Алгебра и геометрия

Лисид Лаконский

October 2022

Содержание

1	Алг	ебра и геометрия - 07.10.2022	2
	1.1	Собственные значения и собственные векторы матрицы	2
		1.1.1 Примеры	2
	1.2	Векторная алгебра. Операции над векторами	4
		1.2.1 Пример	4

1 Алгебра и геометрия - 07.10.2022

1.1 Собственные значения и собственные векторы матрицы

Матрицы могут представляться на плоскости - для этого нужны собственные значения и собственные векторы.

Пусть дана квадратная матрица A n-ого порядка. Ненулевой вектор $X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ называется собственным вектором матрицы A, если под действием этой матрицы он переходит в коллинеарный ему:

$$A * X = \lambda X, \lambda \in R$$

Где λ - собственное значение соответствующего ему вектора матрицы A. Для нахождения λ составляют характеристическое уравнение:

$$|A - \lambda E| = 0$$

Если λ_0 - сосбтвенное значение матрицы A, то соответствующие собственные векторы находим из системы однородных линейных уравнений.

(*) Однородными называются системы, где матрица-столбец свободных членов B полностью состоит из нулей

$$(A - \lambda_0 E) * X = 0$$

1.1.1 Примеры

$$A = \begin{pmatrix} 4 & -2 & -1 \\ -1 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$

Составим характеристическое уравнение $|A - \lambda E| = 0$:

$$\begin{vmatrix} 4 - \lambda & -2 & -1 \\ -1 & 3 - \lambda & -1 \\ 1 & -2 & 2 - \lambda \end{vmatrix}$$

$$(4-\lambda)(3-\lambda)(2-\lambda)-2+2+3-\lambda-8+2\lambda-4+2\lambda=(12-7\lambda+\lambda^2)(2-\lambda)+3\lambda-9=24-12\lambda-14\lambda+7\lambda^2+2\lambda^2-\lambda^3+3\lambda-9=-\lambda^3-6\lambda^2-23\lambda+15=0$$
 $\lambda_1=1,$ вынесем общий множитель:

$$\frac{-\lambda^3 + 9\lambda^2 - 23\lambda + 15}{\lambda - 1} = (\lambda - 1)(-\lambda^2 + 8\lambda - 15)$$

Решаем через дискриминант или через теорему Виета: что угодно.

Итого имеем:

$$\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 5$$

Найдем теперь собственные векторы.

Пусть
$$\lambda = \lambda_1 = 1$$
, тогда $(A - \lambda E) * X = 0$:

$$\begin{cases} (4-1)x_1 - 2x_2 - x_3 = 0\\ -x_1 + (3-1)x_2 - x_3 = 0\\ x_1 - 2x_2 + (2-1)x_3 = 0 \end{cases}$$
 (1)

В матричном виде:

$$\begin{pmatrix} 3 & -2 & -1 \\ -1 & 2 & -1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 & -1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 4 & -4 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

Преобразуем обратно в систему:

$$\begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$
 (2)

Отсюда видим, что $x_1 = x_3, x_2 = x_3$

Пусть
$$x_1=1$$
, тогда $x_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$, видим что $X_1=C_1\begin{pmatrix}1\\1\\1\end{pmatrix}$

Последовательно найдем теперь второй и третий собственный векторы: X_2 и X_3 .

Пусть $\lambda = \lambda_2 = 3$, тогда $(A - \lambda E) * X = 0$

$$\begin{cases} (4-3)x_1 - 2x_2 - x_3 = 0\\ -x_1 + (3-3)x_2 - x_3 = 0\\ x_1 - 2x_2 + (2-3)x_3 = 0 \end{cases}$$
(3)

Преобразуем в матричный вид: $\begin{pmatrix} 1 & -2 & -1 \\ -1 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 \\ 1 & 0 & 1 \end{pmatrix} =$

$$\begin{pmatrix} 2 & -2 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 Из этого видно, что $x_1=x_2, x_1=-x_3$

$$X_2 = C_2 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Найдем третий собственный вектор.

Пусть $\lambda = \lambda_3 = 5$, тогда $(A - \lambda E) * X = 0$

$$\begin{cases} (4-5)x_1 - 2x_2 - x_3 = 0\\ -x_1 + (3-5)x_2 - x_3 = 0\\ x_1 - 2x_2 + (2-5)x_3 = 0 \end{cases}$$
(4)

Запишем данную систему уравнений в матричном виде:
$$\begin{pmatrix} -1 & -2 & -1 \\ -1 & -2 & -1 \\ 1 & -2 & -3 \end{pmatrix} =$$

$$\begin{pmatrix} -1 & -2 & -1 \\ 1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & -4 & -4 \end{pmatrix}$$

у соответствует следующая система уравнений:

$$\begin{cases}
-x_1 - 2x_2 - x_3 = 0 \\
-4x_2 - 4x_3 = 0
\end{cases}$$
(5)

Я зашел в какую-то фигню, где-то ошибся, но, в общем, ответ должен получиться следующий: $X_3 = C_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

1.2 Векторная алгебра. Операции над векторами

Вектором \overrightarrow{AB} называется направленный отрезок AB, заданный своим началом A и концом B.

Длиной (модулем) $|\overline{AB}|$ вектора \overline{AB} называется длина отрезка AB.

Два вектора называются коллинеарными, если они параллельны одной прямой (параллельны друг другу).

Три вектора называются компланарными, если они парадлельны одной плоскости.

Координаты x, y, z вектора \overrightarrow{a} это коэффициенты разложения вектора по базису, то есть по трем некомпланарным векторам, обозначаемым как $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$.

 $\overrightarrow{e_1}=\{1,0,0\},\overrightarrow{e_2}=\{0,1,0\},\overrightarrow{e_2}=\{0,0,1\},\overrightarrow{a}=x*\overrightarrow{e_1}+y*\overrightarrow{e_2}+z*\overrightarrow{e_3}$ Если $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$ взаимно перпендикулярны и единичные векторы: $\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}$,

то такой базис называется ортонормированным.

1.2.1Пример

Разложить вектор $\overrightarrow{a}=\{4;2;0\},$ если возможно, по векторам $\overrightarrow{p}=\{1;-1;2\},$ $\overrightarrow{q}=\{1;-1;2\}$ $\{2; 2; -1\}, \overrightarrow{r} = \{3; 7; -7\}$

Для того, чтобы это было возможно, должно соблюдаться следующее для того, чтооы это оыло возможно, должно соолюдаться следующее выражение: $(\overrightarrow{p}*\overrightarrow{q})*\overrightarrow{r}\neq 0$ - достаточное условие некомпланарности. $(\overrightarrow{p}*\overrightarrow{q})*\overrightarrow{r}=\begin{vmatrix} 1 & -1 & 2 \\ 2 & 2 & -1 \\ 3 & 7 & -7 \end{vmatrix}\neq 0$ det $X=-14+28+3-12+7-14=2\neq 0$, следовательно, мы можем

$$(\overrightarrow{p}*\overrightarrow{q})*\overrightarrow{r} = \begin{vmatrix} 1 & -1 & 2 \\ 2 & 2 & -1 \\ 3 & 7 & -7 \end{vmatrix} \neq 0$$

разложить данный вектор по трем некомпланарным векторам.

разложить данный вектор по трем некомпланарным векторам.
$$\overrightarrow{q} = x * \overrightarrow{p} + y * \overrightarrow{q} + z * \overrightarrow{r}$$

$$\overrightarrow{p} = 1 * \overrightarrow{i} - 1 * \overrightarrow{j} + 2 * \overrightarrow{k}, \overrightarrow{q} = 2 * \overrightarrow{i} + 2 * \overrightarrow{j} - \overrightarrow{k}, \overrightarrow{r} = 3 * \overrightarrow{i} + 7 * \overrightarrow{j} - 7 * \overrightarrow{k}$$

$$\underbrace{x * \overrightarrow{p} + y * \overrightarrow{q} + z * \overrightarrow{r}}_{} = x * \overrightarrow{i} - x * \overrightarrow{j} + 2x \overrightarrow{k} + 2y \overrightarrow{i} + 2y \overrightarrow{i} + 2y \overrightarrow{j} - y \overrightarrow{k} + 3z \overrightarrow{i} + 7z \overrightarrow{j} - 7z \overrightarrow{k}$$

Далее для разложения по базису нам необходимо вынести \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} ... = $(x+2y+3z)+\overrightarrow{j}(-x+2y+7z)+\overrightarrow{k}(2x-y-7z)$ $\overrightarrow{a}=x\overrightarrow{p}+y\overrightarrow{q}+z\overrightarrow{r}$

$$\begin{cases} x + 2y + 3z = 4 \\ -x + 2y + 7z = 2 \\ 2x - y - 7z = 0 \end{cases}$$
 (6)

Решим данную систему уравнений каким угодно способом, сначала составив расширенную матрицу системы:

выв расширенную матрипу системы:
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & 7 & 2 \\ 2 & -1 & -7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & -2 & -7 & -2 \\ 1 & 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 0 & -3 & -7 & -4 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -4 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & -3 & -7 & -4 \end{pmatrix}$$

$$\begin{cases} x_1 = -x_2 + 2 \\ x_3 = \frac{4}{7} - \frac{3}{7}x_2 \\ x_1 = -x_2 - 4x_3 = 0 \end{cases}$$
 (7)

$$\begin{cases} x_2 = -1 \\ x_1 = 3 \\ x_3 = 1 \end{cases}$$
 (8)

Тогда $\overrightarrow{a} = 3\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r}$