B.Comp. Dissertation

Benchmarking and Improving OCR Systems for Southeast Asian Languages

By

Qiu Jiasheng, Jason

Department of Computer Science School of Computing National University of Singapore

2024/2025

B.Comp. Dissertation

Benchmarking and Improving OCR Systems for Southeast Asian Languages

Ву

Qiu Jiasheng, Jason

Department of Computer Science School of Computing National University of Singapore

2024/2025

Project ID: H0792230

Supervisor: A/P Min-Yen Kan

Advisor: Tongyao Zhu

Deliverables:

Report: 1 Volume

Abstract

While Optical Character Recognition (OCR) has been widely studied for high-resource

languages such as English and Chinese, the efficacy and limitations of OCR models on

Southeast Asian (SEA) languages remain largely unexplored. This study aims to bridge

this gap by evaluating OCR technologies for SEA languages and exploring script-specific

challenges. We propose a pipeline to collect textual data from Wikipedia and benchmark

open-source OCR tools. Additionally, we demonstrate the potential of fine-tuning existing

models on SEA languages, aiming to expand OCR capabilities for these languages.

Subject Descriptors:

H.3.3 Information Search and Retrieval

I.2.7 Natural Language Processing

I.2.10 Vision and Scene Understanding

Keywords:

Optical Character Recognition, Southeast Asian Languages

Implementation Software and Hardware:

Python, Tesseract, EasyOCR

ii

Acknowledgements

I would like to thank my supervisor, A/P Kan Min-Yen, and my advisor, Tongyao Zhu, for their invaluable guidance and mentorship. Their encouragement and constructive guidance have been a significant source of inspiration throughout the project.

List of Figures

3.1 Pipeline for data collection from Wikipedia	6
---	---

List of Tables

4.1	Average OCR Runtime Per Page (Seconds)	8
4.2	Error Classification by Character Type for English Articles	9
4.3	Error Classification by Character Type for Indonesian Articles	9
4.4	Error Classification by Character Type for Vietnamese Articles	9
4.5	Error Classification by Character Type for Thai Articles	10
A.1	Dataset of 98 Wikipedia articles	15

Table of Contents

\mathbf{T}^{i}	itle			i
\mathbf{A}	bstra	ct		ii
\mathbf{A}	cknov	wledge	ements	iii
Li	${ m st}$ of	Figure	es	iii
Li	${f st}$ of	Table	5	iv
Ta	able o	of Con	tents	\mathbf{v}
1	Intr	oducti	ion	1
2	Rela	ated V	Vork	3
3	Met	hodol	ogy	4
	3.1	Exper	iment Setup	4
		3.1.1	OCR Systems	4
		3.1.2	Evaluation Metrics	5
		3.1.3	Source of Data	5
		3.1.4	Languages	6
	3.2	Exper	iment 1: Benchmarking on Real Data	6
		3.2.1	Data Collection	6
	3.3	Exper	iment 2: Benchmarking on Synthetic Data	7
		3 3 1	Synthetic Data Generation	7

	3.4	Experiment 3: Fine-tuning for Vietnamese and Thai	7		
4	Res	ults and Analysis	8		
	4.1	RQ1: How do popular OCR tools perform on SEA scripts?	8		
		4.1.1 OCR Accuracy	8		
		4.1.2 Runtime	8		
	4.2	RQ2: What script-related challenges affect OCR accuracy on SEA languages?	10		
	4.3	RQ3: What techniques and recommendations can enhance OCR accuracy			
		on SEA languages?	10		
5	Disc	cussion	11		
6	6 Conclusion 12				
$\mathbf{R}_{\mathbf{c}}$	efere	nces	13		
\mathbf{A}	Wik	kipedia Article Dataset	15		

Introduction

Current research in Natural Language Processing (NLP) is heavily concentrated on only 20 of the 7,000 languages in the world (Magueresse et al., 2020). In particular, Southeast Asia (SEA) is home to over 1,000 languages but remains a relatively under-researched region in NLP (Aji et al., 2023). A similar trend can be observed in Optical Character Recognition (OCR) research, where the focus is predominantly on high-resource languages (Aji et al., 2023; Bustamante et al., 2020), leaving many SEA languages underserved.

OCR, the process of converting textual images into machine-readable formats, offers significant potential for languages with limited datasets. While many scanned documents and books in these low-resource languages are available online, the text within them often remains inaccessible due to formats like images and PDFs. By extracting the text from these documents, OCR can generate valuable datasets for low-resource languages, which can then be used for downstream NLP tasks, such as machine translation and namedentity recognition (Agarwal & Anastasopoulos, 2024; Ignat et al., 2022). Therefore, studying OCR performance on SEA languages is crucial to accelerating NLP research and technology development in the region.

While OCR has been widely studied for high-resource languages such as English and Chinese, the efficacy and limitations of OCR models on SEA languages remain largely unexplored. To address this gap, this study presents a pipeline to collect textual data from Wikipedia and benchmark several open-source OCR tools on the collected data.

Additionally, we explore the potential of fine-tuning existing models to improve OCR performance on SEA languages. The primary objective is to evaluate and enhance the performance of OCR technologies on SEA languages, thereby advancing NLP applications in this linguistically diverse region.

Specifically, this project seeks to answer the following research questions (RQs):

- RQ1: How do popular OCR tools perform on SEA scripts?
- RQ2: What script-related challenges affect OCR accuracy on SEA languages?
- **RQ3:** What techniques and recommendations can enhance OCR accuracy on SEA languages?

Related Work

Methodology

To answer the research questions, this study conducts three experiments to benchmark and improve OCR performance on SEA languages.

3.1 Experiment Setup

3.1.1 OCR Systems

In our selection of OCR systems for benchmarking, we prioritized open-source solutions that support a diverse range of SEA languages, as this approach enhances accessibility and reusability for the proposed evaluation pipeline. Consequently, we selected to use Tesseract and EasyOCR.

Tesseract¹ is an established OCR engine, recognized as one of the top performers in the 1995 UNLV Test (Rice et al., 1995). It utilizes an underlying Long Short-Term Memory (LSTM) model. EasyOCR² is a modern OCR framework that integrates a text detection model based on the Character Region Awareness for Text (CRAFT) algorithm with a recognition model utilizing a Convolutional Recurrent Neural Network (CRNN). Both Tesseract and EasyOCR provide robust support for English, Indonesian, Vietnamese, and Thai, making them suitable candidates for our benchmarking study.

¹https://github.com/tesseract-ocr/tesseract

²https://github.com/JaidedAI/EasyOCR

3.1.2 Evaluation Metrics

$$CER = \frac{I + D + S}{N} \tag{3.1}$$

Similar to most OCR benchmark studies, we utilize Character Error Rate (CER) and Word Error Rate (WER) as our evaluation metrics (Hegghammer, 2022; Ignat et al., 2022). CER measures the accuracy of character recognition and is calculated using the Levenshtein or edit distance, which represents the minimum number of single-character insertions (I), deletions (D), and substitutions (S) required to transform one word into another. As shown in Equation 3.1, CER is defined as the edit distance between the OCR-predicted text and ground truth text, divided by the total number of characters in the ground truth text (N). A lower CER value indicates higher accuracy, with 0 representing perfect recognition. Notably, CER can exceed 1, particularly when there are a significant number of insertions. WER serves as the word-based counterpart to CER.

3.1.3 Source of Data

We chose to use Wikipedia as our text corpus for several reasons. Firstly, Wikipedia articles can be easily converted into images via screenshots, making them suitable for OCR applications. The platform also offers a convenient source of ground truth through its APIs that provide plain text for most articles. Secondly, Wikipedia hosts a large corpus in several popular SEA languages, including Thai, Vietnamese, Indonesian, Tamil, and Burmese, supporting our language needs ("List of Wikipedias", 2024). Lastly, Wikipedia articles contain visual elements like images and tables that are common in modern real-world documents.

3.1.4 Languages

From the languages available on Wikipedia, we selected English, Indonesian, Vietnamese, and Thai text. English serves as a baseline for sanity checks and bug fixing. The remaining SEA languages were chosen to capture diverse script characteristics. Indonesian represents Latin-based scripts, Vietnamese represents Latin scripts with diacritics, and Thai represents non-Latin scripts.

3.2 Experiment 1: Benchmarking on Real Data

3.2.1 Data Collection

Figure 3.1: Pipeline for data collection from Wikipedia

From the dataset of 100 Wikipedia articles, we collected article images and ground truth article text in our selected languages using Python, Selenium³, and the MediaWiki Action API⁴. Figure 3.1 illustrates the overall pipeline for data collection. The detailed steps are as follows:

³Selenium is a framework for automating web browsers, commonly used for web scraping by programmatically interacting with websites.

⁴The MediaWiki Action API allows access to wiki page operation features such as search and retrieval.

- 1. Manually compile the dataset's article names and URLs in English.
- 2. Fetch the article names and URLs in Thai, Vietnamese, and Indonesian from the MediaWiki Action API.
- 3. Download the article PDFs in all languages using Selenium.
- 4. Convert the article PDFs into PNG images, where each image represents one page in the PDF.
- 5. Download the ground truth article text into TXT files from the MediaWiki Action API.

3.3 Experiment 2: Benchmarking on Synthetic Data

- 3.3.1 Synthetic Data Generation
- 3.4 Experiment 3: Fine-tuning for Vietnamese and Thai

Results and Analysis

In this chapter, we analyze and evaluate the results of the experiments to provide answers to the research questions.

4.1 RQ1: How do popular OCR tools perform on SEA scripts?

4.1.1 OCR Accuracy

4.1.2 Runtime

Table 4.1: Average OCR Runtime Per Page (Seconds)

	EasyOCR	Tesseract	GOT
English	3.23	11.68	24.35
Indonesian	2.92	13.19	31.44
Vietnamese	3.91	11.80	-
Thai	2.32	16.76	-

Table 4.2: Error Classification by Character Type for English Articles

	Count	EasyOCR % Missed	Tesseract % Missed	GOT % Missed
Arabic digit	38,324	0.7%	1.9%	0.3%
Latin letter	1,546,964	1.3%	1.8%	0.4%
Latin letter w/ diacritic	424	100.0%	53.1%	14.6%
Punctuation	53,403	28.4%	2.3%	3.4%
Whitespace	317,587	4.9%	4.3%	3.6%
Other	3,298	82.8%	68.5%	76.9%

Table 4.3: Error Classification by Character Type for Indonesian Articles

	Count	EasyOCR % Missed	Tesseract % Missed	GOT % Missed
Arabic digit	24,947	0.4%	1.8%	0.2%
Latin letter	1,208,707	0.5%	1.8%	0.4%
Latin letter w/ diacritic	262	5.3%	100.0%	15.3%
Punctuation	37,788	22.1%	3.1%	0.8%
Whitespace	207,556	4.8%	5.1%	4.1%
Other	2,468	72.2%	80.5%	43.2%

Table 4.4: Error Classification by Character Type for Vietnamese Articles

	Count	EasyOCR % Missed	Tesseract % Missed
Arabic digit	31,473	1.1%	2.2%
Latin letter	916,667	8.5%	1.8%
Latin letter w/ diacritic	292,686	14.8%	1.8%
Punctuation	40,420	24.6%	2.2%
Whitespace	367,936	10.9%	5.3%
Other	35,767	12.5%	7.7%

Table 4.5: Error Classification by Character Type for Thai Articles

	Count	EasyOCR % Missed	Tesseract % Missed
Arabic digit	22,580	0.9%	6.7%
Latin letter	36,174	100.0%	100.0%
Latin letter w/ diacritic	96	100.0%	100.0%
Thai letter	617,699	0.4%	3.1%
Thai diacritic	90,620	3.7%	3.6%
Punctuation	13,669	6.4%	8.4%
Thai punctuation	901	78.8%	3.9%
Whitespace	58,164	37.5%	37.2%
Other	306,647	2.2%	7.1%

- 4.2 RQ2: What script-related challenges affect OCR accuracy on SEA languages?
- 4.3 RQ3: What techniques and recommendations can enhance OCR accuracy on SEA languages?

Discussion

Conclusion

References

- Agarwal, M., & Anastasopoulos, A. (2024). A concise survey of OCR for low-resource languages. In M. Mager, A. Ebrahimi, S. Rijhwani, A. Oncevay, L. Chiruzzo, R. Pugh, & K. von der Wense (Eds.), *Proceedings of the 4th workshop on natural language processing for indigenous languages of the americas (americasnlp 2024)* (pp. 88–102). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.americasnlp-1.10
- Aji, A. F., Forde, J. Z., Loo, A. M., Sutawika, L., Wang, S., Winata, G. I., Yong, Z.-X., Zhang, R., Doğruöz, A. S., Tan, Y. L., & Cruz, J. C. B. (2023). Current status of NLP in South East Asia with insights from multilingualism and language diversity. Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, 8–13. https://aclanthology.org/2023.ijcnlp-tutorials.2
- Bustamante, G., Oncevay, A., & Zariquiey, R. (2020). No data to crawl? monolingual corpus creation from PDF files of truly low-resource languages in Peru. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the twelfth language resources and evaluation conference (pp. 2914–2923). European Language Resources Association. https://aclanthology.org/2020. lrec-1.356
- Hegghammer, T. (2022). OCR with Tesseract, Amazon Textract, and Google Document AI: A benchmarking experiment. *Journal of Computational Social Science*, 5, 861–882. https://doi.org/https://doi.org/10.1007/s42001-021-00149-1

- Ignat, O., Maillard, J., Chaudhary, V., & Guzmán, F. (2022). OCR improves machine translation for low-resource languages. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Findings of the association for computational linguistics: Acl 2022 (pp. 1164–1174). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-acl.92
- List of wikipedias. (2024). https://en.wikipedia.org/wiki/List_of_Wikipedias
- Magueresse, A., Carles, V., & Heetderks, E. (2020). Low-resource languages: A review of past work and future challenges. *CoRR*, *abs/2006.07264*. https://arxiv.org/abs/2006.07264
- Rice, S., Jenkins, F., & Nartker, T. (1995). The fourth annual test of OCR accuracy (tech. rep.). Information Science Research Institute.

Appendix A

Wikipedia Article Dataset

Category	Articles
People	Elizabeth II, Barack Obama, Michael Jackson, Elon Musk, Lady Gaga, Adolf Hitler, Eminem, Lionel Messi, Justin Bieber, Freddie Mercury, Kim Kar- dashian, Johnny Depp, Steve Jobs, Dwayne John- son, Michael Jordan, Taylor Swift, Stephen Hawking, Kanye West, Donald Trump
Present countries	United States, India, United Kingdom, Canada, Australia, China, Russia, Japan, Germany, France, Singapore, Israel, Pakistan, Philippines, Brazil, Italy, Netherlands, New Zealand, Ukraine, Spain
Cities	New York City, London, Hong Kong, Los Angeles, Dubai, Washington, D.C., Paris, Chicago, Mumbai, San Francisco, Rome, Monaco, Toronto, Tokyo, Philadelphia, Machu Picchu, Jerusalem, Amsterdam, Boston
Life	Cat, Dog, Animal, Lion, Coronavirus, Tiger, Human, Dinosaur, Elephant, Virus, Horse, Photosynthesis, Evolution, Apple, Bird, Mammal, Potato, Polar bear, Shark, Snake
Buildings and structures	Taj Mahal, Burj Khalifa, Statue of Liberty, Great Wall of China, Eiffel Tower, Berlin Wall, Stonehenge, Mount Rushmore, Colosseum, Auschwitz concentration camp, Great Pyramid of Giza, One World Trade Center, Empire State Building, White House, Petra, Large Hadron Collider, Hagia Sophia, Golden Gate Bridge, Panama Canal, Angkor Wat

Table A.1: Dataset of 98 Wikipedia articles