Redes MLP y recurrentes para estimar el precondicionador Simplex en problemas de optimización continua FIC: UDP Proyecto Práctica Electiva: Parte final Estudiante: Joaquín Fernández. Memorista: Nicolás Claderón. Profesor: Victor Reyes.

Contenidos de esta presentación

- 1. Documentación y estado del Arte.
 - a. Anteproyecto Nicolás Calderón.
 - b. Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects by Ignacio Araya & Victor Reyes.
 - c. The Simplex-simulated Annealing Approach To Continous Non-Linear Optimization by Margarida F. Cardoso, R. L. Salcedot and S. Feyo De Acevedo.
 - d. Predicting the Execution Time of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks.
 - e. Nonlinear Models and Problems in Applied Sciences from Differential Quadrature to Generalized Collocation Methods
- **2.** Profundizando la herramienta Ibex (Contexto de instalación y uso general).
- 3. Metodología propuesta.
 - a. Esquema de solución (pseudo-algoritmo)
 - b. Arquitectura de la aplicación.
 - c. Criterios aplicados
 - d. Análisis y resultados.
 - i. Gráficas en 2D.
 - ii. Matriz de Confusión
- **4.** Conclusiones y acotaciones.

- Dominios Continuos.
- Simplex.
- MLP.

Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects por Ignacio Araya y Victor Reyes

- Branch and Bound (B & B).
- Contractors.
- Bisectores.
- CP.

The Simplex-simulated Annealing Approach To Continous Non-Linear Optimization by Margarida F. Cardoso, R. L. Salcedot and S. Feyo De Acevedo (1994).

- SIMPSA.
- NE-SIMPSA.
- MSGA.

Comparativa de resultados

Function	Starting point	Simplex	SIMPSA	NE-SIMPSA
7	$(25, 1, 1)^T$	845	44413	23839
	$(30, 0, 0.6)^T$	631	44622	24651
8	$(1, 1, 1, 0.3, 0)^T$	954	59842	23970
	$(0, 0, 0.3, 1.2, 0)^T$	1546	46734	23214
9	$(28, 14, 14, 110, 110, 110, 110)^T$	2040	52402 298228*	13780 60037*

^{*} $\delta = 10^{-2}$ for SIMPSA and $\delta = 10^{-5}$ for NE-SIMPSA.

- Simplex Primal y Simplex Dual.
- Algoritmos de Regresión y Clasificación.
 - 4 clases para el tiempo de ejecución.
- Desplazamiento en politopo.

Comparativa de resultados

$$Accuracy = (TP + TN)/(TP + TN + FP + FN)$$

Precision =
$$TP/(TP + FP)$$

Table 7. Classes of the primal and dual simplex algorithm execution time (in seconds).

Class	Primal	Dual	
0	0 < time < 0.1	0 < time < 0.1	
1	$0.1 \le \text{time} < 0.5$	$0.1 \leq \text{time} < 1$	
2	$0.5 \le \text{time} < 4$	$1 \le \text{time} < 10$	
3	$4 \le \text{time}$	$10 \le time$	

Comparativa de resultados

Table 10. Classification reports for the primal and dual simplex algorithm execution time.

Class (Primal)	Precision	Recall	F_1	Support
0	0.92	0.92	0.92	24
1	0.91	0.88	0.89	24
2	0.74	0.87	0.80	23
3	0.73	0.61	0.67	18
avg/total	0.83	0.83	0.83	89
Class (Dual)	Precision	Recall	F_1	Support
0	0.89	1.00	0.94	33
1	0.80	0.83	0.82	24
2	0.88	0.71	0.79	21
3	0.70	0.64	0.67	11
avg/total	0.84	0.84	0.84	89

Herramienta aplicada en contenedor


```
FROM ubuntu: 22.04
RUN apt-get update && apt-get install -y \
    g++ \
   gcc \
    flex \
   bison \
   python2-dev \
    make \
    git \
   build-essential \
RUN apt install -y \
     python-is-python3
RUN apt install -y \
    python3-pip
RUN apt install libeigen3-dev -y
RUN apt update
RUN apt upgrade -y
# Continue with your Dockerfile instructions
WORKDIR /app
COPY ./ibex-lib-master /app
RUN pip install -r requirements.txt
RUN chmod +x waf
# RUN ./waf configure --interval-lib=gaol --lp-lib=soplex \
# && ./waf install
# ./ build /src/ibexopt benchs/optim/medium/alkvlbis.bch --random-seed=1
# ./_build_/src/ibexopt benchs/optim/hard/chembis.bch --random-seed=1 >> commands.log
# ./waf distclean
CMD ["tail", "-f", "/dev/null"]
```

Herramienta aplicada en contenedor

```
version: '3.7'
       services:
         zookeeper:
           image: "bitnami/zookeeper:latest"
           restart: always
           environment:
             - ALLOW ANONYMOUS LOGIN=yes
           ports:
             - "2181:2181"
             - "2888:2888"
             - "3888:3888"
         kafka:
           image: "bitnami/kafka:latest"
           restart: always
           ports:
             - "9092:9092"
           environment:
             - KAFKA CFG ZOOKEEPER CONNECT=zookeeper:2181
             - ALLOW PLAINTEXT LISTENER=yes
           depends_on:

    zookeeper
```

```
image: app
 build: ./back
 container name: app
 ports:
   - 81:8000
 #make a volumes for an entire folder of cpp files
 # volumes:
 # - ./back:/app&ibex-lib/examples
 #make still runing container
 stdin open: true
 tty: true
 #make a container restart when it stops
 restart: always
 #make a container run in background
 volumes:
   - ./back/ibex-lib-master:/app
   - ./results:/app/results
 command: /bin/bash -c "while true; do sleep 1; done"
data:
 image: data
 build: ./data
 container name: data
 ports:
   - 82:8000
 volumes:
   - ./data:/app
   - ./results:/app/results
   - ./models:/app/models
    - ./back/ibex-lib-master/benchs:/app/benchmarks
```

Herramienta aplicada en contenedor

PROBLEMS (\$) OUTPUT DEBUG CONSOLE TERMINAL SQL CONSOLE COMMENTS ibex_docker-kafka-1 [2023-07-07 04:13:05,900] INFO [BrokerServer id=1] Finished waiting	PS E:\Archivos del programa\a_laburar\p	ractica_electiva\estudio\to	esting2\ibex_dock	er> docker
for the broker to be unfenced (kafka.server.BrokerServer)	ps -a			
ibex_docker-kafka-1 [2023-07-07 04:13:05,900] INFO [SocketServer listenerType=BROKER, no	CONTAINER ID IMAGE	COMMAND	CREATED	STATUS
<pre>deId=1] Enabling request processing. (kafka.network.SocketServer)</pre>	PORTS			NAM
ibex_docker-kafka-1 [2023-07-07 04:13:05,901] INFO Awaiting socket connections on 0.0.0.	ES			
0:9092. (kafka.network.DataPlaneAcceptor)	724bf7a0cda4 bitnami/kafka:latest	"/opt/bitnami/script"	16 seconds ago	Up 14 sec
ibex_docker-kafka-1 [2023-07-07 04:13:05,902] INFO [BrokerServer id=1] Waiting for all o	onds 0.0.0.0:9092->9092/tcp			ibe
f the authorizer futures to be completed (kafka.server.BrokerServer)	x_docker-kafka-1			
ibex_docker-kafka-1 [2023-07-07 04:13:05,903] INFO [BrokerServer id=1] Finished waiting	9f5383014672 data	"tail -f /dev/null"	16 seconds ago	Up 14 sec
for all of the authorizer futures to be completed (kafka.server.BrokerServer)	onds 0.0.0.0:82->8000/tcp			dat
ibex_docker-kafka-1 [2023-07-07 04:13:05,903] INFO [BrokerServer id=1] Waiting for all o	a			
f the SocketServer Acceptors to be started (kafka.server.BrokerServer)	4de9fc38aa43 app	"/bin/bash -c 'while"	16 seconds ago	Up 14 sec
ibex_docker-kafka-1 [2023-07-07 04:13:05,903] INFO [BrokerServer id=1] Finished waiting	onds 0.0.0.0:81->8000/tcp			арр
for all of the SocketServer Acceptors to be started (kafka.server.BrokerServer)	e679fa69a500 bitnami/zookeeper:latest	"/opt/bitnami/script"	16 seconds ago	Up 14 sec
ibex_docker-kafka-1 [2023-07-07 04:13:05,903] INFO [BrokerServer id=1] Transition from S	onds 0.0.0.0:2181->2181/tcp, 0.0.0.0:	2888->2888/tcp, 0.0.0.0:38	88->3888/tcp, 808	0/tcp ibe
TARTING to STARTED (kafka.server.BrokerServer)	x_docker-zookeeper-1			_
ibex_docker-kafka-1 [2023-07-07 04:13:05,904] INFO Kafka version: 3.5.0 (org.apache.kafk	O PS E:\Archivos del programa\a_laburar\p	ractica_electiva\estudio\t	esting2\ibex_dock	er>
a.common.utils.AppInfoParser)				
ibex_docker-kafka-1 [2023-07-07 04:13:05,904] INFO Kafka commitId: c97b88d5db4de28d (org				
.apache.kafka.common.utils.AppInfoParser)				
ibex_docker-kafka-1 [2023-07-07 04:13:05,904] INFO Kafka startTimeMs: 1688703185903 (org				
.apache.kafka.common.utils.AppInfoParser)				
ibex_docker-kafka-1 [2023-07-07 04:13:05,906] INFO [KafkaRaftServer nodeId=1] Kafka Serv				
er started (kafka.server.KafkaRaftServer)				
io Bitbucket ⊗ 5 △ 0 🗇 Connect 🔗 Live Share 🐵	Ln 1	, Col 1 Spaces: 2 UTF-8 CRLF	Plain Text @ Go Live	- AA +

Ambiente de desarrollo y de pruebas

Arquitectura de ibex y en que se prestará atención easy Ibex-lib-master benchs/optim medium hard results AXB.txt ibex Optimizer.cpp DS_P.txt src/contractor ann.cpp ibex CtcPolytopeHull.cpp intervals_change.txt command.log producer.py Models keras model.h5

a. Pseudo-algoritmo propuesto

 Recopilación Preparación de datos 2) Diseño y entrenamiento de la red neuronal

3) Validación cruzada y ajuste de hiperparámetros

4) Evaluación del rendimiento

5) Optimización de los vértices del politopo

6) Resultados y conclusiones

B. Arquitectura de la aplicación

C. Criterios aplicados

Variar probabilidad con respecto a una distribución srand

```
oid CtcPolytopeHull::optimizer(IntervalVector& box, float proba) {
  Interval opt(0.0);
  int* inf_bound = new int[nb_var]; // indicator inf_bound = 1 means the inf bound is feasible or already contracted, call to simplex useless (cf Baharev)
  int* sup bound = new int[nb var]; // indicator sup bound = 1 means the sup bound is feasible or already contracted, call to simplex useless
  for (int i=0; i<nb var; i++) {
      if (contracted vars[i]) {
          inf_bound[i]=0;
          sup bound[i]=0;
      } else {
          inf bound[i]=1;
          sup bound[i]=1;
  int nexti=-1; // the next variable to be contracted
  int infnexti=0; // the bound to be contracted contract infnexti=0 for the lower bound, infnexti=1 for the upper bound
  LPSolver::Status stat=LPSolver::Status::Unknown;
  // Update the bounds the variables
  mylinearsolver.set bounds(box);
  float probas[2]={proba,1-proba};
  if (proba >= probas[0]){
  for(int ii=0; ii<(2*nb var); ii++) { // at most 2*n calls
```

C. Criterios aplicados

- Considerar la cantidad de variables de entrada para el cálculo de la precisión

```
variables
x1 in [-32,32];
x2 in [-32,32];
x3 in [-32,32];
x4 in [-32,32];
x5 in [-32,32];
minimize
-20 * exp (-0.2 * sqrt (0.2 * (x1^2 + x2 ^2 + x3^2 + x4^2 + x5 ^2))) - exp (0.2 * (cos (2*pi*x1) + cos (2*pi*x2) +cos (2*pi*x3)
+ \cos (2*pi*x4) + \cos (2*pi*x5)) + 20 + 2.718281;
constraints
x1 <= 500;
end
```

C. Criterios aplicados

- Timeout tras el paso de 45 (2700 s) minutos o 1 hora (3600 s)

Graficas linealizer: Problemas easy, medium y hard

Time of execution of the Linealizer algorithm for medium problem

Time of execution of the Linealizer algorithm for hard problem

Gráficas Precisión: Problemas easy, medium y hard

Matriz de Confusion: Problemas easy, medium y hard

4. Conclusiones y acotaciones

- 1. Como posible solución podría verse el tema de la parametrización para tener control del flujo y estructura.
- 2. Probar nuevos modelos de redes neuronales ubicadas en keras.
- 3. Establecer mejores criterios para el armado de precondicionadores.
- 4. Evaluar usar más problemas dentro de ibex para establecer probabilidades o coeficientes de aprendizaje más apropiados.

Enlaces de videos de demostración

Parte 1: https://www.youtube.com/watch?v=sgeV153Rnaw

Parte 2: https://www.youtube.com/watch?v=nC12ZCvvi-q

Enlaces de repositorios

https://github.com/Joacker/ibex_docker

https://github.com/Joacker/Preconditioners_Simplex

https://github.com/hohenheim99/Preconditioners_Simplex

https://github.com/moof2k/kerasify

GRACIAS TOTALES

¿Alguna duda? Pregunta? Consulta? Incertidumbre? Vacilación? Interrogante? Dubitación ? Disyuntiva?

