

Midterm Exam

Topics: geometric transformations; curves and programming in

Python

Subject: Computational Mathematics Period: 2020-2

1. (3 pts.) In a sheet of paper: reflect the point P := (2, -1, 3) in the plane through the vector $P_0 := (1, 2, -1)$ with normal (-1, 5, 2).

- 2. (3 pts.) Let U be the unit cube with vertices (a, b, c), where each component is 0 or 1. In the same sheet of paper above: find the coordinates of the vertices of U rotated $2\pi/3$ clockwise around the line from $P_0 := (0, 0, 0)$ to (1, 1, 1).
- 3. Let $P_0 := (-2,1)$, $P_1 := (0,-4)$, $P_2 := (3,2)$ and $P_3 := (5,0)$. In a *.ipynb file:
 - (a) (3 pts.) Find the parametric description P(t) of the cubic Bézier curve with control points: P_0 , P_1 , P_2 and P_3 .
 - (b) (1 pt.) Print the Bézier curve above with its control points.
 - (c) (3 pts.) Find the parametric description P(t) of the uniform quadratic B-spline using control points: P_0 , P_1 , P_2 and P_3 .
 - (d) (1 pt.) Print the B-spline above with its control points.
- 4. Let $P_0 := (-1,0)$, $P_1 := (1,4)$, $P_2 := (3,-2)$, $P_3 := (4,3)$ and $P_4 := (6,1)$. In the same *.ipynb file above:

- (a) (3 pts.) Construct a uniform cubic B-spline using the control points P_0 , P_1 , P_2 , P_3 and P_4 . Find the parametric expressions for the coordinates x and y.
- (b) (1 pt.) Print the curve above.
- (c) (2 pts.) Verify by finding the derivatives that, at the joining point between the fourth and fifth segments, the first and second derivatives match.

December 23, 2020