Лабораторна робота з криптографії №1

Виконав: Костюковець Остап ФБ-96

Варіант №5

Експериментальна оцінка ентропії на символ джерела відкритого тексту

Мета: Засвоєння понять ентропії на символ джерела та його надлишковості, вивчення та порівняння різних моделей джерела відкритого тексту для наближеного визначення ентропії, набуття практичних навичок щодо оцінки ентропії на символ джерела.

Хід роботи

Завдання 1

Написати програми для підрахунку частот букв і частот біграм в тексті, а також підрахунку Н 1 та Н 2 за безпосереднім означенням. Підрахувати частоти букв та біграм, атакож значення Н 1 та Н 2 на довільно обраному тексті російською мовою достатньої довжини (щонайменше 1Мб), де імовірності замінити відповідними частотами. Також одержати значення Н 1 та Н 2 на тому ж тексті, в якому вилучено всі пробіли.

```
In [1]: ru_RU = 'абвгдежзийклмнопрстуфхцчшщыьэюя'
text = open("text.txt").read().lower().replace("ъ","ь").replace("ë","е")

filtered_whitespaces = ' '.join(''.join([i if i in ru_RU else ' ' for i in text]).split(
filtered_no_whitespaces = filtered_whitespaces.replace(' ','')
```

Частоти букв, без пробілів

```
from collections import Counter
letter_frequency = Counter(filtered_no_whitespaces)
for i in ru_RU:
    letter_frequency[i] /= len(filtered_no_whitespaces)
print(sorted(letter_frequency.items(),
    key=lambda item: item[1], reverse=True))
```

Частоти букв, з пробілами

```
In [3]:
    letter_frequency_space = Counter(filtered_whitespaces)
    for i in ru_RU+' ':
        letter_frequency_space[i] /= len(filtered_whitespaces)
```

```
[(' ', 0.16066190923930077), ('o', 0.0888403363171425), ('e', 0.07052079879850502),
               ('a', 0.06918922640172905), ('н', 0.05441511361845287), ('и', 0.05240960253922704),
               ('т', 0.05099650530183213), ('л', 0.04408863380672091), ('р', 0.03936562804019718),
               ('c', 0.03877321419836624), ('B', 0.03514626462238599), ('K', 0.03170772801139174),
               ('д', 0.026452093286157625), ('y', 0.026002800831191043), ('м', 0.025095157605633547),
               ('п', 0.022906668550796316), ('ь', 0.018757959994854877), ('я', 0.01869998677485919),
               ('ы', 0.01651512104627169), ('г', 0.016328519744410568), ('з', 0.015007817326383793),
               ('б', 0.014777736109525905), ('ч', 0.012951579679661726), ('й', 0.009529348036791254),
               (\ '\mathtt{x'},\ 0.008574601569987263),\ (\ '\mathtt{u'},\ 0.008145237409394199),\ (\ '\mathtt{x'},\ 0.0070944727969723485),
               ('\omega',\ 0.005960371680806697),\ ('\mathtt{W}',\ 0.0035907163134829404),\ ('\mathtt{9}',\ 0.0035200614516131953),
               ('\mu', 0.0028171361591654755), ('\phi', 0.0011576527367888995)]
              Частоти біграм, без пробілів
In [4]:
                bigram_frequency = {}
                for i,val in enumerate(filtered_no_whitespaces):
                        if i +1 >= len(filtered_no_whitespaces):
                               break
                        temp = filtered_no_whitespaces[i] + filtered_no_whitespaces[i+1]
                        if temp not in bigram_frequency:
                               bigram_frequency[temp] = filtered_no_whitespaces.count(temp) / (len(filtered_no_whitespaces.count(temp) / 
                print(sorted(bigram_frequency.items(),
                            key=lambda item: item[1], reverse=True)[:10])
               [('To', 0.01430399937836852), ('Ha', 0.01231391526385882), ('He', 0.011586520094021762),
               ('cт', 0.010900135334353557), ('по', 0.010889343121151227), ('ал', 0.01087423402266796
               5), ('ho', 0.010606587135250175), ('ko', 0.010500823445867337), ('pa', 0.010036758278167
               137), ('eh', 0.009972004998953156)]
              Частоти біграм, з пробілами
In [5]:
                bigram_frequency_space = {}
                for i, val in enumerate(filtered_whitespaces):
                        if i +1 >= len(filtered_whitespaces):
                        temp = filtered_whitespaces[i] + filtered_whitespaces[i+1]
                        if temp not in bigram_frequency_space:
                               bigram_frequency_space[temp] = filtered_whitespaces.count(temp) / (len(filtered_
                print(sorted(bigram_frequency_space.items(),
                            key=lambda item: item[1], reverse=True)[:10])
               [('o ', 0.019442768656053943), ('a ', 0.017920971631167126), ('e ', 0.01676875388375282
               5), (' H', 0.016400986269405178), ('M ', 0.01589553225756777), (' П', 0.0158339357113223
               52), (' B', 0.013942559408963022), (' c', 0.013069337782777968), ('я ', 0.01190443839348
               9607), ('TO', 0.01160551397788684)]
              Ентропія
In [6]:
                import math
                def entropy(dict_, n):
                        sum_{-} = 0
                        for p in dict_.values():
                               sum_ += p * math.log2(p)
                        return 1/n * (-sum_)
```

print(sorted(letter_frequency_space.items(),

key=lambda item: item[1], reverse=True))

```
def redundancy(H, n):
    return 1 - (H/(math.log2(n)))

lfe = entropy(letter_frequency, 1)
bfe = entropy(bigram_frequency, 2)
lfse = entropy(letter_frequency_space, 1)
bfse = entropy(bigram_frequency_space, 2)

print("No spaces")
print(f"H1 entropy : {lfe}")
print(f"H2 entropy : {bfe}")
print("With spaces")
print(f"H1 entropy : {lfse}")
print(f"H1 entropy : {lfse}")
print(f"H2 entropy : {bfse}")
```

No spaces

H1 entropy : 4.490728757018316 H2 entropy : 4.179363219527201

With spaces

H1 entropy : 4.405130403820585 H2 entropy : 4.008402242541684

Завдання 2

За допомогою програми CoolPinkProgram оцінити значення Н (10), Н (20), Н (30)

H10: 3.1173 < R < 3.6639

• H20: 2.375 < R < 2.7555

• H30: 2.56079 < R < 3.0895

Використовуючи отримані значення ентропії, оцінити надлишковість російської мови в різних моделях джерела.

```
In [14]:
    def redundancy(H, n):
        return 1 - (H/(math.log2(n)))

    lfr = redundancy(lfe, len(ru_RU))
    bfr = redundancy(bfe, len(ru_RU) + 1)
    lfsr = redundancy(lfse, len(ru_RU) + 1)

    pfrint("No spaces")
    print(f"H1 redundancy : {lfr}")
    print(f"H2 redundancy : {bfr}")
    print("With spaces")
    print(f"H1 redundancy : {lfsr}")
    print(f"H2 redundancy : {lfsr}")
    print(f"H2 redundancy : {bfsr}")
```

No spaces H1 redundancy : 0.0935505023078842 H2 redundancy : 0.1563993516436103 With spaces H1 redundancy : 0.11897391923588307 H2 redundancy : 0.19831955149166325

Висновок

Під час виконання даної лабораторної роботи я навчився вимірювати частоти символів та біграм у тексті, визначати ентропію. Також, я навчився визначати надлишковість мови.