Trig Final (TEST v604)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 15 meters. The angle measure is 1 radians. How long is the radius in meters?

Question 2

Consider angles $\frac{-15\pi}{4}$ and $\frac{13\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-15\pi}{4}\right)$ and $\sin\left(\frac{13\pi}{6}\right)$ by using a unit circle (provided separately).

Find $cos(-15\pi/4)$

Find $sin(13\pi/6)$

${\bf Question} \ {\bf 3}$

If $\cos(\theta) = \frac{33}{65}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 3.14 meters, a frequency of 4.8 Hz, and a midline at y = -7.68 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).