

Introduction to Cognitive Neuroscience

Lecture 7 Electrophysiology

Mohammad-Reza A. Dehaqani

dehaqani@ut.ac.ir

Methods of recording action potentials

Single cell recording in the 1960s and 1970s

Robert Wurtz

Edward Evarts

The raster plot

Stimulus onset at 100ms

Peri-Stimulus time histogram (PSTH)

Estimated firing rate is $\frac{\#spikes}{bin \ size}$

How to compute PSTH from limited data

- Convolve PSTH with a kernel
- Kernel values must sum to 1!

- What kernel to use?
 - Wider means smoother, but lose time resolution
 - Causal?

Inhomogeneous Poisson process

• Intensity depends on time:

$$\lambda(t) = \lim_{\delta t \to 0} Prob \frac{[Spike\ between\ t\ and\ t + \delta t]}{\delta t}$$

• PSTH is an estimator of $\lambda(t)$

Interspike-interval histogram

Developing cochlear hair cells, Tritsch et al, Nature Neurosci 2010

Intra and extracellular recording

http://www.zoology.ubc.ca/~gardner/chemical_synapses%20-%20postsynaptic.htm

Spike sorting methods

Shoham, S., Fellows, M. R., & Normann, R. a. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. *Journal of Neuroscience Methods*, 127(2), 111–122. doi:10.1016/S0165-0270(03)00120-1

Linear probe recordings

Local field potentials

- High-frequency broadband power usually correlates with firing rate
- Is this a gamma oscillation?

Five Common Eelectrophysiology Approaches:

- EEG/ MEG
- Extracellular/Local Field Potentials
- Intracellular Sharp Electrode
- Patch-Clamp Configurations
- Multi-Unit Array Recordings

EEG: Electroencephalogram

- Non-invasive
- Used to capture cortical information processing
- High temporal resolution
- Tool for investigation of real time processing + for the development of braincomputer interfaces

Electroencephalogram (EEG)

Many neurons need to sum their activity in order to be detected by EEG electrodes. The timing of their activity is crucial. Synchronized neural activity produces larger signals.

EEG: Basis of the signal

Necessary conditions for neural signal to be detected:

- Timing or Synchrony
- Large numbers
- Orientation

→ Pyramidal neurons in layer V

- Population of pyramidal neurons create a dipole
- Negative and positive pole
- Depends on excitatory or inhibitory
- Orientation determines the deflections in the EEG signal

EEGs

- ▶ Recording spontaneous brain (voltage volume conductance) activity from the scalp, described in rhythmic activity: Delta (<4 Hz), theta (4-7 Hz), Alpha (8 13 Hz), Beta (14 30 Hz), gamma (30-100 Hz)</p>
- Clinical Neuroscience: epilepsy, coma, tumors, stroke, focal brain damage, depth of anesthesia
- Coordinate cortical activity = high contribution
 Deep structure activity = low contribution

EEG: Frequency spectrum

•Delta:

- •Frequency of < 3.5 Hz
- •Highest in amplitude + slowest waves
- Dominant rhythm in infants (< 1 year) and in stages 3 and 4 of sleep

•Alpha:

- •Frequency: 7.5 13 Hz
- Seen in posterior regions of the head, higher in amplitude on the dominant side.
- Appears when closing the eyes and relaxing.
- Major rhythm in relaxed adults (> 13 years)

Theta:

- •Frequency: 3.5 7.5 Hz → "slow" activity
- •In children (< 13 years) and in sleep.
- Abnormal in awake adults.

Beta:

- •Frequency > 14 and greater Hz → "Fast" activity
- •Seen on both sides in symmetrical distribution and is most evident frontally
- Dominant rhythm in patients who are alert or anxious.

Two ways of generating synchronicity

- a) Pacemaker
- **b) mutual coordination:** collective behavior of all participants

Standard placements of electrodes on the human scalp

A, auricle;

C, central;

F, frontal;

Fp, frontal pole;

O, occipital;

P, parietal;

T, temporal.

Good indicators of global brain state; EEG waves often display rhythmic patterns at characteristic frequencies

Brain rythms

 Need to apply models on the data to quantify, for example the Fourier transform (simple oscillatory function such as sines and cosines)

Brain rythms

400

Time (ms)

Time (ms)

300 400 500

A normal EEG; preprocessing

Event related potential

ERP's are extracted after **averaging EEG** signals obtained over multiple trials (trials are aligned by stimulus onset).

Evoked potentials:

Average on a LOT of trials to get a signal

Interest: compare different types of trials

MEG: Introduction

- <u>Magnetoencephalography</u>
- Non invasive
- High temporal + spatial resolution
- Measures magnetic fields
- Technology: SQUID
- Location of neuronal sources found via magnetic field analysis

Used for:

- Surgical planning (Source locations superimposed on MRI image)
- Neural correlates brain processes

MEG: Basis of the signal

- Postsynaptic potentials (PSPs) create current
- Current = magnetic field

MEG: Basis of the signal

- MEG coil not sensitive to perfectly radial sources
- Only a small proportion of cell are perfectly radial (top of gyri)
 - No distortion of magnetic fields by conductive properties of scalp/head

MEG: Scale of the signal

- MEG signal is tiny
- Can be hidden by noise
- Requires:
 - A magnetically shielded room
 - Supersensitive magnetometers

