PRÁCTICA 1 TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES

Alberto Trigueros Postigo

12/19/2022

1 ENUNCIADO

Se pide encontrar el "power set" o potencia de una relación de la relación: $R = \{(1,1), (1,2), (2,3), (3,4)\}$, Seguidamente que comparemos nuestra respuesta con la generada en el script powerrelation.m.

2 RESOLUCIÓN

Primero veamos la definición de potencia de una relación; se dice que dado $R\subseteq A\times A$

(relación de un conjunto en sí mismo)

$$R^{n} = \begin{cases} R & si \quad n = 1 \\ \{(a,b) : \exists x \in A, (a,x) \in R^{n-1} \land (x,b) \in R\} & si \quad n > 1 \end{cases}$$

En nuestro caso particular, $A = \{1,2,3,4\}$ y por ello R tiene sentido. $R = \{(1,1),(1,2),(2,3),(3,4)\}$ Veamos primero R^2 :

$$(a,b) \in R^2 \Longleftrightarrow \exists x \in A, (a,x) \in R \land (x,b) \in R.$$

Un número de la forma $(y,y) \in R$ con $y \in A$ siempre va a pertenecer a R^2 ya que podemos encontrar dicho x para el cual (y,x) y (x,y) están en R, en concreto dicho (y,y). De esta forma afirmamos que $(1,1) \in R^2$

Para los elementos (a,b) con $a \neq b$ la idea matemática en este caso es que (a,b) está en R^2 si podemos encontrar los elementos (a,x) y (x, b) en R con x cualquier elemento de A. De esta forma $\{(1,2),(1,3),(2,4)\} \in R^2$

Desarrollando para (1,2), tenemos que (1,1) y (1,2) pertenecen a la relación, el x buscado es el 1 y por ello, (1,2) pertenece a \mathbb{R}^2 . Los demás son análogos.

CONCLUSION:
$$R^2 = \{(1,1), (1,2), (1,3), (2,4)\}$$

Para ver R^3 podemos razonar de forma: $(a,b) \in R^2 \iff \exists x \in A, (a,x) \in R^2 \land (x,b) \in R.$ De nuevo, un número de la forma $(y,y) \in R$ con $y \in A$ siempre va a pertenecer a R^3 ya que pertenece siempre a R^2 por lo visto antes y también a R, lo que nos dan los dos elementos que buscamos para que exista dicho x con $(a,x) \in R^2 \wedge (x,b) \in R$. (Así podemos razonar mediante inducción que $(y,y) \in R$ está en $R^n \forall$ n natural).

Por otro lado, para ver que (a,b) con $a \neq b$ pertenezca a R^3 buscamos (a,x) en R^2 y (x, b) en R (para cualquier x \in A). Así, $R^3 = \{(1,1), (1,2), (1,3), (1,4)\}$ Es igual que para R^2 pero buscando el (a,x) en R^2 en vez de en R.

```
CONCLUSION: R^3 = \{(1,1), (1,2), (1,3), (1,4)\}
```

3 COMPROBACION

Meidante octave y la función proporcionada en el campus podemos ver que efectivamente, tenemos razón pues,

```
\begin{array}{l} \operatorname{powerrelation}(\{['1','1'],['1','2'],['2','3'],['3','4']\},3)\\ \operatorname{ans}=\\ \{\\ [1,1]=11\\ [1,2]=12\\ [1,3]=13\\ [1,4]=14\\ \} \end{array}
```