

3 band car audio processor

Datasheet - production data

Features

- Input multiplexer
 - QD0 to QD3: quasi-differential stereo input
 - SE0 to SE4: stereo single-ended input
- Loudness
 - 2nd order frequency response
 - Programmable center frequency (400 Hz/800 Hz/2400 Hz)
 - 15 dB with 1 dB steps
 - Selectable high frequency boost
 - Selectable flat-mode (constant attenuation)
- Volume
 - +23 dB to -23 dB with 1 dB step resolution
 - Soft-step control with programmable blend times
- Bass
 - 2nd order frequency response
 - Programmable center frequency (60/70/80/100//110/120/130/150 Hz)
 - Q programmable 1.0/1.25/1.5/2.0
 - DC gain programmable
 - -15 to 15 dB range with 1 dB resolution
 - Soft-step control with programmable blend times
- Middle
 - 2nd order frequency response
 - Programmable center frequency (500 Hz/1 kHz/1.5 kHz/2 kHz)
 - Q programmable 1.0/2.0
 - -15 to 15 dB range with 1 dB resolution
 - Soft-step control with programmable blend times
- Treble
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (10/12.5 /15/17.5 kHz)

- -15 to 15 dB range with 1 dB resolution
- Soft-step control with programmable blend times
- High pass filter
 - 2^{n'd} order frequency response
 - Programmable cut off frequency (50/60/80/100/120/150/180/220 Hz)
- · Low pass filter
 - 2nd order low pass filter
 - Programmable cut off frequency
 - (50 Hz/60 Hz/80 Hz/100 Hz/120 Hz)
- Speaker
 - 6 independent soft-step speaker controls
 - +23 dB to -79 dB with 1 dB steps
 - Soft-step control with programmable blend times
- Output driver
 - Four dedicated outputs for an internal (onboard) power amplifier.
 - Six 3.55 VRMs line-driver outputs for an external (remote) power amplifier
- Mute functions
 - Direct mute
 - Main/Sub channel: digitally controlled softmute with 4 programmable mute-times
 - (0.5 ms/4 ms/8 ms/16 ms)
 - Speaker: digitally controlled soft-mute with 4 programmable mute-times (4 ms/8 ms/32 ms/64 ms)
- Spectrum analyzer
 - 7-band, fully integrated 2nd order bandpass filter with programmable filter quality for different visual behavior
 - Selectable In-gain 0/2/4/6dB
- AC coupling
 - Three AC-coupling input
 - One AC-coupling output
- Offset detection
 - Offset voltage detection circuit for on-board power amplifier failure diagnosis

Table 1. Device summary

Order code	Package	Packing
TDA7715	LQFP64	Tray

Contents TDA7715

Contents

1	Desc	cription	and block circuit diagram	6
	1.1	Descrip	otion	6
	1.2	Block o	circuit diagram	6
2	Pins	connec	etion and description	7
	2.1	Pins co	onnection	7
	2.2	Pins de	escription	7
3	Elec	trical sp	ecifications	10
	3.1	Therma	al data	10
	3.2	Absolu	te maximum ratings	10
	3.3	Electric	cal characteristics	10
4	Desc	cription	of audio processor	18
	4.1	Input s	tage	18
		4.1.1	Single-ended stereo input (SE0, SE1, SE2, SE3, SE4)	18
		4.1.2	Quasi-differential stereo Input (QD0, QD1, QD2, QD3)	18
		4.1.3	Fast charge	18
	4.2	Volume	e	19
	4.3	Loudne	ess	19
		4.3.1	Loudness attenuation	19
		4.3.2	Peak frequency	20
		4.3.3	High frequency boost	20
		4.3.4	Flat mode	21
	4.4	Soft-m	ute	21
	4.5	Bass .		22
		4.5.1	Bass attenuation	22
		4.5.2	Center frequency	22
		4.5.3	Quality factors	23
		4.5.4	DC Mode	23
	4.6	Middle		24
		4.6.1	Middle attenuation	24
		4.6.2	Middle center frequency	24

		4.6.3 Quality factors	25
	4.7	Treble	25
		4.7.1 Treble attenuation	25
		4.7.2 Center frequency	26
	4.8	High pass filter	26
	4.9	Low pass filter	27
	4.10	Soft-step	27
	4.11	DC Offset Detector	28
	4.12	Spectrum analyzer	29
	4.13	Output stage	30
	4.14	Mixing	32
	4.15	Audio processor testing	32
	4.16	Application note	33
5	I ² C bu	us specification	34
	5.1	Interface protocol	34
	5.2	I2C bus electrical characteristics	34
		5.2.1 Receive mode	35
		5.2.2 Transmission mode	35
		5.2.3 Reset condition	35
	5.3	Data byte specification	37
6	Packa	age information	56
7	Revis	ion history	57

List of tables TDA7715

List of tables

Table 1.	Device summary	1
Table 2.	Pins description	7
Table 3.	Thermal data	. 10
Table 4.	Absolute maximum ratings	. 10
Table 5.	Electrical characteristics	. 10
Table 6.	I ² C bus electrical characteristics	. 34
Table 7.	Subaddress (receive mode)	. 36
Table 8.	Main / sub selector (0)	. 37
Table 9.	Mix selector / anti-alias / fast charge (1)	. 38
Table 10.	Volume main/sub/mix (2-4)	. 39
Table 11.	Soft-step (5)	. 40
Table 12.	Soft-mute I (6)	. 41
Table 13.	Soft-mute II / middle (7)	. 41
Table 14.	Loudness (8)	. 42
Table 15.	Treble filter (9)	. 42
Table 16.	Middle filter (10)	. 43
Table 17.	Bass filter (11)	
Table 18.	Bass / low pass filter (12)	. 44
Table 19.	High pass filter (13)	
Table 20.	Speaker0/1 source selector (14)	. 46
Table 21.	Output gain / speaker2 source selector (15)	. 46
Table 22.	Speaker attenuation (0L/0R/1L/1R/2L/2R) (16-21)	. 47
Table 23.	Auto-mix I (22)	. 48
Table 24.	Auto-mix II (23)	
Table 25.	Auto-mix III (24)	. 50
Table 26.	DC-detector/speaker-limiter (25)	
Table 27.	Spectrum analyzer (26)	. 52
Table 28.	Test I (27)	. 53
Table 29.	Test II (28)	. 54
Table 30.	Test III (29)	
Table 31.	Document revision history	. 57

TDA7715 List of figures

List of figures

Figure 1.	Block diagram	6
igure 2.	Pins connection (top view)	7
igure 3.	Input section signal flow	
igure 4.	Loudness attenuation @ fP = 400 Hz	. 19
igure 5.	Loudness center frequencies @ attn. = 15 dB	. 20
igure 6.	Loudness attenuation, fc = 2.4 kHz	. 20
igure 7.	Soft-mute timing	
igure 8.	Bass control range; fC = 80 Hz, Q = 1.0	
igure 9.	Bass center frequencies; gain = 14 dB, Q = 1.0	. 22
Figure 10.	Bass filter quality factors; fC = 80 Hz, gain = 14 dB	23
Figure 11.	Bass normal and DC mode @ gain = 14 dB, fc = 80 Hz	23
Figure 12.	Middle control @ fc = 1 kHz, Q = 1	
Figure 13.	Middle center frequency @ gain = 10 dB, Q = 1	24
Figure 14.	Middle quality factors @ gain = 10 dB, fc =1 kHz	
igure 15.	Treble control @ fc = 17.5 kHz	
Figure 16.	Treble center frequencies @ gain = 14 dB	
Figure 17.	High pass cut frequencies	
Figure 18.	Subwoofer cut frequencies	
Figure 19.	DC offset detection circuit (simplified)	
igure 20.	Spectrum analyzer block diagram	
igure 21.	Read cycle timing diagram	
igure 22.	Output-section signal flow	
igure 23.	Mixing block diagram	
igure 24.	Application schematic	
igure 25.	I ² C bus interface protocol	
igure 26.	I ² C bus data	
igure 27.	LFQP64 mechanical data and package dimensions	56

1 Description and block circuit diagram

1.1 Description

The TDA7715 is a high performance signal processor specifically designed for car radio applications.

The device includes a high performance audio processor with fully integrated audio filters and new soft-step architecture.

The digital control allows programming in a wide range of filter characteristics.

1.2 Block circuit diagram

2 Pins connection and description

2.1 Pins connection

Figure 2. Pins connection (top view) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 DCSEL DCERR 1 47 SMUTE2 WININ 2 SMUTE1 NC 3 45 SMUTE0 GNDA3 4 44 STUMESUB CREF 5 43 SMUTEMAIN GNDA1 6 42 SDA GNDD 7 41 SCL NC 8 LQFP64 40 SACLK VCC1 9 39 SAOUT NC 10 38 SARST SEOR 11 37 SUBR SE0L 12 36 SUBL SE1R 13 35 ACOUTL SE1L 14 SE2R 15 34 ACOUTR SE2L 16 NC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 QD2R/ACIN2R EQD2G/ACIN2L EQD2L/ACIN1R QD3R/ACIN1L EQD3R/ACIN1L EQD3G/ACIN0R EQD3G/ACIN0R E SE3R
SE3L
SE4R
QD0R
QD0G
QD0L
QD1R
QD1C QD3L/ACIN0L GAPGPS01616

2.2 Pins description

Table 2. Pins description

N#	Pin name	Description	I/O
1	DCERR	DC offset detector output	0
2	WININ	DC offset detector input	I
3	NC	No connected	NC
4	GNDA3	Analog Ground	S
5	CREF	Reference capacitor	0
6	GNDA1	Analog Ground	S
7	GNDD	Digital Ground	S
8	NC	No connected	NC

Table 2. Pins description (continued)

N#	Pin name	Description	I/O
9	VCC1	Supply	S
10	NC	No connected	NC
11	SE0R	Single-end input right	I
12	SE0L	Single-end input left	I
13	SE1R	Single-end input right	I
14	SE1L	Single-end input left	I
15	SE2R	Single-end input right	I
16	SE2L	Single-end input left	I
17	SE3R	Single-end input right	I
18	SE3L	Single-end input left	I
19	SE4R	Single-end input right	I
20	SE4L	Single-end input left	I
21	QD0R	Quasi-differential stereo inputs right	I
22	QD0G	Quasi-differential stereo inputs common	I
23	QD0L	Quasi-differential stereo inputs left	I
24	QD1R	Quasi-differential stereo inputs right	I
25	QD1G	Quasi-differential stereo inputs common	I
26	QD1L	Quasi-differential stereo inputs left	I
27	QD2R/ACIN2R	Quasi-differential stereo inputs right or ac-coupling input	I
28	QD2G/ACIN2L	Quasi-differential stereo inputs common or ac-coupling input	I
29	QD2L/ACIN1R	Quasi-differential stereo inputs left or ac-coupling input	I
30	QD3R/ACIN1L	Quasi-differential stereo inputs right or ac-coupling input	I
31	QD3G/ACIN0R	Quasi-differential stereo inputs common or ac-coupling input	I
32	QD3L/ACIN0L	Quasi-differential stereo inputs left or ac-coupling input	I
33	NC	No connected	NC
34	ACOUTR	AC coupling output, right channel	0
35	ACOUTL	AC coupling output, left channel	0
36	SUBL	Sub channel output left	0
37	SUBR	Sub channel output right	0
38	SARST	Spectrum analyzer reset	ı
39	SAOUT	Spectrum analyzer analog voltage output	0
40	SACLK	Spectrum analyzer clock input	I
41	SCL	I ² C bus clock	I
42	SDA	I ² C bus data	I/O
43	SMUTEMAIN	External mute pin for main channel	I

Table 2. Pins description (continued)

N#	Pin name	Description	I/O
44	SMUTESUB	External mute pin for sub channel	I
45	SMUTE0	External mute pin for speaker, signal path 0	Ι
46	SMUTE1	External mute pin for speaker, signal path 1	Ι
47	SMUTE2	External mute pin for speaker, signal path 2	Ι
48	DCSEL	Output DC level select	Ι
49	NC	No connected	NC
50	LD2R	Line driver output right	0
51	LD2L	Line driver output left	0
52	LD1R	Line driver output right	0
53	LD1L	Line driver output left	0
54	LD0R	Line driver output right	0
55	LD0L	Line driver output left	0
56	GNDA2	Analog Ground	S
57	VCC2	Supply	S
58	PA1R	Out-section rear output, right channel	0
59	PA1L	Out-section rear output, left channel	0
60	PA0R	Out-section front output, right channel	0
61	PA0L	Out-section front output, left channel	0
62	NC	No connected	NC
63	WINTCR	DC offset detector filter output right channel	0
64	WINTCL	DC offset detector filter output left channel	0

3 Electrical specifications

3.1 Thermal data

Table 3. Thermal data

Symbol	Description	Value	Unit
R _{th j-amb}	Thermal resistance junction-to-ambient	50	°C/W

3.2 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Operating supply voltage	13	V
V _{in_max}	Maximum voltage for signal input pins	7	V
T _{amb}	Operating ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature range	-55 to 150	°C

3.3 Electrical characteristics

 V_{CC} = 11.5 V; T_{amb} = 25 °C; R_L = 10 kΩ; all gains = 0 dB; f = 1 kHz; Input = SE1; Output = PAout; unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
Supply	Supply							
V _{cc}	Supply voltage	-	7.5	11.5	12.5	V		
ls	Supply current	-	48	55	62	mA		
Input selec	ctor							
R _{IN}	Input resistance	All single ended inputs	70	100	130	kΩ		
V _{CL}	Clipping level	Input Gain = 0 dB, THD = 1%	-	2	-	V _{RMS}		
S _{IN}	Input separation	-	80	100	-	dB		
Differentia	l stereo inputs							
R _{in}	Input resistance	Differential	70	100	130	kΩ		
CMRR	Common mode rejection ratio	V _{CM} =1 V _{RMS} @ 1 kHz	46	60	-	dB		
CIVIKK	for main source	V _{CM} =1 V _{RMS} @ 10 kHz	46	60	-	dB		
Loudness	Loudness control							
A _{MAX}	Max attenuation (1)	-	14	15	16	dB		

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
A _{STEP}	Step resolution (1)	-	0.5	1	1.5	dB
		f _{P1}	-	400	-	Hz
f _{Peak}	Peak frequency (2)	f _{P2}	-	800	-	Hz
		f _{P3}	-	2400	-	Hz
Volume co	ntrol					
G _{MAX}	Max gain ⁽¹⁾	-	21	23	25	dB
A _{MAX}	Max attenuation (1)	-	-26	-23	-20	dB
A _{STEP}	Step resolution (1)	-	0.5	1	1.5	dB
E _A	Attenuation set error	G = -23 to +23 dB	-1.5	0	1.5	dB
E _T	Tracking error	Gain difference of left/right	-	-	0.8	dB
V	DC stans	Adjacent attenuation steps	-	0.1	3	mV
V _{DC}	DC steps	Adjacent gain steps	-	0.5	5	mV
Soft-step			•	•	•	•
_	Soft step time	T ₁	5	7.5	12.5	ms
T _{SS}		T ₂	10	15	25	ms
Soft-mute			•	•	•	•
A _{MUTE}	Mute attenuation	-	80	100	-	dB
		T ₁	0.4	0.5	0.6	ms
_	Delay time (main & sub	T ₂	3	4	5	ms
T _{D1}	channel)	T ₃	6	8	10	ms
		T ₄	14	16	18	ms
		T ₁	3	4	5	ms
_	Dalay time (anadrar)	T ₂	6	8	10	ms
T _{D2}	Delay time (speaker)	T ₃	29	32	35	ms
		T ₄	60	64	68	ms
V _{TH_Low}	Low threshold for MUTE pin (3)	-	-	-	0.8	V
V _{TH_High}	High threshold for MUTE pin (3)	-	2.4	-	-	V
RPU	Internal pull-up resistor for MUTE Pin	-	25	45	65	kΩ
VPU	Internal pull-up Voltage for MUTE Pin	-	3.1	3.3	3.5	V

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Bass cont	rol	'	l .			
		f_{C0}	-	60	-	Hz
		f _{C1}	-	70	-	Hz
		f_{C2}	-	80	-	Hz
_	(2)	f _{C3}	-	100	-	Hz
Fc	Center frequency (2)	f_{C4}	-	110	-	Hz
		f _{C5}	-	120	-	Hz
		f _{C6}	-	130	-	Hz
		f _{C7}	-	150	-	Hz
		Q ₁	-	1	-	-
	(2)	Q_2	-	1.25	-	-
Q _{BASS}	Quality factor (2)	Q_3	-	1.5	-	-
		Q ₄	-	2	-	-
C _{RANGE}	Control range (1)	-	±14	±15	±16	dB
A _{STEP}	Step resolution (1)	-	0.5	1	1.5	dB
D0	D DO (1)	DC = off	-1	0	+1	dB
DC _{GAIN}	Bass DC gain ⁽¹⁾	DC = on, Gain= 14 dB	3.5	4.4	5.5	dB
Middle cor	ntrol	<u> </u>	1	•		
C _{RANGE}	Control range (1)	-	±14	±15	±16	dB
A _{STEP}	Step resolution (1)	-	0.5	1	1.5	dB
		f _{C1}	-	500	-	Hz
	Conton from (2)	f_{C2}	-	1	-	kHz
Fc	Center frequency (2)	f _{C3}	-	1.5	-	kHz
		f _{C4}	-	2	-	kHz
	Quality factor (2)	Q ₁	-	1	-	-
Q _{Middle}	Quality factor (=)	Q_2	-	2	-	-
Treble con	itrol		·			
C _{RANGE}	Control Range (1)	-	±14	±15	±16	dB
A _{STEP}	Step Resolution (1)	-	0.5	1	1.5	dB
		f _{C1}	-	10	-	kHz
F	Center frequency (2)	f_{C2}	-	12.5	-	kHz
Fc	Center frequency (=)	f _{C3}	-	15	-	kHz
		f _{C4}	-	17.5	-	kHz

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
AC coupli	ng		<u> </u>		<u>'</u>	1
R _{IN}	Input resistance	AC inputs	70	100	130	kΩ
V _{CL}	Clipping level	flat, THD = 1%	-	2	-	V _{RMS}
R _{OUT}	Output impedance	AC outputs	-	30	100	Ω
Speaker v	olume		•	•		
G _{MAX}	Max gain (1)	-	22	23	24	dB
A _{MAX}	Max attenuation (1)	-	-85	-79	-73	dB
A _{STEP}	Step resolution (1)	-	0.5	1	1.5	dB
A _{MUTE}	Mute attenuation	-	80	90	-	dB
-	Attancestica and among	G = -20 to +15 dB	-1	-	1	dB
EE	Attenuation set error	G = -20 to -79 dB	-4	-	4	dB
\/	DC stone	Adjacent attenuation steps	-	0.1	3	mV
V_{DC}	DC steps	Adjacent gain steps	-	0.5	7	mV
Highpass				•	•	•
		f_{C0}	-	50	-	Hz
		f _{C1}	-	60	-	Hz
		f _{C2}	-	80	-	Hz
_	(2)	f _{C3}	-	100	-	Hz
F _{HP}	Highpass corner frequency (2)	f_{C4}	-	120	-	Hz
		f _{C5}	-	150	-	Hz
		f _{C6}	-	180	-	Hz
		f _{C7}	-	220	-	Hz
Lowpass				l	L	· I
		f_{C0}	-	50	-	Hz
		f _{C1}	-	60	-	Hz
F_LP	Lowpass corner frequency (2)	f _{C2}	-	80	-	Hz
		f _{C3}	-	100	-	Hz
		f _{C4}	-	120	-	Hz
Audio out	puts	!	1	ļ	<u> </u>	1
		THD = 0.3%; V _{CC} = 8.5 V PA OUTPUT	-	2	-	V _{RMS}
V_{CL}	Clipping level	THD = 0.3%; V _{CC} = 8.5 V LD OUTPUT; Low gain	-	2.5	-	V _{RMS}
		THD = 0.3%; V _{CC} = 11.5 V LD OUTPUT; High gain	-	3.55	-	V _{RMS}

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
R _{OUT}	Output impedance	-	-	30	100	Ω
R_{L}	Output load resistance	-	2	-	-	kΩ
C _L	Output load capacitor	-			10	nF
		PA OUTPUT	3.8	4.0	4.2	V
V_{DC}	Output DC level	LD OUTPUT; Low gain	3.8	4.0	4.2	V
		LD OUTPUT; High gain	5.5	5.75	5.9	V
		PA OUTPUT	2	3	4	dB
G _{OUT}	Output gain	LD OUTPUT; Low gain	4	5	6	dB
		LD OUTPUT; High gain	7	8	9	dB
V _{TH_Low}	Low threshold for DESEL pin (3)	-	-	-	0.8	V
V_{TH_High}	High threshold for DCSEL pin (3)	-	2.4	-		V
R _{PU}	Internal pull-up resistor for DCSEL pin	-	32	50	68	kΩ
V _{PU}	Internal pull-up voltage for DCSEL Pin	-	3.1	3.3	3.5	V
		PA OUTPUT	1	1.5	2	Vpp
V_{th}	Speaker limiter threshold		2.5	3	3.5	Vpp
			3.5	4	4.5	Vpp
Auto mix o	detection					
		V ₁	1	5	12	mV
		V ₂	5	10	20	mV
		V_3	5	15	30	mV
V	Auto mix data at threahald	V ₄	10	20	40	mV
V_{th}	Auto mix detect threshold	V_5	15	25	45	mV
		V ₆	20	50	80	mV
		V ₇	50	75	120	mV
		V ₈	80	100	150	mV
		T ₁	0.4	0.5	0.6	ms
		T ₂	0.8	1	1.2	ms
т	Attach time	T ₃	1.6	2	2.4	ms
T _{attach}	Attach time	T ₄	3.5	4	4.5	ms
		T ₅	7	8	9	ms
		T ₆	14	16	18	ms

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test co	ndition	Min.	Тур.	Max.	Unit
		T ₁		100	125	150	ms
		T ₂		200	250	300	ms
-	Dalagas times	T ₃		400	500	600	ms
T _{release}	Release time	T ₄		800	1000	1200	ms
		T ₅		1500	2000	2500	ms
		T ₆		3000	4000	5000	ms
A _{MAX}	Attenuation	Auto mix prograttenuation	ammable	17	20	23	dB
A _{STEP}	Step resolution	-		0.5	1	1.5	dB
G _{mix}	Mix gain	-		5	6	7	dB
DC offset	detection					•	
		V ₁		±5	±30	±60	mV
.,		V ₂		±30	±60	±90	mV
V_{th}	Zero comp. window size	V ₃		±60	±90	±120	mV
		V ₄		±90	±120	±150	mV
		-		4	11	25	μs
T_{sp}	Max rejected spike length	-		8	22	38	μs
·		-		10	33	55	μs
I _{CHDCErr}	DCErr charge current	-	3	5	6	μΑ	
I _{DISDCErr}	DCErr discharge current	-	3.5	5	7.5	mA	
V _{OutH}	DCErr high voltage	-		3.1	3.3	3.6	V
V _{OutH}	DCErr low voltage	-		-	100	500	mV
V _{TH_Low}	Low threshold for WinIn pin (3)	-		-	-	0.7	V
V _{TH_High}	High threshold for WinIn pin (3)	-		2.8	-	-	V
R _{PU}	Internal pull-up resistor for WinIn pin	-		32	50	68	kΩ
V _{PU}	Internal pull-up voltage for WinIn pin	-		3.1	3.3	3.5	V
Spectrum	analyzer						
		V _i = SE,	V _i = 1 Vrms	-	1.6	-	V
V_{SAout}	Output voltage range (4)	In-gain = 0 dB,	V _i = AC-short	-	50	200	mV
		$R_{LOAD} = 1 M\Omega$	$V_i = V_i \text{ (max)}$	3.1	3.3	3.5	٧
V_{thL}	Low threshold voltage	for SACLK pin for SARST pin		-	-	1.4 1.4	V
V_{thH}	High threshold voltage	for SACLK pin for SARST pin	for SACLK pin		-	-	V

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test co	ndition	Min.	Тур.	Max.	Unit
V _{i_max}	Maximum input voltage	for SACLK and	-	5.5	-	V	
C _{RANGE}	In-gain control range	-	5.5	6	6.5	dB	
A _{STEP}	In-gain step resolution	-		1.5	2	2.5	dB
f _{C1}	Center frequency, band 1 (2)	-		-	62.5	-	Hz
f _{C2}	Center frequency, band 2 (2)	-		-	125	-	Hz
f _{C3}	Center frequency, band 3 (2)	-		-	250	-	Hz
f _{C4}	Center frequency, band 4 (2)	-		-	500	-	Hz
f _{C5}	Center frequency, band 5 (2)	-		-	1	-	kHz
f _{C6}	Center frequency, band 6 (2)	-		-	2	-	kHz
f _{C7}	Center frequency, band 7 (2)	-		-	4	-	kHz
f _{C8}	Center frequency, band 8 (2)	-		-	8	-	kHz
f _{C9}	Center frequency, band 9 (2)	-		-	16	-	kHz
0	Filter (1)	Q ₁	-	1.75	-	-	
Q _f	Filter quality factor ⁽¹⁾	Q ₂		-	3.5	-	-
T _{SAclk}	Read-out clock frequency (4)	-		1		100	kHz
T _{SAdel}	Analog output delay time (4)	CLoad at SAou	-	1	2	μs	
T _{repeat}	Read-out cycle repeat time (4)	Recommended	50	-	-	ms	
T _{intres}	Internal reset time (4)	Auto-reset mod	4	5	6	ms	
T _{SAres}	Reset pulse time (4)	Auto-reset mod	500	-	-	ns	
T _{settle}	Band pass filter settling time (4)	-	30	-	-	ms	
General					•		
		BW = 20 Hz to 20 kHz;	PA OUTPUT	-	14	20	μV
		A-Weighted;	LD OUTPUT; Low gain	-	15	20	μV
e _{NO}	Output noise	all gain = 0dB	LD OUTPUT; High gain	-	21	30	μV
			PA OUTPUT	-	12	20	μV
		BW = 20 Hz to 20 kHz; A-Weighted,	LD OUTPUT; Low gain	-	12	20	μV
		Output muted	LD OUTPUT; High gain	-	16	30	μV

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test co	ndition	Min.	Тур.	Max.	Unit
			PA OUTPUT; Vo = 2 V _{RMS}	100	104	-	dB
S/N	Signal to noise ratio	A-weighted; all gain = 0dB	LD OUTPUT; Low gain; Vo = 2.5V _{RMS}	100	104	-	dB
			LD OUTPUT; Vo =3.55V _{RMS}	100	104	-	dB
	Distortion		PA OUTPUT	-	0.01	0.1	%
D		VIN=1V _{RMS} ; all gain = 0dB	LD OUTPUT; Low gain	-	0.01	0.1	%
		a ga = 00D	LD OUTPUT; High gain	-	0.01	0.1	%
S _C	Channel Separation left/right	-		75	90	-	dB

^{1.} Measure performed in DC.

^{2.} Value guaranteed by measuring correlated parameter.

^{3.} Verified only in characterization.

^{4.} Guaranteed by design.

4 Description of audio processor

4.1 Input stage

Four quasi-differential stereo input and five single-ended inputs are available. The inputsection of the TDA7715 incorporates three independent stereo signal paths, where each of them can be connected to a variety of inputs. For simplicity only the left inputs are shown.

Figure 3. Input section signal flow

4.1.1 Single-ended stereo input (SE0, SE1, SE2, SE3, SE4)

The input-impedance at each input is 100 k Ω and the attenuation is fixed to -3 dB for incoming signals.

4.1.2 Quasi-differential stereo Input (QD0, QD1, QD2, QD3)

The QD input is implemented as a buffered quasi-differential stereo stage with 100 k Ω input-impedance at each input. There is -3 dB attenuation at QD input stage.

4.1.3 Fast charge

Each differential input pin features a "fast-charge" switch allowing to quickly charge any external large coupling capacitors upon power-on of the device. When the device is powered-on, the "fast-charge" switches are automatically turned on, for normal operation these switches need to be released by any programming of byte_0.

18/58 DocID023988 Rev 3

4.2 Volume

A ± 3 dB input gain is selectable in volume stage. When the volume-level is changed audible clicks could appear at the output. The root cause of those clicks could either be a DC-Offset before the volume-stage or a sudden change in the envelope of the audio signal. With the soft-step feature both kind of clicks could be reduced to a minimum and are no longer audible. The blend-time from one step to the next is programmable and can be set 7.5 ms or 15 ms. The soft-step control is described in detail in Section 4.10.

4.3 Loudness

There are four parameters programmable in the loudness stage.

4.3.1 Loudness attenuation

Figure 4 shows the attenuation as a function of frequency at $f_P = 400 \text{ Hz}$

T

4.3.2 Peak frequency

Figure 5 shows the four possible peak-frequencies at 400, 800 and 2400 Hz

Figure 5. Loudness center frequencies @ attn. = 15 dB

4.3.3 High frequency boost

Figure 6 shows the different loudness shapes in low & high frequency boost.

4.3.4 Flat mode

In flat mode the loudness stage works as a 0 dB to -15 dB attenuator.

Soft-mute 4.4

The digitally controlled soft-mute stage allows muting/de-muting the signal with an I²C bus programmable slope. The mute process can be activated either by the soft-mute pin or by the I²C-bus. This slope is realized in a special S-shaped curve to mute slowly in the critical regions (see Figure 7).

For timing purposes the soft-mute bit of the I²C bus output register is set to 1 from the start of muting until the end of de-muting.

Figure 7. Soft-mute timing

Note:

Please note that a started Mute-action is always terminated and could not be interrupted by a change of the mute -signal.

In this device an auto-mute function is available to reduce the complexity of programming. When auto-mute is on, all setting related to filter will trigger an auto-mute for Smute0, Smute1 and Smute2. The auto-mute procedure is as follows:

- Filter setting is changed by I²C, but the changed setting is blocked by auto-mute
- Smute0/1/2 soft-mute is triggered b)
- c) Filter setting is changed after soft-mute is finished
- d) Smute0/1/2 is de-muted

The filter setting which will activate auto-mute is as follows:

- Loudness: center frequency, high boost a)
- b) Treble: center frequency
- Middle: center frequency, quality factor c)
- Bass: center frequency, quality factor, DC mode d)
- LPF: corner frequency, phase inversion e)
- HPF: corner frequency, phase inversion f)

4.5 **Bass**

4.5.1 **Bass attenuation**

Figure 8 shows the control range in the frequency domain at 80 Hz center frequency.

Figure 8. Bass control range; $f_C = 80 \text{ Hz}$, Q = 1.0

4.5.2 **Center frequency**

Figure 9 shows all the selectable center frequencies at a gain of 14 dB.

4.5.3 **Quality factors**

Figure 10 shows the four selectable filter quality factors at a gain of 14 dB.

Figure 10. Bass filter quality factors; $f_C = 80$ Hz, gain = 14 dB.

4.5.4 **DC Mode**

Figure 11 shows the effect of the DC-mode at a filter gain of 15 dB. In this mode the DC-gain is increased by 4.4 dB. In addition the programmed center frequencies and quality factors are decreased by 25%, which realizes alternative frequency responses.

Figure 11. Bass normal and DC mode @ gain = 14 dB, fc = 80 Hz

Note: The center frequency, Q and DC-mode can be independently set.

4.6 Middle

There are three parameters programmable in the mid-filter stage.

4.6.1 Middle attenuation

Figure 12 shows the attenuation as a function of frequency at a center frequency of 1 kHz.

4.6.2 Middle center frequency

Figure 13 shows the four possible center frequencies 500 Hz, 1 kHz, 1.5 kHz and 2.5 kHz.

Quality factors 4.6.3

Figure 14 shows the two possible quality factors 1 and 2

Figure 14. Middle quality factors @ gain = 10 dB, fc =1 kHz

4.7 **Treble**

There are two parameters programmable in the treble stage.

4.7.1 **Treble attenuation**

Figure 15 shows the attenuation as a function of frequency at a center frequency of 17.5 kHz.

4.7.2 Center frequency

Figure 16 shows the four possible center frequencies 10k, 12.5k, 15k and 17.5 kHz.

Figure 16. Treble center frequencies @ gain = 14 dB

4.8 High pass filter

The high pass filter has 2 order filter characteristics with programmable cut-off frequency (50/60/80/100/120/150/180/220 Hz)

Figure 17. High pass cut frequencies

4.9 Low pass filter

The subwoofer lowpass filter has Butterworth characteristics with programmable cut-off frequency (50/60/80/100/120 Hz). The output phase can be selected between 0 deg and 180 deg. The input of subwoofer takes signal from bass filter output or output of input mux.

Figure 18. Subwoofer cut frequencies

4.10 Soft-step

In this device, the soft-step function is available for volume, speaker, loudness, treble, middle and bass block. With the soft-step function, the audible noise of DC offset or the sudden change of signal can be avoided when adjusting the gain setting of the block.

For each block, the soft-step function is controlled by soft-step on/off control bit in the control table. The soft-step transient time selection (7.5 ms or 15 ms) is common for all blocks and it is controlled by soft-step time control bit. The soft-step operation of all blocks has a common centralized control. In this case, a new soft-step operation will not be started before the completion of previous soft-step.

There are two different modes to activate the soft-step operation. The soft-step operation can be started right after I^2C data sending, or the soft-step can be activated in parallel after data sending of several different blocks. The two modes are controlled by the 'act bit' (it is normally bit7 of the byte.) of each byte. When act bit is '0', which means action, the soft-step is activated right after the date byte is sent. When the act bit is '1', which means wait, the block goes to wait for soft-step status. In this case, the block will wait for some other block to activate the operation. The soft-step operation of all blocks in wait status will be done together with the block which activates the soft-step. With this mode, all specific blocks can do the soft-step in parallel. This avoids waiting when the soft-step is operated one by one. Please note that if a block is set to 'gain1' with act bit = 1, later this block is set to 'gain2' with act bit = 0, in this case the block will do a soft-step from the currently set gain to 'gain2' but not from the currently set gain to 'gain1' then to 'gain2'.

Chip Addr	Sub Addr	0xxxxxxx				
			← Soft-ste	start here		
Ole in Andria	O. d. A.d.d.	4	4	<u> </u>	0	٦
Chip Addr	Sub Addr	1xxxxxxx	1xxxxxxx		0xxxxxxx	
						← Soft-step start here for all

4.11 DC Offset Detector

28/58

Using the DC offset detection circuit (*Figure 19*) an offset voltage difference between the audio power amplifier and the TDA7715's Front and Rear outputs can be detected, preventing serious damage to the loudspeakers. The circuit compares whether the signal crosses the zero level at the loudspeaker output of the audio power amplifier at the same time as at the output of the TDA7715. The output of the zero-window-comparator of the power amplifier must be connected with the WinIn-input of the TDA7715. The WinIn-input has an 50 k Ω internal pull-up resistor connected to 3.3 V. It is recommended to drive this pin with open-collector outputs or equivalent.

To compensate for errors at low frequencies the WinTCL/R-pin is implemented, with external capacitors introducing the same delay = $15k\Omega^*$ Cext as the one caused by the AC-coupling between the TDA7715 and the input of the power amplifier. For the zero window comparators, the time constant for spike rejection as well as the threshold are programmable.

See Electrical characteristics on page 10.

A low-active DC-offset error signal appears at the DCErr output if the next conditions are both true:

- a) Front and rear outputs are inside zero crossing windows.
- b) The Input voltage Vwinin is logic low whenever at least one output of the power amplifier is outside the zero crossing windows.

After power-on, the external attached capacitor is rapidly charged (fast-charge) to overcome a false indication. For normal operation these switches need to be released by any programming of byte_0. After that, the "fast-charge" switches can be turned on/off by setting "fast charge = on/off".

Figure 19. DC offset detection circuit (simplified)

4.12 Spectrum analyzer

A fully integrated nine-band spectrum analyzer is present in the TDA7715 (*Figure 20*). The spectrum analyzer consists of nine band pass filters followed by rectifiers with sample capacitors that store the maximum peak signal level for each band since the last read cycle.

This peak signal level can be read by a microprocessor at the SAout-pin. To allow easy interfacing to an analog input-port of a microprocessor, the output voltage at this pin is referred to device ground. Since the output voltage follows the peak level linearly, the microprocessor should take care of a logarithmic conversion (e.g. logarithmic look-up table).

The spectrum analyzer's input signal is either the mono-sum of main channel output or speaker channel 0. In order to have some influence on the visual behavior in a given application the filter quality for all band-pass filters may be programmed for two different qualities, with the higher filter quality creating a faster, more differentiating optical response. If the spectrum analyzer is disabled, the SAclk-pin and SArst-pin should be tied to ground.

Figure 20. Spectrum analyzer block diagram

The microprocessor starts a read cycle with a negative going clock edge at the SAclk input. On the following positive clock edges, the stored peak signal level of the band pass filters is subsequently switched to SAout. Each analog output value is valid after the time T_{SAdel}.

A reset is generated whenever SAclk remains high for the time T_{intres} . Note that a proper reset requires the clock signal SAclk to be held at high potential and that the reset is not repetitive. Once a reset was triggered, a new read-out cycle should not be initiated before the time T_{repeat} has passed. This allows sufficient settling of the filters. *Figure 21* illustrates the read cycle timing of the spectrum analyzer.

Figure 21. Read cycle timing diagram

4.13 Output stage

The output-section (*Figure 22*) incorporates three independent stereo signal paths, where each one can be connected to three AC-coupled, single-ended inputs and to some dedicated signals originating from the input-section and/or main-signal-path. The input-impedance at each AC-coupled input is 100 k Ω and the attenuation is fixed to -3 dB for incoming signals.

Signal path 0 and 1 (front and rear) may optionally enter high-pass filters whereas signal path 2(other) can be low-pass filtered for subwoofer applications. Anti-radiation filters are integrated for all signal paths. Soft-mute stages and a soft-step volume, that offer fast and click-less muting and/or volume changing follow all three filters.

Five stereo pairs of output buffers finally complete the output-section: Signal-path 2 exclusively feeds a line driver output that is capable of 3.55 V_{RMS} output level as required by external (remote) power amplifiers. The signal-paths 0 & 1 feature both, a line driver output

30/58 DocID023988 Rev 3

and a dedicated internal (on board) power amplifier output with 3 dB fixed gain. To maximize the line-driver output swing, when the power supply option ($V_{CC} = 11.5 \text{ V}$) is not needed or available, the line-driver output stages may be programmed for lower gain, still delivering 2.5 V_{RMS} ($V_{CC} = 8.5 \text{ V}$).

The output gain of line-driver is configurable to fit different applications. A dedicated pin (DCSEL) is used to set the desired configuration during power-on of the Device, thus avoiding the DC voltage step of the speaker output which would occur should the configuration be done run-time. The configuration is made by connecting this pin to ground (AC Gain = 5 dB, DC level = 4 V) or leave it open (AC Gain = 8 dB, DC level = 5.75 V). The output gain can anyway be changed after power-on by DCSEL pin (high or low) with 'pin influence for output DC level select = PIN', or by I^2C bus (Output DC level) with 'pin influence for output DC level select = I^2C '.

A speaker-limiter is integrated to limit the signal level of output driver which feeds the power amplifier (PA0L, PA0R, PA1L and PA1R). The speaker-limiter-threshold can be set as 1.5 Vpp, 3 Vpp, 4 Vpp or turned-off.

Figure 22. Output-section signal flow

4.14 Mixing

In this device, a very flexible mixing function (*Figure 23*) is available to meet all kind of applications. The mixing input is selected by a mixing-multiplexer which is described in *Section 4.1*. After mixing multiplexer and mixing volume, the mixing signal is mixed with speaker0 or speaker1 volume output. The following 0/6 dB mixing gain offers 2 kind of mixing option, -6 dB/-6 dB mixing or 0 dB/0 dB mixing.

An auto-mix-detector is available to detect the mixing signal level and do the mixing and unmixing automatically. The auto-mix procedure is different for speaker0 and speaker1.

The speaker0 auto-mix working procedure is as follows:

- a) Auto-mix-detector detects if the mixing signal amplitude is higher than 'auto-mix-detect-threshold' for 'auto-mix-attach-time'
- b) If a) is positive, speaker0 volume will be attenuated 'auto-mix-programmable-attenuation'
- c) Mixing is activated
- d) Auto-mix-detector detects if the mixing signal amplitude is lower than 'auto-mix-detect-threshold' for 'auto-mix-release-time'
- e) If d) is positive, speaker0 volume will return to the old setting
- f) Un-mixing is activated

The speaker1 auto-mix working procedure is as follows:

- a) Auto-mix-detector detects if the mixing signal amplitude is higher than 'auto-mix-detect-threshold' for 'auto-mix-attach-time'
- b) If a) is positive, Mixing is activated
- c) Auto-mix-detector detects if the mixing signal amplitude is lower than 'auto-mix-detect-threshold' for 'auto-mix-release-time'
- d) If c) is positive, Un-mixing is activated

Figure 23. Mixing block diagram

4.15 Audio processor testing

In the test mode, which can be activated by setting bit D7 of the I²C subaddress byte and bit D0 of the TEST I byte, several internal signals are available at SARST pin.

External clock can be applied to SMUTEMAIN pin by setting bit D2 of the TEST II byte.

32/58 DocID023988 Rev 3

4.16 Application note

Figure 24. Application schematic

Figure 24 shows a proposal for a typical application. However, the figure only represents one possible interconnection scheme with other devices (The shaded blocks could represent a complex digital sound reproducing/processing system). All reported capacitor values are indicative, their actual value depending on girdling impedances of the real application. This is especially true for the capacitors located at the WinTC-pins as can be read in Section 4.11.

Note: In case the DC-detector function is not assessed in the application it is recommended to short both the WinTC-pins 63 and 64 to device-ground.

47/

5 I²C bus specification

5.1 Interface protocol

The interface protocol comprises:

- a start condition (S)
- a chip address byte (the LSB determines read/write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)
- the max. clock speed is 400kbits/s
- 3.3 V logic compatible

Figure 25. I²C bus interface protocol

S = Start

ACK = Acknowledge

5.2 I²C bus electrical characteristics

Table 6. I²C bus electrical characteristics

Symbol	Parameter	Min	Max	Unit
f _{SCL}	SCL clock frequency	-	400	kHz
V _{IH}	High level input voltage	2.4	-	V
V _{IL}	Low level input voltage	-	0.8	V
t _{HD,STA}	Hold time for START	0.6	-	μs
t _{SU,STO}	Setup time for STOP	0.6	-	μs
t _{LOW}	Low period for SCL clock	1.3	-	μs
t _{HIGH}	High period for SCL clock	0.6	-	μs
t _F	Fall time for SCL/SDA	-	300	ns
t _R	Rise time for SCL/SDA	-	300	ns
t _{HD,DAT}	Data hold time	0	-	ns
t _{SU,DAT}	Data setup time	100	-	ns

5.2.1 Receive mode

S 1 0 0 0 1 0 0 R/W ACK TS X AI A4 A3 A2 A1 A0 ACK	DATA	AC	ACK	ACK	ACK	ACI
--	------	----	-----	-----	-----	-----

S = Start

 $R/W = "0" \rightarrow Receive mode (Chip can be programmed by <math>\mu P$)

"1" -> Transmission mode (Data could be received by µP)

ACK = Acknowledge

P = Stop

TS = Testing mode

AI = Auto increment

5.2.2 Transmission mode

S	1	0	0	0	1	0	0	R/W	ACK	Χ	ΒZ	MT	SMM	SMS	SM2	SM1	SM0	ACK	Ρ
---	---	---	---	---	---	---	---	-----	-----	---	----	----	-----	-----	-----	-----	-----	-----	---

BZ = Soft-step busy ('0' = Busy)

AMT = Auto Mix Detection ('1' = Auto-Mix Detected)

SMM = Soft-mute activated for main channel ('1' = Soft-muted)

SMS = Soft-mute activated for sub channel ('1' = Soft-muted)

SM2 = Soft-mute activated for speaker2 ('1' = Soft-muted)

SM1 = Soft-mute activated for speaker1 ('1' = Soft-muted)

SM0 = Soft-mute activated for speaker0 ('1' = Soft-muted)

X = Not used

The transmitted data is automatically updated after each ACK. Transmission can be repeated without new chip address.

5.2.3 Reset condition

A power-on-reset is invoked if the supply voltage is below than 3.5 V. After that the registers are initialized to the default data written in following tables.

Table 7. Subaddress (receive mode)

MSB					Tubio	77.04		ess (receive mode)
12	I1	10	A4	А3	A2	A 1	A0	Function
								Testing mode
0	-	-	-	-	-	-	-	Off
1								On
-	Х	-	-	-	-	-	-	Not used
								Auto increment mode
-	-	0 1	-	-	-	-	-	Off On
	_	-	0	0	0	0	0	Main / Sub selector
	_		0	0	0	0	1	Mix selector / Anti-alias
	_		0	0	0	1	0	Volume main
_	_	_	0	0	0	1	1	Volume sub
_	_	-	0	0	1	0	0	Volume Mix
_	_	_	0	0	1	0	1	Soft-step
_	_	_	0	0	1	1	0	Soft-mute I
_	_	_	0	0	1	1	1	Soft-mute II / Middle
	_	-	0	1	0	0	0	Loudness
_	-	-	0	1	0	0	1	Treble filter
_	-	-	0	1	0	1	0	Middle filter
-	-	-	0	1	0	1	1	Bass filter
_	-	-	0	1	1	0	0	Bass / Low pass filter
-	-	-	0	1	1	0	1	High pass filter
-	-	-	0	1	1	1	0	Speaker0/1 source selector
-	-	-	0	1	1	1	1	Output gain / Speaker2 source selector / Middle
-	-	-	1	0	0	0	0	Speaker0L attenuation
-	-	-	1	0	0	0	1	Speaker0R attenuation
-	-	-	1	0	0	1	0	Speaker1L attenuation
-	-	-	1	0	0	1	1	Speaker1R attenuation
-	-	-	1	0	1	0	0	Speaker2L attenuation
-	-	-	1	0	1	0	1	Speaker2R attenuation
-	-	-	1	0	1	1	0	Auto-mix I
-	-	-	1	0	1	1	1	Auto-mix II
-	-	-	1	1	0	0	0	Auto-mix III
-	-	-	1	1	0	0	1	DC-detector / Speaker-limiter
-	-	-	1	1	0	1	0	Spectrum analyzer
-	-	-	1	1	0	1	1	Test I
-	ı	ı	1	1	1	0	0	Test II
-	-	-	1	1	1	0	1	Test III

I²C bus specification

5.3 Data byte specification

Table 8. Main / sub selector (0)

MSB						., оав с	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Main Source Selector
				0	0	0	0	SE0
				0	0	0	1	SE1
				0	0	1	0	SE2
				0	0	1	1	SE3
				0	1	0	0	SE4
				0	1	0	1	QD0
_	-	-	-	0	1	1	0	QD1
				0	1	1	1	QD2
				1	0	0	0	QD3
				1	0	0	1	MUTE
				1	0	1	0	MUTE
				1	0	1	1	MUTE
				1	1	х	х	<u>MUTE</u>
								Sub Source Selector
0	0	0	0					SE0
0	0	0	1					SE1
0	0	1	0					SE2
0	0	1	1					SE3
0	1	0	0					SE4
0	1	0	1					QD0
0	1	1	0	-	-	-	-	QD1
0	1	1	1					QD2
1	0	0	0					QD3
1	0	0	1					MUTE
1	0	1	0					MUTE
1	0	1	1					MUTE
1	1	x	х					<u>MUTE</u>

Table 9. Mix selector / anti-alias / fast charge (1)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	runction
								Mix Source Selector
				0	0	0	0	SE0
				0	0	0	1	SE1
				0	0	1	0	SE2
				0	0	1	1	SE3
				0	1	0	0	SE4
_	_	_	_	0	1	0	1	QD0
_	_	-	_	0	1	1	0	QD1
				0	1	1	1	QD2
				1	0	0	0	QD3
				1	0	0	1	MUTE
				1	0	1	0	MUTE
				1	0	1	1	MUTE
				1	1	Х	х	MUTE
								Mix Left channel
-	-	-	0	-	-	-	-	<u>Left</u>
			1					Right
								Mix Right channel
-	-	0		-	-	-	-	Left
		1						Right
								Anti-alias filter
-	0	-	-	-	-	-	-	<u>On</u>
	1							Off
								AC-Coupling / QD selection
0	-	-	-	-	-	-	-	AC
1								QD

Table 10. Volume main/sub/mix (2-4)

MSB							LSB	Firmation
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/Attenuation
		0	0	0	0	0	0	+0dB
		0	0	0	0	0	1	+1dB
		:	:	:	:	:	:	:
		0	0	1	1	1	1	+15dB
		0	1	0	0	0	0	+16dB
		:	:	:	:	:	:	:
		0	1	0	1	1	1	+23dB
		0	1	1	0	0	0	Not used
_	-	:	:	:	:	:	:	:
		0	1	1	1	1	1	Not used
		1	0	0	0	0	0	-0dB
		:	:	:	:	:	:	:
		1	0	1	1	1	1	-15dB
		:	:	:	:	:	:	:
		1	1	0	1	1	1	- <u>23dB</u>
		:	:	:	:	:	:	:
		1	1	1	1	1	1	Not used
								Volume soft-step
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step action
0	-	-	-	-	-	-	-	act
1								<u>wait</u>

Table 11. Soft-step (5)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Loudness soft-step
-	-	-	-	-	-	-	0	On
							1	Off
								Treble soft-step
-	-	-	-	-	-	0	-	On
						1		Off
								Middle soft-step
-	-	-	-	-	0	-	-	On
					1			<u>Off</u>
								Bass soft-step
-	-	-	-	0	-	-	-	On
				1				<u>Off</u>
								Speaker0/Mixing soft-step (1)
-	-	-	0	-	-	-	-	On
			1					Off
								Speaker1 soft-step
-	-	0	-	-	-	-	-	On
		1						Off
								Speaker2 soft-step
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step time
0	-	-	-	-	-	-	-	7.5ms
1								<u>15ms</u>

Mixing soft-step need to be turned on/off with speaker0 soft-step.

Table 12. Soft-mute I (6)

MSB				Function				
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	Х	Х	Х	Х	Not used
-	-	0 0 1 1	0 1 0	-	-	-	-	Soft-mute time (Main/SUB) 0.5ms 4ms 8ms 16ms
0 0 1 1	0 1 0	-	-	-	-	-	-	Soft-mute time (Speaker0/1/2) 4ms 8ms 32ms 64ms

Table 13. Soft-mute II / middle (7)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	Pin influence for mute Pin and IIC
-	-	-	-	-	-	0	-	Auto-mute On Off
-	-	-	-	-	0 1	-	-	Soft-mute main On Off
-	-		-	0	-	-	-	Soft-mute sub On Off
-	-	-	0 1	-	-	-	-	Soft-mute Speaker0 On Off
-	-	0	-	-	-	-	-	Soft-mute Speaker1 On Off
-	0	-	-	-	-	-	-	Soft-mute Speaker2 On Off
0 1	-	-	-	-	-	-	-	Middle quality factor 1.0 2.0

Table 14. Loudness (8)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Attenuation
				0	0	0	0	0dB
				0	0	0	1	-1dB
_	-	-	_	:	:	:	:	:
				1	1	1	0	<u>-14dB</u>
				1	1	1	1	-15dB
								Center frequency
		0	0					Flat
-	-	0	1	-	-	-	-	400Hz
		1	0					800Hz
		1	1					2400Hz
								High boost
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step action
0	-	-	-	-	-	-	-	act
1								<u>wait</u>

Table 15. Treble filter (9)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	FullCuoli
								Gain/Attenuation
			0	1	1	1	1	+15dB
			:	;	:	:	:	:
			0	1	0	1	0	+10dB
			:	:	:	:	:	:
			0	0	0	0	1	+1dB
-	-	-	0	0	0	0	0	0dB
			1	0	0	0	0	<u>0dB</u>
			1	0	0	0	1	-1dB
			:	:	:	:	:	:
			1	1	0	1	0	-10dB
			:	:	:	:	:	:
			1	1	1	1	1	-15dB
								Treble center frequency
	0	0						10.0kHz
-	0	1	-	-	-	-	-	12.5kHz
	1	0						15.0kHz
	1	1						<u>17.5kHz</u>
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 16. Middle filter (10)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/Attenuation
			0	1	1	1	1	+15dB
			:	;	:	:	:	:
			0	1	0	1	0	+10dB
			:	:	:	:	:	:
			0	0	0	0	1	+1dB
-	-	-	0	0	0	0	0	0dB
			1	0	0	0	0	<u>0dB</u>
			1	0	0	0	1	-1dB
			:	:	:	:	:	:
			1	1	0	1	0	-10dB
			:	:	:	:	:	:
			1	1	1	1	1	-15dB
								Middle center frequency
	0	0						500Hz
-	0	1	-	-	-	-	-	1000Hz
	1	0						1500Hz
	1	1						2000Hz
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 17. Bass filter (11)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/Attenuation
			0	1	1	1	1	+15dB
			0	1	1	1	0	+14dB
			:	:	:	:	:	:
			0	0	0	0	1	+1dB
-	-	-	0	0	0	0	0	0dB
			1	0	0	0	0	<u>0dB</u>
			1	0	0	0	1	-1dB
			:	:	:	:	:	:
			1	1	1	1	0	-14dB
			1	1	1	1	1	-15dB
								Bass quality factor
	0	0						1.0
-	0	1	-	-	-	-	-	1.25
	1	0						1.5
	1	1						2.0
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 18. Bass / low pass filter (12)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
					0		0	Bass center frequency 60Hz
					0	0	0	
					0	0	1	70Hz 80Hz
					0	1	0	100Hz
-	_	-	_	_	1	0	0	110Hz
					1	0	_	120Hz
					1	1	0	
							_	130Hz 150Hz
					1	1	1	
								Bass DC mode
-	-	-	-	0	-	-	-	On
				1				<u>Off</u>
								Low pass filter corner frequency
	0	0	0					50Hz
	0	0	1					60Hz
-	0	1	0	-	-	-	-	80Hz
	0	1	1					100Hz
	1	х	х					<u>120Hz</u>
								Low pass filter output phase
0	-	-	-	-	-	-	-	180 deg
1								0 deg

Table 19. High pass filter (13)

MSB					·	<u>, pace</u>	LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- Function
							0	HPF output phase Speaker0
-	-	-	-	-	-	-	0 1	180 deg <u>0 deg</u>
								HPF corner frequency Speaker0
				0	0	0		50Hz
				0	0	1		60Hz
				0	1	0		80Hz
-	-	-	-	0	1	1	-	100Hz
				1	0	0		120Hz
				1	0	1		150Hz
				1	1	0		180Hz
				1	1	1		220Hz
								HPF phase Speaker1
-	-	-	0	-	-	-		180 deg
			1					0 deg
								HPF corner frequency Speaker1
0	0	0						50Hz
0	0	1						60Hz
0	1	0						80Hz
0	1	1	-	-	-	-	-	100Hz
1	0	0						120Hz
1	0	1						150Hz
1	1	0						180Hz
1	1	1						<u>220Hz</u>

Table 20. Speaker0/1 source selector (14)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Speaker0 source selector
					0	0	0	acin0
_	_	_	_		0	0	1	acin1
_	_	_	_		0	1	0	acin2
					0	1	1	sub
					1	х	Х	<u>main</u>
								High pass filter bypass Speaker0
-	-	-	-	0	-	-		Bypass
				1				High pass filter
								Speaker1 source selector
	0	0	0					acin0
	0	0	1					acin1
-	0	1	0	_	-	_	-	acin2
	0	1	1					sub
	1	x	x					<u>main</u>
								High pass filter bypass Speaker1
0	-	-	-	-	-	-	-	Bypass
1								High pass filter

Table 21. Output gain / speaker2 source selector (15)

MSB					J • • • •		LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Pin Influence for output DC level select
-	-	-	-	-	-	-	0	<u>Pin</u>
							1	IIC
								Output DC level
-	-	-	-	-	-	0	-	4V (AC Gain = 5dB)
						1		5.75V (AC Gain = 8dB)
								Speaker2 source selector
			0	0	0			acin0
			0	0	1			acin1
_	-	-	0	1	0	_	-	acin2
			0	1	1			sub
			1	х	х			<u>main</u>
								Low pass filter bypass
	0	0						Low pass filter
	0	1						Mono-sum bypass
	1	х						Stereo bypass
х								Not used

I²C bus specification

Table 22. Speaker attenuation (0L/0R/1L/1R/2L/2R) (16-21)

MSB							LSB	Formation
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/Attenuation
	0	0	0	0	0	0	0	+0dB
	0	0	0	0	0	0	1	+1dB
	:	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15dB
	0	0	1	0	0	0	0	+16dB
	:	:	:	:	:	:	:	:
	0	0	1	0	1	1	1	+23dB
	0	0	1	1	0	0	0	Not used
	:	:	:	:	:	:	:	:
	0	0	1	1	1	1	1	Not used
-	0	1	0	0	0	0	0	-0dB
	:	:	:	:	:	:	:	:
	0	1	0	1	1	1	1	-15dB
	:	:	:	:	:	:	:	:
	0	1	1	0	1	1	1	-23dB
	:	:	:	:	:	:	:	:
	1	0	0	0	0	0	0	-32dB
	:	:	:	:	:	:	:	:
	1	1	0	0	0	0	0	-64dB
	:	:	:	:	:	:	:	:
	1	1	0	1	1	1	1	-79dB
	1	1	1	х	×	×	х	<u>mute</u>
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 23. Auto-mix I (22)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Auto mix programmable attenuation
			0	0	0	0	0	<u>0dB</u>
			0	0	0	0	1	-1dB
			:	:	:	:	:	:
			0	1	1	1	0	-14dB
			0	1	1	1	1	-15dB
-	-	-	:	:	:	:	:	:
			1	0	0	1	1	-19dB
			1	0	1	0	0	-20dB
			1	0	1	0	1	Reserved
			1	0	1	1	0	Reserved
			1	0	1	1	1	Reserved
			1	1	х	х	х	Reserved
								Auto mix detect threshold
0	0	0						5mv
0	0	1						10mv
0	1	0						15mv
0	1	1	-	-	-	-		20mv
1	0	0						25mv
1	0	1						50mv
1	1	0						75mv
1	1	1						<u>100mv</u>

Table 24. Auto-mix II (23)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Auto mix release time
					0	0	0	125ms
					0	0	1	250ms
_	_	_	_	_	0	1	0	500ms
_	_	-	_	_	0	1	1	1000ms
					1	0	0	2000ms
					1	0	1	4000ms
					1	1	Х	<u>4000ms</u>
								Auto mix attach time
		0	0	0				0.5ms
		0	0	1				1ms
		0	1	0				2ms
-	-	0	1	1	-	-	-	4ms
		1	0	0				8ms
		1	0	1				16ms
		1	1	х				<u>16ms</u>
								Mix mode ⁽¹⁾
-	0	-	-	-	-	-	-	Auto mix
	1							IIC
Х	-	-	-	-		-	-	Not used

^{1.} When mix mode is changed, byte 24 need to be sent as well.

Table 25. Auto-mix III (24)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	IIC mix speaker0 Bypass Mix
-	-	-	-	-	-	0	-	Mix gain speaker0 0dB (-6dB/-6dB mix) 6dB (0dB/0dB mix)
-	-	-	-	-	0 1	-	-	IIC mix speaker1 Bypass Mix
-	-	-	-	0 1	-	-	-	Mix gain speaker1 0dB (-6dB/-6dB mix) 6dB (0dB/0dB mix)
-	-	0 0 1	0 1 x	-	-	-	-	Auto mix detection input Mix left channel Mix right channel Mix mono-sum
-	Х	-	-	-	-	-	-	Not used
0	-	-	-	-	-	-	-	Soft-step action act wait

Table 26. DC-detector/speaker-limiter (25)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Spike rejection time
						0	0	Disable
-	-	-	-	-	-	0	1	<u>11 μs</u>
						1	0	22 µs
						1	1	33 µs
-	-	-	- 0 1	0 0 1 1	0 1 0 1	-	-	Zero-comparator Window size ±120mV ±90mV ±60mV ±30mV DC-detector fast charge On Off
-	0 0 1 1	0 1 0 1	-	-	-	-	-	Speaker-limiter threshold 1.5Vpp 3Vpp 4Vpp Off
x	-	-	-	-	-	-	-	Not used

Table 27. Spectrum analyzer (26)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	Spectrum analyzer source selector Main path Speaker0
-	-	-	-	-	-	0	-	Run/Stop Run Stop
-	-	-	-	-	0	-	-	Reset mode SARST-pin triggered reset Auto-reset mode
-	-	-	-	0 1	-	-	-	Spectrum analyzer filter quality factor 3.5 1.75
-	-	0 0 1 1	0 1 0	-	-	-	-	Spectrum analyzer in-gain 0dB 2dB 4dB 6dB
х	х	-	-	-	-	-	-	Not used

Table 28. Test I (27)

MSB					LSB	-		
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Audio processor testing mode
-	-	-	-	-	-	-	0	<u>Off</u>
							1	On
								Test multiplexer ⁽¹⁾
		0	0	0	0	0		SSCLK
		0	0	0	0	1		SMCLK1
		0	0	0	1	0		SMCLK2
-	-	0	0	0	1	1	-	VDDd
		0	0	1	0	0		VDDa
		0	0	1	0	1		Clock200k
		0	0	1	1	0		SDCLK
		0	0	1	1	1		REQ_TEST
								SA / Auto-mix test multiplexer ⁽¹⁾
		0	1	0	0	0		Spec.Anal. AAF
		0	1	0	0	1		Spec.Anal. BPF1
		0	1	0	1	0		Spec.Anal. BPF2
-	-	0	1	0	1	1	-	Spec.Anal. BPF3
		0	1	1	0	0		Auto-mix Rectifier output
		0	1	1	0	1		Auto-mix attach clock
		0	1	1	1	0		Auto-mix release clock
		0	1	1	1	1		Auto-mix Vth
								DCO test multiplexer (1)
		1	0	0	0	0		Vthp Comp. Left
		1	0	0	0	1		Vthn Comp. Left
		1	0	0	1	0		Vthp Comp. Right
-	-	1	0	0	1	1	-	Vthn Comp. Right
		1	0	1	0	0		Vthp reference
		1	0	1	0	1		Vthn reference
		1	0	1	1	0		IntZeroErr
		1	0	1	1	1		<u>Vref</u>
								Auto-mix rectifier bypass (1)
-	0	-	-	-	-	-	-	On
	1							<u>Off</u>
Х	-	-	-	-	-	-	-	Not used

^{1.} The control bit needs both I²C test mode on & sub-address test mode on.

Table 29. Test II (28)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Manual set busy signal (1)
						0	0	Auto
-	-	-	-	-	-	0	1	Auto
						1	0	<u>0</u>
						1	1	1
								Request for clock generator ⁽¹⁾
						0	0	Allow
-	-	-	-	-	-	0	1	Allow
						1	0	Stopped
						1	1	Stopped
								Clock source (2)
-	-	-	-	-	0	-	-	External
					1			Internal (200kHz)
								Oscillator clock ⁽²⁾ , ⁽³⁾
_	-	_	-	0	-	-	-	400kHz
				1				800kHz
								Clock fast mode ⁽²⁾
_	_	_	0	_	_	_	_	On On
			1					Off
								Soft-step curve ⁽²⁾
		0						S-Curve (soft step time 7.5ms/15ms)
_	-	1	_	-	-	_	-	
		I						Linear Curve (soft step time 5ms/10ms)
Х	Х	-	-	-	-	-	-	Not used

^{1.} The control bit needs sub-address test mode on.

^{2.} The control bit does not depend on test mode.

^{3.} Oscillator clock frequency is not suggested to change, the change will influence auto mix attach time.

Table 30. Test III (29)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Test architecture ⁽¹⁾
-	-	-	-	-	-	-	0	<u>Normal</u>
							1	Split
								Attenuators gain clock control (2)
-	-	-	-	-	-	0	-	On
						1		Off
								Enable clock for speaker volume
-	-	-	-	-	0	-	-	On
					1			<u>Off</u>
								Enable clock for volume
-	-	-	-	0	-	-	-	On
				1				<u>Off</u>
								Enable clock for treble & bass
-	-	-	0	-	-	-	-	On
			1					<u>Off</u>
								Enable clock for loudness & middle
-	-	0	-	-	-	-	-	On
		1						Off
Х	Х	-	-	-	-	-	-	Not used

^{1.} The control bit needs sub-address test mode on.

^{2.} The control bit does not depend on test mode.

Package information TDA7715

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

Figure 27. LFQP64 mechanical data and package dimensions

TDA7715 Revision history

7 Revision history

Table 31. Document revision history

Date	Revision	Changes
05-Dec-2012	1	Initial release.
15-May-2013	2	Updated: Table 5: Electrical characteristics; Section 4.12: Spectrum analyzer on page 29.
16-Sept-2013	3	Updated Disclaimer

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

58/58 DocID023988 Rev 3