

Practical Machine Learning

Day 7: SEP23 DBDA

Kiran Waghmare

Agenda

Decision Tree

Example:

Definition

- A tree-like model that illustrates series of events leading to certain decisions
- Each node represents a test on an attribute and each branch is an outcome of that test

Who to loan?

- Not a student
- 45 years old
- Medium income
- Fair credit record
- Student
- 27 years old
- Low income
- Excellent credit

Definition

- A tree-like model that illustrates series of events leading to certain decisions
- Each node represents a test on an attribute and each branch is an outcome of that test

Who to loan?

- Not a student
- 45 years old
- Medium income
- Fair credit record
- Ştudent
- 27 years old
- Low income
- Excellent credit

Decision Tree

Process (1): Model Construction

Process (2): Using the Model in Prediction

Attribute Selection Measures

- While implementing a Decision tree, the main issue arises that how to select the best attribute for the root node and for sub-nodes. So, to solve such problems there is a technique which is called as Attribute selection measure or ASM.
- By this measurement, we can easily select the best attribute for the nodes of the tree. There are two popular techniques for ASM, which are:
 - Information Gain
 - Gini Index

Entropy
$$(P) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Information Gain and Gini Index in Decision Tree

$$Gini(P) = 1 - \sum_{i=1}^{n} (p_i)^2$$

1. Information Gain:

 Information gain is the measurement of changes in entropy after the segmentation of a dataset based on an attribute.

• It calculates how much information a feature provides us about a class.

Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies randomness in data. Entropy can be calculated as:

Entropy(s)= $-P(yes)log_2 P(yes)- P(no) log_2 P(no)$

Where,

- •S= Total number of samples
- •P(yes)= probability of yes
- •P(no)= probability of no

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

■ Information needed (after using A to split D into v partitions) to classify D:

Info_A
$$(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$
Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

a) Entropy using the frequency table of one attribute:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

b) Entropy using the frequency table of two attributes:

$$E(T, X) = \sum_{c \in X} P(c)E(c)$$

		Play Golf		
		Yes	No	
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14

$$\mathbf{E}(PlayGolf, Outlook) = \mathbf{P}(Sunny)^*\mathbf{E}(3,2) + \mathbf{P}(Overcast)^*\mathbf{E}(4,0) + \mathbf{P}(Rainy)^*\mathbf{E}(2,3)$$

$$= (5/14)^*0.971 + (4/14)^*0.0 + (5/14)^*0.971$$

$$= 0.693$$

		Play Golf	
		Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf	
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
Gain = 0.029			

		Play Golf	
		Yes	No
Humidity	High	3	4
	Normal	6	1
Gain = 0.152			

		Play Golf	
		Yes	No
Windy	False	6	2
	True	3	3
Gain = 0.048			

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Step 3: Choose attribute with the largest information gain as the decision node, divide the dataset by its branches and repeat the same process on every branch.

*		Play Golf	
		Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

Step 4a: A branch with entropy of 0 is a leaf node.

Step 4b: A branch with entropy more than 0 needs further splitting.

Step 5: The ID3 algorithm is run recursively on the non-leaf branches, until all data is classified.

Decision Tree to Decision Rules

A decision tree can easily be transformed to a set of rules by mapping from the root node to the leaf nodes one by one.

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Homework

+			.	·
ID	Fever	Cough	Breathing issues	Infected
į 1	МО	NO	NO	ио ј
2	YES	YES	YES	YES
j 3	YES	YES	NO	ио ј
i 4	YES	NO	YES	YES
j 5	YES	YES	YES	YES
6	МО	YES	NO	NO I
7	YES	NO	YES	YES
8	YES	NO	YES	YES
j 9	МО	YES	YES	YES
10	YES	YES	ио	YES
1 11	МО	YES	NO	ио
1 12	МО	YES	YES	YES
1 13	МО	YES	YES	ио
1 14	YES	YES	NO	ио