Rethinking False Spring Risk

Chamberlain, Wolkovich

June 5, 2017

Temperature Thresholds for Damage: Agricultural vs Ecological

Table 1: Comparing damaging spring temperature thresholds in ecological and agronomical studies across various species and phenophases.

Sector	ввсн	Species	Temperature (°C)	Туре	Source
Ecological	9-15	Sorbus aucuparia	-7.4	50% lethality	Lenz et al. (2016)
Ecological	9-15	Prunus avium	-8.5	50% lethality	Lenz et al. (2016)
Ecological	9-15	Tilia platyphyllos	-7.4	50% lethality	Lenz et al. (2016)
Ecological	9-15	Acer pseudoplatanus	-6.7	50% lethality	Lenz et al. (2016)
Ecological	9-15	Fagus sylvatica	-4.8	50% lethality	Lenz et al. (2016)
Ecological	Spring Onset	All	-2.2	hard	Schwartz (1993)
Ecological	Spring Onset	All	-1.7	soft	Augspurger (2013)
Ecological	All	All	2 SD below winter TAVG	cold-air outbreaks	Vavrus <i>et al.</i> (2006)
Ecological	9+	Eucalyptus pauciflora	-5.8	elevated CO2 and temperature threshold	Barker <i>et al.</i> (2005)
Ecological	9+	All	-2.2	7 day threshold	Peterson & Abatzoglou (2014)
Agrinomical	9+	All	2	Risk threshold for clear nights	Cannell & Smith (1986)
Agrinomical	Floral	Vaccinium spp.	-4.4 to 0	sprinkler protection threshold	Longstroth, 2013
Agrinomical	9	Rosaceae	-7.2	10% lethality	Longstroth, 2012
Agrinomical	9	Rosaceae	-13.3	90% lethality	Longstroth, 2012
Agrinomical	All	All	Varies	Radiation Frost	Barlow et al., 2015; Andresen, 2009
Agrinomical	Floral	Wheat	-4 to -5	10-90% lethality	Barlow et al., 2015
Agrinomical	Vegetative	Wheat	-7 for 2hrs	100% lethality	Barlow et al., 2015
Agrinomical	Vegetative	Rice	4.7	lethal limit	Sanchez et al., 2014
Agrinomical	Vegetative	Corn	-1.8	lethal limit	Sanchez et al., 2014
Agrinomical	Vegetative	Wheat	-17.2	lethal limit	Sanchez et al., 2014

References

- Augspurger, C.K. (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. *Ecology* **94**, 41–50.
- Barker, D., Loveys, B., Egerton, J., Gorton, H., Williams, W. & Ball, M. (2005) Co2 enrichment predisposes foliage of a eucalypt to freezing injury and reduces spring growth. *Plant, Cell and Environment* 28, 1506–1515.
- Cannell, M. & Smith, R. (1986) Climatic Warming, Spring Budburst and Forest Damage on Trees Author (s): M. G. R. Cannell and R. I. Smith Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/2403090 JSTOR is a not-for-profit service that helps schol. *Journal of Applied Ecology* 23, 177–191.
- Lenz, A., Hoch, G., Körner, C. & Vitasse, Y. (2016) Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. *Functional Ecology* pp. 1–11.
- Peterson, A.G. & Abatzoglou, J.T. (2014) Observed changes in false springs over the contiguous United States. *Geophysical Research Letters* **41**, 2156–2162.
- Schwartz, M.D. (1993) Assessing the onset of spring: A climatological perspective. *Physical Geography* **14(6)**, 536–550.
- Vavrus, S., Walsh, J.E., Chapman, W.L. & Portis, D. (2006) The behavior of extreme cold air outbreaks under greenhouse warming. *International Journal of Climatology* **26**, 1133–1147.