THEORY OF GOMPILATION

LECTURE 07

You are here

Up Until Now

Syntax directed translation
Backpatching

Register allocation Instruction translation

Up Until Now

Compilers = Cool

Up Until Now

Compilers = Cool

Today

Static Analysis =

Better Compilers =

Totally Awesome

"The algorithmic discovery of properties of a program by inspection of its source text"

- ivlanna, Pnueli

Reason statically — at compile time — about the possible runtime behaviors of a program

- Does not have to literally be the source text, just means w/o running it
- In a compiler, we mostly use IR

• What for..?

Register allocation (liveness analysis used in the previous lecture)

Optimizations

```
area = width * height

p = 0

z = p * area + 1
```

e.g. in this code, z can be replaced by 1, and area can be discarded.

 \smile (or can it?)

Advanced semantic checks

```
Record a1;
if (..) { a1 = new }
a1.write();
```

"a1 may be uninitialized"

```
if (x > 0) {
   y = 42;
} else {
    y = 73;
    foo();
                                 Is the assertion true in
                                 all possible executions?
assert (y == 42);
```

Bad news: problem is generally undecidable

• Central idea: use approximation over-approximation

Over-Approximation

```
if (x > 0) {
   y = 42;
                              y = 73
} else {
   y = 73;
                                 (foo)
   foo();
assert (y == 42);
```

Conservative static analysis: assertion may be violated

Precision

```
/* My Awesome Static Analyzer */
main(...) {
  printf("assertion may be violated\n");
}
```

- Lose precision only when required
- Understand where precision is lost

 Formalize software behavior using a mathematical model (semantics)

- Prove properties of the mathematical model
 - Automatically, typically with approximation of the formal semantics

Develop theory and tools for program correctness and robustness

- Spans a wide range from type checking to full functional verification
 - General safety specifications (e.g. zero division)
 - Absence of resource leaks
 - Concurrency correctness conditions (e.g., progress, race-freedom)
 - ▶ Correct use of libraries (e.g., initialization)
- And more: bug-finding, test-case generation, program understanding, etc.

Static Analysis: Techniques

- Dataflow analysis
- Constraint-based analysis
- Type and effect systems
- Abstract Interpretation

• ...

Week#12 canceled

Coming right up

Concept of definition and use:

$$x = y + z$$

- is a definition of x
- ▶ is a use of y and z

- A definition *reaches* a use if
 - value written by definition...
 - ...may be read by use

- A definition reaches a use if
 - value written by definition...
 - ...may be read by use

- Control flow
- → Data flow

```
set of definitions that may reach
                                                                  this location
                                 -{ y@1, z@2 }
    while (y > 0)
                                  { y@1, z@2 }
                                 { y@1, z@4 }
                                  { y@5, z@4 }
                                  { y@1, z@2 }
6
                                 -{ y@6, z@2 }
    return y + z
```

```
-{ y@1, z@2, y@5, z@4 }
    while (y > 0) {
                               { y@1, z@2,}y@5, z@4 }
                              -{ y@1, z@4,}y@5 }
                              -{ y@5, z@4 }
                              -{ y@1, z@2,}y@5, z@4 }
6
                             --{ y@6, z@2,}z@4 }
    return y + z
```

Dataflow Analysis: Overview

Control-Flow Graph

```
2 z : ∓ 1
  >while (y > 0) {
      z := z * y
    -y := y - 1
6
   return y + z
```


Transfer Functions

Given a program statement S, we can define a **transfer function** T_S that relates the properties that are true before the statement to the properties that are true after the statement.

$$T_{x:=y} \begin{bmatrix} x \ (?) \\ y \ even \end{bmatrix} = \begin{bmatrix} x \ even \\ y \ even \end{bmatrix}$$

Time for Some

Math

- Partial Orders
- Upper and Lower Bounds
- Lattices

Partial Orders

- Set P
- Binary relation \sqsubseteq such that $\forall x,y,z \in P$:

```
x \sqsubseteq x (reflexive)
x \sqsubseteq y and y \sqsubseteq x implies x = y (asymmetric)
x \sqsubseteq y and y \sqsubseteq z implies x \sqsubseteq z (transitive)
```

- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- For $S \subseteq P$:
 - ▶ $x \in P$ is an *upper bound* of S if $\forall y \in S$. $y \subseteq x$
 - \rightarrow x \in P is the *least upper bound* of S if
 - x is an upper bound of S, and
 - $x \sqsubseteq z$ for all upper bounds z of S
 - ▶ ⊔ join, least upper bound, lub, supremum, sup
 - □S is the least upper bound of S
 - $x \sqcup y = \sqcup \{x,y\}$
 - ▶ (Often written as v as well)

Lower Bounds

- For $S \subseteq P$:
 - \bullet x \in P is a *lower bound* of S if \forall y \in S. x \sqsubseteq y
 - \rightarrow x \in P is the *greatest lower bound* of S if
 - x is an greatest lower bound of S, and
 - $z \subseteq x$ for all lower bounds z of S
 - ▶ ¬ meet, greatest lower bound, glb, infimum, inf
 - ¬S is the greatest lower bound of S
 - $x \sqcap y = \sqcap \{x,y\}$
 - ▶ (Often written as ∧ as well)

Covering

- $x \sqsubseteq y \text{ if } x \sqsubseteq y \text{ and } x \neq y$
- x is covered by y (y covers x) if
 - x □ y, and
 - ▶ no z such that $x \vdash z \vdash y$
- Conceptually,
 - y covers x if there are no elements between x and y

e.g. for
$$P = \mathbb{Z}$$
, $\sqsubseteq = \le$ 5 covers 4 5 does not cover 3

Lattices

- Partially ordered set P
 - ▶ If $x \sqcup y$ and $x \sqcap y$ exist for all $x,y \in P$ then P is a *lattice*
 - ▶ If $\sqcup S$ and $\sqcap S$ exist for all $S \subseteq P$ then P is a *complete lattice*
- Theorem: all finite lattices are complete.
- Example of a lattice that is not complete:
 - ▶ Integers Z
 - □ = max, □ = min
 - ▶ But $\square \mathbb{Z}$ and $\square \mathbb{Z}$ do not exist \Rightarrow **not** complete
 - ▶ Conversely, $\mathbb{Z} \cup \{+\infty, -\infty\}$ **is** a complete lattice

•
$$P = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \} = \mathcal{P}(\{a,b\})$$

•
$$x \sqsubseteq y \Leftrightarrow x \subseteq y$$

(called a *power-set lattice*)

$\emptyset \sqsubseteq \{a\} \sqsubseteq \{a,b\}$

$$\emptyset \sqsubseteq \{b\} \sqsubseteq \{a,b\}$$

Hasse Diagram

If y covers x:

- Line from y to x
- ▶ y above x in diagram

- $P = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$
- $x \sqsubseteq y \Leftrightarrow x \subseteq y$

$$\emptyset \sqsubseteq \{a\} \sqsubseteq \{a,b\}$$

$$\emptyset \sqsubseteq \{b\} \sqsubseteq \{a,b\}$$

P = {
$$\emptyset$$
, {a}, {b}, {c},
{a,b}, {a,c}, {b,c},
{a,b,c} }

- $P = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- $x \sqsubseteq y \Leftrightarrow (x \& y) = x$ where & is bitwise 'and'

(standard boolean lattice, also called hypercube)

$$x \sqcap y = x \& y$$

Top and Bottom

- Greatest element of P (if it exists) is top (\top)
- Least element of P (if it exists) is *bottom* (\perp)

$$\top = \sqcup P$$

$$x \sqcup y = x \mid y$$

$$x \sqcap y = x \& y$$

$$\perp = \sqcap P$$

Product Latices

 Given two latices L and Q, the product can easily be made a latice

$$(l_1, q_1) \sqsubseteq (l_2, q_2) \Leftrightarrow l_1 \sqsubseteq l_2 \text{ and } q_1 \sqsubseteq q_2$$

For vectors of L, defining a latice is also easy

$$\langle l_1, l_2, \dots, l_k \rangle \sqsubseteq \langle t_1, t_2, \dots, t_k \rangle \Leftrightarrow \forall_{i \in [1,k]} l_i \sqsubseteq t_i$$

Lattices of Program Properties

- Properties of interest can often be arranged into a lattice
- Example: Lattices of values –

 When the value of each variable is a lattice, the state of the program is a product lattice of the states of all variables.

```
x := 0;
y := 6;
while (x < 10) {
    x := x + 2;
    y := y + x;
}
assert (y is even);</pre>
```

 $v \in odd$ even definitely odd definitely even definitely odd

- $\langle x = \{\bot, even, odd, \top\}, y = \{\bot, even, odd, \top\} \rangle$
 - $e.g. \langle x = even, y = odd \rangle \sqsubseteq \langle x = \top, y = odd \rangle$ $\sqsubseteq \langle x = \top, y = \top \rangle$

Product lattice of two individual lattices, one per variable

either odd

Where were we... ah, yes, Transfer Functions

 For every block, define state variables in an y is even and a function relating them in_i ightharpoonup out_i = $T_i(in_i)$ $in_i = \langle x = v_3, y = v_4 \rangle$ i: x := yy := y + 1 $out_i =$ and y are even $out_i = \langle x = v_3, y =$ even X odd oddeven \sim odd = even $\sim even = odd$ $\sim \bot = \bot$

35

Computing the Transfer Function

- We must hard-code a transfer function specific to the lattice
 - Occasionally, there would be a trade-off between how precise the transfer functions are and how easy it is to compute them
- We can build lattices for arbitrary facts about the program
 - Need to make sure our transfer functions are "well behaved" (we will define "good" behavior later)

From CFG to Equations

For every block, define state variables in and out

$$ightharpoonup$$
 out_i = $T_i(in_i)$

- If i is the **only** predecessor of j:
 - $\rightarrow in_j = out_i$
- Use join (□) when multiple edges enter the same block:
 - $in_q = out_j \sqcup out_k$

 in_i

outi

 in_i

x := y

 $j: y := y + \overline{1}$

Back to Reaching Definitions

Domain Lattice

 For every program point, we compute the set of variable definitions that reach it.

$$L = \mathcal{P}(\text{Var} \times \text{Lab}) \qquad \qquad (power-set \ lattice)$$

$$\sqsubseteq = \subseteq \qquad \qquad \qquad \cdots$$

$$\vdots \qquad \vdots \qquad \qquad \vdots \qquad \vdots$$

$$\{(x,1), (x,2)\} \quad \{(x,1), (y,1)\} \quad \cdots \quad \{(x,1), (y,n)\} \quad \cdots \quad \{(x,n), (y,n-1)\} \quad \{(x,n), (y,n)\}$$

$$\downarrow = \cup \qquad \qquad \parallel \qquad \qquad \downarrow$$

$$\downarrow = \cup \qquad \qquad \parallel$$

$$\downarrow = \cup \qquad \qquad \parallel$$

$$\downarrow = \cup \qquad \qquad \parallel$$

Back to Reaching Definitions

Transfer Functions

We define the following transfer function:

$$\bullet out_i = in_i \setminus (x, *) \cup \{(x, i)\}$$

- where
 - \blacktriangleright x is the variable assigned to in i
 - ▶ $(x,*) = \{(x,l) \mid l \in Lab\}$ Lab = set of all statement labels

outi

 in_i

x := y

Input/output sets

 $in(1) = \emptyset$ Transfer functions

$$in(2) = out(1)$$
 $out(1) = in(1) \setminus (a,*) \cup \{(a,1)\}$ $in(2) = out(2)$ $out(2) = in(2) \setminus (b,*) \cup \{(b,2)\}$ $in(3) = out(2)$ $out(3) = in(3)$ $in(4) = out(3)$ $in(6) = out(3)$ $out(4) = in(4) \setminus (m,*) \cup \{(m,4)\}$ $out(6) = in(6) \setminus (m,*) \cup \{(m,6)\}$ $in(7) = out(4) \cup out(6)$

System of equations

$$v_0$$
 — $in(1) = \emptyset$
 v_1 — $out(1) = in(1) \setminus (a,*) \cup \{(a,1)\}$
 v_2 — $in(2) = out(1)$
 v_3 — $out(2) = in(2) \setminus (b,*) \cup \{(b,2)\}$
 v_4 — $in(3) = out(2)$
 v_5 — $out(3) = in(3)$
 v_6 — $in(4) = out(3)$
 v_7 — $out(4) = in(4) \setminus (m,*) \cup \{(m,4)\}$
 v_8 — $in(6) = out(3)$
 v_9 — $out(6) = in(6) \setminus (m,*) \cup \{(m,6)\}$
 v_9 — $in(7) = out(4) \cup out(6)$

$$v_0 = \emptyset$$
 $v_1 = v_0 \setminus (a, *) \cup \{(a, 1)\}$
 $v_2 = v_1$
 $v_3 = v_2 \setminus (b, *) \cup \{(b, 2)\}$
 $v_4 = v_3$
 $v_5 = v_4$
 $v_6 = v_5$
 $v_7 = v_6 \setminus (m, *) \cup \{(m, 4)\}$
 $v_8 = v_5$
 $v_9 = v_8 \setminus (m, *) \cup \{(m, 6)\}$
 $v_{10} = v_7 \cup v_9$

$$F(\langle v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \rangle) = \langle v_0' = \emptyset, \\ v_1' = v_0 \setminus (a, *) \cup \{(a, 1)\}, \\ v_2' = v_1, \\ v_3' = v_2 \setminus (b, *) \cup \{(b, 2)\}, \\ v_4' = v_3, \\ v_5' = v_4, \\ v_6' = v_5, \\ v_7' = v_6 \setminus (m, *) \cup \{(m, 4)\}, \\ v_8' = v_5, \\ v_9' = v_8 \setminus (m, *) \cup \{(m, 6)\}, \\ v_{10}' = v_7 \cup v_9 \rangle$$

 $\bar{\mathbf{v}}$ $F(\bar{\mathbf{v}})$

 \overline{v} is a solution $\iff \overline{v} = F(\overline{v})$

System of Equations

Representation as an n-ary function

```
F(\langle v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \rangle) =
             \langle v_0' = \emptyset
                v_1 = v_0 \setminus (a, *) \cup \{(a, 1)\},
                v_2' = v_1.
                v_3' = v_2 \setminus (b,*) \cup \{(b,2)\},
                v_{\alpha}'=v_{\alpha}
                v_5'=v_4
                v_6' = v_5
                 v_7 = v_6 \setminus (m,*) \cup \{(m,4)\},
                 v_8' = v_5
                 v_9' = v_8 \setminus (m,*) \cup \{(m,6)\},
                 v_{10} = v_7 \cup v_9
```

- The flow equations define a function over 11 variables $v_0 \cdots v_{10}$
- Each variable v_i represents a value from our lattice, $L = \mathcal{P}(\text{Var} \times \text{Lab})$

$$F: (\mathcal{P}(\mathsf{Var} \times \mathsf{Lab}))^{11} \to (\mathcal{P}(\mathsf{Var} \times \mathsf{Lab}))^{11}$$

Solving the Equations

- Fixed Point Problem
 - Given a function $F: L \to L$, find $x \in L$ such that

- With transfer functions, you will often find that there is more than one such solution...
 - Specifically, when the program has loops
 - We would like the most precise solution

$$e.g., F = identity$$

Solving the Equations

Knaster-Tarski Theorem

• Order preserving (monotonic) function:

$$x \sqsubseteq y \Rightarrow F(x) \sqsubseteq F(y)$$

• Let L be a complete lattice and $F: L \to L$ a monotonic function. Then the set of fixed points of F is also a complete lattice.

▶ *Definition*. the **least fixed point** (*lfp*) x_{\perp} is a fixed point $(F(x_{\perp}) = x_{\perp})$,

such that for any x, if F(x) = x, then $x_{\perp} \sqsubseteq x$

 x_{\perp} is the minimal element (\perp) of the lattice from Knaster-Tarski.

Kleene Fixed-point Theorem

Order preserving (monotonic) function:

$$x \sqsubseteq y \Rightarrow F(x) \sqsubseteq F(y)$$

• The least fixed point satisfies: $x_{\perp} = \sqcup \{F^n(\bot) \mid n = 0, 1, 2, ...\}$

- <u>Proof.</u> Let $x_i = F^i(\bot)$.
 - by induction, $x_i \sqsubseteq x_{i+1}$

 - also, $x_i \sqsubseteq x_\perp$
 - (finite case) =F(xi)if for some i, $x_i = x_{i+1} \Rightarrow x_i$ is a fixed point $\Rightarrow x_{\perp} \sqsubseteq x_i \sqsubseteq x_{\perp} \Rightarrow x_i = x_{\perp}$

 x_0, x_1, x_2, \dots

is called the Kleene chain of F.

BTW, same trick works for computing greatest fixed point

- in that case, start with $x_0 = \top$

Chains

• A set $S \subseteq L$ is a *chain* if

$$\forall x, y \in S. \ y \sqsubseteq x \text{ or } x \sqsubseteq y$$

• L has no infinite chains if every chain in L is finite.

• In that case, we are *guaranteed* to find the least fixed point in a finite number of steps.

Solving the Equations

```
F: (\mathcal{P}(\text{Var} \times \text{Lab}))^{11} \rightarrow (\mathcal{P}(\text{Var} \times \text{Lab}))^{11}
F(\langle v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \rangle) =
                          \langle v_0' = \emptyset,
                              v_1 = v_0 \setminus (a, *) \cup \{(a, 1)\},
                              v_2' = v_1
                              v_3' = v_2 \setminus (b,*) \cup \{(b,2)\},
                              v_4'=v_3,
                              v_5'=v_4
                              v_6' = v_5
                              v_7 = v_6 \setminus (m,*) \cup \{(m,4)\},
                              v_8' = v_5
                              v_{0}' = v_{8} \setminus (m,*) \cup \{(m,6)\},
                              v_{10} = v_7 \cup v_9
```

	上	F(⊥)	F(F(⊥))	F(F(F(⊥)))	F(F(F(F(⊥))))	F(F(F(F(±)))))
$v_0 = in(1)$	Ø	Ø	Ø	Ø	Ø	Ø
v_1 = out(1)	Ø	{(a,1)}	{(a,1)}	{(a,1)}	{(a,1)}	{(a,1)}
$v_2 = in(2)$	Ø	Ø	{(a,1)}	{(a,1)}	{(a,1)}	{(a,1)}
v_3 = out(2)	Ø	{(b,2)}	{(b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}
$v_4 = in(3)$	Ø	Ø	{(b,2)}	{(b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}
$v_{\scriptscriptstyle 5}$ = out(3)	Ø	Ø	Ø	{(b,2)}	{(b,2)}	{(a, 1), (b,2)}
$v_6 = in(4)$	Ø	Ø	Ø	Ø	{(b,2)}	{(b,2)}
v_7 = out(4)	Ø	{(m,4)}	{(m,4)}	{(m,4)}	{(m,4)}	{(b,2), (m,4)}
v_{8} = in(6)	Ø	Ø	Ø	Ø	{(b,2)}	{(b,2)}
v_9 = out(6)	Ø	{(m,6)}	{(m,6)}	{(m,6)}	{(m,6)}	{(b,2), (m,6)}
$v_{10} = in(7)$	Ø	Ø	{(m,4), (m,6)}	{(m,4), (m,6)}	{(m,4), (m,6)}	{(m,4), (m,6)}

$$F: (\mathcal{P}(\text{Var} \times \text{Lab}))^{11} \to (\mathcal{P}(\text{Var} \times \text{Lab}))^{11}$$

$$F(\langle v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \rangle) = \begin{cases} v_0' & v_1' \\ \varnothing, v_0 \setminus (a, *) \cup \{(a, 1)\}, v_1, v_2 \setminus (b, *) \cup \{(b, 2)\}, v_3, v_4, v_5, v_6 \\ v_6 \setminus (m, *) \cup \{(m, 4)\}, v_5, v_8 \setminus (m, *) \cup \{(m, 6)\}, v_7 \cup v_9 \end{cases}$$

	F5(⊥)	F ⁶ (丄)	F ⁷ (⊥)	F8(⊥)	F ⁹ (.
$v_0 = in(1)$	Ø	Ø	Ø	Ø	=
v_1 = out(1)	{(a,1)}	{(a,1)}	{(a,1)}	{(a,1)}	
$v_2 = in(2)$	{(a,1)}	{(a,1)}	{(a,1)}	{(a,1)}	
v_3 = out(2)	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	
$v_4 = in(3)$	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	
$v_{\scriptscriptstyle 5}$ = out(3)	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	
$v_6 = in(4)$	{(b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	
$v_7 = \text{out(4)}$	{(b,2), (m,4)}	{(b,2), (m,4)}	{(a, 1), (b,2), (m,4)}	{(a, 1), (b,2), (m,4)}	
$v_8 = in(6)$	{(b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	{(a, 1), (b,2)}	
v_9 = out(6)	{(b,2), (m,6)}	{(b,2), (m,6)}	{(a, 1), (b,2), (m,6)}	{(a, 1), (b,2), (m,6)}	
$v_{10} = in(7)$	{(m,4), (m,6)}	{(b,2), (m,4), (m,6)}	{(b,2), (m,4), (m,6)}	{(a, 1), (b,2), (m,4), (m,6)}	

$$F: (\mathcal{P}(\text{Var} \times \text{Lab}))^{11} \to (\mathcal{P}(\text{Var} \times \text{Lab}))^{11}$$

$$F(\langle v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \rangle) = \begin{cases} v_0' & v_1' \\ \varnothing, v_0 \setminus (a, *) \cup \{(a, 1)\}, v_1, v_2 \setminus (b, *) \cup \{(b, 2)\}, v_3, v_4, v_5, v_6 \setminus (m, *) \cup \{(m, 4)\}, v_5, v_8 \setminus (m, *) \cup \{(m, 6)\}, v_7 \cup v_9 \end{cases}$$

Solving the Equations

Least fixed point solution

Now, to the example program from before

Transfer Functions

System of Equations

 $F(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}) =$ ⟨Ø, $v_1 - in(1) = \emptyset$ $v_2 - in(2) = out(1)$ \mathcal{U}_{8} v_3 — $in(3) = out(2) \cup out(5)$ $v_9 \cup v_{12}$ $v_4 - in(4) = out(3)$ v_{10} $v_5 - in(5) = out(4)$ v_{11} $v_6 - in(6) = out(3)$ v_{10} $v_7 = in(7) = out(6)$ v_{13} $v_{\circ} = out(1) = in(1) \setminus (y,*) \cup \{ (y,1) \}$ $v_0 = out(2) = in(2) \setminus (z,*) \cup \{(z,2)\}$ v_{10} — out(3) = in(3) v_3 v_{11} out(4) = $in(4) \setminus (z,*) \cup \{(z,4)\}$ v_{12} out(5) = $in(5) \setminus (y,*) \cup \{ (y,5) \}$ v_{13} out(6) = $in(6) \setminus (y,*) \cup \{ (y,6) \}$

$$\langle \ arphi, \ v_8 \ v_9 \cup v_{12} \ v_{10} \ v_{11} \ v_{10} \ v_{13} \ v_1 \setminus (\mathrm{y},^*) \cup \{\,(\mathrm{y},1)\,\} \ v_2 \setminus (z,^*) \cup \{\,(z,2)\,\} \ v_3 \ v_4 \setminus (z,^*) \cup \{\,(\mathrm{y},5)\,\} \ v_6 \setminus (\mathrm{y},^*) \cup \{\,(\mathrm{y},6)\,\}\, \rangle$$

System of Equations

Representation as an n-ary function

$$F(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}) = \begin{cases} \langle \varnothing, & & \\ v_{8} & & \\ v_{9} \cup v_{12} & & \\ v_{10} & & \\ v_{11} & & & \\ v_{10} & & \\ v_{13} & & \\ v_{1} \setminus (y,^{*}) \cup \{ (y,1) \} & & \\ v_{2} \setminus (z,^{*}) \cup \{ (z,2) \} & & \\ v_{3} & & & \\ v_{4} \setminus (z,^{*}) \cup \{ (y,5) \} & \\ v_{5} \setminus (y,^{*}) \cup \{ (y,5) \} & & \\ \end{cases}$$

$$F(v_{11}, v_{12}, v_{13}) = 0$$
• These equation over 13 variable to expect the equation of the equation o

- These equations define a function over 13 variables (in(1..7), out(1..6))
- Each variable represents a value from our lattice, $L = \mathcal{P}(\text{Var} \times \text{Lab})$

$$F: (\mathcal{P}(\text{Var} \times \text{Lab}))^{13} \rightarrow (\mathcal{P}(\text{Var} \times \text{Lab}))^{13}$$

A solution \overline{v} satisfies $F(\overline{v}) = \overline{v}$

	1	F(⊥)	F(F(⊥))	F(F(F(⊥)))	F(F(F(F(⊥))))	F(F(F(F(F(⊥)))))
in(1)	Ø	Ø	Ø	Ø	Ø	Ø
in(2)	Ø	Ø	{(y,1)}	{(y,1)}	{(y,1)}	{(y,1)}
in(3)	Ø	Ø	$\{(z,2),(y,5)\}$	{(z,2),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}
in(4)	Ø	Ø	Ø	Ø	{(z,2),(y,5)}	{(z,2),(y,5)}
in(5)	Ø	Ø	{(z,4)}	{(z,4)}	{(z,4)}	{(z,4)}
in(6)	Ø	Ø	Ø	Ø	{(z,2),(y,5)}	{(z,2),(y,5)}
in(7)	Ø	Ø	{(y,6)}	{(y,6)}	{(y,6)}	{(y,6)}
out(1)	Ø	{(y,1)}	{(y,1)}	{(y,1)}	{(y,1)}	{(y,1)}
out(2)	Ø	{(z,2)}	{(z,2)}	{(z,2),(y,1)}	$\{(z,2),(y,1)\}$	{(z,2),(y,1)}
out(3)	Ø	Ø	Ø	{(z,2),(y,5)}	{(z,2),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}
out(4)	Ø	{(z,4)}	{(z,4)}	{(z,4)}	{(z,4)}	{(z,4)}
out(5)	Ø	{(y,5)}	{(y,5)}	{(z,4),(y,5)}	{(z,4),(y,5)}	{(z,4),(y,5)}
out(6)	Ø	{(y,6)}	{(y,6)}	{(y,6)}	{(y,6)}	{(z,2),(y,6)}

F: $(\mathcal{P}(\text{Var} \times \text{Lab}))^{13} \rightarrow (\mathcal{P}(\text{Var} \times \text{Lab}))^{13}$

 $in(1)=\emptyset \quad in(2)=out(1) \quad in(3)=out(2) \cup out(5) \quad in(4)=out(3) \quad in(5)=out(4) \quad in(6)=out(3)$ $out(1)=in(1) \setminus (y,*) \cup \{ (y,1) \} \quad out(2)=in(2) \setminus (z,*) \cup \{ (z,2) \} \quad in(7)=out(6)$ $out(3)=in(3) \quad out(4)=in(4) \setminus (z,*) \cup \{ (z,4) \}$ $out(5)=in(5) \setminus (y,*) \cup \{ (y,5) \} \quad out(6)=in(6) \setminus (y,*) \cup \{ (y,6) \}$

59

	F(F(F(F(F (上)))))	F ⁶ (⊥)	F ⁷ (⊥)	F ⁸ (⊥)
in(1)	Ø	Ø	Ø	Ø
in(2)	{(y,1)}	{(y,1)}	{(y,1)}	{(y,1)}
in(3)	{(z,2),(z,4),(y,1),(y,5)}	$\{(z,2),(z,4),(y,1),(y,5)\}$	{(z,2),(z,4),(y,1),(y,5)}	$\{(z,2),(z,4),(y,1),(y,5)\}$
in(4)	{(z,2),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	$\{(z,2),(z,4),(y,1),(y,5)\}$
in(5)	{(z,4)}	{(z,4)}	{(z,4),(y,1),(y,5)}	{(z,4),(y,1),(y,5)}
in(6)	{(z,2),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}
in(7)	{(y,6)}	{(y,6)}	{(y,6)}	{(y,6)}
out(1)	{(y,1)}	{(y,1)}	{(y,1)}	{(y,1)}
out(2)	{(z,2),(y,1)}	{(z,2),(y,1)}	{(z,2),(y,1)}	{(z,2),(y,1)}
out(3)	{(z,2),(z,4),(y,1),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	{(z,2),(z,4),(y,1),(y,5)}	$\{(z,2),(z,4),(y,1),(y,5)\}$
out(4)	{(z,4)}	{(z,4),(y,1),(y,5)}	{(z,4),(y,1),(y,5)}	{(z,4),(y,1),(y,5)}
out(5)	{(z,4),(y,5)}	{(z,4),(y,5)}	{(z,4),(y,5)}	{(z,4),(y,5)}
out(6)	{(z,2),(y,6)}	{(z,2),(y,6)}	{(z,2),(y,6)}	{(z,2),(y,6)}

F: $(\mathcal{P}(\text{Var} \times \text{Lab}))^{13} \rightarrow (\mathcal{P}(\text{Var} \times \text{Lab}))^{13}$

$$in(1)=\emptyset \quad in(2)=out(1) \quad in(3)=out(2) \cup out(5) \quad in(4)=out(3) \quad in(5)=out(4) \quad in(6)=out(3) \quad out(1)=in(1) \setminus (y,*) \cup \{ (y,1) \} \quad out(2)=in(2) \setminus (z,*) \cup \{ (z,2) \} \quad in(7)=out(6) \quad out(3)=in(3) \quad out(4)=in(4) \setminus (z,*) \cup \{ (z,4) \} \quad out(5)=in(5) \setminus (y,*) \cup \{ (y,5) \}$$

Least Fixed Point Solution

Chaotic Iterations

- To avoid recomputing values that do not change:
 - Keep a work list of CFG nodes to update
 - start with work list = {entry}
 - Pick one node at a time $u \in work$ list
 - Update out(u) from in(u)
 - If out(u) has changed, then for all successors v of u;
 - \triangleright recompute in(v) = out(u)
 - \triangleright add ν to the work list
 - ▶ Repeat until work list = ∅

Chaotic Iterations: Example

Initially: work list = {1}

Updates:
$$out(1) = \emptyset \setminus (y, *) \cup \{(y, 1)\}$$
 $out(3) = in(3)$
 $in(2) = out(1)$
 $in(2) = out(3)$
 $out(2) = \{(y, 1)\} \setminus (z, 2)\}$
 $out(2) = \{(y, 1), (z, 2)\}$
 $out(3) = in(3)$
 $out(3) = in(3)$
 $out(3) = in(3)$
 $out(3) = out(3)$
 $out(4) = \{(y, 1), (z, 2)\} \setminus (z, *) \cup \{(z, 2)\}$
 $out(3) = \{(y, 1), (z, 2)\} \setminus (z, *) \cup \{(z, 4)\}$
 $out(3) = \{(y, 1), (z, 2)\} \setminus (z, *) \cup \{(z, 4)\}$
 $out(4) = \{(y, 1), (z, 2)\} \setminus (z, *) \cup \{(z, 4)\}$
 $out(5) = \{(y, 1), (z, 4)\} \setminus (z, *) \cup \{(z, 4)\} \cup \cup$

- Remember: this is an over-approximation
 - ▶ A definition may be reaching use
 - We may err, but always on the safe side
 - We may say that a definition may reach a program point when it doesn't
 - We never miss a definition that may reach a point
- Usage examples
 - detecting possible use before any definition
 - very simple constant folding
 - transforming IR to SSA form (e.g. for LLVM)
 - useful for debugging in IDEs

by setting **initial** state to $\{(x,?) \mid x \in Vars \}$

detecting possible use before any definition

```
in(1) = \{(x,?), (y,?), (z,?)\}
y := x
while (y > 0) {
                      - in(3) = \{(y,1), (y,4), (x,?), (z,?), (z,3)\}
y := 0
                                When a definition (v,?) for some v reaches
return y + z
                                any use of v in the program,
                                issue a warning
```

very simple constant folding

```
in(1) = \emptyset
1   y := x
2   z := x := 1
3   while (y > 0) {
4    z := z * y
5   y := y - (x)
} use of x
```

- 6 y := 0
- 7 return y + z

When the **only** definition (v,i) of some v that reaches some use of v in the program is a constant assignment, the use of v can be replaced by the constant

transforming IR to SSA form (e.g. for LLVM)

```
cond:
                                              cond:
   %b = icmp slt i32 %i, %j
                                                 %b = icmp slt i32 %i, %j
   br i1 %b, label %then,
                                                 br i1 %b, label %then,
              label %else
                                                            label %else
then:
                                              then:
                                                 %max then = or i32 0, %j
   max = or i32 0, %j
                                                 br label %exit.
   br label %exit.
else:
                                              else:
   max = or i32 0, %i
                                                 %max else = or i32 0, %i
   br label %exit.
                                                 br label %exit.
                     in(exit) = \{(b, cond)\}
exit:
                                              exit:
   ret i32 (%max
                                                 %max exit =
                               (max. then)
                                                  \rightarrow phi i32 [ %max then, %then ],
                               (max, else)
                                                              [ %max else, %else ]
                                                 ret i32 %max exit
```

Live Variables

```
1: x := 2;
2: y := 4;
3: x := 1;
4: if y > x

else z := y * y;

7: x := z
```

X := ...

For each program point, which variables may be live (i.e., has some future use before re-definition, along some path) at the exit from that point.

Live Variables

```
1: x := 2;

2: y := 4;

3: x := 1;

4: if y > x

5: then z := y

6: else z := y * y;

7: x := z
```

Backward Analysis (!)

Live Variables

```
1: x := 2;
      2: y := 4;
      3: x := 1;
      4: if y > x
                <u>then z := v</u>
         FV: Expr \rightarrow \mathcal{P}(Var)
         ▶ Variables used in an expression
Stmt
            out(\ell)
           in(\ell) \setminus \{x\} \cup FV(expr)
x := expr
if cond
            in(\ell) \cup FV(cond)
        Transfer functions
```


Live Variables — Solution

```
    1: x := 2;
    2: y := 4;
    3: x := 1;
    4: if y > x
    5: then z := y
    6: FV: Expr → P(Var)
    7: ►x Variables used in an expression
```

Stmt	out(ℓ)		
x := expr	in(ℓ) \ { :	(} ∪ F\	/(expr)
if cond	$in(\ell) \cup F$	/(cond	d)

Transfer functions

Forward vs. Backward Analyses

Kill/Gen

Statement	out(ℓ)
x := expr	$in(\ell) \setminus \{x\} \cup FV(expr)$
skip	$in(\ell)$
if cond	$in(\ell) \cup FV(cond)$

Statement	kill	gen
x := expr	{ x }	FV(expr)
skip	Ø	Ø
if cond	Ø	FV(cond)

out(ℓ) = in(ℓ) \ kill(B ℓ) U gen(B ℓ) B^{ℓ} = statement (or block) at label ℓ

Available Expressions Analysis

```
1 x = a + b

2 y = a * b

3 while (y > a + b) { (a + b) always available

4 a = a + 1

5 x = a + b

}
```

For each program point, find which expressions must have already been computed, and not later modified, on all paths leading to that program point

Some Required Notation

- Classes of expressions:
 - ▶ AExpr arithmetic expressions
 - ▶ BExpr boolean expressions
- FV: (AExpr \cup BExpr) $\rightarrow \mathcal{P}(Var)$
 - Variables used in an expression
- AExpr(e) = all (non-atomic) arithmetic subexpressions of an expression e

Available Expressions Analysis

Property domain

- ▶ $L = \mathcal{P}(AExpr)$; $\sqsubseteq = \supseteq$; $\sqcup = \cap$
- in, out: Lab \rightarrow L Map a statement label to set of arithmetic expressions that are available at (before, after) that statement

Dataflow equations

- ▶ Flow equations how to join incoming dataflow facts
- ▶ Effect equations given an input set of expressions in(i), what is the effect of the statement at i

Available Expressions Analysis

• $in(\ell) =$

As dictated by the monotone framework

- \blacktriangleright Ø when ℓ is the initial label
- ▶ \bigcap {out(ℓ') | ℓ' ∈ pred(ℓ)} otherwise
- out(ℓ) = →

Statement	$out(\ell)$
x = expr	$in(\ell) \setminus \{ e \in AExpr \mid x \in FV(e) \} \cup \{ e \in AExpr(expr) \mid x \notin FV(e) \}$
skip	$in(\ell)$
if cond	$in(\ell) \cup AExpr(cond)$

Transfer Functions

```
1: x := a+b
           out(1) = in(1) \setminus \varnothing \cup \{ a+b \}
2: y := a*b
           out(2) = in(2) \setminus \varnothing \cup \{a*b\}
3: y > a+b
           out(3) = in(3) \setminus \varnothing \cup \{a+b\}
4: a := a+1
           out(4) = in(4) \ { a+b, a*b, a+1 } \cup \emptyset
5: x := a+b
           out(5) = in(5) \setminus \emptyset \cup \{a+b\}
```

```
in(1) = \emptyset

in(2) = out(1)

in(3) = out(2) \cap out(5)

in(4) = out(3)

in(5) = out(4)
```

```
1  x := a + b
2  y := a * b
3  while (y > a + b) {
4     a := a + 1
5     x := a + b
}
```

Solution

in(1) =
$$\emptyset$$

1: x := a+b
in(2) = out(1) = { a + b }
2: y := a*b
out(2) = { a+b, a*b } in(3) = { a + b }
in(4) = out(3) = { a+b }
4: a := a+1
out(4) = \emptyset
5: x := a+b
out(5) = { a+b }

Kill/Gen

Statement	out (ℓ)
x := expr	$in(\ell) \setminus \{e \in AExpr \mid x \in FV(e)\} \cup \{e \in AExpr(expr) \mid x \notin FV(e)\}$
skip	$in(\ell)$
if cond	in(ℓ) U AExpr(cond)

Statement	kill	gen
x := expr	$\{e \in AExpr \mid x \in FV(e)\}$	$\{ e \in AExpr(expr) \mid x \notin FV(e) \}$
skip	Ø	Ø
if cond	Ø	AExpr(cond)

out(
$$\ell$$
) = in(ℓ) \ kill(B ℓ) U gen(B ℓ)
$$B^{\ell}$$
 = statement (or block) at label ℓ

Reaching Definitions Revisited

Statement	out(ℓ)
x := expr	$in(\ell) \setminus \{ (x,i) \mid i \in Lab \} \cup \{ (x,\ell) \}$
skip	$in(\ell)$
if cond	$in(\ell)$

Statement	kill	gen
x := expr	$\{(x,i) \mid i \in Lab \}$	{ (x, \ell) }
skip	Ø	Ø
if cond	Ø	Ø

out(
$$\ell$$
) = in(ℓ) \ kill(B ℓ) U gen(B ℓ)

B ℓ = statement (or block) at label ℓ

Analyses Summary

	(may)	(must)	(may)
	Reaching Definitions	Available Expressions	Live Variables
L	$\mathcal{P}(Var \times Lab)$	$\mathcal{P}(AExp)$	$\mathcal{P}(Var)$
⊑	\subseteq	\supseteq	\subseteq
Ц	U	\cap	U
Т	Var × Lab	Ø	Var
Т	Ø	AExp	Ø
Initial	$\{(x,?) \mid x \in Globals\}$	Ø	Ø
Entry labels	{ init }	{ init }	final
Direction	forward	forward	backward
f_{ℓ}	$f_{\ell}(val) = (val \setminus kill_{\ell}) \cup gen_{\ell}$		

Summary

- Static Analysis
 - ✓ Prove properties of a program at compile time
 - ✓ Over-approximate possible program behaviors
- Dataflow Analysis

- Monotone Framework
 - ✓ Can be used to express many useful analyses, in particular kill/gen-type analyses

