jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM, zadání Q

T	1	9	3	1	5	6	\sim
'	1	'	9	-1	0	U	

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

- 1. Znegujte: $\forall x \in \mathbb{R} : x < 2 \Rightarrow (x^2 < 4 \lor x > 3)$. Odpověď:
- 2. Rozhodněte, zda pro relaci $R = \{[1, 2], [1, 3]\}$ platí formule

$$\forall a,b,c \colon \big([a,b] \in R \land [b,c] \in R\big) \Rightarrow [a,c] \notin R.$$

Odpověď:

3. Nechť
$$s_n = (n+4) + (n+5) + \cdots + (4n+3)$$
. Určete s_2 .

Odpověď: součet dvou prvních členů (1+2) + (2+5) = 12

- 4. Rozhodněte, zda pro libovolné množiny A,B,C platí: $C\subseteq A\cup B\Rightarrow C\subseteq A.$ Odpověď:
- 5. $A = \{1\}, B = \{2, \{1\}\}$. Určete $A \times B$. Odpověď:
- 6. $A=\{[1]\}, B=\{[1],2\}.$ Platí $A\in B$? Odpověď:
- 7. $R = \{[a,a],[b,d],[c,d]\}$. Určete $R \circ R$. Odpověď:
- 8. Napište relaci ekvivalence k rozkladu $S = \{\{a\}, \{b,d\}, \{c\}\}$ množiny $A = \{a,b,c,d\}$. Odpověď:
- 9. Na množině $\mathbb R$ je dána operace \star následovně: $a\star b=a.$ Je operace \star komutativní? Odpověď:
- 10. Nakreslete graf s posloupností stupňů 1,1,1,2,2,2,3,3,3. Graf:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

- **1.** a) O množině M víme: $|\mathcal{P}(M)| = 4$, $\{\{5\}\} \subseteq \mathcal{P}(M)$, $\{\emptyset\} \in \mathcal{P}(M)$. Určete množinu M.
 - b) Najděte relace R, S, T tak, aby $(S \cap T) \circ R = (S \circ R) \cap (T \circ R)$. vymyslet množiny R,S,T
 - Najděte relace R,S,T tak, aby $(S\cap T)\circ R\neq (S\circ R)\cap (T\circ R)$. zložená relace, takže když hodím vše stejné do každé množiny, tak to výjde
- **2.** Dokažte, že pro všechna přirozená čísla n platí:

$$2+4+6+\cdots+(4n+2)=(2n+1)(2n+2)$$
.

3. Na množině $M = \{n \in \mathbb{N} : 1 \le n < 10\}$ je dána relace R následovně:

dvojice [a, b] patří do relace R právě
$$[a,b] \in R \iff 2|(a+b).$$

Zjistěte, zda relace R je a) reflexivní, b) symetrická, c) antisymetrická, d) tranzitivní, e) relací ekvivalence, f) relací uspořádání. Svoje tvrzení zdůvodněte.

4. Nechť $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}$. Na množině $\mathcal{P}(Y) \setminus \mathcal{P}(X)$ je dána relace \sim následovně:

v zadání je napsané, takže určitě platí
$$A \sim B \iff A \subseteq B.$$
 stačí důkaz

Ukažte, že relace \sim je na množině $\mathcal{P}(Y) \setminus \mathcal{P}(X)$ uspořádání, a nakreslete hasseovský diagram.

5. Na množině $M = \{a, b, c, d\}$ je dána operace \circ :

- a) Je (M, \circ) pologrupa? asociativita no workey, protože neutrální prvek je dvakrát v řádku c a d
- b) Vypište všechny dvouprvkové podgrupoidy (M,\circ) . všechny možné kombinace toho horního záhlaví, musí být uzavřené $(\{a,b\},o),\{a,c\},\{b,c\},\{b,d\},\{c,d\}$
- 6. a) Najděte minimální kostru grafu na obrázku. Postup vyznačte do obrázku.

zkusit zase vzorec m \leq 3v - 6 m = (3+3+4+4+4+4)/2v = počet vrcholů

b) Je možné nakreslit graf s posloupností stupňů 3, 3, 4, 4, 4, 4 bez překřížení hran?

je to možné