

Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.

Graph Theoretical Problems

- Basec Definitions
- Graph Representation
- Graph Traversal (BFS, DFS)
- Topological Sort
- Strongly Connected Components
- Shortest Paths
 - Single-Source All Destination (Bellman-Ford, Dijkestra)
 - All-Pairs (Floyd-Warshall, Johnson)
- Minimum Spanning Tree (Kruskal, Prim)

Topological Sort

Topological Sort

A **topological sort** of a directed acyclic graph G = (V, E) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

Topological Sort

- First Approach: Repeatedly find a vertex with 0 indegree and remove it with all its out going edges.
- Second Approach: Use DFS as follows.

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times f[v] for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Lemma

A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Proof.

- \Rightarrow : Suppose that (u, v) is back edge $\implies v$ is an ancestor of $u \implies$ there is a path from v to u in $G \implies$ there is a cycle in G (contradiction).
- \Leftarrow : Suppose that c is a cycle in G, v be the first vertex to be discovered in c, and u, v be the preceding edge in c. At time d[v], the vertices of c form a path of white vertices from v to u. So, vertex u becomes a descendant of v in the depth-first forest. Therefore, (u, v) is a back edge.

Topological Sort

Theorem

TOPOLOGICAL-SORT(G) produces a topological sort of a directed acyclic graph G.

Proof.

It suffices to show that $(u, v) \in E$ then f[v] < f[u]. When (u, v) is explored, v cannot be gray (if so, (u, v) is back edge and contradicting previous lemma). Therefore, v must be either white or black.

- If v is white, it becomes a descendant of u, and so f[v] < f[u].
- If v is black, it has already been finished, so that f[v] has already been set and f[v] < f[u].

Recall

A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices $C \subset V$ such that for every pair of vertices u and v in C, we have both $u \rightsquigarrow v$ and $v \rightsquigarrow u$.

- Decomposing a directed graph into its strongly connected components.
- Many algorithms that work with directed graphs begin with such a decomposition.

Definition

For a given graph G = (V, E), the transpose of G is a graph $G^T = (V, E^T)$, where $E^T = \{(u, v) : (v, u) \in E\}$.

The transpose of G can be constructed in O(|V| + |E|).

The graphs G and G^T have exactly the same strongly connected components: u and v are reachable from each other in G if and only if they are reachable from each other in G^T .

The following $\Theta(V+E)$ -time algorithm computes the strongly connected components of a directed graph G=(V,E) using two depth-first searches, one on G and one on G^T .

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times f[u] for each vertex u
- 2 compute G^{T}
- 3 call $DFS(G^T)$, but in the main loop of DFS, consider the vertices in order of decreasing f[u] (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Lemma

Let C and C' be distinct strongly connected components in directed graph G = (V, E), let $u, v \in C$, let $u', v' \in C'$, and suppose that there is a path $u \rightsquigarrow u'$ in G. Then there cannot also be a path $v' \rightsquigarrow v$ in G.

Proof.

If there is a path $v' \leadsto v$ in G, then there are paths $u \leadsto u' \leadsto v'$ and $v' \leadsto v \leadsto u$ in G. Thus, u and v' are reachable from each other, thereby contradicting the assumption that C and C' are distinct strongly connected components.

Definition

For a given graph G = (V, E), suppose that $U \subset V$. Then we define the earliest discovery time of U by $d(U) = min_{u \in U} \{d[u]\}$ and latest finishing time by $f(U) = max_{u \in U} \{f[u]\}$.

Lemma

Let C and C' be distinct strongly connected components in directed graph G = (V, E). Suppose that there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof.

There are two cases:

- d(C) < d(C'):
 - Let x be the first vertex discovered in C
 - At time d[x], all vertices in C and C' are white.
 - $(u, v) \in E \Longrightarrow \forall w \in C'$ we have $x \leadsto u \longrightarrow v \leadsto w$.
 - All vertices in C and C' become descendants of x.
 - f[x] = f(C) > f(C').
- d(C) > d(C'):
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C' and C are white.
 - All vertices in C' become descendants of $y \Longrightarrow f[y] = f(C')$.
 - There is no path from C' to C.
 - No vertex in C is reachable from y and so at time f[y] all vertices in C are still
 white.
 - Thus, $\forall w \in C$, we have $f[w] > f[y] \Longrightarrow f(C) > f(C')$.

Theorem

STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the strongly connected components of a directed graph G.

Proof.

The proof is based on induction on the number of depth-first trees performed in line 3. The inductive hypothesis is that the first k trees produced in line 3 are strongly connected components. The basis for the induction, when k = 0, is trivial.

- Consider the (k+1)st produced tree.
- Let the root of this tree be vertex u, and let u be in strongly connected component C.
- f[u] = f(C) > f(C') for any strongly connected component C' other than C that has been visited.
- At time d[u], all other vertices of C are white and they are descendants of u.
- Any edges in G^T that leave C must be to strongly connected components that have already been visited (previous lemma).
- Thus, no vertex in any strongly connected component other than C will be a descendant
 of u during the depth-first search of G^T.
- Therefore, the vertices of the depth-first tree in G^T that is rooted at u form exactly one strongly connected component.

Exercises

- 1. Give a linear-time algorithm that takes as input a directed acyclic graph G = (V, E) and two vertices s and t, and returns the number of paths from s to t in G.
- 2. Give an algorithm that determines whether or not a given undirected graph G = (V, E) contains a cycle. Your algorithm should run in O(V) time, independent of |E|.
- 3. How can the number of strongly connected components of a graph change if a new edge is added?
- 4. Given a directed graph G = (V, E), explain how to create another graph G' = (V, E') such that (a) G' has the same strongly connected components as G, and (b) E' is as small as possible. Describe a fast algorithm to compute G'.
- A directed graph G = (V, E) is said to be semiconnected if, for all pairs of vertices u, v ∈ V, we have u → v or v → u. Give an efficient algorithm to determine whether or not G is semiconnected. Prove that your algorithm is correct and analyze its running time.

