Difference between ODE-Net approximation and ODEsolvers: Euler, RK4.

Содержание

Rep	ort	2
1.1	Motivation	2
1.2	Description of the method	2
1.3	Experiment	2
1.4	Code analysis	3
1.5	Conclusions	3
	1.1 1.2 1.3 1.4	Report 1.1 Motivation

1 Report

1.1 Motivation

Many methods have been developed so far for solving differential equations. Some of them produce a solution in the form of an array that contains the value of the solution at a selected group of points. Others use basis-functions to represent the solution in analytic form and transform the original problem usually in a system of linear equations. Another approach to the solution of ordinary differential equations is based on the fact that certain types of splines, for instance linear B-splines, can be derived by the superposition of piecewise linear activation functions. ODE-Net view the problem from a different angle. It relies on the function approximation capabilities of feedforward neural networks and results in the construction of a solution written in a differentiable, closed analytic form.

1.2 Description of the method

General differential equation definition:

$$G(\vec{x}, \Psi(\vec{x}), \nabla \Psi(\vec{x}), \nabla^2 \Psi(\vec{x})) = 0, \quad \vec{x} \in D$$

Assumes a discretization of the domain D

$$G(\overrightarrow{x_i}, \Psi(\overrightarrow{x_i}), \nabla \Psi(\overrightarrow{x_i}), \nabla^2 \Psi(\overrightarrow{x_i})) = 0, \quad \overrightarrow{x_i} \in \hat{D}$$

With adjustable parameters \vec{p} , the problem is transformed to

$$\min_{\overrightarrow{\boldsymbol{x}}}_{\overrightarrow{\boldsymbol{x}_i} \in \hat{D}} G(\overrightarrow{\boldsymbol{x_i}}, \boldsymbol{\Psi}_t(\overrightarrow{\boldsymbol{x_i}}, \overrightarrow{\boldsymbol{p}}), \nabla \boldsymbol{\Psi}(\overrightarrow{\boldsymbol{x_i}}, \overrightarrow{\boldsymbol{p}}), \nabla^2 \boldsymbol{\Psi}(\overrightarrow{\boldsymbol{x_i}}, \overrightarrow{\boldsymbol{p}}))$$

The efficient minimization of equation can be considered as a procedure of training the neural network where the error corresponding to each input vector $\overrightarrow{x_i}$ is the value $G(\overrightarrow{x_i})$ which has to become zero.

In the proposed approach the trial solution Ψ_t employs a feedforward neural network and the parameters \vec{p} correspond to the weights and biases of the neural architecture. We choose a form for the trial function $\Psi_t(\vec{x_i})$ such that by construction satisfies the certain boundary conditions (B.Cs)

$$\Psi_t(\overrightarrow{x_i}) = A(\overrightarrow{x_i}) + F(\overrightarrow{x_i}, N(\overrightarrow{x_i}, \overrightarrow{p}))$$

where $N(\overrightarrow{x_i}, \overrightarrow{p})$ is a single-output feedforward neural network with parameters \overrightarrow{p} and n input units fed with the input vector \overrightarrow{x} .

1.3 Experiment

The code of the experiment can be found on GitHub repository¹.

 $^{^{1}} https://github.com/Tonchik-hv/Math-methods-of-forecasting \\$

1.4 Code analysis

Рис. 1: Selected HOSVD mode structures for the radial (x) coordinate

1.5 Conclusions

- 1. The solution via ANN's is easily used in any subsequent calculation.
- 2. Most other techniques offer a discrete solution (for example Runge-Kutta methods)
- 3. The required number of model parameters is far less than any other solution technique and therefore, compact solution models are obtained, with very low demand on memory space.
- 4. The method is general and can be applied to ODEs, systems of ODEs and to PDEs as well.
- 5. The method can also be efficiently implemented on parallel architectures.