```
5
     import pandas as pd
 6
     import numpy as np
     df = pd.read_csv('auto-mpg.csv')
     df=df.replace('?',np.nan)
 9
     df=df.dropna()
10
     df=df.drop("origin",axis=1)
11
     df=df.drop("car name",axis=1)
12
     df=df.astype(float)
13
14
     #print(df)
     #print(df.dtypes)
15
16
     y=np.array(df['mpg'])
     x=np.array(df.loc[:,'cylinders':'model year'])
17
18
     #print(y)
     n=len(x)
19
20
     x1=np.ones((n),dtype=int).reshape(n,1)
21
     xArr=np.hstack((x1,x))
     yArr=np.array(y).reshape(n,1)
22
     xArrT=xArr.transpose()
23
24
     #print(xArrT)
25
     yArrT=yArr.transpose()
     xMul=np.matmul(xArrT,xArr)
26
27
     #print(xMul)
28
     xyMul=np.matmul(xArrT,yArr)
     xMulInv=np.linalg.inv(xMul)
29
     A=np.matmul(xMulInv,xyMul)
30
31
     #print(A)
32
     intercept=A[0]
     print(f'coefficients= {A[1:7]}, intercept= {intercept}')
33
34
```

```
    raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython % /us coefficients= [[-3.29859089e-01]
        [ 7.67843024e-03]
        [-3.91355574e-04]
        [-6.79461791e-03]
        [ 8.52732469e-02]
        [ 7.53367180e-01]], intercept= [-14.53525048]
    raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython %
```

```
import pandas as pd
     import numpy as np
     from sklearn.linear_model import LinearRegression
     from sklearn.preprocessing import StandardScaler
     from scipy import stats
    df = pd.read_csv('auto-mpg.csv')
    df=df.replace('?',np.nan)
    df=df.dropna()
    df=df.drop("origin",axis=1)
14 df=df.drop("car name",axis=1)
    df=df.astype(float)
    print(df)
    y=np.array(df['mpg'])
    x=np.array(df.loc[:,'cylinders':'model year'])
     xScaled = StandardScaler().fit_transform(x)
    li=[]
    for i in range(6):
      slope, intercept, r, p, std_error = stats.linregress(xScaled[:,i], y)
        li.append(r)
    li=np.array(li)
    li=abs(li)
    li=list(li)
    print(li)
     sortedLi=sorted(li,reverse=True)
31 topThree=sortedLi[0:3]
33 index1=li.index(topThree[0])
34 index2=li.index(topThree[1])
    index3=li.index(topThree[2])
36 print(index1,index2,index3)
    print(f'most important features are: {df.columns[index1+1]}, {df.columns[index2+1]}, {df.columns[index3+1]}')
```

```
/usr/local/bin/python3 /Users/raulrodriguez/Documents/WorkSpaceVSPython/Lab6_ZML.py raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython % /usr/local/bin/python3 /Users/raulrodriguez/Documents/WorkSpaceVSPython
           3693.0
3436.0
                                  350.0
                                                165.0
     18.0
                                  318.0
                                                150.0
                                                                                        70.0
                                                       3433.0
                                  304.0
                                                150.0
                                                                                        70.0
                                                       2130.0
2295.0
2625.0
2720.0
                                                52.0
84.0
79.0
                                  97.0
                                                                                        82.0
                                 135.0
                                                                          11.6
                                                                                        82.0
                                                                                        82.0
                                  120.0
                    4.0
 [0.7776175081260216,\ 0.805126946710458,\ 0.7784267838977761,\ 0.8322442148315753,\ 0.42332853\underline{690278727},\ 0.5805409\underline{660907854}] 
           import pandas as pd
```

```
5
     import numpy as np
     from scipy import stats
6
     df = pd.read_csv('auto-mpg.csv')
     df=df.replace('?',np.nan)
     df=df.dropna()
10
     df=df.drop("origin",axis=1)
11
12
     df=df.drop("car name",axis=1)
13
     df=df.astype(float)
14
     print(df)
     y=np.array(df['mpg'])
15
     x=np.array(df.loc[:,'cylinders':'model year'])
16
17
18
     y = np.array(df['mpg'])
     x1 = np.array(df['weight'])
19
     x2 = np.array(df['displacement'])
20
21
     x3 = np.array(df['horsepower'])
22
     slope, intercept, r, p, std_error = stats.linregress(x1, y)
     print('Slope: ', slope, 'y-intercept: ', intercept, 'r: ', r)
23
24
     slope, intercept, r, p, std_error = stats.linregress(x2, y)
     print('Slope: ', slope, 'y-intercept: ', intercept, 'r: ', r)
25
26
     slope, intercept, r, p, std_error = stats.linregress(x3, y)
     print('Slope: ', slope, 'y-intercept: ', intercept, 'r: ', r)
27
```

raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython % /usr/local/bin/python3 /Users/raulrod							
	mpg	cylinders	displacement	horsepower	weight	acceleration	model year
0	18.0	8.0	307.0	130.0	3504.0	12.0	70.0
1	15.0	8.0	350.0	165.0	3693.0	11.5	70.0
2	18.0	8.0	318.0	150.0	3436.0	11.0	70.0
3	16.0	8.0	304.0	150.0	3433.0	12.0	70.0
4	17.0	8.0	302.0	140.0	3449.0	10.5	70.0
39	3 27.0	4.0	140.0	86.0	<u> 2790.0</u>	15.6	82.0
39	4 44.0	4.0	97.0	52.0	2130.0	24.6	82.0
39	5 32.0	4.0	135.0	84.0	2295.0	11.6	82.0
39	6 28.0	4.0	120.0	79.0	2625.0	18.6	82.0
39	7 31.0	4.0	119.0	82.0	2720.0	19.4	82.0
[392 rows x 7 columns]							

Slope: -0.007647342535779578 y-intercept: 46.21652454901758 r: -0.8322442148315754 Slope: -0.06005142781220625 y-intercept: 35.12063593840391 r: -0.8051269467104579 Slope: -0.15784473335365348 y-intercept: 39.93586102117045 r: -0.7784267838977758 raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython %

```
import pandas as pd
 3
     import numpy as np
     from sklearn.linear_model import LinearRegression
 5
 6
     df = pd.read_csv('auto-mpg.csv')
     df=df.replace('?',np.nan)
 8
     df=df.dropna()
 9
10
     df=df.drop("origin",axis=1)
     df=df.drop("car name",axis=1)
11
     df=df.astype(float)
12
13
     print(df)
     #print(df.dtypes)
14
     y=np.array(df['mpg'])
15
16
     x=np.array(df.loc[:,'cylinders':'model year'])
     p=np.array([8, 306, 129, 3508, 11, 70])
17
18
19
     reg=LinearRegression()
     reg.fit(x,y)
20
     c=np.array(reg.coef_)
21
     print(f'coefficients: {c}')
22
     yIntercept=reg.intercept_
23
     print(f'Intercept: {yIntercept}')
24
25
26
     predict=0
27
     for i in range(len(p)):
         predict+=c[i]*p[i]
28
29
     predict+=yIntercept
30
     print(f'prediction with given data are\n{predict}')
31
```

```
raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython % /usr/local/bin/python3 /Users/ra
        mpg cylinders displacement horsepower weight acceleration model year 18.0 8.0 307.0 130.0 3504.0 12.0 70.0
 0
       18.0
       15.0
                    8.0
 1
                                 350.0
                                               165.0 3693.0
                                                                        11.5
                                                                                     70.0
 2
       18.0
                    8.0
                                 318.0
                                               150.0 3436.0
                                                                        11.0
                                                                                     70.0
 3
       16.0
                    8.0
                                 304.0
                                               150.0 3433.0
                                                                        12.0
                                                                                     70.0
 4
                                               140.0 3449.0
       17.0
                    8.0
                                 302.0
                                                                        10.5
                                                                                     70.0
                                               86.0 2790.0
 393 27.0
                    4.0
                                 140.0
                                                                        15.6
                                                                                     82.0
 394
      44.0
                    4.0
                                  97.0
                                               52.0 2130.0
                                                                        24.6
                                                                                     82.0
 395
      32.0
                    4.0
                                 135.0
                                               84.0 2295.0
                                                                        11.6
                                                                                     82.0
 396 28.0
                    4.0
                                 120.0
                                               79.0 2625.0
                                                                        18.6
                                                                                     82.0
 397 31.0
                                 119.0
                                                                                     82.0
                    4.0
                                               82.0 2720.0
                                                                        19.4
  [392 rows x 7 columns]
 coefficients: [-3.29859089e-01 7.67843024e-03 -3.91355574e-04 -6.79461791e-03 8.52732469e-02 7.53367180e-01]
 Intercept: -14.535250480506118
 prediction with given data are
  14.963180251333352
```

o raulrodriguez@Rauls-MacBook-Air WorkSpaceVSPython %