In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv('loan_train.csv')
df
```

t	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_
Э	0	Graduate	No	5849	0.0	NaN	;
s	1	Graduate	No	4583	1508.0	128.0	\$
s	0	Graduate	Yes	3000	0.0	66.0	:
S	0	Not Graduate	No	2583	2358.0	120.0	;
Э	0	Graduate	No	6000	0.0	141.0	:
Э	0	Graduate	No	2900	0.0	71.0	•
s	3+	Graduate	No	4106	0.0	40.0	,
s	1	Graduate	No	8072	240.0	253.0	3.
4							>

In [15]:

df.columns

Out[15]:

```
In [16]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
     Column
                        Non-Null Count
                                         Dtype
 0
     Loan_ID
                        614 non-null
                                         object
     Gender
 1
                        601 non-null
                                         object
 2
     Married
                        611 non-null
                                         object
 3
     Dependents
                        599 non-null
                                         object
 4
     Education
                                         object
                        614 non-null
 5
     Self_Employed
                        582 non-null
                                         object
 6
     ApplicantIncome
                        614 non-null
                                         int64
 7
     CoapplicantIncome 614 non-null
                                         float64
 8
     LoanAmount
                        502 non-null
                                         float64
     Loan_Amount_Term
                                         float64
 9
                        598 non-null
 10 Credit_History
                        564 non-null
                                         float64
                                         object
 11 Property_Area
                        614 non-null
 12 Loan_Status
                        614 non-null
                                         object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
In [17]:
df['Loan_Status'].value_counts()
Out[17]:
Υ
     422
Ν
     192
Name: Loan_Status, dtype: int64
In [18]:
x=df[['ApplicantIncome']]
y=df['Loan_Status']
```

In [19]:

```
d={"Loan_Status":{'Y':1,'N':2}}
df=df.replace(df)
print(df)
Loan_ID_Gender_Married_Dependents____Education_Self_Employed_\
```

	Loan_ID	Gender	Married	Dependents	Educati	on Self_Employed	\
0	LP001002	Male	No	0	Gradua	te No	
1	LP001003	Male	Yes	1	Gradua	te No	
2	LP001005	Male	Yes	0	Gradua	te Yes	
3	LP001006	Male	Yes	0	Not Gradua	te No	
4	LP001008	Male	No	0	Gradua	te No	
609	LP002978	Female	No	0	Gradua	te No	
610	LP002979	Male	Yes	3+	Gradua	te No	
611	LP002983	Male	Yes	1	Gradua		
612	LP002984	Male	Yes	2	Gradua		
613			No	0	Gradua		
	Applicant	Income	Coapplio	cantIncome	LoanAmount	Loan_Amount_Term	\
0		5849	• •	0.0	NaN	360.0	
1		4583		1508.0	180.0	360.0)
2		3000		0.0	133.0	360.0	
3		2583		2358.0	180.0	360.0	
4		6000		0.0	NaN	360.0	
609		2900		0.0	164.0	360.0	
610		4106		0.0	95.0	360.0	
611		8072		5000.0	180.0	360.0	
612		7583		0.0	180.0	360.0	
613		4583		0.0	NaN	360.0	
	Credit_Hi	story Pi	roperty_A	Area Loan_St	tatus		
0		1.0	Ur	rban	Υ		
1		1.0	Rı	ural	N		
2		1.0	Ur	rban	Υ		
3		1.0	Ur	rban	Υ		
4		1.0	Ur	rban	Υ		
				• • •			
609		1.0	Rı	ural	Υ		
610		1.0	Rı	ıral	Υ		
611		1.0	U	rban	Υ		
612		1.0	Ur	rban	Υ		
613		1.0	Semiur	rban	N		

[614 rows x 13 columns]

In [20]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.70)
```

```
In [21]:
```

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[21]:

RandomForestClassifier()

Depth of Tree

```
In [22]:
```

```
parameters={"max_depth":[1,2,3,4,5],"min_samples_leaf":[5,23,45,76,78],'n_estimators':[10]
```

Cross Validate

```
In [23]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[23]:
```

```
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                         'min_samples_leaf': [5, 23, 45, 76, 78],
                         'n_estimators': [10, 23, 45, 65, 7]},
             scoring='accuracy')
```

Score

```
In [24]:
```

```
grid_search.best_score_
```

Out[24]:

0.7228260869565217

In [25]:

```
rfc_best=grid_search.best_estimator_
```

In [26]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b'],filled=Tr
```

Out[26]:

```
[Text(2232.0, 1630.8000000000000, 'ApplicantIncome <= 1739.5\ngini = 0.45
\nsamples = 121\nvalue = [63, 121]\nclass = b'),
  Text(1116.0, 543.599999999999, 'gini = 0.444\nsamples = 5\nvalue = [4,
2]\nclass = a'),
  Text(3348.0, 543.599999999999, 'gini = 0.443\nsamples = 116\nvalue = [5
9, 119]\nclass = b')]</pre>
```

ApplicantIncome <= 1739.5gini = 0.45 samples = 121 value = [63, 121] class = b

gini = 0.444 samples = 5 value = [4, 2] class = a gini = 0.443 samples = 116 value = [59, 119] class = b

In []: