Procesy stochastyczne Zestaw zadań nr 1

Zadanie 1. Niech X_i : $(\Omega, \mathcal{F}) \rightarrow (\Omega_i, \mathcal{F}_i), i = 1, 2, ..., n$ będą niezależnymi zmiennymi losowymi i nich $g_i: (\Omega_i, \mathcal{F}_i) \to (\Omega'_i, \mathcal{F}'_i), i = 1, 2, \ldots, n$ będą mierzalne. Co można powiedzieć na temat niezależności $g_i \circ X_i$?

Zadanie 2. Niech f, g będą mierzalnymi funkcjami borelowskimi. Udowodnij, że sa one niezależne wtedy i tylko wtedy, gdy dla dowolonych $a, b, c, d \in \mathbb{R}$ zachodzi:

$$\mu\left(f^{-1}[a,b)\cap g^{-1}[c,d)\right) = \mu\left(f^{-1}[a,b)\right)\cap\mu\left(g^{-1}[c,d)\right)$$

Zadanie 3. Niech X będzie dyskretną zmienną losową przyjmującą wartości $1, 2, 3, \ldots$ z prawdopodobieństwami odpowiednio p_1, p_2, p_3, \ldots Niech Y będzie takq zmienną losową, że gdy X=n, Y przyjmuje nieujemne wartości zgodnie z rozkładem o gestości f_n . Znajdź prawdopodobieństwo, że $1 \leq X + Y \leq 3$.

Zadanie 4. Niech X będzie zmienną losową przyjmującą tylko skończenie wiele wartości x_1, x_2, \ldots, x_n i niech Y będzie taką zmienną losową, że $Y \in \mathcal{L}_1(\Omega)$ $(tzn. \mathbb{E}Y < +\infty)$. Udowodnij, że zachodzi równość

$$\mathbb{E}\left(Y|X=x_{i}\right)=\frac{1}{\mathbb{P}\left(X=x_{i}\right)}\int_{\left\{ X=x_{i}\right\} }Yd\mathbb{P}.$$

Co można powiedziec na temat $\mathbb{E}(Y|B)$, gdzie B jest pewnym mierzalnym zbiorem o dodatniej mierze?

Zadanie 5. Niech $\{B_i\}_{i=1}^{\infty}$ będzie rodziną wzajemnie rozłącznych zbiorów takich, $\dot{z}e\bigcup_{i=1}^{\infty}B_{i}=\Omega$ i niech $X\in\mathcal{L}_{1}\left(\Omega\right)$. Udowodnij, $\dot{z}e$ zachodzi równość

$$\mathbb{E}X = \sum_{i=1}^{\infty} \mathbb{P}(B_i) \mathbb{E} (X|B_i).$$

Zadanie 6. Niech σ -ciało \mathcal{F} będzie generowane przez skończoną rodzinę rozłącznych zbiorów B_i i niech $X \in \mathcal{L}_1(\Omega)$. Znajdź postać $\mathbb{E}(X|\mathcal{F})$.

 Zadanie 7. Niech X będzie nieujemną zmienną losową o skonczonym pierwszym momencie. Pokaż, że zachodzi 1. $\mathbb{E}(X|\mathcal{G}) = \int_0^{+\infty} \mathbb{P}(X > t) dt$, 2. $\mathbb{P}(X > \alpha) \leqslant \alpha^{-1} \mathbb{E}(X|\mathcal{G})$.

1.
$$\mathbb{E}(X|\mathcal{G}) = \int_0^{+\infty} \mathbb{P}(X > t) dt$$

Zadanie 8. Niech $X \in \mathcal{L}_2(\Omega)$. Zdefinujmy warunkową wariancje względem σ ciała G w nastepujący sposób

$$\mathbb{V}\left(X|\mathcal{G}\right) = \mathbb{E}\left(\left(X - \mathbb{E}\left(X|\mathcal{G}\right)\right)^{2}|\mathcal{G}\right).$$

Wykaż, że zachodzi

$$\mathbb{V}(X) = \mathbb{E}(\mathbb{V}(X|\mathcal{G})) + \mathbb{V}(\mathbb{E}(X|\mathcal{G})).$$

Zadanie 9. Niech $\Omega = [0,1] \times [0,1]$ i niech \mathbb{P} bedzie miarą Lebesgue'a na tej przestrzeni. Wyznacz warunkową wartość oczekiwaną $\mathbb{E}(f|\mathcal{G})$, jeśli:

1.
$$f(x,y) = x$$
, $\mathcal{G} = \sigma(y)$,

2.
$$f(x,y) = x - y$$
, $\mathcal{G} = \sigma(x+y)$.

Zadanie 10. Niech $\Omega = [0,1]$ i niech \mathbb{P} będzie miarą Lebesgue'a na tej przestrzeni. Niech $f(x) = x^2$ i $g(x) = 2\mathbf{1}_{[0,1/2)} + x\mathbf{1}_{[1/2,1]}$. Znajdź $\mathbb{E}(f|g)$.

Zadanie 11. Niech $(\Omega = [0,1], \mathcal{F} = \mathcal{B}_{[0,1]}, \lambda)$ będzie przestrzenią probabilistyczną. Niech $Y(\omega) = \omega(1-\omega)$. Udowodnij, że dla dowolnej zmiennej losowej X określonej na tej przestrzeni zachodzi

$$\mathbb{E}(X|Y)(\omega) = \frac{X(\omega) + X(1-\omega)}{2}.$$

Zadanie 12. Niech X_1, X_2, \ldots będzie ciągiem niezależnych i całkowalnych zmiennych losowych o tym samym rozkładzie normalnym $(\mathcal{N}(\mu, \sigma))$ i niech τ będzie zmienną losową o rozkładzie Poissona z parametrem λ niezależną od tego ciągu. Znajdź wartość oczekiwaną zmiennej losowej

$$\xi \stackrel{d}{=} \sum_{n=1}^{\tau} X_n.$$

Zadanie* 13. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną i niech \mathcal{G} będzie pod- σ -ciałem ciała \mathcal{F} . Niech $Y \in \mathcal{L}_1(\Omega)$. Wtedy mamy, że $\mathbb{E}(Y|\mathcal{G}) \in \mathcal{L}_1(\Omega)$, a zatem $A(Y) = \mathbb{E}(Y|\mathcal{G})$ definuje liniowy operator na przestrzeni $\mathcal{L}_1(\Omega)$. Wykaż, że

- 1. ||A|| = 1,
- 2. Definując iloczyn skalarny jako $[X,Y]=\int_{\Omega}XYd\mathbb{P}$ wykaż, że A jest samosprzężony.