Problem has been graded.

Find the node voltages v_a and v_b . Use nodal analysis.

Given Variables:

R1:3 ohm

R2:6 ohm

R3:1 ohm

Calculate the following:

va (V):

vb (V):

Find the node voltages v_a and v_b . Use nodal analysis.

$$R1 = 2 \Omega$$

$$R2 = 1 \Omega$$

$$R3 = 1 \Omega$$

$$R_1 \ge 2 A \bigcirc \qquad \qquad A A$$

€ KCLDa:
$$\frac{\sqrt{a}}{2} + \frac{\sqrt{a-\sqrt{b}}}{1} + 2 = 0 \Rightarrow 3\sqrt{a} - 2\sqrt{b} = -4$$
 (1)

Problem has been graded.

Find the node voltages v_1 , v_2 and v_3 . Use nodal analysis.

Given Variables:

R1:2 ohm

R2:1 ohm

R3:1 ohm

R4:2 ohm

Vs : 5 V Is : 1 A

Calculate the following:

v1 (V):

v2 (V):

v3 (V):

Find the node voltages v_1 , v_2 and v_3 . Use nodal analysis.

$$\sigma_3 = V_S \Rightarrow \sigma_3 = SV$$

$$R1 = 2\Omega$$

$$R2 = 1 \Omega$$

$$R3 = 1 \Omega$$

$$R4 = 2 \Omega$$

$$Vs = 5 V$$

$$Is = 1 A$$

$$\otimes$$
 KCLD2: $\frac{\sqrt{1-\sqrt{1}}}{1} + \frac{\sqrt{1-5}}{2} - 1 = 0 \Rightarrow -2\sqrt{1+3\sqrt{1}} = 7$

$$3 \times (1) + 2 \times (2) : || \sigma_1 = 44 \implies | \sigma_2 = 5 \vee |$$

Find the voltage \emph{v}_a . Use nodal analysis.

Given Variables:

V1:6 V

V2:10 V

11:5A

Calculate the following:

va (V):

Find the voltage v_a . Use nodal analysis.

V1 = 6 V

CHECK KCL AND
$$\sigma_2 - \sigma_3 = 10V$$

Find the node voltages v_1 , v_2 and v_3 . Use nodal analysis.

Vs = 9V

 $R1 = 5 \Omega$

 $R2 = 5 \Omega$

b = 3 A/A

OPTION 1

(3) in (2):
$$-4v_3 - 36 + 9v_2 - 5v_3 = 0 \Rightarrow 9v_1 - 9v_3 = 36$$

$$(4) + (5): 2 \cdot \sqrt{3} - \sqrt{3} = -9 + 4 \implies \boxed{\sqrt{3} = -5 }$$

$$\boxed{\sqrt{1} = 4 } \qquad FROM (3)$$

$$\boxed{\sqrt{2} = -1 } \qquad FLOM (5)$$

Find the node voltages v_1 , v_2 and v_3 . Use nodal analysis.

Given Variables:

Vs:9 V

R1:5 ohm R2:5 ohm b:3 A/A

Calculate the following:

v1 (V):

v2 (V):

v3 (V):

Problem has been graded.

R1:1 ohm
R2:2 ohm
R3:1 ohm
R4:2 ohm
R5:1 ohm
Va:1 V
Vb:1 V
la:4 A
b:1.5 V/A

Given Variables:

Calculate the following:

v1 (V) :

v2 (V):

v3 (V):

v4 (V):

v5 (V):

FROM (5)

CHECK KCL

Problem has been graded.

Find v_1 and v_2 . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

v1 (V):

0

v2 (V):

4

Hint: No supernodes

Problem has been graded.

Find I_o . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

lo (A):

-4

Problem has been graded.

Find V_1 . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

V1 (V):

Problem has been graded.

Find V_o . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

.:..

Calculate the following:

Vo (V):

Problem has been graded.

Find I_b . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

lb (A):

Problem has been graded.

Find v_2 . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

v2 (V):

Problem has been graded.

Find i. Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

i (A):

-7.5

Problem has been graded.

Find V_o . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

.:..

Calculate the following:

Vo (V):

Problem has been graded.

Find v_1, v_2 and v_3 . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

v1 (V):

2

v2 (V):

12

v3 (V):

-8

Problem has been graded.

Find v_o and i_o . Solve using nodal analysis.

For extra practice: Afterwards solve again using mesh analysis.

Given Variables:

. : . .

Calculate the following:

vo (V):

3

io (A):

0.5