Designing Information Systems + Devices

Module 1/3

Module 2

- Robotics + System Eng.

106, 128, 149

- IC engineering

105, 140, 151, 130

- Information, Data, ML

126, 127, 188, 189,

Data 100, CS70

Signal & Communication

120, 123, 121

Before all this. Take EECS 16B

EECS 16A Spring 2021

Designing Information Devices and Systems I Discussion 13A

1. Polynomial Fitting

Let's try an example. Say we know that the output, y, is a quartic polynomial in x. This means that we know that y and x are related as follows:

We're also given the following observations

					∼.
z٩	1 253	عر	X	у	
0	70	0	0.0	24.0	$ x \rightarrow f(x) \rightarrow y$
0-5		0-25	0.5	6.61	
ι '	. /	1	1.0	0.0	
1.5	7 2.25	1.25	1.5	-0.95	
1.5°	٦ 8	4	2.0	0.07	
		6.25	2.5	0.73	
ì	(9.0	3.0	-0.12	
(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ı	3.5	-0.83	
)		(4.0	-0.04	
	1	!	4.5	6.42	
(',	1 '			1
	'	1			

(a) What are the unknowns in this question? What are we trying to solve for?

(b) Can you write an equation corresponding to the first observation (x_0, y_0) , in terms of a_0, a_1, a_2, a_3 , and a_4 ? What does this equation look like? Is it linear in the unknowns?

What does this equation look like? Is it linear in the unknowns?
$$(x, y_0) = (0, 0, 27, 0)$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

$$= 1 \cdot a_0 + x^4 a_1 + x^2 a_2 + x^3 a_3 + x^4 a_4$$

 $24.0 = 1 \cdot \alpha_0 + 0.0^{1} \alpha_1 + 0.0^{2} \alpha_2 + 0.0^{3} \alpha_3 + 0.0^{4} \alpha_4$ (c) Now, write a system of equations in terms of a_0 , a_1 , a_2 , a_3 , and a_4 using all of the observations.

(c) Now, write a system of equations in terms of a_0 , a_1 , a_2 , a_3 , and a_4 using all of the observations. (0.5, 6.61) $6.61 = 1.96 + 0.5^{9} A_1 + 0.5^{9} A_2 + 0.5^{9} A_3 + 0.5^{9} A_4$

UCB EECS 16A, Spring 2021, Discussion 13A, All Rights Reserved. This may not be publicly shared without explicit permission.

$$24.0 = 1 \cdot a_0 + 0.0' a_1 + 0.0^{2} a_2 + 0.0^{3} a_3 + 0.0^{4} a_{1}$$

$$24.0 = \begin{bmatrix} 1 & 0.0' & 0.0^{2} & 0.0^{3} & 0.0^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{3} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{2} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{4} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{4} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{4} & 0.5^{4} \end{bmatrix}$$

$$6.61 = \begin{bmatrix} 1 & 0.5' & 0.5^{4}$$

(d) Finally, solve for a_0 , a_1 , a_2 , a_3 , and a_4 using IPython. You have now found the quartic polynomial that best fits the data!

2. Orthogonal Subspaces

Two vectors are \vec{x} and \vec{y} are said to be orthogonal if their inner product is zero. That is $\langle \vec{x}, \vec{y} \rangle = 0$. $\Rightarrow \chi \downarrow \chi$ Two subspaces \mathbb{S}_1 and \mathbb{S}_2 of \mathbb{R}^N are said to be orthogonal if all vectors in \mathbb{S}_1 are orthogonal to all vectors in \mathbb{S}_2 . That is,

$$\langle \vec{v_1}, \vec{v_2} \rangle = 0 \ \forall \vec{v_1} \in \mathbb{S}_1, \vec{v_2} \in \mathbb{S}_2.$$

(a) Recall that the *column space* of an $M \times N$ matrix **A** is the subspace spanned by the columns of **A** and that the *null space* of **A** is the subspace of all vectors \vec{v} such that $A\vec{v} = \vec{0}$.

Prove that the column space of \mathbf{A}^T and null space of any matrix \mathbf{A} are orthogonal subspaces. This can be denoted by $\operatorname{Col}(\mathbf{A}^T) \perp \operatorname{Null}(\mathbf{A}) \ \forall \mathbf{A} \in \mathbb{R}^{M \times N}$.

Hint: Use the row interpretation of matrix multiplication.

Known: Col (AT) =
$$\{b_1 \mid Ax_1 = b_1, x_2 \neq \bar{0}\}$$

Null (A) = $\{v_1 \mid Av_1 = \bar{0}, v_2 \neq \bar{0}\}$
Grant: $b_1 \perp v_2 \implies b_i^T v_2 = 0$

(b) Now prove that the column space and null space of \mathbf{A}^T of any matrix \mathbf{A} are orthogonal subspaces. This can be denoted by $\operatorname{Col}(\mathbf{A}) \perp \operatorname{Null}(\mathbf{A}^T) \ \forall \mathbf{A} \in \mathbb{R}^{M \times N}$.

$$A = \begin{bmatrix} -\alpha_1^{\tau} - \\ -\alpha_2^{\tau} - \\ -\alpha_n^{\tau} - \end{bmatrix}$$

$$Null(A) = Av_1 = \begin{bmatrix} \alpha_1^{\tau} v_1 \\ \alpha_2^{\tau} v_2 \\ \\ -\alpha_n^{\tau} v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \stackrel{>}{=} 0$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \dots & a_n \\ 1 & 1 & 1 \end{bmatrix}$$

$$C_{0} I \left(A^{T} \right) = A^{T} \chi_{1}^{2} = \chi_{1} \overline{a}_{1} + \chi_{2} \overline{a}_{2} + \dots + \chi_{n} \overline{a}_{n}$$

$$C_{0} I \left(A^{T} \right) = A^{T} \chi_{1}^{2} = \chi_{1} \overline{a}_{1} + \chi_{2} \overline{a}_{2} + \dots + \chi_{n} \overline{a}_{n} \right)^{T} V_{1}^{2}$$

$$= \left(\chi_{1} \overline{a}_{1} + \dots + \chi_{n} \overline{a}_{n} \right)^{T} V_{2}^{2}$$

$$= \left(\chi_{1} \overline{a}_{1} + \dots + \chi_{n} \overline{a}_{n} \right)^{T} V_{2}^{2}$$

UCB EECS 16A, Spring 2021, Discussion 13A, All Rights Reserved. This may not be publicly shared without explicit permission.

$$= x_1 \hat{a}_1^7 v_1' + \dots + x_n \hat{a}_n^7 v_2'$$

$$= x_1 0 + x_2' 0 + \dots + x \cdot 0 = 0$$

$$b_{1}^{T}v_{1}=0 \implies b_{2} \perp v_{2}$$

$$\implies Col(A^{T}) \perp Null(A)$$

Alt:
$$b_{1}^{T}v_{2}^{\prime} = (Ax_{1})^{T}v_{2}$$

$$= x_{1}^{T}Av_{2}^{\prime} = replace \omega / \delta$$

$$= x_{1}^{T}\delta \qquad from NVIII space Defin.$$

$$b_{1}^{T}v_{2}^{\prime} = 0 \qquad vse \text{ fo get "0"}$$

$$\Rightarrow b_{2}^{\prime} \perp v_{2}^{\prime}$$

$$Col(AT) \perp Null(A)$$

Cb) Prove Col(A)
$$\perp$$
 Null(A^T)

Defn $B = A^T$

Plug in
$$B = A^T$$

$$\Rightarrow Col(A^T)^T) \perp Null(A^T)$$

$$\Rightarrow Col(A) \perp Null(A^T) \qquad yay elephants.$$