المعلكة المغربية وترامرة التربية الوطنية و التعليم العالي و و كون الاطر و البحث العلمي المركز الوطني للتعويم و الإمتحانات

الامتحات الوطنى الموحد لنيل شهادة البكالوريا الدورة الاستدر اكية 2005

مادة الرياضيات مسلك العلوم الرياضية أ و ب المعامل 10 مدة الإنجاز : أربع ساعات

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (2,5 ن)

. y هو القاسم المشترك الأكبر للعددين x و y

. χ هي كتابة العدد abc في نظمة العد ذات الأساس $\overline{abc}^{(\chi)}$

- . (E) : $(x+1)^2 = 9 + 5y$: المعادلة \mathbb{Z}^2 المعادلة (1)
 - . (E) علا للمعادلة (x,y) ليكن أ ليكن (0,50)

. $x\equiv 2$ [5] بين أن $x\equiv 1$ [5] بين أن

- (E) المعادلة \mathbb{Z}^2 حل في \mathbb{Z}^2 المعادلة (
- . $(\forall k \in \mathbb{Z})$; $(5k^2 + 4k 1) \land (5k + 1) = (K 3) \land 8$: بين أن $(5k^2 + 4k 1) \land (5k + 1) = (K 3) \land 8$

$$\begin{cases} \overline{121}^{(x)} = \overline{59}^{(y)} \\ x \wedge y = 8 & \longrightarrow \\ x \equiv 1[5] \end{cases}$$
 النظمة التالية : \mathbb{N}^2 على في \mathbb{N}^2 على في 0.75

التمرين الثانى: (4,5 ن)

: الذي معادلته هي المستوى المنسوب إلى معلم متعامد ممنظم $(\mathcal{C}_m, ec{v})$ نعتبر المنحنى

$$\frac{x^2}{(10-m)} + \frac{y^2}{(2-m)} = 1 \quad ; \quad m \in \mathbb{R} \setminus \{2; 10\}$$

- (\mathscr{C}_m) ناقش حسب قيم m طبيعة المنحنى (I) ناقش حسب (I)
- (المركز و الرؤوس و البؤرتان و المقاربان إن وجدا مغروطيا ، اعط عناصره المميزة (المركز و الرؤوس و البؤرتان و المقاربان إن وجدا (\mathcal{C}_m)
 - . (\mathscr{C}_1) ارسم 3 0,25
 - (II) نعتبر في مجموعة الأعداد العقدية) المعادلة ذات المجهول Z التالية :

$$0 < \alpha < \frac{\pi}{2}$$
 : $z^2 - (6\cos\alpha)z + 1 + 8\cos^2\alpha = 0$

. (E) على \mathbb{O} المعادلة \mathbb{O} المعادلة المع

ليكن z_1 و z_2 على التوالي. $(\mathfrak{T}m(z_1)>0)$ و M_1 و M_2 النقطتان ذات اللحقين Z_1 على التوالي.

. $M_1\epsilon(\mathscr{C}_1)$: تحقق أن (\mathfrak{D}_1) تحقق

- . $(\mathcal{O}M_1)$ و P_2 من P_2 من المماس للمنحنى (\mathcal{C}_1) بين أنه توجد نقطتان P_1 و P_2 من P_2 من المماس للمنحنى Θ
 - . $O{M_1}^2 + O{P_1}^2 = O{M_2}^2 + O{P_2}^2$: نحقق أن \odot تحقق أن \odot نحقق أن

الأجوبة من اقتراح الأستاذ بدر الدين الفاتحى -

- رمضان 2012

التمرين الثالث: (2,5) ليكن n عددا صحيحا طبيعيا أكبر من أو يساوي 20 .

يحتوي كيس على 10 كرات بيضاء و (n-10) كرة سوداء ، نفترض أن كل الكرات غير قابلة للتمييز باللمس

نسحب كرة من الكيس و نسجل لونها ثم نعيدها إلى الكيس . نكرر هذه التجربة n مرة .نسمي p_k احتمال الحصول على k كرة بيضاء k كرة بيضاء . k

- p_k بدلالة n و n أحسب p_k بدلالة n
- . $k \in \{0,1,\ldots,(n-1)\}$: خيث $u_k = \frac{p_{k+1}}{p_k}$: نضع 2
 - $u_k = \frac{(n-k)}{(k+1)} \times \frac{10}{(n-10)}$: بين أن (<u>ن 0,50</u>
- $10 \le k \le n-1 \iff u_k \le 1$ و $0 \le k \le 9 \iff u_k \ge 1$: بين أن $0 \le k \le 9 \iff u_k \ge 1$
 - . $\{0,1,\dots,n\}$ في k استنتج أكبر قيمة M للعدد p_k عندما يتغير k في m استنتج أكبر قيمة m

$$M = \frac{n!}{n^n} imes \frac{10^{10}}{10!} imes \frac{(n-10)^{n-10}}{(n-10)!}$$
 و بين أن :

<u>التمرين الرابع: (10,5 ن)</u>

 $f(x)=(1+x)e^{-2x}$: يتكن f الدالة العددية المعرفة على $\mathbb R$ بما يلي

 $(\mathcal{C},\vec{\imath},\vec{\jmath})$ منحناها فی معلم متعامد ممنظم هنحناها فی

- $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ ا أحسب (i) أحسب (j) أحسب
 - الفروع اللانهائية للمنحنى (\mathscr{C}). فرس الفروع اللانهائية للمنحنى
 - \mathbb{R} أدرس تغيرات الدالة f على الدالة أ
 - (\mathscr{C}) أدرس تقعر المنحنى (\mathfrak{F}) أدرس
 - . (**%**) أنشىء (**%**) .
- . $(E): y'' + 3y' + 2y = -e^{-2x}$ بين أن f حل للمعادلة التفاضلية f نين أن f بين أن f نام
 - (E) حدد الحل العام للمعادلة (() حدد الحل

الإجوبة من اقتراح الاستاذ بدر الدين الفاتحي - مضان 2012

<u> الصفحة : 9</u>

- ليكن $n \in \mathbb{N}^*$ نرمز بـ A_n لمساحة الحيز المحصور بين (\mathcal{C}) و محور الأفاصيل و محور الأراتيب و المستقيم ذي المعادلة x=n .
 - n أحسب A_n بدلالة 1,00
 - $\lim_{n\to+\infty} A_n$: أحسب $\widehat{2}$
 - $u_n = \int_0^n [f(x)]^n dx$: الكل عدد صحيح طبيعي غير منعدم نضع (III)
- $(\forall n \in \mathbb{N}^*)$; $u_n = \int_0^n \left(1 + \frac{t}{n}\right)^n e^{-2t} dt$: بين أن (xn = t) بين المتغير المتغير المتغير (xn = t)
 - $(\forall r \in [1;2]) \; ; \; 2-r \le \frac{1}{r} \le 1$ يين أن (\hat{j}) بين أن (\hat{j})
 - $(\forall n \in \mathbb{N}^*)$, $(\forall x \in [0; n])$; $x \frac{x^2}{2n} \le n \ln \left(1 + \frac{x}{n}\right) \le x$: استنتج \bigcirc 0.75
 - $(\forall n \in \mathbb{N}^*)$; $u_n \leq \int_0^n e^{-x} dx$: بین أن (3)
 - $(\forall n \in \mathbb{N}^*)$; $e^{\frac{-1}{2\sqrt{n}}} \int_0^{\sqrt{n}} e^{-x} dx \le u_n$: نین أن Θ بین أن Θ
 - استنتج أن المتتالية $(u_n)_{n\geq 1}$ متقاربة و حدد نهايتها و \mathfrak{C}
 - .]0,1[المجال a عنصر امن المجال a
 - $\int_{a}^{1} n [f(x)]^{n} dx \le n(1-a)[f(a)]^{n} : ن (i)$ بين أن (i) بين أن
 - $\lim_{n\to+\infty} \int_a^1 n [f(x)]^n dx = 0 \quad : ن$ استنتج أن : 0.50
 - $\lim_{n\to+\infty} \int_0^n n [f(x)]^n dx \qquad : \quad \text{i.e.} \qquad 0.50$

 $3k - 1 \mid 2k + 2$ التمرين الأول: (2,5 <u>ن</u>) و لدينا كذلك ٠ k-3(E) ليكن (x, y) حلا للمعادلة (3) $(3k-1) \wedge (2k+2) = (2k+2) \wedge (k-3)$: $|\psi = (2k+2) \wedge (k-3)|$ $(x+1)^2 = 9 + 5y$: هذا يعنى أن 2k + 2 | k - 35/(x+4)(x-2) : أي $5/(x+1)^2-9$ و لدينا كذلك : و بما أن 5 عدد أولى : 5/(x+4) أو 5/(x-2) : (4) $(2k+2) \wedge (k-3) = (k-3) \wedge 8$ 5/(x+4)-5 أو 5/(x-2)من النتائج (1) و (2) و (3) و (4) نستنتج أن : $x \equiv 1[5]$ أو $x \equiv 2[5]$ يعني: $(5k^2 + 4k - 1) \land (5k + 1) = (k - 3) \land 8$ (ب)(1)■ لنحل النظمة التالية · 5/(x-1) : فإن $x \equiv 1[5]$: إذا كان $(\overline{121^{(x)}} = \overline{59^{(y)}})$ $(\exists k \in \mathbb{Z})$; x-1=5k : و منه $(\exists k \in \mathbb{Z})$; x = 5k + 1 : يعنى $(\exists k \in \mathbb{Z}) \; ; \; (5k+1+1)^2 = 9+5y \; : (E)$ $x\equiv 1$ [5] و (E) على المعادلة ((x,y)) على المعادلة ((E)) و $(\exists k \in \mathbb{Z})$; $25k^2 + 4 + 20k = 9 + 5y$: يعنى إذن حسب نتيجة السؤال (ب): $(\exists k \in \mathbb{Z})$; $y = 5k^2 + 4k - 1$: و منه x = 5k + 1 $y = 5k^2 + 4k - 1$ 5/(x-2) فإن $x \equiv 2[5]$ إذا كان $(5k^2 + 4k - 1) \land (5k + 1) = 8$: فإن $x \land y = 8$: بما أن $(\exists k \in \mathbb{Z})$; x-2=5k : يعنى $(k-3) \land 8 = 8 : (2)$ $(\exists k \in \mathbb{Z})$; x = 5k + 2 : . (k-3) يقسم العدد 8: \implies $(\exists n \in \mathbb{Z})$; k-3=8n $(\exists k \in \mathbb{Z}) \; ; \; (5k+3)^2 = 9 + 5y \; : (E)$ \implies $(\exists n \in \mathbb{Z})$; k = 8n + 3 $(\exists k \in \mathbb{Z})$; $25k^2 + 9 + 30k = 9 + 5y$: يعنى (x = (5k + 1) = 40n + 16 $(\exists k \in \mathbb{Z})$; $y = 5k^2 + 6k$: إذن $\{y = 5k^2 + 4k - 1 = 320n^2 + 272n + 56\}$ و بالتالي : δ مجموعة حلول المعادلة (E) تكتب على الشكل :

و بالتالي مجموعة حلول النظمة هي:

 $S' = \{ (40n + 16 ; 320n^2 + 272n + 56) / n \in \mathbb{Z} \}$

التمرين الثاني: (4.5 ن)

(1)(I) **■** 10-m>0 و 2-m>0 إذا كان m < 10 و m < 2 (\mathcal{C}_m) : $\frac{x^2}{(\sqrt{10-m})^2} + \frac{y^2}{(\sqrt{2-m})^2} = 1$ و منه : (\mathcal{C}_m) إهليلج. 2 < m < 10 : اذا کان

m-2>0 فإن : 0-m>0 و $(\mathscr{C}_m):rac{x^2}{ig(\sqrt{10-m}ig)^2}-rac{y^2}{ig(\sqrt{m-2}ig)^2}=1$ و منه x

) رمضان 2012

من إعداد الأستاذ بدر الدين الفاتحى: (

2k + 2

 $S = \{ (5k+1; 5k^2 + 4k - 1); (5k+2; 5k^2 + 6k) / k \in \mathbb{Z} \}$

أذَكِّرُ في البداية بمبدأ خو ار ز مية أقليدس:

 $(5k^2 + 4k - 1) \wedge (5k + 1) = (5k + 1) \wedge (3k - 1)$

 $5k^2 + 4k - 1 \mid 5k + 1$

3k - 1

 $5k + 1 \mid 3k - 1$

(2) $(5k+1) \wedge (3k-1) = (3k-1) \wedge (2k+2)$

 $\Rightarrow a \wedge b = b \wedge c$

لدينا:

و لدينا كذلك:

أجوبة الدورة الاستدراكية 2005

·(1)(II) **■**

نعتبر في ٢ المعادلة التالية:

(E);
$$z^2 - (6\cos\alpha)z + (1 + 8\cos^2\alpha) = 0$$

$$\Delta$$
= $(6cos\alpha)^2 - 4(1 + 8cos^2\alpha) = (2i sin\alpha)^2$: لينا

و منه (E) تقبل حلین عقدیین مترافقین z_1 و معرفین کما یلی :

$$\begin{cases} z_1 = \frac{6\cos\alpha + 2i\sin\alpha}{2} = 3\cos\alpha + i\sin\alpha \\ z_2 = \frac{6\cos\alpha - 2i\sin\alpha}{2} = 3\cos\alpha - i\sin\alpha \end{cases}$$

(j)(2)(II)■

 $M_2(z_2)$ و $M_1(z_1)$:

$$\frac{9\cos^2\alpha}{9} + \frac{\sin^2\alpha}{1} = 1$$
 و منه : $\cos^2\alpha + \sin^2\alpha = 1$ نعلم أن :

$$\frac{(3\cos\alpha)^2}{3^2} + \frac{\sin^2\alpha}{1} = 1$$
 : أي

 (\mathscr{C}_1) يحقق معادلة الإهليلج ($3\cos \alpha$; $\sin \alpha$) إذن الزوج

 $M_1 \in (\mathscr{C}_1)$: و منه

-(2)(II) ■

 (\mathscr{C}_1) نقطة من الإهليلج $P(x_0;y_0)$ نقطة

: المعادلة الديكارتية لـ (T) مماس الإهليلج (\mathcal{E}_1) في المعادلة الديكارتية لـ P

$$(T) : \frac{xx_0}{9} + \frac{yy_0}{1} = 1$$

$$\Leftrightarrow$$
 $(T): y = \left(\frac{-x_0}{9y_0}\right)x + 1$

 $M_1(3\cos\alpha;\sin\alpha)$: لدينا $M_1(3\cos\alpha;\sin\alpha)$ الاننا الدينا

و منه المعادلة الديكارتية المختصرة لـ (OM_1) تكتب على شكل :

$$(OM_1)$$
: $y = \left(\frac{\sin \alpha}{3\cos \alpha}\right)x$

 $(OM_1) \parallel (T)$: ننطلق من الكتابة

$$\left(\frac{-x_0}{9y_0}\right) = \left(\frac{\sin\alpha}{3\cos\alpha}\right)$$
 : هذا يعني أن لهما نفس الميل أي :

$$(*) x_0 = -3y_0 \cdot \left(\frac{\sin \alpha}{\cos \alpha}\right) : e^{-3y_0}$$
: و منه

 $P(x_0; y_0) \in (\mathscr{C}_1)$. : و بما أن

$$\frac{x_0^2}{3^2} + \frac{y_0^2}{1^2} = 1$$
 : فإن

$$(\mathcal{C}_m): -\left(rac{x^2}{\left(\sqrt{m-10}
ight)^2} + rac{y^2}{\left(\sqrt{m-2}
ight)^2}
ight) = 1:$$
 و منه $(\mathcal{C}_m) = \emptyset$: نلاحظ أن $\left(rac{x^2}{\left(\sqrt{m-10}
ight)^2} + rac{y^2}{\left(\sqrt{m-2}
ight)^2}
ight)$ موجبة إذن

m < 10 يعني: m < 2 في الحالة m < 2 يعني:

$$(\mathcal{C}_m): \left(\frac{x^2}{\left(\sqrt{10-m}\right)^2} + \frac{y^2}{\left(\sqrt{2-m}\right)^2}\right) = 1$$
 الدينا $\mathcal{O}(0,0)$ و منه $\mathcal{C}(0,0)$ إهليلج مركزه $\mathcal{C}(0,0)$

$$Big(-\sqrt{10-m},0ig)$$
 و رؤوسه : $Aig(\sqrt{10-m},0ig)$ و رؤوسه

$$A(0,-\sqrt{2-m})$$
 و $A'(0,\sqrt{2-m})$

$$b = \sqrt{2 - m}$$
 نضع : $a = \sqrt{10 - m}$

$$b=\sqrt{2-m}$$
 و $a=\sqrt{10-m}$: نضع
$$c=\sqrt{a^2-b^2}=\sqrt{(2-m)-(10-m)}=2\sqrt{2}$$
 لاينا : لاينا

 $F'(-2\sqrt{2},0)$ و منه : بؤرتا الإهليلج (\mathscr{C}_m) هما : $F(2\sqrt{2},0)$ و

2 < m < 10 في الحالة:

$$(\mathscr{C}_m): \left(rac{x^2}{\left(\sqrt{10-m}
ight)^2} - rac{y^2}{\left(\sqrt{m-2}
ight)^2}
ight) = 1 :$$
و منه (\mathscr{C}_m) هنلول مرکزه (\mathscr{C}_m) هنلول مرکزه (\mathscr{C}_m)

$$A'ig(-\sqrt{10-m},0ig)$$
 و رأساه هما : $Aig(\sqrt{10-m},0ig)$ و رأساه هما

$$b = \sqrt{m-2}$$
 نضع: $a = \sqrt{10-m}$:

$$c = \sqrt{a^2 + b^2} = \sqrt{(m-2) + (10-m)} = 2\sqrt{2}$$
: لدينا

$$F'ig(-\sqrt{8},0ig)$$
 و $Fig(\sqrt{8},0ig)$ هما $Fig(\sqrt{8},0ig)$ و الهنلول و منه و منه و منه و الهنلول و ال

و لدينا كذلك : (\mathcal{E}_m) يقبل مقاربين (Δ) و (Δ') معرفين بما يلي :

$$\begin{cases} (\Delta) : y = \frac{b}{a}x \\ (\Delta') : y = -\frac{b}{a}x \end{cases} \iff \begin{cases} (\Delta) : y = \left(\sqrt{\frac{m-2}{10-m}}\right)x \\ (\Delta') : y = -\left(\sqrt{\frac{m-2}{10-m}}\right)x \end{cases}$$

 $\mathcal{O}(0,0)$ اهلیلج مرکزه (\mathcal{C}_1) الدینا حسب ما سبق

$$B'(0,-1)$$
 و رؤوسه: $A(3,0)$ و $B(-3,0)$ و $B(-3,0)$

$$F'ig(-\sqrt{8},0ig)$$
 و بؤرتاه هما : $Fig(\sqrt{8},0ig)$ و

<u>تمرين الثالث : (2,5 ن)</u> ■ (1)—

. E احتمال وقوع حدث A في تجربة عشوائية p .

عند إعادة التجربة $n \, E$ مرة متتالية فإن احتمال الحصول على $C_n^k p^k (1-p)^{n-k}$. الحدث A بالضبط k مرة هو

في هذا التمرين : الحدث A هو الحصول على كرة بيضاء. $p(A) = \frac{10}{n} :$ نكر ر التجرية n مرة.

إذن احتمال الحصول على الحدث k مرة هو احتمال الحصول على k كرة

$$p_k=C_n^kig(p(A)ig)^kig(1-p(A)ig)^{n-k}$$
: بيضاء و يساوي $p_k=C_n^kig(rac{10}{n}ig)^kig(rac{n-10}{n}ig)^{n-k}$: إذن

يمكن ترك هذه النتيجة على ما هي عليه و نكون بذلك قد أجبنا على السؤال باقتصاد تام و يمكن إضافة بعض المراحل إن كنت من هواة الحساب الحرفي لكي تصل إلى النتيجة التالية :

$$p_k = C_n^k \left(\frac{10}{n-10}\right)^k \left(\frac{n-10}{n}\right)^n$$

 $u_k = \frac{p_{k+1}}{p_k}$: نضع

$$u_k = \frac{p_{k+1}}{p_k} = \frac{C_n^{k+1} \left(\frac{10}{n-10}\right)^{k+1} \left(\frac{n-10}{n}\right)^n}{C_n^k \left(\frac{10}{n-10}\right)^k \left(\frac{n-10}{n}\right)^n}$$
ينيا:

و لدينا :

$$\frac{C_n^{k+1}}{C_n^k} = \frac{n!}{(k+1)! (n-k-1)!} \times \frac{k! (n-k)!}{n!} = \left(\frac{n-k}{k+1}\right)$$

$$u_k = \left(\frac{n-k}{k+1}\right) \times \left(\frac{10}{n-10}\right)$$
 : و منه

⊕2■

 $u_k \geq 1$: نفترض أن

 $k \ge 0$ لدينا حسب المعطيات

 $k \leq 9$: يكفى إذن أن نبر هن على أن

 $u_k \geq 1$: لدينا

$$\iff \quad \left(\frac{n-k}{k+1}\right) \times \left(\frac{10}{n-10}\right) \geq 1$$

$$\Leftrightarrow \frac{10(n-k)}{(n-10)(k+1)} \ge 1$$

 $n-k \ge 0$: فإن $n \ge k$: بما أن

و منه العددان : (n-10)(k+1) و (n-k) : موجبان

نعوض x_0 بقیمته حسب (*) فی آخر تعبیر حصلنا علیه نجد :

$$\frac{1}{9} \left(-3y_0 \cdot \frac{\sin \alpha}{\cos \alpha} \right)^2 + y_0^2 = 1$$

$$\iff y_0^2 \left(\frac{\sin^2 \alpha}{\cos^2 \alpha} + 1 \right) = 1$$

$$\Leftrightarrow y_0^2 \left(\frac{1}{\cos^2 \alpha} \right) = 1$$

$$\Leftrightarrow y_0^2 = \cos^2 \alpha$$

$$\Leftrightarrow y_0 = \pm \cos \alpha$$

$$x_0=-3y_0\left(rac{\sinlpha}{\coslpha}
ight)=-3\sinlpha$$
 : إذا كان $y_0=\coslpha$

$$x_0 = -3y_0\left(rac{\sinlpha}{\coslpha}
ight) = 3\sinlpha$$
 : فإن $y_0 = -\coslpha$

$$\{P_1(3\sin\alpha; -\cos\alpha)\}$$
و بالتالي : توجد نقطتان $\{P_2(-3\sin\alpha; \cos\alpha)\}$

 (OM_1) من الإهليلج (\mathcal{C}_1) : حيث المماس لـ (\mathcal{C}_1) في كل منهما يوازي

<u>(7.):::::</u>(2)(II)■

 $P_1(3sinlpha-icoslpha)$ لاينا $M_2(z_2)$ و $M_1(z_1)$ لاينا $P_2(-3sinlpha+icoslpha)$

$$OM_1^2 + OP_1^2 = |z_1|^2 + |3sin\alpha - icos\alpha|^2$$
 : $ext{0}$ $= (9\cos^2\alpha + \sin^2\alpha) + (9\sin^2\alpha + \cos^2\alpha)$ $= 9(\cos^2\alpha + \sin^2\alpha) + (\sin^2\alpha + \cos^2\alpha)$ $= 10$

و بنفس الطريقة لدينا:

$$OM_2^2 + OP_2^2 = |z_2|^2 + |-3\sin\alpha + i\cos\alpha|^2$$

$$= (9\cos^2\alpha + \sin^2\alpha) + (9\sin^2\alpha + \cos^2\alpha)$$

$$= 9(\cos^2\alpha + \sin^2\alpha) + (\sin^2\alpha + \cos^2\alpha)$$

$$= 10$$

$$OM_1^2 + OP_1^2 = OM_2^2 + OP_2^2$$
): و بالتالي

كية 2005 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 63

<u>التمرين الرابع: (10,5 ن)</u>

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (1+x)e^{-2x}$$

$$= \lim_{\substack{m \to -\infty \\ m = 2(x+1)}} \left(\frac{e^2}{2} \times \frac{1}{\left(\frac{e^m}{m}\right)}\right) = \boxed{+\infty}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1+x)e^{-2x}$$

$$= \lim_{\substack{m \to +\infty \\ m = 2(x+1)}} \left(\frac{e^2}{2} \times \frac{1}{\left(\frac{e^m}{m}\right)}\right) = \boxed{0}$$

$$(i)$$
 لاينا $f(x)=0$ حسب السؤال السؤال السؤال الدينا عدم

إذن: (ك) يقبل مقاربا أفقيا بجوار ∞+ و هو محور الأفاصيل

$$\lim_{x \to -\infty} f(x) = -\infty$$
 و لدينا كذلك حسب السؤال (

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right) e^{-2x} = 0$$
: لدينا

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right) e^{-2x} = +\infty \quad : \mathfrak{I}$$

إذن: (ك)يقبل فرعا شلجميا بجوار ∞ انجاهه محور الأراتيب

$$f(x) = (1+x)e^{-2x}$$
 : لدينا

 $\mathbb R$ إذن f دالة قابلة للإشتقاق على $\mathbb R$ لأنها جداء دالتين قابلتين للإشتقاق على

$$f'(x) = e^{-2x} - 2(1+x)e^{-2x}$$
:

$$\Leftrightarrow f'(x) = e^{-2x} - 2e^{-2x} - 2xe^{-2x}$$

$$\Leftrightarrow f'(x) = -e^{-2x} - 2xe^{-2x}$$

$$\iff f'(x) = -(1+2x)e^{-2x}$$

$$(\forall x \in \mathbb{R})$$
 ; $e^{-2x} > 0$: بما أن

. (1+2x) متعلقة فقط بإشارة f'(x) فإن إشارة

$$f\left(\frac{-1}{2}\right) = \left(1 - \frac{1}{2}\right)e^{-2\left(\frac{-1}{2}\right)} = \frac{e}{2}$$
 : لينا

$$\lim_{x \to -\infty} f(x) = -\infty$$
 و لدينا : $\lim_{x \to +\infty} f(x) = 0$ و لدينا

نستنتج إذن جدول تغيرات f كما يلى :

$\Leftrightarrow 10(n-k) \ge (n-10)(k+1)$

$$\Leftrightarrow 10n - 10k \ge nk + n - 10k - 10$$

$$\Leftrightarrow 10n - n + 10 \ge k(n - 10 + 10)$$

$$\iff k \leq \frac{9n+10}{n}$$

$$\iff k \le 9 + \frac{10}{n}$$

$$\Leftrightarrow k \leq 9$$

$$0 \le k \le 9$$
 : و بالتالى

الشطر الثاني من السؤال:

 $10 \le k \le (n-1)$: ننطلق من

(1)
$$10 \le 10(n-k) \le 10(n-10)$$
 : يعني

$$10 \le k \le (n-1)$$
 : و لدينا كذلك

$$11(n-10) \le (n-10)(K+1) \le 10(n-1)$$
 : يعني

$$(2) \left(\frac{1}{n(n-10)} \le \frac{1}{(n-10)(k+1)} \le \frac{1}{11(n-10)} \right)$$
 : و منه

نضرب التأطيرين (1) و (2) طرفا بطرف نحصل على :

$$\frac{10}{n(n-10)} \le \frac{10(n-k)}{(n-10)(k+1)} \le \frac{10(n-10)}{11(n-10)}$$

$$\frac{10(n-k)}{(n-10)(k+1)} \le \frac{10}{11}$$

$$u_k \leq 1$$
): أي

$$u_k = rac{p_{k+1}}{p_k} \geq 1 : 0 \leq k \leq 9 :$$
لدينا من أجل $p_{k+1} \geq p_k :$ يعني يعني

و منه المتتالية
$$(p_k)_k$$
 تزايدية .

$$u_k = rac{p_{k+1}}{p_k} \leq 1 \; : \; 10 \leq k \leq n-1 \; :$$
 و لدينا كذلك : من أجل

$$p_{k+1} \leq p_k$$
 : يعنى

و منه المتتالية
$$(p_k)_k$$
 تناقصية.

$$p_{10}$$
: هي أن أكبر قيمة لهذه المتتالية هي نستنتج أن أكبر

$$M=p_{10}=C_n^{10}\left(\frac{10}{n-10}\right)^{10}\left(\frac{n-10}{n}\right)^n$$
 إذن:

$$\iff M = \frac{n! \times 10^{10} \times (n-10)^n}{10! (n-10)! \times (n-10)^n \times n^n}$$

$$\iff M = \frac{n!}{n^n} \times \frac{10^{10}}{10!} \times \frac{(n-10)^n}{(n-10)!}$$

من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة: 64 جوبة الدورة الاستدراكية 2005 ${f x}$

—(+)(4)(I) ■

 $y=y_H+y_p$: الحل العام للمعادلة (E) يكتب على شكل العام للمعادلة (f) هو حل خاص للمعادلة (E) نأخذه يساوي y_p

 $(E_H)\;;\;y^{''}+3y^{'}+2y=0\;:$ و y_H هو حل المعادلة التفاضلية $r^2+3r+2=0\;:$ و لحلها نحل أو لا معادلتها المميزة $r_1=-1\;:$ و التي تقبل حلين حقيقيين $r_1=-1\;:$ و ذلك بعد حساب المميز $\Delta=1\;:$

$$y_H = \alpha e^{-x} + \beta e^{-2x}$$
 / $\alpha, \beta \in \mathbb{R}$: إذن

و بالتالى : الحل العام للمعادلة التفاضلية (E) يكتب على الشكل :

$$y(x)=y_H(x)+y_p(x)=lpha e^{-x}+eta e^{-2x}+f(x)$$

بحیث : $lpha$ و $lpha$ عددین حقیقیین

——(1)(II) **■**

يشير التكامل هندسيا إلى قياس طول أو مساحة أو حجم

$$A_n = \int_0^n f(x) dx = \int_0^n (1+x)e^{-2x} dx$$
 إذن :

$$u^{'}(x)=1$$
 : ومنه $u(x)=1+x$

$$v(x)=rac{-1}{2}e^{-2x}$$
 : ثم نضع $v^{'}(x)=e^{-2x}$ و منه

 $A_n = [uv] - \int u'v$: باستعمال مكاملة بالأجزاء نحصل على

$$\iff A_n = \left[\frac{-(1+x)e^{-2x}}{2} \right]_0^n + \frac{1}{2} \int_0^n e^{-2x} dx$$

$$\Leftrightarrow A_n = \left[\frac{-(1+x)e^{-2x}}{2}\right]_0^n + \frac{1}{2}\left[\frac{-e^{-2x}}{2}\right]_0^n$$

$$\iff$$
 $A_n = \left(\frac{-(1+n)e^{-2n}}{2} + \frac{1}{2}\right) + \frac{1}{2}\left(\frac{-e^{-2n}}{2} + \frac{1}{2}\right)$

$$\iff$$
 $A_n = e^{-2n} \left(\frac{-(1+n)}{2} - \frac{1}{4} \right) + \frac{1}{2} + \frac{1}{4}$

$$\iff A_n = e^{-2n} \left(\frac{-3 - 2n}{4} \right) + \frac{3}{4}$$

$$\iff A_n = \frac{-e^{-2n}}{4}(2n+3) + \frac{3}{4}$$

$$\Leftrightarrow A_n = \frac{3 - (2n+3)e^{-2n}}{4}$$

$$f^{'}(x) = -(1+2x)e^{-2x}$$
 : لدينا

$$f''(x) = -2e^{-2x} + 2(1+2x)e^{-2x}$$
 : إذن

$$\Leftrightarrow f''(x) = -2e^{-2x} + 2e^{-2x} + 4xe^{-2x}$$
$$\Leftrightarrow f''(x) = 4xe^{-2x}$$

$$f^{''}(x) = 0$$
: فإن $x = 0$

$$f^{''}(x) > 0$$
 : فإن $x > 0$: إذا كان

$$f^{''}(x) < 0$$
 : فإن $x < 0$: إذا كان

نستنتج إذن الجدول التالى:

(i)(3)(I)■

x	-∞	0	+∞
f''(x)	_	ф	+
(&)	(ك)مُقَعَّر	$\Omega(0,1)$ نقطة انعطاف	(%)مُحَدَّب

(j)(4)(I) **■**

$$\begin{cases} f(x) = (1+x)e^{-2x} \\ f'(x) = -(1+2x)e^{-2x} \\ f''(x) = 4xe^{-2x} \end{cases}$$

$$f''(x) + 3f'(x) + 2f(x) = 4xe^{-2x} - 3(1+2x)e^{-2x} + 2(1+x)e^{-2x}$$
$$= (4x - 3 - 6x + 2 + 2x)e^{-2x}$$
$$= -e^{-2x}$$

(E) : إذن f حل خاص للمعادلة التفاضلية

$$(E): y'' + 3y' + 2y = -e^{-2x}$$

الصفحة: 65 من إعداد الأستاذ بدر الدين الفاتحي: () رمضان 2012 الصفحة: 65

$$\Leftrightarrow 1 - t \le \frac{1}{t+1} \le 1$$

$$\Leftrightarrow \int (1-t) dt \le \int \left(\frac{1}{t+1}\right) dt \le \int 1 dt$$

$$\Leftrightarrow t - \frac{t^2}{2} \le \ln(1+t) \le t$$

$$\vdots \text{ i. i. } t \text{ i. i. i. } t \text{ i. i. i. } t \text{ i. i. }$$

$$\iff \frac{x}{n} - \frac{x^2}{2n^2} \le \ln\left(1 + \frac{x}{n}\right) \le \frac{x}{n}$$

: نضر ب أطراف هذا التأطير في العدد الموجب الغير المنعدم n نحصل على

$$\iff \left(x - \frac{x^2}{2n} \le n \ln \left(1 + \frac{x}{n} \right) \le x \right)$$

-(i)(3)(III) **■**

 $n\epsilon \mathbb{N}^*$ يكن

$$(\forall x \in [0, n])$$
 , $(\forall n \in \mathbb{N}^*)$; $n \ln \left(1 + \frac{x}{n}\right) \le x$
$$\ln \left(1 + \frac{x}{n}\right)^n \le x \qquad \text{: a.s.}$$
 $\left(1 + \frac{x}{n}\right)^n \le e^x \qquad \text{: a.s.}$ و منه :

: نجد e^{-2x} نجد المتواوتة في العدد الموجب

$$\left(1 + \frac{x}{n}\right)^n e^{-2x} \le e^{-x}$$

$$\Rightarrow \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx \le \int_0^n e^{-x} dx$$

$$\Rightarrow \left(u_n \leq \int_0^n e^{-x} \, dx \right) (*)$$

—(÷)(3)(III) ■

 $n\epsilon \mathbb{N}^*$ ليكن

$$x - \frac{x^2}{2n} \le n \ln \left(1 + \frac{x}{n} \right)$$

$$\iff x - \frac{x^2}{2n} \le \ln\left(1 + \frac{x}{n}\right)^n$$

$$\iff$$
 $e^{\left(x-\frac{x^2}{2n}\right)} \le \left(1+\frac{x}{n}\right)^n$

 $\lim_{n\to +\infty} (2n+3)e^{-2n} = \lim_{\substack{m\to +\infty\\ m=2n+3}} e^3 \times \frac{1}{\left(\frac{e^m}{m}\right)} = 0 \quad :$ لاينا

$$\lim_{n \to +\infty} \frac{3 - (2n+3)e^{-2n}}{4} = \frac{3}{4} \quad \text{: e. }$$

$$\left(\lim_{n o +\infty}A_n=rac{3}{4}
ight)$$
 : و بالنالي

 $\overline{(\forall n \in \mathbb{N}) \; ; \; u_n = n \int_0^1 [f(x)]^n \, dx \; : }$ نضع

$$dt = ndx$$
 : و منه $t = nx$

$$t=0$$
 فإن $x=0$

$$t=n$$
 فإن $x=1$

$$u_n = n \int_0^n \left[f\left(\frac{t}{n}\right) \right]^n \frac{dt}{n}$$
 و بالنالي :

$$\iff u_n = \frac{n}{n} \int_0^n \left(\left(1 + \frac{t}{n} \right) e^{\frac{-2t}{n}} \right)^n dt$$

$$\iff u_n = \int_0^n \left(1 + \frac{t}{n}\right)^n e^{-2t} dt$$

 $1 \leq u \leq 2$ يعنى : $u \in [1,2]$

$$(1) \boxed{\frac{1}{u} \le 1} \; : \frac{1}{2} \le \frac{1}{u} \le 1 \; :$$
و منه $2 \le \frac{1}{u} \le 1$

$$(\forall u \in [1,2])$$
 ; $(u-1)^2 \ge 0$: فعلم أن

$$u^2 - 2u + 1 \ge 0$$
 : إذن

$$u^2 + 1 \ge 2u$$
 : و منه

: نضرب الطرفين في العدد الموجب الغير المنعدم $\frac{1}{u}$ نحصل على

$$\frac{u^2+1}{u} \ge 2$$

$$(2)\left(\frac{1}{u} \ge 2 - u\right) : \frac{1}{u} \ge 2 + \frac{1}{u} \ge 2$$
و منه : $u + \frac{1}{u} \ge 2$

$$(\forall u \in [1,2])$$
 ; $2-u \leq \frac{1}{u} \leq 1$: من (2) نستنتج أن

—(±)(2)(III) ■

(j)(2)(III)**■**

$$n \epsilon \mathbb{N}^*$$
 و $x \epsilon [0,n]$ ليكن

$$0 \le \frac{x}{n} \le 1$$
: و منه $0 \le x \le n$

$$0 \le t \le 1$$
 : إذن $t = \frac{x}{n}$

$$1 < t + 1 < 2$$
:

$$(i)(2)$$
 السؤال حسب السؤال

$$2 - (t+1) \le \frac{1}{t+1} \le 1$$

(⊆)(3)(III) ■

من (*) و (**) و نستنتج أن :

$$\left(\left(1-e^{-n^{rac{1}{3}}}
ight)e^{\left(rac{-1}{2n^{rac{1}{3}}}
ight)} \leq u_n \leq (1-e^{-n})
ight)$$
 : و بالنالي :

 $=e^{\left(\frac{-1}{2n^{\frac{1}{3}}}\right)}\left(-e^{-n^{\frac{1}{3}}}+1\right)$

نحسب نهايتي طرفي هذا التأطير بجوار ∞ + نحصل على :

. 1 متتالية متقاربة و تؤول إلى $(u_n)_n$.

-(j)(4)(III)■

 $a \le x \le 1$ و 0 < a < 1 : ليكن

. $[0,+\infty[$ لدينا f دالة تناقصية على المجال

$$f(1) \le f(x) \le f(a)$$
 : إذن

$$\Leftrightarrow \quad 2e^{-2} \le f(x) \le f(a)$$

$$\iff 0 < 2e^{-2} \le f(x) \le f(a)$$

$$\iff$$
 $0 \le n(f(x))^n \le n(f(a))^n$

$$\iff 0 \le \int_a^1 n(f(x))^n dx \le \int_a^1 n(f(a))^n dx$$

$$\iff 0 \le \int_a^1 n(f(x))^n dx \le n(1-a)(f(a))^n$$
 (#)

$$\Leftrightarrow e^{\left(x - \frac{x^2}{2n}\right)} e^{-2x} \le \left(1 + \frac{x}{n}\right)^n e^{-2x}$$

$$\iff \int_0^n e^{-\left(x + \frac{x^2}{2n}\right)} dx \le \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx$$

$$\iff \left[\int_0^n e^{-\left(x + \frac{x^2}{2n}\right)} dx \le u_n \right] (1)$$

$$1 \leq n^2$$
 : إذن $n \leq n \leq n$

$$n^{\frac{1}{3}} \leq n$$
 : و منه $n \leq n^3$

$$(2) \int_{0}^{n^{\frac{1}{3}}} e^{-\left(x + \frac{x^{2}}{2n}\right)} dx \le \int_{0}^{n} e^{-\left(x + \frac{x^{2}}{2n}\right)} dx$$
 : يعني أن

$$x^2 \le n^{\frac{2}{3}}$$
: الْأِن $0 \le x \le n^{\frac{1}{3}}$: ليكن

$$\iff x^2 \le \frac{2n}{2n^{\frac{1}{3}}}$$

$$\iff 2n^{\frac{1}{3}} \le \frac{2n}{x^2}$$

$$\iff \frac{-1}{2n^{\frac{1}{3}}} \le \frac{-x^2}{2n}$$

$$\Leftrightarrow -x - \frac{1}{2n^{\frac{1}{3}}} \le -x - \frac{x^2}{2n}$$

$$\Leftrightarrow e^{\left(-x - \frac{1}{2n^{\frac{1}{3}}}\right)} < e^{-\left(x + \frac{x^2}{2n}\right)}$$

$$\Leftrightarrow \left(\int_0^{n^{\frac{1}{3}}} e^{\left(-x - \frac{1}{2n^{\frac{1}{3}}}\right)} dx \le \int_0^{n^{\frac{1}{3}}} e^{-\left(x + \frac{x^2}{2n}\right)} dx \right)$$
 (3)

من (1) و (2) و (3) نستنتج أن :

$$\int_0^{n^{\frac{1}{3}}} e^{\left(-x - \frac{1}{2n^{\frac{1}{3}}}\right)} dx \le \int_0^{n^{\frac{1}{3}}} e^{-\left(x + \frac{x^2}{2n}\right)} dx \le \int_0^n e^{-\left(x + \frac{x^2}{2n}\right)} \le u_n$$

$$\left(\int_0^{n^{\frac{1}{3}}} e^{\left(-x-\frac{1}{2n^{\frac{1}{3}}}\right)} dx \le u_n\right)$$
 (**)

—(+)(4)(III)∎

$$f(1) < f(a) < f(0)$$
 الذينا : $0 < a < 1$ الذينا : $\ln(f(a)) < \ln 1$ و منه : $2e^{-2} < f(a) < 1$: أي الم

$$\lim_{n \to +\infty} n(1-a)(f(a))^n = \lim_{n \to +\infty} n(1-a)e^{n\ln(f(a))}$$

$$= \lim_{n \to +\infty} n\ln(f(a)) e^{n\ln(f(a))} \left(\frac{1-a}{\ln(f(a))}\right)$$

$$= \lim_{m \to -\infty} (me^m) \left(\frac{1-a}{\ln(f(a))}\right)$$

$$= 0 \times \left(\frac{1-a}{\ln(f(a))}\right) = 0$$

إذن حسب التأطير (#)

$$\Leftrightarrow \quad 0 \le \int_{a}^{1} n(f(x))^{n} dx \le \underbrace{n(1-a)(f(a))^{n}}_{n\infty}$$

$$\lim_{n\to\infty} \left(\int_a^1 n(f(x))^n \, dx \right) = 0$$
 و بالذالي :

-©4)(III)■

$$\lim_{n o\infty}u_n=1$$
 دينا حسب نتيجة السؤال (3)

$$\lim_{n\to\infty} \left(\int_0^1 n(f(x))^n dx \right) = 1 \qquad :$$

$$\lim_{n\to\infty} \left(\int_0^a n(f(x))^n dx + \int_a^1 n(f(x))^n dx \right) = 1$$

$$\lim_{n \to \infty} \left(\int_a^1 n(f(x))^n dx \right) = 0 \qquad \textcircled{4} لا ينا حسب نتيجة السؤال$$

إذن :

$$\lim_{n\to\infty} \left(\int_0^a n(f(x))^n dx \right) = 1 \quad ; \quad (\forall a\epsilon] 0,1[)$$

= و الحمد لله رب العاطب ■

أجوبة الدورة الاستدراكية 2005 من إعداد الأستاذ بدر الدين الفاتحي : (الصفحة : 68