武汉大学 2023—2024 学年第一学期

大学物理B(下)A卷

本卷可能用到的物理学常量:

 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N} \cdot \mathrm{A}^{-2} \quad , \qquad \varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \cdot \mathrm{N}^{-1} \cdot \mathrm{m}^{-2} \quad , \qquad m_{e0} = 9.11 \times 10^{-31} \,\mathrm{kg} \quad , \label{eq:mu0}$

	$c = 3.00 \times$	$< 10^8 \mathrm{m}\cdot\mathrm{s}^{-1}$	$h = 6.63 \times 1$	$0^{-34} \mathbf{J} \cdot \mathbf{s}$	氢原子	的里德堡	常量 R _H	$=1.097\times10^{7}$	m^{-1}
	维恩位移	常量 <i>b</i> = 2	$.898 \times 10^{-3} \mathrm{m} \cdot 1$	K 、斯特	潘-玻尔克	兹曼常量 σ	$\tau = 5.67$	$\times 10^{-8} \mathrm{W}\cdot\mathrm{m}^{-3}$	$^2 \cdot K^{-4}$
— ,	选择题	(本大题	共8小题、	每小题:	3分,共	失24分)			
	1. 半径	为 R 的长	直螺线管中载	有变化的	电流,在	E管内产生	了随时间	间变化的均匀	习磁场,
当磁	兹感强度的	大小以恒;	定速率 d <i>B</i> /d <i>t</i> ^均	曾加时,	与螺线管	同轴的、	半径为 /	·(r < R) 的圆	形导体
回路	各上涡旋电	场的大小	E = []						
(A)	$r\frac{\mathrm{d}B}{\mathrm{d}t}$	(I	$3) \frac{r}{2} \frac{dB}{dt}$	((C) $\frac{r}{2R^2}$	$\frac{\mathrm{d}B}{\mathrm{d}t}$	(D	$\frac{R^2}{2r}\frac{\mathrm{d}B}{\mathrm{d}t}$	
	2. 有一	半径为 R 、	电荷线密度为	可え的均匀	习带电圆	环,绕通过	寸圆心与	5环面垂直的	转轴
以角	自速度 ω 颃	ē转。现将	转动圆环置入	匀强磁场	j中,若破	滋感强度 🖻	的方向	平行于环面-	平面,
则圆	圆环受到的	磁力矩大	小为[]						
			B) $\frac{\pi\lambda\omega BR^3}{4}$		(C) 0		(D) .	$\lambda\pi\omega BR^3$	
	3. 已知真	[空中平面	电磁波的电场	强度的振	長幅为 <i>E</i> 0	$=6.65\times10$) ⁻² V · n	n ⁻¹ ,则该电	磁波的
强度	要为[]							
(A)	5.87×10	$^{-6}$ W · m $^{-2}$		(B) 5.8	$7 \times 10^{-6} \mathrm{J}$	\cdot m ⁻²			
(C)	0.833W ·	m^{-2}		(D) 8.3	$3 \times 10^{-2} \text{ J}$	$\cdot \text{m}^{-2}$			
	4. 己知	天空中两颗	页星相对于地 同	面上某个!	望远镜的	角距离为。	4.84×10) ⁻⁷ rad,它们	发出的
光》	皮波长为55	50nm,则 ⁷	根据瑞利判据	,为了能力	分辨出这	两颗星,望	远镜口	径至少应为	[]
(A)	4.16 m	((B) 2.77 m	(C) 2.09 r	m	(D) 1.39 m	

- 5. 如图所示,在杨氏双缝干涉实验中,双缝间距为d,观察屏与双缝的垂直距离为D(D >> d),线光源 S 与双缝 S₁和 S₂的距离差 SS₃ – SS₄ = 2.5 λ ,其中 λ 为入射光波长,则 观察屏上0级明纹中心的位置为[
- (A) 在 O 点下方, 离开 O 点距离为 2.5λ
- (B) 在 O 点上方, 离开 O 点距离为 $2.5\lambda d/D$
- (C) 在 O 点下方, 离开 O 点距离为 $2.5\lambda D/d$
- (D) 在 O 点下方, 离开 O 点距离为 $2.5\lambda d/D$

- 6. 两艘宇宙飞船 A、B 正在两条相互平行的航线上相向运动,它们相对于某惯性系的 速率都是 0.50 c。则飞船 B 中的观察者测得 A 船的速度大小为[- 1
- (A) 1.0 *c*
- (B) 0.80 c
- (C) 0.73 c
- (D) 0.66 c
- 7. 透过偏振片观察一束由自然光和线偏振光混合而成的部分偏振光,当偏振片的偏振 化方向从透射光强最大位置转过60°时,透射光强减小为最大光强的一半。则这束混合光中 自然光和线偏振光的强度之比为[
- (A) 1:1
- (B) 2:1 (C) 1:2 (D) 4:3
- 8. 原子从一激发态跃迁到基态产生440nm的谱线,已知此谱线的自然线宽为 $\Delta \lambda = 0.020 \, \text{pm}$,则原子在该激发态停留时间的平均值最接近下列数值中的哪一个?[(提示: 不确定关系式为 $\Delta E \Delta t ≥ \hbar/2$)

- (A) 2.6×10^{-7} s (B) 2.5×10^{-8} s (C) 2.6×10^{-9} s (D) 2.5×10^{-10} s

二、填空题(本大题共8小题,共30分)

9. (3分)如图所示,真空中有两个圆形电流 I_1 和 I_2 和三个 闭合回路 L_1 、 L_2 和 L_3 ,则 $\oint_{L_1} \vec{B} \cdot d\vec{l} = _____$, $\oint_{L_2} \vec{B} \cdot d\vec{l} = _____$,

- $\oint_{I} \vec{B} \cdot d\vec{l} = \underline{\qquad}$
- 10.(4 分) 一平行平板空气电容器的两极板都是半径为 R 的圆形导体片, 在充电时, 两 极板上电荷面密度随时间的变化规律为 $\sigma = \sigma_0 \sin \omega t$ 。略去电场的边缘效应,则两极板之间
- 11. (3 分) 用波长为 λ 的单色平行光垂直照射在一块光栅上, 其光栅常数 $d = 2.0 \times 10^{-3} \,\mathrm{mm}$, 缝宽 $a = 5.0 \times 10^{-4} \,\mathrm{mm}$ 。则在单缝衍射中央明纹的包络线内共有 条光栅衍射的谱线。

- 12. (4分) 在用迈克耳孙干涉仪做的等倾干涉实验中,随着其中一个反射镜在导轨上的移动,视场中的圆环型干涉条纹出现了吐级现象,则等效空气膜的厚度正在逐渐______;若入射光的波长为 589.3nm,在某个测量过程中视场中央连续吐出了 120 个圆环型干涉条纹,则该反射镜连续移动的距离为_____。(结果保留 3 位有效数字,如 12.0m、135μm、1.50×10³ nm 等)
- 13. (4分) 实验证实,电子的荷质比 q/m 随其运动速度的增大而减小,当电子的荷质比减小为其静止时的 1/n (n>1) 倍时,电子的运动速度 v=______; 其动能 $E_k=$ _____。 (电子的静止质量用 m_{e0} 表述)
- 14. (4 分)假设太阳的表面温度为 5600℃,并把太阳视为黑体,则太阳表面单色辐出度曲线的峰值所对应的波长为_____nm;该黑体表面单位面积上热辐射的总功率为______W/m²。(两空均填数值,结果保留 3 位有效数字,如:512、3.45×10⁴)。
- 15. (4 分) 在康普顿散射中,若入射光子与散射光子的波长分别为 λ 和 λ' ,则散射光子的散射角 φ =_____,反冲电子获得的动能 E_k =____。
- 16. (4分) 在宽度为 a的一维无限深方势阱(在 0 < x < a 范围内,势能函数 $E_p = 0$)中有一质量为 m 的粒子,已知该粒子的定态波函数为

$$\Psi(x) = \begin{cases} A \sin \frac{2\pi x}{a} & 0 < x < a \\ 0 & \text{其它区域} \end{cases}$$

则式中的归一化常数 $A = _____$; 该粒子出现在 0 < x < a/4 范围内的概率为 。

三、计算题(本大题共5小题,共46分)

17.(10分)如图所示,一个螺线管线圈均匀密绕在内外半径分别为 R_1 和 R_2 的磁介质圆管上。已知线圈的总匝数为 N,总长度为 $L(L>>R_2)$,磁介质的相对磁导率为 $\mu_{\rm r}(\mu_{\rm r}>1)$ 。 当线圈中通有电流 I 时,试求

- (1) 该线圈内部磁场强度和磁感应强度的分布;
- (2) 磁介质圆管内表面(即半径为 R_1 的磁介质表面)上的磁化电流密度的大小和方向。
- (3) 螺线管内磁场的总能量(不考虑磁场的边缘效应)。

18.(8分)一个密绕N 匝线圈的螺绕环,环内均匀充满了磁导率为 μ 的均匀磁介质,螺 绕环的内半径为a,外半径为b,其横截面是高为h的矩形。螺 绕环外套了一个半径为R的铁环,铁环平面与螺绕环的环面垂 直,铁环的圆心恰好与螺绕环横截面的中心重合,如图所示。 试求: 螺绕环和铁环之间的互感系数, 当螺绕环中通以交变电 流 $I = I_0 \cos \omega t$ 时铁环中感应电动势的大小。

- 19. (10 分) 两块完全相同的平板玻璃一端密接,另一端用纸片垫起,形成一个 $\theta = 1.0 \times 10^{-4}$ rad 的空气劈尖,若用波长 $\lambda = 600$ nm 的单色平行光垂直照射此劈尖,观察反射 光的等厚干涉条纹。试求:
- (1) 从劈尖的棱边算起, 第15个明纹中心到劈尖棱边的距离;
- (2) 若在劈尖中充以某种透明液体后,观察到第15个明纹中心向劈尖的交棱方向移动了 1.25cm, 求该液体的折射率。
- 20.(8分)一束波长为210nm的单色光照射在金属铝表面,已知铝的逸出功为4.08eV, 试求: 从金属铝表面逸出的光电子的德布罗意波长的最小值。
- 21.(10 分) 当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为 $\Delta E = 10.19 \text{eV}$ 的状态时,发射出光子的波长是 $\lambda = 486 \text{nm}$,试求该初始状态的能量和主量子 数,以及该光子的能量及动量。