

Ansh Mujral amujral@ucsd.edu

Investigating CoTTA: Validating Real-Time Neural Network Adaptations

Ifunanya Okoroma iokoroma@ucsd.edu

TTAPL Choice:

Keenan Serrao kserrao@ucsd.edu

Methods

Nicholas Swetlin nswetlin@ucsd.edu UC San Diego HALICIOĞLU DATA SCIENCE INSTITUTE

Mentor: Jun-Kun Wang jkw005@ucsd.edu

Motivation

Machine learning (ML) systems can suffer from test-data distribution shifts.

Established "solution": Test-time adaptation with pseudo-labeling (TTAPL).

We need better variations of TTAPL that: produce more accurate models, generalize to different models.

Figure 1: Types of Distribution Shifts

Background

Goal of TTAPL: adapt model weights θ to better suit a distribution-shifted dataset of unlabeled test images, X.

Generate pseudo-labels (\hat{y}) for each test image in X.

2. Adapt model weights **0** from pseudo-labels (\hat{y}) .

Figure 2: TTAPL General Algorithm

CoTTA – one type of continual TTAPL that shows significant promise in existing literature.

Consistency Loss – Part of CoTTA that determines how much a pseudo label should affect model weights.

Figure 3: CoTTA Algorithm

CoTTA consistency loss affects how model

therefore, changing can improve predictions!

Procedure:

- Test CoTTA on seven common models each pretrained and with a different model structure.
- For each model:
 - Adapt four times each time with different consistency loss.
- For each combination of model, consistency loss:
 - Perform CIFAR10-to-CIFAR10C, an established computer-vision experiment for TTAPL.
 - Evaluate model quality with accuracy, precision, recall, F1 score.

Figure 5: Experiment flowchart for a single model.

Results

Table 1: Accuracy Increase (%) per Model-Loss Combination. The highest value(s) per model (column) are shaded red.

Better Predictions: higher increases in accuracy, precision, recall, F1 score for our variations on select models compared to original CoTTA.

Model Type Matters: size and architecture of model still highly influence quality of CoTTA.

In Practice: when using CoTTA to adapt your model, consider the model being adapted; incorporating different consistency loss likely leads to better prediction quality.

Future work:

- Determine CoTTA efficacy on larger ML models (larger than 40 neural network layers).
- Test performance on higher resolution data.

Contributions

AM: Implemented two models, analyzed result metrics, contributed to website.

IO: Implemented two models, contributed to poster and paper. KS: Restructured original CoTTA repository to run on different architectures, contributed to website.

NS: Implemented two models, contributed to poster and paper.

References

Wang, Gool Dai, Fink. 2022. "Continual Test-Time Adaptation." Computer Vision and Pattern Recognition (CVPR) 2022.