2014年7月9日 UVa Online Judge

Problem A

From D to E and back

Input: Standard InputOutput: Standard Output

Anyone who goes to a psychiatrist ought to have his head examined.

Samuel Goldwyn

Take any directed graph **D** with **n** vertices and **m** edges. You can make the Lying graph **E** of **D** in the following way. **E** will have **m** vertices, one for each edge of **D**. For example, if **D** has an edge **uv**, then **E** will have a vertex called **uv**. Now, whenever **D** has edges **uv** and **vw**, **E** will have an edge from vertex **uv** to vertex **vw**. There are no other edges in **E**.

You will be given a graph E and will have to determine whether it is possible for E to be the Lying graph of some directed graph D.

Input

The first line of input gives the number of cases, N (N<220). N test cases follow. Each one starts with two lines containing \mathbf{m} ($0 \le \mathbf{m} \le 300$) and \mathbf{k} . The next \mathbf{k} lines will each contain a pair of vertices, \mathbf{x} and \mathbf{y} , meaning that there is an edge from \mathbf{x} to \mathbf{y} in \mathbf{E} . The vertices are numbered from 0 to \mathbf{m} -1

Output

For each test case, output one line containing "Case #x:" followed by either "Yes" or "No", depending on whether **E** is a valid Lying graph or not. Note that **D** is allowed to have duplicate edges and self-edges.

Sample Input

Output for Sample Input

4	Case #1: Yes
2	Case #2: Yes
1	Case #3: No
0 1	Case #4: Yes
5	
0	
4	
3	
0 1	
2 1	
2 3	
3	
9	
0 1	
0 2	
1 2	
1 0	
2 0	
2 1	
0 0	
1 1	

2 2

Problem setter: Igor Naverniouk Special Thanks: Joachim Wulff