ЛАБОРАТОРНАЯ РАБОТА 34

ИЗМЕРЕНИЕ ТОЛЩИНЫ ВОЛОСА ДИФРАКЦИОННЫМ МЕТОДОМ

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата
(обязательна после окончания эксперимента)	

<u>Цель работы</u>: изучить явление дифракции света на узкой щели или узком препятствии, определить ширину очень тонкого предмета (волоса) с помощью дифракционного метода.

Описание установки

Плоская световая волна (луч лазера) падает на препятствие в виде тонкого волоса ширины a, которое можно перемещать по оптической скамье, и создаёт дифракционное изображение на экране, удаленном на расстояние L.

Согласно принципу Бабине дифракционное изображение от тонкого предмета ширины а за пределами центрального пятна от луча лазера совпадает с дифракционным изображением на тонкой щели той же ширины а. Координаты минимумов такой дифракционной картины определяются условием

$$x_m = L \cdot \operatorname{tg} \varphi \simeq L \sin \varphi = \frac{L\lambda}{a} m,$$
 (*)

где $m = \pm 1, \pm 2, ...$

Центральная ярко освещенная полоса ширины $\Delta = x_1 - x_{-1} = 2L\lambda/a$ называется дифракционным изображением волоса (или щели). При уменьшении ширины щели a (геометрического изображения волоса) ширина центральной полосы будет возрастать. По её бокам будут видны слабо освещенные боковые полоски ширины $L\lambda/a$.

Порядок выполнения работы

- 1. На оптическую скамью между лазером и удалённым экраном установить держатель-ширму с прикрепленным к его прорези волосом.
- 2. Включить лазер и юстировочными винтами отрегулировать его луч так, чтобы он распространялся вдоль оптической скамьи и попадал на волос в отверстии держателя. На экране появится дифракционная картина в виде яркой центральной полосы и значительно более слабых боковых полосок. **Центры темных промежутков** между этими полосками соответствуют точкам дифракционных минимумов с координатами x_m .
- 3. Измерить координаты x_m , $m=\pm 1,\pm 2,\pm 3$ шести дифракционных минимумов на экране (три слева и три справа от центрального максимума), а также расстояние L от волоса до экрана. Результаты занести в таблицу.
 - 4. Выключить лазер.
 - 5. По формуле $a = \frac{L\lambda m}{2} \left(\frac{1}{x_m} + \frac{1}{|x_{-m}|} \right)$, где $m = \pm 1, \pm 2, \pm 3$ определить три значения ширины

волоса a, найти среднее значение $\langle a \rangle$. Рассчитать величины (модули) отклонения от среднего значения $\Delta a = \left| a - \langle a \rangle \right|$, а также среднюю величину такого отклонения $\langle \Delta a \rangle$ и относительную погрешность $E = \frac{\langle \Delta a \rangle}{\langle a \rangle} \cdot 100\%$. Результаты занести в таблицу.

m	x_m , MM	а, мкм	$\langle a \rangle$, MKM	Δa , MKM	$\langle \Delta a \rangle$, мкм	E, %
1						
-1						
2						
-2						
3						
-3						
$\lambda = \dots$ HM; $L = \dots$ M; $a = \langle a \rangle \pm \langle \Delta a \rangle = \dots \pm \dots$ HM						

Контрольные вопросы к лабораторной работе № 34

- 1. Что общего и в чем различие явлений интерференции и дифракции?
- 2. В чем заключается принцип Гюйгенса-Френеля?
- 3. Свет ночью падает из коридора в неосвещенную комнату через щель в приоткрытой двери. Наблюдатель "1" видит эту светящуюся щель на продолжении световых лучей. По какой причине и за счет каких физических явлений щель видит наблюдатель "2"?

- 4. Проделайте и объясните вывод формулы $I=\frac{4I_0}{\alpha^2}\sin^2\left(\frac{\alpha}{2}\right)$, где $\alpha=\frac{2\pi a\sin\phi}{\lambda}$, для интенсивности
- света, дифрагировавшего на узкой щели.
- 5. Что такое зоны Френеля? Какую форму имеют зоны Френеля и где они расположены в случае дифракции света на узкой щели?
- 6. Сформулируйте условие возникновения дифракционного минимума при дифракции света на узкой щели.
- 7. На узкую щель ширины a=2 мкм в непрозрачном препятствии падает нормально свет с длиной волны $\lambda=500$ нм. Сколько зон Френеля может открывать эта щель для наблюдателя, находящегося за препятствием? От чего зависит число открытых щелью зон?
- 8. На узкую щель ширины a=2 мкм в непрозрачной ширме падает нормально свет с длиной волны
- λ = 500 нм. Во сколько раз дифракционное изображение щели на экране, удаленном на расстояние
- L = 1 м, больше геометрического изображения щели?
- 9. В чем заключается принцип Бабине?
- 10. Сделайте вывод расчётной формулы для определения ширины волоса?
- 11. Что происходит с дифракционной картиной на экране, если тонкий волос заменить более толстым?
- 12. Почему для проведения эксперимента необходимо использовать луч лазера, а не свет фонарика?

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт.: Т. 2: Электричество. Колебания и волны. Волновая оптика СПб., М., Краснодар: Лань, 2008. $\S 90$ -93.
- 2. Колмаков Ю.Н., Пекар Ю.А., Лежнева Л.С. Электромагнетизм и оптика, изд. ТулГУ. 2010, гл.8 §§1, 2, 6.