In the Claims:

1. (Currently Amended) A compound of the formula (I)

in which

A is an aromatic heteromonocyclic, or an aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups, where not more than one of the heteroatoms is an oxygen atom,

and A may be substituted by radicals R¹¹, R¹² and/or R¹³,

where

R¹¹, R¹² and R¹³ at each occurrence are selected independently of one another from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

R³ and R⁴ are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

R³ and R⁴ are connected to give -CH=CH-CH=CH-, -(CH₂)₄- or -(CH₂)₃-,

 R^5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of C_4 - C_4 -alkylen, C_2 - C_4 -alkylen, C_2 - C_4 -alkylen, C_4 -alkylen, C_4 -alkylen), C_4 - C_4 -alkylen, C_4 -alkyle

X is selected from the group consisting of CO, CO-O, SO₂, NR^{54} , NR^{54} -CO, NR^{54} -SO₂, CO-NR⁵⁸ and a bond,

Y is C₁-C₆-alkylen, C₂-C₆-alkenylen, C₂-C₆-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, said ring may comprise up to two oxo groups, and may be substituted by radicals R^{55} , R^{56} , R^{57} , and/or up to three radicals R^{53} ,

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

 R^{52} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, E and C_1 - C_4 -alkylen-E,

R⁵³ at each occurrence is independently selected from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

 R^{55} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl, C_1 - C_4 -alkylen-phenyl, where the ring may be substituted by up to two radicals R^{60} , and OH, O- C_1 - C_4 -alkyl, O-phenyl, O- C_1 - C_4 -alkylen-phenyl, NH₂, NH(C_1 - C_4 -alkyl) and N(C_1 - C_4 -alkyl)₂,

R⁵⁶ is a group Q¹-Q²-Q³, where

Q1 is selected from the group consisting of a bond, C1-C4-alkylen, C2-C4-alkenylen, C2-C4-

alkynylen, C₁-C₄-alkylen-N(C₁-C₄-alkyl), N(C₁-C₄-alkyl), C₁-C₄-alkylen-NH, NH, N(C₁-C₄-alkyl)-C₁-C₄-alkylen, NH-C₁-C₄-alkylen, O, C₁-C₄-alkylen-O, O-C₁-C₄-alkylen, CO-NH, CO-N(C₁-C₄-alkyl), NH-CO, N(C₁-C₄-alkyl)-CO, CO, SO₂, SO, S, O, SO₂-NH, SO₂-N(C₁-C₄-alkyl), NH-SO₂, N(C₁-C₄-alkyl)-SO₂, O-CO-NH, O-CO-N(C₁-C₄-alkyl), NH-CO-O, N(C₁-C₄-alkyl)-CO-O, N(C₁-C₄-alkyl), NH-CO-N(C₁-C₄-alkyl), NH-CO-NH, and NH-CO-NH,

 Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkynylen, and a bond,

 Q^3 is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R^{63} , R^{64} and/or R^{65} ,

R⁵⁷ at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, phenyl, C₁-C₄-alkylen-phenyl, COOH, CO-O-C₁-C₄-alkyl, CONH₂, CO-NH-C₁-C₄-alkyl, CO-N(C₁-C₄-alkyl)₂, CO-C₁-C₄-alkyl, CH₂-NH₂, CH₂-NH-C₁-C₄-alkyl and CH₂-N(C₁-C₄-alkyl)₂,

 R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,

R⁵⁹, R⁶⁰ and R⁶² at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

R⁶³, R⁶⁴ and R⁶⁵ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

provided that if W is a bond, then X is NR⁵⁴, NR⁵⁴-CO or NR⁵⁴-SO₂, or if W is a bond, then X and Y are a bond and Z is NR⁵¹R⁵²,

R⁶ and R⁷ are selected independently of one another from the group consisting of hydrogen, chlorine,

bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

and their tautomeric forms, enantiomeric and diastereomeric forms, and prodrugs thereof.

- 2. (Currently Amended) The compound of claim 1, wherein A is <u>an</u> selected from the group consisting of aromatic heteromonocyclic and aromatic heterobicyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- 3. (Currently Amended) The compound of claim 1, wherein A is selected from the group consisting of benzothiazole, pyrimidine, pyridine, pyridazine, pyrazine, isoquinoline, quinoline, thiazole, benzothiazole, imidazole, benzothiophene, thiophene, thiophe
- 4. (Cancelled).
- 5. (Cancelled).
- 6. (Currently Amended) A compound of the formula (III),

in which

D is an aromatic heteromonocyclic, or an aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups,

and D may be substituted by radicals R21, R22 and/or R23,

G is an aromatic heteromonocyclic, aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups and

G may be substituted by radicals R71, R72 and/or R73,

R²¹, R²², R²³, R⁷¹, R⁷² and R⁷³ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, 4-piperazin-1-yl, 4-(C₁-C₄-alkyl)-piperazin-1-yl,

R³ and R⁴ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

R³ and R⁴ are connected to give -CH=CH-CH=CH-, -(CH₂)₄- or -(CH₂)₃-,

R5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkylen, C_2 - C_4 -alkylen, C_4 -alkylen, C_4 -alkylen), NR⁵⁴, NR⁵⁴, NR⁵⁴-(C_1 - C_4 -alkylen) and a bond,

X is selected from the group consisting of CO, CO-O, SO₂, NR⁵⁴, NR⁵⁴-CO, NR⁵⁴-SO₂, CO-NR⁵⁸ and a bond,

Y is C₁-C₆-alkylen, C₂-C₆-alkenylen, C₂-C₆-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups, and E may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷ and/or up to three radicals R⁵³,

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

R⁵² at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, E and C₁-C₄-alkylen-E,

R⁵³ at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

 R^{55} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl, C_1 - C_4 -alkylen-phenyl, where the ring may be substituted by up to two radicals R^{60} , and OH, O- C_1 - C_4 -alkyl, O-phenyl, O- C_1 - C_4 -alkylen-phenyl, NH₂, NH(C_1 - C_4 -alkyl) and N(C_1 - C_4 -alkyl)₂,

R⁵⁶ is a group Q¹-Q²-Q³, where

Q¹ is selected from the group consisting of a bond, C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkylen- C_4 -alkylen- C_4 -alkylen- C_4 -alkylen- C_4 -alkylen- C_4 -alkylen, C_4 -alkylen

 Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkynylen, and a bond,

 Q^3 is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R^{63} , R^{64} and/or R^{65} ,

R⁵⁷ at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, phenyl, C₁-C₄-alkylen-phenyl, COOH, CO-O-C₁-C₄-alkyl, CONH₂, CO-NH-C₁-C₄-alkyl, CO-N(C₁-C₄-alkyl)₂, CO-C₁-C₄-alkyl, CH₂-NH₂, CH₂-NH-C₁-C₄-alkyl and CH₂-

 $N(C_1-C_4-alkyl)_2$,

 R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,

R⁵⁹, R⁶⁰ and R⁶² at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

R⁶³, R⁶⁴ and R⁶⁵ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

provided that if W is a bond, then X is NR⁵⁴, NR⁵⁴-CO or NR⁵⁴-SO₂, or if W is a bond, then X and Y are a bond and Z is NR⁵¹R⁵²,

and their tautomeric forms, enantiomeric and diastereomeric forms, and prodrugs thereof.

- 7. (Currently Amended) The compound of claim 6, wherein D is selected from the group consisting of an aromatic heteromonocyclic and aromatic heterobicyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- 8. (Currently Amended) The compound of claim 6, wherein D is selected from the group consisting of benzothiazole, pyrimidine, pyridine, pyridazine, pyrazine, isoquinoline, quinoline, thiazole, benzothiazole, imidazole, benzothiophene, thiophene, benzoturan and furan.
- 9. (Previously Presented) The compound of claim 6 wherein G is selected from the group consisting of thiophene, furan, pyrrole, pyrazole, isoxazole, pyridine, pyrimidine, quinoline, isoquinoline, tetrahydroisoquinoline, benzothiophene, benzofuran, indole, imidazole, thiazole, imidazothiazole, benzooxazine and quinoxaline.
- 10. (Previously Amended) A pharmaceutical composition comprising a compound as claimed in claim 1 and a pharmaceutically acceptable carrier.
- 11. (Cancelled)

	12.	(Cancelled)
	13.	(Cancelled)
	14.	(Cancelled)
	15.	(Cancelled)
	16.	(Cancelled)
	17.	(Cancelled)
	18.	(Previously Presented) A pharmaceutical composition comprising a compound as claimed in
claim 6 and a pharmaceutically acceptable carrier.		
	10.00	
	-1931 (Cancelled)