近似法の一つである部分波展開を扱う。まず、半古典論を用いて散乱が起こる条件から、方位量子数l ごとに波動関数を展開して、l が小さい波動関数のみ考えればよいことが分かる。次に、波動関数の基底展開について議論を行う。関数空間には様々な直交基底が存在するが、今回は Legendre 多項式を基底に取る。最後に、展開に用いた未定係数を用いて、散乱断面積や全断面積をその未定係数を用いて表す。

# 0.0.1 散乱の条件

古典力学において角運動量 L は、

$$\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p} = m\boldsymbol{r} \times \boldsymbol{v} \tag{0.0.1}$$

と書けるのであった. 球対称ポテンシャルの下では、

$$\frac{\mathrm{d}\boldsymbol{L}}{\mathrm{d}t} = m\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} \times \boldsymbol{v} + m\boldsymbol{r} \times \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t}$$
(0.0.2)

$$= \mathbf{r} \times \mathbf{F} \tag{0.0.3}$$

$$= \mathbf{r} \times (-\nabla V(r)) \tag{0.0.4}$$

$$= \mathbf{r} \times |\nabla V| \frac{\mathbf{r}}{r} \tag{0.0.5}$$

$$=0 (0.0.6)$$

より、角運動量は保存される、衝突パラメータをb、運動量をpとした粒子の角運動量は、

$$|\boldsymbol{L}| = |\boldsymbol{r} \times \boldsymbol{p}| \tag{0.0.7}$$

$$= pb (0.0.8)$$

である. 散乱体を半径 a の球とすると, 衝突の条件は

$$b < a \tag{0.0.9}$$

$$L/p < a \tag{0.0.10}$$

$$L < pa (0.0.11)$$

である. つまり、角運動量が小さい粒子のみ散乱することがわかる.

式 (0.0.11) を半古典的な散乱条件へ書き直すことを考える.量子力学では,角運動量の大きさ L は, $l=0,1,2,\cdots$  の値を取る方位量子数 l を用いて  $L=\hbar\sqrt{l(l+1)}$  と書けるので,衝突の条件は,

$$L = \hbar\sqrt{l(l+1)} < pa = \hbar ka \tag{0.0.12}$$

と書ける.  $\mathbf{d}$  (0.0.12) を見れば、散乱の影響を受けるのは l が小さいときのみであることがわかる. よって波動関数を、

$$\psi = \phi^{(l=0)} + \phi^{(l=1)} + \cdots \tag{0.0.13}$$

のように異なるlに属する固有関数で展開し、lが小さい状態についてだけ散乱の影響を考える.これを**部分波展開**という.

# 0.0.2 波動関数の基底展開

さて、式 (??) で示した散乱の波動関数,

$$\psi(\mathbf{r}) = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$
(0.0.14)

を部分波展開する $^1$ ことを考える。最初に、以下で扱う演算子のクラスである Strum-Liouvillle 演算子についての性質を調べる。まず、Legendre 多項式と Legendre 陪多項式の性質を調べて、直交性を知る。次に、Legendre 多項式を用いて波動関数を展開して、展開係数  $B_{ml}$  が満たすべき微分方程式を導く。続いて、Bessel 微分方程式の解である Bessel 関数の表式を求めて、球 Bessel 関数と球 Neumann 関数、球 Hankel 関数を定義する。最後に、展開係数  $B_{ml}$  が球 Bessel 関数と球 Neumann 関数の線型結合で書けることを確かめて、線型結合の係数が波動関数を特徴づけるものだと知る。

 $<sup>^{1}</sup>$ ここから**式** (0.0.70) までは飛ばしても良い.

#### 0.0.2.1 Strum-Liouville 演算子の Hermite 性

a < b として、 $x \in [a,b]$  で定義された関数空間 V を考える。 $\rho(x)$  を非負の実数関数として、 $f,g \in V$  に対して、

$$\langle f, g \rangle := \int_a^b f^*(x)g(x)\rho(x) dx$$
 (0.0.15)

なる内積を入れる. 関数空間 V 上の演算子として  $\mathcal{L}$  を,

$$\mathcal{L} := \frac{1}{\rho(x)} \left[ \frac{\mathrm{d}}{\mathrm{d}x} \left\{ p(x) \frac{\mathrm{d}}{\mathrm{d}x} \right\} + q(x) \right] \tag{0.0.16}$$

とする. 式 (0.0.16) なる形をした演算子を Strum-Liouvillle 演算子という. 境界条件を、 $\forall f \in V$  について、

$$\begin{cases} f(a) = f(b) \\ p(a)f'(a) = p(b)f'(b) \end{cases}$$

$$(0.0.17)$$

とすると,

$$\langle f, \mathcal{L}g \rangle = \langle \mathcal{L}f, g \rangle$$
 (0.0.18)

が成立する. 式 (0.0.18) なる関係が成り立つ演算子  $\mathcal{L}$  を Hermite 演算子という.

Proof. 内積の定義より、

$$\langle f, \mathcal{L}g \rangle = \int_{a}^{b} f^{*}(x) \frac{1}{\rho(x)} \left[ \frac{\mathrm{d}}{\mathrm{d}x} \left\{ p(x) \frac{\mathrm{d}}{\mathrm{d}x} g(x) \right\} + q(x)g(x) \right] \rho(x) \, \mathrm{d}x \tag{0.0.19}$$

$$= \int_{a}^{b} f^{*}(x) \left[ \frac{\mathrm{d}}{\mathrm{d}x} \left\{ p(x) \frac{\mathrm{d}}{\mathrm{d}x} g(x) \right\} + q(x)g(x) \right] \mathrm{d}x \tag{0.0.20}$$

$$= [f^*(x)g'(x)]_a^b - \int_a^b f'^*(x)p(x)g'(x) dx + \int_a^b f^*(x)q(x)g(x) dx$$
 (0.0.21)

$$= [f^*(x)p(x)g'(x)]_a^b - [f'^*(x)p(x)g(x)]_a^b + \int_a^b g(x)\frac{1}{\rho(x)} \left[\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}}{\mathrm{d}x}f^*(x)\right) + q(x)f^*(x)\right]\rho(x)\,\mathrm{d}x \quad (0.0.22)$$

$$= [f^*(x)p(x)g'(x)]_a^b - [f'^*(x)p(x)g(x)]_a^b + \langle g, \mathcal{L}f \rangle^*$$
(0.0.23)

$$= [f^*(x)p(x)g'(x)]_a^b - [g(x)p(x)f'^*(x)]_a^b + \langle \mathcal{L}f, g \rangle$$
(0.0.24)

となる.第1項と第2項について,第1項に f(a)=f(b) を,第2項に p(x) が実数値関数であり p(a)f'(a)=p(b)f'(b) であることを用いると

$$[f^*(x)p(x)g'(x)]_a^b - [f'^*(x)p(x)g(x)]_a^b = \{p(b)g'(b) - p(a)f(a)\}f^*(a) - \{g(b) - g(a)\}p(a)f'(a)$$

$$(0.0.25)$$

を得る.今度は,第 1 項に p(x) が実数値関数であり p(a)g'(a)=p(b)g'(b) であることを,第 2 項に g(a)=g(b) を用いれば,

$$\langle f, \mathcal{L}g \rangle = \langle \mathcal{L}f, g \rangle \tag{0.0.26}$$

### 0.0.2.2 Legendre 多項式

式 (0.0.16) において、a = -b = 1 とする. また、

$$\rho(x) := 1$$

$$\rho(x) := 1 - x^2$$
(0.0.27)

$$q(x) := -\frac{m^2}{1 - x^2}, \ m \in \{0, 1, \dots\}$$

(0.0.29)

とすると,

$$\mathcal{L}_m = \frac{d}{dx} \left\{ (1 - x^2) \frac{d}{dx} \right\} - \frac{m^2}{1 - x^2}$$
 (0.0.30)

となる. 関数の内積は,

$$\langle f, g \rangle = \int_{-1}^{1} f^*(x)g(x) dx$$
 (0.0.31)

と定義しておく. また, 境界条件は,

$$p(\pm 1)f^*(\pm 1)g'(\pm 1) = 0 \tag{0.0.32}$$

とする.これより,演算子  $\mathcal L$  が Hermite 演算子であると確かめられる.たとえば,g'(x)=p(x) となるように g(x) を定めれば,f(1)=f(-1)=0 となる.また,f(x)=1 となるように f(x) を定めれば,p(1)g'(1)=p(-1)g'(1)=0 となるので,前節で示した境界条件を満足する.さて,Legendre 多項式  $P_n(x)$  は n を非負整数として,

$$\mathcal{L}_0 P_n(x) = -n(n+1)P_n(x) \tag{0.0.33}$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left\{ (1 - x^2) \frac{\mathrm{d}}{\mathrm{d}x} P_n(x) \right\} = -n(n+1) P_n(x) \tag{0.0.34}$$

なる  $P_n(x)$  のうち、x=0 周りで級数展開したもので、

$$P_n(x) = \sum_{j=0}^{\infty} u_j x^j$$
 (0.0.35)

と書いたとき,

$$u_n = \frac{(2n)!}{2^n(n!)^2} \tag{0.0.36}$$

$$u_{n+1} = 0 (0.0.37)$$

なるものである. 式 (0.0.35) を式 (0.0.34) に代入すると,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left\{ (1 - x^2) \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=0}^{\infty} u_j x^j \right\} = -n(n+1) \sum_{j=0}^{\infty} u_j x^j \tag{0.0.38}$$

$$\Leftrightarrow \sum_{j=0}^{\infty} j u_j \frac{\mathrm{d}}{\mathrm{d}x} \left( x^{j-1} - x^{j+1} \right) = -n(n+1) \sum_{j=0}^{\infty} u_j x^j \tag{0.0.39}$$

$$\Leftrightarrow \sum_{j=0}^{\infty} j(j-1)u_j x^{j-2} - \sum_{j=0}^{\infty} j(j+1)u_j x^j = -n(n+1) \sum_{j=0}^{\infty} u_j x^j$$
(0.0.40)

$$\Leftrightarrow \sum_{j=0}^{\infty} j(j-1)u_j x^{j-2} = \sum_{j=0}^{\infty} u_j [j(j+1) - n(n+1)] x^j$$
 (0.0.41)

$$\Leftrightarrow \sum_{j=2}^{\infty} j(j-1)u_j x^{j-2} = \sum_{j=0}^{\infty} u_j [j(j+1) - n(n+1)] x^j$$
 (0.0.42)

$$\Leftrightarrow \sum_{j=0}^{\infty} (j+1)(j+2)u_{j+2}x^j = \sum_{j=0}^{\infty} u_j[j(j+1) - n(n+1)]x^j$$
 (0.0.43)

となるから,

$$(j+1)(j+2)u_{j+2} = [j(j+1) - n(n+1)]u_j$$

なる漸化式が成立する. 式 (0.0.44) において j=n を代入すると,  $u_{n+2}=0$  となる. また, j=n+1 を代入すると式 (0.0.37) より  $u_{n+1}=0$  である. よって,

$$0 = u_{n+1} = u_{n+2} = u_{n+3} = u_{n+4} = \cdots {(0.0.45)}$$

となる. また, 式 (0.0.44) に j = n - 2 を代入すると,

$$u_{n-2} = -\frac{n(n-1)}{2(2n-1)}u_n \tag{0.0.46}$$

となる. よって,式 (0.0.36) と式 (0.0.46) を用いて式 (0.0.35) を表すと,

$$P_n(x) = \frac{(2n)!}{2^n (n!)^2} \left[ x^n - \frac{n(n-1)}{2(2n-1)} x^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} x^{n-4} + \cdots \right]$$
(0.0.47)

$$= \sum_{s=0}^{\lfloor n/2 \rfloor} (-1)^s \frac{(2n-2s)!}{2^n s! (n-s)! (n-2s)!} x^{n-2s}$$
(0.0.48)

となる. なお, Legendre 多項式は,

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n = \sum_{s=0}^n \frac{\mathrm{d}^n}{\mathrm{d}x^n} (-1)^s \binom{n}{k} x^{2n-2k}$$
(0.0.49)

$$= \sum_{s=0}^{\lfloor n/2 \rfloor} (-1)^s \frac{n!}{s!(n-s)!} \frac{(2n-2s)!}{(n-2k)!}$$
 (0.0.50)

なる関係を用いると,

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n \tag{0.0.51}$$

となる.

#### 0.0.2.3 Legendre 陪多項式

Legendre 陪多項式  $P_n^m(x)$  は  $m \le n$  として,式 (0.0.51) を用いれば,

$$P_n^m(x) := (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_n(x)$$
 (0.0.52)

$$= (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$$
 (0.0.53)

$$= \frac{1}{2^n n!} (1 - x^2)^{m/2} \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^n$$
 (0.0.54)

となる. Legendre 陪多項式の直交性は  $\mathcal{L}_m$  が Hermite 演算子であり,その固有関数である  $P_n^m(x)$  が直交することより従う. 自分自身との内積,つまり, $\langle P_n^m(x), P_n^m(x) \rangle$  の値を計算する. 式 (0.0.54) を用いて,式 (0.0.31) で示した内積の定義に従って計算すると,

$$\langle P_n^m(x), P_n^m(x) \rangle = \int_{-1}^1 \frac{1}{2^{2n} (n!)^2} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^m \right\} \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^m \right\} \mathrm{d}x \tag{0.0.55}$$

$$= \frac{1}{2^{2n}(n!)^2} \int_{-1}^{1} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^m \right\} \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \frac{\mathrm{d}^{n+m-1}}{\mathrm{d}x^{n+m-1}} (x^2 - 1)^m \right\} \mathrm{d}x$$
 (0.0.56)

$$= \frac{1}{2^{2n}(n!)^2} \left[ \left( 1 - x^2 \right)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} \left( x^2 - 1 \right)^m \right\} \left\{ \frac{\mathrm{d}^{n+m-1}}{\mathrm{d}x^{n+m-1}} \left( x^2 - 1 \right)^m \right\} \right]_{-1}^{1}$$
 (0.0.57)

$$-\frac{1}{2^{2n}(n!)^2} \int_{-1}^{1} \left\{ \frac{\mathrm{d}}{\mathrm{d}x} (1-x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2-1)^n \right\} \right\} \left\{ \frac{\mathrm{d}^{n+m+1}}{\mathrm{d}x^{n+m+1}} (x^2-1)^m \right\} \mathrm{d}x \tag{0.0.58}$$

$$= -\frac{1}{2^{2n}(n!)^2} \int_{-1}^1 \left\{ \frac{\mathrm{d}}{\mathrm{d}x} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^n \right\} \right\} \left\{ \frac{\mathrm{d}^{n+m+1}}{\mathrm{d}x^{n+m+1}} (x^2 - 1)^m \right\} \mathrm{d}x \tag{0.0.59}$$

$$=\cdots \tag{0.0.60}$$

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^{1} (x^2 - 1)^n \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (1 - x^2)^m \left\{ \frac{\mathrm{d}^{n+m}}{\mathrm{d}x^{n+m}} (x^2 - 1)^n \right\} \right\} \mathrm{d}x$$
 (0.0.61)

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^{1} (x^2 - 1)^n \left[ \sum_{k=0}^{n+m} {n+m \choose k} \left\{ \frac{\mathrm{d}^{n+m-k}}{\mathrm{d}x^{n+m-k}} (1 - x^2)^m \right\} \left\{ \frac{\mathrm{d}^{n+m+k}}{\mathrm{d}x^{n+m+k}} (x^2 - 1)^n \right\} \right] \mathrm{d}x$$

$$(0.0.62)$$

となる. 最終行で Leibniz の公式を用いた. 式 (0.0.62) の和の中の n+m-k 階微分と n+m-k 階微分を考える.  $\left(1-x^2\right)^m$  と  $(x^2-1)^n$  の最高次数は,それぞれ 2m と 2n であるから, $2m \ge n+m-k$  かつ  $2n \ge n+m+k$  なる k でのみ和の中は 0 でなくなる. つまり, $n-m \le k$  かつ  $n-m \ge k$  なる k は k=n-m のみである.よって,式 (0.0.62) は,

$$\langle P_n^m(x), P_n^m(x) \rangle = \frac{(-1)^{n+m}}{2^{2n} (n!)^2} \int_{-1}^1 (x^2 - 1)^n \left[ \sum_{k=0}^{n+m} \binom{n+m}{k} \left\{ \frac{\mathrm{d}^{n+m-k}}{\mathrm{d}x^{n+m-k}} (1 - x^2)^m \right\} \left\{ \frac{\mathrm{d}^{n+m+k}}{\mathrm{d}x^{n+m+k}} (x^2 - 1)^n \right\} \right] \mathrm{d}x$$

$$(0.0.63)$$

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} \int_{-1}^{1} (x^2 - 1)^n \left[ \binom{n+m}{n-m} \left\{ \frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}} (1 - x^2)^m \right\} \left\{ \frac{\mathrm{d}^{2n}}{\mathrm{d}x^{2n}} (x^2 - 1)^n \right\} \right] \mathrm{d}x$$
 (0.0.64)

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} (-1)^m (2m)! (2n)! \frac{(n+m)!}{(n-m)!(2m)!} \int_{-1}^1 (x^2 - 1)^n dx$$
 (0.0.65)

$$= \frac{(-1)^{n+m}}{2^{2n}(n!)^2} (-1)^m (2m)! (2n)! \frac{(n+m)!}{(n-m)!(2m)!} (-1)^n 2 \frac{(2n)!!}{(2n+1)!!}$$
(0.0.66)

$$=\frac{2}{2n+1}\frac{(n+m)!}{(n-m)!}\tag{0.0.67}$$

となる. 直交性とまとめて書くと,

$$\langle P_{n'}^m(x), P_n^m(x) \rangle = \delta_n^{n'} \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}$$
 (0.0.68)

となる.

### 0.0.2.4 Bessel の微分方程式

### 0.0.2.5 Legendre 陪多項式の基底展開

# 0.0.2.6 球 Bessel 関数と球 Neumann 関数

したがって、部分波展開した散乱の波動関数は

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos \theta) + \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos \theta) \frac{e^{ikr}}{r}$$
(0.0.69)

である.

部分波展開した散乱の波動関数

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta) + \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos\theta) \frac{e^{ikr}}{r}$$
(0.0.70)

このとき, 散乱断面積は

$$\sigma(\theta) = |f(\theta)|^{2}$$

$$= \sum_{l} \sum_{l'} (2l+1)(2l'+1)a_{l}^{*}a_{l'}P_{l}(\cos\theta)P_{l'}(\cos\theta)$$



である. 全断面積は

$$\sigma^{\text{tot}} = 2\pi \int \sigma(\theta) \sin \theta \, d\theta \tag{0.0.73}$$

$$=2\pi \sum_{l=0}^{\infty} (2l+1)^2 |a_l|^2 \left(\frac{2}{2l+1}\right)$$
 (0.0.74)

$$=4\pi \sum_{l=0}^{\infty} (2l+1)|a_l|^2 \tag{0.0.75}$$

である.ここで,Legendre 多項式の直交性

$$\int_0^{\pi} P_l(\cos \theta) P_{l'}(\cos \theta) \sin \theta \, d\theta = \frac{2}{2l+1} \delta_{l,l'}$$
(0.0.76)

を用いた.以上の議論から,部分波展開を用いた散乱問題は未定係数  $a_l$  を求めることに帰着する.

