Math 501 Homework (§5.1 Continuous Functions)

Problem 1. Hypothesis: Let $f: \mathbb{R}^+ \to \mathbb{R}$. For every $\epsilon > 0$ there exists $\delta > 0$ such that $|x - y| < \delta$ and x, y > 0 implies $|f(x) - f(y)| < \epsilon$.

Solution. Since $x, y \in \mathbb{R}^+$ are arbitrary, the given hypothesis is true for any point x in, and every corresponding point y in \mathbb{R}^+ . Hence, by definition, f is **continuous** on the set \mathbb{R}^+ .

Conversely, let f be continuous on every point of \mathbb{R}^+ . Let $y \in \mathbb{R}^+$ be one such point. By definition, for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$. Since x, y, > 0 this implication **is** the hypothesis.