CS5200 Practicum II, Part III

Code ▼

Victoria Klimkowski and Maik Katko

Fall 2023

Setup and Connection

We first connect to the database and import the relevant libraries.

Verify that the db has the correct tables

Hide

SHOW TABLES

Tables_in_sql9665320

<chr>
rep_facts
sales_facts
2 rows

Verify that the tables are populated correctly.

SELECT * FROM rep_facts
LIMIT 20

total_sold <dbl></dbl>	total_qty_sold <int></int>	total_transactions <int></int>	sales_rep <chr></chr>	y <int></int>	-	product <chr></chr>		
8924	9700	9	Helmut Schwab	2020	1	Alaraphosol		
50310	13000	11	Helmut Schwab	2020	1	Bhiktarvizem		
14976	10400	11	Helmut Schwab	2020	1	Clobromizen		
13038	10600	9	Helmut Schwab	2020	1	Colophrazen		
420	10500	8	Helmut Schwab	2020	1	Diaprogenix		
19822	10600	13	Helmut Schwab	2020	1	Gerantrazeophe		
10200	10200	11	Helmut Schwab	2020	1	Presterone		
20293	9100	8	Helmut Schwab	2020	1	Proxinostat		
6204	2200	5	Helmut Schwab	2020	1	Xinoprozen		
4680	6500	6	Helmut Schwab	2020	1	Xiprami	in	
1-10 of 20 rows					Previous	1 2	Next	
4							•	

Question 2: Analytical Queries

Analytical Query I

We first query for all the data on sales reps, the year, their total sold, total qty, and total transactions. We then use r to filter for the top 5 sales reps.

```
Hide

sql <- "SELECT

Warning message:
In .local(conn, statement, ...):
Decimal MySQL column 0 imported as numeric
```

```
sales_rep,
            year,
            SUM(total_sold) AS total_sold_per_year,
            SUM(total_qty_sold) AS total_qty_per_year,
            SUM(total_transactions) AS total_transactions_per_year
        FROM
            rep_facts
        GROUP BY
            sales_rep,
            year
        ORDER BY
            sales_rep,
            total_sold_per_year DESC;"
top_reps <- dbGetQuery(mydb, sql)</pre>
# Takes the data and splits it by year to filter for only the top 5 sales reps
filter_top_5 <- function(df) {
  df list <- split(df, df$year)</pre>
  top_5_list <- lapply(df_list, function(x) x[order(-x$total_sold_per_year), ][1:5, ])</pre>
  do.call(rbind, top 5 list)
top_reps_filtered <- filter_top_5(top_reps)</pre>
```

To visualize the top 5 sales reps in a way that's useful, we create a bar chart that organizes the sales reps by year and orders it in decreasing order of total_sold. Here we use ggplot to help with the visualization. We offer 2 versions of this data visualization.

```
# Version 1: Grouping by year, with a bar for each sales rep.
# This version helps to show trends of relative performance between the reps
# .. for each year.
ggplot(top_reps_filtered, aes(x = reorder(sales_rep, -total_sold_per_year), y = total_sold_per_y
ear, group = factor(year), fill = factor(year)))+
    geom_col(position = position_dodge())+
    facet_wrap(~year, strip.position = "bottom")+
    theme_classic()+
    theme(strip.placement = "outside")+
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+
    labs(x = "Sales Reps by Year", y = "Total Sold ($)")+
    ggtitle("Total Sales for Top 5 Sales Reps")+
    guides(fill=guide_legend(title="year"))
```


Version 2: Grouping by Sales Rep, with a bar for each year.
This version helps to show an individual rep's contribution over the time span.
ggplot(top_reps_filtered, aes(x = reorder(sales_rep, -total_sold_per_year), y = total_sold_per_y
ear, fill = factor(year))) +
 geom_col(position = position_dodge()) +
 theme_classic() +
 labs(x = "Sales Reps by Year", y = "Total Sold (\$)") +
 ggtitle("Total Sales for Top 5 Sales Reps") +
 guides(fill = guide_legend(title = "Year")) +
 theme(strip.placement = "outside")

Based on these graphs, It's clear that Walison da Silva is the top sales rep by a wider margin than the other reps. Aneeta typically outperformed Lynette, but in 2021 was outpaced by her by a slight margin. Also, it looks like 2021 was an unusually good year for sales overall.

```
# Version 1: Grouping by year, with a bar for each sales rep.

# This version helps to show trends of relative performance between the reps

# .. for each year.

ggplot(top_reps_filtered, aes(x = reorder(sales_rep, -total_qty_per_year), y = total_qty_per_yea

r, group = factor(year), fill = factor(year)))+

geom_col(position = position_dodge())+

facet_wrap(~year, strip.position = "bottom")+

theme_classic()+

theme(strip.placement = "outside")+

theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+

labs(x = "Sales Reps by Year", y = "Quantity Sold")+

ggtitle("Total Quantity Sold for Top 5 Sales Reps")+

guides(fill=guide_legend(title="year"))
```


Version 2: Grouping by Sales Rep, with a bar for each year.
This version helps to show an individual rep's contribution over the time span.
ggplot(top_reps_filtered, aes(x = reorder(sales_rep, -total_qty_per_year), y = total_qty_per_yea
r, fill = factor(year))) +
 geom_col(position = position_dodge()) +
 theme_classic() +
 labs(x = "Sales Reps by Year", y = "Quantity Sold") +
 ggtitle("Total Quantity Sold for Top 5 Sales Reps") +
 guides(fill = guide_legend(title = "Year")) +
 theme(strip.placement = "outside")

The quantity sold matches closely with the total sold, which makes sense assuming the prices for individual products aren't changing drastically across the years.

Analytical Query 2

We first query for the regional total by year and save it in a data frame.

```
Hide

sql <- "SELECT
year,
region,
SUM(total_sold) AS regional_total
FROM sales_facts
GROUP BY year, region"

regional_totals <- dbGetQuery(mydb, sql)
```

We use ggplot to visualize the data in an easy-to-read way. We offer 2 versions of this data visualization.

```
# Version 1: Group by year then by region.
# Helps to visualize how sales changed over the year relative to the other regions.
ggplot(regional_totals, aes(x = region, y = regional_total, group = factor(year), fill = factor
(year)))+
    geom_col(position = position_dodge())+
    facet_wrap(~year, strip.position = "bottom")+
    theme_classic()+
    theme(strip.placement = "outside")+
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+
    labs(x = "Region by Year", y = "Total Sold ($)")+
    ggtitle("Total Sales by Region and Year")+
    guides(fill=guide_legend(title="year"))
```


Version 2: Group by region with a bar for each year.
Helps to visualize how a region performed over the course of the time period.
ggplot(regional_totals, aes(x = region, y = regional_total, fill = factor(year))) +
 geom_col(position = position_dodge(width = 0.8), width = 0.7) +
 theme_classic() +
 labs(x = "Region", y = "Total Sold (\$)") +
 ggtitle("Total Sales by Region and Year") +
 guides(fill = guide_legend(title = "Year")) +
 theme(strip.placement = "outside")

Based on these graphs, its again clear that 2021 was a particularly strong year for sales with each region showing a large amount of growth compared to 2020. It also seems like South America outperformed EMEA in 2021, while trailing in the other years.

Analytical Query III

We first query for total by year and quarter and save it to a data frame.

```
Hide

sql <- "SELECT
year,
quarter,
SUM(total_sold) AS total
FROM sales_facts
GROUP BY year, quarter"

totals.df <- dbGetQuery(mydb, sql)
```

To visualize the data, we use a line plot in ggplot.

```
ggplot(totals.df, aes(x = quarter, y = total, group = factor(year), color = factor(year))) +
   geom_line(lwd = 0.75) +
   theme_classic() +
   labs(x = "Quarter", y = "Total Sold ($)") +
   ggtitle("Total Sales by Quarter and Year") +
   guides(color = guide_legend(title = "Year"))
```


This graph also confirms 2021 as a particularly strong year. It seems like the 2nd and 3rd quarters are typically better than the 1st and 4th quarters.

Disconnect from database

```
dbDisconnect(mydb)

[1] TRUE
```