et coupe le plan focal en B₁.
1.3. Dans le triangle rectangle (A₁B₁I): tan α = A₁B₁ donc A₁B₁ = tan α.f

Dans les conditions de Gauss, α est très petit, donc tan α ≃ α: A₁B₁ = α.f
2. Image finale A'B' donnée par le miroir plan
2.1. L'image finale A'B' est symétrique de A₁B₁ par rapport au plan du miroir M₂.

A₁B₁ est un objet virtuel pour le miroir M₂, l'image A'B' est donc réelle.
2.2. Si l'on plaçait M₂ avant le foyer F du miroir M₁, A₁B₁ se comporterait comme un objet réel vis à vis du miroir M₂ et l'image A'B' serait donc virtuelle.

1.2. Pour obtenir graphiquement A_1B_1 , il suffit de prolonger le rayon issu de B et passant par le foyer F de M_1 . Ce rayon est réfléchi parallèlement à l'axe optique

