

Cours: Théorie des langages & Compilation

Chapitre 1: Notions fondamentales en théorie des langages

Réalisé par:

Dr. Sakka Rouis Taoufik

https://github.com/srtaoufik/Cours-TLA-et-Compilation

1

Н

Ch1: Notions fondamentales en théorie des langages

I. Objectif

Ce cours présente une Notions fondamentales en théorie des langages en traitant les trois aspects suivants :

- >L'aspect reconnaissance par les automates finis, les automates à pile et les machines de Turing.
- ➤ L'aspect génération par les grammaires régulières, non contextuelles et contextuelles,
- ➤ L'aspect représentation par propriétés mesurables, définitions récursives et expressions régulières.

L'objectif est d'introduire des connaissances en théorie des langages et des automates afin de pouvoir les étendre à la description des langages de programmation et leur analyse syntaxique en vue de leur compilation.

Ch1: Notions fondamentales en théorie des langages . Objectif Langages Réguliers **Processus** Hors contexte Contextuel Représentation Expressions Propriété Propriété régulières mesurable mesurable Définition Définition récursive récursive Reconnaissance Automates Finis Automates à Pile Machine de Turina Génération Grammaires Grammaires Non Grammaires Réguliers Contextuelles Contextuelles

Ch1: Notions fondamentales en théorie des langages

II. Vocabulaire

Définition 1.

Alphabet: Un alphabet (ou vocabulaire) est un ensemble fini, non vide de symboles. On le note généralement X.

Définition 2.

Fermeture: Soit X un alphabet. On note par X*, l'ensemble de toutes les séquences finies de symboles de X.

Rq le symbole * est une fonction qui, appliquée à un ensemble non vide X, donne un autre ensemble infini X*.

On dit que X* est la fermeture de X.

II. Vocabulaire

Définition 3

Chaine vide: Une chaine vide est une chaine qui ne contient aucun symbole du vocabulaire (appelée aussi mot vide). Une chaine vide est un élément de X*. On la note : ɛ

Définition 4

Longueur d'une chaine: La longueur d'une chaine finie ω est le nombre de symboles qu'elle contient.

On la note $|\omega|$.

_

Ch1: Notions fondamentales en théorie des langages

III. Mot

Définition 5.

Mot : Un mot ω est une application d'un segment initial de longueur n vers le vocabulaire: ω : [n] \rightarrow X Où ω_i est l'image de i dans X; i est le rang de ω_i dans ω ; si ω_i = a et a \in X alors ω_i est une occurrence de a dans le mot ω .

Exercice:

Donner les ω, associés aux mots suivants :

- 1) abba sur le vocabulaire {a, b}
- 2) (x1*(x2+x1)) sur le vocabulaire {x1, x2, +, *, (,) }

III. Mot

Corrigé:

1) Si le vocabulaire $X = \{a, b\}$ alors dans le mot abba,

$$\omega_1 = a$$

$$\omega_2 = b$$

$$\omega_3 = b$$

$$\omega_4 = a$$

2) Si le vocabulaire est $X = \{x1, x2, +, *, (,)\}$ alors dans le mot (x1*(x2+x1))

$$\omega_1 = ($$

$$\omega_1 = ($$
 $\omega_2 = x1$ $\omega_3 = *$

$$\omega_{4} = ($$

$$\omega_4 = ($$
 $\omega_5 = x2$ $\omega_6 = +$ $\omega_7 = x1$ $\omega_8 =)$ $\omega_9 =)$

$$\omega_6 = +$$

$$(1)_{7} = X'$$

$$\omega_8 =)$$

$$\omega_{0} = 1$$

Ch1: Notions fondamentales en théorie des langages

III. Mot

Définition 6.

Longueur d'un mot : La longueur d'un mot ω est le nombre de symboles qu'il contient, on le note $|\omega|$.

Exercice:

Quelle est la longueur des mots abba et ε sur le Vocabulaire {a,b}

Corrigé:

Le mot abba est de longueur 4, |abba| = 4

Le mot ε est de longueur $0, |\varepsilon| = 0$

III. Mot

Définition 7.

Nombre d'occurrences d'un symbole dans un mot :

Le nombre d'occurrences d'un symbole x dans un mot ω est le nombre de fois où ce symbole apparaît dans ce mot ω . On le note $|\omega|_{v}$.

$$|\omega| = \sum_{x \in X} |\omega|_x$$

Exercice:

Quel est le nombre d'occurrences de b dans les mots abba et ϵ

Corrigé:

$$|abba|_b=2$$

 $|\epsilon|_b=0$

۵

Ch1: Notions fondamentales en théorie des langages

IV. Langage

Définition 8.

Langage :On définit un langage sur un alphabet X comme un sous ensemble de X*

Exemple:

Si le vocabulaire est $X = \{0, 1, 2, 3, ..., 9\}$

L = { représentations décimales des nombres entiers naturels}

Si le vocabulaire est $X = \{x1, x2, +, *, (,)\}$ $x1+x2 \in X^*$ L = {expressions arithmétiques parenthèses}

x1, x2, + et *(x1+x2) sont 4 mots du langage L

IV. Langage

Si X est le vocabulaire de la logique des propositions X ={p, (,), →, ∧, ∨, ¬} où p désigne une proposition L = {formules bien formées de la logique des propositions} p ->p

11

ч

Ch1: Notions fondamentales en théorie des langages

IV. Langage

Si X est le vocabulaire de la logique des propositions $X = \{p, (,), \rightarrow, \land, \lor, \neg\}$ où p désigne une proposition $L = \{formules bien formées de la logique des propositions\}$

L'ensemble des mots du langage L est défini récursivement comme suit :

- 1) P est un mot
- 2) Si F et G sont deux mots alors $F \rightarrow G$, $F \wedge G$, $F \vee G$ le sont aussi
- 3) Si F est un mot alors (F) et ¬ F le sont aussi

V. Opérations sur les langages

Définition 9.

Concaténation de deux mots:

soient u et v deux mots / |u| = n et |v| = m alors:

$$u.v = \omega$$
 / $\omega_i = u_i \ \forall \ i \in [n]$ et $\omega_{n+i} = v_i \ \forall \ j \in [m]$

Le mot vide ε est un élément neutre de la concaténation $u.\varepsilon = \varepsilon.u = u$

13

Ch1: Notions fondamentales en théorie des langages

V. Opérations sur les langages

Soient A et B deux langages alors on a les opérations suivantes:

Intersection $A \cap B = \{\omega \mid \omega \in A \text{ et } \omega \in B\}$

Union $A \cup B = \{\omega / \omega \in A \text{ ou } \omega \in B\}$ (notée aussi A+B)Complémentation $A \setminus B = \{\omega / \omega \in A \text{ et } \omega \notin B\}$ (notée aussi A-B)

Concatenation A.B = $\{\omega \mid \exists u \in A \text{ et } \exists v \in B \text{ et } \omega = u.v\}$

Propriétés

Soient A, B, C des langages, on a A.(B \cup C) = A.B \cup A.C (A \cup B).C = A.C \cup B.C

V. Opérations sur les langages

Notation:

$$a^0 = \varepsilon$$

 $a^* = \{a^i / i \ge 0\} = \{a^0, a^1, a^2, \dots a^i, \dots\}$
 $a^+ = \{a^i / i > 0\} = \{a^1, a^2, \dots a^i, \dots\}$

L'opération *
$$A^* = \cup A^i \quad \forall i \ge 0 \text{ avec} \quad A^0 = \{\epsilon\}$$

 $A^1 = A$

$$A^{i+1} = A.A^i \quad \forall i \ge 0$$

L'opération +
$$A^+ = \cup A^i \quad \forall i \ge 1$$

15

Ch1: Notions fondamentales en théorie des langages

V. Opérations sur les langages

Exercice:

Calculer A* pour chacun des ensembles A suivants:

1)
$$A = \{a^{(i)}\}$$

2)
$$A = \{ \omega \in X^* / | \omega | = 2k+1 / k \ge 0 \}$$

Corrigé:

1) Si A = {a} alors A* = {a}* = a*
Car A* =
$$A^0 \cup A^1 \cup A^2 \cup ... A^i \cup ...$$

$$\mathsf{A}^0=\{{\color{red}\epsilon}\}=\{a^0\}$$

$$A^1 = AA^0 = \{a\} \{ \epsilon \} = \{a\} = \{a^1\}$$

$$A^2 = AA^1 = \{a\} \{a\} = \{aa\} = \{a^2\}$$

$$A^i = \{a^i\}$$

$$A^{i+1} = A A^i = \{a\}\{a^i\} = \{a^{i+1}\}$$

...

$$A^* = \{\epsilon, \, a, \, aa, \, aaa, \, \ldots\} = \{a^0, \, a^1, \, a^2, \, a^3, \, \ldots\} = a^*$$

V. Opérations sur les langages

```
2) si A = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\}

A^* = X^*

Car A^* = A^0 \cup A^1 \cup A^2 \cup ... A^i \cup ...

A^0 = \{\xi\} = \{X^0\}

A^1 = AA^0 = A\{\xi\} = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\}

A^2 = AA^1 = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\}

A^2 = AA^1 = \{\omega \in X^* / |\omega| = 2k+2 / k \ge 0\}

A^0 \cup A^2 = \{\xi\} \cup \{\omega \in X^* / |\omega| = 2k / k \ge 0\}

A^0 \cup A^2 = \{\xi\} \cup \{\omega \in X^* / |\omega| = 2k / k \ge 0\}

A^0 \cup A^1 \cup A^2 = \{\omega \in X^* / |\omega| = 2k / k \ge 0\}

A^0 \cup A^1 \cup A^2 = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\} \cup \{\omega \in X^* / |\omega| = 2k / k \ge 0\}

A^0 \cup A^1 \cup A^2 = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\} \cup \{\omega \in X^* / |\omega| = 2k / k \ge 0\}

Donc A^* = X^*
```

Ch1: Notions fondamentales en théorie des langages

IV. Propriétés des langages

Exercice:

Calculer A. \emptyset et A.{ ε } Montrer que A.(B \cap C) \neq A.B \cap A.C

Montrer que $A^+ = A^* - \{\epsilon\}$ n'est vraie lorsque A ne contient pas ϵ

Corrigé:

- 1- A. $\emptyset = \emptyset$. A = \emptyset
- 2- A. $\{ \varepsilon \} = \{ \varepsilon \}$. A= A
- 3- **Contre exemple**: soient A = $\{\varepsilon, x\}$, B = $\{xy\}$, C = $\{y\}$

$$(B \cap C) = \emptyset$$
 donc A. $(B \cap C) = \emptyset$
A.B = $\{xy, xxy\}$ et A.C = $\{y, xy\}$ donc A.B \cap A.C = $\{xy\}$

→ On peut conclure que : A.(B \cap C) \neq A.B \cap A.C

VI. Propriétés des langages

4- On n'a pas $A^+ = A^* \setminus \{\epsilon\}$ par contre on $A^* = A^+ \cup \{\epsilon\}$

Pour $A = \{\epsilon, a\}$

$$A^{+} = A^{1} \cup A^{2} \cup ... = \{\varepsilon, a\} \cup \{\varepsilon, a, aa\} \cup ... = \{\varepsilon, a, aa, aaa,\}$$

 $A^{*} = A^{0} \cup A^{1} \cup A^{2} \cup ... = \{a^{i} / i \ge 0\}$

$$A^* \setminus \{\epsilon\} = \{a^i / i > 0\} \neq A^+ \operatorname{car} \{\epsilon\} \subseteq A$$

 $A^+ = A^* \setminus \{\epsilon\}$ est vraie lorsque A ne contient pas ϵ

19

Ch1: Notions fondamentales en théorie des langages

IV. Définition des langages

Définition par propriété mesurable

L1 est l'ensemble des mots sur $\{a, b\}$ de longueur paire L1 = $\{\omega \in \{a, b\}^* / |\omega| = 2k, K \ge 0\}$

L2 est l'ensemble des mots sur {a, b} ayant un nombre impaire de b L2 = { $\omega \in \{a, b\}^* / |\omega|_b = 2k+1, K \ge 0$ }

L3 est l'ensemble des mots sur {a, b} où tous les a précèdent les b et sont de même nombre

L3 = { $a^n b^n$, $n \ge 0$ }

VII. Définition des langages

Définition récursive

L3 est l'ensemble des mots sur {a, b} où tous les a précèdent les b et sont de même nombre

Définition par propriété mesurable est :

$$L3 = \{ a^n b^n, n \ge 0 \}$$

Définition récursive du même langage est:

L3 =
$$\{\omega \in \{a, b\}^* / \omega = \varepsilon \text{ ou } \omega = a \omega_1 b \text{ et } \omega_1 \in L3 \}$$

21

Ch1: Notions fondamentales en théorie des langages

VII. Définition des langages

Définition récursive

L4 est l'ensemble des mots palindromes sur le vocabulaire {a, b}, de longueur paire.

 $L4 = \{\omega \in \{a, b\}^* / \omega = \text{aa ou } \omega = \text{bb ou } \omega = \text{a } \omega_1 \text{a ou } \omega = \text{b } \omega_1 \text{b } \text{ et } \omega_1 \in L4\}$

L5 est l'ensemble des mots palindromes sur le vocabulaire {a, b}, de longueur impaire.

L5 = $\{\omega \in \{a, b\}^* / \omega = a \text{ ou } \omega = b \text{ ou } \omega = a \omega_1 a \text{ ou } \omega = b \omega_1 b \text{ et } \omega_1 \in L5\}$

 $\omega = a \omega_1 a \text{ ou } \omega = b \omega_1 b \text{ et } \omega_1 \in L5$

L6 est l'ensemble des mots palindromes sur le vocabulaire {a, b}. L6 = { $\omega \in \{a, b\}^*/ \omega = a$ ou $\omega = b$ ou $\omega = aa$ ou $\omega = bb$ ou

VIII. Le lemme d'Arden

Pour deux langages A et B d'un vocabulaire X^* , Les équations $L=AL \cup B$ et $L=LA \cup B$ admettent respectivement comme solution minimale A^*B et BA^* . Cette solution est unique si $\varepsilon \notin A$.

23

Ch1: Notions fondamentales en théorie des langages

IX. Exercices d'application

Exercice 1:

- a) Soit E= {a, b, c}. Trouvez les ensembles suivants:
- ightharpoonup E²= E x E
- P(E)= l'ensemble de toutes les parties de E
- b) Démentrez par l'absurde que si $A \cap B = \emptyset$ et $C \subseteq B$ alors $A \cap C = \emptyset$

Exercice 2:

a) Donner une définition formelle pour chacun des langages suivantes:

L1= {xyy, xxyyyy, xxxyyyyyy,}.

L2= {xy, xyxy, xyxyxy,}.

L3= $\{xx, xyx, xyyx, xyyyx,\}$.

b) Soit L = $\{\omega \in \{x, y\}^* / \omega = x^{2n} y^n x^m, n, m \ge 0\}$

Les mots suivants appartiennent t'ils à L?

xxyxxx, xx, xxxxyyzx,xxxyx,xxy

IX. Exercices d'application

Exercice 3:

Soit l'alphabet X= {a, b, c, d}.

Un mot w est dit parfait si et seulement si $\omega = d$ ou $\omega = aubvc$ où u et v étant parfaits

- a) Montrez que si w est parfait alors $|\omega|_a = |\omega|_b = |\omega|_c = |\omega|_d$ -1
- b) Montrez qu'aucun facteur gauche (préfixe) propre d'un mot parfait n'et parfait

25

Ch1: Notions fondamentales en théorie des langages

IX. Exercices d'application

Exercice 4:

a) Montrez que pour tout A, B $\subseteq X^*$

 $(A*B*)* = (A \cup B)* = (A* \cup B*)* = (A*B)*A*$

- b) Montrez que pour tout $L \subseteq X^*$
- \acute{Si} ϵ \in L et L² = L alors L*=L

Exercice 5:

- a) Calculez L2, L+ et L* pour:
- ightharpoonup L= {00,11}.
- Arr L = { $\omega \in \{0, 1\}^* / |\omega|_0 = 2 |\omega|_1$ }
- \rightarrow L = { $\omega \in \{0, 1\}^* / \omega = 1^{2n} \text{ n > 0} \}$

IX. Exercices d'application

Correction Exercice 5:

```
\rightarrow Pour L= {00,11}.
```

 $L^2 = \{0000,0011,1100,1111\}$

L*= {00, 11 }*

 $L^+ = L^* \setminus \{\epsilon\}$ car L ne contient pas ϵ

27

Ch1: Notions fondamentales en théorie des langages

IX. Exercices d'application

 \triangleright Pour L = {ω ∈ {0, 1}* / | ω |₀ = 2 | ω |₁}

 $L^{2} = \{\omega_{1} \ \omega_{2} \in \{0, \ 1\}^{*} \ / \ | \ \omega_{1} \ \omega_{1} \ |_{0} = \ \dots = 2 \ | \ \omega_{1} \ \omega_{1} \ |_{1} \} \ = L$

 $L^* = \{\epsilon\} \cup L \cup L^2 \cup \cdots \cup L^i = L \text{ (car L contient } \epsilon)$

 $L^+ = L \cup L^2 \cup \cdots \cup L^i = L$

IX. Exercices d'application

ightharpoonup Pour L = { $\omega \in \{0, 1\}^* / \omega = 1^{2n} \ n > 0$ }

$$L^2 = \{\omega \in \{0, 1\}^* / \omega = 1^{2n} \ n > = 2\} \subset L$$

$$L^* = \{ \epsilon \} \cup L \cup L^2 \cup \cdots \cup L^i = \{ \epsilon \} \cup L$$

 $L^+ = L^* \setminus \{\epsilon\}$ car L ne contient pas ϵ