

Вебинар №7. Определение предела функции по Коши и по Гейне.

Что такое функция?

Прежде чем говорить о пределе функции, давайте вспомним, что такое функция. Мы уже работали с последовательностями, которые, по сути, принимают на вход натуральные числа в качестве аргумента n и переводят их в действительные числа в качестве значений последовательности x_n . У функций же аргументы x тоже могут принимать любые действительные значения (принадлежащие области определения функции f(x).

Для последовательности:

$$n \in \mathbb{N} \to x_n \in \mathbb{R}$$

Для функции:

$$x \in \mathbb{R} \to f(x) \in \mathbb{R}$$
 (При чем каждому x соответствует единственный y)

Это означает, что для каждого значения x из области определения функции, существует ровно одно соответствующее значение f(x) (или y). Это ключевое свойство, отличающее функцию от произвольного отношения. Например, графики a и c на Рис. 1 являются функциями, так как каждому аргументу x ставят в соответствие единственное значение y, в то время как графики b и d функциями не являются, так как существуют такие аргументы x, которым соответствуют сразу несколько значений y.

Рис. 1: Кривые, являющиеся и не являющиеся графиком функции

Предел функции

Понятие предела функции описывает поведение функции вблизи определенной точки, а не обязательно в самой точке. Это принципиальное отличие от значения функции в точке.

Рис. 2: Предел функции в точке x_0

Различия между пределом и значением в точке:

$$\lim_{x \to x_0} f(x) = A$$
 — поведение в проколотой окрестности точки x_0
$$f(x_0) = B$$
 — значение функции в самой точке x_0

Предел описывает, к чему стремится функция, когда x приближается к x_0 , не учитывая, что происходит ровно в x_0 . Значение $f(x_0)$ — это то, чему функция равна в точке x_0 . Эти два понятия могут совпадать (для непрерывных функций), отличаться или существовать вовсе.

Определение. ε -окрестность точки x_0 — это интервал с центром в точке x_0 и радиусом ε .

$$U_{\varepsilon}(x_0) = (x_0 - \varepsilon; x_0 + \varepsilon) = \{x \in \mathbb{R} : |x - x_0| < \varepsilon\}$$

Рис. 3: Эпсилон окрестность точки x_0

Определение. Проколотая ε -окрестность точки x_0 — это ε -окрестность точки x_0 , из которой исключена сама точка x_0 . Она используется для анализа поведения функции вокруг точки, не включая её саму.

$$\overset{\circ}{U}_{\varepsilon}(x_0) = (x_0 - \delta; x_0 + \delta) \setminus \{x_0\} = \{x \in \mathbb{R} : 0 < |x - x_0| < \delta\}$$

Рис. 4: Проколотая эпсилон окрестность точки x_0

Определение предела функции по Коши (на языке ε - δ)

Это формальное определение предела функции, которое часто называют "на языке эпсилондельта". Оно позволяет строго проверить, является ли данное число пределом функции или нет.

Определение. Пусть функция f(x) определена в некоторой проколотой окрестности точки x_0 . Число A называется **пределом функции** f(x) при x, стремящемся к x_0 , если:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A)$$

Как это читается: "Предел функции f(x) при x, стремящемся к x_0 , равен A тогда и только тогда, когда для любого (сколь угодно малого) положительного числа ε существует такое положительное число δ (зависящее от ε), что для всех x из проколотой δ -окрестности точки x_0 (то есть для всех x достаточно близких к x_0 , но не равных ей) значение функции f(x) попадает в ε -окрестность точки A."

Это определение удобно для визуализации: если A- предел функции f(x), то каким бы маленьким не был ε -коридор вокруг A по оси y, мы всегда найдем такой коридор вокруг x_0 по оси x (подогнав δ под ε), что все значения функции для x из этого δ -коридора (кроме самой x_0) попадут в наш ε -коридор.

Для вычисления пределов на практике это определение часто переписывают в виде неравенств:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \ \forall x : \ 0 < |x - x_0| < \delta \hookrightarrow |f(x) - A| < \varepsilon$$

Рис. 5: Определение предела функции по Коши

Как видно из Рис. 5, для горизонтального коридора шириной ε_1 вокруг точки A находится вертикальный коридор шириной δ_1 вокруг точки x_0 , что все точки x из вертикального голубого коридора (за исключением самой точки x_0 отображаются в значения функции f(x) из розового горизонтального коридора. То же самое выполняется и для $\varepsilon_1, \varepsilon_2$ и, как видно, для любых сколь угодно малых ε . Таким образом, A является пределом функции f(x) при $x \to x_0$.

Примеры доказательства пределов по Коши

Пример 1. Доказать по определению Коши, что $\lim_{x\to 3} (3x-5) = 4$.

Решение: Здесь f(x) = 3x - 5, A = 4, $x_0 = 3$. Нам нужно для любого $\varepsilon > 0$ найти $\delta > 0$ такое, что если $0 < |x - 3| < \delta$, то $|(3x - 5) - 4| < \varepsilon$.

Начнем с неравенства $|f(x) - A| < \varepsilon$:

$$\begin{aligned} |(3x - 5) - 4| &< \varepsilon \\ |3x - 9| &< \varepsilon \\ |3(x - 3)| &< \varepsilon \\ 3|x - 3| &< \varepsilon \\ |x - 3| &< \frac{\varepsilon}{3} \end{aligned}$$

Мы видим, что если |x-3| будет меньше $\frac{\varepsilon}{3}$, то условие $|f(x)-A|<\varepsilon$ будет выполнено. Таким образом, мы можем выбрать $\delta=\frac{\varepsilon}{3}$.

То есть:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} = \frac{\varepsilon}{3} : \ \forall x : \ 0 < |x - 3| < \delta \hookrightarrow |f(x) - 4| < \varepsilon$$

Что и требовалось доказать.

Пример 2. Доказать по определению Коши, что $\lim_{x\to 1} x^2 = 1$.

Решение: Здесь $f(x)=x^2,\ A=1,\ x_0=1.$ Нам нужно для любого $\varepsilon>0$ найти $\delta>0$ такое, что если $0<|x-1|<\delta,$ то $|x^2-1|<\varepsilon.$

Начнем с неравенства $|f(x)-A|<\varepsilon$. Мы хотим, чтобы $|x^2-1|<\varepsilon$, то есть $|(x-1)(x+1)|<\varepsilon$. Пусть $|x-1|=\delta$. Тогда $x=1\pm\delta$ (строго говоря, x находится в интервале $(1-\delta,1+\delta)$). Тогда |x+1| будет находиться вблизи |1+1|=2. Более точно, $2-\delta< x+1<2+\delta$. Если мы хотим, чтобы $|x-1||x+1|<\varepsilon$, мы можем попытаться найти такое δ , что $\delta(\delta+2)=\varepsilon$.

$$\delta(\delta + 2) = \varepsilon$$
$$\delta^2 + 2\delta = \varepsilon$$
$$(\delta + 1) = \varepsilon + 1$$
$$\delta + 1 = \sqrt{\varepsilon + 1}$$
$$\delta = -1 \pm \sqrt{\varepsilon + 1}$$

Поскольку δ должно быть положительным, выбираем только положительный корень:

$$\delta = -1 + \sqrt{1 + \varepsilon}$$

То есть:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} = -1 + \sqrt{1+\varepsilon} : \ \forall x : \ 0 < |x-1| < \delta \hookrightarrow |f(x)-1| < \varepsilon$$

Что и требовалось доказать.

Предел функции по Гейне (на языке последовательностей)

Определение предела функции по Гейне предлагает альтернативный взгляд на понятие предела, связывая его с пределами последовательностей. Это определение часто бывает удобнее для доказательства отсутствия предела.

Определение. Число A называется пределом функции f(x) при x, стремящемся к x_0 , тогда и только тогда, когда для любой последовательности $\{x_n\}$, сходящейся к x_0 и такой, что $x_n \neq x_0$ для всех n, соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к A.

$$\lim_{x\to x_0} f(x) = A \iff \forall$$
 последовательности $x_n\to x_0, \ x_n\neq x_0\hookrightarrow f(x_n)\to A$

Рис. 6: Определение предела функции по Гейне

Когда удобно использовать определение по Гейне?

- 1. При доказательстве отсутствия предела: Если мы можем найти хотя бы две различные последовательности $x_n \to x_0$ (с $x_n \neq x_0$), для которых соответствующие последовательности $f(x_n)$ стремятся к разным значениям, то предел функции не существует.
- 2. **При сведении теорем, связанных с пределами функций, к пределам последовательностей:** Многие свойства пределов функций (например, арифметические свойства) можно легко доказать, используя уже известные свойства пределов последовательностей.

Примеры доказательства отсутствия предела по Гейне

Пример 1. Доказать, что предел $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$ не существует.

Решение: Воспользуемся определением предела по Гейне. Нам нужно найти две последовательности $x_n \to 0$ такие, что $x_n \neq 0$, но соответствующие значения $f(x_n)$ стремятся к разным значениям.

Рассмотрим первую последовательность $\{x_n\}$, члены которой стремятся к 0. Пусть $x_n = \frac{1}{n}$ для $n \in \mathbb{N}$. Очевидно, $x_n \to 0$ при $n \to \infty$, и $x_n \neq 0$. Тогда $f(x_n) = \sin\left(\frac{\pi}{x_n}\right) = \sin\left(\frac{\pi}{1/n}\right) = \sin(n\pi)$. Мы знаем, что $\sin(n\pi) = 0$ для любого целого n. Следовательно, $f(x_n) = 0$ для всех n. Таким образом, $\lim_{n \to \infty} f(x_n) = 0$.

Рассмотрим вторую последовательность $\{y_n\}$, также стремящуюся к 0. Пусть $y_n=\frac{2}{1+4n}$ для $n\in\mathbb{N}$. Очевидно, $y_n\to 0$ при $n\to\infty$, и $y_n\neq 0$.

Тогда
$$f(y_n) = \sin\left(\frac{\pi}{y_n}\right) = \sin\left(\frac{\pi}{\frac{2}{1+4n}}\right) = \sin\left(\frac{\pi(1+4n)}{2}\right) = \sin\left(\frac{\pi}{2}+2\pi n\right)$$
. Мы знаем, что $\sin\left(\frac{\pi}{2}+2\pi n\right) = \sin\left(\frac{\pi}{2}\right) = 1$ для любого целого n . Следовательно, $f(y_n) = 1$ для всех n . Таким образом, $\lim_{n\to\infty} f(y_n) = 1$.

Мы нашли две последовательности, сходящиеся к 0, но значения функции на этих последовательностях стремятся к разным пределам (0 и 1). По определению предела по Гейне, если такие последовательности существуют, то предел функции не существует.

Функция $y = \sin\left(\frac{\pi}{x}\right)$ демонстрирует очень быстрое осциллирующее поведение по мере приближения x к 0. Чем ближе x к 0, тем быстрее функция колеблется между -1 и 1, проходя через все промежуточные значения бесконечное число раз. Именно поэтому она не имеет предела в 0.

Рис. 7: График функции $f(x) = \sin\left(\frac{\pi}{x}\right)$