# UNTOF Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur. CURSO 2020

### Práctica 02 - Tema: Circuitos Combinatorios

- 1. Construya la tabla de verdad para las compuertas: AND, OR, NAND, NOR, XOR, NXOR, INVERSOR
- 2. Implemente las funciones lógicas NOT (una entrada), AND y OR (dos entradas), utilizando compuertas NOR
- 3. Implemente la función lógica AND de cuatro entradas utilizando exclusivamente:
  - a) Compuertas NOR de dos entradas
  - b) Compuertas NAND de dos entradas
- 4. Diseñe al menos dos circuitos para calcular la función lógica XOR (OR exclusivo)
- 5. Exprese la función de la tabla de verdad que se muestra en el Anexo I como suma de productos y como productos de suma. Simplifique por medio del álgebra de Boole.
- 6. Simplifique las funciones **f**<sub>1</sub> a **f**<sub>4</sub> del Anexo II, utilizando mapas de Karnaugh, álgebra de Boole y el método de Quine-McKluskey. Compare los resultados y elabore una conclusión.
- 7. Dibuje el circuito lógico de las funciones simplificadas en el ejercicio anterior.
- 8. Diseñe un circuito que acepte un carácter de 4 bits como entrada y genere una salida de 7 bits que corresponden al código de Hamming de paridad impar del carácter ingresado.
- 9. Resolver utilizando exclusivamente compuertas NOR la función f₅ del Anexo II.
- 10. Diseñe los siguientes circuitos utilizando un multiplexor.
  - a) La función paridad de 5 (sale 1 si y sólo si hay un número par de unos en las entradas)
  - b) La función Mayoría de 5 ( sale 1 si y sólo si hay más unos que ceros en las entradas)
  - c) La función minoría de 5 (sale 1 si y sólo si hay más ceros que unos en las entradas)
- 11. Dos números de dos bits  $A=(a_1,a_0)$  y  $B=(b_1,b_0)$  deben compararse por medio de una función de 4 variables  $f(a_0.a_1.b_0.b_1)$ . La función f debe tener el valor 1 si  $v(A) \le v(B)$ , donde  $v(x) = 2*x_1 + x_0$ . Diseñe el circuito correspondiente para implementar la misma
- 12. Diseñe un circuito que acepte 4 bits en la entrada y que representen un dígito decimal en formato BCD y determine los valores de las siete salidas que corresponden a su representación en un display de siete segmentos. En el Anexo III, la figura 1 indica cómo se identifican cada uno de los siete segmentos en el display y la figura 2 muestra cómo debe construirse la tabla de verdad dando como ejemplo el resultado para los valores de entrada 0000 y 1001 respectivamente.
- 13. Diseñe un circuito con cuatro entradas y tres salidas que funcione de acuerdo a la tabla 2 del Anexo I, la salida  $s_3$  indica que solo hay una entrada con valor 1 y  $s_1$  con  $s_2$  indican cual es la entrada que tiene dicho valor.
- 14. Implemente un circuito con dos entradas y cuatro salidas, donde el valor presente en las entradas definirán qué salida estará en 1 (no debe haber mas de una salida con 1 simultáneamente).



## **IF005 - ARQUITECTURA DE COMPUTADORAS**

### **CURSO 2020**

### **ANEXO I**

|   | entradas |    | salida |
|---|----------|----|--------|
| a | b        | С  | x      |
| 0 | 0        | .0 | 1      |
| 0 | 0        | 1  | 1      |
| 0 | 1        | 0  | 0      |
| 0 | 1        | 1  | 1      |
| 1 | 0        | 0  | 0      |
| 1 | 0        | 1  | 0      |
| 1 | 1        | 0  | 1      |
| 1 | 1        | 1. | 0      |

Tabla 1

|    | entradas       |   |                | salidas        |    |   |  |
|----|----------------|---|----------------|----------------|----|---|--|
| 63 | e <sub>2</sub> | e | e <sub>0</sub> | S <sub>1</sub> | Sį | S |  |
| 0  | 0              | 0 | 0              | 0              | 0  | 0 |  |
| 0  | 0              | 0 | 1              | 0              | 0  | 1 |  |
| 0  | 0              | 1 | 0              | 0              | 1  | 1 |  |
| 0  | 0              | 1 | 1              | 0              | 0  | 0 |  |
| 0  | 1              | 0 | 0              | 1              | 0  | 1 |  |
| 0  | 1              | 0 | 1              | 0              | 0  | 0 |  |
| 0  | 1              | 1 | 0              | 0              | 0  | 0 |  |
| 0  | 1              | 1 | 1              | 0              | 0  | 0 |  |
| 1  | 0              | 0 | 0              | 1              | 1  | 1 |  |
| 1  | 0              | 0 | 1              | 0              | 0  | 0 |  |
| 1  | 0              | 1 | 0              | 0              | 0  | 0 |  |
| 1  | 0              | 1 | 1              | 0              | 0  | 0 |  |
| 1  | 1              | 0 | 0              | 0              | 0  | 0 |  |
| 1  | 1              | 0 | -1             | 0              | 0  | 0 |  |
| 1  | 1              | 1 | 0              | 0              | 0  | 0 |  |
| 1  | 1              | 1 | 1              | 0              | 0  | 0 |  |

Tabla 2

# **ANEXO II**

$$f_1 = abcd + abcd + abcd + abcd + abcd + abcd$$

$$f_2 = abc + abc + abc + abc$$

$$f_3 = abc + abc + abc + abc + abc$$

$$f_4 = ab + ab + ab$$

Funciones



## **ANEXO III**



| Numero  | Representacion | Salidas |   |    |   |   |   |   |
|---------|----------------|---------|---|----|---|---|---|---|
| decimal | BCD            |         | b | c  | đ | e | f | g |
| 0       | 0000           | 1       | 1 | 1  | 1 | 1 | 1 | 0 |
|         |                |         |   |    |   |   |   |   |
| ******  | **********     |         |   |    |   |   |   |   |
| ******  | ************** |         |   | ., |   |   |   |   |
| 9       | 1001           | 1       | 1 | 1  | 1 | 0 | 1 | 1 |

Figura 1 Figura 2