AERO3465: Group 7 – Preliminary Design Review

Interface Loads

x is positive aft; y is positive right; z is positive up;

LIMIT INTERFACE LOADS (N)												
Load Case		LUG	Р		LUG A			LUG B			LUG C	
Component	Рх	Ру	Pz	Ax	Ау	Az	Bx	Ву	Bz	Сх	Су	Cz
1	0	0	-880	0	-11300	-66.0	0	<mark>11300</mark>	-66.0	0	<mark>O</mark>	<mark>1010</mark>
2	0	0	440	0	<mark>5650</mark>	<mark>33.0</mark>	0	-5350	<mark>33.0</mark>	0	0	-506
3	<mark>100</mark>	0	0	33.0	193	5.00	33.0	193	5.00	33	-385	-10.0
4	0	100	0	0	40.8	0	0	-25.8	0	0	-115	0

ULTIMATE INTERFACE LOADS (N)													
Load Case		LUG P		LUG A			LUG B			LUG C			
Component	Рх	Ру	Pz	Ах	Ау	Az	Вх	Ву	Bz	Сх	Су	Cz	
1	0	0	-1320	0	-16940	-99.0	0	16940	-99.0	0	0	1518	
2	0	0	660	0	8470	49.5	0	-8470	49.5	0	0	-759	
3	150	0	0	50	288	7.5	33.0	288	7.5	49.5	-577.5	-15	
4	0	150	0	0	61.2	0	0	-38.7	0	0	-172.5	0	

Determining Minimum Lug Dimensions

- ✓ Allowable loads for shear tear out, tension and transverse failure (Pbru, Ptu, Ptru) for respective efficiency (K) factors --> determine minimum a, width, A3 dimensions
- √ Margin of Safety Table Constructed MoS > 0.05
- ✓ However, minimum rivet spacing requirements governed our preliminary design

Luce	Lug Failure Mode		oad Reactions						MOC					
Lug			C_X	C_y	C_z					MOS				
	Shear Bending	Variable: k_br, determines 'a'. a:				0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4
				Allowable	Load: P_bru	2358.1	4847.2	7205.3	9170.3	11004.4	12576.5	14410.5	15982.6	17816.6
	Failure (axial	1	0	0	1012									
		2	0	0	-506									
	(-F_Y) loads)	3	33	-385	-10	2.5506648	6.2985888	9.8492537	12.808141	15.569769	17.936879	20.698507	23.065617	25.827245
		4	0	-115	0	10.887008	23.434406	35.321414	45.227255	54.472706	62.397378	71.642829	79.567501	88.812952
		Var	Variable: k_t, determines 'W'. Width:				7.62	7.9375	9.525	12.7	15.875	19.05	22.225	25.4
	Tension Failure	Allowable Load: P_tu			1310.0	2620.1	3209.6	6288.2	11790.4	16703.1	20960.8	28166.0	28690.0	
	10.17 (E. 10.1 TOTAL)	1	0	0	1012									
	(axial (-F_Y) loads)	2	0	0	-506									
•	(Odus)	3	33	-385	-10	0.9725916	2.9451832	3.8328494	8.4684396	16.753324	24.150543	30.561465	41.410719	42.199755
С		4	0	-115	0	5.6038935	12.207787	15.179539	30.698689	58.435042	83.199643	104.6623	140.98371	143.62527
		Varia	able: k_tru,	determines '	A3'. A_ave:	0.7661275	1.532255	2.2983825	3.06451	6.12902	9.19	12.26	15.32	18.39
	Transverse Failure		Allowa	ble Load: P_t	ru	524.0	917.0	1310.0	1572.1	3275.1	4585.2	6157.2	7336.3	8515.3
	(Transverse loads.	1	0	0	1012	-0.699823	-0.47469	-0.249558	-0.099469	0.8761061	1.6265486	2.5270795	3.2024777	3.8778759
	(Transverse loads,	2	0	0	-506	-0.399646	0.0506194	0.5008849	0.8010619	2.7522122	4.2530971	6.054159	7.4049554	8.7557518
	F2)	3	33	-385	-10									
		4	0	-115	0									

A & B Lug Design

- 12 Rivets

- 4.83mm thick

- MOS: 0.06 based on axial direct load

C Lug Design

-6 Rivets

- 4.83mm thick

- MOS: 0.8 based on fastener group analysis

P Lug Design

- 5 Rivets

- 4.83mm thick

- MOS: 13.9 based on fastener group analysis

Cross section BL120

Layout of tip rib

- Thickness = 0.635mm
- Bend Radii = 1.905 mm
- Bend Allowance = 0.0388 mm
- Fastener Centre lines = 7.055mm
- Flange Width = 14.11 mm
- Number of rivets = 32

Structural Idealisation

- Nodes 1, 2, 3, 4 make up the Inboard Rib.
- Nodes 5, 6, 7, 8 make up the Mid Rib.
- Nodes 9, 10, 11, 12 make up the Outboard Rib.
- Nodes 1, 5, 9, 4, 8, 12 make up the Forward Spar.
- Nodes 2, 6, 10, 11, 7, 3 make up the Rear Spar.

Boom Area Calculated Results

Nodes	Z	-axis	Y.	-axis	X-axis		
	Area (mm^2)	Diameter (mm)	Area (mm^2)	Diameter (mm)	Area (mm^2)	Diameter (mmm)	
1,2,3,4	1420	42.521	133.2105	13.023	3000	61.804	
5,6	1420	42.521	133.2105	13.023	15000	138.20	
7,8	1420	42.521	133.2105	13.023	12000	123.61	
9,10	1420	42.521	133.2105	13.023	6000	87.403	
11,12	1420	42.521	133.2105	13.023	9000	107.0474	

Y-Axis Booms

$$A_{boom} \approx t_{Skin} * w_{effSkin} + t_{cap} * (w_{cap} + h_{cap}) + t_{spar} * (w_{flange} + w_{effWeb})$$

X-Axis Booms

$$A_{boom} \approx (w_{spar} * h_{spar})$$

Z-Axis Booms

$$A_{boom} \approx (w_{rib} * l_{rib})$$

Shear Stress on Skin Panels – Load Case 1

Z+	11/10
•	9

Face	Nodes	Shear Stress (MPa)
1	1, 2, 3, 4	0.000
2	5, 6, 7, 8	0.218
3	9,10,11,12	-0.755
4	1, 5, 8, 4	3.163
5	2, 3, 6, 7	-13.660
6	5, 8, 12, 9	-1.645
7	6, 7, 10, 11	20.363
8	5, 6, 9, 10	3.914
9	1, 2, 6, 5	-3.158
10	3, 4, 8, 7	3.158
11	7, 8, 12, 11	3.914

Rib placement

Estimated Weight of 1122.95g using Al 2024-T3 Aluminum Sheeting 2.09% over the target limit without rivets, etc...