

کاربرد برنامه ریزی ریاضی در تولید الگوریتمهای تقریبی

محمدهادي فروغمنداعرابي

ياييز ۱۳۹۶

گرد کردن تصادفی برنامهریزی نیمه معین

جلسهي دوازدم

نگارنده: میلاد برزگر

۱ مروری بر مباحث گذشته

در جلسهی پیش دیدیم برنامهریزی نیمه معین به شکل

$$\begin{aligned} & \max/\text{min} & & \operatorname{tr}(C^TX) \\ & \text{subject to} & & & \operatorname{tr}(A_k^TX) = b_k & & , \forall k \\ & & & & X \succcurlyeq \circ, \end{aligned}$$

و برنامهریزی برداری به شکل

$$\begin{split} \max & \min \quad \sum_{i,j} c_{i,j} \langle v_i, v_j \rangle \\ \text{subject to} \quad & \sum_{i,j} a_{i,j,k} \langle v_i, v_j \rangle = b_k \quad , \forall k \\ \\ & v_i \in \mathbb{R}^n \qquad \qquad , i = \verb|\|, \ldots, n \end{split}$$

است. همچنین دیدیم این دو برنامهریزی معادل اند.

مسالهی برش بیشینه معرفی شد که در آن گراف وزندار G=(V,E) داده شده و هدف پیدا کردن بیشینه وزن برشها است. دیدیم برنامهریزی درجه دو صحیح

زير اين مساله را به طور دقيق مدل مي كند

$$\begin{split} & \text{maximize} & & \frac{\mathbf{1}}{\mathbf{7}} \sum_{e=\{i,j\}} w_e (\mathbf{1} - y_i y_j) \\ & \text{subject to} & & y_i \in \{-\mathbf{1},\mathbf{1}\} \\ & & , \forall i \in V. \end{split}$$

همچنین برنامهریزی برداری آرام شدهی زیر برای مسالهی فوق ارائه شد

$$\begin{split} \text{maximize} \quad &\frac{1}{7} \sum_{e=\{i,j\}} w_e (\mathbf{1} - \langle v_i, v_j \rangle) \\ \text{subject to} \quad &\langle v_i, v_i \rangle = \mathbf{1} \quad , \forall i \in V \\ &v_i \in \mathbb{R}^n \quad , \forall i \in V, \end{split}$$

n=|V| که در آن

۲ مسالهی برش بیشینه

برنامهریزی (۱) در واقع راسهای گراف G را طوری روی نقاط (\cdot, \circ) و (\cdot, \circ) از \mathbb{R}^7 قرار می دهد که مجموع وزندار طول یالها بیشینه شود. به طور مشابه برنامهریزی (۲) راسهای گراف را طوری روی سطح کره ی واحد n-بعدی پخش می کند (چون $(v_i, v_i) = 1)$ که مجموع وزندار طول یالها بیشینه شود.

برنامه ریزی برداری قابل حل (تقریبی) در زمان چندجملهای است. در ادامه الگوریتمی برای گرد کردن تصادفی جواب برنامه ریزی (۲) برای بدست آوردن جوابی تقریبی برای مسالهی برش بیشینه ارائه میکنیم.

الگوریتم ۱. الف v^* الف v^* الف v^* الف v^* الف

بیک بردار تصادفی از کره ی واحد n-بعدی انتخاب کن؛ o r

$$\label{eq:continuity} \begin{split} & \mbox{`}\{i:\langle v_i,r\rangle > \mbox{``}\} \to U \ \mbox{``}\\ & \mbox{``}\{i:\langle v_i,r\rangle \leq \mbox{``}\} \to U^c \end{split}$$

ابرصفحهی عمود بر r یک ابرصفحهی تصادفی است. این الگوریتم در واقع کره را با یک ابرصفحهی تصادفی میبرد و راسهای متناظر با بردارهای واقع در دو نیم کرهی حاصل را به عنوان برش مطلوب معرفی می کند.

 X_e تحلیل الگوریتم ۱. فرض کنید X_e نشان دهنده ی برشی بودن یا نبودن یا نبودن یا باشد (در واقع $X_e=1$ اگر و تنها اگر دو سر e در دو طرف ابرصفحه ی برنده باشد).

$$\mathbb{E}[\mathbf{w}_e \mathbf{X}_e] = \mathbb{E}\bigg[\sum_{e \in E} w_e X_e\bigg] = \sum_{e \in E} w_e \mathbb{E}[X_e] = \sum_{e \in E} w_e \mathbb{P}(X_e = \mathbf{1}). \tag{\ref{eq:posterior}}$$

در لم بعد (
$$X_e=1$$
 را محاسبه می کنیم.

. $\frac{1}{\pi}\cos^{-1}\langle v_i,v_j \rangle$ احتمال این که $e=\{i,j\}$ یال برشی باشد برابر است با $e=\{i,j\}$

 v_i اثبات. ابرصفحهی عمود بر r صفحهی شامل v_j و v_i را به احتمال ۱ در یک خط قطع می کند (زیرا این اتفاق فقط در صورتی رخ نمی دهد که r بر صفحهی شامل v_j و v_i در دو v_j و v_i در دو v_j عمود باشد و احتمال این پیشامد صفر است با این که v_i این خط توزیع یکنواخت دارد. برشی بودن یال $e=\{i,j\}$ معادل است با این که v_i در ناحیهی رنگی از شکل قرار بگیرد. با توجه به یکنواخت بودن توزیع v_i احتمال این پیشامد برابر است با این که v_i در نتیجه با توجه به این که طول v_i و v_i یک است، داریم

$$\mathbb{P}(X_e=\mathbf{1})=\mathbb{P}($$
یال e برشی باشد e یال e یال e برشی باشد) $=\frac{\theta}{\pi}=\frac{\mathbf{1}}{\pi}\cos^{-\mathbf{1}}\langle v_i,v_j\rangle.$

حال به تحلیل الگوریتم ادامه می دهیم. با جایگذاری در رابطهی (۳) بدست می آید

$$\mathbb{E}[\log z] = \frac{1}{\pi} \sum_{e \in E} w_e \cos^{-1} \langle v_i, v_j \rangle \geq \left(\min_{x \in [-1,1]} \frac{\frac{1}{\pi} \cos^{-1}(x)}{\frac{1}{7} (1-x)} \right) \frac{1}{7} \sum_{e \in E} w_e (1 - \langle v_i, v_j \rangle) \geq \circ / \text{AVA } Z_{VP} \geq \circ / \text{AVA } OPT.$$

در بالا از این حقیقت استفاده شد که به ازای هر $x \in [-1,1]$ هر ازای هر $x \in [-1,1]$ هر اثبات به کتاب مراجعه شود. $x \in [-1,1]$ در نتیجه الگوریتم ۱ یک الگوریتم ۸۷۸-تقریب برای مساله ی برش بیشینه است.

تنكو ۱. تصادفي انتخاب كردن y_i ها يك الگوريتم ۵/°-تقريب است. زيرا داريم $\mathbb{E}[y_iy_j]=0$ و درنتيجه

$$\mathbb{E}[\mathbf{w}_e] = \frac{1}{\mathbf{y}} \sum_{e \in E} w_e \big(\mathbf{1} - \mathbb{E}[y_i y_j] \big) = \frac{1}{\mathbf{y}} \sum_{e \in E} w_e \geq \frac{1}{\mathbf{y}} \mathrm{OPT}.$$

ت**ذکر ۲.** اگر $P \neq NP$ ، الگوریتم بهتر از ۱۹۴۱۰۰∘تقریب برای مسالهی برش بیشینه وجود ندارد. همچنین اگر UGC برقرار باشد الگوریتم بهتر از الگوریتم فوق (الگوریتمی که ضریب تقریب بهتری داشته باشد) برای مسالهی برش بیشینه وجود ندارد.