# Conceptos básicos de Electrónica

<u>Sistemas Empotrados</u> <u>Grado en Ing. Informatica Ing. de Computadores</u>

Jonay Toledo

# Magnitudes básicas

- Potencial
  - Voltios
- Corrientes
  - Amperios
- Corriente Continua DC
- Correinte Alterna AC
- Medidas RMS  $\rightarrow$  Vp =  $\sqrt{2}$  \* Vrms



## **Aplicaciones**

Capacidad de un PIN de un micro → 5V, 5 mA

- Encender un led → 5 mA 3 voltios
- Motor corriente continua → desde 5v 300 mA
- Alimentar un microcontrolador → 5v 1mA
- Alimentar un procesador → 1.8v 1A

# Esquema general



Electrónica de Potencia/ Adaptación De señal



# Esquema General Lectura



## Componentes pasivos

Resistencia: valor en Ohmios



#### Caracteristicas Resistencias

- Valor Nominal
- Tolerancia: 5%, 2%, ... 0.001%
- Potencia máxima: ¼, ½, 1 W
- Comportamiento con la temperatura
- Voltaje Maximo ruptura polarización

### Componentes pasivos

- Condensador
  - Valor Faradios
  - Capacidad uF, nF, pF,
  - Alumino: Muy Alta capacida
  - Tantalo: Alta capacidad, precisión media, polaridad
  - Cerámicos: Baja capacidad, alta precisión
  - Poliester: Media capacidad, precisión media alta
  - Condensador bateria
- Voltaje Máximo, voltaje no repetitivo
- Tolerancia
- Vida util, (condensador blindado)











### Bobinas

- Bobina (inductancia)
  - Inductancia uH, MH (Henrios)
  - Resistencia del cable
  - Corriente de Saturación
  - Tolerancia
  - Frecuencia resonancia



# Componentes pasivos

- Transformador
  - Dispositivo básico para cambiar la tensión en AC
  - Desde lineas de alta tensión hasta fuentes







#### Caracteristicas Transformador

- Potencia: VA (Voltio Amperios)
- Voltaje de Entrada/Salida
- Frecuencia de resonancia
- Estructura Lineal/Toroidal

# Aplicaciones componentes pasivos

#### Resistencia

- Limitación al paso de corriente
- Generación de voltajes a partir de otros (partidor)
- Polarización y trabajo de otros componentes

#### Condensador

- Acumulación de energía como campo eléctrico (voltaje)
- Riesgo de explosión si se conecta con la polaridad al revés

#### Bobina

 Acumulación de energía como campo magnético (Corriente)

### **Ecuaciones**

- Ecuaciones básicas
  - Efecto Joule, todos los dispositivos generan calor cuando circula corriente por ellos
  - Potencia P = I\*V, Watios
  - Ley de Ohm:  $V = I \cdot R$
  - Leyes de Kirchoff
    - En un lazo cerrado, la suma de todas las caídas de tensión es igual a la tensión total suministrada.
    - En cualquier nodo, la suma de las corrientes que entran en ese nodo es igual a la suma de las corrientes que salen.
  - Condensador
    - DC = Circuito abierto AC = Cortocircuito
  - Bobina
    - DC = cortocircuito. AC = circuito abierto

### Aplicaciones basicas

- Flash cámara de fotos
  - Fuente batería de 1.5 voltios
  - Lampara de Xenon mínimo 500 voltios



# Componentes activos

- Con componentes pasivos solo se limita o almacena la corriente/voltaje, componentes activos permiten el control de la corriente/voltaje.
- Componentes activos
  - Válvulas de vacío, primeros dispositivos años 60, actualmente solo en amplificadores musica vintage.
  - Semiconductores, tecnología actual
    - Diodos
    - Transistores bipolares
    - Transistores FET

#### Semiconductores

- Silicio, Germanio, Arseniuro de Galio en estado puro, material intrinseco
- Materiales aislantes, no circula corriente por ellos
- Si se dopan pasan a ser conductores, material extrinseco
  - Tipo N, Si + P, electrones disponibles para la conducción.
  - Tipo P, Si + B, huecos disponibles para la conducción.



### Diodo

- Union material P-N.
  - Solo deja circular la corriente en un sentido



## Tipos de diodos

- Rectificadores: Union PN simple, se utilizan para rectificar señales, fuentes de alimentación, etc. Intensidad máxima, voltaje de ruptura, voltaje en directa
- **Schockty:** Union Semiconductor metal, rectificadores muchisimo mas rápidos, para quitar transitorios en señales.
- Zener: Diseñado para fijar un voltaje en la conducción inversa. No deja pasar voltaje hasta que llega al valor y lo fija.
- Avalancha: Diseñado para ruptura inversa de alta velocidad, se utilizan como "fusibles para proteger dispositivos.





### Tipos de Diodos

- **Led:** En función del material, genera una longitud de onda determinada de rojo a azul. Fosforados para luz blanca
- Varicap: Usados como condensador variable en dispositivos sintonizador automático
- Fotodiodos: Receptores de luz, inyectan corriente al contrario del estandard, especializados normalmente en una longitud de onda
- Celulas fotovoltaicas: Fotodiodo diseñado para capturar la mayor parte de longitudes de onda y de gran tamaño para capturar mas intensidad



### Caracteristicas de los diodos

- Maximum repetitive reverse voltage = VRRM, Maximo voltaje inverso que soporta de manera continuada.
- Maximum DC reverse voltage = VR or VDC, maximo voltaje continuo que puede soportar.
- Maximum forward voltage = VF, Voltaje en directa que cae en el diodo.
- Maximum (average) forward current = IF(AV), Maxima corriente que el diodo soporta continuamente. Limitación con la temperatura.
- Maximum (peak or surge) forward current = IFSM or if(surge), Maxima corriente en directa por un tiempo muy corto y no repetitiva.
- Maximum total dissipation = PD, Potencia maxima que soporta el diodo, equivalente a VF\*IF además de corrientes puntuales

### Características Diodos

- Operating junction temperature = TJ, Maxima temperatura para el nucleo del dispositivo
- Storage temperature range = TSTG,
- Thermal resistance =  $R(\Theta)$ , Calculo aproximado de la temperatura que alcanzara el diodo en función de la potencia consumida
- Typical junction capacitance = CJ, Capacidad del condensador parasito
- Reverse recovery time = trr, Tiempo que tarda el diodo en dejar de conducir corriente desde que se desconecta el voltaje

# **Aplicaciones**

- Puente de Diodos: rectificación y conversion de alterna a continua
- Fuente de alimentación:
  Transformador + puente de diodo + condensador







## **Aplicaciones**

• Fuente Estabilizada: se utiliza un diodo zener para estabilizar el voltaje



## Reguladores de voltaje

- Fijar un voltaje de salida independientemente del de entrada,
  - Solución económica y simple, (poco eficiente algunos casos)
  - De nivel fijo, Familia 78xx, 79xx
  - Variable Lm317





### Características

- Corriente máxima
- Voltaje máximo
- Potencia máxima
- Encapsulado TO220, To92,
- Ripple rejection

### Calor, resistencia Térmica

- Calculo de la temperatura Interna del componente
  - Equivalente a un circuito eléctrico

$$P_D = V \cdot I \qquad P_D = \frac{T_j - Ta}{R_{th}} + C_{th} \frac{dT_j}{dt}$$

$$\begin{split} &Tj_{f}\!=\mathrm{Valor\;final} &Tj_{i}=\mathrm{Valor\;inicial} \\ &\tau_{th}=R_{th}\cdot \ C_{th}=constante\;de\;tiempo\;t\acute{e}rmica\;(segundos) \end{split}$$





### Resistencia Térmica

Cálculo Térmico





$$R_{h} = \phi_{ja} = \phi_{js} + \phi_{sc} + \phi_{ca}$$

| Tipo de cápsula | Contacto directo | Contacto directo<br>más pasta de<br>silicona | Contacto con mica | Contacto con mica<br>más pasta de<br>silicona |
|-----------------|------------------|----------------------------------------------|-------------------|-----------------------------------------------|
| TO.39-TO.5      | 1                | 0.7                                          | _                 | -                                             |
| TO.126          | 1.4              | 1                                            | 2                 | 1.5                                           |
| TO.220          | 0.8              | 0.5                                          | 1.4               | 1.2                                           |
| 10.202          | 0.8              | 0.5                                          | 1.4               | 1.2                                           |
| TO.152          | 0.8              | 0.5                                          | 1.4               | 1.2                                           |
| TO.90           | 0.5              | 0.3                                          | 1.2               | 0.9                                           |
| TO.3 (Plástico) | 0.4              | 0.2                                          | 1                 | 0.7                                           |
| TO.59           | 1.2              | 0.7                                          | 2.1               | 1.5                                           |
| 10.117          | 2                | 1.7                                          | E .               | -                                             |
| SOT.48          | 1.8              | 1.5                                          |                   |                                               |
| DIAL.4L         | 1.1              | 0.7                                          | _                 | -                                             |
| TO.66           | 1.1              | 0.65                                         | 1.8               | 1.4                                           |
| TO.3            | 0.25             | 0.12                                         | 0.8               | 0.4                                           |

# Disipador

- Resistencia Térmica
  - Entre 1~10







### Características

- Corriente máxima
- Voltaje máximo
- Potencia máxima
- Encapsulado TO220, To92,
- Ripple rejection

#### Sistemas de control de corriente

- Relé, (Contactor)
  - Conmutador Electrico Todo/Nada
  - Alta corriente, Baja velocidad, alto voltaje
  - Ruidos y chispas en la conmutación
  - Corriente elevada para la conmutación







#### Caracteristicas

- Tension bobina
- Corriente bobina
- Tension contactos
- Corriente contactos
- Numero de cambios
- Aislamiento completo
- Velocidad de la conmutación
- Voltaje inverso en la bobina por conmutación

### **Transistores**

- Dispositvo clave en el desarrollo de la electronica (Valvulas de Vacio, Reles, memorias de ferrita)
  - Bipolares (NPN, PNP): Aplicaciones de electrónica analogica, amplificación, región lineal
  - Efecto Campo (Jfet, Mosfet) → Conmutación
  - Mosfet → Electrónica Digital



# **Bipolares**

- Ley del transistor
  - NPN, conduce con corriente positiva
  - PNP, conduce con corriente negativa
  - $Ic = \beta * Ib$
  - Beta → hfe parametro caracteristico del transistor, amplificación 100, transistor pequeño, 10 transistor grande
  - Vce = 0.5 Voltios
  - Impedancia entrada al transistor hie

## **Amplificador Tension**

Emisor comun



## Amplificador corriente

Seguidor por emisor



# Amplificador diferencial

• Amplifica la diferencia entre dos voltajes



# Ejemplos

Regulador de tensión





# Ejemplo

Amplificador de Audio



### Transistor en conmutación

- Comportamiento todo/nada
- Electrónica digital, Familia TTL
- Totem pole, Open Collector

Practical inverter (NOT) circuit





#### Transistor como buffer

- Permite aumentar la corriente de salida de circuitos
  - Activar un led
  - Activar un rele





#### Transistor como buffer

- Permite aumentar la corriente de salida de circuitos
  - Activar un led
  - Activar un rele





# Transistor Efecto Campo

- Impedancia de entrada muy alta
- Gran capacidad de corriente
- Ideal en conmutación y digital
- No muy bueno en lineal
- Tipo N → NPN y Tipo P → PNP



## **MOSFET**

Funcionamiento





# Electronica digital

- Electronica CMOS
  - Pocos componentes
  - Transistores pequeños 22nm distancia entre 2 transistores de una memoria







### Generalidades Transistores

#### NPN

- Caída de voltaje (Colector Emisor) 0.3~0.5 voltios
- Intensidad de base entre 30~100 veces menor que la de colector (puede ser muy grande)
- Es necesario aplicar un voltaje positivo Base Emisor. Sin voltaje no circula corriente.



#### PNP

- Funcionamiento Inverso NPN (circula corriente Emisor cuando sacamos corriente de la base)
- Caída de voltaje (Emisor Colector) 0.3~0.5 voltios.
- Intensidad de base entre 30~100 veces menor que la de colector
- Es necesario aplicar un voltaje cero para que circule corriente (absorve corriente del emisor), Con voltaje positivo no circula



### Generalidades Transistores

#### MOSFET N

- Tiene que tener un voltaje entre Puerta y el surtidor para reducir su resistencia.
- Resistencia mínima de mOhmios, voltaje del orden de 12 v en la puerta
- Se suele conectar el surtidor a Tierra para que la referencia sea absoluta

- Normalmente mas eficiente que el Mosfet P
- Maximo 20 voltios puerta Surtidor
- Condensador equivalente en la puerta, tiempo de respuesta



#### MOSFET P

- Voltaje 0 entre puerta y surtidor para que no circule corriente. (Ojo cambio en el sentido de la corriente S/D)
- Surtidor conectado a voltaje máximo

### **Control Motores**

• Controlar el sentido de giro de un motor





## **Control Motor**

Control sentido de giro



## Control Motor III



- Características de amplificador ideal, utilizado en la adaptación de cualquier sensor analógico
  - Operación matemática
  - Ganancia Infinita
  - Impedancia de entrada alta
- Configuraciones utilizadas
  - Seguidor de tensión
  - Amplificador no inversor







No Inversor

Inversor

#### **Sumador Inversor**





Inversor



Sumador Inversor

$$V_{\text{out}} = -R_f \left( \frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots + \frac{V_n}{R_n} \right)$$

#### Restador Inversor



Integrador

$$V_{\rm in} = \int_0^t -\frac{V_{\rm in}}{RC} \, dt + V_{\rm inicial}$$

Derivador



#### Conversor Corriente Voltaje



$$V_{\rm out} = -R \cdot I_{\rm in}$$

# Amplificador Operacinal real

#### • Ua741

- Primer diseño,
- poco preciso,
- alimentación simetrica (+12~-12)

\_\_\_

#### • Lm324

- Alimentación 0~12
- Mas preciso





## Amplificador Instrumentación

- Alta ganancia
- Cambio ganancia con una sola resistencia
- Mucha precisión
- Bajo Ruido
- Precio alto



# Amplificador Instrumentación



$$V_{out} = (V_2 - V_1) \left( 1 + \frac{2R_1}{R_g} \right)$$
 R2=R3

#### Puente de Wheastone

- Medida de cambios de resistencia muy pequeños
  - Sensores que presentan un cambio de resistencia muy bajo.
  - Se mide la diferencia entre una rama y otra
  - Necesario un amplificador de instrumentación
  - Ejp: Basculas de presición, termómetros, presostatos, ...
  - Tipicamente R1=R2=R3=Rx valor de la resistencia nominal del sensor



#### Puente de Wheastone

- Sensores
  - RTD → pt100 0.00385 ohmios/°C
  - Galga extensiométrica → medida de desplazamientos (peso, presion) → 0.0074 ohmios
- Una galga con factor de galga K= 2, y una resistencia de 120 Ω (valores típicos) pegada a una pieza de acero de 4 cm x 4 cm de sección de la que pende una masa de 1000 kg provoca una deformación en el acero → 306,5 μ con un cambio de resistencia de la galga de 0.0074 ohmios

