How do we evaluate the quality of a regression model?

Our estimate of **program impact** should be:

- Accurate ("unbiased")
- Precise ("efficient")

Taxonomy of control variables

Type A: Control is uncorrelated with X1

Type B: Control is correlated with X1

Removes bias from B1
More accurate estimates

How well will each model perform?

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

$$y = b_0 + b_1 x_1 + b_2 x_2$$

$$y = b_0 + b_1 x_1 + b_3 x_3$$

$$y = b_0 + b_1 x_1$$

How do controls impact our model?

$$y = b_0 + b_1 x_1 + b_2 x_2$$

B: The competing hypotheses X2 helps isolate the independent contributions that X1, but the lack of the uncorrelated control variable X3 results in large standard errors.

$$y = b_0 + b_1 x_1 + b_3 x_3$$

C: This is a complicated case because the uncorrelated control results in small standard error, which can give false confidence when the absence of X2 results in omitted variable bias.

$$y = b_0 + b_1 x_1$$

D: The absence of an important competing hypotheses (omitted variable X2) results in biased slopes, and the lack of beneficial controls leads to large standard errors.

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

A: The competing hypotheses X2 helps isolate the independent contributions that X1 makes to the outcome, and the unrelated variable X3 reduces standard errors.

Exam question: match the cases

Full Model: $Y = B0 + B1 \cdot X1 + B2 \cdot X2 + B3 \cdot X3 + e$

Taxonomy of control variables

Quality of B1:

NO

Omit X3

YES

NO

YES

ν =	$h_0 +$	$h_1 \chi_1$	$+ h_2 \chi_2$	$+ b_3 x_3$
<i>y</i> —	ν_0 τ	$\nu_1 \lambda_1$	$\tau \nu_2 \lambda_2$	$T \nu_3 \lambda_3$

Unbiased & Precise

$$y = b_0 + b_1 x_1 + b_3 x_3$$

Biased & Precise

$$y = b_0 + b_1 x_1 + b_2 x_2$$

Unbiased & Imprecise

$$y = b_0 + b_1 x_1$$

Biased & Imprecise