PROBABILITY AND STATISTICS - PROBLEM SET 3

- 1. $X \sim U[a, b]$, a < 1 < 2 < b. If P[X < 1] = 2P[X > 2], and 5P[X > 1] = 3P[X < 2], find the values of a and b.
- 2. X is a discrete random variable taking values 0, 1, 2, ..., whose pmf f(x) is such that $\frac{f(x_1)}{f(x_2)} = r^{x_1-x_2}$ for all $x_1, x_2 = 0, 1, 2, \ldots$ (where $r \in (0, 1)$ is a constant). Determine f(x) and compute $\mathbb{E}[X]$.
- 3. Let X be the random variable with pdf f(x) whose graph is shown below (where a < b < c are three real numbers).

Find h, and compute $\mathbb{E}[X]$.

4. Show that the function

$$f(x) = \frac{\lambda^x}{x!}e^{-\lambda}, x = 0, 1, 2, \dots$$

(where $\lambda > 0$ is a constant) is a valid pmf, and compute $\mathbb{E}[X]$ and $\mathbb{V}[X]$.

- 5. X is a discrete random variable with pmf $f(x) = \frac{6}{\pi^2 x^2}$, x = 1, 2, ...
 - (a) Compute $P[X \ge 3]$
 - (b) Compute $P[10 \leqslant X \leqslant 15]$
 - (c) Show that $\mathbb{E}[X]$ does not exist.
- 6. X is a continuous random variable with pdf $f(x) = \frac{6}{\pi^2} \left(\frac{1}{\lfloor x \rfloor}\right)^2$, x > 1.
 - (a) Compute $P[X \ge 3]$

- (b) Compute P[$10 \le X \le 15$]
- (c) Show that $\mathbb{E}[X]$ does not exist.
- 7. X has pdf $f(x) = \frac{x^2}{3}$, $-1 \le x \le 2$. Compute
 - (a) $P[X < \frac{3}{2}]$
 - (b) P[|X| > 1]

 - (c) $P\left[X < \frac{3}{2} \mid X > \frac{1}{2}\right]$ (d) $P\left[X < \frac{3}{2} \mid |X| > 1\right]$ (e) $P\left[|X| < 1 \mid X < \frac{3}{2}\right]$.
- 8. An urn initially has 1 red and 1 blue marble. A marble is drawn at random from the urn, and if it is blue, it is put back and one red marble is added to the urn. This is continued until a red marble is drawn. Let X denote the total number of draws required to obtain a red marble. Determine the probability distribution of X, and find its mean and variance. Hint: Compute $\mathbb{E}[X+1]$ and $\mathbb{E}[X^2-1]$.
- 9. The *median* of a random variable X is the point c such that $P[X \le c] = P[X \ge c] = \frac{1}{2}$. Compute the median of X with pdf f(x) in each of the following cases.
 - (a) $f(x) = \frac{1}{h a}$, a < x < b.
 - (b) $f(x) = ae^{-ax}$, x > 0 [where a > 0 is a constant].
 - (c) $f(x) = \frac{1}{\pi(1+x^2)}$ [Note that this distribution has no mean, but has a median].