

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 12 EYP2805 - Métodos Bayesianos 15 de Noviembre

- 1. Considere un modelo jerárquico Poisson. En la primera etapa tenemos observaciones s_j la cuales vienen de una distribución Poisson con media $t_j\lambda_j$ para $j=1,\ldots,p$ donde cada t_j es conocido. Asumimos que los λ_j son independientes e idénticamente distribuidos con distribución a priori $Gamma(\alpha,\beta)$. El parámetro α es conocido, pero β es desconocido y viene dado por una distribución $Gamma(\gamma,\delta)$, donde γ y δ son conocidos.
 - a) Encuentre, salvo una constante de normalización, la distribución conjunta a posteriori de los parámetros desconocidos dado $s = (s_1, \ldots, s_p)$.
 - b) Describa cómo el muestreo de Gibbs puede ser usado para obtener muestras de esta distribución a posteriori, derivando todo lo necesario para su implementación.
- 2. Demuestre que, para la colección de modelos $\{M_1, \ldots, M_p\}$

$$2\log B_{M_i,M_i}^{\pi} \approx BIC_{M_i} - BIC_{M_j}$$

Hint: Puede ser útil saber que $f(y|M_i) \approx f(y|\hat{\theta}_i, M_i) n^{-r_i/2}$, donde $\hat{\theta}_i$ es el MLE de θ y $r_i = Dim(\theta_i)$.

- 3. Respecto al criterio LPML , responda lo siguiente:
 - a) Explique en palabras simples
 - i) Qué supuestos se hacen.
 - ii) Qué se hace para comprar modelos usándolo.
 - b) Dados $LPML_M$ y $LPML_{\tilde{M}}$, para los modelos M y \tilde{M} , explique como obtener una aproximación del factor de Bayes $B_{M,\tilde{M}}^{\pi}$.
 - c) Demuestre que $f_i(y_i|y_{-i}, M)^{-1} = \mathbb{E}(f_i(y_i|\theta)^{-1}|y_1, \dots, y_n)$
 - d) Usando el resultado de la pregunta anterior, si usted tiene una muestra $\{\theta^1, \dots, \theta^s\}$, ¿cómo podría encontrar una aproximación del *LPML* asociado a este modelo?