Week-4 Assignment: Stochastic Modelling of Financial Derivatives

27th June 2025

Q1 – Satyansh Sharma (230938) Q2 – Ikrima Badr Shamim Ahmed (230482) Q3 – Aayushman Kumar (230029)

Question 1:

(a)

Stock price S=38, strike K=35, time to expiry T=4/12, risk–free rate r=0.06. Black–Scholes call price

$$C(\sigma) = S N(d_1) - K e^{-rT} N(d_2), \quad d_1 = \frac{\ln(S/K) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}, \ d_2 = d_1 - \sigma\sqrt{T}.$$

Trial values:

σ	$C(\sigma)$
0.10	3.7251
0.20	4.1226
0.30	4.7625

By linear interpolation between $\sigma = 0.20$ and 0.30:

$$\sigma_{\text{imp}} \approx 0.20 + \frac{4.20 - 4.1226}{4.7625 - 4.1226} (0.30 - 0.20) \approx 0.213.$$

Thus the implied volatility is approximately $\boxed{0.213}$.

(b)

Put-call parity gives

$$P = C + Ke^{-rT} - S = 4.20 + 35e^{-0.06(4/12)} - 38 \approx 4.20 + 34.307 - 38 \approx \boxed{0.507}$$

(c)

Treating the launch right as a European call:

Option value = $C \approx 4.20$ million, Immediate exercise payoff = S-K = 38-35 = 3 million.

Since C > S - K, the value of waiting (the option) exceeds immediate launch value. \therefore The firm should **not** launch now but defer.

Question 2:

Part A:

Each day stock moves ± 1 with equal p = 0.5. After 10 days, if n_u is number of +1 moves,

$$S_T = 100 + (n_u - (10 - n_u)) = 90 + 2 n_u.$$

(a) Ends in the money if $S_T > 105 \iff 90 + 2n_u > 105 \iff n_u \ge 8$.

$$P(n_u \ge 8) = \sum_{k=8}^{10} \frac{\binom{10}{k}}{2^{10}} = \frac{45 + 10 + 1}{1024} = \frac{56}{1024} \approx 0.0547.$$

(b) Payoff $\max(S_T - 105, 0) = 2n_u - 15$ when $n_u \ge 8$. Expected payoff

$$\frac{1 \cdot 45 + 3 \cdot 10 + 5 \cdot 1}{1024} = \frac{80}{1024} = 0.078125.$$

(c) Fair value (no discounting) is $\boxed{0.078125}$

Part B:

Let daily move $X \sim N(0, \sigma^2)$ with E[|X|] = 1. Since $E[|X|] = \sigma \sqrt{\frac{2}{\pi}} = 1$,

$$\sigma_{\text{daily}} = \sqrt{\frac{\pi}{2}} \approx 1.253, \quad \sigma_{10} = \sigma_{\text{daily}} \sqrt{10} \approx 3.962.$$

(b)
$$E[\max(S_T - K, 0)] = \int_K^\infty (S - 105) \frac{1}{\sigma_{10}\sqrt{2\pi}} \exp\left(-\frac{(S - 100)^2}{2\sigma_{10}^2}\right) dS.$$

(c) Using the closed-form for a displaced normal,

$$E[\max(S_T - K, 0)] = \sigma_{10} \phi(d) - (K - 100) [1 - \Phi(d)], \quad d = \frac{K - 100}{\sigma_{10}} \approx 1.261.$$

Numerically this yields approximately 0.196.

Part C:

- (a) For $X \sim \text{Uniform}[-a, a]$, $E[|X|] = a/2 = 1 \implies a = 2$. So daily moves are in [-2, 2].
- (b) The 10-day final price is the sum of 10 i.i.d. uniforms plus 100. Its pdf is the Irwin–Hall convolution, which is more flat-topped than the normal and less discrete than the binomial.

2

- (c) Simulation method:
 - (a) For i = 1 to N, draw $X_{i,j} \sim \text{Uniform}[-2, 2]$ for $j = 1, \ldots, 10$.
 - (b) Set $S_T^{(i)} = 100 + \sum_j X_{i,j}$.
 - (c) Payoff = $\max(S_T^{(i)} 105, 0)$.
 - (d) Estimate price $\approx \frac{1}{N} \sum_{i=1}^{N} \max(S_T^{(i)} 105, 0)$.

Question 3:

Assume line spacing d=1 and needle length $\ell=1$. For each of N drops:

- Draw $x \sim \text{Uniform}[0, \frac{1}{2}], \, \theta \sim \text{Uniform}[0, \frac{\pi}{2}].$
- The needle crosses if $\frac{\ell}{2}\sin\theta \ge x$.

Then the estimator is

$$\pi_{\rm est} = \frac{2N}{d \times ({\rm number\ of\ crossings})}.$$

NCrossings π_{est} 100 45 4.44441000 612 3.2680 Sample results for a single run: 5000 3.19083134 3.133810000 6382 20000 12729 3.1424 50000 31802 3.1445

As N grows, $\pi_{\rm est}$ converges towards the true $\pi \approx 3.1416$. Error sources include sample-to-sample randomness, finite N, and the resolution of pseudo-random generators.

Untitled3.ipynb - Colab 29/06/25, 6:11 AM

111111 We simulate Buffon's Needle experiment to estimate π . Parameters: - N: number of needle drops - l: length of the needle (must be ≤ d) - d: distance between the parallel lines seed: optional random seed for reproducibility Returns: - pi_estimates: array of π estimates after each drop 111111 import numpy as np import matplotlib.pyplot as plt def simulate_buffon_needle(N=10000, l=1.0, d=1.0, seed=None): if seed is not None: np.random.seed(seed) x = np.random.uniform(0, d/2, size=N)theta = np.random.uniform(0, np.pi/2, size=N) crosses = (1/2) * np.sin(theta) >= xcrosses_cumsum = np.cumsum(crosses) n = np.arange(1, N+1)pi_estimates = np.where(crosses_cumsum > 0, $2 * n / (d * crosses_cumsum),$ np.nan return n, pi estimates def plot_convergence(n, pi_estimates): plt.figure(figsize=(8, 5)) plt.plot(n, pi_estimates, label='Estimated π') plt.xscale('log') plt.axhline(np.pi, color='gray', linestyle='--', label='True π') plt.xlabel('Number of drops (log scale)') plt.ylabel('π estimate') plt.title("Buffon's Needle Monte Carlo π Estimation") plt.legend() plt.tight_layout() plt.show()

Untitled3.ipynb - Colab 29/06/25, 6:11 AM

 \rightarrow

Buffon's Needle Monte Carlo π Estimation 10 Estimated π --- True π 9 8 7 π estimate 5 4 3 2 10² 10⁰ 10¹ 10^{3} 10⁴ Number of drops (log scale)

Final π estimate after 10000 drops: 3.155570

True π : 3.141593

Absolute error: 0.013977