

VT82C693

Apollo Pro-Plus

66 / 100 MHz
Single-Chip Slot-1 / Socket-370 North Bridge
for Desktop and Mobile PC Systems
with AGP and PCI
plus Advanced ECC Memory Controller
supporting SDRAM, EDO, and FPG

Preliminary Revision 0.51
January 6, 1999
VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1997, 1998, 1999 VIA Technologies Incorporated. Printed in the United States. All RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT82C585, VT82C586B, VT82C587, VT82C590, VT82C595, VT82C596A, VT82C597, VT82C598, VT8501, VT82C680, VT82C685, VT82C686A, VT82C687, VT82C691, VT82C693, VT82C693A, VT82C694, VT82C694A, VT8601, Mobile South, Super South, Apollo VP, Apollo VPX, Apollo VP2, Apollo VP3, Apollo MVP3, Apollo MVP4, Apollo P6, Apollo Pro, Apollo Pro-Plus, Apollo Pro133, Apollo Pro133A2X, Apollo Pro133A, and Apollo ProMedia may only be used to identify products of VIA Technologies.

PS/2™ is a registered trademark of International Business Machines Corp.

Pentium™, P54C™, P55C™, and MMX™ are registered trademarks of Intel Corp.

Cyrix6_x86[™] is a registered trademark of Cyrix Corp.

AMD5_K86TM, AMD6_K86TM, AMD-K5TM, and AMD-K6TM are registered trademarks of Advanced Micro Devices Corp.

Windows 95[™] and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCl™ is a registered trademark of the PCl Special Interest Group.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 1045 Mission Court Fremont, CA 94539

USA

Tel: (510) 683-3300 Fax: (510) 683-3301 Taipei Office:

8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC Tel: (886-2) 218-5452 Fax: (886-2) 218-5453

Online Services:

Home Page: http://www.via.com.tw (Taiwan) -or- http://www.viatech.com (USA)

FTP Server: ftp.via.com.tw (Taiwan)

BBS: 886-2-2185208

REVISION HISTORY

Document Release	Date	Revision	Initials		
0.1	9/22/98	Initial internal release	DH		
0.2	12/3/98	Update Register specs	EC		
0.3	12/9/98	Removed confidential watermark & fixed misc typographical errors Removed AC electrical specs (to be updated & replaced in future revision)	DH		
0.4	12/31/98	Updated register definitions: Device 0 Rx51[4-3], Rx68[4], Rx69[3-2], Rx6B[5], Rx6C[4-3], Rx71[3], Rx73[4], Rx74[5-4], Rx77, Rx79 (new), RxAD (new), RxF8-F9, Device 1 Rx4[5], Rx41[0]	DH		
0.5	1/5/99	Fixed pinout errors on RESET#, PREQ#, and REQ0#	DH		
0.51 1/6/99 Fixed minor error in AGP feature pullets					

TABLE OF CONTENTS

REVISION HISTORY]
TABLE OF CONTENTS	IJ
LIST OF FIGURES	III
LIST OF TABLES	IV
APOLLO PRO-PLUS	1
OVERVIEW	4
PINOUTS – VT82C693 APOLLO PRO-PLUS	6
PIN DESCRIPTIONS	9
REGISTERS	17
REGISTER OVERVIEW	17
MISCELLANEOUS I/O	20
CONFIGURATION SPACE I/O	20
REGISTER DESCRIPTIONS	21
Device 0 Header Registers - Host Bridge	21
Device 0 Configuration Registers - Host Bridge	23
Host CPU Control	
DRAM Control	25
PCI Bus #1 Control	
GART / Graphics Aperture Control	
AGP Control	
Device 1 Header Registers - PCI-to-PCI Bridge	38
Device 1 Configuration Registers - PCI-to-PCI Bridge	
PCI Bus #2 Control	40
ELECTRICAL SPECIFICATIONS	42
ABSOLUTE MAXIMUM RATINGS	42
DC CHARACTERISTICS	42
AC TIMING SPECIFICATIONS	42
MECHANICAL SPECIFICATIONS	43

LIST OF FIGURES

FIGURE	1. APOLL	O PRO-PLUS SY	STEM BLOCK I	DIAGRAM USING T	THE VT82C596A	MOBILE SOUT	TH BRIDGE 4
FIGURE	2. VT82C6	93 BALL DIAG	RAM (TOP VIEW	⁷)	•••••	•••••	6
FIGURE	3. VT82C6	93 PIN LIST (<u>N</u> I	JMERICAL ORD	ER)	•••••	•••••	7
				ORDER)			
				NSLATION			
				PIN BALL GRID A			

LIST OF TABLES

TABLE 1.	VT82C693 PIN DESCRIPTIONS	. 9
	VT82C693 REGISTERS	
TABLE 3.	RX50 PROGRAMMING CONSTRAINTS	23
TABLE 4.	SYSTEM MEMORY MAP	25
TABLE 5.	MEMORY ADDRESS MAPPING TABLE	25
TABLE 6.	VGA/MDA MEMORY/IO REDIRECTION	4(
	AC TIMING MIN / MAX CONDITIONS	

VIA VT82C693 APOLLO PRO-PLUS

66 / 100 MHz Single-Chip Slot-1/Socket 370 North Bridge for Desktop and Mobile PC Systems with AGP and PCI plus Advanced ECC Memory Controller supporting SDRAM, VCM, EDO, and FPG

• AGP / PCI / ISA Mobile and Deep Green PC Ready

- GTL+ compliant host bus supports write-combine cycles
- Supports separately powered 3.3V (5V tolerant) interface to system memory, AGP, and PCI bus
- Modular power management and clock control for mobile system applications
- Combine with VIA VT82C596A south bridge chip for state-of-the-art system power management

• High Integration

- Single chip implementation for 64-bit Slot-1/Socket 370 CPU, 64-bit system memory, 32-bit PCI and 32-bit AGP interfaces
- Apollo Pro-Plus Chipset: VT82C693 system controller and VT82C596A PCI to ISA bridge
- Chipset includes UltraDMA-33 EIDE, USB, and Keyboard / PS2-Mouse Interfaces plus RTC / CMOS on chip

• High Performance CPU Interface

- Supports Slot-1 and Socket 370 (Intel Pentium II[™] and Celeron[™]) processors
- 66 / 100 MHz CPU Front Side Bus (FSB)
- Built-in PLL (Phase Lock Loop) circuitry for optimal skew control within and between clocking regions
- Five outstanding transactions (four In-Order Queue (IOQ) plus one input latch)
- Supports WC (Write Combining) cycles
- Dynamic deferred transaction support
- Sleep mode support
- System management interrupt, memory remap and STPCLK mechanism

• Full Featured Accelerated Graphics Port (AGP) Controller

Synchronous and pseudo-synchronous with the host CPU bus with optimal skew control

<u>PCI</u>	<u>AGP</u>	<u>CPU</u>	<u>Mode</u>
33 MHz	66 MHz	100 MHz	3x synchronous
33 MHz	66 MHz	66 MHz	2x synchronous

- AGP v2.0 compliant
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- Supports 133MHz 2X mode for AD and SBA signaling
- Pipelined split-transaction long-burst transfers up to 533 MB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport driver support

• Concurrent PCI Bus Controller

- PCI buses are synchronous / pseudo-synchronous to host CPU bus
- 33 MHz operation on the primary PCI bus
- 66 MHz PCI operation on the AGP bus
- PCI-to-PCI bridge configuration on the 66MHz PCI bus
- Supports up to five PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec
- PCI master snoop ahead and snoop filtering
- Two lines of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Forty-eight levels (double-words) of post write buffers from PCI masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for access by PCI masters
- Delay transaction from PCI master accessing DRAM
- Read caching for PCI master reading DRAM
- Transaction timer for fair arbitration between PCI masters (granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system performance
- Complete steerable PCI interrupts
- PCI-2.1 compliant, 32 bit 3.3V PCI interface with 5V tolerant inputs

• Advanced High-Performance DRAM Controller

- DRAM interface synchronous with host CPU (66/100 MHz) or AGP (66MHz) for most flexible configuration
- Concurrent CPU, AGP, and PCI access
- Supports FP, EDO, SDRAM and VCM SDRAM memory types
- Different DRAM types may be used in mixed combinations
- Different DRAM timing for each bank
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 1M / 2M / 4M / 8M / 16MxN DRAMs
- 8 banks up to 1GB DRAMs (128Mb DRAM technology)
- Flexible row and column addresses
- 64-bit data width only
- 3.3V DRAM interface with 5V-tolerant inputs
- Programmable I/O drive capability for MA, command, and MD signals
- Dual copies of MA signals for improved drive
- Optional bank-by-bank ECC (single-bit error correction and multi-bit error detection)
 or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultaneously); banks are allocated based on LRU
- Independent SDRAM control for each bank
- Seamless DRAM command scheduling for maximum DRAM bus utilization
 - (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- x-2-2-2-2-2 back-to-back accesses for EDO DRAM from CPU or from DRAM controller
- x-1-1-1-1-1 back-to-back accesses for SDRAM
- BIOS shadow at 16KB increment
- Decoupled and burst DRAM refresh with staggered RAS timing
- CAS before RAS or self refresh

• Mobile System Support

- Dynamic power down of SDRAM (CKE)
- Independent clock stop controls for CPU / SDRAM, AGP, and PCI bus
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- EDO self-refresh and SDRAM self-refresh power down
- 8 bytes of BIOS scratch registers
- Low-leakage I/O pads
- Built-in NAND-tree pin scan test capability
- 3.3V, 0.35um, high speed / low power CMOS process
- 35 x 35 mm, 492 pin BGA Package

OVERVIEW

The *Apollo Pro-Plus* is a high performance, cost-effective and energy efficient chip set for the implementation of AGP / PCI / ISA desktop and notebook personal computer systems from 66 MHz to 100 MHz based on 64-bit Socket 370 and Slot-1 (Intel Pentium-II and Celeron) super-scalar processors.

Figure 1. Apollo Pro-Plus System Block Diagram Using the VT82C596A Mobile South Bridge

The Apollo Pro-Plus chip set consists of the VT82C693 system controller (492 pin BGA) and the VT82C596A PCI to ISA bridge (324 pin BGA). The system controller provides superior performance between the CPU, DRAM, AGP bus, and PCI bus with pipelined, burst, and concurrent operation.

The VT82C693 supports eight banks of DRAMs up to 1GB. The DRAM controller supports standard Fast Page Mode (FPM) DRAM, EDO-DRAM, and Synchronous DRAM (SDRAM), in a flexible mix / match manner. The Synchronous DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 100 MHz. The eight banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16MxN DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability separately selectable on a bank-by-bank basis. The DRAM controller can run at either the host CPU bus frequency (66 /100 MHz) or at the AGP bus frequency (66 MHz) with built-in PLL timing control.

The VT82C693 system controller also supports full AGP v2.0 capability for maximum bus utilization including 2x mode transfers, SBA (SideBand Addressing), Flush/Fence commands, and pipelined grants. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU / AGP / PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD and Windows-98 / NT5 miniport drivers are supported for interoperability with major AGP-based 3D and DVD-capable multimedia accelerators.

The VT82C693 supports two 32-bit 3.3 / 5V system buses (one AGP and one PCI) that are synchronous / pseudo-synchronous to the CPU bus. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and PCI operation. For PCI master operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent PCI bus and DRAM/cache accesses. The chip also supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post

write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 324-pin Ball Grid Array VT82C596A PCI to ISA bridge supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT82C596A also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33 / ATA-33 for 33MB/sec transfer rate, integrated USB interface with root hub and two function ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated notebook implementations, the Apollo Pro-Plus provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT82C596A south bridge chip, a complete notebook PC main board can be implemented with no external TTLs.

The Apollo Pro-Plus chipset is ideal for high performance, high quality, high energy efficient and high integration desktop and notebook AGP / PCI / ISA computer systems.

PINOUTS – VT82C693 APOLLO PRO-PLUS

Figure 2. <u>VT82C693</u> Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	GND	AD20	REQ0#	AD25	AD29	RESET#	HD56#	HD62#	HD55#	HD54#	HD49#	HD47#	HD40#	GND	HD33#	HD31#	HD27#	HD19#	HD20#	HD10#	HD6#	HD3#	HA29#	HA24#	HA22#	GND
В	VCC	PCLK	AD22	AD27	AD28	PREQ#	HD50#	HD61#	HD63#	HD53#	HD48#	HD42#	HD36#	HD43#	HD32#	HD29#	HD25#	HD21#	HD18#	HD12#	HD8#	HD0#	CPU RST#	HA27#	HA20#	BREQ 0#
С	AD19	PCIREF	AD21	CBE3#	GND	AD31	REQ1#	HD52#	GND	HD60#	HD59#	HD51#	HD44#	HD37#	HD28#	HD26#	HD22#	GND	HD17#	HD7#	HD5#	GND	HA26#	HA28#	HA23#	HA21#
D	AD16	AD18	AD17	AD23	AD26	PGNT#	GNT1#	REQ3#	HD58#	REQ4#	HD46#	HD41#	HD39#	HD34#	HD35#	HD30#	HD24#	HD16#	HD15#	HD14#	HD4#	HD1#	HA31#	HA25#	HA18#	HA19#
E	FRM#	IRDY#	GND	CBE2#	AD24	AD30	GNT0#	GNT3#	GNT4#	GNT2#	HD57#	GND	HD45#	HD38#	GND	GTL REF	HD23#	HD13#	HD11#	HD9#	HD2#	HA30#	HA15#	GND	HA17#	HA16#
F	SERR#	LOCK#	DEV SEL#	STOP#	TRDY#	GND	VCC	GND	VCC	REQ2#	11	12	13	14	15	16	VTT	VCC	GND	VCC	GND	HA11#	HA12#	HA13#	HA14#	HA8#
G	AD13	AD14	CBE1#	AD15	PAR	VCC	G7	8	9	10	ı						17	18	19	G20	VCC	HA10#	HA5#	HA7#	HA3#	HA9#
Н	AD8	AD7	AD10	AD12	AD11	GND	Н		9											Н	GND	HA4#	HA6#	BNR#	H TRDY#	BPRI#
J	AD5	AD6	GND	CBE0#	AD9	VCC	J	PCI											CPU	J	VCC	HREQ 0#	HREQ	GND	HREQ 4#	DEFER#
K	SBA0	AD1	AD3	AD2	AD4	AD0	K	Pins		K10	11	12	13	14	15	16	K17		Pins	K	ADS#	HLOCK#	DRDY#	HREQ	HREQ 3#	RS0#
L	ST2	ST1	GGNT#	ST0	GREQ#	L	l l		Ц	L	VCC	GND	VCC	VCC	GND	VCC	L	ļ			L	HITM#	DBSY#	HIT#	RS2#	RS1#
M	SBA2	SBA1	GPIPE#	GRBF#	GND	M				M	GND	VCC	GND	GND	VCC	GND	M				M	GNDA	GTL REF	VTT	TEST IN#	CPU RSTI#
N	GND	SBA3	SBS#	AGP REF	GCLK	N				N	VCC	GND	GND	GND	GND	VCC	N				N	VCCA	HCLK	GND	MD63	VCC
P	VCC	SBA4	SBA6		GCLKO	P				P	VCC	GND	GND	GND	GND	VCC	P				P	NC	MD62	MD30	MD31	GND
R	SBA7	GD31	GD29	GD30	GND	R				R	GND	VCC	GND	GND	VCC	GND	R				R	GND	MD28	MD60	MD61	MD29
Т	GD27	GD26	GD24	GD25	GDS1#	Т				T	VCC	GND	VCC	VCC	GND	VCC	T				T	MD57	MD58	MD25	MD26	MD59
U	GD23	GBE3#	GD22	GD21	GD19	GD28	U	AGP]	U10	11	12	13	14	15	16	U17		DRAM	U	MD27	MD22	MD56	MD55	MD23	MD24
v	GD20	GD17	GND	GBE2#	G IRDY#	VCC	v	Pins											Pins	v	VCC	MD19	MD20	GND	MD21	MD54
w	GD16	GD18	GFRM#	G TRDY#	GDEV SEL#	GNDA	W		Ц									ļ		w	GNDA	MD18	MD50	MD51	MD53	MD52
Y	G STOP#	GPAR	GD15	GBE1#	GD14	VCCA	Y7	8	9	10							17	18	19	Y20	VCCA	MECC3	MD16	MD48	MD49	MD17
AA	GD13	GD12	GD10	GD11	GD9	GND	VCC	GND	VCC	MECC5	11	12	13	14	15	16	SRAS B#	VCC	GND	VCC	GND	CAS A2#	MECC6	CAS A3#	MECC2	MECC7
AB	GD8	GBE0#	GND	GD7	GD0	MD2	MD37	MD40	MD41	MD44	MD14	GND	SCAS B#	RAS A0#	GND	MA	MA B3#	MA B6#	MA B7#	MA B10	DCLK O	NC	RAS B5#	GND	GND	CAS A7#
AC	GD6	GDS0#	GD5	SUS CLK	MD0	MD3	MD38	MD7	MD42	MD45	MD15	SWEB#	CAS A5#	CAS A1#	RAS A3#	MA B1#	MA A3	MA A7	MA A8	MA B9#	MA A12	CKE0#		RAS B3#	CAS A6#	RAS B4#
AD	GD4	GD3	GD2	SU STAT#	GND	MD35	MD5	MD8	GND	MD12	MD47	MECC1	CAS	CAS	RAS	MA	MA B2#	GND	MA	MA	MA	GND	CKE3#	RAS B1#	DCLK WR	RAS
AE	VCC	GD1	WSC#	MD33	MD1	MD36	MD6	MD10	MD43	MD13	MECC4	SWEA#	A4# CAS B5#	B1# CAS A0#	RAS	RAS	MA	MA B4#	MA	A10 MA A9	B12# MA B11#	NC	NC	CKE2#	RAS B0#	VCC
AF	GND	VCC	PWR OK	MD32	MD34	MD4	MD39	MD9	MD11	MD46	MECC0	SCAS	GND	VCC	A2# RAS A1#	A5# SRAS A#	MA A0	MA A4	A5 MA A6	MA B8#	MA A11	MA B13#	CKE1#	CKE5#	MA	GND

Figure 3. VT82C693 Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	P	GND	D05	Ю	AD26	H03	Ю	AD10	P01	P	VCC	W25	Ю		AC23	О	CKE4#
A02		AD20	D06	Ö	PGNT#	H04	ΙÖ	AD12	P02	Ī	SBA4	W26	ΙÖ	MD52	AC24	ŏ	RASB3# / CSB3#
A03	I	REO0#	D07	Ô	GNT1#	H05	IO	AD11	P03	Î	SBA6	Y01	IO	GSTOP#	AC25	0	CASA6# / DOM6#
A04		AD25 AD29	D08 D09	I IO	REQ3# HD58#	H06 H21	P P	GND GND	P04	I	SBA5	Y02 Y03	IO IO	GPAR GD15	AC26 AD01	0	RASB4# / CSB4# GD04
A05 A06	I	RESET#	D10	I	REQ4#	H21	IO	HA04#	P05 P11	O P	GCLKO VCC	Y04	IO	GBE1#	AD01 AD02		GD04 GD03
A07		HD56#	D11	Ю	HD46#	H23	Ю	HA06#	P12	P	GND	Y05	Ю	GD14	AD03		GD02
A08		HD62#	D12	IO	HD41#	H24	IO	BNR#	P13	P	GND	Y06	P	VCCA	AD04		SUSTAT#
A09 A10		HD55# HD54#	D13 D14	IO IO	HD39# HD34#	H25 H26	IO IO	HTRDY# BPRI#	P14 P15	P P	GND GND	Y21 Y22	P IO	VCCA MECC3	AD05 AD06	P IO	GND MD35
A11		HD49#	D15	Ю	HD35#	J01	Ю	AD05	P16	P	VCC	Y23	Ю	MD16	AD07		MD05
A12		HD47#	D16	IO	HD30#	J02	IO	AD06	P22	-	NC	Y24	Ю	MD48	AD08		MD08
A13 A14		HD40# GND	D17 D18		HD24# HD16#	J03 J04	P IO	GND CBE0#	P23 P24	IO IO	MD62 MD30	Y25 Y26	IO IO		AD09 AD10	P	GND MD12
A15		HD33#	D19		HD15#	J05	Ю	AD09	P25	Ю	MD31	AA01	Ю	GD13		IO	
A16	ĬŎ	HD31#	D20		HD14#	J06	P	VCC	P26	P	GND	AA02	ĬŎ	GD12	AD12		
A17		HD27#	D21		HD04#	J21	P	VCC	R01	I	SBA7	AA03	IO	GD10	AD13	0	CASA4# / DOM4#
A18 A19		HD19# HD20#	D22 D23		HD01# HA31#	J22 J23	IO IO	HREQ0# HREQ1#	R02 R03	IO IO	GD31 GD29	AA04 AA05	IO IO	GD11 GD09	AD14 AD15	0	CASB1# RASA4# / CSA4#
A20		HD10#	D24		HA25#	J24	P	GND	R04	Ю	GD30	AA06	P	GND	AD16	ŏ	MAB0#
A21		HD06#	D25		HA18#	J25	Ю	HREQ4#	R05	P	GND	AA07	P	VCC	AD17	O	MAB2#
A22		HD03#	D26		HA19#	J26	IO	DEFER#	R11	P	GND	AA08	P	GND	AD18	P	GND
A23 A24		HA29# HA24#	E01 E02	IO IO	FRAME# IRDY#	K01 K02	I	SBA0 AD01	R12 R13	P P	VCC GND	AA09 AA10	P IO	VCC MECC5	AD19 AD20	0	MAB5# MAA10
A25	Ю	HA22#	E03	P	GND	K03	Ю	AD03	R14	P	GND	AA17	О	SRASB#	AD21	О	MAB12#
A26		GND	E04		CBE2#	K04	Ю	AD02	R15	P	VCC	AA18	P	VCC	AD22	P	GND
B01 B02	P I	VCC PCLK	E05 E06	IO IO	AD24 AD30	K05 K06	IO IO	AD04 AD00	R16 R22	P P	GND GND	AA19 AA20	P P	GND VCC	AD23 AD24	0	CKE3# RASB1# / CSB1#
B03		AD22	E07	0	GNT0#	K21	Ю	ADS#	R23	Ю	MD28	AA21	P	GND	AD25	I	DCLKWR
B04		AD27	E08	О	GNT3#	K22	I	HLOCK#	R24	Ю	MD60	AA22	О	CASA2# / DQM2#	AD26	О	RASB2# / CSB2#
B05	IO	AD28	E09	0	GNT4#	K23	IO	DRDY#	R25	IO	MD61	AA23	IO	MECC6	AE01	P	VCC
B06 B07		PREQ# HD50#	E10 E11	O IO	GNT2# HD57#	K24 K25	IO IO	HREQ2# HREQ3#	R26 T01	IO	MD29 GD27	AA24 AA25	0	CASA3# / DQM3# MECC2	AE02 AE03	0	GD01 WSC#
B08		HD61#	E12	P	GND	K25 K26	Ю	RS0#	T02	Ю	GD26	AA26	IO	MECC7	AE04		MD33
B09		HD63#	E13		HD45#	L01	0	ST2	T03	Ю	GD24	AB01	IO	GD08	AE05		MD01
B10 B11		HD53# HD48#	E14 E15	IO P	HD38# GND	L02 L03	0	ST1 GGNT#	T04 T05	IO IO	GD25 GDS1#	AB02 AB03	IO P	GBE0# GND	AE06 AE07		MD36 MD06
B12		HD42#	E16	Ī	GTLREF	L03	ő	ST0	T11	P	VCC	AB04	Ю	GD07	AE08		MD10
B13		HD36#	E17		HD23#	L05	I	GREQ#	T12	P	GND	AB05	Ю	GD00	AE09		
B14		HD43# HD32#	E18 E19		HD13# HD11#	L11 L12	P P	VCC GND	T13 T14	P P	VCC VCC	AB06 AB07	IO	MD02 MD37	AE10		MD13 MECC4
B15 B16		HD32# HD29#	E19 E20		HD11# HD09#	L12 L13	P	VCC	T15	P	GND	AB07 AB08	IO IO	MD40	AE11 AE12	IO O	SWEA# / MWEA#
B17	Ю	HD25#	E21	Ю	HD02#	L14	P	VCC	T16	P	VCC	AB09	Ю	MD41	AE13	Ō	CASB5#
B18		HD21#	E22		HA30#	L15	P	GND	T22	IO	MD57	AB10	IO	MD44	AE14	0	CASA0# / DQM0#
B19 B20		HD18# HD12#	E23 E24	IO P	HA15# GND	L16 L22	P	VCC HITM#	T23 T24	IO IO	MD58 MD25	AB11 AB12	IO P	MD14 GND	AE15 AE16	0	RASA2# / CSA2# RASA5# / CSA5#
B21		HD08#	E25	IO	HA17#	L23	Ю	DBSY#	T25	Ю	MD26	AB13	ō	SCASB#	AE17	ŏ	MAA2
B22		HD00#	E26		HA16#	L24	Ю	HIT#	T26	Ю	MD59	AB14	O	RASA0# / CSA0#	AE18	О	MAB4#
B23 B24	O IO	CPURST# HA27#	F01 F02	IO IO	SERR# LOCK#	L25 L26	IO IO	RS2# RS1#	U01 U02	IO IO	GD23 GBE3#	AB15 AB16	P	GND MAA1	AE19 AE20	0	MAA5 MAA9
B25		HA20#	F03		DEVSEL#	M01	I	SBA2	U03	Ю	GD22	AB17	o	MAB3#	AE21	o	MAB11#
B26	О	BREQ0#	F04	Ю	STOP#	M02	I	SBA1	U04	Ю	GD21	AB18	О	MAB6#	AE22	-	NC
C01		AD19	F05	IO	TRDY#	M03	I	GPIPE#	U05	IO	GD19	AB19	0	MAB7#	AE23	-	NC CKE2#
C02 C03		PCIREF AD21	F06 F07	P P	GND VCC	M04 M05	I P	GRBF# GND	U06 U21	IO IO	GD28 MD27	AB20 AB21	0	MAB10 DCLKO	AE24 AE25	0	CKE2# RASB0# / CSB0#
		CBE3#	F08	P	GND	M11	P	GND	U22	Ю	MD22	AB22		NC	AE26		VCC
C05		GND	F09		VCC	M12	P	VCC	U23		MD56	AB23	O	RASB5# / CSB5#	AF01		GND
C06 C07		AD31 REQ1#	F10 F17		REQ2# VTT	M13 M14	P P	GND GND	U24 U25		MD55 MD23	AB24 AB25	P P	GND GND	AF02 AF03	ľ	VCC PWROK
C08		HD52#	F18	P	VCC	M15	P	VCC	U26	Ю	MD24	AB26	О	CASA7# / DQM7#	AF04		MD32
C09	P	GND	F19	P	GND	M16	P	GND	V01	Ю	GD20	AC01	Ю	GD06	AF05	Ю	MD34
		HD60# HD59#	F20 F21		VCC GND	M22 M23	P I	GNDA GTLREF	V02 V03	IO P	GD17 GND	AC02 AC03	IO IO	GDS0# GD05			MD04 MD39
C11		HD59# HD51#	F21		HA11#	M24	P	VTT	V03	Ю	GBE2#	AC04	I	SUSCLK			MD09
C13	Ю	HD44#	F23	Ю	HA12#	M25	I	TESTIN#	V05	Ю	GIRDY#	AC05	Ю	MD00	AF09	Ю	MD11
C14		HD37#	F24		HA13#	M26	I	CPURSTI#	V06	P	VCC	AC06		MD03			MD46
C15 C16		HD28# HD26#	F25 F26		HA14# HA08#	N01 N02	P I	GND SBA3	V21 V22	P IO	VCC MD19	AC07 AC08		MD38 MD07	AF11 AF12		MECC0 SCASA#
C17	Ю	HD22#	G01	Ю	AD13	N03	I	SBS#	V23	Ю	MD20	AC09	Ю	MD42	AF13	P	GND
C18		GND	G02		AD14	N04	P	AGPREF	V24	P	GND		Ю	MD45	AF14	P	VCC
C19 C20		HD17# HD07#	G03 G04		CBE1# AD15	N05 N11	I P	GCLK VCC	V25 V26		MD21 MD54	AC11 AC12	0	MD15 SWEB# / MWEB#	AF15 AF16	0	RASA1# / CSA1# SRASA#
C21		HD05#	G05		PAR	N12	P	GND	W01	Ю		AC13	o	CASA5# / DOM5#	AF17	o	
C22	P	GND	G06	P	VCC	N13	P	GND	W02	Ю	GD18	AC14	Ó	CASA1# / DQM1#	AF18	O	MAA4
C23		HA26#	G21		VCC	N14	P	GND	W03	IO	GFRM#	AC15	0	RASA3# / CSA3#	AF19		MAA6
C24 C25		HA28# HA23#	G22 G23		HA10# HA05#	N15 N16	P P	GND VCC	W04 W05	IO IO	GTRDY# GDSEL#	AC16 AC17	0	MAB1# MAA3	AF20 AF21	0	MAB8# MAA11
C26		HA21#	G24		HA07#	N22	P	VCCA	W06	P	GNDA	AC18		MAA7	AF22		MAB13#
D01		AD16	G25		HA03#	N23	I	HCLK	W21	P	GNDA	AC19	o	MAA8	AF23	0	CKE1#
D02		AD18 AD17	G26		HA09#	N24	P IO	GND MD63	W22			AC21	0	MAB9#	AF24		CKE5# MAA13
D03 D04		AD17 AD23	H01 H02	IO IO	AD08 AD07	N25 N26	P	MD63 VCC	W23 W24		MD50 MD51	AC21 AC22		MAA12 CKE0#	AF25 AF26		
																_	•

Figure 4. <u>VT82C693</u> Pin List (<u>Alphabetical</u> Order)

Pin#		Pin Name	Pin #		Pin Name	Pin #		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
K06	Ю	AD00	AA05	Ю	GD09	AB15	P	GND	C16	Ю	HD26#	_	IO	MD05	AE25	О	RASB0# / CSB0#
K02	IO	AD01	AA03	IO	GD10	AB24	P	GND	A17	IO	HD27#	AE07		MD06	AD24	ŏ	RASB1# / CSB1#
K04	Ю	AD02	AA04	Ю	GD11	AB25	P	GND	C15	Ю	HD28#	AC08		MD07	AD26	O	RASB2# / CSB2#
K03	IO	AD03	AA02	IO	GD12	AD05	P	GND	B16	IO	HD29#	AD08		MD08	AC24	O	RASB3# / CSB3#
K05	IO	AD04 AD05	AA01 Y05	IO	GD13	AD19	P	GND	D16	IO	HD30#	AF08		MD09 MD10	AC26	0	RASB4# / CSB4#
J01 J02	IO IO	AD05 AD06	Y03	IO	GD14 GD15	AD18 AD22	P P	GND GND	A16 B15	IO IO	HD31# HD32#	AE08 AF09	IO	MD10 MD11	AB23 A03	I	RASB5# / CSB5# REQ0#
H02	IO	AD06 AD07	W01	IO	GD13 GD16	AF01		GND	A15	IO	HD33#	AD10		MD11 MD12	C07	I	REQ1#
H01	Ю	AD08	V02	Ю	GD17	AF13		GND	D14	Ю	HD34#	AE10		MD13	F10	Ī	REQ2#
J05	Ю	AD09	W02	Ю	GD18	AF26	P	GND	D15	Ю	HD35#	AB11	Ю	MD14	D08	I	REQ3#
H03	Ю	AD10	U05	Ю	GD19	M22		GNDA	B13	Ю	HD36#	AC11	Ю	MD15	D10	I	REQ4#
H05	IO	AD11	V01	IO	GD20	W06		GNDA	C14	IO	HD37#	Y23		MD16	A06	I	RESET#
H04	IO	AD12 AD13	U04	IO	GD21 GD22	W21	P	GNDA GNT0#	E14 D13	IO	HD38# HD39#	Y26 W22		MD17 MD18		IO	RS0# RS1#
G01 G02	IO IO	AD13 AD14	U03 U01	IO	GD22 GD23	E07 D07		GNT1#	A13	IO IO	HD40#	W 22 V22	IO IO	MD19		IO IO	RS2#
G04	Ю	AD15	T03	Ю	GD24	E10		GNT2#	D12	Ю	HD41#	V23	Ю	MD20	K01	I	SBA0
D01	IO	AD16	T04	IO	GD25	E08		GNT3#	B12	IO	HD42#	V25		MD21	M02	I	SBA1
D03	Ю	AD17	T02	Ю	GD26	E09		GNT4#	B14	IO	HD43#	U22	Ю	MD22	M01	I	SBA2
D02	IO	AD18	T01	IO	GD27	Y02		GPAR	C13	IO	HD44#	U25		MD23	N02	I	SBA3
C01	IO	AD19	U06	IO	GD28	M03		GPIPE#	E13	IO	HD45#	U26	IO	MD24	P02	I	SBA4
A02 C03	IO IO	AD20 AD21	R03 R04	IO IO	GD29 GD30	M04 L05	I I	GRBF# GREQ#	D11	IO IO	HD46# HD47#	T24 T25	IO	MD25 MD26	P04 P03	I I	SBA5 SBA6
B03	IO	AD21 AD22	R02	IO	GD30 GD31	Y01		GSTOP#	A12 B11	IO	HD47#	U21	IO	MD27	R01	I	SBA7
D04	Ю	AD23	AC02	IO	GDS0#	M23		GTLREF	A11	IO	HD49#	R23	Ю	MD28	N03	Ī	SBS#
E05	IO	AD24	T05	IO	GDS1#	E16	İ	GTLREF	B07	IO	HD50#	R26	IO	MD29	AF12	0	SCASA#
A04	Ю	AD25	W05	Ю	GDSEL#	W04		GTRDY#	C12	Ю	HD51#	P24	Ю	MD30	AB13	O	SCASB#
D05	Ю	AD26	W03	Ю	GFRM#	G25		HA03#	C08	Ю	HD52#	P25		MD31		Ю	
B04	IO	AD27	L03	O	GGNT#	H22		HA04#	B10	IO	HD53#	AF04	IO	MD32	AF16	o	SRASA#
B05	IO	AD28	V05	IO	GIRDY#	G23		HA05#	A10	IO	HD54#	AE04		MD33	AA17	0	SRASB#
A05 E06	IO IO	AD29 AD30	A01 A14	P P	GND GND	H23 G24		HA06# HA07#	A09 A07	IO IO	HD55# HD56#	AF05 AD06		MD34 MD35	L04 L02	0	ST0 ST1
C06	Ю		A26	P	GND	F26		HA08#	E11	Ю	HD57#	AE06		MD36	L01	ŏ	ST2
K21	IO		C05	P	GND	G26		HA09#	D09		HD58#	AB07		MD37		Ю	STOP#
N04	P	AGPREF	C09	P	GND	G22		HA10#	C11	IO	HD59#	AC07	Ю	MD38	AD04	I	SUSTAT#
H24	Ю	BNR#	C18	P	GND	F22		HA11#	C10	IO	HD60#	AF07	Ю	MD39	AC04	I	SUSCLK
H26	IO	BPRI#	C22	P	GND	F23		HA12#	B08	IO	HD61#	AB08		MD40	AE12	0	SWEA# / MWEA#
B26	0	BREQ0#	E03	P	GND	F24		HA13#	A08	IO	HD62#	AB09	IO	MD41	AC12	0	SWEB# / MWEB#
AE14 AC14	0	CASA0# / DQM0# CASA1# / DQM1#	E12 E15	P P	GND GND	F25 E23		HA14# HA15#	B09 L24	IO IO	HD63# HIT#	AC09 AE09	IO	MD42 MD43	M25 F05	I	TESTIN# TRDY#
AA22	ő	CASA2# / DQM2#	E24	P	GND	E26		HA16#	L22	I	HITM#			MD43 MD44	B01	P	VCC
AA24	ŏ	CASA3# / DQM3#	F06	P	GND	E25		HA17#	K22	Ī	HLOCK#	AC10	Ю	MD45	F07	P	VCC
AD13	О	CASA4# / DQM4#	F08	P	GND	D25		HA18#	J22	IO	HREQ0#	AF10		MD46	F09	P	VCC
AC13	0	CASA5# / DQM5#	F19	P	GND	D26		HA19#	J23		HREQ1#	AD11		MD47	F18	P	VCC
AC25	0	CASA6# / DQM6#	F21 H06	P P	GND	B25		HA20#	K24		HREQ2#	Y24 Y25		MD48	F20	P	VCC VCC
AB26 AD14	0	CASA7# / DQM7# CASB1#	H21	P	GND GND	C26 A25		HA21# HA22#	K25 J25	IO	HREQ3# HREQ4#	W23	IO	MD49 MD50	G06 G21	P P	VCC
AE13	o	CASB1# CASB5#	J03	P	GND	C25		HA23#	H25		HTRDY#	W23		MD50 MD51	J06	P	VCC
J04	Ю	CBE0#	J24	P	GND	A24		HA24#	E02		IRDY#	W26	Ю	MD52	J21	P	VCC
G03	Ю	CBE1#	L12	P	GND	D24		HA25#	F02	IO	LOCK#	W25	Ю	MD53	L11	P	VCC
E04	IO	CBE2#	L15	P	GND	C23		HA26#	AF17	0	MAA0	V26	IO	MD54	L13	P	VCC
C04	IO	CKE0#	M05	P	GND	B24		HA27#	AB16		MAA1	U24		MD55		P	VCC
AC22 AF23	0	CKE0# CKE1#	M11 M13	P P	GND GND	C24 A23		HA28# HA29#	AE17 AC17	0	MAA2 MAA3	U23 T22	IO IO	MD56 MD57	L16 M12	P P	VCC VCC
AE24	ŏ	CKE1# CKE2#	M14	P	GND	E22		HA30#	AF18	ŏ	MAA4	T23	Ю	MD58	M15	P	VCC
AD23		CKE3#	M16	P	GND	D23		HA31#	AE19		MAA5	T26		MD59	N11	P	VCC
AC23	О	CKE4#	N01	P	GND	N23	I	HCLK	AF19	О	MAA6	R24	Ю	MD60	N16	P	VCC
AF24	О	CKE5#	N12	P	GND	B22	Ю	HD00#	AC18	О	MAA7			MD61	N26	P	VCC
B23	Ō	CPURST#	N13	P	GND	D22		HD01#	AC19	0	MAA8	P23		MD62	P01	P	VCC
M26	I	CPURSTI# DBSY#	N14	P	GND	E21		HD02#	AE20		MAA9	N25		MD63		P	VCC
L23 AB21	0	DBSY# DCLKO	N15 N24	P P	GND GND	A22 D21		HD03# HD04#	AD20 AF21	0	MAA10 MAA11	AF11 AD12		MECC0 MECC1	P16 R12	P P	VCC VCC
AB21 AB22	I	NC NC	P12	P	GND	C21		HD04# HD05#	AC21		MAA12	AA25		MECC2		P	VCC
AD25	Ī	DCLKWR	P13	P	GND	A21		HD06#	AF25		MAA13	Y22		MECC3	T11	P	VCC
J26	Ю	DEFER#	P14	P	GND	C20	Ю	HD07#	AD16	О	MAB0#	AE11	Ю	MECC4	T13	P	VCC
F03		DEVSEL#	P15	P	GND	B21		HD08#	AC16		MAB1#	AA10		MECC5		P	VCC
K23		DRDY#	P26	P	GND	E20		HD09#	AD17		MAB2#	AA23		MECC6	T16	P	VCC
E01 AB02	IO	FRAME# GBE0#	R05	P P	GND GND	A20 E19		HD10# HD11#	AB17 AE18		MAB3# MAB4#	AA26 P22	Ю	MECC7 NC	V06 V21	P P	VCC VCC
Y04	IO	GBE1#	R11 R13	P	GND GND	B20	IO	HD11# HD12#	AD19		MAB4# MAB5#	AE22	-	NC NC		P P	VCC
V04		GBE2#	R14	P	GND	E18		HD13#	AB18		MAB6#	AE23	-	NC	AA09		VCC
U02	Ю	GBE3#	R16	P	GND	D20	Ю	HD14#	AB19	О	MAB7#	G05		PAR		P	VCC
N05	I	GCLK	R22	P	GND	D19		HD15#	AF20		MAB8#	C02	P	PCIREF	AA20	P	VCC
P05	0		T12	P	GND	D18		HD16#	AC20		MAB9#	B02	I	PCLK		P	VCC
AB05	IO		T15	P	GND	C19	IO	HD17# HD18#	AB20		MAB10 MAB11#	D06	O	PGNT#	AE26	P	VCC
AE02 AD03		GD01 GD02	V03 V24	P P	GND GND	B19 A18		HD18# HD19#	AE21 AD21		MAB11# MAB12#	B06 AF03	1	PREQ# PWROK	AF02 AF14	P P	VCC VCC
		GD02 GD03	AA06	P	GND	A18 A19		HD19# HD20#	AF22		MAB12# MAB13#	AB14	О	RASA0# / CSA0#	N22	P	VCCA
AD02		GD03 GD04	AA08	P	GND	B18		HD21#	AC05		MD00	AF15	ŏ	RASA1# / CSA1#	Y06	P	VCCA
AC03		GD05	AA19	P	GND	C17	Ю	HD22#	AE05	IO	MD01	AE15		RASA2# / CSA2#	Y21	P	VCCA
AC01	Ю		AA21	P	GND	E17		HD23#	AB06		MD02	AC15	0	RASA3# / CSA3#	M24	P	VTT
AB04		GD07	AB03		GND	D17		HD24#	AC06		MD03	AD15	0	RASA4# / CSA4#	F17	P	VTT
AB01	Ю	GD08	AB12	P	GND	B17	Ю	HD25#	AF06	IO	MD04	AE16	0	RASA5# / CSA5#	AE03	O	WSC#

PIN DESCRIPTIONS

Table 1. VT82C693 Pin Descriptions

Signal Name			CPU Interface
	<u>Pin #</u>	<u>I/O</u>	Signal Description
	(see pinout tables)	IO	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU cycles HA[31:3] are inputs. These signals are driven by the VT82C693 during cache snooping operations.
	(see pinout tables)	IO	Host CPU Data. These signals are connected to the CPU data bus.
ADS#	K21	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.
BNR#	H24	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
BPRI#	H26	IO	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The VT82C693 drives this signal to gain control of the processor bus.
DBSY#	L23	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
DEFER#	J26	Ю	Defer . The VT82C693 uses a dynamic deferring policy to optimize system performance. The VT82C693 also uses the DEFER# signal to indicate a processor retry response.
DRDY#	K23	IO	Data Ready. Asserted for each cycle that data is transferred.
HIT#	L24	IO	Hit . Indicates that a cacheing agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	L22	I	Hit Modified . Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the L1 cache and needs to be written back.
HLOCK#	K22	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.
	725, K25, K24, J23, J22	IO	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.
HTRDY#	H25	IO	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.
RS[2:0]#	L25, L26, K26	Ю	Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type O00 Idle State O01 Retry Response O10 Defer Response O11 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data
CPURST#	B23	О	CPU Reset. Reset output to CPU
BREQ0#	B25 B26	0	Bus Request 0. Bus request output to CPU.

Note: Clocking of the CPU and cache interfaces is performed with HCLK. See the clock pin group at the end of the pin descriptions section for descriptions of the clock input pins.

The VT82C693 pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

]	DRAM Interface
<u> Pin #</u>	<u>I/O</u>	Signal Description
(see pinout tables)	IO	Memory Data. These signals are connected to the DRAM data bus. Note: MD0 is internally pulled up for use in EDO memory type detection.
AA26, AA23, AA10, AE11, Y22, AA25, AD12, AF11	IO	DRAM ECC or EC Data (Rx78[0]=0)
AF25, AC21, AF21, AD20, AE20, AC19, AC18, AF19, AE19, AF18, AC17, AE17, AB16, AF17	O	Memory Address A. DRAM address lines (two sets for better drive)
AF22, AD21, AE21, AB20, AC20, AF20, AB19, AB18, AD19, AE18, AB17, AD17, AC16, AD16	0	Memory Address B. DRAM address lines (two sets for better drive). Note that this set of memory address pins is opposite polarity from the "A" set (except for MAB10 which must be positive polarity because it is used for the SDRAM Precharge command). Selected pins are also used for strap options: Bit Internal PU/PD
AE16, AD15, AC15, AE15, AF15, AB14	О	Multifunction Pins (two sets for better drive) 1. FPG/EDO DRAM: Row Address Strobe of each bank. 2. Synchronous DRAM: Chip select of each bank.
AB23, AC26, AC24, AD26, AD24, AE25	0	Multifunction Pins (two sets for better drive) 1. FPG/EDO DRAM: Row Address Strobe of each bank. 2. Synchronous DRAM: Chip select of each bank
AB26, AC25, AC13, AD13, AA24, AA22, AC14, AE14	O	Multifunction Pins 1. FPG/EDO DRAM: Column Address Strobe of each byte lane. 2. Synchronous DRAM: Data mask of each byte lane.
AE13, AD14	O	Multifunction Pins 1. FPG/EDO DRAM 2. Synchronous DRAM
AF16, AA17	О	Row Address Command Indicator. (two sets for better drive)
AB13	0	Column Address Command Indicator. (two sets for better drive)
AC12		Write Enable Command Indicator. (two sets for better drive)
AF23, AE24, AD23, AC23,	0	Clock Enables. Clock enables for each DRAM bank (Rx78[0]=1) for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control for reducing power usage and for reducing heat/temperature in high-speed memory systems. Alternate functions: FENA = FET Enable, GCKE# = Global CKE.
	(see pinout tables) AA26, AA23, AA10, AE11, Y22, AA25, AD12, AF11 AF25, AC21, AF21, AD20, AE20, AC19, AC18, AF19, AE19, AF18, AC17, AE17, AB16, AF17 AF22, AD21, AE21, AB20, AC20, AF20, AB19, AB18, AD19, AE18, AB17, AD17, AC16, AD16 AE16, AD15, AC15, AE15, AF15, AB14 AB23, AC26, AC24, AD26, AD24, AE25 AB26, AC25, AC13, AD13, AA24, AA22, AC14, AE14 AE13, AD14 AF16, AA17 AF12, AB13 AE12, AC12 AC22, AF23, AE24, AD23,	Pin # I/O

			PCI Bus Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
AD[31:0]	(see pinout tables)	Ю	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.
CBE[3:0]#	C4, E4, G3, J4	Ю	Command/Byte Enable. Commands are driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
FRAME#	E1	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
IRDY#	E2	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.
TRDY#	F5	IO	Target Ready. Asserted when the target is ready for data transfer.
STOP#	F4	IO	Stop. Asserted by the target to request the master to stop the current transaction.
DEVSEL#	F3	IO	Device Select. This signal is driven by the VT82C693 when a PCI initiator is attempting to access main memory. It is an input when the VT82C693 is acting as a PCI initiator.
PAR	G5	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0].
SERR#	F1	Ю	System Error. VT82C693 will pulse this signal when it detects a system error condition.
LOCK#	F2	IO	Lock. Used to establish, maintain, and release resource lock.
PREQ#	В6	I	South Bridge Request. This signal comes from the South Bridge. PREQ# is the South Bridge request for the PCI bus.
PGNT#	D6	О	South Bridge Grant. This signal driven by the VT82C693 to grant PCI access to the South Bridge.
REQ[4:0]#	D10, D8, F10, C7, A3	I	PCI Master Request. PCI master requests for PCI.
GNT[4:0]#	E9, E8, E10, D7, E7	О	PCI Master Grant. Permission is given to the master to use PCI.
WSC#	AE3	0	Write Snoop Complete. Sideband PCI signal (used on the planar only in multiprocessor configurations) asserted to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to send an APIC interrupt message. Basically this signal is always active except when PCI master write data is not flushed.

Note: Clocking of the PCI interface is performed with PCLK; see the clock pin group at the end of the pin descriptions section for descriptions of the clock input pins.

			AGP Bus Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
GD[31:0]	(see pinout tables)	IO	Address/Data Bus. The standard AGP/PCI address and data lines. The address is driven with GDS0# and GDS1# assertion for AGP transfers and is driven with GFRM# assertion for PCI transfers.
GDS0#	AC2	IO	Bus Strobe 0 (AGP transactions only). Provides timing for 2x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.
GDS1#	T5	Ю	Bus Strobe 1 (AGP transactions only). Provides timing for 2x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.
GBE[3:0]#	U2, V4, Y4, AB2	IO	Command/Byte Enable. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using PIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data, but the state of these pins is ignored by the AGP master. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GFRM#	W3	Ю	Frame (PCI transactions only). Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	V5	Ю	Initiator Ready AGP: For write operations, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	W4	Ю	Target Ready: AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfers on both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	Y1	Ю	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDSEL#	W5	Ю	Device Select (PCI transactions only). This signal is driven by the VT82C693 when a PCI initiator is attempting to access main memory. It is an input when the VT82C693 is acting as PCI initiator. Not used for AGP cycles.

Note: Clocking of the AGP interface is performed with GCLK; see the clock pin group for descriptions of the clock input pins. Note: PCB Layout Guidelines (reference from AGP specification)

- 1. Total motherboard trace length 10" max, trace impedance = 65 ohms \pm 15 ohms, minimize signal crosstalk
- 2. Trace lengths within groups matched to within 2 inches or better

Groups are:

- a. GDS0#, GD15-0, GBE1-0#
- b. GDS1#, GD31-16, GBE3-2#
- c. SBS#, SBA7-0
- 3. Ground isolation should be provided around GDS0# and GDS1# to prevent crosstalk with GD[31:0]. Ideally ground traces should be provided adjacent to GDSn# on the same signal layer, but at a minimum wider spaces should be provided on either side (e.g., 16 mil spaces on either side of GDSn# if GDSn# signal traces are 8 mil).

	AGP Bus Interface (continued)				
Signal Name	<u> Pin #</u>	<u>10</u>	Signal Description		
GPIPE#	M3	I	Pipelined Request. Asserted by the master (graphics controller) to indicate that a full-width request is to be enqueued by the target VT82C693. The master enqueues one request each rising edge of GCLK while PIPE# is asserted. When PIPE# is deasserted no new requests are enqueued across the AD bus.		
GRBF#	M4	Ι	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When RBF# is asserted, the VT82C693 will not return low priority read data to the master.		
SBA[7:0]	R1, P3, P4, P2, N2, M1, M2, K1	I	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (the VT82C693). These pins are ignored until enabled.		
SBS#	N3	I	Sideband Strobe. Provides timing for SBA[7:0] (driven by the master)		
ST[2:0]	L1, L2, L4	O	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the VT82C693 and inputs to the master. 		
GREQ#	L5	I	Request. Master request for AGP.		
GGNT#	L3	О	Grant. Permission is given to the master to use AGP.		
GPAR / GCKRUN#	Y2	IO O	Rx78[1]=0: AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0]. Rx78[1]=1: AGP Clock Run. Used to stop the AGP bus clock to reduce bus power usage.		

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the 693 has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

Clock / Reset Control						
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
HCLK	N23	I	Host Clock. This pin receives the host CPU clock ($66 / 100 \text{ MHz}$). This clock is used by all VT82C693 logic that is in the host CPU domain. The memory interface logic will also use this clock if selected (memory system timing can alternately be selected to use the AGP bus clock). The CPU clock must lead the AGP clock by 0.2 ± 0.5 nsec.			
PCLK	В2	I	CI Clock. This pin receives a buffered host clock divided-by-2 or 3 to create 33 MHz. This clock is used by all of the VT82C693 logic that is in the PCI clock domain. This beck input must be 33 MHz maximum to comply with PCI specification requirements and last be synchronous with the host CPU clock, HCLK, with an HCLK:PCLK frequency io of 2:1 or 3:1 as shown in the table below. The host CPU clock must lead the PCI lock by 1.5 ± 0.5 nsec. PCI Clock PCI Clock PCI Clock AGP Clock PCI Clock AGP Clock AG			
GCLK	N5	I	AGP Clock. This pin receives the AGP bus clock (66 MHz). This clock is used by all VT82C693 logic that is in the AGP clock domain. The AGP clock must be synchronous / pseudo-synchronous to the host CPU clock (selectable as shown in the table below). The CPU clock must lead the AGP clock by 0.2 ± 0.5 nsec.			
GCLKO	P5	О	AGP Clock Feedback.			
DCLKO	AB21	О	DRAM Clock. Output from internal clock generator to the external clock buffer.			
DCLKWR	AD25	I	DRAM Clock Input. Input from the external clock buffer.			
RESET#	A6	I	Reset. Input from south bridge chip. When asserted, this signal resets the VT82C693 and lets all register bits to the default value. The same signal that connects to this pin may also be used (connected through an external inverter) to reset the ISA bus (if implemented). The rising edge of this signal is used to sample all power-up strap options (see HA25-27).			
PWROK	AF3	I	Power OK.			
CPURSTI#	M26	I	CPU Reset In. CPU Reset input from south bridge chip.			
CPURST#	B23	О	CPU Reset. CPU Reset output to the CPU, 2T delayed from CPURST#.			
SUSCLK	AC4	I	Suspend Clock. For implementation of the Suspend-to-DRAM feature. Ground this pin to disable.			
SUSTAT#	AD4	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.			
GCKRUN# / GPAR	Y2	O IO	Rx78[1]=1: AGP Clock Run. Used to stop the AGP bus clock to reduce bus power usage. Rx78[1]=0: AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].			

	Power, Ground, No Connects, and Test				
Signal Name	Pin # I/O Signal Description				
VCC	(see pin list)	P	Power for Internal Logic (3.3V ±5%).		
GND	(see pin list)	P	Ground		
VCCA	N22, Y6, Y21	P	Analog Power (3.3V ±5%). For internal clock logic.		
GNDA	M22, W6, W21	P	Analog Ground. For internal clock logic. Connect to main ground plane.		
VTT	F17, M24	P	CPU Interface Termination Voltage (1.5V ±10%).		
GTLREF	E16, M23	P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2%		
AGPREF	N4	P	AGP Voltage Reference. 0.39 GVCC to 0.41 GVCC. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider on GVCC using 270 ohm and 180 ohm (2%) resistors.		
PCIREF	C2	P	PCI Voltage Reference. Reference voltage for 5V input tolerance.		
NC	P22, AE22, AE23, AB22	-	No Connect.		
TESTIN#	M25	I	Test Input. NAND tree / tristate mode test select.		

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT82C693. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 2. VT82C693 Registers

VT82C693 I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

VT82C693 Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0693	RO
5-4	Command	0006	\mathbf{RW}
7-6	Status	0290	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
C	-reserved- (cache line size)	00	—
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	\mathbf{RW}
14-27	-reserved- (base address registers)	00	_
28-2B	-reserved- (unassigned)	00	_
2D-2C	Subsystem Vendor ID	0000	W 1
2F-2E	Subsystem ID	0000	W1
33-30	-reserved- (expan ROM base addr)	00	
37-34	Capability Pointer	0000 00A0	RO
3F-38	-reserved- (unassigned)	00	_

Device-Specific Registers

Offset	Host CPU Protocol Control	Default	Acc
50	Request Phase Control	00	RW
51	Response Phase Control	00	RW
52	Dynamic Defer Timer	10	RW
55-53	-reserved- (unassigned)	00	_

Offset	DRAM Control	Default	Acc
59-58	MA Map Type	0040	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[30:23])	01	RW
5B	Bank 1 Ending (HA[30:23])	01	RW
5C	Bank 2 Ending (HA[30:23])	01	RW
5D	Bank 3 Ending (HA[30:23])	01	RW
5E	Bank 4 Ending (HA[30:23])	01	RW
5F	Bank 5 Ending (HA[30:23])	01	RW
56	Bank 6 Ending (HA[30:23])	01	RW
57	Bank 7 Ending (HA[30:23])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for Banks 0,1	EC	RW
65	DRAM Timing for Banks 2,3	EC	RW
66	DRAM Timing for Banks 4,5	EC	RW
67	DRAM Timing for Banks 6,7	EC	RW
68	DRAM Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	01	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	RO

Device-Specific Registers (continued)

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control 1	00	RW
72	CPU to PCI Flow Control 2	00	RW
73	PCI Master Control 1	00	RW
74	PCI Master Control 2	00	RW
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77	Chip Test (do not program)	00	RW
78	PMU Control 1	00	RW
79	PMU Control 2	00	RW
7A-7D	-reserved-	00	_
7E-7F	DLL Test Mode (do not program)	00	RW

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85-87	-reserved- (unassigned)	00	_
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
	-reserved- (unassigned)	00	

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	00	RO
A2	AGP Specification Revision	10	RO
A3	-reserved- (unassigned)	00	
A7-A4	AGP Status	0700 0203	RO
AB-A8	AGP Command	0000 0000	\mathbf{RW}
AC	AGP Control	08	\mathbf{RW}
AD	AGP Latency Timer	02	RW
AE-AF	-reserved- (unassigned)	00	

Offset	Miscellaneous Control	Default	Acc
B0-EF	-reserved- (unassigned)	00	
F7-F0	BIOS Scratch Registers	00	RW
F8	DRAM Arbitration Timer	00	RW
F9	VGA Timmer	00	RW
FA-FB	Reserved (do not program)	0000 0000	RW
FC	Back-door control bits	00	RW
FD	Back-door MAX# of AGP request	00	RW
FF-FE	Back-door device ID	0000	RW

VT82C693 Device 1 - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	8693	RO
5-4	Command	0007	RW
7-6	Status	0220	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
Α	Sub Class Code	04	RO
В	Base Class Code	06	RO
C	-reserved- (cache line size)	00	_
D	Latency Timer	00	RW
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
17-10	-reserved- (base address registers)	00	_
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	-reserved- (secondary latency timer)	00	
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	\mathbf{RW}
3D-28	-reserved- (unassigned)	00	_
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offs	et PCI Bus #2 Control	<u>Default</u>	Acc
40	CPU-to-PCI Flow Control 1	00	RW
41	CPU-to-PCI Flow Control 2	00	RW
42	PCI Master Control	00	RW
43	PCI2 Master Latency Timer	00	RW
4F-4	4 -reserved- (unassigned)	00	_

Miscellaneous I/O

One I/O port is defined in the VT82C693: Port 22.

Port 22	2 – PCI Arbiter DisableRW
7-2	Reserved always reads 0
1	PCI #2 (AGP) Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI #1 Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals, including
	PREQ#

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 78.

Configuration Space I/O

All registers in the VT82C693 (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration AddressRW							
31	Configuration Space Enable						
	0 Disableddefault						
	1 Convert configuration data port writes to						
	configuration cycles on the PCI bus						
30-24	Reserved always reads 0						
23-16	PCI Bus Number						
	Used to choose a specific PCI bus in the system						
15-11	Device Number						
	Used to choose a specific device in the system						
	(devices 0 and 1 are defined for the VT82C693)						
10-8	Function Number						
	Used to choose a specific function if the selected						
	device supports multiple functions (only function 0 is						
	defined for the VT82C693).						
7-2	Register Number (also called the "Offset")						
	Used to select a specific DWORD in the VT82C693						
	configuration space						
1-0	Fixed always reads 0						
Port CF	FF-CFC - Configuration DataRW						

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device	0 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	0 Offs	et 3-2 - Device ID (0691h)RO
15-0	ID C	ode (reads 0691h to identify the VT82C693)
Device	0 Offs	et 5-4 –Command (0006h)RW
15-10		
9	Fast	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
		different agents
8	SER	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report parity errors if bit-6 is set).
7	Addı	ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	Palette SnoopRO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette accesses on PCI bus
4	Mem	ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	Spec	ial Cycle MonitoringRO
	0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	Bus I	Master RO
	0	Never behaves as a bus master
	1	Can behave as a bus masterdefault
1	Mem	ory SpaceRO
	0	Does not respond to memory space
	1	Responds to memory spacedefault
0	I/O S	Space RO
	0	Does not respond to I/O spacedefault
	1	Responds to I/O space
		•

Device	0 Offse	et 7-6 – Status (0290h)RWC
15	Detec	eted Parity Error
	0	No parity error detecteddefault
	1	Error detected in either address or data phase.
		This bit is set even if error response is disabled
		(command register bit-6)write one to clear
14	Signa	lled System Error (SERR# Asserted)
		always reads 0
13	Signa	lled Master Abort
	0	No abort receiveddefault
	1	Transaction aborted by the master
		write one to clear
12		ived Target Abort
	0	No abort received
	1	Transaction aborted by the target
11	g.	write one to clear
11	_	always reads 0
10-9	0 DEX/	Target Abort never signaled
10-9	00 DE V	SEL# Timing Fast
	01	Mediumalways reads 01
	10	Slow
	11	Reserved
8		Parity Error Detected
O	0	No data parity error detecteddefault
	1	Error detected in data phase. Set only if error
	•	response enabled via command bit- $6 = 1$ and
		VT82C693 was initiator of the operation in
		which the error occurredwrite one to clear
7	Fast 1	Back-to-Back Capablealways reads 1
6	Reser	rvedalways reads 0
5	66M1	Hz Capablealways reads 0
4	Supp	orts New Capability listalways reads 1
3-0	Reser	rvedalways reads 0
ъ.	0.000	40 B !! ID (001)
		et 8 - Revision ID (00h)RO
7-0	VT82	CC693 Chip Revision Code
Device	0 Offs	et 9 - Programming Interface (00h)RO
7-0		face Identifieralways reads 00
, 0	IIICI	idee Identifierdiways fedds 00
Device	0 Offs	et A - Sub Class Code (00h)RO
7-0	Sub (Class Codereads 00 to indicate Host Bridge
	0.000	(P. P. G. G. L. (24)
		et B - Base Class Code (06h)RO
7-0	Base	Class Code reads 06 to indicate Bridge Device
Device	∩ Offs	et D - Latency Timer (00h)RW
		atency timer value in PCI bus clocks.
7-3		ranteed Time Slice for CPUdefault=0
2-0		rved (fixed granularity of 8 clks) always read 0
		2-1 are writeable but read 0 for PCI specification
	comp	atibility. The programmed value may be read

back in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device 0 Offset E - Header Type (00h)RO									
7-0	Header Type Codereads 00: single function								
Device (Offset F - Built In Self Test (BIST) (00h)RO								
7	BIST Supported reads 0: no supported functions								
6-0	Reserved always reads 0								
	Office 12.10 Cumbing Amountains Dogs								

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits...... def=0
 27-20 Lower Programmable Base Address Bits def=0
 These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 1 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) <u>7 6 5 4 3 2 1</u> (Gr Aper Size) 0 RW RW RW RW RW RW RW 1M RW RW RW RW RW RW 2MRWRWRWRWRW 0 4M RWRWRWRW 0 8M RWRWRWRW 0 0 0 0 16M RWRWRW 0 0 0 0 32M RWRW 0 0 0 0 0 0 64M 128M RW = 00 0 0 0 0 0 0 0 256M

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor ID.....default = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h).....R/W1

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

<u>Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO</u>

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

<u>Device 0 Configuration Registers - Host Bridge</u> These registers are normally programmed once at system initialization time.

Host CPU Control

7	CPU Hardwired IOQ (In Order Queue) Size	7	CPU Read DRAM 0ws for Back-to-Back Read
	Default per strap on pin MAB11#During reset. This		Transactions 0 Disabledefault
	register can be written 0 to restrict the chip to one level of IOQ.		1 Enable
	0 1-Level		Setting this bit enables maximum read performance
	1 4-Level		by allowing continuous 0 wait state reads for
6	Read-Around-Write		pipelined line reads. If this bit is not set, there will be
U	0 Disabledefault		at least 1T idle time between read transactions.
	1 Enable	6	CPU Write DRAM 0ws for Back-to-Back Write
5	I/O Write Defer Enable	v	Transactions
,	0 Disabledefault		0 Disable default
	1 Enable		1 Enable
1	Defer Retry When HLOCK Active		Setting this bit enables maximum write performance
	0 Disabledefault		by allowing continuous 0 wait state writes for
	1 Enable		pipelined line writes ands sustained 3T single writes.
	Note: always set this bit to 1		If this bit is not set, there will be at least 1T idle time
3	CPU Read PCI Retry		between write transactions.
	0 Disabledefault	5	DRAM Read Request Rate
	1 Enable		0 3Tdefault
2	CPU Read PCI Deferred		1 2T
	0 Disabledefault	4	Fast Response (HIT/HITM sample 1T earlier)
	1 Enable		0 Disabledefault
1	Fast Speculative Read		1 Enable
	0 Start new speculative reads immediately even	3	Non-Posted IOW
	if previous sopeculative read in progress def		0 Disabledefault
	1 Wait for previous speculative DRAM read to		1 Enable
	complete before starting new speculative read.	2	CPU Read DRAM Prefetch Buffer Depth
	Note: Set this bit to 0 for higher performance.		0 1-level prefetch buffer default
	Note: If bit-0 is 0, this bit is don't care		1 4-level prefetch buffer
0	CPU / PCI Master Read DRAM Timing	1	CPU-to-DRAM Post-Write Buffer Depth
	0 Start DRAM read <u>after</u> snoop complete def		0 1-level post-write buffer default
	1 Start DRAM read <u>before</u> snoop complete		1 4-level post-write buffer
	Note: If this bit is 0, bit-1 is don't care	0	Concurrent PCI Master / Host Operation
			0 Disable – the CPU bus will be occupied (BPRI
	Table 3. Rx50 Programming Constraints		asserted) during the entire PCI operationdef

Table 3. Rx50 Programming Constraints

Bit-5	Bit-3	Bit-2	Remark
0	1	0	CPU-to-PCI Read Retry Only
0	1	1	CPU-to-PCI Read Retry / Defer
1	1	0	CPU-to-PCI Read / Write Retry
1	1	1	CPU-to-PCI Read Retry / Defer
			(normal operation mode)

1 Enable – the CPU bus is only requested before

ADS# assertion

<u>Device 0 Offset 52 – Dynamic Defer Timer (10h).....RW</u>

- 7 GTL I/O Buffer Pullup default = MAB6# Strap
 - 0 Disable
 - 1 Enable

The default value of this bit is determined by a strap on the MAB6# pin during reset.

- **6 Reserved** always reads 0
- 5 Quick Start Selectdefault = MAB10 Strap
 - 0 Disable
 - 1 Enable

The default value of this bit is determined by a strap on the MAB10 pin during reset.

- 4-0 Snoop Stall Count
 - 00 Disable dynamic defer
 - 1-1F Snoop stall count default = 10h

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies 82C693 BIOS porting guide for details).

Table 4. System Memory Map

Spac	<u>e Start</u>	<u>Size</u>	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS	5 768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS	5 784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS	800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS	816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS	832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS	848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS	864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS	880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS	896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys	1MB	_	00100000-DRAM Top	Can have hole
Bus	D Top		DRAM Top-FFFEFFF	
Init	4G-64K	64K	FFFEFFFF-FFFFFFFF	000Fxxxx alias

Device 0 Offset 59-58 - DRAM MA Map Type (0040h).RW

15-13 Bank 5/4 MA Map Type (see below)

12 Reserved (Bank 5/4 Virtual Channel Enable) ... def=0

11-9 Bank 7/6 MA Map Type (see below)

8 Reserved (Bank 7/6 Virtual Channel Enable) ... def=0

7-5 Bank 1/0 MA Map Type

000 8-bit Column Address

001 9-bit Column Address

010 10-bit Column Addressdefault

011 11-bit Column Address

100 12-bit Column Address (64Mb)

101 Reserved

11x Reserved

Bank 0/1 MA Map Type (SDRAM)

000 16Mbit SDRAM.....default

100 64Mbit SDRAM (x4, x8, x16, 4-bank x32)

101 Reserved

11x Reserved

4 Reserved (Bank 1/0 Virtual Channel Enable) ... def=0

3-1 Bank 3/2 MA Map Type (see above)

0 Reserved (Bank 3/2 Virtual Channel Enable) ... def=0

<u>Device 0 Offset 5A-5F</u>	<u> – DRAM Row</u>	Ending Address:

Offset 5B - Bank 1 Ending (HA[30:23]) (01h)R	W
Offset 5C - Bank 2 Ending (HA[30:23]) (01h)R	W

Offset 5A – Bank 0 Ending (HA[30:23]) (01h)......RW

Offset 5D – Bank 3 Ending (HA[30:23]) (01h)RW

Offset 5E - Bank 4 Ending (HA[30:23]) (01h)RW

 $\underline{Offset~5F-Bank~5~Ending~(HA[30:23])~(01h)~.....~RW}$

Offset 56 – Bank 6 Ending (HA[30:23]) (01h)......RW
Offset 57 – Bank 7 Ending (HA[30:23]) (01h).....RW

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (00h).....RW

7-6 DRAM Type for Bank 7/6

00 Fast Page Mode DRAM (FPG)..... default

01 EDO DRAM (EDO)

10 -reserved-

11 SDRAM

5-4 DRAM Type for Bank 5/4.....default=FPG

3-2 DRAM Type for Bank 3/2....default=FPG

1-0 DRAM Type for Bank 1/0.....default=FPG

Table 5. Memory Address Mapping Table

EDO/FP DRAM

MA:	<u>13</u>	<u>12</u>	11	<u>10</u>	9	8	7	<u>6</u>	<u>5</u>	<u>4</u>	3	2	1	0	
8-bit Col		23	22	21	11	20	19	18	17	16	15	14	13	12	Row Bits
(000)							10	9	8	7	6	5	4	3	Col Bits
9-bit Col		<u>24</u>	23	22	21	20	19	18	17	16	15	14	13	12	Row Bits
(001)						11	10	9	8	7	6	5	4	3	Col Bits
10-bit Col		<u>25</u>	24	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(010)					22	11	10	9	8	7	6	5	4	3	Col Bits
11-bit Col		26	25	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(011)				24	22	11	10	9	8	7	6	5	4	3	Col Bits
12-bit Col		27	25	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(100)			26	24	22	11	10	9	8	7	6	5	4	3	Col Bits

SDRAM

MA:	<u>13</u>	<u>12</u>	11	<u>10</u>	9	8	7	<u>6</u>	<u>5</u>	4	<u>3</u>	2	1	0	
16Mb (0xx)			11	22	21	20	19	18	17	16	15	14	13	12	Row Bits
			11	PC	24	23	10	9	8	7	6	5	4	3	Col Bits
64Mb (100)	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x4: 10 col
2/4 bank	24	13	12	PC	26	25	10	9	8	7	6	5	4	3	x8: 9 col
x4, x8, x16;															x16: 8 col
4-bank x32															x32: 8 col

"PC" = "Precharge Control" (refer to SDRAM specifications)

16Mb 11x10, 11x9, and 11x8 configurations supported

64Mb x4: 12x10 4bank, 13x10 2bank x8: 12x9 4bank, 13x9 2bank

x16: 12x8 4bank, 13x8 2bank

x32: 11x8 4bank

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow RAM	Control 3 (00h) RW	
7-6		00h-CFFFFh	7-6	E000	E0000h-EFFFFh		
	00	Read/write disabledefault		00	Read/write disable	default	
	01	Write enable		01	Write enable		
		Read enable		10	Read enable		
	11	Read/write enable		11	Read/write enable		
5-4	C800	0h-CBFFFh	5-4	F000	0h-FFFFFh		
	00	Read/write disabledefault		00	Read/write disable	default	
	01	Write enable		01	Write enable		
	10	Read enable		10	Read enable		
		Read/write enable		11	Read/write enable		
3-2		0h-C7FFFh	3-2	Mem	ory Hole		
	00	Read/write disabledefault				default	
	01	Write enable		01	512K-640K		
	10	Read enable		10	15M-16M (1M)		
	11	Read/write enable		11	14M-16M (2M)		
1-0		0h-C3FFFh	1-0	SMI	Mapping Control		
	00	Read/write disabledefault			SMM	Non-SMM	
	01	Write enable			Code Data	Code Data	
		Read enable		00	DRAM DRAM	PCI PCI	
	11	Read/write enable		01	DRAM DRAM	DRAM DRAM	
D	0.000-	A CO Chalam DAM Cantral 2 (00h) DW		10	DRAM PCI	PCI PCI	
Device	U UIIS	et 62 - Shadow RAM Control 2 (00h)RW			DDAM DDAM	DRAM DRAM	
		-		11	DRAM DRAM	DRAM DRAM	
7-6	DC0	00h-DFFFFh		11	DRAM DRAM	DRAW DRAW	
7-6	DC0	00h-DFFFFh Read/write disabledefault		11	DRAM DRAM	DRAIN DRAIN	
7-6	DC0 00 01	00h-DFFFFh Read/write disabledefault Write enable		11	DRAM DRAM	DRAW DRAW	
7-6	00 01 10	00h-DFFFFh Read/write disabledefault Write enable Read enable		11	DRAM DRAM	DRAW DRAW	
	00 01 10 11	O0h-DFFFFh Read/write disabledefault Write enable Read enable Read/write enable		11	DRAM DRAM	DRAW DRAW	
7-6 5-4	00 01 10 11 D80 0	O0h-DFFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
	00 01 10 11 D80 0	O0h-DFFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
	DC0 00 01 10 11 D800 00 01	Ooh-DFFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
	DC00 00 01 10 11 D800 00 01	O0h-DFFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4	DC00 00 01 10 11 D800 00 01 10	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
	DC00 00 01 10 11 D800 00 01 10 11 D400	Ooh-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4	DC00 00 01 10 11 D800 00 01 10 11 D400 00	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4	DC00 00 01 10 11 D800 00 01 10 11 D400 00 01	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4	DC00 00 01 10 11 D800 00 01 10 11 D400 00 01 10 11	Och-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4 3-2	DC00 00 01 10 11 D800 00 01 10 11 D400 00 01 11 11 D10 11	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4	DC00 00 01 10 11 D800 00 01 10 11 D400 00 01 10 11 D000	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4 3-2	DC00 00 01 10 11 D800 00 01 10 11 D400 01 11 D000 00	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	
5-4 3-2	DC00 00 01 10 11 D800 00 01 10 11 D400 01 10 11 D000 00 01	Read/write disable default Write enable Read enable Read/write enable Oth-DBFFFh Read/write disable default Write enable Read enable Read enable Read/write disable default Write enable Read/write enable Oth-D7FFFh Read/write disable default Write enable Read/write disable default Write enable Read enable Read/write disable default Write enable Read/write enable Oth-D3FFFh Read/write disable default Write enable		11	DRAM DRAM	DRAW DRAW	
5-4 3-2	DC00 00 01 10 11 D800 01 10 11 D400 01 11 D000 01 11 D10 00 01 11 D10 00 01	Oth-DFFFh Read/write disable		11	DRAM DRAM	DRAW DRAW	

Device 0 Offset 64 - DRAM Timing for Banks 0,1 (ECh)RW

Device 0 Offset 65 - DRAM Timing for Banks 2,3 (ECh)RW

Device 0 Offset 66 - DRAM Timing for Banks 4,5 (ECh)RW

Device 0 Offset 67 - DRAM Timing for Banks 6,7 (ECh)RW

<u>PG / I</u>	EDO Settings	for Registers 67-64
7	RAS Precha	arge Time
	0 3T	
	1 4T	default
6	RAS Pulse	Width
	0 4T	
	1 5T	default
5-4	CAS Read l	Pulse Width
	00 1T	
	01 2T	
	10 3T	default
	11 4T	
	Note: EDC	will not automatically reduce the CAS
	pulse width.	For EDO type DRAMs, use 00 if CAS
	width $= 1$ is	to be used.
3	CAS Write	Pulse Width
	0 1T	
	1 2T	default
2	MA-to-CAS	S Delay
	0 1T	
	1 2T	default
1	RAS to MA	Delay
	0 1T	default
	1 2T	
0	Reserved	always reads 0

SDRA	M Setti	ngs for Registers 67-64
7	Prech	narge Command to Active Command Period
	0	$T_{RP} = 2T$
	1	$T_{RP} = 3T$ default
6	Activ	e Command to Precharge Command Period
	0	TRAS = 5T
	1	$T_{RAS} = 6T$ default
5-4	CAS	Latency
	00	1T
	01	2T
	10	3Tdefault
	11	reserved
3	DIM!	М Туре
	0	Standard
	1	Registereddefault
2	ACT	IVE Command to CMD Command Period
	0	2T
	1	3Tdefault
1-0	Bank	Interleave
	00	No Interleavedefault
	01	2-way
	10	4-way
	11	Reserved

Device	0 Offset 68 - DRAM Control (00h)RW	Device	ce 0 Offset 6A - Refresh Counter (00h)RW
65	SDRAM Open Page Control O Always precharge SDRAM banks when accessing EDO/FPG DRAMsdefault SDRAM banks remain active when accessing EDO/FPG banks Bank Page Control O Allow only pages of the same bank active def Allow pages of different banks to be active EDO Pipeline Burst Rate	7-0	O Refresh Counter (in units of 16 CPUCLKs) 00 DRAM Refresh Disabled
	0 X-2-2-2 -2 -2-2-2 default 1 X-2-2-3 - 2-2-2		CPUCLK units minus one.
4	EDO Data Latch Delay O Data latch at rising edge of CPUCLKdefault Delay data latch by ½ CPUCLK cycle	Davica	ce 0 Offset 6B - DRAM Arbitration Control (01h) RW
3	EDO Test Mode		6 Arbitration Parking Policy
2	0 Disable	7-0	00 Park at last bus owner
	1 Enable (burst 4 times)	5	
1	Reserved	٥	0 Rx6B[4]=0 RASA = CSA, RASB = CSB, CKE0=CKE0, CKE1 = CKE1 x Rx6B[4]=1 RASA = CSA, RASB = Float, CASB = Float, MAB = Float, CKE0 = CKE0, CKE1 = CKE0 1 Rx6B[4]=0 RASA = CSA, RASB = CSB, CKE3-2 = CSA7-6
Note: 1	MD0 is internally pulled up for EDO detection.		CKE5-4 = CSB7-6 CKE1 = GCKE (Global CKE) CKE0 = FENA (FET Enable)
.	0.000 (0.000)	4	Memory Module ConfigurationRC
7	Offset 69 – DRAM Clock Select (00h)RW DRAM Operating FrequencyRW Same as CPU Frequency (66/100 MHz) def Same as AGP Frequency (66 MHz)		0 Normal Operation
6-4	Reserved always reads 0		RESET#.
3	DRAM Fast Precharge 0 Disabledefault 1 Enable	3-1 0	Multi-Page Open O Disable (page registers marked invalid and no
2	DRAM 4K Page Enable		page register update which causes non page
1-0	0 Disable default 1 Enable Reserved always reads 0		mode operation) 1 Enabledefaul

Device	0 Offset 6C - SDRAM Control (00h)RW
7	Reserved (Do Not Program) must be 0
6	Reserved always reads 0
5	MD-to-HD Propagation delay
	0 Normaldefault
	1 Add 1T latency to improve MD setup time at
	100 MHz
4	Fast Read to Write Turn-Around
	0 Disabledefault
	1 Enable
3	Fast TLB Lookup
	0 Disabledefault
	1 Enable
2-0	SDRAM Operation Mode Select
	000 Normal SDRAM Modedefault
	001 NOP Command Enable
	010 All-Banks-Precharge Command Enable
	(CPU-to-DRAM cycles are converted
	to All-Banks-Precharge commands).
	011 MSR Enable
	CPU-to-DRAM cycles are converted to
	commands and the commands are driven on
	MA[13:0]. The BIOS selects an appropriate
	host address for each row of memory such that
	the right commands are generated on
	MA[13:0].
	100 CBR Cycle Enable (if this code is selected,
	CAS-before-RAS refresh is used; if it is not
	selected, RAS-Only refresh is used)
	101 Reserved

Device	0 Offset 6D - DRAM Drive Strength (00h)RW
7	Reserved always reads 0
6-5	Delay DRAM Read Latch
	00 No Delaydefault
	01 0.5 ns
	10 1.0 ns
	11 1.5 ns
4	Memory Data Drive (MD, MECC)
	0 6 mAdefault
	1 8 mA
3	SDRAM Command Drive (SRAS#, SCAS#, SWE#)
	0 16mAdefault
	1 24mA
2	Memory Address Drive (MA, WE#)
	0 16mAdefault
	1 24mA
1	CAS# Drive
	0 8 mAdefault
	1 12 mA
0	RAS# Drive
	0 16mAdefault
	1 24mA

11x Reserved

Device	0 Offset 6E - ECC Control (00h)RW
7	ECC / ECMode Select
	0 ECC Checking and Reportingdefault
	1 ECC Checking, Reporting, and Correcting
6	Reserved always reads 0
5	Enable SERR# on ECC / EC Multi-Bit Error
	0 Don't assert SERR# for multi-bit errors def
	1 Assert SERR# for multi-bit errors
4	Enable SERR# on ECC / EC Single-Bit Error
	0 Don't assert SERR# for single-bit errors def
	1 Assert SERR# for single-bit errors
3	ECC / EC Enable - Bank 7/6 (DIMM 3)
	0 Disable (no ECC or EC for banks 7/6)default
	1 Enable (ECC or EC per bit-7)

2 ECC / EC Enable - Bank 5/4 (DIMM 2)

- 0 Disable (no ECC or EC for banks 5/4)...default
- 1 Enable (ECC or EC per bit-7)
- 1 ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- 0 ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-2 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-2 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-2 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 2-0	$\underline{\mathbf{R}\mathbf{M}\mathbf{W}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

7	Multi-bit Error Detected write of '1' resets
6-4	Multi-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the multi-bit error.
3	Single-bit Error Detected write of '1' resets
2-0	Single-bit Error DRAM Bankdefault=0

Device 0 Offset 6F - ECC Status (00h)......RWC

 $\frac{\textbf{PCI Bus \#1 Control}}{\textbf{These registers are normally programmed once at system}}$ initialization time.

Device	0 Offs	et 70 - PCI Buffer Control (00h)RW
7	CPU	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	PCI I	Master to DRAM Post-Write
	0	Disabledefault
	1	Enable
5	Rese	rved always reads 0
4	PCI I	Master to DRAM Prefetch
	0	Disabledefault
	1	Enable
3	CPU-	to-PCI Buffer Available Cycle Reduction
	0	Normal operationdefault
	1	Reduce 1 cycle when the CPU-to-PCI buffer
		becomes available after being full (PCI and
		AGP buses)
2	PCI I	Master Read Caching
	0	Disabledefault
	1	Enable
1	Delay	y Transaction
	0	Disabledefault
	1	Enable
0	Slave	Device Stopped Idle Cycle Reduction
	0	- · · · · · · · · · · · · · · · · · · ·
	1	Reduce 1 PCI idle cycle when stopped by a

slave device (PCI and AGP buses)

<u>evice</u>	0 Offs	et 71 - CPU to PCI Flow Control 1 (00h). RW
7	Dyna	mic Burst
	0	Disabledefault
	1	Enable (see note under bit-3 below)
6	Byte	Merge
	0	Disabledefault
	1	Enable
5	Rese	rvedalways reads 0
4	PCI I	I/O Cycle Post Write
	0	Disabledefault
	1	Enable
3	Rese	rvedalways reads 0
2	PCI 1	Fast Back-to-Back Write
	0	Disabledefault
	1	Enable
1	Quic	k Frame Generation
	0	Disabledefault
	1	Enable
0	1 Wa	it State PCI Cycles
	0	Disabledefault
	1	Enable

7 Retry Status 0 Retry occurred less than retry limitdefault 1 Retry occurred more than x times (where x is defined by bits 5-4)write 1 to clear 7 Reserved	trol 1 (00h)RW
0 Retry occurred less than retry limitdefault 1 Retry occurred more than x times (where x is defined by bits 5-4)write 1 to clear 6 PCI Master 1-Wait-State With 1 One wait state TRDY#	always reads 0
1 Retry occurred more than x times (where x is defined by bits 5-4)write 1 to clear 0 Zero wait state TRDY#	
defined by bits 5-4)write 1 to clear 1 One wait state TRDY#	responsedefault
	response
6 Retry Timeout Action 5 PCI Master 1-Wait-State Re	ad
0 Retry Forever (record status only)default 0 Zero wait state TRDY#	response default
1 Flush buffer for write or return all 1s for read 1 One wait state TRDY#	response
5-4 Retry Limit 4 Prefatch Enable	•
00 Retry 2 timesdefault 0 Disable	default
01 Retry 16 times 1 Enable	
10 Retry 4 times Note: Prefatch is disabled wh	en Delay Transaction is
11 Retry 64 times enabled.	•
3 Clear Failed Data and Continue Retry 3 Assert STOP# after PCI Ma	ster Write Timeout
0 Flush the entire post-write bufferdefault 0 Disable	default
1 When data is posting and master (or target) 1 Enable	
abort fails, pop the failed data if any, and keep 2 Assert STOP# after PCI Ma	ster Read Timeout
posting 0 Disable	default
2 CPU Backoff on PCI Read Retry Failure 1 Enable	
0 Disabledefault 1 LOCK# Function	
1 Backoff CPU when reading data from PCI and 0 Disable	default
retry fails 1 Enable	
1 Reduce 1T for FRAME# Generation 0 PCI Master Broken Timer E	nable
0 Disabledefault 0 Disable	default
1 Enable 1 Enable. Force into arbi	tration when there is no
0 Reduce 1T for CPU read PCI slave FRAME# 16 PCICLK's	after the grant.
0 DisableDefault	_
1 Enable <u>Device 0 Offset 74 - PCI Master Con</u>	trol 2 (00h)RW
7 PCI Master Read Prefetch b	y Enhance Command
0 Always Prefetch	default
	e command
1 Prefetch only if Enhanc	
1 Prefetch only if Enhanc 6 PCI Master Write Merge	
1 Prefetch only if Enhance	
1 Prefetch only if Enhanc 6 PCI Master Write Merge	
1 Prefetch only if Enhanc 6 PCI Master Write Merge 0 Disable	default
1 Prefetch only if Enhanc 6 PCI Master Write Merge 0 Disable 1 Enable	default
1 Prefetch only if Enhanc 6 PCI Master Write Merge 0 Disable 1 Enable 5 Reserved	defaultalways reads 0default = 0
1 Prefetch only if Enhanc 6 PCI Master Write Merge 0 Disable 1 Enable 5 Reserved	defaultalways reads 0default = 0 out
1 Prefetch only if Enhanc 6 PCI Master Write Merge 0 Disable	defaultalways reads 0default = 0 out
1 Prefetch only if Enhanc 6 PCI Master Write Merge	defaultalways reads 0default = 0 outdefault
1 Prefetch only if Enhanc 6 PCI Master Write Merge	defaultalways reads 0default = 0 outdefault
1 Prefetch only if Enhanc 6 PCI Master Write Merge 0 Disable	defaultalways reads 0default = 0 outdefault
1 Prefetch only if Enhanc 6 PCI Master Write Merge	defaultalways reads 0default = 0 outdefaultdefaultdefault
1 Prefetch only if Enhance 6 PCI Master Write Merge 0 Disable	
1 Prefetch only if Enhance 6 PCI Master Write Merge 0 Disable	
1 Prefetch only if Enhance 6 PCI Master Write Merge 0 Disable	
1 Prefetch only if Enhance 6 PCI Master Write Merge 0 Disable	

Device	0 Offset 75 - PCI Arbitration 1 (00h)RW	Device	0 Offset 78 - PMU Control 1 (00h)RW
7	Arbitration Mechanism	7	I/O Port 22 Access
	0 PCI has prioritydefault		0 CPU access to I/O address 22h is passed on to
	1 Fair arbitration between PCI and CPU		the PCI busdefault
6	Arbitration Mode		1 CPU access to I/O address 22h is processed
	0 REQ-based (arbitrate at end of REQ#)default		internally
	1 Frame-based (arbitrate at FRAME# assertion)	6	Suspend Refresh Type
5-4	Latency Timerread only, reads Rx0D bits 2:1		0 CBR Refreshdefault
3-0	PCI Master Bus Time-Out		1 Self Refresh
	(force into arbitration after a period of time)	5	Reserved always reads 0
	0000 Disabledefault	4	Dynamic Clock Control
	0001 1x32 PCICLKs		0 Normal (clock is always running) default
	0010 2x32 PCICLKs		1 Clock to various internal functional blocks is
	0011 3x32 PCICLKs		disabled when those blocks are not being used
	0100 4x32 PCICLKs	3	Reservedalways reads 0
		2	GSTOP# Assertion
	1111 15x32 PCICLKs		0 Disable (GSTOP# is always high) default
			1 Enable (GSTOP# could be low)
Device	0 Offset 76 - PCI Arbitration 2 (00h)RW	1	Reservedalways reads 0
7	PCI #2 Master Access PCI #1 Retry Disconnect	0	Memory Clock Enable (CKE) Function
	0 Disable (AGP will not be disconnected until	v	0 CKE Function Disabledefault
	access finishes)default		1 CKE Function Enable
	1 Enable (AGP will be disconnected if max		1 CILL I WINGWOOD ZIMON
	retries are attempted without success)		
6	CPU Latency Timer Bit-0RO		
	0 CPU has at least 1 PCLK time slot when CPU	Device	<u>0 Offset 79 – PMU Control 2 RW</u>
	has PCI bus	7	CPU Clock Dynamic Stop Enable
	1 CPU has no time slot		0 Disabledefault
5-4	Master Priority Rotation Control		1 Enable
	00 Disabled (arbitration per Rx75 bit-7)default	6	DRAM Clock Dynamic Stop Enable
	01 Grant to CPU after every PCI master grant		0 Disabledefault
	10 Grant to CPU after every 2 PCI master grants		1 Enable
	11 Grant to CPU after every 3 PCI master grants	5	AGP Clock Dynamic Stop Enable
	With setting 01, the CPU will always be granted		0 Disable default
	access after the current bus master completes, no		1 Enable
	matter how many PCI masters are requesting. With	4	PCI Clock Dynamic Stop Enable
	setting 10, if other PCI masters are requesting during		0 Disable default
	the current PCI master grant, the highest priority		1 Enable
	master will get the bus after the current master	3	Pseudo Power Good Enable
	completes, but the CPU will be guaranteed to get the		0 Disabledefault
	bus after that master completes. With setting 11, if		1 Enable
	other PCI masters are requesting, the highest priority	2	Indicate SIO's request to DRAM Controller
	will get the bus next, then the next highest priority		0 Disabledefault
	will get the bus, then the CPU will get the bus. In		1 Enable
	other words, with the above settings, even if multiple	1-0	Reserved always reads 0
	PCI masters are continuously requesting the bus, the		
	CPU is guaranteed to get access after every master		
	grant (01), after every other master grant (10) or after	Davis	A Officet 7E DI I Treet Made (AAL)
	every third master grant (11).		0 Offset 7E – PLL Test Mode (00h)RW
3-0	Reserved always reads 0	7-6	Reserved (status)RO
. .	·	5-0	Reserved (do not use) default=0
	0 Offset 77 - Chip Test Mode (00h)RW	Device	0 Offset 7F - PLL Test Mode (00h) RW
7-0	Reserved (do not use)default=0	7-0	Reserved (do not use)default=0

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the VT82C693.

This scheme is shown in the figure below.

Figure 5. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the 82C693 contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device	0 Offset 83-80 - GART/TLB Control (00000000h) RW	Device 0 Offset 84 - Graphics Aperture Size (00h) I	<u>RW</u>
31-16	Reserved always reads 0	7-0 Graphics Aperture Size	
15-8	Reserved (test mode status)RO	11111111 1M	
	,	11111110 2M	
7	Flush Page TLB	11111100 4M	
	0 Disabledefault	11111000 8M	
	1 Enable	11110000 16M	
		11100000 32M	
6-4	Reserved (always program to 0)RW	11000000 64M	
~ -	(10000000 128M	
3	PCI#1 Master Address Translation for GA Access	00000000 256M	
	0 Addresses generated by PCI #1 Master		
	accesses of the Graphics Aperture will not be		
	translateddefault	Offset 8B-88 - GA Translation Table Base (00000000h)	\mathbf{RW}
	1 PCI #1 Master GA addresses will be translated	31-12 Graphics Aperture Translation Table Ba	ase.
2	PCI#2 Master Address Translation for GA Access	Pointer to the base of the translation table in sys	
_	0 Addresses generated by PCI #2 Master	memory used to map addresses in the aperture ra	nge
	accesses of the Graphics Aperture will not be	(the pointer to the base of the "Directory" table).	U
	translateddefault	11-3 Reservedalways read	ds 0
	1 PCI #2 Master GA addresses will be translated	2 PCI Master Directly Accesses DRAM if in GA	
1	CPU Address Translation for GA Access	Range	
-	O Addresses generated by CPU accesses of the	0 Disabledef	ault
	Graphics Aperture will not be translated def	1 Enable	
	1 CPU GA addresses will be translated	1 Graphics Aperture Enable	
0	AGP Address Translation for GA Access	0 Disable def	ault
v	0 Addresses generated by AGP accesses of the	1 Enable	
	Graphics Aperture will not be translated def	Note: To disable the Graphics Aperture, set this	bit
	1 AGP GA addresses will be translated	to 0 and set all bits of the Graphics Aperture Size	
NI -4 1		0. To enable the Graphics Aperture, set this bit t	
	For any master access to the Graphics Aperture range,	and program the Graphics Aperture Size to	
snoop v	vill not be performed.	desired aperture size.	
		0 Reservedalways reac	ds 0
		•	

AGP Control

Device (Offset A3-A0 - AGP Capability Identifier
(000100	0002h)RO
31-24	Reserved always reads 00
23-20	Major Specification Revision always reads 0001
	Major revision # of AGP spec device conforms to
19-16	Minor Specification Revision always reads 0000
	Minor revision # of AGP spec device conforms to
15-8	Pointer to Next Item always reads 00 (last item)
7-0	AGP ID (always reads 02 to indicate it is AGP)
Device (0 Offset A7-A4 - AGP Status (07000203h)RO
31-24	Maximum AGP Requests always reads 07
	Max # of AGP requests the device can manage (8)
23-10	Reserved always reads 0s
9	Supports SideBand Addressing always reads 1
8-2	Reserved always reads 0s
1	2X Rate Supported
	Value returned can be programmed by writing to
	RxAC[3]
0	1X Rate Supported always reads 1

Device (Offset AB-A8 - AGP Command (00000000h) . RW		
31-24	Request Depth (reserved for target) always reads 0s		
23-10	Reserved always reads 0s		
9	SideBand Addressing Enable		
	0 Disabledefault		
	1 Enable		
8	AGP Enable		
	0 Disabledefault		
	1 Enable		
7-2	Reserved always reads 0s		
1	2X Mode Enable		
	0 Disabledefault		
	1 Enable		
0	1X Mode Enable		
	0 Disable default		
	1 Enable		

Device	0 Offset AC - AGP Control (08h)RW
7	AGP DisableRC
	0 Disabledefault
	1 Enable
	This bit is latched from MAB9# at the rising edge of
	RESET#.
6	AGP Read Synchronization
	0 Disabledefault
	1 Enable
5	AGP Read Snoop DRAM Post-Write Buffer
	0 Disabledefault
	1 Enable
4	GREQ# Priority Becomes Higher When Arbiter is
	Parked at AGP Master
	0 Disabledefault
	1 Enable
3	2X Rate Supported (read also at RxA4[1])
	0 Not supported
	1 Supporteddefault
2	LPR In-Order Access (Force Fence)
	O Fence/Flush functions not guaranteed. AGF read requests (low/normal priority and high priority) may be executed before previously issued write requestsdefault
	1 Force all requests to be executed in order (automatically enables Fence/Flush functions) Low (i.e., normal) priority AGP read requests will never be executed before previously issued writes. High priority AGP read requests may still be executed prior to previously issued write requests as required.
1	AGP Arbitration Parking
	0 Disabledefault
	1 Enable (GGNT# remains asserted until either
	GREQ# de-asserts or data phase ready)
0	Arbitration Priority Between CPU-to-PCI Post
	Write and PCI Master Request After PCI Master
	Access
	0 CPU-to-PCI write buffer has prioritydefault
	1 PCI master has priority

<u>Device 0 Offset AD – AGP Latency Timer (02h).....RW</u>

AGP Data Phase Latency Timer..... default = 2h

.....always reads 0

<u> 0 Offset F7-F0 – BIOS Scratch Re</u>	egistersRW
No hardware function	default = 0
0 Offset F8 – DRAM Arbitration	Timer (00h) RW
AGP Timer	default = 0
Host CPU Timer	default = 0
0 Offset F9 – DRAM Arbitration	Timer(00h) RW
VGA High Priority Timer	default = 0
VGA Timer	\dots default = 0
0 Offset FD-FC – Reserved (0000l	n)RW
Reserved	always reads 0s
Reserved (Do Not Program)	default = 0
0 Offset FF-FE – (0000h)	RW
Back-Door Device ID	default=00
	0 Offset F8 – DRAM Arbitration AGP Timer Host CPU Timer 0 Offset F9 – DRAM Arbitration VGA High Priority Timer VGA Timer 0 Offset FD-FC – Reserved (00001 Reserved Reserved (Do Not Program)

<u>Device 1 Header Registers - PCI-to-PCI Bridge</u>

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and device number equal to one.

Device 1	1 Offs	et 1-0 - Vendor ID (1106h)RO		
15-0	ID Code (reads 1106h to identify VIA Technologies)			
Device 1 Offset 3-2 - Device ID (8691)RO				
15-0	ID (Code (reads 8693h to identify the VT82C693		
	PCI-t	co-PCI Bridge device)		
Device 1	1 Offs	et 5-4 – Command (0007h)RW		
15-10	Rese	rved always reads 0		
9	Fast	Back-to-Back Cycle EnableRO		
	0	Fast back-to-back transactions only allowed to		
		the same agentdefault		
	1	Fast back-to-back transactions allowed to		
		different agents		
8	SER	R# EnableRO		
	0	SERR# driver disableddefault		
	1	SERR# driver enabled		
		R# is used to report parity errors if bit-6 is set).		
7		ress / Data SteppingRO		
	0	Device never does steppingdefault		
_	1	Device always does stepping		
6		y Error ResponseRW		
	0	Ignore parity errors & continuedefault		
_	1	Take normal action on detected parity errors		
5		Palette Snoop (not supported)RO		
	0	J		
	1	Don't respond to palette writes on PCI bus		
4	Mom	(10-bit decode of I/O addresses 3C6-3C9 hex)		
4	0	nory Write and Invalidate CommandRO Bus masters must use Mem Writedefault		
	1	Bus masters may generate Mem Write & Inval		
3	_	ial Cycle MonitoringRO		
3	0	Does not monitor special cyclesdefault		
	1	Monitors special cycles		
2	_	MasterRW		
_	0	Never behaves as a bus master		
	1	Enable to operate as a bus master on the		
		primary interface on behalf of a master on the		
		secondary interfacedefault		
1	Mem	ory SpaceRW		
	0	Does not respond to memory space		
	1	Enable memory space accessdefault		
0	I/O S			
	0	Does not respond to I/O space		
	1	Enable I/O space accessdefault		

Device	1 Offset 7	7-6 - Status (Primary Bus) (0220h) RWC
15	Detected	d Parity Erroralways reads 0
14	Signale	d System Error (SERR#) always reads 0
13		l Master Abort
	0 N	o abort receiveddefault
		ransaction aborted by the master with
	N.	Iaster-Abort (except Special Cycles)
		write 1 to clear
12		d Target Abort
		o abort receiveddefault
		ransaction aborted by the target with Target-
		bort write 1 to clear
11		l Target Abortalways reads 0
10-9	DEVSE	L# Timing
	00 F	
		Iediumalways reads 01
		low
		eserved
8		rity Error Detectedalways reads 0
7		ck-to-Back Capablealways reads 0
6		finable Featuresalways reads 0
5		Capablealways reads 1
4		s New Capability listalways reads 0
3-0	Reserve	d always reads 0
Device	1 Offset S	R - Revision ID (00h)
		3 - Revision ID (00h)RO 603 Chin Revision Code (00-First Silicon)
Device 7-0		8 - Revision ID (00h)RO 593 Chip Revision Code (00=First Silicon)
7-0	VT82C	
7-0 <u>Device</u>	VT82C6 1 Offset 9	693 Chip Revision Code (00=First Silicon) O - Programming Interface (00h)RO
7-0 <u>Device</u> This reg	VT82Co	593 Chip Revision Code (00=First Silicon)
7-0 Device This reg Class Co	VT82Co	O - Programming Interface (00h)RO lefined in different ways for each Base/Suband is undefined for this type of device.
7-0 <u>Device</u> This reg	VT82Co	693 Chip Revision Code (00=First Silicon) O - Programming Interface (00h)
7-0 Device This reg Class Co 7-0	VT82Constant VT82C	O - Programming Interface (00h)RO lefined in different ways for each Base/Suband is undefined for this type of device.
7-0 Device This reg Class Co 7-0	VT82Co 1 Offset 9 gister is do ode value Interfact 1 Offset 4	D - Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. The Identifier
7-0 Device This results Class Control 7-0 Device 7-0	VT82Co 1 Offset 9 gister is do ode value Interfact 1 Offset 4 Sub Cla	O-Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. de Identifieralways reads 00 A-Sub Class Code (04h)RO ss Code .reads 04 to indicate PCI-PCI Bridge
7-0 Device This results Class Control 7-0 Device 7-0	VT82Co 1 Offset Spister is do ode value Interfact 1 Offset A Sub Cla	93 Chip Revision Code (00=First Silicon) 9 - Programming Interface (00h)RO defined in different ways for each Base/Sub- and is undefined for this type of device. The Identifieralways reads 00 A - Sub Class Code (04h)RO ss Code .reads 04 to indicate PCI-PCI Bridge B - Base Class Code (06h)RO
7-0 Device This results Class Control 7-0 Device 7-0	VT82Co 1 Offset Spister is do ode value Interfact 1 Offset A Sub Cla	O-Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. de Identifieralways reads 00 A-Sub Class Code (04h)RO ss Code .reads 04 to indicate PCI-PCI Bridge
7-0 Device This results Class Control T-0 Device 7-0 Device 7-0	VT82Co 1 Offset S gister is dependent value Interfact 1 Offset A Sub Cla 1 Offset I Base Cla	D - Programming Interface (00h)
7-0 Device This reg Class C 7-0 Device 7-0 Device 7-0 Device 7-0	VT82Co 1 Offset 9 gister is do ode value Interface 1 Offset 4 Sub Cla 1 Offset 1 Base Cla 1 Offset 1	2 - Programming Interface (00h)
7-0 Device This results Class Control T-0 Device 7-0 Device 7-0	VT82Co 1 Offset S gister is dependent value Interfact 1 Offset A Sub Cla 1 Offset I Base Cla	2 - Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. de Identifieralways reads 00 A - Sub Class Code (04h)RO ss Code .reads 04 to indicate PCI-PCI Bridge B - Base Class Code (06h)RO ass Code reads 06 to indicate Bridge Device D - Latency Timer (00h)RO
7-0 Device This reg Class C 7-0 Device 7-0 Device 7-0 Device 7-0	VT82Co	2 - Programming Interface (00h)
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device	VT82Co 1 Offset 9 gister is dependent value Interface 1 Offset 1 Base Cla 1 Offset 1 Reserve	2 - Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. de Identifieralways reads 00 A - Sub Class Code (04h)RO ass Code .reads 04 to indicate PCI-PCI Bridge B - Base Class Code (06h)RO ass Code reads 06 to indicate Bridge Device D - Latency Timer (00h)RO d
7-0 Device This reg Class C 7-0 Device 7-0 Device 7-0 Device 7-0	VT82Co 1 Offset 9 gister is dependent value Interface 1 Offset 1 Base Cla 1 Offset 1 Reserve	2 - Programming Interface (00h)
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	VT82Co	2 - Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. de Identifieralways reads 00 A - Sub Class Code (04h)RO ass Code .reads 04 to indicate PCI-PCI Bridge B - Base Class Code (06h)RO ass Code reads 06 to indicate Bridge Device D - Latency Timer (00h)RO d
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	VT82Co 1 Offset S gister is dependent of value Interface 1 Offset I Base Cla 1 Offset I Reserve 1 Offset I Header	2 - Programming Interface (00h)RO defined in different ways for each Base/Suband is undefined for this type of device. de Identifieralways reads 00 A - Sub Class Code (04h)RO ss Code .reads 04 to indicate PCI-PCI Bridge B - Base Class Code (06h)RO ass Code reads 06 to indicate Bridge Device D - Latency Timer (00h)RO d
7-0 Device 7-0	VT82Co 1 Offset S gister is dependent value Interfact 1 Offset I Base Cla 1 Offset I Reserve 1 Offset I Header	2 - Programming Interface (00h)
7-0 Device 7-0	VT82Co 1 Offset S gister is dependent value Interface 1 Offset A Sub Cla 1 Offset I Base Cla 1 Offset I Reserve 1 Offset I Header 1 Offset I BIST Sub Cla	2 - Programming Interface (00h)

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device 1 Offset 3F-3E – PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)RW
This register is read write, but internally the chip always uses	15-4 Reservedalways reads 0
bus 0 as the primary.	3 VGA-Present on AGP
ous o us the primary.	0 Forward VGA accesses to PCI Bus #1 default
Davice 1 Offset 10 Secondary Pug Number (00h) DW	1 Forward VGA accesses to PCI Bus #2 / AGP
Device 1 Offset 19 - Secondary Bus Number (00h)RW	Note: VGA addresses are memory A0000-BFFFFh
7-0 Secondary Bus Number default = 0	•
Note: PCI#2 must use these bits to convert Type 1 to Type 0.	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h)RW	B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number default = 0	BFFFFh. Graphics modes use Axxxxh. Mono VGA
Note: PCI#2 must use these bits to decide if Type 1 to Type 1	uses I/O addresses 3Bx-3Cxh and Color VGA uses
command passing is allowed.	3Cx-3Dxh. If an MDA is present, a VGA will not
command passing is anowed.	use the 3Bxh I/O addresses and B0000-B7FFFh
	memory space; if not, the VGA will use those
	addresses to emulate MDA modes.
Davies 1 Offset 1C I/O Page (f0h) DW	2 Block / Forward ISA I/O Addresses
Device 1 Offset 1C - I/O Base (f0h)RW	0 Forward all I/O accesses to the AGP bus if
7-4 I/O Base AD[15:12] default = 1111b	
3-0 I/O Addressing Capability default = 0	they are in the range defined by the I/O Base
D 1 1 000 (1D 1/01) 1/001) DW	and I/O Limit registers (device 1 offset 1C-1D)
Device 1 Offset 1D - I/O Limit (00h)RW	default
7-4 I/O Limit AD[15:12] default = 0	1 Do not forward I/O accesses to the AGP bus
3-0 I/O Addressing Capability default = 0	that are in the 100-3FFh address range even if
	they are in the range defined by the I/O Base
	and I/O Limit registers.
	1-0 Reserved always reads 0
Device 1 Offset 1F-1E - Secondary Status (0000h)RO	·
15-0 Reserved always reads 0000	
Davies 1 Offset 21 20 Memory Dags (fff0h) DW	
Device 1 Offset 21-20 - Memory Base (fff0h)RW	
15-4 Memory Base AD[31:20] default = FFFh	
3-0 Reserved always reads 0	
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	
15-4 Memory Limit AD[31:20] default = 0	
3-0 Reserved always reads 0	
·	
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RW	
15-4 Prefetchable Memory Base AD[31:20]default = FFFh	
3-0 Reserved always reads 0	
·	
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)RW	
15-4 Prefetchable Memory Limit AD[31:20]	
J_f1_6 0	

3-0

Reserved

 $\dots default = 0$

..... always reads 0

<u>Device 1 Configuration Registers - PCI-to-PCI Bridge</u>

PCI Bus #2 Control

Device	1 Offset 40 - CPU-to-PCI #2 Flow Control 1
(00h)	RW
7	CPU-PCI #2 Post Write
	0 Disabledefault
	1 Enable
6	CPU-PCI #2 Dynamic Burst
	0 Disabledefault
	1 Enable
5	CPU-PCI #2 One Wait State Burst Write
	0 Disabledefault
	1 Enable
4	PCI #2 to DRAM Prefetch
	0 Disabledefault
	1 Enable
3	PCI Master Allowed Before CPU-to-PCI Post
	Write Buffer is not Flushed
	0 Disabledefault
	1 Enable
	This option is always enabled for PCI #1
2	MDA Present on PCI #2
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI #1
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
	accesses are forwarded to the PCI bus).
1	PCI #2 Master Read Caching
	0 Disabledefault
	1 Enable
0	PCI #2 Delay Transaction
	0 Disabledefault
	1 Enable

Table 6. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	<u>VGA</u>	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	is	B8xxx	-B7FFF	<u>3Dx</u>	<u>3Bx</u>
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device 1 Offset 41 - CPU-to-PCI #2 Flow Control 2 (00h) RW **Retry Status** 0 No retry occurred......default 1 Retry Occurredwrite 1 to clear **Retry Timeout Action** 0 No action taken except to record status def 1 Flush buffer for write or return all 1s for read 5-4 Retry Count 00 Retry 2, backoff CPUdefault 01 Retry 4, backoff CPU 10 Retry 16, backoff CPU 11 Retry 64, backoff CPU **Post Write Data on Abort** 0 Flush entire post-write buffer on target-abort or master abort default Pop one data output on target-abort or masterabort 2 CPU Backoff on PCI #2 Read Retry Timeout 0 Disable.....default 1 Enable

.....always reads 0

1-0

Reserved

Device	1 Offset 42 - PCI #2 Master Control (00h)RW
7	Read Prefetch for Enhance Command
	0 Always Perform Prefetchdefault
	1 Prefetch only if Enhance Command
6	PCI #2 Master One Wait State Write
	0 Disabledefault
	1 Enable
5	PCI #2 Master One Wait State Read
	0 Disabledefault
	1 Enable
4	Extend PCI #2 Internal Master for Efficient
	Handling of Dummy Request Cycles
	0 Disabledefault
	1 Enable
	This bit is normally set to 1.
3	PCI #2 Delay Transaction Timeout
	0 Disabledefault
	1 Enable
2	Fast Response / Read Caching Prefetch Disable
	0 Normal operationdefault
	1 Disable prefetch when doing fast response to
	the previous delay transaction or doing read
	caching
1	Reserved always reads 0
0	Reserved (Do Not Program) default = 0

Device 1 Offset 43 - PCI #2 Master Latency Timer (00h) RW

7-0	PCI #	[‡] 2 Master Latency Timer
	00	Disable (no timer)default
	01	16 GCLKs
	02	32 GCLKs
	FF	4080 GCLKs

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Ambient operating temperature	0	70	oC
Storage temperature	-55	125	oC
Input voltage	-0.5	5.5	Volts
Output voltage ($V_{CC} = 3.1 - 3.6V$)	-0.5	$V_{CC} + 0.5$	Volts

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

 $\frac{DC\ Characteristics}{TA\text{-}0\text{-}70^{0}\text{C},\ V_{CC}\text{=}5V\text{+}/\text{-}5\%,\ GND\text{=}0V}$

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input low voltage	-0.50	0.8	V	
V_{IH}	Input high voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output low voltage	-	0.45	V	I _{OL} =4.0mA
V_{OH}	Output high voltage	2.4	-	V	I _{OH} =-1.0mA
$I_{\rm IL}$	Input leakage current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate leakage current	-	+/-20	uA	$0.45 < V_{OUT} < V_{CC}$
I_{CC}	Power supply current	-		mA	

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 7. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
3.3V Power (VCC, VCCI, VTT, AVCC, HVCC)	3.135	3.465	Volts
5V Reference (5VREF)	4.75	5.25	Volts
Temperature	0	70	oC

Drive strength for each output pin is programmable. See Rx6D for details.

MECHANICAL SPECIFICATIONS

Figure 6. Mechanical Specifications - 492-Pin Ball Grid Array Package