单元9.1 图的矩阵表示

第二编图论 第十章图的矩阵表示

10.1 关联矩阵、10.2 邻接矩阵与相邻矩阵

内容提要

第十章 图的矩阵表示

10.1 关联矩阵

10.2 邻接矩阵表示与相邻矩阵

有向图关联矩阵

- 设D=<V,E>是无环有向图, V={v₁,v₂,...,v_n},
 E={e₁,e₂,...,e_m}
- 关联矩阵(incidence matrix): M(D)=[m_{ij}]_{n×m},

$$m_{ij} = \begin{cases} 1, v_i \neq e_j$$
的起点 $m_{ij} = \begin{cases} 0, v_i \neq e_j$ 不关联 $-1, v_i \neq e_j$ 的终点

有向图关联矩阵举例

有向图关联矩阵性质

- 每列和为零: Σⁿ_{i=1}m_{ii}=0
- 每行绝对值和为d(v): d(v_i)=Σ^m_{j=1}m_{ij},
 其中 1的个数为d⁺(v),
 -1的个数为d⁻(v)
- 握手定理: $\Sigma_{i=1}^n \Sigma_{j=1}^m \mathbf{m}_{ij} = \mathbf{0}$
- 平行边: 相同两列

无向图关联矩阵

- 设G=<V,E>是无环无向图, V={v₁,v₂,...,v_n},
 E={e₁,e₂,...,e_m}
- 关联矩阵(incidence matrix): M(G)=[m_{ij}]_{n×m},

无向图关联矩阵举例

无向图关联矩阵性质

- 每列和为2: $\Sigma^{n}_{i=1}m_{ij}=2$ ($\Sigma^{n}_{i=1}\Sigma^{m}_{j=1}m_{ij}=2m$)
- 每行和为d(v): $d(v_i)=\sum_{j=1}^m m_{ij}$
- 每行所有1对应的边构成断集: [{v_i}, {v_i}]
- 平行边:相同两列
- 伪对角阵: 对角块是连通分支

$$M(G) = \begin{bmatrix} M(G_1) & & & & \\ & M(G_2) & & & \\ & & \ddots & & \\ & & M(G_k) \end{bmatrix}$$

无向图关联矩阵的秩

• 定理10.1:

无向图基本关联矩阵

- 设G=<V,E>是无环无向图, V={v₁,v₂,...,v_n},
 E={e₁,e₂,...,e_m}
- 参考点: 任意1个顶点
- 基本关联矩阵(fundamental incidence matrix): 从M(G)删除参考点对应的行, 记作 M_f(G)

无向图基本关联矩阵的秩

- 定理10.2: G连通⇒r(M_f(G))=n-1. #
- 推论1:

G有p个连通分支 \Rightarrow r(M_f(G))=n-p, 其中M_f(G)是从M(G)的每个对角块中删除任意1行而得到的. #

• 推论2: G连通⇔r(M(G))=r(M_f(G))=n-1. #

基本关联矩阵与生成树

· 定理10.3: G连通, M',是M,(G)中任意n-1列组成的方阵, M'_f中各列对应的边集是{e_{i1},e_{i2},..., e_{i(n-1)}}, T是导出子图G[{e_{i1},e_{i2},...,e_{i(n-1)}}],则 T是G的生成树 ⇔ M'_f的行列式 | M'_f | ≠0. #

用关联矩阵求所有生成树

- 忽略环, 求关联矩阵
- 任选参考点, 求基本关联矩阵
- · 求所有n-1阶子方阵,计算行列式,行列 式非0的是生成树

求所有生成树(例)

求所有生成树(例,续)

求所有生成树(例,续)

	e_1			e_3			5 -	ا
$M_f(G) = v_2$		1	1	0	0	1	0	
v_3		0	0	0	1	1	1	
v_4		0		1		0	1_	

1,2,3	0	2,3,4	1
1,2,4	0	2,3,5	1
1,2,5	0	2,3,6	1
1,2,6	0	2,4,5	0
1,3,4	1	2,4,6	1
1,3,5	1	2,5,6	1
1,3,6	1	3,4,5	1
1,4,5	0	3,4,6	0
1,4,6	1	3,5,6	1
1,5,6	1	美5,6	、北

有向图邻接矩阵

- 设D=<V,E>是有向图,V={v₁,v₂,...,v_n}
- 邻接矩阵(adjacence matrix): $A(D)=[a_{ij}]_{n\times n}$, $a_{ij}= \text{从v}_i 到 v_j$ 的边数

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

有向图邻接矩阵(性质)

- 每行和为出度: Σⁿ_{j=1}a_{ij}=d⁺(v_i)
- 每列和为入度: Σⁿ_{i=1}a_{ij}=d⁻(v_j)
- 握手定理: $\Sigma^n_{i=1}\Sigma^n_{j=1}a_{ij}=\Sigma^n_{i=1}d^-(v_j)=m$

• 环个数: Σⁿ_{i=1}a_{ii}

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

邻接矩阵与通路数

- 设A(D)=A= $[a_{ij}]_{n\times n}$, $A^r = A^{r-1} \bullet A$, $(r \ge 2)$, $A^r = [a^{(r)}_{ij}]_{n\times n}$, $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ij}]_{n\times n}$
- 定理4: $a^{(r)}_{ij} = \text{从v}_{i}$ 到 v_{j} 长度为r的通路总数且 $\Sigma^{n}_{i=1}\Sigma^{n}_{j=1}a^{(r)}_{ij} =$ 长度为r的通路总数 且 $\Sigma^{n}_{i=1}a^{(r)}_{ii} =$ 长度为r的回路总数
- 推论: $b^{(r)}_{ij} = \mathcal{M}_{v_i}$ 到 v_j 长度 \leq r的通路总数 且 $\Sigma^n_{i=1}\Sigma^n_{j=1}b^{(r)}_{ij} =$ 长度 \leq r的通路总数 且 $\Sigma^n_{i=1}b^{(r)}_{ii} =$ 长度 \leq r的回路总数. #

定理10.4证明

- 证明: (归纳法) (1)r=1: a⁽¹⁾ij=a_{ij}, 结论显然.
 - (2) 设r≤k时结论成立, 当r=k+1时,

a^(k)_{it}•a⁽¹⁾_{tj}=从v_i到v_j最后经过v_t的长度为 k+1的通路总数,

 $a^{(k+1)}_{ij} = \sum_{t=1}^{n} a^{(k)}_{it} \bullet a^{(1)}_{tj} = 从v_i 到v_j 的长度为$

k+1的通路总数.#

用邻接矩阵求通路数举例

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

用邻接矩阵求通路数举例

- · v₂到v₄长度为3和4的通路数: 1, 2
- v₂到v₄长度≤4的通路数: 4
- v₄到v₄长度为4的回路数: 5
- v₄到v₄长度≤4的回路数: 11

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & \boxed{1} \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

用邻接矩阵求通路数举例

- 长度=4的通路(不含回路)数: 16
- 长度≤4的通路和回路数: 53, 15

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 2 & 3 & 1 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

可达矩阵

- 设D=<V,E>是有向图,V={v₁,v₂,...,v_n},
- 可达矩阵: P(D)=[p_{ij}]_{n×n},

可达矩阵性质

- · 主对角线元素都是1: ∀v_i∈V, 从v_i可达v_i
- 强连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的可达矩阵
- $\forall i \neq j$, $p_{ij} = 1 \Leftrightarrow b^{(n-1)}_{ij} > 0$

$$P(D) = \begin{bmatrix} P(D_1) & & & \\ & P(D_2) & & \\ & & \ddots & \\ & & P(D_k) \end{bmatrix}$$

可达矩阵举例

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

无向图相邻矩阵

- 设G=<V,E>是无向简单图,V={v₁,v₂,...,v_n}
- 相邻矩阵(adjacence matrix): A(G)=[a_{ij}]_{n×n},

$$a_{ii}$$
=0,
$$a_{ij} = \begin{cases} 1, v_i = v_j & \text{if } v_i \neq j \\ 0, v_i = v_j & \text{if } v_i \neq j \end{cases}$$

$$A(G) = v_{2} \begin{bmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

无向图相邻矩阵性质

- A(G)对称: a_{ij}=a_{ji}
- 每行(列)和为顶点度: Σⁿ_{i=1}a_{ij}=d(v_j)
- 握手定理: $\Sigma^{n}_{i=1}\Sigma^{n}_{j=1}a_{ij}=\Sigma^{n}_{i=1}d(v_{j})=2m$

$$A(G) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ v_3 & 0 & 1 & 0 & 0 \\ v_4 & 1 & 0 & 0 \end{matrix}$$

相邻矩阵与通路数

- 设 $A^r = A^{r-1} \bullet A, (r \ge 2), A^r = [a^{(r)}_{ij}]_{n \times n},$ $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ij}]_{n \times n}$
- 定理10.5: $a^{(r)}_{ij} = \text{从} v_i \text{到} v_j 长度为r的通路总数 且 <math>\Sigma^{n}_{i=1} a^{(r)}_{ii} = \text{长度为r的回路总数.}$ #
- 推论1: a⁽²⁾;;=d(v_i). #
- 推论2: G连通⇒距离d(v_i,v_j)=min{r|a^(r)_{ij}≠0}. #

用相邻矩阵求通路数举例

$$A(G) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{matrix}$$

$$A^{2} = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}$$

$$A^4 = \begin{vmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{vmatrix}$$

用相邻矩阵求通路数举例

- v₁到v₂长度为4的通路数: 6
 14142,14242,14232,12412,14212,12142
- v₁到v₃长度为4的通路数: 4
- 12423,12323,14123,12123
- v₁到v₁长度为4的回路数: 7
 14141,14241,14121,12121,
 12421,12321,12141,

$$A^2 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}$$

连通矩阵

• 设G=<V,E>是无向简单图, $V = \{v_1, v_2, ..., v_n\},$

连通矩阵性质

- · 主对角线元素都是1: ∀v_i∈V, v_i与v_i连通
- 连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的连通矩阵
- 设 $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ij}]_{n \times n}$, 则 $\forall i \neq j$, $p_{ij} = 1 \Leftrightarrow b^{(n-1)}_{ii} > 0$

$$P(G) = \begin{bmatrix} P(G_1) & & & \\ & P(G_2) & & \\ & & \ddots & \\ & & & P(G_k) \end{bmatrix}$$

连通矩阵举例

小结

- 1. 关联矩阵M(D), M(G)
- · 2. 用基本联矩阵M_f(G)求所有生成树
- 3. 邻接矩阵A(D), 相邻矩阵A(G)
- · 4. 用A的幂求不同长度通路(回路)总数
- 5. 可达矩阵P(D), 连通矩阵P(G)

