UK Patent Application (19) GB (11) 2 095 252 A

- (21) Application No 8207770
- (22) Date of filing 17 Mar 1982
- (30) Priority data
- (31) 245407
- (32) 19 Mar 1981
- (33) United States of America
 (US)
- (43) Application published 29 Sep 1982
- (51) INT CL³
 C07D 215/48 A61K
 31/395 C07C 103/52
 C07D 209/42 223/16
 401/02 403/02 405/12
 409/12 491/056
- (52) Domestic classification C2C 1204 1343 1410 1470 1473 1494 1502 1510 1530 1535 1732 213 215 220 226 22X 22Y 236 246 247 250 251 252 253 254 255 25Y 28X 29X 29Y 30Y 311 313 31Y 320 321 322 32Y 337 338 351 355 360 361 364 365 366 367 368 36Y 373 37Y 463 464 612 613 620 625 628 638 648 650 658 65X 662 675 678 694 699 703 747 771 802 **BOY AA LA LZ QT QU** C3H 302 A4
- (56) Documents cited
 None
- (58) Field of search C2C
- (71) Applicant
 USV Pharmaceutical
 Corporation,
 1 Scarsdale Road,
 Tuckahoe,
 New York,
 United States of America
- (72) Inventors
 John T. Suh,
 John R. Regan,
 Jeffrey N. Barton
- (74) Agents
 Michael Burnside and
 Partners,
 2 Serjeants' Inn,
 Fleet Street,
 London,
 EC4Y 1HL

(54) N-(substituted aminoalkanoyl)heterocyclic compounds

(57) Compounds of the formula

$$\begin{array}{c|c} R_2 & R_5 & COOR_7 \\ \hline R_1000C & R_3 & R_6 & COH_2 \\ \hline \end{array}$$

wherein

R₁ and R₇ are hydrogen, lower alkyl or phenyl lower alkyl,

R₂, R₃, R₄, R₅ and R₆ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, fused aryl-cycloalkyl, aralkyl, cycloalkyl, heterocyclic, substituted lower alkyl, lower alkenyl, and lower alkynyl groups wherein the substituent is hydroxy, alkoxy, halo, amino, alkylamino, mercapto and

alkylmercapto groups, and substituted cycloalkyl, aryl and heterocyclic groups in which the substituent is alkyl, hydroxy, alkoxy, hydroxyalkyl, halo, mercapto, alkylmercapto, mercaptoalkyl, haloalkyl, amino, alkylamino, aminoalkyl, nitro, methylenedioxy, and trifluoromethyl;

each R_B is lower alkyl, lower alkenyl, lower alkynyl, nitro, amino, alkylamino, dialkylamino, hydroxy, alkoxy, mercapto, alkylmercapto, hydroxyalkyl, mercaptoalkyl, halogen, haloalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonamido, methylenedioxy, or trifluoromethyl,

m is an integer from 0 to 2 inclusive;

m' is an integer from 1 to 3 inclusive, provided that when m is 0, m' is 2 or 3 and, when m is other than 0, m' is 1 or 2;

n is an integer from 0 to 4 inclusive, and salts thereof, especially pharmaceutically acceptable salts with an acid or a base.

SPECIFICATION Amido-amino acids

This invention relates to new compounds having valuable pharmacological activity. It particularly relates to compounds having antihypertensive and angiotensin converting enzyme inhibitory activity 5 and the structure

5

$$\begin{array}{c|c} & & & & \\ & & & \\ R_1 \text{OOC} & & \\ &$$

wherein

15

25

40

 R_1 and R_7 are each hydrogen, lower alkyl, or phenyl lower alkyl; R_2 , R_3 , R_4 , R_5 and R_6 are each hydrogen, alkyl, alkenyl, alkynyl, aryl, fused aryl-cycloalkyl, aralkyl, cycloalkyl, and heterocyclic, and 10 may be the same or different:

10

each R_B is alkyl, alkenyl, alkynyl, nitro, amino, alkylamino, dialkylamino, hydroxy, alkoxy, mercapto, alkylmercapto, hydroxyalkyl, mercaptoalkyl, halogen, haloalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonamido, methylenedioxy, and trifluoromethyl, and where there is more than one R_s group, the groups may be the same or different;

m is an integer from 0 to 2; and m' is an integer from 1 to 3 provided that when m is 0, m' is 2 or 15

3 and when m is other than 0, m' is 1 or 2;

. n is an integer from 0 to 4;

and salts thereof especially salts with pharmaceutically acceptable acids and bases.

The alkyl groups in alkyl per se, aralkyl, alkoxy, aminoalkyl, thioalkyl, haloalkyl, and hydroxyalkyl 20 are preferably lower alkyl containing 1 to 6 carbon atoms and may be branched or straight chain.

20

25

30

45

The alkenyl and alkynyl groups contain from 2 to 6 carbon atoms and may be branched or straight chain.

The alkyl, alkenyl, and alkynyl groups may carry substitutents such as hydroxy, alkoxy, halo,

amino, alkylamino, mercapto and alkylmercapto.

The cycloalkyl groups contain from 3 to 7 carbon atoms. Such cycloalkyl groups include cycloalkyl-alkyl and the cycloalkyl groups may carry substituents such as alkyl, halo, haloalkyl, hydroxy, hydroxyalkyl, alkoxy, amino, aminoalkyl, alkylamino, trifluoromethyl, and nitro.

The aryl groups may have from 6 to 10 carbons and include phenyl and lpha- and eta-naphthyl. The aryl groups may contain substituents such as alkyl, hydroxy, alkoxy, hydroxyalkyl, mercapto,

30 alkylmercapto, mercaptoalkyl, halo, haloalkyl, amino, alkylamino, aminoalkyl, nitro, methylenedioxy,

trifluoromethyl, ureido and quanidino.

The fused aryl-cycloalkyl comprise phenyl rings fused to cycloalkyl rings having from 3 to 7

carbon atoms. These groups also include fused aryl-cycloalkyl-alkyl.

The heterocyclic group may be saturated, partially saturated or unsaturated and includes such 35 groups as pyridine, piperidine, morpholine, pyrrole, pyrrolidine, thiomorpholine, quinoline, isoquinoline, 35 tetrahydroquinoline, thiazolidine, thiazoline, thiazole, imidazolidine, imidazoline, imidazole, thiophene, tetrahydrothiophene, furyl, tetrahydrofuran, and the like. These heterocyclic groups may also carry substituents as described for the aryl groups above. The heterocyclic group also includes heterocyclic lower alkyl. 40

The halo groups include fluorine, chlorine, bromine and iodine.

Preferably, the —COOR, group is attached to a carbon adjacent to the nitrogen of the ring

Suitable acid addition salts include inorganic salts such as hydrochloride, phosphate and sulfate; organic carboxylates such as acetate, malate, maleate, furmarate, succinate, citrate, lactate, benzoate, 45 hydroxybenzoate, aminobenzoate, nicotinate, and the like, and organic sulfonic and phosphonic acids such as toluenesulfonic acid.

Suitable basic salts include alkali and alkaline earth metal salts such lithium, sodium, potassium, magnesium and calcium and iron, as well as ammonium and quarternary ammonium salts.

It is to be understood that the compounds of the present invention may have one or more asymmetric carbon atoms and the various racemic mixtures as well as the individual optically active 50 compounds are considered to be within the scope of the present invention.

The compounds of the present invention may be prepared by amide forming reaction of an amine

compound of the formula

10

15

5

with an acylating derivative of the acid of the formula:

Alternatively, the compounds in which $\rm R_3$ and $\rm R_4$ are hydrogen may be readily prepared by treating a compound of formula II with a compound of the formula

under amide-forming conditions to form a compound of the structure

$$\begin{array}{c|c}
 & COOR_7 \\
 & COOR_$$

splitting off the carbobenzyloxy group to give a free amine of the structure

IV

and reacting the amine with an α -keto acid or ester of the formula

and reducing the resulting imine to give a compound of formula I wherein R_3 and R_4 are hydrogen. Compounds of formula VI can also be reacted with an α -halo acid or ester of the formula

$$R_2$$
|
R₁OOC—C—Hal VIII 15
|
R₃

to give compounds of formula I wherein R_3 and R_4 can be H or any of the other substituents descriptive of the said R_3 and R_4 .

In the above sequence of reactions R_1 to R_8 , m, m' and n are as hereinbefore defined and Hal is halogen.

3 GB 2 095 252 A

5

10

15

20

25

45

55

60

Preferably, R_1 , R_3 , R_4 , R_5 and R_7 and R_8 are hydrogen. R_2 is lower alkyl or phenyl-lower alkyl, R_8 is lower alkyl.

The amide forming conditions referred to herein involve the use of known derivatives of the described acids, such as the acyl halides, anhydrides, mixed anhydrides, lower alkyl esters, carbodiimides, carbonyl diimidazoles, and the like. The reactions are carried out in organic solvents such as acetonitrile, tetrahydrofuran, dioxane, acetic acid, methylene chloride, ethylene chloride and similar such solvents. The amide forming reaction will occur at room temperature or at elevated temperature. The use of elevated temperature is for convenience in that it permits somewhat shortened reaction periods. Temperatures ranging from 0°C up to the reflux temperature of the 10 reaction system can be used. As a further convenience the amide forming reaction can be effected in the presence of a base such as tertiary organic amines, e.g., trimethylamine, pyridine, picolines and the like, particularly where hydrogen halide is formed by the amide-forming reaction, e.g., acyl halide and amino compound. Of course, in those reactions where hydrogen halide is produced, any of the commonly used hydrogen halide acceptors can also be used.

In the condensation of an alpha haloacid derivative of formula VIII herein, similar reaction conditions, solvents and hydrogen halide acceptors can be used as for amide formation.

Various substituents on the present new compounds, e.g., as defined for Rs, can be present in the starting compounds or added after formation of the amide products by the known methods of substitution or conversion reactions. Thus, the nitro group can be added to the final product by nitration 20 of the aromatic ring and the nitro group converted to other groups, such as amino by reduction, and halo by diazotization of the amino group and replacement of the diazo group. Other reactions can be effected on the formed amide product. Amino groups can be alkylated to form mono and dialkylamino groups, mercapto and hydroxy groups can be alkylated to form corresponding ethers. Thus, substitution or alteration reactions can be employed to provide a variety of substituents throughout the molecule of 25 the final products. Of course, reactive groups where present should be protected by suitable blocking groups during any of the aforesaid reactions particularly the condensation reactions to form the amide linkages.

The acid and base salts of the present new compounds can be formed using standard procedures. Often, they are formed in situ during the preparation of the present new amido amino acids.

30 30 The present compounds obviously exist in stereoisomeric forms and the products obtained thus can be mixtures of the isomers, which can be resolved. Alternatively, by selection of specific isomers as starting compounds, the preferred stereoisomer can be produced. Therefore, the preferred forms, where each asymmetric center (chairal center) is S-configuration, are preferably prepared by the stereospecific route rather than attempting resolution of mixtures of isomers. The compounds in which 35 35 the S-configuration exists at all asymmetric centers are the most active; those in which the Rconfiguration exists are of less activity; and those where both R- and S-configurations exist are of intermediate activity.

The invention is further illustrated by the following examples.

Example 1

3

15

40 A. 2-(N-benzyloxycarbonyl-L-alanyl)-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl 40 ester

To a suspension of 10.0 g (43.9 mmols) of L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester hydrochloride and 10.4 g (46.6 mmols) of carbobenzyloxy-L-aniline in 150 ml dry acetonitrile was added 4.4 g (43.6 mmols) of triethylamine. A solution of 9.2 g (44.6 mmol) of N,N-45 dicyclohexylcarbodiimide in 5 ml dry acetonitrile was then added dropwise with stirring. The resulting slurry was stirred overnight at room temperature, filtered and concentrated in vacuo. The residue was redissolved in ether, washed successively with 1N HCl, sat. NaHCO₃, and brine, dried over MgSO₄, filtered, and concentrated to give 18.3 g (105%) of crude amide which was used without further purification.

50 B. 2-(N-benzyloxycarbonyl-L-alanyl)-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid 50 8.0 g of the crude amide ester from A was dissolved in 25 ml 1N NaOH/MeOH. To this was added 5 ml water. The resulting solution was stirred overnight at room temperature, then poured into 150 ml water and extracted with ether. The aqueous layer was then acidified and extracted with CH2Cl2. The extracts were dried over MgSO₄ and concentrated at aspirator pressure to give 5.5 g of product. After 55 prolonged concentration at oil pump vacuum there was obtained a brittle foam.

C. 2-L-alanyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid hydrobromide

To a solution of 4.8 (12.5 mmol) crude carbobenzyloxycarboxylic acid in 7 ml acetic acid was added 5 ml of saturated HBr in acetic acid. The solution was stirred at room temperature until all gas evolution had ceased (1-1.5 hr). A slow stream of air was passed through the solution to remove excess HBr, then 25 ml ether was added to precipitate the product. The solid was washed with two further portions of ether, then dried in vacuo to give 2.2 g of pale yellow solid, m.p. 180°.

	D. N-(1-carboxy-3-phenylpropyl)alanyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid To a solution of 1.3 g (6.63 mmol) of benzylpyruvic acid hydrate in 5 ml. sat. NaHCO ₃ was added 0.307 g (0.93 mmol) of alanyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, followed by 0.238 g (3.79 mmol) of sodium cyanoborohydride. The solution was stirred overnight at room temperature then transferred to a column holding 20 g of Dowex 50X8 ("Dowex" is a registered Trade Mark). The column was eluted with 50% MeOH, then 3% NH ₄ OH. The first ammonia fractions, containing the desired product, were combined and lyophilized to give 85 mg of product as a fluffy white powder, m 97—101°.	• 5
	Example 2	
	A. 2-(N-carbobenzyloxy-L-valyl)-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester. To a suspension of 4.4 g (19.3 mmols) of L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester hydrochloride in 50 ml dry acetonitrile were added 5.2 g (20.7 mmols) N-carbobenzyloxy- L-valine, 2.7 g (20.0 mmols) 1-hydroxybenzotriazole and 2.1 g (20.7 mmols) triethylamine. The resulting mixture was stirred at room temperature and a solution of 4.5 g (21.8 mmols) of	10
15	clohexylcarbodiimide in 10 ml dry acetonitrile was added slowly. The mixture was stirred overnight open temperature, then filtered and worked up as described in Example 1A. Final concentration gave g (101%) of a thick oil.	15
20	B. 2-(N-carbobenzyloxy-L-valyl)-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid 4.5 g (106 mmols) of crude methyl ester prepared according to the above procedure was treated with 10 ml 10% NaOH and sufficient methanol (35—40 ml) to produce a homogeneous solution. This solution was stirred at room temperature for 23 hrs., then diluted with 100 ml water and extracted with two 25 ml portions ether. The aqueous fraction was then acidified and extracted with four 10 ml portions methylene chloride. The extracts were dried over MgSO ₄ and concentrated to give 3.8 g (9.3 mmols, 87%) of homogeneous carboxylic acid.	20
25	Example 3	25
30	A. 2-(N-carbobenzyloxy-L-isoleucyl)-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid 4.5 g (19.8 mmols) of L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester hydrochloride, 5.3 g (20.0 mmols) of N-carbobenzyloxy-L-isoleucine, 2.7 g (20.0 mmols) 1-hydroxybentriazole, and 2.1 g (20.7 mmols) triethylamine were treated as described for example 2A with 4.4 g (21.3 mmols) dicyclohexylcarbodilmide, then worked up to give 7.8 g (90%) of crude methyl ester. This was dissolved in 30 ml methanol and treated with 10 ml 10% NaOH. The solution was stirred overnight at room temperature, then worked up as previously described to give 1.8 g (21.4% overall) of the desired acid as a yellow oil.	30
	Example 4	
35	2-[N-(1-ethoxycarbonyl-3-phenylpropyl)-L-alanyl]-isoquinaldic acid An ethanolic solution of benzyl 2-(N-carbobenzyloxy-L-alanyl)-isoquinaldate was hydrogenated with palladium on carbon. The solution was filtered and treated with ethyl 2-oxo-4-phenyl-butyric acid, alkali and sodium cyanoborohydride as in Example 1D. The product is purified by chromatography and lyophilization.	35
40	Example 5	40
	2-N-(1-carboxyethyl)-L-alanyl-isoquinaldic acid An ethanolic solution of benzyl 2-(N-carbobenzoxy)-L-alanyl)-isoquinaldate and pyruvic acid was hydrogenated with palladium on carbon. The filtered solution was concentrated and purified as in Example 1D.	
45	Example 6	45
	A. 1-(N-carbobenzoxy-L-alanyl)-2-benzoxycarbonylindoline A methylene chloride solution of N-carbobenzyloxy-L-alanine and 2-benzyloxycarbonyl-indoline was treated with N,N'-dicyclohexylcarbodiimide. Purification of the product ws accomplished by chromatography on silica gel.	
50	B. 1-[N-(1-ethoxycarbonyl-3-phenylpropyl)-L-alanyl]-2-carboxy-indoline An ethanolic solution of 1-(N-carbobenzyloxy-L-alanyl)-2-benzyloxycarbonyl-indoline was hydrogenated with palladium on carbon. To the filtered solution was added ethyl 2-oxo-4-phenylbutyric acid, alkali and sodium cyanoborohydride as in Example 1D. The product was purified by chromatography and lyophilization.	50

carboxylic acid

	Example 7	
5	1-[N-(1-carboxyethyl)-L-alanyl]-2-carboxy-indoline An ethanolic solution of 1-(N-carbobenzyloxy-L-alanyl)-2-benzyloxycarbonyl-indoline was hydrogenated with palladium on carbon. To the filtered solution was added ethyl pyruvate, alkali and sodium cyanoborohydride. The product was purified by chromatography and lyophilization.	5
	Example 8	
10	1-Benzyloxycarbonyl-2-(N-carbobenzyloxy-L-alanine)-5H-1,2,3,4-tetrahydro-2-benzazepine A methylene chloride solution of N-carbobenzyloxy-L-alanine and 1-benzyloxycarbonyl-5H- 1,2,3,4-tetrahydro-2-benzazepine was treated with N,N'-dicyclohexylcarbodiimide as in Example 3A. Purification of the final product was accomplished by silica gel chromatography.	10
	Example 9	
15	1-Carboxy-2-N-(1-carboxy-3-phenylpropyl)-L-alanyl-5H-1,2,3,4-tetrahydro-2-benzazepine An ethanolic solution of 1-benzyloxycarbonyl-2-(N-carbobenzyloxy-L-alanyl)-5H-1,2,3,4- tetrahydro-2-benzazepine was hydrogenated with palladium on carbon. The filtered solution was treated with alkali, sodium cyanoborohydride and 2-oxo-4-phenylbutyric acid as in Example 1D. The product was purified by chromatography.	15
	Example 10	
20	1-Carboxy-2-[N-(1-carboxy-3-methylbutyl)-L-alanyl]-5H-1,2,3,4-tetrahydro-2-benzazepine An ethanolic solution of 1-benzyloxycarbonyl-2-(n-carbobenzyloxy-alanyl)-5H-1,2,3,4- tetrahydro-2-benzazepine was hydrogenated with palladium on carbon. The filtered solution was treated with 2-oxo-4-methylpentanolic acid, sodium cyanoborohydride and alkali as in Example 1D. Chromatography and lyophilization provided the pure product.	20
	Example 11	
25	2-(N-(1-carboethoxy-3-phenylpropyl)-L-alanyl)-6.7-methylenedioxy-1,2,3,4- tetrahydroisoquinoline-3-carboxylic acid By the procedure in Example 1A 6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester was coupled with carbobenzyloxy-L-alanine using dicyclohexylcarbodiimide in acetonitrile. The crude neutral product was then hydrolyzed with two equivalents of NaOH in 80%	25
30	MeOH to give the desired carboxylic acid. The above carbobenzyloxy-dipeptide was deprotected according to the procedure in Example 1C with an initial reaction temperature of 0°C. 0.675 g (1.81 mmol) of this dipeptide was added to a solution of 1.47 g (7.13 mmol) of ethyl 2-oxo-4-phenylbutyrate in 25 ml EtOH. The pH was adjusted to 6.90 with extendic NaOH and 0.35 g (5.57 mmol) of sodium cyanoborohydride was added. After	30
35	stirring for 24 hours at room temperature a further 0.70 g of ester and 0.2 g of NaBH ₃ CN were added and the stirring continued an additional 48 hours. The reaction mixture was transferred to a column of Dowex 50X8 and the column eluted with 50% EtOH, H ₂ O, 1% NH ₄ OH, and 3% NH ₄ OH. Fractions containing the desired product were combined and lyophilized to give 0.347 g of the diastereomeric mixture.	35
	Example 12	
40	2-(N-(1-carboethoxy-1-(2-indanyl)methyl)-L-alanyl)-6-chloro-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid In a similar manner the appropriate dipeptide was prepared from 6-chloro-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester and carbobenzyloxy-L-alanine by DCC coupling	40
45	followed by saponification and cleavage with HBr/HOAc. The above dipeptide (0.427 g, 1.17 mmol) was alkylated as described above by 1.5 g (6.87 mmol) of ethyl α -oxindane-2-acetate and 0.32 g (5.09 mmol) of NaBH ₃ CN at pH 6.75. After 24 hours a second 0.85 portion of the keto ester and 0.2 g NaBH ₃ CN were added. The reaction was then stirred for 40 hours. Ion exchange chromatography then gave 0.183 g of desired product.	45
	Example 13	
50	2-{N-(1-carboethoxy-3-(2-pyridyl)propyl)L-valyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline-3-	50

The starting dipeptide was prepared as indicated above from 6-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester and carbobenzyloxy-L-valine.

Hydroxybenzotriazole-mediated DCC coupling, followed by saponification and deblocking as before, gave the dipeptide salt. Reductive alkylation with ethyl 2-oxo-4-(2-pyridyl)butyrate in the presence of sodium cyanoborohydride under standard conditions gave the crude monoester. This was purified by ion exchange chromatography and lyophilization as before to give a mixture of diastereomers of the 5 5 desired product. Example 14 2-(N-(1-carboethoxy-3-(4-methoxyphenyl)propyl)-L-isoleucyl)-6,7-dimethoxy-1,2,3,4tetrahydroisoguinoline-3-carboxylic acid The starting dipeptide was prepared from carbobenzyloxy-L-isoleucine and 6,7-dimethoxy-10 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid methyl ester using hydroxybenzotriazole and DCC as 10 previously described. Saponfication and deprotection as before then gave the dipeptide hydrobromide. Treatment with ethyl 2-oxo-4-(4-methoxyphenyl)butyrate and sodium cyanoborohydride under the above standard conditions gave the reductive alkylation product. This was purified as before to give the title compound as a diastereomeric mixture. 15 15 Example 15 2-(N-(1-carboethoxy-3-(4-chlorophenyl)-L-alanyl)-7-methoxy-1,2,3,4-tetrahydro-5Hbenz[c]azepine-3-carboxylic acid Acylation of 1,2,3,4-tetrahydro-5H-benz[c]azepine-3-carboxylic acid methyl ester with carbobenzyloxy-L-alanine using DCC as coupling reagent as in Example 1A gave the protected 20 dipeptide. Saponification and deblocking then gave the free dipeptide as previously described. 20 N-alkylation with ethyl 2-oxo-4-(4-chlorophenyl)butyrate and sodium cyanoborohydride as in Example 12 gave a mixture containing the desired product. This was isolated by ion exchange chromatography and lyophilization as previously described. Example 16 25 2-(N-(1-carboethoxy-3-(4-pyridyl)propyl)-L-alanyl)-1,2,3,4-tetrahydro-5H-benz[c]azepine-3-25 carboxylic acid The starting dipeptide was prepared from carbobenzyloxy-L-alanine and 1,2,3,4-tetrahydro-5Hbenz[c]azepine-3-carboxylic acid methyl ester according to the general procedure of Example 1. Reductive alkylation as described previously, using ethyl 2-oxo-4-(4-pyridyl)butyrate and sodium 30 cyanoborohydride, gave crude N-alkylated peptide. Purification by ion exchange chromatography and 30 lyophilization gave the pure title compound as a mixture of diastereomers. Example 17 2-(N-1-(carboethoxy-3-(3-trifluoromethylphenyl)propyl-L-valyl)-7,8-methylendioxy-1,2,3,4tetrahydro-5H-benz[c]acepine-3-carboxylic acid 35 Acylation of 7,8-methylenedioxy-1,2,3,4-tetrahydro-5H-benz[c]azepine-3-carboxylic acid methyl 35 ester with carbobenzyloxy-L-valine using hydroxybenzotriazole and DCC according to Example 2A gave the protected dipeptide. This was sequentially saponified and treated with HBr/HOAc to give the desired peptide. Treatment of the dipeptide with ethyl 2-oxo-4-(3-trifluoromethylphenyl)butyrate and sodium 40 cyanoborohydride at pH 6.55 according to Example 12 gave the N-alkylated product. Ion exchange 40 chromatography and lyophilization gave the pure compound as a mixture of diastereomers. Example 18 Stereospecific synthesis of the S-configuration compounds is accomplished by the following procedure. 45 A. 2-(N-(1-carboethoxy-3-phenylpropyl)alanyl)-1,2,3,4-tetrahydroisoguinoline-3-carboxylic acid 45 benzyl ester To a suspension of 2.60 g (9.31 mmol) of (S,S)-N-(1-carboethoxy-3-phenylpropyl)alanine in 20 ml dry THF was added 1.51 g (9.3 mmol) of 1,1'-carbonyldimidazole. When a clear solution was obtained (5--10 min.), the reaction mixture was cooled to 0° and 3.12 g (7.44 mmol) of (S)-1,2,3,4tetrahydroisoquinoline-3-carboxylic acid benzyl ester monotartrate was added. The reaction mixture 50 was allowed to stir at room temperature overnight, then concentrated in vacuo and redissolved in ether. The ether solution was washed with saturated NaHCO₃ solution and water and concentrated to give 2.2 g (56%) of the desired amide, which was used without further purification

CIMS: 529 (n=1), 234, 91

55

NMR: 7.3, 5.1, 3.15, 2.8, 1.2—1.5

60

Ĭ

carboxylic acid

3-carboxylic acid

60

tetrahydroisoquinoline-3-carboxylic acid

B. 2-(N-(1-carboethoxy-3-phenylpropyl)alanyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid hydrochloride To a solution of 2.10 g (3.97 mmol) of (S,S,S)-2-(N-(1-carboethoxy-3-phenylpropyl)alanyl)-1,2,3,4-tetrahydroisoguinoline-3-carboxylic acid benzyl ester in 20 ml ethanol was added 0.2 g 10% 5 Pd/C catalyst. The mixture was shaken under ca. 2 atm. hydrogen until uptake ceased. The reaction 5 mixture was filtered and concentrated in vacuo, then partitioned between ether and 2N HCI. The aqueous solution was lyophilized and the resulting powder washed with ether to give 0.70 g (37%) of product, m. 101-105°. $[\alpha]_{\rm d} = 10.9^{\circ} ({\rm H}_2{\rm O})$ 10 CIMS 421 (M+1--H20) 10 EIMS 421, 316, 270 Calc. for $C_{25}H_{31}N_2O_5 \cdot HCI \cdot H_2O$ C 60.91 H 6.74 N 5.18 Found C 61.16 H 6.47 N 5.48 Following the procedures of the above examples, the following additional compounds were 15 15 prepared: 2-[N-1-Ethoxycarbonyl-3-methylbutyl)-L-alanyl]-isoquinaldic acid 2-[N-1-Ethoxycarbonyl-4-methylhexyl]-L-alanyl]-isoquinaldic acid 2-[N-1-Ethoxycarbonyl-5-methylhexyl)-L-alanyl]-isoquinaldic acid 2-[N-1,3-Dicarboxypropyl)-L-alanyi]-isoquinaldic acid 2-[N-1-Ethoxycarbonyl-3-phenylpropyl)-L-alanyl]-6-hydroxyisoquinaldic acid 20 20 2-[N-1-Ethoxycarbonyl-5-methylhexyl)-L-valyl]-isoquinaldic acid 2-[N-1,3-Dicarboxypropyl)-L-alanyl]-6-methoxy-isoquinaldic acid 2-[N-1-Ethoxycarbonylhexyl-L-valyl]-8-methyl-isoquinaldic acid 2-[N-1-Ethoxycarbonyl-3-phenylpropyl)-L-phenylalanyl]-6-chloroisoquinaldic acid 2-[N-1-Ethoxycarbonyl-3-phenylpropyl)-L-histidyl]-8-hydroxyisoquinaldic acid 25 25 1-[N-(1-Ethoxycarbonyl-3-methylbutyl)-L-alanyl]-2-carboxyindoline 1-[N-(1-Ethoxycarbonyl-3-phenylpropyl)-L-phenylalanyl]-2-carboxy-indoline 1-[N-(1-Ethoxycarbonylhexyl)-L-alanyl]-2-carboxyindoline 1-[N-(1-Ethoxycarbonyl-3-phenylpropyl)-L-alanyl]-2-carboxy-5,6-dimethylindoline 1-[N-(1-Ethoxycarbonyl-3-phenylpropyl)-L-valyl]-2-carboxyindoline 30 30 1-[N-(1,3-Dicarboxypropyl)-L-alanyl]-2-carboxy-5,6-dimethylindoline 1-[N-(1,3-Dicarboxypropyl)-L-histidyl]-2-carboxy-4-chloroindoline 1-[N-(1-Ethoxycarbonylhexyl)-L-valyl]-2-carboxy-4-methoxyindoline 1-[N-(1-Ethoxycarbonylheptyl)-L-phenylalanyl]-2-carboxy-6-methyl-indoline 1-[N-(1-Ethoxycarbonyl-3-phenylpropyl)-L-valyl]-2-carboxy-3-hydroxymethyl-5,6-35 35 dimethylindoline 1-Carboxy-2-[N-(1-ethoxycarbonyl-3-phenylpropyl)-L-valyl]-5H-1,2,3,4-tetrahydro-2benzazepine 1-Carboxy-2-[N-(1-ethoxycarbonyl-3-methylbutyl-L-histldyl]-5H-1,2,3,4-tetrahydro-2-40 40 benzazepine 1-Carboxy-2-[N-(1-ethoxycarbonyl-4-methylpentyl)-L-phenylalanyl]-5H-1,2,3,4-tetrahydro-2benzazepine 1-Carboxy-2-[N-(1,3-dicarboxypropyl)-L-alanyl]-7,8-dimethyl-5H-1,2,3,4-tetrahydro-2henzazepine 45 1-Carboxy-2-[N-(1-ethoxycarbonyl-3-phenylpropyl)isoleucyl]-6-chloro-1,2,3,4-tetrahydro-2-45 benzazepine 1-Carboxy-2-[N-(1-ethoxycarbonylhexyl)-L-valyl]-6-methoxy-7-methyl-1,2,3,4-tetrahydro-2benzazepine 1-Carboxy-2-[N-(1-ethoxycarbonyl-3-phenylpropyl)-L-histidyl]-6-chloro-1,2,3,4-tetrahydro-2-50 50 benzazepine 1-Carboxy-2-[N-(1-carboxy-2-phenylthioethyl)-L-alanyl]-7-methyl-5H-1,2,3,4-tetrahydro-2benzazepine 1-Carboxy-2-[N-(1-ethoxycarbonyl-3-p-chlorophenylpropyl)-L-valyl]-7,8-dimethyl-5H-1,2,3,4tetrahydro-2-benzazepine 1-Carboxy-2-[N-(1-carboxy-2-(3-indolyl)ethyl)-L-valyl]-5H-1,2,3,4-tetrahydro-2-benzazepine 55 55

2-(N-1(1-Carboethoxy-3-(4-chlorophenyl)propyl)-L-leucyl)-1,2,3,4-tetrahydroisoquinoline-3-

2-(N-1(1-Carboethoxy-2-(3-methoxyphenyl)ethyl)-L-methionyl)-1,2,3,4-tetrahydroisoquinoline-

2-(N-1(1-Carboethoxy-3-(3-trifluoromethylphenyl)propyl)-L-valyl)-1,2,3,4-

į

10

15

20

30

40

Claims

1. A compound of the formula

$$\begin{array}{c|c} & & & & \\ & & & \\ R_1 \text{OOC} & & \\ &$$

wherein

5

15

20

25

30

45

 R_1 and R_7 are hydrogen, lower alkyl or phenyl lower alkyl,

5 R_2 , R_3 , R_4 , R_5 and R_8 are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, fused arylcycloalkyl, aralkyl, cycloalkyl, heterocyclic, substituted lower alkyl, lower alkenyl, and lower alkynyl groups wherein the substituent is hydroxy, alkoxy, halo, amino, alkylamino, mercapto and

alkylmercapto groups, and substituted cycloalkyl, aryl and heterocyclic groups in which the substituent 10 is alkyl, hydroxy, alkoxy, hydroxyalkyl, halo, mercapto, alkylmercapto, mercaptoalkyl, haloalkyl, amino, alkylamino, aminoalkyl, nitro, methylenedioxy, and trifluoromethyl;

each $R_{\rm a}$ is lower alkyl, lower alkenyl, lower alkynyl, nitro, amino, alkylamino, dialkylamino, hydroxy, alkoxy, mercapto, alkylmercapto, hydroxyalkyl, mercaptoalkyl, halogen, haloalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, sulfonamido, methylenedioxy, or trifluoromethyl,

m is an integer from 0 to 2 inclusive; m' is an integer from 1 to 3 inclusive, provided that when m is 0, m' is 2 or 3 and, when m is

other than 0, m' is 1 or 2; n is an integer from 0 to 4 inclusive, and salts thereof, especially pharmaceutically acceptable

salts with an acid or a base. 2. A compound of the formula

wherein

 R_1 , R_2 , R_3 , R_4 , R_6 , R_6 , R_7 , R_8 , and n are as defined in Claim 1 and salts thereof, especially pharmaceutically acceptable salts with an acid or a base.

3. A compound according to Claim 1 or 2, wherein the COOR₇ substituent is attached to a carbon 25 adjacent to the ring nitrogen.

4. A compound according to any of Claims 1—3, wherein R, is hydrogen.

5. A compound according to any of Claims 1—4, wherein R₁ is ethyl or hydrogen.

6. A compound according to any of Claims 1—5, wherein R₂ is phenyl-lower alkyl.

7. A compound according to Claim 6, wherein R₂ is phenethyl.

8. A compound according to any of Claims 1-7, wherein R_e is methyl.

9. A compound according to any of Claims 1—7, wherein $R_{\rm e}$ is isopropyl.

10. A compound according to any of Claims 1—7, wherein R_e is isobutyl.

11. A compound according to any of Claims 1—4, wherein R₂ is phenethyl and R₆ is methyl.

12. A pharmaceutical composition for treatment of high blood pressure which comprises an anti-35 35 hypertensively effective amount of a compound according to any of Claims 1-11.

13. The process of preparing a compound of formula I herein which comprises reacting under amide-forming conditions a compound of formula il herein with an acylating derivative of an acid of formula III or formula IV herein;

or reacting a compound of formula VI herein with an lpha-keto acid or ester of formula VII herein 40 and reducing the resulting imine; or reacting a reacting a compound of formula VI herein with an lphahalo acid or ester of formula VIII herein; and

optionally by substitution or conversion reactions introducing various substituents into the said products; and

optionally forming salts thereof, especially pharmaceutically acceptable salts with an acid or a 45 base.

14. A process according to Claim 13, wherein the COOR, substituent is attached to a carbon adjacent to the ring nitrogen.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1982. Published by the Patent Office 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.