

- **6.** Pri reakciji med plinoma vodikom in jodom nastane plin vodikov jodid. Reakcija je ravnotežna. Pri T = 700 K je konstanta ravnotežja $K_c = 57,0$. V posodi s prostornino 10 L sta začetni količini 1 mol vodika in 1 mol joda.
- 6.1 Napišite kemijsko enačbo za reakcijo in v njej označite agregatna stanja reaktantov in produktov.
- 6.2 Napišite izraz za konstanto ravnotežja.
- 6.3 Izračunajte ravnotežne koncentracije vodika, joda in vodikovega jodida.

V=10 L	
#, + , ≥ 2#1	K'= [H]
21 1 /	
P -x -x +2x	
K 4-x 1-x 2x	
(1.x 1.x 1x 1x 1x 10 1x 1x 10 1x	
ĭ	
<u>x</u> 5	

POH= 1523 PH=12,48

RACUMANJE PH

SUPER

MUTRALVO

$$pH = -log[H30] = 2[H30] = 10^{pH}$$

$$pOH = -log[OH] = 2[H30] = 10^{pOH}$$

$$pOH = -log[OH] = 2[H30] = 10^{pOH}$$

|
$$\frac{1}{2}$$
 eq $\frac{1}{2}$ to \frac

$$V = 0.5 \ L$$

$$V = 0.5 \ L$$

$$M(L_{0}(h)) = 0.75 \ y \rightarrow n(L_{0}(h)) = 0.0101 \ mol$$

$$V = 0.5 \ L$$

$$M(L_{0}(h)) = 0.0101 \ mol$$

$$V = 0.0101 \ mol$$

BAZA + KISLINA-9 30L + H20 Mg(OH)2 +2HNO3 -> Mg(NO3)2 +2420 2 Fe(OH) 2 + 3 H2SO4 -) Fez (504) 2 + 6 \$20 POSTOLJEVA (V) KISLIMO 2NH2 + H2504 -> (NH4), 504 AMOMJEV SULFAT(VI)

(INKON (II) HOVORSIN	KOROVO (VII)	CINKOU	Cri)	kweer (VII)
2n(04), +24c	10 ₄ -	2n	داصل)ی	+2420	
2 KOH + H2S -> K2	S+2H2D				
KAUJEV HIDEOKSID -		KISUND S	kawev s	suup no 7	V00 A