Lógica

Mauro Polenta Mora

Ejercicio 1

Consigna

Sean φ, ψ, σ proposiciones cualesquiera de PROP. Construya derivaciones que demuestren que las siguientes proposiciones son teoremas del cálculo proposicional:

- (a) $\varphi \to \varphi$
- (b) $\perp \rightarrow \varphi$
- (c) $\neg(\varphi \land \neg\varphi)$
- (d) $\varphi \to (\psi \to \varphi \land \psi)$
- (e) $(\varphi \to \psi) \leftrightarrow \neg(\varphi \land \neg \psi)$
- (f) $(\varphi \wedge \psi) \leftrightarrow \neg(\varphi \rightarrow \neg \psi)$
- (g) $(\varphi \to (\psi \to \sigma)) \leftrightarrow (\psi \to (\varphi \to \sigma))$
- (h) $(\varphi \to \psi) \land (\varphi \to \neg \psi) \to \neg \varphi$
- (i) $(\varphi \to \psi) \to ((\varphi \to (\psi \to \sigma)) \to (\varphi \to \sigma))$
- (j) $((\varphi \to \psi) \to (\varphi \to \sigma)) \to (\varphi \to (\psi \to \sigma))$
- (k) $((\varphi \to \psi) \to \varphi) \to \varphi$

Resolución

Parte (a)

Queremos probar
⊢ $\varphi \rightarrow \varphi,$ veamos la prueba:

Parte (b)

Queremos probar $\vdash \bot \rightarrow \varphi$, veamos la prueba:

$$\frac{[\alpha]^1}{\alpha \to \alpha} I \to^{(1)}$$

Figure 1: Figura 1

$$\frac{\left[\bot\right]^{1}}{\varphi} E \bot$$

$$\frac{\bot \to \varphi}{} I \to {}^{(1)}$$

Figure 2: Figure 2

Parte (c)

Queremos probar $\vdash \neg(\varphi \land \neg \varphi)$, veamos la prueba:

$$\frac{\frac{[\alpha \wedge \neg \alpha]^{1}}{\neg \alpha} E \wedge_{2} \frac{[\alpha \wedge \neg \alpha]^{1}}{\alpha} E \wedge_{1}}{\frac{\bot}{\neg (\alpha \wedge \neg \alpha)} I \neg^{(1)}} E \wedge_{1}$$

Figure 3: Figura 3

Parte (d)

Queremos probar
⊢ $\varphi \to (\psi \to \varphi \wedge \psi),$ veamos la prueba:

Parte (e)

Queremos probar $\vdash (\varphi \to \psi) \leftrightarrow \neg(\varphi \land \neg \psi)$, veamos la prueba:

Parte (f)

Queremos probar $\vdash (\varphi \land \psi) \leftrightarrow \neg(\varphi \to \neg \psi)$, veamos la prueba:

Parte (g)

Queremos probar $\vdash (\varphi \to (\psi \to \sigma)) \leftrightarrow (\psi \to (\varphi \to \sigma))$, veamos la prueba:

$$\frac{\frac{[\varphi]^{1} \quad [\psi]^{2}}{\varphi \wedge \psi} \stackrel{I \wedge}{}_{I \to (2)}}{\frac{\psi \rightarrow \varphi \wedge \psi}{\varphi \rightarrow (\psi \rightarrow \varphi \wedge \psi)} \stackrel{I \to (1)}{}_{I \to (1)}}$$

Figure 4: Figura 4

$$\frac{ [\neg(\varphi \land \neg \psi)]^{1} \qquad \frac{[\varphi]^{2} \qquad [\neg \psi]^{3}}{\varphi \land \neg \psi} \qquad [\varphi \land \neg \psi]^{4}}{\frac{\bot}{\psi} \qquad RAA^{(3)}} \qquad \frac{[\varphi \land \neg \psi]^{4}}{\neg \psi} \qquad E \land 2} \qquad \frac{[\varphi \rightarrow \psi]^{1} \qquad \frac{[\varphi \land \neg \psi]^{4}}{\varphi} \qquad E \land 1}{\frac{\bot}{\neg(\varphi \land \neg \psi)} \qquad E \land 2}} \qquad E \land 1}{\frac{\bot}{\neg(\varphi \land \neg \psi)} \qquad I \rightarrow (1)} \qquad E \land 1}$$

Figure 5: Figura 5

$$\frac{ \frac{ \left[\varphi \right]^4 \qquad \left[\psi \right]^5}{\varphi \wedge \psi} }{ \frac{ \left[\varphi \right]^4 \qquad \left[\psi \right]^5}{\varphi \wedge \psi} } \prod_{E \gamma} \\ \frac{ \frac{ }{- \psi} \prod_{I \gamma^{(5)}} \prod_{I \gamma^{(5)}} \prod_{I \gamma^{(4)}} \prod_{I \gamma^{(4)}}$$

Figure 6: Figura 6

Figure 7: Figura 7

Parte (h)

Queremos probar $\vdash (\varphi \to \psi) \land (\varphi \to \neg \psi) \to \neg \varphi$, veamos la prueba:

Figure 8: Figura 8

Parte (i)

Queremos probar $\vdash (\varphi \to \psi) \to ((\varphi \to (\psi \to \sigma)) \to (\varphi \to \sigma))$, veamos la prueba:

$$\frac{ \frac{[\varphi \to (\psi \to \sigma)]^2 \quad [\varphi]^3}{\psi \to \sigma} \quad E \to \quad \frac{[\varphi \to \psi]^1 \quad [\varphi]^3}{\psi} \quad E \to \frac{}{\frac{\varphi \to \sigma}{\varphi \to \sigma} \quad I \to (3)}$$

$$\frac{ \frac{\varphi \to (\psi \to \sigma)^3}{(\varphi \to (\psi \to \sigma)) \to (\varphi \to \sigma)} \quad I \to (1)}{(\varphi \to \psi) \to (\varphi \to (\psi \to \sigma)) \to (\varphi \to \sigma)} \quad I \to (1)$$

Figure 9: Figura 9

Parte (j)

Queremos probar $\vdash ((\varphi \to \psi) \to (\varphi \to \sigma)) \to (\varphi \to (\psi \to \sigma))$, veamos la prueba:

$$\frac{[(\varphi \to \psi) \to (\varphi \to \sigma)]^{1} \qquad \frac{[\psi]^{3}}{\varphi \to \psi} \xrightarrow{I \to {}^{(4)}} }{\frac{\varphi \to \sigma}{\varphi \to \sigma} \xrightarrow{I \to {}^{(3)}} E \to} \underbrace{\frac{\varphi \to \sigma}{\psi \to \sigma} \xrightarrow{I \to {}^{(3)}} E \to}_{I \to {}^{(1)}} \times \underbrace{\frac{\varphi \to \varphi}{\varphi \to (\psi \to \sigma)} \xrightarrow{I \to {}^{(2)}} E \to}_{I \to {}^{(1)}}$$

Figure 10: Figura 10

Parte (k)

Queremos probar $\vdash ((\varphi \to \psi) \to \varphi) \to \varphi$, veamos la prueba:

$$\frac{[\neg \varphi]^2 \qquad [\varphi]^3}{\frac{\bot}{\psi}} \stackrel{E \neg}{}_{E \bot}$$

$$\frac{[(\varphi \rightarrow \psi) \rightarrow \varphi]^1}{\varphi} \stackrel{E \neg}{}_{E \rightarrow}$$

$$\frac{\bot}{\varphi} \stackrel{RAA^{(2)}}{RAA^{(2)}}$$

$$\overline{((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi} \stackrel{I \rightarrow {}^{(1)}}{}_{I \rightarrow {}^{(1)}}$$
Figure 11: Figura 11