

NE 4.0

Aprendizado de Máquina

Árvores de Decisão

Ivanovitch Silva ivanovitch.silva@ufrn.br

Decision Trees

How can we split the tree?

Algorithm used in Decision Trees

- ID3 (Entropy)
- Gini Index
- 3. Chi-Square
- 4. Reduction in Variance
 - a. C4.5, pruning
- 5.

COMPLETE

Entropy is an indicator of how messy your data is.

Why Entropy in Decision Trees?

- The goal is to tidy the data.
- You try to separate your data and group the samples together in the classes they belong to.
- You maximize the purity of the groups as much as possible each time you create a new node of the tree
- Of course, at the end of the tree, you want to have a clear answer.

Mathematical Definition of Entropy

Suppose a set of N items, these items fall into two categories:

$$+ gain > 50k(k)$$

$$p = rac{k}{N}, q = rac{m}{N} \ Entropy = -p \log p - q \log q$$

Generalization

Feature X
$$E(X) = -\sum_{i=1}^{c} P(X_i) \log_b P(X_i)$$

$$P(X_i) \text{ is the fraction of examples in a given class i}$$

<= 50k. 17288 > 50k. 5487 from scipy.stats import entropy
entropy(df_train.high_income.value_counts(), base=2)
0.7965702796015677

Entropy using the frequency table of two attributes

$$E(T \mid X) = \sum_{c \in X} \frac{|X_{c}|}{|X|} E(T \mid X_{c})$$

```
cross = pd.crosstab(
            df_train.age <= df_train.age.median(),</pre>
            df train.high income)
```

```
0.486894 * entropy(cross.iloc[0], base=2) \
+ 0.513106 * entropy(cross.iloc[1], base=2)
0.7509335429830957
```


Information Gain

IG (T,X) = E(T) - E(T|X)Information Gain from X on T The information gain is based on the decrease in entropy after a dataset is split on an attribute.

Constructing a decision tree is all about finding attribute that returns the **highest information gain** (i.e., the most homogeneous branches).

Gini(x) = 1 -
$$\sum_{i=1}^{c} P(x_i)^2$$

Entropy(x) = - $\sum_{i=1}^{c} P(x_i) \log_b P(x_i)$

Gini index or Entropy is the criterion for calculating **Information Gain**. Both of them are measures of impurity of a node.

from sklearn.tree import plot_tree

Taxonomy of Classifier Evaluation Metrics

Threshold Metrics

Ratio when a predicted class does not match

Accuracy, Error, Sensitivity, Specificity, G-mean, precision, recall, Abeta-measure

Ranking Metrics

Based on score of class membership and variations of thresholds to measure the effectiveness of classifiers.

> ROC Curve, ROC AUC, Precision-Recall Curve

Probability Metrics

Quantify the uncertainty in a classifier's prediction

> Log-Loss Brier Score

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

Э

Predicted

class (0)

Negative

True Positive (TP)

Predicted

Expected

False Positive (FP)

Predicted

Expected

Predicted

00

Error = 1 - Accuracy

Accuracy =

TP + TN

TP + FN + FP + TN

False Negative (FN)

Predicted

Expected

Expected

True Negative (TN)

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

Predicte class (0) Vegative

True Positive (TP) Predicted Expected

False Negative (FN)

Predicted

False Positive (FP) Predicted Expected

TN Specificity = FP + TN

Sensitivity =

G-mean = \ Sensitivity X Specificity

TP

TP + FN

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

Э

Predicted class (0) Negative

False Negative (FN)

Expected

Predicted

Predicted

00

(positive predicte TP + FP

Precision =

Predicted

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

True Positive (TP)

Predicted Expected

O

O

False Negative (FN)

Predicted Expected

$$\beta == \begin{cases} 0.5, & \text{more weight on precision} \\ 1.0, & \text{balance on weight} \\ & \text{PR and RE} \\ 2.0, & \text{less weight on precision} \end{cases}$$

Rank metrics are more concerned with evaluating classifiers based on **how effective** they are at separating classes.

These metrics require that a **classifier predicts a score** or a probability of class membership. From this score, **different thresholds** can be applied to **test the effectiveness of classifiers**. Those models that maintain a good score across a range of thresholds will have good class separation and will be ranked higher.

Receiver Operating Characteristic (ROC)

False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

True Negative (TN) Predicted

Expected

Precision-Recall (PR) Curve

Hands ON

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2437279

Source:

Donor:

Ronny Kohavi and Barry Becker Data Mining and Visualization Silicon Graphics. e-mail: ronnyk '@' live.com for questions.

()()

from sklearn.neighbors import LocalOutlierFactor from sklearn.ensamble import IsolationForest

 $\langle \rangle \langle \rangle$