MATH 259: Homework #3

Jesse Farmer

20 April 2005

- 1. Let E/F be a field extension with $\alpha, \beta \in E$ such that $[F(\alpha) : F] = m$ and $[F(\beta) : F] = p$, where p is prime and $1 \le p < m$.
 - (a) Show that $[F(\alpha, \beta) : F] = mp$. Since $F(\alpha)$ and $F(\beta)$ are subfields of $F(\alpha, \beta)$,

$$kp = [F(\alpha, \beta) : F(\beta)][F(\beta) : F] = [F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)][F(\alpha) : F] = jm$$

for some $j, k \in \mathbb{N}$. Since p < m, p cannot divide m it must be that so $p \mid j$. Moreover, m < p implies k < j so that $j \mid p$ and hence j = p. Therefore $jm = mp = [F(\alpha, \beta) : F]$.

- (b) Suppose char $F \neq p$. Show that $F(\alpha, \beta) = F(\alpha + \beta)$. We have $F(\alpha, \beta) = F(\alpha)(\alpha + \beta) = F(\alpha)(\beta)$. From the previous part $[F(\alpha, \beta) : F(\alpha)] = p$, so that $[F(\alpha)(\alpha + \beta) : F(\alpha)] = p$, also.
- (c) For distinct primes p,q compute $[\mathbb{Q}(\sqrt[q]p,\sqrt[q]q):\mathbb{Q}]$ and show that $\mathbb{Q}(\sqrt[q]p,\sqrt[q]q)=\mathbb{Q}(\sqrt[q]p+\sqrt[q]q)$. The minimal polynomials of $\sqrt[q]p$ and $\sqrt[q]q$ over \mathbb{Q} are x^q-p and x^p-q , which are easily seen to be irreducible by Eisenstein. Therefore $[Q(\sqrt[q]p:\mathbb{Q}]=q$ and $[Q(\sqrt[q]q:\mathbb{Q}]=p$. Since $p\neq q$ either p< q or q< p, so by the first part $[\mathbb{Q}(\sqrt[q]p,\sqrt[q]q):\mathbb{Q}]=pq$. The second statement follows directly from (b) since $\operatorname{char}\mathbb{Q}=0$.
- (d) Show that $\mathbb{Q}(\sqrt[p]{2}, \sqrt[q]{2}) = \mathbb{Q}(\sqrt[p]{2} + \sqrt[q]{2})$ when p and q are distinct primes. The minimal polynomials of $\sqrt[p]{2}$ and $\sqrt[q]{2}$ are $x^p - 2$ and $x^q - 2$, which are irreducible by Eisenstein. Since $p \neq q$ it must be the case that p < q or q < p, so by the first part $[\mathbb{Q}(\sqrt[p]{2}, \sqrt[q]{2}) : \mathbb{Q}] = pq$. Then, again, by the second part, $\mathbb{Q}(\sqrt[p]{2}, \sqrt[q]{2}) = \mathbb{Q}(\sqrt[p]{2} + \sqrt[q]{2})$.
- 2. Let E/\mathbb{Q} and E'/\mathbb{Q} be field extensions and $\sigma: E \to E'$ a ring homomorphism. Show that $\sigma \mid_{\mathbb{Q}} = 1_{\mathbb{Q}}$, i.e., σ is a \mathbb{Q} -monomorphism.

This follows directly from known properties of ring homormorphisms, namely, that they fix both the multiplicative and additive identities and preserve multiplicative and additive inverses. Since E, E', and \mathbb{Q} share the same identities by hypothesis it follows that $\sigma(1) = 1$ and $\sigma(-1) = -1$ so that $\sigma(m) = m$ for all $m \in \mathbb{Z}$ (since \mathbb{Z} is generated by 1 or -1). But then $1 = \sigma(1) = \sigma(nn^{-1}) = n\sigma(n^{-1})$, for $n \in \mathbb{Z}$. Hence

$$\sigma\left(\frac{p}{q}\right) = \frac{p}{q}$$

for all $p, q \in \mathbb{Z}$, $q \neq 0$. Again, since $\sigma(0) = 0$ it follows that σ fixes all of \mathbb{Q} , i.e., σ is a \mathbb{Q} monomorphism.

- 3. Let E/F be a finite normal field extension and F' a field such that $F \subset F' \subset E$. Let $g \in F'[x]$ be irreducible with $g(\alpha) = 0$ for some $\alpha \in E$. Show that $g = c \prod (x \alpha_i)$ for $c \in F'^*$, $\alpha_i \in E$, $1 \le i \le d = \deg g$.
 - Let f be the minimal polynomial of α over h. Then f splits into linear factors over E. Since α is a root of g there exists some $h \in F'[x]$ such that f = gh. But then since f splits into linear factors in E and E is a UFD, gh must split and, in particular, g must split times perhaps a leading coefficient in F'^* .

1

4. Let M be a field and E_1, E_2, F subfields of M with $F \subset E_1$ and $F \subset E_2$. Assume E_1/F and E_2/F are both normal extensions. If they are also finite show that $(E_1E_2)/F$ and $(E_1 \cap E_2)/F$ are finite normal extensions

If E_1/F and E_2/F are finite and normal then there exist polynomials $f_1, f_2 \in F[x]$ such that E_1/F and E_2/F are the splitting fields of f_1 and f_2 , respectively. Then the product of these two polynomials splits in E_1E_2 , and no smaller field can do so since E_1E_2 is by definition the smallest field containing both E_1 and E_1 . Hence E_1E_2 is a splitting field for f_1f_2 , and is therefore normal.

If f is an irreducible polynomial with a root in $E_1 \cap E_2$ then by the normality of E_1 all of its roots are in E_1 . Similarly, all of its roots are in E_2 , also, and hence all of its roots are in $E_1 \cap E_2$. But then f certainly splits over $E_1 \cap E_2$ so that $(E_1 \cap E_2)/F$ is a normal extension.

5. Let E/F be an algebraic (not necessarily finite) extension and let $\sigma: E \to E$ be an F-monomorphism. Show that im $\sigma = E$.

Let $Z(f) = \{\alpha \in E \mid f(\alpha) = 0\}$. Since E/F is algebraic every $x \in E$ is in at least one Z(f), namely, Z(g) where g is the minimal polynomial of x over F. Then $E = \bigcup_{f \in F[x]} Z(f)$. To show that $\sigma(E) = E$ it therefore suffices to show that $\sigma(Z(f)) = Z(f)$. Let $\alpha \in Z(f)$, then there exists some constants in F such that

$$\alpha^n + \dots + a_1\alpha + a_0 = 0$$

Applying σ to this gives

$$\sigma(\alpha)^n + \dots + a_1 \sigma(\alpha) + a_0 = 0$$

since σ is an F-monomorphism. Therefore $f(\sigma(\alpha)) = 0$ and $\sigma(\alpha) \in Z(f)$. Since σ is injective it has a left inverse, and the same argument applies to show that $\sigma^{-1}(Z(f)) \subset Z(f)$ so that $Z(f) \subset \sigma(Z(f))$. Then

$$\sigma(E) = \sigma\left(\bigcup_{f \in F[x]} Z(f)\right) = \bigcup_{f \in F[x]} \sigma(Z(f)) = \bigcup_{f \in F[x]} Z(f) = E$$

6. Let E/F be a splitting field of $f \in F[x]$ where $\deg f = n \ge 1$. Show that $[E : F] \mid n!$.

This is obviously true for n=1, so consider the n-1 case. First assume f is irreducible. Then let $\alpha \in E$ be a root of f. Since f is irreducible it has the same degree as the minimal polynomial of α over F, and therefore $[F(\alpha):F]=n$. But by the inductive hypothesis $[E:F(\alpha)] \mid (n-1)!$ so that

$$[E:F] = [E:F(\alpha)][F(\alpha):F] \mid n(n-1)! = n!$$

If f is reducible then write $f = f_1 f_2$ where f_1 is irreducible over F and $\deg f_1 = m$. Let E' be the splitting field of f_1 over F. Then $E' \subset E$. Then $[E' : F] \mid m!$ and $[E : E'] \mid (n - m)!$ by the inductive hypothesis, so that $[E : F] \mid m!(n - m)! \mid n!$.

7. (a) Compute Aut($\mathbb{Q}(\sqrt[3]{2})$).

Any element of $\mathbb{Q}(\sqrt[3]{2})$ can be written as $a + b\sqrt[3]{4} + c\sqrt[3]{2}$ for $a, b, c \in \mathbb{Q}$. Since any homomorphism of $\mathbb{Q}(\sqrt[3]{2})$ fixes \mathbb{Q} it must be that, for $\sigma \in \operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}))$,

$$\sigma(a + b\sqrt[3]{4} + c\sqrt[3]{2}) = a + b\sigma(\sqrt[3]{4}) + c\sigma(\sqrt[3]{2})$$

Since $\sigma(\sqrt[3]{2}^3) = \sigma(2) = 2$, $\sigma(\sqrt[3]{2})^3 = 2$. But the only real number that satisfies this, and hence the only number in $\mathbb{Q}(\sqrt[3]{2})$, is $\sqrt[3]{2}$. Therefore $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$. From this $\sigma(\sqrt[3]{4})$ is completely determined as $2 = \sigma(\sqrt[3]{2})\sigma(\sqrt[3]{4})$, so that $\sigma(\sqrt[3]{4}) = \sqrt[3]{4}$. Therefore the only automorphism of $\mathbb{Q}(\sqrt[3]{2})$ is the identity map.

(b) Is $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ normal?

This extension is not normal because the irreducible polynomial $x^3 - 2$ has a root in $\mathbb{Q}(\sqrt[3]{2})$ but does not split over $\mathbb{Q}(\sqrt[3]{2})$, viz.,

$$x^{3} - 2 = (x - \sqrt[3]{2})(x^{2} + \sqrt[3]{2}x + \sqrt[3]{4})$$

The quadratic factor on the right hand side is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.

- (c) Show that if [E:F]=2 then E/F is normal. If [E:F]=2 then there exists some $\alpha \in E$ such that $E=F(\alpha)$, and the minimal polynomial of α has degree 2. Call this polynomial f. Then f has at least one linear factor, viz., $x-\alpha$, and the remaining factor must also be linear by degree considerations. Therefore E/F is a splitting field for f, and hence normal.
- (d) Let $F = \mathbb{Q}$, $F' = \mathbb{Q}(\sqrt{2})$, and $E = \mathbb{Q}(\sqrt[4]{2})$. Show that E/F' and F'/F are finite normal, but E/F is not.

Both E/F and F'/F are obviously finite. F'/F is normal since it is the splitting field of $x^2 - 2$ over \mathbb{Q} . Similarly, E/F' is normal since it is the splitting field of $x^2 - \sqrt{2}$ over $\mathbb{Q}(\sqrt{2})$. E/F, however, is not normal, as $x^4 - 2$ has two roots in E, but does does not split over E. That is,

$$x^4 - 2 = (x^2 - \sqrt{2})(x^2 + \sqrt{2}) = (x - \sqrt[4]{2})(x + \sqrt[4]{2})(x^2 + \sqrt{2})$$

and $x^4 - 2$ cannot be factored further.

- 8. (a) Let E/F be a finite extension and E = F(α₁,...,α_r). Let f_i be the minimal polynomial of α_i and define f = ∏ f_i. Let N/E be a splitting field of f over E. Show that N/F is a normal extension. Since N/E is a finite extension which splits f it is also normal. Any irreducible polynomial g ∈ F[x] is also a polynomial in E[x], irreducible over F. If g is reducible over E then it can be factored into the product of irreducible polynomials over E, each of which splits in N by hypothesis. Since everything in consideration is a UFD, it follows that g splits into linear factors and therefore N/F is normal.
 - (b) With E as above, let M/F be a finite normal extension with $F \subset E \subset M$. Let $f = \prod f_i$ so that $f = \prod_{i=1}^n (x \alpha_i)$, $n \ge r$. Let $N = F(\alpha_1, \ldots, \alpha_n)$. Show that $|\text{HomAlg}_F(E, M)| = |\text{HomAlg}_F(E, N)|$. Since each f_i has a root in M and M is normal, each f_i splits and hence their product, f, must split, too. But as N is the smallest field over which f splits, it must be that $N \subset M$. Hence any F-monomorphism from E into N is also an F-monomorphism into M by inclusion.

If $\sigma: E \hookrightarrow M$ is an F-monomorphism then $f(\sigma(\alpha_i)) = 0$, as in the fifth exercise. Hence $\sigma(\alpha_i) \in N$ and $\sigma(E) = F(\sigma(\alpha_1), \dots, \sigma(\alpha_r)) \subset N$. So any such σ is in fact a monomorphism into N. Therefore $|\text{HomAlg}_F(E, M)| = |\text{HomAlg}_F(E, N)|$ and, in fact, the sets are equal.

(c) With E/F and f in (a), let N/E and N'/E be splitting fields of f over E. Show that $|\mathrm{HomAlg}_F(E,N)|=|\mathrm{HomAlg}_F(E,N')|$

Between two splitting fields N/E and N'/E of the same polynomial f there exists an isomorphism, say, τ , which fixes F. Then define a map by $\sigma \mapsto \tau \circ \sigma$. This is surjective since for any $\sigma : E \to N'$, $\tau^{-1} \circ \sigma : E \to N$ maps to σ . It is injective since if $\tau \circ \sigma_1 = \tau \circ \sigma_2$ then $(\tau \circ sigma_1)(x) = (\tau \circ \sigma_1)(x)$ for all x, which implies that $\sigma_1(x) = \sigma_2(x)$ for all x by the injectivity of τ .

Therefore $|\operatorname{HomAlg}_F(E, M)| = |\operatorname{HomAlg}_F(E, N)|$.

(d) With E/F as in (a), let M/F and M'/F be finite normal extensions with $F \subset E \subset M$ and $f \subset E \subset M'$. Show that $|\operatorname{HomAlg}_F(E,M)| = |\operatorname{HomAlg}_F(E,M')|$.

By above there exist N/E, N'/E splitting fields of f with $N \subset M$ and $N' \subset M'$. Using the previous parts, it follows that

$$|\operatorname{HomAlg}_F(E, M)| = |\operatorname{HomAlg}_F(E, N)| = |\operatorname{HomAlg}_F(E, N')| = |\operatorname{HomAlg}_F(E, M')|$$