Automatizační cvičení

A4	309. Dynast1 – Modelování regulačního obvodu			
Hudák Josef			1/8	Známka:
29.2. 2023		5.3.2023		Odevzdáno:

Zadání:

Namodelujte regulační obvod s PID regulátorem a systémem druhého řádu:

a)
$$2.5 \cdot u' + 0.6 u = 0.9 \cdot e + 0.9 \cdot \int e \, dt + 0.9 \cdot e$$
,

b)
$$1.8 \cdot y$$
" + $3.2 \cdot y$ " + $1.5 \cdot y = 1.1 \text{ u}$

Postup:

Upravil jsem rovnice na vhodný tvar pro řešení (osamocení nejvyšší derivace):

P:
$$a1 \cdot u_1 + a0 \cdot u = k0 \cdot e = 20.36e - 0.24u$$

I:
$$a1 \cdot u_1 + a0 \cdot u = k_{-1} \int edt = u' = 0.36 \int edt - 0.24 u$$

D:
$$a1 \cdot u_1 + a0 \cdot u = k_1 \cdot e' = u = 0.36e' - 0.24 \int u dt$$

PI: **a1** ·
$$u$$
, + **a0** · u = k **0** · e + k -1 $\int edt = u = 0.36 e + 0.36 $\int edt - 0.24 u$$

PD:
$$a1 \cdot u_1 + a0 \cdot u = k0 \cdot e + k_1 \cdot e' = u = 0.36e + +0.36e' - 0.24u$$

PID: **a1** ·
$$u$$
, + $a0$ · $u = k0$ · $e + k_{-1} \int edt + k_1 \cdot e' = > u = 0.36e + 0.36 \int edt + 0.36 e' - 0.24 u$

S1: 1,8 ·
$$y$$
 · · + 3,2 · y · + 1,5 · y = 1,1 u => y ' =0,61 u -1,78 y '-0,83 y

Schémata vymodelování regulátorů a systémů (řešení):

1.1) Přechodová charakteristika P

1.2) Přechodová charakteristika I

1.3) Přechodová charakteristika D

1.4) Přechodová charakteristika PI

1.5) Přechodová charakteristika PD

1.6) Přechodová charakteristika PID

1.7) Přechodová charakteristika S1

1.8) Frekvenční charakteristika S1

1.9) Regulační pochod

- Regulační pochod jsem se snažili nastavit do kritického stavu pomocí zvýšení kp=krit
- Pochod se nám povedl do mezí nastavit a jednotlivá perioda se dostala do stejného stavu za 6,60s ->
- (počátek = 14.58s, konec = 20.18s : 20.18 14.58 = 6.6s)

Závěr:

V této úloze jsem modeloval přechodové charakteristiky regulátorů P, I, D, PI, PD, PID a také systém 2. řádu, kde jsem vykresloval nadále i frekvenční charakteristiky. Později jsem využil PID regulátoru, kde jsem vyřadil složky I a D a odečetl čas pro kp kritické. Po zjištění a nastavení konstanty proporcionálního regulátoru jsem zjistil, že jeho kritický stav se nachází na konstantě 3,8. Úlohu jsem bohužel nestihl celou.