Questão 1

a) Número de usuários = 1 Gbps / 100 Kbps = 10000

b)
$$\sum_{x=X+1}^{N} {N \choose x} p^x (1-p)^{N-x}$$

Questão 2

R- O primeiro pacote não sofrerá atraso de fila. O segundo terá um atraso de L/R. Continuando assim, o enésimo pacote terá um atraso de fila de (n-1)L/R. Logo a fórmula para o atraso de fila de N pacotes é:

$$\frac{1}{N} * \sum_{n=1}^{N} (n-1) L/R$$

55	Propagado de R2 – C		
45	Transmitido em R2 - C Processado em R2 Propagado de R1 - R2		
34 Transmitido R2 - C			
33 Processado em R2	Transmitido R1 – R2		
32 Propagado R1 – R2			
23	Processado em R1		
22 Transmitido R1 – R2			
13	FILA	Pacote Descartado	
12 Processado em R1			
11 Propagado de A – R1			
3		Transmitido de A – R1	
2	Transmitido de A – R1		
1 Transmitido de A – R1			
Pacote 1	Pacote 2	Pacote 3	

Questão 4

R- O tempo total para receber o endereço IP é:

$$RTT_1 + RTT_2 + ... + RTT_n$$

Uma vez obtido o endereço IP, um RTT₀ é gasto para estabelecer a conexão TCP e outro RTT₀ para solicitar e receber um objeto. Portanto, o tempo total é:

$$2\ RTT_0 + RTT_1 + RTT_2 + ... + RTT_n$$

Questão 5

a)
$$RTT_1 + RTT_2 + ... + RTT_n + 2 RTT_0 + 5.2 RTT_0 = RTT_1 + RTT_2 + ... + RTT_n + 12 RTT_0$$

b)
$$RTT_1 + RTT_2 + ... + RTT_n + 2 RTT_0 + 2 RTT_0 = RTT_1 + RTT_2 + ... + RTT_n + 4 RTT_0$$

$$c)\;RTT_1 + RTT_2 + ... + RTT_n + 2\;RTT_0 + RTT_0 \; = \; RTT_1 + RTT_2 + ... + RTT_n + 3\;RTT_0$$