# Exercise 4

a)

There exists a program for  $n \in \mathbb{N} \setminus \{0\}$  that generates  $w_n$ :

### Algorithm 1

1:  $k \leftarrow n$ 2:  $k \leftarrow 3 \cdot (k^2)$ 

- → Assign n to k
- D Compute 3k² \ set gut!

3:  $k \leftarrow 4^{\hat{}}k$ 

ightharpoonup Compute  $4^k=4^{3n^2}$ , where n is the initial n ho Print "101"  $k=4^{3n^2}$  times

- 4: **for** i := 1 to k **do**

print(101)

The only string in the code that depends on the length of  $w_n$  is the representation of n:

- $\Rightarrow$  Everything else is a constant for all possible  $w_n$  of the form from above  $\checkmark$
- ⇒ Hence we can estimate the Kolmogorov Complexity:

$$K(w_n) \le \lceil \log (n+1) \rceil + c$$
, c constant



$$\Rightarrow \frac{|w_n|}{3} = 2^{6n^2}$$

$$\Rightarrow \log_2 \frac{|w_n|}{3} = 6n$$

$$\Rightarrow \frac{\log_2 \frac{|w_n|}{3}}{6} = n^2$$

$$\Rightarrow \log_2 \frac{|w_n|}{3} = 6n^2$$

$$\Rightarrow \frac{\log_2 \frac{|w_n|}{3}}{6} = n^2$$

$$\Rightarrow n = \sqrt{\frac{\log_2 \frac{|w_n|}{3}}{6}}$$

Hence we have that:

is an upper bound of the Kolmogorov Complexity 
$$Vary \quad \text{nice} \quad \text{Head} \quad$$

We define  $y_n := 2^{3^{n+1}}$ 

It follows that  $y_i < y_j$  for all  $i, j \in \mathbb{N}$  with i < j, because the exponential function is strict increasing for base greater than 1.

Assuming that print returns the binary representation of the number, we have the following algorithm:

#### Algorithm 2

1:  $y \leftarrow n$ 

 Assign n to k ▷ Increment k

2:  $y \leftarrow y + 1$ 3:  $y \leftarrow 3^{\hat{}}y$ 

 $\triangleright$  Compute  $3^y$ 

4:  $y \leftarrow 2^y$ 

5: print(y)

- $\triangleright$  Compute  $2^y = 2^{3^{n+1}}$ , where n is the initial n
- ▶ Print the binary representation of y

The representation of n is the only string in the code that is not constant

- ⇒ Everything else is a constant for all possible n
- ⇒ Hence we can estimate the Kolmogorov Complexity:



$$K(y_n) \leq \lceil \log_2(n+1) \rceil + c$$
, c constant

We can reformulate the estimation as follows:

$$K(y_n) \leq \lceil \log_2(n+1) \rceil + c, \text{ c constant}$$

$$= \lceil \log_2 \log_3 3^{n+1} \rceil + c$$

$$= \lceil \log_2 \log_3 \log_2 (2^{3^{n+1}}) \rceil + c$$

$$\stackrel{\text{(*)}}{=} \lceil \log_2 \log_3 \log_2 y_n \rceil + c$$

$$\leq \log_2 \log_3 \log_2 y_n + c', \text{ with } c' \approx 1 \text{ const. (low't many about such definite in)}$$

## Exercise 5

Prove that, for all  $n \in \mathbb{N}$  and i < n, there are at least  $2^n - 2^{n-i}$  natural numbers x in the interval  $[2^n, 2^{n+1} - 1]$  such that  $K(x) \ge n - i$ .

We notice that there are  $2^n$  numbers in said interval.

(There are b-a+1 natural numbers in the interval [a,b] IF  $a,b\in\mathbb{N}$ ) There are exactly

8/10/

$$\sum_{i=1}^{n-i-1} 2^i = 2^{n-i} - \mathbf{Z}$$

(sum over the number of all possible bit strings of length 1 to n-i-1) bit-strings of length strictly less than n-i, thus there can be at most  $2^{n-i}-1$  different programs with K(x) < n-i length(p) < n-i.

$$K(x) < n - i$$
 vet vetty, you were "... programs ps with

That is because every program is compiled into a bit-string (Machine code) and different programs are compiled into different bit-strings. A each regram only shorter of aut (1) For different numbers the program to generate that number is different. The bit-string in which the program is compiled is therefore also different.

We have just showed that there are at most  $2^{n-i}-1$  different programs with K(x) < n-i, it follows that there can be at most  $2^{n-i}-1$  different numbers (in the interval  $[2^n, 2^{n+1} - 1]$ ) with K(x) < n - i.

 $\Rightarrow$  Since there are  $2^n$  different numbers in  $[2^n, 2^{n+1} - 1]$ , there are at least

$$2^{n} - (2^{n-i} - 1) = 2^{n} - 2^{n-i} + 1 > 2^{n} - 2^{n-i}$$

numbers in the interval  $[2^n, 2^{n+1} - 1]$  with  $K(x) \ge n - i$ .

# Exercise 6

We make some observations about the elements of L:

- $|x_n| = i + j + k = 2k + k = 3k$
- For a given k, there are 2k + 1 numbers of length 3k
- For a given k, the number of elements with size smaller than 3k is the sum:

Hence, for  $x_n$  with  $|x_n| = 3k$ , we can conclude that  $k^2 \le n < (k+1)^2$ . Now we can calculate k by finding the biggest power of 2 smaller than n

• The parameter i determines the canonical ordering for words of equal size 3k. Hence, for a given n, we can find i by subtracting the number of elements of size smaller than 3k from n.

From the observations from above, we can conclude that for a given n, it is possible to compute the corresponding i, j, k. Hence there exists a program for  $n \in \mathbb{N} \setminus \{0\}$  that generates  $x_n$ :

7/10

## Algorithm 3

| 1: $m \leftarrow n$                                 | ⊳ Assign n to m                                                   |
|-----------------------------------------------------|-------------------------------------------------------------------|
| $2: k \leftarrow 1$                                 | ▷ Initialize k                                                    |
| 3: <b>while</b> $(k+1) \cdot (k+1) \le m$ <b>do</b> | $\triangleright$ We calculate the biggest k such that $k^2 \le n$ |
| 4: $k \leftarrow k+1$                               | ⊳ This will be                                                    |
| 5: $i = m - (k^2 - 1)$                              | ▷ Compute i from k and m                                          |
| 6: j = k - i                                        | ▷ Compute j from i and k                                          |
| 7: for $i := 1$ to i do                             | ⊳ Print "1" i times                                               |
| 8: $print(1)$                                       |                                                                   |
| 9: for $i := 1$ to j do                             | ⊳ Print "0" j times                                               |
| 10: $print(0)$                                      |                                                                   |
| 11: for $i := 1$ to k do                            | ▷ Print "1" k times                                               |
| 12: $print(1)$                                      |                                                                   |

The only string in the code that depends on the length of  $x_n$  is the representation of n:

 $\Rightarrow$  Everything else is a constant for all possible  $x_n$ 

⇒ Hence we can estimate the Kolmogorov Complexity:

$$K(x_n) \le \lceil \log (n+1) \rceil + c$$
, c constant

We can reformulate the estimation as follows:

$$K(x_n) \leq \lceil \log (n+1) \rceil + c, c \text{ constant}$$

$$\leq \lceil \log_2 ((k+1)^2 + 1) \rceil + c$$

$$= \lceil \log_2 (k^2 + 2k + 1 + 1) \rceil + c$$

$$\leq \lceil \log_2 (k^2 + 2k^2 + k^2 + k^2) \rceil + c$$

$$= \lceil \log_2 (5k^2) \rceil + c$$

$$\leq \lceil \log_2 (9k^2) \rceil + c$$

$$= \lceil \log_2 (3k)^2 \rceil + c$$

$$= \lceil \log_2 |x_n|^2 \rceil + c$$

$$= \lceil 2 \log_2 |x_n|^2 \rceil + c$$

We can conclude that there exists a constant  $c \in \mathbb{N}$  such that, for all  $n \in \mathbb{N}$ ,

 $K(x_n) \leq \lceil 2\log_2|x_n| \rceil + c$ , c constant some issuer with off-by-over but wally wice which is