At time t and location $\{X(t), Y(t)\}'$,

$$\frac{\frac{dX(t)}{dt}}{\frac{dY(t)}{dt}} = \begin{bmatrix} v_x(t) \\ v_y(t) \end{bmatrix}$$

Instantaneous velocity at time t

Velocity is obtained by differentiating location with respect to continuous time.

(Continuous Time Correlated Random Walk, Johnson et al. 2008)

We will numerically approximate (Euler-Maruyama)

Velocity is obtained by differentiating location with respect to continuous time.

At time t and location $\{X(t), Y(t)\}'$,

We will numerically
$$\rightarrow$$
 $\left[\frac{dX(t)}{dt}\right]$ $=$ $\left[\frac{v_x(t)}{v_y(t)}\right]$ (Euler-Maruyama)

Differentiating velocity with respect to time allows for autocorrelation in time and spatially-varying drift in the model.