Semantic Search on PyTorch discussions

PyTorch in Munich at Microsoft

- https://discuss.pytorch.org/
- Discussions on deep learning with PyTorch
 - Help with debugging
 - Performance issues
 - Model/training support
 - Feedback
 - **–** ...
- Welcoming community!

... and I like to hangout in the board!

	Received	Given	Topics	Replies 🗸	Viewed	Read	Visits	Time Read
ptrblck	1.4k	286	1	4.0k	13.1k	38.2k	425	20d

So you might have seen me there.

- Some stats
 - ~13,000 topics
 - ~52,000 posts
 - ~1,700 marked solutions

- Some stats
 - ~13,000 topics
 - ~52,000 posts
 - ~1,700 marked solutions

- Search works with keywords (lexical search)
- Fine in a lot of cases
- Semantic search: search with meaning

Semantic search @github

- Hamel Husain & Ho-Hsiang Wu created semantic search demo for Github code search using deep learning
- Nice blog post: https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
- Used function docstring pairs
- This work is highly inspired by Husain and Wu (thanks a lot for the great blog post and explanations)

Semantic search @github

api app = ExampleAPI(host='localhost', port=5372)

api_app.run()

Search

Result

```
Live Semantic Search of Code (Searching Holdout Set Only)
**search
start flask app
WARNING:root:Processing 1 rows
cosine dist:0.1288 url: https://github.com/Fire-Proof/cue-csqo/blob/master/cue csqo/csqo.py#
L97
def start webserver(self):
   app = Flask( name )
   app = self. setup routes(app)
    app.run(port=43555)
cosine dist:0.1294 url: https://github.com/sunary/ank/blob/master/examples/api app/processo
r.py#L13
def start(self):
```

Semantic search @github

```
Would this also work for our discussion board?
```

- Threads/topics:
 - Title (name)
 - Question (start post)
 - Stats
 - Solution?
 - Posts

- Threads/topics:
 - Title (name)
 - Question (start post)
 - Stats
 - Solution?
 - Posts?

- Some stats
 - ~**13,000** topics
 - ~52,000 posts
 - ~1,700 marked solutions

• 1,700 marked solutions might not be enough data to train deep learning model

- 1,700 marked solutions might not be enough data to train deep learning model
- But we have 13,000 topics!
- Workflow:
 - Use solution if available
 - Else: take post with highest score (not start post)

Discourse post score

- Uses
 - Reply count
 - Likes
 - Links
 - Bookmark count
 - Reading time?
 - Number of reads

```
class ScoreCalculator
  def self.default_score_weights
      reply_count: 5,
      like_score: 15,
      incoming_link_count: 5,
      bookmark_count: 2,
      avg_time: 0.05,
      reads: 0.2
  end
```

Overview

- Data
- Model
- Loss function
- Training
- Testing

Get the data

- All pulled information is public (indexed by Google)
- Use discourse REST API to get all posts
- Save title, question, solution (or highest scored post)
- Create two datasets
 - small dataset (only solutions)
 - Bigger dataset (solutions or best post)

```
id:
                                  80969
 name:
                                  "ptrblck"
 username:
▼avatar template:
                                  "/user avatar/discuss.pytorch.org/ptrblck/{size}/1823 1.png"
                                  "2018-12-10T13:15:41.217Z"
 created at:
                                  "You can directly index your image tensor:\n<code</pre>

▼ cooked:
 post number:
                                  2
 post type:
 updated at:
                                  "2018-12-10T14:11:02.491Z"
 reply count:
 reply to post number:
                                  null
 quote count:
 avg time:
                                  18
 incoming link count:
 reads:
                                  16.7
 score:
```

Get the data

- REST API was quite easy to use (although the docs could get some more examples)
- Saved datasets:
 - Small dataset: 1582 threads
 - Bigger dataset: 10,280 threads

Get data

- Example of "raw" markdown data:
- "You can directly index your image
 tensor:\n```python\nimg = torch.randn(1, 3, 10, 10,
 device='cuda')\nx, y = 1, 1\nwidth, height = 5,
 5\nimg[:, :, y:y+height, x:x+width]\n```"
- How to clean and preprocess this kind of data?

- Basic approach:
 - Tokenize the raw text
 - Lower all words
 - ...
 - Create language (dictionary)
 - Done!

- Basic approach:
 - Tokenize the raw text
 - Lower all words
 - ...
 - Create language (dictionary)
 - Done!
 - Maybe not :(
- Tokenization of code seems to fail

```
['you', 'can', 'directly',
'index', 'your', 'image',
'tensor', ':', '``', '`',
'python', 'imq', '=',
'torch.randn(1', ',', '3',
',', '10', ',', '10', ','
"device='cuda", "'", ')', 'x',
'width', ',', 'height', '=',
'5', ',', '5', 'img', '[',
'y+height', ',', 'x',
'x+width', 'l',
```

- New approach:
 - Tokenize text and code separately
 - Use regex to get markdown code
 - re_code = r'(?:(?<!\\)((?:\\{2})+)(?=`+)|(?<!\\)
 (`+)(.+?)(?<!`)\2(?!`))'</pre>
 - (Taken from https://github.com/Python-Markdown/markdown)
 - Also, remove all links (+ image links)
 - Use tokens to create language

- New approach:
 - Tokenize text and code separately
 - Use tokens to create language (dictionary)
 - Represent each word as one-hot encoded vector
 - Create lookup table for word index
 - See PyTorch Seq2Seq Tutorial (class Lang)
 https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Overview

- Data
- Model
- Loss function
- Training
- Testing

- Basic idea
 - Represent search string and target (answer/thread) in a shared vector space
 - Use two neural networks for mapping
 - Search strings and targets with same "meaning" should be close in vector space
 - Different meaning → far apart in vector space
 - Use cosine similarity to measure distance

- Use model (encoder) from PyTorch Seq2Seq tutorial
- Add linear layer(s) to learn vector space

```
class EncoderRNN(nn.Module):
   def __init__(self, input_size, hidden_size):
        super(EncoderRNN, self).__init__()
        self.hidden size = hidden size
        self.embedding = nn.Embedding(input size, hidden size)
        self.gru = nn.GRU(hidden size, hidden size)
   def forward(self, input, hidden):
        embedded = self.embedding(input).view(1, 1, -1)
        output = embedded
        output, hidden = self.gru(output, hidden)
        return output, hidden
   def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)
```

Overview

- Data
- Model
- Loss function
- Training
- Testing

Loss function

- Start with simple cosine similarity [-1, 1]
 - Should be high for positive pairs (sim+)
 - Low for negative samples (sim-)
 - Shift by 1 to get zero loss instead of negative values loss = (1 sim+) + (1 + sim-)
 - Sum both similarities together
 - nn.CosineSimilarity()

Overview

- Data
- Model
- Loss function
- Training
- Testing

- Use standard setup (SGD, Ir=1e-3, batch_size=64, ...)
- Start with small dataset
- ...

- Use standard setup (SGD, Ir=1e-3, batch_size=64, ...)
- Start with small dataset
- ...
- Fail: Training+Validation loss hardly moving

Tune model hyperparameters (layer size)

- Tune model hyperparameters (layer size)
- Fail

- Things that have failed:
 - Model hyperparameter tuning
 - Tuning of optimization hyperparams (Ir, weight decay, different optimizer)
 - Adding some regularization (BatchNorm, Dropout)
 - Change GRU (bidirectional, more layers)
 - Use the bigger dataset
 - Use shorter sequences (cut or remove longer sequences)
- Nothing seems to be working!

- What have Husain & Wu done?
- Steps 2 and 3
 create a
 "language model"
 for both networks
- Step 4 learn the shared vector space

- What have Husain & Wu done?
- Two different approaches for pretraining
 - Seq2Seq model (use only encoder)
 - Try to learn to predict next word

- What have Husain & Wu done?
- Two different approaches for pretraining
 - Seq2Seq model (use only encoder)
 - Failed: probably too little data?
 - Try to learn to predict next word
 - Failed: No natural language (mixture of text + code)?

Overview

- Data
- Model
- Loss function
- Training
- Testing

Back to Step1!

Review the data

- Data consists of
 - A lot of numbers
 - Tensor/model shapes, random values etc.
 - A lot of single letter words
 - Variable names, etc.

Review the data

- Data consists of
 - A lot of numbers
 - Tensor/model shapes, random values etc.
 - A lot of single letter words
 - Variable names, etc.
- Remove these and try training again with small dataset

Review the data

- Data consists of
 - A lot of numbers
 - Tensor/model shapes, random values etc.
 - A lot of single letter words
 - Variable names, etc.
- Remove these and try training again with small dataset
- (Half) Fail: Model trades sim+ for sim- (at least moving at all!)

- Pretrain models using just search strings
 - Maybe this way the "language" will be learned?
- Then add targets to datasets

- Pretrain models using just search strings
 - Maybe this way the "language" will be learned?
- Then add targets to datasets
- Works OK! First success!
- Validation loss is still high
 - but it's a first step;)

- Pretrain models using just search strings
- Then add targets to datasets
- Change hyperparameters around
 - Add or remove capacity from models
 - Observe the losses
- Switch back to bigger dataset
- Change loss function to log(1 + exp(-1.0*((sim+)-(sim-))))
 - Taken from Geo et. al, "An Introduction to Deep Learning for Natural Language Processing", Microsoft Research

- Works alright!
- Training and validation losses going down
 - Not as I would have wished, but anyway

Overview

- Data
- Model
- Loss function
- Training
- Testing

- Question: 'tensor is not contiguous'
- Top10 Answers:
- how to compile pytorch from source without cuda default location
- how to merge by avg multiple inputs to layer
- how to specify gpu usage
- why does this assignment operation of variable not work

- apply part of tensor on function to avoid out of memory
- shuffle elements of tensor
- method object does not support item assignment
- tensor slicing on 3 dim tensors
- how to extend tensors inside variable
- tensor and variable are the same now

- Question: 'how to broadcast tensor'
- Top10 Answers:
- how to flip a tensor along a specified axis
- how to get the current value of a variable
- how to broadcast a 1d tensor with a 4d tensor
- how to transfer an existing tensor to another device based on other tensor
- how to get all registerd buffer by self register buffer

- how can I use the pre trained resnet to extract feautres from my own dataset
- how to convert a normal variable into a regular variable that can be inputted to a loss function
- how to merge tensor with weights
- how to choose a suitable weight decay
- how to keey the weight of conv layer unchanged

- Question: 'model is performing bad'
- Top10 Answers:
- unusual large memory for con2d with batch size 1
- gpu high memory usage low gpu volatile util
- pytorch example with cnn based object detection
- error loading bidirectional Istm model

- question about thstorage
- too many resources requested for launch
- what is pytorch
- what is nn embedding exactly doing
- will conda install pytorch torchvision c pytorch also install cuda and cudnn
- loading pytorch checkpoint in tf keras

Based on these results let's rather call this talk
 "First steps towards semantic search on PyTorch discussions"

Top10 accuracy:
~7%

Top10 random:
 10/1337=~0.7%

Thanks a lot to **all of you** for being such a great community!

Make sure to create an account at https://discuss.pytorch.org;)

Now let's have some beers and pizza, and hang out together!

Semantic Search on PyTorch discussions

PyTorch in Munich at Microsoft

Munich Applied Deep Learning Meetup Dec 11th, 2018 Piotr Bialecki