Random Access Protocol for Massive MIMO:

Strongest-User Collision Resolution (SUCR)

Emil Björnson¹, Elisabeth de Carvalho², Erik G. Larsson¹, Petar Popovski²

¹Department of Electrical Engineering (ISY), Linköping University, Sweden

²Department of Electronic Systems, Aalborg University, Aalborg, Denmark

Motivation

- Massiveness of 5G Networks and Beyond
 - Massive number of user equipments (UEs), intermittent activity
 - Massive total data traffic
 - Massive differences in traffic between UEs (mobile broadband, internet-of-things, etc.)

Connection Issue

How to connect and disconnect that many UEs from the network?

LTE Random Access Solution Not Enough

More users → More access contention → Requires more overhead

5G Physical Layer Solution

Massive MIMO (multiple-input multiple-output)

- M antennas at the base station (e.g., M = 100)
- K UEs are associated with the base station
- Pilot sequences are key to separate UEs by spatial beamforming
- Number of pilots limited by channel coherence: τ_c channel uses

Achieves high throughput by multiplexing of many UEs

Massive number of UEs in a cell

 $K \gg \tau_c$: Cannot pre-associate pilots with UEs

3

Pilot Allocation for Intermittent User Activity

Studied in paper at ICASSP 2016

Two Approaches

- 1. Uncoordinated pilot allocation
 - Each UE sends data using a randomly selected pilot sequence
 - Pros: No access procedure
 - Cons: Creates intra-cell pilot contamination, UE⇔stream identification
 - Good for short packages and best-effort services?
- 2. Coordinated pilot allocation
 - Each UE asks for a "protected" pilot sequence using random access
 - Pros: Separates access and data no intra-cell pilot contamination
 - Cons: Random access collisions must be resolved
 - Good for long packages and high-rate/robust services?

Can we exploit Massive MIMO characteristics?

Focus of this presentation!

Proposed Frame Structure

- Two types of resource blocks
 - 1. Payload blocks ← Operated as in classic Massive MIMO
 - 2. Random access blocks

System Model

Channel gain $\boldsymbol{h}_k \sim CN(\boldsymbol{0}, \beta_k \mathbf{I}_M)$

- Preliminaries
 - K UEs want to connect
 - Selects one of τ_p pilots at random $(\tau_p \le \tau_c/2)$
 - P_a is probability of sending a pilot

S: Set of UEs picking an arbitrary pilot sequence:

$$|\mathcal{S}| \sim \text{Binomial}\left(K, \frac{P_a}{\tau_p}\right)$$

Probability of pilot collision

$$\Pr\{|\mathcal{S}| \ge 2\} = 1 - \left(1 - \frac{P_a}{\tau_p}\right)^K - K \frac{P_a}{\tau_p} \left(1 - \frac{P_a}{\tau_p}\right)^{K-1}$$

How to detect collisions?

Distributed Method to Detect Collisions (1/3)

Step 1:

Uplink pilot power

BS receives uplink pilot signal:

$$y = \sum_{i \in S} \sqrt{\rho} h_i + n$$
 Noise:
 $n \sim CN(0, \sigma^2 \mathbf{I}_M)$

• Compute least-square channel estimate of $\sum_{i \in S} h_i$:

$$\widehat{\boldsymbol{h}}_{LS} = \boldsymbol{y}/\sqrt{\rho}$$

Form a precoding vector with fixed power q:

$$\mathbf{w} = \sqrt{q} \, \frac{\widehat{\mathbf{h}}_{LS}}{\|\widehat{\mathbf{h}}_{LS}\|}$$

7

Distributed Method to Detect Collisions (2/3)

Step 2:

- BS sends downlink pilot using w
- Received signal at UE $k \in S$:

$$z_k = \boldsymbol{h}_k^H \boldsymbol{w} + \eta_k$$
 Noise: $\eta_k \sim CN(0, \sigma^2)$

• Define sum channel gain: $\alpha_{\mathcal{S}} = \sum_{i \in \mathcal{S}} \beta_i$

Channel Hardening Properties

$$\mathbb{E}\left\{\frac{z_k}{\sqrt{M}}\right\} = \sqrt{\frac{\rho q \beta_k^2}{\rho \alpha_{\mathcal{S}} + \sigma^2}} \frac{\Gamma\left(M + \frac{1}{2}\right)}{\sqrt{M}\Gamma(M)} \to \sqrt{\frac{\rho q \beta_k^2}{\rho \alpha_{\mathcal{S}} + \sigma^2}} \quad \text{as} \quad M \to \infty$$

$$\mathbb{V}\left\{\frac{z_k}{\sqrt{M}}\right\} = \frac{\rho q \beta_k^2}{\rho \alpha_{\mathcal{S}} + \sigma^2} \left(1 - \left(\frac{\Gamma\left(M + \frac{1}{2}\right)}{\sqrt{M}\Gamma(M)}\right)^2\right) + \frac{\sigma^2 + q \beta_k - \frac{\rho q \beta_k^2}{\rho \alpha_{\mathcal{S}} + \sigma^2}}{M} \to 0 \text{ as } M \to \infty$$

8

Distributed Method to Detect Collisions (3/3)

Step 2 (cont.):

In Massive MIMO we have:

$$\frac{z_k}{\sqrt{M}} \approx \mathbb{E}\left\{\frac{z_k}{\sqrt{M}}\right\} = \sqrt{\frac{\rho q \beta_k^2}{\rho \alpha_{\mathcal{S}} + \sigma^2}} \frac{\Gamma\left(M + \frac{1}{2}\right)}{\sqrt{M}\Gamma(M)}$$

UE k estimates $\alpha_{\mathcal{S}}$ as

$$\hat{\alpha}_{\mathcal{S},k} \approx \frac{q \beta_k^2}{z_k^2} \left(\frac{\Gamma\left(M + \frac{1}{2}\right)}{\Gamma(M)} \right)^2 - \frac{\sigma^2}{\rho} \quad \longleftarrow$$

ML estimator is also be derived in the paper

Detect collision at UE k:

 $\label{eq:compute} \mbox{Compute } \hat{\alpha}_{\mathcal{S},k}$ $\mbox{Compare with } \hat{\alpha}_{\mathcal{S},k} - \beta_k \mbox{ with a threshold}$

Distributed Contention Resolution

Step 3:

- Each user can infer 1) if a collision has occurred
 - 2) how strong the own channel gain is relative to the contenders $\beta_k/\hat{\alpha}_{S,k}$
- Assumption: The contention winner is the UE $k \in S$ with largest β_k "Strongest-User Collision Resolution (SUCR)"

Activation decision rule at UE k:

Active: $\beta_k > \hat{\alpha}_{S,k}/2$

Inactive: $\beta_k \leq \hat{\alpha}_{S.k}/2$

Only active UEs retransmit pilot in Step 3 (and sends UE ID):

$$S_{\text{retrans}} = \{ k \in S : \beta_k > \hat{\alpha}_{S,k}/2 \}$$

Allocate Protected Pilot Signals

Step 4:

Only UEs in $S_{retrans}$ retransmitted the pilot

- If $|S_{\text{retrans}}| = 1$: Successful admission of one UE to the data blocks (allocate protected pilot)
- If $|S_{retrans}| = 0$: Missed opportunity (false negative)
- If $|S_{retrans}| \ge 2$: Contention not fully resolved (false positive)

Basic Test: Resolving a Two-UE Collisions

Assumptions

• Pilot SNR of UE k is β_k $(p=q=\sigma^2=1), \quad \epsilon_k=0,$

• First UE: $\beta_1 = 10 \text{ dB}$

• Second UE: $\beta_2 = 4$ to 16 dB

Simulation: Cellular Scenario (1/2)

Scenario

- $\tau_p = 10$ pilot sequences
- *K* = 50 UEs want to connect
- Uniformly distributed, except in cell center
- Pathloss exponent: 3.7
- Shadow fading: 8 dB standard deviation
- Cell edge SNR without shadowing is set

Performance Metric

Probability to resolve conflicts:

$$\Pr\{|\mathcal{S}_{retrans}|=1\}$$

Simulation: Cellular Scenario (2/2)

 P_a is optimized for maximal resolution

Summary

- Massive Number of UEs per Cell
 - Can only allocated dedicated pilots to active UEs
 - Request protected pilots by random access leads to collisions
- Distributed "Strongest-User Collision Resolution (SUCR)"
 - Step 1: Send random uplink pilots, create joint precoding vector
 - Step 2: Send precoded downlink pilot, estimate sum channel gain of UEs
 - Step 3: Only UE with strongest channel gain retransmits pilot
 - Step 4: Allocate dedicated pilot or apply centralized contention resolution

Can resolve 80-90% of the collisions directly

Journal paper on arXiv: Any channel distribution, multi-cell setup, etc.

QUESTIONS?

Emil Björnson, Elisabeth de Carvalho, Erik G. Larsson, Petar Popovski

"Random Access Protocol for Massive MIMO: Strongest-User Collision Resolution (SUCR)"

