

Automatische Balkonbewässerung

Autor: Dzaid Abiyyu Siregar, Zul Fahmi Nur Vagala, Johannes Berg

Letzte Änderung: 13. Juni 2025

Dateiname: Qualitätssicherung_Automatische_Balkonbewässerung.docx

Version: 0.2

© htw-Berlin Seite 1 von 12

Automatische Balkonbewässerung

Inhaltsverzeichnis

1	Einleitung	4
2	Testfälle	7
2.1	Sensoranbindung	7
2.2	MQTT-Verbindung	8
2.3	Manuelle Pumpensteuerung	9
2.4	Anzeige der Bodenfeuchte in UI	. 10
2.5	Energieverbrauch - Dauerbetrieb	. 11
3	Testprotokoll	. 12

Automatische Balkonbewässerung

Copyright

© Mohammad Abuosba

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Version:	Datum:	Verantwortlich	Änderung
0.1	11.11.2013	Mohammad Abuosba	Initiale Dokumenterstellung
0.2	13.06.2025	Johannes Berg	Testplan, Testfälle und Testprotokoll

Vorhandene Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden

Dokument	Autor	Datum
Automatische_Balkonbewässerung_Lastenheft	Dzaid Abiyyu Siregar,	13.06.2025
Automatische_Balkonbewässerung_Pflichtenheft	Zul Fahmi Nur Vagala,	
Automatische_Balkonbewässerung_technische_Spezifikation.docx	Johannes Berg	

© htw-Berlin Seite 3 von 12

Automatische Balkonbewässerung

1 Einleitung

Dieses Dokument enthält die definierten Testfälle, die sich, während Sprint 1 des Projekts zur automatisierten Pflanzenbewässerung kristallisiert haben. Ziel ist es, erste zentrale Funktionen des Systems zu überprüfen und sicherzustellen, dass die entwickelten Komponenten den Anforderungen aus dem Lasten- und Pflichtenheft, sowie der technischen Spezifikation entsprechen.

Die Testfälle decken sowohl funktionale als auch nicht-funktionale Anforderungen ab und wurden auf Basis des erarbeiteten Testplans erstellt. Sie dienen der Qualitätssicherung, dem Fehlermanagement sowie der systematischen Validierung einzelner Module und deren Zusammenspiel.

Jeder Testfall ist nach einem einheitlichen Schema dokumentiert und enthält Angaben zum Testziel, den Vorraussetzungen, dem erwarteten Verhalten sowie zu den konkreten Testdaten. Die erfolgreiche Durchführung dieser Tests bildet die Grundlage für die interne Abnahme von Sprint 1 und den Übergang in die nächste Entwicklungsphase.

© htw-Berlin Seite 4 von 12

Testplan

Test-Objekt	Qualitätskriterien	QS-Teststufe 1 "Source Code, Komponente, Funktion"			Bemerkungen
		Test-Verfahren	Zyklus	Zuständig	
Dokumentation					
App-Projekt (Flutter-Setup)	Verständlichkeit, Vollständigkeit, Richtigkeit	Editorial Review Gegenlesen	bei Abschluss der Einrichtung	Zul	Projektstruktur, Build-Konfiguration prüfen
Aufbau Testboard (ESP + Sensoren)	Korrektheit, Lesbarkeit, Eindeutigkeit	Technisches Review	Nach Aufbau	Johannes	Sauberer Aufbau für stabile Verbindung wichtig
Applikation					
Funktionalitäten					
UI – Statusanzeige & Pumpe	F – Korrektheit, Aktualität	Unittest	Bei jedem UI-Update	Zul	Anzeige Verlauf und App-Navigation möglich
MQTT-Verbindung	Verbindung, Datenfluss	Integrationstest	nach Implementierung	Dzaid	Verbindung zu lokalem Broker
Sensoranbindung	F – Richtigkeit	Kalibrierung	Nach Aufbau	Dzaid	Messwert skalieren
MQTT - Publish	F – Korrektheit, Timing	Integrationstest	Nach Implementierung	Dzaid	Regelmäßige Übertragung, alle 30 sek
Pumpensteuerung	F – Richtigkeit, Timing	Modultest	Nach jeder Änderung im Code	Johannes	Sicherheitslogik beachten
Wasserverteilung / Stecksystem	F – Funktion, Durchfluss	Blackboxtest	Einmalig beim Aufbau	Johannes	Test mit einer Pumpe (+Schlauch)

© htw-Berlin Seite 5 von 12

Muster Qualitätssicherung

<Projektname>

nicht funktionale Eigenschaften / Anforderungen						
Energieverbrauch	Effizienz, Dauerbetrieb	Datentest, Stresstest	Täglich im Dauerbetrieb, vor Übergabe	Zul	Beobachtung des Stromverbrauchs möglich	

Test-Objekt	Qualitätskriterien	QS-Teststufe 2 "Integration / Systemtest"			Bemerkung?	
		Test-Verfahren	Zyklus	Zuständig		
Funktionalitäten						
Sensordatenverarbeitung	F - Richtigkeit	Datentest, Lasttest,	nach jeder Änderung, am Ende	Dzaid	Messwerte mit realer Bodenfeuchte vergleichen	
MQTT-Kommunikation	F – Richtigkeit, Stabilität	Performancetest, Verbindungstest	nach jeder Änderung, am Ende	Dzaid, Zul	Latenz, Verbindungsabbrüche testen	
Manuelle Pumpensteuerung	F – Reaktion, Richtigkeit	Manueller Test	nach Implementierung, am Ende	Johannes, Dzaid	App-Befehl muss direkt auf Relaisausgang reagieren	
Anzeige der Bodenfeuchte in UI	Usability, Verständlichkeit	Manueller Test	Vor Übergabe	Zul	Klare und aktuelle Anzeige der Feuchtigkeitswerte	
nicht funktionale Eigenscha	ften / Anforderungen					
Systemverhalten	Zuverlässigkeit, Effizienz	Lasttest, Performancetest	Ende Sprint 1	Dzaid, Zul, Johannes	System muss stabil unter Dauerlast arbeiten	

© htw-Berlin Seite 6 von 12

2 Testfälle

2.1 Sensoranbindung

Testfall	Beschreibung
Testfall-Nummer	001
Testart	Funktionstest
Zu testender Geschäftsprozess/ Zu testende Funktionsgruppe	Feuchtigkeitssensor
Testziel	Feuchtigkeitssensoren liefern gleiche Werte bei identischen Bedingungen
Testvoraussetzungen	Feuchtigkeitssensor ist sauber, nicht beschädigt
Testfalldaten	Sensoren senden erst im trockenen und dann aus einem Wasserbehälter Werte
Erwartetes Verhalten	Jeder Sensor liefert (fast) exakt gleiche Werte. Minimale Toleranz ist gestattet (+-1%)

Testergebnis

Testergebnis	x Bestanden	☐ Nicht Bestanden	
Fehlerkategorie	x Leicht	☐ Mittel	☐ Schwer
Bemerkung	Von 5 Feuchtigkeitssensc	ore liefern 4 fast exakt glei	che Werte (nur 3 notwendig)
Tester Kunde	Tester Auftragnehmer	Datum	
		06.06.2025	

Seite 7 von 12 © htw-Berlin

2.2 MQTT-Verbindung

Testfall	Beschreibung
Testfall-Nummer	002
Testart	Integrationstest
Zu testender Geschäftsprozess/ Zu testende Funktionsgruppe	MQTT-Kommunikation App mit Broker
Testziel	App soll stabil Nachrichten an den lokalen MQTT-Broker senden und empfangen können
Testvoraussetzungen	MQTT-Broker läuft, Netzwerkverbindung vorhanden
Testfalldaten	App verbindet sich zum Broker, sendet eine Nachricht und empfängt eine Antwort
Erwartetes Verhalten	Verbindung wird hergestellt, Nachrichten werden ohne Fehler übertragen

Seite 8 von 12 © htw-Berlin

2.3 Manuelle Pumpensteuerung

Testfall	Beschreibung
Testfall-Nummer	003
Testart	Funktionstest
Zu testender Geschäftsprozess/	Steuerung der Wasserpumpe über App
Zu testende Funktionsgruppe	
Testziel	Die App aktiviert die Pumpe über ein Relaismodul bei Button-Click
Testvoraussetzungen	Relaismodul korrekt angeschlossen, App und ESP verbunden
Testfalldaten	Nutzer drückt Button in App; ESP aktiviert Relais
Erwartetes Verhalten	Pumpe schaltet sich ein und nach definierter Zeit wieder aus

Seite 9 von 12 © htw-Berlin

2.4 Anzeige der Bodenfeuchte in UI

Testfall	Beschreibung
Testfall-Nummer	004
Testart	Blackboxtest / UI - Test
Zu testender Geschäftsprozess/	Visualisierung des Sensorwerts in der Benutzeroberfläche
Zu testende Funktionsgruppe	
Testziel	Nutzer soll den aktuellen Bodenfeuchtewert in der App korrekt angezeigt bekommen
Testvoraussetzungen	Sensor angeschlossen, App und ESP kommunizieren korrekt
Testfalldaten	Sensor misst Werte zwischen 0-100%
Erwartetes Verhalten	Anzeige in der App spiegelt gemessene Werte verzögerungsfrei und korrekt wieder

Seite 10 von 12 © htw-Berlin

Muster Qualitätssicherung <Projektname>

2.5 Energieverbrauch - Dauerbetrieb

Testfall	Beschreibung
Testfall-Nummer	005
Testart	Stresstest / Langzeittest
Zu testender Geschäftsprozess/	Energieaufnahme von ESP und Sensor bei Dauerbetrieb
Zu testende Funktionsgruppe	
Testziel	System darf sich nicht überhitzen oder instabil werden
Testvoraussetzungen	Dauerbetrieb über mind. 12 Stunden; Netzteil vorhanden
Testfalldaten	Betrieb mit aktivem Sensor, aktiver MQTT-Verbindung, periodischem Senden
Erwartetes Verhalten	Stromaufnahme konstant im erwarteten Bereich; kein Ausfall oder Reset

Seite 11 von 12 © htw-Berlin

Muster Qualitätssicherung <Projektname>

Testprotokoll 3

TestfallNr.	Datum	Status	Schweregrad	Datum	Status
				2. Lauf	2. Lauf
001	06.06.2025	bestanden	leicht		
002	13.06.2025	Noch nicht			
		durchgeführt			
003	13.06.2025	Noch nicht			
		durchgeführt			
004	13.06.2025	Noch nicht			
		durchgeführt			
005	13.06.2025	Noch nicht			
		durchgeführt			

Seite 12 von 12 © htw-Berlin