Assignment 11; STAT 689

Philip Anderson; panders2@tamu.edu 4/02/2018

```
library("HRW")
library("mgcv")
library("cosso")
library("tidyverse")
```

Question 1

```
data("BostonMortgages")
str(BostonMortgages)
                   2380 obs. of 13 variables:
## 'data.frame':
## $ dir : num 0.221 0.265 0.372 0.32 0.36 ...
## $ hir
              : num 0.221 0.265 0.248 0.25 0.35 ...
              : num 0.8 0.922 0.92 0.86 0.6 ...
## $ lvr
## $ ccs
               : int 5 2 1 1 1 1 1 2 2 2 ...
## $ mcs
              : int 2 2 2 2 1 1 2 2 2 1 ...
## $ pbcr
              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ dmi
              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 1 ...
## $ self : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ single : Factor w/ 2 levels "no", "yes": 1 2 1 1 1 1 2 1 1 2 ...
              : num 3.9 3.2 3.2 4.3 3.2 ...
## $ uria
## $ comdominiom: int 0 0 0 0 0 1 0 0 0 ...
## $ black : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ deny
                : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 2 1 ...
1A
Which model does Cosso select?
# create a 1/0 indicator for deny so we know what the procedures are predicting
BostonMortgages$deny_bin <- ifelse(BostonMortgages$deny=="yes", 1, 0)
# evaluate results with contingency table
table(BostonMortgages$deny_bin, BostonMortgages$deny)
##
##
        no
            yes
              0
    0 2095
         0 285
# generate design matrix
# column 5 has a huge outlier - drop it
BostonMortgages_red <- BostonMortgages %>%
 dplyr::filter(dir < 1)</pre>
```

```
# one-hot-encode the factor variables and drop the intercept this function makes
fac_to_int <- stats::model.matrix(~ black + pbcr + self + single, BostonMortgages_red)[, -1] %>%
  data.frame()
int vars <- BostonMortgages red[, c("dir", "lvr")]</pre>
X <- as.matrix(cbind(fac to int, int vars))</pre>
# generate response array
y <- BostonMortgages_red[, c("deny_bin")]</pre>
start <- Sys.time()</pre>
cosso_mod <- cosso::cosso(x=X, y=y, family=c("Binomial"))</pre>
end <- Sys.time()</pre>
# runtime
print(end - start)
## Time difference of 27.46411 secs
head(X)
##
    blackyes pbcryes selfyes singleyes dir
## 1
           0
                   0
                           0
                                    0 0.221 0.8000000
## 2
           0
                            0
                    0
                                      1 0.265 0.9218750
## 3
           0
                            0
                                      0 0.372 0.9203980
                   0
## 4
           0
                   0
                            0
                                     0 0.320 0.8604651
## 5
           0
                   0
                            0
                                      0 0.360 0.6000000
## 6
           0
                    0
                            0
                                      0 0.240 0.5105263
tune_matrix <- data.frame(cosso_mod$tune$Mgrid</pre>
                  , cosso_mod$tune$L2norm
names(tune_matrix) <- c("M","blackyes", "pbcryes", "selfyes", "singleyes", "dir", "lvr")</pre>
print(round(tune_matrix, 2))
        M blackyes pbcryes selfyes singleyes dir lvr
## 1 0.00
              0.00
                      0.00
                                0
                                       0.00 0.00 0.00
## 2 0.20
              0.00
                      0.00
                                 0
                                         0.00 1.35 0.00
## 3 0.45
              0.00
                    0.00
                                 0
                                       0.00 1.32 0.00
## 4 0.70
              0.00
                      0.00
                                 0
                                        0.00 1.31 0.00
                    0.00
                                       0.00 1.30 0.00
## 5 0.95
           0.00
                                 0
## 6 1.20
              0.00
                    1.89
                                 0
                                       0.00 1.29 0.00
## 7 1.45
                                 0
                                       0.00 1.29 0.00
              0.00
                    1.89
## 8 1.70
              0.00
                     1.89
                                 0
                                        0.00 1.29 0.00
## 9 1.95
              0.00
                    1.78
                                 0
                                       0.00 1.44 0.73
## 10 2.20
             0.89
                    1.65
                                 0
                                       0.00 1.41 0.64
## 11 2.45
                                       0.00 1.41 0.64
              0.89
                      1.65
                                 0
                                 0
## 12 2.95
              0.89
                      1.65
                                       0.00 1.42 0.65
## 13 3.45
              0.89
                      1.65
                                  0
                                       0.00 1.42 0.67
## 14 3.95
              0.85
                       1.68
                                  0
                                        0.38 1.39 0.67
start <- Sys.time()</pre>
tune_mod <- cosso::tune.cosso(cosso_mod, 4, FALSE)</pre>
fin <- Sys.time()</pre>
print(fin - start)
```

Time difference of 16.71053 secs


```
tune_matrix %>%
  dplyr::filter(M==tune_mod$OptM) %>%
  print()
```

```
## M blackyes pbcryes selfyes singleyes dir lvr ## 1 0.95 0 0 0 0 1.299109 0
```

The only variable selected for our model is dir.

1B

Which model does mgcv select?

I am going to begin by throwing a great deal of information into the model, using deny as the outcome of interest.

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## deny_bin ~ black + pbcr + self + single + dir + lvr
##
## Parametric coefficients:
```

```
##
               Estimate Std. Error z value Pr(>|z|)
               -6.4130
                           0.4722 -13.581 < 2e-16 ***
## (Intercept)
                                    5.858 4.68e-09 ***
## blackyes
                0.9292
                           0.1586
## pbcryes
                 1.6533
                           0.1833
                                    9.018 < 2e-16 ***
## selfyes
                0.5716
                           0.1988
                                    2.875 0.00404 **
## singleyes
                0.3833
                           0.1391
                                    2.756 0.00585 **
                           0.8082
                                    6.428 1.29e-10 ***
## dir
                5.1953
## lvr
                2.5333
                           0.4531
                                    5.590 2.26e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.151
                        Deviance explained = 15.6%
## UBRE = -0.38041 Scale est. = 1
```

The mgcv procedure selected all of the variables that we put into the model.

1C

The variables selected are not close. Reconciliation between the opposed results would require fairly extensive troubleshooting that will not be performed here.

Question 2

```
data("femSBMD")
names(femSBMD) <- tolower(names(femSBMD))
str(femSBMD)

## 'data.frame': 1003 obs. of 7 variables:
## $ idnum : int 1 1 1 1 1 2 2 2 2 3 3 ...
## $ spnbmd : num 0.719 0.732 0.776 0.781 0.62 0.627 0.759 0.79 0.641 0.622 ...
## $ age : num 11.2 12.2 13.2 14.3 12.7 13.8 14.8 15.8 10.9 11.9 ...
## $ ethnicity: Factor w/ 4 levels "Asian", "Black", ..: 4 4 4 4 4 4 4 4 4 4 4 4 4 ...
## $ black : int 0 0 0 0 0 0 0 0 0 0 ...
## $ hispanic : int 0 0 0 0 0 0 0 0 0 ...
## $ white : int 1 1 1 1 1 1 1 1 1 1 1 1 ...</pre>
```

2A

Define a new identification variable, given as 2 times the existing identification variable.

```
femSBMD$idnum2 <- 2*femSBMD$idnum
str(femSBMD)</pre>
```

```
1003 obs. of 8 variables:
## 'data.frame':
   $ idnum
             : int 1111222333...
              : num 0.719 0.732 0.776 0.781 0.62 0.627 0.759 0.79 0.641 0.622 ...
##
   $ spnbmd
##
              : num 11.2 12.2 13.2 14.3 12.7 13.8 14.8 15.8 10.9 11.9 ...
   $ age
## $ ethnicity: Factor w/ 4 levels "Asian", "Black", ...: 4 4 4 4 4 4 4 4 4 4 ...
             : int 0000000000...
## $ black
   $ hispanic : int 0 0 0 0 0 0 0 0 0 ...
## $ white
           : int 1 1 1 1 1 1 1 1 1 1 ...
```

```
## $ idnum2
             : num 2 2 2 2 4 4 4 4 6 6 ...
```

2B

Rerun the gamm model given in class, using the original idnum variable and the new one. Ensure that we

```
are getting the same results with each.
# original fit
class_fit <- mgcv::gamm(spnbmd ~ s(age) + black + hispanic + white</pre>
                        , random=list(idnum = ~1)
                        , data=femSBMD
# new fit
hw_fit <- mgcv::gamm(spnbmd ~ s(age) + black + hispanic + white
                        , random=list(idnum2 = ~1)
                        , data=femSBMD
# print the original results
summary(class_fit$gam)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## spnbmd ~ s(age) + black + hispanic + white
##
## Parametric coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.92538
                          0.01243 74.444 < 2e-16 ***
                                    4.769 2.13e-06 ***
## black
               0.08191
                          0.01718
                          0.01754 -0.864
## hispanic
               -0.01516
                                              0.388
               0.01503
                          0.01748
                                   0.860
                                              0.390
## white
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
           edf Ref.df
                          F p-value
## s(age) 7.201 7.201 225.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.519
   Scale est. = 0.0013551 n = 1003
# print out the updated results
summary(hw_fit$gam)
## Family: gaussian
## Link function: identity
## Formula:
## spnbmd ~ s(age) + black + hispanic + white
```

```
##
## Parametric coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
                        0.01243 74.444 < 2e-16 ***
## (Intercept) 0.92538
## black
              0.08191
                         0.01718
                                  4.769 2.13e-06 ***
             -0.01516
                         0.01754 -0.864
                                           0.388
## hispanic
## white
              0.01503
                         0.01748
                                  0.860
                                           0.390
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
           edf Ref.df
##
                         F p-value
## s(age) 7.201 7.201 225.6 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.519
    Scale est. = 0.0013551 n = 1003
```

The specific number of the id number variable does not appear to matter in the gamm function's grouping of observations.

Question 3

```
(version_info <- version)</pre>
##
                  x86_64-apple-darwin15.6.0
## platform
## arch
                  x86_64
## os
                  darwin15.6.0
                  x86_64, darwin15.6.0
## system
## status
## major
                  3
## minor
                  4.3
                  2017
## year
## month
                  11
## day
                  30
                  73796
## svn rev
## language
## version.string R version 3.4.3 (2017-11-30)
                  Kite-Eating Tree
version_num <- paste0(version_info$major, ".", version_info$minor)</pre>
cat("\n")
print(paste0("version num: ", version_num))
## [1] "version num: 3.4.3"
library("rstan")
## Loading required package: StanHeaders
## rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)
```

```
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
##
## Attaching package: 'rstan'
## The following object is masked from 'package:tidyr':
##
## extract
RStan has loaded successfully.
```

Question 4

4B

Looking at the data, it appears that a random-intercept model holds for these data. Note that the slope of each pig's data appears to be the same, and they tend to end up where they started.

4C

Fit the random-intercept model and give your code. Also, do a summary and show your results.

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## weight ~ num.weeks
##
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               19.3556
                            0.5988
                                     32.32
                                             <2e-16 ***
                                   158.81
## num.weeks
                 6.2099
                            0.0391
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```