Q1-Q4 Solutions for HW6-CS 6033 Fall 2024

Q1 → Master Theorem - Recurrence Formulas

1. Solve these recurrence formulas using Θ notation:

•
$$T(n) = 2T(n/3) + 1$$

•
$$T(n) = 5T(n/4) + n$$

•
$$T(n) = 7T(n/7) + n$$

•
$$T(n) = 9T(n/3) + n^2$$

•
$$T(n) = 8T(n/2) + n^3$$

•
$$T(n) = 7T(n/2) + \Theta(n^2)$$

•
$$T(n) = T(n/2) + \Theta(1)$$

•
$$T(n) = 5T(n/4) + \Theta(n^2)$$

Recurrence formula	a	b	$n^{log_b a}$	f(n)	Case	T(n)
2T(n/3) + 1	2	3	$n^{log_3^2}$	1	$1 \rightarrow cost$ dominated by leaves	$\Theta(n^{\log_3 2})$
5T(n/4) + n	5	4	$n^{log_{4}5}$	n	$1 \rightarrow cost$ dominated by leaves	$\Theta(n^{\log_4 5})$
7T(n/7) + n	7	7	$n^{log_{7}7}$	n	2 → cost same at every level	Θ(nlogn)
$9T(n/3) + n^2$	9	3	$n^{log_3^9}$	n^2	2 → cost same at every level	$\Theta(n^2 log n)$
$8T(n/2) + n^3$	8	2	$n^{log_{2}8}$	n^3	$2 \rightarrow \text{cost same at every level}$	$\Theta(n^3 log n)$
$7T(n/2) + \Theta(n^2)$	7	2	$n^{log_{2}7}$	n^2	$1 \rightarrow cost$ dominated by leaves	$\Theta(n^{\log_2 7})$
$T(n/2) + \Theta(1)$	1	2	$n^{log_2^{-1}}$	1	2 → cost same at every level	$\Theta(logn)$
$5T(n/4) + \Theta(n^2)$	5	4	$n^{log_{4}5}$	n^2	3 → cost dominated by root	$\Theta(n^2)$

Q2 - Master Theorem - Divide and Conquer problems

- 2. Suppose you came up with three solutions to a homework problem:
 - The first solution, Algorithm A, divides the original problem into 5 subproblem of size n/2, recursively solves the subproblems, and then solves the original problem by combining the subproblems in linear time.
 - The second solution, Algorithm B, divides the original problem into two subproblems of size $\frac{9}{10}n$, recursively solves the subproblems, and then solves the original problem by combining the subproblems in linear time.
 - The third solution, Algorithm C, divides the original problem into problems of size n/3, recursively solves the subproblems and then solves the original problem by combining the subproblems in $\Theta(n^2)$ time

Provide the recurrence formula for each of the algorithms. What are the running times of each of these algorithms (in Θ notation), and which of your algorithms is fastest?

Recurrence formula	a	b	$n^{log_{_{b}}a}$	f(n)	Case	T(n)
$5T(n/2) + \Theta(n)$	5	2	$n^{log_2^{}5}$	n	1 → cost dominated by leaves	$\Theta(n^{\log_2 5})$
$2T(9n/10) + \Theta(n)$	2	10/9	$n^{\log_{10/9}2}$	n	$1 \rightarrow cost$ dominated by leaves	$\Theta(n^{\log_{10/9}2})$
$3T(n/3) + \Theta(n^2)$	3	3	$n^{log_3^3}$	n^2	3 → cost dominated by root	$\Theta(n^2)$

Comparing the powers of n for the running times, we find that $2 < \log_2 5 < \log_{10/9} 2$. This shows us that Algorithm C is the fastest.

(P.S: Since the value of a wasn't clarified for Algorithm C initially, answers with different values of a will be considered).

Q3 → Matrix Multiplication

- 3. Matrix multiplication:
 - Divide the 4×4 matrix A matrix into 4 smaller matrices of size 2×2 :

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$
to create:
$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Show the 2×2 matrices A_{11} , A_{12} , A_{21} , and A_{22} .

• Perform some of the calculations needed to compute $A \times B$ using Strassen's algorithm:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} \cdot \begin{bmatrix} 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 \\ 29 & 30 & 31 & 32 \end{bmatrix} = C$$

For the matrices given above:

- Compute P_1, P_2 , and C_{12}
- Compute $A_{11} \cdot B_{12}$ and $A_{12} \cdot B_{22}$
- Check to see that $C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$.
- Verify that $C_{22} = P_5 + P_1 P_3 P_7$ by replacing each P_i with its value and reducing the expression.

$$A_{11} = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} A_{12} = \begin{bmatrix} 3 & 4 \\ 7 & 8 \end{bmatrix} A_{21} = \begin{bmatrix} 9 & 10 \\ 13 & 14 \end{bmatrix} A_{22} = \begin{bmatrix} 11 & 12 \\ 15 & 16 \end{bmatrix}$$

$$B_{11} = \begin{bmatrix} 17 & 18 \\ 21 & 22 \end{bmatrix} B_{12} = \begin{bmatrix} 19 & 20 \\ 23 & 24 \end{bmatrix} B_{21} = \begin{bmatrix} 25 & 26 \\ 29 & 30 \end{bmatrix} B_{22} = \begin{bmatrix} 27 & 28 \\ 31 & 32 \end{bmatrix}$$

$$P_{1} = A_{11} * (B_{12} - B_{22}) = \begin{bmatrix} -24 & -24 \\ -88 & -88 \end{bmatrix}$$

$$P_{2} = (A_{11} + A_{12}) * B_{22} = \begin{bmatrix} 294 & 304 \\ 758 & 784 \end{bmatrix}$$

$$C_{12} = P_{1} + P_{2} = \begin{bmatrix} 270 & 280 \\ 670 & 696 \end{bmatrix}$$

$$A_{11} * B_{12} = \begin{bmatrix} 65 & 68 \\ 233 & 244 \end{bmatrix}$$

$$A_{12} * B_{22} = \begin{bmatrix} 205 & 212 \\ 437 & 452 \end{bmatrix}$$

$$(A_{11} * B_{12}) + (A_{12} * B_{22}) = \begin{bmatrix} 270 & 280 \\ 670 & 696 \end{bmatrix} = C_{12}$$

There are two ways to prove $C_{22} = P_5 + P_1 - P_3 - P_7$. You can prove it using the values given for A and B or using a generic method. Both will be shown here.

$$P_{1} = A_{11} * (B_{12} - B_{22}) = A_{11} * B_{12} - A_{11} * B_{22} = \begin{bmatrix} -24 & -24 \\ -88 & -88 \end{bmatrix}$$

$$P_{3} = (A_{21} + A_{22}) * B_{11} = A_{21} * B_{11} + A_{22} * B_{11} = \begin{bmatrix} 802 & 844 \\ 1106 & 1164 \end{bmatrix}$$

$$P_{5} = (A_{11} + A_{22}) * (B_{11} + B_{22}) = A_{11} * B_{11} + A_{22} * B_{11} + A_{11} * B_{22} + A_{22} * B_{22} = \begin{bmatrix} 1256 & 1308 \\ 2024 & 2108 \end{bmatrix}$$

$$P_{7} = (A_{11} - A_{21}) * (B_{11} + B_{12}) = A_{11} * B_{11} + A_{11} * B_{12} - A_{21} * B_{11} - A_{21} * B_{12} = \begin{bmatrix} -640 & -672 \\ -640 & -672 \end{bmatrix}$$

$$C_{22} = A_{21} * B_{12} + A_{22} * B_{22} = \begin{bmatrix} 1070 & 1112 \\ 1470 & 1528 \end{bmatrix}$$

Using the values, we get

$$P_5 + P_1 - P_3 - P_7 = \begin{bmatrix} 1070 & 1112 \\ 1470 & 1528 \end{bmatrix} = C_{22}$$

Using the generic method, we get

$$P_5 + P_1 - P_3 - P_7$$

$$= A_{11} * B_{11} + A_{11} * B_{12} + A_{11} * B_{22} - A_{11} * B_{22} + A_{22} * B_{11} + A_{22} * B_{22}$$

$$- (A_{11} * B_{11} + A_{11} * B_{12} - A_{21} * B_{11} + A_{21} * B_{11} + A_{22} * B_{11} - A_{21} * B_{12})$$

$$= A_{22} * B_{22} - (-A_{21} * B_{12}) = A_{22} * B_{22} + A_{21} * B_{12} = C_{22}$$

$\mathbf{Q4} o \mathbf{Matrix} \ \mathbf{Multiplication}$

We begin by partitioning matrix A and matrix B into square blocks of size $n \times n$. Let:

$$A = [A_1 \ A_2 \ A_3]$$

where each A_i is an $n \times n$ matrix.

Similarly, partition matrix B into three blocks:

$$B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

where each B_i is an $n \times n$ matrix.

The matrix product $C = A \times B$ can be expressed as:

$$C = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix} \times \begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

This expands into:

$$C = A_1 B_1 + A_2 B_2 + A_3 B_3$$

Each multiplication A_iB_i is a multiplication between two $n \times n$ matrices, where we can apply Strassen's algorithm.

For each pair A_i and B_i , we use Strassen's algorithm to compute the matrix multiplication:

$$C_i = A_i B_i$$

Strassen's algorithm for multiplying two $n \times n$ matrices has a time complexity of $O(n^{\log_2 7}) \approx O(n^{2.81})$.

Once the products $C_1 = A_1B_1$, $C_2 = A_2B_2$, and $C_3 = A_3B_3$ are computed using Strassen's algorithm, we sum these matrices to get the final result:

$$C = C_1 + C_2 + C_3$$

The time complexity of the solution is dominated by the three Strassen matrix multiplications, each taking $O(n^{2.81})$, and the matrix additions, which take $O(n^2)$ time.

Thus, the total time complexity is: $T(n) = O(n^{2.81})$

```
EXTRACT_SUBMATRIX(M, row_start, row_end, col_start, col_end)
    // Initialize the submatrix with the correct dimensions
    num_rows = row_end - row_start + 1
    num_cols = col_end - col_start + 1
    submatrix = NEW_MATRIX(num_rows, num_cols)
    // Copy the values from the original matrix to the submatrix
    for i = 1 to num_rows
        for j = 1 to num_cols
            // Copy the element from the original matrix to the submatrix
            submatrix[i][j] = M[row\_start + i - 1][col\_start + j - 1]
    return submatrix
MULTIPLY_MATRICES(A, B)
    // Initialize an n x n matrix filled with zeroes
    answer = NEW_MATRIX(n, n)
    for i = 1 to 3
        // Extract submatrices
        // From A: all rows, columns (i-1)*n + 1 to i*n
        A_submatrix = EXTRACT_SUBMATRIX(A, 1, n, (i-1)*n + 1, i*n)
        // From B: rows (i-1)*n + 1 to i*n, all columns
        B_{submatrix} = EXTRACT_{SUBMATRIX}(B, (i-1)*n + 1, i*n, 1, n)
        // Perform Strassen multiplication and accumulate the result
        answer = MATRIX_ADD(answer, STRASSEN(A_submatrix, B_submatrix))
    return answer
```