Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 154299, v.1

Punti: / 30	Tempo:
-------------	--------

1 (3 pt)

Dato il seguente testo:

- 1. Esplicitare l'argomento, se esiste.
- 2. Formalizzare l'argomento, se formalizzabile secondo il linguaggio della logica enunciativa classica
- 3. Dimostrare perché l'argomento è valido secondo il linguaggio della logica enunciativa classica, se lo è.
- 4. Determinare se l'argomento è fondato.

Tutte le scimitarre hanno una impugnatura. Questo oggetto ha una impugnatura. Questo oggetto è una scimitarra.

2 (3 pt)

Per ogni coppia ordinata (x_n, x_{n+1}) : 1. formalizzare ogni enunciato 2. determinare se (x_n, x_{n+1}) siano contraddittori 3. determinare se formino un insieme coerente 3. determinare se il secondo enunciato sia conseguenza logica del primo tramite « $x_n \models x_{n-1}$ » oppure « $x_n \not\models x_{n-1}$ ».

 a_1 . Se i gatti sono intelligenti lo sono anche i cani.

 a_2 . Se i gatti sono intelligenti lo sono anche i cani e i canarini.

 b_1 . Se corro e fa caldo, allora sudo.

 b_2 . Se corro, allora sudo se fa caldo.

 c_1 . O fuggo o mi nascondo, oppure faccio finta di niente.

 c_2 . Sono e non sono.

3 (9 pt)

a.
$$\sim (p \supset q) \vdash p \land \sim q$$

b.
$$\sim p \supset \sim q \vdash (\sim p \supset q) \supset p$$

c.
$$p \land q \vdash p \supset q$$

4 (15 pt)

Teoria (1). Fornire esempi di: (a) funzione iniettiva non suriettiva; (b) funzione suriettiva non iniettiva, (c) funzione né iniettiva né suriettiva.

Teoria (2). Spiegare perché vale quanto seguente: se $\alpha \in \Gamma$, allora $\Gamma \models \alpha$.

Teoria (3). Per ogni caso, costruisci un esempio di relazione:

- 1. riflessiva e antisimmetrica, ma non transitiva;
- 2. simmetrica e riflessiva, ma non transitiva né antisimmetrica;
- 3. antisimmetrica e transitiva, ma non riflessiva né simmetrica.

Teoria (4). Dimostrare che per ogni coppia di insiemi A, B si ha $(A \setminus B) \cap B = \emptyset$

Teoria (5). Che cosa si intende per "interpretazione di **L**"? Esiste una interpretazione di **L** che verifica ogni formula atomica?