UCF Local Contest (Round 1B) — September 12, 2020

Tetrooj Box

filename: box
Difficulty Level: Easy-Medium
Time Limit: 5 seconds

Dr. Orooji's children have played Tetris but are not willing to help Dr. O with a related problem. Dr. O's children don't realize that Dr. O is lucky to have access to 100+ great problem solvers and great programmers today!

The Problem:

Dr. O knows the length of the base for a 2D box and wants to figure out the needed height for the box. Dr. O will drop some 2D blocks (rectangles) on the base. A block will go down until it lands on the base or is stopped by an already-dropped block (i.e., it lands on that block). After all the blocks have been dropped, we can determine the needed height for the box – the tallest column is the needed height (please see pictures on the next page corresponding to Sample Input/Output).

The Input:

The first input line contains two integers: b ($1 \le b \le 100$), indicating the length of the base and r ($1 \le r \le 50$), indicating the number of blocks (rectangular pieces) to be dropped. Each of the next r input lines contains three integers: a block's horizontal length h ($1 \le h \le 100$), the block's vertical length v ($1 \le v \le 100$), and v (v input lines column the block is dropped into. Assume that the v and v values will be such that the block will not go beyond the box base, i.e., v in v

The Output:

Print the needed height for the box (the tallest column is the height).

Sample Input Sample Output

10 4	8
2 3 1	
4 2 2	
1 7 6	
1 3 4	
10 3	7
3 4 8	
8 2 1	
1 1 3	

First Sample Input/Output:

Second Sample Input/Output:

