2D FT and Spatial Frequency

Fourier Transform → straightforward extension to 2D.

- Images are functions of two variables \rightarrow e.g. f(x,y)
- Defined in terms of spatial frequency → 2D frequency.
- Fourier Transform is particularly useful for characterising this intensity variation across an image.
- Rate of change of intensity along each dimension.

Examples: Spatial Frequency

2D Fourier Transform: Continuous Form

 The Fourier Transform of a continuous function of two variables f(x,y) is:

$$F(u,v) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dxdy$$

• Conversely, given F(u,v), we can obtain f(x,y) by means of the *inverse* Fourier Transform:

$$f(x,y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} dudv$$

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.

2D Fourier Transform: Discrete Form

• The FT of a discrete function of two variables, f(x,y), x,y=0,1,2...,N-1, is:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux+vy}{N})} \quad \text{for } u,v = 0,1,2,...,N-1.$$

• Conversely, given F(u,v), we can obtain f(x,y) by means of the *inverse FT*:

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(\frac{ux+vy}{N})} \quad \text{for } x,y = 0,1,2,...,N-1.$$

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.

2D Fourier Decomposition

Weighted summation of 2D sines and cosines in all different directions...

2D Fourier Transform

 The concept of the frequency domain follows from Euler's Formula:

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

 Thus each term of the Fourier Transform is composed of the sum of all values of the function f(x,y) multiplied by sines and cosines of various frequencies:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \left[\cos \left(\frac{2\pi (ux + vy)}{N} \right) - j \sin \left(\frac{2\pi (ux + vy)}{N} \right) \right]$$

for
$$u, v = 0,1,2,..., N-1$$
.

We have transformed from a time domain to a frequency domain representation.

2D Fourier Transform

 The concept of the frequency domain follows from Euler's Formula:

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

 Thus each term of the Fourier Transform is composed of the sum of all values of the function f(x,y) multiplied by sines and cosines of various frequencies:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$
 The slowest varying frequency component, i.e. when $u=0, v=0 \rightarrow$ average image graylevel for $u,v=0,1,2,...,N-1$.

We have transformed from a time domain to a frequency domain representation.

Another view: The 2D Basis Functions

2D Fourier Transform

 F(u,v) is a complex number & has real and imaginary parts:

$$F(u,v) = R(u,v) + jI(u,v)$$

• Magnitude or spectrum of the FT:

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

• Phase angle or phase spectrum:

$$\phi(u,v) = \tan^{-1} \frac{I(u,v)}{R(u,v)}$$

Expressing F(u,v) in polar coordinates:

$$F(u,v) = |F(u,v)|e^{j\phi(u,v)}$$

Example I: Image Analysis

log of FT

Example II: Magnitude + Phase

 $I \qquad \log(|F(I)|+1) \qquad \angle[F(I)]$

Example III: Real + Imaginary

I Re[F(I)] Im[F(I)]

Example IV: Interpreting the FS

Scanning electron microscope image of an integrated circuit

Can we interpret what the bright components mean?

Example V: Image Analysis

Matlab: 2D Fourier Transform

```
f = imread('barbara.gif');
                                                                                                                                                                    %read in image
z = fft2(double(f));
                                                                                                                                                                    % do fourier transform
q = fftshift(z);
                                                                                                                                                                   % puts u=0,v=0 in the centre
 Magq = abs(q);
                                                                                                                                                                    % magnitude spectrum
 Phaseq=angle(q);
                                                                                                                                                                    % phase spectrum
  \( \tilde{\cappa} \) \( \tilde
 % Usually for viewing purposes:
 imagesc(log(abs(q)+1));
 colorbar;
  w = ifft2(ifftshift(q));
                                                                                                                                                                       % do inverse fourier transform
 imagesc(w);
```

Viewing Magnitude and Phase

Importance of Phase

ifft(mag only)

ifft(phase only)

ifft(mag(Peter) and Phase(Andrew))

ifft(mag(Andrew) and Phase(Peter))

Symmetry

- Important property of the FT: Conjugate Symmetry
- The FT of a real function f(x,y) gives:

$$F(u,v) = F^*(-u,-v)$$
 $F(u,v) = |F(u,v)| = |F^*(-u,-v)|$

Before fftshift

After fftshift

Separability

- Important property of the FT: Separability
- If a 2D transform is separable, the result can be found by successive application of two 1D transforms.

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) e^{\frac{-j2\pi ux}{N}} \text{ where } F(x,v) = \frac{1}{N} \sum_{y=0}^{N-1} f(x,y) e^{\frac{-j2\pi vy}{N}}$$

Rotation

- Important property of the FT: Rotation
- Rotate the image and the Fourier space rotates.

$$x = r\cos\theta \quad y = r\sin\theta \qquad u = \omega\cos\phi \quad v = \omega\sin\phi$$
$$f(r, \theta + \theta_0) \longrightarrow F(\omega, \phi + \theta_0)$$

Manipulating the Fourier Frequencies

COMS21202 - SPS

21

COMS21202 - SPS

Filtering the Fourier Frequencies

Filtering → to manipulate the (signal/image/etc) data.

1D:
$$G(u) = F(u)H(u)$$
 2D: $G(u,v) = F(u,v)H(u,v)$

Low Pass Filtering

1D: turning the "treble" down on audio equipment!

2D: smooth image

$$H(u,v) = \begin{cases} 1 & r(u,v) \le r_0 \\ 0 & r(u,v) > r_0 \end{cases}$$

$$r(u, v) = \sqrt{u^2 + v^2}$$
, r_0 is the filter radius

Butterworth's Low Pass Filter

$$H(u,v) = \frac{1}{1 + [r(u,v)/r_0]^{2n}}$$
 of order n

COMS21202 - SPS $1 + [r(u, v) / r_0]^{2n}$ 25

Butterworth's High Pass Filter

1D: turning the bass down on audio equipment!

• 2D: sharpen image

$$H(u,v) = \frac{1}{1 + [r_0 / r(u,v)]^{2n}}$$
 of order n

Order of n=3

Filtering to Remove Periodic Noise

This is a very common application of the FT.

