

Curso:	Ciência da Computação		
Disciplina:	Fundamentos Teóricos da Computação	lor	0.0
Professor (a):	João Paulo C. Aramuni	Valor	0,0
Nome:		Nota	
Nº da Atividade/Nome:	Lista 05	ž	
Data:			
Valor:	0,0 pts		

Assuntos: GLC; FNC; MT.

1. Seja a gramática ($\{A,B\}$, $\{0,1\}$, R, A), em que R tem as três regras:

$$A \to BB$$
$$B \to 0B1 \mid \lambda$$

Dê todas as derivações das seguintes palavras: (Nas derivações abaixo estão grifadas as variáveis expandidas)

a) λ ;

$$A \Rightarrow \underline{B}B \Rightarrow \underline{B} \Rightarrow \lambda.$$

$$A \Rightarrow B\underline{B} \Rightarrow \underline{B} \Rightarrow \lambda.$$

Árvores de Derivação: 2

b) 01;

$$A \Rightarrow \underline{B}B \Rightarrow \underline{B} \Rightarrow 0\underline{B}1 \Rightarrow 01.$$

$$A \Rightarrow \underline{B}\underline{B} \Rightarrow \underline{B} \Rightarrow 0\underline{B}1 \Rightarrow 01.$$

$$A \Rightarrow \underline{B}B \Rightarrow 0\underline{B}1B \Rightarrow 01\underline{B} \Rightarrow 01.$$

$$A \Rightarrow \underline{B}B \Rightarrow 0B1\underline{B} \Rightarrow 0\underline{B}1 \Rightarrow 01.$$

$$A \Rightarrow \overline{BB} \Rightarrow \overline{B}0B\overline{1} \Rightarrow 0\overline{B}1 \Rightarrow 01.$$

$$A \Rightarrow B\underline{B} \Rightarrow B0\underline{B}1 \Rightarrow \underline{B}01 \Rightarrow 01.$$

Árvores de Derivação: 6

c) 0101;

$$A \Rightarrow \underline{B}B \Rightarrow 0\underline{B}1B \Rightarrow 01\underline{B} \Rightarrow 010\underline{B}1 \Rightarrow 0101.$$

$$A \Rightarrow BB \Rightarrow 0B1B \Rightarrow 0B10B1 \Rightarrow 010B1 \Rightarrow 0101$$
.

$$A \Rightarrow \underline{BB} \Rightarrow 0B1\underline{B} \Rightarrow 0B10\underline{B}1 \Rightarrow 0\underline{B}101 \Rightarrow 0101.$$

$$A \Rightarrow B\underline{B} \Rightarrow \underline{B}0B1 \Rightarrow 0\underline{B}10B1 \Rightarrow 010\underline{B}1 \Rightarrow 0101.$$

$$A \Rightarrow BB \Rightarrow B0B1 \Rightarrow 0B10B1 \Rightarrow 0B101 \Rightarrow 0101$$
.

$$A \Rightarrow B\underline{B} \Rightarrow B0\underline{B}1 \Rightarrow \underline{B}01 \Rightarrow 0\underline{B}101 \Rightarrow 0101.$$

Árvores de Derivação: 6

d) 0011.

 $A \Rightarrow \underline{B}B \Rightarrow \underline{B} \Rightarrow 0\underline{B}1 \Rightarrow 00\underline{B}11 \Rightarrow 0011.$

 $A \Rightarrow \underline{B}B \Rightarrow 0\underline{B}1B \Rightarrow 00\underline{B}11B \Rightarrow 0011\underline{B} \Rightarrow 0011.$

 $A \Rightarrow BB \Rightarrow 0B1B \Rightarrow 00B11B \Rightarrow 00B11 \Rightarrow 0011$.

 $A \Rightarrow \underline{BB} \Rightarrow 0B1\underline{B} \Rightarrow 0\underline{B}1 \Rightarrow 00\underline{B}11 \Rightarrow 0011.$

 $A \Rightarrow B\underline{B} \Rightarrow \underline{B} \Rightarrow 0\underline{B}1 \Rightarrow 00\underline{B}11 \Rightarrow 0011.$

 $A \Rightarrow B\underline{B} \Rightarrow \underline{B}0B1 \Rightarrow 0\underline{B}1 \Rightarrow 00\underline{B}11 \Rightarrow 0011.$

 $A \Rightarrow BB \Rightarrow B0B1 \Rightarrow B00B11 \Rightarrow 00B11 \Rightarrow 0011.$

 $A \Rightarrow B\underline{B} \Rightarrow B0\underline{B}1 \Rightarrow B00\underline{B}11 \Rightarrow \underline{B}0011 \Rightarrow 0011.$

Árvores de Derivação: 8

Que linguagem é gerada?

A linguagem gerada é $\{0^n 1^n \mid n \in \mathbb{N}\}^2$

2. Construa uma GLC não ambígua e uma ambígua para cada uma das seguintes linguagens:

a)
$$\{0^n1^n / n \ge 0\}$$
 U $\{0^n1^{2n} / n \ge 0\}$;

Não ambígua:

 $P \rightarrow A \mid B \mid \lambda$

 $A \rightarrow 0A1 \mid 01$

 $B \rightarrow 0B1\dot{1} \mid 011$

Não ambígua pois não existem duas ou mais derivações mais à esquerda ou mais à direita para alguma palavra reconhecida pela linguagem.

Ambígua:

 $P \rightarrow A \mid B$

 $A \rightarrow 0A1 \mid \lambda$

 $B \rightarrow 0B11 \mid \lambda$

Ambígua pois existem duas derivações mais à esquerda da palavra λ:

 $P \Rightarrow \underline{A} \Rightarrow \lambda$.

 $P \Rightarrow B \Rightarrow \lambda$.

b)
$$\{0^m1^n / m >= n\};$$

Não ambígua:

 $P \rightarrow 0P1 \mid X$

 $X \rightarrow 0X \mid \lambda$

Não ambígua pois não existem duas ou mais derivações mais à esquerda ou mais à direita para alguma palavra reconhecida pela linguagem.

Ambígua:

$$P \rightarrow 0P1 \mid 0P / 0 \mid \lambda$$

Ambígua pois existem duas derivações mais à esquerda da palavra **001**:

 $P \Rightarrow 0P1 \Rightarrow 00P1 \Rightarrow 001$.

 $P \Rightarrow 0P \Rightarrow 00P1 \Rightarrow 001.$

c)
$$\{0^m 1^n / m > n\}$$
.

Não ambígua:

$$P \rightarrow 0P1 \mid X$$

$$X \to 0X \mid 0$$

Ambígua:

$$P \rightarrow 0P1 \mid 0P \mid 0$$

Ambígua pois existem duas derivações mais à esquerda da palavra 0001:

$$P \Rightarrow 0P1 \Rightarrow 00P1 \Rightarrow 0001$$
.

$$P \Rightarrow 0\underline{P} \Rightarrow 00\underline{P} \Rightarrow 0001.$$

3. Construa GLCs para:

a)
$$L_1 = \{0^n 1^k / 2n \le k \le 3n\};$$

$$X \rightarrow 0X11 \mid 0X111 \mid \lambda$$

b)
$$L_2 = \{ a^n b^k c^m / k = 2n + m \};$$

$$Y \rightarrow AB$$

$$A \rightarrow aAbb \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

c)
$$L_3 = (L_1 \cup L_2)^2$$
.

$$P \rightarrow ZZ$$

$$Z \rightarrow X \mid Y$$

mais as regras de (a) e (b)

d)
$$L = \{w \in \{a, b, c\}^* \mid w \text{ não contém aa}\}\$$

$$P \rightarrow aA \mid bP \mid cP \mid \lambda$$

$$A \rightarrow bP \mid cP \mid \lambda$$

e)
$$L = \{w \in \{a, b, c\}^* \mid cada \ b \ é \ seguido \ por \ pelo \ menos \ um \ c\}$$

$$P \rightarrow aP \mid bA \mid cP \mid \lambda$$

$$A \rightarrow cP$$

4. Construa uma GLC para a linguagem:

$$L = \{w \in \{a, b\}^* \mid w \text{ não \'e da forma } xx\}$$

$$P \rightarrow AB \mid BA \mid A \mid B$$

$$A \rightarrow XAX \mid a$$

$$B \rightarrow XBX \mid b$$

$$X \rightarrow a \mid b$$

5. Seja a gramática *G*:

$$P \rightarrow aPb \mid aaPb \mid \lambda$$

a) Mostre que G é ambígua.

G é ambígua, pois existem duas derivações mais à esquerda da palavra aaabb;

$$P \Rightarrow aPb \Rightarrow aaaPbb \Rightarrow aaabb$$

$$P \Rightarrow aaPb \Rightarrow aaaPbb \Rightarrow aaabb$$

b) Construa uma gramática não ambígua equivalente a G.

$$P \rightarrow aPb \mid X$$

$$X \rightarrow aaXb \mid \lambda$$

$$P \Rightarrow aPb \Rightarrow aXb \Rightarrow aaaXbb \Rightarrow aaabb$$

$$X \Rightarrow aaXb \Rightarrow ?$$

Não é possível trocar *X* por a*P*b

Tirou-se a ambiguidade.

6. Construa um AFD para a linguagem regular abaixo e, em seguida, crie uma GLC a partir do AFD:

 $L = \{w \in \{a, b\}^* \mid w \text{ nunca tem mais que dois a's consecutivos}\};$

AFD

GLC

$$G = (\{P,A,B\},\{a,b\}, R, P)$$
, em que R é:

$$P \rightarrow aA \mid bP \mid \lambda$$

$$A \rightarrow aB \mid bP \mid \lambda$$

$$B \rightarrow bP \mid \lambda$$

Ou

$$G = (\{P,B\}, \{a,b\}, R, P)$$
, em que R é:

$$P \rightarrow aB \mid bP \mid aaB \mid \lambda$$

$$B \rightarrow bP \mid \lambda$$

7. Seja a gramática $G = (\{P,A,B\}, \{a,b\}, R, P)$, em que R consta de:

$$P \rightarrow AAB / \lambda$$

$$A \rightarrow bAa \mid ba$$

$$B \rightarrow aBb \mid \lambda$$

a) Construa uma DME de bbbaaabaab;

 $P \Rightarrow AAB \Rightarrow bAaAB \Rightarrow bbAaaAB \Rightarrow bbbaaabaB \Rightarrow bbbaaabaBb \Rightarrow bbbaaabaab.$

b) Desenvolva a AD para a derivação construída em (a);

Desenhar a árvore. (Slide 47 – Gramáticas)

c) Construa uma gramática equivalente à gramática G, mas que esteja na FNC.

Eliminar regras λ :

- $P \rightarrow AAB / AA / \lambda$
- $A \rightarrow bAa \mid ba$
- $B \rightarrow aBb \mid ab$

Eliminar regras unitárias:

- $P \rightarrow AAB / AA / \lambda$
- $A \rightarrow bAa \mid ba$
- $B \rightarrow aBb \mid ab$

(Não há)

FNC:

- $P \rightarrow AC/AA/\lambda$
- $A \rightarrow FX \mid YX$
- $B \rightarrow ZY \mid XY$
- $C \rightarrow AB$
- $F \rightarrow YA$
- $Z \rightarrow XB$
- $X \rightarrow a$
- $Y \rightarrow b$

8. Seja a GLC $G = (\{P,A,B\}, \{0,1\}, R, P)$, em que R consta de:

- $P \rightarrow A / 10$
- $A \rightarrow 0A1 \mid B$
- $B \rightarrow 00B \mid B11 \mid \lambda$

a) Eliminar regras λ ;

Variáveis anuláveis: {B, A, P}. GLC resultante:

- $P \rightarrow A \mid 10 \mid \lambda$
- $A \rightarrow 0A1 \mid 01 \mid B$
- $B \to 00B \mid B11 \mid 00 \mid 11$

b) Eliminar regras unitárias;

 $enc(P) = \{P,A,B\}, enc(A) = \{A,B\}, enc(B) = \{B\}. GLC resultante:$

- $P \rightarrow 0A1 \mid 01 \mid 10 \mid 00B \mid B11 \mid 00 \mid 11 \mid \lambda$
- $A \rightarrow 0A1 \mid 01 \mid 00B \mid B11 \mid 00 \mid 11$
- $B \to 00B \mid B11 \mid 00 \mid 11$

c) Obter uma GLC equivalente à G na FNC.

FNC:

 $P \rightarrow ZR \mid ZU \mid UZ \mid ZS \mid BT \mid ZZ \mid UU \mid \lambda$

 $A \rightarrow ZR \mid ZU \mid ZS \mid BT \mid ZZ \mid UU$

 $B \rightarrow ZS \mid BT \mid ZZ \mid UU$

 $R \rightarrow AU$

 $S \rightarrow ZB$

 $T \rightarrow UU$

 $Z \rightarrow 0$

 $U \rightarrow 1$

- **9**. Construa MTs para as seguintes linguagens:
- **a)** $\{a^nb^nc^n / n >= 0\};$

b) $\{a^n b^k c^n d^k / n, k >= 0\};$

10. <u>DESAFIO</u>: Construa uma MT que reconheça a seguinte linguagem:

a) $\{xx \mid x \in \{a, b\}^*\};$

Explicação do DESAFIO:

