基于众包训练数据的中文实体标注研究

陈文亮

苏州大学人类语言技术研究所(SUDA-HLT)

2017-12

知识图谱

知识图谱本质上是一种语义网络。其结点代表实体(entity)或者概念(concept), 边代表实体/概念之间的各种语义关系。

知识图谱

本报告涉及内容

主要内容

- 噪音训练数据
- 众包NER数据
- 基于众包数据的NER研究进展
- 总结

噪音训练数据

- NLP系统构建
 - 给定一个NLP任务
 - 通常需要训练语料, 理想是100%正确语料
- 专家语料
 - LDC分词语料/北大分词语料一致性都低于99%
- 常见人工语料
 - 一致性更差

场景1:多快糙省构建人工语料

- 任务:新领域/新任务
- 例子: 互联网文本处理
- 文本种类多、数量大
 - 微博、微信。。。
 - 论坛帖子, 如百度贴吧、水木社区
 - 用户评论文本
 - 博客
 - 0 0 0

场景1: 多快糙省构建人工语料

- 在处理互联网文本面临的挑战
 - 现有语言分析工具性能下降的很快
 - 互联网文本通常没有人工标注语料
- 专家标注
 - 代价高,速度慢
 - 在新领域中,有时候不得不标一些新语料
 - 少、慢、好、贵
- 众包数据
 - 非专家标注员快速完成语料标注,包含大量噪音
 - 多、快、糙、省

场景2:现有一个列表,如何构建新系统

- 任务:有一个实体表/KB关系表,构建能识别类似实体的系统
- 例子:识别歌名,现有一个歌名表,要求识别句子中的歌名
- 问题:一般都缺乏标注语料
- 远程监督数据
 - 使用现有KB自动生成训练语料,也包含大量噪音

NER系统构建场景

• 研究课题

- 有一定规模的人工标注训练语料
- 常见领域:新闻领域
- 常见类别:人名、地名、组织机构名等
- 目标:构建在测试集上表现很好的系统

• 实际应用

- 新领域: 电商领域、对话领域、金融领域等
- 新类别:产品、品牌、歌名等
- 目标:构建在新领域里面还算能用的系统
- 问题:通常无人工标注训练语料

标注数据

- 专家标注员(适用于不计成本的主)
 - 对标注规范了如指掌, 且有耐心标注
 - 优点:标注质量高
 - 缺点:难找且贵
- 普通标注员(适用于精打细算的主)
 - 对标注规范粗通(能花15分钟阅读规范就是好标注员)
 - 优点:数量多,便宜
 - 缺点:标注质量较低

标注数据

- 有些缺钱但希望拥有高质量语料的研究者
- 中间路线:N名普通标注员+1~2名专家
 - 完美结合:专家负责解决难题,普通人解决简单题
 - 预算合适:一群便宜的+几位贵的
 - 标注速度:应该是很快的
 - 多、快、好、省
- 为了这个美好路线,苏大设计SNAP系统

SNAP标注系统

- 苏州大学SNAP标注系统
 - 任务类型:分类任务、序列标注任务和句法标注任务
 - 序列标注任务: NER、分词、词性
 - 浏览器模式:支持多人同时标注
 - 质量控制:
 - 随机多人普通标注员标注
 - 专家审核标注不一致
 - 投诉机制
 - 权威专家确定答案
 - 标注员评价
 - 地雷审核
 - 反馈学习专家意见

SNAP标注系统 (Demo)

京語 まその 中 AOUHDU V (国文化研報 PP)	屏幕录像专到		
TOTAL GROUND	NLP标注系统 (目前支持浏览器: 搜狗、谷歌Chrome、Sa	fari 【Wac不支持谷歌】)	登录 / 注册
标注任务界面	用户登录		
标注历史记录			
标注学习页面	用户名:	₩.	
标注规范页面	密 码:		
用户信息管理	重置 登录		
	去注册 忘记密码		

数据标注:理想 VS 现实

• 理想:句子->普通标注员 -> 偶尔求助专家标注员 ->完美收工

数据标注:理想 VS 现实

• 现实:普通标注员 不停的问专家 各种问 -> 专家崩溃

专家崩溃后。。。

- 普通标注员
 - 按照自己的理解标注完任务
 - 领着报酬, 愉快地走了
- 留下众包标注数据
 - 数据规模是很大的
 - 有些标注挺好的,但有很多是有冲突的
 - 专家对这些结果是不满意的

例子 (差别很大)

小白小白,我们玩个成语接龙吧!

Annotations

[小白小白],我们玩个成语接龙吧! 小白小白,我们玩个成语接龙吧! 小白小白,我们玩个成语接龙吧!

你说谢谢的诗意哥哥吗?

Annotations

你说谢谢的诗意哥哥吗? 你说[**谢谢**]的诗意哥哥吗? 你说谢谢的[**诗意哥哥**]吗?

研究者的想法

- 三个臭皮匠可以抵得上一个诸葛亮
- 钱已经花了,留下了众包数据
- 果断抛弃专家,直接用众包数据

IBM的Jelinek:"每当我解雇一个语言学家,语音识别系统的性能就会改善一些。" ("Every time I fire a linguist the performance of the recognizer improves".) 基此研究者:当我解雇所有标注专家,在群

某些研究者:当我解雇所有标注专家,在群众帮助下NER系统依然可以改善一些。

- 从众包数据学习一个可用中文NER系统
 - 学习众人取得的共识信息
 - 消解一些相互冲突的标注噪音

简单方法-直接使用

- 假装这个数据是专家标注的
- 直接使用LSMT-CRF训练

简单方法-投票

• 对众包语料采用少数服从多数原则再处理

小白小白,我们玩个成语接龙吧!

Annotations

[小白小白],我们玩个成语接龙吧!

小白小白,我们玩个成语接龙吧!

小白小白,我们玩个成语接龙吧!

你说谢谢的诗意哥哥吗?

小白小白, 我们玩个成语接龙吧!

Annotations

你说谢谢的诗意哥哥吗?

你说[谢谢]的诗意哥哥吗?

你说谢谢的[诗意哥哥]吗?

你说谢谢的诗意哥哥吗?

简单方法-投票

- 得到投票后的训练语料
- 直接使用CRF或者LSTM-CRF训练

• 但是效果不好

Model	P	R	F1
CRF	89.48	70.38	78.79
CRF-VT	85.16	65.07	73.77
LSTM-CRF	90.50	79.97	84.91
LSTM-CRF-VT	88.68	75.51	81.57

LSTM-crowd

- 把每个标注员都表示为向量
- 问题:测试时无法获得标注员信息

普通标注员的"特点"

- 快速看实体定义规范(15分钟),比如电商的产品
 - 和自己脑海里面的产品概念进行拟合
- 直接开工
 - 可以快速标注句子
- 每个人由于背景/知识面不同, 对规范理解会不同
- 标注员的共性
 - 有些人对鞋子了解的多一些
 - 有些人对衣服了解的多一些

【 我们专注的对象

对抗网络

- 适用任务
 - 跨语言(Cross-Lingual)
 - 跨领域(Domain Adaptation)
 - 多任务(Multi-task)
- 通过对抗网络学习
 - 学习不同语言共性
 - 学习不同领域共性
 - 学习不同任务共性

跨语言

跨领域

众包数据学习

- 对抗学习:学习共性
 - 步骤1: 输入各个标注员标注的语料
 - 步骤2: 学习出来的标注员的"共性"
 - 步骤3:分类器分不清是谁标注的
- 困难
 - 不同领域、不同语言的特征明显
 - 如何区别标注员呢?

ALCrowd框架

优化目标

$$R(\Theta, \Theta', \mathbf{X}, \bar{\mathbf{y}}, \bar{z}) = loss(\Theta, \mathbf{X}, \bar{\mathbf{y}}) - loss(\Theta, \Theta', \mathbf{X})$$
$$= -\log p(\bar{\mathbf{y}}|\mathbf{X}) + \log p(\bar{z}|\mathbf{X}, \bar{\mathbf{y}}),$$

数据

•数据1:DL-PS

• 狗尾草公司对话数据

• 16948句子

• 标注类别: 人名和歌名

• 43名标注员,每个句子3名标注员

	#Sent	AvgLen	Kappa
DL-PS	16,948	9.21	0.6033
UC-MT	2,337	34.97	0.7437
UC-UQ	2,300	7.69	0.7529

• 数据2:EC-MT/UQ

• 阿里电商Title和Query

• 2337句Title和2300句Query

• 类别:品牌、产品、型号、材料、规格

• 5名标注员,每个句子2名标注员

• 无标注数据:5M互联网用户生成数据

实验结果:DL-PS

Model	P	R	F1	
CRF	89.48	70.38	78.79	
CRF-VT	85.16	65.07	73.77	
CRF-MA	72.83	90.79	80.82	
LSTM-CRF	90.50	79.97	84.91	+7.2
LSTM-CRF-VT	88.68	75.51	81.57	
LSTM-Crowd	86.40	83.43	84.89	
ALCrowd	89.56	82.70	85.99	

- 众包数据直接用也是可以的
- ALCrowd效果明显(+1.1)

实验结果:EC

Model	Data: EC-MT		Data: EC-UQ			
Model	P	R	F1	P	R	F1
	l	66.67		I		
LSTM-CRF	75.02	72.84	73.91	71.96	66.55	69.15
LSTM-Crowd						
ALCrowd	76.33	74.00	75.15	74.72	68.60	71.53

+11.57

+4.51

- 众包数据直接用也是可以的
- ALCrowd效果明显(+1.2~+2.4)

预先训练的Embeddings的作用

• Pre-trained Embeddings还是很有用的

分析

• 封闭测试(train-train)

Annotations	你说谢谢的诗意哥哥吗? 你说[谢谢]的诗意哥哥吗? 你说谢谢的[诗意哥哥]吗?
Majority-Voting	你说谢谢的诗意哥哥吗?
LSTM-CRF	你说谢谢的 [诗意哥哥] 吗?
ALCrowd	你说[谢谢]的[诗意哥哥]吗?

• ALCrowd可以较好综合普通标注员的标注结果

结束语

- 专家标注数据质量高, 但是不好搞[少慢好贵]
- 普通标注员可以快速得到大规模标注数据[多快糙省]
- 在众包数据上可以构建较好的NER系统
 - 如何充分利用众包数据还有很长的路要走

• 谢谢

