Semestre 2023-1

Versión 01

Tania Michelle Rubí Rojas

Para cada uno de los siguientes ejercicios, justifica ampliamente tu respuesta:

- 1 Definimos el conjunto de árboles binarios no vacíos $\mathcal T$ cuyos nodos están etiquetados por elementos de un conjunto A como sigue:
 - Si $r \in A$, entonces tree(void,r,void) $\in \mathcal{T}$.
 - Si $T_1, T_2 \in \mathcal{T}$ y $e \in A$, entonces tree $(T_1, e, T_2) \in \mathcal{T}$.
 - Estos y sólo estos elementos pertenecen a \mathcal{T} .

Dada esta definición, demuestra usando inducción estructural que el número de vértices (|V|) de un árbol binario no vacío T es igual al número de aristas (|E|) de T más una unidad.

- (2) Definimos el conjunto de cadenas $\mathcal L$ como sigue:
 - $\epsilon \in \mathcal{L}$, es decir, la cadena vacía pertenece al conjunto \mathcal{L} .
 - Si $w \in \mathcal{L}$, entonces $0w0, 1w1 \in \mathcal{L}$.
 - Estos y sólo estos elementos pertenecen a \mathcal{L} .

Dada esta definición, demuestra usando inducción estructural que $\forall \sigma \in \mathcal{L}, \ |\sigma|$ es par. text

- (3) Definimos el conjunto $S \subseteq \mathbb{Z}^2$ como sigue:
 - $(0,0) \in S$
 - Si $(x,y) \in S$, entonces $(x,y+1), (x+1,y+1), (x+2,y+1) \in S$
 - Estos y sólo estos elementos pertenecen a S.

Dada esta definición, demuestra usando inducción estructural que $\forall (a,b) \in S, \ a \leq 2b$.