# 论文笔记: CLG-CGEC规则系统

2023.7.31 HAVEN

论文原文:

```
@inproceedings{ma2022linguistic,
  title={Linguistic Rules-Based Corpus Generation for Native Chinese Grammatical Error Correction},
  author={
        Ma, Shirong and
        Li, Yinghui and
        Sun, Rongyi and
        Zhou, Qingyu and
        Huang, Shulin and
        Zhang, Ding and
        Yangning, Li and
        Liu, Ruiyang and
        Li, Zhongli and
        Cao, Yunbo and others},
  booktitle = {
    Findings of the Association for Computational Linguistics: EMNLP 2022
    },
  year={2022}
}
```

Github:

https://github.com/masr2000/CLG-CGEC

在理论语言学领域,母语者是语法的权威。

——诺姆·乔姆斯基

# 摘要和背景

目前主流的CGEC(中文语法纠错)主要由深度学习模型完成,但是这些模型的训练有几个问题:

- 模型训练: 缺乏高质量语料库。
- 模型评价:使用NLPCC、CGED两种数据集评价,都倾向于非母语者犯的错误,所以模型在母语者这里的实际性能比较难以评估。这两种评价的样本相对都比较简短且问题明显,不符合母语者的情况。

#### CLG规则体系的优点是:

• 生成病句的同时还能同步生成类型标注。

• 模型的实际训练效果要好。

该研究同时制作了一个数据集NaCGEC是实际母语者产生的病句,值得一试。

# 相关研究

- 一、数据集
  - NLPCC
  - CGED
  - HSK
  - YACLC
- 二、相关模型:深度学习模型

# 研究内容

#### CLG规则

不考虑歧义和错别字、形近字错误。

然后只是大体描述了一下CLG规则的建立是基于语言者习惯的,而没有阐述其算法原理,需要翻补充材料和源码。

#### NaGEC数据集

人工数据集,其特征是来源于汉语母语者(高考病句题、公考),经典的病句。这跟前面提到的那几个数据集都有所区别。

## 数据分析

#### 数据集统计数据

下表展示了本研究构建的两个数据集的一些基本参数:总句子数、病句数、原始句子数量、平均句子长度、平均编辑距离、数据集扩展比例(后者大于一是因为有些句子有多个语病,被算了多次)。

|                            | CLG-Train | NaCGEC-Test |
|----------------------------|-----------|-------------|
| Number of Sentences        | 591,404   | 6,767       |
| <b>Erroneous Sentences</b> | 591,404   | 6,496       |
| Number of References       | 591,404   | 7,793       |
| Average Length (Char.)     | 40.31     | 56.54       |
| Edit Distance (Char.)      | 2.18      | 4.19        |
| References / Sentence      | 1.00      | 1.20        |

下表是一般意义上修正特定错误病句的编辑距离的统计。在模型测试的时候用于基本修改能力的评价。

|                      | Replac | e Insert | Delete | Total |
|----------------------|--------|----------|--------|-------|
| Structural Confusion | 0.44   | 0.87     | 1.55   | 2.86  |
| Improper Logicality  | 0.60   | 0.90     | 2.06   | 3.56  |
| Missing Component    | 0.10   | 2.10     | 0.42   | 2.62  |
| Redundant Component  | 0.09   | 0.06     | 2.00   | 2.15  |
| Improper Collocation | 1.28   | 0.79     | 0.79   | 2.86  |
| Improper Word Order  | 0.46   | 5.37     | 5.42   | 11.24 |

## 数据集人工评测

方法:在三个测试集中随机抽取300个正确句子和300个错误句子,在确保正确性的前提下人工对这些句子是否有语病进行一个二分类。下表反映了这一点,Score表示注释者判断句子符合母语人士语言习惯的程度(0,1,2)。

|                         | Pre                     | Rec   | $F_1$ | Score                |
|-------------------------|-------------------------|-------|-------|----------------------|
| NLPCC<br>CGED<br>NaCGEC | 78.57<br>95.00<br>72.86 | 90.48 | 92.68 | 0.92<br>0.85<br>1.78 |

结论: NaCGEC的病句更加隐蔽,并且更加接近实际语言习惯。

# 实验

#### 实验配置

受测模型: transformer,gector-chinese。

训练数据:5类数据集。

评估方法: 词级MaxMatch (M2) Scorer。它计算黄金编辑集和系统编辑集之间的Precision, Recall和

F0.5。

#### 实验细节

涉及模型参数和训练批次等,从略。

#### 实验结果

|                                     |                                                                           | Pre                                      | Rec                                    | F <sub>0.5</sub>                         |
|-------------------------------------|---------------------------------------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|
| Transformer (Vaswani et al., 2017)  | Data Aug.(1000K) Lang8(1220K) Lang8+HSK(1377K) CLG(591K) Lang8+CLG(1811K) | 3.50<br>8.22<br>5.91<br>17.19<br>26.75   | 1.49<br>1.04<br>0.79<br>6.20<br>5.89   | 2.76<br>3.44<br>2.57<br>12.69<br>15.66   |
| GECToR-Chinese (Zhang et al., 2022) | Data Aug.(1000K) Lang8(1220K) Lang8+HSK(1377K) CLG(591K) Lang8+CLG(1811K) | 4.35<br>20.77<br>22.01<br>23.25<br>27.71 | 1.85<br>6.97<br>8.73<br>11.03<br>12.19 | 3.42<br>14.88<br>16.88<br>19.04<br>22.09 |

总结一下就是在CLG+benchmark上训练出来的效果相对好一点。

#### 泛化性评估

下面是使用transformer基于不同的数据集训练之后用NLPCC进行评估的结果。

|                         | Pre   | Rec   | F <sub>0.5</sub> | $\Delta F_{0.5}$ |
|-------------------------|-------|-------|------------------|------------------|
| No Pretrained           |       | 13.41 |                  |                  |
| Data Aug. (1000K)       | 41.49 | 14.48 | 30.21            | +4.12            |
| Data Aug. (1600K)       | I     |       |                  | +5.70            |
| CLG (591K)              | 38.24 | 16.64 | 30.36            | +4.27            |
| CLG + Data Aug. (1591K) | 41.73 | 17.02 | 32.34            | +6.25            |

Data Aug是使用了数据扩充的方法:在将正确的句子分割成单词后,根据不同的概率对句子中的每个单词执行以下操作:70%的不修改,10%的在该单词之前插入随机单词,10%的用随机单词替换该单词,以及删除该词的10%。

从ΔF0.5来看,依然能够证明基于CLG训练的数据能够增强模型的纠错能力。

#### 样例研究和细粒度分析

通过一些样例,可以看出CLG训练出来的模型更难在修改之后直接丧失语句原本的意义。

用CLG训练的模型在细粒度语病样例上的测试结果如下所示。

|                      | Pre   | Rec   | F <sub>0.5</sub> |
|----------------------|-------|-------|------------------|
| Structural Confusion | 37.14 | 23.53 | 33.28            |
| Improper Logicality  | 31.63 | 19.17 | 27.99            |
| Missing Component    | 9.48  | 4.00  | 7.44             |
| Redundant Component  | 27.75 | 15.90 | 24.15            |
| Improper Collocation | 7.82  | 3.30  | 6.13             |
| Improper Word Order  | 19.82 | 5.65  | 13.20            |

可见,一旦语病的粒度过细(隐蔽),模型的纠错能力就会大大降低。这是研究的一个问题,因为我们现在对语病搭配的理解不足,语病错误的方式非常多,很难仅通过一次研究就找到共性,解决问题。下图是已知的语病分类。



# 研究限制

由于中文的特殊性,这个CLG规则没办法用在其他语言上。

模型参数还可以更大,采用更大的模型进行测试能更好地反映benchmark的效果。

# 总结

这篇论文讲了CLG规则生成数据集的可靠性,提供了许多可参考的病句语料库,并且只使用了一种通用评价指标就是M2-score。我之前用语病分类来评估的说法是不对的。

这篇论文没讲CLG算法的实现,也没有讲M2-score的细节,所以还需要有相关的论文阅读,以及代码的理解。

启示是:虽然论文没有提,但实际上并没拿CLG做测试集。我们一开始是拿CLG做测试集,并且模型是没有训练的。所以我怀疑一开始极低的准确率是CLG不适合拿来做测试导致的。毕竟CLG生成的句子肯定不是gold sentence.

按照论文的方法,正确的解决方案应该是:用CLG数据集直接训练,然后在NLPCC和NaCGEC上进行M2-score测试。

不过该研究的实验可以对我们的模型测试产生启发:只要把其中用来训练的模型transformer替换成GLM即可。