

Understanding class definitions

Exploring source code

client view

client view

client view

insertMoney

printTicket

developer view

Basic class structure

```
package naiveticketmachine;
                                  The outer wrapper
access class TicketMachine { +
                                   of TicketMachine
    Inner part omitted.
                                  package declaration
package packagename;
access class ClassName {
                                     The inner
    Fields
    Constructors
                                   contents of a
    Methods
                                       class
                (default, package-private)
access:
```

Basic class structure

```
package naiveticketmachine;
                                  The outer wrapper
access class TicketMachine { +
                                   of TicketMachine
    Inner part omitted.
                                  package declaration
package packagename;
access class ClassName {
                                     The inner
    Fields
    Constructors
                                   contents of a
    Methods
                                       class
                (default, package-private)
access:
        public
```

Class access

```
class TicketMachine {
    ...
}
```

Nothing, ie, packageprivate by default Need a *really* good reason to go public

```
public class TicketMachine {
    ...
```


Keywords

- Words with a special meaning in the language:
 - -public
 - -class
 - -private
 - -int
 - and many more
- Also known as reserved words.
- Always entirely lower-case.

Fields

- Fields store values for an object.
- They are also known as *instance variables*, or *attributes*.
- Fields define the state of an object.
- Some values change often.
- Some change rarely aka visibility modifier

```
class TicketMachine {
    private int price;
    private int balance;
    private int total;

    Further details omitted.
}
```

private int price;

type

variable name

Fields

- Fields store values for an object.
- They are also known as *instance variables*, or *attributes*.
- Fields define the state of an object.
- Some values change often.
- Some change rarely aka visibility modifier (or not at all).

```
class TicketMachine {
    private int price;
    private int balance;
    private int total;

    Further details omitted.
}
```

type

final private int price;

variable name

Constructors

```
TicketMachine(int cost) {
    price = cost;
    balance = 0;
    total = 0;
}
```

- Initialize an object.
- Have the same name as their class.
- Close association with the fields:
 - Initial values stored into the fields.
 - Parameter values often used for these.

Passing data via parameters

Parameters are another sort of variable.

Assignment

 Values are stored into fields (and other variables) via assignment statements:

- variable = expression;

-balance = balance + amount;

pattern

- -balance += amount;
- A variable can store just one value, so any previous value is lost.

Choosing variable names

- There is a lot of freedom over choice of names. Use it wisely!
- Choose expressive names to make code easier to understand:
 - -price, amount, name, age, etc.
- Avoid single-letter or cryptic names:
 - -w, t5, xyz123

Methods

- Methods implement the behavior of objects.
- Methods have a consistent structure comprised of a header and a body.
- Accessor methods provide information about an object.
- Mutator methods alter the state of an object.
- Other sorts of methods accomplish a variety of tasks.

Method structure

- The header:
 - access int getPrice()
- The header tells us:
 - the *visibility (access)* to objects;
 - private, package-private, public
 - whether the method returns a result;
 - the *name* of the method;
 - whether the method takes parameters.
- The body encloses the method's statements.

Accessor methods

- An accessor method always has a return type that is not void.
- An accessor method returns a value (result) of the type given in the header.
- The method will contain a return statement to return the value.
- NB: Returning is not printing!

Accessor (get) methods

```
visibility modifier return type
(default here) method name

int getPrice() { (empty)

return price;
}
return statement

start and end of method body (block)
```


Mutator methods

- Have a similar method structure: header and body.
- Used to *mutate* (i.e., change) an object's state.
- Achieved through changing the value of one or more fields.
 - They typically contain one or more assignment statements.
 - Often receive parameters.

Mutator methods

set mutator methods

- Fields often have dedicated set mutator methods.
- These have a simple, distinctive form:
 - -void return type
 - method name related to the field name
 - single formal parameter, with the same type as the type of the field
 - a single assignment statement

Protective mutators

- A set method does not have to always assign unconditionally to the field.
- The parameter may be checked for validity and rejected if inappropriate.
- Mutators thereby protect fields.
- Mutators (sort of) support encapsulation.

Accessors and mutators - a word of caution

- Do not overuse accessors and mutators.
- They can break encapsulation.
 - We'll see more about this later on...
- They are generally considered evil...
 especially when added automagically
 by your favourite IDE.

Mutators can be harmful

• Bad. Why?

```
public class Car {
    private int speed;

public int getSpeed() {
    return speed;
  }

public void setSpeed(int speed) {
    this.speed = speed;
  }
}
```

Mutators can be harmful

• Bad. Why?

```
public class Car {
    private int speed;
    public int getSpeed() {
        return speed;
    public void setSpeed(int speed) {
        this.speed = speed;
                         // breaks encapsulation (and the car)
                         Car car = new Car();
                         int newSpeed = car.getSpeed() + 300;
                         car.setSpeed(newSpeed);
```

Protective mutators are better

```
public class Car {
    public static final int MAX_SPEED = 130;
    private int speed;

    public void setSpeed(int newspeed) {
        if (newSpeed < MAX_SPEED) {
            speed = newSpeed;
        }
    }
}</pre>
```

Protective mutators are better

```
public class Car {
    public static final int MAX_SPEED = 130;
    private int speed;

    public void setSpeed(int newspeed) {
        if (newSpeed < MAX_SPEED) {
            speed = newSpeed;
        }
    }
}</pre>
```

```
// no collateral damage
Car car = new Car();
car.setSpeed(3000);
```

Immutable classes

- Best, if possible simple to use.
- Class state should be initialized in the constructor.
- Never changed afterwards.
 - No setters.
- Not always possible ::

static fields and methods

- Until you know what you're doing*, avoid declaring things static.
 - static double someValue;
 - static int calc(double num);
- Only use for

```
public static void main(String[] args)
```

^{*} Seen later in course

Printing from methods

```
void printTicket() {
    // Simulate the printing of a ticket.
    System.out.println("################;");
    System.out.println("# The BlueJ Line");
    System.out.println("# Ticket");
    System.out.println("# " + price + " cents.");
    System.out.println("################;");
    System.out.println();
    // Update the total collected with the balance.
    total = total + balance;
    // Clear the balance.
    balance = 0;
```


String concatenation

• 4 + 5

• 4 + 5 9

- 4 + 5 9
- "wind" + "ow"

- 4 + 5 9
- "wind" + "ow""window"

- 4 + 5 9
- "wind" + "ow""window"
- "Result: " + 6

- 4 + 5 9
- "wind" + "ow""window"
- "Result: " + 6
 - "Result: 6"

- 4 + 59
- "wind" + "ow""window"
- "Result: " + 6 "Result: 6"
- "#" + price + " cents"

- 4 + 5 9
- "wind" + "ow""window"
- "Result: " + 6 "Result: 6"
- "#" + price + " cents"

 "# 500 cents"

• 4 + 5 9

overloading +

- "wind" + "ow""window"
- "Result: " + 6 "Result: 6"
- "# " + price + " cents" "# 500 cents"

Quiz

• System.out.println(5 + 6 + "hello");

• System.out.println("hello" + 5 + 6);

Quiz

System.out.println(5 + 6 + "hello");11hello

• System.out.println("hello" + 5 + 6);

Quiz

System.out.println(5 + 6 + "hello");11hello

System.out.println("hello" + 5 + 6);hello56

Method summary

- Methods implement all object behavior.
- A method has a name and a return type.
 - The return-type may be **void**.
 - A non-void return type means the method will return a value to its caller.
- A method might take parameters.
 - Parameters bring values in from outside for the method to use.

Reflecting on the ticket machines

- Their behavior is inadequate in several ways:
 - No checks on the amounts entered.
 - No refunds.
 - No checks for a sensible initialization.
- How can we do better?
 - We need the ability to choose between different courses of action.

Making choices in everyday life

- If I have enough money left, then I will go out for a meal
- otherwise I will stay home and watch a movie.

Making a choice in everyday life

```
if (I have enough money left) {
    I will go out for a meal;
} else {
    I will stay home and watch a movie;
}
```

Making choices in Java

```
'if' keyword
           boolean condition to be tested
                                  actions if condition is true
  (perform some test) {
   Do these statements if the test gave a true result
else {
   Do these statements if the test gave a false result
                                actions if condition is false
'else' keyword
```


Making a choice in the ticket machine

conditional statement avoids an inappropriate action

Variables - a recap

- Fields are one sort of variable.
 - They store values through the life of an object.
 - They are accessible throughout the class.
- Parameters are another sort of variable:
 - They receive values from outside the method.
 - They help a method complete its task.
 - Each call to the method receives a fresh set of values.
 - Parameter values are short lived.

Scope and lifetime

- Each block defines a new scope.
 - Delimited by { }
 - Class, method and statement.
- Scopes may be nested:
 - statement block inside another block inside a method body inside a class body.
- Scope is static (compile-time).
- Lifetime is dynamic (runtime).

How do we write a method to 'refund' an excess balance?

Unsuccessful attempt

```
/**
Clear and return balance.
  */
int refundBalance() {
    // Clear the balance.
    balance = 0;
    // Return the amount left.
    return balance;
}
It works, but it's not right.
```


Another unsuccessful attempt

```
int refundBalance() {
    // Return the amount left.
    return balance;
    // Clear the balance.
    balance = 0;
}
```

It looks logical, but the language does not allow it.

Local variables

- Methods can define their own, local variables:
 - Short lived, like parameters.
 - The method sets their values unlike parameters, they do not receive external values.
 - Used for 'temporary' calculation and storage.
 - They exist only as long as the method is being executed.
 - They are only accessible from within the method.
 - They are defined within a particular scope.

Local variables

```
A local variable

int refundBalance() {
    int amountToRefund;
    amountToRefund = balance;
    balance = 0;
    return amountToRefund;
}
```


Scope and lifetime

- The scope of a field is its whole class.
- The lifetime of a field is the lifetime of its containing object.
- The scope of a local variable is the block in which it is declared.
- The lifetime of a local variable is the time of execution of the block in which it is declared.


```
public final class TicketMachine {
    private final int price;
    private int balance;
    private int total;
    public TicketMachine(int cost) {
        price = cost;
        balance = 0;
        total = 0;
    int refundBalance() {
        int amountToRefund;
        amountToRefund = balance;
        balance = 0;
        return amountToRefund;
```



```
public final class TicketMachine {
    private final int price;
    private int balance;
    private int total;
    public TicketMachine(int cost) {
        price = cost;
        balance = 0;
        total = 0;
    int refundBalance() {
        int amountToRefund;
        amountToRefund = balance;
        balance = 0;
        return amountToRefund;
```

attributes
visible from all
methods in class


```
public final class TicketMachine {
    private final int price;
    private int balance;
    private int total;
    public TicketMachine(int cost) {
        price = cost;
                                           parameter cost
        balance = 0;
                                           only visible from
        total = 0;
                                           constructor
    int refundBalance() {
        int amountToRefund;
        amountToRefund = balance;
        balance = 0;
        return amountToRefund;
```



```
public final class TicketMachine {
    private final int price;
    private int balance;
    private int total;
    public TicketMachine(int cost) {
        price = cost;
        balance = 0;
        total = 0;
                                     local variable
    int refundBalance() {
                                     amountToRefund
        int amountToRefund;
        amountToRefund = balance;
                                    only visible from method
        balance = 0;
        return amountToRefund;
```



```
public final class TicketMachine {
    private final int price;
    private int balance;
    private int total;
    public TicketMachine(int cost) {
        price = cost;
        balance = 0;
        total = 0;
    int refundBalance() {
        int amountToRefund;
        amountToRefund = balance;
        balance = 0;
        return amountToRefund;
```



```
public final class TicketMachine {
    private final int price;
    private int balance;
    private int total;
    public TicketMachine(int cost) {
        price = cost;
        balance = 0;
        total = 0;
    int refundBalance() {
        int amountToRefund;
        amountToRefund = balance;
        balance = 0;
        return amountToRefund;
```

attributes exist throughout object lifetime


```
public final class TicketMachine {
                                           attributes
    private final int price;
                                           exist throughout object
    private int balance;
                                           lifetime
    private int total;
    public TicketMachine(int cost) {
        price = cost;
                                      parameter cost
        balance = 0;
                                      only exists while constructor
        total = 0;
                                     running
    int refundBalance() {
        int amountToRefund;
        amountToRefund = balance;
        balance = 0;
        return amountToRefund;
```



```
public final class TicketMachine {
                                           attributes
    private final int price;
                                           exist throughout object
    private int balance;
                                           lifetime
    private int total;
    public TicketMachine(int cost) {
        price = cost;
        balance = 0;
        total = 0;
                                     local variable
    int refundBalance() {
                                     amountToRefund
        int amountToRefund;
        amountToRefund = balance;
                                     only exists while method
        balance = 0;
                                     running
        return amountToRefund;
```


Review (1)

- Class bodies contain fields, constructors and methods.
- Fields store values that determine an object's state.
- Constructors initialize objects particularly their fields.
- Methods implement the behavior of objects.

Review (2)

- Fields, parameters and local variables are all variables.
- Fields persist for the lifetime of an object.
- Local variables are used for short-lived temporary storage.
- Parameters are used to receive values into a constructor or method.

Review (3)

- Methods have a return type.
- void methods do not return anything.
- non-void methods always return a value.
- non-void methods must have a return statement.

Review (4)

- 'Correct' behavior often requires objects to make decisions.
- Objects can make decisions via conditional (if) statements.
- A true-or-false test allows one of two alternative courses of actions to be taken.

Review (5)

- Methods provide access to class fields.
- Think carefully before allowing methods to modify field values.
- Beware of IDEs which automatically generate accessors and mutators.
- Immutable objects simplify code.