Mouvement RT - RSG ★★

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Le système posède deux mobilités :

- ▶ translation de 1 par rapport à 2 (λ);
- ▶ rotation de l'ensemble {1+2} autour du point I (le roulement sans glissement permet d'écrire une relation entre la rotation de paramètre θ et le déplacement suivant $\overrightarrow{i_0}$.

On en déduit la stratégie suivante :

- ▶ Première loi de mouvement :
 - on isole 2,
 - BAME :

*
$$\{\mathcal{T}(1 \to 2)\},\$$

* $\{\mathcal{T}(1_{\text{ressort}} \to 2)\}$ $(\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} = 0 \text{ et } \overrightarrow{R(1_{\text{ressort}} \to 2)} \cdot \overrightarrow{i_1} = 0)$
* $\{\mathcal{T}(\text{Pesanteur} \to 2)\};$

- on réalise un théorème de la résultante dynamique en projection suivant $\overrightarrow{i_1}$.
- ► Seconde loi de mouvement :
 - on isole {1+2};
 - BAME :

*
$$\{\mathcal{T}(0 \to 1)\}\ (\overrightarrow{\mathcal{M}(I, 0 \to 1)} \cdot \overrightarrow{k_0} = 0),$$

* $\{\mathcal{T}(\text{Pesanteur} \to 1)\},$

- * $\{\mathcal{T} (Pesanteur \rightarrow 2)\}.$
- on réalise un théorème du moment dynamique en I en projection suivant $\overrightarrow{k_0}$.

Question 3 Déterminer les lois de mouvement.

Mouvement RT ★

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

- ► On isole {1}. On réalise un théorème de la résultante dynamique en projection sur $\overrightarrow{i_1}: \overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} + \overrightarrow{R(F_v \to 2)} \cdot \overrightarrow{i_1} + \overrightarrow{R(Pes \to 2)} \cdot \overrightarrow{i_1} = \overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$.

 ► On isole {1+2}. On réalise un théorème du moment dynamique en A en pro-
- ► On isole {1+2}. On réalise un théorème du moment dynamique en A en projection sur $\overrightarrow{k_0}$: $\overline{\mathcal{M}}(A, 0 \to 1) \cdot \overrightarrow{k_0} + \overline{\mathcal{M}}(A, \text{Mot} \to 1) \cdot \overrightarrow{k_0} + \overline{\mathcal{M}}(A, \text{Pes} \to 2) \cdot \overrightarrow{k_0} + \overline{\mathcal{M}}(A, \text{P$

Colle 0

Mesure de moment d'inertie - Corrigé

Équipe PT – PT★ La Martinière Monplai-

C1-05

C2-09

La figure ci-dessous représente un dispositif conçu pour déterminer le moment d'inertie I d'un solide de révolution (2) par rapport à son axe. Soit R_0 un repère galiléen lié au bâti (S_0) tel que l'axe $\left(O, \overrightarrow{x_0}\right)$ soit vertical descendant. Les deux portées sur lesquelles roule le solide (2) sont des portions de la surface d'un cylindre de révolution d'axe $\left(O, \overrightarrow{z_0}\right)$ et de rayon r. Le solide (2), de masse m, de centre d'inertie C, possède deux tourillons de même rayon a. Soit f le coefficient de frottement entre (2) et (S_0).

L'étude se ramène à celle d'un problème plan paramétré de la façon suivante :

- ▶ le tourillon de (2), de centre C, roule sans glisser en A sur la portée cylindrique de (S_0);
- ► R_1 est un repère tel que $\overrightarrow{OA} = r\overrightarrow{x_1}$ et on pose $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- ▶ R_2 est un repère lié à 2 avec $\varphi = (\overrightarrow{x_1}, \overrightarrow{x_2})$. On suppose que $\varphi = 0$ lorsque $\theta = 0$.

Question 1 Donner la relation entre φ et θ .

Question 2 Déterminer l'équation du mouvement de **(2)** par rapport à **(** S_0 **)** en fonction de θ .

Question 3 On suppose que l'angle θ reste petit au cours du mouvement. Montrer que le mouvement est périodique et déterminer la période T des oscillations de **(2)**.

Question 4 En déduire le moment d'inertie *I* de **(S)** sachant que : T = 5 s; a = 12,5 mm; r = 141,1 mm; g = 9,81 m s⁻²; m = 7217 g; f = 0,15.

Question 5 Déterminer l'angle θ_0 maxi pour qu'il n'y ait pas glissement en A. Faire l'application numérique.

Dispositif de reserve de moment d'inertie.

1/2

1-RSG on A
$$V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$$

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

2-Isolans (S)

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

2-Isolans (S)

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

2-Isolans (S)

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) + ACA \vec{F}2(SR)$

2-Isolans (S)

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) = \vec{G} = V(C \in SR)$

1-RSG on A $V(A \in SR) = \vec{G} = V(C \in SR) = \vec{G} = V(C \in SR) = \vec{G} =$

(m F(cos/Ro)) = (mg mo + N min + Tyn)

Sh (5/Ro) A (mg o sin 8 3)

avec
$$\overline{\delta_{h}}(S|\Omega_{0}) = \overline{\delta_{c}}(S|\Omega_{0}) + \overline{ABC} \wedge m \overline{\Gamma}(Cashb)$$

$$= \frac{d}{dt} \left[\overline{\int_{c}}(S) \overline{J}(S|\Omega_{0}) \right] - me \overline{M_{h}} \wedge \left[(r-e)\theta \overline{\eta_{h}} - (r-e)\theta \overline{\eta_{h}} \right]$$

$$= \left[\overline{I} (A - \Gamma_{0}) \overline{\partial} - me (r-e) \overline{\partial} \right] \overline{J_{0}}$$

TID in $\overline{A}/\overline{J_{0}}$ $(r-e) \left[\overline{I} + me^{\frac{1}{2}} \right] \theta + mge^{\frac{1}{2}} \sin \theta = 0$
(1)
$$3 - \theta \operatorname{path} t \Rightarrow \sin \theta = \theta \operatorname{don} \left(\overline{\eta_{h}} \operatorname{deff} \operatorname{den} Z^{-nd} \operatorname{order} t \right)$$

$$\theta + \frac{mq}{(r-e)(\overline{I} + me^{\frac{1}{2}})} \theta = 0$$
Le coof of θ itent positif, on a un phinomina periodique de periode
$$A - \overline{T} = 4\pi^{\frac{1}{2}} \frac{(r-e)(\overline{I} + me^{\frac{1}{2}})}{mq^{\frac{1}{2}}} = 3$$

$$A - \overline{T} = 4\pi^{\frac{1}{2}} \frac{(r-e)(\overline{I} + me^{\frac{1}{2}})}{mq^{\frac{1}{2}}} = 3$$

$$A - \overline{T} = 4\pi^{\frac{1}{2}} \frac{(r-e)(\overline{I} + me^{\frac{1}{2}})}{mq^{\frac{1}{2}}} = 3$$

$$A - \overline{T} = \frac{2S}{4\pi^{\frac{1}{2}}} \frac{3,94}{(44,4-1.12.5)} \frac{4D^{\frac{1}{2}}}{4D^{\frac{1}{2}}} - \frac{7,247}{4\pi^{\frac{1}{2}}(r-e)} \frac{3}{2\pi^{\frac{1}{2}}} - \frac{53}{3} \cdot \frac{3 \cdot 10^{-3}}{3} \frac{1}{3} n^{\frac{1}{2}}$$

$$S - \overline{T} + de = \frac{2S}{4\pi^{\frac{1}{2}}} \frac{3,94}{(44,4-1.12.5)} \frac{4D^{\frac{1}{2}}}{4D^{\frac{1}{2}}} - \frac{7,247}{4\pi^{\frac{1}{2}}} \frac{3}{2} \cdot \frac{10^{-3}}{4\pi^{\frac{1}{2}}} = \frac{53}{4\pi^{\frac{1}{2}}} \frac{3 \cdot 10^{-3}}{4\pi^{\frac{1}{2}}} \frac{1}{2} n^{\frac{1}{2}}$$

$$S - \overline{T} + de = \frac{2S}{4\pi^{\frac{1}{2}}} \frac{3}{4\pi^{\frac{1}{2}}} \frac{4D^{\frac{1}{2}}}{4\pi^{\frac{1}{2}}} - \frac{3}{2} \frac{7}{2} \frac{7$$

TD0

Stabilisateur passif d'image – Corrigé

Mines Ponts 2018 - PSI.

Mise en situation

Objectif

Suite à une sollicitation brève de $0.5 \,\mathrm{m\,s^{-2}}$, l'amplitude des oscillations de la caméra ne doit pas dépasser les 0,5°.

Travail demandé

Question 1 Par une étude dynamique que vous mettrez en œuvre, montrer que l'équation de mouvement de (E) dans (0) galiléen s'exprime comme $Q_1 \frac{d^2 \varphi(t)}{dt^2} + Q_2(t) =$ $Q_3(t)a(t)$.

Correction

(1) et (E) sont en liaison pivot d'axe $(O, \overrightarrow{Y_0})$. On va donc réaliser un théorème du moment dynamique appliqué à **(E)** en O en projection sur $\overline{Y_0}$.

Calcul de
$$\overrightarrow{\delta(O, E/0)}$$

Méthode 1 – En passant par le calcul de $\delta(O, 2/0)$, $\delta(O, C/0)$ et $\delta(O, Cp/0)$

Le support 2 étant sans masse, on a $\overrightarrow{\delta(O,2/0)} = \overrightarrow{0}$. La caméra et le contrepoids étant considérés comme des masses ponctuelles, on a $\delta(G_C, C/0) = \overrightarrow{0}$ et $\delta(G_{Cp}, Cp/0) = \overrightarrow{0}$.

On a
$$\overrightarrow{\delta(O,C/0)} = \overrightarrow{\delta(G_C,C/0)} + \overrightarrow{OG_C} \wedge M_C \overrightarrow{\Gamma(G_C,C/0)}$$
.

Calcul de $\Gamma(G_C, \mathbf{C}/0)$

$$\overrightarrow{V(G_C,C/0)} = \overrightarrow{V(G_C,C/1)} + \overrightarrow{V(G_C,1/0)} = \overrightarrow{G_CO} \wedge \overrightarrow{\Omega(C/0)} + v(t)\overrightarrow{X_0} = -L_C\overrightarrow{Z_2} \wedge \overrightarrow{\phi}\overrightarrow{Y_2} + v(t)\overrightarrow{X_0} = L_C \overrightarrow{\phi}\overrightarrow{X_2} + v(t)\overrightarrow{X_0}.$$

De plus
$$\Gamma(G_C, C/0) = L_C \ddot{\varphi} \overrightarrow{X_2} - L_C \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}$$
.
Au final, $\delta(O, C/0) = \overrightarrow{OG_C} \wedge M_C \Gamma(G_C, C/0) = L_C \overrightarrow{Z_2} \wedge M_C \left(L_C \ddot{\varphi} \overrightarrow{X_2} - L_C \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}\right)$

$$\overline{\delta(O,C/0)} = L_C M_C \left(L_C \ddot{\varphi} \overrightarrow{Y_2} + a(t) \cos \varphi \overrightarrow{Y_0} \right).$$

Calcul de $\delta(O, \mathbb{Cp}/0)$

On a
$$\overrightarrow{\delta(O, Cp/0)} = \overrightarrow{\delta(G_{Cp}, Cp/0)} + \overrightarrow{OG_{Cp}} \wedge M_{Cp} \overrightarrow{\Gamma(G_{Cp}, C/0)}$$

Calcul de
$$\Gamma(G_{Cp}, \mathbf{Cp}/0)$$

De même,
$$\overrightarrow{V\left(G_{Cp}, \operatorname{Cp}/0\right)} = \overrightarrow{V\left(G_{Cp}, \operatorname{Cp}/1\right)} + \overrightarrow{V\left(G_{Cp}, 1/0\right)} = \overrightarrow{G_{Cp}O} \wedge \overrightarrow{\Omega\left(\operatorname{Cp}/0\right)} + v(t)\overrightarrow{X_0} = L_{Cp}\overrightarrow{Z_2} \wedge \overrightarrow{\phi}\overrightarrow{Y_2} + v(t)\overrightarrow{X_0} = -L_{Cp}\overrightarrow{\phi}\overrightarrow{X_2} + v(t)\overrightarrow{X_0}.$$

De plus
$$\Gamma(G_{Cp}, Cp/0) = -L_{Cp} \ddot{\varphi} \overrightarrow{X_2} + L_{Cp} \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}$$
.

Au final,
$$\overrightarrow{\delta(O, Cp/0)} = \overrightarrow{OG_{Cp}} \wedge M_{Cp} \overrightarrow{\Gamma(G_{Cp}, Cp/0)} = -L_{Cp} \overrightarrow{Z_2} \wedge$$

$$M_{Cp}\left(-L_{Cp}\ddot{\varphi}\overrightarrow{X}_{2}+L_{Cp}\dot{\varphi}^{2}\overrightarrow{Z}_{2}+a(t)\overrightarrow{X}_{0}\right)$$

$$\begin{split} M_{Cp}\left(-L_{Cp}\ddot{\varphi}\overrightarrow{X}_{2} + L_{Cp}\dot{\varphi}^{2}\overrightarrow{Z}_{2} + a(t)\overrightarrow{X}_{0}\right) \\ \overrightarrow{\delta(O,C/0)} &= -L_{Cp}M_{Cp}\left(-L_{Cp}\ddot{\varphi}\overrightarrow{Y}_{2} + a(t)\cos\varphi\overrightarrow{Y}_{0}\right) \end{split}$$

On a donc
$$\overline{\delta(O, E/0)} \cdot \overrightarrow{Y_0} = M_{Cp}L_{Cp}^2 \overline{\phi} - M_{Cp}L_{Cp}a(t) \cos \phi + M_{C}L_{C}^2 \overline{\phi} + M_{C}L_{Ca}(t) \cos \phi$$

Méthode 2 – En passant par le calcul de $I_O(E)$

On a $I_O(C) = M_C\begin{pmatrix} L_C^2 & 0 & 0 \\ 0 & L_C^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\otimes_2}$ et $I_O(Cp) = M_{Cp}\begin{pmatrix} L_{Cp}^2 & 0 & 0 \\ 0 & L_{Cp}^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\otimes_2}$ et donc $I_O(E) = M_{Cp}L_{Cp}^2 + M_{C}L_{C}^2 & 0 & 0 \\ 0 & 0 & M_{Cp}L_{Cp}^2 + M_{C}L_{C}^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}_{\otimes_2}$ et donc $I_O(E) = M_{Cp}L_{Cp}^2 + M_{C}L_{C}^2 & 0 \\ 0 & 0 & M_{Cp}L_{Cp}^2 + M_{C}L_{C}^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\otimes_2}$.

O est un point quelconque; donc $\overline{\delta(O, E/0)} \cdot \overrightarrow{Y_0} = \overline{\delta(O, E/R_0)} = I_O(E) \cdot \overline{\delta(O, E/R_0)} = I_O(E) \cdot \overline{\delta(O, E/R_0)} = I_O(E) \cdot \overline{\delta(O, E/R_0)} = M_{CL}C - M_{Cp}L_{Cp}} = \overline{Z_2}, \overline{V(O, E/R_0)} = v(t) \overrightarrow{X_0} \text{ et } \overline{V(G, E/R_0)} = I_O(E) \cdot \overline{\delta(Cp, E/R_0)} = \overline{\delta(O, E/R_0)} = M_{CL}C - M_{Cp}L_{Cp}} = \overline{Z_2}, \overline{V(O, E/R_0)} = v(t) \overrightarrow{X_0} \text{ et } \overline{V(G, E/R_0)} = \overline{V$

Question 2 Établir sous forme canonique la fonction de transfert $H(p) = \frac{\Phi(p)}{A(p)}$. Donner

 $(M_{Cp}L_{Cp}-M_CL_C)\cos\varphi$.

l'expression de la pulsation propre ω_0 en fonction de m_c , m_{cp} , L_c , L_{cp} et g.

Correction
$$\begin{aligned} &\text{Dans les conditions précédentes, on a } Q_1 &= M_{Cp}L_{Cp}^2 + M_CL_C^2, \ Q_2(t) &= \\ &\left(L_{Cp}M_{Cp} - L_CM_C\right)g\varphi \text{ et } Q_3(t) = \left(M_{Cp}L_{Cp} - M_CL_C\right). \end{aligned}$$
 L'équation de comportement devient donc $Q_1\frac{\mathrm{d}^2\varphi(t)}{\mathrm{d}t^2} + \left(L_{Cp}M_{Cp} - L_CM_C\right)g\varphi = Q_3a(t)$ $\Rightarrow Q_1p^2\Phi(p) + \left(L_{Cp}M_{Cp} - L_CM_C\right)g\Phi(p) = Q_3A(p) \text{ et } H(p) = \\ &\frac{Q_3}{Q_1p^2 + \left(L_{Cp}M_{Cp} - L_CM_C\right)g}.$ On a donc $\omega_0^2 = \frac{\left(L_{Cp}M_{Cp} - L_CM_C\right)g}{Q_1} = \frac{\left(L_{Cp}M_{Cp} - L_CM_C\right)g}{M_{Cp}L_{Cp}^2 + M_CL_C^2}.$ Le gain K vaut $\frac{M_{Cp}L_{Cp} - M_CL_C}{\left(L_{Cp}M_{Cp} - L_CM_C\right)g} = \frac{1}{g}. \end{aligned}$

Question 3 Tracer l'allure du diagramme asymptotique de gain $G_{dB} = f(\omega)$ de la fonction de transfert $H(j\omega)$. Placer les caractéristiques remarquables.

Question 4 Pour un fonctionnement filtrant satisfaisant, on impose que $\omega_0 = 0, 1\omega_a$. Le stabilisateur est réglé en conséquence par l'intermédiaire du couple (m_{cp}, L_{cp}) . En utilisant le comportement asymptotique en gain de $G_{\rm dB}$, estimer numériquement l'amplitude $\Delta \varphi$ (en degrés) des oscillations de (E) selon l'axe $(O, \overrightarrow{y_0})$.

Correction

On a $\omega_a=10\omega_0$. Une décade après ω_0 , $G_{\rm dB}=-20\log 10-40=-60\,{\rm dB}$. Une atténuation de $-60\,{\rm dB}$ correspond à un gain de $10^{-\frac{60}{20}}=0$, 001. L'amplitude des oscillations sera donc de 0, $001a_0=5\times 10^{-4}\,{\rm rad}$ soit 0, 03° .

Retour sur le cahier des charges

Question 5 Conclure vis-à-vis de l'objectif et sur les écarts obtenus.

Correction

On a $0.03^{\circ} < 0.5^{\circ}$. Le cahier des charges est vérifié au voisinage de $10\omega_0$.

TD 1

Gyrolock ★ – Corrigé

Centrale Supélec PSI 2022. Corrigé proposé par l'UPSTI.

C1-05

Comportement dynamique du stabilisateur

FIGURE 1 – Modèle cinématique du système GyroLock (représenté pour $\theta_2 = \theta_3 = 0$)

Dans la modélisation retenue (figure 1), une liaison pivot non parfaite permet de représenter la flexibilité de l'attache reconfigurable. La table d'opération (0) est supposée fixe et le référentiel \mathcal{R}_0 (O_0 , \vec{x}_0 , \vec{y}_0 , \vec{z}_0) lié à la table (0) est galiléen. Au stabilisateur (1) est associé le repère \mathcal{R}_1 (O_0 , $\vec{x}_0 = \vec{x}_1$, \vec{y}_1 , \vec{z}_1) avec $\theta_1 = (\vec{y}_0, \vec{y}_1) = (\vec{z}_0, \vec{z}_1)$. Le point P tel que $O_0P = L$ représente le bout du stabilisateur (1) en contact avec la zone à opérer.

Paramétrage, notations et hypothèses

- ► La liaison pivot d'axe (O_0, \vec{x}_0) entre les solides (0) et (1) possède une raideur k et un coefficient de frottement visqueux f, d'où \vec{M} $(O_0, 0 \rightarrow 1) \cdot \vec{x}_0 = -(k\theta_1 + f\dot{\theta}_1)$;
- ▶ les autres liaisons sont supposées parfaites;
- ▶ l'action du cœur sur le stabilisateur (1) est modélisée par $\{\mathcal{T}_{c\to 1}\}=\left\{\begin{array}{c}f_c\vec{y}_1\\\overrightarrow{0}\end{array}\right\}_p$;
- ▶ seul le déplacement vertical du point P est pris en compte. On note $y(t) = -\overrightarrow{O_0P} \cdot \overrightarrow{y_0}$;
- ▶ le stabilisateur (1) est de masse m_1 et possède un centre d'inertie G_1 tel que $\overrightarrow{O_0G_1} = L_{G_1}\vec{z}_1$ et l'opérateur d'inertie est $\mathcal{F}(G_1,1) = \begin{bmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & C_1 \end{bmatrix}_{G_2}$;
- ▶ la masse et l'inertie de l'étrier (2) sont négligeables;
- ▶ la toupie (3) est de masse m_3 et possède un centre d'inertie G_3 tel que $\overrightarrow{O_0G_3} = L_{G_3}\vec{z}_1 + H_{G_3}\vec{y}_1$;
- ▶ les figures de changement de base sont données figures 6 et 9;
- ▶ les actions mécaniques dues à la pesanteur sont négligées devant les effets dynamiques.

Question 1 Sans détailler les calculs, donner la méthode permettant de déterminer la loi de mouvement du stabilisateur (équation différentielle en $\theta_1(t)$). L'ensemble isolé,

l'inventaire des actions mécaniques extérieures, le théorème utilisé et sa projection scalaire sont à préciser clairement.

Question 2 Exprimer $\vec{\delta}(O_0, 1/0) \cdot \vec{x}_0$, la projection sur \vec{x}_0 du moment dynamique au point O_0 du solide (1) en mouvement dans le référentiel \mathcal{R}_0 .

Correction

Par formule de Varignon:

$$\overrightarrow{\delta}(O_0,1/0) \cdot \overrightarrow{x}_0 = \overrightarrow{\delta}(G_1,1/0) \cdot \overrightarrow{x}_0 + \left(\overrightarrow{O_0G_1} \wedge m_1 \overrightarrow{\Gamma}(G_1,1/0)\right) \cdot \overrightarrow{x}_0$$

$$\operatorname{avec} \overrightarrow{\Gamma}(G_1,1/0) = \left. \frac{\mathrm{d}^2 \overrightarrow{O_0G_1}}{\mathrm{d}t^2} \right|_0 = -L_{G_1} \ddot{\theta}_1 \overrightarrow{y}_1 - L_{G_1} \dot{\theta}_1^2 \overrightarrow{z}_1 \operatorname{donc} \left(\overrightarrow{O_0G_1} \wedge m_1 \overrightarrow{\Gamma}(G_1,1/0)\right) \cdot \overrightarrow{x}_0 = m_1 L_{G_1}^2 \ddot{\theta}_1.$$

De plus **au centre d'inertie** $G_1: \overrightarrow{\delta}(G_1, 1/0) \cdot \overrightarrow{x}_0 = \frac{d\overrightarrow{\sigma}(G_1, 1/0) \cdot \overrightarrow{x}_0}{dt} \bigg|_0$ avec $\overrightarrow{\sigma}(G_1, 1/0) \cdot \overrightarrow{x}_0 = \mathcal{F}(G_1, 1)\overrightarrow{\Omega}(1/0) \cdot \overrightarrow{x}_0$.

Donc
$$\overrightarrow{\sigma}(G_1, 1/0) \cdot \overrightarrow{x}_0 = A_1 \dot{\theta}_1 \text{ et } \overrightarrow{\delta}(G_1, 1/0) \cdot \overrightarrow{x}_0 = A_1 \ddot{\theta}_1.$$

Finalement
$$\overrightarrow{\delta}(O_0, 1/0) \cdot \overrightarrow{x}_0 = (A_1 + m_1 L_{G_1}^2) \ddot{\theta}_1$$

Question 3 Exprimer littéralement la vitesse $\vec{V}(G_3, 3/0)$ dans la base \mathfrak{B}_1 , puis l'accélération $\vec{\Gamma}(G_3, 3/0)$ dans la base \mathfrak{B}_1 .

Correction

Le point G_3 étant **physiquement rattaché à (3)** on peut écrire

$$|\overrightarrow{V}(G_3, 3/0)| = \frac{d\overrightarrow{O_0G_3}}{dt}\Big|_{0} = -L_{G_3}\dot{\theta}_1\overrightarrow{y}_1 + H_{G_3}\dot{\theta}_1\overrightarrow{z}_1$$

Ensuite
$$\overrightarrow{\Gamma}(G_3, 3/0) = \frac{d\overrightarrow{V}(G_3, 3/0)}{dt}\Big|_{0} = -\left(L_{G_3}\ddot{\theta}_1 + H_{G_3}\dot{\theta}_1^2\right)\overrightarrow{y}_1 + \left(H_{G_3}\ddot{\theta}_1 - L_{G_3}\dot{\theta}_1^2\right)\overrightarrow{z}_1$$

1: $\ddot{\theta}_2 \approx 0$, $\theta_2 \approx 0$ et $\dot{\theta}_3 = \omega_3$ constante.

Question 4 En conservant les conditions de fonctionnement ci-contre ¹, il est possible de montrer que $\vec{\delta}$ (G_3 , 3/0) $\cdot \vec{x}_0 = A_3 \ddot{\theta}_1 - c_x(t)$ avec $c_x(t) = B_3 \omega_3 \dot{\theta}_2$ (résultat admis sans démonstration). En déduire $\vec{\delta}$ (O_0 , 3/0) $\cdot \vec{x}_0$, en fonction de A_3 , $c_x(t)$, m_3 , L_{G_3} , H_{G_3} et $\ddot{\theta}_1(t)$.

Correction

Par formule de Varignon:

$$\begin{split} \overrightarrow{\delta}(O_0, 3/0) \cdot \overrightarrow{x}_0 &= \overrightarrow{\delta}(G_3, 3/0) \cdot \overrightarrow{x}_0 + \left(\overrightarrow{O_0 G_3} \wedge m_3 \overrightarrow{\Gamma}(G_3, 3/0) \right) \cdot \overrightarrow{x}_0 \\ &= A_3 \ddot{\theta}_1 - c_x(t) + m_3 L_{G_3} \left(L_{G_3} \ddot{\theta}_1 + H_{G_3} \dot{\theta}_1^2 \right) + m_3 H_{G_3} \left(H_{G_3} \ddot{\theta}_1 - L_{G_3} \dot{\theta}_1^2 \right) \\ &= \left(A_3 + m_3 L_{G_3}^2 + m_3 H_{G_3}^2 \right) \ddot{\theta}_1 - c_x(t) \end{split}$$

Question 5 Exprimer J_x en fonction de A_1 , A_3 , m_1 , m_3 , L_{G_1} , L_{G_3} et H_{G_3} permettant

d'écrire la loi de mouvement du stabilisateur (1) sous la forme suivante :

$$J_x \ddot{\theta}_1(t) + f \dot{\theta}_1(t) + k\theta_1(t) = c_x(t) - Lf_c(t)$$

Correction

En appliquant la stratégie vue en question 14 on a l'équation (effets dynamiques de (2) négligés et actions de la pesanteur négligées) :

$$\overrightarrow{\delta}(O_0,1/0)\cdot\overrightarrow{x}_0+\overrightarrow{\delta}(O_0,3/0)\cdot\overrightarrow{x}_0=-(k\theta_1+f\dot{\theta}_1)+\left(\overrightarrow{O_0P}\wedge f_c\overrightarrow{y}_1\right)\cdot\overrightarrow{x}_0$$

Tout calcul fait avec $\overrightarrow{O_0P} = L\overrightarrow{z}_1$:

$$\boxed{\left(A_1 + A_3 + m_1 L_{G_1}^2 + m_3 L_{G_3}^2 + m_3 H_{G_3}^2\right) \ddot{\theta}_1 + f \dot{\theta}_1 + k \theta_1 = c_x(t) - L f_c(t)}$$

On identifie
$$J_x = A_1 + A_3 + m_1 L_{G_1}^2 + m_3 L_{G_3}^2 + m_3 H_{G_3}^2$$

En supposant que θ_1 reste proche de 0, la relation $y(t) = L\theta_1(t)$ sera utilisée.

Les transformées de Laplace de y(t), $c_x(t)$ et $f_c(t)$ sont notées Y(p), $C_x(p)$ et $F_c(p)$.

Question 6 En déduire les expressions littérales des fonctions de transfert $H_{pert}(p)$ et $H_1(p)$ du schéma-blocs figure 2 en fonction de L, J_x , f et k.

Correction

Le schéma-bloc donne $\frac{Y(p)}{H_1(p)} = C_x(p) - H_{pert}(p)F_c(p)$. L'équation différentielle précédente rapportée dans le domaine de Laplace (conditions initiales nulles) s'écrit (avec Y(p) = $L\theta_1(p)$:

$$\left(J_x p^2 + f p + k\right) \frac{Y(p)}{L} = C_x(p) - L F_c(p)$$
 On identifie
$$H_1(p) = \frac{L}{J_x p^2 + f p + k} \text{ et } \boxed{H_{\text{pert}}(p) = L}.$$

On rappelle que L = 0.3 m et les valeurs retenues pour J_x , f et k sont :

- ► $J_x = 1,14 \times 10^{-2} \text{ kg} \cdot \text{m}^2$; ► $-f = 64 \times 10^{-3} \text{ N} \cdot \text{m} \cdot \text{s} \cdot \text{rad}^{-1}$; ► $-k = 95 \text{ N} \cdot \text{m} \cdot \text{rad}^{-1}$.

Question 7 Écrire $H_1(p)$ sous forme canonique, puis calculer les valeurs de ses paramètres caractéristiques : gain statique K_1 , amortissement ξ_1 et pulsation propre ω_1 . Commenter le comportement associé (fréquentiel ou temporel).

On a
$$H_1(p) = \frac{\frac{L}{k}}{1 + \frac{f}{k}p + \frac{J_x}{k}p^2}$$
, on identifie alors :

- le gain statique $K_1 = \frac{L}{k} = \frac{0.3}{95} = 3.2 \cdot 10^{-3} \text{ rad/N};$
- la pulsation propre $\omega_1 = \sqrt{\frac{k}{l_x}} = \sqrt{\frac{95}{1.14 \cdot 10^{-2}}} = 91,3 \text{ rad/s};$

FIGURE 2 - Schéma bloc du stabilisateur

• l'amortissement
$$\xi_1 = \frac{1}{2} \cdot \frac{f}{\sqrt{kJ_x}} = \frac{1}{2} \cdot \frac{64 \cdot 10^{-3}}{\sqrt{95 \times 1,14 \cdot 10^{-2}}} = 0,03.$$
 On choisit de décrire le comportement dans le domaine fréquentiel. On a un système d'ordre

On choisit de décrire le comportement dans le domaine fréquentiel. On a un système d'ordre 2 avec résonance (car $\xi_1<\frac{\sqrt{2}}{2}$) à la pulsation $\omega_r=\omega_1\sqrt{1-2\xi_1^2}$. Le diagramme de Bode associé est le suivant :

TD₂

Exosquelette Atalante ★ – Corrigé

Comportement dynamique de l'exosquelette

Question 1 Déterminer l'expression de l'accélération du point G_3 appartenant à l'ensemble {pied+tibia} 3 dans son mouvement par rapport au buste 1, en fonction de $L_0, L_2, \theta_1, \theta_2$ et leurs dérivées temporelles.

Correction

On cherche
$$\overrightarrow{\Gamma(G_3,3/1)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(G_3,3/1)} \right]_{\mathcal{R}_1}$$
.

$$\overrightarrow{V(G_3,3/1)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} + \overrightarrow{BG_3} \right]_{\mathcal{R}_1} = \frac{\mathrm{d}}{\mathrm{d}t} \left[-L_2 \overrightarrow{z_2} - L_0 \overrightarrow{z_3}' \right]_{\mathcal{R}_1} = (\dot{\theta}_1 + \dot{\theta}_2) \overrightarrow{x_3} \wedge \overrightarrow{z_3}'$$

$$= L_2 \dot{\theta}_1 \overrightarrow{y_2} + L_0 \left(\dot{\theta}_1 + \dot{\theta}_2 \right) \overrightarrow{y_3}'.$$
Par suite, $\overrightarrow{\Gamma(G_3,3/1)} = L_2 \ddot{\theta}_1 \overrightarrow{y_2} + L_2 \dot{\theta}_1^2 \overrightarrow{z_2} + L_0 \left(\ddot{\theta}_1 + \ddot{\theta}_2 \right) \overrightarrow{y_3}' + L_0 \left(\dot{\theta}_1 + \dot{\theta}_2 \right)^2 \overrightarrow{z_3}'.$

Question 2 Déterminer l'expression de la projection suivant \vec{x}_1 du moment dynamique en A de l'ensemble { pied+tibia } 3 dans son mouvement par rapport au buste 1, $\vec{\delta}_{A,3/1} \cdot \vec{x}_1$, sous la forme : $\vec{\delta}_{A,3/1} \cdot \vec{x}_1 = A_1 \ddot{\theta}_1 + A_2 \ddot{\theta}_2 + A_3 \dot{\theta}_1^2 + A_4 \left(\dot{\theta}_1 + \dot{\theta}_2\right)^2$. Préciser les expressions littérales de A_1 , A_2 , A_3 et A_4 en fonction des différentes caractéristiques géométriques, de masses et d'inerties de l'exosquelette.

Centrale Supélec PSI 2023.

FIGURE 3 – Exosquelette Atalante et modélisation 3D associée

Correction

On cherche
$$\overline{\delta(A,3/1)} \cdot \overrightarrow{x_1}$$
:

On a $\overline{\delta(A,3/1)} \cdot \overrightarrow{x_1}$:

 $\overline{\delta(A,3/1)} \cdot \overrightarrow{x_1}$:

 $\overline{\delta(A,3/1)} \cdot \overrightarrow{x_1}$:

 $\overline{\delta(G_3,3/1)} + \overline{AG_3} \wedge m_3 \overline{\Gamma(G_3,3/1)}$
 $\overline{\chi_1}$:

 $\overline{\chi_1}$:

Or, en G_3 , centre d'inertie de $\overline{3}$, $\overline{\sigma(G_3,3/1)} = I_{G_3}(3) \overline{\Omega(3/1)} = \begin{pmatrix} I_{\chi_3} & 0 & 0 \\ 0 & I_{y3} & I_{y23} \\ 0 & I_{y23} & I_{z3} \end{pmatrix}_{\mathcal{B}_3}$
 $(\dot{\theta}_1 + \dot{\theta}_2) \overrightarrow{x_3} = I_{\chi_3} (\dot{\theta}_1 + \dot{\theta}_2) \overrightarrow{x_3}$.

Par suite, $\overline{\delta(A,3/1)} \cdot \overrightarrow{x_1} = \left(\frac{d}{dt} \left[\overline{\sigma(G_3,3/1)} \right]_{\mathcal{B}_1} \cdot \overrightarrow{x_1} + \left(\overline{AG_3} \wedge m_3 \overline{\Gamma(G_3,3/1)} \right) \cdot \overrightarrow{x_1} \right]$

$$= \begin{pmatrix} \frac{d}{dt} \left[\overline{\sigma(G_3,3/1)} \cdot \overrightarrow{x_1} \right]_{\mathcal{B}_1} - \overline{\sigma(G_3,3/1)} \cdot \frac{d}{dt} \left[\overrightarrow{x_1} \right]_{\mathcal{B}_1} + \left(\overline{AG_3} \wedge m_3 \overline{\Gamma(G_3,3/1)} \right) \cdot \overrightarrow{x_1} \right]$$

$$= I_{\chi_3} (\ddot{\theta}_1 + \ddot{\theta}_2) + \left(\left(-L_2 \overrightarrow{z_2} - L_0 \overrightarrow{z_3}' \right) \wedge m_3 \left(L_2 \ddot{\theta}_1 \overrightarrow{y_2} + L_2 \dot{\theta}_1^2 \overrightarrow{z_2} + L_0 \left(\ddot{\theta}_1 + \ddot{\theta}_2 \right) \overrightarrow{y_3}' + L_0 \left(\dot{\theta}_1 + \dot{\theta}_2 \right)^2 \overrightarrow{z_3}' \right) \right) \cdot \overrightarrow{x_1}$$

$$= \ddot{\theta}_1 \left(I_{\chi_3} + m_3 L_2^2 + L_2 m_3 L_0 \cos(\theta_2 + \alpha) + m_3 L_0 L_2 \cos(\theta_2 + \alpha) + m_3 L_0^2 \right) + \ddot{\theta}_2 \left(I_{\chi_3} + L_2 m_3 L_0 \cos(\theta_2 + \alpha) + m_3 L_0^2 \right) + \ddot{\theta}_1^2 \left(m_3 L_0 L_2 \sin(\theta_2 + \alpha) \right)$$

$$= \left(\ddot{\theta}_1 + \ddot{\theta}_2 \right)^2 \left(-L_2 m_3 L_0 \sin(\theta_2 + \alpha) \right) + \left(\ddot{\theta}_1 + \ddot{\theta}_2 \right)^2 \left(-L_2 m_3 L_0 \cos(\theta_2 + \alpha) + m_3 L_0^2 \right) + \ddot{\theta}_1^2 \left(m_3 L_0 L_2 \sin(\theta_2 + \alpha) \right)$$

Soit:
$$\begin{cases} A_1 = I_{\chi_3} + m_3 L_0 L_2 \cos(\theta_2 + \alpha) + m_3 L_0^2 \\ C_1 = m_3 L_0 L_2 \sin(\theta_2 + \alpha) \end{cases}$$

Question 3 Proposer une démarche permettant de déterminer l'expression de C_1 ,

l'action mécanique exercée sur la cuisse 2 par l'actionneur correspondant. Préciser le(les) ensemble(s) isolé(s), le(s) bilan(s) des actions mécaniques extérieurs, le(s) théorème(s) utilisé(s) et la(les) équation(s) utile(s).

Correction

- ▶ On isole l'ensemble $\{2 + 3\}$.
- ▶ Bilan des actions mécaniques :
 - liaison pivot en A telle que $\overrightarrow{\mathcal{M}(A, 1 \to 2)} \cdot \overrightarrow{x_1} = 0$;
 - actionneur de 1 sur 2 tel que $\overrightarrow{\mathcal{M}(A, 1 \to 2_m)} \cdot \overrightarrow{x_1} = C_1$;
 - action du patient sur la hanche telle que $\overline{\mathcal{M}(A, 1 \to 2_p)} \cdot \overrightarrow{x_1} = C_{\text{hanche}}$;
 - action de la pesanteur sur 2 en G₂;
 - action de la pesanteur sur 3 en G₃.
- ▶ On écrit alors le théorème du moment dynamique en A en projection sur $\vec{x_0}$.

Question 4 Déterminer l'expression de C_1 en fonction de θ_1 , θ_2 , leurs différentes dérivées, de Chanche et des différentes caractéristiques géométriques, de masses et d'inerties de l'exosquelette.

Correction

Détermination des actions mécaniques.

$$\overrightarrow{M}(A, \text{pes} \to 2) \cdot \overrightarrow{x_1} = \left(\overrightarrow{AG_2} \land -m_2 g \overrightarrow{z_1}\right) \cdot \overrightarrow{x_1} = \left((l_2 - L_2) \overrightarrow{z_2} \land -m_2 g \overrightarrow{z_1}\right) \cdot \overrightarrow{x_1} = m_2 g (l_2 - L_2) \sin \theta_1;$$

$$\stackrel{\longrightarrow}{\mathcal{M}} (A, \text{pes} \to 3) \cdot \overrightarrow{x_1} = \left(\overrightarrow{AG_3} \wedge -m_3 g \overrightarrow{z_1} \right) \cdot \overrightarrow{x_1} = \left(\left(-L_2 \overrightarrow{z_2} - L_0 \overrightarrow{z_3}' \right) \wedge -m_3 g \overrightarrow{z_1} \right) \cdot \overrightarrow{x_1} \\
= \left(\left(L_2 \overrightarrow{z_2} + L_0 \overrightarrow{z_3}' \right) \wedge m_3 g \overrightarrow{z_1} \right) \cdot \overrightarrow{x_1} = -m_3 g \left(L_2 \sin \theta_1 + L_0 \sin \left(\alpha + \theta_2 + \theta_1 \right) \right).$$

Le TMD en A appliqué 2+3 en projections sur $\overrightarrow{x_1}$ se traduit donc par :

$$C_1 + C_{\text{hanche}} - m_3 g \left(L_2 \sin \theta_1 + L_0 \sin \left(\alpha + \theta_2 + \theta_1 \right) \right) + m_2 g \left(l_2 - L_2 \right) \sin \theta_1 = A_1 \ddot{\theta}_1 + A_2 \ddot{\theta}_2 + A_3 \dot{\theta}_1^2 + A_4 \left(\dot{\theta}_1 + \dot{\theta}_2 \right)^2.$$

Question 5 Déduire des deux équations précédentes que le modèle dynamique considéré peut s'écrire sous la forme matricielle suivante : $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = M_1 \begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{pmatrix} +$

 $M_2 \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix} + C + M_3 \begin{pmatrix} C_{\text{hanche}} \\ C_{\text{genou}} \end{pmatrix}$ où C est une matrice colonne et M_1 , M_2 et M_3 sont des matrices 2 \times 2. Donner l'expression littérale des coefficients de C, M_1 , M_2 et M_3 par des relations non linéaires des paramètres de mouvement (θ_1, θ_2) , leurs dérivés premières et des différentes caractéristiques géométriques, de masses et d'inerties du

Correction

problème.

On a:
$$\begin{cases} C_1 = -C_{\text{hanche}} + m_3 g \left(L_2 \sin \theta_1 + L_0 \sin \left(\alpha + \theta_2 + \theta_1 \right) \right) - m_2 g \left(l_2 - L_2 \right) \sin \theta_1 - A_1 \ddot{\theta}_1 - A_2 \ddot{\theta}_2 - A_3 \dot{\theta}_1^2 \\ C_2 = \left[I_{x3} + m_3 L_0^2 \right] \left(\ddot{\theta}_1 + \ddot{\theta}_2 \right) + m_3 L_2 L_0 \left[\ddot{\theta}_1 \cos \left(\theta_2 + \alpha \right) + \dot{\theta}_1^2 \sin \left(\theta_2 + \alpha \right) \right] + m_3 g L_0 \sin \left(\theta_2 + \theta_1 + \alpha \right) \end{cases}$$
Par identification:
$$M_1 = \begin{pmatrix} -A_1 & -A_2 \\ \left[I_{x3} + m_3 L_0^2 \right] + m_3 L_2 L_0 \cos \left(\theta_2 + \alpha \right) \left[I_{x3} + m_3 L_0^2 \right] \end{pmatrix},$$

$$M_2 = \begin{pmatrix} -A_3 \dot{\theta}_1 & 0 \\ 0 & m_3 L_2 L_0 \dot{\theta}_1 \sin \left(\theta_2 + \alpha \right) \end{pmatrix},$$

$$M_3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Par identification :
$$M_1 = \begin{pmatrix} -A_1 & -A_2 \\ [I_{x3} + m_3 L_0^2] + m_3 L_2 L_0 \cos(\theta_2 + \alpha) & [I_{x3} + m_3 L_0^2] \end{pmatrix}$$

$$M_2 = \begin{pmatrix} -A_3\dot{\theta}_1 & 0\\ 0 & m_3L_2L_0\dot{\theta}_1\sin(\theta_2 + \alpha) \end{pmatrix},$$

$$M_3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

et
$$C = \begin{pmatrix} m_3 g (L_2 \sin \theta_1 + L_0 \sin (\alpha + \theta_2 + \theta_1)) - m_2 g (l_2 - L_2) \sin \theta_1 - A_4 (\dot{\theta}_1 + \dot{\theta}_2)^2 \\ m_3 g L_0 \sin (\theta_2 + \theta_1 + \alpha) \end{pmatrix}$$
.

Si on part du principe que le vecteur C ne doit pas dépendre de $\dot{\theta}_1$ et $\dot{\theta}_2$ on obtient cette autre solution :

autre solution :
$$M_1 = \begin{pmatrix} -A_1 & -A_2 \\ [I_{x3} + m_3 L_0^2] + m_3 L_2 L_0 \cos{(\theta_2 + \alpha)} & [I_{x3} + m_3 L_0^2] \end{pmatrix},$$

$$M_2 = \begin{pmatrix} -(A_3 + A_4) \dot{\theta}_1 - 2A_4 \dot{\theta}_2 & -A_4 \left(\dot{\theta}_2 + 2\dot{\theta}_1 \right) \\ 0 & m_3 L_2 L_0 \dot{\theta}_1 \sin{(\theta_2 + \alpha)} \end{pmatrix},$$

$$M_3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$et C = \begin{pmatrix} m_3 g \left(L_2 \sin{\theta_1} + L_0 \sin{(\alpha + \theta_2 + \theta_1)} \right) - m_2 g \left(l_2 - L_2 \right) \sin{\theta_1} \\ m_3 g L_0 \sin{(\theta_2 + \theta_1 + \alpha)} \end{pmatrix}.$$