Learning Fluid Flow Visualizations From In-Flight Images With Tufts

Jongseok Lee, W.F.J. Olsman and Rudolph Triebel

Institute of Robotics and Mechatronics, German Aerospace Center (DLR)
Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR)

Why aerial robots are always so noisy?

A survey, carried out by the company Wing about user experiences of drone delivery.

Physics behind fluid flows and acoustics are complex

AI4Science

We learn in-flight fluid flow visualizations:

- 1. Install tufts and fly an aerial system.
- 2. Capture in-flight images.
- 3. Apply semantic segmentation on tufts.
- 4. Visualize flow topology over time.

Contribution 1: Flight data

Data-set open sourced.

Aeroacoustics of helicopter flight:

- To analyze in-flight aerodynamic behavior of anti-torque device called Fenestron or fan-in-fan.
- Manned helicopter with 81 tufts.
- Images collected by another manned helicopter, flying in formation.

Stratospheric flight with UAVs:

- To analyze in-flight aerodynamic behavior in stratosphere, i.e., 20km altitude with less air density.
- Ballooned UAV glider with 19 tufts.
- Images collected by GoPro mounted.

The DLR HABLEG mission led by DLR Robotics Institute (Konstantin Kondak) in 2015.

Contribution 2: Probabilistic methods

Active learning with coarsely annotated data. Based on uncertainty sampling.

Combine uncertainty estimates, image matching and Hungarian algorithms to propagate labels.

Weakly supervised segmentation with so-called uncertainty maps.

Shows how probabilistic approaches facilitate the learning process without requiring any manual annotations of semantic segmentation masks.

Contribution 3: A working demo at scale

Thank you for listening.

Special thanks to Konstantin Kondak, Zhang Kai, Omar Hedeya, Maximilian Durner, Jianxiang Feng and Nari Song.