WHAT IS CLAIMED IS:

1	1. A method for forming a trench having rounded corners in a			
2	semiconductor device, the method comprising:			
3	providing a semiconductor substrate;			
4	forming a first pad oxide layer, a first silicon nitride layer, and a first oxide			
5	layer on the semiconductor substrate sequentially;			
6	removing portions of the first oxide layer, the first silicon nitride layer, the			
7	first pad oxide layer, and the semiconductor substrate to form at least one trench;			
8	removing portions of the first oxide layer, the first silicon nitride layer, and			
9	the first pad oxide layer in the trench above an upper corner of the semiconductor substrate			
10	in the trench, the semiconductor substrate including a lower corner at a bottom of the			
11	trench;			
12	forming a second pad oxide layer in the trench;			
13	forming a second silicon nitride layer on the second pad oxide layer and the			
14	first oxide layer;			
15	removing portions of the second silicon nitride layer to expose the second			
16	pad oxide layer on the corners and the bottom of the trench;			
17	forming a thermal oxide layer on the second pad oxide layer exposed by			
18	removing the portions of the second nitride layer; and			
19	removing the second silicon nitride layer, the thermal oxide layer, and the			
20	second pad oxide layer.			
1	2. The method of claim 1 wherein removing portions of the first oxide			
2	layer, the first silicon nitride layer, the first oxide layer, and the semiconductor substrate is			
3	performed by a photolithography process or an etching process.			
1	3. The method of claim 1 wherein the at least one trench has a depth of			
2	between about $1\mu m$ and about $3\mu m$ and a width of about $0.2\mu m$ and about $1\mu m$.			
1	4. The method of claim 1 wherein removing portions of the first oxide			
2	layer, the first silicon nitride layer, and the first pad oxide layer in the trench is performed			
3	using HF.			
1	5. The method of claim 1 wherein the second silicon nitride layer is			
2	formed by deposition			

1		6.	The method of claim 1 wherein removing portions of the second		
2	silicon nitride	layer to	expose the second pad oxide layer is performed by dry etching.		
1		7.	The method of claim 1 wherein the thermal oxide layer is formed by		
2	thermal oxida	tion.			
		0			
1	.1 .1 1	8.	The method of claim 1 wherein removing the second nitride layer,		
2	the thermal ox	ade lay	er, and the second pad oxide layer is performed with phosphoric acid.		
1		9.	The method of claim 1 further comprising forming a second oxide		
2	layer in the tre	ench and	d on the first oxide layer after removing the second silicon nitride		
3	layer, the ther	mal oxi	de layer, and the second pad oxide layer.		
1		10.	The method of claim 1 wherein the second pad oxide layer is		
2	formed over s		of the semiconductor substrate in the trench.		
_	10111104 0 7 01 5	u11u005	02 12.0 20.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
1		11.	The method of claim 1 wherein removing portions of the first oxide		
2	layer, the first silicon nitride layer, and the first pad oxide layer in the trench exposes the				
3	upper corner of	of the se	emiconductor substrate in the trench.		
1		12.	The method of claim 1 wherein removing the second silicon nitride		
2	layer, the ther	mal oxi	de layer, and the second pad oxide layer forms a rounded upper		
3	corner and a r	ounded	lower corner of the semiconductor substrate in the trench for a		
4	trench-type m	etal oxi	de semiconductor device.		
1		13.	A method for forming a trench having rounded corners in a		
2	semiconducto		e, the method comprising:		
3			ling a semiconductor substrate having thereon a first pad oxide layer,		
4	a first silicon	nitride l	ayer on the first pad oxide layer, and a first oxide layer on the first		
5	silicon nitride	layer, a	and at least one trench extending through the first oxide layer, the first		
6	silicon nitride	layer, a	and the first pad oxide layer, and partially through the semiconductor		
7	substrate; whe	erein the	e trench is enlarged above the semiconductor substrate along		
8	sidewalls of th	ne first o	oxide layer, the first silicon nitride layer, and the first pad oxide		
9	layer; wherein	the ser	miconductor substrate includes a lower corner at a bottom of the		

trench and an upper corner below the sidewalls of the first oxide layer, the first silicon

nitride layer, and the first pad oxide layer;

10

11

12	forming a second pad oxide layer in the trench;
13	forming a second silicon nitride layer on the second pad oxide layer and the
14	first oxide layer;
15	removing portions of the second silicon nitride layer to expose the second
16	pad oxide layer on the corners and the bottom of the trench;
17	forming a thermal oxide layer on the second pad oxide layer exposed by
18	removing the portions of the second nitride layer; and
19	removing the second silicon nitride layer, the thermal oxide layer and the
20	second pad oxide layer.
1	14. The method of claim 13 further comprising forming a second oxide
2	layer in the trench and on the first oxide layer after removing the second silicon nitride
3	layer, the thermal oxide layer, and the second pad oxide layer.
1	15. The method of claim 13 wherein the second pad oxide layer is
2	formed over surfaces of the semiconductor substrate in the trench.
1	16. The method of claim 13 wherein removing portions of the first
2	oxide layer, the first silicon nitride layer, and the first pad oxide layer in the trench
3	exposes the upper corner of the semiconductor substrate in the trench.
1	17. The method of claim 13 wherein removing the second silicon
2	nitride layer, the thermal oxide layer, and the second pad oxide layer forms a rounded
3	upper corner and a rounded lower corner of the semiconductor substrate in the trench.
1	18. A method for forming a trench having rounded corners in a
2	semiconductor device, the method comprising:
3	providing a semiconductor substrate having thereon a first pad oxide layer,
4	a first silicon nitride layer on the first pad oxide layer, and a first oxide layer on the first
5	silicon nitride layer, and at least one trench extending through the first oxide layer, the first
6	silicon nitride layer, and the first pad oxide layer, and partially through the semiconductor
7	substrate; wherein the trench is enlarged above the semiconductor substrate along
8	sidewalls of the first oxide layer, the first silicon nitride layer, and the first pad oxide
9	layer; wherein the semiconductor substrate includes a lower corner at a bottom of the
10	trench and an upper corner below the sidewalls of the first oxide layer, the first silicon
11	nitride layer, and the first pad oxide layer; wherein a second pad oxide layer is formed in

12	the trench and a second silicon nitride layer is formed on the second pad oxide layer and
13	the first oxide layer;
14	removing portions of the second silicon nitride layer to expose the second
15	pad oxide layer on the corners and the bottom of the trench;
16	forming a thermal oxide layer on the second pad oxide layer exposed by
17	removing the portions of the second nitride layer; and
18	removing the second silicon nitride layer, the thermal oxide layer and the
19	second pad oxide layer.
1	19. The method of claim 18 wherein removing portions of the first
2	oxide layer, the first silicon nitride layer, and the first pad oxide layer in the trench
3	exposes the upper corner of the semiconductor substrate in the trench; and wherein the
4	second pad oxide layer is formed over surfaces of the semiconductor substrate in the
5	trench.
1	20. The method of claim 18 wherein removing the second silicon
2	nitride layer, the thermal oxide layer, and the second pad oxide layer forms a rounded
3	upper corner and a rounded lower corner of the semiconductor substrate in the trench for a
4	trench-type metal oxide semiconductor device.