Lighting

Lighting principles

- Simulates how objects reflect light
 - Material composition of object
 - Light's color and position

Models

Color model

Light sources

Reflection model

Shading model

What is Light?

- frequency band of electromagnetic spectrum
- red border: 380 THz ≈ 780 nm
- violet border: 780 THz ≈ 380 nm

Light - An Electromagnetic Wave

- light is electromagnetic energy
- $\begin{tabular}{l} \blacksquare & monochrome light can be described either by \\ & frequency for wavelength λ \\ \end{tabular}$
- $c = \lambda f$ (c = speed of light)
- shorter wavelength equals higher frequency
- red ≈ 700 nm
- violet ≈ 400 nm

Light – Spectrum

- normally, light mixture of different frequencies
- distribution of wavelength intensities is called spectrum

Dominant Wavelength | Frequency

- dominant wavelength | frequency (hue, color)
- brightness (area under the curve)

The Human Eye

The Human Eye – Cones

- 3 types
- different wavelength sensitivities:
 - red
 - green
 - blue

The Human Eye – Rods

For less intense light (night vision)

Peripheral vision

The Human Eye - Adaptation

daylight-adapted human eye dark-adapted human eye

Color Models (Spaces)

- Color Metric Spaces (CIE XYZ, L*a*b*)
 - Measure absolute values and differences
- Device Color Spaces (RGB, CMY, CMYK)
 - Device specific
- Color Ordering Spaces (HSV, HLS)
 - Find colors according to some criterion

Color model – RGB

- C = RGB
- Additive Color Model
- o <= RGB <= 1
- Channels independent
 - Calculations / channel

Color Multiplication

Color Multiplication - "*" Operator

- Color channels have independent light interaction
- *S*...light color
- M...material color

$$\begin{pmatrix} S_R \\ S_G \\ S_B \end{pmatrix} * \begin{pmatrix} M_R \\ M_G \\ M_B \end{pmatrix} \coloneqq \begin{pmatrix} S_R M_R \\ S_G M_G \\ S_B M_B \end{pmatrix}$$

Color Multiplication - "*" Operator

Models

Color model

Light sources

Reflection model

Shading model

Directional Light

- Light source is infinitely far away
- Light rays are parallel, like sun
- l ... direction to the light = -dir

Point Light

Has a certain position in space

$$l = \text{normalize}(light_{pos} - pos)$$

Spot Light

- Has a certain position and cone in space
- Cone can be specified by opening angle and central direction

Spot Light

■ Point is in cone iff $\cos^{-1} dot(l, -light_{dir}) < \theta$

Models

Color model

Light sources

Reflection model

Shading model

Reflection/Illumination model

- Input
 - Surface properties: Glossiness
 - **...**

Output

Reflection/Illumination model

- Input
 - Surface properties: Opaque
 - **-** ...

Output

Reflection/Illumination model

- Input
 - Surface properties
 - Glossiness
 - Opaqueness
 - Reflection, absorption
 - Background lighting conditions
- Output
 - Simulate range of surface lighting effects
 - Calculate intensity / color values

Surface lighting effects

Surface lighting effects

reflections from other surfaces

Lighting Model

Local lighting model – hack!

- Color =
 ambient + diffuse + specular
- <component> ... lighting model component

Ambient Light Reflection

- Background light
 - No direction because scattered so often
 - "Color inside shadow"
 - Approximation of global diffuse lighting effects
- $S_{ambient}$...background light color
- *M*...material color

$$ambient = M * S_{ambient}$$

- The flatter light falls on a surface, the darker it will appear
- Ideal diffuse reflectors (Lambertian reflectors)
- Brightness depends on orientation of surface

 Diffuse brightness is dependent on angle between

n ... surface normal and

l ... direction to the light

- Diffuse brightness is dependent on angle between
 - n ... surface normal and
 - *l* ... direction to the light
- $\bullet \cos \theta = dot(n, l)$

- *S*...light color
- *M*...material color
- $diffuse = M * S \cdot dot(n, l)$

Lambertian (Diffuse) Reflection

diffuse

ambient + diffuse

Light from Behind

- Should be ignored
- $diffuse = M * S \cdot \max(0, dot(n, l))$

Specular Highlights

Specular Reflection Model

Reflection of incident light around specular-reflection angle

Empirical Phong model

$$L_{spec} = M*S \cdot cos^p \sigma$$

- Empirical Phong model
 - p large \Rightarrow shiny surface
 - $\blacksquare \ p \text{ small} \Rightarrow \text{dull surface}$

$$L_{spec} = M*S \cdot cos^p \sigma$$

Specular reflection

$$L_{\text{spec}} = M*S \cdot (\mathbf{v} \cdot \mathbf{r})^p$$

$$r + l = 2 \cdot dot(n, l) \cdot n$$
$$r = 2 \cdot dot(n, l) \cdot n - l$$

Complete reflection model

$$I = I_a k_a + I (k_d \cos \theta + k_s \cos^p \alpha)$$

$$= I_a k_a + I (k_d (N \cdot L) + k_s (R \cdot V)^p)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
ambient diffuse specular

Blinn-Phong

Halfway vector h

$$L_{\text{spec}} = k_s \cdot I \cdot (\mathbf{v} \cdot \mathbf{r})^p \rightarrow L_{\text{spec}} = k_s \cdot I \cdot (\mathbf{n} \cdot \mathbf{h})^p$$

$$\mathbf{h} = \frac{\mathbf{I} + \mathbf{v}}{\|\mathbf{I} + \mathbf{v}\|}$$

Phong vs Blinn-Phong

Models

Color model

Light sources

Reflection model

Shading model

Shading Models

Shading model

- Shading ≠ shadows (shadowing)
- Coloring / shading the model
- When to evaluate lighting model

Flat-shading

- 1 color for the mesh (polygon)
- Really fast
- Really ugly
- If an object really <u>is</u> faceted, is this accurate?
- No:
 - Point light sources
 - Direction to light varies across the facet
 - Specular reflectance
 - Direction to eye varies across the facet

Gouraud shading

- 1. Calculate the normal vector for each vertex
- 2. Calculate the intensitity for each vertex

Vertex Normals

- Vertex normals may be
 - Provided with the model
 - Artist
 - 3d program
 - Computed from first principles
 - Mathematic description of model

Vertex Normals

 Approximated by averaging the normals of the facets that share the vertex

Gouraud shading

- 1. Calculate the normal vector for each vertex
- 2. Calculate the intensitity for each vertex

3. Color interpolation along edges

Gouraud shading

- 1. Calculate the normal vector for each vertex
- 2. Calculate the intensitity for each vertex
- 3. Color interpolation along edges
- 4. Color interpolation along scanline

Phong Shading Model

- 1. Normal Vector for each vertex
- 2. Normal vectors are interpolated along the edge
- 3. Normal vectors are interpolated along the scanline
- 4. Calulate the intensity using the normal vectors

Flat / Gouraud / Phong Comparison

Transforming Normals

- Differential scaling changes shape and normals
- If M transforms points,
 then (M^T)⁻¹ transforms normals

