Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 2 «Численное решение нелинейных уравнений и систем»

По дисциплине «Вычислительная математика» Вариант 12

Выполнила:

Студентка группы Р3217

Русакова Е.Д.

Преподаватель:

Малышева Т.А.

Санкт-Петербург

Оглавление

Цель работы:	3
Задание:	3
Задание для варианта 12:	4
Описание методов для решения нелинейных уравнений:	5
Метод половинного деления	5
Метод Ньютона	5
Метод секущих	5
Метод простой итерации	6
Описание методов для решения систем нелинейных уравнений:	6
Метод Ньютона	6
Метод простой итерации	7
Вычислительная часть:	8
Решение нелинейного уравнения:	8
Крайний правый корень - Метод секущих:	9
Крайний левый корень – Метод простой итерации	9
Центральный корень - Метод половинного деления	9
Решение системы нелинейных уравнений:	10
Программная реализация:	11
Описание разработанной программы:	11
Исходный код программы:	11
HalfDivisionMethod.java - Метод половинного деления для решения нелинейных уравнени	й 11
NewtonMethod.java — Метод Ньютона для решения нелинейных уравнений	12
SimpleIterationMethod.java — Метод простой итерации для решения нелинейных уравнени	й 13
SystemNewtonMethod.java — Метод Ньютона для решения системы нелинейных уравнений	1.14
Примеры работы программы:	16
Пример 1	16
Пример 2	17
Пример 3	20
Пример 4	20
D. 1997	21

Цель работы:

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Задание:

1 Вычислительная реализация задачи:

Состоит из двух частей и отражается ТОЛЬКО в отчете.

1 часть. Решение нелинейного уравнения

Залание:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
 - 2. Определить интервалы изоляции корней.
 - 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью $\varepsilon=10^{-2}$.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
 - 5.1 Для метода половинного деления заполнить таблицу 1.
 - 5.2 Для метода хорд заполнить таблицу 2.
 - 5.3 Для метода Ньютона заполнить таблицу 3.
 - 5.4 Для метода секущих заполнить таблицу 4.
 - 5.5 Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.
 - 6. Заполненные таблицы отобразить в отчете.

2 часть. Решение системы нелинейных уравнений

Задание:

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0.01.
 - 3. Для метода простой итерации проверить условие сходимости метода.
 - 4. Подробные вычисления привести в отчете.

2 Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы (см. табл. 9) должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения x_0 (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

<u>Для систем нелинейных уравнений:</u>

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x_1, x_2 .
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$
- 8. Проверить правильность решения системы нелинейных уравнений.

Задание для варианта 12:

Для вычислительной части:

Нелинейное уравнение: $f(x) = x^3 - 4.5x^2 - 9.21x - 0.383$, методы: секущих, простой итерации и половинного деления

Система нелинейных уравнений: $\begin{cases} x + \sin y = -0.4 \\ 2y - \cos(x+1) = 0 \end{cases}$, метод простой итерации

Для программной части:

Методы: половинного деления, Ньютона и простой итерации для нелинейных уравнений

Описание методов для решения нелинейных уравнений:

Метод половинного деления

Идея метода: делим интервал пополам и выбираем ту половину, на концах которой функция имеет разные знаки, то есть в ней лежит корень.

Рабочие формулы:

$$x_i = rac{a_i + b_i}{2}$$

$$egin{cases} a_{i+1} = a_i \ b_{i+1} = x_i \ a_{i+1} = x_i \ b_{i+1} = b_i \end{cases}$$
, если $f(a_i) * f(x_i) < 0$

Приближенным значением корня будет $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

Критерий окончания итерационного процесса:

$$|x_{k+1}-x_k| \le \varepsilon$$
 или $|f(x_k)| \le \varepsilon$ или $|a_k-b_k| \le \varepsilon$

Метод Ньютона

Идея метода: функция заменяется касательной и в качестве приближенного значения корня принимается точка пересечения касательной с осью абсцисс.

Рабочие формулы:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Выбор начального приближения: чтобы добиться быстрой сходимости

$$x_0 = \begin{cases} a_0, \text{если } f(a_0) * f''(a_0) > 0 \\ b_0, \text{ если } f(b_0) * f''(b_0) > 0 \end{cases}$$

Приближенным значением корня будет $x^* = x_n$

Критерий окончания итерационного процесса:

$$|x_{k+1}-x_k| \le \varepsilon$$
 или $\left|f(x_k)\right| \le \varepsilon$ или $\left|\frac{f(x_n)}{f'(x_n)}\right| \le \varepsilon$

Метод секущих

Идея метода: упрощение метода Ньютона заменой производной на разностное приближение:

$$f'(x_{i}) \approx \frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}$$

Рабочие формулы:

$$x_{i+1} = x_i - \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} * f(x_i)$$

Выбор начального приближения: x_0 выбираем также как в методе Ньютона, x_1 выбираемся рядом самостоятельно

Приближенным значением корня будет $x^* = x_n$

Критерий окончания итерационного процесса:

$$|x_{k+1} - x_k| \le \varepsilon$$
 или $|f(x_k)| \le \varepsilon$

Метод простой итерации

Идея метода: Приводим уравнение f(x)=0 к эквивалентному виду $x=\varphi(x)$, выразив х из исходного уравнения.

Рабочие формулы:

$$x_{i+1} = \varphi(x_i)$$

Приближенным значением корня будет $x^* = x_n$

Критерий окончания итерационного процесса: $|x_{k+1} - x_k| \le \varepsilon$

Условие сходимости метода:

$$|\varphi'(x)| \leq 1$$

Описание методов для решения систем нелинейных уравнений:

Метод Ньютона

Идея метода: Раскладываем функции в ряд Тейлора в окрестности некоторой фиксированной точки, ограничившись только линейными членами. Задача состоит в поиске приращений к приближенным решениям для получения нового приближения.

Критерий окончания итерационного процесса: $|x_{k+1}-x_k| \leq arepsilon$ и $|y_{k+1}-y_k| \leq arepsilon$

Рабочие формулы для решения систем из двух нелинейных уравнений:

$$\begin{cases} f_1(x, y) = 0 \\ f_2(x, y) = 0 \end{cases}$$

Пусть x_i , y_i – текущее приближение

$$\begin{cases} \frac{\partial f_1(x_i, y_i)}{\partial x} \Delta x + \frac{\partial f_1(x_i, y_i)}{\partial y} \Delta y = -f_1(x_i, y_i) \\ \frac{\partial f_2(x_i, y_i)}{\partial x} \Delta x + \frac{\partial f_2(x_i, y_i)}{\partial y} \Delta y = -f_2(x_i, y_i) \end{cases}$$

Пусть
$$\frac{\partial f_1(x_i,y_i)}{\partial x}=a_i$$
 , $\frac{\partial f_1(x_i,y_i)}{\partial y}=b_i$, $\frac{\partial f_2(x_i,y_i)}{\partial x}=c_i$, $\frac{\partial f_2(x_i,y_i)}{\partial y}=d_i$

Тогда система будет выглядеть:

$$\begin{cases} a_i \, \Delta x + b_i \Delta y = -f_1(x_i, y_i) \\ c_i \, \Delta x + d_i \Delta y = -f_2(x_i, y_i) \end{cases}$$

На этом шаге итерации известны численные значения a_i , b_i , c_i , d_i , $f_1(x_i, y_i)$, $f_2(x_i, y_i)$, поэтому можем выразить через них Δx и Δy :

$$\begin{cases} \Delta x = \frac{(-b_i \Delta y - f_1)}{a_i} \\ c_i * \frac{(-b_i \Delta y - f_1)}{a_i} + d_i \Delta y = -f_2 \end{cases}$$

$$c_i (-b_i \Delta y - f_1) + a_i d_i \Delta y = -a_i f_2$$

$$\Delta y (-c_i b_i + a_i d_i) = -a_i f_2 + c_i f_1$$

$$\begin{cases} \Delta y = \frac{-a_i f_2 + c_i f_1}{a_i d_i - c_i b_i} \\ \Delta x = \frac{(-b_i \Delta y - f_1)}{a_i} \end{cases}$$

Тогда следующее приближение равно:

$$\begin{cases} x_{i+1} = x_i + \Delta x \\ y_{i+1} = y_i + \Delta y \end{cases}$$

Метод простой итерации

Идея метода: Приводим систему уравнений к эквивалентному виду $X = \varphi(X)$, выразив x_i из каждого уравнения исходной системы.

Рабочие формулы:

$$\begin{cases} x_1^{k+1} = \varphi_1 \big(x_{1_k}, x_2^k, \dots, x_n^k \big) \\ x_2^{k+1} = \varphi_2 \big(x_{1_k}, x_2^k, \dots, x_n^k \big) \\ \dots \\ x_n^{k+1} = \varphi_n \big(x_{1_k}, x_2^k, \dots, x_n^k \big) \end{cases}$$

Критерий окончания итерационного процесса: $\max_{1 \le i \le n} \left| x_i^{k+1} - x_i^k \right| \le \ \varepsilon$

Условие сходимости метода:

$$\max_{[x \in G]} \max_{[i]} \sum_{j=1}^{n} \left| \frac{\partial \varphi_i(X)}{\partial x_j} \right| \le q < 1$$

Вычислительная часть:

Решение нелинейного уравнения:

Нелинейное уравнение:

$$f(x) = x^3 - 4,5x^2 - 9,21x - 0,383$$

Интервалы изоляции корней:

$$f'(x) = 3x^2 - 9x - 9,21$$

$$f''(x) = 6x - 9$$

Крайний правый корень - Метод секущих:

Границы интервала: [6; 7]

Выбираем начальное приближение:

$$f(6) * f''(6) = -1,643 * 27 < 0$$

$$f(7) * f''(7) = 57,647 * 33 > 0$$

Начальное приближение $x_0 = 7$, $x_1 = 6.5$

№ итерации (k)	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
0		7	6,5	24,252	0,5
1	7	6,5	6,137	4,749	0,363
2	6,5	6,137	6,049	0,584	0,088
3	6,137	6,049	6,037	0,033	0,012
4	6,049	6,037	6,036	-0,013	0,001

Корень $x = x_5 = 6,036$

Крайний левый корень - Метод простой итерации

Границы интервала: [-2; -1]

Составляем функцию:

$$f'(-2) = 20,79$$

$$f'(-1) = 2,79$$

На данном интервале f'(x) > 0

$$\lambda = -\frac{1}{\max|f'(x)|} = -\frac{1}{20,79} = -0.048$$

$$\varphi(x) = x + \lambda f(x) = -0.048x^3 + 0.216x^2 + 1.442x + 0.018$$

№ итерации (k)					
	x_k	x_{k+1}	$\varphi(x)$	$f(x_{k+1})$	$ x_{k+1}-x_k $
0		-2	-1,61778	-7,963	
1	-2	-1,618	-1,54611	-1,498	0,382
2	-1,618	-1,546	-1,51744	-0,595	0,072
3	-1,546	-1,517	-1,5046	-0,258	0,029
4	-1,517	-1,505	-1,49908	-0,123	0,012
5	-1,505	-1,499	-1,49627	-0,057	0,006

Корень $x = x_5 = -1,499$

Центральный корень - Метод половинного деления

Границы интервала: [-1; 1]

№ итерации	a	b	х	f(a)	f(b)	f(x)	a-b
0	-1	1	0	3,327	-13,093	-0,383	2
1	-1	0	-0,5	3,327	-0,383	2,972	1
2	-0,5	0	-0,25	2,972	-0,383	1,623	0,5
3	-0,25	0	-0,125	1,623	-0,383	0,696	0,25

4	-0,125	0	-0,063	0,696	-0,383	0,179	0,125
5	-0,063	0	-0,032	0,179	-0,383	-0,093	0,063
6	-0,063	-0,032	-0,048	0,179	-0,093	0,049	0,031
7	-0,048	-0,032	-0,04	0,049	-0,093	-0,022	0,016
8	-0,048	-0,04	-0,044	0,049	-0,022	0,013	0,008

Корень $x = x_8 = -0.044$

Решение системы нелинейных уравнений:

$$\begin{cases} x + \sin y = -0.4 \\ 2y - \cos(x+1) = 0 \end{cases}$$

Метод простой итерации

$$\begin{cases} x = -0.4 - \sin y = \varphi_1 \\ y = \cos \frac{(x+1)}{2} = \varphi_2 \end{cases}$$

Проверяем условие сходимости на области G: $\begin{cases} -1 \leq x \leq 0 \\ 0 \leq y \leq 1 \end{cases}$

$$\frac{\partial \varphi_1}{\partial x} = 0; \frac{\partial \varphi_1}{\partial y} = -\cos y; \frac{\partial \varphi_2}{\partial x} = -\frac{\sin(x+1)}{2}; \frac{\partial \varphi_2}{\partial y} = 0$$

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| = 0 + \left| -\cos y \right| < 1$$

$$\left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| = 0 + \left| -\frac{\sin(x+1)}{2} \right| < 1$$

Сходится на данной области.

Выберем начальное приближение: $x^0 = -1$; $y^0 = 0.5$

	x_k	y_k	$ x_{k+1}-x_k $	$ y_{k+1} - y_k $
0	-1	0,5		
1	-0,879	0,5	0,121	0
2	-0,879	0,496	0	0,004

Программная реализация:

Описание разработанной программы:

Исходный код программы:

Полный код программы выложен на Github и доступен по ссылке <u>lenapochemy/comp-math-lab2:</u> вычмат лаба 2 (github.com)

Далее приведен код классов, которые отвечают за решение

HalfDivisionMethod.java - Метод половинного деления для решения нелинейных уравнений

```
package methods;
import java.util.function.DoubleFunction;
public class HalfDivisionMethod extends AbstractMethod {
   public HalfDivisionMethod(DoubleFunction<Double> function, double eps,
double a, double b) {
        super(function, eps, a, b);
   private double x, f a, f b, f x;
    @Override
   public void solve() {
        iterationNumber = 0;
       boolean flag =true;
        while (flag) {
            x = (a + b) / 2;
            f_a = function.apply(a);
            f b = function.apply(b);
            f x = function.apply(x);
            flag = !checkEndConditional();
            if(f a * f x < 0) {
               b = x;
            } else if(f x * f b < 0){</pre>
                a = x;
            writeIteration( "Итерация " + iterationNumber + "\nHoвое
приближение: a = " + a + " b = " + b + " n----n";
            iterationNumber++;
        if (Math.abs(f a) < Math.abs(f b)) {</pre>
            x = a;
        else x = b;
        writeResult( "Найденный корень: " + х + "\nЗначение функции в корне:
" + function.apply(x) +
```

```
"\nЧисло итераций: " + iterationNumber);
    }
    //вернет true, если условие окончания выполняется и это последняя
итерация
   @Override
   public boolean checkEndConditional() {
        return Math.abs(a - b) < eps && Math.abs(function.apply(x)) < eps ;</pre>
}
NewtonMethod.java - Метод Ньютона для решения нелинейных уравнений
package methods;
import java.util.function.DoubleFunction;
public class NewtonMethod extends AbstractMethod {
   public NewtonMethod(DoubleFunction<Double> function, double eps, double
a, double b) {
       super(function, eps, a, b);
   @Override
   public void solve() {
        //выбор начальногоо приближения
       x i = chooseFirstApproximation();
        x i = b;
       writeIteration("Первое приближение: " + x i + "\n-----
----\n");
       iterationNumber = 0;
       x_i_next = x_i - ( function.apply(x_i) / derive_function.apply(x i)
);
       do {
           x i = x i next;
           x i next = x i - (function.apply(x i) /
derive function.apply(x i) );
           writeIteration( "Итерация " + iterationNumber + "\nHoвое
приближение: " + x i next + "\n----\n");
           iterationNumber++;
        } while (!checkEndConditional());
       writeResult( "Найденный корень: " + x_i_next + "\nЗначение функции в
корне: " + function.apply(x i next) +
               "\nЧисло итераций: " + iterationNumber);
    //вернет true, если условие окончания выполняется и это последняя
итерация
    @Override
   public boolean checkEndConditional() {
       return Math.abs(x i next - x i) < eps;</pre>
```

SimpleIterationMethod.java – Метод простой итерации для решения нелинейных уравнений

```
package methods;
import java.util.function.DoubleFunction;
public class SimpleIterationMethod extends AbstractMethod {
   public SimpleIterationMethod(DoubleFunction<Double> f, double eps, double
a, double b) {
       super(f, eps, a, b);
   private double lambda = 0;
    @Override
   public void solve() {
       double f1 a, f1 b;
        //ищем функцию
       f1 a = derive function.apply(a);
        f1_b = derive_function.apply(b);
        \frac{1}{\text{if}}(\text{f1 a} > 0 \& \& \text{f1 b} > 0)  {
            lambda = -1 / Math.max(f1 a, f1 b);
        } else {
           lambda = 1 / Math.min(f1_a, f1 b);
        DoubleFunction<Double> fi function = x \rightarrow (x + lambda * lambda)
function.apply(x));
        DoubleFunction<Double> derive fi = derive(fi function);
        //проверка условия сходимости
       writeIteration("\n----\n" + "Значение
производной на границах: fi'(a) = " + derive fi.apply(a) + " fi'(b) = " +
derive fi.apply(b));
       if(Math.abs(derive fi.apply(a)) > 1 || Math.abs(derive fi.apply(b)) >
1) {
           writeIteration("Достаточное условие сходимости метода простой
итерации на данном интервале не выполнено" + "\n-----
\n");
           System.exit(0);
        } else writeIteration("Достаточное условие сходимости выполнено" +
"\n----\n");
        // первое приближение
       x i = chooseFirstApproximation();
       writeIteration("Первое приближение: " + x_i + "\n------
----\n");
        x i next = fi function.apply(x i);
        iterationNumber = 1;
       while (!checkEndConditional()) {
           x i = x i next;
           x i next = fi function.apply(x i);
           writeIteration( "Итерация " + iterationNumber + "\nНовое
приближение: " + x i next + "\n----\n");
           iterationNumber++;
       writeResult( "Найденный корень: " + x_i_next + "\nЗначение функции в
корне: " + function.apply(x i next) +
               "\пЧисло итераций: " + iterationNumber);
```

```
//вернет true, если условие окончания выполняется и это последняя итерация

@Override

public boolean checkEndConditional() {

return Math.abs(x_i_next - x_i) < eps &&

Math.abs(function.apply(x_i_next)) < eps;
}
```

SystemNewtonMethod.java – Метод Ньютона для решения системы нелинейных уравнений

```
package methods;
import java.io.FileWriter;
import java.io.IOException;
import java.util.function.BiFunction;
public class SystemNewtonMethod {
    public SystemNewtonMethod(BiFunction<Double, Double, Double> func1,
BiFunction<Double, Double, Double> func2,
                              double eps, double x 0, double y 0) {
        this.func1 = func1;
        this.func2 = func2;
        this.eps = eps;
        this.x 0 = x_0;
        this.y 0 = y 0;
   private final BiFunction<Double, Double, Double> func1, func2;
   private boolean solveMode, outputMode;
   private final double eps, x 0, y 0;
   private double dx, dy, x k, y k, x k next, y k next;
   private FileWriter file;
    public void setFile(FileWriter file) {
        this.file = file;
    public void setSolveMode(boolean solveMode) {
        this.solveMode = solveMode;
   public void setOutputMode(boolean outputMode) {
        this.outputMode = outputMode;
    public BiFunction<Double, Double, Double>
partialDeriveX(BiFunction<Double, Double, Double> f) {
        double dx = 0.0001;
        return (x, y) -> ((f.apply(x + dx, y)) - (f.apply(x, y))) / dx;
    public BiFunction<Double, Double, Double>
partialDeriveY(BiFunction<Double, Double, Double> f) {
        double dy = 0.0001;
        return (x, y) -> ((f.apply(x, y + dy)) - (f.apply(x, y)) ) / dy;
```

```
public void solve() {
       BiFunction < Double, Double, Double > df1_dx = partialDeriveX(func1);
       BiFunction<Double, Double, Double> df2 dx = partialDeriveX(func2);
       BiFunction<Double, Double, Double> df1_dy = partialDeriveY(func1);
       BiFunction<Double, Double, Double> df2_dy = partialDeriveY(func2);
       x k = x 0;
       y k = y 0;
       boolean flag = true;
       int i = 0;
       while (flag) {
           i++;
           double a = df1_dx.apply(x_k, y_k);
           double b = df1_dy.apply(x_k, y_k);
           double c = df2 dx.apply(x k, y k);
           double d = df2 dy.apply(x k, y k);
           double f1 = func1.apply(x_k, y_k);
           double f2 = func2.apply(x_k, y_k);
           dy = (0 - a * f2 + c * f1) / (d * a - c * b);
           dx = (0 - f1 - b * dy) / a;
           x k next = x k + dx;
           y_k_next = y_k + dy;
           writeIteration( "Итерация " + i + "\nНовое приближение: x = " +
x_k_next + " y = " + y_k_next + "\n----\n");
           if (checkEndCondition()) {
               flag = false;
               writeResult( "x = " + x k next + " y = " + y k next +
                       "\nЗначение функций в корне " + func1.apply(x k next,
y k next) + " " + func2.apply(x_k_next, y_k_next) +
                       "\пКоличество итераций: " + і +
                       "\nВектор погрешностей: " + Math.abs(x_k_next - x_k)
+" " + Math.abs(y_k_next - y_k));
           x k = x k next;
           y k = y k next;
   }
   private boolean checkEndCondition() {
       return (Math.abs(x_k_next - x_k) < eps && Math.abs(y_k_next - y_k) <</pre>
eps);
   public void writeResult(String string) {
       if (outputMode) {
           System.out.println(string);
       } else {
               file.write(string);
```

```
file.close();
        } catch (IOException e) {
             System.out.println("Проблемы с файлом");
    }
public void writeIteration(String string) {
    if (solveMode) {
        if (outputMode) {
             System.out.println(string);
        } else {
             try {
                 file.write(string);
             } catch (IOException e) {
                 System.out.println("Проблемы с файлом");
        }
   }
}
```

Примеры работы программы:

Пример 1

```
Вы хотите решить нелинейное уравнение или систему нелинейных уравнений? (e/s)

Ответ должен быть "е" или "s"

Вы хотите решить нелинейное уравнение или систему нелинейных уравнений? (e/s)

выберите функцию для решения:

1. x³-x+4=0

2. x³-4.5x²-9.21x-0.383=0

3. x*sin(x)+2x-3=0

4. x³+2x²-4x=0

5. ln(x²)-x+10=0

2

Вы хотите вводить данные с клавиатуры или из файла? (k/f)

к

Введите значение точности [0.000001; 1]: 0.01

Введите левой границы интервала : -2

Введите левой границы интервала : -1

Выберите метод решения уравнения: Метод половинного деления(d), Метод Ньютона(n), Метод простой итерации(1) п

Нужно выводить результат каждой итерации решения? (y/n)y

Результаты вывести на экран или в записать в файл? (s/f)s
```


Пример 2

```
Bы хотите решить нелинейное уравнение или систему нелинейных уравнений? (e/s)

в Bыберите функцию для решения:

1. x³-x+4=0
2. x³-4.5x²-9.21x-0.383=0
3. x*sin(x)+2x-3=0
4. x³+2x²-4x=0
5. ln(x²)-x+10=0

5
Вы хотите вводить данные с клавиатуры или из файла? (k/f)

f Bведите путь к файлу:

C:\Users\Elena\IdeaProjects\compMath\lab2\src\files\file1

Введите левой границы интервала : -3

Введите правой границы интервала : 0

Выберите метод решения уравнения: Метод половинного деления(d), Метод Ньютона(n), Метод простой итерации(i) d

Нужно выводить результат каждой итерации решения? (у/n)у

Результаты вывести на экран или в записать в файл? (s/f)Введите путь к файлу:

C:\Users\Elena\IdeaProjects\compMath\lab2\src\files\result1
```

```
≡ result1 ×
       Итерация О
       Новое приближение: a = -1.5 b = 0.0
       Итерация 1
       Новое приближение: a = -0.75 b = 0.0
       Итерация 2
       Новое приближение: a = -0.375 b = 0.0
       Итерация 3
       Новое приближение: a = -0.1875 b = 0.0
       Итерация 4
14
       Новое приближение: a = -0.09375 b = 0.0
       Итерация 5
       Новое приближение: a = -0.046875 b = 0.0
       Итерация 6
       Новое приближение: a = -0.0234375 b = 0.0
       Итерация 7
       Новое приближение: a = -0.01171875 b = 0.0
       Итерация 8
       Новое приближение: a = -0.01171875 b = -0.005859375
```


Пример 3

```
Вы хотите решить нелинейное уравнение или систему нелинейных уравнений? (e/s)
Выберите функцию для решения:
   2. x^3-4.5x^2-9.21x-0.383=0
   4. x^3+2x^2-4x=0
   5. ln(x^2)-x+10=0
Вы хотите вводить данные с клавиатуры или из файла? (k/f)
Введите значение точности [0.000001; 1]: 0.001
Введите левой границы интервала : -4
Введите правой границы интервала :
На данном интервале несколько корней или они отсутствуют, выберите другой интервал
Введите левой границы интервала : \theta
Введите правой границы интервала : 4
Выберите метод решения уравнения: Метод половинного деления(\mathbf{d}), Метод Ньютона(\mathbf{n}), Метод простой итерации(\mathbf{i}) i
Нужно выводить результат каждой итерации решения? (у/п)у
Результаты вывести на экран или в записать в файл? (s/f)s
Значение производной на границах: fi'(a) = -0.45855258819393896 fi'(b) = 1.99999999999953388
Достаточное условие сходимости метода простой итерации на данном интервале не выполнено
```

Пример 4

```
Вы хотите решить нелинейное уравнение или систему нелинейных уравнений? (e/s)
Выберите функцию для решения:
   1. \{x^2+y^2-4=0\}
        -3x^2+y=0
         2y - \cos(x+1) = 0
   3. \{x^2+x+y=0\}
         y + x^3 - 10 = 0
Вы хотите вводить данные с клавиатуры или из файла? (k/f)
Введите значение точности [0.000001; 1]: 0.0001
Введите начальное приближение для переменной х : 100
Введите начальное приближение для переменной у : 10,1
Значение начальное приближение для переменной у должно быть числом
Введите начальное приближение для переменной у : 100
Нужно выводить результат каждой итерации решения? (y/n)n
Результаты вывести на экран или в записать в файл? (s/f)s
x = -0.8760559488196266 y = 0.4961643820791022
Значение функций в корне -4.805211784031371Е-12 -2.0220491947497976Е-11
Количество итераций: 14
Вектор погрешностей: 4.092100243102692Е-7 2.0145722956499412Е-7
```


Вывод:

При выполнение лабораторной работы я познакомилась с различными методами решения нелинейных уравнений и систем нелинейных уравнений и выполнила программную реализацию некоторых из них.