

SUBJECT INDEX

A

- Acaulospora* spp.
legumes and, 141
Acetate
See Acetogenic bacteria
Acetic acid
microbial silver recovery and,
326
Acetic acid bacteria
coexistence with yeasts, 2
Acetoanaerobium noterae, 418
Acetobacterium carbinolicum
hydrogenase of, 436
Acetobacterium wieringae, 418
Acetobacterium woodii, 418,
422
acetyl-coenzyme A and, 440
carbon flow in, 429
carbon monoxide de-
hydrogenase of, 432
hydrogenase of, 435-36
phenol degradation and, 441-
42
tetrahydrofolate enzymes of,
430
Acetogenic bacteria, 415-43
acetyl-coenzyme A and, 438-
41
carbon monoxide de-
hydrogenase of, 432-35
corrinoid proteins of, 431-32
ecology of, 441-42
formate dehydrogenase of,
426-30
hydrogenase of, 435-37
methanol and, 437-38
methyltransferase of, 431-32
properties of, 418-24
tetrahydrofolate enzymes of,
430-31
Acetogenium kivui, 418
Acetone
cactus-specific yeasts and, 25
2-Acetylaminofluorene
carcinogenicity of, 385
Acetylcholine receptors
rabies virus and, 162-63
Acetyl-coenzyme A
acetogenic bacteria and, 438-
41
N-Acetylgalactosamine
Plasmodium falciparum and,
459
N-Acetylglucosamine
cactus-specific yeasts and, 25
Plasmodium falciparum and,
462

- Acholeplasma laidlawii* B
sodium ion-stimulated ATPase
of, 268
Achromobacter spp.
natural transformation in,
212, 229
Acidaminococcus fermentans
glutamonyl CoA decarboxylase
of, 269
Acid phosphatase
Entamoeba histolytica and,
241
Acinetobacter calcoaceticus, 356
competence in, 215-16
Acinetobacter spp.
genetic transfer in, 226
natural transformation in,
212, 229
nucleoside degradation in,
228
Acquired immune deficiency
syndrome
HTLV-III/LAV and, 173-75
Adenine nucleotide translocator
oxidative phosphorylation
and, 278-79
Adenosine diphosphate
adenine nucleotide transloca-
tor and, 278-79
Adenosine diphosphate sulfury-
lase
Thiobacillus ferrooxidans and,
314
Adenosine triphosphate
adenine nucleotide transloca-
tor and, 278-79
malaria parasites and, 464
Adenylate cyclase
Bordetella pertussis, 664
cholera toxin and, 578
Adenylate cyclase toxin
effects of, 677
Adenylate kinase
Thiobacillus ferrooxidans and,
314
Adhesins
Bordetella pertussis, 675
ADP
See Adenosine diphosphate
Aedes spp.
Japanese encephalitis virus
and, 399, 406
Aeromonas hydrophila
antigenic structure of, 490
enterobactin and, 496
enterotoxin of, 588
fish disease and, 480-81
pathogenesis of, 493-95

- Aeromonas salmonicida*
antibodies to, 486-87
antigenic structure of, 489-90
cell-mediated immunity and,
485
clinical manifestations of, 482
fish disease and, 480
iron uptake and, 496
macrophages and, 484
pathogenesis of, 492-97
phagocytosis and, 496
proteases of, 497
Agammaglobulinemia
viral infection and, 160
Agglutinogens
Bordetella pertussis, 664-67
Agrobacterium tumefaciens, 354
plant-cell attachment genes in,
145
Agromyces ramosus
catalase and, 120
Alkalophilic bacteria
cytosolic pH homeostasis in,
266
Alpha₁ acid glycoprotein
Plasmodium falciparum and,
463
Aluminum
ferrrous iron oxidation and,
315
Amblyomma americanum, 293,
299
Amblyomma cajennense, 293
Amblyomma spp.
distribution of, 294
Amblyomma striatum, 293
Amebiasis
hydrocortisone and, 249
prevalence of, 238
See also *Entamoeba histoly-
tica*
Amines
gastrointestinal microflora
and, 374
Amino acids
carcinogenicity of, 382
Amino acid sequencing
Bacillus thuringiensis and,
559-61
2-Aminoanthracene
bacterial activation of, 381
2-Aminofluorene
bacterial activation of, 381
Aminoglycosides
gastrointestinal microflora
and, 374
1-Aminopyrene
carcinogenicity of, 380-81

- Ammonia** intestinal, 374
- Amoebapore**, 253-54
- Ampicillin** androgen metabolism and, 384 oral contraceptives and, 384 urinary estriol and, 383
- Ampicillin resistance** *Escherichia coli* and, 586
- AMT-BIOCLAIM**, 329
- Anabaena** spp. *nif* genes of, 526, 538-42
- Anaerobic bacteria** gastrointestinal, 368
- Anaphylatoxins** inflammatory response and, 33
- Androgens** metabolism of, 384
- Anopheline mosquito** malaria parasites and, 452
- Anthranilate synthase** complexes in fungi, 71-72 prokaryotic, 58 tryptophan biosynthesis and, 56
- Antibiotic resistance** *Bacillus* spp. and, 214 enterotoxicigenic *Escherichia coli* and, 585 plasmid DNA and, 279-81 *Rhizobium* populations and, 133 streptococcal, 635-55 See also specific type
- Antibiotics** colon cancer and, 388-89 gastrointestinal microflora and, 375-77 oral contraceptives and, 384
- Antibodies** fish disease and, 486-88 humoral *Entamoeba histolytica* and, 251-52 merozoite invasion of erythrocytes and, 452 monoclonal *Plasmodium falciparum* and, 461 *Plasmodium knowlesi* surface protein and, 468-69 rhoptry components and, 469 *Plasmodium falciparum* and, 461
- Antigens** Duffy *Plasmodium knowlesi* and, 457-58
- Plasmodium vivax** and, 458-59
- Escherichia coli**, 186 immune complex detection and, 33
- Mycobacterium leprae**, 43 merozoite, 464-70
- Peudomonas aeruginosa** cystic fibrosis and, 34-35
- Plasmodium falciparum**, 466-67
- Antinuclear factors lepromatous leprosy and, 43
- Antithymocyte serum** Theiler's virus and, 165
- α -1-Antitrypsin deficiency, 39
- APS reductase** *Thiobacillus ferrooxidans* and, 314
- Aquaspirillum fasciculus**, 112
- Aquaspirillum magnetotacticum**, 108-9, 112 catalase and, 120 iron deficiency and, 120 nitrogenase complex and, 119
- Aquaspirillum peregrinum**, 112
- Arachidonate** pertussis toxin and, 669
- Arachnids** Japanese encephalitis virus and, 404
- Archaeabacteria**, 340-41
- Arenaviruses** central nervous system and, 167-69
- Argas japonicus** Japanese encephalitis virus and, 404
- Arginine pathway** *Saccharomyces cerevisiae* metabolic elasticity of, 73-74
- Aromatization** gastrointestinal microflora and, 375
- Arsenic** ferrous iron oxidation and, 315
- Arsenical pump** plasmid-mediated arsenic resistance and, 280-81
- Arsenic resistance** arsenical pump and, 280-81
- Arthralgia** cystic fibrosis and, 36
- Arthritis** cystic fibrosis and, 36 reactive immune complex tissue damage and, 46
- Ascomycetes**
- tryptophan gene-enzyme relationships in, 60-63
- Ascorbic acid** microaerophiles and, 113
- Asialofetuin** *Entamoeba histolytica* contact killing and, 254
- Aspartate** *Escherichia coli* enterotoxins and, 584
- Aspergillus fonsecaeus** endolysase of, 9
- Aspergillus nidulans** anthranilate synthase complexes in, 71-72 tryptophan gene-enzyme relationships in, 57-59 tryptophan genes of cloning of, 63
- Astaxanthin** yeasts and, 19
- Astrocytes** division of injuries triggering, 161
- ATP** See Adenosine triphosphate
- ATPase** *Escherichia coli* potassium transport and, 271-74 sodium ion-stimulated, 267-68 sodium/potassium ion, 271-74
- Actractyloside** mitochondrial translocator and, 279
- Autoantibodies** lepromatous leprosy and, 43 viral infection and, 178
- Azide** *Thiobacillus ferrooxidans* and, 315
- Azo dyes** carcinogenicity of, 380
- Azomethane** carcinogenicity of, 378
- Azoreductase** carcinogenicity of, 377-80 diet and, 376-77 gastrointestinal microflora and, 372-73
- Azospirillum brasiliense** aerobic growth of, 120
- Azospirillum** spp., 111 *nif* genes of, 526 respiratory protection and, 119
- Azotobacter chroococcum** respiratory protection and, 119
- Azotobacter** spp. competence induction in, 229 *nif* genes of, 526 *nifHDK* transcripts of, 542

- nucleoside hydrolases in, 228
Azotobacter vinelandii
 cytochromes of, 119
 poly- β -hydroxybutyrate and, 215
 natural transformation in, 213
Azoxymethane
 carcinogenicity of, 378
- B**
- Bacillus anthracis*, 549
Bacillus cereus, 549
Bacillus thuringiensis cloning and, 554
Bacillus thuringiensis protoplasts and, 552
Bacillus circulans
Phaffia rhodozyma and, 19
Saccharomyces cerevisiae and, 14
Bacillus spp.
 antibiotic resistance of, 214
 competence in, 213
 iron reduction and, 327
 mercury resistance in, 626
 nucleoside phosphorylases of, 227
Bacillus subtilis
Bacillus thuringiensis cloning and, 554
 conjugative transposons and, 652
 crystal protein gene of, 566-67
 DNA binding in, 216-23
 DNA processing in, 227
 DNA-processing mutations of, 215
 DNase resistance in, 227
 extracellular DNA of, 225-26
 poly- β -hydroxybutyrate and, 215
 natural transformation in, 212-13
 plasmid transformation in, 221-22
 sporulation in, 564-66
Bacillus thuringiensis, 549-72
 crystal protein of, 550-51, 555-59
 dipteran larvae and, 568-70
 lepidopteran larvae and, 551-68
 subsp. *darmstadiensis*
 toxins of, 570
 subsp. *israelensis*
 toxins of, 568-69
 subsp. *kyushuensis*
 toxins of, 568-69
Bacteremia
 infective endocarditis and, 40
Bacteria
 enterotoxins of, 577-95
 fish disease and, 480-81
 natural transformation in, 211-30
 ribosomal RNAs in, 339
 See also specific type
Bacterial enzymes
 carcinogenicity of, 377-81
Bacterial ion transport, 263-82
 arsenical pump, 279-81
 chloride, 275-76
 phosphorylated compounds, 276-79
 potassium, 271-75
 sodium, 264-71
Bacteriocin
Rhizobium spp. and, 141-42
Streptococcus faecalis
 hemolysin protein and, 651
Bacteriophages
Rhizobium spp. and, 140
Bacteriorhodopsin
 chloride ion transport and, 275-76
Bacteriuria
 asymptomatic
Escherichia coli and, 203-4
Bacteroides fragilis
 mutagen activation and, 381
 newborns and, 369
 transferable resistance determinants in, 655
Bacteroides spp.
 diphenylamine and, 374
 fecal mutagens and, 387
 gastrointestinal, 368
 diet and, 370
 β -glucuronidase and, 371
Bacteroides thetaiotamicron
 mutagen activation and, 381
Bacteroides vulgatus
 mutagen activation and, 381
Basidiomycetes
 tryptophan gene-enzyme relationships in, 60-63
Basophils
 Fc receptors on, 512
 pertussis toxin and, 669
Bats
 Japanese encephalitis virus and, 402-3
B cells
 immunoglobulins and, 503-4
Bdellovibrio spp.
Rhizobium spp. and, 140
Bedbugs
 Japanese encephalitis virus and, 404
Beggiaea hermsii
 catalase and, 120
Beggiaea spp., 109
 aerotactic behavior of, 116
 catalase and, 120
 sulfide and, 124-25
Bepridy
Entamoeba histolytica contact killing and, 254
Bifidobacterium spp.
 diphenylamine and, 374
 gastrointestinal, 368
 diet and, 370
Bile acids
 fecal
 high-fat diet and, 376
 gastrointestinal microflora and, 374-75
Biotin
 bacterial sodium ion transport and, 269
Birds
 Japanese encephalitis virus and, 401
Birnaviruses
 fish disease and, 481
Blood-brain barrier
 viral infection and, 161-63
B-lymphocytes
 immunoglobulin receptors on, 504
Bongrekic acid
 mitochondrial translocator and, 279
Border disease, 166
Bordetella bronchiseptica, 673, 677
Bordetella parapertussis, 680
Bordetella pertussis, 661-81
 animal models and, 672-75
 attachment of, 675-76
 host defenses and, 676-78
 phase variation in, 670-71
 systemic disease and, 679-81
 virulence factors of, 662-70
Borrelia spp., 110-11
Bradyrhizobium japonicum
 drought and, 139
 genetic exchange among, 134-35
 host-specificity genes in, 145
 inoculant
Glycine max nodules and, 132
 rhizosphere and, 144
 root attachment of, 145
 soil type and, 136
Bradyrhizobium spp., 111-12
 drought and, 139
 pH and, 138
Breast-feeding
 infant gastrointestinal colonization and, 369

- Bronchial lavage
cystic fibrosis and, 39
- Bronchopneumonia
pertussis and, 672, 676
- Bullera tsugae*, 17
- Bunyaviruses
central nervous system and,
164
- Butyribacterium methylotrophicum*, 423
- carbon flow in, 429
- methanol and, 437
- C
- Cactus necroses
yeasts and, 23-25
- Cadmium
microbial accumulation of,
328
- Cadmium resistance
Staphylococcus aureus, 280
- Calcium
malaria parasites and, 464
- pertussis toxin and, 669
- Calcium ion transport
bacterial, 265
- Calvin-Benson cycle
Thiobacillus ferrooxidans and,
314
- Calvin cycle
acetogenic bacteria and, 417
- Sulfovibacillus thermosulfidoxidans* and, 318
- Calyptogena magnifica*, 351-52
- Calyptogena* spp., 356-57
- Campylobacter cryoerophilus*,
109
aerotolerance of, 115
metronidazole and, 123
- Campylobacter fetus*
aerotolerance of, 115
- Campylobacter jejuni*, 109-10
aerotolerance of, 113-15
cytochromes of, 122
diarrhea and, 108-10
enterotoxin of, 589
hydrogen peroxide and, 117
iron deficiency and, 120
NADH and, 122
porin channels in, 121-22
respiratory rate for, 119
- Campylobacter nitrofigilis*, 112
nitrogen complex and, 119
- Campylobacter* spp., 109-10
catalase and, 120
cytochromes of, 122
metronidazole and, 122
- Campylobacter sputorum*, 109
bv. *bubulus*
oxygen toxicity and, 118-
19
- lactate dehydrogenase of, 124
- NADH and, 122
protective enzymes and, 121
- Candida diddersii*, 10
- Candida oregonensis*, 17
- Candida silvicola*, 10-11
- Canine distemper virus
persistent infection and, 170-
72
- Carbenicillin resistance
Pseudomonas aeruginosa, 85
- Carbohydrates
acetyl-coenzyme A and, 438
- Carbon dioxide
Cynicloclomyces guttulatus and,
11-12
- Thiobacillus ferrooxidans* and,
314
- Carbon monoxide dehydrogenase
acetogenic bacteria and, 417,
425-26, 432-35
- Carboxyl cyanide m-
chlorophenylhydrazone
sodium ion transport and,
270
- Carnegiea gigantea*, 24
- Carotenoid
yeasts and, 19
- Catalase
malarial parasites and, 118
microaerophiles and, 114,
120-21
- Cell-mediated immunity
Entamoeba histolytica and,
252
fish disease and, 485
- Cell processes
viral infection and, 162
- Cellular immunity
leprosy and, 42
- Cellulose
bacterial degradation of, 442
- Central nervous system
arenaviruses and, 167-69
coronaviruses and, 166-67
paramyxoviruses and, 169-72
picornaviruses and, 165-66
retroviruses and, 172-75
rhabdoviruses and, 169
RNA viruses and, 159-79
togaviruses and, 166
viral infection and, 161-63
- Ceramideaminoethyphosphonate
Entamoeba histolytica and,
240
- Cerebellar hypoplasia
persistent viral infection and,
175
- Cerebral hypoplasia
persistent viral infection and,
175
- Cerebrospinal fluid
oligoclonal immunoglobulins
in, 163
- Cerebrospinal fluid shunts
S. epidermidis and, 40
- Chalcocite
Sulfolobus spp. and, 318
- Chalcopyrite
Sulfolobus spp. and, 318
- Channel catfish virus
antigenic structure of, 489
fish disease and, 481-82
- Chemotaxis
Rhizobium spp. and, 143
- Chenodeoxycholic acid
gastrointestinal microflora
and, 375
- Chicken mites
Japanese encephalitis virus
and, 404
- Chloramphenicol
deesterification of, 374
oral contraceptives and, 384
- Chloramphenicol resistance
streptococcal, 646
- Chlorella* spp.
tryptophan synthase in, 63
- Chloride
Thiobacillus ferrooxidans and,
315
- Chloride ion transport
bacterial, 275-76
- Choler toxin, 578-83
- Cholesterol
Entamoeba histolytica viru-
lence and, 249
filamentous hemagglutinin
and, 667-68
- Cholesterol dehydrogenase
fecal
colon cancer and, 376
- Cholic acid
gastrointestinal microflora
and, 375
- Chromatium vinosum
thallium uptake in, 274-75
- Chromatolysis
poliomyelitis virus and, 161
- Chromium
Thiobacillus ferrooxidans and,
315
- Chromosomal mutation
enterotoxigenic *Escherichia coli* and, 587
- Chromosome mapping
Pseudomonas genome and,
88-91
- Chromosomes
Pseudomonas aeruginosa, 85-
86
- Chymotrypsin
Plasmodium knowlesi and,
457-58
- Chytridiomycetes
tryptophan gene-enzyme rela-
tionships in, 60-62

- Citrobacter* spp.
Escherichia coli enterotoxin plasmids and, 586
- Clostridium aceticum*, 416-18 hydrogenase of, 435-36
- Clostridium acidilurici* formate dehydrogenase of, 428
- Clostridium difficile* transferable resistance determinants in, 655
- Clostridium formicoaceticum*, 418-19 carbon monoxide dehydrogenase of, 425 formate dehydrogenase of, 428 tetrahydrofolate enzymes of, 430
- Clostridium magnum*, 418-22
- Clostridium multiformerans* exolyase of, 9
- Clostridium pasteurianum* formate dehydrogenase of, 426
- Clostridium perfringens* mutagen activation and, 381
- Clostridium* spp. diphenylamine and, 374 gastrointestinal, 368 mercury resistance in, 627 *nif* genes of, 526
- Clostridium symbiosum* glutamyl CoA decarboxylase of, 269
- Clostridium thermoaceticum*, 416-18, 423 acetate synthesis in, 424-25 acetyl-coenzyme A and, 438-40 carbon monoxide dehydrogenase of, 425-26, 432-35 corrinoid proteins of, 431-32 formate dehydrogenase of, 426-29 hydrogenase of, 435-37 tetrahydrofolate enzymes of, 430
- Clostridium thermoautoacetum* tetrahydrofolate enzymes of, 430
- Clostridium thermoautothrophicum*, 418 formate dehydrogenase of, 428 hydrogenase of, 435 methanol and, 437-38 tetrahydrofolate enzymes of, 430
- Cluster analysis ribosomal RNA and, 342-43
- Coal desulfurization, 324-25
- Cobalt corrinoid proteins and, 431-32 ferrous iron oxidation and, 315
- Coenzyme Q *Thiobacillus ferrooxidans* and, 314
- Colicin *Escherichia coli* virulence and, 204
- Coliform bacteria, 368
- Collagenase *Entamoeba histolytica*, 245
- Colon cancer bacterial metabolism and, 388-89 cyscasin and, 378 fecal cholesterol dehydrogenase and, 376 β -glucuronidase and, 378-79 tyrosine and, 382
- Competence development of, 212-16, 228
- Complement *Entamoeba histolytica* and, 251-52 host defenses in fish and, 483
- Complement activation cystic fibrosis/*Pseudomonas aeruginosa* infection and, 36 immune complex detection and, 30-31 inflammatory response and, 33
- Concanavalin A *Entamoeba histolytica* and, 240 suppressive IgG binding factor and, 507-8
- Congenital rubella infection, 166 myelination and, 175
- Conglutinin assay immune complexes and, 31
- Congo red carcinogenicity of, 380
- Conjugative transposons, 635-55 genetic studies and, 652-53 host range of, 652
- Streptococcus faecalis* hemolysin genes and, 651-52 tetracycline resistance and, 650-51
- Copper ferrous iron oxidation and, 315
- Leptospirillum ferrooxidans* and, 317
- microbial accumulation of, 328
- Sulfovibacillus thermosulfidoxidans* and, 318
- Sulfolobus* spp. and, 318
- Copper leaching, 320-22
- Coprinus radiatus* tryptophan gene-enzyme relationships in, 57-59
- Coprostanol fecal diet and, 376
- Coprostanone fecal diet and, 376
- Coronaviruses central nervous system and, 166-67
- Corrinoid proteins acetogenic bacteria and, 431-32
- C-reactive protein erythema nodosum leprosum and, 45 host defense in fish and, 483 lepromatous leprosy and, 43
- Cresol colon cancer and, 382
- Creutzfeldt-Jakob disease, 176
- Cryoglobulins infective endocarditis and, 40 lepromatous leprosy and, 43
- Cryptococcus cereanus*, 23
- Cryptococcus skinneri*, 17
- Culex fusciceps* Japanese encephalitis virus and, 398
- Culex gelidus* Japanese encephalitis virus and, 398
- Culex pipiens* Japanese encephalitis virus and, 399, 405-6
- Culex quinquefasciatus* Japanese encephalitis virus and, 399, 405-6
- Culex tritaeniorhynchus* Japanese encephalitis virus and, 398-99, 404-7
- Culex vishnui* Japanese encephalitis virus and, 398, 406
- Cyanide microbial silver recovery and, 326
- Thiobacillus ferrooxidans* and, 315
- Cyanobacteria *nif* genes of organization of, 537-42 nitrogen fixation and, 525-43
- Cycasin colon cancer and, 378
- Cycasin methylazoxymethanol- β -D-glucoside carcinogenicity of, 371-72

- Cyclamate
conversion to cyclohexylamine, 373-74
- Cyclohexylamine
cyclamate and, 373-74
- Cyniclomyces guttulatus*, 11-12
- Cysteine
microaerophiles and, 113
- Cystic fibrosis
immune complexes in, 34-36
- Pseudomonas aeruginosa* and, 30, 33-39
- Cystitis
Escherichia coli and, 203
- Cytidine
nucleoside-catabolizing enzymes and, 227
- Cytocidalin B
malaria parasites and, 455
- Plasmodium knowlesi* and, 458
- Cytochrome a
Thiobacillus ferrooxidans and, 314
- Cytochrome b
Clostridium formicoaceticum and, 419
- Cytochrome c oxidoreductase
Thiobacillus ferrooxidans and, 314
- Cytochrome oxidase
Saccharomyces cerevisiae and, 6
- Cytochromes
Azotobacter vinelandii, 119
- microaerophile, 122
- Cytosol
Hg(II) reductase in, 609-10
- pH homeostasis in, 266
- Cytotoxins
Shigella dysenteriae, 589-91
- D
- Debaryomyces fluxorum*, 13
- Debaryomyces subglobosus*
DNA relatedness of, 22
- Decarboxylases
sodium ion-translocating, 268-69
- Dehydrogenation
gastrointestinal microflora and, 375
- 7- α -Dehydroxylase.
diet and, 377
- high-fat diet and, 376
- Dehydroxylation
gastrointestinal microflora and, 374-75
- Demyelination
coronaviruses and, 166-67
- persistent viral infection and, 176
- RNA viruses and, 160
- Theiler's virus and, 165
- vesicular stomatitis virus and, 169
- Deoxycholic acid
gastrointestinal microflora and, 375
- Dermacentor andersoni*, 289-95, 300-4
distribution of, 296
- Dermacentor occidentalis*, 293
distribution of, 296
- Dermacentor parumapertus*, 293
distribution of, 296
- Dermacentor spp.*
distribution of, 294
- Dermacentor variabilis*, 289, 293-95, 299-303
distribution of, 296
- Dermanyssus gallinae*
Japanese encephalitis virus and, 404
- Demecromycin toxin
Bordetella pertussis, 667
- Desulfomonas pigra*
sulfide deposition and, 326
- Desulfotomaculum nigrificans*, 424
- Desulfotomaculum orientis*, 423
- Desulfotomaculum ruminis*, 424
- Desulfotomaculum spp.*
sulfide deposition and, 326
- Desulfovibrio baarsii*, 423, 424
acetyl-coenzyme A and, 440
- Desulfovibrio gigas*
carbon monoxide de-hydrogenase of, 433
- hydrogenase of, 426
- Desulfovibrio spp.*
sulfide deposition and, 326
- Diarrhea
Campylobacter jejuni and, 108, 110
- Escherichia coli* and, 186
enterotoxin and, 578
- Dibenzoephene
microbial dissolution of, 325
- Dictyostelium discoideum*, 358
- Diet
fecal mutagens and, 387-88
- gastrointestinal microflora and, 369-71, 375-77
- Diethylstilbestrol
metabolic fate of, 379
- 3,4-Dihydroxyphenylalanine parkinsonism and, 375
- 3,2-Dimethyl-4-aminophenyl carcinogenicity of, 388
- Dimethylhydrazine
carcinogenicity of, 378, 388
- Dimethylnitrosamine
liver cancer and, 381
- 1,8-Dinitropyrene
mutagenicity of, 381
- Diphenylamine
gastrointestinal microflora and, 374
- Dipodascus aggregatus*, 19
- Dipteran larvae
Bacillus thuringiensis and, 568-70
- Distance matrix methods
ribosomal RNA and, 343-48
- Disulfide oxidoreductases
mercury resistance and, 609-13
- Dithioerythritol
Treponema pallidum and, 113
- Dithiothreitol
Treponema pallidum and, 113
- DNA
plasmid antibiotic resistance and, 279-81
- Treponema pallidum*, 124
- virus virus, 174
- yeast, 21-23
- DNA-DNA hybridization
Escherichia coli and, 199
- Rickettsia rickettsii* and, 289
- yeasts and, 22-23
- DNA hybridization
enterotoxicigenic *Escherichia coli* and, 586-87
- Vibrio cholerae* and, 579
- DNA polymerase
ribosomal RNA sequence analysis and, 350
- DNA viruses
cellular DNA and, 160
- Drosophila persimilis*, 12
- Drosophila pseudoobscura*, 12
- Drosophila* spp.
desert-adapted, 23
- life cycles of yeasts and, 12
- Drought
Rhizobium spp. and, 139
- Drug fever
cystic fibrosis patient and, 39
- Duffy antigens
Plasmodium knowlesi and, 457-58
- Plasmodium vivax* and, 458-59
- E
- Edwardsiella ictaluri*
antigenic structure of, 490
- fish disease and, 480-81
- phagocytosis and, 496
- Edwardsiella tarda*
phagocytosis and, 496
- Elliptocytosis
malaria parasites and, 463

- Emden-Meyerhof-Parnas pathway, 416
- Encephalitis**
measles virus infection and, 171
See also Japanese encephalitis virus
- Encephalitis lethargica**, 395-96
- Encephalomyelitis**
canine distemper virus infection and, 172
- Encephalopathy**
pertussis and, 672, 680
- Endocarditis**
infective, 39-40
immune complexes in, 40-42
- Endolyses**
Aspergillus fumigatus and, 9
- Endomycetales**
tryptophan gene-enzyme relationships in, 61
- Endomycopsis scolyti*
sexual cycle of, 17
- Endotoxins**
Bacillus thuringiensis, 550-51
- Entamoeba dispar*, 245
- Entamoeba dysenteriae*, 245
- Entamoeba histolytica*, 237-55
cell-mediated immunity and, 252
collagenase of, 245
commensal, 245-48
contact-mediated killing by, 252-55
humoral antibodies and, 251-52
pathogenic, 245-48
virulence of, 248-51
plasma membrane of, 239-42
surface-component redistribution in, 243-44
thiol-proteases of, 244-45
- Enteric bacteria**
tryptophan enzymes of
genes encoding, 59, 60
- Enteric redmouth disease**, 482
- Enterobacter cloacae*
enterotoxin of, 588
- Enterobacteriaceae**
colicinogenic determinants in, 85
Escherichia coli enterotoxin
plasmids and, 586
gene arrangement in, 87
genetic organization of, 81
- Enterobacter* spp.
Escherichia coli enterotoxin
plasmids and, 586
- Enterobacteriaceae**
- Aeromonas hydrophila* and, 496
- Enterococcus faecalis*, 655
- Enterotoxins**, 577-95
Escherichia coli, 583-88
staphylococcal, 591-93
- Enteroviruses**
recurrent meningitis and, 160
- Environment**
Rhizobium spp. and, 136-40
- Enzymes**
bacterial
carcinogenicity of, 377-81
induction of, 4-5
pectic, 4
filamentous fungi and, 7
peptid-hydrolyzing
fungi and, 3
- tetrahydrofolate, 430-31
- tryptophan pathway, 56-63
- yeast cell envelope and, 13-16
- See also specific type
- Epiphytic bacteria**
Rhizobium spp. and, 141
- Erwinia herbicola*
Medicago sativa and, 141
- Erythema nodosum leprosum**, 44-46
- Erythrocyte-binding proteins**
Plasmodium falciparum, 465-66
- Erythrocytes**
cytoskeleton of
malaria parasites and, 463-64
- invasion by malaria parasites, 452-56
- ligands for malaria parasites, 456-63
- malaria parasites and, 452
- Erythromycin**
gastrointestinal microflora and, 377, 388-89
- Erythromycin resistance**
streptococcal, 636
- Escherichia coli*, 354, 358
anion exchangers in, 277-78
- Bacillus thuringiensis* cloning and, 552-54
- biotyping of, 198-99
- chemotaxis and, 143
- clonal analysis of, 185-206
- crystal protein gene of, 566-67
- cytosolic pH homeostasis in, 266
- DNA-DNA hybridization and, 199
- enterotoxins of, 583-88
- extraintestinal disease and, 186
- gene arrangement in, 87, 90
- β -glucuronidase and, 371
- hydrogen peroxide and, 117, 122
- isoenzymes of, 188-93, 200-1
- mercury resistance in, 616-17
- neonatal meningitis and, 201-3
- nif* genes of, 525
- nucleoside transport in, 227
- outer membrane proteins of, 188-93, 200-1
- plasmid-chromosome interaction in, 93
- potassium ion transport in, 271-74
- properties of, 187-97
- R plasmids of, 655
- serotypes of, 188-93, 198-99
- sodium transport in, 264-66
- tetracycline resistance in, 279
- tryptophan gene-enzyme relationships in, 72-74
- urinary tract infection and, 203-4
- virulence of, 201
- Escherichia coli* K1
virulence of, 186
- Escherichia coli* K12, 83, 185
- Estriol**
metabolism of, 383
- Estrogens**
intestinal metabolism of, 383
- Ethyl acetate
cactus-specific yeasts and, 25
- Ethylenediaminetetraacetic acid
Escherichia coli and, 122
- Ethylene oxide
Saccharomyces cerevisiae
and, 6
sterilization of fruit and, 5
- Eubacteria**, 340
- Eubacterium lentum*
gastrointestinal diet and, 370
- Eubacterium limosum*, 423
methanol and, 438
- Eubacterium* spp.
gastrointestinal, 368
- Euglena gracilis*
tryptophan pathway enzymes in, 63
- Eukaryotes**
 E_1E_2 ATPases of, 272-73
phylogeny of, 340-41
ribosomal RNAs of, 339
sodium transport in, 264-65
tryptophan genes of, 55-74
expression of, 70-74
- Exolyses**
Clostridium multi fermentans
and, 9
- Exotoxins**
Bacillus thuringiensis, 550-51

F

- Fecal mutagens, 384-88
 Fermentation
 acetogenic bacteria and, 416
 Ferredoxins
 Treponema pallidum and, 123
 Ferric sulfate leaching, 312-13
 Ferrous ions
 Gallionella ferruginea and, 109, 124
 Ferrous iron
 oxidation of, 315
 Ferrous sulfate
 Lepospirillum ferrooxidans and, 317
 Fibronectin
 Plasmodium falciparum and, 463
 Filamentous hemagglutinin, 667-68, 676
 Fish disease, 479-98
 bacterial, 480-81
 host in, 482-88
 immune defense and, 485-88
 nonimmune defense and, 483-84
 pathogenesis of, 491-97
 transmission of, 491
 viral, 481-82
 Flaviviruses, 396
 central nervous system and, 164
Flavobacterium spp.
 pathogenesis of, 493
 Flavodoxins
 microaerophiles and, 123
 Flavoproteins
 microaerophiles and, 122
Flexibacter columnaris
 fish disease and, 480
Flexibacter spp.
 clinical manifestations of, 482
 fish disease and, 480
 pathogenesis of, 493
 Fluoride
 Thiobacillus ferrooxidans and, 315
 Food poisoning
 staphylococcal, 591
 Formate dehydrogenase
 acetogenic bacteria and, 417, 426-30
Frankia spp., 112
 Friend leukemia virus, 173
 Fruit
 dehydration of, 5
 sterilization of, 5
 Fumarate hydratase
 S. volutans and, 123
 Fungi
 legumes and, 141

metal accumulation by, 328-29

pectic enzymes and, 7
 pectin-hydrolyzing enzymes and, 3
 tryptophan gene-enzyme relationships in, 57-60

Fungicides
 mercurial, 608
 Rhizobium spp. and, 142-43
Fusobacterium spp.
 gastrointestinal, 368

G

Galactitol
 pectic enzymes and, 4
 L-Galactonic acid
 pectic enzymes and, 4
 Galactose
 Entamoeba histolytica contact killing and, 254
Plasmodium falciparum and, 459
Zoogloea polymer and, 328

D-Galactose
 pectic enzymes and, 4
 β-Galactosidase
 carcinogenicity of, 377
 gastrointestinal microflora and, 371

β-Galactoside
 arsenic resistance and, 281

D-Galacturonic acid
 pectic enzymes and, 4

L-Galacturonic acid
 pectic enzymes and, 4

Gallionella ferruginea, 109
 ferrous ions and, 124

Galvanic conversion leaching and, 313

Gastrointestinal microflora, 367-89

antibiotics and, 375-77

carcinogenicity of, 377-82
 colon cancer and, 378-79

diet and, 376-77
 gastrointestinal microflora and, 371

3-Glucuronide
 estrogen and, 383

Glutaconyl CoA decarboxylase bacterial, 269

Glutamate
 Escherichia coli enterotoxins and, 584

Glutamine synthetase
 Rhodopseudomonas capsulata and, 537

Glutathione reductase
 mercury resistance and, 610

Glycine max
 Bradyrhizobium japonicum inoculant and, 132

nodulation-resistant, 147

Glycophorin
 Plasmodium falciparum and, 460-61

trypsin and, 461

Glycophorin-binding proteins
 Plasmodium falciparum and, 465

Glycoprotein G
 piscine rhabdoviruses and, 489

- Glycosidases**
gastrointestinal microflora and, 371-72
- Glycosides**
gastrointestinal microflora and, 371-72
- Glycosphingolipids**
Escherichia coli and, 204
- Gold**
Thiobacillus ferrooxidans and, 315
- Gonococcal infection**
immune complex tissue damage and, 46
- Gram-negative bacteria**
competence development in, 214-15
DNA binding in, 216
fish disease and, 480
mercury resistance in, 609-26
tryptophan enzymes of genes encoding, 59
- Gram-positive bacteria**
conjugative transposons and, 652
DNA binding in, 216
fish disease and, 480
gastrointestinal, 368
mercury resistance in, 626-27
tryptophan enzymes of genes encoding, 59
- H**
- Haemaphysalis japonica**
Japanese encephalitis virus and, 399, 404
- Haemaphysalis leporis-palustris**, 293, 296, 301
- Haemaphysalis spp.**
distribution of, 294-95
- Haemophilus influenzae**
competence development in, 214-16, 228
DNA binding in, 217-24
poly- β -hydroxybutyrate and, 215
natural transformation in, 212-13, 226
- Haemophilus parainfluenzae**
competence development in, 214-15
DNA binding in, 218
natural transformation in, 213
- Haemophilus spp.**
DNA processing in, 227
nucleoside phosphorylases of, 227
plasmid transformation in, 222-24
R plasmids of, 655
transformation competence in, 230
- Halobacterium halobium**
chloride pump in, 275-76
- Halorhodopsin**
chloride ion transport and, 275-76
- Hanseniaspora spp.**, 13
- Hansenula anomala**
cell wall lysis in glucanase and, 14-15
- Hansenula capsulata**, 17
- Hansenula holstii**, 11
- Hansenula mrankii**, 13
- Hemagglutinin**
filamentous, 667-68, 676
- Hemolysin**
Bordetella pertussis, 679
Escherichia coli, 196
- Hemolysin genes**
Streptococcus faecalis, 651-52
- 2-Heptyl-4-hydroxyquinoline N-oxide**
sodium ion transport and, 270
- Herbicides**
Pisum sativum nodulation and, 142
Rhizobium phaseoli and, 141
Rhizobium spp. and, 142-43
- Herpesviruses**
fish disease and, 481-82
- Hexokinase**
Entamoeba histolytica and, 245
- Histamine**
bacterial esterification of, 374
- Histidine transport**, 624
periplasmic binding proteins and, 615
- Homeostasis**
pertussis toxin and, 670
- HTLV-III/LAV**
acquired immune deficiency syndrome and, 173-75
- Humoral antibodies**
Entamoeba histolytica and, 251-52
- Humoral immunity**
leprosy and, 42
- Hydrocortisone**
amebiasis and, 249
- Hydrogenase**
acetogenic bacteria and, 435-37
- Hydrogen peroxide**
microaerophiles and, 117
- Hydrogen sulfide**
bacterial production of, 608-9
- N-Hydroxyfluorenylacetamide**
metabolism of, 379
- m-Hydroxyphenylacetic acid**
gastrointestinal microflora and, 375
- 7- α -Hydroxysteroid hydroxylase**
carcinogenicity of, 377
- Hyperinsulinemia**
pertussis and, 673, 679
- Hypoglycemia**
pertussis and, 672-73, 679
- I**
- Immune complex disease**, 33-46
- Immune complexes**
cystic fibrosis and, 34-36
detection of, 30-31
infectious disease and, 29-47
infective endocarditis and, 40-42
lepromatous leprosy and, 43-46
polymorphonuclear leukocytes and, 37-38
properties of, 31-33
shunt nephritis and, 40-42
- Immune effector cells**
pertussis toxin and, 669, 677
- Immune response**
viral infection and, 164
- Immune serum**
malaria parasites and, 464-65
- Immunity**
See specific type
- Immunodeficiency**
viral infection and, 160
- Immunoglobulin A**
Fc receptors of, 504-7
synthesis of
regulation of, 507-12
- Immunoglobulin E**
synthesis of
regulation of, 512-14
- Immunoglobulin G**
synthesis of
regulation of, 514-16
- Immunoglobulins**
B cells and, 503-4
blood-brain barrier and, 163
erythema nodosum leprosum and, 45
fish disease and, 486-87
host defense in fish and, 483
immune complexes and, 31-33
infective endocarditis and, 40
lepromatous leprosy and, 43
malaria parasites and, 464-65
progressive rubella pan-encephalitis and, 166
- Immunoprophylaxis**
fish disease and, 487-88
- Inclusion bodies**
progressive rubella pan-encephalitis and, 166
- Indole**
carcinogenicity of, 382
- Infection**
See specific type

- Infectious disease
 immune complexes and, 29-47
- Infectious hematopoietic necrosis
 virus
 antigenic structure of, 488-89
 fish disease and, 481
 immunoglobulins and, 487
 interferon and, 484
 transmission of, 491
- Infectious pancreatic necrosis
 virus
 antigenic structure of, 489
 fish disease and, 481
 immunoglobulins and, 487
 transmission of, 491
 vaccines and, 487
- Infective endocarditis
 See Endocarditis
- Insertion sequences
 Pseudomonas aeruginosa, 85
 Pseudomonas cepacia, 95
- In situ hybridization
 ribosomal RNA and, 359-61
- Insulin
 pertussis toxin and, 669
- Interferon
 host defense in fish and, 483
 lymphocytic choriomeningitis
 virus and, 168
 Sendai virus infection and,
 170
 viral infection and, 164
- Interleukin 1
 fish disease and, 485
- Intestinal microflora
 See Gastrointestinal microflora
- Inulin
 fermentation of
 Kluveromyces fragilis and,
 9
- Inulinase
 yeast, 9
- Invertebrates
 Japanese encephalitis virus
 and, 398-99
- Ion transport
 See Bacterial ion transport
- Iron deficiency
 microaerophiles and, 120
- Iron reduction
 microbial, 327
- Iron/sulfur proteins
 microaerophiles and, 122
- Isoenzyme analysis
 Escherichia coli and, 186-93,
 200-1
- Ixodes brunneus*, 293
- Ixodes cookei*, 293
- Ixodes dammini*, 293
- Ixodes dentatus*, 293
- Ixodes pacificus*, 293
- Ixodes scapularis*, 293
- Ixodes* spp.
 distribution of, 294
- Ixodes texanus*, 293
- J
- Japanese encephalitis virus, 395-408
 clinical significance of, 396-97
 geographic distribution of,
 396
 invertebrate hosts of, 398-99
 overwintering and, 401-7
 vertebrate hosts of, 399-401
- Junin virus
 persistent infection and, 168
- K
- Kanamycin resistance
 streptococcal, 636
- Klebsiella aerogenes*
 oxaloacetate decarboxylase
 and, 268
- Klebsiella pneumoniae*
 enterotoxin of, 588
 fecal
 diet and, 370
 nif gene organization in, 526-29
- Klebsiella* spp.
 Escherichia coli enterotoxin
 plasmids and, 586
- Kloeckera* spp., 13
- Kluveromyces dobzhanskii*, 12-13
- Kluveromyces drosophilicola*,
 12-13
- Kluveromyces fragilis*
 cell wall lysis in
 exo- β -glucanases and, 15
 inulin fermentation and, 9
 pectic enzymes and, 7-8
- Kluveromyces marxianus* var.
 lactis, 71
- Kluveromyces phaseolosporus*,
 12
 glucanases of, 16
- Kluveromyces* spp.
 DNA-DNA hybridization and,
 23
- Kluveromyces thermotolerans*,
 13
- Kluveromyces veronae*, 13
- Kluveromyces wickerhamii*, 13
- Kuru, 176
- L
- Lactate dehydrogenase
 Campylobacter sputorum and,
 124
- Lactobacillus plantarum*
 conjugative transposons and,
 652
- Lactobacillus* spp.
 fecal
 diet and, 370
 gastrointestinal, 368, 375-77
- Lactoferrin
 host defense in fish and,
 484
- Laminarin
 β -glucanases and, 14-15
- Lasiohelea taiwana*
 Japanese encephalitis virus
 and, 399
- Lassa virus
 persistent infection and, 167-68
- Leaching
 copper, 320-22
 ecology of, 319-20
 iron-oxidizing microorganisms
 and, 314-19
- lead, 322
 mechanisms of, 312-13
- metal sulfide, 322
- precious metal, 323-24
- uranium, 320-22
- Lectins
 Entamoeba histolytica and,
 242-43
- Rhizobium* attachment and,
 144-45
- Legumes
 nodulation of, 131-48
- Lentiviruses
 persistent infection and,
 173
- Lepidopteran larvae
 Bacillus thuringiensis and,
 551-69
- Leprosy, 42-46
 lepromatous, 30
 immune complexes in, 43-46
- Leptospirillum ferrooxidans*
 leaching and, 317-18
- Leuconostoc cremoris*
 conjugative transposons and,
 652
- Leukemia
 chronic lymphocytic
 Fc receptors and, 504
- Leukemia viruses
 See specific type
- Leukocytes
 polymorphonuclear
 See Polymorphonuclear
 leukocytes
- Leukocytosis
 pertussis and, 671, 679
- Lignin
 bacterial degradation of, 441

- Lincomycin**
Escherichia coli enterotoxins and, 584
- Lipids**
 acetyl-coenzyme A and, 438
- Lipoamide dehydrogenase**
 mercury resistance and, 610
- Lipophosphopeptidoglycan**
Entamoeba histolytica and, 240
- Lipopolsaccharide**
Bordetella pertussis, 668
Escherichia coli, 193-96
 immune complexes and, 35
Salmonella virulence and, 662
- Listeria innocua**
 conjugative transposons and, 652
- Lithocholic acid**
 gastrointestinal microflora and, 375
- Liver abscess**
Entamoeba histolytica and, 249-51
- Liver cancer**
 dimethylnitrosamine and, 381
- Lyme disease**
 immune complex tissue damage and, 46
- Lymphocytes**
 Fc receptors on, 514
- Lymphocytic choriomeningitis virus**
 persistent infection and, 167-68
- Lymphocytosis**
 pertussis and, 669, 673
- Lymphokine macrophage migration inhibition factor**
 fish disease and, 485
- Lymphokines**
 inflammatory response and, 33
- Lysine**
Escherichia coli enterotoxins and, 584
- Lysine-ornithine-arginine transport**, 624
- Lysogeny**
Pseudomonas spp. and, 85
- Lysostatin**
Bacillus spp. and, 214
- Lysozyme**
 host defense in fish and, 483
- M**
- Macrophages**
 erythema nodosum leprosum and, 45
- Fc receptors and, 505
- host defense in fish and, 484
- immunoglobulin receptors on, 504
- pertussis toxin and, 669, 674
- Magnetotaxis**, 108-9
- Major histocompatibility antigens**
 viral infection and, 161
- Malaria parasites**, 111, 451-71
- adenosine triphosphate and, 464
- calcium and, 464
- erythrocyte cytoskeleton and, 463-64
- erythrocyte ligands for, 456-63
- merozoite antigens and, 464-70
- morphology of, 452-56
- oxygen toxicity and, 118
- Malate dehydrogenase**
Entamoeba histolytica and, 245
- Spirillum volutans* and, 123
- Maltose transport**, 624
- periplasmic binding proteins and, 615
- Manganese**
 ferrous iron oxidation and, 315
- Manganese oxide reduction**
 microbial, 327
- Mast cells**
 Fc receptors on, 512
- Maximum likelihood**
 ribosomal RNA and, 344
- Maximum parsimony**
 ribosomal RNA and, 343
- Measles virus**
 subacute sclerosing pan-encephalitis and, 170-72
- Methanoscirraria barkeri*
 phenol degradation and, 441-42
- Methanothermus fervidus*
 tungsten and, 429
- Methionine**
Escherichia coli enterotoxins and, 584
- Methylazoxymethanol**
 carcinogenicity of, 378
- Methyl cobalamin**
 bacterial production of, 608-9
- Methylmalonyl CoA decarboxylase**
Veillonella alcalescens and, 269
- α-Methylmannoside**
Entamoeba histolytica and, 240
- Methylobacterium organophilum*
 natural transformation in, 212
- Methyl orange**
 carcinogenicity of, 380
- Methyltransferase**
 acetogenic bacteria and, 417, 431-32
- Methyl yellow**
 carcinogenicity of, 380
- Metronidazole**
 microaerophiles and, 122-23
- mutagenicity of, 381
- Microaerophiles**
 aerotactic behavior of, 116-17
- aerotolerance of
 stability of, 115
- aquatic, 108-9
- culture media and, 113-18
- growth of, 112-15
- iron deficiency and, 120
- nitrogen-fixing, 111-12
- oxygen sensitivity of, 121-24
- oxygen toxicity and, 117-25
- pathogenic, 109-11
- population density and, 112-13
- protective enzymes and, 120-21
- respiratory rates and, 119-20
- Microaerophily**, 107-25
- Microbes**
 molecular phylogeny and, 338-42
- Micrococcus radiodurans*
 natural transformation in, 213
- Microflora**
 See Gastrointestinal microflora
- Micronemes**, 453
- Microorganisms**
 metal reclamation and, 311-30
- Midges**
 Japanese encephalitis virus and, 399
- Mitochondria**
 transport system of, 278-79
- Molybdate**
 ferrous iron oxidation and, 315
- Molybdenite**
Sulfobolbus spp. and, 318
- Molybdenum**
 formate dehydrogenase and, 428
- microbial recovery of, 327
- Sulfobolbus* spp. and, 318
- Molybdenum leaching**, 322
- Monoclonal antibodies**
Plasmodium falciparum and, 461
- Plasmodium knowlesi* surface protein and, 468-69
- toxoplasma components and, 469
- Monocytes**
 Fc receptors on, 505, 512-14
- pertussis toxin and, 669

- Moraxella spp.**
natural transformation in, 212, 229
nucleoside degradation in, 228
- Morbilliviruses**
persistent infection and, 170
- Mosquitoes**
Japanese encephalitis virus and, 398-99
- Mucic acid**
peptic enzymes and, 4
- Multiple myeloma**
circulating lymphocytes and, 506
- Mumps virus**
nerve cell infection and, 162
persistent infection and, 170
postnatal maturation and, 175-76
- Muramyl dipeptide**
fish disease and, 485
- Murine hepatitis virus**
persistent infection and, 166-67
- Murine leukemia virus**
persistent infection and, 172-73
- Mutagenesis**
transposon-mediated
Bordetella pertussis and, 663
Vibrio cholerae, 581
- Mutagens**
fecal, 384-88
- Mutations**
chromosomal
enterotoxigenic *Escherichia coli* and, 587
- Mycobacterium leprae*, 42-43
- Mycobacterium spp.*
mercury resistance in, 626-27
natural transformation in, 213
- Mycorrhizae**
Rhizobium spp. and, 141
- Myelination**
congenital rubella infection and, 175
- Myxomycetes**
tryptophan gene-enzyme relationships in, 60-62
- N**
- Nadsonia elongata*, 19
- Natural killer cells**
immunoglobulin receptors on, 504
pertussis toxin and, 669
- Natural population analysis**
ribosomal RNA and, 351-59
- Natural transformation**, 211-30
- Neisseria gonorrhoeae*
DNA binding in, 217-19
natural transformation in, 213, 226
- Neisseria spp.*
natural transformation in, 212
nucleoside degradation in, 228
- Neomycin**
quinic acid aromatization and, 375
salicylazosulfapyridine and, 373
urinary estriol and, 383
- Neonatal meningitis**
Escherichia coli and, 201-3
- Nephritis**
shunt, 39-40
immune complexes in, 40-42
- Nephrosis**
erythema nodosum leprosum and, 44
- Nerve-cell processes**
viral infection and, 162
- Neuraminidase**
Plasmodium falciparum and, 459-61
- Neuroectodermal cells**
viral infection and, 161
- Neuromuscular junction**
rabies virus and, 162-63
- Neurons**
metabolism of
viral infection and, 162
retrovirus infection and, 176
- Neurospora crassa*
anthranilate synthase complexes in, 71-72
nitrate reductase of, 428
tryptophan gene-enzyme relationships in, 57-59
tryptophan genes of cloning of, 63
- Neurospora spp.*
sodium transport in, 264
- Neutrophils**
pertussis toxin and, 669
- Newborns**
gastrointestinal colonization in, 369
- Nickel**
ferrous iron oxidation and, 315
- Nicotinamide**
Escherichia coli virulence and, 204-5
- Nicotinamide adenine dinucleotide**
microaerophiles and, 122
- Nippostrongylus brasiliensis*
Fc receptors and, 505
- Nissl bodies**
viral infection and, 161
- Nitrate**
nodule formation and, 136
Thiobacillus ferrooxidans and, 315
- Nitrate reductase**
Neurospora crassa, 428
- 2-Nitrofluorene**
mutagenicity of, 381
- Nitrogen**
nodule formation and, 136
- Nitrogenase**
Rhodopseudomonas capsulata, 537
- Nitrogenase complex**
nitrogen fixers and, 119
- Nitrogen fixation**, 525-43
- Rhizobium meliloti* and, 133
Rhizobium trifoli and, 133-34
- 1-Nitropyrene**
carcinogenicity of, 380-81
- Nitroreductase**
carcinogenicity of, 377-81
diet and, 376-77
gastrointestinal microflora and, 373
- Nitrosamines**
carcinogenicity of, 381-82
gastrointestinal microflora and, 374
- N-Nitrosation**
gastrointestinal microflora and, 374
- Nodulation**, 131-48
host genes and, 147-48
initiation of, 144-47
- Novobiocin**
DNA synthesis and, 225
- Nucleic acids**
viral
in situ hybridization and, 360
- Nucleic acid sequencing**
mixed microbial populations and, 338
5S ribosomal RNA and, 353-57
- Nucleoside hydrolases**, 228
- Nucleoside phosphorylases**, 227
- Nucleosides**
cytidine and, 227
- Nucleotides**
acetyl-coenzyme A and, 438
- Null cells**
immunoglobulin receptors on, 504

O

- Oligodendrocytes
 murine hepatitis virus and, 167
- Oligodendroglial cells
 viral infection and, 161
- Oligodeoxynucleotides
 in situ hybridization and, 360
- Oligogalacturonides
 isolation of, 8
- Oligopeptide transport, 624
- Oncogenes
 retroviruses and, 172
- Oomycetes
 tryptophan gene-enzyme relationships in, 60-63
- Oral contraceptives
 antibiotics and, 384
- Ornithodoros turicata*, 300
- Orthomyxoviruses
 central nervous system and, 164
- Orthovanadate
 potassium ion transport and, 272
- Otobius lagophilus*, 293
- Ovalocytosis
 malaria parasites and, 463
- Oxaloacetate decarboxylase
 Klebsiella aerogenes and, 268
- Oxidative phosphorylation
 adenine nucleotide translocator and, 278-79
- Oxygen toxicity
 culture media and, 114-15
 microaerophiles and, 117-25

P

- Pachycereus schottii*, 24
- Panencephalitis
 progressive rubella, 166
 subacute sclerosing, 166, 170
 measles virus infection and, 171-72
- Parainfluenza virus, 169-70
- Paramecium* spp.
 isoenzyme electrophoretic mobility in, 247
- Paramyxoviruses
 central nervous system and, 169-72
- Parasites
 See specific type
- Parkinsonism
 gastrointestinal microflora and, 375
- postencephalitic, 167
- Pectic acid
 polygalacturonic acid hydrolysis and, 8

- Pectic enzymes, 4
 filamentous fungi and, 7
- Pectin esterase
 synthesis of, 4-5
- Pectins
 endolyase specific for, 9-10
 enzymatic breakdown of, 4
 enzymatic hydrolysis of, 3
 pectic enzymes and, 4
- Pelobacter acidigallici*
 phenol degradation and, 441
- Penicillin
 urinary estriol and, 383
- Penicillium G
 Bacillus spp. and, 214
- Penicillium chrysogenum*
 pectic enzymes of, 4
 radium accumulation by, 328
- Pentagalacturonic acid
 polygalacturonic acid hydrolysis and, 8
- Peptococcus aerogenes*
 glutamonyl CoA decarboxylase of, 269
- Peptococcus* spp.
 gastrointestinal, 368
 diet and, 370
- Peptostreptococcus productus*, 423
- Peptostreptococcus* spp.
 gastrointestinal, 368
- Peripheral edema
 Rocky Mountain spotted fever and, 288
- Peroxidases
 microaerophiles and, 114, 121
- Pertussis, 662
 clinical manifestations of, 671-72
 pathophysiology of, 675-81
- Pertussis toxin, 669-70
- Pesticides
 Rhizobium spp. and, 142-43
- Pestivirus
 border disease in sheep and, 166
- pH
 Rhizobium spp. and, 138
- Phaffia rhodozyma*, 19
- Phage typing
 Rhizobium populations and, 133
- Phagocytes
 host defense in fish and, 484
- Phagocytosis
 Entamoeba histolytica and, 242-43
- fish disease and, 496
- immune complex disease and, 37
- immune complexes and, 33
- pertussis toxin and, 677

- Phaseolus vulgaris*
 Rhizobium phaseoli and, 141, 144
- Phenol
 bacterial degradation of, 441-42
- colon cancer and, 382
- Phenylmethylethers
 acetogenic bacteria and, 422-23
- Pheromone cAM373, 645
- Phosphates
 Rhizobium spp. and, 136-37
- Phosphate-sugar phosphate exchange
 bacterial, 276-78
- Phosphatidylinositol
 Entamoeba histolytica and, 254
- pertussis toxin and, 669
- Phosphoenol pyruvate
 Thiobacillus ferrooxidans and, 314
- Phosphoglucomutase
 Entamoeba histolytica and, 245
- Photobacterium phosphoreum*, 355
- Photosynthetic bacteria
 nitrogen fixation and, 525-43
- Phylogenetic trees, 342-48
 alternatives to, 348
 distance matrix method and, 344-48
- Phylogeny
 microbes and, 338-42
 ribosomal RNA and, 338-41
- Pichia amethionina*, 25
- Pichia cactophila*, 24-25
- Pichia carsonii*, 13
- Pichia deserticola*, 25
- Pichia fluxuum*, 12-13
- Pichia hlapophila*, 10
- Pichia heedii*, 24
- Pichia membranafaciens*, 13, 23-24
- Pichia pastoris*, 12, 17, 19
- Pichia pseudocactophila*, 24-25
- Pichia quercuum*, 13
- Pichia salicaria*, 18
- Pichia scolyti*, 17
- Pichia silvestris*, 13
- Pichia trehalophila*, 18
- Pichia vini*, 13
- Picomaviruses
 central nervous system and, 165-66
- Pinocytosis
 Entamoeba histolytica and, 239-40
- Pinus* spp.
 bark beetle yeasts and, 10-11
- Hansenula capsulata* and, 17

- Pisum sativum*
nodulation of
herbicides and, 142
- Plasma cells
immunoglobulin secretion and, 512
- Plasmacytoma
circulating lymphocytes and, 506
- Plasmapheresis
immune complexes and, 39
- Plasmid DNA
antibiotic resistance and, 279-81
- Plasmids
Bacillus thuringiensis, 551-52
Escherichia coli, 197
natural transformation in, 221-24
Pseudomonas aeruginosa, 85-86
Pseudomonas, 81, 93-95
Rhizobium, 135, 146-47
- Plasmodium berghei*
superoxide dismutase and, 121
- Plasmodium chabaudi*
250-kd glycoprotein of, 467-68
- Plasmodium falciparum*, 111
antibodies and, 461
erythrocyte-binding proteins of, 465-66
erythrocyte ligands for, 457-63
glycophorin and, 460-61
glycophorin-binding proteins of, 465
195-kd glycoprotein of, 467-68
immune serum and, 464
invasion inhibitors and, 462-63
merozoite proteins of, 469-70
monoclonal antibodies and, 469
ovalocytosis and, 463
oxygen toxicity and, 118
155-kd protein of, 466
S antigens of, 466-67
sialic acid and, 459-60
trypsin and, 461
- Plasmodium knowlesi*
Duffy antigens and, 457-58
erythrocyte band 3 and, 459
erythrocyte ligands for, 457-59
230-kd glycoprotein of, 467-68
immune serum and, 464
ovalocytosis and, 463
66-kd surface protein of, 467
- 140-kd surface protein of, 468-69
- Plasmodium lophurae*, 456
- Plasmodium malariae*
ovalocytosis and, 463
- Plasmodium vivax*
blacks and, 458-59
Duffy antigens and, 458-59
erythrocyte ligands for, 457-59
ovalocytosis and, 463
- Plasmodium yoelii*
230-kd glycoprotein of, 467-68
- monoclonal antibodies and, 469
- Plectonema* spp.
nif genes of, 538
- Poliomyelitis virus
chromatolysis and, 161
- Polioviruses
human type 2
persistent infection and, 165
- Polygalacturonase
synthesis of, 4-5
yeast, 7-10
- Polygalacturonic acid
exoylyase specific for, 9
hydrolysis of, 8
- Kluyveromyces fragilis* and, 7
pectic enzymes and, 4
- Poly- β -hydroxybutyrate
competence induction and, 215
- Poly lactosamine
Plasmodium falciparum and, 463
- Polymorphonuclear leukocytes
erythema nodosum leprosum and, 45
- Fc receptors on, 512-14
immune complexes and, 37-38
immunoglobulin receptors on, 504
- Ponceau 3R
carcinogenicity of, 380
- Porin channels
Campylobacter jejuni and, 121-22
- Potassium ion transport
bacterial, 271-75
- Precious metal leaching, 323-24
- Prematurity
infant gastrointestinal colonization and, 369
- Progesterone
metabolism of, 384
- Progressive rubella panencephalitis, 166
- Prokaryotes
 E_1E_2 ATPases in, 272-73
natural competence in, 212-16
phylogeny of, 340-41
tryptophan gene-enzyme relationships in, 58-60
- Pronase
Plasmodium knowlesi merozoites and, 457
- 2-Propanol
cactus-specific yeasts and, 25
- Propylene oxide
sterilization of fruit and, 5
- Proteases
Aeromonas salmonicida, 497
- Proton-motive force
bacterial ion transport and, 265, 271
- Prototheca moriformis*, 17
- Protozoa
Rhizobium spp. and, 141
- Pseudomonads
pathogenicity of, 79
- Pseudomonas acidovorans*
gene arrangement in, 87
- Pseudomonas aeruginosa*
aliphatic amidases of, 80
chromosome of, 81, 85
map of, 98
rearrangement of, 97
transposon in, 85
cystic fibrosis and, 30, 33-39
enterotoxin of, 589
FP plasmids of, 85-86
gene arrangement in, 86-87, 92
lysogeny in, 85
plasmid-chromosome interaction in, 94
polymorphonuclear leukocytes and, 37
- Pseudomonas aeruginosa* PAO
chromosome of
genetic circularity of, 81
map of, 83, 88-89
genetic map of, 91, 95-98
plasmid FP39 and, 84
- Pseudomonas aeruginosa* PAT
chromosome of
genetic circularity of, 81
- Pseudomonas alcaligenes*
natural transformation in, 229
- Pseudomonas carboxydovorans*
carbon monoxide dehydrogenase of, 432
- Pseudomonas cepacia*
insertion sequences in, 95
- Pseudomonas fluorescens*, 355
- Pseudomonas genome*, 79-100
gene arrangement in, 86-93
genetic maps of, 95-98

- plasmid-chromosome interaction in, 93-95
plasmids in, 93
- Pseudomonas maltophilia*
silver recovery and, 326
- Pseudomonas mendocina*
natural transformation in, 229
- Pseudomonas morsprunorum*
prophages in, 85
- Pseudomonas pseudoalcaligenes*
natural transformation in, 229
poly- β -hydroxybutyrate and, 215
- Pseudomonas putida*
chromosome of, 81
map of, 98
rearrangement in, 86-87,
92, 97
- plasmid-chromosome interaction in, 94
- Pseudomonas putida* PPN
chromosome of
genetic circularity of, 81
genetic map of, 83, 90-92,
95-98
- Pseudomonas* spp.
genetic analysis of, 81-84
iron reduction and, 327
mercury resistance in, 616-17,
622
natural transformation in, 212
nucleoside hydrolases of, 228
plasmids of, 81
taxonomic and genomic data
for, 80
- Pseudomonas stutzeri*
competence development in,
215
natural transformation in,
226, 229
plasmid transformation in,
223
- Pseudomonas syringae*
chromosome of
map of, 91, 98
rearrangement in, 87, 97
pv. *phaseolicola* strain LR719
plasmid-chromosome interaction in, 95
- Pseudomonas testosteroni*, 354
- Psophocarpus tetragonolobus*
nodulation of, 132-33
- Pulmonary edema
Rocky Mountain spotted fever
and, 288
- Pulmonary osteoarthropathy
cystic fibrosis and, 36
- Purple bacteria
oligonucleotide catalog comparisons of, 354-56
- Pustulan
 β -glucanases and, 14-15
- Pyelonephritis*
Escherichia coli and, 203
- Pyocins*
Pseudomonas aeruginosa, 85
- Pyrite*
microbial dissolution of, 325
- Pyrodictium* spp., 354
- Pyruvate*
Zoogloea polymer and, 328
- Pyruvate:ferredoxin oxidoreduc-*
tases
microaerophiles and, 123
- Q**
- Quercetin*
carcinogenicity of, 378
- Quinic acid*
aromatization of, 375
- R**
- Rabies virus*, 169, 488
acetylcholine receptors and,
162-63
- Radium*
fungal accumulation of, 328-
29
- Raji* cell assay
immune complexes and, 31
- Recombinant DNA
mixed microbial populations
and, 338
- Reductases
gastrointestinal microflora
and, 372-73
- Renal disease
erythema nodosum leprosum
and, 44
- infective endocarditis and, 41
- Renal infarction
infective endocarditis and, 41
- Renibacterium salmoninarum*
antigenic structure of, 490-91
cell-mediated immunity and,
485
clinical manifestations of, 482
fish disease and, 480-81
pathogenesis of, 494
transmission of, 491
- Reoviruses
central nervous system and,
164
- Reticulocytes
Plasmodium vivax and, 458-
59
- Retroviridae
reverse transcriptase and, 160
- Retroviruses
central nervous system and,
172-75
- Reverse transcriptase
ribosomal RNA sequence analysis and, 350
- RNA viruses and, 160
- Rhabdoviruses
central nervous system and,
169
fish disease and, 481-82
- piscine
antigenic structure of, 488-
89
pathogenesis of, 492
- Rheumatic fever
immune complex tissue damage and, 46
- Rheumatoid factors
cystic fibrosis and, 34
immune complexes and, 31
infective endocarditis and, 40
lepromatous leprosy and, 43
- Rhipicephalus sanguineus*, 291-
93
distribution of, 294
- Rhipicephalus* spp.
distribution of, 294
- Rhizobium fredii*
plasmids of, 147
- Rhizobium* inoculants
establishment in, 132-33
- Rhizobium leguminosarum*
bacteriocins in, 141
chemotaxis and, 143
drought and, 139
pH and, 138
plasmids of, 135, 147
population genetics of, 134
- Rhizobium lupini*
chemotaxis and, 143
- Rhizobium meliloti*
chemotaxis and, 143
genetic exchange among, 135
nitrogen fixation and, 133
pH and, 138
plasmid transfer in, 135
population genetics of, 134
salt-tolerant, 140
- Rhizobium phaseoli*
herbicides and, 141
pH and, 138
Phaseolus vulgaris and, 144
population genetics of, 134
- Rhizobium* population
characterization of, 133-35
- Rhizobium* spp., 111-12
bacteriocins and, 141-42
bacteriophages and, 140
- Bdellovibrio* spp. and, 140
- biological factors and, 140-42
drought and, 139
environmental factors and,
136-40
epiphytic bacteria and, 141

- genetic exchange among, 134-36
herbicides and, 142-43
motility of, 143
mycorrhiza and, 141
nif genes of, 526-28
nodule initiation in, 146-47
pesticides and, 142-43
plasmids of, 146-47
protozoa and, 141
salinity and, 139-40
temperature and, 138-39
- Rhizobium trifoli*
bacteriocins in, 141-42
bacteriophages and, 140
host-specificity genes in, 145
nitrogen fixation and, 133-34
phosphates and, 137
root attachment of, 145
temperature and, 138-39
- Rhizopus arrhizus*
metal accumulation by, 328
- Rhizosphere
competition in, 143-47
- Rhodopseudomonas capsulata*
nif gene organization in, 529-37
- Rhodopseudomonas* spp.
iron reduction and, 327
- Rhodospirillum rubrum*
Fe-protein of, 537
- Rhoptries, 453, 469
- Ribosomal RNA
cluster analysis and, 342-43
distance matrix methods and, 343-48
in situ hybridization and, 359-61
maximum likelihood and, 344
maximum parsimony and, 343
microbial populations and, 341-42
natural population analysis and, 351-59
phylogeny and, 338-41
sequence data bases and, 348-51
- Ribulose-bisphosphate carboxylase
acetogenic bacteria and, 417
Sulfbacillus thermosulfidooxidans and, 318
- Rickettsia australis*, 288
- Rickettsia bellii*, 289, 301-2
- Rickettsia conorii*, 288
- Rickettsiae*
adenine nucleotide translocator in, 278-79
- Rickettsia montana*, 289, 301-4
- Rickettsia prowazekii*
adenine nucleotide translocator in, 278-79
- Rickettsia rhipicephali*, 289, 301-2
- Rickettsia rickettsii*, 287-305
infectivity and pathogenicity of, 297-302
life cycle of, 290-94
prevalence and distribution of, 294-97
transmission of, 302-5
- Rickettsia sibirica*, 288, 294-95
- Rifampicin resistance
Rhodopseudomonas capsulata and, 534
- Rifampin
oral contraceptives and, 384
resistance
Pseudomonas aeruginosa, 85
- Rifia pachypila*, 351-52
- Rifia* spp., 355
- Rinderpest virus
persistent infection and, 170
- RNA
See specific type
- RNA polymerase
Bacillus thuringiensis, 567
- RNA-RNA hybridization
piscine rhabdoviruses and, 488
- RNA viruses, 159-79
persistent
central nervous system and, 164-75
mechanisms for, 164
- Rocky Mountain spotted fever, 287-88
See also *Rickettsia rickettsii*
- rRNA
See Ribosomal RNA
- Rubella virus
persistent infection and, 166
- Rubidium
Thiobacillus ferrooxidans and, 315
- Rusticyanin
Thiobacillus ferrooxidans and, 314
- Rutin
conversion to quercetin, 378
- S
- Saccharomyces cerevisiae*
arginine pathway of
metabolic elasticity of, 73-74
- S. circulans* and, 14
nonrespiratory mutants of, 6
tryptophan gene-enzyme relationships in, 57-59
tryptophan genes of cloning of, 63
- tryptophan pathway of
metabolic elasticity of, 73-74
- Saccharomyces dobzhanskii*, 12
- Saccharomyces drosophililarum*, 12
- Saccharomyces kluveri*, 13
- Saccharomyces pastorii*, 12
- Saccharomyces phaseolosporus*, 12
- Saccharomyces* spp.
DNA relatedness of, 22
- Saccharomyces telluris*, 22
- Saccharomycopsis guttulata*, 11
- Salicylazosulfapyridine
ulcerative colitis and, 373
- Salinity
Rhizobium spp. and, 139-40
- Salmonella infection
immune complex tissue damage and, 46
- Salmonella* spp.
enterotoxins of, 588-89
nif genes of, 527
virulence factor for, 662
- Salmonella typhimurium*
aerotactic behavior of, 116
enterotoxin of, 589
FIRN clone of, 197-98
gene arrangement in, 87, 90
O groups in, 198
- Schizosaccharomyces pombe*
tryptophan gene-enzyme relationships in, 57-61
- Schizosaccharomyces* spp.
cell wall lysis in
glucanases and, 14
- Schizosaccharomyces versatilis*
exo- β -glucanase of, 15
- Schwanniomyces occidentalis*
DNA of, 71
- Sclerocystis* spp.
legumes and, 141
- Scrapie, 176
- Selenium
ferrous iron oxidation and, 315
formate dehydrogenase and, 429
microbial recovery of, 327
- Sendai virus, 169-70
postnatal maturation and, 175-76
- Serotyping
Rhizobium populations and, 133
- Serum sickness
cystic fibrosis and, 36, 39
- Sex steroids
gastrointestinal microflora and, 382-84

- Shigella dysenteriae***
toxins of, 589-91
- Shigella flexneri***
enterotoxin of, 588
- Sialic acid**
Plasmodium falciparum and, 459-60, 462
- Silver**
leaching, 323-24
microbial recovery of, 326
- Thiobacillus ferrooxidans*** and, 315-16
- Sodium ion transport**
bacterial, 264-71
- Soil type**
Rhizobium spp. and, 136-38
- Solemya velum* Say**, 351-52
- Spectinomycin resistance**
Pseudomonas aeruginosa, 85
- Spectrin**
malaria parasites and, 464
- Spirillum volutans***, 108
aerotactic behavior of, 116
aerotolerance of, 115
catalase and, 120
growth of, 113
hydrogen peroxide and, 117
iron deficiency and, 120
metronidazole and, 122
NADH and, 122
respiratory rate for, 119
tricarboxylic acid cycle enzymes of, 123
- Sporobolomyces singularis***, 17
- Sporomusa acidovorans***, 418
- Sporomusa sphaerooides***, 418
- Sporopachydermia* spp.**, 24
- Spring viremia of carp virus
antigenic structure of, 488
fish disease and, 481-82
interferon and, 484
pathogenesis of, 491-92
- Staphylococcus aureus***
Bacillus thuringiensis pro-toplasts and, 552
cadmium resistance in, 280
conjugative transposons and, 652
enterotoxins of, 591-93
infective endocarditis and, 40
mercury resistance in, 626
pheromone cAM373 and, 645
silver recovery and, 326
- Staphylococcus epidermidis***
cerebrospinal fluid shunts and, 40
- Staphylococcus spp.***
gastrointestinal, 368
- Stem cells**
pertussis toxin and, 669
- 7- α -Steroid dehydrogenase**
carcinogenicity of, 377
- Steroids**
cystic fibrosis and, 39
dehydrogenation of
gastrointestinal microflora and, 375
- Stickland reaction**, 374
- Stomach acid**
cholera toxin and, 578
- Streptococci**
antibiotic resistance in, 635-55
competence in, 213
gastrointestinal, 368
 α -hemolytic
infective endocarditis and, 40
mercury resistance in, 626
nucleoside phosphorylases in, 227
- plasmid transformation in, 222-23
- tetracycline resistance in, 650-51
- Streptococcus agalactiae***
conjugative transposons and, 652
drug resistance in, 636, 648-49
tetracycline resistance in, 650
- Streptococcus cremoris***
conjugative transposons and, 652
- Streptococcus faecalis***
conjugative transposons and, 652
diphenylamine and, 374
drug resistance in, 636, 649-50
- gastrointestinal
diet and, 370
- β -glucuronidase and, 371
- hemolysin genes of, 651-52
- infective endocarditis and, 40
- sodium transport systems in, 273-74
- protoplast transformation system in, 642
- sex pheromone production in, 653
- sodium transport in, 265-67
- tetracycline resistance in, 650
- Streptococcus faecium***
fecal bile acids and, 376
- Streptococcus lactis***
conjugative transposons and, 652
phosphate-sugar phosphate exchanger in, 276-78
- Streptococcus mutans***
conjugative transposons and, 652
- Streptococcus pneumoniae***
competence in, 215-16
conjugative transposons and, 652
- DNA binding in, 216-20
DNA processing in, 227
drug resistance in, 646-48
natural transformation in, 212-13
tetracycline resistance in, 650
- Streptococcus pyogenes***
conjugative transposons and, 652
drug resistance in, 636, 649
streptolysin S production in, 653
- Streptococcus sanguis***
conjugative transposons and, 652
- DNA binding in, 217-18
DNA uptake in, 225
drug resistance in, 649
lysis of
competence factors and, 214
natural transformation in, 212-13
pheromone cAM373 and, 645
RNA/DNA synthesis in, 214
transformation in, 637, 642
- Streptomyces* spp.**
mercury resistance in, 626
natural transformation in, 212
- Streptomycin resistance**
Pseudomonas aeruginosa, 85
streptococcal, 636
- Sucrose**
fermentation of, 6
- Sulfamethoxypyridazine**
oral contraceptives and, 384
- Sulfanilamide resistance**
Pseudomonas aeruginosa, 85
- O-Sulfates**
gastrointestinal microflora and, 373
- Sulfide**
Beggiaatoa spp. and, 124-25
- Sulfite oxidase**
Thiobacillus ferrooxidans and, 314
- Sulfolobus thermophilic*-*idans***
leaching and, 318
- Sulfolobus acidocaldarius***
coal desulfurization and, 325
- Sulfolobus brierleyi***
coal desulfurization and, 325
- Sulfolobus solfataricus***, 358
- Sulfolobus* spp.**
anaerobic growth of, 354
leaching and, 318-19
molybdenum, 322

- Sulfonamides
gastrointestinal microflora and, 374
- C-Sulfonates
gastrointestinal microflora and, 373
- N-Sulfonates
gastrointestinal microflora and, 373
- Sulfur dioxide
coal combustion and, 324
- Superoxide dismutase
microaerophiles and, 114, 120-21
- Synechococcus* spp.
natural transformation in, 212
- Syntrophomonas wolfei*, 442
- Syphilis, 108-10, 122
- T
- Tacaribe virus
persistent infection and, 168-69
- Tamiami virus
persistent infection and, 168
- Tellurium
ferrous iron oxidation and, 315
- Temperature
Rhizobium spp. and, 138-39
- Tetracycline
Escherichia coli enterotoxins and, 584
gastrointestinal microflora and, 377, 388-89
resistance
in *Escherichia coli*, 279
in *Streptococcus* spp., 650-51
- Tetragalacturonic acid
polygalacturon acid hydrolysis and, 8
- Tetrahydrofolate enzymes
acetogenic bacteria and, 430-31
- Tetrahymena* spp.
isoenzyme electrophoretic mobility in, 247
- Thallium
Thiobacillus ferrooxidans and, 315
uptake in *Chromatium vinosum*, 274-75
- Theiler's virus
persistent infection and, 165
- Thermus aquaticus*, 354
- Thermus thermophilus*, 354
- Thiobacillus ferrooxidans*, 314-17, 354-55
coal desulfurization and, 324-25
- copper leaching and, 320-21
environment and, 319-20
ferric sulfate leaching and, 312-13
galvanic conversion and, 313
metal sulfide leaching and, 322
precious metal leaching and, 323-24
silver recovery and, 326
uranium leaching and, 321-22
- Thiobacillus* spp., 353
iron reduction and, 327
- Thiobacillus thiooxidans*, 354
coal desulfurization and, 324
manganese dioxide and, 327
silver recovery and, 326
- Thioglycolate
microaerophiles and, 113
- Thiol-proteases
Entamoeba histolytica, 244-45
- Thiomicrospira pelophila*, 356
- Thiomicrospira* strain L-12, 356-57
- Thioredoxin reductase
mercury resistance and, 610
- Thiosulfate
microbial silver recovery and, 326
- Thioureia
microaerophiles and, 113
- Thorium
fungal accumulation of, 328
- Ticks
Japanese encephalitis virus and, 399, 404
Rickettsia rickettsii and, 287-305
- Tick typhus, 288
- T-lymphocytes
fish disease and, 485
immunoglobulin receptors on, 504
- lymphocytic choriomeningitis virus and, 168
- polar tuberculoid leprosy and, 42
- Pseudomonas aeruginosa* proteases and, 35
- Theiler's virus and, 165
- viral infection and, 164
- Togaviruses
central nervous system and, 166
- Torpedo californica*
ATPases of, 273
- Torulopsis nitratophila*, 10
- Torulopsis pintoipes*, 22
- Torulopsis sonorensis*, 23
- Torulopsis* spp., 19
- Torulopsis stellata*, 13
- Toxins
See specific type
- Tracheal cytotoxin, 670
host defenses and, 678
toxicity of, 678
- Transconjugation
Bacillus thuringiensis and, 552
- Transferrin
host defense in fish and, 483-84
- Transformation
natural, 211-30
- Transposons
conjugative, 635-55
genetic studies and, 652-53
host range of, 652
Streptococcus faecalis
hemolysin genes and, 651-52
tetracycline resistance and, 650-51
- Pseudomonas aeruginosa*, 85
- Treponema pallidum*, 108
- ferredoxin and, 123
hydrogen peroxide and, 117
metronidazole and, 122
microaerobic survival of, 113
oxygen sensitivity of, 124
protective enzymes and, 120-21
- Treponema pallidum* subsp. *pal-pidum*, 110
- Treponema pallidum* subsp. *per-tenuis*, 110
- Treponema phagedenis*
pyruvate:ferredoxin oxidoreductase of, 123
- Tricarboxylic acid cycle
microaerophiles and, 123-24
- Trichosporon aculeatum*, 13
- Trichosporon diddensii*, 10
- Trichosporon penicillatum*, 17
- Trifolium pratense*
nodulation-resistant, 147
- Trifolium repens*
nodulation-resistant, 147
- Trifolium subterraneum*
Rhizobium trifoli and, 133
- Trigalacturonic acid
polygalacturon acid hydrolysis and, 8
- Triphosphoinositol
Entamoeba histolytica and, 254
- Trypan blue
carcinogenicity of, 380
- Trypsin
Plasmodium falciparum and, 461
- Plasmodium knowlesi* surface protein and, 468

- Tryptophan**
 biosynthesis of
 anthranilate synthase and, 56
 carcinogenicity of, 382
Tryptophan genes
 cloned yeast
 expression of, 69
 eukaryotic, 55-74
 expression of, 70-74
Tryptophan pathway
 activity domains of, 63-69
 enzymes of, 56-63
Saccharomyces cerevisiae
 metabolic elasticity of, 73-74
Tryptophan synthase
 prokaryotic, 58
Truga heterophylla
 yeasts and, 17
Tuberculosis
 immune complex tissue damage and, 46
 pertussis and, 676
Tungsten
 formate dehydrogenase and, 428-29
Typhus
 tick, 288
Tyrosine
 carcinogenicity of, 382
- U**
- Ulcerative colitis**
 salicylazosulfapyridine and, 373
- Uranium**
 ferrous iron oxidation and, 315
 fungal accumulation of, 328
 leaching of, 320-22
 microbial accumulation of, 328
 microbial recovery of, 327
Thiobacillus ferrooxidans and, 316
- Urea**
 intestinal ammonia and, 374
- Urinary tract infection**
Escherichia coli and, 188, 203-4
- Urticaria**
 cystic fibrosis patient and, 39
- V**
- Vaccination**
Pseudomonas aeruginosa
 cystic fibrosis and, 38
 fish disease and, 487-89
- Valinomycin**
 ATPase and, 274
- Vasculitis**
 cutaneous
 cystic fibrosis and, 36
 erythema nodosum leprosum and, 45
- Veillonella alcalascens**
 methylmalonyl CoA decarboxylase of, 269
- Vesicular-arbuscular-mycorrhizal associations**, 141
- Vesicular stomatitis virus**, 169, 488
- Vibrio alginolyticus**
 sodium ion pump of, 269-70
- Vibrio anguillarum**
 antibodies and, 487
 antigenic structure of, 490
 fish disease and, 480, 484
 iron-sequestering system in, 497
 pathogenesis of, 492-95
 vaccines and, 487-88
- Vibrio cholerae**
Escherichia coli enterotoxin
 plasmids and, 586
 toxin of, 578-83
- Vibrio costicola**
 sodium ion pump of, 271
- Vibrio harveyi**, 355
toxR sequences of, 582-83
- Vibrio ordalii**
 antigenic structure of, 490
 fish disease and, 480
 macrophages and, 484
 pathogenesis of, 493-95
- Vibrio parahemolyticus**
 sodium ion pump of, 271
toxR sequences of, 582-83
- Viral hemorrhagic septicemia virus**
 antigenic structure of, 488
 fish disease and, 481
 immunoglobulins and, 487
 interferon and, 484
 pathogenesis of, 491-92
 vaccines and, 488
- Viral infections**
 central nervous system and, 161-63
- Viruses**
 fish disease and, 481-82
 See also specific type
- Visna virus disease**, 173-74
- Vomiting**
 enterotoxins and, 578
- W**
- Whooping cough**, 662
 clinical manifestations of, 671-72
- X**
- Xanthine oxidase**
 malarial parasites and, 118
- Xanthobacter autotrophicus*, 112
- Xanthobacter flavus*, 112
- Y**
- Yeasts**
 bark beetle, 10-11, 17
 cactus necroses and, 23-25
 carotenoid-containing, 19
 cell envelopes of
 enzymes and, 13-16
 coexistence with bacteria, 2
 DNA-DNA hybridization in, 22-23
 DNA relatedness of, 22
Drosophila life cycles and, 12
 gluconases and, 14-16
 inulinase and, 9
 marine, 10
 nuclear DNA of
 base composition of, 21-23
 polygalacturonase and, 7-10
 sodium transport in, 264
 transglycosylation in, 18
 tryptophan genes of
 expression of, 69
- Yersinia enterocolitica*
 enterotoxin of, 588
- Yersinia ruckeri*
 antigenic structure of, 490
 clinical manifestations of, 482
 fish disease and, 480-81
 pathogenesis of, 494
 vaccines and, 487
- Z**
- Zinc**
 ferrous iron oxidation and, 315
- Zoogloea ramigera*
 metal accumulation by, 328
- Zygomycetes**
 tryptophan gene-enzyme relationships in, 60-62
- Zymodemes**
Entamoeba histolytica and, 245-48