Notions statistiques

Cours 2

Plan du cours

- Retour sur le cours précédent
- Statistiques descriptives

Retour cours précédent

- Définition de statistique
- Etapes d'une étude statistique
- Statistique descriptive
 - Unité statistique
 - Population
 - Variable
 - Variable qualitative
- Variables quantitatives
 - Distribution d'une variable
 - La fréquence

Exemple

Distributions des habitants dans les villes du Québec:

Lieu de vie	Quantité	Fréquence
Montréal-Laval	42	0,49
Québec	27	0.32
Gatineau	12	0.14
Autres	4	0.05

Statistiques descriptives

- Méthodes graphiques
- Mesures de tendance

Méthodes graphiques

- Variables qualitatives
 - Diagramme circulaire (Pie chart)
 - Diagramme à bâtons (Bar chart)
- Variables quantitatives
 - Histogramme (Histogram)
 - Graphique « tiges et feuilles » (Stem-and-leaf)
 - Diagramme en boîte (Box plot) boîte à moustaches
 - résume des caractéristiques de position du caractère étudié (médiane, quartiles, minimum, maximum ou déciles).
 - Comparer un même caractère dans deux populations de tailles différentes.

- Moyenne arithmétique
 - Somme des valeurs divisée par le nombre de valeur
- La médiane
 - la donnée centrale d'une série rangée en ordre croissant ou décroissant.
 - Si données en nombre impair
 - la médiane est la donnée centrale
 - la médiane des données 1, 3, 5, 7, 9, 10, 13 est 7.
 - Si données en nombre pair
 - la médiane est la moyenne des deux données centrales.
 - la médiane des données 1, 3, 5, 7, 9, 10, 13, 15 est (7 + 9)/2 = 8
 - La médiane peut ne pas être dans la liste
 - Robuste à la présence de valeurs aberrantes.

- Mesures de dispersion
 - Rapporter une mesure de tendance centrale ne suffit pas, pour donner une idée complète d'une série de données ou d'une distribution.
 - Ajouter des mesures de dispersion (ou de volatilité).
 - Etendue
 - Différence entre la plus grande donnée et la plus petite donnée
 - série de donnée suivante : 18 13 11 22 1 4 6 17 8
 - L'étendue est égale à 22-1=21.

Variance

- Une mesure servant à caractériser la dispersion d'un échantillon ou d'une distribution.
- Ecarts entre la variable) et sa moyenne (ou espérance)
- on prend la moyenne (ou l'espérance) de ces écarts élevés au carré.

$$s^{2} = \frac{\sum_{i=1}^{n} (xi - \bar{x})^{2}}{n-1}$$

- Fonction de la moyenne des observations
- Comme la moyenne, la variance n'est pas robuste à la présence de valeurs aberrantes.

Etapes pour calculer la variance

- Pour une suite donnée
 - \odot Calculer la moyenne de la série (\overline{x})
 - Pour chaque élément de la série calculer l'écart à la moyenne $(x_i \overline{x})$
 - Elever chaque différence trouvée au carré $(x_i \overline{x})^2$
 - Sommer les valeurs trouvées: $\sum_{i=1}^{n} (xi \overline{x})^2$
 - Diviser par le nombre d'éléments de série 1: $\frac{\sum_{i=1}^{n} (xi \overline{x})^2}{(n-1)}$

- Ecart-type
 - Racine carrée de la variance
- Ecart interquartile (interquartile range)
 - Le pième percentile ou quanțile d'un jeu de données présenté en ordre croissant est la valeur telle qu'au plus p% des valeurs sont en dessous d'elle et au plus (100-p)% sont au dessus.
 - Les percentiles les plus utilisés sont le 25_{ième}, le 50_{ième} et 75_{ième} appelés respectivement le premier quantile (Q1), la médiane (Q2) et le troisième quantile Q3.
 - L'écart interquartile
 - o IQR = Q3 Q1

- L'IQR est robuste aux valeurs aberrantes
- Calcul des quantiles
 - 1er quantile $\frac{(n+1)}{4}$
 - 3^{eme} quantile $\frac{3(n+1)}{4}$