A Comparison Between Two Algorithms in Subgroup Analysis

Bin Li

Advisor: Dr. Xin Wang

Committee Members: Dr.Jing Zhang; Dr.O'Connell

July 26, 2021

Miami University

Table of contents

- 1. Introduction
- 2. The Model and the Algorithm
- 3. Simulation
- 4. Empirical Example
- 5. Discussion

Subgroup analysis: widely used

- 1. Medical: develop individualized treatment strategies to achieve precision medicine (Ma and Huang, 2017).
- 2. Environmental science: the spatial effect in a large region may change with location but tend to stay homogeneous within clusters (Li and Sang, 2019).

Clustering analysis: identifying subgroups

- 1. Hierarchical clustering: looks for nested clusters either in agglomerative mode or in a divisive model.
- Partitional clustering: searches for clusters simultaneously as a partition of the data without considering any hierarchical structure, like K-means.
- 3. Other clustering algorithms: use different objective functions, probabilistic generative models, and heuristics.(Jain, 2010).

- Clustering analysis: investigating the relationship between Y and X through regression analysis
 - Pairwise coefficient difference: penalize on coefficients to achieve homogeneity among coefficients, like concave pairwise fusion penalized least squares approach (Ma and Huang, 2017).
 - Sparially clustered coefficient: construct regularization to incorporate spatial neighborhood information and capture clustered coefficients (Li and Sang, 2019).

Penaly Function

- Penalty function selection
 - 1. Smoothly Clipped Absolute Deviation Penalty (SCAD)
 - 2. Minimax Concave Penalty (MCP)
 - 3. Lasso Penalty (L1 Penalty)

The Model and the Algorithm

The model

Details about subgroups and regression analysis

- 1. Multiple measurements
- 2. Two categories of covariates: "common" and "specific"
- 3. Linear regression model considered in Wang et al. (2020)

$$y_{ih} = \mathbf{z}_{ih}^T \boldsymbol{\eta} + \mathbf{x}_{ih}^T \boldsymbol{\beta}_i + \epsilon_{ih}$$

where \mathbf{y}_{ih} : the hth observation for the ith subject for i = 1, ..., n and $h = 1, ..., n_i$.

 z_{ih} : common covariates

 x_{ih} : specific covariates

 η : vector of common regression coefficients

 β_i : unit-specific regression coefficients

 ϵ_{ih} : i.i.d random errors with $E(\epsilon_{ih}) = 0$ and $Var(\epsilon_{ih}) = \sigma^2$

7

Penalization

- Penalization on pairwise coefficient difference
 - 1. Vector penalty $(\beta_i \beta_i)$ (Wang et al., 2020; Ma et al., 2019)
 - 2. Coordinate penalty $(\beta_{li} \beta_{lj})$ (Li and Sang, 2019; Yang et al., 2019)

An example:

$$\beta_{1} = (\beta_{11}, \beta_{21}, \beta_{31})^{T}$$

$$\beta_{2} = (\beta_{12}, \beta_{22}, \beta_{32})^{T}$$

$$\beta_{3} = (\beta_{13}, \beta_{23}, \beta_{33})^{T}$$

$$\vdots$$

$$\beta_{n} = (\beta_{1n}, \beta_{2n}, \beta_{3n})^{T}$$

8

Algorithm I Vector Penalty

Objective function

$$Q_{n}\left(\boldsymbol{\eta},\boldsymbol{\beta};\lambda\right) = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{h=1}^{n_{i}} \left(y_{ih} - \boldsymbol{z}_{ih}^{T} \boldsymbol{\eta} - \boldsymbol{x}_{ih}^{T} \boldsymbol{\beta}_{i}\right)^{2} + \sum_{1 \leq i < j \leq n} p_{\gamma}\left(\left\|\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{j}\right\|, c_{ij}\lambda\right)$$

where

 $p_{\gamma}(\cdot,\lambda)$: penalty function

 γ : built-in constant, $\gamma=3$ (Fan and Li, 2001)

 $\|\cdot\|$: Euclidean norm

 c_{ij} : pairwise weights. In spatial data (Wang et al., 2020), c_{ij} can be defined based on locations. Here $c_{ij}=1$ is considered in the simulation study.

 λ : tuning parameter, $\lambda \geq 0$

Algorithm II Coordinate Penalty

Objective function

$$Q(\boldsymbol{\eta}, \boldsymbol{\beta}; \lambda) = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{h=1}^{n_i} \left(y_{ih} - \mathbf{z}_{ih}^T \boldsymbol{\eta} - \mathbf{x}_{ih}^T \boldsymbol{\beta}_i \right)^2 + \sum_{l=1}^{p} \sum_{1 \leq i < j \leq n} p_{\gamma} \left(\left| \beta_{li} - \beta_{lj} \right|, c_{ij} \lambda \right),$$

where

 $p_{\gamma}(\cdot,\lambda)$: penalty function

 γ : built-in constant, $\gamma=3$ (Fan and Li, 2001)

 c_{ij} : pairwise weights. In spatial data (Wang et al., 2020), c_{ij} can be defined based on locations. Here $c_{ij}=1$ is considered in the simulation study.

 λ : tuning parameter, $\lambda \geq 0$

Penalty Function

• The choice of the penalty function $p_{\gamma}(\cdot,\lambda)$

SCAD Penalty VS. Lasso Penalty

ADMM

- Alternating direction method of multiplier algorithm
 - 1. ADMM is used to compute the objective functions efficiently.
 - 2. Spgr package in R (https://github.com/wangx23/Spgr)

Simulation

Methods

- Combinations of the two layer penalization
 - 1. SCAD with the coordinate penalty (M1)
 - 2. SCAD with the vector penalty (M2)
 - 3. Lasso with the coordinate penalty (M3)

Data Simulation

Model used in simulation

$$y_{ih} = \mathbf{z}_{ih}^T \boldsymbol{\eta} + \mathbf{x}_{ih}^T \boldsymbol{\beta}_i + \epsilon_{ih}$$

Data generation

- 1. $\mathbf{z}_{ih} = (z_{i,1}, z_{i,2}, z_{i,3}, z_{i,4}, z_{i,5})^T$
 - 1.1 $z_{ih,1} = 1$
 - 1.2 $(z_{ih,2},...,z_{ih,5})^T$: $MVN, \mu = 0, \sigma = 1, \rho = 0.3$
- 2. $\eta = (\eta_1, ..., \eta_5)^T$: Uniform[1, 2]
- 3. x_{ih} : N(0,1); Bin(n,0.7)
- 4. ϵ_{ih} : $N(0, 0.5^2)$

Hyperparameters

- Hyperparameters in penalty function $p_{\gamma}(\cdot,\lambda)$
 - 1. $\gamma = 3$ (SCAD penalty)
 - 2. λ : chosen by BIC (SCAD and lasso penalty)
 - 2.1 SCAD and lasso with coordinate penalty (M1 and M3)

$$BIC(\lambda) = \log \left[\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \mathbf{z}_i^T \hat{\boldsymbol{\eta}}(\lambda) - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}_i(\lambda) \right)^2 \right] + C_n \frac{\log n}{n} \left(\sum_{l=1}^{p} \hat{K}_l(\lambda) + q \right)$$

2.2 SCAD with vector penalty (M2)

$$BIC(\lambda) = \log \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \left(y_{ih} - \mathbf{z}_{ih}^T \hat{\boldsymbol{\eta}}(\lambda) - \mathbf{x}_{ih}^T \hat{\boldsymbol{\beta}}_i(\lambda) \right)^2 \right] + C_n \frac{\log n}{n} \left(\hat{K}(\lambda) p + q \right)$$

where
$$C_n = \log(\log(np + q))$$

Criterion for Model Performance

- Adjusted Rand Index (ARI)
 - 1. The quantity ARI measures the degree of agreement between two partitions. (Rand, 1971; Vinh et al., 2010)
 - 2. ARI: [0, 1]
- Root Mean Square Error (RMSE)
 - 1. Average RMSE for coefficient coefficient

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(\hat{\beta}_{li}-\beta_{li}\right)^{2}}.$$

2. Average RMSE for vector coefficient

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left\|\hat{\beta}_{i}-\beta_{i}\right\|^{2}}.$$

Balanced Groups I

Simulation scenarios

Parameter	Test 1	Test 2	Test 3	Test 4
n	100	200	100	200
n _i	2	2	5	5
β_{1i}	(-1,1,2)	(-1,1,2)	(-1,1,2)	(-1,1,2)
β_{2i}	(-1,1,2)	(-1,1,2)	(-1,1,2)	(-1,1,2)
eta_{3i}	(-1,1,2)	(-1,1,2)	(-1,1,2)	(-1,1,2)

Balanced Groups II

Simulation results

1. Average ARI for coordinate coefficients

Test	M1: β_1	M1: β ₂	M1: β ₃	M3: β ₁	M3: β ₂	M3: β ₃
Test 1	0.196	0.196	0.199	0.217	0.204	0.225
Test 2	0.195	0.194	0.197	0.247	0.248	0.262
Test 3	0.99	0.988	0.989	0.824	0.816	0.821
Test 4	0.977	0.977	0.978	0.665	0.676	0.667

2. Average RMSE for coordinate coefficients

Test	M1: β_1	M1: β ₂	M1: β ₃	M3: β_1	M3: β ₂	M3: β ₃
Test 1	0.761	0.756	0.750	0.905	0.914	0.894
Test 2	0.756	0.759	0.751	0.824	0.827	0.807
Test 3	0.037	0.040	0.041	0.189	0.188	0.185
Test 4	0.076	0.073	0.071	0.335	0.326	0.33

Balanced Groups III

ARI for vector coefficients

Balanced Groups IV

RMSE for vector coefficients

Unbalanced Groups I

Simulation scenarios

Parameter	Test 1	Test 2
n	100	200
ni	5	5
β_{1i}	(1,1,1)	(1,1,1)
β_{2i}	(-1,1,-1)	(-1,1,-1)
eta_{3i}	(-1,1,2)	(-1,1,2)

Unbalanced Groups II

Simulation results

1. Average ARI for coordinate coefficients

Test	M1: β ₁	M1: β ₂	M1: β ₃	M3: β ₁	M3: β ₂	M3: β ₃
Test 1	0.999	0.998	0.996	0.998	0.998	0.734
Test 2	0.998	0.994	0.988	0.999	0.993	0.812

2. Average RMSE for coordinate coefficients

_	Test	M1: β ₁	M1: β ₂	M1: β ₃	M3: β ₁	M3: β ₂	M3: β ₃
_	Test 1	0.007	0.01	0.02	0.012	0.02	0.256
_	Test 2	0.007	0.02	0.049	0.009	0.024	0.204

Unbalanced Groups III

ARI for vector coefficients

Unbalanced Groups IV

RMSE for vector coefficients

Empirical Example

Covid-19 Dataset

Dataset

- Response variable: monthly case confirmed rate in 48 continental states
- 2. Common effect covariates: state party; household average income
- 3. Unit-specfic effect covariates: vaccine completion rate; unemployment rate
- 4. Replicates: monthly rate from Jan 2021 to April 2021

Data source

- 1. the U.S. Bureau of Labor Statistics
- 2. U.S. Census Bureau
- 3. covid19.analysis package in R

Algorithm Applied

Algorithm

SCAD with coordinate penalty (M1)

Weights

- 1. Equal weights: $c_{ij} = 1$
- 2. Unequal weights:

$$c_{ij} = \exp(\psi(1 - a_{ij}))$$

where ψ : tuning parameter to be chosen using BIC a_{ij} : neighborhood order defined based on the neighborhood structure

Application Results I

Estimated group for intercept

Application Results II

• Estimated group for vaccine completion rate

Application Results III

• Estimated group for unemployment rate

Discussion

Conclusion

Conclusion

- 1. Tests with more replicates tend to bring more desirable estimates.
- 2. Lasso penalty performs the worst when dealing with situations with more groups.
- 3. SCAD with the coordinate penalty (M1) performs the best when enough replicates are given.

Discussion

Discussion

- 1. That SCAD with vector penalty (M2) performs worse than SCAD with coordinate penalty (M1) may be caused by that fewer observations would be assigned to each group under M2.
- 2. Coordinate penalty could be easy to extend to variable selection problems.

References

References

- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96(456):1348–1360.
- Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–666.
- Li, F. and Sang, H. (2019). Spatial homogeneity pursuit of regression coefficients for large datasets. Journal of the American Statistical Association, 114(527):1050–1062.
- Ma, S. and Huang, J. (2017). A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 112(517):410–423.
- Ma, S., Huang, J., Zhang, Z., and Liu, M. (2019). Exploration of heterogeneous treatment effects via concave fusion. *The international journal of biostatistics*, 16(1).
- Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. *Journal of the American Statistical association*, 66(336):846–850.
- Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. The Journal of Machine Learning Research, 11:2837–2854.
- Wang, X., Zhu, Z., and Zhang, H. H. (2020). Spatial heterogeneity automatic detection and estimation.
- Yang, X., Yan, X., and Huang, J. (2019). High-dimensional integrative analysis with homogeneity and sparsity recovery. *Journal of Multivariate Analysis*, 174:104529.

Thanks