Improving SAT-Based Weighted MaxSAT Solvers CP 2012 (Quebec)

Carlos Ansótegui¹ María Luisa Bonet²

Joel Gabàs¹ Jordi Levy³

Universitat de Lleida (DIEI, UdL)¹.

Universitat Politècnica de Catalunya (LSI, UPC)².

Artificial Intelligence Research Institute (IIIA, CSIC)3.

October, 2012

Weighted Partial MaxSAT Problem

A weighted clause is a pair (C, w), where C is a clause and w indicates the penalty for falsifying C.

A clause is called *soft* if $w \in nat$ A clause is called *hard* if $w = \infty$

Weighted Partial MaxSAT (WPM) is the problem of finding an assignment that minimizes the aggregated cost of the falsified clauses.

Partial MaxSAT is the WPM problem when soft clauses have weight 1.

Example: Weighted Partial MaxSAT instance

Consider the pigeon-hole formula PHP_1^5 with 5 pigeons and one hole.

variables: x_i means that pigeon i goes to the only hole soft clauses: w_i is the cost of pigeon i out of the hole hard clauses: no two pigeons can go to the same hole

$$\varphi = \{ (x_1, 5), \\ (x_2, 4), \\ (x_3, 3), \\ (x_4, 2), \\ (x_5, 1) \} \cup \\ \{ (\neg x_i \lor \neg x_j, \infty) \mid i < j \}$$

$$cost(\varphi) = 10.$$

Weighted Partial MaxSAT solvers

- Branch and bound based
 - extend DPLL or CDCL SAT algorithms
 - apply incomplete MaxSAT resolution rules
 - use lowerbounding and upperbounding techniques
 - best performance on random instances
- Satisfiability testing based (SAT-based)
 - solve a sequence of SAT formulas
 - exploit unsatisfiable cores and satisfying assignments
 - introduce pseudoBoolean linear constraints
 - best performance on industrial instances

Contributions of this paper

 We improve the Fu and Malik algorithm (SAT-Based) by breaking symmetries

 We improve the Weighted version of the Fu and Malik algorithm by applying an stratified approach

 We provide good experimental results on WPM industrial and crafted instances.

SAT-based MaxSAT algorithms: search scheme

A MaxSAT instance φ can be solved through a sequence of SAT instances φ_k .

$$\varphi_k$$
 be satisfiable $\leftrightarrow cost(\varphi) \le k$.

Let
$$k' = cost(\varphi)$$
,

 $cost(\varphi)$ is the smallest k of satisfiable φ_k .

SAT-based MaxSAT: basic encoding of φ_k

$$\varphi = \{ (x_1, w_1), \\ (x_2, w_2), \\ (x_3, w_3), \\ (x_4, w_4), \\ (x_5, w_5) \} \cup \\ \{ (\neg x_i \lor \neg x_j, \infty) \mid i < j \}$$

SAT-based MaxSAT: basic encoding of φ_k

$$arphi_k = \{ \; (x_1 ee b_1 \; , w_1), \ (x_2 ee b_2 \; , w_2), \ (x_3 ee b_3 \; , w_3), \ (x_4 ee b_4 \; , w_4), \ (x_5 ee b_5 \; , w_5) \; \} \; \cup \ \{ (\neg x_i ee \neg x_j, \infty) \; | \; i < j \} \; \cup \ \mathit{CNF}(\sum_{i=1}^5 w_i \cdot b_i \leq k, \infty) \; \} \;$$

- Originally designed for solving Partial MaxSAT (soft with $w_i = 1$)
- Starts from k = 0, increasing k by 1 until φ_k is satisfiable
- φ_k satisfiable $\leftrightarrow cost(\varphi) = k$
- Exploits the unsatisfiable core returned by the SAT solver

$$\varphi_0 = \{ (x_1 , 1), \\ (x_2 , 1), \\ (x_3 , 1), \\ (x_4 , 1), \\ (x_5 , 1) \} \cup \\ \{ (\neg x_i \lor \neg x_i, \infty) \mid i < j \}$$

 $SAT(\varphi_0)$ returns a core

$$cost(\varphi) > 0$$

$$\varphi_{1} = \{ (x_{1} \lor b_{1}^{1}, 1), \blacksquare$$

$$(x_{2} \lor b_{2}^{1}, 1), \blacksquare$$

$$(x_{3}, 1),$$

$$(x_{4}, 1),$$

$$(x_{5}, 1) \} \cup$$

$$\{ (\neg x_{i} \lor \neg x_{j}, \infty) \mid i < j \} \cup$$

$$CNF(b_{1}^{1} + b_{2}^{1} = 1, \infty) \blacksquare$$

Soft clauses in core are relaxed

$$\varphi_{1} = \{ (x_{1} \lor b_{1}^{1}, 1), \\ (x_{2} \lor b_{2}^{1}, 1), \\ (x_{3}, 1), \blacksquare \\ (x_{4}, 1), \blacksquare \\ (x_{5}, 1) \} \cup \\ \{ (\neg x_{i} \lor \neg x_{j}, \infty) \mid i < j \} \blacksquare \cup \\ CNF(b_{1}^{1} + b_{2}^{1} = 1, \infty)$$

SAT(φ_1) returns a core

$$cost(\varphi) > 1$$

$$\varphi_{2} = \{ (x_{1} \lor b_{1}^{1} , 1), \\ (x_{2} \lor b_{2}^{1} , 1), \\ (x_{3} \lor b_{3}^{2} , 1), \\ (x_{4} \lor b_{4}^{2} , 1), \\ (x_{5} , 1) \} \cup \\ \{ (\neg x_{i} \lor \neg x_{j}, \infty) \mid i < j \} \cup \\ CNF(b_{1}^{1} + b_{2}^{1} = 1, \infty) \cup \\ CNF(b_{3}^{2} + b_{4}^{2} = 1, \infty)$$

$$\varphi_{2} \text{ is unsat, } cost(\varphi) > 2$$

$$\varphi_{3} = \{ \begin{array}{ll} (x_{1} \lor b_{1}^{1} \lor & b_{1}^{3}, 1), \\ (x_{2} \lor b_{2}^{1} \lor & b_{2}^{3}, 1), \\ (x_{3} \lor & b_{3}^{2} \lor b_{3}^{3}, 1), \\ (x_{4} \lor & b_{4}^{2} \lor b_{4}^{3}, 1), \\ (x_{5} & ,1) \} \cup \\ \{ (\neg x_{i} \lor \neg x_{j}, \infty) \mid i < j \} \cup \\ CNF(b_{1}^{1} + b_{2}^{1} = 1, \infty) \cup \\ CNF(b_{3}^{2} + b_{4}^{2} = 1, \infty) \cup \\ CNF(b_{1}^{3} + b_{2}^{3} + b_{3}^{3} + b_{4}^{3} = 1, \infty) \\ \varphi_{3} \text{ is unsat, } cost(\varphi) > 3 \\ \end{array}$$

$$\varphi_{4} = \{ \begin{array}{ll} (x_{1} \lor b_{1}^{1} \lor & b_{1}^{3} \lor b_{1}^{4} \ , 1), \\ (x_{2} \lor b_{2}^{1} \lor & b_{2}^{3} \lor b_{2}^{4} \ , 1), \\ (x_{3} \lor & b_{3}^{2} \lor b_{3}^{3} \lor b_{3}^{4} \ , 1), \\ (x_{4} \lor & b_{4}^{2} \lor b_{4}^{3} \lor b_{4}^{4} \ , 1), \\ (x_{5} \lor & b_{5}^{4} \ , 1) \} \cup \\ \{ (\neg x_{i} \lor \neg x_{j}, \infty) \mid i < j \} \cup \\ CNF(b_{1}^{1} + b_{2}^{1} = 1, \infty) \cup \\ CNF(b_{3}^{2} + b_{4}^{2} = 1, \infty) \cup \\ CNF(b_{1}^{3} + b_{2}^{3} + b_{3}^{3} + b_{4}^{3} = 1, \infty) \cup \\ CNF(b_{1}^{4} + b_{2}^{4} + b_{3}^{4} + b_{4}^{4} + b_{5}^{4} = 1, \infty) \\ \varphi_{4} \text{ is sat!, } cost(\varphi) = 4 \end{array}$$

4 D > 4 B > 4 B > 4 B > 9 Q P

```
if SAT(\{C_i \mid w_i = \infty\}) = (UNSAT, \_) then return (\infty, \emptyset);
cost := 0:
                                                                                /* Optimal */
s := 0;
                                                                    /* Counter of cores */
while true do
    (st, \varphi_c) := SAT(\{C_i \mid (C_i, 1) \in \varphi\});
                                                                /* Call without weights */
    if st = SAT then return (cost, \varphi);
    s := s + 1:
    A_{\mathfrak{s}} := \emptyset:
                                                                 /* Indexes of the core */
    foreach C_i \in \varphi_c do
         if w_i \neq \infty then
                                                                  /* If the clause is soft */
              b_i^s := \text{new\_variable()};
              \varphi := \varphi \setminus \{(C_i, 1)\} \cup \{(C_i \vee b_i^s, 1)\}; /* Add blocking variable */
              A_s := A_s \cup \{i\};
         end
    end
    \varphi := \varphi \cup \{(C, \infty) \mid C \in CNF(\sum_{i \in A_s} b_i^s = 1)\}; /* Add cardinality */
    cost := cost + 1
end
```

Breaking Symmetries in the Fu and Malik algorithm

Lets look again to φ_3 in our working example without clause $(x_5, 1)$

$$\begin{array}{c|cccc} x_1 \vee & b_1^1 \vee & b_1^3 \\ x_2 \vee & b_2^1 \vee & b_2^3 \\ x_3 \vee & b_2^3 \vee & b_3^3 \\ \hline x_4 \vee & b_4^2 \vee & b_4^3 \\ \hline b_1^1 + b_2^1 = 1 \\ \hline b_3^2 + b_4^2 = 1 \\ \hline b_1^3 + b_2^3 + b_3^3 + b_4^3 = 1 \end{array}$$

$$\begin{array}{c|cccc}
x_1 \lor & b_1^1 \lor & & b_1^3 \\
x_2 \lor & b_2^1 \lor & & b_2^3 \\
x_3 \lor & & b_2^3 \lor & b_3^3 \\
\hline
x_4 \lor & & b_4^2 \lor & b_4^3 \\
b_1^1 + b_2^1 = 1 \\
\hline
b_3^2 + b_4^2 = 1 \\
b_1^3 + b_2^3 + b_3^3 + b_4^3 = 1
\end{array}$$

Breaking Symmetries in the Fu and Malik algorithm

Lets look again to φ_3 in our working example without clause $(x_5, 1)$

The formula is satisfiable, but it has 8 models instead of 4!

$$x_{1} \lor b_{1}^{1} \lor b_{1}^{3}$$

$$x_{2} \lor b_{2}^{1} \lor b_{2}^{3} \lor b_{3}^{3}$$

$$x_{3} \lor b_{4}^{2} \lor b_{3}^{3}$$

$$x_{4} \lor b_{4}^{1} = 1$$

$$b_{1}^{2} + b_{2}^{1} = 1$$

$$b_{1}^{3} + b_{2}^{3} + b_{3}^{3} + b_{4}^{3} = 1$$

$$x_{1} \lor b_{1}^{1} \lor b_{2}^{1} \lor b_{2}^{3}$$

$$x_{2} \lor b_{2}^{1} \lor b_{2}^{3} \lor b_{3}^{3}$$

$$x_{3} \lor b_{4}^{3} \lor b_{4}^{3} \lor b_{4}^{3}$$

$$b_{1}^{1} + b_{2}^{1} = 1$$

$$b_{3}^{2} + b_{4}^{2} = 1$$

$$b_{1}^{3} + b_{2}^{3} + b_{3}^{3} + b_{4}^{3} = 1$$

Breaking Symmetries in the Fu and Malik algorithm

The two previous models are related by the permutation

$$\textit{b}_{1}^{1} \leftrightarrow \textit{b}_{2}^{1}, \textit{b}_{1}^{3} \leftrightarrow \textit{b}_{2}^{3}$$

The existence of so many *partial* models makes the task of showing unsatisfiability of the formula (including x_5) much harder.

After finding the third unsatisfiable core, we break symmetries by adding to φ_3 :

$$\begin{array}{l} b_1^3 \rightarrow \neg b_2^1 \\ b_3^3 \rightarrow \neg b_4^2 \end{array}$$

Weighted version of Fu and Malik algorithm [WPM1 and WBO, 2009]

Idea:

Compute the minimum weight, w_{min} , in the unsat core

Replace soft clauses in the unsat core by,

- a copy with with weight w_{min} plus blocking variables and cardinality
- a copy with weight $w_i w_{min}$

Increase the current cost by w_{min} .

```
\varphi_0 = \{ (x_1, 5), \\ (x_2, 4), \\ (x_3, 3), \\ (x_4, 2), \\ (x_5, 1) \} \cup \\ \{ (\neg x_i \lor \neg x_j, \infty) \mid i < j \}
```

$SAT(\varphi_0)$ returns a core

$$cost(\varphi) > 0$$

$SAT(\varphi_0)$ returns a core

$$cost(\varphi) > 0$$

$$\varphi_{4} = \{ (x_{1} \lor b_{1}^{1}, 4), \blacksquare$$

$$(x_{2} \lor b_{2}^{1}, 4), \blacksquare$$

$$(x_{1}, 1), \blacksquare$$

$$(x_{3}, 3),$$

$$(x_{4}, 2),$$

$$(x_{5}, 1) \} \cup$$

$$\{ (\neg x_{i} \lor \neg x_{j}, \infty) \mid i < j \} \cup$$

$$CNF(b_{1}^{1} + b_{2}^{1} = 1, \infty) \blacksquare$$

copy with w_{min}

copy with $w_i - w_{min}$

 $SAT(\varphi_4)$ unsat, $cost(\varphi) > 4$.


```
if SAT(\{C_i \mid w_i = \infty\}) = (UNSAT, \_) then return (\infty, \emptyset);
cost := 0:
                                                                                  /* Optimal */
s := 0:
                                                                       /* Counter of cores */
while true do
     (st, \varphi_c) := SAT(\{C_i \mid (C_i, w_i) \in \varphi\}); /* Call SAT without weights */
    if st = SAT then return (cost, \varphi);
     s := s + 1:
    A_{s} := \emptyset;
                                                                   /* Indexes of the core */
     W_{min} := \min\{ w_i \mid C_i \in \varphi_c \land w_i \neq \infty \} ;
                                                                       /* Minimum weight */
    foreach C_i \in \varphi_c do
         if w_i \neq \infty then
              b_i^s := \text{new\_variable()}
              \varphi := \varphi \setminus \{(C_i, W_i)\} \cup \{(C_i, W_i - W_{min}), (C_i \vee b_i^s, W_{min})\}
              A_s := A_s \cup \{i\}
         end
    end
    \varphi := \varphi \cup \{(C, \infty) \mid C \in \mathit{CNF}(\sum_{i \in A_s} b_i^s = 1)\}; /* Add cardinality */
     cost := cost + w_{min}
end
```

Stratified approach for the WPM1 algorithm

Problem:

- the number of iterations depends on w_{min} .
- SAT solvers have no notion of weights
- SAT solvers can return not minimal unsat cores

Stratified approach:

- idea: force the SAT solver to focus on clauses with higher weights
- only clauses with $w_i > w_{max}$ are sent to the solver
- when SAT solver returns sat, w_{max} is decreased
- copies with $w_i w_{min}$ are scheduled to their appropriated w_{max}

Stratified approach for the WPM1 algorithm

```
if SAT(\{C_i \mid w_i = \infty\}) = (UNSAT, \_) then return (\infty, \emptyset);
cost := 0;
                                                                                   /* Optimal */
                                                                       /* Counter of cores */
s := 0:
W_{max} := \max\{w_i \mid (C_i, w_i) \in \varphi \land w_i < \infty\}:
while true do
     (st, \varphi_c) := SAT(\{C_i \mid (C_i, w_i) \in \varphi \land w_i \geq w_{max}\});
     if st = SAT then
         if w_{max} = 0 then return (cost, \varphi);
         else w_{max} := \max\{w_i \mid (C_i, w_i) \in \varphi \land w_i < w_{max}\};
    end
    else
         s := s + 1:
         A_s := \emptyset:
                                                                   /* Indexes of the core */
          w_{min} := \min\{w_i \mid C_i \in \varphi_c \land w_i \neq \infty\}; /* Minimum weight */
         foreach C_i \in \varphi_c do
              if w_i \neq \infty then
                   b_i^s := \text{new variable()};
                   \varphi := \varphi \setminus \{(C_i, w_i)\} \cup \{(C_i, w_i - w_{min}), (C_i \vee b_i^s, w_{min})\}
                   A_s := A_s \cup \{i\}
              end
              \varphi:=\varphi\cup\{(C,\infty)\mid C\in \mathit{CNF}(\sum_{i\in A_s}b_i^s=1)\} ; /* Cardinal. */
              cost := cost + w_{min}
         end
    end
```

Experimental investigation

- Experiments conducted within MaxSAT evaluation environment:
 Memory extended from 0.5 to 1GB
 Cutoff extended from 30' to 2h
- Best solvers from MaxSAT evaluation 2011
- Other MaxSAT solvers reported to have good performance: bincd: F. Heras, A. Morgado, J. Marques-Silva maxhs: J. Davies, F. Bacchus
- WCSP solver:
 - toulbar2: Sanchez, Bouveret, Givry, Heras, Jgou, Larrosa, Ndiaye, Rollon, Schiex, Terrioux, Verfaillie, Zytnicki

Experimental investigation

Our solvers:

```
wpm1 WPM1 algorithm on picoSAT (MaxSAT Eval. 2009/10)
```

wpm1_s wpm1 + stratified approach (MaxSAT Eval. 2011)

 $wpm1_b$ wpm1 + breaking symmetries

wpm1 $_{bs}$ wpm1 $_{b}$ + stratified approach

wpm1_{bsd} wpm1_{bs} + diversity heuristic (MaxSAT Eval. 2012)

Weighted Partial MaxSAT industrial instances

3 families, 226 instances

Solved instances							
1	1 wpm1 _{bsd}						
2	wpm1 _{bs}	204					
3	wpm1 _s	196					
4	wpm1 _b	188					
5	wbo1.6	176					
6	wpm1	172					
7	maxhs	138					
8	bincd	105					
9	sat4j	50					
10	binc	31					
11	toulbar2	5					

Mean solved family ratio						
1	wpm1 _{bsd}	76.3%				
2	wpm1 _{bs}	76.3%				
3	wpm1 _s	72.6%				
4	wpm1 _b	71.0%				
5	wpm1	63.7%				
6	wbo1.6	62.3%				
7	maxhs	49.7%				
8	bincd	40.7%				
9	sat4j	16.6%				
10	binc	14.0%				
11	toulbar2	1.7%				

Weighted Partial MaxSAT crafted Instances

8 families, 372 instances

	Solved instances						
1	wpm1 _{bsd}	270					
2	incw_maxsatz	241					
3	ak_maxsat	226					
4	toulbar2	225					
5	wpm1 _{bs}	224					
6	wmax_satz09z	222					
7	maxhs	204					
8	sat4j	189					
9	wpm1 _s	184					
10	bincd	125					
11	binc	108					
12	wpm1	84					
13	wbo1.6	82					
14	wpm1 _b	67					

Mean solved family ratio						
1	wpm1 _{bsd}	66.5%				
2	incw_maxsatz	56.6%				
3	wpm1 _{bs}	53.1%				
4	toulbar2	43.9%				
5	ak_maxsat	43.6%				
6	wmax_satz09z	41.4%				
7	wpm1 _s	40.5%				
8	maxhs	39.1%				
9	sat4j	38.4%				
10	bincd	35.1%				
11	wpm1	30.2%				
12	binc	28.5%				
13	wpm1 _b	25.5%				
14	wbo1.6	22.2%				

Thanks!

Experimental results

Instance set	#	wpm1 _{bsd}	wpm1 _{bs}	wpm1 _s	wpm1 _b	wbo1.6	wpm1
haplotyping	100	423(95)	425(95)	378(88)	376(79)	93.4(72)	390(65)
timetabling	26	685.60(9)	683(9)	585(8)	992(9)	776(4)	1002(7)
upgradeability	100	35.8(100)	37.2(100)	36.5(100)	36.9(100)	63.3(100)	114(100)
Total	226	204	204	196	188	176	172

maxhs	bincd	sat4j	binc	toulbar2
1043(34)	196(21)	108(20)	408(27)	383(5)
1238(4)	766(6)	0(0)	1350(4)	0(0)
29.0(100)	637(78)	844(30)	0(0)	0(0)
138	105	50	31	5

Table: Weighted Partial - Industrial.

Experimental results

Instance set	#	maxhs	wbo1.6	wpm1 _b	wpm1 _{bsd}	wpm1	wpm1 _{bs}
Table4 [?]	13	4.41(13)	5.03(13)	5.54(13)	8.84(13)	18.92(13)	534.13(13)
Total	13	13	13	13	13	13	13

wpm1 _s	bincd	sat4j	binc	toulbar2
559.23(13)	56.69(11)	3485.52(6)	19.50(1)	0.00(0)
13	11	6	1	0

Table: Table 4 from [?]. Linux upgradibility family forcing diversity of weights.

Experimental results

Instance set	#	wpm1 _{bsd}	incw maxsatz	ak maxsat	toulbar2	wpm1 _{bs}	wmax satz09z
auc-paths	86	274(53)	7.59(86)	4.6(86)	28.8(86)	332(53)	570(80)
auc-sched	84	11.9(84)	220(84)	123(84)	133(84)	12.2(84)	92(84)
planning	56	27.9(52)	92.2(38)	354(40)	149(41)	26.3(56)	220(50)
warehouses	18	44(14)	1184(18)	37(2)	0.03(1)	571(3)	0.32(1)
miplib	12	1187(4)	1419(5)	0.47(2)	63.2(3)	1165(4)	266(3)
random-net	74	241(39)	1177(1)	1570(2)	0(0)	0(0)	0(0)
spot5dir	21	257(10)	1127(5)	1106(5)	217(5)	383(10)	11.5(2)
spot5log	21	532(14)	0.63(4)	200(5)	170(5)	574(14)	15.6(2)
Total	372	270	241	226	225	224	222

maxhs	sat4j	wpm1 $_{s}$	bincd	binc	wpm1	wbo1.6	wpm1 _b
72.2(86)	994(44)	22(33)	1828(2)	0(0)	0(0)	0(0)	0(0)
1125(69)	716(80)	7.6(80)	130(50)	103(45)	0(0)	0(0)	0(0)
306(29)	3.27(55)	12.5(54)	59.5(47)	51.1(46)	1.46(28)	1.33(30)	3.63(29)
0.37(1)	1.34(1)	1644(3)	7.03(1)	8.67(1)	4.23(18)	0.51(4)	0.88(12)
0.07(1)	693(4)	34(3)	618(3)	699(3)	0.21(1)	0(0)	1507(1)
2790(6)	0(0)	0(0)	0(0)	0(0)	615(27)	63(37)	439(12)
199(6)	1.95(2)	1.41(5)	66.7(11)	51.7(6)	1.03(4)	2.60(5)	12.8(6)
710(6)	6.04(3)	44.4(6)	124(11)	79.3(7)	21.5(6)	25.5(6)	131(7)
204	189	184	125	108	84	82	67

Table: Weighted Partial - Crafted.

Stratified approach with other algorithms

[Weighted Partial - Industrial]

Instance set	#	bincd-2 _{sd}	bincd-2	wpm2 _{sd}	wpm2
haplotyping	100	255(22)	223(20)	515(23)	32.6(22)
timetabling	26	1243(2)	1128(1)	257(3)	246(4)
upgradeability	100	34.9(100)	30.8(100)	49.0(100)	55.4(99)
Total	226	124	121	126	125

[Table 4 from [?]. Linux upgradibility family forcing diversity of weights]

Instance set	#	bincd-2 _{sd}	bincd-2	wpm2 _{sd}	wpm2
Table4 [?]	13	27.1(13)	9.70(13)	13.9(13)	9.05(13)
Total	13	13	13	13	13

[Weighted Partial - Crafted]

Instance set	#	bincd-2 _{sd}	bincd-2	wpm2 _{sd}	wpm2
auc-paths	86	785(47)	739(42)	2551(3)	0(0)
auc-sched	84	534(81)	810(70)	76.0(46)	0(0)
planning	56	2.60(55)	3.36(56)	89.6(36)	28.7(23)
warehouses	18	0.18(1)	0.18(1)	19.2(1)	23.9(1)
miplib	12	6.77(2)	3.61(2)	13.7(1)	16.4(1)
random-net	74	2175(15)	1918(18)	0(0)	0(0)
spot5dir	21	529(11)	380(11)	486(10)	518(9)
spot5log	21	566(11)	1748(12)	572(10)	0.71(6)
Total	372	223	212	107	40

Table: Experimental results.

