矩陣

重點整理

- (A)矩陣的基本概念
- (1) 矩陣的基本名詞:

$$M = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \leftarrow \begin{array}{c} \div & 1 \text{ } \overline{\mathcal{Y}} \\ \leftarrow & \div & 2 \text{ } \overline{\mathcal{Y}} \\ \leftarrow & \div & \pi \text{ } \overline{\mathcal{Y}} \\ \hline & \div & & + \pi \text{ } \overline{\mathcal{Y}} \\ \hline & \div & + \pi \text{ } \overline{\mathcal{Y}} \\ \hline & \to + \pi \text{ } \overline{\mathcal{Y}} \\ \hline & \to + \pi \text{ } \overline{\mathcal{Y}} \\ \hline & \to + \pi \text{ } \overline{\mathcal{Y}} \\ \hline & \to + \pi \text{ } \overline{\mathcal{Y}}$$

 a_{12} 是位在第 1 列,第 2 行的元素, a_{21} 是位在第 2 列,第 1 行的元素,

- a_{ii} 是位在**第**i 列,第i 行的元素,
- (a)元:矩陣中列出來的每個數稱為矩陣的元(element)。
- (b)列:同一水平線各元合稱此矩陣的一列(row)。
- (c)行:同一鉛直線各元合稱此矩陣的一行(column)。
- (d)位於第 i 列,第 j 行的元稱為(i,j)元。
- (e)當一個矩陣 $M \neq n \neq m$ 行時,我們稱 $M \triangleq n \times m$ **階的矩陣**。
- (f)當一個矩陣 $M 有 n 列 n 行時,我們稱 <math>M \land n$ **階方陣**。
- (3)特殊矩陣
- (a)轉置矩陣:

設 $A=[a_{ij}]_{m\times n}$ 是一個 $m\times n$ 階矩陣,作一 $n\times m$ 階的矩陣 $B=[b_{ij}]_{n\times m}$,其中 $b_{ij}=a_{ji}$,則稱矩陣 B 為矩陣 A 的**轉置矩陣**,符號: $B=A^T$ 。

例如:
$$A = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 1 & 4 \\ 4 & 2 & 0 \\ -9 & 3 & 2 \\ 6 & 3 & 4 \end{bmatrix}$$
, $A^{T} = \begin{bmatrix} 1 & 2 & 4 & -9 & 6 \\ -3 & 1 & 2 & 3 & 3 \\ 5 & 4 & 0 & 2 & 4 \end{bmatrix}$

(b)列矩陣與行矩陣:

設 $A=[a_{ij}]_{m\times n}$ 是一個 $m\times n$ 階矩陣,

當 m=1 時,矩陣 $[a_{ii}]_{m\times n}$ 變成 $[a_{11} \ a_{12} \ \dots \ a_{1n}]$ 稱為**列矩陣**。

(c)單位方陣:

若一個 n 階方陣,由左上角到右下角的對角線上各位置的元

(即(1,1),(2,2)...(n,n)元)都是 1,而其餘各元都是 0,則稱為 n 階單位方陣,以 L_n 表之。

- (B)高斯消去法
- (1)矩陣的基本列運算:
- (a)第i列與第j列對調,並用 R_{ij} 表示。
- (b)將第 i 列乘上一個非零常數 r,並用 rR_i 表示。
- (c)將第i列乘上一個常數r加到另一列,並用 rR_i+R_i 表示。(第i列沒改變)
- (2)任一個線性方程組(A)經「三種列運算」消去某些變數, 化成易於求解的上三角模式 (或下三角模式)之線性方程組(B), 則(A)與(B)的解完全相同。 因此矩陣經過基本列運算之後,它們所代表的線性方程組之解完全相同。

(3)將方程組
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \text{ 的增廣矩陣} \\ a_3x + b_3y + c_3z = d_3 \end{cases} \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$$
經列運算後,化成上三角矩

陣的形式
$$\begin{bmatrix} a_1' & b_1' & c_1' & d_1' \ 0 & b_2' & c_2' & d_2' \ 0 & 0 & c_3' & d_3' \end{bmatrix}$$
的方法稱為高斯消去法。

高斯消去法判斷三元一次方程組解的情形:

根據前面的例子,一般三元一次方程組(含三個方程式)的增廣矩陣經過列運算之後,最後所得的矩陣,可有下列三種情形:(*可以是任意數字)

(a)形如
$$\begin{bmatrix} a & * & * & * \\ 0 & b & * & * \\ 0 & 0 & c & * \end{bmatrix}$$
的矩陣,其中 a,b,c 都不為 0 ,,

此時原方程組恰有一組解。

(b)形如
$$\begin{bmatrix} a & * & * & * \\ 0 & b & * & * \\ 0 & 0 & 0 & d \end{bmatrix}$$
 或 $\begin{bmatrix} a & * & * & * \\ 0 & 0 & b & * \\ 0 & 0 & 0 & d \end{bmatrix}$ 或 $\begin{bmatrix} a & * & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & d \end{bmatrix}$ 的矩陣,

其中a,b,d都不為0,此時方程組無解。

(c)形如
$$\begin{bmatrix} a & * & * & * \\ 0 & b & * & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 或 $\begin{bmatrix} a & * & * & * \\ 0 & 0 & b & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 的矩陣,

其中a,b都不為0,此時方程式有無限多解。

使用矩陣的列運算來求解一次聯立方程組,雖然過程用人工來計算看起來並沒有比較簡便,不過這是一個有程序的方法,因此適合用計算機來求解,尤其是一般的 n 元一次線性方程組(m 個方程式),這也是發展並介紹高斯消去法(矩陣列運算)的主要目的。

[**例題1**] 下列那些選項中的矩陣經過一系列的列運算後可以化成 $\begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$?

$$\begin{pmatrix}
1 & 2 & 3 & 7 \\
0 & 1 & 1 & 2 \\
0 & 2 & 3 & 5
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 3 & -1 & 0 \\
-1 & 1 & 1 & 0 \\
3 & 1 & -7 & 0
\end{pmatrix}$$

$$(3) \begin{pmatrix}
1 & 1 & 2 & 5 \\
1 & -1 & 1 & 2 \\
1 & 1 & 2 & 5
\end{pmatrix}$$

$$(4) \begin{pmatrix} 2 & 1 & 3 & 6 \\ -1 & 1 & 1 & 0 \\ -2 & 2 & 2 & 1 \end{pmatrix} \quad (5) \begin{pmatrix} 1 & 3 & 2 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{pmatrix} \circ$$

[答案]:(1)(5)

[解答]:

將矩陣想成解
$$x,y,z$$
 的方程組 $\begin{bmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ 經過列運算後可得 $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$,表有唯一

解(x, y, z) = (2,1,1)

(1)
$$\begin{bmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 3 & 5 \end{bmatrix}$$
經過列運算後可得
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
,表有唯一解 $(x, y, z) = (2,1,1)$

(2)
$$\begin{bmatrix} -1 & 3 & -1 & 0 \\ -1 & 1 & 1 & 0 \\ 3 & 1 & -7 & 0 \end{bmatrix}$$
 表常數項皆為零的方程組,有 $(x, y, z) = (0,0,0)$ 之解

又第二個方程式與第一個方程式的x, y, z係數不成比例,故有無限多組解

$$(4) \begin{bmatrix} 2 & 1 & 3 & 6 \\ -1 & 1 & 1 & 0 \\ -2 & 2 & 2 & 1 \end{bmatrix} 經過列運算後可得 \begin{bmatrix} 2 & 1 & 3 & 6 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, 表無解$$

(5)
$$\begin{bmatrix} 1 & 3 & 2 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
 經過列運算後可得
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
,表有唯一解 $(x, y, z) = (2,1,1)$

故選(1)(5)

[例題2] 利用增廣矩陣的列運算,求方程組之解:

(1)
$$\begin{cases} x-y+2z=4\\ 2x-y+2z=1\\ 5x-3y+6z=6 \end{cases}$$
 (2)
$$\begin{cases} x+2y+4z+u=3\\ 2x-y+z+3u=7\\ -4x+7y+5z-7u=4 \end{cases}$$

[解法]:

$$(1) \begin{bmatrix} 1 & -1 & 2 & | & 4 \\ 2 & -1 & 2 & | & 1 \\ 5 & -3 & 6 & | & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & 4 \\ 0 & 1 & -2 & | & -7 \\ 0 & 2 & -4 & | & -14 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & 4 \\ 0 & 1 & -2 & | & -7 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} x-y+2z=4 \\ y-2z=-7 \end{cases}, 故令 z=t , 得其解為 \begin{cases} x=-3 \\ y=-7+2t, t \in \mathbb{R} \end{cases}$$

所以方程組有無限多解。

$$(2) \begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 2 & -1 & 1 & 3 & 7 \\ -4 & 7 & 5 & -7 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 0 & -5 & -7 & 1 & 1 \\ 0 & 15 & 21 & -3 & 16 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 0 & -5 & -7 & 1 & 1 \\ 0 & 0 & 0 & 0 & 19 \end{bmatrix}$$

此增廣矩陣相當於
$$\begin{cases} x+2y+4z+u=3\\ -5y-7z+u=1 \end{cases}$$
 不合理,故無解。
$$0=19$$

[**例題3**] 試就實數 a 之值, 討論方程組(L)的解, 並說明所表三平面相交情形:

(L)
$$\begin{cases} x+2y-3z=4\\ 3x-y+5z=2\\ 4x+y+(a^2-14)z=a+2 \end{cases}$$

將方程組的增廣矩陣作列運算如下:

[解法]:

$$\begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 3 & -1 & 5 & | & 2 \\ 4 & 1 & (a^2 - 14) & | & (a+2) \end{bmatrix} \xrightarrow{R_1 \times (-3) + R_2 \atop R_1 \times (-4) + R_3} \rightarrow \begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 0 & -7 & 14 & | & -10 \\ 0 & -7 & (a^2 - 2) & | & (a-14) \end{bmatrix}$$

(1)當
$$a=4$$
 時,方程組(L)變形為
$$\begin{cases} x+2y-3z=4 \\ -7y+14z=-10 \\ 0=0 \end{cases}$$
 ∴有無限多解,

解為
$$x=\frac{8}{7}-t$$
, $y=\frac{10}{7}+2t$, $z=t$, $t\in R$, 此時 , 三平面恰交一直線。

(2)當 a = -4 時,由矩陣第三列知 0 = -8。

.:無解,此時,三平面兩兩相交於一直線且三線不共點。

(3)當
$$a \neq 4$$
且 $a \neq -4$ 時,方程組(L)變形為
$$\begin{cases} x+2y-3z=4\\ -7y+14z=-10\\ (a^2-16)z=(a-4) \end{cases}$$

解得
$$x = \frac{8}{7} - \frac{1}{a+4}$$
 , $y = \frac{10}{7} + \frac{2}{a+4}$, $z = \frac{1}{a+4}$, 此時 , 三平面恰交一點 。

(練習1) 利用矩陣的列運算,求聯立方程式
$$\begin{cases} x+2y-7z=0\\ 2x-y-4z=5 \text{ 的解} \\ 5x-3y-9z=13 \end{cases}$$

[答案]: x=2+3t,y=-1+2t,z=t, t 為實數

(練習2) 試求
$$a$$
 的值使方程組
$$\begin{cases} 3x + y + z = a \\ x + 3y - 3z = 1 + a \text{ 有解} \cdot [答案] : a = \frac{3}{2} \\ x - y + 2z = 1 - a \end{cases}$$

- (B)矩陣的基本運算
- (1)矩陣的加法與減法:

設 $A \cdot B$ 為 $m \times n$ 階矩陣,

若 $A=[a_{ij}]_{m\times n}$, $B=[b_{ij}]_{m\times n}$, 則 $A+B=[a_{ij}+b_{ij}]_{m\times n}$, $A-B=[a_{ij}-b_{ij}]_{m\times n}$

設
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 , $B = \begin{bmatrix} 2 & 0 \\ 3 & -1 \\ 1 & 2 \end{bmatrix}$ 求 $A - B = \begin{bmatrix} -1 & 2 \\ 0 & 5 \\ 4 & 4 \end{bmatrix}$, $B - A = \begin{bmatrix} 1 & -2 \\ 0 & -5 \\ -4 & -4 \end{bmatrix}$,可知 $A - B \neq B - A \circ$

(2)若 $A=[a_{ij}]_{m\times n}$ 為一 $m\times n$ 階矩陣,而 r 是任意實數,則 $rA=[ra_{ij}]_{m\times n}$,稱 rA 是 A 係數積。例如: $A=\begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\end{bmatrix}$,則 $2A=\begin{bmatrix}2 & 4 & 6\\ 8 & 10 & 12\end{bmatrix}$,(-1) $A=-A=\begin{bmatrix}-1 & -2 & -3\\ -4 & -5 & -6\end{bmatrix}$ 。

$$\exists \exists A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} , \ B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{bmatrix} , \ C = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{np} \end{bmatrix} ,$$

可以看出兩矩陣的大小必須互相配合才能相乘,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} \\ b_{21} & b_{22} & \cdots & b_{2j} \\ \vdots & \vdots & \vdots & \vdots \\ b_{nj} & b_{n2} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1j} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2j} & \cdots & c_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nj} & \cdots & c_{np} \end{bmatrix}$$

$$m \times n$$
階矩陣 A

$$n \times p$$
階矩陣 B

$$m \times p$$
階矩陣 C

 $AB=C \Leftrightarrow$ 對於 C 的(i,j) 元 c_{ij} ,i=1,2,...,m 、j=1,2,...,p 都有

$$c_{ij}$$
=第 i 列[a_{i1} a_{i2} a_{i3} ... a_{in}]與第 j 行 $egin{bmatrix} b_{2_j} \ b_{3_j} \ ... \ b_{nj} \end{bmatrix}$ 的元素對應相乘

$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

根據前面的定義:

可以看出**两矩陣的大小必須互相配合才能相乘**,由上述理論可得 $(m \times n)$ 的矩陣) • $(n \times p)$ 的矩陣) = $(m \times p)$ 的矩陣)

例子:

$$\begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 0 & -2 & 0 \\ 1 & -3 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} (2,5)和(0,1)的内積 & (2,5)和(-2,-3)的内積 & (2,5)和(0,6)的内積 \\ (-1,4)和(0,1)的内積 & (-1,4)和(-2,-3)的内積 & (-1,4)和(0,6)的内積 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \cdot 0 + 5 \cdot 1 & 2 \cdot (-2) + 5 \cdot (-3) & 2 \cdot 0 + 5 \cdot 6 \\ (-1) \cdot 0 + 4 \cdot 1 & (-1) \cdot (-2) + 4 \cdot (-3) & (-1) \cdot 0 + 4 \cdot 6 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & -19 & 30 \\ 4 & -10 & 24 \end{bmatrix} \qquad$$
矩陣的乘法就像是向量内積的推廣!

(C)乘法反方陣:

(1)設 A 是一個 n 階方陣,若可找到 n 階方陣 B 使得 $AB=BA=I_n$,則稱 B 為 A 的 **乘法反方陣(反矩陣)**,記為 $B=A^{-1}$ 。

當方陣 A 有乘法反方陣時, A 稱為可逆方陣。

(3)可逆方陣的充要條件

A 為可逆方陣 \iff A 的行列式值 det $(A) \neq 0$ 。

(2)求二階反方陣

若設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,若 $\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$,

則反矩陣 $A^{-1} = \frac{1}{\det(A)}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ 記法:a,d 對調;b,c 變號⇒主對調,副變號,再除以 $\det(A)$

[證明]: 設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$, $AA^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

即
$$\begin{cases} ax_1 + by_1 = 1 \\ cx_1 + dy_1 = 0 \end{cases}$$
, $\begin{cases} ax_2 + by_2 = 0 \\ cx_2 + dy_2 = 1 \end{cases}$, 利用克拉瑪公式

$$\Rightarrow \begin{cases} x_1 = \frac{\begin{vmatrix} 1 & b \\ 0 & d \end{vmatrix}}{\det(A)} = \frac{d}{\det(A)} \Rightarrow \begin{cases} x_2 = \frac{\begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}}{\det(A)} = \frac{-b}{\det(A)} \\ y_1 = \frac{\begin{vmatrix} a & 1 \\ c & 0 \end{vmatrix}}{\det(A)} = \frac{-c}{\det(A)} \end{cases} \Rightarrow \begin{cases} x_2 = \frac{\begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}}{\det(A)} = \frac{-b}{\det(A)} \end{cases} , \not \Leftrightarrow \begin{cases} x_2 = \frac{\begin{vmatrix} a & 0 \\ c & 1 \end{vmatrix}}{\det(A)} = \frac{a}{\det(A)} \end{cases}$$

(3) 矩陣乘法沒有以下性質:

(a) 交換律不成立: AB≠BA(除了特殊情形外)

例如:設
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} -5 & 4 \\ 4 & 8 \end{bmatrix}$, $BA = \begin{bmatrix} -6 & 1 \\ 2 & 9 \end{bmatrix}$, $AB \neq BA$

例如:設
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 4 \\ 2 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 2 & 1 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} -1 & 8 & 7 \\ 9 & 12 & 7 \\ 12 & 18 & 11 \end{bmatrix}$, $BA = \begin{bmatrix} 13 & 29 \\ 10 & 9 \end{bmatrix}$, $AB \neq BA$

例如:
$$A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$, $AB = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}$, $BA = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}$, $AB = BA$

(b) 消去律不成立:AB = AC 時 $\bowtie B = C$ (除了特殊情形外)

例如:
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
但
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$

(c)若 AB=O(零矩陣),則 A=O 或 B=O 是**錯誤的**。

例如:
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, 但前二者都不是零矩陣。$$

(d)二項式定理不能適用於矩陣:

$$(A+B)^2 = A^2 + AB + BA + B^2$$
 不能寫成 $A^2 + 2AB + B^2$ ($AB = BA$ 才可以)

(4) 反矩陣的性質:

(a)若A、B為2階方陣,則det(AB)=det(A)·det(B)。

[證明]:

det(AB)

=(ae+bg)(cf+dh)-(af+bh)(ce+dg)=ad(eh-fg)-bc(eh-fg)

$$= (ad-bc)(eh-fg) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} e & f \\ g & h \end{vmatrix} = \det(A) \cdot \det(B) \circ$$

根據這個結果,可以得知:「若 A 為 2 階可逆方陣,則 $\det(A^{-1})=(\det A)^{-1}$ 。」

事實上:「若 $\mathbf{A} \cdot \mathbf{B} \triangleq \mathbf{n}$ 階方陣,則 $\det(\mathbf{AB}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$ 。」亦成立! (b)若方陣 \mathbf{A} 為可逆的,且 $\mathbf{AB} = \mathbf{AC}$,則 $\mathbf{B} = \mathbf{C}$ 。

[證明]:

- :: 方陣 A 為可逆的, :: A⁻¹ 存在
- \Rightarrow A⁻¹(AB)=A⁻¹(AC) \Rightarrow (A⁻¹A)B=(A⁻¹A)C \Rightarrow B=C \circ
- (c)若 A、B 都是 n 階方陣,且 A 和 B 都有反矩陣,則 AB 有反矩陣,且(AB) $^{-1}$ =B $^{-1}$ A $^{-1}$ 。

[證明]:

∵ det(AB)=det(A)det(B)≠0,∴(AB)⁻¹存在

$$AB(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=AIA^{-1}=AA^{-1}=I$$

當 A=B 時,可以得知 $(A^2)^{-1}=(A^{-1})^2$,一般而言 $(A^n)^{-1}=(A^{-1})^n$ 。

$$(d)(ABA^{-1})^n = AB^nA^{-1}$$

[證明]:

(ABA⁻¹) " =(ABA⁻¹)(ABA⁻¹)(ABA⁻¹)..... (ABA⁻¹) (ABA⁻¹)=AB " A⁻¹ 再用數學歸納法即可得證

[例題4] 設
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 4 & -7 \\ 5 & 2 & 1 \end{bmatrix}$,

試解方程式 3X - 2B + 3A = 2X - 5C。

[解答]:

$$3X - 2B + 3A = 2X - 5C$$

$$\Rightarrow X = -3A + 2B - 5C$$

$$= \begin{bmatrix} -3 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 6 \\ 4 & -2 & 0 \end{bmatrix} + \begin{bmatrix} -15 & -20 & 35 \\ -25 & -10 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} -16 & -20 & 41 \\ -21 & -12 & -8 \end{bmatrix}$$

[**例題5**] 設
$$A = \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix}$$
、 $B = \begin{bmatrix} 6 & 7 \\ c & d \end{bmatrix}$ 。已知 $AB = \begin{bmatrix} 3 & 10 \\ -2 & 15 \end{bmatrix}$ 且 A 的行列式之值為 2,

試問下列哪些選項是正確的?(2011 指定甲)

- (1) 9a-4b=-2
- (2) ac = -24

$$(3) d = -15$$

$$(4) \begin{bmatrix} b & -a \\ -9 & 4 \end{bmatrix} \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

[答案]:(1)(3)

[解法]:

$$AB = \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix} \begin{bmatrix} 6 & 7 \\ c & d \end{bmatrix} = \begin{bmatrix} 24 + ac & 28 + ad \\ 54 + bc & 63 + bd \end{bmatrix} = \begin{bmatrix} 3 & 10 \\ -2 & 15 \end{bmatrix}, \quad \text{$\underline{\square}$ } \det(A) = 4b - 9a = 2 \dots (*)$$

数
$$ac=-21$$
, $ad=-18$, $bc=-56$, $bd=-48$, $\cfrac{ad}{bd}=\cfrac{-18}{-48}=\cfrac{3}{8}\Rightarrow \cfrac{a}{b}=\cfrac{3}{8}$(**)

由(*)(**)可解得
$$a=\frac{6}{5}$$
、 $b=\frac{16}{5}$ ⇒ $d=-15$,故(1)(3)正確,(2)錯誤

而
$$\det\begin{pmatrix} b & -a \\ -9 & 4 \end{pmatrix}$$
)=2,故(4)錯誤。

[例題6] 下表是兩年前三種零食分別在兩間超市的單價:(單位:元/包)

	超市甲	超市乙
蘇打餅	30	28
薯片	55	50
魷魚絲	70	66

上表以單價矩陣
$$\begin{bmatrix} 30 & 28 \\ 55 & 50 \\ 70 & 66 \end{bmatrix}$$
 表示。如果這間超市都以每年 3% 的比例調漲物品的價格,

請問下列哪些選項的計算結果可以代表現在這些零食在這兩間超市的單價矩陣?

$$(1)2 \cdot (1.03) \cdot \begin{bmatrix} 30 & 28 \\ 55 & 50 \\ 70 & 66 \end{bmatrix} (2)(1.03)^2 \cdot \begin{bmatrix} 30 & 28 \\ 55 & 50 \\ 70 & 66 \end{bmatrix} (3) \begin{bmatrix} 2 \cdot (1.03) & 0 & 0 \\ 0 & 2 \cdot (1.03) & 0 \\ 0 & 0 & 2 \cdot (1.03) \end{bmatrix} \begin{bmatrix} 30 & 28 \\ 55 & 50 \\ 70 & 66 \end{bmatrix}$$

$$(4) \begin{bmatrix} (1.03) & 0 & 0 \\ 0 & (1.03) & 0 \\ 0 & 0 & (1.03) \end{bmatrix} \begin{bmatrix} 30 & 28 \\ 55 & 50 \\ 70 & 66 \end{bmatrix} \begin{bmatrix} 1.03 & 0 \\ 0 & 1.03 \end{bmatrix}$$

(5)
$$\begin{bmatrix} (1.03)^2 & (1.03)^2 & (1.03)^2 \\ (1.03)^2 & (1.03)^2 & (1.03)^2 \\ (1.03)^2 & (1.03)^2 & (1.03)^2 \end{bmatrix} \begin{bmatrix} 30 & 28 \\ 55 & 50 \\ 70 & 66 \end{bmatrix}$$

[答案]:(2)(4) (2015 指定乙)

[解法]:

... 現在的零食單價矩陣為
$$\begin{bmatrix} 30 \cdot (1.03)^2 & 28 \cdot (1.03)^2 \\ 55 \cdot (1.03)^2 & 50 \cdot (1.03)^2 \\ 70 \cdot (1.03)^2 & 66 \cdot (1.03)^2 \end{bmatrix}$$

檢查選項中的各矩陣,得到(2)(4)符合,故選(2)(4)。

[例題7] 若方陣
$$X$$
 滿足 $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ $X\begin{bmatrix} 3 & -2 \\ -5 & 3 \end{bmatrix}$ = $\begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$,則 X =_____。

$$[答案]: \begin{bmatrix} 24 & 13 \\ -34 & -18 \end{bmatrix}$$

[解法]

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} X \begin{bmatrix} 3 & -2 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -5 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix} \frac{1}{-1} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 24 & 13 \\ -34 & -18 \end{bmatrix}$$

[例題8] 設 2 階方陣 A 滿足 A
$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 = $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 且 A $\begin{bmatrix} -3 \\ 5 \end{bmatrix}$ = $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$, 試求方陣 A。

[答案]:
$$A = \begin{bmatrix} -23 & -13 \\ 1 & 0 \end{bmatrix}$$

[解法]:

$$A\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \not\perp A \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} \iff A\begin{bmatrix} 1 & -3 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 4 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 4 \\ 1 & -3 \end{bmatrix} (\frac{1}{-1}) \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} -5 & -3 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} -23 & -13 \\ 1 & 0 \end{bmatrix} \circ$$

[例題9]解下列兩個線性方程組:

(1)
$$\begin{cases} 2x_1 - 4x_2 = 4 \\ 3x_1 - 5x_2 = 3 \end{cases}$$
 (2)
$$\begin{cases} 2y_1 - 4y_2 = -2 \\ 3y_1 - 5y_2 = 1 \end{cases}$$

[解法]:

(i)兩個線性方程組之係數矩陣皆為
$$A = \begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix}$$
。因 $\det(A) = 2 \neq 0$,

故
$$A$$
 的乘法反方陣 A^{-1} 存在,即 $A^{-1} = \frac{1}{2} \begin{bmatrix} -5 & 4 \\ -3 & 2 \end{bmatrix}$,

(ii) 方程組(1)與(2)可用"矩陣的乘法"表成

$$\begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} \circ$$

$$\begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix}^{-1} \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -5 & 4 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -20 + 12 & 10 + 4 \\ -12 + 6 & 6 + 2 \end{bmatrix} = \begin{bmatrix} -4 & 7 \\ -3 & 4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} -4 & 7 \\ -3 & 4 \end{bmatrix}, \text{ First } \begin{cases} x_1 = -4 \\ x_2 = -3 \end{cases}, \begin{cases} y_1 = 7 \\ y_2 = 4 \end{cases} \circ$$

(練習3) 設
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 1 & 1 \end{bmatrix}$$
、 $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \end{bmatrix}$ 、 $C = \begin{bmatrix} 3 & 0 & 4 \\ 1 & 1 & 7 \end{bmatrix}$,求下列各題中的矩陣 $X \circ (1)A - B + 2X = C + 3A + X \circ (2)3X + A + B + C = A - 2B + 4C + X$

Ans: (1)
$$\begin{bmatrix} 6 & 7 & 9 \\ 9 & 6 & 12 \end{bmatrix}$$
 (2) $\begin{bmatrix} 3 & \frac{-3}{2} & \frac{9}{2} \\ \frac{-3}{2} & -3 & 6 \end{bmatrix}$

- (練習4)下列各敘述何者正確?
 - (A)若 $A \in n$ 階方陣, $B \in m$ 階方陣, 則 $AB \in n + m$ 階方陣
 - (B)兩矩陣相乘滿足交換律,即AB = BA
 - (C)矩陣對乘法滿足消去律,也就是說:若AB = AC,則B = C
 - (D)若 $A \cdot B \cdot C$ 為矩陣,且對運算有意義時,則滿足分配律,即A(B + C) = AB + AC
 - (E)若 $A \cdot B$ 為矩陣,r 為實數,且對運算有意義時,則滿足乘法對係數積的結合律,即 r(AB) = (rA)B = A(rB) Ans: (D)(E)

(練習5) 設二階方陣
$$A = \begin{bmatrix} 0 & -1 \\ x & y \end{bmatrix}$$
, $B = \begin{bmatrix} -x & 0 \\ x & y \end{bmatrix}$

(1)若 A^3 =-A, 求實數 x,y 之值。(2)求 AB=?

Ans:
$$(1)x=1,y=0$$
 (2) $\begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix}$

(練習6) 已知
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 27 \\ 13 \end{bmatrix}$$
; $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -5 \\ 13 \end{bmatrix}$, 則
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1 & x_1 \\ y_2 & x_2 \end{bmatrix} = ? \text{Ans} : \begin{bmatrix} -5 & 27 \\ 13 & 13 \end{bmatrix}$$

(練習7) 若二階方陣
$$X$$
 滿足 $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} X + 2 \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 2 & -1 \end{bmatrix}$,則 $X =$ _____。

Ans:
$$\begin{bmatrix} 12 & -\frac{33}{2} \\ -5 & \frac{13}{2} \end{bmatrix}$$

(練習8) 設
$$A$$
 為二階方陣, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$;若 $A^2 - 5A + 6I_2 = O$,

則下列何者是
$$5I_2-A$$
 的乘法反矩陣?

(A)A (B)
$$-A$$
 (C)A $-5I_2$ (D) $\frac{1}{6}A$ (E)A² $-5A$. Ans : (D)

(練習9) 設 2 階方陣 A 滿足 A
$$\begin{bmatrix}1\\2\end{bmatrix}$$
= $\begin{bmatrix}3\\1\end{bmatrix}$ 且 A $\begin{bmatrix}2\\5\end{bmatrix}$ = $\begin{bmatrix}4\\-3\end{bmatrix}$,試求方陣 A。 Ans: A= $\begin{bmatrix}7 & -2\\11 & -5\end{bmatrix}$

(練習10) 若
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & a \\ 1 & a & 3 \end{bmatrix}$$
 沒有乘法反元素,則 $a = ?$ Ans: $a = 2$ 或 -3

(練習11) 設
$$A = \begin{bmatrix} 4 & 9 \\ 3 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 17 \\ 135 \end{bmatrix}$, 且矩陣 $X = \begin{bmatrix} x \\ y \end{bmatrix}$ 滿足 $AX = B$,試求 (1)A 的乘法反方陣 A^{-1} 。 (2)矩陣 X 。
$$Ans: (1)A^{-1} = \begin{bmatrix} 4 & -9 \\ -3 & 7 \end{bmatrix} \quad (2) \begin{bmatrix} -1096 \\ 489 \end{bmatrix}$$

(D)轉移矩陣

一般而言,在自然現象與社現象中,許多現象都會隨時間的改變而呈現不同的狀態。假設某現象所可能呈現的不同狀態只有有限多種: $S_1,S_2,S_3,...,S_n$ 每隔一固定的時間來觀查察它所呈現的狀態。如果此現象在各觀察期呈現某種狀態的過程滿足下面的性質:在任意觀察期中此現象呈現狀態 S_i 時,則它在下一觀察期呈現狀態 S_i 的機率為 p_{ij} 。當一個現象的呈現具有這個性質時,我們就說這個過程形成一個**馬可夫鏈**。

馬可夫鏈有下列的特性:

$$(a) A = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}, p_{ij} \geq 0, \sum_{k=1}^{n} p_{k j} = 1, j = 1, 2, \dots, n \circ 稱為此馬可夫鏈的轉移矩陣。$$

- (b)若一個方陣的各元都大於或等於 0,而且每一行中各元的和都等於 1, 此種方陣稱為轉移矩陣。
- (c)如果一馬可夫鏈可達到**穩定狀態**,而其(n 階)轉移矩陣為 A,則其穩定狀態 就是滿足 AX=X 的 $n\times 1$ 矩陣 X。
- [**例題10**] 某一公司,有 A、B、C 三個營業據點, 開始時各有 36 位營業員,為了讓營業員了解各據點業務狀況, 所以進行兩次調動。每次調動都是:

將當時 A 據點營業員中的 1/6 調到 B 據點、1/6 調到 C 據點;

將當時 B 據點營業員中的 1/6 調到 A 據點、1/3 調到 C 據點;

將當時 C 據點營業員中的 1/6 調到 A 據點、1/6 調到 B 據點。

則兩次的調動後, C 據點有 位營業員。

[答案]:44 (2015 學科能力測驗)

建立轉移矩陣
$$P = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
,一開始 $A \cdot B \cdot C$ 三個營業據點的人員 $X_0 = \begin{bmatrix} 36 \\ 36 \\ 36 \end{bmatrix}$

第一次調動後 A、B、C 三個營業據點的人員
$$X_1$$
=P X_0 =
$$\begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 36 \\ 36 \\ 36 \end{bmatrix} = \begin{bmatrix} 36 \\ 30 \\ 42 \end{bmatrix}$$

第二次調動後 A、B、C 三個營業據點的人員
$$X_2=PX_1=\begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 36 \\ 30 \\ 42 \end{bmatrix} = \begin{bmatrix} 36 \\ 28 \\ 44 \end{bmatrix}$$

因此兩次的調動後 C 據點有 44 位營業員。

[**例題**11] 設
$$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
為二階實係數方陣

(1)當 A 為轉移矩陣時,試敘述實數 $a \cdot b \cdot c \cdot d$ 需滿足的條件。

(2)試證:當 A 為轉移矩陣時, A^2 也是轉移矩陣(式中 A^2 代表 A 與 A 的乘積) (2011 指定乙)

[解法]:

(1)a,b,c,d 均為正實數,且第一行各項之和 a+c=1、第二行各項之和 b+d=1。

(2)
$$A^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}$$

 $:: a \cdot b \cdot c \cdot d$ 均為正實數, $:: A^2$ 中各項亦為正實數。

 $\therefore a+c=1$, b+d=1

 A^2 第一行各項之和 $(a^2+bc)+(ac+cd)=a(a+c)+c(b+d)=a+c=1$

 A^2 第二行各項之和 $(ab+bd)+(bc+d^2)=b(a+c)+d(b+d)=b+d=1$ 。

故 A² 為轉移矩陣。

(練習12) 設某地區有甲乙兩種報紙,訂戶總人數不變,且每一年訂戶變化皆如下述:今年訂閱甲報的人有 $\frac{1}{3}$ 明年會繼續訂閱甲報,有 $\frac{2}{3}$ 會改定乙報;今年訂閱乙報的人有 $\frac{3}{5}$ 明年會改訂閱甲報,有 $\frac{2}{5}$ 會繼續定乙報,根據這些資料,請寫出這項資料的推移矩陣 \mathbf{A} ,當市場趨於穩定狀態時,甲乙兩種報紙市場佔有率之比為何?

Ans:
$$A = \begin{bmatrix} \frac{1}{3} & \frac{3}{5} \\ \frac{2}{3} & \frac{2}{5} \end{bmatrix}$$
, 9: 10

(練習13) 有一夢幻雞排小吃攤每天晚上在 A、B、C 三個夜市之間擇一攤營業。此三個夜市相鄰關係如右圖所示。每天老闆決定隔夜繼續在同一個夜市經營,或轉而前往相鄰任一夜市營業之機率分別為 1/2 與 1/4。若星期日晚上夢幻雞排小吃攤出

現在 A 夜市,請問

- (1)星期二(兩天後)出現在 A 夜市的機率為何?
- (2)星期三(三天後)出現在 B 夜市的機率為何?

Ans : (1) $\frac{3}{8}$ (2) $\frac{21}{64}$

綜合練習

- **1.** 請問下列哪一個選項中的矩陣乘積等於 $\begin{bmatrix} 2a & 3b \\ 2c & 3d \end{bmatrix}$?
 - $(1) \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} (2) \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} (3) \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - $(4) \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (5) $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ \circ (2012 指定乙)
- **2.** 已知二階方陣 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 滿足 $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$ 。請選出正確的選項。
 - (1) A 的行列式(值)為 6 (2) $A^2 = 5A 6\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (3) $A^{-1} = \begin{bmatrix} 2 & -2 \\ 0 & 3 \end{bmatrix}$
 - (4) $A\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \end{bmatrix}$ (5) [1,1]A=[5,7] (2013 指定乙)
- **3.** 已知 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 是一個轉移矩陣,並且其行列式(值)為 $\frac{5}{8}$,則 a+d=____。 (化成最簡分數) (2014 學科能力測驗)
- **4.** 對矩陣 $\begin{pmatrix} 4 & 9 & a \\ 3 & 7 & b \end{pmatrix}$ 作列運算若干次後得到 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,則(a,b)=____。 (2009 指定甲)
- **5.** 已知方陣 $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ 的反方陣為 $\begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix}$ 。試問下列哪個選項為 $\begin{bmatrix} g & h & i \\ a & b & c \\ d & e & f \end{bmatrix}$ 的反

方陣?

$$(1) \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} (2) \begin{bmatrix} a' & d' & g' \\ b' & e' & h' \\ c' & f' & i' \end{bmatrix} (3) \begin{bmatrix} g' & h' & i' \\ a' & b' & c' \\ d' & e' & f' \end{bmatrix}$$

(4)
$$\begin{bmatrix} g' & a' & d' \\ h' & b' & e' \\ i' & c' & f' \end{bmatrix}$$
 (5)
$$\begin{bmatrix} c' & a' & b' \\ f' & d' & e' \\ i' & g' & h' \end{bmatrix} \circ (2012 指定甲)$$

6. 設 A 為坐標平面上代表旋轉某個角度的二階方陣,且已知 $A^6 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ 。試問 A 可能是以下哪些選項中的方陣?

$$(1) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad (2) \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \qquad (3) \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$(4) \begin{bmatrix} \cos 300^{\circ} & -\sin 300^{\circ} \\ \sin 300^{\circ} & \cos 300^{\circ} \end{bmatrix} \qquad (5) \begin{bmatrix} \cos 150^{\circ} & \sin 150^{\circ} \\ -\sin 150^{\circ} & \cos 150^{\circ} \end{bmatrix} \circ (2008 指定甲)$$

7. 設有 $A \times B$ 兩支大瓶子, 開始時, A 瓶裝有 a 公升的純酒精, B 瓶裝有 b 公升的礦泉水。每一輪操作都是先將 A 瓶的溶液倒出一半到 B 瓶, 然後再將 B 瓶的溶液倒出一半回 A 瓶(不考慮酒精與水混合後體積的縮小)。設 n 輪操作後,A 瓶有 $_na$ 公

升的溶液,B 瓶有
$$b$$
 公升的溶液。已知二階方陣 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ 滿足 $\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^n \begin{bmatrix} a \\ b \end{bmatrix}$ 。

(a)求二階方陣
$$\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
。

(b)當
$$a = \frac{2}{3}, b = \frac{1}{3}$$
時,求 a_{100} 及 b_{100} 。

- (c)當 $a = \frac{2}{3}, b = \frac{1}{3}$ 時,在第二輪操作後,A 瓶的溶液中有百分之多少的酒精? (2009 指定乙)
- 8. <u>小惠</u>有一台自行車,平時用一副四位數密碼的號碼鎖鎖住。有一天, <u>志明</u>向她借用這台自行車,她答應借用,但只告訴志明號碼鎖的密碼 *abcd* 符合以下二階方陣的等式:

$$\begin{bmatrix} 5 & -15 \\ -10 & 35 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

<u>志明</u>卻一直無法解出正確的密碼, 而不能使用這台自行車。請你(妳)幫忙<u>志明</u>求出這 副號碼鎖的正確密碼。(2010 指定乙)

- - (1)0(2)1(3)2(4)4(5)16。 (2010 指定甲)
- **10.** 設 $A = \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix}$ 、 $B = \begin{bmatrix} 6 & 7 \\ c & d \end{bmatrix}$ 。已知 $AB = \begin{bmatrix} 3 & 10 \\ -2 & 15 \end{bmatrix}$ 且 A 的行列式之值為 2,試問下列哪些 選項是正確的?

- (1) 9a-4b=-2
- (2) ac = -24
- (3) d=-15

$$(4) \begin{bmatrix} b & -a \\ -9 & 4 \end{bmatrix} \begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \circ (2011 指定甲)$$

11. 設 P、Q、R 為二階方陣,已知 PQ=
$$\begin{bmatrix} 2 & 0 \\ 12 & 0 \end{bmatrix}$$
,PR= $\begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix}$ 且 Q+R= $\begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}$,則 P=_____。(2014 指定乙)

- **12.** 設為正整數,符號 $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^n$ 代表矩陣 $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ 自乘 n 次。令 $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$,請選出 正確的撰項。
 - (1) $a_2 = 1$

- (2) a_1, a_2, a_3 為等比數列 (3) d_1, d_2, d_3 為等比數列
- (4) *b*₁,*b*₂,*b*₃ 為等差數列
- (5) c_1, c_2, c_3 為等差數列 (2013 學科能力測驗)
- 13. 設甲袋中有1個白球和2個紅球,乙袋中有1個白球,「先自甲袋中任取一球放入乙袋, 再自乙袋中任取一球放入甲袋,如此稱為一局」,試問下列選項何者錯誤?
 - (1) 一局後,乙袋為白球的機率為 $\frac{2}{2}$
 - (2) 二局後,乙袋為紅球的機率為 $\frac{5}{0}$
 - (3) 若重複取球多次後,乙袋為紅球或白球的狀態會趨於穩定,則乙袋為紅球與乙袋 為白球的機率均等
 - (4) 若更改規則為「先自乙袋中任取一球放入甲袋,再自甲袋中任取一球放入乙袋, 如此稱為一局」,則二局後,乙袋為紅球的機率為 $\frac{4}{0}$
 - (5) 若更改規則為「先自乙袋中任取一球放入甲袋,再自甲袋中任取一球放入乙袋, 如此稱為一局」,則重複取球多次後,乙袋為紅球和白球的機率仍均等
- 14. 小高與小中兩人欲傳遞信號,但為了怕別人知道,事先約定加密方式如下:如明碼(原 始的數字資料)有兩碼12 ,先寫成 $X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 。並先約定好加密矩陣 $A = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$,將矩

陣 X 左乘二階方陣 A 得到矩陣 B ,即 AX = B ,再將矩陣 $B = \begin{vmatrix} a \\ b \end{vmatrix}$,寫成二位數密碼 ab形式傳給對方。

- (a) 小華欲將明碼10加密,試問加密後得到的密碼為何?
- (b) 今小明收到小華傳來的密碼11,試問明碼為何?
- (c) 若現在採用新的加密矩陣 A',已知73加密後得到21,94加密後得到15,請問加

密矩陣 A' 為何?

- **15.** 阿龍從家裡去學校的路線有甲、乙兩條路線可以選擇,若阿龍選擇甲路線則有 $\frac{1}{3}$ 的機率會遲到,選擇乙路線會有 $\frac{1}{2}$ 的機率會遲到。阿龍的習慣如下:若今天走的路線準時到達學校,則明天就走一樣的路線上學;反之,若今天遲到,則明天就走另一條路線上學。若阿龍星期一走甲路線去學校,請問:
 - (a)阿龍星期二及星期三都是走乙路線的機率是多少?
 - (b)阿龍在星期五是走乙路線的機率是多少?
 - (c)長期而言,阿龍走乙路線的機率是多少?

答案與詳解

1.[答案]:(5)

[解法]:

根據矩陣乘法的定義可以得知 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2a & 3b \\ 2c & 3d \end{bmatrix}$ 。

2. [答案]:(1)(2)(4)

[解法]:

$$\therefore A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}, \therefore A \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 2 & 4 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 5 & 7 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 5 & 7 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & 2 \end{bmatrix}$$

$$\det(A)=6$$
, $A^{-1}=\frac{1}{6}\begin{bmatrix}2&-2\\0&3\end{bmatrix}$,將 A 代入 $A^2=5A-6\begin{bmatrix}1&0\\0&1\end{bmatrix}$ 驗證正確。

另外
$$A\begin{bmatrix}1\\3\end{bmatrix}=\begin{bmatrix}9\\6\end{bmatrix}$$
 正確, $\begin{bmatrix}1\\1\end{bmatrix}$ A= $\begin{bmatrix}3\\4\end{bmatrix}$

故選(1)(2)(4)

3. [答案]: $\frac{13}{8}$

[解法]:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
是一個轉移矩陣 \Leftrightarrow $a+c=b+d=1$,且 a,b,c,d 為非負實數

其行列式(值)為 $\frac{5}{8} \Leftrightarrow ad-bc-\frac{5}{8}$

$$c=1-a \cdot b=1-d \not \uparrow \uparrow \uparrow \downarrow ad-bc=\frac{5}{8} \Rightarrow ad-(1-d)(1-a)=\frac{5}{8} \Leftrightarrow a+d=\frac{13}{8} \circ$$

4. [答案]: (*a*,*b*)=(13,10)

[解法]:
$$\begin{pmatrix} 4 & 9 & a \\ 3 & 7 & b \end{pmatrix}$$
經由列運算得到 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,兩者解相同均為 $(1,1)$,

因此 a=4+9=13 , b=3+7=10 。

5. [答案]:(5)

[解法]:

根據反方陣的定義

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} = \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

可以檢查各選項得到

$$\begin{bmatrix} g & h & i \\ a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} c' & a' & b' \\ f' & d' & e' \\ i' & g' & h' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ 故選(5)$$

6. [答案]:(1)(3)(5)

[解法]:

 $\theta = 30^{\circ}, 90^{\circ}, 150^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}$

故選 (1)(3)(5)

7. [解法]:

(a) 依題意,1輪操作後,

A 瓶裝有
$$\frac{a}{2} + \frac{1}{2} \cdot (\frac{a}{2} + b) = \frac{3}{4} a + \frac{1}{2} b$$
 公升的溶液;

B 瓶裝有
$$\frac{1}{2} \cdot (\frac{a}{2} + b) = \frac{1}{4}a + \frac{1}{2}b$$
公升的溶液,因此,

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} ;$$
 同理
$$, \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} ,$$
 代換
$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} ,$$

得
$$\begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}^2 \begin{bmatrix} a \\ b \end{bmatrix}$$
,依此類推,

得
$$\begin{bmatrix} a_3 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}^3 \begin{bmatrix} a \\ b \end{bmatrix}$$
, ..., $\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}^n \begin{bmatrix} a \\ b \end{bmatrix}$, 故 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}$.

$$(b) a = \frac{2}{3} , b = \frac{1}{3} \exists \frac{1}{3}, \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix},$$

$$\Rightarrow \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}, \; \exists \exists \exists \; , \; \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}, \; \dots, \; \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix},$$

所以
$$\begin{bmatrix} a_{100} \\ b_{100} \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
,即 $a_{100} = \frac{2}{3}$, $b_{100} = \frac{1}{3}$ 。

(c) 承(b), 當
$$a = \frac{2}{3}$$
, $b = \frac{1}{3}$ 時, A 瓶中恆有 $\frac{2}{3}$ 公升的溶液,

$$\mathbb{Z} \boxplus \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}^2 \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{11}{16} & \frac{5}{8} \\ \frac{5}{16} & \frac{3}{8} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{11}{16}a + \frac{5}{8}b \\ \frac{5}{16}a + \frac{3}{8}b \end{bmatrix},$$

得 $a_2 = \frac{11}{16}a + \frac{5}{8}b$,其中 a 為 A 瓶中原有純酒精的公升數,即

在第二輪操作後,A瓶 $\frac{2}{3}$ 公升的溶液中有 $\frac{11}{16} \times \frac{2}{3}$ 公升的酒精,

故第二輪操作後,A 瓶的溶液中有 $\frac{11}{16}$ = 68.75% 的酒精。

8. [答案] : *a*=7,*b*=3,*c*=2,*d*=1

[解答]:

$$\begin{bmatrix} 5 & -15 \\ -10 & 35 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 5 & -15 \\ -10 & 35 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 35 & 15 \\ 10 & 5 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$$

所以 *a*=7,*b*=3,*c*=2,*d*=1。

9.[答案]:(4)

[解答]:

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} -a & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & a \end{bmatrix}, A-A^{-1} = \begin{bmatrix} 2a & 2b \\ 2c & -2a \end{bmatrix} = 2A$$

故 $\det(A-A^{-1}) = \det(2A) = 4 \det A = 4$

10. [答案]:(1)(3)

[解法]:

AB=
$$\begin{bmatrix} 4 & a \\ 9 & b \end{bmatrix} \begin{bmatrix} 6 & 7 \\ c & d \end{bmatrix} = \begin{bmatrix} 24 + ac & 28 + ad \\ 54 + bc & 63 + bd \end{bmatrix} = \begin{bmatrix} 3 & 10 \\ -2 & 15 \end{bmatrix}$$
, $\exists \det(A) = 4b - 9a = 2 \dots (*)$

数
$$ac=-21$$
, $ad=-18$, $bc=-56$, $bd=-48$, $\frac{ad}{bd}=\frac{-18}{-48}=\frac{3}{8}\Rightarrow \frac{a}{b}=\frac{3}{8}$(**)

由(*)(**)可解得
$$a = \frac{6}{5}$$
、 $b = \frac{16}{5} \Rightarrow d = -15$,故(1)(3)正確,(2)錯誤

而
$$\det$$
 $\begin{bmatrix} b & -a \\ -9 & 4 \end{bmatrix}$)=2,故(4)錯誤。

11. [答案]:
$$\begin{bmatrix} 0 & 1 \\ 4 & 4 \end{bmatrix}$$

[解法]:

 \therefore PQ+PR=P(Q+R)

$$\therefore \begin{bmatrix} 2 & 0 \\ 12 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 4 & 12 \end{bmatrix} = P \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix} \iff \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix} = P \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}$$

$$\Leftrightarrow P = \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 3 \\ 16 & 12 \end{bmatrix} (\frac{1}{3} \begin{bmatrix} 3 & 0 \\ -3 & 1 \end{bmatrix}) = \begin{bmatrix} 0 & 1 \\ 4 & 4 \end{bmatrix} \circ$$

12. [答案]:(1)(2)(3)(5)

[解法]:

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \Rightarrow ((a_1, b_1, c_1, d_1) = (1, 1, 0, 2)$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \Rightarrow ((a_2, b_2, c_2, d_2) = (1,3,0,4)$$

(1,7,0,8)

- (1) $a_2 = 1$
- (2) $a_1 = a_2 = a = 1_3$,故 a_1, a_2, a_3 為等比數列
- (3) $d_1 = 2, d_2 = 4, d_3 = 8$,故 d_1, d_2, d_3 為等比數列
- (4) $b_1 = 1, b_2 = 3, b_3 = 7$,故 b_1, b_2, b_3 不為等差數列
- (5) $c_1 = 0, c_2 = 0, c_3 = 0$,故 c_1, c_2, c_3 為等差數列故選(1)(2)(3)(5)

13. [答案]:(2)(4)

[解法]:

(1) 一局後,乙袋為白球的機率為
$$\frac{1}{3} \times 1 + \frac{2}{3} \times \frac{1}{2} = \frac{2}{3}$$
。

(2)(3) 考慮乙袋的球色,白球稱狀態1,紅球稱狀態2,

則轉移矩陣為
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
,

計算二局後,乙袋分別為白球、紅球的機率:
$$A^2\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}\frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix}\frac{2}{3}\\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix}\frac{5}{9}\\ \frac{4}{9}\end{bmatrix}$$
,

故乙袋為紅球的機率應為 $\frac{4}{9}$ 。

設問穩定狀態為
$$x = \begin{bmatrix} a \\ b \end{bmatrix}$$
,解 $Ax = x$ 得 $x = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ 。

(4)(5) 同上可得轉移矩陣為
$$B = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
,二局後,

乙袋為紅球的機率應為 $\frac{1}{2}$,穩定狀態仍為 $\left[\frac{1}{2}\right]$ 。

14. [答案]: (1)
$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 (2) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (3) $\begin{bmatrix} 5 & -11 \\ -11 & 26 \end{bmatrix}$

[解法]:

$$(1) \quad A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

(2)
$$\operatorname{ME} A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\operatorname{HE} \begin{bmatrix} a \\ b \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

解得
$$A' = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 7 & 9 \\ 3 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & -9 \\ -3 & 7 \end{bmatrix} = \begin{bmatrix} 5 & -11 \\ -11 & 26 \end{bmatrix}$$

15. (a).
$$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6} (3 \%)$$

(b)轉移矩陣
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix}$$
 ,星期一狀態矩陣 $X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$,

故星期五的狀態矩陣
$$X_5 = A^4 X_1 = \begin{bmatrix} \frac{389}{648} \\ \frac{259}{648} \end{bmatrix}$$
,因此星期五走乙路線的機率為 $\frac{259}{648}$

(c)假設穩定狀態的矩陣為
$$X = \begin{bmatrix} a \\ 1-a \end{bmatrix}$$
,則 $AX = X$, $\begin{bmatrix} \frac{2}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a \\ 1-a \end{bmatrix} = \begin{bmatrix} a \\ 1-a \end{bmatrix}$

$$\Rightarrow \frac{2}{3}a + \frac{1}{2}(1-a) = a$$
解得 $a = \frac{3}{5}$,因此長期而言,走乙路線的機率為 $\frac{2}{5}$