Previously in Molecularity...

GKF 5.22

This is where the tetrahedral VSEPR structure comes from

SN	0 LP	1 LP	2 LP	3 LP	4 LP	5 LP
2	X—E—X Linear	XE:				
3	X L X X Trigonal planar	E x X 120° Bent	; X E			
4	X E, X X Tetrahedral	Trig. pyramidal	X E, X 109.5° Bent	X E:		
5	X IIIIIII E X X X X X X Trig. bipyrimidal	X X X X X X X X X X	X : X : X : X : X :	X : : : : : : : : : :	:///::E: X	
6	X /////X X X X Octahedral	X /////X X ///X Sq. pyramidal	X IIIII X X Sq. planar	X IIIII X X T-shaped	:///X Linear	:////: X E:::::::::::::::::::::::::::::::::::

SN	0 LP	1 LP	2 LP	3 LP	4 LP	5 LP
2	X—E—X Linear	X—E—:			sp hyb	ridization
3	X X E X Trigonal planar	E x X 120° Bent	; X E		sp² hyb	ridization
4	X E,X X Tetrahedral	X E, X X Trig. pyramidal	X E	X E	sp ³ hyb	ridization
5	X /////E—X X Trig. bipyrimidal	X X X X X E X X X X	X : X X X X X T-shaped	X :////E X Linear	:///::= : x hyb	sp ³ d ridization
6	X X X X E:::::X X Octahedral	X /////X X ///X Sq. pyramidal	X IIIII X X Sq. planar	X IIIII X X T-shaped	:///X X Linear	sp ³ d ² ridization

How to determine hybridization

- Start with VSEPR structure, and don't forget about leftover p's!
 - Atoms with sp hybridization have 2 p orbitals remaining
 - Atoms with sp² hybridization have 1 p orbital remaining
 - Atoms with sp³ hybridization have 0 p orbitals remaining
 - Carbon can demonstrate all three cases, sp, sp², or sp³!

Why does one orbital remain unhybridized?

GKF 5.26

Objective is to maximize bonding and minimize steric repulsion!

Valence bond theory

Sigma bonds have zero nodes between the atoms

Pi bonds have one node that is coplanar with the atoms

Pi bonds have **one** node that is coplanar with the atoms

How many different ways can you arrange four different atoms around carbon?

