Feature Detection and System Identification

Laser triangulation based deposition feature detection and steady-state input-output modelling

Ali Toyserkani, Gijs Houtam

Goals

Proof-of-Concept:

Is it possible to make a low-cost vision sensing technique able to detect deposition height and width accurately in a real-time setup?

Hardware:	Software:
 Low-Cost components 	 Fast Detection Algorithm
 Applicable to existing 3D-printers 	 Constant execution time
Commercially attractive	

Laser Triangulation

- Angular positioning exposes deposition geometry
- Many implementations possible

Reverse Geometry:

- Good Camera Focusing
- Good Height Resolution through high a

Camera Visuals

Problem Sources:	Opportunities:
 Laser Lens distortion → Noise 	 Separate pixel by intensity
 Pixel Saturation → No difference 	 Use lens distortions as Pattern
Reflection or Absorption	

White object

Transparent object

Black object

Computational matters

Problem Sources:	Opportunities:
 8-bit RGB-images (15 million integers) → Operations are costly 	 Find regions of interest → Reduce operation cost
 Avoid common 2D computer vision operations e.g. convolution filtering, edge detection → Low Speed 	 Use fast 1D operations e.g. 1D filtering, differencing → High Speed
 Avoid optimization algorithms → Timing consistency 	 Use consistent computational elements e.g. fixed array size → Consistency

Detection Algorithm – Main Loop

Detection Algorithm – Main Loop

Detection Algorithm – Detector

Detection Algorithm – Demo

Profile Map of Width vs Pressure and Deposition Velocity

Steady-State Modeling – Width Fit

Steady-State Modeling – Height results

Steady-State Modeling – Height results

Profilometry Measurement - Calibration

Profilometry Measurement - Validation

Steady-State Modeling - Principle

Inputs - Gridding:

- V Printer bed velocity
- P Syringe pressure

Outputs:

- H Deposition Height [um]
- W Deposition Width [um]

Steady-State system identification:

- Theory: Static input → Output @ time →
- Practical: Take static response part of output

Steady-State Modeling – Implementation

Input:

- Apply all static input combinations between:
 - $V \rightarrow [5,10,15] \text{ mm/s}$
 - P → [200,250,300,350,400] kPa
- Use multiple samples → Account for:
 - Internal changing dynamics e.g. Temperature
 - Setup changes
 - Human error

Output:

- Median-Average-Deviation → Detect region
- Median of region → Sample output
- Mean of samples → Mean output

Steady-State Modeling – Summary

Width:

- Low velocity & High pressure → Large Width
- High velocity & Low pressure → Small Width

Height:

No clear pattern

How to use results?

- Cubic model fit → direct mapping from input to output
- Table lookup → Use interpolated grid values

Steady-State Modeling – Discussion

Paper as print foundation:

Flexibility → foundation height changes

