Обычные отношения

Пусть точки A,B,C лежат на одной прямой. Число $\frac{\overline{AC}}{\overline{CB}}$ называется *отношением*, в котором точка C делит отрезок AB, при этом, точка C не обязана лежать на отрезке AB. Ясно, что точка C делит отрезки AB и BA в одинаковом отношении.

Пусть три прямые n, m, k пересекаются в одной точке. По аналогии с предыдущим определением рассмотрим отношение $\frac{\sin \angle (n,k)}{\sin \angle (k,m)}$, взятое со знаком "+", если при повороте в положительном направлении от прямой n к прямой m прямая k встретится раньше, чем m.

- 1. Докажите, что для каждого вещественного числа $x \notin 0, -1$ существует одна и только одна точка C, которая делит отрезок AB в отношении x.
- 2. Докажите, что для каждого вещественного числа $x \neq 0$ и пересекающихся прямых n и m существует одна и только одна прямая k, для которой описанное выше отношение синусов равно x.
- 3. Какая прямая соответствует значению x = -1 предыдущего пункта?

Двойные отношения

Пусть точки A,B,C,D лежат на одной прямой. Отношение $\frac{\overline{AC}}{\overline{CB}}:\frac{\overline{AD}}{\overline{DB}}$ отношений, в которых точки C и D делят отрезок AB называется двойным отношением точек A,B,C,D и обозначается (A,B;C,D).

Пусть четыре прямые n, m, k, ℓ пересекаются в одной точке. Аналогично предыдущему, отношение $\frac{\sin \angle (n,k)}{\sin \angle (k,m)}$: $\frac{\sin \angle (n,\ell)}{\sin \angle (\ell,m)}$ называется $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ называется $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ называется $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ называется $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ отношением $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$ обозначается $\frac{\partial southum}{\partial southum}$

- 4. Пусть (A, B; C, D) = x, найдите все возможные значения двойного отношения точек A, B, C, D, выбранных в произвольном порядке.
- 5. Пусть четыре прямые n, m, k, ℓ проходят через одну точку, а другая прямая пересекает их в точках A, B, C, D соответственно. Докажите, что $(n, m; k, \ell) = (A, B; C, D)$. Полученный результат показывает, что двойное отношение точек сохраняется при центральном проектировании с прямой на прямую. То, что оно сохраняется и при параллельном проектировании, очевидно следует из подобия.

Пусть точки A, B, C, D лежат на одной окружности, тогда для любой другой точки X этой окружности отношение (XA, XB; XC, XD) не зависит от выбора точки X. Это отношение также называется $\partial soйным$ отношением точек A, B, C, D. Из результата последней задачи ясно, что двойное отношение точек, лежащих на окружности, можно центрально проектировать из любой точки этой окружности на прямую.

- 6. Предположим, что мы центрально проектируем двойное отношение (A, B; C, D) точек, лежащих на этой окружности, из точки A на некоторую прямую. Что следует считать образом точки A?
- 7. Докажите, что двойное отношение точек, лежащих на окружности, можно центрально проектировать на эту же окружность из любой точки плоскости.

Возвращаем потерянные точки и прямые

Мы будем рассматривать все объекты на проективной плоскости. Для любой прямой ℓ все прямые, параллельные ℓ , пересекаются в одной бесконечно удалённой точке, которую обозначают ℓ_{∞} . Множество всех прямых, проходящих через одну (возможно, бесконечно удалённую) точку, называется пучком. Бесконечно удалённые точки, соответствующие пучкам параллельных прямых, попарно различны и лежат на одной бесконечно удалённой

nрямой. Таким образом, любые две прямые пересекаются в одной точке и любые две точки лежат на одной прямой.

- 8. Пусть в задаче 5 верно равенство $(n, m; k, \ell) = -1$ и мы знаем, что C середина отрезка AB. Где должна находиться точка D?
- 9. Предположим, что мы центрально проектируем двойное отношение (A, B; C, D) точек, лежащих на этой окружности, из точки X этой окружности на прямую, параллельную XA. Что следует считать образом точки A?

Таким образом, мы можем определить двойное отношение и для бесконечно удалённых точек и прямых. Следующие две задачи показывают, что, вообще говоря, все наши объекты – аффинные и бесконечно удалённые – равнозначны.

10. Докажите, что полярное преобразование сохраняет двойные отношения точек и прямых

На аффинной плоскости по сравнению с проективной "потерялась" одна прямая и все точки, лежащие на ней. При полярном преобразовании аффинной плоскости "пропадают" одна точка (центр окружности) и все прямые, проходящие через неё.

11. Как следует понимать полярное соответствие на проективной плоскости, чтобы результат предыдущей задачи был верен?

Гармонические четвёрки точек

Четвёрка (A,B,C,D) точек, лежащих на одной прямой или окружности называется гармонической, если (A,B;C,D)=-1. В случае окружности говорят, что ACBD – гармонический четырёхугольник.

- 12. Докажите, что две вершины треугольника и основания биссектрис внутреннего и внешнего углов при третьей вершине образуют гармоническую четвёрку точек.
- 13. Докажите, что в полном четырёхвершиннике есть гармонические четвёрки точек на каждой из его сторон и диагоналей.
- 14. Четырёхугольник ACBD вписан в окружность. Докажите в любом удобном для вас порядке, что он является гармоническим, если и только если
 - (а) касательные, проведённые в точках A и B к его описанной окружности пересекаются на прямой CD;
 - (b) точка N пересечения касательных, проведённых в A и B, изогональна с серединой M стороны AB относительно угла BAC;
 - (c) биссектрисы углов ACB и ADB пересекаются на отрезке AB;
 - (d) в нём равны произведения противоположных сторон;
 - (e) диагональ CD делит диагональ AB в отношении, равном отношению квадратов прилегающих сторон;
 - (f) расстояния от точки пересечения диагоналей до сторон этого четырёхугольника пропорциональны длинам этих сторон.
- 15. На окружности ω выбраны точки A и B, а на прямой AB точки C и D. Докажите, что четвёрка (A,B,C,D) гармоническая, если и только если точки C и D сопряжены относительно ω .