Results

Descriptives

Descriptives

	Mischief	Cloak
N	24	24
Missing	0	0
Mean	4.38	0.500
Median	5.00	0.500
Standard deviation	1.86	0.511
Variance	3.46	0.261
Minimum	0.00	0
Maximum	8.00	1
Skewness	-0.514	0.00
Std. error skewness	0.472	0.472
Kurtosis	0.410	-2.19
Std. error kurtosis	0.918	0.918

Plots

Mischief

Cloak

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a dichotomous variable for Variable 2 / Independent Variables. Hence, the two sample t test assuming equal population variances or the two sample t test not assuming equal population variances are good

option for you! Both tests are tests for the difference between two population means. In order to run these tests in jamovi, go to: T-Tests > Independent Samples T-Test

- Drop your dependent (numeric) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
- Under Tests, select Student's if you want to assume equal population variances, and Welch's if you don't want to assume equal population variances
- Under Hypothesis, select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric Mann-Whitney U test. Click on the links to learn more about these tests!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Independent Samples T-Test

Independent Samples T-Test

								Confi	5% dence erval			Confi	5% dence erval
		Statistic	±%	df	р	Mean difference	SE difference	Lower	Upper	-	Effect Size	Lower	Upper
Mischief	Student's t	-1.71		22.0	0.101	-1.25	0.730	-2.76	0.263	Cohen's d	-0.700	-1.54	0.165
	Bayes factor ₁₀	1.05	3.55e- 5										
	Welch's t	-1.71		21.5	0.101	-1.25	0.730	-2.76	0.265	Cohen's d	-0.700		
	Mann- Whitney U	47.0			0.149	-1.00		-3.00	2.55e- 5	Rank biserial correlation	0.347		

Note. $H_a \mu_{No\ Cloak} \neq \mu_{Cloak}$

Assumptions

Normality Test (Shapiro-Wilk)

	W	р		
Mischief	0.965	0.546		

Note. A low p-value suggests a violation of the assumption of normality

	F	df	df2	р
Mischief	0.545	1	22	0.468

Note. A low p-value suggests a violation of the assumption of equal variances

[6]

Group Descriptives

	Group	N	Mean	Median	SD	SE
Mischief	No Cloak	12	3.75	4.00	1.91	0.552
	Cloak	12	5.00	5.00	1.65	0.477

Plots

Mischief

Robust Independent Samples T-Test

Robust Independent Samples T-Test

						95% Confidence Interval		_	95% ξ Confid	nfidence Interval	
		t	df	р	Mean diff	Lower	Upper	ξ	Lower	Upper	
Mischief	Yuen's test Yuen's bootstrapped	1.48 -1.36	12.3	0.165 0.155	-1.00	-2.47	0.472	0.398	0.00	0.859	

Bayesian Independent Samples T-Test

Bayesian Independent Samples T-Test

	BF ₁₀	error %
Mischief	1.05	0.00355

[7] [3] [4]

Descriptives

Group Descriptives

						95% Credible Interva		
	Group	N	Mean	SD	SE	Lower	Upper	
Mischief	No Cloak	12	3.75	1.91	0.552	2.53	4.97	
	Cloak	12	5.00	1.65	0.477	3.95	6.05	

Descriptives Plot

Mischief

Inferential Plots

Mischief

Prior and Posterior

Bayes Factor Robustness Check

• max BF₁₀: 1.183 at r = 0.2824

• user prior: $BF_{10} = 1.051$ • wide prior: $BF_{01} = 1.086$

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of Bayes Factors for Common Designs. [R package]. Retrieved from https://cran.r-project.org/package=BayesFactor.

[4] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.

[5] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 2165–2228.

[6] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[7] JASP Team (2018). JASP. [Computer software]. Retrieved from https://jasp-stats.org.