

Fundamentos de MPLS

Rogelio Alvez

ralvez@tiagora.com

MPLS: Conceptos generales

Razones para un paradigma MPLS

- IP
 - El protocolo global para intercambiar información en Internet

... pero tiene algunas desventajas

Razones (continuación)

- Desventajas del paradigma de ruteo basado en IP
 - Cada router debe tomar decisiones de ruteo independiente, en base a la información IP de los paquetes
 - Header IP de gran tamaño
 - No menos de 20 bytes
 - La conmutación se hace a nivel IP
 - suele ser menos óptimo que las técnicas de switching

Razones (cont.)

- Switching (ej: ATM)
 - Orientado a conexión
 - Conmutación veloz, basada en celdas de tamaño fijo

... Pero también tiene sus desventajas

Razones (cont.)

- Desventajas de ATM
 - Complejidad
 - Pocas opciones a nivel de interfaces
 - Saltos "discretos" a nivel velocidad (STM1, STM4, ...)
 - No ha logrado imponerse globalmente
 - Costoso

Razones (cont.)

 Idea: Combinar la técnica de conmutación de ATM en un ambiente IP.

Funcionamiento básico

- Cómo funciona MPLS:
 - El paquete IP se clasifica al entrar a la red MPLS
 - Como resultado, se le incorpora un label
 - En la nube MPLS, el paquete no vuelve a ser clasificado, y se lo conmuta simplemente por su label

Idea general del paradigma MPLS

Labels

- Se permite incorporar más de un label al paquete
 - Label stack: conjunto ordenado de labels
- Los "routers de labels" (LSRs; Label Switch Routers) conmutan el paquete en base al label que está al tope del stack

Labels

Label = 20 bits

Exp = Experimental, 3 bits

S = Bottom of stack, 1bit

TTL = Time to live, 8 bits

- Puede ser usado en cualquier medio: Ethernet, PPP, Frame Relay, ATM, etc.
- Nuevos Ethertypes/PPP PIDs/SNAPs/etc.
- 4 bytes (por tag)

Labels

MPLS: Conceptos

El mapa de la red se sigue construyendo con protocolos de routing existentes (ej: OSPF)

El mapeo de etiquetas a destinos IP pasa a ser implementado con un nuevo protocolo (LDP: Label Distribution Protocol)

Label Switch Routers

- Edge-LSRs: colocan y retiran labels
 - Los colocan cuando el paquete entra a la red MPLS
 - Los retiran cuando los paquetes dejan la red MPLS
- Los LSRs usan protocolos de ruteo IP para intercambiar información de routing
- Todos los LSRs usan un protocolo para distribuir rutas (LDP)

LSRs: Planos de control y forwarding

FEC

- Forwarding Equivalence Class(FEC)
 - Grupo de paquetes IP con el mismo tratamiento y siguiendo el mismo camino, no importando el destino final
 - Al paquete se le asigna un FEC según su dirección de destino

Concepto de FEC

Asignación de labels

- Llevado a cabo por el equipo LSR más cercano al destino
- El LSR le avisa a su vecino "upstream" cómo relacionar labels (por ej: con direcciones IP)

Distribución de labels con el protocolo LDP

- LSRs asignan un label a cada FEC
- LSRs pasan labels a los vecinos upstream

Forwarding y FECs

Independencia

 MPLS se apoya en los protocolos IP disponibles en el backbone para armar el mapa de ubicación de los equipos PE y P

Asignación/distribución de labels

- Labels tienen significado local
 - Cada LSR arma su tabla de mapeo de labels
- Cada LSR mapea labels a sus FECs
- Se intercambian asignaciones de labels entre LSRs adyacentes
 - Downstream a Upstream

Label Stack

Cada paquete puede tener más de un label

 Los LSRs conmutan paquetes con labels mirando solamente el tope del stack de labels de los paquetes

Label Stack

A conmuta el paquete mirando el tope del stack

Label Switched Path (LSP)

- LSP es la sucesión de LSRs que el paquete debe atravesar para poder salir de la nube MPLS
- El LSP de salida puede ser un punto de agregación de prefijos

Label Switched Path (LSP)

- El path entre LSR de ingreso y de egreso es el mismo para una cierta FEC
- LSPs son unidireccionales
 - El tráfico inverso podría tomar otro camino

Configuración en equipos Cisco

- CEF
 - (ip cef en modo global)
- Habilitar MPLS en las interfaces de interés (las que apuntan a la nube MPLS)
 - interface xxx
 - mpls ip