

Linear L2[™] Power MOSFET with extended FBSOA

N-Channel Enhancement Mode

IXTH30N50L2 IXTQ30N50L2 IXTT30N50L2

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	500	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	500	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{C} = 25^{\circ}C$	30	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	60	Α	
I _{AR}	$T_{c} = 25^{\circ}C$	30	Α	
E _{AR}	$T_{C} = 25^{\circ}C$	50	mJ	
E _{AS}		1.5	J	
P _D	T _C = 25°C	400	W	
T		-55 to +150	°C	
T_{JM}		+150	°C	
T _{stg}		-55 to +150	°C	
T _L	1.6mm (0.063in) from case for 10s	300	°C	
T _{SOLD}	Plastic body for 10s	260	°C	
\mathbf{M}_{d}	Mounting torque (TO-247, TO-3P)	1.13/10	Nm/lb.in.	
Weight	TO-247	6.0	g	
	TO-3P TO-268	5.5 5.0	g g	

Symbol	Symbol Test Conditions			Characteristic Values			
(T _J = 25°C,	unless otherwise specified)	Min.	Тур.	Max	.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	500					
$V_{_{\mathrm{GS(th)}}}$	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5	V		
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nΑ		
I _{DSS}	$V_{DS} = V_{DSS}$			50	μΑ		
	$V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			300	μΑ		
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			200	$m\Omega$		

 $V_{DSS} = 500V$ $I_{D25} = 30A$ $R_{DS(on)} \le 200m\Omega$

TO-3P (IXTQ)

TO-268 (IXTT)

G = Gate D = DrainS = Source TAB = Drain

Features

- Designed for linear operation
- International standard packages
- Unclamped Inductive Switching (UIS) rated.
- Molding epoxies meet UL 94 V-0 flammability classification
- Integrated gate resistor for easy paralleling
- Guaranteed FBSOA at 75°C

Applications

- Solid state circuit breakers
- Soft start controls
- Linear amplifiers
- Programmable loads
- Current regulators

Symbol Characteristic Values Test Conditions (T₁ = 25°C, unless otherwise specified) Min. Тур. Max. 9 12 15 $V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$ S g_{fs} C_{iss} 8100 рF $\mathbf{C}_{\mathrm{oss}}$ $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$ 530 pF $\mathbf{C}_{\underline{_{\underline{rss}}}}$ 115 pF $\boldsymbol{R}_{\underline{_{Gi}}}$ Integrated gate input resistor 3.5 Ω 35 ns t_{d(on)} **Resistive Switching Times** 117 t, ns $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$ 94 ns t_{d(off)} $R_c = 0\Omega$ (External) 40 ns t, Q_{g(on)} 240 nC \mathbf{Q}_{gs} $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$ 58 nC 135 $\mathbf{Q}_{\mathbf{g}\underline{\mathbf{d}}}$ nC 0.31 °C/W R_{thJC} (TO-247, TO-3P) 0.25 °C/W \mathbf{R}_{thCS}

Safe Operating Area Specification

Symbol	Test Conditions	Min.	Тур.	Max.
SOA	$V_{DS} = 400V$, $I_{D} = 0.5A$, $T_{C} = 75^{\circ}C$, $t_{D} = 2s$	200		W

Source-Drain Diode

Characteristic Values

 $(T_1 = 25^{\circ}C, unless otherwise specified)$

Symbol	Test Conditions	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			30	A
I _{sm}	Repetitive, pulse width limited by $T_{_{JM}}$			120	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	$I_{F} = I_{S}$, -di/dt = 100A/ μ s, $V_{R} = 100V$		500		ns

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

TO-247 (IXTH) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Mill	imeter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

- DRAIN (COLLECTOR) SOURCE (EMITTER) DRAIN (COLLECTOR)

SYM	INCHES MILLIMET		1ETERS	
31101	MIN	MAX	MIN	MAX
Α	.185	.193	4.70	4.90
A1	.051	.059	1.30	1.50
A2	.057	.065	1.45	1.65
b	.035	.045	0.90	1.15
b2	.075	.087	1.90	2.20
b4	.114	.126	2.90	3.20
С	.022	.031	0.55	0.80
D	.780	.799	19.80	20.30
D1	.665	.677	16.90	17.20
E	.610	.622	15.50	15.80
E1	.531	.539	13.50	13.70
е	.215 BSC		5.45 BSC	
L	.779	.795	19.80	20.20
L1	.134	.142	3.40	3.60
ØΡ	.126	.134	3.20	3.40
øP1	.272	.280	6.90	7.10
S	.193	.201	4.90	5.10

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics

Fig. 3. Output Characteristics

@ T_J = 125°C

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 15A Value vs. Drain Current

Fig. 2. Extended Output Characteristics

 $@ T_J = 25^{\circ}C$

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 15A$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs.

Case Temperature

Fig. 8. Transconductance 30 $T_{J} = -40^{\circ}C$ 27 24 21 gfs-Siemens 18 125°C 15 12 6 3 0 10 15 30 5 20 25 35 40 45 50 I_D - Amperes

Fig. 9. Forward Voltage Drop of **Intrinsic Diode** 90 80 70 60 ls - Amperes 50 40 $T_{J} = 125^{\circ}C$ 30 $= 25^{\circ}C$ 20 10 0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 V_{SD} - Volts

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, $% \ensuremath{\mathsf{IXYS}}$ and $% \ensuremath{\mathsf{dimensions}}$.

Fig. 13. Forward-Bias Safe Operating Area $@T_C = 25^{\circ}C$

Fig. 14. Forward-Bias Safe Operating Area $@T_C = 75^{\circ}C$

