Verifying SPLs using parity games expressing variability

Sjef van Loo 6 November, 2019

Msc Thesis Computer Science and Engineering Supervised by T.A.C. Willemse

Outline

- ► Verification & SPLs
- ► Problem statement
- ► Variability Parity Games
- ► VPG algorithms
- ► Experimental results

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus
- Check if the model satisfies the requirement

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus)
- Check if the model satisfies the requirement

Verification

- ► Creating correct software is difficult
- ► Even when testing is done rigorously errors can slip in
- ► Mathematically *model the behaviour* of software (LTS)
- ightharpoonup Mathematically *specify a requirement* (modal μ -calculus)
- ► Check if the model satisfies the requirement

Software product lines

- ► Software product lines are configurable systems
- ► Many variants of the same system, i.e. *software products*
- ► FTSs express multiple LTSs using *features*

Problem statement

► Find all the products in an SPL that satisfy a requirement

▶ Do so more efficiently than verifying every product independently

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ightharpoonup Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ightharpoonup Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ightharpoonup Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$V_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_2$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$V_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ightharpoonup Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $ightharpoonup W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $V_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ► Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ *Solving*: Partition the vertices in W_0, W_1

- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $V_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- $V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ► Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$V_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$V_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

$$\qquad \qquad \mathbf{W}_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0 , W_1

Variability parity game. Configurations $\mathfrak{C} = \{c_1, c_2\}$

$$ightharpoonup W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ▶ Solving: Partition the vertices in W_0, W_1

- $ightharpoonup W_0^{c_1} = \emptyset, W_1^{c_1} = \{v_1, \dots, v_5\}$
- $\qquad \qquad \bullet \quad W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ▶ Solving: Partition the vertices in W_0^c, W_1^c , for every $c \in \mathfrak{C}$

Parity game.

Players 0 (even, \diamondsuit) and 1 (odd, \square)

- ► The winner is determined by the parity of the priority occurring infinitely often
- ▶ Player 1 wins $\{v_1, v_3\}$, using $v_3 \mapsto v_1$
- ▶ Player 0 wins $\{v_2, v_4, v_5\}$, using $v_2 \mapsto v_4$
- ► Solving: Partition the vertices in W_0 , W_1

$$v_1$$
 $\downarrow 3$ $\downarrow \{c_1\}$ $\downarrow 0$ $\downarrow v_2$ $\downarrow 0$ $\downarrow 0$

- $\qquad \qquad \bullet \quad W_0^{c_2} = \{v_1, v_3\}, W_1^{c_2} = \{v_2, v_4, v_5\}$
- ► Solving: Partition the vertices in W_0^c , W_1^c , for every $c \in \mathfrak{C}$

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex $v_0 \in W_0$ in the resulting parity game.

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex $v_0 \in W_0$ in the resulting parity game.

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex $v_0 \in W_0$ in the resulting parity game.

Theoren

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex $v_0 \in W_0$ in the resulting parity game.

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex $v_0 \in W_0$ in the resulting parity game.

Theorem

Theorem

A parity game can be constructed from an LTS and a modal μ -calculus formula φ such that M satisfies φ iff special vertex $v_0 \in W_0$ in the resulting parity game.

Theorem

- the recursive algorithm for VPGs reasons about sets of vertex configuration pairs
- Attractor calculation example on VPG
- Function-wise representation to efficiently perform attractor calcs
- Short explanation of symbolic representation
- ► Time complexities

- the recursive algorithm for VPGs reasons about sets of vertex configuration pairs
- Attractor calculation example on VPG
- Function-wise representation to efficiently perform attractor calcs
- Short explanation of symbolic representation
- ► Time complexities

- the recursive algorithm for VPGs reasons about sets of vertex configuration pairs
- ► Attractor calculation example on VPG
- Function-wise representation to efficiently perform attractor calcs
- ► Short explanation of symbolic representation
- ► Time complexities

- the recursive algorithm for VPGs reasons about sets of vertex configuration pairs
- ► Attractor calculation example on VPG
- Function-wise representation to efficiently perform attractor calcs
- ► Short explanation of symbolic representation
- ► Time complexities

- the recursive algorithm for VPGs reasons about sets of vertex configuration pairs
- Attractor calculation example on VPG
- Function-wise representation to efficiently perform attractor calcs
- ► Short explanation of symbolic representation
- ► Time complexities

VPG algorithms - Incremental pre-solve algorithm

- ► Introduce algorithm;, idea of pre-solving
- ► Introduce pessimistic PGs
- We need an alg to solve PGs using pre-solved vertices for efficiency

VPG algorithms - Incremental pre-solve algorithm

- ► FPIte. show FP formula
- ► Show modified FP formula
- ► Explain the efficiency gained

► Very short explanation of a fixed-point

VPG algorithms - Local solving

- explain local solving
- ► introduced local algs for the novel VPG algs and existing PG algs.

Experimental results - SPL games

Figure: Running times, in ms, on the minepump games.

Figure: Running times, in ms, on the elevator games.

Recursive algorithm for parity games
 Recursive algorithm for VPGs with a symbolic representation of configurations
 Recursive algorithm for VPGs with an explicit representation of configurations

Experimental results - SPL games

Figure: Running times, in ms, on the minepump games.

Figure: Running times, in ms, on the elevator games.

Experimental results - Random games

► Show the type of games where recursive symbolic fails and the explicit does not.

Experimental results - Local solving

► Show the same graphs but with local solving as well

Conclusions

- Collective approach can improve SPLs verifying performance
- ► The symbolic recursive can do this well
- ► The explicit recursive is "robust"
- ► Local solving can increase performance, however very dependent on alg & type of VPG