§1. QUY TẮC VÀ CÔNG THỰC TÌM ĐẠO HÀM

Định lý. Giả sử hai hàm số f và g có đạo hàm tại x. Khi đó các đạo hàm ở vế trái dưới đây tồn tại, cho bởi công thức ở vế phải:

$$(f+g)'(x) = f'(x) + g'(x)$$

$$(f-g)'(x) = f'(x) - g'(x)$$

$$\alpha(\alpha f)'(x) = \alpha f'(x)$$
 với α là hằng số thực

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Đạo hàm	Đạo hàm của hàm hợp	
$\frac{\mathrm{d}}{\mathrm{d}x}(c) = 0 , \mathrm{c} \mathrm{l}\mathrm{\grave{a}} \mathrm{h}\mathrm{\grave{a}} \mathrm{ng} \mathrm{s\acute{o}}.$		
$\frac{\mathrm{d}}{\mathrm{d}x}(x^{\alpha}) = \alpha x^{\alpha - 1}, \ \alpha \neq 1, \ \forall x > 0.$	$\frac{\mathrm{d}}{\mathrm{d}x}(u^{\alpha}) = \alpha u^{\alpha - 1} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	
$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{u} \right) = -\frac{1}{u^2} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	
$\frac{\mathrm{d}}{\mathrm{d}x}(\sqrt{x}) = \frac{1}{2\sqrt{x}}, \ \forall x > 0$	$\frac{\mathrm{d}}{\mathrm{d}x}(\sqrt{u}) = \frac{1}{2\sqrt{u}} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	
$\frac{\mathrm{d}}{\mathrm{d}x} \binom{n}{\sqrt{x}} = \frac{1}{n \sqrt[n]{x^{n-1}}}, \ \forall n \in \mathbb{Z}^+. \ \mathrm{N\~eu} \ n \ \mathrm{ch\~a}n, \ \mathrm{l\~ey} \ x > 0. \ \mathrm{N\~eu} \ n \ \mathrm{l\'e}, \ \mathrm{l\~ey} \ x \neq 0.$		
$\frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$	$\frac{\mathrm{d}}{\mathrm{d}x}(e^u) = e^u \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	
$\frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a, \ a > 0, \ a \neq 1$	$\frac{\mathrm{d}}{\mathrm{d}x}(a^u) = a^u \ln a \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	
$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln u) = \frac{1}{u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	
$\frac{\mathrm{d}}{\mathrm{d}x}(\log_a x) = \frac{1}{x \ln a}$	$\frac{\mathrm{d}}{\mathrm{d}x}(\log_a u) = \frac{1}{u \ln a} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	

$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin u) = \cos u \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos u) = (-\sin u) \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan u) = (1 + \tan^2 u) \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$	$\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin u) = \frac{1}{\sqrt{1-u^2}} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{\mathrm{d}}{\mathrm{d}x}(\arccos u) = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\arctan x) = \frac{1}{1+x^2}$	$\frac{\mathrm{d}}{\mathrm{d}x}(\arctan u) = \frac{1}{1+u^2} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$

Bài tập mẫu để ôn

Bài 1. Tìm $\frac{dy}{dx}$ với quy tắc $(\alpha f)'(x) = \alpha f'(x)$, α là hằng số thực; (f+g)'(x) =f'(x) + g'(x); (f - g)'(x) = f'(x) - g'(x) và (fg)'(x) = f'(x)g(x) + g'(x)f(x)g'(x)

1)
$$y = 2x^4 - \frac{1}{3}x^3 + 2\sqrt{x} - 5$$

$$5) \ y = \tan x \cdot \sqrt[3]{x}$$

2)
$$y = (x^3 - 2)(1 - x^2)$$

$$6) \ \ y = \left(x^2 - \sqrt{x}\right)\cot x$$

3)
$$v = x^5 \sqrt{x}$$

7)
$$y = x^2 \ln x$$

4)
$$v = \sin x \cdot \sqrt{x}$$

8)
$$y = x^3 e^x$$

Bài 2. Tìm $\frac{\mathrm{d}y}{\mathrm{d}x}$ với quy tắc $\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{1}{f(x)} \right] = -\frac{f'(x)}{[f(x)]^2}$ và $\left(\frac{f}{g} \right)'(x) =$ $\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2} \text{ n\'eu } g(x) \neq 0.$

1)
$$y = \frac{1}{x}$$

4)
$$y = \frac{1}{\sin x}$$

2)
$$y = \frac{1}{\sqrt{x}}, x > 0$$
 (cách khác là

5)
$$y = \frac{x^9}{\sin x}$$

$$vi\acute{\text{et}}\ y = x^{-\frac{1}{2}})$$

6)
$$y = \frac{\cos x}{\sqrt{x}}$$

3)
$$y = -\frac{3}{x^5}$$

7)
$$y = \frac{x^3}{e^x}$$

8)
$$y = \frac{\ln x}{x}$$

10)
$$y = \frac{2^x}{x \sin x}$$

9)
$$y = \frac{xe^x}{\cos x}$$

Bài 3. Tính đạo hàm theo quy tắc đạo hàm hàm hợp.

1)
$$y = (x^2 - x + 1)^4$$

2)
$$y = (1 - 2x^2)^5$$

3)
$$y = \sqrt{\cos x}$$

4)
$$y = \sin^5 x$$

5)
$$y = \sqrt{x^2 + x + 1}$$

Bài 4. Tính các đạo hàm riêng
$$\frac{\partial z}{\partial x}$$
 với

1)
$$z = 2x^4y^3 - \frac{1}{3}x^3 \sin y$$

2)
$$z = (x^3y - 2)(1 - x^2 \tan y)$$

$$3) \ z = x^5 \sqrt{x} \cot y$$

Bài 5. Tính các đạo hàm riêng
$$\frac{\partial z}{\partial x}$$
 với

1)
$$z = \frac{1}{xy}$$

2)
$$z = \frac{1}{y^2 \sqrt{x}}, x > 0$$

3)
$$z = -\frac{3y^3}{(y^2+1)x^5}$$

$$4) \ \ z = \frac{y^2 + 3}{y \sin x}$$

5)
$$z = \frac{x^9 y}{\sin x \sqrt{y^2 + 1}}$$

Bài 6. Tính

1)
$$z = (x^2y - x\cos y + 1)^4$$

2)
$$z = (y^3 - 2x^2)^5$$

3)
$$z = \sqrt{y \cos x}$$

4)
$$z = \sqrt{x^2 \sin y + xy + 1}$$

6)
$$y = \sin(x^3 - 2\sqrt{x})$$

7)
$$y = e^{3x^2 - x}$$

8)
$$v = e^{\tan x}$$

9)
$$y = \ln(3x^4 + x^2 + 1)$$

$$10) y = \ln(\cot x)$$

4)
$$y = \tan y \sin x \cdot \sqrt{x}$$

$$5) y = x^2 y \ln x$$

6)
$$y = x^3 y^2 e^x$$

6)
$$z = \frac{\cos x}{v\sqrt{x}}$$

7)
$$z = \frac{x^3y}{e^x(y+1)}$$

8)
$$z = \frac{\ln x}{x(y+1)}$$

9)
$$z = \frac{xye^x}{e^y \cos x}$$

10)
$$z = \frac{2^x(y^3+1)}{xy\sin x}$$

5)
$$z = \sin(x^3 \tan y - 2y\sqrt{x})$$

$$6) z = e^{3x^2y - x \cot y}$$

7)
$$z = e^{(y+1)\tan x}$$

8)
$$z = \ln(3x^4y + x^2\sin y + y^7)$$

9)
$$z = \ln(y \cot x)$$

§2. CÔNG THỨC NGUYÊN HÀM

Nguyên hàm	Nguyên hàm mở rộng
$\int k \mathrm{d}x = kx + C$	
$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C,$ $\alpha \neq -1$	$\int (mx+b)^{\alpha} dx = \frac{1}{m} \cdot \frac{1}{\alpha+1} (mx+b)^{\alpha+1} + C,$ $\alpha \neq -1$
$\int \frac{1}{x} \mathrm{d}x = \ln x + C$	$\int \frac{1}{mx+b} \mathrm{d}x = \frac{1}{m} \ln mx+b + C$
$\int e^x \mathrm{d}x = e^x + C$	$\int e^{mx+b} \mathrm{d}x = \frac{1}{m} e^{mx+b} + C$
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$	$\int a^{mx+b} dx = \frac{1}{m} \cdot \frac{a^{mx+b}}{\ln a} + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int \cos(mx + b) \mathrm{d}x = \frac{1}{m} \sin(mx + b) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int \sin(mx + b) dx = -\frac{1}{m}\cos(mx + b) + C$
$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	$\int \frac{1}{\cos^2(mx+b)} dx = \frac{1}{m} \tan(mx+b) + C$
$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$	$\int \frac{1}{\sin^2(mx+b)} dx = -\frac{1}{m} \cot(mx+b) + C$

Bài tập mẫu

Bài 7. Hãy dùng bảng công thức nguyên hàm trên và dùng tính chất $\int [f(x) \pm g(x)] \mathrm{d}x = \int f(x) \mathrm{d}x \pm \int g(x) \mathrm{d}x; \\ \int cf(x) \mathrm{d}x = c \int f(x) \mathrm{d}x \text{ với } c$ là hằng số, để tìm

$$1) \int \left(x^2 + \frac{1}{x^2}\right) \mathrm{d}x$$

2)
$$\int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right) dx$$

$$3) \int \left(\sqrt{x^3} + \sqrt[3]{x^2}\right) \mathrm{d}x$$

4)
$$\int \frac{3x^3 - 6x^2 - 5}{x} dx$$

5)
$$\int \frac{(x^2+1)(x^2-2)}{x^5} dx$$

$$6) \int \frac{\left(\sqrt{x}-1\right)^3}{x\sqrt{x}} \, \mathrm{d}x$$

7)
$$\int e^{7x} dx$$

8)
$$\int 5^x dx$$

9)
$$\int \frac{3}{e^{4x}} \, \mathrm{d}x$$

10)
$$\int 10^{2x} dx$$

$$11) \int e^x \left(3 - \frac{2e^{-x}}{x^5} \right) \mathrm{d}x$$

12)
$$\int 2^{x} (3^{2x} + x^{2} 2^{-x}) dx$$
.
 $Hd: 2^{x} \cdot 3^{2x} = 2^{x} \cdot 9^{x} = 18^{x}$.

13)
$$\int 2^x (4^x - 3 \cdot 7^x) dx$$

14)
$$\int \cos \frac{x}{2} dx$$

15)
$$\int \sin 2x \, dx$$

§3. PHÉP ĐỔI BIẾN KHI LẤY NGUYÊN HÀM

Nếu hai hàm số f và g có đạo hàm liên tục trên một khoảng thì

$$\int f[g(x)]g'(x)dx = \int f(u)du \text{ v\'oi } u = g(x).$$

Bài tập mẫu

Bài 8. Tìm nguyên hàm bằng phép đổi biến.

1)
$$\int x^3 \cos(x^4 + 2) dx$$

2)
$$\int \sqrt{2x+1} dx$$

3)
$$\int \frac{x}{\sqrt{1-4x^2}} dx$$

4)
$$\int x^3(x^4+2)^5 dx$$

$$5) \int x^5 \sqrt{1 + x^2} \mathrm{d}x$$

6)
$$\int \cos^3 x \sin x \, dx$$

7)
$$\int x \sin(x^2) dx$$

8)
$$\int x^2 \cos(x^3) dx$$

9)
$$\int (x+1)\sqrt{x^2+2x} \, dx$$

10)
$$\int \frac{\tan 3x}{\cos 3x} dx$$

$$11) \int \sqrt{x} \sin\left(1+x^{\frac{3}{2}}\right) \mathrm{d}x$$

$$12) \int \frac{x^2}{\sqrt[3]{x^3+1}} \, \mathrm{d}x$$

§4. PHÉP LẤY NGUYÊN HÀM TỪNG PHẦN

Nếu hai hàm số f và g có đạo hàm liên tục trên một khoảng thì

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

Thông thường, người ta đặt u=f(x), $\mathrm{d} v=g'(x)\mathrm{d} x$ và $\mathrm{d} u=f'(x)\mathrm{d} x$, v=g(x) thì đẳng thức trên được viết ở dạng sau

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u.$$

Chú ý. Thứ tự ưu tiên để chọn biểu thức f(x) gán cho u là:

Bài tập mẫu

Bài 9. Tìm nguyên hàm bằng cách lấy nguyên hàm từng phần.

- 1) $\int x \sin x \, dx$
- 2) $\int \ln x \, dx$
- 3) $\int x^2 e^x dx$
- 4) $\int e^x \sin x \, dx$
- 5) $\int x^2 \ln x \, dx$
- 6) $\int \ln \sqrt[3]{x} \, \mathrm{d}x$
- 7) $\int x \cos 5x \, dx$
- 8) $\int xe^{-3x}dx$

- 9) $\int (\ln x)^2 dx$
- 10) $\int r^3 \ln r \, dr$
- 11) $\int x^4 (\ln x)^2 dx$
- $12) \int \frac{(\ln x)^2}{x^3} \, \mathrm{d}x$
- 13) $\int e^x \sin(2-x) dx$
- $14) \int \frac{x^3}{\sqrt{x^2+4}} \, \mathrm{d}x.$

Bài 10. Phép lấy nguyên hàm từng phần với dạng $\int P_n(x) \cdot h(x) dx$, trong đó $P_n(x)$ là đa thức bậc n và h(x) chứa hàm lượng giác hay hàm mũ thì ta theo thuật toán trong bảng dưới đây

Đạo hàm liên tiếp	Nguyên hàm liên tiếp
$u = P_n(x)$	$v = \int h(x) \mathrm{d}x$
$u_1 = \frac{\mathrm{d}u}{\mathrm{d}x}$	$v_1 = \int v(x) \mathrm{d}x$
$u_2 = \frac{\mathrm{d}u_1}{\mathrm{d}x}$	$v_2 = \int v_1(x) \mathrm{d}x$
÷	:
$u_n = \frac{\mathrm{d}u_{n-1}}{\mathrm{d}x}$	$v_n = \int v_{n-1}(x) \mathrm{d}x$

Khi đó

$$\int P_n(x) \cdot h(x) dx = uv - u_1 v_1 + u_2 v_2 - \dots + (-1)^n u_n v_n.$$

(Không phải mọi trường hợp đều có thể áp dụng cách trên được, vì không phải lúc nào cũng có thể tìm nguyên hàm liên tiếp được.)

Tìm nguyên hàm.

1)
$$\int x^3 \sin x \, dx$$

2)
$$\int x^3 \cos x \, dx$$

3)
$$\int x^4 e^{2x} dx$$

4)
$$\int (x^2 - 3x)e^x dx$$

$$\int (x^2 + 2x) \cos x \, \mathrm{d}x$$

6)
$$\int x^2 (e^{-x} - \sin x) dx$$