Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization

Jungi Lee, Wonbeom Lee, Jaewoong Sim ISCA (2024)

Seoyoon Kim

2024-07-19

Contents

- ☐ Introduction
- Background and Motivation
- ☐ Algorithmic Implementation
- □ Hardware Architecture
- □ Evaluation
- Conclusion

- ☐ LLM inference = Massive compute & memory resources
- ☐ Quantize weight and activation into low-bit integers

☐ Outliers appear in activation (beyond 6.7B parameters)

Activation (Original)

Hard to quantize

- ☐ Problems of quantizing *activations* in LLMs
 - 1. Software-only works
 - Overhead of complex algorithms
 - Significant quantization loss at ultra low-bit precision
 - 2. Algorithm-hardware co-design
 - Mixed precision / complex compute units
 - Custom / adaptive datatypes

- ☐ Tender
 - Decompose *activation* tensor → several *subtensors* (along *channel*)
 - Scale factors with *power-of-two* relationships

Shifter Logic

No explicit floating-point operations Simple Hardware

□ Transformer

$$X_{Q} = XW_{Q}; X_{K} = XW_{K}; X_{V} = XW_{V}$$

$$X_{S} = softmax(X_{Q}X_{K}^{T})$$

$$X_{O} = X_{S}X_{V}W_{O} + X$$

$$X_{T} = ReLU(X_{O}W_{FC1})W_{FC2} + X_{O}$$

☐ Outliers in LLMs

Concentrated in fixed channels of activation tensors

Input Dimension

$$s = \frac{x_{max}}{2^{b-1} - 1}; \quad x_q = round(\frac{x_f}{s})$$

- ☐ Quantization Granularity
 - per-tensor, per-row (= per-token), per-column (= per-channel)

☐ Challenges in Quantizing LLMs

Model Performance (perplexity)

Models	OPT-6.7B	OPT-13B	Llama-2-7B	Llama-2-13B
FP16	10.86	10.13	5.47	4.88
INT8 per-tensor INT8 per-row	26.73 20.02	4E+3 3E+3	8.54 5.58	51.45 4.94
INT8 per-column	10.87	10.13	5.48	4.89
INT4 per-tensor INT4 per-row	1E+6 1E+6	9E+8 1E+9	4E+4 1E+3	2E+4 5E+3
INT4 per-column	19.38	14.60	7.73	6.47

However, per-column quantization poses challenges since each element needs **scaling** during the reduction operations

Quantization Granularity

☐ Challenges and Opportunities

$$P_i = \frac{X_i \times W_i}{S_i S_w}, \qquad Y = \sum_{i=1}^G (s_i s_w) \cdot P_i$$

 P_i : partial sum, Y: final result, s_i , s_w : scale factor

Lower utilization of compute cores due to smaller submatrices and frequent rescaling

$$A_1 = P_1, \qquad A_{i+1} = A_i \cdot \frac{s_i}{s_{i+1}} + P_{i+1},$$

 $Y = A_G \cdot (s_w s_G)$

$$rescale\ factor = \frac{s_i}{s_{i+1}} = 2^g$$

- → Group channels with similar ranges to isolate outliers
- → Process partial sums in a specific order & rescale using integer MAC units

□ Tender Computation Flow

- ☐ Tensor Computation Flow
 - 1. Bias Subtraction

- Subtract bias of each channel from the activation tensor
- bias = (max + min) / 2
- Ensure the absolute values of *max* and *min* elements are equal, optimizing the bit usage

- ☐ Tensor Computation Flow
 - 2. Tensor Decomposition

- Compute CMax & Tmax
- Assign i-th channel to group g satisfying: $\frac{TMax}{\alpha^g} < CMax_i \le \frac{TMax}{\alpha^{g-1}}$, g = 1, 2, ..., G- Every channel in group g is quantized using the same scale factor:
- Rescaling becomes simple shifting if $\alpha = 2$

- ☐ Tensor Computation Flow
 - 2. Tensor Decomposition

Why use coarse-grained threshold for large values and fine-grained thresholds for small values?

$$scale\ factor = \frac{TMax}{\alpha^{g-1}(2^{b-1}-1)} \quad \frac{TMax}{\alpha^g} < CMax_i \le \frac{TMax}{\alpha^{g-1}}$$

 $Q_{err_max} = 0.5 \times scale \ factor$

 $Q_{err} \propto Absolute\ Maximum\ \times Number\ of\ Channels$

- ☐ Tensor Computation Flow
 - 3. Grouping

- Classify each channel into several groups using indirect indexing

- ☐ Tensor Computation Flow
 - 4. Runtime Requantization

Before computing the next group,
 Shifter shifts the accumulated integer by 1-bit

- Optimization
 - Not only inter-channel variances but also intra-channel variances
 - Row chunking (No additional complexity):
 Divide the rows of the activation tensor &
 calibrate biases and scale factors offline
- Chunk size = 256
 (underutilization vs fine-grained row grouping)

☐ 1. Overview of Tender Architecture

- HBM Controller: manage data movement between the on-chip buffer and HBM2
- Execution Controller: send address to the Scratchpad Memory to bring data, send data and control signals to the systolic array

□ 2. Multi-Scale Systolic Array (MSA)

- 2D mesh of PEs with FIFOs attached for skewing inputs and weights
- Single 64 x 64 systolic array with each PE executing a 4-bit MAC operation
- When precision is INT8, 4 PEs are grouped to perform 8-bit multiplication

☐ 2. Multi-Scale Systolic Array (MSA)

- Output stationary (partial sum is accumulated in each PE)
- Normal MAC operations for matrix reduction, 1-cycle bubble for rescale
- Execution Controller has the metadata of number of channels, indices of tensor splitting points, and rescale factors

- □ 3. Vector Processing Unit (VPU)
 - SIMD style FPU that operates on vector elements
 - Scaling of INT32 results from Output Buffer into INT4/INT8 before storing back to Scratchpad Memory (with an optional activation)
 - Use calibrated bias and scale factors
 - Consists of 64 FPUs and internal vector registers for pipelining
 - Additional registers to buffer scaling factors for quantization
 - Performs softmax and LayerNorms in the Transformer block

- ☐ 4. Controllers & Index Buffer
 - Indirect indexing

- 1 Program: Store the computation order in the Index Buffer, which is pre-determined
- ② Channel Index: Execution Controller looks up in the Index buffer and obtains channel indices
- 3 Base + Index: Generate an address for the target channel to load
- 4 Forward Data: Channels are sent to the MSA in the required order
- 1 Transfer Data: HBM Controller sends data from off-chip memory to Scratchpad Memory

- □ 5. Scratchpad Memory & Output Buffer
- Scratchpad Memory: All inputs and weights are quantized into INT4/INT8 and stored in it
- Output Buffer: Stores the computation result from the MSA in INT32 and sends them to the VPU for rescaling back to INT4/INT8

- □ Experimental Methodology
 - 1. Software Implementation
 - Model: OPT, LLaMa, LlaMa-2, BERT-Large (for encoder-only model)
 - Datasets: WikiText2, Penn Treebank(PTB)
 - Evaluation: Perplexity
 - 2. Quantization Baselines
 - Compare with SmoothQuant, ANT, OliVe
 - 3. Hardware Implementation
 - Implement & Verification: SystemVerilog
 - DRAM performance: Ramulator
 - 4. Accelerator Baselines
 - Compare with OLAccel, ANT, OliVe

- ☐ Language Model Performance
 - PTQ Performance on LLMs

- Disable quantization of Tender for matrix multiplication between activations
- Sequence length = 2048

INT8/INT4 PTQ results (perplexity) for LLMs

Precision Schen	Sahama	OPT-6.7B		OPT-13B		OPT-66B		Llama-2-7B		Llama-2-13B		Llama-2-70B		LLaMA-7B		LLaMA-13B	
	Scheme	Wiki	PTB	Wiki	PTB	Wiki	PTB	Wiki	PTB	Wiki	PTB	Wiki	PTB	Wiki	PTB	Wiki	PTB
FP16	Base	10.86	13.09	10.13	12.34	9.34	11.36	5.47	20.83	4.88	28.93	3.32	14.44	5.68	8.80	5.09	8.07
INT8	SmoothQuant	10.93	13.21	10.40	12.53	9.87	11.71	48.54	1E+4	447.52	491.51	17.30	46.96	27.85	54.98	16.02	32.84
	ANT	19.72	27.96	4E+3	3E+3	3E+3	3E+3	8.79	4E+4	20.52	152.01	7.28	36.18	8.52	13.41	7.49	10.85
	OliVe	10.93	13.23	10.28	12.41	9.43	11.41	8.16	30.12	30.50	26.16	50.94	245.09	53.34	113.48	7.62	10.76
	Tender	10.93	13.14	10.17	12.39	9.43	11.40	5.77	18.95	5.09	21.13	3.48	14.23	5.87	9.05	5.28	8.27
INT4	SmoothQuant	5E+4	2E+4	9E+3	1E+4	6E+4	3E+4	3E+5	3E+5	4E+4	4E+4	7E+4	5E+4	3E+5	2E+5	2E+5	2E+5
	ANT	9E+3	6E+3	4E+4	3E+4	1E+4	7E+3	189.72	2E+4	165.19	1E+3	24.96	155.92	80.13	109.21	96.71	247.65
	OliVe	50.83	43.96	35.76	75.37	6E+3	4E+3	44.24	860.93	1E+3	97.93	99.91	216.53	195.15	359.43	94.32	181.69
	Tender	13.56	16.28	16.43	19.92	12.38	14.01	36.47	114.44	55.08	208.76	13.43	50.66	23.85	38.09	13.68	28.24

- Almost the same perplexity as FP16 baseline
- Far better perplexity than others → Tender can well separate the outlier channels

☐ Language Model Performance

- Sequence Length Sensitivity

INT8/INT4 PTQ results (perplexity) across different sequence length

Precision	Scheme	20	48	2	56	32		
riecision	Scheme	Wiki	PTB	Wiki	PTB	Wiki	PTB	
FP16	Base	10.86	13.09	19.18	22.00	78.97	103.42	
INT8	SmoothQuant	10.93	13.21	19.17	22.14	79.32	102.68	
	ANT	19.72	27.96	48.43	57.97	396.01	364.00	
	OliVe	10.93	13.23	19.24	22.29	79.69	104.42	
	Tender (all)	10.98	13.19	19.31	22.08	78.93	102.99	
	Tender	10.93	13.14	19.28	22.06	78.81	102.84	
INT4	SmoothQuant	5E+4	2E+4	5E+4	2E+4	4E+4	2E+4	
	ANT	9E+3	6E+3	8E+3	6E+3	6E+3	3E+3	
	OliVe	50.83	43.96	88.05	113.53	441.03	371.73	
	Tender (all)	17.15	23.25	27.57	30.58	96.34	118.85	
	Tender	13.56	16.28	23.16	26.12	91.27	111.90	

"Tender": Disable quantization of Tender for matrix multiplication between activations "Tender(all)": Quantizes all the matrix multiplications

- Tender shows the best performance for most of the quantization scenarios & maintains the perplexity close to FP16 baseline
- Even Tender(all) outperforms the prior works that do not quantize matrix multiplication between activations

☐ Language Model Performance

- Quantization Accuracy on BERT (with GLUE benchmark)

INT8/INT4 PTQ results (accuracy) on BERT-Large

Precision	Scheme	CoLA	SST-2	MRPC	STS-B	QQP	QNLI
FP32	Base	60.20	93.12	91.58	89.94	91.40	92.33
INT8	ANT	59.16	92.55	77.99	89.23	89.66	81.48
	OliVe	61.12	93.12	91.33	89.91	91.42	92.02
	Tender	60.45	93.23	91.55	89.98	91.43	92.31
INT4	ANT	53.77	90.60	21.09	85.93	83.62	60.86
	OliVe	59.02	92.09	85.32	87.43	89.72	90.48
	Tender	61.78	92.32	89.42	87.77	89.23	90.29

Although the outliers of the BERT-Language are much smaller than the ones of other LLMs, Tender outperforms other baselines in many tasks

→ Tender also benefits encoder-only and relatively small models

- ☐ Language Model Performance
 - Multi-Scale Quantization

→ Decomposing the channels into multiple groups is necessary to achieve better performance

□ Tender Performance

 $2.63 \times, 1.84 \times, 1.48 \times$ speedups & $1.84 \times, 1.53 \times, 1.24 \times$ energy efficiency over ANT, OLAccel, OliVe

Performance & Energy Efficiency (INT4 Precision) ANT OLAccel Olive Tender OPT-6.7B OPT-13B OPT-66B Llama-2 Llama-2 Geomean 7B 13B 70B

Conclusion

- ☐ Tender minimizes quantization errors by splitting the activation tensors along the feature/channel dimension to separate the outlier channels
- ☐ Tender addresses the runtime overhead of the channel decomposition by implicit requantization with a minimally extended systolic array
- ☐ Tender significantly improves PTQ performance even for ultra low-bit quantization without mixed-precision or custom datatypes