Explaining the levels of employment in the city of Cancun, Mexico Through Linear Regression and k-means cluster analysis

Adolfo Camacho Yague

March 6, 2020

1. Introduction

1.1 Background

The city of Cancun, Mexico is one of the most important sites for tourism in the country. The city is located in the state of Quintana Roo, the economic output of the city is greater than the capital city of the state Chetumal. The main attractions of the city are the archaeological of mayan culture sites such as Xcaret, Yamil Lu'um or Coba. Or natural sites like the mangrove swamp od Nichupte and the Cenotes which are natural sources of underground water

1.2 Problem

The main goal of this project is to explain the factors that contribute to the total number of people employed in the city. As a first approach the data related to the city, its venues, was downloaded, resulting in a query of 125 locations. It clear that this data is insufficient to describe the levels. It was decided to compare this set of information with the source of the Mexican government, the INEGI

1.3 Interest

This project could be of interest of the government officials and the people of Cancun, describing other variables and how they affect the level of employment in the city could be useful to improve or develop new government policies

2. Data acquisition and cleaning

2.1 Data Sources

As described above, the information stored in FourSquare was compared against the official source of the Mexican agency, available here. Querying the information only for the city

Besides the target and independent variables, the postal code and the latitude and longitude of each AGEB, this for the construction of various maps

2.2 Data Cleaning

5 different datasets were downloaded, one for each independent variables of the models; total population, holders of BA degrees 25 years and above, people with employment, no vacant housing, people with government health insurance. The datasets consist in only two variables, the amount of people with the trait of the variable and the key value of the zone inside the city, AGEB, that is the division for urban population for the census of the Mexican government

The coordinates of this AGEBs were retrieved for another source of the government, from the same agency INEGI, available here. The queries in this site are presented as lists, these lists were segmented in rows for every location, the data was transposed and only the useful information were filtered

For the purpose of having only one dataframe, all the sources were merged, all the rows with missing values were drop from the final table of data

After the visualization of the maps, a k-means analysis was conducted, the label for the variable was decomposed into dummy variables to conduct a second linear regression

2.3 Feature Selection

Afterwards cleaning the two datasets, only 20 rows were retrieved for the query of FourSquare and 278 rows for the data from the INEGI databases

	Ageb	Pea	Population	Longitud	Latitud	Código Postal	Clave_Ageb	Edu	Viv	Salud
0	2300500010084	1071	2170.0	-86.833074	21.160870	77516.0	2300500010084	45.0	947.0	1272
1	2300500010188	1094	2247.0	-86.834151	21.169075	77560.0	2300500010188	48.0	985.0	1213
2	2300500010192	1417	2721.0	-86.826575	21.173982	77535.0	2300500010192	35.0	1302.0	1128
3	2300500010205	1275	2427.0	-86.820003	21.177392	77524.0	2300500010205	26.0	1159.0	1351
4	230050001021A	2622	5150.0	-86.836347	21.176514	97510.0	230050001021A	112.0	2223.0	2763

Because the information and the reach of foursquare it is different, and the site it is not widely used in the city. Moreover, the information from INEGI has not divide the information into Neighborhood, it was not possible to conduct an analysis like the one presented in the course

3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue	Neighbourhood	Postal_Code	lat	long	PostCode
Mexican Restaurant	Convenience Store	Hotel	Fast Food Restaurant	Lighthouse	Breakfast Spot	City	Pizza Place	Los Cedros, San Martín Caballero, Nuevo Amanec	77527	21.1924	-86.8346	77527
Seafood Restaurant	Pizza Place	Convenience Store	Restaurant	Gym / Fitness Center	Pharmacy	Italian Restaurant	Gym	Los Santos, Privadas Sacbe, Paseos Chac Mool,	77518	21.1634	-86.8747	77518
onvenience Store	Pizza Place	Seafood Restaurant	Pharmacy	Gym / Fitness Center	Grocery Store	Gym	Athletics & Sports	Paseos del Sol (Supermanzana 205), Paseos del	77519	21.1620	-86.8810	77519
Italian Restaurant	Café	Sushi Restaurant	Coffee Shop	Juice Bar	Ice Cream Shop	Seafood Restaurant	Burger Joint	Residencial Caracol, Supermanzana 313, Privada	77533	21.1391	-86.8496	77533
Mexican Restaurant	Convenience Store	Brewery	Burrito Place	Paintball Field	Seafood Restaurant	Fast Food Restaurant	Rental Car Location	Residencial Cumbres, Doctores, Supermanzana 29	77560	21.0827	-86.8572	77560

3. Exploratory analysis

3.1 Correlations Between target and independent variables

Every variable is direct related to everyone else, the same three point are out layers in every cross, these three AGEBs are the most populated, that is why they reach the highest levels in the graphs (all the variables are expressed in number of people)

Also, it is seen that in the histograms, every variable has the highest values in the first or the second bind, describing a gamma behavior

Points described by Foursquare

Points described by INEGI

4. Predicting Modelling

4.1 Linear Regression

A first linear regression was conducted, using the people with employment as the target variable and the independent variables described before. Resulting in the next equation;

	Coeff
Edu	-1.367030
Viv	0.219954
Salud	0.146979
Population	0.338602

 $\hat{y} = -28.334 - 1.36 Education + 0.219 Housing + 0.146 Health + 0.3386 TotPop$

\hat{y} Prediction of people with employment in the AGEB

Education Holders of BA with 25 years old or above

Housing No vacant houses in the zone (AGEB)

Health People Health Insured (Government)

TotPop Total Population

It is described that the intercept is negative, the unemployment in the area is relatively high, therefore these factors are very to describe the employment dynamics in the zone. Something that is very interesting too is that holder with BA degree education are affected negatively for the model, it seems like there is not enough opportunities for qualified people in the city. The most marginal factor that contributes positively to the model is health insurance

Predicted Vs Real

Residual Distribution (Prediction - Real)

Metrics

R - Squared 0.9914

MAE 76.329

MSE 11417.394

RSME 106.852

4.2 K means cluster analysis

A K means cluster analysis was made Foursquare with the independent variables described in the course. In order to select the optimal number of clusters, the best K selected was k=3

WCSS is the sum of all Euclidean distances from the centroids to each point in the data, the criteria for select the best was to find the k that at least grouped 5% of the data and have a reasonable WCCS score

Using the frequencies of each venue, and after applying a scalar method, the 20 point were classified as follows

The method classified the venues the West size as the less frequent venues, whereas the east size is where it is more common to find residential areas. The two points in the north did not fit the criteria and they were classified in a different group

4.3 K means cluster analysis, INEGI data

A second cluster analysis was made using the information from INEGI, this data was grouped into 278 rows, each one describing an individual AGEB. The training information for this model was the four independent variables used in the liner regression

Once again an elbow method was run to choose the best k for the model. This time it was decided to used k=5 as the best parameter

Points classified by the model

The red dots seem to described the most far zones in the city, by each independent variables had the following basic statistics. These areas are the less populated, thus they have the lowest amount of each variable

	Edu	Viv	Population	Cluster Labels
count	89.000000	89.000000	89.000000	89.0
mean	13.011236	243.067416	482.741573	0.0
std	12.129504	187.021620	376.096746	0.0
min	0.000000	0.000000	0.000000	0.0
25%	4.000000	81.000000	163.000000	0.0
50%	11.000000	213.000000	433.000000	0.0
75%	18.000000	371.000000	781.000000	0.0
max	62.000000	747.000000	1285.000000	0.0

The purple dots the are mainly in the north part of the city parallel of the main avenue dividing the city in two part. This group has the following statistics. This cluster is 7 times more populated than the red dots

	Edu	Viv	Population	Cluster Labels
count	66.000000	66.000000	66.000000	66.0
mean	85.651515	1178.378788	3526.878788	1.0
std	22.535778	252.390160	489.519781	0.0
min	45.000000	789.000000	2533.000000	1.0
25%	69.500000	977.750000	3164.500000	1.0
50%	83.000000	1148.500000	3394.500000	1.0
75%	97.500000	1304.250000	3927.250000	1.0
max	135.000000	1854.000000	4510.000000	1.0

The third cluster is where only 3 AGEBs where grouped, these are the outlayers form the linear regression. These AGEBs are highly populated with a relatively high level of education

	Edu	Viv	Population	Cluster Labels
count	3.000000	3.000000	3.000000	3.0
mean	441.333333	4270.666667	11953.333333	2.0
std	57.873425	784.276949	1886.872103	0.0
min	404.000000	3736.000000	10643.000000	2.0
25%	408.000000	3820.500000	10872.000000	2.0
50%	412.000000	3905.000000	11101.000000	2.0
75%	460.000000	4538.000000	12608.500000	2.0
max	508.000000	5171.000000	14116.000000	2.0

The fourth cluster analysis are the green dots. They are mainly found in the south of the city, in comparison with the north part of the city they are more populated, but they have more holders of BA degrees

	Edu	Viv	Population	Cluster Labels
count	97.000000	97.000000	97.000000	97.0
mean	52.938144	743.474227	1969.773196	3.0
std	20.439349	196.553486	455.285339	0.0
min	18.000000	379.000000	1191.000000	3.0
25%	39.000000	600.000000	1535.000000	3.0
50%	50.000000	731.000000	1968.000000	3.0
75%	66.000000	846.000000	2370.000000	3.0
max	127.000000	1346.000000	2777.000000	3.0

The last cluster, the orange dots, they are found also in the north of the city, in comparison with the second cluster they are more populated, and they hold the most people with higher education, even more than the fourth cluster

	Edu	Viv	Population	Cluster Labels
count	23.000000	23.000000	23.000000	23.0
mean	131.869565	2024.130435	5252.695652	4.0
std	45.145527	505.868138	621.181677	0.0
min	77.000000	1222.000000	4465.000000	4.0
25%	97.000000	1647.500000	4644.000000	4.0
50%	115.000000	2013.000000	5181.000000	4.0
75%	156.000000	2258.000000	5643.500000	4.0
max	242.000000	2936.000000	6644.000000	4.0

4.4 Linear Regression, cluster labels

With the cluster labels, this variable was decomposed in five dummy variables (0,1), one for each cluster, a second linear regression model was proposed, resulting in the next equation

This time the intercept is positive, which means that adding the classification to the model filters the zones in the city that has a higher employment of people or vice versa

	Coeff
Edu	-1.761617
Viv	0.217771
Salud	0.132807
Population	0.348285
G1	-98.111954
G2	-81.302152
G3	309.624098
G4	-72.793926
G5	-57.416066

$$\hat{y} = 74.473 - 1.76 Education + 0.217 Housing + 0.132 Health + 0.3482 TotPop - 98.1 G1 + 81.3 G2 + 309.62 G3 - 72.79 G4 - 57.41 G5$$

Every group diminishes the number of predicted number with employment target, except for the third group, which are out layers in the data

Predicted Vs Real

Residual Distribution

4. Conclusions

Based in the second regression we can concluded that the city suffers a systemic problem of unemployment, moreover, the people of the first and the second cluster of AGEBs are affected more severe. These AGEB are the ones that are more far away from the center of the city or they are in the north of the city

Furthermore, the city does not offer many opportunities for people that have a bachelor degree, the AGEBs with more people with this trait they tend to be worse than other clusters

The third cluster, with only three points, seem to be an example of success, in the map they are not near to each other, so the dynamics in these zones could be an example to develop new policies to reduce the unemployment in Cancun