Informatik S C H U L E Hauptcampus T R I E R

Systemadministration Teil 9

Prof. Dr.-Ing. Jörn Schneider

Wiederholung

Runlevel

- S: Start (Single User)
- 0: Halt
- 1: Single User ("sauber")
- 2: Default Multi User, d.h. Netzwerkdienste gestartet
- 3-5: Weitere Multi User Runlevel
- 6: Reboot

cron Daemon

- Aufgabe regelmäßige Ausführung von Aktivitäten (cron Jobs) in festen Zeitintervallen
 - z.B.
 - Jede Minute prüfen, ob Mails eingegangen sind
 - tägliches Backup durchführen (inkrementell)
 - wöchentliches Backup durchführen (vollständig)

System cron Jobs

/etc/crontab

Tabelle mit System cron Jobs

Format:

- <Zeit> <Kommando>
- Zeit= <Min> <Stunden> <Tag des Monats> <Monat> <Tag der Woche>
- Kommando= <ausführbare Datei> [<Parameter>] [%<Text für stdin>]

Beispiele

- 0,30 * * * write notroot %,,Wieder eine 1/2 Stunde rum,,
- 30 10 * * 1 write notroot %,,Manic Monday,

User cron Jobs

- Kommando crontab
 - Anzeigen
 - crontab -1
 - Einrichten/Ändern/Löschen
 - VISUAL=`which vi`; export VISUAL
 - crontab -e
- Files sind abgelegt in z.B. /var/spool/cron/crontabs/

Ende Wiederholung

Fingerübung Cron Jobs

- 0,30 * * * * write notroot %,,Wieder eine 1/2 Stunde rum,,
- 30 10 * * 1 write notroot %,,Manic Monday,

Ändere Beispiel so ab, dass sie an den Vorlesungstermin für Systemadministration, erinnern und die täglichen Vorlesungspausen

AT DAEMON

at Daemon

- Aufgabe Einmalige Ausführung von Aktivitäten (at Jobs) zu festen Zeitpunkten
 - z.B.
 - In Mittagspause rechenintensiven Job starten
 - Um 19:00 Uhr Nachricht an User "bitte abmelden"
 - Um 20:00 Uhr System zur Wartung runterfahren
 - Nächsten Montag Erinnerung an SysAdmin Vorlesung

Verwaltung von at Jobs

Einrichten

at

Anzeigen

atq

Löschen

atrm

Files sind abgelegt in z.B. /var/spool/cron/atjobs/

Start des at Daemons

- In allen Multiuser Runlevel
- z.B. /etc/rc2.d/S89atd
 - bewirkt Ausführung von "/etc/rc2.d/S89atd start"
 bei Wechsel in Runlevel 2
 - S89atd ist symbolischer link auf /etc/init.d/atd

SYSLOG DAEMON

syslogd

- Aufgabe Protokollieren von Systemmeldungen
 - z.B.
 - Ergebnis von File System Überprüfungen in Log Datei schreiben
 - Datum und Uhrzeit von reboot vermerken
 - Fehlgeschlagene Login-Versuche dokumentieren
 - Kritische Fehlermeldungen von Dämonen auf root Konsole schreiben

Konfiguration des syslogd

/etc/syslog.conf

- Format
 - <Quelle>.<Priorität> <Ziel>
 - Beispiel:
 - mail.alert /var/log/mail.log
 - auth.crit /var/log/auth.log

Quellen

- Kernel
- User
- Mail
- Daemon
- Authorization
- Line Printer
- •••

Prioritäten

- 0 Emergency
- 1 Alert
- 2 Critical
- 3 Error
- 4 Warning
- 5 Notice
- 6 Informational
- 7 Debug

Ziele

- Lokale Logdateien
- Terminals von Benutzern (z.B. root)
- Logserver (über das Netzwerk)

Senden von Meldungen an syslogd

Kommando logger

- sendet Meldungen an den syslogd
- Beispiel:
 - echo "Var x an Stelle s ist 10" | logger -p user.debug

Inhalt

- Was ist ein Rechnersystem?
- Was ist ein Betriebssystem?
- Aufgaben eines Systemadministrators
- Rechneraufbau
- Betriebssystemkonzepte
- Benutzer
- Prozesse und Threads
- Dienste und Bootvorgang (Teil 3) Syslogd
- Benutzerverwaltung unter UNIX

BENUTZERUMGEBUNG

Wiederholung – Ablauf Benutzeranmeldung

Boot unter UNIX(2)

- Der Init Prozess ist Stammvater aller weiteren Prozesse
- Weitere Initialisierungen (siehe Initphase)
- Normalbetrieb: Start von getty für jedes Terminal
 - TTY kommt von Teletype Writer (Fernschreiber)
 - getty konfiguriert Terminal, schreibt "login:" und wartet auf Eingabe
- Bei Eingabe Benutzername terminiert getty durch Start von login
- login fragt nach Passwort, verschlüsselt dieses und vergleicht mit Eintrag in /etc/shadow
- Nach erfolgreichem anmelden terminiert login durch Ausführung der Shell des Benutzers

Beispiel UNIX (I)

- Beim anmelden, suche nach User (z.B. notroot) in
 - /etc/passwd
- Username gefunden →
 - Verschlüsseln eingegebenes Passwort
 - Vergleich mit abgelegtem Passwort
- Vergleich OK →
 - Starte Shell

Booting UNIX

Bildquelle: Zusatzmaterial "Modern Operating Systems", 2nd ed. Andrew S. Tanenbaum, http://www.cs.vu.nl/~ast/books/

Prozessabfolge bei einigen UNIX Systemen

Beispiel UNIX (II)

- /etc/passwd
- Jede Zeile ein User, mit Einträgen:
 - Benutzername
 - Verschlüsseltes Passwort (oder ,x')
 - UID (User ID)
 - GID (ID der primären Gruppe des Users)
 - Kommentarfeld (Name des Benutzers)
 - Home-Verzeichnis
 - Shell die der User verwendet
- Bsp.:

```
hugo:x:1047:1000:Hugo Müller:/home/hugo:/bin/bash
```

Beispiel UNIX (III)

- /etc/shadow
- Enthält verschlüsselte Passwörter anstelle von /etc/passwd
- Steuert Passwort Aging

Beispiel UNIX (IV)

- Bei erfolgreicher Anmeldung:
 - Eintrag in utmp file (Ubuntu Linux: /var/log/utmp)
 - Anzeige über who
 - Setzen der Umgebungsvariablen
 - Wechsel in Home-Verzeichnis
 - Ausführung der Login Skripte in aktueller Prozessumgebung, z.B.:
 - .profile
 - .bashrc

Ende der Wiederholung

Benutzerspezifische Umgebung

- Shell (z.B.: /bin/sh, /bin/csh, /bin/ksh, /bin/tcsh, /bin/bash, ...)
- Home Verzeichnis
- Umgebungsvariablen
- Aliase

Umgebungsvariablen

Environment

- Menge von Shellvariablen, die samt ihren Werten an Kindprozesse vererbt werden
- Achtung:
 - Nicht jede Variable ist eine Umgebungsvariable
 - Sonstige Variablen werden nicht an Kindprozesse vererbt
- Das System definiert gewisse Umgebungsvariablen vor
 - SHELL
 - HOME
 - ..
- Der Benutzer kann Umgebungsvariablen definieren

Wichtige Umgebungsvariablen

- SHELL
 - Pfad der verwendeten Shell
- HOME
 - Heimatverzeichnis
- LOGNAME
 - Benutzername
- PATH
 - Liste der Pfade in der die Shell nach Kommandos sucht
- TERM
 - Typ des verwendeten Terminals
- VISUAL
 - Zu verwendender Editor bei Aufruf über andere Programme, z.B. crontab -e

Umgebungsvariablen definieren

- MYVAR=xyz
 - Weist der Variable MYVAR den Wert "xyz" zu
- export MYVAR
 - Nimmt die Variable MYVAR in die Liste der Umgebungsvariablen auf
- Beispiel siehe nächste Folie

Beispiel

```
    ubuntu-server-8.04.1-i386    VMware Player ▼ Devices ▼
                                                                               _ 🗆 ×
notroot@ubuntu:~$ MYVAR=MeinWert
notroot@ubuntu:~$ echo $MYVAR
MeinWert
notroot@ubuntu:~$ echo $SHLVL
notroot@ubuntu:~$ bash
notroot@ubuntu:~$ echo $MYVAR
notroot@ubuntu:~$ echo $SHLVL
notroot@ubuntu:~$ exit
exit
notroot@ubuntu:~$ echo $MYVAR
MeinWert
notroot@ubuntu:~$ export MYVAR
notroot@ubuntu:~$ bash
notroot@ubuntu:~$ echo $MYVAR
MeinWert
notroot@ubuntu:~$ echo $SHLVL
notroot@ubuntu:~$ exit
exit
notroot@ubuntu:~$ _
                                                         wmware'
To direct input to this virtual machine, press Ctrl+G.
```

Informatik Hauptcampus

T R IE R

Beispiel Forts.

Wiederholung

UNIX: fork & exec

fork

- Erzeugt Kindprozess (Child) mit gleichem Umfeld:
 - Programmcode
 - Speicherimage (Kopie)
 - Umgebungsvariablen (Kopie)
 - Offene Dateien

exec

 Führt neues Programm anstelle des bisherigen aus

Prozesshierarchie

- Elternprozess erzeugt Kindprozess, Kindprozess kann kann eigene Kindprozesse erzeugen, etc.
- Es ergibt sich eine Hierarchie von Prozessen
 - Unter UNIX redet man hier von Prozessgruppen (process group)
- Windows hat kein Konzept zur Prozesshierarchie
 - Alle Prozesse werden gleich erzeugt

Ende der Wiederholung

Wie Umgebungsvariable in Shellskript setzen?

- Bei Ausführung eines Shellskripts wird eigener Kindprozess erzeugt
- Funktioniert das Setzen einer Umgebungsvariablen auch so, dass der Elternprozess den neuen Wert übernimmt?

Wie Umgebungsvariable in Shellskript setzen?

Trick, Ausführung des Shellskripts in derselben Umgebung mit:

source myscript.sh
oder

. myscript.sh

Alias-Mechanismus

Alias-Mechanismus

Textuelle Ersetzungen bei Shellkommandos

- Erstes Wort des Kommandos wird überprüft, bei Übereinstimmung mit Aliasnamen wird es ersetzt
- Beispiel:
 alias ll='ls -l'

Benutzerspezifische Startupskripte

- Beim Start der Shell werden die von der jeweiligen Shell unterstützten Startupskripte im Heimatverzeichnis des Benutzers gestartet
- Beispiele:
 - .profile
 - .bashrc
 - alias