Formulas.

1.
$$\frac{d[f(x)+g(x)]}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$$

2.
$$\frac{d[f(x)-g(x)]}{dx} = \frac{df(x)}{dx} - \frac{dg(x)}{dx}$$

3.
$$\frac{dx^n}{dx} = nx^{n-1}$$
 for all numbers n .

4.
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

5.
$$\frac{d[f(x)g(x)]}{dx} = f'(x)g(x) + f(x)g'(x)$$

6.
$$\frac{d[f(x)/g(x)]}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

7.
$$\frac{d\sin(x)}{dx} = \cos(x)$$
 $\frac{d\cos(x)}{dx} = -\sin(x)$

8.
$$\int \cos(x)dx = \sin(x) + C \qquad \int \sin(x)dx = -\cos(x) + C$$

9.
$$\frac{d\tan(x)}{dx} = \sec^2(x) \qquad \frac{d\cot(x)}{dx} = -\csc^2(x)$$

10.
$$\int \sec^2(x) dx = \tan(x) + C$$
 $\int \csc^2(x) dx = -\cot(x) + C$

11.
$$\frac{d \sec(x)}{dx} = \sec(x) \tan(x)$$
 $\frac{d \csc(x)}{dx} = -\csc(x) \cot(x)$

12.
$$\int \sec(x)\tan(x)dx = \sec(x) + C$$
$$\int \csc(x)\cot(x)dx = -\csc(x) + C$$

Here is the definition of the derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$