Ukázka tělesa $GF(4) = GF(2^2)$

Pro čtyřprvkovou množinu $T=\{0,1,a,b\}$ definujeme operace sčítání a násobení takto:

+	0	1	a	b	•	0	1	a	b
0	0	1	\overline{a}	b	0	0	0	0	0
1	1	0	b	a	1	0	1	a	b
	a				a	0	a	b	1
b	b	a	1	0	b	0	b	1	a

Pro takto definované operace + a · platí všechny axiomy tělesa.

Jiný pohled na totéž těleso: vezmeme za prvky T polynomy maximálního stupně 1 s koeficienty v \mathbb{Z}_2 , např. a = x, b = x + 1. Násobení pak provádíme modulo polynom $x^2 + x + 1$.

+	0	1	x	x+1	•	0	1	x	x+1
0	0	1	x	$\overline{x+1}$	0	0	0	0	0
1	1	0	x + 1	x	1	0	1	x	x+1
x	x	x+1	0	1	\boldsymbol{x}	0	\boldsymbol{x}	x + 1	1
x + 1	x+1	x	1	0	x + 1	0	x + 1	1	x