ELECTRONICA APLICADA I

Profesor Titular Dr. Ing. Guillermo Riva Profesor Adjunto Ing. Martin Guido

Parámetros Híbridos (Parte 1)

Introducción.

- Parámetros híbridos.
- Modelo emisor común.
- Definición de parámetros híbridos para emisor común.
- Determinación del valor de los parámetros híbridos a
- partir de las curvas del transistor.
- Circuito equivalente de etapa amplificadora emisor común.
- Impedancia de entrada y salida.
- Ejemplo.
- Ganancias de corriente, tensión y potencia.
- Concepto de reflexión de Impedancia.
- Ejemplo.

Introducción

Para determinar las carecteristicas de un amplificador se sustituye el transisstor por un modelo para pequeña señal que nos permite obtener un circuito equivalente.

Luego aplicando las leyes de teoria de los circuito podemos extraer las caracteristicas deseadas del mismo como ser: Ganacias de corriente, tensión, inpedancia de entrada y salida etc.

En la tabla siguiente observamos las caracteristicas de las tres configuraciones tipicas.

	Emisor Común	Base Común	Colector Común
A_{V}	Alta	Alta(+)	<i>Baja</i> (≈1)
A_{i}	Alta	Atemua	Alta
Z_{i}	Media	Ваја	Alta
Z_{o}	Media	Media	Ваја
Inversión de Fase	Si	No	No
Aplicaciones	Universal.	Amplificador de RF.	Amplificadores de Aislamiento.

Se parte de la teoria del cuadripolo o redes de dos pares de terminales:

En general:

$$v_1 = h_{11}i_1 + h_{12}v_2$$

$$i_2 = h_{21}i_1 + h_{22}v_2$$

Para transistores:

$$v_1 = h_i i_1 + h_r v_2$$
$$i_2 = h_f i_1 + h_o v_2$$

Definición:

$$h_i = \frac{v_1}{i_1} \bigg|_{v_2 = 0}$$

$$h_r = \frac{v_1}{v_2} \bigg|_{i_1 = 0}$$

$$h_f = \frac{i_2}{i_1} \bigg|_{v_2 = 0}$$

$$h_o = \frac{i_2}{v_2} \bigg|_{i_1 = 0}$$

Significado de los parámetros

y subindices:

 h_i : impedancia de entrada.

h_r: ganancia inversa de tensión.

 h_f : ganancia directa de corriente.

h_o: admitancia de salida.

i:entrada r:inversa

f:directa o:salida

Parámetros Híbridos. Modelo Emisor Común.

$$egin{aligned} i_1 &= i_b & Ley \ de \ Kirchoff \ de \ voltaje \ i_2 &= i_c & en \ la \ malla \ de \ entrada. \end{aligned}
ight. \ \left. egin{aligned} v_{be} &= h_{ie}i_b + h_{re}v_{ce} \ v_1 &= v_{be} & Ley \ de \ Kirchoff \ de \ corriente \ v_2 &= v_{ce} & en \ la \ malla \ de \ salida. \end{aligned}
ight. \ \left. egin{aligned} i_c &= h_{fe}i_b + h_{oe}v_{ce} \ v_{ce} \ \end{array}
ight.$$

Parámetros Híbridos. Modelo Completo

Parámetros Híbridos. Modelo Completo.

$$h_{oe} \rightarrow 10^{-4} \ S(mho) \ a \ 10^{-6} \ S(mho)$$

$$\frac{1}{h_{oe}} \rightarrow 10^{4} \ \Omega \ a \ 10^{6} \ \Omega \rightarrow circuito \ abierto$$

$$h_{re} \cong 0$$

$$S: Siemens$$

$$(mho): Es \ la \ unidad \ admitancia \ fuera \ de \ uso$$

$$pero \ se \ la \ puede \ encontrar \ en \ alguna \ bibliografía.$$

Entre colector y base existe una capacidad Cbc interelectrodica. Para bajas frecuencias la reactancia capacitiva Xbc es alta y la realimentación es despreciable, por lo que se puede considerar a hre aproximadamente igual a cero.

Parámetros Híbridos. Modelo Simplificado

Parámetros Híbridos para emisor común.

$$h_{ie} = \frac{v_{be}}{i_b} \bigg|_{\substack{v_{ce} = 0 \\ V_{CEQ} = cte}}$$

 $h_{ie} = \frac{v_{be}}{i_b} \bigg|_{\substack{v_{ce} = 0 \\ V_{CEQ} = cte}} \begin{cases} Impedancia \ de \ entrada \ del \ Transistor \ en \ emisor \\ comu\'un \ con \ la \ salida \ en \ cortocircuito. \end{cases}$

$$h_{re} = \frac{v_{be}}{v_{ce}} \bigg|_{\substack{i_b = 0 \\ I_{BO} = cte}}$$

 $h_{re} = \frac{v_{be}}{v_{ce}} \bigg|_{\substack{i_b = 0\\I_{BQ} = cte}} \begin{cases} Ganancia \ inversa \ de \ tensi\'on \ en \ emisor \ com\'un \\ con \ la \ entrada \ abierta. \end{cases}$

$$h_{fe} = rac{i_c}{i_b}igg|_{\substack{v_{ce}=0\V_{CEO}=cte}}$$

 $h_{fe} = \frac{i_c}{i_b} \bigg|_{\substack{v_{ce} = 0 \\ V_{CFO} = cte}} \quad \begin{cases} Ganancia \ de \ corriente \ en \ emisor \ común \ con \ la \\ salida \ en \ cortocircuito \ para \ corriente \ alterna. \end{cases}$

$$h_{oe} = \frac{i_c}{v_{ce}} \bigg|_{\substack{i_b = 0 \\ I_{BO} = cte}}$$

 $h_{oe} = \frac{i_c}{v_{ce}} \bigg|_{\substack{i_b = 0 \\ I_{BO} = cte}} \begin{cases} Admitancia \ de \ salida \ en \ emisor \ común \ con \ la \\ entrada \ abierta. \end{cases}$

Valor de hfe a partir de las características i-v.

$$h_{fe} = \frac{\Delta i_C}{\Delta i_B} \bigg|_{O} = \frac{3mA - 1mA}{30uA - 10uA} = 100$$

Valor de hoe a partir de las características i-v.

$$h_{oe} = \frac{\Delta i_C}{\Delta v_{CE}} \bigg|_{Q}$$

$$h_{ie} = \frac{25 \ mV}{I_{BQ}} = \frac{25 \ mV}{\frac{I_{CQ}}{h_{c}}} = h_{fe} \times \frac{25 \ mV}{I_{CQ}}$$

Amplificador Emisor Común.

Amplificador Emisor Común. Circuito Equivalente.

$$Z_i = R_b / / h_{ie}$$

$$Z_o = R_c$$

Amplificadora Emisor Común. Ganancia de Corriente.

$$\begin{split} A_{i} &= \frac{i_{L}}{i_{i}} = \frac{i_{L}}{i_{b}} \times \frac{i_{b}}{i_{i}} \\ i_{L} &= \frac{v_{L}}{R_{L}} = \frac{-h_{fe}i_{b} \times (R_{C} / / R_{L})}{R_{L}} = -h_{fe}i_{b} \times \frac{R_{C} \cancel{K}_{L}}{R_{C} + R_{L}} \times \frac{1}{\cancel{K}_{L}} \\ \frac{i_{L}}{i_{b}} &= -h_{fe} \times \frac{R_{C}}{R_{C} + R_{L}} \\ i_{b} &= \frac{v_{i}}{h_{ie}} = i_{i} \times \frac{R_{b} \cancel{K}_{ie}}{R_{b} + h_{ie}} \times \frac{1}{\cancel{K}_{ie}} = i_{i} \times \frac{R_{b}}{R_{b} + h_{ie}} \\ \frac{i_{b}}{i_{i}} &= \frac{R_{b}}{R_{b} + h_{ie}} \\ A_{i} &= -h_{fe} \times \frac{R_{C}}{R_{C} + R_{L}} \times \frac{R_{b}}{R_{b} + h_{ie}} \quad (El \ signo \ - \ significa \ inversión \ de \ fase) \\ Si \begin{Bmatrix} R_{L} << R_{C} \\ h_{ie} << R_{b} \end{Bmatrix} \Rightarrow A_{i} = -h_{fe} \times \frac{\cancel{K}_{C}}{\cancel{K}_{C}} \times \frac{\cancel{K}_{b}}{\cancel{K}_{b}} \cong -h_{fe} \ (En \ general \ |A_{i}| < h_{fe}) \end{split}$$

Amplificadora Emisor Común. Ganancia de tensión.

$$\begin{split} A_{V} &= \frac{v_L}{v_i} = \frac{i_L}{i_i} \times \frac{R_L}{Z_i} \\ A_{V} &= A_i \times \frac{R_L}{Z_i} = -h_{fe} \times \frac{R_C}{R_C + R_L} \times \frac{R_b}{R_b + h_{ie}} \times \frac{R_L}{R_b \times h_{ie}} = -h_{fe} \times \frac{R_C \times R_L}{R_C + R_L} \times \frac{1}{h_{ie}} \end{split}$$

$$A_{V} = -h_{fe} \times \frac{R_{C} / / R_{L}}{h_{ie}}$$

 $Si R_L << R_C$:

$$A_{V} \cong -h_{fe} \times \frac{\cancel{R}_{C} \times R_{L}}{\cancel{R}_{C}} \times \frac{1}{h_{ie}} \cong -h_{fe} \times \frac{R_{L}}{h_{ie}} = -\frac{R_{L}}{h_{ie}/h_{fe}} = -\frac{R_{L}}{h_{ib}}$$

$$A_{V} = -\frac{R_{L}}{h_{ib}}$$

Amplificadora Emisor Común. Ganancia de Potencia.

$$A_P = \frac{P_L}{P_i} = \frac{v_L \times i_L}{v_i \times i_i} = A_V \times A_i$$

Como:
$$A_V = \frac{v_L}{v_i} = \frac{i_L \times R_L}{i_i \times Z_i} = A_i \times \frac{R_L}{Z_i}$$

$$A_{P} = A_{i} \times \frac{R_{L}}{Z_{i}} \times A_{i} = A_{i}^{2} \times \frac{R_{L}}{Z_{i}}$$

$$A_{P} \text{ en funcion de la } A_{i}$$

$$Como: A_i = \frac{i_L}{i_i} = \frac{\frac{v_L}{R_L}}{\frac{v_i}{Z_i}} = \frac{v_L}{R_L} \times \frac{Z_i}{v_i} = \frac{v_L}{v_i} \times \frac{Z_i}{R_L} = A_V \frac{Z_i}{R_L}$$

$$A_P = A_V \times A_V \times \frac{Z_i}{R_L} = A_V^2 \times \frac{Z_i}{R_L}$$

 A_P en funcion de la A_V

Para el circuito de la figura hallar Z_i , Z_o , A_V y A_i .

Datos: $V_{CEQ} = 5$, $I_{CQ} = 10 \text{ mA}$, $\beta = 300$

 $R_1 = 3.658 \ K\Omega, \ R_2 = 16.667 \ K\Omega, \ R_C = 400 \ \Omega \ y \ R_E = 100 \ \Omega$

Circuito equivalente.

Determinación de Z_i.

$$R_B = R_1 / R_2 = \frac{3658 \times 16667}{3658 + 16667} = 3000 \ \Omega = 3 \ K\Omega$$

$$h_{ie} = h_{fe} \frac{25mV}{I_{CQ}} = 300 \frac{25 \ mV}{10 \ mA} = 750 \ \Omega$$

$$Z_i = R_b / h_{ie} = \frac{3000 \times 750}{3000 + 750} = 600 \ \Omega$$

Determinación de Z_o .

$$Z_o = R_c = 400 \Omega$$

Circuito equivalente.

Deterinación de A_i.

$$A_i = \frac{i_L}{i_i} = -h_{fe} \times \frac{R_C}{R_C + R_L} \times \frac{R_b}{R_b + h_{ie}} = -300 \times \frac{400}{400 + 100} \times \frac{3000}{3000 + 750} = -192$$

Deterinación de A_{V} .

$$A_V = \frac{v_L}{v_i} = A_i \times \frac{R_L}{Z_i} = -192 \times \frac{100}{600} = -32$$

Amplificador emisor común sin capacitor de desacople.

Concepto de reflexión de impedancia.

Circuito equivalente para señal débil.

Desdoblamos la fuente de corriente.

Desdoblamos la fuente de corriente.

Circuito final del desdoblamiento

Circuito equivalente para señal débil con Re reflejada a la base

La combinacion de $R_{\scriptscriptstyle E}$ en // con $h_{\scriptscriptstyle fe}i_{\scriptscriptstyle b}$ es

reemplazada por la resistencia reflejada $(h_{fe}+1)R_E$

Cuando se refleja desde el emisor hacia la base:

La resistencia queda multiplicada por $h_{fe} + 1$.

La corriente dividida por $h_{fe} + 1$.

La tensión se conserva.

Cálculo de impedancias y ganancias.

$$Z_{i} = R_{b} / / \left[h_{ie} + R_{e} (h_{fe} + 1) \right]$$

$$Z_{o} = R_{C}$$

$$= A_{i} = -h_{fe} \times \frac{R_{C}}{R_{C} + R_{L}} \times \frac{R_{b}}{R_{b} + h_{ie} + R_{e} (h_{fe} + 1)}$$

$$A_{V} = \frac{v_{L}}{v_{i}} = \frac{i_{L} \times R_{L}}{i_{i} \times Z_{i}} = A_{i} \times \frac{R_{L}}{Z_{i}}$$

$$\downarrow \downarrow$$

Circuito equivalente con R_E sin desacoplar.

Determinación de Z_i.

Determinación de
$$Z_o$$
.

$$R_B = R_1 / R_2 = \frac{3658 \times 16667}{3658 + 16667} = 3000 \ \Omega = 3 \ K\Omega$$

$$Z_o = R_c = 400 \ \Omega$$

$$h_{ie} = h_{fe} \frac{25mV}{I_{CO}} = 300 \frac{25 \ mV}{10 \ mA} = 750 \ \Omega$$

$$h_{ie} + R_E (h_{fe} + 1) = 750 + 100 \times 301 = 30850 \Omega$$

$$Z_i = R_b / [h_{ie} + R_E (h_{fe} + 1)] = \frac{3000 \times 30850}{3000 + 30850} = 2734 \Omega$$
 (antes 600 Ω)

Circuito equivalente con R_E sin desacoplar.

Deterinación de A_i.

$$A_{i} = \frac{i_{L}}{i_{i}} = -h_{fe} \times \frac{R_{C}}{R_{C} + R_{L}} \times \frac{R_{b}}{R_{b} + h_{ie} + R_{E}\left(h_{fe} + 1\right)}$$

$$A_i = -300 \times \frac{400}{400 + 100} \times \frac{3000}{3000 + 750 + 30100} = -21.27(antes - 192)$$

Deterinación de A_{V} .

$$A_V = \frac{v_L}{v_i} = A_i \times \frac{R_L}{Z_i} = -21.27 \times \frac{100}{2734} = -0.78(antes - 32)$$

Bibliografía.

- Circuitos Electrónicos Discretos e Integrados,
- Donald L. Schilling-Charles Belove.
- Dispositivos Electrónicos,
- Thomas L. Floyd.
- Electrónica: Teoría de Circuitos y Dispositivos Electrónicos,
- Robert L. Boylestad-Louis Nashelsky.
- 1100 Problemas de Electrónica Resueltos.
- Ing Alberto Muhana