Prova

Você tem uma hora para completar os quatro exercícios seguintes. Você pode se referir à matéria do curso.

EXERCISE 1. Let (X,d) be metric space. Prove that X is bounded¹ if and only if every countable subset of X is bounded.

EXERCISE 2. Let (X,d) be metric space.

- 1. Show that $\frac{d}{1+d}$ is a metric on X.
- 2. Show that $\frac{d}{1+d}$ and d induce the same topology.
- 3. If (X,d) is not bounded, show that $\frac{d}{1+d}$ and d are not equivalent.

EXERCISE 3. Let $([0,+\infty),\mathscr{T})$ be the half real line endowed with the Euclidean topology. Let $+\infty$ denote an element that is not in $[0,+\infty)$, and consider the set $[0,+\infty]=[0,+\infty)\cup\{+\infty\}$. Let $\mathscr U$ denote the the topology on $[0,+\infty]$ generated by $\mathscr T$ and the sets $(a,+\infty]$ for $a\in[0,+\infty)$. Show that $([0,+\infty],\mathscr U)$ is compact.

EXERCISE 4. Let $(\mathbb{N}, \mathscr{T})$ be the integers endowed with the discrete topology. Let $+\infty$ denote an element that is not in \mathbb{N} , and consider the set $\mathbb{N} \cup \{+\infty\}$. Let \mathscr{U} denote the topology on $\mathbb{N} \cup \{+\infty\}$ generated by \mathscr{T} and the sets $(a, +\infty]$ for $a \in \mathbb{N}$.

1. Show that $(\mathbb{N} \cup \{+\infty\}, \mathcal{U})$ is homeomorphic to the subset

$$\{0\} \cup \bigcup_{n \ge 1} \left\{\frac{1}{n}\right\} \subset \mathbb{R}$$

endowed with the subspace Euclidean topology.

2. Is $(\mathbb{N} \cup \{+\infty\}, \mathcal{U})$ homeomorphic to $(\mathbb{N}, \mathcal{T})$?

¹A metric space (X,d) is *bounded* if there exists a D > 0 such that d(x,y) < D for all $x,y \in X$.