

Применение методов МРС в экономических задачах

Николай С. Горошко

 Н.С. Горошко
 Методы МРС
 ©2020-2021
 1 / 14

Содержание

• Теория управления по прогнозирующей модели

• Неоклассическая модель оптимального экономического роста

• Построение магистралей

• Результаты численного эксперимента

Применить методы МРС для решения задачи оптимального управления для неоклассической модели экономического роста. Сравнить результаты при использовании различных критериев.

Теория управления по прогнозирующей модели

Управление по прогнозирующей модели (далее MPC, от англ. Model Predictive Control) — это продвинутый метод управления процессами, который используется для соответствующего набора ограничений.

Неоклассическая модель оптимального экономического роста

Начальные условия

$$J(K, L, u) = \int_0^\infty e^{-\rho t} [\ln(1 - u(t)) + \ln F(K(t), L(t))] dt \to \max$$

$$\dot{K}(t) = u(t) F(K(t), L(t)), \qquad u(t) \in U_\varepsilon = [0, 1 - \varepsilon],$$

$$\dot{L}(t) = \mu L(t),$$

$$K(0) = K_0, L(0) = L_0,$$

Условия к которым перешли в результате преобразований

$$J(x,u) = \int_0^\infty e^{-\rho t} [\ln(1 - u(t)) + \ln f(x(t))] dt \to \max.$$

$$\dot{x}(t) = u(t)f(x(t)) - \mu x(t), u(t) \in U_\varepsilon = [0, 1 - \varepsilon],$$

$$x(0) = x_0$$

Построение магистралей

Формулы для нахождения магистральных значений

$$\frac{d}{dx}f(x) = \rho + \mu$$

$$\hat{p} = \frac{1}{f(\hat{x}) - \mu \hat{x}}$$

$$\hat{u} = \frac{\mu \hat{x}}{f(\hat{x})}$$

С критерием типа Лагранжа (Базовый ЕМРС без дополнительных ограничений)

$$J(x,u) = \int_{\tau}^{\tau+z} e^{-\rho t} [\ln(1-u(t)) + \ln f(x(t))] dt$$
(1)

$$u(t) = u_i, t \in [ih, (i+1)h], i = 0, ..., T-1; x_{i+1} = u_i f(x_i) - \mu x_i$$

$$J(x,u) = \sum_{i=0}^{T-1} \int_{ih}^{(i+1)h} e^{-\rho t} [\ln(1-u_i) + \ln f(x_i)] dt =$$

$$\sum_{i=0}^{T-1} \frac{[\ln(1-u_i) + \ln f(x_i)]}{-\rho} \left(e^{-\rho(i+1)h} - e^{-\rho ih} \right)$$

$$J(x,u) = \sum_{i=0}^{T-1} \frac{[\ln(1-u_i) + \ln f(x_i)]}{-\rho} \left(e^{-\rho(i+1)h} - e^{-\rho ih} \right)$$
(2)

Н.С. Горошко Методы МРС © 2020-2021 7 / 14

 $x_{i+1} = u_i f(x_i) - \mu x_i, u_i \in U_{\varepsilon} = [0, 1 - \varepsilon], x(0) = x_0, x_i \ge 0$

EMPC с терминальным ограничением-равенством

$$J(x,u) = \sum_{i=0}^{T-1} \frac{\left[\ln(1-u_i) + \ln f(x_i)\right]}{-\rho} \left(e^{-\rho(i+1)h} - e^{-\rho ih}\right)$$

$$x_{i+1} = u_i f(x_i) - \mu x_i, u_i \in U_{\varepsilon} = [0, 1 - \varepsilon], x(0) = x_0, x(\tau + z) = \hat{x}, x_i \ge 0$$

С критерием типа Майера

$$J(x,u) = W(x(\tau+z)) + \int_{\tau}^{\tau+z} L(x(t), u(t))dt \to \max.$$

$$\dot{x}(t) = u(t)f(x(t)) - \mu x(t), u(t) \in U_{\varepsilon} = [0, 1 - \varepsilon],$$

$$x_0 = x(0).$$

$$W(x, \tau + z) = e^{-\rho(\tau+z)}\hat{p}x$$

$$J(x, u) = e^{-\rho(\tau+z)}\hat{p}x + \int_0^{\infty} e^{-\rho t}[\ln(1 - u(t)) + \ln f(x(t))]dt \to \max,$$

$$\dot{x}(t) = u(t)f(x(t)) - \mu x(t), u(t) \in U_{\varepsilon} = [0, 1 - \varepsilon],$$

$$x(0) = x_0, x > 0$$

$$(3)$$

Рис.: Траектории x и u при z=10

Рис.: Траектории x и u при z=10

Рис.: Траектории x и u при z=10

Анализ

Метод первый - слишком большой горизонт планирования для достижения магистральных значений.

Метод второй - повышенная трудоемкость и недопустимость некоторых начальных условий.

Метод третий - имеет решение при любом горизонте, даже самом малом (в отличие от предыдущего метода).

Наиболее выгодным является третий метод, т.е. с использованием критерия типа Майера (с терминальной стоимостью)