OBE

- Outcome Based Education focusses on Learning rather than Teaching
- A pre-requisite system for Washington Accord membership. Washington Accord is an international accreditation agreement for professional engineering degrees
- Established in 1989, signatory countries are 18 and Pakistan has become a provisional member
- Advantage is Recognized degree in all member states
- Why YOU should know?

Washington Accord 21 Member States

Washington Accord

Signatories have full rights of participation in the Accord; qualifications accredited or recognised by other signatories are recognised by each signatory as being substantially equivalent to accredited or recognised qualifications within its own jurisdiction.

_

Password:

Organisation:

Memb

Australia - Represented by Engineers Australia (1989)

Organisations holding provisional status have been identified as having qualification accreditation or recognition procedures that are potentially suitable for the purposes of the Accord; those organisations are further developing those procedures with the goal of achieving signatory status in due course; qualifications accredited or recognised by organisations holding provisional status are not recognised by the signatories

- Bangladesh Represented by Board of Accreditation for Engineering and Technical Education
- Costa Rica Represented by <u>Association of Engineers and Architects of Costa Rica</u>
- Mexico Represented by Conseio de Acreditación de la Enseñanza de la Ingeniería
- Pakistan Represented by <u>Pakistan Engineering Council</u>

Tera Represented by <u>institute de Sulidad Y Aereditación de Fre</u>gramas de Computación, Ingeneria Y Technología (ICACIT)

Philippines - Represented by <u>Philippine Technological Council</u>

Hierarchy of Outcomes

Vision & Mission of the Institution/Dept.

Program Educational Objectives (PEO)

Program Learning Outcomes (PLOs)

Course Learning Outcomes (CLOs)

Long Term
Outcomes

Short Term
Outcomes

Ref: Dr. Zahid Halim, OBE presentation, GIKI

An Analogy

Outcomes

CLOs Course 1 Course 2 Course 44 Course 45

12 PLOs -

- 1. Engineering Knowledge
- 2. Problem Analysis
- Design/Development of Solutions
- 4. Investigation
- 5. Modern Tool Usage
- 6. The Engineer and Society
- 7. Environment & Sustainability
- 8. Ethics
- 9. Individual and Teamwork
- 10. Communication
- 11. Project Management
- 12. Life Long Learning

Learning Domains

Bloom's Taxonomy (BT) divides the way people learn into three domains.

1. Cognitive (knowledge-based)

2. Affective (emotive-based)

3. Psychomotor (action-based)

Learning Domain - Cognitive

 Skills in the cognitive domain revolve around knowledge, comprehension, and critical thinking on a particular topic

Knowledge-based

Cognitive Domain Levels (BT)

C6	Creating	Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	
C5	Evaluating	Present and defend opinions by making judgments about information, validity of ideas or quality of work based on a set of criteria	
C4	Analyzing	Examine and break information into parts by identifying motives or causes Make inferences and find evidence to support generalizations	
C3	Applying	Using acquired knowledge. Solve problems in new situations by applying acquired knowledge, facts, techniques and rules in a different way	
C2	Understanding	Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating the main ideas	
C1	Remembering	Exhibit memory of learned materials by recalling facts, terms, basic concepts and answers	

Learning Domain - Affective

 Skills in the affective domain describe the way people react emotionally and their ability to feel other living thing's pain or joy.

Emotion-based

Ref: Dr. Zahid Halim, OBE presentation, GIKI

Affective Domain levels (BT)

A5	Characterizing Organizing	
A4		
А3	Valuing	
A2	Responding	
A1 Receiving		

Learning Domain - Psychomotor

 Skills in the psychomotor domain describe the ability to physically use a tool or instrument like a hand or a hammer.

Action-based

Psychomotor Domain levels

P7	Origination	Creating new movement patterns to fit a particular situation or specific problem.
P6	Adaptation	Skills are well developed and the individual can modify movement patterns to fit special requirements. Examples: Responds effectively to unexpected experiences.
P5	Complex overt response	The skillful performance of motor acts that involve complex movement patterns. Examples: Maneuvers a car into a tight parallel parking spot. Operates a computer quickly and accurately.
P4	Mechanism	This is the intermediate stage in learning a complex skill. Examples: Use a personal computer. Repair a leaking tap. Drive a car.
Р3	Guided response	The early stages in learning a complex skill that includes imitation and trial and error
P2	Set	Readiness to act. Examples: Knows and acts upon a sequence of steps in a manufacturing process. Recognize one's abilities and limitations
P1	Perception	The ability to use sensory cues to guide motor activity

OBE at SEECS

- Started in 2014
- Includes 5 steps
 - 1. Design (Course outlines, rubrics developed)
 - 2. Implementation
 - 3. Assessment (Exam ques mapped to CLOs)
 - 4. Analysis (Through Q-OBE software)
 - 5. Revision
- PEC OBE visit, 5th 6th September 2016
- Frequent visits by PEC accreditation team,
 OBE model approved, followed and EE degree recognized by PEC wef BEE-4.

CLOs: EE221, DLD Course, Fall 2020

CLO	Description	BT Level	PLOs
1	Understand digital systems, computer arithmetic, and Simplify Boolean functions.	C3	1
2	Analyze combinational and sequential circuits.	C4	2
3	Design combinational and sequential circuits of moderate complexity within given hardware constraints.	C5	3
4	Conduct experiments as well as analyze and interpret experimental data	P4	4
5	Construct digital systems of moderate complexity using standard laboratory equipment and simulation tools.	P4	5
6	Exhibit good professional and ethical behavior. Adhere to lab safety rules.	A3	8
7	Function effectively both individually and as a member of a team	A4	9

Analysis from Fall 2015 – DLD course

CLOs	Total Students	No of Students Attained CLO above 30%	Percentage
CLO-1	87	85	97.7
CLO-2	87	82	94.25
CLO-3	87	79	90.8
CLO-4	87	74	85.06
CLO-5	87	87	100

CLO Attainment

PLO Attainment

PLOs	Total Students	No of Students Attained PLO above 40%	Percentage
PLO 1	87	83	95.4
PLO 2	87	76	87.36
PLO 3	87	61	70.11
PLO 4	87	87	100

CLO, PLO Attainment – Further Analysis

- Live demo of Q-OBE
 - CLO attainment graph
 - PLO attainment graph (course-wise)
 - PLO attainment (semester-wise)

CQI activities

The End