Теория вероятностей — 4

Вероятностное пространство. Условная вероятность

Задача 1. Среди учеников школы 15% знают французский язык и 20% знают немецкий. Доля учеников, знающих оба языка, составляет 5%. а) Какова доля учеников, знающих французский язык, среди учеников, знающих немецкий? б) Какова доля учеников, знающих немецкий, среди знающих французский? в) Какова доля учеников, не знающих немецкого?

Определение 1. Дополнение к событию A называется событие **«не** A» и обозначается \overline{A} .

Определение 2. События A и B называются **несовместимыми** или **несовместными**, если одновременное их выполнение невозможно.

Определение 3. Произведением событий A и B называется событие, отвечающее одновременному выполнению событий A и B. Обозначения: $A \cap B$, $A \cdot B$, AB.

Суммой событий A и B называется событие, при котором выполнено хотя бы одно из событий A и B. Обозначения: $A \cup B$, A + B.

Определение 4. Вероятностным пространством называется тройка $(\Omega, \mathcal{U}, \mathsf{P})$, где

- $-\Omega$ некоторое множество (**множество элементарных событий**);
- $-\mathscr{U}$ совокупность подмножеств множества Ω (каждое из которых называется **событием**), обладающая следующими свойствами:
 - $\varnothing \in \mathscr{U}$:
 - $\Omega \in \mathcal{U}$;
 - $\forall A \in \mathscr{U} \rightarrow \overline{A} \in \mathscr{U}$;
 - $\forall A, B \in \mathscr{U} \hookrightarrow A \cup B \in \mathscr{U};$

В случае счётного множества \mathscr{U} , последнее свойство преобразуется следующим образом: $\forall \mathscr{A} \subset \mathscr{U} \ \hookrightarrow \ \bigcup_{A \subset \mathscr{A}} A \in \mathscr{U}$.

в случае конечного множества Ω часто удобно принять $\mathscr{U}=2^{\Omega}.$

- $-\mathsf{P}-\mathsf{ч}$ исловая функция $\mathsf{P}\colon\mathscr{U}\mapsto\mathbb{R}$ (называемая **вероятностью, вероятностной мерой),** такая, что
 - $P(\varnothing) = 0$;
 - $P(\Omega) = 1$;
 - $\forall A \in \mathscr{U} \rightarrow \mathsf{P}(A) \geqslant 0$
 - (аддитивность вероятностной меры) если $A \cap B = \emptyset$, то $P(A \cup B) = P(A) + P(B)$. В случае счётного множества \mathcal{U} , последнее свойство преобразуется следующим образом: Для любого набора событий, каждые два из которых несовместны, вероятность их суммы равна сумме их вероятностей.

События, вероятность которых равна 1, называются достоверными.

Замечание 1. Следует понимать, что когда мы имеем дело с реальными экспериментами и событиями, элементарными называются только те события, которые *нельзя разделить на более простые*.

Задача 2. Пусть $(\Omega, \mathcal{U}, \mathsf{P})$ — вероятностное пространство. Докажите, что **a)** вероятность любого события не превосходит 1; **б)** если $A, B \in \mathcal{U}$, причём $A \subset B$, то $\mathsf{P}(A) \leqslant \mathsf{P}(B)$.

Задача 3. Докажите, что $\forall \mathscr{A} \subset \mathscr{U} \ \hookrightarrow \ \bigcap_{A \in \mathscr{A}} A \in \mathscr{U}.$

Задача 4. Выразите вероятность события \overline{A} через вероятность события A.

Задача 5. а) Постройте вероятностное пространство для n-кратного бросания игральной кости.

б) Что вероятнее: при шести бросаниях получить хотя бы одну «шестёрку» или не получить ни одной?

Задача 6. Постройте вероятностное пространство для пунктов а), б), и в) задачи 11 листка РТ3.

Задача 7. Рассмотрим задачу выбора точки на отрезке [0;3]. Можно ли построить пространство так, что бы были равны вероятности попадания на отрезки **a)** [0;1] и [1;3]; **б)** [0;1] и [0;2]; **в)** [0;1] и [2;3]? **r)** Можно ли построить пространство так, что бы эти вероятности были по $\frac{1}{2}$?

Листок №РТ4 Страница 2

Задача 8. Для следующих задач постройте вероятностное пространство и решите их:

а) Пишется наудачу двузначное число. Какова вероятность того, что сумма цифр этого числа окажется равна i, где $i \in \mathbb{N}$?

- **б)** Игральный кубик бросают два раза и складывают выпавшие очки. Назовём q(i) вероятность получить в сумме число i. Найдите наиболее вероятное значение q(i).
- **в)** Игральный кубик бросают четыре раза. Найдите вероятность того, что хотя бы один раз выпадет «шестёрка».
- **г)** Четыре игральных кубика бросают одновременно. Найдите вероятность того, что хотя бы на одном из них выпадет «шестёрка».

Задача 9. Имеется три ящика, в каждом из которых лежат шары с номерами от 0 до 9. Машина выбирает по одному шару из каждого ящика. Достройте вероятностное пространство и найдите зависимость вероятности того, что все три шара имеют номер n от числа n, если

- а) все шары вынимаются с одинаковой вероятностью;
- **б)** Каждый шар вынимается с вероятностью q(i), где q(i) взято из предыдущей задачи, а i номер на шаре?
- в) Каждый шар вынимается с вероятностью $\frac{q(i)}{Q}$, где q(i) взято из предыдущей задачи, $Q = \sum_{i=0}^{9} q(i)$, а i-1 номер на шаре?

Задача 10. Имеется n событий, вероятность каждого из которых равна p. Покажите, что вероятность того, что произойдут одновременно k из них, не превышает $\frac{n \cdot p}{k}$.

Определение 5. Условной вероятностью называется вероятность события A при условии, что событие B произошло. Обозначения: $\mathsf{P}_B(A)$, $\mathsf{P}(A|B)$.

Задача 11. Выразите P(A|B) через P(A) и P(B).

Задача 12. Рассмотрим вероятностное пространство $(\Omega, \mathcal{U}, \mathsf{P})$ и событие A такое, что $\mathsf{P}(A) \neq 0$. Докажите, что тройка $(\Omega, \mathcal{U}, \mathsf{P}_A)$ так же является вероятностным пространством.

Задача 13. Переформулируйте первую задачу в терминах теории вероятностей.

Задача 14. В классе 50% мальчиков. Среди них 60% любят мороженое. **а)** Какова доля мальчиков, любящих мороженое, среди учеников класса? **б)** Как переформулировать вопрос предыдущего пункта в терминах теории вероятностей?

Задача 15. Что больше: P(A) или P(B), и во сколько раз, если $P(A|B) = \frac{1}{7}$, а $P(B|A) = \frac{1}{9}$?

Определение 6. События A и B называются **независимыми**, если $P(A \cap B) = P(A) \cdot P(B)$.

Задача 16. Пусть события A и B независимы. **a)** Верно ли, что $P_B(A) = P(A)$? **6)** Являются ли зависимыми события A и \overline{B} ? **в)** Являются ли зависимыми события \overline{A} и \overline{B} ?

Задача 17. Следует ли из попарной независимости группы событий их независимость в совокупности?

Задача 18. (*Теорема умножения вероятностей*) Пусть A_1, A_2, \ldots, A_n — события, вероятность которых больше 0. Докажите, что $\mathsf{P}(A_1A_2\ldots A_n) = \mathsf{P}(A_1) \cdot \mathsf{P}(A_2|A_1) \cdot \mathsf{P}(A_3|A_1A_2) \cdot \ldots \cdot \mathsf{P}(A_n|A_1\ldots A_{n-1}).$

Задача 19. (Формула полной вероятности) Пусть H_1, H_2, \dots, H_n — попарно несовместимые события, причём $H_1 \cup H_2 \cup \dots \cup H_n = \Omega$. Докажите, что $\forall B \in \mathscr{U} \hookrightarrow \mathsf{P}(B) = \sum_{i=1}^n \mathsf{P}(H_i) \cdot \mathsf{P}(B|H_i)$.

Задача 20. (Формула Байеса) Пусть H_1, H_2, \dots, H_n — попарно несовместимые события, причём $H_1 \cup H_2 \cup \dots \cup H_n = \Omega$. Предположим, стало известно, что событие A произошло. Докажите, что тогда

$$P(H_i|A) = \frac{P(H_i) \cdot P(A|H_i)}{\sum_{k=1}^{n} P(A) \cdot P(A|H_k)}.$$

Задача 21. Во сколько раз доля блондинов среди голубоглазых в Тьмутараканском царстве больше доли голубоглазых среди блондинов, если всего голубоглазых там вдвое больше, чем блондинов?

1 a	1 6	1 B	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	3	4	5 a	56	6	7 a	7 6	7 B	7 Г	8 a	8 6	8 B	8 Г	9 a	9 6	9 B	10	11	12	13	$\begin{vmatrix} 14 \\ a \end{vmatrix}$	14 б	15	16 a	16 ნ	16 B	17	18	19	20	21