

Artificial Neural Networks (ANN)

ANN emulate the Neural Network of the brain

- Human brain contains 10 billion neurons approx. Each one connected, at least, to other 10.000 neurons.
- Signals are transmitted through the neurons

Input

Output

g Group IVA

Artificial Neural Networks (ANN)

A simple model of one artificial neuron

Artificial Neural Networks (ANN)

Structure of a multi-layer network

- Brain properties emulated by ANNs:
 - Parallel and Distributed Computation
 - Dense connection of basic units
 - Connections can be modified through experience
 - Learning is constant

- Most popular Neural Network type;
- Uses feedforward connections and nodes are organized in layers;

Multilayer Perceptrons (MLPs) [Bishop, 1995][Sarle, 2005]

Feedforward neural network where each node outputs an activation function applied over the weighted sum of its inputs:

$$s_i = f(w_{i,0} + \sum_{j \in I} w_{i,j} \times s_j)$$

Activation functions

- Linear: y = x;
- Tanh: y = tanh(x);
- **Logistic** or Sigmoid (most used): $y = \frac{1}{1 + e^{-x}}$;

Artificial Neural Networks (ANN)

- Coding or Training Step
- Decoding or Classification Step
- Perceptrons, Backpropagation technique and Kohonen Maps.

- Popularity the most used Neural Network, with several software tools available;
- Universal Approximators general-purpose models, with a huge number of applications (e.g. classification, regression, forecasting, control or reinforcement learning);
- Nonlinearity when compared to other data mining techniques (e.g. multiple regression) MLPs often present a higher predictive accuracy;
- Robustness good at ignoring irrelevant inputs and noise;
- Explanatory Knowledge Difficult to explain when compared with other algorithms (e.g. decision trees), but it is possible to extract knowledge from trained MLPs (e.g. if-then rules, sensitivity analysis);

6 UCI classification (AUC% values) and regression tasks (RRSE% values):

	WE	KA	R/rminer		
Task	NN	\mathbf{SVM}	NN	\mathbf{SVM}	
balance	97.5 ± 0.2	$88.1{\pm}0.2$	99.5 ± 0.1	98.9 ± 0.2	
cmc	$71.4{\pm}0.3$	$63.8{\pm}0.3$	73.9 ± 0.0	72.9 ± 0.2	
german	$73.5{\pm}0.7$	$67.2{\pm}0.7$	76.3 ± 0.8	$\underline{\textbf{77.9}}{\pm}0.5$	
heart	$85.6{\pm}1.2$	$83.7{\pm}0.4$	88.5 ± 1.4	$\underline{90.2} {\pm} 0.4$	
house-votes	$98.6{\pm}0.2$	$95.7{\pm}0.3$	$98.0{\pm}0.5$	$\underline{99.2} {\pm} 0.1$	
sonar	$89.2{\pm}1.3$	$76.6{\pm}1.8$	$87.4{\pm}0.9$	$\underline{95.6} {\pm} 0.8$	
abalone	$72.7{\pm}2.1$	$69.9{\pm}0.1$	64.0 ± 0.1	66.0 ± 0.1	
auto-mpg	$44.3{\pm}3.4$	$44.5{\pm}0.3$	37.4 ± 3.1	$\underline{34.8}{\pm0.4}$	
concrete	$46.5{\pm}1.4$	$65.6{\pm}0.2$	31.8 ± 0.4	35.9 ± 0.5	
housing	49.9 ± 3.0	$55.2{\pm}0.4$	38.3 ± 1.6	40.1 ± 1.3	
servo	$46.1{\pm}4.5$	$84.0{\pm}0.4$	$\textbf{40.8} {\pm} 6.0$	$\underline{44.9}{\pm}1.5$	
white	91.3 ± 3.1	85.5 ± 0.1	79.0 ± 0.3	76.1 ±0.6	

Set initial model configuration details (e.g. number of hidden layers of MLP, SVM kernel type).

Common MLP setup (e.g. R tool):

- Often, it is better to perform one classification/regression task per model;
- The number of input nodes is defined by the task;
- Use of one hidden layer of H nodes with logistic functions;
- Binary classification: one output node with logistic function;
- Multi-class classification: N_C output linear nodes (f(x) = x) and and the softmax function is used to transform these outputs into class probabilities;
- Regression: one linear output neuron.

Gradient-descent [Riedmiller, 1994]:

- Backpropagation (BP) most used, yet may be slow;
- Other algorithms: Backpropagation with Momentum; QuickProp; RPROP; BGFS, Levenberg-Marquardt, ...

Evolutionary Computation [Rocha et al., 2007]

- May overcome local minima problems;
- Can be applied when no gradient information is available (reinforcement learning).

- The MLP weights are randomly initialized within small ranges (e.g. [-0.7;0.7]);
- Each training may converge to a different (local) minima;

Solutions

- Use of N_R multiple trainings, selecting the MLP with lowest error;
- Use an **ensemble** with N_R MLPs, where the final output is given as the average of the MLPs.

- Powerful learners (MLP, SVM) have several hyperparameters that need to be set/tuned;
- Such parameters can be set using: heuristic rules, simple grid-search or more advanced optimization algorithms (e.g. Evolutionary Computation) [Rocha et al., 2007];

Grid-Search

- One (or more) parameters are scanned through a given range;
- Range example for MLP hidden nodes: $H \in \{0,2,4,...,20\}$;
- Variants: two-level greedy grid-search (search at the first level and then a second pass is taken, using a smaller range and step).

Confusion matrix [Kohavi and Provost, 1998]

- Matches the predicted and actual values;
- The 2×2 confusion matrix:

\downarrow actual \setminus predicted \rightarrow	negative	positive
negative	TN	FP
positive	FN	TP

- Three accuracy measures can be defined:
 - the **Accuracy** = $\frac{TN+TP}{TN+FP+FN+TP}$ × 100 (%) (use if FP/FN costs are equal);
 - TPR or **Sensitivity** (*Type II Error*) = $\frac{TP}{FN+TP}$ × 100 (%);
 - TNR or **Specificity** (*Type I Error*) ; = $\frac{TN}{TN+FP}$ × 100 (%)
- The higher, the better (the ideal value is 100%);

■ Multi-class confusion matrix example [Cortez et al., 2009]:

Actual class	Red wine predictions				White wine predictions					
	4	5	6	7	8	4	5	6	7	8
3	1	7	2	0	0	0	2	17	0	0
4	1	36	15	1	0	19	55	88	1	0
5	3	514	159	5	0	7	833	598	19	0
6	0	194	400	44	0	4	235	1812	144	3
7	0	10	107	82	1	0	18	414	441	7
8	0	0	10	8	0	0	3	71	43	59
9						0	1	3	2	0

Receiver Operating Characteristic (ROC) [Fawcett, 2006]

- Shows the behavior of a 2 class classifier $(y \in [0,1])$ when varying a decision parameter $D \in [0,1]$ (e.g. True if y > 0.5, D = 0.5);
- The curve plots FPR = 1 TNR (x-axis) vs TPR (Sensitivity);
- Global performance measured by the **Area Under the Curve (AUC)**: $AUC = \int_0^1 ROC dD$ (the perfect AUC value is 1.0).

Given a dataset with the function pairs $x_1 \rightarrow y_1, \dots, x_N \rightarrow y_N$, we can compute:

Error metrics

- Mean Absolute Error/Deviation (MAE): $MAE = \frac{\sum_{i=1}^{N} |e_i|}{N}$
- Sum Squared Error (SSE): $SSE = \sum_{i=1}^{N} e_i^2$
- Mean Squared Error (MSE): $MSE = \frac{SSE}{N}$
- **Root Mean Squared Error (RMSE)**: $RMSE = \sqrt{MSE}$
- Relative Absolute Error (RAE, scale independent): RAE = MAE/MAE_{baseline} × 100 (%), where baseline often denotes the average predictor.
- Relative Squared Error (RSE, scale independent): $RSE = SSE/SSE_{\text{baseline}} \times 100 \, (\%)$
- The lower, the better (ideal value is 0).

Scatter plot: desired (x-axis) vs predicted (y-axis) values

- Used to assess the prediction quality of a regression model;
- The perfect fit is the diagonal line;
- Civil engineering application example [Tinoco et al., 2009]:

Regression Error Characteristic (REC) curves [Bi and Bennett, 2003]

- Used to compare several regression models;
- The curve plots the error tolerance (absolute deviation, x-axis) versus the percentage of points predicted within the tolerance (y-axis);

- The aim is to assess if the DM model meets the business goals and if it is interesting.
- Interestingness: does the model makes sense to the domain experts and unveils useful or challenging information?
- **Business impact**: by using such model, what is the gain achieved?

 Business impact example: ROC Curve and benefit-cost analysis (FPR-TPR trade-off).

Visualization of Input Effect: VEC curve (Bank Marketing)

■ BI systems often use DM (for knowledge extraction and **prediction**).

Adaptive Business Intelligence (ABI) [Michalewicz et al., 2006]

