Monday warm-up: Kinematics, II

Prof. Jordan C. Hanson

September 8, 2025

1 Memory Bank

- 1. $v = \frac{\Delta x}{\Delta t}$... Average velocity.
- 2. $v = \frac{dx}{dt}$... Instantaneous velocity.
- 3. $a = \frac{\Delta v}{\Delta t}$... Average acceleration.
- 4. $a = \frac{dv}{dt}$... Average acceleration.
- 5. $x(t) = \frac{1}{2}at^2 + v_it + x_i$... Position versus time, given constant acceleration
- 6. $v(t) = at + v_i$... Speed versus time, given constant acceleration
- 7. $v_f^2=v_i^2+2a\Delta x$... Initial and final speeds, given constant acceleration and displacement

2 Chapter 3 - Kinematics, II

- 1. Suppose a runner accelerates at $3~{\rm m~s^{-2}}$ from rest. (a) Where will the runner reach a top speed of 10 m s⁻¹? (b) When does the runner reach top speed?
- 2. Consider Fig. 1. The formula that describes the speed of the system between 0 and 20 seconds is
 - A: v(t) = 3t
 - B: v(t) = 0.3t
 - C: v(t) = 20t
 - D: v(t) = 0.2t
- 3. Using your formula for v(t) from the previous exercise, what is the speed at t = 10 seconds?
- 4. Consider Fig. 1. Between 50 and 70 seconds, the system
 - A: has a positive acceleration
 - B: has a negative acceleration
 - C: has no acceleration
 - D: is not moving

Velocity vs. Time

Figure 1: The velocity versus time for a system.

- 5. Examine Fig. 1, and determine the regions with the largest positive acceleration and the largest negative acceleration. Estimate them based on the graph.
- 6. The position of a system is $x(t) = 5.0t^2 4.0t^3$ m. Find (a) the velocity and acceleration of the particle as functions of time, (b) the velocity and acceleration at t = 2.0 s, (c) the time at which the velocity is zero, and (d) the maximum position.