

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-238457

(P2000-238457A)

(43)公開日 平成12年9月5日(2000.9.5)

(51)Int.Cl.⁷

B 41 N 10/00

識別記号

F I

B 41 N 10/00

テマコト^{*}(参考)

2H114

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特願平11-43351

(22)出願日

平成11年2月22日(1999.2.22)

(71)出願人 000183233

住友ゴム工業株式会社

兵庫県神戸市中央区臨浜町3丁目6番9号

(72)発明者 伴野 誠二

兵庫県神戸市北区鹿の子台北町1-4-13

(72)発明者 萩田 俊一

兵庫県三木市志染町青山1-14-5

(72)発明者 大久保 博正

兵庫県神戸市兵庫区会下山町3-163-13

(74)代理人 100075155

弁理士 亀井 弘勝 (外2名)

Fターム(参考) 2H114 AA04 CA03 DA75 EA03 FA02

(54)【発明の名称】 印刷用ブランケット

(57)【要約】

【課題】 真空状の空隙部を有する圧縮性層を形成し、
へたりの発生が十分に抑制され、長期間に亘って良好な
印刷が可能な印刷用ブランケットを提供する。

【解決手段】 本発明の印刷用ブランケットは、少なくとも1層の圧縮性層を有するものであって、前記圧縮性層が、無機系中空微小球を含有するゴム組成物を加硫成形し、加圧によって前記無機系中空微小球の隔壁を粉碎したものであることを特徴とする。

【特許請求の範囲】

【請求項1】少なくとも1層の圧縮性層を有する印刷用プランケットであって、前記圧縮性層が、無機系中空微小球を含有するゴム組成物を加硫成形し、加圧によって前記無機系中空微小球の殻体を粉碎したものであることを特徴とする印刷用プランケット。

【請求項2】無機系中空微小球の耐圧強度が5～25kg/cm²である請求項1記載の印刷用プランケット。

【請求項3】無機系中空微小球の平均粒径が5～200μmである請求項1記載の印刷用プランケット。

【請求項4】圧縮性層を形成するゴム組成物が、無機系中空微小球および有機系中空微小球を20：80～100：0の体積割合で含有し、かつ前記無機系中空微小球と有機系中空微小球との体積の和が圧縮性層全体の体積に対して30～60%である請求項1記載の印刷用プランケット。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、オフセット印刷に用いられる印刷用プランケットに関する。

【0002】

【従来の技術】オフセット印刷に用いられる印刷用プランケットには、多孔質のゴムまたはエラストマーからなる圧縮性層を有するエアータイプものと、圧縮性層を有しないソリッドタイプものとが知られている。このうち、エアータイプの印刷用プランケットは、圧縮性層がクッションとなって印刷中の圧縮による衝撃を吸収するため、ソリッドタイプのものに比べて画像の歪みが少なく、ドットゲイン、スラー等の発生が少ない等の利点がある。

【0003】前記圧縮性層は、例えば中空状の微小粒子（中空微小球）をあらかじめ圧縮性層用のゴム組成物に分散し、このゴム組成物を加硫成形することによって形成される、いわゆる独立気孔構造の空隙を有するものと、ゴムに影響を及ぼさない溶剤によって抽出可能な食塩等の粒子をあらかじめ圧縮性層用のゴム組成物に分散し、加硫後に溶解抽出することによって形成される、いわゆる連続気孔構造の空隙を有するものとに分類される。

【0004】中でも、独立気孔構造の圧縮性層は、連続気孔構造のものに比べて、圧縮によって変形した後で速やかに元の形状に戻る性質、すなわち復元性が優れている。このため、いわゆる「へたり」が生じにくく、被印刷物の幅の変化によって印刷に支障をきたしたり、ベタ着肉性が低下したりするといった問題が起こりにくいという利点がある。

【0005】

【発明が解決しようとする課題】独立気孔構造の圧縮性層は、従来、塩化ビニリデンやフェノール樹脂等の有機系の材質で殻体が形成された有機系中空微小球をゴム組

成物中に分散し、このゴム組成物を加硫成形する方法によって形成されている。しかしながら、前記有機系中空微小球の殻体は、ゴム組成物を加硫する際の加熱によって軟化、溶融し易く、加圧によって容易に変形、圧壊してしまう。このため、圧縮性層内に真球状でかつ大きさが均一の気孔を形成するのが困難であって、優れた圧縮特性を有する圧縮性層を形成できないという問題があった。

【0006】一方、有機系中空微小球によって形成される気孔の形状を維持することを目的として、有機系中空微小球の融点以下で1次加硫を行って中空微小球を圧縮性層内部に一旦保持し、次いで2次加硫を行う方法（特公平6-59749号公報）が提案されている。しかしながら、この方法では、圧縮性層の加硫に長時間を要したり、製造工程が複雑になってしまうため、生産性が低下する。さらに、有機系中空微小球の融点以下で加硫を行うには、一般に超促進剤と呼ばれる特殊な加硫促進剤を使用する必要があり、印刷用プランケットの製造コストが高くなるという問題もある。

【0007】また、殻体の融点が高い有機系中空微小球を用いて、低い温度で圧縮性層を加硫成形する方法（特開平6-1091号公報）が提案されているが、有機系中空微小球の殻体は弾力性を有するものであることから、圧縮性層の作製時における加熱および加圧によって変形し易く、形成される空隙部の形状がいびつなという問題を解消することができない。

【0008】そこで、本発明の目的は、真球状の空隙部を有する圧縮性層を形成することにより、へたりの発生が十分に抑制され、長期間に亘って良好な印刷が可能となる印刷用プランケットを提供することである。

【0009】

【課題を解決するための手段】本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、無機系の材質で殻体が形成された中空微小球を圧縮性層用のゴム組成物に配合し、圧縮性層を加硫成形した後で圧力をかけて前記中空微小球の殻体を粉碎すれば、空隙の形状がほぼ真球状である圧縮性層を形成することができるという新たな事実を見出し、本発明を完成するに至った。

【0010】すなわち、本発明の印刷用プランケットは、少なくとも1層の圧縮性層を有する印刷用プランケットであって、前記圧縮性層が、無機系中空微小球を含有するゴム組成物を加硫成形し、加圧によって前記無機系中空微小球の殻体を粉碎したものであることを特徴とする。無機系中空微小球は、前述の有機系中空微小球に比べて、殻体の溶融温度や耐圧強度が著しく高い。このため、圧縮性層を加硫成形する際に中空微小球が破損したり、形状がいびつななどの問題が生じない。また、加硫成形後に圧縮性層に圧力を加えて無機系中空微小球の殻体を粉碎すれば、空隙部に弾力性を付与することができ、十分な圧縮特性を有する圧縮性層を得ること

ができる。

【0011】従って、本発明の印刷用プランケットによれば、ほぼ真球状の空隙を有する圧縮性層を形成することができ、その結果、へたりの発生が十分に抑制され、長期間に亘って良好な印刷が可能な印刷用プランケットを得ることができる。

【0012】

【発明の実施の形態】以下、本発明の印刷用プランケットについて詳細に説明する。本発明の印刷用プランケットは、無機系中空微小球を含有するゴム組成物を用いて加硫成形した圧縮性層を有するほかは特に限定されるものではなく、従来公知の印刷用プランケットと同様な構成を有していればよい。

【0013】すなわち、本発明の印刷用プランケットの一実施形態としては、例えば図1に示すように、支持体層11と、圧縮性層12と、補強層13と、表面印刷層14とをこの順に積層した、平板状の印刷用プランケット1が挙げられる。また、他の実施形態として、図2に示すように、円筒状のスリーブ20の外周面上に、ベース層21と、支持体層22と、圧縮性層23と、表面印刷層24とをこの順に積層した、継ぎ目のない円筒状のプランケット2が挙げられる。

【0014】上記印刷用プランケット1、2における各層の積層順序や積層数等は、プランケットの用途や要求される性質等に応じて適宜設定される。本発明の印刷用プランケットにおける圧縮性層は、前述のように、無機系中空微小球を含有するゴム組成物を用いて加硫成形し、次いで、加圧により無機系中空微小球の殻体を粉碎したものである。

【0015】本発明に用いられる無機系中空微小球は、例えばシリカ、ガラス、シラス、ケイ酸塩、セラミック、アルミニシリケート等の無機系の材質から形成された閉じられた殻体中に、空気等の気体を封入したものである。本発明で使用する無機系中空微小球には、印刷用プランケットの製造工程中に、とりわけ圧縮性層用ゴム組成物の混練工程や加硫工程中に容易に破壊されることのない程度の耐圧性が求められる。

【0016】一方、耐圧性が高すぎると、圧縮性層を加硫成形した後で無機系中空微小球の殻体を粉碎するのが困難になるため、圧縮性層内部の空隙の外周部に、強度が大きくかつ弾力性に乏しい殻体が粉碎されないままの状態で残存してしまう。その結果、印刷時の圧縮性層の体積変化が妨げられてしまい、十分な圧縮性を発揮できなくなる。また、殻体の粉碎に過剰な圧力が必要になると、殻体を粉碎する際に空隙自体が座屈してしまい、へたりが生じるという問題もある。このため、無機系中空微小球の耐圧性は、圧縮性層の成形後に容易に粉碎できる程度であることも求められる。

【0017】かかる観点より、無機系中空微小球の耐圧强度は、通常 $5 \sim 25 \text{ kg/cm}^2$ 、好ましくは $5 \sim 2$

0 kg/cm^2 、より好ましくは $10 \sim 15 \text{ kg/cm}^2$ の範囲で設定される。無機系中空微小球の殻体は、圧縮性層の加硫成形後粉碎されて、圧縮性層の空隙内に残存するが、殻体の残存物の量が多いと圧縮性層の圧縮特性に悪影響を及ぼしてしまう。従って、殻体は、前記耐圧強度を満足する範囲であれば、できる限り薄いものであるのが好ましい。

【0018】無機系中空微小球の粒径は $5 \sim 200 \mu\text{m}$ の範囲で設定される。粒径が $5 \mu\text{m}$ を下回ると、圧縮性層を形成した後で殻体を粉碎するのが困難になる。逆に、 $200 \mu\text{m}$ を超えると印刷用プランケットに圧接力を加えたときの反力をムラが生じ、ベタ着肉性が低下するおそれがある。無機系中空微小球の粒径は、上記範囲の中でも特に $10 \sim 150 \mu\text{m}$ であるのが好ましく、 $50 \sim 100 \mu\text{m}$ であるのがより好ましい。

【0019】無機系中空微小球の配合量は、印刷用プランケットに要求される圧縮特性に応じて適宜設定されるものであって、通常、圧縮性層の空隙率を後述する範囲で設定することができるよう、適宜調整される。なお、無機系中空微量球はその種類によって比重が大きく異なるため、その配合量を重量単位で一般化するのは困難である。

【0020】本発明の印刷用プランケットにおける圧縮性層は、その硬さがJIS A硬度で表して $40 \sim 80$ の範囲内であり、その空隙率が $30 \sim 60\%$ であるのが、良好な圧縮性を発揮するという観点から好ましい。圧縮性層の硬さが上記範囲を下回ったり、空隙率が上記範囲を超えていたりすると、圧縮性層全体の強度が低下して、復元性が低下したり、印刷に必要な印圧が得られなくなったりするおそれがある。逆に、硬さが上記範囲を超えていたり、空隙率が上記範囲を下回ったりすると、圧縮性が低下して、印刷時の圧縮性層の体積変化が妨げられるため、印刷障害を引き起こすおそれがある。圧縮性層の硬さは、上記範囲の中でも特に $45 \sim 75$ であるのが好ましく、 $50 \sim 70$ であるのがより好ましい。

【0021】圧縮性層の空隙率が上記範囲を下回ると、印刷時の体積変化が少なくなり、衝撃を吸収する効果が不十分になるおそれがある。逆に、空隙率が上記範囲を超えると、圧縮性層全体の強度が低下するため、復元性が低下したり、印刷に必要な印圧が得られなくなったりするおそれがある。圧縮性層の空隙率は、上記範囲の中でも特に $35 \sim 60\%$ であるのが好ましく、 $40 \sim 55\%$ であるのがより好ましい。

【0022】圧縮性層の硬さや空隙率は、空隙を形成する中空微小球の粒径、添加量等によって調節することができる。また、圧縮性層の硬さについては、加硫度を調整したり、補強剤、充填剤、可塑剤などの圧縮性ゴム組成物への他の添加剤にかかる配合量を調整することにより調節することもできる。圧縮性層の厚みは、圧縮性層の硬さや空隙率に応じて適宜設定されるものであるが、

通常印刷用プランケット全体の厚みの10~50%となるように設定される。圧縮性層の厚みが上記範囲を下回ると、印刷時の衝撃を吸収する効果が不十分になる。逆に、上記範囲を超えると、印刷用プランケット全体の圧縮応力が低下して、印刷に必要な印圧が得られなくなるおそれがある。

【0023】圧縮性層用のゴム組成物に用いられるゴム成分としては、従来公知の種々のものが挙げられるが、特にインキや洗浄液等に対する耐性を考慮すると耐油性に優れたものであるのが好ましい。耐油性に優れたゴムとしては、例えばアクリロニトリル-ブタジエンゴム(NBR)、クロロプロレンゴム(CR)、ウレタンゴム等が挙げられる。

【0024】本発明の印刷用プランケットにおける圧縮性層は、次のようにして形成される。すなわち、まず前述のゴム成分に、加硫剤、加硫促進剤、加硫促進助剤、加硫遮延剤等のゴムを加硫させるための薬剤や、老化防止剤、補強剤、充填剤、軟化剤、可塑剤等の、従来公知の種々の添加剤を必要に応じて配合して混練し、こうして得られたゴム組成物を適当な溶剤に溶解してゴム糊とし、これに前述の無機系中空微小球(さらに必要応じて、後述する有機系中空微小球)を配合する。

【0025】次いで、こうして得られたゴム糊を、下地となる基布(図1の例の場合は支持体11の最上層の基布または補強層13、あるいは図2の例の場合は支持体22)上に塗布し、乾燥後加硫する。さらに、この時点で(すなわち、圧縮性層の加硫後に)、あるいは圧縮性層の表面に補強層や表面印刷層を形成した上で、圧縮性層または印刷用プランケット全体に圧力をかけて、圧縮性層内の無機系中空微小球の殻体を粉碎する。

【0026】無機系中空微小球を粉碎する際の加圧の程度としては、前記中空微小球の殻体が粉碎されるのに十分な圧力であればよく、中空微小球の耐圧強度に応じて適宜設定される。なお、粉碎時の圧力が30kgf/cm²を超えると、空隙自体が座屈してしまい、へたりが生じるおそれがある。従って、粉碎時の圧力は、中空微小球が粉碎されるのに十分な圧力以上で、かつ30kgf/cm²以下であることが要求される。

【0027】本発明において、圧縮性層用のゴム組成物には、無機系中空微小球とともに有機系中空微小球を配合してもよい。本発明に使用可能な有機系中空微小球としては、プランケットの製造に用いられる従来公知の種々のものを使用することができ、例えばフェノール樹脂、ポリ塩化ビニリデン、アクリロニトリル、メタクリロニトリル、(メタ)アクリル酸メチル、およびこれらの共重合体等の、有機系の材質から形成された閉じられた殻体中に、空気等の気体を封入したものを使用できる。

【0028】無機系中空微小球とともに有機系中空微小球を用いる場合において、両者の含有割合は、体積比で

無機系中空微小球が20%以上となるように(すなわち、無機系中空微小球と有機系中空微小球との体積割合が20:80~100:0となる範囲で)設定される。無機系中空微小球の含有割合が20%を下回ると、耐圧強度の高い殻体を有する中空微小球の数が少くなり、圧縮性層の成形時、加熱・加圧時において有機系中空微小球が破損してしまうことから、良好な圧縮特性を有する圧縮性層が得られなくなるおそれがある。

【0029】以上詳述した圧縮性層とともに印刷用プランケット1、2を構成する支持体層11、22、補強層13、表面印刷層14、24、ベース層21などは、それぞれ従来と同様の構成とすることができる。すなわち、例えば平板状のプランケット1における支持体層11は、綿、ポリエステル、レーヨン等の不織布または織布からなる基布を複数枚(図1の場合は3枚)、接着用ゴム糊を介して積層した後、前記ゴム糊を加硫することによって形成される。また、補強層13も、上記と同様の基布により形成される。

【0030】表面印刷層14は、ゴム糊の塗布、乾燥によって形成された未加硫のゴム層、またはゴムコンパウンドからなる未加硫のゴムシートを加硫することによって形成される。表面印刷層14を構成するゴムとしては、例えば前述のNBR、CR、ウレタンゴムのほか、多硫化ゴム、水素添加NBRなどが挙げられる。円筒状のプランケット2におけるベース層21および表面印刷層24は、それぞれゴム糊の塗布、乾燥によって形成された未加硫のゴム層、またはゴムコンパウンドからなる未加硫のゴムシートを加硫することにより形成される。

【0031】支持体層22は、綿糸、ポリエステル糸、レーヨン糸、ナイロン糸、芳香族ポリアミド糸等の非伸縮性の線材を、ゴム糊を塗布したベース層21の周囲に、張力をかけながら巻付け、ゴム糊を加硫して固定することによって形成される。

【0032】

【実施例】以下、実施例および比較例を挙げて本発明を説明する。

【印刷用プランケットの作製】

実施例1

中空微小球としては、無機系の中空微小球である3M社製のガラスバルーン(商品名「スコッチライド・グラスバブルズ B23/500」、平均粒径70μm、耐圧強度17~56kgf/cm²)を分級して、耐圧強度が17~25kgf/cm²のもののみを使用した。

【0033】基布としての、厚さ0.3mmの綿布3枚を、それぞれNBR系のゴム糊からなる接着層を介して積層した。次いで、最上層の基布の上に、NBR100重量部、前記中空微小球35重量部、補強剤(カーボンブラック)50重量部、加硫剤(硫黄)2重量部、加硫促進剤(テトラメチルチウラムジスルフィド)1重量部、加硫促進剤(ナーシクロヘキシル-2-ベンゾチア

7
ゾリルスルフェンアミド) 2重量部、加硫促進助剤(酸化亜鉛) 5重量部およびステアリン酸1重量部からなる圧縮性層用ゴム糊を糊引きして乾燥させ、加熱して加硫した。こうして、厚さ0.95mmの支持体層の上に、厚さ0.5mmの圧縮性層が積層された積層体を形成した。

【0034】次いで、上記積層体の圧縮性層の表面に、基布としての厚さ0.25mmの綿布1枚を、NBR系のゴム糊からなる接着層を介して積層した。さらに、この基布の表面に、NBR系の表面印刷層用ゴム糊を糊引きして乾燥させ、加圧、加熱して加硫した後、表面を研磨して厚さ0.25mmの表面印刷層を形成することによって、図1(a)に示す層構成を有する、層厚み1.95mmの平板状の積層体(印刷用プランケット)を得た。

【0035】さらに、この積層体を平面プレス機に装着して、27kg/cm²の圧力にて圧接することによって中空微小球を粉碎し、本発明の印刷用プランケットを得た。

実施例2

中空微小球として、無機系中空微小球である前記ガラスバルーン「スコッチライド/グラスバブルズB23/500」と、有機系中空微小球である塩化ビニリデン系中空微小球〔松本油脂製薬(株)製の商品名「F30E」、粒径20~120μm、平均耐圧強度200kg/cm²〕とを50:50の体積割合で混合したものを使い、その配合量を、圧縮性層の空隙率が実施例1と同じになるように調整したほかは、実施例1と同様にして印刷用プランケットを作製した。

【0036】実施例3

中空微小球として、前記ガラスバルーン「スコッチライド/グラスバブルズB23/500」と、前記塩化ビニリデン系中空微小球「F30E」とを20:80の体積割合で混合したものを使い、その配合量を、圧縮性層の空隙率が実施例1と同じになるように調整したほかは、実施例1と同様にして印刷用プランケットを作製した。

【0037】実施例4

10 中空微小球として、前記ガラスバルーン「スコッチライド/グラスバブルズB23/500」と、前記塩化ビニリデン系中空微小球「F30E」とを10:90の体積割合で混合したものを使い、その配合量を、圧縮性層の空隙率が実施例1と同じになるように調整したほかは、実施例1と同様にして印刷用プランケットを作製した。

【0038】比較例1

中空微小球として前記塩化ビニリデン系中空微小球「F30E」を使い、その配合量を、圧縮性層の空隙率が実施例1と同じになるように調整したほかは、実施例1と同様にして印刷用プランケットを作製した。なお、平面プレス機による圧接は行わなかった。

【0039】〔圧縮性層の評価〕上記実施例および比較例で得られた印刷用プランケットの圧縮性層を切取ってサンプルとした。次いで、各サンプルの断面形状を顕微鏡写真に撮り、これを目視により観察して、空隙(セル)形状の評価を行った。その結果を表1に示す。

【0040】

【表1】

	比較例1	実施例1	実施例2	実施例3	実施例4
配合量(phr)					
ガラスバルーン (無機系中空微小球)	—	32.9	16.4	6.6	3.3
塩化ビニリデン系中空微小球 (有機系中空微小球)	3.6	—	1.8	2.9	3.2
無機系中空微小球 有機系中空微小球 (体積比)	—	—	50:50	20:80	10:90
評価結果					
セル形状の評価	×	○	○	○	○~△

○:セルの形状が良好であった。 △:わずかに歪んだセルが観察された。

×:セルが変形または圧壊していた。

【0041】表1より明らかのように、圧縮性層内の気孔を形成するための中空微小球として、無機系中空微小球を使い、あるいは所定の割合で無機系中空微小球と有機系中空微小球とを併用した実施例1~4では、空隙の形状がほぼ真球状と良好であって、圧縮特性に優れた圧縮性層を得ることができた。但し、無機系中空微小球

の配合割合が少ない実施例4では、セル形状に歪みが生じているものが観察された。

【0042】これに対し、有機系中空微小球のみを用いた比較例1では、圧縮性層の作製時に中空微小球が変形、または圧壊してしまったため、圧縮特性の優れた圧縮性層を得ることができなかつた。

【0043】

【発明の効果】以上詳述したように、本発明によれば、ほぼ真球状の空隙部が均一に形成された圧縮性層を形成することができる。従って、本発明の印刷用プランケットトによれば、へたりの発生を十分に抑制されており、長期間に亘って良好な印刷が可能である。

【図面の簡単な説明】

【図1】同図(a)は本発明にかかる印刷用プランケットトの一実施形態を示す断面図であって、同図(b)はその斜視図である。

【図1】

【図2】

斜視図である。

【図2】同図(a)は本発明にかかる印刷用プランケットトの他の実施形態を示す断面図であって、同図(b)はその斜視図である。

【符号の説明】

- 1 印刷用プランケットト
- 2 印刷用プランケットト
- 12 圧縮性層
- 23 圧縮性層