Quiz for Summer Analytics Week 3

Total	points	37
· Otal	ponito	0 /

Hope that you've gone through the course content for week-3.

- This form accepts the solution only once, so make sure you don't press the submit button accidentally. No requests will be entertained.
- Use the SAME email ID which you used for registering for Summer Analytics 2025.
- Please follow the honor code, which otherwise may lead to harsh actions being taken.

All the best:)

	0 of 0 points
Name * Sakshi Rastogi	
Email ID * sakshi97182@gmail.com	
Are you from IIT Guwahati? * Yes No	
If you are from IIT Guwahati, provide your roll number	

Did you explore and star the repositories by our friends at Pathway the course and final hackathon) Star 🐥 so that it's easier for you to and when required! Pathway Main Repo with all Updates: https://github.com/pathwaycom/pathway Pathway LLM App Temphttps://github.com/pathwaycom/llm-app	navigate as
Yes	
○ No	
Quiz Starts from here.	37 of 43 points
✓ On the same dataset, compare three regressors:	3/3
1. Without any regularization , 2. Ridge with very large λ, 3. Las moderate λ.	so with
Which ordering is correct for variance (highest \rightarrow lowest)?	
$\bigcirc A. 2 \rightarrow 1 \rightarrow 3$	
	~
$\bigcirc C. \ 3 \rightarrow 1 \rightarrow 2$	
$\bigcirc D. 1 \rightarrow 2 \rightarrow 3$	
\checkmark You plot train- and validation-MSE vs. λ for Ridge. Both curves λ ≈0, validation dips then rises. Which region indicates underfit which overfitting?	
\bigcirc A. Underfitting at low λ ; overfitting at high λ	
B. Underfitting at high $λ$; overfitting at low $λ$	✓
\bigcirc C. Both under- and overfitting at low λ	
O. Neither; this shape is inconclusive	

(?)

✓	Given a classifier with TP, FP, TN, FN, which metric remains unchanged if you swap the positive and negative labels?	2/2
0	A. Precision	
0	B. Recall (Sensitivity)	
•	C. Accuracy	/
0	D. Specificity	
/	As you raise the decision threshold t for calling "positive":	2/2
•	A. Precision ↑, Recall ↓	/
0	B. Precision ↓, Recall ↑	
0	C. Both Precision & Recall ↑	
0	D. Both Precision & Recall ↓	
×	A binary classifier outputs prediction probabilities for class 1 uniformly distributed on [0, 2/3] and class 0 uniformly distributed on [1/3, 1]. What is the AUC-ROC value for this classifier?	0/3
0	A) 0.5 (random classifier performance)	
•	B) 0.75 (good discriminative ability)	×
0	C) 0.875 (excellent performance)	
0	D) Cannot be determined without threshold information	
Corr	ect answer	
•	C) 0.875 (excellent performance)	

Consider a regularized logistic regression model for medical diagnosis 2/2 where the cost function is: $J(\theta) = -\sum [y^{(i)}log(h\theta(x^{(i)})) + (1-y^{(i)})log(1-h\theta(x^{(i)}))] + \lambda \sum \theta_{j}^{2}$. If increasing λ from 0.01 to 1.0 changes the decision boundary from highly curved to nearly linear, this indicates:	
A) The model is transitioning from overfitting to optimal fit	
B) L2 regularization is forcing the model toward higher bias	
C) The features are becoming less correlated with the target	
D) The regularization is improving feature selection	
Consider two regularized logistic regression models for email spam 3/3 detection: Model 1 uses L1 with λ_1 =0.1, Model 2 uses L2 with λ_2 =0.01. Both achieve similar validation accuracy. In a production environment with limited computational resources, which model characteristic would favor Model 1?	
A) Better handling of correlated email features	
B) Lower memory requirements due to sparse coefficient vector	
C) More robust predictions for new email types	
D) Higher interpretability of spam indicators	

	✓	The Minkowski distance metric is defined as: $d(x,y) = (\Sigma_i x_i - y_i p)^n (1/p)$. What 2/2 is the mathematical relationship between Minkowski distance and other common distance metrics?
	0	A) p=1 gives Euclidean, p=2 gives Manhattan
	•	B) p=2 gives Euclidean, p=1 gives Manhattan
	0	C) p=∞ gives Euclidean, p=1 gives Chebyshev
	0	D) p=0 gives Manhattan, p=1 gives Euclidean
	✓	In multinomial Naive Bayes with Laplace smoothing, the probability $P(\text{word} \text{class})$ is calculated as: $P(w_i c) = (\text{count}(w_i,c) + \alpha)/(\text{count}(c) + \alpha \times V)$. If a vocabulary has 1000 words, $\alpha = 1$, and class C has 500 word occurrences with word "excellent" appearing 5 times, what is $P(\text{"excellent"} C)$?
	0	A) 5/500
	0	B) 6/501
	•	C) 6/1500
	0	D) 5/1000
	~	In Gaussian Naive Bayes, each feature follows a normal distribution: $P(x_i c)$ 4/4 = $(1/\sqrt{(2\pi\sigma^2c)})\exp(-(x_i-\mu c)^2/2\sigma^2c)$. If feature values for class C have $\mu c=10$, $\sigma^2 c=4$, what is the relative likelihood of observing $x_i=12$ versus $x_i=8$?
	O	A) They have equal likelihood (symmetric around mean)
	0	B) x _i =12 is twice as likely as x _i =8
	0	C) x_i =8 is twice as likely as x_i =12
	0	D) The ratio depends on other features
?		

✓ A medical diagnostic system uses Gaussian Naive Bayes to classify diseases from continuous biomarker measurements. The ROC curve shows AUC=0.92, but the confusion matrix reveals 15% false negative rate for a critical disease. From a mathematical perspective, what does this suggest about the optimal threshold selection?
A) The current threshold maximizes overall accuracy
B) The threshold should be lowered to increase sensitivity
C) The AUC value is inconsistent with the confusion matrix
D) The model suffers from severe class imbalance
✓ Spotify's music recommendation system processes 70 million songs with 3/3 13 audio features (danceability, energy, speechiness, acousticness, etc.). If they use weighted KNN with inverse distance weighting w(d) = 1/d, what happens mathematically when two songs have identical feature vectors (d = 0)?
13 audio features (danceability, energy, speechiness, acousticness, etc.). If they use weighted KNN with inverse distance weighting w(d) = 1/d, what happens mathematically when two songs have identical feature vectors (d
13 audio features (danceability, energy, speechiness, acousticness, etc.). If they use weighted KNN with inverse distance weighting w(d) = 1/d, what happens mathematically when two songs have identical feature vectors (d = 0)?
 13 audio features (danceability, energy, speechiness, acousticness, etc.). If they use weighted KNN with inverse distance weighting w(d) = 1/d, what happens mathematically when two songs have identical feature vectors (d = 0)? A) The weight becomes undefined, requiring regularization to w(d) = 1/(d + ε)

	Amazon's "Customers who bought this item also bought" feature uses item-based collaborative filtering with KNN. For a specific smartphone case, the k=5 nearest products in the recommendation space are: [wireles charger: 0.85, screen protector: 0.82, car mount: 0.78, headphones: 0.71, tablet case: 0.65] where numbers represent cosine similarity scores. If Amazon uses weighted voting with similarity-based weights, what is the relative influence of the wireless charger compared to the tablet case?	3/3 S
	A) 1.31 times more influential (0.85/0.65)	✓
0	B) 0.20 times more influential (difference of 0.20)	
0	C) 1.31 times more influential, but only if $k > 3$	
0	D) Equal influence since both are in the k-nearest neighbors	
,	The linear regression pipeline in the Pathway template computes	
	aggregates like sum_x, sum_y, sum_x_y, and sum_x_square. Suppose the incoming Kafka stream has missing or malformed rows like "x, " or " ,5". What would be the best way to handle these errors in a streaming setting while ensuring your regression continues producing meaningful results?	3/3
	aggregates like sum_x, sum_y, sum_x_y, and sum_x_square. Suppose the incoming Kafka stream has missing or malformed rows like "x, " or " ,5". What would be the best way to handle these errors in a streaming setting while ensuring your regression continues producing	3/3
	aggregates like sum_x, sum_y, sum_x_y, and sum_x_square. Suppose the incoming Kafka stream has missing or malformed rows like "x, " or " ,5". What would be the best way to handle these errors in a streaming setting while ensuring your regression continues producing meaningful results?	3/3
	aggregates like sum_x, sum_y, sum_x_y, and sum_x_square. Suppose the incoming Kafka stream has missing or malformed rows like "x, " or " ,5". What would be the best way to handle these errors in a streaming setting while ensuring your regression continues producing meaningful results? Ignore all rows with missing values silently	3/3

X You're building a real-time system that continuously estimates the slope (a) and intercept (b) of a linear relationship between variables x and y using streaming summary statistics: count: number of observations sum_x, sum_y: sums of x and y values sum_x_y: sum of x * y sum_x_square: sum of x2 Write a robust Python function that computes a and b using only these aggregate values. Your function should safely handle all edge cases. The return should be a tuple (a, b) or (None, None) if the result is undefined. def linear_regression_params(count, sum_x, sum_y, sum_x_y, sum_x_square): if count <= 1: return (None, None) denominator = (count * sum_x_square) - (sum_x ** 2) if denominator == 0: return (None, None) a = ((count * sum_x_y) - (sum_x * sum_y)) / denominator $b = (sum_y - a * sum_x) / count$

This content is neither created nor endorsed by Google. - <u>Contact form owner</u> - <u>Terms of Service</u> - <u>Privacy Policy</u>

Does this form look suspicious? <u>Report</u>

Google Forms

return (a, b)