ITP 449, FALL 2020

HOMEWORK 6 20 POINTS

For each one of the following questions, write Python code in PyCharm.

- For each question, create a *new* Python file. Name each *lastname_firstname_hw#_q#.py* etc.
- Create a header in each file using *comments* to display your name and HW information. After that write your Python code.

```
# Tommy Trojan
# ITP 449 Fall 2020
# HW6
# Q1
```

 Apart from the above comments, include single line comments describing the core logic of your algorithm / code.

As an example,

#Creating a DataFrame using the csv file.

The dataset¹ you will analyze in this HW (available on the blackboard) is the RMS Titanic. https://en.wikipedia.org/wiki/RMS Titanic. Your goal is to classify survivability based on the various factors of the passengers. These factors are listed below:

Variable	Definition	Key
survived	Survival	No, Yes
class	Ticket class	1 st , 2 nd , 3 rd
sex	Sex	
Age	Age	Child, Adult

¹ https://www.kaggle.com/c/titanic/data

Problem #1

- 1. Read the dataset into a dataframe. (1)
- 2. Explore the dataset and determine what is the target variable. (2)
- 3. Drop factor(s) that are not likely to be relevant for *logistic* regression. (2)
- 4. Make sure there are no missing values. (2)
- 5. Plot *count* plots of each of the remaining factors. (2)
- 6. Convert all categorical variables into dummy variables. (2)
- 7. Partition the data into train and test sets (70/30). Use random_state = 2020. (2)
- 8. Fit the training data to a logistic regression model. (2)
- 9. Display the accuracy of your predictions for survivability. (2)
- Display the confusion matrix along with the labels (Yes, No).
 Hint: You may want to use from sklearn.metrics import plot_confusion_matrix (2)
- 11. Now, display the predicted value of the survivability of a *male adult passenger traveling in 3rd class*. (3)