

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

CENTRUM SPORTOVNÍCH AKTIVIT

CENTRE OF SPORTS ACTIVITIES

ODHAD TEPOVÉ FREKVENCE ZE SIGNÁLŮ PPG

HEART RATE ESTIMATION FROM THE PPG SIGNALS

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

AUTHOR

Petr Šimčák

VEDOUCÍ PRÁCE

SUPERVISOR

doc. Ing. Jiří Kozumplík, CSc.

BRNO 2025

ZADÁNÍ
Namísto této stránky vložte stránku **zadání FEKT** vygenerovanou v IS VUT.

ABSTRAKT

Tato bakalářská práce se zaměřuje na odhad tepové frekvence ze signálů fotopletysmografie (PPG). Práce využívá dvě databáze: CapnoBase a BUT PPG. Cílem je nejen přehledně popsat metody odhadu tepové frekvence ze signálů PPG, ale také navrhnout, implementovat a otestovat algoritmy pro spolehlivou detekci systolických vrcholů a stanovení tepové frekvence. Diskutovány jsou také výhody a omezení jednotlivých metod.

KLÍČOVÁ SLOVA

fotopletysmografie, tepová frekvence, PPG, odhad tepové frekvence, systolické vrcholy, algoritmy, CapnoBase, BUT PPG

ABSTRACT

This bachelor thesis focuses on heart rate estimation from photoplethysmographic (PPG) signals. The work utilizes two databases: CapnoBase and BUT PPG. The aim is not only to provide an overview of heart rate estimation methods from PPG signals but also to design, implement, and test algorithms for reliable detection of systolic peaks and heart rate determination. The advantages and limitations of each method are also discussed.

KEYWORDS

photoplethysmography, heart rate, PPG, heart rate estimation, systolic peaks, algorithms, CapnoBase, BUT PPG

Vysázeno pomocí balíčku thesis verze 4.11; https://latex.fekt.vut.cz/

Prohlášení autora o původnosti díla

Petr Šimčák

Jméno a příjmení autora:

VUT ID autora:	226320
Typ práce:	Bakalářská práce
Akademický rok:	2024/25
Téma závěrečné práce:	Odhad tepové frekvence ze signálů PPG
cí/ho závěrečné práce a s použitím o které jsou všechny citovány v práci a u Jako autor uvedené závěrečné práce d závěrečné práce jsem neporušil autor nedovoleným způsobem do cizích aut a jsem si plně vědom následků poruše kona č. 121/2000 Sb., o právu autorsl a o změně některých zákonů (autorsl	sem vypracoval samostatně pod vedením vedoudborné literatury a dalších informačních zdrojů, uvedeny v seznamu literatury na konci práce. Iále prohlašuji, že v souvislosti s vytvořením této ská práva třetích osob, zejména jsem nezasáhl sorských práv osobnostních a/nebo majetkových ní ustanovení §11 a následujících autorského zákém, o právech souvisejících s právem autorským ký zákon), ve znění pozdějších předpisů, včetně lývajících z ustanovení části druhé, hlavy VI. díl 4
Dillo	podpis autora*

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ
Děkuji vedoucímu bakalářské práce doc. Ing. Jiřímu Kozumplíkovi, CSc. za trpělivost, hodnotné rady, laskavý přístup, konzultace, podklady k práci a odborné vedení.

Obsah

Ú	vod		21
1	Srd	eční tep	23
	1.1	Srdeční tepová frekvence	23
	1.2	Faktory ovlivňující tepovou frekvenci	
	1.3	Měření srdečního tepu	
2	Fot	opletysmograf	25
	2.1	Složení PPG signálu	25
3	Dat	abáze	27
	3.1	CapnoBase	27
	3.2	BUT PPG	27
4	Elge	endiho referenční algoritmus	29
	4.1	Obecná struktura algoritmu	29
	4.2	Předzpracování signálu	29
	4.3	Určení bloků zájmů a nalezení vrcholů	31
5	Vla	stní algoritmus založený na detekci vrcholů	35
	5.1	Předzpracování PPG signálu	35
	5.2	Detekce vrcholů	37
	5.3	Výpočet tepové frekvence	38
6	Výr	počet tepové frekvence z Hjorthových deskriptorů	41
	6.1	Zpracování signálu	41
	6.2	Výpočet Hjorthových parametrů	41
7	Výs	sledky a vyhodnocení	43
	7.1	Elgendiho metoda	43
	7.2	Metoda založená na detekci vrcholů	43
	7.3	Metoda Hjorthových deskriptorech	43
	7.4	Rychlost použitých algoritmů	43
	7.5	Výsledky hodnocení kvality signálů	43
Zá	ivěr		45
\mathbf{Li}	terat	zura	47

Seznam symbolů a zkratek 5			
Seznam příloh	53		
A Některé příkazy balíčku thesis A.1 Příkazy pro sazbu veličin a jednotek			
B Druhá příloha	57		
C Příklad sazby zdrojových kódů C.1 Balíček listings	59 59		
D Obsah elektronické přílohy	63		

Seznam obrázků

2.1	Snímání PPG signálu	25
2.2	Fiziologický popis PPG signálu	26
3.1	Získání PPG signálu pro databázi BUT PPG	28
4.1	Struktura Elgendiho algoritmu	29
4.2	Elgendiho předzpracování PPG signálu	30
4.3	Elgendiho zpracování pravidelného signálu	33
4.4	Elgendiho zpracování nepravidelného signálu	33
5.1	Vlastní amplitudová charakteristika Butterworthova filtru	36
5.2	Vlastní detekce vrcholů	37
5.3	Histogram IBI	39
5.4	Vlastní zpracování signálů	40
6.1	Schéma našeho algorimu, který využívá Hjorthových deskriptorů	41
B.1	Origo Template	57

Seznam tabulek

A.1	Přehled	příkazů																															,	5	
-----	---------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--

Seznam výpisů

C.1	Ukázka sazby zkratek	59
C.2	Příklad Schur-Cohnova testu stability v prostředí Matlab	60
C.3	Příklad implementace první kanonické formy v jazyce C	61

Úvod

Tepová frekvence je jedním z klíčových zdravotních parametrů, který poskytuje důležité informace o stavu kardiovaskulárního systému subjektu. Měření a monitorování srdeční tepové frekvence se stalo nepostradatelným nástrojem nejen v medicíně, ale také ve sportovní vědě a kondičním tréninku. Tradiční metody měření tepové frekvence, jako je EKG (Elektrokardiogram), jsou přesné, ale jejich nevýhodami jsou vyšší cena a uživatelská nepřívětivost v používání EKG systémů. V posledních letech získává na popularitě PPG (Fotopletysmograf). Jedná se o neinvazivní a relativně levnou metodu, která umožňuje monitorovat tepovou frekvenci pomocí optických senzorů.

Fotopletysmografie funguje na principu detekce změn objemu krve v tkáni pomocí světla, které je absorbováno nebo reflektováno. Výhodou PPG je možnost integrace do nositelných zařízení, jako jsou chytré hodinky nebo fitness náramky, což umožňuje nepřetržité monitorování tepové frekvence v reálném čase bez zásahu do běžného života měřeného.

Cílem této bakalářské práce je analyzovat metody odhadu tepové frekvence z PPG signálů a navrhnout vlastní algoritmus, který umožní spolehlivé stanovení tepové frekvence. K otestování algoritmů budou využity databáze PPG signálů: CapnoBase a BUT PPG (Brno University of Technology Smartphone PPG Database).

1 Srdeční tep

Srdeční tep, nazývaný též pulz, představuje jeden z nejzákladnějších zevních projevů srdeční činnosti. Jedná se o tlakovou vlnu, která vzniká při systole (stahu) srdce a šíří se krevním řečištěm do celého těla. Tuto tlakovou vlnu lze vnímat na povrchu těla (tzv. palpačně), konkrétně v místech, kde vedou tepny v relativně mělkých oblastech. A to na příklad na zápěstí (a. radialis) nebo na krku (a. carotis) [4, 16].

Význam srdečního tepu a jeho frekvence (počtu úderů za minutu) je zásadní v klinické praxi i ve výzkumu. Vzhledem k tomu, že tepová vlna vychází přímo z cyklické práce srdce, poskytuje nám relativně přesnou a snadno dostupnou informaci o srdeční aktivitě. Srdeční tep i jeho variabilita se dnes běžně využívají k orientačnímu posouzení kardiovaskulárního zdraví a k monitorování reakce kardiovaskulárního systému na různé podněty a zátěž [18].

1.1 Srdeční tepová frekvence

Tepová frekvence (TF) je běžně užívanou veličinou pro základní posouzení srdeční činnosti. Je definována jako počet srdečních cyklů (systol a diastol) za jednu minutu. U zdravého dospělého jedince v klidovém stavu se nejčastěji pohybuje v rozmezí 60 až 90 úderů za minutu. Maximální rozsah TF lze vypočítat, když se vezme v potaz pohlaví, věk a váha [4]. Obecně se ale považují za hraniční hodnoty 30 až 200 úderů za minutu [10]. Pro klidový stav jsou hodnoty pod 60 úderů za minutu označovány jako bradykardie, u 90-ti úderů za minutu pak hovoříme o tachykardii [4, 17].

Důležitým aspektem ovlivňující TF je i pravidelnost srdečního rytmu. Pravidelné intervaly mezi jednotlivými údery signalizují rovnoměrné srdeční stahy. Nepravidelnosti se označují jako arytmie, které mohou poukazovat na různá onemocnění, např. fibrilace síní či extrasystoly [4].

1.2 Faktory ovlivňující tepovou frekvenci

TF může kolísat v závislosti na mnoha faktorech, které lze rozdělit na vnitřní (endogenní) a vnější (exogenní). K vnitřním faktorům patří například momentální zdravotní stav, tělesná kondice, hormonální vlivy nebo genetické predispozice. Mezi vnější faktory lze řadit fyzickou aktivitu, působení stresu, emoční zátěž či užití stimulantů (např. kofein nebo nikotin) [18].

Významným determinantem srdečních pulzů je obecně fyzická aktivita - během cvičení či zvýšené tělesné námahy musí organismus zajistit vyšší přísun kyslíku a živin do zatížených svalů, čehož dosahuje zrychlením srdeční aktivity. Podobně i

stresové situace či emoční reakce vedou ke stimulaci sympatického nervového systému, jenž zvyšuje srdeční tep. Naopak parasympatický nervový systém v klidových stavech srdeční činnost brzdí [18].

1.3 Měření srdečního tepu

Existuje řada způsobů, jak TF měřit a kvantifikovat. Základní dělení vychází z rozlišení mezi manuálními a instrumentálními metodami.

Tradičním, jednoduchým a dostupným postupem manuálního měření je již zmíněné palpační měření tepu v kapitole 1. Při něm se prsty (typicky ukazovák a prostředník) přiloží na vhodnou tepnu, často vřetenní tepnu na zápěstí (a. radialis), a po stanovenou dobu se počítají údery. Manuální metoda je i přes svoji jednoduchost relativně spolehlivá, avšak nemusí být ideální pro detekci nepravidelného rytmu nebo může být chybová při nepozornosti vyšetřujícího [17].

Instrumentální metoda je taková, která využívá moderní přístroje, jako jsou fitness náramky, chytré hodinky či specializované pulzmetry, umožňují pohodlné, dlouhodobé a relativně přesné měření srdečního tepu. Často využívá principu fotopletysmografie (PPG), kdy senzor vyhodnocuje změny průtoku krve podle odrazivosti světla ve tkáni. Ve sportovním tréninku se uplatňují také hrudní pásy, které snímají EKG a monitorují tep spolehlivě i při vyšších zátěžích.

Výsledkem měření je výše popsaná tepová frekvence popsaná v podkapitole 1.1, vyjádřená v početech úderů za minutu. Moderní přístroje nabízejí trvalé monitorování s automatickým záznamem tepové frekvence, což usnadňuje dlouhodobé sledování a vyhodnocování dat.

2 Fotopletysmograf

Fotopletysmografie (PPG) je neinvazivní optická metoda sloužící k monitorování změn objemu krve v mikrovaskulárním řečišti tkáně, obvykle na prstu, zápěstí či ušním lalůčku [19]. Zejména díky snadné integraci do nositelných zařízení (např. chytrých hodinek) a relativně nízkým nákladům na realizaci se PPG stává klíčovým nástrojem pro dlouhodobé sledování kardiovaskulárních parametrů, jako je tepová frekvence (TF), saturace krve kyslíkem (SpO₂) či hodnocení variability tepových intervalů [9].

Na Obr. 2.1 jsou znázorněny dvě základní měřicí konfigurace. Transmisní režim (a), kde je zdroj světla a fotodetektor na opačných stranách tkáně (typicky při měření na prstu či ušním lalůčku). A reflexní režim (b), zde je umístěn zdroj světla i detektor na téže straně tkáně, což se používá v běžných sportovních zařízeních, jakou jsou chytré hodinky. Tento režim je z morfologických důvodů náchylnější k chybám [15].

Metoda PPG je založena na měření intenzity světla, která se po interakci s tkání dostane k detektoru. Množství absorbovaného/odraženého světla závisí na aktuálním průtoku krve, který je modulován srdečními cykly [19].

Obr. 2.1: Transmisní režim (a) a reflexní režim (b), upraveno z [4].

2.1 Složení PPG signálu

Jak ukazuje Obr. 2.2, naměřený PPG signál zahrnuje pulzní (AC) složku synchronizovanou se srdeční aktivitou a stabilní, nepulzní (DC) složku. AC složka odráží periodické změny objemu arteriální krve v rozsahu typického frekvenčního pásma srdeční činnosti (zhruba 0,5–3 Hz) a je klíčová pro přesnou detekci TF. DC složka

představuje základní linii danou absorpcí tkáně a žilní krve a ovlivňuje ji například barva kůže, okolní osvětlení a anatomické poměry měřené oblasti [4, 19]. Je důležité si uvědomit, že PPG signál je inverzní k měřenému optickému signálu, protože reprezentuje objem krve v tkáni, nikoli množství světla dopadajícího na senzor, což je patrné i z Obr. 2.2.

Za počátek pulzu v PPG signálu se obvykle považuje nejnižší bod předcházející systolické fázi, který odpovídá minimálnímu objemu krve v měřené oblasti. Pro výpočet TF se využívají systolické vrcholy, tedy body s maximálním objemem krve, z nichž lze určit intervaly mezi srdečními údery a následně stanovit TF.

Po systolickém vrcholu přichází diastola, což je fáze srdečního cyklu, během které dochází k relaxaci srdečního svalu a plnění srdce krví. V průběhu diastoly bývá často patrný typický dikrotický zářez, který odráží elastické vlastnosti cévní stěny a uzávěr aortální chlopně. Jeho přítomnost a tvar mohou poskytovat užitečné informace o stavu kardiovaskulárního systému [9, 19].

Obr. 2.2: Princip získání PPG křivky a její popis. Upraveno z [19].

3 Databáze

V této práci jsme využívali dvě databáze fotopletysmografických signálů: CapnoBase a Brno University of Technology Smartphone PPG Database, pro kterou budeme v této práci používat zkrácený název BUT PPG.

Na těchto databázích jsme testovali a porovnávali výsledky použitých algoritmů. U databáze CapnoBase jsme porovnávali naměřené systolické vrcholy s referenčními hodnotami a díky tomu jsme porovnávali i rozdíl v srdeční tepové frekvenci (TF). U databáze BUT PPG nebyly referenční hodnoty systolických vrcholů k dispozici, ale byly zde referenční hodnoty TF signálů a ty jsme porovnávali s naměřenými výsledky.

3.1 CapnoBase

CapnoBase je veřejně dostupná databáze, která obsahuje osmiminutové záznamy od 42 dětských i dospělých pacientů, podstupujících plánované chirurgické zákroky včetně anestézie [3].

Součástí databáze jsou PPG, EKG a respirační signály, se vzorkovací frekvencí 300 Hz. Pro každý záznam jsou navíc ručně označeny systolické vrcholy v PPG, odvozené z EKG, což umožňuje přesné ověření správnosti detekce tepů. Autoři však nedoporučují databázi používat k trénování či dolaďování algoritmů [3]. Proto jsme ji použili pouze k testování použitých algoritmů a k porovnání výsledků s referenčními hodnotami.

Díky svým vlastnostem je CapnoBase vhodná k posouzení robustnosti a přesnosti metod v klinických situacích [8, 6].

3.2 BUT PPG

Databáze BUT PPG vznikla na Fakultě elektrotechniky a komunikačních technologií VUT za účelem zkoumání kvality PPG záznamů a odhadu TF. V nové rozšířené verzi obsahuje 3,888 desetisekundových měření od 50 dobrovolníků (25 žen a 25 mužů) ve věku 19 až 76 let, a to v klidu i při různých typech pohybových aktivit. Fotopletysmografické záznamy byly pořízeny chytrými telefony Xiaomi Mi9 a Huawei P20 Pro se vzorkovací frekvencí 30 Hz. Pro referenční EKG a akcelerometrická (ACC) data byl použit mobilní senzor Bittium Faros 360 (nebo 180) se vzorkovacími frekvencemi 1,000 Hz pro EKG a 100 Hz pro ACC [1]. Surový PPG signál byl extrahován z červené složky nahraného videa (viz. Obr. 3.1).

Každý PPG záznam byl synchronizován s EKG a rozdělen do desetisekundových segmentů, které následně hodnotilo tři až pět expertů. Pro označení kvality vycházeli

výhradně z rozdílu mezi TF odhadnutou z PPG a referenční tepovou frekvencí z EKG. Pokud byla odchylka do pěti úderů za minutu, bylo dané měření označeno jako "dobré" (1), jinak jako "špatné" (0). Tato hranice vychází z mezinárodní normy IEC 60601-2-27 a v databázi BUT PPG je aplikována ještě přísněji [1].

Přibližně polovina záznamů vznikla přiložením prstu na zadní kameru a LED, druhá pak snímáním ucha v poloze připomínající telefonování. V novější části databáze se rozšiřuje množství subjektů i situací, včetně manipulací s osvětlením, vyšším tlakem prstu na čočku, mluvením či chůzí, a nově se přidávají i údaje o krevním tlaku, glykémii a saturaci krve kyslíkem.

Díky této variabilitě podmínek a bohatým anotacím je BUT PPG unikátním zdrojem pro testování robustnosti algoritmů detekce TF a pro posuzování použitelnosti krátkých PPG signálů z mobilního telefonu v reálné praxi.

Obr. 3.1: Záznam videa na kameru mobilního telefonu (a), jeden vybraný snímek ze záznamu (b), snímek rozložen na tři barevné složky (c), PPG signál vykreslený z červené složky (d), upraveno z [5].

Spojením klinicky orientované databáze CapnoBase a mobilně zaměřené BUT PPG vzniká možnost vzájemného porovnání a ověření přesnosti algoritmů, které musejí obstát v rozdílných kontextech: v relativně stabilním, klinickém, prostředí a v krátkých záznamech z chytrého telefonu.

4 Elgendiho referenční algoritmus

Tato kapitola popisuje, jak lze ve fotopletysmografickém (PPG) signálu nalézt systolické vrcholy s využitím Elgendiho algoritmu, který je implementován v knihovně NeuroKit2.

Tato knihovna reaguje na "krizi reprodukovatelnosti", což je problém, kdy vědecké studie nelze opakovaně potvrdit kvůli nedostupnosti kódu a dat. Proto nabízí otevřený zdrojový kód, strukturovanou dokumentaci i podporu k začleňování funkcí přímo do výzkumných prací [13]. Zdrojový kód pro NeuroKit2 je dostupný na https://github.com/neuropsychology/NeuroKit a dokumentace na https://neurokit2.readthedocs.io/. Knihovnu je možné průběžně modifikovat a vyvíjet.

V kapitole 2 byly již podrobně shrnuty principy PPG, proto se zde zaměříme na samotnou detekci vrcholů a její realizaci.

4.1 Obecná struktura algoritmu

Algoritmus se skládá z několika kroků: *filtrace* pomocí pásmové propusti, *umocnění* signálu, vytvoření dvou *klouzavých průměrů* a dvou *prahů* (Obr. 4.1) [12]. Vstupem je surový fotopletysmografický záznam, zatímco výstupem jsou konkrétní časové pozice nalezených systolických vrcholů.

Obr. 4.1: Zjednodušené schéma Elgendiho algoritmu [12].

4.2 Předzpracování signálu

Před samotnou detekcí je vhodné potlačit šum a odstranit pomalé změny amplitudy. Elgendi [12] používá druhý řád Butterworthova filtru se zpracováním v přímém i reverzním směru (tzv. filtrace s nulovým fázovým posuvem). Frekvenční charakteristika filtru byla nastavena na pásmo 0,5–8 Hz, což postačuje pro typické PPG kmitočty a dostatečně potlačí pásmový posun i vyšší frekvence nesouvisející se systolickými vrcholy. Na Obr. 4.2 je ukázka amplitudové charakteristiky a zfiltrovaného úseku signálu.

Po filtraci je kaldná část signálu umocněna na druhou viz. (4.1). To je provedeno s cílem zdůraznit rozdíly mezi systolickou vlnou a ostatními složkami, jako jsou diastolické zářezy nebo šum [12]. Výsledná hodnota y[n] po umocnění je dána vztahem:

$$y[n] = \begin{cases} Z[n]^2, & \text{pokud } Z[n] > 0, \\ 0, & \text{pokud } Z[n] \le 0. \end{cases}$$

$$(4.1)$$

kde $\mathbb{Z}[n]$ představuje již vyfiltrovaný signál. Porovnání filtrovaného a umocněného signálu je ilustrováno na Obr. 4.2.

Obr. 4.2: Filtrace PPG signálu pomocí Butterworthova filtru a umocnění.

4.3 Určení bloků zájmů a nalezení vrcholů

Po úvodní filtraci a umocnění fotopletysmografického signálu, vypočítává Elgendiho algoritmus dva klouzavé průměry (MA), které se od sebe liší v samotné šířce průměrujícího okna [12].

Kratší okno W_1 je nastaveno tak, aby sloužilo ke zdůraznění systolické špičky, zatímco delší okno W_2 se vybralo tak, aby zdůraznilo období celého srdečního cyklu. Tyto konstanty odpovídají šířkám oken v milisekundách, ve kterých se počítají klouzavé průměry (4.2) a (4.3). Pro vypočítání konkrétních velikostí oken bylo provedeno metodou "hrubé sily" vhodných parametrů tak, že se vyzkoušely různé kombinace délek těchto a dalších a konstant. Jako nejlepší kombinace se vybrala ta, po které dosahoval algoritmus nejvyššího skóre v citlivosti (Se) a pozitivní prediktivní hodnotě (PPV) na trénovací sadě dat [12]. Pro W_1 byla zvolena hodnota 111 (odpovídající milisekundám) a pro W_2 hodnota 667.

Výpočet klouzavých průměrů

Elgendi definuje umocěný a vyfiltrovaný PPG signál jako y[n]. Klouzavý průměr s kratším oknem MA_{peak} se pro každý bod n vypočítá rovnicí

$$MA_{peak}[n] = \frac{1}{W_1} (y[n - \frac{W_1 - 1}{2}] + \dots + y[n] + \dots + y[n + \frac{W_1 - 1}{2}]),$$
 (4.2)

kde je W_1 konstanta popsaná v podkapitole 4.3 [12] Podobně se s delším oknem W_2 vypočítá MA_{beat} , který reprezentuje přibližnou délku jednoho srdečního cyklu:

$$MA_{beat}[n] = \frac{1}{W_2} (y[n - \frac{W_2 - 1}{2}] + \dots + y[n] + \dots + y[n + \frac{W_2 - 1}{2}]).$$
 (4.3)

Výsledky výpočtů jsou zobrazeny na Obr. 4.3 a Obr. 4.4. Tyto klouzavé průměry slouží k vypočítání THR_1 a následných bloků zájmu, které vedou k určení systolických vrcholů.

Nastavení dvou dynamických prahů

Pro další zpracování se zvolí dvě prahové hodnoty. První dynamický práh THR_1 se vpočítá posunutím signálu MA_{beat} o konstantu β vynásobenou průměrnou hodnotou umocněného signálu \overline{z} viz. (4.4). Tato průměrná hodnota se vypočítává z celého umocněného signálu. β je jedním z parametrů, který se nastavuje metodou "hrubé síly" a nejlepší výsledky vyšly, když se β nastavila na hodnotu 2 [12].

$$THR_1[n] = MA_{beat}[n] + \beta \cdot \overline{z}. \tag{4.4}$$

První práh je vykreslen na Obr. 4.3 a Obr. 4.4 společně s klouzavými průměry a umocněným signálem. Z těchto obrázků je patrné, že parametry β ani \overline{z} nemají na práh THR_1 příliš významný viditelný efekt, tudíž je křivka THR_1 velmi podobná křivce MA_{beat} .

Porovnáním $MA_{\text{peak}}[n]$ s $THR_1[n]$ získáme časové úseky (tzv. bloky zájmu), které odpovídají částem, kde je signál nad úrovní MA_{beat} .

Druhý práh THR_2 slouží k pročištění již stanovených bloků zájmů. Je roven konstantě W_1 , jak je definováno v rovnici (4.5). Elgendi využívá tento práh pro eliminaci všech bloků zájmů, které jsou kratší než předem stanovená konstanta reprezentující očekávanou šířku systolické vlny [12].

$$THR_2 = W_1. (4.5)$$

Určení bloků zájmů

Porovnáním výše uvedeného klouzavého průměru $MA_{\rm peak}$ a prvního prahu (THR_1) jsou určeny bloky zájmu. Tyto bloky jsou definovány jako úseky, kde je $MA_{\rm peak}$ větší než THR_1 a zároveň jejich šířka je větší než THR_2 viz. (4.6) [12]. Bloky zájmu jsou zobrazeny jako šedé úseky na Obr. 4.3 a 4.4.

$$\{n: MA_{peak}[n] > THR_1[n] \land okno > THR_2\}. \tag{4.6}$$

Na Obr. 4.4 vidíme tři systolické vrcholy, které nebyly detekovány (kolem vzorků 4000, 4600 a 5000). U prvního z nich je patrné, že umocněný signál překračuje THR_1 , avšak blok je příliš krátký, a proto je vyřazen. Druhý a třetí vrchol mají ve filtrovaném signálu příliš nízkou amplitudu, což způsobuje, že po umocnění nejsou dostatečně výrazné.

Nalezení vrcholů

Samotné systolické vrcholy jsou určeny jako lokální maxima v oblastech bloků zájmu. Funkce $find_peaks$ z knihovny NeuroKit2 zpracovává jednodimenzionální signál a porovnáváním hodnot v každém bloku zájmu určuje lokální maxima [13].

Obr. 4.3: Nastavení bloků zájmu a určení systolických vrcholů pro pravidelný signál.

Obr. 4.4: Nastavení bloků zájmu a určení systolických vrcholů pro nepravidelný signál.

5 Vlastní algoritmus založený na detekci vrcholů

V této kapitole se zaměříme na popis vlastního algoritmu pro detekci systolických vrcholů a odhad srdeční tepové frekvence z fotopletysmografických signálů.

Našim cílem je vytvořit jednoduchý a efektivní algoritmus, který poskytne spolehlivé výsledky pro různé typy PPG signálů.

5.1 Předzpracování PPG signálu

Načtení signálů

Jelikož pracujeme se dvěma databázemi - *CapnoBase* a *BUT PPG*, výstupem po načtení signálů jsou dvě odlišné knihovny, které zpracováváme samostatně později. Obě databáze mají odlišnou strukturu souborů a formát signálů, což vyžaduje samostatný přístup při jejich načítání.

Databáze *CapnoBase* obsahuje signály uložené v .mat souborech. Z každého souboru načítáme signál PPG, referenční systolické vrcholy a vzorkovací frekvenci [3]. Navíc si vygenerujeme referenční tepovou frekvenci (TF) z referenčních vrcholů, a to pomocí stejného algoritmu, který později použijeme pro výpočet TF z našich detekovaných vrcholů. Pro účely čitelnější vizualizace a zpracování ukládáme též identifikátor záznamu, což jsou první čtyři znaky názvu souboru.

Oproti tomu databáze *BUT PPG* používá formát WaveForm Database (WFDB) a obsahuje PPG záznamy v .dat a .hea souborech. Tato databáze původně obsahovala 48 záznamů, které byly později rozšířeny o dalších 3 840 záznamů. Při načítání bylo nutné zohlednit, že starší PPG signály byly uloženy v jednom kanálu, zatímco ostatní signály byly rozděleny do tří kanálů, odpovídajících třem různým barevným složkám signálu [2]. Z novějších záznamů jsme jako referenční PPG signál vybrali pouze červenou složku, která nejvíce odpovídá standardnímu PPG signálu.

Výsledkem načtení jsou dvě knihovny, které obsahují dostupná data z obou databází ve formátu vhodném pro další zpracování.

Rozdělení záznamů

Záznamy v databázi *CapnoBase* jsou dlouhé osm minut. Tuto délku jsme považovali za nevhodnou pro výpočet tepové frekvence, protože výsledná hodnota TF by mohla být zkreslená kratšími úseky se zvýšenou nebo sníženou TF. Mohlo by se tedy stát, že referenční a naše tepové frekvence by vykazovaly podobné výsledky, přestože by se v jednotlivých úsecích mohly výrazně lišit.

Proto jsme přistoupili k rozdělení každého dlouhého záznamu na kratší, minutové segmenty, které měly pětiprocentní překryv. Takový překryv byl zaveden proto, abychom testovali algoritmy na všech vrcholech v záznamu a nedošlo k vynechání některých vrcholů na začátku nebo na konci segmentu. Navíc takový překryv vyhovoval i proto, že počet oken popsaných v podkapitole 5.2 se rozšíří pouze o jeden. Rozdělený signál je znázorněn na Obr. 5.2. Výsledné, 63 sekund dlouhé úseky byly dále považovány za samostatné signály, které byly zpracovány jednotlivě.

Filtrace

Po načtení a případném rozdělení záznamů následovalo filtrování signálu. Na filtraci jsme použili pásmový filtr čtvrtého řádu typu Butterworth, jehož parametry jsme nastavili s ohledem na fyziologické vlastnosti PPG signálu. Dolní mez frekvence byla nastavena na 0,5 Hz (30 úderů za minutu) a horní mez na 3,35 Hz (201 úderů za minutu). Amplitudová charakteristika filtru je znázorněna na Obr. 5.1.

Tento rozsah byl zvolen tak, aby odstranil velmi pomalé změny v signálu, například dechovou frekvenci. Zároveň tak, aby potlačil vysokofrekvenční šum, který by mohl negativně ovlivnit detekci vrcholů. V nastavení prahů vycházíme z obecných hraničních hodnot lidské tepové frekvence popsané v kapitole 1.1.

Samotný Butterworthův filtr byl zvolen pro jeho rovnost v propustném pásmu, takže amplitudová charakteristika filtru je hladká a nevykazuje vlnění, které je typické pro některé jiné typy filtrů. Čtvrtý řád zajišťuje dostatečný kompromis mezi strmostí přechodu a numerickou stabilitou filtru. Pro odstranění fázového posunu, který je charakteristický pro použitý filtr, jsme použili nulofázový filtr, jenž provádí filtraci v obou směrech.

Obr. 5.1: Amplitudová charakteristika Butterworthova filtru.

Po filtraci jsme signál standardizovali do rozsahu od -1 do 1. Tato normalizace zajišťuje jednotné měřítko napříč všemi záznamy, což je důležité pro následné kroky

detekce, kde algoritmus pracuje s relativními prahy.

Výsledky filtrace a standardizace jsou zřetelné z Obr. 5.4. Po těchto krocích jsme získali očištěný a normalizovaný signál, připravený pro detekci systolických vrcholů.

5.2 Detekce vrcholů

Hledání vrcholů probíhá v pětisekundových oknech, která se překrývají o 50%. Funguje to tak, že nejprve analyzujeme prvních 5 sekund signálu, poté posuneme okno o 2,5 sekundy a analyzujeme dalších 5 sekund, přičemž prvních 2,5 sekund se překrývají s předchozím oknem. Tímto způsobem pokryjeme celý signál a zajistíme, že žádný vrchol nebude vynechán. Na jeden minutový úsek obvykle připadá 23 oken, ale protože máme 5% překryv celého minutového záznamu, délka výsledného signálu je 63 sekund, a proto analyzujeme o jedno okno navíc. Vizuálně je to znázorněno na Obr. 5.2.

Pro celý signál jsme nastavili dva prahy. První prahová hodnota odpovídala minimální výšce vrcholu, který považujeme za platný. Tato hodnota byla nastavena na 0,3 a měla za cíl odlišit skutečné vrcholy od diastolických zářezů a šumu. Druhá prahová hodnota odpovídala minimálnímu časovému intervalu mezi dvěma po sobě jdoucími vrcholy. To bylo nastaveno na počet vzorků odpovídající 200 tepů za minutu.

Obr. 5.2: Druhá minuta záznamu s vizualizací oken a s překryvem.

V každém okně jsme provedli standardizaci signálu do rozsahu od -1 do 1, abychom zajistili, že nastavené prahy budou co nejpřesněji odpovídat předpokládaným morfologickým vlastnostem PPG signálu. U signálů jako je zobrazený na Obr. 5.2 je opětovná standardizace potřebná, protože se amplituda systolické vlny

může snižovat a nastavený prah na minimální výšku vrcholu by mohl být příliš nízký, což by vedlo k falešně negativním výsledkům.

Samotná detekce vrcholů je realizována jednoduchým algoritmem hledající lokální maxima. Funguje tak, že každý vzorek v okně je porovnán se svým předchozím a následujícím sousedem. Pokud je jeho hodnota větší než hodnota obou sousedů a současně překračuje oba zadané prahy, je tento vzorek označen jako systolický vrchol.

V závěru se odstraní případné duplicitní detekce, které vznikly vlivem překrývání oken. Vrchol detekovaný na stejném časovém vzorku ve dvou sousedních oknech je ponechán pouze jednou. Tento krok je důležitý zejména pro budoucí hodnocení algoritmu, kde pracujeme nejen s informací o pozici vrcholů, ale také s jejich počtem v jednotlivých úsecích. Duplicitní detekce by vedly ke zkreslení metrik a nesprávné interpretaci výsledků.

Posledním krokem je zpětná kontrola minimální vzdálenosti mezi detekovanými vrcholy. Bez této kontroly by se mohlo stát, že bychom detekovali vrchol na konci prvního okna a u dalšího okna bychom detekovali nový vrchol příliš blízko, protože si nové okno nepamatuje pozici předchozího vrcholu. Příklad takové chyby je zobrazen na Obr. 5.4, ve druhém okně.

5.3 Výpočet tepové frekvence

Základní veličinou pro tento výpočet je interval mezi dvěma po sobě následujícími vrcholy, označovaný jako tepový interval - IBI (z anglického "Inter-Beat Interval"). Ten jsme vypočítali tak, že jsme vzali rozdíl mezi časem detekce aktuálního vrcholu a časem detekce předchozího vrcholu:

$$IBI_i = t_i - t_{i-1}. (5.1)$$

Výsledkem je sekvence hodnot, které odpovídají časovým intervalům mezi jednotlivými systolickými vrcholy.

Z těchto intervalů jsme odvodili tepovou frekvenci pomocí vztahu popsaném rovnicí (5.2).

$$TF = \frac{60}{IBI_{median}} \tag{5.2}$$

Po volbě mezi průměrem, mediánem a modusem jsme se rozhodli pro medián. Na rozdíl od modusové a průměrné hodnoty byl medián nejméně citlivý na extrémní hodnoty, které by mohly zkreslit výpočet průměru. Na příklad na Obr. 5.3 vidíme, jak se může lišit průměr, modus a medián u signálů z našich databází.

Obr. 5.3: Stanovení TF z IBI pomocí průměru, mediánu a modusu.

Obr. 5.4: Ukázky zpracování signálů.

6 Výpočet tepové frekvence z Hjorthových deskriptorů

V této kapitole je popsán alternativní přístup k odhadu srdeční tepové frekvence (TF) z fotopletysmografického signálu (PPG), využívající Hjorthovy deskriptory (také označované jako Hjorthovy parametry). Na rozdíl od standardních metod [4, 6, 13], které se opírají o detekci jednotlivých systolických vrcholů a případně výpočet IBI, využívá tento přístup frekvenční vlastnosti analyzovaného signálu. To je výhodou v případech, kdy je signál poškozen šumem, artefakty, nebo když je kladen důraz na výpočetní náročnost a rychlost algoritmu.

Hjorthovy deskriptory představují trojici časových charakteristik, původně zavedených Hjorthem v roce 1970 pro kvantitativní popis elektroencefalografických (EEG) signálů [14]. Jedná se o parametry aktivita (H_0), mobilita (H_1) a komplexita (H_2), které odrážejí střední výkon, střední frekvenci a šířku pásma. Jejich výpočet vychází čistě z časové domény a nevyžaduje transformaci do frekvenční oblasti.

V oblasti zpracování PPG signálů byly Hjorthovy parametry doposud využívány převážně pro hodnocení kvality signálu a detekci artefaktů [15]. Právě proto je v naší práci navržen a realizován nový způsob odhadu TF na základě Hjorthovy mobility (H_1) . Ta se vypočítá na filtrovaných a čtyřnásobně autokorelovaných signálech, jejímž význam a podoba je podrobněji popsán v následující kapitole 6.1. Struktura navrženého algoritmu je znázorněna na Obr. 6.1.

Obr. 6.1: Blokové schéma našeho využití Hjorthových deskriptorů.

6.1 Zpracování signálu

6.2 Výpočet Hjorthových parametrů

7 Výsledky a vyhodnocení

7.1 Elgendiho metoda

CapnoBase databáze

Lorem ipsum dolor sit amet, consectetur adipiscing elit donec a diam lectus.

BUT PPG databáze

Lorem ipsum dolor sit amet, consectetur adipiscing elit donec a diam lectus.

Sed sit amet ipsum mauris maecenas congue ligula ac quam viverra nec consectetur ante hendrerit.

7.2 Metoda založená na detekci vrcholů

7.3 Metoda Hjorthových deskriptorech

7.4 Rychlost použitých algoritmů

Morbi leo risus, porta ac consectetur ac, vestibulum at eros. Pellentesque ornare sem lacinia quam venenatis vestibulum.

7.5 Výsledky hodnocení kvality signálů

Závěr

Tato bakalářská práce se zaměřila na odhad tepové frekvence (TF) z fotopletysmografických (PPG) signálů. Cílem bylo jednak poskytnout stručný přehled existujících metod pro odhad TF z PPG signálů, jednak navrhnout a popsat algoritmy pro spolehlivé stanovení tepové frekvence.

V teoretické části byla popsána fotopletysmografie jako neinvazivní optická metoda monitorování změn objemu krve v tkáních, která se používá zejména pro sledování kardiovaskulárních parametrů. Byly představeny základní principy PPG signálů a faktory, které mohou ovlivnit jejich kvalitu a přesnost měření.

Praktická část práce se soustředila na implementaci a testování několika algoritmů pro detekci systolických vrcholů v PPG signálech, včetně Aboyova algoritmu, jeho vylepšené verze Aboy++, Elgendiho algoritmu, Rezonátoru s nulovou frekvencí (ZFR) a nově navrženého Upraveného Aboyova algoritmu. Algoritmy byly testovány na dvou databázích: CapnoBase a BUT PPG.

Výsledky ukázaly, že Rezonátor s nulovou frekvencí (ZFR) dosahuje nejlepších výsledků na databázi CapnoBase, přičemž vykazuje vysokou citlivost a pozitivní prediktivní hodnotu. Elgendiho algoritmus se prokázal jako nejspolehlivější na databázi BUT PPG, přičemž dosahoval nejnižší průměrné odchylky mezi detekovanou a referenční TF.

Jedním z klíčových cílů této práce byl vývoj a implementace upraveného Aboyova algoritmu. Tento algoritmus dosahuje lepších odhadů TF na databázi CapnoBase ve srovnání s původní verzí, a to zejména díky zjednodušení a odstranění některých kroků, které způsobovaly přehlížení skutečných systolických vrcholů. Na databázi BUT PPG však vykazoval vyšší odchylky TF, což naznačuje potřebu další optimalizace pro spolehlivější detekci.

Dalším krokem pro zlepšení přesnosti odhadu TF by mohlo být využití pokročilejších technik strojového učení a hlubokých neuronových sítí, které mohou nabídnout lepší adaptaci na různé typy signálů a zlepšit robustnost algoritmů vůči šumu a artefaktům.

Literatura

- [1] NEMCOVA, Andrea, Enikö VARGOVA, Radovan SMISEK, Lucie MARSA-NOVA, Lukas SMITAL, Martin VITEK a Mihajlo JAKOVLJEVIC. Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation. *BioMed Research International* [online]. 2021-09-06, 2021, 1-6 [cit. 2024-05-23]. ISSN 2314-6141. Dostupné z: https://doi.org/10.1155/2021/3453007
- [2] Nemcova, A., Smisek, R., Vargova, E., Maršánová, L., Vitek, M., Smital, L., Filipenska, M., Sikorova, P., a Gálík, P. Brno University of Technology Smartphone PPG Database (BUT PPG) (version 2.0.0). PhysioNet. 2024 [cit. 2025-04-23]. Dostupné z: https://doi.org/10.13026/tn53-8153
- [3] KARLEN, Walter. CapnoBase IEEE TBME Respiratory Rate Benchmark. Borealis [online]. 2021 [cit. 2024-05-23]. Dostupné z: https://doi.org/10.5683/ SP2/NLB8IT
- [4] VARGOVÁ, Enikö. Stanovení kvality a odhad tepové frekvence ze signálu PPG [online]. Brno, 2021 [cit. 2022-11-15]. Dostupné z: https://www.vutbr.cz/studenti/zav-prace/detail/134388. Bakalářská práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav biomedicínského inženýrství. Vedoucí práce Andrea Němcová.
- [5] SIDDIQUI, Sarah Ali, Yuan ZHANG, Zhiquan FENG a Anton KOS. A Pulse Rate Estimation Algorithm Using PPG and Smartphone Camera. *Journal of Medical Systems* [online]. 2016, 40(5) [cit. 2024-05-20]. ISSN 0148-5598. Dostupné z: https://doi.org/10.1007/s10916-016-0485-6
- [6] CHARLTON, Peter H, Kevin KOTZEN, Elisa MEJÍA-MEJÍA, et al. Detecting beats in the photoplethysmogram: benchmarking open-source algorithms. *Phy-siological Measurement* [online]. 2022-08-19, 43(8) [cit. 2024-05-20]. ISSN 0967-3334. Dostupné z: https://doi.org/10.1088/1361-6579/ac826d
- [7] CHARLTON, Peter H, John ALLEN, Raquel BAILÓN, et al. The 2023 wearable photoplethysmography roadmap. *Physiological Measurement* [online]. 2023-11-29, 44(11) [cit. 2024-05-20]. ISSN 0967-3334. Dostupné z: https://doi.org/10.1088/1361-6579/acead2
- [8] KARLEN, Walter, S. RAMAN, J. M. ANSERMINO a G. A. DUMONT. Multiparameter Respiratory Rate Estimation From the Photoplethysmogram. *IEEE Transactions on Biomedical Engineering* [online]. 2013, 60(7), 1946-1953 [cit.

- 2024-04-16]. ISSN 0018-9294. Dostupné z: https://doi.org/10.1109/TBME. 2013.2246160
- [9] ORPHANIDOU, Christina. Signal Quality Assessment in Physiological Monitoring [online]. Cham: Springer International Publishing, 2018 [cit. 2024-05-20]. SpringerBriefs in Bioengineering. ISBN 978-3-319-68414-7. Dostupné z: https://doi.org/10.1007/978-3-319-68415-4
- [10] GODA, Márton Á, Peter H CHARLTON a Joachim A BEHAR. pyPPG: A Python toolbox for comprehensive photoplethysmography signal analysis. *Physiological Measurement* [online]. 2024-04-08, 45(4) [cit. 2024-05-20]. ISSN 0967-3334. Dostupné z: https://doi.org/10.1088/1361-6579/ad33a2
- [11] PŘIBIL, Jiří, Anna PŘIBILOVÁ a Ivan FROLLO. Analysis of Heart Pulse Transmission Parameters Determined from Multi-Channel PPG Signals Acquired by a Wearable Optical Sensor. Measurement Science Review [online]. 2023, 23, 217-226 [cit. 2025-2-20]. Dostupné z: https://api.semanticscholar.org/ CorpusID: 264289667
- [12] ELGENDI, Mohamed, Ian NORTON, Matt BREARLEY, Derek ABBOTT, Dale SCHUURMANS a Vladimir E. BONDARENKO. Systolic Peak Detection in Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions. *PLoS ONE* [online]. 2013-10-22, 8(10) [cit. 2024-05-20]. ISSN 1932-6203. Dostupné z: https://doi.org/10.1371/journal.pone. 0076585
- [13] MAKOWSKI, Dominique, Tam Pham, Zuo Jia Lau, et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behavior Research Methods [online]. 2021, 53, 1689–1696 [cit. 2024-05-20]. ISSN 1554-3528. Dostupné z: https://doi.org/10.3758/s13428-020-01516-y
- [14] HJORTH, Bo. The physical significance of time domain descriptors in EEG analysis. *Electroencephalography and Clinical Neurophysiology* [online]. 1973, 34(3), 321-325 [cit. 2025-05-14]. ISSN 00134694. Dostupné z: https://doi.org/10.1016/0013-4694(73)90260-5
- [15] PERALTA, Elena, Jesus LAZARO, Eduardo GIL, Raquel BAILÓN a Vaidotas MAROZAS. Robust Pulse Rate Variability Analysis from Reflection and Transmission Photoplethysmographic Signals [online]. 2017-09-14, [cit. 2025-04-10]. Dostupné z: https://doi.org/10.22489/CinC.2017.205-286
- [16] MOUREK, Jindřich. Fyziologie: učebnice pro studenty zdravotnických oborů. 2. dopl. vydání Praha: Grada. Sestra (Grada), 2012. ISBN 978-80-247-3918-2

- [17] SOUČEK, Miroslav, Petr SVAČINA a kolektiv. *Vnitřní lékařství v kostce*. Praha: Grada Publishing, 2019. ISBN 978-80-271-2289-9.
- [18] GONZAGA, Luana Almeida, Luiz Carlos Marques VANDERLEI, Rayana Loch GOMES a Vitor Engrácia VALENTI. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study. *Scientific Reports* [online]. 2017, 7(1) [cit. 2024-05-15]. ISSN 2045-2322. Dostupné z: https://doi.org/10.1038/s41598-017-14540-4
- [19] PARK, Junyung, Hyeon Seok SEOK, Sang-Su KIM a Hangsik SHIN. Photoplethysmogram Analysis and Applications: An Integrative Review. Frontiers in Physiology [online]. 2022-03-01, 12 [cit. 2022-12-18]. ISSN 1664-042X. Dostupné z: https://doi.org/10.3389/fphys.2021.808451
- [20] POVEA, Camilo E. a Arturo CABRERA. Practical usefulness of heart rate monitoring in physical exercise. *Revista Colombiana de Cardiología* [online]. 2018, 25(3), e9-e13 [cit. 2024-05-15]. ISSN 01205633. Dostupné z: https://doi.org/10.1016/j.rccar.2018.05.004
- [21] ÚŘAD PRO TECHNICKOU NORMALIZACI, METROLOGII A STÁTNÍ ZKUŠEBNICTVÍ. ČSN ISO 690:2022 (01 0197), Informace a dokumentace Pravidla pro bibliografické odkazy a citace informačních zdrojů. Čtvrté vydání. Praha, 2022.
- [22] ÚŘAD PRO TECHNICKOU NORMALIZACI, METROLOGII A STÁTNÍ ZKUŠEBNICTVÍ. ČSN ISO 7144 (010161), Dokumentace Formální úprava disertací a podobných dokumentů. Praha, 1997.
- [23] ÚŘAD PRO TECHNICKOU NORMALIZACI, METROLOGII A STÁTNÍ ZKUŠEBNICTVÍ. ČSN ISO 31-11, Veličiny a jednotky část 11: Matematické znaky a značky používané ve fyzikálních vědách a v technice. Praha, 1999.
- [24] FARKAŠOVÁ, B.; GARAMSZEGI T.; JANSOVÁ L.; KONEČNÝ L.; KR-ČÁL M. et al. *Výklad normy ČSN ISO 690:2022 (01 0197) účinné od 1.12.2022.* Online. První vydání. 2023. Dostupné z: https://www.citace.com/Vyklad-CSN-ISO-690-2022.pdf. [cit. 2023-09-27].

Seznam symbolů a zkratek

 $f_{\rm vz}$ vzorkovací kmitočet

VUT Vysoké učení technické v Brně

CESA Centrum sportovních aktivit

FEKT Fakulta elektrotechniky a komunikačních technologií

BUT PPG Brno University of Technology Smartphone PPG Database

WFDB WaveForm Database

PPG Fotopletysmograf

EKG Elektrokardiogram

EEG Elektroencefalogram

ACC Akcelerometr

TF Tepová frekvence

IBI Tepový interval

MTF Maximální tepová frekvence

LED Elektroluminiscenční dioda

AC Střídavý proud, pulzující složka

DC Stejnosměrný proud, nepulzující složka

MA klouzavý průměr

MA_{peak} klouzavý průměr pro zvýraznění vrcholu

MA_{beat} klouzavý průměr pro zvýraznění tepu

 THR_1 práh 1

 THR_2 práh 2

FIR Filtr s konečnou impulzní charakteristikou

IIR Filtr s nekonečnou impulzní charakteristikou

FFT Rychlá Fourierova transformace

TN Pravdivě negativní

TP Pravdivě pozitivní

FN Falešně negativní

FP Falešně pozitivní

PPV Pozitivní prediktivní hodnota

Se Senzitivita

ms Milisekunda

px Pixel

Seznam příloh

A	Některé příkazy balíčku thesis	55
	A.1 Příkazy pro sazbu veličin a jednotek	55
	A.2 Příkazy pro sazbu symbolů	55
В	Druhá příloha	57
\mathbf{C}	Příklad sazby zdrojových kódů	5 9
	C.1 Balíček listings	59
D	Obsah elektronické přílohy	63

A Některé příkazy balíčku thesis

A.1 Příkazy pro sazbu veličin a jednotek

Tab. A.1: Přehled příkazů pro matematické prostředí

Příkaz	Příklad	Zdroj příkladu	Význam
	β_{\max}	<pre>\$\beta_\textind{max}\$</pre>	textový index
	$\mathrm{U_{in}}$	<pre>\$\const{U}_\textind{in}\$</pre>	konstantní veličina
	$u_{ m in}$	<pre>\$\var{u}_\textind{in}\$</pre>	proměnná veličina
	$u_{ m in}$	<pre>\$\complex{u}_\textind{in}\$</pre>	komplexní veličina
	y	\$\vect{y}\$	vektor
	Z	\$\mat{Z}\$	matice
	kV	\$\unit{kV}\$ či \unit{kV}	jednotka

A.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem¹: μ,
- \uppi sazba symbolu π (stojaté řecké pí, na rozdíl od \pi, což sází π).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

¹znak pochází z balíčku textcomp

B Druhá příloha

Obr. B.1: Signál PPG.

Pro sazbu vektorových obrázků přímo v ĽTEXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TEXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

C Příklad sazby zdrojových kódů

C.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových souborů je možné použít
  balíček \href{https://www.ctan.org/pkg/listings}%
  {\texttt{listings}}.
Balíček zavádí nové prostředí \texttt{lstlisting} pro
  sazbu zdrojových kódů.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

6 \begin{acronym} [KolikMista] % [KolikMista] určuje šířku sloupce pr Šířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky f_{vz} je na výpisu C.1.

Výpis C.1: Ukázka sazby zkratek

Ukončení seznamu je provedeno ukončením prostředí:

26 \acro{LED} {Elektroluminiscenční dioda}

Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis C.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
1
3 | % koeficienty polynomu ve jmenovateli
4 \mid a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
  disp( 'Polynom:'); disp(poly2str( a, 'z'))
 | disp('Kontrola⊔pomoci⊔korenu⊔polynomu:');
7
  zx = roots( a);
  if ( all( abs( zx) < 1))
      disp('System _ je _ stabilni')
10
  else
11
      disp('System je nestabilni nebo na mezi stability');
12
  end
13
14
  disp('\( '\); disp('Kontrola\( pomoci\( Schur-Cohn:');\)
  ma = zeros( length(a)-1,length(a));
  ma(1,:) = a/a(1);
17
  for (k = 1: length(a) - 2)
18
      aa = ma(k, 1: end - k + 1);
19
      bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
22 end
23
  if( all( abs( diag( ma.'))))
24
      disp('System i je i stabilni')
25
  else
26
       disp('Systemujeunestabilniunebounaumeziustability');
27
  end
28
```

Výpis C.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                    1
                                                                    2
short fxdf2t( short coef[][5], short sample)
                                                                    3
{
  static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                    4
  int x, y, accu;
                                                                    5
                                                                    6
  short k;
                                                                    7
  x = sample;
                                                                    8
  \underline{for}(k = 0; k < SECTIONS; k++){
                                                                    9
    accu = v1[k] >> 1;
                                                                    10
    y = _sadd(accu, _smpy(coef[k][0], x));
                                                                    11
    y = _sshl(y, 1) >> 16;
                                                                    12
                                                                    13
    accu = v2[k] >> 1;
                                                                    14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                    15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                    16
    v1[k] = _sshl( accu, 1);
                                                                    17
                                                                    18
    accu = \_smpy(coef[k][3], x);
                                                                    19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                    20
    v2[k] = _sshl(accu, 1);
                                                                    21
                                                                    22
                                                                    23
    x = y;
                                                                    24
                                                                    25
  return( y);
                                                                    26
}
```

D Obsah elektronické přílohy

Elektronická příloha je často nedílnou součástí semestrální nebo závěrečné práce. Vkládá se do informačního systému VUT v Brně ve vhodném formátu (ZIP, PDF...).

Nezapomeňte uvést, co čtenář v této příloze najde. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění, uvést nastavení kompilátoru atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2018b). Pokud bylo cílem práce vytvořit hardwarové zařízení, musí elektronická příloha obsahovat veškeré podklady pro výrobu (např. soubory s návrhem DPS v Eagle).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

/	kořenový adresář přiloženého archivu
ļ	logologa školy a fakulty
	BUT_abbreviation_color_PANTONE_EN.pdf
	BUT_color_PANTONE_EN.pdf
	FEEC_abbreviation_color_PANTONE_EN.pdf
	FEKT_zkratka_barevne_PANTONE_CZ.pdf
	UTKO_color_PANTONE_CZ.pdf
	UTKO_color_PANTONE_EN.pdf
	VUT_barevne_PANTONE_CZ.pdf
	VUT_symbol_barevne_PANTONE_CZ.pdf
	VUT_zkratka_barevne_PANTONE_CZ.pdf
-	obrazkyostatní obrázky
	soucastky.png
	spoje.png
	ZlepseneWilsonovoZrcadloNPN.png
	ZlepseneWilsonovoZrcadloPNP.png
ļ	pdf pdf stránky generované informačním systémem
	student-desky.pdf
	student-titulka.pdf
	student-zadani.pdf
ļ	<u>text</u> zdrojové textové soubory
	literatura.tex
	prilohy.tex
	reseni.tex
	uvod.tex
	vysledky.tex
	zaver.tex
	zkratky.tex
-	<u>sablona-obhaj.tex</u> hlavní soubor pro sazbu prezentace k obhajobě
-	sablona-prace.texhlavní soubor pro sazbu kvalifikační práce
l	thesis.stybalíček pro sazbu kvalifikačních prací