Arbol binario completo.
Para movemos: O iza 1 der.
Queremos (legar al 12=1100, 17=>der, 110=>izq, 1100=>izq
7 90 0 -11
Nodo: 12 = 1100 :mer bit que nuncu es cero
As: 1111: Der, der, der y allise colocu el novo.
10001: 124, 124, der y se colo cu el modo.
Arbol n-ario: Struct_nodo_ *minodo[N], otra opción: struct_nodo_ **minodo.
E;emplo: base 3: 02: izy in: c:al
V- modes 02 0100 011
número para representar 600000 000
Cudu Nodo.
(gratos. Puentes de Köninsberg.
Ar:sta (1 raso: (5)
Vertice Charlos Sin pesos no dirigidos.
Seu Vel conjunto de vértices, A = {{a,b} ∈ P(V) a ≠ b} es d conjunto de aristas, este
es un ejemplo.
Se cumple que G=Gz=G3. No, G2 tiene
6 vertices, pero se comple que G1=G3
$\frac{1}{2}$
1 G2 G3 Tiemen los mismos ventices y las aristas une n de esta Jorna 2 vértices.
No dirigidos: Es lo mismo ir de Va a Vb, solo se va en una dirección
Sim pesos: has aristas no tienem prioridad, esta prioridad es el peso.
Cympos sin pesos dirigidos.
V conjunto de vértices, $A = \{(a,b) \in V \times V \mid a \neq b\}$

Ejemplo grato dirigido.
6 / 4 ₀
En un grato, los nodos o vértices no tienen información del peso. Un grato lo representare
Mos como una matriz. Ejemplo: WHACIA ABCDEFGH
ADE >A • 1 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D1000 Matriz de
E 0 1 1 0 • 1 0 0 (adyacencia.
G 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
Si el grato es dirigido, la matriz resultante puede no ser simétrica. La longitud de camino máxi
mu entre l'vertices es de n-1 aristas, ni número de vértices.
Veamos estu matriz (Cum:no de al menos, Zavistas). A B C D E F G H 1
A · 1 1 1 2 2 2 0 Aquise cuentan el número de pasos para ir de un vertice a otro.
C 1 2 · 2 1 1 2 2 Nos muestra si existe un camino de, múximo 2 pasos de un nodo
F 2 2 1 2 1 • 1 1 Mplementar estas matrices, y poner el nodo del que viene (en nutur)
H 0 0 2 0 2 1 2 • '
25/04/22
Para el código: nombre nodo (entero), peso w, into pasos.
Entradus:
26/04/22
Programa a implementar: con la matriz de adyacencia y otra, llamada: M y M+1:
En M+1 se plasmu si huy un camino de el nodo i al j, sin pesos da las aristas y con pesos, el de menor peso.
A Coma. M+1
Luego, debemos recordar el camino para ir de un nodo a otro. Queremus ver si se pr-
odice combio de la matriz M, a la matriz M-1. Nos fijamos en K E Nn, K + i, j y vemu-
s si existe un camino de i a K y de Kaj, en caso de que no haya uno directo de

is a j. Se recorre la K en lus valores, y en caso de que se encuentre la K, vemos s: Vi; > Vik + Vk; s: sucede, el volor se cambia a Vik + Vk; y en caso contrario, se de ja igual. S: no existe el camino, se pone el valor Vik + Vk; M es la motriz de M-caminos. Para M=1, M=A, M=2=1+1=A+1. Luego, la mutriz signiente es con 20 menos cuminos.