Bài 1: Setup project đầu tiên trên KeilC

Võ Thành Danh

1. Keil C

Chương trình ngôn ngữ C

.hex file

2. Tạo project đầu tiên với KeilC

ST-Link driver: https://www.st.com/en/development-tools/stsw-link009.html

Thư viện chuẩn của MCU cho Keil: https://www.keil.arm.com/devices/

Datasheet, Reference Manual của MCU

3. Blink LED PC13

- Cấp xung clock cho ngoại vi
- Cấu hình chân của ngoại vi
- Sử dụng ngoại vi

Figure 1. STM32F103xx performance line block diagram

3.1 Địa chỉ các thanh ghi

Table 3. Register boundary addresses

Boundary address	Peripheral	Bus	Register map
0xA000 0000 - 0xA000 0FFF	FSMC		Section 21.6.9 on page 563
0x5000 0000 - 0x5003 FFFF	USB OTG FS		Section 28.16.6 on page 912
0x4003 0000 - 0x4FFF FFFF	Reserved		-
0x4002 8000 - 0x4002 9FFF	Ethernet		Section 29.8.5 on page 1069
0x4002 3400 - 0x4002 7FFF	Reserved		-
0x4002 3000 - 0x4002 33FF	CRC		Section 4.4.4 on page 65
0x4002 2000 - 0x4002 23FF	Flash memory interface	АНВ	
0x4002 1400 - 0x4002 1FFF	Reserved	And	-
0x4002 1000 - 0x4002 13FF	Reset and clock control RCC		Section 7.3.11 on page 120
0x4002 0800 - 0x4002 0FFF	Reserved		
0x4002 0400 - 0x4002 07FF	DMA2		Section 12 4 7 on page 200
0x4002 0000 - 0x4002 03FF	DMA1		Section 13.4.7 on page 288
0x4001 8400 - 0x4001 FFFF	Reserved		
0x4001 8000 - 0x4001 83FF	SDIO	r.	Section 22.9.16 on page 620

3.2 Cấp clock cho ngoại vi

8.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2 domain is on going. In this case, wait states are inserted until the access to APB2 peripheral is finished.

#define RCC APB2ENR*((unsigned int *)0x40021018)

3.2 Cấp clock cho ngoại vi

Truth Table

Input A	Input B	Output
0	0	0
0	1	1
1	0	1
1	1	1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	USART 1EN	Res.	SPI1 EN	TIM1 EN	ADC2 EN	ADC1 EN	Rese	rved	IOPE EN	IOPD EN	IOPC EN	IOPB EN	IOPA EN	Res.	AFIO EN
	rw		rw	rw	rw	rw	·		rw	rw	rw	rw	rw		rw

а

b

								0							
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

a|b

0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0

3.2 Cấp clock cho ngoại vi

8.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2 domain is on going. In this case, wait states are inserted until the access to APB2 peripheral is finished.

RCC_APB2ENR |= (1 << 4); // Kich hoat xung clock cap
cho GPIOC</pre>

9.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	5[1:0]	MODE	15[1:0]	CNF1	14[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE	12[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	1[1:0]	MODE	11[1:0]	CNF1	10[1:0]	MODE	10[1:0]	CNF	9[1:0]	MODE	E9[1:0]	CNF	8[1:0]	MODE	E8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

```
Bits 31:30, 27:26. CNFy[1:0]: Port x configuration bits (y= 8 .. 15)
23:22, 19:18, 15:14,
                       These bits are written by software to configure the corresponding I/O port.
     11:10, 7:6, 3:2
                       Refer to Table 20: Port bit configuration table on page 161.
                       In input mode (MODE[1:0]=00):
                       00: Analog mode
                       01: Floating input (reset state)
                       10: Input with pull-up / pull-down
                       11: Reserved
                       In output mode (MODE[1:0] > 00):
                       00: General purpose output push-pull
                       01: General purpose output Open-drain
                       10: Alternate function output Push-pull
                       11: Alternate function output Open-drain
  Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 8 .. 15)
21:20, 17:16, 13:12,
                       These bits are written by software to configure the corresponding I/O port.
        9:8, 5:4, 1:0
                       Refer to Table 20: Port bit configuration table on page 161.
                       00: Input mode (reset state)
                       01: Output mode, max speed 10 MHz.
                       10: Output mode, max speed 2 MHz.
                       11: Output mode, max speed 50 MHz.
```

```
// MODE13[1:0] = 11: Output mode, max speed 50 MHz
GPIOC CRH |= (1 << 20) | (1 << 21);
// CNF13[1:0] = 00: General purpose output
push-pull
GPIOC CRH &= \sim ((1 << 22) | (1 << 23));
```

a &= b ⇔ a = a & b

Truth Table

A (Input 1)	B (Input 2)	X = (A.B)
0	0	0
0	1	0
1	0	0
1	1	1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	USART 1EN	Res.	SPI1 EN	TIM1 EN	ADC2 EN	ADC1 EN	Rese	rved	IOPE EN	IOPD EN	IOPC EN	IOPB EN	IOPA EN	Res.	AFIO EN
	rw		rw	rw	rw	rw			rw	rw	rw	rw	rw		rw

a

~b

0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1

a & ~b

0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

3.4 Sử dụng ngoại vi

9.2.4 Port output data register (GPIOx_ODR) (x=A..G)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

```
while(1) {
    GPIOC_ODR |= 1 << 13; // LED tat
    delay(10000000);

    GPIOC_ODR &= ~(1 << 13); // LED sang
    delay(10000000);
}</pre>
```

3.4 Sử dụng ngoại vi

Hàm delay được tạo bằng cách cho MCU không làm gì trong 1 khoảng thời gian bằng các vòng lặp

```
void delay(unsigned int timedelay) {
   for(unsigned int i = 0; i < timedelay; i++) { }
}</pre>
```

3.5 Xây dựng cấu trúc thanh ghi của các ngoại vi

	Î	i		ī	T	Ť	Та	ble	59). G	PI	O r	eg	ist	er	ma	ра	nd	re	se	t va	alu	es		ĺ	Î	Ť	Î	T	Î	í	Ī	Ť
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	-	0
0x00	GPIOx _CRL	-	NF 7 :0]		DDE 7		NF 6 :0]	53000	DDE 6 :0]		NF 5 :0]	0.00	DDE 5 1:0]	1 8	NF 4 1:0]		DE 4 :0]	1115	NF 3 :0]	E	OD 3		NF 2 :0]	500,00	DDE 2 :0]		NF 1 :0]	E	OD E1 :0]		NF 0 :0]	2027	ODE 0 1:0]
	Reset value	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	
0x04	GPIOx _CRH	1	NF 5 :0]		DDE 15 1:0]	-	NF 4 :0]	1	DDE 14 :0]		NF 3 :0]		DDE 13 1:0]	1 3	NF 12 1:0]	1	DE 2 :0]		NF 11 :0]	E	OD 11 :0]		NF 10 :0]	1	DE 0 :0]		NF 9 :0]	E	OD E9 :0]	12.5	NF 8 :0]		DDE 8 1:0]
	Reset value	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	10
0x08	GPIOx _IDR				_				Res	erve	d					-			_		-				IC	Ry							
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0C	GPIOx _ODR								Res	erve	d														OI	DRy							- 2
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	GPIOx _BSRR								BR	15:0]							BSR[15:0]															
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0
0x14	GPIOx _BRR			•			•		Res	erve	d		•				•								BR	15:0]						
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	GPIOx _LCKR							R	esen	ved							LCKK								LCK	[15:0	0]						
	Reset value															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

3.5 Xây dựng cấu trúc thanh ghi của các ngoại vi

```
typedef struct
 unsigned int CRL;
  unsigned int CRH;
  unsigned int IDR;
  unsigned int ODR;
  unsigned int BSRR;
  unsigned int BRR;
  unsigned int LCKR;
} GPIO TypeDef;
```

```
typedef struct
  unsigned int CR;
 unsigned int CFGR;
  unsigned int CIR;
  unsigned int APB2RSTR;
  unsigned int APB1RSTR;
  unsigned int AHBENR;
  unsigned int APB2ENR;
  unsigned int APB1ENR;
  unsigned int BDCR;
  unsigned int CSR;
} RCC TypeDef;
```

4. Tổng kết và mở rộng

- Việc code trên thanh ghi nhằm giúp các bạn hiểu rõ cách hoạt động chi tiết của từng ngoại vi, cũng như tăng hiệu suất của chương trình.
- Tuy nhiên, việc lập trình thanh ghi có thể trở nên khá phức tạp

```
void WritePin (GPIO TypeDef *GPIO Port, uint8 t Pin,
uint8 t state)
   if(state == HIGH)
   GPIO Port->ODR \mid= (1 << Pin);
   else
   GPIO Port->ODR &= ~(1 << Pin);
```

4. Tổng kết và mở rộng

```
void GPIO Config(void) {
    GPIOC->CRH |= GPIO CRH MODE13 0; //MODE13[1:0] = 11: Output mode,
max speed 50 MHz
    GPIOC->CRH |= GPIO CRH MODE13 1;
                                                     //\text{CNF13[1:0]} = 00:
    GPIOC->CRH &= ~GPIO CRH CNF13 0;
General purpose output push-pull
    GPIOC->CRH &= ~GPIO CRH CNF13 1;
```

5. Đọc trạng thái nút nhấn

5.1. Cấp clock cho ngoại vi

8.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2 domain is on going. In this case, wait states are inserted until the access to APB2 peripheral is finished.

RCC->APB2ENR \mid = (1 << 2) \mid (1 << 4); //Kich hoat xung clock cap cho GPIOA và GPIOC

9.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)

Address offset: 0x00

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CNF	7[1:0]	MODE7[1:0]		CNF6[1:0]		MODE6[1:0]		CNF5[1:0]		MODE5[1:0]		CNF4[1:0]		MODE4[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CNF	3[1:0]	MODE3[1:0]		CNF2[1:0]		MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF	0[1:0]	MODE	DDE0[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Table 20. Port bit configuration table

Configuration mode		CNF1	CNF0	MODE1	MODE0	PxODR register
General purpose	Push-pull	0	0	0)1	0 or 1
output	Open-drain	0	1	1	0 or 1	
Alternate Function	Push-pull	1	0		1	don't care
output	Open-drain		1	see Ta	able 21	don't care
	Analog	0	0			don't care
lam et	Input floating		1		0	don't care
Input	Input pull-down				10	0
	Input pull-up	1	0		1	

Table 21. Output MODE bits

MODE[1:0]	Meaning
00	Reserved
01	Max. output speed 10 MHz
10	Max. output speed 2 MHz
11	Max. output speed 50 MHz

```
GPIOA->CRL = (1 << 1); // CNFO = 10: Input with pull-up/pull-down
    GPIOA->CRL &= \sim (1 << 0);
    GPIOA->ODR |= (1 << 0); // Set ODRO, PAO là input pull-up
    GPIOC->CRH |= (1 << 20) | (1 << 21); // MODE13 = 11: Output mode,
max speed 50 MHz
    GPIOC->CRH &= \sim ((1 << 22) | (1 << 23)); // CNF13 = 00: General
purpose output push-pull
```

5.3 Sử dụng ngoại vi

9.2.3 Port input data register (GPIOx_IDR) (x=A..G)

Address offset: 0x08h

Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

3.3. Sử dụng ngoại vi

```
while (1) {
   if((GPIOA->IDR & (1 << 0)) == 0) // \thetac trang thái nút nhấn
       GPIOC->ODR = 0 << 13; // Néu PAO = 0 -> PC13 = 0
   else
       GPIOC->ODR = 1 << 13; // Néu PAO = 1 -> PC13 = 1
```

5.3 Sử dụng ngoại vi

Truth Table

A (Input 1)	B (Input 2)	X = (A.B)
0	0	0
0	1	0
1	0	0
1	1	1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
57 - 3	\$		S S	V 72		5 25			St. 31		2	20 2			
1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

a&b

a

b

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1