

Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12

Plan wykładu

Tranzystor JFET

- Budowa i polaryzacja
- Zasada działania charakterystyka przejściowa
- · Zasada działania charakterystyka wyjściowa
- Charakterystyki statyczne
- · Parametry statyczne
- Modele tranzystora
- Parametry małosygnałowe

Elementy elektroniczne I

Tranzystor złączowy PNFET

Tranzystor ze złączem p-n – struktury i symbole

Elementy elektroniczne I – tranzystor złączowy PNFET

-

Tranzystor złączowy PNFET

Tranzystor ze złączem p-n – oznaczanie prądów i napięć

Tranzystor z kanałem typu n

 $I_G \approx 0$ $I_D \approx I_S$

 $U_{GS} < 0$ $U_{DS} > 0$

 $U_{GS} > 0$ $U_{DS} < 0$

W stanie ustalonym prąd bramki jest, praktycznie biorąc, równy zeru.

Elementy elektroniczne I – tranzystor złączowy PNFET

ļ

Tranzystor złączowy PNFET - polaryzacja

Tranzystor pracuje tylko przy zaporowej polaryzacji złącza bramka-kanał –

– jeden sposób polaryzacji tranzystora.

Elementy elektroniczne I – tranzystor złączowy PNFET

ı

Tranzystor PNFET – ch-ka przejściowa

Statyczna charakterystyka przejściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle GS})\big|_{U_{\scriptscriptstyle DS={
m const}}}$ kanał **n**

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET – ch-ka przejściowa

Statyczna charakterystyka przejściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle GS})\big|_{U_{\scriptscriptstyle DS={
m const}}}$ kanał ${f n}$

Elementy elektroniczne I – tranzystor złączowy PNFET

_

Tranzystor PNFET – ch-ka przejściowa

Statyczna charakterystyka przejściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle GS})\big|_{U_{\scriptscriptstyle DS-const}}$ kanał ${\bf n}$

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET – ch-ka przejściowa

Statyczna charakterystyka przejściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle GS})\big|_{U_{\scriptscriptstyle DS-const}}$ kanał n

Elementy elektroniczne I – tranzystor złączowy PNFET

,

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $\left.I_{\scriptscriptstyle D}(U_{\scriptscriptstyle DS})\right|_{U_{\scriptscriptstyle GS={
m const}}}$ kanał **n**

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle DS})\big|_{U_{\scriptscriptstyle DS-mont}}$ kanał ${\bf n}$

Elementy elektroniczne I – tranzystor złączowy PNFET

11

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle DS})\big|_{U_{\scriptscriptstyle DS-nonet}}$ kanał ${\bf n}$

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $\left.I_{\scriptscriptstyle D}(U_{\scriptscriptstyle DS})\right|_{U_{\scriptscriptstyle GS={\rm const}}}\,\,$ kanał ${\bf n}$

$$\begin{array}{c|c} |U_{DS}| \ / \\ \hline & U_{DS} > |U_P| & - \text{dalszy wzrost } U_{DS} \text{ nie powoduje prawie żadnych zmian } I_D; \\ & \text{nasycenie prądu } (I_D \approx I_{DSS}) \\ \hline & R_{DS} = \frac{\Delta U_{DS}}{\Delta I_D} & - \text{bardzo duża} \end{array}$$

Elementy elektroniczne I – tranzystor złączowy PNFET

13

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle DS})\big|_{U_{\scriptscriptstyle CS}}$

Dlaczego prąd $I_{\mathcal{D}}$ płynie mimo odcięcia kanału?

W obszarze zubożonym zachodzi transport nośników:

- składowa wzdłużna pola elektrycznego (przez $U_{\!D\!S}$) unosi elektrony w stronę drenu (podobnie jak w tr. bipolarnym z złączu BC spolaryzowanym zaporowo),
- nie dochodzi do całkowitego zetknięcia się warstw zaporowych – gdy kanał zwęża się, napięcie w małym odcinku przy drenie osiąga tak duże wartości, że następuje nasycenie unoszenia elektronów, a przez to prądu (zostaje bardzo cienki kanał).

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $I_{\scriptscriptstyle D}(U_{\scriptscriptstyle DS})\big|_{U_{\scriptscriptstyle DS-mont}}$ kanał ${\bf n}$

Wpływ napięcia U_{GS} (ujemnej polaryzacji bramki)

Elementy elektroniczne I – tranzystor złączowy PNFET

15

Tranzystor PNFET – ch-ka wyjściowa

Statyczna charakterystyka wyjściowa tranzystora: $I_{D}(U_{DS})\big|_{U_{DS-const}}$ kanał ${f n}$

 U_{Dsat} – napięcie drenu, przy którym rozpoczyna się stan odcięcia kanału (tranzystor wchodzi w stan nasycenia)

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET - ch-ki statyczne

Charakterystyki statyczne – kanał typu n

Stany pracy tranzystora

– nieprzewodzenia (zatkania): $\left|U_{\mathit{GS}}\right| > \left|U_{\mathit{P}}\right|, \;\; U_{\mathit{DS}}$ – dowolne

– nienasycenia: $\left|U_{\mathit{GS}}\right| < \left|U_{\mathit{P}}\right|$ i $\left|U_{\mathit{DS}}\right| \le \left|U_{\mathit{Dsat}}\right|$

– nasycenia: $\left|U_{\mathit{GS}}\right| < \left|U_{\mathit{P}}\right|$ i $\left|U_{\mathit{DS}}\right| > \left|U_{\mathit{Dsat}}\right|$

Elementy elektroniczne I – tranzystor złączowy PNFET

17

Tranzystor PNFET – ch-ki statyczne

Charakterystyki statyczne – kanał typu p

Stany pracy tranzystora

– nieprzewodzenia (zatkania): $\left|U_{\mathit{GS}}\right| > \left|U_{\mathit{P}}\right|, \;\; U_{\mathit{DS}}$ – dowolne

nienasycenia: $\left|U_{\mathit{GS}}\right| < \left|U_{\mathit{P}}\right|$ i $\left|U_{\mathit{DS}}\right| \le \left|U_{\mathit{Dsat}}\right|$

– nasycenia: $\left|U_{\it GS}\right| < \left|U_{\it P}\right|$ i $\left|U_{\it DS}\right| > \left|U_{\it Dsat}\right|$

Tranzystor PNFET – ch-ki statyczne

Równania charakterystyk statycznych – kanał typu **n**: $I_{\scriptscriptstyle D} = I_{\scriptscriptstyle DSS} = {\rm const}$ (analogicznie dla kanału typu **p**)

Stan nienasycenia: (zakres liniowy)

$$I_D = G_0 \left(1 - \sqrt{\frac{U_{GS}}{U_P}} \right) U_{DS}$$

$$\text{dia } I_{C} < I_{C} - I_{C}$$

$$G_0 = \frac{qaW\mu_n N_d}{L}$$

konduktancja kanału

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET – ch-ki statyczne

Efekt modulacji (skrócenia) długości kanału

 λ – współczynnik modulacji długości kanału (~ 0,001 \div 0,1 $V^{-1})$

Tranzystor PNFET - ch-ki statyczne

Parametry statyczne

- U_{P} napięcie odcięcia,
- $-I_{DSS}$ prąd nasycenia dla U_{GS} = 0,
- r_{DS} rezystancja D-S przy U_{GS} = 0 i $U_{DS}\thickapprox 0$,
- $-I_{GSS}-$ prąd bramki przy dużym U_{GS} i $U_{DS}=0$ (zwarcie D i S),
- U_{GSS} napięcie przebicia G-S przy U_{DS} = 0, gdy I_{G} osiągnie dużą wartość, np. I_{G} = $1\mu\mathrm{A}$.

Elementy elektroniczne I – tranzystor złączowy PNFET

21

Tranzystor PNFET – ch-ki statyczne

Parametry statyczne – ograniczenie stanu nasycenia

- stan nienasycenia,
- stan odcięcia,
- $-P_a$
- $-\,I_{D{\rm max}},$
- $-U_{DSmax}$.

- + U_{Dsat} napięcie nasycenia (U_{Dsat} = U_{GS} U_{P}).
- + $I_{D
 m min}$ prąd minimalny granica między nasyceniem i odcięciem (zniekształcenia nieliniowe).
- P_a moc admisyjna maksymalna wartość $I_{dc} \cdot U_{dc}$ hiperbola mocy.
- $I_{D{
 m max}}$ prąd maksymalny zniekształcenia związane z różnym nachyleniem ch-k wyjściowych.
- $U_{DS\max}$ napięcie maksymalne ograniczenie ze względu na zjawiska przebiciowe.

Tranzystor PNFET - ch-ki statyczne

Pomiar charakterystyk

- Określić zakres dopuszczalnych zmian prądów i napięć.
- Pomiar prądu I_{DSS} (przy U_{GS} = 0), praktycznie nie zależy od U_{DS} .
- Pomiar napięcia U_P (dla 3 wartości U_{DS}): $U_{GS}=0 \Rightarrow U_P$, $I_D \Rightarrow 0$, w praktyce np. $I_D=10 \mu A$. U_{GS} nie może zbytnio przekroczyć U_P przebicie tranzystora. Można mierzyć razem z:
- Pomiar ch-k przejściowych ($U_{D\!S}$ = const) dla trzech różnych wartości $U_{D\!S}$
- Pomiar ch-k wyjściowych ($U_{GS} = {
 m const}$) dla trzech wartości U_{GS} (w tym $U_{GS} = 0$).
- Wyznaczyć parametry statyczne tranzystora.

Elementy elektroniczne I – tranzystor złączowy PNFET

23

Tranzystor PNFET – ch-ki statyczne

Wyznaczenie parametrów statycznych na podstawie pomiarów ch-k.

Model wielkosygnałowy tr. PNFET

$$I_D = G_0 \left(1 - \sqrt{\frac{U_{GS}}{U_P}} \right) U_{DS}$$

$$I_D = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$$

Elementy elektroniczne I – tranzystor złączowy PNFET

25

Model statyczny tranzystora PNFET

Dla układu WS

Elementy elektroniczne I – tranzystor złączowy PNFET

Model dynamiczny nieliniowy

Powstaje przez dołożenie pojemności do modelu statycznego tranzystora.

Dla układu WS

Reakcja tranzystora PNFET na szybką zmianę warunków polaryzacji nie jest natychmiastowa

- z powodu dwóch zjawisk:
- ładowania warstwy zaporowej złącza bramka-kanał,
- skończonego czasu przelotu nośników przez kanał.

Elementy elektroniczne I – tranzystor złączowy PNFET

27

Punkt pracy tranzystora – wzmacniacz WS

Obliczenie punktu pracy tranzystora ($I_{D},\ U_{DS}$) – w stanie nasycenia

 $I_D = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$

Elementy elektroniczne I – tranzystor złączowy PNFET

Punkt pracy tranzystora – wzmacniacz WS

Wybór punktu pracy – wpływ na właściwości wzmacniające wzmacniacza

Elementy elektroniczne I – tranzystor złączowy PNFET

20

Parametry małosygnałowe tranzystora

Linearyzacja charakterystyk tranzystora – zakres wartości $u_{\mbox{\tiny we}}$

$$i_D = I_{DSS} \bigg(1 - \frac{u_{GS}}{U_P} \bigg)^2 - \text{całkowity prąd drenu w stanie nasycenia} \qquad u_{GS} = U_{GS} + u_{gs} - \text{całkowite napięcie na bramce w stanie nasycenia}$$

$$i_{D} = I_{DSS} \Biggl(1 - \frac{U_{GS}}{U_{P}} - \frac{u_{gs}}{U_{P}} \Biggr)^{2} = \underbrace{I_{DSS} \Biggl(1 - \frac{U_{GS}}{U_{P}} \Biggr)^{2}}_{I_{D}, \text{ składowa stała}} - \underbrace{2I_{DSS} \Biggl(1 - \frac{U_{GS}}{U_{P}} \Biggr) \frac{u_{gs}}{U_{P}}}_{i_{d}, \text{ składowa zmienna}} + \underbrace{I_{DSS} \frac{u_{gs}^{2}}{U_{P}^{2}}}_{I_{DSS} \text{ składowa zmienna}} + \underbrace{I_{DSS} \frac{u_{gs}^{2}}{U_{P}}}_{I_{DSS} \text{ składowa zmie$$

$$2I_{DSS} \left(1 - \frac{U_{GS}}{U_P}\right) \frac{u_{gs}}{U_P} >> I_{DSS} \frac{u_{gs}^2}{U_P^2}$$

$$2(U_P - U_{GS}) >> u_{gs} = u_{we}$$

- warunek "małosygnałowości"

Elementy elektroniczne I – tranzystor złączowy PNFET

Parametry małosygnałowe tranzystora

Transkonduktancja małosygnałowa g_m

$$i_D = I_{DSS} \left(1 - \frac{U_{GS}}{U_P}\right)^2 - 2I_{DSS} \left(1 - \frac{U_{GS}}{U_P}\right) \frac{u_{gs}}{U_P} + I_{DSS} \frac{u_{gs}^2}{U_P^2}$$

$$2I_{DSS} \left(1 - \frac{U_{GS}}{U_P}\right) \frac{u_{gs}}{U_P} >> I_{DSS} \frac{u_{gs}^2}{U_P^2}$$

$$i_{D} = I_{D} - \frac{2I_{DSS}}{U_{P}} \left(1 - \frac{U_{GS}}{U_{P}}\right) u_{gs}$$

$$g_{m} = -\frac{2I_{DSS}}{U_{P}} \left(1 - \frac{U_{GS}}{U_{P}}\right)$$

$$i_{D} = I_{D} + g_{m} u_{gs} \implies i_{d} = g_{m} u_{gs}$$

 $g_{\it m} [{\rm A/V}]$ — zależy od punktu pracy tranzystora oraz jego własności fizycznych reprezentowanych przez U_p ł $I_{\rm DSS}$

Analogiczne zależności można wyprowadzić dla stanu nienasycenia tranzystora.

Elementy elektroniczne I – tranzystor złączowy PNFET

31

Parametry małosygnałowe tranzystora

Transkonduktancja małosygnałowa g_m

Elementy elektroniczne I – tranzystor złączowy PNFET

Parametry małosygnałowe tranzystora

Konduktancja wyjściowa (kanału; drenu) g_{ds}

- Z definicji: $g_{ds}=rac{\partial I_D}{\partial U_{DS}}igg|_{U_{GS}={
 m const}}$ różne zależności dla stanu nasycenia i nienasycenia
- Dla rzeczywistego tranzystora (uwzględniając skrócenie kanału): $g_{\it ds} \equiv \lambda I_{\it Dsat}$

Pojemności bramka-dren C_{gd} i $\underline{ ext{bramka-\'zr\'od\'lo}}$ C_{gs}

• Pojemność bramki jest rozłożona wzdłuż kanału, jednak dla uproszczenia jest reprezentowana w modelu zastępczym przez dwie pojemności.

$$C_{gs} = C_{gs0} \left(1 - \frac{U_{GS}}{\varphi_0} \right)^{-1/2}$$

$$C_{gs} = C_{gs0} \left(1 - \frac{U_{GS}}{\varphi_0} \right)^{-1/3} \qquad C_{gd} = C_{gd0} \left(1 - \frac{U_{GD}}{\varphi_0} \right)^{-1/3}$$

Elementy elektroniczne I – tranzystor złączowy PNFET

Model małosygnałowy dla WS

W zależności od zakresu częstotliwości i dokładności analizy można pominąć

Pojemność między bramką a podłożem C_{gss} : $C_{gss} = C_{gss0} \left(1 - \frac{U_{GSS}}{\varphi_0} \right)^{-1/2}$ • stosuje się w modelu monolitycznego tranzystora

- (często pomijana)

Rezystancje szeregowe drenu i źródła r_D i r_S

• zwykle pomijane na schematach ze względu na niewielki wpływ

Model małosygnałowy dla WS

Dla innych układów włączenia tranzystora (WG, WD) schemat należy zmodyfikować.

Elementy elektroniczne I – tranzystor złączowy PNFET

35

Model małosygnałowy dla WG i WD

Elementy elektroniczne I – tranzystor złączowy PNFET

Częstotliwość odcięcia

Częstotliwość odcięcia f_{T} – skutek dość dużej pojemności bramki: $C_{g}=C_{gs}+C_{gd}$

 f_T – częstotliwość, przy której prąd wejściowy (przy zwartym wyjściu) jest równy prądowi źródła sterowanego: $i_{we} = g_m \cdot u_{gs}$

Przy zwartym wyjściu prąd wejściowy jest prądem ładowania pojemności wejściowych:

$$i_{we} = j\omega(C_{gs} + C_{gd})u_{gs}$$