Sistemas Electrónicos

Materiais e equipamento do Laboratório de Electrónica

Sistemas Electrónicos - 2020/2021

Sumário

- Placa Branca;
- Fonte de alimentação;
- Multímetro;
- Gerador de Sinal;
- Osciloscópio.

Placa branca

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Placa branca

Usada para montar circuitos em fase de teste

Placa branca

Ligações internas

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Placa branca

Placa standard com 830 contactos;

Placa branca

Sistemas Electrónicos - 2020/2021

Placa branca

CUIDADO! - Em cada orifício da placa introduzir apenas <u>um único</u> terminal de componente;

Fonte de alimentação

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Fonte de Alimentação

- Fonte DC de tensão/corrente constante;
- 3 saídas independentes: duas variáveis (0-30V, com limitação de corrente); uma fixa (5V/3A);
- Protecção contra curto-circuitos.

Axiomet AX 3005L-3

Sistemas Electrónicos – 2020/2021

Multimetro

Multimetro

- Multímetro LCD com 3 1/2 dígitos
- Tensões DC: 0-200m-2-20-200V $\pm 0.5\%$
- Tensões AC: 0-200m-2-20-200V ±1.2%
- Correntes DC: 0-2m-20m-200m-10A ±2.0%
- Correntes AC: 0-2m-20m-200m-10A ±3.0%
- Resistências: 0-200-2k-20k-2M-20M Ω ±1.0%
- -200M $\Omega \pm 5.0$ %

E. Martins, DETI Universidade de Aveiro

1-13

Sistemas Electrónicos - 2020/2021

Multimetro

• Multímetro LCD com 3 1/2 dígitos;

Tensões DC: 200m-2-20-200V ±0.5%;

Tensões AC: 2-20-200V ±0.8%;

Correntes DC: 0.2m-2m-20m-200m-10A
±0.8%;

Correntes AC: 2m-20m-200m-10A ±1.0%;

• Resistências: 200-2k-20k-2M-20M Ω ±0.8% -

200MΩ ±5.0%-

Circuito simples com resistência

E. Martins, DETI Universidade de Aveiro

Medição da tensão

- Tensão (em Volt) é medida com um Voltímetro;
- A tensão é sempre entre dois pontos... por isso o Voltímetro é ligado entre esses pontos, ou seja, em paralelo.

E. Martins, DETI Universidade de Aveiro

Medição de correntes

- Corrente (em Ampére) é medida com um Amperímetro;
- A corrente passa <u>através de</u>... por isso o Amperímetro é sempre ligado em série no circuito.

E. Martins, DETI Universidade de Aveiro

1-19

Sistemas Electrónicos - 2020/2021

Medição da corrente

- Corrente (em Ampére) é medida com um Amperímetro;
- A corrente passa <u>através de</u>... por isso o Amperímetro é sempre ligado em série no circuito.

Circuito da fig. 5.2

E. Martins, DETI Universidade de Aveiro

1-21

Sistemas Electrónicos - 2020/2021

Medição do valor de uma resistência

• Resistência (em *Ohm*) é medida com um *Ohmimetro*;

Medição de uma resistência

Sistemas Electrónicos - 2020/2021

Gerador de sinal

Gerador de sinal

- Formas de onda: sinusoidal, triangular e quadrada;
- Frequências de 0.1Hz a 3MHz;
- Saída: 2mVp-p a 10Vp-p;
- Offset DC: -5 a +5V.

GW Instek SFG-1013

E. Martins, DETI Universidade de Aveiro

1-25

Sistemas Electrónicos - 2020/2021

Utilização do gerador de sinal

EXEMPLO: Ajustar gerador para saída sinusoidal de frequência 2KHz e 3V de amplitude:

1. Seleccionar forma de onda:

2. Introduzir frequência: 2 SH

3. Ligar saída:

AMPL

4. Ajustar amplitude:

• Amplitude pode ser vista no display usando:

• Para introduzir offset: puxar o botão para fora e rodar.

E. Martins, DETI Universidade de Aveiro

1-27

Sistemas Electrónicos – 2020/2021

Cabo do gerador de sinal

E. Martins, DETI Universidade de Aveiro

1-29

Sistemas Electrónicos - 2020/2021

Osciloscópio – o que é?

Instrumento que permite observar e caracterizar sinais eléctricos (tensões) variáveis no tempo.

Osciloscópio – o que podemos caracterizar?

- Forma de onda;
- Valores das amplitudes;
- Período e frequência;
- Diferença de fase entre dois sinais;
- ...

E. Martins, DETI Universidade de Aveiro

1-31

Sistemas Electrónicos - 2020/2021

Osciloscópio digital

- Amostra a amplitude dos sinais analógicos em instantes discretos no tempo;
- Valores de amplitude são convertidos para um formato digital e armazenados em memória.

Osciloscópio digital - vantagens

- Visualização de sinais em tempo real e captura de eventos (sinais não repetitivos);
- Medição, armazenamento e processamento dos sinais adquiridos;
- Facilidades de utilização: autoset, autorange, medição automática, cursores para medição, memorização de configurações, etc.

Tektronix TBS 1052B

E. Martins, DETI Universidade de Aveiro

1-33

Sistemas Electrónicos - 2020/2021

E. Martins, DETI Universidade de Aveiro

1-35

Sistemas Electrónicos - 2020/2021

Osciloscópio

E. Martins, DETI Universidade de Aveiro

1-37

Sistemas Electrónicos - 2020/2021

Osciloscópio

E. Martins, DETI Universidade de Aveiro

1-39

Sistemas Electrónicos - 2020/2021

Pontas de prova

 Cabo coaxial para reduzir ruído electromagnético;

 Elevada impedância para minimizar a influência na tensão a medir.

Pontas de prova

Atenuação X1:

- Impedância não é muito elevada;
- Indicada para sinais muito pequenos.

Atenuação X10:

- Minimiza o efeito de carga no circuito a testar;
- Adequado para sinais com conteúdo de alta frequência (ponta compensada).

