Fondamentaux de l'Apprentissage Automatique

Lecturer: Yann Chevaleyre Lecture n°6 # Scribe: Amigo Joseph 02/11/2023

1 Online Learning in the realizable case

1.1 Online learning protocol

The general steps of an online learning protocol look like the following:

Let
$$S = (x_1, y_1) \dots (x_N, y_N) \sim \mathcal{P}^N$$
 be dataset.
For $t = 1$ to T do:

- 1. The environment chooses x_t, y_t , and reveals x_t to the learner
- 2. The learner predicts \hat{y}_t
- 3. The environment reveals y_t
- 4. The learner endures the cost $\ell(\hat{y}_t, y_t)$

In the following let's define a **finite** set of functions \mathcal{F} . We will assume that we are in the **realizable case**, meaning that there exists in \mathcal{F} a classifier that commits zero error on the dataset S.

1.2 Empirical Risk Minimization (ERM) online algorithm

The ERM algorithm is the following online algorithm:

Define $\mathcal{F}_1 = \mathcal{F}$ and do :

For t = 1 to T, do :

- 1. Receive x_t
- 2. Choose arbitrarily $f_t \in \mathcal{F}_t$
- 3. Predict $\hat{y}_t = f_t(x_t)$
- 4. Receive the true label y_t , and my prediction costs me $\ell(\hat{y}_t, y_t)$
- 5. Update $\mathcal{F}_{t+1} = \{ f \in \mathcal{F}_t : f(x_t) = y_t \}$

1.3 Failure of ERM

With an ERM online algorithm, it can be that we make almost only mistakes (in the realizable case we have a perfectly correct classifier, so with the algorithm above, at least one prediction will be correct). Let's study this failure case in detail.

Let's define
$$\mathcal{X} = [0, 1], \mathcal{Y} = \{-1, 1\}$$
 and $\mathcal{F} = \{f_0, f_1, \dots, f_M\}$, where $f_i(x) = \begin{cases} 1 & \text{if } x \leq \frac{i}{M} \\ -1 & \text{otherwise} \end{cases}$

Let's simulate the online ERM algorithm on the dataset $S = ((\frac{1}{M}, 1), \dots, (\frac{M-1}{M}, 1))$ with the assumption that among all valid $f \in \mathcal{F}_t$, we pick the first one. Note that f_M is the perfect predictor on S, so we're indeed in the realizable case. Also, note that it is enumerated last.

$$- t = 1$$

- $x_1 = \frac{1}{M}, y_1 = 1$ $\mathcal{F}_1 = \mathcal{F}$, so we choose $f = f_0$ (remember the assumption "among all valid $f \in \mathcal{F}_t$, we pick the first one")
- $\hat{y}_1 = f_0(x_1) = -1 \neq y_1(x_1 = \frac{1}{M} > \frac{0}{M}) \implies \ell(\hat{y}_1, y_1) = 1$
- $\mathcal{F}_2 = \mathcal{F} \setminus \{f_0\}$ (in our settings there is only f_0 that makes a mistake for $(x_1, y_1) =$

- -t = M 1
 - $-x_{M-1} = \frac{M-1}{M}, y_{M-1} = 1$
 - we pick f_{M-1} (remember the assumption "among all valid $f \in \mathcal{F}_t$, we pick the first one")

1.4 Halving algorithm

Let's define $\mathcal{F}_1 = \mathcal{F}$. The halving algorithm is the following online algorithm: For t = 1 to T, do :

- 1. Receive x_t
- 2. Let $\mathcal{F}_t^k = \{ f \in \mathcal{F}_t : f(x_t) = k \}$, for all $k \in \mathcal{Y}$
- 3. Predict $\hat{y}_t = \arg\max_{k \in \mathcal{Y}} |\mathcal{F}_t^k|$
- 4. Receive the true label y_t , and my prediction costs me $\ell(\hat{y}_t, y_t)$
- 5. Update $\mathcal{F}_{t+1} = \{ f \in \mathcal{F}_t : f(x_t) = y_t \}$

Analysis of halving

Theorem 1. With the halving algorithm, in the two-class setting, let $l_t = \mathbb{1}_{[\hat{y}_t \neq y_t]}$, then $\sum_{t=1}^{T} l_t \leqslant \ln_2 |\mathcal{F}|.$

Proof of theorem 1. Let $\Omega_t = |\mathcal{F}_t|$,

- If the prediction \hat{y}_t is incorrect at time $(l_t = 1)$ then, $\Omega_{t+1} \leqslant \frac{\Omega_t}{2}$
- $-\Omega_1 = |\mathcal{F}|$
- $\Omega_t \geqslant 1$ for all t by realizability assumption.

Therefore:

$$1 \leqslant \Omega_{T+1} \leqslant \Omega_1 \times 2^{-\sum_{t=1}^{T} l_t}$$

$$\Rightarrow \ln_2 \left(\Omega_1 \times 2^{-\sum_{t=1}^{T} l_t} \right) \geqslant 0$$

$$\Rightarrow \ln_2 |\mathcal{F}| \geqslant \sum_{t=1}^{T} l_t$$

Generic randomized algorithm

Let \mathcal{F} be a family of classifiers, and let P_t be a distribution over \mathcal{F} . A generic randomized algorithm looks like the following:

For t = 1 to T, do :

- 1. Receive x_t
- 2. Draw $f_t \sim P_t$
- 3. Predict $\hat{y}_t = f_t(x_t)$
- 4. Receive the true label y_t , and my prediction costs me $\ell(\hat{y}_t, y_t)$
- 5. Update P_{t+1}

1.7 Uniform case

Let's study a particular randomized algorithm. Let \mathcal{F} be a family of classifiers. Choose $P_t = \text{Unif }(\mathcal{F}_t)$.

Let's define $\mathcal{F}_1 = \mathcal{F}$.

For t = 1 to T, do :

- 1. Receive x_t
- 2. Draw $f_t \sim P_t$
- 3. Predict $\hat{y}_t = f_t(x_t)$
- 4. Receive the true label y_t , and my prediction costs me $\ell\left(\hat{y}_t, y_t\right)$
- 5. Update $\mathcal{F}_{t+1} = \{ f \in \mathcal{F}_t : f(x_t) = y_t \}$ and P_{t+1}

1.8 Analysis of the uniform randomized algorithm

Theorem 2. With the uniform randomized algorithm, in the two-class setting, let $l_t = \mathbb{1}_{[\hat{y}_t \neq y_t]}$, then

$$\mathbb{E}_{f_1,\dots,f_t \sim \mathcal{U}(\mathcal{F}_1),\dots,\mathcal{U}(\mathcal{F}_t)} \left[\sum_{k=1}^T l_t \right] \le \ln |\mathcal{F}|$$

Proof of theorem 2. Let $\Omega_t = |\mathcal{F}_t|$, we have :

$$\mathbb{E}_{f_1,\dots,f_t \sim \mathcal{U}(\mathcal{F}_1),\dots,\mathcal{U}(\mathcal{F}_t)} \left[\sum_{k=1}^T l_t \right] = \sum_{k=1}^T \mathbb{E}_{f_1,\dots,f_t \sim \mathcal{U}(\mathcal{F}_1),\dots,\mathcal{U}(\mathcal{F}_t)} [l_t]$$
$$= \sum_{k=1}^T \mathbb{P}(l_t = 1)$$

And:

$$\mathbb{P}(l_t = 0) = \mathbb{P}(\mathbb{1}_{[f_t(x_t) \neq y_t]} = 0)
= \mathbb{P}(f_t(x_t) = y_t)
= \mathbb{P}(f_t \in \{f \in \mathcal{F}_t : f(x_t) = y_t\})
= \mathbb{P}(f_t \in \mathcal{F}_{t+1})
= \frac{|\mathcal{F}_{t+1}|}{|\mathcal{F}_t|}
= \frac{\Omega_{t+1}}{\Omega_t}
\Omega_{t+1} = \Omega_t \times \mathbb{P}(l_t = 0)
= \Omega_{t-1} \times \mathbb{P}(l_{t-1} = 0) \times \mathbb{P}(l_t = 0)
\dots
= \Omega_1 \prod_{k=1}^t \mathbb{P}(l_k = 0)$$

Furthermore:

$$1 \le \Omega_{t+1} \le \Omega_1 \prod_{k=1}^t \mathbb{P}(l_k = 0)$$
$$0 \le \ln(\Omega_1) + \sum_{k=1}^t \ln(\mathbb{P}(l_k = 0))$$
$$0 \le \ln(\Omega_1) + \sum_{k=1}^t \ln(1 - \mathbb{P}(l_k = 1))$$

And because $\forall x \in [0, 1[, \ln(1-x) \le -x :$

$$0 \le \ln(\Omega_1) - \sum_{k=1}^t \mathbb{P}(l_k = 1)$$

$$\mathbb{E}\Big[\sum_{k=1}^t l_k\Big] \le |\mathcal{F}| \tag{$\forall t$}$$

2 Online Learning in the non-realizable case

2.1 Regret

- The cumulated loss $\sum_{t=1}^{T} \ell\left(f_t\left(x_t\right), y_t\right)$ can tend to ∞
- So we look at the cumulated regret: $\operatorname{Regret}_{T} = \sum_{t=1}^{T} \ell\left(f_{t}\left(x_{t}\right), y_{t}\right) \min_{f \in \mathcal{F}} \sum_{t=1}^{T} \ell\left(f\left(x_{t}\right), y_{t}\right)$
- We compare it to the best classifier who would know the samples in advance
- An algorithm is "no regret" if $\frac{1}{T} \operatorname{Regret}_T \to 0$ when $T \to \infty$
- Note : For a randomized learner, we look at the expected regret $\mathbb{E}\left[\operatorname{Regret}_{T}\right]$

2.2 Failure of ERM in the non-realizable case

Theorem 3. With the 0/1 loss, neither ERM nor any deterministic algorithm is "no regret".

Proof of theorem 3: Given:

$$\mathcal{F}: \{f_1, f_{-1}\} \text{ with } f_1(x) = 1, \ f_{-1}(x) = -1, \ \forall x \in \mathcal{X} \text{ and } \mathcal{Y} = \{-1, 1\}$$

Our learning algorithm is $\mathcal{A}(x_1, y_1, x_2, y_2, \dots, x_t) \to \hat{y}_t$

Because A is deterministic, the environment can simulate A(...). Let's take :

$$y_t = -\hat{y}_t$$
 (Malicious environment)

Then:

$$\sum_{t=1}^{T} l\{y_t \neq \hat{y}_t\} = T$$

Let's define $(i_1, \ldots, i_T) \in \{-1, 1\}^T$ such that $f_{i_1}(x_1) = f_{\hat{y}_1}(x_1) = \hat{y}_1, \ldots, f_{i_T}(x_T) = f_{\hat{y}_T}(x_T) = \hat{y}_T$. Suppose :

$$\min_{f \in \mathcal{F}} \sum_{t=1}^{T} l\{y_t \neq f(x_t)\} > T/2$$

And without loss of generality suppose that f_1 is the function that meets this minimum. But in our settings every time f_1 makes a mistake, f_{-1} is correct. This means that f_{-1} made **strictly** less that $T - \frac{T}{2}$ mistakes (maximum number of mistakes for a classifier in our settings is T, and if $\sum_{t=1}^{T} l\{y_t \neq f_1(x_t)\} > T/2$ then $\sum_{t=1}^{T} l\{y_t = f_{-1}(x_t)\} > T/2$). But that's fewer errors than f_1 , which is supposed to make the fewest errors. **Absurd**.

Hence:

$$\min_{f \in \mathcal{F}} \sum_{t=1}^{T} l\{y_t \neq f(x_t)\} \le T/2$$

Therefore, the regret:

$$\frac{1}{T}$$
Regret $\geq \frac{1}{T}(T - T/2) \geq \frac{1}{2}$

Since the regret is a constant strictly greater than 0, A(...) is not no-regret.

2.3 Randomized Algorithm in the non-realizable case

- This algorithm works for any bounded loss $\ell(\cdot,\cdot) \leqslant c$
- Let $\beta \in]0,1[$. Choose $P_t(f) = \frac{1}{\Omega_t} w_{f,t}$ with $\Omega_t = \sum_{f \in \mathcal{F}} w_{f,t}$
- $w_{f,1} = 1$
- $-w_{f,t+1} = w_{f,t}e^{-\beta\ell(f(x_t),y_t)}$ for some constant $\beta > 0$

5

With this let's define the following algorithm which is called the Hedge algorithm:

Define $\mathcal{F}_1 = \mathcal{F}$, for t = 1 to T, do :

- 1. Receive x_t
- 2. Draw $f_t \sim P_t$
- 3. Predict $\hat{y}_t = f_t(x_t)$
- 4. Receive the true label y_t , and my prediction costs me $\ell(\hat{y}_t, y_t)$
- 5. Update \mathcal{F}_{t+1} and P_{t+1}

We have the following theorem for hedge:

Theorem 4. $\mathbb{E}[Regret] \leqslant c\sqrt{2T \ln |\mathcal{F}|}$

2.4 No regret implies PAC

Up to now, x_t and y_t were drawn from an arbitrarily distribution. Let's now analyse the case where x_t and y_t are drawn from a distribution p.

In this case, any no-regret algorithm is PAC (probably approximately correct).

Assumption: $S = (x_t, y_y)_{t=1}^T$ is drawn from P^T . After running a no-regret algorithm, we return \bar{f} , a function drawn at random from f_1, \ldots, f_T .

Proposition : If an online learner guarantees that $E[Regret] \leq UB$ then :

$$E[R(\bar{f})] \le R(f_F) + \frac{1}{T}UB$$

Corollary: The majority classifier (over the set f_1, \ldots, f_T) is PAC-learner. If the online learner generates $f_1 \ldots f_T$ (one classifier per timestep),

Study the true expected risk of f_g . Assumption : $(z_1, y_1) \dots (z_T, y_T)$ drawn i.i.d. from \mathcal{R} .

Given:

$$\mathcal{R}(f_g) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{z,y \sim p} l(f_g(z_t), y_t)$$

$$= \mathbb{E}S \left[\frac{1}{T} \sum_{t=1}^{T} t = 1^T l(f_g(z_t), y_t) \right]$$

$$\leq \mathbb{E}S \left[\min f \in \mathcal{F} \frac{1}{T} \sum_{t=1}^{T} l(f(z_t), y_t) \right] + \frac{UB}{T}$$

$$\leq \min_{f \in \mathcal{F}} \mathbb{E}S \left[\frac{1}{T} \sum_{t=1}^{T} t = 1^T l(f(z_t), y_t) \right] + \frac{UB}{T} \quad \text{(by Jensen's inequality)}$$

$$\leq UB$$

3 Online Learning with infinite \mathcal{F} for a convex loss

3.1 ERM Case

— Assumptions : $f \in \mathcal{F}$ is represented by a vector $\theta \in \Theta \subseteq \mathbb{R}^d$ (as for logistic regression E.g. $f(x) = \theta^{\top} x$). The set Θ is convex. We define $\ell_t(\theta) = \ell(f_{\theta}(x_t), y_t)$ convex loss.

We can define an ERM Algorithm - also named Follow The Leader (FTL) :

For t = 1 to T, do:

- Receive x_t
- Choose $\theta_t = \arg\min_{\theta \in \Theta} \sum_{k=1}^{t-1} \ell_k(\theta)$
- Predict $\hat{y}_t = f_t(x_t)$
- Receive the label y_t , and my prediction costs $\ell(\hat{y}_t, y_t)$

ERM fails as before because it is "unstable".

We can define another algorithm, named Follow The Regularized Leader (FTRL):

— Assumptions : $f \in \mathcal{F}$ is represented by a vector $\theta \in \Theta \subseteq \mathbb{R}^d . \ell_t(\theta) = \ell(f_\theta(x_t), y_t)$ is a convex loss.

Define $\mathcal{F}_1 = \mathcal{F}$, then for t = 1 to T, do:

- Receive x_t
- Choose $\theta_t = \arg\min_{\theta \in \Theta} \sum_{k=1}^{t-1} l_k(\theta) + \lambda C(\theta)$
- Predict $\hat{y}_t = f_t(x_t)$
- Receive the label y_t , and my prediction costs $\ell(\hat{y}_t, y_t)$

Often, $C(\theta) = \|\theta\|_2^2$.

3.2 R-ERM with linear losses, SGD and Mirror Descent

For simplicity, assume the loss function $l_t(\theta)$ is linear in θ , so we can write $l_t(\theta) = g_t^{\top} \theta$ for some $g_t \in \mathbb{R}^d$, assuming $\Theta = \mathbb{R}^d$.

R-ERM:
$$\theta_{t+1} = \arg\min\theta \in \Theta\left\{ \left[\sum k = 1^t l_k(\theta) \right] + \lambda C(\theta) \right\}$$

Pick $C(\theta) = \|\theta\|_2^2$

Exercise:

- 1) write the optimality condition for θ_{t+1}
- 2) write the optimality condition for θ_t
- 3) link them

Let's define $\nabla L_{t+1}(\theta) = \sum_{k=1}^{t} l_k(\theta) + 2\lambda C(\theta)$

$$\nabla L_{t+1} (\theta_{t+1}) = \sum_{k=1}^{t} g_k + 2\lambda \theta_{t+1} = 0$$

$$\Rightarrow \theta_{t+1} = -\frac{1}{2\lambda} \sum_{k=1}^{t} g_k$$

$$\nabla L_t (\theta_t) = \sum_{k=1}^{t-1} g_k + 2\lambda \theta_t = 0$$

$$\Rightarrow \theta_t = -\frac{1}{2\lambda} \sum_{k=1}^{t-1} g_k \text{ and } \sum_{k=1}^{t-1} g_k = -2\lambda \theta_t$$

$$\theta_{t+1} = -\frac{1}{2\lambda} g_t - \frac{1}{2\lambda} \sum_{k=1}^{t-1} g_k$$

$$\theta_{t+1} = \theta_t - \frac{1}{2\lambda} g_t$$

Alternatively, if using a gradient term:

$$\theta_{t+1} = \theta_t - \frac{1}{2\lambda} \nabla_{\theta} l_t (\theta_t) \operatorname{SGD}$$

If $\nabla_{\theta}\ell_t$ is small, then the algorithm is stable : θ_{t+1} is close to θ_t .

3.3 Lemme "Be The Leader (BTL)"

Lemma 1. Let $\theta^* = \arg\min_{\theta} \sum_{t=1}^{T} \ell_t(\theta)$. With R-ERM, we get

$$\sum_{t=1}^{T} (\ell_{t}(\theta_{t}) - \ell_{t}(\theta^{*})) \leq \lambda \|\theta^{*}\|_{2}^{2} + \sum_{t=1}^{T} (\ell_{t}(\theta_{t}) - \ell_{t}(\theta_{t+1}))$$

- This lemma shows that if θ_t is stable and ℓ_t is "smooth" in some way, the regret of de R-ERM is low.

3.4 Stability of R-ERM

Lemma 2. If ℓ_t is convex and ρ -Lipschitz, then $\|\theta_{t+1} - \theta_t\| \leqslant \frac{\rho}{\lambda}$ with $C(\theta) = \|\theta\|_2^2$

3.5 Regret of R-ERM

Theorem 5. Let ℓ_t , convex differentiable loss. Let $\theta^* = \arg\min_{\theta} \sum_{t=1}^T \ell_t(\theta)$. Si $\|\theta^*\|_2 \leq W_2$, if ℓ_t is ρ -Lipschitz, then with $\lambda = \frac{L\sqrt{T}}{W_2}$ we get:

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} (\ell_{t} (\theta_{t}) - \ell_{t} (\theta^{*})) \leq 2W_{2} \rho \sqrt{T}$$