Lecture 2 - Axioms

A set G along with a binary operation *: GXG -> G is called a group if

- i) For all $u,v,w \in G$ the associativity property holds i.e. u*(v*w) = (u*v)*w for all $u,v,w \in G$
- ii) I an element e called the identity s.t. uxe=exu=u for all u & G
- iii) For all $u \in G$ \exists an element u' (called inverse of u) such that u * u'' = u'' * u = e

Examples of groups:

- 1. $(\mathbb{Z},+)$ Integers under addition
 - (R,+) Real numbers under addition
 - (4,+) Complex numbers under addition
 - $(\mathbb{R}^n,+),(\mathbb{C}^n,+)$ are groups under component wise addition.
- 2. Mn(L), Mn(R) nxn matrices with entries in the real numbers or complex numbers under usual matrix addition
- 3. GLn(R), GLn(F) The set of invertible (det ≠0) matrices under matrix multiplication.
 - 4 Sn The set of permutations on n-letters under function composition For eg. consider S4
 - - $V = \begin{array}{cccc} 1 \to 2 \\ 2 \to 1 \end{array}$ is (12)(34)
 - 3-74 U*V is also a permutation. In this notation permutation

V is applied first followed by w. Therefore

u*v = (1234)e(12)(34). To compute and write the answer in cycle notation $1\rightarrow 2$ in v and $a\rightarrow 3$ in u so in the resultant permutation

1-3. Computing in this manner 2-1 in V and 1-2, so 2-2 in $u \times V$ Next 3-4 in V and 4-1 in u so 3-1. And finally 4-3 in V and 3-4 in u so 4-4. Therefore the final permutation $W \equiv \begin{array}{c} 1-3 \\ 2-2 \end{array}$ which in

n u so $4\rightarrow 4$. Therefore the final permutation $W \equiv \begin{array}{c} 1\rightarrow 3 \\ 2\rightarrow 2 \end{array}$ which in $3\rightarrow 1$ cycle notation $4\rightarrow 4$ is (13)

5. The group of notational symmetries of a regular tetrahedron as was studied in the previous lecture

6. Let $\mathbb{Z}_n = \{0,1,2,...,n-1\}$. Let us define an operation + n on \mathbb{Z}_n $+ n \cdot y = \{x+y \mid if \quad x+y < n \}$ $+ x+y-n \quad if \quad x+y > n$ Verify that this is a group! What is inverse of + x

7. Is (R, \times) , the set of real numbers a group under multiplication? No! 2L*0=0. So 0 close not have an inverse! But if we exclude 0 then everything looks ok! So $R-\{0\}$ is a group under multiplication

8. {z: z=1}, the nth rook of unity. Check that this is a group under multiplication.

9. Consider $\mathbb{Z}_{n}^{*} = \mathbb{Z}_{n} - \{0\} = \{1, 2, ..., n-1\}$ and operation $\mathbb{X} \times n = (x, y) \mod n$. Is this a group?

Consider $\mathbb{Z}_{6}^{*} = \{1, 2, 3, 4, 5\}$

2 xn3 = (2x3) mod 6 = 0, which does not belong to Zn. So xn is not

does not have closure property, so \mathbb{Z}_6^* is not a group. What about $\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$. You can verify that this indeed is a group. Do you see any pattern?

In the future we will see that \mathbb{Z}_p^* is a group. In a previous example we saw that by removing the element 0 we were able to form a group \mathbb{R} -{0} under multiplication. Can something be done about \mathbb{Z}_p^* ?

Do. Shown in the figure are the various axis of symmetry for a triangle. There are six symmetries of a triangle and they form a group under composition.