Lab2

Lab: 开源EDA工具全流程复现

• Yosys: 实现Verilog代码到AIG的转换

• iMap和ABC可以实现AIG到netlist的转换

• 鹏城开发的后端工具iEDA, 即netlist到版图GDS-II的转换

提供了一个简单的CPU设计,Verilog源码。(具体见附件的压缩包)可用该CPU设计,去跑通以上工具流程(从Verilog到版图)

在上述过程中,做好word笔记,最终的汇报包括各步骤的具体功能描述、执行输出、遇到的问题和解决方式等。

实验报告

针对开源EDA工具的全流程执行。实验报告具体包括:

- 1. Verilog RTL用例的功能、结构简单分析。
- 2. 利用yosys等执行逻辑综合的过程,包括TCL命令、执行结果的截图、生成网表的报告 (时延/资源使用量等)
- 3. 利用iEDA执行布局布线时序分析等中间过程和最终结果,包括TCL命令、命令的功能含义、执行结果(包括QoR报告结果,以及具体版图截图)。版图可以下载到本机查看并截图。
- 4. 必要的分析。

一、RTL用例分析_CPU

模块	功能
alu	算数逻辑单元,接受 8 位的数据和累加器输入,根据opcode执行不同的操作 PASSO、PASS1、PASS6、PASS7: 直接将 accum 通过不同指令输出。 ADD: 执行 accum + data 的加法。 AND: 执行 accum & data 的按位与操作。 XOR: 执行 accum ^ data 的按位异或操作。 PASSD: 将 data 直接通过到输出。
clk	时钟生成模块。该模块生成一个50 MHz的方波时钟信号 clk
control	控制单元模块,用于管理多周期 CPU 的指令执行过程。该模块会基于指令操作码 (opcode) 和状态控制信号,在不同的时钟周期内生成适当的控制信号,以执行不同的指令操作,以完成从指令获取、解码、执行到存储的完整过程
counter	5 位的计数器模块 counter。该模块能够实现异步复位、同步加载预设值和 计数功能

模块	功能
сри	顶层 CPU 模块的设计,包含各个子模块的实例化和连接,形成了一个简单的多周期 CPU 控制单元 control 算数逻辑单元 ALU 累加器寄存器,指令寄存器 register 选择多路复用器 scale_mux 程序计数器 counter
diffr	实现带异步复位的D触发器
mem	实现了一个32字节大小的内存单元,使用地址和读写信号来控制数据的存取。提供了一种简单的、通过地址访问的存储器接口,能够根据控制信号读取或写入数据,同时支持输出数据的高阻态以模拟双向数据总线
mux	2:1 多路复用器 (MUX)
register	8 位寄存器,它能够在时钟信号的上升沿根据加载信号的状态存储数据
scale_mux	可配置大小的 2:1 多路复用器 (MUX),使用parameter size控制选择数据大小
full_chip	芯片的顶层设计模块,负责将 CPU 内部信号通过端口接口连接到外部

RTL设计实现了一个基础的 CPU 架构,能够处理简单的算术和逻辑运算,支持指令的读取、执行和存储。

二、Yosys逻辑综合

linux环境设置:

```
export LD_LIBRARY_PATH=$(echo $LD_LIBRARY_PATH | tr ':' '\n' | grep -v
'xilinx' | paste -sd ':')
```

排除Xilinx 工具环境影响

Yosys TCL命令

make syn

yosys.tcl 解析

- 1. 参数设置-设计名、文件路径、库文件、时钟频率
- 2. yosys 主运行过程
 - 1. 导入yosys
 - 2. 读取库文件
 - 3. 读取Verilog
 - 4. 对顶层设计进行合成 synth -top \$DESIGN
 - 5. 设计优化
 - 6. 技术映射
- 3. 后处理

- 1. 将未定义值替换为0 setundef -zero
- 2. 分割网络,解决不需要的复合赋值语句 splitnets
- 3. 插入缓冲器单元
- 4. 清理未使用的单元和线
- 4. 报告和输出
 - 1. synth_check.txt 检查报告
 - 2. synth_stat.txt 统计报告
 - 3. 写入指定网表文件

执行结果

- full_chip.netlist.v
- synth_check.txt
- synth_stat.txt

```
=== design hierarchy ===
  full_chip
                                      1
    cpu
      $paramod\scale_mux\size=5
                                      1
      alu
                                      1
      control
                                      1
      counter
                                      1
      register
                                      2
        dffr
                                      8
                                      8
        mux
  Number of wires:
                                   529
  Number of wire bits:
                                   648
  Number of public wires:
                                   271
  Number of public wire bits:
                                   390
  Number of memories:
                                      0
  Number of memory bits:
                                     0
  Number of processes:
                                      0
  Number of cells:
                                   374
```

yosys.log

iSTA简单时序评估

- SDC文件
- sta.tcl

make sta

`LD_LIBRARY_PATH=bin/ ./bin/iSTA \$(PROJ_PATH)/sta.tcl \$(DESIGN) \$(SDC_FILE) \$(NETLIST_V)

- 指定动态链接库: LD_LIBRARY_PATH=bin/
- 可执行工具: ./bin/iSTA
- TCL脚本 +参数 (DESIGN、SDC_FILE、NETLIST_V)

```
set_design_workspace $RESULT_DIR
read_netlist $NETLIST_V
read_liberty $LIB_FILES
link_design $DESIGN
read_sdc $SDC_FILE
report_timing
```

sta输出

• full_chip_hold.skew: hold下时钟偏斜

full_chip_setup.skew: setup下时钟偏斜

• full_chip.cap: 电容违规

• full_chip.fanout: 扇出违规

Generate the report at 202				6ce6e28304fe193503d +	
Net / InstPin			FanLoadSlack		Remark
+	+ NA 	+ 0 	+ NA 	+ BUFUHDV1/Z 	
u_cpu/alu1/_187_:ZN u_cpu/ac/G1[5].U1/_2_	NA 	1 	NA 	AOI221UHDV0P4/ZN	
u_cpu/ac/G1[5].U1/_4_:Z	NA	1	 NA	 MUX2UHDV0P4/Z	i i

• full_chip.rpt: 时序分析报告

Generate the report at 2024-11-01T03:11:51, GitVersion: d9c76846ce6e28304fe193503daa05d7efa8c4cc.							
+		!			+	t	+
Endpoint	Clock Group Delay Type	Path Delay	Path Required	CPPR	Slack	Freq(MHz)	!
u cpu/ac/G1[6].U2/ 1 :D	core clock max	2.853f	1.823	0.000	-1.030	 330.064	Ť
u_cpu/ac/G1[7].U2/_1_:D	core_clock max	2.822f	1.823	0.000	-0.999	333.470	i i
u_cpu/ac/G1[7].U2/_1_:D	core_clock max	2.788r	1.791	0.000	-0.997	333.688	1
u_cpu/ctl1/_091_:D	core_clock min	0.400f	0.008	0.000	0.392	NA NA	1
u_cpu/ctl1/_096_:D	core_clock min	0.400f	0.008	0.000	0.392	NA	1
u_cpu/ctl1/_095_:D	core_clock min	0.400f	0.008	0.000	0.392	NA	1
+		+			+	+	+
Clock Delay Type							
Clock Delay Type	1N3						
core clock max	-14.085						
core_clock min	0.000						
+	-						

• full_chip.trans: 转换时间违规

Generate the report at	2024-11-01T03:11	l:51, GitVersion	: d9c76846ce6e28	304fe193503daa05d7	efa8c4cc.
+		+	+	+	++
Net / InstPin	MaxTranTime	TranTime	TranSlack	CellPort	Remark
+ u_cpu/alu1/_034_ u cpu/alu1/ 111 :ZN	 3 030r/3 030f	 0 795r/0 426f	+ 2 235r/2 604f	İ	+
u_cpu/alu1/_034_	i i	i	i	İ	
u_cpu/alu1/_112_:I u_cpu/alu1/_034_	3.030r/3.030f 	0.795r/0.426f 	2.235r/2.604f 	INUHDV0P4/I 	
u_cpu/alu1/_126_:B1	3.030r/3.030f	0.795r/0.426f	2.235r/2.604f	A0I32UHDV0P4/B1	

目录

执行结果

iEDA布线布局

- 1. 将本次 cpu 的 netlist 和 sdc 文件拷贝到相应位置
- 2. 修改 db_path_setting.tcl 文件
- 3. 其他修改

run_iEDA.py

Py文件执行了多个tcl脚本

- 1. run_iFP.tcl: 进行布局规划 (Floorplan) ,确定芯片的基本布局和区域分配。
- 2. run_iNO_fix_fanout.tcl: 修复扇出(Fanout)问题,确保信号在电路中的传输不会受到影响。
- 3. run_iPL.tcl: 进行放置 (Placement) , 将电路元件放置在芯片上以优化性能。
- 4. run_iCTS.tcl: 进行时钟树合成(Clock Tree Synthesis),优化时钟信号的分配以减少延迟。5. run_iTO_drv.tcl: 修复驱动(Driver)问题,确保电路的驱动能力满足设计要求。6. run_iTO_hold.tcl: 优化保持时间(Hold Time),确保信号在时钟边缘到达时的稳定性。7. run_iPL_legalization.tcl: 进行放置合法化(Placement Legalization),确保放置的元件符合设计规则。
- 5. run_iRT.tcl: 进行路由(Routing), 连接电路元件以形成完整的电路路径。
- 6. run_iPL_filler.tcl:添加填充物(Filler),确保芯片的布局密度符合制造要求。10. run_def_to_gds_text.tcl:将设计交换格式(DEF)转换为GDSII格式,准备进行制造。这些脚本在芯片设计流程中起着关键作用,确保设计的有效性和可制造性。

版图

Create file success (./result/final_design.gds2)
Write COMPONENTS success. 708 / 708
No FILLS ...
Write NETS success. 361 / 361

附件

makefile

文件依赖关系

Makefile 中,文件的依赖关系通过目标和依赖项的定义来建立

[make syn]

- syn: \$(NETLIST_V)
 - syn 依赖于\$(NETLIST_V)
- \$(NETLIST_V): \$(RTL_FILES) yosys.tcl
 - \$(NETLIST_V) 依赖于 RTL 文件和 Yosys 脚本

[make sta]

- sta: \$(TIMING_RPT)
 - 。 sta 依赖于`\$(TIMING_RPT)
- *(TIMING_RPT): \$(SDC_FILE) \$(NETLIST_V)
 - 。 \$(TIMING_RPT) 依赖于 \$(SDC_FILE) \$(NETLIST_V)