COURSE PLAN

Department :	Instrumentation & Control Engineering							
Course Name & code :	Data Structures usin	Data Structures using C++ ICE 406						
Semester & branch:	7 th Sem E&I							
Name of the faculty:	Ms. Preeti Mohanty							
No of contact hours/week:	L	Т	P	С				
	3 0 0 3							

COURSE OUTCOMES (COS)

At the	end of this course, the student should be able to:	No. of Contact Hours	Marks	Program Outcomes (POs)	PSO	BL (Recommended)
CO1	Demonstrate the use of classes using basic C++ program.	5	13	PO1, PO2, PO5	PSO2	3, 4
CO2	Develop C++ programs using inheritance.	7	20	PO1, PO5	PSO2	3, 4
CO3	Apply the concepts of linked lists and recursion.	10	27	PO1, PO2,	PSO2	3, 4
CO4	Apply the concepts of trees and queues.	9	26	PO1,	PSO2	3, 4
CO5	Demonstrate the sorting and searching algorithms.	5	14	PO1, PO2,	PSO2	3, 4
	Total	36	100			

Assessment Plan

S. No.	Assessment Mode		Assessment Method	Time Duration	Marks	Weightage	Typology of Questions (Recommended)	Schedule	**Topics Covered	
1	MISAC	1	Surprise Assignment	15 Mins	5	1 Question × 5M = 5 marks (Minimum 5 questions to be given)	Bloom's taxonomy (BT) level of the question should be L3 and above.	August 28, 2023 – September 02, 2023	Structure for C++ program, operators, classes, operator overloading. (L1 – L8)	
		2	Mid-term Examination	120 Mins	30	Objective: 5M $10 \text{ MCQs} \times \frac{1}{2} = 5 \text{ marks}$ Descriptive: 25M (3 Questions of each of 2 marks and 3 marks and 2 Questions of 5 marks)	Bloom's taxonomy (B) level of the question should be L3 and above.	September 25, 2023 – September 30, 2023		
		3	Quiz	15 Mins	5	$10 \text{ MCQs} \times \frac{1}{2} = 5$	Bloom's taxonomy (BT) level of the question should be L3 and above.	October 09, 2023 - October 14, 2023		
2	FISAC	1	***	***	10	***	Bloom's taxonomy (BT) level of the question should be L3 and above.	October 30, 2023 – November 06, 2023	Linked list and recursion (L13-L22)	
	END – SEMESTER ASSESSMENT									
1	1 Regular/Make–Up Exam 180 Mins		50	Answer all 5 full questions of 10 marks each. Each question can have 3 parts of 2/3/4/5/6 marks.	Bloom's taxonomy (BT) level of the question should be L3 and above.	17 th week of the semester	Comprehensive examination covering full syllabus.			

^{**} Individual faculty will be entering the topics

<u>NOTE:</u> Information provided in the table is as per the In-semester assessment plan and schedule of V and VII semester B. Tech provided from Academic Section.

^{***} Individual faculty must identify the assessment method from table 3 and fill in the details.

Flexible In-semester Assessment Component (FISAC):

- i) ONE f the components mentioned in Table 3 is to be selected by the faculty.
- ii) The type of assessment should be informed to the students well in advance.
- iii) Syllabus for the last component of In-semester Assessment (ISAC) i.e. FISAC should cover the topics mentioned for self-study if any / topics which are not covered till MISAC 3: Quiz.

Table 3: Flexible In-semester Assessment Component (FISAC)

No	Type	Description
Α.	Quiz/MCQs	➤ Similar to MISAC 3: Quiz/MCQs
		Number of Questions:20
		<pre>> Time duration:30 minutes</pre>
В.	Surprise	> Similar to MISAC 1: Surprise assignment
	Assignment	► Bloom's taxonomy (BT) level of the question should be L3
		Faculty have to set FIVE sets of Questions with each set
		having a minimum of TWO questions
		> Each student will write the answers for ONE set of
		questions having a minimum of TWO questions.
		> Question sets have to be distributed in such way that no
		two adjacent students would get the same set of questions.
	Take Home	Time Duration: 30 minutes
C.	Assignment	TEN questions will be given to each student.
	Assignment	Questions must be at Blooms Taxonomy Level 3 or 4
		Questions will be given to the students at least A MONTH in advance.
		Students have to write the answers to all the questions.
		> Critical evaluation is to be done to differentiate.
D.	Group	The students have to be grouped in such a way that there
	Assignment	are 3 to 4 students in each group.
		Each group is to be given one question.
		The questions should be at Blooms Taxonomy Level 4 or 5
		> Questions are to be given well in advance (at least A
		MONTH
		<pre>▶ before)</pre>
		> The questions may be in the form of case studies, design,
		report writing, writing reflection article of their
		understanding on a journal paper given by the faculty to
		each group etc.
E.	Seminar	> Students are to be given the topics for seminar relevant
		to the course of study.
		Topics are to be given A MONTH in advance.
		Should be at Blooms Taxonomy Level 4 or 5
		Topics should be related to the courses of study.
		> Topics should be in the field of recent developments in the courses of study.
		Students have to collect the data regarding the seminar
		topic and submit a report.
		Students should make a presentation for about TEN minutes
		using Power Point.
F.	Quiz /	Faculty have to arrange for the invited talk in the
	Assignment	emerging areas in the courses of study.
	based on	> Quiz / Assignment is to be conducted on the topic of the
	invited talks	invited talk.
		Questions should be at Blooms Taxonomy Level 4 or 5

G.	Development	>	Faculty has to define the problem statement.						
	of Software /	>	Problem Statements are to be given well in advance (at						
	Apps		least A MONTH before the scheduled date of submission)						
		\triangleright	Should be at Blooms Taxonomy Level 4 or 5.						
		>	Students have to develop the software / mobile apps using						
			the appropriate software language / platform and submit a						
			report on the same.						
		>	If it is a group activity, contribution of each individual						
			student has to be assessed and evaluated.						
Н.	Mini Project	>	Faculty has to define the problem statement.						
		>	Problem Statements are to be given well in advance in						
			advance (at least A MONTH before the due date for submission)						
		>	Should be at Blooms Taxonomy Level 4 or 5						
		>	Students have to develop prototypes/models						
			(physical/software based)						
		>	A report covering all important aspects of the project						
			has to be submitted by the students						
		>	If it is a group activity, the contribution of each individual student has to be assessed and evaluated.						

LESSON PLAN

L No	TOPICS	Course Outcome Addressed		
1	Structure of C++ Program: Data Types. Basic, user-defined and derived	CO1		
2	Operators: assignment, arithmetic, relational, logical, increment/decrement, conditional,	CO1		
	precedence of operators, manipulators, decision statements, programming control statements, Functions			
3	Main Function, Function Prototyping	CO1		
4	Call and return by reference, Inline functions	CO1		
5	Default and constant arguments, Pointers	CO1		
6	Classes: Public and private members, encapsulation, implementation of a class, syntax for accessing class members	CO2		
7	Constructors and destructors, Operator overloading for classes	CO2		
8	Friend classes and functions	CO2		
9	Inheritance: Classification, derived class constructors	CO2		
10	Overriding member functions, private and public inheritance	CO2		
11	Abstract base class	CO2		
12	Templates: Class templates and function templates	CO2		
13	Linked List: Data structure	CO3		
14	Linked list traversal	CO3		
15	Insert function	CO3		
16	Remove function	CO3		
17	Linked list with tail and doubly linked lists	CO3		
18	Recursion: Examples of recursive functions	CO3		
19	Examples of recursive functions	CO3		
20	Understanding of recursive functions	CO3		
21	Debugging of recursive functions	CO3		
22	Debugging of recursive functions	CO3		
23	Trees: Binary search tree, Functions for binary trees	CO4		
24	Binary trees traversal	CO4		
25	Implementation of tree as a class	CO4		
26	Expression tree	CO4		
27	Kernel Density tree	CO4		
28	Queues: Ring buffer and linked list queue implementation	CO4		
29	Applications	CO4		
30	Heaps	CO4		
31	Graphs, Sets	CO4		
32	Sorting and searching algorithms: Sorting	CO5		
33	Sorting, Searching	CO5		
34	Searching	CO5		
35	Hashing	CO5		
36	Radix sort	CO5		

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	2	-	-	-	-	-	-	-	-	2	-
CO2	3	-	-	-	2	-	-	•	-	-	-	-	-	2	-
CO3	3	2	2	-	2	-	-	-	-	-	-	-	-	2	-
CO4	3	2	2	2	2	-	-	-	-	-	-	-	-	2	-
CO5	3	2	2	2	2	-	-	-	-	-	-	-	-	2	-
Articulat ion Level	3	2	2	2	2	-	-	-	-	-	-	-	-	2	-

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

FACULTY	SECTION	FACULTY	SECTION
N.A.			

References:

- 1) Nell Dale, "C++ Plus Data Structures", Jones and Bartlett Publishers, (4e), 2010.
- 2) Maria Litvin, Gary Litvin, "Programming with C++ and Data Structures", Vikas Publishing House Pvt. Ltd., 2001.
- 3) E Balagurusamy, "Object-oriented Programming with C++", TMH, (2e), 2001.
- 4) Yashavant P Kanetkar, "Let us C++", BPB Publications, 2003.

Submitted by: Preeti Mohanty

(Signature of the faculty)

Date: 31st July, 2023

Approved by: Dr. Shreesha C

(Signature of HOD)