EXERCÍCIOS PARA P2

DCE692 - Pesquisa Operacional

Atualizado em: 1 de novembro de 2023

Iago Carvalho

Departamento de Ciência da Computação

DUALIDADE

Resolva o problema abaixo utilizando o método gráfico

min
$$z = 30x_1 + 7x_2 + 15x_3$$

 $5x_1 + 8x_2 + x_3 \le 80$
 $3x_1 + 3x_2 + 5x_3 \le 40$
 $x_i \ge 0, \forall i \in \{1, 2, 3\}$

DUALIDADE

Necessário obter o dual (duas variáveis). Assim, podemos resolve-lo no modo gráfico

PRIMAL-DUAL

Caso o problema primal tenha uma solução ótima única, o dual

- 1. Também terá solução ótima única
- O valor da solução dual ótima será diferente do valor da solução primal
- 3. O dual terá solução ilimitada
- 4. O dual terá múltiplas soluções

ANÁLISE DE SENSIBILIDADE

Considere o modelo abaixo

x_1	\mathbf{x}_2	X_3	X_4	X ₅	x_6	b
1	2	0	1	0	-6	11
0	1	1	3	-2	-1	6
1	2	1	3	0 -2 -1	-5	13
3	2	-3	-6	10	-5	0

ANÁLISE DE SENSIBILIDADE

Solução ótima x' do modelo possui variáveis básicas x_1, x_2, x_3

$$x' = (3,4,2,0,0,0)$$

$$> z^* = 11$$

$$\bigcirc$$
 $B' = (x_1, x_2, x_3) \leftarrow$ base ótima

VB		Т		b'					
x_1	-1	-2	2	3					
\mathbf{x}_{2}	1	1	-1	4					
\mathbf{x}_3	-1	0	1	2					
-Z	-2	4	-1	-11					
-π									

INCLUSÃO DE UMA NOVA VARIÁVEL

A inclusão da variável
$$x_7$$
 tal que $A_7 = \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}$ e $c_7 = -5$ faz com que a solução continue ótima?

INCLUSÃO DE UMA NOVA VARIÁVEL

$$c'_7 = c_7 + (-\pi)A_7 = -5 + (-2 \quad 4 \quad -1)\begin{pmatrix} 3\\3\\-1 \end{pmatrix} = 2$$

Como $c_7' > 0$, a solução ótima não muda

INCLUSÃO DE UMA NOVA VARIÁVEL

Defina uma nova variável cuja inclusão mudará a base ótima

INCLUSÃO DE UMA NOVA RESTRIÇÃO

Veja o modelo abaixo

INCLUSÃO DE UMA NOVA RESTRIÇÃO

A inserção de uma restrição $2x + 2y \ge 10$ muda a solução ótima?

Quais novos pontos são gerados pela inclusão desta nova restrição?

Defina uma restrição adicional que faz com que a solução ótima seja o ponto (9, 0).

OTIMIZAÇÃO EM REDES

Observe o grafo abaixo e descreva sua matriz de adjacência

OTIMIZAÇÃO EM REDES

Escreva um modelo de programação linear para o problema do fluxo máximo com base no grafo anterior

- O Quantas variáveis tem esse modelo?
- O Quantas restrições tem esse modelo?

PRÓXIMA AULA: PROVA