Examen - 24 de julio de 2014. Duración: 3 horas.

N° de examen	Cédula	Apellido y nombre

Ejercicio 1.

a. Sean $a,b\in\mathbb{Z}$ enteros no nulos. Probar que:

$$mcd(a,b) = \min \{c > 0 : c = ax + by, \ x, y \in \mathbb{Z} \}.$$

b. Hallar todos los a, b enteros positivos que cumplen $a \equiv 4 \pmod{b}$ y $\operatorname{mcm}(a,b) = 675 \times \operatorname{mcd}(a,b)$.

Ejercicio 2.

a. Hallar todas las soluciones $x \in \mathbb{Z}$ del siguiente sistema:

$$\left\{ \begin{array}{ll} x\equiv 1\pmod{13}\\ x\equiv 4\pmod{6}\\ x\equiv 0\pmod{11} \end{array} \right.$$

b. Hallar el resto de dividir 22³⁰⁰ entre 4290.

Ejercicio 3.

- **a.** Probar que si $f: G \to K$ es un homomorfismo de grupos y G es un grupo finito, entonces $|G| = |\ker(f)||\operatorname{Im}(f)||$. Si utiliza algún teorema de grupos, debe probarlo.
- **b.** Probar que si G y K son grupos y $f: G \to K$ es un homomorfismo de grupos, entonces $|\operatorname{Im}(f)|$ divide a $\operatorname{mcd}(|G|, |K|)$.
- c. Hallar todos los subgrupos del grupo dihedral D_3 .
- d. i) Sean p un primo impar y x un entero impar coprimo con p. Probar que x es raíz primitiva módulo p si y sólo si x es raíz primitiva módulo 2p.
 - ii) Probar que 11 es raíz primitiva módulo 82.
 - iii) Hallar todos los homomorfismos $f: U(82) \to D_3$. Sugerencia: utilizar las partes anteriores.

Ejercicio 4. Sean n = 209 y e = 17.

- a. Utilizando el método de cifrado RSA y la clave (n, e) cifrar x = 5.
- **b**. Hallar $\varphi(n)$.
- \mathbf{c} . Hallar la función de descifrado D.
- **d**. Descifrar y = 10.