Visión Computacional para imágenes y video

Módulo 1

Tema 1.2 Ecualización por histogramas

Gilberto Ochoa Ruiz, PhD Associate Professor Researcher in Computer Vision

Computer Science Dept.
Advanced AI Research Group
gilberto.ochoa@tec.mx

Representación de imágenes

"It makes all the difference whether one sees darkness through the light or brightness through the shadows"

David Lindsay (Scottish Novelist)

Representación de imágenes

Representación de imágenes

La mayoría de las operaciones de de mejoramiento de imágenes en el domino especial se puede reducir a la forma

$$g(x, y) = T[f(x, y)]$$
 donde

 $f(x, y) \square$ imagen de entrada

 $g(x, y) \square$ imagen de salida

T (x, y) \square operador matematico

Puede ser por punto o una convolución

Representación de imágenes

- Procesar pixeles de forma independiente de los otros
- Operadores generalmente de tipo aritmético sobre pixeles
- P.E., usando para corregir brillo y contraste de forma remota

Corrección de brillo

Corrección de contraste

Pixel-wise image enhancement

Corrección de brillo

- El brillo es la intensidad de un pixel, para cambiarlo + b
- Para cada pixel en f (x,y), g(x,y) = f (x, y) + b
- Si b > 0 □ imagen mas brillosa, si b < 0, imagen más oscura

Pixel-wise image enhancement

• Contraste □ nivel de detalle en escena, para cambiarlo * b

Corrección de contraste

- Para cada pixel en f (x,y), g(x,y) = a* f (x, y)
- Si b > 0 □ mas contraste , si b < 0, menos contraste y detalles

Pixel-wise image enhancement

• Efectos no deseados pueden ocurrir

overflow/underflow

Corrección de brillo y contraste

Valores fuera de rango por operaciones en los limites

Correcto Sobrexpuesto Subexpuesto Muy alto Muy bajo

Corrección de brillo

Corrección de contraste

Mejoramiento por Histogramas

Las de operaciones vistas antes actúan sobre la totalidad de la imagen

Sin tomar en cuenta la "densidad" de intensidades de los pixeles

Mejoramiento por Histogramas

Esta "densidad", codificada en histogramas, permite un mejor control de las transformaciones de brillo y contraste, como veremos a continuación

Mejoramiento por Histogramas

Trabajando con manipulación de histogramas, podemos separar las intensidades en "bins", y procesar de forma mas granular las imágenes

Mejoramiento por Histogramas

Mejoramiento por Histogramas

Mejoramiento por Histogramas

Mejoramiento por Histogramas

Mejoramiento por Histogramas

Ecualización de histogramas

Histograma: $h(r_k) = n_k$

Donde

r, rk es el k-ésimo valor de intensidad

n_k nk el número de pixeles en la imagen con **intensidad** r_k

Histograma normalizado:
$$p(r_k) = \frac{n_k}{MN}$$

 n_k es el numero de pixeles en la imagen con de M X N con intensidad r_k

Mejoramiento por Histogramas

Consideremos por un momento valores de intensidad continuos y que la variable r denota las intensidades de la imagen a ser procesada, en el rango

$$0 \le r \le L-1$$

Donde r = 0 representa un pixel negro y r = L -1 un pixel blanco

Para que r satisfaga estas condiciones, nos enfocaremos en transformaciones (mapeos de intensidades) de la forma

$$s = T(r)$$
 $0 \le r \le L - 1$

Que produzca una intensidad de salida s para cada pixel en la imagen de salida con intensidad r

Mejoramiento por Histogramas

Mejoramiento por Histogramas

a) T(r) es una función monotónicamente creciente de forma estricta en el intervalo $0 \le r \le L-1$

b)
$$0 \le T(r) \le L - 1$$
 para $0 \le r \le L - 1$

Además, T (r) debe ser continua y diferenciable

Los valores de los pixeles pueden ser vists como variables aleatorias en el intervalo

$$0 \le r \le L - 1$$

Y ser descritas por funciones de densidad de probabilidades (PDF)

$$p_s(s)ds = p_r(r)dr$$

Mejoramiento por Histogramas

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr} \left[\int_0^r p_r(w) dw \right]$$

$$=(L-1)p_r(r)$$

$$p_{s}(s) = \frac{p_{r}(r)dr}{ds} = \frac{p_{r}(r)}{ds} = \frac{p_{r}(r)}{ds} = \frac{p_{r}(r)}{((L-1)p_{r}(r))} = \frac{1}{L-1}$$

Mejoramiento por Histogramas

Podemos reconocer simplemente por inspección que $p_s(s) = 1/(L-1)$

tiene la forma de una PDF uniforme. Esto es, hemos demostrado que llevando a cabo la transformación de intensidad

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$
 produce una PDF uniforme a partir de. $p_r(s)$

Mejoramiento por Histogramas

En este ejemplo podemos ver una **imagen con muy poco contraste**, la cual cuál fue corregida haciendo uso de ecualización de histogramas

Mejoramiento por Histogramas

En este ejemplo podemos ver una **imagen con muy poco contraste**, la cual cuál fue corregida haciendo uso de ecualización de histogramas

Mejoramiento por Histogramas

En este ejemplo podemos ver una imagen con muy poco contraste, la cual cuál fue corregida haciendo uso de ecualización de histogramas

Mejoramiento por Histogramas

Mejoramiento por Histogramas

Supongamos que tenemos una **imagen a 3-bit (L=8) de 64 × 64 pixeles** (MN = 4096), que tiene una PDF de intensidades como la de la tabla

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Obtenga la función de traformación por Ec. De Hist. y dé $p_s(s_k)$ para cada s_k .

Mejoramiento por Histogramas

$$s_0 = T(r_0) = 7\sum_{j=0}^{0} p_r(r_j) = 7 \times 0.19 = 1.33 \qquad \longrightarrow 1$$

$$s_1 = T(r_1) = 7\sum_{j=0}^{1} p_r(r_j) = 7 \times (0.19 + 0.25) = 3.08 \qquad \longrightarrow 3$$

$$s_2 = 4.55 \rightarrow 5$$

$$s_3 = 5.67 \rightarrow 6$$

$$s_4 = 6.23 \rightarrow 6 \qquad s_5 = 6.65 \rightarrow 7$$

$$s_5 = 6.65 \rightarrow 7$$

$$s_6 = 6.86 \rightarrow 7$$
 $s_7 = 7.00 \rightarrow 7$

$$s_7 = 7.00 \rightarrow 7$$

Mejoramiento por Histogramas

Histograma de entrada

Histograma de salida

Mejoramiento por Histogramas

Histograma de una imagen obscura mejorada por E.H.

Histograma de una imagen **brillante** mejorada por E.H.

Mejoramiento por Histogramas

Histograma de una imagen con poco contraste mejorada por E.H.

Histograma de una imagen con buen contraste mejorada por E.H.

Mejoramiento por Histogramas

Los histogramas fueron obtenidos usando funciones de transformación obtenidas con

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j)$$

$$= \frac{(L - 1)}{MN} \sum_{j=0}^k n_j \quad k = 0, 1, 2, \dots, L - 1$$

Cada función de transformación produce un histograma, nótese que la F.T. (4) es casi lineal

Mejora y restauración de imágenes digitales Mejoramiento por Histogramas

- * La ecualización de histogramas automáticamente determina una <u>función de transformación</u> que busca producir una imagen con un **histograma uniforme**
- * Sin embargo, existen algunas aplicaciones en las cuales basarse en un histograma uniforme no es el mejor acercamiento
- * En particular, es útil algunas veces poder especificar la forma del histograma que deseamos que la imagen procesada contenga
- * El método usado para generar una imagen con un histograma predeterminado se conoce como *histogram* matching o *histogram specification*.

Mejoramiento por Histogramas

Dejemos que s sea una variable aleatoria con la propiedad

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

Supongamos además que definimos una variable z con la propiedad

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

donde t es una variable de integración "dummy"". Sigue, a partir de estas dos ecuaciones que G(z) = T(z) y por lo tanto, que z debe satisfacer la condición

$$z = G^{-1}[T(r)] = G^{-1}(s)$$

T(r) puede ser obtenida de (1) cuando $p_r(r)$ haya sido estimada de la imagen de entrada. De forma similar, G(z) puede ser obtenida (2) porque $p_z(z)$ es dada

Mejoramiento por Histogramas

Estas expresiones muestran que una imagen cuyos niveles de intensidad tienen una PDF especificada puede ser obtenida a partir de imagen dada usando el procedimiento siguiente

- 1. Obtener $p_r(r)$ de una imagen de entrada y usar eq (1) para determinar las s.
- 2. Usar la PDF especificada (2) para obtener la función de transf. G(z).
- 3. Obtener la inversa de $z = G^{-1}(s)$, pues z se obtiene de s, este proceso es un mapeo de s a z, donde los últimos son los valores deseados
- **4**. Obtener la imagen de salida ecualizando la imagen de entrada con Eq. (1), los valores del los pixeles son las s. Para cada s, realizar $z = G^{-1}(s)$, para obtener el pixel correspondiente en la imagen de salida

Mejora y restauración de imágenes digitales Mejoramiento por Histogramas

Asumiendo valores de intensidad continuos, supongamos que una imagen tiene la PDF siguiente

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2}, & \text{for } 0 \le r \le L-1\\ 0, & \text{otherwise} \end{cases}$$

Encontrar la función de transformación que producirá una imagen cuya PDF es

$$p_z(z) = \begin{cases} \frac{3z^2}{(L-1)^3}, & \text{for } 0 \le z \le (L-1)\\ 0, & \text{otherwise} \end{cases}$$

Mejora y restauración de imágenes digitales Mejoramiento por Histogramas

Encontrar la transformación por E.H,. para la imagen de entrada

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = (L-1) \int_0^r \frac{2w}{(L-1)^2} dw = \frac{r^2}{L-1}$$

Encontrar la transformación por E.H. para el histograma especificado

$$G(z) = (L-1) \int_0^z p_z(t) dt = (L-1) \int_0^z \frac{3t^2}{(L-1)^3} dt = \frac{z^3}{(L-1)^2} = s$$

La función de transformación esta dada por

$$z = \left[(L-1)^2 s \right]^{1/3} = \left[(L-1)^2 \frac{r^2}{L-1} \right]^{1/3} = \left[(L-1)r^2 \right]^{1/3}$$

Mejoramiento por Histogramas

Obtener $p_r(r_j)$ de la imagen de entrada, así como los valores de s_k , redondear el valor a un **entero en el rango [0, L-1]**.

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

Usar la PDF especificada, obtener la función de transformación G(z), redondear el valor a un entero en el rango [0, L-1].

$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i) = s_k$$

Realizar el mapeo de s_k a z_q

$$Z_q = G^{-1}(S_k)$$

Mejoramiento por Histogramas

Supongamos que tenemos una imagen de 3bit (L=8) de 64×64 pixeles (MN = 4096), con una PDF de intensidades mostrada en la table izquierda.

Obtenga la función de transformación y la imagen de salida con el histograma especificado en la table de la derecha

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02
200		

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Mejoramiento por Histogramas

Obtenemos los valores del histograma ecualizado (ej. anterior)

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7, s_5 = 7, s_6 = 7, s_7 = 7.$$

Calculamos todos los valores de la función de transformación G,

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00 \qquad \to 0$$

$$G(z_1) = 0.00 \qquad \to 0 \qquad G(z_2) = 0.00 \qquad \to 0$$

$$G(z_3) = 1.05 \qquad \to 1 \qquad G(z_4) = 2.45 \qquad \to 2$$

$$G(z_5) = 4.55 \qquad \to 5 \qquad G(z_6) = 5.95 \qquad \to 6$$

$$G(z_7) = 7.00 \qquad \to 7$$

Mejoramiento por Histogramas

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7, s_5 = 7, s_6 = 7, s_7 = 7.$$

Mapeo de s_k a z_q

s_k	\rightarrow	z_q
1	\rightarrow	3
3	\rightarrow	4
5	\rightarrow	5
6	\rightarrow	6
7	\rightarrow	7

1.	_	7
r_k	_	\mathcal{L}_q

$$0 \rightarrow 3$$

$$1 \rightarrow 4$$

$$2 \rightarrow 5$$

$$3 \rightarrow 6$$

$$4 \rightarrow 7$$

$$5 \rightarrow 7$$

$$6 \rightarrow 7$$

$$7 \rightarrow 7$$

 $G(z_q)$

6 -

Mejoramiento por Histogramas

Histograma de la imagen de 3 bits

Transformación

5

2

Histograma especificado

para transformación

Histograma

Resultante de la transformación

obtenida del

histograma

especificado

Mejoramiento por Histogramas

En este ejemplo podemos ver una **imagen con muy oscura** de la luna, en esta caso, un simple cambio de brillo y contraste no funcionaria

Mejoramiento por Histogramas

a) Transformación obtenida de la ecualización de H convencional

b) Histograma resultante de la transformación

c) Resultado imagen de Bajo contraste "deslavada"

Mejoramiento por Histogramas

Para corregir el problema, podemos especificar un histograma con una transición más suave en la región de pixeles oscuros

Mejoramiento por Histogramas

a) Transformación obtenida de la ecualización del

hist. especificado y su inversa

b) Histograma

Resultante de aplicar la función De mapeo (2)

c) Resultado

Imagen con mejor distribución de niveles de gris

Mejoramiento por Histogramas

The procedure is to define a neighborhood and move its center from pixel to pixel.

At each location, the histogram of the points in the neighborhood is computed and either a histogram equalization or histogram specification transformation function is obtained

Imagen original

Histograma global

Histogramas locales

Mejoramiento por Histogramas

Imagen original

Histograma global

Histogramas locales

Mejoramiento por Histogramas

Sliding windows

Una ventana de cierto tamaño es deslizada a la largo de la imagen histograma (y mapping) p/pixel

Subdividir imagen en regiones, calcular Histograma y mapping, mitigar efecto de "blocking" usando smooth blending

Mejoramiento por Histogramas

Imagen original Perico

Histograma Global Perico

Histograma Local
Perico
Tiles:8 x 8

Histograma Local
Perico
Tiles: 16 x 16

Mejoramiento por Histogramas

Imagen original X-ray dental

36 SA

Global
X-ray dental

Local
X-ray dental
Tiles:8 x 8

Local
X-ray dental
Tiles: 16 x 16

Mejoramiento por Histogramas

Imagen original X-ray craneal

Local
X-ray craneal
Tiles:8 x 8

Global
X-ray craneal

Local
X-ray craneal
Tiles: 16 x 16

