CIRCUITOS ELECTRÓNICOS I

GUÍA DE TRABAJOS PRÁCTICOS Nº 4

AMPLIFICADORES OPERACIONALES

Cuestionario

- 1) Mencionar seis características de un amplificador operacional ideal.
- 2) Definir: a) Corriente de polarización, b) Corriente de offset, c) Offset de entrada, d) Corrimiento de la tensión de offset de entrada, e) Tensión de offset de salida.
- 3) Proponer circuitos con operacionales que realicen: a) suma inversora, b) suma noinversora, c) conversión corriente - tensión, d) conversión tensión – corriente, e) seguidor de tensión.
- 4) Dibujar el amplificador diferencial más simple realizado con operacionales. ¿Qué inconvenientes presenta? ¿Cómo pueden resolverse?

Bibliografía

Básica:

- P. R. Gray & R. C. Meyer, Análisis y Diseño de Circuitos Integrados Analógicos. Prentice Hall. 3ra Ed. 1995
- **J. Millman & A. Grabel**. *Microelectronics*. Mc Graw-Hill. 1987 (En español e inglés). **Jerald G. Graeme & Gene E. Tobey**, *Operational Amplifiers: Design and Applications*, Burr Brown, 1971.
- C. F. Wojslaw & E. A. Moustakas, Operational Amplifiers: The Devices and their applications, John Wiley & Sons 1986.

Complementaria:

RCA IC-42, Circuitos Integrados Lineales, Capitulo V, Ed. Arbó, Buenos Aires 1971. National Semiconductors, Linear Applications Handbooks Vol I y II.

PROBLEMAS

Problema Nº 1

En el siguiente circuito sumador, V_r es una tensión de referencia ajustable manualmente y V_T es función de la temperatura. Cuando la tensión de salida V_S es igual a cero se conecta un sistema de alarma de protección contra altas temperaturas. La termocupla es de *Chromel - Alumel*, coeficiente de 43 μ V / °C. (V_T = 0 a T= 0 °C)

Determinar: a) $V_S = f(Vr)$ para T = 0 °C.

b) ¿A qué temperatura actúa la alarma?

Problema Nº 2

En el siguiente Amp. Op. en conexión diferencial:

a) Calcular V_0 si $V_a=10$ mV, $V_b=30$ mV, $R_1=10$ k Ω y $R_2=100$ k Ω .

Obtener previamente la función transferencia.

- b) ¿Cuánto vale la impedancia de cada entrada?
- c) Defina Modo Diferencial de entrada y Modo Común de entrada y calcule las impedancias de entrada de MD y MC.

Se utiliza un puente de Wheatstone y un amplificador diferencial para medir la temperatura en un proceso industrial. Las resistencias del puente tienen un valor $R=1k\Omega$ y una de ellas varía linealmente con la temperatura en el rango de trabajo (c = 1Ω / 1 °C).

- a) Dibujar el circuito del sistema.
- b) Calcular la señal de modo común en las entradas del amplificador diferencial.
- c) Determinar la expresión de la salida en Volts del amplificador. Calcular el valor obtenido para $\Delta T = 50$ °C.
- d) ¿Cual es el error que introduce el amplificador debido al modo común? Datos: Vdd = 5V, Ad = 10, CMRR = 1000.

Problema Nº 4

Rectificador de precisión

- a) Para una entrada V_e sinusoidal, dibujar V_x en función del tiempo. Amplitud V_e =0.5V, frecuencia: 500 Hz.
- b) En el mismo gráfico, trazar V_s como suma de V_x y de V_e (Considerar SW₁ abierta).
- c) Igual que b), con SW₁ cerrada.

Problema Nº 5

Para el circuito de la figura encuentre la relación entre la tensión de salida V_0 y la entrada V_i ($V_I = 0$) Siendo $R = 10 \text{k}\Omega$ se ha realizado una medición y la salida V_0 resultó -1.957V cuando la entrada fue de 650mV. Calcule la corriente inversa del diodo (I_s).

Suponiendo que en el circuito de la figura los transistores Q_1 y Q_2 son idénticos, encuentre la ganancia de tensión $V_0 = f(v_1, v_2)$.

Problema Nº 7

Halle la expresión de la tensión de salida V_0 en función de las tensiones de entrada V_1 y V_2 , de la tensión de referencia V_{ref} y de las resistencias R_1 , y R_2 del siguiente amplificador.

Función no-lineal. Determine la expresión de la tensión de salida (E_{OUT}) del siguiente circuito en función de E_{IN} y E_{REF} . Considere que los capacitores son circuitos abiertos en el modelo de señal y los AO son ideales.

Datos: transistores idénticos ($I_{S1} = I_{S2}$), $V_T = 26 \text{ mV}$, $E_{REF} = 15 \text{ V}$.

Ayuda: desprecie corrientes de base de los transistores y determine primero la tensión de los emisores de Q1 y Q2 en función de E_{IN} y E_{REF} .

Determine la transferencia del circuito de la siguiente figura. Emplee el concepto de tierra virtual.

Observación: Todos los AO son u741, suponga que los pines 4 y 7 están conectados a la alimentación correspondiente (± Vcc). Los pines 1 y 5 son para compensar el AO, en este caso van sin conexión (NC).

En el integrador de la figura las corrientes de polarización son $I_{B1} = I_{B2} = 0.1 \,\mu\text{A}$.

- a) Dibuje el modelo de un A.O. incluyendo las corrientes de base.
- b) Suponiendo que la llave S se abre en t = 0, encuentre una expresión para la tensión de salida en función del tiempo para $v_i = 0$.
- c) Repita los cálculos suponiendo que se agrega una R de valor $50k\Omega$ en la entrada no inversora. ¿Usted cree que sirve para algo dicho agregado en este circuito?

Problema N° 11

Para el circuito de la figura, los AO son ideales excepto que cada uno tiene una corriente de polarización $I_{B1} = I_{B2} = I_B = 10 \,\mu\text{A}$.

- a) Calcule las tensiones de salida de cada AO ($V_{O1},\,V_{O2}\,y\,V_{O3}$) en función de la entrada Vi.
- b) Para Vi=0 y $R_A=R_B=0$ k Ω , determine los valores de $V_{O1},\,V_{O2}$ y V_{O3} debido a las corrientes de polarización.
- c) Determine valores de R_A y R_B adecuados para compensar el efecto de I_{B1} , I_{B2} .
- d) Si $I_B = 10 \mu A$ e $I_{OS} = 2 \mu A$, determine los valores de V_{O1} , V_{O2} y V_{O3} utilizando los resultados obtenidos en c).

Datos: $R_1 = 10 \text{ k}\Omega$, $R_2 = 50 \text{ k}\Omega$, $R_3 = R_4 = 20 \text{ k}\Omega$.

Para el circuito de la figura:

- a) Determine la Ganancia i_d/i₁.
- b) Diseñe para $i_1=1$ mA e $i_d=12$ mA con Vin = 5V.
- c) Determine VOut si el forward voltaje del LED es $V\gamma = 1.6V$.