Du Capteur à l'Actionneur

Rapport de Projet - 2025

Kiran BONHOMME Anaïs DIGOUT

Promotion E4e - SE

Sommaire

- 1. Introduction
 - 1.1 Objectif du projet
 - 1.2 Modes de fonctionnement
 - 1.3 Machine à état
 - 1.4 Comportements supplémentaires
- 2. Conception
 - 2.1 Diagramme de classe
 - 2.2 Diagrammes de séquence
 - Diagramme de séquence principal
 - Traitement des commandes utilisateur
 - Mise à jour du système selon l'état
 - Mode 1 Suivi de distance
 - Mode 2 Consigne utilisateur
 - 2.4 Brochage des différents éléments
 - Brochage du capteur HC-SR04
 - Brochage du servo-moteur
 - Brochage des LEDs
 - Brochage de la Communication série
- 3. Modules développés
 - 3.1 Module HC-SR04
 - 3.2 Module Servo-moteur
 - 3.3 Module UART
 - 3.4 Fonctions de démonstration
 - 3.5 Application principale
- 4. Difficultés rencontrées et solutions
- 5. Conclusion

1. Introduction

1.1 Objectif du projet

Ce projet vise à développer un système embarqué sur microcontrôleur STM32F4 permettant d'interfacer un capteur de distance à ultrasons (HC-SR04) avec un servo-moteur. L'objectif principal est de créer un système capable de réagir à l'environnement (mesure de distance) ou à des commandes utilisateur (via liaison série) pour positionner précisément un servo-moteur.

Le système met en œuvre différentes technologies et compétences en développement embarqué :

- Mesure de distance par ultrasons
- Génération de signaux PWM pour contrôler un servo-moteur
- Communication série formatée
- Gestion d'une machine à états
- Développement modulaire avec séparation des responsabilités

1.2 Modes de fonctionnement

Le système propose trois modes de fonctionnement distincts :

1. Mode IDLE (repos):

- Les LEDs sont éteintes
- Le servo-moteur est positionné au centre (position neutre)
- Le système attend une commande utilisateur

2. Mode 1 (asservissement par capteur):

- La LED bleue est allumée pour indiquer ce mode
- Le servo-moteur se positionne proportionnellement à la distance mesurée par le capteur HC-SR04
- Plage de mesure valide : 5 à 25 cm
- Si la distance est hors de cette plage, le servo-moteur revient en position centrale

3. Mode 2 (contrôle par commande série) :

- La LED verte est allumée pour indiquer ce mode
- Le servo-moteur se positionne selon une valeur envoyée par l'utilisateur via UART
- Plage de valeurs acceptées : 1 à 12 (correspondant à différentes positions angulaires)

1.3 Machine à état

Le système est géré par une machine à états dont les transitions sont déclenchées par les commandes utilisateur. Voici le diagramme d'états correspondant :

Ce diagramme illustre:

- Les trois états principaux du système (IDLE, MODE1, MODE2)
- Les transitions entre états déclenchées par les commandes utilisateur
- Les comportements spécifiques à chaque état
- La gestion des cas particuliers comme les mesures hors plage

1.4 Comportements supplémentaires

En plus des modes de fonctionnement principaux, le système offre les caractéristiques suivantes :

• Protocole de communication série structuré :

- Les messages sont encapsulés entre délimiteurs '<' et '>'
- Écho des caractères reçus pour confirmer la réception
- Messages d'état et d'erreur formatés

• Gestion des erreurs :

- Détection des valeurs hors plage pour le capteur
- Vérification de la validité des commandes série
- Messages d'erreur explicites pour guider l'utilisateur

• Retour d'information :

- Affichage régulier de la distance mesurée en Mode 1
- Confirmation des commandes reçues
- Indication visuelle du mode actif par LEDs

2. Conception

2.1 Diagramme de classe

Le diagramme suivant illustre la structure du code et les relations entre les différents modules du système :

Ce diagramme met en évidence :

- La structure modulaire du système avec une séparation claire des responsabilités
- L'implémentation du pattern Singleton pour le capteur HC-SR04
- Les interfaces entre le contrôleur principal et les différents modules périphériques
- Les constantes et limitations définies pour chaque sous-système

2.2 Diagrammes de séquence

Les diagrammes de séquence suivants montrent les interactions entre les différents modules du système :

Diagramme de séquence principal

Le diagramme principal présente une vue d'ensemble des interactions du système avec des références vers les diagrammes détaillés :

Diagramme de séquence du projet global

Projet Capteur à Actionneur - Avril 2025

Ce diagramme montre:

- La séquence d'initialisation
- La structure de la boucle principale
- Les références vers les diagrammes plus détaillés

Traitement des commandes utilisateur

Ce diagramme détaille le processus de réception et de traitement des commandes utilisateur :

Diagramme de séquence représentant le traitement des commandes utilisateur

Il montre:

- La réception des commandes via l'interface UART
- L'analyse et l'interprétation des commandes
- Les différentes actions selon le type de commande reçue

Mise à jour du système selon l'état

Ce diagramme illustre comment le système réagit en fonction de son état actuel :

Diagramme de séquence représentant la mise à jour du système selon l'état

Projet Capteur à Actionneur - Avril 2025

Il montre:

- Les actions spécifiques pour chaque état (IDLE, MODE1, MODE2)
- Le traitement des mesures de distance en MODE1
- La gestion des positions du servo-moteur

Mode 1 - Suivi de distance

Le diagramme suivant spécifie comment fonctionne le Mode 1 :

Diagramme de séquence représentant le Mode 1 - Suivi de distance

Projet Capteur à Actionneur - Avril 2025

Ce scénario montre :

- L'activation du Mode 1 par l'utilisateur
- La mesure continue de la distance
- L'ajustement du servo en fonction de la distance mesurée

Mode 2 - Consigne utilisateur

Le diagramme suivant spécifie comment fonctionne le Mode 2 :

Diagramme de séquence représentant le Mode 2 - Consigne utilisateur

Projet Capteur à Actionneur - Avril 2025

Ce scénario montre :

- L'activation du Mode 2 par l'utilisateur
- L'envoi d'une valeur de position
- Le positionnement du servo selon la consigne reçue

2.4 Brochage des différents éléments

Brochage du capteur HC-SR04

Broche	Connexion	Description
VCC	Alimentation 5V	Alimentation du capteur
GND	Masse	Référence de masse

Broche	Connexion	Description
Trig	PA8 (GPIO)	Signal de déclenchement de la mesure (sortie STM32)
Echo	PA9 (GPIO)	Signal de retour de l'écho (entrée STM32)

Brochage du servo-moteur

Broche	Connexion	Description
VCC	Alimentation 5V	Alimentation du servo
GND	Masse	Référence de masse
Signal	PC6 (TIM3_CH1)	Signal PWM pour le contrôle de position

Brochage des LEDs

LED	Broche	Mode associé	Signification
LED Bleue	PD15	MODE1	Mode capteur actif
LED Verte	PD12	MODE2	Mode commande série actif
LED Orange	PD13	Indication	Mesure valide (5-25 cm)
LED Rouge	PD14	Indication d'erreur	Mesure hors plage

Brochage de la Communication série

Broche Connexion		Description	
TX	PA2	Transmission de données	
RX	PA3	Réception de données	

2.4 Configuration des différents éléments

Configuration du servo-moteur

Paramètre	Valeur	Description
Fréquence PWM 50 Hz Fréquence du signal de contrôle (péri		Fréquence du signal de contrôle (période 20ms)
Position minimale	1000 µs	Largeur d'impulsion pour 0°
Position centrale	1500 µs	Largeur d'impulsion pour 90°
Position maximale	2000 µs	Largeur d'impulsion pour 180°
Résolution	1 µs	Résolution du positionnement

Configuration du capteur HC-SR04

Paramètre	Valeur Description		
Durée trigger	10 µs	Durée de l'impulsion de déclenchement	
Plage de mesure	5-25 cm	Plage de distance valide pour l'application	
Timeout	10 ms	Délai maximum d'attente pour l'écho	
Timer utilisé	TIM1	Timer haute résolution pour la mesure temporelle	
Pull-down	Activé	é Sur la broche Echo pour stabiliser le signal	

Configuration de la communication série

Paramètre Valeur		Description
Interface USART2 Interface		Interface série utilisée
Vitesse 115200 bauds Débit de transmission		Débit de transmission
Format de trame 8N1 8 bits de données, pa		8 bits de données, pas de parité, 1 bit de stop
Délimiteurs '<', '>' Caractères d'encapsulation d		Caractères d'encapsulation des messages
Timeout UART 1000 ms		Timeout pour les opérations de transmission
Taille buffer 256 octets Taille		Taille des buffers de réception et transmission

3. Modules développés

3.1. Module HC-SR04

Le module HC-SR04 gère l'interfaçage avec le capteur ultrasonique pour mesurer la distance.

Fonctionnalités principales

- Initialisation des broches GPIO et du timer
- Génération d'impulsions précises de 10µs pour le trigger
- Mesure du temps d'écho avec une résolution microseconde
- Conversion du temps d'écho en distance (cm)
- Filtrage des mesures hors plage (5-25 cm)
- Mise à jour périodique des mesures en Mode 1

3.2. Module Servo-moteur

Le module servo-moteur permet de contrôler la position angulaire d'un servo standard via un signal PWM.

Fonctionnalités principales

- Initialisation du timer PWM (TIM3)
- Positionnement précis du servo à une valeur spécifiée
- Conversion de distances (5-25 cm) en positions servo (1000-2000 μs)
- Conversion de valeurs utilisateur (1-12) en positions servo
- Position centrale par défaut (1500 μs, 90°)

Détails techniques

- Signal PWM généré à 50Hz (période de 20ms)
- Largeur d'impulsion variable entre 1ms (0°) et 2ms (180°)
- Position centrale à 1.5ms (90°)
- Résolution temporelle de 1µs

3.3. Module UART

Le module UART gère la communication série avec l'utilisateur, offrant une interface formatée pour les commandes et les messages d'état.

Fonctionnalités principales

- Envoi de messages formatés avec délimiteurs
- Réception non-bloquante de commandes
- Écho des caractères reçus
- Gestion des dépassements de buffer
- Support pour les commandes textuelles et numériques

Protocole de communication

Type de message	Format	Exemple	Description
Commande mode	<commande></commande>	<mode1></mode1>	Change le mode de fonctionnement
Valeur servo	<valeur></valeur>	<8>	Positionne le servo en Mode 2
Information	<message></message>	<distance: 15.32="" cm=""></distance:>	Retour d'information
Erreur	<message d'erreur></message 	<pre><error: long="" message="" too=""></error:></pre>	Indication d'une erreur

Commandes reconnues:

• mode1: Active le Mode 1 (suivi par capteur)

• mode2 : Active le Mode 2 (commande manuelle)

• quit: Retourne au mode IDLE

• 1 à 12 : Valeurs pour positionner le servo en Mode 2

3.4. Fonctions de démonstration

Pour valider le bon fonctionnement des différents modules, nous avons implémenté des fonctions de démonstration. Elles permettent de tester individuellement chaque composant (capteur HC-SR04, servomoteur, UART) sans dépendre des autres parties du système.

Voici un résumé des fonctions de démonstration et des indicateurs de bon fonctionnement associés :

Module	Fonction de démonstration	Indicateur de bon fonctionnement
Capteur HC-SR04	HC_SR04_Demo	Affichage de LED indicatives : • LED orange : distance valide (5-25 cm) • LED rouge : distance hors plage ou erreur
Servo- moteur	Servo_Demo	Déplacement fluide entre les positions : • minimale (0°), • centrale (90°), • maximale (180°).
UART	USART_Demo	Test interactif: • Envoi d'un message de test: "Testing USART communication Please respond with to continue." • Réception et validation de la réponse utilisateur: "Response received: continuing demo."

3.5. Application principale

L'application principale orchestre tous les modules et implémente la machine à états qui gère le comportement du système.

Fonctionnalités principales

- Initialisation de tous les périphériques
- Boucle principale non-bloquante
- Traitement des commandes utilisateur
- Gestion des transitions entre états
- Mise à jour périodique de l'état du système

Stratégie de conception

- Architecture modulaire : Chaque module a une responsabilité claire et bien définie
- Machine à états : Gestion explicite des états et transitions pour simplifier la logique
- **Gestion non-bloquante** : Aucune fonction ne bloque l'exécution, permettant au système de réagir en temps réel
- Extensibilité : Facilité d'ajout de nouveaux modes ou comportements

4. Difficultés rencontrées et solutions

Problème	Description	Solution mise en œuvre
Précision des mesures	Fluctuations importantes dans les mesures du capteur HC-SR04, rendant le positionnement du servo instable	 Ajout d'un pull-down sur la broche Echo Utilisation de TIM1 pour mesurer avec une résolution de 1µs Implémentation de timeouts (10ms) Filtrage des valeurs hors plage (5-25 cm)
Communication série bloquante	Les premières implémentations de la communication série bloquaient l'exécution principale	 Réception non-bloquante des caractères Gestion d'état pour reconstituer les commandes Utilisation de délimiteurs '<' et '>' Buffer statique pour conserver l'état entre appels
Stabilité du servo	Servo instable lors de petits changements de distance	 Limitation de la fréquence de mise à jour (100ms) Position centrale par défaut en cas d'erreur
Dysfonctionnement du servo-moteur	Après plusieurs essais, le servo-moteur a cessé de répondre correctement aux commandes	 Test valide avec un autre servo-moteur Vérification de la connexion électrique Changement d'un fil de connexion

5. Conclusion

Ce projet a permis de développer un système complet intégrant capteur et actionneur, avec une interface utilisateur série. Les principales réalisations sont :

- 1. Architecture modulaire : Le système est divisé en modules réutilisables avec des interfaces claires.
- 2. **Machine à états robuste** : La gestion explicite des états simplifie la logique et rend le comportement prévisible.
- 3. **Interface utilisateur intuitive**: Les commandes simples et le retour d'information constant facilitent l'utilisation.
- 4. **Fiabilité** : La gestion des erreurs, les timeouts et les vérifications de plages assurent un fonctionnement robuste.