X線回折

川口廣伊智 (05171523) 共同実験者:藤田琢也 金澤慶季

2017/05/08

1 実験の目的

X線回折法の理解云々は解説書にある通りだ。私が本実験で意識したのは 再現性である。なので実験の手順もなるべく詳細に記述した。

2 実験の手順

2.1 1日目 (粉末 X 線回折)

- NaCl の充填されたガラス試料板をゴニオメータ中央にセットした。
- X 線発生装置を起動した。
- X線を発生させた。
- X 線回折測定条件の編集
 - 開始角度を 10°,終了角度を 120 に設定した。
 - サンプリング幅を $0.0100\,^\circ$, スキャンスピードを $5.0000\,$ に設定した。
- 測定を実行した。
- 測定が終了したのち、NaCl 試料を取り出し、KCl 試料をセットした。
- 測定を実行した。
- 以降、この作業を CsCl, KCl-CsCl 固溶体, sample B, sample C, sample E について行った。
- (途中試料交換の際に DOOR ボタンを押さずに防 X 線扉を開けて警報がなり、X 線の発生からやり直した。)

- KCl-CsCl 固溶体の作製
 - KCl, CsCl を 5:2 のモル比で混合することを決めた。
 - 実際には KCl0.026g, CsCl0.023g の混合水溶液となった。
 - その混合水溶液を約120℃で熱し乾燥させ、固溶体を作製した。

2.2 2日目 (ラウエ写真)

- 薄い NaCl 単結晶をゴニオメータヘッド上の軸木の先端に固定した。(既 にされていた。)
- ゴニオメータの平行移動調節ネジで試料をゴニオメータの回転軸上に 位置させた。
- 試料の4回対称軸がX線入射軸と一致するように目測でセットした。
- 試料とフィルム間の距離を 42.3 ± 1.0mm にセットした。
- ラウエ写真を撮影した。
- 補正角を算出して角度を調整した。(補正角が 0.2 ほどで結局目測)
- ラウエ写真を撮影した。
- 試料の2回対称軸が X 線入射軸と一致するように目測でセットした。
- ラウエ写真を撮影した。
- 試料の3回対称軸がX線入射軸と一致するように目測でセットした。
- ラウエ写真を撮影した。

2.3 3日目(ノモン投影)

前日撮影した NaCl 結晶の 4 回対称のラウエ写真のスポットのミラー指数 付けを行った。

3 課題1への解答

ダイヤモンド型構造の結晶構造因子は h,k,l がすべて偶数かすべて奇数かの場合に限り

$$F_{\rm C} = \begin{cases} 8f & h+k+l = 4m \, \text{のとき} \\ -4f_A + 4f_X & h+k+l = 4m \pm 1 \, \text{のとき} \\ 0 & h+k+l = 4m \pm 2 \, \text{のとき} \end{cases}$$
 (1)

である。h,k,l がすべて偶数でもすべて奇数でもない場合は $F_{\rm C}=0$ となる。 NaCl 型構造の結晶構造因子は

$$F_{\text{NaCl}} = \begin{cases} 4f_A + 4f_X & h, k, l \text{ がすべて偶数のとき} \\ -4f_A + 4f_X & h, k, l \text{ がすべて奇数のとき} \\ 0 & \text{それ以外} \end{cases} \tag{2}$$

である。

CsCl 型構造の結晶構造因子は

$$F_{\text{CsCl}} = \begin{cases} f_A + f_X & h + k + l \text{ が偶数のとき} \\ -f_A + f_X & h + k + l \text{ が奇数のとき} \end{cases}$$
 (3)

である。

NaCl 型構造において $f_A = f_X$ の場合, h, k, l がすべて奇数の場合の回折が起こらなくなる。

3.1 考察

ここで簡単な考察を入れる。実際に KCl の粉末を使って X 線を回折したときに、h,k,l がすべて奇数のミラー指数に対応する回折線が (111) に対応するものを除いて存在しなかった。これらは消滅則にはかからない。しかし K と Cl の原子散乱因子が解説書図 12(b) にあるようにほぼ等しく、上にあるように $f_A=f_X$ となっているからであろう。

4 課題2への解答

観測されるべきスポットの数は 83 つ。これは逆格子空間上において X 線 エネルギーの制限とフィルム幅の制限によって出来る領域内にあり消滅則に かからないミラー指数に対応する格子点を結んだ直線の数である。同一直線 上の格子点 ((240) と (480) など) は全て一つのスポットに寄与するからである。しかし実際に観測されたのは 5 つであった。

4.1 考察

観測されるベきスポットの数に対して実際に観測されたスポットの少なさについて。これは、(240) に対応するスポットのように一つのスポットに寄与できる格子点の数が多いと回折される X 線の強度が強くなり観測されるが、(2(30)0) に対応するスポットのように一つのスポットに対して寄与できる格子点の数が少ない場合は回折される X 線の強度が弱く実際には観測され得ない、ことによる。

5 課題3への解答

トレーシングペーパーに指数付けを行った。

実験結果として, ラウエ写真で得られたスポットに対応するミラー指数を 列挙する。

 $\begin{array}{l} (028),\,(026),\,(208),\,(206),\,(228),\,(226),\,(446),\,(26(12)),\,(4(12)(18)),\,(62(12)),\\ (248),\,\,(246),\,\,(428),\,\,(0\bar{2}8),\,\,(0\bar{2}6),\,\,(\bar{2}08),\,\,(\bar{2}06),\,(\bar{2}04),\,\,(\bar{2}\bar{2}(16)),\,\,(\bar{2}\bar{2}8),\,\,(\bar{2}\bar{2}6),\\ (\bar{2}\bar{6}(12)),\,\,((\bar{12})\bar{4}(18)),\,\,(\bar{4}\bar{2}8),\,\,(\bar{2}\bar{4}8),\,\,(2\bar{2}8) \end{array}$

6 課題4への解答

- (1) 結果から鑑みて固溶体は出来なかった。
- (2) 回折角及びその強度は添付の資料から読み取り、以下の表にまとめた。
- (3)KCl, CsCl, 固溶体粉末, sample B について 2θ , $\sin\theta$, count, d, $h^2+k^2+l^2$, (hkl), の表を作成した。なおそれ以外に各回折線に対応する X 線の種類も推測できたため表に記載した。固溶体に関しては各々の回折線が KCl のもの、または CsCl のものに対応していると考えられたのでこれらも記載した。空欄は推測が困難であった箇所である。

表 1: KCl

2θ	$\sin \theta$	count	面間隔 [Å]	$h^2 + k^2 + l^2$	ミラー指数	x-ray
24.6000	0.213030	113	3.615681	3	(111)	$K\alpha_1$
25.6600	0.222059	375.6	3.134752	4	(200)	$K\beta$
28.4500	0.245730	32508	3.134533	4	(200)	$K\alpha_1$
28.5200	0.246322	16248	3.134773	4	(200)	$K\alpha_2$
40.6200	0.347099	6159.6	2.219105	8	(220)	$K\alpha_1$
40.7200	0.347918	3396	2.219390	8	(220)	$K\alpha_2$
50.2900	0.424911	1209.6	1.812735	12	(222)	$K\alpha_1$
50.4100	0.425858	669.9996	1.813197	12	(222)	$K\alpha_2$
58.7400	0.490448	1755.6	1.570504	16	(400)	$K\alpha_1$
58.9000	0.491664	941.0004	1.570514	16	(400)	$K\alpha_2$
66.4800	0.548147	942	1.405188	20	(240)	$K\alpha_1$
66.6700	0.549533	836.4	1.405129	20	(240)	$K\alpha_2$
73.7900	0.600350	729.6	1.283001	24	(224)	$K\alpha_1$
74.0100	0.601885	382.8	1.282912	24	(224)	$K\alpha_2$
87.7400	0.693024	171.6	1.111433	32	(044)	$K\alpha_1$
88.0200	0.694784	108	1.111374	32	(044)	$K\alpha_2$
94.6100	0.734974	471	1.047997	36	(244) (006)	$K\alpha_1$

94.9300	0.736865	248.4	1.047906	36	(244) (006)	$K\alpha_2$
101.5400	0.774613	369.96	0.994367	40	(260)	$K\alpha_1$
101.9000	0.776596	219.6	0.994294	40	(260)	$K\alpha_2$
108.6700	0.812440	183.6	0.948070	44	(226)	$K\alpha_1$
109.0300	0.814268	111.6	0.948294	44	(226)	$K\alpha_2$

表 2: CsCl

2θ	$\sin \theta$	count	面間隔 [Å]	$h^2 + k^2 + l^2$	ミラー指数	x-ray
19.5500	0.169779	104.4	4.100023	1	(100)	$K\beta$
21.6400	0.187724	3498	4.108195	1	(100)	$K\alpha_1$
27.7300	0.239635	162	3.214263	2	(110)	$K\beta$
27.7500	0.239804	171.6	3.219978	2	(110)	$K\beta$
30.7500	0.265135	10299	2.905119	2	(110)	$K\alpha_1$
30.8200	0.265724	5640	2.905887	2	(110)	$K\alpha_2$
37.8700	0.324495	1331.04	2.373686	3	(111)	$K\alpha_1$
37.9600	0.325238	776.4	2.374153	3	(111)	$K\alpha_2$
44.0000	0.374607	1570.8	2.056157	4	(200)	$K\alpha_1$
44.1100	0.375496	847.2	2.056384	4	(200)	$K\alpha_2$
49.4900	0.418580	1244.4	1.840148	5	(120)	$K\alpha_1$
49.6300	0.419690	694.92	1.839847	5	(120)	$K\alpha_2$
54.5800	0.458494	2562	1.679955	6	(112)	$K\alpha_1$
54.7300	0.459657	1384.8	1.679871	6	(112)	$K\alpha_2$
63.9100	0.529253	646.92	1.455353	8	(220)	$K\alpha_1$
64.0800	0.530511	372.96	1.455511	8	(220)	$K\alpha_2$
68.2800	0.561217	516	1.372464	9	(300)	$K\alpha_1$
68.4700	0.562589	300	1.372522	9	(300)	$K\alpha_2$
72.5300	0.591521	706.92	1.302152	10	(130)	$K\alpha_1$
72.7300	0.592927	386.4	1.302293	10	(130)	$K\alpha_2$
76.6800	0.620327	244.08	1.241684	11	(113)	$K\alpha_1$
76.9200	0.621968	129.96	1.241486	11	(113)	$K\alpha_2$
80.7700	0.647921	188.16	1.188803	12	(222)	$K\alpha_1$
81.0100	0.649514	116.4	1.188834	12	(222)	$K\alpha_2$
84.7800	0.674173	168	1.142510	13	(230)	$K\alpha_1$
85.0400	0.675848	93.96	1.142514	13	(230)	$K\alpha_2$
88.7800	0.699539	612.96	1.101083	14	(123)	$K\alpha_1$
89.0600	0.701283	337.2	1.101075	14	(123)	$K\alpha_2$

96.8000	0.747798	81	1.030024	16	(400)	$K\alpha_1$
97.1200	0.749649	67.08	1.030035	16	(400)	$K\alpha_2$
100.8400	0.770736	176.4	0.999370	17	(140)	$K\alpha_1$
101.2000	0.772734	111.6	0.999264	17	(140)	$K\alpha_2$
104.9400	0.793034	306	0.971269	18	(330)	$K\alpha_1$
105.3300	0.795103	166.08	0.971151	18	(330)	$K\alpha_2$
109.1400	0.814824	88.92	0.945296	19	(133)	$K\alpha_1$
109.5000	0.816642	63.96	0.945537	19	(133)	$K\alpha_2$
113.4000	0.835807	181.2	0.921564	20	(240)	$K\alpha_1$
113.8700	0.838052	105.84	0.921381	20	(240)	$K\alpha_2$
117.8300	0.856402	130.8	0.899402	21	(124)	$K\alpha_1$
118.3100	0.858557	84.96	0.899375	21	(124)	$K\alpha_2$

表 3: 固溶体粉末

20	. 0	,	- ₹ #### [%]	12 , 12 , 12	> = 14.84	♦ + □	
2θ	$\sin \theta$	count	面間隔 [Å]	$h^2 + k^2 + l^2$	ミラー指数	結晶	x-ray
21.5500	0.186953	357	4.123449	1	(100)	cscl	$K\alpha_1$
28.3600	0.244969	554.04	3.146888	4	(200)	kcl	$K\alpha_1$
28.4200	0.245477	315.9996	3.140381	4	(200)	kcl	$K\alpha_2$
30.6700	0.264462	683.0004	2.914934	2	(110)	cscl	$K\alpha_1$
30.6900	0.264631	705	2.913080	2	(110)		
30.7500	0.265135	390	2.907533	2	(110)		
37.7600	0.323587	114	2.382326	3	(111)	cscl	
37.800	0.323917	182.0004	2.379897	3	(111)		
37.8300	0.324165	144.9996	2.378078	3	(111)		
37.8900	0.324660	120.9996	2.374450	3	(111)		
40.5400	0.346444	593.0004	2.225147	8	(220)	kcl	$K\alpha_1$
40.6300	0.347181	324.9996	2.220426	8	(220)	kcl	$K\alpha_2$
43.9100	0.373878	200.0004	2.061874	4	(200)	cscl	$K\alpha_1$
44.0200	0.374768	123	2.056977	4	(200)	cscl	$K\alpha_2$
49.4300	0.418105	207.9996	1.843772	5	(120)	cscl	$K\alpha_1$
49.5500	0.419056	117.99996	1.839587	5	(120)	cscl	$K\alpha_2$
54.5300	0.458107	578.0004	1.682774	6	(112)	cscl	$K\alpha_1$
54.6800	0.459270	320.0004	1.678512	6	(112)	cscl	$K\alpha_2$
58.6200	0.489535	66.99996	1.574740	16	(400)	kcl	$K\alpha_1$
63.8500	0.528809	170.0004	1.457786	8	(220)	cscl	$K\alpha_1$
64.0300	0.530141	113.00004	1.454122	8	(220)	cscl	$K\alpha_2$

66.3700	0.547344	122.0004	1.408419	18	(240)	kcl	$K\alpha_1$
66.5600	0.548731	87.99996	1.404859	18	(240)	kcl	$K\alpha_2$
68.2400	0.560928	90	1.374312	9	(300)	cscl	$K\alpha_1$
68.4200	0.562228	66.99996	1.371135	9	(300)	cscl	
72.4700	0.591098	129	1.304165	10	(130)	cscl	$K\alpha_1$
72.5200	0.591450	98.00004	1.303389	10	(130)		
72.6900	0.592646	90.99996	1.300760	10	(130)		
76.6100	0.619847	66.99996	1.243677	11	(113)	cscl	$K\alpha_1$
76.8500	0.621490	45	1.240391	11	(113)	cscl	$K\alpha_2$
80.6800	0.647322	74.00004	1.190891	12	(222)	cscl	$K\alpha_1$
80.9500	0.649116	60.99996	1.187599	12	(222)		
88.7200	0.699164	195	1.102588	14	(123)	cscl	$K\alpha_1$
89.0200	0.701034	105	1.099647	14	(123)	cscl	$K\alpha_2$
94.5200	0.734441	111.99996	1.049628	36	(244)	kcl	$K\alpha_1$
94.8300	0.736274	69	1.047015	36	(244)	kcl	$K\alpha_2$
100.8200	0.770624	57	1.000344	17	(140)	cscl	$K\alpha_1$
104.9000	0.792821	69	0.972337	18	(330)(114)	cscl	$K\alpha_1$
105.2900	0.794891	53.00004	0.969805	18	(330)(114)	cscl	$K\alpha_2$
108.5900	0.812032	159	0.949334	44	(226)	kcl	$K\alpha_1$
109.0000	0.814115	98.00004	0.946905	44	(226)	kcl	$K\alpha_2$
113.3600	0.835616	81	0.922541	20	(240)	cscl	$K\alpha_1$
113.7600	0.837528	51	0.920435	20	(240)	cscl	$K\alpha_2$
117.7900	0.856222	63	0.900339	21	(124)	cscl	

表 4: sample B

2θ	$\sin \theta$	count	面間隔 [Å]	$h^2 + k^2 + l^2$	ミラー指数	x-ray
25.6100	0.221633	279.96	3.140778	3	(111)	$K\beta$
28.4300	0.245561	21342.96	3.136695	3	(111)	$K\alpha_1$
28.4900	0.246069	10536	3.138002	3	(111)	$K\alpha_2$
42.4900	0.362357	153.9996	1.921034	8	(220)	$K\beta$
47.2900	0.401069	12191.04	1.920494	8	(220)	$K\alpha_1$
47.4200	0.402107	6117.996	1.920295	8	(220)	$K\alpha_2$
56.1100	0.470319	5793.996	1.637719	11	(113)	$K\alpha_1$
56.2600	0.471474	2994	1.637769	11	(113)	$K\alpha_2$
69.1200	0.567269	1493.004	1.357822	16	(400)	$K\alpha_1$
69.3100	0.568634	734.0004	1.357931	16	(400)	$K\alpha_2$

76.3600	0.618134	2402.004	1.246089	19	(133)	$K\alpha_1$
76.6000	0.619779	1155	1.245871	19	(133)	$K\alpha_2$
88.0200	0.694784	414	1.108618	24	(224)	$K\alpha_1$
88.2900	0.696476	1578.996	1.108673	24	(224)	$K\alpha_2$
94.9500	0.736982	1661.004	1.045140	27	(115)	$K\alpha_1$
95.2600	0.738808	833.0004	1.045149	27	(115)	$K\alpha_2$
106.6900	0.802245	1316.004	0.960118	32	(440)	$K\alpha_1$
107.0800	0.804272	647.0004	0.960080	32	(440)	$K\alpha_2$
114.0900	0.839098	1823.004	0.917950	35	(135)	$K\alpha_1$
114.5400	0.841228	876	0.917902	35	(135)	$K\alpha_2$

- (4) 強度の強い回折線は $K\alpha_1$ 線による回折線でそのピークから僅かに回折角が大きいほうにある回折線が $K\alpha_2$ 線による回折線であると考えられる。また、小さい回折角に見られる非常に小さな強度の回折線は $K\beta$ 線による回折線であると考えられる。根拠はこれらを仮定してミラー指数を推定し格子定数を求めると理論値と 1 パーセント程度の精度で一致するから。
- $(5)K\alpha_1$ 線の回折線から得た格子定数から推定した。KCl は 6.283 ± 0.007 [Å] (標本数 10), CsCl は 4.117 ± 0.005 [Å] (標本数 18)。
- (6) まず NaCl について。実験結果から最低角側に現れる 2 つのピークの強度比は

$$\frac{I_{(111)}}{I_{(200)}} = 0.08\tag{4}$$

である。

一方理論値は 0.29

次に KCl について。実験結果から最低角側に現れる 2 つのピークの強度 比は

$$\frac{I_{(111)}}{I_{(200)}} = 0.0035 \tag{5}$$

- 一方理論値は 0.0235
- (7)KCl と CsCl をモル比にして 5:2 で混合したので固溶体粉末の組成は K_5 Cs₂Cl₇ となると考えられる。実験結果から固溶体粉末の組成を求めることは出来なかった。
- $(8)K\alpha_1$ 線の回折線から得た格子定数から推定した。標本数 9 で 5.431 ± 0.001 [Å] だった。 文献値との比較から sample B はシリコンであると考えられた。

6.1 考察

粉末 X 線回折法で得た強度分布について気になった点があった。一つ目は、いずれの試料用いて回折を行っても 2θ の 0 から 30 付近にかけてバックグラウンドの強度が徐々に下がっていき 30 以降一定になる現象が確認できたことである。

二つ目は,各回折角にミラー指数付けを行いそれをもとに格子定数を算出した際に,回折角が大きくなればなるほどそれから算出された格子定数が大きくなったことである。