Inertialnavigation bei autonomen Flugkörpern

Fabian Ulbricht Paul Walger

24. März 2012

Inhaltsverzeichnis

- Einleitung
- 2 Trägheitsnavigation
- Autonome Flugköper
- Sensoren
 - Acceloremeter
 - Gyroskop
- 6 Kalman-Filter
- 6 Bewegunsgleichungen
- Kalman-Filter für UAV
- 8 Literatur

Einleitung

Positionsbestimmung war und ist ein Problem das nicht einfach zu lösen ist. Es wurde auf vielfältige Weisen versucht zu lösen, vom Kompass und Sextant bis zu GPS.

Wir werden uns auf die Inertialnavigation begrenzen.

Trägheitsnavigation

In sich abgeschlossene Navigationstechnik, welche die Position und Drehung eines Objektes relativ zu einem Startpunkt Drehung und Geschwindigkeit bestimmt. Besteht aus:

- Computer
- Accelerometer
- Gyroskop
- 2 Hauptgruppen von Konfigurationen [4]
 - Stable Platform Systems
 - Strapdown Systems

Stable Platform Systems

Stable Platform Systems

Gimbal angular → Orientation

Strapdown Systems

Autonome Flugköper = Cruise Missile

Beschreibung: [3]

- Dispensable
- Pilotless
- Self-Guided
- Continously Powerd
- Air-Breathing

Anforderungen an die INS:

- 20 Hz Update
- Mehre Stunden Flugzeit
- Short-Term Accuracy
- Bestimmung von missile position, velocity, attitude, and altitude

Sensoren

Zwei Gruppen von Sensoren:

- Geschwindikeit = Accelorometer
- Orientierung = Gyroscope

Hohe Anforderungen von Genauigkeit wegen der Akkumulierung von Fehlern.

Die Größe muss auch minimal sein, da die Flugkörper klein sind.

Acceloremeter (Beschleunigungssensoren)

Anwendung:

- Messung von (linearen) Beschleunigungen
- Sensorik in digitalen Kameras
- Positionsbestimmung

MEMS Acceloremeter

Definition (MEMS)

= Microelectromechanical systems Sehr kleine mechanische Geräte angetrieben durch Elektrizität.

- 2 Typen von Acceloremtern:
 - Piezoelectric accelerometer
 - Surface micromachined capacitive

Piezoelectric accelerometer

Wirkungsweise: Die bei Beschleunigung Änderung der einwirkenden Kraft wird mittels des Piezoelektrischen Effekts gemessen. Konstante Beschleunigungen können nicht gemessen werden.

Definition (Piezoelektrizität)

Beschreibt das Auftreten einer elektrischen Spannung an Festkörpern, wenn sie elastisch verformt werden.

Capacitive acceloremters

Funktionsweise

Messung von Kapazitätsänderungen.

Vorteile

- Herstellung mit herkömmlicher MEMS Technologie möglich
- Hervorragende Sensibilität
- Unabhängig von Außentemperatur

Kapazität

Die Kapazität von 2 parallen Platten ist [1]

$$C_0 = \epsilon_0 \epsilon_r \frac{A}{d} = \epsilon_A \frac{1}{d} \tag{1}$$

wobei $\epsilon_A = \epsilon_0 \epsilon_r A$ und A die Fläche der Elektroden, d die Distanz zwischen ihnen und die ϵ_r die Perimitivität von dem Material dass die beiden trennt.

Kapazität 3

Die Kapazitäten

 C_1 und C_2 zwischen der beweglichen Platte und den äußeren Stationären Platten sind abhängig von den Verschiebung x_1 und x_2 .

$$C_1 = \epsilon_A \frac{1}{x_1} = \epsilon_A \frac{1}{d+x} = C_0 - \Delta C \qquad (2)$$

$$C_2 = \epsilon_A \frac{1}{x_2} = \epsilon_A \frac{1}{d-x} = C_0 + \Delta C \qquad (3)$$

Kapazität 4

Wenn die Beschleunigung null ist, dann sind die Kapazitäten C_1 und C_2 gleich. Wenn aber $x_1 \neq x_2$ also $x \neq 0$ dann gilt:

$$C_1 - C_2 = 2\Delta C = 2\epsilon_A \frac{x}{d^2 - x^2}$$
 (4)

Wenn wir nun ΔC messen, dann könne wir die Verschiebung x messen indem wir die nichtlineare algebraische Gleichung lösen.

$$\Delta Cx^2 + \epsilon_A x + \Delta Cd^2 = 0 \tag{5}$$

Für kleine Verschiebungen ist der Term ΔCx^2 verschwindend klein. Es gilt also

$$x \approx \frac{d^2}{\epsilon_A} \Delta C = d \frac{\Delta C}{C_0} \tag{6}$$

Wir können also sagen, dass die Verschiebung annähernd proportional ist zur Kapazitätsdifferenz ΔC

Gyroskop (Rotationssensoren)

Was ist ein Gyroskop

Ein Gerät zur Messung oder Erhaltung der Orientierung, basierend auf dem Prinzip des Drehimpulses.

Typen von Gyroskopen

- Mechanisch
- Optisch
- MEMS

Mechanische Gyroskope

Bestehen

aus einem spinning wheel und zwei Gimbals, welche es eine Rotation in 3-Achsen erlaubt. Ein

Mechanische Gyroskope misst die Orientierung direkt, während die meisten moderne Gryoskope die Winkelgeschwindigkeit messen. Nachteile:

- Bewegliche Teile
- Reibung
- Ein paar Minuten Aufwärmzeit benötigt

Optische Gyroskope

Insbesondere
Faserkreisel (Fibro Optic Gyroscope = FOG).
Besteht aus
einer langen Spule von Glasfasern. Es werden
zwei Lichtimpluse in entgegengesetze Richtung
abgefeuert. Wenn das System rotiert, erfährt
der eine Lichtimplus eine längere Laufzeit.
Gemessen wird über
die Interferenz von den beiden Lichimplusen.

Kalman-Filter

Diskreter Kalman-Filter

Modelierung eines Systems

Kalman-Filter für UAV

Literatur

- [1] Matej Andrejaši. *MEMS ACCELEROMETERS*. Department of physics, März 2008.
- [2] A.D. King. "Inertial Navigation Forty Years of Evolution". In: *GEC Review* 13.3 (1998).
- [3] George M. Siouris. *Missile Guidance and Control Systems*. Springer-Verlag New York, Inc., 2004. ISBN: 0-387-00726-1.
- [4] Oliver J. Woodman. *An introduction to inertial navigation*. Techn. Ber. 15 JJ Thomson Avenue: University of Cambride, Aug. 2007.