

# ESTATICA Y RESISTENCIA DE MATERIALES

# UNIDAD Nº10 DEFORMACIONES EN LA FLEXIÓN





CALCULO DE DEFORMACIONES

**CALCULO DE FLECHAS** 











## INTRODUCCIÓN

Los elementos estructurales deben cumplir con tres condiciones:

-Condición de ESTABILIDAD: involucra que la estructura debe conservar una forma inicial determinada de equilibrio elástico, bajo la acción de todas las fuerzas exteriores.

-Condición de RESISTENCIA: indica que las tensiones máximas no deben superar las tensiones límites del material, con un adecuado margen de seguridad.

$$\sigma_{\max} \leq \sigma_{adm}; \tau_{\max} \leq \tau_{adm}$$

-Condición de RIGIDEZ: que da la capacidad a la estructura o a sus elementos a cambiar su forma ante la acción de cargas exteriores (cambio de forma y dimensiones).

No solo las tensiones máximas deben ser < que las admisibles, sino que además las deformaciones < que los valores fijados de acuerdo con las exigencias para la estructura. En algunos casos los reglamentos y en otros el destino de la pieza estructural fijan los valores máximos de deformaciones.

# **ECUACIÓN DIFERENCIAL DE LA LÍNEA ELÁSTICA**

#### **MARCO TEORICO**

Se denomina elástica de deformación, línea elástica o simplemente elástica, a la curva que forma el eje de la viga después de producida la deformación.



En el estudio de la flexión pura de una barra prismática vimos que la curvatura de la viga es:

$$\frac{1}{\rho} = \frac{M}{E \cdot I} \tag{1}$$

En la flexión pura M = cte es decir que el eje de la viga se curva según un arco circular (elástica circular).

Para expresar la ecuación de la línea elástica consideremos un tramo de viga curvada. Trazando los ejes X e Y por un punto O cualquiera de la línea elástica, de modo que X coincida con el eje originalmente recto de la viga, positiva a la derecha y hacia abajo.



Dos secciones planas y adyacentes, separadas una longitud dx sobre una viga inicialmente recta, giran un ángulo  $d\theta$  una respecto a la otra. El arco de longitud ds medido a lo largo de la elástica entre las dos secciones es igual a:

$$ds = \rho . d\theta$$

siendo  $\rho$  el radio de curvatura de la elástica en ese punto, será entonces:

$$\left| \frac{1}{\rho} = \left| \frac{d\theta}{ds} \right| \tag{2}$$

Con referencia al signo, debe observarse que el momento flector se toma positivo cuando produce tracción en la fibra inferior, o cuando hace que su centro de curvatura esté por encima de ella.

En este caso el ángulo  $\theta$  disminuye a medida que el punto m se mueva sobre la elástica de A a B.

Por lo tanto, a todo incremento positivo ds corresponde uno negativo d $\theta$ , teniendo en cuenta este ultimo aspecto, se modifica la equación (2), de forma tal que resulta:

$$\left| \frac{1}{\rho} = -\frac{d\theta}{ds} \right| \quad (3)$$

En la mayoría de los casos prácticos, las flechas son pequeñas en comparación con la longitud total de la barra, por lo que no se comete error apreciable suponer que:

$$ds \approx dx$$

$$ds \approx dx \qquad \theta \approx tg(\theta) = \frac{dy}{dx}$$

Reemplazando en la ecuación (3):

$$\frac{1}{\rho} = -\frac{d^2y}{dx^2} \tag{4}$$

Recordando la ecuación (1) la ecuación diferencial de la elástica resulta:

$$\left| \frac{d^2 y}{dx^2} = -\frac{M}{E \cdot I} \right| \tag{5}$$

### MÉTODO DE LA DOBLE INTEGRACIÓN

En este método, el momento flector M se expresa en función de "x" y luego se hace una doble integración de la ecuación diferencial de la línea elástica para obtener la flecha "y".

Cada integración introduce una constante de integración, cuyos valores se determinan a partir de las condiciones de contorno o de borde del problema (en función del tipo de vínculo del miembro estructural).

Con la primera integración se obtiene el valor de la rotación  $\theta$ .

#### Ejemplo: viga simplemente apoyada con carga distribuida uniformemente.



En la sección X el momento flector vale:

$$\mathbf{M}(\mathbf{x}) = \frac{p \cdot L}{2} \cdot \mathbf{x} - \frac{p \cdot \mathbf{x}^2}{2} \tag{6}$$

Reemplazando en la ecuación diferencial de la elástica (5):

$$\mathbf{E} \cdot \mathbf{I} \cdot \frac{d^2 y}{dx^2} = \frac{p \cdot L}{2} \cdot x - \frac{p \cdot x^2}{2} \tag{7}$$

Integrando la ecuación anterior:

$$\mathbf{E} \cdot \mathbf{I} \cdot \frac{dy}{dx} = \frac{p \cdot L}{2} \cdot \frac{x^2}{2} - \frac{p}{2} \cdot \frac{x^3}{3} + C_1 \tag{8}$$

Volviendo a integrar la ecuación anterior:

$$E \cdot I \cdot \frac{dy}{dx} = \frac{p \cdot L}{4} \cdot \frac{x^3}{3} - \frac{p}{6} \cdot \frac{x^4}{4} + C_1 + C_2$$
 (9)

De las condiciones de contorno se verifica que para:

$$x = \frac{L_{2}}{dx} \qquad \theta = \frac{dy}{dx} = 0$$

entonces de la ecuación (8) se deduce que:

$$C_1 = \frac{p \cdot L^3}{24}$$

La constante C<sub>2</sub> se puede deducir de la ecuación 9, sabiendo que para:

$$x = 0 y = 0$$

Entonces reemplazando los valores de C<sub>1</sub> y C<sub>2</sub> en la ecuación 9:

$$y = \frac{p \cdot x}{24 \cdot E \cdot I} \left( L^3 - 2 \cdot L \cdot x^2 + x^3 \right)$$

La flecha máxima se obtiene para x = L/2:

$$f = \frac{5}{384} \cdot \frac{p \cdot L^4}{E \cdot I}$$

El signo positivo muestra que la flecha es del mismo sentido que el eje Y positivo.

La máxima rotación se dará para x = 0.

$$\theta_A = \frac{p \cdot L^3}{24 \cdot E \cdot I}$$

#### **VIGAS DE EJE RECTO ISOSTÁTICAS**

TABLAS DE M<sub>0</sub> - R - f

| TIPO DE VIGA Y CARGA<br>ACTUANTE | REACCIONES DE<br>VÍNCULO                        | M <sub>0</sub> max en X <sub>0</sub>        | FLECHA MÁX. en X <sub>1</sub>                                                         |
|----------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|
| A L B                            | $R_A = R_B = q \frac{L}{2}$                     | $\frac{q L^2}{8}$ $x_0 = \frac{L}{2}$       | $f_{\text{max}} = \frac{5}{384} \text{ q } \frac{L^4}{\text{EI}}$ $x_1 = \frac{L}{2}$ |
| ↓ L/2 → L/2 → L → L              | $R_A = R_B = \frac{P}{2}$                       | $\frac{PL}{4}$ $x_0 = \frac{L}{2}$          | $f_{\text{max}} = \frac{1}{48} \frac{\text{PL}^3}{\text{EI}}$ $x_1 = \frac{L}{2}$     |
| A L AB                           | R <sub>A</sub> = R <sub>B</sub> = P             | P . a<br>x <sub>0</sub> = de a hasta L - 2a | $f_{\text{max}} = \frac{Pa(3L^2 - 4a^2)}{24 \text{ EI}}$ $x_1 = \frac{L}{2}$          |
| A B                              | $R_{A} = \frac{1}{6}qL$ $R_{B} = \frac{1}{3}qL$ | $q = \frac{qL^2}{2} \\ x_0 = 0,577 L$       | $f_{\text{max}} = \frac{0,00652 \text{ qL}^4}{\text{EI}}$ $x_1 = 0,519 \text{ L}$     |
| → P → b → A                      | $R_{A} = \frac{Pb}{L}$ $R_{B} = \frac{Pa}{L}$   | $P\frac{ab}{L}$ $x_0 = a$                   |                                                                                       |

| <b>→</b> | R <sub>A</sub> = P              | P. L x <sub>0</sub> = 0                                                    | $f_{\text{max}} = \frac{1}{3} \frac{PL^3}{EI}$ $x_1 = L$                       |
|----------|---------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| ^ L      | R <sub>A</sub> = qL             | $\frac{q L^2}{2}$ $x_0 = 0$                                                | $f_{\text{max}} = \frac{1}{8} \frac{\text{q L}^4}{\text{EI}}$ $x_1 = \text{L}$ |
|          | $R_A = \frac{qL}{2}$            | $\frac{q L^2}{6}$ $x_0 = 0$                                                | $f_{\text{max}} = \frac{1}{30} \frac{q L^4}{E I}$ $x_1 = L$                    |
| <u> </u> | $R_A = R_B = \frac{qL}{4}$      | $\frac{q L^2}{12}$ $x_0 = \frac{L}{2}$                                     | $f_{\text{max}} = \frac{1}{60} \frac{P L^3}{E I}$ $x_1 = \frac{L}{2}$          |
| L B      | $R_A = R_B = q \frac{(L-a)}{2}$ | $\frac{q L^2}{24} (3-4\alpha^2)$ $x_0 = \frac{L}{2}  \alpha = \frac{a}{L}$ |                                                                                |

#### VALORES ADMISIBLES DE FLECHAS

#### **MADERAS**

Vigas para entrepisos de viviendas, oficinas:  $f \le \frac{L}{300}$ 

Vigas para techos (correas, cabios):  $f \le \frac{L}{200}$ 

# TRABAJO PRÁCTICO Nº8: DEFORMACIONES: CÁLCULO DE FLECHAS Y ROTACIONES

#### **Ejercicio N°1:**

Viga simplemente apoyada, con carga concentrada:

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar  $f_{máx} = L/200$

#### Datos:

Acero tipo F24 - Tensión de fluencia  $\sigma_f$  = 240 Mpa (2400 Kgf/cm²)  $\sigma_{adm}$  = 1600 Kg/cm² = 160 Mpa E = 2100000 Kg/cm² = 210000 Mpa L = 4,5 m



$$M_{\text{max}} = \frac{P \cdot L}{4} = \frac{50KN \cdot 4.5m}{4} = 56.25KNm = 5625KNcm$$

$$W_{nec} = \frac{M_{\text{max}}}{\sigma_{adm}} = \frac{5625KNcm}{16KN/cm^2} = 351.56cm^3$$

Adoptamos un perfil IPN 240 con:  $W_{adp} = 354 \text{ cm}^3$   $I = 4250 \text{ cm}^4$   $W_{adp} > W_{nec}$ 

IPN según IRAM-IAS U 500-511



Ag = Área bruta de la sección transversal.

I = Momento de Inercia de la sección. respecto de los ejes principales.

$$\mathbf{r} = \sqrt{\frac{I}{A}}$$
 Radio de giro .

S = Módulo resistente elástico de la sección.

Q = Momento estático de media sección.

Z = Módulo plástico de la sección.



| ación |     |     | Dimer | sione | s                 |                | Relac            | iones | Ag              | Peso | X - X Y - Y     |                 |      |                 |                 |                 |                 |      |                 | Aguje<br>el     | ros en<br>Ala   | Distancia<br>agujero<br>al borde | Esp.           |                |                |
|-------|-----|-----|-------|-------|-------------------|----------------|------------------|-------|-----------------|------|-----------------|-----------------|------|-----------------|-----------------|-----------------|-----------------|------|-----------------|-----------------|-----------------|----------------------------------|----------------|----------------|----------------|
| signa | d   | bf  | tf    | hw    | tw=r <sub>1</sub> | r <sub>2</sub> | <u>bf</u><br>2tf | hw    |                 |      | lx              | Sx              | rx   | Qx              | Zx              | ly              | Sy              | ry   | Qy              | 1,5.Sy          | Zy              | W <sub>1</sub>                   | d <sub>1</sub> | W <sub>4</sub> | t <sub>1</sub> |
| å     | mm  | mm  | mm    | mm    | mm                | mm             | 2tf              | tw    | cm <sup>2</sup> | Kg/m | cm <sup>4</sup> | cm <sup>3</sup> | cm   | cm <sup>3</sup> | cm <sup>3</sup> | cm <sup>4</sup> | cm <sup>3</sup> | cm   | cm <sup>3</sup> | cm <sup>3</sup> | cm <sup>3</sup> | mm                               | mm             | mm             | mm             |
| 80    | 80  | 42  | 5,9   | 59    | 3,9               | 2,3            | 3,56             | 15,1  | 7,57            | 5,94 | 77,8            | 19,5            | 3,20 | 11,4            | 22,8            | 6,29            | 3,00            | 0,91 | 2,46            | 4,50            | 4,93            | 22                               | 6,4            | 10             | 4,43           |
| 100   | 100 | 50  | 6,8   | 75    | 4,5               | 2,7            | 3,68             | 16,7  | 10,6            | 8,34 | 171             | 34,2            | 4,01 | 19,9            | 39,8            | 12,2            | 4,88            | 1,07 | 4,02            | 7,32            | 8,04            | 28                               | 6,4            | 11             | 5,05           |
| 120   | 120 | 58  | 7,7   | 92    | 5,1               | 3,1            | 3,77             | 18,0  | 14,2            | 11,1 | 328             | 54,7            | 4,81 | 31,8            | 63,6            | 21,5            | 7,41            | 1,23 | 6,12            | 11,12           | 12,24           | 32                               | 8,4            | 13             | 5,67           |
| 140   | 140 | 66  | 8,8   | 109   | 5,7               | 3,4            | 3,84             | 19,1  | 18,2            | 14,3 | 573             | 81,9            | 5,61 | 47,7            | 95,4            | 35,2            | 10,7            | 1,40 | 8,85            | 16,05           | 17,70           | 34                               | 11             | 16             | 6,29           |
| 160   | 160 | 74  | 9,5   | 125   | 6,3               | 3,8            | 3,89             | 19,8  | 22,8            | 17,9 | 935             | 117             | 6,40 | 68,0            | 136             | 54,7            | 14,8            | 1,55 | 12,28           | 22,20           | 24,55           | 40                               | 11             | 17             | 6,91           |
| 180   | 180 | 82  | 10,4  | 142   | 6,9               | 4,1            | 3,94             | 20,6  | 27,9            | 21,9 | 1450            | 161             | 7,20 | 93,4            | 187             | 81,3            | 19,8            | 1,71 | 16,50           | 29,70           | 33,00           | 44                               | 13             | 19             | 7,53           |
| 200   | 200 | 90  | 11,3  | 159   | 7,5               | 4,5            | 3,98             | 21,2  | 33,4            | 26,2 | 2140            | 214             | 8,00 | 125             | 250             | 117             | 26,0            | 1,87 | 21,58           | 39,00           | 43,16           | 48                               | 13             | 21             | 8,15           |
| 220   | 220 | 98  | 12,2  | 176   | 8,1               | 4,9            | 4,02             | 21,7  | 39,5            | 31,1 | 3060            | 278             | 8,80 | 162             | 324             | 162             | 33,1            | 2,02 | 27,61           | 49,65           | 55,21           | 52                               | 13             | 23             | 8,77           |
| 240   | 240 | 106 | 13,1  | 192   | 8,7               | 5,2            | 4,05             | 22,1  | 46,1            | 36,2 | 4250            | 354             | 9,59 | 206             | 412             | 221             | 41,7            | 2,20 | 34,68           | 62,55           | 69,37           | 56                               | 17             | 25             | 9,39           |
| 260   | 260 | 113 | 14,1  | 208   | 9,4               | 5,6            | 4,01             | 22,1  | 53,3            | 41,9 | 5740            | 442             | 10,4 | 257             | 514             | 288             | 51,0            | 2,32 | 42,56           | 76,50           | 85,11           | 60                               | 17             | 26,5           | 10,15          |
| 280   | 280 | 119 | 15,2  | 225   | 10,1              | 6,1            | 3,91             | 22,3  | 61,0            | 47,9 | 7590            | 542             | 11,1 | 316             | 632             | 364             | 61,2            | 2,45 | 51,07           | 91,80           | 102,1           | 62                               | 17             | 28,5           | 11,04          |

$$f_{\text{max}} = \frac{L}{200} = \frac{450cm}{200} = 2.25cm$$

$$f_{c\'{a}lculo} = \frac{p \cdot L^{3}}{48 \cdot E \cdot I} = \frac{50KN \cdot (450cm)^{3}}{48 \cdot 21000 \frac{KN}{cm^{2}} \cdot 4250cm^{4}} = 1.06cm$$

$$f_{c\'alculo} \le f_{\max}$$

$$f_{c\'{a}lculo} \le f_{max}$$
  $1.06cm \le 2.25cm$ 



$$tg\theta = \frac{f_{calculo}}{L/2} \Rightarrow \theta = arctg \frac{f_{calculo}}{L/2} = arctg \frac{2.25cm}{225cm} = 0.0099$$

#### Ejercicio N°3:

Viga simplemente apoyada, con carga uniformemente repartida:

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar  $f_{máx} = L/500$

#### Datos:

Acero tipo F24 - Tensión de fluencia  $\sigma_f$  = 240 Mpa (2400 Kgf/cm²)  $\sigma_{adm}$  = 1600 Kg/cm² = 160 Mpa E = 2100000 Kg/cm² = 210000 Mpa L = 5,5 m



$$M_{\text{max}} = \frac{q \cdot L^2}{8} = \frac{25KN / m \cdot (5.5m)^2}{8} = 94.53KNm = 9453KNcm$$

$$W_{\text{nec}} = \frac{M_{\text{max}}}{\sigma_{\text{adm}}} = \frac{9453KNcm}{16KN / cm^2} = 591cm^3$$

Adoptamos un perfil IPN 300 con:  $W_{adp} = 653 \text{ cm}^3$  I= 9800 cm<sup>4</sup>  $W_{adp} > W_{nec}$ 

| Designación |     |     | Dimer | sione | s                 |                | Relac            | iones | Ag              | Peso | X - X Y - Y     |                 |      |                 |                 |                 |                 |      |                 | Aguje<br>el     |                 | Distancia<br>agujero<br>al borde | Esp.           |                |                |
|-------------|-----|-----|-------|-------|-------------------|----------------|------------------|-------|-----------------|------|-----------------|-----------------|------|-----------------|-----------------|-----------------|-----------------|------|-----------------|-----------------|-----------------|----------------------------------|----------------|----------------|----------------|
| sign        | d   | bf  | tf    | hw    | tw=r <sub>1</sub> | r <sub>2</sub> | <u>bf</u><br>2tf | hw    |                 |      | lx              | Sx              | ГX   | Qx              | Zx              | ly              | Sy              | ry   | Qy              | 1,5.Sy          | Zy              | W <sub>1</sub>                   | d <sub>1</sub> | W <sub>4</sub> | t <sub>1</sub> |
| å           | mm  | mm  | mm    | mm    | mm                | mm             | 2tf              | tw    | cm <sup>2</sup> | Kg/m | cm <sup>4</sup> | cm <sup>3</sup> | cm   | cm <sup>3</sup> | cm <sup>3</sup> | cm <sup>4</sup> | cm <sup>3</sup> | cm   | cm <sup>3</sup> | cm <sup>3</sup> | cm <sup>3</sup> | mm                               | mm             | mm             | mm             |
| 80          | 80  | 42  | 5,9   | 59    | 3,9               | 2,3            | 3,56             | 15.1  | 7,57            | 5,94 | 77.8            | 19.5            | 3.20 | 11.4            | 22.8            | 6,29            | 3.00            | 0.91 | 2.46            | 4.50            | 4.93            | 22                               | 6.4            | 10             | 4.43           |
| 100         | 100 | 50  | 6,8   | 75    | 4,5               | 2,7            | 3,68             | 16,7  | 10,6            | 8,34 | 171             | 34,2            | 4,01 | 19,9            | 39,8            | 12,2            | 4,88            | 1,07 | 4,02            | 7,32            | 8,04            | 28                               | 6,4            | 11             | 5,05           |
| 400         | 400 |     |       |       |                   |                |                  | 40.0  |                 |      | 200             |                 | 4.04 |                 | 00.0            | 24.5            |                 | 4.00 | 0.40            | 44.40           | 40.04           | 20                               |                | 40             | 5.07           |
| 120         | 120 | 58  | 7,7   | 92    | 5,1               | 3,1            | 3,77             | 18,0  | 14,2            | 11,1 | 328             | 54,7            | 4,81 | 31,8            | 63,6            | 21,5            | 7,41            | 1,23 | 6,12            | 11,12           | 12,24           | 32                               | 8,4            | 13             | 5,67           |
| 140         | 140 | 66  | 8,6   | 109   | 5,7               | 3,4            | 3,84             | 19,1  | 18,2            | 14,3 | 573             | 81,9            | 5,61 | 47,7            | 95,4            | 35,2            | 10,7            | 1,40 | 8,85            | 16,05           | 17,70           | 34                               | 11             | 16             | 6,29           |
| 160         | 160 | 74  | 9,5   | 125   | 6,3               | 3,8            | 3,89             | 19,8  | 22,8            | 17,9 | 935             | 117             | 6,40 | 68,0            | 136             | 54,7            | 14,8            | 1,55 | 12,28           | 22,20           | 24,55           | 40                               | 11             | 17             | 6,91           |
| 180         | 180 | 82  | 10,4  | 142   | 6,9               | 4,1            | 3,94             | 20,6  | 27,9            | 21,9 | 1450            | 161             | 7,20 | 93,4            | 187             | 81,3            | 19,8            | 1,71 | 16,50           | 29,70           | 33,00           | 44                               | 13             | 19             | 7,53           |
| 200         | 200 | 90  | 11,3  | 159   | 7,5               | 4,5            | 3,98             | 21,2  | 33,4            | 26,2 | 2140            | 214             | 8,00 | 125             | 250             | 117             | 26,0            | 1,87 | 21,58           | 39,00           | 43,16           | 48                               | 13             | 21             | 8,15           |
|             |     |     |       |       |                   |                |                  |       |                 |      |                 |                 |      |                 |                 |                 |                 |      |                 |                 |                 |                                  |                |                |                |
| 220         | 220 | 98  | 12,2  | 176   | 8,1               | 4,9            | 4,02             | 21,7  | 39,5            | 31,1 | 3060            | 278             | 8,80 | 162             | 324             | 162             | 33,1            | 2,02 | 27,61           | 49,65           | 55,21           | 52                               | 13             | 23             | 8,77           |
| 240         | 240 | 106 | 13,1  | 192   | 8,7               | 5,2            | 4,05             | 22,1  | 46,1            | 36,2 | 4250            | 354             | 9,59 | 206             | 412             | 221             | 41,7            | 2,20 | 34,68           | 62,55           | 69,37           | 56                               | 17             | 25             | 9,39           |
| 260         | 260 | 113 | 14,1  | 208   | 9,4               | 5,6            | 4,01             | 22,1  | 53,3            | 41,9 | 5740            | 442             | 10,4 | 257             | 514             | 288             | 51,0            | 2,32 | 42,56           | 76,50           | 85,11           | 60                               | 17             | 26,5           | 10,15          |
| 280         | 280 | 119 | 15,2  | 225   | 10,1              | 6,1            | 3,91             | 22,3  | 61,0            | 47,9 | 7590            | 542             | 11,1 | 316             | 632             | 364             | 61,2            | 2,45 | 51,07           | 91,80           | 102,1           | 62                               | 17             | 28,5           | 11,04          |
| 300         | 300 | 125 | 16,2  | 241   | 10,8              | 6,5            | 3,86             | 22,3  | 69,0            | 54,2 | 9800            | 653             | 11,9 | 381             | 762             | 451             | 72,2            | 2,56 | 60,29           | 108,3           | 120,6           | 64                               | 21             | 30,5           | 11,83          |
| 320         | 320 | 131 | 17,3  | 258   | 11,5              | 6,9            | 3,79             | 22,4  | 77,7            | 61,0 | 12510           | 782             | 12,7 | 457             | 914             | 555             | 84,7            | 2,67 | 70,96           | 127,1           | 141,9           | 70                               | 21             | 30,5           | 12,72          |
| 340         | 340 | 137 | 18,3  | 274   | 12,2              | 7,3            | 3,74             | 22,5  | 86,7            | 68,0 | 15700           | 923             | 13,5 | 540             | 1080            | 674             | 98,4            | 2,80 | 82,35           | 147,6           | 164,7           | 74                               | 21             | 31,5           | 13,51          |
| 360         | 360 | 143 | 19,5  | 290   | 13,0              | 7,8            | 3,67             | 22,3  | 97,0            | 76,1 | 19610           | 1090            | 14,2 | 638             | 1276            | 818             | 114             | 2,90 | 95,96           | 171,6           | 191,9           | 76                               | 23             | 33,5           | 14,50          |

$$f_{\text{max}} = \frac{L}{500} = \frac{550cm}{500} = 1.10cm$$

$$f_{c\'{a}lculo} = \frac{5 \cdot q \cdot L^{4}}{384 \cdot E \cdot I} = \frac{5 \cdot 0.25 KN / cm \cdot (550 cm)^{4}}{384 \cdot 21000 KN / cm^{2} \cdot 9800 cm^{4}} = 1.45 cm$$

$$f_{c\'{a}lculo} > f_{max}$$
 1.45cm > 1.10cm

Como  $f_{calc} > f_{max}$  adoptamos un perfil I mayor IPN 340 con:  $W_{adp} = 923 \text{ cm}^3$  I= 15700cm<sup>4</sup>

$$f_{c\'{a}lculo} = \frac{5 \cdot q \cdot L^{4}}{384 \cdot E \cdot I} = \frac{5 \cdot 0.25 KN / cm \cdot (550 cm)^{4}}{384 \cdot 21000 KN / cm^{2} \cdot 15700 cm^{4}} = 0.90 cm$$

$$f_{c\'{a}lculo} \le f_{max}$$
  $0.90cm \le 1.10cm$ 

#### Ejercicio N°5:

Viga simplemente apoyada, con carga concentrada en el centro del tramo y con carga uniformemente repartida en toda su longitud

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar  $f_{máx} = L/500$

#### Datos:

Acero tipo F24 - Tensión de fluencia  $\sigma_f$  = 240 Mpa (2400 Kgf/cm<sup>2</sup>)

 $\sigma_{adm} = 1600 \text{ Kg/cm}^2 = 160 \text{ Mpa}$ 

 $E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$ 

L = 6 m; P = 45 KN; q = 2.5 KN/m



L = 6m

$$M_{\text{max}} = \frac{q \cdot L^2}{8} + \frac{P \cdot L}{4} = 78.75 KNm = 7875 KNcm$$
 $W_{nec} = \frac{M_{\text{max}}}{\sigma_{adm}} = \frac{7875 KNcm}{16 KN / cm^2} = 492.19 cm^3$ 

Adoptamos un perfil UPN 320 con:  $W_{adp} = 679 \text{ cm}^3$   $I = 10870 \text{ cm}^4$   $W_{adp} > W_{nec}$ 

UPN según IRAM-IAS U 500-509-2

Para U≤300 pend.=8% Para U>300 pend.=5%



Ag = Área bruta de la sección transversal.

 I = Momento de Inercia de la sección. respecto de los ejes principales.

$$r = \sqrt{\frac{I}{A}}$$
 Radio de giro.

S = Módulo resistente elástico de la sección.

Q = Momento estático de media sección.

Z = Módulo plástico de la sección.

 $e_Y = \overline{X}$  = Distancia al centro gravedad.

e<sub>c</sub> = Distancia al centro de corte.

| ación   |     |     | Dimen | siones | 1   |      | Relac           | lones           | Ag    | Peso  |       | x - x |       |     |     |     |      | ,    | Y-Y   |         | Dista | nclas |      | jeros<br>I ala | Distancia<br>agujero<br>al borde |                |
|---------|-----|-----|-------|--------|-----|------|-----------------|-----------------|-------|-------|-------|-------|-------|-----|-----|-----|------|------|-------|---------|-------|-------|------|----------------|----------------------------------|----------------|
| Designa | h   | bf  | tf=r1 | hw     | tw  | Γ2   | <u>bf</u><br>tr | <u>hw</u><br>tw |       |       | lx    | Sx    | гх    | Qx  | Zx  | ly  | Sy   | гу   | Qy    | 1,5.\$y | Zy    | θγ    | θo   | W <sub>1</sub> | d                                | W <sub>4</sub> |
|         |     | '   |       | '      | '   | '    | " "             | LW              |       | 1     |       |       |       | •   |     |     | '    | '    |       |         | •     |       | '    |                | '                                |                |
| 220     | 220 | 80  | 12,5  | 167    | 9   | 6,5  | 6,40            | 18,6            | 37,40 | 29,40 | 2690  | 245   | 8,48  | 146 | 292 | 197 | 33,6 | 2,3  | 36,38 | 50,4    | 64,40 | 2,14  | 4,20 | 45             | 23                               | 35             |
| 240     | 240 | 85  | 13    | 184    | 9,5 | 6,5  | 6,54            | 19,4            | 42,30 | 33,20 | 3600  | 300   | 9,22  | 179 | 358 | 248 | 39,6 | 2,42 | 43,30 | 59,4    | 76,02 | 2,23  | 4,39 | 45             | 25                               | 40             |
| 260     | 260 | 90  | 14    | 200    | 10  | 7    | 6,43            | 20,0            | 48,30 | 37,90 | 4820  | 371   | 9,99  | 221 | 442 | 317 | 47,7 | 2,56 | 52,38 | 71,6    | 92,22 | 2,36  | 4,66 | 50             | 25                               | 40             |
| 280     | 280 | 95  | 15    | 216    | 10  | 7,5  | 6,33            | 21,6            | 53,30 | 41,80 | 6280  | 448   | 10,90 | 266 | 532 | 399 | 57,2 | 2,74 | 62,03 | 85,8    | 109,9 | 2,53  | 5,02 | 50             | 25                               | 45             |
| 300     | 300 | 100 | 16    | 232    | 10  | 8    | 6,25            | 23,2            | 58,80 | 46,20 | 8030  | 535   | 11,70 | 316 | 632 | 495 | 67,8 | 2,9  | 72,71 | 102     | 130,0 | 2,70  | 5,41 | 55             | 25                               | 45             |
| 200     | 200 | 400 | 47.5  | 245    |     |      |                 | 47.5            | 75.00 | 50.50 | 40070 |       | 40.40 | *** |     | 507 |      |      | 04.53 | 404     | 450.0 | 0.50  | 4.00 |                |                                  | 45             |
| 320     | 320 | 100 | 17,5  | 246    | 14  | 8,75 | 5,71            | 17,6            | 75,80 | 59,50 | 10870 | 679   | 12,10 | 413 | 826 | 597 | 80,6 | 2,81 | 91,63 | 121     | 158,9 | 2,60  | 4,82 | 55             | 25                               | 45             |
| 350     | 350 | 100 | 16    | 282    | 14  | 8    | 6,25            | 20,1            | 77,30 | 60,60 | 12840 | 734   | 12,90 | 459 | 918 | 570 | 75   | 2,72 | 88,72 | 113     | 149,6 | 2,40  | 4,45 | 55             | 25                               | 45             |

$$f_{\text{max}} = \frac{L}{500} = \frac{600cm}{500} = 1.20cm$$

$$f_{c\'{a}lculo} = \frac{P \cdot L^{3}}{48 \cdot E \cdot I} + \frac{5 \cdot q \cdot L^{4}}{384 \cdot E \cdot I} = 0.83cm + 0.18cm = 1.06cm$$

$$f_{c\'{a}lculo} \le f_{max}$$
  $1.06cm \le 1.20cm$ 

#### Ejercicio N°6:

Adoptar uno de los casos anteriores y determinar las rotaciones de apoyo en forma analítica y/o mediante procedimientos computacionales

Tomamos el Ejercicio Nº3: IPN 340 con l= 15700cm<sup>4</sup>



$$\theta_{A} = \frac{p \cdot L^{3}}{24 \cdot E \cdot I} = \frac{0.25KN / cm \cdot (550cm)^{3}}{24 \cdot 21000 \frac{KN}{cm^{2}} \cdot 15700cm^{4}} = 5.25x10^{-3}$$