Real and Complex Analysis Qualifying Exam.

New System-August 2005

Burckel and Ryabogin

Instructions: The exam consists of 8 problems. Each problem is worth 10 points.

Time: 3 hours.

Notation: $\mathbf{N} := \{1, 2, 3, ...\}, \mathbf{R} := \text{reals}, \mathbf{C} := \text{complexes}, \mathbf{D} := \{z \in \mathbf{C} : |z| < 1\}, \mathbf{\bar{D}} := \{z \in \mathbf{C} : |z| \le 1\}, \text{ and } (\mu, X) \text{ is an abstract measure space.}$

Note: Any fact from the hints that you use you are expected to prove.

1. Problem 1.

a) State and prove Schwarz' Lemma for holomorphic self-maps of **D**.

Hint: Consider f(z)/z and use (you may but need **not** prove) the Maximum Principle.

b) From a) infer that any conformal automorphism of **D** that fixes 0 is a rotation.

2. Problem 2.

a) Show that for any $a \in \mathbf{D}$ the function

$$f_a(z) := \frac{a-z}{1-\bar{a}z}$$

maps $\bar{\mathbf{D}}$ bijectively onto $\bar{\mathbf{D}}$ and is its own inverse.

b) Show that every conformal automorphism f of \mathbf{D} extends to a homeomorphism of $\bar{\mathbf{D}}$ by showing even more, namely that $f = uf_a$ for some $a \in \mathbf{D}$, $u \in \bar{\mathbf{D}} \setminus \mathbf{D}$.

Hint: a), together with problem 1 a).

c) Show that a and u in b) are uniquely determined by f.

Hint: Compute f'(0).

3. Problem 3.

The series $\sum_{n=0}^{\infty} c_n z^n$ converges in **D** and the function f(z) that it defines vanishes at 1/k for each $k \in \mathbb{N}$. Show that f = 0.

Hint: Show by induction that all coefficients are 0.

4. Problem 4.

- a) State the Open-Mapping Theorem for holomorphic functions.
- b) State the Maximum Modulus Principle for holomorphic functions.
- c) Give a short deduction of b) from a).
- d) Show that the image of any closed subset of **C** under any non-constant polynomial is a closed set.
- e) From a) and d) deduce the Fundamental Theorem of Algebra.

Hint: Connectedness.

5. Problem 5.

Let $\mu(X) = +\infty$, where μ is Lebesgue measure on \mathbf{R} . Construct a function $f \in L^p(\mu, X) \ \forall p \geq 1$ such that $f \notin L^\infty(\mu, X)$.

6. Problem 6.

Suppose μ is a positive measure on X, $\mu(X) < \infty$, $f \in L^{\infty}(\mu, X)$, $||f||_{\infty} > 0$, and $\alpha_n := \int\limits_X |f(x)|^n d\mu$, $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} \alpha_{n+1}/\alpha_n = ||f||_{\infty}$.

Hint. Prove first that $||f||_n \to ||f||_\infty$ as $n \to \infty$. Then use (you may but need **not** prove) the fact that for **any** sequence of positive numbers $(\alpha_n)_{n=1}^\infty$, $\lim_{n\to\infty} \alpha_{n+1}/\alpha_n = \lim_{n\to\infty} \alpha_n^{1/n}$, provided the first limit exists.

7. Problem 7.

Define $h_c := \sum_{n=1}^{\infty} n^c 1_{(1/(n+1),1/n]}, c > 0$. Prove that

- a) h_c is Lebesgue integrable on **R** if $c \in (0, 1)$.
- b) h_1 is of weak-type L but not Lebesgue integrable on **R**.
- c) h_c is not of weak-type L if c > 1.

8. Problem 8.

Choose intervals $W_n \subset (0,1)$ in such away that $\bigcup_n W_n$ is dense in (0,1), and the set $K := (0,1) \setminus \bigcup_n W_n$ has a positive measure.