Tarea 5

Física Nuclear y Subnuclear

31 de octubre de 2023

- Calcula la masa, radio y energía de enlace de los siguientes núcleos (los excesos de masa se encuentran en https://www-nds.iaea.org/amdc/ ame2016/mass16.txt)
 - 2H (deuterio)
 - \blacksquare ¹⁴C (carbono 14)
 - ⁵⁶Fe (hierro 56)
 - ²¹⁰Po (polonio 210)
- 2. A partir del modelo de la gota calcula las energías de enlace de los núcleos:
 - ⁷⁶Ga
 - ⁷⁶Ge
 - ⁷⁶As
 - ⁷⁶Se
 - \bullet ^{76}Br
 - ⁷⁶Kr

(parece mucho, pero en realidad pueden ahorrarse muchos cálculos ¿sí lo ven?). Grafiquen los valores de estas energías de enlace (esto será útil para la siguiente tarea).

- 3. ¿Qué tipo de modelo es el gas de Fermi: colectivo o de partícula independiente? ¿Cuál es el principio a partir del cual se construye? Explica tu respuesta
- 4. A partir del modelo de capas prediga el momento angular nuclear y la paridad de los siguientes núcleos
 - ³He
 - \bullet ^{15}O
 - ⁴¹Ca
 - ⁵⁶Fe

Compare con los valores de J observados experimentalmente: http://easyspin.org/documentation/isotopetable.html

5. Determina el momento de inercia del núcleo de ^{170}Hf de acuerdo a la figura 1, un valor por cada energía y J^π o si deseas puedes hacer una gráfica J^π vs. E.

Figura 1: Espectro rotacional del núcleo deformado ^{170}Hf