Diferencialna geometrija

Luka Horjak (luka1.horjak@gmail.com)

17. februar 2025

Kazalo Luka Horjak

Kazalo

U	vod	3
1	Mnogoterosti	4
	1.1 Osnovni pojmi	4

Uvod Luka Horjak

Uvod

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Diferencialna geometrija v letu 2024/25. Predavatelj v tem letu je bil izr. prof. dr. Pavle Saksida.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Mnogoterosti

1.1 Osnovni pojmi

Definicija 1.1.1. Naj bo $X \subseteq \mathbb{R}^N$ vložena podmnogoterost dimenzije n in $m \in X$. Tangentni prostor T_mX podmnogoterosti X v točki m je prostor

$$T_m X = \left\{ \left. \frac{d}{dt} \right|_{t=0} \gamma(t) \mid \gamma \in \mathcal{C}^{\infty}((-\varepsilon, \varepsilon), X) \wedge \gamma(0) = m \right\}.$$

Definicija 1.1.2. Naj bo X gladka mnogoterost in φ_{α} lokalna karta za okolico točke $m \in X$. Krivulji $\gamma_1, \gamma_2 \colon (-\varepsilon, \varepsilon) \to X$, za kateri je $\gamma_1(0) = \gamma_2(0) = m$, sta *ekvivalentni*, če je

$$\frac{d}{dt}\Big|_{t=0} \varphi_{\alpha}(\gamma_1(t)) = \frac{d}{dt}\Big|_{t=0} \varphi_{\alpha}(\gamma_2(t)).$$

Opomba 1.1.2.1. Relacija je neodvisna od izbire lokalne karte.

Definicija 1.1.3. Naj bo X gladka mnogoterost in $m \in X$. Tangentni prostor T_mX mnogoterosti X v točki m je prostor ekvivalenčnih razredov zgornjih krivulj.

Definicija 1.1.4. *Predstavnik* tangentnega vektorja $[\gamma]$ je vektor

$$\varphi_{\alpha}(\gamma) = \frac{d}{dt}\Big|_{t=0} \varphi_{\alpha}(\gamma(t)).$$

Definicija 1.1.5. Na T_mX definiramo

$$[\gamma_1] + [\gamma_2] = \left[\varphi_{\alpha}^{-1} \left(\varphi_{\alpha}(m) + t \cdot \left(\varphi_{\alpha}(\gamma_1) + \varphi_{\alpha}(\gamma_2) \right) \right) \right]$$

in

$$a\cdot [\gamma]=[t\mapsto \gamma(at)].$$

S tema operacijama T_mX postane vektorski prostor.

Definicija 1.1.6. Naj bo $f: X \to \mathbb{R}$ gladka funkcija. *Smerni odvod f* v točki m v smeri $[\gamma]$ je

$$(Vf)_{(m)}[\gamma] = \frac{d}{dt}\Big|_{t=0} (f \circ \gamma)(t).$$

Opomba 1.1.6.1. Smerni odvod je dobro definiran – ni odvisen od predstavnika.

Stvarno kazalo Luka Horjak

Stvarno kazalo