A Software-Defined GPS and Galileo Receiver: Single-Frequency Approach

15-Sept-2005

ION-GNSS-2005 Session C4: GNSS Software Receiver Systems 2

K. Borre; Aalborg University D. Akos; University of Colorado

Presentation Overview

- Motivation
- Software GNSS Receiver Architectures
- Front End Design & Signal Conditioning
 - Sample GPS Data Set
- Signal Acquisition
- Code & Carrier Tracking
- Navigation Data Decoding & Position Solution
- Future Work

Motivation

- Develop a software GNSS receiver to process both GPS and Galileo narrowband L1 components
- Develop accompanying textbook for teaching/educational aspects of GNSS software receivers
- Provide an open source (GPL) fully functional GNSS software receiver basis for further development and refinement by the research community

Traditional GNSS Receiver Architecture

A generic GNSS receiver block diagram is depicted below:

- Antenna
- Front end for analog signal conditioning, filtering, and digitization
- High speed correlation ASIC (application specific integrated circuit)
- Embedded programmable micro/signal processor
- Hardware (ASIC-based) receivers provide minimal flexibility and little support for GNSS additions and/or research

GNSS Software Receiver Architecture

The modification to a "software" GNSS receiver architecture is subtle

 Now all the signal processing (spread spectrum) after the analog-todigital converter (ADC) is accomplished within a programmable processor

Signal Conditioning or Front End Design for GPS Data Collection

Gain ≈ 30 dB
Noise Figure ≈ 2.5 dB

- Above front end design provided a raw digitized sampled signal for algorithm development & processing
- Data set is included with the software algorithms

Collected Data Set

- Collected data set is multiple minutes of data
- Algorithms have been tested with other front ends (sampling and intermediate frequencies
- Software GNSS RX architecture utilizes traditional processing of the data
 - Acquisition, Code & Carrier Tracking, Navigation Data Decoding & Position Solution

GNSS Software RX Flow Diagram

Start with over view of complete software GNSS RX architecture

GNSS Signal Acquisition - Parallel Code Phase Search

Frequency-domain circular convolution technique

- Algorithm tests all possible code phases via an FFT/IFFT computation
 - FFT/IFFT computation time is the key to the algorithm
- Provides an exhaustive testing of all possible code phases
- Potential for very rapid acquisition times

Flow Diagram of Software GPS RX Acquisition

- Perform acquisition on sample collected data set
- Need to know the sampling frequency and resulting intermediate frequency (IF) to enable processing
- Result should return visible satellites, their code phase and carrier frequency estimate

Complete Tracking Block

Combined code and carrier tracking loops

Navigation Data Decoding

- The final signal processing function of the receiver is to decode the
 50 Hz navigation data stream
- The bits are clearly visible in the inphase channel of the Costas loop
- Processing proceeds as follows:
 - Bit synch determine the start/stop of each bit
 - Frame synch determine the start/stop of the navigation data frames
 - Data decode extract the necessary parameters from the transmitted
 '1's and '0's in the first three subframes (required for position solution)
- The ICD-200 and GPS signal specification are outstanding references and describe in detail the structure of the navigation data message

Calculating Pseudoranges

Timestamp the start of each subframe

Position Solution Flow Diagram

Receiver Position Computation

Measurement plot in UTM system

- Position solutions generated at 1 Hz rate for 38.192 MHz data set
- Shown are the results for the first 30 second block of data

Receiver/Code Comments

- Post-processing MATLAB version
 - Focus is on algorithm research and development
 - Provide non-real time processing yet not excessively slow
 - Computation speed approximately 6-12 times real-time (sampling frequency dependent)
 - ~500 lines of code
- Goal is to augment the knowledge concerning signals and algorithms

Summary & Conclusions

- Book will be available early 2006
 - Should provide basis for software GNSS receiver courses
- Current receiver developments
 - Support for Galileo signals
 - Support for EGNOS signals
- Will make available a reference textbook & complete GPS/Galileo GPL Matlab framework to be used for algorithm development and testing

