```
\star\star \ \vec{X}_i = (X_1, X_2, \ldots, X_n)_i
**\overrightarrow{W} = (W_1, W_2, \ldots, W_n)
```

 $\triangle W_i = 0$

For each
$$(\vec{x}, t)_i$$
 in training_examples, Do :
$$f_i \leftarrow \vec{w} \cdot \vec{x}_i$$

GRADIENT_DESCENT $(training_examples, \;\;\eta)$:

1. $\overrightarrow{\mathsf{w}} \leftarrow \mathsf{Initialize}$ with small random values 2. Until the termination condition is met. Do:

** where, training_examples = $((\vec{x}, t)_1, (\vec{x}, t)_2, \ldots, (\vec{x}, t)_N)$

For each weight
$$w_k$$
, Do:
$$\triangle w_k \leftarrow \triangle w_k + \gamma \left(t_i - f_i \right) x_k$$

For each weight w_i, Do: $W_i \leftarrow W_i + \triangle W_i$

3. Return w

For each weight
$$w_k$$
, $\triangle w_k \leftarrow \triangle w_k + \eta$ (