

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	SWTID1720426301
Project Title	Cognitive Care: Early Intervention For Alzheimer's Disease
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation:

Model	Tuned Hyperparameters	
 Learning Rate: Adam optimizer with a default learning rate of 0.001. Batch Size: 6500 training samples per iteration. Epochs: 30 complete passes through the training dataset. Dropout Rate: 0.5 to prevent overfitting. Zoom Range: Random zoom between 0.99 and 1.01. Brightness Range: Random brightness adjustment between 0.8 and 1.2. Rescale: Data normalized by scaling pixel values to 1./255. GlobalAveragePooling2D: A pooling layer to reduce the spatial dimensions of the feature members. 		
Xception	<pre>from tensorflow.keras.preprocessing.image import ImageDataGenerator as IDG IMG_SIZE = 180 IMAGE_SIZE = [180,180] DIM = (IMG_SIZE, IMG_SIZE) ZOOM = [0.99, 1.01] BRIGHT_RANGE = [0.8, 1.2] HORZ_FLIP = True FILL_MODE = "constant" DATA_FORMAT = "channels_last" WORK_DIR = "/content/Alzheimer_s Dataset/train" work_dr = IDG(rescale=1./255,brightness_range=BRIGHT_RANGE,zoom_range=ZOOM,data_format=DATA_FORMAT,fill_mode=FILL_MODE, horizontal_flip=HORZ_FLIP)</pre> train_data_gen = work_dr.flow_from_directory(directory=WORK_DIR,target_size=DIM,batch_size=6500,shuffle=False)	


```
[ ] xcep_model = Xception(input_shape=IMAGE_SIZE + [3], weights='imagenet', include_top=False)
                          custom_inception_model = Sequential<mark>(</mark>[
                         xcep_model,
                         Dropout(0.5),
                         GlobalAveragePooling2D(),
                         Flatten(),
                         BatchNormalization(),
                         Dense (512, activation ='relu'),
                         BatchNormalization(),
                         Dropout(0.5),
                         Dense (256, activation ='relu'),
                         BatchNormalization(),
                         Dropout(0.5),
                         Dense (128, activation ='relu'),
                         BatchNormalization(),
                         Dropout(0.5),
                         Dense (64, activation='relu'),
                         Dropout(0.5),
                         BatchNormalization(),
                         Dense(4, activation='softmax')
                         ], name = "inception_cnn_model")
                            model.compile(
                                optimizer='adam',
                                loss='categorical_crossentropy',
                                metrics=['accuracy']
                        [ ] history = model.fit(train_data, train_labels, validation_data=(val_data, val_labels), epochs=30)
                      Learning Rate: Adam optimizer with a default learning rate of 0.001.
                      Batch Size: 6500 training samples per iteration.
                      Epochs: 30 complete passes through the training dataset.
                      Dropout Rate: 0.5 to prevent overfitting.
VGG19
                      Zoom Range: Random zoom between 0.99 and 1.01.
                      Brightness Range: Random brightness adjustment between 0.8 and 1.2.
                      Rescale: Data normalized by scaling pixel values to 1./255.
                       Conv Block: Multiple convolutional layers with small 3x3 filters.
```



```
from tensorflow.keras.preprocessing.image import ImageDataGenerator as IDG
                             IMG_SIZE = 180
IMAGE_SIZE = [180,180]
                             DIM = (IMG_SIZE, IMG_SIZE)
ZOOM = [0.99, 1.01]
BRIGHT_RANGE = [0.8, 1.2]
                             HORZ_FLIP = True
                             FILL_MODE = "constant"
                             WORK_DIR = "/content/Alzheimer_s Dataset/train"
                             work_dr = IDG(rescale=1./255,brightness_range=BRIGHT_RANGE,zoom_range=ZOOM,data_format=DATA_FORMAT,fill_mode=FILL_MODE,
horizontal_flip=HORZ_FLIP)
                             train_data_gen = work_dr.flow_from_directory(directory=WORK_DIR,target_size=DIM,batch_size=6500,shuffle=False)
                                  from tensorflow.keras.applications import VGG19
                                   vgg_model = VGG19(weights='imagenet', include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3))
                                     model = Sequential([
                                           vgg_model,
                                           Flatten(),
                                           Dense(512, activation='relu'),
                                           Dropout(0.5),
                                           Dense(256, activation='relu'),
                                           Dropout(0.5),
                                           Dense(128, activation='relu'),
                                           Dropout(0.5),
                                           Dense(64, activation='relu'),
                                           Dense(4, activation='softmax')
                                     1)
                                  model.compile(
                                       optimizer='adam',
                                       metrics=['accuracy']
                              [ ] history = model.fit(train_data, train_labels, validation_data=(val_data, val_labels), epochs=30)
                            Learning Rate: Adam optimizer with a default learning rate of 0.001.
                            Batch Size: 6500 training samples per iteration.
                            Epochs: 30 complete passes through the training dataset.
Inception V3
                            Dropout Rate: 0.5 to prevent overfitting.
                            Zoom Range: Random zoom between 0.99 and 1.01.
                            Brightness Range: Random brightness adjustment between 0.8 and 1.2.
                            Rescale: Data normalized by scaling pixel values to 1./255.
                            Factorized Convolutions: Use of smaller convolutions like 1x7 and 7x1 to reduce computational
```



```
cost.
 from \ \ tensorflow. keras.preprocessing.image \ \ import \ \ ImageDataGenerator \ \ as \ \ IDG
IMG_SIZE = 180

IMAGE_SIZE = [180,180]

DIM = (IMG_SIZE, IMG_SIZE)

ZOOM = [0.99, 1.01]

BRIGHT_RANGE = [0.8, 1.2]
BRIGHT_MARGE = [0.6, 1.2]
HORZ_FLIP = True
FILL_MODE = "constant"
DATA_FORMAT = "channels_last"
WORK_DIR = "/content/Alzheimer_s Dataset/train"
 train_data_gen = work_dr.flow_from_directory(directory=WORK_DIR,target_size=DIM,batch_size=6500,shuffle=False)
 from tensorflow.keras.applications import InceptionV3
 inception_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3))
  model = Sequential([]
             inception_model,
             Flatten(),
             Dense(512, activation='relu'),
             Dropout(0.5),
             Dense(256, activation='relu'),
             Dropout(0.5),
             Dense(128, activation='relu'),
             Dropout(0.5),
             Dense(64, activation='relu'),
             Dense(4, activation='softmax')
       model.compile(
            optimizer='adam',
             loss='categorical_crossentropy',
             metrics=['accuracy']
  [ ] history = model.fit(train_data, train_labels, validation_data=(val_data, val_labels), epochs=30)
```

Final Model Selection Justification:

Final Model	Reasoning
Xception	The Xception model was chosen as the final optimized model for its consistent improvement in accuracy and validation metrics over 30

epochs, achieving a final validation accuracy of 85.36%. The model
effectively learned to distinguish between different classes of
Alzheimer's Disease progression, demonstrating robust performance
and convergence during training.