Домашнее задание №2: «формализация лямбда-исчисления»

1. Придумайте грамматику для лямбда-выражений, однозначно разбирающую любое выражение (в частности, учитывающую все сокращения скобок в записи).

Решение.

•
$$S \rightarrow \lambda T.S$$

•
$$S \rightarrow S S$$

•
$$S \rightarrow T$$

•
$$S \rightarrow (S)$$

•
$$T \to \Sigma$$

2. Приведите пример лямбда-выражения, корректная бета-редукция которого невозможна без переименования связанных переменных. Возможно ли, чтобы в этом выражении все переменные в лямбда-абстракциях были различными?

Решение.
$$(\lambda y.\lambda x.y \ x) \ (\lambda x.x)$$

3. Два выражения A и B назовём родственными, если существует C, что $A \twoheadrightarrow_{\beta} C$ и $B \twoheadrightarrow_{\beta} C$. Как соотносится родственность и бета-эквивалентность?

Решение.

Обозначение. A родственн. $B \Leftrightarrow A \sim B$

$$A \sim B \Rightarrow \begin{cases} A \twoheadrightarrow_{\beta} C \\ B \twoheadrightarrow_{\beta} C \end{cases} \Rightarrow \begin{cases} A =_{\beta} C \\ B =_{\beta} C \end{cases} \Rightarrow A =_{\beta} B$$

В обратную сторону тоже верно по ромбовидному свойству.

4. Рассмотрим представление лямбда-выражений де Брауна (de Bruijn): вместо имени связанной переменной будем указывать число промежуточных лямбда-абстракций между связывающей абстрацией и переменной. Например, $\lambda x.\lambda y.y.y.x$ превратится в $\lambda.\lambda.0.1$.

Докажите, что $A=_{\alpha}B$ тогда и только тогда, когда представления де Брауна для A и B совпадают. Сформулируйте правила (алгоритмы) для подстановки термов и бета-редукции для этого представления.

5. Как мы знаем, $\Omega \to_{\beta} \Omega$. А существуют ли такие лямбда-выражения A и B ($A \neq_{\alpha} B$), что $A \to_{\beta} B$ и $B \to_{\beta} A$?

Решение.
$$A = \omega (\lambda x.\omega x), B = (\lambda x.\omega x) (\lambda x.\omega x)$$

6. Рассмотрим следующие лямбда-выражения для задания алгебраических типов:

Обозначение	лямбда-терм	название
Case	$\lambda l.\lambda r.\lambda c.c \ l \ r$	сопоставление с образцом
InL	$\lambda l.(\lambda x.\lambda y.x\ l)$	левая инъекция
InR	$\lambda r.(\lambda x.\lambda y.y \ r)$	правая инъекция

Сопоставление с образцом — это функция от значения алгебраического типа и двух действий l и r, которая выполняет действие l, если значение создано «левым» конструктором, и r в случае «правого» конструктора. Иными словами, $Case\ l\ r\ c$ — это аналог case $\ c\ \{\ InL\ x\ ->\ l\ x;\ InR\ x\ ->\ r\ x\ \}.$

Заметим, что список (например, целых чисел) — это алгебраический тип:

Можно сконструировать значение данного типа: Cons 3 (Cons 5 Nil). Можно, например, вычислить его длину:

Определим $Nil = InL\ 0$, а $Cons\ a\ b = InR\ (MkPair\ a\ b)$. Заметим, что теперь списки могут быть впрямую перенесены в лямбда выражения.

Определите следующие функции в лямбда-исчислении для списков:

(а) вычисление длины списка;

$$Y \lambda f.\lambda l.$$
Case $(\lambda x.0) (\lambda p.(+1) (f (PrR p))) l$

(b) построение списка длины n из элементов 0, 1, 2, ..., n-1;

$$\lambda n.(Y \lambda f.(\lambda n'.\lambda m.(\text{Eq } n' m) \text{ Nil (Cons } m (f n' (\text{inc } m))))) n 0$$

(c) разворот списка: из списка a_1, a_2, \ldots, a_n сделать список $a_n, a_{n-1}, \ldots, a_1$;

Add =
$$\lambda e.Y \lambda f.$$
Case ($\lambda x.$ Cons $e.$ Nil) ($\lambda p.$ Cons (PrL p) ($f.$ (PrR p)))

Reverse = $Y \lambda f.$ Case ($\lambda x.$ Nil) ($\lambda p.$ Add (PrR p) ($f.$ (PrL p)))

(d) функцию высшего порядка map, которая по функции f и списку a_1, a_2, \ldots, a_n строит список $f(a_1), f(a_2), \ldots, f(a_n)$.

```
\lambda g.Y \lambda f.Case (\lambda x.Nil) (\lambda p.Cons (g (PrL p)) (f (PrR p)))
```

Решением задачи является полный текст соответствующего лямбда-выражения с объяснениями механизма его работы. Используйте интерпретатор лямбда-выражений lci или аналогичный для демонстрации результата.

- 7. Чёрчевские нумералы соответствуют натуральным числам в аксиоматике Пеано.
 - (а) Предложите «двоичные нумералы» способ кодирования чисел, аналогичный двоичной системе (такой, при котором длина записи числа соответствует логарифму числового значения).

```
\lambda n.Reverse ((Y \lambda f. \lambda r. (IsZero r) Nil (Cons ((IsEven r) 0 1) (f (DivBy2 r)))) n)
```

(b) Предложите реализацию функции (+1) в данном представлении.

(c) Предложите реализацию лямбда-выражения преобразования числа из двоичного нумерала в чёрчевский.

Аналогично прошлому заданию, решение должно содержать полный код лямбдавыражения вместе с объяснением механизма его работы.