Instrumentación Nuclear Previa 2

- 1. Recuerde: tiene derecho a consultar notas, libros, internet. Pero, la solución al siguiente cuestionario es individual.
- 2. Tiempo de solución: 3 horas.

- 3. Escriba su respuestas usando un formateador de texto que le permita convertir su archivo final a documento pdf. El documento debe incluir texto, ecuaciones, figuras y tablas.
- 4. No envíe documentos pdf de fotografías o scan de sus respuestas escritas a mano. Valor de tales puntos: 0 (cero).
- 5. Envíe por correo electrónico su documento pdf respuesta a este cuestionario a lfcristanchom@unal.edu.co.
- 6. Escriba su nombre en el encabezado del documento.
- 7. Numere cada punto y ordene sus respuestas en el mismo orden en el que aparecen en el enunciado más abajo.

El archivo 22Na-previa2.cs ν es un espectro γ del decaimiento del 22 Na tomado con un detector de Nal según el esquema de arreglo experimental en la Fig. 1.

Figura 1: Esquema del arreglo experimental.

1.	. Represente el espectro total (número de canales: 1024) con el eje de las ordenadas (eje y) en escala logarítmica. [8]				
2.	. Rotule correctamente cada uno de los ejes.		[4		
		Figure 2. For eather that 22N are considered than			

Figura 2: Espectro del ²²Na en escala semilog.

	Qué proceso físico origina cada uno de los picos con centroides alrededor de los canales siguientes:
	Pico 1: canal 262:
	Pico 2: canal 650:
	Pico 3: canal 930:
3.	Origen y energía en keV del pico 1:
4.	Origen y energía en keV del pico 2:

5. Origen y energía en keV del pico 3: [3]

[3]

[3]

6. Ajuste una gaussiana a cada uno de los picos. Muestre cada ajuste en una gráfica (una gráfica por pico). [18]

Figura 3: Ajustes a gaussianas de los picos 1, 2 y 3.

E_{γ} (keV)	μ (canal)	I (cuentas)
E_1	μ_1	I_1
E_2	μ_2	I_2
E_3	μ_3	I_3

Tabla 1: Relación de las energías en keV y canales de los picos en el espectro de la Fig. 2. No olvide anotar las incertidumbres de μ e I.

- 7. Obtenga los valores de los centroides, μ , y de la integral, I, de cada gaussiana. Anótelos en la Tabla 1. Diagrame y anote correctamente valores y unidades en la Tabla 1. [4]
- 8. Use el programa de su conveniencia para obtener las constantes a_0 , a_1 de la calibración canal-keV, [8]

$$E_{\gamma}(\text{keV}) = a_0 + a_1 \times \text{canal} \tag{1}$$

Escriba el resultado de la calibración en la Tabla 2.

$$a_0(?) | a_1(?)$$

Tabla 2: Coeficientes de ec. (1). No olvide anotar unidades e incertidumbres.

Agregue las unidades correspondientes para cada uno de los coeficientes.

9. Calcule el valor del borde Compton, E_{C} , y del pico de retrodispersión, E_{R} , para cada uno de los picos y anótelos en la Tabla 3.

E_{γ}	E_{C}	E_{R}				
keV						
E_1						
E_2						
E_3						

Tabla 3: Valores del borde Compton y del pico de retrodispersión de las emisiones gamma del ²²Na.

10. Haga una gráfica, lineal en ambos ejes, del espectro con el eje de las abscisas (eje x) en keV y agregue con una línea vertical, la posición de los bordes Compton y del pico de retrodispersión del pico 1. Rotúlela adecuadamente, es decir, de tal manera que se diferencien las posiciones del borde Compton y del pico de retrodispersión. [8]

Figura 4: Espectro calibrado.

11. Los archivos

137Cs-previa2.dat : espectro-137Cs fondo-previa2.dat : espectro-fondo

contienen espectros detectados usando el mismo arreglo en la Fig. 1. El tiempo de detección es el mismo.

Reste el espectro-fondo del espectro-137Cs y muéstrelo en una gráfica.

[4]

Figura 5: Espectro resta del ¹³⁷Cs.

12. En lo sucesivo va a determinar la razón entre las eficiencias relativas usando el espectro diferencia (el obtenido en el anterior punto 11),

$$r = \frac{\epsilon(33 \text{ keV})}{\epsilon(662 \text{ keV})} = \frac{f(I(33), b_{\gamma}(33))}{f(I(662), b_{\gamma}(662))}$$
(2)

Cómo se relacionan $I(E_{\gamma})$ y $b(E_{\gamma})$ para formar la función f en la ec. (2)? Es decir, escriba la expresión para [4]

$$f(I,b) = ? (3)$$

13. Ajuste una gaussiana a cada uno de los picos de 33 y 662 keV. Muéstrelos individualmente, cada uno en una gráfica.

Marque cada gráfica (en el título o en la leyenda) con el valor de la energía correspondiente.

[12]

Figura 6: Ajustes de gaussianas a los picos de 33, 662 keV.

- 14. Del ajuste puede determinar las intensidades de cada uno de los picos. Anótelas, junto con sus incertidumbres en la Tabla 4.
- 15. Usando los números que aparecen el el esquema de decaimiento del 137 Cs explique cómo obtiene $b_{\gamma}(662 \, \text{keV})$. Anótelo en la Tabla 4. No le asocie incertidumbre.
- 16. Usando los números que aparecen el el esquema de decaimiento del 137 Cs explique cómo obtiene $b_{\gamma}(33 \text{ keV})$. Anótelo en la Tabla 4. No le asocie incertidumbre.
- 17. Anote el valor resultante para f con su incertidumbre. Explique, haciendo el cálculo para una de las energías, cómo calcula la incertidumbre de f.

E_{γ} (keV)	I (cuentas)	$b_{\gamma}(\%)$	f(?)
33			
662			

Tabla 4: Resumen de resultados. Las incertidumbres son puramente estadísticas.

18. Calcule r y escríbalo con su incertidumbre y número correcto de cifras significativas en notación abreviada de paréntesis para la incertidumbre. Ojo, significado: no vale, por ejemplo $r \pm \sigma(r)$ sino $r(\sigma(r))$. [3]

$$=$$
 (4)