Eclipses of a Lifetime

•••

Ashwin, Bruno, Jacob, and Parvati

Background

- Eclipses are astronomical phenomena where celestial bodies align
- Solar eclipses occur when the moon obstructs light from the sun to the Earth
 - Can be partial, annular, hybrid, or total eclipses
 - Total solar eclipses are so rare that people travel long distances to view them in person
- Lunar eclipses occur when the Earth obstructs light from the sun to the moon
 - Can be penumbral, partial, or total eclipses
- Next total solar eclipse on April 8th
 - Just happens to be in the US!

Project Goals

- Investigate the relationships between Geographic Location/Solar Eclipse Frequency and Geographic Location/Path Width (Ashwin)
- Analyze different types of eclipses and examine whether they occur with greater frequency during specific months (Parvati)
- Analyze time differences between solar and lunar eclipses with respect to years and eclipse type (Jacob)
- Determine the ideal location for viewing solar eclipses, in terms of visibility and eclipse frequency (Bruno)

Analysis of Location and Solar Eclipse Frequency

Solar Eclipse Counts per 15x15 degree sector: Chi² statistic=242.7, p-value=0.668, dof=253

9	4	- 4	5	7	6	4	- 5	9	7	- 6	6	7	5	5	- 5	1	- 8	. 8	6	9	. 8	3	8
113	184	123	118	102	95	87	185	122	98	122	118	184	94	85	111	189	115	188	114	95	107	81	118
31	18	17	24	20	28	26	24	35	15	15	31	29	25	18	24	27	28	17	27	24	21	29	30
30	32	32	37	36	32	33	26	34	35	28	37	36	37	28	36	40	28	33	36	33	34	28	26
19	36	50	43	38	33	42	37	34	45	41	40	38	32	43	38	31	29	43	34	41	35	47	49
38	44	42	37	44	40	45	42	34	38	38	48	42	42	34	45	37	47	42	48	43	37	53	38
3.8	39	42	47	37	32	48	39	34	48	39	46	49	27	42	39	48	42	50	37	30	36	47	44
41	28	39	34	36	41	39	46	35	42	35	36	32	49	42	46	34	39	33	30	49	32	37	36
30	35	38	33	36	39	37	38	31	35	24	39	22	44	41	26	42	32	32	23	34	38	36	40
25	33	28	25	20	20	23	21	27	21	33	21	19	26	18	17	32	26	24	30	30	15	29	28
110	105	109	102	113	100	184	107	186	99	115	109	94	113	112	96	112	106	108	107	110	98	102	100
7	8	4	3	4	6	4	5	4	7	4	6	7	5	3	5	6	1	12	3	12	6	4	4

1-way ANOVA test across each latitude: statistic=706.7665019914394 p-value=5.294355553665398e-195

- Solar eclipse frequency <u>does not</u> depend on longitude
- Solar eclipse frequency <u>does</u> depend on latitude

Analysis of US Location and Solar Eclipse Type

	Northwest	Northeast	Southwest	Southeast
Partial	0	0	0	0
Annular	21	25	26	30
Total	27	21	24	26
Hybrid	3	2	1	4

Chi-Square Test: statistic=2.9, p-value=0.820, dof=6

Analysis of Hemisphere and Mean Path Width

2 sample t-test for means between northern and southern path width:

statistic=-1.485

p-value=0.138

df=7512.36

Г

2 sample t-test for means between eastern and western path width:

statistic=-0.952

p-value=0.341

df=7494.69

- Frequency of solar eclipse types does not depend on geographic location in the US
- Partial and Hybrid solar eclipses are incredibly rare in the US
- Annular and Total solar eclipses are similar in frequency in the US
- Mean path width likely does not depend on geographic location

Types of Lunar and Solar Eclipses

Lunar Eclipse Occurance

Penumbral eclipses occurring in May

95% CI: (0.07627, 0.09275)

Partial eclipses occurring in May

95% CI: (0.07666 , 0.09352)

Total eclipses occurring in May

95% CI: (0.07608 , 0.09465)

Chi-square test of independence: statistic = 8.97, df = 2, p-value = 0.011

Seasonal Distribution of Solar Eclipses

Chi-Squared Test for Solar Eclipse Frequency Across Months:

- statistic (chi-square) = 8.358
- df = 11
- p-value = 0.6809

Seasonal Distribution of Solar Eclipse Types

Annular

statistic = 45.27 df = 11 p-value = 4.34e-06

Hybrid

statistic = 11.66df = 11p-value = 0.39

Partial

statistic = 4.14 df = 11 p-value = 0.96

Total

statistic = 72.93 df = 11 p-value = 3.38e-11

Time Difference between Solar and Lunar Eclipses

Two sample t-test for means:

Group 1 yrs. 1 A.D. - 2023, Group 2 yrs. 2024-3000:

p-value = 0.874

df = 8046

95% confidence interval: (-0.0246, 0.0289)

- No significant difference in group means
- High periodicity based on time series analysis
- Low variability with maxima around 15.75 days and minima around 13.75 days

Time Difference by Eclipse Type

ANOVA test for time differences by eclipse type:

```
p-value = 0.00538
df = 4
F-stat = 3.677
```

Linear Regression for time differences by eclipse type:

Reference Category: Annular Eclipse (occur yearly)

Partial: p-value = 0.000952 Total: p-value = 0.001351

95% CI for Total Eclipse Time Difference: (0.0234, 0.0971)

- Significant difference in eclipse type mean time difference
- Partial and Total eclipses see time differences longer than a difference that includes an annular eclipse
- Total eclipses on average 0.56-2.33 hour longer time difference between eclipses

Ideal Viewing Locations For Total Eclipses

- A combination of:
 - High eclipse frequency
 - High visibility
 - Low cloud cover

- Higher frequency near 0 latitude
- No significant difference across longitude
- When factoring in visibility...

Ideal Viewing Locations

The locations with the best chances of seeing an eclipse are:

- 42.0 3.0
- -63.0 10.0
- -65.0 10.0
- 99.0 10.0
- -76.0 10.0

Questions?

