Problem: If
$$z_1 = 1 - i$$
, $z_2 = -2 - 3i$ and $z_3 = 2i$, then evaluate $|3z_1^2 + z_1\overline{z_2} - 5z_3|$.

Solution:
$$|3z_1^2 + z_1\overline{z_2} - 5z_3| = |3(1-i)^2 + (1-i)(-2+3i) - 5*2i|$$

= $|3(1-2i-1) + (-2+3i+2i+3) - 10i|$

$$= |-6i + 1 + 5i - 10i| = |1 - 11i| = \sqrt{(1)^2 + (-11)^2} = \sqrt{122}.$$

Problem: Evaluate
$$\left| \frac{(1-i)^2}{1+i} \right|$$
.

Solution:
$$\left| \frac{(1-i)^2}{1+i} \right| = \left| \frac{1-2i-1}{1+i} \right| = \left| \frac{-2i}{1+i} \right| = \frac{\sqrt{(-2)^2}}{\sqrt{1+1}} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

Problem: Evaluate
$$\operatorname{Re}\left\{\frac{(1-i)^2}{1+i}\right\}$$
.

Solution:
$$\operatorname{Re}\left\{\frac{(1-i)^2}{1+i}\right\} = \operatorname{Re}\left\{\frac{-2i}{1+i}, \frac{1-i}{1-i}\right\} = \operatorname{Re}\left\{\frac{-2i+2i^2}{1^2+1^2}\right\}$$
$$= \operatorname{Re}\left\{\frac{-2-2i}{2}\right\} = \operatorname{Re}\left\{-1-i\right\} = -1.$$

Polar form of Complex Number and Argument:

If P a point in the complex plane corresponding to the complex number (a, b) or, a + ib then,

 $a = r \cos \theta$ and $b = r \sin \theta$.

Where $r = |z| = \sqrt{a^2 + b^2}$ is the distance of (a, b) from the origin,

And θ is called the **amplitude or argument** of z which is the angle with real axis denoted by $arg\{z\}$.

Hence, we can write z in polar form as:

$$z = r\cos\theta + ir\sin\theta$$
$$= r(\cos\theta + i\sin\theta)$$
$$\therefore z = re^{i\theta} [\text{Euler Formulae}].$$

Principal argument: The **principal value** of the argument (sometimes called the **principal argument**) is the unique value of the argument that is in the range $0 \le \theta < 2\pi$ or, $-\pi < \theta \le \pi$ and is denoted by Arg z.

$$\arg z = \text{Arg } z + 2n\pi, \qquad (n = 0, \pm 1, \pm 2, ...)$$

Some important properties of argument:

$$\Rightarrow \arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$

$$ightharpoonup \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$$

$$\triangleright \arg(z^n) = n \arg(z)$$
.

Transformation of complex numbers:

```
Polar to rectangular: z = re^{i\theta} \rightarrow z = a + ib
                                                                                                      a = r\cos\theta and b = r\sin\theta
Rectangular to Polar: z = a + ib \rightarrow z = re^{i\theta}
                                                                                                                   r = \sqrt{a^2 + b^2} and
         \begin{cases} \tan^{-1}\left(\frac{b}{a}\right); & \text{if } a > 0, b \geq 0 \text{ (1st quadrant and on } + \text{ve real axis)} \\ \tan^{-1}\left(\frac{b}{a}\right) + \pi; & \text{if } a < 0 \text{ (2nd, 3rd quadrant and on } - \text{ve real axis)} \end{cases} \\ \theta = \begin{cases} \tan^{-1}\left(\frac{b}{a}\right) + 2\pi; & \text{if } a > 0, b < 0 \text{ (4th quadrant)} \\ \frac{\pi}{2}; & \text{if } a = 0, b > 0 \text{ (on } + \text{ve imaginary axis)} \\ \frac{3\pi}{2}; & \text{if } a = 0, b < 0 \text{ (on } - \text{ve imaginary axis)} \\ \text{Undefined;} & \text{if } a = 0, b = 0 \end{cases}
```

Problem: Find the rectangular form of $z = \sqrt{2}e^{i\frac{\pi}{4}}$.

Solution: Here
$$r = \sqrt{2}$$
 and $\theta = \frac{\pi}{4}$

We know that,
$$a = r \cos \theta = \sqrt{2} \cos \frac{\pi}{4} = 1$$

And
$$b = r \sin \theta = \sqrt{2} \sin \frac{\pi}{4} = 1$$

Hence
$$z = a + ib = 1 + i$$
.

<u>Problem:</u> Find the rectangular form of $z = 2e^{i\frac{5\pi}{6}}$.

Solution: Here
$$r = 2$$
 and $\theta = \frac{5\pi}{6}$

We know that,
$$a = r \cos \theta = 2 \cos(\frac{5\pi}{6}) = -2 \frac{\sqrt{3}}{2} = -\sqrt{3}$$

And
$$b = r \sin \theta = 2 \sin(\frac{5\pi}{6}) = 2\frac{1}{2} = 1$$

Hence
$$z = a + ib = -\sqrt{3} + i$$
.

<u>Problem:</u> Find the polar form of z = 2.

Solution: Here a = 2 and b = 0

We know that, $r = \sqrt{a^2 + b^2} = \sqrt{2^2} = 2$

And $\theta = 0$

Hence, $z = re^{i\theta} = 2$.

Exercise: $z = 3, \frac{5}{2}, \frac{1}{3}$.

<u>Problem:</u> Find the polar form of z = -5.

Solution: Here a = -5 and b = 0

We know that, $r = \sqrt{a^2 + b^2} = \sqrt{(-5)^2} = 5$ z = -5 O

And $\theta = \pi$

Hence, $z = re^{i\theta} = 5e^{i\pi}$.

Exercise: $z = -2, -\frac{3}{2}, -\frac{1}{4}$.

Problem: Find the polar form of z = 3i.

Solution: Here a = 0 and b = 3

We know that, $r = \sqrt{a^2 + b^2} = \sqrt{3^2} = 3$

And
$$\theta = \frac{\pi}{2}$$

Hence,
$$z = re^{i\theta} = 3e^{i\frac{\pi}{2}}$$
.

Exercise:
$$z = i, \frac{5}{2}i, \frac{2}{3}i$$
.

<u>Problem:</u> Find the polar form of z = -i.

Solution: Here a = 0 and b = -1

We know that, $r = \sqrt{a^2 + b^2} = \sqrt{(-1)^2} = 1$

And
$$\theta = \frac{3\pi}{2}$$

Hence,
$$z = re^{i\theta} = e^{i\frac{3\pi}{2}}$$
.

Exercise:
$$z = -3i, -\frac{3}{2}i$$
.

Problem: Find the polar form of $z = \sqrt{3} + 3i$.

Solution: Here $a = \sqrt{3}$ and b = 3

We know that, $r = \sqrt{a^2 + b^2}$

$$= \sqrt{\left(\sqrt{3}\right)^2 + 3^2} = 2\sqrt{3}$$

And
$$\theta = tan^{-1} \left(\frac{b}{a}\right) = tan^{-1} \left(\frac{3}{\sqrt{3}}\right)$$
$$= tan^{-1} \left(\sqrt{3}\right) = \frac{\pi}{3}$$

Hence, $z = re^{i\theta} = 2\sqrt{3}e^{i\frac{\pi}{3}}$.

Exercise: $z = 6 + 2\sqrt{3}i$, 1 + i.

Problem: Find the polar form of z = -1 + i.

Solution: Here a = -1 and b = 1

We know that,
$$r = \sqrt{a^2 + b^2} = \sqrt{(-1)^2 + (1)^2} = \sqrt{2}$$

And
$$\theta = tan^{-1} \left(\frac{b}{a}\right) + \pi = tan^{-1} \left(\frac{1}{-1}\right) + \pi$$
$$= -\frac{\pi}{4} + \pi = \frac{3\pi}{4}$$

Hence, $z = re^{i\theta} = \sqrt{2}e^{i\frac{3\pi}{4}}$.

Exercise: $z = -1 + \sqrt{3}i$, $z = -2 + 2\sqrt{3}i$.

<u>Problem:</u> Find the polar form of $z = -2\sqrt{3} - 6i$.

Solution: Here $a = -2\sqrt{3}$ and b = -6

We know that, $r = \sqrt{a^2 + b^2}$

$$= \sqrt{\left(-2\sqrt{3}\right)^2 + (-6)^2} = 4\sqrt{3}$$

And
$$\theta = tan^{-1} \left(\frac{b}{a}\right) + \pi = tan^{-1} \left(\frac{-6}{-2\sqrt{3}}\right) + \pi$$

$$= tan^{-1} \left(\sqrt{3}\right) + \pi = \frac{\pi}{3} + \pi = \frac{4\pi}{3}$$

$$z = -2\sqrt{3} - 6i$$

Hence, $z = re^{i\theta} = 4\sqrt{3}e^{i\frac{4\pi}{3}}$.

Exercise: $z = -1 - i, z = -3 - \sqrt{3}i$.

Problem: Find the polar form of $z = \sqrt{3} - i$.

Solution: Here $a = \sqrt{3}$ and b = -1

We know that,
$$r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2$$

And
$$\theta = tan^{-1} \left(\frac{b}{a}\right) + 2\pi = tan^{-1} \left(\frac{-1}{\sqrt{3}}\right) + 2\pi$$
$$= -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}.$$

Hence, $z = re^{i\theta} = 2e^{i\frac{11\pi}{6}}$.

Exercise: $z = 1 - \sqrt{3}i$, $z = 2 - 2\sqrt{3}i$.

Problem: Find the polar form of
$$z = \left(\frac{1-i}{1+i}\right)^{18}$$
.

Solution: Let $z_1 = 1 - i$ and $z_2 = 1 + i$.

For z_1 : a = 1 and b = -1

$$r = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$$

and
$$\theta = tan^{-1} \left(\frac{-1}{1} \right) + 2 \pi = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4}$$

Hence, $z_1 = \sqrt{2}e^{i\frac{7\pi}{4}}$.

Similarly, For z_2 : a = 1 and b = 1

$$r = \sqrt{(1)^2 + (1)^2} = \sqrt{2}$$

and
$$\theta = tan^{-1} \left(\frac{1}{1}\right) = \frac{\pi}{4}$$

Hence, $z_2 = \sqrt{2}e^{i\frac{\pi}{4}}$.

So,
$$z = \left(\frac{1-i}{1+i}\right)^{18} = \left(\frac{\sqrt{2}e^{i\frac{7\pi}{4}}}{\sqrt{2}e^{i\frac{\pi}{4}}}\right)^{18}$$

$$=\frac{e^{i\frac{63\pi}{2}}}{e^{i\frac{9\pi}{2}}}=e^{i\frac{63\pi}{2}-i\frac{9\pi}{2}}=e^{i\frac{54\pi}{2}}=e^{i27\pi}.$$

<u>Problem:</u> Find the polar form of $z = (\sqrt{3} - i)^2 (-1 + \sqrt{3}i)^5$.

Solution: Let $z_1 = \sqrt{3} - i$ and $z_2 = -1 + \sqrt{3}i$.

For z_1 : $a = \sqrt{3}$ and b = -1

$$\therefore r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2$$

and
$$\theta = tan^{-1} \left(\frac{-1}{\sqrt{3}} \right) + 2\pi = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$$

Hence, $z_1 = 2e^{i\frac{11\pi}{6}}$.

Similarly, For z_2 : a = -1 and $b = \sqrt{3}$

$$\therefore r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$

and
$$\theta = tan^{-1} \left(\frac{\sqrt{3}}{-1} \right) + \pi = -\frac{\pi}{3} + \pi = \frac{2\pi}{3}$$

Hence, $z_2 = 2e^{i\frac{2\pi}{3}}$.

So,
$$z = (1 - i)^2 (1 + i)^5 = \left(2e^{i\frac{11\pi}{6}}\right)^2 \left(2e^{i\frac{2\pi}{3}}\right)^5$$

$$=2^{7} e^{i\frac{11\pi}{3}} e^{i\frac{10\pi}{3}} = 2^{7} e^{i(\frac{11\pi}{3} + \frac{10\pi}{3})} = 128e^{i7\pi}.$$

Finding principal argument (Arg z) from general argument (arg z):

ightharpoonup If arg z is in $0 \le \theta < 2\pi$ then arg z = Arg z.

Example: For
$$z = 3e^{i\frac{\pi}{6}}$$
, arg $z = \frac{\pi}{6}$ = Arg z.

ightharpoonup If $\arg z \ge 2\pi$ then subtract maximum no. of $2n\pi$

Example: For
$$z = 15e^{i\frac{15\pi}{2}}$$
, $\arg z = \frac{15\pi}{2} = 7.5\pi$

So, Arg
$$z = 7.5\pi - 6\pi = 1.5\pi = \frac{3\pi}{2}$$
.

ightharpoonup If arg z < 0 then add minimum no. of $2n\pi$

Example: For
$$z = 2e^{-i5\pi}$$
, arg $z = -5\pi$

So, Arg
$$z = -5\pi + 6\pi = \pi$$
.

<u>Problem:</u> Find the principal argument of $z = (2 + 2i)^4$.

Solution: Let
$$z_1 = 2 + 2i$$
; $a = 2, b = 2$;

:
$$r = \sqrt{4+4} = 2\sqrt{2}$$
 and $\theta = tan^{-1}(\frac{2}{2}) = \frac{\pi}{4}$

Hence,
$$z = (2 + 2i)^4 = \left(2\sqrt{2}e^{i\frac{\pi}{4}}\right)^4 = 64 e^{i\pi}$$
.

 \therefore arg $z = \pi$; \therefore Principal argument: $Arg z = \pi$.

<u>Problem:</u> Find the principal argument of $z = \left(\frac{2\sqrt{3}+2i}{1-\sqrt{2}i}\right)^6$.

Solution: Let $z_1 = 2\sqrt{3} + 2i$ and $z_2 = 1 - \sqrt{3}i$.

For z_1 : $a = 2\sqrt{3}$ and b = 2

$$\therefore r = \sqrt{(2\sqrt{3})^2 + (2)^2} = 4 \text{ and } \theta = tan^{-1} \left(\frac{2}{2\sqrt{3}}\right) = \frac{\pi}{6} \therefore z_1 = 4e^{i\frac{\pi}{6}}.$$

Similarly, For z_2 : a = 1 and $b = -\sqrt{3}$

$$\therefore r = \sqrt{(1)^2 + (-\sqrt{3})^2} = 2 \text{ and } \theta = tan^{-1} \left(-\frac{\sqrt{3}}{1} \right) + 2\pi = \frac{5\pi}{3} \therefore z_2 = 2e^{i\frac{5\pi}{3}}$$

So,
$$z = \left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^6 = \left(\frac{4e^{i\frac{\pi}{6}}}{2e^{i\frac{5\pi}{3}}}\right)^6 = 2^6 \frac{e^{i\pi}}{e^{i10\pi}} = 2^6 e^{i\pi-i10\pi} = 2^6 e^{-i9\pi}.$$

$$\therefore \arg z = -9\pi; \quad \therefore \text{Principal argument: } Arg \ z = -9\pi + 10\pi = \pi.$$

Problem: Find the principal argument of
$$z = \left(\frac{1-i}{1+i}\right)^{18}$$
.

Solution: Let
$$z_1 = 1 - i$$
 and $z_2 = 1 + i$.

For
$$z_1$$
: $a = 1$ and $b = -1$

$$\therefore r = \sqrt{(1)^2 + (-1)^2} = \sqrt{2} \text{ and } \theta = tan^{-1} \left(\frac{-1}{1}\right) + 2\pi = \frac{7\pi}{4}$$

Hence,
$$z_1 = \sqrt{2}e^{i\frac{7\pi}{4}}$$
.

Similarly,

For
$$z_2$$
: $a = 1$ and $b = 1$

$$\therefore r = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \text{ and } \theta = tan^{-1} \left(\frac{1}{1}\right) = \frac{\pi}{4}$$

Hence,
$$z_2 = \sqrt{2}e^{i\frac{\pi}{4}}$$
.

So,
$$z = \left(\frac{1-i}{1+i}\right)^{18} = \left(\frac{\sqrt{2}e^{i\frac{7\pi}{4}}}{\sqrt{2}e^{i\frac{\pi}{4}}}\right)^{18} = \frac{e^{i\frac{63\pi}{2}}}{e^{i\frac{9\pi}{2}}}$$

= $e^{i\frac{63\pi}{2} - i\frac{9\pi}{2}} = e^{i\frac{54\pi}{2}} = e^{i27\pi}$

∴ arg
$$z = 27\pi$$
; ∴Principal argument: $Arg z = 27\pi - 26\pi = \pi$.

Exercise:

- 1. Express $\frac{(1+i)^2}{1-i}$ in terms of a+ib.
- 2. Evaluate each of the followings:

(a)
$$\operatorname{Re}\left\{\frac{1+\sqrt{3}i}{1-i}\right\}$$
, (b) $\left|\frac{z}{\overline{z}}\right|$, (c) $\operatorname{Im}\left\{\frac{z}{\overline{z}}\right\}$.

Hints for (b) and (c): Let z = a + ib.

3. Convert the following numbers into polar form:

(a)
$$z = -1 + i$$
, (b) $z = -3 - \sqrt{3}i$, (c) $z = \frac{(1-i)^2}{1+i}$.

4. Convert the following numbers into rectangular form:

$$z = \sqrt{3} e^{i \frac{\pi}{3}}$$
 and $z = 2e^{i \frac{\pi}{4}}$.

5. Find the principal argument of the followings:

(a)
$$z = (-1 - i)^4$$
, (b) $z = (-2 + 2\sqrt{3} i)^3$, $z = \frac{(1+i)^3}{(1-i)}$.

MULTIPLE CHOICE QUESTION

1. The standard form of the complex number $\frac{(1+i)^2}{1-i}$ is

(a)
$$-1-i$$

(a)
$$-1-i$$
 (b) $-1+i$ (c) $1+i$

(c)
$$1+i$$

(d) None

2. The polar form of the complex number -1+i is

(a)
$$\sqrt{2}e^{i\frac{5\pi}{4}}$$

(a)
$$\sqrt{2}e^{i\frac{5\pi}{4}}$$
 (b) $-\sqrt{2}e^{i\frac{5\pi}{4}}$ (c) $\sqrt{2}e^{i\frac{3\pi}{4}}$

(c)
$$\sqrt{2}e^{i\frac{3\pi}{4}}$$

(d) None

3. The standard rectangular form of the complex number $z = \sqrt{3}e^{i\frac{\pi}{2}}$ is

(a)
$$-\sqrt{3} + i$$

(a)
$$-\sqrt{3} + i$$
 (b) $-\sqrt{3} + \sqrt{3}i$ (c) $\sqrt{3}i$

(c)
$$\sqrt{3}i$$

(d) None

4. The principal argument of the complex number $(-1+i)^4$ is

- (a) π
- (b) 2π
- (c) 3π

(d) None