Número:_____

1.	[1,5 valores] - Considere o seguinte excerto de um programa escrito em <i>assembly</i> e a executar numa máquina com cache:							
	ciclo	mov. add. cmp.	1 0(%ebx), %e 1 \$10, 0(%ebx 1 \$4, %ebx 1 \$0, %edx ciclo					
	seguin array f 3% e a	lere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com os tes valores: -10, 30, 1024, -33, 0. Note que o ciclo termina quando o valor lido do for 0. A frequência do relógio é de 2 GHz, o CPI _{CPU} é 2, a <i>miss rate</i> de instruções é de a de dados de 5%. Sabendo que o tempo de execução deste programa é de 150 ns, a <i>miss penalty</i> (expressa em tempo)?						
			$mp_T = 150 \text{ ns}$			$mp_T = 50 \text{ ns}$		
			<i>mp</i> _T = 200 ns			$mp_T = 100 \text{ ns}$		
2.	"A téc	nica de a o dese resulta	pipelining, rela mpenho de um p numa diminuiçã	plete a afirmação abaixo: ipelining, relativamente a uma arquitectura sequencial de ciclo único, penho de um processador pois uma diminuição do CPI, uma vez que mais do que uma instrução se em execução em cada ciclo."				
	resulta numa diminuição do número de instruções executadas, uma vez que algumas instruções são internamente transformadas em NOPS" resulta numa diminuição do período do relógio, uma vez que este deve ser apenas tão longo quanto o estágio mais demorado do <i>pipeline</i> ." resulta num aumento da frequência devido a ciclos de <i>stalling</i> causados por dependências de dados e/ou controlo."							
<pre>3. [1,5 valores] - Complete a afirmação abaixo: "O programa for (i=0 ; i<n *="" 2;<="" ;="" a[i]="b[100*i]" i++)="" pre=""></n></pre>			* 2;					
	permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a i."							
		permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a a []."						
		permite explorar a hierarquia de memória pois exibe localidade temporal						
		permite explorar a hierarquia de memória pois exibe localidade espacial						

Nome: _____

IVIIE	.1				1= teste
4.	4. [1,5 valores] - Quantos <i>bits</i> tem a <i>tag</i> de uma hierarquia de memória (S=1024, E=8, m=32)?				
			<i>t</i> = 15		t= 17
			<i>t</i> = 10		t=12
5.	5. [2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereç (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguint referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituiçã LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qua				

Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão
1			
13			
0			
6			
8			

tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss,

6. [2.0 valores] O excerto de código abaixo calcula a soma de todos os elementos de uma matriz de inteiros. A matriz tem ALTURA * LARGURA elementos.

```
for (col=0 ; col<LARGURA ; col++) {
  for (lin=0 ; lin < ALTURA ; lin++) {
    soma += matriz[lin*LARGURA+col];
  }
}</pre>
```

colisão ou de um hit. Considere a cache inicialmente fria.

Reescreva o programa para que seja possível explorar de forma mais eficaz a hierarquia da memória, **justificando** a sua resposta.

Nome:	Número:
-------	---------