Question 1

Proof. Let $f: X \to Y$ and $A_1, A_2 \subseteq X$. Assume $y \in f[A_1 \cup A_2]$. Then,

$$y \in f[A_1 \cup A_2] \iff y = f(x), x \in A_1 \cup A_2$$

$$\iff y = f(x), x \in A_1 \lor x \in A_2$$

$$\iff y \in f[A_1] \lor y \in f[A_2]$$

$$\iff y \in f[A_1] \cup f[A_2].$$

Thus, $f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$.

Question 2

 $f^{-1}([-3,5]) = [1009.5, 1013.5]$

Question 3

$$D^{-1}(\{4x^3\}) = \{x^4\}$$

Question 4

$$1.\ s^{-1}(\{4\})=\{(0,4),(1,3),(2,2),(3,1),(4,0)\}$$

2.
$$s^{-1}(\{1\}) = \{(0,1), (1,0)\}$$

Question 5

Proof. Let $f: X \to Y$ and $B_1, B_2 \subseteq Y$. Assume $x \in f^{-1}[B_1 \cup B_2]$. Then,

$$x \in f^{-1}[B_1 \cup B_2] \iff f(x) \in B_1 \cup B_2$$
$$\iff f(x) \in B_1 \vee f(x) \in B_2$$
$$\iff x \in f^{-1}[B_1] \vee x \in f^{-1}[B_2]$$
$$\iff x \in f^{-1}[B_1] \cup f^{-1}[B_2].$$

Thus, $f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2]$.

Question 6

Part a

Proof. Let $f: X \to Y$ and $A \subseteq X$. Assume $x \in A$. Then $f(x) \in f[A]$. Since $x \in f^{-1}[f[A]], A \subseteq f^{-1}[f[A]]$.

Part b

Proof. Let $f: X \to Y$ and $A \subseteq X$. Assume that f is injective. From part a, we know that $A \subseteq f^{-1}[f[A]]$. Now let $x \in f^{-1}[f[A]]$. Then, $f(x) \in f[A]$. Thus, there exists $a \in A$ such that f(x) = f(a). Since f is injective, x = a. Since $x = a, x \in A$. Therefore, $f^{-1}[f[A]] \subseteq A$, so $f^{-1}[f[A]] = A$.

Question 7

Part a

Iteration 1: a = 1207, b = 569569 † 1207, so $q = \frac{1207}{569}$

Part b