

Neural Network Assigned: Saturday, 4 Apr., 2023

Due: Before Midterm

Sheet 5 Chain Rule

Questions

- 1. In a neural network, the goal is to compute the cost on the forward pass and the derivative (gradient) on the backward pass. If the cost function is $J = \cos(\sin(x^2) + 3x^2)$, and the forward pass is as follows: $J = \cos(u)$, $u = u_1 + u_2$, $u_1 = \sin(t)$, $u_2 = 3t$, $t = x^2$. Calculate the partial derivatives of J with respect to x using the chain rule for backward propagation.
- 2. Consider the cost function $J = x^2 + y^2 + z^2$, where x, y, and z are variables. Suppose that x = u + v, y = u - v, and $z = u^2 + v^2$, where u and v are also variables. Perform a forward propagation and then calculate the partial derivatives of J with respect to u and v using the chain rule for backward propagation.
- 3. Consider the function $f(x,y) = x^3 + 3xy^2 y^3$. Let $u = x^2 y^2$ and v = 2xy. Express f(x,y) in terms of u and v, and then calculate the partial derivatives of f with respect to u and v using the chain rule.
- 4. Get backpropagation for the logistic regression, so our forward pass will be as follows:

$$J = \hat{y}\log(y + (1 - \hat{y})) - \log(1 - y)$$
$$y = \frac{1}{1 + e^{-\alpha}}$$
$$\alpha = \sum_{j=0}^{n} \theta_{j} x_{j}$$

Express the derivative of J with respect to the model parameters θ_j using the chain rule.

Deliverable

- This sheet is to be solved **Individually**.
- You are required to submit a PDF file named ID_FirstName_LastName_sheet5.pdf, any other naming format will not be accepted and file will be discarded.
- Any copied sheets will be immediately zeroed and other penalties may be applied.

Good Luck