Unit I: Ax = b and the Four Subspaces

Seesion 1.1: The Geometry of Linear Equations

We have a system of equations:

$$\begin{cases} 2x - y = 0 \\ -x + 2y = 3 \end{cases}$$

Row Picture

Line 2x - y = 0 and line -x + 2y = 0 intersects at the point (1, 2), so (1, 2) is the solution of the system of equations.

Maybe I should draw a X-Y coordinates here...

Column Picture

We rewrite the system of linear equations as a single equation:

$$x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

We see x and y as scalars of column vectors: $\mathbf{v_1} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{v_2} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, and the sum $x\mathbf{v_1} + y\mathbf{v_2}$ is called a *linear combination* of $\mathbf{v_1}$ and $\mathbf{v_2}$.

Geometrically, we can find one copy of v_1 added to two copies of v_2 just equals the vector $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$. Then the solution should be x=1,y=2.

I will add a figure when time is available $> _>$

Matrx Picture

We rewrite the equations in our example as a compact form,

$$Ax = b$$
,

that is

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Matrix Multiplication

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

A matrix times by a vector is just a linear combination of the column vectors of the matrix.

Session 1.2: An Overview of Key Ideas

Vectors

Let us take linear combinations of vectors.

Matrices

The product of a matrix and a vector is a combination of the columns of the matrix.

Subspaces

All combinations of column vectors creates a subspace. The subspaces of \mathbb{R}^3 are:

- the origin,
- a line through the origin,
- a plane through the origin,
- all of \mathbb{R}^3 .

Conclusion

- A is invertible
 - $\Leftrightarrow Ax = b$ has the unique solution x for each b
 - $\Leftrightarrow A \boldsymbol{x} = 0$ has no non-zero solution \boldsymbol{x}
 - \Leftrightarrow The columns of A are independent

 \Leftrightarrow All vectors Ax cover the whole vector space

Example:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

- ullet A is not invertible
 - $\Leftrightarrow Ax = b$ has a solution x only for some of b in the vector space
 - $\Leftrightarrow A \boldsymbol{x} = 0$ has non-zero solutions \boldsymbol{x}
 - \Leftrightarrow The columns of A are dependent
 - \Leftrightarrow All vectors $A\boldsymbol{x}$ lies in only a subspace of the vector space

Example:
$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$