Comparison of Gene Finding Tools in the Context of *Trichoderma* Genomes

Committee members: Dave Schneider, Tony Kusalik, Matthew Links, Leon Kochian

Connor Burbridge

May 29, 2023

Background: Trichoderma

What is *Trichoderma*?

- Trichoderma is an opportunistic symbiotic fungi, which can colonize the roots of plants
- ► *Trichoderma* strains have been shown to provide several benefits to the host plant it colonizes, those generally being:
 - Increased resistance to abiotic and biotic stressors
 - Facilitating nutrient uptake
 - Increased germination rates
- ► These benefits have resulted in *Trichoderma* being used in manufacturing processes for antibiotics and other materials

Background: Previous GIFS Work

Two strains have been sequenced in previous work within GIFS:

- ▶ These strains have been named DC1 and Tsth20
- Strains from the prairie regions of Canada, including Alberta and Saskatchewan
- ▶ How exactly do these processes work? Which genes are included in these processes?
- ► To answer these questions, both strains were sequenced with Illumina and Nanopore technologies

Research Problem

These sequenced strains offer an opportunity to assemble and annotate them:

- Genome assembly is 'relatively' straight-forward
- However, the choice of a tool for gene finding or annotation is uncertain
- ► There has been relatively little comparative analysis for gene finding tools in fungi, and even fewer for *Trichoderma*
- ► This raises questions. How do different gene finding tools perform in fungi and Trichoderma in particular?

Project Goal

This project aims to evaluate several different gene finding tools in the context of Trichoderma genomes

- Gene finding tools currently selected are GeneMark-ES and Braker2
- ► These tools include a mix of *ab initio*, evidence-based and hybrid gene finding methods
- This list is not final and may include more tools if desired or necessary

Methodology

Evaluation of Gene Finding Tools

- ► A plan for evaluating and comparing the selected tools needs to be developed
- Metrics for comparison will include both quantitative and qualitative observations

Quantitative Metrics

- ▶ Total genes predicted
- ► Total transcripts predicted
- Genes predicted in repetitive regions
- Genes overlapping smallRNAs
- Length of gene models predicted
- Comparison to genes predicted in other fungal species (Yeast)
- Run times and memory usage

Qualitative Metrics

- ► Features of the gene finding tools
- Ease of software installation and their dependencies
- ► Ease of use
- Popularity among other research