Basics

- dot product: $\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + \ldots = |\underline{a}| |\underline{b}| \cos \theta, \ W = \underline{F} \cdot \underline{d}$ where F is force and d is distance
- $\bullet \ \ \text{Cross Product:} \ \underline{v} \times \underline{w} = \begin{vmatrix} i & -j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & W_3 \end{vmatrix}$
- The area of the quadrilateral which the vectors are enclosing is the determinant of the cross product
- Vector equation of line : $(x,y,z)=(x_0,y_0,z_0)+t(a,b,c)$; where (a,b,c) is a vector parallel to the line and (x_0,y_0,z_0) is a point on the line
- Standard equation of line/plane: $\underline{n}\cdot((x,y,z)-(x_0,y_0,z_0))=0$, where \underline{n} is a vector normal to the line/plane
- $\bullet \ \ \text{projection $\underline{\bf a}$ onto $\underline{\bf b}$: $Proj_{\underline{b}}(\underline{a}) = \underline{a}_{\underline{b}} = (\underline{a} \cdot \frac{\underline{a}}{|\underline{b}|}) \, \frac{\underline{b}}{|\underline{b}|})$}$

Parametrization and Tangents to planes ...

- Curve: R^2 : $\underline{r} = (x(t), y(t))$; R^3 : $\underline{r} = (x(t), y(t), z(t))$
- \bullet Tangent line at $t=t_0\colon\thinspace L(s)=\underline{r}(t_0)+s\underline{r^{`}}(t_0)$
- Tangent plane of graph at (a, b, f(a, b)): $z = f(a, b) + f_x(a, b)(x a) + f_x(a, b)(y b)$

Parametrized Surface $(\underline{r}(u,v))$ and Curve and regular parametrization

- $\bullet \quad \underline{r}(u,v) = (x(u,v),y(u,v),z(u,v))$
- $\frac{r_u(u_0,v_0)}{\underline{r}(u_0,v_0)}$ and $\underline{r_v}(u_0,v_0)$ are two vectors parallel to the plane tangent to the surface at
- $\underline{n} = \underline{r_u}(u_0, v_0) \times \underline{r_v}(u_0, v_0)$ is a vector normal to the above tangent plane, if $\underline{n} \neq \underline{0}$ then the parametrization is regular at $\underline{r}(u_0, v_0)$
- Tangent plane can be written in two ways:
 - As a parametrization: $(x,y,z)=\underline{r}(u_0,v_0)+a\underline{r_u}(u_0,v_0)+b\underline{r_v}(u_0,v_0)$
 - As a level set (Standard equation): $\underline{n} \cdot ((x, y, z) \underline{r}(u_0, v_0)) = 0$
- Parametrization of special surfaces
 - cylinder: $\underline{r}(\theta, z) = (R\cos(\theta), R\sin(\theta), z)$
 - sphere: $\underline{r}(\theta, \phi) = (R \sin(\phi) \cos(\theta), R \sin(\phi) \sin(\theta), R \cos(\phi))$
 - graph y = f(x): $\underline{r}(x) = (x, f(x))$
- Parametrization of curves
 - line segment: $\underline{r}(t) = \underline{a} + t(\underline{b} \underline{b})$
 - circle in R^2 : $\underline{r}(t) = (R\cos(t), R\sin(t))$
 - graph z = f(x, y): $\underline{r}(x, y) = (x, y, f(x, y))$

Surfaces and Gradient vectors

- Common surfaces:
 - Bowl/cup: $z = x^2 + y^2$
 - Saddle: $z = x^2 y^2$
 - Sphere: $x^2 + y^2 + z^2 = R^2$
 - Cone: $z = \pm c \sqrt{x^2 + y^2}$
 - Cylinder: $x^2 + y^2 = R^2$
 - Symmetr. x + y = n
 - Plane: ax + by + cz = d

Level sets

- ullet level set of f(x,y) is a curve in the xy-plane: f(x,y)=const
- $\bullet \;\; \mbox{level set of} \; f(x,y,z) \; \mbox{is a graph in the xyz-plane:} \; f(x,y,z) = const$

Gradient Vector $\nabla f = (f_{x_1}, f_{x_2}, ..., f_{x_n})$

- \bullet Maximum increase: the direction: direction of ∇f ; the rate: $|\nabla f|$
- $\bullet \;$ Minimum increase: opposite direction of ∇f ; the rate: $-|\nabla f|$
- \bullet . No change: the normal to ∇f
- Rate of change in direction \hat{u} : directional derivative $D_{\hat{u}}f(\underline{p}) = \nabla f(\underline{p}) \cdot \hat{u}$
- ullet ∇f is normal to level sets
- Tangent set to level set at $\underline{\mathbf{p}}$: $\nabla f(\underline{p}) \cdot (\underline{x} \underline{p}) = 0$

Linear approximation, tangent plane, Local minimum and Maximum (optimization)

- $\bullet \ \ \mathbf{Linearization} \colon \ L(\underline{x}) = f(\underline{p}) + \nabla f(\underline{p}) \cdot (\underline{x} \underline{p})$
- Linear Approximation : $f(\underline{x}) = L(\underline{x})$
- Critical Points: $\nabla f(\underline{p}) = \underline{0}$
- Second derivative test: $D = f_{xx}f_{yy} (f_{xy})^2$ at point \underline{p}

• chain rule: $f = f(\underline{x}), x_i = x_i(\underline{t})$ then $\frac{\partial f}{\partial t_i} = \nabla f(\underline{x}) \cdot \frac{\partial \underline{x}}{\partial t_i}$

- $\ \ \mbox{If} \ D > 0 \mbox{ and } (f_{xx} > 0 \mbox{ or } f_{yy} > 0), \mbox{ then } \underline{p} \mbox{ is a local min}$
- If D>0 and $(f_{xx}<0 \text{ or } f_{yy}<0),$ then $\underline{\textbf{p}}$ is a local max
- If D < 0 then $\underline{\mathbf{p}}$ is a saddle point

- Coordinate systems
 - to cylindrical : $x = r \cos \theta$, $y = r \sin \theta$, z = z
 - from cylindrical: $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1}(\frac{y}{x})$, z = z
 - Cylinder Coordinates (θ, r, z)

• Rectangular Coordinates (x, y, z)

- from spherical : $r=\rho\cos\phi$, $z=\rho\sin\phi$, $\theta=\theta$
- to spherical : $\rho = \sqrt{r^2 + z^2}$, $\phi \tan^{-1}(\frac{r}{z}$, $\theta = \theta$
- Spherical Coordinates (ϕ, θ, ρ)
 - $\ \ \mathbf{from \ rectangular} \ : \ \rho = \sqrt{x^2 + y^2 + z^2}, \ \phi = \tan^{-1}(\frac{\sqrt{x^2 + y^2}}{z}), \ \theta = \tan^{-1}(\frac{y}{x})$
 - to rectangular : $x=\rho\sin\phi\cos\theta$ $y=\rho\sin\phi\sin\theta$ $z=\rho\cos\phi$

Surface Area, Area, Volume, Mass, ...

- R^2 Area elements dA
 - Cartesian(x, y) dA = dxdy
 - $Polar(\theta, r) dA = rdrd\theta$
- R³ Volume elements dV
 - Cartesian(x, y), z dV = dxdydz
 - Cylindrical(θ , r, z) $dV = rdrd\theta dz$
 - Spherical(θ , ρ , ϕ) $dV = \rho^2 \sin \phi d\rho d\phi d\theta$
- Surface Area element (dS) / Surface Area
 - Surface Area element: $dS = |\underline{ru} \times \underline{ru}| du dv$
 - * Graph z=f(x,y): $\underline{r}(x,y)=(x,y,f(x,y))\ dS=\sqrt{fx^2+fy^2+1}$
 - * Sphere $\underline{r}(\theta, \phi) = (R\sin(\phi)\cos(\theta), R\sin(\phi)\sin(\theta), R\cos(\phi))$: $dS = R^2 \sin\phi d\phi d\theta$
 - * Cylinder $\underline{r}(\theta, z) = (R\cos(\theta), R\sin(\theta), z)$: $dS = Rdzd\theta$
 - Surface Area: $\iint_D dS = \iint_D dS \iint_D |\underline{r_u} \times \underline{r_u}| du dv$
- Mass given a density $\delta_a r(x,y)$ in R^2 or $\delta(x,y,z)$ in R^3 the mass is:
 - $M = \iint_R \delta_a r(x, y) dA M = \iiint_R \delta(x, y, z) dV$