Reversible jump Markov chain Monte Carlo

Mickey Warner

16 November 2015 UC Santa Cruz – AMS 200

Markov chain Monte Carlo (MCMC)

A general set of methods that allows us to obtain random samples from a target distribution

In the Bayesian setting, the target distribution is the posterior distribution $p(\theta | y)$

MCMC is useful when directly sampling from $p(\theta|y)$ is difficult

Standard MCMC methods require the parameters $\boldsymbol{\theta}$ to have fixed dimension

Reversible jump MCMC

What about when θ does not have fixed dimensions?

For example, consider the normal mixture model

$$y_i \stackrel{iid}{\sim} \sum_{j=1}^{\nu} \pi_j N(\phi_j, 1), \qquad i = 1, \dots, n$$

 $\nu, \pi, \phi \sim p(\nu) p(\pi) p(\phi)$

Here, $\theta=(\nu,\pi,\phi)$ has dimension $2\nu+1$, with random $\nu\geq 1$, and $\pi=(\pi_1,\ldots,\pi_\nu)$, $\phi=(\phi_1,\ldots,\phi_\nu)$

Reversible jump MCMC

Generally, we are considering a collection of ${\cal K}$ models

$$\mathcal{M}_k = \{ f(\cdot | \theta_k); \ \theta_k \in \Theta_k \}$$

We need a method that allows us to *jump* from one dimension, or model, to another (i.e. moving from \mathcal{M}_i to \mathcal{M}_j)

Green's (1995) algorithm

Let $\pi(k, \theta_k)$ denote the posterior density for model \mathcal{M}_k

Define a $K \times K$ matrix $\{P\}_{ij} = p_{ij} \ge 0$ with row sums of 1

Define a deterministic transformation function T such that

$$(\theta_j, u_j) = T_{ij}(\theta_i, u_i)$$

where $\theta_k \in \Theta_k$, $u_k \sim g_k(u_k)$, for $k = \{i, j\}$ so (θ_i, u_i) has the same *number* of components as (θ_j, u_j)

Green's (1995) algorithm

At iteration t, if $x^{(t)} = (i, \theta_i^{(t)})$,

- 1. Select model \mathcal{M}_j with probability p_{ij}
- 2. Generate $u_{ij} \sim g_{ij}(u)$
- 3. Set $(\theta_j, v_{ji}) = T_{ij}(\theta_i^{(t)}, u_{ij})$
- 4. Take $\theta_j^{(t)} = \theta_j$ with probability

$$\min \left(\frac{\pi(j, \theta_j)}{\pi(i, \theta_i^{(t)})} \frac{p_{ji}g_{ji}(v_{ji})}{p_{ij}g_{ij}(u_{ij})} \left| \frac{\partial T_{ij}(\theta_i^{(t)}, u_{ij})}{\partial (\theta_j^{(t)}, u_{ij})} \right|, 1 \right)$$

and take $\theta_i^{(t+1)} = \theta_i^{(t)}$ otherwise

References

- Green, P. J. (1995), "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination," *Biometrika*, 82, 711–732.
- Richardson, S. and Green, P. J. (1997), "On Bayesian analysis of mixtures with an unknown number of components," *Journal of the Royal Statistical Society. Series B* (Methodological), 731–792.
- Robert, C. and Casella, G. (2013), *Monte Carlo statistical methods*, Springer Science & Business Media.