EdelweissConnect

Application of Knowledge Graphs and AI in Safety Risk Assessment - Practical Session

Asmaa Ali, Research Data Scientist (Edelweiss Connect)

Agenda

- Risk Assessment
- Supporting Decision Making for Risk Assessment
- What is a Knowledge Graph?
- Building Blocks of a Knowledge Graph
- Property Graphs Example Hetionet
 - Practical Exercise Hetionet
- RDF Graphs Example UniProt
 - Practical Exercise UniProt
- Can KGs Support Decision Making in RA?
- Artificial Intelligence for Risk Assessment
- Al for RA Example Fine-tuned GPTs
 - Practical Exercise Hugging Face
- Al for RA Example ChemCrow
- Final Remarks

Risk Assessment

Risk assessment is the process of evaluating potential risks posed by certain substances, activities, or processes to human health or the environment.

In chemical risk assessment, the goal is to provide a **basis for decision-making** to minimize or eliminate risks. This involves key steps such as:

- Identifying hazards
- Evaluating dose-response relationships
- Assessing exposure to estimate the likelihood and severity of adverse effects.

How to Support Decision Making for Risk Assessment?

Scalability for Large-Scale Risk Assessments

Supporting Decision Making for Risk Assessment

Integration of Diverse Data Sources

Prediction and Decision-Making

Uncertainty and Incomplete Data

Real-Time Risk Assessment and Monitoring

Personalized/Domain-Specific Risk Assessments

Transparency and Explainability

Supporting Decision Making for Risk Assessment

Integration of Diverse Data Sources

Prediction and Decision-Making

Can the use of KGs and AI Support Decision Making for Risk Assessment?

Transparency and Explainability

Scalability for Large-Scale Risk Assessments

What is a Knowledge Graph?

• A Knowledge Graph (KG) is a data structure that organizes information (facts) as a network of entities (nodes) and their relationships (edges).

Is any data organized as nodes and relationships always a useful knowledge graph?

What is a Knowledge Graph?

• A Knowledge Graph (KG) is a data structure that organizes information (facts) as a network of entities (nodes) and their relationships (edges).

Is any data organized as nodes and relationships always a useful knowledge graph?

Building Blocks of a Knowledge Graph

Building Blocks of a Knowledge Graph

(2) Ontology

Defines a **formal schema** for a domain, specifying concepts, relationships, and constraints.

- Focus on flexibility, allowing nodes and relationships to have properties.
- Commonly used for dynamic, evolving datasets.

- RDF Graphs enforce a formal schema based on predefined ontologies, representing data in triples (subject-predicate-object).
- Ideal for data that needs to be shared and integrated across different systems.

Property Graphs Example - Hetionet

KGs allow for the representation of complex relationships in a structured and machine-readable format, enabling Holistic view of the data, Easier retrieval, Integration, and reasoning over diverse data sources.

Practical Exercise - Hetionet

Retrieving Gene-Pathway Relationships

RDF Graphs Example - UniProt

Predicates as Relationships: RDF uses predicates like "replaces" to define relationships between entities.

Strict Class Structure: RDF enforces predefined classes like "Protein" and "Reviewed" for consistency.

Data Integration: The class hierarchy (e.g., subclass relationships) ensures seamless integration of data across sources.

RDF Graphs Example - UniProt

Practical Exercise - UniProt

Retrieving Proteins Data

https://sparql.uniprot.org/sparql

Can KGs Support Decision Making in RA?

- 1. **Integration of Diverse Data Sources:** KGs enable the seamless combination of heterogeneous datasets (e.g., chemical, biological, and clinical data) to provide a holistic view of risk factors.
- 2. **Accessibility and Interoperability:** By adhering to standardized ontologies and formats, KGs ensure data from multiple sources is accessible and interoperable across platforms, enhancing collaboration.
- 3. **Real-Time Risk Assessment and Monitoring:** KGs allow for continuous updates, enabling real-time analysis and monitoring of emerging risks, facilitating proactive decision-making.
- 4. **Transparency and Explainability:** The structured nature of KGs offers clear traceability of data and relationships, providing explainable insights that build trust in risk assessment outcomes.

Artificial Intelligence for Risk Assessment

Artificial Intelligence (AI) refers to the **simulation of human intelligence** in machines designed to **perform tasks** that typically require human cognitive functions, such as learning, problem-solving, and decision-making.

In the context of chemical risk assessment, AI can be used to:

- Analyze large datasets
- Predict toxicological outcomes
- Automate decision-making processes.

For many years, Machine learning (a subset of AI) was often applied to build predictive models that support risk assessment efforts.

Artificial Intelligence for Risk Assessment (LLMs)

Fine-tuning LLMs on specific toxicology datasets allows them to **perform specialized tasks** with **higher accuracy**, even in the presence of uncertainty or incomplete data. This fine-tuning process **tailors the models to particular domains** or needs, offering **personalized and scalable solutions** that enhance risk assessment and decision-making processes.

Al for RA Example - Fine-tuned GPTs

- https://www.yeschat.ai/gpts-9t55QixGaCA-Universal-Toxicologist-UTOX-
- https://chatqpt.com/q/q-B4bT16NoT-universal-toxicologist-utox/

Al for RA Example - ChemCrow

OpenTox Summer School 2024

Al for RA Example - ChemCrow

Practical Exercise - Hugging Face

Accessing Fine-tuned Models using Google Colab

Final Remarks

- Al and Knowledge Graphs significantly enhance risk assessment by improving data integration, prediction accuracy, and scalability. However, they also present challenges, such as ensuring data quality and interpretability.
- Regulatory frameworks like the EU AI Act mandate strict compliance for AI systems in high-risk applications, including safety assessments.
- Security risks, such as data breaches and adversarial attacks, must be mitigated to safeguard sensitive information.
- To ensure responsible use, a standardized quality and compliance framework for AI and KGs in risk assessment is essential.

For Any Questions (GitHub Issues)

https://github.com/asmaa-a-abdelwahab/Application-of-Knowledge-Graphs-and-Al-in-Risk-Assessment

Thank You for Your Attention!

LinkedIn: <u>asmaa-a-abdelwahab</u>, GitHub: <u>asmaa-a-abdelwahab</u> asmaa@edelweissconnect.com