CMSC 471: Probability, and Reasoning and Learning with Uncertainty (Bayesian Reasoning)

Chapters 12 & 13

KMA Solaiman – <u>ksolaima@umbc.edu</u>

Today's topics

- Motivation
- Review probability theory
- Bayesian inference
 - -From the joint distribution
 - Using independence/factoring
 - -From sources of evidence
- Naïve Bayes algorithm for inference and classification tasks

Motivation: causal reasoning

- As the sun rises, the rooster crows
 - Does this correlation imply causality?
 - If so, which way does it go?
- The evidence can come from
 - Probabilities and Bayesian reasoning
 - Common sense knowledge
 - Experiments
- Bayesian Belief Networks (<u>BBNs</u>) are useful for modeling <u>causal reasoning</u>

Motivation: logic isn't enough

- Classical logic is designed to work with certainties
- Getting a positive result on a COVID test doesn't necessarily mean you are infected
- And a negative result doesn't necessarily mean you are not infected
- You need to know the true/false positive and true/false negative rates of the test

Decision making with uncertainty

Rational behavior: for each possible action:

- Identify possible outcomes and for each
 - -Compute probability of outcome
 - -Compute utility of outcome
 - Compute probability-weighted (expected) utility of outcome
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can also go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?
 - -Someone has broken in!
 - -It's a minor earthquake

Probability theory 101

- Random variables:
 - Domain
- Atomic event: complete specification of state
- Prior probability: degree of belief without any other evidence or info
- Joint probability: matrix of combined probabilities of set of variables

- Alarm, Burglary, Earthquake
 Boolean (these) or discrete (0-9), continuous (float)
- Alarm=T∧Burglary=T∧Earthquake=F alarm ∧ burglary ∧ ¬earthquake
- P(Burglary) = 0.1
 P(Alarm) = 0.1
 P(earthquake) = 0.000003
- P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
-burglary	.1	.8

Probability theory 101

	alarm	¬alarm
burglary	.09	.01
-burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:

$$- P(a | b) = P(a \land b) / P(b)$$

- P(b): **normalizing** constant
- Product rule:

$$- P(a \land b) = P(a \mid b) * P(b)$$

Marginalizing:

$$- P(B) = \Sigma_a P(B, a)$$

-
$$P(B) = \Sigma_a P(B \mid a) P(a)$$

(conditioning)

- P(burglary | alarm) = .47P(alarm | burglary) = .9
- P(burglary | alarm) =
 P(burglary ∧ alarm) / P(alarm)
 = .09/.19 = .47
- P(burglary ∧ alarm) =
 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) =
 P(alarm ∧ burglary) +
 P(alarm ∧ ¬burglary)
 = .09+.1 = .19

Probability theory 101

	alarm	-alarm
burglary	.09	.01
-burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:

$$- P(a \mid b) = P(a \land b) / P(b)$$

- P(b): **normalizing** constant
- Product rule:

$$- P(a \wedge b) = P(a \mid b) * P(b)$$

• Marginalizing:

$$- P(B) = \Sigma_a P(B, a)$$

-
$$P(B) = \Sigma_a P(B \mid a) P(a)$$

(conditioning)

- P(burglary | alarm) = .47P(alarm | burglary) = .9
- P(burglary | alarm) =
 P(burglary \(\) alarm) / P(alarm)
 = .09/.19 = .47
- P(burglary \(\) alarm) =
 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) =
 P(alarm ∧ burglary) +
 P(alarm ∧ ¬burglary)
 = .09+.1 = .19

Example: Inference from the joint

	alarm		¬al	arm
	earthquake ¬earthquake		earthquake	-earthquake
burglary	.01	.08	.001	.009
-burglary	.01	.09	.01	.79

```
P(burglary | alarm) = \alpha P(burglary, alarm)
= \alpha [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake)
= \alpha [ (.01, .01) + (.08, .09) ]
= \alpha [ (.09, .1) ]
Since P(burglary | alarm) + P(¬burglary | alarm) = 1, \alpha = 1/(.09+.1) = 5.26
```

(i.e., P(alarm) = $1/\alpha$ = .19 – **quizlet**: how can you verify this?) P(burglary | alarm) = .09 * 5.26 = .474

 $P(\neg burglary | alarm) = .1 * 5.26 = .526$

Consider

EXAM

- A student has to take an exam
 - -She might **be smart**
 - -She might have studied
 - -She may **be prepared** for the exam
- How are these related?
- We can collect joint probabilities for the three events
 - Measure "prepared" as "got a passing grade"

p(smart ∧ study	smart		⊸smart	
∧ prepared)	study	⊣study	study	⊸study
prepared	.432	.16	.084	.008
−prepared	.048	.16	.036	.072

Each of the 8 highlighted boxes has the joint probability for the three values of smart, study, prepared

Queries:

- What is the <u>prior probability</u> of *smart*?
- What is the prior probability of *study*?
- What is the <u>conditional probability</u> of prepared, given study and smart?

Standard way to show joint probabilities of 3 variables as a 2D table

p(smart ∧ study	smart		⊸smart	
∧ prepared)	study	⊣study	study	⊸study
prepared	.432	.16	.084	.008
−prepared	.048	.16	.036	.072

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

$$p(smart) = .432 + .16 + .048 + .16 = 0.8$$

p(smart ∧ study	SI	mart	⊸sr	mart
∧ prepared)	study	⊸study	study	−study
prepared	.432	.16	.084	.008
−prepared	.048	.16	.036	.072

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

p(smart ∧ study	S	smart		mart
∧ prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
−prepared	.048	.16	.036	.072

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

$$p(study) = .432 + .048 + .084 + .036 = 0.6$$

p(smart ∧ study	St	mart	−sı	mart
∧ prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

p(smart ∧ study		mart	⊸smart	
∧ prepared)	study	− study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

```
p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study) = .432 / (.432 + .048)
```

= 0.9

Independence

 When variables don't affect each others' probabilities, they are independent; we can easily compute their joint & conditional probability:

Independent(A, B) \rightarrow P(A \land B) = P(A) * P(B); P(A|B) = P(A)

- {moonPhase, lightLevel} *might* be independent of {burglary, alarm, earthquake}
 - Maybe not: burglars may be more active during a new moon because darkness hides their activity
 - But if we know light level, moon phase doesn't affect whether we are burglarized
 - If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

p(smart ∧ study	SI	mart	⊸sr	mart
∧ prepared)	study	⊣study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

-Q1: Is *smart* independent of *study*?

–Q2: Is prepared independent of study?

How can we tell?

p(smart ∧ study	p(smart ∧ study smart		⊸smart	
∧ prepared)	study	¬study	study	⊸study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

p(smart \(\study \) \(\rangle \) prepared)	smart		⊸smart	
	study	−study	study	−study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

Q1 true iff p(smart|study) == p(smart)

$$p(smart) = .432 + 0.048 + .16 + .16 = 0.8$$

p(smart|study) = p(smart,study)/p(study)

$$= (.432 + .048) / .6 = 0.48 / .6 = 0.8$$

0.8 == 0.8 ∴ smart is independent of study

p(smart ^ study ^ prep)	smart		−smart	
	study	¬study	study	⊸study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- What is prepared?
- Q2 true iff

p(smart ∧ study ∧ prep)	SI	smart		−smart	
	p) study	–study	study	⊸study	
prepared	.432	.16	.084	.008	
−prepared	.048	.16	.036	.072	

Q2: Is *prepared* independent of *study*?

Q2 true iff p(prepared|study) == p(prepared)

p(prepared) = .432 + .16 + .84 + .008 = .684 p(prepared | study) = p(prepared, study)/p(study)= (.432 + .084) / .6 = .86

0.86 ≠ 0.684, ∴ prepared not independent of study

Absolute & conditional independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) * P(B)$; equivalently, $P(A) = P(A \mid B)$ and $P(B) = P(B \mid A)$
- A and B are conditionally independent given C if
 - $P(A \land B \mid C) = P(A \mid C) * P(B \mid C)$

If it holds, lets us decompose the joint distribution:

- $P(A \land B \land C) = P(A \mid C) * P(B \mid C) * P(C)$
- Moon-Phase and Burglary are conditionally independent given Light-Level
- Conditional independence is weaker than absolute independence, but useful in decomposing full joint probability distribution

Conditional independence

- Conditional independence often comes from causal relations
 - FullMoon causally affects LightLevel at night as does StreetLights
- In burglary scenario, FullMoon doesn't affect anything else
- Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary

Bayes' rule

Derived from the product rule:

$$-P(A, B) = P(A|B) * P(B)$$
 # from definition of conditional probability

$$-P(B, A) = P(B|A) * P(A)$$
 # from definition of conditional probability

$$-P(A, B) = P(B, A)$$
 # since order is not important

So...

$$P(A|B) = P(B|A) * P(A)$$

$$P(B)$$
relates P(A|B) and P(B|A)

P(A,B) is probability of both A and B being true, so P(A,B) = P(B,A)

Useful for diagnosis!

- C is a cause, E is an effect:
 - -P(C|E) = P(E|C) * P(C) / P(E)

Useful for diagnosis:

- E are (observed) effects and C are (hidden) causes,
- Often have model for how causes lead to effects P(E|C)
- We may have info (based on experience) on frequency of causes (P(C))
- Which allows us to reason <u>abductively</u> from effects to causes (P(C|E))
- Recall, <u>abductive reasoning</u>: from A => B and B, infer (maybe?) A

Example: meningitis and stiff neck

cause

symptom

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a diagnostic symptom & estimate p(M|S)
- Studies can estimate p(M), p(S) & p(S|M), e.g.
 p(S|M)=0.7, p(S)=0.01, p(M)=0.00002
- Harder to directly gather data on p(M|S)
- Applying Bayes' Rule:
 p(M|S) = p(S|M) * p(M) / p(S) = 0.0014

From multiple evidence to a cause

In the setting of diagnostic/evidential reasoning

- Know prior probability of hypothesis
 $P(H_i)$ conditional probability
 $P(E_i | H_i)$
- Want to compute the *posterior probability* $P(H_i | E_i)$

Bayes's theorem:

$$P(H_i | E_j) = P(H_i) * P(E_j | H_i) / P(E_j)$$

Bayesian diagnostic reasoning

- Knowledge base:
 - -Evidence / manifestations: E₁, ... E_m
 - Hypotheses / disorders: H₁, ... H_n
 Note: E_j and H_i binary; hypotheses mutually exclusive (non-overlapping) & exhaustive (cover all possible cases)
 - Conditional probabilities: $P(E_i \mid H_i)$, i = 1, ... n; j = 1, ... m
- Cases (evidence for particular instance): E₁, ..., E_I
- Goal: Find hypothesis H_i with highest posterior
 - $-Max_i P(H_i | E_1, ..., E_l)$

Bayesian diagnostic reasoning (2)

- Prior vs. posterior probability
 - Prior: probability before we know the evidence, e.g., 0.005 for having COVID)
 - Posterior: probability after knowing evidence, e.g., 0.9 if patient tests positive for COVID
- Goal: find hypothesis H_i with highest posterior
 - $Max_i P(H_i \mid E_1, ..., E_l)$
- Requires knowing joint evidence probabilities

$$P(H_i \mid E_1...E_m) = P(E_1...E_m \mid H_i) P(H_i) / P(E_1...E_m)$$

Having many E_i is a big data collection problem!

Simplifying Bayesian diagnostic reasoning

- Having many E_i is a big data collection problem!
- Two ways to address this
- #1 use conditional independence to effect "causal reasoning" and eliminate some E_i
 - Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary
 - More on this later as <u>Bayesian Believe Networks</u>
- #2 Use a <u>Naïve Bayes</u> approximation that assumes evidence variables are all mutually independent

Simple Bayesian diagnostic reasoning

• Bayes' rule:

$$P(Hi \mid E_1 ... E_m) = P(E_1 ... E_m \mid Hi) P(Hi) / P(E_1 ... E_m)$$

 Assume each evidence E_i is conditionally independent of the others, given a hypothesis H_i, then:

$$P(E_1 ... E_m | Hi) = \prod_{j=1}^m P(E_j | H_i)$$

• If only care about relative probabilities for H_i, then:

$$P(Hi \mid E_1 \dots E_m) = \alpha P(Hi) \prod_{j=1}^m P(E_j \mid H_i)$$

Naive Bayes: Example

```
p(Wait | Cuisine, Patrons, Rainy?) =
```

```
= \alpha \cdot p(Wait) \cdot p(Cuisine|Wait) \cdot p(Patrons|Wait) \cdot p(Rainy?|Wait)
```

```
= p(Wait) • p(Cuisine|Wait) • p(Patrons|Wait) • p(Rainy?|Wait)

p(Cuisine) • p(Patrons) • p(Rainy?)
```

We can estimate all of the parameters (p(F) and p(C) just by counting from the training examples

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Bag of Words Classifier

seen	2
sweet	1
whimsical	1
recommend	1
happy	1
• • •	• • •

Naïve Bayes (NB) Classifier

$$\operatorname{argmax}_{Y} p(X \mid Y) * p(Y)$$
label text

Start with Bayes Rule

Naïve Bayes (NB) Classifier

Assume position doesn't matter

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

A: $p(w_v|u_l)$, $p(u_l)$

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

A: $p(w_v|u_l)$, $p(u_l)$

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

A: $p(w_v|u_l)$, $p(u_l)$

A: LK + L

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

Q: What distributions need to sum to 1?

A: $p(w_v|u_l)$, $p(u_l)$

A: LK + L

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

A: $p(w_v|u_l)$, $p(u_l)$

Q: How many parameters must be learned?

A: LK + L

Q: What distributions need to sum to 1?

A: Each $p(\cdot | u_l)$, and the prior

Limitations

- Can't easily handle multi-fault situations or cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider composite hypothesis $H_1 \wedge H_2$, where H_1 & H_2 independent. What's relative posterior?

```
P(H_1 \wedge H_2 \mid E_1, ..., E_l) = \alpha P(E_1, ..., E_l \mid H_1 \wedge H_2) P(H_1 \wedge H_2)
= \alpha P(E_1, ..., E_l \mid H_1 \wedge H_2) P(H_1) P(H_2)
```

- $= \alpha \prod_{i=1}^{l} P(E_i \mid H_1 \wedge H_2) P(H_1) P(H_2)$
- How do we compute $P(E_i \mid H_1 \land H_2)$?

Limitations

- Assume H1 and H2 independent, given E1, ..., El?
 - $-P(H_1 \wedge H_2 \mid E_1, ..., E_l) = P(H_1 \mid E_1, ..., E_l) P(H_2 \mid E_1, ..., E_l)$
- Unreasonable assumption
 - Earthquake & Burglar independent, but not given Alarm:
 P(burglar | alarm, earthquake) << P(burglar | alarm)
- Doesn't allow causal chaining:
 - A: 2017 weather; B: 2017 corn production; C: 2018 corn price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - $-P(C \mid B, A) = P(C \mid B)$
- Need richer representation for interacting hypoteses, conditional independence & causal chaining
- Next: Bayesian Belief networks!

Summary

- Probability a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Answer queries by summing over atomic events
- Must reduce joint size for non-trivial domains
- Bayes rule: compute from known conditional probabilities, usually in causal direction
- Independence & conditional independence provide tools
- Next: Bayesian belief networks