

与种系统结构对外

	特性、思想	优点	缺点	
分层结构	内核分多层,每层可单向调用更低一层提供的接 口	○ 1. 便于调试和验证,自底向上逐层调试验证	1. 仅可调用相邻低层,难以合理定义各层的边界	
		2. 易扩充和易维护,各层之间调用接口清晰固定	ひ 2. 效率低,不可跨层调用,系统调用执行时间长	
模块化	将内核划分为多个模块,各模块之间相互协作。 内核 = 主模块+可加载内核模块	1. 模块间逻辑清晰易于维护,确定模块间接口后即可多模块同时开发	1. 模块间的接口定义未必合理、实用	
		2. 支持动态加载新的内核模块(如:安装设备驱		
		OS适应性	/	
		3. 任何模块都可以直接调用其他模块,无需采用 消息传递进行通信,效率高	2. 模块间相互依赖,更难调试和验证	
	所有的系统功能都放在內核里(大內核结构的OS 通常也采用了"模块化"的设计思想)	○ 1. 性能高,内核内部各种功能都可以直接相互调 - 用 表子 US 模式 表	○ 1. 内核庞大功能复杂,难以维护	
宏内核(大内核)			○ 2. 大内核中某个功能模块出错,就可能导致整个系统崩溃	
微内核	只把中断、原语、进程通信等最核心的功能放入 内核。进程管理、文件管理、设备管理等功能以 用户进程的形式运行在用户态	○ 1. 内核小功能少、易于维护,内核可靠性高	1. 性能低,需要频繁的切换用户态/核心态。用2. 户态下的各功能模块不可以直接相互调用,只能通过内核的"消息传递"来间接通信	
		3 2. 内核外的某个功能模块出错不会导致整个系统 崩溃	2. 用户态下的各功能模块不可以直接相互调用, 只能通过内核的"消息传递"来间接通信	
外核(exokernel)	内核负责进程调度、进程通信等功能,外核负责 为用户进程分配未经抽象的硬件资源,且由外核 负责保证资源使用安全	 1. 外核可直接给用户进程分配"不虚拟、不抽象" 的硬件资源,使用户进程可以更灵活的使用硬件资源 	1. 降低了系统的一致性	
		② 2. 减少了虚拟硬件资源的"映射层",提升效率	2. 使系统变得更复杂	

两类VMN的对什

	第一类VMM	第二类VMM
对物理资源的控制权	直接运行在硬件之上,能直接控制和分配物理资源	运行在Host OS之上,依赖于Host OS为其分配物理资源
资源分配方式	在安装Guest OS时,VMM要在原本的硬盘上自 行分配存储空间,类似于"外核"的分配方式,分 配未经抽象的物理硬件	GuestOS 拥有自己的虚拟磁盘,该盘实际上是 Host OS 文件系统中的一个大文件。GuestOS分 配到的内存是虚拟内存
性能	性能更好	性能更差,需要HostOS作为"中介"
可支持的虚拟机数量	更多,不需要和 Host OS 竞争资源,相同的硬件 资源可以支持更多的虚拟机	更少,Host OS 本身需要使用物理资源,Host OS 上运行的其他进程也需要物理资源
虚拟机的可迁移性	更差	更好,只需导出虚拟机镜像文件即可迁移到另一 台 HostOS 上,商业化应用更广泛
运行模式	第一类VMM运行在最高特权级(Ring 0),可以 执行最高特权的指令。	第二类VMM部分运行在用户态、部分运行在内核态。GuestOS 发出的系统调用会被 VMM 截获,并转化为 VMM 对 HostOS 的系统调用

系统调用的过程

特权指定

- ①清内存 ②置时钟 ③方配系统资源 函修改虚存的额页额表
- 图修改用户的访问权限 图系统调用(广义指令) 团输入/输出(涉及到中断),工/0指层
- 8 关中断指定

非特权指生

访管指生, trap指生, 跳转指生、压栈指生

在用户荒发生的事件

① 命 全解科程序 ② 条统调用 ③外部中断 ④ 缺负

在核心态发生的事件

- ①缺反处理程序 ② 世程调度程序 ③ 时钟中断处理程序
- 田世程切换

常的中断

①访常中断、由访特指定引起,发生在用产品(增态)