深度学习-语义分割篇

作者: 神秘的wz

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long*

Evan Shelhamer*
UC Berkeley

Trevor Darrell

{jonlong, shelhamer, trevor}@cs.berkeley.edu

首个端对端的针对像素级预测的全卷积网络

FCN-32s FCN-16s FCN-8s Ground truth

2015 CVPR

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

Table 3. Our fully convolutional net gives a 20% relative improvement over the state-of-the-art on the PASCAL VOC 2011 and 2012 test sets, and reduces inference time.

	mean IU	mean IU	inference	
	VOC2011 test	VOC2012 test	time	
R-CNN [12]	47.9	-	-	
SDS [16]	52.6	51.6	$\sim 50~\mathrm{s}$	
FCN-8s	62.7	62.2	$\sim 175 \ ms$	

Convolutionalization

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

3.1. Adapting classifiers for dense prediction

Typical recognition nets, including LeNet [21], AlexNet [19], and its deeper successors [31, 32], ostensibly take fixed-sized inputs and produce nonspatial outputs. The fully connected layers of these nets have fixed dimensions and throw away spatial coordinates. However, these fully connected layers can also be viewed as convolutions with kernels that cover their entire input regions. Doing so casts them into fully convolutional networks that take input of any size and output classification maps. This transformation

ConvNet Configuration									
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224×224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	3-64 conv3-64 conv					
	maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
			pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
	maxpool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
	maxpool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
	maxpool								
FC-4096									
FC-4096									
FC-1000									
soft-max									

Conv参数数量: 7x7x512x4096=102760448

padding可调

Table 2. Comparison of skip FCNs on a subset of PASCAL VOC2011 validation⁷. Learning is end-to-end, except for FCN-32s-fixed, where only the last layer is fine-tuned. Note that FCN-32s is FCN-VGG16, renamed to highlight stride.

	p	ixel	mean	mean	f.w.	
	a	cc.	acc.	IU	IU	
FCN-32s-	20 1 500					
FCN	I-32s 8	9.1	73.3	59.4	81.4	
FCN	I-16s 9	0.0	75.7	62.4	83.0	
FC	N-8s 9	0.3	75.9	62.7	83.2	

FCN-32S

padding100? 192x192

双线性插值参考博文: https://blog.csdn.net/qq_37541097/article/details/112564822

FCN-16S

FCN-8S

损失计算: Cross Entropy Loss

语义分割评价指标

活动作品 语义分割前言 4803播放·53弹幕 2021-09-07 22:01:15

沟通方式

1.github

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

2.bilibili

https://space.bilibili.com/18161609/channel/index

3.CSDN

https://blog.csdn.net/qq_37541097/article/details/103482003