

Critical Reviews in Food Science and Nutrition

ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20

Effects of antimicrobial use in agricultural animals on drug-resistant foodborne salmonellosis in humans: A systematic literature review

Kristi L. Helke, M. A. McCrackin, Ashley M. Galloway, Ann Z. Poole, Cassandra D. Salgado & Bernadette P. Marriott

To cite this article: Kristi L. Helke, M. A. McCrackin, Ashley M. Galloway, Ann Z. Poole, Cassandra D. Salgado & Bernadette P. Marriott (2016): Effects of antimicrobial use in agricultural animals on drug-resistant foodborne salmonellosis in humans: A systematic literature review, Critical Reviews in Food Science and Nutrition

To link to this article: http://dx.doi.org/10.1080/10408398.2016.1230088

	Accepted author version posted online: 07 Sep 2016. Published online: 07 Sep 2016.
	Submit your article to this journal 🗷
Q ^N	View related articles 🗷
CrossMark	View Crossmark data ぴ

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20

Effects of antimicrobial use in agricultural animals on drug-resistant foodborne

salmonellosis in humans: A systematic literature review

Kristi L. Helke¹, M.A. McCrackin^{1,2}, Ashley M. Galloway³, Ann Z. Poole³, Cassandra D.

Salgado⁴, Bernadette P. Marriott⁵

¹ Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA

² Ralph H. Johnson VA Medical Center Research Service, Charleston, South Carolina, USA

³ Nutrition Section, Division of Gastroenterology, Department of Medicine, Medical University of South Carolina,

Charleston, South Carolina, USA

⁴ Infectious Disease Division, Department of Medicine, Medical University of South Carolina, Charleston, South

Carolina, USA

⁵ Nutrition Section, Division of Gastroenterology, Department of Medicine and Department of Psychiatry, Medical

University of South Carolina, Charleston, South Carolina, USA

Address correspondence to:

Bernadette P. Marriott, Ph.D.

Professor and Director, Nutrition Section

Department of Medicine, Division of Gastroenterology and Hepatology

and Military Division, Department of Psychiatry and Behavioral Sciences

114 Doughty Street STB 630D, MSC 770

Charleston, SC 29425-7740

Email: marriobp@musc.edu

Last names listed as they should be indexed in PubMed: Helke; McCrackin; Galloway;

Poole; Salgado; Marriott

Conflict of interest: Helke KL, McCrackin MA, Galloway AG, Poole AZ, Salgado CD,

Marriott BP state they have no conflicts of interest.

Disclaimer: The contents of this manuscript do not represent the views of the Department of

Veterans Affairs or the United States Government. The findings and conclusions in this report

are those of the authors and do not necessarily represent the official position of the journal,

Critical Reviews in Food Science and Nutrition.

ABSTRACT

Controversy continues concerning antimicrobial use in food animals and its relationship to drug-

resistant infections in humans. We systematically reviewed published literature for evidence of a

relationship between antimicrobial use in agricultural animals and drug-resistant meat or dairy-

borne non-typhoidal salmonellosis in humans. Based on publications from the United States

(U.S.), Canada, and Denmark from January 2010 to July 2014, 858 articles received title and

abstract review, 104 met study criteria for full article review with 68 retained for which data are

presented. Antibiotic exposure in both cattle and humans found an increased likelihood of

Salmonella colonization, whereas in chickens, animals not exposed to antibiotics (organic) were

more likely to be Salmonella positive and those that had antibiotic exposure were more likely to

harbor antimicrobial resistant Salmonella organisms. In swine literature, only tylosin exposure

was examined and no correlation was found among exposure, Salmonella colonization, or

antimicrobial resistance. No studies that identified farm antimicrobial use also traced

antimicrobial-resistant Salmonella from farm to fork.

Keywords:

food safety, tetracycline, streptomycin, farm-to-fork, meat

² ACCEPTED MANUSCRIPT

INTRODUCTION

Antibiotic resistance is a global threat that has received targeted national attention (CDC, 2013) and government action in the United States (U.S.) (PCAST, 2014). The Centers for Disease Control and Prevention (CDC) estimate that 2 million illnesses and 23,000 deaths annually are caused by antimicrobial-resistant bacteria and fungi domestically (CDC, 2013). All antimicrobial use creates selection pressure on microorganisms whether provided to humans, animals, or the environment (Doyle, et al., 2006, 2012). Some human antibiotic-resistant infections are associated with foodborne illness (Friedman, 2015). Foodborne illness from both drug-sensitive and drug-resistant non-typhoidal *Salmonella* is estimated to sicken 1.2 million Americans annually (CDC, 2013; Scallan, et al., 2011). Drug resistant non-typhoidal *Salmonella* is a pathogen of concern, with an estimated 100,000 annual domestic cases and 40 deaths from drug-resistant *Salmonella* (CDC, 2013). Between 1997 and 2011, *Salmonella* infections increased 17.1%, from 13.6 to 16.4 cases per 100,000 populace (U.S. Department of Health and Human Services, 2014). The U.S. Healthy People target for *Salmonella* for 2020 is 11.4 cases per 100,000 populace (U.S. Department of Health and Human Services, 2014).

Salmonellae are ubiquitous gram negative, motile, rod-shaped bacteria that can cause gastro-intestinal disease including diarrhea and fever in humans (de Jong, 2012). In animals, Salmonella can cause similar disease or be associated with an asymptomatic carrier state and protracted or periodic shedding. In addition to the clinical signs noted above, Salmonella infections may spread to the blood and have life-threatening complications (Crump, 2015).

The serovar, pathogenicity genes, and the dose of the organism all play a role in whether disease is caused in the host. Transmission to humans can occur from a variety of

sources including eggs, poultry, fish, meat, vegetables, contaminated water, and the handling of certain pets. Some *Salmonellae* can replicate within phagosomes which leads to increased pathogenicity (Brumell, *et al.*, 2002).

In order to understand the complexity of the issue of antimicrobial resistant (AMR) Salmonellae, it is important to understand the diversity of the pathogenic serovars. Salmonella species contain different variations of cell surface antigens, earning them designation as specific serotypes or serovars. Some serovars are only found in one kind of animal, in one specific environment and even in different parts of the world. Some serovars cause mild illness while others cause severe infection. Salmonella is quite different from other bacteria in that there are only two Salmonella species (Salmonella bongori and Salmonella enterica) and over 2,500 serotypes of Salmonella enterica alone (CDC, 2013). Of these, only a few are common pathogens in humans and animals. Some of the most common Salmonella enterica serovars include Agona, Cholerasuis, Derby, Enteritidis, Hadar, Heidelberg, Kentucky, Meleagridis, Newport, and Typhimurium, along with numerous others. Many serovars that colonize and infect humans other than Enteritidis and Typhimurium are not tracked (Wagenaar, et al., 2013). Throughout this manuscript we will use 'Salmonella' to mean non-typhoidal Salmonella. Drug resistance in Salmonella is mediated by numerous mechanisms. Salmonella organisms may become resistant to antimicrobials by modifying or inactivating the antimicrobial agent, modifying the antimicrobial target, the action of the efflux pumps, or cell membrane permeability. All of these mechanisms may be mediated via mutations of the bacterial target protein, plasmids, integrons, or transposons (Walsh, 2000). Target proteins may be mutated via point mutations. Plasmids are self-replicating and can be transmitted to offspring, or between

two bacterial organisms. Transposons can self-excise and relocate any resistance genes they carry. Integrons carry one or more genes and may be integrated into chromosomal or plasmid DNA of the organism. A resistance gene present on a plasmid may be integrated into the bacterial chromosome if an integron is present (Mazel, 2006). There are numerous virulence genes, which are easily transmitted between bacteria of the same and different species, which leads to more difficult characterization of serovars, and results in differences in pathogenicity among serovars. Not only are virulence genes passed among bacteria, but drug resistance genes are passed as well, and as such, *Salmonella* may gain antimicrobial resistance from other organisms such as *E. coli* (Hamada, *et al.*, 2003).

There is widespread concern that first-line and sometimes second-line antibiotic therapy used to treat foodborne *Salmonella* have become ineffective; many serovars have developed multi-drug resistance (MDR) patterns. Resistant infections often require prolonged and more costly treatments, extended hospital stays, additional doctor visits and result in greater disability and death compared to infections that are more easily treatable with antibiotics (Broughton, *et al.*, 2010; Helms, *et al.*, 2004; Helms, *et al.*, 2002; Varma, *et al.*, 2005). While many scientific articles discuss the prevalence of *Salmonella*, fewer include the relationship to antibiotic resistance. Specifically, this review addressed the question: "Is there evidence from the literature that antimicrobial use in food animals is directly or indirectly involved in the emergence and spread of foodborne antibiotic-resistant *Salmonella*?" This systematic literature review was conducted to determine what is and is not known about the relationship between food animal production practices and the emergence and spread of antibiotic resistance, with emphasis on drug-resistant non-typhoidal *Salmonella*.

METHODS

Research Question and Approach

The review included all published research studies conducted in North America [the U.S. and Canada] and Denmark within databases searched; Denmark was included due to its long standing practice of restricting use of antibiotics in food animal production. The search time frame ended July 31, 2014. Search parameters were defined as: English, antibiotic resistance, *Salmonella* and food animal production. The project was narrowly focused on domestically acquired, foodborne illnesses associated with products from agricultural animals, so travel-associated diarrhea, direct animal contact, pet, plant and environmental contributors to human salmonellosis reports were excluded (**Table 1**). We have not screened the journals where the articles were published to determine if they are peer reviewed or not. The literature review process consisted of three phases: Phase 1: Title and Abstract Review; Phase 2: Full Article Review; and Phase 3: Final Library Creation (**Figure 1**).

An evidence-based approach was employed for collecting, reviewing and synthesizing the literature that was modeled after the processes used by the Agency for Health Care Research and Quality Evidence-based Practice Centers (EPC) (AHRQ, 2014). As such, a stepwise, systematic approach was used for literature inclusion, exclusion, data management, and evidence table presentation. The standard EPC approach was tailored for the task by including a mix of multidisciplinary, highly experienced scientific professionals (the team) who were knowledgeable in the specific areas of the review and by employing those elements pertinent to animal-based research from the evidence grading approach recommended by the Grades of

Recommendation, Development and Evaluation (GRADE) Working Group (Guyatt, et al., 2011)(**Table 1**). It is important to note that while we could not employ the complete GRADE scoring approach, we did find that the GRADE system concept was applicable to these animal-based studies. This structured review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance (**Supplemental Table 1**) (Liberati, et al., 2009;Moher, et al. 2009).

The team defined search parameters, inclusion and exclusion criteria and engaged in a bias discussion at the beginning of the project. All team members voiced that they could review and evaluate the literature on this topic fairly, disclosed no conflicts of interest, and signed a statement to this effect. No team members expressed opposition to the use of animals for food.

Search and Review Process

The SCOPUS¹ database (http://www.elsevier.com/online-tools/scopus), which incorporates PubMed citations and includes international publications, was selected for this review. A preliminary search was conducted to identify the depth and breadth of information available that limited the search parameters to English language, publication years 2005-2014, and document types: journal article, review, conference paper, article in press, or conference review. Based on the number of relevant articles identified in the preliminary review, the final document types were limited to published articles and articles in press from January 2010 through July 2014, review articles and position statements were excluded, and searches in the AGRICOLA database were added to identify more agricultural studies. A secondary search was conducted in the SCOPUS and AGRICOLA databases using the search string "human AND

¹ SCOPUS[©], Elsevier, B.V., http://www.elsevier.com/online-tools/scopus

health AND agricultur* AND resistan*" to identify any pertinent publications on antibiotic resistance not specific to *Salmonella*. These final terms were determined after a more complete initial search had been completed on *Campylobacter* in a similar project (McCrackin, *et al.*, 2015). The final search terms are shown in **Table 2**.

For the title/abstract screening step of the review, the predetermined exclusion criteria were if the research article focus was: 1) not on antibiotic resistance, 2) on domesticated pets or their environment, 3) on plants and not on agriculture, 4) on experimental treatment of animals only, 5) not based in the U.S., Canada or Denmark, 6) a review article rather than primary literature or there was no abstract present, or 7) other. If the "other" category was selected, the reviewer was required to specify the reason for rejection.

For all citations for which full article review was conducted, information was systematically documented on the type of article (case study, observational/longitudinal, prevalence/incidence of disease, basic science, government report, other); animal species focus (n/a, beef, dairy, swine, poultry-all, fish/seafood, wild game, human, other); food processing (n/a, abattoir, processing/packaging, preparation); product (n/a, meat, milk, cheese, yogurt, other dairy, eggs, other) and antibiotic use (not mentioned, no, human, animal, laboratory/treatment, control, prevention, growth, resistance measured, other). The reviewers also summarized the article by recording the study duration, sample type, sample size, methods, results, and conclusion. The reviewer gave each publication a grade, based on the criteria in **Table 1**, and provided specific comments related to the rationale for the grade. One team member conducted the searches and compiled the results, four performed title/abstract screening and two conducted full article reviews. To manage the literature, provide transparency of the review process, and

rapid access to the data, all literature search results and reviews were captured in custom forms created using EndNote® x7 reference manager software². The EndNote® reviewer form for each article included the review elements for both title/abstract screening (inclusion; if exclusion, reasons) and full article review (study purpose, type of article, species focus, food processing, product, antibiotic use, study duration, study sample type and size, method summary, results, conclusion and grade).

Applying the GRADE System

Each article receiving full article review was graded on the basis of quality, directness and consistency based on the GRADE approach for grading quality of evidence developed by the GRADE Working Group (Guyatt, et al., 2011). The GRADE approach has been adopted by the Cochrane Collaboration for evaluating quality of evidence reported in systematic reviews in human research. We could not identify a similar grading system that had been used for animal research; therefore, we adapted GRADE for this review. In our review, two scores were given for quality, one based on evidence of statistical analysis and one based on the probability of bias or study design limitations. The directness score reflected whether the methods and results presented were clear and straightforward. The consistency score reflected whether the results and conclusions presented appeared to be consistent with the methods. Combining the three scoring categories, each article could receive a maximum grade of (+) four and a minimum grade of (-) six (Table 1).

.

² EndNote® x7, Thomson Reuters, http://endnote.com/product-details/X7

Results

Search Results, Screening and Review

SCOUPUS and Agricola were searched for articles on the subject of antimicrobial resistance in *Salmonella* and the relationship to food animals and production for the period of January 2010-July 31, 2014. We limited the search to the U.S., Canada, and Denmark. This search resulted in 858 articles for title and abstract review. Of these, 104 met the criteria for full article review. During full article review, an additional 36 were omitted leaving 68 for full article analysis (**Fig. 1, Table 2**).

The search was designed to determine if antibiotic usage in production animals has been shown to affect the prevalence of antimicrobial resistance and presence in humans. We found no studies that examined and described movement of antimicrobial-resistant *Salmonella* throughout the food production path from farm to table. Several studies examined up to three points along the production line, which includes feed, farm, lairage (resting area during transit to abattoir), abattoir (slaughterhouse), carcass, market and finally human consumption.

Journal Article Characteristics

Of the *Salmonella* articles that were kept for full article review, 52 were from the U.S., 11 from Canada, five from Denmark, and one each from Scotland and Ireland (**Table 3**). The article from Scotland was kept as it was a key paper that analyzed serovars from both animals and humans at the time of an outbreak, which was not found in literature from other countries (Mather, *et al.*, 2013). The article from Ireland addressed the role that disinfectants play in antimicrobial resistance (Condell, *et al.*, 2012). Four reports looked at more than one country.

Not all literature mentioned the geographical location of the study or the origin of the samples. Of the final 68 *Salmonella* articles, 39 received a quality score of three or four. Sixteen received a score of zero to two and thirteen a score of less than zero (-6 is the lowest achievable score).

Article Characteristics

Type of article

Articles were assigned to one or more of the following groups: prevalence or incidence of disease (33), observational or longitudinal (28), basic science (10), case studies (6) and other (4). *Species Focus*

Single species *Salmonella* articles included dairy (11), swine (10), poultry (chicken and turkey) (11), beef (7), and human (7). Twenty articles focused on more than one species with up to five species covered in one article. Two articles did not have a species focus and were basic science manuscripts.

Food Processing and Product

Articles were categorized as to where in the processing chain the sample was obtained, and also as to which product was sampled. Ten articles tested products from the abattoir, one article tested samples from the processing and packaging step of production, and seven articles obtained samples from preparation areas. Fifty-two articles did not obtain samples from the food processing chain. Twenty articles had results from meat samples, one from milk samples, one from eggs, and one from unspecified food products.

Antibiotic Use

There were no studies that provided details about specific antibiotic usage on farms, identification of isolates from farm to retail packaging, and linkage to human disease. Articles

were identified that addressed one or two of these steps on the path from farm to fork as follows: six articles showed increased drug-resistance in organisms derived from animals of conventional compared to antibiotic-free operations (Alali, et al., 2010; Habing, et al., 2012; M'Ikanatha, et al., 2010; Mazengia, et al., 2014; Sapkota, et al., 2014; Zhang, et al., 2011), two articles showed similar antibiotic resistant isolates on the farm and in the abattoir (Louden, et al., 2012; Sjölund-Karlsson, et al., 2013), and one article demonstrated an increase in antibiotic resistance of Salmonella in the presence of antibiotics (Rao, et al., 2010). Three reports covered outbreak incidents where a similar isolate was identified in human samples and retail products (Green, et al., 2014; Hoffmann, et al., 2014; Schneider, et al., 2011). No studies were found that followed animal-associated drug-resistant isolates from farm to retail products.

Laboratory Methods

Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing methods were variable among the references. This is in part due to the advances in testing methods over the years. The United States Department of Agriculture (USDA) animal arm of the National Antimicrobial Resistance Monitoring System (NARMS) used the Sensititre broth microdilution system as the standard for testing (USDA, 2014). Different researchers used different panels of antibiotics ranging from four to 18 (Bearson, *et al.*, 2014; St. Amand, *et al.*, 2013). Over the years different antibiotics were determined to be more or less important in the NARMS resistance panel. For instance sulfamethoxazole was replaced by sulfisoxazole in 2004 and azithromycin replaced amikacin in 2011 (USDA, 2014). Most authors followed standardized guidance for antibiotic resistance

break points, but guidance evolved over the years, and break points changed in some cases. The break point for ciprofloxacin was redefined in 2012 by Clinical and Laboratory Standards Institute (CLSI), leading to increases in interpretation of resistance (Hombach, *et al.*, 2012).

Definition of Multi-Drug Resistance

A standard definition for multidrug resistance (MDR) was not found within the *Salmonella* literature. The NARMS and some others used the literal definition of resistant to more than one drug as multidrug resistant, whereas others did not classify *Salmonella* isolates as multidrug resistant unless they were resistant to five or more antimicrobials (Cook, *et al.*, 2011; Han, *et al.*, 2013; Louden, *et al.*, 2012; Marrero-Ortiz, *et al.*, 2012). Most references defined resistance to 3 or more antimicrobials as MDR.

Articles reviewed were primarily composed of prevalence articles along with those assessing antimicrobial resistance gene expression. Forty-two of the final 68 studies focused on antibiotic resistance in isolates from either animals or meat. Only six reports focused on the same issues in human isolates. Resistance plasmids, genes, and integrons were analyzed in 16 of the studies. Some studies assessed what effect antimicrobials had on the organism and addressed issues such as differences in gene expression and cell invasion. Three studies examined the effect of biocides used to clean the environment on *Salmonella* and found no difference in susceptibility to antimicrobials after exposure to biocides (Beier, *et al.*, 2011; Condell, *et al.*, 2012; Gantzhorn, *et al.*, 2014).

Prevalence of Salmonella

Serovar Prevalence

The most common serovars identified in this literature review varied among species, and many serovars are found in multiple species. Of the articles kept for full article review (n=68), eight did not mention which specific *Salmonella* serovar was detected; instead, these studies measured total *Salmonella* load.

Cattle

Cattle, both dairy and feedlot animals, were prone to colonization with serovars

Typhimurium, Kentucky, Montevideo, Anatum, Cerro and 4,5,12:i (Cook, et al., 2011;

Cummings, et al., 2013; Cummings, et al., 2010; Gragg, et al., 2013; Loneragan, et al., 2012;

Marrero-Ortiz, et al., 2012; Rao, et al., 2010; Rodriguez-Rivera, et al., 2014; Soyer, et al., 2013)

(Table 3). These serovars do not always result in disease within cattle, and asymptomatic animals may shed Salmonella organisms. Among the aforementioned serovars, Salmonella enterica serotype Cerro prevalence is an increasing cause of illness in cattle, primarily dairy, across the U.S. and has been found to also be a cause of human illness (Cummings, et al., 2013; Cummings, et al., 2010; Hoelzer, et al., 2010; Loneragan, et al., 2012; Rodriguez-Rivera, et al., 2014; Tewari, et al., 2012).

In one interesting study, animals were tested and then inoculated with specific *Salmonella* serovars in order to study transmission of resistance genes between serovars. However, the serovars recovered at the end of the study, surprisingly, were not ones with which animals had been inoculated, suggesting that there can be silent infections, intermittent shedding of organisms (Edrington, *et al.*, 2013) or rapid clearance. Therefore organisms the animal is exposed to and are carrying are not necessarily the same serovar of the organisms that are shed.

Poultry

In poultry, samples from the farm environment, fecal matter, carcass rinsates and retail products resulted in the most common *Salmonella enterica* serovars isolated being Hadar, Kentucky, Enteritidis, Heidelberg and Typhimurium (Aslam, *et al.*, 2012; Beier, *et al.*, 2011; Diarra, *et al.*, 2014; M'Ikanatha, *et al.*, 2010; Mainali, *et al.*, 2014; Mazengia, *et al.*, 2014; Melendez, *et al.*, 2010; Sapkota, *et al.*, 2014). No pattern was noted to indicate the increased likelihood of the presence of specific serovars dependent upon whether or not antimicrobials were administered to the animals.

Swine

Farms and abattoirs were most commonly surveyed with fecal (direct and environment) and tissue samples, respectively, used for isolation of *Salmonella* organisms. Abattoir samples also consisted of carcass swabs from pre-and post-cleaning. These studies show that different serotypes are present before and after cleaning of the carcass (Schmidt, *et al.*, 2012). This indicates that organisms present on carcasses post cleaning are either more resilient (harder to clear away) or are deposited during the cleaning process. In swine, Typhimurium, Derby, Typhymurium var.5, and Heidelberg were the most commonly isolated serovars (**Table 3**) (Arguello, *et al.*, 2013; Aslam, *et al.*, 2012; Clothier, *et al.*, 2010; Deckert, *et al.*, 2010; Gantzhorn, *et al.*, 2014; Schmidt, *et al.*, 2012). In a study that examined historical isolates only from ill pigs on farms, the most prevalent isolates were Cholerasuis var. Kunzendorf followed by Typhimurium var. 5- (Clothier, *et al.*, 2010). Many pigs carry *Salmonella* organisms although they may be subclinical colonizations. In pigs, serovars found in the abattoir are highly variable depending on the stage of processing.

Human

In papers focused on human *Salmonella* infections, samples were most commonly fecal, urine, and blood. Most studies that examined human salmonellosis obtained samples from banked isolates and were thus retrospective, not prospective, in nature. In human infections, serovars Typhimurium, Newport, Heidelberg, and Enteritidis were identified most commonly (Folster, *et al.*, 2011; Glenn, *et al.*, 2011; Koningstein, *et al.*, 2010; Medalla, *et al.*, 2013; Solghan, *et al.*, 2010; Soyer, *et al.*, 2013). A few studies analyzed both human and animal isolates. Some showed no antimicrobial resistance (AMR) in humans, only in animals (Stepan, *et al.*, 2011), while others showed the opposite (Mezal, *et al.*, 2014). The disparity in these findings suggest that while transmission of organisms between food animals and humans may occur, there is not a consistent link in AMR between agricultural animals and humans. Studies that examined only human isolates have shown that *Salmonella* foodborne illness is more likely to be antimicrobial resistant if the person has taken antibiotics within the previous year (Koningstein, *et al.*, 2010).

Continuity between Animal and Human Isolates

A key factor in understanding the issues related to AMR in foodborne illness is linking the disease-causing human isolates to agricultural animal isolates. Many (15) articles attempted to link animal serovars with isolates from human clinical cases. While there was similarity among the serovars on some level, the origin of the isolates typically was too far removed to prove causation (**Table 4**). Correlation of antimicrobial resistance in animal *Salmonella* isolates with human disease was demonstrated in these studies, but not causation. Of the 15 articles, only one made a convincing argument (M'Ikanatha, *et al.*, 2010). In this study, samples were taken

from retail chicken and compared with isolates recovered from humans. There was one isolate from poultry that exhibited a PFGE pattern indistinguishable from a human isolate, and both isolates carried the resistance gene *bla*_{CMY-2} (M'Ikanatha, *et al.*, 2010). Most reports attempting to show causation analyzed samples from farm animals, often those with clinical disease, which may or may not have been treated with antibiotics and then compared them with retrospective human clinical isolates from the local health department (Adhikari, *et al.*, 2010b; Green, *et al.*, 2014; Hoelzer, *et al.*, 2010; Soyer, *et al.*, 2013; Stepan, *et al.*, 2011). However, a study of betalactam resistance genes in human, animal and meat isolates showed that different genes were present in humans versus the animal and meat samples, suggesting that there may be evolutionary differences in AMR organisms in human and animal populations (Sjölund-Karlsson, *et al.*, 2013). Soyer et al. described the resistance genes present in isolates from both cattle and humans and failed to show convincing similarities, but showed that the two species had very different resistance gene patterns in their respective *Salmonella* isolates (Soyer, *et al.*, 2013).

Antimicrobial Resistance

Resistance in *Salmonella* spp. isolates varied. On farms, *Salmonella* was isolated from 0.95% - 77% of all samples (Cummings, *et al.*, 2010; Hoelzer, *et al.*, 2010; Rao, *et al.*, 2010). These wide variances are due to many factors, among them different practices on the farm, different sampling techniques, and different isolation techniques. Of the isolates, resistance was variable ranging from 0-98% (Aslam, *et al.*, 2012; Zou, *et al.*, 2012). The most prevalent resistance phenotype of *Salmonella* isolates during this timeframe in the U.S., Canada and Denmark was to tetracycline followed by resistance to streptomycin, although there was some

resistance found to all antibiotics tested (16 routinely, 43 overall). Tetracycline resistance was often associated with the presence of *tetA*, *tetB*, *tetC*, *tetG* and *tetR* genes (Louden, *et al.*, 2012). Beta-lactams, including cephalosporins, are clinically important in humans, and several studies were performed to assess the presence of genes specifically associated with resistance to these antimicrobials. The beta-lactam resistance gene *bla*CMY was found in many isolates including all serovars (Folster, *et al.*, 2010; Folster, *et al.*, 2011; Louden, *et al.*, 2012). The IncA/C plasmid was also present in many isolates and conferred multidrug resistance (Glenn, *et al.*, 2011; Marrero-Ortiz, *et al.*, 2012).

An outbreak of *Salmonella* in dairy cattle was described and monitored in Michigan with the only sign being increased shedding of the organism. Recovered organisms were non-pathogenic, yet did diverge throughout the course of the outbreak and most isolates were multidrug resistant (Kaneene, *et al.*, 2010). This highlights the complexity of the study of *Salmonella* organisms; they are constantly mutating and evolving. Shedding of *Salmonella* was examined by several groups and was not found to correlate with feeding of antimicrobials in pigs (Farzan, *et al.*, 2010; Kim, *et al.*, 2014), feed type in cattle (Edrington, *et al.*, 2011), or weaning of calves (Edrington, *et al.*, 2010). In one study in cattle, feeding ionophores (a non-therapeutic class of antibiotic used in ruminants to increase feed efficiency) was associated with increased odds of being *Salmonella* positive (Habing, *et al.*, 2012). Shedding was increased in animals with greater housing density (Farzan, *et al.*, 2010). This is suspected to be due to the added stress of housing many animals together with decreased individual space.

Discussion

It was rare to find reports that mentioned use of antimicrobials on the farm, and none of the studies included in our project had information on use of antimicrobials in an agricultural setting linked with antibiotic resistance in human isolates. There was not continuity between isolates from animals and humans, and there were even serovar differences found dependent upon anatomical location of where samples were collected from the same animal (e.g. feces, skin, intestinal contents). In all published reports, where *Salmonella* isolates were procured from the same animal species in different stages of production (e.g. on farm, abattoir, retail package), different serovar prevalence was identified. Not only does the site of sampling in or on the animal or animal product matter for isolation of organisms, but *Salmonella* is also found in vegetables and non-farm environmental samples.

Antibiotic Resistance Associated with Antibiotic Use in Food Animals

Very few reports examined antimicrobial resistance in *Salmonella* spp. and related it to the use of antimicrobials in food animals. A number of reports, which included poultry, beef, and pork, compared conventional to organic or antibiotic free husbandry systems. These articles have conflicting results with regard to number of isolates from samples, but all concluded that there were fewer antimicrobial resistant organisms found on animals and retail products raised in the absence of antimicrobials (Alali, *et al.*, 2010; M'Ikanatha, *et al.*, 2010; Mazengia, *et al.*, 2014; Sapkota, *et al.*, 2014).

Raising animals without antibiotics does not preclude the presence of resistance genes in *Salmonella* sp. isolates. *Salmonella* sp. with resistance phenotypes have been found in the

antibiotic-free feed of both pigs and chickens suggesting that resistance may not be associated with antimicrobial feed additives but to core feed components (Alali, *et al.*, 2010; Molla, *et al.*, 2010).

During an outbreak in Scotland, *Salmonella* DT104 isolates from humans with disease and animals, primarily cattle with or without disease, were collected and whole genome sequences were compared. The data indicated that separate clades were circulating in ill humans versus animals, yet even in this study there was not a complete data set from farm to table (Mather, *et al.*, 2013). Other reports support these findings and suggest serotypes diverge both by geographic region and by species (Hoelzer, *et al.*, 2010). These data suggest that antimicrobial resistance in *Salmonella* is complex and multifactorial.

The most recent NARMS report, which integrated both animal and human data, reveals that serovars present in retail meat samples are not consistent with serovars found in the cecal contents of animals or with what is found on abattoir samples (FDA, 2015). Only 50% of serovars found in human infection match serovars found in retail meat and poultry samples (FDA, 2015), suggesting that as many cases of human salmonellosis are associated with non-meat as meat products. These studies also highlight that there is still much we do not know about *in vivo Salmonella* infections and interactions of the organism within hosts.

Not only are *Salmonella* infections obtained from ingestion of meat and animal products, but many are also acquired by eating vegetables (IFSAC, 2015). While beyond the scope of this review, it is important to note that *Salmonella* are intracellular bacteria and are present within the cells of plants making washing foodstuffs ineffective at removing the bacteria (Schikora, *et al.*, 2012). Many additional environmental and wildlife sources of *Salmonella* exist that can serve as

reservoirs for human illness. In the discussion of national sources of foodborne illness, these potential reservoirs of bacterial contamination should not be overlooked and need additional research. Also of concern is the role that international travel plays in the spread and emergence of resistant bacteria. A recent study showed that most *Salmonella* serotype Enteritidis infections in humans that were resistant to quinolones were obtained abroad (O'Donnell, *et al.*, 2014).

There is no study in recent literature that convincingly shows that antimicrobial use in animals contributes to antibiotic resistance in *Salmonella sp*. In one study, *Salmonella* isolates from carcasses collected at various stages of processing at a pork plant displayed varying prevalence; serovars present at initial sampling were not always present at final sample point. The percent of *Salmonella* sp. positive isolates decreased from 91.2% positive to 3.7% positive on the chilled final carcass (Schmidt, *et al.*, 2012). This suggests that carcass contamination in early steps of meat processing may have low predictive value for *Salmonella* isolates found in retail products; however, these types of longitudinal studies were not present for our analysis.

Limitations

While this review was limited to only the most recent literature, published in English, from Canada, the U.S. and Denmark, we found specific limitations within the studies reviewed. A limitation of the *Salmonella* literature in general was that the studies rarely mentioned whether or not antibiotics were used in the feed, or if this point was mentioned, rarely were the antibiotics in the feed identified. Future studies will be greatly enhanced if they include information on the use of antibiotics on the farm, farm isolates, abattoir isolates, packing isolates and retail isolates. Many studies addressed two or three of these points, but there was no study linking all aspects for a cohesive conclusion. Another limitation is the geographic seclusion of most of the studies.

Some were completed in small areas of a state or only in one state. There were no nationwide *Salmonella* surveillance studies found in the literature over the time course of this report. We were able to employ a subset of the GRADE criteria, which were developed and are used for assessment of human clinical trials. We used the GRADE system because to our knowledge there is no similar literature scoring system for animal-based studies, which is a limitation for drawing conclusions from published animal research in general. However, we encourage others to at least employ this modified GRADE approach.

New Promising Methodology

The testing methods for identifying *Salmonella* are also evolving leading to more precise diagnoses and identification of isolates. Identification and genetic relatedness of *Salmonella* isolates are currently achieved using pulsed field gel electrophoresis (PFGE), which is considered the gold standard. There are two enzymes (*Xba*I and *Bln*I) commonly used to compare similar isolates. However, several research groups have shown that different serovars can have identical PGFE patterns, using both enzymes (Hoffmann, *et al.*, 2014; Rodriguez-Rivera, *et al.*, 2014). Studies were done using PFGE showing that isolates were identical using 2 enzymes, but when multi-locus variable number tandem repeat analysis (MLVA) methods were applied the isolates were not identical (Adhikari, *et al.*, 2010b; Litrup, *et al.*, 2010; Prendergast, *et al.*, 2011). Single nucleotide polymorphism (SNP) analysis can be used to distinguish *Salmonella* isolates from each other with greater confidence compared to PFGE (Hoffmann, *et al.*, 2014; Rodriguez-Rivera, *et al.*, 2014). Another technique being used to distinguish isolates is MLVA (Mezal, *et al.*, 2014). Most of the studies reviewed in this report used PFGE, but more

confidence in the data would be gained by using the more discriminating MLVA technique, which is specific for a longer DNA sequence, and not dependent on enzyme specific recognition and cut sites which are typically only 6 base pairs long. These advances in technology highlight some of the possible deficiencies in earlier conclusions.

Conclusions

Emphasis on antibiotic stewardship programs and training in veterinary and medical colleges, pharmacy schools, hospital administration programs, public health curricula, and public education, including agricultural education, is critical. Young et al. showed in a survey project with Canadian broiler chicken producers that participants in all aspects of the food to fork chain would benefit from education about foodborne illness and how to minimize its transmission (Young, et al., 2010). We support the recent proposal by the President's Council of Advisors on Science and Technology to expand antibiotic stewardship programs broadly and to facilitate collection of prescribing and usage data that is needed for making evidence-based decisions in the future, both in human and veterinary medicine (PCAST, 2014). The long-term nature of tetracycline resistance in *Salmonella* underscores that sound decisions about antibiotic use need to be made before new classes of antibiotics are used in animals or humans, since we cannot predict in advance which bacteria may become stronger and which weaker from adaptations they make to survive antibiotic selection pressure.

Finally, it was most apparent that there is great need for a more robust data collection system and heightened publication expectations in the U.S. for transparency in antibiotic usage in both animals and humans. Only in this way will scientists ever sort through the puzzles of

²³ ACCEPTED MANUSCRIPT

which factors contribute to the persistence of antibiotic resistance and to what degree. There is great need to start with studies that follow *Salmonella* along the entire pathway from farm to fork to human illness.

ACKNOWLEDGMENTS

The authors are grateful for the participation of Mark DeLegge, MD in the early stages of this review. We are indebted to Samantha H. Wise for administrative help and assistance.

FUNDING

Funding for this project was received from the Animal Health Institute. The funders had no role in study design, data collection and analysis, decision to publish or preparation of manuscript.

REFERENCES

- Adhikari, B., Besser, T. E., Gay, J. M., Fox, L. K., Hancock, D. D., & Davis, M. A. (2010a). Multilocus variable-number tandem-repeat analysis and plasmid profiling to study the occurrence of blaCMY-2 within a pulsed-field gel electrophoresis-defined clade of Salmonella enterica serovar Typhimurium. *Applied and Environmental Microbiology*, 76(1), 69-74.
- Adhikari, B., Besser, T. E., Gay, J. M., Fox, L. K., Hancock, D. D., & Davis, M. A. (2010b).

 Multilocus Variable-Number Tandem-Repeat Analysis and Plasmid Profiling To Study the Occurrence of blaCMY within a Pulsed-Field Gel Electrophoresis-Defined Clade of Salmonella enterica Serovar Typhimurium. *Applied and environmental microbiology*AEM, 76(1), 69-74.
- AHRQ. (2014). EPC Evidence-Based Reports. http://www.ahrq.gov/research/findings/evidence-based-reports/index.html, *accessed May 2016*.
- Alali, W. Q., Thakur, S., Berghaus, R. D., Martin, M. P., & Gebreyes, W. A. (2010). Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms.

 Foodborne Pathogens and Disease, 7(11), 1363-1371.
- Arguello, H., Sørensen, G., Carvajal, A., Baggesen, D. L., Rubio, P., & Pedersen, K. (2013).

 Prevalence, serotypes and resistance patterns of Salmonella in Danish pig production.

 Research in Veterinary Science, 95(2), 334-342.
- Argüello, H., Sørensen, G., Carvajal, A., Baggesen, D. L., Rubio, P., & Pedersen, K. (2014).

 Characterization of the emerging salmonella 4,[5],12:i:- in Danish animal production.

 Foodborne Pathogens and Disease, 11(5), 366-372.

²⁵ ACCEPTED MANUSCRIPT

- Aslam, M., Checkley, S., Avery, B., Chalmers, G., Bohaychuk, V., Gensler, G., Reid-Smith, R., & Boerlin, P. (2012). Phenotypic and genetic characterization of antimicrobial resistance in Salmonella serovars isolated from retail meats in Alberta, Canada. *Food Microbiology*, 32(1), 110-117.
- Bearson, B. L., Allen, H. K., Brunelle, B. W., Lee, I. S., Casjens, S. R., & Stanton, T. B. (2014).

 The agriciultural antibiotic carbadox induces phage-mediated gene transfer in

 Salmonella. *Frontiers in microbiology*, 5, 1-8.
- Beier, R. C., Anderson, P. N., Hume, M. E., Poole, T. L., Duke, S. E., Crippen, T. L., Sheffield, C. L., Caldwell, D. J., Byrd, J. A., Anderson, R. C., & Caldwell, D. J. (2011).
 Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter. *Foodborne Pathogens and Disease*, 8(5), 593-600.
- Broughton, E. I., Ip, M., Coles, C. L., & Walker, D. G. (2010). Higher hospital costs and lengths of stay associated with quinolone-resistant Salmonella enterica infections in Hong Kong. *J Public Health (Oxf)*, 32(2), 165-172.
- Brumell, J. H., Perrin, A. J., Goosney, D. L., & Finlay, B. B. (2002). Microbial pathogenesis: new niches for salmonella. *Curr Biol*, *12*(1), R15-17.
- Brunelle, B. W., Bearson, S. M. D., & Bearson, B. L. (2013). Tetracycline accelerates the temporally-regulated invasion response in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. *BMC Microbiology*, *13*(1).
- CDC. (2013). Antibiotic Resistance Threats in the United States.

 http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf , accessed May 2016

²⁶ ACCEPTED MANUSCRIPT

- Center for Reviews and Dissemination. (2008). Systematic reviews: CRD's guidance for undertaking reviews in health care.

 https://www.york.ac.uk/media/crd/Systematic Reviews.pdf, accessed July 2016
- Clothier, K. A., Kinyon, J. M., & Frana, T. S. (2010). Comparison of Salmonella serovar isolation and antimicrobial resistance patterns from porcine samples between 2003 and 2008. *Journal of Veterinary Diagnostic Investigation*, 22(4), 578-582.
- Condell, O., Iversen, C., Cooney, S., Power, K. A., Walsh, C., Burgess, C., & Fanning, S. a. (2012). Efficacy of Biocides Used in the Modern Food Industry To Control Salmonella enterica, and Links between Biocide Tolerance and Resistance to Clinically Relevant Antimicrobial Compounds. *Applied and environmental microbiology AEM*, 78(9), 3087-3097.
- Cook, A., Reid-Smith, R. J., Irwin, R. J., McEwen, S., Young, V., & Ribble, C. (2011).
 Antimicrobial resistance in Campylobacter, Salmonella, and Escherichia coli isolated from retail grain-fed veal meat from Southern Ontario, Canada. *Journal of Food Protection*, 74(8), 1245-1251.
- Crump, J.A., Sjolund-Karlsson, M., Gordon, M.A., Parry, C.M. (2015). Epidemiology, clinical presentation, laboratory diagnosis, anitmicrobial resistance, and antimicrobial management of invasive Salmonella infections. *Clin Microbiol Rev*, 28(4), 901-937.
- Cummings, K. J., Perkins, G. A., Khatibzadeh, S. M., Warnick, L. D., & Altier, C. (2013).

 Antimicrobial resistance trends among salmonella isolates obtained from dairy cattle in the Northeastern United States, 2004-2011. *Foodborne Pathogens and Disease*, 10(4), 353-361.

²⁷ ACCEPTED MANUSCRIPT

- Cummings, K. J., Warnick, L. D., Elton, M., Gröhn, Y. T., McDonough, P. L., & Siler, J. D. (2010). The effect of clinical outbreaks of salmonellosis on the prevalence of fecal salmonella shedding among dairy cattle in New York. *Foodborne Pathogens and Disease*, 7(7), 815-823.
- Cummings, K. J., Warnick, L. D., Elton, M., Rodriguez-Rivera, L. D., Siler, J. D., Wright, E. M., Gröhn, Y. T., & Wiedmann, M. (2010). Salmonella enterica serotype cerro among dairy cattle in New York: An emerging pathogen? *Foodborne Pathogens and Disease*, 7(6), 659-665.
- De Jong , H.K., Parry, C. M., van der Poll, T., Wirsinga, W.J. (2012). Host-pathogen interaction in invasie salmonellosis. *PLoS Pathog*, 8(10), e1002933.
- Deckert, A., Gow, S., Rosengren, L., Léger, D., Avery, B., Daignault, D., Dutil, L., Reid-Smith, R., & Irwin, R. (2010). Canadian integrated program for antimicrobial resistance surveillance (CIPARS) farm program: Results from finisher pig surveillance. *Zoonoses and Public Health*, 57(SUPPL. 1), 71-84.
- Diarra, M. S., Delaquis, P., Rempel, H., Bach, S., Harlton, C., Aslam, M., Pritchard, J., & Topp, E. (2014). Antibiotic resistance and diversity of Salmonella enterica serovars associated with broiler chickens. *Journal of Food Protection*, 77(1), 40-49.
- Doyle, M. P., & Erickson, M. C. (2006). Reducing the carriage of foodborne pathogens in livestock and poultry. *Poultry Science*, 85(6), 960-973.
- Doyle, M. P., & Erickson, M. C. (2012). Opportunities for mitigating pathogen contamination during on-farm food production. *Int J Food Microbiol*, *152*(3), 54-74.

- Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A. M., Cole, L.,
 Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G. B., Ismail, J.,
 Jamieson, F., Maki, A., Pacagnella, A., & Pillai, D. R. (2010). Ceftiofur resistance in
 Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada.
 Emerging Infectious Diseases, 16(1), 48-54.
- Edrington, T. S., Carter, B. H., Farrow, R. L., Islas, A., Hagevoort, G. R., Friend, T. H., Callaway, T. R., Anderson, R. C., & Nisbet, D. J. (2011). Influence of weaning on fecal shedding of pathogenic bacteria in dairy calves. *Foodborne Pathogens and Disease*, 8(3), 395-401.
- Edrington, T. S., Farrow, R. L., Hume, M. E., Anderson, P. N., Hagevoort, G. R., Caldwell, D. J., Callaway, T. R., Anderson, R. C., & Nisbet, D. J. (2013). Evaluation of the potential antimicrobial resistance transfer from a multi-drug resistant escherichia coli to salmonella in dairy calves. *Current Microbiology*, 66(2), 132-137.
- Edrington, T. S., MacDonald, J. C., Farrow, R. L., Callaway, T. R., Anderson, R. C., & Nisbet, D. J. (2010). Influence of wet distiller's grains on prevalence of escherichia coli o157:H7 and salmonella in feedlot cattle and antimicrobial susceptibility of generic escherichia coli isolates. *Foodborne Pathogens and Disease*, 7(5), 605-608.
- Farzan, A., Friendship, R. M., Dewey, C. E., Poppe, C., & Funk, J. (2010). Evaluation of the risk factors for shedding Salmonella with or without antimicrobial resistance in swine using multinomial regression method. *Zoonoses and Public Health*, *57*(SUPPL. 1), 85-93.
- FDA. (2015). National Antimicrobial Resistance Monitoring System (NARMS) 2012 NARMS Retail Meat Report.

²⁹ ACCEPTED MANUSCRIPT

- http://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/Nation alAntimicrobialResistanceMonitoringSystem/UCM442212.pdf. Accessed May 2016.
- Folster, J. P., Pecic, G., Bolcen, S., Theobald, L., Hise, K., Carattoli, A., Zhao, S., McDermott, P. F., & Whichard, J. M. (2010). Characterization of extended-spectrum cephalosporin-resistant salmonella enterica serovar heidelberg isolated from humans in the United States. *Foodborne Pathogens and Disease*, 7(2), 181-187.
- Folster, J. P., Pecic, G., McCullough, A., Rickert, R., & Whichard, J. M. (2011).

 Characterization of blaCMY-encoding plasmids among salmonella isolated in the United States in 2007. *Foodborne Pathogens and Disease*, 8(12), 1289-1294.
- Friedman, M. (2015). Antibiotic resistant bacteria: prevalence in food and inaactivation by food-compatible compounds and plant extracts. *J Agric Food Chem*, 63(15), 3805-3822.
- Gantzhorn, M. R., Pedersen, K., Olsen, J. E., & Thomsen, L. E. (2014). Biocide and antibiotic susceptibility of Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses. *International Journal of Food Microbiology*, 181, 53-59.
- Glenn, L. M., Lindsey, R. L., Folster, J. P., Pecic, G., Boerlin, P., Gilmour, M. W., Harbottle, H., Zhao, S., McDermott, P. F., Fedorka-Cray, P. J., & Frye, J. G. (2013). Antimicrobial resistance genes in multidrug-resistant Salmonella enterica isolated from animals, retail meats, and humans in the United States and Canada. *Microbial Drug Resistance*, 19(3), 175-184.
- Glenn, L. M., Lindsey, R. L., Frank, J. F., Meinersmann, R. J., Englen, M. D., Fedorka-Cray, P. J., & Frye, J. G. (2011). Analysis of antimicrobial resistance genes detected in multidrug-

- resistant salmonella enterica serovar typhimurium isolated from food animals. *Microbial Drug Resistance*, 17(3), 407-418.
- Gragg, S. E., Loneragan, G. H., Brashears, M. M., Arthur, T. M., Bosilevac, J. M.,
 Kalchayanand, N., Wang, R., Schmidt, J. W., Brooks, J. C., Shackelford, S. D., Wheeler,
 T. L., Brown, T. R., Edrington, T. S., & Brichta-Harhay, D. M. (2013). Cross-sectional study examining salmonella enterica carriage in subiliac lymph nodes of cull and feedlot cattle at Harvest. *Foodborne Pathogens and Disease*, 10(4), 368-374.
- Green, A. L., Klos, R., Kirkpatrick, J., Douris, A., Cosgrove, S., Miller, B., & Seys, S. A. (2014).

 Multi-drug resistant Salmonella Hadar infections associated with Turkey burger consumption. *Food Protection Trends*, *34*(3), 151-155.
- Guyatt, G. H., Oxman, A. D., Schünemann, H. J., Tugwell, P., & Knottnerus, A. (2011).

 GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology. *J. Clin. Epidemiol.*, 64(4), 380-382.
- Habing, G. G., Lombard, J. E., Kopral, C. A., Dargatz, D. A., & Kaneene, J. B. (2012). Farmlevel associations with the shedding of salmonella and antimicrobial-resistant salmonella in U.S. dairy cattle. *Foodborne Pathogens and Disease*, *9*(9), 815-821.
- Hamada, K., Oshima, K., & Tsuji, H. (2003). Drug resistance genes encoded in integrons and in extra-integrons: their distribution and lateral transfer among pathogenic enterobacteriaceae including enterohemorrhagic Escherichia coli and Salmonella enterica serovars typhimurium and infantis. *Jpn J Infect Dis*, 56(3), 123-126.
- Han, J., Gokulan, K., Barnette, D., Khare, S., Rooney, A. W., Deck, J., Nayak, R., Stefanova, R., Hart, M. E., & Foley, S. L. (2013). Evaluation of virulence and antimicrobial resistance

- in salmonella enterica serovar enteritidis isolates from humans and chicken- and eggassociated sources. *Foodborne Pathogens and Disease*, *10*(12), 1008-1015.
- Helms, M., Simonsen, J., & Molbak, K. (2004). Quinolone resistance is associated with increased risk of invasive illness or death during infection with Salmonella serotype Typhimurium. *J Infect Dis*, 190(9), 1652-1654.
- Helms, M., Vastrup, P., Gerner-Smidt, P., & Molbak, K. (2002). Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. *Emerg Infect Dis*, 8(5), 490-495.
- Hoelzer, K., Soyer, Y., Rodriguez-Rivera, L. D., Cummings, K. J., McDonough, P. L.,
 Schoonmaker-Bopp, D. J., Root, T. P., Dumas, N. B., Warnick, L. D., Gröhn, Y. T.,
 Wiedmann, M., Baker, K. N. K., Besser, T. E., Hancock, D. D., & Davis, M. A. (2010).
 The Prevalence of Multidrug Resistance Is Higher among Bovine than Human
 Salmonella enterica Serotype Newport, Typhimurium, and 4,5,12:i:- Isolates in the
 United States but Differs by Serotype and Geographic Region. *Applied and environmental microbiology AEM*, 76(17), 5947-5959.
- Hoffmann, M., Zhao, S., Pettengill, J., Luo, Y., Monday, S. R., Abbott, J., Ayers, S. L., Cinar, H.
 N., Muruvanda, T., Li, C., Allard, M. W., Whichard, J., Meng, J., Brown, E. W., &
 McDermott, P. F. (2014). Comparative genomic analysis and virulence differences in closely related salmonella enterica serotype heidelberg isolates from humans, retailmeats, and animals. *Genome Biology and Evolution*, 6(5), 1046-1068.

- Hombach, M., Bloemberg, G. V., & Bottger, E. C. (2012). Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011 on antibiotic susceptibility test reporting of Gram-negative bacilli. *J Antimicrob Chemother*, 67(3), 622-632.
- Kaneene, J. B., Miller, R., May, K., & Hattey, J. A. (2010). An outbreak of multidrug-resistant Salmonella enterica serotype oranienburg in Michigan dairy calves. *Foodborne Pathogens and Disease*, 7(10), 1193-1201.
- Kilonzo-Nthenge, A., Rotich, E., & Nahashon, S. N. (2013). Evaluation of drug-resistant Enterobacteriaceae in retail poultry and beef. *Poultry Science*, 92(4), 1098-1107.
- Kim, H. B., Singer, R. S., Borewicz, K., White, B. A., Sreevatsan, S., Johnson, T. J., Espejo, L.
 A., & Isaacson, R. E. (2014). Effects of tylosin administration on C-reactive protein concentration and carriage of Salmonella enterica in pigs. *American Journal of Veterinary Research*, 75(5), 460-467.
- Koningstein, M., Simonsen, J., Helms, M., & Mølbak, K. (2010). The interaction between prior antimicrobial drug exposure and resistance in human Salmonella infections. *Journal of Antimicrobial Chemotherapy*, 65(8), 1819-1825.
- Krueger, A. L., Greene, S. A., Barzilay, E. J., Henao, O., Vugia, D., Hanna, S., Meyer, S., Smith, K., Pecic, G., Hoefer, D., & Griffin, P. M. (2014). Clinical outcomes of nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal salmonella infections compared with pansusceptible infections in foodnet sites, 2006-2008. *Foodborne Pathogens and Disease*, 11(5), 335-341.

- Lanzas, C., Warnick, L. D., James, K. L., Wright, E. M., Wiedmann, M., & Gröhn, Y. T. (2010).

 Transmission dynamics of a multidrug-resistant salmonella typhimurium outbreak in a dairy farm. *Foodborne Pathogens and Disease*, 7(4), 467-474.
- Le Hello, S., Hendriksen, R. S., Doublet, B., Fisher, I., Nielsen, E. M., Whichard, J. M.,
 Bouchrif, B., Fashae, K., Granier, S. A., Jourdan-Da Silva, N., Cloeckaert, A., Threlfall,
 E. J., Angulo, F. J., Aarestrup, F. M., Wain, J., & Weill, F. X. (2011). International
 spread of an epidemic population of Salmonella enterica serotype Kentucky ST198
 resistant to ciprofloxacin. *Journal of Infectious Diseases*, 204(5), 675-684.
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PLoS Med*, 6(7), e1000100.
- Litrup, E., Torpdahl, M., Malorny, B., Huehn, S., Helms, M., Christensen, H., & Nielsen, E. M. (2010). DNA microarray analysis of Salmonella serotype Typhimurium strains causing different symptoms of disease. *BMC Microbiology*, 10.
- Loneragan, G. H., Thomson, D. U., McCarthy, R. M., Webb, H. E., Daniels, A. E., Edrington, T. S., Nisbet, D. J., Trojan, S. J., Rankin, S. C., & Brashears, M. M. (2012). Salmonella diversity and burden in cows on and culled from dairy farms in the Texas high plains.

 Foodborne Pathogens and Disease, 9(6), 549-555.
- Louden, B. C., Haarmann, D., Han, J., Foley, S. L., & Lynne, A. M. (2012). Characterization of antimicrobial resistance in Salmonella enterica serovar Typhimurium isolates from food animals in the U.S. *Food Research International*, 45(2), 968-972.

- M'Ikanatha, N. M., Sandt, C. H., Localio, A. R., Tewari, D., Rankin, S. C., Whichard, J. M.,
 Altekruse, S. F., Lautenbach, E., Folster, J. P., Russo, A., Chiller, T. M., Reynolds, S. M.,
 & McDermott, P. F. (2010). Multidrug-resistant salmonella isolates from retail chicken
 meat compared with human clinical isolates. *Foodborne Pathogens and Disease*, 7(8),
 929-934.
- Mainali, C., McFall, M., King, R., & Irwin, R. (2014). Evaluation of antimicrobial resistance profiles of Salmonella isolates from broiler chickens at slaughter in Alberta, Canada. *Journal of Food Protection*, 77(3), 485-492.
- Marrero-Ortiz, R., Han, J., Lynne, A. M., David, D. E., Stemper, M. E., Farmer, D., Burkhardt,
 W., Nayak, R., & Foley, S. L. (2012). Genetic characterization of antimicrobial resistance
 in Salmonella enterica serovars isolated from dairy cattle in Wisconsin. *Food Research International*, 45(2), 962-967.
- Mather, A. E., Reid, S. W. J., Maskell, D. J., Parkhill, J., Fookes, M. C., Harris, S. R., Brown, D. J., Coia, J. E., Mulvey, M. R., Gilmour, M. W., Petrovska, L., De Pinna, E., Kuroda, M., Akiba, M., Izumiya, H., Connor, T. R., Suchard, M. A., Lemey, P., Mellor, D. J., Haydon, D. T., & Thomson, N. R. (2013). Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. *Science*, 341(6153), 1514-1517.
- Mazel, D. (2006). Integrons: agents of bacterial evolution. Nat Rev Microbiol, 4(8), 608-620.
- Mazengia, E., Samadpour, M., Hill, H. W., Greeson, K., Tenney, K., Liao, G., Huang, X., & Meschke, J. S. (2014). Prevalence, concentrations, and antibiotic sensitivities of

- salmonella serovars in poultry from retail establishments in Seattle, Washington. *Journal of Food Protection*, 77(6), 885-893.
- McCrackin, M. A., Helke, K. L., Galloway, A. M., Poole, A. Z., Salgado, C. D., & Marriott, B.
 P. (2015). Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant
 Foodborne Campylobacteriosis in Humans: A Systematic Literature Review. *Crit Rev Food Sci Nutr*, 0.
- Medalla, F., Hoekstra, R. M., Whichard, J. M., Barzilay, E. J., Chiller, T. M., Joyce, K., Rickert, R., Krueger, A., Stuart, A., & Griffin, P. M. (2013). Increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and decrease in multidrug resistance among salmonella strains, United States, 1996-2009. *Foodborne Pathogens and Disease*, 10(4), 302-309.
- Melendez, S. N., Hanning, I. B., Han, J., Nayak, R., Clement, A. R., Wooming, A., Hererra, P., Jones, F. T., Foley, S. L., & Ricke, S. C. (2010). Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons. *Journal of Applied Microbiology*, 109(6), 1957-1966.
- Mezal, E. H., Sabol, A., Khan, M. A., Ali, N., Stefanova, R., & Khan, A. A. (2014). Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. *Food Microbiology*, 38, 67-74.
- Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

³⁶ ACCEPTED MANUSCRIPT

- Molla, B., Sterman, A., Mathews, J., Artuso-Ponte, V., Abley, M., Farmer, W., Rajala-Schultz,
 P., Morrow, W. E. M., & Gebreyes, W. A. (2010). Salmonella enterica in commercial swine feed and subsequent isolation of phenotypically and genotypically related strains from fecal samples. *Applied and Environmental Microbiology*, 76(21), 7188-7193.
- Mollenkopf, D. F., Kleinhenz, K. E., Funk, J. A., Gebreyes, W. A., & Wittum, T. E. (2011). Salmonella enterica and Escherichia coli harboring bla CMY in retail beef and pork products. *Foodborne Pathogens and Disease*, 8(2), 333-336.
- O'Donnell, A. T., Vieira, A. R., Huang, J. Y., Whichard, J., Cole, D., & Karp, B. E. (2014).

 Quinolone-resistant Salmonella enterica serotype Enteritidis infections associated with international travel. *Clin Infect Dis*, 59(9), e139-141.
- PCAST. (2014). Report to the President on combating antibiotic resistance.

 https://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_carb_report_
 sept2014.pdf, accessed May 2016.
- Prendergast, D. M., O'Grady, D., Fanning, S., Cormican, M., Delappe, N., Egan, J., Mannion, C., Fanning, J., & Gutierrez, M. (2011). Application of multiple locus variable number of tandem repeat analysis (MLVA), phage typing and antimicrobial susceptibility testing to subtype Salmonella enterica serovar Typhimurium isolated from pig farms, pork slaughterhouses and meat producing plants in Ireland. *Food Microbiology, 28, issue 5*, 1087-1094.
- Rao, S., Van Donkersgoed, J., Bohaychuk, V., Besser, T., Song, X.-M., Wagner, B., Hancock,D., Renter, D., Dargatz, D., & Morley, P. S. (2010). Antimicrobial Drug Use and

- Antimicrobial Resistance in Enteric Bacteria Among Cattle from Alberta Feedlots. Foodborne pathogens & disease, 7, no .4, 449-457.
- Rodriguez-Rivera, L. D., Wright, E. M., Siler, J. D., Elton, M., Cummings, K. J., Warnick, L. D., & Wiedmann, M. (2014). Subtype analysis of Salmonella isolated from subclinically infected dairy cattle and dairy farm environments reveals the presence of both humanand bovine-associated subtypes. *Veterinary Microbiology*, *170*(3-4), 307-316.
- Sangal, V., Harbottle, H., Mazzoni, C. J., Helmuth, R., Guerra, B., Didelot, X., Paglietti, B., Rabsch, W., Brisse, S., Weill, F. X., Roumagnac, P., & Achtman, M. (2010). Evolution and population structure of Salmonella enterica serovar Newport. *Journal of Bacteriology*, 192(24), 6465-6476.
- Sapkota, A. R., Kinney, E. L., George, A., Hulet, R. M., Cruz-Cano, R., Schwab, K. J., Zhang,
 G., & Joseph, S. W. (2014). Lower prevalence of antibiotic-resistant Salmonella on large-scale U.S. conventional poultry farms that transitioned to organic practices. *Science of the Total Environment*, 476-477, 387-392.
- Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States--major pathogens. *Emerging Infectious Diseases*, 17(1), 7-15.
- Schikora, A., Garcia, A. V., & Hirt, H. (2012). Plants as alternative hosts for Salmonella. *Trends* in plant science, 17(5), 245-249.
- Schmidt, J. W., Brichta-Harhay, D. M., Kalchayanand, N., Bosilevac, J. M., Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2012). Prevalence, enumeration, serotypes, and antimicrobial resistance phenotypes of Salmonella enterica isolates from carcasses at two

- large united states pork processing plants. *Applied and Environmental Microbiology*, 78(8), 2716-2726.
- Schneider, J. L., White, P. L., Weiss, J., Norton, D., Lidgard, J., Gould, L. H., Yee, B., Vugia, D. J., & Mohle-Boetani, J. (2011). Multistate outbreak of multidrug-resistant Salmonella newport infections associated with ground beef, October to December 2007. *Journal of Food Protection*, 74(8), 1315-1319.
- Sjölund-Karlsson, M., Howie, R. L., Blickenstaff, K., Boerlin, P., Ball, T., Chalmers, G., Duval, B., Haro, J., Rickert, R., Zhao, S., Fedorka-Cray, P. J., & Whichard, J. M. (2013).

 Occurrence of β-lactamase genes among non-Typhi Salmonella enterica isolated from humans, food animals, and retail meats in the United States and Canada. *Microbial Drug Resistance*, 19(3), 191-197.
- Solghan, S. M., Dumas, N. B., Root, T. P., Quinlan, T. M., Armstrong, L. R., Spina, N. L., & Zansky, S. M. (2010). Multidrug-resistant nontyphoidal Salmonella in New York state's foodborne diseases active surveillance network counties. *Foodborne Pathogens and Disease*, 7(2), 167-173.
- Soyer, Y., Richards, J., Hoelzer, K., Warnick, L. D., Fortes, E., McDonough, P., Dumas, N. B., Gröhn, Y. T., & Wiedmann, M. (2013). Antimicrobial drug resistance patterns among cattle- and human-associated Salmonella strains. *Journal of Food Protection*, 76(10), 1676-1688.
- St. Amand, J. A., Otto, S. J. G., Cassis, R., & Annett Christianson, C. B. (2013). Antimicrobial resistance of Salmonella enterica serovar Heidelberg isolated from poultry in Alberta. *Avian Pathology*, 42(4), 379-386.

- Stepan, R. M., Sherwood, J. S., Petermann, S. R., & Logue, C. M. (2011). Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS. *BMC Microbiology*, 11.
- Tewari, D., Sandt, C. H., Miller, D. M., Jayarao, B. M., & M'Ikanatha, N. M. (2012). Prevalence of salmonella cerro in laboratory-based submissions of cattle and comparison with human infections in Pennsylvania, 2005-2010. *Foodborne Pathogens and Disease*, *9*(10), 928-933.
- Thakur, S., Brake, J., Keelara, S., Zou, M., & Susick, E. (2013). Farm and environmental distribution of Campylobacter and Salmonella in broiler flocks. *Research in Veterinary Science*, 94(1), 33-42.
- U.S. Department of Health and Human Services (2014). Food Safety.
 https://www.healthypeople.gov/2020/topics-objectives/topic/food-safety/national-snapshot,
 Accessed May 2016
- USDA. (2014). National Antimicrobial Resistance Monitoring System- Enteric Bacteria, Animal Arm (NARMS): 2011 NARMS Animal Arm Annual Report. Athens, GA: U.S. Department of Agriculture, Agricultural Research Service.
- Varma, J. K., Molbak, K., Barrett, T. J., Beebe, J. L., Jones, T. F., Rabatsky-Ehr, T., Smith, K.
 E., Vugia, D. J., Chang, H. G., & Angulo, F. J. (2005). Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations. *J Infect Dis*, 191(4), 554-561.

- Wagenaar, J. A., Hendriksen, R. S., & Carrique-Mas, J. (2013). Practical considerations of surveillance of Salmonella serovars other than Enteritidis and Typhimurium. *OIE Revue Scientifique et Technique*, 32(2), 509-519.
- Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. *Nature*, 406(6797), 775-781.
- Wells, J. E., Kalchayanand, N., Berry, E. D., & Oliver, W. T. (2013). Effects of antimicrobials fed as dietary growth promoters on faecal shedding of Campylobacter, Salmonella and shiga-toxin producing Escherichia coli in swine. *Journal of Applied Microbiology*, 114(2), 318-328.
- Wells, J. E., Oliver, W. T., & Yen, J. T. (2010). The effects of dietary additives on faecal levels of Lactobacillus spp., coliforms, and Escherichia coli, and faecal prevalence of Salmonella spp. and Campylobacter spp. in US production nursery swine. *Journal of Applied Microbiology*, 108(1), 306-314.
- Young, I., Hendrick, S., Parker, S., Rajić, A., McClure, J. T., Sanchez, J., & McEwen, S. A. (2010). Knowledge and attitudes towards food safety among Canadian dairy producers.

 *Preventive veterinary medicine, 94(1-2), 65-76.
- Zhang, J., Massow, A., Stanley, M., Papariella, M., Chen, X., Kraft, B., & Ebner, P. (2011).
 Contamination rates and antimicrobial resistance in enterococcus spp., escherichia coli, and salmonella isolated from no antibiotics added-labeled chicken products. *Foodborne Pathogens and Disease*, 8(11), 1147-1152.
 - Zou, M., Keelara, S., & Thakur, S. (2012). Molecular characterization of Salmonella enterica serotype enteritidis isolates from humans by antimicrobial resistance, virulence genes,

⁴¹ ACCEPTED MANUSCRIPT

and pulsed-field gel electrophoresis. *Foodborne Pathogens and Disease*, 9(3), 232-238.16

Table 1. Scoring system for generating a grade for articles that were kept for full article review based on the GRADE system ¹

Category	Scoring range
Quality	
Evidence of statistical analysis	0 = no evidence
	+2 = evidence
Probability of bias or design limitations	0 = none
	-1 = some
	-2 = high
Directness	-2 = not direct
Methods and Results presented were clear	-1 = some uncertainty
and straightforward	+1 = direct
Consistency - results and conclusions	-2 = important inconsistency
presented appeared to be consistent with	-1 = some inconsistency
methods	+1 = consistent

¹ Guyatt, G. H., et al,(2011)

Table 2. Final Search strings used for the Salmonella search with number of resulting citations, 2005-July 2014

Search String^	Number of Articles Retrieved per Library
SCOPUS SEARCH	
Salmonella AND resistan* OR antimicrobial AND food OR meat OR	912
seafood OR egg OR milk OR cheese OR dairy OR poultry OR agri*	(2 duplicates)
	910 added to library
Salmonella AND resistan* OR antimicrobial AND human AND animal OR	434
agri*	(279 duplicates)
	155 additional to library
TOTAL	1065 citations
AGRICOLA SEARCH	
Salmonella AND resistan? OR antimicrobial AND food OR meat OR	969
seafood OR egg OR milk OR cheese OR dairy OR poultry OR agri?	
Salmonella AND resistan? OR antimicrobial AND human AND animal OR	90
agri?	(75 duplicates)
	15 additional to library
TOTAL	984 citations

[^]Bolded terms appear in abstract

Table 3. Summary of studies investigating antimicrobial resistant Salmonella serotypes by animal species

Reference	Location	GRAD	Salmonella	Sample	Location of	Organic	Timefra	Antimicrobi
		E	serotypes	size/type	sample	vs.	me	al use*
						Conventio		
						nal		
Cattle								
(Beef/Dai								
ry)								
Edrington,	Southwest	4	not	Winter: 69	Farm	convention	Twice in	3e
		4	determined					<i>3</i> e
et al.,	US		determined	cows (group	(Dairy) 1	al	Jan 09,	
(2011)				1), 75 cows	farm		twice in	
				(group 2);	(>3000		Jul 09	
				Summer: 79	head)			
				cows (group				
				1), 76 cows				
				(group				
				2)/fecal				
Gragg, et	US (NV,	4	24 serotypes	3327 subiliac	Abattoir 8	n/a	Sep-Nov	3e
al., (2013)	CA, AZ,		including:	lymph nodes	processing		2010,	
	NM, TX,		Reading,		plants (4		Feb-Mar	
	ND, SD,		Newport,		feedlot		2011, Jul-	
	NE, MN,		Typhimurium		cattle, 4		Sep 2011	
	WI)		, Montevideo,		dairy cull			
			Anatum		cows)			
Habing, et	US (ID,	4	not specified	Fecal and pen	Farm	convention	Jan-Aug	2d, 3e
al., (2012)	NM, WA,			composite	(Dairy) 265	al	07	
	TX, IN, IA,			manure	farms in 17			
	KY, MI,			samples	states.			

	MN, MO,							
	NY, PA,							
	VT, WI)							
							21.1	
Loneragan,	US (TX)	4	Anatum,	706 paired	Auction	not	21days;	3e
et al.,			Kentucky,	fecal and hide	Culled	specified	Jun-Sep	
(2012)			Cerro	swipe	dairy cows			
			Montevideo,	samples, 70	pre-sale			
			Muenster,	similar	from 9			
			Infantis,	samples from	farms			
			Muenchen,	healthy cows				
			Newport,					
			Meleagridis,					
			Newington,					
			Mbandaka					
			Idikan,					
			Agona,					
			Kedougou,					
			Typhimurium					
Rao, et al.,	Canada	4	Rubislaw,	25 fresh	21 feedlots	convention	Mar-Dec	2a,c, 3e
(2010)	(Alberta)		Saintpaul,	manure	(with >5000	al	04, one	
			Enteritidis,	samples from	capacity)		visit in	
			Mbandaka,	84 pens;			spring,	
			4,5,12:i:- and	newly arrived			one in fall	
			Typhimurium	vs. pre				
				slaughter				
Rodriguez-	US (NY)	4	Cerro,	8948 samples	Farm	not	Oct 07-	3e
Rivera, et			Kentucky,	from	(Dairy) 46	specified	Aug 09	
al., (2014)			Typhimurium	environment	farms			

			including	(n=1420) and				
			variant O5-,	fecal from				
			Newport,	cow				
			Anatum	(n=7528);				
			including	environmenta				
			variant 15+	l consisted of				
				calf housing,				
				cow housing,				
				sick pen,				
				manure				
				storage				
Cummings,	US (NY)	4	Cerro,	50-70 non-	Farm	not	12 months	3e
Warnick,			Kentucky,	clinical dairy	(Dairy) 57	specified		
Elton,			Montevideo,	cows	herds			
Gröhn, et			Newport,	sampled per				
al., (2010)			Typhimurium	visit based				
			, Thompson	on size of				
				lactating				
				herd, and any				
				clinical cases				
				suspected to				
				be				
				Salmonella				
				(+), and				
				environmenta				
				l samples; 3				
				sampling				
				periods at 4-8				
				week				

Brunelle, et US	3	Typhimurium	40 cattle	NADC	N/A	unknown	3e
al., (2013)		DT104,	isolates (type	Library		timeframe	
		DT193	not				
			specified);				
			NADC				
			library				
Cummings, US	3	Typhimurium	Sick cattle,	Farm	not	Jan1	3e
	3				not		36
et al.,		, Newport,	2745 fecal,	(Dairy)	specified	2004,	
(2013)		Agona,	GI, organ	Clinical		Dec31	
		Kentucky,	isolates	samples		2011	
		4,5,12:i:-,		from			
		Cerro		Cornell			
				University			
				Animal			
				Health			
				Diagnostic			
				Center			
Lanzas, et US	S (NY) 3	Typhimurium	715 fecal,	Farm	not	Nov2	3e
al., (2010)			blood and	(Dairy) 1	specified	2005 -	
			outbreak	farm		Jan23	
			samples (sick			2006	
			animals),				
			environmenta				

				1 samples				
Kaneene,	US (MI)	3	Oranienburg	190	Farm	convention	Oct 2003	3e
et al.,				salmonella	(Dairy) 8	al	– Mar	
(2010)				isolates from	herds, pre-		2005	
				fecal and	weaned			
				calf/maternity	calves			
				pen swabs				
				(environment				
				al)				
Cummings,	US (NY)	-1	Cerro	50-70 dairy	Farm	not	12 months	3e
Warnick,				cows	(Dairy) 57	specified		
Elton,				sampled per	herds			
Rodriguez-				visit based				
Rivera, et				on size of				
al., (2010)				lactating				
				herd,				
				suspected				
				Salmonella				
				(+) cases, and				
				environmenta				
				l samples; 3				
				sampling				
				periods at 4-8				
				week				
				intervals				

Edrington,	US (TX)	-1	not specified	237 direct	Farm	not	Nov 2006	3e
et al.,				fecal samples	(Agricultura	specified	- May	
(2010)					l research)		2007	
Marrero-	US (WI)	-1	Kentucky,	45 isolates	Samples	unknown	Jan 2006 -	3e
Ortiz, et			Newport,	from fecal	sent to lab		Nov 2007	
al., (2012)			Thyphimuriu	samples	from sick			
			m, Cerro,		dairy cattle			
			Dublin,					
			Montevideo,					
			Agona,					
			Anatum,					
			Infantis,					
			Livingstone,					
			Mbdanka,					
			Meleagris,					
			Muenster,					
			diarrizonae					
			(subspecies)					
Edrington,	US (TX)	-2	Minnesota,	98 fecal	Farm	not	7 days	3e
et al.,			Give	swabs from	(Experimen	specified		
(2013)			(retrieved)/	14 bull calves	tal)			
			Newport,					
			Reading					
			(inoculated)					
Cook, et	Canada	-4	Heidelberg,	528 fresh raw	Retail	unknown	Feb 2003	3e
al., (2011)	(southwest		Copenhagen,	grain-fed veal	(Veal)		- May	
	Ontario)		Typhimurium	samples (20			2004	
			DT 104,	to 130 g per				
			Typhimurium	piece)				
]			<u> </u>				

			, Montevideo,					
Poultry								
1 outiry								
Alali, et	US (NC)	4	Serogroups	3 Organic	1 poultry	Organic,	2 broiler	2c,d 3e
al., (2010)			B, C	farms (300	company	Convention	flock	
				samples), 4	with	al	cycles: 60	
				conventional	organic and		days	
				farms (400	conventiona		organic;	
				samples) /	l flocks		55 days	
				feed, water,			conventio	
				and floor			nal	
				(feces)				
Diarra, et	Canada	3	Kentucky,	unknown	Farm 35	not	2005-	2c,d 3e
al., (2014)	(British		Typhimurium	total; 193	commercial	specified	2008	
	Columbia)		(LIT2-1, F-	salmonella	broiler			
			LIT2-2, F-	isolates	farms			
			LIT2-3, and	recovered				
			F-LIT2-4),	from fecal,				
			Entereditis,	cecal and				
			Hadar,	litter samples				
			Heidelberg,					
			Brandenburg					
			(SAB-LIT),					
			Thompson					

Mainali, et	Canada	3	Hadar,	Matched	Abbatoir 63	Not	Nov 2004	3e
al., (2014)	(Alberta)		Heidelberg,	cecal / crop	flocks	specified	– Apr	
			Blockley,	samples 30			2005	
			I:4,5,12:i:2,	birds / flock;				
			Kentucky,	272 isolates				
			Infantis,	from feces,				
			Copenhagen,	skin, crop.				
			Typhimurium	850				
			, Agona,	Salmonella				
			Mbandaka,	isolates				
			I:ROUGH-					
			O:z10:enx					
M'Ikanatha	US (Central	3	Typhimurium	378 meat	Retail 10	Convention	Monthly,	3e
, et al.,	PA)		, Kentucky,	samples (183	grocery	al,	Feb2006 -	
(2010)			Enteritidis,	from grocery	stores, 8	Organic,	Jan 2007	
			Mbandaka,	stores, 195	farmers	Antibiotic		
			Heidelberg,	from farmers	markets	free		
			Braenderup,	markets; 226				
			untypeable	open display,				
			strains	152 pre-				
				packaged)				
Sapkota, et	US (mid-	3	Kentucky,	2 poultry	Farm 5	convention	Mar – Jun	2b,c,d
al., (2014)	Atlantic		Orion,	houses/farm	conventiona	al, organic	2008	(conventio
	region)		Enteritidis,	poultry litter	15 organic			nal) 3e
			Gostrup,	(n=60), water	farms			
			Infantis	samples				
				(n=40) and				
				feed samples				
				(n=20) /house				
			<u> </u>					

				(20 houses				
				total)				
Zhang, et	US (IN)	3	not specified	201	Retail	convention	Sep 2009	3e
al., (2011)				conventional,	Large retail	al, no-	- Aug	
				201 no-	food outlets	antibiotics	2010	
				antibiotic				
				meat				
				samples, 10				
				brands,				
				various cuts				
Melendez,	US (AR)	2	Kentucky,	200 samples	Farm,	pasture	not	3e
et al.,			Enteritidis,	(164 farm	Retail,	raised, no	specified	
(2010)			Bareilly,	(feed, water,	processing	antibiotics		
			Mbdanka,	insects), 36	plant			
			Montevideo,	retail,				
			Newport	processing				
				plant				
				(carcass) 59				
				isolates				
St. Amand,	Canada	2	Heidelberg	951	Lab	unknown	1996 -	3e
et al.,	(Alberta)			Salmonella	(originating		2010	
(2013)				Heidelberg	from			
				isolates from	animals and			
				animal and	farm)			
				environment				
				(litter,				
				organs, lab)				
et al.,		2	Heidelberg	isolates 951 Salmonella Heidelberg isolates from animal and environment (litter,	(originating from animals and	unknown		3e

Beier, et	US (2	1	Derby, Hadar,	2 plants,	Abattoir 2	not	2 days in	3e
al., (2011)	distinct		Montevideo,	1200 carcass	commercial	specified	2002 and	
	locations)		Senftenberg,	rinse samples	turkey		1 day in	
			Agona,	from pre- and	processing		2004	
			Anatum,	post-	facilities			
			Brandenburg,	immersion				
			Meleagridis,	chiller				
			Reading,	sampling				
			Typhimurium	sites				
Mazengia,	US	1	Heidelberg,	1,322	Retail 20-	Organic,	April	3e
et al.,	(Seattle,		Enteritidis,	samples:	30 samples	Convention	2011 -	
(2014)	WA)		Kentucky,	1094	weekly	al, no-	April	
			Hadar,	conventional,	from 3-5	antibiotics	2012	
			Schwarzengr	259	grocery			
			und, Agona,	conventional	stores			
			Senftenberg,	with no				
			Litchfield,	antimicrobial				
			Berta,	s, 228 USDA				
			Mbandaka,	organic: 362				
			Typhimurium	skinless/bone				
			, and	less breasts,				
			monophasic	103 split				
			Typhimurium	breasts, 293				
			variants	thighs, 149				
				drumsticks,				
				101 wings,				
				97 ground				
				chicken, 180				
				ground				
			Typhimurium	breasts, 293 thighs, 149 drumsticks, 101 wings, 97 ground chicken, 180				

				turkey, and				
				37				
				gizzards/com				
				bo				
Thakur, et	US (NC)	-1	Typhimurium	900 samples	Farm 10	Convention	October	3e
al., (2013)	(1(0)	•	1)p	fecal (n=400)	commercial	al	2010 -	
<i>u</i> , (2013)				and	farms (1	u.	March	
				environment	production		2011	
				(n=500) from	company)		2011	
				10 houses (1	company)			
				house/farm)				
Swine								
Arguello,	Denmark	4	Typhimurium	298 farms, 10	Breeding	not	2006 -	3e
et al.,			, Derby,	samples /	farm,	specified	2008	
(2013)			Infantis,	farm (2890	Production			
			Livingstone,	total); feces,	farm,			
			4,5,12:i:-	floor. 1656	Abattoir			
				abbatoir				
				samples				
				(ileocaecal				
				lymph nodes,				
				carcass				
				swabs)				

Deckert, et	Cananda	4	Typhimurium	346 (89	Farm	convention	2006 -	2a,c, d 3e
al., (2010)	(Alberta,		var.	herds) (year	(Finishers)	al	2008	
	Saskatchew		Copenhagen,	2006), 532			Herds	
	an,		Derby,	(115 herds)			visited 1-	
	Manitoba,		London,	(2007) and			3x / year	
	Ontaria,		Typhimurium,	480 (96				
	Quebec)		Infantis,	herds) (2008)				
			Bovismorbifica	fecal samples				
			ns,					
			Brandenburg,					
			I:4i:-,					
			California,					
			Heidelberg,					
			Mbandaka,					
			Orion,					
			I4[5],12:i:-,					
			Others					
Farzan, et	Canada	4	Typhimurium	1197 floor	Farm	Convention	Jan-Jul	3e
al., (2010)	(Ontario)		var	and direct		al, No	2004	
			Copenhagen,	fecal samples		antibiotics		
			Derby,	(80 farms). 2				
			Typhimurium	pigs / pen, 5				
			, Agona,	pens / barn, 1				
			Havana,	barn / farm				
			London,	(800				
			Infantis,	samples); 1				
			Putten,	pooled				
			Brandenburg,	sample of 5				
			Senftenberg,	floor				
			1					

			Ohio, I:6,7,	locations				
			I:28, I:4,12:i:-	(397				
				samples)				
Kim, et al.,	US (MN)	4	Infantis,	120 pigs, 5	Farm	Experiment	12 weeks	2f, 3e
(2014)			Livingstone,	samples each		al		
			Typhimurium	every 3				
			, Manhattan	weeks. 600				
				samples. 15				
				pigs/pen, 4				
				pens, 2 farms.				
Gantzhorn,	Denmark	4	Derby,	465 swab	Abattoir	n/a	May 2011	3e
et al.,			Typhimurium	samples from			- February	
(2014)			,	pig			2012	
			Brandenberg,	slaughterhous				
			Heidelberg,	es; 232 pre-,				
			Infantis,	233 post-				
			Yoruba,	cleaning				
			Sandiego,					
			Livingstone,					
			4,5,12:i:-					
Wells, et	US	3	not specified	1 g fecal	Farm	Experiment	Trial 1:	2f, 3e
al., (2010)				samples from		al	July–	
				each: Trial 1:			August,	
				192 weaned			2004;	
				piglets, Trial			Trial 2:	
				2: 256			February-	
				weaned			March,	

				piglets. 3			2005	
				rectal swabs/				
				pig, 1 fecal				
				sample / pig				
Clothier, et	US (IA)	1	Cholerasuis	293 (year	Banked lab	Unknown	2003,	3e
al., (2010)			var.	2003), 395	samples		2008	
			Kunsendorf,	(2008), tissue	(tissues,			
			Typhimurium	samples and	intestinal			
			Var.5, Derby,	intestinal	contents)			
			Heidelberg,	swabs from				
			Typhimurium	clinically ill				
			, Agona,	pigs				
			Infantis,					
			Brandenburg,					
			Mbandaka,					
			4:12:i:.					
			London,					
			Senftenberg,					
			Muenchen,					
			Anatum,					
			Other					
Molla, et	US	1	Serogroups	15,176	Farm	not	October	3e
al., (2010)			A, B, C, D, E	samples from		specified	2007 -	
				feed, fecal			November	
				and			2009	
				environment;				
				9 farms (4				
				barns / farm,				
				3 farms /				
		l	1		I	1		

				production				
				system, 3				
				production				
				systems)				
337 11	HG (ME)	1			-		10 1	216.2
Wells, et	US (NE)	1	not specified	unknown	Farm	Experiment	12 weeks	2d,f, 3e
al., (2013)				sample size;		al		
				fecal and				
				blood				
				samples, skin				
				swabs				
Schmidt, et	US	0	41 serotypes	4560 carcass	Abbatoir	Unknown	Summer	3e
al., (2012)			including:	swab			2007,	
			Infantis,	samples:			spring	
			Agona,	1520 pre-			2008	
			London,	scald, 1520				
			Munster,	pre-				
			Typhimurium	evisceration,				
			, Derby,	1520 chilled				
			Ohio,	(2 large pork-				
			Heidelberg,	producing				
			Brandenburg	pants)				
Human								
Koningstei	Denmark	4	Typhimurium	4675	Data from	n/a	1997 -	
n, et al.,			, Enteritidis,	Typhimurium	Statens		2005	
(2010)			Others	isolates,	serum			
				12151	institute and			
				Enteritidis	National			
				isolates, 5776	registry for			
				other	Enteric			

				serotype	Pathogens			
				isolates,				
				214325				
				controls				
Folster, et	US	4	Heidelberg	54 clinical	Banked	n/a	1996 -	3e
al., (2010)			(with	laboratory	Isolates		2006	
			decreased	isolates				
			susceptibility	collected				
			to Ceftiofur /	from ill				
			Ceftriaxone	persons				
Krueger, et	US	3	Typhimurium	875 patients;	Lab	n/a	24 months	3e
al., (2014)			, Newport,	blood, feces	samples			
			Enteritidis,					
			Heidelberg,					
			Infantis,					
			Stanley					
Solghan, et	US (NY)	2		2189 isolates;	Banked	n/a	2003 -	3e
al., (2010)			Typhimurium	blood, feces,	FoodNet		2007	
			, Enteritidis,	urine, other	isolates			
			Newport,	(abscess,				
			Heidelberg,	bone, gall				
			Tennessee,	blader,				
			Dublin,	wound, etc.)				
			Paratyphi B,					
			Cholerasuis,					
			Agona,					
			Concord,					
			Infantis,					
			Saintpaul,					

			Others					
Medalla, et	US (All	1	Typhimurium	24,903	Banked	n/a	1996 -	3e
al., (2013)	States)		, Entertitidis,	isolates;	CDC		2009	
			Newport,	Human	NARMS			
			Heidelberg,	blood, stool,	isolates			
			Others	urine				
Zou, et al.,	US (NC)	0	Entertitidis	425 clinical	banked	n/a	June 2009	3e
(2012)				isolates	isolates		-	
							Septembe	
							r 2010	
Folster, et	US (All	-3	Typhimurium	2163 isolates	Banked	n/a	2007	3e
al., (2011)	States)		, Newport,	from ill	CDC			
			Heidelberg,	persons	NARMS			
			Agona,		isolates			
			Dublin,					
			Typhimurium					
			Var O:5-,					
			Bredeney,					
			Enteritidis, I					
			4,12:i:-, Ohio,					
			and Saintpaul					
Other	l	<u>I</u>	l	l	l			
Condell, et	Ireland	4	Typhimurium	189	Lab strains,	n/a	not	
al., (2012)			, Senftenberg,	Salmonella	Not		specified	
			Enteritidis,	strains, 48	specified			
			Gaminara,	serotypes				
<u> </u>	L	l	1	l	L		<u> </u>	

Hvittingfoss	from clinical
	sources, food,
	environment,
	and water
	looked at use
	of biocides in
	meat
	processing-
	no correlate
	with
	increased
	antibiotic
	resistance

Table 4. Summary of miscellaneous studies investigating antimicrobial resistant Salmonella serotypes

Referenc	Country	GRA	Salmonell	Sample	Location	Organic	Timefra	Antimicro	
e		DE	a serotypes	size/type	of sample	vs.	me	bial use*	Speci
						Conventio			es
						nal			
Multiple Sp	pecies								
Kilonzo-	US (TN)	4	Arizonae,	286 raw	Retail	not	not	3e	poultr
Nthenge,			Pullorum,	meat		specified	specified		y,
et al.,			Gallinarum	samples;					beef
(2013)			,	chicken (n					
			Choleraesu	= 93), beef					
			is	(n = 99),					
				and turkey					
				(n = 94).					
				25 Retail					
				stores					
Mather,	Scotland	4	Typhimuri	262	Banked	n/a	1990 -	3e	huma
et al.,	and abroad		um DT104	isolates	isolates		2011		n,
(2013)				from					cow,
				humans					pig,
				(n=142)					horse,
				and					sheep,
				animals					poultr
				(n=120)					у
Hoffman	US and	4	Heidelberg	42 isolates;	Banked	not	1982 -	3e	huma
n, et al.,	Brazil			animal (n	isolates	specified	2011		n,
(2014)				=9), retail					groun
				meat (n					d
				=27), and					turkey

				human					,
				clinical (n=					anima
				7)					1
Sangal,	US,	4	Newport,	N=381	Banked	n/a	1918 to	3e	huma
et al.,	Germany,		Enteritidis,	from	isolates		2005		n,
(2010)	France and		Kentucky,	France (52					many
	other		Typhimuri	isolates),					anima
	countries		um,	Germany					1
			Parathyphi	(70), the					specie
			В	United					S
				States					
				(224), and					
				other					
				countries					
				(35)					
Le Hello,	US,	4	Kentucky	120 human	Banked	n/a	1959-	3e	huma
et al.,	England,		ST198	isolates, 76	isolates		2008		n,
(2011)	Wales,			non-human					chicke
	Denmark,			isolates (44					n,
	France,			chicken,					seafoo
	Nigeria			Nigeria)(1					d,
				3 seafood,					turkey
				7 turkey					
				meat,					
				Morocco),					
				(1 river					
				water,					
				1dried					
				herbs,					
				herbs,					

				North					
				Africa), (1					
				chicken,					
				Ethiopia)					
Aslam, et	Canada	3	26 total	564 fresh	retail	not	May	3e	chicke
al.,	(Alberta)		including:	meat		specified	2007 -		n,
(2012)			Heidelberg	samples			April		turkey
			, Hadar,	including			2008		, beef,
			Kentucky,	chicken (n					pork
			Typhimuri	=206),					
			um,	turkey (n					
			Typhimuri	=91),					
			um var.	ground					
			Copenhage	beef (n =					
			n, Anatum,	134) and					
			Meleagridi	pork (n =					
			s, Reading,	133);					
			Give,						
			Johannesb						
			urg,						
			Heidelberg						
Louden,	US	3	Typhimuri	120	Banked	not	n/a	3e	turkey
et al.,(um	isolates	isolates	specified			
2012)			um	from	from	specified			, chicke
2012)				chickens	NARMS				
					NAKIN				n, pig,
				(n=32),					cow
				swine					
				(n=29),					
				turkey					

cattle,
poultr
y,
swine
Huma
n,
poultr
у

Mollenko	US (OH,	3	not	1000 meat	retail	not		3e	Beef,
pf, et al.,	NC)		specified	samples. 5		specified			pork
(2011)				grocery					
				stores, 20					
				products/					
				store: 10					
				fresh beef,					
				10 fresh					
				pork (7					
				beef steak,					
				3 ground					
				beef, 6					
				pork					
				chops, 4					
				pork ribs)					
Soyer, et	US (NY,	3	51	336	Clinical	not	January -	3e	Cattle,
al.,	VT)		serotypes	isolates	salmonello	specified	Decembe		huma
(2013)			including:	from	sis cases		r 2004		n
			Typhimuri	human	(human),				
			um,	(178) and	routine				
			Newport,	bovine	veterinary				
			Heidelberg	(158). 64	submission				
			,	NY farms,	(cattle),				
			Montevide	8 VT	banked				
			o, Hadar,	farms.	isolates				
			Enteritidis,						
			4,5,12:i:2,						
			Agona						

Argüello,	Denmark	2	4,[5],12:i:-	86 swine,	Banked	not	not	3e	Cattle,
et al.,				7 cattle,	isolates	specified	specified		pig,
(2014)				and 1	from farm,				poultr
				poultry;	slaughterho				у
				fecal	use				
				samples					
				(rectal					
				feces and					
				floor fecal					
				samples),					
				floor					
				surface					
				samples,					
				lymph					
				nodes,					
				carcasses,					
				and					
				environme					
				nt					
Schneide	US (CA,	2	Newport	42 isolates	Banked	unknown	October	3e	Cattle,
r, et al.,	AZ, ID,		(MDR	from	samples		2007		huma
)2011)	NV)		only)	humans	from FSIS				n
				and	and public				
				unspecified	health dept.				
				number					
				ground					
				beef					
				product					
				samples					
				1					

				from retail				
				store, beef				
				suppliers,				
				and beef				
				grinding				
				establishm				
				ents				
Stepan,	US	2	Senftenber	98 isolates:	banked	n/a	not	huma
et al.,			g	human,	isolates		specified	n, pig,
(2011)			5	(22),	(CDC, ND		specifica	cow,
(2011)				animal (71)	veterinary			horse,
				and and	diagnostic			turkey
				feed/goose	lab,			, quail
				down (5)	National .			
					vet services			
					lab Ames,			
					IA)			
Hoelzer,	US (NY,	0	Newport	425	Banked	not	January	Cattle,
et al.,	NJ, WA,		(195),	salmonella	isolates	specified	2004 -	huma
(2010)	ID, VT,		Typhimuri	isolates			May	n
	OR)		um (190),	(222			2005	
			and	bovine				
			4,5,12:I	isolates				
			(40)	from				
				animals				
				without				
				clinical				
				signs, 203				
				human				

				isolates					
				from					
				individuals					
				with					
				clinical					
				signs)					
Tewari,	US (PA)	0	Typhimuri	60 isolates	Banked	n/a	2005-	3e	Cow,
et al.,			um,	from	isolates		2010		huma
(2012)			Newport,	human					n
			Cerro,	clinical					
			Typhimuri	cases (50),					
			um var5-,	animal (10)					
			Montevide	feces and					
			o, Agona	carcass					
				from dead					
				and ill					
				dairy cattle					
Dutil, et	Canada	-1	Heidelberg	Unspecifie	Retail	not	2003 -	3e	Huma
al.,	(Ontario,			d number;	(chicken),	specified	2008		n,
(2010)	Quebec,			fresh meat	Banked				chicke
	Saskatche			samples,	isolates				n
	wan,			Hospital-	CIPARS				
	British			based and	(human)				
	Columbia)			private					
				clinical					
				laboratory					
				isolated					
				human					
				samples					

Glenn, et	US and	-1	Newport,	56 isolates:	Banked	not	not	3e	huma
al.,	Canada		Hadar,	slaughter	Isolates	specified	specified		n, pig,
(2013)			Typhimuri	(US 12/					chicke
			um,	Canada 9),					n,
			Heidelberg	retail (US					cow,
			,	9/ Canada					turkey
			Enteritidis,	9), human					
			Saintpaul	(US					
				9/Canada					
				8)					
Han, et	US (AR,	-1	Enteritidis	54 isolates;	Farm,	not	2004 -	3e	huma
al.,	WV)			humans	banked	specified	2009		n,
(2013)				(28), retail	isolates				chicke
				chicken					n, egg
				(9), broiler					
				farms –					
				feed and					
				environme					
				nt (9), and					
				egg					
				production					
				facilities					
				(8)					
Sjölund-	US,	-1	Typhimuri	5041	Retail,	Unknown	2008	3e	huma
Karlsson,	Canada		um var	salmonella	Abattoir,				n,
et al.,	(BC, SAS,		O:5-,	isolates:	Banked				chicke
(2013)	ONT,		Dublin,	humans	isolates				n,
	QUE,		Kentucky	(US 2380),					turkey
	MAR)			food					, beef,

				animals –					pork
				carcass					
				rinsates,					
				swabs (US					
				1326/					
				Canada					
				446) and					
				retail meat					
				– chicken					
				breast, leg,					
				wing,					
				ground					
				turkey,					
				ground					
				beef, pork					
				chops (US					
				491/					
				Canada					
				399)					
Adhikari,	US (Pacific	-2	Typhimuri	130	Banked	not	over 20	3e	Cattle,
et al.,	Northwest)		um	isolates	Isolates	specified	years		huma
(2010a)				(n=112					n
				bovine,					
				n=18					
				human)					
Mezal, et	US (AR)	-4	Enteritidis	60 isolates:	Poultry	not	2010	3e	Huma
al.,				28 isolates	houses and	specified			n,
(2014)				from	AR				chicke
				poultry	Department				n

		houses and	of Health		
		AR	banked		
		regional	isolates		
		lab, 32			
		clinical			
		isolates			

Figure 1. Workflow diagram adapted from Center for Reviews and Dissemination