Topics on Artificial Intelligence & Machine Learning

## Introduction to the Lecture

D. T. McGuiness, Ph.D 2025.WS

MCI



B.Sc Data Science II - Introduction to the Lecture

## **Table of Contents**



## **Table of Contents**



#### First Steps

Introduction

Lecture Contents

Requirement and Learning Outcomes

Lecture Information

Assignments

Lecture Sources

Content Preview



- Warning: This is the content only covered by me as this lecture is shared by Peter Kandolf in Tutorials.
- The goal of this lecture is to give you a much deeper understanding of how machine learning algorithms work and work through practical examples.
- In this lecture we will focus on Neural Networks (NN) a type of machine learning algorithm with uncountable amount of applications in industry.
- This lecture is a total of 4 SWS with a total of sixty (60) UE.
- A unit (UE) is defined as 45 min lecture.



- Lecture materials and all possible supplements will be present in its Github Repo.
  - You can easily access the link to the web-page from <a href="here">here</a>.

Github is chosen for easy access to material management and CI/CD capabilities and allowing hosting websites.

In the lecture content is also distributed as a WebBook which can be accessed from the Repo website.



■ The student should be comfortable with working with either Python and should have gained a working knowledge of statistics.

| Requirements       | Taught Lecture     | Code | Degree | Outcome             |
|--------------------|--------------------|------|--------|---------------------|
| Python Programming | Software Design    | SWD  | B.Sc   | Programming         |
| Working with IoT   | Internet of Things | IOT  | B.Sc   | Understanding AI/ML |
| -                  | -                  | -    | -      | -                   |
| -                  | -                  | -    | -      | -                   |
| -                  | -                  | -    | -      | -                   |

Table 1: Distribution of materials across the semester.



| Description        | Value                             |
|--------------------|-----------------------------------|
| Official Name      | Machine Learning & Data Science 2 |
| Lecture Code       | MLDS                              |
| Module Code        | MECH-B-5-MLDS-MLDS2-ILV           |
| Lecture Name       | Drive Systems                     |
| Semester           | 5                                 |
| Season             | WS                                |
| Lecturer           | Daniel T. McGuiness, Ph.D         |
| Module Responsible | BnM                               |
| Software           | Python                            |
| SWS Total          | 4                                 |
| UE Total           | 60                                |
| ECTS               | 5                                 |
| Working Language   | English                           |



- The lecture will have one personal assignment, (along with tutorial work), which will be based on applying machine learning principles with programming.
- For the written exam you are allowed to write your own equation reference paper, as long as it is a single sheet of A4, double sided and contains no exercise or solutions.

| Assignment Type     | Value |
|---------------------|-------|
| Personal Assignment | 40    |
| Final Exam          | 60    |
| Sum                 | 100   |



| Title                                                                          |
|--------------------------------------------------------------------------------|
| Neural Networks: Methodology and Applications                                  |
| Python for Data Analysis: Data Wrangling with Pandas, Numpy, and iPython       |
| Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow             |
| TensorFlow for Deep Learning: From Linear Regression To Reinforcement Learning |
| Al and Machine Learning for Coders                                             |
| Neural Networks and Deep Learning                                              |
| Python Machine Learning                                                        |
| Machine Learning with Python Cookbook                                          |

**Table 2:** Lecture sources which can be useful during the course of the lecture. For more information on sources, please consult the repo.



| Торіс                                               | Units | Self Study |
|-----------------------------------------------------|-------|------------|
| Support Vector Machines                             | 4     | 8          |
| Decision Trees                                      | 4     | 8          |
| Ensemble Learning and Random Forests                | 4     | 8          |
| Dimensionality Reduction                            | 4     | 8          |
| Unsupervised Learning                               | 4     | 8          |
| Introduction to Artificial Neural Networks          | 4     | 8          |
| Computer Vision using Convolutional Neural Networks |       | 8          |
| SUM                                                 | 28    | 56         |