In the Claims:

Please cancel claims 27 and 28 without prejudice.

Please amend claims 16, 19-21, 49, and 58 as follows:

- 1. (original) An electromagnetic drive motor, comprising:
 - a flux return assembly including:
 - an upper pole piece;
 - a lower pole piece;
 - a flux stabilization ring around the upper and lower pole pieces and coupling the upper and lower pole pieces;
 - a top plate;
 - a bottom plate;
 - a magnet in between the top and bottom plates;
 - a top magnetic gap between the flux return assembly and the top plate; and
 - a bottom magnetic gap between the flux return assembly and the bottom plate.
- 2. (original) An electromagnetic drive motor according to claim 1, wherein the flux return assembly is within the top and bottom plates, the flux return assembly having a hole along a centerline.
- 3. (original) An electromagnetic drive motor according to claim 1, wherein the top and bottom plates are within the flux return assembly.
- 4. (original) An electromagnetic drive motor according to claim 2, wherein both the upper and lower pole pieces have an exterior side and an inner side, the inner sides of both the upper and lower pole pieces juxtaposed to each other, wherein the combined upper and lower pole pieces assembly define an outer wall and an inner wall of the flux return assembly, wherein the flux return assembly has a smaller outer diameter along the inner side than the exterior side defining a recess about the inner side of the flux return assembly.

- 5. (original) An electromagnetic drive motor according to claim 4, wherein the flux stabilization ring has a smaller inner diameter than the outer diameter of the flux return assembly along the inner side, wherein the flux stabilization ring wraps around the recess of the flux return assembly.
- 6. (original) An electromagnetic drive motor according to claim 2, further including: a first voice coil;
 a second voice coil;
 a cylinder, the first and second coils wound around the cylinder; and wherein the cylinder is disposed in the top and bottom magnetic gaps.
- 7. (original) An electromagnetic drive motor according to claim 6, wherein the first voice coil is juxtaposed to the top plate and the second voice coil is juxtaposed to the bottom plate.
- 8. (original) An electromagnetic drive motor according to claim 6, wherein the first and second coils are coupled to each other externally from the cylinder and to a pair of terminals.
- 9. (original) An electromagnetic drive motor according to claim 2, wherein the top plate has a top plate tip juxtaposed to the upper pole piece facing towards the bottom plate, and the bottom plate has a bottom plate tip juxtaposed to the lower pole piece facing towards the top plate.
- 10. (original) An electromagnetic drive motor according to claim 2, wherein the top plate has a top plate tip juxtaposed to the upper pole piece facing away from the bottom plate, and the bottom plate has a bottom plate tip juxtaposed to the lower pole piece facing away from the top plate.
- 11. (original) An electromagnetic drive motor according to claim 2, wherein the top plate has a top plate tip juxtaposed to the upper pole piece that faces towards and away from the bottom plate, and the bottom plate has a bottom plate tip juxtaposed to the lower pole piece that faces towards and away from the top plate.

- 12. (original) An electromagnetic drive motor according to claim 9, wherein the top and bottom plates each have a cavity near the top plate tip and bottom plate tip, respectively.
- 13. (original) An electromagnetic drive motor according to claim 2, wherein the upper pole piece has a upper pole tip juxtaposed to the top plate, and the bottom pole piece has a lower pole tip juxtaposed to the bottom plate.
- 14. (original) An electromagnetic drive motor according to claim 2, wherein the upper and lower pole pieces are symmetrical.
- 15. (original) An electromagnetic drive motor according to claim 2, further includes an intermediate gap between the top and bottom magnetic gaps, an outer flux stabilization ring in between the magnet and the flux stabilization ring, wherein the intermediate gap is between the outer flux stabilization ring and the flux stabilization ring.
- 16. (currently amended) An electromagnetic drive motor according to claim 2, wherein the flux [return assembly] stabilization ring is made of aluminum.
- 17. (original) An electromagnetic drive motor according to claim 2, wherein the electromagnetic drive motor is enclosed in a housing.
- 18. (original) An electromagnetic drive motor according to claim 2, wherein the magnet is an assembly of three layers of magnets.
- 19. (currently amended) An electromagnetic drive motor according to claim 1, wherein the top plate has an increased saturation area where the cross-sectional area is smaller than the rest of the top plate juxtaposed to the top magnetic gap, wherein the saturation area has a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.
- 20. (currently amended) An electromagnetic drive motor according to claim 1, wherein the upper pole piece has an increased saturation area where the cross-sectional area is smaller than the rest of the top plate juxtaposed to the top magnetic gap, wherein the saturation area of the

upper pole piece has a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.

- 21. (twice amended) An electromagnetic drive motor, comprising:
 - a flux return;
 - a top plate;
 - a bottom plate;
 - a magnet in between the top and bottom plates;
 - a top magnetic gap between the flux return [assembly] and the top plate; and
- a bottom magnetic gap between the flux return [assembly] and the bottom plate, wherein the flux return has [a] an upper pole tip with an enlarged surface juxtaposed to the top magnetic gap and a lower pole tip with an enlarged surface juxtaposed to the bottom magnetic gap.
- 22. (original) An electromagnetic drive motor according to claim 21, wherein the flux return is within the top and bottom plates.
- 23. (original) An electromagnetic drive motor according to claim 21, wherein the top and bottom plates are within the flux return.
- 24. (original) An electromagnetic drive motor according to claim 21, wherein the top plate near the top magnetic gap is saturated to a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.
- 25. (original) An electromagnetic drive motor according to claim 21, wherein the top and bottom plates near the corresponding magnetic gaps are saturated to a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.
- 26. (original) An electromagnetic drive motor according to claim 21, wherein the flux return near the top and bottom magnetic gaps are saturated to a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.

- 27. (original) An electromagnetic drive motor according to claim 21, wherein the top plate has a top plate tip juxtaposed to the top magnetic gap facing towards the bottom plate, and the bottom plate has a bottom plate tip juxtaposed to the bottom magnetic gap facing towards the top plate.
- 28. (original) An electromagnetic drive motor according to claim 21, wherein the top plate has a top plate tip juxtaposed to the top magnetic gap facing away from the bottom plate, and the bottom plate has a bottom plate tip juxtaposed to the bottom magnetic gap facing away from the top plate.
- 29. (canceled).
- 30. (original) An electromagnetic drive motor according to claim 21, wherein the electromagnetic drive motor has a centerline, wherein along the centerline is a hole.
- 31. 43. (canceled).
- 44. (original) A method for forming an inner flux return, comprising the steps of:

providing an upper pole piece configured to be a ring, the upper pole piece having an exterior side, an inner side, an outer wall, and an inner wall, the diameter of the outer wall along the inner side being smaller than the diameter along the exterior side;

providing a lower pole piece substantially similar to the upper pole piece;

providing a flux stabilization ring between the upper and lower pole pieces, wherein the inner diameter of the flux stabilization ring is smaller than the diameter of the outer wall along the inner side of the pole pieces; and

pressing the inner side of the upper pole piece to the inner side of the lower pole piece, wherein the flux stabilization ring holds the upper and lower pole pieces substantially together.

- 45. (original) A method according to claim 44, further including the steps of:
 laying a layer of adhesive between the inner sides of the upper and lower pole pieces.
- 46. (original) A method according to claim 44, further including the steps of: saturating the upper and lower pole pieces near the exterior sides and the outer walls of the upper and lower pole pieces.
- 47. (original) A method according to claim 44, further including the steps of:
 laying a layer of adhesive between the inner side of the flux stabilization ring and outer
 diameter along the inner sides of the upper and lower pole pieces.
- 48. (original) A method according to claim 46, wherein the saturation of the magnetic field strength is from about 10,000 Gauss to about 22,000 Gauss.
- 49. (currently amended) A method for minimizing the modulation in the magnetic gap of an electromagnetic drive motor, comprising the steps of:

saturating a top plate near a top magnetic gap; saturating a bottom plate near a bottom magnetic gap; [and]

providing a flux return, wherein the top and bottom magnetic gaps are between the flux return and the top and bottom plates[.]; and

enlarging the surface area in the top and bottom plates juxtaposed to the top and bottom magnetic gaps, respectively.

- 50. (original) A method according to claim 49, further including the steps of: saturating the flux return near the top and bottom magnetic gaps.
- 51. (original) A method according to claim 50, wherein the flux return is within the top and bottom plates.

52. (original) A method according to claim 49, further including the steps of:
using finite element analysis to design the top and bottom plates to operate below the
saturation point based on a predetermined flux lines running through the top and bottom plates.

- 53. (original) A method according to claim 49, further including the steps of: saturating the top and bottom plates to a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.
- 54. (original) A method according to claim 53, wherein the maximum level of magnetic field strength is from about 17,000 Gauss to about 20,000 Gauss.
- 55. (original) A method according to claim 49, further including the steps of: saturating the flux return near the top and bottom magnetic gaps to a maximum level of magnetic field strength from about 10,000 Gauss to about 22,000 Gauss.
- 56. (original) A method according to claim 49, wherein the saturation of the top plate is done by providing a smaller cross-sectional area to squeeze the magnetic field in the smaller cross-sectional area in the top plate adjacent to the top magnetic gap; and

saturation of the bottom plates is done by providing a smaller cross-sectional area to squeeze the magnetic field in the smaller cross-sectional area in the bottom plate adjacent to the bottom magnetic gap.

- 57. (original) A method according to claim 54, wherein the saturation of the flux return near the top and bottom magnetic gaps are done by providing smaller cross-sectional areas near the top and bottom magnetic gaps respectively to squeeze the magnetic field through the smaller cross-sectional areas near the top and bottom magnetic gaps.
- 58. (twice amended) A method for increasing the magnetic flux lines running through a magnetic gap of an electromagnetic drive motor, comprising the steps of:

providing a top and bottom plates juxtaposed to respective top and bottom magnetic gaps within an electromagnetic drive motor;

providing <u>more surface area in</u> [a top tip coupled to] the top plate juxtaposed to the top magnetic gap; and

providing <u>more surface area in</u> [a bottom tip coupled to] the bottom plate juxtaposed to the bottom magnetic gap.

59. (previously amended) A method according to claim 58, further comprising the steps of: providing a flux return, wherein the top and bottom magnetic gaps are between the flux return and the top and bottom plates.

providing more surface area in the flux return juxtaposed to the top and bottom magnetic gaps.

- 60. (previously amended) A method according to claim 58, wherein more surface area is provided in the top plate by a top plate tip and more surface area is provided in the bottom plate by a bottom plate tip, wherein the top and bottom plate tips face towards each other.
- 61. (original) A method according to claim 60, wherein between the top and bottom magnetic gap is an intermediate gap, wherein the top and bottom plate tip substantially extends across the intermediate area but not so much that a magnetic short circuit is created between the top and bottom plate tips.

62.-76. (canceled).

Please add claims 77-88 as follows:

- 77. (new) An electromagnetic drive motor, comprising:
 - a flux return;
 - a top plate;
 - a bottom plate;
 - a magnet in between the top and bottom plates;
 - a top magnetic gap between the flux return and the top plate; and
- a bottom magnetic gap between the flux return assembly and the bottom plate, wherein the top plate has a top plate tip juxtaposed to the top magnetic gap facing away from the bottom

plate, and the bottom plate has a bottom plate tip juxtaposed to the bottom magnetic gap facing away from the top plate.

- 78. (New) An electromagnetic drive motor, comprising:
 - a flux return;
- a top plate having a top extended plate tip adjacent to the flux return, where between the top extended plate tip and the flux return is a top magnetic gap; and
- a bottom plate having a bottom extended plate tip adjacent to the flux return, where between the bottom extended plate tip and the flux return is a bottom magnetic gap.
- 79. (New) The electromagnetic drive motor of claim 78, further including a magnet in between the top and bottom plates.
- 80. (New) The electromagnetic drive motor of claim 78, where the flux return has an upper pole tip juxtaposed to the top extended plate tip and a lower pole tip juxtaposed to the bottom extended plate tip.
- 81. (New) The electromagnetic drive motor of claim 80, where the flux return has saturation regions adjacent to the upper and lower pole tips.
- 82. (New) A method for coupling an upper pole piece and a lower pole piece to form a flux return assembly, the method comprising:

fitting the upper and lower pole pieces into a ring to hold the upper and lower pole pieces substantially together.

- 83. (New) The method according to claim 82, where the step of fitting is done by press fitting the upper and lower pole pieces into the ring.
- 84. (New) The method according to claim 82, where each of the upper and lower pole pieces has a recess outer wall, and where the step of fitting is done by press fitting the recess outer wall for each of the upper and lower pole pieces into the ring.
- 85. (New) The method according to claim 84, where the ring is flush within the recess outer walls of the upper and lower pole pieces.

- 86. (New) The electromagnetic drive motor according to claim 21, where the enlarged surface in the upper and lower pole tips are substantially parallel to the longitudinal axis of the magnetic gap.
- 87. (New) The method according to claim 49, where the surface area in the top and bottom plates are substantially parallel to the longitudinal axis of the magnetic gap.
- 88. (New) The method according to claim 58, where the surface area in the top and bottom plates are substantially parallel to the longitudinal axis of the magnetic gap.