Homework 1

Julian Lehrer

Question 1 Suppose A is both unitary and upper-triangular, that is, $A^*A = AA^* = UU^{-1} = I$, Therefore, $a_{ij} = 0$ for i > j, that is, A is upper triangular. Then we have that A^* , the conjugate transpose, is a lower triangular matrix and that $a_{ij}^* = 0$ for j < i. Then for the ith row, $A^*A_{i,} = \sum_{j=1}^m A_{i,j}A_{i,j}^* = A_{i,i}A_{i,i}^* + 0 + ... + 0 = AA^*1$,. So, $A_{i,j} = 0$ for $j \neq i$, so A is diagonal. **Question 2.**

• Let x be such that $Ax = \lambda x$. Then

$$A^{-1}Ax = A^{-1}(\lambda x)$$

$$\implies x = A^{-1}(\lambda x)$$

$$\implies x = A^{-1}\lambda x$$

$$\implies A^{-1}x = 1/\lambda x$$

Therefore, $/\lambda$ is an eigenvalue of A^{-1} .

- Suppose $AB = \lambda x$. Then $BABx = B\lambda x$. Since linear maps are associative, we have that $(BA)Bx = \lambda(Bx)$, that is, the eigenvalue of BA is the same as AB with a different eigenvector. Therefore, the eigenvalues of AB and BA are the same
- x