Problemas Resueltos TD

Benedetta Palmieri

Problemas Benedetta

Problema 1

Aplicar los criterios de decisión bajo incertidumbre para los casos de beneficios y costes sobre los datos de la tabla siguiente, usando las funciones individuales de incertidumbre e indicando la alternativa óptima según cada criterio.

	e1	e2	e 3
d1	30	55	110
d2	65	45	40
d3	80	60	35

Solución problema 1

Primero, cargamos las funciones necesarias para aplicar los criterios de decisión bajo incertidumbre y creamos la tabla de datos y despues se aplican los principales criterios de decisión bajo incertidumbre tanto en un contexto favorable (beneficios) como desfavorable (costes).

Caso favorable (beneficios):

el objetivo es **maximizar** el beneficio de cada alternativa.

```
result_f <- data.frame(</pre>
  Criterio = c("Wald", "Optimista", "Hurwicz", "Savage", "Laplace", "Punto
Ideal"),
  Alt_Optima_Beneficios = c(
    c_wald_f$AlternativaOptima,
    c_opti_f$AlternativaOptima,
    c_hurw_f$AlternativaOptima,
    c_sava_f$AlternativaOptima,
    c_lapl_f$AlternativaOptima,
    c_ideal_f$AlternativaOptima
 )
library(tinytable)
tt(result_f,
   theme = "striped",
   booktabs = TRUE,
   width = 0.75)
```

Criterio	Alt_Optima_Beneficios
Wald	2
Optimista	1
Hurwicz	1
Savage	1
Laplace	1
Punto Ideal	1

```
# Gráficos Hurwicz
dibuja.criterio.Hurwicz(tabl, favorable = TRUE)
```

Criterio de Hurwicz (favorable - línea discontinua)

gh_f <- dibuja.criterio.Hurwicz_Intervalos(tabl, favorable = TRUE, mostrar = TRUE)

Criterio de Hurwicz (favorable - línea discontinua)


```
print(gh_f)
```

La mayoría de los criterios (Optimista, Hurwicz, Savage, Laplace y Punto Ideal) seleccionan la **Alternativa 1**, lo que indica que es la opción más equilibrada y robusta frente a la incertidumbre.

Caso desfavorable (costos):

el objectivo es minimizar el coste de cada alternativa.

```
favorable = FALSE)
c wald d <- criterio.Wald(tab1,</pre>
c_opti_d <- criterio.Optimista(tab1, favorable = FALSE)</pre>
c_ideal_d <- criterio.PuntoIdeal(tab1, favorable = FALSE)</pre>
result d <- data.frame(</pre>
 Criterio = c("Wald", "Optimista", "Hurwicz", "Savage", "Laplace", "Punto
Ideal"),
 Alt_Optima_Costes = c(
   c wald d$AlternativaOptima,
   c_opti_d$AlternativaOptima,
   c hurw d$AlternativaOptima,
   c_sava_d$AlternativaOptima,
   c_lapl_d$AlternativaOptima,
   c_ideal_d$AlternativaOptima
 )
)
library(tinytable)
tt(result_d,
  theme = "striped",
   booktabs = TRUE,
  width = 0.75)
```

Criterio	Alt_Optima_Costes
Wald	2
Optimista	1
Hurwicz	2
Savage	2
Laplace	2
Punto Ideal	2

```
# Gráficos Hurwicz
dibuja.criterio.Hurwicz(tab1, favorable = FALSE)
```

Criterio de Hurwicz (desfavorable - línea discontinua)


```
gh_d <- dibuja.criterio.Hurwicz_Intervalos(tab1, favorable = FALSE, mostrar
= TRUE)
```

Criterio de Hurwicz (desfavorable - línea discontinua)

La mayoría de los criterios (Wald, Hurwicz, Savage, Laplace y Punto Ideal) seleccionan la **Alternativa 2**, lo que indica que es la opción más equilibrada y robusta frente a la incertidumbre.

Problema 2

La empresa Lavazza S.p.A., reconocida marca italiana de café, está planificando el lanzamiento de una nueva línea de cápsulas ecológicas elaboradas con materiales biodegradables y compostables.

El objetivo es reforzar su imagen de sostenibilidad y responder a la creciente demanda de productos respetuosos con el medio ambiente.

El equipo directivo debe decidir qué estrategia de lanzamiento adoptar. Después de un análisis preliminar, se consideran tres alternativas estratégicas posibles:

- Cafeterías asociadas: promoción a través de cafeterías asociadas y punto de venta tradicionales.
- **Campaña mixta:** campaña mixta que combine publicidad digital (redes sociales, influencers) y participación en ferias gastronomicas internacionales.
- **E-commerce:** lanzamiento exclusivamente online, mediante la web oficial de Lavazza y plataformas de comercio electrónico (por ejemplo, Amazon).

Cada estrategia requiere un coste inicial diferente y genera niveles distintos de ventas, según la demanda real del mercado que es incierta. Se consideran tres escenarios posibles:

- Demanda Alta: Los consumidores adoptan rápidamente el nuevo producto.
- **Demanda Media:** Las ventas son estables pero moderadas.
- Demanda Baja: El interés por el producto ecológico es limitado.

A partir de estudios de mercado, se estiman las entradas (ingresos) y salidas (costes) siguientes, expresadas en miles de euros.

Ingresos estimados (en miles de €):

	Demanda Alta	Demanda Media	Demanda Baja
Cafeterías asociadas	150	100	60
Campaña mixta	220	140	70
E-commerce	130	100	80

Costes estimados (en miles de €):

	Demanda Alta	Demanda Media	Demanda Baja
Cafeterías asociadas	80	60	50
Campaña mixta	125	85	75
E-commerce	70	55	55

El objetivo del análisis es determinar qué alternativa resulta más conveniente para la empresa en función de los distintos escenarios posibles considerados.

Solución problema 2

Alternativas:

- d1: cafeterías asociadas.
- d2: campaña mixta.
- d3: E-commerce.

Estados de naturaleza:

- e1: demanda alta.
- e2: demanda media.
- e3: demanda baja.

Beneficios Netos (Ingresos - Costes):

```
m11 = 150 - 80

m12 = 100 - 60

m13 = 60 - 50

m21 = 220 - 125

m22 = 140 - 85

m23 = 70 - 75

m31 = 130 - 70

m32 = 100 - 55

m33 = 80 - 55
```

Todos los valores están expresados en miles de euros. Los valores negativos representan pérdidas.

```
e1 e2 e3
d1 70 40 10
d2 95 55 -5
d3 60 45 25
```

```
library(tinytable)
tt(criterio.Todos(tab2, 0.6, favorable = TRUE), rownames = TRUE)
```

row- name	e1	e2	e3	Wald	Opti- mista	Hur- wicz	Savage	Laplace	Punto Ideal	Veces Optima
d1	70	40	10	10	70	46	25	40.00	32.79	1
d2	95	55	-5	-5	95	55	30	48.33	30.00	4
d3	60	45	25	25	60	46	35	43.33	36.40	1
iAlt.Opt (fav.)	-	-	-	d3	d2	d2	d1	d2	d2	d2

Despues de aplicar los distintos criterios de decisión bajo incertidumbre, se observa que la mayoria de los criterios (Hurwicz, Laplace, Punto Ideal y Optimista) coinciden en seleccionar la alternativa d2 como la más conveniente. Aunque el criterio de Wald prefiere la alternativa d3 y el criterio de Savage la d1, la decisión final recomendada es la alternativa d2, que se presenta como la opción más robusta y equilibrada frente a la incertidumbre.