Appendix D

List of Algorithms

Algorithm 1 Blockbuster Algorithm (Brownlees et al. (2018))

Require: The return matrix $Y \in \mathbb{R}^{N \times T}$ and the number of groups $K \in \mathbb{R}^+$.

- 1: Compute the sample covariance matrix S.
- 2: Compute the eigenvectors corresponding to the K largest eigenvalues of S and construct the matrix $\tilde{U} \in \mathbb{R}^{N \times K}$.
- 3: Standardize each row of \tilde{U} by its Euclidean norm to obtain the row-normalized sample eigenvector matrix X, where each element is computed as $x_{nk} = \frac{\tilde{u}_{nk}}{\|\tilde{u}_n\|_2}$.
- 4: Apply the K-means algorithm to the rows of X.

return K-means partition $\hat{\Pi}_K = \{\hat{\Pi}_1, \dots, \hat{\Pi}_K\}$ as the estimate of the asset groups.

Algorithm 2 Adaptive Blockbuster Algorithm (De Nard (2022))

Require: The return matrix $Y \in \mathbb{R}^{N \times T}$.

- 1: Compute the sample covariance matrix $S = \frac{1}{T-1}YY'$, and its spectral decomposition S = UVU'.
- 2: Standardize the sorted eigenvalue vector $\tilde{V} = \operatorname{sort}(\operatorname{diag}(V))$ by the Eucledian norm and denote it by Y, where each element is computed as $y_n = \frac{\tilde{v}}{\|\tilde{V}\|_2}$
- 3: Apply a Kernel Density Estimate to Y and compute the number of resulting local minimas M
- 4: Use Y and K=M+1 as inputs for the Blockbuster Algorithm (Algorithm 1). **return** K-means partition $\hat{\Pi}_K = \{\hat{\Pi}_1, \dots, \hat{\Pi}_K\}$ as the estimate of the asset groups.