Separated Flow Past Thin Aerofoil

Exercise 9 - Page 129

• Question 1. Consider

$$f(z) = i\frac{dY_+}{dx} + (C_r + iC_i)(z - x_s)^{\alpha} + \dots,$$

Let $z - x_s = re^{i\vartheta}$ which yields to

$$f(z) = iY'_{+} + r^{\alpha} \left[C_r \cos(\alpha \vartheta) - C_i \sin(\alpha \vartheta) \right] + ir^{\alpha} \left[C_r \sin(\alpha \vartheta) + C_i \cos(\alpha \vartheta) \right],$$

$$f(z) = p_1 + iv_1.$$

The pressure is zero at separation point $p_1\Big|_{\vartheta=0}=0$

$$\Re\{f(z)\}\Big|_{\vartheta=0} = p_1\Big|_{\vartheta=0} = r^{\alpha} \left[C_r \cos\left(\alpha\vartheta\right) - C_i \sin\left(\alpha\vartheta\right)\right] = 0,$$

the term $C_r \cos(\alpha \vartheta) - C_i \sin(\alpha \vartheta)$ can be zero only if $C_r = 0$.

Figure 1: Complex plane near the separation point as illustrated in Ruban (2015)

Now turn our attention to condition $v_1 = Y'_+(x)$

$$\Im\{f(z)\} = v_1 = r^{\alpha} \left[C_r \cos(\alpha \vartheta) - C_i \sin(\alpha \vartheta) \right] + Y'_{+} = Y'_{+},$$

thus $C_i \cos(\alpha \pi) = 0$ since C_i cannot be zero we let $\cos^{-1}(0) = \alpha \pi = \frac{\pi}{2}$ which implies $\alpha = 1/2$. As a result we find that

$$p_1 = -r^{1/2}C_i\sin\frac{\vartheta}{2}.$$

• Question 2. Consider a flat aerofoil and set the coordinates (x, y) at the origin such that it coincides with the leading edge of the flat aerofoil

$$Q(x) = \frac{x}{\sqrt{(x+1)(x-\sqrt{x_s})}} \quad \text{at} \quad y = 0, \ x \in (\sqrt{x_s}, \infty)$$

Having $p_1 + iv_1 = \frac{i\alpha_*}{Q(z)}$ implies $v_1 = \frac{\alpha_*}{Q(x)} = Y'_s$.

$$Y'_{s} = \frac{\alpha_{*}}{x} \sqrt{(x+1)(x-\sqrt{x_{s}})}$$

$$= \frac{i\alpha_{*}}{x} \sqrt{x} (1+1/x)^{1/2} \sqrt{x} (1-\sqrt{x_{s}}/x)^{1/2},$$

$$= \alpha_{*} (1+\frac{1}{2x}+\dots) (1-\frac{\sqrt{x_{s}}}{2x}+\dots),$$

$$= \alpha_{*} \left(1+\frac{1}{2x}(1-\sqrt{x_{s}})\right) + \dots$$

Integrating Y'_s w.r.t x gives us

$$Y_s = \alpha_* x + \alpha_* (1 - \sqrt{x_s}) x + \dots$$
 as $x \to \infty$.

Similarly we find that

$$Y_T = \alpha_* x - \alpha_* (1 - \sqrt{x_s}) x + \dots$$
 as $x \to \infty$.

• Question 3. Consider $\alpha = \epsilon \alpha$

$$y = \pm ax^{-1/2},$$

Focusing on Y_s where

$$a = \alpha_* \left[Lx + \sqrt{Lx} \left(1 - \sqrt{x_s} \right) \right],$$

thus

$$\epsilon Y_s = a\sqrt{x}$$

$$a\sqrt{x} = \epsilon \alpha_* \left[Lx + \sqrt{Lx} \left(1 - \sqrt{x_s} \right) + \dots \right],$$

let $\epsilon \alpha_* = \alpha$ which yields to

$$a = \alpha \left[\sqrt{L} \left(1 - \sqrt{x_s} \right) + \dots \right].$$

Given that the drag force is defined as

$$D = \frac{1}{4}\rho V_{\infty}^2 a^2 \pi,$$

replaying a in the drag force, it becomes

$$D = \frac{1}{4}\rho V_{\infty}^2 L\pi \left[\alpha \left(1 - \sqrt{x_s}\right)\right]^2,$$

• Question 4.Choose a branch cut of the function $Q(z) = (z - x_s)^{-1/2}$. To the right side of $x = x_s$ we have $\rho = x - x_s$ and $\vartheta = 0$

$$Q(x) = (\rho e^{i\vartheta}|_{\vartheta=0})^{-1/2} = (x - x_s)^{-1/2}.$$

To the left side of $x = x_s$ at $\vartheta = \pi$

$$Q(x) = i(-x + x_s)^{-1/2}$$
.

Now let's consider $\Phi(z) = F(z)Q(z)$. We choose the contour of integration as shown in the Figure 1. It is composed of an interval [0, R] of the real-axis and a quarter-circle C_R whose radius R is large enough to ensure that point z lies inside the contour C. Also we introduce a small semi-circle C_r to deal with possible singularity at separation point $z = x_s$.

$$\Phi(z) = \frac{1}{2\pi} \oint_C \frac{\Phi(\xi)}{\xi - z} d\xi. \tag{1}$$

Given the far field condition $f(z) \to 0$ as $z \to \infty$ we find that

$$\Phi(z) \to \text{as } z \to .$$

Consequently the integral alone C_R is calculated as

$$\lim_{R \to \infty} \int_{C_R} \frac{\Phi(\xi)}{\xi - z} d\xi = 0,$$

when calculating the integral along [0, R] of the real-axis we need to examine possible singularity of the function $\Phi(\xi)$ and at the separation point s

$$Q(z) = O(z)$$
 as $z \to 0$,

thus Q(z) remains finite which means the integration through this point does not require any especial treatment.

$$\Phi(z) = F(z)Q(z) = O(z - x_s)^{-1/2}$$
 as $z \to x_s$,

the integral c_r is estimated to be

$$\int_{c_r} \frac{\Phi(\xi)}{\xi - z} d\xi = O(\rho^{1/2}),$$

these integral calculation render (1) in the form

$$\Phi(z) = \frac{1}{2\pi i} \int_0^\infty \frac{\Phi(\xi)}{\xi - z} d\xi,$$

Now we need to consider the point \bar{z} which is the complex conjugate of z. By Cauchy Theorem

$$\lim_{R \to \infty} \int_{C_R} \frac{\Phi(\xi)}{\xi - \bar{z}} d\xi = 0,$$

this is equivalent to

$$\Phi(z) = \frac{1}{2\pi i} \int_0^\infty \frac{\overline{\Phi(\xi)}}{\xi - z} d\xi = 0,$$

Now let's consider $\xi \in (-\infty, 0)$ and this interval we know $\Im\{F(z)\} = 0$.

$$\begin{split} \Phi(\xi) + \overline{\Phi(\xi)} &= F(\xi)Q(\xi) + \overline{F(\xi)Q(\xi)}, \\ &= \frac{-i}{\sqrt{x_s - x}} \big[F(\xi) + \overline{F(\xi)} \big] \\ &= \frac{-i2}{\sqrt{x_s - x}} \Im\{F(\xi)\} = 0. \end{split}$$

Now let's consider $\xi \in (0, x_s)$ and this interval we know $\Im\{F(z)\} = Y'_+(x)$.

$$\Phi(\xi) + \overline{\Phi(\xi)} = \frac{-i2}{\sqrt{x_s - x}} \Im\{F(\xi)\} = Y'_{+}(\xi).$$

Now let's consider $\xi \in (x_s, \infty)$ and this interval we know $\Re\{F(z)\} = 0$.

$$\Phi(\xi) + \overline{\Phi(\xi)} = 2(\sqrt{x_s - x})^{-1/2} \Re\{F(\xi)\} = 0.$$

Finally using the expression $F(z) = \frac{\Phi(z)}{Q(z)}$, we are able to find F(z) as

$$F(z) = -\frac{\sqrt{z - x_s}}{\pi} \int_0^{x_s} \frac{Y'_{+}(\zeta)}{(x_s - \zeta)^{1/2}()\zeta - z} d\zeta.$$

FaeKhosh - FK111@ic.ac.uk

Questions

The questions are found in Ruban (2015).

References

Ruban, A. I. (2015), 'Fluid dynamics. part 2, asymptotic problems of fluid dynamics'.