IN THE SPECIFICATION

Please further amend the paragraph starting at page 23, line 20 and ending at page 24, line 6 to read, as follows.

--The PVD belt under item (2) and the PES belt under item (3) were formed into single-layer endless belts having a circumferential length of 1000 mm and a thickness of 100 μm by dispersing carbon to thereby adjust the surface resistivity ρ s to ρ s = 1 × 10¹² Ω / \square . Also, the urethane resin coat belt under item (4) was formed into a two-layer endless belt having surface resistivity ρ s of 1 × 10¹² [[Ω]] Ω / \square on the toner bearing surface side and having a circumferential length of 1000 mm and a thickness of 500 μm by dispersing carbon to thereby adjust the volume resistivity of NBR to 1 × 10⁶ Ω ?cm Ω *cm, and coating NBR with urethane resin having volume resistivity of 1 × 10⁹ Ω ?cm Ω *cm to 30 μm.--

Please further amend the paragraph starting at page 34, line 16 and ending at page 34, line 25 to read, as follows.

--The intermediate transferring belt of which the surface resistivity ρs is "equal to or greater than $1\times 10^{15}~\Omega/\Box$ " has surface resistivity of equal to or greater than $1\times 10^{15}~\Omega/\Box$ which is the measurement limit by the background noise of the above-described surface resistivity measuring system and therefore, here it is expressed as equal to or greater than $1\times 10^{15}~\Omega/\Box$ " $[[\Omega^*]]$. The measurement of the surface resistivity was effected by the method described in the first embodiment.--