,1,L	99,*,910,B,S
q_4, X, q_5, X, L	q ₉ ,1,q ₉ ,1,L
95,*,98,*,R	$q_{10}, b, (q_{11}), b, S$
95,1,96,A,L	9 ₁₀ ,1,9 ₁₀ ,6,R
95, A, 95, A, L	q_{10}, X, q_{10}, b, R
96, b, 97, 1, R	q_{10}, A, q_{10}, b, R
96,*,96,*,L	210 1-17 10 12-11-1
** **	

M can be given in the form of a set of: (q, s, q', s', d)

Where:

- q Current State
- s Symbol currently under read/ write head

MULTIPLICATION PROGRAM q0,1,q1,1,L 96,1,96,1,L 91,b,92,*,R q7,*,q7,*,R 92, b, 93, b, L q7,1,q7,1,R 92,*,92,*,R 97, X, 95, X, L $q_2, 1, q_2, 1, R$ 97, A, 97, A, R q_2, X, q_2, X, R 98,6,93,6,L q_2, A, q_2, A, R 98,1,98,1,R 93,1,94,6,L q_8, X, q_8, X, R 93, X, 94, X, L $q_8, A, q_8, 1, R$ 94,1,94,1,L 99,*,910,B,S 94, X, 95, X, L 99,1,99,1,L 95,*,98,*,R 910,b,(911),b,S 95,1,96,A,L 910,1,910,b,R 95, A, 95, A, L 910, X, 910, B, R 96, b, 97, 1, R 910, A, 910, B, R

96,*,96,*,L

M can be given in the form of a set of: (q, s, q', s', d)

Where:

- q Current State
- s Symbol currently under read/ write head
- q' The state in which M is to enter next

MULTIPLICATION PROGRAM 96,1,96,1,L $q_0,1,q_1,1,L$ 91,b,92,*,R q7,*,q7,*,R 92, b, 93, b, L g7,1,g7,1,R 92,*,92,*,R 97, X, 95, X, L $q_2,1,q_2,1,R$ 97, A, 97, A, R q_2, X, q_2, X, R 98,6,93,6,L q_{2}, A, q_{2}, A, R 98,1,98,1,R 93,1,94,6,L q_8, X, q_8, X, R 93, X, 94, X, L q8,A,q8,1,R 94,1,94,1,L 99,*,910,B,S 94, X, 95, X, L 99,1,99,1,L 95,*,98,*,R 910, b, (911), b, S 95,1,96,A,L 910,1,910,b,R 95, A, 95, A, L q10, X, q10, b, R 96, b, 97, 1, R 910, A, 910, B, R 96,*,96,*,L

M can be given in the form of a set of: (q, s, q', s', d)

Where:

- q Current State
- s Symbol currently under read/ write head
- q' The state in which M is to enter next
- s' The symbol to be written in place of s

MULTIPLICATION PROGRAM 96,1,96,1,L $q_0,1,q_1,1,L$ 91,b,92,*,R q7,*,q7,*,R 92, b, 93, b, L $q_7,1,q_7,1,R$ 92,*,92,*,R 97, X, 95, X, L $q_2,1,q_2,1,R$ 97, A, 97, A, R q_2, X, q_2, X, R 98, b, 93, b, L q_2, A, q_2, A, R 98,1,98,1,R 93,1,94,6,L q_8, X, q_8, X, R 93, X, 94, X, L 98,A,98,1,R 94,1,94,1,L 99,*,910,B,S 94, X, 95, X, L 99,1,99,1,L 95,*,98,*,R 910, b, (911), b, S 95,1,96,A,L 910,1,910,b,R 95, A, 95, A, L q10, X, q10, b, R 96, b, 97, 1, R 910, A, 910, B, R 96,*,96,*,L

M can be given in the form of a set of: (q, s, q', s', d)

Where:

- q Current State
- s Symbol currently under read/ write head
- q' The state in which M is to enter next
- s' The symbol to be written in place of s
- d In which direction the read/ write head is to move

MULTIPLICATION PROGRAM 96,1,96,1,L $q_0,1,q_1,1,L$ 91,b,92,*,R q7,*,q7,*,R 92, b, 93, b, L $q_7,1,q_7,1,R$ 92,*,92,*,R 97, X, 95, X, L $q_2,1,q_2,1,R$ q_7, A, q_7, A, R q_2, X, q_2, X, R 98, b, 93, b, L q_{2}, A, q_{2}, A, R 98,1,98,1,R 93,1,94,6,L q_8, X, q_8, X, R 93, X, 94, X, L $q_8, A, q_8, 1, R$ 94,1,94,1,L 99,*,910,b,S 94, X, 95, X, L 99,1,99,1,L 95,*,98,*,R 910,b,(911),b,S 95,1,96,A,L 910,1,910,b,R 95, A, 95, A, L q10, X, q10, b, R 96, b, 97, 1, R 910, A, 910, B, R 96,*,96,*,L

M can be given in the form of a set of: (q, s, q', s', d)

Where:

- q Current State
- s Symbol currently under read/ write head
- q' The state in which M is to enter next
- s' The symbol to be written in place of s

MULTIPLICATION PROGRAM 96,1,96,1,L $q_0,1,q_1,1,L$ 91,b,92,*,R q7,*,q7,*,R 92, b, 93, b, L g7,1,g7,1,R 92,*,92,*,R 97, X, 95, X, L $q_2,1,q_2,1,R$ q_7, A, q_7, A, R q_2, X, q_2, X, R 98, b, 93, b, L q_{2}, A, q_{2}, A, R 98,1,98,1,R 93,1,94,6,L q_8, X, q_8, X, R 93, X, 94, X, L $q_8, A, q_8, 1, R$ 94,1,94,1,L 99,*,910,B,S 94, X, 95, X, L 99,1,99,1,L 95,*,98,*,R 910,b,(911),b,S 95,1,96,A,L 910,1,910,b,R q10, X, q10, b, R 95, A, 95, A, L 96, b, 97, 1, R 910, A, 910, B, R 96,*,96,*,L

A Turing Machine Conceptualization using a State Diagram:

A Turing Machine Conceptualization using a State Diagram:

Figure 31.3 The unary multiplication program

Are 'Turing Complete'

- Are 'Turing Complete'
- I.e. they can perform every possible computation (given enough time and space)

(Automata that guess correctly)

(Automata that guess correctly)

 Don't exist – but are useful in theory (can simplify problems)

(Automata that guess correctly)

 Don't exist – but are useful in theory (can simplify problems)

For some states and inputs, there may be

multiple options

Figure 26.1 A nondeterministic automaton

Figure 26.1 A nondeterministic automaton

d – Transition Function

Figure 26.1 A nondeterministic automaton

- d Transition Function
- ∑ Finite Alphabet

Figure 26.1 A nondeterministic automaton

- d Transition Function
- ∑ Finite Alphabet
- Finite set of Q states

Figure 26.1 A nondeterministic automaton

- d Transition Function
- ∑ Finite Alphabet
- Finite set of Q states

P(Q) - Power set of Q (Set of all subsets of Q)

- d Transition Function
- ∑ Finite Alphabet
- Finite set of Q states

- P(Q) Power set of Q (Set of all subsets of Q)
- Such that d: Q X $\sum \rightarrow P(Q)$

- d Transition Function
- ∑ Finite Alphabet
- Finite set of Q states

- P(Q) Power set of Q (Set of all subsets of Q)
- Such that d: Q X $\sum \rightarrow P(Q)$
- E.g. d maps the input (I,0) → state set {A,
 B}

Can be solved by a non-deterministic
 Turing Machine

- Can be solved by a non-deterministic
 Turing Machine
- In polynomial time

- Can be solved by a non-deterministic
 Turing Machine
- In polynomial time
 l.e.

- Can be solved by a non-deterministic
 Turing Machine
- In polynomial time
 I.e.
- Where there is a solution

- Can be solved by a non-deterministic
 Turing Machine
- In polynomial time
 l.e.
- Where there is a solution
- That solution must be verifiable in polynomial time (by a deterministic Turing Machine)

Each program has a maximum runtime

- Each program has a maximum runtime
- The worst-case time complexity of an algorithm on an input of size n – maximum time taken

- Each program has a maximum runtime
- The worst-case time complexity of an algorithm on an input of size n – maximum time taken
- Big-O notation ignores exact runtimes for simplification

- Each program has a maximum runtime
- The worst-case time complexity of an algorithm on an input of size n – maximum time taken
- Big-O notation ignores exact runtimes for simplification
- E.g. (7.25n² 1.14n + 2.83)/2 → O(n²) Regardless of the values of constants runtime will always be quadratic

O(k) Constant

- O(k) Constant
- O(kn) Linear

- O(k) Constant
- O(kn) Linear
- O(n^k) Polynomial

- O(k) Constant
- O(kn) Linear
- O(n^k) Polynomial
- O(k^n) Exponential

- O(k) Constant
- O(kn) Linear
- O(n^k) Polynomial
- O(k^n) Exponential

(Ranked in order of runtime as n tends toward infinity)

What is an NP-Complete Problem?

What is an NP-Complete Problem?

 Solved by a computer only by sometimes waiting an extraordinarily long time for a solution

What is an NP-Complete Problem?

- Solved by a computer only by sometimes waiting an extraordinarily long time for a solution
- Application of Cook's Theorem states that the Boolean Satisfiability Problem is NP-Complete

 Asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.

- Asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
- A generic transformation from every NP Problem

 Take the Travelling Salesperson Problem (TSP) – can be mapped to SAT, such that:

- Take the Travelling Salesperson Problem (TSP) – can be mapped to SAT, such that:
 - The transformation can be computed in polynomial time

- Take the Travelling Salesperson Problem (TSP) – can be mapped to SAT, such that:
 - The transformation can be computed in polynomial time
 - The instance of TSP has a solution only if the corresponding instance of SAT does

 Therefore → SAT is at least as hard as any other problem in NP

- Therefore → SAT is at least as hard as any other problem in NP
- If you can find an algorithm to solve SAT, it can also solve all problems in NP

Satisfiability Problem (SAT)

- Therefore → SAT is at least as hard as any other problem in NP
- If you can find an algorithm to solve SAT, it can also solve all problems in NP
- We call SAT "NP-Hard" At least as hard as the hardest problems in NP

NP-Completeness

NP-Completeness

NP-Complete Problems are both in NP and also in NP-Hard

 In Decision Form: Given a set of positive integers, is there a partition of the set into two parts so that both sum to the same number?

- In Decision Form: Given a set of positive integers, is there a partition of the set into two parts so that both sum to the same number?
- 17, 5, 31, 12, 9, 20, 8

- In Decision Form: Given a set of positive integers, is there a partition of the set into two parts so that both sum to the same number?
- 17, 5, 31, 12, 9, 20, 8
- Computer guesses: 17, 5, 9, 20

- In Decision Form: Given a set of positive integers, is there a partition of the set into two parts so that both sum to the same number?
- 17, 5, 31, 12, 9, 20, 8
- Computer guesses: 17, 5, 9, 20
- Sum = 51

- In Decision Form: Given a set of positive integers, is there a partition of the set into two parts so that both sum to the same number?
- 17, 5, 31, 12, 9, 20, 8
- Computer guesses: 17, 5, 9, 20
- Sum = 51
- Complement = 31, 12, 8; Sum = 51

 For each yes instance of PRT (I.e. an instance that has a solution) – there must be a yes computation of minimum length

- For each yes instance of PRT (I.e. an instance that has a solution) – there must be a yes computation of minimum length
- One of these minimum computation lengths over all instances of size n would be a maximum

- For each yes instance of PRT (I.e. an instance that has a solution) – there must be a yes computation of minimum length
- One of these minimum computation lengths over all instances of size n would be a maximum
- This could be calculated exactly, but it suffices to say that PRT never requires more than O(n³) steps – so it may be completed in polynomial time

We can alter PRT so it is no longer in NP

- We can alter PRT so it is no longer in NP
- "Each number in one part must be at least as large as any number in the other part"

- We can alter PRT so it is no longer in NP
- "Each number in one part must be at least as large as any number in the other part"
 - Sort the inputs into decreasing order; find their sum

- We can alter PRT so it is no longer in NP
- "Each number in one part must be at least as large as any number in the other part"
 - Sort the inputs into decreasing order; find their sum
 - Scan the numbers from first to last, accumulating a partial sum

- We can alter PRT so it is no longer in NP
- "Each number in one part must be at least as large as any number in the other part"
 - Sort the inputs into decreasing order; find their sum
 - Scan the numbers from first to last, accumulating a partial sum
 - If the partial sum even equals one half of the total, then output yes

The Class P

The Class P

This new problem is in the class P

The Class P

- This new problem is in the class P
 - Can be solved and polynomial time, by a deterministic computer

 P must be a subset of NP (All problems in P can also be solved by a nondeterministic computer)

- P must be a subset of NP (All problems in P can also be solved by a nondeterministic computer)
- Therefore → The actual question is "Are there any decision problems in NP that do not have a polynomial-time deterministic solution?"

$$P = NP$$
?

Hasn't been proved either way

Further Reading

Further Reading

Satisfyability Problem

Further Reading

- Satisfyability Problem
- Cook's Theorem (the theorem that establishes SAT must be NP-Complete by mapping every problem in NP to SAT in polynomial time)