Week 10

December 19, 2018

Chapter 3: Laplace Transformation

Laplace Transform

Definition. Let $f:[0,\inf)\to\mathbb{R}$. We define the function $F:S\to R$ by

$$F(s) = \int_0^\infty e^{-st} f(t) dt, s \in S$$

such that F converges for all $s \in S$, when S is a subset of \mathbb{R} . We say that F(s) is the **Laplace Transform** of f(t). We denote it by $\mathcal{L}\{f(t)\}(s)$ or $\mathcal{L}\{f(t)\}(s)$.

Examples

Find $\mathcal{L}\{1\}$.

 $\frac{1}{s}$. (We can use this directly without having to prove.)

Find $\mathcal{L}\{e^{at}\}$.

 $\frac{1}{s-a}$. (Substitute u=-(s-a)t.)

Find $\mathcal{L}\{\cos bt\}$

$$\frac{s}{s^2 + b^2}$$

Find $\mathcal{L}\{\sin bt\}$

$$\frac{b}{s^2 + b^2}$$

Find $\mathcal{L}\{t^n\}$, where n is a positive integer.

$$rac{n!}{s^{n+1}}$$

If n is not a positive integer, the answer is $\frac{\Gamma(r+1)}{s^{r+1}}$, where $\Gamma(x)$ is the Gamma function, defined by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

Find $\mathcal{L}\{f(t)\}$, where $f(t) = \left\{ egin{array}{ll} 1 & ext{if } 0 < t < 4 \\ t & ext{otherwise} \end{array} \right.$

$$rac{1}{s} + rac{(3s+1)e^{-4s}}{s^2}$$

Existence of Laplace Transform and Inverse Laplace Transform

Definition. Let $f:[a,b] \to \mathbb{R}$ be a function. We say that f is **piecewise continuous** on [a,b] if there exists $t_1,\ldots,t_i \in (a,b)$, where $t_1 < \ldots < t_i$ that satisfy the following conditions

- 1. f is continuous on (t_{k-1},t_k) for $k=1,\ldots,i+1$. (We let $t_0=a$ and $t_{i+1}=b$).
- 2. For each subinterval $[t_{k-1}, t_k]$, f is discontinuous at the endpoint of subinterval t_{k-1} and t_k . Moreover the limits $\lim_{t\to t_{k-1}^+} f(t)$ and $\lim_{t\to t_k^-} f(t)$ exist.

Definition. We say that f(t) is of **exponential order** if there exist $\alpha,t_0\in\mathbb{R}$ and M>0 such that

$$|f(t)| \leq Me^{\alpha t}$$
,

for $t \geq t_0$, denoted by $f(t) = O(e^{\alpha t})$

Theorem. (Existence of Laplace Transform). Let f(t) be a function such that

$$\int_0^{t_0} e^{-st} f(t) dt$$

exists for all $t_0>0$ and there exists $\alpha>0$ such that $f(t)=O(e^{\alpha t})$. Then $\mathcal{L}\{f(t)\}$ exists for $s>\alpha$.

Definition. (Function of Class A)

- 1. f is a continuous function on [0,T] for all T>0
- 2. $f(t) = O(e^{\alpha t})$ for some $\alpha \in \mathbb{R}$

Theorem. Let f be a function of class A, then $F(s)=\mathcal{L}\{f(t)\}$ exists and $\lim_{s\to\infty}F(s)=0$

Examples

Let $f(t) = t^{-1/2}$. Show that $\mathcal{L}\{f(t)\}$ exists and find its Laplace transform.

$$rac{\sqrt{\pi}}{2s^{1/2}}$$

Question. Is it true that $f_1(t) = f_2(t)$ if $\mathcal{L}\{f_1(t)\} = \mathcal{L}\{f_2(t)\}$

Theorem. Let $f,g:[0,T]\to\mathbb{R}$ be a continuous function for every T>0 and there exists $\alpha\in\mathbb{R}$ such that $\mathcal{L}\{f(t)\}=\mathcal{L}\{g(t)\}, s>\alpha$, then f(t)=g(t) for every $t\in[0,\infty)$ such that f and g are continuous at t. Moreover, if f and g are continuous on $[0,\infty)$, then f=g.

Theorem. (Inverse Laplace Transform) Let $F:(s_0,\infty)\to\mathbb{R}$ for some $s_0\in\mathbb{R}$ and $\lim_{s\to\infty}F(s)=0$, then there exists a unique continuous function f on $[0,\infty)$ and f is of exponential order such that $\mathcal{L}\{f(t)\}=F(s)$. We say that f is the **inverse Laplace Transform** of F(s), denoted by $f(t)=\mathcal{L}^{-1}\{F(s)\}$.

Theorem. (Linearity Property). Let f(t) and g(t) be functions such that $\mathcal{L}\{f(t)\}$ and $\mathcal{L}\{g(t)\}$ exist for $s>\alpha$ and $s>\beta$ respectively, and a and b are constants, then

$$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\},\$$

where $s > \max\{\alpha, \beta\}$.

Theorem. (First Shifting Theorem) Let f(t) be a function that the Laplace transform F(s) exists for $s > \alpha$ and a is a constant, then

$$\mathcal{L}\{e^{at}f(t)\} = F(s-a).$$

We use the symbol for this operation by $\mathcal{L}\{f(t)\}_{s o s-a}$.

Examples

Find
$$\mathcal{L}\{te^{2t}\}$$
.

=
$$\mathcal{L}\{t\}_{s
ightarrow s-2}$$

Find
$$\mathcal{L}\{e^{\pi t}\cos t\}$$

Theorem. (Multiplication by t^n Property)

Let
$$\mathcal{L}\{f(t)\}=F(s)$$
, then

$$\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s),$$

where $n \in \mathbb{N}$.

Examples

Find $\mathcal{L}\{t\sin bt\}$

$$\frac{2bs}{(s^2+b^2)^2}$$

Find
$$\mathcal{L}\{t^4e^{2t}\}$$

$$\frac{4!}{(s-2)^5}$$

Theorem. $\mathcal{L}\{P(t)f(t)\}=P(-D)F(s)$, where $D=\frac{d}{ds}$ and $P(t)=a_nt^n+\ldots+a_1t+a_0$.

Examples

Find
$$\mathcal{L}\{(t^2+2t+1)\cos t\}$$

$$= ((-D)^2 + 2(-D) + I)(\mathcal{L}\{\cos t\})$$

Find
$$\mathcal{L}^{-1}\{(4+5t-t^2)\cos t\}$$

$$\frac{4s}{s^2+1} - \frac{5-5s^2}{(s^2+1)^2} - \frac{2s^3-6s}{(s^2+1)^3}$$

Find
$$\mathcal{L}^{-1}\{\ln(1+\frac{c^2}{s^2})\}$$

$$\frac{2\cos ct - 1}{t}$$

Find
$$\mathcal{L}^{-1}\{rac{s}{(s^2+1)^2}\}$$

$$\frac{1}{2}t\sin t$$

Theorem. (Laplace Transform of the nth derivative) Let f be n times continuous differentiable function on $[0, \infty)$, then

$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots sf^{(n-2)}(0) - f^{(n-1)}(0).$$

Example

Solve $y'' + 2y' + y = \sin x$