Assignment 2: R Basics and Exploratory Data Analysis

WenLi

9/4/2020

1. College Data Analysis

Relationship between Apps and Accept

Overall enrollment numbers of shoools


```
##### e. Schools'acceptance rates for each of the two Top categories
Top <- as.factor(ifelse(College$Top10perc > 75, "Yes", "No"))
summary(Top)
```

```
## No Yes
## 755 22
```

Acceptance rates for top schools and others


```
cat ("The number of top universities is ", sum(College$Top10perc > 75))
```

Relationship between Top10perc and Grad.Rate

Relationship between acceptance rate and book co-

2. Auto Data Analysis

```
library(ggplot2)
library (PerformanceAnalytics)
##### Read the data into R.
Auto = read.csv("Auto.csv", header = TRUE, na.strings = "?")
Auto = na.omit(Auto)
dim(Auto)
## [1] 392
##### a. Specify which of the predictors are quantitative, and which are qualitative?
# Quantitative: mpg cylinders displacement horsepower weight acceleration
                                                                                    year.
QuantitativePredictors = c("mpg", "cylinders", "displacement", "horsepower",
                           "weight", "acceleration", "year")
# Translate origin into factor
Auto$originFactor = factor(Auto$origin, labels = c("USA", "Germany", "Japan"))
table(Auto$originFactor, Auto$origin)
##
##
                   2
              1
##
     USA
             245
                       0
                  0
##
    Germany
              0
                 68
     Japan
                 0 79
# Qualitative: name origin originFactor
QualitativePredictors = c("name", "origin", "originFactor")
##### b. What is the range, mean and standard deviation of each quantitative predictor?
Quantitatives = which(names(Auto) %in% QuantitativePredictors)
sapply(Auto[, Quantitatives], range)
        mpg cylinders displacement horsepower weight acceleration year
## [1,] 9.0
                     3
                                            46
                                                 1613
                                                              8.0
                                 68
                                                                     70
## [2,] 46.6
                     8
                                455
                                           230
                                                 5140
                                                              24.8
                                                                     82
sapply(Auto[, Quantitatives], mean)
##
            mpg
                   cylinders displacement
                                            horsepower
                                                             weight acceleration
##
      23.445918
                    5.471939 194.411990
                                            104.469388 2977.584184
                                                                       15.541327
##
           year
##
      75.979592
sapply(Auto[, Quantitatives], sd)
##
            mpg
                  cylinders displacement
                                            horsepower
                                                             weight acceleration
##
       7.805007
                    1.705783 104.644004
                                             38.491160
                                                         849.402560
                                                                        2.758864
##
           year
       3.683737
##### c. Now remove the 40th through 80th (inclusive) observations from the dataset.
        What is the range, mean, and standard deviation of each predictor in the
#####
         subset of the data that remains?
sapply(Auto[-seq(40, 80), Quantitatives], range)
         mpg cylinders displacement horsepower weight acceleration year
## [1,] 9.0
                     3
                                 68
                                            46
                                                 1649
```

```
## [2,] 46.6
                                 455
                                            230
                                                  4997
                                                                24.8
                                                                       82
sapply(Auto[-seq(40, 80), Quantitatives], mean)
##
                   cylinders displacement
                                             horsepower
                                                              weight acceleration
            mpg
##
      23.931054
                    5.424501
                               190.943020
                                             103.019943 2948.934473
                                                                         15.581766
##
           year
      76.492877
sapply(Auto[-seq(40, 80), Quantitatives], sd)
##
                   cylinders displacement
                                             horsepower
                                                               weight acceleration
            mpg
##
                    1.667975
                                              37.711797
                                                                          2.730831
       7.826817
                               101.726508
                                                          815.903085
##
           year
##
       3.550345
##### d. Using the full data set, investigate the predictors graphically, using
#####
         scatterplots, correlation scores or other tools of your choice. Create
         a correlation matrix for the relevant variables.
chart.Correlation(Auto[, Quantitatives], histogram=TRUE, pch=19)
```



```
Matrix = cor(Auto[, Quantitatives])
round(Matrix, 2)
```

```
##
                  mpg cylinders displacement horsepower weight acceleration year
                 1.00
                          -0.78
                                                   -0.78 -0.83
                                                                        0.42 0.58
## mpg
                                        -0.81
## cylinders
                -0.78
                           1.00
                                         0.95
                                                    0.84
                                                           0.90
                                                                        -0.50 -0.35
                           0.95
                                                    0.90
                                                                        -0.54 -0.37
## displacement -0.81
                                         1.00
                                                           0.93
## horsepower
                -0.78
                           0.84
                                         0.90
                                                    1.00
                                                           0.86
                                                                        -0.69 -0.42
## weight
                -0.83
                           0.90
                                         0.93
                                                    0.86
                                                           1.00
                                                                        -0.42 -0.31
                                                                        1.00 0.29
## acceleration 0.42
                          -0.50
                                        -0.54
                                                   -0.69 -0.42
## year
                 0.58
                          -0.35
                                        -0.37
                                                   -0.42 -0.31
                                                                        0.29 1.00
```

e. Suppose that we wish to predict gas mileage (mpg) on the basis of the
other variables. Which, if any, of the other variables might be useful
in predicting mpg? Justify your answer based on the prior correlations.

#From the correlation graph, we can find that all of the quantitative variables show some

Relationship between mpg and weight

Relationship between mpg and acceleration

