Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Test 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{11}(\sqrt{11}+1)-(\sqrt{11}+3)=\sqrt{11}\cdot\sqrt{11}+\sqrt{11}-\sqrt{11}-3=$	2p
	=11-3=8	3 p
2.	$f(x) = 0 \Leftrightarrow x^2 - 5x + 6 = 0$	2 p
	Abscisele punctelor de intersecție a graficului funcției f cu axa Ox sunt $x = 2$ și $x = 3$	3 p
3.	$x^2 + 2 = 27 \Longrightarrow x^2 - 25 = 0$	2 p
	x = -5 sau $x = 5$, care convin	3 p
4.	Numărul dreptelor determinate de câte două dintre aceste puncte este egal cu C_4^2 =	2 p
	$=\frac{4!}{2!(4-2)!}=6$	3 p
5.	N este mijlocul segmentului MP , unde $P(a,b)$ este simetricul punctului M față de punctul N , deci $2=\frac{-1+a}{2}$ și $1=\frac{2+b}{2}$ $a=5$ și $b=0$	3p 2p
6.		-
	$\cos B = \frac{BC^2 + AB^2 - AC^2}{2 \cdot BC \cdot AB} =$	2 p
	$= \frac{81 + 18 - 45}{2 \cdot 9 \cdot 3\sqrt{2}} = \frac{\sqrt{2}}{2}$, de unde obținem că măsura unghiului <i>B</i> este de 45°	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} -9 & 8 \\ -5 & 5 \end{pmatrix} \Rightarrow \det A = \begin{vmatrix} -9 & 8 \\ -5 & 5 \end{vmatrix} = (-9) \cdot 5 - (-5) \cdot 8 =$	3p
	=-45+40=-5	2 p
b)	$A(a) \cdot A(b) = \begin{pmatrix} 1 - 10b - 10a + 100ab - 40ab & 8b - 80ab + 8a + 32ab \\ -5a + 50ab - 5b - 20ab & -40ab + 1 + 4a + 4b + 16ab \end{pmatrix} =$	3 p
	$\begin{pmatrix} 1-10(a+b-6ab) & 8(a+b-6ab) \\ -5(a+b-6ab) & 1+4(a+b-6ab) \end{pmatrix} = A(a+b-6ab), \text{ pentru orice numere reale } a \text{ și } b$	2p
c)	A(m+n-6mn) = A(6-5mn), deci $mn-m-n+6=0$	2p
	(m-1)(n-1) = -5 și, cum m și n sunt numere naturale, obținem $m = 0$, $n = 6$ sau $m = 6$, $n = 0$	3p
2.a)	$1*3=1\cdot 3-3\cdot 1-3\cdot 3+12=$	3 p
	=3-3-9+12=3	2p
b)	x * y = xy - 3x - 3y + 9 + 3 =	3 p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	2p

c)	$x * x = (x-3)^2 + 3$, $x * x * x = (x-3)^3 + 3$, pentru orice număr real x	2p
	$(x-3)^3 + 3 = x$, deci $x = 2$, $x = 3$ sau $x = 4$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 5x^4 - 5 = 5(x^4 - 1) =$	3p
	$=5(x^2-1)(x^2+1)=5(x-1)(x+1)(x^2+1), x \in \mathbb{R}$	2 p
b)	$f''(x) = 20x^3, \ x \in \mathbb{R}$	2p
	$f''(x) \le 0$ pentru orice $x \in (-\infty, 0]$, deci funcția f este concavă pe $(-\infty, 0]$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in [-1,1] \Rightarrow f$ este descrescătoare pe $[-1,1] \Rightarrow f(x) \le f(-1)$, pentru orice $x \in [-1,1]$	2p
	$f(-1) = 2024$, deci $f(x) \le 2024$ pentru orice $x \in [-1,1]$, deci ecuația $f(x) = 2025$ nu admite nicio soluție în intervalul $[-1,1]$	3 p
2.a)	$F'(x) = f(x) = \sin x$, pentru orice număr real x	3p
	Cum $\sin x \ge 0$, pentru orice $x \in [0, \pi]$, obținem $F'(x) \ge 0$, pentru orice $x \in [0, \pi]$, deci orice primitivă F a funcției f este crescătoare pe $[0, \pi]$	2 p
b)	$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 2f(x)f'(x) dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 2\sin x \cos x dx = \sin^2 x \left \frac{\pi}{\frac{\pi}{4}} \right $	3p
	$=\sin^2\frac{\pi}{3} - \sin^2\frac{\pi}{4} = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$	2p
c)	$= \sin^2 \frac{\pi}{3} - \sin^2 \frac{\pi}{4} = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$ $\int_{0}^{\frac{\pi}{2}} x f(x) dx = \int_{0}^{\frac{\pi}{2}} x(-\cos x)' dx = -x\cos x \begin{vmatrix} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{vmatrix} \cos x dx = 0$	2p
	$= -\frac{\pi}{2}\cos\frac{\pi}{2} + \sin x \begin{vmatrix} \frac{\pi}{2} \\ 0 \end{vmatrix} = \sin\frac{\pi}{2} - \sin 0 = 1$	3 p