

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07H 21/04, C12P 19/34, C12Q 1/68		A1	(11) International Publication Number: WO 97/31012 (43) International Publication Date: 28 August 1997 (28.08.97)
(21) International Application Number: PCT/US97/02403			ney, MI 48169 (US). YUZBASIYAN-GURKAN, Vilma [US/US]; 3101 Dexter Road, Ann Arbor, MI 48103 (US).
(22) International Filing Date: 18 February 1997 (18.02.97)			(74) Agents: SMITH, DeAnn, F. et al.; Harness, Dickey & Pierce, P.L.C., P.O. Box 828, Bloomfield Hills, MI 48303 (US).
(30) Priority Data: 60/012,061 22 February 1996 (22.02.96) US			(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(60) Parent Application or Grant (63) Related by Continuation US Filed on 22 February 1996 (22.02.96)			Published <i>With international search report.</i>
(71) Applicants (<i>for all designated States except US</i>): THE REGENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Management Technology Office, Wolverine Tower, Room 2071, 3003 South State Street, Ann Arbor, MI 48109-1280 (US). BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITY [US/US]; East Lansing, MI 48824 (US).			
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): BREWER, George, J. [US/US]; 3820 Gensley, Ann Arbor, MI 48103 (US). VENTA, Patrick, J. [US/US]; 9646 Rolling Green, Pinck-			
(54) Title: GENE SPECIFIC UNIVERSAL MAMMALIAN SEQUENCE-TAGGED SITES			
(57) Abstract			
Primer sets which amplify conserved regions of specific genes across mammalian species are provided. The methods used to design the primer sets as well as methods of making and using the primer sets are also provided.			

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

**GENE SPECIFIC UNIVERSAL MAMMALIAN
SEQUENCE-TAGGED SITES**

FIELD OF THE INVENTION

The present invention relates generally to genetic markers and methods of
5 making and using such markers, and more particularly, to primer sets referred to as
universal mammalian sequence-tagged site primers, which may be used to amplify
conserved regions of specific genes across mammalian species.

BACKGROUND OF THE INVENTION

Over the last several years significant effort has been made to develop
10 genome maps of many species. The subjects of the majority of these projects have
been mammals, including human, mouse, rat, ox, sheep, pig, horse, cat, and dog
(e.g., Buchanan F.C. et al., *Genomics* 22:397-403 (1994); Dietrich, W. et al.,
Genetics 131:423-447 (1992); Ellegren, H. et al., *Anim. Genet.* 23:133-142 (1992);
O'Brien, S.J., *Trends Genet.* 2:137-142 (1986); Serikawa, T. et al., *Genetics*
15 131:701-721 (1992); Weissbach, J. et al., *Nature* 359:794-801 (1992); Wintero, A.K.
et al., *Genomics* 12:281-288 (1991); and Barendse, W. et al., *Nat. Genet.* 6:227-235
(1994)). For non-human mammals, genome maps will lead to important applications
including optimized breeding strategies, wherein desirable characteristics are
selected and unwanted genes are removed, particularly those genes that lead to
20 genetic disease. Comparisons made between genome maps will also provide a
wealth of scientific information (O'Brien, S.J. et al., *Nat. Genet.* 3:103-112 (1993)).

The traditional method for developing gene-specific markers, Southern
blotting and cross-species hybridization, is time consuming, labor intensive and
limited in flexibility. However despite its many limitations, this method remains the
25 primary method for developing gene-specific markers in most mammalian genome
projects. There thus remains a need for a more efficient method. A more efficient
method is particularly important for non-human mammalian genome projects wherein
scientific resources are often limited.

One potential method is the development of polymerase chain reaction (PCR)
30 primers to conserved regions of specific genes that can be used across species.
Although this method has been successfully used for the study of a number of
individual genes, it has not been applied on a genome-wide basis for the purpose
of map development.

It would thus be desirable to provide genetic markers which may be used to
35 detect specific mammalian genes. It would further be desirable to provide genetic
markers which may be used to develop mammalian genome maps. It would further

- 2 -

be desirable to provide genetic markers which may be used across mammalian species. It would also be desirable to provide a method for designing and producing genetic markers based on conserved regions of genes.

SUMMARY OF THE INVENTION

5 Primer sets which may be used to amplify conserved regions of specific genes, including eleven preferred primer sets that have been shown to amplify specific canine genes, are provided. The methods used to design the primer sets as well as methods of making and using the primer sets for example with a polymerase chain reaction (PCR), are also provided. Such genetic markers based
10 on PCR primers are often called sequence-tagged sites (STSs) or sequence-tagged site primers (Olsen, M. et al., *Science* 245:1434-1435 (1989)). Because the primer sets of the present invention may be used to locate genes across mammalian species, such primer sets are referred to herein as universal mammalian sequence-tagged site (UM-STS) primers.
15 Additional objects, advantages, and features of the present invention will become apparent from the following description and claims taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the present invention will become apparent to one
20 skilled in the art by reading the following specification and claims and by referencing the following drawings in which:

Figure 1 is a photograph of a gel showing the amplification of several canine gene segments using the UM-STS primers of the present invention;

Figure 2 shows the lineup of several canine gene sequences with
25 homologous non-canine mammalian genes;

Figure 3 is a photograph of a gel showing the amplification of a portion of the *FES* proto-oncogene from several mammalian DNAs using the UM-STS primers of the present invention; and

Figure 4 shows sequence comparisons of a portion of the *FES* proto-oncogen
30 from several mammalian DNA.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The universal mammalian sequence-tagged site primer sets of the present invention are set forth in Tables 1 and 1A. The methods used to design the primer sets as well as methods of making and using the primer sets are also provided.

- 3 -

The primer sets of the present invention referred to herein as UM-STS primers, may be used to amplify mammalian genome regions of interest, isolate clones from mammalian genomic and cDNA libraries and perform cross-species genome comparisons. The UM-STS primers of the present invention will also be useful for developing additional genetic markers within various genomes. For example, a microsatellite repeat has been found within the retinoblastoma (*RB1*) loci disclosed herein. Single site variability may also be found directly in at least some of the amplified products by using one of a number of techniques developed for scanning for variability, such as the single-strand conformation polymorphism technique. For example, this method has been used to find two polymorphic sites in a study of the canine *ALAS2* gene in a PCR product of a size similar to those set forth herein (Boyer, G. et al., *Anim. Genet.* 26:206-207 (1995)). If the frequency of single site polymorphic variability for other mammals is as high as that estimated for humans (roughly one in 200 to 400 nucleotides), then a significant portion of UM-STSs will have these sites. Each species will be screened individually for genetic variability using UM-STS primers.

An example of the usefulness of cross-species genome comparisons is given by the case of Waardenburg syndrome. Direction to the location of one of the human Waardenburg syndrome genes, well known for causing a syndromic hearing loss, was first found from comparative mapping with the mouse (Asher, J.H.J. et al., *J. Med. Genet.* 27:618-626 (1991)). The map locations in the mouse suggested possible locations of the human disease gene, one of which eventually was proven correct (Morrell, R. et al., *Hum. Mol. Genet.* 156:53-59 (1993)). Because the identity of the gene in the mouse was not known at the time, this approach might more properly be called a 'candidate linkage' approach. UM-STSs will thus be useful not only for rapidly producing genetic maps but the candidate linkage approach may also be applied to more species.

Very little is known about the location of genes within the canine genome. The development of UM-STSs will help to rapidly identify the location of linkage groups on specific canine chromosomes. The assignment of conserved syntenies will allow candidate linkages to be tested in the canine genome. The assignment of the proposed anchor loci (O'Brien, S.J. et al., *Nat. Genet.* 3:103-112 (1993)) as defined by UM-STSs to specific chromosomes may be accomplished by the somatic cell hybrid, flow sorted chromosome, and fluorescent in situ hybridization (FISH)

- 4 -

methodologies. Other methods known to those skilled in the art, such as assignment by use of linkage to previously mapped loci, are also possible.

SPECIFIC EXAMPLE 1

The following example further describes the UM-STS primers of present
5 invention as well as methods of designing, making and using such primers.

Materials and Methods

DNA Isolation - DNA from dog, human, pigtail macaque, horse, pig, rat and mouse were isolated from various tissues by standard phenol-chloroform extraction methods (Sambrook, J. et al., Molecular Cloning. A Laboratory Manual. (2nd ed.)
10 Cold Springs Harbor: Cold Springs Harbor Laboratory Press (1989)). Goat DNA was supplied by Dr. Karen Friderici, Michigan State University. DNA was purified by standard methods from a canine liver cDNA library (Clontech) and from a canine genomic DNA library (Clontech) after growing 1×10^6 phage in *E. coli* strain LE392 (Murray, N.E. et al., *Mol. Gen. Genet.* 156:53-59 (1977)) in liquid culture (Sambrook,
15 J. et al., Molecular Cloning. A Laboratory Manual. (2nd ed.) Cold Springs Harbor: Cold Springs Harbor Laboratory Press (1989)).

Design of PCR Primers - Primers were designed to genes where the intron-exon structure was known in at least one species and where the nucleotide sequence was known in at least two species (the index species) that were not
20 closely related. Tandemly duplicated genes known to have undergone gene conversion in any species were avoided. Primers were generally designed so that the amplified product contained an intron. The human gene nomenclature system (ISGN, *Cytogenet. Cell Genet.* 46:11-28 (1987)) was followed for naming the canine genes. An example of the loci used and their protein products are: *CFTR*, cystic
25 fibrosis transmembrane regulator; *COL10A1*, type X collagen, alpha 1 chain; *CSF1R*, colony stimulating factor 1 receptor; *CYP1A1*, cytochrome P-450 1, alpha 1; *DCN1*, decorin; *FES*, c-fes (feline sarcoma) proto-oncogene; *GHR*, growth hormone receptor; *GLB1*, beta galactosidase; *PKLR*, pyruvate kinase - liver, RBC form; *PVALB*, parvalbumin; and *RB1*, retinoblastoma protein. The Genbank Accession
30 numbers or reference for the sequence of the two index species for each locus are as follows: *CFTR*, M55129, M60493; *COL10A1*, X65120, X65121; *CSF1R*, X14720, K01643; *CYP1A1*, (Uchida, T. et al., *Mol. Pharmacol.* 38:644-351 (1990)), X04300;
DCN1, L01125, Z12298; *FES*, X06292, J02088; *GHR*, Z11802, J04811; *GLB1*, S59584, M57734; *PVALB*, X63578, M15452; *PKLR*, S59798, M17088; and *RB1*,
35 L11910, M26391.

- 5 -

Primers were designed to highly conserved nucleotide sequences contained within coding regions. Additional considerations taken into account were: degeneracy of underlying codons (Li, W.-H. et al., *Fundamentals of Molecular Evolution*. Sunderland, MA: Sinauer Associates, Inc. (1987)), overall amino acid mutability of the primer region (Collins, D.W. et al., *Genomics* 20:386-396 (1994)), placement of the 3' end of the primer with respect to amino acid mutability, as well as standard design practices for primers known in the art such as avoidance of primer-dimers. Conservation of amino acids within multigene families was also taken into account, when possible. Where unavoidable mismatches occurred between the two index species, the primer sequence was designed to match one of the two which was then designated the primary index species. GC-rich genes were avoided due to amplification difficulties, even with exactly matching primers. Primers were twenty bp in length on average. Each primer in a pair was adjusted to be of approximately the same annealing temperature (Breslauer, K. et al., *PNAS (USA)* 83:3746-3750 (1986)). All sets of primer pairs were designed to have approximately the same annealing temperature in anticipation of performing multiplex amplifications. It was not always possible to follow every rule for every gene, given the actual circumstances; however, the majority of the rules were generally applicable.

PCR Amplifications - Correct design and syntheses of the primers were examined by amplifying the DNA from the primary index species. Standard buffer, nucleotide, and primer concentrations were 50 mM Tris-HCl (pH 8.3 at room temperature), 50 mM KCl, 1.5 mM MgCl₂, 200 μM dNTPs, 0.1 μg of each primer, and 0.5 - 1.0 μg of target DNA in a 25 μl reaction. Reactions were routinely boiled for three min prior to the addition of 2.0 U of Taq DNA polymerase. Optimal cycling conditions for the amplification of canine genomic DNA were usually found by testing one of several sets of conditions in general use in the lab (see Table 2). Occasionally it was necessary to use "hot-start" conditions (Bassam, B.J. et al., *Biotechniques* 14:30-34 (1993)) in order to get stronger, cleaner amplifications. The presence of an amplification product was determined by electrophoresis of a portion of the reaction on a 1% agarose 1X TBE gel (90 mM Tris, pH 8.3, 90 mM sodium borate, 2.5 mM EDTA) followed by staining with ethidium bromide.

DNA Sequence Analysis - The identity of each amplified canine gene was confirmed by 'single pass' direct sequencing of PCR products using Sequence or Taq DNA polymerase (United States Biochemical Corp., Cleveland). The PCR products were gel purified with Qiaex (Qiagen Corp., Chatsworth, CA) or by elution

- 6 -

from polyacrylamide gel slices (Bergenhem, N.C.H. et al., *Biochem. Genet.* 30:279-287 (1990)) prior to their use in the sequencing reactions. The canine sequences were aligned visually with the sequences of the other species used to design the PCR primers in order to verify the degree of sequence identity.

5

Results

The primer sets for the various UM-STSs reported here are given in Tables 1, 1A and 2 and efficient amplification conditions for the eleven preferred UM-STSs are given in Table 3. It will be appreciated by those skilled in the art that the conditions may be optimized further (e.g., reduction in the time in each cycle).

10 However, the conditions set forth herein were found to work effectively while minimizing the number of conditions that had to be examined.

A representative gel showing amplification of the canine target DNA along with the human target DNA is shown in Figure 1. In Figure 1 the various lanes were amplified with the following gene-specific primer sets of the present invention: lanes 15: 1-4, *GHR*, lanes 5-8, *COL10A1*, and lanes 9-12, *DCN1*. Lane 13 contained a mixture of DNA size markers; lambda bacteriophage DNA cut with the restriction endonuclease *BstE* II and the plasmid pSK- (Stratagene) cut with *Msp* I. Lanes 1, 5, and 9 contain PCR products amplified from human genomic DNA. Lanes 2, 6, and 10 contain PCR products amplified from canine genomic DNA. Lanes 3, 7, and 20: 11 contain PCR products amplified from DNA purified from a canine genomic library contained in a lambda phage vector. Lanes 4, 8, and 12 contain PCR products amplified from a canine liver cDNA library. The human target serves as a positive control for the amplification system because these primers were designed to exactly match the human sequence. The ability to quickly screen genomic and cDNA 25: libraries for the presence of sequences is also demonstrated in Figure 1. The genomic clones for *GHR*, *COL10A1*, and *DCN1* (a very faint signal, stronger on other gels [data not shown]) are present in this particular canine genomic library. The presence of a decorin cDNA clone (encoded by the *DCN1* locus) in the canine liver cDNA library is shown by the presence of the 122 bp band; cDNA clones for 30: *GHR* and *COL10A1* are not present. The *DCN1* PCR product from the cDNA library was sequenced and its identity confirmed (see Figure 2). The human and canine genomic bands have different sizes for *GHR* and *DCN1* because of the intron size differences. The size for the *COL10A1* PCR product is the same between the species because this is the only preferred UM-STS set forth herein in which an intron 35: was not spanned. Although the PCR product bands in Figure 1 are unique, some

- 7 -

UM-STS-species combinations contained one to several non-specific amplification products. However, it is almost always possible to deduce the correct band based upon staining intensity and the similarity in size compared to the band of the primary index species.

5 The amplified products for all of the canine loci (see Table 2) were sequenced to confirm their identity and the results are shown in Figure 2. The locations of PCR primers are underlined, although not all PCR primer sites are shown. Some of the lineups show intron sequence whereas others simply identify the location of the introns. The degree of identity between the canine and index
10 species sequences for each locus is within the range generally accepted (approximately 70 to 100%) as indicating homology for mammalian species (Li, W.-H. et al., *Fundamentals of Molecular Evolution*. Sunderland, MA: Sinauer Associates, Inc. (1987)). These results support the hypotheses that the canine PCR products are homologous to the respective index species' genes. The canine
15 15 *COL10A1* sequence matched the human and mouse sequences to a similar extent (data not shown). The sequences for *PKLR* and *CYP1A1* exactly matched previously published canine coding sequences (Whitney, K.M. et al., *Exp. Hematol.* 22:866-874 (1994); and Uchida, T. et al., *Mol. Pharmacol.* 38:644-351 (1990)); the sequence for canine *FES* is shown in Figure 4. Although the majority of the canine
20 20 sequence for *PVALB* is from an intron, it is believed that the degree of sequence identity from this region is sufficient evidence to confirm that the PCR product is from the correct canine locus. As expected, the canine sequences tend to show greater identity with the human sequences than with the rodent sequences because of the faster evolutionary rate of the rodent genome (Gu, X. et al., *Mol. Phylogen. Evol.* 1:211-214 (1993)). As set forth above, a microsatellite repeat was found within the
25 25 amplified product itself for *RB1*. Preliminary results show that the *RB1* repeat, (GA)_{12(avg)}, has moderate genetic variability within several canine breeds.

The 'universal' utility of these primers was studied on the DNAs from mammals representing several different orders using the primer sets under the
30 30 reaction conditions that were found to amplify the canine sequences. These reactions are referred to herein as 'Zoo PCRs.' Figure 3 shows a representative experiment. The *FES* proto-oncogene amplified from all of the mammalian species were examined. These DNAs were purified and sequenced directly without subcloning (see Methods and Materials above). In Figure 3, target DNAs for each
35 35 lane are: 1, human; 2, pigtailed macaque; 3, dog; 4, goat; 5, pig; 6, horse; 7, mouse;

- 8 -

and 8, rat. The mouse DNA was degraded; strong amplification was obtained with another lot (sequence shown in Figure 4). The DNA marker lane (M) contains a 100 bp ladder. The sequences are tabulated in Figure 4. Sequences are from exon 15 and intron 15. Notations for the sequence lineups in Figure 4 are HUM, human; 5 MAC, macaque; CAT, domestic cat; FES, feline sarcoma virus; DOG, dog; COW, ox; GOA, goat; HOR, horse; PIG, pig; RAT, rat; MOU, mouse. The upper two lines for each block of text represent amino acid sequences and the lower lines represent nucleotide sequences. Dots indicate nucleotides in the various species that are identical with that of the human sequence. The human and cat sequences match 10 the published sequences (Alcalay, M. et al., *Oncogene* 5:267-275 (1990); and Roebroek, A.J.M. et al., *J. Virol.* 61:2009-2016 (1987)). The feline sarcoma virus sequence was not determined but is included for comparative purposes. Only a single amino acid interchange was found among these sequences; isoleucine (I) for macaque, cat, and feline sarcoma virus and leucine (L) in all others. Sequence 15 alignments for the intron were done visually.

The degree of sequence identity makes it highly likely that the canine PCR products are homologous with the corresponding index species' genes. The pattern of nucleotide interchange is also what would be expected for homologous genes; members of the same mammalian order share more sequence similarity with one 20 another than with those of other orders.

The data for the Zoo PCRs for the preferred UM-STS primer sets are given in Table 4. Greater than eighty-four percent of the targets, excluding the index and canine species, amplified under the single condition used to amplify the canine sequence. These species represent five different mammalian orders; primates 25 (human and macaque), carnivores (dog), arteriodactyls (goat and pig), perissodactyls (horse), and rodents (mouse and rat). Limited experiments on other members of these orders (e.g., cat and ox) produced similar results (data not shown). Lack of amplification for *DCN1* for one of the arteriodactyls (goat) would be predicted because there are four mismatches between the UM-STS primers and the sequence 30 of the closely related bovine *DCN1* (Day, A.A. et al., *Biochem. J.* 248:801-805 (1987)).

Table 1
Primer sequences for UM-STSs sorted according to chromosomal location.

Seqd	Locus	Name	Gene Product	Human Chromosome Band	Primer 1 Sequence	Primer 2 Sequence
X	PND	N-RAS	Proto-Oncogene	1 p13	ATGACTGAGTACAACTGGT	CTTCGCCCTGCCTCATGTGA
X	FGR	Pronatriodatin		1 p36	GCAGAACCTCTGCTGATTCAAG	CAGTCGGCCTCTGGGCTCCAAT
D	CXN40	FGR Protooncogene		1 p36.1	GAGTGGTACTTTGAAAGATTGG	TAGTGCTGACCAGCTCCCTG
X	PKLR	Connexin 40		1 pler-q12	ATGGGTGACTGGAGCTCCT	CCCACAATGAAGGCCACCTC
X	AT3	Pyruvate Kinase - RBC		1 q21	CGCCTCAAGGAGATGATCAA	ATGAGGCCGTCGTCAATGTA
X	REN	Antithrombin III		1 q23-q25	CTTCTTGCCTAAACTGAAC TG	GGGCTGAACTTGACTTCCA
X	SFTP3	Renin		1 q32	ACACTCCCCGACATCTCTT	CGCCGATCAAAACTCTGTGTA
X	SPTBN1	Pulmonary Surfactant Protein 3		2 p11.2	GGAAAGTTCTGGAGCATGAG	CACAGGCCAGGTGCTTACA
X	APOB	Beta Spectrin (Non-RBC)		2 p21	TCTCAAGACTATGGAAACA	CTGCCATCTCCAGAAGAA
X	IL1A	Apolipoprotein B		2 p24-p23	TATGATTTCCTTTAAATCAAG	GTGCCCTCTAATTGTACTG
X	COL3A1	Interleukin 1 Alpha		2 q13	AGAACGTCAAAGATGGCCAAGT	TGATTAGAGACAGATGGTC
X	ELN	Collagen III Alpha 1		2 q31-q32.3	GGACACAGGAAGTGAIGGGAA	ACTTTCTCCCTTGACTTCCCCT
X	PAX3	Elastin		2 q31-q41	GCTGCAAGCCGGCTAAAGCAG	AGGACACCTCCAAGGCCAG
X	GCG	Human Paired Domain 2		2 q34-q36	GGTTCTCTCTTTGTATTCCCTC	GGTTCTCTCTCATCAGAGAA
X	PIT1	Glucagon		2 q36-q37	GTGTTCATCTCATCAGAGAA	GCTCCCACCTTTTCATTGTA
X	GNAT-1	Pituitary-Specific Transcription Factor 1		3 p11	GCTAGTCAAACACAATCTG	GGAGATGCTGTTGAACAGGT
X	RAF1	Rod Transducin Alpha		3 p22-21.3	CGCAAGAAAGTGGATCCACTG	GCATTGATATCCTCAGTGTG
X	GLB1	c-RAF Protooncogene		3 p25	CACATCAAACCGAGATCA	CATTCCAATAGGCAAATTGGT
X	GPX1	B-Galactosidase		3 pler-p21	GAATTCTATACTGGCTGGCT	CAGGAACCTCTCAAAGTTC
X	TF	Glutathione Peroxidase 1		3 q11-q12	GACTACACCCAGATGAACGA	AACAGCAGGTCCTCCCATG
X	RHO1	Transferin		3 q21	GCTGACAGGGACCCAGTGA	TGGTGGGTGAAGATGTAGAA
X	GLUT2	Rhodopsin		3 q21-qler	TACATGTTCGTGTGTCACCT	GACTTCCCTGGTTCTGG
X	SST	Glucose Transport-like 2		3 q26.1-q26.3	TGGATGAGTTATGTGAGCAT	ATACTGGAGGAGAGAAAGAA
X	HOX7	Somatostatin		3 q28	GACTCCCGAGGCTCCCTTG	ATCTTCAGCTTCCAGCTC
X	PDEB	Homeobox 7		4 p16.1	AAGTTCGGCCAGAAGCAGTA	TGACACTGTTCATCCACCA
X	ALB	cGMP Phosphodiesterase Beta		4 pler	CTGAAAGAGCTACTACACGGA	AAGTAAGGATGTCCTGGC
X	KIT	Albumin		4 q11-q13	GGCTGACTGTCGTGCAAACA	GCATCCCCAGCAAGTCCTCAT
		c-KIT Protooncogene		4 q12-q13	CCTGTGAAGTGGATGGCAC	

-10-

Table 1 (cont.)

Seqd	Locus Name	Gene Product	Human Chromosome Band	Primer 1 Sequence	Primer 2 Sequence
X	FGG	Fibrinogen Gamma	4 q28	CAATATAAGGAGATTGGACA	TGACACTTGTTCATCCACCA
	F11	Coagulation Factor XI	4 qter	AATCTTGTCTCCTTAAGCATC	GGGTATAGCTAAAAAACTGGCA
X	GHR	Growth Hormone Receptor	5 p13.1-p12	CCAGTTCCAGTTCCAAGAT	TGATTCTCTGGTCAAGGGCA
X	HEXB	Beta Hexosaminidase	5 q13	TTCAATTGGTGGAGAAGCTG	ATCTTGGAACTCGAGAGTC
	HMGCR	HMG CoA Reductase	5 q13.3-q14	GGATATAATGCCCATCTGCAGGAC	GTICATCCCATCTGCAGGAC
X	IL4	Interleukin 4	5 q23-q31	CTTATTATGGGTCTCACCTCCAACT	TCAACTGGTGCACAGAGTCITGG
X	PDEA	Rod Phosphodiesterase Alpha	5 q31-33	TGCCAAACAGTACTACAACC	TGAGCTCCAGGGTGGTTGA
X	ADR82	Adrenergic Receptor Beta 2	5 q31-q32	CCCATTCAGATGCACTGGTA	GAAGCCAGCAGAEGCTGAA
X	CSF1R	CSF-1 Receptor	5 q33-q35	TTCCTAAACACGGGGACCTA	CATGCCAGTGGCAGAACAGGA
X	TNFA	Tumor Necrosis Factor Alpha	6 p21.3	CTCAGGCTCTTCTCCCT	ATGGGCCTCATACAGGGCTT
X	EDN1	Endothelin 1	6 p24-p23	CCAAAAGAACAAAGTGCTG	TGAAACAGTCCTTTCTTCTT
X	COL9A1	Collagen IX Alpha 1	6 q12-q14	ATCAGGATGGCCAAGATGA	TGAATCTGTGAGTCATCATT
	SOD2	Superoxide Dismutase 2	6 q21	AAGTTTAAGGAGAACGCTAC	TCCCAGTTGATTACATTCGA
X	COL10A1	Collagen Type X Alpha 1	6 q21-q22	ATTCTCTCCAAAGCTTACCC	GCCACTAGGAATCTGTGAGAA
X	PLG	Plasminogen	6 q25-q27	CAGCTCCCTGTGATTGGAA	TAGACCCAGGGCTTATGG
	ASL	Arginosuccinate Lyase	7 cen-q11.2	ATGACCCATCTCAGAGGAA	AAGTCCTCTGAGGGTCATCA
X	EPO	Erythropoietin	7 q21	CTCCCTCTGGGCCCTCCAGT	CCATCCCTCTCCAGGCATAGAA
X	CFTR	Cystic Fibrosis Trans. Regulator	7 q31-q32	CTAAGGCCATGGCCAAGCA	CATTGCTCTATCCCTGT
X	TCRB	T-Cell Receptor Beta	7 q35	GACTGTGGCTTCACTCTGG	GATCTCATAGGGATGGTG
X	SFTP2	Pulmonary Surfactant Protein 2	8 p21	CAGAAACACGGGAGATGGT	GCCATCTTCATGATGTAGCA
X	CA2	Carbonic Anhydrase II	8 q22	CAGTTCCATTTCATGGGG	GGCCAGTCATAGGTTGCT
X	TG	Thyroglobulin	8 q24	TTCACCTCAGAGTGTACTG	CTCTCTGTAGCTCATGATCTT
X	GGTB2	Beta-1,4-Galactosyltransferase	9 p13	GGGAGGGTGTGCAATGTC	ATGGGCACTGTGATTTGGT
X	ALDOB	Aldolase B	9 q21.3-q23	GTGACTGTGGACATGGCTG	TTGCAAGCTGCCCC
	C5	Complement Factor 5	9 q22-q34	TGTGTACGATTCCGATATTGA	GTCCTTCACAGAACGTTCTG
X	ABL	ABL Proto-oncogene	9 q34	GAGGACACCATGGGGTGA	GTGGATGAAGTCTCTCTC
X	IL2R	Interleukin 2 Receptor	10 p15-p14	GCTCTACAGAGGTCTCTG	GGCAGGAAAGTCTCACTCTC
X	RET	RET Proto-Onogene	10 q11.2	CCCTTCCACATGGATTTGAA	CATCCAGTTAGCATATACAC
	PSAP	Prosaposin	10 q21-q22	AAGTGTGCAAGAGCTGGT	AAGGAAGGATCCATCACCTC
X	TDT	Terminal Transferase	10 q23-q24	ACCTGGAGGCCATCCGGT	GCCGGAGGTCTCTCTCAA
X	OAT	Oxidative Amine Oxidase	10 q26	CGTGCCTCCAGGATGCCAA	GCCAGGCATCTACCGTTCT
X	WT1	Wilms Tumor 1	11 p13	GAGAAACCATACCGATGTGA	GTTTAACCTGTATGAGTCT
X	LDHA	Lactate Dehydrogenase A	11 p14-15.5	AACTCAGTCAGGTGTCATT	GAATCGAAGTTGCAACCACT
D	INS	Insulin	11 p15.5	GAGCGGGCTCTCTACAC	GGTAGAGGQQAGCAGATGCTGG
X	CD20	CD20	11 q12-q13.1	CTCTTGTGCCTCATCTGGAA	TGGAAGAAGGGCAAAAGATCAGAT
X	ROM1	Rod Outer Segment Protein-1	11 q13	CAGAGGACGGGGCACAGAA	GTTAACACACAGAGGTGCCATG
X	APOC3	Apolipoprotein C3	11 q23-qler	CAGGAACACAGAGGTGCCATG	TGGCCACCTGGGAACTCCTG

-11-

Table 1 (cont.)

SeqId	Locus Name	Gene Product	Human Chromosome Band	Primer 1 Sequence	Primer 2 Sequence
X	WWF	von Willebrand's Factor	12 p	CCAGACCGCATGGAGGGCTG	CTGACTCCAGCTTGAATCC
X	LDHB	Lactate Dehydrogenase B	12 p12.1-12.2	TTCTCAGTCATGTAATGCCAU	CTGCGGATGAACTCCACAGACC
X	IL6	Interleukin 6	12 p12.2-p12	GCACTGGCAGAAACAACCT	ATCTGAAACTCCACAGACC
X	TPI	Triphosphate Isomerase	12 p13	TATATGACTTCGCCGGCA	ATGGCCACACAGSGCTCAT
X	COL2A1	Collagen II Alpha 1	12 q14.3	CTCTGACGACATAATCTG	TCTCAGGTTCTCTTAGATG
X	DCN1	Decorin	12 q21-q23	GTTGATGCGTAGCCTGAA	AAGTGAAGCTCCCACTTCTG
X	IGF1	Insulin-Like Growth Factor 1	12 q22	GGCATGGGATGAGTQCTG	CTCCCTCTGTCCTCTCTG
X	PLA2	Phospholipase A2	12 q23-pter	GACTACGGCTGTCACTGTG	TTACAGCTGGCAACTTCTCTT
X	RB1	Reticuloblastoma 1	13 q14.2	GTTCCAGAAAATAATCAGATGT	ACTATTCTCTGGCAATTCTCTG
X	F7	Clotting Factor VII	13 q34	ATGGGAGCTCAGTGTGG	CGATGCTGTGGTGGTGGT
X	CHY	Chymase (Mast Cell)	14 q11.2	GTCCCCACCTGGGAGATGTG	TGGGAGATTGGGTGAAGAC
X	FOS	FOS Proto-OncoGene	14 q24.3	TCTGTGCCCCATGGCAGAC	ATCTTGAGGCACTGGCGGTG
X	CKBB	Creatine Kinase Brain	14 q32.3	TGGATAACGAGGAGACCA	TTCAACCATCACACCAT
X	TCR4	T-Cell Receptor Alpha	14 q34	ACTGCTGCCCTGTTCACCGATT	GTAACACTGGCATCACAGGAAT
X	B2M	Beta-2 Microglobulin	15 q21-q22.2	TCAGCAAGGACTGCTCTT	CTGCTTACATGTCCTGATCT
X	CYP1A1	Cytochrome P-450 (AHH)	15 q22-q24	TTGGACCTTGGAGCTGG	TGGTGAATGTCGCACTGGTT
X	PKM	Pyruvate Kinase - Muscle	15 q22-pter	GCCCTCATTCACACCAGCA	ATTCAAGACTTATCATTCCTT
X	FES	FES Proto-OncoGene	15 q25-pter	GGGGAACCTGGGAAGTGGT	TCCATGACGATGTAGATGGG
X	HGBA	Alpha Hemoglobin	16 p13.3	CCCAACCAAGAACCTACTT	CGGTAATTGGAGGTAGCAC
X	GOT2	Glutamate Oxaloacetate Transaminase 2	16 q21-q22	TTTAAGTTGAGCCGAGATGT	CTTGGTAGGCCATGTCAA
D	CTR8	Chymotrypsinogen	16 q22.3-q23.2	AACGACATCACCCCTGCTGTT	TGCAGGAGGAGACGCCACT
X	APRT	Adenosine PR Transferase	16 q24	GACTCCCGAGGCTTCTCTTG	ATATCGAGGAGAGAGAGAA
X	TP53	Tumor Protein 53	17 p13.1	TACAAGCAGTCATGACACAT	TCTCAGGTTGTGATGATGGT
X	GUC2D	Guanylate Cyclase 2D	17 p13.1	AGCTTACGGCATCACGACAT	TTGGGGATGGGGCTTGTGTA
X	NF1	Neurofibromatosis 1	17 q11.2	ATTCACTCTCTGTACTTG	CAAAGCTCTCTGTGACTGTT
X	KRT10	Keratin 10	17 q12-q21	ACCTACCGCAGCTGTCTAGA	TGACCTTGGTCCCTTAGATGA
X	PDEG	Rod Phosphodiesterase Gamma	17 q21.1	AGGAAGCACAGCTCTTCAT	GACATCCCTGGAATGGAG
X	SCN4A	Skeletal Muscle Sodium Channel	17 q23.1-q25.3	CTCAAGGTGGACATCTGTACAA	AGCAGGTGGATGGATGCCCT
X	TS	Thymidine Synthetase	18 pter-q12	TGCAGTTCTATGGTGA	AGTTAAATATGTCATCTCC
X	TTR	Transferrin	18 q11.2-q12.1	GACTGGTATTGGTCTGAGG	CAGGGCAAAATGGCTCCCA
X	C3	Complement Factor 3	19 p13.3-p13.2	GGAGTGGACTATGTACAAAGC	TCAGGCCAGSTGCTCTTGTGA
X	APOC2	Apolipoprotein C2	19 q13.2	GAATCACTCTACAGTTACTGG	AGCTGCTGTCGTTGTGA
X	CKMM	Creatine Kinase Muscle	19 q13.2-q13.3	AAGAAGGCTGGGAGAAGGA	CAGCCCAAGGGTCAATGAAAG
X	MX1	MX Anti-Viral Protein	21 q22.3	TGAAGAAGGGTTACATGATGTT	GGCAAGGAACCGTGGCCTT
X	PVALB	Parvalbumin	22 q12-q13.1	ATGTGAGAAGGTTTTCACAT	TCTTGTCTCCAGAGCCAT
X	MAOA	Monamine Oxidase A	X p11.4-p11.23	AGGAACGGGAAGTTGTAGG	CTCCCTGTAATACATCATGC
X	DYS	Dystrophin	X p21	GTTTCAGGGCAGACCTCTT	TACCGACCTTCAGGATCAAG

Table 1 (cont.)

Seqd	Locus Name	Gene Product	Human Chromosome Band	Primer 1 Sequence	Primer 2 Sequence
X	MNK	Menkes Protein	X q12-q13.3	GGCATGACTTTGAATTTCCTG	CATCAAATCCCATGTCTTCTAT
	PGK1	Phosphogluokinase	X q13	ATTACCTTGCTGTGACTT	AAAAGCTTCCCATTCAAAATAG
	PLP	Proteolipid Protein	X q21.3-q22.3	TAGAGTGCTGTGCAAGATG	CCTAGCCATTTCACAAACA
X	HPRT	Hypoxanthine PR Transferase	X q26	AGCTTGCTGGTGGAAAAGAC	TTATAGTCAGGGCATATCC
X	F9	Clotting Factor IX	X q26.3-q27.1	TGGGTGGTAACGTGCAGCCACT	CTACGCCACACTCTCACCCCA
X	F8	Clotting Factor VIII	X q28	GATGCACAGATTACTGCTTC	GTAAAGCAGAGATTACTCCCTG
X	SRY	Sex Determining Region - Y	Y p11.3	AAGCGACCCATGAACGCATT	TTGGGGTATTCTCTGTG

Note: X in Seq'd (sequenced) column indicates PCR product sequenced;
 D Indicates primers designed to canine sequence from literature references.

Table 1A
Primer sequences for UM-STSs sorted according to chromosomal location.

S	Locus Name	Gene Product	Human C'some	Band	Primer 1 Sequence	Primer 2 Sequence
	VCAM1	Vascular CAM 1	1 p32-p31	CCAGGAAACCATTACTGTG	CCCTTAAGAAATTCAATCTCC	
	GNB1	Guanine-Nucleo. Bind. Protein - Beta	1 p1er-p31.2	ATGAGTGAGCTGACCGT	TTTGATCTGAGAGAGAG	
	CD23	CD23	1 q21-q23	TTCCCAAAGGAACTGCTACTA	GCATCATACGGCAGTCCTC	
	AGT	Angiotensinogen	1 q40-q42	GCAGGACCTGCTGCCAG	TGTTGGGGTAGACTCTGTTGGCT	
X	SAG	S-antigen	2 q37	AGTGTATGTCACTCTGACC	TGTTGCTCCCCAGCTCTT	
X	CNCG1	CGMP-Regulated Channel	4 p14-q13	GACCCAGAGAAAAGAAA	GTCCAGTTGATACATAACAG	
	EGF	Epidemal Growth Factor	4 q25-q27	GTGCTTGAGGATGGAA	TACCCAGGAAGGAACTACACA	
	GRL	Glucocorticoid Receptor	5 q31-q32	CCCAAACTGCCCTGGTGTG	AAGACATTTCGATAGGGCA	
X	RDS	Peripherin/RDS	6 p	TTTGACCGAGAAAGGGGT	TTGCTGATTCACGTAACTC	
X	GCAP	Guanylate Cyclase Activating Protein	6 p21.1	GATTGACGTCAACGGGATG	AGGAGGATCTGGTCTCTCTG	
	GCK	Glucokinase	7 p15 (p13)	GAGCAGATCCTGAGAGTT	GTCA TGGGTCTGGGGAT	
X	GNGT1	Transducin-gamma	7 q21.3	GTGTTCCAATGTTGTAAGA	TGAAATCACACAGCCTCTT	
	PLAT	Plasminogen Activator - Tissue	8 p12-q11.2	AAGCAACCGGGTGGAAATTG	GAGAAGTACAGGGCTGCTG	
	MTS1	Multiple Tumor Suppressor 1	9 p21-22	CAGGTCTATGATGTTGCCAG	GGCATCTATGTTGGGGCTG	
X	TYRP1	Tyrosinase Related Protein 1	9 p23	GCAAAGGCGACAACCTACC	GTAATAGTGTCTCAAACAA	
	ALDH1	Aldehyde Dehydrogenase 1	9 q21	AAACACAGCAGAACAACTCC	CATGTGAGAAAGAAATGGCTG	
	VIM	Vimentin	10 p13	GCTGCCAACGGGAACATGA	CATTGAGCAGGTCTGGTATTC	
	IRBP	Interstitial Retinal Binding Protein	10 q11.2	GAAGCCTATGGCTCAAGAA	TTGTGCTGGAGCATCTCTCT	
	PLAU	Plasminogen Activator - Urokinase	10 q24-qler	ACCAACCATCGAGAACCCAGCC	GGCAGGCGAGATGGTCGTAT	
	GOT1	Glutamate Oxaloacetate Transm. 1	10 q24.1-q25.1	GCACCTCGAAATTGAGCTGA	CCTCTTCATCTGCATCCA	
	TYR	Tyrosinase	11 q14-21	GAACAAAGGAGTCGGATCTG	GCTCTGATACAAGGCTGGT	
	IGHE	Immunoglobulin E	14 q32.33	ACCTGTCCTGGTGGGACCT	TCCTCAGGCGATGAAGTCTGGAT	
X	AGC1	Aggrecan	15 q25-q26.2	ATGGACATGTCAGATGCCGGCT	TTGTGCTGGGTTCAACCTCTAGT	
X	IL4R	Interleukin 4 Receptor	16 p11.2-12.1	GTCCTCCAGCATGGGCCAG	GCTCTGAGAAGGGCTGTAA	
X	MC1R	Melanocortin-1 Receptor	16 q24	AACCTGCACTCACCCATGTA	TCTTCCTTTGTCACATTCAAA	
	BRCA1	Breast Cancer 1	17 q21	CTGTGTGAGGAAAGAATGG	AGGAAGGGTTGAAGTCTGGA	
X	TK1	Thymidine Kinase 1	17 q23.2-q25.3	GCAGCTGGATGGGACCTTCCA	ACCCGGCTCAGCTCCACCT	
X	RCV1	Recoverin	17	TGGTACCACTGCTCCCTGTA	CATGACGATCTCCAGCACTT	
	FECH	Ferrochelatase	18 q21.3	ATAGCATTACCACTGACCA	AACAATGGATTCCATTAAAGA	
	PRNP	Prion Protein	20 pter-p12	ACCCAAGGGGGAGACCT	CCCACTATCGAGAAGATGA	
	AGT1	Agouti Homologue	20 q11.2	GGATGTCACCCGGCTACT	TGGGATTCTCTGTCAGTG	
	ADA	Adenosine Deaminase	20 q13.1	ATCCCTGTCAGTCATGGGCC	ATGGTCCTCATCTCCAGCCA	
	SOD1	Superoxide Dismutase 1	21 q22.1	TGTACCAAGTGCAGGTCCTCA	CCAGGTCTCCAAACATGCCT	
	PDGFB	Platelet Derived Growth Factor B	22 q12.3-q13.1	CGCTGCTCCGGCTGCTGTA	AGGGTCACCGTGGCTCTCTT	

¹ An X in this column indicates that the PCR product has been confirmed to be the correct locus in the canine genome by sequence analysis

Table 2
Primer Sets for eleven preferred UM-STSs.

Locus	Index	Species ^a	Primer 1 ^b	Primer 2	Primer 1	Primer 2	P1 A.A. ^c	P2 A.A. ^c	Human Chromosome
CFTR	Human	CTAAGCCATGGCCACAAGCA	CATTGCTTCTATCCTGTGTTTC	HCFTREX22D	HCFTREX23U	1346	1407	7q31-q32	
COL10A1	HumanT.....T.....C.....	HCOL10A1EX2D	HCOL10A1EX2U	505	693	6q21-q22	
CSF1R	Human	TTCCAAAACACCGGGACCTA	G.....	HCSF1REX3D	HCSF1REX4U	76	161	5q31-q35	
CYP1A1	Dog	TGGACCTCTGGAGCTGG	DCYP1A1EX1D	DCYP1A1EX5U	119	417	7q31	
Human	
DCN1	Human	GTTGATGAGGTAGCCGAA	HDCN1EX6D	HDCN1EX7U	207	247	12q21-q23	
RatC.....G.....	
FES	Human	GGGGAACCTTGCGAAGTGT	TCCNTGACCATGATGATGG	HFES1EX14D	HFESEX15U	573	641	15q25-qter	
FeSVA.....	
GHR	Human	CCAGTTCAGTTCAAGAT	TGATTCCTGGTCAAAGCA	HGHREX9D	HGHREX10U	301	432	5p13.1-p12	
RatA.....A.....	
GLB1	Human	GAATTCTTACTGGCTGGCT	CATTCCATAGGGAAAATTGTT	HGLB1EX6D	HGLB1EX9U	268	319	3pter-P21	
MouseG.....	
PKLR	Human	CGCCCTCAGGGAGTAGATAAA	ATGAGCCCCCTGGCAATTA	HPKLREX4D	HPKLREX6U	72	193	1q21	
Rat	
PVALB	Human	ATGTGAAAGGGTTTCACT	TCTTGTCCTCAGGCCAT	HPVALBEX3D	HPVALBEX4U	43	93	22q12-q13.1	
RatC.....C.....	
RB1	Human	GTTCGAGAAATAATCGATGCT	ACTCATTCCTGCCAGTTCTG	HRB1EX2SD	HRB1EX26U	644	905	13q14.2	
MouseC.....	

• Primary index species on top

• Dots indicate identical nucleotides

• First letter, primary index species; next letters; EX + number = exon number; D = down, U = up

• Amino acid over which 5' nucleotide of primer lies

-15-

Table 3

Amplification conditions for eleven preferred canine UM-STSs.

Locus	Temperatures (°C)	Times (min)	Size of PCR Product (bp)	
			Human	Dog
CFTR	95, 57, 72	0.5, 1.5, 4	700	1000
COL10A1	94, 57, 72 (hs) ^a	1, 2, 3	384	384
CSF1R	94, 59, 72	1, 2, 3	730	730
CYP1A1	95, 57, 72	0.5, 1.5, 4	700	600
DCN1	94, 57, 72	1, 2, 3	1422	2000
FES	94, 57, 72	0.5, 1, 1.5	484	500
GHR	94, 57, 72	1, 2, 3	765	800
GLB1	94, 57, 72	1, 2, 3	238	240
PKLR	94, 59, 72	1, 2, 3	600	630
PVALB	94, 57, 72(hs)	0.5, 1.5, 4	1400	1300
RB1	94, 59, 72	1, 2, 3	695	1300

^a hs indicates 'hot start' used.

-16-

Table 4

Locus	Human	Macaque	Dog	Goat	Pig	Horse	Mouse	Rat
CFTR	+*	+	+	-	+	+	+	+
COL10A1	+	+	+	-	+	+	+	+
CSF1R	+	+	+	+	-	-	+	+
CYP1A1	+	+	+	+	+	+	+	+
DCN1	+	+	+	-	+	+	+	+
FES	+	+	+	+	+	+	+	+
GHR	+	+	+	+	+	+	+	+
GLB1	+	+	+	+	+	+	+	+
PKLR	+	+	+	+	+	-	+	+
PVALB	+	+	+	+	+	+	-	-
RB1	+	+	+	-	+	+	+	+

+, amplification; -, no amplification

* Bold symbols indicate index

- 17 -

The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion and from the accompanying claims and drawings, that various changes, modifications and variations can be made
5 therein without departing from the spirit and scope of the invention.

All publications referred to herein are expressly incorporated by reference.

- 18 -

WE CLAIM:

1. A primer comprising a polynucleotide, wherein the polynucleotide has a sequence selected from the group consisting of the sequences set forth in Table 1.
- 5 2. A primer comprising a polynucleotide, wherein the polynucleotide has a sequence selected from the group consisting of the sequences set forth in Table 1A.
- 10 3. A method for amplifying DNA, comprising the step of performing PCR with the DNA and a primer set selected from the group consisting of the primer sets of Table 1.
4. A method for amplifying DNA, comprising the step of performing PCR with the DNA and a primer set selected from the group consisting of the primer sets of Table 1A.

1/5

Fig . 1 .

2/5

Figure 2

CFTR

A.A. 1346

Dog	- - - - - I - - - - -
Mouse	- - - - - I - - - V - - - V - - - - -
Human	E P S A H L D P V T Y Q I I R R T L K Q A F A
Human	GAACCCAGTGCCTATGGATCC AGTAACATAACAAATAATTAGAAGAACTCTAAAACAAGCATTGCT
Mouse	..G.....C...C.A..C.. CA.....G.C..C..GT.....C..C..
Dog	G..... .A.....C

COL10A1

A.A. 569

Dog	- - - - - K - - - - - - - - - - - - - - - H
Mouse	- I Y E - - - - - - - - - - - S - - - - - K
Human	P F D K I L Y N R Q Q H Y D P R T G I F T C Q
Human	CCATTGATAAAATTTGTATAACAGGAAACAGCATTATGACCCAAGGACTGGAATCTTACTTGTCAAG
Mouse	..CA..T..G.G...C....C.T....G.....C.....AT....T.....C..A..
DogG..C.....A.....A.....C..C..C..C

CSF1R

A.A. 107

intron 3	
Dog	- - V - - - Q - - - - - - - - - V - G - - - - -
FeLV	- - A - - - Q - - - - - - - T - L - G - - - - -
Human	D P A R P W N V L A Q E V V V F E D Q D A L L
Human	ACCTGCCCGCCCTGGAACGTGCTAGCACAGGAGGTGGTCGTGTCAGGACCAAGGACGCACTACTGC
FeLVT.....T.....G.....G..C....A..ACG....G..A.GT....T..GT.G....
DogTT.....T.....G.....G..G.....C.....G.....GG.....T..G..G....

DCN1

A.A. 231

Dog	- - - - - - - - - - - - - - - - - - - - - -
Rat	- - - - - - - N S - - S - - - - - - - - - - -
Human	V D A A S L K G L N N L A K L G L S F N S I S
Human	GTTGATGCAGCTAGCCTGAAAGGACTGAATAATTGGCTA AGTTGGATTGAGTTCAACAGCATCTCT
RatC.....A..TC.....T.. ..C....T....C....T.....A.C
DogC.....T.....N

GHR

A.A. 333

Dog	- D L - - - - G - - - - - - - N - - - - -
Rat	- D A - - - - - - - - - - - D - Q - - -
Human	D E P D E K T E E S D T D R L L S S D H E K S
Human	TGATGAGCCAGATGAAAAGACTGAGGAATCAGACACAGACAGACTTCTAAGCAGTGACCATGAGAAATCA
RatTG.G.....G.....A..G.....C.....GA.....G.....
DogC.T.....C..A.G.....AC.....

3/5

GLB1

A.A. 268

Dog	- - - - -	- - - - -	V	- - -	V	- - -
Mouse	- - - - -	- - - K	- - -	V	- - K	T
Human	E F Y T G W L D H W G Q P H S T I K T E A V A S					
Human	<u>GAATTCTATACTGGCTGGCTAGATCACTGGGGCCAACCTCACTCCACAATCAAGACCGAAGCAGTGGCTTCC</u>					
Mouse	..G.....	C.....	TA.....	C..T.....	GG.G..A..TA..A..C.....A..	
Dog		T.....	G..A.....	A...G.G.....	T....TC.....

PVALB

A.A. 59

Dog	-	intron 2	- -
Rat	- - - - -	(bp)	S - - -
Human	I E E D E L G		F I L K
Human	ATCGAGGGAGGATGAGCTGGGgttaagctggagg	1300	tttctcccccagATTCATCCTAAAG
Rat	..T.....	1500-....G.C...T..G..G.
Dogagactcc.	1300-.....

RB1

A.A. 890

Dog	A - - - - -	L	intron 22
Mouse	- G - - - -	N V	- - - - -
Human	G S N P P K P L K K L R F D I E G S D E A D G S		
Human	<u>GGAAGCAACCCTCTAAACCACGTAAAAACTACGCTTGATATTGAAGGATCAGATGAAGCAGATGGAAG</u>		
Mouse	..CG.....C..C.....	CG.G.....C..C..G...G.C.....	G..
Dog	.C.....	TG.....C.....	

Figure 2 (cont.)

4/5

Figure 4

MAC, CAT, FES I

HUM	A D N T L V A V K S C R E T L P P D L K
HUM	GCCGACAACACCTGGTGGCGGTGAAGTCTTAGAGAGACGCTCCCACCTGACCTCAAG
MACT.....A.....A.....A.....A.....A.....A.....
CATT.....C.....A.....C.C.....A.....A.....A.....
FEST.....C.....A.....C.C.....A.....A.....A.....
DOGT.....T.....A.....CC.....C.....
COW	..A.....A.....C.C.....A.....
GOA	..A.....A.....C.....A.....G.....C.....
PIG	..A..T.....A.....CC.....A.....
HOR	..T.....A.....CC.....C.....G.....
RAT	..A.....C.....T.....C.....N.....
MOUT.....C.....NNN.....

HUM A K F L Q E A R
 HUM GCCAAGTTCTACAGGAAGCGAG GTGGGTGATAAAACTAATGATCACCAACGGGTCCCGCAT
 MAC
 DOGC.....G.....C.....--..CA.A.CT..A...
 CATT.....A.A ..A.....AC..AG..C.....--..CATAA.T.....C
 FEST.....A.A
 COWC.....G.AC.CCC...A.TGTA..C...CATA
 GOAG.....A.....G.AC.CC...A.TGTA..C...T.C.C
 PIGG.....AG..CC.....TGTGATAAAAGA..CC
 HORG..A.....C..A...CC.....TGGTAT..CTAA.G..
 RATG..NNNN.....C.....A.GGGA.CAGT..A..T...TTGTG
 MOUA.....A....AT

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/02403

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C07H 21/04; C12P 19/34; C12Q 1/68
US CL : 536/24.31, 24.33; 435/91.2, 6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/24.31, 24.33; 435/91.2, 6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, DIALOG

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	HUGHES et al. Evolution of the Major Histocompatibility Complex: Independent Origin of Nonclassical Class I Genes in Different Groups of Mammals. Mol. Biol. Evol. 1989, Vol .6, No. 6, pages 559-579, see Abstract.	1-4
Y	CZELUSNIAK et al. Phylogenetic Origins and Adaptive Evolution of Avian and Mammalian Haemoglobin Genes. Nature. 15 July 1982, Vol. 298, pages 297-300, especially page 300.	1, 3
Y	GRAY, M.W. Mitochondrial Genome Diversity and the Evolution of Mitochondrial DNA. Can. J. Biochem. 1982, Vol. 60, pages 157-171, especially page 165.	1-4

Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

12 APRIL 1997

Date of mailing of the international search report

30 APR 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer

PHUONG BUI

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/02403

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	VENTA et al. Organization of the Mouse and Human Carbonic Anhydrase II Genes. Ann. N.Y. Acad. Sci. 1984, Vol. 429, pages 309-323, especially Abstract and page 319.	1, 3
Y	VENTA et al. Comparison of the 5' Regions of Human and Mouse Carbonic Anhydrase II Genes and Identification of Possible Regulatory Elements. Biochim. Biophys. Acta. 1985, Vol. 826, pages 195-201, see entire article.	1, 3
Y	WICHMAN et al. In Search of Retrotransposons: Exploring the Potential of the PCR. Biotechniques. 1992, Vol. 13, No. 2, pages 258-265, see Abstract.	1-4
Y	MAZZARELLA et al. Conserved Sequence-Tagged Sites: A Phylogenetic Approach to Genome Mapping. Proc. Natl. Acad. Sci. USA. May 1992, Vol. 89, pages 3681-3685, see Abstract.	1-4
Y	HINO et al. Universal Mapping Probes and the Origin of Human Chromosome 3. Proc. Natl. Acad. Sci. USA. January 1993, Vol. 90, pages 730-734, see Abstract.	1-4
Y	SKAGGS et al. The Deduced Amino Acid Sequence of Human Carbonic Anhydrase-Related Protein (CARP) is 98% Identical to the Mouse Homologue. Gene. 1993, Vol. 126, pages 291-292, see entire article.	1, 3
Y	MERRYMAN et al. Characterization of a New, Potent, Immunopathogenic Epitope in S-Antigen that Elicits T Cells Expressing V β 8 and V α 2-Like Genes. J. Immunol. 01 January 1991, Vol. 146, No. 1, pages 75-80, especially pages 77 and 79.	2, 4
Y	ITAKURA et al. Expression in <i>Escherichia coli</i> of a Chemically Synthesized Gene for the Hormone Somatostatin. Science. 09 December 1977, Vol. 198, No. 4321, pages 1056-1063, see Abstract and pages 1056-1058.	1, 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.