:	:	:
	www.madariss.fr	:

|) العبارات و العمليات على العبارات

cherifalix@hotmail.com

- 1) العبارة:
- (مفهوم العبارة) : (مفهوم العبارة)
 - 🖸 ملحوظة:

الجمل الرياضية الواردة في خانات العمود (1) هي نصوص رياضية سليمة لغويا و تحمل معنى . قد يكون إما صحيحا و إما خاطئا , تسمى عبارات رياضية .

إ ذا كانت عبارة صحيحة نقول إن قيمة حقيقتها صحيحة , و إ ذا كانت خاطئة نقول إن قيمة حقيقتها خاطئة .

تعریف: (مفهوم عبارة)

نسمي عبارة كل نص رياضي يحمل معنى إ ما صحيحا أ و خاطئا . نرمز عادة باحد الرموز P أ و Q أ و R

- 2) العمليات على العبارات:
- © نشاط رقم 2: (نفي عبارة)
- 🕁 **تعريف** : (نفي عبارة)

نفي عبارة p هي العبارة التي تكون صحيحة إ ذا كانت p خاطئة و خاطئة إ ذا كانت p صحيحة و يرمز لها ب p أ و) non (P)

نعبر عن هذا في جدول يسمى جدول الحقيقة:

р	٦P
1	0
0	1

- * لا يمكن أن تكون عبارة صحيحة و خاطئة في نفس الوقت .
 - - 🕃 تعریف:

عطف عبارتين p و q هي العبارة التي تكون صحيحة فقط إ ذا كانت p و p صحيحتين معا و يرمز لها

ب p وp .

جدول الحقيقة

	<u> </u>	
р	q	qęp
1	1	1
1	0	0
0	1	0
0	0	0

=			
1			
П			
	_	_	
П	•	•	•
	•	•	•
П			
П			
П			
П			
П		www madariss tr	1 I
П	•	www.madariss.fr	•
1			

cherifalix@yahoo.fr

التمرين التطبيقي رقم 1:

- نشاط رقم 4: (آستلزام و تكافؤ عبارتين)
 - ى تعريف:

آ ستلزام عبارتين p و q هي العبارة التي تكون خاطئة فقط إ ذا كانت p صحيحة و q خاطئة .

و يرمز لها ب: $q \Rightarrow q$ و تقرأ q تستلزم q .

جدول الحقيقة

р	q	$p \Rightarrow q$
1	1	1
	1	
1	0	0
0	1	1
0	0	1

- lacktrightالعبارة $q \Rightarrow q$ تقرأ p تستلزم p أو إذا كان $p \Rightarrow q$ قإن p .
- . $\mathbf{p} \Rightarrow \mathbf{q}$ العبارة $\mathbf{q} \Rightarrow \mathbf{p}$ تسمى الإستازام العكسي للإستازام $\mathbf{q} \Rightarrow \mathbf{p}$
- lacktriangledown للبرهان على أن العبارة $p \Rightarrow q$ صحيحة نفترض أن العبارة صحيحة و نبين أن العبارة صحيحة .

ى تعريف:

تكافؤ عبارتين p و p هي العبارة التي تكون صحيحة إذا و فقط إذا كانت p و p صحيحتين معا أو خاطئتين معا و يرمز لها $p \Leftrightarrow q$ و تقرأ $p \Leftrightarrow q$.

جدول الحقيقة

р	q	p⇔q
1	1	1
1	0	0
0	1	0
0	0	1

:	:
· www.madariss.fr	:
	: خاصية : cherifalix@hotmail.com
. متكافئتان $\left[\left(p \Rightarrow q ight) ight]$	العبارتان $p \Leftrightarrow q$ و $\left(p \Rightarrow q ight)$ و
حيحتين معا فإ ننا نستنتج أ ن العبارة صحيحة و هذا ما يصطلح عليه بالإستدلال الإستنتاجي .	 ๑ ملحوظة : ♣ إ ذا كانت العبارتان p و p ⇒ q صد
	التمرين التطبيقي رقم 2:
	 ا لدالة العبارية - المكممات :
ات)	 نشاط رقم 5: (الدالة العبارية و المكمم
	€ تعریف :
 صحة معناه على متغير أو عدة متغيرات تنتمي إلى مجموعة معلومة E. 	$x \in E$ حیث $p(x)$ حیث $p(x)$
	 نشاط رقم 6: (المكمم الكوني) تعريف :
. $A(x)$ دینا E من x من $\forall x \in E \; ; A(x)$	
	© مثا <u>ل:</u>
عبارة صحيحة .	" $\left(\forall x \in IR^+; \frac{x+1}{2} \ge \sqrt{x}\right)$ " العبارة *
	🕥 نشاط رقم 7: (المكمم الوجودي)
	تعریف:
" ($\exists x \in E; A(x)$)" تقرأ " يوجد على الأقل x من E يحقق الخاصية " ($\exists x \in E; A(x)$	
ِة خاطئة .	© مثال: $(\exists x \in IR; x^2 + 1 = 0)$ عبارة "($\exists x \in IR; x^2 + 1 = 0$)" عبار
$"(\exists x \in E; A(x))"$ يو العبارة	\exists خاصية: • نفي العبارة " $x \in E; A(x)$ " •
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$(\exists x \in E; A(x))$ " نفي العبارة
	التمرين التطبيقي رقم 3:
	ن ملحوطه.
3	

:	:	:
	www.madariss.fr	:

- . (x=5-y) عبارة صحيحة نأخد $(\forall y \in IR)(\exists x \in IR); x+y=5$ cherifalix@yahoo.fr
- في حين العبارة 5y=-x+7 لايحقق هذه العبارة $(\exists x\in IR)(\forall y\in IR); x+y=5$ في حين العبارة .

و هذا يعني أن ترتيب المكممات من طبيعة مختلفة يؤثر على المعنى أو على حقيقة العبارة .

|||) الإستدلالات الرياضية:

1) الإستدلال بالإستلزام المضاد للعكس:

© نشاط رقم 8: (الإستدلال بالإستلزام المضاد للعكس)

🕃 تعریف :

 $P \Rightarrow Q$ تسمى الإستلزام المضاد للعكس للإستلزام العبارة $\overline{Q} \Rightarrow \overline{P}$

- € ملحوظة:
- . ($\overline{Q} \Rightarrow \overline{P} \iff P \Rightarrow Q$) . الإستدلال بالإستلزام المضاد للعكس يعتمد على القانون المنطقي ($\overline{Q} \Rightarrow \overline{P} \iff P \Rightarrow Q$
 - ⊚ مثال:

. $(\forall X \in IR^+)$; $(x \neq 4 \Rightarrow \sqrt{x} - 1 \neq \frac{x}{4})$: نبین أن

2) الإستدلال بالتكافق:

- نشاط رقم 8: (الإستدلال بالتكافؤ)
 - ٠ ملحوظة:
- هذا النوع من الإستدلال يسمى بالإستدلال بالتكافؤ . و يعتمد الإستدلال بالتكافؤ على القانون المنطقي الآتي :
 - . $(P \Leftrightarrow R)$: فإن $(Q \Leftrightarrow R)$ و $(P \Leftrightarrow Q)$

3) الإستدلال بالخلف:

- © نشاط رقم 9: (الإستدلال بالخلف)
- نشاط رقم 10: (الإستدلال بفصل الحالات)
 - ٠ ملحوظة:
- . $\left[\left(P \Rightarrow R \right) \right]$ و $\left[\left(P \Rightarrow R \right) \right]$ نبر هن في بعض الحالات على أن $\left[\left(P \Rightarrow R \right) \Rightarrow R \right]$ و *

هذا النوع من البرهان يسمى الإستدلال بفصل الحالات.

4) الإستدلال بالترجع:

1	<u>Da ba ba</u>				
	:	·	:		
•	-	·	·		
2			<u>.</u>		
3	•	www.madariss.fr	:		

cherifalix@yahoo.fr

© نشاط رقم 11: (الإستدلال بالترجع)

🖫 خاصية

: لتكن P(n) دالة عبارية بحيث $n \ge n_0$ عدد صحيح طبيعي و $n \ge n_0$ للبرهنة على صحة العبارة P(n) لكل P(n) نبين أن

- عبارة صحيحة $P(n_0)$
- إذا كان من أجل عدد صحيح طبيعي n بحيث n أكبر من أو يساوي n_0 , العبارة P(n+1) صحيحة فإن P(n+1) عبارة صحيحة كذلك .

cherifalix@hotmail.com

		a da	Da
:		:	:
•	•	www.madariss.fr	:

cherifalix@yahoo.fr