Exempel 0.0.1

Lös y'' + 6y' + 9y = 0. Söker y(t) så att y(0) = 1 och $e^{3t}y(t)$ är begränsad för t > 0.

Lösning:

Karaktäristiska ekvationen: $r^2 + 6r + 9 = 0 \iff (r+3)^2$, den ar dubbelrot r = -3. Allmän lösning $y(t) = Ae^{-3t} + Bte^{-3t}$. $y(0) = 1 \implies A = 1$. Alltså kandidatfunktionen ser ut på följande sätt: $e^{-3t} + Bte^{-3t}$. Vi studerar $e^{3t}y(t) = 1 + Bt$. För att funktionen ska vara begränsad så måste B = 0, annars växer funktionen mot $+\infty$. **Svar**: Funktionen är $y(t) = e^{-3t}$