Corrigé 6 du jeudi 27 octobre 2016

Exercice 1.

Montrons que $\lim_{\substack{x \to 0 \\ \neq}} \frac{\sin x}{x} = 1$.

 $D\acute{e}monstration: Pour tout <math>x \in]0, \frac{\pi}{2}[$, on a

$$\sin x < x < \operatorname{tg} x \quad \Leftrightarrow \quad \sin x < \quad x \quad < \frac{\sin x}{\cos x}$$

$$\Leftrightarrow \quad 1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\Leftrightarrow \quad \cos x < \frac{\sin x}{x} < 1.$$

Remarquons que l'on a également pour tout $x \in]-\frac{\pi}{2},0[$:

$$\cos(x) = \cos(-x) < \frac{\sin(-x)}{-x} = \frac{\sin(x)}{x} < 1.$$

Donc, pour tout $0 < |x| < \frac{\pi}{2}$, nous avons la relation : $\cos(x) < \frac{\sin(x)}{x} < 1$. Comme $\lim_{\substack{x \to 0 \\ \neq}} \cos x = 1$, on obtient, par le théorème des deux gendarmes, le résultat cherché.

Exercice 2.

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$
 et $(x^2 - 1) = (x - 1)(x + 1)$.

Ainsi

$$f(x) = \frac{x^2 + x + 1}{x + 1}, \ \forall x \in D.$$

Si $x_0 = 1$, on a

$$\lim_{\substack{x \to x_0 \\ \neq x}} f(x) = \lim_{\substack{x \to x_0 \\ \neq x}} f(x) = \lim_{\substack{x \to x_0 \\ \neq x}} f(x) = \frac{3}{2}.$$

b) En reprenant la fonction $f:D\to\mathbb{R}$ ci-dessus, on constate que

$$\lim_{\substack{x \to -1 \\ x \neq 0}} (x^2 + x + 1) = 1 \text{ et } \lim_{\substack{x \to -1 \\ x \neq 0}} (x + 1) = 0.$$

Ainsi

$$\lim_{\substack{x \to -1 \\ <}} f(x) = -\infty \quad \text{ et } \quad \lim_{\substack{x \to -1 \\ <}} f(x) = +\infty,$$

et donc $\lim_{x \to -1} f(x)$ n'existe pas.

c) Si $f: \mathbb{R} \to \mathbb{R}$ est définie par

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

on a, pour tout $\epsilon > 0$,

$$|x - 0| \le \epsilon \implies |f(x) - 0| \le \epsilon.$$

En posant donc $\ell = 0$, $x_0 = 0$ et $\delta = \epsilon$, on obtient:

$$\forall \epsilon > 0, \exists \delta = \epsilon \text{ tel que si } |x - x_0| \le \delta \text{ alors } |f(x) - \ell| \le \epsilon,$$

ce qui prouve que $\lim_{\substack{x \to x_0 \\ \neq}} f(x) = 0$ lorsque $x_0 = 0$.

Ainsi donc

$$\lim_{\substack{x \to x_0 \\ x \neq x}} f(x) = \lim_{\substack{x \to x_0 \\ x \neq x}} f(x) = \lim_{\substack{x \to x_0 \\ x \neq x}} f(x) = 0.$$

d) En reprenant la fonction ci-dessus et en posant $x_0 = 1$, on constate:

1°) Si
$$(a_n)_{n=0}^{\infty} \subset \mathbb{Q}$$
, est telle que $\lim_{n \to \infty} a_n = 1$ et $a_n > 1$, $\forall n \in \mathbb{N}$, alors $\lim_{n \to \infty} f(a_n) = 1$.

1°) Si
$$(a_n)_{n=0}^{\infty} \subset \mathbb{Q}$$
, est telle que $\lim_{n \to \infty} a_n = 1$ et $a_n > 1$, $\forall n \in \mathbb{N}$, alors $\lim_{n \to \infty} f(a_n) = 1$.
2°) Si $(b_n)_{n=0}^{\infty} \subset \mathbb{R} \setminus \mathbb{Q}$, est telle que $\lim_{n \to \infty} b_n = 1$ et $b_n > 1$, $\forall n \in \mathbb{N}$, alors $\lim_{n \to \infty} f(b_n) = 0$.

Les propriétés (1°) et (2°) prouvent que $\lim_{x \to 1} f(x)$ <u>n'existe pas</u>.

Il en est de même pour $\lim_{x \to 1} f(x)$ et $\lim_{x \to 1} f(x)$.

Exercice 3.

Soit $A \subset \mathbb{R}$ le sous-ensemble de \mathbb{R} défini par:

$$A = \left\{ \frac{1}{k\pi} : k \in \mathbb{Z}, k \neq 0 \right\},\,$$

et soit $f: \mathbb{R} \to \mathbb{R}$ la fonction donnée par:

$$f(x) = \begin{cases} 0, & \text{si } x \in \mathbb{Q}, \\ 1, & \text{si } x \in A, \\ x \sin\left(\frac{1}{x}\right) & \text{si } x \notin (\mathbb{Q} \cup A). \end{cases}$$

Remarquons pour commencer que, puisque f est définie sur tout \mathbb{R} , on a que f est définie au voisinage de x_0 pour tout point $x_0 \in \mathbb{R}$.

a) Montrons que f admet une limite en tous les points de A.

Soit donc $k \in \mathbb{Z}, k \neq 0$ et posons $x_0 = \frac{1}{k\pi}$. Si $(a_n)_{n=0}^{\infty} \subset \mathbb{R}$ est une suite de nombres réels telle que $a_n \neq x_0, \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} a_n = x_0$, on va montrer que

$$\lim_{n \to \infty} f(a_n) = 0$$

ce qui montrera que

$$\lim_{x \to x_0} f(x) = 0.$$

Si $\delta > 0$ est tel que $]x_0 - \delta, x_0 + \delta[\cap A = \{x_0\}, \text{ alors il existe } N > 0 \text{ tel que } \forall n \geq N \text{ on a } a_n \in]x_0 - \delta, x_0 + \delta[$. Puisque on a supposé que $a_n \neq x_0, \forall n \in \mathbb{N}$, on obtient si $n \geq N$: $a_n \in]x_0 - \delta, x_0 + \delta[$ et $a_n \notin A$. Ainsi, lorsque $n \geq N$:

$$f(a_n) = \begin{cases} a_n \sin\left(\frac{1}{a_n}\right) & \text{si } a_n \notin \mathbb{Q}, \\ 0 & \text{si } a_n \in \mathbb{Q}. \end{cases}$$

On a $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{x_0}=k\pi$ et ainsi $\lim_{n\to\infty}\sin\left(\frac{1}{a_n}\right)=\sin k\pi=0$. On conclut que

$$\lim_{n \to \infty} a_n \sin\left(\frac{1}{a_n}\right) = 0.$$

Soit maintenant $\epsilon > 0$. Il existe M > N tel que $\forall n \geq M$ on a

$$\left| a_n \sin\left(\frac{1}{a_n}\right) \right| \le \epsilon.$$

Si $n \geq M$, alors ou bien $a_n \in \mathbb{Q}$ et alors $f(a_n) = 0$, ou bien $a_n \notin \mathbb{Q}$ et dans ce cas $|f(a_n)| = |a_n \sin(\frac{1}{a_n})| \leq \epsilon$. Dans tous les cas on a bien

$$|f(a_n)| \le \epsilon, \forall n \ge M$$

ce qui montre que $\lim_{n\to\infty} f(a_n) = 0$ et donc que

$$\lim_{\substack{x \to x_0 \\ \neq}} f(x) = 0.$$

b) Montrons que f n'admet pas de limite au point $x_0 = 0$.

En effet,

· Si $(a_n)_{n=0}^{\infty}$ est une suite telle que

$$a_n \neq 0, \forall n \in \mathbb{N}, \qquad a_n \notin (\mathbb{Q} \cup A), \qquad \lim_{n \to \infty} a_n = 0,$$

on obtient $\lim_{n\to\infty} f(a_n) = 0$.

· Par contre, si $a_n = \frac{1}{n\pi}$ où $n \in \mathbb{N}^*$, on a bien $a_n \neq 0, \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} a_n = 0$ mais $\lim_{n \to \infty} f(a_n) = 1$.

Ceci prouve (c.f. remarque 3.4 p. 34) que $\lim_{\substack{x \to x_0 \\ \neq}} f(x)$ n'existe pas.

c) Montrons que si $x_0 \notin A$, $\lim_{\substack{x \to x_0 \\ \neq}} f(x)$ n'existe pas.

On a déjà montré que $\lim_{x \to 0} f(x)$ n'existe pas.

Posons $g(x)=x\sin\left(\frac{1}{x}\right), \forall x\in\mathbb{R}^*.$ Si $x_0\not\in A$ et $x_0\neq 0,$ on montre que

$$\lim_{\substack{x \to x_0 \\ \neq}} g(x) = x_0 \sin(1/x_0) \neq 0.$$

- · Si $(a_n)_{n=0}^{\infty}$ est une suite telle que $a_n \notin (\mathbb{Q} \cup A)$, $\forall n \in \mathbb{N}$, $a_n \neq x_0, \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} a_n = x_0$, on a $\lim_{n \to \infty} f(a_n) = x_0 \sin(1/x_0) \neq 0$.
- · Par contre, par densité de \mathbb{Q} dans \mathbb{R} , il existe $(a_n)_{n=0}^{\infty} \subset \mathbb{Q}, a_n \neq x_0, \forall n \in \mathbb{N}$ telle que $\lim_{n \to \infty} a_n = x_0$ et on a $\lim_{n \to \infty} f(a_n) = 0$.

Ce qui implique, encore une fois (c.f. remarque 3.4 p. 34) , que $\lim_{x\to x_0} f(x)$ n'existe pas.