Applied Statistical Analysis I/
Quantitative Methods I
POP77003/77051
Fall 2024

Week 10

Yao (Sara) HAN hany3@tcd.ie

Department of Political Science
Trinity College Dublin
13 November, 2024

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises

Income and environmental protection

Regime type and environmental protection

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$

```
## Call:
## lm(epi_epi ~ democracy + income, data = qog_data)
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -53.563 -6.502 0.498 6.773 20.198
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                  1.1269 31.327 < 2e-16 ***
                     35.3027
## democracy
                     16.5270
                                  1.8409 8.978 9.08e-16 ***
                     3.5793
                                  0.4266 8.390 2.92e-14 ***
## income
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.982 on 154 degrees of freedom
## (37 observations deleted due to missingness)
## Multiple R-squared: 0.6175, Adjusted ## R-squared: 0.6126
## F-statistic: 124.3 on 2 and 154 DF, p-value: < 2.2e-16
```

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

$$\hat{Y}_i = \alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$$

Model for Autocracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

Model for Democracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 1) + (3.579 * Income_i)$
 $\hat{Y}_i = 51.83 + (3.579 * Income_i)$

How to include categorical explanatory variables with more than two levels?

Environmental performance_i = $\alpha + \beta_1 * Income_i + \beta_2 * Region_i + \epsilon_i$

```
## table(qog_data$ht_region)
                      Eastern Europe (1)
                                                        Latin America(2)
##
      North Africa & the Middle East (3)
                                                  Sub-Saharan Africa (4)
    Western Europe and North America (5)
                                                           East Asia (6)
##
##
                     South-East Asia (7)
                                                          South Asia (8)
##
                                 11
##
                          The Pacific (9)
                                                      The Caribbean (10)
##
                                 12
                                                                   13
```

```
1 # Load package
2 library (fast Dummies)
   # Create dummy variables for categorical variable
 5 qog_data <- dummy_cols(qog_data,
                           select_columns = c("ht_region"))
   # Print first 5 rows in dataset
   head (qog_data [c("ht_region_1",
              "ht_region_2",
              "ht_region_3",
11
12
              "ht_region_4",
13
              "ht_region_5".
              "ht_region_6",
14
15
              "ht_region_7",
16
              "ht_region_8",
17
              "ht_region_9",
              "ht_region_10")], 5)
18
   ## ht_region_1 ht_region_2 ht_region_3 ht_region_4 ht_region_5
   ## 2
```

```
1 # Run regression model
2 m2 <- lm(epi_epi ~ income +
              ht_region_1 + ht_region_2 + ht_region_3 +
              # no region 4 (Sub-Saharan Africa) = reference category.
5
              ht_region_5 + ht_region_6 + ht_region_7 + ht_region_8 + ht_region_9 +
              ht_region_10, data = qog_data
8 # Print results
9 summary (m2)
  Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
               32.3992
                          1.1296 28.683 < 2e-16 ***
  (Intercept)
  income
                1.7410
                          0.4061 4.287 3.23e-05 ***
               18.4245
                         1.8769 9.817 < 2e-16 ***
  ht_region_1
  ht_region_2
               11.6208
                          2.0362 5.707 6.01e-08 ***
  ht_region_3
               9.4434
                          2.4665 3.829 0.000189 ***
  ht_region_5
               35.2532
                          2.4854 14.184 < 2e-16 ***
  ht_region_6
               16.2287
                          3.6737 4.418 1.91e-05 ***
                          2.7820 1.483 0.140281
  ht_region_7
               4.1247
                          3.2676 -0.664 0.507774
  ht_region_8
               -2.1694
  ht_region_9
                   NA
                                     NA
  ht_region_10 11.0665
                          3.5607 3.108 0.002257 **
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  Residual standard error: 7.528 on 149 degrees of freedom
    (35 observations deleted due to missingness)
  Multiple R-squared: 0.7897, Adjusted R-squared: 0.777
  F-statistic: 62.16 on 9 and 149 DF, p-value: < 2.2e-16
```

```
1 # Use relevel to code dummy variables on the fly
2 # specify region 4 (Sub-Saharan Africa) = reference category
3 m3 <- Im(epi_epi~ income + relevel(as.factor(ht_region), ref = "4"),
                data = qog_data)
5
 # Print results
7 summary (m3)
                                           Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                                            32.3992
                                                        1.1296 28.683 < 2e-16 ***
                                             1.7410
  income
                                                        0.4061 4.287 3.23e-05 ***
  relevel(as.factor(ht_region), ref = "4")1
                                            18.4245
                                                        1.8769 9.817 < 2e-16 ***
  relevel(as.factor(ht_region), ref = "4")2
                                            11.6208
                                                        2.0362 5.707 6.01e-08 ***
  relevel(as.factor(ht_region), ref = "4")3
                                             9.4434
                                                        2.4665 3.829 0.000189 ***
  relevel(as.factor(ht_region), ref = "4")5
                                            35.2532
                                                        2.4854 14.184 < 2e-16 ***
  relevel(as.factor(ht_region), ref = "4")6
                                            16.2287
                                                        3.6737
                                                                4.418 1.91e-05 ***
  relevel(as.factor(ht_region), ref = "4")7
                                             4.1247
                                                        2.7820
                                                              1.483 0.140281
  relevel(as.factor(ht_region), ref = "4")8
                                            -2.1694
                                                        3.2676 -0.664 0.507774
  relevel(as.factor(ht_region), ref = "4")10
                                           11.0665
                                                        3.5607
                                                                3.108 0.002257 **
  Signif. codes: 0 '***' 0.001 '**' 0.01 '.' 0.1 ' '1
  Residual standard error: 7.528 on 149 degrees of freedom
    (35 observations deleted due to missingness)
  Multiple R-squared: 0.7897, Adjusted R-squared: 0.777
  F-statistic: 62.16 on 9 and 149 DF, p-value: < 2.2e-16
```

Under control of income, Eastern Europe has an Environmental Performance Index score of 18.4245 scale points higher than Sub-Saharan Africa.

Interactions

What are interactions?

Interactions

The association between X on Y might vary depending on the value of a third variable M (=Moderator):

$$\hat{Y}_i = \alpha + \beta_1 X_i + \beta_2 M_i + \beta_3 (X_i M_i) + \epsilon_i$$

The interpretation of the regression coefficients changes:

- α is the expected value of Y when X=0 and M=0
- β_1 is the change in Y when X increases by one unit, when M=0
- β_2 is the change in Y when M increases by one unit, when X=0
- β_3 is the interaction term of X and M

Rearrange terms:

$$\hat{Y}_i = \alpha + \beta_2 M_i + (\beta_1 + \beta_3 M_i) X_i + \epsilon_i$$

 β_3 is the *added* increase in β_1 , if M increases by one unit.

Environmental Performance_i = $\alpha + \beta_1$ Income_i + β_2 Regime Type_i + β_3 Income_i * Regime Type_i + ϵ_i

```
1 # Run regression model with interaction term
2 int_m2 <- lm(epi_epi ~ income + democracy + income*democracy, data = qog_data)
4 # Print results
5 summary (int_m2)
  ## Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
  ##
  ## (Intercept)
                                         1.0684 34.768 < 2e-16 ***
                              37.1474
  ## income
                               2.1902
                                         0.4532 4.833 3.24e-06 ***
  ## democracyDemocracy
                               3.4490
                                         2.7819 1.240
                                                          0.217
  ## income:democracyDemocracy 5.1029
                                         0.8686 5.875 2.55e-08 ***
  ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  ##
  ## Residual standard error: 9.046 on 153 degrees of freedom
       (37 observations deleted due to missingness)
  ## Multiple R-squared: 0.6879, Adjusted R-squared: 0.6818
  ## F-statistic: 112.4 on 3 and 153 DF, p-value: < 2.2e-16
```

```
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                                        1.0684 34.768 < 2e-16 ***
## (Intercept)
                             37.1474
## income
                             2.1902
                                        0.4532 4.833 3.24e-06 ***
## democracyDemocracy
                             3.4490
                                        2.7819 1.240
                                                         0.217
## income:democracyDemocracy 5.1029
                                        0.8686 5.875 2.55e-08 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 9.046 on 153 degrees of freedom
   (37 observations deleted due to missingness)
## Multiple R-squared: 0.6879, Adjusted R-squared: 0.6818
## F-statistic: 112.4 on 3 and 153 DF, p-value: < 2.2e-16
```

- The average Environmental Protection Index (EPI) for poor (Income=0) autocracies is 37.1474 scale points (α) .
- For autocracies, with every additional 10,000 USD of income, the EPI increases by 2.1902 scale points (β_1) . \rightarrow Income effect for autocracies
- For poor democracies, the EPI is 3.4490 scale points higher, in comparison to poor autocracies (β_2).
- For democracies, with every additional 10,000 USD of income, the EPI increases by 7.2931 scale points $(\beta_1 + \beta_3 = 2.1902 + 5.1029 = 7.2931)$. \rightarrow Income effect for democracies

```
Model for Autocracies (democracy = 0)  \hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * Regime Type_i) + (5.1029 * Income_i * Regime Type_i)   \hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 0) + (5.1029 * Income_i * 0)   \hat{Y}_i = 37.1474 + (2.1902 * Income_i)  Model for Democracies (democracy = 1)  \hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * Regime Type_i) + (5.1029 * Income_i * Regime Type_i)   \hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 1) + (5.1029 * Income_i * 1)   \hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 1) + (5.1029 * Income_i * 1)   \hat{Y}_i = 40.5964 + (7.2931 * Income_i)
```


Non-linear effects

Model a curvilinear (=curved lines) relationship between an independent variable and the dependent variable.

Include X and the square of X:

$$\hat{Y}_i = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

Non-linear effects

"U-shaped" relationship between democracy and environment protection?

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.4244 4.2944 9.180 2.82e-16 ***
income 3.0094 0.4576 6.576 7.19e-10 ***
vdem_polyarchy -44.3531 17.7037 -2.505 0.0133 *
sqr_vdem_polyarchy 74.1559 17.0553 4.348 2.50e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.133 on 153 degrees of freedom
(37 observations deleted due to missingness)

Multiple R-squared: 0.6819,Adjusted R-squared: 0.6757
F-statistic: 109.3 on 3 and 153 DF, p-value: < 2.2e-16
```

Non-linear effects

What is the relationship between education and Euroscepticism?

- H_1 : The higher the years of education, the lower the level of Euroscepticism.
- H_2 : The higher the income, the lower the level of Euroscepticism.
- H_3 : The higher the trust in politics, the lower the level of Euroscepticism.
- H_4 : The more positive attitudes towards immigration, the lower the level of Euroscepticism.

Does gender influence the effect of attitudes towards immigration on Euroscepticism?

Does whether the person was born in the country influence the effect of education on Euroscepticism?

Is the effect of education on Euroscepticism inverted U-shaped?

Is the effect of income on Euroscepticism U-shaped?

