Patent Abstracts of Japan

PUBLICATION NUMBER

07047104

PUBLICATION DATE

21-02-95

APPLICATION DATE

05-08-93

APPLICATION NUMBER

05213327

APPLICANT: KAWASUMI LAB INC;

INVENTOR: OSHIKAWA MASANAO;

INT.CL.

: A61J 1/10

TITLE

: MEDICAL FLUID CONTAINER, BLOOD

PRESERVATION CONTAINER AND

MANUFACTURE THEREOF

ABSTRACT: PURPOSE: To enable the inspection of a pinhole in a container concurrently with a reduction in production equipment and energy by extruding a melted hollow synthetic resin from a die of a extrusion molding machine and pressing the synthetic resin from both sides with a die to form into a flat container by a pressure sealing of its outer periphery part.

> CONSTITUTION: A hollow synthetic resin 2 melted is extruded from a die 1 of an extrusion molding machine. Then, the synthetic resin 2 is pressed from both sides with a die 4 to form in a shape of a flat container. A liquid discharging port 3 preheated is arranged on a jig 6 under the die 4. The hollow synthetic resin 2 is pressed from both side with the die 4 so that the outer periphery part thereof is pressure sealed to be molded into a flat container 7 while the liquid discharging port 3 is buried into an end part of the synthetic resin 2.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-47104

(43)公開日 平成7年(1995)2月21日

(51) Int.Cl.6

識別記号 庁内整理番号 FI

技術表示箇所

A61J 1/10

A 6 1 J 1/00

330 B

審査請求 未請求 請求項の数3 FD (全 4 頁)

(21)出願番号

特願平5-213327

(22)出願日

平成5年(1993)8月5日

(71)出願人 000200035

川澄化学工業株式会社

東京都品川区南大井3丁目28番15号

(72) 発明者 市 川 俊 二

大分県大野郡三重町大字玉田7番地の1

川澄化学工業株式会社三重工場内

(72)発明者 石 田 彰

大分県大野郡三重町大字玉田7番地の1

川澄化学工業株式会社三重工場内

(72) 発明者 押 川 正 直

大分県大野郡三重町大字玉田7番地の1

川澄化学工業株式会社三重工場内

(54)【発明の名称】 薬液容器、血液保存容器およびその製造方法

(57) 【要約】

【目的】 医療の分野で用いられる熱可塑性樹脂からな る薬液容器、血液保存容器およびその製造方法に関す

【構成】 次の各工程からなる扁平な薬液容器の製造方 法。(1)押出成形機のダイより溶融した中空状の合成 樹脂を押し出す工程、(2)(1)の合成樹脂を金型で 両側から押圧して外周線部を加圧シールして扁平な容器 に形成するとともに合成樹脂の端部に排液ポートを埋設 する工程、並びに以上の方法より製造された薬液容器お よび血液保存容器。

【効果】 容器の製造方法において設備、エネルギーが きわめて少ないことが挙げられると共に、製造工程で容 器のピンホール検査をかねることができる。又薬液容器 ではとくに微粒子の問題が近年着目されているが、本発 明によれば粒子の混入を少なくすることができる。

•

【特許請求の範囲】

【請求項1】 次の各工程からなることを特徴とする扁 平な薬液容器の製造方法。

(1) 押出成形機のダイより溶融した中空状の合成樹脂 を押し出す工程、(2)(1)の合成樹脂を金型で両側 から押圧して外周線部を加圧シールして扁平な容器に形 成するとともに合成樹脂の端部に排液ポートを埋設する 工程、

【請求項2】 次の各工程からなることを特徴とする扁 平な薬液容器の製造方法。

(1) 押出成形機のダイより溶融した中空状の合成樹脂 を押し出す工程、(2)(1)の合成樹脂を金型で両側 から押圧して外周線部を加圧シールして扁平な容器に形 成するとともに合成樹脂の端部に排液ポートを埋設する 工程、(3)前記容器の中に薬液を充填する工程、

【請求項3】 請求項1ないし請求項2記載の方法より 製造された薬液容器および血液保存容器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、医療の分野で用いられ 20 る熱可塑性樹脂からなる薬液容器、血液保存容器および その製造方法に関するものである。

[0002]

【従来の技術】従来より潰れうる薬液容器、血液保存容 器の製造方法は例えば図3のように熱可塑性樹脂をフィ ルム状に加熱成形し、一度冷却後に袋状容器の周縁部を ヒートシール機や高周波溶着機を用いて容器を形成す る。薬液の注入口や排出口は外周縁部と別の工程で容器 に取り付け、このように形成された容器に薬液を充填し ていた。

[0003]

【発明が解決しようとする課題】熱可塑性樹脂製の薬液 容器は、従来は成形機を用いて加熱溶融し一度フィルム 状に加熱成形した後、前配の設備を用いて容器形状を形 成していた。しかしながらヒートシールでは、外部から 加熱するためシール温度、圧力、被着体と熱板とのクリ アランス等の条件の調整が困難である。被着面である内 面を溶融させる温度に加熱させるためには、プラスチッ クは一般に熱伝導度が低いため過酷な温度を加える必要 がある。薬液容器の肉厚は柔軟性、水分透過性などの因 40 子から約200ミクロンから400ミクロンの範囲のも のが好適に用いられている。そのためにフィルムの外面 にピンホールが発生する危険性があった。又、高周波溶 着機もシール条件を設定するのが困難であり、その適用 できる樹脂の対象が限られている。又、設備が高価であ

【0004】薬液の充填は容器が形成された後の工程に なるため、容器に異物が混入する懸念がある。一般にプ ラスチックは静電気を帯びやすくそのため微細な異物が 除去した空気の環境下に、充填工程を設置することが必 **要とされている。**

【0005】[1]本発明は次の各工程からなる扁平な 薬液容器の製造方法を提供する。

(1) 押出成形機のダイより溶融した中空状の合成樹脂 を押し出す工程、(2) (1) の合成樹脂を金型で両側 から押圧して外周線部を加圧シールして扁平な容器に形 成するとともに合成樹脂の端部に排液ポートを埋設する 工程、

【0006】[2]本発明は次の各工程からなる扁平な 10 薬液容器の製造方法を提供する。

(1)押出成形機のダイより溶融した中空状の合成樹脂 を押し出す工程、(2)(1)の合成樹脂を金型で両側 から押圧して外周線部を加圧シールして扁平な容器に形 成するとともに合成樹脂の端部に排液ポートを埋設する 工程、(3)前記容器の中に薬液を充填する工程、

【0007】[3]本発明は前記[1]ないし[2]記 載の方法より製造された薬液容器および血液保存容器を 提供する。

【課題を解決するための手段】

[0008]

【作用】中空状に加熱溶融成形された熱可塑性樹脂は、 全体の形状を維持しながらも容器の内面は溶融している ため、この過程で外周縁部を所定の形状に加圧するのみ で強固に自着して、実質的にヒートシールを行うことが できる。又、排液ポートもあらかじめ接着面を予熱して おくことにより熱接着と同一の原理で接着される。

[0009]

【実施例】図1は本発明の薬液容器の製造工程を示す概 30 略図である。図中1は押出成形機のダイで、これより溶 融した合成樹脂2が押し出される。図中4は金型で合成 樹脂2を両側から押圧して扁平な容器形状に形成するも のである。金型4の下方には予熱された排液ボート3が 治具6の上に配置されている。

【0010】ダイ1より溶融した中空状の合成樹脂2を 押し出して (工程A1) 合成樹脂2を金型4より両側か ら押圧することにより、その外周縁部を加圧シールして 扁平な容器7に成形するとともに合成樹脂2の端部に排 液ポート3を埋設する(工程B1、C1)。

【0011】図2は、図1の吹込成型工程において薬液 の充填と薬液容器の成形を一連の工程で行う製造工程の 概略図である。金型11の上方に薬液タンク19が途中 に流量調節パルプ16を装着した薬液流入管18を介し て装着されている。

【0012】ダイ11より溶融した中空状の合成樹脂1 2を内部にエアーを吹込みながら押し出して**(工程A** 2)、合成樹脂12内に吹込みエアーの圧力をかけなが ら図1の製造工程と同様に、合成樹脂12の外周縁部を 加圧シールして扁平な容器 17に成形するとともに合成 フィルム表面に付着しやすく、これを除去するには静電 50 樹脂12の端部に排液ポート13を埋設する(工程B

3

2, C2).

【0013】続いてバルブ16を開いて薬液流入管18 を介して扁平な容器17の中に薬液を充填し(工程D 2) 、充填が終了したら(工程 E 2) 、薬液流入管 1 8 を外して、溶着治具20により容器17の上部(排液ボ ート13を埋設した端部と反対側)を溶着する。さらに 切断刃21により新たに押し出された合成樹脂12と切 り離すと同時に金型11を開いて、容器17を取り出す*

* (工程F2)。

【0014】 微粒子試験

薬液の代わりに日本薬局方、注射用蒸留水を500ml 容器に充填した後、高圧蒸気滅菌を行い前記蒸留水を試 料としてリオン社製、自動式液中微粒子計測器KL-0 1を用いて10ml中の微粒子数を測定した。その結果 を表1に示す。

表1 微粒子試験(個/10ml)

大きさ (μ)	実施例	比較例
1~2	220	930
2~5	1 9	7 7
5~10	1	6
10~25	0	0
25~40	0	0
40~50	0	0

[0015]

【発明の効果】以上説明したように、本発明の薬液容器 の製造方法によれば、容器の製造方法において設備、エ ネルギーがきわめて少ないことが挙げられると共に、製 造工程で容器のピンホール検査をかねることができる。 又薬液容器ではとくに微粒子の問題が近年着目されてい 30 6、16 治具 るが、本発明によれば表1の結果により粒子の混入を少 なくすることができる。

【図面の簡単な説明】

【図1】本発明の薬液容器の製造工程を示す概略図。

【図2】本発明の薬液容器の製造工程を示す概略図。

【図3】従来の薬液容器の製造工程を示す概略図。

【符合の説明】

1、11 ダイ

2、12 合成樹脂

3、13 排液ポート

4、14 金型

7、17 扁平な容器(薬液容器、血液保存容器)

薬液流入管 18

19 薬液タンク

20 溶着治具

2 1 切断刃

【図2】

