Sine function

KEY POINT 8.12

The function $y = a \sin b(x+c) + d$ and

- amplitude $a = \frac{max min}{2}$. $d = \frac{min + max}{2}$.

- minimum value d-a and maximum value d+a

Question 1:

- (a) Sketch the graph of $y = \sin x + 2$ for $x \in [0, 2\pi]$.
- (b) Find the maximum and the minimum values of the function.

Question 2:

Find the exact values of x for which the function $y = \sin 3(x+1)$ attains its maximum value.

Question 3:

The graph shown has equation $y = a \sin(bx) + d$. Find the values of a, b and d.

Quertion 4:

Sketch the following graphs, indicating any axis intercepts.

(i)
$$y = 2\sin(x + 45^\circ)$$
 for $-180^\circ \le x \le 180^\circ$

(ii)
$$y = 2\sin x + 1$$
 for $-360^{\circ} \le x \le 360^{\circ}$

Cosine function

KEY POINT 8.12

The function

 $y = a\cos b(x+c) + d$ have

- amplitude $a = \frac{max min}{2}$. period $\frac{2\pi}{b}$
- minimum value d-a and maximum value d+a

Question I:

- (a) Sketch the graph of $y = 4\cos\left(\frac{x}{3}\right)$ for $0 \le x \le 6\pi$.
- (b) Write down the amplitude and the period of the function.

Question 2:

- (a) Sketch the graph of $y = \cos(x + 30^\circ)$ for $0^\circ \le x \le 360^\circ$.
- (b) State the minimum and maximum values of the function, and the values of x at which they occur.

Ouertion 3:

Sketch the following graphs, giving the coordinates of maximum and minimum points.

(a) (i)
$$y = \cos\left(x - \frac{\pi}{3}\right)$$
 for $0 \le x \le 2\pi$

(ii)
$$y = 3\cos(x - 60^\circ)$$
 for $-180^\circ \le x \le 180^\circ$

(ii)
$$y = 3 - 2\cos x \text{ for } 0^{\circ} \le x \le 360^{\circ}$$