MATH 1002

LECTURE 2-F

PROJECTIONS

Warm-up:

Exercise: Given a point P and a line L, what is the "distance" from P to L?

Solution

- · This is the distance from P to l
- · PQ is perpendicular to 2.
- · We say that Q is the projection of Ponto L.

Projection of vectors:

· Choose any point A & R and consider the vector \overrightarrow{AP}

Then \overrightarrow{AB} is the projection of \overrightarrow{AP} onto Q.

////

Think of a big light shining onto I from far away

Then AG is the shoolow of AP on l.

. In general, we can define the projection of any vector $\vec{v} \in \mathbb{R}^n$ onto a non-zero vector $\vec{v} \in \mathbb{R}^n$

Two cases:

$$\overrightarrow{OB} = \overrightarrow{V}$$
 $\overrightarrow{OB} = \overrightarrow{U}$
 $\overrightarrow{OB$

In both cases, $\|\overrightarrow{OQ}\| = \|\overrightarrow{OP}\| \|\cos\theta\| = \|\overrightarrow{V}\| \|\cos\theta\|$ By we know the length of \overrightarrow{OQ} and its direction is either the same or the negative of \overrightarrow{U} .

In this information determines \overrightarrow{OQ} completely.

 $\overrightarrow{OQ} = \|\overrightarrow{OQ}\| \cdot \text{unit vector in direction } \overrightarrow{U}$ $= (\|\overrightarrow{V}\| \cos \theta) \left(\frac{1}{\|\overrightarrow{U}\|} \overrightarrow{U}\right)$ $= \|\overrightarrow{V}\| \left(\frac{\overrightarrow{U} \cdot \overrightarrow{V}}{\|\overrightarrow{U}\| \|\overrightarrow{V}\|}\right) \frac{1}{\|\overrightarrow{U}\|} \overrightarrow{U}$

If
$$\frac{\pi}{2} < \theta \leq \pi$$
:

$$\overrightarrow{Q} = \|\overrightarrow{Q}\| \cdot \text{unit vector in apposite}$$

$$= \left(-\|\overrightarrow{v}\| \cos \Theta\right) \left(-\frac{1}{\|\overrightarrow{v}\|} \overrightarrow{u}\right)$$

$$= \frac{\overrightarrow{v} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}} \overrightarrow{u}.$$

$$= \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{u} \cdot \overrightarrow{v}} \quad \overrightarrow{u}$$

Definition: For $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{u} \neq \vec{0}$, the projection of the vector \vec{v} and \vec{v} is denoted by $proj_{\vec{v}}(\vec{v})$ and defined by

$$\operatorname{proj}_{\vec{u}}(\vec{v}) := \underbrace{\vec{u} \cdot \vec{v}}_{\vec{u} \cdot \vec{u}} \vec{u} = \underbrace{\vec{u} \cdot \vec{v}}_{\|\vec{u}\|^2} \vec{u} \in \mathbb{R}^n.$$

Another method to find projuli) = 00

We need to find Q.

- We know that \overrightarrow{OQ} will be parallel to \overrightarrow{U} =) there is some $\lambda \in \mathbb{R}$ such that $\overrightarrow{OQ} = \lambda \overrightarrow{U}$.
- We know that \overrightarrow{QP} will be atmograph to $\overrightarrow{OB} = \overrightarrow{U}$. $= \overrightarrow{QP} \cdot \overrightarrow{U} = 0$

we can write
$$\overrightarrow{QP} = \overrightarrow{QO} + \overrightarrow{OP} = \overrightarrow{OP} - \overrightarrow{OQ} = \overrightarrow{V} - \overrightarrow{AC}$$

$$\Rightarrow \lambda \vec{u} \cdot \vec{u} = \vec{u} \cdot \vec{v}$$

$$\Rightarrow \lambda = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}.$$

We conclude that $\overrightarrow{OQ} = \lambda \overrightarrow{u} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{u} \cdot \overrightarrow{u}} \overrightarrow{u}$ as seen above.

Example Find the projection of $\vec{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

$$\vec{u} \cdot \vec{v} = (-1) \times 1 + (-1) \times 2 + (-2) \times 4 = -1 - 2 - 8 = -11$$

$$\vec{u} \cdot \vec{u} = (-1)^2 + (-1)^2 + (-2)^2 = 1 + 1 + 4 = 6$$

So
$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \quad \vec{u} = -\frac{11}{6} \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 11/6 \\ 11/8 \end{bmatrix}$$

Proposition: Let $\vec{u}, \vec{v} \in \mathbb{R}^n$, $\vec{u} \neq \vec{0}$.

We can always unite \vec{v} as a sum

$$\overrightarrow{V} = \overrightarrow{V}_{P} + \overrightarrow{V}_{o}$$

where \vec{v}_p is parallel to \vec{u} and \vec{v}_o is atmograph to \vec{u} .

proof: we are write

$$\vec{v} = \vec{v} - \text{proj}_{\vec{u}}(\vec{v}) + \text{proj}_{\vec{u}}(\vec{v})$$

•
$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u}$$
 is parallel to \vec{u} by construction.

· Claim: V- proja (V) is orthogonal to v.

Exercise: prove the claim, by showing that the dot product is 0.

Solution:
$$(\vec{v} - \text{proj}_{\vec{u}}(\vec{v})) \cdot \vec{u} = \vec{v} \cdot \vec{u} - (\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u}) \cdot \vec{u}$$

$$= \vec{v} \cdot \vec{u} - \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{v}} \vec{u} \cdot \vec{u}$$

$$= \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} = 0$$

$$= \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} = 0$$

Mis completes the proof of the proposition I.

Example Let
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$.

Express \vec{v} as the sum of a vector parallel to \vec{u} and a vector orthogonal to \vec{u} .

Solution: we write
$$\vec{v} = \text{proj}_{\vec{u}}(\vec{v}) + [\vec{v} - \text{proj}_{\vec{u}}(\vec{v})]$$

parallel perpendicular.

Exercise: Find proja(v) and v-proja(v).

• proj
$$\vec{u}$$
 (\vec{v}) = $\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$ \vec{u}
= $\frac{(1 \times 3 + (-1) \times (-1) + (-1) \times 2)}{(1^2 + (-1)^2 + (-1)^2)} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$
= $\frac{2}{3} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -2/3 \\ -2/3 \end{bmatrix}$

•
$$\vec{v}$$
 - $\operatorname{prg}_{\vec{u}}(\vec{v}) = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2/3 \\ -2/3 \\ -2/3 \end{bmatrix} = \begin{bmatrix} 7/3 \\ -1/3 \\ 8/3 \end{bmatrix}$

Always check your work

•
$$\operatorname{prg}_{\vec{u}}(\vec{v}) = \frac{2}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 \leftarrow parallel to \vec{u}

$$\begin{bmatrix} 7/3 \\ -1/3 \\ 8/3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = 7/3 + 1/3 - 8/3 = 0$$
 artnogonal to 2^{2} .

Summary of the lecture

- Given two vectors \vec{u} , $\vec{v} \in \mathbb{R}^n$ with $\vec{u} \neq \vec{0}$, the projection of \vec{v} onto \vec{u} is $proj_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{v}} \vec{u}$
 - It is the unique vector such that $\cdot proj_{\vec{u}}(\vec{v}) \quad \text{is parallel to } \vec{u}$ $\cdot \vec{v} proj_{\vec{u}}(\vec{v}) \quad \text{is crthogonal to } \vec{u}.$

You should be able to:

- · calculate projut (7) and understand its geometric meaning.
- · not compuse the roles of it & v.
- express it as a sum of a vector parallel to it and a vector orthogonal to it.