Report AWS

Part 1 – Data Collection & Preprocessing

Goal:

Collect and prepare customer reviews for sentiment analysis.

Tools Used:

- Python, BeautifulSoup, Requests, Pandas.
- deep_translator for translation from Russian to English.
- Amazon S3 for storage.

Steps Taken:

- 1. Data Collection: Scraped product titles and reviews from Technodom.kz.
- 2. **Translation**: Translated reviews using **deep_translator**.
- 3. **Data Cleaning**: Removed empty values, fixed encoding issues.
- 4. Data Upload: Uploaded cleaned data to S3.

Outcome:

Cleaned dataset uploaded to **S3** for further processing.

Part 2 - Data Preparation with AWS Glue

Goal:

Prepare the dataset for querying and transformation using **AWS Glue** and **Athena**.

Steps Taken:

1. Glue Crawler: Ran a Glue crawler to catalog the dataset.

Athena Fix: Fixed column headers by creating a new table with proper names:

CREATE TABLE my_data_catalog.technodom_reviews_fixed AS

SELECT col0 AS original, col1 AS translated

FROM my_data_catalog.technodom_reviews

WHERE col0 != 'original';

2. **ETL Job**: Created an **ETL job** using **PySpark** to clean and deduplicate the data. Saved it to **S3**.

Outcome:

Dataset cleaned and validated, stored in \$3, ready for analysis.

Part 3 – Sentiment Analysis Using Transformers

Goal:

Perform sentiment analysis using **HuggingFace Transformers**.

Steps Taken:

Model Setup: Used HuggingFace sentiment-analysis pipeline:

sentiment_analyzer = pipeline("sentiment-analysis")

Processing: Applied the model to the **translated** column:

df["label"] = df["translated"].apply(lambda text: sentiment analyzer(str(text)[:512])[0]["label"].lower())

1. Exporting Results: Saved results to sentiment labels.csv and uploaded to S3.

Outcome:

Sentiment-labeled data uploaded to \$3, ready for visualization.

Part 4 – Visualization in Amazon QuickSight

Goal:

Visualize sentiment analysis results using Amazon QuickSight.

Steps Taken:

- 1. **Data Source**: Used **sentiment_labels.csv** for visualization.
- 2. Manifest File: Created manifest.json to define file location.
- 3. QuickSight Connection: Uploaded manifest to QuickSight and created visualizations.

Outcome:

Sentiment distribution visualized using bar and pie charts in **QuickSight**.

Final Output

Data:

- Cleaned and translated reviews stored in S3.
- Sentiment-labeled results uploaded to S3.
- Visualizations created using QuickSight.

Conclusion:

This project implemented an automated end-to-end pipeline for sentiment analysis using **AWS Glue**, **Step Functions**, **Lambda**, and **QuickSight**. The **HuggingFace Transformers** model

was used for sentiment analysis, providing greater control. **Telegram bot** integration enabled remote execution, making the system user-friendly.

Bonus Part – Automation with Lambda, Step Functions, and Telegram Bot

Goal:

Automate sentiment analysis and allow remote execution via a Telegram bot.

Lambda Functions:

- 1. **fetch_and_analyze_reviews**: Fetches reviews and sends them for sentiment analysis.
- 2. **send_email_notification**: Sends an email upon analysis completion.

Step Functions:

• Orchestrates Lambda functions to automate the analysis and notification process.

Telegram Bot:

• Triggered the **Step Function** via a **POST** request.

Outcome:

The **Telegram bot** allowed remote triggering of the sentiment analysis, and the entire process was automated.

Final Thoughts:

The system was fully automated using AWS services, integrating **Step Functions**, **Lambda**, **SNS**, and **QuickSight**. The **Telegram bot** added remote accessibility, and **HuggingFace Transformers** allowed for customized sentiment analysis, providing valuable insights.