Lista de Exercícios - João Alonso Casella

João Alonso Casella - Trainee Quant 2022-1 |Feito em Jupyter Notebook

Lista 1 - Python Básico

Posição da idade: 30

Número de caracteres no nome: 7

```
In [1]:
import math as m
In [70]:
# 1a)
print('Exercício 1: ')
print('Digite seu nome:')
nome = input()
print('Olá, ' + nome,". Digite sua idade e seu semestre (número apenas): ")
idade=input()
semestre=input()
print(nome, ', qual é o seu curso?')
curso = input()
print('Oi, meu nome é '+ nome +', tenho '+ idade +' anos, e estou no '+ semestre + '⁰ s
emestre de '+ curso +' no Insper.')
Exercício 1:
Digite seu nome:
Marcela
Olá, Marcela . Digite sua idade e seu semestre (número apenas):
Marcela , qual é o seu curso?
Economia
Oi, meu nome é Marcela, tenho 19 anos, e estou no 3º semestre de Economia
no Insper.
In [71]:
# 1b)
frase = 'Oi, meu nome é '+ nome +', tenho '+ idade +' anos, e estou no '+ semestre + 'º
semestre de '+ curso +' no Insper.'
print("Posição do nome: ", frase.find(nome))
print("Posição da idade: ", frase.find(idade))
print("Número de caracteres no nome: ", len(nome))
Posição do nome: 15
```

localhost:8889/nbconvert/html/OneDrive/João/Insper/Entidades/Núcleo de Finanças/Entrega/Trainee/Listas/Listas1 e 2 joaocasella.ipynb?dow... 1/14

```
In [72]:
```

```
# 1c)
print( '0i,', '\nmeu nome é '+ nome +', \ntenho '+ idade +' anos, \ne estou no '+ semes
tre + 'º semestre de '+ curso +' no Insper.')
Oi,
```

meu nome é Marcela, tenho 19 anos, e estou no 3º semestre de Economia no Insper.

In [7]:

```
# 2a)
print('Exercício 2: ')
a = 1875 + 321
print('a)',a)
# 2b)
b = 2641 - 469
print('b)',b)
# 2c)
c = 475/25
print('c)',round(c,))
# 2d)
d=36*7
print('d)',d)
# 2e)
e=7**4
print('e)',e)
# 2f)
f=abs(-8)
print('f)',f)
# 2g)
g = 785\%
print('g)',g)
# 2h)
h=641//6
print('h)',h)
# 2i)
i=m.sqrt(19881)
print('i)',round(i,))
# 2j)
j=round(8*1.33,)
print('j)',j)
```

Exercício 2:

- a) 2196
- b) 2172
- c) 19
- d) 252
- e) 2401
- f) 8
- g) 2
- h) 106
- i) 141
- j) 11

```
In [ ]:
```

```
# 3a)
print('Exercício 3')
a3= [(3**2),(2**4)]
max_a3 = max(a3)
min_a3 = min(a3)
print('a) Máximo: ',max_a3,'; Mínimo: ',min_a3)
# 3b)
b3 = [round(25/5,), round(28/7,)]
\max b3 = \max(b3)
min_b3 = min(b3)
print('b) Máximo: ',max_b3,'; Mínimo: ',min_b3)
# 3c)
c3 = [(6*9),(8*7)]
max_c3 = max(c3)
min_c3 = min(c3)
print('c) Máximo: ',max_c3,'; Mínimo: ',min_c3)
```

In [1]:

```
# 4a)
carteira=['VVAR3.SA','SLCE3.SA','BBSE3.SA','EC0011.SA','PETZ3.SA']
print("Adicione um ativo: ")
carteira.append(input())
continuar = input("Deseja continuar? (s/n)")
while continuar == 's':
    carteira.append(input())
    continuar = input("Deseja continuar? (s/n)")
print(carteira)
```

```
Adicione um ativo:
PETR4
Deseja continuar? s
VALE3
Deseja continuar? s
BRK.SA
Deseja continuar? n
['VVAR3.SA', 'SLCE3.SA', 'BBSE3.SA', 'ECOO11.SA', 'PETZ3.SA', 'PETR4', 'VA
LE3', 'BRK.SA']
```

In [2]:

```
# 4b)
print("Qual ativo se deseja remover?")
x = carteira.index(input())
del(carteira[x])
print(carteira)
continuar = input("Deseja continuar? (s/n)")
while continuar == 's':
    x = carteira.index(input())
    del(carteira[x])
    continuar = input("Deseja continuar? (s/n)")
print(carteira)
```

```
Qual ativo se deseja remover?
EC0011.SA
['VVAR3.SA', 'SLCE3.SA', 'BBSE3.SA', 'PETZ3.SA', 'PETR4', 'VALE3', 'BRK.S
A']
Deseja continuar? s
BBSE3.SA
Deseja continuar? n
['VVAR3.SA', 'SLCE3.SA', 'PETZ3.SA', 'PETR4', 'VALE3', 'BRK.SA']
```

In [28]:

Retorno = 0

```
# 5a)
def ret():
    lst=[]
    print("Insira o valor no tempo inicial: ")
    a = int(input())
    lst.append(a)
    print(lst)
    print("\nAgora insira o novo valor: ")
    b = int(input())
    lst.append(b)
    r=(lst[1]-lst[0])/lst[0]
    return r
x = ret()
print(x)
# 5b)
if x > 0:
    print("Retorno Positivo")
elif x == 0:
    print("Retorno = 0")
else:
    print("Retorno Negativo")
Insira o valor no tempo inicial:
2
[2]
Agora insira o novo valor:
2
0.0
```

In [7]:

```
# 6)
print("Olá! Você possui algum animal de estimação? (s/n)")
resposta1 = []
resposta2 = []
resposta3 = []
resposta1.append(input())
if resposta1[0] == 's':
    print("Ok. Gostaria de ter mais? (s/n)")
    resposta2.append(input())
    if resposta2[0] =='s':
        print('Perfeito! Recomenda-se a adoção!')
    else:
        print('Ok. Então continue cuidando dos que já possui.')
else:
    print('Ok. Quer ter algum dia? (s/n)')
    resposta3.append(input())
    if resposta3[0] == 's':
        print('Ok. Boa sorte, algum dia você terá um animal de estimação!')
    else:
        print('Ok... entendi.Você não vai ter animais de estimação.')
```

```
Olá! Você possui algum animal de estimação? (s/n)
Ok. Quer ter algum dia? (s/n)
Ok... entendi. Você não vai ter animais de estimação.
```

142

```
In [27]:
```

```
# 7)
ing = \{\}
ing["Hi"]="01á"
ing["How are you?"]="Como você está?"
ing["How old are you?"]="Quantos anos você tem?"
ing["Brazilian"]="Brasileiro(a)"
ing["Financial market"]="Mercado financeiro"
ing["Money"]="Dinheiro"
print("=======TRADUTOR ======"")
print("\nBem-vindo ao tradutor de Ingles para Português! \n\nEscreva a frase que se des
eja traduzir:")
x = ing[input()]
print("\nTradução: ", x)
Bem-vindo ao tradutor de Ingles para Português!
Escreva a frase que se deseja traduzir:
Money
Traducão: Dinheiro
In [42]:
#8)
print("Coloque o número desejado:")
x = int(input())
x2 = x**2
while x+10 < x2:
   x = x + 10
   print(x)
print('=========')
Coloque o número desejado:
12
22
32
42
52
62
72
82
92
102
112
122
132
```

```
In [8]:
```

```
# 9)
try:
    print("Insira sua nota da Atividade Prática Supervisionada: ")
    aps = int(input())
    print("Insira sua nota da Prova Intermediária: ")
    pi = int(input())
    print("Insira sua nota da Prova Final: ")
    pf = int(input())
    x = (aps+pi+pf)/3
    while x > 0 and x <= 10:
        print("Média aluno: ",x)
        if x<5:
            print("Média Baixa! Reprovado!")
        elif x==5:
            print("Está na Média! Passou raspando!")
            print("Acima da Média! Passou com sobra!")
        break
except:
    print("Erro: por favor, coloque um número entre 0 e 10.")
```

Insira sua nota da Atividade Prática Supervisionada: Erro: por favor, coloque um número entre 0 e 10.

Lista 2 - Pandas

In [1]:

```
# importando bibliotecas
import pandas as pd
df = pd.read_excel("basededados_listapandas.xlsx")
df
```

Out[1]:

	TICKER	Setor	Close	Classe de Ativo	Float	Variação	Funcionários	índice BETA
0	NaN	Beverages	14.71	Ações	15744670000	-0.004079	53000.0	0.7236
1	NaN	Textiles & Apparel	22.17	Ações	683062200	0.003157	17000.0	0.8043
2	NaN	Diversified Retail	28.36	Ações	924608900	-0.012341	1500.0	1.2025
3	NaN	Food & Drug Retailing	16.03	Ações	1346914000	0.019339	50000.0	NaN
4	NaN	Passenger Transportation Services	22.73	Ações	333680000	0.032556	11968.0	1.7894
78	NaN	Oil & Gas	22.67	Ações	1165000000	-0.007940	3370.0	1.1908
79	NaN	Diversified Retail	3.44	Ações	1598426000	-0.008721	53101.0	2.0753
80	NaN	Telecommunications Services	53.45	Ações	1676938000	-0.010290	34000.0	0.1819
81	NaN	Machinery, Equipment & Components	31.91	Ações	4197318000	-0.016923	36987.0	0.5488
82	NaN	Miscellaneous Educational Service Providers	17.31	Ações	309088800	0.013865	17726.0	1.7052

83 rows × 9 columns

```
In [2]:
# 1)
print(type(df["Setor"]))
print(type(df.Setor))
<class 'pandas.core.series.Series'>
<class 'pandas.core.series.Series'>
In [3]:
# 2)
```

df.drop(['Classe de Ativo'],axis=1,inplace=True)

A coluna "Classe de Ativo" é redundante, todos os ativos na planilha são sobre ações

In [4]:

```
# 3)
# Maior volume de transação
print("Maior volume de transação: ", max(df.iloc[:,7]))
# Menor volume de transação
print('Menor volume de transação: ', min(df.iloc[:,7]))
```

Maior volume de transação: 88289000 Menor volume de transação: 1280400

In [48]:

```
# 4)
df_fun = df["Funcionários"]
df_fun.dropna(inplace=True)
round(df_fun.mean(),2)
```

Out[48]:

30551.56

In [6]:

```
# 5)
df["Abertura"]=df["Close"]/(1+df["Variação"])
```

Out[6]:

TICKER		0.4	01	- 1		Fsismánias	índice	Volu
		Setor	Close	Float	Variação	Funcionários	BETA	Trasaç
0	NaN	Beverages	14.71	15744670000	-0.004079	53000.0	0.7236	259468
1	NaN	Textiles & Apparel	22.17	683062200	0.003157	17000.0	0.8043	57779
2	NaN	Diversified Retail	28.36	924608900	-0.012341	1500.0	1.2025	32412
3	NaN	Food & Drug Retailing	16.03	1346914000	0.019339	50000.0	NaN	7753(
4	NaN	Passenger Transportation Services	22.73	333680000	0.032556	11968.0	1.7894	41179
78	NaN	Oil & Gas	22.67	1165000000	-0.007940	3370.0	1.1908	46536
79	NaN	Diversified Retail	3.44	1598426000	-0.008721	53101.0	2.0753	360586
80	NaN	Telecommunications Services	53.45	1676938000	-0.010290	34000.0	0.1819	20189
81	NaN	Machinery, Equipment & Components	31.91	4197318000	-0.016923	36987.0	0.5488	12080{
82	NaN	Miscellaneous Educational Service Providers	17.31	309088800	0.013865	17726.0	1.7052	2501 [,]

83 rows × 9 columns

In [7]:

```
df.Setor.iloc[df["Volume de Trasação"].idxmax()]
```

Out[7]:

'Oil & Gas'

```
In [8]:
```

```
# 7)
df_float = df[df.Float>=10000000]
df_f = df_float["Setor"]
df_f
Out[8]:
0
                                         Beverages
1
                                Textiles & Apparel
2
                                Diversified Retail
3
                             Food & Drug Retailing
4
                Passenger Transportation Services
78
                                         Oil & Gas
79
                                Diversified Retail
80
                      Telecommunications Services
81
                Machinery, Equipment & Components
      Miscellaneous Educational Service Providers
82
Name: Setor, Length: 83, dtype: object
In [26]:
# 8)
# descobri que pode usar | como sinônimo do "+" que se usa na função print(), para quan
do se quer fazer um filtro que, para uma mesma coluna, escolha mais de um nome.
df_filtro = df[(df["Setor"] =="Banking Services")|(df["Setor"]=="Electrical Utilities &
IPPs")|(df["Setor"]=="Food & Tobacco")]
df filtro
df_f2=df_filtro.loc[(df_filtro["Funcionários"]>10000)|(df_filtro["Float"]<2000000),"ind
ice BETA"]
print(df_f2)
print("O menor Índice BETA após os filtros é: \nBeta =", min(df_f2))
6
      1.3368
7
      1.2646
8
      1.2646
13
      1,2706
22
      0.7051
32
      1.4215
33
      1.4215
46
      1.0865
47
      1.0631
48
      0.4761
      0.5636
Name: indice BETA, dtype: float64
O menor Índice BETA após os filtros é:
Beta = 0.4761
In [31]:
# 9)
df.loc[df["indice BETA"]==2.1356, "Setor"]
Out[31]:
```

Passenger Transportation Services

Name: Setor, dtype: object

In [75]:

```
# 10)
x = df["Funcionários"]
x.dropna(inplace=True)
y = df["Float"]
y.dropna(inplace=True)
z = round(x.corr(y), 2)
====\nCorrelação: ",z)
====\nSozinho o valor não possui sentido prático. \nA correlação pode muitas vezes ser
mal-interpretada como sinônimo de causalidade. \nRecomenda-se uma análise mais abrange
======="""
```

========

Correlação: 0.33

Sozinho o valor não possui sentido prático.

A correlação pode muitas vezes ser mal-interpretada como sinônimo de causa

Recomenda-se uma análise mais abrangente da relação entre as duas variávei

In [87]:

```
# 11)
df.rename(columns = {"Close":"Fechamento"},inplace=True)
column_names = ["Setor", "Fechamento", "Float", "Variação", "Funcionários", "Volume de Trasa
ção", "índice BETA", "Abertura"]
df=df.reindex(columns=column_names)
df.sort_values(by="Float",ascending=False,inplace=True)
```

Out[87]:

	Setor	Fechamento	Float	Variação	Funcionários	Volume de Trasação	índice BETA	Ab
0	Beverages	14.71	15744670000	-0.004079	53000.0	25946800	0.7236	14.7
59	Oil & Gas	34.12	13044500000	0.017292	45532.0	14921300	1.5059	33.5
60	Oil & Gas	30.72	13044500000	0.030273	45532.0	88289000	1.5059	29.8
20	Metals & Mining	5.81	11182490000	0.000000	7432.0	3090800	NaN	5.8
47	Banking Services	26.48	9804136000	-0.017749	99600.0	34387000	1.0631	26.9
58	Food & Drug Retailing	23.78	269395400	-0.000841	110000.0	1614100	NaN	23.8
38	Real Estate Operations	16.56	227000000	0.015700	338.0	1280400	1.3240	16.3
27	Hotels & Entertainment Services	14.33	224934800	0.011165	2000.0	10675500	1.9679	14.1
69	Oil & Gas	44.71	202593100	-0.032431	NaN	3342700	NaN	46.2
62	Computers, Phones & Household Electronics	8.66	141800000	0.010393	4000.0	1425700	1.6886	8.5

83 rows × 8 columns

Obrigado! Bom Econo!

In []: