

FCC SAR TEST REPORT

APPLICANT

TELECOM SA CO., LIMITED

PRODUCT NAME

Feature Phone

MODEL NAME

TD213

TRADE NAME

N/A

BRAND NAME

N/A

FCC ID

2AKV3TD213

STANDARD(S)

47CFR 2.1093

IEEE 1528-2013

ISSUE DATE

2016-01-12

SHENZHEN MORLAB COMMUNICATION

ECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

DIRECTORY

TEST REPORT DECLARATION	. 4
1.TECHNICAL INFORMATION	· <u>5</u>
1.1 IDENTIFICATION OF APPLICANT	- 5
1.2 IDENTIFICATION OF MANUFACTURER	. 5
1.3 EQUIPMENT UNDER TEST (EUT)	. 5
1.3.1 PHOTOGRAPHS OF THE EUT	. 5
1.3.2 IDENTIFICATION OF ALL USED EUT······	. 6
1.4 APPLIED REFERENCE DOCUMENTS	
1.5 DEVICE CATEGORY AND SAR LIMITS	- 6
1.6 TEST ENVIRONMENT/CONDITIONS	. 7
2. SPECIFIC ABSORPTION RATE (SAR)	. 8
E TLAS ORL MO. E TLAS ORL MO. E M.	3
2.1 Introduction	. 8
2.2 SAR DEFINITION	. 8
3. SAR MEASUREMENT SETUP	. 9
S. W. III. M. C. S. C. S	Þ
3.1 THE MEASUREMENT SYSTEM	. a
3.2 PROBE	. q
3.3 PROBE CALIBRATION PROCESS······	11
3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE	11
3.3.2 FREE SPACE ASSESSMENT PROCEDURE	11
3.3.3 TEMPERATURE ASSESSMENT PROCEDURE	11
3.4 PHANTOM	12
	:- 12
C.O DEVIGE HOLDER	
4. TISSUE SIMULATING LIQUIDS	13
4. 11330E SIMIOEATING EIQUIDS	<u>13</u>
E LINCEDTAINTY ACCECCMENT	4 F
5. UNCERTAINTY ASSESSMENT······	<u>15</u>
THE MORE MORE AND	
5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST	15

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK	16
6. SAR MEASUREMENT EVALUATION	18
6.1 SYSTEM SETUP	18
6.2 VALIDATION RESULTS	19
7. OPERATIONAL CONDITIONS DURING TEST	20
7.1 BODY-WORN CONFIGURATIONS	20
7.3 MEASUREMENT PROCEDURE 7.4 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME	20
8. MEASUREMENT OF CONDUCTED OUTPUT POWER	<u>22</u>
9. TEST RESULTS LIST	24
10. REPEATED SAR MEASUREMENT	28
ANNEX A GRAPH TEST RESULTS	29
ANNEX B GENERAL INFORMATION	132

		Change History
Issue	Date	Reason for change
1.0	2016-01-12	First edition
,S	KITY MOR	THE TARE CORLER MORE IN TARE CREATE

TEST REPORT DECLARATION

Applicant	TELECOM SA CO., LIMITED					
Applicant Address	Room 1 Guangdor	701, No 8 ng,China	donghu	garden,	Huizhou	city,
Manufacturer	TELECON	SA CO., LIM	ITED			
Manufacturer Address	Room 1 Guangdor	701, No 8 ng,China	donghu	garden,	Huizhou	city,
Product Name	Feature P	hone				
Model Name	TD213					
Brand Name	N/A					
HW Version	V. 913					
SW Version	913: V1.00					
Test Standards	47CFR 2.1093; IEEE 1528-2013					
Test Date	2014-09-18 to 2014-09-19					
The Highest Reported	Head	1.443W/	kg	Limeit/\A//	(Isa), 1 C)A((
1g-SAR(W/kg)	Body	1.506W/	kg	Limit(W/kg): 1.6W/kg		

Tested by	6 _3	Chen Shong kmi	
A STATE OF THE PARTY OF THE PAR			

Chen Shengkui

tju Jun

Approved by : Peng Huarui

1.TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

1.1 Identification of Applicant

Company Name:	TELECOM SA CO., LIMITED
Address:	Room 1701, No 8 donghu garden, Huizhou city, Guangdong,China

1.2 Identification of Manufacturer

Company Name:	TELECOM SA CO., LIMITED
Address:	Room 1701, No 8 donghu garden, Huizhou city, Guangdong, China

1.3 Equipment Under Test (EUT)

Model Name:	TD213
Trade Name:	N/A
Brand Name:	N/A
Hardware Version:	V. 913
Software Version:	913: V1.00
Tx Frequency Bands:	GSM 850: 824-849 MHz;
	GSM 1900: 1850-1910 MHz;
	WCDMA Band II: 1850-1910MHz;
	WCDMA Band V: 824-849 MHz;
Uplink Modulations:	GSM/GPRS: GMSK; EDGE: GMSK/8PSK;
	WCDMA:QPSK
Multislot Class:	GPRS: Class 12; EDGE: Class 12;
GPRS Class:	Class B
DTM:	Not support
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	V. 913	913: V1.00

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
0 1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
2°	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
3	KDB 447498 D01v06	General RF Exposure Guidance
4	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz
5	KDB 865664 D02v01r02	SAR Reporting
6	KDB 941225 D01v03r01	SAR Measurement Procedures for 3G Devices

1.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

1.6 Test Environment/Conditions

Normal Temperature (NT): 20 ... 25 °C Relative Humidity: 30 ... 75 %

Air Pressure: 980 ... 1020 hPa

Test frequency: GSM 850MHz /PCS1900MHz;

WCDMA 850MHz/1900MHz;

Operation mode: Call established

Power Level: GSM 850 MHz Maximum output power(level 5)

PCS1900 MHz Maximum output power(level 0)

WCDMA 850MHz/1900MHz(All Up Bits)

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 125, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz, or to 4132, 4175 and 4233 respectively in the case of WCDMA 850 MHz, or to 9262, 9400 and 9538 respectively in the case of WCDMA 1900 MHz, The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be Middle than the output power level of the handset by at least 35 dB.

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big(\frac{dW}{dm} \Big) = \frac{d}{dt} \Big(\frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

 Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

Probe linearity: <0.25 dB
Axial Isotropy: <0.25 dB
Spherical Isotropy: <0.25 dB

- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/VIin(N)$$

$$(N=1,2,3)$$

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$

$$(N=1,2,3)$$

Where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device holder

System Material	Permittivity	Loss Tangent		
Delrin	3.7	0.005		

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	TAE MON	335	15 15 15 15 15 15 15 15 15 15 15 15 15 1	900
Tissue Type	Head	Body	Head	Body
Ingredients (% by weight) MORL	Mo.	AB W.	al AB
Deionised Water	50.36	50.20	54.90	40.40
Salt(NaCl)	1.25	0.90	0.18	0.50
Sugar	0.00	48.50	0.00	58.00
Tween 20	48.39	0.00	0.00	0.00
HEC	0.00	0.20	0.00	1.00
Bactericide	0.00	0.20	0.00	0.10
Triton X-100	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.92	0.00
Diethylenglycol monohexylether	0.00	0.00	0.00	0.00
Measured dielectric parar	meters	60	QLA!	"OBL"
Dielectric Constant	41.50	56.10	39.90	53.30
Conductivity (S/m)	0.90	0.95	1.42	1.52

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Date	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)	
PLIN M	Lload 025	Relative Permittivity(cr):	41.37	41.50	-0.31	5	
2014/9/18	Head 835	Conductivity(σ):	0.88	0.90	-2.22	5	
2014/9/16	Body 835	Relative Permittivity(cr):	55.16	56.10	-1.68	5	
		Conductivity(σ):	0.93	0.95	-2.11	5	
9 /11	Head 1000	Relative Permittivity(cr):	40.12	39.90	0.55	5	
2044/0/40	Head 1900	Conductivity(σ):	1.38	1.42	-2.82	5	
2014/9/19	Pody 1000	Relative Permittivity(cr):	53.21	53.30	-0.17	5	
	Body 1900	Conductivity(σ):	1.53	1.52	0.66	5	

5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

							3/3		
a not morting in the morting	b	C	d	e= f(d,k)	MORLAR	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi
Measurement System	AR	ORLAN	1110	. 6	400	LAB	ORLAN	70)	Oak
Probe calibration	E.2.1	4.76	N	1.0RL	1 1	1	4.76	4.7	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1.0	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	10	1	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1.00	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1 110	1 🚜	1	0.02	0.0	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	10	1 ala	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1"	1.15	1.1 5	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	11 0	1 _{RLAB}	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	AB W	1 HORLAE	2.89	2.8	8
Test sample Related	AL	MORE	41/6	, AB		RLAL .	MORIL	NI NI	9
Test sample positioning	E.4.2.	0.03	N	1 _{north}	1 ME	1 NORLAR	0.03	0.0	N- 1
Device Holder Uncertainty	E.4.1.	5.00	N	1 110	1 💸	1	5.00	5.0	N-

		. 40		100	~~		*O,		
2LAE CRL	1	VB In.	al.P	300	L	More	" B W.	0	1
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	∞
SAR drift measurement	'B W	CLAP		RLA	Mole	B W	LAB	3	ORL
Phantom and Tissue Para	meters	MOL	.0	LAB	.(RLA	MOL	0 1	
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1,	1 1 N	OF	0.0	∞
(Shape and thickness tolerances)	NOTE OF	AB III	MORLA	3 MOF	L.R. A	Morr	0.03	3	.8
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
deviation from target value	D.L.	40RF	2 11	AB	,	QLAP.	MORL	3	3
Liquid conductivity -	E.3.3	5.00	N	1,108	0.64	0.43	3.20	2.1	М
measurement uncertainty	MORL	Mo	. 0	3	LAR	MORL	MO.	5	8
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	8
deviation from target value	" WO.	A.B		QLAB	MORL	Mc	O.B	4	all
Liquid permittivity -	E.3.3	10.0	N 🐠	1 6	0.6	0.49	6.00	4.9	М
measurement uncertainty	0,8	0	LAB	MORL	Me	,		0	-0
Combined Standard	ORL	Mo	RSS	9	LAB	MORL	11.55	10.	8
Uncertainty		AB	NORLA	MO	_	3 10.	aLAB	67	
Expanded Uncertainty	Mo.	.0	K=2	alas	JORL	Mc	23.11	21.	al.P
(95% Confidence interval)	AB	ORLA	11/1	.6	Di.	LAB	ORLA	33	Ole

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a MO AB RELAB	boe	С	d	e=	f	g	h=	4j=	k
	OB .	PLAB	(f(d,k)	Mo.	OB III	c*f/e	c*g/	ORL
S SLAP OF	· ·	Vo.	20	al Alb	~0	Rick	Mo.	е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
	NOIS	(+-	·	, OP	(1g)	(10g)	(+-%)	Ui	3
	ORI	%)	Dist.	- B /n	CLAP	.0	2LA	(+-	
ORLA" MOR	S W	LAB	.6	RLA	Moles	. a M	LAB	%)	RLA
Measurement System	Like	NOFEE	G III.	LAB	.0	RLA	MORE	S 11	
Probe calibration	E.2.1	4.76	N	1,000	1	1 10	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1,13	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1 1100	1	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	108	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1	1 AR	1	0.02	0.0	∞

Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1,10	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1 21.0	1	1.15	1.1	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1,0	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1 H	1	1.15	1.1 5	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1,110	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	10°	1	2.89	2.8	8
Dipole	O.P.	Like	Moles	S W	. 6	3	RLAS	MORE	
Dipole axis to liquid Distance	8,E.4. 2	1.00	N	$\sqrt{3}$	1012	1 MA	0.58	0.5 8	∞
Input power and SAR drift measurement	8,6.6. 2	4.04	R	$\sqrt{3}$	LAE W	1 NOPLAS	2.33	2.3	8
Phantom and Tissue Para	meters	ART	MORT	Mo	o.	3	QLAR	MORI	
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R III	$\sqrt{3}$	110 EE	1 ME	0.03	0.0	8
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	8
Liquid permittivity - measurement uncertainty	E.3.3	10.0	Nati	$\sqrt{3}$	0.6	0.49	3.46	2.8	М
Combined Standard Uncertainty	, C	MORLAN	RSS	ORLAE	en.	RLAE .	8.83	8.3	Ok
Expanded Uncertainty (95% Confidence interval)	JORLA	AE MO	K=2	, me	LAE	MORLA	17.66	16. 73	3 17

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to

6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	835MHz(H)	835MHz(B)	1900MHz(H)	1900MHz(B)
Target value 1W (1g)	9.71 W/Kg	10.02 W/Kg	39.39 W/Kg	42.33 W/Kg
Test value 1g (250 mW input power)	2.392 W/Kg (9.18)	2.446 W/Kg (9.18)	9.775 W/Kg (9.19)	9.987 W/Kg (9.19)
Normalized to 1W value(1g)	9.568 W/Kg	9.784 W/Kg	39.100 W/Kg	39.948 W/Kg

Note: System checks the specific test data please see 124~131.

7. OPERATIONAL CONDITIONS DURING TEST

7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

7.3 Measurement procedure

The Following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

8. MEASUREMENT OF CONDUCTED OUTPUT POWER

1. GSM Conducted peak output power

		Frequency	Output Power
Band	Channel	(MHz)	(dBm)
CCM	128	824.2	32.26
GSM	190	836.6	32.81
850	251	848.8	33.29
DCC	512	1850.2	29.39
PCS	661	1880.0	30.27
1900	810	1909.8	30.76

2. GPRS Mode Conducted peak output power

Dond	Chamal	Frequency	Output Power(dBm)					
Band Channe	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4		
GSM 1	128	824.2	28.73	27.62	26.89	26.47		
	190	836.6	29.32	28.21	27.48	27.06		
850	251	848.8	29.98	28.87	28.14	27.79		
DCC	512	1850.2	27.96	27.25	26.92	26.54		
PCS 1900	661	1880.0	28.83	27.78	27.11	26.77		
	810	1909.8	29.34	28.03	27.26	27.08		

GPRS Time-based Average Power

Dand	Chanal	Frequency	Output Power(dBm)					
Band Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4			
COM	128	824.2	19.70	21.60	22.63	23.46		
GSM	190	836.6	20.29	22.19	23.22	24.05		
850	251	848.8	20.95	22.85	23.88	24.78		
DOO	512	1850.2	18.93	21.23	22.66	23.53		
PCS	661	1880.0	19.80	21.76	22.85	23.76		
1900	810	1909.8	20.31	22.01	23.00	24.07		

Timeslot consignations:

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2Up2Down	3Up2Down	4Up1Down
Duty Cycle	1:8	1:4	1:2.67	1:2
Correct Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

3. EDGE Mode Conducted peak output power

Dond	Channal	Frequency	Output Power(dBm)					
Band Channe	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4		
GSM	128	824.2	28.65	27.51	26.79	26.38		
	190	836.6	29.31	28.17	27.45	27.04		
850	251	848.8	29.97	28.83	28.11	27.70		
DOC	512	1850.2	28.23	27.64	26.95	26.52		
PCS 1900	661	1880.0	28.94	27.80	27.08	26.67		
	810	1909.8	29.62	28.24	27.57	27.06		

EDGE Time-based Average Power

	artiforage i	31131	.0	100	. 0	- Laboratoria
Band	Channel	Frequency		Output P	ower(dBm)	
Band	Onamici	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4
128	128	824.2	19.62	21.49	22.53	23.37
GSM	190	836.6	20.28	22.15	23.19	24.03
850	251	848.8	20.94	22.81	23.85	24.69
DCC	512	1850.2	19.20	21.62	22.69	23.51
PCS 1900	661	1880.0	19.91	21.78	22.82	23.66
	810	1909.8	20.59	22.22	23.31	24.05

4. WCDMA mode conducted output power values

	band WCDMA 850			WCDMA 1900			
Item	ARFCN	4132	4175	4233	9262	9400	9538
	subtest	dBm			dBm		
5.2(WCDMA)	non	23.47	23.67	24.36	23.44	23.65	23.11
Notes	The Conducted RF Output Power test of WCDMA was						
Note:	tested by power meter.						

9. TEST RESULTS LIST

Summary of Measurement Results (GSM 850MHz Band)

Phant Configur		Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
AB	GSM	MORTE ST	128	0.396	1.331	0.527
MORL	(Hold to	Front upward	190	0.906	1.172	1.062
RLA	face)	Mo	251	1.374	1.050	1.443
Deale	, AB	Back upward	251	0.752	1.050	0.790
Body		N.B	128	0.473	1.422	0.673
(5mm	GPRS	Front upward	190	0.616	1.242	0.765
Separation) (Body worn)	(Body	03 WALAB	251	0.811	1.050	0.865
	worn)	Edge A	E GLA	0.319	W.	0.335
		Edge B		0.375	1.050	0.394
		Edge C	QLAB	0.162		0.170

Summary of Measurement Results (GSM 1900MHz Band)

Temperature:	21.0~23.8	°C, humidity: 54~	-60%.	Mole	B	LAE OFLE
Phant Configur		Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
MORLAR	GSM (Hold to face)	Front upward	810	0.532	1.005	0.535
LAE O	RI. II	0, 0	512	1.208	1.219	1.473
'B W		Back upward	661	1.139	1.130	1.287
ORLA			810	1.079	1.005	1.084
Body		MOL	512	1.219	1.219	1.486
(5mm	GPRS	Front upward	661	0.864	1.130	0.976
Separation)	(Body	Oter B We	810	1.014	1.005	1.019
S W	worn)	Edge A	040	0.364	4.005	0.366
HORLAS HORL	Edge B	810	0.766	1.005	0.770	
	MOLE	512	1.206	1.219	1.470	
	Edge C	661	1.333	1.130	1.506	
AB		OR ME	810	1.404	1.005	1.411

Note:

1. GPRS/EDGE test Scenario (Based on the Max. Time-based Average Power)

Band	Channel	Slots	Power level	Duty Cycle
GPRS850	251	4 MO	5 21.00	1:2
GPRS1900	810	4	0 1110	1:2

Summary of Measurement Results (WCDMA 850MHz Band)

Temperature:	21.0~23.8°	C, humidity: 54~6	60%.	Mole	S Mr.	LAB ORL
Phant	om	Device Test	Device Test	SAR(W/Kg),	Scaling	Scaled SAR
Configur	ations	Positions	channel	1g Peak	Factor	(W/Kg), 1g
AB RLA		MOLE N	4132	1.130	1.268	1.433
	Hold to	Front upward	4175	1.183	1.211	1.433
	face	e me	4233	1.230	1.033	1.271
	LAB	ORLA MORE	4132	1.113	1.268	1.411
Body	Sr. B. W.	Back upward	4175	1.074	1.211	1.301
(5mm	ORLAN	MORLEN	4233	0.940	1.033	0.971
Separation)	Body	BORLAN	4132	0.956	1.268	1.212
	worn	Edge A	4175	0.977	1.211	1.183
SLAS MU MORLAS .	RLAL	4233	0.868	1.033	0.897	
	Sr. M	Edge B	4000	0.642	4.000	0.663
AB RIAB		Edge C 4233		0.509	1.033	0.526

Summary of Measurement Results (WCDMA 1900MHz Band)

remperature: A	21.0~23.8°C	, humidity: 54~60	1%.	- No.	O.P.	all all
Dhantom Con	figurations	Device Test	Device Test	SAR(W/Kg),	Scaling	Scaled SAR
Phantom Con	ingurations	Positions	channel	1g Peak	Factor	(W/Kg), 1g
AB GLAB ORL		Wo.	9262	1.238	1.138	1.409
Hold to	Front upward	9400	0.838	1.084	0.908	
	face	CB III	9538	0.824	1.227	1.011
Body	al.Ab	"OBI", IIIO	9262	1.111	1.138	1.264
(5mm	MOIL	Back upward	9400	0.971	1.084	1.053
Separation)	Body	MOL	9538	0.813	1.227	0.998
worn	worn	Edge A	HO.	0.585	ORI	0.634
	A.I.O	Edge B	9400	0.783	1.084	0.849
	LAB	Edge C	8 111	0.743		0.805

Note:

- When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r02)
 - ≤ 0.8 W/kg and transmission band ≤ 100 MHz
 - ≤ 0.6 W/kg and, 100 MHz < transmission bandwidth ≤ 200 MHz

≤ 0.4 W/kg and transmission band > 200 MHz

- 2. The EUT doesn't support close to ear voice, so the voice is tested with 5mm distance to flat phantom filled with head equivalent liquid.
- 3. IEEE Std 1528-2013 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 4. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.

5. Scaling Factor calculation

Band	Tune-up power tolerance(dBm)	SAR test channel Power (dBm)	Scaling Factor
AB SELA	MORE ME AE CELAE	32.26	1.331
GSM 850	PCL = 5, PWR =33+-0.5	32.81	1.172
	AL MO AB TOR	33.29	1.050
Me AB	TRIAL MORE MIC AR	26.47	1.422
GPRS 850	PCL = 5, PWR =27.5+-0.5(4 slots)	27.06	1.242
OE THE SLAP	MOREL MOL AE IN CELAR	27.79	1.050
GSM1900	PCL = 0, PWR =30.5+-0.5	30.76	1.057
QLAE M	AL HILL BE GLAD HOP	26.24	1.219
GPRS 1900	PCL= 0, PWR = 26.6+-0.5(4 slots)	26.57	1.130
	HO! OF IN TLAE MORLE	27.08	1.005
OB QLA	NORL MO AE ELAS	23.47	1.268
WCDMA 850	Max output power =23.5(+1/-2)	23.67	1.211
	ALL MOIS SE IN SLAE TOR	24.36	1.033
MO. VE III	TLAN TOPLE MOT AR	23.44	1.138
WCDMA 1900	Max output power =23(+1/-2)	23.65	1.084
	ORLE MOR SE IN SLAE	23.11	1.227

10. REPEATED SAR MEASUREMENT

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Band	Test Position	Test Channel	Meas.SAR(W/kg)		Largest to Smallest
Danu	Test Position	rest Charmer	Original	Repeated	SAR Ratio
GSM850	Body	251	1.374	1.329	1.03
GSM1900	Body	810	1.404	1.403	1.00
WCDMA850	Body	4233	1.230	1.156	1.06
WCDMA1900	Body	9262	1.238	1.148	1.08

ANNEX A GRAPH TEST RESULTS

BAND	<u>PARAMETERS</u>
PLA	Measurement 1: Flat Plane with Body device position on Low
	Channel in GSM mode
AB	Measurement 2: Flat Plane with Body device position on Middle
	Channel in GSM mode
	Measurement 3: Flat Plane with Body device position on High
	Channel in GSM mode
	Measurement 4: Flat Plane with Body device position on High
	Channel in GPRS mode
	Measurement 5: Flat Plane with Body device position on Low
	Channel in GPRS mode
NO STATE	Measurement 6: Flat Plane with Body device position on Middle
<u>GSM850</u>	Channel in GPRS mode
	Measurement 7: Flat Plane with Body device position on High
	Channel in GPRS mode
	Measurement 8: Flat Plane with Body device position on High
	Channel in GPRS mode
	Measurement 9: Flat Plane with Body device position on High
	Channel in GPRS mode
	Measurement 10: Flat Plane with Body device position on High
	Channel in GPRS mode
	Measurement 11: Flat Plane with Body device position on High
	Channel in GPRS mode
NIC. AF	Measurement 12: Flat Plane with Body device position on High
	Channel in GSM mode
	Measurement 13: Flat Plane with Body device position on Low
	Channel in GPRS mode
	Measurement 14: Flat Plane with Body device position on Middle
	Channel in GPRS mode
	Measurement 15: Flat Plane with Body device position on High
	Channel in GPRS mode
	Measurement 16: Flat Plane with Body device position on Low
	Channel in GPRS mode
	Measurement 17: Flat Plane with Body device position on Middle
GSM1900	Channel in GPRS mode
Me	AE TALAR ADRIV MOT AE TO ALARE AD

	al P	Ole	Bu		S	al. h.		*O/L
LAB	Measurement 18:	Flat Plane	with	Body	device	position	on	High
A 100	Channel in GPRS	mode						
JORLIN MO	Measurement 19:	Flat Plane	with	Body	device	position	on	High
W. CLAB	Channel in GPRS	mode						
Mole	Measurement 20:	Flat Plane	with	Body	device	position	on	High
LAE	Channel in GPRS	mode						
e me	Measurement 21:	Flat Plane	with	Body	device	position	on	Low
ORLAN MOF	Channel in GPRS	mode						
ME	Measurement 22:	Flat Plane	with	Body	device	position	on	Middle
MORL	Channel in GPRS	mode						
AB RLAD	Measurement 23:	Flat Plane	with	Body	device	position	on	High
II. MO.	Channel in GPRS	mode						
TLAE NOF	Measurement 24:	Flat Plane	with	Body	device	position	on	High
MOL B W.	Channel in GPRS	mode 🌕		-0 N		LAB	.0	RLA
ORLA	Measurement 25:	Flat Plane	with	Body	device	position	on	Low
S ME	Channel in WCDM	1A mode						
LA. MORE	Measurement 26:	Flat Plane	with	Body	device	position	on	Middle
LAB OF	Channel in WCDM	1A mode						
MORE ME	Measurement 27:	Flat Plane	with	Body	device	position	on	High
ORLAL	Channel in WCDM	1A mode						
MU	Measurement 28:	Flat Plane	with	Body	device	position	on	Low
LAP	Channel in WCDM	1A mode						
NB 10	Measurement 29:	Flat Plane	with	Body	device	position	on	Middle
MO.	Channel in WCDM	1A mode						
RLAB	Measurement 30:	Flat Plane	with	Body	device	position	on	High
WCDMA	Channel in WCDM	1A mode						
850	Measurement 31:	Flat Plane	with	Body	device	position	on	Low
030	Channel in WCDM	1A mode						
ORLA	Measurement 32:	Flat Plane	with	Body	device	position	on	Middle
MELAE	Channel in WCDM	1A mode						
MORE	Measurement 33:	Flat Plane	with	Body	device	position	on	High
AB ORLAN	Channel in WCDM	1A mode						
T HILL	Measurement 34:	Flat Plane	with	Body	device	position	on	High
ORLAN MOR	Channel in WCDM	1A mode						
MO AE	Measurement 35:	Flat Plane	with	Body	device	position	on	High
MORL	Channel in WCDM							
AB QLAB	Measurement 36:	Flat Plane	with	Body	device	position	on	High
T. MOL	Channel in WCDM	1A mode		Mor	ر ج	Lo.	AB	, OPI

Measurement 37: Flat Plane with Body device position on Low Channel in WCDMA mode

Measurement 38: Flat Plane with Body device position on Middle Channel in WCDMA mode

Measurement 39: Flat Plane with Body device position on High Channel in WCMA mode

Measurement 40: Flat Plane with Body device position on Low Channel in WCDMA mode

Measurement 41: Flat Plane with Body device position on Middle Channel in WCDMA mode

WCDMA 1900 Measurement 42: Flat Plane with Body device position on High Channel in WCMA mode

Measurement 43: Flat Plane with Body device position on Middle Channel in WCDMA mode

Measurement 44: Flat Plane with Body device position on Middle Channel in WCDMA mode

Measurement 45: Flat Plane with Body device position on Middle Channel in WCDMA mode

Measurement 46: Flat Plane with Body device position on Low Channel in WCDMA mode

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 36 seconds

A. Experimental conditions.

Appendix Contained	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Low Band SAR (Channel 128):

Frequency (MHz)	824.200000				
Relative permittivity (real part)	41.368462				
Conductivity (S/m)	0.876285				
Power drift(%)	1.940000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	6.73				
Crest factor:	1:8				

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.61 W/kg

SAR 10g (W/Kg)	0.247755
SAR 1g (W/Kg)	0.396057

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 36 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift(%)	-1.020000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	1:8

Maximum location: X=16.00, Y=30.00 SAR Peak: 1.43 W/kg

SAR 10g (W/Kg)	0.559973
SAR 1g (W/Kg)	0.905585

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 36 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift(%)	1.270000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	1:8

Maximum location: X=2.00, Y=0.00 SAR Peak: 2.09 W/kg

SAR 10g (W/Kg)	0.895668
SAR 1g (W/Kg)	1.374378

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift(%)	-0.560000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=0.00, Y=0.00 SAR Peak: 1.03 W/kg

SAR 10g (W/Kg)	0.512707
SAR 1g (W/Kg)	0.752102

MEASUREMENT 5

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

	The State of the S
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Low
Signal	GPRS

B. SAR Measurement Results

Low Band SAR (Channel 128):

Frequency (MHz)	824.200000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift(%)	0.550000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=-1.00, Y=14.00 SAR Peak: 0.80 W/kg

SAR 10g (W/Kg)	0.242527
SAR 1g (W/Kg)	0.472615

MEASUREMENT 6

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 28 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift(%)	-1.630000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=14.00, Y=9.00 SAR Peak: 0.83 W/kg

SAR 10g (W/Kg)	0.440688
SAR 1g (W/Kg)	0.615470

MEASUREMENT 7

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 38 seconds

A. Experimental conditions.

Application of the state of the	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	-2.400000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=8.00, Y=1.00 SAR Peak: 1.18 W/kg

SAR 10g (W/Kg)	0.534231
SAR 1g (W/Kg)	0.811005

MEASUREMENT 8

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 33 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift(%)	-3.380000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=7.00, Y=-1.00 SAR Peak: 0.50 W/kg

SAR 10g (W/Kg)	0.203942
SAR 1g (W/Kg)	0.319228

MEASUREMENT 9

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift(%)	-1.630000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=9.00, Y=2.00 SAR Peak: 0.55 W/kg

SAR 10g (W/Kg)	0.234547
SAR 1g (W/Kg)	0.375472

MEASUREMENT 10

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 32 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift(%)	-1.630000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:2

Maximum location: X=7.00, Y=-2.00 SAR Peak: 0.49 W/kg

SAR 10g (W/Kg)	0.0.75268
SAR 1g (W/Kg)	0.161876

MEASUREMENT 11

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 36 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

High Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift(%)	1.270000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	1:8

Maximum location: X=0.00, Y=-2.00 SAR Peak: 2.05 W/kg

SAR 10g (W/Kg)	0.739643
SAR 1g (W/Kg)	1.329491

MEASUREMENT 12

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 38 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	40.124068
Conductivity (S/m)	1.376284
Power drift(%)	3.370000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.00
Crest factor:	1:8

Maximum location: X=-7.00, Y=16.00 SAR Peak: 0.85 W/kg

SAR 10g (W/Kg)	0.291560
SAR 1g (W/Kg)	0.531992

MEASUREMENT 13

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 36 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	Low
Signal	GPRS

B. SAR Measurement Results

Low Band SAR (Channel 512):

Frequency (MHz)	1850.200000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	0.530000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=5.00, Y=18.00 SAR Peak: 1.88 W/kg

SAR 10g (W/Kg)	0.687919
SAR 1g (W/Kg)	1.207564

MEASUREMENT 14

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 37 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-2.870000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=-2.00, Y=18.00 SAR Peak: 1.75 W/kg

SAR 10g (W/Kg)	0.635646
SAR 1g (W/Kg)	1.139153

MEASUREMENT 15

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 38 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	1.470000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=6.00, Y=21.00 SAR Peak: 1.71 W/kg

SAR 10g (W/Kg)	0.582507
SAR 1g (W/Kg)	1.078517

MEASUREMENT 16

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 38 seconds

A. Experimental conditions.

Apolitical Containence	A SIE MIN A A A A
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	Low
Signal	GPRS

B. SAR Measurement Results

Low Band SAR (Channel 512):

Frequency (MHz)	1850.200000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-3.390000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=1.00, Y=16.00 SAR Peak: 1.99 W/kg

SAR 10g (W/Kg)	0.688121
SAR 1g (W/Kg)	1.218890

MEASUREMENT 17

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 39 seconds

A. Experimental conditions.

Apprilia Contamono	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-2.290000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=-7.00, Y=10.00 SAR Peak: 1.33 W/kg

SAR 10g (W/Kg)	0.427774
SAR 1g (W/Kg)	0.863638

MEASUREMENT 18

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 38 seconds

A. Experimental conditions.

xperimental contaitions.	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-3.780000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=-6.00, Y=14.00 SAR Peak: 1.59 W/kg

SAR 10g (W/Kg)	0.536481
SAR 1g (W/Kg)	1.013507

MEASUREMENT 19

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 40 seconds

A. Experimental conditions.

surf_sam_plan.txt
Flat Plane
Body
GSM1900
High
GPRS

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-3.820000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=8.00, Y=-7.00 SAR Peak: 0.67 W/kg

SAR 10g (W/Kg)	0.161344
SAR 1g (W/Kg)	0.364249

MEASUREMENT 20

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 53 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-0.340000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=3.00, Y=3.00 SAR Peak: 1.42 W/kg

SAR 10g (W/Kg)	0.458566
SAR 1g (W/Kg)	0.766103

MEASUREMENT 21

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 42 seconds

A. Experimental conditions.

Application of the state of the	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	Low
Signal	GPRS

B. SAR Measurement Results

Low Band SAR (Channel 512):

Frequency (MHz)	1850.200000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-0.540000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=0.00, Y=-2.00 SAR Peak: 2.15 W/kg

SAR 10g (W/Kg)	0.544425
SAR 1g (W/Kg)	1.205929

MEASUREMENT 22

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 56 seconds

A. Experimental conditions.

Apolitical Collection	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-3.940000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=1.00, Y=-2.00 SAR Peak: 2.55 W/kg

SAR 10g (W/Kg)	0.649832
SAR 1g (W/Kg)	1.333200

MEASUREMENT 23

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 58 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-2.740000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

VOLUME SAR

Maximum location: X=1.00, Y=-2.00 SAR Peak: 2.97 W/kg

SAR 10g (W/Kg)	0.66646
SAR 1g (W/Kg)	1.404371

MEASUREMENT 24

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 58 seconds

A. Experimental conditions.

Application of the state of the	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GPRS

B. SAR Measurement Results

High Band SAR (Channel 810):

Frequency (MHz)	1909.800000
Relative permittivity (real part)	53.211726
Conductivity (S/m)	1.532845
Power drift(%)	-3.890000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	1:2

Maximum location: X=-8.00, Y=-16.00 SAR Peak: 2.06 W/kg

SAR 10g (W/Kg)	0.743925
SAR 1g (W/Kg)	1.402516

MEASUREMENT 25

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Low Band SAR (Channel 4132):

Frequency (MHz)	826.400000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift (%)	-1.260000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	ORL 110 1:1

Maximum location: X=-1.00, Y=25.00 SAR Peak: 2.04 W/kg

SAR 10g (W/Kg)	0.921412
SAR 1g (W/Kg)	1.129516

MEASUREMENT 26

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 29 seconds

A. Experimental conditions.

Aperimental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 4175):

Frequency (MHz)	835.000000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift (%)	1.390000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	ORL MOTH

Maximum location: X=0.00, Y=24.00 SAR Peak: 2.06 W/kg

SAR 10g (W/Kg)	0.950491
SAR 1g (W/Kg)	1.183337

MEASUREMENT 27

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

tpormioniai oonanaonoi	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 4233):

Frequency (MHz)	846.600000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift (%)	-3.430000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	0RL 11 5 W 1.10

Maximum location: X=-1.00, Y=25.00 SAR Peak: 1.76 W/kg

SAR 10g (W/Kg)	0.793116
SAR 1g (W/Kg)	1.230152

MEASUREMENT 28

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 55 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Low Band SAR (Channel 4132):

Frequency (MHz)	826.400000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	0.010000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	0RL 11 5 W 1.PS

Maximum location: X=11.00, Y=-26.00 SAR Peak: 1.66 W/kg

SAR 10g (W/Kg)	0.712330
SAR 1g (W/Kg)	1.112813

MEASUREMENT 29

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 10 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 4175):

Frequency (MHz)	835.000000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	0.840000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	0RL 111 8 W 1AB

Maximum location: X=11.00, Y=-26.00 SAR Peak: 1.63 W/kg

SAR 10g (W/Kg)	0.680689
SAR 1g (W/Kg)	1.074181

MEASUREMENT 30

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 56 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 4233):

Frequency (MHz)	846.600000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	-2.940000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	0RL 11 5 W 1.PD

Maximum location: X=11.00, Y=-26.00 SAR Peak: 1.38 W/kg

SAR 10g (W/Kg)	0.565784
SAR 1g (W/Kg)	0.940188

MEASUREMENT 31

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Low Band SAR (Channel 4132):

Frequency (MHz)	826.400000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	-3.100000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	ORL 110 1:1

Maximum location: X=7.00, Y=-20.00 SAR Peak: 1.39 W/kg

SAR 10g (W/Kg)	0.616098
SAR 1g (W/Kg)	0.955723

MEASUREMENT 32

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 4175):

Frequency (MHz)	835.000000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	0.920000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	1:1 N

Maximum location: X=7.00, Y=-13.00 SAR Peak: 1.40 W/kg

SAR 10g (W/Kg)	0.641665
SAR 1g (W/Kg)	0.976743

MEASUREMENT 33

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 29 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 4233):

Frequency (MHz)	846.600000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	2.720000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	ORL 110 1:1

Maximum location: X=8.00, Y=-21.00 SAR Peak: 1.27 W/kg

SAR 10g (W/Kg)	0.558256
SAR 1g (W/Kg)	0.867926

MEASUREMENT 34

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Aperimental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 4233):

Frequency (MHz)	846.600000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	-0.670000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	ORL 110 1:1

Maximum location: X=7.00, Y=17.00 SAR Peak: 0.86 W/kg

SAR 10g (W/Kg)	0.449863
SAR 1g (W/Kg)	0.642472

MEASUREMENT 35

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 4233):

Frequency (MHz)	846.600000
Relative permittivity (real part)	55.157528
Conductivity (S/m)	0.931058
Power drift (%)	-0.020000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.99
Crest factor:	0RL 11 5 W 1.PS

Maximum location: X=5.00, Y=-2.00 SAR Peak: 0.90 W/kg

SAR 10g (W/Kg)	0.269593
SAR 1g (W/Kg)	0.508973

MEASUREMENT 36

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 4233):

Frequency (MHz)	846.600000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift (%)	-0.410000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	0RL 11 5 W 1.10

Maximum location: X=9.00, Y=2.00 SAR Peak: 2.17 W/kg

SAR 10g (W/Kg)	0.507811
SAR 1g (W/Kg)	1.155636

MEASUREMENT 37

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 35 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Low Band SAR (Channel 9262):

Frequency (MHz)	1852.400000
Relative permittivity (real part)	40.124068
Conductivity (S/m)	1.376284
Power drift (%)	0.250000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.00
Crest factor:	0RL 11 5 W 1AB

Maximum location: X=8.00, Y=1.00 SAR Peak: 1.95 W/kg

SAR 10g (W/Kg)	0.665960
SAR 1g (W/Kg)	1.237971

MEASUREMENT 38

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 33 seconds

A. Experimental conditions.

Aperimental conditions.	after and a large
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

The state of the s	
Frequency (MHz)	1880.00000
Relative permittivity (real part)	40.124068
Conductivity (S/m)	1.376284
Power drift (%)	-2.080000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.00
Crest factor:	1:1 M

Maximum location: X=8.00, Y=2.00 SAR Peak: 1.33 W/kg

SAR 10g (W/Kg)	0.442335
SAR 1g (W/Kg)	0.837551

MEASUREMENT 39

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

perimental conditions.	10 th. 10 10 10 10 10 10 10 10 10 10 10 10 10
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 9538):

Frequency (MHz)	1907.600000
Relative permittivity (real part)	40.124068
Conductivity (S/m)	1.376284
Power drift (%)	-3.440000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.00
Crest factor:	ORL NO 1:1

Maximum location: X=8.00, Y=0.00 SAR Peak: 1.34 W/kg

SAR 10g (W/Kg)	0.433237
SAR 1g (W/Kg)	0.824032

MEASUREMENT 40

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 25 seconds

A. Experimental conditions.

eportinontal contaitions.	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Low Band SAR (Channel 9262):

Frequency (MHz)	1852.400000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	1.730000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	OFFL 110 1:1

Maximum location: X=0.00, Y=-5.00 SAR Peak: 2.01 W/kg

SAR 10g (W/Kg)	0.506153
SAR 1g (W/Kg)	1.111454

MEASUREMENT 41

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 33 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	1.320000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	ORL MOTH

Maximum location: X=18.00, Y=2.00 SAR Peak: 1.56 W/kg

SAR 10g (W/Kg)	0.613018
SAR 1g (W/Kg)	0.971427

MEASUREMENT 42

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 56 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

High Band SAR (Channel 9538):

Frequency (MHz)	1907.600000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	1.580000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	0RL 110 1:1

Maximum location: X=17.00, Y=1.00 SAR Peak: 1.30 W/kg

SAR 10g (W/Kg)	0.447446
SAR 1g (W/Kg)	0.812770

MEASUREMENT 43

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 32 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	-3.690000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	ORL 1107:1

Maximum location: X=9.00, Y=1.00 SAR Peak: 0.92 W/kg

SAR 10g (W/Kg)	0.333950
SAR 1g (W/Kg)	0.585206

MEASUREMENT 44

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 10 minutes 5 seconds

A. Experimental conditions.

tpormioniai comanionoi	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	-0.240000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	0RL 110 1:1

Maximum location: X=3.00, Y=3.00 SAR Peak: 1.31 W/kg

SAR 10g (W/Kg)	0.415805
SAR 1g (W/Kg)	0.782554

MEASUREMENT 45

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 29 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Middle
Signal	CDMA

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	1.370000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	0RL 1101:1

Maximum location: X=0.00, Y=-2.00 SAR Peak: 1.73 W/kg

SAR 10g (W/Kg)	0.423395
SAR 1g (W/Kg)	0.942969

MEASUREMENT 46

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 9 minutes 35 seconds

A. Experimental conditions.

tpormioniai comanionoi	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Low Band SAR (Channel 9262):

Frequency (MHz)	1852.400000
Relative permittivity (real part)	53.206724
Conductivity (S/m)	1.532867
Power drift (%)	0.250000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.17
Crest factor:	ORL 110 1:1

Maximum location: X=2.00, Y=-33.00 SAR Peak: 1.72 W/kg

SAR 10g (W/Kg)	0.607645
SAR 1g (W/Kg)	1.147628

System Performance Check Data(Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Aportiniontal conditions.	A' AFE ME
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	MC AE SLAT MORE MO
Band	835MHz
Channels	AE GLAD HORD HO. AE
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.000000
Relative permittivity (real part)	41.368462
Conductivity (S/m)	0.876285
Power drift (%)	1.060000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	6.73
Crest factor:	110 1:1

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.278645		
SAR 1g (W/Kg)	2.391637		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5209	1.6629	1.1437	0.8075	0.5889	0.4143
(W/Kg)	Mo	oB.	RLAD	MORI	Mo	68	QLAB.

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.18

Measurement duration: 13 minutes 29 seconds

A. Experimental conditions.

40 40	10 th 10 th
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	AB RELAY MORE INC.
Band	835MHz
Channels	IF THE MORE MICE OF
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.000000				
Relative permittivity (real part)	55.157528				
Conductivity (S/m)	0.931058				
Power drift (%)	0.420000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	6.99				
Crest factor:	0RL 110 1:1				

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.297682		
SAR 1g (W/Kg)	2.445892		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5209	1.6629	1.1437	0.8075	0.5889	0.4143
(W/Kg)	Mo	68	al.Ab	MORL	Mo		ZLAB

System Performance Check Data(Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 13 minutes 28 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	AE SELAE MORE MO			
Band	1900MHz			
Channels	RIAL NORL MO. NE			
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900.000000				
Relative permittivity (real part)	40.124068				
Conductivity (S/m)	1.376284				
Power drift (%)	2.130000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	6.00				
Crest factor:	ORL MOTH				

Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	6.354286		
SAR 1g (W/Kg)	9.774862		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.6419	6.0043	3.7297	2.2606	1.5119	0.9792
(W/Kg)	NIC NIC	AB .	RI.AL	MORL	Mo.	AB .	RLAB

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.9.19

Measurement duration: 13 minutes 26 seconds

A. Experimental conditions.

	W AV
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	AE SELAE MORE INC.
Band	1900MHz
Channels	SE SELAN MORE MO DE
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900.000000			
Relative permittivity (real part)	53.206724			
Conductivity (S/m)	1.532867			
Power drift (%)	-1.110000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	6.17			
Crest factor:	0FL 11 5 W 1AB			

Maximum location: X=7.00, Y=1.00

SAR 10g (W/Kg)	6.762849	
SAR 1g (W/Kg)	9.986674	

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	10.2075	7.3996	5.4654	4.1101	3.1286	2.4128

ANNEX B GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address: FL.3, Building A, FeiYang Science Park, No.8 Road, Block 67, BaoAn District, ShenZhen, Province, P. R. China			
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

4. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Aglient (8960, SN:10752)	2014-2-21	1year
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2013-9-26	1year
4	Voltmeter	Keithley (2000, SN:1000572)	2013-9-24	1year
5	Signal Generator	Rohde&Schwarz (SMP_02)	2013-9-24	1year
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2013-9-24	1year
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2014-5-07	1year
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2014-5-07	1year
9	Directional coupler	Giga-tronics(SN:1829112)	2013-9-24	1year
10	Probe	Satimo (SN:SN 37/08 EP80)	2013-9-25	1year
11	Dielectric Probe Kit	Agilent (85033E)	2013-9-24	1year
12	Phantom	Satimo (SN:SN_36_08_SAM62)	2013-9-24	1year
13	Liquid	Satimo(Last Calibration: 2014-9-18 to 2014-9-19)	N/A	N/A
14	Dipole 835MHz	Satimo (SN 20/08 DIPC 99)	2013-9-25	1year
15	Dipole 1900MHz	Satimo (SN 30/13 DIP1G900-261)	2013-9-25	1year

***** END OF REPORT *****