Kern- und Teilchenphysik II Spring Term 2015

Exercise Sheet 2

Lecturers: Prof. F. Canelli, Prof. N. Serra Assistants: Dr. M. Chrzaszcz, Dr. A.de Cosa

1. Eigenspinors of the S_z operator

a) If the z axis is orientated so that it points along the direction of motion, show that the canonical solution $u^{(1)}$ reduces to:

$$u^{(1)} = \begin{pmatrix} \sqrt{(E + mc^2)/c} \\ 0 \\ \sqrt{(E - mc^2)/c} \\ 0 \end{pmatrix}$$

- b) Construct the equivalent expressions for $u^{(2)}$, $v^{(1)}$ and $v^{(2)}$
- c) Show that they are all eigenspinors of S_z , and find their eigenvalues

2. Electron-muon scattering

Let's consider electron-positron scattering happens by the two diagrams shown below:

- a) Usin Feyman rules please write down the amplitude for the sum od the two processes.
- b) Evaluate the amplitude for electron-positron scattering in the CM system, assuming the e^- and e^+ approach each other along the z axis, repel, and return along the z axis. Assume the initial and final particles all have helicity +1. [Hint: Use the spinors you calculated in the previous question]

3. Casimir's trick

Casimir's trick states that:

$$\sum_{\text{all spins}} [\bar{u}(a)\Gamma_1 u(b)] [\bar{u}(a)\Gamma_2 u(b)]^* = \text{Tr}[\Gamma_1 (p_b + m_b c)\overline{\Gamma}_2 (p_a + m_a c)]$$

a) Find the analogue expression for antiparticles:

$$\sum_{\rm all\ spins} [\bar{v}(a)\Gamma_1 v(b)][\bar{v}(a)\Gamma_2 v(b)]^*$$