Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 6

Jendrik Stelzner

Letzte Änderung: 16. Dezember 2017

Aufgabe 4

(a)

Wir bemerken zunächst einige (intuitive) Aussagen über Primfaktorzerlegungen in faktoriellen Ringen:

Lemma 1. Es seien $x, y \in R$ mit $x, y \neq 0$, so dass x ein Teiler von y ist. Dann lässt sich jede Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ von x zu einer Primfaktorzerlegung $y = \varepsilon' p_1 \cdots p_n p_{n+1} \cdots p_m$ von y ergänzen.

Beweis. Es gibt $z\in R$ mit xz=y, und es gilt $z\neq 0$, da $y\neq 0$ gilt. Also besitzt z eine Primfaktorzerlegung $z=\delta p_{n+1}\cdots p_m$. Dann gilt

$$y = xz = \varepsilon \delta p_1 \cdots p_n p_{n+1} \cdots p_m ,$$

und die Aussage ergibt sich mit $\varepsilon' := \varepsilon \delta$.

Für $x \in R$, $x \neq 0$ mit Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ bezeichnen wir mit $\nu(x) \coloneqq n$ die Anzahl der vorkommenden Primfaktoren (inklusive Vielfachheit). Die Zahl $\nu(x)$ ist wohldefiniert, da die Primfaktorzerlegung bis Einheiten und Permutation der Faktoren eindeutig ist.

Lemma 2. Es seien $x, y \in R$ mit $x, y \neq 0$.

- 1. Es gilt genau dann $\nu(x) = 0$, wenn x eine Einheit ist.
- 2. Es gilt $\nu(xy) = \nu(x) + \nu(y)$.
- 3. Ist x ein Teiler von y, so gilt $\nu(x) \leq \nu(y)$.
- 4. Ist x ein echter Teiler von y, also $(y) \subseteq (x)$, so gilt $\nu(x) < \nu(y)$.

Beweis.

- 1. In der Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ gilt n = 0 und somit $x = \varepsilon \in \mathbb{R}^{\times}$.
- 2. Da R ein Integritätsbereich ist, gilt auch $xy \neq 0$. Es seien $x = \varepsilon p_1 \cdots p_n$ und $y = \delta q_1 \cdots q_m$ Primfaktorzerlegungen. Dann

$$xy = (\varepsilon \delta)p_1 \cdots p_n q_1 \cdots q_m$$

eine Primfaktorzerlegung von xy und somit

$$\nu(xy) = n + m = \nu(x) + \nu(y).$$

3. Es gibt $z \in R$ mit y = xz. Es gilt $z \neq 0$, da $y \neq 0$ gilt, weshalb $\nu(z)$ definiert ist. Somit gilt

$$\nu(y) = \nu(xz) = \nu(x) + \nu(z) \le \nu(x)$$
.

4. Ansonsten gilt in der obigen Situation $\nu(z)=0$, weshalb z dann eine Einheit ist. Deshalb gilt dann

$$(y) = (xz) = (x). \qquad \Box$$

(i)

Es sei $p \in R$ irreduzibel, und es seien $x, y \in R$ mit $p \mid xy$. Gilt x = 0 oder y = 0, so gilt $p \mid x$ oder $p \mid y$.

Ansonsten gibt es Primfaktorzerlegungen $x = \delta q_1 \cdots q_n$ und $y = \delta' q_1' \cdots q_m'$ Primfaktorzerlegungen. Dann ist

$$xy = (\delta\delta')q_1 \cdots q_n q_1' \cdots q_m' \tag{1}$$

eine Primfaktorzerlegung von xy. Da p irreduzibel ist und $p \mid xy$ gilt, lässt sich p nach Lemma 1 zu einer Primfaktorzerlegung

$$xy = \varepsilon p p_2 \cdots p_r \tag{2}$$

ergänzen. Da R faktoriell ist, sind die beiden Primfaktorzerlegungen (1) und (2) eindeutig bis auf Einheiten und Permutation. Es gilt deshalb $p \mid q_i$ oder $p \mid q'_i$ für passendes i, und somit $p \mid x$ oder $p \mid y$.

(ii)

Wir nehmen an, dass nicht jede aufsteigende Kette von Hauptidealen stabilisieren würde. Dann gibt es eine unendliche echt aufsteigende Kette von Hauptidealen

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq (a_4) \subsetneq \cdots$$

Dann gilt $a_i \neq 0$ für alle $i \geq 1$ (denn sonst wäre $(a_i) = 0$ für ein solches i, und damit bereits $(a_i) = \cdots = (a_0) = 0$), und für jedes $i \geq 1$ ist a_{i+1} ein echter Teiler von a_i . Nach Lemma 2 erhalten wir eine unendliche absteigende Kette

$$\nu(a_1) > \nu(a_2) > \nu(a_3) > \nu(a_4) > \cdots$$

Dies ist aber nicht möglich.