# Extension of the GenEO DDM to Saddle Point problem

#### Frédéric Nataf and Pierre-Henri Tournier

Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Sorbonne University

13th FreeFEM Days, Paris 2021

This work was given access to the HPC resources of OCCIGEN@CINES under the allocation 2020-067730 granted by GENCI.

## **Outline**

- Saddle Point Problem
- 2 Recall on GenEO for SPD problems
- 3 Extension of GenEO to Saddle Point problem
- Numerical Results and the ffddm script

## **Outline**

- Saddle Point Problem
- Recall on GenEO for SPD problems
- 3 Extension of GenEO to Saddle Point problem
- 4 Numerical Results and the ffddm script

#### Saddle Point Problem

Solve

$$\mathcal{A} \left( \begin{array}{c} \textbf{\textit{u}}_h \\ \textbf{\textit{p}}_h \end{array} \right) \, = \, \left( \begin{array}{c} \textbf{\textit{F}}_h \\ \textbf{\textit{G}}_h \end{array} \right) \, \, \text{with} \, \, \mathcal{A} := \left( \begin{array}{cc} \textbf{\textit{A}} & \textbf{\textit{B}}^T \\ \textbf{\textit{B}} & -\textbf{\textit{C}} \end{array} \right) \, .$$

Pervasive in scientific computing:

- (nearly) incompressible fluids or solids ⇒ pressure formulation is usually mandatory.
- Multi Point Constraints (MPC) ⇒ Lagrange multipliers.

Penalization may bypasse the problem in some situations but at the expense of approximation errors and round-off error issues

**Difficulty**: Matrix  $\mathcal{A}$  is symmetric but not positive. If it is made positive, symmetry is lost  $\Rightarrow$  issue for iterative solvers. For small enough problems, direct solvers are the method of choice (MUMPS, PARDISO, SUPERLU, . . .)

# Large Scale Problems

Many millions or some billions of dof's on hundreds or thousands of cores.

For Symmetric Positive Definite (SPD) problems even with high heterogeneities, both

- Algebraic Multigrid solvers (AMG)
- Domain Decomposition Methods (DDM)

are quite efficient: robust and fast.

For saddle point problems with arbitrary high heterogeneities, even when *A* is SPD and *C* is symmetric positive semidefinite, these iterative solvers are not so usable.

Here, we propose an Extension of the GenEO DDM to saddle point problems.

## **Outline**

- Saddle Point Problem
- 2 Recall on GenEO for SPD problems
- 3 Extension of GenEO to Saddle Point problem
- 4 Numerical Results and the ffddm script

# (Recall) An introduction to DDM I

#### Consider the discretized Poisson problem: $Au = f \in \mathbb{R}^n$ .

Given a decomposition of [1; n],  $(\mathcal{N}_1, \mathcal{N}_2)$ , define:

- the restriction operator  $R_i$  from  $\mathbb{R}^{[1;n]}$  into  $\mathbb{R}^{\mathcal{N}_i}$
- $R_i^T$  as the extension by 0 from  $\mathbb{R}^{\mathcal{N}_i}$  into  $\mathbb{R}^{[1;n]}$ .

 $u^m \longrightarrow u^{m+1}$  by solving concurrently:

$$u_1^{m+1} = u_1^m + A_1^{-1}R_1(f - Au^m)$$
  $u_2^{m+1} = u_2^m + A_2^{-1}R_2(f - Au^m)$ 

where 
$$u_i^m = R_i u^m$$
 and  $A_i := R_i A R_i^T$ .



## (Recall) An introduction to DDM I

Consider the discretized Poisson problem:  $Au = f \in \mathbb{R}^n$ . Given a decomposition of [1; n],  $(\mathcal{N}_1, \mathcal{N}_2)$ , define:

- the restriction operator  $R_i$  from  $\mathbb{R}^{[1;n]}$  into  $\mathbb{R}^{\mathcal{N}_i}$ ,
- $R_i^T$  as the extension by 0 from  $\mathbb{R}^{\mathcal{N}_i}$  into  $\mathbb{R}^{[1;n]}$ .

 $u^m \longrightarrow u^{m+1}$  by solving concurrently:

$$u_1^{m+1} = u_1^m + A_1^{-1}R_1(f - Au^m)$$
  $u_2^{m+1} = u_2^m + A_2^{-1}R_2(f - Au^m)$ 

where  $u_i^m = R_i u^m$  and  $A_i := R_i A R_i^T$ .



## (Recall) An introduction to DDM I

Consider the discretized Poisson problem:  $Au = f \in \mathbb{R}^n$ . Given a decomposition of [1; n],  $(\mathcal{N}_1, \mathcal{N}_2)$ , define:

- the restriction operator  $R_i$  from  $\mathbb{R}^{[1;n]}$  into  $\mathbb{R}^{\mathcal{N}_i}$ ,
- $R_i^T$  as the extension by 0 from  $\mathbb{R}^{\mathcal{N}_i}$  into  $\mathbb{R}^{[1;n]}$ .

 $u^m \longrightarrow u^{m+1}$  by solving concurrently:

$$u_1^{m+1} = u_1^m + A_1^{-1}R_1(f - Au^m)$$
  $u_2^{m+1} = u_2^m + A_2^{-1}R_2(f - Au^m)$ 

where 
$$u_i^m = R_i u^m$$
 and  $A_i := R_i A R_i^T$ .



#### An introduction to DDM II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$





Then, 
$$u^{m+1} = \sum_{i=1}^{N} R_i^T D_i u_i^{m+1}$$
.

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$$

+ Krylov acceleration ⇒ RAS algorithm (Cai & Sarkis, 1999)

#### An introduction to DDM II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$





Then, 
$$u^{m+1} = \sum_{i=1}^{N} R_i^T D_i u_i^{m+1}$$
.  $M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$   
+ Krylov acceleration  $\Rightarrow$  RAS algorithm (Cai & Sarkis, 1999)

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$$

### An introduction to DDM II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$



Then, 
$$u^{m+1} = \sum_{i=1}^{N} R_i^T D_i u_i^{m+1}$$
.  $M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i + \text{Krylov acceleration} \Rightarrow \text{RAS algorithm (Cai & Sarkis, 1999)}$ 

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$$

# Adding a coarse space

One level methods are not scalable.

We add a coarse space correction (*aka* second level) Let  $V_H$  be the coarse space and Z be a basis,  $V_H = \operatorname{span} Z$ , writing  $R_0 = Z^T$  we define the two level preconditioner as:

$$M_{ASM,2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

The Nicolaides approach (1987) is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes:

$$Z := (R_i^T D_i R_i \mathbf{1})_{1 \le i \le N}$$

where  $D_i$  are chosen so that we have a partition of unity:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id.$$

Key notion: Stable splitting (J. Xu, 1989)

# Theoretical convergence result

#### Theorem (Widlund, Dryija)

Let  $M_{ASM,2}^{-1}$  be the two-level additive Schwarz method:

$$\kappa(M_{ASM,2}^{-1}A) \leq C\left(1+\frac{H}{\delta}\right)$$

where  $\delta$  is the size of the overlap between the subdomains and H the subdomain size.

#### This does indeed work very well

| Number of subdomains | 8  | 16 | 32 | 64  |
|----------------------|----|----|----|-----|
| ASM                  | 18 | 35 | 66 | 128 |
| ASM + Nicolaides     | 20 | 27 | 28 | 27  |

Fails for highly heterogeneous problems You need a larger and adaptive coarse space

#### Introduction to GenEO

#### Strategy

Define an appropriate coarse space  $V_{H2} = \operatorname{span}(Z_2)$  and use the framework previously introduced, writing  $R_0 = Z_2^T$  the two level preconditioner is:

$$M_{ASM2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

#### The coarse space must be

- Local (calculated on each subdomain) → parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute
- Robust (must lead to an algorithm whose convergence is proven not to depend on the partition nor the jumps in coefficients)

#### Introduction to GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems:

**Geneo .EVP** per subdomain:

Find 
$$V_{j,k} \in \mathbb{R}^{\mathcal{N}_j}$$
 and  $\lambda_{j,k} \geq 0$ : 
$$D_j R_j A R_j^T D_j V_{j,k} = \lambda_{j,k} A_j^{Neu} V_{j,k}$$

In the two-level ASM, let  $\tau$  be a user chosen parameter: Choose eigenvectors  $\lambda_{i,k} \geq \tau$  per subdomain:

$$Z := (R_j^T D_j V_{j,k})_{\substack{\lambda_{i,k} > \tau}}^{j=1,\ldots,N}$$

This automatically includes Nicolaides CS made of Zero

Energy Modes.

#### Introduction to GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems:

**Geneo .EVP** per subdomain:

Find 
$$V_{j,k} \in \mathbb{R}^{\mathcal{N}_j}$$
 and  $\lambda_{j,k} \geq 0$ : 
$$D_j \, R_j A R_j^\mathsf{T} \, D_j \, V_{j,k} \ = \ \lambda_{j,k} \, A_j^\mathsf{Neu} \, V_{j,k}$$

In the two-level ASM, let  $\tau$  be a user chosen parameter: Choose eigenvectors  $\lambda_{j,k} \geq \tau$  per subdomain:

$$Z := (R_j^T D_j V_{j,k})_{\substack{\lambda_{i,k} > \tau}}^{j=1,\ldots,N}$$

This automatically includes Nicolaides CS made of Zero

Energy Modes.

## Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl (Num. Math. 2013))

If for all j:  $0 < \lambda_{j,m_{i+1}} < \infty$ :

$$\kappa(M_{ASM,2}^{-1}A) \leq (1+k_0)\Big[2+k_0(2k_0+1)\Big(1+\tau\Big)\Big]$$

Possible criterion for picking  $\tau$ :

(used in our Numerics)

$$\tau := \min_{j=1,\dots,N} \; \frac{H_j}{\delta_j}$$

 $H_i$ ... subdomain diameter,  $\delta_i$ ... overlap

# Convergence on a Highly Heterogeneous diffusion problem



## **Outline**

- Saddle Point Problem
- Recall on GenEO for SPD problems
- 3 Extension of GenEO to Saddle Point problem
- 4 Numerical Results and the ffddm script

# Extension of GenEO to Saddle Point problem

Preconditioning  $\mathcal{A}$  (e.g. Stokes, Nearly incompressible elasticity):

$$\mathcal{A} := \left( \begin{array}{cc} A & B^{\mathsf{T}} \\ B & -C \end{array} \right) \,.$$

is equivalent to preconditioning A and  $S := C + BA^{-1}B^{T}$ . Starting with  $A^{-1} \approx M_{ASM2}^{-1}$  as above, we have

$$S \approx C + BM_{ASM2}^{-1}B^T \approx S_0 + \underbrace{\sum_{i=1}^{N} \tilde{R}_i^T (\tilde{C}_i + \tilde{B}_i (R_i A R_i^T)^{-1} \tilde{B}_i^T) \tilde{R}_i}_{M_{S_1}},$$

The operator  $M_{S_1}$  is dense and has to be preconditioned. But as a sum of local Schur complements, it can be preconditioned by a GenEO Neumann-Neumann type method:

$$\begin{split} & \textit{M}_{S_{1}}^{-1} := \textit{Z}_{S_{1}} \, (\textit{Z}_{S_{1}}^{T} S_{1} \textit{Z}_{S_{1}})^{-1} \, \textit{Z}_{S_{1}}^{T} \\ & + \left( \sum_{i=1}^{N} \tilde{R}_{i}^{T} \tilde{D}_{i} \, (\textit{I}_{d} - \xi_{i}) (\tilde{\textit{C}}_{i} + \tilde{\textit{B}}_{i} \, (\textit{R}_{i} \textit{A} \textit{R}_{i}^{T})^{-1} \, \tilde{\textit{B}}_{i}^{T})^{\dagger} \, (\textit{I}_{d} - \xi_{i}^{T}) \tilde{\textit{D}}_{i} \tilde{\textit{R}}_{i} \right) \, . \end{split}$$

# Two Stage Algorithm

Define  $N_S$  a spectrally equivalent preconditioner to S:

$$N_{\mathcal{S}}:=S_0+M_{S_1}.$$

The application of the preconditioner  $N_S$  consists in solving:

$$N_S P = G$$

by a Krylov solver with  $M_{S_1}^{-1}$  as a preconditioner.

#### Saddle point algorithm in two stages:

INPUT: 
$$\begin{pmatrix} \mathbf{F}_U \\ \mathbf{F}_P \end{pmatrix} \in \mathbb{R}^{n+m}$$
 OUTPUT:  $\begin{pmatrix} \mathbf{U} \\ \mathbf{P} \end{pmatrix}$  the solution.

- 1. Solve  $A\mathbf{G}_U = \mathbf{F}_U$  by a PCG with  $M_A^{-1}$  as a preconditioner
- 2. Compute  $\mathbf{G}_P := \mathbf{F}_P B \mathbf{G}_U$
- 3. Solve  $S \mathbf{P} := (C + BA^{-1}B^{T})\mathbf{P} = -\mathbf{G}_{P}$  by a PCG with  $N_{S}^{-1}$  as a preconditioner.
- 4. Compute  $\mathbf{G}_U := \mathbf{F}_U B^T \mathbf{P}$
- 5. Solve  $A\mathbf{U} = \mathbf{G}_U$  by a PCG with  $M_A^{-1}$  as a preconditioner

## **Outline**

- Saddle Point Problem
- 2 Recall on GenEO for SPD problems
- 3 Extension of GenEO to Saddle Point problem
- Numerical Results and the ffddm script

# Nearly incompressible elasticity

The mechanical properties of a solid are characterized by its elastic energy:

$$\int_{\Omega} 2 \mu \underline{\underline{\varepsilon}}(\boldsymbol{u}) : \underline{\underline{\varepsilon}}(\boldsymbol{u}) + \lambda |\operatorname{div}(\boldsymbol{u})|^{2}$$

where the Lamé coefficients  $\lambda$  and  $\mu$  are defined in terms of the Young modulus E and Poisson ratio  $\nu$ :

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \ \text{ and } \ \mu = \frac{E}{2(1+\nu)}\,,$$

As  $\nu$  is close to 1/2,  $\lambda$  tends to infinity so that the solid is nearly incompressible, e.g.  $\nu_{rubber} = 0.4999$ .

The pressure p:

$$p := \lambda \operatorname{div}(\boldsymbol{u})$$

is stable in the incompressible limit and has thus to be introduced for stability.

# Saddle point system

The resulting discretized variational formulation reads:

$$\begin{cases} \int_{\Omega} 2 \, \mu \, \underline{\underline{\varepsilon}}(\mathbf{u}_h) : \underline{\underline{\varepsilon}}(\mathbf{v}_h) dx & -\int_{\Omega} p_h \operatorname{div}(\mathbf{v}_h) dx = \int_{\Omega} \mathbf{f} \mathbf{v}_h dx \\ -\int_{\Omega} \operatorname{div}(\mathbf{u}_h) q_h dx & -\int_{\Omega} \frac{1}{\lambda} p_h q_h = 0. \end{cases}$$
 (1)

where we take the lowest order Taylor-Hood finite element C0P2 - C0P1 so that the pressure  $p_h$  is continuous. In matrix form we have:

$$\left(\begin{array}{cc} A & B^T \\ B & -C \end{array}\right) \left(\begin{array}{c} \boldsymbol{u}_h \\ \rho_h \end{array}\right) = \left(\begin{array}{c} \boldsymbol{F}_h \\ 0 \end{array}\right).$$

## Mechanical test case



Figure: Heterogeneous beam composed of 10 alternating layers. Coefficient distribution (left) and mesh partitioning into 16 subdomains by the automatic graph partitioner *Metis* (right).

Rubber is nearly incompressible  $\nu_{rubber} = 0.4999$  and soft  $E_{rubber} = 0.01$  GPa whereas steel is compressible  $\nu_{steel} = 0.35$  and hard  $E_{steel} = 200$ . GPa.

# Weak scalability

| #cores | n             | dim(V <sub>0</sub> ) | $dim(\tilde{W}_0)$ | setup(s) | #It | gmres(s) | total(s) | #It N <sub>S</sub> <sup>-1</sup> |
|--------|---------------|----------------------|--------------------|----------|-----|----------|----------|----------------------------------|
| 262    | 15 987 380    | 5 383                | 3 3 1 9            | 710.7    | 24  | 631.6    | 1342.3   | 11                               |
| 525    | 27 545 495    | 9 959                | 2 669              | 526.6    | 21  | 519.5    | 1046.1   | 12                               |
| 1 050  | 64 982 431    | 17 837               | 4 587              | 675.2    | 22  | 665.9    | 1341.1   | 11                               |
| 2 100  | 126 569 042   | 32 361               | 7 995              | 689.2    | 25  | 733.8    | 1423.0   | 10                               |
| 4 200  | 218 337 384   | 59 704               | 13 912             | 593.0    | 27  | 705.4    | 1298.4   | 10                               |
| 8 400  | 515 921 881   | 141 421              | 25 949             | 735.8    | 32  | 1152.5   | 1888.3   | 10                               |
| 16 800 | 1 006 250 208 | 260 348              | 41 341             | 819.2    | 29  | 1717.9   | 2537.1   | 12                               |

Table: Weak scaling experiment for 3D heterogeneous elasticity: beam with 10 alternating layers of steel and rubber.

Our numerical results can be reproduced running the script https://github.com/FreeFem/FreeFem-sources/blob/develop/examples/ffddm/elasticity\_saddlepoint.edp available in the FreeFem distribution starting from version 4.10.

# Comparison with a Direct solver

|                   |        |          |          | DD saddle point solver |          |     |          |          |
|-------------------|--------|----------|----------|------------------------|----------|-----|----------|----------|
| n 10 <sup>3</sup> | #cores | setup(s) | solve(s) | total(s)               | setup(s) | #It | gmres(s) | total(s) |
| 134               | 16     | 7.1      | 0.1      | 7.2                    | 27.1     | 18  | 19.7     | 46.8     |
| 1058              | 32     | 85.7     | 0.8      | 86.5                   | 166.2    | 20  | 137.2    | 303.4    |
| 1058              | 65     | 71.0     | 0.6      | 71.6                   | 91.0     | 21  | 77.1     | 168.1    |
| 1058              | 131    | 63.2     | 0.5      | 63.7                   | 59.7     | 24  | 49.7     | 109.4    |
| 3505              | 55     | 477.8    | 3.7      | 481.5                  | 404.1    | 24  | 430.1    | 834.2    |
| 3505              | 110    | 392.3    | 2.3      | 394.6                  | 242.5    | 23  | 212.8    | 455.3    |
| 3505              | 221    | 387.0    | 2.1      | 389.1                  | 134.8    | 23  | 109.4    | 244.2    |
| 3505              | 442    | 453.9    | 2.2      | 456.1                  | 88.2     | 24  | 68.6     | 156.8    |
| 8235              | 262    | OOM      | /        | /                      | 278.5    | 25  | 264.3    | 542.8    |
| 8235              | 525    | 1622.1   | 6.1      | 1628.2                 | 172.1    | 24  | 136.0    | 308.1    |
| 8235              | 1050   | 1994.3   | 7.4      | 2001.7                 | 136.5    | 25  | 99.7     | 236.2    |

Table: Comparison with the parallel sparse direct solver *MUMPS* for 3D heterogeneous elasticity: beam with 10 alternating layers. Reported timings for four discretization levels while also varying the number of cores (OOM means the computation ran out of available memory).

# Comparison with AMG

Comparisons on the velocity formulation since we were unable to run GAMG on the saddle point formulation.

| 525 cores | GAMG  |          | DD saddle point solver |          |     |          |          |  |  |
|-----------|-------|----------|------------------------|----------|-----|----------|----------|--|--|
| $\nu$     | #lt   | total(s) | $dim(V_0)$             | setup(s) | #lt | gmres(s) | total(s) |  |  |
| 0.48      | 56    | 25.5     | 41 766                 | 60.4     | 18  | 5.0      | 65.4     |  |  |
| 0.485     | 60    | 26.1     | 41 984                 | 60.9     | 20  | 5.3      | 66.2     |  |  |
| 0.49      | 116   | 33.3     | 42 000                 | 60.4     | 23  | 5.9      | 66.3     |  |  |
| 0.495     | >2000 | /        | 42 000                 | 60.4     | 32  | 7.6      | 68.1     |  |  |
| 0.499     | >2000 | /        | 42 000                 | 60.6     | 95  | 20.3     | 81.0     |  |  |

Table: GAMG (PETSc) versus standard GenEO for the velocity formulation on the homogeneous beam discretized with 7.9 million unknowns.

As  $\nu$  gets close to 0.5, GAMG fails to compute a solution.

# **Conclusion and Prospects**

- Iterative solver for saddle point problem with highly heterogeneous coefficients that works for linear elasticity, Stokes (not shown here) systems
- Available to FreeFem users via https://github.com/ FreeFem/FreeFem-sources/blob/develop/ examples/ffddm/elasticity\_saddlepoint.edp
- Prospects
  - Inclusion into HPDDM for PETSc users
  - Multilevel version
  - Black box version
  - Multiscale finite element for saddle point problem
  - Preprint available on HAL:



F Nataf and P.-H. Tournier, "A GenEO Domain Decomposition method for Saddle Point problems",

https://hal.archives-ouvertes.fr/view/index/docid/3450974, HAL Archive