

ECE 57000

Unsupervised Learning and Density Estimation

Chaoyue Liu Fall 2024

Unsupervised Learning

Dataset: each sample contains only "input" **x**, but has no label.

topics include:

- density estimation
- clustering
- dimensionality reduction
- generative models
- •

Density estimation

Density estimation finds a density (PDF/PMF) that represents the data (or empirical distribution) well

- Assume there is a ground-truth (unknown) distribution $P(\mathbf{x})$, and the dataset $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$ is obtained by randomly drawn samples i.i.d. from $P(\mathbf{x})$
- Goal: based on \mathcal{D} , find a density/distribution function $\hat{P}(\mathbf{x})$ so that $\hat{P}(\mathbf{x})$ is as close to $P(\mathbf{x})$ as possible

Histogram is the most basic density estimation method

- Setup bin size v_i (typically $v_i = v$) and locations
- Count number of samples that fall in each bin a_i
- Assign $p_i(\mathbf{x}) = \frac{a_i}{v_i}$ to all \mathbf{x} within i-th bin
- Normalize the function to be a density (i.e., integration is 1)

 $\hat{P}(\mathbf{x})$: piecewise constant functions

How to select the number of bins?

- Too few bins will underfit
- Too many bins will overfit

2D Histograms can be created

Curse of dimensionality:

In high dimensional case $(d \gg 1)$, number of bins grows exponentially: $\left(\frac{range}{bin_{size}}\right)^d$

Drawback:

• Estimation function $\hat{P}(\mathbf{x})$ is not smooth (on the bin edges)

Kernel density

Kernel densities overcome this drawback by placing a Gaussian density at each point

• Kernel density has the following form:

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} p_{\text{base}}(x - x_i) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x - x_i, \sigma)$$

Kernel density

Similar to number of bins, the key parameter for kernel densities is the "bandwidth" or σ parameter

k-nearest neighbor (*k*-NN)

(**Note**: different from the *k*-NN model that we discussed in supervised learning)

Goal: compute $\hat{P}(\mathbf{x})$ for all \mathbf{x} .

Steps:

- For a given \mathbf{x} , among all the training samples $\{\mathbf{x}_i\}_{i=1}^n$, find the k-th nearest neighbor to \mathbf{x}
- let $r_k(\mathbf{x})$ be the distance from x to its k-th nearest neighbor
- Let $v_k(\mathbf{x})$ be the volume of the ball with radius $r_k(\mathbf{x}) : v_k(\mathbf{x}) = \frac{\pi^{d/2}}{\Gamma(\frac{d}{2}+1)} \cdot \left(r_k(\mathbf{x})\right)^d$
- $\widehat{P}(\mathbf{x}) = C \cdot \frac{k}{v_k(\mathbf{x})}$, where C is a normalization factor

Histogram, Kernel density, k-NN are non-parametric methods

Parametric density estimation assumes a **density model class** parameterized by θ

• Assumption: Bernoulli density

$$\theta = [p], \qquad p \in [0,1]$$

- Example: toss a (biased) coin
- Assumption: Gaussian density

$$\theta = [\mu, \sigma^2], \qquad \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+$$

• Assumption: Gaussian mixture model

$$\theta = \left\{ \pi_i, \mu_i, \sigma_i^2 \right\}_{i=1}^K, \qquad \pi_i \in (0,1), \mu_i \in \mathbb{R}, \sigma_i^2 \in \mathbb{R}_+$$

Q: How to determine which model (i.e., parameter setting) in the model class is the best?

- Need to find a "distance" to measure the difference between two density functions
- Minimize the "distance"

Kullback-Leibler Divergence (KL)

• **KL divergence** for discrete variables

$$KL(P(\cdot), Q(\cdot)) = \mathbb{E}_{x \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

• **KL divergence** for continuous variables

$$KL(p(\cdot), q(\cdot)) = \mathbb{E}_{X \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx$$

• KL divergence for continuous variables
$$KL(p(\cdot), q(\cdot)) = \mathbb{E}_{X \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$

Original Gaussian PDF's

KL Area to be Integrated

• <u>KL divergence</u> is not a distance!

$$KL(p(\cdot), q(\cdot)) = \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$

Not symmetric!

$$KL(p(\cdot),q(\cdot)) \neq KL(q(\cdot),p(\cdot))$$

Non-negative property

$$KL(p(\cdot),q(\cdot)) \ge 0$$

Equal distribution property:

$$KL(p(\cdot), q(\cdot)) = 0 \Leftrightarrow p(\cdot) = q(\cdot)$$

One use of KL divergence is to estimate distribution parameters only from samples

- $P(\mathbf{x})$: the **real/true** distribution of the data
 - $P(\mathbf{x})$ is unknown
 - We only have samples $\{\mathbf{x}_i\}_{i=1}^n$ from $P(\mathbf{x})$
- $\hat{P}(\mathbf{x}; \theta)$: an **estimate** of the true distribution
 - Parametrized by θ
- We want to find $\hat{P}(\mathbf{x}; \theta)$ that is closest to $P(\mathbf{x})$

$$\theta^* = \arg\min_{\theta} KL(P(\cdot), \hat{P}(\cdot; \theta))$$

Wait, but we don't know $P(\mathbf{x})$, how do we do this?

Two main ideas for simplification

- Constants with respect to (w.r.t.) θ can be ignored
- Full expectation replaced by empirical expectation

$$\begin{split} & \arg\min_{\theta} KL(P(\cdot), \widehat{P}(\cdot; \theta)) \\ & = \arg\min_{\theta} \mathbb{E}_{\mathbf{x} \sim P} \left[\log \frac{P(\mathbf{x})}{\widehat{P}(\mathbf{x}; \theta)} \right] \\ & = \arg\min_{\theta} -\mathbb{E}_{\mathbf{x} \sim P} \left[\log \widehat{P}(\mathbf{x}; \theta) \right] + \mathbb{E}_{\mathbf{x} \sim P} \left[\log P(\mathbf{x}) \right] \\ & = \arg\min_{\theta} -\mathbb{E}_{\mathbf{x} \sim P} \left[\log \widehat{P}(\mathbf{x}; \theta) \right] + C \\ & \approx \arg\min_{\theta} -\widehat{\mathbb{E}}_{\mathbf{x} \sim P} \left[\log \widehat{P}(\mathbf{x}; \theta) \right] \\ & = \arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \log \widehat{P}(\mathbf{x}_{i}; \theta) \end{split}$$

<u>Maximum likelihood estimation (MLE)</u> is another way to estimate distribution parameters from samples

• <u>Likelihood function</u> how likely (or probable) a dataset $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$ is under a distribution with parameters θ

$$\mathcal{L}(\theta; \mathcal{D}) = \hat{P}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n; \theta)$$

• If we assume samples (or observations) of dataset are i.i.d., then

$$\mathcal{L}(\theta; \mathcal{D}) = \prod_{i=1}^{n} \hat{P}(\mathbf{x}_i; \theta)$$

• Often simplified to the log-likelihood function

$$\ell(\theta; \mathcal{D}) = \log \mathcal{L}(\theta; \mathcal{D}) = \sum_{i=1}^{n} \log \hat{P}(\mathbf{x}_i; \theta)$$

<u>Maximum likelihood estimation (MLE)</u> is another way to estimate distribution parameters from samples

Optimize the following

$$\theta^* = \arg \max_{\theta} \ell(\theta; \mathcal{D}) = \arg \max_{\theta} \sum_{i=1}^{n} \log \widehat{P}(\mathbf{x}_i; \theta)$$

• Equivalent to

$$\theta^* = \arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \log \widehat{P}(\mathbf{x}_i; \theta)$$

- Wait, doesn't that look familiar?
- MLE equivalent to minimum KL divergence!

Gaussian Density

• Univariate: (μ is mean and σ^2 is variance)

$$\widehat{P}(x) = \frac{1}{\sqrt{2\pi}\sqrt{\sigma^2}} \exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

• Multivariate (μ is mean and Σ is covariance)

$$\widehat{P}(\mathbf{x}) = \frac{1}{\left(\sqrt{2\pi}\right)^d \sqrt{\det \Sigma}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right\}$$

- $\Theta = \Sigma^{-1}$ is called the **precision matrix** (or **inverse covariance**)
- Σ (and Θ) must be positive definite $\Sigma > 0$

Gaussian Density

• Univariate: (μ is mean and σ^2 is variance)

$$\mathcal{L}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log \hat{P}(x_i; \theta)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2} + \log \sigma + const$$

$$\widehat{P}(x) = \frac{1}{\sqrt{2\pi}\sqrt{\sigma^2}} \exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

$$0 = \frac{\partial \mathcal{L}}{\partial \mu} = \frac{1}{n} \sum_{i=1}^{n} \frac{\mu - x_i}{\sigma^2} \implies \mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$0 = \frac{\partial \mathcal{L}}{\partial \sigma} = \frac{1}{n} \sum_{i=1}^{n} -(x_i - \mu)^2 \cdot \frac{1}{\sigma^3} + \frac{1}{\sigma} \implies \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Gaussian Density

• Similarly for multivariate Gaussian:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

$$\hat{\Sigma}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T$$

Gaussian mixture model

Data may have multiple modes

• Can be approximated by a superposition of several Gaussian distributions

$$\widehat{P}(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)$$

$$0 \le \pi_k \le 1, \forall k = 1, 2, \dots, K$$

$$\sum_{k=1}^{K} \pi_k = 1$$

$$\mathcal{L}(\theta; \mathcal{D}) = -\frac{1}{n} \sum_{i=1}^{n} \log \hat{P}(\mathbf{x}_i; \theta) = -\frac{1}{n} \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)$$

No closed-form solution

Gaussian mixture model

How do we sample from a GMM?

- 1. Select from the mode (i.e., which Gaussian to sample from)
 - Latent variable $z \in \{1, 2, \dots, K\}$, probability $P(z = k) = \pi_k$
- 2. Sample from the selected mode
 - Data $\mathbf{x} \sim \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)$
- Observed data $\{\mathbf{x}_i\}_{i=1}^n$ is incomplete
- $\{\mathbf{x}_i, z_i\}_{i=1}^n$ is the complete data set

If we know the latent variable z_i for all i (i.e., we have the complete data), then the optimization problem can be solved

EM algorithm

Iterate over the following two steps:

Expectation step:

• Compute responsibility that point \mathbf{x}_i belongs to mode k (temporarily fixing π_k , μ_k , Σ_k),

$$r_{ik} = \frac{\pi_k \cdot \mathcal{N}(\mathbf{x}_i \mid \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \cdot \mathcal{N}(\mathbf{x}_i \mid \mu_k, \Sigma_k)}$$

• Maximization step:

• Find π_k , μ_k , Σ_k that maximize the log likelihood (now fixing r_{ik})

$$\pi_k = \frac{1}{N} \sum_{i=1}^{N} r_{ik} = \frac{N_k}{N}, \text{ with } N_k := \sum_{i=1}^{N} r_{ik}$$

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^{N} r_{ik} \mathbf{x}_i$$

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^{N} r_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^T$$