

Active Filters

Ideal Low Pass Filter

What is it that we want from a filter:

- (1) Flat gain in the pass band
- (2)Low distortion in the pass-band (low or even phase shift)
- (3) Sharp corner and steep fall-off above the cut-off frequency

Low Pass Filter Revisted

Higher Order Filters

2nd Order Active Filter

- You can easily design a filter with -40 dB/decade
 - 1 Op-Amp, 2 Resistors and 2 Capacitors
 - Compare to -20 dB/decade 1 Resistor and 1 Capacitor
- Filter designs are available in the text book
 - Rarely necessary to design from scratch
- There are many filter designs
- *Butterworth, Bessel, Chebyshev, etc. Some designs are flatter near the cutoff.

We will examine more closely the <u>Sallen-Key filter</u> f

Butterworth, Chebyshev, Bessel

Comparison of Gain Responses of Fourth Order Low Pass Filters

Order of filters (Butterworth)

Sallen-Key 2nd Order Filter

$$C_1 = C_2$$

$$W_0 = L$$

$$RC$$

$$\frac{Vout}{Vin} = \frac{\omega_o^2}{s^2 + \frac{\omega_o}{Q}s + \omega_o^2}$$

$$\omega_o = \frac{1}{R\sqrt{C_1C_2}}; Q = \frac{1}{2}\sqrt{\frac{C_1}{C_2}}$$

$$C_1 = 100C_2$$
 $C_1 = 100C_2$
 $Q = \frac{1}{2}$
 $Q = \frac{3}{2} \cdot 1.5$
 $Q = \frac{10}{2} \cdot 5$
 $Q = \frac{10}{2} \cdot 5$

Sallen-Key Filter Derivation

$$Z_1 = Z_2 = R$$
, $Z_3 = 1/j\omega C_1$, and $Z_4 = 1/j\omega C_2$.

$$\frac{V_{in} - V_A}{Z_1} = \frac{V_A - V_{out}}{Z_3} + \frac{V_A - V_B}{Z_2}$$

$$V_B = V_{out}$$

$$\frac{V_A - V_{out}}{Z_2} = \frac{V_{out}}{Z_4}$$

- Revisiting op-amps
- Exploiting basic rules:
 - KCL
 - Op-Amp rule #1 (V⁺ = V⁻)
 - Op-Amp rule #2 $(i_{in} = 0)$

Sallen-Key Filter Transfer Function

$$\frac{V_{out}}{V_{in}} = \frac{1}{1 - (\omega^2/\omega_0^2) + j(\omega/Q \,\omega_0)} = \frac{\omega_0^2}{\omega_0^2 - \omega^2 + j\frac{\omega_0}{Q} \,\omega}$$

$$\left| \frac{V_{out}}{V_{in}} \right| = \frac{\omega_0^2}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \frac{\omega_0^2 \omega^2}{Q^2}}}$$

$$\omega_0^2 = \left(1/R^2 C_1 C_2\right)$$

$$Q = \frac{1}{2} \int_{-C_2}^{C_1} C_2$$

Observations

- Gain = 1 at DC & low freq.
- Gain = Q at $\omega = \omega_0$
- -40dB/decade stop band (2nd order filter)
- The SK filter is one of the options in the final practical

Cascaded Filters

a cutoff frequency of 1 kHz.

TABLE 3-1 Parameters for designing Bessel, Butterworth, and Chebyshev (6% ripple) filte

# poles	Bessel		Butterworth		Chebyshev	
# potes	K ₁	k ₂	k ₁	$\mathbf{k_2}$	k,	k,
2 stage 1	0.1251	0.268	0.1592	0.586	0.1293	0.842
4 stage 1	0.1111	0.084	0.1592	0.152	0.2666	0.582
stage 2	0.0991	0.759	0.1592	1.235	0.1544	1.660
6 stage 1	0.0990	0.040	0.1592	0.068	0.4019	0.537
stage 2	0.0941	0.364	0.1592	0.586	0.2072	1.448
stage 3	0.0834	1.023	0.1592	1.483	0.1574	1.846
stage 1	0.0894	0.024	0.1592	0.038	0.5359	0.522
stage 2	0.0867	0.213	0.1592	0.337	0.2657	1.379
stage 3	0.0814	0.593	0.1592	0.889	0.1848	1.711
stage 4	0.0726	1.184	0.1592	1.610	0.1582	1.913

- Bessel, Butterworth, Chebyshev filters can be constructed from Sallen-Key
- Multiple stages → higher order
- Generic filter design Do not start from scratch!

Importance of filters in communication

- Get rid of unwanted frequencies (e.g. harmonics generated in the mixing process)
- Limit the bandwidth (frequency range)
 - Bandwidth is precious
 - Stations/communication channels are closely packed
 - Need to avoid interference (overlap of stations)

Frequency Channelization

