

Motivation

Problem in Machine Learning (ML)

• Choosing an architecture is very burdensome

Research Question

- From given data, can we find a proper architecture?
- What is a sufficient size of it?

Prior Works

- Universal Approximation Theorem
 "2-layer NN can approximate any function.."
- \rightarrow Just feasibility

- C. Zhang et al., Understanding deep learning requires rethinking generalization, ICLR'17 constructed 2-layer ReLU NN with 2n + d weights to fit a dataset with n finite samples in \mathbb{R}^d
- H. Valvi and P. J. Ramadge, An upper-bound on the required size of a neural network classifier, ICASSP'18 extended the result considering the separability of a finite dataset
- \rightarrow Just finite samples

Can we guarantee the generalization beyond a finite dataset?

Our Purpose: Generalization

Can we guarantee the generalization beyond a finite dataset?

• An architecture which fits any datasets from a good distribution

For the rest,

- Simple Separability
- 2-layer NN for Simple Separability
- Extended Separability
- 4-layer NN for Extended Separability

Simple Separability

Definition 1

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = [1:c]$. A distribution D over $\mathcal{X} \times \mathcal{Y}$ is k-separable with δ -margin (for some $\delta > 0$) if there exist a projection vector $a \in \mathbb{R}^d$ with $||a||_2 = 1$ and constants $b_1 < b_2 < \cdots < b_{k+1}$ such that, for $\mathcal{X}_i := \{x \in \mathcal{X} : b_i + \delta < a^T x < b_{i+1} - \delta\}$, $i \in [1:k]$,

- 1. $\mathbb{P}_{(x,y)\sim D}$ $(y=y_i \mid \mathcal{X}_i)=1$ for some $y_i \in \mathcal{Y}$,
- 2. $\mathbb{P}_{(x,y)\sim D}\left(\bigcup_{i=1}^k \mathcal{X}_i\right) = 1.$

Simple Separability

Definition 1

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = [1:c]$. A distribution D over $\mathcal{X} \times \mathcal{Y}$ is k-separable with δ -margin (for some $\delta > 0$) if there exist a projection vector $a \in \mathbb{R}^d$ with $||a||_2 = 1$ and constants $b_1 < b_2 < \cdots < b_{k+1}$ such that, for $\mathcal{X}_i := \{x \in \mathcal{X} : b_i + \delta < a^T x < b_{i+1} - \delta\}$, $i \in [1:k]$,

- 1. $\mathbb{P}_{(x,y)\sim D}(y=y_i \mid \mathcal{X}_i)=1 \text{ for some } y_i \in \mathcal{Y},$
- 2. $\mathbb{P}_{(x,y)\sim D}\left(\bigcup_{i=1}^k \mathcal{X}_i\right) = 1.$

2-layer NN for Simple Separability

D: k-separable with δ -margin distribution, $a \in \mathbb{R}^d$: projection vector, $\{b_1, \ldots, b_{k+1}\}$: boundary of intervals For $(x, y) \in \mathcal{X} \times \mathcal{Y}$, x: input, y: label, $f(y) \in \mathbb{R}^m$: desired output of NN $(f: \mathcal{Y} \to \mathbb{R}^m)$ is injective)

Theorem 1

For any $\epsilon > 0$, the 2-layer neural network, $q: \mathcal{X} \to \mathbb{R}^m$ with parameters $a \in \mathbb{R}^d$, $\{b_1, \ldots, b_k\}$,

$$W = \begin{bmatrix} f(y_1)^T \\ f(y_2)^T - f(y_1)^T \\ \vdots \\ f(y_k)^T - f(y_{k-1})^T \end{bmatrix} = [w_1 \ w_2 \ \cdots \ w_m], \text{ and}$$

$$c_s = (1/\delta) \log \left(\left(\sqrt{k} \cdot \left(\max_{1 \le j \le m} \|w_j\|_2 \right) \right) / \epsilon \right)$$
atisfies

satisfies

$$\mathbb{P}_{(x,y)\sim D}\left(\max_{1\leq j\leq m}|g_j(x)-f_j(y)|>\epsilon\right)=0$$

where f_i and g_i denote the j-th components of f and g, respectively. This network is specified by total (d + (m+1)k) parameters.

Hidden laver Input layer Output layer ρ : sigmoid

Main Idea: Saturation of Sigmoid through Scaling

Main Idea: Saturation of Sigmoid through Scaling

Group Behavior in Hidden Layer as $c_s \to \infty$

We can compute W s.t. $\begin{bmatrix} -h_1 - \\ -h_2 - \\ \vdots \\ -h_k - \end{bmatrix} W = \begin{bmatrix} -f(y_1)^T - \\ -f(y_2)^T - \\ \vdots \\ -f(y_k)^T - \end{bmatrix}$

since the left matrix in LHS is invertible

Allowing ϵ Errors in Output Layer

 $c_s \to \infty$ is impractical \Rightarrow Can we confine c_s by allowing some error?

If
$$c_s \ge (1/\delta) \log \left(\left(\sqrt{k} \cdot (\max_{1 \le j \le m} \|w_j\|_2) \right) / \epsilon \right)$$
,
in each node of hidden layer, $err \le \epsilon / \left(\sqrt{k} \cdot (\max_{1 \le j \le m} \|w_j\|_2) \right)$

Then, in each node of output layer, $err \leq \epsilon$

2-layer NN for Simple Separability - Simulation

- f: one-hot encoding \Rightarrow maximum allowable error: $\epsilon = 1/2$
- Synthetic data: 6k samples from a 20-separable with 0.1-margin distribution
- Sufficient $c_s = (1/\delta) \log \left(\left(\sqrt{k} \cdot (\max_{1 \le j \le m} \|w_j\|_2) \right) / \epsilon \right) \approx 11.02$

What if the data does not follow simple separability?

• Different colors for different labels

What if the data does not follow simple separability?

• Different colors for different labels

Extended Separability

Definition 2

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y}=[1:c]$. A distribution D over $\mathcal{X} \times \mathcal{Y}$ is (k_1, k_2, \dots, k_n) -separable with δ -margin (for some $\delta > 0$) if there exist projection vectors $a_1, a_2, \dots, a_n \in \mathbb{R}^d$ with $||a_s||_2 = 1$ and constants $b_{s,1} < b_{s,2} < \dots < b_{s,k_s+1}$ for $1 \le s \le n$, such that, for $\mathcal{X}_{\mathbf{i}} = \{x \in \mathcal{X} : b_{s,i_s} + \delta < a_s^T x < b_{s,i_s+1} - \delta \text{ for } 1 \le s \le n\}$, $\mathbf{i} = (i_1, i_2, \dots, i_n)$, with $i_s \in [1:k_s]$ for $1 \le s \le n$,

- 1. $\mathbb{P}_{(x,y)\sim D}$ $(y=y_{\mathbf{i}}\mid \mathcal{X}_{\mathbf{i}})=1$ for some $y_{\mathbf{i}}\in\mathcal{Y}$,
- 2. $\mathbb{P}_{(x,y)\sim D}\left(\bigcup_{\mathbf{i}}\mathcal{X}_{\mathbf{i}}\right)=1.$

4-layer NN for Extended Separability

D: (k_1, k_2, \dots, k_n) -separable with δ -margin distribution, $a_1, a_2, \dots, a_n \in \mathbb{R}^d$: projection vectors For $(x, y) \in \mathcal{X} \times \mathcal{Y}$, x: input, y: label, $f(y) \in \mathbb{R}^m$: desired output of NN $(f: \mathcal{Y} \to \mathbb{R}^m)$ is injective)

Theorem 2

For any $\epsilon > 0$, there exists a 4-layer NN, $g: \mathcal{X} \to \mathbb{R}^m$, with $(n(d+1)+2\sum_{s=1}^n k_s + (m+1)\prod_{s=1}^n k_s)$ parameters such that

$$\mathbb{P}_{(x,y)\sim D}\left(\max_{1\leq j\leq m}|g_j(x)-f_j(y)|>\epsilon\right)=0$$

where f_j and g_j denote the j-th components of f and g, respectively.

2 Steps to Construct the 4-layer NN

Step 1. Mapping to Simple Separable Data

Step 2. Constructing 2-layer NN for Simple Separability (Thm. 1)

Step 1. Mapping to Simple Separable Data

Lemma

For data (x,y) following a distribution D that is (k_1,k_2,\ldots,k_n) -separable with δ -margin by n projection vectors (a_1,\ldots,a_n) , there exists a 2-layer NN that implements $p: \mathcal{X} \to \mathbb{R}^n$ such that (p(x),y) follows a distribution D' that is $(\prod_{s=1}^n k_s)$ -separable with $(\frac{1}{4\sqrt{n}})$ -margin by a projection vector $a = \frac{1}{\sqrt{n}}[1,1,\ldots,1]^T \in \mathbb{R}^n$.

Main Idea

- Projection into $a = \frac{1}{\sqrt{n}}[1, 1, \dots, 1]^T$ is a (scaled) component-wise summation
- Each parallel NN (approximately) outputs differently scaled integers ex) $\{0, 1, ..., k_1\}$ for $a_1, \{0 \times k_1, 1 \times k_1, ..., k_2 \times k_1\}$ for a_2 , and so on

4-layer NN for Extended Separability

D: (k_1, k_2, \dots, k_n) -separable with δ -margin distribution, $a_1, a_2, \dots, a_n \in \mathbb{R}^d$: projection vectors For $(x, y) \in \mathcal{X} \times \mathcal{Y}$, x: input, y: label, $f(y) \in \mathbb{R}^m$: desired output of NN $(f: \mathcal{Y} \to \mathbb{R}^m)$ is injective)

Theorem 2

For any $\epsilon > 0$, there exists a 4-layer NN, $g: \mathcal{X} \to \mathbb{R}^m$, with $(n(d+1)+2\sum_{s=1}^n k_s + (m+1)\prod_{s=1}^n k_s)$ parameters such that

$$\mathbb{P}_{(x,y)\sim D}\left(\max_{1\leq j\leq m}|g_j(x)-f_j(y)|>\epsilon\right)=0$$

where f_j and g_j denote the j-th components of f and g, respectively.

Conclusion

- $\bullet \ \, {\rm Construct} \ {\color{blue} 4-layer \ sigmoid-type \ NN} \ {\rm that \ could \ generalize} \ to \ any \ datasets \ under \ the \ separable \ condition \\$
- Demonstrate potential benefit of saturation of sigmoid func. in the generalization beyond finite samples

Remaining Questions

- How to find projection vectors and boundaries for given separable dataset?
- Can we approximate a general dataset as a separable one?
 - Error for approximating a Gaussian mixture

Full paper in arXiv:1904.09109