Белорусский Государственный Университет Информатики и Радиоэлектроники

Факультет компьютерных систем и сетей

Кафедра ЭВМ

Лабораторная работа №3

Тема «Кластерный анализ»

Выполнил: Проверил:

Студент группы 7М2432 Марченко В.В.

Канаш В.Н.

Задание:

Входные данные: п объектов, каждый из которых характеризуется двумя числовыми признаками: $\{x_i\}_{i=1}^n$ и $\{y_i\}_{i=1}^n$, а также номером класса $\{c_i\}_{i=1}^n$

Требуется исследовать работу алгоритмов кластеризации объектов наблюдения по двум признакам. Для каждого набора данных необходимо выполнить следующие задания:

- 1. Провести кластеризацию объектов наблюдения с помощью алгоритма k внутригрупповых средних.
- 2. Графически изобразить на плоскости разбиения объектов наблюдения в соответствии с кластерами. Также отметить центры каждого кластера. Количество кластеров должно соответствовать количеству классов.
- 3. Для разбиения на кластеры вычислить сумму квадратом расстояний от каждого объекта наблюдения до центра соответствующего кластера.

Данные для моделирования представлены в таблице 1, где независимые случайные векторы (X, Y), n1 из которых относятся к первому классу, а n2 – ко второму классу. Векторы, относящиеся к первому классу, распределены по гауссовскому закону с математическим ожиданием a1 и корреляционной матрицей R1, а векторы, относящиеся ко второму классу – по гауссовскому закону с математическим ожиданием a2 и корреляционной матрицей. R2.

Таблица 1 - Исходные данные:

Вариант	n_1	a_1	R_1	n_2	a_1	R_2	
3	100	$\binom{-1}{1}$	$\begin{bmatrix} 1 & 0.1 \\ 0.1 & 2 \end{bmatrix}$	50	$\binom{2}{4}$	$\binom{2}{0.1}$	$\begin{pmatrix} 0.1 \\ 1 \end{pmatrix}$

Реальные статистические данные из заданного набора (выдаются преподавателем).

Варианты реальных наборов данных №6. Wine

Название файла: 06-wine.txt

Ссылка: http://archive.ics.uci.edu/ml/datasets/Wine

Первый признак: alcohol (столбец № 2)

Второй признак: color-intensity (столбец № 11)Класс cultivar (столбец

№1)

Результаты:

1. Реальные данные:

Значение суммы квардартов расстояний от каждого объекта наблюдения до центра соответствующего кластера - 1067.932

2. Смоделированные данные:

Значение суммы квардартов расстояний от каждого объекта наблюдения до центра соответствующего кластера - 966.5435

Листинг программы:

```
require (MASS)
analyse clust <- function(x, y, clazz) {</pre>
  k <- length(unique(clazz))</pre>
 clust <- kmeans(cbind(x, y), k)</pre>
  print(clust$totss)
  dev.new()
  plot(x, y, col=as.factor(clazz))
  dev.new()
  plot(x, y, col=as.factor(clust$cluster))
 points(clust$centers, col=1:length(clust$centers), pch=4, cex=2)
dat <- read.table("wine.csv", sep=",")</pre>
analyse_clust(dat$V2, dat$V11, as.factor(dat$V1))
n1 <- 100
a1 < -c(-1, 1)
r1 \leftarrow cbind(c(1, 0.1), c(0.1, 2))
n2 <- 50
a2 < -c(2, 4)
r2 \leftarrow cbind(c(2, 0.1), c(0.1, 1))
dat <- rbind(mvrnorm(n1, a1, r1), mvrnorm(n2, a2, r2))</pre>
analyse_clust(dat[,1], dat[,2], c(rep(1, n1), rep(2, n2)))2
```

Анализируемые данные:

5.64	1
4.38	1
5.68	1
7.8	1
4.32	1
6.75	1
5.25	1
5.05	1
5.2	1
7.22	1
5.75	1
5	1
5.6	1
5.4	1
7.5	1
	7.8 4.32 6.75 5.25 5.05 5.2 7.22 5.75 5 5.6 5.4

13.63	7.3	1
14.3	6.2	1
13.83	6.6	1
14.19	8.7	1
13.64	5.1	1
14.06	5.65	1
12.93	4.5	1
13.71	3.8	1
12.85	3.93	1
13.5	3.52	1
13.05	3.58	1
13.39	4.8	1
13.3	3.95	1
13.87	4.5	1
14.02	4.7	1
13.73	5.7	1
13.58	6.9	1
13.68	3.84	1
13.76	5.4	1
13.51	4.2	1
13.48	5.1	1
13.28	4.6	1
13.05	4.25	1
13.07	3.7	1
14.22	5.1	1
13.56	6.13	1
13.41	4.28	1
13.88	5.43	1

13.24	4.36	1
13.05	5.04	1
14.21	5.24	1
14.38	4.9	1
13.9	6.1	1
14.1	6.2	1
13.94	8.90	1
13.05	7.2	1
13.83	5.6	1
13.82	7.05	1
13.77	6.3	1
13.74	5.85	1
13.56	6.25	1
14.22	6.38	1
13.29	6	1
13.72	6.8	1
12.37	1.95	2
12.33	3.27	2
12.64	5.75	2
13.67	3.8	2
12.37	4.45	2
12.17	2.95	2
12.37	4.6	2
13.11	5.3	2
12.37	4.68	2
13.34	3.17	2
12.21	2.85	2
12.29	3.05	2

13.86	3.38	2
13.49	3.74	2
12.99	3.35	2
11.96	3.21	2
11.66	3.8	2
13.03	4.6	2
11.84	2.65	2
12.33	3.4	2
12.7	2.57	2
12	2.5	2
12.72	3.9	2
12.08	2.2	2
13.05	4.8	2
11.84	3.05	2
12.67	2.62	2
12.16	2.45	2
11.65	2.6	2
11.64	2.8	2
12.08	1.74	2
12.08	2.4	2
12	3.6	2
12.69	3.05	2
12.29	2.15	2
11.62	3.25	2
12.47	2.6	2
11.81	2.5	2
12.29	2.9	2
12.37	4.5	2

12.29	2.3	2
12.08	3.3	2
12.6	2.45	2
12.34	2.8	2
11.82	2.06	2
12.51	2.94	2
12.42	2.7	2
12.25	3.4	2
12.72	3.3	2
12.22	2.7	2
11.61	2.65	2
11.46	2.9	2
12.52	2	2
11.76	3.8	2
11.41	3.08	2
12.08	2.9	2
11.03	1.9	2
11.82	1.95	2
12.42	2.06	2
12.77	3.4	2
12	1.28	2
11.45	3.25	2
11.56	6	2
12.42	2.08	2
13.05	2.6	2
11.87	2.8	2
12.07	2.76	2
12.43	3.94	2

11.79	3	2
12.37	2.12	2
12.04	2.6	2
12.86	4.1	3
12.88	5.4	3
12.81	5.7	3
12.7	5	3
12.51	5.45	3
12.6	7.1	3
12.25	3.85	3
12.53	5	3
13.49	5.7	3
12.84	4.92	3
12.93	4.6	3
13.36	5.6	3
13.52	4.35	3
13.62	4.4	3
12.25	8.21	3
13.16	4	3
13.88	4.9	3
12.87	7.65	3
13.32	8.42	3
13.08	9.40	3
13.5	8.60	3
12.79	10.8	3
13.11	7.1	3
13.23	10.52	3
12.58	7.6	3

13.84 9.01 12.45 7.5 14.34 13	3 3 3 3
14.34 13	3
	3
12.40	
13.48 11.75	2
12.36 7.65	3
13.69 5.88	3
12.85 5.58	3
12.96 5.28	3
13.78 9.58	3
13.73 6.62	3
13.45 10.68	3
12.82 10.26	3
13.58 8.66	3
13.4 8.5	3
12.2 5.5	3
12.77 9.899999	3
14.16 9.7	3
13.71 7.7	3
13.4 7.3	3
13.27 10.2	3
13.17 9.3	3
14.13 9.2	3