HWA: AVERAGING HYPERPARAMETERS IN BAYESIAN NEURAL NETWORKS LEADS TO BETTER GENERALIZATION.

Anonymous authors

Paper under double-blind review

ABSTRACT

T.B.C

Introduction

Our main contributions read as follows:

- ff
- ff

The remaining of the paper is organized as follows.

RELATED WORK

Stochastic Averaging:

Variational Inference:

Posterior Prediction:

HYPERPARAMETERS AVERAGING IN BAYESIAN NEURAL NETWORKS

Algorithm 1 HWA: Hyperparameters Weight Averaging

- 1: **Input:** Trained hyperparameters $\hat{\mu}_{\ell}$ and $\hat{\sigma}$. LR bounds γ_1 and γ_2 . Cycle length c. 2: Initialize the hyperparameters of the weights and $\mu_{\ell} = \hat{\mu}_{\ell}$ and $\mu_{\ell}^{HWA} = \mu_{\ell}$.
- 3: **for** k = 0, 1, ... **do**
- 4: $\gamma \leftarrow \gamma(k)$ (Cyclical LR for the iteration)
- 5: $\mu_{\ell}^{k+1} \leftarrow \mu_{\ell}^{k} \gamma \nabla \mathcal{L}(\mu_{\ell}^{k})$ (regular SVI update) 6: **if** $\operatorname{mod}(k,c) = 0$ **then**
- 7: $n_{\text{models}} \leftarrow k/c$ (Number of models to average)
- 8: $\mu_{\ell}^{HWA} \leftarrow \frac{n_{\text{models}}\mu_{\ell}^{HWA} + \mu_{\ell}^{k+1}}{n_{\text{models}}\mu_{\ell}^{HWA} + \mu_{\ell}^{k+1}}$
- 9: **end if**
- 10: end for

NUMERICAL EXPERIMENTS

CONCLUSION

REFERENCES

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi, Matthew D. Hoffman, and Rif A. Saurous. Tensorflow distributions. *CoRR*, abs/1711.10604, 2017. URL http://arxiv.org/abs/1711.10604.

A APPENDIX

You may include other additional sections here.