01-12-27: 4:33PM:NGB

37/:

What is claimed is

1. An optically semi-transmission reflection material comprising a resinous film, said resinous film comprising a thermoplastic resin, wherein the sum of total light ray transmittance, T%, and total light ray reflectance, R%, is 80 to 100%; | (T-R) | < 50%; when displayed value a and displayed value b in transmitted light are designated as a_T and b_T , respectively, and when in reflected light, displayed value b is designated as b_T , in the transmitted light, a_T and b_T are in the range of $-2 \le a_T \le 2$, and $-2 \le b_T \le 1.3$ and the difference between the displayed value b of the transmitted light and the reflected light is $| (b_T - b_T) | < 10$.

- 2. The optically semi-transmission reflection material as claimed in claim 1, wherein the total light ray transmittance, T, is 20 to 60%.
- 3. The optically semi-transmission reflection material as claimed in claim 2, wherein the resinous film comprises a multi-layered resinous oriented film obtained by laminating at least two layers of surface-protecting layer (A) and base layer (B), and optionally back-surface protecting layer (C), then biaxially orienting the resulting laminated product.
 - 4. The optically semi-transmission reflection material

as claimed in claim 3, wherein a film thickness of surface-protecting layer (A) is 0.1 μ m or more.

- 5. The optically semi-transmission reflection material as claimed in claim 3, wherein in the multi-layered resinous oriented film, a ratio of a longitudinal direction orientation magnification, L_{MD} to a lateral direction orientation magnification, L_{CD} , L_{MD}/L_{CD} is 0.2 to 3.
- 6. The optically semi-transmission reflection material as claimed in claim 3, wherein an area orientation magnification of the multi-layered resincus oriented film ($L_{MD} \times L_{CD}$) is 4 to 80-fold.
- 7. The optically semi-transmission reflection material as claimed in claim 3, wherein the multi-layered resinous oriented film, surface-protecting layer (A) has a void content of 1 to 70% and base layer (B) or back surface- protecting layer (C) has a void content of 3 to 15%.
- 8. The optically semi-transmission reflection material as claimed in claim 3, wherein the multi-layered resinous oriented film comprises an inorganic fine powder and/or an organic filler.

- 9. The optically semi-transmission reflection material as claimed in claim 3, wherein the thermoplastic resin comprises a polyclefin-based resin or a polyester resin.
- 10. The optically semi-transmission reflection material as claimed in claim 9, wherein the polyolefin-based resin included in surface-protecting layer (A) comprises a propylene-based resin having a melting point of 140°C or more.
- 11. The optically semi-transmission reflection material as claimed in claim 8, wherein the inorganic fine powder and/or the organic filler included in surface-protecting layer (A) is present in an amount of 1 to 50% by weight, and the inorganic fine powder and/or the organic filler included in base layer (B) is present in an amount of 1 to 30% by weight.
- 12. The optically semi-transmission reflection material as claimed in claim 8, wherein an average particle diameter of the inorganic fine powder is 0.1 to 5 μ m, and an average dispersed particle diameter of the organic filler is 0.1 to 5 μ m.
- 13. A liquid crystal display apparatus comprising the optically semi-transmission reflection material as claimed in claim 1.