Gramatici independente de context (GIC) (CFG – context free grammars)

derivari, arbori de derivare, tipuri de gramatici independente de context, gramatici echivalente - constructii

Ne reamintim: Gramatica

- O gramatica este un cvadruplu $G = (N, \Sigma, P, S)$
- N este un alfabet de simboluri neterminale
- Σ este un alfabet de simboluri terminale
- $N \cap \Sigma = \phi$
- P ⊆ (N ∪ Σ)* N (N ∪ Σ)* x (N ∪ Σ)*
 P multime finitã (multimea regulilor de productie)
- $S \in \mathbb{N}$ (simbolul de start simbolul initial)

Notatie:

$$(\alpha, \beta) \in P$$
 se noteaza: $\alpha \to \beta$
 $(\alpha \text{ se înlocuieste cu } \beta)$

Ne reamintim: clasificarea Chomsky

- Gramatici de tip 0:
 - nici o restrictie (suplimentara) referitoare la forma regulilor de productie
- Gramaticile de tip 1

(gramatici monotone)

- $\quad \forall \ \alpha \rightarrow \beta \in P: |\alpha| <= |\beta|$
- caz special: S→ ε poate \in P. In acest caz S nu apare în membrul drept al nici unei reguli de productie.
- Gramatici independente de context:

reg. productie sunt de forma $A \rightarrow \alpha$, $A \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \Sigma)^*$ (gramatici de tip 2)

- Gramaticile de tip 3:
 - reg. prod. sunt de forma
 - $A \rightarrow aB$
 - $A \rightarrow b$

unde $A,B \in N$ si $a,b \in \Sigma$

caz special: $S \rightarrow \varepsilon$ poate \in . P In acest caz S nu apare în membrul drept al nici unei reguli de productie.

derivari de stanga/ dreapta

- derivare de stânga =>_{st}
 - o derivare directă in care se înlocuieste cel mai din stânga neterminal
- derivare de dreapta =>_{dr}
 - o derivare directă in care se înlocuieste cel mai din dreapta neterminal

Analiza sintactica

• *analiză sintactică* pt. cuvantul w succesiunea de derivări directe:

•
$$S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n = w$$

altfel spus: reprezintã o derivare pentru cuvântul w

analiză sintactică descendentă

daçã aceastã succesiune de derivãri directe se obtine pornind de la S si terminand cu w

• analiză sintactică ascendentă

daçã aceastã succesiune de derivari directe se obtine pornind de la w si terminand cu S

Arbore de derivare

- Fie G = (N, Σ, P, S) o gramatică independentă de context. Numim arbore de derivare sau arbore de analiză sintactică un arbore cu radacina, ordonat, cu urmatoarele proprietati:
- 1. Orice nod interior o eticheta din N;
- 2. Orice nod frunza o eticheta din $\Sigma \cup \{\epsilon\}$
- 3. Eticheta rãdãcinii este S;
- 4. Dacă un nod are eticheta A iar nodurile succesoare acestuia, în ordine de la stânga la dreapta sunt etichetate cu $X_1, X_2, \ldots X_n$ atunci $A \rightarrow X_1 X_2 \ldots X_n$ trebuie să fie o productie din P.

Arbore de derivare

- **frontiera** (**frontul**): nodurile terminale, în ordine de la stânga la dreapta
- etichetele lor formeaza o secventa peste Σ^*
- obs: denumirea de frontiera (front) se foloseste si pentru a denumi succesiunea etichetelor nodurilor terminale

Teoremã.

Fie $G = (N, \Sigma, P, S)$ o gramatică independentă de context. Un cuvânt w peste alfabetul Σ , deci din Σ^* , apartine limbajului generat de G, adică $w \in L(G)$, dacă si numai dacă w este frontul unui arbore de analiză sintactică.

Gramatica ambigua

O gramatică $G = (N, \Sigma, P, S)$ independentă de context este *ambiguã*

dacă si numai dacă există cel putin un cuvânt w care admite doi arbori de derivare distincti; în caz contrar gramatica este *neambiguã*.

- ⇔ ∃ 2 analize sintactice care folosesc numai derivari de stanga, diferite
- ⇒ ∃ 2 analize sintactice care folosesc numai derivari de dreapta, diferite

Descrieri echivalente. Forme normale

Ne reamintim:

O gramatica G_1 este echivalenta cu gramatica G_2 ddaca $L(G_1)=L(G_2)$

ε-productii si gram. ε-independente

- ε -productie: o productie de forma $A \to \varepsilon$
- Gramatica G = (N, Σ, P, S) este ε-independentã daca:
 - a) dacã ε ∉L(G) atunci G nu are ε-productii
 - b) dacă $\varepsilon \in L(G)$ atunci avem o singură productie $S \rightarrow \varepsilon$ iar celelalte productii nu-l contin în membrul drept pe S

• Teorema

 \forall G= (N, Σ , P, S)

 $\exists G' = (N', \Sigma', P', S)$ echivalentã, ε -independentã

Redenumiri. Cicluri.

- redenumire: reg.prod. de forma $A \rightarrow B$
- *Gramatica fără redenumiri*: fara r.p. de redenumire Teorema:

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã fãrã redenumiri

- ciclu: o * derivare de forma A =>* B
- Gramatica fără cicluri: nu se pot obtine cicluri (la derivare)

 Teorema:

Teorema:

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã fãrã cicluri

Recursivitate

- reg.prod. recursiva la stanga: o reg.prod. de forma: $A \rightarrow A\alpha$
- reg.prod. recursiva la dreapta:
 - o reg.prod. de forma: $A \rightarrow \alpha A$
- reg.prod. recursiva:
 - o reg.prod. de forma: $A \rightarrow \alpha A\beta$

Recursivitate

neterminal recursiv la stanga:

 $A \in \mathbb{N}$ daca \exists o derivare de forma: $A=+>A\alpha$

neterminal recursiv la dreapta:

 $A \in \mathbb{N}$ daca \exists o derivare de forma: $A = +> \alpha A$

neterminal recursiv:

 $A \in \mathbb{N}$ daca \exists o derivare de forma: $A = +> \alpha A\beta$

• gramatica recursiva la stanga:

are cel putin un neterminal recursiv la stanga

• gramatica recursiva la dreapta: ...

Forma normalã Chomsky

O gramatică independentă de context $G = (N, \Sigma, P, S)$ este în forma normală Chomsky (FNC)

dacă orice regula de productie din P este de una din formele:

a) $A \rightarrow BC$

 $A,B,C \in N;$

b) $A \rightarrow a$

 $a \in \Sigma, A \in \mathbb{N}$;

Si un caz special: $S \rightarrow \varepsilon$ poate $\in P$. In acest caz S nu apare în membrul drept al nici unei reguli de productie.

<u>Teoremã</u>. Oricare ar fi G=(N, S, P, S) o gramatică independentă de context, întotdeauna există o gramatică în forma normală Chomsky G', astfel încât L(G) = L(G').

Forma normalã Greibach

O gramatică $G = (N, \Sigma, P, S)$ este în *forma normală Greibach (FNG)* dacă P are productii numai de forma:

 $A \rightarrow a\alpha$, $A \in \mathbb{N}, a \in \Sigma, \alpha \in \mathbb{N}^*$;

Si un caz special: $S \rightarrow \varepsilon$ poate $\in P$. In acest caz S nu apare în membrul drept al nici unei reguli de productie.

Teoremã. Oricare ar fi $G = (N, \Sigma, P, S)$ o gramatică independentă de context, întotdeauna există o gramatică în forma normală Greibach, astfel încât L(G)=L(G').

Simplificarea GIC

• simbol neproductiv

Un simbol $A \in N$ este *neproductiv* dacă nu există nici o derivare de forma $A = ^* > x$ $(x \in \Sigma^*)$

• în caz contrar A este simbol productiv

Teorema

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã, fãrã simboluri neproductive

Simplificarea GIC

(transformari echivalente)

simbol inaccesibil

Un simbol $X \in \mathbb{N} \cup \Sigma$ este *simbol inaccesibil* dacă nu există nici o * derivare: $S = >^* \alpha X\beta$ $(\alpha, \beta \in (\mathbb{N} \cup \Sigma)^*)$

- în caz contrar simbolul este accesibil
- Teorema

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã, fărã simboluri inaccesibile

Determinarea simbolurilor productive

 \approx algoritm AF determ. stari productive

$$A \rightarrow BC$$

$$B \rightarrow bB$$

$$C \rightarrow c$$

1.i:=0;
$$V_0 := \Phi$$

2. Repeta

$$V_{i+1} := V_i \bigcup \{A \in N \mid \exists A \rightarrow \alpha \in P, \alpha \in (V_i \cup \Sigma)^*\}$$

$$i := i+1$$

pana cand V_i=V_{i-1}

{V_i – multimea simbolurilor productive}

Determinarea simbolurilor accesibile

≈ algoritm AF determ. stari accesibile

1.
$$i:=0$$
; $V_0:=\{S\}$

2. Repeta

$$\begin{aligned} V_{i+1} := & V_i \bigcup \{ \ B \in N \mid \exists \ A \in V_i, \ \alpha, \beta \in (NU\Sigma)^* \ a.i \\ A & \to \alpha B \beta \in P \} \end{aligned}$$

$$i := i+1$$

pana cand V_i=V_{i-1}

{V_i – multimea simbolurilor neterminale accesibile}

* analog pentru simboluri terminale accesibile

Simplificarea GIC

- Un simbol este **neutilizabil** dacă el este fie inaccesibil, fie neproductiv
- Teorema

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G'** = (**N'**, Σ ', **P'**, **S**) echivalentã fărã simboluri neutilizabile

Observatii:

Fie $G = (N, \Sigma, P, S)$ o gramatica independenta de context:

- Fie un simbol neterminal A al gramaticii G.
 Daca nu exista o regula de productie A → α in P atunci A este neproductiv
- Fie un simbol terminal a al gramaticii G. Daca nu exista o regula de productie de forma $B \to \alpha$ a β in P atunci a este inaccesibil

Eliminarea E-productiilor

- 1. Construim multimea N_{ϵ} care are ca elemente acele neterminale care prin derivare conduc la ϵ adic \tilde{a} :
- $N_{\epsilon} = \{A \mid A \in \mathbb{N}, A = >^{*} \epsilon\}$ alg. \approx determinarea simb. productive
- 2. Determinam noile reguli de productie
- astfel incat productiile de forma $A \rightarrow \varepsilon$ se elimina
- dar, daca $\varepsilon \in L(G)$, atunci $\exists S \to \varepsilon$ si S nu apare în membrul drept al nici unei productii

Determinarea lui N_e

1.
$$i:=0$$
;
$$V_0:=\{A \in N \mid \exists A \rightarrow \epsilon \in P\}$$

2. Repeta

$$V_{i+1} := V_i \bigcup \{A \in N \mid \exists A \rightarrow \alpha \in P, \alpha \in (V_i)^*\}$$

$$i := i+1$$

pana cand V_i=V_{i-1}

determinam noile reguli de productie

- productiile de forma $A \rightarrow \varepsilon$ se elimina
- celelalte r.p. se rescriu astfel incat sa "suplineasca" eliminarea ε-productiilor astfel:

Fie r.p.
$$A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 \dots B_k \alpha_k$$

unde: $B_i \in N_{\epsilon}$

 α_i nu contine simb. din N_{ϵ}

Se inlocuieste cu:

$$A \rightarrow \alpha_0 X_1 \alpha_1 X_2 \alpha_2 \dots X_k \alpha_k$$

unde
$$X_i = \begin{cases} B_i \\ \epsilon \end{cases}$$
 este unul dintre B_i sau ϵ (se fac toate inlocuirile posibile)

Ce lipseste ???

determinam noile reguli de productie

continuare

Dacã ε∈L(G) trebuie sa avem o ε-productie

"atunci avem productia $S \to \varepsilon$ si S nu apare în membrul drept al nici unei productii" (gram. ε -independenta)

• adaugam un nou simbol de start S' si productiile $S' \rightarrow \varepsilon \mid S$

Redenumiri. Cicluri.

- redenumire: reg.prod. de forma $A \rightarrow B$
- *Gramatica fără redenumiri*: fara r.p. de redenumire Teorema:

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G'** = (**N'**, Σ ', **P'**, **S**) echivalentã fãrã redenumiri

- ciclu: o * derivare de forma A =>* B
- Gramatica fără cicluri: nu se pot obtine cicluri (la derivare)

Teorema:

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã fãrã cicluri

Eliminarea redenumirilor

PP. G – ε-independenta (daca nu , luam gr.echiv. ε-ind.)

Pentru fiecare A∈ N

se elimina redenumirile de forma $A \rightarrow B (\forall B \in N)$

- construieste multimile $N_A = \{B \mid A = *> B\};$ (\approx det. simb. accesibile)
- determinam noile reguli de productie

Construieste $N_A = \{D \mid A = * > D\}$

1.i:=0;
$$V_0 := \{A\}$$

2. Repeta

$$V_{i+1} := V_i \cup \{C \mid (B \rightarrow C) \in P, B \in V_i\}$$

 $i := i+1$

pana cand V_i=V_{i-1}

$$N_A := V_i$$

determinam noile reguli de productie

$A \in \mathbb{N}$:

- pentru fiecare $A \rightarrow \alpha \in P$ executa
- daca α e format dintr-un singur neterminal atunci

il excludem din mult. noilor reg.prod

altfel

adaugam: $B \rightarrow \alpha$, $\forall B \in N$ a.i. $A \in N_B$

- sf.daca
- sf.pentru

Eliminarea redenumirilor

Exercitiu:

$$E \rightarrow E+T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

Gramatica fara cicluri

Teorema:

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G'** = (**N'**, Σ ', **P'**, **S**) echivalentã fărã cicluri

Daca G – ε-independenta si fara redenumiri atunci este fara cicluri

Gramatica proprie:

este o gramatica

- fara simb. neutilizabile
- ε-independenta
- fara cicluri

Teorema:

 \forall G= (N, Σ , P, S) \exists G' = (N', Σ ', P', S) proprie echiv.

Recursivitate

- reg.prod. recursiva la stanga:
 - o reg.prod. de forma: $A \rightarrow A\alpha$
- reg.prod. recursiva la dreapta:
 - o reg.prod. de forma: $A \rightarrow \alpha A$
- reg.prod. recursiva:
 - o reg.prod. de forma: $A \rightarrow \alpha A\beta$

Reg. prod. recursive la stanga

• reg.prod. recursiva la stanga: $A \rightarrow A\alpha$

Teorema:

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã fãrã reg.prod. recursive la stanga

• PP. G – gr. proprie

(daca nu este, det. gr. proprie echiv. si lucram cu ea)

Obs.: vom obtine tot o gramatica proprie

Eliminarea r.p. recursive la stanga

pentru fiecare A ∈ N: reg.prod.cu m.s. A

• grupam r.p. in recursive la stng. si nerec. la stanga

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_r$$
 (r.p. recursive)

$$A \rightarrow \beta_1 | \beta_2 | \dots | \beta_s$$
 (r.p. ne-recursive)

• r.p. se transforma astfel:

$$A \rightarrow \beta_1 |\beta_2| \dots |\beta_s| \beta_1 A' |\beta_2 A' |\dots |\beta_s A'$$

$$A' \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_r | \alpha_1 A' | \alpha_2 A' | \dots | \alpha_r A'$$

(a fost introdus un net. nou: A')

Eliminarea r.p. recursive la stanga

Observatii:

- Recursivitatea nu se poate elimina.
- Recursivitatea la stanga a fost transformata în recursivitate la dreapta.

Exercitiu
Eliminati recursivitatea la stanga:

 $S \rightarrow Sa$

S->a

Recursivitate

neterminal recursiv la stanga:

 $A \in \mathbb{N}$ daca \exists o derivare de forma: $A=+>A\alpha$

neterminal recursiv la dreapta:

 $A \in \mathbb{N}$ daca \exists o derivare de forma: $A = +> \alpha A$

neterminal recursiv:

 $A \in \mathbb{N}$ daca \exists o derivare de forma: $A = +> \alpha A\beta$

• gramatica recursiva la stanga:

are cel putin un neterminal recursiv la stanga

• gramatica recursiva la dreapta: ...

Eliminarea recurs. la stg. a neterm.

Teorema:

 \forall G= (N, Σ , P, S) \exists G' = (N', Σ ', P', S) echivalentã fărã neterminale recursive la stanga

- PP. G gr. proprie (daca nu este, det. gr. proprie echiv. si lucram cu ea)
- impunem o ordine asupra neterminalelor

$$N = \{A_1, A_2, ..., A_n\}$$

si apoi modific r.p. a.i. sa nu existe $A_i \rightarrow A_j \alpha$ cu j<=i de aici => nu va exista recursivitate la stanga

Eliminarea recurs. la stg. a neterm.

```
pentru A<sub>i</sub> de la A<sub>1</sub> la A<sub>n</sub> executa
```

//se elimina r.p. de forma $A_i \rightarrow A_j \alpha$ cu $j \le i$ astfel:

*repeta

pentru j:=1,i-1 executa

* $A_i \rightarrow A_j \alpha$ (j<i) se inlocuieste cu: $A_i \rightarrow \beta \alpha$

cu toti β cu proprietatea $A_j \rightarrow \beta \in P_{inloc}$

sf.pentru

* se elimina r.p. de forma $A_i \rightarrow A_i \alpha$

(se inlocuiesc cf.alg. de elim.r.p.rec.stg)

*pana cand toate r.p. cu A_i in m.s. respecta: $\not\equiv j < i : A_i \rightarrow A_j \alpha$ sf.pentru

Eliminarea recurs. la stg. a neterm.

Exercitii:

(1)

$$A \rightarrow BC \mid a$$

 $B \rightarrow CA \mid b$
 $C \rightarrow AB \mid c$

(2)
$$A \rightarrow a \mid aB$$

$$B \rightarrow AC \mid b$$

$$C \rightarrow BA \mid c$$