



# INDICADORES DE SEGURIDAD Y DURABILIDAD PARA EL SEGUIMIENTO DEL DETERIORO DE **ESTRUCTURAS**























C. Andrade<sup>1</sup>, N. Rebolledo<sup>1</sup>, F. Tavares<sup>1</sup>, M. Capacchione<sup>1</sup>, G. Sotorrio<sup>1</sup>, Ma J. Fernández2, J. Millán3, A. Navareño4, M.A. Sanjuan5, J.E. Criado4, J.A. Gómez<sup>6</sup>, J.J. Muñoz<sup>7</sup>, C. Bartolome<sup>8</sup>, J. Jiménez<sup>9</sup>, D. Di Capua<sup>9</sup>, I. Núñez<sup>10</sup>, R. Cienfuegos<sup>10</sup>, M. Sbert<sup>11</sup>, M. Magdics<sup>11</sup>, R. Garcia<sup>11</sup>

<sup>1</sup>Instituto Eduardo Torroja (CSIC); <sup>2</sup>Copasa; <sup>3</sup>Galaicontrol; <sup>4</sup>Fomento; <sup>5</sup>IECA; <sup>6</sup>ADIF; <sup>7</sup>Geocisa; <sup>8</sup>OFICEMEN; <sup>8</sup>CIMNE; <sup>10</sup>OSSA; <sup>11</sup>Universitat de Girona

### OBJETIVO

Avanzar en la definición del concepto de Indicador de Seguridad y Durabilidad que se había planteado en un proyecto anterior aplicado a instalaciones portuarias (DYNAPORT). El concepto planteado se basa en la identificación de los parámetros clave que pueden ser indicadores del deterioro o de comportamientos anómalos en estructuras existentes y que puedan ser medidos en continuo con sensores para que la información registrada pueda llegar a ser sustitutiva de inspecciones visuales periódicas. En el trabajo se presentan algunos ejemplos de actuación en puentes de ferrocarril y de

## IDENTIFICACIÓN DE INDICADORES DE SEGURIDAD Y DURABILIDAD

- Medidos de forma continua mediante sensores in situ
- Fáciles de cuantificar
- Representar propiedades de especial importancia para el cumplimiento de los requisitos.
- Servir para el seguimiento de las especificaciones prescriptivas de los materiales.
- Sensibles a la variación del valor del indicador.
- Seguir el esquema de cálculo seguido en el proyecto: seguridad, servicio y explotación.

# **SENSORES UTILIZADOS**



Medida de desplazamientos (tablero respeto a estribo) por acciones ambientales, reológicas del material, fluencia, etc







Estimación cualitativa



Utilizada en el proyecto para registrar desplazamientos de los neoprenos de apoyo del puente de Isla de Arosa







#### Plataforma informática centralizada de diseño dinámico



# RESULTADOS - ALGUNOS EJEMPLOS DE **ESTRUCTURAS MONITORIZADAS**

1) Demostrador piloto expuesto en jardín del IETcc. Verificar el correcto funcionamiento de sensores de nuevo diseño



Se representan los datos de temperatura (verde), y resistividad del hormigón (azul v amarillo).



2) Desplazamientos en un Viaducto Ferroviario



Se representan los datos de temperatura (azul), desplazamiento ménsula-estribo (rojo) y ménsula-tablero (verde).

### 3) Filtraciones en el tablero de Viaducto Carretero





Se posición sensores de humedad temperatura У profundidades, estudiando diferentes posibles filtraciones en la interfase capa asfáltica-tablero hormigón.

### **CONCLUSIONES**

Se ha podido desarrollar una metodología para la actualización del cálculo dinámico o continuo de la vida útil con las siguientes fases:

- 1. Se han definido Indicadores de Seguridad y Durabilidad de las estructuras seleccionadas que pueden ser medidos en continuo y reflejan un comportamiento de una propiedad critica de su durabilidad.
- 2. Se han adaptado sensores comerciales o se han desarrollado algunos específicos que permiten el seguimiento de los indicadores.
- 3. Se han desarrollado dos Plataformas de gestión informática que almacenan y visualizan los datos en tiempo real así como contiene valores-alarma y pueden incorporarse modelos que permiten actualizar y recalcular la vida útil.