- 1. (20 分) 设实对称矩阵 $A = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -1 & 4 \\ 2 & 4 & a \end{pmatrix}$, 已知 -5 是 A 的重数为 2 的特征值。
 - (1) 求 a 的值。
 - (2) 求一个正交矩阵 Q, 使得 $Q^{-1}AQ$ 为对角矩阵。
- 2. (15 分) 令 $\alpha_1 = (1,2,1,0)$, $\alpha_2 = (-1,1,1,1)$, $\beta_1 = (2,-1,0,1)$, $\beta_2 = (1,-1,3,7)$. 求向量 α_1 , α_2 生成的子空间与由向量 β_1 , β_2 生成的子空间的交的基。
- 3. (15 分) 若二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 是正定的, 求 t 的取值 范围。
- 4. (10 分) 设 A,B 分别为 $S \times n, n \times S$ 矩阵, 证明: $|I_S AB| = |I_n BA|$ 。
- 5. $(10\ final f$

$$\begin{pmatrix} \mathcal{A}(\alpha_1) \\ \cdots \\ \mathcal{A}(\alpha_n) \end{pmatrix} = \sigma(\mathcal{A}) \begin{pmatrix} \alpha_1 \\ \cdots \\ \alpha_n \end{pmatrix}.$$

证明:

- (i) σ 是线性同构。
- (ii) 判断对于任意 $\mathcal{A},\mathcal{B} \in \operatorname{Hom}_k(V,V)$ 是否满足 $\sigma(\mathcal{AB}) = \sigma(\mathcal{A})\sigma(\mathcal{B})$, 并给 出证明或反例。

$$A = P \begin{bmatrix} D_r & 0 \\ 0 & 0 \end{bmatrix} Q$$

其中的 D_r 为 r 行 r 列的对角矩阵, 对角元都是正数, r = rank (A); 三个 0 表示相应大小的零矩阵。

- 7. (10 分) 设 n-阶方阵 A 满足 $A^2 = 2A$, 证明: A 可以对角化。
- 8. (10 分) 令 V 是域 k 上维数大于 1 的线性空间, $V^* = \operatorname{Hom}_k(V, k)$ 是 V 到 k 上的所有线性映射的集合。对 i = 1,2 取集合 $V^* \times V$ 中的元素 (ϕ_i, w_i) 满足如下条件: $0 \neq \phi_i \in V^*, 0 \neq w_i \in V$ 且 $\phi_i(w_i) = 0$. 定义 V 上的线性变换 $\tau_i(v) = v + \phi_i(v)w_i$. 证明:
 - (i) τ_i 是可逆线性变换。
 - (ii) 存在 V 上的可逆线性变换 g 使得 $g^{-1}\tau_1g = \tau_2$ 。