Journée des doctorants

Silviu Filip Sébastien Maulat Stephen Melczer Vincent Neiger Marie Paindavoine Antoine Plet Valentina Popescu

Aric Team, LIP, ENS de Lyon, France

June 2015

AriC: Arithmetic and Computing

Améliorer le calcul, en termes de performance, d'efficacité et de fiabilité.

AriC JDD June 2015 2/16

AriC: Arithmetic and Computing

- ▶ algorithmes arithmétiques & implantation:
 - ► virgule flottante;
 - multi-précision;
 - ▶ bornes d'erreur fines
- méthodes d'approximation:
 - uniforme/ponctuelle;
 - ▶ polynomiale/rationnelle
- ► calcul certifié et calcul formel:
 - ► algèbre linéaire à coefficients polynomiaux;
 - récurrences linéaires à coefficients polynomiaux;

AriC

 $_{
m JDD}$

June 2015

AriC JDD

June 2015

5/16

AriC — Multivariate interpolation

Problem: MULTIVARIATE POLYNOMIAL INTERPOLATION

Applications to:

- Error-correcting codes
 Enable reliable delivery of data over unreliable communication channels
 (add redundancy to the message)
- ► Crypto: private information retrieval look up information in an online database without letting the database servers know (or learn) the query terms or responses.

AriC — Tool: structured matrices

Find a solution of a (scalar) structured linear system,

where $A_{i,j}$ is a Toeplitz / Hankel / Vandermonde / ... matrix JDD

AriC — Tool: polynomial matrices

Find a short vector in the row space of a polynomial matrix = lattice basis reduction (LLL), over the polynomials

Example matrix (for list-decoding Reed-Solomon codes):

where T_i has a **Toeplitz** structure:

JDD

AriC

AriC JDD

AriC – Lattice-Based Cryptography

AriC JDD June 2015 10/16

AriC – Lattice-Based Cryptography

- ► Public Key Encryption
- ► Identity Based Encryption
- ► Fully Homomorphic Encryption
- ► Signature
- ► Group Signature
- ► Hash Function
- Cryptographic Multilinear Maps

AriC JDD June 2015 12/16

Two types of filters:

- ▶ finite impulse response (FIR) $\Rightarrow H_d(\omega)$ polynomial
- ▶ infinite impulse response (IIR) $\Rightarrow H_d(\omega)$ rational function

AriC JDD June 2015 13/16

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^L a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^{L} a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^L a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^{L} a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

AriC JDD

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^L a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization:

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

14/16

Goal: filter synthesis toolchain for embedded and FPGA targets

AriC JDD June 2015

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^{L} \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

14/16

Goal: filter synthesis toolchain for embedded and FPGA targets

AriC JDD June 2015

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^{L} \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization:

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

 $AriC \hspace{1.5cm} JDD \hspace{1.5cm} June \hspace{1mm} 2015 \hspace{1.5cm} 14/\hspace{1mm} 16$

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization:

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

AriC JDD June 2015 14/16

AriC JDD June 2015 15/16

AriC JDD June 2015 16/16