Grundlagen

- Qualitative Attribute:
 - Variieren nach Beschaffenheit
- Quantitative Attribute:
 - Variieren nach Wert/Zahlen
- Diskrete Attribute:
 - abgestufte Werte
- Stetige Attribute:
 - können im Intervall jeden reellen Wert annehmen

1.1 Skalenniveaus

- Nominal
 - nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
 - stets qualitativ
- Ordinal
 - natürliche oder festzulegende Rangfolge
- Kardinal/Metrisch
 - numerischer Art
 - Ausprägung und Unterschied sind messbar
 - verhältnisskaliert (Absoluter Nullpunkt vorhanden; (Doppelt so viel.))
 - intervallskaliert (Kein Nullpunkt, nur Differenzen)

Sym. vs asym. Attribute

- Das symmetrische binäre Attribut ist ein Attribut, bei dem jeder Wert gleichwertig ist (w/m)
- · Asymmetrisch ist ein Attribut, bei dem die beiden Ausprägungen nicht gleichwertig sind (Testergebnisse oder Vergleich von Umfragen)

1.3 Rauschen Artefakte, Ausreißer

- Rauschen (Random Verzerrung der Messung durch Einflussfaktoren)
- Artefakte (Unvollständige Messwerte)
- Ausreißer (Messwerte, die nicht im Normalbereich liegen)

1.4 Datenvorverarbeitung

- Aggregation (Zusammenfassung mehrerer Messwerte, Details gehen verloren)
- Sampling
- Diskretisierung / Binarisierung
- Transformation
- Dimensionsreduktion
- Feature Subset Selection (Konzentration auf wichtige Features)
- Feature Creation

Ähnlichkeits- und Distanzmaße

1.5.1 Ähnlichkeit

Eigenschaften:

- $s(x, y)0 \le s \le 1$
- s(x, y) = 0, wenn x = y
- Symmetry: s(x, y) = s(y, x)

Simple Matching Coefficient (SMC):

- gut für sym. Attribute, da Vorhandensein und Abwesenheit gleich gewertet wird

Jaccard Coefficient:

- Binäre Daten
- gut für asym. Attribute, da Vorhandensein gewertet wird

Extended Jaccard Coefficient (Tanimoto):

- $\overline{||x||^2+||y||^2-\langle x,y\rangle}$
- · Jaccard für alle Daten

Cosine Similarity:

- cos(x, y) =
- -1 <= cos(x, y) <= 1
- 1 = sehr ähnlich, 0 = Vekrtor im 90° Winkel, -1 = Vektor im 180° Winkel
- Umrechnung von zahl zu Winkel im Taschenrechner mit
- auch für asym. Attribute da 0-0 Paare rausfallen

Correlation:

- corr(x, y) über Taschenrechner
- zeigt linearen Zusammenhang

1.5.2 Distanz (Minkowski)

Eigenschaften:

- Positivity $(d(x,y) \ge 0, d(x,y) = 0, wenn x = y)$
- Symmetry (d(x,y)=d(y,x))
- Triangle Inequality $(d(x,z) \le d(x,y) + d(y,z))$

$$d(x, y) = \sqrt[r]{\sum_{k=1}^{n} |x_k - y_k|^r}$$

Name	r	Anwendung	
Hamming	1	Bin.Vekt.	
CityBlock	1	nur gerade	
Euclid	2	schräg	
Supremum	∞	nur größte Dist.	

1.5.3 Weiteres

Verhalten für Multiplikation und Addition:

Property	Cosine	Correlation	Minkowski
Invariant to multiplication	Yes	Yes	No
Invariant to addition	No	Yes	No

Mutual Information:

- Ähnlich wie Correlation, aber für nicht linearen Zusammenhang
- 0 = kein Zusammenhang, 1 = starker Zusammenhang
- HIER fehlts

Umrechnung Ähnlichkeit < − > Distanz:

Bspw:

- s = ln(x) * -1
- d = 1 s• $d = \sqrt[2]{1-s}$

Klassifikation

- Zuordnung einer abhängigen Variable (y) anhand von unanhängigen Variablen
- Model hat beim Training (Induction) gelernt zuzuord-
- Model wendet das gelernte bei der Klassifikation an (Deduction)

2.1 Beispiele von Klassifikationsverfahren

- Elementare Verfahren (Decision Trees, KNN, Naive Bays, SVM, NN)
- Ensemble Verfahren (Random Forests, bagging, Boosting, ...)

2.2 Entscheidungsbäume

- Datensatz durchläuft von der Wurzel bis zum Blatt die Knoten und wird anhand der Entscheidungen am Knoten klassifiziert
- Hunts Algo entscheidet, wie Splits gesetzt werden (gibt noch mehr)

2.2.1 Hunts Algo

- Sei D_t die Menge der Trainingsdatensätze, die Knoten terreichen
- Wenn D_t nur Datensätze enthält, die zur selben Klasse ytgehören, dann ist t ein Blatt des Baumes und wird mit ytgekennzeichnet.
- ullet Falls D_t Datensätze enthält, die zu mehr als einer Klasse gehören, verwende eine Attribut-Testbedingung, um die Daten in kleinere Untermengen aufzuteilen

2.2.2 Split bei Attributen

- Binärer Split
- Mehrfach Split

Möglichkeiten der Diskretisierung

- Einteilung in gleichbelegte Bereiche (Percentile)
- Einteilung in gleiche Bereiche (Clustering)
- Binäre Entscheidung: (A < v) und (A >= v)

Greedy Ansatz Algorithmus der schrittweise den besten nächsten Schritt mit dem höchsten gewinn wählt.

2.3 Maß für Knotenunreinheit

- $p_i(t)$ Häufigkeit von klasse i beim Knoten t c Gesamtzahl der Klassen
- Gini Index

-
$$GI = 1 - \sum_{i=0}^{c-1} p_i(t)^2$$

- Maximum: $1 \frac{1}{2}$
- Minimum: 0 (Best Case)
- Entropy

$$-E = -\sum_{i=0}^{c-1} p_i(t) * log_2 p_i(t)$$

- Maximum: log_2c

- Minimum: 0 (Best Case)

Klassifikationsfehler

- $-CE = 1 max[p_i(t)]$
- Maximum: Wenn alle Datensätze auf die Klassen gleich verteilt sind
- Minimum: 0 (Best Case, wenn alle datensätze zu einer Klasse gehören)

2.4 Nachfolgende Berechnungen

- Können mit allen 3 Maßen berechnet werden.
- Split
- Gain
- SplitInfo
- GainRatio

2.5 Bewertung Bäume, Overfitting etc.

- 2.6 Modell Evaluation
- 3 Clustering

Übungsaufgaben und Musterlösungen