Syntax

- Bool $\in T$, $i_{Bool} = 2$
- $\bullet \ \, {\tt True} \equiv D_1^{\tt Bool}, {\tt False} \equiv D_2^{\tt Bool}$
- $ty(True) = \{v: Bool \mid v \Leftrightarrow true\}, \text{ and } ty(False) = \{v: Bool \mid v \Leftrightarrow false\}$
- if e then e_1 else $e_2 \doteq \mathrm{case}_{\mathtt{Bool}} \ e \ x$ of $\{\mathtt{True} \Rightarrow e_1; \mathtt{False} \Rightarrow e_2\}$

Erasing

$$\lfloor \{v : b \mid e\} \rfloor = b$$

$$\lfloor x : \tau_x \to \tau \rfloor = \lfloor \tau_x \rfloor \to \lfloor \tau \rfloor$$

Substitutions

$$(\{v:b \mid e\}) [e_y/y] = \{v:b \mid e [e_y/y]\}$$

$$(x:\tau_x \to \tau) [e_y/y] = x:(\tau_x [e_y/y]) \to (\tau [e_y/y])$$

Interpretations

Definition 1. Let Fin_i (*) and $Valid_i$ (*) be predicates on expressions such that

- 1. For $\emptyset \vdash e : \{v:b \mid e_r\} \ (\forall i.Fin_i \ (e) \Rightarrow Valid_i \ (e_r))$ is a "meaningful" soundness predicate.
- 2. For any x, e, e_r, θ , if $e \hookrightarrow e'$ then $\forall i. Valid_i (\theta e_r [e'/x]) \Rightarrow Valid_i (\theta e_r [e/x])$ and $\forall i. Valid_i (\theta e_r [e/x]) \Rightarrow Valid_i (\theta e_r [e'/x])$.

3. For any e_1, e_2 ,

$$Valid_i(e_1) \wedge Valid_i(e_2) \Rightarrow Valid_i(e_1 \wedge e_2)$$

4.

$$Valid_i$$
 (true)

$$\begin{split} [|\left\{v : b' \mid e_v\right\}|] &= \left\{e \mid \quad \vdash e : b \land (\forall i. \operatorname{Fin}_i \ (e) \Rightarrow \operatorname{Valid}_i \ (e_v \ [e/v]))\right\} \\ [|\left\{v : T \mid e_T\right\}|] &= \left\{e \mid \quad \vdash e : b \land (\forall i. \operatorname{Fin}_i \ (e) \Rightarrow \operatorname{Valid}_i \ (e_T \ [e/v]))\right\} \\ &\cap \left\{e \mid \quad \forall (1 \leq i \leq i_T) \right\} D_i^T \in [|\overline{x} : \overline{\tau}_{D_i^T} \rightarrow \left\{v : T \mid e_T'\right\}|] \\ &\wedge \theta = [e_{y_i}/x] \land \forall e_{y_i} \in [|\theta \ t_{D_i^T}|] \\ &e \in [|\left\{v : T \mid \theta e_T'\right\}|] \Rightarrow e_i \ [e/x] \ [e_{y_i}/y_i] \in [|\tau|]\} \\ &\Rightarrow \operatorname{case}_T e \ x \ \text{of} \ D_i^T \ \overline{y_i} \rightarrow e_i \in [|\tau|]\} \\ [|x : \tau_x \rightarrow \tau|] &= \left\{e \mid \quad \vdash e : \lfloor \tau_x \rfloor \rightarrow \lfloor \tau \rfloor \land \forall e_x \in [|\tau_x|]. \ e \ e_x \in [|\tau \ [e_x/x]|]\} \end{split}$$

Typing

$$\Gamma \vdash e : \tau$$

$$\frac{\Gamma \vdash e : \{v : b \mid e'\}}{\Gamma \vdash e : \{v : b \mid v =_{b} e\}} \quad \text{T-Ex}$$

$$\frac{(x, \{v : b \mid e\}) \in \Gamma}{\Gamma \vdash x : \{v : b \mid v =_{b} x\}} \quad \text{T-Var-Base} \qquad \frac{(x, \tau) \in \Gamma}{\Gamma \vdash x : \tau} \quad \text{T-Var}$$

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash w : \text{ty}(w)} \quad \text{T-Const} \qquad \frac{\Gamma \vdash e : \tau' \quad \Gamma \vdash \tau' \preceq \tau \quad \Gamma \vdash \tau}{\Gamma \vdash e : \tau} \quad \text{T-Sub}$$

$$\frac{\Gamma, x : \tau_x \vdash e : \tau \quad \Gamma \vdash \tau_x}{\Gamma \vdash \lambda x . e : (x : \tau_x \to \tau)} \quad \text{T-Fun} \qquad \frac{\Gamma \vdash e_1 : (x : \tau_x \to \tau) \quad \Gamma \vdash e_2 : \tau_x}{\Gamma \vdash e_1 e_2 : \tau [e_2/x]} \quad \text{T-App}$$

$$\frac{\Gamma \vdash e : \{v : T \mid e_T\}}{\Gamma \vdash \lambda x . e : (x : \tau_x \to \tau)} \quad \text{T-Fun} \qquad \frac{\Gamma \vdash e_1 : (x : \tau_x \to \tau) \quad \Gamma \vdash e_2 : \tau_x}{\Gamma \vdash e_1 e_2 : \tau [e_2/x]} \quad \text{T-App}$$

$$\frac{\Gamma \vdash e : \{v : T \mid e_T\}}{\Gamma \vdash \lambda x . e : (x : \tau_x \to \tau)} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 : \tau [e_2/x]} \quad \text{T-App}$$

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \lambda x . e : (x : \tau_x \to \tau)} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \lambda x . e : (\tau \vdash \tau_x)} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau}$$

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \text{T-Case}$$

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2} \quad \frac{\Gamma \vdash \tau_x}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \text{T-Fun}$$

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash x . e_1 e_2 \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \quad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau}$$

$$\frac{\vdash \Gamma \qquad \Gamma \vdash \tau}{\vdash x : \tau, \Gamma} \qquad \frac{}{\vdash \emptyset}$$

$$\Gamma \vdash \theta$$

$$\frac{\forall x \in \text{Dom}(\Gamma) \cdot \theta(x) \in [|\theta \ \Gamma(x)|]}{\Gamma \vdash \theta}$$

Constants and Data Constructors

Definition 2. For each constant or data constructor w

- 1. $\emptyset \vdash w : ty(w) \text{ and } \vdash ty(w)$
- 2. If $ty(w) = x:\tau_x \to \tau$, then for each v such that $\emptyset \vdash v:\tau_x \ [|w|](v)$ is defined and $\vdash [|w|](v):\tau \ [v/x]$

Also, for all $e \in [|\tau_x|]$, we have $w \in [|\tau[e/x]|]$

3. If $ty(w) = \{v:b \mid e\}$, then $(\forall i.Fin_i \ (w) \Rightarrow Valid_i \ (e [w/v]))$ and $\forall w' \ w' \neq w.\neg((\forall i.Fin_i \ (w) \Rightarrow Valid_i \ (e [w'/v])))$

Moreover, for any base type b, $=_b$ is a constant and

• For any expression e we have

$$\forall i. Valid_i \ (e =_b e)$$

• For any base type b

$$ty(=_b) \equiv x:b \rightarrow y:b \rightarrow bool$$

For each T there are exactly i_T constants with result type $\{v:T \mid e_T\}$, namely D_i^T , $\forall 1 \leq i \leq i_T$.

Semantic Typing

$$\begin{split} \Gamma \vdash e \in \tau &\doteq \forall \theta. \Gamma \vdash \theta \Rightarrow \theta \ e \in [|\theta \ \tau|] \\ \Gamma \vdash \tau_1 &\subseteq \tau_2 \doteq \forall \theta. \Gamma \vdash \theta \Rightarrow [|\theta \ \tau_1|] \subseteq [|\theta \ \tau_2|] \end{split}$$

Lemma 1. .

- 1. If $\Gamma \vdash \tau_1 \leq \tau_2$ then $\Gamma \vdash \tau_1 \subseteq \tau_2$
- 2. If $\Gamma \vdash e : \tau$ then $\Gamma \vdash e \in \tau$

Proof. 1. Assume $\Gamma \vdash \tau_1 \leq \tau_2$ We will prove it by induction on the derivation tree:

\bullet \preceq -BASE. We have

$$\Gamma \vdash \{v:b \mid e_1\} \preceq \{v:b \mid e_2\}$$

By inversion we get

$$\Gamma, v:b \vdash e_1 \Rightarrow e_2$$

By inversion of \Rightarrow -BASE we have

$$\forall \theta.\Gamma, v:b \vdash \theta \land \forall i. Valid_i \ (\theta \ e_1) \Rightarrow Valid_i \ (\theta \ e_2)(1)$$

We want to prove

$$\Gamma \vdash \{v:b \mid e_1\} \subseteq \{v:b \mid e_2\}$$

Equivalently

$$\forall \theta.\Gamma \vdash \theta \Rightarrow [|\theta \ \{v \hbox{:} b \mid e_1\}\,|] \subseteq [|\theta \ \{v \hbox{:} b \mid e_2\}\,|]$$

Equivalently

$$\forall \theta.\Gamma \vdash \theta$$

$$\Rightarrow \{e \mid \vdash e : b \land (\forall i.\text{Fin}_i \ (e) \Rightarrow \text{Valid}_i \ (\theta \ e_1 \ [e/v]))\}$$

$$\subseteq \{e \mid \vdash e : b \land (\forall i.\text{Fin}_i \ (e) \Rightarrow \text{Valid}_i \ (\theta \ e_2 \ [e/v]))\}$$

Since $e \in [|b|]$, we have $\Gamma, v:b \vdash \theta, [e/v]$. So, from (1) for $\theta := \theta, [e/v]$ we have

$$\forall i. \text{Valid}_i \ (\theta \ e_1 \ [e/v]) \Rightarrow \text{Valid}_i \ (\theta \ e_2 \ [e/v])$$

• <u>≺</u>-Fun Assume

$$\Gamma \vdash x:\tau_x \to \tau \preceq x:\tau_x' \to \tau'$$

By inversion we have

$$\Gamma \vdash \tau'_x \preceq \tau_x \qquad \Gamma, x : \tau'_x \vdash \tau \preceq \tau'$$

By IH

$$\Gamma \vdash \tau'_x \subseteq \tau_x(1)$$
 $\Gamma, x:\tau'_x \vdash \tau \subseteq \tau'(2)$

We want to show that

$$\Gamma \vdash x:\tau_x \to \tau \subseteq x:\tau_x' \to \tau'$$

Equivalently

$$\forall \theta.\Gamma \vdash \theta \Rightarrow [|\theta \ (x:\tau_x \to \tau)|] \subseteq [|\theta \ (x:\tau_x' \to \tau')|]$$

Equivalently

$$\begin{split} \forall \theta. \Gamma \vdash \theta \\ &\Rightarrow \{e \mid \vdash e : \lfloor \tau_x \rfloor \rightarrow \lfloor \tau \rfloor \land \forall e_x \in [|\tau_x|]. \ e \ e_x \in [|\tau \left[e_x/x\right]|]\} \\ &\subseteq \{e \mid \vdash e : \lfloor \tau_x' \rfloor \rightarrow \lfloor \tau' \rfloor \land \forall e_x \in [|\tau_x'|]. \ e \ e_x \in [|\tau' \left[e_x/x\right]|]\} \end{split}$$

The above holds, as for any e, e_x if $e_x \in [|\tau'|]$ then by (1) $e_x \in [|\tau|]$. Also, by (2) if $e e_x \in [|\tau[e_x/x]|]$ then $e e_x \in [|\tau'[e_x/x]|]$.

- 2. Assume $\Gamma \vdash e : \tau$. We will prove it by induction on the derivation tree.
 - T-Ex Assume

$$\Gamma \vdash e : \tau$$

where $\tau \equiv \{v:b \mid v =_b e\}$. By inversion we have

$$\Gamma \vdash e : \{v:b \mid e'\}$$

We need to show that

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \theta \ e \in [|\theta \ \tau|]$$

Which holds, as by definition of $=_b \forall i. \text{Valid}_i \ ((v =_b \theta \ e) \ [\theta \ e/v])$

• T-Var Assume

$$\Gamma \vdash e : \tau$$

where $e \equiv x$ By inversion we have

$$(x,\tau)\in\Gamma$$

We need to show that

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \theta \ x \in [|\theta \ \tau|]$$

Which holds by the definition of well-formed substitutions

• T-VAR-BASE Assume

$$\Gamma \vdash e : \tau$$

where $e \equiv x$ and $\tau \equiv \{v:b \mid v =_b x\}$. By inversion

$$(x, \{v:b \mid e_r\}) \in \Gamma$$

We need to show that

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \theta \ x \in [|\theta \ \tau|]$$

Equivalently that

$$\forall e.e \in \left[\left| \left. \left\{ v.b \mid e_r \right\} \right| \right] \Rightarrow e \in \left[\left| \left. \left\{ v.b \mid v =_b e \right\} \right| \right] \right.$$

which holds, as by the definition of $=_b$

$$\forall i. \text{Valid}_i \ (e =_b e)$$

• T-Const. Assume

$$\Gamma \vdash e : \tau$$

where $e \equiv w$ and $\tau \equiv \operatorname{ty}(c)$. Then $\Gamma \vdash e \in \tau$ holds by Definition 2.

• T-Case It follows from the definition of $[|\{v:T\mid e\}|]$ using that

$$Valid_i(e_T) \wedge Valid_i(thetae'_T) \Rightarrow Valid_i(e_T \wedge \theta e'_T)$$

to prove that $e \in \{v:T \mid e_T \land thetae'_T\}$

• T-Sub Assume

$$\Gamma \vdash e : \tau$$

By inversion

$$\Gamma \vdash e : \tau'(1)$$
 $\Gamma \vdash \tau' \preceq \tau(2)$ $\Gamma \vdash \tau(3)$

By IH on (1) we have

$$\Gamma \vdash e \in \tau'$$
 (4)

By 1 on (2) we have

$$\Gamma \vdash \tau' \subseteq \tau$$
 (5)

By (4) and (5) we get

$$\Gamma \vdash e \in \tau$$

• T-Fun Assume

$$\Gamma \vdash e : \tau$$

where $e \equiv \lambda x.e'$ and $\tau \equiv x:\tau_x' \to \tau'$. By inversion we get

$$\Gamma, x:\tau'_x \vdash e':\tau'$$
 (1) $\Gamma \vdash \tau'_x$ (2)

By IH on (1) we have

$$\Gamma, x: \tau'_x \vdash e' \in \tau'$$
 (3)

Equivalently

$$\forall \theta. (\Gamma, x : \tau'_x) \vdash (\theta [e_x/x]) \Rightarrow (\theta [e_x/x]) e' \in [|(\theta [e_x/x]) \tau'|]$$

Or

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \forall e_x.e_x \in [|\tau_x'|] \Rightarrow \theta \ e \ e_x \in [|\theta \ (\tau' [e_x/x])|]$$

Moreover, $\vdash_B e : \lfloor \tau'_x \rfloor \to \lfloor \tau \rfloor$ and $Valid_i$ (true). So,

$$\forall \theta.\Gamma \vdash \theta \ \theta \ e \in [|\theta \ \tau|]$$

Or,

$$\Gamma \vdash e \in \tau$$

• T-App Assume

$$\Gamma \vdash e : \tau$$

where $e \equiv e_1 \ e_2$ and $\tau \equiv \tau' [e_2/x]$. By inversion:

$$\Gamma \vdash e_1 : (x:\tau_x' \to \tau') \ (1) \qquad \Gamma \vdash e_2 : \tau_x' \ (2)$$

By IH we get

$$\Gamma \vdash e_1 \in (x:\tau'_x \to \tau')$$
 (3) $\Gamma \vdash e_2 \in \tau'_x$ (4)

So

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \forall e_x \in [|\theta \ \tau_x'|] \Rightarrow (\theta e_1) \ e_x \in [|\theta \ \tau' [e_x/x]|] \ (5)$$

and

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \theta \ e_2 \in [|\theta \ \tau_x'|] \ (6)$$

From (5) and (6), we get

$$\forall \theta.\Gamma \vdash \theta \Rightarrow \theta \ e \in [|\theta \ \tau|]$$

Or

$$\Gamma \vdash e \in \tau$$

Lemma 2 (Substitution). If $\Gamma \vdash e_x \in \tau_x$ and $\vdash \Gamma, x:\tau_x, \Gamma'$, then

1. If
$$\Gamma, x:\tau_x, \Gamma' \vdash \tau_1 \leq \tau_2$$
 then $\Gamma, [e_x/x] \Gamma' \vdash [e_x/x] \tau_1 \leq [e_x/x] \tau_2$

2. If
$$\Gamma, x:\tau_x, \Gamma' \vdash e : \tau$$
 then $\Gamma, [e_x/x] \Gamma' \vdash [e_x/x] e : [e_x/x] \tau$

3. If
$$\Gamma, x:\tau_x, \Gamma' \vdash \tau$$
 then $\Gamma, [e_x/x] \Gamma' \vdash [e_x/x] \tau$

Lemma 3. If $\Gamma \vdash e : \tau$ then $\lfloor \Gamma \rfloor \vdash_B e : \lfloor \tau \rfloor$.

Lemma 4. If $\vdash \Gamma$ and $\Gamma \vdash e : \tau$ then $\Gamma \vdash \tau$.

proved

Operational Semantic

Soundness

Lemma 5. If $e \hookrightarrow e'$ then $\Gamma \vdash \tau [e'/x] \preceq \tau [e/x]$.

proved

Lemma 6 (Preservation). If $\emptyset \vdash e : \tau$ and $e \hookrightarrow e'$ then $\emptyset \vdash e' : \tau$.

proved

Lemma 7 (Progress). If $\emptyset \vdash e : \tau$ and $e \neq v$ then there exists an e' such that $e \hookrightarrow e'$.

proved

Interpretations

$$\operatorname{Fin} (e) \doteq \exists v.e \hookrightarrow^{\star} v$$

$$\operatorname{Valid}(e) \Leftrightarrow e \hookrightarrow^{\star} v \Rightarrow e \hookrightarrow^{\star} \operatorname{true}$$

$$[|x|] = x$$
 $[|\lambda x.e|] = f$ $[|c|] = c$ $[|e_1 \ e_2|] = [|e_1|]([|e_2|])$

Claim 1.

$$\left\{ \bigwedge_{(x,\{b:v|e\})\in\Gamma} (Fin\ (x)\Rightarrow [|e\ [x/v]\ |])\Rightarrow [|e_1|]\Rightarrow [|e_2|] \right\} \Rightarrow \{\Gamma\vdash e_1\Rightarrow e_2\}$$