Topology I

Ji, Yong-hyeon

November 23, 2024

We cover the following topics in this note.

Topology

Topology

Definition. Let $S = \emptyset$ be a non-empty set. A **topology** on S is a subset $\mathcal{T} = \{H : H \subseteq S\} \subseteq 2^S$ that satisfies the open set axioms:

 $(O1)^a \varnothing \in \mathscr{T} \text{ and } S \in \mathscr{T};$

 $(\operatorname{O2})^b \ \langle H_\alpha \rangle_{\alpha \in \Lambda} \subseteq \mathcal{T} \implies \bigcup_{\alpha \in \Lambda} H_\alpha \in \mathcal{T};$

 $(O3)^c \langle H_i \rangle_{i=1}^n \subseteq \mathcal{T} \implies \bigcap_{i=1}^n H_i \in \mathcal{T}.$

A topological spaces (S, \mathcal{T}) is a non-empty set $S \neq \emptyset$ with a topology \mathcal{T} .

^aComplete Set is Element of Topology: (O1) follows from (O2) and (O3), but (O1) is usually included for clarity.

^bUnion of Open Sets: T is closed under arbitrary unions

^cIntersection of Open Sets: T is closed under *finite* intersection

Example 1 (Cofinite Topology). Let *X* be a set. Define $\mathcal{T}_C \subseteq 2^X$ by

$$\mathcal{T}_C := \left\{ T \subseteq S : T^C \subseteq S \text{ is a finite set} \right\} \cup \{\emptyset\}$$

We claim that \mathcal{T}_C be a topology on X:

- (i)
- (ii)
- (iii)

References

[1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 8. 위상수학 (a) 위상공간의 정의." YouTube Video, 41:25. Published September 27, 2019. URL: https://www.youtube.com/watch?v=q8BtXIFzo2Q.

A Complement of Family

Note.

$$\left(\bigcup_{i\in\Lambda}E_i\right)^C=\bigcap_{i\in\Lambda}\left(E_i\right)^C$$

Proof. content...