石家庄铁道大学 2013-2014 学年第 1 学期

2012 级本科期末考试答案(A)

《算法与数据结构》参考答案及评分标准

一、单项选择题(每小题 2 分, 共 20 分)

1	2	3	4	5	6	7	8	9	10
С	Α	С	В	В	С	В	D	D	В

二、简答题(每题 10 分, 共 60 分)

1. (15分) (酌情给分)

(1) 赫夫曼树 (7分)

(2) 每个字母的赫夫曼编码(3分)

A:010 B:101 C:00 D:011 E:10001 F:10000 G:1001 H:11

(3) 赫夫曼树存储结构的终态(5分)

结点i	weight	parent	lchild	rchild
1	0.09	11	0	0
2	0.16	12	0	0
3	0.20	13	0	0
4	0.12	11	0	0
5	0.03	9	0	0
6	0.02	9	0	0
7	0.08	10	0	0
8	0.30	14	0	0
9	0.05	10	6	5
10	0.13	12	9	7
11	0.21	13	1	4
12	0.29	14	10	2
13	0.41	15	3	11
14	0.59	15	12	8
15	1	0	13	14

2. (10分) (酌情给分)

(1) 构造 Hash 表 (8分)

下标	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
数据	26	13		3	42	69		33		9	23	11	51	38		
比较	1	2		1	2	2		1		1	1	1	1	2		
次数																

(2) ASL_{succ} = (1/11) (1*7+2*4) =1.36 (2分)

3. (10分)(酌情给分)

(1) 邻接矩阵。(5分)

$$\begin{bmatrix} \infty & 2 & 3 & \infty & \infty & \infty \\ 2 & \infty & \infty & \infty & 9 & 15 \\ 3 & \infty & \infty & 11 & \infty & 6 \\ \infty & \infty & 11 & \infty & \infty & 4 \\ \infty & 9 & \infty & \infty & \infty & \infty \\ \infty & 15 & 6 & 4 & \infty & \infty \end{bmatrix}$$

(2) 最小生成树(给出简要的构造过程)(5分)

构造过程:

第5步

- 4. (10分)(酌情给分)
 - (1) 采用快速排序算法每趟排序结束后关键字序列的状态。(5分)

下标	0	1	2	3	4	5	6	7	8	9	10
初始序列		{39	1	28	12	6	24	51	70	19	45}
第1趟排序结果	39	{19	1	28	12	6	24}	39	{70	51	45}
第2趟排序结果	19	{6	1	12}	19	{28	24}	39	{70	51	45}

第3趟排序结果 6 {1} 6 {12}19 {28 24} 39 {70 51 45} 第4趟排序结果 28 1 12 19 {24}28 39 {70 51 45} 6 第5趟排序结果 70 1 12 19 6 24 28 39 {45 51} 70 第6趟排序结果 45 1 6 12 19 39 45 {51}70 24 28

(2) 采用二路归并排序算法每趟排序结束后关键字序列的状态。(5分)

初始序列 [39] [1] [28] [12] [6] [24] [51] [70] [19] [45] 第 1 趟排序结果 [1 39] [12 28] [6 24] [51 70] [19 45] 第 2 趟排序结果 [1 12 28 39] [6 24 51 70] [19 45] 第 3 趟排序结果 [1 6 12 24 28 39 51 70] [19 45] 第 4 趟排序结果 [1 6 12 19 24 28 39 45 51 70]

5. (15分) (酌情给分)

(1) 二叉树(分析写出过程)(6分)

分析过程:

前序遍历序列: A<u>BDHEI</u>CFJGK 中序遍历序列: <u>DHBIE</u>AJFCKG

A 的左子树的前序遍历序列: BDHEI

A 的左子树的中序遍历序列: \underline{DHBIE}

B 的左子树的前序遍历序列: DH

B 的左子树的中序遍历序列: DH

B 的右子树的前序遍历序列: EI

B 的右子树的中序遍历序列: IE

A 的右子树的前序遍历序列: CFJGK

A 的右子树的中序遍历序列: JFCKG C 的左子树的前序遍历序列: FJ

C 的左子树的中序遍历序列: JF

C的右子树的前序遍历序列: GK

C的右子树的中序遍历序列: KG

(2) 后序遍历序列: HDIEBJFKGCA (4分)

(3)森林:(5分)

三、算法设计题 (每小题 10 分, 共 20 分)

```
1.单链表问题答案(答案不惟一)
    Typedef struct Node{
      char data;
      struct node *next;
    }Node,*LinkList;
    //没有头结点的代码实现
    void delete_node(LinkList L)
    {
        LinkList p,q;
         p=L;
         while (p->next!=NULL)
         q=p->next;
           if (q->data>='0"&& q->data<='9")
         p->next=q->next;
         delete(q);
         else p=p->next;
         }
2.二叉树问题(答案不惟一)
    Typedef struct BitNode{
      int data;
      Struct BitNode *lchild,*rchild;
    }BitNode,*BiTree;
    int count(BiTree t,int a)
                //或条件为 t= =NULL
        if(t)
             return 0;
        else return count(t->lchild)+count(t->rchild)+(t->data<a);
```