Propriétés de fonctions

Seconde 9

18 Mars 2024

- a) Quel est l'ensemble de définition de f?
- b) Quelle est l'image de 3 par f?
- c) 1 est-il un antécédant de 4 par f?

1 Variation de fonction

1.1 Monotonie

Définition 1. Une fonction f est croissante sur un intervalle I si la fonction est définie sur I, et si, pour tout $x \leq y$ dans I, on a

$$f(x) \le f(y)$$

Une fonction f est décroissante sur un intervalle I si la fonction est définie sur I, et si, pour tout $x \leq y$ dans I, on a

$$f(y) \le f(x)$$

Remarque. • Dire d'une fonction qu'elle est croissante ou décroissante, c'est dire qu'elle est croissante ou décroissante sur son ensemble de définition.

• On dit d'une fonction croissante qu'elle conserve l'ordre; tandis qu'une fonction décroissante inverse l'ordre.

Exemple. Soit trois fonctions f, g, h, dont l'ensemble de définition est [0;8]. Les trois fonctions ont pour courbes représentatives C_f , C_g et C_h . Compléter les figures ci-dessous pour déterminer si les fonctions f, g et h sont croissantes ou décroissantes.

Quand une fonction est soit croissante soit décroissante sur un intervalle I, on dit que cette fonction est monotone sur cet intervalle I.

Demonstrations Nous prouvons la croissance de $f: x \mapsto x^2$ et de $g: x \mapsto \sqrt{x}$ sur l'intervalle $[0; +\infty[$.

1.2 Tableau de variation

Pour étudier les variations d'une fonction, on dresse un tableau de variation de cette fonction. Ici, nous étudions la fonction $f\colon [-4;4] \longrightarrow \mathbb{R}$, dont la courbe représentative est donnée ci-dessus. Alors, la tableau de $x \longmapsto x^2$ variation est représenté comme ceci :

x	-4	0	4
f(x)	16		16

Exemple. Soit g la fonction définie sur]-3;4] dont la courbe représentative est donnée par :

 $Compléter \ son \ tableau \ de \ variation:$

x	-3	-2	2	4
g(x)				

Exemple. La fonction inverse est définie comme suit :

$$\begin{array}{cccc} f\colon &]-\infty; 0[\;\cup\;]0; +\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{x} \end{array}$$

 $\textit{Cette fonction poss\`ede une valeur « interdite » : on ne peut pas diviser par 0. Voici sa courbe représentative : \\$

L'ensemble de définition de f est donc la réunion d'intervalles $]-\infty;0[\cup]0;+\infty[$. Cela se répercute sur le tableau de variation.

x	$-\infty$) +∞
f(x)		

 $En\ d\'efinitive$:

- La fonction inverse est décroissante sur $]-\infty;0[$.
- La fonction inverse est décroissante sur $]0; +\infty[$.

Montrer que la fonction inverse n'est PAS décroissante sur son ensemble de définition.

2 Extremums

Définition 2. Soit f une fonction à valeurs réelles et I un intervalle sur laquelle f est définie.

- La fonction f admet un maximum sur I s'il existe $a \in I$ tel que pour tout $x \in I$, $f(x) \leq f(a)$. Dans ce cas, f(a) est le maximum de f sur I.
- La fonction f admet un minimum sur I s'il existe $b \in I$ tel que pour tout $x \in I$, $f(x) \ge f(b)$. Dans ce cas, f(b) est le minimum de f sur I.

Remarque. • Chercher les extremums d'une fonction f sur un intervalle I, c'est chercher un maximum f(a) et un minimum f(b) de f avec a et b appartenant à I.

• Le maximum et le minimum d'une fonction f (sans préciser d'intervalle), correspondent aux maximum et minimum de f sur son ensemble de définition.

Exemple. Soit f la fonction dont la courbe représentative est donnée ci-après.

1. Compléter le tableau de variation suivant.

x	-4	3
f(x)		
$\int (x)$		

- 2. Quel est le maximum de f? En quelle valeur ce maximum est-il atteint?
- 3. Quel est le minimum de f? En quelle valeur ce minimum est-il atteint?

3 Parité d'une fonction

Fonctions paires

Définition 3. Soit f une fonction définie sur un ensemble I centré en 0. Une fonction est paire si, pour tout x dans I, on a

$$f(-x) = f(x)$$

Remarque. L'hypothèse « I est centré en 0 » signifie que si x est dans I, alors -x est dans I. C'est fondamental pour la définition de f.

Exemple. On considère la fonction carrée $f: x \mapsto x^2$ définie sur \mathbb{R} . Montrer que f est paire.

Fonctions Impaires

Définition 4. Soit f une fonction définie sur un ensemble I centré en 0. Une fonction est paire si, pour tout x dans I, on a

$$f(-x) = -f(x)$$

Exemple. On considère la fonction cube $f: x \mapsto x^3$ définie sur \mathbb{R} . Montrer que f est impaire.

La courbe représentative d'une fonction paire est symmétrique par rapport à l'axe des ordonnées.

La courbe représentative d'une fonction impaire est symmétrique par rapport à l'origine du repère.

4 Récapitulatif : étude d'une fonction

Exemple de fonction

$$f\colon \begin{array}{ccc} [-2;2] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & -x^3 + 2x^2 + 3x + 1 \end{array}$$

Courbe représentative

Tableau de valeurs

Indique l'image par la fonction f de différents antécédants appartenant à l'ensemble de définition de f.

x	-2	-1	0	1	2
f(x)					

Tableau de signes

Indique le signe d'une fonction, c'est-à-dire les intervalles où la fonction est positive, et les intervalles où la fonction est négative.

x	-2	-0, 2	2
$\begin{array}{c} \text{Signe} \\ \text{de } f \end{array}$		0	

Tableau de variations

Indique les variations de la fonction, c'est-à-dire les intervalles sur lesquelles la fonction est monotone.

x	-2	-1,29	1,29	2
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$				