Polytope of Matrices with Invariant Row- and Column- Sums

Pramod Mathai *

February 26, 2019

In this note, we answer the following two questions and discuss their relevance to a hidden variable theory (HVT) of Aaronson's (the discrete counterpart of Schrödinger's HVT) ¹:

- (1) Construction: Given $\mathbf{r}, \mathbf{c} \in \mathbb{R}_{+}^{n \times 1}$, with $\mathbf{1}^{\mathrm{T}}\mathbf{r} = \mathbf{1}^{\mathrm{T}}\mathbf{c} = \gamma$, how does one construct $\mathbf{P} \in \mathbb{R}_{+}^{n \times n}$ with row and column sums satisfying $\mathbf{P1} = \mathbf{r}, \mathbf{P}^{\mathrm{T}}\mathbf{1} = \mathbf{c}$? Here, $\mathbf{1}$ is the vector of all ones. The case $\gamma = 1$ corresponds to requiring that \mathbf{P} be a transition matrix the instance specific to Aaronson's HVT.
- (2) Robustness: How robust are the entries of \mathbf{P} to perturbations in \mathbf{r} and \mathbf{c} ? The perturbed vectors \mathbf{r}' and \mathbf{c}' are subject to the same constraints as \mathbf{r} and \mathbf{c} in (1).

Construction

 $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$, the set of of all solutions to (1), is convex. We construct $\mathcal{V}_{(\mathbf{r},\mathbf{c})}$, the set of vertices of a polytope $\mathcal{P}_{(\mathbf{r},\mathbf{c})} \subseteq \mathcal{S}_{(\mathbf{r},\mathbf{c})}$.

Without loss of generality, we assume that the elements of \mathbf{r} and \mathbf{c} are arranged in increasing order: $r_i \leq r_{i+1}$ for $i \in [n-1]$, likewise for \mathbf{c} ([k] denotes the set of positive integers not exceeding k). If one solves for this case, then the rows and columns of \mathbf{P} can always be permuted back to their original order without changing the values of the respective sums.

Since **r** and **c** have a finite number of elements, they can be ordered simultaneously ². For example, when n = 3, such an ordering could be $r_1 \le c_1 \le c_2 \le r_3 \le c_3$.

We define $m_i := \min(r_i, c_i)$ and \mathbf{e}_i as the column vector with 1 in the i^{th} position and zeros in the other (n-1) positions.

The polytope $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ is then defined as the convex hull of the set

$$\mathcal{V}_{(\mathbf{r},\mathbf{c})} = \mathbf{P}^* \bigcup_{\substack{i,j \in [n], \\ i < j}} \mathbf{P}_{(i,j)} \tag{\diamondsuit}$$

of, in general, $1 + \frac{n(n-1)}{2}$ distinct matrices where $\mathbf{P}_{(i,j)} = \mathbf{P}^* + m_1 \cdot (\mathbf{e}_i \mathbf{e}_j^{\mathrm{T}} + \mathbf{e}_j \mathbf{e}_i^{\mathrm{T}} - \mathbf{e}_i \mathbf{e}_i^{\mathrm{T}} - \mathbf{e}_j \mathbf{e}_j^{\mathrm{T}})$ and \mathbf{P}^* has entries $p_{i,j}^*$ equal to zero except for the following elements:

$$p_{i,i}^* = m_i, \ p_{n,i}^* = c_i - m_i, \ p_{i,n}^* = r_i - m_i \text{ for } i \in [n-1] \text{ and } p_{n,n}^* = r_n + c_n - \gamma + \sum_{i=1}^{n-1} m_i.$$

For example, in the case n=3 with ordering $r_1 \le c_1 \le c_2 \le r_2 \le r_3 \le c_3$, every element in the polytope defined by these four matrices will be a solution to (1):

^{*}pramod.m@gmail.com

¹See p.183 of "Quantum Computing since Democritus" by Scott Aaronson, Cambridge University Press, 2013.

²without invoking the Axiom of Choice, which may be necessary to transfer the present approach to a continuous setting.

$$\mathbf{P}^* = \begin{bmatrix} r_1 & 0 & 0 \\ 0 & c_2 & r_2 - c_2 \\ c_1 - r_1 & 0 & r_3 + c_3 - \gamma + (r_1 + c_2) \end{bmatrix}, \ \mathbf{P}_{(1,2)} = \begin{bmatrix} 0 & r_1 & 0 \\ r_1 & c_2 - r_1 & r_2 - c_2 \\ c_1 - r_1 & 0 & r_3 + c_3 - \gamma + (r_1 + c_2) \end{bmatrix},$$

$$\mathbf{P}_{(1,3)} = \begin{bmatrix} 0 & 0 & r_1 \\ 0 & c_2 & r_2 - c_2 \\ c_1 & 0 & r_3 + c_3 - \gamma + c_2 \end{bmatrix}, \ \mathbf{P}_{(2,3)} = \begin{bmatrix} r_1 & 0 & 0 \\ 0 & c_2 - r_1 & r_2 - c_2 + r_1 \\ c_1 - r_1 & r_1 & r_3 + c_3 - \gamma + c_2 \end{bmatrix}.$$

The construction (�) makes it clear that any $\mathbf{P}_{(i,j)}$ has the same row and columns sums as \mathbf{P}^* . So it suffices to show that \mathbf{P}^* satisfies (1) and that $p_{i,i}^* \geq m_1$ for $i \in [n]$; the additional condition ensures that the diagonal elements of $\mathbf{P}_{(i,j)}$ are nonnegative. We prove these properties in order:

- Row sums: Denote $\mathbf{P}_{i,.}^*$ to be the i^{th} row of \mathbf{P}^* . For $i \in [n-1]$, $\mathbf{P}_{i,.}^* \mathbf{1} = m_i + r_i m_i = r_i$. $\mathbf{P}_{n,.}^* \mathbf{1} = \sum_{i=1}^{n-1} (c_i m_i) + p_{n,n}^* = r_n + (\sum_{i=1}^n c_i) \gamma = r_n$.
- Column sums: The calculation is analogous to the one for row sums.
- Nonnegativity of off-diagonal terms; diagonal terms $\geq m_1$: Readily follows from (\clubsuit) for all elements except $p_{n,n}^*$.

Requiring $p_{n,n}^* \geq m_1$ is equivalent to requiring $r_n + c_n + \sum_{i=2}^{n-1} m_i \geq \gamma$. By the inequality of arithmetic and geometric means, the left hand side is minimized when each of the n terms is equal, say, to M. The orderings $r_i \leq r_{i+1}$ and $c_i \leq c_{i+1}$ then imply that $r_i = c_i = M$ for $1 \leq i \leq n$, $1 \leq m_1$ and thus $1 \leq m_1$ and thus $1 \leq m_1$ and thus $1 \leq m_1$ follows.

This shows that all matrices in $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ are solutions to (1) for any valid choice of \mathbf{r},\mathbf{c} . But $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ does not necessarily contain all solutions to (1), i.e., $\mathcal{P}_{(\mathbf{r},\mathbf{c})} \subseteq \mathcal{S}_{(\mathbf{r},\mathbf{c})}$; indeed, the construction shows that any matrix in $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ has a symmetric principal minor of order n-1. It is unclear if $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ is the largest polytope in $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$.

Robustness

A solution $\mathbf{P} \in \mathcal{P}_{(\mathbf{r},\mathbf{c})}$ is not robust, in the infinity norm, to perturbations in \mathbf{r}, \mathbf{c} simply because the diameter of the polytope will, in general, be positive. The perturbed vectors \mathbf{r}', \mathbf{c}' may satisfy $0 \le \|\mathbf{r} - \mathbf{r}'\|_{\infty}$, $\|\mathbf{c} - \mathbf{c}'\|_{\infty} \le \delta$ for an arbitrarily small δ . But the construction (\clubsuit) shows the existence of solutions \mathbf{P} (to \mathbf{r}, \mathbf{c}) and \mathbf{P}' (to \mathbf{r}', \mathbf{c}') that will satisfy $\|\mathbf{P} - \mathbf{P}'\|_{\infty} \ge \max(m_1, m_1')$, a quantity that is independent of δ . Aaronson described a dynamical process (row/column scaling) to converge onto a solution \mathbf{P} . When applied to find \mathbf{P}' this process might converge to a solution differing - in the infinity norm - by $\max(m_1, m_1')$ from \mathbf{P} depending on the choice of the initial point in the dynamical process.

However, if the HVT (now, $\gamma = 1$) is modified to reward a unique solution in $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$ then it is conceivable that this solution is robust. For example, if the HVT asks for the sparsest solution then $\mathbf{P} = \mathbf{P}^*$ is, arguably, the unique choice in $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$ and not just in $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$. The construction (�) would then imply that $\|\mathbf{P} - \mathbf{P}'\|_{\infty} \sim O(\delta n)$. Additionally, the Fannes-Audenaert inequality, applied to the diagonal density matrices in $\mathbb{R}^{n^2 \times n^2}$ with entries from \mathbf{P} and \mathbf{P}' , can then be used to conclude that, for small enough δ 4, the entropy difference between those two density matrices is $O(\delta n \log(n))$.

 $^{{}^3\}mathbf{P}^*$ has at most 2n-1 nonzero entries and any solution in $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$ must in general have at least as many; but it is not clear if \mathbf{P}^* is uniquely sparsest in $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$.

⁴The $O(\delta n)$ difference should be less than 1 in order to be accommodated in Audenaert's binary-entropy term.