COMP2610 / COMP6261 - Information Theory ASSIGNMENT COMP6261 - Information Theory

https://eduassistpro.github.

21 August, 2018

Last time

Assignment Project Exam Help

Chebys https://eduassistpro.github.

Law of large numbers

Law of Large Numbers

Theorem

Let X_1, \ldots, X_n be a sequence of iid random variables, with Assignment Project Exam Help and $\mathbb{V}[X_i]$

https://eduassistpro.github. Then, for a

 $\underbrace{Add}_{\text{This is also called } X_n} \underbrace{W_n^{\lim_{t \to \infty} p(|X_n - \mu| < t}_{\text{in probability.}}} edu_assist_probability.$

Definition: For random variables v_1, v_2, \ldots , we say $v_n \to v$ in probability if for all $\beta > 0$ $\lim_{n \to \infty} P(|v_n - v| > \beta) = 0$.

 β is fixed (not shrinking like $\frac{1}{n}$). Not max/min. Reduction in variability.

This time

Assignment Project Exam Help

• Typ https://eduassistpro.github.

• Asymptotic Equipartition Property (AEP)

Ensembles and sequences

Assignment Project Exam Help

2 Typi

https://eduassistpro.github.

3 Asymptotic Equipartition Property (AEP)

Ensembles

Assignment Project Exam Help

```
Ensem
```

values i https://eduassistpro.github

We will call A the above of the ensemble du_assist_pr

Ensembles

Example: Bent Coin

Assignment Project Exam Help

Let X be an ensemble with outcomes h for

https://eduassistpro.github.

The proba

We can also consider blocks of outcomes, which will be useful to describe sequences:

Assignment Project Exam Help

Example (Coin Flips):

https://eduassistpro.github.

We can also consider blocks of outcomes, which will be useful to describe sequences:

Assignment Project Exam Help

Example (Coin Flips):

https://eduassistpro.github.

Extended Englished WeChat edu_assist_p

Let X be a single ensemble. The **extended ensemble** of blocks of size N is denoted X^N . Outcomes from X^N are denoted $\mathbf{x} = (x_1, x_2, \dots, x_N)$. The **probability** of \mathbf{x} is defined to be $P(\mathbf{x}) = P(x_1)P(x_2)\dots P(x_N)$.

Example: Bent Coin

Assignment & to be an ensemble with outcomes delp

https://eduassistpro.github.

Example: Bent Coin

Assignment Property Lower Help

https://eduassistpro.github.

```
P(hhhh) = (0.9)4 ≈ 0.6561
Add MeChat edu_assist_pr
 P(\text{hthh}) = 0.9 \cdot 0.1 \cdot 0.9 \cdot 0.9 = (0.9) (0.1) \approx 0.0729
```

 $P(\text{htht}) = 0.9 \cdot 0.1 \cdot 0.9 \cdot 0.1 = (0.9)^2 (0.1)^2 \approx 0.0081.$

Example: Bent Coin

the ense

Entropy ihttps://eduassistpro.github.

Thus,

More generally,

$$H(X^N) = NH(X).$$

Counting Types of Sequences

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChateedu_assist_pr

The order of outcomes in the sequence is irrelevant

Counting Types of Sequences

Let X be an ensemble with alphabet $A_X = \{a_1, \dots, a_l\}$.

Assignment Project Exam Help

For a sequ

Given the n_i 's, we can compute the probability of s

Add (x) Chat.edu_assist_prediction
$$P(a_1)^{n_1} \cdot P(a_2)^{n_2} \cdot \dots \cdot (I)^{I}$$

$$=p_1^{n_1}\cdot p_2^{n_2}\dots p_I^{n_I}$$

Sufficient statistics: $\{n_1, n_2, \dots, n_l\}$. Use it as a criteria of partitioning.

Counting Types of Sequences

Sequence Types

Each unique choice of (n_1, n_2, \dots, n_l) gives a different type of sequence

Assignment are europe et Exam Help

symbol chttps://eduassistpro.github.

of sequences with n_i copies of

$$= \frac{\binom{N}{n_1} \binom{N-n_1}{n_2} \binom{N-n_1-n_2}{n_3} \cdots}{\frac{N!}{n_1!(N-n_1)!} \cdot \frac{(N-n_1)!}{n_2!(N-n_1-n_2)!} \cdot \frac{(N-n_1-n_2)!}{n_3!(N-n_1-n_2-n_3)!} \cdots}$$

Arshingfirment Project Exam Help Let A = a, b, c with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

https://eduassistpro.github.

Assignment Project Exam Help

Let A = a, b, c with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

Assignment Project Exam Help

Let A = a, b, c with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

 $\underset{(0.2)^2(0}{\text{Each sech}} \text{ ttps://eduassistpro.gith@b.}$

There are Add We Chat edu_assist_pr

Assignment Project Exam Help

Let A = a, b, c with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

Each senttps://eduassistpro.gith@b.

There are Add We Chat edu_assist_pr

The probability \mathbf{x} is of type (2, 1, 3) is (0.0)

Study probabilities at the level of types (most likely, average/typical)

Ensembles and sequences

Assignment Project Exam Help

2 Typi

https://eduassistpro.github.

3 Asymptotic Equipartition Property (AEP)

Extended Ensembles Example

Assignment Project Exam Help

```
*
hh https://eduassistpro.github.
th 0.1875
tt A.0605 WeChat edu_assist_pr
```

Example

Assignment Project Exam Help

```
hh https://eduassistpro.github.

th 0.1875 hth 0.1406

tt 0.06051 with 0.1406

th 0.0469

tth 0.0469

tth 0.0469

ttt 0.0156
```

Example

Assignment Project Exam Help

x					_	$P(\mathbf{x})$
hh https:	://e	dua	SSIS	stpro).gi	thub.
th 0.1875	hth	0.1406	h	•		.0352
tt 0.06251	White	0.1406	athec	ء بيلا	226	ISd₁17 Sd₁17 D
7100	tht	0.0469	h	, u_c	100	.0117
	tth	0.0469	htth	0.0352	ttth	0.0117
	ttt	0.0156	hhtt	0.0352	tttt	0.0039

Observations

Assignment Project Exam Help As N increases, there is an increasing spread of probabilities

```
https://eduassistpro.github.
```

Not surprised that redu_assist_pr

Symbol Frequency in Long Sequences

To judge if a sequence is typical/average, a natural question to ask is:

How often does each symbol appear in a sequence **x** from X^N ?

A SSIGN REPORT PROJECT FX A THE PROJECT FOR A SEQUENCE OF LENGTH OF LENGTH OF A SEQUENCE OF LENGTH OF LENGTH OF LENGTH OF LENGTH OF LENGTH OF LENGTH OF LENGT

https://eduassistpro.github.

Symbol Frequency in Long Sequences

To judge if a sequence is typical/average, a natural question to ask is:

How often does each symbol appear in a sequence **x** from X^N ?

A SSIGN THE PROJECT FX A THE PROJECT FOR A SEQUENCE OF LENGTH OF LENGTH OF A SEQUENCE OF LENGTH OF LENGTH OF

https://eduassistpro.github.

$$-p_1 N \log_2 p_1 - \ldots - p_l N \log_2 p_l = -N \sum_{i=1}^l p_i \log_2 p_i = NH(X)$$

Assitgment Projects Exam to Help Typical Set For "close https://eduassistpro.github Add Wechatedu_assist_pr Union of types

19/31

We want to consider elements \mathbf{x} that have $-\log_2 P(\mathbf{x})$ "close" to NH(X)

Typical Set

Assignment Project Exam Help

https://eduassistpro.github.

Union of types

Add WeChat edu_assist_pr

What when $\beta = 0$ (and replace < by \le)?

Criterion based on information content. Other criterion (KL divergence)?

The name "typical" is used since $\mathbf{x} \in T_{N\beta}$ will have roughly $p_1 N$ occurrences of symbol $a_1, p_2 N$ of $a_2, \ldots, p_K N$ of a_K .

Randomly drawn sequences for P(1) = 0.1. Note: $H(X) \approx 0.47$

Typical Sets
Properties

Assignment Project Exam Help

Variatio https://eduassistpro.github.

Number of sequences in the typical set: For any $Add \ \ \, We Chat \ \ \, edu_assist_pr$

Proof of Cardinality Bound

For every $\mathbf{x} \in T_{N\beta}$,

Assignment Project Exam Help

https://eduassistpro.github.

Add Wechartedu_assist_pr

$$= 2^{-N(H(X)-\beta)} \cdot |T_{N\beta}|.$$

Thus

$$|T_{N\beta}| \leq 2^{N(H(X)+\beta)}$$

Typical Sets Most Likely Sequence

Answightner tha Project to Toran Help e.g. with

https://eduassistpro.github.

```
whereas H(X) = 0.8113
The most likely single sequence \rightarrow hhhh
```

The most likely single sequence type \rightarrow {hhht, hthh,...}

Most Likely Sequence

Probability of most likely sequence decays like $(p_h)^N$ $(p_h = 0.75)$

Assignments Projector Examin Help

Blue curve corresponds to typical set with $\beta = 0$. What if $\beta > 0$?

Ensembles and sequences

Assignment Project Exam Help

2 Typi

https://eduassistpro.github.

3 Asymptotic Equipartition Property (AEP)

Asymptotic Equipartition P operty (Informal) As $N \to \mathbb{R}$, $\log_2 P(x_1, \dots, x_N)$ is close to -NH(X) with high probability.

Probability sequence **x** has r heads for N = 100 (left) and N = 1000 (right). Here P(X = head) = 0.1.

Asymptotic Equipartition Property Formally

```
Asymptotic Equipartition Property
Assignments Project Powiam Help
 In precis https://eduassistpro.github.
      (\forall \beta > 0) \lim_{N \to \infty} p \left[ -\frac{1}{N} \log_2 P(x_1, \dots, x_n) \right]
 Exactly the dd diity We Chat edu_assist_pr
```

Asymptotic Equipartition Property

Asymptotic Equipartition Property

Assignments Project Exitm Help

In precishttps://eduassistpro.github.

$$(\forall \beta > 0) \lim_{N \to \infty} p \left| -\frac{1}{N} \log_2 P(x_1, \dots, 1) \right|$$

Exactly the additive Chat edu_assist_pr

Recall definition: for random variables $v_1, v_2, ...,$ we say $v_N \to v$ in **probability** if for all $\beta > 0$ $\lim_{N \to \infty} P(|v_N - v| > \beta) = 0$

Here v_N corresponds to $-\frac{1}{N}\log_2 P(x_1,\ldots,x_N)$.

Asymptotic Equipartition Property

Assignmenta Project Exam Help

For an ens

https://eduassistpro.github.

i.e. the typical set is a small fraction of all possible sequences

AEP says that of visit labout a council labout a council

Significance in information theory

Asymptotic Equipartition Property

Since x_1, \ldots, x_N are independent,

Assignment, Project Fixam Help

https://eduassistpro.github.

Let $Y = -\log p(X)$ and $y_n = -\log p(x_n)$. T

Add We@hatvedu_assist_pr

But then by the law of large numbers,

$$(\forall \beta > 0) \lim_{N \to \infty} \rho \left(\left| \frac{1}{N} \sum_{n=1}^{N} y_n - H(X) \right| > \beta \right) = 0.$$

Ensembles and sequences

Assignment Project Exam Help

2 Typi

https://eduassistpro.github.

3 Asymptotic Equipartition Property (AEP)

Summary & Conclusions

Assignment-Project Exam Help

- Typ https://eduassistpro.github.
- · AsymAtotil Equitative Color to the Edu_assist_pr

Next: Source Coding.