

Dados e Aprendizagem Automática

Artificial Neural Networks: Multilayer Perceptron

- Artificial Neural Networks
 - Multilayer Perceptron
- Hands On

For this example, we will use the already known the **Titanic dataset**. To our goal, we will try to <u>predict the class</u> of the passenger.

We have used several classifiers already; now, let's try using **Multilayer Perceptrons (MLPs)**, a class of Artificial Neural Networks.

To implement our first Artificial Neural Network, we will use:

ML learning library based on the Torch library, used for applications such as computer vision and natural language processing, originally developed by Meta Al and now part of the Linux Foundation.

Common Frameworks

Theano	Python library that allows you to define, optimize and calculate mathematical expressions with multidimensional arrays efficiently. It works with GPUs and efficiently performs differential calculations. University of Montreal's lab, MLA
Lasagne	Light library for building and training neural networks using Theano
Blocks	Theano-based framework for building and training neural networks
TensorFlow	Open-source library for numerical computation using graphs Google Brain team
Keras	Deep learning library for Python; runs on Theano or TensorFlow
MXNet	Deep learning framework designed for efficiency and flexibility Amazon
PyTorch	Optimized flexible tensors and neural networks library with strong GPU support. Facebook Artificial Intelligence Research team (FAIR)
Torch	Ronan Collobert
Caffe	Berkeley Vision and Learning Center
CNTK	Microsoft
Deeplearning4j	Skymind

PyTorch

PyTorch is an **optimized tensor library for deep learning** using GPUs and CPUs:

- Open-source software library for high-performance numerical computation;
- Strong support for ML and DL;
- Flexibility, ease of use, performance optimization capabilities, and thriving ML community
- <u>Dynamic computational graphs</u>, Pythonic nature, and ease of use for <u>prototyping models</u> have made it a top choice in the research community. Many large companies like Amazon, Tesla, Meta, and Open AI use PyTorch to power ML and AI research initiatives;
- Commonly used in applications like <u>image recognition</u> and <u>language processing</u>;
- PyTorch allows <u>quicker prototyping</u> than TensorFlow. TensorFlow treats the NN as a static object; so, if you want to change the behavior of your model, you have to start from scratch.

You may need to install pytorch. Select the configuration that suits your machine: https://pytorch.org/get-started/locally/

FE and EDA

df	.head()											
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

FE and EDA

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                  Non-Null Count Dtype
     Column
     PassengerId 891 non-null
                                  int64
     Survived
                  891 non-null
                                  int64
     Pclass
                  891 non-null
                                 int64
                  891 non-null
                                 object
     Name
                 891 non-null
     Sex
                                 object
                 714 non-null
     Age
                                  float64
                 891 non-null
                                 int64
     SibSp
                 891 non-null
                                 int64
     Parch
                                 object
     Ticket
                  891 non-null
                 891 non-null
     Fare
                                 float64
                  204 non-null
                                 object
    Cabin
                 889 non-null
    Embarked
                                  object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

Let's impute by mean the NaN values of Age

```
def med impute nan(df):
    med_impute = df.copy()
    med_impute["Age"] = med_impute["Age"].fillna(med_impute["Age"].median())
    return med_impute
med impute = med impute nan(df)
df = med impute
df.isnull().sum()
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
               687
Embarked
dtype: int64
```

Drop NaN values and fill with mode for *Embarked* and *Cabin*

```
embark = df['Embarked'].dropna()
df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
df['Cabin'] = df['Cabin'].fillna(df['Cabin'].mode()[0])
df.isnull().sum()
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
dtype: int64
```

Transform Sex values to 0 and 1

```
df['Sex'] = df['Sex'].apply(lambda x: 1 if x == 'male' else 0)
```

Drop categoric columns

```
df.drop(columns=['Name', 'Ticket', 'Cabin'], inplace=True)
```

Label encode feature *Embarked*

```
cols = ['Embarked']
le = LabelEncoder()

for col in cols:
    df[col] = le.fit_transform(df[col])
df.head()
```

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	1	22.0	1	0	7.2500	2
1	2	1	1	0	38.0	1	0	71.2833	0
2	3	1	3	0	26.0	0	0	7.9250	2
3	4	1	1	0	35.0	1	0	53.1000	2
4	5	0	3	1	35.0	0	0	8.0500	2

Save the data to file

```
t = pd.DataFrame(df)
filename = "titanic_ds.csv"
t.to_csv(filename, index=False, encoding='utf-8')
```

The target is *Pclass*. Let's define X and y and save to file:

```
df_X = t.drop('Pclass', axis=1)
df X.head()
                                                Fare Embarked
  Passengerld Survived Sex Age SibSp Parch
                         1 22.0
                                           0 7.2500
0
           2
                         0 38.0
                                           0 71.2833
           3
                         0 26.0
                                           0 7.9250
2
                         0 35.0
                                           0 53.1000
           4
           5
                                           0 8.0500
                         1 35.0
t_X = pd.DataFrame(df_X)
filename = "titanic_X.csv"
t_X.to_csv(filename, index=False, encoding='utf-8')
```

```
df_y = t['Pclass']
df_y.head()

0    3
1    1
2    3
3    1
4    3
Name: Pclass, dtype: int64

t_y = pd.DataFrame(df_y)
filename = "titanic_y.csv"
t_y.to_csv(filename, index=False, encoding='utf-8')
```

<u>Data preparation</u>: we will use torch library to handle data loaders and tensors

```
def prepare_data(df, n_test):
    #create an instance of the dataset
    dataset = CSVDataset(df)
    #calculate the split
    train, test = dataset.get_splits(n_test)
    #prepare the data loaders
    train_dl = DataLoader(train, batch_size=len(train), shuffle=True)
    test_dl = DataLoader(test, batch_size=len(train), shuffle=True)
    return train_dl, test_dl
```

```
train_dl, test_dl = prepare_data(df, 0.33)

(891, 8)
torch.Size([891])
2
1
float32
torch.int64
```

```
class CSVDataset(Dataset):
   def __init__(self, path):
       #define inputs and outputs
       df_X = pd.read_csv("titanic_X.csv", header=0)
       df y = pd.read csv("titanic y.csv", header=0)
       #convert to numpy array
       self.X = df X.values
       self.y = df y.values[:, 0]-1
       #ensure X and y are float32 and long tensor
       self.X = self.X.astype('float32')
       self.y = torch.tensor(self.y, dtype=torch.long, device=device)
       print(self.X.shape)
       print(self.y.shape)
       print(self.X.ndim)
       print(self.y.ndim)
       print(self.X.dtype)
       print(self.v.dtvpe)
   def len (self):
       return len(self.X)
   def getitem (self, idx):
       #aet an instance
       return [self.X[idx], self.y[idx]]
   def get_splits(self, n_test):
       #define test and train size
       test size = round(n test * len(self.X))
       train_size = len(self.X) - test_size
       #return holdout split
       return random_split(self, [train_size, test_size])
```

Data balance

```
def visualize_dataset(train_dl, test_dl):
    print(f"Train size:{len(train_dl.dataset)}")
    print(f"Test size:{len(test_dl.dataset)}")
    x, y = next(iter(train_dl)) #iterate through the Loaders to fetch a batch of cases
    print(f"Shape tensor train data batch - input: {x.shape}, output: {y.shape}")
    x, y = next(iter(test_dl))
    print(f"Shape tensor test data batch - input: {x.shape}, output: {y.shape}")

visualize_dataset(train_dl, test_dl)

Train size:597
Test size:294
Shape tensor train data batch - input: torch.Size([597, 8]), output: torch.Size([597])
Shape tensor test data batch - input: torch.Size([294, 8]), output: torch.Size([294])
```

Data balance

```
def visualize holdout balance(train dl, test dl):
    _, y_train = next(iter(train_dl))
    _, y_test = next(iter(test_dl))
    sns.set style('whitegrid')
    train_df = len(y_train)
    test df = len(y test)
    Class 1 train = np.count nonzero(y train == 0)
    Class 2 train = np.count nonzero(y train == 1)
    Class_3_train = np.count_nonzero(y_train == 2)
    print("train data: ", train_df)
    print("Class 1: ", Class 1 train)
    print("Class 2: ", Class 2 train)
    print("Class 3: ", Class_3_train)
    print("Values' mean (train): ", np.mean(y_train.numpy()))
```

```
Class 1 test = np.count nonzero(v test == 0)
Class_2_test = np.count_nonzero(y_test == 1)
Class 3 test = np.count nonzero(y test == 2)
print("test data: ", test df)
print("Class 1: ", Class_1_test)
print("Class 2: ", Class_2_test)
print("Class 3: ", Class 3 test)
print("Values' mean (test): ", np.mean(y_test.numpy()))
graph = sns.barplot(x=['Class 1 train', 'Class 2 train', 'Class 3 train', Values' mean (test): 1.2585034013605443
                       'Class 1 test', 'Class 2 test', 'Class 3 test'],
                   y=[Class_1_train, Class_2_train, Class_3_train,
                       Class 1 test, Class 2 test, Class 3 test])
graph.set title('Data balance by class')
plt.xticks(rotation=70)
plt.tight layout()
plt.savefig('data_balance MLP.png')
plt.show()
graph = sns.barplot(x=['Train data average','Test data average'],
                   y=[np.mean(y train.numpy()), np.mean(y test.numpy())])
graph.set title('Data balance by mean')
plt.xticks(rotation=70)
plt.tight_layout()
plt.show()
```

```
train data: 597
Class 1: 137
Class 2: 124
Class 3: 336
test data: 294
Class 1: 79
Class 2: 60
Class 3: 155
```


Let's build our model using more torch libraries. We will use:

- <u>torch.nn.Module()</u> *base class* to build neural networks
- torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None) Linear
 transformer
- <u>torch.nn.ReLU(inplace=False)</u> *Rectified Linear Unit* function element-wise
- <u>torch.nn.Softmax(dim=None)</u> *SoftMax* function to an n-dimensional input tensor. To calculate the probability of each class

Functions to **initialize** neural network parameters:

- <u>torch.nn.init.xavier_uniform_(tensor, gain=1.0, generator=None)</u> fill the input tensor with values using a *Xavier Uniform Distribution*
- torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu', generator=None)
 fill the input Tensor with values using a Kaiming Uniform Distribution

Building Model 1

- Feedforward network with fully interconnected layers
- Three *linear* layers
- Initialization using *Kaiming* and *Xavier*
- ReLu and Softmax as activation functions

```
EPOCHS = 200
LEARNING_RATE = 0.001
```

```
class MLP_1(Module):
    def __init__(self, n_inputs):
        super(MLP_1, self).__init__()
        #1st Layer input
        self.hidden1 = Linear(n inputs, 24)
        kaiming uniform (self.hidden1.weight, nonlinearity='relu') # He initialization
        self.act1 = ReLU()
        #2nd Laver
        self.hidden2 = Linear(24, 12)
        kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        #3rd Layer and output
        self.hidden3 = Linear(12, 3) #one node for the predicted value output
       xavier_uniform_(self.hidden3.weight) #Glorot initialization
        #activation function
        self.act3 = Softmax(dim=1) # softmax since it is multiclass
    #input propagation sequence
    def forward(self, X):
        #input for the 1s layer
       X = self.hidden1(X)
       X = self.act1(X)
       #2nd Layer
       X = self.hidden2(X)
       X = self.act2(X)
       #3rd Layer and output
       X = self.hidden3(X)
       X = self.act3(X)
        return X
```

Building Model 1

- Feedforward network with fully interconnected layers
- Three *linear* layers
- Initialization using Kaiming and Xavier
- ReLu and Softmax as activation functions

Number of times each case is trained by the net

```
class MLP_1(Module):
    def __init__(self, n_inputs):
        super(MLP_1, self).__init__()
        #1st layer input
        self.hidden1 = Linear(n inputs, 24)
        kaiming uniform (self.hidden1.weight, nonlinearity='relu') # He initialization
        self.act1 = ReLU()
        #2nd Laver
        self.hidden2 = Linear(24, 12)
        kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        #3rd Layer and output
        self.hidden3 = Linear(12, 3) #one node for the predicted value output
        xavier uniform (self.hidden3.weight) #Glorot initialization
        #activation function
        self.act3 = Softmax(dim=1) # softmax since it is multiclass
    #input propagation sequence
    def forward(self, X):
        #input for the 1s layer
       X = self.hidden1(X)
       X = self.act1(X)
        #2nd Layer
       X = self.hidden2(X)
       X = self.act2(X)
       #3rd Layer and output
       X = self.hidden3(X)
       X = self.act3(X)
        return X
```

Building Model 1

- Feedforward network with fully interconnected layers
- Three *linear* layers
- Initialization using Kaiming and Xavier
- ReLu and Softmax as activation functions

```
EPOCHS = 200
LEARNING_RATE = 0.001
```

Number of input features

```
class MLP_1(Module):
    def __init__(self, n_inputs):
        super(MLP_1, self).__init__()
        #1st layer input
        self.hidden1 = Linear(n inputs, 24)
        kaiming uniform (self.hidden1.weight, nonlinearity='relu') # He initialization
        self.act1 = ReLU()
        #2nd Laver
        self.hidden2 = Linear(24, 12)
        kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        #3rd Layer and output
        self.hidden3 = Linear(12, 3) #one node for the predicted value output
       xavier_uniform_(self.hidden3.weight) #Glorot initialization
        #activation function
        self.act3 = Softmax(dim=1) # softmax since it is multiclass
    #input propagation sequence
    def forward(self, X):
        #input for the 1s layer
       X = self.hidden1(X)
       X = self.act1(X)
        #2nd Layer
       X = self.hidden2(X)
       X = self.act2(X)
       #3rd Layer and output
       X = self.hidden3(X)
       X = self.act3(X)
        return X
```

Building Model 1

- Feedforward network with fully interconnected layers
- Three *linear* layers
- Initialization using *Kaiming* and *Xavier*
- ReLu and Softmax as activation functions

```
EPOCHS = 200
LEARNING_RATE = 0.001
```

Number of classes to predict

```
class MLP_1(Module):
    def __init__(self, n_inputs):
        super(MLP_1, self).__init__()
        #1st Layer input
        self.hidden1 = Linear(n inputs, 24)
        kaiming uniform (self.hidden1.weight, nonlinearity='relu') # He initialization
        self.act1 = ReLU()
        #2nd Laver
        self.hidden2 = Linear(24, 12)
        kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        #3rd Layer and output
        self.hidden3 = Linear(12, 3) #one node for the predicted value output
        xavier_uniform_(self.hidden3.weight) #Glorot initialization
        #activation function
        self.act3 = Softmax(dim=1) # softmax since it is multiclass
    #input propagation sequence
    def forward(self, X):
        #input for the 1s layer
       X = self.hidden1(X)
       X = self.act1(X)
        #2nd Layer
       X = self.hidden2(X)
       X = self.act2(X)
       #3rd Layer and output
       X = self.hidden3(X)
       X = self.act3(X)
        return X
```

Building Model 1

- Feedforward network with fully interconnected layers
- Three *linear* layers
- Initialization using *Kaiming* and *Xavier*
- ReLu and Softmax as activation functions

```
EPOCHS = 200
LEARNING_RATE = 0.001
```

```
model = MLP_1(8)
```

- The dim argument is required unless your input tensor is a vector;
- If we do not put an activation function at the end, it is considered a *linear activation*.

```
class MLP 1(Module):
    def __init__(self, n_inputs):
        super(MLP_1, self).__init__()
        #1st layer input
        self.hidden1 = Linear(n inputs, 24)
        kaiming uniform (self.hidden1.weight, nonlinearity='relu') # He initialization
        self.act1 = ReLU()
        #2nd Laver
        self.hidden2 = Linear(24, 12)
        kaiming uniform (self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        #3rd Layer and output
        self.hidden3 = Linear(12, 3) #one node for the predicted value output
        xavier uniform (self.hidden3.weight) #Glorot initialization
        #activation function
        self.act3 = Softmax(dim=1) # softmax since it is multiclass
    #input propagation sequence
    def forward(self, X):
        #input for the 1s layer
       X = self.hidden1(X)
       X = self.act1(X)
        #2nd Layer
       X = self.hidden2(X)
       X = self.act2(X)
        #3rd Layer and output
       X = self.hidden3(X)
       X = self.act3(X)
        return X
```

```
print(summary(model, input_size=(len(train_dl.dataset), 8), verbose=0))
model.to(device)
______
Laver (type:depth-idx)
                            Output Shape
MLP 1
                            [713, 3]
⊢Linear: 1-1
                            [713, 24]
⊢ReLU: 1-2
                            [713, 24]
⊢Linear: 1-3
                            [713, 12]
                                              300
⊢ReLU: 1-4
                            [713, 12]
⊢Linear: 1-5
                            [713, 3]
⊢Softmax: 1-6
                            [713, 3]
______
Total params: 555
Trainable params: 555
Non-trainable params: 0
Total mult-adds (Units.MEGABYTES): 0.40
Input size (MB): 0.02
Forward/backward pass size (MB): 0.22
Params size (MB): 0.00
Estimated Total Size (MB): 0.25
______
MLP_1(
 (hidden1): Linear(in features=8, out features=24, bias=True)
 (act1): ReLU()
 (hidden2): Linear(in_features=24, out_features=12, bias=True)
 (act2): ReLU()
 (hidden3): Linear(in features=12, out features=3, bias=True)
 (act3): Softmax(dim=1)
```

To train the model we will use other torch libraries:

- torch.nn.CrossEntropyLoss(weight=None, size average=None, ignore index=-100, reduce=None, reduction='mean', label_smoothing=0.0) computes Cross Entropy Loss function. It is useful when training a classification problem with C classes because it accepts ground truth labels directly as integers in [0, no. of classes]. There is no need to one-hot encode the labels. This is particularly useful when you have an unbalanced training set
- torch.optim.SGD(params, lr=0.001, momentum=0, dampening=0, weight_decay=0, nesterov=False,
 *, maximize=False, foreach=None, differentiable=False, fused=None) implements Stochastic
 Gradient Descent as optimizer
- torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False, *, foreach=None, maximize=False, capturable=False, differentiable=False, fused=None) implements Adam algorithm as optimizer

Train the model

```
def train_model(train_dl, val_dl, model):
   #to visualize the training process
   liveloss = PlotLosses()
   #define loss function and optimization
   criterion = CrossEntropyLoss() #sparse_categorical_crossentropy
   optimizer = SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9) #stochastic gradient descent
   #iterate the epochs
   for epoch in range(EPOCHS):
       logs = {} #
       #train phase
       model.train()
       running_loss = 0.0
       running corrects = 0.0
       for inputs, labels in train dl: #backpropagation
           inputs = inputs.to(device)
           labels = labels.to(device)
           #calculate model output
           outputs = model(inputs)
           #calculate the loss
           loss = criterion(outputs, labels)
```

```
#iterate the epochs
for epoch in range(EPOCHS):
    logs = {} #
    #train phase
    model.train()
    running loss = 0.0
    running corrects = 0.0
    for inputs, labels in train dl: #backpropagation
       inputs = inputs.to(device)
       labels = labels.to(device)
        #calculate model output
        outputs = model(inputs)
        #calculate the loss
       loss = criterion(outputs, labels)
        optimizer.zero_grad() #sets the gradients of all parameters to zero
       loss.backward()
        #update model weights
        optimizer.step()
        running_loss += loss.detach() * inputs.size(0)
        _, preds = torch.max(outputs, 1) # Get predictions from the maximum value
        running_corrects += torch.sum(preds == labels.data)
    epoch loss = running loss / len(train dl.dataset)
    epoch_acc = running_corrects.float() / len(train_dl.dataset)
    logs['loss'] = epoch loss.item()
    logs['accuracy'] = epoch_acc.item()
```

```
loss.backward()
           #update model weights
           optimizer.step()
           running loss += loss.detach() * inputs.size(0)
           _, preds = torch.max(outputs, 1) # Get predictions from the maximum value
           running corrects += torch.sum(preds == labels.data)
       epoch loss = running loss / len(train dl.dataset)
       epoch acc = running corrects.float() / len(train dl.dataset)
       logs['loss'] = epoch loss.item()
                                                                          Fraction of the data to be used as validation data. The model will set
       logs['accuracy'] = epoch acc.item()
                                                                          apart this fraction of the data, will not train on it, and will evaluate the
        #Validation phase
        model.eval()
                                                                          loss and the model metrics on this data at the end of each epoch.
        running_loss = 0.0
        running corrects = 0.0
        for inputs, labels in val dl:
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            running loss += loss.detach() * inputs.size(0)
            _, preds = torch.max(outputs, 1) # Get predictions from the maximum value
            running_corrects += torch.sum(preds == labels.data)
        epoch loss = running loss / len(val dl.dataset)
        epoch_acc = running_corrects.float() / len(val_dl.dataset)
        logs['val loss'] = epoch loss.item()
        logs['val_accuracy'] = epoch_acc.item()
liveloss.update(logs)
        liveloss.send()
train_model(train_dl, test_dl, model)
```

Live training results

accur	curacy				
	training	(min:	0.566, max:	0.678, cur:	0.675)
	validation	(min:	0.558, max:	0.687, cur:	0.680)
Loss					
	training	(min:	0.875, max:	0.976, cur:	0.875)
	validation	(min:	0.863, max:	0.995, cur:	0.864)

Evaluate the model

```
def evaluate model(test dl, model):
   predictions = list()
   actual values = list()
   for i, (inputs, labels) in enumerate(test dl):
       #evaluate the model with test cases
                                                                                      plt.vlabel('True label')
       yprev = model(inputs)
       #remove numpy array
       yprev = yprev.detach().numpy()
                                                                                     plt.show()
       actual = labels.numpy()
       #convert to Labels' class
                                                                                  predictions, actual values = evaluate model(test dl, model)
       yprev = np.argmax(yprev, axis=1)
       #reshape for stacking
       actual = actual.reshape((len(actual), 1))
       yprev = yprev.reshape((len(yprev), 1))
       #save
       predictions.append(yprev)
       actual values.append(actual)
       break
   predictions, actual_values = np.vstack(predictions), np.vstack(actual_values)
   return predictions, actual values
```

```
def display_confusion_matrix(cm):
    plt.figure(figsize = (16,8))
    sns.heatmap(cm,annot=True,xticklabels=['Class 1', 'Class 2', 'Class 3'],
               yticklabels=['Class 1', 'Class 2', 'Class 3'],
               annot_kws={"size": 12}, fmt='g', linewidths=.5)
   plt.xlabel('Predicted label')
```

33

```
success = 0
                                            acc = accuracy_score(actual_values, predictions)
failure = 0
                                            print(f'Accuracy: {acc:0.3f}\n')
for r,p in zip(actual values, predictions):
                                            print(f'success:{success} failure:{failure}')
    print(f'real:{r+1} prediction:{p+1}')
                                            Accuracy: 0.680
    if r==p: success+=1
    else: failure+=1
                                            success:200 failure:94
real:[3] prediction:[3]
                                            print(classification report(actual values, predictions)
real:[3] prediction:[3]
                                            cm = confusion matrix(actual values, predictions)
real:[3] prediction:[3]
real:[3] prediction:[3]
                                            print(cm)
real:[1] prediction:[1]
                                            display confusion matrix(cm)
real:[2] prediction:[3]
                                                          precision
                                                                       recall f1-score
                                                                                          support
real:[1] prediction:[1]
                                                       0
                                                               0.67
                                                                          0.76
                                                                                    0.71
                                                                                                79
                                                                                    0.00
                                                                                                60
                                                       1
                                                               0.00
                                                                         0.00
                                                               0.68
                                                       2
                                                                          0.90
                                                                                    0.78
                                                                                               155
                                                                                    0.68
                                                accuracy
                                                                                               294
                                                               0.45
                                                                          0.55
                                                                                    0.50
                                               macro avg
```

weighted avg 0.54 0.68

[[60 0 19]
 [14 0 46]
 [15 0 140]]

0.60

Apply the model: make a prediction for one case

```
def predict(row, model):
    #convert row to tensor
    row = Tensor([row])
    #make a prediction
    yprev = model(row)
    #remove the numpy array
    yprev = yprev.detach().numpy()
    return yprev

row = [5, 0, 1, 34, 0, 1, 8, 1]
    yprev = predict(row, model)
    print('Predicted: %s (class=%d)' % (yprev, np.argmax(yprev)+1))

Predicted: [[0.96104145 0.02388389 0.01507465]] (class=1)
```

Model 1: 200 epochs, LR: 0.001, 3 layers – accuracy: 0.680

What can be modified to improve this model?

0.864)

accura	асу						
	training	(min:	0.566, max:	0.678, cur:	0.675)		
	validation	(min:	0.558, max:	0.687, cur:	0.680)		
Loss							
	training	(min:	0.875, max:	0.976, cur:	0.875)		

validation

support	f1-score	recall	precision	
79	0.71	0.76	0.67	0
60	0.00	0.00	0.00	1
155	0.78	0.90	0.68	2
294	0.68			accuracy
294	0.50	0.55	0.45	macro avg
294	0.60	0.68	0.54	weighted avg

[[60 0 19] [14 0 46] [15 0 140]

Let's create another model and use other hyperparameters.

Model 2: 200 epochs, ↑ LR: 0.01, ↑ 4 layers

But first, let's normalize the data. <u>Data scaling or normalization</u> is a process of making model data in a standard format so that the training is improved, accurate and faster. We will work on features *Age* and *Fare*:

```
df = pd.read_csv("titanic_ds.csv")
min age = df['Age'].min()
max age = df['Age'].max()
df['Age'] = (df['Age'] - min age)/(max age - min age)
df['Age'].describe()
         891.000000
count
           0.363679
mean
std
           0.163605
min
           0.000000
25%
           0.271174
50%
           0.346569
75%
           0.434531
max
           1.000000
Name: Age. dtvpe: float64
```

```
min_fare = df['Fare'].min()
max fare = df['Fare'].max()
df['Fare'] = (df['Fare'] - min_fare)/(max_fare - min_fare)
df['Fare'].describe()
count
         891.000000
           0.062858
mean
std
           0.096995
min
           0.000000
           0.015440
25%
50%
           0.028213
75%
           0.060508
           1.000000
max
Name: Fare, dtype: float64
```

df	df.head()								
	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	1	0.271174	1	0	0.014151	2
1	2	1	1	0	0.472229	1	0	0.139136	0
2	3	1	3	0	0.321438	0	0	0.015469	2
3	4	1	1	0	0.434531	1	0	0.103644	2
4	5	0	3	1	0.434531	0	0	0.015713	2

Let's save the new data:

```
t = pd.DataFrame(df)
filename = "titanic_scaled.csv"
t.to_csv(filename, index=False, encoding='utf-8')
```

And redefine X and y:

```
df_X = t.drop('Pclass', axis=1)
df_X.head()
```

	PassengerId	Survived	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	1	0.271174	1	0	0.014151	2
1	2	1	0	0.472229	1	0	0.139136	0
2	3	1	0	0.321438	0	0	0.015469	2
3	4	1	0	0.434531	1	0	0.103644	2
4	5	0	1	0.434531	0	0	0.015713	2

```
t_X = pd.DataFrame(df_X)
filename = "titanic_X_scaled.csv"
t_X.to_csv(filename, index=False, encoding='utf-8')
```

```
df_y = t['Pclass']
df_y.head()

0    3
1    1
2    3
3    1
4    3
Name: Pclass, dtype: int64

t_y = pd.DataFrame(df_y)
filename = "titanic_y_scaled.csv"
t y.to csv(filename, index=False, encoding='utf-8')
```

Data preparation

```
class CSVDataset(Dataset):
    def __init__(self, path):
       df_X = pd.read_csv("titanic_X_scaled.csv", header=0)
       df_y = pd.read_csv("titanic_y_scaled.csv", header=0)
       self.X = df X.values
       self.y = df y.values[:, 0]-1
       self.X = self.X.astype('float32')
       self.y = torch.tensor(self.y, dtype=torch.long, device=device)
   def __len__(self):
       return len(self.X)
   def __getitem__(self, idx):
       return [self.X[idx], self.y[idx]]
   def get splits(self, n test):
       test size = round(n test * len(self.X))
       train size = len(self.X) - test size
       return random split(self, [train size, test size])
def prepare_data(df, n_test):
   dataset = CSVDataset(df)
   train, test = dataset.get_splits(n_test)
   train_dl = DataLoader(train, batch_size=len(train), shuffle=True)
   test_dl = DataLoader(test, batch_size=len(train), shuffle=True)
   return train_dl, test_dl
```

```
train_dl, test_dl = prepare_data(df, 0.33)
```

Data balance

```
Train size:597
Test size:294
Shape tensor train data batch - input: torch.Size([597, 8]), output: torch.Size([597])
Shape tensor test data batch - input: torch.Size([294, 8]), output: torch.Size([294])

train data: 597
Class 1: 149
Class 2: 118
Class 3: 330
Values' mean (train): 1.3031825795644891
test data: 294
Class 1: 67
Class 2: 66
Class 3: 161
Values' mean (test): 1.3197278911564625
```

Data balance

Building **Model 2**

```
EPOCHS = 200
LEARNING_RATE = 0.01
```

model = MLP 2(8)

```
class MLP_2(Module):
   def __init__(self, n_inputs):
       super(MLP 2, self). init ()
       #1st layer input
       self.hidden1 = Linear(n inputs, 20)
       kaiming uniform (self.hidden1.weight, nonlinearity='relu')
       self.act1 = ReLU()
       #2nd Laver
       self.hidden2 = Linear(20, 32)
       kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
       self.act2 = ReLU()
       #3rd Layer
       self.hidden3 = Linear(32, 12)
       kaiming uniform (self.hidden3.weight, nonlinearity='relu')
       self.act3 = ReLU()
       #4th layer and output
       self.hidden4 = Linear(12, 3)
       xavier uniform (self.hidden4.weight)
       self.act4 = Softmax(dim=1)
   def forward(self, X):
       X = self.hidden1(X)
       X = self.act1(X)
       X = self.hidden2(X)
       X = self.act2(X)
       X = self.hidden3(X)
       X = self.act3(X)
       X = self.hidden4(X)
       X = self.act4(X)
       return X
```

Layer (type:depth-idx)	Output Shape	Param #			
		=======			
MLP_2	[597, 3]				
⊢Linear: 1-1	[597, 20]	180			
ReLU: 1-2	[597, 20]				
⊢Linear: 1-3	[597, 32]	672			
ReLU: 1-4	[597, 32]				
⊢Linear: 1-5	[597, 12]	396			
ReLU: 1-6	[597, 12]				
Linear: 1-7	[597, 3]	39			
Softmax: 1-8	[597, 3]				
		========			
Total params: 1,287 Trainable params: 1,287 Non-trainable params: 0					
Total mult-adds (Units.MEGABYTES): 0.77					
		=======			
Input size (MB): 0.02					
Forward/backward pass size (MB): 0.32					
Params size (MB): 0.01					
Estimated Total Size (MB): 0.34					
		=======			
MLP_2((hidden1): Linear(in_features=8, out_features=20, bias=True) (act1): ReLU() (hidden2): Linear(in_features=20, out_features=32, bias=True) (act2): ReLU()					
<pre>(hidden3): Linear(in_features=32, out (act3): ReLU()</pre>	_ reacures-12, Dias-True)				
<pre>(acts). Relo() (hidden4): Linear(in_features=12, out</pre>	features-3 hips-True				
(act4): Softmax(dim=1)	_ reacures=5, bras=rrue)				
(acc+). Sol cliax(util=1)					
,					

44

Live training results

accuracy training (min: 0.198, max: 0.250, cur: 0.198)(min: validation 0.224, max: 0.228, cur: 0.224)Loss training (min: 1.281, max: 1.353, cur: 1.353) validation (min: 1.299, max: 1.326, cur: 1.326)

Evaluate the model

Accuracy: 0.224

success:66 failure:228

	precision	recall	f1-score	support
0	0.00	0.00	0.00	67
1	0.22	1.00	0.37	66
2	0.00	0.00	0.00	161
accuracy			0.22	294
macro avg	0.07	0.33	0.12	294
weighted avg	0.05	0.22	0.08	294

Model 2: 200 epochs, ↑ LR: 0.01, ↑ 4 layers – accuracy: 0.224 ↓

	precision	recall	f1-score	support
0	0.00	0.00	0.00	67
1	0.22	1.00	0.37	66
2	0.00	0.00	0.00	161
accuracy			0.22	294
macro avg	0.07	0.33	0.12	294
weighted avg	0.05	0.22	0.08	294

Let's create another model.

Model 3: ↑ 250 epochs, ↓ LR: 0.005, ↑ 6 layers

Data preparation

```
class CSVDataset():
    def init (self, ):
       df X = pd.read csv("titanic X scaled.csv", header=0)
        df_y = pd.read_csv("titanic_y_scaled.csv", header=0)
       self.X = df X.values
       self.v = df v.values[:, 0]-1
       self.X = self.X.astype('float32')
       self.y = torch.tensor(self.y, dtype=torch.long, device=device)
    def len (self):
       return len(self.X)
    def getitem (self, idx):
        return [self.X[idx], self.y[idx]]
    def get splits(self, n test):
       test size = round(n test * len(self.X))
       train_size = len(self.X) - test_size
        return random_split(self, [train_size, test_size])
def prepare_data(n_test):
    dataset = CSVDataset()
   train, test = dataset.get splits(n test)
   train dl = DataLoader(train, batch size=len(train), shuffle=True)
   test_dl = DataLoader(test, batch_size=len(train), shuffle=True)
   return train_dl, test_dl
```

train_dl, test_dl = prepare_data(0.33)

Building **Model**

```
EPOCHS = 250
LEARNING_RATE = 0.005
model = MLP 3(8)
```

```
class MLP 3(Module):
    def __init__(self, n_inputs):
        super(MLP_3, self).__init__()
        #1st layer input
        self.hidden1 = Linear(n inputs, 24)
        kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
        self.act1 = ReLU()
        #2nd Laver
        self.hidden2 = Linear(24, 40)
        kaiming uniform (self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        #3rd Layer
        self.hidden3 = Linear(40, 32)
        kaiming_uniform_(self.hidden3.weight, nonlinearity='relu')
        self.act3 = ReLU()
        #4rd Layer
        self.hidden4 = Linear(32, 16)
        kaiming_uniform_(self.hidden4.weight, nonlinearity='relu')
        self.act4 = ReLU()
        #5th Layer
        self.hidden5 = Linear(16, 8)
        kaiming uniform (self.hidden5.weight, nonlinearity='relu')
        self.act5 = ReLU()
        #6th layer and output
        self.hidden6 = Linear(8, 3)
        xavier_uniform_(self.hidden6.weight)
        self.act6 = Softmax(dim=1)
```

```
def forward(self, X):
    X = self.hidden1(X)
    X = self.act1(X)
    X = self.hidden2(X)
    X = self.act2(X)
    X = self.act3(X)
    X = self.act3(X)
    X = self.hidden4(X)
    X = self.hidden5(X)
    X = self.hidden5(X)
    X = self.act5(X)
    X = self.hidden6(X)
    X = self.act6(X)
    return X
```

Layer (type:depth-idx)	Output Shape	Param #
MLP_3	[597, 3]	
⊢Linear: 1-1	[597, 24]	216
├─ReLU: 1-2	[597, 24]	
⊢Linear: 1-3	[597, 40]	1,000
├─ReLU: 1-4	[597, 40]	
├─Linear: 1-5	[597, 32]	1,312
├─ReLU: 1-6	[597, 32]	
├─Linear: 1-7	[597, 16]	528
├─ReLU: 1-8	[597, 16]	
⊢Linear: 1-9	[597, 8]	136
├─ReLU: 1-10	[597, 8]	
⊢Linear: 1-11	[597, 3]	27
├─Softmax: 1-12	[597, 3]	
=======================================		=======
Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): 1.92 ====================================		
MID 2/		
MLP_3((hidden1): Linear(in_features=8, out_ (act1): ReLU() (hidden2): Linear(in_features=24, out_ (act2): ReLU() (hidden3): Linear(in_features=40, out_ (act3): ReLU() (hidden4): Linear(in_features=32, out_ (act4): ReLU() (hidden5): Linear(in_features=16, out_ (act5): ReLU() (hidden6): Linear(in_features=8, out_ (act5): ReLU()	_features=40, bias=True) _features=32, bias=True) _features=16, bias=True) _features=8, bias=True)	

Evaluate the model

Accuracy: 0.568

success:167 failure:127

	precision	recall	f1-score	support
0	0.00	0.00	0.00	63
1	0.00	0.00	0.00	64
2	0.57	1.00	0.72	167
accuracy			0.57	294
macro avg	0.19	0.33	0.24	294
weighted avg	0.32	0.57	0.41	294

Model 3: ↑ 250 epochs, ↓ LR: 0.005, ↑ 6 layers – accuracy: 0.568 ↑

support	f1-score	recall	precision	
63	0.00	0.00	0.00	0
64	0.00	0.00	0.00	1
167	0.72	1.00	0.57	2
294	0.57			accuracy
294	0.24	0.33	0.19	macro avg
294	0.41	0.57	0.32	weighted avg

Let's create another model.

Model 4: 250 epochs, LR: 0.005, 6 layers – Adam as optimizer

```
EPOCHS = 250
LEARNING_RATE = 0.005

model = MLP 4(8)
```

```
class MLP_4(Module):
   def init (self, n inputs):
       super(MLP 4, self). init ()
       #1st layer input
       self.hidden1 = Linear(n_inputs, 32)
       kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
       self.act1 = ReLU()
       #2nd Layer
       self.hidden2 = Linear(32, 40)
       kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
       self.act2 = ReLU()
       #3rd Layer
       self.hidden3 = Linear(40, 32)
       kaiming_uniform_(self.hidden3.weight, nonlinearity='relu')
       self.act3 = ReLU()
       #4rd Laver
       self.hidden4 = Linear(32, 16)
       kaiming uniform (self.hidden4.weight, nonlinearity='relu')
       self.act4 = ReLU()
       #5th Layer
       self.hidden5 = Linear(16, 8)
       kaiming uniform (self.hidden5.weight, nonlinearity='relu')
       self.act5 = ReLU()
       #6th Layer and output
       self.hidden6 = Linear(8, 3)
       xavier_uniform_(self.hidden6.weight)
       self.act6 = Softmax(dim=1)
```

```
def forward(self, X):
    X = self.hidden1(X)
    X = self.act1(X)
    X = self.hidden2(X)
    X = self.hidden3(X)
    X = self.hidden3(X)
    X = self.act3(X)
    X = self.act4(X)
    X = self.act4(X)
    X = self.hidden5(X)
    X = self.hidden5(X)
    X = self.act5(X)
    X = self.act6(X)
    return X
```

Layer (type:depth-idx)	Output Shape	Param :
======================================	======================================	
HLr_4 ├Linear: 1-1	[597, 32]	288
ReLU: 1-2	[597, 32]	200
Linear: 1-3	[597, 32]	1,320
ReLU: 1-4	[597, 40]	1,520
Linear: 1-5	[597, 32]	1,312
ReLU: 1-6	[597, 32]	
⊢Linear: 1-7	[597, 16]	528
ReLU: 1-8	[597, 16]	
Linear: 1-9	[597, 10]	136
ReLU: 1-10	[597, 8]	
Linear: 1-11	[597, 3]	27
Softmax: 1-12	[597, 3]	
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ==========		
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ====================================		
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ====================================		
Input size (MB): 0.02 Forward/backward pass size (MB): 0 Params size (MB): 0.01 Estimated Total Size (MB): 0.66		
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ===================================	.63	
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ====================================	.63 .e====================================	======================================
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ====================================	.63 out_features=32, bias=Tr , out_features=40, bias=T	======================================
Trainable params: 3,611 Non-trainable params: 0 Total mult-adds (Units.MEGABYTES): ===================================	out_features=32, bias=Tr , out_features=40, bias=T , out_features=40, bias=T	======================================

55

Loss

validation

(min:

1.007, max:

1.290, cur:

1.007)

Evaluate the model

Accuracy: 0.544

success:160 failure:134

	precision	recall	f1-score	support
0	0.00	0.00	0.00	77
1	0.00	0.00	0.00	57
2	0.54	1.00	0.70	160
accuracy			0.54	294
macro avg	0.18	0.33	0.23	294
weighted avg	0.30	0.54	0.38	294

Model 4: 250 epochs, LR: 0.005, 6 layers, Adam – accuracy: 0.544 ↓

	precision	recall	f1-score	support
0	0.00	0.00	0.00	77
1	0.00	0.00	0.00	57
2	0.54	1.00	0.70	160
accuracy			0.54	294
macro avg	0.18	0.33	0.23	294
weighted avg	0.30	0.54	0.38	294

- **Model 1:** 200 epochs, LR: 0.001, 3 layers accuracy: 0.680
- **Model 2:** 200 epochs, LR: 0.01, 4 layers accuracy: 0.224
- **Model 3:** 250 epochs, LR: 0.005, 6 layers accuracy: 0.568
- **Model 4:** 250 epochs, LR: 0.005, 6 layers, Adam accuracy: 0.544

Which model performed better?
What settings can be modified to improve the results?

Hands On