北京科技大学 2021 -- 2022 学年 第 一学期

常微分方程 试卷(C)

院(系)_	班绰	班级		学号		_ 姓名			
	题号	_		Ξ	四	五.	六	卷面总成绩 (满分 100 分)	
	得分								

得 分	_	植穴斯	(木 斯 壮	18 🕁	每空3分	A)
	`	英工风	(平成六	10 %,	母工 5	71)

- 1、方程 $\frac{dy}{dx} = x^4 + y$ 定义在矩形域 $R: -2 \le x \le 2, -2 \le y \le 2$ 上,则经过点(0,
- 0)的解的存在区间是_____。
- 3、函数组2t, e^t , cost的伏朗斯基行列式为_____。
- 4、 $\mathbf{A} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,则矩阵指数 $\exp \mathbf{A}t =$ _____。

1、求
$$y^2 \left[1 - \left(\frac{dy}{dx} \right)^2 \right] = 1$$
的通解(7 分)

 $2、求 \frac{dy}{dx} = y + xy^3$ 的通解(7分)

3、求出 $(x^2e^y - y)dx + xdy = 0$ 的积分因子,并求此方程的通解(7分)

4、试求初值问题
$$\begin{cases} \frac{dy}{dx} = x + 2y^2 \\ y(0) = 0 \end{cases}$$
的第二次近似解(7分)

5、试求 $y = xy' + y'^2$ 的奇解(6分)

三、求
$$\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 3x = t + 2\sin t + e^t$$
的通解(15分)

得 分

四、试求方程组 $\mathbf{x}' = \mathbf{A}\mathbf{x}$ 的基解矩阵,并求满足 $\mathbf{x}' = \mathbf{A}\mathbf{x} + \begin{bmatrix} e^t \\ 0 \end{bmatrix}$, $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 的解,其中 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (15 分)

得 分

五、求方程 $x'' = \frac{1}{2x}$ 的解(8分)

得 分

六、试证如果 $\Phi(t)$, $\Psi(t)$ 在区间 $a \le t \le b$ 上是x' = A(t)x的两个基解矩阵,那么,存在一个非奇异 $n \times n$ 常数矩阵C,使得在区间 $a \le t \le b$ 上 $\Psi(t) = \Phi(t)C$ (10分)