

MONASH ENGINEERING ENG1060

EXAM INFORMATION + REVISION

Edited and Presented by Soon Foo Chong (Joseph)

Slides by Tony Vo

Assisted by Tham Lai Kuan & Christopher Ng

HOUSEKEEPING

- Weekly Moodle post
 - Week 12 Moodle announcement
- Lab-related items
 - Lab 9 marks and feedback available on Moodle Grade Book
 - Lab 10 solutions available on Gdrive > Labs
- PASS Sessions
 - 1) Monday (3:30-5:30pm MYT , 6:30-8:30pm AEDT): https://monash.zoom.us/j/89128532133?pwd=VVVOenhDbW5xZ3h6ZFRZR1dieVhldz09
 - 2) Tuesday (12-2pm MYT , 3-6pm AEDT): https://monash.zoom.us/j/85226581851?pwd=d0YxeWVHd0tudnplanFRYWU2ZGJRUT09

HOUSEKEEPING

- Assignment marking is conducted in your lab this week
 - Check the assignment marking schedule (News Forum post or <u>Moodle</u>)
 Lab Group 01,03: <u>LINK Here</u>
 Lab Group 02, 04, 05, 06, 07: <u>LINK Here</u>
 - Late submission penalties will be applied after marking
 - Final mark will be withheld until cleared for academic misconduct
- Part B Consolidation Quiz released this week
 - Requires understanding of the numerical method and function file
 - Students who have used the Part B function files blindly may struggle
- Ensure that you check Moodle to see if your marks are correct
 - SwotVac week will be your FINAL chance to get it corrected

EXAM COVERSHEET + INSTRUCTIONS

- Final assessment task (50%)
 - Type: Individual exam
 - Mode: <u>e-Assessment platform</u> (non-invigilated)
 - Duration: 3 hours 10 minutes
 - Authorised materials: Open-book, MATLAB, calculator
 - Answers are input into the e-Assessment platform
 - No scanning + uploading is required
 - Weeks 1-12 content examinable

EXAM COVERSHEET + INSTRUCTIONS

Resources

- Exam section on Moodle
- ENG1060 Mock exam (available here)
- Past exams + solutions (<u>available here</u>)
- Resources folder on GDrive
- Exam discussion board
- MATLAB (use this to check answers)
- Exam collaboration document
 - Feel free to create and share exam-style questions

Exam-related files

- ENG1060 Assessment Notice
- Student communication or support during end of semester assessments
- Exam Formulae Sheet
- Mock e-exam
- Exam collaboration document
 - INCIDENTAL ENGINEER STATE OF THE PROPERTY OF T
 - ENG1060 Exam 2017 S2 SOLUTIONS 2.5MB PDF document
 - ENG1060_Exam_2018_S1_QUESTIONS 1.8MB PDF document
 - ENG1060_Exam_2018_S1_SOLUTIONS 1.8MB PDF document

EXAM COVERSHEET + INSTRUCTIONS

- Structure and mark distribution
 - Total 100 marks (200 marks inflated)
 - 9 sections (~55 parts)
 - Section 1: 20 multiple choice questions (20%)
 - Section 2: 5 short-response questions (10%)
 - Sections 3-5: Part A focused (24%)
 - Section 6: Root-finding (10%)
 - Section 7: Curve fitting (12%)
 - Section 8: Numerical integration (12%)
 - Section 9: ODEs (12%)
 - Typical breakdown for Sections 3-9
 - 2x numerical response (copy-paste your MATLAB output into the numerical field)
 - 1x coded response (copy-paste your MATLAB code into the text box)

W1: MATLAB BASICS + MATRICES

ENG1060

- Importance of computing/programming in engineering
 - Logical thinking and problem solving
- Variable calculations and vector creations
 - Operations
 - [...], colon operator, linspace, etc.
- MATLAB built-in functions
 - cosd, log, exp, whos, round, rand, etc.

	OPERATOR PRECEDENCE				
1	0	Parentheses			
	., ,	Transpose, Matrix Transpose,			
2	.^ ^	Power, Matrix Power			
3	~	Logical Negation			
	.* *	Multiplication, Matrix Multiplication,			
4	./ /	Right Division, Matrix Right Division,			
	٠١ ١	Left Division, Matrix Left Division			
	+ Addition				
5	-	Subtraction			
6	:	Colon Operator			
	< <=	Less Than, Less Than Or Equal To,			
7	> >=	Greater Than, Greater Than Or Equal To,			
	== ~=	Equal To, Not Equal To			
8	&	Element-wise AND			
9	_	Element-wise OR			
10	&&	Short-circuit AND			
11		Short-circuit OR			

W2: MATRICES + PLOTTING

ENG1060 functions summary

- What are matrices? Why use matrices?
- Matrix creation and addressing
 - Zeros, ones, rand, eye, etc.
- Element-by-element operators
 - Consistent dimensions
- Plotting
 - Labelling axes, title, legend, etc.
 - Line and marker specifications
 - Subplots

W3: FUNCTIONS + PROGRAMMING PRACTICES

ENG1060 functions summary

What is a function? Why use functions?

- User-defined functions
 - Writing a function with specific inputs and outputs
 - Calling a function from an m-file/command window
 - Why can't you run a function file?
- Comments and documentation
 - Code tells you how and comments tell you why
- More inbuilt functions
 - real, imag, abs, input, disp, etc.

MATLAB commands:
function [...] = ...(...)
 input(...)
 disp(...)

W4: INPUT AND OUTPUT

ENG1060 functions summary

- ASCII values
 - Numerical representation of a character
- fprintf vs. sprintf
 - Prints to command window or a file
 - Width and conversion specifiers
- More inbuilt functions
 - char, str2num, num2str

MATLAB commands:				
		fooi	-+C/1	5141515K51
		Lbi.T	nut ()
			erere Cn	ar(…)
			str2n	um()

97	a	113	q
98	b	114	r
99	С	115	s

num2str(...)

Specifier	Description	Examples (output in red)
%f	Fixed-point Notation	fprintf('%f',pi) 3.141593
%e	Exponential Notation	fprintf('%e',pi) 3.141593e+000
%d	Decimal Notation, no decimals if integer variable	fprintf('%d',2) 2
%g	Whichever is shorter, %f or %e	fprintf('%g',pi) 3.14159
%s	String of Characters	fprintf('%s', 'abc') abc

W4: INPUT AND OUTPUT

ENG1060 functions summary

- Importing data
 - fopen, fgetl, fclose, importdata
- Relational and logical operators
 - Statements return either true (1) or false (0)
- If statements
 - Commands run if condition is true
- Switch statements
 - Commands run if case matches switch variable

switch ... case {...}

Relational Operator	Description
<	Less than
<=	Less than or equal to
>	Greater than
>=	Greater than or equal to
==	Equal to (double equals)
~=	Not equal to

Logical operator	Description
&	AND
I	OR
~	NOT (Invert)

W5: LOOPS AND DEBUGGING

ENG1060 functions summary

- Going from pseudocode to MATLAB code
- Debugger tool
 - Breakpoints and stepping
- Repeat a section of code multiple times
 - For loops: when you know exactly how many times to repeat
 - While loops: when you know what condition to meet

MATLAB commands:

break

continue

for ... end

while ... end

W6: LOOPS, ADVANCED FNS AND LIMITATIONS

ENG1060 functions summary

- Limitations of MATLAB (computers)
 - Overflow and underflow
 - Round-off errors
- Variable scope and data types
- Efficient coding
 - Preallocating, unnecessary variables, functions, vectorisation

MATLAB commands:
 realmax()
 realmin()

f = @(x)...

MONASH University

EXAM SECTIONS 3-5: PART A FOCUSED

Types of questions

- Remember each section typically ends with a part requiring a coded response
- Import a matrix and extract data
 - E.g. Determine the sum values in every Xth row, in sub-matrix
 - E.g. Determine the min/max value and the corresponding row/column
 - E.g. Determine the row that has the greatest product of all numbers
- Create function files
 - Use function file to calculate X, Y, Z
 - Convert function files to anonymous functions
- Use logicals to extract data
 - Determine how many values are less/greater than X
- Reproduce the figure shown

W7: ROOT-FINDING TECHNIQUES

ENG1060 functions summary

- Solving equations (roots) in the form of f(x) = 0
- Bracketing methods:
 - Initial guesses must bracket the root
 - Bisection and false-position methods
- Open methods
 - Initial guesses does not need to bracket the root
 - Newton Raphson, secant and modified-secant methods

Equations:

$$x_r = \frac{x_l + x_u}{2}$$

$$x_r = \frac{f(x_u)x_l - f(x_l)x_u}{f(x_u) - f(x_l)}$$

$$f(x_i)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{m_i}$$
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - \frac{f(x_i)\delta}{f(x_i + \delta) - f(x_i)}$$

EXAM SECTIONS 7: ROOT-FINDING

Types of questions

- Use method X to determine
 - root of f(x) = 0, f(x) = 999, f(x) = g(x)
 - the maximum/minimum turning point
 - root for different equations
 - root for different brackets
 - multiple roots

W8: CURVE FITTING

ENG1060 functions summary

- Linear regression $(y = a_0 + a_1 x)$
 - Fitting a straight line to a set of data
 - Coefficient of determination, r^2
- Non-linear models
 - Exponential
 - Power
 - Saturation growth
- Inbuilt functions
 - Fitting and evaluating polynomials

matlab commands:

polyfit(...)

polyval(...)

Equations:

$$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$a_0 = \overline{y} - a_1 \overline{x}$$

$$S_r = \sum (y_i - a_0 - a_1 x_i)^2$$

$$S_t = \sum (y_i - \overline{y})^2$$
$$r^2 = \frac{S_t - S_r}{S_t}$$

EXAM SECTIONS 8: CURVE FITTING

Types of questions

- Use linear regression on non-linear model X
 - \bullet $a_0, a_1, \alpha, \beta, r^2$
- Use polyfit() to fit a polynomial to a set of data
- Use polyval() to evaluate a polynomial fit

W9: NUMERICAL INTEGRATION

ENG1060 functions summary

- Approximations
 - Trapezoidal rule
 - Simpson's 1/3 rule
 - Simpson's 3/8 rule
- Inbuilt functions
- trapz, integral

trapz(...)
integral(...)

Equations:

MATLAB commands:

$$I = \frac{h}{2} \left[f(x_1) + 2 \sum_{i=2}^{n-1} f(x_i) + f(x_n) \right]$$

$$I = \frac{h}{3} \left[f(x_1) + 4 \sum_{i=2,4,6...}^{n-1} f(x_i) + i, even \atop 2 \sum_{j=3,5,7...}^{n-2} f(x_j) + f(x_n) \atop j, odd \right]$$

 $I = \frac{3h}{8} (f(x_1) + 3f(x_2) + 3f(x_3) + f(x_4))$

EXAM SECTIONS 9: NUMERICAL INTEGRATION

Types of questions

- Use method X to integrate $\int_a^b f(x) dx$
- Use method X to integrate a set of vectors
- Determine the minimum number of points needed to achieve Y% error

W10: ODEs

ENG1060 functions summary

- Euler's method
 - Slope at the current point
- Heun's method
 - Slope at the beginning of the step and
 - Slope at the end of the step
- Midpoint method
- Slope at the midpoint

```
Equations:
                                   y_{i+1} \cong y_i + h\phi
                          y_{i+1} = y_i + hf(t_i, y_i)
                          y_{i+1}^0 = y_i + hf(t_i, y_i)
y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0))
                       y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)
              y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})
```

MATLAB commands:

ode45(...)

EXAM SECTIONS 10: ODEs

Types of questions

- Use method X to solve $\frac{dy}{dx} = f(x, y)$
- Solve $\frac{dy}{dx} = f(x, y)$ using different initial conditions
- Compare solutions of different methods

W11: LINEAR SYSTEMS

ENG1060 functions summary

- Solving the matrix equation [A][x] = [b]
- Naïve Gaussian elimination
 - Forward elimination and back substitution
 - Potential divide-by-zero issues
- Gaussian elimination
 - Forward elimination and back substitution
 - Partial pivoting is involved
- Gauss-Jordan elimination
 - Forward and backward eliminations
 - Partial pivoting is involved

EXAM SECTIONS 11: ODEs

- Types of questions
 - No dedicated section for linear systems
 - Questions will appear either in MCQs or short-response
 - E.g. Describe the advantages/limitations of method X
 - E.g. Use method X to solve this system of equations

COMMON MISTAKES

- Using non-MATLAB variables or built-in functions
- Misreading a question don't panic!
- Not reading a question in full
- Not double checking answers (calculator error)

FINAL TIPS

- Look at previous exam papers
 - Look at the types of questions asked
 - Read the question carefully
 - Identify your weak points based on the past exams then revisit the material
 - Familiarise yourself with the lab questions

- Part B > Part A in difficulty
 - Understand Part B methods and be familiar with the coding
 - Hand-written based questions from labs are crucial for understanding

ENG1060

ENG1060 – COMPUTING FOR ENGINEERS

- 1. Introduction, variables and matrices
- Matrix calculations and plotting
- 3. Functions, commenting, debugging and strings
- 4. Input, output and IF statements
- 5. Loops and debugging
- 6. Loops, advanced functions and MATLAB limitations
- 7. Roots and optimisation
- 8. Curve fitting
- 9. Numerical integration
- 10. Ordinary differential equations
- 11. Linear systems
- 12. Exam information