19 = a,P-6,P5-6,PT	dt = ai	T+ CIPT-6	SITS		ds =	, a ₃	5+0	2 PS	-dz	TS
Supremo que b=b,=bz , (=c,= (pinto de eq. (Po. To, So)	fera	001 011	gen e	2.				lo 0 1	el	
$\frac{d}{dt}\begin{pmatrix} P \\ S \end{pmatrix} = \begin{pmatrix} a_1 - bS_0 - bT_0 \\ cT_0 \\ cS_0 \end{pmatrix}$	-6 Po az+CPo- -8 So	65. a	6 P. - 6 To 13 + 61	2-5 To		P T S				
a,=0.8 b=0.04 c=0.02	J = 0.0	a _z =	0,06	93=	0.12.					
a) Encuentre el ponto Fijo (P	o, To, So) hera	3- + 1	igea. To =	a,	!!)			
Es deir, hay que resolver el si	istema	()	Po - 5	So =-	a ₂	. (2)				
Si restoros (31-12) obtenemos \rightarrow (0	Po-5 To)	- (c Po - δ.	S ₀) = 1	u ₃ +N ₂						
Pero de (1) terems que Sot	T ₀ = a,	/b ->	S ₀ =	a./b	- To	3 _	(5)			
Sustituing in $4 \rightarrow (\frac{a_1}{b} - T_0 - T_0)$ $\Rightarrow T_0 = \frac{1}{2} (\frac{a_1}{b} - \frac{a_2 - a_3}{\delta})$	3 6									
=> To = \frac{1}{2} \left b = \frac{5}{4.11} - \frac{1}{15} \right \fr	To = "	/h - z b	+ 4	- a ₃		그 (9, +	5	- 03	1 2
Final mate, de (3) tenems que sustituins. To => Po=	e Po	= - 03 +	5 To	2 · 93)] =	- <u>a</u>	\$ t 2 C	(<u>a.</u>		λ _τ -α
		1								
: To = 1/2 (ar - az	5 a 1									
$S_0 = \frac{1}{2} \left(\frac{a_1}{b} + \frac{a_2}{\delta} \right)$								-	1	

b) Sustituy a a 2 justo a. = 0.8 b = 0.04	con los Voltas de	los puai	motions y	res.elva	
0.0	0.00 0 =	0.01	0.06	a3 = 0.1	12
Sustituyedo en las expresiones	para to, 50, Po	, se obtiene	5 ₀ =	7, 70=	13 8 = 1/2 1
Sustituinos todo en el sistema	Lina li				
1 19 / (2.8 - (0.04) (7) - (0.04) 13	-(0,04)(1/2)	-10	1.04) (1/2)		/ P
$\frac{37}{9} \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} (0.05) & 1 \\ (0.04) & (2) & -(0.04) & 13 \\ 0.8 & -(0.04) & (2) & -(0.04) & 13 \end{pmatrix}$	0.06+ (0.02)/2 - (0.0)		.01)(13)		1/-
(5) (0,02) 2	- (0.01) (7)			(0.01)(18)	133
	0.017(-7)	U. 12 T	0.0000	(v. 0) ()	
	0.53				
$\frac{1}{2} \left(\begin{array}{c} P \\ T \\ S \end{array} \right) = \left(\begin{array}{c} 0.26 \\ 0.14 \\ -0.07 \end{array} \right)$	-0.02 P				
H (5) (0.14 -0.07	0 1 (5)				
$\frac{1}{2}\bar{X} = N\bar{X}$					
""			1-2 -	0.02 -207	
Calculamo los eigenvalores de 1	A-1	100-	0.76	0.02 -0.02 -0.13 0.07 -2	=0
			0,14 -	0.P7 -X	
-> -> (2 - 0.0091) + 0.02 (-0.	26 \ + 0.0182) - 0.0	2 1-0.0182 +	(LY10	= 0	
7 17					
$\Rightarrow -\lambda^3 + 0.0091\lambda - 0.0052\lambda + 3$.64x10+ 3.64x10- 00	10282 = 0			
$\Rightarrow -\lambda^3 + 0.0011 \lambda + 7.28 \times 10^{-3}$	0 = 0				
Que usuab mathematica, Li	one who rates				
λ,= 0, 04 36	12= -0.0468+0044=	λ_3	= -0.04	68 - 0.07	471
Alora bucomos hi eigenventores:	\ = 0,0936				
	1 - 23 0 07	0 07 \ 1			
	1-0.0936 -0.07 0.26 -0.0936 0.14 -0.07	-0.13	= 0		
	10.14 -0.07 ·	-0.0936 X	43		
			1 1 1		
Se ve como un sistem	bastante feo	& resolver	y con a	nuchas	cuentitas.
Usando Mathematica	llega mos a g	ve :	ı		
		·			
X1 -0.051 X3 =0	X3 es una va	aviable lilor	e tone	$\chi_2 =$	1
xc+1.841 X3 = 0					
		el eigen ve		(0.	×51
~ X' = 0.02,		Bl eight ve	ector es	V= 1	
x2 = -1.24					-
	como solución:		Xt	10.051	0.0936t
Entones teromos	comp solución:	X(t) = Vie	, 3	11.241	16
Office		and the second s		7	

(A-12])v=0 =>		-0.0747;					7.0-							nggina	
	0.26		0,041	1		-	-0.1	-			Xz	=	0		
	0,14		-0,	F0.		0.	0468	VF 0,0 -	171	1	X3	J			
Re a un sistema de ec.	. 10		1	- 0	h	h		L	1. 11		1.		++		-
El eigenvertor es:	muy re	(3)	21477	+ D.	766	1:	re w	n P	910	emo	7/1/4		+	+	
	V	= (0	1.764	2						-	T				
		1	0. 561	+ 81	0.00	76 i									
51			1	+ -											
-> La solución compleja = 6-0.0468+0.0747	es i	7	en	V		1	-			_				-1	-
= (-0,0468+0,0747	1:)+	0. 147	7 + (2, 26	64i	-	-0.	OYGBE			1.1.0	/n n =	u- 1]]		7+0.
E			18 t				= 0	(05)	(0.0-)	4+4	+ 1301	[0.07	47 t)	0.7	646
		3,26	10 7	U,D	701	1		+			-	-	+	0.56	18+00
= 1/0,1477 cm/0	1242 +)	0.266	sq San	1007	47 t	11		-0.01	168+	10.	7/6/9	n(n)	21124	+ 0145	22 0
= e-0.0468t (0.1427 05 (0.	95 (0.0	747	+)	(021	11 -		+ 1	P		1		_		747 t)	
0.568 005	10.07472) - 0, 0	96 50	10.0	747	t) [0.56	18 sen	10.07	17+1+1	0,0960	octo o
						1				1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3(2,0
Parte Real										Part	P	1	m 99	inaria.	
Cock park por set	orado	es u	a	So	lucio	ń	2.	i ,	jun	tano	615	On	19		
Solución 1)	, 19	solu	ción	SMS	lota	es:									
10121 10001 000	136 ±		-	-	1	fli 22			1	-	+		-		
(P(t)) T(t) (S(H)) = G(-1,241) C	106 C	Cz	0.00	168 ±	-/	. 17 14	ω ₂ (ο,	0 147	t		0. 2	169	Sen (0.0747	t)
(2(B))	7	62	C	-	+	0 5/1	10	100	164	17	200	(0.0	747	+)	
				-	-	V, 50	()	2(0.0.	144 -	t) -	0.	046	Sen (0.074	77
00468+	10.26	69 cs	10.0	FYF	t)	+ (0.14	7.7	192	10	n = U1	1)	-	+	-
1111100			0 21	647		20	10.	0 743	1 4				-		
+ C3 E-0.0468±													47 ±		

4) à Rece	idecima e	resultados co	ntena	oon la	ex-	finción de	Thylo	casmilus?
EN	la solui	in al sot	ema Elems e-0.0468 t	υη	termino	mul	tiplizado	a e	0.0936 t
Pari	a tien otro	mu grands, I havá nada em	predminará pequño,	el Por	primer	tén que	podems	tras qu	e el la solución
(P 14 (5 (t	(a)) =	(0.051 -1.241 -may 618 1	9.0936 t				omitiedo	as los o	tros témino
					9.	09362	<u>L</u>		
On	omport	observems emigrato	gre T(t) = descendiente	- 1 ,	1241 e m	iertra	tive s que	Un l	
SI	t) = 4	0.0936 t	tiene un						

2. Usinda	netab Lotka W	olterra > dt = T	(az- pit-E, S)	15 = S/93-5ET-F
Sistema lineali	\$ ado	un punto Fight en	(a; 152, a; 151)	an su
	= (- a252 0			
a) ion a,=1, punts	$\delta_1 = \delta_2 = 1/5$, α_2 figs on function	= 1 > 1 Determine de 1.	la estabilidad li	real of
U (T) = ($\begin{bmatrix} -\alpha_3 & \delta_1 / \delta_2 \\ \delta_1 & 0 \end{bmatrix}$	T)		
$\frac{d}{dx} = \frac{x}{2}$	Pines values de A	$ A - \lambda 1 = 0$ $\Rightarrow \lambda^2 = q_2 q_3 = 0$	$-\lambda - a_3 \delta_1/\delta_2$ $-a_2\delta_2 - \lambda$	= 0
$\Rightarrow \lambda^2 - a_2$	$a_3 = \delta_1 \delta_2 = 0$ $\delta_1 \delta_2 = 0$	$\rightarrow \qquad \lambda^2 + q_2 q_3 =$	0 5,	
Sustituyendo	los vabres de aq	$, a_3 \rightarrow \lambda^2 - \Lambda$	=0 = \ \ \ \ =	± Jn
(m 171				1. 51
Enteries steaped for to que Punto	hay on eigenval la estabilidad Silla	br positivo ().=	es siempre un	regation (Xz=-Jn)

Podems	exantrar la	solvión al	sistema 7in	earizedo	
$\frac{1}{at} \left(\begin{array}{c} \tau \\ s \end{array} \right) =$	- a, 5,	0	$\begin{pmatrix} \tau \\ s \end{pmatrix}$	Sustituyedo	
od (T)	= (0	$\binom{n}{2}\binom{7}{2}$			
405 e	igaivalores so	n Gno ya se	dije, h=-Jn	$\lambda_2 = \sqrt{n}$	
ciopovectores:					
<u>\</u> = -\text{\tin}}}}}}} \endots \text{\texi}}}}}}}} \end{\text{\tin}}}}}}}}} \end{\text{\texi}}}}}}}}}} \end{\text{\text{\text{\text{\text{\text{\text{\texi}}}}}}}}} \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{	$(A - \lambda, \bar{v_i}) =$	0 -> (1	$\int_{V} \int_{V} \left(\frac{\lambda}{\lambda} \right) = 0$	$\Rightarrow 2\sqrt{x-\sqrt{x}}$	→ y = + 1/3 ×
$\lambda_2 = \sqrt{n}$;	(A- h, x)=0	→ (-1 ~	$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = 0 \rightarrow$	-Jn X - ny = 0>	y= -5 x
ri. la	solución general	cs $(T) = -5$	(. V, ext + qvi	exit	
	(2)	= 0, 6	(1) + (2	e (Jn)	

```
31 La ecuación de Chevysher es (1-x²/y"-xy'+p²y=0, on pote
                           a) Encentre les soluciones en serie 1.1 validus para 1x/<1
                  La eluoción es y'' - \frac{x}{1-x^2} y' + \frac{p^2}{1-x^2} y = 0 \rightarrow P(x) = -\frac{x}{1-x^2} Q(x) = \frac{p^2}{1-x^2}
                ag son analíticas en x=0 y sus exponsiones en potencias son válidas en lx1<1 (p.e. x=1 es la singularidad más cercana) :: Podemas conantrar um solvirón válida en lx1<1. (Par Simmons capitulo 28 Teorema A)
             Proponemos una solveión y=a_0+a_1x+a_2x^2+\dots = \sum_{n=0}^{\infty} a_n x^n

\Rightarrow y'=a_1+2a_2x+3a_3x^2+4a_4x^3+\dots = \sum_{n=0}^{\infty} (n+1)|a_{n+1}|x^n
                                      → 1" = 2az + 6az X + 12 ax X + .... = = (n+z) (n+1) an+z X^
             La ecuación queda como: (1-x2) y"-xy'+p2y = 0
                      = (1-x2) \(\frac{7}{2}\) (n+1) (n+1) anz \(\chi^2\) - \(\chi^2\) (n+1) ant \(\chi^2\) + \(\rho^2\) \(\frac{7}{2}\) an \(\chi^2\) = 0
    \Rightarrow \sum_{n=0}^{\infty} (n+z)(n+1) \, Q_{n+2} \, \chi^n - \sum_{n=0}^{\infty} (n+z)(n+1) \, Q_{n+2} \, \chi^{n+2} \, - \sum_{n=0}^{\infty} (n+1) \, Q_{n+1} \, \chi^{n+1} \, + \sum_{n=0}^{\infty} \, p^2 \, Q_n \, \chi^n = 0
           Poro eso, ponemos n=j en la primera suma, n=j-z en la segundo, n=j-l en la tercera y n=j en la cuarta:
       Igualamos a O el término de Xi:
         \Rightarrow (j+z)(j+1) a_{j+1} x^{j} - (j-z+2)(j-z+1) a_{j+1+1} x^{j} - (j-1+1) a_{j+1+1} x^{j} + p^{2} a_{j} x^{j} = 0
                -> (j+z)(j+1) aj+z - j (j-1) aj - j aj + p2 aj = 0
                                   a_{j+2} = \frac{j(j-1)+j-p^2}{(j+2)(j+1)} a_j = \frac{j^2-p^2}{(j+2)(j+1)} a_j = \frac{j^2-p^2}{(j+2)(j+1)}
                     Escribinos algunos términos (separendo pores e impores)
                                                                                                                                                        a_3 = \frac{1^2 - \rho^2 a_1}{(1+2)(1+1)} = \frac{1^2 - \rho^2}{3(2)} a_1 = \frac{1 - \rho^2}{31} a_1
                        a_2 = \frac{\mathbf{a}^2 - \mathbf{p}^2}{|a_1|^2 |a_2|^2} a_0 = \frac{-\mathbf{p}^2}{2} a_0
                                                                                                                                                        a_5 = \frac{3^2 - p^2}{(3+7)(3+1)} a_3 = \frac{(3^2 - p^2)(1-p^2)}{20 \cdot 6} a_1 = \frac{(3^2 - p^2)(1-p^2)}{51} a_1
             a_{4} = \frac{2^{2} - p^{2}}{(2+2)(2+0)} a_{0} = \frac{(2^{2} - p^{2})(p^{2})}{4(3)(2)} = \frac{(p^{2} - 2^{2})p^{2}}{4!} a_{0}
   a_{1} = \frac{4^{2} - p^{2}}{44 + 1} a_{1} = \frac{(4^{2} - p^{2} \sqrt{p^{2} - z^{2}}) p^{2}}{30 \cdot 4!} a_{0} = \frac{(p^{2} - q^{2})(p^{2} - z^{2}) p^{2}}{6!} a_{0} = \frac{5^{2} - p^{2}}{15 + 2} (s + 1) a_{1} = \frac{5^{2} - p^{2}}{15 + 2} (s + 1) a_{1} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{1}}{15 + 2} a_{1} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{1} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2})(3^{2} - p^{2})(1 - p^{2}) a_{2}}{15 + 2} a_{2} = \frac{(5^{2} - p^{2})(3^{2} - p^{2}) a_{2}}
       Es to serie de potencies será solución a la ec. dif en 1x1<1 para cualquier elección de a. y a, que son
                                                            y_1 = 1 + \frac{p^2}{2!} X^2 + \frac{(p^2 - 2^2) p^2}{4!} X^4 + \frac{-(p^2 - 4^2)(p^2 - 2^2) p^2}{6!} X^6 + \dots
              parametros libres.
..) Para a_{0}=0, a_{1}=1: y_{2}=\chi+\frac{1-p^{2}}{3!}\chi^{2}+\frac{(3^{2}-p^{2})(1-p^{2})}{5!}\chi^{5}+\frac{(5^{2}-p^{2})(3^{2}-p^{2})(1-p^{2})}{7!}\chi^{7}+\ldots
```

Que son dos soluciones l.i (per una no os un milliplo de la otra)

b) si pen un ne# 30 -> hay una solución polinomial de grado 1. De la formula de recurrencia, teremos $a_{j+2} = \frac{j^2 - p^2}{(j+2)(j+1)} a_j$ Pero, si p=n, ortances verms que $a_{n+2} = \frac{n^2 - p^2}{(n+1)(n+1)} a_n = \frac{n^2 - n^2}{(n+2)(n+1)} a_n = 0$ y por 10 tento, $a_{n+y} = \frac{(n+2)^2 - p^2}{(n+2+1)(n+2+1)} a_{n+2} = 0$ y así, todos los térmiros de la forma antek on KEN serán igual a O.

Es deir, sin es par, eventualmente tods los cineficientes pares se melven o sin es impar, eventualmente todos los oxeficientes impares de vuelen a

En avalquier caso, una de las soluciones en sevie de potencias lyasea y, que contiene potenties pairs o yz que tiene impares) se cortan al llegar a anxo y la solución es en realidad un polinamia de grado n.

4. Encuerte la solución words transformada de Laplace. $\frac{d^{2}y}{dt^{2}} + 4y = \omega((2t)) \qquad y(0) = -2 \qquad y'(0) = 0$ Aplicans la transformada - L[y"+4y] = L[oslzt] -) L [y"] + 4 Z [y] = Z [OSLIZE] Pero Lonems que: - integral por partes 1 L [y'] = ["e"x y'dx = ye"x] + p ["e"xy dx] = -y(0) + p [[y] (a) $L[y''] = \int_{\infty}^{\infty} e^{-Px} y'' dx = y'e^{-Px} \int_{0}^{\infty} e^{-Px} y dx = -y'(0) + P L(y') = -y'(0) - P y(0) + P^{2} L[y]$...) L[ax(2+)] = P= P=+22 = P=+44 e usando los Tublos de transformados vistos a close Estituins en (1) = -y'(0) - py(0) + p2 L [4] + 4 L [4] = p2+4 Usando los condiciones involes \Rightarrow 2p+p² L[y] + 4 L[y] = $\frac{P}{P^2+4}$ Ahora hay gup encentrar la inversa 4 = 2 2 [= 2 [- 2P + [p2+4]] = -22 [p2+4] + 2 [p2+4]] · Viendo las tohlos de Luploie, notamos que mos podría ser útil: ·) $\angle [t sen(\omega t)] = \frac{2\omega P}{(p^2 + \omega^2)^2}$ ··) $L[\omega;\omega t] = \frac{P}{a^2 + \omega^2}$ con esto, verros que el termino (2) es igual a la transformada de cos (2±) El termin (3) requiere un proxo mois de trabajo: $L^{-1}\left[\frac{P}{(P^2+Y)^2}\right] = L^{-1}\left[\frac{4P}{4(p^2+Y)^2}\right]$ $= \frac{1}{4} \int_{0}^{\infty} \left[\frac{4p}{(p^2+4)^2} \right]$ ahora si es gual a la transformada .) wanth w=2

 $- = \frac{1}{4} t \operatorname{Sen}(2t)$