ZADANI PODACI:

Nazivni presjek vodiča	170/40 [mm ²]
Najveći provjes vodiča	20 [m]
Broj vodiča u snopu	2
Razmak	400 [mm]
Broj trojki	1
Izolatorski lanac-broj članaka	16
Izolatorski lanac-vrsta članka	K170/280
Nazivni presjek zaštitnih užeta	95 [mm ²]
Najveći provjes zaštitnog vodiča	12 [m]
Vrsta tla	vlažan krupan pijesak
Naziv stupa	Y-stup
X koordinata ovjesišta izolatora vodiča faze A	0 [m]
Y koordinata ovjesišta izolatora vodiča faze A	25 [m]
X koordinata ovjesišta izolatora vodiča faze B	12 [m]
Y koordinata ovjesišta izolatora vodiča faze B	25 [m]
X koordinata ovjesišta izolatora vodiča faze C	-12 [m]
Y koordinata ovjesišta izolatora vodiča faze C	25 [m]
X koordinata ovjesišta zaštitnog vodiča	8 [m]
Y koordinata ovjesišta zaštitnog vodiča	29 [m]
X koordinata ovjesišta drugog zaštitnog vodiča	-8 [m]
Y koordinata ovjesišta drugog zaštitnog vodiča	29 [m]

OPIS ZA MOJE PODATKE

- koordinate ovjesišta izolatorskih lanaca:

- koordinate pričvršćenja zaštitnih užeta:

-iz tablica s podacima o izvedbi vodiča (prilog I) izvadimo slijedeće podatke:

- vanjski radijus vodiča r₁=9,45 mm
- stvarni presjek vodiča (bez čelične jezgre): A_{Al}=171,767 mm²
- radijus čelične jezgre: r₂=4,05 mm

-iz tablice 2. (prilog I) određujemo slijedeće vrijednosti za zaštitno uže:

- vanjski radijus vodiča: r_g=6,25 mm
- broj žica: 19
- stvarni presjek vodiča: $A_{ee}=93,266 \text{ mm}^2$

- iz tablica (prilog I) izvadimo otpor kod istosmjerne struje za vodič i zaštitno uže:

$$R_0 = 0.1682 \ \Omega/km$$

 $R_a = 1.5225 \ \Omega/km$

-djelatni otpor kod izmjenične struje:

$$R_1 = R_0 + \frac{\pi^2}{3} 10^{-8} \frac{f^2}{R_0} - \frac{4\pi^4}{45} 10^{-16} \frac{f^4}{R_0^3} \left[\Omega/km\right]$$

$$R_{1f} = \frac{R_1}{2}$$

-ne smijemo zanemariti nit visinu izolatora i nosača vodova

$$h_a = y_a - (0.7 \cdot f_{max} + 16 \cdot 0.17 + 0.3)$$

$$h_b = y_b - (0.7 \cdot f_{max} + 16 \cdot 0.17 + 0.3)$$

$$h_c = y_c - (0.7 \cdot f_{max} + 16 \cdot 0.17 + 0.3)$$

$$h_p = y_p - (0.7 \cdot f_{gmax} + 0.3)$$

$$h_q = y_q - (0.7 \cdot f_{gmax} + 0.3)$$

-u sljedećoj tablici navedene su sve potrebne koordinate

VODIČ	X-koordinata [m]	Y-koordinata [m]
A	0	7,98
В	12	7,98
C	-12	7,98
P	8	20,3
Q	-8	20,3
A'	0	-7,98
В'	12	-7,98
C'	-12	-7,98
P'	8	-20,3
Q'	-8	-20,3

$$D_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$H_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}, \text{ za } i,j=a,b,c,p,q$$

-potreban nam je reducirani radijus vodiča:

$$r^{'} = r \cdot 0,7788$$

-potrebna nam je vlastita SGU samo jednog vodiča:

$$d_S = k \cdot r$$

-faktor *k* se izvadi iz tablice (prilog II) u ovisnosti o broju žica u vodiču pa ovdje vrijedi za zaštitno uže od 19 žica:

$$k = 0.758$$
.

-za vlastitu SGU jednog vodiča zaštitnog užeta dobiva:

$$D_q = k \cdot r_q$$
.

-vrijedi sljedeće:

- vanjski radijus vodiča: r_1

- unutarnji radijus vodiča: r_2

pa se dobiva r_2/r_1 iz tablice se izvadi $k = d_S/r_1$ i dobiva se:

$$d_S = k \cdot r_1$$

-vlastiti se SGU (reducirani radijus snopa vodiča) računa prema izrazu:

$$D_s = \sqrt{d_s \cdot D_{snop}}$$

-za 16 članaka izolatora K170/280 vrijedi:

$$U_n = 220 \, kV$$

-najveća struja jednog vodiča

$$I_{max 1} = \sqrt{\frac{\chi_{Al80}}{\chi_{Cu80}} \cdot 2 \cdot r_1 \cdot 85 \cdot A_{Al}}$$

-struja jedna faze:

$$I_{max} = I_{max \, 1} \cdot s$$

-ukupna najveća snaga

$$S_{max} = \sqrt{3} \cdot U_n \cdot I_{max}$$

-izraz za maksimalnu vrijednost polja je:

$$E_{max} = \frac{U_{max}}{\sqrt{3}} \cdot \frac{\left(1 + (s-1) \cdot \frac{r_1}{r_{snop}}\right)}{s \cdot r_1 \cdot ln \frac{D_m}{D_c}} \left[\frac{kV}{cm}\right]$$

-linijski kritični napon:

$$U_{kr} = \frac{21,1 \cdot \sqrt{3} \cdot s \cdot r_1 \cdot ln \frac{D_m}{D_s}}{1 + (s-1) \cdot \frac{r_1}{r_{snon}}}$$

-matrica uzdužnih impedancija

za vodiče:
$$Z_{ii-z} = R_{1f} + 0.05 + j \cdot 0.0628 \cdot ln \frac{93.1 \cdot \sqrt{\rho}}{D_s}$$
 za zaštitnu užad: $Z_{ii-z} = R_g + 0.05 + j \cdot 0.0628 \cdot ln \frac{93.1 \cdot \sqrt{\rho}}{D_g}$

dok se vandijagonalni elementi računaju prema formuli:

$$Z_{ij-z} = 0.05 + j \cdot 0.0628 \cdot ln \frac{93.1 \cdot \sqrt{\rho}}{D_{ij}}.$$

-ostali podaci (ρ je prosječni specifični otpor tla te se iz priloga 3 očita vrijednost):

$$ho = 200 \ \Omega m;$$
 $D_g = 4,7375 \ mm;$
 $D_s = 56,21 \ mm;$
 $R_g = 1,5225 \ \Omega/km;$
 $R_{1f} = 0,08435 \ \Omega/km$

-dobivena matrica $[5\times5]$ reducira se u matricu $[4\times4]$ uz pivotni element Z[5][5] prema formuli:

$$Z'[i][j] = Z[i][j] - \frac{Z[i][5] \cdot Z[5][j]}{Z[5][5]}, \quad \text{uz } i=1,2,3,4; j=1,2,3,4$$

-ponovnim postupkom matrica $[4\times4]$ reducira se u matricu $[3\times3]$ uz pivotni element $\mathbb{Z}[4][4]$ prema formuli:

$$Z'[i][j] = Z[i][j] - \frac{Z[i][4] \cdot Z[4][j]}{Z[4][4]}, \quad \text{uz } i=1,2,3; j=1,2,3$$

-dobiju se srednje vrijednosti za vlastite i međusobne impedancije:

$$Z_{s} = \frac{1}{3}(Z_{AA} + Z_{BB} + Z_{CC})$$

$$Z_{m} = \frac{1}{3}(Z_{AB} + Z_{AC} + Z_{BC})$$

$$Z_m - \frac{1}{3}(Z_{AB} + Z_{AC} + Z_{BC})$$

$$[Z^e]_{prepl.} = \begin{bmatrix} Z_s & Z_m & Z_m \\ Z_m & Z_s & Z_m \\ Z_m & Z_m & Z_s \end{bmatrix}$$

$$[Z^{012}] = [S]^{-1} \cdot [Z^e]_{prepl} \cdot [S] = \begin{bmatrix} Z_s + 2Z_m & 0 & 0 \\ 0 & Z_s - Z_m & 0 \\ 0 & 0 & Z_s - Z_m \end{bmatrix}$$

pri čemu vrijedi:

$$Z_0 = Z_s + 2Z_m$$
; $Z_d = Z_i = Z_s - Z_m$.

$$Z_0 = R_0 + j\omega L_0$$

-djelatni otpor:

 R_0

-induktivitet:

$$L_0 = \frac{L_0}{\omega} = \frac{L_0}{2 \cdot \pi \cdot 50}$$

$$Z_1 = R_1 + j\omega L_1$$

-djelatni otpor:

 R_1

-induktivitet:

$$L_1 = \frac{L_0}{\omega} = \frac{L_0}{2 \cdot \pi \cdot 50}$$

-matrica potencijalnih koeficijenata:

za vodiče:
$$P_{ii} = 18 \cdot 10^6 \cdot ln \frac{H_{ii}}{D_{sc}}$$

za zaštitnu užad:
$$P_{ii} = 18 \cdot 10^6 \cdot ln \frac{H_{ii}}{D_{gc}}$$

dok se vandijagonalni elementi računaju prema formuli:

$$P_{ij} = 18 \cdot 10^6 \cdot ln \frac{H_{ij}}{D_{ij}}.$$
 $D_{sc} = \sqrt{r_1 \cdot D_{snop}}$ $D_{ac} = r_a$

-dobivena matrica [5×5] reducira se u matricu [4×4] uz pivotni element P[5][5] prema formuli:

$$P'[i][j] = P[i][j] - \frac{P[i][5] \cdot P[5][j]}{P[5][5]},$$
 uz $i=1,2,3,4; j=1,2,3,4$

-ponovnim postupkom matrica $[4\times4]$ reducira se u matricu $[3\times3]$ uz pivotni element P[4][4] prema formuli:

$$P'[i][j] = P[i][j] - \frac{P[i][4] \cdot P[4][j]}{P[4][4]}, \quad \text{uz } i=1,2,3; j=1,2,3$$

$$[P^e]$$

$$[P^e]^{-1}$$

$$[B^{abc}] = 2 \cdot \pi \cdot f \cdot [P^e]^{-1}$$

$$B_s = \frac{1}{3} (B_{AA} + B_{BB} + B_{CC})$$

$$B_m = \frac{1}{3} (B_{AB} + B_{AC} + B_{BC})$$

$$[B^{abc}]_{prepl.} = \begin{bmatrix} B_s & B_m & B_m \\ B_m & B_s & B_m \\ B_m & B_m & B_s \end{bmatrix}$$

$$[B^{012}] = [S]^{-1} \cdot [B^{abc}]_{prepl.} \cdot [S] = \begin{bmatrix} B_s + 2B_m & 0 & 0 \\ 0 & B_s - B_m & 0 \\ 0 & 0 & B_s - B_m \end{bmatrix}$$

pri čemu vrijedi:

$$B_0 = B_s + 2B_m$$
; $B_d = B_i = B_s - B_m$,

-nulta susceptancija

$$B_0$$

-nulti kapacitet

$$C_0 = \frac{B_0}{\omega}$$

-direktna susceptancija

$$B_1$$

-direktni kapacitet

$$C_1 = \frac{B_1}{\omega}$$