

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

факультет механико-математический

Ряды и несобственные интегралы, зависящие от параметра

Лектор — профессор Е. А. Бадерко

2 курс, 3 семестр

Оглавление

Глава І	числовые ряды					
	§1.1	Число	овые ряды и их основные свойства	4		
		1.1.1	Понятие числового ряда	4		
		1.1.2	Комплексные числовые ряды	5		
		1.1.3	Необходимое условие сходимости ряда	5		
		1.1.4	Свойства сходящихся рядов	6		
		1.1.5	Критерий Коши	7		
	§1.2	Знако	Знакоположительные ряды			
		1.2.1	Введение	8		
		1.2.2	Признаки сравнения	8		
		1.2.3	Признак Даламбера	9		
		1.2.4	Радикальный признак Коши	11		
		1.2.5	Интегральный признак Коши	12		
	§1.3	Знако	опеременные ряды	13		
		1.3.1	Абсолютная и условная сходимость	13		
		1.3.2	Умножение рядов	16		
		1.3.3	Знакочередующиеся ряды	20		
		1.3.4	Признаки сходимости Дирихле и Абеля	21		
Глава 2	Фуні	Функциональные ряды				
	§2.1	Функциональные последовательности				
		2.1.1	Функциональные последовательности. Поточечная и равномер-			
			ная сходимости	23		
		2.1.2	Два признака равномерной сходимости. Признак Дини	24		
		2.1.3	Предельный переход функциональной последовательности	25		
		2.1.4	Интегрируемость функциональных последовательностей	26		
		2.1.5	Дифференцируемость функциональных последовательностей.	27		
	§2.2	Функ	циональные ряды	28		
		2.2.1	Равномерная сходимость функционального ряда	28		
		2.2.2	Свойства равномерно сходящихся рядов	29		
		2.2.3	Признаки равномерной сходимости рядов	30		
	§2.3	Степенные ряды				
		2.3.1	Радиус и интервал сходимости	32		
		2.3.2	Равномерная сходимость степенного ряда. Вторая теорема Абеля	35		
		2.3.3	Сумма и произведение степенных рядов. Комплексные степен-			
			ные ряды	36		
		2.3.4	Дифференцирование и интегрирование степенных рядов	36		
	§2.4	Ряд Те	ейлора	38		
		2.4.1	Ряд Тейлора. Единственность разложения	38		

		2.4.2	Основные разложения	39		
Глава 3	Интегралы, зависящие от параметра					
	§3.1	Собственные интегралы				
		3.1.1	Непрерывность интеграла, зависящего от параметра	42		
		3.1.2	Предельный переход под знаком интеграла	43		
		3.1.3	Дифференцируемость интеграла, зависящего от параметра	44		
		3.1.4	Интегрируемость интеграла, зависящего от параметра	45		
	§3.2	Несобственные интегралы, зависящие от параметра		46		
		3.2.1	Несобственные интегралы на бесконечном промежутке интегрирования	46		
		3.2.2	Признаки сходимости несобственных интегралов с бесконеч-	70		
		5.2.2	ными пределами	47		
		3.2.3	Предельный переход в несобственном интеграле	49		
		3.2.4	Дифференцирование несобственных интегралов	50		
		3.2.5	Интегрируемость несобственного интеграла, зависящего от			
		0.2.0	параметра	52		
		3.2.6	Несобственные интегралы от неограниченных функций, зави-			
			сящие от параметра	54		
	§3.3	Интег	гралы Эйлера	55		
	J	3.3.1	Гамма-функция Эйлера (интеграл Эйлера второго рода)	55		
		3.3.2	Бета-функция Эйлера (интеграл Эйлера первого рода)	57		
	§3.4					
		номами				
Глава 4	Ряды Фурье					
	§4.1		Фурье по ортогональным системам функций	59		
		4.1.1	Ортогональные системы функций	59		
		4.1.2	Ортогональность и линейная независимость функций	60		
		4.1.3	Ряд Фурье по ортогональной системе функций	61		
	§4.2	Разло	жение функции в тригонометрический ряд Фурье	62		
		4.2.1	Тригонометрические ряды Фурье	62		
		4.2.2	Достаточное условие сходимости ряда Фурье в точке	62		
		4.2.3	Теорема Фейера	65		
Прилож				66		
				66 66		
	Вопросы коллоквиума					
	§4.4 *					
	Экзаменационные вопросы					

Глава 1

Числовые ряды

§1.1. Числовые ряды и их основные свойства

Пункт 1.1.1. Понятие числового ряда

$$a_n \in \mathbb{R}, \quad n \in \mathbb{N} \text{ (или } \mathbb{N}^* = \{0\} \cup \mathbb{N}\text{)}$$

Определение 1.1.1. Формальная сумма

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (1.1)

называется числовым рядом, а a_n общим членом ряда (1.1).

Определение 1.1.2. $S_k = \sum_{n=1}^k a_n$ называется *частичной суммой* ряда (1.1).

Определение 1.1.3. Говорят, что ряд (1.1) *сходится*, если $\exists \lim_{k \to \infty} S_k \in \mathbb{R}$, при этом S = $=\lim_{k o\infty}S_k$ называется *суммой* ряда (1.1).

Определение 1.1.4. Говорят, что ряд (1.1) расходится, если ряд не сходится (то есть не существует конечный предел $\lim_{k\to\infty} S_k$).

Замечание. В (1.1) нумерация n начинается с n=1. На самом деле, иногда удобно писать $\sum\limits_{n=0}^{\infty}a_{n}$. Более общо, $\sum\limits_{n=m}^{\infty}a_{n}$ называется рядом.

Пример.

$$\sum_{n=0}^{\infty} q^n, \ q \in \mathbb{R}$$

$$1. \ |q| \neq 1. \ S_k = \sum_{n=0}^k q^n = \frac{1-q^{k+1}}{1-q} \xrightarrow{k \to \infty} \begin{cases} \frac{1}{1-q} & |q| < 1 \text{ (сходится)} \\ \infty & |q| > 1 \text{ (расходится)} \end{cases}$$

2.
$$q = 1$$
. $S_k = k + 1 \rightarrow +\infty$ (расходится)

$$2. \ q=1. \ S_k=k+1 \to +\infty \ (\text{расходится})$$

$$3. \ q=-1. \ \text{Так как} \ S_k=\begin{cases} 1, & k=2n \\ 0, & k=2n+1 \end{cases}, \ \text{то} \ \nexists \ \text{lim} \ (\text{расходится})$$

Замечание. Очевидна связь между сходимостью ряда и некоторой последовательности. А

- 1. $\sum_{n=0}^{\infty} a_n$ сходится \Longleftrightarrow сходится последовательность S_n
- 2. Рассмотрим последовательность $(a_n, n \in \mathbb{N})$ и определим ряд $a_1 + (a_2 a_1) + \ldots + (a_n a_n) +$ $-a_{n-1}$) + Тогда последовательность $(a_n, n \in \mathbb{N})$ сходится \Leftrightarrow сходится ряд $a_1 + \sum_{n=2}^{\infty} (a_n - a_{n-1})$.

Основные вопросы. 1. Сходится или нет (1.1).

2. Если сходится, то чему равна S.

Пункт 1.1.2. Комплексные числовые ряды

$$c_n = a_n + ib_n, \quad a_n, b_n \in \mathbb{R}, \ n \in \mathbb{N}$$

Определение 1.1.5. Формальная сумма

$$\sum_{n=1}^{\infty} c_n = c_1 + c_2 + \dots + c_n + \dots$$
 (1.2)

называется числовым рядом.

Определение 1.1.6. Частичная сумма $C_k = \sum_{n=1}^k c_n$.

Определение 1.1.7. Говорят, что ряд (1.2) сходится, если $\exists \lim_{n \to \infty} A_k = a$ и $\exists \lim_{n \to \infty} B_k = b$, $a, b \in \mathbb{R}$, где $A_k = \sum_{n=1}^k a_n$, $B_k = \sum_{n=1}^k b_n$.

Следствие. Ряд (1.2) сходится тогда и только тогда, когда сходятся $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$. Следовательно, достаточно рассматривать вещественные ряды.

Пункт 1.1.3. Необходимое условие сходимости ряда

Теорема 1.1.1 (Необходимое условие сходимости ряда). *Пусть* $\sum\limits_{n=1}^{\infty}a_n$ *сходится. Тогда* $a_n\xrightarrow[n\to\infty]{}0.$

 \mathcal{A} оказательство. По определению сходимости ряда $\sum\limits_{n=1}^{\infty}a_n$ $\exists\lim_{k\to\infty}S_k=S\in\mathbb{R}.$ Тогда $a_n\overset{n\geqslant 2}{=}=S_n-S_{n-1}\overset{n\to\infty}{\longrightarrow}S-S=0.$

Замечание. Условие теоремы 1.1.1 не является достаточным.

Пример.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

расходится.

Доказательство. $S_k = \underbrace{1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{k}}}_{k \text{ слагаемых}} \geqslant k \cdot \frac{1}{\sqrt{k}} = \sqrt{k} \to +\infty.$

(Аналогично доказывается расходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n^p}$ для 0).

Пример.

$$\sum_{n=1}^{\infty} \frac{2n-1}{3n+2}$$

расходится, так как $a_n \to \frac{2}{3} \neq 0$, то есть нарушен необходимый признак сходимости ряда. **Пример** (Модельный ряд).

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p \in \mathbb{R}$$

- a) p ≤ 0, $a_n → 0$ расходится
- b) 0 , доказывалось раньше расходится
- c) $p = 1, \sum_{n=1}^{\infty} \frac{1}{n}$ гармонический ряд расходится

d) p > 1 — сходится (докажем позже).

Пункт 1.1.4. Свойства сходящихся рядов

Рассмотрим ряд:

$$\sum_{n=1}^{\infty} a_n \tag{1.3}$$

Определение 1.1.8. Ряд $r_k = \sum_{n=k+1}^{\infty} a_n$ называется о*статком* ряда (1.3).

Теорема 1.1.2. Пусть ряд (1.3) сходится. Тогда $\sum_{n=k+1}^{\infty} a_n$ сходится $\forall k \in \mathbb{N}$.

Доказательство. Рассмотрим ряд $\sum_{n=k+1}^{\infty} a_n$. Его частичная сумма («отрезок» ряда (1.3))

$$S_{k,m} = \sum_{n=k+1}^m a_n = S_m - S_k \xrightarrow{m o \infty} S - S_k \in \mathbb{R}$$
. Стало быть, $r_k = S - S_k$ и ряд $\sum_{n=k+1}^\infty a_n$ сходится. \square

Теорема 1.1.3. Пусть $\exists k_0 : \sum_{n=k_0+1}^{\infty} a_n$ сходится. Тогда (1.3) сходится, причем $S = S_{k_0} + r_{k_0}$.

 \mathcal{A} оказательство. По условию $\exists \lim_{m \to \infty} \sum_{n=k_0+1}^m a_n = r_{k_0} = \lim_{m \to \infty} (S_m - S_{k_0})$. В силу того, что существуют пределы $\lim_{m \to \infty} (S_m - S_{k_0})$ и $\lim_{m \to \infty} S_{k_0}$, существует предел $\lim_{m \to \infty} ((S_m - S_{k_0}) + S_{k_0}) = \lim_{m \to \infty} S_m$. Последнее равносильно сходимости ряда $\sum_{n=1}^{\infty} a_n$.

Следствие. Если ряд (1.3) сходится, то $r_k \xrightarrow{k \to \infty} 0$.

Доказательство.
$$r_k = S - S_k \xrightarrow{k \to \infty} S - S = 0$$
.

Следствие. Сходимость (расходимость) ряда (1.3) не меняется, если изменить конечное число членов ряда.

Обозначение. $\sum_{n=1}^{\infty} a_n$ сходится и его сумма равна $S \in \mathbb{R} \stackrel{\text{обозн.}}{\Longleftrightarrow} \sum_{n=1}^{\infty} a_n = S \in \mathbb{R}$.

Определение 1.1.9. Ряд $\sum_{n=1}^{\infty} \lambda a_n$ называется произведением $\sum_{n=1}^{\infty} a_n$ на число λ , где $\lambda \in \mathbb{R}$.

Теорема 1.1.4. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится и пусть его сумма равна S. Тогда $\forall \lambda \in \mathbb{R}$ ряд $\sum_{n=1}^{\infty} \lambda a_n$ сходится, причем его сумма равна λS .

Доказательство.
$$\sum\limits_{n=1}^{\infty}\lambda a_n=\lim\limits_{k\to\infty}\sum\limits_{n=1}^k\lambda a_n=\lim\limits_{k\to\infty}\lambda\sum\limits_{n=1}^ka_n=\lambda\lim\limits_{k\to\infty}\sum\limits_{n=1}^ka_n=\lambda S.$$

3амечание. Для сходимости ряда $\sum\limits_{n=1}^{\infty}a_n$, вообще говоря, не достаточно сходимости ряда $\sum\limits_{n=1}^{\infty}\lambda a_n$, где $\lambda\in\mathbb{R}$.

Пример. $\lambda = 0$, $\sum_{n=1}^{\infty} a_n$ — расходящийся ряд.

Определение 1.1.10. *Суммой* рядов $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ называется ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$.

Теорема 1.1.5. Пусть ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ сходятся и пусть их суммы равны A и B соответственно. Тогда ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ сходится, причем его сумма равна A+B.

Замечание. Сходимости ряда $\sum\limits_{n=1}^{\infty}(a_n+b_n)$, вообще говоря, не достаточно для сходимости рядов $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$.

Пример. $a_n = n$, $b_n = -n$.

Следствие. Сумма сходящегося ряда $\sum\limits_{n=1}^{\infty}a_n$ и расходящегося ряда $\sum\limits_{n=1}^{\infty}b_n$ является расходящимся рядом.

Доказательство. От противного. Предположим, что $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ сходится. Тогда $\sum\limits_{n=1}^{\infty}b_n=\sum\limits_{n=1}^{\infty}((a_n+b_n)+(-a_n))$ сходится. Противоречие.

Замечание. Сумма двух расходящихся рядов $\sum\limits_{n=1}^{\infty} a_n$ и $\sum\limits_{n=1}^{\infty} b_n$ может как сходиться, так и расходиться.

Пример. $a_n = n$, $b_n = -n$.

Пример. $a_n = n$, $b_n = n$.

Группировка членов ряда (без изменения порядка его членов) не изменяет факта *сходимости* ряда.

Теорема 1.1.6. Пусть $\sum\limits_{n=1}^{\infty}a_n=A\in\mathbb{R}$ и дана последовательность $(m_n\in\mathbb{N},\ n\in\mathbb{N})$ со свойством: $m_1=1,\ m_n\uparrow\uparrow$ (по n). Тогда ряд $\sum\limits_{n=1}^{\infty}b_n$ сходится, при том его сумма равна A, где $b_n=\sum\limits_{i=m}^{m_{n+1}-1}a_i,\ n\in\mathbb{N}.$

Доказательство. По условию $A_k = \sum_{n=1}^k a_n \xrightarrow{k \to \infty} A$. Рассмотрим частичную сумму ряда $\sum_{n=1}^\infty b_n \colon B_k = \sum_{n=1}^k b_n = b_1 + \ldots + b_k = \sum_{i=1}^{m_2-1} a_i + \ldots + \sum_{i=m_k}^{m_{k+1}-1} a_i = \sum_{i=1}^{m_{k+1}-1} a_i = A_{m_{k+1}-1} \xrightarrow{k \to \infty} A$. Стало быть, $B_k \xrightarrow{k \to \infty} A$.

Замечание. Группировка членов ряда может изменить факт расходимости ряда.

Пример.
$$1-1+1-1+1-1+\dots$$
 расходится (т.к. $\nexists \lim_{n\to\infty} (-1)^{n+1}$). $(1-1)+(1-1)+(1-1)+\dots=0+0+0+\dots$ сходится.

Пункт 1.1.5. Критерий Коши

Из критерия Коши для числовой последовательности $\left(S_k = \sum_{n=1}^k a_n, \ k \in \mathbb{N}\right)$ следует

Теорема 1.1.7 (Критерий Коши). $\sum_{n=1}^{\infty} a_n \operatorname{cxodumcs} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \left| \sum_{n=k+1}^{k+m} a_n \right| < \varepsilon, \ \forall k \geqslant N,$ $\forall m \in \mathbb{N}.$

Следствие. $\sum\limits_{n=1}^{\infty}a_n$ расходится $\Longleftrightarrow \exists \varepsilon>0: \ \forall N\in\mathbb{N} \ \exists k\geqslant N \ \exists m\in\mathbb{N}: \left|\sum\limits_{n=k+1}^{k+m}a_n\right|\geqslant \varepsilon.$

Пример (Гармонический ряд).

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

расходится.

Доказательство. Имеем,
$$\sum\limits_{n=k+1}^{k+k}a_n=\underbrace{\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2k}}_{k\text{ слагаемых}}\geqslant k\cdot\frac{1}{2k}=\frac{1}{2}=\varepsilon.$$
 Окончательно, $\exists \varepsilon \left(=\frac{1}{2}\right)>0: \ \forall N\in\mathbb{N} \ \exists k(=N) \ \exists m(=k): \left|\sum\limits_{n=k+1}^{k+m}a_n\right|\geqslant \varepsilon.$

§1.2. Знакоположительные ряды

В этом параграфе всюду рассматриваются ряды $\sum\limits_{n=1}^{\infty}a_{n},\;a_{n}\geqslant0,\;\forall n\in\mathbb{N}.$

3амечание. Ряды $\sum\limits_{n=1}^{\infty}a_n$ с $a_n\leqslant 0$ исследуются рассмотрением рядов $\sum\limits_{n=1}^{\infty}|a_n|.$

Замечание. На самом деле, всюду дальше можно рассматривать ряды $\sum\limits_{n=1}^{\infty}a_n$: $\exists N\in\mathbb{N}:$ $a_n\geqslant 0,\ \forall n\geqslant N.$

Пункт 1.2.1. Введение

Напомним:

Теорема 1.2.1 (Вейерштрасса). Монотонно возрастающая ограниченная сверху последовательность сходится.

Теорема 1.2.2 (Критерий сходимости знакоположительных рядов). Пусть $a_n \ge 0$, $n \in \mathbb{N}$. Тогда ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда последовательность его частичных сумм $(S_k, k \in \mathbb{N})$ ограничена сверху.

Доказательство. Необходимость следует из выполненя всех условий теоремы 1.2.1 (Вейерштрасса). Достаточность же следует из свойств сходящихся последовательностей. □

Обозначение.
$$a_n \ge 0$$
, $\sum_{n=1}^{\infty} a_n$ сходится $\stackrel{\text{обозн.}}{\Longleftrightarrow} \sum_{n=1}^{\infty} a_n < \infty$.

Обозначение. $a_n \ge 0$, $\sum_{n=1}^{\infty} a_n$ расходится $\stackrel{\text{обозн.}}{\Longleftrightarrow} \sum_{n=1}^{\infty} a_n = \infty$.

Пункт 1.2.2. Признаки сравнения

Теорема 1.2.3 (Признаки сравнения). Пусть $0 \le a_n \le b_n$, $\forall n \in \mathbb{N}$. Тогда:

1.
$$Ecnu \sum_{n=1}^{\infty} b_n < \infty$$
, $mo \sum_{n=1}^{\infty} a_n < \infty$;

2. Если
$$\sum_{n=1}^{\infty} a_n = \infty$$
, то $\sum_{n=1}^{\infty} b_n = \infty$.

Доказательство. 1. Так как по теореме 1.2.2 последовательность $(B_k = \sum_{n=1}^k b_n, \ k \in \mathbb{N})$ ограничена, то $\exists M > 0: \ 0 \leqslant B_k \leqslant M, \ \forall k \in \mathbb{N}$ Поэтому $0 \leqslant A_k = \sum_{n=1}^k a_n \leqslant \sum_{n=1}^k b_n = B_k \leqslant M,$ $\forall k \in \mathbb{N}$. Окончательно, по теореме 1.2.2 $\sum_{n=1}^\infty a_n < \infty$.

2. От противного. Предположим, что $\sum\limits_{n=1}^\infty b_n < \infty$. Тогда по пункту 1 текущей теоремы $\sum\limits_{n=1}^\infty a_n < \infty$. Противоречие.

пример.

$$\sum_{n=2}^{\infty} \frac{1}{\ln(n)}$$

расходится.

Доказательство. Так как $\ln(n) \le n$ при $n \ge 2$, то $\frac{1}{\ln(n)} \ge \frac{1}{n}$. Поэтому $\sum_{n=2}^{\infty} \frac{1}{\ln(n)} \ge \sum_{n=2}^{\infty} \frac{1}{n} = \infty$. Пример.

$$\sum_{n=2}^{\infty} \frac{\ln^{\alpha}(n)}{n^p}, \quad p > 1, \ \alpha > 0$$

сходится.

Доказательство. $\sum_{n=1}^{\infty} \frac{1}{n^p} < \infty$ (интегральный признак, позже). Пусть $\varepsilon > 0: \ p - \varepsilon > 1$, $\sum_{n=1}^{\infty} \frac{1}{n^{p-\varepsilon}} < \infty$. Имеем, $0 < \frac{\ln^{\alpha}(n)}{n^{\varepsilon}} \le M$, для некоторого $M > 0, \ n \ge 2$. В самом деле, последователь-

ность $(\frac{\ln^{\alpha}(n)}{n^{\varepsilon}}, \ n \geqslant 2)$ сходится, поэтому она ограничена. В итоге, $\frac{\ln^{\alpha}(n)}{n^{p}} \leqslant \frac{M}{n^{p-\varepsilon}}$, но $\sum_{n=1}^{\infty} \frac{M}{n^{p-\varepsilon}} < \infty$.

Окончательно,
$$\sum_{n=2}^{\infty} \frac{\ln^{a}(n)}{n^{p}} < \infty$$
.

Теорема 1.2.4 (Предельный признак сравнения). Пусть $a_n, b_n > 0$, $n \in \mathbb{N}$ и $a_n \stackrel{n \to \infty}{\sim} b_n$. Тогда ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся (расходятся) одновременно.

Доказательство. Предварительно заметим, что ряды $\sum\limits_{n=1}^{\infty}a_{n}$ и $\sum\limits_{n=1}^{\infty}Ma_{n}$, где $M\in\mathbb{R},\ M\neq 0$, сходятся (расходятся) одновременно.

Так как $a_n \overset{n \to \infty}{\sim} b_n$, то $a_n = h_n b_n$, $h_n \overset{n \to \infty}{\longrightarrow} 1 \overset{b_n > 0}{\Longleftrightarrow} \frac{a_n}{b_n} \overset{n \to \infty}{\longrightarrow} 1$. Поэтому $\exists M > 0: 0 < \frac{a_n}{b_n} \leqslant M$ тогда и только тогда, когда $a_n \leqslant M b_n$. Далее по теореме 1.2.3 (Признаки сравнения). \square

$$\sum_{1}^{\infty} \frac{1}{2^n + n^{10} + \sqrt{n}}$$

сходится.

Доказательство. $\frac{1}{2^n+n^{10}+\sqrt{n}}\sim \left(\frac{1}{2}\right)^n$, причем $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^n<\infty$.

Пример.

Пример.

$$\sum_{n=1}^{\infty} \frac{n^2 + n}{\sqrt{9n^6 + n^5 + n}}$$

расходится.

Доказательство. $\frac{n^2+n}{\sqrt{9n^6+n^5+n}} \sim \frac{n^2}{n^3} = \frac{1}{n}$, причем $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$.

Пример.

$$\sum_{n=1}^{\infty} \frac{e^n + n^{100} + 1}{3^n + \ln(n)}$$

сходится.

Доказательство.
$$\frac{e^n + n^{100} + 1}{3^n + \ln(n)} \sim \left(\frac{e}{3}\right)^n$$
, причем $\sum_{n=1}^{\infty} \left(\frac{e}{3}\right)^n < \infty$.

Пункт 1.2.3. Признак Даламбера

Теорема 1.2.5 (Признак Даламбера). *Пусть* $a_n > 0$, $\forall n \in \mathbb{N}$ *u*

$$\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q, \quad 0 \le q \le \infty.$$
 (1.4)

Тогда:

$$1. \sum_{n=1}^{\infty} a_n < \infty$$
, если $q < 1$;

$$2. \sum_{n=1}^{\infty} a_n = \infty, ecлu q > 1.$$

Сперва докажем одну лемму

Лемма 1.2.1. Пусть $a_n, b_n > 0, n \in \mathbb{N}$,

$$\frac{a_n}{a_{n+1}} \geqslant \frac{b_n}{b_{n+1}}, \quad n \in \mathbb{N}$$
 (1.5)

Тогда:

1. Если
$$\sum_{n=1}^{\infty} b_n < \infty$$
, то $\sum_{n=1}^{\infty} a_n < \infty$;

2. Если
$$\sum_{n=1}^{\infty} a_n = \infty$$
, то $\sum_{n=1}^{\infty} b_n = \infty$.

Доказательство. (1.5) $\iff \frac{a_n}{b_n} \geqslant \frac{a_{n+1}}{b_{n+1}}, \ n \in \mathbb{N}$. Стало быть, $\frac{a_n}{b_n} \downarrow$ (по n). Следовательно, $\frac{a_n}{b_n} \leqslant \frac{a_1}{b_1} = M \neq 0$. Далее по теореме 1.2.4 (Предельный признак сравнения). □

Доказательство теоремы 1.2.5. 1. Пусть $r \in (q;1)$ — фиксировано. Тогда $\sum_{n=1}^{\infty} r^n < \infty$. Так

как (1.4), то $\frac{a_{n+1}}{a_n} \to q < r$. Отсюда $\frac{a_{n+1}}{a_n} < r = \frac{r^{n+1}}{r^n}$, $n \geqslant n_0$. Но $\sum_{n=1}^\infty r^n < \infty$. Окончательно, по лемме $1.2.1 \sum_{n=1}^\infty a_n < \infty$.

2. Так как $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q > 1$, то $\frac{a_{n+1}}{a_n} > 1$, $n \ge n_0$. Стало быть, последовательность $(a_n, n \ge n_0)$ монотонно взрастает, поэтому $a_n \xrightarrow{n\to\infty} 0$.

Обозначение. $(2n)!! = 2 \cdot 4 \cdot \dots \cdot (2n); (2n+1)!! = 1 \cdot 3 \cdot \dots \cdot (2n+1).$

Пример.

$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!!}$$

сходится.

Доказательство.
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n+1}{2n+3}=\frac{1}{2}<1$$

Замечание. Условие теоремы 1.2.5 для q = 1 не дает ответа.

Пример.
$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$
, $\lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1$.

Пример.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$
, $\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = 1$.

Доказательство. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots \to 1$. Следовательно, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} < \infty$. Но $\frac{1}{n^2} \sim \frac{1}{n(n+1)}$, поэтому $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$.

Напомним:

Определение 1.2.1. Говорят, что $\alpha_n \stackrel{n \to \infty}{=\!\!\!=\!\!\!=\!\!\!=} O(\beta_n)$, если $\alpha_n = h_n \beta_n$, где h_n — ограниченная последовательность. Если при этом $\beta_n \neq 0$, то $\alpha_n = O(\beta_n) \Leftrightarrow \exists M > 0: \left| \frac{\alpha_n}{\beta_n} \right| \leqslant M, \ \forall n.$

Теорема 1.2.6 (Признак Гаусса). Пусть $a_n > 0$, $\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + O(\frac{1}{n^{1+\varepsilon}})$, $\varepsilon > 0$, $n \in \mathbb{N}$. Тогда:

1.
$$\sum_{n=1}^{\infty} a_n < \infty$$
, если $\lambda > 1$;

2.
$$\sum_{n=1}^{\infty} a_n = \infty$$
, если $\lambda < 1$;

3.
$$\sum_{n=1}^{\infty} a_n < \infty$$
, если $\lambda = 1$ и $\mu > 1$;
4. $\sum_{n=1}^{\infty} a_n = \infty$, если $\lambda = 1$ и $\mu \le 1$.

4.
$$\sum_{n=1}^{\infty} a_n = \infty$$
, если $\lambda = 1$ и $\mu \le 1$.

Пример.

$$\sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^{p}$$

сходится при p > 2.

Доказательство. Обозначим
$$a_n = \left[\frac{(2n-1)!!}{(2n)!!}\right]^p$$
. Тогда $\frac{a_n}{a_{n+1}} = \left[\frac{(2n-1)!!(2n+2)!!}{(2n+1)!!(2n)!!}\right]^p = \left(\frac{2n+2}{2n+1}\right)^p = \left(1+\frac{1}{2n+1}\right)^p \frac{\text{формула}}{\text{Тейлора}} \ 1 + \frac{p}{2n+1} + O\left(\frac{1}{n^2}\right) = 1 + \frac{p}{2} \cdot \frac{1}{n} + O\left(\frac{1}{n^2}\right)$. Так как $\frac{1}{2n+1} = \frac{1}{2n} + \left(\frac{1}{2n+1} - \frac{1}{2n}\right) = \frac{1}{2n+1} = \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$, то по теореме 1.2.6 (Признак Гаусса) $\sum_{n=1}^{\infty} a_n < \infty \Leftrightarrow \frac{p}{2} > 1 \Leftrightarrow p > 2$.

Пункт 1.2.4. Радикальный признак Коши

Теорема 1.2.7 (Радикальный признак Коши). *Пусть* $a_n \ge 0, \ \forall n \in \mathbb{N} \ u$

$$\exists \lim_{n \to \infty} \sqrt[n]{a_n} = q, \quad 0 \le q \le \infty.$$
 (1.6)

$$1. \sum_{n=1}^{\infty} < \infty, ecnu q < 1;$$

$$2. \sum_{n=1}^{\infty} = \infty, ecnu q > 1.$$

Доказательство. 1. Пусть $r \in (q,1)$ — фиксировано. Из (1.6) следует, что, $\sqrt[n]{a_n} < r$, $n \ge n_0$, то есть $a_n < r^n$, $n \ge n_0$. Но $\sum_{n=1}^{\infty} r^n < \infty$. Окончательно, по теореме 1.2.3 (Признаки сравнения) $\sum_{n=1}^{\infty} a_n < \infty.$

 $\frac{1}{2}$. Так как $\lim_{n\to\infty}\sqrt[n]{a_n}>1$, то $\sqrt[n]{a_n}>1$, $n\geqslant n_0$. Иными словами, $a_n>1$, $n\geqslant n_0$. Стало быть, последовательность $(a_n, n \ge n_0)$ взрастает, поэтому $a_n \xrightarrow{n \to \infty} 0$.

Замечание. Условие теоремы 1.2.7 для q = 1 не дает ответа.

Пример.

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha}(n)}$$

сходится при $\alpha>1$ (докажем позже). При этом $\sqrt[n]{\frac{1}{n\ln^{\alpha}(n)}}=e^{-\frac{1}{n}\ln(n\ln^{\alpha}(n))}\xrightarrow{n\to\infty}e^0=1.$

Пример.

$$\sum_{n=1}^{\infty} \left(\frac{n+2}{n+3} \right)^{n^2}$$

сходится.

Доказательство.
$$\sqrt[n]{\left(\frac{n+2}{n+3}\right)^{n^2}} = \left(\frac{n+2}{n+3}\right)^n = \left(1 - \frac{1}{n+3}\right)^n = \left(1 + \frac{(-1)}{n+3}\right)^n \xrightarrow{n \to \infty} e^{-1} = \frac{1}{e} < 1.$$
 Теорема 1.2.8 (Формула Стирлинга). $n! \stackrel{n \to \infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$.

Доказательство. Без доказательства.

Замечание. Пусть $\alpha_n, \beta_n \geqslant 0$, причем $\alpha_n \stackrel{n \to \infty}{\sim} \beta_n$. Тогда $\sqrt{\alpha_n} \stackrel{n \to \infty}{\sim} \sqrt{\beta_n}$. Более общо, $\sqrt[k]{\alpha_n} \stackrel{n \to \infty}{\sim} \sqrt[k]{\beta_n}$, $\forall k \in \mathbb{N}$.

Пример.

$$\sum_{n=1}^{\infty} \frac{n!}{n^{\sqrt{n}}}$$

расходится.

Доказательство.
$$\sqrt[n]{\frac{n!}{n^{\sqrt{n}}}} = \frac{\sqrt[n]{n!}}{n^{\frac{1}{\sqrt{n}}}} \stackrel{n \to \infty}{\sim} \frac{\frac{n}{e}(2\pi n)^{\frac{1}{2n}}}{\frac{1}{\sqrt{n}}} \sim \frac{n}{e} \xrightarrow{n \to \infty} \infty$$
.

Пункт 1.2.5. Интегральный признак Коши

Напомним:

Теорема 1.2.9. Пусть $f:[1;+\infty)\to\mathbb{R}$, $f\uparrow$. Тогда $\exists\lim_{x\to+\infty}f(x)\in\mathbb{R}\Leftrightarrow f$ ограничена.

Теорема 1.2.10 (Интегральный признак Коши). Пусть $f:[1;+\infty)\to\mathbb{R}$ неотрицательна и монотонно убывает на $[1,+\infty)$ и пусть $a_n=f(n),\ n\in\mathbb{N}$. Тогда $\sum\limits_{n=1}^\infty a_n<\infty$ тогда и только тогда, когда $\int\limits_{-\infty}^{+\infty} f(x)\mathrm{d}x<\infty$.

Доказательство. Для всякого b > 1 функция f монотонна на [1, b], поэтому по достаточному условию интегрируемости функции по Риману $f \in R[1, b]$.

Имеет место следующее двойное неравенство:

$$a_2...+a_n \le \int_1^n f(x) dx \le a_1 + ... + a_{n-1}$$
 (1.7)

В самом деле, пусть $x\geqslant 1$. тогда $\exists p\in\mathbb{N}:\ p\leqslant x\leqslant p+1$. В силу монотонности функции f $a_{p+1}\leqslant f(x)\leqslant a_p$. Поэтому

$$\sum_{i=1}^{n-1} \int_{i}^{i+1} a_{i+1} dx \le \int_{1}^{n} f(x) dx = \left(\int_{1}^{2} + \dots + \int_{n-1}^{n} f(x) dx \right) = \sum_{i=1}^{n-1} \int_{i}^{i+1} f(x) dx \le \sum_{i=1}^{n-1} \int_{i}^{i+1} a_{i} dx.$$

 \Longrightarrow Последовательность $(S_n,\ n\in\mathbb{N})$ частичных сумм ряда $\sum_{n=1}^\infty a_n$ ограничена, а именно $S_n\leqslant S=\sum_{n=1}^\infty a_n.$

Пусть $F(x) = \int_{1}^{x} f(t) dt$. Тогда функция F на $[1; +\infty)$ удовлетворяет условию теоремы.

Докажем, что F ограничена (сверху). Имеем: $\forall x \ge 1, \ \forall n \ge x : \ 0 \le F(x) \le F(n)$. Но так как (1.7), то $F(x) \le \sum_{i=1}^{n-1} a_n = S_{n-1} \le S$. Отсюда, F — ограничена сверху. Поэтому $\exists \lim_{x \to \infty} \int\limits_1^x f(t) \mathrm{d}t \in \mathbb{R}$, что равносильно сходимости интеграла $\int\limits_1^\infty f(x) \mathrm{d}x$.

 \sqsubseteq $\exists \lim_{x \to \infty} \int\limits_1^x f(t) \mathrm{d}t \in \mathbb{R}$. Поэтому функция $F(x) = \int\limits_1^x f(t) \mathrm{d}t$ — ограничена сверху. Поэтому последовательность $(F(n), \ n \in \mathbb{N})$ тоже ограничена сверху. Но так как (1.7), то $\forall n \in \mathbb{N}: S_n = a_1 + \ldots + a_n = a_1 + (a_2 + \ldots a_n) \leqslant a_1 + F(n) \leqslant a_1 + \sup_{m \in \mathbb{N}} F(m)$. Отсюда, последовательность $(S_n, \ n \in \mathbb{N})$ — ограничена, что по теореме 1.2.2 (Критерий сходимости знакоположительных

рядов) равносильно сходимости ряда $\sum_{n=0}^{\infty} a_n$.

Замечание. Достаточно рассматривать $f:[A,+\infty)\to\mathbb{R}$.

Следствие (Модельный ряд).

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \quad p \in \mathbb{R}$$

сходится при p > 1.

 \not Доказательство. Если $p \le 0$, то $a_n \xrightarrow{n \to \infty} 0$, то есть ряд расходится. Пусть p > 0. Рассмотрим функцию $f=\frac{1}{x^p}$. Легко убедиться, что она удовлетворяет условиям теоремы 1.2.10 на $[1,+\infty)$. Рассмотрим несобственный интеграл $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^p}$. Он сходится при p>1, поэтому

$$\sum_{n=1}^{\infty} \frac{1}{n^p} < \infty \iff p > 1.$$

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha}(n)}$$

сходится при $\alpha > 1$.

Доказательство. Достаточно рассмотреть $\int\limits_{2}^{+\infty} \frac{\mathrm{d}x}{x \ln^{a}(x)}. \int\limits_{2}^{A} \frac{\mathrm{d}x}{x \ln^{a}(x)} = \int\limits_{2}^{A} \frac{\mathrm{d}(\ln(x))}{(\ln(x))^{a}} = \int\limits_{\ln(2)}^{\ln(A)} \frac{\mathrm{d}y}{y^{a}} = F(A).$ Поэтому $\exists \lim_{A \to +\infty} F(A) \iff \alpha > 1.$

§1.3. Знакопеременные ряды

В этом параграфе рассматриваем знакопеременные (не путать со знакочередующимися) ряды $\sum_{n=0}^{\infty} a_n$, знак a_n зависит от n и ряды комплексные $a_n \in \mathbb{C}$.

Замечание. Для рядов $\sum_{n=1}^{\infty} a_n$ общего вида (знакопеременные или $a_n \in \mathbb{C}$) справедливы теоремы 1.1.1 (Необходимое условие сходимости ряда) и 1.1.7 (Критерий Коши).

Пункт 1.3.1. Абсолютная и условная сходимость

Определение 1.3.1. Говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, если $\sum_{n=1}^{\infty} |a_n| < \infty$.

Определение 1.3.2. Говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится *условно*, если $\sum_{n=1}^{\infty} a_n$ сходится и $\sum_{n=1}^{\infty} |a_n| = \infty.$ Пример.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

сходится условно (докажем позже, признак Лейбница).

Теорема 1.3.1. Ряд $\sum_{n=1}^{\infty} a_n$, где $a_n = \alpha_n + i\beta_n$ ($\alpha_n, \beta_n \in \mathbb{R}$), сходится абсолютно тогда и только тогда, когда $\sum_{n=1}^{\infty} |\alpha_n| < \infty$ и $\sum_{n=1}^{\infty} |\beta_n| < \infty$.

Доказательство. \Longrightarrow Пусть $\sum\limits_{n=1}^{\infty}|a_n|<\infty$. $|\alpha_n|\leqslant\sqrt{\alpha_n^2+\beta_n^2}=|a_n|$. По теореме 1.2.3 (При-

знаки сравнения) $\sum_{n=1}^{\infty} |\alpha_n| < \infty$.

Аналогично доказывается, что $\sum_{n=1}^{\infty} |\beta_n| < \infty$.

$$\stackrel{\longleftarrow}{\sqsubseteq}$$
 Так как $\sum_{n=1}^{\infty} |\alpha_n| < \infty$ и $\sum_{n=1}^{\infty} |\beta_n| < \infty$, то $\sum_{n=1}^{\infty} (|\alpha_n| + |\beta_n|) < \infty$. Но $|a_n|^2 = |\alpha_n|^2 + |\beta_n|^2 \le 1$

$$\leq (|\alpha_n| + |\beta_n|)^2$$
, поэтому $|a_n| \leq |\alpha_n| + |\beta_n|$. По теореме 1.2.3 (Признаки сравнения) $\sum_{n=1}^{\infty} |a_n| < \infty$.

Теорема 1.3.2. Пусть $\sum\limits_{n=1}^{\infty}|a_n|<\infty$. Тогда $\sum\limits_{n=1}^{\infty}a_n$ сходится. Доказательство. Воспользуемся теоремой 1.1.7 (Критерий Коши). Пусть $\varepsilon>0$ — произвольно. Тогда $\exists N \in \mathbb{N}: \sum_{n=k+1}^{\kappa+m} |a_n| < \varepsilon, \ \forall k > N, \ \forall m \in \mathbb{N}. \ \text{Поэтому} \left| \sum_{n=k+1}^{\kappa+m} a_n \right| \leqslant \sum_{n=k+1}^{\kappa+m} |a_n| < \varepsilon,$

Замечание. Сходимости ряда $\sum_{n=1}^{\infty} a_n$, вообще говоря, не достаточно для сходимости ряда $\sum_{n=1}^{\infty} |a_n|$. Например, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Пример.

$$\sum_{n=1}^{\infty} \frac{n(3i-1)^n}{b^n}$$

сходится при $b > \sqrt{10}$.

Доказательство. Обозначим $a_n = \frac{n(3i-1)^n}{b^n}$. Тогда $|a_n| = \frac{n(\sqrt{10})^n}{b^n}$ и $\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)\sqrt{10}}{nb} \xrightarrow{n \to \infty} \frac{\sqrt{10}}{b}$. Но по теореме 1.2.5 (Признак Даламбера) $\sum_{n=1}^{\infty} |a_n| < \infty \Leftrightarrow b > \sqrt{10}$.

Если
$$b \le \sqrt{10}$$
, то $|a_n| = n \left(\frac{\sqrt{10}}{b}\right)^n \xrightarrow{n \to \infty} 0$. Поэтому $a_n \xrightarrow{n \to \infty} 0$.

Теорема 1.3.3 (О перестановке членов абсолютно сходящегося ряда). *Пусть* $\sum_{n=0}^{\infty} |a_n| < 1$

 $<\infty$. Тогда сумма ряда $S=\sum_{n=1}^\infty a_n\in\mathbb{R}\ (a_n\in\mathbb{R})$ не зависит от перестановки его членов.

Доказательство. Пусть дана биекция $p:\mathbb{N}\to\mathbb{N}.$ Обозначим $p(n)=p_n.$ Введем обозначения:

$$S_k = \sum_{n=1}^k a_n, \qquad T_k = \sum_{n=1}^k a_{p_n}, \qquad \widehat{S}_k = \sum_{n=1}^k |a_n|, \qquad \widehat{T}_k = \sum_{n=1}^k |a_{p_n}|.$$

Имеем, $\widehat{T}_k = |a_{p_1}| + |a_{p_2}| + \ldots + |a_{p_k}|$. Пусть $q_k = \max\{p_1, \ldots, p_k\}$. Тогда $\widehat{T}_k \leqslant \sum_{n=1}^{q_k} |a_n| = \widehat{S}_{q_k} \leqslant C$ для некоторого фиксированного C>0 и $\forall k\in\mathbb{N}.$ $(\widehat{T}_k,\ k\in\mathbb{N})$ — неубывающая и ограниченная последовательность. Поэтому $\sum_{n=1}^{\infty} |a_{p_n}| < \infty$.

Обозначим $T=\sum_{i=1}^\infty a_{p_n}$. Заметим, что $\forall N\in\mathbb{N}\ \exists L_N\in\mathbb{N},\ L_N\geqslant N:\ \{a_{p_1},a_{p_2},\ldots,\ a_{p_{L_N}}\}\supset \mathbb{N}$ $\supset \{a_1,\ldots,a_N\}$. Тогда $T_{L_N}=S_N+\sum_{n>N}a_n$. Обозначим $\rho_N=\sum_{n>N}a_n$. Так как $L_N\xrightarrow{N\to\infty}\infty$, то $|\rho_N|\leqslant 1$ $\leq \sum_{n=N+1}^{\infty} |a_n| = \widehat{r}_N$ — остаток ряда $\sum_{n=1}^{\infty} |a_n|$, который сходится, а значит $\widehat{r}_N \xrightarrow{n \to \infty} 0$. Переходя к пределу, получаем 0 $\stackrel{N \to \infty}{\longleftarrow} |\rho_N| = |T_{L_N} - S_N| \stackrel{N \to \infty}{\longrightarrow} |T - S|.$

Определение 1.3.3. Говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится *безусловно*, если любой ряд, полу-

ченный из $\sum_{n=0}^{\infty} a_n$ перестановкой его членов, сходится.

Теорема 1.3.4. Ряд $\sum^{\infty} a_n$ сходится абсолютно тогда и только тогда, когда он сходится безусловно.

Доказательство. \Rightarrow Теорема 1.3.3.

 $\Leftarrow \mid^1$ Достаточно показать, что условно сходящийся ряд

$$\sum_{n=1}^{\infty} a_n \tag{1.8}$$

не может сходиться безусловно.

Пусть ряд (1.8) сходится условно. Тогда $\sum\limits_{n=1}^{\infty}|a_n|=+\infty$ и $\lim\limits_{n\to\infty}a_n=0$. Пусть α_k есть k-й по порядку положительный член ряда (1.8), а β_l есть l-й по порядку отрицательный член ряда (1.8). Тогда, как было показано ранее 2 , имеем $\sum\limits_{k=1}^{\infty}\alpha_k=+\infty$, $\sum\limits_{l=1}^{\infty}\beta_l=-\infty$, $\lim\limits_{k\to\infty}\alpha_k=\lim\limits_{l\to\infty}\beta_l=$ = 0.

Выберем из ряда (1.8) подряд все положительные члены так, что $S_{k_1} = \sum_{s=1}^{k_1} \alpha_s > 1$, и затем добавим первый отрицательный член $\beta_1 < 0$. После этого из оставшихся положительных членов ряда (1.8) выберем подряд столько, чтобы $S_{k_2+1}=S_{k_1}+\beta_1+\sum\limits_{s=k+1}^{\kappa_2}\alpha_s>2$ (это возможно, поскольку $\sum_{k=0}^{\infty} \alpha_k = +\infty$). Затем добавим второй отрицательный член $\beta_2 < 0$ и вновь наберем

столько положительный членов ряда $\sum_{n=1}^{\infty} a_n$, чтобы $S_{k_3+2} = S_{k_2+1} + \beta_2 + \sum_{s=k_1+1}^{\kappa_3} \alpha_s > 3$.

На n–м шаге получим $S_{k_n+n-1}=\sum\limits_{s=1}^{k_1}\alpha_s+\beta_1+\sum\limits_{s=k_1+1}^{k_2}\alpha_s+\beta_2+\ldots+\sum\limits_{s=k_{n-1}+1}^{\kappa_n}\alpha_s>n,\; S_{k_n+n}=$ $=S_{k_n+n-1}+eta_n$. Поскольку $\lim_{n o\infty}eta_n=0$, то $\lim_{n o\infty}S_{k_n+n}=\lim_{n o\infty}S_{k_n+n-1}=+\infty$ и поэтому ряд

$$\sum_{s=1}^{k_1} \alpha_s + \beta_1 + \ldots + \sum_{s=k_{n-1}+1}^{k_n} \alpha_s + \beta_n + \ldots,$$
 (1.9)

полученный из ряда (1.8) перестановкой его членов, расходится.

В самом деле, если бы ряд (1.9) сходился, то $\lim_{m \to \infty} S_m = S$, где $S_m - m$ –я частичная сумма ряда (1.9). Поскольку (S_{k_n+n}) и (S_{k_n+n-1}) — подпоследовательности последовательности (S_m) , то имели бы $\exists \lim_{n \to \infty} S_{k_n+n} = \lim_{n \to \infty} S_{k_n+n-1} = S$, что противоречит доказанному равенству $\lim_{n \to \infty} S_{k_n+n} = +\infty$. Из оценок $k_{n-1} + n - 1 \leqslant m < k_n + n$ и $S_{k_{n-1}+n-1} \leqslant S_m \leqslant S_{k_n+n-1}$ имеем $\lim_{m \to \infty} S_m = \infty$. Итак, если ряд (1.8) сходится условно, то этот ряд не может сходиться безусловно

Теорема 1.3.5 (Римана о перестановке членов условно сходящегося ряда). Каково бы ни было вещественное число A, найдется сходящаяся перестановка $\sum\limits_{n=0}^{\infty} b_n$ условно сходящегося

ряда
$$\sum\limits_{n=1}^{\infty}a_{n}$$
 такая, что $\sum\limits_{n=1}^{\infty}b_{n}=A$.

¹Камынин Л.И. *Курс математического анализа*, том 2, стр 46. ²Если обозначить $s_n = \sum_{k=1}^n a_n, \ \sigma_n = \sum_{k=1}^n |a_n|, \ s_n^+ = \sum_{k=1}^n \max\{0,a_n\}, \ s_n^- = \sum_{k=1}^n \min\{0,a_n\}, \text{ то } 2s_n^+ = s_n + \sigma_n, \ 2s_n^- = s_n - \sigma_n.$

Доказательство. 3 Для простоты будем считать, что $a_n \neq 0$ для всех n. Сначала в ряде $\sum\limits_{n=1}^\infty a_n$ выделяем все положительные слагаемые α_k и отрицательные слагаемые β_l , нумеруя их индексами k и l в порядке следования в ряде $\sum\limits_{n=1}^\infty a_n$. Затем составляем перестановку $\sum\limits_{n=1}^\infty b_n$ ряда $\sum\limits_{n=1}^\infty a_n$: в качестве b_1 берем a_1 , если $a \geq 0$, и a_1 , если a < 0.

Далее мы добавляем в общую сумму $\sum_{m=1}^n b_m$ очередные слагаемые по следующему правилу: если сумма не превышает A, то добавляем очередное положительное слагаемое $b_{n+1}=$ $=\alpha_{k_1}$, а если она превосходит A, то добавляем очередное отрицательное слагаемое $b_{n+1}=$ $=\beta_{l_1}$. В результате этого сумма все время колеблется вокруг значения A, причем размах колебаний постепенно убывает до нуля, и в пределе для суммы ряда $\sum_{n=1}^{\infty} b_n$ мы получаем требуемое значение A.

Для определенности будем считать, что A>0. Тогда по построению ряд $\sum\limits_{n=1}^{\infty}b_n$ имеет такую структуру: $\sum\limits_{n=1}^{\infty}b_n=\underbrace{\alpha_1+\ldots+\alpha_{k_1}}_{A_1}-\underbrace{\beta_1-\ldots-\beta_{l_1}}_{B_1}+\underbrace{\alpha_{k_1+1}+\ldots+\alpha_{k_2}}_{A_2}-\underbrace{\beta_{l_1+1}-\ldots+\beta_{l_2}}_{B_2}+\ldots$ Здесь числа $A_1,A_2,\ldots,B_1,B_2,\ldots$ обозначают суммы подряд идущих слагаемых одного знака в ряде $\sum\limits_{n=1}^{\infty}b_n$. Количество групп слагаемых одинакового знака в этой сумме бесконечно, так как в противном случае ряд $\sum\limits_{n=1}^{\infty}b_n$ отличался бы от $\sum\limits_{k=1}^{\infty}\alpha_k$ или от $\sum\limits_{l=1}^{\infty}\beta_l$ лишь конечным числом членов и тогда он расходился бы к $+\infty$ или к $-\infty$ соответственно. Но это не имеет места, так как по построению величина частичных сумм s_n ряда на каждом шаге изменяется в направлении приближения к числа A, если только $s_n \neq A$. В силу этого, в сумму $\sum\limits_{n=1}^{\infty}b_n$ войдут все числа α_k и β_l , а следовательно, и все a_n , то есть $\sum\limits_{n=1}^{\infty}b_n$ — действительно перестановка ряда $\sum\limits_{n=1}^{\infty}a_n$.

Теперь оценим разность $r_n = s_n - A$. При всяком n член ряда b_n в зависимости от своего знака попадает в одну из сумм A_m или B_m . Следовательно, мы имеем одно из равенств: $b_n = a_k$ или $b_n = \beta_l$.

По построению ряда $\sum\limits_{n=1}^{\infty}b_n$ величина r_n меняет знак в том случае, если $b_n=\alpha_{k_m}$ или $b_n=\beta_{l_m}$. Тогда в обоих случаях имеет место оценка $|r_n|=|s_n-A|\leqslant |b_n|$. Для всех прочих n при добавлении очередного слагаемого $|r_n|$ значения частичной суммы s_n от числа A убывает, поэтому тогда справедливо неравенство $|r_n|<|r_{n-1}|$. Следовательно, всегда имеем $|s_n-A|<<\alpha_{k_m}+\alpha_{k_{m-1}}+|\beta_{l_m}|+|\beta_{l_{m-1}}|$. Здесь номер m можно рассматривать как монотонно стремящуюся к бесконечности функцию от n, и поэтому для последовательности d_n , где $d_n=\alpha_{k_m}+\alpha_{k_{m-1}}+|\beta_{l_m}|+|\beta_{l_{m-1}}|$, в силу того, что α_k и $\beta_l\to 0$ при k и $l\to\infty$, имеем $d_n\to 0$ при $n\to\infty$. Отсюда при $n\to\infty$ окончательно получим $r_n=s_n-A\to 0$ и $s_n\to A$.

Пункт 1.3.2. Умножение рядов

Напомним:

 $^{^3}$ Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу, стр. 355.

Утверждение. Множество пар $(m,n) \in \mathbb{N} \times \mathbb{N}$ счетно.

Доказательство.

$$(a_1, b_1) + (a_1, b_2)$$
 $(a_1, b_3) + (a_1, b_4)$...
 (a_2, b_1) (a_2, b_2) (a_2, b_3) (a_2, b_4)
 (a_3, b_1) (a_3, b_2) (a_3, b_3) (a_3, b_4)
 (a_4, b_1) (a_4, b_2) (a_4, b_3) (a_4, b_4)
 \vdots ...

Определение 1.3.4. Пусть даны ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ и пусть дана нумерация (биекция) $k\in\mathbb{N}\to(m,n)\in\mathbb{N}\times\mathbb{N}.$ Тогда *произведением* рядов $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ называется ряд $\sum\limits_{k=1}^{\infty}h_k$, где $h_k=a_{m_k}b_{n_k}.$

Теорема 1.3.6 (Абеля о произведении абсолютно сходящихся рядов). Пусть $\sum\limits_{n=1}^{\infty}|a_n|<\infty$ $u\sum\limits_{n=1}^{\infty}|b_n|<\infty$. Обозначим $\sum\limits_{n=1}^{\infty}a_n=A$, $\sum\limits_{n=1}^{\infty}b_n=B$. Тогда **любое** произведение рядов $\sum\limits_{n=1}^{\infty}a_n$ $u\sum\limits_{n=1}^{\infty}b_n$ сходится абсолютно u имеет сумму AB.

Доказательство. Пусть дана произвольная биекция $k\in\mathbb{N}\to(m,n)\in\mathbb{N}\times\mathbb{N}$. Рассмотрим ряд $\sum\limits_{k=1}^{\infty}|h_k|$, где $h_k=a_{m_k}b_{n_k}$. Введем обозначения:

$$\widehat{H}_r = \sum_{k=1}^r |h_k|, \qquad \widehat{A}_r = \sum_{k=1}^r |a_k|, \qquad \widehat{B}_r = \sum_{k=1}^r |b_k|.$$

Полагая $M_r = \max_{k=1,\dots,r} m_k, \ N_r = \max_{k=1,\dots,r} n_k,$ имеем $\widehat{H}_r = \sum_{k=1}^r |a_{m_k}| |b_{n_k}| \leqslant \sum_{k=1}^{M_r} |a_k| \sum_{k=1}^{N_r} |b_k| = \widehat{A}_{M_r} \widehat{B}_{N_r}.$ Но по теореме 1.2.2 (Критерий сходимости знакоположительных рядов) $\exists C_A, C_B: \widehat{A}_{M_r} \leqslant C_A,$ $\widehat{B}_{N_r} \leqslant C_B, \ \forall r \in \mathbb{N}.$ Поэтому $\widehat{H}_r \leqslant C_A C_B, \ \forall r \in \mathbb{N}.$ Отсюда, $\sum_{k=1}^{\infty} |h_n| < \infty.$

Рассмотрим произведение рядов $\sum\limits_{k=1}^{\infty}g_k=\sum\limits_{k=1}^{\infty}a_{m_k}b_{n_k}$, где нумерация задана следующим образом:

$$(a_{1}, b_{1}) + (a_{1}, b_{2}) \quad (a_{1}, b_{3}) \quad (a_{1}, b_{4}) \quad \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(a_{2}, b_{1}) + (a_{2}, b_{2}) \quad (a_{2}, b_{3}) \quad (a_{2}, b_{4})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(a_{3}, b_{1}) + (a_{3}, b_{2}) + (a_{3}, b_{3}) \quad (a_{3}, b_{4})$$

$$\downarrow \qquad \qquad \downarrow$$

$$(a_{4}, b_{1}) + (a_{4}, b_{2}) + (a_{4}, b_{3}) + (a_{4}, b_{4})$$

_

٠.

Обозначим $G_n = \sum_{k=1}^n g_k$ и рассмотрим подпоследовательность $(G_{n^2}, n \in \mathbb{N})$. Имеем:

$$G_{n^2} = \sum_{k=1}^n a_k \sum_{k=1}^n b_k = (a_1 + \ldots + a_n)(b_1 + \ldots + b_n).$$

Докажем это равенство по индукции:

n = 1. Очевидно.

$$n\geqslant 2.\ G_{(n+1)^2}=G_{n^2}+b_{n+1}(a_1+\ldots+a_n)+a_{n+1}(b_1+\ldots+b_n)+a_{n+1}b_{n+1}=A_nB_n+b_{n+1}A_n+a_{n+1}B_n+a_{n+1}b_{n+1}=(A_n+a_{n+1})(B_n+b_{n+1})=A_{n+1}B_{n+1},$$
 где $A_k=\sum\limits_{i=1}^k a_i,\ B_k=\sum\limits_{i=1}^k b_i.$
Итак, $\sum\limits_{i=1}^\infty g_i \stackrel{n\to\infty}{\longleftrightarrow} G_{n^2}=A_nB_n \stackrel{n\to\infty}{\longleftrightarrow} AB$. Следовательно, $\sum\limits_{i=1}^\infty g_i=AB$.

Итак, $\sum_{k=1}^{\infty} g_k \stackrel{n\to\infty}{\longleftrightarrow} G_{n^2} = A_n B_n \xrightarrow{n\to\infty} AB$. Следовательно, $\sum_{k=1}^{\infty} g_k = AB$.

Пусть теперь $\sum\limits_{k=1}^{\infty}h_{k}$ — произвольное произведение. Но этот ряд получен из абсолютно сходящегося ряда $\sum\limits_{k=1}^{\infty} g_k$ перестановкой его членов. Следовательно, по теореме 1.3.3 (О перестановке членов абсолютно сходящегося ряда) $\sum_{k=0}^{\infty} h_k = AB$.

Определение 1.3.5. Пусть даны ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$. Их произведением по Коши называется ряд $\sum_{n=1}^{\infty} c_n$, где $c_n = \sum_{k=1}^n a_k b_{n-k+1} = a_1 b_n + a_2 b_{n-1} + \ldots + a_n b_1$.

Теорема 1.3.7 (Мертенс). Пусть $\sum_{n=1}^{\infty} |a_n| < \infty$, $\sum_{n=1}^{\infty} b_n$ сходится и пусть $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} b_n = B$. Тогда произведение по Коши рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходится, причем его сумма равна AB.

Доказательство. Рассмотрим частичную сумму произведения по Коши: $H_m = \sum_{i=1}^m c_i = 0$

$$=\sum_{n=1}^m\sum_{k=1}^n a_kb_{n-k+1}\stackrel{(*)}{=}\sum_{k=1}^m a_k\sum_{n=k}^m b_{n-k+1}=\sum_{k=1}^m a_k\sum_{l=1}^{m-k+1}b_l.$$

(*) Понять это легко, если взглянуть на рисунок:

Пусть $\alpha_r = \sum_{n=r+1}^{\infty} a_n$, $\beta_r = \sum_{n=r+1}^{\infty} b_n$. Тогда $A = A_r + \alpha_r$ и $B = B_r + \beta_r$, где $A_r = \sum_{n=1}^r a_n$, $B_r = \sum_{n=1}^r b_n$. Итак, $H_m = \sum\limits_{k=1}^m a_k B_{m-k+1} = \sum\limits_{k=1}^m a_k (B - \beta_{m-k+1}) = \sum\limits_{k=1}^m a_k B - \sum\limits_{k=1}^m a_k \beta_{m-k+1} = AB - \alpha_m B - \sum\limits_{k=1}^m a_k \beta_{m-k+1}.$ Покажем, что последние два слагаемых стремятся к 0 при $m \to \infty$.

 $\alpha_m B$. Так как $\alpha_m \xrightarrow{m \to \infty} 0$, то $\alpha_m B \xrightarrow{m \to \infty} 0$.

 $\sum\limits_{k=1}^m a_k eta_{m-k+1}$. Пусть arepsilon > 0 — произвольно. Тогда $\exists N_1 \in \mathbb{N}: \ |eta_n| < arepsilon, \ orall n > N_1$. Заметим, что $\sum_{k=1}^{m} a_k \beta_{m-k+1} = \sum_{1 \le k \le \frac{m}{2}} a_k \beta_{m-k+1} + \sum_{\frac{m}{2} < k \le m} a_k \beta_{m-k+1}.$

Оценим $\sum\limits_{1\leqslant k\leqslant \frac{m}{2}}a_keta_{m-k+1}$. Выберем $m:\;rac{m}{2}+1>N_1 \Longleftrightarrow m>2N_1-2$. Тогда $\left|\sum\limits_{1\leqslant k\leqslant rac{m}{2}}a_keta_{m-k+1}
ight|<$

 $< arepsilon \sum_{k=1}^m |a_k| \le arepsilon C_1$ для некоторого $C_1 > 0$ и $\forall m > 2N_1 - 2$.

Оценим $\sum_{\frac{m}{<}k\leq m}a_keta_{m-k+1}$. Так как $eta_n\xrightarrow{n\to\infty}0$, то $|eta_n|\leqslant C_2$ для некоторого $C_2>0$ и $\forall n\in\mathbb{N}$, то

$$\left|\sum_{\frac{m}{2} < k \le m} a_k \beta_{m-k+1} \right| \le \sum_{\frac{m}{2} < k \le m} |a_k| |\beta_{m-k+1}| \le C_2 \sum_{\frac{m}{2} < k \le m} |a_k|.$$
 Применяя теорему 1.1.7 (Критерий Коши)
$$\kappa \sum_{n=1}^{\infty} |a_n|, \text{ имеем } \exists N_2 \in \mathbb{N} : \sum_{\frac{m}{2} < k \le m} |a_k| < \varepsilon, \ \forall m > N_2.$$

Положим $N = \max\{N_2, 2N_1 - 2\}$. В итоге, $\left|\sum_{k=1}^m a_k \beta_{m-k+1}\right| = \left|\sum_{1 \le k \le \frac{m}{2}} a_k \beta_{m-k+1} + \sum_{\frac{m}{2} \le k \le m} a_k \beta_{m-k+1}\right| \le 1$ $\leq \left|\sum_{1 \leq k \leq \frac{m}{m}} a_k \beta_{m-k+1}\right| + \left|\sum_{m \leq k \leq m} a_k \beta_{m-k+1}\right| \leq \varepsilon (C_1 + C_2)$. Отсюда получаем, что $H_m = AB - \alpha_m B - C_2$ $-\sum\limits_{k=1}^m a_k eta_{k-n+1} \xrightarrow{m o \infty} AB.$ **Пример.** Произведение по Коши рядов

$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \quad \text{if} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

cxoдитcя к ln(4).

Доказательство. Как известно, $\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$. Покажем, что $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$. Рассмотрим функцию $f(x)=\ln(1+x)$. Легко видеть, что $f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$. По формуле Тейлора с остаточным членом в форме Лагранжа $f(x) = f(0) + \sum_{n=1}^k \frac{f^{(n)}(0)}{n!} + r_k(x)$, где $r_k = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}$, $\theta \in (0,1)$. При k=1 имеем: $\ln(2) = \sum_{n=1}^k \frac{(-1)^{n-1}}{n} + r_k(1) = S_k + r_k(1)$. Поэтому $|r_k(1)| \le \frac{1}{(k+1)(1+\theta)^{k+1}} \le r_k(1)$ $\leq \frac{1}{k+1} \xrightarrow{k \to \infty} 0$. То есть $S_k \xrightarrow{k \to \infty} \ln(2)$. Следовательно, $\sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{2^{k-1}} \frac{(-1)^{n-k}}{n-k+1} = 2\ln(2) = \ln(4)$.

Покажем, что условие абсолютной сходимости одного из рядов существенно:

Пример. Произведение по Коши рядов

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} \quad \text{и} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

расходится.

Доказательство. Каждый из рядов сходится (докажем позже). Рассмотрим их произведение по Коши: $\sum_{n=1}^{\infty}\sum_{k=1}^{n}\frac{(-1)^{n-1}}{\sqrt{n}}\frac{(-1)^{n-k}}{\sqrt{n-k+1}}$. Модули членов этого ряда: $\frac{1}{\sqrt{n}}\frac{1}{\sqrt{n-k+1}}\geqslant n\frac{1}{\sqrt{n}}\frac{1}{\sqrt{n}}=1$. То есть они не стремятся к нулю и по теореме 1.1.1 (Необходимое условие сходимости ряда) ряд $\sum_{n=1}^{\infty}\sum_{k=1}^{n}rac{(-1)^{n-1}}{\sqrt{n}}rac{(-1)^{n-k}}{\sqrt{n-k+1}}$ расходится.

Пункт 1.3.3. Знакочередующиеся ряды

Определение 1.3.6. Ряд $\sum_{n=1}^{\infty} a_n$ называется *знакочередующимся*, если $a_n a_{n+1} < 0$, $\forall n \in \mathbb{N}$.

Определение 1.3.7. Ряд $\sum_{n=1}^{\infty} a_n$ называется *рядом типа Лейбница*, если $a_n a_{n+1} < 0$, $\forall n \in \mathbb{N}$ и $|a_n| \downarrow$ по n.

Теорема 1.3.8 (Признак Лейбница). Пусть $a_n > 0$, $\forall n \in \mathbb{N} \ u \ a_n \downarrow 0 \ npu \ n \to \infty$. Тогда $\sum_{n=1}^{\infty} (-1)^{n-1} a_n \operatorname{cxodumcs}$.

 A_n смочитель: A_n

Имеем, $S_{2k} = \underbrace{(a_1 - a_2)}_{\geqslant 0} + \underbrace{(a_3 - a_4)}_{\geqslant 0} + \ldots + \underbrace{(a_{2k-1} - a_{2k})}_{\geqslant 0}$. Стало быть, $S_{2k} \uparrow$. Но с другой стороны, $S_{2k} = a_1 - \underbrace{(a_2 - a_3)}_{\geqslant 0} - \ldots - \underbrace{(a_{2k-2} - a_{2k-1})}_{\geqslant 0} - \underbrace{a_{2k}}_{\geqslant 0}$. Поэтому $S_{2k} \leqslant a_1$, $\forall k \in \mathbb{N}$.

Итак, последовательность $(S_{2k}, k \in \mathbb{N})$ монотонно возрастает и ограничена (сверху). Стало быть, по теореме Вейерштрасса $\exists \lim_{k \to \infty} S_{2k} = S \in \mathbb{R}$, поэтому $\exists \lim_{k \to \infty} S_k = S$.

Теорема 1.3.9 (Оценка остатка ряда типа Лейбница). *Пусть* $a_n > 0$, $\forall n \in \mathbb{N}$ и $a_n \downarrow npu$ $n \to \infty$. Тогда остаток $r_k = \sum_{n=k+1}^{\infty} (-1)^{n-1} a_n$ обладает свойствами:

- 1. $|r_k| \leq a_{k+1}$;
- 2. знак r_k равен либо $(-1)^k$, либо 0.

Доказательство. Заметим, что $r_{2k} = S - S_{2k}$ и $r_{2k+1} = S - S_{2k+1}$.

Рассмотрим последовательность $(S_{2k+1},\ k\in\mathbb{N})$. Имеем, $S_{2k+1}=a_1-\underbrace{(a_2-a_3)}_{\geqslant 0}-\underbrace{(a_4-a_5)}_{\geqslant 0}-\underbrace{(a_4-a_5)}_{\geqslant 0}$

 $-\dots-\underbrace{(a_{2k}-a_{2k+1})}_{\geqslant 0}$. Стало быть, последовательность $(S_{2k+1},\ k\in\mathbb{N})$ монотонно убывает. Поэто-

му $S_{2k+1} \geqslant \tilde{S}$. Итак, имеют место неравенства: $S_{2k} \leqslant S \leqslant S_{2k+1}, \ \forall k \in \mathbb{N}$ (неравенство $S_{2k} \leqslant S$ выведено в доказательстве теоремы 1.3.8 (Признак Лейбница)).

- a) $r_{2k}=S-S_{2k}\geqslant 0$, то есть знак r_{2k} равен $(-1)^{2k}$ или 0. Кроме того, $|r_{2k}|=r_{2k}=S-S_{2k}\leqslant S_{2k+1}-S_{2k}=a_{2k+1}$.
- $b)\ r_{2k+1}=S-S_{2k+1}\leqslant 0$, то есть знак r_{2k+1} равен $(-1)^{2k+1}$ или 0. Кроме того, $|r_{2k+1}|=S_{2k+1}-S_{2k+1}-S_{2k+2}=a_{2k+2}$.

Замечание. Для сходимости ряда $\sum_{n=1}^{\infty} (-1)^{k-1} a_n$, вообще говоря, не достаточно неотрицательности всех членов последовательности $(a_n,\ n\in\mathbb{N})$ и того, что $a_n\xrightarrow{n\to\infty} 0$.

Пример. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} + \sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} \left[\frac{(-1)^{n-1}}{n} + \frac{1}{n} \right] \text{ расходится. При этом } \frac{(-1)^{n-1}}{n} \xrightarrow{n \to \infty} 0 \text{: обо-значив } a_n = \left[\frac{(-1)^{n-1}}{n} + \frac{1}{n} \right], \text{ имеем } a_n = \frac{(-1)^{n-1}}{n} = (-1)^{n-1} \xrightarrow{2+(-1)^{n-1}} \text{. Стало быть, } |a_n| \leqslant \frac{3}{n}.$ Пример.

$$\sum_{n=2}^{\infty} (-1)^n \frac{\ln^2(n)}{n}$$

сходится.

Доказательство. Достаточно показать, что $\frac{\ln^2(n)}{n}$ монотонно убывает, начиная с некоторого номера (так как неотрицательность $\frac{\ln^2(n)}{n}$ очевидна).

Пусть $f(x) = \frac{\ln^2(x)}{x}$. Необходимо найти такое $x_0 \ge 2$, что $f(x) \downarrow$ на $(x_0, +\infty)$. $f'(x) = \frac{2\ln(x)-\ln^2(x)}{x^2} = \frac{\ln(x)}{x^2}(2-\ln(x))$. Заметим, что $\frac{\ln(x)}{x^2} > 0$, $\forall x \ge 2$. Но $2-\ln(x) < 0$, $\forall x > e^2$.

Следовательно, последовательность ($|a_n|,\ n \ge \lfloor e^2 \rfloor + 1$) монотонно убывает.

Пример.

$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{2n+1}\right)^n$$

сходится абсолютно.

Доказательство. $\sqrt[n]{\left(\frac{3}{2n+1}\right)^n} = \frac{3}{2n+1} \xrightarrow{n \to \infty} 0 < 1$. Стало быть, по теореме 1.2.7 (Радикальный признак Коши) $\sum_{n=1}^{\infty} \left(\frac{3}{2n+1}\right)^n < \infty$.

Пункт 1.3.4. Признаки сходимости Дирихле и Абеля

Теорема 1.3.10 (Признак Дирихле). Пусть $a_n \in \mathbb{C},\ b_n \in \mathbb{R},\ \forall n \in \mathbb{N}, b_n \downarrow 0\ no\ n\ u\ \exists C > 0$: $\left|\sum_{n=1}^{k} a_n\right| \le C, \ \forall k \in \mathbb{N}.$ Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Лемма 1.3.1 (Тождество Абеля). Пусть $a_n \in \mathbb{C}, \ b_n \in \mathbb{R}, \ \forall n \in \mathbb{N}.$ Обозначим $A_k = \sum_{n=1}^{\infty} a_n \ u$

$$A_0 = 0$$
. Torða $\sum_{n=k}^{m} a_n b_n = \sum_{n=k}^{m-1} A_n (b_n - b_{n+1}) + A_m b_m - A_{k-1} b_k$, $\forall k \in \mathbb{N}, \ \forall m > k$.

Доказательство.
$$\sum_{n=k}^{m} a_n b_n = \sum_{n=k}^{m} (A_n - A_{n-1}) b_n = \sum_{n=k}^{m} A_n b_n - \sum_{n=k}^{m} A_n b_n - \sum_{n=k}^{m} A_n b_n - \sum_{n=k}^{m-1} A_n b_{n-1} = \sum_{n=k}^{m-1} A_n b_{n-1} = \sum_{n=k}^{m-1} A_n b_{n-1} = \sum_{n=k}^{m-1} A_n b_{n-1} = \sum_{n=k}^{m-1} A_n b_n - \sum_{n=k+1}^{m-1} A_n b_{n-1} = \sum_{n=k+1}^{m-1} A_n b_n - \sum_{n=k+1}^{m-1} A_n b_n$$

Доказательство теоремы 1.3.10. Имеем, $\left|\sum_{n=k}^{m}a_{n}b_{n}\right| \leq \sum_{n=k}^{m}|a_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}|(b_{n}-b_{n+1}) + \sum_{n=k}^{m}|a_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}|(b_{n}-b_{n+1}) + \sum_{n=k}^{m}|a_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}||b_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}||b_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}||b_{n}||b_{n}| = \sum_{n=k}^{m-1}|A_{n}||b$ $+|A_m|b_m-|A_{k-1}|b_k \leq C\left(\sum_{k=-k}^{m-1}(b_n-b_{n+1})+b_m+b_k\right)=C(b_k-b_{k+1}+b_{k+1}-b_{k+2}+\dots b_{m-1}-b_m+b_k)$ $(a_m + b_k) = 2Cb_k \xrightarrow{k \to \infty} 0$. Следовательно, по теореме 1.1.7 (Критерий Коши) $\sum_{k=0}^{\infty} a_k b_k$ сходит-

Замечание. Теорема 1.3.8 (Признак Лейбница) следует из теоремы 1.3.10 (Признак Дирихле).

Пример. Пусть
$$b_n \downarrow 0$$
 при $n \to \infty$. Тогда $\sum_{n=1}^{\infty} \sin(nx) b_n$ сходится. Доказательство. При $x = m\pi$, $m \in \mathbb{Z}$ — очевидно. Пусть $x \neq m\pi$, $m \in \mathbb{Z}$.
$$\sin\left(\frac{x}{2}\right) \sum_{n=1}^{k} \sin(nx) = \sum_{n=1}^{k} \sin(nx) \sin\left(\frac{x}{2}\right) = \frac{1}{2} \sum_{n=1}^{k} \left[\cos\left(n - \frac{1}{2}\right)x - \cos\left(n + \frac{1}{2}\right)x\right] = \frac{1}{2} \left[\left(\cos\frac{x}{2} - \cos\frac{3x}{2}\right) + \dots + \left(\cos(k - \frac{1}{2})x - \cos(k + \frac{1}{2})x\right)\right]$$
. В итоге: $\left|\sum_{n=1}^{k} \sin(nx)\right| \leqslant \frac{1}{2} \frac{\left|\cos\frac{x}{2}\right| + \left|\cos(k + \frac{1}{2})x\right|}{\sin\frac{x}{2}} \leqslant \frac{1}{\sin\frac{x}{2}} = C(x)$.

Пример.

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$$

при $x \neq m\pi$, $m \in \mathbb{Z}$ сходится условно.

Доказательство. Сходимость ряда следует из теоремы 1.3.10 (Признак Дирихле). Покажем, что ряд $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ сходится условно. $|\sin(nx)| \ge \sin^2(nx) = \frac{1}{2}(1-\cos(2nx))$, то есть

$$\frac{|\sin(nx)|}{n}\geqslant \frac{1-\cos(2nx)}{2n}\geqslant 0$$
. При этом $\sum_{n=1}^{\infty}\frac{1-\cos(2nx)}{n}=\sum_{n=1}^{\infty}\frac{1}{n}-\sum_{n=1}^{\infty}\frac{\cos(2nx)}{n}$ расходится, так как $\sum_{n=1}^{\infty}\frac{1}{n}$ рас-

ходится, а $\sum_{n=1}^{\infty} \frac{\cos(2nx)}{n}$ сходится (по теореме 1.3.10). По теореме 1.2.3 (Признаки сравнения)

$$\sum_{n=1}^{\infty} \frac{|\sin(nx)|}{n} = \infty$$
. Отсюда, $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ сходится условно.

Теорема 1.3.11 (Признак Абеля). Пусть $a_n \in \mathbb{C}, \ b_n \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \sum_{n=1}^\infty a_n$ сходится, $(b_n, n \in \mathbb{N})$ монотонна и ограничена. Тогда ряд $\sum_{n=1}^\infty a_n b_n$ сходится.

Доказательство. По теореме 1.2.1 (Вейерштрасса) $\exists \lim_{n \to \infty} b_n = b \in \mathbb{R}$. Пусть для определенности $(b_n, n \in \mathbb{N})$ монотонно убывает. Тогда $(b_n - b, n \in \mathbb{N})$ тоже монотонно убывает, причем к нулю, так как $b_n \geqslant b$. Заметим, что $a_n b_n = a_n b + a_n (b_n - b)$. Тогда $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} a_n b + \sum_{n=1}^{\infty} a_n (b_n - b)$. Первый ряд сходится, так как $\sum_{n=1}^{\infty} a_n$ сходится, а умножение на константу не меняет факта сходимости ряда (теорема 1.1.4). Второй ряд сходится по теореме 1.3.10

Пример.

(Признак Дирихле).

$$\sum_{n=1}^{\infty} \frac{\sin(x)}{n} \arctan(n)$$

сходится.

Доказательство. Ряд $\sum_{n=1}^{\infty} \frac{\sin(x)}{n}$ сходится, последовательность (arctan(n), $n \in \mathbb{N}$) монотонна и ограничена.

Глава 2

Функциональные ряды

§2.1. Функциональные последовательности

Пункт 2.1.1. Функциональные последовательности. Поточечная и равномерная сходимости

Будем рассматривать последовательности функций (функциональные последовательности)

$$(f_n: X \subset \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}).$$
 (2.1)

Определение 2.1.1. Говорят, что функциональная последовательность (2.1) *сходится поточечно* на $X \ \kappa \ f : X \subset \mathbb{R} \to \mathbb{R}$, если $\forall x \in X \ \exists \lim_{n \to \infty} f_n(x) = f(x)$.

Пример. $X = \mathbb{R}$, $f_n(x) = \frac{x}{n}$, f(x) = 0, $x \in X$, $n \in \mathbb{N}$.

Определение 2.1.2. Говорят, что функциональная последовательность (2.1) *сходится* равномерно на X к $f: X \subset \mathbb{R} \to \mathbb{R}$, если $\forall \varepsilon > 0$ $\exists N_{\varepsilon} \in \mathbb{N}: |f_n(x) - f(x)| < \varepsilon, \ \forall n > N, \ \forall x \in X.$

Обозначение. $f_n \xrightarrow[n \to \infty]{X} f$.

Следствие. (2.1) не сходится равномерно на X к $f: X \subset \mathbb{R} \to \mathbb{R}$, если $\exists \varepsilon > 0: \forall N \in \mathbb{N}$ $\exists n > N, \exists x \in X: |f_n(x) - f(x)| \ge \varepsilon$.

Пример.
$$X = \mathbb{R}, \ f_n(x) = \frac{x}{n}, \ x \in X, \ n \in \mathbb{N}, \ f_n(x) \xrightarrow{n \to \infty} 0, \ \forall x \in X, \ \text{но} \ f_n \xrightarrow{X} 0 \ \text{на} \ X.$$
 Доказательство. $\exists \varepsilon = 1 > 0: \ \forall N \in \mathbb{N} \ \exists n = 2N, \ \exists x = n: |f_n - f| = \frac{x}{n} = \frac{n}{n} = 1 \geqslant \varepsilon.$ **Пример.** $X = [0,1], \ f_n(x) = x^n, \ x \in X, \ n \in \mathbb{N}.$

$$f_n(x) \xrightarrow{n \to \infty} f = \begin{cases} 0 & 0 \leqslant x < 1 \\ 1 & x = 1 \end{cases}$$
, причем $f_n \in C[0,1]$, а $f \notin C(1)$. Поэтому $f_n \xrightarrow[n \to \infty]{X} f$ (докажем позже, признак Дини).

Пункт 2.1.2. Два признака равномерной сходимости. Признак Дини

Теорема 2.1.1 (Критерий Коши равномерной сходимости). Последовательность $(f_n: X \subset \mathbb{R} \to \mathbb{R}, n \in \mathbb{N})$ сходится равномерно на $X \Leftrightarrow \forall \varepsilon > 0 \ \exists N_{\varepsilon}: |f_n(x) - f_m(x)| < \varepsilon, \ \forall n, m > N_{\varepsilon}, \ \forall x \in X.$

Доказательство. \Rightarrow Очевидно.

Переходя к пределу по m, имеем, $|f_n(x)-f(x)| \le \varepsilon < 2\varepsilon$, $\forall n > N$, $\forall x \in X$, где N не зависит от x. Следовательно, $f_n \xrightarrow[n \to \infty]{X} f$.

Теорема 2.1.2 (Специальный критерий сходимости). Пусть дана функциональная последовательность $(f_n: X \subset \mathbb{R} \to \mathbb{R}, \ n \in \mathbb{N})$. Тогда $f_n \xrightarrow[n \to \infty]{X} f \Leftrightarrow \lim_{n \to \infty} \sup_{Y} |f_n - f| = 0$.

Доказательство. \Longrightarrow Так как $f_n \xrightarrow{X} f \Leftrightarrow \forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; r_n = |f_n - f| < \varepsilon, \; \forall x \in X,$

 $\forall n \in \mathbb{N}, \text{ to } \sup_{x \in X} r_n \leqslant \varepsilon < 2\varepsilon, \ \forall n \in \mathbb{N}. \ \text{ Поэтому } \sup_{X} r_n \xrightarrow{n \to \infty} 0.$

$$\leq \sup_{X} r_n < \varepsilon, \ \forall n > N, \ \forall x \in X. \ \Pi$$
оэтому $f_n \xrightarrow[n \to \infty]{X} f$.

Пример. $X = [0,1], f_n(x) = x^n \xrightarrow{n \to \infty} f, f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$. $\sup_{x \in (0,1)} x^n = 1 \xrightarrow{n \to \infty} 0$. Поэтому $f_n \xrightarrow{(0,1)} f$.

Следствие. Если $|f_n(x)| < q_n \ \forall n \in \mathbb{N}, \ \forall x \in X, \ q_n \xrightarrow{n \to \infty} 0$, то по теореме 2.1.2 (Специальный критерий сходимости) $f_n \xrightarrow[n \to \infty]{X} 0$.

Пример. $X = [0, 1-\varepsilon], \ \varepsilon \in (0,1), \ f_n(x) = x^n.$ Тогда $|f_n(x)| \le (1-\varepsilon)^n \xrightarrow[n \to \infty]{n \to \infty} 0.$ Следовательно, $f_n \xrightarrow[n \to \infty]{0,1-\varepsilon} 0.$

Теорема 2.1.3 (Признак Дини). Пусть дана функциональная последовательность $(f_n : [a,b] \to \mathbb{R}, \ n \in \mathbb{N})$ такая, что f_n монотонно стремится κ f на [a,b], $f_n \in C[a,b]$, $\forall n \in \mathbb{N}$, $f \in C[a,b]$. Тогда $f_n \xrightarrow[n \to \infty]{[a,b]} f$.

Доказательство. Без ограничения общности считаем, что $f_n(x) \uparrow f(x), \forall x \in [a, b]$. Положим $p_n(x) = f(x) - f_n(x), \ x \in [a, b]$. Тогда $p_n(x) \downarrow 0$ при $n \to \infty$, $\forall x \in [a, b]$ и $p_n \in C[a, b]$, $\forall n \in \mathbb{N}$.

Пусть $\varepsilon > 0$ — произвольно. Так как $\forall x \in [a,b] \exists N_x \in \mathbb{N} : 0 \leq p_n(x) < \varepsilon, \forall n > N_x$, то в силу непрерывности $p_n \exists U(x) : \forall y \in U(x) \ 0 \leq p_n(y) < \varepsilon, \forall n > N_x$. Получили открытое покрытие $\{U(x), \ x \in [a,b]\}$ отрезка [a,b]. Тогда существует конечное подпокрытие $\{U(x_k), k=1,\ldots,m\}$ отрезка [a,b].

Итак, имеем $\forall k=1,\ldots,m\;\exists N_k\in\mathbb{N}:\;\forall y\in U(x_k)\;p_n(y)<\varepsilon,\;\forall n>N_k.$ Пусть $N=\max_{k=1,\ldots,m}N_k$ и пусть $y\in[a,b]$ — произвольно. Тогда $\exists U(x_k):\;y\in U(x_k)\cap[a,b].$ Тогда для n>N (зависит только от ε) $0\leqslant p_n(y)\leqslant p_N(y)\leqslant p_{N_k}(y)<\varepsilon.$ В итоге, $\forall \varepsilon>0\;\exists N_\varepsilon\in\mathbb{N}:\;p_n(y)<\varepsilon,\;\forall y\in[a,b],$ $\forall n>N_\varepsilon,$ то есть $p_n\stackrel{[a,b]}{\Longrightarrow}0.$

Замечание. В теореме 2.1.3 заменить [a, b] на произвольное X, вообще говоря, нельзя.

Пример.
$$X = (0,1), f_n(x) = x^n, x^n \xrightarrow[n \to \infty]{X} 0.$$

Пункт 2.1.3. Предельный переход функциональной последовательности

$$\lim_{x \to a} \lim_{n \to \infty} f_n(x) \stackrel{?}{=} \lim_{n \to \infty} \lim_{x \to a} f_n(x).$$

Теорема 2.1.4. Пусть дана последовательность $(f_n: X \subset \mathbb{R} \to \mathbb{R}, \ \forall n \in \mathbb{N}), \ a — предельная точка <math>X$ и пусть $\exists \lim_{x \to a} f_n(x) = A_n \in \mathbb{R}, \ \forall n \in \mathbb{N} \ u \ f_n \xrightarrow[n \to \infty]{X} f.$ Тогда $\exists \lim_{n \to \infty} A_n = A \in \mathbb{R} \ u$ $\exists \lim_{x \to a} f(x) = A$.

Доказательство. $f_n \xrightarrow[n \to \infty]{X} f \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ |f_n(x) - f_m(x)| < \varepsilon, \ \forall x \in X, \forall m, n > N.$ Переходя к пределу $x \to a$ имеем: $|A_n - A_m| \le \varepsilon < 2\varepsilon, \ \forall m, n > N.$ Следовательность Коши, то есть $\exists \lim_{n \to \infty} A_n = A.$

 $|f(x)-A| \le |f(x)-f_n(x)| + |f_n(x)-A_n| + |A_n-A|$. Пусть $\varepsilon > 0$ — произвольно. Имеем:

Так как $f_n \rightrightarrows f$, то $\exists N'_s \in \mathbb{N} : |f(x) - f_n(x)| < \varepsilon, \forall n > N'_s, \forall x \in X$.

Так как $\lim_{n\to\infty}A_n=A$, то $\exists N_\varepsilon''\in\mathbb{N}:\ |A_n-A|<\varepsilon,\ \forall n>N_\varepsilon''.$

Пусть $n_0>\max\{N_\varepsilon',N_\varepsilon''\}$ — фиксировано. Так как $f_{n_0}(x)\xrightarrow{x\to a}A_{n_0}$, то $\exists \delta_\varepsilon>0:|f_{n_0}(x)-A_{n_0}|<\varepsilon,\ \forall x\in \dot{U}_{\delta_\varepsilon}(a)\cap X.$

В итоге $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \ |f(x) - A| < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon, \ \forall x \in \dot{U}_{\delta_{\varepsilon}}(a) \cap X.$

Следствие. Пусть $f_n \xrightarrow[n \to \infty]{X} f$, $x_0 \in X$, $f_n \in C(x_0)$, $\forall n \in \mathbb{N}$. Тогда $f \in C(x_0)$.

Доказательство. Если x_0 — изолированная точка X, то все доказано. Если же x_0 — предельная точка X, то по теореме $2.1.4 \ \exists \lim_{x \to x_0} f(x) = f(x_0)$.

Пример. $X = [0,1], f_n(x) = x^n, f_n \in C[0,1].$ Предположим, что $f_n \xrightarrow[n \to \infty]{[0,1]} f$. Тогда $f \in C[0,1]$, но $f \notin C(1)$.

Следствие. Если $f_n \xrightarrow[n \to \infty]{[a,b]} f$, $f_n \in C[a,b]$, $\forall n \in \mathbb{N}$, то $f \in C[a,b]$.

3амечание. Рассмотрим нормированное пространство C[a,b] с нормой $||f||_{\infty} = \max_{[a,b]} |f|$. Тогда по теореме 2.1.2 (Специальный критерий сходимости) $f_n \xrightarrow{n \to \infty} f$ в метрике $\rho(f,g) = ||f-g||_{\infty} \Leftrightarrow f_n \xrightarrow[n \to \infty]{[a,b]} f$.

 $\mathit{Замечаниe}.\ \mathit{C}[\mathit{a},\mathit{b}]$ с нормой $||\cdot||_{\infty}$ — полное (банахово) пространство.

Доказательство. $(f_n \in C[a,b], n \in \mathbb{N})$ — фундаментальная последовательность по $||\cdot||_{\infty}$. По теореме 2.1.1 (Критерий Коши равномерной сходимости) $(f_n, n \in \mathbb{N})$ сходится равномерно на [a,b]. Поэтому $\exists f = \lim_{n \to \infty} f_n, f \in C[a,b]$. □

Замечание. C[a,b] с нормой $||f||_2 = \sqrt{\int\limits_a^b f^2(x) dx}$ не является полным.

Пример.
$$f_n(x) = \begin{cases} 1 - nx & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} < x \le 1 \end{cases}$$
.

Так как $f_n \in C[0,1], \ \forall n \in \mathbb{N}. \ ||f_n||_2^2 = \frac{1}{3n} \xrightarrow{n \to \infty} 0$, то $||f_n||_2 = \frac{1}{\sqrt{3n}} \xrightarrow{n \to \infty} 0$. Значит $f_n \xrightarrow{n \to \infty} f = 0$ на [0,1], но $f_n(0) \xrightarrow{n \to \infty} 1$. Поэтому $f \notin C(0)$.

Пункт 2.1.4. Интегрируемость функциональных последовательностей

$$\lim_{n\to\infty}\int_a^b f_n(x)\mathrm{d}x \stackrel{?}{=} \int_a^b \left(\lim_{n\to\infty} f_n(x)\right)\mathrm{d}x.$$

Напомним:

Теорема 2.1.5. Пусть $f \in B[a,b]$. Тогда $f \in R[a,b] \Leftrightarrow \lim_{d(P)\to 0} \Omega(f,P) = 0$, где $\Omega(f,P) = 0$

$$= \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_k]) \Delta x_k; \ \omega(f, [x_{k-1}, x_k]) = \sup_{x', x'' \in [x_{k-1}, x_k]} |f(x') - f(x'')|.$$

Теорема 2.1.6. Пусть $f_n \xrightarrow[n \to \infty]{[a,b]} f$, $f_n \in R[a,b]$, $\forall n \in \mathbb{N}$. Тогда $f \in R[a,b]$.

Доказательство. Пусть $\varepsilon=1$. Тогда $\exists n_0\in\mathbb{N}: |f(x)-f_{n_0}(x)|<\varepsilon,\ \forall x\in[a,b]$. Поэтому $|f(x)|\leqslant \varepsilon+|f_{n_0}(x)|\leqslant \varepsilon+\sup_{[a,b]}|f_{n_0}|\leqslant \varepsilon+C=1+C$ (существование C следует из того, что $R[a,b]\subset B[a,b]$). Стало быть, $f\in B[a,b]$.

Рассмотрим $\Omega(f,P)=\sum_{k=1}^n\omega(f,[x_{k-1},x_k])\Delta x_k$. Имеем для $x',x''\in[x_{k-1},x_k]:|f(x')-f(x'')|\leqslant$ $\leqslant |f_n(x')-f_n(x'')|+|f(x')-f_n(x')|+|f(x'')-f_n(x'')|$.

Пусть $\varepsilon>0$ — произвольно. В силу равномерной сходимости $(f_n,\ n\in\mathbb{N})$ к $f,\ \exists n_1\in\mathbb{N}:$ $|f(x)-f_{n_1}(x)|<\varepsilon,\ \forall x\in[a,b].$

По критерию интегрируемости, $\exists \delta_{\varepsilon,n_1}: \ \Omega(f_{n_1},P) < \varepsilon, \ \forall P \ \mathrm{c} \ d(P) < \delta_{\varepsilon,n_1} \ \mathrm{ha} \ [a,b].$

 $\Omega(f,P) = \sum_{k=1}^{n} \omega(f,[x_{k-1},x_k]) \Delta x_k < \Omega(f_{n_1},P) + (b-a)\varepsilon + (b-a)\varepsilon < (1+2(b-a))\varepsilon, \ \forall P \ c$ $d(P) < \delta_{\varepsilon,n_1}.$

В итоге, $\forall \varepsilon > 0 \; \exists \delta_{\varepsilon} > 0 : \; \Omega(f,P) < \varepsilon, \; \forall P \; \mathrm{c} \; d(P) < \delta_{\varepsilon}.$

Теорема 2.1.7. Пусть $f_n \xrightarrow[n \to \infty]{[a,b]} f$, $f_n \in R[a,b]$ и пусть $F_n(x) = \int_a^x f_n(t) dt$, $F(x) = \int_a^x f(t) dt$ —

первообразные κf_n u f на [a,b] соответсвенно, $\forall n \in \mathbb{N}$. Тогда $F_n \xrightarrow[n \to \infty]{[a,b]} F$.

Доказательство. Так как $|F_n(x)-F(x)| \leq \int\limits_a^x |f_n(t)-f(t)| \mathrm{d}t \leq (b-a) \sup_{[a,b]} |f_n-f| \xrightarrow{n \to \infty} 0,$ $\forall x \in [a,b], \text{ To } \sup_{[a,b]} |F_n-F| \xrightarrow{n \to \infty} 0.$

Теорема 2.1.8. Пусть $f_n \xrightarrow[n \to \infty]{[a,b]} f$, $f_n \in R[a,b]$, $\forall n \in \mathbb{N}$. Тогда $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Доказательство. $\int\limits_a^b f_n(x)\mathrm{d}x = F_n(b) \xrightarrow{\mathrm{T. 2.1.7}} F(b) = \int\limits_a^b f(x)\mathrm{d}x.$

Замечание. $f_n(x) = nxe^{-nx^2}$ на [0,1]. Тогда $f_n(x) \xrightarrow{n \to \infty} 0$. Но $\int_0^1 f_n(x) \mathrm{d}x = \frac{1}{2}(1-e^{-n}) \xrightarrow{n \to \infty}$

3амечание. Из того, что $\exists \int\limits_a^{+\infty} f_n(x) \mathrm{d}x, \ \forall n \in \mathbb{N}$ и $f_n \xrightarrow[n \to \infty]{[a, +\infty)} f$, вообще говоря, не следует, что $\int_{0}^{+\infty} f_n(x) dx \xrightarrow{n \to \infty} \int_{0}^{+\infty} f(x) dx.$

Пример.
$$f_n(x) = \begin{cases} 0 & x \in [0, n] \cup [3n, +\infty) \\ \frac{x}{n^2} - \frac{1}{n} & x \in [n, 2n] \\ -\frac{x}{n^2} + \frac{3}{n} & x \in [2n, 3n] \end{cases}$$

Имеем, $f_n(x) \leq \frac{1}{n} \xrightarrow{n \to \infty} 0$. Поэтому $f_n \xrightarrow[n \to \infty]{[0,+\infty)} 0$. Но $\int_{0}^{+\infty} f_n(x) dx = 1 \xrightarrow{n \to \infty} 0$.

Пункт 2.1.5. Дифференцируемость функциональных последовательностей

$$\lim_{n\to\infty} f_n'(x) \stackrel{?}{=} \left(\lim_{n\to\infty} f_n(x)\right)'.$$

Теорема 2.1.9. Пусть $f_n:[a,b]\to\mathbb{R},\ (f_n,\ n\in\mathbb{N})$ сходится в некоторой точке $x_0\in[a,b]$, пусть для всякого $n \in \mathbb{N}$ $f_n \in D[a,b]$ и пусть $f'_n \xrightarrow{[a,b]} \varphi$. Тогда найдется такая функция $f:[a,b] \to \mathbb{R}$, что $f_n \xrightarrow{[a,b]} f$. Более того, $f \in D[a,b]$, причем $f' = \varphi$ на [a,b].

Доказательство. $|f_m(x)-f_n(x)| \leq |f_m(x_0)-f_n(x_0)| + |[f_m(x)-f_n(x)]-[f_m(x_0)-f_n(x_0)]|$. Пусть $\varepsilon > 0$ — произвольно.

 $\exists N_1 \in \mathbb{N} : |f_m(x_0) - f_n(x_0)| < \varepsilon, \ \forall m, n > N_1.$

Обозначим $g_{mn}(x) = f_m(x) - f_n(x)$. Тогда по теореме Лагранжа $\exists \theta \in (0,1) : |[f_m(x) - f_n(x)] - f_n(x)|$ $-[f_m(x_0) - f_n(x_0)]| = |g_{mn}(x) - g_{mn}(x_0)| = |g'_{mn}(x_0 + \theta(x - x_0))||x - x_0| \le (b - a)|f'_m(x_0 + \theta(x - x_0))||x - x_0||$ $-x_0))-f_n'(x_0+\theta(x-x_0))|. \ \text{В силу того, что} \ f_n' \xrightarrow[n \to \infty]{[a,b]} \varphi \ \exists N_2 \in \mathbb{N}: \ |f_m'(x)-f_n'(x)| < \varepsilon, \ \forall m,n > N_2,$ $\forall x \in [a, b].$

Пусть $N=\max\{N_1,N_2\}$. Тогда $|f_m(x)-f_n(x)|<\varepsilon+(b-a)\varepsilon=(1+b-a)\varepsilon,\ \forall x\in[a,b]$. Это и означает, что $\exists f: [a,b] \to \mathbb{R}, f_n \xrightarrow[n \to \infty]{[a,b]} f.$

Фиксируем произвольно $x\in [a,b]$. Для всякого $t\in X=[a,b]\backslash \{x\}$ рассмотрим выражения

$$h(t) = \frac{f(t) - f(x)}{t - x}, \qquad h_n(t) = \frac{f_n(t) - f_n(x)}{t - x}.$$

Заметим, что $h_n(t) \xrightarrow{n \to \infty} h(t)$, $\forall t \in X$.

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} : \ |f'_m(y) - f'_n(y)| < \varepsilon, \ \forall y \in [a,b], \ \forall m,n > N_{\varepsilon}. \ \exists \theta \in (0,1) : \ |h_m(t) - h_n(t)| = \\ = \frac{|f_m(t) - f_n(x) - [f_n(t) - f_n(x)]|}{|t - x|} = \frac{|f_m(t) - f_n(x)|}{|t - x|} = \frac{|g_{mn}(t) - g_{mn}(x)|}{|t - x|} = |g'_{mn}(x + \theta(t - x))| = |f'_m(x + \theta(t - x))| - f'_n(x + \theta(t - x))| < \varepsilon, \ \forall m,n > N_{\varepsilon}. \ \text{Стало быть}, \ h_n \xrightarrow{X} h. \ \text{Легко видеть}, \ \text{что} \ \exists \lim_{t \to x} h(t) = \\ = \lim_{t \to x} \lim_{n \to \infty} h_n(t) \xrightarrow{T. 2.1.4} \lim_{n \to \infty} \lim_{t \to x} h_n(t) = \lim_{n \to \infty} f'_n(x) = \varphi(x), \ \forall x \in [a,b].$$

Замечание. Из того, что $f_n \xrightarrow[n \to \infty]{[a,b]} f$ и $f_n \in C^1[a,b]$, $\forall n \in \mathbb{N}$, вообще говоря, не следует, что $\exists \lim_{n \to \infty} f'_n(x), \ \forall x \in [a,b]$.

Пример. $f_n(x) = \frac{\sin(nx)}{n}, \ x \in [-\pi, \pi].$ Имеем, $|f_n(x)| \leq \frac{1}{n} \xrightarrow{n \to \infty} 0.$ Поэтому $f_n \xrightarrow[n \to \infty]{[-\pi, \pi]} 0.$ Но $f_n'(x) = \cos(nx)$ не сходится на $[-\pi, \pi].$

Замечание. Из того, что $f_n \xrightarrow[n \to \infty]{[a,b]} f$, $f_n \in C^1[a,b]$, $\forall n \in \mathbb{N}$ и $\exists \lim_{n \to \infty} f'_n(x) = \varphi(x)$, $\forall x \in [a,b]$, вообще говоря, не следует, что $f'(x) = \varphi(x)$, $\forall x \in [a,b]$.

Пример.
$$f_n(x) = \frac{x^{n+1}}{n+1}, x \in [0,1]$$
. Имеем, $|f_n(x)| \leq \frac{1}{n+1} \xrightarrow{n \to \infty} 0$. Поэтому $f_n \xrightarrow[n \to \infty]{[0,1]} 0$. Но $f'_n(x) = x^n \xrightarrow[n \to \infty]{} \varphi(x) = \begin{cases} 0 & 0 \leq x < 1 \\ 1 & x = 1 \end{cases}$. При $x = 1$ $f' \neq \varphi$.

Замечание. Если $f_n \xrightarrow[n \to \infty]{X} f$, $g_n \xrightarrow[n \to \infty]{X} g$, то $\alpha f_n + \beta g_n \xrightarrow[n \to \infty]{X} \alpha f + \beta g$.

§2.2. Функциональные ряды

Пункт 2.2.1. Равномерная сходимость функционального ряда

$$a_n: X \subset \mathbb{R} \to \mathbb{R}, \quad n \in \mathbb{N}$$

Определение 2.2.1. Ряд вида

$$\sum_{n=1}^{\infty} a_n(x), \ x \in X \tag{2.2}$$

называется функциональным рядом.

Определение 2.2.2. Множество $M = \{x \in X : (2.2) \text{ сходится} \}$ называется *областью сходимости* ряда (2.2).

Сходимость ряда (2.2) эквивалентна сходимости функциональной последовательности его частичных сумм $\left(S_k(x) = \sum_{n=1}^k a_n(x), \ k \in \mathbb{N}, \ x \in X\right)$.

Определение 2.2.3. Говорят, что ряд (2.2) *сходится равномерно на M*, если последовательность ($S_k(x)$, $k \in \mathbb{N}$) сходится равномерно на M.

Замечание. Если $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на M, то $a_n \xrightarrow[n \to \infty]{M} 0$.

Пример.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + \ln(1+n)}$$

сходится равномерно на \mathbb{R} .

Доказательство. Так как $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + \ln(1+n)}$ — ряд типа Лейбница, то $\forall x \in \mathbb{R} \ | (S - S_n)(x) | =$ $= |r_n(x)| \leqslant \frac{1}{x^2 + \ln(2+n)} \leqslant \frac{1}{\ln(2+n)} \xrightarrow{n \to \infty} 0$. Поэтому $r_n(x) \xrightarrow[n \to \infty]{\mathbb{R}} 0$, что и доказывает равномерную сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + \ln(1+n)}$.

Пример.

$$\sum_{n=1}^{\infty} x^{n-1}$$

не сходится равномерно на (-1, 1).

Доказательство. Предположим, что $\sum_{n=1}^{\infty} x^{n-1}$ сходится равномерно на (−1,1). Тогда $|x^{n-1}| \xrightarrow[n \to \infty]{(-1,1)} 0$. Но это не верно, так как $\sup_{x \in (-1,1)} |x|^{n-1} = 1 \xrightarrow[n \to \infty]{} 0$.

Пример.

$$\sum_{n=1}^{\infty} x^{n-1}$$

сходится равномерно на [-q,q], где 0 < q < 1.

Доказательство.
$$|r_n(x)|=|(S-S_n)(x)|=\left|\frac{1}{1-x}-\frac{1-x^n}{1-x}\right|\leqslant \frac{q^n}{1-q}\xrightarrow{n\to\infty} 0.$$

Теорема 2.2.1 (Критерий Коши равномерной сходимости ряда). $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на $X \Longleftrightarrow \forall \varepsilon > 0$ $\exists N_{\varepsilon} \in \mathbb{N} : \left| \sum_{n=k}^{k+m} a_n(x) \right| < \varepsilon, \ \forall k > N_{\varepsilon}, \ \forall m \in \mathbb{N}, \forall x \in X.$

Пункт 2.2.2. Свойства равномерно сходящихся рядов

Теорема 2.2.2. Пусть $\sum\limits_{n=0}^{\infty}a_n(x)$ сходится равномерно на X, a — предельная точка X u пусть $\exists \lim_{x \to a}a_n(x) \in \mathbb{R}, \ \forall n \in \mathbb{N}.$ Тогда $\exists \lim_{x \to a}\left(\sum_{n=1}^{\infty}a_n(x)\right) = \sum_{n=1}^{\infty}\lim_{x \to a}a_n(x).$

Теорема 2.2.3. Пусть $\sum\limits_{n=1}^{\infty}a_n(x)$ сходится равномерно на X, $\sum\limits_{n=1}^{\infty}a_n(x)=f(x)$, $x_0\in X$ и пусть $a_n\in C(x_0)$, $\forall n\in\mathbb{N}$. Тогда $f\in C(x_0)$.

Замечание. Из того, что $\sum_{n=1}^{\infty} a_n(x)$ сходится на [a,b], $\sum_{n=1}^{\infty} a_n(x) = f(x)$, $a_n \in C[a,b]$, $\forall n \in \mathbb{N}$ и $f \in C[a,b]$, вообще говоря, не следует, что ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на [a,b].

Пример.

$$1 + \sum_{n=1}^{\infty} \left(x^n - x^{n-1} \right)$$

не сходится равномерно на (-1, 1).

Доказательство. $(x^n-x^{n-1})\in C(-1,1).$ $1+\sum_{n=1}^{\infty}(x^n-x^{n-1})=1+\frac{x}{1-x}-\frac{1}{1-x}=0\in C(-1,1),$ но сходимость ряда не равномерна. В самом деле, $S_k=x^k \xrightarrow[k\to\infty]{(-1,1)} 0$, так как $\sup_{x\in (-1,1)}|x^k|=1$ 0.

Теорема 2.2.4. Пусть $\sum_{n=0}^{\infty} a_n(x)$ сходится равномерно на [a,b] и $a_n \in R[a,b]$, $\forall n \in \mathbb{N}$. Тогда

$$\exists \int_{a}^{x} \left(\sum_{n=1}^{\infty} a_n(t) \right) dt = \sum_{n=1}^{\infty} \int_{a}^{x} a_n(t) dt, \ \forall x \in [a, b].$$

Теорема 2.2.5. Пусть $a_n:[a,b]\to\mathbb{R}, \ \sum\limits_{n=1}^\infty a_n(x)$ сходится в некоторой точке $x_0\in[a,b],$ пусть для всякого $n\in\mathbb{N}$ $a_n\in D[a,b]$ и пусть $\sum\limits_{n=1}^\infty a_n'(x)$ сходится равномерно на [a,b]. Тогда $\sum\limits_{n=1}^\infty a_n(x)$ сходится равномерно на [a,b]. причем $\exists\left(\sum\limits_{n=1}^\infty a_n(x)\right)'=\sum\limits_{n=1}^\infty a_n'(x),\ \forall x\in[a,b].$

Пункт 2.2.3. Признаки равномерной сходимости рядов

Теорема 2.2.6 (Признак Вейерштрасса). Пусть $|a_n(x)| \le b_n$, $\forall x \in X$, $\forall n \in \mathbb{N}$ $u \sum_{n=1}^{\infty} b_n < \infty$. Тогда $\sum_{n=1}^{\infty} a_n(x)$ сходится абсолютно и равномерно на X.

Доказательство. Пусть $\varepsilon > 0$ — произвольно. Тогда $\exists N \in \mathbb{N}: \ 0 \leqslant \sum_{n=k}^{k+m} b_n < \varepsilon, \ \forall k > N,$ $\forall m \in \mathbb{N}.$ Следовательно, $\left| \sum_{n=k}^{k+m} a_n(x) \right| \leqslant \sum_{n=k}^{k+m} |a_n(x)| \leqslant \sum_{n=k}^{k+m} b_n < \varepsilon, \ \forall k > N, \ \forall m \in \mathbb{N}, \ \forall x \in X.$ Рассмотрим пример непрерывной функции, не дифференцируемой ни в одной точке.

Пример (Ван–дер–Вардена). Рассмотрим функцию $f_0(x) = \begin{cases} x & 0 \le x \le \frac{1}{2} \\ 1-x & \frac{1}{2} \le x \le 1 \end{cases}$ и $f_0(x+1) = f_0(x), \ \forall x \in \mathbb{R}.$

Определим теперь $f_n(x) = \frac{f_0(4^n x)}{4^n}, \ \forall n \in \mathbb{N}.$

Тогда функция $f(x) = \sum_{n=0}^{\infty} f_n(x), \ \forall x \in \mathbb{R}$ — искомая функция, то есть непрерывная и нигде не дифференцируемая.

Доказательство. ¹Так как, очевидно, $0 \le f_k(x) \le \frac{1}{2 \cdot 4^k}$, (k = 0, 1, 2, ...), так что ряд мажорируется сходящейся прогрессией $\sum_{k=0}^{\infty} \frac{1}{2 \cdot 4^k}$, то по теореме 2.2.6 (Признак Вейерштрасса) ряд сходится равномерно, и функция f(x) всюду непрерывна.

 $^{^{1}}$ Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, п. 444.

Остановимся на любом значении $x=x_0$. Вычисляя его с точностью до $\frac{1}{2\cdot 4^n}$ (где n=0,1,2,...), по недостатку и по избытку, мы заключим его между числами вида: $\frac{s_n}{2\cdot 4^n} \leqslant x_0 < \frac{s_n+1}{2\cdot 4^n}$, где s_n — целое. Очевидно, что замкнутые промежутки $\Delta_n = \left[\frac{s_n}{2\cdot 4^n}, \frac{s_n+1}{2\cdot 4^n}\right]$ $(n=0,1,2,\ldots)$, оказываются вложенными один в другой. В каждом из них найдется такая точка x_n , что расстояние ее от точки x_0 равно половине длины промежутка: $|x_n-x_0|=\frac{1}{4^{n+1}}$. ясно, что с возрастанием nварианта x_n стремится к x_0 .

Составим теперь отношение приращений $\frac{f(x_n)-f(x_0)}{x_n-x_0}=\sum_{k=0}^{\infty}\frac{f_k(x_n)-f_k(x_0)}{x_n-x_0}$. Но, при k>n, число $\frac{1}{4^{n+1}}$ есть целое кратное периода $\frac{1}{4^k}$ функции f_k , так что $f_k(x_n)=f_k(x)$, соответствующие члены ряда обращаются в 0 и могут быть опущены. Если же $k \leqslant n$, то функция f_k , линейная в промежутке Δ_k , будет линейной и в содержащем ее промежутке Δ_n , причем $\frac{f(x_k)-f(x)}{x_k-x}=$ $\pm 1 \ (k = 0, 1, \dots, n).$

Таким образом, имеем окончательно $\frac{f(x_n)-f(x_0)}{x_n-x_0}=\sum_{k=0}^n (\pm 1);$ иными словами, это отношение равно четному целому числу при нечетном n и нечетному целому при четном n. Отсюда ясно, что при $n \to \infty$ отношение приращений ни к какому конечному пределу стремиться не может, так что наша функция при $x = x_0$ конечной производной не имеет.

Напомним лемму 1.3.1:

Лемма (Тождество Абеля). Пусть $a_n \in \mathbb{C}, \ b_n \in \mathbb{R}, \ \forall n \in \mathbb{N}.$ Обозначим $A_k = \sum_{n=1}^k a_n \ u \ A_0 = 0.$

Тогда
$$\sum_{n=k}^{m} a_n b_n = \sum_{n=k}^{m-1} A_n (b_n - b_{n+1}) + A_m b_m - A_{k-1} b_k, \forall k \in \mathbb{N}, \ \forall m > k.$$

Тогда $\sum_{n=k}^{m} a_n b_n = \sum_{n=k}^{m-1} A_n (b_n - b_{n+1}) + A_m b_m - A_{k-1} b_k$, $\forall k \in \mathbb{N}, \ \forall m > k$. **Теорема 2.2.7** (Признак Дирихле равномерной сходимости). *Пусть* $a_n : X \to \mathbb{C}, \ b_n : X \to \mathbb{C}$ $\rightarrow \mathbb{R}, \ \forall n \in \mathbb{N}. \ \exists C > 0: \ \left| \sum_{n=1}^k a_n(x) \right| \leqslant C, \ \forall k \in \mathbb{N}, \ \forall x \in X \ u \ nycmb \ b_n \downarrow 0 \ no \ n, \ b_n \xrightarrow[n \to \infty]{X} 0. \ Torda \ pяд$ $\sum_{n=0}^{\infty} a_n(x)b_n(x)$ сходится равномерно на X.

Доказательство. Имеем,
$$\left|\sum_{n=k}^{m}a_{n}(x)b_{n}(x)\right| \leqslant \sum_{n=k}^{m-1}|A_{n}(x)|(b_{n}(x)-b_{n+1}(x))+|A_{m}(x)|b_{m}(x)-$$
 — $|A_{k-1}(x)|b_{k}(x) \leqslant C\left(\sum_{n=k}^{m-1}\left(b_{n}(x)-b_{n+1}(x)\right)+b_{m}(x)+b_{k}(x)\right)=2Cb_{k}(x) \xrightarrow[n \to \infty]{x \in \mathbb{X}}$ 0. Следовательно, по теореме 2.2.1 (Критерий Коши равномерной сходимости ряда) $\sum_{n=1}^{\infty}a_{n}(x)b_{n}(x)$ сходится равномерно.

Пример.

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$$

сходится равномерно на $[\varepsilon, 2\pi - \varepsilon], \forall \varepsilon \in (0, \pi)$.

Доказательство. Имеем, $\left|\sum_{n=1}^K \sin(nx)\right| \leq \frac{1}{\left|\sin(\frac{x}{2})\right|} \leq \frac{1}{\left|\sin(\frac{x}{2})\right|} = C$, $\frac{1}{n} \downarrow 0$ по $n \bowtie \frac{1}{n} \xrightarrow[n \to \infty]{X} 0$. Пример.

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$$

сходится, но не равномерно на $(0, 2\pi)$.

Доказательство. Пусть $k \in \mathbb{N}$ — произвольно. Выберем $m=2k, \; x=\frac{1}{k}.$ Тогда $\left|\sum_{n=k}^{2k} \frac{\sin(\frac{n}{k})}{n}\right|=$

$$= \underbrace{\frac{\sin(1)}{k} + \frac{\sin(1 + \frac{1}{k})}{k+1} + \ldots + \frac{\sin(2)}{2k}}_{k+1 \text{ GERDAMUY}} \ge (k+1) \frac{\sin(1)}{2k} \ge k \frac{\sin(1)}{2k}.$$

Имеем,
$$\exists \varepsilon = \frac{\sin(1)}{2}$$
: $\forall N \in \mathbb{N}, \ \exists k > N, \ \exists m = 2k > k, \ \exists x = \frac{1}{k} \in (0, 2\pi)$: $\left| \sum_{n=k}^{m} \frac{\sin(nx)}{n} \right| \ge \varepsilon$.

Теорема 2.2.8 (Признак Абеля равномерной сходимости). Пусть $a_n : X \to \mathbb{C}, \ b_n : X \to \mathbb{R}, \ \forall n \in \mathbb{N}, \ \sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на $X, \ (b_n, \ n \in \mathbb{N})$ монотонна и равномерно ограничена константой C на X. Тогда ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится равномерно на X.

Доказательство. Пусть $\varepsilon>0$ — произвольно. $\exists N_{\varepsilon}\in\mathbb{N}: \left|\sum_{n=k}^{k+m-1}a_{n}(x)\right|<\varepsilon,\ \forall k>N_{\varepsilon},\ \forall m\in\mathbb{N},\ \forall x\in X.$ Для каждого фиксированного $k\in\mathbb{N}$ введем обозначения: $\widetilde{a}_{l}(x)=a_{l+k-1}(x),\ \widetilde{b}_{l}(x)=b_{l+k-1}(x),\ \widetilde{A}_{m}(x)=\sum_{l=1}^{m}\widetilde{a}_{l}(x)=\sum_{n=k}^{k+m-1}a_{n}(x).$

Имеем:
$$\left|\sum_{n=k}^{k+m} a_n(x)b_n(x)\right| = \left|\sum_{l=1}^{m+1} a_{l+k-1}(x)b_{l+k-1}(x)\right| = \left|\sum_{l=1}^{m+1} \widetilde{a}_l(x)\widetilde{b}_l(x)\right| = \left|\sum_{l=1}^m \widetilde{A}_l(x)\left(\widetilde{b}_l(x) - \widetilde{b}_{l+1}(x)\right)\right| + \widetilde{A}_{m+1}(x)\widetilde{b}_{m+1}(x) - \widetilde{A}_0(x)\widetilde{b}_1(x)\right| < \varepsilon \left(\widetilde{b}_1(x) - \widetilde{b}_2(x) + \ldots + \widetilde{b}_m(x) - \widetilde{b}_{m+1}(x) + \left|\widetilde{b}_{m+1}(x)\right|\right) \le \varepsilon \left(\left|\widetilde{b}_1(x)\right| + 2\left|\widetilde{b}_{m+1}(x)\right|\right) \le 3C\varepsilon.$$
 Пример.

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}} e^{-\frac{x}{n}}$$

сходится равномерно на $[\varepsilon, 2\pi - \varepsilon], \ \forall \varepsilon \in (0, \pi).$

§2.3. Степенные ряды

Пункт 2.3.1. Радиус и интервал сходимости

Определение 2.3.1. Ряд

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n, \quad a_n \in \mathbb{R}, \ n \in \mathbb{N}, \ x \in \mathbb{R}$$
 (2.3)

называется *степенным рядом*. Точка x_0 называется *центром* ряда (2.3).

Замечание. Ряд (2.3) всегда сходится в точке $x = x_0$.

Замечание. Заменой $y=x-x_0$ ряд (2.3) приводится к виду $\sum_{n=0}^{\infty} a_n y^n$. Поэтому, для простоты обозначения, будем рассматривать ряды вида $\sum_{n=0}^{\infty} a_n x^n$.

Теорема 2.3.1 (Первая теорема Абеля). Пусть ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится в точке $x_0 \neq 0$. Тогда ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится абсолютно во всех точках интервала $(-|x_0|,|x_0|)$.

Доказательство. Пусть $|x| < |x_0|$. Тогда $\exists C > 0: |a_n x_0^n| < C$, так как $\sum_{n=0}^\infty a_n x_0^n$ сходится. Поэтому $|a_n x^n| = \left|\frac{x}{x_0}\right|^n |a_n x_0^n| \leqslant \left|\frac{x}{x_0}\right|^n C$. Следовательно, по теореме 1.2.3 (Признаки сравнения)

ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится, и при том абсолютно.

Теорема 2.3.2. Для ряда $\sum\limits_{n=0}^{\infty}a_nx^n$ существует единственное $R\in[0,+\infty]$ такое, что: $\sum\limits_{n=0}^{\infty}a_nx^n$ сходится абсолютно на (-R,R) и расходится на $\mathbb{R}\setminus[-R,R]$.

Доказательство. Рассмотрим множества $M = \{x \in \mathbb{R} : \sum_{n=0}^{\infty} a_n x^n \text{ сходится} \}$ и $M^+ = \{|x|, x \in M\}$. Заметим, что они не пустые в силу того, что содержат точку 0. Положим $R = \sup M^+$ и покажем, что оно удовлетворяет условию теоремы.

Если R=0, то $M=\{0\}$ и значит сходимость доказана. Пусть теперь $0 < R \le +\infty$. Тогда $\forall x \in (-R,R) \ \exists y \in M^+: \ |x| < y \le R$. Значит, по теореме 2.3.1 (Первая теорема Абеля) ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится абсолютно в точке x.

Если $R=+\infty$, то $\mathbb{R}\setminus[-R,R]$ пусто. Пусть теперь $0\leqslant R<+\infty$. Предположим, что в некоторой точке $x\in\mathbb{R}\setminus[-R,R]$ ряд $\sum\limits_{n=0}^{\infty}a_nx^n$ сходится. Тогда $x\in M$ и $|x|\in M^+$. Поэтому $|x|\leqslant\sup M^+=R$. Противоречие.

Предположим, что существуют различные R_1 и R_2 , удовлетворяющие условию теоремы. Без ограничения общности, можно считать, что $R_1 < R_2$. Рассмотрим $x \in (R_1, R_2)$. С одной стороны, $x \in M$, так как $x < R_2$, с другой, $x \notin M$, так как $x > R_1$. Противоречие.

3амечание. Ряд $\sum_{n=0}^{\infty} a_n x^n$ в граничных точках $x=\pm R$ может вести себя по–разному.

Определение 2.3.2. Для ряда

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n \tag{2.4}$$

величина $R \in [0, +\infty]$ называется радиусом сходимости, если (2.4) сходится абсолютно на $(x_0 - R, x_0 + R)$ и расходится на $\mathbb{R} \setminus [x_0 - R, x_0 + R]$, а интервал $(x_0 - R, x_0 + R)$ называется интервалом сходимости ряда (2.4).

Пример.

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

сходится равномерно и абсолютно на [-1, 1].

Пример.

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$

сходится неравномерно на (-1,1] и абсолютно на (-1,1).

При
$$x = -1$$
: $(-1)^n \frac{(-1)^n}{n} = \frac{1}{n}$. Ho $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$.

Пример.

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

сходится на [-1, 1).

Пример.

$$\sum_{n=0}^{\infty} x^n$$

сходится на (-1, 1).

Пример.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

сходится на $(-\infty, +\infty)$.

Теорема 2.3.3. Радиус сходимости ряда $\sum_{n=0}^{\infty} a_n x^n$ равен $\lim_{n\to\infty} \left|\frac{a_n}{a_{n+1}}\right|$, если этот предел существует.

$$egin{align*} {\cal D}$$
 оказательство. Пусть $\exists\lim_{n o\infty}\left|rac{a_n}{a_{n+1}}\right|=R$. Покажем, что R есть искомая величина. Тогда $\left|rac{a_{n+1}x^{n+1}}{a_nx^n}\right|=\left|rac{a_{n+1}}{a_n}\right||x|\xrightarrow{n o\infty} egin{align*} rac{|x|}{R} & 0< R<+\infty \ \infty & R=0 \ 0 & R=\infty \ \end{pmatrix}$. Рассмотрим каждый случай отдельно.

 $0 < R < +\infty$. По теореме 1.2.5 (Признак Даламбера) искомый ряд сходится при |x| < R и расходится при |x| > R.

R = 0. Расходится на $\mathbb{R} \setminus \{0\}$ (по теореме 1.2.5).

$$R = \infty$$
. Сходится на \mathbb{R} (по теореме 1.2.5)

Напомним:

Определение 2.3.3. Пусть S — множество всех предельных точек последовательности $(a_n, n \in \mathbb{N})$. Тогда верхний предел

$$\varlimsup_{n o \infty} a_n = egin{cases} \sup(S) & (a_n, \ n \in \mathbb{N}) \ \text{ограничена (сверху)} \ +\infty & \text{иначе} \end{cases}.$$

Теорема 2.3.4. Обозначим $\rho = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$. Тогда радиус сходимости ряда $\sum_{n=0}^{\infty} a_n x^n$ равен $\frac{1}{\rho}$.

Доказательство. Зафиксируем произвольное ненулевое вещественное число x.

Если $\rho=0$, то $\lim_{n\to\infty}\sqrt[n]{|a_n|}=0$. Тогда $\exists N\in\mathbb{N}: \sqrt[n]{|a_n|}<\frac{q}{|x|},\ \forall n>N,$ где $q\in(0,1)$. Следовательно, $\sqrt[n]{|a_n|}|x| < q \Longleftrightarrow |a_n||x^n| < q^n$, но $\sum\limits_{n=1}^\infty q^n < \infty$ и, следовательно, $\sum\limits_{n=1}^\infty a_n x^n$ сходится.

Если $\rho=+\infty$, то $\sqrt[n]{|a_n|}$ не ограничена сверху. Следовательно, существует подпоследовательность $(a_{n_k},\ k\in\mathbb{N}):\ {}^{n_k}\!\!\sqrt{|a_{n_k}|}\xrightarrow{k\to\infty}+\infty.$ Поэтому $\exists k_0\in\mathbb{N}:\ {}^{n_k}\!\!\sqrt{|a_{n_k}|}\geqslant \frac{1}{|x|},\ \forall k>k_0,$ то есть $|a_n||x^{n_k}| > 1$. Стало быть, $a_n x^n \xrightarrow{n \to \infty} 0$.

Пусть $0<\rho<+\infty$. Пусть x — произвольное ненулевое число из интервала $(-\frac{1}{\rho},\frac{1}{\rho})$. Тогда $\exists \varepsilon: |x| < \frac{1}{\rho + \varepsilon}$. Тогда $|x|(\rho + \varepsilon) < 1$. Так как, $\rho = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$, то $\exists N \in \mathbb{N}: \sqrt[n]{|a_n|} < \rho + \varepsilon, \ \forall n > N$. Поэтому $|x| \sqrt[n]{|a_n|} < |x|(\rho + \varepsilon), \ \forall n > N$, то есть $|a_n||x^n| < (\rho + \varepsilon)^n |x^n|$. Но $(\rho + \varepsilon)^n |x^n| < 1$. Стало быть, $\sum_{n=1}^{\infty} (\rho + \varepsilon)^n |x^n| < \infty$ и, следовательно, $\sum_{n=0}^{\infty} |a_n x^n|$ сходится.

Пусть теперь $|x|>\frac{1}{\rho}$. Тогда $\exists \varepsilon>0:\ |x|>\frac{1}{\rho-\varepsilon}>0$, то есть $|x|(\rho-\varepsilon)>1$. Поэтому существует подпоследовательность (${}^{n_{k}}\!\!\sqrt{|a_{n_{k}}|}$, $k\in\mathbb{N}$) такая, что ${}^{n_{k}}\!\!\sqrt{|a_{n_{k}}|}\xrightarrow{k\to\infty}\rho$. Следовательно, $\exists K\in\mathbb{N}: {}^{n_{k}}\!\!\sqrt{|a_{n_{k}}|}>\rho-\varepsilon, \ \forall k>K$. Отсюда $|x|{}^{n_{k}}\!\!\sqrt{|a_{n_{k}}|}>|x|(\rho-\varepsilon)>1, \ \forall k>K$. Иными словами, $|a_{n_k}||x^{n_k}| > 1$, $\forall k > K$. В итоге, $a_{n_k}x^{n_k} \xrightarrow{k \to \infty} 0$, то есть $a_nx^n \xrightarrow{n \to \infty} 0$.

Пример. Радиус сходимости ряда

$$\sum_{k=1}^{\infty} 5^{k^2} x^{k^2}$$

равен $\frac{1}{5}$.

Доказательство. $\sum_{k=1}^{\infty} 5^{k^2} x^{k^2} = \sum_{n=1}^{\infty} a_n x^n$, где $a_n = \begin{cases} 5^{k^2} & n = k^2 \\ 0 & \text{иначе} \end{cases}$. Тогда $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 5$ и, следовательно, радиус равен $\frac{1}{5}$.

Пункт 2.3.2. Равномерная сходимость степенного ряда. Вторая теорема Абеля

Замечание. Пусть R > 0 — радиус сходимости ряда $\sum_{n=0}^{\infty} a_n x^n$. Тогда для равномерной сходимости этого ряда на (-R,R), вообще говоря, не достаточно его сходимости на (-R,R).

Пример. $\sum_{n=0}^{\infty} x^n$.

Теорема 2.3.5. Пусть R>0 — радиус сходимости ряда $\sum_{n=0}^{\infty}a_nx^n$. Тогда $\forall r\in(0,R)$ ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится равномерно на [-r,r].

Доказательство. В силу того, что |r| < R, $\sum_{n=0}^{\infty} a_n r^n$ сходится абсолютно. Так как $\forall x \in [-r,r]: |a_n||x^n| \le |a_n|r^n$, то по теореме 2.2.6 (Признак Вейерштрасса) $\sum_{n=0}^{\infty} a_n x^n$ сходится равномерно на [-r,r].

Теорема 2.3.6 (Вторая теореме Абеля). Пусть R > 0 — радиус сходимости ряда $\sum_{n=0}^{\infty} a_n x^n u$ пусть $\sum_{n=0}^{\infty} a_n R^n$ сходится. Тогда функция $S(x) = \sum_{n=0}^{\infty} a_n x^n$, определенная на (-R,R], непрерывна на этом полуинтервале.

Доказательство. Пусть $x_0 \in (-R,R)$ — произвольно. Тогда $\exists r \in (0,R): |x_0| \leq r$. По теореме 2.3.5 $\sum\limits_{n=0}^{\infty} a_n x^n$ сходится равномерно на [-r,r]. Очевидно, что $a_n x^n \in C[-r,r]$. Следовательно, по следствию к теореме 2.1.4 (Предельный переход функциональной последовательности) $S \in C[-r,r]$. В частности, $S \in C(x_0)$.

Пусть $x \in [0,R]$ — произвольно. Тогда $a_n x^n = a_n R^n \left(\frac{x}{R}\right)^n$. Имеем: $\sum_{n=0}^\infty a_n R^n$ сходится равномерно; $\left(\frac{x}{R}\right)^n$ монотонно убывает по n; $\left|\frac{x}{R}\right|^n \leqslant 1$. Тогда, по теореме 2.2.8 (Признак Абеля равномерной сходимости) $\sum_{n=0}^\infty a_n x^n$ сходится равномерно на [0,R]. По следствию к теореме 2.1.4 $S \in C(R)$.

В итоге $S \in C(-R,R) \cup C(R) \iff S \in C(-R,R]$.

Следствие. Пусть R>0 — радиус сходимости ряда $\sum\limits_{n=0}^{\infty}a_nx^n$ и пусть $\sum\limits_{n=0}^{\infty}a_n(-R)^n$ сходится. Тогда функция $S(x)=\sum\limits_{n=0}^{\infty}a_nx^n$, определенная на [-R,R), непрерывна на этом полуинтервале.

Следствие. Пусть R>0 — радиус сходимости ряда $\sum_{n=0}^{\infty}a_nx^n$ и пусть этот ряд сходится на [-R,R]. Тогда $\sum_{n=0}^{\infty}a_nx^n$ сходится равномерно на [-R,R].

Пункт 2.3.3. Сумма и произведение степенных рядов. Комплексные степенные ряды

Теорема 2.3.7. Пусть R_1 , R_2 , R_3 , R_4 — радиусы сходимости рядов $\sum\limits_{n=0}^{\infty}a_nx^n$, $\sum\limits_{n=0}^{\infty}b_nx^n$, $\sum\limits_{n=0}^{\infty}(a_n+b_n)x^n$, $\sum\limits_{n=0}^{\infty}d_nx^n$ соответственно, где $\sum\limits_{n=0}^{\infty}d_nx^n$ — произвольное произведение рядов $\sum\limits_{n=0}^{\infty}a_nx^n$ и $\sum\limits_{n=0}^{\infty}b_nx^n$. Тогда R_3 , R_4 $\geqslant \min\{R_1,R_2\}$.

Рассмотрим степенной ряд

$$\sum_{n=0}^{\infty} c_n z^n, \quad c_n \in \mathbb{C}, \ z \in \mathbb{C}. \tag{2.5}$$

Теорема 2.3.8 (Первая теорема Абеля). Пусть (2.5) сходится в точке $z_0 \neq 0$. Тогда (2.5) сходится абсолютно в круге $\{z \in \mathbb{C} : |z| < |z_0|\}$.

Теорема 2.3.9. Для (2.5) существует единственное $R \in [0, +\infty]$ такое, что: (2.5) сходится абсолютно в круге $\{z \in \mathbb{C} : |z| < R\}$ и расходится на множестве $\{z \in \mathbb{C} : |z| > R\}$.

Теорема 2.3.10. Радиус сходимости ряда (2.5) равен $\lim_{n\to\infty} \left| \frac{c_n}{c_{n+1}} \right|$, если этот предел существует.

Теорема 2.3.11. Радиус сходимости ряда (2.5) равен $\frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$.

Теорема 2.3.12. Пусть R > 0 — радиус сходимости ряда (2.5). Тогда $\forall r \in (0,R)$ ряд (2.5) сходится равномерно в круге $\{z \in \mathbb{C} : |z| \le r\}$.

Теорема 2.3.13 (Вторая теорема Абеля). Пусть R > 0 — радиус сходимости ряда (2.5) и пусть (2.5) сходится в некоторой точке $R \cdot e^{i\varphi_0}$. Тогда $\exists \lim_{x \to R} \sum_{n=0}^{\infty} c_n \left(x \cdot e^{i\varphi_0} \right)^n = \sum_{n=0}^{\infty} c_n \left(R \cdot e^{i\varphi_0} \right)^n$.

Пункт 2.3.4. Дифференцирование и интегрирование степенных рядов

Лемма 2.3.1. Пусть ряды $\sum_{n=0}^{\infty} a_n x^n u \sum_{n=1}^{\infty} n a_n x^{n-1}$ имеют радиусы сходимости R u R' соответственно. Тогда R = R'.

Доказательство. От противного. Предположим, что $R \neq R'$.

Предположим R < R'. Пусть $x \in (R,R')$ — произвольное ненулевое число. Тогда $\sum_{n=1}^{\infty} n|a_n||x^{n-1}| < \infty$. Поэтому $\sum_{n=1}^{\infty} n|a_n||x^n| < \infty$. Так как $|a_n||x^n| \leqslant n|a_n||x^n|$, $\forall n \in \mathbb{N}$, то $\sum_{n=1}^{\infty} |a_n| \cdot |x^n| < \infty$. То есть, $\sum_{n=0}^{\infty} a_n x^n$ сходится. Но x > R, значит, $\sum_{n=0}^{\infty} a_n x^n$ расходится. Противоречие.

Предположим R > R'. Пусть $x \in (R',R)$ — произвольно. Тогда $\exists \rho \in (R',R): x < \rho$. Так как $\sum\limits_{n=0}^{\infty} |a_n| \rho^n < \infty$, то $a_n \rho^n \xrightarrow{n \to \infty} 0$. То есть $\exists C > 0: |a_n| \rho^n \leqslant C$, $\forall n \in \mathbb{N}$. Поэтому $n|a_n||x^n| = |a_n| \rho^n n \Big(\frac{|x|}{\rho}\Big)^n \leqslant C n \Big(\frac{|x|}{\rho}\Big)^n$. Но $\frac{n+1}{n} \Big(\frac{|x|}{\rho}\Big) \xrightarrow{n \to \infty} \Big(\frac{|x|}{\rho}\Big) < 1$. Тогда по теореме 1.2.5 (Признак Даламбера) $\sum\limits_{n=0}^{\infty} n \Big(\frac{|x|}{\rho}\Big)^n < \infty$. Поэтому $\sum\limits_{n=1}^{\infty} n|a_n||x^n| < \infty$. Стало быть, $\sum\limits_{n=1}^{\infty} n|a_n||x^{n-1}| < \infty$. Но x > R', значит, $\sum\limits_{n=1}^{\infty} na_n x^{n-1}$ расходится. Противоречие.

Следствие. Ряды $\sum_{n=0}^{\infty} a_n x^n$ и $\sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}$ имеют один и тот же радиус сходимости.

Теорема 2.3.14 (Дифференцирование степенного ряда). Пусть ряд $\sum_{n=0}^{\infty} a_n x^n$ имеет радиус сходимости R>0. Тогда функция

$$f = \sum_{n=0}^{\infty} a_n x^n, \tag{2.6}$$

определенная на (-R,R), является бесконечно дифференцируемой на этом интервале (то есть $f \in C^{\infty}(-R,R)$), причем $f^{(k)}(x) = \sum_{n=0}^{\infty} a_n \frac{\mathrm{d}^k x^n}{\mathrm{d} x^k}$.

Доказательство. Пусть

$$g = \sum_{n=0}^{\infty} n a_n x^{n-1}.$$
 (2.7)

Тогда по лемме 2.3.1 ряды (2.6) и (2.7) имеют один и тот же радиус сходимости R.

Пусть $x \in (-R,R)$ — произвольно и пусть $r \in (0,R)$: |x| < r. Тогда, по теореме 2.3.5, ряды (2.6) и (2.7) сходятся равномерно на [-r,r]. Следовательно, $\exists f'(x) = g(x)$.

Пример. Сумма ряда

$$S(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1}$$

равна arctan(x) на [-1, 1].

Доказательство. Имеем, $\overline{\lim}_{n\to\infty}\sqrt[n]{\left[\frac{(-1)^{n-1}}{2n-1}\right]}=\lim_{n\to\infty}\left(\frac{1}{2n-1}\right)^{\frac{1}{2n-1}}=1$. Следовательно, радиус сходимости R ряда $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^{2n-1}}{2n-1}$ равен 1. По теореме 2.3.14 (Дифференцирование степенного ряда) $\exists S'(x)=\sum_{n=1}^{\infty}(-1)^{n-1}x^{2n-2}=\frac{1}{1+x^2}$ на (-1,1). Тогда $S(x)=\int\frac{\mathrm{d}x}{1+x^2}=\arctan(x)+C$. Но C=0, так как $S(0)=\arctan(0)=0$.

Так как по $S \in C(1)$ (теорема 2.3.6 (Вторая теорема Абеля)) и $\operatorname{arctan} \in C(1)$, то $S(1) = \arctan(1)$. Аналогично для x = -1. Поэтому равенство $S(x) = \arctan(x)$ верно $\forall x \in [-1, 1]$.

Теорема 2.3.15 (Почленное интегрирование степенного ряда). Пусть ряд $\sum_{n=0}^{\infty} a_n x^n$ имеет радиус сходимости R > 0. Тогда функция $f = \sum_{n=0}^{\infty} a_n x^n$, определенная на (-R,R) имеет первообразную, причем $\forall x \in (-R,R)$:

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}.$$
 (2.8)

Доказательство. Заметим, что $f \in C(-R,R)$. Тогда $f \in R[-r,r]$, $\forall r \in (0,R)$. Поэтому $\forall x \in (-R,R) \exists \int_{0}^{x} f(t) dt$. Осталось проверить равенство (2.8).

x = 0. Очевидно.

 $x>0.\ \exists r\in(0,R):\ x\in[0,r].$ Так как $\sum\limits_{n=0}^{\infty}a_{n}\frac{x^{n+1}}{n+1}$ сходится равномерно на [0,r], то по теореме $2.2.4\int\limits_{0}^{x}f(t)\mathrm{d}t=\int\limits_{0}^{x}\sum\limits_{n=0}^{\infty}a_{n}t^{n}\mathrm{d}t=\sum\limits_{n=0}^{\infty}\int\limits_{0}^{x}(a_{n}t^{n})\mathrm{d}t=\sum\limits_{n=0}^{\infty}a_{n}\frac{x^{n+1}}{n+1}.$

x < 0. На [x,0] ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится равномерно и, стало быть, по теореме 2.2.4 (Инте-

грирование функциональных рядов)
$$\exists \int\limits_{x}^{0} f(t) \mathrm{d}t = \int\limits_{x}^{0} \sum\limits_{n=0}^{\infty} a_n t^n \mathrm{d}t = -\sum\limits_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}.$$

§2.4. Ряд Тейлора

Пункт 2.4.1. Ряд Тейлора. Единственность разложения

Основные вопросы. Пусть $f \in C^{\infty}(-R,R)$. Существует ли степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ такой, что $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $\forall x \in (-R,R)$? Если существует, то единственен ли он?

Теорема 2.4.1 (Единственность разложения). Пусть $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $\forall x \in (-R,R)$. Тогда $a_k = \frac{f^{(k)}(0)}{k!}$, $\forall k \in \mathbb{N}^*$.

Доказательство. $f^{(0)}(0) = f(0) = a_0$.

По теореме 2.2.5 (Дифференцирование функциональной последовательности) $f^{(k)}(0) = \left(\sum_{n=0}^{\infty} a_n \frac{\mathrm{d}^k x^n}{\mathrm{d} x^k}\right) \bigg|_{x=0} = \left[\left(\sum_{n=0}^{k-1} a_n \frac{\mathrm{d}^k x^n}{\mathrm{d} x^k}\right) + a_k \frac{\mathrm{d}^k x^k}{\mathrm{d} x^k} + \left(\sum_{n=k+1}^{\infty} a_n \frac{\mathrm{d}^k x^n}{\mathrm{d} x^k}\right)\right]\bigg|_{x=0} = k! \ a_k, \ \forall k \geqslant 1.$ Определение 2.4.1. Пусть $f \in C^{\infty}(x_0 - R, x_0 + R)$. Тогда степенной ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad x \in (x_0 - R, x_0 + R)$$
 (2.9)

называется рядом Тейлора для функции f.

При $x_0 = 0$ ряд (2.9) называют рядом Маклорена.

Замечание. Ряд Тейлора может расходится всюду за исключением одной точки.

Замечание. Для того, что бы функция f раскладывалась в свой ряд Тейлора, вообще говоря, не достаточно ее бесконечной непрерывности ($f \in C^{\infty}(\mathbb{R})$) и сходимости ее ряда Тейлора в каждой точке вещественной прямой.

Пример.
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
.

Заметим, что $f^{(n)}(x) = P(\frac{1}{x})e^{-\frac{1}{x^2}} \xrightarrow{x \to 0} 0$. Поэтому $f^{(n)}(0) = 0$, $\forall n \in \mathbb{N}^*$, где P — некоторый полином. Тогда $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} 0 = 0$, $\forall x \in \mathbb{R}$, однако $f(x) \neq 0$. Определение 2.4.2. Пусть $f: M \to \mathbb{R}$ и x_0 — внутренняя точка M. Тогда f — аналитиче-

Определение 2.4.2. Пусть $f:M\to\mathbb{R}$ и x_0 — внутренняя точка M. Тогда f — аналитическая в точке $x_0 \Leftrightarrow \exists \varepsilon>0: \ f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n, \ \forall x\in U_\varepsilon(x_0).$

Замечание. Если f — аналитическая в точке x_0 , то $f \in C^\infty(U_\varepsilon(x_0))$ для некоторого $\varepsilon > 0$.

Замечание. Для того, что бы функция f была аналитической в точке x_0 , вообще говоря, не достаточно того, что $f \in C^{\infty}(U_{\varepsilon}(x_0))$ для некоторого $\varepsilon > 0$.

Теорема 2.4.2. Пусть $f \in C^{\infty}(x_0 - R, x_0 + R)$ для некоторого R > 0. Тогда $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$, $\forall x \in (x_0 - R, x_0 + R)$ если и только если $r_k(x) = f(x) - \sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \xrightarrow{k \to \infty} 0$, $\forall x \in (x_0 - R, x_0 + R)$.

Пункт 2.4.2. Основные разложения

В этом параграфе все доказательства основаны на теореме 2.4.2.

Теорема 2.4.3. Для всякого вещественного *х* справедливо равенство

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Доказательство. $\forall k \in \mathbb{N}: |r_k| = \frac{\exp(\theta x)}{(k+1)!} |x^{k+1}|$, где $\theta \in (0,1)$. Тогда $|r_k| \leq \exp(|x|) \cdot \frac{|x^{k+1}|}{(k+1)!} \xrightarrow{k \to \infty} 0$, так как $\sum_{n=0}^{\infty} \frac{x^n}{n!} < \infty$.

Следствие. Для всякого вещественного x справедливы равенства

$$\cosh(x) = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!};$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}.$$

3амечание. Пусть $f\in C^\infty(-R,R)$ для некоторого R>0. Тогда ряд Тейлора для f имеем вид $\sum\limits_{n=0}^\infty rac{f^{(2n)}(0)}{(2n)!} x^{2n}$, если f — четная и $\sum\limits_{n=0}^\infty rac{f^{(2n+1)}(0)}{(2n+1)!} x^{2n+1}$, если f — нечетная.

Теорема 2.4.4. Для всякого вещественного *х* справедливо равенство

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Доказательство. $\forall k \in \mathbb{N}: |r_k(x)| = \frac{|\cos^{(k+1)}(\theta x)|}{(2k+1)!} |x^{2k+1}| \leq \frac{|x^{2k+1}|}{(2k+1)!} \xrightarrow{k \to \infty} 0.$

Следствие. Для всякого вещественного x справедливо равенство

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$$

Доказательство. $\sin(x) = -\cos'(x) = \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}\right)' = \sum_{n=0}^{\infty} \left((-1)^n \frac{x^{2n}}{(2n)!}\right)' = \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$

Теорема 2.4.5. Для всякого $x \in (-1, 1]$ справедливо равенство

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}.$$

Доказательство. Пусть сначала $x \in (-1,1)$. Тогда $\ln(1+x) = \int_0^x \frac{\mathrm{d}t}{1+t} = \int_0^x \left(\sum_{n=0}^\infty (-1)^n t^n\right) \mathrm{d}t =$ $= \sum_{n=0}^\infty \int_0^x (-1)^n t^n \mathrm{d}t = \sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n}.$ Переходя к пределу $x \to 1-0$ в равенстве $\ln(1+x) = \sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n}$, получаем $\ln(2) =$ $= \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n}$, так как $\ln \in C(2)$ и $\sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n} \in C(1)$ (по теореме 2.3.6 (Вторая теореме Абеля)).

Теорема 2.4.6 (Биномиальный ряд). Для всякого $x \in (-1,1)$ справедливо равенство

$$(1+x)^{\alpha} = \begin{cases} \sum_{n=0}^{\alpha} \frac{\alpha!}{n!(\alpha-n)!} x^n & \alpha \in \mathbb{N}^* \\ \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} x^n & \alpha \in \mathbb{R} \setminus \mathbb{N}^* \end{cases}.$$

Доказательство. При $\alpha \in \mathbb{N}^*$ — очевидно. Рассмотрим $\alpha \in \mathbb{R} \setminus \mathbb{N}^*$ и пусть $x \in (-1,1)$ — фиксировано. Тогда $\forall k \in \mathbb{N}: \ r_k(x) = \frac{1}{k!} \int\limits_0^x (x-t)^k \big((1+t)^{\alpha} \big)^{(k+1)} \mathrm{d}t = A_k \int\limits_0^x (x-t)^k (1+t)^{\alpha-k-1} \mathrm{d}t = A_k \int\limits_0^x g^k(t)(1+t)^{\alpha-1} \mathrm{d}t, \ \text{где } A_k = \frac{\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-k)}{k!} \ \text{и } g(t) = \frac{x-t}{1+t}.$ Легко видеть, что $g \downarrow$ на (-1,1); $g(0) = x; \ g(x) = 0$ и, следовательно, $|g| \leq |x|$ на (-1,1). Стало быть, $|r_k(x)| \leq |A_k| \int\limits_0^x |x^k| (1+t)^{\alpha-1} \mathrm{d}t = |A_k| |x^k| C_{\alpha,x}$, где $C_{\alpha,x}$ не зависит от k. Легко видеть, что $\sum_{n=0}^\infty |A_n x^n| < \infty$, если $x \in (-1,1)$, и, значит, $|r_k(x)| \xrightarrow{k \to \infty} 0$.

Определение 2.4.3. Для всякого комплексного z определим функции:

$$1. \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!};$$

2.
$$\cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!};$$
 3. $\sinh(x) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!};$
4. $\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!};$ 5. $\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$

Легко проверить, что эти функции определены корректно.

Следствие. Для всякого комплексного z справедливы соотношения:

$$\cosh(z) + \sinh(z) = \exp(z); \qquad \cosh(z) - \sinh(z) = \exp(-z);$$

$$\cosh(z) = \frac{\exp(z) + \exp(-z)}{2}; \qquad \sinh(z) = \frac{\exp(z) - \exp(-z)}{2};$$

$$\cos(z) = \cosh(iz); \qquad \sin(z) = \frac{1}{i} \sinh(iz);$$

$$\cos(z) + i \sin(z) = \cosh(iz); \qquad \cos(z) - i \sin(z) = \cosh(-iz);$$

$$\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}; \qquad \sin(z) = \frac{\exp(iz) - \exp(-iz)}{2}.$$

Теорема 2.4.7. Пусть $z, z' \in \mathbb{C}$. Тогда $\exp(z) \cdot \exp(z') = \exp(z + z')$.

 \mathcal{A} оказательство. Воспользуемся аналогом теоремы 1.3.7 (Мертенса) для комплексных рядов: $\exp(z) \cdot \exp(z') = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^k (z')^{n-k}}{k!(n-k)!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} z^k (z')^{n-k} = \sum_{n=0}^{\infty} \frac{(z+z')^n}{n!} = \exp(z+z').$

Следствие. Экспонента всякого комплексного числа отлична от нуля.

Доказательство. От противного. Предположим, $\exists z_0 \in \mathbb{C}: \exp(z_0) = 0$. Тогда $0 = 0 \cdot \exp(-z_0) = \exp(z_0) \exp(-z_0) = \exp(0) = 1$. Противоречие.

Следствие. Пусть $z,z'\in\mathbb{C}$. Тогда $\frac{\exp(z)}{\exp(z')}=\exp(z-z')$.

Следствие. Пусть $z \in \mathbb{C}$, $n \in \mathbb{Z}$. Тогда $(exp(z))^n = \exp(nz)$.

Следствие. Пусть $x, y \in \mathbb{R}$. Тогда $\exp(x + iy) = \exp(x) (\cos(y) + i\sin(y))$.

Отсюда получаем:

$$\Re(\exp(x+iy)) = e^x \cos(y); \qquad \Im(\exp(x+iy)) = e^x \sin(y);$$
$$|\exp(z)| = e^x; \qquad \arg(\exp(x+iy)) = y.$$

Теорема 2.4.8. Пусть $z \in \mathbb{C}$ и $x \in \mathbb{R}$. Тогда $\left(\exp(zx)\right)_x' = z\exp(zx)$.

Доказательство.
$$\left(\exp(zx)\right)_x' = \left(\sum_{n=0}^{\infty} \frac{(zx)^n}{n!}\right)_x' = \sum_{n=0}^{\infty} \left(\frac{(zx)^n}{n!}\right)_x' = \sum_{n=1}^{\infty} z^n \frac{x^{n-1}}{(n-1)!} = z \sum_{n=1}^{\infty} \frac{(zx)^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{(zx)^n}{n!} = z \exp(zx).$$

Следствие. Пусть $z \in \mathbb{C}$, $z \neq 0$ и $x \in \mathbb{R}$. Тогда $\int \exp(zx) dx = \frac{1}{z} \exp(zx) + C$, $C \in \mathbb{C}$.

Глава 3

Интегралы, зависящие от параметра

§3.1. Собственные интегралы

Пункт 3.1.1. Непрерывность интеграла, зависящего от параметра

Обозначение. $I_x = [a, b] \in \mathbb{R}; \ I_y = [c, d] \in \mathbb{R}; \ \Pi = I_x \times I_y \in \mathbb{R}^2.$

Определение 3.1.1. Пусть функция $f: \Pi \to \mathbb{R}$ интегрируема по x на I_x для всех $y \in I_y$, то есть $\exists J(y) = \int_a^b f(x,y) \mathrm{d}x, \ \forall y \in I_y$. Интеграл J(y) называется интегралом (собственным), зависящим от параметра y.

Теорема 3.1.1 (Непрерывность интеграла, зависящего от параметра). *Пусть* $f:\Pi\to\mathbb{R}$, $f\in C(\Pi),\,K=I_y\times I_x\times I_x\in\mathbb{R}^3.$ Определим функцию $\Phi:K\to\mathbb{R};\,(y,z_1,z_2)\mapsto\int\limits_{z_1}^{z_2}f(x,y)\mathrm{d}x,\,\,\forall (y,z_1,z_2)\in K.$ Тогда $\Phi\in C(K)$.

Доказательство. Пусть $(y, z_1, z_2) \in K$ и $\varepsilon > 0$ — произвольны. Имеем:

$$\Phi(y+\Delta y,z_1+\Delta z_1,z_2+\Delta z_2)-\Phi(y,z_1,z_2)=\int\limits_{z_1+\Delta z_1}^{z_2+\Delta z_2}f(x,y+\Delta y)\mathrm{d}x-\int\limits_{z_1}^{z_2}f(x,y)\mathrm{d}x=A_1-A_2+A_3,$$
 где

$$A_{1} = \int_{z_{2}}^{z_{2} + \Delta z_{2}} f(x, y + \Delta y) dx; \quad A_{2} = \int_{z_{1}}^{z_{1} + \Delta z_{1}} f(x, y + \Delta y) dx; \quad A_{3} = \int_{z_{1}}^{z_{2}} [f(x, y + \Delta y) - f(x, y)] dx.$$

Оценим каждый из интегралов:

 A_1 . П — компакт и $f \in C(\Pi)$. Поэтому $\exists C > 0: |f(x',y')| < C, \ \forall (x',y') \in \Pi$ Следовательно, $|A_1| \le C|\Delta z_2| < C\varepsilon$, если $z_2, z_2 + \Delta z_2 \in I_x$ и $|\Delta z_2| < \varepsilon$.

 A_2 . Аналогично: $|A_2| \le C|\Delta z_1| < C \varepsilon$, если $z_1, z_1 + \Delta z_1 \in I_x$ и $|\Delta z_1| < \varepsilon$.

 A_3 . П — компакт и $f \in C(\Pi)$. Поэтому f равномерно непрерывна на Π . Значит, $\exists \delta_{\varepsilon} > 0$: $|A_3| \leq \int\limits_a^b \left[f(x,y+\Delta y) - f(x,y) \right] \mathrm{d}x < (b-a)\varepsilon, \ \forall x \in I_x, \ \forall y,y+\Delta y \in I_y, \ |\Delta y| < \delta_{\varepsilon}.$

В итоге, $\forall \varepsilon \; \exists \delta = \min \left\{ \varepsilon, \delta_\varepsilon \right\} : \; |\Phi(y + \Delta y, z_1 + \Delta z_1, z_2 + \Delta z_2) - \Phi(y, z_1, z_2)| = |A_1 - A_2 + A_3| \leqslant$ $\leqslant |A_1| + |A_2| + |A_3| < C\varepsilon + C\varepsilon + (b-a)\varepsilon = (2C+b-a)\varepsilon, \; \forall (y, z_1, z_2), (y+\Delta y, z_1 + \Delta z_1, z_2 + \Delta z_2) \in K$ с условием $\max \left\{ |\Delta y|, |\Delta z_1|, |\Delta z_2| \right\} < \delta.$

Следствие. Пусть $f \in C(\Pi), \ F: I_y \to \mathbb{R}; \ y \mapsto \int\limits_a^b f(x,y) \mathrm{d} x.$ Тогда $F \in C(I_y).$

Следствие. Пусть $f\in C(\Pi),\ F^*:I_y\to\mathbb{R};\ y\mapsto\int\limits_{\varphi(y)}^{\psi(y)}f(x,y)\mathrm{d}x,$ причем $\varphi,\ \psi\in C(I_y)$ и $\varphi(I_y),\ \psi(I_y)\subset I_x.$ Тогда $F^*\in C(I_y).$

Пример.
$$\Phi(y) = \int_{\sin(y)}^{y} f(x,y) dx \in C(\mathbb{R}), \text{ где } f(x,y) = \begin{cases} \frac{1}{|x|} e^{-\frac{1+|y|}{|x|}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Доказательство. Имеем, $\forall x \neq 0, \ f(x,y) \leqslant \frac{1}{|x|} e^{-\frac{1}{|x|}} \xrightarrow{x \to 0} 0 = f(0,y), \ \forall y \in \mathbb{R}$. Положим $\varphi(y) = \sin(y), \ \psi(y) = y, \ y \in [c,d]$, где $c \leqslant -1$ и $d \geqslant 1$ — произвольны. Тогда $\varphi([c,d]), \ \psi([c,d]) \subset [c,d]$. В силу теоремы $\Phi \in C([c,d])$. Так как c и d произвольны, то $\Phi \in C(\mathbb{R})$.

Пример.
$$F(y) = \int_{0}^{1} f(x,y) dx \notin C(0)$$
, где $f(x,y) = \begin{cases} \frac{2xy^2}{(x^2+y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$.

Доказательство. Заметим, что $f(x,x) = \frac{2x^3}{4x^4} \xrightarrow{x \to 0} \infty$. Легко видеть, что $F(0) = \int\limits_0^1 0 \mathrm{d}x = 0$.

Ho, при
$$y>0$$
, $F(y)=y^2\int\limits_0^1\frac{2x\mathrm{d}x}{(x^2+y^2)^2}=y^2\int\limits_{y^2}^{1+y^2}\frac{\mathrm{d}z}{z^2}=y^2\left(-\frac{1}{z}\right)\Big|_{y^2}^{1+y^2}=1-\frac{y^2}{1+y^2}\xrightarrow{y\to 0}1\neq 0$. Следовательно, $F\notin C(0)$. □

Пункт 3.1.2. Предельный переход под знаком интеграла

Определение 3.1.2. Пусть $f: X \times Y \subset \mathbb{R}^2 \to \mathbb{R}, \ g: X \to \mathbb{R}$ и пусть y_0 — предельная точка Y. Тогда функция f равномерно стремится κ g(x) на X при $y \to y_0$, если $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : |f(x,y) - g(x)| < \varepsilon, \ \forall y \in \dot{U}_{\delta_{\varepsilon}}(y_0) \cap Y, \ \forall x \in X.$

Обозначение. $f \stackrel{X}{\Longrightarrow} g$.

Теорема 3.1.2 (Критерий Коши равномерной сходимости семейства функций).

$$f \xrightarrow[Y \to Y_0]{X} g \iff \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : |f(x, y') - f(x, y'')| < \varepsilon, \ \forall y', y'' \in \dot{U}_{\delta_{\varepsilon}}(y_0) \cap Y, \ \forall x \in X.$$

Теорема 3.1.3 (Критерий Гейне равномерной сходимости). Пусть $f: X \times Y \subset \mathbb{R}^2 \to \mathbb{R}$, $g: X \to \mathbb{R}$ и пусть y_0 — предельная точка Y. Тогда $f \xrightarrow[y \to y_0]{X} g$ если и только если для всякой последовательности Гейне $(y_n \in Y, n \in \mathbb{N})$, связанной c точкой y_0 , последовательность $f(x, y_n)$ сходится равномерно k g(x) на X.

 \mathcal{A} оказательство. \Longrightarrow Пусть $(y_n \in Y, n \in \mathbb{N})$ — произвольная последовательность Гейне, связанная с точкой y_0 . Тогда $\forall \varepsilon \ \exists \delta_\varepsilon > 0: \ |f(x,y)-g(x)| < \varepsilon, \ \forall y \in \dot{U}_{\delta_\varepsilon}(y_0) \cap Y, \ \forall x \in X. \ \exists N \in \mathbb{N}: \ |y_n-y_0| < \delta_\varepsilon, \ \forall n > N.$ Следовательно, $|f(x,y_n)-g(x)| < \varepsilon, \ \forall n > N, \ \forall x \in X.$

 \sqsubseteq От противного. Предположим, что $f \xrightarrow[y \to y_0]{X} g$. Тогда $\exists \varepsilon > 0: \ \forall \delta_{\varepsilon} > 0 \ \exists y \in \dot{U}_{\delta_{\varepsilon}}(y_0) \cap Y$, $\exists x \in X: \ |f(x,y)-g(x)| \geqslant \varepsilon$. Пусть $(\delta_n = \frac{1}{n}, \ n \in \mathbb{N})$ и пусть $y_n \in \dot{U}_{\delta_n}(y_0) \cap Y$. Но $(y_n, \ n \in \mathbb{N})$ — последовательность Гейне, связанная с точкой y_0 . Тогда $\forall N \in \mathbb{N}: |f(x,y_n)-g(x)| \geqslant \varepsilon$, $\forall x \in X$. Противоречие.

Пример.

$$f(x,y) = e^{-\frac{x}{y}}$$

сходится равномерно на $[\varepsilon, +\infty) \times (0, +\infty) = [\varepsilon, +\infty) \times \mathbb{R}_+$ при $y \to 0, \ \forall \varepsilon > 0$.

Доказательство. $\forall x \in [\varepsilon, +\infty): f(x,y) \leqslant e^{-\frac{\varepsilon}{y}} \xrightarrow{y \to +0} 0$. Поэтому $f \xrightarrow[y \to +0]{[\varepsilon, +\infty)} 0$.

Пример.

$$f(x,y) = e^{-\frac{x}{y}}$$

не сходится равномерно на $(0, +\infty) \times (0, +\infty) = \mathbb{R}_+ \times \mathbb{R}_+$ при $y \to 0$.

Доказательство. В самом деле, $\exists \varepsilon = \frac{1}{e} > 0: \ \forall \delta > 0 \ \exists y \in (0, \delta), \ \exists x = y > 0: e^{-\frac{x}{y}} = e^{-1} = \frac{1}{e} \geqslant \varepsilon.$

Теорема 3.1.4 (Предельный переход под знаком интеграла). Пусть $f:[a,b] \times Y \subset$

 $\subset \mathbb{R}^2 \to \mathbb{R}, \ g:[a,b] \to \mathbb{R}, \ y_0$ — предельная точка $Y, \ \forall y \in Y: \ \exists \int\limits_a^b f(x,y) \mathrm{d}x \ u \ nycmb \ f \xrightarrow[y \to y_0]{[a,b]} g.$ Тогда $g \in R[a,b] \ u \ \exists \lim_{y \to y_0} \int\limits_a^b f(x,y) \mathrm{d}x = \int\limits_a^b \left(\lim_{y \to y_0} f(x,y)\right) \mathrm{d}x = \int\limits_a^b g(x) \mathrm{d}x.$

Доказательство. Пусть $(y_n \in Y, n \in \mathbb{N})$ — произвольная последовательность Гейне, связанная с точкой y_0 и пусть $F_n = \int\limits_a^b f(x,y_n)\mathrm{d}x$, $\forall n \in \mathbb{N}$. Легко заметить, что последовательность $(f(x,y_n), n \in \mathbb{N})$ удовлетворяет условию теорем 2.1.6 и 2.1.8 (Интегрируемость функциональных последовательностей) и, стало быть, $g \in R[a,b]$, кроме того $\exists \lim_{n \to \infty} F_n = \int\limits_a^b g(x)\mathrm{d}x$. В силу произвольности последовательности $(y_n \in Y, n \in \mathbb{N})$ и теоремы 3.1.3 (Критерий Гейне равномерной сходимости) теорема доказана.

Замечание. Первое следствие к теореме 3.1.1 (Непрерывность интеграла, зависящего от параметра) является следствием теоремы 3.1.4 (Предельный переход под знаком интеграла).

Пункт 3.1.3. Дифференцируемость интеграла, зависящего от параметра

Теорема 3.1.5. Пусть $f:\Pi\to\mathbb{R},\ \exists f_y'\ u\ f,f_y'\in C(\Pi),\ K=I_y\times I_x\times I_x\in\mathbb{R}^3.$ Определим функцию $\Phi:K\to\mathbb{R};\ (y,z_1,z_2)\mapsto\int\limits_{z_1}^{z_2}f(x,y)\mathrm{d}x,\ \forall (y,z_1,z_2)\in K.$ Тогда $\Phi\in D(K)$, причем $\Phi_y'(y,z_1,z_2)=\int\limits_{z_1}^{z_2}f_y'(x,y)\mathrm{d}x;\ \Phi_{z_2}'(y,z_1,z_2)=f(z_2,y);\ \Phi_{z_1}'(y,z_1,z_2)=-f(z_1,y),\ \forall (y,z_1,z_2)\in K.$ Доказательство. Пусть $(y,z_1,z_2)\in K$ и $\varepsilon>0$ — произвольны. Имеем:

$$\Delta \Phi = \int_{z_1 + \Delta z_2}^{z_2 + \Delta z_2} f(x, y + \Delta y) dx - \int_{z_1}^{z_2} f(x, y) dx =$$

$$\int_{z_2 + \Delta z_2}^{z_2 + \Delta z_2} f(x, y + \Delta y) dx - \int_{z_1}^{z_1 + \Delta z_1} f(x, y + \Delta y) dx + \int_{z_1}^{z_2} \left[f(x, y + \Delta y) - f(x, y) \right] dx;$$

$$P = \Delta \Phi - \left[f(z_2, y) \Delta z_2 - f(z_1, y) \Delta z_1 + \int_{z_1}^{z_2} f'_y(x, y) dx \Delta y \right] = P_1 - P_2 + P_3, \text{ где}$$

$$P_1 = \int_{z_2}^{z_2 + \Delta z_2} \left[f(x, y + \Delta y) - f(z_2, y) \right] dx; \quad P_2 = \int_{z_1}^{z_1 + \Delta z_1} \left[f(x, y + \Delta y) - f(z_1, y) \right] dx;$$

$$P_3 = \int_{z_2}^{z_2} \left(\left[f(x, y + \Delta y) - f(x, y) \right] - f'_y(x, y) \Delta y \right) dx.$$

Оценим каждый из интегралов:

 P_1 . П — компакт и $f \in C(\Pi)$. Поэтому f равномерно непрерывна на Π . Значит, $\exists \delta_1 > 0$: $|f(x,y+\Delta y)-f(z_2,y)| < \varepsilon$, если $|x-z_2| < \delta_1$ и $|\Delta y| < \delta_1$. Тогда $|P_1| < \varepsilon |\Delta z_2|$, если $|\Delta z_2| < \delta_1$ и $|\Delta y| < \delta_1$.

 P_2 . Аналогично: $|P_2|<arepsilon|\Delta z_1|$, если $|\Delta z_1|<\delta_1$ и $|\Delta y|<\delta_1$.

 $P_3.\ \exists \theta \in (0,1):\ P_3 = \int\limits_{z_1}^{z_2} \{f_y'(x,y+\theta\Delta y)\Delta y - f_y'(x,y)\Delta y\} \mathrm{d}x.\ \mathrm{Ho}\ f_y' \in \mathit{C}(\Pi).\ \mathrm{Поэтомy}\ f_y'$ равномерно непрерывна на $\Pi.\ \mathrm{Значит},\ \exists \delta_2 > 0:\ |f_y'(x,y+\theta\Delta y)\Delta y - f_y'(x,y)\Delta y| < \frac{\varepsilon}{b-a},\ \mathrm{если}\ |\Delta y| < \delta_2.\ \mathrm{Тогдa}\ |P_3| < \varepsilon |\Delta y|,\ \mathrm{если}\ |\Delta y| < \delta_2.$

Пусть $\delta = \min{\{\delta_1, \delta_2\}}$. Тогда $|P| < \varepsilon(|\Delta y| + |\Delta z_1| + |\Delta z_2|)$, если $\max{\{|\Delta y|, |\Delta z_1|, |\Delta z_2|\}} < \delta$.

Окончательно, обозначив $\Delta=(\Delta y,\Delta z_1,\Delta z_2),\ ||\Delta||=\max\{|\Delta y|,|\Delta z_1|,|\Delta z_2|\},$ имеем: $\forall \varepsilon>0 \exists \delta>0:\ \frac{|P|}{||\Delta||}<\varepsilon,\ \forall (y,z_1,z_2),\ (y+\Delta y,z_1+\Delta z_1,z_2+\Delta z_2)\in K$ с условием $||\Delta||<\delta.$ Тогда $\frac{|P|}{||\Delta||} \xrightarrow{||\Delta||\to 0} 0$. Следовательно, $P=o(||\Delta||)$ при $||\Delta||\to 0$.

Следствие (Формула Лейбница). Пусть $f, f_y' \in C(\Pi), \ F: I_y \to \mathbb{R}; \ y \mapsto \int\limits_{\varphi(y)}^{\psi(y)} f(x,y) \mathrm{d}x,$ где $\varphi, \ \psi \in D(I_y)$ и $\varphi(I_y), \ \psi(I_y) \subset I_x.$ Тогда $F \in D(I_y),$ причем $F'(y) = \psi'(y) f\big(\psi(y), y\big) - -\varphi'(y) f\big(\varphi(y), y\big) + \int\limits_{\varphi(y)}^{\psi(y)} f_y'(x,y) \mathrm{d}x.$

Пункт 3.1.4. Интегрируемость интеграла, зависящего от параметра

Предварительное замечание. Пусть $f \in C(\Pi)$. Тогда, в силу теоремы 3.1.1 (Непрерывность интеграла, зависящего от параметра), существуют интегралы $\int\limits_{c}^{d} \mathrm{d}y \int\limits_{a}^{b} f(x,y) \mathrm{d}x$ и $\int\limits_{a}^{b} \mathrm{d}x \int\limits_{c}^{d} f(x,y) \mathrm{d}y$.

Теорема 3.1.6. Пусть $f:\Pi\to\mathbb{R}$ и пусть $f\in C(\Pi)$. Тогда $\int\limits_{c}^{d}\mathrm{d}y\int\limits_{a}^{b}f(x,y)\mathrm{d}x=\int\limits_{a}^{b}\mathrm{d}x\int\limits_{c}^{d}f(x,y)\mathrm{d}y$.

Доказательство. Положим $\Phi(z) = \int\limits_{c}^{z} \mathrm{d}y \int\limits_{a}^{b} f(x,y) \mathrm{d}x, \ \Psi(z) = \int\limits_{a}^{b} \mathrm{d}x \int\limits_{c}^{z} f(x,y) \mathrm{d}y.$ Легко проверить, что Φ удовлетворяет условиям теорем о непрерывности и дифференцируемости интеграла по верхнему пределу, а Ψ удовлетворяет условиям теорем 3.1.1 (Непрерывность интеграла, зависящего от параметра) и 3.1.5 (Дифференцируемость интеграла, зависящего от параметра), и, стало быть, $\Phi, \Psi \in C[c,d] \cap D[c,d]$. Рассмотрим Φ' и Ψ' : $\Phi'(z) = \int\limits_{a}^{b} f(x,z) \mathrm{d}x = \Psi'(z)$. Поэтому $\Phi - \Psi = const$ на [c,d]. Но $(\Phi - \Psi)(c) = 0$. Следовательно, $\Phi - \Psi = 0$. \square Пример.

$$f(x,y) = \begin{cases} \frac{x-y}{(x+y)^3} & x+y \neq 0 \\ 0 & x+y = 0 \end{cases}.$$

Тогда $\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx \neq \int_{0}^{1} dx \int_{0}^{1} f(x, y) dy$.

Доказательство. Легко видеть, что $f \notin C(0,0)$ и $\int\limits_0^1 \mathrm{d}y \int\limits_0^1 f(x,y) \mathrm{d}x = -\frac{1}{2}, \int\limits_0^1 \mathrm{d}x \int\limits_0^1 f(x,y) \mathrm{d}y = = \frac{1}{2}.$

§3.2. Несобственные интегралы, зависящие от параметра

Пункт 3.2.1. Несобственные интегралы на бесконечном промежутке интегрирования

Напомним:

Определение 3.2.1. Пусть $f \in R[a,b], \ \forall b > a.$ Рассмотрим интеграл $I = \int\limits_a^{+\infty} f(x) \mathrm{d}x =$

 $=\lim_{b\to +\infty} \int_{a}^{b} f(x) \mathrm{d}x$. Если этот предел существует, то говорят, что интеграл I сходится. В противном случае говорят, что он расходится.

Рассмотрим интеграл

$$F(y) = \int_{a}^{+\infty} f(x, y) dx, \quad y \in Y,$$
 (3.1)

который сходится для всякого $y \in Y$.

Определение 3.2.2. Интеграл (3.1) *сходится равномерно* на Y, если $\int_a^b f(x,y) dx \xrightarrow[b \to +\infty]{Y}$ \Rightarrow F(y).

Теорема 3.2.1 (Критерий Коши). $\int_a^b f(x,y) \mathrm{d}x \xrightarrow{\frac{Y}{b \to +\infty}} F(y) \iff \forall \varepsilon > 0 \ \exists M \in \mathbb{R} : \left| \int_{b_1}^{b_2} f(x,y) \mathrm{d}x \right| < \varepsilon, \ \forall b_1,b_2 > M, \ \forall y \in Y.$

Определение 3.2.3. Говорят, что интеграл (3.1) *сходится неравномерно* на Y, если (3.1) сходится поточечно, но не равномерно на Y.

Теорема 3.2.2 (Специальный критерий сходимости). Интеграл (3.1) сходится равномерно на $Y \Leftrightarrow (3.1)$ сходится поточечно на Y и $\int\limits_{b}^{+\infty} f(x,y) \mathrm{d}x \xrightarrow[b \to +\infty]{Y} 0$.

Пример.

$$f(x,y) = \begin{cases} \frac{1}{y} & 0 \le x \le y \\ 0 & y \le x \le +\infty \end{cases}$$

сходится неравномерно на $(0, +\infty)$.

Доказательство. $\int\limits_0^{+\infty} f(x,y) \mathrm{d}x = \int\limits_0^y \frac{\mathrm{d}x}{y} = 1$. Следовательно, интеграл сходится поточечно для любого $y \in (0,+\infty)$.

Заметим, что $\int\limits_{b}^{+\infty}f(x,2b)\mathrm{d}x=\frac{1}{2}>0.$ Поэтому, $\exists \varepsilon=\frac{1}{2}>0: \ \forall M\in\mathbb{R}\ \exists b>M\ \exists y=2b:$ $\int\limits_{b}^{+\infty}f(x,y)\mathrm{d}x=\frac{1}{2}\geqslant\varepsilon.$

Аналогично формулируются определения 3.2.1, 3.2.2, 3.2.3 и теоремы 3.2.1, 3.2.2 для интеграла вида

$$\int_{-\infty}^{a} f(x, y) dx, \quad y \in Y,$$

который сходится для всякого $y \in Y$.

Определение 3.2.4. Говорят, что интеграл $\int\limits_{-\infty}^{+\infty} f(x,y) \mathrm{d}x$ сходится равномерно на Y, если

интегралы $\int\limits_{-\infty}^{0}f(x,y)\mathrm{d}x$ и $\int\limits_{0}^{+\infty}f(x,y)\mathrm{d}x$ сходятся равномерно на Y.

Пример.

$$F(y) = \int_{-\infty}^{+\infty} e^{-yx^2} dx$$

сходится равномерно на $[\varepsilon, +\infty)$, $\forall \varepsilon > 0$ и сходится неравномерно на $(0, +\infty)$.

Доказательство. $\int\limits_{-\infty}^{+\infty} e^{-yx^2} \mathrm{d}x = 2 \int\limits_{0}^{+\infty} e^{-yx^2} \mathrm{d}x.$ Поэтому достаточно рассматривать интеграл $\int\limits_{0}^{+\infty} e^{-yx^2} \mathrm{d}x = \left(\int\limits_{0}^{1} + \int\limits_{1}^{+\infty}\right) e^{-yx^2} \mathrm{d}x = I_1 + I_2,$ где $I_1 = \int\limits_{0}^{1} e^{-yx^2} \mathrm{d}x,$ $I_2 = \int\limits_{1}^{+\infty} e^{-yx^2} \mathrm{d}x.$ Интеграл I_1 — собственный, а интеграл I_2 сходится для всякого $y \in (0, +\infty)$, так как $\exists C_y > 0: yx^2e^{-yx^2} \leqslant \leqslant C_y$ и, следовательно, $|e^{-yx^2}| \leqslant \frac{C_y}{y} \cdot \frac{1}{x^2},$ причем $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^2} < \infty.$

Пусть $Y = [\varepsilon, +\infty)$. Тогда $\left| \int\limits_{b}^{+\infty} e^{-yx^2} \mathrm{d}x \right| \leqslant \int\limits_{b}^{+\infty} e^{-\varepsilon x^2} \mathrm{d}x \xrightarrow{b \to +\infty} 0$, $\forall y \in Y$. Следовательно, по теореме 3.2.2 (Специальный критерий сходимости) F(y) сходится равномерно на Y.

Пусть теперь $Y=(0,+\infty)$. Рассмотрим $|F(y)|=F(y)=\int\limits_{b}^{+\infty}e^{-yx^2}\mathrm{d}x=\frac{1}{\sqrt{y}}\int\limits_{b\sqrt{y}}^{+\infty}e^{-t^2}\mathrm{d}t$. Заметим, что $\left|F\left(\frac{1}{b^2}\right)\right|=\left|\int\limits_{b}^{+\infty}e^{-\frac{1}{b^2}x^2}\mathrm{d}x\right|=b\int\limits_{1}^{+\infty}e^{-t^2}\mathrm{d}t=Cb$, где $C=\int\limits_{1}^{+\infty}e^{-t^2}\mathrm{d}t$. Поэтому, $\exists \varepsilon=1>0$: $\forall M\in\mathbb{R}\ \exists b=M+\frac{1}{C}>M,\ \exists y=\frac{1}{b^2}\in Y:\left|\int\limits_{b}^{+\infty}f(x,y)\mathrm{d}x\right|=C\left(M+\frac{1}{C}\right)>1\geqslant\varepsilon$.

Замечание. Пусть $f \in C(\Pi_{\infty})$ и пусть интеграл $F(y) = \int_{a}^{+\infty} f(x,y) \mathrm{d}x$ сходится поточечно на (c,d) и расходится хотя бы в одной из концевых точек отрезка [c,d]. Тогда F сходится неравномерно на (c,d).

Доказательство. Пусть для определенности расходится F(c). Это значит, что $\exists \varepsilon > 0:$ $\forall M \in \mathbb{R} \ \exists b_1, b_2 > M: \left| \int\limits_{b_1}^{b_2} f(x,c) \mathrm{d}x \right| > \varepsilon.$ Обозначим $\Phi(y) = \int\limits_{b_1}^{b_2} f(x,y) \mathrm{d}x.$ Так как по условию $\Phi \in C[c,d]$, то $\Phi \in C(c)$. Но тогда $\exists \delta > 0: \ |\Phi(y)| > \varepsilon, \ \forall y \in [c,\delta)$. Следовательно, по теореме 3.2.1 (Критерий Коши) F не сходится равномерно на (c,d).

Пункт 3.2.2. Признаки сходимости несобственных интегралов с бесконечными пределами

Теорема 3.2.3 (Признак Вейерштрасса). Пусть $f:[a,+\infty)\times Y\to\mathbb{R},\ g:[a,+\infty)\to\mathbb{R},\ |f(\cdot,y)|\leqslant g,\ f(\cdot,y)\in R[a,b],\ \forall b>a,\ \forall y\in Y$ и $\int\limits_a^+\infty g(x)\mathrm{d} x<\infty.$ Тогда $\int\limits_a^+\infty f(x,y)\mathrm{d} x$ сходится равномерно по y на Y.

 \mathcal{L} оказательство. Пусть b > a и $y \in Y$ — произвольны. Имеем: $\left|\int\limits_{b}^{+\infty} f(x,y) \mathrm{d}x\right| \leqslant \int\limits_{b}^{+\infty} |f(x,y)| dx$ $y = \int\limits_{b}^{+\infty} g(x) \mathrm{d}x \xrightarrow{b \to +\infty} 0$. Следовательно, $\int\limits_{b}^{+\infty} f(x,y) \mathrm{d}x \xrightarrow{y \to +\infty} 0$. В силу теоремы 3.2.2 (Специальный критерий сходимости) доказательство завершено.

Пример.

$$\int_{2}^{+\infty} \frac{e^{-\frac{y}{x}}\sin(xy)}{x^{2}-\cos(x)} dx$$

сходится равномерно по y на $[0, +\infty)$.

Доказательство. Имеем, $\left|\frac{e^{-\frac{y}{x}}\sin(xy)}{x^2-\cos(x)}\right| \leq \left|\frac{1}{x^2-\cos(x)}\right| \leq \frac{1}{x^2-1} \leq \frac{2}{x^2}$. Но $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2} < \infty$ и, следовательно, искомый интеграл сходится равномерно на $[0, +\infty)$.

Напомним:

Теорема 3.2.4 (Вторая теорема о среднем). Пусть $f \in R[a,b], g \in M[a,b]$. Тогда $\exists c \in [a,b] : \int_{a}^{b} f(x)g(x)dx = g(a)\int_{a}^{b} f(x)dx + g(b)\int_{a}^{b} f(x)dx.$

Теорема 3.2.5 (Признак Дирихле). Пусть $f,g:[a,+\infty)\times Y\to\mathbb{R},\ f(\cdot,y)\in R[a,b],$ $g(\cdot,y)\in M[a,b],\ \exists C>0:\ \left|\int\limits_a^b f(x,y)\mathrm{d}x\right|\leqslant C,\ \forall b>a,\ \forall y\in Y\ u\ g(x,y)\stackrel{Y}{\Longrightarrow}0.\ Tor\partial a$ $\int\limits_{0}^{+\infty}f(x,y)g(x,y)\mathrm{d}x$ сходится равномерно по у на Y.

Доказательство. Пусть $b_1, b_2 > a, \ b_2 > b_1$ и $y \in Y$ — произвольны. Тогда по теореме 3.2.4 (Вторая теорема о среднем) $\exists c \in [b_1, b_2]: \left| \int\limits_{b_1}^{b_2} f(x,y) g(x,y) \mathrm{d}x \right| \leq |g(b_1,y)| \left| \int\limits_{b_1}^{c} f(x,y) \mathrm{d}x \right| +$ $+|g(b_2,y)| \left|\int\limits_{0}^{b_2} f(x,y) \mathrm{d}x\right|$. Пусть $\varepsilon>0$ — произвольно. Тогда $\exists B>a: \ |g(b,y)|<\varepsilon, \ \forall b>B,$ $\forall y \in Y$. В итоге, $\forall b_1 > B$, $\forall b_2 > b_1 : \left| \int_{b_2}^{b_2} f(x, y) g(x, y) dx \right| < 2C\varepsilon + 2C\varepsilon = 4C\varepsilon$. Пример (Интеграл Дирихле).

$$I(y) = \int_{0}^{+\infty} \frac{\sin(xy)}{x} \mathrm{d}x$$

сходится равномерно на $[\delta, +\infty)$, $\forall \delta > 0$ и сходится неравномерно на $(0, +\infty)$.

Доказательство. Пусть $Y = [\delta, +\infty)$. $I(y) = \left(\int\limits_0^1 + \int\limits_1^{+\infty}\right) \frac{\sin(xy)}{x} \mathrm{d}x = I_1 + I_2$, где $I_1 = \int\limits_0^1 \frac{\sin(xy)}{x} \mathrm{d}x$, $I_2 = \int\limits_{-\infty}^{+\infty} \frac{\sin(xy)}{x} \mathrm{d}x$. При этом I_1 — собственный. Для интеграла I_2 верна теорема 3.2.5 (Признак Дирихле): $\left|\int_{1}^{b} \sin(xy) dx\right| = \frac{1}{y} |\cos(y) - \cos(by)| \le \frac{2}{y} \le \frac{2}{\delta}$, a $\frac{1}{x} \downarrow 0$ при $x \to +\infty$.

Пусть теперь $Y=(0,+\infty)$. Рассмотрим $\left|\int\limits_{b}^{b_2} \frac{\sin(xy)}{x} \mathrm{d}x\right| = \left|\int\limits_{b=0}^{b_2y} \frac{\sin(t)}{t} \mathrm{d}t\right|$. Заметим, что при $y=rac{1}{b_1},\;b_2=2b_1:\left|\int\limits_{b_1}^{b_2}rac{\sin(xy)}{x}\mathrm{d}x
ight|=\left|\int\limits_{1}^{2}rac{\sin(t)}{t}\mathrm{d}t
ight|
eq0.$ Поэтому, $\exists arepsilon=\left|\int\limits_{1}^{2}rac{\sin(t)}{t}\mathrm{d}t
ight|>0:\;orall B>0\;\exists b_1>B$, $\exists b_2 = 2b_1, \exists y = \frac{1}{b_1} \in Y : \left| \int_{-\infty}^{b_2} \frac{\sin(xy)}{x} dx \right| \geqslant \varepsilon.$ **Теорема 3.2.6** (Признак Абеля). Пусть $f,g:[a,+\infty)\times Y\to \mathbb{R},\ g(\cdot,y)\in M[a,+\infty),$

 $\forall y \in Y, \int\limits_a^{+\infty} f(x,y) \mathrm{d}x$ сходится равномерно по y на Y и $\exists C > 0: |g(x,y)| \leqslant C, \ \forall x \geqslant a, \ \forall y \in Y.$ Тогда $\int\limits_a^b f(x,y) g(x,y) \mathrm{d}x$ сходится равномерно по y на Y.

Доказательство. Пусть $b_1, b_2 > a, \ b_2 > b_1$ и $y \in Y$ — произвольны. Тогда, по теореме 3.2.4 (Вторая теорема о среднем), $\exists c \in [b_1, b_2]: \left| \int\limits_{b_1}^{b_2} f(x,y) g(x,y) \mathrm{d}x \right| \leq |g(b_1,y)| \left| \int\limits_{b_1}^{c} f(x,y) \mathrm{d}x \right| + |g(b_2,y)| \left| \int\limits_{c}^{b_2} f(x,y) \mathrm{d}x \right|.$ Пусть $\varepsilon > 0$ — произвольно. Тогда $\exists B > a: \left| \int\limits_{b_1}^{b_2} f(x,y) \mathrm{d}x \right| < \varepsilon,$ $\forall b_1 > B, \forall b_2 > b_1, \ \forall y \in Y.$ В итоге, $\forall b_1 > B, \ \forall b_2 > b_1: \left| \int\limits_{b_1}^{b_2} f(x,y) g(x,y) \mathrm{d}x \right| < C\varepsilon + C\varepsilon = 2C\varepsilon.$

Пункт 3.2.3. Предельный переход в несобственном интеграле

Теорема 3.2.7 (Предельный переход под знаком интеграла). Пусть $f:[a,+\infty)\times Y\to \mathbb{R}$, y_0 — предельная точка $Y, f(x,y) \xrightarrow[y\to y_0]{[a,b]} g(x), \ \forall b>a \ u\int\limits_a^+\infty f(x,y)\mathrm{d}x$ сходится равномерно по y на Y. Тогда $g\in R[a,b], \ \forall b>a \ u$ $\exists \lim_{y\to y_0}\int\limits_a^+\infty f(x,y)\mathrm{d}x = \int\limits_a^+\infty \left(\lim_{y\to y_0}f(x,y)\right)\mathrm{d}x = \int\limits_a^+\infty g(x)\mathrm{d}x.$

Доказательство. Для всякого произвольного b>a верна теорема 3.1.4 (Предельный переход под знаком интеграла) и, стало быть, $g\in R[a,b],\ \forall b>a$.

Пусть $b_2 > b_1 > a$ — произвольны. Тогда $\int\limits_{b_1}^{b_2} g(x) \mathrm{d}x = A_1 + A_2$, где $A_1 = \int\limits_{b_1}^{b_2} \left[g(x) - f(x,y) \right] \mathrm{d}x$, $A_2 = \int\limits_{b_2}^{b_2} f(x,y) \mathrm{d}x$. Пусть $\varepsilon > 0$ — произвольно.

По теореме 3.2.1 (Критерий Коши) $\exists N>a: |A_2|<arepsilon, \ \forall \, b_1,b_2>N, \ \forall \, y\in Y.$

Пусть теперь $b_1,b_2>N$ — фиксированы с условием $b_2>b_1$. Тогда $\exists \delta>0: |f(x,y)-g(x)|<\frac{\varepsilon}{b_2-b_1}, \ \forall y\in \dot{U}_\delta(y_0)\cap Y, \ \forall x\in [b_1,b_2].$ Следовательно, $|A_1|<\varepsilon, \ \forall y\in \dot{U}_\delta(y_0)\cap Y, \ \forall x\in [b_1,b_2].$

В итоге, $\forall \varepsilon > 0 \; \exists N > a : \; \forall b_1, b_2 > N : \; \left| \int\limits_{b_1}^{b_2} g(x) \mathrm{d}x \right| < \varepsilon + \varepsilon = 2\varepsilon.$

Пусть b > a. Тогда $\int_a^{+\infty} f(x,y) dx - \int_a^{+\infty} g(x) dx = B_1 - B_2 + B_3$, где $B_1 = \int_b^{+\infty} f(x,y) dx$,

 $B_2 = \int\limits_{b}^{+\infty} g(x) \mathrm{d}x, \ B_3 = \int\limits_{a}^{b} \left[f(x,y) - g(x) \right] \mathrm{d}x.$ Пусть $\varepsilon > 0$ — произвольно.

Из условия теоремы следует, что $\exists N_1 > a: |B_1| < \varepsilon, \ \forall \, b > N_1, \ \forall \, y \in Y.$

По доказанному ранее $\exists N_2 > a: |B_2| < \varepsilon, \ \forall b > N_2.$

Пусть теперь $N = \max\{N_1, N_2\}$. и пусть b > N — фиксировано. Тогда $\exists \delta > 0: |f(x,y) - g(x)| < \frac{\varepsilon}{b-a}, \ \forall y \in \dot{U}_{\delta}(y_0) \cap Y, \ \forall x \in [a,b]$. Следовательно, $|B_3| < \varepsilon, \ \forall y \in \dot{U}_{\delta}(y_0) \cap Y, \ \forall x \in [a,b]$.

В итоге,
$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \left| \int\limits_a^{+\infty} \left[f(x,y) - g(x) \right] \mathrm{d}x \right| < \varepsilon, \; \forall y \in \dot{U}_{\delta}(y_0) \cap Y.$$

Теорема 3.2.8. Пусть $f \in C(\Pi_{\infty})$ и пусть интеграл $F(y) = \int_{a}^{+\infty} f(x,y) dx$ сходится равномерно по y на [c,d]. Тогда $F \in C[c,d]$.

Доказательство. Пусть $y_0 \in [c,d]$ и b>a — произвольны. Из условия следует, что

 $f \in C([a,b] \times [c,d])$, то есть f равномерно непрерывна на $[a,b] \times [c,d]$. Следовательно, $f(x,y) \xrightarrow[y \to y_0]{[a,b]} f(x,y_0)$. Стало быть, выполнены все условия теоремы 3.2.7 (Предельный переход под знаком интеграла). Следовательно, $F(y) \xrightarrow{y \to y_0} F(y_0)$.

Замечание. В теореме 3.2.7 (Предельный переход под знаком интеграла), если Y не ограничено, то в качестве y_0 можно взять +∞ или −∞.

Условия теоремы 3.2.8 не являются необходимыми.

Пример.

$$F(y) = \int_{0}^{+\infty} e^{-x^{2}y} \cos(xy) dx$$

непрерывна на \mathbb{R}_+ , однако интеграл F сходится неравномерно на \mathbb{R}_+ .

Доказательство. Пусть $y_0 > 0$ — произвольно. Тогда $\exists [c,d], c > 0 : y_0 \in [c,d]$. Причем, F сходится равномерно по y на [c,d]. Стало быть, по теореме $3.2.8 \ F \in C[c,d]$, то есть $F \in C(y_0)$.

Пример.

$$f(x,y) = \begin{cases} \frac{1}{y} & 0 \le x \le y \\ 0 & x > y \end{cases}$$

сходится неравномерно по y на \mathbb{R}_+ .

Доказательство. Так как $f(x,y) \leqslant \frac{1}{y} \xrightarrow{y \to +\infty} 0$, то $f(x,y) \xrightarrow{\mathbb{R}_+} 0$. Однако, $\int\limits_0^{+\infty} f(x,y) = \frac{1}{y} \int\limits_0^y \mathrm{d}x = 1 \neq 0$.

Пункт 3.2.4. Дифференцирование несобственных интегралов

Теорема 3.2.9. Пусть $f:\Pi_{\infty}\to\mathbb{R},\ \exists f_y',\ f,f_y'\in C(\Pi_{\infty}),\ \int\limits_a^{+\infty}f(x,y)\mathrm{d}x$ сходится в некоторой точке $y_0\in[c,d]$ и пусть $G(y)=\int\limits_a^{+\infty}f_y'(x,y)\mathrm{d}x$ сходится равномерно на [c,d]. Тогда $\int\limits_a^{+\infty}f(x,y)\mathrm{d}x$ сходится равномерно по y на [c,d] и $\exists \left(\int\limits_a^{+\infty}f(x,y)\mathrm{d}x\right)'=G(y),\ \forall y\in[c,d].$ Доказательство. $\forall x>a:\ f(x,y)=\int\limits_{y_0}^yf_y'(x,y)\mathrm{d}y+f(x,y_0).$ Тогда $\forall b_1,b_2>a$ с условием $b_2>b_1:\int\limits_{b_1}^{b_2}f(x,y)\mathrm{d}x=A_1+A_2,$ где $A_1=\int\limits_{b_1}^{b_2}\mathrm{d}x\int\limits_{y_0}^yf_y'(x,y)\mathrm{d}y,\ A_2=\int\limits_{b_1}^{b_2}f(x,y_0)\mathrm{d}x.$ Пусть $\varepsilon>0$ произвольно.

 $\exists N_1>a:\; |A_2|<\varepsilon,\;\forall\, b_1,b_2>N_1.$

По теореме 3.1.6 и условию непрерывности $f_y'A_1 = \int\limits_{y_0}^y \mathrm{d}y \int\limits_{b_1}^{b_2} f_y'(x,y) \mathrm{d}x$. В силу равномерной сходимости $G \; \exists N_2 > a \; : \; \left| \int\limits_{b_1}^{b_2} f_y'(x,y) \mathrm{d}x \right| < \varepsilon, \; \forall b_1,b_2 > N_2, \; \forall y \in [c,d].$ Отсюда: $|A_1| \leqslant \int\limits_{c}^d \mathrm{d}y \left| \int\limits_{b_1}^{b_2} f_y'(x,y) \mathrm{d}x \right| < (d-c)\varepsilon$.

В итоге, по теореме 3.2.1 (Критерий Коши) $\int\limits_a^{+\infty} f(x,y) \mathrm{d}x$ сходится равномерно по y на [c,d].

Определим теперь для всех натуральных чисел, больших a, функцию $F_n(y) = \int\limits_a^\infty f(x,y) \mathrm{d}x$, определенную на [c,d]. Заметим, что $(F_n,\ n\in\mathbb{N},\ n>a)$ — функциональная последовательность, удовлетворяющая условиям теоремы 2.1.9 (Дифференцирование функциональной последовательности): $\exists F'_n$ на $[c,d],\ \forall n\in\mathbb{N},\ n>a$ (следует из теоремы 3.1.5 (Дифференцируемость собственного интеграла, зависящего от параметра)); $F_n(y) \xrightarrow{n\to\infty} \int\limits_a^+ f(x,y) \mathrm{d}x$,

$$\forall y \in [c,d]; \ F_n' \xrightarrow[n \to \infty]{[c,d]} G.$$
 Стало быть, $\exists F'(y) = \left(\lim_{n \to \infty} F_n(y)\right)' \xrightarrow[n \to \infty]{[c,d]} \lim_{n \to \infty} F_n'(y) = G(y),$ $\forall y \in [c,d].$

Обозначение. $\overline{\mathbb{R}}_+ = [0, +\infty)$.

Пример (Интеграл Дирихле).

$$\int_{0}^{+\infty} \frac{\sin(x)}{x} \mathrm{d}x = \frac{\pi}{2}.$$

 \mathcal{A} оказательство. Рассмотрим функции $f(x,y)=e^{-xy}\frac{\sin(x)}{x}$ (в точках вида (0,y) доопределим пределом), определенную на $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$ и $F(y)=\int\limits_0^+ f(x,y)\mathrm{d} x$, определенную на $\overline{\mathbb{R}}_+$.

Легко видеть, что $f \in C(\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+); \int\limits_0^{+\infty} \frac{\sin(x)}{x} \mathrm{d}x$ сходится равномерно по y на $\overline{\mathbb{R}}_+; e^{-xy}$ монотонно убывает по $x, \ \forall y \in \overline{\mathbb{R}}_+$, следовательно, $0 < e^{-xy} \le 1$, и, стало быть, по теореме 3.2.6 (Признак Абеля) F сходится равномерно по y на $\overline{\mathbb{R}}_+$. В итоге, выполнены все условия теоремы 3.2.8 (Непрерывность несобственного интеграла, зависящего от параметра), поэтому $F \in C(\overline{\mathbb{R}}_+)$.

Легко видеть, что f дифференцируема по y. Рассмотрим функцию $G(y) = \int\limits_0^{+\infty} f_y'(x,y) \mathrm{d}x$, определенную на $\overline{\mathbb{R}}_+$. Для всякого $y_0 \in \mathbb{R}_+$ $\exists [c,d], \ c>0: \ y_0 \in [c,d]$. Нетрудно убедиться, что $f_y'(x,y) \in C(\overline{\mathbb{R}}_+ \times [c,d])$ и G сходится равномерно на [c,d]. Стало быть, по теореме 3.2.9 (Дифференцирование несобственных интегралов) $\exists F' = G$ на [c,d]. В силу произвольности $y_0 \ \exists F' = G$ на \mathbb{R}_+ .

$$G(y) = \int_{0}^{+\infty} \left(-\sin(x)\right) e^{-xy} dx = \cos(x) e^{-xy} \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} \cos(x) e^{-xy} dx = -1 + y \left(\sin(x) e^{-xy}\right) \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} \sin(x) e^{-xy} dx = -1 - y^2 G(y).$$
 Стало быть, $G(y) = -\frac{1}{1+y^2}$.

Пусть $y \in \mathbb{R}_+$. Тогда $F(y) = \int G(y) \mathrm{d}y = -\arctan(y) + C$. Легко видеть, что $\lim_{y \to +\infty} F(y) = 0 = -\frac{\pi}{2} + C$. Следовательно, $C = \frac{\pi}{2}$.

В силу непрерывности
$$F$$
 $I=F(0)=\lim_{y\to +0}F(y)=\frac{\pi}{2}.$

Следствие.

$$I(\alpha) = \int_{0}^{+\infty} \frac{\sin(\alpha x)}{x} dx = \frac{\pi}{2} \operatorname{sign}(\alpha).$$

Замечание. $I(\alpha)$ сходится неравномерно на \mathbb{R} .

Пункт 3.2.5. Интегрируемость несобственного интеграла, зависящего от параметра

Теорема 3.2.10 (Интегрирование по конечному промежутку). Пусть $f \in C(\Pi_{\infty})$ и $F(y)=\int\limits_{-\infty}^{\infty}f(x,y)\mathrm{d}x$ сходится равномерно по y на [c,d]. Тогда $F\in R[c,d]$, причем $\int\limits_{-\infty}^{\infty}F(y)\mathrm{d}y=$ $= \int_{0}^{d} dy \int_{0}^{+\infty} f(x,y) dx = \int_{0}^{+\infty} dx \int_{0}^{d} f(x,y) dy.$

Доказательство. Так как по теореме 3.2.8 (Непрерывности несобственных интегралов) $F \in C[c,d]$, To $F \in R[c,d]$.

Рассмотрим произвольную последовательность Гейне ($b_n > a, n \in \mathbb{N}$), связанную с $+\infty$. Пусть $F_n(y) = \int\limits_0^{b_n} f(x,y) \mathrm{d}x$. Заметим, что $F_n \xrightarrow[n \to +\infty]{[c,d]} F(y)$ (по условию) и $f \in C(\Pi_\infty)$. По теоремам 2.1.8 (Интегрируемость функциональных последовательностей) и 3.1.6 (Интегрируемость интеграла, зависящего от параметра) $\int_{a}^{d} dy \int_{a}^{+\infty} f(x,y) dx = \lim_{n \to \infty} \int_{c}^{d} dy \int_{a}^{b_{n}} f(x,y) dx = \lim_{n \to \infty} \int_{c}^{d} dy \int_{a}^{b_{n}} f(x,y) dx$

 $=\lim_{n\to\infty}\int\limits_a^{b_n}\mathrm{d}x\int\limits_c^af(x,y)\mathrm{d}y=\int\limits_a^{+\infty}\mathrm{d}x\int\limits_c^af(x,y)\mathrm{d}y.$ В силу произвольности последовательности $(b_n>a,\ n\in\mathbb{N}),$ теорема доказана.

Лемма 3.2.1. Пусть $f \in R[a,b], \forall b > a, f \ge 0$ на $[a,+\infty)$ и существует последовательность Гейне $(b_n > a, n \in \mathbb{N})$, связанная $c + \infty$ такая, что $\exists \lim_{n \to \infty} \int_a^{b_n} f(x) \mathrm{d}x = F$. Тогда $\exists \int f(x) \mathrm{d}x = F.$

Доказательство. Пусть $\varepsilon > 0$ — произвольно. В силу условия и теоремы 3.2.1 (Критерий

Коши) $\exists N \in \mathbb{N}: \left|\int\limits_a^{b_n} f(x) \mathrm{d}x - F\right| < \varepsilon$ и $\left|\int\limits_{b_m}^{b_n} f(x) \mathrm{d}x\right| < \varepsilon$, $\forall m,n>N$. Пусть $(c_m>a,\ m\in\mathbb{N})$ — произвольная последовательность Гейне, связанная $c+\infty$. Так как $c_m \xrightarrow[n\to\infty]{} +\infty$, то $\exists M\in\mathbb{N}: c_m>b_{N+1},\ \forall m>M$. Фиксируем произвольно m>M. В силу того, что $b_n \xrightarrow{n \to \infty} +\infty$, $\exists n > N: \ b_{N+1} < c_m < b_n$.

В итоге,
$$\left|\int_a^{c_m} f(x) \mathrm{d}x - F\right| = \left|\left(\int_a^{b_{N+1}} f(x) \mathrm{d}x - F\right) + \left(\int_{b_{N+1}}^{c_m} f(x) \mathrm{d}x\right)\right| \stackrel{\text{т.к. } f \geqslant 0}{\leqslant} \left|\int_a^{b_{N+1}} f(x) \mathrm{d}x - F\right| +$$

 $\left|\int\limits_{0}^{b_{n}}f(x)\mathrm{d}x\right|<arepsilon+arepsilon=2arepsilon$. В силу произвольности выбора последовательности $(c_{m}>a,\ m\in\mathbb{N})$ и *т* лемма доказана.

3амечание. Пусть $f \in C(\Pi_\infty), \ f \geqslant 0$ на Π_∞ и пусть существует последовательность Гейне, связанная с $+\infty$, такая, что $\int_{0}^{b_n} f(x,y) dx \xrightarrow[r \to \infty]{[c,d]} F(y)$. Тогда $\exists \int_{0}^{+\infty} f(x,y) dx$, причем он сходится равномерно по y на [c,d].

Лемма 3.2.2. Пусть $f \in C(\Pi_{\infty})$ и $f \geqslant 0$ на Π_{∞} . Тогда для равномерной сходимости по у на [c,d] интеграла $F(y)=\int\limits_{-\infty}^{\infty}f(x,y)\mathrm{d}x$ необходимо и достаточно непрерывности F на этом отрезке.

Доказательство. Необходимость следует из теоремы 3.2.8 (Непрерывность несобственного интеграла).

Достаточность следует из леммы 3.2.1 для функциональной последовательности ($F_n(y) =$

 $=\int_{a}^{n}f(x,y)\mathrm{d}x,\;n\in\mathbb{N},\;n>a$), выполнение условия равномерной сходимости для которой следует из теоремы 2.1.3 (Признак Дини).

Теорема 3.2.11. Пусть $f \in C([a, +\infty) \times [c, +\infty))$, $f \geqslant 0$ на $[a, +\infty) \times [c, +\infty)$, существуют интегралы $F(y) = \int\limits_a^{+\infty} f(x,y) \mathrm{d}x$ и $G(x) = \int\limits_c^{+\infty} f(x,y) \mathrm{d}y$, причем они непрерывны. Если при этом существует хотя бы один из повторных интегралов, то существует и другой, причем они совпадают.

Доказательство. Без ограничения общности считаем, что $\exists I = \int\limits_{0}^{+\infty} F(y) \mathrm{d}y$.

Рассмотрим произвольную неубывающую последовательность Гейне ($b_m > a, \ m \in \mathbb{N}$), связанную с $+\infty$ и обозначим:

$$F_m(y) = \int_a^{b_m} f(x,y) \mathrm{d}x, \quad G_n(x) = \int_a^n f(x,y) \mathrm{d}y, \quad J_{m,n} = \int_a^n \mathrm{d}y \int_a^{b_m} f(x,y) \mathrm{d}x.$$

В силу неотрицательности f $J_{m,n} = \int\limits_{0}^{n} F_m(y) \mathrm{d}y \leqslant \int\limits_{0}^{n} F(y) \mathrm{d}y \leqslant \int\limits_{0}^{+\infty} F(y) \mathrm{d}y = I.$

Так как по теореме 3.1.6 (Интегрируемость интеграла, зависящего от параметра) $J_{m,n}=\int\limits_a^{b_m}\mathrm{d}x\int\limits_c^nf(x,y)\mathrm{d}y=\int\limits_a^{b_m}G_n(x)\mathrm{d}x$, то по лемме 3.2.2 $G_n\xrightarrow[n\to\infty]{[a,b_m]}G$. Для всякого фиксированного $m\in\mathbb{N}$ по теореме 3.1.4 (Предельный переход под знаком интеграла) $\exists\lim_{n\to\infty}J_{m,n}=\lim_{n\to\infty}\int\limits_a^{b_m}G_n(x)\mathrm{d}x=\int\limits_a^{b_m}G(x)\mathrm{d}x=J_m$. При этом $J_m\leqslant I$.

В силу монотонности последовательности ($b_m > a, \ m \in \mathbb{N}$), неотрицательности G (следует из неотрицательности f) и теоремы Вейерштрасса $\exists \lim_{m \to \infty} J_m = J \in \mathbb{R}$. В силу леммы 3.2.1 $\exists \int\limits_{-\infty}^{+\infty} G(x) \mathrm{d}x = J$. При этом $J \leqslant I$.

Меняя местами x и y в предыдущих рассуждениях, получаем, что $I \leq J$. Стало быть, J = I.

Теорема 3.2.12. Пусть $f \in C([a,+\infty) \times [c,+\infty))$, существуют и непрерывны интегралы $\int\limits_a^{+\infty} |f(x,y)| \mathrm{d}x$, $\int\limits_c^{+\infty} |f(x,y)| \mathrm{d}y$. Если при этом существует хотя бы один из повторных интегралов $\left(\int\limits_c^{+\infty} \mathrm{d}y \int\limits_a^c |f(x,y)| \mathrm{d}x$ или $\int\limits_a^{+\infty} \mathrm{d}x \int\limits_c^{+\infty} |f(x,y)| \mathrm{d}y\right)$, то существуют и совпадают интегралы $\int\limits_a^{+\infty} \mathrm{d}y \int\limits_a^c f(x,y) \mathrm{d}x$ и $\int\limits_a^{+\infty} \mathrm{d}x \int\limits_c^c f(x,y) \mathrm{d}y$.

Доказательство. По лемме 3.2.2 $\forall d>c\int\limits_a^{+\infty}|f(x,y)|\mathrm{d}x$ сходится равномерно по y на [c,d]. Стало быть, по теореме 3.2.1 (Критерий Коши) $F(y)=\int\limits_a^{+\infty}f(x,y)\mathrm{d}x$ сходится равномерно по y на [c,d]. Следовательно, $F\in C[c,+\infty)$. Аналогично $G(x)=\int\limits_c^{+\infty}f(x,y)\mathrm{d}y\in C[a,+\infty)$.

Без ограничения общности предположим, что $\exists \int_{a}^{+\infty} dx \int_{c}^{+\infty} |f(x,y)| dy$. По теореме 3.2.1

(Критерий Коши) $\exists \int\limits_{-\infty}^{+\infty} \mathrm{d}x \int\limits_{-\infty}^{+\infty} f(x,y)\mathrm{d}y$. В итоге для f выполнены все условия теоремы 3.2.11, кроме условия неотрицательности f . Но для $f_1 = \frac{|f|-f}{2}$ и $f_2 = \frac{|f|+f}{2}$ выполнены все условия теоремы 3.2.11. Теорема доказана в силу соотношения $f = f_2 - f_1$.

Пример (Интеграл Пуассона).

$$\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi}.$$

Доказательство. $\int_{-\infty}^{+\infty} e^{-x^2} dx = 2 \int_{0}^{+\infty} e^{-x^2} dx = 2I$.

Положим $\psi(y) = \int\limits_0^{+\infty} y e^{-(xy)^2} \mathrm{d}x$, тогда $\psi(0) = 0$ и $\psi(y) = \int\limits_0^{+\infty} e^{-u^2} \mathrm{d}u = I$ при y > 0. Следова-

тельно, $\int_{0}^{+\infty} \mathrm{d}y \int_{0}^{+\infty} y e^{-(1+x^2)y^2} \mathrm{d}x = \int_{0}^{+\infty} e^{-y^2} \psi(y) \mathrm{d}y = \int_{0}^{+\infty} e^{-y^2} I \mathrm{d}y = I^2.$ Функция $f(x,y) = y e^{-(1+x^2)y^2}$ непрерывна и неотрицательна на $[0,+\infty) \times [0,+\infty)$. Функция $\Phi(x) = \int_{0}^{+\infty} y e^{-(1+x^2)y^2} \mathrm{d}y = \frac{1}{2(1+x^2)}$ непрерывна на $[0,+\infty)$ и интеграл $\int_{0}^{+\infty} \Phi(x) \mathrm{d}x = \frac{1}{2(1+x^2)}$ $=\frac{1}{2}\int\limits_{-\infty}^{+\infty}\frac{\mathrm{d}x}{1+x^2}=\frac{\pi}{4}.$ Функция же F(y), где $F(y)=e^{-y^2}\psi(y)=\int\limits_{0}^{+\infty}ye^{-(1+x^2)y^2}\mathrm{d}x$, непрерывна только на луче $[\varepsilon, +\infty)$, где $\varepsilon>0$. Таким образом, условия теоремы о перестановке двух несобственных интегралов выполнены для семейства $f(x,y), x \in [0,+\infty), y \in [\varepsilon,+\infty)$, при любом $\varepsilon > 0$, поэтому получаем $\int\limits_{0}^{+\infty} \mathrm{d}y \int\limits_{0}^{+\infty} f(x,y) \mathrm{d}x = \int\limits_{0}^{+\infty} \mathrm{d}x \int\limits_{0}^{+\infty} f(x,y) \mathrm{d}y = \int\limits_{0}^{+\infty} G(x,\varepsilon) \mathrm{d}x$ при любом $\varepsilon > 0$, где $G(x,\varepsilon) = \int_{-\infty}^{\infty} f(x,y) dy$, $x \in [0,+\infty)$, $\varepsilon \in [0,1)$.

Неравенство $0 < G(x,\varepsilon) \leqslant \int\limits_0^{+\infty} f(x,y) \mathrm{d}y = \Phi(x), \ \varepsilon \geqslant 0,$ показывает, что в силу признака Вейерштрасса $\int\limits_0^{+\infty} G(x,\varepsilon) \mathrm{d}x$ сходится равномерно на [0,1], поэтому $I^2 = \int\limits_0^{+\infty} \mathrm{d}y \int\limits_0^{+\infty} f(x,y) \mathrm{d}x =$ $=\lim_{\varepsilon\to+0}\int\limits_{\Omega}^{+\infty}\mathrm{d}y\int\limits_{\Omega}^{+\infty}f(x,y)\mathrm{d}x=\lim_{\varepsilon\to+0}\int\limits_{\Omega}^{+\infty}G(x,\varepsilon)\mathrm{d}x=\int\limits_{\Omega}^{+\infty}G(x,0)\mathrm{d}x=\int\limits_{\Omega}^{+\infty}\mathrm{d}x\int\limits_{\Omega}^{+\infty}f(x,y)\mathrm{d}y=\frac{\pi}{4}.$ Отсюда получаем, что $I = \frac{\sqrt{\pi}}{2}$.

Замечание. Аналогично рассматриваются интегралы вида $\int \int f(x,y) dx$.

Замечание. Интегралы вида $\int_{0}^{+\infty} f(x,y) dx$ раскладывают в сумму интегралов $\int_{0}^{0} f(x,y) dx$ и $\int f(x,y)\mathrm{d}x$, а затем рассматривается каждый по отдельности.

Пункт 3.2.6. Несобственные интегралы от неограниченных функций, зависящие от параметра

Напомним:

Определение 3.2.5. Пусть $f:(a,b] \to \mathbb{R}$ и $f \in R[a+\varepsilon,b], \ \forall \varepsilon \in (0,b-a)$. Тогда несобствен-

 $^{^{1}}$ Виноградова И.А., Олехник С. Н., Садовничий В.А. 2 ад 2 и и упражнения по математическому анализу, стр. 3 18.

ным интегралом $\int_a^b f(x) dx$ называется $\lim_{\varepsilon \to +0} \int_{a+\varepsilon}^b f(x) dx$, если этот предел существует.

Определение 3.2.6. Пусть $f:(a,b]\times Y\to\mathbb{R}$ и пусть $\exists\int_a^b f(x,y)\mathrm{d}x,\ \forall y\in Y.$ Тогда интеграл $F(y)=\int_a^b f(x,y)\mathrm{d}x$ сходится равномерно на Y, если $F_\varepsilon(y)=\int_a^b f(x,y)\mathrm{d}x \xrightarrow{Y}_{\varepsilon\to+0}^Y F(y).$

Замечание. Аналогично определяется равномерная сходимость для $f:[a,b)\times Y\to\mathbb{R}$.

Замечание. Для функций $f:(a,b)\times Y\to\mathbb{R}$ выбирается некоторое $c\in(a,b)$ и интеграл раскладывается в сумму интегралов $\int\limits_a^c f(x,y)\mathrm{d}x$ и $\int\limits_c^b f(x,y)\mathrm{d}x$.

 $\it 3adaчa$. Сформулировать и доказать критерий Коши, специальный признак равномерной сходимости, признак Вейерштрасса равномерной сходимости, теоремы о непрерывности, интегрируемости и дифференцируемости в случае $\it Y=[c,d]$.

Пример.

$$F(y) = \int_{0}^{1} x^{-1+y} \mathrm{d}x$$

сходится равномерно на $[y_0, +\infty)$, $\forall y_0 > 0$ и неравномерно на $(0, +\infty)$.

Доказательство. Пусть $Y = [y_0, +\infty)$. Тогда $x^{-1+y} \le x^{-1+y_0}$. По признаку Вейерштрасса F(y) сходится равномерно по y на Y.

Пусть теперь $Y = (0, +\infty)$. Тогда $F(y) - F_n(y) = \int\limits_0^1 x^{-1+y} \mathrm{d}x - \int\limits_{\frac{1}{n}}^1 x^{-1+y} \mathrm{d}x = \int\limits_0^{\frac{1}{n}} x^{-1+y} \mathrm{d}x = \frac{x^y}{y} \Big|_0^{\frac{1}{n}} = \frac{1}{yn^y} \xrightarrow{\frac{y=\frac{1}{n}}{m}} n\left(\frac{1}{n}\right)^{\frac{1}{n}}$. Стало быть, $\sup_{(0,+\infty)} |F - F_n| \geqslant \left|F\left(\frac{1}{n}\right) - F_n\left(\frac{1}{n}\right)\right| \stackrel{n\to\infty}{\sim} n \xrightarrow{n\to\infty} 0$, то есть нарушен специальный признак равномерной сходимости.

§3.3. Интегралы Эйлера

Пункт 3.3.1. Гамма-функция Эйлера (интеграл Эйлера второго рода)

Определение 3.3.1. Интеграл

$$\Gamma(y) = \int_{0}^{+\infty} x^{-1+y} e^{-x} dx, \qquad y > 0$$

называется Гамма-функцией.

Теорема 3.3.1 (Свойства Гамма-функции).

- 1. $\Gamma \in C(0,+\infty)$;
- 2. $\Gamma \in D^{\infty}(0,+\infty)$, причем $\frac{\mathrm{d}^m\Gamma}{\mathrm{d}y^m}(y) = \int\limits_0^{+\infty} x^{-1+y} \ln^m(x) e^{-x} \mathrm{d}x$, $m \in \mathbb{N}$;
- 3. $\Gamma(\gamma + 1) = \gamma \Gamma(\gamma)$;
- 4. $\Gamma(n+1) = n!, n \in \mathbb{N};$
- 5. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$;
- 6. $\Gamma(y)\Gamma(1-y) = \frac{\pi}{\sin(\pi y)}, y \in (0,1).$

Доказательство. 1. $\Gamma(y) = \Gamma_1 + \Gamma_2$, где $\Gamma_1 = \int\limits_0^1 x^{-1+y} e^{-x} dx$, $\Gamma_2 = \int\limits_1^{+\infty} x^{-1+y} e^{-x} dx$.

 Γ_1 . Пусть $y_0 > 0$ — произвольно. $\forall y \ge y_0 : |x^{-1+y}e^{-x}| \le |x^{-1+y}| \le |x^{-1+y_0}|$ и $\int_0^1 x^{-1+y_0} dx < \infty$. Стало быть, по признаку Вейерштрасса (задача к пункту Пункт 3.2.6) Г₁ сходится равномерно на $[y_0,+\infty),\ \forall y_0>0.$ Следовательно, $\Gamma_1\in C[y_0,+\infty),\ \forall y_0>0,$ то есть $\Gamma_1\in C(0,+\infty).$

 Γ_2 . Пусть $y_0 > 0$ — произвольно. $|x^{-1+y}e^{-x}| \leqslant x^{-1+y_0}e^{-\frac{x}{2}}e^{-\frac{x}{2}} \leqslant C_{y_0}e^{-\frac{x}{2}}$ и $\int_0^+ e^{-\frac{x}{2}} dx < \infty$.

Стало быть, по теореме 3.2.3 (Признак Вейерштрасса) Γ_2 сходится равномерно на $(0, y_0]$, $\forall y_0 > 0$. Следовательно, $\Gamma_2 \in C(0, y_0], \ \forall y_0 > 0$, то есть $\Gamma_2 \in C(0, +\infty)$.

2.
$$\Gamma(y) = \Gamma_1 + \Gamma_2$$
, где $\Gamma_1 = \int_0^1 x^{-1+y} e^{-x} dx$, $\Gamma_2 = \int_1^{+\infty} x^{-1+y} e^{-x} dx$.

 Γ_1 . Пусть $y_0>0$ — произвольно. $\forall y\geqslant y_0: \; |x^{-1+y}\ln^m(x)e^{-x}|\leqslant x^{-1+y_0}x^{y-y_0}|\ln^m(x)|\leqslant x^{-1+y_0}x^{y-y_0}|\ln^m(x)|$ $\leq x^{-1+\frac{y_0}{2}}x^{\frac{y_0}{2}}|\ln^m(x)| \leq C_{y_0,m}x^{-1+\frac{y_0}{2}}$ и $\int_{0}^{1}x^{-1+\frac{y_0}{2}}\mathrm{d}x < \infty$. Стало быть, по признаку Вейерштрасса (задача к пункту Пункт 3.2.6) Γ_1 сходится равномерно на $[y_0, +\infty), \ \forall y_0 > 0$. Следовательно, $\Gamma_1 \in C[y_0, +\infty), \ \forall y_0 > 0$, то есть $\Gamma_1 \in C^{\infty}(0, +\infty)$.

 Γ_2 . Пусть $y_0 > 0$ — произвольно. $|x^{-1+y} \ln^m(x) e^{-x}| \leqslant x^{-1+y_0} x^{y-y_0} e^{-\frac{x}{2}} e^{-\frac{x}{2}} \leqslant C_{y_0,m} e^{-\frac{x}{2}}$ и $\int\limits_{-\infty}^{+\infty} e^{-\frac{x}{2}} \mathrm{d}x < \infty$. Стало быть, по теореме 3.2.3 (Признак Вейерштрасса) Γ_2 сходится равномерно на $(0, y_0], \ \forall y_0 > 0$. Следовательно, $\Gamma_2 \in C(0, y_0], \ \forall y_0 > 0$, то есть $\Gamma_2 \in C^{\infty}(0, +\infty)$.

3.
$$\Gamma(y+1) = \int_{0}^{+\infty} x^{y} e^{-x} dx = -x^{y} e^{-x} \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} x^{-1+y} e^{-x} dx = y \Gamma(y).$$

4. $\Gamma(1) = 1$: $\Gamma(1) = \int_{0}^{+\infty} e^{-x} dx = 1$. Стало быть, в силу пункта 2 данной теоремы $\Gamma(n+1) = n!$.

5.
$$\int_{0}^{+\infty} x^{-\frac{1}{2}} e^{-x} dx \xrightarrow{x=t^{2}} 2 \int_{0}^{+\infty} e^{-t^{2}} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

Без доказательства.

Следствие (График Гамма-функции).

Заметим что:

1.
$$\Gamma''(y) = \int_{0}^{+\infty} x^{-1+y} \ln^{2}(x) e^{-x} dx > 0;$$

2. $\Gamma(1) = \Gamma(2)$. Следовательно, по теореме Ролля $\exists y_0 \in (1,2): \Gamma'(y_0) = 0;$ 3. $\Gamma(y) = \frac{\pi}{\sin(\pi y)\Gamma(1-y)} \stackrel{y \to +0}{\sim} \frac{1}{y}.$

3.
$$\Gamma(y) = \frac{\pi}{\sin(\pi y)\Gamma(1-y)} \stackrel{y \to +0}{\sim} \frac{1}{y}$$
.

Пункт 3.3.2. Бета-функция Эйлера (интеграл Эйлера первого рода)

Определение 3.3.2. Интеграл

$$B(x,y) = \int_{0}^{1} t^{-1+x} (1-t)^{-1+y} dt, \qquad x,y > 0$$

называется Бета-функцией.

Теорема 3.3.2 (Свойства Бета-функции).

- 1. $B(x, y) \in C(\mathbb{R}^2_+)$;
- 2. B(x, y) = B(y, x);3. $B(x, y) = \int_{0}^{+\infty} \frac{z^{-1+x}dz}{(1+z)^{x+y}};$
- 4. $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$

Указание к доказательству пункта 3. Замена $t = \frac{z}{1+z}$.

Доказательство пункта 4. Без доказательства.

§3.4. Теорема Вейерштрасса об апроксимации непрерывной функции полиномами

Рассмотрим пространство C[a,b] с нормой $||f||_{\infty} = \max_{[a,b]} |f|$.

Теорема 3.4.1. Для всякой непрерывной на отрезке [a,b] функции f существует последовательность полиномов $(p_n(x) \in \mathbb{R}[x], n \in \mathbb{N})$ такая, что $||f - p_n|| \xrightarrow{n \to \infty} 0$ на [a, b].

Доказательство. Без ограничения общности можно считать что f(a) = f(b) = 0, так как в противном случае с помощью линейной замены f(x) = f(x) + cx + d можно добиться, чтобы f(a) + ac + d = f(b) + bc + d = 0, и из предположения, что $(\widetilde{p}_n(x) \in \mathbb{R}[x], n \in \mathbb{N})$ последовательность полиномов для \widetilde{f} , будет следовать, что $(\widetilde{p}_n(x) - cx - d \in \mathbb{R}[x], n \in \mathbb{N})$ последовательность полиномов для f . Также можно считать, что f равна 0 на $\mathbb{R}\setminus [a,b]$.

Пусть l = b - a. Рассмотрим функцию $q(t) = \max\{l^2 - t^2, 0\}$.

Положим
$$c_n = \int\limits_{-\infty}^{+\infty} q^n(t) \mathrm{d}t, \, A_n(\delta) = \int\limits_{|t| \geqslant \delta} q^n(t) \mathrm{d}t$$
 и $Q_n(t) = \frac{q^n(t)}{c_n}$.

Заметим, что $A_n(2\delta)=2\int\limits_{2\delta}^lq^n(t)\mathrm{d}t\leqslant 2q^n(2\delta)l$ и $c_n=2\int\limits_0^lq^n\mathrm{d}t\geqslant 2\int\limits_0^\delta q^n(t)\mathrm{d}t\geqslant 2\delta q^n(\delta).$ Стало быть, $\frac{A_n(2\delta)}{c} \leqslant \frac{lq^n(2\delta)}{\delta a^n(\delta)} = C_\delta \left(\frac{q(2\delta)}{q(\delta)}\right)^n \xrightarrow{n \to \infty} 0.$

Легко видеть, что f равномерно непрерывна на \mathbb{R} , поэтому $\omega_f(z) \xrightarrow{z \to +0} 0$, где $\omega_f(z) =$ = sup |f(x)-f(y)| — модуль непрерывности функции f.

Положим $\widehat{p}_n(x) = \int\limits_{-\infty}^{+\infty} f(x-t)Q_n(t)\mathrm{d}t = \int\limits_{-\infty}^{+\infty} f(t)Q_n(x-t)\mathrm{d}t$ — свертка f с Q_n . Пусть $\varepsilon > 0$ произвольно. Тогда $\exists \delta > 0: \ \omega_f(z) < \varepsilon, \ \forall z \in (0, \delta).$ Заметим, что $|f(x) - \widehat{p}_n(x)| = \int_{-\infty}^{+\infty} (f(x) - \widehat{p}_n(x)) dx$ $-f(t)Q_n(x-t)\mathrm{d}t \bigg| \leqslant I_1 + I_2$, где $I_1 = \int\limits_{|x-t| \leqslant \delta} |f(x)-f(t)|Q_n(x-t)\mathrm{d}t$, $I_2 = \int\limits_{|x-t| \geqslant \delta} |f(x)-f(t)|Q_n(x-t)\mathrm{d}t$ $-t)\mathrm{d}t$. Но $I_1 \leqslant \omega_f(\delta) \int\limits_{-\infty}^{+\infty} Q_n(x-t)\mathrm{d}t = \omega_f(\delta) < arepsilon$ и $\exists N_arepsilon \in \mathbb{N}: \ I_2 \leqslant 2||f|| \int\limits_{|x-t| \geqslant \delta} Q_n(x-t)\mathrm{d}t < arepsilon,$ $\forall n>N_{\varepsilon}.$ Стало быть, $\forall \widetilde{\varepsilon}>0\ \exists N\in\mathbb{N}:\ ||f-\widehat{p}_{n}||<\varepsilon+\varepsilon=2\varepsilon,\ \forall n>N.$ Пусть $x \in [a,b]$. Тогда $\widehat{p}_n(x) = \int\limits_{-\infty}^{+\infty} Q_n(x-t)f(t)\mathrm{d}t = \int\limits_a^b Q_n(x-t)f(t)\mathrm{d}t$, причем $Q_n(x-t) = \int\limits_a^b Q_n(x-t)f(t)\mathrm{d}t$ $=\frac{q^n(x-t)}{c_n}=\frac{\left(l^2-(x-t)^2\right)^n}{c_n}=\sum_{k=0}^{2n}a_k(t)x^k$, где $a_k(t)$ — соответствующие полиномы. Поэтому $\widehat{p}_n(x)=1$ $=\sum_{k=0}^{2n}b_kx^k$, где $b_k=\int_0^{\infty}a_k(t)f(t)\mathrm{d}t$. Стало быть, сужение \widehat{p}_n на [a,b] — полином.

Следствие. Пусть $f \in C[a,b]$. Тогда для всякого $\varepsilon > 0$ найдется такой полином $p(x) \in \mathbb{R}[x]$, что $|f(x) - p(x)| < \varepsilon$, $\forall x \in [a, b]$.

Глава 4

Ряды Фурье

§4.1. Ряды Фурье по ортогональным системам функций

Пункт 4.1.1. Ортогональные системы функций

Определение 4.1.1. Скалярным произведением функций f u g в пространстве C[a,b] называется $\int_{a}^{b} f(x)g(x)\mathrm{d}x$ и обозначается (f,g).

Определение 4.1.2. *Нормой функции f* в пространстве C[a,b] называется $\sqrt{\int\limits_a^b f^2(x) dx}$ и обозначается $||f||_2$.

Определение 4.1.3. Система функций ($\varphi_n \in C[a,b]$, $n \in \mathbb{N}$) называется *ортогональной*, если $\varphi_n \neq 0$ на [a,b], $\forall n \in \mathbb{N}$ и (φ_k, φ_m) = 0 при $m \neq k$.

Пример. Система функций $(f_n(x) = \sin(nx), n \in \mathbb{N})$ является ортогональной на $[-\pi, \pi]$.

Доказательство.
$$\int_{-\pi}^{\pi} \sin(nx)\sin(mx) dx = \int_{0}^{\pi} \Big(\cos((n-m)x) - \cos((n+m)x)\Big) dx = 0.$$

Замечание. $||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0 \Rightarrow ||f_n - f||_2 \xrightarrow{n \to \infty} 0$.

Замечание. $||f_n - f||_2 \xrightarrow{n \to \infty} 0 \xrightarrow{\text{в.г.}} ||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0.$

Пример.

$$f_n(x) = \max\{1 - nx, 0\}$$

сходится на [0,1] по $||\cdot||_2$, но не по $||\cdot||_\infty$.

Доказательство. $||f_n-0||_2=\sqrt{\int\limits_0^{\frac{1}{n}}(1-nx)^2\mathrm{d}x}\leqslant \frac{1}{\sqrt{n}}\xrightarrow{n\to\infty} 0.$ При этом $f_n(0)=1,$ и, стало быть, $||f_n-0||_\infty=1\neq 0.$

 $\it Замечание. \, \Pi$ ространство $\it C[a,b]$ с нормой $||\cdot||_2$ не является полным.

Пример. Система функций $(f_n:[-1,1] \to \mathbb{R}, \ n \in \mathbb{N}),$ где

$$f_n(x) = \begin{cases} nx & |x| \le \frac{1}{n} \\ 1 & x > \frac{1}{n} \\ -1 & x < -\frac{1}{n} \end{cases},$$

является фундаментальной, но не сходящейся по $\|\cdot\|_2$.

Доказательство. Пусть m > n.

$$||f_m - f_n||_2^2 = 2 \int_0^{\frac{1}{n}} |f_m(x) - f_n(x)|^2 dx \le 2 \frac{1}{n} \xrightarrow{n \to \infty} 0.$$

Предположим, $\exists f \in C[-1,1]: ||f_n-f||_2 \xrightarrow{n \to \infty} 0$. Пусть $g(x) = \begin{cases} 1 & x \geqslant 0 \\ -1 & x < 0 \end{cases}$. Очевидно, что $g \notin C[-1,1]$. Следовательно, $f \neq g$ на [-1,1]. Стало быть, $f \neq g$ на [-1,0] или на [0,1]. Пусть для определенности на [0,1]. Заметим, что $||g-f_n||_2^2 \leqslant 2 \int\limits_0^{\frac{1}{n}} \mathrm{d}x \xrightarrow{n \to \infty} 0$. Имеем, $||g-f||_2^2 \geqslant 2 \int\limits_0^{1} |1-f(x)|^2 \mathrm{d}x = C > 0$, так как $f \in C[0,1]$ и $\exists x_0 \in [0,1]: f(x_0) \neq 1$. Но с другой стороны, $||g-f||_2 \leqslant ||g-f_n||_2 + ||f_n-f||_2 \xrightarrow{n \to \infty} 0$ и поэтому $||g-f||_2 = 0 \neq \sqrt{C}$. Противоречие. \square

Замечание. Для простоты обозначения, индекс у $||\cdot||_2$ опустим.

Определение 4.1.4. Ортогональная система функций ($\varphi_n \in C[a,b], n \in \mathbb{N}$) называется ортонормальной, если $||\varphi_n|| = 1, \ \forall n \in \mathbb{N}$.

Пример. Система функций $\left(\varphi_n(x) = \frac{\sin(nx)}{\sqrt{\pi}}, \ n \in \mathbb{N}\right)$ является ортонормальной на $[-\pi, \pi]$. Доказательство. $\int\limits_{-\pi}^{\pi} \varphi_n^2(x) \mathrm{d}x = \frac{1}{\pi} \int\limits_{0}^{\pi} (1 - \cos(2nx)) \mathrm{d}x = 1.$

Замечание. Если система функций ($\varphi_n \in C[a,b], \ n \in \mathbb{N}$) ортогональна, то система функций $\left(\frac{\varphi_n}{||\varphi_n||} \in C[a,b], \ n \in \mathbb{N}\right)$ — ортонормальна.

Пункт 4.1.2. Ортогональность и линейная независимость функций

Определение 4.1.5. Система функций ($\varphi_n \in C[a,b]$, $n \in \mathbb{N}$) называется линейно независимой, если $\forall m \in \mathbb{N}$ выражение $\sum_{k=1}^m c_k \varphi_k$ обращается в ноль если и только если $c_1 = \ldots = c_m = 0$.

Теорема 4.1.1. Всякая ортогональная система функций ($\varphi_n \in C[a, b], n \in \mathbb{N}$) является линейно независимой.

Доказательство. Пусть $m \ge 2$ и $s \le m$ — произвольны. Предположим, что $\sum_{k=1}^m c_k \varphi_k = 0$. Тогда $0 = \int\limits_a^b 0 \mathrm{d}x = \int\limits_a^b \left(\sum_{k=1}^m c_k \varphi_k(x)\right) \mathrm{d}x = \int\limits_a^b \left(\varphi_s(x) \sum_{k=1}^m c_k \varphi_k(x)\right) \mathrm{d}x = c_s ||\varphi_s||^2$. Так как $||\varphi_s||^2 \ne 0$, то $c_s = 0$.

Замечание. Не всякая линейно независимая система функций является ортогональной.

Пример. $(f_n = x^{n-1} : [0,1] \to \mathbb{R}, \ n \in \mathbb{N})$ — неортогональная линейно независимая система функций.

Доказательство.
$$\int\limits_0^1 x^{m-1}x^{n-1}\mathrm{d}x = \frac{1}{m+n-1} \neq 0.$$

Пункт 4.1.3. Ряд Фурье по ортогональной системе функций

Определение 4.1.6. Функция $f:[a,b] \to \mathbb{R}$ называется кусочно–непрерывной, если существуют такие $a=x_0 < \ldots < x_n = b$, что $f \in C(x_{i-1},x_i)$, $\forall i=1\ldots n$, причем функция f в точках x_k либо непрерывна, либо имеет разрыв первого рода.

Пример. f(x) = [x] — целая часть.

Пусть ($\varphi_n \in C[a,b]$, $n \in \mathbb{N}$) — ортогональная система функций и пусть f — кусочнонепрерывная функция на [a,b].

Определение 4.1.7. Числа $c_n = \frac{1}{||\varphi_n||^2} \int_a^b f(x) \varphi_n(x) \mathrm{d}x, \ n \in \mathbb{N}$ называются коэффициентами Фурье функции f.

Определение 4.1.8. Ряд $\sum_{n=1}^{\infty} c_n \varphi_n(x), \ x \in [a,b]$ называется *рядом Фурье* функции f .

Обозначение. $f \sim \sum_{n=1}^{\infty} c_n \varphi_n$.

Теорема 4.1.2 (Единственность разложения в ряд Фурье). Пусть $(\varphi_n \in C[a,b], n \in \mathbb{N})$ — ортогональная система функций, $f:[a,b] \to \mathbb{R}$ и пусть $f=\sum_{n=1}^{\infty} c_n^* \varphi_n$, причем сходимость ряда равномерная. Тогда $c_n^*=c_n$ — коэффициенты ряда Фурье функции f.

Доказательство.
$$c_k = \frac{1}{||\varphi_k||^2} \int_a^b f(x) \varphi_k(x) \mathrm{d}x = \frac{1}{||\varphi_k||^2} \int_a^b \left(\sum_{n=1}^\infty c_n^* \varphi_n(x)\right) \varphi_k(x) \mathrm{d}x = \frac{1}{||\varphi_k||^2} \sum_{n=1}^\infty \int_a^b c_n^* \cdot \varphi_n(x) \varphi_k(x) \mathrm{d}x = \frac{1}{||\varphi_k||^2} \int_a^b c_k^* \varphi_k^2(x) \mathrm{d}x = c_k^*.$$

Теорема 4.1.3 (Неравенство Бесселя). Пусть ($\varphi_n \in C[a,b]$, $n \in \mathbb{N}$) — ортонормальная система функций, $f:[a,b] \to \mathbb{R}$ и пусть $f \sim \sum_{n=1}^{\infty} c_n \varphi_n$. Тогда $\sum_{n=1}^{\infty} c_n^2 \leqslant ||f||^2$.

Доказательство. Пусть $S_k = \sum\limits_{n=1}^k c_n \varphi_n$. Тогда $\int\limits_a^b [f(x) - S_k(x)] \varphi_j(x) \mathrm{d}x = \int\limits_a^b f(x) \varphi_j(x) \mathrm{d}x - c_j = 0$, если $j \leqslant k$. Поэтому $\int\limits_a^b [f(x) - S_k(x)] S_k(x) \mathrm{d}x = 0$.

$$||f||^2 = \int\limits_a^b f^2(x) \mathrm{d}x = \int\limits_a^b [f(x) - S_k(x) + S_k(x)]^2 \mathrm{d}x = \int\limits_a^b [f(x) - S_k(x)]^2 \mathrm{d}x + \int\limits_a^b S_k^2(x) \mathrm{d}x = \int\limits_a^b [f(x) - S_k(x)]^2 \mathrm{d}x + \sum\limits_{n=1}^b c_n^2, \text{ причем } \int\limits_a^b [f(x) - S_k(x)]^2 \mathrm{d}x \geqslant 0.$$
 Стало быть, $\sum\limits_{n=1}^k c_n^2 \leqslant ||f||^2.$ Переходя к пределу по k , получаем утверждение теоремы.

Следствие. В силу того, что $\sum_{n=1}^{\infty} c_n^2 \le ||f||^2 < \infty, c_n \xrightarrow{n \to \infty} 0.$

3амечание. Не для всякой последовательности $(c_n,\ n\in\mathbb{N})$ найдется кусочно—непрерывная функция $f:[a,b]\to\mathbb{R}$ такая, что $f\sim\sum\limits_{n=1}^\infty c_n\varphi_n$.

Пример. Не существует кусочно–непрерывной на $[-\pi,\pi]$ функции, рядом Фурье которой является ряд $\sum_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}}$.

Доказательство. Предположим, что такая кусочно–непрерывная функция существует. Тогда бы ряд $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}}\right)^2 = \sum_{n=1}^{\infty} \frac{1}{n}$ сходился. Но, как известно, он расходится. Противоречие. \square

3амечание. Ряд $\sum\limits_{n=1}^{\infty}c_n\varphi_n$ сходится равномерно на $[-\pi+\varepsilon_1,\pi-\varepsilon_2],\ \forall \varepsilon_1,\varepsilon_2>0:\ \varepsilon_1+\varepsilon_2<2\pi,$ но неравномерно на $[-\pi,\pi].$

§4.2. Разложение функции в тригонометрический ряд Фурье

Пункт 4.2.1. Тригонометрические ряды Фурье

В данном параграфе рассматривается ортогональная система функций (1, $\cos(x)$, $\sin(x)$, ..., $\cos(nx)$, $\sin(nx)$, ...) на отрезке $[-\pi, \pi]$.

Определение 4.2.1. Тригонометрическим рядом Фурье функции f называют ряд $\frac{a_0}{2}$ + $+\sum_{n=1}^{\infty}(a_n\cos(nx)+b_n\sin(nx)),\ a_0=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\mathrm{d}x,\ a_n=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos(nx)\mathrm{d}x,\ b_n=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cdot\sin(nx)\mathrm{d}x.$

Замечание. Для четных функций все b_n равны нулю, а для нечетных — все a_n .

Пункт 4.2.2. Достаточное условие сходимости ряда Фурье в точке

Определение 4.2.2. Функция $f:[a,b]\to\mathbb{R}$ удовлетворяет условию Гельдера, если $\exists C>0,\ \exists \alpha>0:\ |f(x_1)-f(x_2)|\leqslant C|x_1-x_2|^\alpha,\ \forall x_1,x_2\in[a,b].$

Обозначение. $f \in H^{\alpha}[a,b]$.

3амечание. Функция, удовлетворяющая условию Гельдера на [a,b], является равномерно непрерывной на этом отрезке.

Замечание. Если функция f удовлетворяет условию Гельдера с $\alpha > 1$, то f — константа.

Доказательство.
$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}\right| \leqslant C|\Delta x|^{\alpha-1} \xrightarrow{\Delta x \to 0} 0$$
. Отсюда $f'=0$ на $[a,b]$.

Замечание. $H^{1}[a,b] = Lip[a,b]$.

Пример. $f(x) = |x| \in Lip[-1, 1]$.

Пример. $f(x) = |x|^{\alpha} \in H^{\alpha}[-1, 1], 0 < \alpha < 1.$

Доказательство. Пусть x_1 и x_2 одного знака и пусть для определенности $0 \le x_1 < x_2 \le 1$. Тогда по теореме Лагранжа $\exists \theta \in (0,1): |f(x_2)-f(x_1)| = x_2^\alpha - x_1^\alpha = \frac{\alpha(x_2-x_1)}{(x_1+\theta(x_2-x_1))^{1-\alpha}} \le \alpha \frac{x_2-x_1}{x_1^{1-\alpha}} \le \alpha \frac{\alpha(x_2-x_1)^\alpha}{x_1^{1-\alpha}} \le \alpha \frac{\alpha(x_2$

Пусть x_1 и x_2 разных знаков. Тогда $|f(x_2)-f(x_1)| \leq |x_2^\alpha-0^\alpha|+|x_1^\alpha-0^\alpha| \leq 2\max{\{\alpha,2^\alpha\}}\cdot |x_2-x_1|^\alpha=2^{1+\alpha}|x_2-x_1|^\alpha.$

В итоге в качестве C можно взять $2^{1+\alpha}$.

Определение 4.2.3. Пусть $f:[a,b]\backslash x \to \mathbb{R}$ — кусочно–непрерывная функция. Говорят, что f удовлетворяет условию Дини в точке x, если $\exists f(x+0), \ f(x-0), \ \text{причем} \ \exists \varepsilon_1, \varepsilon_2 > 0:$ $\int\limits_0^{\varepsilon_1} \frac{|f(x+t)-f(x+0)|}{t} \mathrm{d}t < \infty \text{ и } \int\limits_0^{\varepsilon_2} \frac{|f(x-t)-f(x-0)|}{t} \mathrm{d}t < \infty.$

Пример. Гельдерова на [a,b] функция удовлетворяет условию Дини во всех точках отрезка [a,b].

Пример. Если функция f и ее производная являются кусочно—непрерывными на [a,b], то f удовлетворяет условию Дини в каждой точке этого отрезка.

Доказательство. Пусть $x_0 \in [a,b)$. Тогда $\exists \varepsilon > 0 : \overline{f} = \begin{cases} f(x) & x \in (x_0,x_0+\varepsilon] \\ f(x_0+0) & x = x_0 \end{cases}$,

$$\overline{f'} = \begin{cases} f'(x) & x \in (x_0, x_0 + \varepsilon] \\ f'(x_0 + 0) & x = x_0 \end{cases} \in C[x_0, x_0 + \varepsilon].$$
 Отсюда $\overline{f'} \in B(x_0, x_0 + \varepsilon)$. Стало быть,

 $f \in Lip[x_0, x_0 + \varepsilon] = H^1[x_0, x_0 + \varepsilon]$. Следовательно, выполнено условие Дини справа от точки x_0 . Аналогично доказывается слева.

Замечание. Непрерывности функции f на [a,b] не достаточно для того, что бы f удовлетворяла условию Дини во всех точках отрезка [a,b].

Пример. Функция $f(x)=egin{cases} \frac{1}{|\ln|x||} & 0<|x|\leqslant \frac{1}{2}\\ x & x=0 \end{cases}$ непрерывна на $\left[-\frac{1}{2},\frac{1}{2}\right]$, но в точке 0 не удовлетворяет условию Дини.

Доказательство. Пусть $\delta>0$. Тогда $\int\limits_{\delta}^{\varepsilon} \frac{f(0+t)-f(0)}{t} \mathrm{d}t = -\int\limits_{\delta}^{\varepsilon} \frac{\mathrm{d}t}{t \ln(t)} \frac{y=\ln(t)}{m} \int\limits_{\ln(\varepsilon)}^{\ln(\delta)} \frac{\mathrm{d}y}{y} = \ln(\ln(\varepsilon)) - \frac{1}{2} \int\limits_{-\infty}^{\infty} \frac{\mathrm{d}t}{t \ln(t)} \frac{y}{t} = \frac{1}{2} \int\limits_{\ln(\varepsilon)}^{\infty} \frac{\mathrm{d}t}{t} \frac{\mathrm{d}t}{t} \frac{\mathrm{d}t}{t} \frac{\mathrm{d}t}{t} = \frac{1}{2} \int\limits_{\ln(\varepsilon)}^{\infty} \frac{\mathrm{d}t}{t} \frac{\mathrm{d}t$

$$-\ln|\ln(\delta)|\xrightarrow{\delta \to 0} +\infty$$
. Стало быть, $\int\limits_0^\varepsilon \frac{\mathrm{d}t}{t|\ln(t)|}$ расходится.

Пример. Функция $f(x) = \frac{1}{|\ln(x)|^{\alpha}}$ удовлетворяет условию Дини лишь при $\alpha > 1$.

Лемма 4.2.1. Пусть
$$x \in [-\pi, \pi] \setminus \{0\}$$
. Тогда $\frac{1}{2} + \sum_{n=1}^k \cos(nx) = \frac{\sin(\frac{2k+1}{2}x)}{2\sin(\frac{x}{2})}$.

Доказательство.
$$2\sin\left(\frac{x}{2}\right)\left(\frac{1}{2}+\sum_{n=1}^{k}\cos(nx)\right)=\sin\left(\frac{x}{2}\right)+2\cos(x)\sin\left(\frac{x}{2}\right)+\ldots+2\cos(kx)\sin\left(\frac{x}{2}\right)=$$
 $=\sin\left(\frac{x}{2}\right)+\sin\left(\frac{3x}{2}\right)-\sin\left(\frac{x}{2}\right)+\ldots+\sin\left(\frac{(2k+1)x}{2}\right)-\sin\left(\frac{(2k-1)x}{2}\right)=\sin\left(\frac{2k+1}{2}x\right).$

Определение 4.2.4. Ядром Дирихле называется функция $D_k(x) = \frac{1}{\pi} \frac{\sin(\frac{2k+1}{2}x)}{2\sin(\frac{x}{2})}, \ x \in \mathbb{R}, \ k \in \mathbb{N}^*$ (в точках разрыва доопределяется по непрерывности пределом).

Замечание.
$$\int_{0}^{\pi} D_k(x) dx = \int_{-\pi}^{0} D_k(x) dx = \frac{1}{2}$$
.

Определение 4.2.5. Пусть $f:[a,b]\to \mathbb{R}$ — кусочно–непрерывная функция. Точка $x_0\in [a,b]$ называется регулярной, если $f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}$.

Лемма 4.2.2. Пусть $f: \mathbb{R} \to \mathbb{R}$ — кусочно–непрерывная 2π – периодическая функция и пусть $S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k (a_n \cos(nx) + b_n \sin(nx))$ — частичная сумма ряда Фурье функции f . Тогда

$$S_k(x) - \frac{f(x+0) + f(x-0)}{2} = \int_0^{\pi} [f(x-t) - f(x-0)] D_k(t) dt + \int_0^{\pi} [f(x+t) - f(x+0)] D_k(t) dt, \ \forall x \in \mathbb{R}.$$

Доказательство. $S_k(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{n=1}^{k} [\cos(nt)\cos(nx) + \sin(nt)\sin(nx)] \right] dt \xrightarrow{\frac{\pi.4.2.1}{2}} \int_{-\pi}^{\pi} f(t) D_k(t-x) dt \xrightarrow{\frac{z=t-x}{2}} \int_{-\pi}^{\pi} f(x+z) D_k(z) dz$. Поэтому $S_k(x) - \frac{f(x-0)}{2} - \frac{f(x+0)}{2} = \int_{-\pi}^{0} [f(x+z) - f(x+0)] D_k(z) dz$.

Лемма 4.2.3. Пусть $\varphi:[a,b]\to\mathbb{R}$ — кусочно–непрерывная функция. Тогда $\lim_{\lambda\to+\infty}\int\limits_a^b\varphi(x)\cdot\sin(\lambda x)\mathrm{d}x=0.$

 \mathcal{A} оказательство. Предположим, что $\varphi \in C^1[a,b]$. Тогда $\exists M>0: |\varphi|, |\varphi'| \leqslant M$ на [a,b]. Тогда $\left|\int\limits_a^b \varphi(x)\sin(\lambda x)\mathrm{d}x\right| = \left|-\varphi(x)\frac{\cos(\lambda x)}{\lambda}\right|_a^b + \int\limits_a^b \varphi'(x)\frac{\cos(\lambda x)}{\lambda}\mathrm{d}x\right| \leqslant \frac{2M}{\lambda} + \frac{(b-a)M}{\lambda} = \frac{(2+b-a)M}{\lambda} \xrightarrow{\lambda \to +\infty} 0.$

 $\forall k > N$.

Предположим, что $\varphi \in C[a,b]$. Пусть $\varepsilon > 0$ — произвольно. Тогда $\exists \varphi_{\varepsilon} \in C^1[a,b]: ||\varphi - -\varphi_{\varepsilon}||_{\infty} < \varepsilon$ (в качестве такой φ_{ε} можно взять полином, существование которого было доказано в теореме 3.4.1 (Теорема Вейерштрасса о приближении непрерывной функции полиномами)). По ранее доказанному, $\int\limits_a^b \varphi_{\varepsilon}(x) \sin(\lambda x) \mathrm{d}x \xrightarrow{\lambda \to +\infty} 0$. Поэтому $\exists M_{\varepsilon} > 0: \left|\int\limits_a^b \varphi_{\varepsilon}(x) \cdot \sin(\lambda x) \mathrm{d}x\right| < \varepsilon$, $\forall \lambda > M$. В итоге $\left|\int\limits_a^b \varphi \sin(\lambda x) \mathrm{d}x\right| \le \int\limits_a^b |\varphi(x) - \varphi_{\varepsilon}(x)| \mathrm{d}x + \left|\int\limits_a^b \varphi_{\varepsilon}(x) \sin(\lambda x) \mathrm{d}x\right| < (b-a)\varepsilon + \varepsilon = (b-a+1)\varepsilon$.

Окончательно, пусть φ — кусочно–непрерывна. Тогда существуют такие $a=x_0<\ldots<$

$$< x_n = b,$$
 что $f \in C(x_{i-1}, x_i), \ \forall i = 1 \dots n.$ Положим $\varphi_i(x) = egin{cases} \varphi(x) & x \in (x_{i-1}, x_i) \\ \varphi(x_{i-1} + 0) & x = x_{i-1} \\ \varphi(x_i - 0) & x = x_i \end{cases}$. Легко

видеть, что
$$\varphi_i \in C[x_{i-1}, x_i]$$
. В итоге, $\int\limits_a^b \varphi(x) \sin(\lambda x) \mathrm{d}x = \sum\limits_{i=1}^n \int\limits_{x_{i-1}}^{x_i} \varphi_i(x) \sin(\lambda x) \mathrm{d}x \xrightarrow{\lambda \to +\infty} 0$.

Теорема 4.2.1 (Достаточное условие сходимости ряда Фурье в точке). Пусть $f: \mathbb{R} \to \mathbb{R}$ — кусочно–непрерывная 2π — периодическая функция, удовлетворяющая условию Дини в некоторой точке x. Тогда ряд Фурье функции f в точке x сходится к $\frac{f(x-0)+f(x+0)}{2}$.

Доказательство.
$$S_k(x) - \frac{f(x-0) + f(x+0)}{2} \stackrel{\frac{\pi.\,4.2.2}{2}}{=\!=\!=\!=} I_1 + I_2$$
, где $I_1 = \int\limits_0^\pi [f(x-t) - f(x-0)] D_k(t) \mathrm{d}t$, $I_2 = \int\limits_0^\pi [f(x+t) - f(x+0)] D_k(t) \mathrm{d}t$. Пусть $\varepsilon > 0$ — произвольно.

Заметим, что $I_1=\int\limits_0^\pi \frac{f(x-t)-f(x-0)}{t}\frac{t}{2\pi\sin(\frac{t}{2})}\sin\left(\frac{2k+1}{2}t\right)\mathrm{d}t$. Обозначим подынтегральную функцию через $g_k(t)$. $|g_k(t)|\leqslant C\frac{|f(x-t)-f(x-0)|}{|t|},\ \forall t\in[-\pi,\pi]\backslash\{0\}$. В силу условия Дини $\exists \delta_\varepsilon>0:$ $\left|\int\limits_0^{\delta_\varepsilon}g_k(t)\mathrm{d}t\right|\leqslant C\int\limits_0^{\delta_\varepsilon}\frac{|f(x-t)-f(x-0)|}{t}\mathrm{d}t<\varepsilon,\ \forall k\in\mathbb{N}^*.$ По лемме 4.2.3 $\exists N\in\mathbb{N}:\ \left|\int\limits_{\delta_\varepsilon}^\pi g_k(t)\mathrm{d}t\right|<\varepsilon,\ \forall k>N.$ Рассмотрев аналогично I_2 , имеем: $\forall \varepsilon>0$ $\exists N\in\mathbb{N}:\ \left|S_k(x)-\frac{f(x-0)+f(x+0)}{2}\right|<2\varepsilon+2\varepsilon=4\varepsilon,$

Пример. Построим график суммы ряда Фурье функции f(x) = x на $[-\pi, \pi]$.

Заметим, что этот ряд совпадает с функцией лишь на $(-\pi, \pi)$.

 $^{^1}$ Имеется в виду, что f кусочно–непрерывна на всяком отрезке $[a,b]\subset\mathbb{R}.$

Пункт 4.2.3. Теорема Фейера

Определение 4.2.6. Ядром Фейера называется функция $F_n(x) = \frac{1}{n+1} \sum_{k=0}^n D_k(x), \ x \in \mathbb{R},$ $n \in \mathbb{N}^*$, где D_k — ядро Дирихле.

Лемма 4.2.4. Пусть $x \in \mathbb{R}$ $u \ n \in \mathbb{N}^*$. Тогда $F_n(x) = \frac{\sin^2(\frac{n+1}{2}x)}{2\pi(n+1)\sin^2(\frac{x}{2})}$.

Доказательство. Имеет место равенство $\sum_{k=0}^n \sin\left(\frac{2k+1}{2}x\right) = \frac{\sin^2\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}$. В самом деле, $\sin\left(\frac{x}{2}\right)$.

$$\left[\sin\left(\frac{x}{2}\right) + \sin\left(\frac{3x}{2}\right) + \dots + \sin\left(\frac{(2n+1)x}{2}\right)\right] = \sin^2\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\sin\left(\frac{3x}{2}\right) + \dots + \sin\left(\frac{x}{2}\right)\sin\left(\frac{(2n+1)x}{2}\right) = \frac{1-\cos(x)}{2} + \frac{\cos(x)-\cos(2x)}{2} + \dots + \frac{\cos(nx)-\cos((n+1)x)}{2} = \frac{1-\cos((n+1)x)}{2} = \sin^2\left(\frac{n+1}{2}x\right).$$

В итоге,
$$F_n(x) = \frac{1}{2\pi(n+1)\sin(\frac{x}{2})} \sum_{k=0}^n \sin(\frac{2k+1}{2}x) = \frac{1}{2\pi(n+1)\sin(\frac{x}{2})} \frac{\sin^2(\frac{n+1}{2}x)}{\sin(\frac{x}{2})} = \frac{\sin^2(\frac{n+1}{2}x)}{2\pi(n+1)\sin^2(\frac{x}{2})}.$$

Лемма 4.2.5. Пусть $n \in \mathbb{N}^*$. Тогда $\int\limits_{-\pi}^{\pi} F_n(t) \mathrm{d}t = 1$.

Доказательство. Следует из определения ядра Фейера и замечания к определению ядра Дирихле. □

Теорема 4.2.2 (Фейера). Пусть $f: \mathbb{R} \to \mathbb{R} - 2\pi$ -периодическая функция, непрерывная в некоторой точке x, такая, что $\int\limits_{-\pi}^{\pi} |f(t)| \mathrm{d}t < \infty$. Тогда $\sigma_n(x) \xrightarrow{n \to \infty} f(x)$, где $\sigma_n(x) =$

$$=rac{1}{n+1}\sum_{k=0}^{n}S_{k}(x)$$
, $S_{k}(x)=rac{a_{0}}{2}+\sum_{n=1}^{k}(a_{n}\cos(nx)+b_{n}\sin(nx))$ — частичная сумма ряда Фурье функции f .

Доказательство.

Из доказательства леммы 4.2.2 следует, что $S_k(x)=\int\limits_{-\pi}^{\pi}f(x+t)D_k(t)\mathrm{d}t.$ Тогда $\sigma_n(x)=$

$$\frac{1}{n+1} \sum_{k=0}^{n} S_k(x) = \int_{-\pi}^{\pi} f(x+t) \frac{1}{n+1} \sum_{k=0}^{n} D_k(t) dt = \int_{-\pi}^{\pi} f(x+t) F_n(t) dt \xrightarrow{\frac{\pi}{n} \cdot 4.2.4} \int_{-\pi}^{\pi} f(x+t) \frac{\sin^2(\frac{n+1}{2}t)}{2\pi(n+1)\sin^2(\frac{t}{2})} dt.$$

$$\sigma_n(x) - f(x) = \int_{-\pi}^{\pi} (f(x+t) - f(x)) F_n(t) dt$$
. Пусть $\varepsilon > 0$ — произвольно.

В силу того, что $f \in C(x)$, $\exists \delta = \delta_{\varepsilon,x} > 0$: $|f(x+t) - f(x)| < \varepsilon$ при $|t| \le \delta$. Следовательно, $\int\limits_{-\delta}^{\delta} |f(x+t) - f(x)| F_n(t) \mathrm{d}t < \varepsilon \int\limits_{-\pi}^{\pi} F_n(t) \mathrm{d}t \xrightarrow{\frac{\pi.4.2.5}{2}} \varepsilon.$

Так как
$$\int_{-\pi}^{\pi} |f(t)| \mathrm{d}t < \infty$$
, $F_n(t) \leq \frac{C_{\delta}}{n+1}$ при $|t| \in [\delta,\pi]$, $\forall n \in \mathbb{N}^*$, то $\left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi}\right) |f(x+t) - f(x)| = 1$

$$-f(x)|F_n(t)\mathrm{d}t \leqslant \frac{C_\delta}{n+1}\left(\int\limits_{-\pi}^\pi |f(t)|\mathrm{d}t + 2\pi|f(x)|\right) = \frac{\widehat{C}_{x,\delta}}{n+1} \xrightarrow{n \to \infty} 0.$$
 Поэтому найдется $N_{\varepsilon,x,\delta} \in \mathbb{N}$:

$$\left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi}\right) |f(x+t) - f(x)| F_n(t) dt < \varepsilon, \ \forall n > N_{\varepsilon, x, \delta}.$$

Окончательно,
$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ |\sigma_n(x) - f(x)| < \varepsilon + \varepsilon = 2\varepsilon, \ \forall n > N.$$

Из доказательства теоремы вытекает

Следствие. Пусть $f:\mathbb{R}\to\mathbb{R}-2\pi$ периодическая функция, непрерывная на отрезке $[a,b]\subset [-\pi,\pi]$, такая, что $\int\limits_{-\pi}^{\pi}|f(t)|\mathrm{d}t<\infty$. Тогда $\sigma_n \xrightarrow[n\to\infty]{[a,b]} f$.

Приложение

§4.3. *

Вопросы коллоквиума

- 1. Числовые ряды и их основные свойства (необходимый признак сходимости, остаток ряда, критерий Коши).
- 2. Знакоположительные ряды (критерий сходимости, признаки сравнения, предельный признак сравнения).
- 3. Знакоположительные ряды (признак Даламбера, формулировка признака Гаусса, радикальный признак Коши).
- 4. Знакоположительные ряды (интегральный признак Коши).
- 5. Знакопеременные ряды (абсолютная и условная сходимость, перестановка членов абсолютно сходящегося ряда).
- 6. Связь между безусловной и абсолютной сходимостью ряда.
- 7. Теорема Римана об условно сходящемся ряде.
- 8. Умножение рядов (теорема Абеля об умножении двух абсолютно сходящихся рядов, произведения рядов по Коши теорема Мертенса).
- 9. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка ряда.
- 10. Признаки сходимости Дирихле и Абеля.
- 11. Функциональные последовательности (поточечная и равномерная сходимости, критерий Коши и специальный критерий равномерной сходимости, признак Дини).
- 12. Теорема о предельном переходе. Свойства равномерно сходящихся последовательностей (непрерывность предельной функции, полнота C[a,b]).
- 13. Интегрование и дифференцирование функциональных последовательностей.
- 14. Функциональные ряды (поточечная и равномерная сходимости, критерий Коши равномерной сходимости, предельный переход, почленное интегрирование и дифференцирование).
- 15. Признак Вейерштрасса равномерной сходимости ряда. Пример непрерывной, нигде не дифференцируемой, функции.
- 16. Признаки Дирихле и Абеля равномерной сходимости ряда.
- 17. Степенные ряды (первая теорема Абеля, радиус и интервал сходимости).
- 18. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля.
- 19. Интегрирование и дифференцирование степенных рядов.
- 20. Единственность разложения функции в степенной ряд. Ряд Тейлора. Разложения в ряд Тейлора: $\exp(x)$; $\cos(x)$; $\sin(x)$.
- 21. Разложения в ряд Тейлора: $(1+x)^{\alpha}$; $\ln(1+x)$.
- 22. Экспоненциальная функция комплексного переменного.

4.4. *

§4.4. *

Экзаменационные вопросы

- 1. Числовые ряды и их основные свойства (необходимый признак сходимости, остаток ряда, критерий Коши). Знакоположительные ряды (критерий сходимости, признаки сравнения, предельный признак сравнения).
- 2. Знакоположительные ряды (признак Даламбера, формулировка признака Гаусса, радикальный признак Коши, интегральный признак Коши).
- 3. Знакопеременные ряды (абсолютная и условная сходимость, перестановка членов абсолютно сходящегося ряда). Теорема Абеля об умножении двух абсолютно сходящихся рядов.
- 4. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка ряда.
- 5. Признак сходимости Дирихле и Абеля.
- 6. Функциональные последовательности (поточечная и равномерная сходимости, критерий Коши и специальный критерий равномерной сходимости, признак Дини).
- 7. Свойства равномерно сходящихся последовательностей (предельный переход, непрерывность предельной функции). Полнота C[a,b].
- 8. Интегрирование и дифференцирование функциональных последовательностей.
- 9. Функциональные ряды (поточечная и равномерная сходимости, критерий Коши равномерной сходимости, предельный переход, почленное интегрирование и дифференцирование). Признак Вейерштрассса равномерной сходимости ряда.
- 10. Признаки Дирихле и Абеля равномерной сходимости.
- 11. Степенные ряды (первая теорема Абеля, радиус и интервал сходимости).
- 12. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сумма и произведение степенных рядов.
- 13. Интегрирование и дифференцирование степенных рядов.
- 14. Единственность разложения функции в степенной ряд. Ряд Тейлора. Разложение в ряд Тейлора: $\exp(x)$; $\cos(x)$; $\sin(x)$.
- 15. Разложение в ряд Тейлора: $(1+x)^{\alpha}$; $\ln(1+x)$.
- 16. Непрерывность интеграла, зависящего от трех параметров (в том числе, от нижнего и верхнего пределов).
- 17. Семейства функций, зависящих от параметра: равномерная сходимость, критерии Коши и Гейне равномерной сходимости. Предельный переход под знаком интеграла.
- 18. Дифференцируемость интеграла, зависящего от трех параметров (в том числе, от нижнего и верхнего пределов). Формула Лейбница.
- 19. Интегрируемость интеграла, зависящего от параметра.
- 20. Равномерная сходимость несобственных интегралов: a) с бесконечным промежутком интегрирования; b) от неограниченной функции. Критерий Коши и Гейне. Критерий равномерной сходимости несобственного интеграла от неотрицательной функции.
- 21. Признак Вейерштрасса, Дирихле и Абеля равномерной сходимости несобственных интегралов.
- 22. Предельный переход в несобственном интеграле. Непрерывность несобственного интеграла, зависящего от параметра.
- 23. Дифференцируемость несобственного интеграла, зависящего от параметра. Интеграл Дирихле.
- 24. Интегрируемость несобственного интеграла, зависящего от параметра. Теорема об изменении порядка интегрирования в повторных несобственных интегралах. Интеграл Пуассона.
- 25. Интегралы Эйлера.
- 26. Теорема Вейерштрасса о приближении непрерывной функции многочленами.
- 27. Ортогональные системы функций. Ортогональность и линейная независимость. Ряд Фурье кусночно–непрерывной функции по ортогональной системе. Неравенство Бесселя.
- 28. Тригонометрический ряд Фурье. Теорема о достаточных условиях сходимости ряда Фурье в точке.

29. Теорема Фейера.