MUNKRES TOPOLOGY: CHAPTER 32

JACK CERONI

Contents

Date: December 2021.

1. Problem 32.6

Show that X is completely normal if and only if for every pair of sets A, B with $A \cap \overline{B} = \overline{A} \cap B = \emptyset$, there exist disjoint open sets containing them.

Suppose first that X is completely normal. Note that $Y = X - (\overline{A} \cap \overline{B})$ is an open subspace of X. It is easy to see that both A and B are in Y: if this weren't the case then we could pick a point in both A and \overline{B} , or B and \overline{A} . Thus, we can pick open sets U and V in Y containing $\overline{A} \cap Y$ and $\overline{B} \cap Y$, which themselves contain A and B.

Since Y is open, these sets will also be open in X.

Suppose the converse holds. Let C be a subspace of X, and let Q and P be closed