MATHEMATICAL REASONING

Chapter 5

VERANO SAN MARCOS

CRONOMET RÍA

HELICO | MOTIVATION

HELICO | THEORY

TIEMPO TRANSCURRIDO Y TIEMPO POR

TRANSCURRIR

EN UN DÍA:

El tiempo transcurrido del día indica la hora.

EJEMPLO:

Si han transcurrido del día 3h 45min la hora es: 3.45 a.m.

RECUERDA:

HELICO | THEORY

TIEMPO TRANSCURRIDO Y TIEMPO POR TRANSCURRIR

EN UN INTERVALO DE TIEMPO:

RECUERDA: En este caso la hora sería: 3 h + x min

RELOJ DE MANIECILILAS

RELACIÓN ENTRE EL MINUTERO Y EL HORARIO

El reloj posee 12 divisiones horarias, por lo tanto, cada división horaria equivale a un arco de 30°. De esto se desprende una equivalencia notable. Al pasar 5 minutos, el minutero barre un ángulo de 30°, luego podemos decir que 5 minutos equivalen a 30°.

RELACIÓN DE MOVIMIMIENTOS DE UN RELOJ

EN 1 HORA

HORARIO	MINUTERO	TIEMPO
30°	360°	60 min
X [©] X1	.2 12x°	2x min
	x2	

PROBLEMA 1

Si el duplo de las horas transcurridas en un día es igual al cuádruplo de las que faltan para terminar el día, ¿qué hora será dentro de 4 horas?

Resolución:

24 horas

$$2x = 4(24 - x)$$

$$2x = 96 - 4x$$

$$6x = 96$$

$$x = 16 \text{ horas}$$

Dentro de 4h serán las 20 horas

Por lo tanto, dentro de 4 horas será:

20 horas <> 8 p.m.

PROBLEMA 2

¿Qué hora será dentro de $5\frac{1}{4}$ h si se sabe que en estos momentos el tiempo transcurrido es excedido en 5 horas por lo que falta transcurrir del día?

Por lo tanto, dentro de $5\frac{1}{4}$ horas será:

1:45 p.m.

PROBLEMA 3

Son más de las 2, sin ser las 3 de esta madrugada, pero dentro de 40 minutos faltará para las 4 el mismo tiempo que faltaba desde la 1 hasta hace 40 minutos. ¿Qué ángulo forman las agujas en este preciso instante?

<u>Resolución:</u>

180 minutos

$$x + 40 + 40 + x = 180$$

 $2x + 80 = 180$
 $2x = 100$
 $x = 50min$

La hora es:

Por lo tanto, el ángulo que forman las agujas es:

105°

PROBLEMA 4

Son más de las 6 sin ser la 8 de esta mañana y hace 10 minutos los minutos que habían transcurrido desde las 6 eran iguales a $\frac{1}{9}$ del tiempo que faltará transcurrir hasta las 8, dentro de diez minutos. ¿Qué hora es?

Resolución:

120 minutos

$$x + 10 + 10 + 9x = 120$$

 $10x + 20 = 120$
 $10x = 100$
 $x = 10$

La hora es: 6h + 10 + 10 = 6: 20h

Por lo tanto, la hora actual es: 6:20 a.m.

PROBLEMA 5

Son más de las 4, pero aún no son las 6 de la tarde. Si el tiempo que había transcurrido desde las 4 hasta hace 15 minutos es igual a 1/5 del tiempo que faltará transcurrir hasta las 6, pero dentro de 15 minutos, ¿qué hora es en ese instante?

Resolución:

120 minutos

$$x + 15 + 15 + 5x = 120$$

$$6x + 30 = 120$$

$$6x = 90$$

$$x = 15$$

La hora es:
$$4 p.m. + 15 + 15 = 4:30 p.m.$$

Por lo tanto, la hora actual es: 4:30 p.m.

PROBLEMA 6

Una campana toca 3 campanadas en 7 segundos.

¿Cuántos segundos tardará en tocar 7 campanadas?

Resolución:

# de campanadas	# de intervalos	Tiempo de c/ intervalo	Tiempo total
3	2	7/2 seg.	7 seg.
7	6	7/2 seg.	x = 21 seg

Por lo tanto, en tocar 7 campanadas demora:

21 seg.

PROBLEMA 7

La campana de un campanario tarda 5 segundos en tocar 3 campanadas.

¿Cuántas campanadas tocará en un tiempo de 25 segundos?

Resolución:

# de campanadas	# de intervalos	Tiempo de c/ intervalo	Tiempo total
3	2	5/2 seg.	5 seg.
x =11	10	5/2 seg.	25 seg.

Por lo tanto, en 25 segundos tocará: 11 campanadas

PROBLEMA 8

¿Qué hora es según el gráfico?

Resolución:

HORARIO	MINUTERO	TIEMPO	
×o	12x°	2x min	
α°	12α°	2a min	= 8 min

$$12\alpha^{\circ} + 3\alpha^{\circ} = 60$$
$$\alpha^{\circ} = 4$$

Por lo tanto, según el gráfico, la hora es: 5 horas 08 minutos

PROBLEMA 9

¿Qué hora indica el reloj de la figura?

Resolución:

HORARIO	MINUTERO	TIEMPO
Xo	12x°	2x min
$(30-\alpha)^{\circ}$	12(30-α)°	2(30-a)min

$$12(30 - \alpha)^{\circ} - 2\alpha^{\circ} = 180^{\circ}$$
$$360^{\circ} - 14\alpha^{\circ} = 180^{\circ}$$
$$\alpha^{\circ} = \frac{90^{\circ}}{7} \Rightarrow 2(30 - \alpha) = \frac{240}{7} = 34\frac{2}{7}$$

Por lo tanto, según el gráfico, la hora es:

2 h 34 2/7 min

PROBLEMA 10

¿Qué hora marca el reloj de la figura mostrada sabiendo que $\theta^{\circ} - \alpha^{\circ} = 3,75^{\circ}$?

Resolución:

$$\theta^{\circ} = \alpha^{\circ} + 3.75^{\circ}$$

HORARIO	MINUTERO	TIEMPO		
Xo	12x°	2x min		
(60-a)°	12(60-α)°	$2(60-\alpha)$ min	= 37,5	mů

$$12(60 - \alpha)^{\circ} - \theta^{\circ} = 180^{\circ}$$

$$720^{\circ} - 12\alpha^{\circ} - \alpha^{\circ} - 3,75^{\circ} = 180^{\circ}$$

$$13\alpha^{\circ} = 536,25^{\circ} \Rightarrow \alpha^{\circ} = 41,25^{\circ}$$

$$\Rightarrow 2(60 - \alpha)$$

$$= 37,5$$

= 37,5
Por lo tanto, según el 4 h 37 min 30 seg gráfico, la hora es: