When Standard Methods Succeed

Lucy D'Agostino McGowan
Wake Forest University

when correlation is causation

randomized controlled trials A/B testing

Even in these cases, using the methods you will learn here can help!

- Adjusting for baseline covariates can make an estimate more efficient
- Propensity score weighting is more efficient that direct adjustment
- Sometimes we are more comfortable with the functional form of the propensity score (predicting exposure) than the outcome model

Example

simulated data (100 observations)

Treatment is randomly assigned

There are two baseline covariates: age and weight

Unadjusted model

<pre>1 lm(y ~ treatment, data = data)</pre>				
Characteristic	Beta	SE ¹	95% Cl ¹	p- value
treatment			-0.04, 3.1	
¹ SE = Standard Error, CI = Confidence Interval				

Adjusted model

<pre>1 lm(y ~ treatment + weight + age, data</pre>					
Characteristic	Beta	SE ¹	95% Cl ¹	p- value	
treatment	1.5	0.204	1.1, 1.9	<0.001	
weight	0.18	0.103	-0.03, 0.38	0.087	
age	0.20	0.005	0.19, 0.21	<0.001	

Propensity score adjusted model

Example

simulated data (10,000 observations)

Treatment is randomly assigned

There are two baseline covariates: age and weight

Unadjusted model

<pre>1 lm(y ~ treatment, data = data)</pre>					
Characteristic	Beta	SE ¹	95% Cl ¹	p- value	
treatment				<0.001	
¹ SE = Standard Error, CI = Confidence Interval					

Adjusted model

1 lm(y ~ treatment + weight + age, data				
Characteristic	Beta	SE ¹	95% Cl ¹	p- value
treatment	1.0	0.020	0.97, 1.0	<0.001
weight	0.19	0.010	0.17, 0.21	<0.001
age	0.20	0.001	0.20, 0.20	<0.001
¹ SE = Standard Error, CI = Confidence Interval				

Propensity score adjusted model

time-varying confounding