Du 3

Pavel Marek

1)

Rozhodněte, zda jazyk $S = \{ \langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) = \emptyset \}$ je rozhodnutelný.

Nerozhodnutelnost jazyka S ukážeme tak, že ukážeme $L_u \leq_m S$. Pravděpodobně bude lepší ukázat převoditelnost $HALT \leq_m S$. To budeme ukazovat podobně, jako v příkladu 2.1 - tedy zkonstruujeme turingův stroj F, který převádí L_u na S.

Výpočet $F(\langle M, x \rangle)$:

- 1. Spusť M(x). M(x) se nemusí zastavit, ale F se musí zastavit vždy (to vyplývá z definice totálně vyčíslitelné funkce).
- 2. Pokud přijme, tak vygeneruj kód $\langle M_1, M_2 \rangle$ tak, aby $L(M_1) = \{a\}$ a $L(M_2) = \{b\}$.
- 3. Pokud odmítne, tak vygeneruj kód $\langle M_1, M_2 \rangle$ tak, aby $L(M_1) = \{a\}$ a $L(M_2) = \{a\}$.

Dle Postovy věty může být pouze jeden z S, \overline{S} částečně rozhodnutelný. Intuitivně vidíme, že to bude $\overline{S} := \{\langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) \neq \emptyset\}$. Zkonstruujme pro něj turingův stroj M takový, že $L(M) = \overline{S}$. Jeho výpočet bude vypadat: $M(\langle M_1, M_2 \rangle)$:

- 1. L je prázdný seznam dvojic procesů.
- 2. Dokud nějaká dvojice procesů z L nepřijala:
 - (a) Do L přidej dvojici $(M_1(x), M_2(x))$. Bylo by vhodné zmínit, odkud se bere x a navíc také zmínit, že ty procesy z L stále běží.
- 3. Přijmi.

2.1)

Ukažte, že $L_u \leq_m S$, kde $S = \{ \langle M \rangle \mid (\forall x \in \Sigma^*) [x \in L(M) \Leftrightarrow x^R \in L(M)] \}.$

Sestrojíme turingův stroj F, který počítá totálně vyčíslitelnou funkci f, pro kterou platí $(\forall l \in \Sigma^*)(l \in L_u \Leftrightarrow f(l) \in S)\&(l \notin L_u \Leftrightarrow f(l) \notin S)$.

Výpočet F vypadá následovně: $F(\langle M, x \rangle)$:

- 1. Spusť M(x). Nemusí doběhnout.
 - (a) Pokud přijme, vygeneruj kód nedeterministického turingova stroje M', takového, že $L(M') = \{x, x^R\}$. Pro $x = \alpha_1, \alpha_2, \ldots, \alpha_n$ toho docílíme tak, že M' bude mít stavy q_0, q_1, \ldots, q_n pro čtení x a stavy $q_0^R, q_1^R, \ldots, q_n^R$ pro čtení x^R s tím, že počáteční stavy jsou $\{q_0^R, q_0\}$. Přechodová funkce bude tvaru:

$$\delta(q_i, \alpha_i) = (q_{i+1}, \lambda, R)$$

$$\delta(q_i^R, \alpha_i) = (q_{i+1}^R, \lambda, R)$$

Koncevé stavy budou $\{q_n, q_n^R\}$.

Takto zkonstruovaný nedeterministický turingův stroj M' uhádne jestli čte x nebo x^R a přijímá právě x a x^R a tedy $\langle M' \rangle \in S$.

(b) Pokud odmítne, vygeneruj kód (deterministického) turingova stroje $M', L(M') = \{x\}$. Tento turingův stroj budeme generovat podobně jako v předchozím bodě, s tím rozdílem, že budeme mít pouze n stavů pro čtení x a budeme mít pouze jediný počáteční a přijímající stav. A tedy $\langle M' \rangle \notin S$.

2.2)

Ukažte, že $L_u \leq_m \overline{S}$, kde $\overline{S} = \{ \langle M \rangle \mid (\forall x \in \Sigma^*) [x \in L(M) \Leftrightarrow x^R \notin L(M)] \}.$

Podobně jako v 2.1 sestrojíme turingův strojF, jehož výpočet bude vypadat následovně:

 $F(\langle M, x \rangle)$:

- 1. Spusť M(x). Nemusí doběhnout.
 - (a) Pokud přijme, vygeneruj kód turingova stroje M', pro který $L(M') = \{x\}$. Tedy pokud $\langle M, x \rangle \in L_u$, potom $\langle M' \rangle \in \overline{S}$.
 - (b) Pokud odmítne, vygeneruj kód turingova stroje M', pro který $L(M') = \{x, x^R\}$ (podobně jako v 2.1). Tedy pokud $\langle M, x \rangle \notin L_u$, potom $\langle M' \rangle \notin \overline{S}$.